SUBJECT INDEX

Additive partial field gradient model 96 Antimony trichloride adducts, secondary bonding in 47 Asymmetry parameter of electric field gradient 13, 34	cis -trans-Isomerism in $SnCl_4 \cdot 2L$ 111—113 $TiCl_4 \cdot 2L$ 128, 130 $ZrCl_4 \cdot 2MeCN$ 131 ³⁵ Cl NQR frequencies vs heats of
Bismuth trichloride aspects of bonding 48-50 structural aspects 39-41 π-bonding in Al ₂ Br ₇ 144 Bhal ₃ 118	formation for $GaCl_3 \cdot L$ 103 $SbCl_5 \cdot L$ 107 $SnCl_4 \cdot 2L$ 113 Compounds in glassy and crystalline state
${ m Bhal_3 \cdot Me_3 N} \ \ 118$ cations $trans \cdot [M(en)_2 Cl_2]^+ (M = Co, Rh) \ \ 97$ ${ m Cu_2hal_2 (PPh_3)_3} \ \ 160$ ${ m MoCl_5} \ \ 155$	As_2S_3 198 As_2Se_3 198 $P_2O_3Cl_4$ 198—199 Continuous wave techniques 22—24 Cotton and Harris model 35 Crystallographic inequivalence 37, 63
$ \begin{array}{rrr} & Nahal_5 & 154 \\ & NbCl_5 & 135-136 \\ & NbCl_5 \cdot POCl_3 & 135-136 \\ & ReCl_5 & 155 \\ & Tahal_5 & 154 \end{array} $	Double resonance techniques 27 Dual functions of TeCl ₄ 124—128 Effective charges on the atoms in
tetrahedral R_2 Nihal ₂ complexes 77 Ti $Cl_4 \cdot nL$ 129—130 W Cl_5 155 Charge transfer amount in	$GaCl_3 \cdot L$ 107 Ga_2Br_6 147 Ga_2Cl_6 147 KAl_2Br_7 144 $(Me_4N)_2Ga_2Br_6$ 147
Charge transfer amount in $GaCl_3 \cdot L$ 107 $SbCl_3 \cdot L$ 122 $SbCl_5 \cdot L$ 107 $cis\text{-}trans\text{-}Isomerism in}$ $HfCl_4 \cdot 2 MeCN$ 131	$(Me_4N)_2Ga_2BF_6$ 147 $(Me_4N)_2Ga_2Cl_6$ 147 $NaGaCl_4$ 107 RAl_2Br_7 143 $RSbCl_6$ 107 $SbCl_5 \cdot L$ 107
$MoCl_4 \cdot 2MeCN$ 131 PtI_2L_2 207	Effective charges on the atoms of V-shaped cations

$(SbBr_2^+, ICl_2^+, I_2Cl^+, I_3^+)$ in ionic	Ligand donating power in
complexes 90	GaCl ₃ ·L 106
EFG-contributions at	SbCl ₅ ·L 109
Ag_3SbS_3 173	$SnCl_4 \cdot 2L$ 111
75 As in Ag ₃ AsS ₃ 173	Marino and Toyama method 21
²⁰⁹ Bi in BiOhal 182—184	Mercury iodide adducts, secondary
⁸¹ Br in CdBr ₂ 178—181	bonding in 47
^{35}Cl in $CsGeCl_3$ 190	
CsPbCl ₃ 190	93Nb QCC in alloys
CuSbS ₂ 173	Nb_3Al 208
¹²⁷ I in CdI ₂ 178—181	Nb_3Ga 208
¹²⁷ I in NaIO ₄ 99-100	Nb_3Ge 208
93Nb in alloys Nb ₃ M 209	Nb ₃ Ir 208
185Re in KReO ₄ 99—100	Nb ₃ Os 208
