Representaciones del grupo simétrico en homologías

Rafael Villarroel Flores, UAEH

Trabajo conjunto con Paco Larrión, Miguel Pizaña, Daniel Robles, Briseida Trejo y Manuel Campero

6 de marzo de 2019

XXXIV Coloquio Víctor Neumann-Lara

Introducción

Representaciones del grupo simétrico

Definición (Grupo)

Un grupo es un conjunto *G* junto con una operación binaria asociativa, con elemento neutro, donde todo elemento tiene inverso.

Definición (Grupo)

Un grupo es un conjunto G junto con una operación binaria asociativa, con elemento neutro, donde todo elemento tiene inverso.

Ejemplos de grupos

Definición (Grupo)

Un grupo es un conjunto *G* junto con una operación binaria asociativa, con elemento neutro, donde todo elemento tiene inverso.

Ejemplos de grupos

 S_n grupo de funciones biyectivas de $\{1, 2, ..., n\}$ en sí mismo. (grupo simétrico)

Definición (Grupo)

Un grupo es un conjunto *G* junto con una operación binaria asociativa, con elemento neutro, donde todo elemento tiene inverso.

Ejemplos de grupos

 S_n grupo de funciones biyectivas de $\{1,2,\ldots,n\}$ en sí mismo. (grupo simétrico)

GL(V) grupo de las transformaciones lineales $V \to V$ invertibles de un espacio vectorial V. (grupo general lineal)

Definición (Grupo)

Un grupo es un conjunto *G* junto con una operación binaria asociativa, con elemento neutro, donde todo elemento tiene inverso.

Ejemplos de grupos

 S_n grupo de funciones biyectivas de $\{1,2,\ldots,n\}$ en sí mismo. (grupo simétrico)

GL(V) grupo de las transformaciones lineales $V \to V$ invertibles de un espacio vectorial V. (grupo general lineal)

 $\operatorname{GL}_n(F)$ grupo de matrices cuadradas invertibles $n \times n$ con entradas en un campo F. (grupo de matrices)

Representación

Definición (Representación)

Sean G un grupo y V un espacio vectorial. Una representación de G en V es un homomorfismo de grupos

$$\phi: G \to GL(V)$$
.

Representación

Definición (Representación)

Sean G un grupo y V un espacio vectorial. Una representación de G en V es un homomorfismo de grupos

$$\phi: G \to GL(V)$$
.

Definición (Representación matricial)

Sean G un grupo y F un campo. Una representación matricial es un homomorfismo de grupos

$$\phi: G \to GL_n(F)$$
.

Ejemplos

Ejemplos de representaciones

Ejemplos

Ejemplos de representaciones

• Para todo grupo G hay una representación trivial que envía todo G en la identidad de GL(V) (o la matriz identidad de $GL_n(F)$).

Ejemplos

Ejemplos de representaciones

- Para todo grupo G hay una representación trivial que envía todo G en la identidad de GL(V) (o la matriz identidad de $GL_n(F)$).
- Para $G = S_n$ tenemos la representación signo en un campo F: (aquí $GL(F) = F \{0\}$)

$$\phi(\sigma) = \begin{cases} 1 & \text{si } \sigma \text{ es par} \\ -1 & \text{si } \sigma \text{ es impar} \end{cases}$$

Módulos

Definición (G-módulo)

A cada morfismo $\phi \colon G \to \operatorname{GL}(V)$ se le puede asociar una acción lineal $G \times V \to V$ dada por $gv = \phi(g)(v)$. El espacio V junto con la acción lineal de G se llama un G-módulo.

Módulos

Definición (G-módulo)

A cada morfismo $\phi \colon G \to \operatorname{GL}(V)$ se le puede asociar una acción lineal $G \times V \to V$ dada por $gv = \phi(g)(v)$. El espacio V junto con la acción lineal de G se llama un G-módulo.

Observación

Es equivalente que V sea un G-módulo a tener una representación de G en V.

