Groups

Key Theorems and Corollaries

Lectured by Dr Rachel Camina

Michaelmas 2013

Theorem. Every permutation of S_n can be written as a product of disjoint cycles (in an essentially unique way).

Proof. Let $X = \{1, 2, ... n\}$ and $\sigma \in S_n$. Choose an element a, and consider $a, \sigma(a), \sigma^2(a), ...$ - then there exists a minimal j such that $\sigma^j(a) = a$ since X is finite. So $(a, \sigma(a), ... \sigma^{j-1}(a))$ is a cycle in σ . Repeat with $b \in X \setminus \{a, \sigma(a), ... \sigma^{j-1}(a)\}$ etc. until all elements of X are in a cycle.

Theorem (Lagrange's Theorem). Let H be a subgroup of a finite group G. The order of H divides the order of G.

Proof. G is partitioned into distinct cosets of H, say $G = g_1 H \dot{\cup} g_2 H \dot{\cup} \dots \dot{\cup} g_k H$. Since $|g_i H| = |H|$, it is clear that |G| = k|H|.

Corollary (Lagrange's Corollary). Let G be a finite group and $g \in G$. Then $o(g) \mid |G|$. In particular, $g^{|G|} = e$.

Proof. Consider the subgroup generated by g, which has order o(g), and by Lagrange's Theorem this divides the order of G.

Theorem (Fermat-Euler Theorem). Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ with hcf(a, n) = 1. Then $a^{\phi(n)} \equiv 1 \mod n$.

Proof. For $n \in \mathbb{N}$ define $R_n = \{a : 1 \le a \le n, \text{hcf}(a, n) = 1\}$ and show that it is a group under \times_n : $\text{hcf}(a, n) = \text{hcf}(b, n) = 1 \implies \text{hcf}(ab, n) = 1$ and find inverses by Bezout's Theorem. Then by Lagrange, $\bar{a}^{|R_n|} = 1$, where $\bar{a} = a \mod n$. But $|R_n| = \phi(n)$, so $a^{\phi(n)} \equiv 1 \mod n$.

Theorem (First Isomorphism Theorem). Let G, H be groups and $\theta : G \to H$ a group homomorphism. Then $\text{Im}(\theta) \leq H, \text{Ker}(\theta) \leq G$ and $G/\text{Ker}(\theta) \cong \text{Im}(\theta)$.

Proof. $Im(\theta) \leq H$: obvious since θ is a homomorphism.

 $\operatorname{Ker}(\theta) \leq G$: on example sheet 1; show satisfies group axioms and that $\theta(gkg^{-1}) = e_H$ i.e. $gkg^{-1} \in \operatorname{Ker}(\theta)$.

 $G/\mathrm{Ker}(\theta) \cong \mathrm{Im}(\theta)$: construct an isomorphism $\phi: G/\mathrm{Ker}(\theta) \to \mathrm{Im}(\theta): gK \mapsto \theta(g)$ where $K = \mathrm{Ker}(\theta)$. To show that it is an isomorphism ...

Well-defined: Suppose gK = hK, then $h^{-1}g \in K$. Hence by definition, $\theta(h^{-1}g) = e_H$, so $\theta(h)^{-1}\theta(g) = e_H$ since θ is a homomorphism. Thus $\theta(g) = \theta(h)$ and so $\phi(gK) = \phi(hK)$. Homomorphism: $\phi(gKhK) = \phi(ghK) = \theta(gh) = \theta(g)\theta(h) = \phi(gK)\phi(hK)$.

Surjective: Reverse the argument for well-defined. \Box

Theorem (Cayley's Theorem). Any group G is isomorphic to a subgroup of Sym(X) for some X. e.g. take X to be the elements of G.

Proof. Consider the left regular action $G \times G \to G : (g,h) \mapsto gh$. This is a faithful action (since $gh = h \quad \forall h \in G \implies g = e$). Thus we have an injective homomorphism $\Phi: G \to \operatorname{Sym}(X)$ and $G \lesssim \operatorname{Sym}(G)$.

