# ANN - Lab 1

Tianxiao Zhao Junxun Luo Feiyang Liu

Jan 25th, 2017

#### The Lab is about

- Construting feed forward networks
- Training with error based learning methods
- Its applications

#### **Main Points**

- Feed forward networks
- Classification
  - One layer perceptron
  - Two layer perceptron
- Function approximation
- Generalization

### One Layer Delta-Rule Experiments on Seperable Training Data Set



- Eta too small ---> Slow convergence
- Eta too large ---> Weights fluctuation
- Need to try to find an appropriate eta by experiments

#### One Layer Delta-Rule Experiments on Non-seperable Training Data Set



- Errors increase significantly compared to the one on seperable training data set Again:
- Eta too small ---> Slow convergence
- Eta too large ---> Weights fluctuation
- Need to try to find an appropriate eta by experiments

### Two Layer Delta-Rule Experiments on Seperable Training Data Set



 Alpha increased ---> Convergence of higher probability since weights changes smoother

epochs

epochs

- To Seperable training data, only one node in the hidden layer performs well
- More than one node in the hidden layer does NOT help significantly

epochs

### Two Layer Delta-Rule Experiments on Non-Seperable Training Data Set



- Again: Alpha increased ---> Convergence of higher probability since weights changes smoother
- To Non-Seperable training data, only one node in the hidden layer performs bad because the training data set is NOT linearly seperable
- More than one node in the hidden layer helps significantly

### **Two Layer Delta-Rule Experiments on 8-3-8 Encoder**



- 2 Hidden Layers ---> Not enough to reach 100% correctness
- 3 Hidden Layers ---> Can reach 100% correctness
- 4 Hidden Layers ---> Can reach 100% correctness, faster convergence than the 3 nodes in the hidden layer, but lower compression rate because of redundent encoding

#### **Two Layer Delta-Rule Experiments on 8-3-8 Encoder**

# 8-3-8 Binary Encoder - Decoder



| Input    | Hidden<br>Values |     |     |     |               | Output   |
|----------|------------------|-----|-----|-----|---------------|----------|
| 10000000 | $\rightarrow$    | .89 | .04 | .08 | $\rightarrow$ | 10000000 |
| 01000000 | $\rightarrow$    | .15 | .99 | .99 | $\rightarrow$ | 01000000 |
| 00100000 | $\rightarrow$    | .01 | .97 | .27 | $\rightarrow$ | 00100000 |
| 00010000 | $\rightarrow$    | .99 | .97 | .71 | $\rightarrow$ | 00010000 |
| 00001000 | $\rightarrow$    | .03 | .05 | .02 | $\rightarrow$ | 00001000 |
| 00000100 | $\rightarrow$    | .01 | .11 | .88 | $\rightarrow$ | 00000100 |
| 00000010 | $\rightarrow$    | .80 | .01 | .98 | $\rightarrow$ | 00000010 |
| 00000001 | $\rightarrow$    | .60 | .94 | .01 | $\rightarrow$ | 00000001 |

Taken from <a href="http://web.cs.hacettepe.edu.tr/~ilyas/Courses/BIL712/lec03-NeuralNetwork.pdf">http://web.cs.hacettepe.edu.tr/~ilyas/Courses/BIL712/lec03-NeuralNetwork.pdf</a> p34

After 5000 training epochs, the three hidden unit values encode the eight distinct inputs using the encoding shown on the right.



$$f(x,y) = e^{-(x^2+y^2)/10} - 0.5$$











hidden = 10

#### **Conclusion:**

- More nodes in hidden layer, better performance on function approximation
- Too much nodes in hidden layer may cause overfitting problem when working on system identification

$$(epochs = 100, eta = 0.05)$$



Observation: More nodes in the hidden layer ---> Smaller the error



- As Hidden Layers increase beyond 3 ---> Error decreases NOT so significantly as before
- 3 Hidden Layers might be the best number for Gaussian function approximation

#### **Generalization on Non-Seperable Training Data Set**



The figures above show the generalization process over epochs

**Generalization on Non-Seperable Training Data Set** 









- More training data ---> More generalizaed
- More nodes in the hidden layer ---> Usually helps nothing when the number is larger than a paticular one based on our observations on the experiments ---> Too few nodes in the hidden layer cause under-fitting
- NOTE that over-fitting have NOT been observed in this example although it should happen theoretically as the number of nodes in the hidden layer increases