

Enseignes et afficheurs à LED

Les timers

Les timers

Dr. Yves Tiecoura

Les timers

- Gestion du temps
- Timers, prédivision, logique de gestion et registres de comparaison
- Mise en œuvre : exemple du MSP430
- Interruptions des timers

Gestion précise du temps

• Gérer le temps en jouant avec le temps d'exécution des instructions est compliqué

Gestion précise du temps

- Gérer le temps en jouant avec le temps d'exécution des instructions est compliqué
- Des circuits spécialisés vont nous aider

Gestion précise du temps

- Gérer le temps en jouant avec le temps d'exécution des instructions est compliqué
- Des circuits spécialisés vont nous aider
- Par exemple pour générer un PWM :

Compteur binaire

• La base d'un timer est un compteur binaire :

$$\begin{vmatrix}
Q^{+} = D \\
D = \overline{Q}
\end{vmatrix} => Q^{+} = \overline{Q}$$

Compteur binaire

• La base d'un timer est un compteur binaire :

Compteur binaire

• La base d'un timer est un compteur binaire :

Les timers

Prédivision

Logique de gestion

Registres de comparaison

Les timers de microcontrôleurs

- Intel 8253 comme complément aux microprocesseurs
- Le timer très simple des premiers PIC
- Les AVR et leurs timers 8 et 16 bits
- Des timers 32 bits très complexes sur les ARM
- Timers 16 bits du MSP430

Le timer A du MSP430

Figure 12-1. Timer_A Block Diagram

Le timer A du MSP430

Le registre de contrôle

12.3.1 TACTL, Timer_A Control Register

15	14	13	12	11	10	9	8	
	Unused					TASSELx		
rw-(0)	rw-(0)	rw-(0) rw-(0) rw-(0		rw-(0)	rw-(0)	rw-(0)	rw-(0)	
7	6	5	4	3	2	1	0	
ID:	(MCx	Unused	TACLR	TAIE	TAIFG	
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	
used	Bits 15-10	Unused						
SSELx	Bits 9-8	Timer_	A clock source se					
		00	TACLK					
		01	ACLK					
		10	SMCLK					
		11	INCLK (INCLK device-specific		cific and is ofte	en assigned to	the inverted	
	Bits 7-6	Input divider. These bits select the dividence			rider for the inp	out clock.		
		00	/1					
		01	/2					
		10	/4					
		11	/8					

Le registre de contrôle

12.3.1 TACTL, Timer_A Control Register

15	14	13	12	11	10	9	8	
		Unused				TASSELx		
rw-(0)	rw-(0)	rw-(0) rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	
7	6	5	4	3	2	1	0	
IDx		М	Cx	Unused	TACLR	TAIE	TAIFG	
w-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	
	Bits 5-4	Mode control. Setting MCx = 00h when Timer_A is not in use conserves power. O Stop mode: the timer is halted. Up mode: the timer counts up to TACCR0. Continuous mode: the timer counts up to 0FFFFh. Up/down mode: the timer counts up to TACCR0 then down to 0000h.						
	Bit 3	11 Up/down mode: the timer counts up to TACCR0 then down to 0000h. Unused						
R	Bit 2	Timer_A clear. Setting this bit resets TAR, the clock divider, and the count direction. The TACLF automatically reset and is always read as zero.						
	Bit 1	0 Inte	errupt enable. errupt disabled errupt enabled		s the TAIFG in	terrupt reques	t.	
	Bit 0	Timer_A interrupt flag No interrupt pending						

Interrupt pending


```
1 int main() {
   WDTCTL = WDTPW + WDTHOLD; // Watchdog hors service
   BCSCTL1 = CALBC1 1MHZ;
  DCOCTL = CALDCO 1MHZ; // Fréquence CPU
   P1DIR |= (1<<0); // P1.0 en sortie pour la LED
   TACTL0 = TASSEL 2 + ID 3 + MC 2;
  while (1) {
              // Boucle infinie
    if (TACTL0 & TAIFG) {
      TACTLO &= ~TAIFG;
      P10UT ^= (1<<0); // Inversion LED
```

