Zpracování otázek ke zkoušce z Matematické analýzy III

Karel Velička

23. května 2024

2. ročník bc. informatika doc. RNDr. Martin Klazar, Dr.

Obsah

1	Metrické prostory, Sférická metrika, Plochost hemisféry	2
2	Ostrowskiho věta	2
3	Heine–Borelova věta	4
4	Existence n-tých odmocnin v komplexních číslech	5
5	Baierova věta	6
6	Basilejský problém	7
7	Úplnost spojitého metrického prostoru	8
8	Pólyova věta pro $d=2$	8
9	Konstanta $\rho \neq 0$	10
10	Cauchy–Goursatova věta pro obdélníky	11
11	Picardova věta	12
12	Diferenciální rovnice)	13

1 Metrické prostory, Sférická metrika, Plochost hemisféry

Definice 1.1. Metrický prostor je dvojice (M, d) množiny $M \neq \emptyset$ a zobrazení $d: M \times M \to \mathbb{R}$ zvaného metrika či vzdálenost, které $\forall x, y, z \in M$ splňuje:

- $(1) \ d(x,y) = 0 \iff x = y,$
- (2) d(x,y) = d(y,x) ... symetrie,
- (3) $d(x,y) \le d(x,z) + d(z,y)$... trojúhelníková nerovnost.

Definice 1.2. *Izometrie* f dvou metrických prostorů (M,d) a (N,e) je bijekce $f:M\to N$, jež zachovává vzdálenosti: $\forall x,y\in M:d(x,y)=e(f(x),f(y))$.

Definice 1.3. (Sférická metrika): Nechť $S := \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_{21} + x_{22} + x_{23} = 1\}$ je jednotková sféra v Euklidovském prostoru \mathbb{R}^3 . Potom funkci $s : S \times S \to [0, \pi]$ definujeme pro $x, y \in S$ jako

$$s(\bar{x}, \bar{y}) = \begin{cases} 0 & \dots & \bar{x} = \bar{y}, \\ \varphi & \dots & \bar{x} \neq \bar{y}, \end{cases}$$

kde φ je úhel sevřený dvěma přímkami procházejícími počátkem $\bar{0} := (0,0,0)$ a body \bar{x} a \bar{y} .

Tento úhel je vlastně délka kratšího z oblouků mezi body \bar{x} a \bar{y} na jednotkové kružnici vytknuté na S rovinou určenou počátkem a body \bar{x} a \bar{y} . Funkci s nazveme $sf\acute{e}rickou$ metrikou.

Definice 1.4. Horní hemisféra H je množina $H := \{(x_1, x_2, x_3) \in S \mid x_3 \geq 0\} \subseteq S$.

Věta. (H není plochá): Metrický prostor (H, s) není izometrický žádnému Euklidovskému pr. (X, e_n) s $X \subseteq \mathbb{R}^n$.

 $D\mathring{u}kaz$: Následující vlastnost vzdáleností daných čtyřmi body t, u, v a w v Euklidovském prostoru (\mathbb{R}^n, e_n) není splněna v (H, s):

$$e_n(t, u) = e_n(t, v) = e_n(u, v) > 0 \land$$

 $e_n(t, w) = e_n(w, u) = \frac{1}{2}e_n(t, u) \implies e_n(w, v) = \underbrace{\frac{\sqrt{3}}{2}e_n(t, v)}_{< e_n(t, v)}.$

Podle předpokladu implikace body t, u a v tvoří rovnostranný trojúhelník se stranou délky x > 0 a w má od t i od u vzdálenost $\frac{x}{2}$.

Podle tvrzení $(Když\ a,b,c\in\mathbb{R}^n\ jsou\ různé\ body\ v\ Euklidovském\ prostoru\ se\ vzdálenostmi\ e_n(c,a)=e_n(c,b)=\frac{1}{2}e_n(a,b),\ pak\ c\ je\ střed\ úsečky\ ab.)$ je pak w středem úsečky tu. Tyto čtyři body jsou tedy koplanárni (všechny leží v jedné rovině) a úsečka vw je výška spuštěná z vrcholu v rovnostranného trojúhelníka tuv na stranu tu.

Podle Pythagorovy věty se její délka $e_2(v, w) = e_n(v, w)$ rovná $\frac{\sqrt{3}}{2}x$, což říká závěr implikace.

Na hemisféře (H, s) nalezneme čtyři různé body t, u, v a w splňující předpoklad předchozí implikace, ale ne její závěr. Z toho plyne, že izometrie mezi hemisférou a Euklidovským prostorem neexistuje, protože každá izometrie ze své definice implikaci zachovává. Tyto body jsou:

$$t = (1, 0, 0), \quad u = (0, 1, 0), \quad v = (0, 0, 1), \quad w\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right).$$

Patrně $s(t,u)=s(t,v)=s(u,v)=\frac{\pi}{2}$ a $s(t,w)=s(w,u)=\frac{1}{2}s(t,u)=\frac{\pi}{4}.$

Bod v je "severní pól" $(x_3 = 1)$, t, \tilde{u} a w leží na "rovníku" $(x_3 = 0)$ a w je střed oblouku tu.

Ale všechny body na rovníku mají od pólu v stejnou vzdálenost $\frac{\pi}{2}$. Takže s(w,v)=s(t,v) a závěr implikace neplatí.

2 Ostrowskiho věta

Definice 2.1. p-adický řád čísla n je $\operatorname{ord}_p(n) := \max(\{p^m \mid n; m \in \mathbb{N}_0\}).$ (Platí zde vztah pro nenulové $\alpha = \frac{a}{b} \in \mathbb{Q} : \operatorname{ord}_p(\alpha) := \operatorname{ord}_p(a) - \operatorname{ord}_p(b).$) (Dále platí aditivita, tedy pro $\alpha = \frac{a}{b}$ a $\beta = \frac{c}{d}$ platí $\operatorname{ord}_p(a,b) = \operatorname{ord}_p(\alpha) + \operatorname{ord}_p(\beta).$)

Definice 2.2. Triviální norma na libovolném tělese F je funkce $||\cdot||$ s $||0_F|| = 0$ a ||x|| = 1 pro $x \neq 0_F$.

Definice 2.3. (p-adická norma): Nechť $\alpha \in \mathbb{Q}$ a prvočíslo $p \in \mathbb{N}$. Potom kanonickou p-adickou normu $||\cdot||_p$ definujeme vztahem $||\alpha||_p := (p)^{\operatorname{ord}_p(\alpha)}$.

Věta. Nechť $||\cdot||$ je norma na tělese \mathbb{Q} . Pak nastává právě jedna ze tří následujících možností.

- 1. Je to triviální norma.
- 2. Existuje reálné $c \in (0,1]$, že $||x|| = |x|^c$.
- 3. Existuje reálné $c \in (0,1)$ a prvočíslo p, že $||x|| = |x|_p = c^{ord_p(x)}$ (kde $c^{\infty} := 0$).

Modifikovaná absolutní hodnota a p-adické normy jsou tedy jediné netriviální normy nad Q.