Submódulos

Definición (Submódulo)

Sea V un G-módulo. Se dice que $W \le V$ es un submódulo si $gw \in W$ para todos $g \in G$, $w \in W$.

Submódulos

Definición (Submódulo)

Sea V un G-módulo. Se dice que $W \le V$ es un submódulo si $gw \in W$ para todos $g \in G$, $w \in W$.

Ejemplos

Por ejemplo V y $\{0\}$ son submódulos de un G-módulo V.

Definición (Submódulo irreducible)

Si V es un G-módulo cuyos únicos submódulos son V y $\{0\}$, decimos que V es irreducible.

Definición (Submódulo irreducible)

Si V es un G-módulo cuyos únicos submódulos son V y $\{0\}$, decimos que V es irreducible.

Teorema (Maschke)

Todo G-módulo se puede escribir como suma directa de G-módulos irreducibles (si los G-módulos son espacios vectoriales sobre \mathbb{C}).

Definición (Submódulo irreducible)

Si V es un G-módulo cuyos únicos submódulos son V y $\{0\}$, decimos que V es irreducible.

Teorema (Maschke)

Todo G-módulo se puede escribir como suma directa de G-módulos irreducibles (si los G-módulos son espacios vectoriales sobre \mathbb{C}).

Definición (Submódulo irreducible)

Si V es un G-módulo cuyos únicos submódulos son V y $\{0\}$, decimos que V es irreducible.

Teorema (Maschke)

Todo G-módulo se puede escribir como suma directa de G-módulos irreducibles (si los G-módulos son espacios vectoriales sobre \mathbb{C}).

En adelante todos los espacios vectoriales se consideran sobre $\mathbb{C}.$

Clasificación de irreducibles

Teorema (Correspodencia)

Si *G* es un grupo finito, existe una biyección entre el conjunto de representaciones irreducibles de *G* y las clases de conjugación de elementos de *G*.

Correspondencia con particiones

En el caso de S_n , además se tiene otra correspondencia:

Particiones

Definición (Partición)

Una partición $\lambda = (\lambda_1, \lambda_2, \ldots)$ de n es una sucesión de enteros no negativos tales que $\lambda_1 \geq \lambda_2 \geq \cdots$ y tales que $\sum \lambda_i = n$.

Particiones

Definición (Partición)

Una partición $\lambda = (\lambda_1, \lambda_2, \ldots)$ de n es una sucesión de enteros no negativos tales que $\lambda_1 \geq \lambda_2 \geq \cdots$ y tales que $\sum \lambda_i = n$.

Particiones

Definición (Partición)

Una partición $\lambda = (\lambda_1, \lambda_2, \ldots)$ de n es una sucesión de enteros no negativos tales que $\lambda_1 \geq \lambda_2 \geq \cdots$ y tales que $\sum \lambda_i = n$.

A cada partición de n se le representa por un diagrama de Young.

Por ejemplo, como n=3 tiene 3 particiones 3, 2 + 1, 1 + 1 + 1, entonces hay 3 S_3 -módulos irreducibles representados por:

Módulos de Specht

Módulos de Specht

Los módulos irreducibles correspondientes se llaman módulos de Specht y los denotaremos:

$$s^{\square}, s^{\square}, s^{\square}$$

• Para
$$n = 4$$
:

$$s^{\text{\tiny lem}}, s^{\text{\tiny lem}}, s^{\text{\tiny lem}}, s^{\text{\tiny lem}}, s^{\text{\tiny lem}}$$

• Para
$$n = 4$$
:

$$s^{\text{\tiny \pm}}, s^{\text{\tiny \pm}}, s^{\text{\tiny \pm}}, s^{\text{\tiny \pm}}, s^{\text{\tiny \pm}}$$

• Para n = 5:

$$s^{\text{m}}, s^{\text{m}}, s^{\text{m}}, s^{\text{m}}, s^{\text{m}}, s^{\text{m}}, s^{\text{m}}, s^{\text{m}}$$

