# SINGLE BUFFER GATE

#### ■ DESCRIPTION

The **U74LVC1G34** is a single buffer, it provides the function Y = A. This device has power-down protective circuit, preventing device destruction when it is powered down.

#### **■** FEATURES

- \* Operate From 1.65V to 5.5V
- \* Inputs Accept Voltages to 5.5V
- \* I<sub>OFF</sub> Supports Partial-Power-Down Mode
- \* Low Power Dissipation
- \* Max  $t_{PD}$  of 3.5 ns at 3.3V



#### ORDERING INFORMATION

| Ordering Number   | Package | Packing   |
|-------------------|---------|-----------|
| U74LVC1G34G-AF5-R | SOT-25  | Tape Reel |
| U74LVC1G34G-AL5-R | SOT-353 | Tape Reel |



#### ■ MARKING



### ■ PIN CONFIGURATION



### ■ FUNCTION TABLE

| INPUT(A) | OUTPUT(Y) |
|----------|-----------|
| Н        | Н         |
| L        | L         |

Note: H: HIGH voltage level; L: LOW voltage level.

## ■ LOGIC DIAGRAM (Positive Logic)



Logic Symbol

IEC Logic Symbol

### ■ ABSOLUTE MAXIMUM RATING (T<sub>A</sub> =25°C, unless otherwise specified)

|                                                                    | PARAMETER   | SYMBOL           | RATINGS                     | UNIT |
|--------------------------------------------------------------------|-------------|------------------|-----------------------------|------|
| Supply Voltage                                                     |             | V <sub>CC</sub>  | -0.5 ~ +6.5                 | V    |
| Input Voltage                                                      |             | V <sub>IN</sub>  | -0.5 ~ +6.5                 | V    |
| Output in the high or low state                                    |             |                  | -0.5 ~ V <sub>CC</sub> +0.5 | V    |
| Output Voltage Output in the high-impedance or power-off state     |             | V <sub>OUT</sub> | -0.5 ~ +6.5                 | V    |
| V <sub>CC</sub> or GND Curr                                        | ent         | I <sub>CC</sub>  | ±100                        | mA   |
| Continuous Output Current (V <sub>OUT</sub> =0 to V <sub>CC)</sub> |             | I <sub>OUT</sub> | ±50                         | mA   |
| Input Clamp Current (V <sub>IN</sub> <0)                           |             | I <sub>IK</sub>  | -50                         | mA   |
| Output Clamp Current (V <sub>OUT</sub> <0)                         |             | I <sub>OK</sub>  | -50                         | mA   |
| Operating Temperature                                              |             | T <sub>OPR</sub> | -40 ~ +85                   | °C   |
| Storage Tempera                                                    | ature Range | T <sub>STG</sub> | -65 ~ +150                  | °C   |

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

### ■ THERMAL DATA

| PARAMETER            |         | SYMBOL          | RATINGS | UNIT  |  |
|----------------------|---------|-----------------|---------|-------|--|
|                      | SOT-25  | 0               | 230     | 90 AA |  |
| Junctions to Ambient | SOT-353 | θ <sub>JA</sub> | 350     | °C/W  |  |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER                          | SYMBOL                          | TEST CONDITIONS                        | MIN  | TYP | MAX      | UNIT |
|------------------------------------|---------------------------------|----------------------------------------|------|-----|----------|------|
| Cumply Voltage                     |                                 | Operating                              | 1.65 |     | 5.5      | V    |
| Supply Voltage                     | V <sub>CC</sub>                 | Data retention only                    | 1.5  |     |          | V    |
| Input Voltage                      | $V_{IN}$                        |                                        | 0    |     | 5.5      | V    |
| Output Voltage                     | $V_{OUT}$                       | High or low state                      | 0    |     | $V_{CC}$ | ٧    |
|                                    |                                 | V <sub>CC</sub> =1.65V                 |      |     | -4       | mA   |
|                                    |                                 | V <sub>CC</sub> =2.3V                  |      |     | -8       | mA   |
| High-Level Output Current          | I <sub>OH</sub>                 | V <sub>CC</sub> =3V                    |      |     | -16      | mA   |
|                                    |                                 | V <sub>CC</sub> =3V                    |      |     | -24      | mA   |
|                                    |                                 | V <sub>CC</sub> =4.5V                  |      |     | -32      | mA   |
|                                    | I <sub>OL</sub>                 | V <sub>CC</sub> =1.65V                 |      |     | 4        | mA   |
|                                    |                                 | V <sub>CC</sub> =2.3V                  |      |     | 8        | mA   |
| Low-Level Output Current           |                                 | V <sub>CC</sub> =3V                    |      |     | 16       | mA   |
|                                    |                                 | V <sub>CC</sub> =3V                    |      |     | 24       | mA   |
|                                    |                                 | V <sub>CC</sub> =4.5V                  |      |     | 32       | mA   |
|                                    | t <sub>R</sub> / t <sub>F</sub> | V <sub>CC</sub> =1.8V±0.15V, 2.5V±0.2V |      |     | 20       | ns/V |
| Input Transition Rise or Fall Rate |                                 | V <sub>CC</sub> =3.3V±0.3V             |      |     | 10       | ns/V |
|                                    |                                 | V <sub>CC</sub> =5V±0.5V               |      |     | 10       | ns/V |

