# AG News Topic Classification

CSML 1010 - Winter 2020 - Group 20

Tony Lee, Viswesh Krishnamurthy



# PROBLEM SELECTION & DEFINITION

- A text classification problem was chosen from the website <a href="https://datasets.quantumstat.com/">https://datasets.quantumstat.com/</a>. We chose the AG News corpus dataset
- The goal of this project is to develop a text classifier model that can accept a news 'headline' and 'content' of the news to classify the news article into one of the 4 following categories
  - World (coded as 1)
  - > Sports (2)
  - Business (3)
  - ➤ Sci/Tech (4)



# PROJECT MILESTONE 1 – 18<sup>th</sup> Apr 2020



# FEATURE ENGINEERING & MODELS - PLAN

- We have performed feature engineering using the following methods
  - ▶ Bag of words, Bag of n-grams, Bag of characters
  - Tf/ldf, Tf/ldf Unigrams, Tf/ldf N-grams, Tf/ldf Characters
  - ► Word2Vec

▶ We built the first model with SVM with a sample data of 4000 rows

- We will continue to build more models as seen below,
  - ► Naive Bayes
  - Logistic Regression
  - Decision Trees
  - ► GBM (Gradient Boosting)



## FEATURE ENGINEERING – BAG OF WORDS

```
# Use countvectorizer to get a vector of words
cv = CountVectorizer(min_df = 2, lowercase = True,
             token_pattern=r' b[A-Za-z]{2,}b', ngram_range = (1, 1)
x_{train_cv} = cv.fit_{transform}(x_{train.content_cleaned}).toarray()
x_{test_cv} = cv.transform(x_{test_content_cleaned}).toarray()
# get all unique words in the corpus
bow_vocab = cv.get_feature_names()
# produce a dataframe including the feature names
x_train_bagofwords = pandas.DataFrame(x_train_cv, columns=bow_vocab)
x_test_bagofwords = pandas.DataFrame(x_test_cv, columns=bow_vocab)
x_train_bagofwords.head()
```



# FEATURE ENGINEERING – BAG OF WORDS (Cont'd)





## FEATURE ENGINEERING – BAG OF N-GRAMS

```
# Use countvectorizer to get a vector of n-grams
cv = CountVectorizer(min_df = 2, lowercase = True,
             token_pattern=r' b[A-Za-z]{2,}b', ngram_range = (2, 3)
x_{train_cv} = cv.fit_{transform(x_train).toarray()}
x_{test_cv} = cv.transform(x_{test_cv}).toarray()
# get all unique words in the corpus
ngram_vocab = cv.get_feature_names()
# produce a dataframe including the feature names
x_train_bagofngrams = pandas.DataFrame(x_train_cv, columns=ngram_vocab)
x_test_bagofngrams = pandas.DataFrame(x_test_cv, columns=ngram_vocab)
x_train_bagofngrams.head()
```



# FEATURE ENGINEERING - BAG OF N-GRAMS (Cont'd)





## FEATURE ENGINEERING – BAG OF CHARS

```
# Use countvectorizer to get a vector of chars
cv = CountVectorizer(analyzer='char', min_df = 2, ngram_range = (2, 3),
              token_pattern=r'\b[A-Za-z]{2,}\b')
x_{train_cv} = cv.fit_{transform(x_train).toarray()}
x_{test_cv} = cv.transform(x_{test_cv}).toarray()
# get all unique words in the corpus
cv_char_vocab = cv.get_feature_names()
# produce a dataframe including the feature names
x_train_cv_char = pandas.DataFrame(x_train_cv, columns = cv_char_vocab)
x_test_cv_char = pandas.DataFrame(x_test_cv, columns=cv_char_vocab)
x_train_cv_char.head()
```



