Introduction to Graphs

Zezhou Jing

Rev. September 10, 2016

Preliminaries

Proposition. An undirected, connected graph G(V, E) with n vertices but no parallel edges has minimum n-1 edges and maximum $\frac{n(n-1)}{2}$ edges.

Thus in most cases the number of edges are of $\Omega(n)$ and $\mathcal{O}(n^2)$. A graph is considered *sparse* if the number of edges is close to $\mathcal{O}(n)$; it is considered *dense* if the number is close to $\mathcal{O}(n^2)$.

Representations

We may represent a graph G(V, E) via a $n \times n$ adjacency matrix A, where n is the number of vertices. As for an undirected, connected graph without parallel edges, the only two possibilities are represented by 0 and 1, namely whether there is an edge between a pair of vertices. For example, entry $A_{ij} = 0$ denotes that there is no edge between vertices i and j. It is clear that this representation takes the space complexity $\theta(n^2)$.

We may also represent a graph via two *adjacency lists*. One array (or list) is used to store n vertices while the other is used to store m edges. The space complexity is $\theta(n+m)$.

Definition (vertex degree). The degree of a vertex v of a graph G is the number of incident edges on it.

Proposition. We have following properties regarding to the vertex degree.

• For each vertex v, its vertex degree is at least k, where k is the number of its crossing edges.

$$deq(v) \geq k$$
.

• For any undirected graph, we have the sum of degrees of all vertices to be 2m, where m is the number of edges.

$$\sum_{v} deg(v) = 2m.$$

• Recall the number of vertices is n, we have

$$\sum_{v} deg(v) = 2m \ge nk,$$

and thus the relationship between the number of edges m, number of vertices n, and degrees of vertices k.

$$m \ge \frac{nk}{2} \, .$$