Sketching, streaming, and sub-linear space algorithms

Piotr Indyk

MIT

(currently at Rice U)

Data Streams

- A data stream is a sequence of data that is too large to be stored in available memory
- Examples:
 - Network traffic
 - Sensor networks
 - Approximate query optimization and answering in large databases
 - Scientific data streams
 - ...and this talk

Outline

- Data stream model, motivations, connections
- Streaming problems and techniques
 - Estimating number of distinct elements in a stream
 - Other quantities: Norms, moments, heavy hitters...
 - What else ? Geometry, graphs, text,...
- Streaming and sparse approximations
 - Connections (compressive sensing, coding theory)
 - New developments
- 1-2 proofs, 3 2 open problems

Basic Data Stream Model

Single* pass over the input data: i₁, i₂,...,i_N

```
▼
8219192463942342385256 ...
```

- Bounded storage (typically N^{α} or $\log^{c} N$)
 - Units of storage: bits, numbers or "elements"
- Fast processing time

^{*}Small number of passes interesting as well

Comments

- Almost all algorithms are approximate
- We assume worst-case input stream
 - Adversaries do exist

- General algorithms
- Modular composition

- Randomized algorithms OK (often necessary)
 - Randomness in the algorithm, not the input

Connections

8219192463942342385256 ...

- External memory algorithms
 - Linear scan works best
- Communication complexity
 - Low-space algorithms yield lowcommunication protocols
- Metric embeddings, sub-linear time algorithms, pseudorandomness, compressive sensing, error-correcting codes...

Part 1:

Streaming problems and techniques

Counting Distinct Elements

[Flajolet-Martin'85] (a version)

- Stream elements: numbers from {1...n}
- Goal: estimate the number of distinct elements DE in the stream
 - Up to 1±ε
 - With probability 1-P
- Simpler (gap) problem: for a given T>0, provide an algorithm which, with probability 1-P:
 - Answers YES, if DE> $(1+\epsilon)T$
 - Answers NO, if DE< $(1-\epsilon)T$
- Reduction to gap problem problem:
 - Run $\log_{1+\epsilon}$ n copies of the algorithm in parallel, with $T=1, 1+\epsilon, (1+\epsilon)^2, ..., n$
 - − Total space multiplied by $log_{1+ε} n \approx log(n)/ε$
 - Probability of failure multiplied by the same factor

Vector Interpretation

Stream: 8 2 1 9 1 9 2 4 4 9 4 2 5 4 2 5 8 5 2 5

- Initially, x=0
- Insertion of i is interpreted as

$$x_i = x_i + 1$$

- Want to estimate the number of non-zero entries in x (a.k.a. ||x||₀)
- ...without storing all coordinates

Is DE> $(1+\epsilon)T$?

- First attempt:
 - Choose a random set S of coordinates
 - For each i, we have Pr[i∈S]=1/T
 - Maintain $Sum_S(x) = \Sigma_{i \in S} x_i$
 - YES, if $Sum_s(x)>0$
 - NO, if $Sum_s(x)=0$
- Analysis:
 - $Pr[Sum_s(x)=0] = (1-1/T)^{DE}$
 - For T "large enough": (1-1/T)^{DE} ≈e^{-DE/T}
 - Using calculus, for ε small enough:
 - If DE> $(1+\epsilon)T$, then Pr < $e^{-(1+\epsilon)}$ < $1/e \epsilon/3$
 - if DE< $(1-\epsilon)T$, then Pr > $e^{-(1-\epsilon)}$ > $1/e + \epsilon/3$

Is $DE>(1+\varepsilon)T$? (ctd)

- From our first attempt:
 - If DE> $(1+\epsilon)T$, then $Pr[Sum_S(x)=0] < 1/e-\epsilon/3$
 - if DE< $(1-\epsilon)T$, then $Pr[Sum_S(x)=0] > 1/e+\epsilon/3$
- Second attempt:
 - Select sets $S_1 \dots S_k$, $k=O(\log(1/P)/\epsilon^2)$
 - Let $Z = \text{number of } Sum_{Si}(x)$ that are equal to 0
 - By Chernoff bound, with probability >1-P
 - If DE> $(1+\epsilon)T$, then Z<k/e
 - If DE< $(1-\epsilon)T$, then Z>k/e
- Total space: $O(\log(n)/\epsilon \log (1/P)/\epsilon^2)$ numbers in range 0...N
 - Can reduce to $O(\log (1/P)/\epsilon^2)$ numbers
 - The $1/\epsilon^2$ term essentially tight for single pass [Woodruff'04, Nelson-Woodruff'08]
 - ...but not known for two or more passes the bound holds as well [Brody-Chakrabarti'09, Patrascu'09]