 $D\mathring{u}kaz$: Nechť $||\cdot||$ je netriviální, tedy není tvaru $p\mathring{r}ipadu$ 1.

Pak existuje přirozené $n \ge 2$, že $||n|| \ne 1$. Máme tedy dva případy:

• Existuje $n \in \mathbb{N}$, že ||n|| > 1. Jako n_0 označíme nejmenší takové n. Patrně $n_0 \ge 2$ a

$$1 \le m < n_0 \implies ||m|| \le 1. \tag{1}$$

Existuje jednoznačné reálné číslo c>0, že

$$||n_0|| = n_0^c. (2)$$

Každé $n \in \mathbb{N}$ lze při základu n_0 pro $a_i; s \in \mathbb{N}_0; 0 \le a_i < n_0$ a $a_s \ne 0$, zapsat jako:

$$n = a_0 + a_1 n_0 + a_2 n_0^2 + \ldots + a_s n_0^s.$$

Pro $n_0=10$ jde o obvyklý zápis v desítkové soustavě. Takže:

$$\begin{aligned} ||n|| &= \left| \left| a_0 + a_0 n_0 + a_2 n_0^2 + \dots + a_s n_0^s \right| \right| \\ &\stackrel{(*)}{\leq} \sum_{j=0}^s \left| \left| a_j \right| \right| \cdot \left| \left| n_0 \right| \right|^j \stackrel{(*)}{\leq} \sum_{j=0}^s n_0^{js} \\ &= 1 + n_0^c + n_0^{2c} + \dots + n_0^{sc} \\ &= n_0^{sc} (1 + n_0^{-c} + n_0^{-2c} + \dots + n_0^{-sc}) \\ &\leq n_0^{sc} \sum_{j=0}^\infty \left(\frac{1}{n_0^c} \right)^i \stackrel{n_0^s \leq n}{\leq} n^c C , \quad \text{kde } C = \sum_{j=0}^\infty \left(\frac{1}{n_0^c} \right)^i \end{aligned}$$

Pro doplnění: (*) Δ-nerovost a multipl. ||.||, (*) vychází z (1) a (2)

Tedy platí nerovnost (ve skutečnosti platí i s C = 1):

$$\forall n \in \mathbb{N}_0 : ||n|| \le Cn^c. \tag{3}$$

Pro každé $m, n \in \mathbb{N}$ nám multiplikativita normy a nerovnost (3) dávají:

$$||n||^m = ||n^m|| \le C(n^m)^c = C(n^c)^m.$$

Vezmeme-li zde m-tou odmocninu, dostaneme $||n|| \le C^{1/m} n^c$. Pro $m \to \infty$ máme $C^{1/m} \to 1$. Takže:

$$\forall n \in \mathbb{N}_0 : ||n|| \le n^c. \tag{4}$$

Nyní podobně odvodíme opačnou nerovnost $||n|| \ge n^c$ pro $n \in \mathbb{N}_0$.

Pro každé $n \in \mathbb{N}$ hořejší zápis čísla n při základu n_0 dává $n_0^{s+1} > n \ge n_0^s$. Podle Δ -nerovnosti máme:

$$||n_0||^{s+1} = ||n_0^{s+1}|| \ge ||n|| + ||n_0^{s+1} - n||.$$

Tedy:

$$\begin{aligned} ||n|| & \geq ||n_0||^{s+1} - \left| \left| n_0^{s+1} - n \right| \right| \\ & \stackrel{(2),(4)}{\geq} n_0^{(s+1)c} - (n_0^{s+1} - n)^c \\ & \stackrel{n \geq n_0^s}{\geq} n_0^{(s+1)c} - (n_0^{s+1} - n_0^s)^c \\ & = n_0^{(s+1)c} \left(1 - \left(1 - \frac{1}{n_0} \right)^c \right) \\ & \stackrel{n_0^{s+1} > n}{\geq} n^c C' \quad , \qquad \text{kde } C' = 1 - \left(1 - \frac{1}{n_0} \right)^c > 0. \end{aligned}$$

Trik s m-tou odmocninou opět dává $\forall n \in \mathbb{N}_0 : ||n|| \ge n^c$ a tedy už platí $\forall n \in \mathbb{N}_0 : ||n|| = n^c$.

Z multiplikativity normy dostáváme $||x|| = |x|^c$ pro každý zlomek $x \in \mathbb{Q}$. A jelikož pro $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ je $c \in (0,1]$, tak dostáváme, že platí *případ 2* Ostrowskiho věty.

• Pro každé $n \in \mathbb{N} : ||n|| \le 1$ a existuje $n \in \mathbb{N} : ||n|| < 1$.

Nechť n_0 je nejmenší takové n, opět $n_0 \ge 2$. Tvrdíme, že $n_0 = p$ je prvočíslo. Kdyby totiž n_0 mělo rozklad $n_0 = n_1 n_2$ s $n_i \in \mathbb{Z}$ a $1 < n_1, n_2 < n_0$, dostali bychom spor:

$$1 > ||n_0|| = ||n_1 n_2|| = ||n_1|| \cdot ||n_2|| = 1 \cdot 1 = 1.$$

Použili jsme zde multiplikativitu normy a to, že ||m|| = 1 pro každé $m \in \mathbb{N}$ s $1 \le m < n_0$.

Ukážeme, že každé jiné prvočíslo $q \neq p$ má normu ||q|| = 1. Pro spor nechť $q \neq p$ je další prvočíslo s normou ||q|| < 1. Vezmeme tak velké $m \in \mathbb{N}$, že $||p||^m$, $||q||^m < \frac{1}{2}$.

Z elementární teorie čísel víme, že existují Bézoutovy koeficienty, tedy celá 'čísla a a b, že $aq^m + bp^m = 1$. Znormování této rovnosti dává spor:

$$1 = ||1|| = ||aq^m + bp^m|| \le ||a|| \cdot ||q||^m + ||b|| \cdot ||p||^m < 1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = 1.$$

Zde jsme využili trojúhelníkovou nerovnost, multiplikativitu normy a to, že nyní $||a|| \le 1$ pro každé $a \in \mathbb{Z}$.

Tedy ||q|| = 1 pro každé prvočíslo $q \neq p$. Odtud pomocí multiplikativity normy a rozkladu nenulového zlomku x na součin mocnin prvočísel dostáváme vyjádření

$$||x|| = \left\| \prod_{q=2,3,5,\dots} q^{\operatorname{ord}_{q}(x)} \right\| = \prod_{q=2,3,5,\dots} ||q||^{\operatorname{ord}_{q}(x)} = ||p||^{\operatorname{ord}_{p}(x)}$$
$$= c^{\operatorname{ord}_{p}(x)} , \quad \text{kde } c := ||p|| \in (0,1).$$

Také $||0|| = c^{\operatorname{ord}_p(0)} = c^{\infty} = 0$. Dostali jsme tak *případ 3* Ostrowskiho věty.

3 Heine-Borelova věta

Definice 3.1. (Homeomorfismus): Zobrazení $f: M \to N$ mezi metrickými prostory (M, d) a (N, e) je jejich homeomorfismus, pokud f je bijekce a pokud f a f^{-1} jsou spojitá zobrazení.

Definice 3.2. (Topologická kompaktnost): Podmnožina $A \subseteq M$ metrického prostoru (M, d) je topologicky kompaktní, pokud pro každý systém otevřených množin $\{X_i \mid i \in I := [0, 2\pi)\} \in M$ platí:

$$\bigcup_{i \in I} X_i \supset A \implies \text{ existuje konečná množina } J \subset I : \bigcup_{i \in J} X_i \supset A.$$

Věta. Podmnožina $A \subseteq M$ metrického prostoru (M,d) je kompaktní \iff je topologicky kompaktní.

 $D\mathring{u}kaz$: BÚNO můžeme vzít A=M.

 \Rightarrow Nechť (M,d) je kompaktní metrický prostor a nechť $M=\bigcup_{i\in I}X_i$ je jeho otevřené pokrytí, takže každá množina X_i je otevřená. Nalezneme jeho konečné podpokrytí. Nejprve dokážeme, že

$$\forall \delta>0$$
 existuje konečná množina $S_\delta\subset M: \bigcup_{a\in S_\delta}B(a,\delta)=M.$

Kdyby ne, pak by existovalo $\delta_0 > 0$ a $(a_n) \subset M$, že $m < n \implies d(a_m, a_n) \ge \delta_0$ (tato posloupnost nemá konvergentní podposloupnost, což je ve sporu s předpokládanou kompaktností množiny M).

Kdyby existovalo $\delta_0 > 0$, že pro každou konečnou množinu $S \subset M$ je

$$M \setminus \bigcup_{a \in S} B(a, \delta_0) \neq \emptyset,$$

pak (pokud již máme definované body a_1, a_2, \ldots, a_n s $d(a_i, a_j) \ge \delta_0$ pro každé $1 \le i < j \le n$) vezmeme

$$a_{n+1} \in M \setminus \bigcup_{i=1}^{n} B(a_i, \delta_0)$$

a a_{n+1} má od každého bodu a_1, a_2, \ldots, a_n vzdálenost alespoň δ_0 . Tak definujeme celou posloupnost (a_n) .

Pro spor nyní předpokládejme, že hořejší otevřené pokrytí množiny M množinami X_i nemá konečné podpokrytí. Tvrdíme, že odtud vyplývá, že

$$(\forall n \in \mathbb{N})(\exists b_n \in S_{1/n})(\forall i \in I): B\left(b_n, \frac{1}{n}\right) \nsubseteq X_i.$$

Kdyby to tak nebylo (negujeme předchozí tvrzení), pak by existovalo $n_0 \in \mathbb{N}$, že pro každé $b \in S_{1/n_0}$ existuje $i_b \in I$, že $B(b, 1/n_0) \subset X_{i_b}$. Pak ale, protože $M = \bigcup_{b \in S_{1/n_0}} B(b, 1/n_0)$, dávají indexy $J = \{i_b \mid b \in S_{1/n_0}\} \subset I$

(ve sporu s předpokladem) konečné podpokrytí množiny M .

Výše uvedené tvrzení o n a b_n tak platí a lze vzít posloupnost $(b_n) \subset M$.

Podle předpokladu má konvergentní podposloupnost (b_{k_n}) s $b := \lim b_{k_n} \in M$. Protože X_i pokrývají M, existuje $j \in I$, že $b \in X_j$. Díky otevřenosti X_j existuje r > 0, že $B(b,r) \subset X_j$.

Vezmeme tak velké $n \in \mathbb{N}$, že $\frac{1}{k_n} < \frac{r}{2}$ a $d(b, b_{k_n}) < \frac{r}{2}$. Pro každé $x \in B(b_{k_n}, 1/k_n)$ pak podle trojúhelníkové nerovnosti máme, že:

$$d(x,b) \le d(x,b_{k_n}) + d(b_{k_n},b) < \frac{r}{2} + \frac{r}{2} = r.$$

Z toho vyplývá, že:

$$B(b_{k_n}, 1/k_n) \subset B(b, r) \subset X_i$$
.

To je ovšem ve sporu s vlastností bodů b_n . Tedy pokrytí M množinami X_i , $i \in I$, má konečné podpokrytí.

 \Leftarrow Předpokládáme, že každé otevřené pokrytí množiny M má konečné podpokrytí a odvodíme z toho, že každá posloupnost $(a_n) \subset M$ má konvergentní podposloupnost. Nejprve ukážeme, že předpoklad, že množina

$$(\forall b \in M)(\exists r_b > 0) : M_b := \{ n \in \mathbb{N} \mid a_n \in B(b, r_b) \}$$

je konečná, vede ke sporu.

Z pokrytí $M = \bigcup_{b \in M} B(b, r_b)$ totiž můžeme vybrat konečné podpokrytí dané konečnou množinou $N \subset M$. Dále

si můžeme všimnout, že $\exists n_0, n \geq n_0 \implies a_n \notin \bigcup_{b \in N} B(b, r_b)$, protože množina indexů $\bigcup_{b \in N} M_b$ je konečná (respektive je to konečné sjednocení konečných množin). To nám ovšem dává spor, protože $\bigcup_{b \in N} B(b, r_b) = M$

a platí tak, že je M_b nekonečná.

Nyní z (a_n) vybereme konvergentní podposloupnost (a_{k_n}) s limitou b.

Nechť už jsme definovali indexy $1 \le k_1 < k_2 < \ldots < k_n$ takové, že $d(b, a_{k_i}) < \frac{1}{i}$ pro $i = 1, 2, \ldots, n$. Množina indexů $M_{1/(n+1)}$ je nekonečná, takže můžeme zvolit takové $k_{n+1} \in \mathbb{N}$, že $k_{n+1} > k_n$ a $k_{n+1} \in M_{1/(n+1)}$.

Pak i $d(b, a_{k_{n+1}}) < \frac{1}{n+1}$. Takto je definována podposloupnost (a_{k_n}) konvergující k b.

4 Existence n-tých odmocnin v komplexních číslech

Věta. (souvislost a spojitost). Nechť $f: X \to N$ je spojité zobrazení ze souvislé množiny $X \subseteq M$ v metrickém prostoru (M,d) do prostoru (N,e). Potom $f[X] = \{f(x) \mid x \in X\} \subseteq N$ je souvislá množina.

Věta. Komplexní čísla obsahují všechny n-té odmocniny, tedy

$$(\forall u \in \mathbb{C})(\forall n \in \mathbb{N})(\exists v \in \mathbb{C}) \ v^n = u.$$

 $D\mathring{u}kaz$: Předpokládejme, že $u \in S$ a že $n \in \mathbb{N}$ je liché. Potřebujeme dokázat, že zobrazení

$$f(z) = z^n : S \to S$$
, kde S je komplexní jednotková kružnice,

které je zřejmě spojité, je na.

Pro spor předpokládejme, že $\exists w \in S \setminus f[S]$. Tedy číslo w, které nemá n-tou odmocninu.

