Copyright © 2021 Shababuddin Khan | sk@pcampus.edu.np

Department of Electrical Engineering, Pulchowk Campus, Tribhuwan University, Nepal

A Series of Module has been designed and developed by author mentioned above with full copyright for a course of **Control System** to demonstrante the concept of control system and its implementation in real life to second year Aerospace engineering students at Tribhuwan University.

MODULE 4: Time Response of Control System

Time Response Analysis is the response given by the system which is function of the time, to the applied excitation is called time response of a control system. The **time response** represents how the state of a dynamic system changes in time when subjected to a particular input. The time response of a linear dynamic system consists of the sum of the **transient response** which depends on the initial conditions and the **steady-state response** which depends on the system input.

Table of Contents

MODULE 4: Time Response of Control System	1
4.1 Standard Test Signal	1
4.2 Laplace Transform of Test Signal	
4.3 Time Response of First Order System with different Sources	
4.3.1 With Step Input	
4.3.2 With Ramp Input	
4.3.3 With Parabolic Input	ε
4.4 Effect of Variation of Time Constant in First Order System	7
4.5 Effect of Variation of Pole's Location on Time Response	g
4.6 Time Response of Second Order with different sources	
4.6.1 With Step Input	11
4.6.2 With Ramp Input	12
4.6.3 With Parabolic Input	13
4.7 Effect of Variation of Damping Ratio	
4.8 Effect of Addition of Zeros on Time Response	16
4.9 Effect of Addition of Poles on Time Response	20
4.10 What about Dominating Poles?	23
4.11 Transient Response Specfications	23
4.12 Working with DC Motor	
4.12.1 DC Motor Position Control in Script	
4.12.2 DC Motor Position Control in Simulink	27
References	28

4.1 Standard Test Signal

Those signals which are most commonly used as reference inputs to the system are defined as **Standard Test Inputs.** They are:

- A sudden change [Step Signal]
- A momentary shock [Impulse Signal]
- A constant velocity [Ramp Signal]
- A constant acceleration [Parabolic Signal]

```
%Plotting the signal
plot(t,[impulse unitstep ramp quad])
% xlim([-2 2])
% ylim([-1 2])
legend impulse step ramp quad
```



```
title('Plot of Standard Test Signals')
```

```
xlabel('Time(s)')
ylabel('Magnitute')
```

4.2 Laplace Transform of Test Signal

4.3 Time Response of First Order System with different Sources

$$G(s) = \frac{10}{s+10}$$

4.3.1 With Step Input

```
% Defining the System
syms s;
G1=10/(s+10);

% For Step Signal
A=6;
R=A/s;
r=ilaplace(R);
```

```
% Output in s-Domain
C1=G1*R;
% Output in Time Domain
c1=ilaplace(C1)
```

```
c1 = 6 - 6e^{-10t}
```

```
%Time Response of System
figure
fplot(c1,[0,10]);
hold on
fplot(r,[0,10]);
hold off
xlabel('Time(s)');
ylabel('Magnitute');
title('Time Resonse with Step Input');
legend Response Reference;
ylim([0,8])
```


4.3.2 With Ramp Input

```
% Defining the System
```

```
syms s;
G1=10/(s+10);

% For Ramp Signal
A=1;
R=A/s^2;
r=ilaplace(R);

% Output in s-Domain
C1=G1*R;
% Output in Time Domain
c1=ilaplace(C1)
```

```
c1 = t + \frac{e^{-10t}}{10} - \frac{1}{10}
```

```
%Time Response of System
figure
fplot(c1,[0,20]);
hold on
fplot(r,[0,20]);
hold off
xlabel('Time(s)');
ylabel('Magnitute');
title('Time Resonse with Ramp Input');
legend Response Reference;
```


