Contents

1	Frank Oseen energy	1
	1.1 Functional derivative	2
	1.2 Unit vector invariance	2
2	Normalizing energy	2
	2.1 Functional derivative	3
3	Model equations	3
4	Needed DEC stuff	3
	4.1 Surface Mesh	4
	4.2 Discrete 1-forms	4
	4.3 Discrete Laplace operators	4
	4.4 Discrete norm	4
5	Discrete PD-Problem, a DEC approach	6
	5.1 Time discretization	6
6	Notes on Implementation	8
	6.1 Edge mesh	8
	6.1.1 Iterators	8
	6.2 Matrix assembling	8
	6.3 Sharp and flat interpolations	8
7	Experiments	8
	7.1 Nonic Surface	8
8	Appendix	9
	8.1 Nonic Surface	9

1 Frank Oseen energy

In \mathbb{R}^3 :

$$E_{\text{FO}} = \frac{1}{2} \int_{\Omega} K_1 \left(\nabla \cdot \mathbf{p} \right)^2 + K_2 \left(\mathbf{p} \cdot \left[\nabla \times \mathbf{p} \right] \right)^2 + K_3 \left\| \mathbf{p} \times \left[\nabla \times \mathbf{p} \right] \right\|^2 dV$$
 (1)

With the Langrange identity for the K_3 -term, we cann rewrite (1) to

$$E_{\text{FO}} = \frac{1}{2} \int_{\Omega} K_1 \left(\nabla \cdot \mathbf{p} \right)^2 + \left(K_2 - K_3 \right) \left(\mathbf{p} \cdot \left[\nabla \times \mathbf{p} \right] \right)^2 + K_3 \left\| \mathbf{p} \right\|^2 \left\| \nabla \times \mathbf{p} \right\|^2 dV$$
 (2)

If we restrict (2) to a 2-dimensional Manifold $M \subset \Omega$ and postulate that $\mathbf{p} \in T_X M$ is a normalized tangential vector in $X \in M$, we get

$$E_{\text{FO}} = \frac{1}{2} \int_{M} K_1 \left(\text{Div} \mathbf{p} \right)^2 + K_3 \left(\text{Rot} \mathbf{p} \right)^2 dA$$
 (3)

In terms of exterior calculus with the corresponding 1-form $\mathbf{p}^{\flat} \in \Lambda^{1}(M)$, i.e. $(\mathbf{p}^{\flat})^{\sharp} = \mathbf{p}$, we obtain

$$E_{\text{FO}} = \frac{1}{2} \int_{M} K_1 \left(\mathbf{d}^* \mathbf{p}^{\flat} \right)^2 + K_3 \left(* \mathbf{d} \mathbf{p}^{\flat} \right)^2 dA \tag{4}$$

where the exterior coderivative $\mathbf{d}^* := -*\mathbf{d}^*$ is the L^2 -orthogonal operator of the exterior derivative \mathbf{d} . (Note $\mathrm{Div}\mathbf{p} = -\mathbf{d}^*\mathbf{p}^\flat$ and $\mathrm{Rot}\mathbf{p} = *\mathbf{d}\mathbf{p}^\flat$)

1.1 Functional derivative

With the L^2 -orthogonality of the exterior derivative and coderivative $(\langle \mathbf{d} \bullet, \bullet \rangle_{L^2} = \langle \bullet, \mathbf{d}^* \bullet \rangle_{L^2})$ and a arbitrary $\alpha \in \Lambda^1(M)$ we get

$$\int_{M} \left\langle \frac{\delta E_{\text{FO}}}{\delta \mathbf{p}^{\flat}}, \alpha \right\rangle dA = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(E_{\text{FO}} \left[\mathbf{p}^{\flat} + \epsilon \alpha \right] - E_{\text{FO}} \left[\mathbf{p}^{\flat} \right] \right)$$
 (5)

$$= \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_{M} K_{1} \left(2\epsilon \left(\mathbf{d}^{*} \mathbf{p}^{\flat} \right) \left(\mathbf{d}^{*} \alpha \right) + \epsilon^{2} \left(\mathbf{d}^{*} \alpha \right)^{2} \right)$$
 (6)

$$+ K_3 \left(2\epsilon \left\langle \mathbf{dp}^{\flat}, \mathbf{d}\alpha \right\rangle + \epsilon^2 \|\mathbf{d}\alpha\|^2 \right) dA \tag{7}$$

$$= -\int_{M} K_{1} \left\langle \mathbf{\Delta}^{GD} \mathbf{p}^{\flat}, \alpha \right\rangle + K_{3} \left\langle \mathbf{\Delta}^{RR} \mathbf{p}^{\flat}, \alpha \right\rangle dA \tag{8}$$

$$= \int_{M} \left\langle -\left(K_{1} \mathbf{\Delta}^{GD} + K_{3} \mathbf{\Delta}^{RR}\right) \mathbf{p}^{\flat}, \alpha \right\rangle dA \tag{9}$$

where $\Delta^{RR} = -\mathbf{d}^*\mathbf{d} = *\mathbf{d}*\mathbf{d}$ is the Vector-Laplace-Beltrami-Operator or Rot-Rot-Laplace and $\Delta^{GD} = -\mathbf{d}\mathbf{d}^* = \mathbf{d}*\mathbf{d}^*$ is the Vector-Laplace-CoBeltrami-Operator or Grad-Div-Laplace. Hence, for a One-Constant-Approximation $K_1 = K_3 =: K_0$, we obtain

$$\int_{M} \left\langle \frac{\delta E_{\text{FO}}}{\delta \mathbf{p}^{\flat}}, \alpha \right\rangle dA = \int_{M} \left\langle K_{0} \mathbf{\Delta}^{\text{dR}} \mathbf{p}^{\flat}, \alpha \right\rangle dA \tag{10}$$

where $\Delta^{\text{dR}} = -\Delta^{\text{RR}} - \Delta^{\text{GD}} = \mathbf{d}^*\mathbf{d} + \mathbf{d}\mathbf{d}^*$ is the Laplace-de Rham operator.

