머신러닝 눈 깜빡임 인식을 통한 에너지 절약 장치 구현

[그린에너지특성화 관련 에너지 절약 IoT(사물인터넷) 제어 기술]

201824089김하얀201824413김현정201823001맹하늘201720769신선영201822181장하영201822437최유진

INDEX

1 개요

교과 학습 내용 작품 주요 내용

2 설계

작품 구성 요소 주요 모듈 눈 깜빡임 감지 머신러닝 소스코드 눈 깜빡임 응용 에너지 절약 장치 소스코드

3 결론

팀 성과 (결과), 개선 사항 느낀점 및 알게 된 점

4 마무리

교육 수요자 입장에서 바라는 [교과 연계형 비교과 프로그램]

참고 문헌

1 개념

교과 학습 내용 작품 주요 내용

개념 교과 학습 내용

머신러닝?

- 데이터를 이용하여 어떤 시직이나 패턴을 학습하는 것
- 경험적 데이터를 기반으로 학습, 예측 수행, 성능을 향상시키는 시스템과 이를 위한 알고리즘 연구하고 구축하는 기술

기능 수준 입력에 따른 출력의 변화 여부 제벨 3 : 머신러닝 (자연어 처리, 지도/비지도 학습)

[그림] 머신러닝 프로세스

개 념

교과 학습 내용

- LED 소자 음극 - 라즈베리 파이 GND 핀 양극 - 라즈베리 파이 GPIO
- 저항 라즈베리 파이 GPIO 핀 LED 음극

- 라즈베리 전원 완전히 제거
- CSI 카메라 커넥터 고정핀 위로 올림
- Pi Camera 커넥터를 완전히 꽂고 다시 내림

개 념

작품 주요 내용

눈을 일정시간 이상 감고 있으면 자동으로 방의 불을 꺼준다.

선정 이유

loT, 머신 러닝, 에너지 절약 분야를 모두 접목하여 구현할 수 있는 시스템 기대 효과

에어컨, 선풍기, 보일러 등 가전 제품들을 켜고 잠드는 경우 타이머를 자동으로 시작하거나 가전제품을 자동으로 off 하여 낭비되는 전기 에너지절약

개 념 작품 주요 내용

⇒ 소스코드에 변수를 추가하여 눈을 감고 있는 기준 시간을 사용자가 직접 설정할 수 있다면 사용자 각각에게 맞는 설정 시간으로 시스템 사용이 가능

개 념 작품 주요 내용

Copyright © Slug. All rights reserved.

INDEX

2 설계

작품 구성 요소

주요 모듈

눈 깜빡임 감지 머신러닝 소스코드

설 계 작품 구성 요소

Pi Camera

라즈베리 파이 재단에서 제공하는 카메라 라즈베리 파이의 CSI 카메라 커넥터를 이용하여 사용 가능

TensorFlow

딥 러닝과 머신 러닝 등에 활용하기 위해 개발 된 오픈소스 소프트웨어

Keras

파이썬으로 작성된 오픈 소스 신경망 라이브러리 모듈의 독립적 설정 가능

OpenCV

쉬운 영상 처리가 가능한 라이브러리

LED

주요 모듈

jupyter notebook	raspberry pi에서 jupyter notebook 실행 불가, windows 컴퓨터에서 jupyter notebook을 사용하여 dataset으로 머신러닝 학습
python 3.8 설치	sudo apt-get install python3
OpenCV2 설치	pip install opencv-python
Keras 설치	pip uninstall keras python -m pip install keras pip install keras==2.3.1
TensorFlow 설치	wget https://github.com/lhelontra/tensorflow-on-arm/releases/download/v2. 0.0/tensorflow-2.0.0-cp37-none-linux_armv7l.whl python3 -m pip uninstall tensorflow python3 -m pip install tensorflow-2.0.0-cp37-none-linux_armv7l.whl
dlib 설치	CMake를 사용하여 빌드
matplotlib 설치	pip install matplotlib

눈 깜빡임 감지 머신러닝 소스코드

```
[1]
import datetime
import numpy as np
import matplotlib.pyplot as plt
from keras.layers import Input, Activation, Conv2D, Flatten, Dense, MaxPooling2D
from keras.models import Model, load_model
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
plt.style.use('dark_background')
[2]
x_train = np.load('C:/Users/skt/Desktop/Twinkle/x_train.npy').astype(np.float32)
y_train = np.load('C:/Users/skt/Desktop/Twinkle/y_train.npy').astype(np.float32)
x_val = np.load('C:/Users/skt/Desktop/Twinkle/x_val.npy').astype(np.float32)
y_val = np.load('C:/Users/skt/Desktop/Twinkle/y_val.npy').astype(np.float32)
print(x_train.shape, y_train.shape)
print(x_val.shape, y_val.shape)
```

