Access answers to Maths RD Sharma Solutions For Class 12 Chapter 3 – Binary Operations

Exercise 3.1 Page No: 3.4

- 1. Determine whether the following operation define a binary operation on the given set or not:
- (i) "' on N defined by a * b = a^b for all a, b \in N.
- (ii) 'O' on Z defined by a O b = a^b for all a, b \in Z.
- (iii) '*' on N defined by a * b = a + b 2 for all a, b \in N
- (iv) ' \times_6 ' on S = {1, 2, 3, 4, 5} defined by a \times_6 b = Remainder when a b is divided by 6.
- (v) $+_6$ on S = {0, 1, 2, 3, 4, 5} defined by a $+_6$ b

$$= \begin{cases} a+b, & if \ a+b < 6 \\ a+b-6, & if \ a+b \ge 6 \end{cases}$$

- (vi) ' \odot ' on N defined by a \odot b= a^b + b^a for all a, b \in N
- (vii) '*' on Q defined by a * b = (a 1)/(b + 1) for all a, b \in Q

Solution:

(i) Given '*' on N defined by a * b = a^b for all a, b \in N.

Let a, $b \in N$. Then,

 $a^b \in N$ [: $a^b \neq 0$ and a, b is positive integer]

 \Rightarrow a * b \in N

Therefore,

 $a * b \in N, \forall a, b \in N$

Thus, * is a binary operation on N.

(ii) Given 'O' on Z defined by a O b = a^b for all a, b \in Z.

Both a = 3 and b = -1 belong to Z.

$$\Rightarrow$$
 a * b = 3⁻¹

= 1/3 ∉ Z

Thus, * is not a binary operation on Z.

(iii) Given '*' on N defined by a * b = a + b - 2 for all a, b \in N

If
$$a = 1$$
 and $b = 1$,
 $a * b = a + b - 2$
 $= 1 + 1 - 2$
 $= 0 \notin N$

Thus, there exist a = 1 and b = 1 such that $a * b \notin N$ So, * is not a binary operation on N.

(iv) Given ' \times_6 ' on S = {1, 2, 3, 4, 5} defined by a \times_6 b = Remainder when a b is divided by 6.

Consider the composition table,

X_6	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3	2	1

Here all the elements of the table are not in S.

$$\Rightarrow$$
 For a = 2 and b = 3,

a x_6 b = 2 x_6 3 = remainder when 6 divided by 6 = 0 \neq S Thus, x_6 is not a binary operation on S.

(v) Given ' $+_6$ ' on S = {0, 1, 2, 3, 4, 5} defined by a $+_6$ b

$$= \begin{cases} a+b, & if \ a+b < 6 \\ a+b-6, & if \ a+b \ge 6 \end{cases}$$

Consider the composition table,

+6	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0

2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Here all the elements of the table are not in S.

$$\Rightarrow$$
 For a = 2 and b = 3,

a x_6 b = 2 x_6 3 = remainder when 6 divided by 6 = 0 \neq Thus, x_6 is not a binary operation on S.

(vi) Given '
$$\odot$$
' on N defined by a \odot b= a^b + b^a for all a, b \in N Let a, b \in N. Then,

$$a^b, b^a \in N$$

$$\Rightarrow$$
 a^b + b^a \in N [::Addition is binary operation on N]

$$\Rightarrow$$
 a \odot b \in N

Thus, \odot is a binary operation on N.

(vii) Given '*' on Q defined by a * b =
$$(a - 1)/(b + 1)$$
 for all a, b \in Q

If
$$a = 2$$
 and $b = -1$ in Q,

$$a * b = (a - 1)/(b + 1)$$

$$= (2-1)/(-1+1)$$

= 1/0 [which is not defined]

For
$$a = 2$$
 and $b = -1$

a * b does not belongs to Q

So, * is not a binary operation in Q.

- 2. Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
- (i) On Z^+ , defined * by a * b = a b
- (ii) On Z^+ , define * by $a^*b = ab$
- (iii) On R, define * by $a*b = ab^2$
- (iv) On Z^+ define * by a * b = |a b|
- (v) On Z^+ define * by a * b = a
- (vi) On R, define * by a * $b = a + 4b^2$

Here, Z^+ denotes the set of all non-negative integers. Solution:

(i) Given On \mathbb{Z}^+ , defined * by a * b = a – b

If a = 1 and b = 2 in Z^+ , then

$$a * b = a - b$$

$$= 1 - 2$$

= -1 ∉ Z⁺ [because Z⁺ is the set of non-negative integers]

For a = 1 and b = 2,

Thus, * is not a binary operation on Z+.

