Egyenletrendszerek

Egyenletrendszerek megoldása

1.D Lineáris egyenletrendszeren olyan egyenletrendszert értünk, mely véges sok elsőfokú egyenletből áll, és véges sok ismeretlent tartalmaz. Az n-ismeretlenes, m egyenletből álló lineáris egyenletrendszer általános alakja:

$$\left. \begin{array}{l}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
 \end{array} \right}$$
(1)

ahol x_i jelöli az egyenletrendszer ismeretleneit, b_j a konstansait és a_{ij} az együtthatóit ($i=1,2,\ldots,n,\ j=1,2,\ldots,m$). A lineáris egyenletrendszert homogénnek mondjuk, ha $b_1=b_2=\cdots=b_m=0$, és inhomogénnek ha a konstansok legalább egyike nem 0.

- 2.D Egyenletrendszer *elemi átalakításain* a következő három transzformációt értjük:
 - két egyenlet felcserélése;
 - egy egyenlet nem 0 számmal való beszorzása;
 - egy egyenlet konstansszorosának egy másikhoz adása.
- 3.T Egyenletrendszer elemi átalakításai ekvivalens átalakítások, azaz az eredeti és az átalakított egyenletrendszernek azonosak a megoldásai.

Az egyenletrendszert megoldásakor elemi átalakításokkal olyan alakra hozzuk, amelyből a megoldás könnyen leolvasható. A megoldás lépéseinek lejegyzéséhez elégendő a lineáris egyenletrendszer együtthatóinak és konstansainak változását egy számtáblázatban számon tartani.

4.D Az m sorba és n oszlopba rendezett mn elemű sorozatokat $m \times n$ típusú $m\acute{a}trix$ oknak nevezzük. Egy mátrix egy elemének indexén azt a számpárt értjük, melyből az első szám azt mondja meg, hogy az elem hányadik sorban, míg a második azt, hogy az elem hányadik oszlopban van. Pl. az $a_{i-1,2}$ elem a mátrix i-1-edik sorában és a 2. oszlopában van. Ha az index mindkét eleme egyjegyű, a vessző elhagyható, pl. b_{25} a 2. sor 5. elemét jelöli. A mátrixokat könyvekben félkövér, kézírásban gyakran kétszer aláhúzott nagy betűvel jelölik, indexében gyakran szerepel mérete $(\mathbf{A}, \mathbf{A}_{m \times n}, \underline{A})$. Általános alakjára a következő jelöléseket használjuk:

$$\mathbf{A} = \mathbf{A}_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = [a_{ij}]_{m \times n}$$
(2)

Egy egyenletrendszer együtthatói is mátrixba rendezhetők. Az (1) *egyenletrendszer mátrixán* vagy együtthatómátrixán a (2)-beli mátrixot értjük, míg *kiegészített mátrixán* a következőt:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$
(3)

Az egyenletrendszeren végrehajtott elemi átalakítások a kiegészített mátrix sorain hasonló műveletekkel is megvalósíthatók, amiket *elemi sorműveletek*nek nevezünk. Ezek tehát a következők:

- két sor felcserélése;
- egy sor nem 0 számmal való beszorzása;
- egy sor konstansszorosának egy másikhoz adása.

Gyakran fogunk találkozni az alábbi mátrixokkal:

5.D Az $n \times n$ típusú mátrixokat *négyzetes mátrixok*nak nevezzük. A továbbiakban a vektorokat és az egy sorból, vagy egy oszlopból álló mátrixokat azonosítani fogjuk. Ennek megfelelően az $n \times 1$ típusú mátrixokat, vagyis az egyetlen oszlopból álló mátrixokat *oszlopvektor*oknak, míg az $1 \times n$ típusú mátrixokat *sorvektor*oknak fogjuk nevezni. A vektorokat a továbbiakban – ha külön mást nem mondunk – oszlopvektoroknak fogjuk tekinteni, így pl. az eddig (x_1, x_2, \ldots, x_n) -nel jelölt vektort

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

fogja jelölni.

6.M Minden mátrix tekinthető úgy, mint amely oszlopvektorokból illetve sorvektorokból áll. Pl. a (2)-beli **A** mátrix felírható a következő alakban:

$$\mathbf{A} := \left[\begin{array}{c|c} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{array} \right],$$

ahol az ${\bf A}$ mátrix j-edik oszlopvektora:

$$\mathbf{a}_j := \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}.$$

Hasonlóképpen

$$\mathbf{A} := \begin{bmatrix} \frac{\mathbf{s}_1}{\mathbf{s}_2} \\ \vdots \\ \mathbf{s}_m \end{bmatrix}, \text{ ahol } \mathbf{s}_i := \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix}.$$

A fenti példában alkalmazott függőleges illetve vízszintes elválasztó vonalakat általában akkor használjuk, ha két vagy több mátrixból rakunk össze egyet. Például a (3)-beli kiegészített mátrixot a (2)-beli $\bf A$ és az egyenletrendszer b_j ($j=1,2,\ldots,m$) konstansaiból képzett $\bf b$ vektorból képezzük, amit így jelölünk:

$$[\mathbf{A}|\mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

- 7.D A (2)-beli **A** mátrix *főátló*ján az $a_{11}, a_{22}, \ldots, a_{rr}$ elemeket értjük, ahol r az m és az n elemek közül a kisebbik. Az **A** *mellékátlója* azokból az elemekből áll, amelyek sor- és oszlopindexének összege n+1.
- 8.D Azt mondjuk, hogy egy mátrix sorlépcsős alakú, ha
 - 1. a csupa 0-ból álló sorok (a zérus sorok) a mátrix utolsó sorai,
 - 2. a nem zérus sorok mindegyikének első nem 0 eleme 1, amit *vezető egyes*nek nevezünk,
 - 3. bármely két nem zérus sor vezető egyese közül a felső soré balra helyezkedik el az alsó sor vezető egyesétől.

