Evaluación para el Acceso a la Universidad Curso 2023/2024

Materia: MATEMÁTICAS II

Instrucciones: El estudiante deberá resolver **CUATRO** de los ocho ejercicios propuestos. Si resuelve más, se corregirán solo los cuatro primeros. Los ejercicios deben redactarse con claridad, detalladamente y razonando las respuestas. Solo se permite el uso de calculadores de tipo 1 y 2 (tal y como se indica en la información de las pruebas). Cada ejercicio completo puntuará 2,5 puntos. Duración de la prueba: 1 hora y 30 minutos.

- 1. Considera el siguiente sistema de ecuaciones, donde $a \in \mathbb{R}$: $\begin{cases} ax + 2y + z = 1 \\ 2x + ay + z = a \\ 5x + 2y + z = 1 \end{cases}$
 - a) [1'5 puntos] Discute el sistema de ecuaciones según los valores de a, e identifica el número de soluciones en cada caso.
 - b) [1 punto] Resuelve, razonadamente, el sistema de ecuaciones para a = 1.

Solución:

a) Tendremos que estudiar el rango de la matriz de coeficientes $M = \begin{pmatrix} a & 2 & 1 \\ 2 & a & 1 \\ 5 & 2 & 1 \end{pmatrix}$ y la matriz ampliada

$$M^* = \begin{pmatrix} a & 2 & 1 & 1 \\ 2 & a & 1 & a \\ 5 & 2 & 1 & 1 \end{pmatrix}$$
. Estudiemos primero el rango de M . El determinante es $|M| = a^2 - 7a + 10$. El

determinante se anula para a=2 y a=5. Por tanto, para $a\neq 2$ y $a\neq 5$ el rango de la matriz de coeficientes M es 3 y el rango de la matriz extendida M^* es 3 también. Así, para valores de a distintos de 2 y 5 el sistema es compatible determinado y tiene una única solución.

Para a=2, se puede comprobar que el rango de M es 2 y el de M^* es 3. Por lo que se trata de un sistema incompatible y no tiene ninguna solución.

Para a = 5, se puede comprobar que el rango de M es 2 y el de M*es 2. Por lo que se trata de un sistema compatible indeterminado y tiene infinitas soluciones.

Criterios de corrección:

- Cálculo del determinante de M y de los valores en los que se anula, 0,25 puntos; discusión razonada del caso a ≠ 2 y a ≠ 5, 0,25 puntos; cálculo del rango de M y M* cuando a = 2, 0,25 puntos; discusión razonada de este caso, 0,25 puntos; cálculo del rango de M y M* cuando a = 5, 0,25 puntos; discusión razonada de este caso, 0,25 puntos. Si se equivoca al calcular el determinante, no tenerlo en cuenta y valorar el resto.
- b) Ya hemos visto que para a=1 el sistema es compatible determinado y tiene solución única. La solución del sistema es x=0; y=0; z=1.

Criterios de corrección:

- Plantear el método de resolución, 0,75 puntos; obtener la solución correcta, 0,25 puntos.
- 2. Con el objetivo de reducir el coste, una cooperativa de aceite quiere diseñar unos envases con forma de prisma de base cuadrada con un volumen de 1 dm³ (tal como se muestra en la figura adjunta) pero que tengan la mínima superficie.

- a) [1 punto] Determina la función de la superficie del envase en función de x (incluidas las dos bases).
- b) [1 punto] Calcula, razonadamente, los valores de x e y, para que la superficie sea mínima.
- c) **[0,5 puntos]** Con los datos obtenidos en los apartados anteriores, determina la superficie de cada envase y su coste, sabiendo que el material tiene un precio de 5 euros el dm².

Solución:

a) El volumen del envase es $x \cdot x \cdot y$. Además, el enunciado nos dice que tiene que ser 1. Por tanto, $1 = x \cdot x \cdot y$ y obtenemos la relación $y = \frac{1}{x^2}$. Además, la superficie total del envase es $2x^2 + 4xy$. Por tanto, podemos escribir la superficie en función de x como $S(x) = 2x^2 + \frac{4x}{x^2} = 2x^2 + \frac{4}{x}$.

