Book: Fundamentals of Music Processing

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website: www.music-processing.de

Music Representations

Music Representations

- Sheet music representation
 - visual description of a musical score
 - image format (printed or scanned)
- Symbolic representations
 - description based on entities with explicit musical meaning
 - given in digital format that can be parsed by a computer
- Audio representation
 - physical description
 - encoding of sound wave

- Graphical-textual encoding of musical parameters
 - notes (onsets, pitches, durations)
 - tempo, measure, dynamics
 - instrumentation
 - ...
- Guide for performing music
- Leaves freedom for various interpretations

- Symbolic description of music
 - based on entities that have an explicit musical meaning
 - given in some digital format
 - can be parsed by a computer

Note:

- Scanned sheet music based on pixels
- Digital audio file based on samples

are not regarded as being symbolic music formats

MusicXML

- Piano roll: music storage medium used to operate a player piano
- Perforated paper rolls
- Holes in the paper encode the note parameters onset, duration, and pitch
- First pianola: 1895

MIDI representation

Musical Instrument Digital Interface (MIDI)

- Standard protocol for controlling and synchronizing digital instruments
- Standard MIDI File (SMF) is used for collecting and storing MIDI messages

SMF file is often called MIDI file

MIDI representation

MIDI representation

MIDI note number (pitch)

```
p = 21, ..., 108 \triangleq piano keys
p = 69 \triangleq concert pitch A4
```

- Tempo measured in clock pulses or ticks (each MIDI event has a timestamp)
- Absolute tempo specified by
 - ticks per quarter note (musical time)
 - micro-seconds per tick (physical time)

MIDI representation

 -				
Time	Message	Channel	Note	Velocity
(Ticks)			Number	
60	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	63	100
0	NOTE ON	2	51	100
0	NOTE ON	2	39	100
240	NOTE OFF	1	63	0
0	NOTE OFF	2	51	0
0	NOTE OFF	2	39	0

MIDI representation

- Audio signal encodes change of air pressure at a certain location generated by a vibrating object (e.g. string, vocal cords, membrane)
- Waveform (pressure-time plot) is graphical representation of audio signal
- Parameters: amplitude, frequency / period

Waveform

Pure tone (harmonic sound):

- Sinusoidal waveform
- Prototype of an acoustic realization of a musical note

Parameters:

- Period p: time between to successive high pressure points
- Frequency $f = \frac{1}{p}$ (measured in Hz)
- Amplitude a: air pressure at high pressure points

Waveform

D2 (73.4 Hz)

Waveform

7.3

7.35

7.4

7.45

7.5

7.55

Time (seconds)

7.65

7.7

7.6

7.75

7.8

D2 (73.4 Hz)

37 periods within 500 ms section

Sound

- Sound: superposition of sinusoidals
- When realizing musical notes on an instrument one obtains a complex superposition of pure tones (and other noise-like components)
- Harmonics: integer multiples of fundamental frequency

```
1. Harmonic 

fundamental frequency (e.g. 440 Hz)
```

3. Harmonic

second overtone (e.g. 1320 Hz)

Pitch

- Slight changes in frequency have no effect on perceived pitch (pitch

 entire range of frequencies)
- Pitch perception: logarithmic in frequency
 Example: octave
 △ doubling of frequency

Audio Representation Dynamics

- Intensity of a sound
- Energy of the sound per time and area
- Loudness: subjective (psychoacoustic) perception of intensity (depends on frequency, timbre, duration)

Dynamics

ADSR model: attack (A), decay (D), sustain (S), and release (R) phase

Timbre

- Quality of musical sound that distinguishes different types of sound production such as voices or instruments
- Tone quality
- Tone color
- Depends on energy distribution in harmonics

Timbre

Piano playing note C4 (261.6 Hz)

Timbre

Violine playing note C4 (261.6 Hz)

Vibrato: Frequency modulations

Tremolo: Amplitude modulations

Digitization

Digitization

- Convertion of continuous-time (analog) signal into a discrete signal
- Sampling (discretization of time axis)
- Quantization (discretization of amplitudes)

Examples:

- Audio CD: 44100 Hz sampling rate
 16 bits (65536 values) used for quantization
- Telephone: 8000 Hz sampling rate
 8 bits (256 values) used for quantization