Intelligente Sehsysteme - Übungsblatt 1

Jan Konrad (2533619)

Aufgabe 2

Aufgabe 3

Aufgabe 4

	I	0	1	2	3	4	5	6	7
1.	$h(\mathbf{I_1})$	0	3	5	2	3	2	1	0
	$h(\mathbf{I_2})$	1	7	4	0	0	0	3	1

	Ι	0	1	2	3	4	5	6	7
2.	$p(\mathbf{I_1})$	0	0.1875	0.3125	0.125	0.1875	0.125	0.0625	0
	$p(\mathbf{I_2})$	0.0625	0.4375	0.25	0	0	0	0.1875	0.0625

3. $m_{\mathbf{I_1}}=2.9375$, $m_{\mathbf{I_2}}=2.5$, $q_{\mathbf{I_1}}\approx 1.5194$, $q_{\mathbf{I_2}}\approx 2.2361$

4. Aus $m_{\mathbf{I_1}} \approx m_{\mathbf{I_2}}$ lässt sich ableiten, dass im Mittel beide Bilder ungefähr gleich hell sind, wobei $m_{\mathbf{I_2}}$ etwas dunkler ist. Aus $q_{\mathbf{I_2}} > q_{\mathbf{I_1}}$ folgt, dass der Kontrast von $\mathbf{I_2}$ höher als der Kontrast von $\mathbf{I_1}$ ist. Bei der Auswertung muss beachtet werden, dass das Bild $\mathbf{I_2}$ bimodal verteilt ist. D.h. es gibt zwei klar getrennte Bereiche. Die örtliche Anordnung der Intensitätswerte kann aus den Werten nicht abgeleitet werden.

Aufgabe 5

1.
$$\frac{\mathbf{I} \quad 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}{h(\mathbf{I}) \quad 0 \ 0 \ 2 \ 2 \ 2 \ 2 \ 0 \ 0}$$

3. Bei der linearen Histogrammspreizung $T(\mathbf{I})$ wird das Histogramm zuerst nach links verschoben, s.d. $\mathbf{I}_{minGiven} = \mathbf{I}_{min}$ gilt. Anschließend wird das Historgram skaliert, s.d. $\mathbf{I}_{maxGiven} = \mathbf{I}_{max}$ gilt. Für $\mathbf{I}_{min} = 0$ gilt für $T(\mathbf{I})$ demnach Folgendes:

$$c_1 = -\mathbf{I}_{minGiven} = -2$$

$$c_2 = \frac{\mathbf{I}_{max}}{\mathbf{I}_{maxGiven} - \mathbf{I}_{minGiven}} = \frac{7}{5-2} = \frac{7}{3}$$

$$T(\mathbf{I}) = (\mathbf{I} + c_1) \cdot c_2$$

$$= (\mathbf{I} - 2) \cdot \frac{7}{3}$$

Da es sich hier um ein diskretes Histogramm handelt, wird $T(\mathbf{I})$ gerundet.

4.
$$\mathbf{I'} = T(\mathbf{I}) = \begin{bmatrix} 0 & 2 & 2 & 7 \\ 0 & 5 & 5 & 7 \end{bmatrix}$$

Aufgabe 6

1.
$$\mathbf{I}' = T_{\gamma=0.5}(\mathbf{I}) = \frac{0336}{0446}$$

2.
$$\mathbf{I}' = T_{\gamma=2}(\mathbf{I}) = \frac{\boxed{0003}}{\boxed{0113}}$$

3. Für $\gamma>1$ werden hohe Intensitätswerte gespreizt und niedrige Intensitätswerte gestaucht. Das Gegenteil gilt für $\gamma<1$. Das Bild I ist ein unterbelichtetes Bild (Mehrheit der Intensitätswerte ist niedrig), daher ist eine Korrektur mit $\gamma=0.5$ sinnvoller. Bei dieser Korrektur wird mit $\{0,\ldots,6\}$ fast das gesamte Spektrum genutzt. Bei einer Korrektur mit $\gamma=2$ wird das genutze Spektrum dagegen sogar kleiner.

Aufgabe 7

1.
$$\frac{\mathbf{I} \quad 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}{h(\mathbf{I}) \ 1 \ 2 \ 1 \ 0 \ 0 \ 2 \ 2}$$

2.	Ι	0	1	2	3	4	5	6		7
	$p(\mathbf{I})$	0.125	0.25	0.125	0	0	0	0.25	0.	25

3.
$$| \mathbf{I} | 0 1 2 3 4 5 6 7 s(\mathbf{I}) 0.125 0.375 0.5 0.5 0.5 0.5 0.75 1$$

4.
$$\mathbf{I}' = T_H(\mathbf{I}) = \begin{bmatrix} 1 & 3 & 3 & 7 \\ 4 & 6 & 6 & 7 \end{bmatrix}$$