MCRCURY: A multilinear Polynomial Commitment Scheme with constant proof size and no prover FFTs

Liam Eagen

Alpen Labs

Ariel Gabizon

Aztec Labs

February 26, 2025

Abstract

We construct a polynomial commitment scheme for multilinear polynomials of size n where constructing an opening proof requires O(n) field operations, and $2n+O(\sqrt{n})$ scalar multiplications. Moreover, the opening proof consists of a constant number of field elements. This is a significant improvement over previous works which would require either

- 1. $O(n \log n)$ field operations; or
- 2. $O(\log n)$ size opening proof.

The main technical component is a new method of verifiably folding a witness via univariate polynomial division. As opposed to previous methods, the proof size and prover time remain constant regardless of the folding factor.

- 1 Introduction
- 1.1 Our results
- 2 Overview of technique

Remark 2.1. In this overview, we use some of the notation defined in Sections 3.1 and 3.2.

Table 1: Comparison of pairing-based ml-PCS.

Scheme	Proof size	Prover Work	Verifier Work
univariate-based e.g. [PH23]	$O(1) \mathbb{F}$	$O(n \log n) \mathbb{F}, O(n) \mathbb{G}$	$O(\log n) \mathbb{F}, O(1) \mathbb{G}$
gemini [gem]	$O(\log n) \mathbb{F}$	$O(n) \mathbb{F}, 3n \mathbb{G}$	$O(\log n) \mathbb{F}, O(\log n) \mathbb{G}$
zeromorph [zer]	$O(\log n) \mathbb{F}$	$O(n) \mathbb{F}, 2.5n \mathbb{G}$	$O(\log n) \mathbb{F}, O(\log n) \mathbb{G}$
mercury [?]	$O(1) \mathbb{F}$	$O(n) \mathbb{F}, 2n + O(\sqrt{n}) \mathbb{G}$	$O(\log n) \mathbb{F}, O(1) \mathbb{G}$

Our technique is best thought of as an improvement of the ml-PCS from gemini [gem]. Let's start by recalling how gemini works. gemini commits to a multilinear function as a univariate KZG commitment [KZG10]. Specifically, fix a vector $f \in \mathbb{F}^n$ describing the function's values on the boolean cube, and a structured reference string of elements $\left\{ \begin{bmatrix} x^i \end{bmatrix}_1 \right\}_{i < n}$. gemini outputs cm = $\sum_{i < n} f_i \begin{bmatrix} x^i \end{bmatrix}_1$ as a commitment to the multilinear function $M(X_0, \ldots, X_{s-1}) = \sum_{i < n} \operatorname{eq}(i, u) f_i$ where $u \in \mathbb{F}^{\log n}$.

Now suppose prover \mathbf{P} wants to convince verifier \mathbf{V} that M(u) = v, for some $u = (u_0, \dots, u_{s-1})$. In gemini, \mathbf{P} sends commitments $\mathsf{cm}_1, \dots, \mathsf{cm}_s$ to the s incremental restrictions leading to evaluation at u. Namely, to $M_1 = M(u_0, X_1, \dots, X_{s-1})$, $M_2 = M(u_0, u_1, X_2, \dots, X_{s-1}), \dots, M_s = M(u_0, \dots, u_{s-1})$. Assuming \mathbf{P} sent commitments to the correct functions, all that is needed is to check that cm_s is the commitment to the constant v. Of course, the interesting part is proving the commitments are to the correct functions!

For this purpose, gemini exploits a connection between M and its corresponding univariate f(X): Write $f(X) = f_0(X^2) + X f_1(X^2)$, for $f_0(X), f_1(X)$ of degree < n/2. Let $f_{u_1}(X)$ be the univariate corresponding to M_1 defined above. Then, we have

$$f_{u_1}(X) = (1 - u_1)f_0(X) + u_1f_1(X).$$

Additionally, we can evaluate f_0 and f_1 via f using the equations

$$f_0(X^2) = \frac{f(X) + f(-X)}{2}, f_1(X^2) = \frac{f(X) - f(-X)}{2X}$$

Thus, we can perform consistency checks between each pair $\mathsf{cm}_{i-1}, \mathsf{cm}_i$ showing cm_i is indeed the commitment to the next correct restriction. Of course, we get $O(s) = O(\log n)$ proof length due to sending this sequence of restriction commitments.