1.2 Unit vector invariance

If $\mathbf{p} \in T_X M$ is a unit vector on M, we can describe all unit vectors in $X \in M$ as a rotation in the tangential space with angle $\phi \in \mathbb{R}$:

$$\mathbf{q} = \cos\phi\mathbf{p} + \sin\phi\left(*\mathbf{p}\right) \tag{11}$$

 $*\mathbf{p} = \left(*\mathbf{p}^{\flat}\right)^{\sharp}$ is the Hodge dual of \mathbf{p} , i.e. a quarter rotation of \mathbf{p} . For a space independent angle ϕ , i.e. $\mathbf{d}\phi = 0$, straight forward calculations implies

$$\|\operatorname{Rot}(*\mathbf{p})\| = \|*\mathbf{d}*\mathbf{p}^{\flat}\| = \|\operatorname{Div}\mathbf{p}\|$$
 (12)

$$\|\operatorname{Div}(*\mathbf{p})\| = \|*\mathbf{d} **\mathbf{p}^{\flat}\| = \|*\mathbf{d}\mathbf{p}^{\flat}\| = \|\operatorname{Rot}\mathbf{p}\|$$
 (13)

$$\|\operatorname{Rot}\mathbf{q}\|^2 = \|\mathbf{d}\mathbf{q}^{\flat}\|^2 = \|\mathbf{d}\mathbf{q}^{\flat}\|^2 \tag{14}$$

$$=\cos^{2}\phi \|\operatorname{Rot}\mathbf{p}\|^{2} + \sin^{2}\phi \|\operatorname{Div}\mathbf{p}\|^{2} + 2\cos\phi\sin\phi \left\langle \mathbf{d}\mathbf{p}^{\flat}, \mathbf{d} * \mathbf{p}^{\flat} \right\rangle$$
(15)

$$\|\operatorname{Div}\mathbf{q}\|^2 = \|\mathbf{d} \cdot \mathbf{q}^{\flat}\|^2 = \|\mathbf{d} \cdot \mathbf{q}^{\flat}\|^2 \tag{16}$$

$$= \cos^{2} \phi \|\operatorname{Div}\mathbf{p}\|^{2} + \sin^{2} \phi \|\operatorname{Rot}\mathbf{p}\|^{2} - 2\cos \phi \sin \phi \left\langle \mathbf{d}\mathbf{p}^{\flat}, \mathbf{d} * \mathbf{p}^{\flat} \right\rangle$$
(17)

Finally, we get for the One-Constant-Approximation of the Frank-Oseen-Energy

$$E_{\rm FO}[\mathbf{q}] = E_{\rm FO}[\mathbf{p}] \tag{18}$$

2 Normalizing energy

To constrain \mathbf{p} is normalized, we add

$$E_n = \int_M \frac{K_n}{4} \left(\|\mathbf{p}\|^2 - 1 \right)^2 dA \tag{19}$$

to the Frank Oseen energy. Note that the norm defined by the metric g on the manifold M is invariant regarding lowering or rising the indices, i.e.

$$\|\mathbf{p}\|^2 = p^i g_{ij} p^j = p_i g^{ij} p_j = \|\mathbf{p}^{\flat}\|^2$$
 (20)

2.1 Functional derivative

By variating \mathbf{p}^{\flat} under the norm with an arbitrary $\alpha \in \Lambda^{1}(M)$, we obtain

$$\left\|\mathbf{p}^{\flat} + \epsilon\alpha\right\|^{2} = \left\|\mathbf{p}^{\flat}\right\|^{2} + 2\epsilon\left\langle\mathbf{p}^{\flat}, \alpha\right\rangle + \epsilon^{2} \|\alpha\|^{2}$$
(21)

If we are only interesting in linear terms (in ϵ), this leads to

$$\left(\left\|\mathbf{p}^{\flat} + \epsilon\alpha\right\|^{2} - 1\right)^{2} = \left(\left\|\mathbf{p}^{\flat}\right\|^{2} - 1 + 2\epsilon\left\langle\mathbf{p}^{\flat}, \alpha\right\rangle + \mathcal{O}\left(\epsilon^{2}\right)\right)^{2}$$
(22)

$$= \left(\left\| \mathbf{p}^{\flat} \right\|^{2} - 1 \right)^{2} + 4\epsilon \left(\left\| \mathbf{p}^{\flat} \right\|^{2} - 1 \right) \left\langle \mathbf{p}^{\flat}, \alpha \right\rangle + \mathcal{O}\left(\epsilon^{2}\right)$$
 (23)

Hence, we get for the functional derivative of E_n

$$\int_{M} \left\langle \frac{\delta E_{n}}{\delta \mathbf{p}^{\flat}}, \alpha \right\rangle dA = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(E_{n} \left[\mathbf{p}^{\flat} + \epsilon \alpha \right] - E_{n} \left[\mathbf{p}^{\flat} \right] \right)$$
 (24)

$$= \int_{M} \left\langle K_{n} \left(\left\| \mathbf{p}^{\flat} \right\|^{2} - 1 \right) \mathbf{p}^{\flat}, \alpha \right\rangle dA \tag{25}$$

