Reading-13

Thaqib Mo.

November 6, 2020

1 Axiom of choice

Suppose \mathcal{C} is a non-empty collection of sets then the Cartesian product of all sets in \mathcal{C} is written as:

$$\prod_{C \in \mathcal{C}} C$$

If \mathcal{C} is an infinite collection of sets then we need infinite ordered tuple of elements. Then we need a function $\alpha: \mathcal{C} \to \bigcup \mathcal{C}$. Then for each $C \in \mathcal{C}$ we have $\alpha(C) \in C$. The function $\alpha(C)$ should give the C-th coordinate of the infinite tuple. We can formally define this as:

Definition 1: Cartesian Product for infinite sets

Let \mathcal{C} denote a non empty collection of sets. The Cartesian product $\prod_{C \in \mathcal{C}} C$ is the set of all functions $\alpha : \mathcal{C} \to \bigcup \mathcal{C}$ with the property $\alpha(C) \in C$.

We can use this definition to redefine the Cartesian product, even for finitely many sets. We can define an ordered pair $(a, b) \in A \times B$ as $(\alpha(A), \alpha(B)) \in A \times B$.

The problem arises when for an infinite number of sets in C we cannot show (using the standard axioms of set theory) that:

$$\prod_{C \in \mathcal{C}} C \neq \varnothing$$

For this we need a new axiom.

Axiom 1: Axiom of Choice

The Cartesian product of any non-empty collection of non-empty sets is non-empty.

This axiom is also equivalent to the existence of a choice function for every non-empty collection of set \mathcal{C} .

2 Zorn's Lemma and the Well-Ordering Theorem

Another statement about partially ordered set is logically equivalent to Axiom of choice.

Theorem 1: Zorn's Lemma

Let A be a partially ordered set with order relation \leq . Suppose that every chain in A has an upper bound in A, then A has a maximal element.

A Corollary that follows from Zorn's Lemma is:

Corollary 1

Suppose that A is a partially ordered set with order relation \leq then every chain \mathcal{C} in A is contained in a maximal chain \mathcal{M} .

Proof. Let \mathcal{C} be an arbitrary chain in A. Consider the set Γ of all chains \mathcal{C} in A. The subset relation \subseteq relation on $\mathcal{P}(A)$ giving the order relation between elements of Γ . Now suppose we have a chain \mathcal{D} in the ordered set Γ . We can show that \mathcal{D} is an upper bound in γ

If we define $C_0 = \bigcup \mathcal{D}$, the union of all the, clearly for each $C' \in \mathcal{D}$ we have $C' \subseteq C_0$. Since C_0 contains every chain of \mathcal{D} , each of which contains C we know that C_0 contains C. Therefore C_0 is an upper bound on \mathcal{D} by definition. If we can verify $C_0 \in \Gamma$ that means C_0 is a chain in A

Suppose we have $a_1, a_2 \in \mathcal{C}_0$. By construction each element of a_1 and a_2 belong to a chain in \mathcal{D} , so we can write $a_1 \in \mathcal{C}_1$ and $a_2 \in \mathcal{C}_2$. Since \mathcal{D} is a chain with respect to the relation \subseteq , we can either have $\mathcal{C}_1 \subseteq \mathcal{C}_2$ or we can have $\mathcal{C}_2 \subseteq \mathcal{C}_1$. Without loss of generality we say $\mathcal{C}_1 \subseteq \mathcal{C}_2$. Thus both $a_1, a_2 \in \mathcal{C}_2$. Since \mathcal{C}_2 is a chain, the elements in \mathcal{C}_2 are comparable with \preceq , this verifies that \mathcal{C}_0 is a chain in A, as $C_0 \in \Gamma$.

Now if we apply Zorns lemma to Γ which is ordered by \subseteq , there is a chain $\mathcal{M} \in \Gamma$, maximal with respect to the containment relation \subseteq . This is a chain in A with respect to the ordering \preceq , as it is maximal with with respect to \subseteq all chains \mathcal{C} of A are contained in \mathcal{M} and it is not properly contained in any chain.

The well ordering theorem is another statement known to be equivalent to axiom of choice. We can define the WOP of \mathbb{N} more generally.

Definition 2: Well ordering

Suppose A is a set with order relation \leq . The ordered set A is said to be well ordered if every non empty subset of A has a least element with respect to the relation \leq

This leads to the well ordering theorem:

Theorem 2: Well-Ordering Theorem

Every non empty set has a well ordering.

In other words, if A is a non empty set then there is a an order relation \leq on A, such that A is well ordered with respect to \leq . This means that the set \mathbb{R} has as well ordering, not with respect to the relation \leq as this fails for any open interval in \mathbb{R} but according to well ordering theorem there exits a relation \leq on \mathbb{R} on which every subset of \mathbb{R} will have a least element with respect to \leq which is not the relation \leq .

The 3 statements Axiom of choice, Well-Ordering Theorem, Zorn's Lemma are all logically equivalent.