Ha ezeken túl még az is igaz, hogy a mátrixban

4. minden sor vezető egyesének oszlopában minden más elem 0,

akkor azt mondjuk, hogy a mátrix redukált sorlépcsős alakú

P Az alábbi mátrixok sorlépcsős alakúak, az utolsó kettő ráadásul redukált sorlépcsős alakú:

$$\begin{bmatrix} \mathbf{1} & 3 & 2 & 5 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} \\ 0 & 0 & 0 & 0 \end{bmatrix}, \ \begin{bmatrix} \mathbf{1} & 3 & 2 & 5 \\ 0 & \mathbf{1} & 3 & 6 \\ 0 & 0 & 0 & \mathbf{1} \end{bmatrix}, \ \begin{bmatrix} \mathbf{1} & 1 & 3 & 5 \\ 0 & 0 & \mathbf{1} & 3 & 6 \\ 0 & 0 & 0 & \mathbf{1} \end{bmatrix}, \ \begin{bmatrix} \mathbf{1} & 1 & 3 & 5 \\ 0 & 0 & \mathbf{1} & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \ \begin{bmatrix} \mathbf{1} & 2 & \mathbf{0} & 2 & \mathbf{0} & 1 \\ \mathbf{0} & 0 & \mathbf{1} & 3 & \mathbf{0} & 0 \\ \mathbf{0} & 0 & \mathbf{0} & 0 & 1 & 2 \end{bmatrix}, \ \begin{bmatrix} \mathbf{1} & 1 & \mathbf{0} & 5 \\ \mathbf{0} & 0 & \mathbf{1} & 2 \\ \mathbf{0} & 0 & \mathbf{0} & 0 \end{bmatrix}$$

9.T *Sorlépcsős alakra hozás:* Bármely mátrix elemi sorműveletekkel *sorlépcsős* alakra hozható.

Redukált sorlépcsős alakra hozás: Bármely mátrix elemi sorműveletekkel redukált sorlépcsős alakra hozható.

- B Tekintsünk egy tetszőleges $m \times n$ -es mátrixot, pl. a (2)-belit.
 - 1. Ha az első oszlopban csak 0 elemek állnak, takarjuk le ezt az oszlopot, és tekintsük a maradék mátrixot. Ha ennek első oszlopában ismét csak 0 elemek vannak, azt is takarjuk le, és ezt addig folytassuk, míg egy olyan oszlopot nem találunk, amelyben van nem 0 elem. Ha ilyen oszlopot nem találunk, az eljárásnak vége, a mátrix sorlépcsős alakú.

2. Ha az első oszlop első sorában álló elem 0, akkor cseréljük ki e sort egy olyannal, melynek első eleme nem 0. Az egyszerűség kedvéért a továbbiakban minden lépés végrehajtása után megváltoztatjuk a mátrix paramétereinek jelentését, m és n mindig az éppen vizsgált mátrix sorainak ill. oszlopainak számát jelöli (ez bizonyos lépések után csökkenhet), a_{ij} pedig az adott lépésben épp az i-edik sorban lévő j-edik elemet.

Miután elértük, hogy $a_{11} \neq 0$, elosztjuk az első sort a_{11} gyel, így az első sor első nem 0 eleme 1 lesz. Ezután az 1 alatti együtthatókat a 2. sortól az m-edikig sorban haladva 0-ra változtatjuk: ha az i-edik sorbeli $a_{i1} \neq 0$, akkor az első sor $-a_{i1}$ -szeresét hozzáadjuk az i-edik sorhoz.

3. A fenti átalakítás után takarjuk le az első sort és az első oszlopot. Ha ekkor nem marad a mátrixban több sor, vége az eljárásnak, a korábban letakart sorokat feltárva megkaptuk a sorlépcsős alakot. Egyébként ugorjunk vissza az 1. lépéshez, és folytassuk az eljárást.

Ha nem sorlépcsős alakra, hanem redukált sorlépcsős alakra akrunk jutni, akkor a sorlépcsős alak vezető egyesei fölötti értékeket is 0-ra változtatjuk a 2. lépésben leírt módon.

- 10.D Azt az eljárást, amikor a lineáris egyenletrendszer kiegészített mátrixát redukált sorlépcsős alakra hozzuk, *Gauss–Jordan-módszer*nek illetve *Gauss–Jordan-elimináció*nak nevezzük. *Gauss-módszer*nől illetve *Gauss-elimináció*ról akkor beszélünk, ha a kiegészített mátrixot sorlépcsős alakra hozzuk.
 - M Egy lineáris egyenletrendszer megoldásai azonnal leolvashatók a kiegészített mátrixból annak redukált sorlépcsős alakra hozása után. Az egyenletrendszernek nincs megoldása, ha e mátrixnak van olyan sora, melyben az utolsó elem nem 0, de az összes többi igen, ennek ugyanis egy ellentmondó egyenlet felel meg. Az egyenletrendszernek egyetlen megoldása van, ha a zérus sorokat elhagyva a mátrixból egy olyan $n \times (n+1)$ -es mátrixot kapunk, amelyben az i-edik sor vezető egyese az i-edik oszlopban van $(i = 1, 2, \dots n)$. Ha a redukált alakban az utolsó oszlopon kívül más oszlop is akad, melyben nincs vezető egyes, akkor az egyenletrendszernek végtelen sok megoldása van. Azokat a változókat, melyekhez tartozó oszlopokban van vezető egyes, kifejezhetjük azok segítségével, melyekhez tartozó oszlopban nincs vezető egyes. Az előbbieket szokás kötött ismeretlennek, míg az utóbbit szabad ismeretlennek nevezni.

