HEURISTIC OPTIMIZATION

Generalised Local Search Machines

adapted from slides for SLS:FA, Chapter 3

Outline

- 1. The Basic GLSM Model
- 2. State and Transition Types
- 3. Modelling SLS Methods Using GLSMs

The Basic GLSM Model

Many high-performance SLS methods are based on combinations of *simple* (pure) search strategies (e.g., ILS, MA).

These hybrid SLS methods operate on two levels:

- ▶ lower level: execution of underlying simple search strategies
- higher level: activation of and transition between lower-level search strategies.

Key idea underlying Generalised Local Search Machines:

Explicitly represent higher-level search control mechanism in the form of a *finite state machine*.

Heuristic Optimization 2017

3

Example: Simple 3-state GLSM

- States z_0, z_1, z_2 represent simple search strategies, such as Random Picking (for initialisation), Iterative Best Improvement and Uninformed Random Walk.
- ▶ PROB(p) refers to a probabilistic state transition with probability p after each search step.

Generalised Local Search Machines (GLSMs)

- ▶ States \cong simple search strategies.
- ightharpoonup State transitions \cong search control.
- ► GLSM M starts in initial state.
- In each iteration:
 - M executes one search step associated with its current state z;
 - $ightharpoonup \mathcal{M}$ selects a new state (which may be the same as z) in a probabilistic manner.
- M terminates when a given termination criterion is satisfied.

Heuristic Optimization 2017

1

Formal definition of a GLSM

A Generalised Local Search Machine is defined as a tuple $\mathcal{M} := (Z, z_0, M, m_0, \Delta, \sigma_Z, \sigma_\Delta, \tau_Z, \tau_\Delta)$ where:

- Z is a set of states:
- ▶ $z_0 \in Z$ is the *initial state*;
- M is a set of memory states (as in SLS definition);
- $ightharpoonup m_0$ is the *initial memory state* (as in SLS definition);
- ▶ $\Delta \subseteq Z \times Z$ is the *transition relation*;
- ▶ σ_Z and σ_Δ are sets of state types and transition types;
- ▶ $\tau_Z : Z \mapsto \sigma_Z$ and $\tau_\Delta : \Delta \mapsto \sigma_\Delta$ associate every state z and transition (z, z') with a state type $\sigma_Z(z)$ and transition type $\tau_\Delta((z, z'))$, respectively.

Example: Simple 3-state GLSM (formal definition)

- $ightharpoonup Z := \{z_0, z_1, z_2\}; z_0 = \text{initial machine state}$
- ▶ no memory $(M := \{m_0\}; m_0 = \text{initial and only memory state})$
- $\sigma_Z := \{z_0, z_1, z_2\}$
- $\sigma_{\Delta} := \{ \mathsf{PROB}(p) \mid p \in \{1, p_1, p_2, 1 p_1, 1 p_2 \} \}$
- $au_Z(z_i) := z_i, \quad i \in \{0, 1, 2\}$
- $au_{\Delta}((z_0,z_1)) := \mathsf{PROB}(1), \ au_{\Delta}((z_1,z_2)) := \mathsf{PROB}(p_1), \ \dots$

Heuristic Optimization 2017

7

Example: Simple 3-state GLSM (semantics)

- ▶ Start in initial state z_0 , memory state m_0 (never changes).
- ▶ Perform one search step according to search strategy associated with state type z_0 (e.g., random picking).
- ▶ With probability 1, switch to state z_1 .
- Perform one search step according to state z_1 ; switch to state z_2 with probability p_1 , otherwise, remain in state z_1 .
- ▶ In state z_2 , perform one search step according to z_2 ; switch back to state z_1 with probability p_2 , otherwise, remain in state z_2 .
- \rightarrow After one z_0 step (initialisation), repeatedly and probabilistically switch between phases of z_1 and z_2 steps until termination criterion is satisfied.

Note:

- State types formally represent (subsidiary) search strategies, whose definition is not part of the GLSM definition.
- Transition types formally represent mechanisms used for switching between GLSM states.
- Multiple states / transitions can have the same type.
- σ_Z, σ_Δ should include only state and transition types that are actually used in given GLSM ('no junk').
- Not all states in Z may actually be reachable when running a given GLSM.
- ► Termination condition is not explicitly captured in GLSM model, but considered part of the execution environment.

Heuristic Optimization 2017

9

GLSM Semantics

Behaviour of a GLSM is specified by $machine\ definition\ +\ run-time\ environment\ comprising\ specifications\ of$

- state types,
- transition types;
- problem instance to be solved,
- search space,
- solution set,
- neighbourhood relations for subsidiary SLS algorithms;
- termination predicate for overall search process.

Run GLSM \mathcal{M} :

set *current machine state* to z_0 ; set *current memory state* to m_0 ; While *termination criterion* is not satisfied:

perform *search step* according to type of current machine state; this results in a new *search position*

select new machine state according to types of transitions from current machine state, possibly depending on search position and current memory state; this may change the current memory state

Heuristic Optimization 2017

11

Note:

- ► The *current search position* is only changed by the subsidiary search strategies associated with states, *not* as side-effect of machine state transitions.
- ► The machine state and memory state are only changed by state-transitions, not as side-effect of search steps. (Memory state is viewed as part of higher-level search control.)
- ▶ The operation of \mathcal{M} is uniquely characterised by the evolution of *machine state*, *memory state* and *search position* over time.

GLSMs are factored representations of SLS strategies:

- ▶ Given GLSM represents the way in which *initialisation* and *step function* of a hybrid SLS method are composed from respective functions of *subsidiary component SLS methods*.
- When modelling hybrid SLS methods using GLSMs, subsidiary SLS methods should be as simple and pure as possible, leaving search control to be represented explicitly at the GLSM level.
- Initialisation is modelled using GLSM states (advantage: simplicity and uniformity of model).
- ► Termination of subsidiary search strategies are often reflected in conditional transitions leaving respective GLSM states.