Sb in Ag ₅ SbS ₄ 173	Nb ₃ Pt 208
	Nb ₃ Sn 208
121Sb in Menshukin complexes 121	NQR in the systems
Electric field gradient, EFG 10, 28, 29	CdSb + ZnSb 201
Electroacoustic echo 210-211	
	$Na_2S + Sb_2S_3$ 200-201
Ferro- and antiferroelectric properties of	$Sb_2S_3 + Bi_2S_3$ 194-195
Ag_3AsS_3 192	NQR spectra of
Ag_3SbS_3 192	$Ag_5^{121,123}SbS_4$ 172
BiVO ₄ 189	²⁷ Al ⁸¹ Br ₃ 119, 139—140
CsGeCl ₃ 190	$Al^{81}Br_3 \cdot L$ 119
CsPbCl ₃ 190	$Al^{127}I_3$ 139
KNbO ₃ 189—190	⁷⁵ As ₂ S ₃ 170, 196
	⁷⁵ As ₂ Se ₃ 170, 196
LiNbO ₃ 189—190	⁷⁵ As ₂ Te ₃ 170
LiTaO ₃ 189—190	Au ³⁵ Cl ₅ 139
NaNbO ₃ 189—190	$B^{81}Br_3$ 116
SbNbO ₄ 189	$B^{81}Br_3 \cdot Me_3N$ 116
$SbTaO_4$ 189	B ³⁵ Cl ₃ 116
$\mathrm{Sb_2S_3}$ 192	B ³⁵ Cl ₃ ·Me ₃ N 116
Ferroelastic properties of	$B^{127}I_3$ 116
LaNbO ₄ 189	
$LuNbO_4$ 189	B ¹²⁷ I ₃ ·Me ₃ N 116
α -Sb ₅ O ₇ I 184	$Ba^{81}Br_2 \cdot 2H_2O$ 177
Field-frequency method 18-19	$^{137}\text{Ba}^{81}\text{Br}_2 \cdot 2\text{H}_2\text{O}$ 177
•	$^{137}\text{BaCl}_2 \cdot 2\text{H}_2\text{O}$ 177
Harashlanamatallatas(TV) ion ion	$Ba^{127}I_2 \cdot 2H_2O$ 177
Hexachlorometallates(IV), ion-ion	BiCl ₃ 40
repulsions in 54-58	²⁰⁹ Bi ³⁵ Cl ₃ 124
Hexachlorometallates(V), spectral	$^{209} \mathrm{Bi}^{35} \mathrm{Cl}_{3} \cdot \mathrm{L}$ 124
splittings in 63-64	$^{209}\text{Bi}^{35}\text{Cl}_{3} \cdot 2\text{L}$ 124
	$Bi^{127}I_3$ 179
Innersphere conversions in	²⁰⁹ BiNbO ₄ 187
cis-Pt(etNH ₂) ₂ I ₂ 206	²⁰⁹ BiOhal 183
cis-Pt(meNH ₂) ₂ I ₂ 206	²⁰⁹ BiTaO 187
000 1 0(111011112/212	DIEGO IOI

NQR spectra of	NQR spectra of
²⁰⁹ BiVO ₄ 187	Hf ¹²⁷ I ₄ 166
²⁰⁹ Bi ₂ Mo ₃ O ₁₂ 190	$Hg^{81}Br_2$ 167
²⁰⁹ Bi ₂ S ₃ 170, 196	HgCl ₂ 20
²⁰⁹ Bi ₂ WO ₆ 190	Hg35Cl ₂ 167
²⁰⁹ Bi ₃ O ₄ Br 183	$Hg^{127}I_2$ 167
²⁰⁰ Bi ₃ O ₄ Cl 183	¹²⁷ I ³⁵ Cl ₃ 139—140
$^{209}\text{Bi}_4\text{Ge}_3\text{O}_{12}$ 190	115In ¹²⁷ I ₃ 139—140
²⁰⁹ Bi ₄ Ti ₃ O ₁₂ 190	ionic compounds with V-shaped
$^{209}\text{Bi}_{12}\text{GeO}_{20}$ 190	cations
²⁰⁹ Bi ₁₂ SiO ₂₀ 190	$(SbBr_2^+, SbI_2^+, \alpha - I_3^+, I_2Cl^+, ClF_2^+,$
$Ca^{81}Br_2$ 177	BrF_{2}^{+}) 88-89, 93
$Ca^{81}Br_2 \cdot 2H_2O$ 177	ionic tetrafluorohalide(V)fluoroanti-
Ca ¹²⁷ I ₂ ·6H ₂ O 177	monates(V) 93