3 Model equations

To minimize the energy $E := E_{FO} + E_n$ we choose a time evolving approach. Hence, with the fundamental lemma of calculus of variations, we will use the time depended differential equation in terms of exterior calculus

$$\partial_t \mathbf{p}^{\flat} = -\frac{\delta E}{\delta \mathbf{p}^{\flat}} = -K_0 \mathbf{\Delta}^{\mathrm{dR}} \mathbf{p}^{\flat} - K_n \left(\left\| \mathbf{p}^{\flat} \right\|^2 - 1 \right) \mathbf{p}^{\flat}$$
 (26)

or in general, if we don't want to use the One-Constant-Approximation,

$$\partial_t \mathbf{p}^{\flat} = (K_1 \mathbf{\Delta}^{GD} + K_3 \mathbf{\Delta}^{RR}) \mathbf{p}^{\flat} - K_n \left(\left\| \mathbf{p}^{\flat} \right\|^2 - 1 \right) \mathbf{p}^{\flat}$$
(27)

Note that if we apply the Hodge operator on the whole equations, we get the Hodge dual equations

$$\partial_t(*\mathbf{p}^{\flat}) = -K_0 \mathbf{\Delta}^{\mathrm{dR}}(*\mathbf{p}^{\flat}) - K_n \left(\left\| \mathbf{p}^{\flat} \right\|^2 - 1 \right) (*\mathbf{p}^{\flat})$$
(28)

$$= (K_1 \mathbf{\Delta}^{RR} + K_3 \mathbf{\Delta}^{GD}) (*\mathbf{p}^{\flat}) - K_n \left(\left\| \mathbf{p}^{\flat} \right\|^2 - 1 \right) (*\mathbf{p}^{\flat})$$
(29)

which are very useful for the DEC discretization later in context. But this leads to pay attention, because only in the first line (One-Constant-Approximation) we see, that the Hodge dual equations in $*\mathbf{p}^{\flat}$ is the same as the primal equation in \mathbf{p}^{\flat} . In the general case (second line), we must "swap" the Laplace operators.

4 Needed DEC stuff

For further information see for example [Whi57, Hir03].

4.1 Surface Mesh

...wellcentered manifoldlike simplicial complex, bla, bla, blub...

4.2 Discrete 1-forms

The main concept to represent a discrete 1-form $\mathbf{p}_h^{\flat} \in \Lambda_h^1(K)$ is to approximate the contraction of the continuous 1-Form $\mathbf{p}^{\flat} \in \Lambda^1(M)$ on all edges $e \in \mathcal{E}$

$$\mathbf{p}_h^{\flat}(e) := \int_{\pi(e)} \mathbf{p}^{\flat} \approx \int_0^1 \mathbf{p}_{X_e(\tau)}^{\flat} \left(\dot{X}_e(t) \right) dt = \mathbf{p}_{X_e(\tau)}^{\flat}(\mathbf{e})$$
(30)

where $\pi: K \to M$ is the glueing map, who project the elements of the surface mesh to the manifold. $X_e(t) = t\mathbf{v}_2 + (1-t)\mathbf{v}_1$ is the linear barycentric parametrisation of the edge $e = [v_1, v_2]$. The existence of a intermediate value $\tau \in [0, 1]$, so that $\mathbf{e} \in T_{X_e(\tau)}M$, is ensured by the mean value theorem. Other discrete forms of arbitrary degree and theirs hodge duals can be interpreted in a similarly way.

4.3 Discrete Laplace operators

In the discrete exterior calculus discrete Operators are defined by successively interpretation of the basic operations on the forms, like the Hodge operator * or the exterior derivative \mathbf{d} , as geometric operators on the simplices, like the Voronoi dual operator * or the boundary operator ∂ (see [Hir03]). This results for example to a discrete definition of $\mathbf{\Delta}^{\mathrm{RR}}$ for a discrete 1-form $\mathbf{p}_h^{\flat} \in \Lambda_h^1(M)$ on a edge $e \in \mathcal{E}$

$$\mathbf{\Delta}_{h}^{\mathrm{RR}}\mathbf{p}_{h}^{\flat}(e) := \left(*\mathbf{d}*\mathbf{d}\mathbf{p}_{h}^{\flat}\right)(e) = -\frac{|e|}{|\star e|}\left(\mathbf{d}*\mathbf{d}\mathbf{p}_{h}^{\flat}\right)(\star e)$$
(31)

$$= -\frac{|e|}{|\star e|} \left(* \mathbf{d} \mathbf{p}_h^{\flat} \right) (\partial \star e) = -\frac{|e|}{|\star e|} \sum_{f \succ e} s_{f,e} \left(* \mathbf{d} \mathbf{p}_h^{\flat} \right) (\star f)$$
(32)

$$= -\frac{|e|}{|\star e|} \sum_{f > e} \frac{s_{f,e}}{|f|} \left(\mathbf{d} \mathbf{p}_h^{\flat} \right) (f) = -\frac{|e|}{|\star e|} \sum_{f > e} \frac{s_{f,e}}{|f|} \mathbf{p}_h^{\flat} (\partial f)$$
 (33)

$$= -\frac{|e|}{|\star e|} \sum_{f \succ e} \frac{s_{f,e}}{|f|} \sum_{\tilde{e} \prec f} s_{f,\tilde{e}} \mathbf{p}_h^{\flat}(\tilde{e})$$
(34)

or for $\mathbf{\Delta}^{ ext{GD}}$

$$\mathbf{\Delta}_{h}^{\mathrm{GD}}\mathbf{p}_{h}^{\flat}(e) := \left(\mathbf{d} * \mathbf{d} * \mathbf{p}_{h}^{\flat}\right)(e) = \left(*\mathbf{d} * \mathbf{p}_{h}^{\flat}\right)(\partial e) \tag{35}$$

$$= \sum_{v \prec e} s_{v,e} \left(*\mathbf{d} * \mathbf{p}_h^{\flat} \right) (v) = \sum_{v \prec e} \frac{s_{v,e}}{|\star v|} \left(\mathbf{d} * \mathbf{p}_h^{\flat} \right) (\star v)$$
 (36)

