M2 Chapter 8: Further Kinematics

Vectors in Kinematics

Overview

This chapter concerns how can use **vectors to represent motion**. In the case of constant acceleration, can we still use our 'suvat' equations? And what if we have variable acceleration with expressions in terms of t?

1:: Vector equations for motion.

The velocity, \mathbf{v} m \mathbf{s}^{-1} , of a particle P at time t seconds is given by

$$\mathbf{v} = (1 - 2t)\mathbf{i} + (3t - 3)\mathbf{j}$$

- (a) Find the speed of P when t = 0 (3)
- (b) Find the bearing on which P is moving when t = 2 (2)
- (c) Find the value of t when P is moving
 - (i) parallel to j,
 - (ii) parallel to (-i 3j).

(6)

2:: Variable acceleration with vectors.

"A particle P of mass 0.8kg is acted on by a single force F N. Relative to a fixed origin O, the position vector of P at time t seconds is r metres, where

$$r = 2t^3 \mathbf{i} + 50t^{-\frac{1}{2}} \mathbf{j}, \qquad t \ge 0$$

Find (a) the speed of P when t = 4

- (b) The acceleration of P as a vector when t = 2
- (c) *F* when t = 2."

3:: Integration with vectors to find velocity/displacement

"A particle P is moving in a plane. At time t seconds, its velocity \boldsymbol{v} ms⁻¹ is given by $\boldsymbol{v}=3ti+\frac{1}{2}t^2\boldsymbol{j},\ t\geq 0$ When t=0, the position vector of P with respect to a fixed origin O is $(2\boldsymbol{i}-3\boldsymbol{j})$ m. Find the position vector of P at time t seconds."

Vector motion

Initially, Kat is at the position vector $\binom{3}{1}$ m. Each second, she moves with **velocity** = $\binom{4}{2}$ m/s.

- (a) Where will Kat be after 1 second?
- (b) Where is Kat after 2 seconds?

elocity =
$$\binom{4}{2}$$
m/s.
er 1 second?
econds?
(b) $t = 2 \Rightarrow \vec{s} = \binom{11}{5} \equiv 11\vec{i} + 5\vec{j}$
 $t = 0$
(a) $t = 1 \Rightarrow \vec{s} = \binom{7}{3} \equiv 7\vec{i} + 3\vec{j}$

In general where would Kat be after t seconds in terms of t?

It'll be $\binom{3}{1}$ with t lots of $\binom{4}{2}$ added on:

$$\vec{s} = {3 \choose 1} + {4 \choose 2}t = (3\vec{i} + \vec{j}) + (4t\vec{i} + 2t\vec{j}) \implies \vec{s}(t) = {3 + 4t \choose 1 + 2t} = (3 + 4t)\vec{i} + (1 + 2t)\vec{j}$$

 $m{\mathscr{P}}$ Position vector $m{r}$ of particle:

$$r = r_0 + vt$$

where r_0 is initial position and $oldsymbol{v}$ is velocity.

Note: The formula comes from 'common sense' using the reasoning above.

Note II: Further Mathematicians who have finished Vectors in Core Pure Yr1 may see the similarities with vector equations of straight lines.

Example

[Textbook] A particle starts from the position vector $(3\vec{i} + 7\vec{j})$ m and moves with constant velocity $(2\vec{i} - \vec{j})$ ms⁻¹.

- (a) Find the position vector of the particle 4 seconds later.
- (b) Find the time at which the particle is due east of the origin.

Note: Some people prefer to avoid the *i* and *j* notation and write instead as column vectors. This is especially useful when considering directions and parallel vectors.

Example

[Textbook] A particle starts from the position vector $(3\vec{i} + 7\vec{j})$ m and moves with constant velocity $(2\vec{i} - \vec{j})$ ms⁻¹.

- (a) Find the position vector of the particle 4 seconds later.
- (b) Find the time at which the particle is due east of the origin.

$$r = {3 \choose 7} + 4 {2 \choose -1} = {11 \choose 3}$$
$$= {11 \choose 3} m$$

If due East, then the *j* component is 0:

$$r = {3 \choose 7} + t {2 \choose -1} = {3+2t \choose 7-t}$$
$$7 - t = 0 \rightarrow t = 7 \text{ seconds}$$

Note: Some people prefer to avoid the *i* and *j* notation and write instead as column vectors. This is especially useful when considering directions and parallel vectors.

suvat... but with vectors!

