

DESCRIPTION

Cmedia CM6631 is the world's first USB2.0 true high-speed audio processor that can support the latest USB Audio Device Class Definition V2.0 and high-definition audio processing capability up to 192KHz/32bit. CM6631 provides the industrial standard I2S and HDA audio interface and also integrates 192KHz/24bit S/PDIF transmitter/receiver and MIDI I/O device. It's suitable for versatile, high-profile, typical 2-channel I/O audio applications. Furthermore, CM6631 has an embedded 8051 microprocessor that can enhance the best flexibility and functionality with external upgradeable F/W codes. CM6631 would be the most high-fidelity and powerful audio core for high-value USB2.0 audio products.

FEATURES

- USB Spec. Rev.2.0 high-speed/full-speed mode compatible
- Latest USB Audio Device Class Definition Release v.2.0/1.0 compatible
- USB Human Interface Device (HID) Class
 Definition Release 1.1 compliant
- Supports USB suspend/resume/reset functions
- Supports control, interrupt, bulk, and isochronous data transfers
- 2 pairs I2S or Left-Justified serial audio output interface
- 2 pairs I2S or Left-Justified serial audio input interface
- Built-in 192K/96K/48K/44.1KHz and 16/24-bit S/PDIF transmitter
- Integrated 192K/96K/48K/44.1K and 16/24-bit S/PDIF receiver
- Supports S/PDIF IN-to-OUT loop-back path for signal transforming between TOSLINK and RCA

BLOCK DIAGRAM

Release Note

Revision	Date	Description	
0.1	2008/09/22	First release of preliminary technical information	
0.2	2009/02/19	Supports HDA interface	
0.3	2009/02/20	Modify GPIO name	
0.4	2009/04/16	-Modify the feature description, applications, block diagram	
		-Modify pin 81 from GND to XPEEA15	
0.5	2009/05/20	-Modify the pin description	
0.6	2009/07/24	Update HW sample-rate and Audio Class configuration features.	
		Remove some SW features.	
0.7	2009/10/08	Windows 2000 can't support audio class 1.0 high speed	
0.8	2010/03/22	Re-organize datasheet structure	

TABLE OF CONTENTS

Rel	ease 1	Note	2
1.	Desc	ription and Overview	4
2.	Feat	ures	4
3.	Appl	ications	7
4.	Blocl	k Diagram	8
5.		ssignment	
	5.1	Pin-Out Diagram	9
	5.2	Pin Description	10
6.	Elect	trical Characteristics	14
	6.1	Maximum Ratings	14
	6.2	Recommended Operation Conditions	14
	6.3	Power Consumption	14
	6.4	DC Characteristics	14
7.	Pack	age Dimension	15

1. Description and Overview

Cmedia CM6631 is the world's first USB2.0 true high-speed audio processor that can support the latest USB Audio Device Class Definition V2.0 and high-definition audio processing capability up to 192KHz/32bit. CM6631 provides the industrial standard I2S and HDA audio interface and also integrates 192KHz/24bit S/PDIF transmitter/receiver and MIDI I/O device. It's suitable for versatile, high-profile, typical 2-channel I/O audio applications. Furthermore, CM6631 has an embedded 8051 microprocessor that can enhance the best flexibility and functionality with external upgradeable F/W codes. CM6631 would be the most high-fidelity and powerful audio core for high-value USB2.0 audio products.

2. Features

USB Compliance

- USB Spec. Rev.2.0 high-speed/full-speed mode compatible
- Latest USB Audio Device Class Definition Release v.2.0/1.0 compatible
- USB Human Interface Device (HID) Class Definition Release 1.1 compliant
- Supports USB suspend/resume/reset functions
- Supports control, interrupt, bulk, and isochronous data transfers