$$= \sum_{v \prec e} \frac{s_{v,e}}{|\star v|} \left(*\mathbf{p}_h^{\flat} \right) (\partial \star v) = -\sum_{v \prec e} \frac{s_{v,e}}{|\star v|} \sum_{\tilde{e} \succ v} s_{v,\tilde{e}} \left(*\mathbf{p}_h^{\flat} \right) (\star \tilde{e})$$
(37)

$$= -\sum_{v \prec e} \frac{s_{v,e}}{|\star v|} \sum_{\tilde{e} \succ v} s_{v,\tilde{e}} \frac{|\star \tilde{e}|}{|\tilde{e}|} \mathbf{p}_h^{\flat}(\tilde{e})$$
(38)

where the sign $s_{f,e}$ is +1 if the face $f \succ e$ is in the left of the edge e (-1 otherwise) and $s_{v,e}$ is +1 if the edge $e \succ v$ points to the vertex v and -1 if e points away from v (see figure 1). We see $\Delta_h^{\rm RR}$, $\Delta_h^{\rm GD}$ and also $\Delta_h^{\rm dR} := -\Delta_h^{\rm RR} - \Delta_h^{\rm GD}$ are linear operators in $\mathbf{p}_h^{\flat}(\tilde{e})$ and therefor results in sparse matrices if the $\mathbf{p}_h^{\flat}(\tilde{e})$ are our degree of freedoms.

4.4 Discrete norm

Approximating the norm $\|\mathbf{p}^{\flat}\|$ on a edge $e \in \mathcal{E}$ is not so easy like the development of discrete linear operators. We only know how \mathbf{p}_h^{\flat} "act" on a single edge, so \mathbf{p}_h^{\flat} gives us only one dimensional informations. In other words, we only know the proportion $\mathbf{p}_h \cdot \mathbf{e} = \mathbf{p}_h^{\flat}(e)$ of the discrete contravariant vector field $\mathbf{p}_h = \left(\mathbf{p}_h^{\flat}\right)^{\sharp}$ in the \mathbf{e} direction, but we don't know the length of \mathbf{p}_h defined on this edge.

Figure 1: Signs s on example mesh extracts, which affected the discretization of the discrete Laplace operators. Left (Δ_h^{RR}) : The edge of interest e is the middle edge. The bold signs in the middle of the faces indicate $s_{f,e}$. The other signs at the local edges \tilde{e} (regarding the two faces f) indicate $s_{f,\tilde{e}}$. Right (Δ_h^{GD}) : The edge of interest e is also the middle edge. The bold signs above the two inner vertices v indicate $s_{v,e}$. The other signs at the local edges \tilde{e} (regarding the two vertices v) indicate $s_{v,\tilde{e}}$.

...maybe some averaging techniques, which I tried and why these sucks...

One way out is to rise the dimension of the discrete 1-forms, therefor we introduce some bases at the intersection $c(e) = e \cap (\star e)$ of a edge and its dual edge to describe discrete contra- and covariant vector fields in a local (piecewise flat) coordinate system.

The basis for contravariant vectors at c(e) is composed of

$$\partial_e X := \mathbf{e} = \mathbf{v}_2 - \mathbf{v}_1 \tag{39}$$

$$\partial_{\star e}X := *\mathbf{e} = c(f_2) - c(f_1) \tag{40}$$

if $e = [v_1, v_2]$ and the face f_1 lay right and f_2 left of e (...figure...). This definitions are consistent with the canonical basis, if the position X is a barycentric parametrisation of the edge e resp. its dual, i.e. for

$$X_e(t_e) = t_e \mathbf{v}_2 + (1 - t_e) \mathbf{v}_2 \text{ for } t \in [0, 1]$$
 (41)

$$X_{\star e}(t_{\star e}) = \begin{cases} 2t_{\star e}c(e) + (1 - 2t_{\star e})c(f_1) & \text{if } t_{\star e} \in \left[0, \frac{1}{2}\right] \\ (1 - t_{\star e})c(e) + (2t_{\star e} - 1)c(f_1) & \text{if } t_{\star e} \in \left[\frac{1}{2}, 1\right] \end{cases}$$
(42)

holds $\partial_e X = \partial_{t_e} X_e$ and $\partial_{\star e} X = \frac{1}{2} \left(\partial_{t_{\star e}} X_{\star e} |_{\left[0, \frac{1}{2}\right]} + \partial_{t_{\star e}} X_{\star e} |_{\left[\frac{1}{2}, 1\right]} \right)$. Therefore we get the local metric tensor

$$\mathbf{g}_{h}(e) = |e|^{2} (dx^{e})^{2} + |\star e|^{2} (dx^{\star e})^{2}$$
(43)

where $\{dx^e, dx^{\star e}\}$ are the dual base of $\{\partial_e X, \partial_{\star e} X\}$, i.e. $dx^i(\partial_j X) = \delta^i_j$ for $i, j \in \{e, \star e\}$. This gives us the great possibility to define

$$\underline{\mathbf{p}}_{h}^{\flat}(e) := \mathbf{p}_{h}^{\flat}(e)dx^{e} + \mathbf{p}_{h}^{\flat}(\star e)dx^{\star e} = \mathbf{p}_{h}^{\flat}(e)dx^{e} - \frac{|\star e|}{|e|} \left(*\mathbf{p}_{h}^{\flat} \right)(e)dx^{\star e}$$
(44)

$$= \mathbf{p}_{h}^{\flat}(e)\boldsymbol{\xi}^{e} + \left(*\mathbf{p}_{h}^{\flat}\right)(e)\boldsymbol{\xi}^{\star e} =: \begin{bmatrix} \mathbf{p}_{h}^{\flat} \\ *\mathbf{p}_{h}^{\flat} \end{bmatrix}_{\mathrm{PD}}(e) \tag{45}$$

