ЛЕКЦІЯ 6

Методи розв'язування нелінійних рівнянь

Постановка задачі

Нехай потрібно розв'язати рівняння

$$f(x) = 0,$$

де f(x) – неперервна функція в скінченному або нескінченному інтервалі.

Розв'язати рівняння — означає знайти всі його корені, тобто ті значення x, які перетворюють y у виразі y = f(x) на нуль при x^* , або довести, що кореня немає.

Будь-яке значення $x = x^*$, в якому f(x) набуває значення нуль, називається коренем цього рівняння.

Приклад. Нехай
$$f(x) = 2x + 2;$$
 $2x + 2 = 0;$ $2x = -2;$ $x = -1;$

Тоді у виразі
$$y = 2x + 2$$
 $y = 0$ при $x = -1$ Отже $x^* = -1$

Завдання полягає у відшуканні такого наближеного значення кореня x_{nb} , яке мало відрізняється від точного значення кореня x *, так що виконується нерівність

$$\left|x^* - x_{nb}\right| < \varepsilon,$$

де ε – мала додатна величина – припустима помилка, яку ми можемо заздалегідь задати на свій розсуд.

Якщо корінь знайдений з точністю ε , то прийнято писати

$$x^* = x_{nb} \pm \varepsilon .$$

Нехай рівняння f(x) = 0 має ізольований корінь.

Визначення ізольованого кореня. Корінь рівняння називається ізольованим, якщо існує окіл, у якому цей корінь єдиний.

$$y = ax^2 + bx + c$$

Етапи наближеного розв'язування нелінійних рівнянь

Наближене розв'язування рівняння складається із двох етапів:

- 1. Відділення кореня, тобто знаходження інтервалів з області визначення функції f(x), у кожному з яких знаходиться тільки один корінь рівняння f(x) = 0.
- 2. Уточнення кореня до заданої точності.

Відділення кореня можна проводити графічно й аналітично.

Існує два способи графічного відділення кореня

Перший спосіб графічного відділення кореня

Для того, щоб <u>графічно</u> відокремити корені рівняння f(x) = 0 у перший спосіб, необхідно побудувати графік функції y = f(x). Абсциси точок його перетину з віссю Ox є дійсними коренями рівняння (рис. 1).

Рис. Графічне відділення кореня (1-й спосіб).

Другий спосіб графічного відділення кореня

Представимо $y=f\left(x\right)$ як $y=y_1-y_2$ де $y_1=\varphi(x)$ і $y_2=\psi(x)$. Абсциси точок перетину графіків функцій $y_1=\varphi(x)$ і $y_2=\psi(x)$ дасть корені рівняння $\varphi(x)=\psi(x)$, а отже, і вхідного (початкового) рівняння $f\left(x\right)=0$. (Ефективний, якщо функцію можна розділити на доданки)

Рис. Графічне відділення кореня (2-ий спосіб)

Приклад.
$$f(x) = x^2 - 2x$$
, $x^2 = 2x$, $\varphi(x) = x^2$, $\psi(x) = 2x$

Приклад 1. Відокремити графічно корінь рівняння $1-x^2+\frac{1}{6}x^3=0$

у перший спосіб.

Розв'язок. Для розв'язування задачі побудуємо графік функції (рис. 3)

$$y = 1 - x^2 + \frac{1}{6}x^3$$

3 рисунка видно, що один з коренів рівняння належить відрізку $\left[-1,2;-0,8\right]$, другий — відрізку $\left[0,8;1,2\right]$. Оскільки розглянуте рівняння третього степеня, то повинен існувати ще один корінь на інтервалі $(3,2;+\infty)$.

Рис. Графік функції
$$y = 1 - x^2 + \frac{1}{6}x^3$$

Приклад 2. Відокремити графічно корінь рівняння

$$(x-1)^2 - \frac{1}{2}e^x = 0$$
 у другий спосіб.

Розв'язок. Перетворимо рівняння до виду $(x-1)^2 = \frac{1}{2}e^x$ й побудуємо графіки функцій $y = (x-1)^2$ і $y = \frac{1}{2}e^x$ (рис. 4).

Рис. Графічне відділення кореня 3 рисунка видно, що абсциса точки перетину цих графіків належить відрізку [0;1].

Аналітичне відділення кореня

Аналітичне відділення кореня базується на наступних теоремах.

Теорема 1. Про існування кореня рівняння

Якщо неперервна функція $f\left(x\right)$ набуває значення різних знаків на кінцях відрізка $\left[a;b\right]$, тобто

$$f(a) \cdot f(b) < 0$$

то усередині цього відрізка існує щонайменше один корінь рівняння f(x) = 0,

тобто таке значення x^* , що $f(x^*) = 0$.

Рис. Існування кореня на відрізку.

Теорема 2. Про існування єдиного кореня

Якщо неперервна на відрізку [a,b] функція y = f(x) набуває на кінцях відрізка значення різних знаків, а похідна f'(x) зберігає знак усередині відрізка [a,b], то усередині відрізка існує єдиний корінь рівняння f(x) = 0 (рис).

Рис. Існування єдиного кореня на відрізку.