Les registres de comparaison

Les registres de comparaison

Timer_A Registers www.ti.com

12.3.4 TACCTLx, Capture/Compare Control Register

15	14	13	12	11	10	9	8
CMx		CCISx		scs	SCCI	Unused	CAP
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	r	r0	rw-(0)
7	6	5	4	3	2	1	0
	OUTMODx		CCIE	CCI	OUT	cov	CCIFG
rw-(0)	rw-(0)	rw-(0)	rw-(0)	r	rw-(0)	rw-(0)	rw-(0)

CCIE	Bit 4	Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG						
		0 Interrupt disabled						
		1 Interrupt enabled						
CCI	Bit 3	Capture/compare input. The selected input signal can be read by this bit.						
OUT	Bit 2	Output. For output mode 0, this bit directly controls the state of the output.						
		0 Output low						
		1 Output high						
cov	Bit 1	Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.						
		No capture overflow occurred						
		1 Capture overflow occurred						
CCIFG	Bit 0	Capture/compare interrupt flag						
		0 No interrupt pending						
		1 Interrupt pending						


```
14 int main() {
15
    TACCR0 = 62500; // 62500 * 8 us = 500 ms
    while (1) {  // Boucle infinie
18
      if (TACCTL0 & CCIFG) {
19
20
        TACCTLO &= ~CCIFG;
        TACCR0 += 62500;
21
22
23
24 }
        P10UT ^= (1<<0); // Inversion LED
```


• Les timers deviennent très intéressant lorsqu'ils sont associés à des interruptions

- Les timers deviennent très intéressant lorsqu'ils sont associés à des interruptions
- Une interruption peur être générée au dépassement de capacité du compteur

- Les timers deviennent très intéressant lorsqu'ils sont associés à des interruptions
- Une interruption peur être générée au dépassement de capacité du compteur
- Des interruptions peuvent se produire par les registres de comparaison

- Les timers deviennent très intéressant lorsqu'ils sont associés à des interruptions
- Une interruption peur être générée au dépassement de capacité du compteur
- Des interruptions peuvent se produire par les registres de comparaison
- Bien d'autres modes sont disponibles


```
14 int main() {
16 TACTL |= TAIE; // Interruption de l'overflow 
17 BIS_SR (GIE); // Autorisation générale des i
   _BIS_SR (GIE); // Autorisation générale des interruptions
while (1) { // Boucle infinie vide }
20 }
21 // Timer_A1 Interrupt Vector (TAIV) handler
22 #pragma vector=TIMERO_A1_VECTOR
interrupt void Timer A1 (void) {
    switch (TAIV) { // discrimination des sources d'interruption
252627
    case 2: // CCR1 : not used
      break;
    case 4: // CCR2 : not used
28
      break;
29
    case 10: // Overflow
30
      P10UT ^= (1<<0); // Inversion LED
313233 }
      break;
```



```
14 int main() {
15
TACCTLO |= CCIE; // Interruption de la comparaison
   _BIS_SR (GIE); // Autorisation générale des interruptions
18 while (1) { // Boucle infinie vide
19
20 }
21 #pragma vector=TIMER0 A0 VECTOR
interrupt void Timer A0 (void) {
23 CCR0 += 62500;
24 P10UT ^= (1<<0); // Inversion LED
25 }
```



```
14 int main() {
15
    TACTL |= TAIE; // Interruption de l'overflow
    TACCTLO |= CCIE; // Interruption de la comparaison
    _BIS_SR (GIE); // Autorisation générale des interruptions
19
    while (1) {      // Boucle infinie vide
20
21 }
22 #pragma vector=TIMERO_A1_VECTOR
23 __interrupt void Timer_A1 (void) {
    switch (TAIV) { // discrimination des sources d'interruption
25
    case 2: // CCR1 : not used
26
     break;
27
                      // CCR2 : not used
   case 4:
28
    break;
2930
    case 10: // Overflow
    P10UT |= (1<<0); // Activer le signal au début du cycle
31
32
      break;
33 }
34 #pragma vector=TIMERO_AO_VECTOR
35 __interrupt void Timer_A0 (void) {
    P10UT &=~(1<<0); // Désactiver le signal au moment donné
37 }
                     // par le registre de comparaison
```

Les timers

- Gestion du temps
- Timers, prédivision, logique de gestion et registres de comparaison
- Mise en œuvre : exemple du MSP430
- Interruptions des timers