PRESENTATION PAGE SUPERVISOR'S AND STUDENT'S SIGNATURES ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

1. Introduction (Chapter 1)

The introduction should include:

- Background and Problem Definition: context of the thesis (similar if not the same of the thesis proposal)
- General and Specific Objectives
- Method and Results Overview: basic description on how the objective is achieved and what are the main results
- Research outcome: what is the research outcome (in this case, the plugin)
- Significance: state the contribution of the presented work
- **Audience:** who is the research audience?
- o organization: describe the organization or structure of the thesis

2. Literature Review (Chapter 2)

The literature review will present the needed background to understand the article "A Rewriting Logic Semantics and Statistical Analysis for Probabilistic Event-B" and how the plugin is implemented:

2.2 Event-B

- Explain context, machine, syntax and provide a model example
- Explain Event-B's semantics (definition proposed in M. A. Aouadhi, B. Delahaye, and A. Lanoix) (not sure of including the LTS semantics definition of Event-B)
- Explain non deterministic choices in Event-B

2.1 Probabilistic Event-B

- Explain probabilistic Event-B Semantics and syntax
- Provide an example of probabilistic Event-B model with the specified syntax

2.3 Maude

- Explain the Maude language (sorts, equations, operators, variables, conditional and non conditional rewriting rules)
- Provide a Maude model as an example
- Explain Maude semantics (rewrite theory)

2.4 PMaude

- Explain PMaude semantics (probabilistic rewrite theory) and syntax
- Provide an example of probabilistic PMaude model with the specified syntax

2.5 PVeStA

- Brief summary of how PVeStA and Quatex work
- Simulation of the PMuade model explained in 2.4 using the tool

2.6 A Rewriting Logic Semantics and Statistical Analysis for Probabilistic

- Explain how the encoding from a Probabilistic Event-B machine to a probabilistic rewrite theory works.
- Provide an example of the translation (possibly the example of the model given in 2.1)

2.7 Rodin and plugin development

• Explain the general guides for plugin development in Rodin

3. Methodology (Chapter 3)

Proposal 1

Explain each one of the activities done in each software development phase, according to the waterfall method.

- 3.1 Requirements
- 3.2 Design
- 3.3 Implementation
- 3.4 Testing
- 3.5 Deployment

Proposal 2

Explain the design of the plugin, how it was implemented and the publishing process.

- 3.1 Design
- 3.2 Implementation
- 3.3 Deployment

4. Results (Chapter 4)

Provide the results of the different case studies, which are probabilistic models related to Omicas. For each one of them, explain the probabilistic event-B model, the resulting rewrite theory in Maude and the results of the Monte Carlo simulations.

4.1 Probabilistic Model 1

4.2 Probabilistic Model 2

...

5. Discussion (Chapter 5)

- Discuss and analyze the results obtained in the previous chapter and the overall behavior of the plugin.
- Highlight weakness and strengths of the implementation
- implications on practice and future work

6. Conclusions (Chapter 6)

- introduction (brief summary of the presented work)
- summary of findings
- Evaluate if research objectives were completed
- Recommendations
- o Future work

REFERENCES