Vzhledem k lichosti n platí, že $w \in S \setminus f[S]$. To vychází z lichosti funkcí, tedy f(-z) = -f(z).

Skrz body w a -w vedeme přímku $\ell \subseteq \mathbb{C}$ a dostaneme tak rozklad:

$$C = A \cup \ell \cup B$$
,

kde A a B isou otevřené poloroviny určené přímkou ℓ .

Protože víme, že pro každou přímku $\ell \subseteq \mathbb{C}$ je $\mathbb{C} \setminus \ell$ sjednocení dvou disjunktních otevřených množin, tak jsou A, B disjunktní otevřené množiny. Zároveň víme, že platí:

$$(A \cup B) \cap S = S \setminus \{w, -w\} \quad \rightsquigarrow \quad \{1, -1\} \subseteq f[S] \cap (A \cup B) \quad \rightsquigarrow \quad |A \cap \{1, -1\}| = 1.$$

Množiny A a B tedy trhají množinu f[S] a ta je nesouvislá. To je ale ve sporu s $v \check{e}tou$ o souvislosti a spojitosti, protože f[S] je obraz souvislé množiny S spojitou funkcí f a musí tedy být souvislá.

5 Baierova věta

Definice 5.1. Cauchyova posloupnost (a_n) splňuje, že

$$\forall \varepsilon, \exists n_0 : m, n \geq n_0 \implies d(a_m, a_n) < \varepsilon.$$

Definice 5.2. ($\check{R}idkost$). Množina $X\subseteq M$ v metrickém prostoru (M,d) je řídká, pokud:

$$(\forall a \in M)(\forall r > 0)(\exists b \in M)(\exists s > 0) : B(b, s) \subseteq B(a, r) \land B(b, s) \cap X = \emptyset.$$

Věta. Nechť (M,d) je úplný metrický prostor a $M = \bigcup_{n=1}^{\infty} X_n$. Pak nějaká množina X_n není řídká.

 $D\mathring{u}kaz$: Pro spor předpokládáme, že všechny množiny X_n jsou řídké. Cílem je sestrojit posloupnost $(\overline{B_n})$ do sebe vnořených uzavřených koulí, jejichž středy konvergují k bodu $a \in M$ ležícímu mimo všechny X_n , což dá ve výsledku pochopitelně spor.

Nechť $B(b,1) \subseteq M$ je libovolná koule. Protože X_1 je řídká množina, tak existuje $a_1 \in M$ a $s_1 > 0$ takové, že $B(a_1,s_1) \subseteq B(b,1)$ a $B(a_1,s_1) \cap X_1 = \emptyset$. Položíme:

$$\overline{B}(a_1, r_1) := \overline{B}\left(a_1, \min\left(\frac{s_1}{2}, \frac{1}{2}\right)\right).$$

Pak $\overline{B}(a_1, r_1) \subseteq B(a_1, s_1)$, tedy $\overline{B}(a_1, r_1) \cap X_1 = \emptyset$, a $r_1 \le 1/2$. Nechť jsou už definované takové uzavřené koule

$$\overline{B}(a_1, r_1) \supseteq \overline{B}(a_2, r_2) \supseteq \ldots \supseteq \overline{B}(a_n, r_n)$$

že pro i = 1, 2, ..., n je $\overline{B}(a_i, r_i) \cap X_i = \emptyset$ a $r_i \leq 2^{-i}$.

Protože X_{n+1} je řídká množina, existuje $a_{n+1} \in M$ a $s_{n+1} > 0$, že $B(a_{n+1}, s_{n+1}) \subseteq B(a_n, r_n)$ a $B(a_{n+1}, s_{n+1}) \cap X_{n+1} = \emptyset$. Položíme

$$\overline{B}(a_{n+1},r_{n+1}):=B\left(a_{n+1},\min\left(\frac{s_{n+1}}{2},2^{-n-1}\right)\right).$$

Pak

$$\overline{B}(a_{n+1}, r_{n+1}) \subseteq \overline{B}(a_n, r_n) \cap B(a_{n+1}, s_{n+1}),$$

tedy i $\overline{B}(a_{n+1}, r_{n+1}) \cap X_{n+1} = \emptyset$, a $r_{n+1} \le 2^{-n-1}$.

Posloupnost $(a_n) \subseteq M$ středů výše definovaných uzavřených kouli je Cauchyova, protože

$$m \ge n \implies \overline{B}(a_m, r_m) \subseteq \overline{B}(a_n, r_n) \text{ a tedy } d(a_m, a_n) \le r_n \le \frac{1}{2^n}.$$

Nyní použijeme úplnost metrického prostoru (M,d) a vezmeme limitu $a:=\lim a_n\in M.$

Protože $m \geq n \implies a_m \in \overline{B}(a_n, r_n)$ a protože každá $\overline{B}(a_n, r_n)$ je uzavřená množina, tak leží limita a v každé uzavřené kouli $\overline{B}(a_n, r_n)$ a tedy v žádné z množin X_n , což je spor.

6 Basilejský problém

Tento problém byl pojmenován po švýcarském městě Basilej, kde působil matematik Johann Bernoulli a jeho bratr Jakob Bernoulli, kteří se tímto problémem zabývali.

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$$

Řešení tohoto problému nalezl švýcarský matematik Leonhard Euler v roce 1734.

Definice 6.1. $\check{R}ada \sum a_n$ je posloupnost $(a_n) \subseteq \mathbb{R}$, které je přiřazena posloupnost částečných součtů

$$(s_n) := (a_1 + a_2 + \ldots + a_n) \subseteq \mathbb{R}$$

Tedy platí $\sum a_n := \lim(s_n)$

Definice 6.2. Pro každou funkci $f \in \mathcal{R}(-\pi, \pi)$ definujeme její:

kosinové Fourierovy koeficienty:
$$a_n := \frac{\langle f(x), \cos(nx) \rangle}{\pi} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx, \quad n = 0, 1, \dots$$

sinové Fourierovy koeficienty:
$$a_n := \frac{\langle f(x), \sin(nx) \rangle}{\pi} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx, \quad n = 0, 1, \dots$$

Definice 6.3. Fourierova řada funkce $f \in \mathcal{R}(-\pi,\pi)$ je trigonometrická řada

$$F_f(x) := \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)),$$

kde a_n a b_n jsou, po řadě, její kosinové a sinové Fourierovy koeficienty.

Důsledek 6.1. Nechť $f: \mathbb{R} \to \mathbb{R}$ je 2π -periodická a spojitá funkce, jejíž zúžení na interval $[-\pi, \pi]$ je hladké. Potom pro každé $a \in \mathbb{R}$ je $F_f(a) = f(a)$. Spojitá a hladká funkce se tedy rovná součtu své Fourierovy řady.

Věta.
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
.

