Lecture 2

A Short Review of Matrix Algebra

Reading: Zelterman, 2015 Chapter 4; Izenman, 2008 Chapter 3.1-3.2

DSA 8070 Multivariate Analysis

Whitney Huang Clemson University

Agenda

- Motivation
- Basic Matrix Concepts
- Some Useful Matrix Tools/Facts

Notes

Notes

Why Matrix Algebra?

Data:

$$m{X} = egin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \ x_{21} & x_{22} & \cdots & x_{2p} \ dots & dots & dots \ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

Summary Statistics:

vector,

$$\text{and } \boldsymbol{S} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \cdots & \cdots & \vdots \\ s_{p1} & s_{p2} & \cdots & s_{pp} \end{bmatrix} = \frac{1}{n-1} \boldsymbol{X}^T (I - \frac{1}{n} \boldsymbol{1} \boldsymbol{1}^T) \boldsymbol{X} \text{ is }$$

the sample covariance matrix

 \Rightarrow Many matrix algebra techniques will be applied to this matrix in multivariate analysis

Notes			

Vectors

 A column array of p elements is called a vector of dimension p and is written as

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix}$$

- \Rightarrow Each observation in a multivariate dataset is a p-dimensional vector (e.g., exam scores in math, science, and writing).
- The transpose of the column vector a is a row vector

$$\boldsymbol{a}^T = \begin{bmatrix} a_1 & a_2 & \cdots & a_p \end{bmatrix}$$

ullet $L_{f a}^{-1}{f a}=rac{{f a}}{\sqrt{\sum_{i=1}^n a_i^2}}$ is called a unit vector

A Short Review of Matrix Algebra	
Motivation Basic Matrix Concepts	

	2.4	

Notes			

Vectors in Multivariate Analysis

- Column vector (observation): Each observation $\mathbf{x}_i \in \mathbb{R}^p$ is a $p \times 1$ column; stacking rows yields the data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$
- Transpose: Enables matrix operations such as inner products and summary statistics, e.g., $\mathbf{x}^{\top}\mathbf{y}$ (inner product), $\mathbf{a}^{T}\mathbf{x}$ (linear combination), $\bar{\mathbf{x}} = \frac{1}{n}\mathbf{X}^{T}\mathbf{1}$ (mean), $\mathbf{X}^{T}\mathbf{X}$ (cross-product for covariance)
- Unit vector: normalize ${\bf x}$ to ${\bf x}/\|{\bf x}\|$ (length 1) to remove scale and compare directions

Notes

_			
-			
-			

Matrices

• A matrix A is an array of elements a_{ij} with n rows and p columns:

ullet The transpose $m{A}^T$ has p rows and n columns. The j-th row of $m{A}^T$ is the j-th column of $m{A}$

$$\boldsymbol{A}^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1p} & a_{2p} & \cdots & a_{np} \end{bmatrix}$$

0	Key matrices in multivariate analysis: data matrix X
	covariance/correlation S, R , and eigen
	decomposition

A Short Review of Matrix Algebra
CLEMS N
Basic Matrix Concepts

Notes			

Covariance Matrices

Covariance Matrix

$$\Sigma = \mathbb{E}[(X - \mu)(X - \mu)^T]$$

$$= \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{bmatrix}$$

population covariance matrix

$$\begin{split} \boldsymbol{S} &= \frac{1}{n-1} \begin{pmatrix} \boldsymbol{X} - \mathbf{1} \, \bar{\mathbf{x}}^T \end{pmatrix}^T \! \begin{pmatrix} \boldsymbol{X} - \mathbf{1} \, \bar{\mathbf{x}}^T \end{pmatrix}_{\text{B}, \text{sic Matrix Tot}}^{\text{Notivation}} \\ &= \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \cdots & \cdots & \vdots \\ s_{p1} & s_{p2} & \cdots & s_{pp} \end{bmatrix} \end{split}$$

sample covariance matrix

- Since $\sigma_{jk}=\sigma_{kj}$ (likewise $s_{jk}=s_{kj}$) for all $j\neq k\Rightarrow \Sigma$ and S are symmetric
- ullet Σ and S are also non-negative definite \Rightarrow Any linear combination of the variables has nonnegative variance

Matrix Argebra

CLEMS

UNITED STATE

Motivation

X

Some Useful

Matrix Tools/Facts

Identity Matrix and Inverse Matrix

 An identity matrix, denoted by I, is a square matrix with 1's along the diagonal and 0's everywhere else.
 For example,

$$\mathbf{I}_{3\times3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 \bullet Consider two square matrices ${\bf A}$ and ${\bf B}$ of the same dimension. If

$$AB = BA = I$$

then ${\bf B}$ is the inverse of ${\bf A}$, denoted by ${\bf A}^{-1}.$

• The inverse matrix is used in multivariate analysis for standardization (e.g., Mahalanobis distance).

