

UPDATE 2017-07-17

L. Di Stasio^{1,2}, Z. Ayadi¹, J. Varna²

¹EEIGM, Université de Lorraine, Nancy, France ²Division of Materials Science, Luleâ University of Technology, Luleâ, Sweden

July 17, 2017

Outline

Symbols, Models, Equations & Reference Data

Nesults

Symbols Reference Models Angular discretization Material properties Evaluation of G_0 VCC

SYMBOLS, MODELS, EQUATIONS & REFERENCE DATA

Unit

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT

Description

Symbols

Symbol

θ	[°]	Debond angular position with respect to the center of the arc defined by the debond itself
$\Delta \theta$	[°]	Debond semi-angular aperture
δ	[°]	Angle subtended by a single element at the fiber/matrix interface
VF_f	[-]	Fiber volume fraction
I	[<i>µm</i>]	Ply's half-length, equal to RVE's half-length (square element)
и	$[\mu m]$	Displacement along x
W	$[\mu m]$	Displacement along z

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT

Symbols

Symbol	Unit	Description
Γ ₁	[-]	Bonded part of fiber surface
Γ_2	[-]	Free (debonded) part of fiber surface
Γ_3	[-]	Bonded part of matrix surface
Γ_4	[-]	Free (debonded) part of matrix surface

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT

Reference Models

Simple RVE, BC: free.

Symbols Reference Models Angular discretization Material properties Evaluation of G_0 VCCT

Reference Models

Simple RVE, BC: fixed vertical displacement.

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT

Reference Models

Simple RVE, BC: fixed vertical and homogeneous horizontal displacement.

Symbols Reference Models Angular discretization Material properties Evaluation of G_0 VCCT

Angular discretization

Angular discretization at fiber/matrix interface: $\delta = \frac{360^{\circ}}{4N_{\alpha}}$.

Symbols Reference Models Angular discretization

Material properties Evaluation of G₀ VCCT

Material properties

Material	E [GPa]	G [GPa]	$\nu\left[- ight]$
Glass fiber	70,0	29,2	0,2
Ероху	3,5	1,25	0,4

Symbols Reference Models Angular discretization Material properties **Evaluation of** G_0 VCC

Evaluation of G_0

$$G_0 = \pi R_f \sigma_0^2 \frac{1 + k_m}{8G_m} \tag{1}$$

$$k_m = 3 - 4\nu_m \tag{2}$$

$$\sigma_0^{undamaged} = \frac{E_m}{1 - \nu_m^2} \varepsilon_{xx} \tag{3}$$

Symbols Reference Models Angular discretization Material properties Evaluation of Go VCCT

VCCT in Forces

$$\Delta u = \left| \Delta u_{1 \text{ element before crack tip}}^{\text{matrix}} - \Delta u_{1 \text{ element before crack tip}}^{\text{fiber}} \right| \tag{4}$$

$$\Delta w = \left| \Delta w_{1}^{matrix} \right| = \left| \Delta w_{1}^{matrix} \right| = \left| \Delta w_{1}^{fiber} \right|$$
 (5)

$$\beta = \arctan \begin{pmatrix} \frac{Z_{\text{crack tip}}^{\text{matrix}, \text{undef}}}{Z_{\text{crack tip}}^{\text{matrix}, \text{undef}}} \end{pmatrix}$$
 (6)

$$\Delta_{f} = \cos(\beta)\Delta u + \sin(\beta)\Delta w \qquad \Delta_{\theta} = -\sin(\beta)\Delta u + \cos(\beta)\Delta w \tag{7}$$

$$F_r = \cos(\beta)F_x^{reaction} + \sin(\beta)F_z^{reaction}$$
 $F_\theta = -\sin(\beta)F_x^{reaction} + \cos(\beta)F_z^{reaction}$ (8)

$$G_{I} = \frac{1}{2} \frac{F_{r} \Delta_{r}}{R_{r} \delta}$$
 $G_{II} = \frac{1}{2} \frac{F_{\theta} \Delta_{\theta}}{R_{r} \delta}$ $b = 1.0 \leftrightarrow \Delta A = bR_{f} \delta$ (9)

