GUIA INGECO

ELABORADO POR

NICOLAS ANDRADE 20172020097 DANIEL RODRIGUEZ 20172020120

Universidad Distrital Francisco José de Caldas

13 DE OCTUBRE 2020

Capitulo 7

Amortizacion y Capitalizacion

Ejemplo 7

Una persona solicita a una entidad bancaria un préstamo por \$500.000. Lo cancelará en pagos trimestrales, durante un año, con amortización constante a capital e intereses del 33% nominal anual trimestre anticipado. Elaborar una tabla de amortización.

PER (1)	SALDO DEUDA (2)=(2)-(5)	INTERESES (3)=(2)*(i)	PAGO (4)=\$R-\$L	AMORTIZACIÓN (5)=(4)-(3)
0	\$500.000,00	\$0,00	\$0,00	\$0,00
1	\$375.000,00	\$30.937,50	\$155.937,50	\$125.000,00
2	\$250.000,00	\$20.625,00	\$146.625,00	\$125.000,00
3	\$125.000,00	\$10.312,50	\$135.912,50	\$125.000,00
4	\$0,00	\$0,00	\$125.000,00	\$125.000,00

Ejemplo 8.

Elaborar una tabla para amortizar la suma de \$300.000, con un interés del 32% nominal anual semestre vencido, mediante pagos semestrales, durante 3 años, bajo las siguientes condiciones:

- a) la cuota anual aumenta en \$60.000
- b) la intercuota aumenta en \$25.000 cada año
- c) la intercuota aumenta un 25% cada año

Solución a:

1. Fecha focal						
J	ff = 0 psv					
	2. Declaración de variables					
m = 2 psv $i = 16% psv$ $j = 32% nasv$		L = \$ 60.000 $n = 3 pav$	i = ?%			
3. Diagrama de flujo de caja						

4. Declaración de fórmulas

 $(1+i1)^{m1} = (1+i2)^{m2}$ Equivalente de tasas periódicas vencidas $VP = R^{\frac{1-(1+i)^{-n}}{i}}$ V alor presente gradiente aritmético $VF = R^{\frac{((1+i)^n-1)}{i}}$ V alor futuro de serie uniforme vencida Rn = R1 + (n-1)L V alor de un gradiente aritmético en un periodo N

5. Desarrollo matemático

 $(1+0.16)^2 = (1+i)^1$

i = 34.56% pav

PER (1)	SALDO DEUDA (2)=(2)-(5)	INTERESES (3)=(2)*(i)	PAGO (4)=\$R-\$L	AMORTIZACIÓN (5)=(4)-(3)
0	\$300.000,00	\$0,00	\$0,00	\$0,00
1	\$288.943,00	\$48.000,00	\$59.057,00	\$11.057,00
2	\$276.116,88	\$46.230,88	\$59.057,00	\$12.826,12
3	\$233.460,80	\$44.178,70	\$86.834,78	\$42.656,08
4	\$183.979,75	\$37.353,73	\$86.834,78	\$49.481,05
5	\$98.803,95	\$29.436,76	\$114.612,56	\$85.175,80
6	\$0,00	\$15.808,61	\$114.612,56	\$98.803,95

Solución b:

1. Fecha focal					
ff = 0 psv					
2. Declaración de variables					
H = \$25.000	L = \$60.000				
m = 2 psv	L = \$60.000 $n = 3 pav$ $i = 34.56%$				
i = 16% psv	i = 34.56%				
3. Diagrama de flujo de caja					

4. Declaración de fórmulas

 $VP = R \frac{1-(1+i)^{-n}}{i}$ V alor presente de serie uniforme vencida

 $V F = R \frac{((1+i)^n-1)}{i} V alor futuro de serie uniforme vencida$

5. Desarrollo matemático

PER (1)	SALDO DEUDA (2)=(2)-(5)	INTERESES (3)=(2)*(i)	PAGO (4)=\$R-\$L	AMORTIZACIÓN (5)=(4)-(3)
0	\$300.000,00	\$0,00	\$0,00	\$0,00
1	\$286.707,00	\$48.000,00	\$61.293,00	\$13.293,00
2	\$271.287,12	\$45.873,12	\$61.293,00	\$15.419,00
3	\$228.400,06	\$43.405,95	\$86.293,00	\$42.887,06
4	\$178.651,07	\$36.544,01	\$86.293,00	\$49.748,99
5	\$95.942,24	\$28.544,17	\$111.293,00	\$82.708,83
6	\$0,00	\$15.350,76	\$111.293,00	\$95.942,24

solución c:

1. Fecha focal					
ff = 0 psv					
2. Declaración de variables					
m = 2 psv $i = 16% psv$	g = 25% n = 3 pav i = 34,56%				
3. Diagrama de flujo de caja					