$Cd^{81}Br_2$ 177	ionie trichlorosulphonium(IV)chloro-
Cd ¹²⁷ I ₂ 177	metallates (35Cl) 83-84
Cd ¹²¹ , ¹²³ Sb 201	KHg ¹²⁷ I ₃ ·H ₂ O 167
Co35Cl ₂ 177	K ⁹³ NbO ₃ 190
$Co^{35}Cl_2 \cdot 2H_2O$ 177	¹³⁹ La ⁹³ NbO ₄ 187
$C_0^{-35}Cl_2 \cdot 6H_2O$ 177	Li ⁹³ NbO ₃ 190
$Cr^{81}Br_3$ 179	¹⁷⁵ LuNbO ₄ 187
$Cr^{35}Cl_2$ 177	$(Me_4N)_2^{69}Ga_2^{81}Br_6$ 146
$Cr^{35}Cl_3$ 179	
CrO ₂ ³⁵ Cl ₂ 166	$(Me_4N)_2^{69}Ga_2^{35}Cl_6$ 146
$C_8^{69}Ga_2^{127}I_7$ 142	(Me ₄ N) ₃ Bi ₂ ⁸¹ Br ₉ 145
$Cs^{121,123}Sb_2^{35}Cl_9$ 145	(Me ₄ N) ₃ Bi ₂ ³⁵ Cl ₉ 145
Cs ₃ ¹²¹ ,123Sb ₂ ⁸¹ Br ₉ 145	(MeNH ₃) ₃ Bi ₂ ⁸¹ Br ₉ 145
$Cs_3^{121,123}Sb_2^{-127}I_9$ 145	(MeNH ₃) ₃ ²⁰⁹ Bi ₂ ³⁵ Cl ₉ 145
Cs_3 $Cu^{81}Br_2$ 167	$(MeNH_3)_3Sb_2^{81}Br_9$ 145
	Me ₄ NHg ¹²⁷ I ₃ 167
Cu ³⁵ Cl ₂ 167	Mo ³⁵ Cl ₄ ·2MeCN 131
⁶³ Cu ₂ ⁸¹ Br ₂ (PPh ₃) ₃ 157, 159	Mo ³⁵ Cl ₅ 148
63Cu ₂ Cl ₂ (PPh ₃) ₃ 159	MoO35Cl ₄ 157
⁶³ Cu ₂ ¹²⁷ I ₂ (PPh ₃) ₃ 157, 159	MoO ₂ ³⁵ Cl ₂ 166
$(\text{Et}_4\text{N})_2^{69}\text{Ga}_2^{81}\text{Br}_6$ 146	Na ⁹³ NbO ₃ 190
(Et ₄ N) ₂ ⁶⁹ Ga ₂ ³⁵ Cl ₆ 146	93Nb ⁸¹ Br ₅ 148—149
Fe ³⁵ Cl ₂ 177	93Nb35Cl ₅ 148—149
Fe ³⁵ Cl ₃ 179	93Nb35Cl ₅ ·L 134—135
69Ga 81Br ₃ 139—140	$Nb^{125}I_5$ 149
GaCl ₃ 20	$NbO^{81}Br_3$ 157
69Ga ³⁵ Cl ₃ 139—140	⁹³ NbO ³⁵ Cl ₃ 157, 159
69Ga ¹²⁷ I ₃ 139—140	$^{93}\text{Nb}_2^{81}\text{Br}_6(\text{SC}_4\text{H}_8)_3$ 158, 159
GeCl ₄ 20	$^{93}{\rm Nb_2}^{35}{\rm Cl_6}({\rm SC_4H_8})_3$ 158, 159
Hf ⁸¹ Br ₄ 166	$^{93}\text{Nb}_2^{127}\text{I}_6(\text{SC}_4\text{H}_8)_3$ 158, 159
Hf85Cl ₄ 166	$Nd^{81}Br_3$ 179
Hf ³⁵ Cl ₄ ·2MeCN 131	octahedral complexes of ⁵⁹ Co(III) 95
HfCl ₄ ·nPO ³⁵ Cl ₃ 131	Pb ⁸¹ Br ₂ 167, 177
	10 1019 101, 111

NQR spectra of	NQR spectra of
$Pb^{127}I_2$ 177	$Ta_2^{81}Br_6(Sc_4H_8)_3$ 158
α-Pd ³⁵ Cl ₂ 166	$Ta_2^{35}Cl_6(SC_4H_8)_3$ 158
β-Pd35Cl ₂ 166	$Te^{8_1}Br_4 \cdot AlBr_3$ 126
periodates A ¹²⁷ IO ₄ 99	Te ⁸¹ Br ₄ 126
perrhenates A ¹⁸⁵ ReO ₄ 99	Te ³⁵ Cl ₄ 126
β-Pt ³⁵ Cl ₂ 166	Te ³⁵ Cl ₄ ·AlCl ₃ 126
RAl ₂ ⁸¹ Br ₇ 141-142	$Te^{35}Cl_4 \cdot 2(CH_3)_2SO$ 126
R ⁶⁹ Ga ₂ ⁸¹ Br ₇ 142	$Te^{35}Cl_4 \cdot (C_3H_7)_2S$ 126
R ⁶⁹ Ga ₂ ³⁵ Cl ₇ 142	$Te^{35}Cl_4 \cdot PO^{35}Cl_3$ 126
RH ₂ ⁷⁵ AsO ₄ 100	tetrabromocadmiates(II) 79