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT

VCCT in Stresses

Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.4^{\circ}$ $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summary

Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.4^{\circ}$ $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summary

Model Data

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

 σ_0 , $\delta = 1.0^\circ$

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

 G_0 , $\delta = 1.0^{\circ}$

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

J-Integral (Abaqus built-in routine), $\delta=1.0^\circ$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

 $\mbox{Model Data} \quad \pmb{\delta} = \pmb{1.0}^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \mbox{Summary and Summary and Su$

VCCT in forces (in-house Python routine), $\delta = 1.0^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

J-Integral and VCCT in forces, $\delta = 1.0^{\circ}$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

$$\sigma_{0}$$
, $\delta=0.9^{\circ}$

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

 G_{0} , $\delta = 0.9^{\circ}$

 $\text{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = \textbf{0.9}^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \text{Summary } \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \delta = 0.2^{\circ$

J-Integral (Abaqus built-in routine), $\delta=0.9^\circ$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

VCCT in forces (in-house Python routine), $\delta = 0.9^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

 $\text{Model Data} \quad \delta = 1.0^{\circ} \quad \overline{\delta} = \textbf{0.9}^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \underline{\delta} = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \text{Summary Summary Su$

J-Integral and VCCT in forces, $\delta=0.9^\circ$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

 σ_{0} , $\delta=0.8^{\circ}$

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

 G_{0} , $\delta = 0.8^{\circ}$

Symbols, Models, Equations & Reference Data Results

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

J-Integral (Abaqus built-in routine), $\delta=0.8^\circ$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

Symbols, Models, Equations & Reference Data Results

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

VCCT in forces (in-house Python routine), $\delta = 0.8^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.4^{\circ}$ $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summary

J-Integral and VCCT in forces, $\delta=0.8^\circ$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

$$\sigma_0$$
 , $\delta=0.7^\circ$

Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.4^{\circ}$ $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summary

 G_0 , $\delta = 0.7^{\circ}$

J-Integral (Abaqus built-in routine), $\delta=0.7^\circ$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

 $\label{eq:def-Model Data} \begin{tabular}{lll} Model Data & $\delta=1.0^{\circ}$ & $\delta=0.9^{\circ}$ & $\delta=0.8^{\circ}$ & $\delta=0.7^{\circ}$ & $\delta=0.6^{\circ}$ & $\delta=0.4^{\circ}$ & $\delta=0.3^{\circ}$ & $\delta=0.2^{\circ}$ & Summary \\ & & & & & & & & & & & & & \\ \end{tabular}$

VCCT in forces (in-house Python routine), $\delta=0.7^\circ$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

 $\text{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = \textbf{0.7}^{\circ} \quad \delta = \textbf{0.6}^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = \textbf{0.4}^{\circ} \quad \delta = \textbf{0.3}^{\circ} \quad \delta = \textbf{0.2}^{\circ} \quad \text{Summary } \delta = \textbf{0.8}^{\circ} \quad \delta =$

J-Integral and VCCT in forces, $\delta=0.7^\circ$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.4^{\circ}$ $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summary

 σ_{0} , $\delta = 0.6^{\circ}$

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

 G_0 , $\delta=0.6^\circ$

In red small strain FEM, in black analytical plain strain value.

୬) Q (~ 37

 $\text{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = \textbf{0.6}^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \text{Summary } \delta = 0.00^{\circ} \quad \delta = 0.00^{\circ$

J-Integral (Abaqus built-in routine), $\delta=0.6^\circ$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

VCCT in forces (in-house Python routine), $\delta = 0.6^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

 $\label{eq:model_delta} \mbox{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = \textbf{0}.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \mbox{Summary Summary Model} \quad \delta = 0.00^{\circ} \quad \delta = 0.00^{\circ$

J-Integral and VCCT in forces, $\delta=0.6^\circ$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.4^{\circ}$ $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summary

$$\sigma_{0}$$
, $\delta=0.5^{\circ}$

Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.4^{\circ}$ $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summary

