Obtaining univariate OLS parameter estimates through elementary algebra

Consider the linear regression model

$$y_t = \alpha + \beta x_t + u_t, \quad t = 1, \dots, T.$$

Given parameter estimates $\hat{\alpha}$ and $\hat{\beta}$ the residuals are defined as

$$\hat{u}_t = y_t - \hat{\alpha} - \hat{\beta}x_t, \quad t = 1, \dots, T.$$

The OLS estimates of the parameters α and β are determined by minimizing the residual sum of squares

$$RSS = \sum_{t=1}^{T} \hat{u}_t^2.$$

We will show that the OLS estimates can be obtained by elementary algebra, without using calculus. First, express the residuals using the demeaned versions of y_t and x_t (that is, $y_t - \bar{y}$ and $x_t - \bar{x}$) as

$$\hat{u}_t = \left[(y_t - \bar{y}) - \hat{\beta} (x_t - \bar{x}) \right] - \left[\hat{\alpha} - \left(\bar{y} - \hat{\beta} \bar{x} \right) \right]$$

and note that since $\sum_{t=1}^{T} (y_t - \bar{y}) = \sum_{t=1}^{T} (x_t - \bar{x}) = 0$ we have

$$\sum_{t=1}^{T} \hat{u}_{t}^{2} = \sum_{t=1}^{T} \left[(y_{t} - \bar{y}) - \hat{\beta} (x_{t} - \bar{x}) \right]^{2} + T \left[\hat{\alpha} - (\bar{y} - \hat{\beta} \bar{x}) \right]^{2},$$

as the sum of cross products vanishes. The second term is minimized, and becomes equal to zero, when

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}.$$

Hence, it suffices to minimize the term $\sum_{t=1}^{T} \left[(y_t - \bar{y}) - \hat{\beta} (x_t - \bar{x}) \right]^2$ with respect to $\hat{\beta}$. Note that

$$\sum_{t=1}^{T} \left[(y_t - \bar{y}) - \hat{\beta} (x_t - \bar{x}) \right]^2 = S_{yy} + S_{xx} \hat{\beta}^2 - 2S_{yx} \hat{\beta}$$

where

$$S_{yy} = \sum_{t=1}^{T} (y_t - \bar{y})^2,$$

$$S_{xx} = \sum_{t=1}^{T} (x_t - \bar{x})^2,$$

$$S_{yx} = \sum_{t=1}^{T} (y_t - \bar{y}) (x_t - \bar{x}).$$

Since S_{yy} does not depend on $\hat{\beta}$, it suffices to minimize the quantity $S_{xx}\hat{\beta}^2 - 2S_{yx}\hat{\beta}$ with respect to $\hat{\beta}$. We do so, by "completing the square":

$$S_{xx}\hat{\beta}^2 - 2S_{yx}\hat{\beta} = S_{xx}\left(\hat{\beta}^2 - 2\frac{S_{yx}}{S_{xx}}\hat{\beta}\right) = S_{xx}\left[\left(\hat{\beta} - \frac{S_{yx}}{S_{xx}}\right)^2 - \frac{S_{yx}^2}{S_{xx}^2}\right].$$

It is clear that the expression above is minimized when the square $\left(\hat{\beta} - \frac{S_{yx}}{S_{xx}}\right)^2$ becomes zero, i.e., when $\hat{\beta} = \frac{S_{yx}}{S_{xx}}$. It follows that the OLS estimates of α and β are given by

$$\hat{\beta} = \frac{\sum_{t=1}^{T} (y_t - \bar{y}) (x_t - \bar{x})}{\sum_{t=1}^{T} (x_t - \bar{x})^2} = \frac{\sum_{t=1}^{T} y_t x_t - T\bar{x}\bar{y}}{\sum_{t=1}^{T} x_t^2 - T\bar{x}^2},$$

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}.$$

Obtaining multivariate OLS parameter estimates through elementary algebra

Consider the linear regression model

$$y_t = \boldsymbol{\beta}' \mathbf{x}_t + u_t, \quad t = 1, \dots, T,$$

where the parameter $\boldsymbol{\beta}$ and the regressor \mathbf{x}_t are k-dimensional vectors. Given a parameter estimate $\hat{\boldsymbol{\beta}}$ the residuals are defined as

$$\hat{u}_t = y_t - \hat{\boldsymbol{\beta}}' \mathbf{x}_t, \quad t = 1, \dots, T.$$

