Linear Algebra Done Right 6C

1. 设 $v_1, \dots, v_m \in V$.试证明

$$\{v_1, \cdots, v_m\}^{\perp} = (\operatorname{span}(v_1, \cdots, v_m))^{\perp}$$

Proof.

由于 $\{v_1, \cdots, v_m\} \subseteq \operatorname{span}(v_1, \cdots, v_m)$,于是根据正交补的性质有 $(\operatorname{span}(v_1, \cdots, v_m))^{\perp} \subseteq \{v_1, \cdots, v_m\}^{\perp}$. 对于任意 $u \in \{v_1, \cdots, v_m\}^{\perp}$,都满足 $\langle u, v_k \rangle = 0$ 对任意 $k \in \{1, \cdots, m\}$ 成立.

于是对于任意 $v := a_1v_1 + \cdots + a_mv_m \in \operatorname{span}(v_1, \cdots, v_m)$ 有

$$\langle u, v \rangle = \left\langle u, \sum_{k=1}^{m} a_k v_k \right\rangle = \sum_{k=1}^{m} a_k \left\langle u, v_k \right\rangle = 0$$

从而 $u \in (\operatorname{span}(v_1, \dots, v_m))^{\perp}$,因而 $\{v_1, \dots, v_m\} \subseteq (\operatorname{span}(v_1, \dots, v_m))^{\perp}$. 综上可知 $\{v_1, \dots, v_m\}^{\perp} = (\operatorname{span}(v_1, \dots, v_m))^{\perp}$.

2. 设U是V的子空间,且有一组基 u_1, \dots, u_m .向量组 $u_1, \dots, u_m, v_1, \dots, v_n$ 是V的一组基.对上述V的基运用Gram-Schmidt过程得到V的规范正交基 $e_1, \dots, e_m, f_1, \dots, f_n$.试证明: e_1, \dots, e_m 是U的规范正交基.

Proof.

对 u_1, \dots, u_m 应用Gram-Schmidt过程得到的 e_1, \dots, e_m 自然是U的规范正交基.

对于任意 $k \in \{1, \dots, n\}$ 和任意 $j \in \{1, \dots, m\}$,都有 $\langle f_k, e_j \rangle = 0$,于是 $f_k \in U^{\perp}$.

又因为 $U \oplus U^{\perp} = V$,于是 $\dim U^{\perp} = \dim V - \dim U = n$,因而 f_1, \dots, f_n 是 U^{\perp} 的规范正交基.

3. 设U是 \mathbb{R}^4 的子空间,其定义为