Here is a first idea on how to reduce proof length. Protocols based on univariate polynomials allow us to do multilinear evaluation in $O(n \log n)$ prover time with constant proof size (e.g. Section 5 of [PH23]). Choose a parameter t and set $b = 2^t$. We can run only the first t rounds of gemini, reaching a restricted multilinear on n - t variables. If $n' = n/b \le n/\log n$, we can afford to run a univariate protocol with $O(n' \log n') = O(n)$ prover time to evaluate $M_t(u_t, \ldots, u_s)$. This still doesn't take us to overall constant proof size - as we need to use a super-constant t to reach such n'. (For us $t = \log n/2$ will be optimal, although $t \ge \log \log n$ suffices here.)

This raises the question - can we "skip" the intermediate gemini rounds and send only the commitment cm_t , and directly prove it is consistent with the original cm ? Extrapolating the gemini strategy in the natural way, we get the answer - yes, but not with constant proof size: We can decompose f into b polynomials of degree < n/b: $f(X) = \sum_{0 \le i < b} X^i f_i(X^b)$. As in the b = 2 case, one can show the univariate f'(X) corresponding to M_t is a linear combination of the $\{f_i(X)\}$. Moreover, evaluating the f_i using f (for the consistency check) can be done. However, it requires b evaluations of f. Specifically, $f_i(r^b)$ is a linear combination of $\{f(r), f(r\omega), \ldots, f(r\omega^{t-1})\}$ where ω is a primitive t'th root of unity.

Our central innovation is a different way to prove cm_t is correct with constant proof size. Take any $\alpha \in \mathbb{F}$, and let $g(X) = f(X) \mod X^b - \alpha$. Then,

$$g(X) = \sum_{0 \le i \le b} X^i f_i(\alpha)$$

The (univariate corresponding to the) restricted polynomial we are interested in is

$$h(X) = \sum_{0 \le i < b} \mathbf{eq}(i, u_1) f_i(X).$$

Proving correctness of g can be done via a quotient. Now we want to "connect" g and h to prove correctness of h. We can use standard univariate KZG to evaluate $h(\alpha) = \sum_{0 \le i < b} \mathbf{eq}(i, u_1) f_i(\alpha)$. Now note that $h(\alpha)$ should equal, $\mathsf{ml}(g)(u_1)$ - the evaluation of g as a multilinear at u_1 ! And we can afford to evaluate $\mathsf{ml}(g)(u_1)$ using the aforementioned univariate protocols as it is of size b rather than n.

Comparison to sumcheck It is instructive to see what happens if we try to get a similar result via a modification of the sumcheck protocol [?]. Note first that indeed a multilinear evaluation can be seen as a sum over the committed function multiplied by the eq function:

$$\hat{f}(u) = \sum_{b \in B_n} \mathbf{eq}(b, u) \hat{f}(b).$$

The classic sumcheck protocol, like gemini, works by $\log n$ reductions of the domain size by a factor of two; each round fixing one more variable of the summed function. In the above spirit, we could look at a modified sumcheck protocol, where the first variable ranges over a domain of super-constant size b. The first round univariate P_1 would thus have degree 2b in our case. We can send a commitment to it rather than its coefficients as usually done to maintain constant proof size. However, computing P_1 would require superlinear time $O(n \log b)$ - as we need to perform a b-size FFT for n/b values of the second variable appearing in the sum.

