EMA2: Lecture contents, week 12

4.2. Fourier series

Definition.

By a **trigonometric series** we mean any series of the form $\frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right]$.

By a **trigonometric polynomial** of degree N we mean $\frac{a_0}{2} + \sum_{k=1}^{N} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right]$.

Remark: These are special cases of **Fourier series**, we will call them this way. Which functions can be expanded into Fourier series?

Fact.

Functions $\sin(k\omega t)$, $\cos(k\omega t)$ are periodic with period $T = \frac{2\pi}{\omega}$. Thus also trigonometric polynomials and trigonometric series (if it converges) are T-periodic.

Hence only periodic functions can be sums of Fourier series. If we have such a function, which series is the best candidate for expansion?

Theorem.

Let $\omega > 0, T = \frac{2\pi}{\omega}$. The following are true:

(i)
$$\int_{0}^{T} \sin^{2}(k\omega t) dt = \int_{0}^{T} \cos^{2}(k\omega t) dt = \frac{T}{2} \text{ for } k \in IN,$$

(ii)
$$\int_{0}^{T} \sin(k\omega t) \sin(m\omega t) dt = \int_{0}^{T} \cos(k\omega t) \cos(m\omega t) dt = 0 \text{ for } k \neq m \in \mathbb{N},$$

(iii)
$$\int_{0}^{T} \sin(k\omega t) \cos(m\omega t) dt = 0 \text{ for } k, m \in \mathbb{N}.$$

Remark on (i):
$$\int_{0}^{T} \sin^{2}(k\omega t) dt = 0$$
 and $\int_{0}^{T} \cos^{2}(k\omega t) dt = T$ for $k = 0$.

Theorem.

Let f be a T-periodic function, denote $\omega = \frac{2\pi}{T}$.

If
$$\frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right] \stackrel{?}{\to} f$$
 on $[0, T]$, then

$$a_k = \frac{2}{T} \int_0^T f(t) \cos(k\omega t) dt$$
 for $k \in \mathbb{N}_0$ and $b_k = \frac{2}{T} \int_0^T f(t) \sin(k\omega t) dt$ for $k \in \mathbb{N}$.

Remark:
$$a_0 = \frac{2}{T} \int_0^T f(t) dt$$
.

Definition.

Let f be a function that is T-periodic and integrable on [0, T].

We define its **Fourier series** as $\frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right]$, where

$$a_k = \frac{2}{T} \int_0^T f(t) \cos(k\omega t) dt$$
 for $k \in \mathbb{N}_0$ and $b_k = \frac{2}{T} \int_0^T f(t) \sin(k\omega t) dt$ for $k \in \mathbb{N}$.

We denote
$$f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right].$$

EMA2 lecture 12 © pHabala 2007

Remark: If a function g is T-periodic, then $\forall a \in \mathbb{R}$ we have $\int\limits_0^T g(t)\,dt = \int\limits_a^{a+T} g(t)\,dt$. This can be applied to functions and integrals in formulas for Fourier transform, popular versions are e.g.

applied to functions and integrals in formulas for Fourier transform, popular versus
$$a_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(k\omega t) dt$$
 for $k \in \mathbb{N}_0$ a $b_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(k\omega t) dt$ for $k \in \mathbb{N}$.

Definition.

Let f be a function defined on an interval I = [a, a + T) for some $a \in \mathbb{R}, T > 0$.

We define its **periodic extension on** \mathbb{R} as the function f(t) = f(t - kT) for $t \in [a + kT, a + (k+1)T)$.

Remark: We obtain a T-periodic function on \mathbb{R} .

Definition.

Let f be a function defined on an interval I = [a, a + T) for some $a \in \mathbb{R}$, T > 0. We define its Fourier series as the Fourier series of its periodic extension.

Example.

Fourier series of function $f(t) = t^2$ on [-1, 1). T = 2, $\omega = \pi$.

$$a_0 = \frac{2}{2} \int_0^2 f(t) dt = \int_{-1}^1 f(t) dt = \int_{-1}^1 t^2 dt = \frac{2}{3}.$$

$$a_k = \frac{2}{2} \int_{-1}^{1} t^2 \cos(k\pi t) dt = \frac{4\cos(k\pi)}{\pi^2 k^2} = \frac{4(-1)^k}{\pi^2 k^2}.$$

$$b_k = \frac{2}{2} \int_{-1}^{1} t^2 \sin(k\pi t) dt = 0.$$

Thus
$$f \sim \frac{1}{3} + \sum_{k=1}^{\infty} \frac{4(-1)^k}{\pi^2 k^2} \cos(k\pi t)$$
.

Theorem. (Jordan criterion)

Let f be a T-periodic function that is piecewise continuous on some interval I of length T, assume that it has a derivative f' piecewise continuous on I.

