

Parse 1: monte uma lista com es símbeles em ordem decrescente de probabilidade Essa lista é associada à raiz da árvore.

52 0,2

53 0,2

Su 0,1

S5 0,1

Parso 2: Divida a lista em duas sublistas de tal maneira que as semas das probabilidades de cada uma delas sija mínima, isto é, a soma de uma delas dever ser aproxeimadamente igual à soma da outra.

S ₁ 0,4	51 0,4
52 0,2	Se 0,2
53 0,2	S 3 0,2
S4 0,1	54 0,1
S5 0,1	S5 0,1
OPCÃO 1	OPCÃO 2

Parso3. Atribria o let "0" como 1º dígito das palavas código associadas as mensagens na 1ª sublista e atribria o let "1" a segunda sublista.

51	0,4	0 }	Sublista 1
Se	0,2		
S ₃	0,2	1	Sublista 2
54	0,1	1	
S 5	0, 1		

Parso 4: Repetir Passo 2 e Passo 3 raté que as sublistas sejam unitárias, ou seja, cada sublista carreque uma unica mensagem (simbolo).

. Sublista 1 não pode mais ser dividida.

11100		
Sı	0,4 0	J Sublista 1
Company of the	0,2	O J Sublista 2
53	0,21	
Sy	0,1	1 (Sublista 3
SS	0,1	

só a Sublista dividida	3 prode	, ser
S1 0,4 0		
52 0,2	0	
153 0,2 1	1	0
Sy 0,1	-1-	1 Sublista 4
S5 0,1		17

* ldloule da Epiciênoia (
$$\eta$$
):

H(6) = 0,4 × log₂ $\frac{1}{0,4}$ + 2× $\begin{bmatrix} 0,2 \times log' & 1 \\ 2 & 0,2 \end{bmatrix}$ + 2× $\begin{bmatrix} 0,1 \times log'_2 & 1 \\ 0,1 \end{bmatrix}$ = 2,12

L = 1 × 0,4 + 2 × 0,2 + 3 × 0,2 + 4 × 0,1 + 4 × 0,1 = 2,2

loogo: $\eta = \frac{H(6)}{L} = \frac{2,12}{2,2} = 0,9636 \times 100\% = 96,36\%$

Vamos verificar se com a OPCÃO 2 a eficiência do código mudará:

. Partindo do Passo 2:

, Dividindo as Sublistas:

S1 0,4		0	
52 0,2		1	
53 0,2		0	
Sy 0,1	1	1	Sublista 4
SS 0,1		11.	

1. Quiridindo Sublista 7.						
1		0,4	1	0 1	-p 19!	
1		0,2	-11 -	1	-0 42	
5 3	3	0,2			-P 19	
154		0,1	1	1	0	1004
Ss	-	0,1		1	1	7-9 75
Roma Lodas as sublistas são						

· Como todas as sublistas são unitárias, temos:

. Cábalo da Epiciêna:

$$L = 2 \times 0,4 + 2 \times 0,2 + 2 \times 0,2 + 3 \times 0,1 + 3 \times 0,1 = 2,2$$

Roogo:
$$\eta = \frac{2,12}{2,2} = 96,36\%$$

Portanto:

$$\star$$
 OPCAO1:
 v_1 O $L=2,2$
 v_2 10 $H(s)=2,12$
 v_3 110
 v_4 1110 $\eta=96,36$?
 v_5 1111

* OPCÃO 2:

$$v_1$$
 00 $L = 2,2$
 v_2 01 $\eta = 96,36\%$
 v_3 10 v_4 110
 v_5 111