3 Preliminaries

3.1 Terminology and conventions

We work with integer parameter n that we'll assume throughout the paper is of the form $n=2^{2t}$ for integer t>0. We'll denote its square root by $b:=2^t=\sqrt{n}$. We index vectors starting from zero. For example, for $g\in\mathbb{F}^b$ we have $g=(g_0,\ldots,g_{b-1})$. We associate vectors with univariate polynomials in the following natural way: Given $g\in\mathbb{F}^b$ we denote $g(X):=\sum_{0\leq i< b}g_iX^i$.

We make the convention that integer ranges in sums begin at zero if not specified otherwise. Thus, we write $g(X) = \sum_{i < b} g_i X^i$.

We assume vectors of size n are indexed by two indices ranging over $\{0, \ldots, b-1\}$. Thus, for $f \in \mathbb{F}^n$, we have $f = (f_{0,0}, \ldots, f_{0,b-1}, \ldots, f_{b-1,0}, \ldots, f_{b-1,b-1})$. Accordingly, for $0 \le i < b$, we denote by f_i the vector $(f_{i,0}, \ldots, f_{i,b-1})$.

In particular, for $f \in \mathbb{F}^n$ we have under these notations that

$$f(X) := \sum_{i < b} X^i f_i(X^b) = \sum_{i < b} \sum_{j < b} f_{i,j} X^{i+j \cdot b}$$

3.2 Multilinear polynomials

Let $n=2^{2t}$. We define the well-known **eq** multilinear polynomial in 4t variables.

$$eq(x,y) := \prod_{i=1}^{t} (x_i y_i + (1 - x_i)(1 - y_i))$$

We have for $x, y \in \mathcal{B}_{2t}$, eq(x, y) = 1 when x = y and eq(x, y) = 0 otherwise.

We use the convention that an integer $0 \le i < n$ can be used as an input to **eq** by interpreting i as its binary representation. Namely, for $0 \le i < n$, $u \in \mathbb{F}^t$, **eq** $(i, u) := \mathbf{eq}(i_1, \ldots, i_t, u)$ where $i = \sum_{j \in [t]} i_j 2^{j-1}$.

For $a \in \mathbb{F}^n$, we define $\mathsf{ml}(f)$ to be the multilinear polynomial obtaining f's values on the boolean cube. Namely,

$$\mathsf{ml}(a)(X_1,\ldots,X_t) := \sum_{i < n} \mathbf{eq}(i,X_1,\ldots,X_t) \cdot a_i.$$

3.3 The algebraic group model

We introduce some terminology from [GWC19] to capture analysis in the Algebraic Group Model of Fuchsbauer, Kiltz and Loss[FKL18].

In our protocols, by an algebraic adversary \mathcal{A} in an SRS-based protocol we mean a poly(λ)-time algorithm which satisfies the following.

• For $i \in \{1, 2\}$, whenever \mathcal{A} outputs an element $A \in \mathbb{G}_i$, it also outputs a vector v over \mathbb{F} such that $A = \langle v, \mathsf{srs}_i \rangle$.

First we say our srs has degree Q if all elements of srs_i are of the form $[f(x)]_i$ for $f \in \mathbb{F}_{< Q+1}[X]$ and uniform $x \in \mathbb{F}$. In the following discussion let us assume we are executing a protocol with a degree Q SRS, and denote by $f_{i,j}$ the corresponding polynomial for the j'th element of srs_i .

Denote by a, b the vectors of \mathbb{F} -elements whose encodings in $\mathbb{G}1, \mathbb{G}2$ an algebraic adversary \mathcal{A} outputs during a protocol execution; e.g., the j'th $\mathbb{G}1$ element output by \mathcal{A} is $[a_j]_1$.

By a "real pairing check" we mean a check of the form

$$(a \cdot T_1) \cdot (T_2 \cdot b) = 0$$

for some matrices T_1, T_2 over \mathbb{F} . Note that such a check can indeed be done efficiently given the encoded elements and the pairing function $e : \mathbb{G}1 \times \mathbb{G}2 \to \mathbb{G}_t$.