Criterios de corrección:

- Establecer la relación entre x e y, 0,25 puntos; escribir la función de la superficie en función de x e y, 0,5 puntos; escribir la función de la superficie en función de x solamente, 0,25 puntos.
- b) Tenemos que buscar el valor de x tal que S(x) sea lo más pequeña posible. Si derivamos la función de la superficie obtenemos $S'(x) = 4x \frac{4}{x^2}$. La derivada se anula en x = 1. Si calculamos la derivada segunda obtenemos $S''(x) = 4 + \frac{8}{x^3}$ y vemos que S''(1) = 4 + 8 = 12 > 0. Por tanto, en x = 1 tenemos un mínimo. El valor correspondiente para y es $y = \frac{1}{1^2} = 1$.

Criterios de corrección:

- Calcular la primera derivada, 0,25 puntos; calcular la segunda derivada, 0,25 puntos; obtener el valor de x e y donde está el extremo relativo, 0,25 puntos; determinar que es un mínimo, 0,25 puntos.
- c) Según los apartados anteriores, solo existe un envase que minimiza la superficie y las dimensiones óptimas son para x = y = 1. La superficie es de $S(1) = 2 \cdot 1^2 + \frac{4}{1} = 6$ dm². Por tanto, el coste es de $6 \cdot 5 = 30$ euros.

Criterios de corrección:

- Calcular el valor de la superficie, 0,25 puntos; calcular el valor del coste, 0,25 puntos.
- 3. Carla está diseñando el tejado de una casa con *Geogebra*. Para ello, debe unir una viga que tiene de extremos los puntos de coordenadas A(2, -1, 3) y B(-2, 4, 5).
 - a) [1 punto] Determina la ecuación de la recta que representa la viga.
 - b) [0,5 puntos] ¿Cuál es la longitud de la viga?
 - c) [1 punto] Se quiere colocar una placa metálica triangular de vértices los puntos A, B y C(0,0,1).

Determina el área de la placa triangular.

Solución:

a) Si tomamos el vector $\overrightarrow{BA} = (4, -5, -2)$, la ecuación de la recta que representa la viga sería $(x, y, z) = (2, -1, 3) + \lambda(4, -5, -2)$, con $\lambda \in \mathbb{R}$.

Criterios de corrección:

- Determinar los elementos que definen la recta (punto y vector director), 0,25 puntos; cálculo del vector \overrightarrow{BA} , 0,25 puntos; ecuación de la recta (en cualquiera de sus formas), 0,5 puntos.
- b) La longitud de la viga viene dada por la distancia entre el punto A y el B, es decir, $d(A,B) = |\overrightarrow{BA}| = \sqrt{16 + 25 + 4} = \sqrt{45} = 3\sqrt{5}$ unidades.

Criterios de corrección:

- Plantear la fórmula de la distancia, 0,25 puntos; obtener la solución correcta, 0,25 puntos.
- c) Como la placa es un triángulo formado por los puntos A, B y C, el área de la placa viene dada $\frac{1}{2}|\overrightarrow{BA}\times\overrightarrow{BC}|$. Calculamos el segundo vector y obtenemos que $\overrightarrow{BC}=(2,-4,-4)$. Por tanto, $\overrightarrow{BA}\times\overrightarrow{BC}=\begin{bmatrix} \vec{l} & \vec{J} & \vec{k} \\ 4 & -5 & -2 \\ 2 & -4 & -4 \end{bmatrix}=(12,12,-6)$. Por tanto, el área es $\frac{1}{2}\sqrt{144+144+36}=\frac{1}{2}18=9$ unidades².

Criterios de corrección:

 Plantear la ecuación del área, 0,5 puntos; calcular el producto vectorial, 0,25 puntos; obtener la solución correcta, 0,25 puntos.

4.

- a) [1 punto] Calcula el siguiente límite: $\lim_{x\to +\infty} \frac{e^{x}-1}{x^{2}+3}$.
- b) [1,5 puntos] Estudia el rango de la matriz $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 2 & 0 & 2 & 1 \\ a & 1 & 0 & 1 \end{pmatrix}$ en función de los valores de $a \in \mathbb{R}$.

Solución:

a) Si calculamos el límite directamente obtenemos la indeterminación $\frac{+\infty}{+\infty}$. Si aplicamos la regla de L'Hôpital obtenemos: $\lim_{x\to +\infty}\frac{e^x-1}{x^2+3}=\lim_{x\to +\infty}\frac{e^x}{2x}=\frac{+\infty}{+\infty}$. Podemos volver a aplicar la regla de L'Hôpital para obtener el resultado del límite: $\lim_{x\to +\infty}\frac{e^x-1}{x^2+3}=\lim_{x\to +\infty}\frac{e^x}{2x}=\lim_{x\to +\infty}\frac{e^x}{2}=+\infty$.