4.3.3 With Parabolic Input

```
% Defining the System
syms s;
G1=10/(s+10);

% For Parabolic Signal
A=1;
R=A/s^3;
r=ilaplace(R);

% Output in s-Domain
C1=G1*R;
% Output in Time Domain
c1=ilaplace(C1)
```

c1 =
$$\frac{t^2}{2} - \frac{e^{-10t}}{100} - \frac{t}{10} + \frac{1}{100}$$

```
%Time Response of System figure
```

```
fplot(c1,[0,10]);
hold on
fplot(r,[0,10]);
hold off
xlabel('Time(s)');
ylabel('Magnitute');
title('Time Resonse with Parabolic Input');
legend Response Reference;
```


4.4 Effect of Variation of Time Constant in First Order System

$$G(s) = \frac{1}{1 + T s}$$

```
%Defining the System Parametera
T=0.8;

% Defining the System
syms s;
G1=1/(1+T*s);

% For Different Inputs Signal
A=1;
j=3;
```

```
R=A/s^j;
r=ilaplace(R);

% Output in s-Domain
C1=G1*R;
% Output in Time Domain
c1=ilaplace(C1)
```

c1 = $\frac{t^2}{2} - \frac{16e^{-\frac{5t}{4}}}{25} - \frac{4t}{5} + \frac{16}{25}$

```
%Time Response of System
figure
fplot(c1,[0,5]);
hold on
fplot(r,[0,5]);
hold off
xlabel('Time(s)');
ylabel('Magnitute');
title('Study of Effect of Variation of Time Constant');
legend Response Reference;
```


4.5 Effect of Variation of Pole's Location on Time Response

$$G(s) = \frac{1}{s+a}$$

```
%Defining the System Parametera
a=6.5;
s=tf('s');
G=10/(s+a);
pzplot(G)
```



```
% Defining the System
syms s t;
G1=10/(s+a);

% For Different Inputs Signal
A=1;
j=1;
R=A/s^j;
r=ilaplace(R);

% Output in s-Domain
```

```
C1=G1*R;

% Output in Time Domain

c1=ilaplace(C1)

c1 = \frac{20}{13} - \frac{20e^{-\frac{13t}{2}}}{13}
```

```
%Time Response of System
figure
fplot(c1,[0,5]);
hold on
fplot(r,[0,5]);
hold off
xlabel('Time(s)');
ylabel('Magnitute');
title('Study of Effect of Variation of location of Poles');
legend Response Reference;
```


4.6 Time Response of Second Order with different sources

$$G(s) = \frac{24}{s^2 + 5s + 24}$$

4.6.1 With Step Input

```
% Defining the System
syms s;
G1=24/(s^2+5*s+24);  % Refer Example 2 of Lecture 3.4

% For Step Signal
A=14;
R=A/s;
r=ilaplace(R);

% Output in s-Domain
C1=G1*R;
% Output in Time Domain
c1=ilaplace(C1)
```

c1 =

$$14 - 14e^{-\frac{5t}{2}} \left(\cos\left(\frac{\sqrt{71} \ t}{2}\right) + \frac{5\sqrt{71} \sin\left(\frac{\sqrt{71} \ t}{2}\right)}{71} \right)$$

```
%Time Response of System
figure
fplot(c1,[0,10]);
hold on
fplot(r,[0,10]);
hold off
xlabel('Time(s)');
ylabel('Magnitute');
title('Time Resonse with Step Input');
legend Response Reference;
```


4.6.2 With Ramp Input

```
% Defining the System
syms s;
G1=24/(s^2+5*s+24);  % Refer Example 2 of Lecture 3.4

% For Ramp Signal
A=4;
R=A/s^2;
r=ilaplace(R);

% Output in s-Domain
C1=G1*R;
% Output in Time Domain
c1=ilaplace(C1)
```

c1 =
$$4t + \frac{5e^{-\frac{5t}{2}} \left(\cos\left(\frac{\sqrt{71}t}{2}\right) - \frac{23\sqrt{71}\sin\left(\frac{\sqrt{71}t}{2}\right)}{355}\right)}{6} - \frac{5}{6}$$

```
%Time Response of System
figure
fplot(c1,[0,20]);
hold on
fplot(r,[0,20]);
hold off
xlabel('Time(s)');
ylabel('Magnitute');
title('Time Resonse with Ramp Input');
legend Response Reference;
```