Let
$$f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right]$$
. Then for every $t \in \mathbb{R}$ we have

$$\lim_{N\to\infty} \left(\frac{a_0}{2} + \sum_{k=1}^{N} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right] \right) = \frac{1}{2} [f(t^-) + f(t^+)].$$

If moreover f is continuous on \mathbb{R} , then $\frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right] \xrightarrow{\longrightarrow} f$.

Example.

For every $t \in [-1, 1]$ we have $t^2 = \frac{1}{3} + \sum_{k=1}^{\infty} \frac{4(-1)^k}{\pi^2 k^2} \cos(k\pi t)$.

We use it for t = 0 to get $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} = -\frac{\pi^2}{12}$.

For
$$t = 1$$
 we get $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$.

Definition.

Let f be a function defined and continuous on [0, L).

We define its **sine series** as the Fourier series of its odd periodic extension.

We define its **cosine series** as the Fourier series of its even periodic extension.

Theorem.

Let f be a T-periodic function that is integrable on [0,T), let $\omega = \frac{2\pi}{T}$.

(i) If
$$f$$
 is odd, then $a_k = 0$ and $b_k = \frac{4}{T} \int_0^{T/2} f(t) \sin(k\omega t) dt$.

(ii) If f is even, then
$$b_k = 0$$
 and $a_k = \frac{4}{T} \int_0^{T/2} f(t) \cos(k\omega t) dt$.

Fact.

Let f be a function defined and continuous on [0, L).

Its sine Fourier series can be obtained as a Fourier series with $a_k = 0$, $b_k = \frac{2}{L} \int_{\hat{L}}^{L} f(t) \sin(k\omega t) dt$ and $\omega = \frac{\pi}{L}$.

Its cosine Fourier series can be obtained as a Fourier series with $b_k = 0$, $a_k = \frac{2}{L} \int_{\lambda}^{L} f(t) \cos(k\omega t) dt$ and $\omega = \frac{\pi}{L}$.

Remark: The sum of the sine series is a T-2L-periodic extension of f into an odd function. The sum of the cosine series is a T=2L-periodic extension of f into an even function. Both sums must be also modified using the Jordan criterion.

Example.

$$f(t) = \begin{cases} 1, & t \in [0,1); \\ 0, & t \in [1,2). \end{cases}$$
 Fourier series: $T = 2, \omega = \pi$.

$$a_0 = \frac{2}{2} \int_0^2 f(t) dt = \int_0^1 dt = 1.$$

$$a_k = \frac{2}{2} \int_0^1 \cos(k\pi t) dt = \left[\frac{1}{k\pi} \sin(k\pi t)\right]_0^1 = 0.$$

$$b_k = \frac{2}{2} \int_{0}^{1} \sin(k\pi t) dt = \left[-\frac{1}{k\pi} \cos(k\pi t) \right]_{0}^{1} = \frac{1}{k\pi} [1 - \cos(k\pi)] = \frac{1}{k\pi} [1 - (-1)^k] = \begin{cases} 0, & k \text{ even;} \\ \frac{2}{k\pi}, & k \text{ odd.} \end{cases}$$

Thus
$$f \sim \frac{1}{2} + \sum_{k=1}^{\infty} \frac{1}{k\pi} [1 - (-1)^k] \sin(k\pi t) = \frac{1}{2} + \sum_{k=0}^{\infty} \frac{2}{(2k+1)\pi} \sin((2k+1)\pi t).$$

Sine Fourier series: $L=2, T=4, \omega=\frac{\pi}{2}, a_k=0.$

$$b_k = \frac{2}{2} \int_0^1 \sin(k \frac{\pi}{2} t) dt = \left[-\frac{2}{k\pi} \cos(k \frac{\pi}{2} t) \right]_0^1 = \frac{2}{k\pi} [\cos(k\pi) - \cos(k \frac{\pi}{2})].$$

Thus
$$\sum_{k=1}^{\infty} \frac{2}{k\pi} [(-1)^k - \cos(k\frac{\pi}{2})] \sin(k\frac{\pi}{2}t)$$
.

Cosine Fourier series: $L=2, T=4, \omega=\frac{\pi}{2}, b_k=0.$

$$a_0 = \frac{2}{2} \int_0^1 dt = 1.$$

$$a_k = \frac{2}{2} \int_0^1 \cos(k\frac{\pi}{2}t) dt = \left[\frac{2}{k\pi} \sin(k\frac{\pi}{2}t)\right]_0^1 = \frac{2}{k\pi} \sin(k\frac{\pi}{2}).$$

Thus
$$\frac{1}{2} + \sum_{k=1}^{\infty} \frac{2}{k\pi} \sin(k\frac{\pi}{2}) \cos(k\frac{\pi}{2}t)$$
.

Here
$$a_{2k} = 0$$
, $a_{2k+1} = (-1)^{k+1} \frac{2}{(2k+1)\pi}$, so $\frac{1}{2} + \sum_{k=0}^{\infty} (-1)^{k+1} \frac{2}{(2k+1)\pi} \cos((2k+1)\frac{\pi}{2}t)$.