Застосування теорем для відділення кореня

- 1) Визначаємо граничні точки x=a й x=b з області визначення функції f(x).
- 2) Обчислюємо значення f(x) на $\begin{bmatrix} a;b \end{bmatrix}$ через проміжки довільної довжини h до зміни знака при переході від f(x) до f(x+h)

Приклад 1. Підтвердити аналітично правильність знаходження відрізка ізоляції кореня рівняння $(x-1)^2 - \frac{1}{2}e^x = 0$.

Розв'язок,

Для відрізка [0;1] маємо:

$$f(0) = (0-1)^2 - \frac{1}{2}e^0 = 0.5;$$

$$f(1) = (1-1)^2 - \frac{1}{2}e^1 = -\frac{1}{2}e = -1.359.$$

Виходить, $f(0) \cdot f(1) < 0$.

Отже, корінь відділений правильно.

Приклад 2.

Відокремити корені рівняння $f(x) \equiv \ln x + x^2 - 0.5 = 0$.

Розв'язок. Виходячи з області визначення $\ln x \ (x>0)$

$$f(0.1) = -2.303 + 0.01 - 0.5 = -2.783;$$

 $f(0.5) = -0.693 + 0.25 - 0.5 = -0.943;$
 $f(1) = 0 + 1 - 0.5 = 0.5$

Складемо схему знаків функції

x	0.1	0.5	1
sign f(x)	(-)	(-)	(+)

$$f'(x) = \frac{1}{x} + 2x = \frac{1+2x^2}{x} > 0$$
 при $x > 0$,

тобто єдиний корінь належить відрізку igl[0.5;1igr].

Розглянемо деякі методи уточнення кореня.

Метод половинного ділення

Нехай потрібно уточнити єдиний корінь рівняння $f\left(x\right)=0$, що належить відрізку $\left[a;b\right]$ Точка

$$c=rac{a+b}{2}$$
 — середина відрізка $\left[a;b
ight]$.

Якщоf(c)=0, то корінь знайдений.

А якщо ні, то для подальшого розгляду залишаємо ту з половин [a;c] або[c;b], на кінцях якої знаки функції f(x) різні.

При цьому отримуємо послідовність вкладених відрізків,

що містять шуканий корінь.

На кожному кроці довжина відрізка зменшується вдвічі. Метод сходиться завжди.

Умова завершення алгоритму

Умовою закінчення пошуку кореня може бути, наприклад,

$$|f(x)| < \varepsilon$$

Це зупинка по функції

Або

$$\frac{|b-a|}{2^n} < \varepsilon.$$

Це зупинка по довжині інтервалу

де ε — точність, [a;b] — початковий відрізок, n — число ітерацій.

Алгоритм методу половинного ділення

Вхідні дані: f(x) – функція; ε – необхідна точність;

а, b – границі заданого інтервалу (границі пошуку кореня).

Результат: x_{nb} — наближений корінь рівняння f(x) = 0.

Розв'язок:

Step1:
$$c = \frac{a+b}{2}$$
;

Step2: If
$$(f(c) == 0)$$
 { Print; $x_{nb} = c$; Exit}

Step3: If
$$(|b-a| \le \varepsilon)$$
 {Print; $x_{nb} = \frac{b+a}{2}$; Exit}

Step4: If
$$(f(a)f(c)<0)$$
 { $b=c$ } else { $a=c$ }

goto Step1.

Приклад 1.

Методом половинного ділення зробити шість ітерацій уточнення кореня рівняння $f\left(x\right)\equiv x^4+2x^3-x-1=0$, що належить відрізку [0;1].

n	a	c	b	f(a)	f(c)	f(b)
1	0	.5	1	-1	-1.19	1
2	0.5	0.75	1	-1.19	-0.59	1
3	0.75	0.875	1	-0.59	0.05	1
4	0.75	0.812	0.875	-0.59	0.304	0.05
5	0.75	0.781	0.812	-0.59	-0.456	0.304
6	0.781	0.797	0.812	-0.456	-0.380	0.304

Після шести ітерацій корінь локалізований на відрізку $\left[0.797;0.812\right]$.

Метод пропорційних частин (метод хорд)

крива випукла вниз

f''(x) < 0

$$f''(x) > 0$$

крива випукла вниз

Нехай на відрізку [a,b]

функція неперервна, набуває на кінцях відрізка значення різних знаків, а похідна f'(x) зберігає знак. Залежно від знака другої похідної можливі випадки розташування кривих, які показані на рисунку

Властивості

1)
$$f(a)f(b) < 0$$

$$2) \ sign(f'(x)) = const$$

3)
$$sign(f''(x)) = const$$

1. Випадок, коли f'(x) й f''(x) мають однакові знаки

$$f(a) < 0, f(b) > 0,$$

 $f'(x) > 0, f''(x) > 0$
 $f(a) > 0, f(b) < 0,$
 $f'(x) < 0, f''(x) < 0$

Хорда проходить через точки $A_0(a,f(a))$ й $B_0(b,f(b))$. Шуканий корінь рівняння (точка x^*) нам невідомий, замість нього візьмемо точку x_1 перетину хорди A_0B_0 з віссю абсцис. Це й буде наближене значення кореня.