PER (1)	SALDO DEUDA (2)=(2)-(5)	INTERESES (3)=(2)(i)	PAGO (4)=\$R-\$L	AMORTIZACIÓN (5)=(4)-(3)
0	\$300.000,00	\$0,00	\$0,00	\$0,00
1	\$281.060,52	\$48.000,00	\$66.939,48	\$18.939,48
2	\$259.090,72	\$44.969,68	\$66.939,48	\$21.969,80
3	\$216.870,90	\$41.454,52	\$83.674,34	\$42.219,82
4	\$167.895,90	\$34.699,34	\$83.674,34	\$48.975,00
5	\$90.166,31	\$26.863,34	\$104.592,93	\$77.729,59
6	\$0,00	\$14.426,62	\$104.592,93	\$90.166,31

Ejemplo 9

Amortizar en valor constante la suma de \$500.000 mediante 3 pagos anuales que decrecen en \$20.000; suponga un interés del 10% periódico anual vencido y una tasa única de corrección monetaria del 24% efectivo anual.

$$VP = R \frac{1 - (1 + i)^{-n}}{i} + \frac{L}{i} \left[\frac{1 - (1 + i)^{-n}}{i} - n(1 + i)^{-n} \right]$$
valor presente serie uniforme anticipada
$$\begin{array}{c} \textbf{5. Desarrollo matemático} \\ \$500.000 = R \frac{1 - (1 + i)^{-n}}{i} + \frac{L}{i} \left[\frac{1 - (1 + i)^{-n}}{i} - n(1 + i)^{-n} \right] \\ \$500.000 = R_1 \frac{1 - (1 + i)^{-n}}{0,10} + \frac{(-20.000)}{0,10} \left[\frac{1 - (1 + 0,10)^{-3}}{0,10} - 3(1 + 0,10) \right] \\ R = \$219.788, 52 \\ R_2 = \$199.788, 52x(1 + 0,24)^2 \\ = \$307.194, 83 \\ R_3 = \$179.788, 52x(1 + 0,24)^3 \\ = \$342.789, 12 \\ \end{array}$$

PER (1)	SALDO DEUDA (2)=(2)-(5)	SALDO AJUSTADO	INTERESES (3)=(2)(i)	PAGO (4)=\$R-\$L	AMORTIZACIÓN (5)=(4)-(3)
0	\$500.000,00	\$620.000,00	\$0,00	\$0,00	\$0,00
1	\$409.462,24	\$507.733,60	\$62.000,00	\$272.537,76	\$1.210.537,76
2	\$251.311,67	\$311.626,47	\$50.773,00	\$307.194,83	\$256.421,51
3	\$0,00	\$0,00	\$31.162,65	\$342.789,12	\$311.626,47

Ejemplo 10

Resolver el problema anterior, suponiendo que el gradiente es escalonado con pagos semestrales.

1. Fecha focal				
ff = 0 psv				
2. Declaración de variab	les			
VP = \$500.000	n = 2 psv	i = ?%		
i = 10% pav	n1 = 1 psv			
	n2 = 2 psv $n3 = 3 psv$			
	n4 = 4 psv			
	n5 = 5 psv			
	n6 = 6 psv			
3. Diagrama de flujo de ca	ja	,		

PER (1)	SALDO DEUDA (2)=(2)-(5)	SALDO AJUSTADO	INTERESES (3)=(2)(i)	PAGO (4)=\$R-\$L	AMORTIZACIÓN (5)=(4)-(3)
0	\$500.000,00	\$556.776,44	\$0,00	\$0,00	\$0,00
1	\$464.494,29	\$517.238,95	\$27.152,62	\$119.457,77	\$92.282,15
2	\$409.562,25	\$455.957,86	\$25.245,84	\$133.022,54	\$107.776,70
3	\$343.564,10	\$382.576,79	\$22.245,84	\$134.648,54	\$112.393,76
4	\$251.311,66	\$279.848,82	\$18.673,13	\$149.938,26	\$131.265,13
5	\$143.257,83	\$159.525,17	\$13.659,10	\$150.250,09	\$136.590,99
6	\$0,00	\$0,00	\$7.786,24	\$167.311,41	\$159.424,17

Ejemplo 11

Para el día 15 de abril de 1998 debe haberse reunido la suma de \$900.000 para tal fin se efectúan depósitos trimestrales de \$R c/u en un fondo que paga el 32% nominal trimestre vencido. Si el primer depósito se hace el 15 de enero de 1997 y el último el 15 de octubre de 1997. Calcular el valor del depósito trimestral y elaborar

una tabla de capitalización.

Respuesta:

PER (1)	ACUMULADO (2)=(2)-(5)	INTERESES (3)=P(i)	DEPOSITO (4)	CAPITALIZACIÓN (5)=(4)+(3)
1	\$171.235,19	\$	\$171.235,19	\$171.235,19
2	\$356.169,20	\$13.698,82	\$171.235,19	\$184.934,01
3	\$555.897,93	\$28.493,54	\$171.235,19	\$199.728,73
4	\$771.604,95	\$44.471,83	\$171.235,19	\$215.707,02
5	\$833.333,35	\$61.728,40	\$	\$61.728,40
6	\$900.000,02	\$66.666,67	\$	\$66.666,67