(ii) Given Z^+ , define * by a*b = a b

Let $a, b \in Z^+$

$$\Rightarrow$$
 a, b \in Z⁺

$$\Rightarrow$$
 a * b \in Z⁺

Thus, * is a binary operation on R.

(iii) Given on R, define by $a*b = ab^2$

Let $a, b \in R$

$$\Rightarrow$$
 a, b² \in R

$$\Rightarrow$$
 ab² \in R

$$\Rightarrow$$
 a * b \in R

Thus, * is a binary operation on R.

(iv) Given on Z^+ define * by a * b = |a - b|

Let $a, b \in Z^+$

$$\Rightarrow$$
 | a - b | \in Z⁺

$$\Rightarrow$$
 a * b \in Z⁺

Therefore,

$$a * b \in Z^+, \forall a, b \in Z^+$$

Thus, * is a binary operation on Z⁺.

(v) Given on Z^+ define * by a * b = a

Let
$$a, b \in Z^+$$

$$\Rightarrow$$
 a \in Z⁺

$$\Rightarrow$$
 a * b \in Z⁺

Therefore, a * b \in Z⁺ \forall a, b \in Z⁺

Thus, * is a binary operation on Z⁺.

(vi) Given On R, define * by a * b = $a + 4b^2$

Let a. $b \in R$

$$\Rightarrow$$
 a, $4b^2 \in R$

$$\Rightarrow$$
 a + 4b² \in R

$$\Rightarrow$$
 a * b \in R

Therefore, a *b \in R, \forall a, b \in R

Thus, * is a binary operation on R.

3. Let * be a binary operation on the set I of integers, defined by a * b = 2a + b - 3. Find the value of 3 * 4.

Solution:

Given
$$a * b = 2a + b - 3$$

$$3*4 = 2(3) + 4 - 3$$

$$= 6 + 4 - 3$$

4. Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.

Solution:

LCM	1	2	3	4	5
1	1	2	3	4	5
2	2	2	6	4	10
3	3	5	3	12	15
4	4	4	12	4	20
5	5	10	15	20	5

In the given composition table, all the elements are not in the set $\{1, 2, 3, 4, 5\}$.

If we consider a=2 and b=3, a*b=LCM of a and $b=6\notin\{1,\,2,\,3,\,4,\,5\}$.

Thus, * is not a binary operation on {1, 2, 3, 4, 5}.

5. Let S = {a, b, c}. Find the total number of binary operations on S. Solution:

Number of binary operations on a set with n elements is nn2 Here, $S = \{a, b, c\}$

Number of elements in S = 3

Number of binary operations on a set with 3 elements is 332

Exercise 3.2 Page No: 3.12

- 1. Let "' be a binary operation on N defined by a * b = l.c.m. (a, b) for all a, $b \in N$
- (i) Find 2 * 4, 3 * 5, 1 * 6.
- (ii) Check the commutativity and associativity of "' on N.

Solution:

= 4

$$3 * 5 = I.c.m. (3, 5)$$

= 15

= 6

(ii) We have to prove commutativity of *

Let $a, b \in N$

$$a * b = l.c.m (a, b)$$

$$= b * a$$

Therefore

$$a * b = b * a \forall a, b \in N$$

Thus * is commutative on N.

Now we have to prove associativity of *

Let a, b,
$$c \in N$$

$$a * (b * c) = a * l.c.m. (b, c)$$

$$=$$
 l.c.m (a, b, c)

$$(a * b) * c = I.c.m. (a, b) * c$$

$$= I.c.m. ((a, b), c)$$

Therefore

$$(a * (b * c) = (a * b) * c, \forall a, b, c \in N$$

Thus, * is associative on N.

- 2. Determine which of the following binary operation is associative and which is commutative:
- (i) * on N defined by a * b = 1 for all a, b \in N
- (ii) * on Q defined by a * b = (a + b)/2 for all a, $b \in Q$

Solution:

(i) We have to prove commutativity of *

Let
$$a, b \in N$$

$$a * b = 1$$

$$b * a = 1$$

Therefore,

$$a * b = b * a$$
, for all $a, b \in N$

Thus * is commutative on N.

Now we have to prove associativity of *

Let a, b,
$$c \in N$$

Then
$$a * (b * c) = a * (1)$$

$$(a * b) *c = (1) * c$$

Therefore a * (b * c) = (a * b) *c for all a, b, $c \in N$

Thus, * is associative on N.