눈 깜빡임 감지 머신러닝 소스코드

```
[4]
                                                                train_datagen = ImageDataGenerator(
[3]
                                                                   rescale=1./255,
plt.subplot(2, 1, 1)
                                                                   rotation_range=10,
plt.title(str(y_train[0]))
                                                                   width_shift_range=0.2,
plt.imshow(x_train[0].reshape((26, 34)), cmap='gray')
                                                                   height_shift_range=0.2,
plt.subplot(2, 1, 2)
                                                                   shear_range=0.2
plt.title(str(y_val[4]))
plt.imshow(x_val[4].reshape((26, 34)), cmap='gray')
                                                                val_datagen = ImageDataGenerator(rescale=1./255)
                                                                train_generator = train_datagen.flow(
                                                                   x=x_train, y=y_train,
                                                                   batch_size=32,
                                                                   shuffle=True
                                                                val_generator = val_datagen.flow(
                                                                   x=x_val, y=y_val,
                                                                   batch_size=32,
                                                                   shuffle=False
```

Copyright © Slug. All rights reserved.

```
[5]
                                        눈 깜빡임 감지 머신러닝 소스코드
inputs = Input(shape=(26, 34, 1))
net = Conv2D(32, kernel_size=3, strides=1, padding='same', activation='relu')(inputs)
net = MaxPooling2D(pool_size=2)(net)
net = Conv2D(64, kernel_size=3, strides=1, padding='same', activation='relu')(net)
net = MaxPooling2D(pool_size=2)(net)
net = Conv2D(128, kernel_size=3, strides=1, padding='same', activation='relu')(net)
net = MaxPooling2D(pool_size=2)(net)
net = Flatten()(net)
net = Dense(512)(net)
net = Activation('relu')(net)
net = Dense(1)(net)
outputs = Activation('sigmoid')(net)
model = Model(inputs=inputs, outputs=outputs)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])
model.summary()
                                             Copyright © Slug. All rights reserved.
```

눈 깜빡임 감지 머신러닝 소스코드

```
[6]
start_time = datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S')

model.fit_generator(
    train_generator, epochs=50, validation_data=val_generator,
    callbacks=[
        ModelCheckpoint('C:/Users/skt/Desktop/Twinkle/%s.h5' % (start_time), monitor
='val_acc', save_best_only=True, mode='max', verbose=1),
        ReduceLROnPlateau(monitor='val_acc', factor=0.2, patience=10, verbose=1, mod
e='auto', min_lr=1e-05)
    ]
)
print("file name : "+start_time+".h5")
```

설 걔

눈 깜빡임 감지 머신러닝 소스코드

```
[7]
from sklearn.metrics import accuracy_score, confusion_matrix
import seaborn as sns
model = load_model('C:/Users/skt/Desktop/Twinkle/%s.h5' % (start_time))
y_pred = model.predict(x_val/255.)
y_pred_logical = (y_pred > 0.5).astype(np.int)
print ('test acc: %s' % accuracy_score(y_val, y_pred_logical))
cm = confusion_matrix(y_val, y_pred_logical)
sns.heatmap(cm, annot=True)
[8]
ax = sns.distplot(y_pred, kde=False)
```

머신러닝 소스코드 실행

```
In [10]: start time = datetime.datetime.now().strftime('%Y %m %d %H %M %S')
      model.fit_generator(
        train_generator, epochs=50, validation_data=val_generator,
        callbacks=[
          ModelCheckpoint('C:/Users/skt/Desktop/Twinkle/%s.h5' % (start time), monitor='val acc', save best only=True, mode='max', verbose
          ReduceLROnPlateau(monitor='val_acc', factor=0.2, patience=10, verbose=1, mode='auto', min_lr=1e-05)
     print("file name : "+start time+".h5")
      Epoch 00046: val_acc did not improve from 1.00000
     81/81 [=============] - 6s 73ms/step - loss: 0.0022 - acc: 0.9996 - val_loss: 0.0080 - val_acc: 0.9965
     Epoch 47/50
     Epoch 00047: val_acc did not improve from 1.00000
     Epoch 48/50
     Epoch 00048: val_acc did not improve from 1.00000
     Epoch 49/50
     Epoch 00049: val acc did not improve from 1.00000
     Epoch 50/50
     81/81 [===========] - ETA: 0s - loss: 0.0034 - acc: 0.9992
     Epoch 00050: val_acc did not improve from 1.00000
     81/81 [==============] - 6s 71ms/step - loss: 0.0034 - acc: 0.9992 - val_loss: 0.0068 - val_acc: 0.9965
     file name : 2020_12_07_19_04_40.h5
```

