MIDE-C-P1

DATOS:

$$f(x) = x$$
$$x_0 = 1$$

PROBLEMA:

$$\epsilon = 0.1$$

$$\delta = \dot{\lambda}$$
?

$$|f(x)-f(x_0)|<\varepsilon$$
 cuando $|x-x_0|<\delta$

SOLUCIÓN:

Buscamos δ , como función de ϵ , que satisfaga:

Para todo
$$\varepsilon > 0$$
, existe $\delta > 0$ tal que si $|f(x) - f(x_0)| < \varepsilon$, entonces $|x - x_0| < \delta$. (1)

Sabemos que f(x) = x, entonces:

$$|f(x) - f(x_0)| < \varepsilon \text{ si y solo si } |x - x_0| < \varepsilon = 0.1$$
 (2)

Entonces si tomamos a $\delta = \varepsilon$, se cumpliría que:

$$|x - x_0| < \delta = \varepsilon = 0.1$$

Obteniedo lo buscado:

Para todo $\varepsilon > 0$ existe $\delta > 0$, tal que si $|f(x) - f(x_0)| < \varepsilon$, entonces $|x - x_0| < \delta = \varepsilon = 0.1$.

NOTAS:

a) Si $\delta < \epsilon$,no podemos asegurar que se cumpla (1). Por ejemplo, si $|x - x_0| = 0.05 < \epsilon$ y $\delta = 0.04 < \epsilon$, entonces no se cumple (1):

0.05 =
$$|x - x_0| > \delta =$$
0.04

(no se cumple que $|x-x_0| < \delta = \mathbf{0}$. **04**)

b) De manera similar, si $\delta > \varepsilon$, no podemos asegurar que se cumpla (2). Por ejemplo, si $|x - x_0| = 1.05$ y $\delta = 2$, entonces no se cumple (2):

$$\varepsilon = 0.1 < 1.05 = |x - x_0| < \delta = 2$$

(no se cumple que $|x - x_0| < \varepsilon = \mathbf{0}.\mathbf{1}$)

Por lo tanto $\delta = \epsilon = 0.1$