(ii) First we have to prove commutativity of *

Let a, $b \in N$

$$a * b = (a + b)/2$$

$$= (b + a)/2$$

$$= b * a$$

Therefore, a * b = b * a, $\forall a, b \in N$

Thus * is commutative on N.

Now we have to prove associativity of *

Let a, b, $c \in N$

$$a * (b * c) = a * (b + c)/2$$

$$= [a + (b + c)]/2$$

$$= (2a + b + c)/4$$

Now,
$$(a * b) * c = (a + b)/2 * c$$

$$= [(a + b)/2 + c]/2$$

$$= (a + b + 2c)/4$$

Thus,
$$a * (b * c) \neq (a * b) * c$$

If
$$a = 1$$
, $b = 2$, $c = 3$

$$1*(2*3) = 1*(2+3)/2$$

$$= [1 + (5/2)]/2$$

$$= 7/4$$

$$(1 * 2) * 3 = (1 + 2)/2 * 3$$

$$= 3/2 * 3$$

$$=[(3/2) + 3]/2$$

$$= 4/9$$

Therefore, there exist a = 1, b = 2, $c = 3 \in N$ such that $a * (b * c) \neq (a * b) * c$

Thus, * is not associative on N.

3. Let A be any set containing more than one element. Let "' be a binary operation on A defined by a * b = b for all a, b \in A Is "' commutative or associative on A?

Solution:

Let a, $b \in A$

Then, a * b = b

$$b * a = a$$

Therefore a * b \neq b * a

Thus, * is not commutative on A

Now we have to check associativity:

Let a, b, $c \in A$

$$a * (b * c) = a * c$$

= C

Therefore

$$a * (b * c) = (a * b) * c, \forall a, b, c \in A$$

Thus, * is associative on A

- 4. Check the commutativity and associativity of each of the following binary operations:
- (i) "' on Z defined by a * b = a + b + a b for all a, b \in Z
- (ii) "' on N defined by a * b = 2^{ab} for all a, b \in N
- (iii) '*' on Q defined by a * b = a b for all a, $b \in Q$
- (iv) ' \odot ' on Q defined by a \odot b = a^2 + b^2 for all a, b \in Q
- (v) 'o' on Q defined by a o b = (ab/2) for all a, b \in Q
- (vi) "' on Q defined by a * b = ab^2 for all a, b \in Q
- (vii) '*' on Q defined by a * b = a + a b for all a, $b \in Q$
- (viii) '*' on R defined by a * b = a + b -7 for all a, b \in R
- (ix) '*' on Q defined by a * b = $(a b)^2$ for all a, b \in Q
- (x) "' on Q defined by a * b = a b + 1 for all a, $b \in Q$
- (xi) '*' on N defined by a * b = a^b for all a, b \in N
- (xii) "' on Z defined by a * b = a b for all a, $b \in Z$
- (xiii) "' on Q defined by a * b = (ab/4) for all a, b \in Q
- (xiv) "
 on Z defined by a * b = a + b ab for all a, b \in Z
- (xv) "" on Q defined by a * b = gcd (a, b) for all a, b \in Q Solution:
- (i) First we have to check commutativity of *

Let a, $b \in Z$

Then a * b = a + b + ab

= b + a + ba

= b * a

Therefore,

 $a * b = b * a, \forall a, b \in Z$

Now we have to prove associativity of *

Let a, b, $c \in Z$, Then,

$$a * (b * c) = a * (b + c + b c)$$

$$= a + (b + c + b c) + a (b + c + b c)$$

$$= a + b + c + b c + a b + a c + a b c$$

$$(a * b) * c = (a + b + a b) * c$$

$$= a + b + a b + c + (a + b + a b) c$$

$$= a + b + ab + c + ac + bc + abc$$

Therefore,

$$a * (b * c) = (a * b) * c, \forall a, b, c \in Z$$

Thus, * is associative on Z.