Jupyter notebook에 머신러닝 모듈파일 2020_12_07_19_04_40.h5 제작

```
import tensorflow.compat.v1 as tf
tf.disable_resource_variables()
tf.disable_v2_behavior()
import cv2, dlib
import numpy as np
from imutils import face_utils
from keras.models import load_model
import datetime
import time
import RPi.GPIO as GPIO
IMG_SIZE = (34, 26)
detector = dlib.get_frontal_face_detector()
predictor =
dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
model = load_model('models/2020_12_07_19_04_40.h5')
model.summary()
GPIO.setmode(GPIO.BCM)
                                #led 사용을 위한 코드를 추가하였다.
GPIO.setwarnings(False)
GPIO.setup(18, GPIO.OUT)
```

```
pwm = GPIO.PWM(18, 50) # PWM 18번 핀에 50Hz의 주파수 설정
pwm.start(100) # PWM의 값을 0~100까지 넣을 수 있다. (100의 dutycicle 설정)
dc = 100
                      - 100이 가장 밝고 0이 가장 어둡다.
fs = None
                  # 시간의 흐름을 알기 위해 추가하였다.
fm = None
count = 0
end loop = 0
              # 자동 종료를 하기 위해 추가하였다.
def crop_eye(img, eye_points):
 x1, y1 = np.amin(eye_points, axis=0)
 x2, y2 = np.amax(eye_points, axis=0)
 cx, cy = (x1 + x2) / 2, (y1 + y2) / 2
w = (x2 - x1) * 1.2
h = w * IMG_SIZE[1] / IMG_SIZE[0]
margin_x, margin_y = w / 2, h / 2
min_x, min_y = int(cx - margin_x), int(cy - margin_y)
max_x, max_y = int(cx + margin_x), int(cy + margin_y)
                                         Copyright © Slug. All rights reserved.
```

```
eye_rect = np.rint([min_x, min_y, max_x, max_y]).astype(np.int)
eye_img = gray[eye_rect[1]:eye_rect[3], eye_rect[0]:eye_rect[2]]
return eye_img, eye_rect
# main
#cap = cv2.VideoCapture('videos/2.mp4')
 cap = cv2.VideoCapture(0)
                              # video 대신 Pi Camera를 실행한다.
#cap.set(3,640) # set Width
#cap.set(4,480) # set Height
while cap.isOpened():
 ret, img_ori = cap.read()
if not ret:
 break
img_ori = cv2.resize(img_ori, dsize=(0, 0), fx=0.5, fy=0.5)
img = img_ori.copy()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
                                            Copyright © Slug. All rights reserved.
```

```
faces = detector(gray)
for face in faces:
   shapes = predictor(gray, face)
   shapes = face_utils.shape_to_np(shapes)
   eye_img_l, eye_rect_l = crop_eye(gray, eye_points=shapes[36:42])
   eye_img_r, eye_rect_r = crop_eye(gray, eye_points=shapes[42:48])
   eye_img_l = cv2.resize(eye_img_l, dsize=IMG_SIZE)
   eye_img_r = cv2.resize(eye_img_r, dsize=IMG_SIZE)
   eye_img_r = cv2.flip(eye_img_r, flipCode=1)
# cv2.imshow('l', eye_img_l)
# cv2.imshow('r', eye_img_r)
eye_input_l = eye_img_l.copy().reshape((1, IMG_SIZE[1], IMG_SIZE[0], 1)).astype(np.float32)
/ 255.
eye_input_r = eye_img_r.copy().reshape((1, IMG_SIZE[1], IMG_SIZE[0], 1)).astype(np.float32)
/ 255.
pred_l = model.predict(eye_input_l)
pred_r = model.predict(eye_input_r)
