Digital signal processing

The fundamental concepts

Yuanyuan Tang

Jan. 2024

Contents

1 signal	3
2 FFT and FFTshift	3
3 Convolution	4
4 Auto Correlation	5
5 Upsampling and downsampling	6
Reference	8

1 signal

$$x(n) = 2 * 10 \cos \left(2\pi \frac{f}{Fs} + \alpha\right)$$

2 FFT and FFTshift

$$x(n) = 2 * 10 \cos \left(2\pi \frac{200}{1000} + \alpha\right)$$

Modify the frequency range

N = 100 samples, sampling rate Fs=1000

Frequency range:

$$1^{st}$$
 plot: $F = (1:1:N) * Fs/N$

$$2^{\text{nd}} \operatorname{Plot}: F = (-\frac{N}{2}: 1: \frac{N}{2} - 1) * Fs/N$$

y(n)=ifft(fft(x))

3 Convolution

$$y[n] = h[n] * x[n] = \sum_{\ell=-\infty}^{+\infty} h[\ell] x[n-\ell]$$

Discrete convolution

$$y[n] = h[0]x[n] + h[1]x[n-1] + h[2]x[n-2] + ... + h[M-1]x[n-M+1]$$

h=[1,0,0,0.5,0,-0.2,0,0.1]; % impulse response

n=0:200; x=2*cos(0.1*pi*n); % input signal

y=conv(x,h); % output signal

plot(y)

4 Auto Correlation

For a signal with zero mean, to see if the samples are "correlated" with each other.

Definition of Auto Correlation:
$$r_x[m] = \sum_{n=-\infty}^{+\infty} x[n]x^*[n-m]$$

Again, you deal with signals of finite length

$$x[n], n = 0,..., N-1$$

$$r_x[m] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] x^*[n-m], \quad m = -N+1,...,N-1$$

Example: White Noise with standard deviation σ_x

$$r_x[m] = \begin{cases} \sigma_x^2 = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2, & \text{if } m = 0\\ \approx 0, & \text{otherwise} \end{cases}$$

5 Upsampling and downsampling

- Upsampling: including 2 steps:
 - i) Upsampling
 - ii) low-pass filter
- Downsampling
 - i) downsampling with scaling in the amplitude.
- Analysis in the frequency domain
 - i) Pay attention to the amplitude
 - ii) The periodic frequency after upsampling
 - iii) The amplitude after downsampling

Time domain

Frequency domain

Reference

- [1]. rectangularPulse,
 https://www.mathworks.com/help/symbolic/sym.rectangularpulse.html#btke0hr-47
- [2]. Upsampling and downsampling, https://www.geeksforgeeks.org/what-is-upsampling-in-matlab/
- [3]. Roberto Cristi, Wireless Communications with Matlab and Simulink: IEEE802.16 (WiMax) Physical Layer, https://faculty.nps.edu/rcristi/WiMax/2009-08-20-WiMax.pdf
- [4].