where $\boldsymbol{\xi}^e := dx^e$ and $\boldsymbol{\xi}^{\star e} := -\frac{|\star e|}{|e|} dx^{\star e}$ are the contravariant Primal-Dual-basis (PD-basis), which we want to use. $\underline{\mathbf{p}}_h^{\flat}(e)$ is called the discrete Primal-Dual-1-form (PD-1-form). With this scaling and

the condition $\boldsymbol{\xi}_i(\boldsymbol{\xi}^j) = \delta_i^j$, it is also possible to define the covariant PD-basis as $\boldsymbol{\xi}_e := \partial_e X$ and $\boldsymbol{\xi}_{\star e} := -\frac{|e|}{|\star e|} \partial_{\star e} X$. Hence, we obtain for the discrete Primal-Dual-vector field (PD-vector field) $\underline{\mathbf{p}}_h$

$$\underline{\mathbf{p}}_{h}(e) := \left(\underline{\mathbf{p}}_{h}^{\flat}(e)\right)^{\sharp} = \frac{1}{|e|^{2}} \mathbf{p}_{h}^{\flat}(e) \partial_{e} X + \frac{1}{|\star e|^{2}} \mathbf{p}_{h}^{\flat}(\star e) \partial_{\star e} X \tag{46}$$

$$= \frac{1}{|e|^2} \mathbf{p}_h^{\flat}(e) \partial_e X - \frac{1}{|e| |\star e|} \left(* \mathbf{p}_h^{\flat} \right) (e) \partial_{\star e} X \tag{47}$$

$$= \frac{1}{|e|^2} \left[\mathbf{p}_h^{\flat}(e) \boldsymbol{\xi}_e + \left(* \mathbf{p}_h^{\flat} \right) (e) \boldsymbol{\xi}_{\star e} \right] =: \left[\begin{array}{c} \mathbf{p}_h^{\flat} \\ * \mathbf{p}_h^{\flat} \end{array} \right]^{\text{PD}} (e) \tag{48}$$

Hence, we get for the square of the norm on c(e) (and also with a constant interpolation on the whole edge) by contract the PD-1-Form with its corresponding PD-Vector

$$\left\|\underline{\mathbf{p}}_{h}^{\flat}\right\|_{h}^{2}(e) := \left(\underline{\mathbf{p}}_{h}^{\flat}\left(\underline{\mathbf{p}}_{h}\right)\right)(e) = \frac{1}{\left|e\right|^{2}}\left(\left[\mathbf{p}_{h}^{\flat}(e)\right]^{2} + \left[\left(*\mathbf{p}_{h}^{\flat}\right)(e)\right]^{2}\right) \tag{49}$$

In general, we also get a local discrete inner product between $\underline{\mathbf{p}}_h^{\flat}$ and another PD-1-form $\underline{\mathbf{q}}_h^{\flat}$ by

$$\left\langle \underline{\mathbf{q}}_{h}^{\flat}, \underline{\mathbf{p}}_{h}^{\flat} \right\rangle_{h}(e) := \left(\underline{\mathbf{q}}_{h}^{\flat} \left(\underline{\mathbf{p}}_{h}\right)\right)(e) = \frac{1}{|e|^{2}} \left(\left[\mathbf{p}_{h}^{\flat} \mathbf{q}_{h}^{\flat}\right](e) + \left[\left(*\mathbf{p}_{h}^{\flat}\right) \left(*\mathbf{q}_{h}^{\flat}\right)\right](e) \right)$$

$$(50)$$

or a outer product between the PD-1-form $\underline{\mathbf{p}}_h^{\flat}$ and the PD-vector $\underline{\mathbf{q}}_h$ to produce the PD-(1,1)-Tensor

$$\left(\underline{\mathbf{p}}_{h}^{\flat} \otimes \underline{\mathbf{q}}_{h}\right) := \frac{1}{|e|^{2}} \left(\mathbf{p}_{h}^{\flat} \mathbf{q}_{h}^{\flat} \boldsymbol{\xi}^{e} \otimes \boldsymbol{\xi}_{e} + \mathbf{p}_{h}^{\flat} (*\mathbf{q}_{h}^{\flat}) \boldsymbol{\xi}^{e} \otimes \boldsymbol{\xi}_{\star e} + (*\mathbf{p}_{h}^{\flat}) \mathbf{q}_{h}^{\flat} \boldsymbol{\xi}^{\star e} \otimes \boldsymbol{\xi}_{e} + (*\mathbf{p}_{h}^{\flat}) (*\mathbf{q}_{h}^{\flat}) \boldsymbol{\xi}^{\star e} \otimes \boldsymbol{\xi}_{\star e}\right) (51)$$

$$=: \frac{1}{|e|^{2}} \begin{bmatrix} \mathbf{p}_{h}^{\flat} \mathbf{q}_{h}^{\flat} & \mathbf{p}_{h}^{\flat} (*\mathbf{q}_{h}^{\flat}) \\ (*\mathbf{p}_{h}^{\flat}) \mathbf{q}_{h}^{\flat} & (*\mathbf{p}_{h}^{\flat}) (*\mathbf{q}_{h}^{\flat}) \end{bmatrix}_{P}^{D}$$

$$(52)$$

(Arguments (e) are omitted)