• Para n = 4:

$$S^{\square}, S^{\square}, S^{\square}, S^{\square}, S^{\square}$$

• Para n = 5:

$$s^{\text{\tiny lem}}, s^{\text{\tiny lem}}$$

• Una actividad frecuente es descomponer un *G*-módulo como suma de irreducibles. Se tiene, por ejemplo, que:

$$\operatorname{res}_{S_4}^{S_5} S^{\parallel} = S^{\parallel} \oplus S^{\parallel}.$$

• Para n = 4:

$$S^{\square}, S^{\square}, S^{\square}, S^{\square}, S^{\square}$$

• Para n = 5:

$$s^{\text{\tiny lem}}, s^{\text{\tiny lem}}, s^{\text{\tiny lem}}, s^{\text{\tiny lem}}, s^{\text{\tiny lem}}, s^{\text{\tiny lem}}, s^{\text{\tiny lem}}$$

• Una actividad frecuente es descomponer un *G*-módulo como suma de irreducibles. Se tiene, por ejemplo, que:

$$\operatorname{res}_{S_4}^{S_5} S^{\text{T}} = S^{\text{T}} \oplus S^{\text{T}}.$$

· Y que

$$\operatorname{ind}_{S_4}^{S_5} S^{\square} = S^{\square} \oplus S^{\square} \oplus S^{\square}.$$

Complejos simpliciales y homología

Complejos simpliciales

Los complejos simpliciales proporcionan una forma inmediata de aplicar topología en combinatoria.

Complejos simpliciales

Los complejos simpliciales proporcionan una forma inmediata de aplicar topología en combinatoria.

Definición (Complejo simplicial)

Un complejo simplicial Δ es una pareja de conjuntos finitos $(V(\Delta), S(\Delta))$, cuyos elementos se llaman respectivamente vértices y simplejos, tales que:

Complejos simpliciales

Los complejos simpliciales proporcionan una forma inmediata de aplicar topología en combinatoria.

Definición (Complejo simplicial)

Un complejo simplicial Δ es una pareja de conjuntos finitos $(V(\Delta), S(\Delta))$, cuyos elementos se llaman respectivamente vértices y simplejos, tales que:

• $S(\Delta) \subseteq \mathcal{P}(V(\Delta))$,

Complejos simpliciales

Los complejos simpliciales proporcionan una forma inmediata de aplicar topología en combinatoria.

Definición (Complejo simplicial)

Un complejo simplicial Δ es una pareja de conjuntos finitos $(V(\Delta), S(\Delta))$, cuyos elementos se llaman respectivamente vértices y simplejos, tales que:

- $S(\Delta) \subseteq \mathcal{P}(V(\Delta))$,
- Si $\sigma \in \mathcal{S}(\Delta)$ y $\emptyset \neq \tau \subseteq \sigma$, entonces $\tau \in \mathcal{S}(\Delta)$.

Complejos simpliciales

Los complejos simpliciales proporcionan una forma inmediata de aplicar topología en combinatoria.

Definición (Complejo simplicial)

Un complejo simplicial Δ es una pareja de conjuntos finitos $(V(\Delta), S(\Delta))$, cuyos elementos se llaman respectivamente vértices y simplejos, tales que:

- $S(\Delta) \subseteq \mathcal{P}(V(\Delta))$,
- Si $\sigma \in S(\Delta)$ y $\emptyset \neq \tau \subseteq \sigma$, entonces $\tau \in S(\Delta)$.

Dimensión

Si $\sigma \in \Delta$ tiene n+1 elementos, se dice que su dimensión es dim $\sigma = n$.