The OLS estimates of the parameter vector $\boldsymbol{\beta}$ are determined by minimizing the residual sum of squares

$$RSS = \sum_{t=1}^{T} \hat{u}_t^2.$$

We will show that the OLS estimates can be obtained by elementary algebra, without using calculus. Note that

$$\sum_{t=1}^{T} \hat{u}_t^2 = \sum_{t=1}^{T} \left(y_t - \hat{\boldsymbol{\beta}}' \mathbf{x}_t \right)^2 = S_{yy} + \hat{\boldsymbol{\beta}}' \mathbf{S}_{xx} \hat{\boldsymbol{\beta}} - 2 \mathbf{S}'_{yx} \hat{\boldsymbol{\beta}}$$

where

$$S_{yy} = \sum_{t=1}^{T} y_t^2,$$

$$\mathbf{S}_{xx} = \sum_{t=1}^{T} \mathbf{x}_t \mathbf{x}_t',$$

$$\mathbf{S}_{yx} = \sum_{t=1}^{T} \mathbf{x}_t y_t.$$

Since S_{yy} does not depend on $\hat{\boldsymbol{\beta}}$, it suffices to minimize the quantity $\hat{\boldsymbol{\beta}}'\mathbf{S}_{xx}\hat{\boldsymbol{\beta}} - 2\mathbf{S}'_{yx}\hat{\boldsymbol{\beta}}$ with respect to $\hat{\boldsymbol{\beta}}$. As in the case of the univariate regression, we do so by "completing the square".

Consider the function $Q(\mathbf{z}) = \mathbf{z}' \mathbf{A} \mathbf{z} - 2\mathbf{b}' \mathbf{z}$, where \mathbf{z} is an k-dimensional vector, \mathbf{A} is a symmetric and invertible $k \times k$ matrix, and \mathbf{b} is an k-dimensional vector. Note that

$$(\mathbf{z} - \mathbf{c})' \mathbf{A} (\mathbf{z} - \mathbf{c}) = \mathbf{z}' \mathbf{A} \mathbf{z} - 2 \mathbf{c}' \mathbf{A} \mathbf{z} + \mathbf{c}' \mathbf{A} \mathbf{c}$$

and so if we choose \mathbf{c} so that $\mathbf{c}'\mathbf{A} = \mathbf{b}' \Leftrightarrow \mathbf{c} = \mathbf{A}^{-1}\mathbf{b}$ we obtain

$$\left(\mathbf{z} - \mathbf{A}^{-1}\mathbf{b}\right)'\mathbf{A}\left(\mathbf{z} - \mathbf{A}^{-1}\mathbf{b}\right) = \mathbf{z}'\mathbf{A}\mathbf{z} - 2\mathbf{b}'\mathbf{z} + \mathbf{b}'\mathbf{A}^{-1}\mathbf{b}.$$

It follows that

$$\mathbf{z}'\mathbf{A}\mathbf{z} - 2\mathbf{b}'\mathbf{z} = (\mathbf{z} - \mathbf{A}^{-1}\mathbf{b})'\mathbf{A}(\mathbf{z} - \mathbf{A}^{-1}\mathbf{b}) - \mathbf{b}'\mathbf{A}^{-1}\mathbf{b}$$

and so the function $Q(\mathbf{z}) = \mathbf{z}'\mathbf{A}\mathbf{z} - 2\mathbf{b}'\mathbf{z}$ is minimized when $\mathbf{z} = \mathbf{A}^{-1}\mathbf{b}$.

Therefore, the quantity $\hat{\boldsymbol{\beta}}' \mathbf{S}_{xx} \hat{\boldsymbol{\beta}} - 2 \mathbf{S}'_{yx} \hat{\boldsymbol{\beta}}$ is minimized for $\hat{\boldsymbol{\beta}} = \mathbf{S}_{xx}^{-1} \mathbf{S}_{yx}$ and so the OLS estimate of $\boldsymbol{\beta}$ is

$$\hat{\boldsymbol{\beta}} = \mathbf{S}_{xx}^{-1} \mathbf{S}_{yx} = \left(\sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}'\right)^{-1} \left(\sum_{t=1}^{T} \mathbf{x}_{t} y_{t}\right).$$

The more frequently used form of the OLS estimate, based on vector-matrix notation, is obtained as follows. Let

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_T \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} \mathbf{x}_1' \\ \vdots \\ \mathbf{x}_T' \end{bmatrix}.$$

It then follows that $\sum_{t=1}^{T} \mathbf{x}_t y_t = \mathbf{X}' \mathbf{y}$ and $\sum_{t=1}^{T} \mathbf{x}_t \mathbf{x}'_t = \mathbf{X}' \mathbf{X}$ and, therefore, we have