Egyenletrendszerek megoldásainak szemléltetése 3 dimenzióban

P Tekintsük az

$$x + y + z = 1$$
$$x + y + z = 2$$

egyenletrendszert. Látható, hogy ez két párhuzamos sík egyenlete, melyeknek nincs közös pontjuk. Megoldása Gauss-módszerrel:

$$\left[\begin{array}{cc|cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \end{array}\right] \sim \left[\begin{array}{cccccc} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

P Vizsgáljuk meg a

$$x + y + z = 2$$

$$x + y - z = 4$$

$$2x + 2y = 6$$

$$-2z = 2$$

egyenletrendszert. A négy egyenlet négy egy egyenesen átmenő síkot ábrázol, a megoldások száma tehát végtelen.

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & -1 & 4 \\ 2 & 2 & 0 & 6 \\ 0 & 0 & -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Kötött ismeretlenek x, z, szabad ismeretlen y. A megoldás tehát:

$$xy = 3$$
 $x = 3 - y$
 $z = -1$ azaz $z = -1$

P Tekintsük az alábbi egyenletrendszert:

$$x + y + z = 0$$

$$x - y + z = 0$$

$$2x + y - 3z = 0$$

$$x + 3y + z = 0$$

egyenletrendszert. A négy egyenlet négy síkot határoz meg, melyeknek egyetlen közös pontjuk van: $x=0,\ y=0,\ z=0.$ (Ez az eredetivel ekvivalens egyenletrendszer, mely egyúttal a megoldást is megadja.)

Mátrixok

Mátrixműveletek

a mátrixokkal végezhető műveleteket és a műveleti azonosságokat lásd a példatárban.

- M Az \mathbf{x} és \mathbf{y} vektorok $\mathbf{x}\cdot\mathbf{y}$ skaláris szorzatát a vektorok szokásos oszlopmátrix alakú reprezentációja esetén a $\mathbf{x}^T\mathbf{y}$ mátrixszorzat állítja elő annyi különbséggel, hogy az utóbbi esetben az eredmény egy 1×1 -es mátrix.
- 11.M A lineáris egyenletrendszerek ún. *mátrixszorzatos alak*ba írhatók. Például az (1) egyenletrendszer az

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

jelöléseket használva $\mathbf{A}\mathbf{x} = \mathbf{b}$ alakba írható. A mátrixok típusait is jelölve: $\mathbf{A}_{m \times n} \mathbf{x}_{n \times 1} = \mathbf{b}_{m \times 1}$.

12.D A több, azonos együtthatómátrixszal rendelkező egyenletrendszert szimultán egyenletrendszernek nevezzük. Ezek egyetlen közös mátrixszorzatos alakba is felírhatók. Tekintsük a k egyenletrendszerből álló $\mathbf{A}\mathbf{x}_1 = \mathbf{b}_1$, $\mathbf{A}\mathbf{x}_2 = \mathbf{b}_2$, ... $\mathbf{A}\mathbf{x}_k = \mathbf{b}_k$ szimultán lineáris egyenletrendszert. Ez átírható $\mathbf{A}\mathbf{X} = \mathbf{B}$ alakba, ahol

$$\mathbf{X} = \left[\begin{array}{c|c|c} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_k \end{array} \right]_{n \times k},$$
$$\mathbf{B} = \left[\begin{array}{c|c|c} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_k \end{array} \right]_{n \times k}.$$

- M A szimultán egyenletrendszer is megoldható a Gauss- illetve a Gauss-Jordan-módszerrel. Ekkor az elemi sorműveleteket az [A | B] mátrixon végezzük.
- 13.M Legyen az $\mathbf{A}_{m \times n}$ mátrix sor- illetve oszlopvektorokra felbontott alakja a 6.M szerinti, a $\mathbf{B}_{n \times k}$ mátrix oszlopvektorokra bontott alakja pedig legyen

$$\mathbf{B} = \left[\begin{array}{c|c} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_k \end{array} \right].$$

Ekkor az **AB** mátrixszorzat sor- illetve oszlopvektorokra felbontott alakjai a következők:

$$\begin{aligned} \mathbf{A}\mathbf{B} &= \mathbf{A} \left[\begin{array}{c|c} \mathbf{s}_1 & \dots & \mathbf{s}_m \end{array} \right] = \left[\begin{array}{c|c} \mathbf{A}\mathbf{s}_1 & \dots & \mathbf{A}\mathbf{s}_m \end{array} \right] \\ &= \left[\begin{array}{c|c} \underline{\mathbf{s}}_1 \\ \hline \dots \\ \hline \mathbf{s}_n \end{array} \right] \mathbf{B} = \left[\begin{array}{c|c} \underline{\mathbf{s}}_1 \mathbf{B} \\ \hline \dots \\ \hline \mathbf{s}_n \mathbf{B} \end{array} \right] \end{aligned}$$

A egyenletrendszerek mátrixszorzatos alakjából az is látszik, hogy az $\mathbf{A}\mathbf{x} = \mathbf{b}$ egyenletrendszer pontosan akkor *oldható meg*, ha a \mathbf{b} vektor előáll az \mathbf{A} oszlopvektorainak lineáris kombinációjaként, ugyanis

$$\mathbf{b} = \mathbf{A}\mathbf{x} = \left[\begin{array}{c|c} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{array} \right] \mathbf{x} = \mathbf{a}_1 x_1 + \dots + \mathbf{a}_n x_n.$$

A megoldás épp e lineáris kombináció konstansainak megkeresését jelenti.