Heuristic Optimization 2017

13

State and Transition Types

In order to completely specify the search method represented by a given GLSM, we need to define:

- ▶ the GLSM model (states, transitions, . . .);
- the search method associated with each state type, i.e., step functions for the respective subsidiary SLS methods;
- ▶ the semantics of each *transition type*, *i.e.*, under which conditions respective transitions are executed, and how they effect the memory state.

State types

- ▶ State type semantics are often most conveniently specified procedurally (see algorithm outlines for 'simple SLS methods' from Chapter 2).
- initialising state type = state type τ for which search position after one τ step is independent of search position before step. initialising state = state of initialising type.
- parametric state type = state type τ whose semantics depends on memory state.

parametric state = state of parametric type.

Heuristic Optimization 2017

15

Transitions types (1)

- ► Unconditional deterministic transitions type DET:
 - executed always and independently of memory state or search position;
 - every GLSM state can have at most one outgoing DET transition:
 - frequently used for leaving initialising states.
- ► Probabilistic transitions type PROB(p):
 - executed with probability p, independently of memory state or search position;
 - probabilities of PROB transitions leaving any given state must sum to one.

Note:

- ▶ DET transitions are a special case of PROB transitions.
- For a GLSM \mathcal{M} any state that can be reached from initial state z_0 by following a chain of PROB(p) transitions with p > 0 will eventually be reached with arbitrarily high probability in any sufficiently long run of \mathcal{M} .
- In any state z with a PROB(p) self-transition (z, z) with p > 0, the number of GLSM steps before leaving z is distributed geometrically with mean and variance 1/p.

Heuristic Optimization 2017

17

Transitions types (2)

- ► Conditional probabilistic transitions type CPROB(C, p):
 - executed with probability proportional to p iff condition predicate C is satisfied;
 - ▶ all CPROB transitions from the current GLSM state whose condition predicates are not satisfied are *blocked*, *i.e.*, cannot be executed.

Note:

- ► Special cases of CPROB(C, p) transitions:
 - PROB(p) transitions;
 - conditional deterministic transitions, type CDET(C).
- ► Condition predicates should be efficiently computable (ideally: ≤ linear time w.r.t. size of given problem instance).

Heuristic Optimization 2017

Commonly used simple condition predicates:

always true count(k)total number of GLSM steps > kcountm(k)total number of GLSM steps modulo k = 0scount(k)number of GLSM steps in current state > knumber of GLSM steps in current state modulo k = 0scountm(k)lmin current candidate solution is a local minimum w.r.t. the given neighbourhood relation evalf(y) current evaluation function value $\leq y$ noimpr(k)incumbent candidate solution has not been improved within the last *k* steps

All based on local information; can also be used in negated form.

Heuristic Optimization 2017

19

Transition actions:

- Associated with individual transitions; provide mechanism for modifying current memory states.
- ▶ Performed whenever GLSM executes respective transition.
- Modify memory state only, cannot modify GLSM state or search position.
- ► Have read-only access to search position and can hence be used, *e.g.*, to memorise current candidate solution.
- ► Can be added to any of the previously defined transition types.

Modelling SLS Methods Using GLSMs

Uninformed Picking and Uninformed Random Walk


```
procedure step\text{-}RP(\pi,s) procedure step\text{-}RW(\pi,s) input: problem instance \pi \in \Pi, candidate solution s \in S(\pi) output: candidate solution s \in S(\pi) output: candidate solution s \in S(\pi) output: candidate solution s \in S(\pi) s' := selectRandom(S); s' := selectRandom(N(s)); return s' end step\text{-}RP end step\text{-}RW
```

Heuristic Optimization 2017

21

Uninformed Random Walk with Random Restart

R = restart predicate, e.g., countm(k)

Heuristic Optimization 2017

Iterative Best Improvement with Random Restart


```
procedure step-BI(\pi, s)

input: problem instance \pi \in \Pi, candidate solution s \in S(\pi)

output: candidate solution s \in S(\pi)

g^* := \min\{g(s') \mid s' \in N(s)\};

s' := selectRandom(\{s' \in N(s) \mid g(s') = g^*\});

return s'

end step-BI
```

Heuristic Optimization 2017

23

Randomised Iterative Best Improvement with Random Restart

Heuristic Optimization 2017

Simulated Annealing

- ▶ Note the use of transition actions and memory for temperature *T*.
- ▶ The parametric state SA(T) implements probabilistic improvement steps for given temperature T.
- ▶ The initial temperature T_0 and function *update* implement the annealing schedule.

Heuristic Optimization 2017

25

- ► The acceptance criterion is modelled as a state type, since it affects the search position.
- Note the use of transition actions for memorising the current candidate solution (pos) at the end of each local search phase.
- ► Condition predicates *CP* and *CL* determine the end of perturbation and local search phases, respectively; in many ILS algorithms, *CL* := Imin.

Heuristic Optimization 2017

27

Ant Colony Optimisation (1)

General approach for modelling population-based SLS methods, such as ACO, as GLSMs:

Define search positions as *sets of candidate solutions*; search steps manipulate some or all elements of these sets.

Example: In this view, Iterative Improvement (II) applied to a population sp in each step performs one II step on each candidate solution from sp that is not already a local minimum.

(Alternative approaches exist.)

Pheromone levels are represented by memory states and are initialised and updated by means of transition actions.

Ant Colony Optimisation (2)

- ▶ The condition predicate *CC* determines the end of the construction phase.
- ► The condition predicate *CL* determines the end of the local search phase; in many ACO algorithms, *CL* := Imin.

Heuristic Optimization 2017

29