 $D\mathring{u}kaz$: Spočítáme Fourierovu řadu funkce $f: \mathbb{R} \to \mathbb{R}$ na intervalu $[-\pi, \pi]$ definovanou $f(x) = x^2$. Pak je f 2π -periodicky rozšířená na celé \mathbb{R} (což je možné díky tomu, že $(-\pi)^2 = \pi^2$). Její sinové Fourierovy koeficienty jsou nulové a první (respektive nultý) kosinový Fourierův koeficient je roven

$$a_0 = \frac{2}{\pi} \int_0^{\pi} x^2 \ dx = \frac{2\pi^2}{3}.$$

Další, pro $\forall n \in \mathbb{N}$, jsou:

$$a_n = \frac{2}{\pi} \int_0^{\pi} x^2 \frac{\sin(nx)/n'}{\cos(nx)} dx$$

$$= \frac{2}{\pi n} \underbrace{\left[x^2 \sin(nx)\right]_0^{\pi}}_{0-0=0} - \frac{4}{\pi n} \int_0^{\pi} x \underbrace{\sin(nx)}_{(-\cos(nx)/n)'} dx$$

$$= \frac{4}{\pi n^2} \underbrace{\left[x \cos(nx)\right]_0^{\pi}}_{\pi(-1)^n} - \frac{4}{\pi n^2} \int_0^{\pi} \underbrace{\cos(nx)}_{\sin \to 0} dx$$

$$= (-1)^n \frac{4}{n^2}.$$

Protože funkce f je spojitá a na $[-\pi, \pi]$ hladká, podle Důsledku 6.1. Dirichletovy věty pro každé $a \in \mathbb{R}$ je

$$f(a) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(na) = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos(na)}{n^2}.$$

Pro $a = \pi$, dostaneme:

$$\pi^2 = f(\pi) = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{(-1)^n}{n^2} = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{1}{n^2}.$$

A tedy
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
.

7 Úplnost spojitého metrického prostoru

Věta. Nechť C(I) je množina všech spojitých funkcí z $I = [0,1] \to \mathbb{R}$. Potom metrický prostor $(C(I), ||f - g||_{\infty})$, kde I = [0,1] je úplný.

 $D\mathring{u}kaz$: Nechť $(f_n) \subset C(I)$ je Cauchyovská posloupnost v tomto metrickém prostoru, tedy

$$(\forall \varepsilon > 0)(\exists m)(n, n' \ge m \implies ||f_n - f_{n'}||_{\infty} < \varepsilon).$$

Potom pro každé $x \in I$ posloupnost $(f_n(x)) \subseteq \mathbb{R}$ je Cauchyovská, tedy konverguje a můžeme tak definovat limitu

$$f(x) = \lim f_n(x).$$

Nyní dokážeme, že je uniformě konvergentní, tedy, že $||f-f_n||_{\infty} \to 0.$

Nechť $x \in I$ a nechť je dáno $\varepsilon > 0$. Vezmeme m (je nezávislé na x) takové, že výše zmíněná Cauchyova podmínka je splněna s $\frac{\varepsilon}{2}$. Dále tedy vezměme $k \ge m$ t.ž. $|f_k(x) - f(x)| < \varepsilon/2$. Tedy

$$n \ge m \implies |f_n(x) - f(x)| \le |f_n(x) - f_k(x)| + |f_k(x) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

a tedy $\lim f_n = f$ v tomto metrickém prostoru.

Už nám zbývá dokázat jen že f je spojitá (tedy, že je prvkem tohoto metrického prostoru). Nechť $x_0 \in I$ a nechť je dáno $\varepsilon > 0$. Vezmeme n_0 takové, že

$$n \ge n_0 \implies ||f - f_n||_{\infty} \le \frac{\varepsilon}{2}.$$

Dále si vezme $\delta > 0$ takové, že:

$$x \in U(x_0, \delta) \cap I \implies |f_{n_0}(x) - f_{n_0}(x_0)| \le \frac{\varepsilon}{2}.$$

Využili jsme zde spojitosti f_{n_0} v bodě x_0 . Potom $\forall x \in U(x_0, \delta) \cap I$, platí:

$$|f(x) - f(x_0)| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - f_{n_0}(x_0)| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Dostáváme tak tedy, že f je spojitá v bodě x_0 .

8 Pólyova věta pro d=2

Definice 8.1. (náhodná procházka) Procházka w v grafu G = (V, E) je taková konečná $w = (v_0, v_1, \dots, v_n)$ s délkou $|w| := n \in \mathbb{N}_0$, či nekonečná $w = (v_0, v_1, \dots)$, posloupnost vrcholů $v_i \in V$, že pro každé $i \in \mathbb{N}_0$ je $\{v_i, v_{i+1}\} \in E$.

Věta. (Slabá Abelova). Když mocninná řada $U(x) := \sum_{n=0}^{\infty} u_n x^n \in \mathbb{R}[[x]]$ konverguje pro každé $x \in [0, R)$, kde

 $R \in (0, +\infty)$ je reálné číslo, a má všechny koeficienty $u_n \ge 0$, pak následující limita a suma jsou definované a rovnají se, a to bez ohledu na konečnost/nekonečnost. Tedy

$$\lim_{x \to R^{-}} U(x) = \sum_{n=0}^{\infty} u_{n} R^{n} \quad (=: U(R)).$$

 $D\mathring{u}kaz$: Pro každé $N \in \mathbb{N}$ je:

$$\sum_{n=0}^{N} u_n R^n = \lim_{x \to R^-} \sum_{n=0}^{N} u_n x^n$$

$$\leq \lim_{x \to R^-} U(x) = \lim_{x \to R^-} \sum_{n=0}^{\infty} u_n x^n \leq \sum_{n=0}^{\infty} u_n R^n,$$

kde všechny limity a nekonečné součty jsou definované (s možnou hodnotou $+\infty$) díky monotonii a nezápornosti. Úvodní rovnost plyne z faktu, že pro každé $n \in \mathbb{N}_0$ se $\lim_{x \to R^-} x^n = R^n$.

Dvě následující nerovnosti plynou z nezápornosti koeficientů u_n . Limitní přechod $N \to +\infty$ dává větu.

Věta. Pro d=1 a d=2 je $\lim_{n\to\infty}\frac{a_n(\mathbb{Z}^d)}{d_n(\mathbb{Z}^d)}=\lim_{n\to\infty}\frac{a_n(\mathbb{Z}^d)}{(2d)^n}=1$ a pro $d\geq 3$ je limita<1.

(neboli pro $d \le 2$ pro velké n náhodná procházka délky n skoro jistě opětovně navštíví start, ale pro $d \ge 3$ ho s pravděpodobností > 0 opětovně nenavštíví.)

 $D\mathring{u}kaz$: Nechť d=2 a $w=(v_0,v_1,\ldots,v_n)$ je procházka v grafu \mathbb{Z}^2 s délkou $n\in\mathbb{N}_0$.

