CSE 321b

Computer Organization (2)

تنظيم الحاسب (2)

3rd year, Computer Engineering
Winter 2016
Lecture #5

Dr. Hazem Ibrahim Shehata Dept. of Computer & Systems Engineering

Credits to Dr. Ahmed Abdul-Monem Ahmed for the slides

Adminstrivia

- Assignment #1:
 - —Solution was posted to website.

Website: http://hshehata.github.io/courses/zu/cse321b/

Office hours: Sunday 11:30am - 12:30pm

Chapter 6. External Memory (*Cont.***)**

Types of External Memory

- Magnetic Disk
- Redundant Array of Independent Disks (RAID)
- Solid-State Drive (SSD)
- Optical Disk
- Magnetic Tape

Solid-State Drive (SSD)

- Purpose: complement or even replace HDDs!
- The term "solid-state" refers to electronic circuitry built with semiconductors.
- SSD's store data in flash memory cells.
- Each flash memory cell is built using a single transistor: floating-gate MOSFET (FG-MOSFET).

States of FG-MOSFET

<u>Logic 1</u>

- No electrons trapped on the FG.
- Smaller threshold voltage (V_{T1})
 - —Forming the channel (i.e., turning transistor on) requires applying a relatively smaller voltage to CG.

<u>Logic 0</u>

- Electrons trapped on the FG.
- Higher threshold voltage (V_{T0})
 - —Forming the channel (i.e., turning transistor on) requires applying a slightly higher voltage to CG.

Read/Program/Erase Flash Memory Cell

- To read:
 - —Apply voltage V_r to CG s.t. $V_{T1} < V_r < V_{T0}$.
 - —Measure (sense) drain current (I_d) .
 - $-I_d > 0 \rightarrow \text{transistor on } \rightarrow \text{logic } 1$
 - $-I_d$ = 0 → transistor off → logic 0.
- To program (write "0"): Only Applicable to NOR flash!!
 - —Apply high +ve voltage to CG & D.
 - Electrons jump from channel through (insulating layer onto FG → hot-electron injection.
- To erase (write "1"):
 - —Apply high voltage diff. between D & CG.
 - —Electrons pulled off FG through insulating layer to D → quantum tunneling.

SOURCE

FLOATING

DRAIN

Layouts of Flash Memory

Capacity: < 2 Tb.

NAND/NOR Flash – Reading

NAND Flash

NAND/NOR Flash – Programming (X → 0)

Technique:

- Hot electron injection.
- Explanation:
 - Electrons
 jump from
 channel to
 FG.

Technique:

- Quantum tunneling (injection).
- Explanation:
 - Electrons
 tunnel from
 B to FG.

NAND/NOR Flash – Block Erasure (X → 1)

Technique:

- Quantum tunneling (ejection).
- Explanation:
 - Electrons tunnel from FG to S/B.

Technique:

- Quantum tunneling (ejection).
- Explanation:
 - Electrons tunnel from FG to B.

NAND Flash

NAND Flash Block Organization

- NAND flash memory is organized as a set of independent blocks. Each block has a set of pages.
- Blocks are the smallest erasable units.
- Pages are the smallest programmable units.
 - —Partial pages can be programmed in some devices!

^{**} The numbers of bits-per-page and pages-per-block here are typical for a 2Gb NAND flash device **

NAND Flash Memory Architecture

SSD Architecture

- Controller: provides SSD device level interfacing & firmware execution.
- Addressing: logic to select one of the flash memory components.
- Data buffer/cache: High-speed RAM for speed matching and increasing data throughput.
- Error correction: Logic for error detection and correction.
- Flash memory components: Individual NAND flash chips.

SSD vs. HDD

- SSDs have the following advantages over HDDs:
 - —Higher input/output operations per second (IOPS)
 - —Longer lifespan: no mechanical wear.
 - —Lower power consumption.
 - Quieter and cooler running capabilities.
 - —Lower access times & latency rates: >10x faster.

	NAND Flash Drives	Disk Drives
I/O per second (sustained)	Read: 45,000 Write: 15,000	300
Throughput (MB/s)	Read: 200+ Write: 100+	up to 80
Access Time (ms)	0.1	4–10
Storage capacity (year: 2014)	up to 2 TB	up to 8 TB
Cost per capacity (year: 2014)	\$0.45/GB	\$0.05/GB

Optical Storage - History

• 1983 CD (Compact Disk, audio CD)

CD-ROM

.

1996 DVD-ROM

DVD-R

.

• 2002 Blu-ray

.

CD-ROM

- Same technology used for audio (CD).
 - —Difference: CD-ROM drives support error-correction.
- Capacity
 - —Data: 650-700MB, or Audio: 74-80 minute.
- Material
 - Polycarbonate coated with highly reflective coat, usually aluminium.
- Data stored as sequence of pits engraved along a spiral track on top of polycarbonate layer.
- Read by reflecting laser.
- Constant packing density → Constant Linear
 Velocity (CLV) → variable angular velocity.

CD-ROM - Fabrication

- Master disk: Info printed as pits on the polycarbonate surface using a high-intensity laser.
- Master is used to make a die to stamp out copies.
- Pitted surface coated with a reflective material (Aluminium).
- Coat of acrylic to protect against dust and scratches.

