Universidade Federal de Minas Gerais – UFMG Instituto de Ciências Exatas – ICEx Departamento de Estatística – DEST Centro de Estudos em Estatística e Ciências de Dados – CECiDa

Projeto LabEst: Consultoria em Análise Estatística para Alunos de Pós-Graduação

Relatório Final da Análise Estatística:

Análise da Efetividade e Segurança da Cirurgia Renal Endoscópica Por Acesso Combinado Para o Tratamento de Cálculos Renais Coraliformes

Clientes:

Filipe de Paula Martins

Mestrando em Ciências Aplicadas à Cirurgia e Oftalmologia – Cirurgia Geral e Oftalmologia – UFMG

Prof. Cristiano Xavier

Orientador

Consultores:

Bruna Maria Gonçalves Cândido Eliana Cardoso Gonçalves

Alunos da Disciplina "Laboratório de Estatística I"

Orientação: Enrico Antonio Colosimo

Análise da Efetividade e Segurança da Cirurgia Renal Endoscópica Por Acesso Combinado Para o Tratamento de Cálculos Renais Coraliformes

Eliana Cardoso Gonçalves Bruna Maria Gonçalves Cândido Laboratório de Estatística I - UFMG 06/10/2023

1. Introdução e objetivos

Neste trabalho, tivemos como cliente o aluno de mestrado em Ciências Aplicadas à Cirurgia e Oftalmologia, Filipe de Paula Martins, orientado pelo professor Cristiano Xavier, realizando um estudo sobre a eficácia e segurança das cirurgias renais endoscópicas.

Um dos fatores mais importantes na indicação da modalidade terapêutica para o cálculo renal é o tamanho dele. De acordo com as diretrizes da Associação Europeia de Urologia (EAU), a cirurgia percutânea (NLPC) deve ser a primeira escolha para cálculos maiores que dois centímetros, principalmente sendo empregada em volumosas massas litiásicas. No entanto, a presença de cálculos residuais na abordagem percutânea é algo comum. O acesso renal endoscópico simultâneo, com ureteroscopia flexível e acesso percutâneo como catalisadores entre si, tem maior taxa livre de cálculo, menor tempo cirúrgico, menor número de abordagens. O procedimento ganhou popularidade ao longo do tempo, sendo em 2008 publicada grande série por Scoffone et al., mostrando superioridade da técnica em relação aos tratamentos convencionais. A técnica é reprodutível, tem elevada efetividade, além de estar associada a discreto índice de complicações. Supera principalmente a ureteroscopia flexível nas elevadas taxas livres de cálculos por procedimento e a NLPC em suas taxas de complicações.

Tendo acesso às informações sobre algumas realizações dessa cirurgia e aos resultados obtidos, nossos objetivos principais foram determinar a taxa de sucesso na eliminação de cálculos, também chamada de taxa livre de cálculo, e avaliar quais dos fatores clínico-epidemiológicos estão relacionados à taxa livre de cálculos em cirurgias renais endoscópicas por acesso combinado para o tratamento de cálculos renais coraliformes que é fundamental para compreender os determinantes do sucesso do procedimento.

2. Metodologia

O banco de dados utilizado para a pesquisa foi composto por 40 prontuários de pacientes portadores de cálculos renais coraliformes submetidos a cirurgia renal endoscópica por acesso combinado no Hospital Felício Rocho, durante o período de janeiro de 2016 a dezembro de 2020.

Inicialmente, o banco de dados continha 46 variáveis, mas, devido ao número de variáveis ser maior que o tamanho da amostra, selecionamos juntamente com o cliente as variáveis que ele acreditava serem clinicamente mais importantes para seus objetivos, ficando assim com 32 variáveis, sendo 20 variáveis categóricas (tabela 1) e 12 numéricas (tabela 2). Uma variável a mais foi criada, nomeada "Tamanho Coraliforme", que contém os valores dos tamanhos dos cálculos, completos ou incompletos, em centímetros, sendo a junção de duas colunas existentes.

