LECTURE 2

LINEAR REGRESSION

Sung Kim <hunkim+ml@gmail.com> http://hunkim.github.io/ml

Acknowledgement

- 01. Andrew Ng's ML Class
 - https://class.coursera.org/ml-003/lecture
 - http://www.holehouse.org/mlclass(note)
- 02. Convolutional Neural Networks for Visual Recognition
 - · http://cs231n.github.io
- 03. Tensorflow
 - · https://www.tensorflow.org
 - · https://github.com/aymericdamien/TensorFlow-Examples

Predicting Exam Score: Regression

X (hours)	Y (score)
10	90
9	80
3	50
2	30

Regression (Data)

Y
1
2
3

Regression (Presentation)

X	Y
1	1
2	2
3	3

Hypothesis (Linear)

Hypothesis (Linear)

Hypothesis (Linear)

Which Hypothesis Is Better?

Which Hypothesis Is Better?

Cost Function

How fit the line to our (training) data

$$H(x)-y$$

Cost Function

How fit the line to our (training) data

$$\frac{(\#(x^{(1)})-y^{(1)})^2+(\#(x^{(2)})-y^{(2)})^2+(\#(x^{(3)})-y^{(3)})^2}{3}$$

cost =
$$\frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

Cost Function

cosł(W) =
$$\frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

 $H(x) = Wx + b$

cost(W,b) =
$$\frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

Goal: Minimize Cost

Minimize Cost(W,b)
W,b

NEXT LECTURE

HOW TO MINIMIZE COST