Quantum Computers: What, Why, and When?

Moshe Goldstein

Some recent news

Big companies

And governments

Outline

- Classical computation
 - Quantum computation
 - The idea
 - Power & limitations
 - Architectures

Classical Computers

As we know them

- In computer science
 - Turing machine
 - boolean circuit
 - and others ...

Church-Turing: all equivalent (and as efficient)

Computational Problems

- Uncomputable:
 - halting problem
 - some domino snakes
 - spectral gap ...

• Computable:

		N = 10	N=20	N = 100	N = 101
Polynomial (P)	N	10	20	100	101
	N^2	100	400	10000	10201
Exponential (EXP)	2 ^N	1024	$\approx 10^6$	$\approx 10^{30}$	$\approx 2 \cdot 10^{30}$

P vs NP

- Polynomial problems (P):
 - searching in a list
 - sorting
 - shortest path ...

NP: solutions can be checked easily

– P vs. NP (\$1,000,000 question!)

- NP complete
 - Traveling salesman
 - Knapsack

See also:

Douglas Hofstadter, *Gödel, Escher, Bach: an Eternal Golden Braid*דוד הראל, *המחשב איננו כל יכול*

Computational Physics?

- Classical: typically polynomial (P)
 - mechanics
 - fluid dynamics
 - electromagnetism
 - general relativity

- chaos (weather …)
- glasses (NP)

Outline

- Classical computation
- Quantum computation
 - The idea
 - Power & limitations
 - Architectures

The Quantum World (I)

Everything is both particle and wave

- discrete energy levels

interference

[Heiblum]

The Quantum World (II)

- Waves of probability!
 - measurement defines the quantity

– "spooky action at a distance"

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle \right)$$

Computational Quantum Physics

- Many particle systems
 - particle physics

 2^N

terms!

Exponential state space!

Quantum Computing?

Feynman (1981; see also 1959):

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

- 4. QUANTUM COMPUTERS—UNIVERSAL QUANTUM SIMULATORS
 - quantum systems find their states
 - use quantum system for computation!

$$|\Psi\rangle = c_{00...000}|00\cdots000\rangle + c_{00...001}|00\cdots001\rangle + c_{00...010}|00\cdots010\rangle + \vdots$$
 \vdots
 \vdots
 \vdots
 \vdots

2^N terms!

See also:

Benioff (1980); Manin (1980)

Quantum Computer

- Quantum circuit:
 - qubits

quantum gates

 measurement (probabilistic, bounded error: BPP vs. BQP)

Outline

- Classical computation
- Quantum computation
 - The idea
 - Power & limitations
 - Architectures

What Can It Do?

Uncomputable problems? No!

- Classically computable problems? Yes!
 - Nontrivial: QC is reversible
 - Nontrivial: superposition!

Solve NP?

Can check all solutions at once!

- But: measurement success probability is 1/2^N
 - no improvement!
 - related: Holevo bound

Toy Example: Deutsch

Problem:

- Input: 1-bit function f: {0,1} → {0,1}
- Output: $f(0) \oplus f(1)$ (equal or different)

Solution:

- Classical: 2 calls
- Quantum: 1 call!

Toy Example: Details

Unitary implementation of f:

$$|x,y\rangle \rightarrow |x,y \oplus f(x)\rangle$$

$$\begin{array}{c|c}
 & x & x \\
\hline
 & U_f & \\
 & |0\rangle & y & y \oplus f(x)
\end{array}$$

$$|\psi\rangle = \frac{|\mathbf{0}, f(\mathbf{0})\rangle + |\mathbf{1}, f(\mathbf{1})\rangle}{\sqrt{2}}$$

Deutsch's algorithm:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

Quantum Search

- Grover's algorithm (1996)
 - search length N list in \sqrt{N} time!

Grover diffusion operator

Repeat
$$O(\sqrt{N})$$
 times

- Solve NP in time $2^{N/2}$
 - Probably maximal improvement

Shor's Algorithm (1994)

- Factorize integer into primes in polynomial time
 - Best classical algorithm: subexponential

(but: not NP-complete)

$$21 = 3 \cdot 7$$

- Break public key encryption (RSA, ...)!
 - use quantum encryption

or classical post-quantum

Materials Science

Variational solvers

20 qubits

[Blatt-Roos-Zoller, 2018]

- Full solution:
 - Classical: NP complete (2D)
 - Quantum: Quantum Merlin-Arthur (QMA) complete (1D)

Quantum Machine Learning

- Classical vs. quantum data
- Classical vs. quantum processing

Example of caveats:
 Quantum recommender

See also:

Scott Aaronson, Read the Fine Print

Quantum Complexity

- Best indications:
 - QC cannot solve NP complete
 - QC can solve problems outside NP (or P-hierarchy)

Outline

- Classical computation
- Quantum computation
 - The idea
 - Power & limitations
 - Architectures

How to Build a QC?

- DiVincenzo criteria (1996)
 - Scalable well-defined qubits
 - Initialization
 - Individual measurement
 - Universal gates
 - Long coherence times

Spin QC

NMR

NV centers in diamond

Good: coherence (room temperature!) = =

Bad: 2-qubit gates, scalability

Linear Optics QC

- Good: coherence, scalability
- Bad: 2-qubit gates

Trapped Ions

- Cold ($< 1 \mu K$) ions in electromagntic trap
 - 1-qubit gates: optical
 - 2-qubit gates: via trap modes

- Scaling:
 - move ions
 - via photons
- Good: coherence
- Bad: scalability

Superconducting

- Nonlinear quantum circuits
 - Josephson effect

Source: MIT, Qubit Counter, *Rigetti quantum computer expected by late 2019.

- Good: scalability (>50 already!)
 - D-wave: 2000-qubit annealer
- Bad: uniformity, coherence

CBINSIGHTS

Quantum Error Correction

- Classical error correction: 1 → 0
 - 111 101 111
- Quantum error correction:
 - cannot measure !?
 - phase errors !?

 $|111\rangle \triangleright -|111\rangle$

- Still possible!
 - Example (Shor): encode $|1\rangle$, $|0\rangle$ in 9 qubits $(|111\rangle \pm |000\rangle) \otimes (|111\rangle \pm |000\rangle) \otimes (|111\rangle \pm |000\rangle)$
 - Error threshold

Topological QC (I)

bosons vs. fermions:

$$\psi_F(\mathbf{r}_1,\mathbf{r}_2) \to -\psi_F(\mathbf{r}_1,\mathbf{r}_2)$$

fractional excitations (fractional quantum Hall...):

$$\psi_{e^*}(\mathbf{r}_1, \mathbf{r}_2) \to e^{2i\theta^*} \psi_{e^*}(\mathbf{r}_1, \mathbf{r}_2)$$
$$\theta^* = 2\pi (e^*/e)$$

$$\psi_{e^*}(\mathbf{r}_1, \mathbf{r}_2) \to e^{i\theta^*} \psi_{e^*}(\mathbf{r}_1, \mathbf{r}_2)$$

fractional statistics (anyons)!

Topological QC (II)

If state of two anyons is degenerate:

$$\psi_{e^*,\mu}(\mathbf{r}_1,\mathbf{r}_2) \to \sum U_{\mu\nu} e^{i\theta^*} \psi_{e^*,\nu}(\mathbf{r}_1,\mathbf{r}_2)$$

- non-abelian statistics!
- topological quantum computation:

The Next Steps?

- Noisy Intermediate Scale Quantum (NISQ):
 - Quantum supremacy: beyond best classical computer

Thank You!