# FEATURE ENGINEERING - BAG OF CHARS (Cont'd)





# FEATURE ENGINEERING - TF/IDF UNIGRAMS

# # Use TF/IDF vectorizer to get a vector of unigrams $tfidf\_vect = TfidfVectorizer(sublinear\_tf = True, min\_df = 2, ngram\_range = (1, 1),$ use\_idf = True, token\_pattern=r'\b[A-Za-z] $\{2,\}$ \b') x\_train\_tfidf\_unigram = tfidf\_vect.fit\_transform(x\_train).toarray() x\_test\_tfidf\_unigram = tfidf\_vect.transform(x\_test).toarray() # get all unique words in the corpus vocab = tfidf\_vect.get\_feature\_names() # produce a dataframe including the feature names $x_{train_tfidf_unigram} = pandas.DataFrame(numpy.round(x_train_tfidf_unigram, 2),$ columns = vocab) $x_{test_{tfidf_{unigram}}} = pandas.DataFrame(numpy.round(x_{test_{tfidf_{unigram}}}, 2),$ columns = vocab)



x\_train\_tfidf\_unigram.head()

# FEATURE ENGINEERING - TF/IDF N-GRAMS

# # Use TF/IDF vectorizer to get a vector of n-grams $tfidf\_vect = TfidfVectorizer(sublinear\_tf = True, min\_df = 2, ngram\_range = (2, 3),$ use\_idf = True, token\_pattern=r'\b[A-Za-z] $\{2,\}$ \b') x\_train\_tfidf\_ngram = tfidf\_vect.fit\_transform(x\_train).toarray() x\_test\_tfidf\_ngram = tfidf\_vect.fit\_transform(x\_test).toarray() # get all unique words in the corpus vocab = tfidf\_vect.get\_feature\_names() # produce a dataframe including the feature names $x_{train_tfidf_ngram} = pandas.DataFrame(numpy.round(x_train_tfidf_ngram, 2),$ columns = vocab) $x_test_tfidf_ngram = pandas.DataFrame(numpy.round(x_test_tfidf_ngram, 2), columns_test_tfidf_ngram = pandas.DataFrame(numpy.round(x_test_tfidf_ngram, 2), columns_test_tfidf_ngram, 2), columns_tfidf_ngram, 2), colum$ = vocab)



x\_train\_tfidf\_ngram.head()

# FEATURE ENGINEERING – TF/IDF CHARS

# # Use TF/IDF vectorizer to get a vector of chars tfidf\_vect = TfidfVectorizer(analyzer = 'char', sublinear\_tf = True, min\_df = 2, $\frac{1}{1}$ ngram\_range = (2, 3), use\_idf = True, token\_pattern= $r'\b[A-Za-z]{2,}\b')$ x\_train\_tfidf\_char = tfidf\_vect.fit\_transform(x\_train).toarray() x\_test\_tfidf\_char = tfidf\_vect.transform(x\_test).toarray() # get all unique words in the corpus char vocab = tfidf vect.get feature names() # produce a dataframe including the feature names $x_{train_tfidf_char} = pandas.DataFrame(numpy.round(x_train_tfidf_char, 2), columns = char_vocab)$ $x_test_tfidf_char = pandas.DataFrame(numpy.round(x_test_tfidf_char, 2), columns = char_vocab)$

YORK
UNIVERSITÉ

x\_train\_tfidf\_char.head()

# FEATURE ENGINEERING – WORD2VEC

#### ### Using gensim to build Word2Vec

from gensim.models import word2vec

#### # tokenize sentences in corpus

```
wpt = nltk.WordPunctTokenizer()
tokenized_corpus = [wpt.tokenize(document) for document in x_train]
```

#### # Set values for various parameters

```
feature_size = 100 # Word vector dimensionality
window_context = 20 # Context window size
workers = 10
min_word_count = 5 # Minimum word count
sample = 1e-3 # Downsample setting for frequent words
```



# FEATURE ENGINEERING - WORD2VEC (Cont'd)

```
#### Visualize Word Embedding
# %%
from sklearn.manifold import TSNE
words = w2v\_model.wv.index2word
wvs = w2v \mod el.wv[words]
tsne = TSNE(n_components=2, random_state=0, n_iter=500, perplexity=2)
numpy.set_printoptions(suppress=True)
T = tsne.fit_transform(wvs)
labels = words
plt.figure(figsize=(12, 6))
plt.scatter(T[:, 0], T[:, 1], c='orange', edgecolors='r')
for label, x, y in zip(labels, T[:, 0], T[:, 1]):
plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset points')
```