Audio Engine

- Max. 3 Independent Playback Streams:
 - Default Sample Rates: 44.1K/48K/96K/192KHz (192KHz are available only in USB Audio Class 2.0/High-speed mode)
 - Supported Bit Length: 16/24/32 bit
 - PDMA#A and C engines support 2-channel data to I2S/HDA output
 - ➤ PDMA#B supports S/PDIF output
- Max. 3 Independent Capture Streams:
 - ▶ Default Sample Rates: 44.1K/48K/96K/192KHz (192KHz are available only in USB Audio Class
 - 2.0/High-speed mode)
 - Supported Bit Length: 16/24/32 bit
 - RDMA#A and B support 2-channel data from I2S/HDA input
 - RDMA#C supports S/PDIF input (192KHz is supported only with Crystal and PLL clock source)
- Digital mixing/routing engine to mix input streams to output streams

Audio I/O

- 2 pairs I2S or Left-Justified serial audio output interface
- 2 pairs I2S or Left-Justified serial audio input interface

USB 2.0 High-Speed True HD Audio Processor

- Built-in 192K/96K/48K/44.1KHz and 16/24-bit S/PDIF transmitter
- Integrated 192K/96K/48K/44.1K and 16/24-bit S/PDIF receiver
- Supports S/PDIF IN-to-OUT loop-back path for signal transforming between TOSLINK and RCA connections

Integrated 8051 Micro-processor

- Embedded 8051 micro-processor to handle the comment/protocol transactions
- Connects to an external parallel Flash/EEPROM memory (Max. 64KB, 70ns access time is required) for firmware codes
- HID interrupts can be implemented via firmware codes
- Provides maximum HW configuration flexibility with firmware code upgrade
- VID/PID/Product String can be customized via firmware code programming

Control Interface

- Master I2C control interface for external audio devices or EEPROM access
- Slave I2C control interface and interrupt pin for external MCU/device communication
- 9 GPIO pins and 6 GPI pins
- External device power-down control and reset pins

<u>General</u>

- Embedded USB2.0 transceiver (up to 480MB bandwidth)
- Auto detection for high-speed/full-speed
- GPIO pin for USB Audio Class 2.0 and 1.0 application mode configuration
- Provides Self-power or Bus-power mode selection pin
- Only single 12MHz crystal input is required (embedded PLL function) or optional oscillator inputs for 49.152M (for x48KHz) and 45.158MHz (for x44.1KHz)
- Single 3.3V power supply (embedded 3.3V to 2.5V regulator for digital core)
- 3.3V digital I/O pads with 5V tolerance
- Industrial standard LQFP-100 package (16x16mm)

Optional Value-added Software Features:

- Supports USB Audio Class 2.0 and high-speed mode on Windows® XP, Vista, and Windows® 7, Mac OS X 10.5.7 (or later) with Cmedia vendor drivers
- USB Audio class 1.0 with full-speed/high-speed modes compatible with Windows® XP, Vista, 7 UAA driver, Mac OS X and Linux embedded USB audio drivers
- For Windows, Cmedia drivers provide the following Key Features:
 - Playback feedback endpoints to control the data transmission accuracy and to maximize the audio quality

- Supports ASIO2.0 driver
- FlexBassTM- Advanced Bass Management with programmable crossover frequency and supports large (full-range) or small (high-frequency w/o LFE) speakers
- > 10-band Equalizer with 12 preset modes
- > 27 global environment effects
- > Supports most industrial standards of PC 3D sound for gaming, including DirectSound™ 3D SW & HW and EAX™ 1.0&2.0 on Windows XP

Cmedia

USB 2.0 High-Speed True HD Audio Processor

3. Applications

- USB2.0 True HD audio DAC
- USB2.0 Headphone Amplifier
- Professional PC musician applications (recording interface, console, electrical guitar, etc.)
- Consumer stereo systems with embedded USB audio (Boom Box, portable CD/FM/MP3 players, Stereo Amplifier, etc.)
- ExpressCard compatible USB2.0 audio adaptor
- Wired or wireless USB hub with audio functions
- High-Fidelity USB2.0 wireless Headset
- High-Fidelity USB2.0 2CH headphone
- High-quality USB2.0 audio/gaming headset
- USB2.0 VideoCam or Video Capture Box with mic/audio features