...

Notes

Notes

Orthogonal Matrices

• A square matrix Q is orthogonal if

$$\mathbf{Q}\mathbf{Q}^T = \mathbf{Q}^T\mathbf{Q} = I$$

- If ${\bf Q}$ is orthogonal, its rows and columns have unit length (i.e., ${\bf L}_{{\bf q}_j}=1$) and are mutually perpendicular (i.e., ${\bf q}_j^T{\bf q}_k=0$ for any $j\neq k$)
- Example:

$$\mathbf{Q} = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & -2 \end{bmatrix}$$

 Orthogonal matrices are used in multivariate analysis for rotations and transformations

Matrix Algebra
CLEMS N
Basic Matrix Concepts

Notes			

Eigenvalues and Eigenvectors

• A square matrix A has an eigenvalue λ with corresponding eigenvector $\mathbf{x} \neq 0$ if

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}.$$

The eigenvalues of ${\bf A}$ are the solution to $|{\bf A}-\lambda I|=0$

- A normalized eigenvector is denoted by ${\bf e}$ with ${\bf e}^T{\bf e}=1$
- \bullet A $p\times p$ matrix A has p pairs of eigenvalues and eigenvectors

$$\lambda_1, \mathbf{e}_1 \quad \lambda_2, \mathbf{e}_2 \quad \cdots \quad \lambda_p, \mathbf{e}_p$$

Notes

Notes

Spectral Decomposition

- Eigenvalues and eigenvectors will play an important role in DSA 8070. For example, principal components are based on the eigenvalues and eigenvectors of sample covariance matrices
- The spectral decomposition of a $p \times p$ symmetric matrix \mathbf{A} is $\mathbf{A} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1^T + \lambda_2 \mathbf{e}_2 \mathbf{e}_2^T + \dots + \lambda_p \mathbf{e}_p \mathbf{e}_p^T$. Matrix form:

$$\underbrace{\begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_p \end{bmatrix}}_{P} \underbrace{\begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_p \end{bmatrix}}_{P^T} \underbrace{\begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_p \end{bmatrix}^T}_{P^T}$$

• In PCA, let ${\bf A}$ be the covariance matrix; sort $\lambda_1 \geq \cdots \geq \lambda_p$: eigenvectors ${\bf e}_j \Rightarrow$ principal components, eigenvalues $\lambda_j \Rightarrow$ variances

Determinant, Trace, and Rank

- The trace of a $p \times p$ matrix \mathbf{A} is the sum of its diagonal elements, i.e., $\operatorname{trace}(\mathbf{A}) = \sum_{i=1}^{p} a_{ii}$.
- The trace of a square, symmetric matrix ${\bf A}$ is the sum of its eigenvalues, i.e., ${\rm trace}({\bf A}) = \sum_{i=1}^p a_{ii} = \sum_{i=1}^p \lambda_i$
- The determinant of a square, symmetric matrix A is the product of its eigenvalues, i.e., $|\mathbf{A}| = \prod_{i=1}^p \lambda_i$
- The rank of a matrix A is the dimension of the vector space spanned by its rows (or equivalently, its columns). It is equal to the number of nonzero eigenvalues of A

Matrix Algebra
CLEMS
UNIVERSIT
Some Useful Matrix Tools/Facts

Notes			

Determinant, Trace, and Rank: Applications in Multivariate Analysis

- The determinant of the covariance matrix is used to measure the generalized variance of a multivariate distribution.
- The trace of the covariance matrix represents the total variance across all variables.
- The rank of a data matrix (or covariance matrix) indicates the effective dimensionality of the data, revealing linear dependence among variables

Positive Definite Matrix

- For a $p \times p$ symmetric matrix \mathbf{A} and a vector $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_p \end{bmatrix}^T$ the quantity $\mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i=1}^p \sum_{j=1}^p a_{ij} x_i x_j$ is called a quadratic form
- If $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$ for any vector \mathbf{x} , both \mathbf{A} and the quadratic form are said to be non-negative definite \Rightarrow all the eigenvalues of \mathbf{A} are non-negative
- If $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for any vector $\mathbf{x} \neq \mathbf{0}$, both \mathbf{A} and the quadratic form are said to be positive definite \Rightarrow all the eigenvalues of \mathbf{A} are positive
- In multivariate analysis, the covariance matrix must be positive definite to ensure valid Mahalanobis distances, PCA, and multivariate normal distributions

Notes

Notes

...