Some suvat equations work with vectors. By convention, we use r instead of s for displacement in 2D/3D (as we did in the previous exercise). In 2D, which of the quantities are vectors and which are scalars?

$$r = ut + \frac{1}{2}at^2$$
$$v = u + at$$

$$r =$$
vector
 $u =$?
 $v =$?
 $a =$?
 $t =$?

Note that as \boldsymbol{u} and \boldsymbol{v} are vectors, we can't for example use $v^2 = u^2 + 2as$, as you can't square a vector.

[Textbook] A particle P has velocity (-3i + j) ms⁻¹. The particle moves with constant acceleration $\mathbf{a} = (2i + 3j)$ ms⁻². Find (a) the speed of the particle and (b) the bearing on which it is travelling at time t = 3 seconds.

suvat... but with vectors!

Some *suvat* equations work with vectors. By convention, we use r instead of s for displacement in 2D/3D (as we did in the previous exercise). In 2D, which of the quantities are vectors and which are scalars?

$$r = ut + \frac{1}{2}at^2$$
$$v = u + at$$

r = vector

 $u = \mathbf{vector}$

 $v = \mathbf{vector}$

 $a = \mathbf{vector}$

t = scalar

Note that as \boldsymbol{u} and \boldsymbol{v} are vectors, we can't for example use $v^2 = u^2 + 2as$. as you can't square a vector.

[Textbook] A particle P has velocity (-3i + j) ms⁻¹. The particle moves with constant acceleration $\mathbf{a} = (2\mathbf{i} + 3\mathbf{j})$ ms⁻². Find (a) the speed of the particle and (b) the bearing on which it is travelling at time t=3 seconds.

a

$$v = u + at$$

= $\binom{-3}{1} + 3\binom{2}{3} = \binom{3}{10} \text{ ms}^{-1}$
Speed = $\sqrt{3^2 + 10^2} = 10.4 \text{ ms}^{-1}$ (3sf)

Remember that speed is the scalar for of velocity, so find magnitude of the vector.

$$\tan \theta = \frac{3}{10} \Rightarrow \theta = 16.7^{\circ}$$
Bearing is 017°

The velocity vector gives the direction of motion. Just draw it out to establish angles.

Further Example

[Textbook] An ice skater is skating on a large flat ice rink. At time t=0 the skater is at a fixed point O and is travelling with velocity $(2.4\mathbf{i} - 0.6\mathbf{j})$ ms⁻¹.

At time t = 20 s the skater is travelling with velocity (-5.6i + 3.4j) ms⁻¹.

Relative to O, the skater has position vector \mathbf{s} at time t seconds.

Modelling the ice skater as a particle with constant acceleration, find:

- (a) The acceleration of the ice skater
- (b) An expression for s in terms of t
- (c) The time at which the skater is directly north-east of O.

A second skater travels so that she has position vector $\mathbf{r} = (1.1t - 6)\mathbf{j}$ m relative to 0 at time t.

(d) Show that the two skaters will meet.

Further Example

[Textbook] An ice skater is skating on a large flat ice rink. At time t=0 the skater is at a fixed point O and is travelling with velocity $(2.4\mathbf{i} - 0.6\mathbf{j})$ ms⁻¹.

At time t = 20 s the skater is travelling with velocity (-5.6i + 3.4j) ms⁻¹.

Relative to O, the skater has position vector \mathbf{s} at time t seconds.

Modelling the ice skater as a particle with constant acceleration, find:

- (a) The acceleration of the ice skater
- (b) An expression for s in terms of t
- (c) The time at which the skater is directly north-east of O.

A second skater travels so that she has position vector $\mathbf{r} = (1.1t - 6)\mathbf{j}$ m relative to 0 at time t.