В аналітичній геометрії виводиться формула, що задає рівняння прямої, що проходить через дві точки з координатами (x_a, y_a) й (x_b, y_b) :

$$rac{x-x_a}{x_b-x_a}=rac{y-y_a}{y_b-y_a}.$$
Нехай $(x_a,y_a)=(a,f(a)),$ $(x_b,y_b)=(b,f(b))$

Тепер корінь перебуває на відрізку $\left[x_1,b\right]$

$$x_1 = a - \frac{f(a)(b-a)}{f(b) - f(a)}$$

Тоді рівняння хорди *А₀В₀* запишеться у вигляді:

$$\frac{x-a}{b-a} = \frac{y-f(a)}{f(b)-f(a)}$$
$$(x-a) \Big[f(b)-f(a) \Big] = \Big[y-f(a) \Big] (b-a)$$

Знайдемо значення $x = x_1$, для якого y = 0:

$$(x_1 - a)[f(b) - f(a)] = -f(a)(b - a)$$

Застосуємо метод хорд до відрізка $[x_1;b]$.

Проведемо хорду, яка з'єднує точки

$$A_1(x_1, f(x_1)) i B_0(b, f(b)),$$

і знайдемо x_2 — точку перетину хорди A_1B_0 з віссю

$$x_2 = x_1 - \frac{f(x_1)(b - x_1)}{f(b) - f(x_1)}$$

Продовжуючи цей процес, знаходимо:

$$x_3 = x_2 - \frac{f(x_2)(b - x_2)}{f(b) - f(x_2)}.$$

Рекурентна формула обчислення наближень до кореня

$$f(a) < 0, f(b) > 0,$$

 $f'(x) > 0, f''(x) > 0$

$$f(a) > 0, f(b) < 0,$$

 $f'(x) < 0, f''(x) < 0$

Одержуємо рекурентну формулу обчислення наближень до кореня

$$x_{n+1} = x_n - \frac{f(x_n)(b - x_n)}{f(b) - f(x_n)}.$$

Кінець b відрізка [a,b] нерухомий, а кінець a переміщається.

Таким чином,

одержуємо розрахункові формули методу хорд: $B_0 \equiv f(b)$ – нер.

$$x_{n+1} = x_n - \frac{f(x_n)(b-x_n)}{f(b)-f(x_n)}; \ x_0 = a \cdot f'(x) > 0 \ f''(x) > 0 \ aff(x) < 0 \ f''(x) < 0$$

Обчислення чергових наближень до точного кореня рівняння триває доти, поки не досягнемо заданої точності, тобто повинна виконуватися умова:

$$|x_{n+1}-x_n|<\varepsilon$$
, де ε – задана точність.

2. Випадок, коли f'(x) й f''(x) мають різні знаки

$$f(a) < 0, f(b) > 0,$$

 $f'(x) > 0, f''(x) < 0$

$$f(a) > 0, f(b) < 0,$$

 $f'(x) < 0, f''(x) > 0$

- 1. З'єднаємо точки $A_0(a,f(a))$ й $B_0(b,f(b))$ хордою A_0B_0 .
- 2. Точку перетину хорди з віссю Ox будемо вважати **першим наближенням кореня**.
- 3. У цьому випадку **нерухомим кінцем** відрізка буде точка A_0 .

$$\frac{y - y_b}{y_a - y_b} = \frac{x - x_b}{x_a - x_b} \Longrightarrow$$

$$(x_b, y_b) = (b, f(b)) (x_a, y_a) = (a, f(a))$$

Рівняння хорди A_0B_0 :

$$\frac{y - f(b)}{f(a) - f(b)} = \frac{x - b}{a - b}.$$

$$x = b + \frac{\left[y - f(b)\right](a - b)}{\left[f(a) - f(b)\right]}$$

Звідси знайдемо x_1 , вважаючи, що y = 0:

При
$$Sign(f'(x)) \neq Sign(f''(x))$$
 $x_1 = b - \frac{f(b)(b-a)}{f(b)-f(a)}$.

Порівняйте:

При
$$Sign\left(f'\left(x\right)\right) = Sign\left(f''\left(x\right)\right)$$
 $x_1 = a - \frac{f\left(a\right)\left(b-a\right)}{f\left(b\right) - f\left(a\right)}$

Тепер корінь рівняння $x^* \in [a; x_1]$. Знайдемо $(x_1, f(x_1)) = B_1$ Застосовуючи метод хорд до цього відрізка, одержимо:

$$x_2 = x_1 - \frac{f(x_1)(x_1 - a)}{f(x_1) - f(a)}.$$

Продовжуючи і т.д., одержимо:

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - a)}{f(x_n) - f(a)}.$$

Розрахункові формули методу:
$$x_{n+1} = x_n - \frac{f(x_n)(x_n - a)}{f(x_n) - f(a)}$$
, $x_0 = b$.

Умова закінчення обчислень: $|x_{n+1}-x_n|<\varepsilon$.

ПІДСУМОК.