Variável	Descrição
ID	Identificação de cada paciente. Única para cada observação
Sexo	Indica o sexo do paciente: F ou M. São 26 pacientes do sexo masculino e 14 do sexo feminino
Risco Cirúrgico	Indica o risco no índice ASA: 1,2 ou 3. São 11 pacientes com índice 1, 27 com índice 2 e 2 pacientes com índice 3 $^{\circ}$
Charlson	Índice de comorbidade: 0, 1 ou 2. São 35 pacientes com índice 1, 3 pacientes com índice 2 e 2 pacientes com índice 3 $^{\circ}$
Sintomas	Indica se o paciente teve sintomas: 0(não) ou 1(sim). São 11 pacientes sem sintomas e 29 com sintomas
Quais Sintomas	Indica qual o sintoma do paciente: 0(nenhum), 1(cólica) e 2(infecção). São 21 pacientes com cólica e 12 pacientes com infecção. Um paciente pode ter mais de um sintoma
Lado Operado	Indica o lado da operação: 1(direita) ou 2(esquerda). São 13 pacientes operados do lado direito e 27 do lado esquerdo
Tipo de Cálculo	Indica o tipo de cálculo: 1(completo) ou 2(incompleto). São 8 pacientes com cálculo completo e 32 com cálculo incompleto
Escore de Guy	Indica a complexidade do cálculo: 3 ou 4. São 32 pacientes com índice 3 e 8 pacientes com índice 4
Hidronefrose	Indica a presença de hidronefrose: $0(n\tilde{a}o)$ ou $1(sim)$. São 14 pacientes sem hidronefrose e 26 pacientes com hidronefrose
Tratamento Anterior	Indica se houve tratamento anterior: 0(não) ou 1(sim). São 32 pacientes sem tratamento anterior e 8 pacientes com tratamento anterior)
Duplo J preoperatório	Indica o uso de Duplo J préoperatório: 0(não) ou 1(sim). São 20 pacientes marcados com não e 20 pacientes marcados com sim
Complicações	Indica se houve complicações: 0(não) ou 1(sim). São 37 pacientes sem complicação e 3 pacientes com complicação
Qual Complicação	Indica qual complicação. São 1 paciente com sangramento, 1 paciente com infecção e 1 paciente com ambos
Transfusão	Indica se houve transfusão: 0(não) e 1(sim). São 38 pacientes sem transfusão e 2 pacientes com tranfusão
Nefrostomia	Indica se houve nefrostomia: 0(não) e 1 (sim). Apenas 1 pacientes precisou de nefrostomia
Clavien Dindo	Escala de gravidade imediatamente pós operaória: 0 , 2 ou 3 . São 36 pacientes com índice 0 , 3 pacientes com índice 2 e 1 paciente com índice 3
Cálculo Residual	Indica se houve cálculo residual após a cirurgia: 0(não) ou 1(sim). São 27 pacientes sem cálculo residual e 13 pacientes com cálculo residual
Tratamentos adicionais	Indica houveram tratamentos adicionais: 0(não) ou 1(sim). São 28 pacientes sem tratamento adicional e 12 pacientes com tratamento adicional
Quais Tratamentos Adicionais	Indica quais foram os tratamentos adicionais: 0(nenhum), 1(percutânea), 2(utl flex) e 3(utl rigida). São 28 pacientes com 0, 11 pacientes com 2 e 11 pacientes com 3

