#### Lecture 13

#### **Secure Programming**

#### **Reference:**

Security in Computing, Charles P. Pfleeger, Shari Lawrence, Jonathan Margulies

CS2365

1

#### **Security Goals**

- Security Goals (CIA Triad)
  - Confidentiality, Integrity, and Availability
- Confidentiality
  - Assets accessed by authorized parties
  - Read type access
    - Read, view, print, or just know existence of object
- Integrity
  - Assets modified by authorized parties or in authorized ways
  - Modification write, change, delete, or create
- Availability
  - Assets available when users want to access

ı

# **Confidentiality**

- Cryptosystem
- Symmetric Cryptosystem
  - DES, AES
- Asymmetric Cryptosystem
  - Diffie Hellman, RSA

CS2365

3

### **Cryptosystem**

- Encryption
  - Message encoded to not obvious message
  - Encrypt, encipher, encode
- Decryption
  - Encrypted message transformed into normal form
  - Decrypt, decipher, decode



CS2365

# **Cryptosystem**

- Cryptosystem
  - System for encryption and decryption
  - Plaintext P = (p1, p2, ...., pn): original form of a message
  - Ciphertext C = (c1, c2, ..., Cm): encrypted form
  - Transformation between P and C
    - C=E(P) and P=D(C)
  - Cryptosystem: P = D(E(P))

CS2365

5

5

### **Stream and Block Ciphers**

- Stream Cipher
  - Convert one symbol of plaintext to a symbol of ciphertext
  - Advantages
    - Speed of transformation
- Block Cipher
  - Encrypts a group of plaintext symbols as one block
  - Advantages
    - High diffusion

CS2365

# **Symmetric Cryptosystem** Secret Key Cryptosystem (Single Key)

- - Encryption and decryption keys are the same
  - P = D(K, C) where C = E(K, P)
  - -P = D(K, E(K, P))



# **Symmetric Cryptosystem**

- Confidentiality depends only on secrecy of the key
- Attacker is assumed to know E and D
- Secret key systems do not scale well
  - With N parties we need to generate and distribute N\*(N-1)/2 keys
- A and B can be people and computers

CS2365

#### **Data Encryption Standard (DES)**

- Developed for the U.S. government
  - Accepted as a cryptographic standard in US and abroad (1976)
- DES
  - 56 bits long key; 64-bit block size; E and D are public
  - Has not been broken since 1977, but not secure anymore
  - Different 4 modes
    - Electronic Code Book, Ciphertext Block Chaining, Cipher FeedBack, Output Feedback modes

CS2365

9

9

### **Advanced Encryption Standard (AES)**

- NIST selected AES of the Rijndael family in 2001
- Symmetric key cryptography as a block cipher
  - Block sizes of 128 bits
  - Key sizes of 128, 192, and 256 bits
- Program AESTest.java

CS2365

#### **Asymmetric Cryptosystem**

- Asymmetric Encryption (Two Keys)
  - A pair of keys for encryption and decryption
  - $P = D(K_D, E(K_E, P))$



11

### **Public Key (Asymmetric) Encryption**

- Diffie and Hellman [1976]
  - Proposed a public key encryption system
  - Motivation n\*(n-1)/2 for secret keys among n-users
  - $-\,$  Each user has two keys  $-\,a$  public key and a private key
  - $P = D(K_{PRIV}, E(K_{PUB}, P))$ 
    - Alice encrypts messages with Bob's public key
    - Bob encrypts a message with a private key

CS2365



13

# **Integrity**

- Protect against unauthorized changes to data
- Message digest (MD) or Message Authentication Code (MAC)
- MD with secret-key technology
- MD with pubic-key technology

CS2365

14



\_\_\_

# **Message Digest**

- One-way function
  - $\circ$  m = H(M) is easy to compute
  - $\circ$  M = H<sup>-1</sup>(m) is hard to compute

CS2365

#### **Message Digest**

- MD5
  - Proposed by Ron Rivest
  - Improved version of MD4
  - 128 bits digest
- NIST SHA/SHS (Secure Hash Algorithm or Standard)
  - 160 bits digest
  - Similar to MD5
  - SHA-0, SHA-1, SHA-2, SHA-3
- Program Secure Hash Algorithm (SHA-1)

CS2365

17

17

### **Digital Signature**

- Non-repudiation
  - Protect against one party to a transaction or communication activity
  - later falsely denying that the transaction or activity occurred
- Digital signature
  - A mark that only the sender can make
  - But other people recognize

CS2365



19

# **Digital Signature**

- Person P signs message M, generates signature S(P, M), and sends [M, S(P, M)] to R
- Two primary properties
  - It must be unforgeable
  - It must be authentic
- Program: DSATest.java

CS2365