Criterios de corrección:

- Establecer la primera indeterminación, 0,25 puntos; plantear el método de resolución de la primera indeterminación, 0,25 puntos; establecer la segunda indeterminación, 0,25 puntos; plantear el método de resolución de la segunda indeterminación y resolver el límite, 0,25 puntos.
- b) Como la matriz tiene dimensión 3×4 su rango máximo será 3. El rango de la matriz será al menos 2 puesto que $\begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} = 1 \neq 0$. Si tomamos las tres últimas columnas y calculamos su determinante obtenemos: $\begin{vmatrix} 0 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 1 \neq 0$. Por tanto, el rango de la matriz es 3 para cualquier valor de a.

Criterios de corrección:

• Justificar que el rango es menor o igual que 3, 0,25 puntos; justificar que el rango es al menos 2, 0,25 puntos; estudiar los determinantes de los menores de orden 3, 0,75 puntos; justificar que el rango es 3, 0,25 puntos.

5.

- a) [1 punto] Calcula la siguiente integral: $\int x\sqrt{2x+3}dx$. Puedes utilizar el cambio de variable $t=\sqrt{2x+3}$.
- b) [1,5 puntos] Sean los vectores $\vec{u} = (1, a, a)$ y $\vec{v} = (-1, 0, 2)$, con $a \in \mathbb{R}$. Determina el valor de a para que el ángulo entre los vectores \vec{u} y \vec{v} sea de 60°.

Solución:

a) Aplicando el cambio de variable $t = \sqrt{2x+3}$ obtenemos que $t^2 = 2x+3$, $x = (t^2-3)/2$ y 2tdt = 2dx. Por tanto, la integral quedaría así:

$$\int x\sqrt{2x+3}dx = \int ((t^2-3)/2) \cdot t \cdot t \cdot dt = \frac{1}{2} \int ((t^4-3t^2)dt = \frac{1}{2} \left(\frac{t^5}{5} - t^3\right) + C = \frac{1}{2} \left(\frac{(2x+3)^{\frac{5}{2}}}{5} - (2x+3)^{\frac{3}{2}}\right) + C.$$

Criterios de corrección:

- Plantear las ecuaciones del cambio de variable, 0,25 puntos; realizar el cambio de variable correctamente, 0,25 puntos; resolver la integral (en función de t), 0,25 puntos; deshacer el cambio de variable, 0,25 puntos.
- b) El ángulo entre dos vectores (que denotaremos por θ) viene dado por la relación $\cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$. Por tanto, tenemos que $\cos(60^{o}) = \frac{1}{2} = \frac{-1+0+2 \cdot a}{\sqrt{1+a^2+a^2}\sqrt{1+2^2}} = \frac{-1+2 \cdot a}{\sqrt{1+2a^2}\sqrt{5}}$. La ecuación resultante es $2(-1+2a) = \sqrt{5}\sqrt{1+2a^2} \leftrightarrow 4(1+4a^2-4a) = 5+10a^2 \leftrightarrow 6a^2-16a-1=0 \leftrightarrow a = \frac{16\pm\sqrt{280}}{12} = \frac{8\pm\sqrt{70}}{6}$. Tomamos como solución $a = \frac{8+\sqrt{70}}{6}$ porque es el único de los dos valores que hace que el

Criterios de corrección:

producto escalar de los vectores \vec{u} y \vec{v} sea positivo.

• Plantear la ecuación del ángulo entre dos vectores, 0,25 puntos; cálculo del producto escalar, 0,25 puntos; cálculo de las normas de \vec{u} y \vec{v} , 0,25 puntos; obtener la ecuación de segundo grado, 0,25 puntos; obtener los valores de a, 0,25 puntos; determinar que $a = \frac{8+\sqrt{70}}{6}$ es el valor que se pide, 0,25 puntos.

6.

- a) **[1 punto]** Calcula los coeficientes $a, b, c \in \mathbb{R}$ de la función $f(x) = x^3 + ax^2 + bx + c$ tal que tenga un extremo relativo en el punto de abscisa x = 2 y un punto de inflexión en P(1, 2). Justifica tu respuesta.
- b) Sean dos sucesos A y B tales que P(A) = 0.2; $P(A \cap B) = 0.1$ y $P(A \cup B) = 0.3$. Calcula:
 - b.1) [0,75 puntos] P(B) y $P(A \cap \overline{B})$, con \overline{B} el suceso complementario de B.
 - b.2) **[0,75 puntos]** $P(A \mid B)$ y $P(B \mid A)$.