Tabela 1: Resumo das variáveis categóricas

	Mean	Sd	Min	Q1	Med	Q3	Max
Distância Pele Cálculo	9.74250	1.6156109	6.80000	8.90000	10.00000	10.90000	14.00000
Idade	49.25000	16.6637177	10.00000	38.00000	48.50000	59.00000	85.00000
IMC	27.73767	4.2825907	17.75148	24.71191	27.85016	30.66767	36.49376
Quantos Tratamentos Adicionais	0.37500	0.6674675	0.00000	0.00000	0.00000	1.00000	3.00000
Tamanho Coraliforme	4.13500	2.0843187	1.00000	2.65000	3.80000	5.25000	9.00000
Tamanho Coraliforme Completo	1.10000	2.7316755	0.00000	0.00000	0.00000	0.00000	9.00000
Tamanho Coraliforme Incompleto	3.03500	1.9314602	0.00000	2.00000	3.00000	4.60000	7.10000
Tempo Cirúrgico	90.40000	35.0492694	40.00000	64.50000	85.00000	111.50000	200.00000
Tempo Internação	1.70000	1.3435506	1.00000	1.00000	1.00000	2.00000	8.00000
Tempo Nefrostomia	0.07500	0.4743416	0.00000	0.00000	0.00000	0.00000	3.00000
Tempo Permanência Duplo J	42.65000	40.4750952	5.00000	24.00000	35.00000	47.00000	251.00000
Tempo Sonda Vesical de Demora	1.22500	0.8316650	1.00000	1.00000	1.00000	1.00000	6.00000
Unidade Hounsfield	1031.32500	318.9078629	470.00000	825.00000	958.00000	1300.00000	1700.00000

Tabela 2: Resumo das variáveis numéricas

A amostra é composta por 26 pacientes do sexo masculino e 14 do sexo feminino (Tabela 1). As idades dos pacientes variam de 10 a 85 anos, com média de cerca de 50 anos (Tabela 2).

No conjunto de dados, foram disponibilizadas informações relacionadas ao sexo e idade dos pacientes, bem como diversos dados médicos abrangendo os períodos pré-operatório, peroperatório e pós-operatório da cirurgia renal. A variável de interesse neste estudo é denominada "Cálculo Residual", a qual é uma variável categórica com dois fatores distintos: "Sim" ou "Não". A categoria "Sim" indica a presença de cálculo residual após a cirurgia para um determinado paciente, enquanto a categoria "Não" representa a ausência dessa condição. Tanto a análise da Taxa Livre de Cálculo quanto a construção do modelo de regressão logística foram realizadas com foco nessa variável, visando aprofundar a compreensão sobre os fatores associados à presença ou ausência de cálculo residual após a cirurgia renal.

Inicialmente, realizamos a conta para encontrar a Taxa Livre de Cálculos, fazendo uma proporção de pacientes que não tiverem cálculo residual após a cirurgia por todos os pacientes que passaram pelo processo cirúrgico.

Em seguida, fizemos testes estatísticos para avaliar a correlação entre a variável resposta com cada covariável. Foram aplicados o Teste t para variáveis numéricas e Teste Qui-Quadrado para variáveis categóricas, tomando como nível de significância 25% (0.25). Esses testes foram usados como base para escolher quais variáveis iriam fazer parte do modelo de regressão.

Por fim, construímos um modelo de regressão logística binomial considerando as variáveis selecionadas. O objetivo foi analisar quais principais fatores clínico-epidemiológicos poderiam influenciar a taxa de sucesso na eliminação dos cálculos, com um nível de significância de 10% (0.10), considerando o tamanho relativamente pequeno da amostra. O software utilizado para fazer todas essas análises foi o RStudio, versão 4.3.1.

3. Resultados

Dos pacientes que se submeteram a cirurgia para tratamento dos cálculos renais, 27 dos 40 pacientes ficaram livres do cálculo residual. Sendo assim, a taxa de livre de cálculos dessa amostra foi de 67.5%, com um intervalo de confiança de 90%, podemos dizer que a taxa de sucesso na eliminação de cálculos está dentro do intervalo que vai de 53.27% a 79.29%.

Com esses resultados, analisamos quais covariáveis explicam essa taxa de 67.5% que tivemos nessa amostra do estudo.Os testes feitos para avaliar a relação entre a variável resposta e as outras variáveis do banco geraram os resultados que podem ser vistos na Tabela 3. As variáveis que têm valor-p menor que 0.25 tiveram a hipótese nula rejeitada, ou seja, foram consideradas com uma relação significativa a variável resposta.