(ii) First we have to check commutativity of *

Let $a, b \in N$

$$a * b = 2^{ab}$$

Therefore, a * b = b * a, $\forall a, b \in N$

Thus, * is commutative on N

Now we have to check associativity of *

Let a, b, $c \in N$

Then,
$$a * (b * c) = a * (2^{bc})$$

$$=2a*2bc$$

$$(a * b) * c = (2^{ab}) * c$$

$$=2ab*2c$$

Therefore, $a * (b * c) \neq (a * b) * c$

Thus, * is not associative on N

(iii) First we have to check commutativity of *

Let a, $b \in Q$, then

$$a * b = a - b$$

$$b * a = b - a$$

Therefore, $a * b \neq b * a$

Thus, * is not commutative on Q

Now we have to check associativity of *

Let a, b, $c \in Q$, then

$$a * (b * c) = a * (b - c)$$

$$= a - (b - c)$$

$$= a - b + c$$

$$(a * b) * c = (a - b) * c$$

$$= a - b - c$$

Therefore,

Thus, * is not associative on Q

(iv) First we have to check commutativity of ⊙

Let $a, b \in Q$, then

$$a \odot b = a^2 + b^2$$

$$= b^2 + a^2$$

Therefore, a \bigcirc b = b \bigcirc a, \forall a, b \in Q

Thus, ⊙ on Q

Now we have to check associativity of ⊙

Let a, b, $c \in Q$, then

$$a \odot (b \odot c) = a \odot (b^2 + c^2)$$

$$= a^2 + (b^2 + c^2)^2$$

$$= a^2 + b^4 + c^4 + 2b^2c^2$$

$$(a \odot b) \odot c = (a^2 + b^2) \odot c$$

$$= (a^2 + b^2)^2 + c^2$$

$$= a^4 + b^4 + 2a^2b^2 + c^2$$

Therefore,

$$(a \odot b) \odot c \neq a \odot (b \odot c)$$

Thus, ⊙ is not associative on Q.

(v) First we have to check commutativity of o

Let a, $b \in Q$, then

$$a \circ b = (ab/2)$$

$$= (b a/2)$$

$$= b o a$$

Therefore, a o b = b o a, \forall a, b \in Q

Thus, o is commutative on Q

Now we have to check associativity of o

Let a, b, $c \in Q$, then

$$a \circ (b \circ c) = a \circ (b c/2)$$

$$= [a (b c/2)]/2$$

$$= [a (b c/2)]/2$$

$$= (a b c)/4$$

$$(a \circ b) \circ c = (ab/2) \circ c$$

$$= [(ab/2) c]/2$$

$$= (a b c)/4$$

Therefore a o (b o c) = (a o b) o c, \forall a, b, c \in Q

Thus, o is associative on Q.

(vi) First we have to check commutativity of *

Let a, $b \in Q$, then

$$a * b = ab^2$$

$$b * a = ba^2$$

Therefore,

Thus, * is not commutative on Q

Now we have to check associativity of *

Let a, b, $c \in Q$, then

$$a * (b * c) = a * (bc^2)$$

$$= a (bc^2)^2$$

$$= ab^2 c^4$$

$$(a * b) * c = (ab^2) * c$$

$$= ab^2c^2$$

Therefore $a * (b * c) \neq (a * b) * c$

Thus, * is not associative on Q.

(vii) First we have to check commutativity of *

Let a, $b \in Q$, then

$$a * b = a + ab$$

$$b * a = b + ba$$

$$= b + ab$$

Therefore, a * b ≠ b * a

Thus, * is not commutative on Q.

Now we have to prove associativity on Q.

Let a, b, $c \in Q$, then

$$a * (b * c) = a * (b + b c)$$

$$= a + a (b + b c)$$

$$= a + ab + abc$$

$$(a * b) * c = (a + a b) * c$$

$$= (a + a b) + (a + a b) c$$

$$= a + ab + ac + abc$$

Therefore $a * (b * c) \neq (a * b) * c$

Thus, * is not associative on Q.

(viii) First we have to check commutativity of *

Let $a, b \in R$, then

$$a * b = a + b - 7$$

$$= b + a - 7$$

$$= b * a$$

Therefore,

$$a * b = b * a$$
, for all $a, b \in R$

Thus, * is commutative on R

Now we have to prove associativity of * on R.

Let a, b, $c \in R$, then

$$a * (b * c) = a * (b + c - 7)$$

$$= a + b + c - 7 - 7$$

$$= a + b + c - 14$$

$$(a * b) * c = (a + b - 7) * c$$

$$= a + b - 7 + c - 7$$

$$= a + b + c - 14$$

Therefore.

$$a * (b * c) = (a * b) * c, for all a, b, c \in R$$

Thus, * is associative on R.

(ix) First we have to check commutativity of *

Let $a, b \in Q$, then

$$a * b = (a - b)^2$$

$$= (b - a)^2$$

Therefore,

$$a * b = b * a$$
, for all $a, b \in Q$

Thus, * is commutative on Q

Now we have to prove associativity of * on Q

Let a, b, $c \in Q$, then

$$a * (b * c) = a * (b - c)^{2}$$

$$= a * (b^2 + c^2 - 2 b c)$$

$$= (a - b^2 - c^2 + 2bc)^2$$

$$(a * b) * c = (a - b)^2 * c$$

$$= (a^2 + b^2 - 2ab) * c$$

$$= (a^2 + b^2 - 2ab - c)^2$$

Therefore, $a * (b * c) \neq (a * b) * c$

Thus, * is not associative on Q.