$$\begin{split} &V(\Delta_1) = \{1,2,3\},\\ &S(\Delta_1) = \{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\},\\ &V(\Delta_2) = V(\Delta_1),\\ &S(\Delta_2) = S(\Delta_1) \cup \{\{1,2,3\}\}. \end{split}$$

$$\begin{split} &V(\Delta_1) = \{1,2,3\},\\ &S(\Delta_1) = \{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\},\\ &V(\Delta_2) = V(\Delta_1),\\ &S(\Delta_2) = S(\Delta_1) \cup \{\{1,2,3\}\}. \end{split}$$

$$\begin{split} &V(\Delta_1) = \{1,2,3\},\\ &S(\Delta_1) = \{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\},\\ &V(\Delta_2) = V(\Delta_1),\\ &S(\Delta_2) = S(\Delta_1) \cup \{\{1,2,3\}\}. \end{split}$$

$$\begin{split} &V(\Delta_1) = \{1,2,3\},\\ &S(\Delta_1) = \{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\},\\ &V(\Delta_2) = V(\Delta_1),\\ &S(\Delta_2) = S(\Delta_1) \cup \{\{1,2,3\}\}. \end{split}$$

Espacio topológico asociado

• En general, a cualquier complejo simplicial se le asocia un espacio topológico, llamado su realización geométrica.

Espacio topológico asociado

- En general, a cualquier complejo simplicial se le asocia un espacio topológico, llamado su realización geométrica.
- La realización geométrica es un funtor de la categoría de complejos simpliciales a la categoría de espacios topológicos.

Complejos simpliciales en gráficas

 Un primer uso de los complejos simpliciales en combinatoria se dio en la prueba de Lovász (1978) de la conjetura de Kneser (1953):

$$\chi(KG_{n,k})=n-2k+2$$

Complejos simpliciales en gráficas

 Un primer uso de los complejos simpliciales en combinatoria se dio en la prueba de Lovász (1978) de la conjetura de Kneser (1953):

$$\chi(KG_{n,k}) = n - 2k + 2$$

• Para demostrarlo, Lovász asoció a cada gráfica G su complejo de vecindades $\mathcal{N}(G)$, cuyo conjunto de vértices es V(G) y conjunto de simplejos son los conjuntos de vértices con un vecino común.

Definición $(\Delta(G))$

Dada una gráfica simple G, el complejo simplicial $\Delta(G)$ tiene:

Definición $(\Delta(G))$

Dada una gráfica simple G, el complejo simplicial $\Delta(G)$ tiene:

vértices los vértices de G,

Definición $(\Delta(G))$

Dada una gráfica simple G, el complejo simplicial $\Delta(G)$ tiene:

vértices los vértices de *G*, **simplejos** las subgráficas completas de *G*.

Definición $(\Delta(G))$

Dada una gráfica simple G, el complejo simplicial $\Delta(G)$ tiene:

vértices los vértices de *G*, **simplejos** las subgráficas completas de *G*.

Definición $(\Delta(G))$

Dada una gráfica simple G, el complejo simplicial $\Delta(G)$ tiene:

vértices los vértices de G,simplejos las subgráficas completas de G.

Nosotros usaremos $\Delta(G)$ para asociarle conceptos topológicos a las gráficas. Por ejemplo, diremos que las gráficas G_1 , G_2 son homotópicas si $\Delta(G_1)$ es homotópico a $\Delta(G_2)$.

Característica de Euler

Definición (Característica de Euler)

Si Δ es un complejo simplicial, la característica de Euler de Δ es:

$$\chi(\Delta)=c_0-c_1+c_2-c_3+\cdots,$$

donde c_i es la cantidad de simplejos de dimensión i.

Característica de Euler

Definición (Característica de Euler)

Si Δ es un complejo simplicial, la característica de Euler de Δ es:

$$\chi(\Delta)=c_0-c_1+c_2-c_3+\cdots,$$

donde c_i es la cantidad de simplejos de dimensión i.