14.D Legyen $\mathbf{A}_{m \times n}$ egy valós mátrix. Tekintsük a következő A függvényt:

$$A \colon \mathbf{R}^n \to \mathbf{R}^m \colon \mathbf{x} \mapsto \mathbf{A}\mathbf{x}.$$

Ezt az A függvényt az A mátrixhoz tartozó leképezésnek nevezzük. E leképezés értelmezési tartománya \mathbf{R}^n , értékkészlete az \mathbf{R}^m része, ezt nevezzük A képterének. Azon vektorok halmazát, melyeket az A leképezés a $\mathbf{0}$ -vektorba visz, az A leképezés magterének nevezzük. Az \mathbf{A} mátrix magterén és képterén a hozzá tartozó leképezés magterét és képterét értjük.

M Az $\mathbf{A}\mathbf{x} = \mathbf{b}$ egyenletrendszer megoldható, ha \mathbf{b} az \mathbf{A} -hoz tartozó A leképezés képterében van, a magtér elemei megegyeznek a homogén lineáris $\mathbf{A}\mathbf{x} = \mathbf{0}$ egyenletrendszer megoldásaival.

Mátrix inverze és az egyenletrendszerek

$Az R^n tér$

Az Rⁿ tér és alterei

15.D **R**ⁿ a Descartes-szorzat definíciója alapján az **R** elemeiből képzett rendezett szám-n-esek halmazát jelöli. Ugyanezt a jelölést használjuk az n-dimenziós vektorok halmazára is, minthogy a rendezett szám-n-esek és az n-dimenziós vektorok között természetes megfeleltést létesít a

$$(x_1,\ldots,x_n) \leftrightarrow \begin{bmatrix} x_1 \\ \ldots \\ x_n \end{bmatrix}$$

kölcsönösen egyértelmű megfeleltetés. Ha e halmazt ellátjuk a vektorok összeadásának és valós skalárral való szorzásának műveletével is, akkor az \mathbf{R}^n -ről, mint *vektortér*ről beszélünk.

 \mathbb{C}^n jelöli a rendezett komplex számn-esek, és egyúttal az n-dimenziós komplex vektorok halmazát is. Ha ez utóbbi halmazt ellátjuk a vektorösszeadás és a komplex skalárral való szorzás műveletével, akkor az ugyancsak \mathbb{C}^n -nel jelölt komplex n-dimenziós vektortér fogalmához jutunk.

- 16.D Azt mondjuk, hogy az $L \subseteq \mathbf{R}^n$ vektorhalmaz az \mathbf{R}^n vektortér *lineáris altere*, ha L-ből bárhogy kiválasztva véges sok $\mathbf{a}_1, \ldots, \mathbf{a}_k$ vektort, azok minden lineáris kombinációja is L-ben lesz.
 - M Könnyen látható, hogy L pontosan akkor lineáris altér, ha tetszőleges $\mathbf{a}, \mathbf{b} \in L$ vektorok és tetszőleges $c_1, c_2 \in \mathbf{R}$ valósok esetén $c_1\mathbf{a} + c_2\mathbf{b} \in L$. E feltétellel ekvivalens az alábbi kettő:
 - 1. tetszőleges $\mathbf{a}, \mathbf{b} \in L$ vektorok esetén $\mathbf{a} + \mathbf{b} \in L$,
 - 2. tetszőleges $\mathbf{a} \in L$ vektor és $c \in \mathbf{R}$ valós esetén $c\mathbf{a} \in L$
- 17.T Homogén lineáris egyenletrendszer megoldásainak minden lineáris kombinációja megoldás, azaz másként fogalmazva az $\mathbf{A}_{m \times n} \mathbf{x}_{n \times 1} = \mathbf{0}_{m \times 1}$ egyenletrendszer megoldásai az \mathbf{R}^n tér egy lineáris alterét alkotják.
 - B Ha \mathbf{x} és \mathbf{y} megoldás, azaz $\mathbf{A}\mathbf{x} = \mathbf{0}$ és $\mathbf{A}\mathbf{y} = \mathbf{0}$, akkor $\mathbf{A}(c_1\mathbf{x} + c_2\mathbf{y}) = c_1\mathbf{A}\mathbf{x} + c_2\mathbf{A}\mathbf{y} = \mathbf{0} + \mathbf{0} = \mathbf{0}$.
 - P a. A zérusvektorból álló $L=\{\mathbf{0}\}$ halmaz és az $L=\mathbf{R}^n$ halmaz egyaránt alterek. Ezeket *triviális alterek*nek nevezzük.
 - b. Az R² nemtriviális alterei azok a vektorhalmazok, amelyekben a vektorok végpontjai egy origón átmenő egyenesen vannak. Ilyen altérhez úgy jutunk, ha vesszük egy nem-0 vektor összes skalárszorosát. R³ nemtriviális alterei olyan vektorokból állnak, melyek végpontjai vagy egy origón áthaladó egyenesen, vagy egy origón áthaladó síkon vannak.