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

Asymptotic Normality of OLS Estimators

Consider the linear regression model

$$y_t = \boldsymbol{\gamma}' \mathbf{z}_t + u_t, \quad t = 1, \dots, T,$$

where the parameter γ and the regressor \mathbf{z}_t are k-dimensional vectors. We assume that $\mathbb{E}[u_t] = 0$ and $\mathbb{E}[\mathbf{z}_t u_t] = \mathbf{0}_k$, that the moment matrices $\mathbb{E}[\mathbf{z}_t \mathbf{z}_t']$ and $\mathbb{E}[(\mathbf{z}_t \mathbf{z}_t') u_t^2]$ are finite, and denote $\sigma^2 = \mathbb{E}[u_t^2] = \mathbb{V}[u_t]$. The OLS estimator of γ is

$$\hat{\boldsymbol{\gamma}} = \left(\sum_{t=1}^{T} \mathbf{z}_t \mathbf{z}_t'\right)^{-1} \left(\sum_{t=1}^{T} \mathbf{z}_t y_t\right) = \boldsymbol{\gamma} + \left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{z}_t \mathbf{z}_t'\right)^{-1} \left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{z}_t u_t\right).$$

Hence,

$$\sqrt{T} \left(\hat{\gamma} - \gamma \right) = \left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{z}_{t} \mathbf{z}_{t}' \right)^{-1} \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \mathbf{z}_{t} u_{t} \right).$$

Since $\frac{1}{T} \sum_{t=1}^{T} \mathbf{z}_{t} \mathbf{z}'_{t}$ converges to $\mathbb{E}\left[\mathbf{z}_{t} \mathbf{z}'_{t}\right]$ in probability and $\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \mathbf{z}_{t} u_{t}$ converges in distribution to a multivariate normal with mean $\mathbf{0}_{k}$ and covariance matrix $\mathbb{E}\left[\left(\mathbf{z}_{t} \mathbf{z}'_{t}\right) u_{t}^{2}\right]$, we have that $\sqrt{T}\left(\hat{\boldsymbol{\gamma}} - \boldsymbol{\gamma}\right)$ converges in distribution to a multivariate normal with mean $\mathbf{0}_{k}$ and covariance matrix $\left(\mathbb{E}\left[\mathbf{z}_{t} \mathbf{z}'_{t}\right]\right)^{-1} \cdot \mathbb{E}\left[\left(\mathbf{z}_{t} \mathbf{z}'_{t}\right) u_{t}^{2}\right] \cdot \left(\mathbb{E}\left[\mathbf{z}_{t} \mathbf{z}'_{t}\right]\right)^{-1}$.

Note that if \mathbf{z}_t and u_t are assumed to be independent, then the covariance matrix simplifies to $\sigma^2 \cdot (\mathbb{E}\left[\mathbf{z}_t \mathbf{z}_t'\right])^{-1}$.

Let us now specialize to the case in which there is an intercept and only one pure regressor x_t . Then k=2 and $\mathbf{z}_t=\begin{bmatrix} 1 & x_t \end{bmatrix}'$. It follows that

$$\left(\mathbb{E}\left[\mathbf{z}_{t}\mathbf{z}_{t}'\right]\right)^{-1} = \begin{bmatrix} 1 & \mathbb{E}\left[x_{t}\right] \\ \mathbb{E}\left[x_{t}\right] & \mathbb{E}\left[x_{t}^{2}\right] \end{bmatrix}^{-1} = \frac{1}{\mathbb{V}\left[x_{t}\right]} \begin{bmatrix} \mathbb{E}\left[x_{t}^{2}\right] & -\mathbb{E}\left[x_{t}\right] \\ -\mathbb{E}\left[x_{t}\right] & 1 \end{bmatrix}$$

and

$$\begin{aligned}
& \left(\mathbb{E}\left[\mathbf{z}_{t}\mathbf{z}_{t}'\right]\right)^{-1}\left(\mathbf{z}_{t}\mathbf{z}_{t}'\right)\left(\mathbb{E}\left[\mathbf{z}_{t}\mathbf{z}_{t}'\right]\right)^{-1} \\
&= \frac{1}{\mathbb{V}[x_{t}]^{2}} \quad \begin{bmatrix} \mathbb{E}\left[x_{t}^{2}\right] & -\mathbb{E}\left[x_{t}\right] \\ -\mathbb{E}\left[x_{t}\right] & 1 \end{bmatrix} \begin{bmatrix} 1 & x_{t} \\ x_{t} & x_{t}^{2} \end{bmatrix} \begin{bmatrix} \mathbb{E}\left[x_{t}^{2}\right] & -\mathbb{E}\left[x_{t}\right] \\ -\mathbb{E}\left[x_{t}\right] & 1 \end{bmatrix} \\
&= \frac{1}{\mathbb{V}[x_{t}]^{2}} \quad \begin{bmatrix} \mathbb{E}\left[x_{t}^{2}\right] - \mathbb{E}\left[x_{t}\right]x_{t} & \mathbb{E}\left[x_{t}^{2}\right]x_{t} - \mathbb{E}\left[x_{t}\right]x_{t}^{2} \\ -\mathbb{E}\left[x_{t}\right] + x_{t} & -\mathbb{E}\left[x_{t}\right]x_{t} + x_{t}^{2} \end{bmatrix} \begin{bmatrix} \mathbb{E}\left[x_{t}^{2}\right] & -\mathbb{E}\left[x_{t}\right] \\ -\mathbb{E}\left[x_{t}\right] & 1 \end{bmatrix}
\end{aligned}$$

