Proof of Lemma 10. d valid: $d(u) \leq d(v) + 1 \quad \forall (u, v) \in E_f$. (by induction on the number of augment + retreat operations.)

(IB)
$$d(u) = \delta_G(u, t) = \delta_{G_f}(u, t)$$
 implies $d(u) \le d(v) + 1 \quad \forall (u, v) \in E_f$.

(IS)

- a) augmentation along $(u, v) \in E_f$.
 - remove (u, v) from E_f
 - create an additional edge $(v, u) \in E_f$ and thus an additional inequality $d(v) \le d(u) + 1$ We know: d(u) = d(v) + 1 because (u, v) is admissible. Thus d(v) = d(u) - 1 < d(u) + 1.
- b) retreat from u to $\pi(u)$ modifies d(u). Let $d'(u) = \min\{d(v) + 1 | (u, v) \in E_f\}$ Thus, after retreat from u $d'(u) \leq d(v) + 1$ $\forall (u, v) \in E_f$. The alg retreats from u, when u has no admissible edges $(u, v) \in E_f$.

By (IH) we have
$$d(u) < d(v) + 1 \quad \forall (u, v) \in E_f$$
 and $d'(u) > d(u)$.
From this $d(w) \le d'(u) + 1 \quad \forall (w, u) \in E_f$.

Proof of Theorem 13. The algorithm terminates with $d(s) \ge |V|$. By Note 10b there is no path from s to t in G_f . By Theorem 12 f is a max flow.

Proof of NM. The algorithm performs a retreat at node u only after it passed through the complete list N(u). The relabelling passes through N(u) a second time, resulting in a total time of $\mathcal{O}(|N(u)|)$ for each retreat.

Proof of Lemma 11. We show:

(*) Between two consecutive saturations of an edge (u, v) both d(u) and d(v) must increase by at least 2 units.

$$\overset{d(u)}{u} \longrightarrow \overset{d(v)+1}{v} \leadsto u \leftarrow v$$

now v must push flow to u:

$$u \overset{d(u)+1}{\longleftarrow} \overset{d'(v)}{v}$$

i.e. d(v) increased by 2

$$\overset{d'(u)=d(u)+2}{u} \longleftarrow \overset{d'(v)=d(u)+1}{v}$$

If the algorithm retreats from any node u at most k times, we can conclude that any edge can be saturated at most $\frac{k}{2} \rightsquigarrow k$ times. \rightsquigarrow at most k|E| saturations.

Sketch of Proof of Lemma 12. Each update (retreat from u) of d(u) increases d(u) by at least 1. Nodes u with $d(u) \ge |V|$ are never considered again. \rightsquigarrow a)

b) L11 and L12a) \Rightarrow algorithm saturates at most $\frac{|V|\cdot|E|}{2}$ edges. Since each augmentation saturates at least 1 edge:

augmentations
$$\leq |V| \cdot |E|$$

Proof of Theorem 14. n = |V|, m = |E| L12, NM: the total effort to find admissable edges and to update the distance labels is $\mathcal{O}(nm)$. By L12:

Number of augmentations $\leq nm$, each of which takes $\mathcal{O}(n)$ time. So the total effort for augmentation is $\mathcal{O}(n^2m)$. The total number of retreats is $\mathcal{O}(n^2)$. Each advance adds an edge to P, each retreat deletes an edge from P. Since P has at most n edges, the alg. requires at most $\mathcal{O}(n^2 + n^2 \cdot m)$ advance operations.