Advanced Game Theory - Exercise 3

3.1

Assumption we make: finite number of pure strategies \Rightarrow there exists a Nash-Equilibrium.

When a strategy σ_i is eliminated then so is every strategy that plays σ_i with positive probability.

 S^{∞} : set of strategies that survive iterated elimination of strictly dominated strategies. $|S^{\infty}|=1.$

Claim: If (s_1^*, \ldots, s_I^*) is a Nash-Equilibrium, then $s^* \in S^{\infty}$.

Proof: Let (s_1^*, \ldots, s_I^*) be a Nash-Equilibrium and assume $s^* \notin S^{\infty}$. Let i be the player whose strategy is eliminated first (in round k).

i.e. $\exists \sigma_i, \sigma'_i \in \Delta(S_i)$:

$$u_i(\sigma_i, s_{-i}) > u_i(\sigma_i', s_{-i}) \quad \forall s_i \in S_{-i}^{k-1}$$

and σ'_i is played with positiv probability in s_i^* .

Let s_i' be derived from s_i^* with replacing σ_i' by σ_i .

$$\Rightarrow u_{i}(s'_{i}, s^{*}_{-i}) = u_{i}(s^{*}_{i}, s^{*}_{-i}) + \underbrace{s^{*}_{i}}_{>0} (\sigma'_{i}) \underbrace{\left[u_{i}(\sigma_{i}, s^{*}_{-i}) - u_{i}(\sigma'_{i}, s^{*}_{-i})\right]}_{>0}$$
$$> u_{i}(s^{*}_{i}, s^{*}_{-i})$$

which contradicts the fact that s^* is a Nash-Equilibrium.

Player 2

L M, R

		LL	L	Μ,	R
Player 1	U	100, 2	-100, 1	0,0	-100, -100
	D	-100, -100	100, -49	1,0	100, 2

- a) Play M, todo: explanation
- b) Pure Nash-Equilibria: (U, LL) and (D, R) Mixed Equilibria:
 - (i) Player 1 mixes U and D with probabilities p and 1-p respectively.
 - (ii) Player 2 can mix between: (LL, L), (LL, M), (LL, R), (L, M), (L, R),

$$(M,R), (LL,L,M), (LL,L,R), (LL,M,R), (L,M,R), (LL,L,M,R)$$

Claim: Only (LL, L) will lead to a Nash-Equilibrium.

Proof (Using the Proposition after the Definition of Mixed Strategy NE): Only (LL, L) will lead to a Nash Equilibrium

$$u_2(LL) = u_2(L) \iff 2p - 100(1-p) = p - 49(1-p)$$

$$\iff p = \frac{51}{52}$$

Therefore: $u_2(LL) = u_2(L) = \frac{1}{26}$, $u_2(M) = 0$, $u_2(R) < 0$.

$$u_1(u) = u_1(D) \iff 100q - 100(1 - q) = -100q + 100(1 - q)$$

 $\iff q = \frac{1}{2}$

where q is the probability of Player 2 playing LL.

$$\Rightarrow \text{ Nash Equilibrium: } \left(\frac{51}{52}U + \frac{25}{26}D, \frac{1}{2}LL + \frac{1}{2}L\right).$$

Now we have proven that (LL, L) is a Nash Equilibrium. We will subsequently show that no other Nash Equilibrium exists:

- (LL, M): $u_2(LL) \stackrel{!}{=} u_2(M) = 0 \iff p = \frac{50}{51}$, but then $u_2(L) = \frac{1}{51} > 0$ and hence deviation would result in a higher payout. Therefore (LL, M) is no Nash Equilibrium.
- (LL, R): $u_2(LL) = u_2(R) \iff p = \frac{1}{2}$, but then $u_2(LL) = -49$ and $u_2(M) = 0 > -49$ and again a contradiction to the Nash Equilibrium (LL, R)
- (L, M), (L, R), (M, R), (M, L, R): choosing on of these strategies we can see in the Normalform representation that Player 1 will always play $D \Rightarrow$ Player 2 plays R without mixing it, hence there is no positive probability in playing M or L.
- For the remaining cases four cases the proof follows analogously; we find the necessary probability and show that deviation is enlarging the utility.

- c) M is not part of any Nash Equilibrium. However, M is best response to $\frac{1}{2}U + \frac{1}{2}D$ and therefore rationalisable.
- d) Whenever communication is possible, we can even expect (U, LL) or (D, R) as outcome as both players would profit.