

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Mecánica Automotriz

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
	Máquinas Eléctricas

Quinto	311051	102
SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Otorgar al alumno los principios teóricos-prácticos del funcionamiento de las máquinas eléctricas de CC y CA.

TEMAS Y SUBTEMAS

1. Fundamentos de las máquinas eléctricas

- 1.1El campo magnético
 - 1.1.1 Producción de un campo magnético
 - 1.1.2 Circuitos magnético
 - 1.1.3 Comportamiento magnético de los materiales ferromagnéticos
- 1.2Ley de Faraday: voltaje inducido por un campo magnético variable.
- 1.3Producción de fuerza inducida en un alambre
- 1.4Voltaje inducido en un conductor que se mueve en un campo magnético
- 1.5Principio de funcionamiento de la máquina lineal de CC

2. 2. Transformadores

- 2.1Transformador real
- 2.2Autotransformador
- 2.3Transformador trifásico y conexiones

3. Máquinas de CC

- 3.1 Principio de funcionamiento de la máquinade CC como motor
- 3.2Tipos de motores de CC y características
 - 3.2.1 De excitación independiente
 - 3.2.2 En derivación
 - 3.2.3 En serie
 - 3.2.4 Compuesto
- 3.2.5De imanes permanentes
- 3.3Principio de funcionamiento de la máquina de CC como generador
- 3.4Tipos de generadores de CC y características

4. Máquinas de CA

- 4.1 Fundamentos de máquinas de CA
 - 4.1.1 Campo magnético giratorio
 - 4.1.2 Fuerza magnetomotriz y distribución del flujo en las máquinas de CA
 - 4.1.3 Voltaje inducido en las máquinas de CA
- 4.1.4 Momento de torsión inducido en una máquina de CA
- 4.2 Motores de inducción
- 4.2.1 Monofásico
- 4.2.2Trifásico
- 4.3Motores síncronos

5. Aplicaciones de las máquinas eléctricas

4.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor en donde presente conceptos y descripciones de las máquinas eléctricas Realización de prácticas de laboratorio por parte de los alumnos, empleo de software de simulación de máquinas eléctricas como herramienta didáctica de apoyo.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

i)Al inicio del curso el profesor deberá indicar el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% de la calificación final y un examen ordinario que equivaldrá al restante 50%.

i)Las evaluaciones parciales podrán ser orales o escritas y cada una consta de un examen teórico, tareas y prácticas de laboratorio. La evaluación final deberá incluir un examen final y opcionalmente podrá ponderarse con la realización de un proyecto.

ii)Además pueden ser consideradas otras actividades como: el trabajo extra clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

El examen tendrá un valor mínimo de 50%; las tareas, proyectos y otras actividades, un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

Máquinas Eléctricas. Stephen J. Chapman, 5ª Edición, McGrawHill, 2012 Máquinas Eléctricas y Transformadores. Irving L. Kosow, PrenticeHall Hispanoamericana, 1993 PSIM User's Guide, Version 9.0, Release 3, Powersim Inc., 2010

Consulta:

Máquinas Eléctricas, A. E. Fitzgerald, Charles Kingsley Jr. y Stephen D. Umans, 6ª Edición, McGrawHill, 2004 Modeling and High Performance Control of Electric Machines. John Chiasson, Wiley IEEE Press, 2005

PERFIL PROFESIONAL DEL DOCENTE

Licenciatura en ingeniería eléctrica o electrónica con posgrado en Ingeniería Eléctrica o afín.

Vo. Bo.

M.C. VÍCTOR MANUEL CRUZ MARTÍNEZ
JEFE DE CARRERA

101

DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO

AUTORIZÓ

JEFATURA DE CARRERA DE INGENIERÍA MECÁNICA AUTOMOTRO