Nechť $\underline{b_n}$ je počet procházek w s $v_n=v_0=\bar{0}$ a $\underline{c_n}$ je počet procházek w s $v_n=v_0=\bar{0}$, ale $v_j\neq\bar{0}$ pro j s 0< j< n. Díky tranzitivitě grafu \mathbb{Z}^2 tyto počty nezávisí na startu procházky. Položíme $c_0:=0$. Je jasné, že pro každé $n\in\mathbb{N}_0$ je $a_n\leq d_n, c_n\leq b_n\leq d_n$ a $d_n=4^n$. Procházky počítané a_n rozdělíme do skupin podle jejich prvního návratu do $\bar{0}$ ve vrcholu v_j . Pomocí vztahů $d_n=4^n$ a $a_n\leq 4^n$ dostaneme pro každé $n\in\mathbb{N}_0$ rovnice:

$$a_n = \sum_{j=0}^n c_j d_{n-j}$$
, takže $\frac{a_n}{4^n} = \sum_{j=0}^n \frac{c_j}{4^j} \le 1$.

Tedy stačí dokázat, že:

$$\sum_{j=0}^{\infty} \frac{c_j}{4^j} = 1.$$

Druhý vztah, který použijeme, je mezi mocninnými řadami:

$$B(x) = \sum_{n\geq 0} \frac{b_n}{4^n} x^n = 1 + \dots$$
 a $C(x) = \sum_{n\geq 0} \frac{c_n}{4^n} x^n = \frac{x^2}{4} + \dots$,

tedy

$$B(x) = \frac{1}{1 - C(x)} = \sum_{k>0} C(x)^k.$$

Snadno se to nahlédne formálně, tedy jako vztah mezi formálními mocninnými řadami, rozdělením procházky počítané b_n jejími k+1 návraty do $\bar{0}$ na k úseků s délkami j_1, j_2, \ldots, j_k splňujícími $j_1 + \ldots + j_k = n$. Ty jsou počítány čísly c_{j_1}, \ldots, c_{j_k} . Ale tento vztah také platí na úrovni reálných funkcí B(x) a C(x) pro $x \in [0,1)$, protože obě mocninné řady mají poloměry konvergence ≥ 1 (neboť b_n , $c_n \leq 4^n$). Nyní stačí dokázat, že

$$\lim_{x \to 1^{-}} B(x) = +\infty.$$

Vztah výše implikuje, že $\lim_{x\to 1^-} C(x) = 1$ a to podle Abelovy věty dává, že

$$\sum_{j=0}^{\infty} \frac{c_j}{4^j} =: C(1) = \lim_{x \to 1^-} C(x) = 1.$$

To je přesně požadovaný součet nekonečné řady.

Abychom dokázali, že $\lim_{x\to 1^-} B(x) = +\infty$, stačí opět podle Abelovy věty dokázat, že:

$$B(1) := \sum_{j=0}^{\infty} \frac{c_j}{4^j} = +\infty.$$

To dokážeme spočtením b_n . Patrně $b_n = 0$ pro liché n. Pro sudé délky n je:

$$b_{2n} = \sum_{j=0}^{n} \frac{(2n)!}{j!(n-j)! \cdot j!(n-j)!} = {2n \choose n} \sum_{j=0}^{n} {n \choose j}^2 = {2n \choose n}^2.$$

První rovnost plyne uvážením všech j kroků doprava v procházce w. Ty vynucují týž počet j kroků doleva a stejný počet n-j kroků nahoru a dolů. Tyto možnosti počítá multinomický koeficient $\binom{2n}{j,j,n-j,n-j}$.

Poslední rovnost plyne ze známé binomické identity $\sum_{j=0}^{n} {n \choose j}^2 = {2n \choose n}$.

Stirlingův vzorec pro aproximaci faktoriálu $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$, pro $n \to \infty$, vede na asymptotiku $\binom{2n}{n} \approx c n^{-1/2} 4^n$, pro $n \to \infty$ a konstantu c > 0. Takže 2n-tý sčítanec v řadě $B(1) \approx c^2 n^{-1}$ a

$$B(1) = \sum_{n=0}^{\infty} \frac{c_n}{4^n} = \sum_{n=0}^{\infty} {2n \choose n}^2 4^{-2n} = +\infty,$$

protože
$$\sum n^{-1} = +\infty$$
.

9 Konstanta $\rho \neq 0$

Definice 9.1. (*Čtverec*): Obdélník $R \subseteq \mathbb{C}$ je množina

$$R := \{ z \in \mathbb{C} \mid \alpha \le \operatorname{re}(z) \le \beta \land \gamma \le \operatorname{im}(z) \le \delta \}$$

daná reálnými čísly $\alpha < \beta$ a $\gamma < \delta$. Pokud $\beta - \alpha = \delta - \gamma$, jde o čtverec.

Definice 9.2. Cauchyova suma C(f,p) pro funkci $f:u\to\mathbb{C}$ a dělení $p=(a_0,\ldots,a_k)$ úsečky u=ab je:

$$C(f,p) = \sum_{i=1}^{k} f(a_i)(a_i - ai - 1) \in \mathbb{C}.$$

Definice 9.3. (n-ekvidělení úsečky): Pro $n \in \mathbb{N}$ a pro úsečku $u \subseteq \mathbb{C}$ jejím $k\text{-}ekvidělením}$ rozumíme dělení u na n podúseček stejné délky |u|/k, které je dané obrazy dělení $0 < \frac{1}{k} < \frac{2}{k} < \ldots < \frac{k-1}{k} < 1$ jednotkového intervalu.

Definice 9.4. (Křivkový integrál): Pokud $f:U\to\mathbb{C}$ je funkce a $\varphi:[a,b]\to U$ je spojitá a po částech hladká funkce, pak integrál funkce f přes křivku φ definujeme jako:

$$\oint_{\varphi} f := \int_{a}^{b} f(\varphi(t)) \cdot \varphi'(t) dt$$

$$= \int_{a}^{b} \operatorname{re} \left(f(\varphi(t)) \cdot \varphi'(t) \right) dt + i \int_{a}^{b} \operatorname{im} \left(f(\varphi(t)) \cdot \varphi'(t) \right) dt$$

pokud poslední dva (reálné) Riemannovy integrály existují.

Konstanta $\rho = 2\pi i$. Kdyby $\rho = 0$, žádné Cauchyovy vzorce, by neexistovaly a komplexní analýza by se zhroutila.

Věta. Nechť S je čtverec s vrcholy $\pm 1 \pm i$. Potom $\rho := \oint_{\partial S} \frac{1}{z} \neq 0$, dokonce $\operatorname{im}(\rho) \geq 4$.

 $D\mathring{u}kaz$: Kanonické vrcholy čtverce Sjsou

$$a := -1 - i$$
, $b := 1 - i$, $c := 1 + i$, $d = -1 + i$.

Nechť $p_n = (a_0, a_1, \dots, a_n)$ je n-ekvidělení úsečky ab.