Solución:

a) Para estudiar los extremos relativos necesitamos calcular la derivada de f(x): $f'(x) = 3x^2 + 2ax + 2$

b. Para estudiar los puntos de inflexión necesitamos la segunda derivada: f''(x) = 6x + 2a. La primera condición implica que f'(2) = 0, es decir, $3 \cdot 2^2 + 2 \cdot a \cdot 2 + b = 12 + 4a + b = 0$. La segunda condición implica que f(1) = 2, es decir, $1^3 + a \cdot 1^2 + b \cdot 1 + c = 1 + a + b + c = 2$ y que f''(1) = 0, es decir, $6 \cdot 1 + 2a = 0$. Por tanto, a = -3.

Las otras dos ecuaciones que tenemos son 12 + 4a + b = 0 y 1 + a + b + c = 2. De la primera obtenemos: 12 - 12 + b = b = 0. De la segunda, obtenemos: 1 - 3 + 0 + c = -2 + c = 2. En resumen, b = 0 y c = 4.

Así, la función que se pide es $f(x) = x^3 - 3x^2 + 4$.

Criterios de corrección:

- Obtener la derivada de f(x) y plantear la ecuación relacionada, 0,25 puntos; obtener la derivada segunda de f(x) y plantear la ecuación relacionada, 0,25 puntos; evaluar f(x) en x = 1 y plantear la ecuación relacionada, 0,25 puntos; resolver el sistema de ecuaciones y obtener los valores correctos de a, b, c, 0,25 puntos.
- b) En primer lugar, tendremos en cuenta que $P(A \cup B) = P(A) + P(B) P(A \cap B)$ y que $P(A) = P(A \cap B) + P(A \cap \overline{B})$.

b.1) Teniendo en cuenta lo anterior, podemos calcular las probabilidades que nos piden:

$$P(B) = P(A \cup B) - P(A) + P(A \cap B) = 0.3 - 0.2 + 0.1 = 0.2;$$

$$P(A \cap \bar{B}) = P(A) - P(A \cap B) = 0.2 - 0.1 = 0.1.$$

Criterios de corrección:

- Obtener correctamente P(B), 0,25 puntos; obtener correctamente $P(A \cap \overline{B})$, 0,5 puntos.
- b.2)En este caso, necesitamos aplicar las reglas de la probabilidad condicionada:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0,1}{0,2} = \frac{1}{2};$$

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{0,1}{0,2} = \frac{1}{2}.$$

Criterios de corrección:

- Plantear la regla de la probabilidad condicionada, 0,25 puntos; obtener correctamente $P(A \mid B)$, 0,25 puntos; obtener correctamente $P(B \mid A)$, 0,25 puntos.
- a) [1,25 puntos] Sea la matriz $A = \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix}$, con $a \in \mathbb{R}$. ¿Existe algún valor de a para el que la matriz A y su inversa sean iguales? Si es así, indica cuáles. Justifica tu respuesta.
- b) [1,25 puntos] Calcula la ecuación de la recta que contiene al punto A(1,0,0) y que es perpendicular a los vectores $\vec{u} = (1, 2, 1)$ y $\vec{v} = (1, 0, 0)$.

Solución:

7.

a) Si A es igual a su inversa, entonces $A=A^{-1}$. La inversa de A es $A^{-1}=\begin{pmatrix} 0 & 1 \\ 1 & -a \end{pmatrix}$ y se tiene que cumplir $A=\begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix}=\begin{pmatrix} 0 & 1 \\ 1 & -a \end{pmatrix}=A^{-1}$. Por tanto, se tiene que cumplir que $a=0;1=1;\ 0=-a$. Por tanto, a=0.

En resumen, la matriz tiene que ser $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Criterios de corrección:

- Plantear la resolución del problema, 0,25 puntos; obtener A^{-1} , 0,5 puntos; obtener las ecuaciones, 0,25 puntos; obtener el valor de a, 0,25 puntos.
- b) La recta viene definida por el punto A y un vector director \vec{w} definido como el producto vectorial de los vectores \vec{u} y \vec{v} . Tenemos que $\vec{u} \times \vec{v} = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 1 \\ 1 & 0 & 0 \end{bmatrix} = (0,1,-2)$. Por tanto, la ecuación de la recta que se pide es $(x,y,z) = (1,0,0) + \lambda(0,1,-2)$, con $\lambda \in \mathbb{R}$.