Отже, якщо $f'(x) \cdot f''(x) > 0$, наближене значення кореня знаходять за формулою:

$$x_{n+1} = x_n - \frac{f(x_n)(b-x_n)}{f(b)-f(x_n)}; x_0 = a$$
. Нерухома точка b .

Якщо $f'(x) \cdot f''(x) < 0$ — то за формулою:

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - a)}{f(x_n) - f(a)}, x_0 = b$$
. Нерухома точка a .

$$f'ig(aig)\cdot f'ig(big)>0\Longrightarrow b$$
 Піктограма: $a \Longleftarrow f'ig(aig)\cdot f'ig(big)<0$

Практичний вибір тієї або іншої формули здійснюють, користуючись наступним правилом: нерухомим кінцем відрізка є той, для якого знак функції збігається зі знаком другої похідної.

Оцінка точності наближення

Оцінка точності наближення за методом хорд визначається з виразу:

$$\left|x_n - x^*\right| \le \frac{\left|f\left(x_n\right)\right|}{m_1},$$

де
$$|f'(x_n)| \ge m_1$$
 при $a \le x_n \le b$.

У випадку, коли необхідно оцінити абсолютну погрішність по двох наступних наближеннях:

$$\left|x^* - x_n\right| \le \frac{M_1 - m_1}{m_1} \left|x_n - x_{n-1}\right|$$
 (9)

де m_1 й M_1 – відповідно найменше й найбільше значення модуля похідної f'(x) на відрізку [a;b].

Якщо відрізок $\left[a,b \right]$ настільки вузький, що має місце нерівність

$$M_1 \leq 2m_1,$$
 то з формули $\left|x^*-x_n\right| \leq \frac{M_1-m_1}{m_1} \big|x_n-x_{n-1}\big|$ одержуємо:
$$\left|x^*-x_n\right| \leq \big|x_n-x_{n-1}\big|.$$

Таким чином, у цьому випадку, як тільки буде виявлено, що

$$\left|x_{n}-x_{n-1}\right|<\varepsilon,$$

де arepsilon – задана гранична абсолютна погрішність, то гарантовано, що

$$|x^* - x_n| < \varepsilon$$
.

Приклад 4. Вибрати формулу для розв'язування рівняння $(x-1)\ln(x)-1=0$, якщо відрізок ізоляції кореня [2;3].

Розв'язок. Тут

$$f(x) = (x-1)\ln(x) - 1; \quad f(2) = (2-1)0.69 - 1 = -0.31; \quad f(3) = (3-1)1.1 - 1 = 1.2$$

$$f'(x) = \ln(x) + \frac{x-1}{x}; \quad f'(2) = 0.69 + 0.5 = 1.19; \quad f'(3) = 1.1 + 0.75 = 1.85$$

$$f''(x) = \frac{1}{x} + \frac{1}{x^2}. \quad f''(2) = 0.5 + 0.25 = 0.75; \quad f''(3) = \frac{1}{3} + \frac{1}{9} = 0.33$$

Друга похідна в цьому прикладі додатна на відрізку ізоляції кореня [2;3]: f''(x) > 0

$$b = 3$$
 $f(3) > 0$, $f''(3) > 0$ to $f(b) \cdot f''(x) > 0$.

Нерухома точка – це точка, у якій знак функції збігається зі знаком її другої похідної.

Тому для уточнення кореня вибираємо:

$$x_{n+1} = x_n - \frac{f(x_n)(b - x_n)}{f(b) - f(x_n)}, \quad x_0 = a$$

Приклад 2. Знайти додатний корінь рівняння

$$f(x) \equiv x^3 - 0.2x^2 - 0.2x - 1.2 = 0$$

з точністю до 0.002.

Розв'язок.

Етап 1. Спочатку відокремлюємо корінь. Оскільки

$$f(1) = -0.6 < 0 \text{ i } f(1.5) = 1.43 > 0,$$

то шуканий корінь x^* лежить на відрізку [1;1.5].

Етап 2. Обчислюємо першу і другу похідні:

$$f'(x) = 3x^{2} - 0.4x - 0.2$$

$$f''(x) = 6x - 0.4$$

$$f'(1) = 3 - 0.4 - 0.2 = 2.4 \quad f'(1.5) = 3*1.5^{2} - 0.4*1.5 - 0.2 = 5.95 \quad f'(x) > 0$$

$$f''(1) = 6 - 0.4 = 5.6; \quad f''(1.5) = 9 - 0.4 = 8.6; \quad f''(x) > 0$$

Оскілки f'(x)f''(x) > 0, то нерухомою є точка b

Це теоретичний спосіб вибору нерухомої точки.

Етап 3. Практичний спосіб вибору нерухомої точки.

$$a=1,\ f(1)=-0.6<0,\ f''(1)=5.6>0$$
 - не підходить

$$b=1.5\,\,fig(1.5ig)=1.43>0$$
; $f''ig(1.5ig)=8.6>0$ - підходить

Нерухома точка – це точка, у якій знак функції збігається зі знаком її другої похідної.

У цьому випадку – це точка (b, f(b)).

