Please check the examination deta	ils bel	ow before ente	ring your candidate information
Candidate surname			Other names
Pearson Edexcel International GCSE	Cen	tre Number	Candidate Number
Time 2 hours		Paper reference	4PM1/02
Further Pure Mare Paper 2	at	hema	tics
Calculators may be used.	_		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

P66025A
©2021 Pearson Education Ltd.
1/1/1/1/1/

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Series

Arithmetic series

Sum to *n* terms,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 Find the set of values for x for which

(a)
$$8x - 7 < 5x + 5$$

(2)

(b)
$$2x^2 - 5x - 3 > 0$$

(3)

(c) **both**
$$8x - 7 < 5x + 5$$
 and $2x^2 - 5x - 3 > 0$

(1)

(Total for Question 1 is 6 marks)

$$f(x) = 2 + \frac{4}{5}x - \frac{1}{25}x^2$$

Given that f(x) can be expressed in the form $A - B(x + C)^2$ where A, B and C are constants,

(a) find the value of A, the value of B and the value of C.

(4)

- (b) Hence write down
 - (i) the maximum value of f(x),
 - (ii) the value of x for which this maximum occurs.

(2)

Question 2 continued	
	(Total for Question 2 is 6 marks)

Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows a sector OPQ of a circle with centre O.

The radius of the circle is 18 cm and the angle POQ is $\frac{2\pi}{3}$ radians.

(a) Find the length of the arc PQ, giving your answer as a multiple of π

(2)

Figure 2 below shows the sector *OPQ* and the kite *OPTQ*.

Diagram **NOT** accurately drawn

Figure 2

PT is the tangent to the circle at P and QT is the tangent at Q, such that angle $PTQ = \alpha$ radians.

(b) (i) Find α in terms of π

(1)

- (ii) Calculate, to 3 significant figures, the area of the region, shown shaded in Figure 2, which is bounded by the arc *PQ* and the tangents *PT* and *QT*.
- **(6)**

	Question 3 continued
AREA	
Z Va	
THIS	
NOT WRITE IN	
Ö	
0	
AREA	
S	
Z	
WRITEIN	
2	
0	
W.	
N N	
<u>Z</u>	
<u> </u>	
OO NOT WRITE IN THIS AREA	
0	

Question 3 continued	

4	The point A has coordinates $(-4, -10)$ and the point B has coordinates $(3, 11)$. The line l passes through A and B .	
	(a) Find an equation of l .	(2)
	The point P lies on l such that $AP:PB=3:4$. ,
	(b) Find the coordinates of <i>P</i> .	(2)
	The point Q with coordinates (m, n) , where $m < 0$, lies on the line through P that is perpendicular to l .	(2)
	Given that the length of PQ is $\sqrt{10}$	
	(c) find the coordinates of Q .	(6)
	The point R has coordinates $(-11, -21)$	
	(d) Show that	
	(i) AB and RQ are equal in length,	
	(ii) AB and RQ are parallel.	(4)
	(e) Find the area of the quadrilateral <i>ABQR</i> .	(-)
		(2)

Question	4 continued			
••••••			 	

Question 4 continued	

Question 4 continued
(Total for Question 4 is 16 marks)

5	The <i>n</i> th term of a geometric series with common ratio <i>r</i> is u_n Given that $u_2 + u_4 = 212.5$ and that $u_3 + u_4 = 62.5$	
	(a) find the two possible values of r .	(5)
	Given that the series is convergent with sum to infinity S ,	
	(b) find the exact value of <i>S</i> .	(2)

6	$f(x) = x^3 + (p+1)x^2 - 10x + q$	
	where p and q are integers.	
	Given that $(x - 3)$ is a factor of $f(x)$	
	(a) show that $9p + q + 6 = 0$	
		(3)
	Given that $(x + p)$, where $p > 0$, is also a factor of $f(x)$	
	(b) show that $p^2 + 10p + q = 0$	
		(3)
	(c) Hence find the value of p and the value of q .	(5)
	(d) Using your values of p and q , factorise $f(x)$ completely.	
	(d) Using your values of p and q , factorise $I(x)$ completely.	(2)

Question 6 continued	

7 (a) Complete the table of values for $y = 3^{\frac{3}{4}} + 2$

Give your answers to 2 decimal places where appropriate.

(2)

x	0	1	2	3	4	5
у	3	3.32				5.95

(b) On the grid opposite, draw the graph of

$$y = 3^{\frac{x}{4}} + 2 \qquad \text{for } 0 \leqslant x \leqslant 5$$

(2)

(c) By drawing a suitable straight line on the grid, obtain an estimate, to one decimal place, of the root of the equation

$$\log_{3}(6-2x)^{4}-x=0$$

in the interval $0 \le x \le 5$

(5)

Question 7 continued

8	Use an algebraic method to solve the simultaneous equations

$$\log_4 a + 3\log_8 b = \frac{5}{2}$$

$$2^a = \frac{16^4}{4^{b^2}}$$

(8)		
1 % 1	1	0
	- (×ι

Diagram **NOT** accurately drawn

Figure 3

Figure 3 shows a metal solid *S*.

The solid is a right triangular prism.

The cross section of S is an equilateral triangle with sides of length x cm. The length of S is 4x cm.

The prism is being heated so that the cross sectional area is increasing at a constant rate of $0.03 \, \text{cm}^2/\text{s}$.

(a) Find, giving your answer to 3 significant figures, $\frac{dx}{dt}$ when x = 2

(5)

(b) Find the rate of increase, in cm³/s, of the volume of S when x = 2

	-4	ς.		ħ	
	. 7	9		в	
U	0		J	,	

Que	estion 9 continued

Question 9 continued	
	,

Question 9 continued	
(Total for Question 9 is 8 marks)	_

10 (a) Solve the equation

$$\tan x^{\circ} = -3$$
 for $0 \le x < 360$

Give your solutions to the nearest whole number.

(3)

Given that

$$7\sin^2\theta + \sin\theta\cos\theta = 6$$

(b) show that

$$\tan^2\theta + \tan\theta - 6 = 0$$

(3)

(c) Hence solve the equation

$$7\sin^2 y^\circ + \sin y^\circ \cos y^\circ = 6 \qquad \text{for } 0 \leqslant y < 360$$

Give your solutions to the nearest whole number.

(4)

Question 10 continued				

Question 10 continued			
(Total for Question 10 is 10 marks)			

Figure 4

The region R, shown shaded in Figure 4, is bounded by the curve with equation $y = e^x$, the curve with equation $y = 4e^{-x}$, the straight line with equation x = a, the x-axis and the y-axis.

When the region R is rotated through 360° about the x-axis, the volume of the solid generated is

$$k - 8\pi e^{-4}$$

where k is a constant.

Using algebraic integration, find a possible value of a and the exact corresponding value of k.

OI K.	(8)

	Question 11 continued
SAREA	
EINTE	
NOT WRITE IN	
DON	
A	
THIS AREA	
WRITEINT	
WOT W	
OO	
REA	
O NOT WRITE IN THIS AREA	
WRITEI	
DO NOT	

Question 11 continued				
	(Total for Question 11 is 8 marks)			
	TOTAL FOR PAPER IS 100 MARKS			