# FEATURE ENGINEERING – WORD2VEC (Cont'd)





# FEATURE ENGINEERING - WORD2VEC (Cont'd)

```
#### Functions to get document level embeddings
def average word vectors(words, model, vocabulary, num features):
feature_vector = numpy.zeros((num_features,),dtype="float64")
nwords = 0.
for word in words:
  if word in vocabulary:
   nwords = nwords + 1.
   feature vector = numpy.add(feature vector, model[word])
if nwords:
  feature vector = numpy.divide(feature vector, nwords)
return feature vector
def averaged word vectorizer(corpus, model, num features):
vocabulary = set(model.wv.index2word)
features = [average_word_vectors(tokenized_sentence, model, vocabulary, num_features)
       for tokenized sentence in corpus]
return numpy.array(features)
```



# FEATURE ENGINEERING - WORD2VEC (Cont'd)

```
#### Obtain document level embeddings
w2v_feature_array = averaged_word_vectorizer(corpus=tokenized_corpus,
model=w2v_model,
                           num_features=feature_size)
pandas.DataFrame(w2v_feature_array)
word_freq_df = pandas.DataFrame(x_train_bagofwords.toarray(),
columns=cv.get_feature_names())
top_words_df = pandas.DataFrame(word_freq_df.sum()).sort_values(0,
ascending=False)
word_freq_df.head(20)
top_words_df.head(20)
```



## **MODELLING - SVM**

```
# Run classifier
classifier = OneVsRestClassifier(svm.LinearSVC(random_state=1))
classifier.fit(x_train_bagofwords, y_train)
y_score = classifier.decision_function(x_test_bagofwords)
# The average precision score in multi-label settings
# For each class
precision = dict()
recall = dict()
average_precision = dict()
for i in range(n_classes):
  precision[i], recall[i], _ = precision_recall_curve(y_test[:, i], y_score[:, i])
  average_precision[i] = average_precision_score(y_test[:, i], y_score[:, i])
# A "micro-average": quantifying score on all classes jointly
precision["micro"], recall["micro"], _ = precision_recall_curve(y_test.ravel(), y_score.ravel())
average_precision["micro"] = average_precision_score(y_test, y_score, average="micro")
print('Average precision score, micro-averaged over all classes: {0:0.2f}'
    .format(average_precision["micro"]))
```



# MODELLING - SVM (Cont'd)

```
# Plot the micro-averaged Precision-Recall curve
plt.figure()
plt.step(recall['micro'], precision['micro'], where='post')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title(
   'Average precision score, micro-averaged over all classes: AP = \{0.0.2f\}'
   .format(average_precision["micro"]))
```



# **SVM MODEL RESULTS**

#### Precision Recall F1, CV Unigrams





#### <u>Precision Recall F1, TF/IDF Unigrams</u>







# **SVM MODEL RESULTS**

#### Precision Recall F1, CV N-grams





#### Precision Recall F1, TF/IDF N-grams







# **SVM MODEL RESULTS**

#### Precision Recall F1, CV Chars





#### Precision Recall F1, TF/IDF Chars







# SVM MODEL RESULTS – WORD2VEC FEATURE SIZE COMPARISON







Feature size = 2000



Feature size = 500



Feature size = 4000



Feature size = 1000



Feature size = 6000



1.0

8.0

0.2

0.0

# SVM MODEL RESULTS – WORD2VEC FEATURE SIZE COMPARISON





#### FEATURE SELECTION

➤ We did feature selection using the package f\_class\_if from sklearn to select the top 10 percentile from each vectorizer / embedding

```
selector = SelectPercentile(f_classif, percentile=10)
selector.fit(x_train_cv, train_data_sample.category)
x_train_cv_10p = selector.transform(x_train_cv).toarray()
x_test_cv_10p = selector.transform(x_test_cv).toarray()
```