Variáveis	Teste	P.valor	Resultado.HO
Idade	Teste t	0.1608	Rejeita
IMC	Teste t	0.1313	Rejeita
Unidade Hounsfield	Teste t	0.8501	Não rejeita
Distância Pele Cálculo	Teste t	0.2256	Rejeita
Tamanho Coralif Incompleto	Teste t	0.1322	Rejeita
Tamanho Coralif	Teste t	0.1870	Rejeita
Tempo cirúrgico	Teste t	0.0005	Rejeita
Tempo de internação	Teste t	0.4335	Não rejeita
Tempo SVD	Teste t	0.6287	Não rejeita
Tempo Nefrostomia	Teste t	0.3370	Não rejeita
Tempo uso Duplo J	Teste t	0.0449	Rejeita
Quantos tratamentos adicionais	Teste t	0.0001	Rejeita
Sexo	Teste Qui-Quadrado	0.9718	Não rejeita
Risco Cirúrgico	Teste Qui-Quadrado	0.3856	Não rejeita
Charlson	Teste Qui-Quadrado	0.8614	Não rejeita
Sintomas	Teste Qui-Quadrado	0.4843	Não rejeita
Qual Sintoma	Teste Qui-Quadrado	0.7475	Não rejeita
Lado Operado	Teste Qui-Quadrado	0.6013	Não rejeita
Tipo de Cálculo	Teste Qui-Quadrado	0.0010	Rejeita
Escore de Guy	Teste Qui-Quadrado	0.0010	Rejeita
Hidronefrose	Teste Qui-Quadrado	0.9718	Não rejeita
Tratamento Anterior	Teste Qui-Quadrado	0.3532	Não rejeita
Duplo J preoperatório	Teste Qui-Quadrado	1.0000	Não rejeita
Complicações	Teste Qui-Quadrado	0.5010	Não rejeita
Qual Complicação	Teste Qui-Quadrado	0.1899	Rejeita
Transfusão	Teste Qui-Quadrado	0.1880	Rejeita
Nefrostomia	Teste Qui-Quadrado	0.7051	Não rejeita
Clavien Dindo	Teste Qui-Quadrado	0.3430	Não rejeita
Tratamento Adicional	Teste Qui-Quadrado	0.0000	Rejeita
Qual Tratamento Adicional	Teste Qui-Quadrado	0.0000	Rejeita

Tabela 3: Resultado dos testes

Vemos que 14 variáveis foram consideradas significativas, porém nem todas foram usadas no modelo. As variáveis "Tratamento Adicional", "Qual Tratamento Adicional" e "Quantos Tratamentos Adicionais" são diretamente relacionadas com a variável resposta,

"Cálculo Residual", uma vez que só há outros tratamentos após a cirurgia se houver algum resíduo de cálculo, logo essas variáveis não explicam o Cálculo Residual, mas são explicadas por ele. Além dessas, 5 outras variáveis com valor-p menor que 0.25 não foram incluídas no modelo, e 3 que não foram consideradas significativas foram adicionadas ao modelo. Essas decisões foram feitas com o auxílio do cliente, que escolheu quais variáveis eram necessárias, tomando como base a literatura já existente sobre o assunto. As variáveis escolhidas para integrar o modelo foram: Tipo de Cálculo (se o cálculo é Completo ou Incompleto), Tratamento anterior (se houve tratamento para cálculo renal anteriormente), Hidronefrose (se ocorreu hidronefrose, que é a dilatação dos rins), Idade (a idade do paciente em anos), IMC (o índice de massa corporal do paciente), Unidade Hounsfield (uma unidade que mede a dureza do cálculo), Distância pele cálculo (a distância entre a pele e o cálculo renal), Tamanho Coraliforme (o tamanho do cálculo em centímetros) e Tempo cirúrgico (o tempo de duração da cirurgia em minutos).