Етап 4. Тому для обчислення послідовних наближень застосуємо формулу:

$$x_{n+1} = x_n - \frac{f(x_n)(b - x_n)}{f(b) - f(x_n)}, \quad x_0 = a$$

$$a = 1; b = 1.5; x_0 = a; f(1) = -0.6; f(1.5) = 1.425$$

$$x_1 = x_0 - \frac{f(x_0)(b - x_0)}{f(b) - f(x_0)} = 1 - \frac{-0.6(1.5 - 1)}{1.425 + 0.6} = 1 + 0.15 = 1.15$$

$$f(x_1) = f(1.15) = -0.173;$$

$$x_2 = x_1 - \frac{f(x_1)(b - x_1)}{f(b) - f(x_1)} = 1.15 + \frac{0.173(1.5 - 1.15)}{1.425 + 0.173} = 1.15 + 0.040 = 1.190;$$

$$f(x_2) = f(1.190) = -0.036;$$

$$x_3 = x_2 - \frac{f(x_2)(b - x_2)}{f(b) - f(x_2)} = 1.190 + \frac{0.036(1.5 - 1.190)}{1.425 + 0.036} = 1.190 + 0.008 = 1.198$$
$$f(x_3) = f_3(1.198) = -0.0072.$$

$$x_4 = x_3 - \frac{f(x_3)(b - x_3)}{f(b) - f(x_3)} = 1.198 + \frac{0.0072(1.5 - 1.198)}{1.425 + 0.0072} = 1.198 + 0.0015 = 1.1995$$

$$f(x_4) = f(1.1995) - 0.0018.$$

Етап 5. Обчислюємо погрішність методу:

$$f'(x) = 3x^2 - 0.4x - 0.2$$

При $x_4 < x < b$, тобто при $x_4 < x < 1.5$ маємо

$$|f'(x_4)| \ge 3 \cdot 1.1995^2 - 0.4 \cdot 1.1995 - 0.2 = 3.63 = m_1$$

$$|f'(b)| \ge 3 \cdot 1.5^2 - 0.4 \cdot 1.5 - 0.2 = 5.95 = M_1,$$

 $M_1 < 2m_1$ Тому можемо застосувати оцінку

$$\left| x_n - x_{n-1} \right| < \varepsilon$$

Одержуємо оцінку: |1.198-1.1995| < 0.0015.

Оцінка через значення функції:

$$\left| x_n - x^* \right| \le \frac{\left| f\left(x_n\right) \right|}{\left| f'\left(x_n\right) \right|}$$

то можна прийняти:
$$0 < x^* - x_3 < \frac{0.0018}{3.63} \approx 0.0005$$
.

Метод Ньютона (метод дотичних)

Нехай корінь x^* рівняння f(x) = 0 відділений на відрізку[a;b], причому f'(x) й f''(x) неперервні й зберігають свій знак при $a \le x \le b$.

Розглянемо випадок, коли $f'(x) \cdot f''(x) > 0$, тобто f'(x) й f''(x) мають однакові знаки. Тоді можливі два випадки побудови кривої на відрізку [a,b].

Пошук кореня на відрізку [a,b]

Проведемо дотичну до кривої y = f(x) в точці

$$B_0(b, f(b)).$$

У курсі алгебри виводиться рівняння дотичної.

Рівняння дотичної в точці B_0 має вигляд

$$f'(b) = y - f(b)/(x-b).$$

У якості чергового наближення до кореня

рівняння беремо точку перетину дотичної з віссю Ox. Вважаючи y = 0 у рівнянні дотичної, знайдемо: $f'(b) = 0 - f(b)/(x_1 - b)$

$$(x_1 - b) = -f(b)/f'(b) \Rightarrow x_1 = b - \frac{f(b)}{f'(b)}.$$
 Tenep $x^* \in [a; x_1].$

Пошук кореня на відрізку $[a, x_i]$

Застосовуючи метод ще раз для відрізка $[a; x_1]$, одержимо:

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}.$$

Для загального випадку одержуємо рекурентну формулу обчислення наближень до кореня:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Зверніть увагу, що в цьому випадку як **початкове наближення до кореня** вибираємо **точку** $x_0 = b$.

Наближення до кореня відбувається із правої сторони, тому одержуємо наближене значення кореня з надлишком.

Для методу хорд навпаки, наближення відбувається зліва. Тому наближене значення одержуємо з недостачею.

Розглянемо випадок, коли $f'(x) \cdot f''(x) < 0$

У цьому випадку f'(x) й f''(x) мають різні знаки. При цьому можливі два випадки побудови кривої на відрізку [a,b].

Пошук кореня на відрізку $\begin{bmatrix} a,b \end{bmatrix}$ при $f'(x) \cdot f''(x) < 0$

Якщо знову провести дотичну до кривої в точці B_0 , то вона перетне вісь Ox у точці, що не належить відрізку [a,b]. Тому проведемо дотичну в точці $A_0(a,f(a))$.

 $\ddot{l}\ddot{l}$ рівняння y - f(a) = f'(a)(x - a).

Знаходимо
$$x_1$$
, вважаючи $y = 0$: $x_1 = a - \frac{f(a)}{f'(a)}$.