### ■ ELECTRICAL CHARACTERISTICS (T<sub>A</sub> =25°C, unless otherwise specified)

| PARAMETER                   | SYMBOL           | TEST                                                           | CONDITIONS                   | MIN                  | TYP | MAX                  | UNIT |
|-----------------------------|------------------|----------------------------------------------------------------|------------------------------|----------------------|-----|----------------------|------|
|                             |                  | V <sub>CC</sub> =1.65V ~ 1.95V                                 |                              | 0.65*V <sub>CC</sub> |     |                      | V    |
| High Loyal Input Valtage    | V                | V <sub>CC</sub> =2.3V ~ 2                                      | V <sub>CC</sub> =2.3V ~ 2.7V |                      |     |                      | V    |
| High-Level Input Voltage    | $V_{IH}$         | $V_{CC} = 3V \sim 3.6$                                         | V                            | 2                    |     |                      | V    |
|                             |                  | V <sub>CC</sub> =4.5V ~ 5                                      | .5V                          | 0.7*V <sub>CC</sub>  |     |                      | V    |
|                             |                  | V <sub>CC</sub> =1.65V ~                                       | 1.95V                        |                      |     | 0.35*V <sub>CC</sub> | V    |
| Low Lovel Input Voltage     | $V_{IL}$         | V <sub>CC</sub> =2.3V ~ 2                                      | .7V                          |                      |     | 0.7                  | V    |
| Low-Level Input Voltage     | VIL              | $V_{CC} = 3V \sim 3.6$                                         | V                            |                      |     | 0.8                  | V    |
|                             |                  | V <sub>CC</sub> =4.5V ~ 5                                      | .5V                          |                      |     | 0.3*V <sub>CC</sub>  | V    |
|                             |                  | I <sub>OH</sub> =-100μA                                        | V <sub>CC</sub> =1.65 ~ 5.5V | V <sub>CC</sub> -0.1 |     |                      | V    |
|                             |                  | I <sub>OH</sub> =-4mA                                          | V <sub>CC</sub> =1.65V       | 1.2                  |     |                      | V    |
| High-Level Output Voltage   | \/               | I <sub>OH</sub> =-8mA                                          | V <sub>CC</sub> =2.3V        | 1.9                  |     |                      | V    |
|                             | V <sub>OH</sub>  | I <sub>OH</sub> =-16mA                                         | V <sub>CC</sub> =3.0V        | 2.4                  |     |                      | V    |
|                             |                  | I <sub>OH</sub> =-24mA                                         | V <sub>CC</sub> =3.0V        | 2.3                  |     |                      | V    |
|                             |                  | I <sub>OH</sub> =-32mA                                         | V <sub>CC</sub> =4.5V        | 3.8                  |     |                      | V    |
|                             | V <sub>OL</sub>  | I <sub>OL</sub> =100μA                                         | V <sub>CC</sub> =1.65 ~ 5.5V |                      |     | 0.1                  | V    |
|                             |                  | I <sub>OL</sub> =4mA                                           | V <sub>CC</sub> =1.65V       |                      |     | 0.45                 | V    |
| Low-Level Output Voltage    |                  | I <sub>OL</sub> =8mA                                           | V <sub>CC</sub> =2.3V        |                      |     | 0.3                  | V    |
| Low-Level Output Voltage    |                  | I <sub>OL</sub> =16mA                                          | V <sub>CC</sub> =3.0V        |                      |     | 0.4                  | V    |
|                             |                  | I <sub>OL</sub> =24mA                                          | V <sub>CC</sub> =3.0V        |                      |     | 0.55                 | V    |
|                             | l                | I <sub>OL</sub> =32mA                                          | V <sub>CC</sub> =4.5V        |                      |     | 0.55                 | V    |
| Input Leakage Current       | $I_{I(LEAK)}$    | $V_{IN}$ =5.5V or GND, $V_{CC}$ =0 ~ 5.5V                      |                              |                      |     | ±1                   | μA   |
| Power OFF Leakage Current   | I <sub>OFF</sub> | V <sub>IN</sub> or V <sub>OUT</sub> =5.5V, V <sub>CC</sub> =0V |                              |                      |     | ±10                  | μΑ   |
| Quiescent Supply Current    | ΙQ               | V <sub>IN</sub> =5.5V or GND, I <sub>OUT</sub> =0              |                              |                      |     | 10                   | μA   |
|                             | iQ               | V <sub>CC</sub> =1.65 ~ 5.5V                                   |                              |                      |     | 10                   | μΛ   |
| Additional Quiescent Supply | $\Delta I_Q$     | $V_{CC}$ =3 ~ 5.5V, One input at $V_{CC}$ -0.6V,               |                              |                      |     | 500                  | μA   |
| Current Per Input Pin       |                  | Other inputs a                                                 |                              |                      |     | 500                  |      |
| Input Capacitance           | $C_{IN}$         | $V_{CC}$ =3.3V, $V_{IN}$                                       | =V <sub>CC</sub> or GND      |                      | 3.5 |                      | pF   |

## ■ SWITCHING CHARACTERISTICS (T<sub>A</sub>=25°C)

| PARAMETER                                     | SYMBOL                              | TEST CONDITIONS                         |                       | MIN | TYP | MAX | UNIT |
|-----------------------------------------------|-------------------------------------|-----------------------------------------|-----------------------|-----|-----|-----|------|
|                                               |                                     | V <sub>CC</sub> =1.8±0.15V              |                       | 2   |     | 9.9 | ns   |
| Propagation delay from input                  | t <sub>PLH</sub> / t <sub>PHL</sub> | V <sub>CC</sub> =2.5±0.2V               | C <sub>L</sub> =15pF, | 1.5 |     | 6   | ns   |
| (A) to output(Y)                              |                                     | V <sub>CC</sub> =3.3±0.3V               | $R_L=1M\Omega$        | 1   |     | 3.5 | ns   |
|                                               |                                     | V <sub>CC</sub> =5±0.5V                 |                       | 1   |     | 2.9 | ns   |
|                                               |                                     | $V_{CC}$ =1.8±0.15V, $R_L$ =1K $\Omega$ | 0 00-5                | 3.2 |     | 8.6 | ns   |
| Propagation delay from input (A) to output(Y) |                                     | $V_{CC}$ =2.5±0.2V, $R_L$ =500 $\Omega$ | C <sub>L</sub> =30pF  | 1.5 |     | 4.4 | ns   |
|                                               | t <sub>PLH</sub> / t <sub>PHL</sub> | V <sub>CC</sub> =3.3±0.3V               | C <sub>L</sub> =50pF, | 1.5 |     | 4.1 | ns   |
|                                               |                                     | V <sub>CC</sub> =5±0.5V                 | R <sub>L</sub> =500Ω  | 1   |     | 3.2 | ns   |

