insideout_loop_SL bookkeeping

We consider the loop Us=[0,0,...]
The α_k denote the Internal indices.

Define:

D Right transfer-matrix

 $(R_k)_{\alpha_0 \alpha_k} = (T_0)_{\alpha_0 \alpha_1} \cdot (T_1)_{\alpha_1 \alpha_2} \cdot (T_{k-1})_{\alpha_1 \alpha_2} \cdot (T_{k-1})_{\alpha_1 \alpha_2} \cdot (T_{k-1})_{\alpha_1 \alpha_2} \cdot (T_{k-1})_{\alpha_1 \alpha_2} \cdot (T_{k-1})_{\alpha_2 \alpha_3}$

2 Left transfer-matrix

(Lt) dxo = (Tx) dxdx11 (Txx1) dxx1, dxx2 ... (Teldero

Together we have $(env_k)_{\alpha_{k+1},\alpha_{k}} = \sum_{\alpha_{0}} (L_{k+1})_{\alpha_{k+1},\alpha_{0}} \cdot (R_{k})_{\alpha_{0},\alpha_{k}}$

Sanity check:
$$(L_0)_{\alpha\beta} = (T_0 \cdot ... \cdot T_{e-1})_{\alpha\beta}$$

 $(R_{e})_{\alpha\beta} = (T_0 \cdot ... \cdot T_{e-1})_{\alpha\beta} = (L_0)_{\beta\alpha}$