

Filip Zieliński

2025

Spis Treści

- 1. Pierścienie
- 2. Idealy
- 3. Pierścień Ilorazowy
- 4. Jądro Homomorfizmu
- 5. Kongruencje Pierścieni

Pierścienie

Definicja

Zbiór R z dwoma działaniami $+, \cdot$ nazywamy **Pierścieniem**, jeżeli zachodzą następujące warunki

- 1. (R, +) jest grupą abelową
- **2.** (R, \cdot) jest półgrupą
- 3. $\forall x, y, z \in R$ $x \cdot (y + z) = x \cdot y + x \cdot z \wedge (x + y) \cdot z = x \cdot z + y \cdot z$ (rozdzielność mn. wzg. dod.)

Pierścienie

Definicja

Zbiór R z dwoma działaniami $+, \cdot$ nazywamy **Pierścieniem z jedynką**, jeżeli zachodzą następujące warunki

- 1. (R, +) jest grupą abelową
- **2.** (R, \cdot) jest monoidem

3.
$$\forall x, y, z \in R$$
 $x \cdot (y + z) = x \cdot y + x \cdot z \land (x + y) \cdot z = x \cdot z + y \cdot z$ (rozdzielność mn. wzg. dod.)

Pierścienie

Definicja

Zbiór R z dwoma działaniami $+, \cdot$ nazywamy **Pierścieniem przemiennym z jedynką**, jeżeli zachodzą następujące warunki

- 1. (R, +) jest grupą abelową
- **2.** (R, \cdot) jest monoidem przemiennym

3.
$$\forall x, y, z \in R$$
 $x \cdot (y + z) = x \cdot y + x \cdot z \wedge (x + y) \cdot z = x \cdot z + y \cdot z$ (rozdzielność mn. wzg. dod.)

Pierścienie

Definicja

Zbiór R z dwoma działaniami $+, \cdot$ nazywamy **Pierścieniem przemiennym z jedynką**, jeżeli zachodzą następujące warunki

- 1. (R, +) jest grupą abelową
- **2.** (R, \cdot) jest monoidem przemiennym
- 3. $\forall x, y, z \in R$ $x \cdot (y + z) = x \cdot y + x \cdot z \land (x + y) \cdot z = x \cdot z + y \cdot z$ (rozdzielność mn. wzg. dod.)

Uwaga

Od tego momentu rozważamy jedynie pierścienie przemienne z jedynką. O ile nie jest powiedziane inaczej, gdy piszemy *pierścień* mamy na myśli *pierścień przemienny z jedynką*.

Pierścienie

Kluczowe pierścienie

Z naszej perspektywy najistotniejszymi pierścieniami będą

- Z pierścień liczb całkowitych.
- R[x] pierścień wielomianów jednej zmiennej o współczynnikach z pierścienia R.
- $R[x_1, ..., x_n]$ pierścienie wielomianów wielu zmiennych.

Ideały

Definicja

Niepusty podzbiór I pierścienia R nazywa się **ideałem**, jeżeli zachodzi

$$\forall a, b \in I \quad a + b \in I \tag{1}$$

$$\forall \mathbf{a} \in I \ \forall \mathbf{r} \in \mathbf{R} \quad \mathbf{r} \cdot \mathbf{a} \in I \tag{2}$$

Ideały

Definicja

Niepusty podzbiór *I* pierścienia *R* nazywa się **ideałem**, jeżeli zachodzi

$$\forall a, b \in I \quad a + b \in I \tag{1}$$

$$\forall a \in I \ \forall r \in R \quad r \cdot a \in I \tag{2}$$

Konwencja

Fakt, że I jest ideałem pierścienia R oznaczamy przez $I \triangleleft R$.

Uwaga

Jeżeli potraktujemy R jako grupę z dodawaniem, to I jest podgrupą normalną grupy R.

Przykłady Ideałów

Przykład

Ideałami są np.

- 1. Każdy pierścień R posiada ideał trywialny $\{\mathbf{0}\}$ oraz ideał niewłaściwy R.
- 2. W pierścieniu \mathbb{Z} ideałami są zbiory postaci $n\mathbb{Z} = \{n \cdot k \mid k \in \mathbb{Z}\}$ zbiory wielokrotności danej liczby.
- 3. W pierścieniu wielomianów R[x] weźmy ustalony wielomian f. Zbiór $I = \{fg \mid g \in R[x]\}$ jest ideałem w R[x].
- **4.** W pierścieniu wielomianów $R[x_1,\ldots,x_n]$ weźmy ustalone wielomiany f,g. Zbiór $I=\{a_1f+a_2g\mid a_1,a_2\in R[x_1,\ldots x_n]\}$ jest ideałem w pierścieniu $R[x_1,\ldots,x_n]$.