Teorema (Invariancia homotópica)

Si Δ_1 es homotópico a Δ_2 , entonces

$$\chi(\Delta_1) = \chi(\Delta_2).$$

Homología

A cada complejo simplicial Δ se le puede asociar una sucesión de espacios vectoriales $C_k(\Delta) = 0$ junto con transformaciones lineales $d_k : C_k(\Delta) \to C_{k-1}(\Delta)$, tales que $d_k \circ d_{k+1} = 0$

$$\cdots \longrightarrow C_{k+1}(\Delta) \xrightarrow{d_{k+1}} C_k(\Delta) \xrightarrow{d_k} C_{k-1}(\Delta) \longrightarrow \cdots$$

Homología

A cada complejo simplicial Δ se le puede asociar una sucesión de espacios vectoriales $C_k(\Delta) = 0$ junto con transformaciones lineales $d_k : C_k(\Delta) \to C_{k-1}(\Delta)$, tales que $d_k \circ d_{k+1} = 0$

$$\cdots \longrightarrow C_{k+1}(\Delta) \xrightarrow{d_{k+1}} C_k(\Delta) \xrightarrow{d_k} C_{k-1}(\Delta) \longrightarrow \cdots$$

Si Δ es un complejo simplicial con acción de un grupo G, entonces cada uno de los espacios $C_k(\Delta)$ es un G-módulo, y los d_k son morfismos de representaciones.

Definición (Homología)

Se define la k-ésima homología de Δ como el cociente:

Se define la
$$\kappa$$
-esima nomologia de Δ como el cociente:

 $H_k(\Delta) = \ker(d_k)/\operatorname{im}(d_{k+1}).$

Definición (Homología)

Se define la k-ésima homología de Δ como el cociente:

Se define la
$$\kappa$$
-esima nomologia de Δ como el cociente:

 $H_k(\Delta) = \ker(d_k)/\operatorname{im}(d_{k+1}).$

Definición (Homología)

Se define la k-ésima homología de Δ como el cociente:

$$H_k(\Delta) = \ker(d_k)/\operatorname{im}(d_{k+1}).$$

Por lo tanto, para cada complejo simplicial Δ con acción del grupo S_n , se tiene que $H_k(\Delta)$ es un S_n -módulo.

Invariancia de la homología

Teorema (Invariancia)

Si Δ_1 es homotópico a Δ_2 , entonces:

$$H_k(\Delta_1) \cong H_k(\Delta_2)$$
.

Gráficas

Gráfica de emparejamientos

Definición (Gráfica de emparejamientos)

Si G es una gráfica, definimos la gráfica de emparejamientos M(G) como la gráfica cuyos vértices son las aristas de G y dos vértices adyacentes si las aristas correspondientes no tienen vértices en común. Es decir:

$$M(G)=\overline{L(G)}.$$

Gráfica de emparejamientos

Definición (Gráfica de emparejamientos)

Si G es una gráfica, definimos la gráfica de emparejamientos M(G) como la gráfica cuyos vértices son las aristas de G y dos vértices adyacentes si las aristas correspondientes no tienen vértices en común. Es decir:

$$M(G) = \overline{L(G)}.$$

Gráfica G_n

Denotaremos con G_n a la gráfica $M(K_n)$.

Definición (Clan)

Dada una gráfica simple *G*, un clan es un conjunto *q* de vértices, tal que:

Definición (Clan)

Dada una gráfica simple *G*, un clan es un conjunto *q* de vértices, tal que:

 cualesquiera dos vértices de q son adyacentes,

Definición (Clan)

Dada una gráfica simple *G*, un clan es un conjunto *q* de vértices, tal que:

- cualesquiera dos vértices de q son adyacentes,
- ningún vértice fuera de q es adyacente a todos los de q.

Definición (Clan)

Dada una gráfica simple *G*, un clan es un conjunto *q* de vértices, tal que:

- cualesquiera dos vértices de *q* son adyacentes,
- ningún vértice fuera de q es adyacente a todos los de q.

Los clanes de *G*₅ son sus aristas

Gráfica de clanes

Definición (Gráfica de clanes)

Si G es una gráfica simple, la gráfica de clanes K(G) es la gráfica cuyos vértices son los clanes de G, con dos vértices adyacentes si los correspondientes clanes tienen intersección no vacía.

Ejemplo: G₅

Ejemplo: G₅

Ejemplo: G₅

Representaciones en homologías

· Tenemos que el grupo simétrico S_n actúa en la gráfica G_n .

