

| idea-                             | From every convisited cell which land '1', call DFS J BFS.                                                                                     |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| # (                               | Code:  booleon visited (N)(m); cont = 0;                                                                                                       |
| x+1 y+0  x - 1 y+0  y+0  y+0  y+1 | for (1=0, 1 < N', 1++) {  for (j=0', j < m', j++) {  st (au (i)(j) == '1'  st visited (i)(j) == folie)  {  dfs (au, i,j, visited);  cout ++; } |
|                                   | Setur court;                                                                                                                                   |

```
olfs (ntc)c7 au, nt r, nty,
bool ()c) visited) s
Sold
          visited (a)(y) = tone;
        dx = \{-1, 0, 1, 0\}
dy = \{0, -1, 0, 1\}
     for (K=0', K < 4', K++) {
             ni = x + dx(k);
             nj = q + dq (K];
        if (ni 70 kk ni < N &k
               nj7/0 kk nj \leq m & 

au (ni)(nj) = = 1 kk 

visited (ni)(nj) = = false)
                  ds (au, nî, nj, visited);
                       T.C-7 O(N+E).
                               NXM
                       S.C - 3 0 (1/2 xw)
```



O!- Gren N courses with preservisite
of each course. Check of the
possible to finish all the
courses. St & a prerequisite of y. 1 3, 4 2 5 . 1,2,3,6,4, H In on order, I'll not be ob to complete all the courses. It Detect cycle m my graph. Ott- Gale doesn't exist. Idatify the





## Find Topological Order m(N), Hi in (i) =0', for ( i = 0; i < N; i++) { for (nt nbr: graph(i)) { 1 m (nbr) ++;

Here of the nodes with moderne of the nodes with Onene < nt > 9; for ( rt 1=0; 1 < N; 1++) {  $if (in (i) = = 0) {$   $q \cdot mset (i);$ Step 3: - Start deguing: and reduce

the ondegree of reighbourg

modes by 1. If at any point of

the ondegree - o push if int Mc queene. while (q. rs Enpty() = = false) {  $\gamma C = q. dequeu(); port(x);$ for (nt nbr: graph(x7) { 5 (m(nbo7 = =0) ( g. inset (nbo); T.C-7 0 (1V+E) S. C - 7 0 (N)



Idea: Covider every elevat as a tille hade of a tope port to
the paret hade. & The
soft of that tope points to par (3 - { 2 4 4 4 3. -600 t(1) = 2 500t(4) = 4. 20x1 (1). nc = paut (2); =4.

boolear union (nt x, nty) { бу = 1600t(x); of ( ox = = oy) { J seton falu; elle ( paret (ox) = oy paret ( og) = on; sehn fore; 500t (nt x) { While (paut (x) 1 = x) {



jrt 500+ (Mx) { of ( 2 = = pout (x)) Ereturn x1) 6 = 500+ (paret (x)); T. (- - 7 0 (1) Anoth Sed:

| Applications of DSU                                                                               |
|---------------------------------------------------------------------------------------------------|
| (i) Check if an undirected groph is                                                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                             |
| 7 For all noder, control them as<br>malependent sets:                                             |
| 7 Hedges, fake a verton (v,v).                                                                    |
| 7.1<br>7.1<br>7.1<br>7.1<br>7.2<br>4 5                                                            |
| 12 — fore.<br>14 — fore.<br>23 — torre                                                            |
| 3 y -7 false -7 A cycle emister<br>5,6 -7 foue,                                                   |
| 3 4                                                                                               |
| He Sterate on all the edges of my grouph. If curion (u, u) == false, that nears cycle a detected. |

| 2.  | Check if a graph at connected                                          | 08                       |
|-----|------------------------------------------------------------------------|--------------------------|
|     | not.                                                                   |                          |
|     |                                                                        | $\overline{\mathcal{C}}$ |
|     |                                                                        |                          |
|     | 4                                                                      | <u>(6)</u>               |
|     |                                                                        |                          |
| 7   | For all nodes, contra Hem                                              | ay                       |
|     | For all nodles, consider them<br>modependent sets:                     |                          |
|     |                                                                        |                          |
| 7   | Hedges, fake a verion (v                                               | , \( \) \( \).           |
|     |                                                                        |                          |
| /   | 91 voot a different le                                                 | 26 con                   |
|     | 2 nodes, Han 2 C                                                       | n jay                    |
|     | 91 500t & different for<br>2 nodes, Han De Co<br>graph & discorrected. |                          |
|     |                                                                        |                          |
|     |                                                                        |                          |
| (3) | Mainen Spany Tree.                                                     |                          |
|     | V                                                                      |                          |
|     | Denis<br>Denis                                                         |                          |
|     | J Kruskal.                                                             |                          |
|     |                                                                        |                          |
|     |                                                                        |                          |
|     | -> Djikstog.                                                           |                          |
|     |                                                                        |                          |
|     |                                                                        |                          |
|     |                                                                        |                          |
|     |                                                                        |                          |