4.6.3 With Parabolic Input

```
% Defining the System
syms s;
G1=24/(s^2+5*s+24);  % Refer Example 2 of Lecture 3.4

% For Parabolic Signal
A=9;
R=A/s^3;
r=ilaplace(R);

% Output in s-Domain
C1=G1*R;
% Output in Time Domain
```

```
c1=ilaplace(C1)
```

c1 =

$$\frac{9t^2}{2} - \frac{15t}{8} - \frac{e^{-\frac{5t}{2}} \left(\cos\left(\frac{\sqrt{71}t}{2}\right) - \frac{235\sqrt{71}\sin\left(\frac{\sqrt{71}t}{2}\right)}{71} \right)}{64} + \frac{1}{64}$$

```
%Time Response of System
figure
fplot(c1,[0,10]);
hold on
fplot(r,[0,10]);
hold off
xlabel('Time(s)');
ylabel('Magnitute');
title('Time Resonse with Parabolic Input');
legend Response Reference;
```


4.7 Effect of Variation of Damping Ratio

Fig: Effect of Variation of Damping Ratio [2]

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

```
% Natural Frequency
w=10;  % Also Check for variation of Wn
% Damping Ratio
Z=1.5;

% Defining the System
syms s;
G2=w^2/(s^2+2*Z*w*s+w^2);

% For Step Signal
A=2;
R=A/s;

%Response in Time Domain
r=ilaplace(R);
```

```
% Output in s-Domain
C2=G2*R;
% Output in Time Domain
c2=ilaplace(C2)
```

c2 = $2 - 2e^{-15t} \left(\cosh(5\sqrt{5}t) + \frac{3\sqrt{5}\sinh(5\sqrt{5}t)}{5} \right)$

```
%Time Response of System
figure
fplot(c2,[0,10]);
hold on
fplot(r,[0,10]);
hold off
```


4.8 Effect of Addition of Zeros on Time Response

Fig: Effect of Addition of Zeros[2]

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

$$y_1(t) = y(t) + \frac{1}{\alpha} \frac{dy(t)}{dt}$$

```
% Natural Frequency
w=10;
% Damping Ratio
Z=0.3;
% Variable for Variation of Zeros
a=20;

%FOr Plotting in P_Z Plane
s=tf('s');
G2S=w^2/(s^2+2*Z*w*s+w^2);
Za=(s+a)/a;
G=G2S*Za;
pzplot(G)
```



```
% Defining the System
syms s;
G1=w^2/(s^2+2*Z*w*s+w^2);
% Assign Zeros to the System
G2S=w^2/(s^2+2*Z*w*s+w^2);
Za=(s+a)/a; % Noramlized Zero
G2=G2S*Za;
              % Zero Addition
% For Different Inputs Signal
A=1;
j=1;
R=A/s^j;
r=ilaplace(R);
% Output in s-Domain
C1=G1*R;
C2=G2*R;
D=s*C1;
% Output in Time Domain
c1=ilaplace(C1)
```

c1 =

$$1 - e^{-3t} \left(\cos(\sqrt{91} \ t) + \frac{3\sqrt{91} \sin(\sqrt{91} \ t)}{91} \right)$$

c2=ilaplace(C2)

c2 = $1 - e^{-3t} \left(\cos(\sqrt{91} \ t) - \frac{2 \sqrt{91} \sin(\sqrt{91} \ t)}{91} \right)$

d=ilaplace(D)

 $\frac{100 \sqrt{91} e^{-3t} \sin(\sqrt{91} t)}{91}$

```
%Time Response of System
figure
fplot(c1,[0,5]);
hold on
fplot(r,[0,5]);
fplot(c2,[0,5]);
%fplot(d,[0,5]);
hold off
xlabel('Time(s)');
ylabel('Magnitute');
title('Study of Effect of Addition of Zeros');
legend Before-adding-Zero Reference After-Adding-Zero;
```


4.9 Effect of Addition of Poles on Time Response

Fig. 6.22 Unit-step response of a standard second-order system $(\zeta = 0.5, \omega_n = 1)$ for several locations of an additional

