Лабораторная работа 4.2. Исследование энергетического спектра β -частиц.

Дмитрий Норкин и Николай Кузнецов $04/10/2018 \label{eq:condition}$

Цель работы

Исследование энергетического спектра β -частиц при распаде ядер $^{137}\mathrm{Cs}$ и определение их максимальной энергии с помощью магнитного спектрометра.

Ход работы

Будем снимать зависимость количества зарегистрированных частиц от тока

I, A	N, c^{-1}	$N-N_i$	$p, \ KeV/c$	$E, \ KeV$	FC
0.2	2.569	0.879	65.2	4.1	0.0144
0.4	2.499	0.809	130.5	16.4	0.0069
0.6	2.5789	0.889	195.8	36.2	0.0048
0.8	2.929	1.239	261.0	62.8	0.0043
1.0	5.218	3.528	326.2	95.2	0.0058
1.2	7.368	5.678	391.5	132.7	0.0061
1.4	9.057	7.367	456.7	174.3	0.0059
1.6	8.757	7.067	522.0	219.5	0.0051
1.8	9.037	7.347	587.2	267.4	0.0046
2.0	8.278	6.588	652.5	317.8	0.0039
2.15	7.398	5.708	701.4	356.8	0.0034
2.3	6.438	4.748	750.4	396.9	0.0029
2.45	4.889	3.199	799.3	437.7	0.0022
2.6	4.019	2.329	848.2	479.2	0.0018
2.75	3.519	1.829	897.2	521.5	0.0015
2.9	4.019	2.329	946.1	564.3	0.0016
3.05	5.978	4.288	995.1	607.6	0.0021
3.1	6.468	4.778	1011.4	622.2	0.0022
3.15	6.418	4.728	1027.7	636.7	0.0021
3.2	5.978	4.288	1044.0	651.3	0.002
3.3	2.869	1.179	1076.6	680.7	0.001

Таблица 1: Данные, полученные в ходе эксперимента

Рис. 1: Зависимость N(p)

Рис. 2: Зависимость $p \cdot N(p)$

Рис. 3: Линейная часть графика Кюри

В теории ширина конверсионного пика должна быть равна нулю, поэтому реальная ширина определяется чувствительностью прибора. Поэтому можно считать, что погрешность импульса равна полуширине конверсионного пика $\Delta p \approx 40~KeV/c$.

Наклон графика Кюри $slope = (-1.33 \pm 0.10) \cdot 10^{-5}$, смещение $intercept = (8.15 \pm 0.5) \cdot 10^{-3}$.

Погрешности наклона и смещения посчитаны по МНК с помощью матрицы Якоби кост-функции по коэффициентам. Из наклона определим максимальную энергию $\mathcal{E} = -\frac{intercept}{slope} = (610 \pm 60)~KeV$. Относительная погрешность \mathcal{E} определена как корень из суммы квадратов относительных погрешностей наклона и смещения.

Выводы

В данной работе исследован спектр β -частиц, измерена чувствительность спектрометра по ширине конверсионного пика, а также получена максимальная энергия частиц при распаде $\mathcal{E} = (610 \pm 60)~KeV$.