5 Discrete PD-Problem, a DEC approach

To use a PD-1-form solution, we must also determine the dual part $*\mathbf{p}_h^{\flat}$, therefore we discretize the Hodge dual equation (28) (resp. (29)) simultaneous to the primal equation (26) (resp. (27)). This leads to the DEC-discretized Primal-Dual-problem (DEC-PD-problem)

$$\left[\partial_t + K_0 \mathbf{\Delta}_h^{\mathrm{dR}} + K_n \left(\left\| \underline{\mathbf{p}}_h^{\flat} \right\|_h^2 - 1 \right) \right] \underline{\mathbf{p}}_h^{\flat} = 0$$
 (53)

respective, without the One-Constant-Approximation,

$$\left[\partial_t - \begin{bmatrix} K_1 \\ K_3 \end{bmatrix} \mathbf{\Delta}_h^{\text{GD}} - \begin{bmatrix} K_3 \\ K_1 \end{bmatrix} \mathbf{\Delta}_h^{\text{RR}} + K_n \left(\left\| \underline{\mathbf{p}}_h^{\flat} \right\|_h^2 - 1 \right) \right] \underline{\mathbf{p}}_h^{\flat} = 0$$
 (54)

5.1 Time discretization

The simplest way to discretize the DEC-PD-problem in time is to use a implicit Euler scheme, where we handle the norm $\left\|\underline{\mathbf{p}}_{h}^{\flat}\right\|_{h}^{2}$ explicit. For one Euler step, we have to solve

$$\left[\frac{1}{\tau} + K_0 \mathbf{\Delta}_h^{\mathrm{dR}} + K_n \left(\left\| \underline{\widehat{\mathbf{p}}}_h^{\flat} \right\|_h^2(e) - 1 \right) \right] \underline{\mathbf{p}}_h^{\flat}(e) = \frac{1}{\tau} \underline{\widehat{\mathbf{p}}}_h^{\flat}(e)$$
 (55)

resp.

$$\left[\frac{1}{\tau} - \begin{bmatrix} K_1 \\ K_3 \end{bmatrix} \mathbf{\Delta}_h^{\text{GD}} - \begin{bmatrix} K_3 \\ K_1 \end{bmatrix} \mathbf{\Delta}_h^{\text{RR}} + K_n \left(\left\| \underline{\widehat{\mathbf{p}}}_h^{\flat} \right\|_h^2(e) - 1 \right) \right] \underline{\mathbf{p}}_h^{\flat}(e) = \frac{1}{\tau} \underline{\widehat{\mathbf{p}}}_h^{\flat}(e) \tag{56}$$

for all $e \in \mathcal{E}$. $\widehat{\underline{\mathbf{p}}}_h^{\flat}$ is the solution of the last time step or the initial condition, if this is the first Euler step. $\tau = t - \hat{t}$ is the time step wide.

The drawback of this semi-implicit Euler scheme is, that we need very small τ . Therefore, it is better to use a Taylor-linearisation for $\left\|\underline{\mathbf{p}}_h^{\flat}\right\|_h^2\underline{\mathbf{p}}_h^{\flat}$. First we calculate the partially component derivative on a edge $e \in \mathcal{E}$ of

$$\Phi\left(\underline{\mathbf{p}}_{h}^{\flat}\right) = \Phi\left(\mathbf{p}_{h}^{\flat}, *\mathbf{p}_{h}^{\flat}\right) := \left\|\underline{\mathbf{p}}_{h}^{\flat}\right\|_{h}^{2} \underline{\mathbf{p}}_{h}^{\flat} = \frac{1}{|e|^{2}} \left(\left(\mathbf{p}_{h}^{\flat}\right)^{2} + \left(*\mathbf{p}_{h}^{\flat}\right)^{2}\right) \begin{bmatrix}\mathbf{p}_{h}^{\flat} \\ *\mathbf{p}_{h}^{\flat}\end{bmatrix}$$
(57)

(Henceforward, for a better readability, the arguments e are omitted). Hence, we obtain

$$\partial_{\mathbf{p}_{h}^{\flat}}\Phi = \frac{1}{|e|^{2}} \begin{bmatrix} 3\left(\mathbf{p}_{h}^{\flat}\right)^{2} + \left(*\mathbf{p}_{h}^{\flat}\right)^{2} \\ 2\mathbf{p}_{h}^{\flat}\left(*\mathbf{p}_{h}^{\flat}\right) \end{bmatrix}$$
(58)

$$\partial_{*\mathbf{p}_{h}^{\flat}}\Phi = \frac{1}{|e|^{2}} \left[\frac{2\mathbf{p}_{h}^{\flat} \left(*\mathbf{p}_{h}^{\flat}\right)}{\left(\mathbf{p}_{h}^{\flat}\right)^{2} + 3\left(*\mathbf{p}_{h}^{\flat}\right)^{2}} \right]$$

$$(59)$$

For one step Taylor at $\widehat{\underline{\mathbf{p}}}_h^{\flat}$, we get

$$\Phi(\underline{\mathbf{p}}_{h}^{\flat}) \approx \Phi(\widehat{\underline{\mathbf{p}}}_{h}^{\flat}) + \left(\mathbf{p}_{h}^{\flat} - \widehat{\mathbf{p}}_{h}^{\flat}\right) \partial_{\mathbf{p}_{h}^{\flat}} \Phi\left(\widehat{\underline{\mathbf{p}}}_{h}^{\flat}\right) + \left(*\mathbf{p}_{h}^{\flat} - *\widehat{\mathbf{p}}_{h}^{\flat}\right) \partial_{*\mathbf{p}_{h}^{\flat}} \Phi\left(\widehat{\underline{\mathbf{p}}}_{h}^{\flat}\right)$$