Criterios de corrección:

• Determinar los elementos que definen la recta (punto y vector director), 0,25 puntos; cálculo del vector \vec{w} , 0,5 puntos; ecuación de la recta (en cualquiera de sus formas), 0,5 puntos.

8.

- a) En un club se juegan tres deportes. Cada socio solo puede apuntarse a un único deporte. El 60% juega al tenis, el 25% practica natación y, el resto, golf. En los campeonatos locales, han obtenido algún premio el 21% de los socios que juegan al tenis, el 30% de los que practican natación y el 12% de los que practican el golf.
 - a.1) **[0,5 puntos]** Calcula la probabilidad de que uno de los socios, seleccionado al azar, haya obtenido algún premio.
 - a.2) **[0,75 puntos]** Sabiendo que un socio ha obtenido algún premio en los campeonatos locales, calcula la probabilidad de que practique natación.
- b) El tiempo que una persona sana invierte en recorrer 5 km sigue una distribución normal de media 60 minutos y una desviación típica de 8 minutos.
 - b.1) [0,5 puntos] ¿Cuál es la probabilidad de que una persona sana invierta menos de 50 minutos?
 - b.2) [0,75 puntos] ¿Cuál es la probabilidad de que una persona sana invierta entre 50 y 66 minutos?

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.50	0.0045	0.0050	0.0005	0.7040	0.7054	0.7000	0.7400	0.7457	0.7400	0.7004
0.50	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.60	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.70	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.70	0.7000	0.7011	0.7012	0.7070	0.7701	0.7701	0.7701	0.7701	0.7020	0.7002
0.80	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.90	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
4.00	0.0442	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.00	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.10	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.20	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.30	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
I	1									

Solución:

- a) Sea *G* el evento que representa haber ganado algún premio. Los eventos *tenis*, *natación* y *golf* representan practicar el deporte correspondiente.
 - a.1) La probabilidad que se pide es:

$$\begin{split} P(G) &= P(G \cap tenis) + P(G \cap natación) + P(G \cap golf) = \\ P(G \mid tenis)P(tenis) + P(G \mid natación)P(natación) + P(G \mid golf)P(golf) = \\ 0.21 \cdot 0.60 + 0.30 \cdot 0.25 + 0.12 \cdot 0.15 = 0.219 \end{split}$$

Criterios de corrección:

- Plantear la probabilidad que se pide correctamente, 0,25 puntos; obtener la solución correcta, 0,25 puntos.
- a.2) Aplicando la regla de Bayes, la probabilidad que se pide es:

$$P(\text{ nataci\'on} \mid G) = \frac{P(\text{nataci\'on} \cap G)}{P(G)} = \frac{P(G \mid \text{nataci\'on})P(\text{nataci\'on})}{P(G)} = \frac{0,30 \cdot 0,25}{0,219} = 0,3425$$

Criterios de corrección:

- Plantear la probabilidad que se pide correctamente, 0,25 puntos; escribir la regla de la probabilidad condicionada correctamente, 0,25 puntos; obtener el valor correcto, 0,25 puntos.
- Sea X la variable aleatoria que representa el tiempo que una persona sana invierte en recorrer 5
 km. Sabemos que sigue una distribución normal de media 60 minutos y una desviación típica de 8 minutos.
 - b.1) La probabilidad que se pide es:

$$P(X < 50) = P(Z < (50 - 60)/8) = P(Z < -10/8) = P(Z < -1,25) = 1 - P(Z < 1,25) = 1 - 0,8944 = 0,1056.$$

Criterios de corrección:

- Plantear la probabilidad que se pide correctamente, 0,25 puntos; obtener el valor correcto, 0,25 puntos.
- b.2) La probabilidad que se pide es:

$$P(50 < X < 66) = P(X < 66) - P(X < 50) = P(Z < 0.75) - P(Z < -1.25) = 0.7734 - 0.1056 = 0.6678.$$

Criterios de corrección:

Plantear la probabilidad que se pide correctamente, 0,5 puntos; obtener el valor correcto,
 0,25 puntos.