4. Block Diagram

CM6631 Functional Block Diagram

5. Pin Assignment

5.1 Pin-Out Diagram

5.2 Pin Description

Pin #	Symbol	I/O	Description			
Clock						
1	XSCO	AO	12MHz crystal oscillator output			
100	XSCI	Al	12MHz crystal oscillator input			
20	XD6	DIO	49.152Mhz oscillator input(for 48, 96,192KHz)			
21	XD7	DIO	45.158Mhz oscillator input(for 44.1KHz)			
			USB2.0 BUS Interface			
5	USBDM	AIO	USB 2.0 data negative (USB D- signal)			
6	USBDP	AIO	USB 2.0 data positive (USB D+ signal)			
		•	Power/Ground			
2	VCCHSRT	Al	USB PHY analog power supply pin (3.3V)			
3	GNDHSRT	Al	USB PHY analog ground			
7	VCCA_U20	Al	USB PHY analog power supply pin (3.3V)			
8	GNDA_U20	А	USB PHY analog ground			
9	VCC3V	DI	Digital power supply pin (3.3V)			
10	VCC	DO	Digital power filter pin (2.5V), connecting external filter capacitors			
11	GND	D	Digital Ground			
18	GND	D	Digital Ground			
29	VCC3V	DI	Digital power supply pin (3.3V)			
39	GND	D	Digital Ground			
53	VCC3V	DI	Digital power supply pin (3.3V)			
61	GND	D	Digital Ground			
73	VCC3V	DI	Digital power supply pin (3.3V)			
97	VCC3V	DI	Digital power supply pin (3.3V)			
		2-chanr	nel I2S ADC_1 Interface (RDMA_A)			
30	XMADC_SDIN0	DI	I2S serial data input for channel 0, 1 Programmable 3.3V input buffer, Schmitt trigger, pull-down			
31	XMADC_SCLK	DIO	I2S bit clock Programmable 3.3V bidirectional buffer, pull-down			
32	XMADC_MCLK	DO	I2S master clock Programmable 3.3V output buffer			
33	XMADC_LRCK	DIO	I2S left/right clock Programmable 3.3V bidirectional buffer, pull-down			
		2-chanr	nel I2S ADC_2 Interface (RDMA_C)			
34	X2ADC_SDIN	DI	I2S serial data input for channel 0, 1 Programmable 3.3V input buffer, Schmitt trigger, pull-down			
35	X2ADC_SCLK	DIO	I2S bit clock Programmable 3.3V bidirectional buffer, pull-down			

