INFERENȚE ASUPRA PROPORȚIILOR

- Proporția, procentajul din populație și probabilitatea asociată producerii unui eveniment dat implică toate *parametrul binomial p* probabilitatea teoretică (în populație) de succes.
- Dacă X=B(n,p), atunci $\mu = np$, $\sigma = \operatorname{sqrt}(np(1-p))$
- X fiind numărul de succese din n încercări, definim p ca probabilitatea binomială observată (a eșantionului): p'=X/n.
- X este aproximativ normală pentru n>20 și np>5, n(1-p)>5. Aceasta permite utilizarea unora dintre metodele anterioare pentru inferențe asupra lui p.

INFERENȚE ASUPRA LUI p

- O valoare observată a lui p aparține unei distribuții de selecție care este: aproximativ normală (în condițiile de mai sus), are media μ_p = np/n=p și eroarea standard σ_p = sqrt(p(1-p)/n).
- Se poate aplica atunci (cu aproximație!) procedura z, cu: $z_{\text{esantion}} = \frac{p'-p}{\sqrt{p(1-p)/n}}$, unde p'=x/n.
- p este valoarea din H_0 .
- Exemplu. A spune că cel puţin 15% din studenţi fumează. B vrea să verifice şi găseşte că dintr-un eşantion de 200 de studenţi, 17 fumează. Pentru nivelul de semnificaţie α=0,10, se poate respinge ipoteza lui A?

TESTAREA IPOTEZELOR ASUPRA PROPORȚIILOR Cu valoarea critică:

- $H_0: p = 0.15 \ge 1.$ $H_a: p < 0.15.$
- Pentru $\alpha = 0.10$ se găsește $z^* = -z(0.10) = -1.28$.
- p' = 17 / 200 = 0.085.

$$z_{\text{esantion}} = \frac{p' - p}{\sqrt{p(1 - p)/n}} = \frac{0,085 - 0,150}{\sqrt{0,15 \cdot 0,85/200}} = \frac{-0,065}{0,025} = -2,6$$

• Se respinge H₀ : eşantionul aduce dovezi că mai puţin de 15% dintre studenţi fumează.

Cu probabilități:

- $P = P\{z < z^* / H_0\} = P\{z < -2.60 / H_0\} = 0.0047.$
- Pentru $\alpha = 0.10$, informația din eșantion este semnificativă. Se respinge H_0 .

INTERVAL DE ÎNCREDERE PENTRU PROPORȚII

- Estimarea parametrului p proporția succeselor în populație se face pornind de la statistica p' = x/n valoarea observată în eșantion.
- Intervalul de încredere este:

$$(p'-z(\alpha/2)\cdot\sqrt{\frac{p'(1-p')}{n}}, p'+z(\alpha/2)\cdot\sqrt{\frac{p'(1-p')}{n}})$$

- Se observă că eroarea standard, necunoscută (depinde de *p*), se înlocuiește cu *p* '.
- În exemplul anterior, cea mai bună estimare punctuală a lui p este p' = 0,085, iar intervalul de încredere la nivelul α =0,10 este (z(0,05)=1,645): 0,085+-0,033 \rightarrow (0,052; 0,118)

DIMENSIONAREA EŞANTIONULUI (1)

 Dacă se dă eroarea maximă admisă E pentru estimarea proporției, atunci numărul de indivizi n necesari în eşantion pentru a nu depăşi E, cu nivelul de încredere α cerut este:

$$n = [z(\alpha/2)]^2 \cdot p \cdot (1-p) / E^2$$
.

- p se înlocuiește fie cu o estimare a proporției, fie cu 0,5 (maximizând astfel valoarea lui n de mai sus).
- Câte persoane trebuie incluse într-un eșantion pentru a estima cu eroare cel mult 2%, la un nivel de încredere 0,10, proporția celor ce intenționează să voteze?
- $n \ge (1,645)^2(0,5)(0,5)/(0,02)^2 = 1701,56$. Deci, n = 1702.

12

DIMENSIONAREA EŞANTIONULUI (2)

• Exemplu. Furnizorul unei fabrici afirmă că doar 5% din piesele pe care le livrează spre asamblare au defecte. Să se determine mărimea unui eșantion care să permită estimarea proporției de piese defecte, cu o precizie de 0,02 și la un nivel de încredere de 90%.

