Verilog training – second session

Covered modules: 3, 4, 5, 7, 11

Assignment:

- Create 8-bit full-adder/subtractor using your own 1-bit full-adder. Note, while testing this module use only positive numbers, which means most significant bit must be 0. Do you why?
- Use your 8-bit full-adder/subtractor to create the described 8-bit ALU in the figure below.

Inputs:

A, B: 8-bitsOpcode: 3-bitsCarry_in: 1-bit

Outputs:

Out: 8-bitsCarry_out: 1-bit

C_flag : 1-bit (c_flag=1 only if A > B, and 0 otherwise)

• Operations:

000	A + B
001	A - B
010	A & B
011	A B
100	A^B
101	A > B
110	A << 1
111	B << 1

P.S. create your own test fixture to test your design, generate all possible input patterns and check correctness of output automatically.		