$$= \frac{1}{\mathbb{V}[x_t]^2} \begin{bmatrix} (\mathbb{E}[x_t^2] - x_t \mathbb{E}[x_t])^2 & -(\mathbb{E}[x_t] - x_t) (\mathbb{E}[x_t^2] - \mathbb{E}[x_t] x_t) \\ -(\mathbb{E}[x_t] - x_t) (\mathbb{E}[x_t^2] - \mathbb{E}[x_t] x_t) & (x_t - \mathbb{E}[x_t])^2 \end{bmatrix},$$

and so

$$\left(\mathbb{E}\left[\mathbf{z}_{t}\mathbf{z}_{t}'\right]\right)^{-1} \cdot \mathbb{E}\left[\left(\mathbf{z}_{t}\mathbf{z}_{t}'\right)u_{t}^{2}\right] \cdot \left(\mathbb{E}\left[\mathbf{z}_{t}\mathbf{z}_{t}'\right]\right)^{-1} \\
= \frac{1}{\mathbb{V}\left[x_{t}\right]^{2}} \begin{bmatrix}
\mathbb{E}\left[\left(\mathbb{E}\left[x_{t}^{2}\right] - x_{t}\mathbb{E}\left[x_{t}\right]\right)^{2}u_{t}^{2}\right] & -\mathbb{E}\left[\left(\left(\mathbb{E}\left[x_{t}\right] - x_{t}\right)\left(\mathbb{E}\left[x_{t}^{2}\right] - \mathbb{E}\left[x_{t}\right]x_{t}\right)\right)u_{t}^{2}\right] \\
-\mathbb{E}\left[\left(\left(\mathbb{E}\left[x_{t}\right] - x_{t}\right)\left(\mathbb{E}\left[x_{t}^{2}\right] - \mathbb{E}\left[x_{t}\right]x_{t}\right)\right)u_{t}^{2}\right] & \mathbb{E}\left[\left(x_{t} - \mathbb{E}\left[x_{t}\right]\right)^{2}u_{t}^{2}\right]
\end{bmatrix}.$$

Under the assumption that x_t and u_t are independent, we further have

$$\mathbb{E}\left[\left(x_{t}\mathbb{E}\left[x_{t}\right]-\mathbb{E}\left[x_{t}^{2}\right]\right)^{2}u_{t}^{2}\right]=\mathbb{E}\left[\left(x_{t}\mathbb{E}\left[x_{t}\right]-\mathbb{E}\left[x_{t}^{2}\right]\right)^{2}\right]\mathbb{E}\left[u_{t}^{2}\right]=\mathbb{E}\left[x_{t}^{2}\right]\cdot\mathbb{V}\left[x_{t}\right]\cdot\sigma^{2},$$

$$\mathbb{E}\left[\left(\left(\mathbb{E}\left[x_{t}\right]-x_{t}\right)\left(\mathbb{E}\left[x_{t}^{2}\right]-\mathbb{E}\left[x_{t}\right]x_{t}\right)\right)u_{t}^{2}\right] = \mathbb{E}\left[\left(\left(\mathbb{E}\left[x_{t}\right]-x_{t}\right)\left(\mathbb{E}\left[x_{t}^{2}\right]-\mathbb{E}\left[x_{t}\right]x_{t}\right)\right)\right]\mathbb{E}\left[u_{t}^{2}\right]$$

$$= \mathbb{E}\left[x_{t}\right]\cdot\mathbb{V}\left[x_{t}\right]\cdot\sigma^{2},$$

$$\mathbb{E}\left[\left(x_{t} - \mathbb{E}\left[x_{t}\right]\right)^{2} u_{t}^{2}\right] = \mathbb{E}\left[\left(x_{t} - \mathbb{E}\left[x_{t}\right]\right)^{2}\right] \mathbb{E}\left[u_{t}^{2}\right] = \mathbb{V}\left[x_{t}\right] \cdot \sigma^{2},$$

and the covariance matrix $\sigma^2 \cdot (\mathbb{E}\left[\mathbf{z}_t \mathbf{z}_t'\right])^{-1}$ simplifies to

$$\frac{\sigma^2}{\mathbb{V}[x_t]} \cdot \left[\begin{array}{cc} \mathbb{E}[x_t^2] & -\mathbb{E}[x_t] \\ -\mathbb{E}[x_t] & 1 \end{array} \right].$$