(x) First we have to check commutativity of *

```
Let a, b \in Q, then
```

$$a * b = ab + 1$$

$$= ba + 1$$

$$= b * a$$

Therefore

$$a * b = b * a$$
, for all $a, b \in Q$

Thus, * is commutative on Q

Now we have to prove associativity of * on Q

Let a, b, $c \in Q$, then

$$a * (b * c) = a * (bc + 1)$$

$$= a (b c + 1) + 1$$

$$= abc+a+1$$

$$(a * b) * c = (ab + 1) * c$$

$$= (ab + 1) c + 1$$

$$= abc+c+1$$

Therefore, $a * (b * c) \neq (a * b) * c$

Thus, * is not associative on Q.

(xi) First we have to check commutativity of *

Let $a, b \in N$, then

$$a * b = a^b$$

$$b * a = b^a$$

Therefore, a * b ≠ b * a

Thus, * is not commutative on N.

Now we have to check associativity of *

$$a * (b * c) = a * (b^c)$$

=

$$a^{b^c}$$

$$(a * b) * c = (a^b) * c$$

$$= (a^b)^c$$

Therefore, $a * (b * c) \neq (a * b) * c$

Thus, * is not associative on N

(xii) First we have to check commutativity of *

Let a, $b \in Z$, then

$$a * b = a - b$$

$$b * a = b - a$$

Therefore,

Thus, * is not commutative on Z.

Now we have to check associativity of *

Let a, b, $c \in Z$, then

$$a * (b * c) = a * (b - c)$$

$$= a - (b - c)$$

$$= a - (b + c)$$

$$(a * b) * c = (a - b) - c$$

$$= a - b - c$$

Therefore, $a * (b * c) \neq (a * b) * c$

Thus, * is not associative on Z

(xiii) First we have to check commutativity of *

Let $a, b \in Q$, then

$$a * b = (ab/4)$$

$$= (ba/4)$$

$$= b * a$$

Therefore, a * b = b * a, for all $a, b \in Q$

Thus, * is commutative on Q

Now we have to check associativity of *

Let a, b, $c \in Q$, then

$$a * (b * c) = a * (b c/4)$$

$$= [a (b c/4)]/4$$

$$= (a b c/16)$$

$$(a * b) * c = (ab/4) * c$$

$$= [(ab/4) c]/4$$

= a b c/16

Therefore,

$$a * (b * c) = (a * b) * c for all a, b, c \in Q$$

Thus, * is associative on Q.

(xiv) First we have to check commutativity of *

Let a, $b \in Z$, then

$$a * b = a + b - ab$$

$$= b + a - ba$$

$$= b * a$$

Therefore, a * b = b * a, for all $a, b \in Z$

Thus, * is commutative on Z.

Now we have to check associativity of *

Let a, b, $c \in Z$

$$a * (b * c) = a * (b + c - b c)$$

$$= a + b + c - b c - ab - ac + a b c$$

$$(a * b) * c = (a + b - a b) c$$

$$= a + b - ab + c - (a + b - ab) c$$

$$= a + b + c - ab - ac - bc + abc$$

Therefore,

$$a * (b * c) = (a * b) * c$$
, for all $a, b, c \in Z$

Thus, * is associative on Z.

(xv) First we have to check commutativity of *

Let a, $b \in N$, then

$$a * b = gcd (a, b)$$

$$= gcd (b, a)$$

$$= b * a$$

Therefore, a * b = b * a, for all $a, b \in N$

Thus, * is commutative on N.

Now we have to check associativity of *

Let a, b, $c \in N$

$$a * (b * c) = a * [gcd (a, b)]$$

= gcd (a, b, c)
(a * b) * c = [gcd (a, b)] * c
= gcd (a, b, c)
Therefore,
a * (b * c) = (a * b) * c, for all a, b, c
$$\in$$
 N

Thus, * is associative on N.

5. If the binary operation o is defined by a0b = a + b - ab on the set $Q - \{-1\}$ of all rational numbers other than 1, show that o is commutative on Q - [1].

Solution:

Let a, $b \in Q - \{-1\}$.

Then aob = a + b - ab

- = b+a-ba
- = boa

Therefore,

aob = boa for all a, b \in Q – {-1}

Thus, o is commutative on $Q - \{-1\}$

6. Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative?

Solution:

Let a, b \in Z

$$a * b = 3a + 7b$$

$$b * a = 3b + 7a$$

Thus, a * b ≠ b * a

Let a = 1 and b = 2

$$1 * 2 = 3 \times 1 + 7 \times 2$$

$$= 3 + 14$$

$$2 * 1 = 3 \times 2 + 7 \times 1$$

$$= 6 + 7$$

$$= 13$$

Therefore, there exist a = 1, $b = 2 \in Z$ such that $a * b \neq b * a$

Thus, * is not commutative on Z.

7. On the set Z of integers a binary operation * is defined by a 8 b = ab + 1 for all a, $b \in Z$. Prove that * is not associative on Z.

Solution:

Let a, b,
$$c \in Z$$

 $a * (b * c) = a * (bc + 1)$
 $= a (bc + 1) + 1$
 $= a b c + a + 1$
 $(a * b) * c = (ab + 1) * c$
 $= (ab + 1) c + 1$
 $= a b c + c + 1$
Thus, $a * (b * c) \ne (a * b) * c$
Thus, * is not associative on Z.

Exercise 3.3 Page No: 3.15

1. Find the identity element in the set I^+ of all positive integers defined by a * b = a + b for all a, b $\in I^+$.

Solution:

Let e be the identity element in I+ with respect to * such that

$$a * e = a = e * a, \forall a \in I^{+}$$
 $a * e = a \text{ and } e * a = a, \forall a \in I^{+}$
 $a + e = a \text{ and } e + a = a, \forall a \in I^{+}$
 $e = 0, \forall a \in I^{+}$

Thus, 0 is the identity element in I+ with respect to *.

2. Find the identity element in the set of all rational numbers except
1 with respect to * defined by a * b = a + b + ab

Solution:

Let e be the identity element in I+ with respect to * such that

$$a * e = a = e * a, \forall a \in Q - \{-1\}$$

 $a * e = a \text{ and } e * a = a, \forall a \in Q - \{-1\}$
 $a + e + ae = a \text{ and } e + a + ea = a, \forall a \in Q - \{-1\}$

e + ae = 0 and e + ea = 0,
$$\forall$$
 a \in Q - {-1}
e (1 + a) = 0 and e (1 + a) = 0, \forall a \in Q - {-1}
e = 0, \forall a \in Q - {-1} [because a not equal to -1]
Thus, 0 is the identity element in Q - {-1} with respect to *.

Exercise 3.4 Page No: 3.25

- 1. Let * be a binary operation on Z defined by a * b = a + b 4 for all $a, b \in Z$.
- (i) Show that * is both commutative and associative.
- (ii) Find the identity element in Z
- (iii) Find the invertible element in Z.

Solution:

(i) First we have to prove commutativity of *

Let
$$a, b \in Z$$
. then,

$$a * b = a + b - 4$$

$$= b + a - 4$$

Therefore,

$$a * b = b * a, \forall a, b \in Z$$

Thus, * is commutative on Z.

Now we have to prove associativity of Z.

Let a, b, $c \in Z$. then,

$$a * (b * c) = a * (b + c - 4)$$

$$= a + b + c - 4 - 4$$

$$= a + b + c - 8$$

$$(a * b) * c = (a + b - 4) * c$$

$$= a + b - 4 + c - 4$$

$$= a + b + c - 8$$

Therefore,

$$a * (b * c) = (a * b) * c$$
, for all a, b, $c \in Z$

Thus, * is associative on Z.

(ii) Let e be the identity element in Z with respect to * such that

$$a * e = a = e * a \forall a \in Z$$

$$a * e = a$$
 and $e * a = a$, $\forall a \in Z$

$$a + e - 4 = a$$
 and $e + a - 4 = a$, $\forall a \in Z$

$$e = 4, \forall a \in Z$$

Thus, 4 is the identity element in Z with respect to *.

(iii) Let $a \in Z$ and $b \in Z$ be the inverse of a. Then,

$$a * b = e = b * a$$

$$a * b = e \text{ and } b * a = e$$

$$a + b - 4 = 4$$
 and $b + a - 4 = 4$

$$b = 8 - a \in Z$$

Thus, 8 - a is the inverse of $a \in Z$

2. Let * be a binary operation on Q_0 (set of non-zero rational numbers) defined by a * b = (3ab/5) for all a, b \in Q_0 . Show that * is commutative as well as associative. Also, find its identity element, if it exists.