Distance and Quadratic Forms

• For $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_p \end{bmatrix}^T$ and a $p \times p$ positive definite matrix \mathbf{A} ,

$$d^2 = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

when $\mathbf{x}\neq 0.$ Thus, a positive definite quadratic form can be interpreted as a squared distance of \mathbf{x} from the origin and vice versa

ullet The squared distance from ${\bf x}$ to a fixed point μ is given by the quadratic form

$$(\mathbf{x} - \boldsymbol{\mu})^T A (\mathbf{x} - \boldsymbol{\mu})$$

 In multivariate analysis, such quadratic forms are used to define the Mahalanobis distance, construct confidence ellipsoids, and perform discriminant analysis

Notes			

Distance and Quadratic Forms (Cont'd)

ullet We can interpret distance in terms of eigenvalues and eigenvectors of ${\bf A}.$ any point ${\bf x}$ at constant distance c from the origin satisfies

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T (\sum_{j=1}^p \lambda_j \mathbf{e}_j \mathbf{e}_j^T) \mathbf{x} = \sum_{j=1}^p \lambda_j (\mathbf{x}^T \mathbf{e}_j)^2 = c$$

- Note that the point $\mathbf{x}=c\lambda_1^{-\frac{1}{2}}\mathbf{e}_1$ is at a distance c (in the direction of \mathbf{e}_1) from the origin because it satisfies $\mathbf{x}^T\mathbf{A}\mathbf{x}=c^2$
- The same is true for points $\mathbf{x}=c\lambda_j^{-\frac{1}{2}}\mathbf{e}_j,\ j=2,\cdots,p.$ Thus, all points at distance c lie on an ellipsoid with axes in the directions of the eigenvectors and with lengths proportional to $\lambda_i^{-\frac{1}{2}}$

2.16

Square-Root Matrices

 \bullet Spectral decomposition of a positive definite matrix ${\bf A}$ yields

$$\mathbf{A} = \sum_{j=1}^p \lambda_j \mathbf{e}_j \mathbf{e}_j^T = \mathbf{P} \Lambda \mathbf{P}^T,$$

with $\Lambda_{p \times p} = \operatorname{diag}(\lambda_j)$, all $\lambda_j > 0$, and $\mathbf{P}_{p \times p} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_p \end{bmatrix}$ an orthonormal matrix of eigenvectors. Then

$$\mathbf{A}^{-1} = \mathbf{P} \boldsymbol{\Lambda}^{-1} \mathbf{P}^T = \sum_{i=1}^p \frac{1}{\lambda_j} \mathbf{e}_j \mathbf{e}_j^T$$

ullet With $\Lambda^{rac{1}{2}}=\mathrm{diag}(\lambda_i^{rac{1}{2}}),$ a square-root matrix is

$$\mathbf{A}^{\frac{1}{2}} = \mathbf{P} \Lambda^{\frac{1}{2}} \mathbf{P}^T = \sum_{j=1}^p \sqrt{\lambda_j} \mathbf{e}_j \mathbf{e}_j^T$$

A Short Review of Matrix Algebra

CLEMS N

Motivation

Basic Matrix

Some Useful

Notes

Notes

·	_		_	

Partitioning Random vectors

- If we partition the $p \times 1$ random vector \boldsymbol{X} into two components $\boldsymbol{X}_1, \boldsymbol{X}_2$ of dimensions $q \times 1$ and $(p-q) \times 1$ respectively, then the mean vector and the variance-covariance matrix need to be partitioned accordingly
- Partitioned mean vector:

$$\mathbb{E}[\boldsymbol{X}] = \mathbb{E}\begin{bmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{bmatrix} = \begin{bmatrix} \mathbb{E}[\boldsymbol{X}_1] \\ \mathbb{E}[\boldsymbol{X}_2] \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}$$

Partitioned covariance matrix:

$oldsymbol{\Sigma} = egin{bmatrix} \operatorname{Var}(oldsymbol{X}_1) \ \operatorname{Cov}(oldsymbol{X}_2, oldsymbol{X}) \end{bmatrix}$	$\begin{bmatrix} \operatorname{Cov}(\boldsymbol{X}_1, \boldsymbol{X}_2) \\ \operatorname{Var}(\boldsymbol{X}_2) \end{bmatrix} =$	$= \begin{bmatrix} \mathbf{\Sigma}_{11} \\ \mathbf{q} \times q \\ \mathbf{\Sigma}_{21} \\ (p-q) \times q \end{bmatrix}$	$\underbrace{\sum_{12}}_{q \times (p-q)} \underbrace{\sum_{22}}_{(p-q) \times (p-q)}$
---	--	---	---

Summary: Matrix Algebra in Multivariate Analysis

- Data as a matrix X; each row is an observation, each column a variable
- Sample mean vector and covariance matrix are matrix expressions
- $\bullet \ \ \, \text{Eigenvalues/eigenvectors} \Rightarrow \text{PCA, factor analysis,} \\ \text{canonical correlation} \\$
- Quadratic forms ⇒ Mahalanobis distance, hypothesis testing

In the next lecture, we will learn:

- Multivariate Normal Distribution
- Copula Models and Non-parametric Density Methods

Notes Notes Notes