Theorem (Orbit-Stabiliser Theorem). Let G be a finite group acting on a set X. Let $x \in X$, then $\operatorname{Stab}_G(x) \leq G$ and $|G| = |\operatorname{Stab}_G(x)||\operatorname{Orb}_G(x)||$.

Proof. Prove that $|(G : \operatorname{Stab}_G(x))|$, the number of left cosets of $\operatorname{Stab}_G(x)$ in G is equal to the order of $\operatorname{Orb}_G(x)$.

Let $\theta: (G: \operatorname{Stab}_G(x)) \to \operatorname{Orb}_G(x): g\operatorname{Stab}_G(x) \mapsto g(x)$.

Check that θ is well-defined: suppose $g\operatorname{Stab}_G(x) = h\operatorname{Stab}_G(x)$, then $h^{-1}g \in \operatorname{Stab}_G(x)$, so $h^{-1}g(x) = x$, so g(x) = h(x), i.e. $\theta(g\operatorname{Stab}_G(x)) = \theta(h\operatorname{Stab}_G(x))$.

Show that θ is injective: suppose $\theta(g\operatorname{Stab}_G(x)) = \theta(h\operatorname{Stab}_G(x))$, then g(x) = h(x), so $h^{-1}g(x) = x$, thus $h^{-1}g \in \operatorname{Stab}_G(x)$, so $g\operatorname{Stab}_G(x) = h\operatorname{Stab}_G(x)$.

Show that θ is onto: if $g(x) \in \operatorname{Orb}_G(x)$ then $\theta(g\operatorname{Stab}_G(x)) = g(x)$.

Thus θ is a well-defined bijection, so the two sets have equal size.

Theorem (Cauchy's Theorem). Let G be a finite group and p a prime, with p dividing |G|. Then there exists an element in G of order p.

Proof. Let $X = \{(x_1, x_2, \dots, x_p) : x_i \in G, x_1x_2 \dots x_p = e\}$ (i.e. p-tuples of elements of G such that their product is the identity) - the first p-1 elements in the tuple can be freely chosen, then the last is uniquely determined as the inverse of the product of the first p-1 elements - thus $|X| = |G|^{p-1}$. Also, let $H = \langle h : h^p = e \rangle \cong C_p$.

Consider the group action $\rho: H \times X \to X: (h^i, x) \mapsto \rho(h^i, x) = (x_{1+i}, x_{2+i}, \dots, x_{p+i})$ where the suffices are modulo p (i.e. cyclic permutations of the p-tuples). Show that this is a group action:

 $x_{1+i}x_{2+i}\dots x_{p+i} = (x_1\dots x_i)^{-1}(x_1\dots x_p)(x_1\dots x_i) = (x_1\dots x_i)^{-1}e(x_1\dots x_i) = e$ so $\rho(h^i,x)\in X$ (or note that $ab=e\Longrightarrow ba=e$ so cyclic permutations of an element in X give another element in X).

$$h^{i+j}(x_1, \dots, x_p) = (x_{1+i+j}, \dots, x_{p+i+j}) = h^i(h^j(x_1, \dots, x_p)).$$

$$e(x_1, \dots, x_p) = h^p(x_1, \dots, x_p) = (x_1, \dots, x_p).$$

Let $x = (x_1, ..., x_p) \in X$. From the Orbit-Stabiliser theorem, $|\operatorname{Orb}_H(x)||\operatorname{Stab}_H(x)| = |H| = p$. Therefore $|\operatorname{Orb}_H(x)| = 1$ or p, since p is prime. The former (=1) happens only if the x_i are all equal.

Since distinct orbits partition X, the sum of all the distinct orbits is |X|. Note that $|\operatorname{Orb}_H((e,e,\ldots,e))|=1$, so for |X| to be divisible by p, there must be at least p-1 other elements with orbits of size 1. Thus there exists $\bar{x}=(x,\ldots,x)$ such that $|\operatorname{Orb}_H(\bar{x})|=1$ i.e. $x^p=e$.