CD-ROM - Operation

- CD drive transmits a low-power laser beam towards disk.
 - beam falls on a pit (rough surface) → low intensity reflected.
 - beam falls on a land (smooth surface) → high intensity reflected.
- Photo-sensor senses surface at regular intervals.
 - Change in elevation → logic 1, otherwise → logic 0.

CD-ROM Drive Speeds

Audio is single speed

- (1x=150kB/s)
- —Constant linear velocity
- -1.2 m/s
- —Track (spiral) is 5.27km long
- —Gives 4391 seconds = 73.2 minutes
- Other speeds are quoted as multiples.
 - -e.g. 24x (24x150kB/s=3.6MB/s)
- Quoted figure is maximum drive can achieve.

CD-ROM Block/Sector Format

- Mode 0=blank data field
- Mode 1=2048 byte data+error correction
- Mode 2=2336 byte data

Mag. disks: ID(track, sector, head, CRC), Data(512+2)

CD: ID(minute, second, sector, mode), Data(2048+288)

Access on CD-ROM

- Difficult!!
 - 1. Move head to a rough position.
 - 2. Set correct speed.
 - 3. Read address.
 - 4. Adjust to required location.

CD-ROM For & Against

Pros:

- —Large capacity (cf. floppy disks).
- —Easy to mass produce (cf. magnetic disks).
- -Removable (cf. magnetic disks).
- —Robust.

Cons:

- —Expensive for small quantities.
- —Slow (access time ≈ 0.5 sec).
- -Read only.

Other Optical Storage

- CD-Recordable (CD-R)
 - —Write Once Read Many (WORM).
 - —Quite affordable.
 - —Compatible with CD-ROM drives.
 - —Medium includes a dye layer. Reflectivity is activated by a high-intensity laser.
- CD-ReWritable (CD-RW)
 - —Erasable.
 - -Inexpensive.
 - —Mostly CD-ROM drive compatible.
 - —Phase change by a laser beam
 - Material has two different reflectivity's in two different phase states (crystalline or amorphous).
 - Eventually, the material loses its desirable properties (500000~1000000 erase cycles).

DVD

- Digital Video Disk
 - —Used to indicate a player for movies
 - Only plays video disks.
- Digital Versatile Disk
 - —Used to indicate a computer drive
 - Will read computer disks and play video disks.
- Very high capacity (4.7G per layer).
 - —Small spacing between spiral loops (tracks). Pits too. Shorter wavelength.
 - —Double layer: Semi-reflective layer on top of the reflective layer. Read by adjusting focus.
 - —Double sided.
- Full length movie on single disk (MPEG compression).

CD vs. DVD

(b) DVD-ROM, double-sided, dual-layer-Capacity 17 GB

Optical Storage - Types

Optical Disk

Capacity

Drive Compatibility

Structure

Gap

Side & layer

Products

650M~750MB

Incomp. with DVD

One 1.2mm base

Track gap=1.6µm

Pit gap= $0.834\mu m$

Single layer/side

CD

CD-ROM

CD-R

CD-RW

4.7G~17GB

Comp. with CD

Two 0.6mm bases

 $0.74\mu m$

0.4µm

Double layer/side

__

DVD-ROM

DVD-R

DVD-RW

High-Definition Optical Disks

- Designed for high-definition (HD) videos
 - Resolution>standard-definition (SD) videos.
 - e.g., 1280 x 720 pixels or 1920 x 1080 pixels.
- Much higher capacity than DVD
 - Shorter wavelength laser in the blue-violet range.
 - Smaller pits → higher bit density.
- HD-DVD
 - 15GB single side single layer.
- Blu-ray Disk (BD)
 - 25GB single side single layer.
 - Data layer closer to laser.
 - Tighter focus, less distortion, smaller pits.
 - Types: BD-ROM (read only), BD-R (recordable), and BD-RE (re-recordable).

Optical Memory Characteristics

Summary of Optical Disks

CD

Compact Disk. A nonerasable disk that stores digitized audio information. The standard system uses 12-cm disks and can record more than 60 minutes of uninterrupted playing time.

CD-ROM

Compact Disk Read-Only Memory. A nonerasable disk used for storing computer data. The standard system uses 12-cm disks and can hold more than 650 Mbytes.

CD-R

CD Recordable. Similar to a CD-ROM. The user can write to the disk only once.

CD-RW

CD Rewritable. Similar to a CD-ROM. The user can erase and rewrite to the disk multiple times.

DVD

Digital Versatile Disk. A technology for producing digitized, compressed representation of video information, as well as large volumes of other digital data. Both 8 and 12 cm diameters are used, with a double-sided capacity of up to 17 Gbytes. The basic DVD is read-only (DVD-ROM).

DVD-R

DVD Recordable. Similar to a DVD-ROM. The user can write to the disk only once. Only one-sided disks can be used.

DVD-RW

DVD Rewritable. Similar to a DVD-ROM. The user can erase and rewrite to the disk multiple times. Only one-sided disks can be used.

Blu-ray DVD

High-definition video disk. Provides considerably greater data storage density than DVD, using a 405-nm (blue-violet) laser. A single layer on a single side can store 25 Gbytes.

Reading Material

- Stallings, Chapter 6:
 - —Pages 205 215