Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$

 $\triangle = 121 > 0$ $n_{1,2}=2,-9$

Case2: △=0

Example 2.

△=0

 $n_{1,2}=3,3$

△=-784<0

s(0) = -18 s-intercept.

s(0) = 18 s-intercept.

Case1: △>0 $n_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the n-intercepts of multiplicity 1. s(0) = c computes the single s-intercept.

Given a quadratic $s(n) = a n^2 + b n + c$ compute its discriminant \triangle :

$$n_{1,2} = \frac{-b \pm \sqrt{b^2 - 4} a C}{2a}$$
 computes the n-intercepts of multiplicity 1.
 $s(0) = C$ computes the single s-intercept.
Example 1.

 $s(n) = -n^2 - 7n + 18$ compute its discriminant \triangle :

-100

 $n_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single n-intercept of multiplicity 2.

$s(n) = -2 n^2 + 12 n - 18$ compute its discriminant \triangle :

s(0) = 245 s-intercept.

1500

 $s(n) = 4 n^2 - 56 n + 245$ compute its discriminant \triangle :