R121,125SbS ₂ 172	tetrachloroiodates(III) 69
R ¹²¹ , 123 SbSe ₂ 172	tetrahaloaluminates(III) 69
R ₂ H ⁷⁵ AsO ₄ 100	tetrahaloaurates(III) 69
$R_3^{209}BiS_3$ 172	tetrahalogallates(III) 69
$R_3^{121,123}SbS_3$ 172	tetrahalomercurates(II) 79
Re ³⁵ Cl ₅ 149	tetrahalopalladates(II) 69
Ru ³⁵ Cl ₃ 179	tetrahaloplatinates(II) 69
121,123Sb35Cl ₅ 139-140	tetrahalozincates(II) 78-79
¹²¹ ,123SbF ₃ 162	tetrahedral $(Ph_3P)_2Ni^{79}Br_2$ 77
¹²¹ , ¹²³ <i>m</i> SbF ₃ · <i>n</i> M'hal 162	tetrahedral $(Ph_3P)_2Ni^{35}Cl_2$ 77
121,123SbNbO ₄ 187	tetrahedral $(Ph_3P)_2Ni^{127}I_2$ 77
¹²¹ ,123SbPO ₄ 187	tetraiodothallates(III) 69
¹²¹ ,123SbTaO ₄ 187	Ti ⁸¹ Br ₃ 179
¹²¹ , 123α-Sb ₂ O ₄ 187	Ti ³⁵ Cl ₂ 177
¹²¹ ,123β-Sb ₂ O ₄ 187	Ti ³⁵ Cl ₃ 179
¹²¹ , ¹²³ Sb ₂ S ₃ 170, 190	Ti35Cl ₄ 128
¹²¹ , ¹²³ Sb ₃ Se ₃ 170, 196	Ti35Cl ₄ ·L 128
$^{121,123}Sb_4O_5Cl_2$ 183	Ti35Cl ₄ ·2L 128
$^{121,123}\alpha$ -Sb ₅ O ₇ 127 I 183	transition metal hexahalides(IV) 59
$Se^{127}I_3$ 179	U ³⁵ Cl ₃ 179
$Sn^{81}Br_{2}$ 167	$U^{127}I_3$ 179
Sn35Cl ₂ 167	V35Cl ₃ 179
SnCl ₂ 168	W ³⁵ Cl ₅ 148
Sn35Cl ₄ ·2L 110	WO ³⁵ Cl ₃ 157, 166
square-planar (Bu ₃ ⁿ P) ₂ Ni ⁷⁹ Br ₂ 77	WO35Cl ₄ 166
square-planar (Bu ₃ ⁿ P) ₂ Ni ³⁵ Cl ₂ 77	Y35Cl ₃ 179
square-planar (Pr ₃ ⁿ P) ₂ Ni ⁷⁹ Br ₂ 77	Yb ⁹³ NbO ₄ 187
square-planar (Pr ₃ ⁿ P) ₂ Ni ³⁵ Cl ₂ 77	$Zn^{81}Br_2$ 167
$Sr^{81}Br_2 \cdot 2H_2O$ 177	$Zn^{35}Cl_2$ 167
Sr ¹²⁷ I ₂ ·6H ₂ O 177	$Zn^{127}I_2$ 167
¹⁸¹ Ta ⁸¹ Br ₅ 148, 150	Zn ¹²¹ , 1 ²³ Sb 201
TaCl ₅ 147, 151	
	Zr ⁸¹ Br ₄ 166
¹⁸¹ Ta ³⁵ Cl ₅ 148, 149	Zr ³⁵ Cl ₄ 166
¹⁸¹ Ta ³⁵ Cl ₅ ·L 132—133	$Zr^{35}Cl_{4} \cdot 2MeCN$ 131
¹⁸¹ Ta ¹²⁷ I ₅ 149, 150	$\mathbf{ZrCl_4} \cdot n\mathbf{PO^{35}Cl_3}$ 131

NQR spectra of Zr ¹²⁷ I ₄ 166	Spin-lattice relaxation time T_1 25 Spin-spin relaxation time T_2 25
Nuclear quadrupole moment 10	Sternheimer antishielding 55
Nuclear quadrupole resonance spectra	in K185ReO ₄ 99
of	in Na ¹²⁷ IO ₄ 99
hexachloroantimonates(V) 63	Structural data for
hexachlorometallates(IV) 63	$AgAsS_2$ 171
hexachlorometallates(V) 63	AgSbS ₂ 171
hexahalobismuthates(V) 63	AlBr ₃ 138
hexahalometallates(III) 64	AlCl ₃ 181
	As ₂ S ₃ 169, 171
Phase transitions in	As_2Se_5 171
