Nonlinear Optimization Lecture 3 Garrick Aden-Buie January 19, 2016

Last time

- Convex functions and Convex sets ==> convex optimization
- ϵ -neighborhood (open ball)
- open sets
- closed sets

Some vocabulary

Interior of a set S

The interior of a set, $\operatorname{Int}(S) = \{x \in S : \exists \epsilon > 0, N_{\epsilon}(x) \subset S\}$. The interior of a closed set is just the open set having removed the boundary.

Observation: S is open $\Leftrightarrow S = \text{Int}(S)$.

Notes: \Leftrightarrow means Iff. or equivalent. $A \Rightarrow B$ is A implies B, $A \Leftarrow B$ is B implies A.

 \mathbb{R} is open by definition of open sets, and \emptyset is closed because $\emptyset^C = \mathbb{R}$ is open. But $\operatorname{Int}(\emptyset) = \emptyset$ so \emptyset is open. And then \mathbb{R}^C is open so \mathbb{R} is closed by the same logic. Thus \mathbb{R} and \emptyset are both open and closed (so neither are well-defined: clopen set).

A set that has a partial boundary is neither closed nor open (See Fig. 3.1).

Figure 1: Fig 3.1

Fig. 3.2: venn diagram of sets

Boundary points

A point, x, is a **boundary point** of S if for each $\epsilon > 0$, the ϵ neighborhood $N_{\epsilon}(x)$ contains a point in S and a point not in S.

Figure 2: Fig 3.2

Figure 3: Fig 3.3

Boundary of S

The **boundary** of $S = \delta S = \text{set of all boundary points}$.

Closure of S

The closure of $S = C\ell(S) = S \cup \delta S$. S is closed iff. $S = C\ell(S)$.

Bounded sets

- Let $S \subset \mathbb{R}^n$
- S is **bounded** if $\exists m > 0, m \in \mathbb{R}$
- such that $||x|| \le m, \forall x \in S$
- (norm: $\sqrt{x_1^2 + x_2^2 + x_3^2 + \dots}$)

Compact sets

A set $S \subset \mathbb{R}^n$ is **compact** if it is closed and bounded.

Weirstrass Theorem

Weirstrass Theorem

A continuous function defined on a non-empty compact set, attains a minimum on the set.

(compact = closed and bounded)

This is the typical form, but let's consider the form most useful to this class:

$$\min f(x)$$
 $\operatorname{s.t} x \in X$

If f is continuous and X is compact, then there exists an optimal solution.

Fig 3.4: Compact and unbounded sets that cause problems and break things.

In LP, *continuous* is less of a worry because *linear* functions are continuous, but in NLP both *compact* and *continuous* are a big deal. (Although depending on the way in which a function is not continuous, it may not matter.)

Figure 4: Fig 3.4

Minimum Distance point

Theorem Let S be a non-empty closed, convex subset of \mathbb{R}^n . Let $y \notin S$. Then there exists the unique point $\bar{x} \in S$ that is closest to y.

Furthermore
$$(y - \bar{x})^T (x - \bar{x}) \le 0, \forall x \in S$$
.

Fig. 3.5: Example of S, \bar{x}, y .

Figure 5: Fig 3.5

Proof

 \bar{x} is a solution of

$$\min_{x} \|y - x\|$$
$$s.tx \in S$$

Existence. We haven't assumed that S is bounded. Let $T = \{x \in \mathbb{R}^n : ||y - x|| \le ||y - x_0||\}$, see **Fig. 3.6**. By doing this, we can change this problem to

$$\min \lVert y - x \rVert$$

$$\mathrm{s.t} x \in S \cap T$$

Then, by the Weirstrass Theorem, \bar{x} exists, because $S \cap T$ is compact.

Uniqueness.

Figure 6: Fig 3.6

This proves existence, but we need to now prove uniqueness, which is often done via contradiction. Also notice that *convexity* in the theorem must play a key role in the proof (or it wouldn't have been in the theorem.)

First, suppose that \bar{x} is not unique, i.e. $\exists \hat{x} \in S, \hat{x} \neq \bar{x}$ such that $\|y - \bar{x}\| = \|y - \hat{x}\|$.

(There's another point \hat{x} that is the same distance from y as \bar{x} .)

Since S is convex, consider $\frac{1}{2}\hat{x} + \frac{1}{2}\bar{x} \in S$.

Then

$$\|y - (\frac{1}{2}\bar{x} + \frac{1}{2}\hat{x})\| \le \frac{1}{2}\|y - \bar{x}\| + \frac{1}{2}\|y - \hat{x}\|$$

by the triangle inequality, but this is the same as

$$||y - \bar{x}||$$

by the above definition. But then notice that if the < holds, that \bar{x} is not a solution.

$$||y - (\frac{1}{2}\bar{x} + \frac{1}{2}\hat{x})|| = ||y - \bar{x}||$$

See Fig. 3.7 that under these conditions, y must be on a line between \hat{x} and \bar{x} if they are not the same point.

Figure 7: Fig 3.7

Let $(y - \bar{x}) = \lambda(y - \hat{x})$ for some λ . From $||y - \bar{x}|| = ||y - \hat{x}||$ we know that $\lambda = +1$ or -1. If $\lambda = +1$, then

$$y - \bar{x} = y - \hat{x}$$
$$\Rightarrow \bar{x} = \hat{x}$$

If $\lambda = -1$, then

$$y - \bar{x} = -(y - \hat{x})$$

 $\Rightarrow y = \frac{\bar{x} - \hat{x}}{2} \in S$

Contradition! \bar{x} must be unique.

Futhermore... S is convex $\Rightarrow \bar{x} + \lambda(x - \bar{x}) \in S$, $\forall \lambda \in [0, 1]$.

And also, we know that

$$||y - (\bar{x} + \lambda(x - \bar{x}))|| \ge ||y - \bar{x}||, \ \forall \lambda \in [0, 1]$$
$$||y - (\bar{x} + \lambda(x - \bar{x}))||^2 = ||y - \bar{x}||^2 + \lambda^2 ||x - \bar{x}||^2 - 2\lambda(y - \bar{x})^T (x - \bar{x})$$

Therefore,

$$\lambda^2 \|x - \bar{x}\|^2 - 2\lambda (y - \bar{x})^T (x - \bar{x}) \ge 0$$

$$\Rightarrow (y - \bar{x})T(x - \bar{x}) \le \frac{\lambda}{2} \|x - \bar{x}\|^2, \ \forall \lambda \in [0, 1], x \in S$$

Pick $\lambda = 0 \Rightarrow (y - \bar{x})^T (x - \bar{x}) \le 0, \forall x \in S.$