Question 1:

11:08

T measurement $C = (S+N_A+N_P)A$, where S is signal. $N_A \rightarrow Z_{ero mean}$ amplifier noise with various σ_A^2 Np -> Zero mean photon noise with, A is amplifier gain. a) Variance of C is $\sigma_c^2 = \overline{c^2} - (\overline{c})^2$. from cylint \hat{O} $\vec{c} = (\vec{S} + \vec{N}_A + \vec{N}_P)A = \vec{S}A$. as $\overline{N}_A = 0$, $\overline{N}_B = 0$. C2 = (S2 + NA + NP + 25NA + 25NP + 2NPNA) A2 $\overline{C^2} = (\overline{S^2} + \overline{N_A^2} + \overline{N_P^2} + 2\overline{SN_A} + 2\overline{SN_P} + 2\overline{N_PN_A}) A^2$ Since S, NA 8 Np are independent, $\overline{SN_A} = \overline{SN_A} = 0$. $\overline{SN_P} = \overline{SN_P} = 0$. $\overline{N_PN_A} = \overline{N_PN_A} = 0$. C2 = (52 + 0 2 + Np2) A2, let Np2 = 0 2. $\overline{L^2} = (\overline{S^2} + \sigma_{A^2} + \sigma_{p^2})A^2$ $\sigma_{c}^{2} = \overline{c^{2}} - (\overline{c})^{2} \Rightarrow \overline{c}$ 02 = A2 52 - (5)2A2 + A2 (0p2+02) $\int_{C^{2}}^{2} = A^{2}(\overline{S^{2}} - (\overline{S})^{2}) + A^{2}(\sigma_{p}^{2} + \sigma_{A}^{2})$ b) the variance $\sigma_{S}^{2} = S^{2} - (\bar{S})^{2}$ oc2 = A2 (052+02+02) -(2) 18 Signal strength incream (Sincream) so does it's Variance 052

anoming of and of are constant

c) the fraction due to photon noise is.

$$f(s) = \frac{A^2 \sigma_p^2}{\sigma_c^2} = \frac{\sigma_p^2}{\sigma_A^2 + \sigma_p^2 + \sigma_s^2}$$

d)as. [S] increase, os increase so f(s) decrease

- e) $f(s) = \frac{\sigma_p^2}{\sigma_A^2 + \sigma_p^2 + \sigma_s^2}$. at high light livel, $\sigma_p^2 \rightarrow \infty$ (literoum.

$$f(s) = \lim_{p \to \infty} \frac{p^2}{\sigma_A^2 + \sigma_P^2 + \sigma_S^2} = \frac{1}{1 + \frac{\sigma_A^2 + \sigma_S^2}{\sigma_P^2}} = 1.$$

at Low Light livel, op ->0.

$$f(s) = \lim_{\substack{p \to 0 \\ p \to 0}} \frac{p^2}{\sigma_{p}^2 + \sigma_{p}^2 + \sigma_{s}^2} = 0$$

hence photon noise represent Larger fraction of the total noise.

Question 2:

Question 3 (18 points) Suppose that in an imaging system using a lens the focal length of the lens is 6cm and the image plane is a distance 10cm behind the lens.

a) How far in front of the lens on the optical axis of the system must we place a point to get an image of the point without blur?

b) If the lens diameter is 1cm and a point is placed at 18cm in front of the lens, what will be the blur diameter of the image of the point?

Object distance =
$$t_0 = -10 \, \text{cm}$$

Using I'm Fayorula

$$\frac{1}{dp} = \frac{1}{f} + \frac{1}{do}$$

$$\frac{1}{dp} = \frac{1}{f} + \frac{1}{f}$$

Question 3:

(a)

for $E(S) = \int_{-\infty}^{\infty} dx$ $\int_{-\infty}^{\infty} dx$
It is constant \(\int \text{x} \dx \\ Therefore comes, out \(\int \text{x} \)
of integration. : E(D) = A·E(S) = AS !! = SA expected Value of D.
for Variance $V(D) = 60^2 = E[[D - E(D)]^2]$
$= E[0^2 - 20E(0) + E(0)^2]$ $= E[0^2] - E(0)^2$

Water
V(0) = AV(S) + AV(NA)
+ A2V(Np) + V (NB).
Now V(s) = 0
(S-) Constant
i. do nat Jary
Hence V(s) = 0 g
Ciden Variance (NA) = 6A2
Variance (Np) = S
varsiance (Ng) = 62
Substituding, we get.
$V(0) = 60^2 = 0 + A^2 6A^2$
4-1 +A2.5+622
$= A \cdot (SA) + A^2 GA^2 + GA^2$
6 = A·U+ 62-4