Univariate OLS: Unbiased Estimator of Error Variance

Consider the univariate linear regression model

$$y_t = \alpha + \beta x_t + u_t, \quad t = 1, \dots, T.$$

where the regressors are non-stochastic (fixed) and the disturbances have zero mean and are uncorrelated and homoscedastic with variance equal to σ^2 , i.e., $\mathbb{E}[u_t] = 0$, $\mathbb{C}[u_t, u_s] = 0$, $t \neq s$, and $\mathbb{V}[u_t] = \mathbb{E}[u_t^2] = \sigma^2$. We will show that

$$s^2 = \frac{1}{T - 2} \sum_{t=1}^{T} \hat{u}_t^2$$

is an unbiased estimator of the disturbance variance σ^2 , where $\hat{u}_t = y_t - \hat{y}_t$, $\hat{y}_t = \hat{\alpha} + \hat{\beta}x_t$, and $\hat{\alpha}$ and $\hat{\beta}$ are the OLS estimators of α and β , respectively. The OLS estimates $\hat{\alpha}$ and $\hat{\beta}$ are given by

$$\hat{\beta} = \frac{\sum_{t=1}^{T} (y_t - \bar{y}) (x_t - \bar{x})}{\sum_{t=1}^{T} (x_t - \bar{x})^2}, \quad \hat{\alpha} = \bar{y} - \hat{\beta}\bar{x},$$

which can also be expressed as

$$\hat{\beta} = \sum_{t=1}^{T} w_t y_t, \quad \hat{\alpha} = \sum_{t=1}^{T} q_t y_t,$$

where

$$w_t = \frac{x_t - \bar{x}}{\sum_{t=1}^{T} (x_t - \bar{x})^2}, \quad q_t = \frac{1}{T} - \bar{x} \cdot w_t.$$

The following properties are easily verified:

$$\sum_{t=1}^{T} w_t = 0, \quad \sum_{t=1}^{T} w_t x_t = 1, \quad \sum_{t=1}^{T} q_t = 1, \quad \sum_{t=1}^{T} q_t x_t = 0,$$

and

$$\sum_{t=1}^{T} w_t^2 = \frac{1}{\sum_{t=1}^{T} (x_t - \bar{x})^2}, \ \sum_{t=1}^{T} q_t^2 = \frac{\frac{1}{T} \sum_{t=1}^{T} x_t^2}{\sum_{t=1}^{T} (x_t - \bar{x})^2}, \ \sum_{t=1}^{T} q_t w_t = \frac{-\bar{x}}{\sum_{t=1}^{T} (x_t - \bar{x})^2}.$$

Using these properties, we observe that

$$\hat{\beta} = \sum_{t=1}^{T} w_t y_t = \sum_{t=1}^{T} w_t (\alpha + \beta x_t + u_t) = \beta + \sum_{t=1}^{T} w_t u_t,$$

and

$$\hat{\alpha} = \sum_{t=1}^{T} q_t y_t = \sum_{t=1}^{T} q_t (\alpha + \beta x_t + u_t) = \alpha + \sum_{t=1}^{T} q_t u_t.$$

Note that the residuals can be expressed as

$$\hat{u}_t = y_t - \hat{y}_t = y_t - \left(\hat{\alpha} + \hat{\beta}x_t\right) = \left(\alpha + \beta x_t + u_t\right) - \left(\hat{\alpha} + \hat{\beta}x_t\right),$$

or equivalently

$$\hat{u}_t = -\left[\left(\hat{\alpha} - \alpha\right) + \left(\hat{\beta} - \beta\right)x_t\right] + u_t.$$

Hence,

$$\hat{u}_t^2 = \left[(\hat{\alpha} - \alpha) + (\hat{\beta} - \beta) x_t \right]^2 + u_t^2 - 2 \left[(\hat{\alpha} - \alpha) + (\hat{\beta} - \beta) x_t \right] u_t$$

where

$$(\hat{\alpha} - \alpha) + (\hat{\beta} - \beta) x_t = \left(\sum_{s=1}^T q_s u_s\right) + \left(\sum_{s=1}^T w_s u_s\right) x_t.$$

It follows that

$$\mathbb{E}\left[\left[\left(\hat{\alpha} - \alpha\right) + \left(\hat{\beta} - \beta\right) x_t\right] u_t\right]$$

$$= \mathbb{E}\left[\left[\left(\sum_{s=1}^T q_s u_s\right) + \left(\sum_{s=1}^T w_s u_s\right) x_t\right] u_t\right]$$

$$= (q_t + w_t x_t) \sigma^2,$$

and so

$$\sum_{t=1}^{T} \mathbb{E}\left[\left[\left(\hat{\alpha} - \alpha\right) + \left(\hat{\beta} - \beta\right) x_t\right] u_t\right] = \sum_{t=1}^{T} \left(q_t + w_t x_t\right) \sigma^2 = (1+1)\sigma^2 = 2\sigma^2.$$