- (d) Show that the two skaters will meet.
- Using v = u + at, ${-5.6 \choose 3.4} = {2.4 \choose -0.6} + 20a$ $20a = {-8 \choose 4}$ $a = {-0.4 \choose 0.2} \text{ ms}^{-2}$
- Using $s = ut + \frac{1}{2}at^2$, $s = {2.4 \choose -0.6}t + \frac{1}{2}{-0.4 \choose 0.2}t^2$ $= {2.4t - 0.2t^2 \choose -0.6t + 0.1t^2} m$

When north-east of O, the i component will be the same as the j component.

$$2.4t - 0.2t^{2} = -0.6t + 0.1t^{2}$$
$$3t(1 - 0.1t) = 0$$
$$t = 0 \text{ or } t = 10$$

d When they meet, two position vectors will be the same:

$$\begin{pmatrix} 2.4t - 0.2t^{2} \\ -0.6t + 0.1t^{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 1.1t - 6 \end{pmatrix}$$

$$2.4t - 0.2t^{2} = 0 \rightarrow 2t(12 - t) = 0$$

$$t = 0 \text{ or } t = 12$$

When t=0, $-0.6(0)+0.1(0^2)=0$ But 1.1(0)-6=-6 so do not meet when t=0When t=12, $-0.6(12)+0.1(12^2)=7.2$ and 1.1(12)-6=7.2 so skaters meet when t=12 seconds.

Test Your Understanding

Edexcel M1(Old) May 2013(R) Q6

[In this question i and j are horizontal unit vectors due east and due north respectively. Position vectors are given with respect to a fixed origin O.]

A ship S is moving with constant velocity $(3\mathbf{i} + 3\mathbf{j})$ km h⁻¹. At time t = 0, the position vector of S is $(-4\mathbf{i} + 2\mathbf{j})$ km.

(a) Find the position vector of S at time t hours. (2)

A ship T is moving with constant velocity $(-2\mathbf{i} + n\mathbf{j})$ km h⁻¹. At time t = 0, the position vector of T is $(6\mathbf{i} + \mathbf{j})$ km. The two ships meet at the point P.

(b) Find the value of n. (5)

(c) Find the distance *OP*. (4)

(c) ;
(b) ;
(c) ;

Test Your Understanding

Edexcel M1(Old) May 2013(R) Q6

[In this question i and j are horizontal unit vectors due east and due north respectively. Position vectors are given with respect to a fixed origin O.]

A ship S is moving with constant velocity (3i + 3j) km h⁻¹. At time t = 0, the position vector of S is (-4i + 2j) km.

(a) Find the position vector of
$$S$$
 at time t hours. (2)

A ship T is moving with constant velocity $(-2\mathbf{i} + n\mathbf{j})$ km h⁻¹. At time t = 0, the position vector of T is $(6\mathbf{i} + \mathbf{j})$ km. The two ships meet at the point P.

(b) Find the value of
$$n$$
. (5)

M1A1

(4)

Exercise 8.1

Pearson Stats/Mechanics Year 2 Pages 68-69

For all questions in this exercise, take i and j to be the unit vectors due east and north respectively.

- 1 A particle P starts at the point with position vector $\mathbf{r_0}$. P moves with constant velocity $\mathbf{v} \, \mathbf{m} \, \mathbf{s}^{-1}$. After t seconds, P is at the point with position vector \mathbf{r} .
 - a Find r if $\mathbf{r_0} = 2\mathbf{i}$, $\mathbf{v} = \mathbf{i} + 3\mathbf{j}$, and t = 4.
 - **b** Find **r** if $\mathbf{r}_0 = 3\mathbf{i} \mathbf{j}$, $\mathbf{v} = -2\mathbf{i} + \mathbf{j}$, and t = 5.
 - c Find $\mathbf{r_0}$ if $\mathbf{r} = 4\mathbf{i} + 3\mathbf{j}$, $\mathbf{v} = 2\mathbf{i} \mathbf{j}$, and t = 3.
 - **d** Find $\mathbf{r_0}$ if $\mathbf{r} = -2\mathbf{i} + 5\mathbf{j}$, $\mathbf{v} = -2\mathbf{i} + 3\mathbf{j}$, and t = 6.
 - e Find v if $r_0 = 2i + 2j$, r = 8i 7j, and t = 3.
 - f Find t if $r_0 = 4i + j$, r = 12i 11j, and v = 2i 3j.
- 2 A radio-controlled boat starts from position vector (10i 5j) m relative to a fixed origin and travels with constant velocity, passing a point with position vector (-2i + 9j) m after 4 seconds. Find the speed and bearing of the boat.
- 3 A clockwork mouse starts from a point with position vector (-2i + 3j) m relative to a fixed origin and moves in a straight line with a constant speed of 4 m s⁻¹. Find the time taken for the mouse to travel to the point with position vector (6i - 3j) m.
- 4 A helicopter starts from the point with position vector $\begin{pmatrix} 120 \\ -10 \end{pmatrix}$ m relative to a fixed origin, and moves with constant velocity $\begin{pmatrix} -30 \\ 40 \end{pmatrix}$ m s⁻¹. Find:

Hint When the helicopter is due north of the origin, the i-component of its position vector will be 0.

- a the position vector of the helicopter t seconds later
- b the time at which the helicopter is due north of the origin.
- 5 At time t = 0, the particle P is at the point with position vector $4\mathbf{i}$, and moving with constant velocity $\mathbf{i} + \mathbf{j} \,\mathrm{m} \,\mathrm{s}^{-1}$. A second particle Q is at the point with position vector $-3\mathbf{j}$ and moving with velocity $\mathbf{v} \,\mathrm{m} \,\mathrm{s}^{-1}$. After 8 seconds, the paths of P and Q meet. Find the speed of Q.

- 6 At noon, a ferry F is 400 m due north of an observation point O and is moving with a constant velocity of (7i + 7j) m s⁻¹, and a speedboat S is 500 m due east of O, moving with a constant velocity of (-3i + 15j) m s⁻¹.
 - a Write down the position vectors of F and S at time t seconds after noon.
 - **b** Show that F and S will collide, and find the position vector of the point of collision.
- 7 A particle starts at rest and moves with constant acceleration. After 5 seconds its velocity is $\binom{3}{4}$ m s⁻¹.
 - a Find the acceleration of the particle.
 - b The displacement vector of the particle from its starting position after 5 seconds.
- 8 An object moves with constant acceleration so that its velocity changes from (15i + 4j) m s⁻¹ to (5i 3j) m s⁻¹ in 4 seconds. Find:
 - a the acceleration of the particle

Given that the initial position vector of the particle relative to a fixed origin O is 10i - 8j m,

- **b** find the position vector of the particle after t seconds.
- **9** A plane moves with constant acceleration $\binom{-1}{1.5}$ m s⁻².

When t = 0, the velocity of the plane is $\begin{pmatrix} 70 \\ -30 \end{pmatrix}$ m s⁻¹. Find:

- a the velocity of the plane after 10 seconds
- b the distance of the plane from its starting point after 10 seconds.
- 10 A model boat moves with constant acceleration (0.2i + 0.6j) m s⁻². After 20 seconds its velocity is (4i + 3j) m s⁻¹. Find the displacement vector of the boat from its starting position after 20 seconds.

- 11 A particle A starts at the point with position vector $12\mathbf{i} + 12\mathbf{j}$. The initial velocity of A is $(-\mathbf{i} + \mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$, and it has constant acceleration $(2\mathbf{i} 4\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-2}$. Another particle, B, has initial velocity $\mathbf{i} \,\mathrm{m} \,\mathrm{s}^{-1}$ and constant acceleration $2\mathbf{j} \,\mathrm{m} \,\mathrm{s}^{-2}$. After 3 seconds the two particles collide. Find:
 - a the speeds of the two particles when they collide
 - b the position vector of the point where the two particles collide
 - c the position vector of B's starting point.
- 12 A ship is moving such that at time 12:00 its position is O and its velocity is $(-4\mathbf{i} + 8\mathbf{j})$ km h⁻¹. At 14:00, the ship is travelling with velocity $(-2\mathbf{i} 6\mathbf{j})$ km h⁻¹.

Relative to O, the ship has displacement s at time t hours after 12:00 where $t \ge 0$.

Modelling the ship as a particle with constant acceleration, find:

a the acceleration of the ship

(2 marks)

b an expression for **s** in terms of t

(2 marks)

c the time at which the ship is directly south-west of O.

(3 marks)

At time t hours after 12:00, another ship has displacement $\mathbf{r} = (40 - 25t)\mathbf{j}$ relative to O.

d Find the position vector of the point where the two ships meet.