$$(60)$$

$$= \left\| \widehat{\underline{\mathbf{p}}}_{h}^{\flat} \right\|_{h}^{2} \widehat{\underline{\mathbf{p}}}_{h}^{\flat} + \frac{1}{\left| e \right|^{2}} \left[\left(\mathbf{p}_{h}^{\flat} - \widehat{\mathbf{p}}_{h}^{\flat} \right) \left(3 \left(\mathbf{p}_{h}^{\flat} \right)^{2} + \left(* \mathbf{p}_{h}^{\flat} \right)^{2} \right) + 2 \left(* \mathbf{p}_{h}^{\flat} - * \widehat{\mathbf{p}}_{h}^{\flat} \right) \mathbf{p}_{h}^{\flat} \left(* \mathbf{p}_{h}^{\flat} \right) \right]$$
(61)

$$= \left\| \underline{\widehat{\mathbf{p}}}_{h}^{\flat} \right\|_{h}^{2} \underline{\widehat{\mathbf{p}}}_{h}^{\flat} - \frac{3}{|e|^{2}} \left(\left(\widehat{\mathbf{p}}_{h}^{\flat} \right)^{2} + \left(* \widehat{\mathbf{p}}_{h}^{\flat} \right)^{2} \right) \underline{\widehat{\mathbf{p}}}_{h}^{\flat} + \frac{2}{|e|^{2}} \left[\left(* \widehat{\mathbf{p}}_{h}^{\flat} \right)^{2} \right] \underline{\widehat{\mathbf{p}}}_{h}^{\flat}$$

$$+ \frac{1}{|e|^{2}} \left(\left(\widehat{\mathbf{p}}_{h}^{\flat} \right)^{2} + \left(* \widehat{\mathbf{p}}_{h}^{\flat} \right)^{2} \right) \underline{\mathbf{p}}_{h}^{\flat} + \frac{2}{|e|^{2}} \left[\frac{\mathbf{p}_{h}^{\flat} \widehat{\mathbf{p}}_{h}^{\flat}}{\left(* \mathbf{p}_{h}^{\flat} \right) \left(* \widehat{\mathbf{p}}_{h}^{\flat} \right)} \right] \underline{\widehat{\mathbf{p}}}_{h}^{\flat}$$

$$= \frac{2}{|e|^{2}} \left[\left(* \mathbf{p}_{h}^{\flat} \right)^{2} + \left(* \widehat{\mathbf{p}}_{h}^{\flat} \right)^{2} \right] \underline{\mathbf{p}}_{h}^{\flat} + \frac{2}{|e|^{2}} \left[\left(* \mathbf{p}_{h}^{\flat} \right) \left(* \widehat{\mathbf{p}}_{h}^{\flat} \right) \right] \underline{\widehat{\mathbf{p}}}_{h}^{\flat}$$

$$+ \frac{2}{|e|^2} \left[\begin{pmatrix} *\mathbf{p}_h^{\flat} - *\widehat{\mathbf{p}}_h^{\flat} \end{pmatrix} \begin{pmatrix} *\mathbf{p}_h^{\flat} \\ (\mathbf{p}_h^{\flat} - \widehat{\mathbf{p}}_h^{\flat}) \end{pmatrix} \mathbf{p}_h^{\flat} \right] \widehat{\mathbf{p}}_h^{\flat}$$

$$= -2 \left\| \widehat{\mathbf{p}}_h^{\flat} \right\|_{L}^{2} \widehat{\mathbf{p}}_h^{\flat} + \left\| \widehat{\mathbf{p}}_h^{\flat} \right\|_{L}^{2} \mathbf{p}_h^{\flat} + 2 \left\langle \mathbf{p}_h^{\flat}, \widehat{\mathbf{p}}_h^{\flat} \right\rangle_{L} \widehat{\mathbf{p}}_h^{\flat}$$

$$= (63)$$

The inner product term can be also expressed as matrix-vector multiplication:

$$\left\langle \underline{\mathbf{p}}_{h}^{\flat}, \widehat{\underline{\mathbf{p}}}_{h}^{\flat} \right\rangle_{h} \widehat{\underline{\mathbf{p}}}_{h}^{\flat} = \frac{1}{|e|^{2}} \begin{bmatrix} \left(\widehat{\mathbf{p}}_{h}^{\flat}\right)^{2} & \widehat{\mathbf{p}}_{h}^{\flat} \left(*\widehat{\mathbf{p}}_{h}^{\flat}\right) \\ \widehat{\mathbf{p}}_{h}^{\flat} \left(*\widehat{\mathbf{p}}_{h}^{\flat}\right) & \left(*\widehat{\mathbf{p}}_{h}^{\flat}\right)^{2} \end{bmatrix}_{D}^{D} \cdot \underline{\mathbf{p}}_{h}^{\flat} = \left(\widehat{\underline{\mathbf{p}}}_{h}^{\flat} \otimes \widehat{\underline{\mathbf{p}}}_{h}\right) \cdot \underline{\mathbf{p}}_{h}^{\flat}$$

$$(64)$$

With the Taylor linearization and the implicit Euler scheme, we have to solve the following PD-DEC-Problem in every time steps and all $e \in \mathcal{E}$

$$\left[\frac{1}{\tau} + K_0 \mathbf{\Delta}_h^{\mathrm{dR}} + K_n \left(\left\| \widehat{\mathbf{\underline{p}}}_h^{\flat} \right\|_h^2 - 1 \right) \right] \underline{\mathbf{\underline{p}}}_h^{\flat} + 2K_n \left(\widehat{\mathbf{\underline{p}}}_h^{\flat} \otimes \widehat{\mathbf{\underline{p}}}_h \right) \cdot \underline{\mathbf{\underline{p}}}_h^{\flat} = \left[\frac{1}{\tau} + 2K_n \left\| \widehat{\mathbf{\underline{p}}}_h^{\flat} \right\|_h^2 \right] \widehat{\mathbf{\underline{p}}}_h^{\flat} \tag{65}$$

resp.