Ideały Ciała

Ideały

Twierdzenie

Niech R będzie pierścieniem, a I ideałem tego pierścienia. Zachodzi

$$I = R \Leftrightarrow \mathbf{1} \in I$$

Ideały

Twierdzenie

Niech R będzie pierścieniem, a I ideałem tego pierścienia. Zachodzi

$$I = R \Leftrightarrow \mathbf{1} \in I$$

Dowód.

(⇒). Oczywiste.

(⇐). Jeżeli $\mathbf{1} \in I$ to z definicji dla dowolnego $r \in R$ zachodzi $r \cdot \mathbf{1} \in I$, czyli $r \in I$.

Ideały

Twierdzenie

Niech R będzie pierścieniem, a I ideałem tego pierścienia. Zachodzi

$$I = R \Leftrightarrow \mathbf{1} \in I$$

Dowód.

(⇒). Oczywiste.

(\Leftarrow). Jeżeli **1** ∈ I to z definicji dla dowolnego $r \in R$ zachodzi

$$r \cdot \mathbf{1} \in I$$
, czyli $r \in I$.

Ideały Ciała

Ideały

Twierdzenie

Jeżeli K jest ciałem, to jedynymi jego ideałami są $\{\mathbf{0}\}$ oraz K.

Ideały Ciała

Ideały

Twierdzenie

Jeżeli K jest ciałem, to jedynymi jego ideałami są $\{\mathbf{0}\}$ oraz K.

Dowód.

Niech $I \triangleleft K$. Jeżeli $I = \{ \mathbf{0} \}$ to twierdzenie zachodzi. W innym przypadku istnieje $a \in K$ takie, że $a \neq \mathbf{0}, a \in I$. Z definicji dla dowolnego $r \in K$ mamy $r \cdot a \in K$. W szczególności dla $r = a^{-1}$ z czego wynika $a \cdot a^{-1} = 1 \in I$ zatem I = K.

Idealy Ciala

Ideały

Twierdzenie

Jeżeli K jest ciałem, to jedynymi jego ideałami są $\{\mathbf{0}\}$ oraz K.

Dowód.

Niech $I \triangleleft K$. Jeżeli $I = \{ \mathbf{0} \}$ to twierdzenie zachodzi. W innym przypadku istnieje $a \in K$ takie, że $a \neq \mathbf{0}, a \in I$. Z definicji dla dowolnego $r \in K$ mamy $r \cdot a \in K$. W szczególności dla $r = a^{-1}$ z czego wynika $a \cdot a^{-1} = 1 \in I$ zatem I = K.

Twierdzenie

Jeżeli jedynymi ideałami pierścienia R są $\{\mathbf{0}\}$ oraz całe R, to R jest ciałem.

Przecięcia Ideałów Ideały

Twierdzenie

Niech będzie dany pierścień R oraz niepusty podzbiór T. Jeśli $I_t \triangleleft R$ dla każdego $t \in T$ to $\bigcap_{t \in T} I_t \triangleleft R$ (przecięcie ideałów jest ideałem).

Idealy generowane

Ideały

Rozważmy pierścień R i element $a \in R$. Zdefiniujmy $I = \{r \cdot a \mid r \in R\}$. Zauważmy, że I jest ideałem R. Dodatkowo, zauważmy, że jest to najmnijeszy ideał zawierający a, to znaczy

$$\{r \cdot a \mid r \in R\} = \bigcap \{J \triangleleft R \mid a \in J\}.$$

Idealy generowane

Ideały

Rozważmy pierścień R i element $a \in R$. Zdefiniujmy $I = \{r \cdot a \mid r \in R\}$. Zauważmy, że I jest ideałem R. Dodatkowo, zauważmy, że jest to najmnijeszy ideał zawierający a, to znaczy

$$\{r \cdot a \mid r \in R\} = \bigcap \{J \triangleleft R \mid a \in J\}.$$

Możemy to uogólnić:

Definicja

Niech R będzie pierścieniem, natomiast $A=\{a_1,\ldots,a_s\}\subseteq R$ skończonym jego podzbiorem. Ideałem generowanym przez A nazywamy zbiór

$$\langle A \rangle = \langle a_1, \dots, a_s \rangle = \left\{ \sum r_i \cdot a_i \mid r_i \in R, a_i \in A \right\}$$

Ideały generowane

Ideały

Twierdzenie

Ideał generowany przez zbiór jest ideałem.