Comments

- Linearity:
 - The algorithm uses linear sketches

$$Sum_{Sj}(x) = \sum_{i \in Sj} x_i$$

- I.e., the algorithm maintains a vector Ax where A is a sparse 0-1 matrix of varying density
- Can implement decrements x_i=x_i-1
 - I.e., the stream can contain deletions of elements (as long as x≥0)
- Dynamic/turnstile model
- In fact, can estimate $||\mathbf{x}||_0$ for general \mathbf{x}
- Pseudorandomness
 - Can use pseudorandom generators instead of storing A explicitly

Generalizations

- What other functions of a vector x can we maintain in small space ?
- L_D norms:

$$||x||_{p} = (\sum_{i} |x_{i}|^{p})^{1/p}$$

 $(||x||_p^p)$ also referred to as the "p-th frequency moment")

- How much space do you need to estimate $||x||_p$ (for const. ε)?
- Theorem:
 - For p∈[0,2]: polylog n space suffices
 - For p>2: $n^{1-2/p}$ polylog n space suffices and is necessary

[Alon-Matias-Szegedy'96, Feigenbaum-Kannan-Strauss-Viswanathan'99, Indyk'00, Coppersmith-Kumar'04, Ganguly'04, Bar-Yossef-Jayram-Kumar-Sivakumar'02'03, Saks-Sun'03, Indyk-Woodruff'05]

- Matrices:
 - p=0: sparse binary
 - p=2: Bernoulli, Gaussian
 - p \in (0,2]: p-stable distributions
 - p>2: sparse Bernoulli

What else?

- Mixed norms, e.g., L₂ of L₀ [Cormode-Muthukrishnan'05]
- Heavy hitters (a.k.a. elephants) [Misra-Gries'82, ..., Charikar-Chen-FarachColton'02, Estan-Varghese'03, Cormode-Muthukrishnan'04,'05, Cormode-Hadjieleftheriou'07,...]
 - Coordinates i such that |x_i| is "large"
 - Estimates $x_i^* = x_i \pm Err(x)$
- Entropy [DoBa-Chakrabarti-Muthukrishnan'05, Guha-McGregor-Venkatasubramanian'05, Chakrabarti-Cormode-McGregor'06, Bhuvanagiri-Ganguly'06, Harvey-Nelson-Onak'08]
- Independence testing [Indyk-McGregor'08]
- Median, quantiles, histograms [Munro-Paterson'80,

Manku-Rajagopalan-Lindsay'98,'99, Greenwald-Khanna'02, Gilbert-Guha-Indyk-Kotidis-Muthukrishnan-Strauss'02,...]

• ...

What else?

- Geometric problems:
 - Stream of points
 - Minimum spanning tree (cost) [Indyk'04, Frahling-Indyk-Sohler'05]
 - polylog N space, constant approx
 - Partitioning into k clusters [HarPeled'04, Indyk'04, Frahling-Sohler'05, ...]
 - poly(k+log N) space, constant approx
 - Matching (cost) [Indyk'04]
 - polylog N space, log N approx
- Metric problems
- Graph problems
- Text problems

Part 2: Connections (compressive sensing, coding theory)

Heavy Hitters: Sparse Approximation View

- Heavy hitters / estimation:
 - Given: a sketch Ax where A is an m x n matrix, m << n
 - Want: estimate $x_i^* = x_i \pm Err(x)$
- Sparse recovery, compressive sensing [Candes-Romberg-Tao'04, X Donoho'04,...]
 - Given: a "measurement vector" Ax
 - Want: an "approximation" x* of x s.t.

$$||x^*-x||_p \le C(k) ||x'-x||_q$$
 (I_p/I_q guarantee)

over all x' that are k-sparse (at most k non-zero entries)