$$\left[\frac{1}{\tau} - \begin{bmatrix} K_1 \\ K_3 \end{bmatrix} \boldsymbol{\Delta}_h^{\text{GD}} - \begin{bmatrix} K_3 \\ K_1 \end{bmatrix} \boldsymbol{\Delta}_h^{\text{RR}} + K_n \left(\left\| \underline{\hat{\mathbf{p}}}_h^{\flat} \right\|_h^2 - 1 \right) \right] \underline{\mathbf{p}}_h^{\flat} + 2K_n \left(\underline{\hat{\mathbf{p}}}_h^{\flat} \otimes \underline{\hat{\mathbf{p}}}_h \right) \cdot \underline{\mathbf{p}}_h^{\flat} = \left[\frac{1}{\tau} + 2K_n \left\| \underline{\hat{\mathbf{p}}}_h^{\flat} \right\|_h^2 \right] \underline{\hat{\mathbf{p}}}_h^{\flat} \tag{66}$$

6 Notes on Implementation

- 6.1 Edge mesh
- 6.1.1 Iterators
- 6.2 Matrix assembling
- 6.3 Sharp and flat interpolations

7 Experiments

7.1 Nonic Surface

We are starting with the standard parametrization $(\theta \in [0, \pi], \phi \in [0, 2\pi))$

$$X_{\mathbb{S}}(\theta,\phi) = \sin\theta\cos\phi\xi^x + \sin\theta\sin\phi\xi^y + \cos\theta\xi^z \tag{67}$$

of the unit sphere and make a displacement in the ξ^x -direction depending on the z-position:

$$X(\theta,\phi) := X_{\mathbb{S}}(\theta,\phi) + f(\cos\theta)\boldsymbol{\xi}^{x} \tag{68}$$

This results also in an implicit description of this surface in standard Euclidean (x, y, z)-coordinates:

$$\varphi(x, y, z) := (x - f(z))^2 + y^2 + z^2 - 1 = 0$$
(69)

We choose for the displacement function $f: [-1,1] \to \mathbb{R}$ a double well function, so that the north pole (z=1) of the initial sphere is shifting right in $\boldsymbol{\xi}^x$ -direction by C>0 and the south pole (z=-1) by $r\cdot C$ with the proportion factor 0 < r < 1. This implies

$$f_{C,r}(z) = \frac{1}{4}Cz^2 \left[(z+1)^2 (4-3z) + r(z-1)^2 (4+3z) \right]$$
 (70)

and the double well conditions f(1) = C, f(-1) = rC and f'(1) = f'(0) = f'(-1) = 0 are fulfilled. We call this subsequent manifold a nonic surface, because the left-hand side of the resulting implicit description (69) is a polynomial of degree 10. The reason why we don't choose r = 1 to get a less complex surface is to break the symmetry in the x-y-plane, this is necessary for preventing meta stable states in the dynamic of the orientation fields.

An simple choice for an initial condition is

$$\mathbf{p}_0^{\flat} = \frac{\mathbf{d}x}{\|\mathbf{d}x\|} \tag{71}$$

because we can discretize dx on an edge $e = [v_1, v_2]$ by (stokes theorem)

$$(\mathbf{d}x)_{b}(e) = (v_{2} - v_{1}) \cdot \boldsymbol{\xi}^{x} = v_{2}^{x} - v_{1}^{x} \tag{72}$$

independent in the parametrization of the surface. Hence, after normalizing, there are three defects with a positive charge on the three bulges and one defect with a negative charge on the saddle point. (That are the 4 positions, where the tangential space is orthogonal to ξ^x .) If needed, by rising the indices we get the surface gradient of the x-component

$$(\mathbf{d}x)^{\sharp} = \nabla_{M}x = \left[g_{C,r}^{ij}\partial_{j}x(\theta,\phi)\right]^{i=\theta,\phi} = \left(I - \frac{\nabla\varphi_{C,r}}{\|\nabla\varphi_{C,r}\|} \otimes \frac{\nabla\varphi_{C,r}}{\|\nabla\varphi_{C,r}\|}\right)\boldsymbol{\xi}^{x}$$
(73)

For the normalizing procedure, it is also the Hodge dual initial solution to discretized (the rotation of the x-component). If the face $f_1 \succ e$ is right of the edge e and $f_2 \succ e$ located left, so that $\star e = [c(f_1), c(f_2)]$ is the dual edge, than we can approximate

$$(*\mathbf{d}x)_h(e) = -\frac{|e|}{|\star e|}(\mathbf{d}x)(\star e) = -\frac{|e|}{|\star e|}([c(f_2)]^x - [c(f_1)]^x)$$
(74)

Figure 2: Nonic Surface with shift factor C=1 and proportion factor r=0.5. The mesh is well-centered. Plotted is the Gauss curvature. The arrows show the covariant initial solution \mathbf{p}_0 on some vertices.

With the discrete norm (49) of the PD-1-form, we obtain the initial PD-1-form on $e \in \mathcal{E}$ by

$$\underline{\mathbf{p}}_{h,0}^{\flat}(e) = \frac{\begin{bmatrix} v_2^x - v_1^x \\ -\frac{|e|}{|\star e|} \left([c(f_2)]^x - [c(f_1)]^x \right) \end{bmatrix}_{PD}}{\sqrt{\frac{1}{|e|^2} \left(v_2^x - v_1^x \right)^2 + \frac{1}{|\star e|^2} \left([c(f_2)]^x - [c(f_1)]^x \right)^2}}$$
(75)

See figure 2.

8 Appendix

8.1 Nonic Surface

References

[Hir03] Anil Nirmal Hirani. *Discrete Exterior Calculus*. PhD thesis, California Institute of Technology, Pasadena, CA, USA, 2003. AAI3086864.

[Whi57] H. Whitney. Geometric Integration Theory. Princeton mathematical series. University Press, 1957.