- c. Az A mátrixhoz tartozó A leképezés magtere altér \mathbf{R}^n -ben, míg A képtere altér \mathbf{R}^m -ben. Az állítás első felét épp a 17.T-ben bizonyítottuk, a második felének bizonyítása is hasonlóan egyszerű.
- 18.T Az $\mathbf{A}\mathbf{x} = \mathbf{b}$ egyenletrendszer két tetszőleges megoldásának különbsége az $\mathbf{A}\mathbf{x} = \mathbf{0}$ homogén egyenletrendszer egy megoldását adja. Az $\mathbf{A}\mathbf{x} = \mathbf{b}$ egyenletrendszer összes megoldását megkapjuk, ha egyetlen megoldásához hozzáadjuk a homogén $\mathbf{A}\mathbf{x} = \mathbf{0}$ egyenletrendszer összes megoldását.
 - B Ha \mathbf{x}_1 és \mathbf{x}_2 megoldások, azaz $\mathbf{A}\mathbf{x}_1 = \mathbf{b}$ és $\mathbf{A}\mathbf{x}_2 = \mathbf{b}$, akkor $\mathbf{A}(\mathbf{x}_1 \mathbf{x}_2) = \mathbf{A}\mathbf{x}_1 \mathbf{A}\mathbf{x}_2 = \mathbf{b} \mathbf{b} = \mathbf{0}$, tehát az $\mathbf{x}_1 \mathbf{x}_2$ különbség megoldása a homogén egyenletrendszernek. A tétel másik állításának bizonyításához csak annyit kell belátni, hogy ha \mathbf{x}_0 az inhomogén, \mathbf{y} a homogén egy tetszőleges megoldása, akkor $\mathbf{x}_0 + \mathbf{y}$ az inhomogén egy megoldását adja. Ez nyilvánvaló, hisz $\mathbf{A}(\mathbf{x}_0 + \mathbf{y}) = \mathbf{A}\mathbf{x}_0 + \mathbf{A}\mathbf{y} = \mathbf{b} + \mathbf{0} = \mathbf{b}$.

Vektortér, altér

- 19.D Legyen V egy tetszőleges nemüres halmaz. Legyen definiálva V-n két művelet: az összeadás, és a skalárral való szorzás, azaz bármely $\mathbf{a}, \mathbf{b} \in V$ elemre és $\alpha \in \mathbf{R}$ skalárra legyen definiálva az $\mathbf{a}+\mathbf{b}$ és a $\alpha\mathbf{a}$ elem. Azt mondjuk, hogy a V halmaz e két művelettel *valós test feletti vektorteret* alkot, ha bármely $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$ elemre és $\alpha, \beta \in \mathbf{R}$ skalárra fennállnak az alábbi összefüggések:
 - (1) $\mathbf{a} + \mathbf{b} \in V$ (V az összeadásra nézve zárt);
 - (2) $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ ('+' kommutatív);
 - (3) $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c}) ('+' \text{ asszociatív});$
 - (4) $\exists \mathbf{o} \in V$, hogy $\mathbf{o} + \mathbf{a} = \mathbf{a}$ (létezik zéruselem);
 - (5) $\forall \mathbf{a} \exists \mathbf{b}$, hogy $\mathbf{a} + \mathbf{b} = \mathbf{o}$ (létezik additív inverz);
 - (6) $\alpha \mathbf{a} \in V$ (V zárt a skalárral való szorzásra);
 - (7) $\alpha(\mathbf{a} + \mathbf{b}) = \alpha \mathbf{a} + \alpha \mathbf{b}$;
 - (8) $(\alpha + \beta)\mathbf{a} = \alpha\mathbf{a} + \beta\mathbf{a}$;
 - (9) $\alpha(\beta \mathbf{a}) = (\alpha \beta) \mathbf{a}$;
 - (10) 1a = a;

Bármik is a V halmaz elemei, a V-ből képzett vektortér elemeit a vektortér vektorainak nevezzük.

- M A fenti definícóban a valós **R** test kicserélhető bármely más testre, így például a **C** testre, ekkor **C** test feletti vektortérről beszélünk. Ha külön nem említjük, a továbbiakban valós test feletti vektorterekről beszélünk.
- 20.T Tetszőleges test feletti V vektortérre igazak az alábbi állítások:
 - 1. Csak egyetlen zéruselem létezik.

- 2. Minden $\mathbf{a} \in V$ vektornak egyetlen additív inverze létezik
- 3. Minden $\mathbf{a} \in V$ vektorra: $0\mathbf{a} = \mathbf{o}$.
- 4. Minden $\alpha \in \mathbf{R}$ valósra: $\alpha \mathbf{o} = \mathbf{o}$.
- 5. Jelölje a tetszőleges $\mathbf{a} \in V$ elem additív inverzét $-\mathbf{a}$. E jelölés mellett $(-1)\mathbf{a} = -\mathbf{a}$.
- 6. Ha $\alpha \mathbf{a} = \mathbf{o}$, akkor $\alpha = 0$ vagy $\mathbf{a} = \mathbf{o}$.

P Néhány példa vektortérre:

- az R³ tér origón áthaladó egy egyenesének (egy síkjának) pontjaiba mutató vektorok halmaza a szokásos vektorműveletekkel;
- 2. az [a,b] intervallumon értelmezett folytonos függvények C[a,b] halmaza (differenciálható függvények D[a,b] halmaza) a függvények között értelmezett összeadás és valós számmal való szorzás műveletével;
- 3. az $m \times n$ típusú valós mátrixok a mátrixok összeadásának és valós skalárral való szorzásának szokásos műveletével valósok feletti vektorteret alkot;
- 4. az $m \times n$ típusú komplex mátrixok valós skalárral való szorzás esetén valós test feletti vektorteret ad, míg komplex skalárral való szorzás esetén komplex test feletti vektorteret;
- 5. a legfeljebb negyedfokú valósegyütthatós polinomok halmaza a szokásos polinomműveletekkel.
- M A vektortér elemeinek *lineáris kombináció*ja, *lineáris függetlensége* ugyanúgy definiálható, mint korábban.
- 21.D Egy V vektortér egy L részhalmazát a V alterének nevezzük, ha L vektortér a V-beli összeadás és skalárral való szorzás műveletével.
- 22.T Legyen *L* a *V* vektortér egy nemüres részhalmaza. Ekkor 30.T az alábbi állítások ekvivalensek:
 - 1. L altere V-nek;
 - 2. tetszőleges $\mathbf{a}, \mathbf{b} \in L$ és $\alpha \in \mathbf{R}$ esetén $\mathbf{a} + \mathbf{b} \in L$ 31.T és $\alpha \mathbf{a} \in L$ (azaz abból, hogy L eleget tesz-e a 19.D definíció tíz kikötésének, elég csak az (1)-t és az (5)-t ellenőrizni):
 - 3. tetszőleges $\mathbf{a}, \mathbf{b} \in L$ és $\alpha, \beta \in \mathbf{R}$ esetén $\alpha \mathbf{a} + \beta \mathbf{b} \in L$;
 - 4. tetszőleges L-beli $\mathbf{a}_1, \dots, \mathbf{a}_k$ vektorok összes lináris kombinációja is L-ben van.
- 23.D Legyen V egy vektortér, $\mathbf{a}_1, \dots, \mathbf{a}_k \in V$. Azt mondjuk, hogy a $\mathbf{a}_1, \dots, \mathbf{a}_k$ vektorok *kifeszítik* a V teret, ha V minden eleme előáll e vektorok lineáris kombinációjaként.
- 24.T Legyen V egy vektortér, $\mathbf{a}_1, \ldots, \mathbf{a}_k \in V$. Tekintsük az $\mathbf{a}_1, \ldots, \mathbf{a}_k$ vektorok összes lineáris kombinációjának L halmazát. Ekkor L a V lineáris altere, melyet kifeszítenek az $\mathbf{a}_1, \ldots, \mathbf{a}_k$ vektorok.

Bázis, dimenzió

25.D Legyen adva a V vektortérben egy $B = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ vektorrendszer. Azt mondjuk, hogy B bázis V-ben, ha B elemei lineárisan függetlenek, és kifeszítik V-t.

P Példák bázisra:

- 1. Az $\mathbf{e}_1=(1,0,\ldots,0),\ \mathbf{e}_2=(0,1,\ldots,0),\ldots\ \mathbf{e}_n=(0,0,\ldots,1),$ vektorok bázist alkotnak \mathbf{R}^n -ben. Ezt nevezzük \mathbf{R}^n standard bázisának.
- 2. Az 1, x, x^2 , x^3 függvények bázist alkotnak a legfeljebb 3-adfokú polinomok vektorterében.
- D Egy V vektortér *végesdimenziós*, ha van véges sok elemből álló bázisa.
- 26.T Egy végesdimenziós vektortér bármely két bázisa azonos számú vektorból áll.
- 27.D Egy végesdimenziós vektortér dimenzióján valamely bázisának elemszámát értjük. A V vektortér dimenzióját $\dim(V)$ jelöli.
- 28.T 1. Ha V n-dimenziós vektortér, és $B = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ lineárisan független V-beli vektorokból áll, akkor B bázis.
 - 2. Ha V n-dimenziós vektortér, és $B = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ kifeszíti V-t, akkor B bázis.

Sortér, oszloptér, rang

- 29.D Az $m \times n$ -es \mathbf{A} mátrix n-dimenziós sorvektorai által kifeszített teret az \mathbf{A} sorterének, míg az m-dimenziós oszlopvektorok által kifeszített teret \mathbf{A} oszlopterének nevezzük.
- 30.T a. Elemi sorműveletek közben a sortér nem változik.
 - b. Egy mátrix sorlépcsőssé transzformált alakjának nemzérus vektorai a sortér egy bázisát adják.
- a. Elemi sorműveletek közben az oszlopvektorok közötti lineáris összefüggőségek nem változnak.
 - b. Egy mátrixnak azok az oszlopai, amelyekbe a sorlépcsős alakra hozás közben vezető egyes kerül, az oszlopvektorok egy maximális kineárisan független rendszerét adják, azaz e vektorok kifeszítik az oszlopteret.
- 32.T Egy mátrix sorterének és oszlopterének dimenziója mindig megegyezik.
- 33.D Egy *vektorrendszer rangján* a vektorok által kifeszített altér dimenzióját értjük, míg *mátrix rangján* a sorvektorai által kifeszített tér, vagyis a sortér dimenzióját. Egy **A** mátrix rangját $\operatorname{rang}(\mathbf{A})$, míg a $\{\mathbf{a}_1,\ldots,\mathbf{a}_m\}$ vektorrendszer rangját $\operatorname{rang}(\mathbf{a}_1,\ldots,\mathbf{a}_m)$ jelöli.

- 34.T Legyen $\mathbf{A}_{m \times n}$ egy tetszőleges mátrix, az általa generált 38.T leképezést jelölje A, A sorvektorainak rendszerét jelölje S, oszlopvektorainak rendszerét O. Az alábbi állítások ekvivalensek:
 - 1. $\operatorname{rang}(S) = r$;
 - 2. $\operatorname{rang}(O) = r$;
 - 3. rang(\mathbf{A}) = r;
 - 4. az S-ből kiválasztható lineárisan független vektorok számának maximuma r;
 - számának maximuma r;
 - 6. A sorterének dimenziója r;
 - 7. A oszlopterének dimenziója r;
 - 8. az A képterének dimenziója r;
- 35.T a. Az Ax = b egyenletrendszer pontosan akkor oldható meg, ha a b vektor benne van az A mátrix oszlopterében.
 - b. Az $\mathbf{A}\mathbf{x} = \mathbf{b}$ egyenletrendszer pontosan akkor oldható meg, ha A és | A | b | oszloptere azonos.
 - c. Az $\mathbf{A}\mathbf{x} = \mathbf{b}$ egyenletrendszer pontosan akkor oldható meg, ha rang(\mathbf{A}) = rang($\begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$).
 - d. Az Ax = b egyenletrendszer pontosan akkor oldható meg egyértelműen, ha rang(A) $rang([\mathbf{A} \mid \mathbf{b}]) = n$, ahol n az ismeretlenek száma.

