CS 230 : Discrete Computational Structures Spring Semester, 2023

Assignment #8

Due Date: Thursday, April 6

Suggested Reading: Rosen Sections 5.3; Lehman et al. Chapter 7

For the problems below, explain your answers and show your reasoning.

- 1. [12 Pts] Let S defined recursively by (1) $5 \in S$ and (2) if $s \in S$ and $t \in S$, then $st \in S$. Let $A = \{5^i \mid i \in \mathbf{Z}^+\}$. Prove that
 - (a) [6 Pts] $A \subseteq S$ by mathematical induction.
 - (b) **[6 Pts]** $S \subseteq A$ by structural induction.
- 2. [5 Pts] Give an inductive definition of the set of palindromes over the alphabet $\{a, b, c\}$. You do not need to prove that your construction is correct. *Note*: a, b, c, aa, cc, aba are all palindromes.
- 3. [5 Pts] Define the set $S = \{2^k 3^m \mid k, m \in \mathcal{Z}^+\}$ inductively. You do not need to prove that your construction is correct.
- 4. [8 Pts] Given the inductive definition of full binary trees (FBTs), define n(T), the number of vertices in tree T, and $\ell(T)$, the number of leaves in tree T, inductively. Then, use structural induction to prove that for all FBTs T, $n(T) = 2\ell(T) 1$.
- 5. [15 Pts] Let $L = \{(a,b) \mid a,b \in \mathcal{Z}, (a-b) \mod 3 = 0\}$. We want to program a robot that can get to each point $(x,y) \in L$ starting at (0,0).
 - (a) [5 Pts] Give an inductive definition of L. This will describe the steps you want the robot to take to get to points in L starting at (0,0). Let L' be the set obtained by your inductive definition.
 - (b) [5 Pts] Prove inductively that $L' \subseteq L$, i.e., every point that the robot can get to is in L
 - (c) [5 Pts] Extra Credit Prove that $L \subseteq L'$, i.e., the robot can get to every point in L. To prove this, you need to give the path the robot would take to get to every point in L from (0,0), following the steps defined by your inductive rules.

For more practice, you are encouraged to work on other problems in Rosen Sections 5.3 and in LLM Chapter 7.