Twierdzenie

Niech R będzie pierścieniem oraz $A = \{a_1, \dots, a_s\} \subseteq R$. Zachodzi

$$\langle A \rangle = \bigcap \{ I \triangleleft R \mid A \subseteq I \}.$$

Ideały generowane

Twierdzenie

Ideał generowany przez zbiór jest ideałem.

Twierdzenie

Niech R będzie pierścieniem oraz $A = \{a_1, \dots, a_s\} \subseteq R$. Zachodzi

$$\langle A \rangle = \bigcap \{ I \triangleleft R \mid A \subseteq I \}.$$

Konwencja

Jeżeli $I = \langle A \rangle = \langle a_1, \dots, a_s \rangle \triangleleft R$, to A nazywamy *zbiorem* generatorów I, elementy a_1, \dots, a_s nazywamy *generatorami* I. Jeżeli da się zapisać ideał jako generowany przez skończony zbiór, to mówimy, że ideał jest *skończenie generowny*.

Ideały generowane

Uwaqa

Jeżeli podzbiór A pierścienia R jest nieskończony, wszystkie definicje i twierdzenia wciąż zachodzą, tylko dokładamy do definicji jeden warunek

$$\langle A \rangle = \left\{ \sum r_i \cdot a_i \mid r_i \in R, a_i \in A \right\}$$

gdzie *prawie wszystkie r_i* są równe 0.

Idealy generowane

Uwaga

Jeżeli podzbiór A pierścienia R jest nieskończony, wszystkie definicje i twierdzenia wciąż zachodzą, tylko dokładamy do definicji jeden warunek

$$\langle A \rangle = \left\{ \sum r_i \cdot a_i \mid r_i \in R, a_i \in A \right\}$$

gdzie prawie wszystkie r_i są równe 0.

Uwaga

Dowodzi się, że każdy ideał w \mathbb{Z} oraz $K[x_1, \ldots, x_n]$, gdzie K jest ciałem jest skończenie generowany.

Suma Algebraiczna Ideałów Ideały

Definicja

Niech R bedzie pierścieniem oraz $I, J \triangleleft R$. Sumę ideałów I, J definiujemy jako

$$I + J = \{ a + b \mid a \in I, b \in J \}.$$

Suma Algebraiczna Ideałów Ideały

Definicja

Niech R bedzie pierścieniem oraz $I, J \triangleleft R$. Sumę ideałów I, J definiujemy jako

$$I + J = \{ a + b \mid a \in I, b \in J \}.$$

Twierdzenie

Jeżeli $I, J \triangleleft R$, gdzie R jest pierścieniem, to $I + J \triangleleft R$ (suma ideałów jest ideałem).

Suma Algebraiczna Ideałów Ideały

Definicja

Niech R bedzie pierścieniem oraz $I, J \triangleleft R$. Sumę ideałów I, J definiujemy jako

$$I + J = \{ a + b \mid a \in I, b \in J \}.$$

Twierdzenie

Jeżeli $I, J \triangleleft R$, gdzie R jest pierścieniem, to $I + J \triangleleft R$ (suma ideałów jest ideałem).

Twierdzenie

Jeżeli
$$I = \langle a_1, \dots, a_s \rangle$$
 oraz $J = \langle b_1, \dots, b_r \rangle$ to

$$I+J=\langle a_1,\ldots a_s,b_1,\ldots,b_r\rangle.$$

Względna pierwszość Ideałów

Definicja

Mówimy, że dwa ideały I,J pierścienia R są **względnie pierwsze** jeśli zachodzi

$$I + J = R$$

lloczyn algebraiczny Ideałów

Definicja

Niech R będzie pierścieniem oraz I,J ideałami w tym pierścieniu. Iloczyn algebraiczny ideałów I,J definiujemy jako

$$IJ = \left\{ \sum a_i \cdot b_i \mid a_i \in I, b_i \in J \right\}.$$

gdzie prawie wszystkie $a_i \cdot b_i$ są zerami (są to skończone sumy).

lloczyn algebraiczny Ideałów

Definicja

Niech R będzie pierścieniem oraz I,J ideałami w tym pierścieniu. Iloczyn algebraiczny ideałów I,J definiujemy jako

$$IJ = \left\{ \sum a_i \cdot b_i \mid a_i \in I, b_i \in J \right\}.$$

gdzie prawie wszystkie $a_i \cdot b_i$ są zerami (są to skończone sumy).