- Connection:
 - The best k-sparse approximation x* contains k coordinates of x with the largest abs value
 - Some of the heavy-hitter algorithms can be interpreted in sparse recovery framework (and vice versa)
- Differences: focus (physical devices vs. computer systems), algorithms (linear programming vs. local estimation), results (deterministic vs. randomized), matrices (dense vs. sparse)

k=2

Scale: Excellent Very Good Good Fair

Result Table

Paper	Rand. / Det.	Sketch length	Encode time	Col. sparsity/ Update time	Recovery time	Apprx	Legend:	
[CCF'02], [CM'06]	R	k log n	n log n	log n	n log n	12 / 12	• n=dimension of x	
	R	k log ^c n	n log ^c n	log ^c n	k log ^c n	12 / 12		
[CM'04]	R	k log n	n log n	log n	n log n	11 / 11	 m=dimension of Ax 	
	R	k log ^c n	n log ^c n	log ^c n	k log ^c n	11 / 11	 k=sparsity of x* 	
[CRT'04] [RV'05]	D	k log(n/k)	nk log(n/k)	k log(n/k)	n ^c	12 / 11	• T = #iterations	
	D	k log ^c n	n log n	k log ^c n	n ^c	12 / 11		
[GSTV'06] [GSTV'07]	D	k log ^c n	n log ^c n	log ^c n	k log ^c n	I1 / I1	Approx guarantee:	
	D	k log ^c n	n log ^c n	k log ^c n	k² log ^c n	I2 / I1	• $ 2/12: x-x^* _2 \le C x-x' _2$	
[BGIKS'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n ^c	l1 / l1	• 2/ 1: $ x-x^* _2 \le C x-x' _1/k^{1/2}$	
[GLR'08]	D	k logn ^{logloglogn}	kn ^{1-a}	n ^{1-a}	n ^c	I2 / I1	• 1/ 1: $ x-x^* _1 \le C x-x^* _1$	
[NV'07], [DM'08], [NT'08,BD'08]	D	k log(n/k)	nk log(n/k)	k log(n/k)	nk log(n/k) * T	I2 / I1		
	D	k log ^c n	n log n	k log ^c n	n log n * T	I2 / I1		
[IR'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n log(n/k)	I1 / I1		
[BIR'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n log(n/k) *T	I1 / I1		
[CDD'07]	D	Ω(n)				12 / 12		

Caveats: (1) only results for general vectors x are shown; (2) all bounds up to O() factors; (3) specific matrix type often matters (Fourier, sparse, etc); (4) ignore universality, explicitness, etc (5) most "dominated" algorithms not shown;

dense

VS.

Restricted Isometry Property (RIP) - key property of a dense matrix A:

x is k-sparse
$$\Rightarrow ||x||_2 \le ||Ax||_2 \le C ||x||_2$$

- Holds w.h.p. for:
 - Random Gaussian/Bernoulli: m=O(k log (n/k))
 - Random Fourier: m=O(k log^{O(1)} n)
- Consider random m x n 0-1 matrices with d ones per column
- Do they satisfy RIP?
 - No, unless $m=\Omega(k^2)$ [Chandar'07]
- However, they can satisfy the following RIP-1 property [Berinde-Gilbert-Indyk-Karloff-Strauss'08]:

x is k-sparse
$$\Rightarrow$$
 d $(1-\epsilon) ||x||_1 \le ||Ax||_1 \le d||x||_1$

Sufficient (and necessary) condition: the underlying graph is a
 (k, d(1-ε/2))-expander

Expanders

- A bipartite graph is a (k,d(1-ε))-expander if for any left set S, |S|≤k, we have |N(S)|≥(1-ε)d |S|
- Constructions:
 - Randomized: m=O(k log (n/k))
 - Explicit: m=k quasipolylog n
- Plenty of applications in computer science, coding theory etc.
- In particular, LDPC-like techniques yield good algorithms for exactly k-sparse vectors x

[Xu-Hassibi'07, Indyk'08, Jafarpour-Xu-Hassibi-Calderbank'08]

dense

VS.

sparse

- Instead of RIP in the L₂ norm, we have RIP in the L₁ norm
- Suffices for these results:

Paper	Rand. / Det.	Sketch length	Encode time	Sparsity/ Update time	Recovery time	Apprx
[BGIKS'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n ^c	11 / 11
[IR'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n log(n/k)	11 / 11
[BIR'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n log(n/k) *T	11 / 11

- Main drawback: I1/I1 guarantee
- Better guarantees with same time and sketch length

Other sparse matrix schemes, for (almost) k-sparse vectors:

- LDPC-like: [Xu-Hassibi'07, Indyk'08, Jafarpour-Xu-Hassibi-Calderbank'08]
- L1 minimization: [Wang-Wainwright-Ramchandran'08]
- Message passing: [Sarvotham-Baron-Baraniuk'06,'08, Lu-Montanari-Prabhakar'08]

Proof: $d(1-\epsilon/2)$ -expansion \Rightarrow RIP-1

 Want to show that for any k-sparse x we have

$$d(1-\epsilon) ||x||_{1} \le ||Ax||_{1} \le d||x||_{1}$$

- RHS inequality holds for any x
- LHS inequality:
 - W.I.o.g. assume

$$|x_1| \ge ... \ge |x_k| \ge |x_{k+1}| = ... = |x_n| = 0$$

- Consider the edges e=(i,j) in a lexicographic order
- For each edge e=(i,j) define r(e) s.t.
 - r(e)=-1 if there exists an edge (i',j)<(i,j)
 - r(e)=1 if there is no such edge
- Claim: $||Ax||_1 \ge \sum_{e=(i,j)} |x_i| r_e$

Proof: $d(1-\epsilon/2)$ -expansion \Rightarrow RIP-1 (ctd)

Need to lower-bound

$$\Sigma_{\rm e} z_{\rm e} r_{\rm e}$$

where $z_{(i,j)} = |x_i|$

- Let R_b= the sequence of the first bd r_e's
- From graph expansion, R_b contains at most ε/2 bd -1's

(for b=1, it contains no -1's)

• The sequence of r_e 's that minimizes $\sum_e z_e r_e$ is

$$\underbrace{1,1,\ldots,1}_{\mathsf{d}},\underbrace{-1,\ldots,-1}_{\mathsf{\epsilon}/2},\underbrace{1,\ldots,1,\ldots}_{(1-\mathsf{\epsilon}/2)\mathsf{d}}$$

Thus

$$\Sigma_e z_e r_e \ge (1-\varepsilon) \Sigma_e z_e = (1-\varepsilon) d||x||_1$$

Conclusions

- Streaming algorithms in 80 minutes
 - Model, problems, techniques, open problems
- For more:
 - "Streaming..." course notes (my web site)
 - Survey by S. Muthukrishnan
- Also:
 - Streaming session Thu 10:45 am
 - Other talks

Thanks

... to Anna Gilbert and Volkan Cevher for many useful comments on this tutorial

Appendix

Example application: Monitoring Network Traffic

- Router routs packets
 - (many packets)
 - Where do they come from ?
 - Where do they go to ?
- Ideally, would like to maintain a traffic matrix x[.,.]
 - For each (src,dst) packet, increment x_{src,dst}
 - Requires way too much space!
 (2³² x 2³² entries)
 - Need to maintain a compressed version of the matrix

General approach

- Choose encoding matrix A at random
 - Sparse matrices:
 - Data stream algorithms
 - Coding theory (LDPCs)
 - Dense matrices:
 - Compressed sensing
 - Complexity theory (Fourier)
- Tradeoffs:
 - Sparse: computationally more efficient, explicit
 - Dense: shorter sketches
- Best of both worlds?

A satisfies RIP-1 ⇒

Sparse Matching Pursuit works

[Berinde-Indyk-Ruzic'08]

- Algorithm:
 - $x^* = 0$
 - Repeat T times
 - Compute $c=Ax-Ax^* = A(x-x^*)$
 - Compute Δ such that Δ_{i} is the median of its neighbors in c
 - Sparsify ∆
 (set all but 2k largest entries of ∆ to 0)
 - x*=x*+∆
 - Sparsify x*
 (set all but k largest entries of x* to 0)
- After T=log() steps we have

$$||\mathbf{x}-\mathbf{x}^*||_1 \le c \operatorname{Err}^k_1$$