• Solutie. $z(\alpha/2)=1,645$; E=0,02;

• p=0.05; 1-p=0.95.

• În consecință:

• $n \ge (1,645)^2 \cdot (0,05) \cdot (0,95) / (0,02)^2 = 323,3$

• n=324. Aici însă, se dă valoarea lui p.

INFERENȚE ASUPRA DISPERSIEI

- •Deseori, dispersia trebuie cunoscută / controlată. De exemplu, o companie de îmbuteliat băuturi trebuie să ştie cât de mult variază nivelul de umplere a sticlelor, chiar dacă media este cea corectă.
- •Să presupunem că dispersia 0,0004 este acceptabilă, iar dacă trece de această valoare, se ajustează mașina de umplere.

•
$$H_0: \sigma^2 = 0,0004 \le$$
; $H_a: \sigma^2 > 0,0004.$

•Statistica testului:

$$\chi^2 = (n-1) s^2 / \sigma^2$$
,

unde s^2 este dispersia estimată nedeplasat din eşantion, iar σ^2 , valoarea din H_0 .

DISTRIBUȚIA χ^2 (1)

- Dacă se extrag eșantioane aleatoare de dimensiune n dintr-o populație normală de dispersie cunoscută σ^2 , atunci variabila aleatoare (n-1)s²/ σ^2 are distribuție χ^2 .
- Proprietăți ale distribuției χ^2 :
 - Valorile χ^2 sunt pozitive;
 - Curba χ^2 este asimetrică, cu mòdul spre stânga;
 - Pentru df>2, media aflată la dreapta mòdului este chiar df (n-1 pentru inferențele prezentate);
 - Există câte o distribuție χ^2 pentru fiecare valoare df.

DISTRIBUŢIA χ^2 (2)

- $\chi^2 = \sum_{1..n} (\xi_k \mu)^2 / \sigma^2$, ξ_k fiind variabile normale independente $N(\mu, \sigma)$.
- χ^2 are funcția de densitate de probabilitate (pentru $x \ge 0$) definită prin:

$$f_{\chi^{2}}(x) = \frac{x^{\frac{n}{2}-1} \cdot e^{-\frac{x}{2}}}{2^{n/2} \cdot \Gamma(n/2)}$$

• Valorile critice se iau din tabele, sub forma $\chi^2(df; \alpha)$, α fiind aria de la dreapta valorii critice.

EXEMPLUL I

- În exemplul cu îmbutelierea: σ² admis este 0,0004. Dacă un eșantion de 28 de sticle dă o dispersie observată de 0,0010, se poate afirma, la nivelul de încredere 0,05, că procesul de îmbuteliere nu este sub control din punct de vedere al dispersiei?
- Regiunea critică se află sub partea dreaptă (>) a curbei de distribuție și are o arie de 0,05.
- $\chi^2_{\text{critic}} = \chi^2(27; 0.05) = 40.1.$
- $\chi^2_{\text{eşantion}} = (n-1) \text{ s}^2 / \sigma^2 = 27.0,001/0,0004 = 67,5.$
- Concluzie: se respinge H_0 ($\chi^2_{eșantion}$ se află în regiunea critică).

EXEMPLUL II

- Un test este util dacă, în urma corectării, notele au o împrăștiere suficient de mare pentru a ierarhiza elevii, dar nu într-atât încât diferențele de note să fie prea mari.
- Se afirmă că un test cu punctaj total 100 este util dacă deviația standard este 12.
- La un test de 100 puncte dat la 28 de elevi, deviația standard observată este 10,5. Putem afirma cu nivel de încredere 95% că testul respectiv este "util"?
- H_0 : $\sigma=12$; H_a : $\sigma\neq12$. H_a simetrică \rightarrow două valori critice.
- $\chi^2_{\text{critic}1} = \chi^2(27; 0.975) = 14.6;$
- $\chi^2_{\text{critic2}} = \chi^2(27; 0.025) = 43.2.$
- $\chi^2_{\text{esantion}} = (n-1) \cdot s^2 / \sigma^2 = 2976,75/144 = 20,6719$
- Decizie. H₀ nu se respinge: testul poate fi considerat "util".