36	X2ADC_LRCK	DIO	I2S left/right clock Programmable 3.3V bidirectional buffer, pull-down				
37	X2ADC_MCLK	DO	I2S master clock Programmable 3.3V output buffer				
	S/PDIF I/O						
38	XSPDIFO_0	DO	S/PDIF transmitter Programmable 3.3V output buffer				
40	XSPDIFI_0	DI	S/PDIF receiver 3.3v input buffer, Schmitt trigger, pull-down				
		Parallel	EEPROM/Flash Memory Interface				
41	XPEE_D0	DIO	Parallel EEPROM/FLASH data in/out 0 Programmable 3.3V bidirectional buffer, pull-down				
42	XPEE_D1	DIO	Parallel EEPROM/FLASH data in/out 1 Programmable 3.3V bidirectional buffer, pull-down				
43	XPEE_D2	DIO	Parallel EEPROM/FLASH data in/out 2 Programmable 3.3V bidirectional buffer, pull-down				
44	XPEE_D3	DIO	Parallel EEPROM/FLASH data in/out 3 Programmable 3.3V bidirectional buffer, pull-down				
45	XPEE_D4	DIO	Parallel EEPROM/FLASH data in/out 4 Programmable 3.3V bidirectional buffer, pull-down				
46	XPEE_D5	DIO	Parallel EEPROM/FLASH data in/out 5 Programmable 3.3V bidirectional buffer, pull-down				
47	XPEE_D6	DIO	Parallel EEPROM/FLASH data in/out 6 Programmable 3.3V bidirectional buffer, pull-down				
48	XPEE_D7	DIO	Parallel EEPROM/FLASH data in/out 7 Programmable 3.3V bidirectional buffer, pull-down				
82	XPEE_CEN	DO	Parallel EEPROM/FLASH chip enable, active low Programmable 3.3V output buffer				
83	XPEE_WRN	DIO	Parallel EEPROM/FLASH write enable, active low Programmable 3.3V bidirectional buffer, pull-down				
84	XPEE_RDN	DIO	Parallel EEPROM/FLASH read enable, active low Programmable 3.3V bidirectional buffer, pull-down				
65	XPEE_A0	DIO	Parallel EEPROM/FLASH address 0 Programmable 3.3V bidirectional buffer, pull-down				
66	XPEE_A1	DIO	Parallel EEPROM/FLASH address 1 Programmable 3.3V bidirectional buffer, pull-down				
67	XPEE_A2	DIO	Parallel EEPROM/FLASH address 2 Programmable 3.3V bidirectional buffer, pull-down				
68	XPEE_A3	DIO	Parallel EEPROM/FLASH address 3 Programmable 3.3V bidirectional buffer, pull-down				
69	XPEE_A4	DIO	Parallel EEPROM/FLASH address 4 Programmable 3.3V bidirectional buffer, pull-down				
70	XPEE_A5	DIO	Parallel EEPROM/FLASH address 5 Programmable 3.3V bidirectional buffer, pull-down				
71	XPEE_A6	DIO	Parallel EEPROM/FLASH address 6 Programmable 3.3V bidirectional buffer, pull-down				
72	XPEE_A7	DIO	Parallel EEPROM/FLASH address 7 Programmable 3.3V bidirectional buffer, pull-down				
74	XPEE_A8	DIO	Parallel EEPROM/FLASH address 8 Programmable 3.3V bidirectional buffer, pull-down				
75	XPEE_A9	DIO	Parallel EEPROM/FLASH address 9 Programmable 3.3V bidirectional buffer, pull-down				
76	XPEE_A10	DIO	Parallel EEPROM/FLASH address 10 Programmable 3.3V bidirectional buffer, pull-down				
77	XPEE_A11	DIO	Parallel EEPROM/FLASH address 11 Programmable 3.3V bidirectional buffer, pull-down				
78	XPEE_A12	DIO	Parallel EEPROM/FLASH address 12 Programmable 3.3V bidirectional buffer, pull-down				
79	XPEE_A13	DIO	Parallel EEPROM/FLASH address 13 Programmable 3.3V bidirectional buffer, pull-down				