Given such a "real pairing check", and the adversary \mathcal{A} and protocol execution during which the elements were output, define the corresponding "ideal check" as follows. Since \mathcal{A} is algebraic when he outputs $[a_j]_i$ he also outputs a vector v such that, from linearity, $a_j = \sum v_\ell f_{i,\ell}(x) = R_{i,j}(x)$ for $R_{i,j}(X) := \sum v_\ell f_{i,\ell}(X)$. Denote, for $i \in \{1,2\}$ the vector of polynomials $R_i = (R_{i,j})_j$. The corresponding ideal check, checks as a polynomial identity whether

$$(R_1 \cdot T_1) \cdot (T_2 \cdot R_2) \equiv 0$$

The following lemma is inspired by [FKL18]'s analysis of [Gro16], and tells us that for soundness analysis against algebraic adversaries it suffices to look at ideal checks. Before stating the lemma we define the Q-DLOG assumption similarly to [FKL18].

Definition 3.1. Fix integer Q. The Q-DLOG assumption for $(\mathbb{G}1,\mathbb{G}2)$ states that given

$$[1]_1, [x]_1, \dots, [x^Q]_1, [1]_2, [x]_2, \dots, [x^Q]_2$$

for uniformly chosen $x \in \mathbb{F}$, the probability of an efficient A outputting x is $negl(\lambda)$.

Lemma 3.2. Assume the Q-DLOG for ($\mathbb{G}1,\mathbb{G}2$). Given an algebraic adversary \mathcal{A} participating in a protocol with a degree Q SRS, the probability of any real pairing check passing is larger by at most an additive $\mathsf{negl}(\lambda)$ factor than the probability the corresponding ideal check holds.

See [GWC19] for the proof.

3.4 Polynomial commitment schemes for multilinear polynomials

Definition 3.3. Let $n = 2^t$. A multi-linear polynomial commitment scheme (ml-PCS) consists of

- gen(n) a randomized algorithm that outputs an SRS srs θ .
- com(f, srs) that given a polynomial $f \in \mathbb{F}^n$ returns a commitment cm to f.

• A public coin protocol open(cm, n, u, v) between parties \mathbf{P} and \mathbf{V} . \mathbf{P} is given $f \in \mathbb{F}^n$. \mathbf{P} and \mathbf{V} are both given integer n, cm- the purported commitment to f, $u \in \mathbb{F}^t$ and $v \in \mathbb{F}$ - the purported value $\mathsf{ml}(f)(u)$.

such that

- Completeness: Suppose that, cm = com(f, srs). Then if open is run correctly with values n, cm, u, v = ml(f)(u), V outputs accept with probability one.
- Knowledge soundness in the algebraic group model: There exists an efficient E such that for any algebraic adversary A the probability of A winning the following game is $negl(\lambda)$ over the randomness of A and gen.
 - 1. Given srs, A outputs n, cm.
 - 2. E, given access to the messages of A during the previous step, outputs $f \in \mathbb{F}^n$.
 - 3. A outputs $u \in \mathbb{F}^t$, $v \in \mathbb{F}$.
 - 4. A takes the part of P in the protocol open with inputs n, cm, u, v.
 - 5. A wins if
 - V outputs accept at the end of the protocol.
 - $\operatorname{ml}(f)(u) \neq v.$

4 Components

In this section we go over known components (with some new optimizations), that will be used in our main protocol in the next section.