### FEATURE SELECTION RESULTS COMPARISON

We ran SVM with test & train of both actual and feature selected datasets. Below is a comparison of results between CountVectorizer Bag of Words for actual data vs feature selected data





## FEATURE SELECTION RESULTS COMPARISON

 Below is a comparison of results between CountVectorizer Bag of N-grams for actual data vs feature selected data





# FEATURE SELECTION RESULTS COMPARISON

Below is a comparison of results between CountVectorizer Bag of chars for actual data vs feature selected data





We will continue feature selection with other feature selection methods to better determine the significance of it to our project

We will continue to build other classification models like Logistic Regression, Naïve Bayes & Decision Trees



# PROJECT MILESTONE 2 – 5<sup>th</sup> May 2020



#### **MODELS**

- With the previous SVM model as the baseline, the following models were built,
  - ► Logistic Regression
  - ► Naïve Bayes
  - Decision Trees

All the models were built using Word2Vec embedding. The embedding was trained using the 120,000 instances, the entire training set



#### MODELS - PERFORMANCE COMPARISON





#### Baseline Model – SVM

- 120,000 instances
- Min word count = 5
- No.of Dimensions = 300



# iso-f1 curves micro-average Precision-recall (area = 0.92) Precision-recall for class 0 (area = 0.93) Precision-recall for class 1 (area = 0.97) Precision-recall for class 2 (area = 0.87) Precision-recall for class 3 (area = 0.89)

#### Logistic Regression

- 120,000 instances
- Min word count = 5
- No. of Dimensions = 300



# MODELS - PERFORMANCE COMPARISON (Cont'd)





#### Baseline Model – SVM

- 1 20,000 instances
- Min word count = 5
- No.of Dimensions = 300





#### Naïve Bayes

- 120,000 instances
- Min word count = 5
- No.of Dimensions = 300



# MODELS - PERFORMANCE COMPARISON (Cont'd)





#### Baseline Model – SVM

- 120,000 instances
- Min word count = 5
- No.of Dimensions = 300



# iso-f1 curves micro-average Precision-recall (area = 0.63) Precision-recall for class 0 (area = 0.63) Precision-recall for class 1 (area = 0.78) Precision-recall for class 2 (area = 0.55) Precision-recall for class 3 (area = 0.55)

#### **Decision Trees**

- 120,000 instances
- Min word count = 5
- No.of Dimensions = 300



#### **CROSS VALIDATION**

We ran a 5 fold cross validation on the training dataset and re-ran all the models

The models on the "solo" runs were trained on the 120,000 instance training set and tested on a separate 7600 instance test set

The results of cross validation closely follow the previous "solo" runs

Logistic Regression & SVM compare very closely in terms of the metrics. However, SVM was very resource intensive



# CROSS VALIDATION - COMPARISON OF RESULTS







algo

Gaussian Naive Bayes

SVM/Linear SVC

Decision Tree

Logistic Regression

# CROSS VALIDATION - COMPARISON OF RESULTS







algo

Gaussian Naive Bayes

SVM/Linear SVC

Decision Tree

Logistic Regression

# CROSS VALIDATION - COMPARISON OF RESULTS



Based on the previous metrics and comparison, Logistic Regression emerges as the model of choice



## **ENSEMBLE METHODS**

► The following ensemble methods were used

- Bagging
  - ▶ The base estimator was chosen to be Logistic Regression
- Stacking
  - The initial estimators in stacking were chosen to be Naïve bayes and SVM. The meta learner was Logistic Regression
- Boosting
  - ► An Adaboost classifier was used for boosting in this iteration.



# **ENSEMBLE METHODS vs OTHERS**







# **ENSEMBLE METHODS vs OTHERS**







## **ENSEMBLE METHODS vs OTHERS**



- Based on the metrics seen so far, it is clear that "Bagging" ensemble method is the algorithm of choice
- Stacking and Bagging perform almost similarly in terms of F1
   Score, ROC AUC, Precision & Recall
- However, in terms of Fit time,
   stacking took almost 25 minutes to
   fit, while bagging took just over
   3.5 mins