80	XPEE_A14	DIO	Parallel EEPROM/FLASH address 14 Programmable 3.3V bidirectional buffer, pull-down			
81	XPEE_A15	DIO	Parallel EEPROM/FLASH address 15 Programmable 3.3V bidirectional buffer, pull-down			
GPI						
12	XGPI_0	DIO	General purpose input 0 Programmable 3.3V input buffer, Schmitt trigger, pull-down			
13	XGPI_1	DIO	General purpose input 1 Programmable 3.3V input buffer, Schmitt trigger, pull-down			
14	XGPI_2	DIO	General purpose input 2 Programmable 3.3V input buffer, Schmitt trigger, pull-down			
15	XGPI_3	DIO	General purpose input 3 Programmable 3.3V input buffer, Schmitt trigger, pull-down			
16	XGPI_4	DIO	General purpose input 4 Programmable 3.3V input buffer, Schmitt trigger, pull-down			
17	XGPI_5	DIO	General purpose input 5 Programmable 3.3V input buffer, Schmitt trigger, pull-down			
			GPIO			
54	XGPIO_1	DIO	General purpose input/output 0 (default output). Programmable 3.3V/5V tolerance bidirectional buffer, pull-down			
49	XGPIO_2	DIO	General purpose input/output 1 (default output). Programmable 3.3V/5V tolerance bidirectional buffer, pull-down			
50	XGPIO_3	DIO	General purpose input/output 2 (default output). Programmable 3.3V/5V tolerance bidirectional buffer, pull-down			
51	XGPIO_4	DIO	General purpose input/output 3 (default input). Programmable 3.3V/5V tolerance bidirectional buffer, pull-down			
52	XGPIO_5	DIO	General purpose input/output 4 (default input). Programmable 3.3V/5V tolerance bidirectional buffer, pull-down			
58	XGPIO_6	DIO	General purpose input/output 5 (default input). Programmable 3.3V/5V tolerance bidirectional buffer, pull-down			
59	XGPIO_7	DIO	General purpose input/output 6 (default input). Programmable 3.3V/5V tolerance bidirectional buffer, pull-down			
60	XGPIO_8	DIO	General purpose input/output 6 (default input). Programmable 3.3V/5V tolerance bidirectional buffer, pull-down			
62	XGPIO_9	DIO	General purpose input/output 6 (default input). Programmable 3.3V/5V tolerance bidirectional buffer, pull-down			
			MIDI Interface			
22	XD0	DIO	MIDI RXD, Serial input port Programmable 3.3V/5V tolerance bidirectional buffer, pull-down			
23	XD1	DIO	MIDI TXD, Serial output port Programmable 3.3V/5V tolerance bidirectional buffer, pull-down			
		Hig	gh-Definition Audio Interface			
24	XHDA_BCLK	DO	HDA link bit clock (24MHz) Programmable 3.3V output buffer			
25	XHDA_SDI	DI	HDA link serial data in Programmable 3.3V bidirectional buffer, pull-down			
26	XHDA_SYNC	DO	HDA link frame synchronization Programmable 3.3V output buffer			
27	XHDA_RST	DO	HDA link reset signal, active low Programmable 3.3V output buffer			
28	XHDA_SDO	DO	HDA link serial data out Programmable 3.3V output buffer			
		2-chanı	nel I2S DAC_2 Interface (PDMA_C)			
85	X2DAC_MCLK	DO	I2S master clock Programmable 3.3V output buffer			
86	X2DAC_LRCK	DIO	I2S left/right clock Programmable 3.3V bidirectional buffer, pull-down			
-	•	•	/ 1			

87	X2DAC_SCLK	DIO	I2S bit clock Programmable 3.3V bidirectional buffer, pull-down				
88	X2DAC_SDOUT	DO	I2S serial data output for channel 0, 1 Programmable 3.3V output buffer				
	2-channel I2S DAC_1 Interface (PDMA_A)						
89	XMDAC_SDOUT0	DO	I2S serial data output for channel 0, 1 Programmable 3.3V output buffer				
93	XMDAC_SCLK	DIO	I2S bit clock Programmable 3.3V bidirectional buffer, pull-down				
94	XMDAC_LRCK	DIO	I2S left/right clock Programmable 3.3V bidirectional buffer, pull-down				
95	XMDAC_MCLK	DO	I2S master clock Programmable 3.3V output buffer				
		:	2-Wire Master Serial Bus (I2C)				
63	XMSDA	DIO	2-wire master serial data Programmable 3.3V/5V tolerant bidirectional buffer, pull-down				
64	XMSCL	DIO	2-wire master serial clock Programmable 3.3V/5V tolerant bidirectional buffer, pull-down				
			2-Wire Slave Serial Bus (I2C)				
56	XSSDA	DIO	2-wire slave serial data Programmable 3.3V/5V tolerant bidirectional buffer, pull-down				
57	XSSCL	DIO	2-wire slave serial clock Programmable 3.3V/5V tolerant bidirectional buffer, pull-down				
			Miscellaneous				
4	RREF	Al	Connect external reference resistor (12 $K\Omega\pm1\%$)				
19	XPWDN	DO	External device power down control signal (default tri-state) Programmable 3.3V/5V tolerance output buffer				
55	XRSTO	DO	External codec reset (default tri-state) Programmable 3.3V/5V tolerance output buffer				
96	XSEL_PWR	DI	Self Power used, 1:self power, 0:bus power Programmable 3.3V input buffer, Schmitt trigger, Pull-down				
98	XRST	DIO	CM6631 chip reset				
99	XTEST	DI	Test Mode Select Pin: H: Test Mode L: Normal Operation				
	NC						
90	NC	DI	No connecting				
91	NC	DI	No connecting				
92	NC	DI	No connecting				