INTERVAL DE ÎNCREDERE PENTRU DISPERSIE

- Capetele intervalului de încredere se obțin din cele două *valori critice*; pentru calculul intervalului de încredere, eșantionul furnizează doar n și valoarea lui s.
- $\chi^2 = (n-1)\cdot s^2 / \sigma^2$ \rightarrow $\sigma^2 = (n-1)\cdot s^2 / \chi^2$.
- Dat nivelul α , se obțin valorile critice:
- $\chi^2(df; 1-\alpha/2) < \chi^2(df; \alpha/2)$.
- Capetele intervalului sunt:

$$(n-1)\cdot s^2 / \chi^2(df; \alpha/2); (n-1)\cdot s^2 / \chi^2(df; 1-\alpha/2).$$

EXEMPLUL II – INTERVAL DE ÎNCREDERE

- Cu datele din exemplul II, intervalele de încredere la nivel α =0,05 pentru dispersia, respectiv deviația standard a populației sunt:
- Dispersie: extremele intervalului sunt date de $(27)(10,5)^2 / 43,2$, respectiv $(27)(10,5)^2 / 14,6$.
- Aşadar, cu 95% încredere estimăm dispersia populației ca fiind între 68,9 și 203,9.
- Intervalul de încredere pentru deviația standard a populației este dat de radicalii valorilor de mai sus: (8,3; 14,3).

ALTE APLICAȚII ALE LUI χ^2

- Pentru variabile categoriale tabele ale frecvențelor (eventual, pe intervale sau *clase*).
- Inferențe statistice pentru:
 - 1.- EXPERIMENTE MULTINOMIALE.
 - 2.- TESTE DE INDEPENDENȚĂ.
- Toate folosesc statistica χ^2 : $\chi^2 = \sum_i \frac{(O_i E_i)^2}{E_i}$
- O_i, E_i→frecvența i observată, frecvența i așteptată.
- La eşantionări repetate și pentru n (numărul total de observații) mare, statistica de mai sus are aproximativ distribuția cu aceeași notație.
- Ipotezele statistice sunt mai "libere" nu se exprimă neapărat direct prin parametri.

INFERENȚE ASUPRA EXPERIMENTELOR MULTINOMIALE

- Să presupunem că testăm ipoteza H₀: "zarul este corect", cu α=0,05. Pentru a o testa, aruncăm zarul de 60 de ori. H₀ ar fi în mod ideal satisfăcută dacă fiecare față a zarului ar fi apărut exact de 10 ori (frecvența așteptată).
- Observăm frecvențele (în ordinea, irelevantă, a numerelor de pe cele k=6 fețe ale zarului):
- 7, 12, 10, 12, 8, 11.
- Din calcule, rezultă: $\chi^2 = 2,2$.
- α =0,05, iar în cazul multinomial, df=k-1=6-1=5.
- $\chi^2(5; 0.05) = 11.1$ (cu regiunea critică la dreapta).
- Decizie: Nu se respinge H_0 .

EXPERIMENTE MULTINOMIALE

- n repetări în condiții identice ale aceluiași experiment;
- rezultatul fiecărei repetări este exact unul din k rezultate posibile;
- fiecare rezultat posibil are atașată o probabilitate prezumată fixă. $p_1 + p_2 + ... + p_k = 1$.
- experimentul dă frecvențele observate $O_1,O_2,...,O_k$ $(O_1+O_2+...+O_k=n)$.
- $E_i = n \cdot p_i$ pentru statistica χ^2 .
- Ipoteza nulă nu se exprimă neapărat prin parametri.
- Valoarea critică se obține din nivelul de semnificație α și din numărul de grade de libertate df=k-1.
- Regiunea critică se află la dreapta.

