

Physique

Classe: Bac Scientifiques

Chapitre: Physique atomique et nucléaire

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

ademy.com NWW.t

On donne:

 $1eV = 1,6.10^{-19}J$; Unité de masse atomique : $1u=1,66.10^{-27}kg = 931,5 MeV/C^2$

Exercice 1

© 20 min

5 pts

1) Calculer en MeV /C²:

- a) Le défaut de masse Am associé à un noyau de $^{56}_{26}Fe$
- b) La masse d'un noyau de $^{60}_{29}\it{Cu}$
- 2) Comparer la stabilité des deux noyaux de $^{56}_{26}Fe$ et $^{60}_{29}Cu$

On donne:

Masse d'un proton : $m_p=1,00728 u$

Masse d'un neutron : $m_n=1,00867u$

Masse molaire de ${}^{60}_{29}Cu = 59,9 \ gmol^{-1}$

Nombre d'Avogadro : $N_A=6,023.1023 \text{ mol}^{-1}$

Energie de liaison d'un noyau de $_{26}^{56}Fe$; $\mathbf{E}_{l}\left(_{26}^{56}Fe\right)=492\mathbf{MeV}$

Exercice 2

© 20 min

5 pts

L'astate At est un élément radioactif qui existe en faible quantité dans la croute terrestre.

Le nucléide $^{211}_{85}At$ est un isotope de l'astate ; il se désintègre en un noyau de bismuth Bt^{207}_{83} en émettant une particule X^a_b

1)

a) Préciser s'il s'agit d'une réaction nucléaire spontanée ou provoquée

$$1^e$$
; -1^e ; e^n et $_2He$

- c) Ecrire l'équation de cette désintégration.
 - A un instant ultérieur de date t, on détermine le nombre N de noyau d'astate non désintégrés. On trace la courbe qui traduit l'évolution de N au cours du temps, régie par la loi : $N(t) = N_0 e^{-\lambda t}$ où λ représente la constante radioactive de l'échantillon étudié.

2) A l'instant $t_0 = 0$, un échantillon d'astate contient N_0 noyaux d'astate ${}^{211}_{85}At$

- a) Définir la période radioactif **T**.
- **b**) Déterminer sa valeur à partir du graphe.
- c) En déduire la valeur de λ
- d) Définir l'activité radioactive A calculer sa valeur initiale A₀.
- e) Déterminer le nombre de particules X émises au cours des dix premières heures de désintégration.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000