4.1 Inner products in $O(b \log b)$ time.

For polynomials $g_1(X) = \sum_{i=0}^{d_1} a_i X^i$, $g_2 = \sum_{i=0}^{d_2} b_i X^i$ in $\mathbb{F}[X]$. We define $\langle g_1, g_2 \rangle$ to be $\sum_{i=0}^{d} a_i b_i$ where $d := \min\{d_1, d_2\}$. We present a convenient way to verify inner products $\langle g_1, g_2 \rangle$ similar to [BCC⁺16, MBKM19]. The basic observation is that for any $g_1(X), g_2(X) \in \mathbb{F}[X]$ is the constant coefficient of the rational function $R(X) := g_1(X)g_2(1/X)$. Thus, $\langle g_1, g_2 \rangle = v$ is equivalent to the existence of polynomials S_1, S_2 such that

$$g_1(X)g_2(1/X) = 1/X \cdot S_1(1/X) + v + X \cdot S_2(X)$$

We can thus sends commitments to S_1, S_2 as proof of the correctness of v. As an optimization, we observe that we can "symmetrize" R an look instead at the rational function

$$R'(X) := g_1(X)g_2(1/X) + g_1(1/X)g_2(1/X).$$

The advantage of R' is that the negative and positive coefficients are equal. Thus, $\langle g_1, g_2 \rangle = v$ is equivalent to the existence of $S(X) \in \mathbb{F}[X]$ such that

$$g_1(X)g_2(1/X) + g_1(1/X)g_2(1/X) = 2v + X \cdot S(X) + (1/X)S(1/X).$$

Claim 4.1. Suppose $g_1(X), g_2(X) \in \mathbb{F}_{< b}[X]$. Let S(X) be as defined above. Then S can be computed in $O(b \log b)$ \mathbb{F} -operations.

Note that when $g_1, g_2 \in \mathbb{F}_{< b}[X]$ the coefficients of S(X)

Batching inner product checks Suppose we now have two inner product claims $\langle g_1, g_2 \rangle = v_1$ and $\langle h_1, h_2 \rangle = v_2$. If we choose random $\gamma \in \mathbb{F}$ with high probability

- 1. V chooses random $\gamma \in \mathbb{F}$
- 2. **P** sends $S \in \mathbb{F}[X]$ such that

$$g_1(X)g_2(1/X)+g_1(X)g_2(1/X)+\gamma(h_1(X)h_2(1/X)+h_1(1/X)h_2(X))=2(v_1+\gamma v_2)+X\cdot S(X)$$

4.2 Multi-liner evaluations as inner products of univariate polynomials.

For $u \in \mathcal{B}_t$ define the polynomial $P_u = \sum_{i < b} \mathbf{eq}(i, u) X^i$. Thus, we have for $g(X) \in \mathbb{F}_{< b}[X]$, $\mathsf{ml}(g) = < g, P_u >$.

A verifier Inner products.

4.3 Degree checks

This is based on Thakur [Tha23].

4.4 Batching

Common practice to obtain an inner product of tw Degree checks

5 Univariate division

Claim 5.1. Fix integers b > 0 and let $n = b^2$. Fix $\alpha \in \mathbb{F}$, and $f(X) \in \mathbb{F}_{< n}[X]$. Let $f_0(X), \ldots, f_{b-1}(X) \in \mathbb{F}_{< b}[X]$ be such that $f(X) = \sum_{i < b} X^i f_i(X^b)$. Let $g(X) \in \mathbb{F}_{< b}[X], q(X) \in \mathbb{F}[X]$ be such that

$$f(X) = (X^b - \alpha) \cdot q(X) + g(X).$$

Then,

1.
$$g(X) = \sum_{i < b} X^i f_i(\alpha)$$
.