                                             Copyright © Slug. All rights reserved.
```

```
# visualize
state_l= '0 %.1f' if pred_l > 0.1 else '- %.1f'
    #출력되는 동영상에서 눈 부분의 네모 창 위에 떠있는 숫자이다. pred_l, pred_r이 0.1보다 작은 경우 -가 앞에 붙는다.
     따라서 pred_IOI 0.1보다 작으면 눈을 감았다고 예측한다.
state_r = '0 %.1f' if pred_r > 0.1 else '- %.1f'
state_l = state_l % pred_l
state_r = state_r % pred_r
cv2.rectangle(img, pt1=tuple(eye_rect_l[0:2]), pt2=tuple(eye_rect_l[2:4]),
color=(255,255,255), thickness=2)
cv2.rectangle(img, pt1=tuple(eye_rect_r[0:2]), pt2=tuple(eye_rect_r[2:4]),
color=(255,255,255), thickness=2)
cv2.putText(img, state_l, tuple(eye_rect_l[0:2]), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
(255, 255, 255), 2)
cv2.putText(img, state_r, tuple(eye_rect_r[0:2]), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
(255, 255, 255), 2)
```

```
#눈을 감았을때의 초(시간)를 세는 코드
if pred_l < 0.1 and pred_r < 0.1:
  if fs is None: #양쪽 눈을 모두 감았을 때 fs값이 None이면 이 코드를 실행한다.
     fnow = datetime.datetime.now() #datetime클래스를 사용해서 오늘의 날짜와 시간값을 fnow에 저장한다.
     fs = int(fnow.strftime('%S')) // second
     fm = int(fnow.strftime('%M')) // minute
 else:
     snow = datetime.datetime.now()
     ss = int(snow.strftime('%S'))
     sm = int(snow.strftime('%M'))
     if ss == 0 or ss == 60: #입력 받은 초가 0 또는 60초이면
        count = count + 1 #count 변수에 1을 더한다.
        sscount = ss + (count*60) #0또는 60초가 반복된 횟수 count 변수에 60을 곱한 값을 더한 것이다.
     else: #그 이외의 경우
        sscount = ss #숫자 그대로 사용한다.
```

```
#10초 후에 LED가 꺼짐
if (sscount - fs) < 10 :
                    #지나간 초가 10초보다 작을 경우
   pwm.ChangeDutyCycle(dc) # dc = 100~0까지의 값을 설정할 수 있고 100에서 1초당 10씩 10번 감소하면 0이다.
   dc = 100 -(sscount - fs)*10 #10초 동안 led가 서서히 꺼진다.
else:
   pwm.stop()
   print("LED OFF")
   endloop = 1
   break
#10분 후에 LED가 꺼짐
#if sm == 0 or sm == 60:
   # count = count + 1
   # smcount = sm + (count*60)
#else:
   # smcount = sm
#if (smcount - fm) < 10: #10분
  # pwm.ChangeDutyCycle(dc)
#if (sscount-fs)%10 == 0 :
                               #led 밝기가 약 10초에 1씩 감소한다.
  \# dc = dc - 1
                                       Copyright © Slug. All rights reserved.
```

```
눈 깜빡임 응용 에너지 절약 장치 소스코드
         #10분 이상인 경우
#else:
  # pwm.stop() #led를 끈다.
  # print("LED OFF")
  # endloop = 1
  # break
print("closeing eye time :" + str(sscount-fs))
else:
  #pred_I과 pred_r이 0.1보다 클 때 실행된다. 눈을 감았다는 것을 인지하기 전의 초기 설정으로 리셋시킬 필요가 있다.
   fs = None
   fm=None
   dc = 100
   pwm.ChangeDutyCycle(dc)
   print("Awke") #눈을 떴다는 것을 터미널 창에 알려준다.
cv2.imshow('result', img)
if endloop == 1:
  break
                # 프로그램을 자동으로 종료해준다.
if cv2.waitKey(1) == ord('q'):
   break
cap.release()
                                    Copyright © Slug. All rights reserved.
```


