EDA-CAD Nano-electrónica 2015-2016

2º Trabalho

Data de Entrega: 10 de Maio de 2016

Objectivos:

Este trabalho tem como objectivo a determinação dos parâmetros do modelo EKV para transístores NMOS da tecnologia UMC065. Serão apenas considerados transístores de canal longo.

Introdução

O modelo EKV foi introduzido segunda metade da década de noventa, com o objectivo de caracterizar o comportamento de transístores de tecnologia MOS em dimensões submicrométricas. Neste trabalho será considerada uma versão simplificada do modelo EKV2.6, em que apenas serão considerados transístores de canal longo.

O modelo EKV2.6 é caracterizado pelos seguintes parâmetros:

NOME	Descrição	Unidades
Cox	Capacidade do óxido	F/m
V_{T0}	Tensão limiar de condução	V
Gama	Fator de efeito de corpo	V^0.5
Phi	Potencial de Fermi (2x)	V
Кр	Transcondutância	A/V^2
Theta	Coeficiente de redução de mobilidade	1/V
Ucrit		V/m
XJ	Profundidade de junção	m
DL	Correção de comprimento de canal	m
DW	Correção de largura de canal	m
Lambda	Coeficiente de depleção	-
LETA	Coeficiente de canal curto	-
WETA	Coeficiente de canal estreito	-

O trabalho deverá compreender duas fases. Na primeira fase serão determinados os parâmetros do modelo, tendo por base características de funcionamento dos dispositivos, obtidas por simulação. Na segunda fase, deve avaliar-se a precisão do modelo, por comparação com características resultantes de simulação.

Fase 1 Determinação dos parâmetros do Modelo EKV para um transístor Nmos1 indicado na tabela seguinte:

	Modelo	W	L
Nmos 1	Nmos 1 N 12 llhyt		2 μ
Nmos 2	1N_12_IIIIVt	1 μ	0.5 μ

Considere a corrente de dreno, *I*_D, dada por:

$$I_D = I_S(i_F - i_R) \tag{1}$$

em que:

$$i_{F(R)} = \left[ln \left(1 + e^{\left(\frac{V_P - V_{S(D)}}{2U_T} \right)} \right) \right]^2 \tag{2}$$

a. <u>Determinação da Corrente Is</u>

Para a determinação da corrente I_S , considera-se um transístor em inversão forte, e com V_D =1.2 de tal forma que i_R =0 e

$$I_D \approx I_S \left(\frac{V_P - V_S}{2U_T}\right)^2 \tag{3}$$

donde:

$$\sqrt[2]{I_D} \approx \sqrt[2]{I_S} \left(\frac{V_P - V_S}{2U_T} \right) \tag{4}$$

Pelo que, para a reta característica de $I_D(V_s)$ se pode calcular o valor de I_S através de (3) e do declive da reta.

b. <u>Determinação da tensão de Pinch-off, V</u>P

Tendo em atenção que

$$I_D = I_S \left[ln \left(1 + e^{\left(\frac{V_P - V_S}{2U_T} \right)} \right) \right]^2 \tag{5}$$

Conclui-se que se $V_P=V_S$ então $I_D=0.48I_S$. Considere então uma montagem como a que se representa na figura 1 (com Is2=0.48 I_S) e determine a característica $V_P(V_G)$.

Figura 1: Montagem para determinação de V_P

c. <u>Determinação da tensão V_t</u>

A partir desta característica $V_P(V_G)$ determine o valor de V_t , considerando

$$V_P \approx \frac{V_G - V_t}{n} \tag{6}$$

d. <u>Determinação de γ e φ</u>

Considere agora a expressão exata de V_P (7) e, a partir da característica $V_P(V_G)$, determine os valores de γ e ϕ .

$$V_P = V_G' - \phi - \gamma \left[\sqrt[2]{V_G' + (0.5\gamma)^2} - 0.5\gamma \right]$$
 (7-a)

$$V_G' = V_G - V_t + \phi + \gamma^2 \sqrt{\phi}$$
 (7-b)

Tenha em atenção que deve considerar apenas tensões de gate correspondentes a inversão moderada/forte

e. <u>Determinação de n(Vg)</u>

Considere (8) e determine a característica $n(V_G)$

$$n = 1 + \frac{\gamma}{2\sqrt[2]{V_P + \phi}} \tag{7-a}$$

f. <u>Determinação do parâmetro Kp</u>

Devem obter uma característica Id(Vg), i.e

fazendo Vd=1.2 e variando Vg

Considere (1) ,(2), 7 e (9) determine os valores de β e Θ que permitem determinar Kp .

$$I_S = 2nU_T^2 \left(\frac{K_p}{1 + \Theta V_p} \right) \tag{9.a}$$

$$K_P = \beta \left(\frac{W}{L}\right) \tag{9.b}$$

Tenha em atenção que deve considerar apenas tensões de gate correspondentes a inversão moderada/forte

Implementar, em Matlab, um script que permite gerar características $I_D(V_{GS})$ e $I_D(V_{DS})$ utilizando o modelo EKV.

Sugere-se o desenvolvimento das seguintes funções:

- 1. Função get_Vp que devolve valor de VP em função da tensão VG
- 2. Função get_Is que devolve valor de I_S em função de V_G
- 3. Função get_ifr que devolve valor de corrente $i_{f(r)}$ em função de V_{G} e de $V_{\text{S(D)}}$

Comparar os resultados obtidos com o *script*, com valores obtidos por simulação. Efetuar a comparação para os dois transístores da tabela 1 e concluir quanto à escalabilidade do modelo.

Fase 3

Repetir as fases 1 e 2 para um transistor P com as mesmas dimensões.