

Figure 56.5: Classifying x_i in terms of nonzero λ and μ .

We denote their cardinalities by $p_f = |K_{\lambda}|$ and $q_f = |K_{\mu}|$.

Vectors u_i such that $\lambda_i > 0$ and vectors v_j such that $\mu_j > 0$ are said to have margin at most ϵ . A point x_i such that either $\lambda_i > 0$ or $\mu_i > 0$ is said to have margin at most ϵ . The sets of indices associated with these vectors are denoted by

$$I_{\lambda>0} = \{i \in \{1, \dots, m\} \mid \lambda_i > 0\}$$

$$I_{\mu>0} = \{j \in \{1, \dots, m\} \mid \mu_j > 0\}.$$

We denote their cardinalities by $p_m = |I_{\lambda>0}|$ and $q_m = |I_{\mu>0}|$.

Points that fail the margin and are not on the boundary of the ϵ -slab lie outside the closed ϵ -slab, so they are errors, also called *outliers*; they correspond to $\xi_i > 0$ or $\xi_i' > 0$.

Observe that we have the equations $I_{\lambda} \cup K_{\lambda} = I_{\lambda>0}$ and $I_{\mu} \cup K_{\mu} = I_{\mu>0}$, and the inequalities $p_f \leq p_m$ and $q_f \leq q_m$.

We also have the following results showing that p_f, q_f, p_m and q_m have a direct influence on the choice of ν .

Proposition 56.2. (1) Let p_f be the number of points x_i such that $\lambda_i = C/m$, and let q_f be the number of points x_i such that $\mu_i = C/m$. We have $p_f, q_f \leq (m\nu)/2$.

(2) Let p_m be the number of points x_i such that $\lambda_i > 0$, and let q_m be the number of points x_i such that $\mu_i > 0$. We have $p_m, q_m \ge (m\nu)/2$.