- · Tenemos que el grupo simétrico S_n actúa en la gráfica G_n .
- Por ejemplo, $\sigma \in S_n$ envía el vértice ij de G_n en $\sigma(i)\sigma(j)$.

- · Tenemos que el grupo simétrico S_n actúa en la gráfica G_n .
- Por ejemplo, $\sigma \in S_n$ envía el vértice ij de G_n en $\sigma(i)\sigma(j)$.
- Por lo tanto, se induce una acción de S_n sobre el complejo $\Delta(G_n)$.

- · Tenemos que el grupo simétrico S_n actúa en la gráfica G_n .
- Por ejemplo, $\sigma \in S_n$ envía el vértice ij de G_n en $\sigma(i)\sigma(j)$.
- Por lo tanto, se induce una acción de S_n sobre el complejo $\Delta(G_n)$.
- Y por lo tanto, para cada k se tiene que $H_k(\Delta(G_n))$ es un S_n -módulo.

- · Tenemos que el grupo simétrico S_n actúa en la gráfica G_n .
- Por ejemplo, $\sigma \in S_n$ envía el vértice ij de G_n en $\sigma(i)\sigma(j)$.
- Por lo tanto, se induce una acción de S_n sobre el complejo $\Delta(G_n)$.
- Y por lo tanto, para cada k se tiene que $H_k(\Delta(G_n))$ es un S_n -módulo.
- Queremos descomponer las homologías de $\Delta(G_n)$ en submódulos irreducibles.

· Si λ es partición de n, escribimos $\lambda \vdash n$.

- Si λ es partición de n, escribimos $\lambda \vdash n$.
- La partición conjugada λ' es la que tiene diagrama que se obtiene transponiendo el de λ . Por ejemplo, la conjugada de \blacksquare es \blacksquare .

- · Si λ es partición de n, escribimos $\lambda \vdash n$.
- La partición conjugada λ' es la que tiene diagrama que se obtiene transponiendo el de λ . Por ejemplo, la conjugada de \longrightarrow es \mathbb{F} .
- Se define $d(\lambda)$ como la cantidad de cuadritos en la diagonal principal. Por ejemplo, $d(\mathbb{H}) = 1$ y $d(\mathbb{H}) = 2$.

- Si λ es partición de n, escribimos $\lambda \vdash n$.
- La partición conjugada λ' es la que tiene diagrama que se obtiene transponiendo el de λ . Por ejemplo, la conjugada de \mathbb{H} es \mathbb{F} .
- Se define $d(\lambda)$ como la cantidad de cuadritos en la diagonal principal. Por ejemplo, $d(\mathbb{H}) = 1$ y $d(\mathbb{H}) = 2$.

Teorema (Bouc, 1984)

$$H_{k-1}(\Delta(G_n)) \cong_{S_n} \bigoplus_{\substack{\lambda: \lambda \vdash n \ \lambda = \lambda' \ d(\lambda) = n - 2k}} S^{\lambda}$$

Ejemplos del teorema

$$n = 5, k = 2$$

$$H_1(\Delta(G_5)) \cong_{S_5} \bigoplus_{\substack{\lambda: \lambda \vdash 5 \\ \lambda = \lambda' \\ d(\lambda) = 5 - 2(2) = 1}} S^{\lambda} = S^{\square}.$$

Ejemplos del teorema

$$n = 5, k = 2$$

$$H_1(\Delta(G_5)) \cong_{S_5} \bigoplus_{\substack{\lambda: \lambda \vdash 5 \ \lambda = \lambda' \ d(\lambda) = 5 - 2(2) = 1}} S^{\lambda} = S^{\square}.$$

$$n = 6, k = 2$$

$$H_1(\Delta(G_6)) \cong_{S_6} \bigoplus_{\substack{\lambda: \lambda \vdash 6 \ \lambda = \lambda' \ d(\lambda) = 6 - 2(2) = 2}} S^{\lambda} = S^{\square}.$$