Moreover,

$$\begin{split} & \mathbb{E}\left[\left[\left(\hat{\alpha}-\alpha\right)+\left(\hat{\beta}-\beta\right)x_{t}\right]^{2}\right] \\ & = & \mathbb{E}\left[\left(\sum_{s=1}^{T}q_{s}u_{s}\right)+\left(\sum_{s=1}^{T}w_{s}u_{s}\right)x_{t}\right]^{2}\right] \\ & = & \mathbb{E}\left[\left(\sum_{s=1}^{T}q_{s}u_{s}\right)^{2}\right]+\mathbb{E}\left[\left(\sum_{s=1}^{T}w_{s}u_{s}\right)^{2}\right]\cdot x_{t}^{2}+2\cdot\mathbb{E}\left[\left(\sum_{s=1}^{T}q_{s}u_{s}\right)\left(\sum_{s=1}^{T}w_{s}u_{s}\right)\right]\cdot x_{t} \\ & = & \sigma^{2}\left[\left(\sum_{s=1}^{T}q_{s}^{2}\right)+\left(\sum_{s=1}^{T}w_{s}^{2}\right)\cdot x_{t}^{2}+2\cdot\left(\sum_{s=1}^{T}q_{s}w_{s}\right)\cdot x_{t}\right] \\ & = & \sigma^{2}\left[\frac{\frac{1}{T}\sum_{t=1}^{T}x_{t}^{2}}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}+\frac{x_{t}^{2}}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}-2\frac{\bar{x}\cdot x_{t}}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}\right], \end{split}$$

and so

$$\sum_{t=1}^{T} \mathbb{E}\left[\left[\left(\hat{\alpha} - \alpha\right) + \left(\hat{\beta} - \beta\right) x_{t}\right]^{2}\right]$$

$$= \sigma^{2} \left[\frac{\sum_{t=1}^{T} x_{t}^{2}}{\sum_{t=1}^{T} \left(x_{t} - \bar{x}\right)^{2}} + \frac{\sum_{t=1}^{T} x_{t}^{2}}{\sum_{t=1}^{T} \left(x_{t} - \bar{x}\right)^{2}} - 2\frac{T \cdot \bar{x}^{2}}{\sum_{t=1}^{T} \left(x_{t} - \bar{x}\right)^{2}}\right],$$

$$= 2\sigma^{2} \left[\frac{\frac{1}{T} \sum_{t=1}^{T} x_{t}^{2} - \bar{x}^{2}}{\frac{1}{T} \sum_{t=1}^{T} \left(x_{t} - \bar{x}\right)^{2}}\right]$$

$$= 2\sigma^{2}.$$

Finally, $\sum_{t=1}^{T} \mathbb{E}\left[u_t^2\right] = T\sigma^2$ and so

$$\sum_{t=1}^{T} \mathbb{E}\left[\hat{u}_{t}^{2}\right] = 2 \cdot \sigma^{2} + T \cdot \sigma^{2} - 2 \cdot 2 \cdot \sigma^{2} = (T-2) \cdot \sigma^{2}$$

which yields

$$\mathbb{E}\left[\frac{1}{T-2}\sum_{t=1}^T \hat{u}_t^2\right] = \sigma^2.$$

R^2 : a goodness of fit measure

Consider the linear regression model

$$y_t = \boldsymbol{\beta}' \mathbf{x}_t + u_t, \quad t = 1, \dots, T,$$

where the parameter $\boldsymbol{\beta}$ and the regressor \mathbf{x}_t are k-dimensional vectors. The regressor \mathbf{x}_t includes an intercept. In vector-matrix form, the system is written as

$$y = X\beta + u$$
.

The OLS estimator of β is

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

and the vector of residuals is

$$\hat{\mathbf{u}} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}.$$

The R^2 is defined as the square of the correlation between the actual data \mathbf{y} and the fitted data $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$, that is

$$R^{2} = \frac{\left[\sum_{t=1}^{T} (y_{t} - \bar{y}) \left(\hat{y}_{t} - \bar{\hat{y}}\right)\right]^{2}}{\left[\sum_{t=1}^{T} (y_{t} - \bar{y})^{2}\right] \left[\sum_{t=1}^{T} \left(\hat{y}_{t} - \bar{\hat{y}}\right)^{2}\right]},$$

where the averages \bar{y} and \hat{y} are defined as

$$\bar{y} = \frac{1}{T} \sum_{t=1}^{T} y_t,$$

$$\bar{\hat{y}} = \frac{1}{T} \sum_{t=1}^{T} \hat{y}_t.$$

First, we show that $\hat{y} = \bar{y}$. Note that the matrix **X** can be written as

$$\mathbf{X} = \left[egin{array}{cc} \mathbf{1}_T & \mathbf{Z} \end{array}
ight]$$

where $\mathbf{1}_T$ is the $T \times 1$ vector of ones and \mathbf{Z} is the $T \times (k-1)$ matrix of "pure" regressors.