2. The coefficients of q(X) can be computed in O(n) \mathbb{F} -operations.

Proof. To see the first item, note that reduction $\mod X^b - \alpha$ corresponds to substituting α into X^b inside each $f_i(X^b)$ in the expression $\sum_{i < b} X^i f_i(X^b)$. We proceed to the computation of q(X). We compute for each $0 \le i < b$, the coefficients of the quotient $q_i(X) \in \mathbb{F}[X]$ such that

$$f_i(X) = q_i(X)(X - \alpha) + f_i(\alpha).$$

Using Horner's method for division by the linear polynomial $X - \alpha$ this requires only n multiplications and additions in \mathbb{F} . Now, we have that

$$f(X) = \sum_{i < b} X^{i} f_{i}(X^{b}) = \sum_{i < b} X^{i} \left(q_{i}(X^{b})(X^{b} - \alpha) + f_{i}(\alpha) \right) = q(X)(X^{b} - \alpha) + g(X),$$

for $q(X) := \sum_{i < b} X^i q_i(X^b)$. Thus, the coefficients of q(X) are simply the interleaving of the coefficients of the $\{q_i(X)\}$.

6 Main Construction

MCRCURY is the tuple (gen, com, open) described next.

 $\operatorname{\mathsf{gen}}(n)$: Choose random $x \in \mathbb{F}$ and outputs $\left\{ [1]_1, [x]_1, \dots, [x^{n-1}]_1, [1]_2, [x]_2 \right\}$

$$\underline{\mathsf{com}}(n, f, \mathsf{srs})$$
: Output $\sum_{i < b} \sum_{j < b} f_{i,j} \cdot \left[x^{i \cdot b + j} \right]_1$.

 $\operatorname{open}(n,\operatorname{cm},u,v;f)$:

- 1. Committing to partial sums:
 - (a) **P** computes the polynomial to $h(X) := \sum_{i < b} \mathbf{eq}(i, u_1) f_i(X)$. Note that the coefficient of X^j in h(X) is $\sum_{i < b} \mathbf{eq}(i, u_1) f_{i,j}$ hence we think of it as a commitment to partial sums.
 - (b) **P** computes and sends $h := [h(x)]_1$.
- 2. Committing to "folded" polynomial g:
 - (a) **V** sends random $\alpha \in \mathbb{F}$.
 - (b) **P** computes polynomials $g(X) \in \mathbb{F}_{< b}[X]$ and $q(X) \in \mathbb{F}[X]$ such that

$$f(X) = (X^b - \alpha) \cdot q(X) + q(X).$$

- (c) **P** computes and sends $q := [q(x)]_1$ and $g := [g(x)]_1$.
- 3. Sending proofs of correctness for h and the degree of g:
 - (a) V sends a random batching challenge $\gamma \in \mathbb{F}$.
 - (b) **P** computes and sends $s = [S(x)]_1$ where $S(X) \in \mathbb{F}[X]$ is such that

$$g(X)P_{u_1}(1/X) + g(1/X)P_{u_1}(X) + \gamma \cdot (h(X)P_{u_2}(1/X) + h(1/X)P_{u_2}(X))$$

= $h(\alpha) + \gamma \cdot v + X \cdot S(X) + (1/X)S(1/X).$

(c) **P** computes and sends $d := [D(x)]_1$ where

$$D(X) := X^{b-1}g(1/X).$$

4. KZG evaluations:

- (a) V sends a random evaluation challenge $\mathfrak{z} \in \mathbb{F}$.
- (b) **P** sends the values $f_{\mathfrak{z}} := f(\mathfrak{z}), q_{\mathfrak{z}} := q(\mathfrak{z}), g_{\mathfrak{z}} := g(\mathfrak{z}), \bar{g}_{\mathfrak{z}} := g(1/\mathfrak{z}), h_{\mathfrak{z}} := h(\mathfrak{z}), h_{\mathfrak{z}} := h(1/\mathfrak{z}), h_{\alpha} := h(\alpha), s_{\mathfrak{z}} := s(\mathfrak{z}), \bar{s}_{\mathfrak{z}} := s(1/\mathfrak{z}), D_{\mathfrak{z}} := D(\mathfrak{z}).$
- (c) V sends a random KZG batching challenge $\eta \in \mathbb{F}$.
- (d) **P** computes and sends the KZG opening proof $\pi_{\mathfrak{z}}$ for the values $f_{\mathfrak{z}}$ and $q_{\mathfrak{z}}$. That is $\pi_{\mathfrak{z}} := [H(x)]_1$ for

$$H(X) := \frac{f(X) - f(\mathfrak{z}) + \eta(q(X) - q(\mathfrak{z}))}{X - \mathfrak{z}}.$$