Twierdzenie

Iloczyn algebraiczny ideałów jest ideałem.

Obserwacja

Jeśli $I_1, \ldots I_n$ to ideały pierścienia R, to zauważmy, że

$$I_1 \cdots I_n = \langle a_{i1} \cdots a_{in} \mid a_{ij} \in I_j \rangle$$

lloczyn algebraiczny ideałów

Twierdzenie

Jeśli $I_1, \dots I_n$ to ideały pierścienia R, to zachodzi

$$I_1 \cdots I_n \subseteq I_1 \cap \ldots \cap I_n$$

lloczyn algebraiczny ideałów

Twierdzenie

Jeśli $I_1, \dots I_n$ to ideały pierścienia R, to zachodzi

$$I_1 \cdots I_n \subseteq I_1 \cap \ldots \cap I_n$$

Twierdzenie

Niech R będzie pierścieniem oraz $I_1, \dots I_n \triangleleft R$ będą ideałami (parami) względnie pierwszymi w R. Zachodzi

$$I_1 \cap \ldots \cap I_n = I_1 \cdot \ldots \cdot I_n$$

Ideały

Definicja

Ideał *I* pierścienia *R* nazywamy **ideałem pierwszym**, jeżeli zachodzi

$$\forall a, b \in R \quad ab \in I \Rightarrow a \in I \lor b \in I.$$

Warstwy Ideału Pierścień Ilorazowy

Rozważmy pierścień R oraz jego ideał I.

Obserwacja

Ponieważ (I,+) jest podgrupą (normalną) addytywną pierścienia, konstrukcja warstw oraz grupy ilorazowej ze względu na dodawanie jest w pełni poprawna.

Konwencja

Zwyczajowo warstwę elementu $a \in R$ względem ideału I oznaczamy jako a + I.

Mnożenie Warstw Pierścień Ilorazowy

Twierdzenie

Jeśli I jest ideałem pierścienia R to wzór

$$(a+I)\odot(b+I)=ab+I$$

określa działanie w zbiorze warstw względem I nazywane mnożeniem warstw. Zbiór warstw z dodawaniem warstw i mnożeniem warstw tworzy pierścień.

Pierścień Ilorazowy Pierścień Ilorazowy

Definicja

Jeżeli I jest ideałem pierścienia R to pierścień warstw z dodawaniem warstw i mnożeniem warstw nazywamy **Pierścieniem Ilorazowym** R względem I i oznaczamy przez R/I.

Pierścień Ilorazowy Pierścień Ilorazowy

Definicja

Jeżeli I jest ideałem pierścienia R to pierścień warstw z dodawaniem warstw i mnożeniem warstw nazywamy **Pierścieniem Ilorazowym** R względem I i oznaczamy przez R/I.

Konwencja

Warstwe a+I nazywamy klasą reszt a albo klasą modulo a albo klasą abstrakcji a.

R/I czasem nazywane jest też pierścieniem reszt modulo I. Działania w pierścieniu ilorazowym R/I oznacza się zwykle tak samo jak działania w pierścieniu R.

Homomorfizmy pierścieni Jądro Homomorfizmu

Twierdzenie

Niech R,R' będą pierścieniami. Jądro homomorfizmu $\varphi:R\to R'$ jest ideałem pierścienia R.

Homomorfizmy pierścieni Jądro Homomorfizmu

Twierdzenie

Niech R,R' będą pierścieniami. Jądro homomorfizmu $\varphi:R\to R'$ jest ideałem pierścienia R.

Twierdzenie

Niech R, R' będą pierścieniami, $\varphi: R \to R'$ homomorfizmem tych pierścieni oraz $J \triangleleft R'$. Zachodzi $\varphi^{-1}(J) \triangleleft R$ (przeciwobraz ideału jest ideałem).