EXEMPLUL III

- Studenții doresc o cât mai mare libertate în alegerea cursurilor. Şapte cursuri similare, predate de cadre didactice diferite, au fost alese de 119 studenți astfel (ordinea este aleatoare):
- 18, 12, 25, 23, 8, 19, 14. Indică datele preferințe pentru anumiți profesori?
- H₀: "distribuție fără preferințe".
- $p_i = 1/7$; $\alpha = 0.05$; $\chi^2(6; 0.05) = 12.6$.
- $\chi^2_{\text{esantion}} = (18-17)^2 / 17 + (12-17)^2 / 17 + (25-17)^2 / 17 + (23-17)^2 / 17 + (8-17)^2 / 17 + (19-17)^2 / 17 + (14-17)^2 / 17 = 220 / 17 = 12,9411.$
- <u>Decizie</u>. Se respinge H₀!

TABELE DE CONTINGENȚĂ (1)

- Aranjament de date pe linii și coloane două variabile, pentru care se testează (in)dependența sau omogenitatea.
- 1.- Independența. 300 de studenți, clasificați pe sexe, au fost întrebați în ce domeniu al "artelor liberale" preferă să-și aleagă cursurile.

Sex	MatŞt.	Şt. Soc.	Şt.Um.	Total
F	35	72	71	178
M	37	41	44	122
Total	72	113	115	300

TABELE DE CONTINGENȚĂ (2)

- •H₀: alegerea cursurilor este independentă de sex.
- •H_a: alegerea cursurilor este dependentă de sex.
- •<u>Valoarea critică</u>. Numărul de grade de libertate este numărul de celule ce pot fi completate fără restricții dacă se dau totalurile: două în acest caz. În general: $(nr_linii-1)\cdot(nr_coloane-1)$. $\chi^2(2; 0,05) = 6,00$.
- •Regiunea critică este la dreapta:
- $\chi^2_{\text{esantion}} > \chi^2_{\text{critic}} \rightarrow \text{se respinge H}_0$
- •<u>Probabilitățile</u> p_{i,j} atașate fiecărei celule: proporționale cu totalurile marginale (ce se întâmplă în general este valabil și pentru fiecare sub-populație). De exemplu, băieți alegând fiecare domeniu ar trebui să fie: (72/300)·122; (113/300)·122.
- $p_{i,j} = total_linie_i \cdot total_coloana_j / n$

TABELE DE CONTINGENȚĂ (3)

Sex	MatŞt.	Şt.Soc.	Şt.Uman.	Total
F	35	72	71	178
	(42,72)	(67,05)	(68,23)	
В	37	41	44	122
	(29,28)	(45,95)	(46,77)	
Total	72	113	115	300

•
$$\chi^2_{\text{esantion}} = (35 - 42,72)^2 / 42,72 + (72 - 67,05)^2 / 67,05 + (71 - 68,23)^2 / 68,23 + (37 - 29,28)^2 / 29,28 + (41 - 45,95)^2 / 45,95 + (44 - 46,77)^2 / 46,77 = 1,395 + 0,365 + 0,112 + 2,035 + 0,533 + 0,164 = 4,604 < 6,00!$$

20

• <u>Decizie</u>. Nu se poate respinge H₀!

TABELE DE CONTINGENȚĂ (4)

- 2. Omogenitate. Experimentatorul controlează una din cele două variabile pentru a obține totaluri date.
- Exemplu. Se proiectează un sondaj de opinie asupra părerilor despre o lege (pentru / împotrivă), intervievând persoane din mediile urban, suburban și rural. Proporțiile sunt date (fie ele 2/5, 1/5, 2/5). Opiniile asupra legii diferă în cele trei medii?
- Fie α =0,05. Să presupunem că au fost intervievați 500 de subiecți, cu răspunsurile date în tabel.
- H₀ : proporția celor ce sunt pentru legea respectivă este aceeași în mediile urban, suburban, rural.
- H_a: în cel puțin un mediu proporția este alta.

OMOGENITATE - TABELUL

MEDIUL	PENTRU	CONTRA	TOTAL
URBAN	143	57	200
	(101,6)	(98,4)	
SUBURBAN	13	87	100
	(50,8)	(49,2)	
RURAL	98	102	200
	(101,6)	(98,4)	
TOTAL	254	246	500

•
$$df = (3-1)(2-1) = 2$$
. $\chi^2_{\text{critic}}(2; 0,05) = 6,00$.

•
$$\chi^2_{\text{esantion}} = (143-101,6)^2 / 101,6 + ... = 91,72.$$

• <u>Decizie</u>: Se respinge H₀: proporțiile diferă.