- (e) **P** computes and send a batched KZG opening proof π' for the rest of the values sent in step 4b, as described in Section 4 of [BDFG20].
- (f) V checks the proof π_i as in [KZG10]:

$$e(\operatorname{cm} - [f_{\mathfrak{z}}]_1 + \eta(\operatorname{q} - [q_{\mathfrak{z}}]_1), [1]_2) = e(\pi_{\mathfrak{z}}, [x]_2).$$

- (g) V checks the opening proof π' as described in [BDFG20].
- (h) V checks the equation

$$g_3 P_{u_1}(1/3) + \bar{g}_3 P_{u_1}(3) + \gamma (h_3 P_{u_2}(1/3) + \bar{h}_3 P_{u_2}(3)) = h_\alpha + \gamma v + 3s_3 + (1/3)\bar{s}_3.$$

- (i) **V** checks the equation $D_{\mathfrak{z}} = \mathfrak{z}^{b-1}\bar{g}_{\mathfrak{z}}$.
- (j) If one of the checks in steps 4f-4i fails **V** outputs reject. Otherwise **V** outputs accept.

Runtime of **P**: Computing q(X) in step 2b requires O(n) operations by Claim 5.1. Computing **q** and $\pi_{\mathfrak{z}}$ requires two MSMs of size n. All other steps are on polynomials of size $O(b) = O(\sqrt{n})$.

Proving knowledge soundness: Let \mathcal{A} be an efficient algebraic adversary participating in the Knowledge Soundness game from Definition 3.3. We show its probability of winning the game is $\operatorname{negl}(\lambda)$. Let $f \in \mathbb{F}^n$ be the vector sent by \mathcal{A} in the third step of the game such that $\operatorname{cm} = [f(x)]_1$. As \mathcal{A} is algebraic, when sending the commitments $\operatorname{h,q,g,s,d,\pi_3,\pi'}$ during protocol execution it also sends polynomials $h(X),q(X),g(X),S(X),D(X),H(X),Q(X)\in\mathbb{F}_{\leq n}[X]$ such that the former are their corresponding commitments. Let E be the event that \mathbf{V} outputs accept. Note that the event that \mathcal{A} wins the knowledge soundness game is contained in E. E implies all pairing checks have passed. Let $A \subset E$ be the event that one of the corresponding ideal pairing checks as defined in Section 3.3 didn't pass. According to Lemma 3.2, $\operatorname{prob}(A) = \operatorname{negl}(\lambda)$.

References

- [BCC⁺16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. pages 327–357, 2016.
- [BDFG20] D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Efficient polynomial commitment schemes for multiple points and polynomials. *IACR Cryptol. ePrint Arch.*, page 81, 2020.
- [FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications. In Advances in Cryptology CRYPTO 2018 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II, pages 33–62, 2018.

[gem]

- [Gro16] J. Groth. On the size of pairing-based non-interactive arguments. In Advances in Cryptology EUROCRYPT 2016 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, pages 305–326, 2016.
- [GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR Cryptology ePrint Archive, 2019:953, 2019.
- [KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their applications. pages 177–194, 2010.
- [MBKM19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge snarks from linear-size universal and updateable structured reference strings. *IACR Cryptology ePrint Archive*, 2019:99, 2019.
- [PH23] S. Papini and U. Haböck. Improving logarithmic derivative lookups using GKR. IACR Cryptol. ePrint Arch., page 1284, 2023.
- [Tha23] S. Thakur. A flexible snark via the monomial basis. *IACR Cryptol. ePrint Arch.*, page 788, 2023.

[zer]