Solution:

First we have to prove commutativity of *

Let $a, b \in Q_0$

$$a * b = (3ab/5)$$

$$= (3ba/5)$$

$$= b * a$$

Therefore, a * b = b * a, for all $a, b \in Q_0$

Now we have to prove associativity of *

Let a, b, $c \in Q_0$

$$a * (b * c) = a * (3bc/5)$$

$$= [a (3 bc/5)]/5$$

$$= 3 abc/25$$

$$(a * b) * c = (3 ab/5) * c$$

$$= [(3 ab/5) c]/5$$

$$= 3 abc / 25$$

Therefore a * (b * c) = (a * b) * c, for all a, b, $c \in Q_0$

Thus * is associative on Q₀

Now we have to find the identity element

Let e be the identity element in Z with respect to * such that

$$a * e = a = e * a \forall a \in Q_0$$

$$a * e = a$$
 and $e * a = a$, $\forall a \in Q_0$

3ae/5 = a and 3ea/5 = a, $\forall a \in Q_0$

 $e = 5/3 \forall a \in Q_0$ [because a is not equal to 0]

Thus, 5/3 is the identity element in Q₀ with respect to *.

- 3. Let * be a binary operation on $Q \{-1\}$ defined by a * b = a + b + ab for all a, b $\in Q \{-1\}$. Then,
- (i) Show that * is both commutative and associative on Q {-1}
- (ii) Find the identity element in $Q \{-1\}$
- (iii) Show that every element of $Q \{-1\}$ is invertible. Also, find inverse of an arbitrary element.

Solution:

(i) First we have to check commutativity of *

Let a, b
$$\in$$
 Q $- \{-1\}$

Then
$$a * b = a + b + ab$$

$$= b + a + ba$$

$$= b * a$$

Therefore,

$$a * b = b * a, \forall a, b \in Q - \{-1\}$$

Now we have to prove associativity of *

Let a, b,
$$c \in Q - \{-1\}$$
, Then,

$$a * (b * c) = a * (b + c + b c)$$

$$= a + (b + c + b c) + a (b + c + b c)$$

$$= a + b + c + b c + a b + a c + a b c$$

$$(a * b) * c = (a + b + a b) * c$$

$$= a + b + a b + c + (a + b + a b) c$$

$$= a + b + ab + c + ac + bc + abc$$

Therefore,

$$a * (b * c) = (a * b) * c, \forall a, b, c \in Q - \{-1\}$$

Thus, * is associative on $Q - \{-1\}$.

(ii) Let e be the identity element in I⁺ with respect to * such that

$$a * e = a = e * a, \forall a \in Q - \{-1\}$$

$$a * e = a \text{ and } e * a = a, \forall a \in Q - \{-1\}$$

$$a + e + ae = a$$
 and $e + a + ea = a$, $\forall a \in Q - \{-1\}$

$$e + ae = 0$$
 and $e + ea = 0$, $\forall a \in Q - \{-1\}$

$$e(1 + a) = 0$$
 and $e(1 + a) = 0$, $\forall a \in Q - \{-1\}$

$$e = 0$$
, \forall $a \in Q - \{-1\}$ [because a not equal to -1]

Thus, 0 is the identity element in $Q - \{-1\}$ with respect to *.

(iii) Let $a \in Q - \{-1\}$ and $b \in Q - \{-1\}$ be the inverse of a. Then,

$$a * b = e = b * a$$

$$a * b = e \text{ and } b * a = e$$

$$a + b + ab = 0$$
 and $b + a + ba = 0$

$$b(1 + a) = -aQ - \{-1\}$$

$$b = -a/1 + a Q - \{-1\}$$
 [because a not equal to -1]

Thus, -a/1 + a is the inverse of $a \in Q - \{-1\}$

- 4. Let $A = R_0 \times R$, where R_0 denote the set of all non-zero real numbers. A binary operation 'O' is defined on A as follows: (a, b) O (c, d) = (ac, bc + d) for all (a, b), (c, d) $\in R_0 \times R$.
- (i) Show that 'O' is commutative and associative on A
- (ii) Find the identity element in A
- (iii) Find the invertible element in A.

Solution:

(i) Let
$$X = (a, b)$$
 and $Y = (c, d) \in A$, $\forall a, c \in R_0$ and $b, d \in R$

Then,
$$X O Y = (ac, bc + d)$$

And
$$Y \circ X = (ca, da + b)$$

Therefore,

$$X O Y = Y O X, \forall X, Y \in A$$

Thus, O commutative on A.