Más ejemplos

$$n = 7, k = 3$$

$$H_2(\Delta(G_7)) \cong_{S_7} \bigoplus_{\substack{\lambda: \lambda \vdash 7 \\ \lambda = \lambda' \\ d(\lambda) = 7 - 2(3) = 1}} S^{\lambda} = S^{\square}.$$

Más ejemplos

$$n = 7, k = 3$$

$$H_2(\Delta(G_7)) \cong_{S_7} \bigoplus_{\substack{\lambda: \lambda \vdash 7 \\ \lambda = \lambda' \\ d(\lambda) = 7 - 2(3) = 1}} S^{\lambda} = S^{\square}.$$

$$n = 8, k = 3$$

$$H_2(\Delta(G_8)) \cong_{S_8} \bigoplus_{\substack{\lambda: \lambda \vdash 8 \\ \lambda = \lambda'}} S^{\lambda} = S^{\boxplus} \oplus S^{\boxplus}.$$

 $d(\lambda) = 8 - 2(3) = 2$

Teorema (Larrión, Pizaña, V., 2009)

Si $n \le 8$, $K(G_n)$ es homotópica a G_n .

Teorema (Larrión, Pizaña, V., 2009)

Si $n \le 8$, $K(G_n)$ es homotópica a G_n .

Teorema (Larrión, Pizaña, V., 2009)

Si $n \le 8$, $K(G_n)$ es homotópica a G_n .

Como consecuencia del teorema anterior, se tiene que, como espacios vectoriales, cada homología de $\Delta(G_n)$ es isomorfa a la homología de $\Delta(K(G_n))$ para $n \leq 8$. ¿Serán isomorfas como S_n -módulos?

Teorema (Larrión, Pizaña, V., 2009)

Si $n \le 8$, $K(G_n)$ es homotópica a G_n .

Como consecuencia del teorema anterior, se tiene que, como espacios vectoriales, cada homología de $\Delta(G_n)$ es isomorfa a la homología de $\Delta(K(G_n))$ para $n \leq 8$. ¿Serán isomorfas como S_n -módulos?

Briseida Trejo comprobó en su tesis de licenciatura que el isomorfismo como S_n -módulos se cumple para n = 5, 6.

Preguntas

• ¿Se tiene isomorfismo de la homología de $\Delta(K(G_n))$ con la de $\Delta(G_n)$ como S_n -módulos para n=7,8?

Preguntas

- ¿Se tiene isomorfismo de la homología de $\Delta(K(G_n))$ con la de $\Delta(G_n)$ como S_n -módulos para n=7,8?
- Sería bueno hacer un cálculo explícito de la pregunta anterior usando computadora. Actualmente, Manuel Campero, alumno de la UAEH, trabaja en esto.

Preguntas

- ¿Se tiene isomorfismo de la homología de $\Delta(K(G_n))$ con la de $\Delta(G_n)$ como S_n -módulos para n=7,8?
- Sería bueno hacer un cálculo explícito de la pregunta anterior usando computadora. Actualmente, Manuel Campero, alumno de la UAEH, trabaja en esto.
- Para n ≥ 7, hay evidencia computacional de que la gráfica G_n es clan-divergente (la sucesión de órdenes de las iteradas de clanes son: 21, 105, 126, 4893, 168756) pero las técnicas existentes que demuestran divergencia fallan. ¿Se podrá usar teoría de representaciones?

Más preguntas

• En la computadora se observa incluso que varias iteradas de clanes de G_7 son homotópicas, es decir:

$$G_7 \simeq K(G_7) \simeq K^2(G_7) \simeq \cdots$$

por lo que tendríamos una infinidad de S_7 -módulos para checar isomorfismo.

Más preguntas

 En la computadora se observa incluso que varias iteradas de clanes de G₇ son homotópicas, es decir:

$$G_7 \simeq K(G_7) \simeq K^2(G_7) \simeq \cdots$$

por lo que tendríamos una infinidad de S_7 -módulos para checar isomorfismo.

• Meta ambiciosa: un teorema análogo al teorema de Bouc para la descomposición de las homologías del complejo de $\Delta(K(G_n))$.