Fig: Effect of Addition of Poles[2]

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} * \frac{a}{s+a}$$

$$Y_2(s) = Ae^{-\alpha t} + y(t)$$

```
% Natural Frequency
w=10;
% Damping Ratio
Z=0.3;
% Variable for Variation of Zeros
a=1;

%FOr Plotting in P_Z Plane
s=tf('s');
G2S=w^2/(s^2+2*Z*w*s+w^2);
Za=a/(s+a);
G=G2S*Za;
pzplot(G)
```



```
% Defining the System
syms s;
G1=w^2/(s^2+2*Z*w*s+w^2);
```

```
% Assign Zeros to the System
G2S=w^2/(s^2+2*Z*w*s+w^2);
Za=a/(s+a); % Noramlized Pole
G2=G2S*Za; % Pole Addition

% For Different Inputs Signal
A=1;
j=1;
R=A/s^j;
r=ilaplace(R);

% Output in s-Domain
C1=G1*R;
C2=G2*R;
% Output in Time Domain
c1=ilaplace(C1)
```

c1 = $1 - e^{-3t} \left(\cos(\sqrt{91} \ t) + \frac{3\sqrt{91} \sin(\sqrt{91} \ t)}{91} \right)$

c2=ilaplace(C2)

c2 = $\frac{e^{-3t} \left(\cos(\sqrt{91} \ t) - \frac{17 \sqrt{91} \sin(\sqrt{91} \ t)}{91}\right) - \frac{20 e^{-t}}{19} + 1}{19}$

```
%Time Response of System
figure
fplot(c1,[0,5]);
hold on
fplot(r,[0,5]);
fplot(c2,[0,5]);
hold off
xlabel('Time(s)');
ylabel('Magnitute');
title('Study of Effect of Addition of Poles');
legend Before-adding-Poles Reference After-Adding-Poles;
```


4.10 What about Dominating Poles?

If ratio of real part of one pole is greater than 5 times the other than we can say the former one is dominant poles. SImilar case is with Poles and Zeros. They are nearer to the Origin.

Fig: Dominant Poles with Zeros and Other Poles [2]

4.11 Transient Response Specfications

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

```
% Natural Frequency
w=6;
% Damping Ratio
Z=0.06;

% Defining the System
num=w^2;
den=[1 2*Z*w w^2];
G=tf(num,den);
% To Plot Step Function Response
step(G)
```


%To Get Transient Response Data
S=stepinfo(G)

S = struct with fields:

RiseTime: 0.1820
SettlingTime: 10.5765
SettlingMin: 0.3146
SettlingMax: 1.8279
Overshoot: 82.7909
Undershoot: 0
Peak: 1.8279

PeakTime: 0.5236

S.RiseTime

```
ans = 0.1820

% Defining Settling Threshods
```

```
% Defining Settling Threshods
S1 = stepinfo(G,'SettlingTimeThreshold',0.005);
st1 = S1.SettlingTime
```

st1 = 14.2632

4.12 Working with DC Motor

4.12.1 DC Motor Position Control in Script

```
J = 3.2284E-6;
b = 3.5077E-6;
K = 0.0274;
R = 4;
L = 2.75E-6;
s = tf('s');
Pos_motor = K/(s*((J*s+b)*(L*s+R)+K^2));
step(Pos_motor)
```


t=0:0.01:0.2; step(Pos_motor,t)


```
ans = logical

0

ans = 3×1

10<sup>6</sup> ×

0

-1.4545

-0.0001
```

4.12.2 DC Motor Position Control in Simulink

Fig: Simulink Model of DC Motor

Fig: DC Motor with Step Input

Fig: Time Response of Unit Step Input of Position Control DC Motor

References

- 1. Mathworks.inc
- 2. Nise, Norman S. "Control system engineering, John Wiley & Sons." Inc, New York(2011).
- 3. https://ctms.engin.umich.edu/CTMS/index.php?aux=Home
- 4. Bakshi, Uday A., and Varsha U. Bakshi. Control system engineering. Technical Publications, 2020.