Após essa decisão, criamos um modelo inicial de regressão logístico binomial com todas as variáveis selecionadas com os testes de correlação e independência, e a partir desse modelo fomos tiram as covariáveis com o maior valor-p, a fim de encontrar o modelo que melhor se adaptava aos dados. Dois modelos foram escolhidos ao fim da análise, eles sendo:

- Modelo 1: Cálculo Residual sendo explicado pelas variáveis Tipo de Cálculo, Tratamento Anterior, Unidade Hounsfield e Tempo Cirúrgico. Esse modelo foi escolhido para que a variável "Unidade Hounsfield" se mantivesse significativa no modelo, uma vez que ela foi uma das variáveis mencionadas como importantes pelo Filipe. (Tabela 4)
- 2. Modelo 2: Cálculo Residual sendo explicado por Tipo de Cálculo e Tempo Cirúrgico. Esse modelo é o melhor do ponto de vista estatístico, uma vez que todas as covariáveis têm valor-p significativo. (Tabela 5)

Covariável	Estimativa	P.Valor	OR	IC_RTF
Tipo de Cálculo	-2.869110	0.0604	0.0567494	(-5.0696; -0.6686)
Tratamento anterior	-2,378514	0.1577	0.0926882	(-4.8029; 0.0458)
Unidade Hounsfield	-0.004806	0.0963	0.9952055	(-0.0090; -0.0006)
Tempo Cirúrgico	0.072838	0.0260	1.0755563	(0.0257; 0.1200)

Tabela 4: Resultados do Modelo 1

Covariável	Estimativa	P.Valor	OR	IC_RTF
Tipo de Cálculo	-2.29679	0.0705	0.100	(-4.385677; -0.2079032)
Tempo Cirúrgico	0.04873	0.0226	1.049	(0.01357635; 0.08388365)

Tabela 5: Resultados do Modelo 2

Depois de escolher os modelos finais, fizemos um gráfico de envelope (Gráficos 1 e 2) para cada modelo, visando avaliar a adequação do modelo a partir de resíduos.

Envelope de Regressão do Modelo 1

Gráfico 1: Gráfico de Envelope para o modelo 1

Envelope de Regressão do Modelo 2

Gráfico 2: Gráfico de Envelope para o modelo 2

4. Conclusões

Após analisar os resultados mostrados nas tabelas 4 e 5 e observar as Razões de Chance (Odds Ratio), podemos chegar às seguintes conclusões. No modelo 1, em relação ao Tempo Cirúrgico, para o aumento de 1 minuto no tempo cirúrgico a chance de cálculo residual aumenta em 0.7%, para a Unidade Hounsfield, o aumento de 1 unidade dessa medida quase não causa efeito na variável resposta, em relação ao Tratamento Anterior, a chance de um paciente que não teve tratamento anterior ter cálculo residual é 0.09 vezes a chance de um paciente que teve, e sobre o tipo de cálculo, a chance de um paciente que tem cálculo incompleto ter cálculo residual é 0.056 vezes a chance de um paciente que tem cálculo completo. No modelo 2, em relação ao Tempo Cirúrgico, para o aumento de 1 minuto no tempo cirúrgico a chance de cálculo residual aumenta em 0.5%, e em relação ao Tipo de Cálculo, a chance de um paciente que tem cálculo incompleto ter cálculo residual é 0.1 vezes a chance de um paciente que tem cálculo completo.

Com base nos gráficos 1 e 2 apresentados anteriormente, observamos que a modelagem binomial se ajustou muito melhor no modelo 2 do que o modelo 1 para modelar este tipo de dados contínuos e categóricos, englobando todos os pontos dentro

do envelope. De um ponto de vista estatístico, com os dados disponíveis, concluímos que o modelo 2 apresentou um melhor ajuste, o que indica que as variáveis que melhor explicam a variável resposta "Cálculo Residual" são "Tipo de Cálculo" e "Tempo Cirúrgico", seguindo a relação apresentada anteriormente como Razão de Chances.

5. Referências

[1] R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.