# ■ OPERATING CHARACTERISTICS (T<sub>A</sub>=25°C)

| PARAMETER                     | SYMBOL | TEST CONDITIONS       |                     | MIN | TYP | MAX | UNIT |
|-------------------------------|--------|-----------------------|---------------------|-----|-----|-----|------|
| Power Dissipation Capacitance |        | V <sub>CC</sub> =1.8V |                     |     | 16  |     | pF   |
|                               | $C_PD$ | V <sub>CC</sub> =2.5V | £ 40MII             |     | 16  |     | pF   |
|                               |        | V <sub>CC</sub> =3.3V | f=10MH <sub>Z</sub> |     | 16  |     | pF   |
|                               |        |                       | V <sub>CC</sub> =5V |     |     | 18  |      |

### ■ TEST CIRCUIT AND WAVEFORMS



**TEST CIRCUIT** 

|                 | INP             | UTS                             | V                  | 0     | ם     |
|-----------------|-----------------|---------------------------------|--------------------|-------|-------|
| V <sub>CC</sub> | $V_{IN}$        | t <sub>R</sub> , t <sub>F</sub> | $V_{M}$            | $C_L$ | $R_L$ |
| 1.8V±0.15V      | V <sub>CC</sub> | ≤2ns                            | V <sub>CC</sub> /2 | 15pF  | 1ΜΩ   |
| 2.5V±0.2V       | V <sub>CC</sub> | ≤2ns                            | V <sub>CC</sub> /2 | 15pF  | 1ΜΩ   |
| 3.3V±0.3V       | 3V              | ≤2.5ns                          | 1.5V               | 15pF  | 1ΜΩ   |
| 5V±0.5V         | $V_{CC}$        | ≤2.5ns                          | V <sub>CC</sub> /2 | 15pF  | 1ΜΩ   |



PROPAGATION DELAY TIMES

Note:  $C_L$  includes probe and jig capacitance.

All input pulses are supplied by generators having the following characteristics:  $P_{RR} \le 10 MHz$ ,  $Z_0 = 50 \Omega$ .

#### TEST CIRCUIT AND WAVEFORMS(Cont.)



**TEST CIRCUIT** 

|                 | INP             | INPUTS                          |                    |                | Б     |
|-----------------|-----------------|---------------------------------|--------------------|----------------|-------|
| V <sub>cc</sub> | V <sub>IN</sub> | t <sub>R</sub> , t <sub>F</sub> | $V_{M}$            | C <sub>L</sub> | $R_L$ |
| 1.8V±0.15V      | V <sub>CC</sub> | ≤2ns                            | V <sub>CC</sub> /2 | 30pF           | 1ΚΩ   |
| 2.5V±0.2V       | V <sub>CC</sub> | ≤2ns                            | V <sub>CC</sub> /2 | 30pF           | 500Ω  |
| 3.3V±0.3V       | 3V              | ≤2.5ns                          | 1.5V               | 50pF           | 500Ω  |
| 5V±0.5V         | Vcc             | ≤2.5ns                          | Vcc/2              | 50pF           | 500Ω  |



PROPAGATION DELAY TIMES

Note: C<sub>L</sub> includes probe and jig capacitance.

All input pulses are supplied by generators having the following characteristics:  $P_{RR} \le 10 \text{MHz}$ ,  $Z_0 = 50 \Omega$ .

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.