The vector of residuals is expressed

$$\hat{\mathbf{u}} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{y} - \mathbf{X}\left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{y} = \left[\mathbf{I}_{T} - \mathbf{X}\left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\right]\mathbf{y} = \left(\mathbf{I}_{T} - \mathbf{P}_{X}\right)\mathbf{y}$$

where \mathbf{I}_T is the $T \times T$ identity matrix and

$$\mathbf{P}_X = \mathbf{X} \left(\mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{X}'.$$

Note that $\mathbf{X}'(\mathbf{I}_T - \mathbf{P}_X) = \mathbf{X}' - \mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' = \mathbf{X}' - \mathbf{X}' = \mathbf{0}_{k \times T}$ and so $\mathbf{X}'\hat{\mathbf{u}} = \mathbf{0}_k$. This implies that $\mathbf{1}'_T\hat{\mathbf{u}} = 0$, or $\frac{1}{T}\sum_{t=1}^T \hat{u}_t = \bar{\hat{u}} = 0$. Since $\hat{\mathbf{u}} = \mathbf{y} - \hat{\mathbf{y}}$, we have $\bar{y} = \bar{\hat{y}}$. It follows that

$$R^{2} = \frac{\left[\sum_{t=1}^{T} (y_{t} - \bar{y}) (\hat{y}_{t} - \bar{y})\right]^{2}}{\left[\sum_{t=1}^{T} (y_{t} - \bar{y})^{2}\right] \left[\sum_{t=1}^{T} (\hat{y}_{t} - \bar{y})^{2}\right]}.$$

Moreover,

$$\sum_{t=1}^{T} (y_t - \bar{y})^2 = (\mathbf{y} - \bar{y}\mathbf{1}_T)'(\mathbf{y} - \bar{y}\mathbf{1}_T),$$

$$\sum_{t=1}^{T} (\hat{y}_t - \bar{y})^2 = (\hat{\mathbf{y}} - \bar{y}\mathbf{1}_T)'(\hat{\mathbf{y}} - \bar{y}\mathbf{1}_T),$$

and

$$\sum_{t=1}^{T} (y_t - \bar{y}) (\hat{y}_t - \bar{y}) = (\mathbf{y} - \bar{y} \mathbf{1}_T)' (\hat{\mathbf{y}} - \bar{y} \mathbf{1}_T).$$

Note that

$$\mathbf{y} - \bar{y}\mathbf{1}_T = \left(\mathbf{I}_T - \frac{1}{T}\mathbf{J}_T\right)\mathbf{y}$$

where \mathbf{J}_T is the $T \times T$ matrix of ones, and

$$\hat{\mathbf{y}} - \bar{y}\mathbf{1}_T = \left(\mathbf{P}_X - \frac{1}{T}\mathbf{J}_T\right)\mathbf{y}.$$

The matrices \mathbf{J}_T and \mathbf{P}_X are symmetric and have the following properties $\mathbf{J}_T \mathbf{J}_T = T \mathbf{J}_T$, $\mathbf{P}_X \mathbf{P}_X = \mathbf{P}_X$ and $\mathbf{P}_X \mathbf{X} = \mathbf{X}$. From the last property it follows that $\mathbf{P}_X \mathbf{1}_T = \mathbf{1}_T$ and so $\mathbf{P}_X \mathbf{J}_T = \mathbf{J}_T$. Hence, the matrices $\mathbf{I}_T - \frac{1}{T} \mathbf{J}_T$, $\mathbf{P}_X - \frac{1}{T} \mathbf{J}_T$, and $\mathbf{I}_T - \mathbf{P}_X$ are idempotent, i.e.,

$$\left(\mathbf{I}_T - \frac{1}{T}\mathbf{J}_T\right)\left(\mathbf{I}_T - \frac{1}{T}\mathbf{J}_T\right) = \mathbf{I}_T - \frac{1}{T}\mathbf{J}_T$$

$$\left(\mathbf{P}_{X} - \frac{1}{T}\mathbf{J}_{T}\right)\left(\mathbf{P}_{X} - \frac{1}{T}\mathbf{J}_{T}\right) = \mathbf{P}_{X} - \frac{1}{T}\mathbf{J}_{T}$$

$$\left(\mathbf{I}_{T} - \mathbf{P}_{X}\right)\left(\mathbf{I}_{T} - \mathbf{P}_{X}\right) = \mathbf{I}_{T} - \mathbf{P}_{X}.$$