Корінь $x^* \in [x_1; b]$.

Застосовуючи метод ще раз для відрізка $[x_1;b]$, одержимо:

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}.$$

Одержуємо рекурентну формулу обчислення наближень до кореня, аналогічну першому випадку:

$$x_{n+1} = x_n - rac{f(x_n)}{f'(x_n)}$$
 Початкове наближення — точка $x_0 = a$.

Підсумок. Розглянуто два випадки:

Теоретичний підхід.

1. За x_0 беремо кінець b відрізка[a,b],

$$f'(x) \cdot f''(x) > 0 \implies b$$

2. За x_0 беремо початок a відрізка [a,b].

$$f'(x) \cdot f''(x) < 0 \implies a < a$$

Практичний підхід.

При виборі початкового наближення кореня можна керуватися **правилом**:

за початкову точку слід вибрати той кінець відрізка [a,b], у якому знак функції збігається зі знаком другої похідної.

Умова закінчення обчислювального процесу:

$$\left|x_{n-1}-x_{n}\right| ,$$

де ε – задана точність. Тоді $x^* = x_n \pm \varepsilon$.

Приклад 4. Обчислити методом Ньютона від'ємний корінь рівняння $f\left(x\right)\equiv x^4-3x^2-75x-10000=0$ з точністю arepsilon=0.01 .

Розв'язок.
$$f(x) = x^4 - 3x^2 - 75x - 10000$$

Етап 1. Вважаючи у лівій частині x=0,-10,-100,..., одержимо

$$f(0) = -10000$$
, $f(10) = -1050$, $f(100) \approx +10^8$.

Отже, шуканий корінь x^* перебуває в інтервалі $10 < x^* < 100$.

Етап 2. Звузимо знайдений інтервал. Оскільки

$$f(10) = -1050, f(11) = 3453, \text{ to } 10 < x^* < 11.$$

Етап 3. Одержимо вираз для першої й другої похідної функції f(x):

$$f(x) \equiv x^4 - 3x^2 - 75x - 10000:$$

$$f'(x) = 4x^3 - 6x - 75;$$

$$f''(x) = 12x^2 - 6$$

Етап 4. Визначимо знаки функції, її першої і другої похідної на кінцях відрізка [10,11]

$$f(10) = -1050 < 0$$
, $f''(10) = 1200 - 6 = 1194 > 0$
 $f(11) = 3453 > 0$, $f''(11) = 12 \cdot 121 - 6 = 1446 > 0$

На кінці відрізка [10,11] у точці $x_0 = 11$ знаки $f\left(11\right) > 0$ і $f''\left(11\right) > 0$;

Приймемо за початкове наближення $b = x_0 = 11$. Послідовні наближення x_n (n = 1, 2, ...) обчислюємо за наступною схемою:

$$x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}$$
 , де $x_1=b-rac{f(b)}{f'(b)}$

n	$ x_n $	$f(x_n)$	$f'(x_n)$	$ x_{n+1}-x_n $	
0	11	3453	5183		
1	10.3	164.3	4234	0.7	$0.7 > \varepsilon$
2	10.262	4.33	4186	0.038	$0.3 > \varepsilon$
3	10.261	0.15	4184	0.001	$0.001 < \varepsilon$

$$x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}$$
 ; $ig|10.261-10.262ig|=ig|0.001ig| оскільки $arepsilon=0.01$ за умовою$

Видозмінений метод Ньютона

Якщо функція має невелику кривизну, то похідна f'(x) мало змінюється на відрізку [a;b], то у формулі $x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$ покладемо $f'(x_n)\approx f'(x_0)$.

Звідси для кореня x^* рівняння f(x) = 0 одержуємо послідовні наближення

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)} (n = 0, 1, ...)$$

Геометрично цей спосіб означає, що ми заміняємо дотичні в точках $B_n \left[x_n, f \left(x_n \right) \right]$ прямими, паралельними дотичній до кривої $y = f \left(x \right)$, у її фіксованій точці $B_0 \left[x_0, f \left(x_0 \right) \right]$.

Формула
$$x_{n+1} = x_n - rac{f\left(x_n
ight)}{f'\left(x_0
ight)}$$
 $\left(n = 0, 1, ...
ight)$ позбавляє від

необхідності обчислювати щоразу значення похідної $f'(x_n)$. Тому формула досить корисна, якщо для обчислення f'(x) потрібні великі витрати часу.

Комбінований метод

Нехай на відрізку [a,b]

1.
$$f(a)f(b) < 0$$
,

2.
$$sign(f'(x)) = const$$
,

3.
$$sign(f''(x)) = const.$$

З'єднаємо метод хорд і метод дотичних.

Одержуємо метод, на кожному етапі якого знаходимо:

- а) значення з недостачею,
- б) значення з надлишком точного кореня x^* рівняння f(x) = 0.