Protože násobení i je otočení kolem počátku kladným směrem (proti směru hodinových ručiček) o úhel $\pi/2$, tak $q_n = ip_n := (ia_0, \dots, ia_n)$ je n-ekvidělení úsečky bc. Podobně vezměme i r_n a s_n . Pro funkci f(z) = 1/z:

$$C(f, p_n) = \sum_{j=1}^n \frac{(b-a)/n}{a+j(b-a)/n} = \sum_{j=1}^n \frac{(ib-ia)/n}{ia+j(ib-ia)/n} =$$
$$= \sum_{j=1}^n \frac{(c-b)/n}{b+j(c-b)/n} = C(f, q_n).$$

a analogicky pro zbylé dvě rovnosti, tedy dostaneme:

$$C(f, p_n) = C(f, q_n) = C(f, r_n) = C(f, s_n).$$

Můžeme si všimnout, že b-a=2 a že lze sumu rozšířit zlomkem $\frac{2j}{n}-1+i$. Dostaneme tak:

$$\operatorname{im}(C(f, p_n)) = \operatorname{im}\left(\sum_{j=1}^n \frac{2/n}{-1 - i + 2j/n}\right)$$
$$= \operatorname{im}\left(\frac{2}{n}\sum_{j=1}^n \frac{2j/n - 1 + i}{(2j/n - 1)^2 + 1}\right)$$
$$= \frac{2}{n}\sum_{j=1}^n \frac{1}{(2j/n - 1)^2 + 1} \ge \frac{2}{n}\sum_{j=1}^n \frac{1}{2} = 1$$

A jelikož pro konvergentní posloupnost komplexních čísel platí, že $\operatorname{im}(\lim z_n) = \lim \operatorname{im}(z_n)$, tak:

$$\begin{split} \operatorname{im}(\rho) &= \operatorname{im}\left(\oint_{\partial S} \frac{1}{z}\right) = 4 \cdot \operatorname{im}\left(\oint_{ab} \frac{1}{z}\right) \\ &= 4 \cdot \lim_{n \to \infty} \left(\operatorname{im}\left(C\left(\frac{1}{z}, p_n\right)\right)\right) \\ &> 4 \cdot 1 = 4 \end{split}$$

A tedy skutečně $\rho \neq 0$.

Cauchy-Goursatova věta pro obdélníky 10

Definice 10.1. Diametr (průměr) pro množinu $X \subseteq \mathbb{C}$ je definovaný jako diam $(X) = \sup(\{|x - y| \mid x, y \in X\}).$

Definice 10.2. Pro funkci $f: U \to \mathbb{C}$ a bod $z_0 \in U$ je její derivace v z_0 definována $f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \in \mathbb{C}$

Definice 10.3. Funkce $f: U \to \mathbb{C}$ je holomorfní na U, pokud má v každém bodu $z_0 \in U$ derivaci (Pokud je holomorfní na celé komplexní rovině, nazývá se funkce $f: \mathbb{C} \to \mathbb{C}$ celá.)

Důsledek 10.1. Nechť $\alpha \in \mathbb{C}, \beta \in \mathbb{C}$ a $R \subseteq \mathbb{C}$ je obdélník. Pak $\oint_{\partial R} (\alpha z + \beta) = 0$.

 $\textbf{Věta.} \ (\textit{Cauchy-Goursatova věta pro obdělníky}) \ \textit{Nechť } f: U \rightarrow \mathbb{C} \ \textit{je holomorfní funkce a } R \subseteq U \ \textit{je obdělník. Pak}$

$$\oint_{\partial R} f = 0.$$

 $D\mathring{u}kaz$: Nechť $f:U o\mathbb{C}$ je holomorfní a nechť a $R\subseteq U$ je obdélník. Sestrojíme takové vnořené obdélníky $R=R_0\supset R_1\supset R_2\supset\ldots$, že pro každé $n\in\mathbb{N}_0$ je R_{n+1} čtvrtka obdélníku R_n a

$$\left| \oint_{\partial R_{n+1}} f \right| \ge \frac{1}{4} \left| \int_{\partial R_n} f \right|. \tag{1}$$

Nechť už jsou takové obdélníky R_0, R_1, \ldots, R_n definované a A, B, C, D jsou čtvrtky obdélníku R_n . Tvrdíme, že

$$\oint_{\partial R_n} f = \oint_{\partial A} f + \oint_{\partial B} f + \oint_{\partial C} f + \oint_{\partial D} f. \tag{2}$$

Tato identita plyne z použití věty: Pro každý vnitřní bod c úsečky ab je $\oint_{ab} f = \oint_{ac} f + \oint_{cb} f$. Po rozvinutí každého integrálu $\oint_{\partial A} f, \dots, \oint_{\partial D} f$ jako součtu čtyř integrálů přes strany dostáváme na pravé straně rovnosti (2) 16 členů. Osm z nich odpovídá stranám čtvrtek uvnitř R_n a vzájemně se zruší, protože vytvoří čtyři dvojice opačných orientací stejné úsečky. Zbylých osm členů odpovídá stranám čtvrtek ležícím na ∂R_n a sečtou se na integrál na levé straně rovnosti (2).

Z té zároveň plyne, podle trojúhelníkové nerovnosti, že pro nějakou čtvrtku $E \in \{A, B, C, D\}$ je

$$\left| \oint_{\partial E} f \right| \ge \frac{1}{4} \left| \oint_{\partial B_n} f \right|.$$

Položíme tedy $R_{n+1} = E$.

Protože lim diam $(R_n) = 0$, tak existuje bod z_0 takový, že $z_0 \in \bigcap^{\infty} R_n$. A protože $R_0 = R \subset U$, je i $z_0 \in U$.

Nyní použijeme existenci derivace $f'(z_0)$. Pro dané $(\forall \varepsilon > 0)(\exists \delta > 0): B(z_0, \delta) \subset U$ a pro nějakou funkci $\Delta: B(z_0, \delta) \to \mathbb{C}$ a $\forall z \in B(z_0, \delta)$ je $|\Delta(z)| < \varepsilon$, a:

$$f(z) = \underbrace{f(z_0) + f'(z_0) \cdot (z - z_0)}_{g(z)} + \underbrace{\Delta(z) \cdot (z - z_0)}_{h(z)}.$$

Je jasné, že g(z) je lineární a h(z) = f(z) - g(z) je spojitá na $B(z_0, \delta)$.

Nechť $n \in \mathbb{N}_0$ je tak velké, že $R_n \subset B(z_0, \delta)$, protože musíme zajistit, aby $\lim \operatorname{diam}(R_n) = 0$. Podle linearity integrálu a Důsledku 10.1. máme:

$$\oint_{\partial R_n} f = \oint_{\partial R_n} g + \oint_{\partial R_n} h \stackrel{D.2}{=} \oint_{\partial R_n} h. \tag{3}$$

Platí proto odhad:

$$\left| \oint_{\partial R_n} h \right| \leq \max_{z \in \partial R_n} |\Delta(z)(z - z_0)| \cdot \operatorname{obv}(R_n)$$

$$< \varepsilon \cdot \operatorname{diam}(R_n) \cdot \operatorname{obv}(R_n) = \varepsilon \cdot \frac{\operatorname{diam}(R)}{2^n} \cdot \frac{\operatorname{obv}(R)}{2^n}$$

$$< \varepsilon \cdot \frac{\operatorname{obv}(R)}{4^n}. \tag{4}$$

Zde jsme použili výše zmíněné zmenšení průměru a obvodu na polovinu po čtvrcení a to, že průměr obdélníka je menší než jeho obvod. Podle předchozích výsledků tak máme

$$\frac{1}{4^n} \left| \oint_{\partial R} f \right| \overset{(1)}{\leq} \left| \oint_{\partial R_n} f \right| \overset{(3)}{=} \left| \oint_{\partial R_n} h \right| \overset{(4)}{<} \varepsilon \cdot \frac{\operatorname{obv}(R)^2}{4^n} \quad \text{a tedy} \quad \left| \oint_{\partial R} f \right| < \varepsilon \cdot \operatorname{obv}(R)^2.$$

A protože to platí pro $\forall \varepsilon > 0$, tak $\oint_{\partial B} f = 0$.