 G_0 , $\delta = 0.5^{\circ}$

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

J-Integral (Abaqus built-in routine), $\delta=0.5^\circ$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

VCCT in forces (in-house Python routine), $\delta = 0.5^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

 $\label{eq:model_delta_$

J-Integral and VCCT in forces, $\delta=0.5^{\circ}$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

 σ_0 , $\delta=0.4^\circ$

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

 G_0 , $\delta = 0.4^\circ$

J-Integral (Abaqus built-in routine), $\delta=0.4^\circ$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

VCCT in forces (in-house Python routine), $\delta = 0.4^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

 $\label{eq:decomposition} \text{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \delta = 0.3^{\circ} \quad \delta = 0.2^{\circ} \quad \text{Summary summary sum$

J-Integral and VCCT in forces, $\delta=0.4^\circ$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

Model Data $\delta=1.0^{\circ}$ $\delta=0.9^{\circ}$ $\delta=0.8^{\circ}$ $\delta=0.7^{\circ}$ $\delta=0.6^{\circ}$ $\delta=0.5^{\circ}$ $\delta=0.4^{\circ}$ $\delta=0.3^{\circ}$ $\delta=0.2^{\circ}$ Summary

 σ_{0} , $\delta = 0.3^{\circ}$

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

 G_0 , $\delta=0.3^\circ$

 $\text{Model Data} \quad \delta = 1.0^{\circ} \quad \delta = 0.9^{\circ} \quad \delta = 0.8^{\circ} \quad \delta = 0.7^{\circ} \quad \delta = 0.6^{\circ} \quad \delta = 0.5^{\circ} \quad \delta = 0.4^{\circ} \quad \underline{\delta} = 0.3^{\circ} \quad \underline{\delta} = 0.2^{\circ} \quad \text{Summary } \delta = 0.2^{\circ} \quad \delta = 0.2$

J-Integral (Abaqus built-in routine), $\delta=0.3^\circ$

Fading from blue to red for contours further from the crack tip, FEM results; in black BEM results.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

VCCT in forces (in-house Python routine), $\delta = 0.3^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

J-Integral and VCCT in forces, $\delta=0.3^\circ$

Fading from blue to red for contours further from the crack tip, J-Integral from FEM results; in green VCCT from FEM results; in black BEM results.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

$$\sigma_{0}$$
, $\delta=0.2^{\circ}$

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

 G_0 , $\delta = 0.2^{\circ}$

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

VCCT in forces (in-house Python routine), $\delta=0.2^{\circ}$

In green VCCT from FEM results, in black BEM results; positions of maxima highlighted by dashed lines.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_l , VCCT in forces

Fading from red to blue for decreasing size of elements at the interface, VCCT from FEM results; in black BEM results.

Symbols, Models, Equations & Reference Data Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$

 $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_l Error with respect to BEM, VCCT in forces

Fading from red to blue for decreasing size of elements at the interface, VCCT from

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$ $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_{\parallel} , VCCT in forces

Fading from red to blue for decreasing size of elements at the interface, VCCT from FEM results; in black BEM results.

Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$

 $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_{||} Error with respect to BEM, VCCT in forces

Fading from red to blue for decreasing size of elements at the interface, VCCT from

G_{TOT} , VCCT in forces

Fading from red to blue for decreasing size of elements at the interface, VCCT from FEM results; in black BEM results.

Symbols, Models, Equations & Reference Data Model Data $\delta = 1.0^{\circ}$ $\delta = 0.9^{\circ}$ $\delta = 0.8^{\circ}$ $\delta = 0.7^{\circ}$

 $\delta = 0.6^{\circ}$ $\delta = 0.5^{\circ}$ $\delta = 0.4^{\circ}$ $\delta = 0.3^{\circ}$ $\delta = 0.2^{\circ}$ Summary

G_{TOT} Error with respect to BEM, VCCT in forces

Fading from red to blue for decreasing size of elements at the interface, VCCT from