Теоретично тут можливі чотири випадки:

$$\begin{cases}
1. \ f'(x) > 0; f''(x) > 0 \\
2. \ f'(x) < 0; f''(x) < 0
\end{cases} \Rightarrow f'(x) \cdot f''(x) > 0$$

$$3. f'(x) < 0; f''(x) > 0 4. f'(x) > 0; f''(x) < 0$$
 \Rightarrow $f'(x) \cdot f''(x) < 0$

Розглянемо випадок: $f\left(a\right)f\left(b\right)<0$, $f'\left(x\right)>0$; $f''\left(x\right)>0$ Інші випадки можна звести до даного, увівши заміну в рівняння $f\left(x\right)=0$:

1)
$$-f(x)=0$$
.
2) $\pm f(-z)=0$, де $z=-x$.

Отже, нехай f'(x) > 0 і f''(x) > 0 при $a \le x \le b$.

Вважаємо
$$x_0=a;\ \overline{x}_0=b$$
 , $\left(n=0,1,2,\ldots\right)$

$$\overline{x}_1=b-rac{f\left(b
ight)}{f'(b)}=\overline{x}_0-rac{f\left(\overline{x}_0
ight)}{f'\left(\overline{x}_0
ight)}$$
, (метод дотичних) $x_1=a-rac{f\left(a
ight)\left(b-a
ight)}{f\left(b
ight)-f\left(a
ight)}=x_0-rac{f\left(x_0
ight)\left(\overline{x}_0-x_0
ight)}{f\left(\overline{x}_0
ight)-f\left(x_0
ight)}$;(метод хорд)

$$x_1=a-rac{f\left(a
ight)\left(b-a
ight)}{f\left(b
ight)-f\left(a
ight)}=x_0-rac{f\left(x_0
ight)\left(\overline{x}_0-x_0
ight)}{f\left(\overline{x}_0
ight)-f\left(x_0
ight)};$$
(метод хорд)

$$\overline{x}_2 = \overline{x}_1 - \frac{f\left(\overline{x}_1\right)}{f'\left(\overline{x}_1\right)}, \, \left(n = 0, 1, 2, \ldots\right).$$
 (метод дотичних) $x_2 = x_1 - \frac{f\left(x_1\right)}{f\left(\overline{x}_1\right) - f\left(x_1\right)} \left(\overline{x}_1 - x_1\right);$ (метод хорд) $\overline{x}_{n+1} = \overline{x}_n - \frac{f\left(\overline{x}_n\right)}{f'\left(\overline{x}_n\right)}, \, \left(n = 0, 1, 2, \ldots\right).$ (метод дотичних) $x_{n+1} = x_n - \frac{f\left(x_n\right)}{f\left(\overline{x}_n\right) - f\left(x_n\right)} \left(\overline{x}_n - x_n\right);$ (метод хорд)

Справедлива нерівність: $x_n < x^* < \overline{x}_n$.

Звідси $0 < x^* - x_n < \overline{x}_n - x_n$.

Нехай ε – припустима погрішність x_{nb} , тоді процес зближення припиняється при $\overline{x}_n-x_n<\varepsilon$. По закінченні процесу за значення кореня x^* : $\overline{x}^*=1/2\big(x_n+\overline{x}_n\big)$.

Приклад 5. Обчислити з точністю до 0.0005 єдиний додатний корінь рівняння

$$f(x) \equiv x^5 - x - 0.2 = 0.$$

Розв'язок.

Етап 1. Відокремлюючи корені, знаходимо

$$f(1) < 0$$
 й $f(1.1) > 0$ $a = 1$, $b = 1.1$

Етап 2. Визначаємо, що ізольований корінь розміщений на відрізку [1,1.1].

Етап 3. Обчислюємо першу й другу похідну

$$f'(x) = 5x^4 - 1$$
, $f'(x) > 0$.
 $f''(x) = 20x^3$, $f''(x) > 0$.

Оскільки b = 1.1; f(b) > 0; f''(b) > 0 приймемо $x_0 = a$ й $\overline{x}_0 = b$.

Виходячи з попередніх розрахунків, $x_0 = 1$ і $\overline{x}_0 = 1.1$.

Обчислимо значення функції й похідної у точці x_0 .

$$\begin{split} f\left(x_{0}\right) &= f\left(1\right) = -0.2; \\ f\left(\overline{x}_{0}\right) &= f\left(1.1\right) = 0.3105; \\ f'\left(\overline{x}_{0}\right) &= f'\left(1.1\right) = 6.3205. \end{split}$$

$$\overline{x}_1=\overline{x}_0-rac{f\left(\overline{x}_0
ight)}{f'\left(\overline{x}_0
ight)}=1.1-rac{0.3105}{6.3205}=1.051$$
 (метод дотичних) $x_1=x_0-rac{f\left(x_0
ight)\left(\overline{x}_0-x_0
ight)}{f\left(\overline{x}_0
ight)-f\left(x_0
ight)}=1-rac{-0.2\left(1.1-1
ight)}{0.3105+0.2}=1.039;$

Через те, що $\overline{x}_1 - x_1 = 1.051 - 1.039 = 0.012$, то точність недостатня.