3 결론

팀 성과 (결과), 개선 사항

느낀점 및 알게 된 점

팀 성과 (결과)

팀 성과, 개선 사항

1. TensorFlow 설치 오류

```
wget https://github.com/lhelontra/tensorflow-on-arm/releases/download/v2.0.0/
tensorflow-2.0.0-cp37-none-linux_armv7l.whl
python3 -m pip uninstall tensorflow
python3 -m pip install tensorflow-2.0.0-cp37-none-linux_armv7l.whl <- TensorFlow 2.0.0로 설치하여 오류 해결
```

2. Keras 설치 오류

```
python -m pip install Keras==2.3.1 <- Keras를 2.3.1로 업그레이드 import tensorflow.compat.v1 as tf tf.disable_v2_behavior() 문구 추가하여 해결
```

느낀점 및 알게 된 점

[김하얀]

이번 설계를 통해 직접 실습을 해 보니 Raspberry Pi를 이용한 센서모듈(카메라, LED 등) 연결, GitHub, Jupyter Notebook 등의 Raspberry Pi를 다루는 방법을 알게 되었고 아직 Raspberry Pi에 대해모르는 부분이 많다고 느꼈다.

[김현정]

실습을 통해 센서를 사용하기 위한 소스코드 이해 및 실제 센서로부터 입력받는 값들을 활용하는 방법을 알게 되었다. 오픈 소스를 활용한 실습을 통해 머신러닝 분석 데이터와 소스코드는 다양한 활용이 가능하다는 것을 알게 되었다.

[맹하늘]

작품설계를 통해 라즈베리 파이를 실습한 내용들에 대한 이해도가 향상되었다. 또한, 머신러닝 오픈 소스를 통해 머신러닝에 대해 알게되었고 조금이나마 응용할 수 있게 되었다.

[신선영]

라즈베리 파이에 보드를 연결해 간단한 설계도 해보고, 주제에 맞는 코드를 입력했을 때 원하는 값이 나오지 않고에러가 출력되는 경우가 더 많았다. 원인이 무엇인지 찾아보고, 다시 코드를 실행시키는 과정을 여러번 반복해보며원하는 결과값을 얻었을 때 어느때보다도 성취감과 협력의 중요함을 많이 느낄 수 있는 시간이었다.

느낀점 및 알게 된 점

[장하영]

Windows 환경에서 짜인 오픈소스를 Raspberry pi에서 구현하다보니 TensorFlow, Keras, OpenCV 등의 초기 개발 환경을 구축할 때 오류가 잦았다. 오류의 원인이 모듈 버전 문제임을 알아내어 가상환경을 구성하고 오류를 해결해 나갔다. 해결한 오류들을 팀원들과 공유할 땐 서로 도움이 됐고 힘이 났다. 우리의 아이디어를 실제로 구현해내는데에 성공했을 땐 신기하고 뿌듯했다. 앞으로의 개발활동에 자신감이 생겼고, 추가로 아이디어를 내어 더 응용해보고 싶다.

[최유진]

설계 주제를 고를때 예제들을 보면서 Raspberry Pi를 이용한 다양한 머신러닝 응용이 가능하다는 것을 알았다. 오픈소스 실행 과정에서 많은 오류들이 발생하였지만 서로 협력하여 하나하나 문제를 해결하던 점에서 팀워크를 느낄 수 있었다. 실제로 머신러닝 실습을 진행하면서 Raspberry Pi와 기타 프로그램들의 사용법을 좀 더 폭넓게 익히게 되었다.

4 마무리

교육 수요자 입장에서 바라는
[교과 연계형 비교과 프로그램]
참고 문헌

마무리

바라는 [교과 연계형 비교과 프로그램]

직접 실습하고 작품을 설계하여 교과 프로그램 (AI 머신러닝, 딥러닝등) 에 대한 이해도를 높일수 있는 실질적인 과제형 프로그램

마 무 리

참고문헌

빵형의 개발도상국 - 딥러닝으로 눈 깜빡임 감지기 만들기 https://youtu.be/dJjzTo8_x3c

눈 깜빡임 소스코드(test.py) https://github.com/kairess/eye_blink_detector

머신러닝 정의

https://terms.naver.com/entry.nhn?docId=3347329&cid=40942&categoryId=32845 https://m.blog.naver.com/sbd38/221369711732

텐서플로우 정의

https://terms.naver.com/entry.nhn?docld=3434677&cid=40942&categoryld=32837

케라스 정의

https://ko.wikipedia.org/wiki/%EC%BC%80%EB%9D%BC%EC%8A%A4https://blog.naver.com/beyondlegend/222141341172

사물인터넷을 위한 리눅스 프로그래밍 with 라즈베리 파이