6. Electrical Characteristics

6.1 Maximum Ratings

Test Conditions; V_{DD} = 3.3V, DGND =0V, TA=+25°C

Parameter	Symbol	Min	Тур	Max	Units
Storge temperature	-	-55	-	150	°C
Operating ambient temperature	-	0	25	75	°C
DC supply voltage	-	3.0	3.3	3.6	٧
I/O pin voltage	-	GND	-	V_{DD}	٧
Power dissipation	-	=	0.15	=	W

6.2 Recommended Operation Conditions

Test Conditions: VDD = 3.3V, DGND =0V, TA=+25°C

Parameter	Symbol	Min	Тур	Max	Units
Input voltage range	-	V _{DD} -0.3	V_{DD}	V _{DD} +0.3	٧
Output voltage range	-	0	ı	V_{DD}	٧

6.3 Power Consumption

Test Conditions: DVDD = 3.3V, DGND =0V, TA=+25°C

Parameter	Symbol	Min	Тур	Max	Units
Supply current : power up	-	-	40	=	mA
Supply current : power down	-	ı	10	ı	uA

6.4 DC Characteristics

Test Conditions: DVDD = 3.3V, DGND =0V, TA=+25°C

Parameter	Symbol	Min	Тур	Max	Units
Input voltage range	Vin	V _{DD} -0.3	V_{DD}	V _{DD} +0.3	٧
Output voltage range	Vout	0	=	V_{DD}	٧
High level input voltage	Vih	0.7V _{DD}	-	-	٧
Low level input voltage	Vil	-	-	0.3V _{DD}	٧
High level output voitage	Voh	2.4	-	-	٧
Low level output voltage	Vol		-	0.4	٧
Input leakage current	lil	-10	-	10	uA
Output leakage current	Iol	-10	=	10	uA
Output buffer driver current	-	-	8	-	mA
SPDIF transmit output driver current	-	-	8	-	mA

7. Package Dimension

LQFP-100 (16x16mm)

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

SYMBOLS	MIN.	NOM.	MAX.		
Α	-		1.60		
A1	0.05		0.15		
A2	1.35	1.40	1.45		
ь	0.17	0.20	0.27		
С	0.09 0.127		0.20		
D	16.00 BSC				
D1	1	4.00 BS	С		
E	1	6.00 BS	С		
E1	1	4.00 BS	С		
e	0.50 BSC				
L	0.45 0.60 0.75				
L1		1.00 REF	-		

NUTES:

1.REFER TO JEDEC MS-026/BCE

2.DIMENSION DI AND E1 DO NOT INCLUDE MOLD PROTRUSION.

ALLOWABLE PROTRUSION IS 0.25mm PER SIDE D1 AND E1 ARE

MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH,

3.DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE

DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED

THE MAXIMUM 6 DIMENSION BY MORE THAN 0.08mm.

4.ALL DIMENSIONS IN MILLIMETERS.

 $-{\sf End}$ of ${\sf Specifications}-$

C-MEDIA ELECTRONICS INC.

6F., 100, Sec. 4, Civil Boulevard, Taipei, Taiwan 106 R.O.C.

TEL: +886-2-8773-1100 FAX: +886-2-8773-2211

E-MAIL: sales@cmedia.com.tw

Disclaimer:

Information furnished by C-Media Electronics Inc. is believed to be accurate and reliable. However, no responsibility is assumed by C-Media Electronics Inc. for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of C-Media. Trademark and registered trademark are the property of their respective owners.