Знаходимо наступну пару наближень:

$$\overline{x}_{2} = \overline{x}_{1} - \frac{f(\overline{x}_{1})}{f'(\overline{x}_{1})} = 1.051 - \frac{0.0313}{5.1005} \approx 1.04487$$

$$x_{2} = x_{1} - \frac{f(x_{1})(\overline{x}_{1} - x_{1})}{f(\overline{x}_{1}) - f(x_{1})} = 1.039 + \frac{0.012 \cdot 0.0282}{0.0595} \approx 1.04469$$

Тут $\overline{x}_2 - x_2 = 0.00018$, тобто потрібний ступінь точності досягнутий.

Можна покласти

$$\overline{x}^* = \frac{1}{2} (1.04469 + 1.04487) = 1.04478 \approx 1.045$$

Метод ітерації

Нехай дане рівняння f(x) = 0 й відрізок[a;b], функція f(x) задовольняє умовам:

- $f(a) \cdot f(b) < 0$, тобто f(x) = 0 має різні знаки на кінцях відрізка,
- $f'(x) \neq 0$ Ha [a;b].

Замінимо рівняння f(x) = 0 рівносильним йому рівнянням $x = \varphi(x)$

Вибираючи довільне значення $x_0 \in [a;b],$ обчислимо

$$x_1 = \varphi(x_0), x_2 = \varphi(x_1), x_{n+1} = \varphi(x_n), n = 0,1,...$$

Процес сходиться до кореня, якщо виконані умови теореми про збіжність (достатні умови збіжності).

Теорема про збіжність ітераційного процесу Якщо функція $\varphi(x)$:

- 1. визначена й диференційована на[a,b],
- **2.** $\varphi(x) \in [a,b]$.

Тоді, якщо існує правильний дріб q, такий, що

$$\left| \varphi' (x) \right| \leq q < 1 \;\;$$
 при $x \in (a,b)$,

то процес ітерації сходиться незалежно від початкового наближення $x_0 \in \big[a,b\,\big]$

і граничне значення $x^* = \lim_{n \to \infty} x_n$ є єдиним коренем рівняння $x = \varphi(x)$ на відрізку $\begin{bmatrix} a,b \end{bmatrix}$.

Приведемо один зі способів рівносильного перетворення рівняння f(x) = 0 до виду $x = \varphi(x)$.

Побудуємо функцію:

$$\varphi(x) = \lambda \cdot f(x) + x,$$

$$r = \max(|f'(a)|, |f'(b)|).$$

$$\begin{cases} -\frac{1}{r} < \lambda < 0, \text{ якщо } f'\big(x\big) > 0, \\ 0 < \lambda < \frac{1}{r}, \text{ якщо } f'\big(x\big) < 0, \end{cases}$$

Тоді процес ітерації

$$x_{n+1} = \varphi(x_n), n = 0, 1, \dots$$

сходиться до кореня x^* при кожному $x_0 \in [a;b]$.

Швидкість збіжності оцінюється так:

$$\begin{aligned} \left| x^* - x \right| &\leq \frac{m}{1 - q} q^n, \\ m &= \left| x_0 - \varphi \left(x_0 \right) \right|, \ q &= \lambda \cdot r + 1 \end{aligned}$$

або

$$q = \max |\varphi'(x)|, x \in [a;b].$$

Умови закінчення ітераційного процесу:

$$\begin{cases} \Delta x_n = |x_n - x_{n-1}| < \varepsilon, \\ |f(x_n) - f(x_{n-1})| < \varepsilon, \end{cases}$$

або

$$\frac{1-q}{q}\Delta x_n<\varepsilon,$$

де ε – необхідна точність.

Приклад 3.

Знайти методом ітерацій корінь рівняння

$$f(x) = 4x - 5\ln(x) - 5 = 0,$$

який належить відрізку [0,25;0.75].

Розв'язок.

Виберемо $x_0 = 0.5$

Обчислимо значення функції і її похідної:

Етап 1.

$$f\left(a
ight)=1-5\ln\left(0.25
ight)-5=1+5\cdot 1.3863-5>0,$$
 $f\left(b
ight)=3-5\ln\left(0.75
ight)-5=3+5\cdot (0.2877-1)<0,$ $f'\left(x
ight)=4-rac{5}{x}<0$ на відрізку $\left[0,25;0.75
ight]$, $f'\left(0.25
ight)=-16$, $f'\left(0.75
ight)=-rac{8}{3}$.

Етап 2. Згідно формули
$$0 < \lambda < \frac{1}{r}$$
, якщо $f'(x) < 0$,

обчислимо
$$\lambda$$
 : $r=16$, $0<\lambda<\frac{1}{16}$, візьмемо $\lambda=0.05$.

Етап 3. Використовуючи вираз $\varphi(x) = \lambda \cdot f(x) + x,$ запишемо

$$\varphi(x) = 0.2x - 0.25 \ln(x) - 0.25 + x = 1.2x - 0.25(1 + \ln(x))$$

Етап 4. Звідси одержуємо рекомендовану формулу за методом ітерацій:

$$x_{n+1} = 1.2x_n - 0.25(1 + \ln(x_n)), n = 0,1,2,...$$

Використовуючи цю формулу, зробимо обчислення:

$$x_1 = 1.2x_0 - 0.25(1 + \ln(x_0)) = 0.525$$