(4 marks)

- 13 A particle moves so that its position vector, in metres, relative to a fixed origin O at time t seconds is $\mathbf{r} = (2t^2 3)\mathbf{i} + (7 4t)\mathbf{j}$, where $t \ge 0$.
 - a Show that the particle is north-east of O when $t^2 + 2t 5 = 0$.

(2 marks)

b Hence determine the distance of the particle from *O* when it is north-east of *O*, giving your answer correct to 3 significant figures.

(3 marks)

A second particle moves with constant acceleration $(3a\mathbf{i} - 2a\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-2}$. When t = 0 the velocity of the particle is $(5\mathbf{i} + 6\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$ and its position vector relative to O is $5\mathbf{j} \,\mathrm{m}$. When t = 2 seconds the particle is travelling with velocity $(b\mathbf{i} + 2b\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$.

c Find the speed and direction of the particle when t = 2.

(6 marks)

d Find the distance between the two particles at this time.

(4 marks)

Challenge

During an air show, a stunt aeroplane passes over a control tower with velocity ($20\mathbf{i} - 100\mathbf{j}$) m s⁻¹, and flies in a horizontal plane with constant acceleration $6\mathbf{j}$ m s⁻². A second aeroplane passes over the same control tower at time t seconds later, where t > 0, travelling with velocity ($70\mathbf{i} + 40\mathbf{j}$) m s⁻¹. The second aeroplane is flying in a higher horizontal plane with constant acceleration $-8\mathbf{j}$ m s⁻².

Given that the two aeroplanes pass directly over one another in their subsequent motion, find the value of t.

Homework Answers

1 a
$$6\mathbf{i} + 12\mathbf{j}$$
 b $-7\mathbf{i} + 4\mathbf{j}$ c $-2\mathbf{i} + 6\mathbf{j}$ d $10\mathbf{i} - 13\mathbf{j}$ e $2\mathbf{i} - 3\mathbf{j}$ f $4\mathbf{s}$
2 $\frac{\sqrt{85}}{2}\mathbf{m}\,\mathbf{s}^{-1}$, 319°
3 2.5 s
4 a $\binom{120 - 30t}{-10 + 40t}$ b $4\mathbf{s}$
5 2.03 m s - 1
6 a $7t\mathbf{i} + (400 + 7t)\mathbf{j}$, $(500 - 3t)\mathbf{i} + 15t\mathbf{j}$ b $350\mathbf{i} + 750\mathbf{j}$
7 a $\binom{3}{5}\mathbf{m}\,\mathbf{s}^{-2}$ b $\binom{15}{2}\mathbf{m}$
8 a $-\frac{5}{2}\mathbf{i} - \frac{7}{4}\mathbf{j}\,\mathbf{m}\,\mathbf{s}^{-2}$ b $(10 + 15t - \frac{5}{4}t^2)\mathbf{i} + (-8 + 4t - \frac{7}{8}t^2)\mathbf{j}\,\mathbf{m}$
9 a $\binom{60}{-15}\mathbf{m}\,\mathbf{s}^{-1}$ b $688\,\mathbf{m}$
10 $\binom{40}{-60}\mathbf{m}$
11 a $12.1\,\mathbf{m}\,\mathbf{s}^{-1}$, $6.08\,\mathbf{m}\,\mathbf{s}^{-1}$ b $18\mathbf{i} - 3\mathbf{j}$ c $15\mathbf{i} - 12\mathbf{j}$
12 a $\mathbf{i} - 7\mathbf{j}\,\mathbf{m}\,\mathbf{s}^{-2}$ b $\mathbf{s} = (-4t + 0.5t^2)\mathbf{i} + (8t - 3.5t^2)\mathbf{j}$ c $15:00$ d $-160\mathbf{j}$
13 a North-east of O when \mathbf{i} and \mathbf{j} components are equal $2t^2 - 3 = 7 - 4t \Rightarrow 2t^2 + 4t - 10 = 0 \Rightarrow t^2 + 2t - 5 = 0$ b $1.70\,\mathbf{m}$ c $7.83\,\mathbf{m}\,\mathbf{s}^{-1}$, 026.6° d $19.3\,\mathbf{m}$

Challenge

24s