Az $R^n \rightarrow R^m$ lineáris leképezések

- 36.D Legyen V és W két valós test feletti lineáris tér. Az $f: V \to W$ leképezést *lineáris leképezés*nek nevezzük, ha
 - 1. f homogén, azaz bármely $\mathbf{v} \in V$ és $\alpha \in \mathbf{R}$ esetén $f(\alpha \mathbf{v}) = \alpha f(\mathbf{v});$
 - 2. f additív, azaz bármely $\mathbf{u}, \mathbf{v} \in V$ esetén $f(\mathbf{u} + \mathbf{v}) =$ $f(\mathbf{u}) + f(\mathbf{v}).$
- 37.T Az előző definíció 1. és 2. pontja ekvivalens a következővel:
 - 3. bármely $\mathbf{u}, \mathbf{v} \in V$ és $\alpha, \beta \in \mathbf{R}$ esetén $f(\alpha \mathbf{u} + \beta \mathbf{v}) =$ $\alpha f(\mathbf{u}) + \beta f(\mathbf{v}).$

P Példák lineáris leképezésre:

- 1. Legyen V az [a, b] intervallumon differenciálható, Waz [a, b] intervallumon értelmezett függvények vektorterét. A $V o W \colon g \mapsto g'$ leképezés (a differenciálás operátora) lineáris.
- 2. Legyen V az [a,b] intervallumon folytonos függvények vektortere, és legyen $W = \mathbf{R}$. A $V \rightarrow$ $W: g \mapsto \int_a^b g$ leképezés lineáris.

- a. Ha A egy $m \times n$ -es mátrix, akkor az $A: \mathbf{x} \mapsto$ $\mathbf{A}\mathbf{x}$ leképezés egy \mathbf{R}^n -ből \mathbf{R}^m -be képező lineáris leképezés.
 - b. Ha $f \colon \mathbf{R}^n \to \mathbf{R}^m$ egy lineáris leképezés, akkor van olyan $m \times n$ -es **A** mátrix, hogy f megegyezik az $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ leképezéssel. Ha \mathbf{R}^n standard bázisának elemeit $e_1, e_2, \dots e_n$ jelöli, akkor A = $[f(\mathbf{e}_1) \mid f(\mathbf{e}_2) \mid \dots \mid f(\mathbf{e}_n)].$

Áttérés másik bázisra

5. az O-ból kiválasztható lineárisan független vektorok 39.M Legyen az \mathbb{R}^2 tér két tetszőleges bázisa $E = \{\mathbf{e}_1, \mathbf{e}_2\}$ és $F = \{\mathbf{f}_1, \mathbf{f}_2\}$. Fejezzük ki az F bázis elemeit az E bázisban:

$$[\mathbf{f}_1]_E = egin{bmatrix} a \ b \end{bmatrix}, \quad [\mathbf{f}_2]_E = egin{bmatrix} c \ d \end{bmatrix},$$

azaz

$$\mathbf{f}_1 = a\mathbf{e}_1 + b\mathbf{e}_2$$
$$\mathbf{f}_2 = c\mathbf{e}_1 + d\mathbf{e}_2.$$

Legyen egy tetszőleges x vektor koordinátás alakja az E bázisban legyen $[\mathbf{x}]_E = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, azaz $\mathbf{x} = x_1\mathbf{f}_1 + x_2\mathbf{f}_2$. Behelyettesítve a fenti egyenlőségeket a következőket kapjuk:

$$[\mathbf{x}]_E = \begin{bmatrix} a & c \\ b & d \end{bmatrix}_{F \to E} [\mathbf{x}]_F$$

Az $F \rightarrow E$ a mátrix indexében azt lejzi, hogy a mátrix az F bázisból az E-be való áttérés mátrixa. Általában, ha E= $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ és $F=\{\mathbf{f}_1,\ldots,\mathbf{f}_n\}$ az \mathbf{R}^n két bázisa, akkor az $F \rightarrow E$ áttérés mátrixa:

$$\left[\begin{array}{c|c|c} [\mathbf{f}_1]_E & [\mathbf{f}_2]_E & \dots & [\mathbf{f}_n]_E \end{array}\right]$$

- 40.T Ha C az F-ből az E bázisba való áttérés mátrixa, akkor C invertálható, és az E-ből az F bázisba való áttérés mátrixa C^{-1} .
- 41.D Az Rⁿ egy bázisát *ortonormált*nak nevezzük, ha a bázis elemei páronként merőleges egységvektorok.
- 42.T Ha E és F egyaránt ortonormált bázisok, akkor az áttérés \mathbf{C} mátrixára $\mathbf{C}^{-1} = \mathbf{C}^T$, továbbá \mathbf{C} sorvektorai és \mathbf{C} oszlopvektorai is ortonormált rendszert alkotnak.
- 43.D A négyzetes C mátrixot ortogonálisnak nevezzük, ha $\mathbf{C}^{-1} = \mathbf{C}^T$.
- 44.T Legyen $E = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ és $F = \{\mathbf{f}_1, \dots, \mathbf{f}_n\}$ az \mathbf{R}^n két bázisa, az $F \to E$ áttérés mátrixát jelölje C. Legyen $A : \mathbb{R}^n \to \mathbb{R}^n$ egy lineáris leképezés. Ekkor az A leképezés mátrixa az E ill. F bázisban $[\mathbf{A}]_E = [A(\mathbf{e}_1)]_E | \dots | [A(\mathbf{e}_n)]_E$, illetve $[\mathbf{A}]_F =$ $[A(\mathbf{f}_1)]_F \cup [A(\mathbf{f}_n)]_F$, és ezek között fennáll a következő összefüggés:

$$[\mathbf{A}]_F = \mathbf{C}^{-1}[\mathbf{A}]_E \mathbf{C}.$$

45.D Azt mondjuk, hogy az A és a B mátrixok *hasonló*ak, ha van olyan invertálható C mátrix, hogy $B = C^{-1}AC$.

Determináns

A 2×2 -es illetve a 3×3 -as detemináns értéke megegyezik a sorvektorai által kifeszített paralelogramma előjeles területével illetve paralelepipedon előjeles térfogatával.

- 46.D Az \mathbf{R}^n standard bázisának elemeit jelölje \mathbf{e}_i $(i=1,\ldots,n)$. Legyenek $\mathbf{a}_1,\mathbf{a}_2,\ldots\mathbf{a}_n\in\mathbf{R}^n$ tetszőleges vektorok. E vektorok által kifeszített paralelepipedon *előjeles térfogatán* egy olyan n-dimenziós vektor-n-eseken értelmezett valós értékű függvényt értünk, melyre
 - (1) $f(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n) = 1$ (az egységkocka térfogata 1);
 - (2) $f(\mathbf{a}_1,\ldots,c\mathbf{a}_i,\ldots,\mathbf{a}_n)=cf(\mathbf{a}_1,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_n);$
 - (3) $f(\mathbf{a}_1, \dots, \mathbf{a}_i^*, \dots, \mathbf{a}_n) + f(\mathbf{a}_1, \dots, \mathbf{a}_i^{**}, \dots, \mathbf{a}_n) = f(\mathbf{a}_1, \dots, \mathbf{a}_i^* + \mathbf{a}_i^{**}, \dots, \mathbf{a}_n);$
 - (4) $f(\ldots, \mathbf{a}_i, \ldots, \mathbf{a}_j, \ldots) = -f(\ldots, \mathbf{a}_i, \ldots, \mathbf{a}_j, \ldots).$
- 47.T Egyetlen olyan függvény van, mely a fenti tulajdonságokat teljesíti.
- 48.D Egy $n \times n$ -es mátrix *determináns*án a sorvektorai által kifeszített paralelepipedon előjeles térfogatát értjük.

A determináns tulajdonságait lásd a példatárban.

Sajátérték, sajátvektor

49.D Azt mondjuk, hogy az $n \times n$ -es \mathbf{A} mátrixnak (illetve az $A \colon \mathbf{R}^n \to \mathbf{R}^n$ lineáris leképezésnek) $\mathbf{x} \in \mathbf{R}^n$ nemzérus vektor *sajátvektora*, ha megadható egy olyan $\lambda \in \mathbf{R}$ szám, hogy $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ (illetve $A\mathbf{x} = \lambda\mathbf{x}$). E λ számot *sajátérték*nek nevezzük, az \mathbf{x} vektort e sajátértékhez tartozó *sajátvektor*nak.

A definíció hasonlóan fogalmazható meg egy komplex elemű \mathbf{A} mátrixra illetve egy $A \colon \mathbf{C}^n \to \mathbf{C}^n$ lineáris leképezésre is, ekkor $\mathbf{x} \in \mathbf{C}^n$ és $\lambda \in \mathbf{C}$.

- 50.D A $\lambda \mapsto \det(\mathbf{A} \lambda \mathbf{I})$ függvény λ polinomja, amit az \mathbf{A} mátrix karakterisztikus polinomjának nevezünk, a $\det(\mathbf{A} \lambda \mathbf{I}) = 0$ egyenletet pedig az \mathbf{A} karakterisztikus egyenletének.
- 51.T Legyen ${\bf A}$ egy $n \times n$ -es mátrix. Ekkor a következők ekvivalensek:
 - (a) λ az **A** sajátértéke.
 - (b) A homogén lineáris $(\mathbf{A} \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ egyenletnek van nemtriviális megoldása.
 - (c) λ megoldása az $\det(\mathbf{A} \lambda \mathbf{I}) = 0$ karakterisztikus egyenletnek.

- B (a) \iff (b): λ az \mathbf{A} sajátértéke \iff $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ és $\mathbf{x} \neq \mathbf{0}$ \iff $\mathbf{A}\mathbf{x} \lambda\mathbf{I}\mathbf{x} = \mathbf{0}$ ($\mathbf{x} \neq \mathbf{0}$) \iff a $(\mathbf{A} \lambda\mathbf{I})\mathbf{x} = \mathbf{0}$ egyenletnek \mathbf{x} nemtrivi megoldása.
 - (b) \iff (c): a $(\mathbf{A} \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ homogén egyenletnek \mathbf{x} nemtrivi megoldása \iff az együtthatómátrix determinánsa $0 \iff$ van olyan λ , hogy $\det(\mathbf{A} \lambda \mathbf{I}) = 0$.

Cramer-szabály, mátrix rangjának definíciója és mátrix inverzének meghatározása determinánsokkal: ld. példatár.