Homomorfizmy pierścieni Jądro Homomorfizmu

Twierdzenie

Niech R,R' będą pierścieniami. Jądro homomorfizmu $\varphi:R\to R'$ jest ideałem pierścienia R.

Twierdzenie

Niech R,R' będą pierścieniami, $\varphi:R\to R'$ homomorfizmem tych pierścieni oraz $J\triangleleft R'$. Zachodzi $\varphi^{-1}(J)\triangleleft R$ (przeciwobraz ideału jest ideałem).

Uwaqa

Obrazem homomorficznym ideału nie zawsze jest ideał.

Charakterystyka jądra Jądro Homomorfizmu

Twierdzenie

Jeśli I jest ideałem pierścienia R to odwzorowanie $\nu:R\to R/I$ zadane wzorem $\nu(a)=a+I$ jest homomorfizmem pierścieni R,R/I oraz $\ker\nu=I$.

Charakterystyka jądra Jądro Homomorfizmu

Twierdzenie

Jeśli I jest ideałem pierścienia R to odwzorowanie $\nu:R\to R/I$ zadane wzorem $\nu(a)=a+I$ jest homomorfizmem pierścieni R,R/I oraz ker $\nu=I$.

Konwencja

Homomorfizm $\nu: \mathbf{R} \to \mathbf{R}/I$ nazywamy homomorfizmem kanonicznym.

Charakterystyka jądra Jądro Homomorfizmu

Twierdzenie

Jeśli I jest ideałem pierścienia R to odwzorowanie $\nu: R \to R/I$ zadane wzorem $\nu(a) = a + I$ jest homomorfizmem pierścieni R, R/I oraz ker $\nu = I$.

Konwencja

Homomorfizm $\nu: R \to R/I$ nazywamy homomorfizmem kanonicznym.

Wniosek

Ideały danego pierścienia i tylko one są jądrami homomorfizmów pierścieni.

Obraz homomorficzny pierścienia Jądro Homomorfizmu

Twierdzenie

Jeśli φ jest homomorfizmem pierścienia R na pierścień R', to istnieje izomorfizm $\psi:R'\to R/\ker \varphi$, dla którego przemienny jest diagram

gdzie ν to homomorfizm kanoniczny.

Obraz homomorficzny pierścienia Jądro Homomorfizmu

Twierdzenie

Jeśli φ jest homomorfizmem pierścienia R na pierścień R', to istnieje izomorfizm $\psi:R'\to R/\ker\varphi$, dla którego przemienny jest diagram

gdzie ν to homomorfizm kanoniczny.

Twierdzenie

Jedynymi homomorfizmami ciała na ciało są izomorfizmy.

Definicja

Relacja równoważności \sim określona na pierścieniu R nazywa się **kongruencją**, jeżeli

$$[(a \sim b) \land (c \sim d)] \Rightarrow [(a + c \sim b + d) \land (ac \sim bd)].$$

Kongruencje, to relacje równoważności, ktore można dodawać i mnożyc stronami.

Przystawanie modulo Ideał Kongruencje Pierścieni

Twierdzenie

Niech ${\cal I}$ będzie ideałem pierścienia ${\cal R}$. Relacja przystawania elementów modulo ${\cal I}$

$$a \equiv b (I) \Leftrightarrow a - b \in I$$

jest kongruencją w pierścieniu R.

Przystawanie modulo Ideał Kongruencje Pierścieni

Twierdzenie

Niech I będzie ideałem pierścienia R. Relacja przystawania elementów modulo I

$$a \equiv b (I) \Leftrightarrow a - b \in I$$

jest kongruencja w pierścieniu R.

Obserwacja

Kongruencje pierścieni można odejmować stronami.

Charakterystyka Kongruencji Kongruencje Pierścieni

Twierdzenie

Jeśli relacja równoważności \sim określona na pierścieniu R jest kongruencją, to klasa abstrakcji I zbioru ilorazowego R/\sim która zawiera $\mathbf{0}$ pierścienia R jest ideałem pierścienia R oraz $R/\sim=R/I$.

Kongruencje Pierścieni

- [1] Bolesław Gleichgewicht. Algebra: podręcznik dla kierunków nauczycielskich studiów matematycznych. PWN, 1976.
- [2] Łukasz Kubat. Algebra Komutatywna Notatki do wykładów prof. Kamila Ruska.

Pytania, wątpliwości, uwagi?