Now we have to check associativity of O

```
Let X = (a, b), Y = (c, d) and Z = (e, f), \forall a, c, e \in R_0 and b, d, f \in R
X O (Y O Z) = (a, b) O (ce, de + f)
= (ace, bce + de + f)
(X O Y) O Z = (ac, bc + d) O (e, f)
= (ace, (bc + d) e + f)
= (ace, bce + de + f)
Therefore, X O (Y O Z) = (X O Y) O Z, \forall X, Y, Z \in A
(ii) Let E = (x, y) be the identity element in A with respect to O, \forall x \in
R_0 and y \in R
Such that,
X O E = X = E O X, \forall X \in A
X O E = X and EOX = X
(ax, bx + y) = (a, b) and (xa, ya + b) = (a, b)
Considering (ax, bx + y) = (a, b)
ax = a
x = 1
And bx + y = b
y = 0 [since x = 1]
Considering (xa, ya + b) = (a, b)
xa = a
x = 1
And ya + b = b
y = 0 [since x = 1]
Therefore (1, 0) is the identity element in A with respect to O.
(iii) Let F = (m, n) be the inverse in A \forall m \in R_0 and n \in R
X O F = E  and F O X = E
(am, bm + n) = (1, 0) and (ma, na + b) = (1, 0)
Considering (am, bm + n) = (1, 0)
am = 1
m = 1/a
And bm + n = 0
```

n = -b/a [since m = 1/a] Considering (ma, na + b) = (1, 0) ma = 1 m = 1/aAnd na + b = 0 n = -b/a

Therefore the inverse of $(a, b) \in A$ with respect to O is (1/a, -1/a)

Exercise 3.5 Page No: 3.33

1. Construct the composition table for x_4 on set $S = \{0, 1, 2, 3\}$. Solution:

Given that x_4 on set $S = \{0, 1, 2, 3\}$

Here,

 $1 \times_4 1$ = remainder obtained by dividing 1×1 by 4

= 1

 $0 \times_4 1$ = remainder obtained by dividing 0×1 by 4

= 0

 $2 \times_4 3$ = remainder obtained by dividing 2×3 by 4

= 2

 $3 \times_4 3$ = remainder obtained by dividing 3×3 by 4

= 1

So, the composition table is as follows:

\times_4	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	2	2
3	0	3	2	1

2. Construct the composition table for $+_5$ on set S = $\{0, 1, 2, 3, 4\}$ Solution:

$$1 +_5 1$$
 = remainder obtained by dividing $1 + 1$ by $5 = 2$
 $3 +_5 1$ = remainder obtained by dividing $3 + 1$ by $5 = 2$
 $4 +_5 1$ = remainder obtained by dividing $4 + 1$ by $5 = 3$

So, the composition table is as follows:

+5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

3. Construct the composition table for x_6 on set $S = \{0, 1, 2, 3, 4, 5\}$. Solution:

Here,

$$1 \times_6 1$$
 = remainder obtained by dividing 1×1 by 6

= 1

$$3 \times_6 4$$
 = remainder obtained by dividing 3×4 by 6

= 0

$$4 \times_6 5$$
 = remainder obtained by dividing 4×5 by 6

= 2

So, the composition table is as follows:

\times_6	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4

3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

4. Construct the composition table for x_5 on set $Z_5 = \{0, 1, 2, 3, 4\}$ Solution:

Here,

 $1 \times_5 1$ = remainder obtained by dividing 1×1 by 5

= 1

 $3 \times_5 4$ = remainder obtained by dividing 3×4 by 5

= 2

 $4 \times_5 4$ = remainder obtained by dividing 4×4 by 5

= 1

So, the composition table is as follows:

\times_5	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

5. For the binary operation x_{10} set $S = \{1, 3, 7, 9\}$, find the inverse of 3.

Solution:

Here,

1 \times_{10} 1 = remainder obtained by dividing 1 \times 1 by 10

= 1

 $3 \times_{10} 7 = \text{remainder obtained by dividing } 3 \times 7 \text{ by } 10$

= 1

 $7 \times_{10} 9 = \text{remainder obtained by dividing } 7 \times 9 \text{ by } 10$

= 3

So, the composition table is as follows:

\times_{10}	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

From the table we can observe that elements of first row as same as the top-most row.

So, $1 \in S$ is the identity element with respect to x_{10}

Now we have to find inverse of 3

$$3 \times_{10} 7 = 1$$

So the inverse of 3 is 7.