SUB-CYCLOTOMICS

HAO CHEN, KRISTIN LAUTER AND KATE STANGE

1. Introduction

The fields considered in this section are subfields of cyclotomic fields $\mathbb{Q}(\zeta_m)$, where we assume m is odd and squarefree. The Galois group $Gal(\mathbb{Q}(\zeta_m)/\mathbb{Q})$ is canonically isomorphic to $(\mathbb{Z}/m\mathbb{Z})^*$.

Notation: for each subgroup H of $G = (\mathbb{Z}/m\mathbb{Z})^*$, we use $K_{m,H}$ to denote the fixed field

$$K_{m,H} := \mathbb{Q}(\zeta_m)^H$$
.

The extension $K_{m,H}/\mathbb{Q}$ is Galois of degree $n = \frac{\varphi(m)}{|H|}$; a prime q splits completely in $K_{m,H}$ if and only if $q \pmod{m} \in H$. In general, the degree of a prime q in $K_{m,H}$ is equal to the order of [q] in the quotient group G/H.

We search for vulnerable instances among fields of form $K_{m,H}$. The searching is done by generating actual RLWE samples from the instance and run χ^2 attack (Algorithm) on these samples. Success of the attack would indicate vulnerability.

The field searching requires sampling efficiently from a discete Gaussian $D_{\Lambda,\sigma}$. Hence one needs to compute an integral basis for K and the embedding matrix A_v , which is time-consuming for general fields. Luckily, every field of form $K_{m,H}$ always possess a normal integral basis}, which takes a simple form. In addition, its embedding matrix is easy to compute.

Let $K = K_{m,H}$ and let C denote a set of coset representatives of the group G/H.

Definition 1.1. For each $i \in C$, define

$$b_i = \sum_{h \in H} \zeta_m^{hi}.$$

Proposition 1.2. Suppose $m \geq 1$ is odd and squarefree. Then the elements $(b_i)_{i \in C}$ form a \mathbb{Z} -basis for $K_{m,H}$.

Proof. Application of Hilbert-Speiser theorem.

To work with real matrices, following [DD], we define a matrix T

Definition 1.3.

Let n, and let $\sigma_1, \dots, \sigma_n$ be the embeddings of K into the field of complex numbers. Assume that the σ_i are ordered such that if σ_i is a complex embedding, then $\sigma_{i+n/2} = \bar{\sigma_i}$.

Definition 1.4. For any sequence $\mathbf{a} = (a_1, \dots, a_n)$ of n elements in K, define the canonical embedding matrix of \mathbf{a} to be

$$A_{\mathbf{a}}^0 = (\sigma_i(a_j))_{i,j}.$$

Define the real embedding matrix of a to be

$$A_{\mathbf{a}} = \begin{cases} T^* A_{\mathbf{a}}^0 & \text{if } K \text{ is totally complex} \\ A_{\mathbf{a}}^0 & \text{otherwise} \end{cases}$$

Note that the entries of $A_{\mathbf{a}}$ are always real numbers. In particular, if \mathbf{a} consists of a \mathbb{Z} -basis of \mathcal{O}_K , then we could use the columns of $A_{\mathbf{a}}$ as the basis for our sampling purposes.

since by spherical symmetry and the property of the normal integral basis, the error distribution $D \pmod{\mathfrak{q}}$ is independent of the choice of \mathfrak{q} .

1

Table 2.1. Vulnerable sub-cyclotomic RLWE instances

2. Examples

In table, we list some vulnerable instance we found. The columns are as follows. Note that we ommitted the prime ideal $\mathfrak q$ due to Lemma . $s=\sqrt{2\pi}\sigma$ denotes the width of the error, and t denotes the running time in seconds.

3. Proofs

3.1. **Scaling.** The above analysis needs to be strengthened to take scaling into account. If $a \in \mathbb{Z}$ is coprime to q, then the set of values of ae and e will have the same size, but this scaling multiplies the norm of the vector $||\bar{b}||_2$ by a. To deal with this issue, we considered scaling the vector $\bar{\mathbf{b}}$ by every $a \in \mathbb{F}_q^*$ and find the one that yields the smallest 2-norm:

$$\sigma_{\pi,opt} = \min\{||a\bar{\mathbf{b}}||_2 : a \in \mathbb{F}_q^*\}$$

and

$$r_{opt} = \frac{2\sigma_{\pi,opt}}{q}.$$

For examples, see these files: