Simulated Annealing for Makespan Scheduling

Kenneth Young, Lotte Romijn, Ria Szeredi

University of Melbourne

Overview

- Simulated Annealing
 - * Cooling Schedule
 - Initial Temperature
- Experimental Results
- * Comparison to Greedy Local Search and Variable-Depth Search

Overview

- Simulated Annealing
 - Cooling Schedule
 - Initial Temperature
- * Experimental Results
- * Comparison to Greedy Local Search and Variable-Depth Search

Simulated Annealing: Pseudo-code

- * Allows moving to a worse solution* more here
- Slight modification to track the best solution found by the algorithm
- * Free parameters:
 - 1. Neighbourhood: 2-exchange "jump"
 - 2. Cooling schedule
 - 3. Initial temperature value

Simulated Annealing: Cooling Schedules

* 4 different cooling schedules considered:

1. Exponential multiplicative:
$$f_1(T_0, I) = T_0 \cdot \mu^I$$

2. Simple exponential:
$$f_2(T_0, I) = T_0 - I$$

3. Linear multiplicative:
$$f_3(T_0, I) = \frac{1}{1+I} \cdot T_0$$

4. Quadratic multiplicative:
$$f_4(T_0, I) = \frac{1}{1 + I^2} \cdot T_0$$

Simulated Annealing: Initial Temperature

- * Good choice of initial temperature depends largely on instance
- * Recursive? algorithm by Ben-Ameur [1]:
 - * Generates a temperature so that the probability of accepting a cost increase is equal to a specified value

Overview

- * Simulated Annealing
 - * Cooling Schedule
 - * Initial Temperature
- * Experimental Results
- * Comparison to Greedy Local Search and Variable-Depth Search

1. Which cooling schedule performs best?

2. Is the algorithm for the generation of the **initial temperature** efficient?

1. Which cooling schedule performs best?

2. Is the algorithm for the generation of the initial temperature efficient?

Experiments: Cooling Schedules

- 1. Which cooling schedule performs best?
 - Quadratic Multiplicative
- 2. Is the algorithm for the generation of the initial temperature efficient?

- 1. Which cooling schedule performs best?
 - Quadratic Multiplicative
- 2. Is the algorithm for the generation of the **initial temperature** efficient?

Experiments: Initial Temperature

- * Including initial temperature algorithm as part of Simulated Annealing is not time efficient
- * Temperatures generated for a range of instances of different sizes

Experiments: Initial Temperature

* Conclusion: choose initial temperature to be 1.5 times the maximum processing time

- 1. Which cooling schedule performs best?
 - Quadratic Multiplicative
- 2. Is the algorithm for the generation of the **initial temperature** efficient?
 - * Best method: choose T_0 to be 1.5 times the maximum processing time
- 3. How does the performance of Simulated Annealing compare to GLS and VDS?

- 1. Which cooling schedule performs best?
 - Quadratic Multiplicative
- 2. Is the algorithm for the generation of the initial temperature efficient?
 - * Best method: choose T_0 to be 1.5 times the maximum processing time
- 3. How does the performance of Simulated Annealing compare to GLS and VDS?

Experiments: GLS & VDS Comparison

Summary

- We applied Simulated Annealing to the Makespan Scheduling problem
- Different cooling schedules were investigated
- Simulated Annealing found to be superior to GLS and VDS

Thank you!

References

1. Ben-Ameur, W. (2004). Computing the initial temperature of simulated annealing. Computational Optimization and Applications, 29(3):369–385.