AgAsS ₂ 192	As ₂ Te ₃ 171
Ag_3AsS_3 192	BaBr ₂ · 2H ₂ O 176
Ag_3SbS_3 192	BaCl ₂ · 2 H ₂ O 176
Cs ₂ CdBr ₄ 81	BiCl ₃ 181
Cs ₂ HgBr ₄ 81	BiNbO ₄ 188
K ₂ ZnCl ₄ 81	BiOhal 182
(NH ₄) ₂ ZnCl ₄ 81	BiTaO ₄ 188
Rb ₂ ZnCl ₄ 81	Bi_2S_3 170
TlAsSe ₂ 192	$Bi_4Ge_3O_{12}$ 191
Piezoelectric properties of	$Bi_4Si_3O_{12}$ 191
Ag_3AsS_3 192	Bi ₄ Ti ₃ O ₁₂ 191
Ag_3SbS_3 192	$Bi_{12}GeO_{20}$ 191
Bi ₄ Ti ₃ O ₁₂ 191	CdBr ₂ 180
$Bi_{12}GeO_{20}$ 191	CdI ₂ 180
Bi ₁₂ SiO ₂₀ 191	CrCl ₃ 181
Polymorphic transitions in	CsSbClF ₃ 165
As_2S_3 202-203	$CsSbF_4$ 164
$As_2S_5 203-204$	$CsSb_2F_7$ 164
cis-Pt(meNH ₂) ₂ I ₂ 205-206	Cs ₃ Sb ₂ hal ₉ 144
Pulsed line narrowing 25-26	Cuhal ₂ 168
	CuSbS ₂ 171
Quadrupole coupling constant, QCC	$FeCl_3$ 181
13, 31	$GaCl_3$ 138
	$HfCl_4$ 165
Secondary bonding in	HfI_4 165
ionic compounds with V-shaped	Hghal ₂ 168
cations 90-92	ICl ₃ 138
ionic trichlorosulphonium(IV)	InI_3 138
chlorometallates 87	ionic compounds with V-shaped
Solid-state effect in	cations 90—91, 92
octahedral complexes of Co(III)	$ionic\ tetrafluorohalide (V) polyfluoro-$
96—97	antimonates(V) 92-93
tetrahalozincates(II) 82	KAl_2Br_7 139
Spin-echo or pulse technique 24-25	$KHgI_3 \cdot H_2O$ 168
Spin-echo Zeeman experiments 21	$KSbClF_3$ 163

Structural data for Structural data for KSbF₄ 165 SrBr₂ 176 KSb₂F₇ 161 TiAsS₂ 171 (Me₄N)₂Ga₂Cl₆ TiCl₃ 181 147 Me₄NHgI₃ 168 TiCl₄·L 129 MoCl₅ 147 TlBr₃ 181 NbBr₅ 147, 151 trichlorosulphonium(IV) tetrachloro-NbCl₅ 147, 151 aluminate(III), SCl₃⁺·AlCl₄⁻ 85-86 $NbCl_5 \cdot POCl_3$ 135 trichlorosulphonium(IV) tetrachloro-PdCl₂ 168 iodate(III), $SCl_3^+ \cdot ICl_4^- 85 - 86$ pentahalozincates(II) 81-82 UI₃ 181 periodates AlVIIO4 99 α-ZnCl₂ 168 perrhenates AReVIIO₄ 99 ZnI₂ 168 PrBr₃ 181 ZrCl₄ 165 PtCl₂ 168 ZrI₄ 165 ReCl₅ 147 SbNbO₄ 188 Townes and Dailey approach, bonding $SbPO_4$ 188 model in terms of 30-32, 43-45SbTaO₄ 188 Transition metal hexachloroanions(IV), contributions to 35Cl frequency temβ-Sb₂O₄ 186 α -Sb₂O₄ 186 perature coefficient in 58-61 Sb_2S_3 171 Sb₂Se₃ 171 Width of NQR line 25 Sb₄O₅Cl₂ 184 α-Sb₅O₇I 184 Zeeman experiments 16-22 $SnBr_2 \cdot H_2O$ 177 Zero-splitting locus method 17-18