Using the above properties, we obtain

$$\sum_{t=1}^{T} (y_t - \bar{y})^2 = (\mathbf{y} - \bar{y}\mathbf{1}_T)'(\mathbf{y} - \bar{y}\mathbf{1}_T)$$
$$= \mathbf{y}'\left(\mathbf{I}_T - \frac{1}{T}\mathbf{J}_T\right)\left(\mathbf{I}_T - \frac{1}{T}\mathbf{J}_T\right)\mathbf{y} = \mathbf{y}'\left(\mathbf{I}_T - \frac{1}{T}\mathbf{J}_T\right)\mathbf{y},$$

$$\sum_{t=1}^{T} (\hat{y}_t - \bar{y})^2 = (\hat{\mathbf{y}} - \bar{y}\mathbf{1}_T)'(\hat{\mathbf{y}} - \bar{y}\mathbf{1}_T),$$

$$= \mathbf{y}' \left(\mathbf{P}_X - \frac{1}{T}\mathbf{J}_T\right) \left(\mathbf{P}_X - \frac{1}{T}\mathbf{J}_T\right) \mathbf{y} = \mathbf{y}' \left(\mathbf{P}_X - \frac{1}{T}\mathbf{J}_T\right) \mathbf{y},$$

and

$$\sum_{t=1}^{T} (y_t - \bar{y}) (\hat{y}_t - \bar{y}) = (\mathbf{y} - \bar{y} \mathbf{1}_T)' (\hat{\mathbf{y}} - \bar{y} \mathbf{1}_T)$$
$$= \mathbf{y}' \left(\mathbf{I}_T - \frac{1}{T} \mathbf{J}_T \right) \left(\mathbf{P}_X - \frac{1}{T} \mathbf{J}_T \right) \mathbf{y} = \mathbf{y}' \left(\mathbf{P}_X - \frac{1}{T} \mathbf{J}_T \right) \mathbf{y}.$$

The total sum of squares is defined as

$$TSS \equiv \sum_{t=1}^{T} (y_t - \bar{y})^2 = \mathbf{y}' \left(\mathbf{I}_T - \frac{1}{T} \mathbf{J}_T \right) \mathbf{y},$$

the explained sum of squares is defined as

$$ESS = \sum_{t=1}^{T} (\hat{y}_t - \bar{y})^2 = \mathbf{y}' \left(\mathbf{P}_X - \frac{1}{T} \mathbf{J}_T \right) \mathbf{y},$$

and the residual sum of squares as

$$RSS = \sum_{t=1}^{T} (y_t - \hat{y}_t)^2 = \sum_{t=1}^{T} \hat{u}_t^2.$$

Since

$$\mathbf{y} - \hat{\mathbf{y}} = (\mathbf{I}_T - \mathbf{P}_X) \mathbf{y}$$

we have

$$RSS = \sum_{t=1}^{T} (y_t - \hat{y}_t)^2 = \mathbf{y}' (\mathbf{I}_T - \mathbf{P}_X) (\mathbf{I}_T - \mathbf{P}_X) \mathbf{y} = \mathbf{y}' (\mathbf{I}_T - \mathbf{P}_X) \mathbf{y}.$$

It follows that

$$TSS = ESS + RSS$$

and

$$R^{2} = \frac{\left[\mathbf{y}'\left(\mathbf{P}_{X} - \frac{1}{T}\mathbf{J}_{T}\right)\mathbf{y}\right]^{2}}{\left[\mathbf{y}'\left(\mathbf{I}_{T} - \frac{1}{T}\mathbf{J}_{T}\right)\mathbf{y}\right]\left[\mathbf{y}'\left(\mathbf{P}_{X} - \frac{1}{T}\mathbf{J}_{T}\right)\mathbf{y}\right]}$$
$$= \frac{\mathbf{y}'\left(\mathbf{P}_{X} - \frac{1}{T}\mathbf{J}_{T}\right)\mathbf{y}}{\mathbf{y}'\left(\mathbf{I}_{T} - \frac{1}{T}\mathbf{J}_{T}\right)\mathbf{y}} = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}.$$

Note that ESS and RSS are both nonnegative quantities and so $0 \le ESS \le TSS$ and $0 \le RSS \le TSS$. Equivalently, R^2 takes values between 0 and 1. If the regression provides a perfect fit, then $RSS = 0 \Leftrightarrow ESS = TSS \Leftrightarrow R^2 = 1$. If the regression does not have any explanatory power, then $ESS = 0 \Leftrightarrow R^2 = 0$.