11 Picardova věta

Věta o existenci a jednoznačnosti řešení obyčejné diferenciální rovnice prvního řádu s explicitní první derivací.

Definice 11.1. Kontrahující zobrazení je každé takové zobrazení, kde pro:

$$\forall c \in (0,1), \forall a,b \in M: d(f(a),f(b)) \leq c \cdot d(a,b)$$

Tedy f zkracuje vzdálenosti nějakým faktorem menším než 100%.

Věta. (Banachova o pevném bodu). Každé kontrahující zobrazení $f: M \to M$ úplného metrického prostoru do sebe má právě jeden pevný bod. Tedy takový bod $a \in M$, že f(a) = a.

Tvrzení 11.1. (Úplnost spojitých funkcí). Pro každá $a, b \in \mathbb{R} : a < b$ je metrický prostor (C[a, b], d), spojitých funkci $f : [a, b] \to \mathbb{R}$ a s maximovou metrikou $d(f, g) = \max_{a < x < b} |f(x) - g(x)|$ úplný.

Věta. (Picardova). Nechť $a,b \in \mathbb{R}$ $a F : \mathbb{R}^2 \to \mathbb{R}$ je spojitá funkce, pro níž existuje konstanta M > 0 taková, že pro každá tři čísla $u,v,w \in \mathbb{R}$ je:

$$|F(u,v) - F(u,w)| \le M \cdot |v - w|.$$

Potom existuje $\delta > 0$ a jednoznačně určená funkce $f: [a - \delta, a + \delta] \to \mathbb{R}$, že:

$$f(a) = b \wedge \forall x \in [a - \delta, a + \delta] : \quad f'(x) = F(x, f(x)). \tag{1}$$

V krajních bodech intervalů se zde i dále hodnoty derivací berou jednostranně.

 $D\mathring{u}kaz$: Nechť $I := [a - \delta, a + \delta]$, pro nějaké malé $\delta > 0$.

Můžeme si všimnout, že řešitelnost rovnice (1) pro neznámou funkci f je ze ZVA1 a ZVA2 ekvivalentní:

$$\forall x \in I: \quad f(x) = b + \int_{a}^{x} F(t, f(t)) \ dt, \tag{2}$$

jednoduchým zintegrováním/ zderivováním obou stran.

Ukážeme, že pro dostatečně malé $\delta > 0$ mají na intervalu I rovnice (1, 2) jednoznačné řešení f. Pravá strana rovnice (2) definuje zobrazení $A: C(I) \to C(I)$ z množiny spojitých funkcí $f: I \to \mathbb{R}$ do sebe, tedy:

$$A(f) = g$$
 , kde pro $x \in I$: $g(x) := b + \int_a^x F(t, f(t)) dt$.

Dokážeme, že A je kontrahující zobrazení metrického prostoru (C(I), d), s maximovou metrikou d, do sebe. Vzhledem k Banachově větě a Tvrzení 11.1. pak má A jednoznačný pevný bod, tedy funkci $f \in C(I)$ takovou, že A(f) = f, a obě rovnice (1) i (2) mají jednoznačná řešení.

Dokážeme tedy, že pro dostatečně malé $\delta>0$ je A kontrahující zobrazení. Nechť $f,g\in C(I)$. Potom:

$$\begin{split} d(A(f),A(g)) &= \max_{x \in I} |A(f)(x) - A(g)(x)| & \qquad \qquad \dots \quad definice \ metriky \ d \\ &= \max_{x \in I} \left| \int_a^x F(t,f(t)) \ dt - \int_a^x F(t,g(t)) \right| & \qquad \dots \quad definice \ zobrazeni \ A \\ &= \max_{x \in I} \left| \int_a^x \left(F(t,f(t)) - F(t,g(t)) \right) \ dt \right| & \qquad \dots \quad linearita \ \int \\ &\leq \max_{x \in I} \int_a^x |F(t,f(t)) \ dt - F(t,g(t))| \ dt & \qquad \dots \quad \left| \int h \right| \leq \int |h| \\ &\leq \max_{x \in I} \int_a^x M \left| f(t) - g(t) \right| \ dt & \qquad \dots \quad p\check{r}edpoklad \ pro \ F \\ &\leq \max_{x \in I} \int_a^x M \cdot d(f,g) \ dt & \qquad \dots \quad h \leq j \implies \int h \leq \int j \\ &= \delta M \cdot d(f,g). & \qquad \dots \quad \int_a^x c = (x-a)c \end{split}$$

Například pro $\delta = \frac{1}{2}M$ je tedy Akontrahující zobrazení, s konstantou $c = \frac{1}{2}$

12 Diferenciální rovnice)

Lineární diferenciální rovnice jsou rovnice tvaru $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y^{'} + a_0(x)y = b(x)$.

Zadání: Vyřešte diferenciální rovnici y' + ay = b pro neznámou funkci y = y(x) (a dané funkce a(x) a b(x)). Jedná se o lineární diferenciální rovnici prvního řádu tvaru:

$$(x_0, y_0 \in \mathbb{R}) : y(x_0) = y_0 \land y' + a(x)y = b(x),$$
 (1)

kde y = y(x) je neznámá funkce a funkce a(x) a b(x) jsou dané, definované a spojité na nějakém otevřeném intervalu $I, x_0 \in I$.

Lokální jednoznačnost a existence řešení rovnice plyne z Picardovy věty, takže stačí rovnici jen vyřešit.

Řešení: Hledáme tedy integrační faktor c = c(x) takový, že $c \cdot (y' + ay) = (cy)'$. Potom cy' + acy = cy' + c'y a c musí splňovat rovnici ac = c', čili $(\log c)' = a$. Funkce $c = e^A$, kde $A = \int a$, má tedy požadovanou vlastnost. Výchozí lineární rovnici vynásobíme integračním faktorem a dostaneme:

$$(cy)' = \underbrace{c(y' + ay) = cb}_{c \cdot (1)}.$$

Takže (cy)'=cb a $cy=D+c_0$, kde $D=\int cb$ a c_0 je integrační konstanta. Máme tedy řešení $y=c^{-1}(D+c_0)$. Neboli:

$$y(x) = e^{-A(x)} \left(\int e^{A(x)} b(x) \ dx + c_0 \right), \quad kde \ A(x) = \int a(x) \ dx.$$

Můžeme si všimnout, že y(x) je definováno na celém I a že $\forall y(x_0)=y$ odpovídá právě jedna hodnota c_0 .