

Software Requirements Specification

Bayesian Hyperdimensional Adaptive Sequence Architecture

Version 1.0

Confidential Document

1 Executive Summary

BHASA will be India's first Large Language Model (LLM), combining the MAMBA architecture with Bayesian principles and hyperdimensional computing. With 20M parameters, it will deliver enterprise-grade performance while minimizing computational overhead. BHASA aims to position India as a leader in AI, following the success of DeepSeek and ChatGPT globally.

1.1 Maybe Attention Isn't All You Need

The decision to choose MAMBA over Transformers or DeepSeek's R1 for BHASA is based on several key advantages backed by research. Transformers, despite their success, are computationally expensive due to the quadratic scaling of the attention mechanism (Vaswani et al., 2017). While R1 offers some improvements, it still retains the inefficiencies of Transformers. In contrast, MAMBA utilizes state space modeling, which captures long-term dependencies more efficiently, reducing complexity and improving scalability (Cheng et al., 2021). Additionally, MAMBA integrates hyperdimensional computing, offering a robust framework for handling high-dimensional data efficiently, which is not inherently supported by Transformers (Feng et al., 2020). Finally, the incorporation of Bayesian principles allows BHASA to handle uncertainty in predictions, something that traditional transformer models lack (MacKay, 2003). Empirical evidence supports that state space models and hyperdimensional computing can outperform Transformers on resource-limited tasks, making MAMBA the ideal choice for building BHASA's efficient, scalable, and robust architecture.

2 Project Team and Responsibilities

Core Development Team		
Vishesh Yadav	 Architecture Implementation Lead Research & Innovation Lead Back-end Computing Infrastructure Mamba SSM Integration Performance Optimization Model Training Pipeline 	
Ayush Soni	 Dataset Engineering Lead Data Storage Architecture ETL Pipeline Development Expertize Dataset Management Storage Optimization 	
Tushar Rana	 ML Operations Lead Deployment Architecture CI/CD Pipeline Setup Monitoring Systems 	
Biswajit Mohapatra	 Model Architecture Design Bayesian Implementation Technical Documentation Research Publications Performance Benchmarking 	

3 Team Communication Structure

Daily Standups	 9:30 AM IST Progress updates Blocker resolution Task allocation
Weekly Reviews	 Architecture review (VY + BM) Data pipeline review (AS) Infrastructure review (TR) Research sync (All members)
Documentation	GitHub Wiki Technical Documentation Research Notes Implementation Guides

4 Team Deliverables Timeline

Team Member	Key Deliverables	Timeline
Vishesh Yadav	 Mamba Core Implementation Training Infrastructure Setup Model Optimization Framework 	Weeks 1-12
Ayush Soni	Dataset Creation Pipeline Storage Architecture Data Processing Systems	Weeks 1-8
Tushar Rana	Deployment Architecture Monitoring Setup Performance Testing Framework	Weeks 6-16
Biswajit Mohapatra	Architecture Design Document Research Publications Innovation Framework	Weeks 1-20

5 Technical Architecture

Core Architecture Components		
Base Architecture	Mamba SSM with selective state retention	
Parameter Distribution	 Token Embedding: 3M params SSM Layers: 15M params Output Head: 2M params 	
Architectural Innovations	 Bayesian State Updates Hyperdimensional Vector Quantization Adaptive Sequence Compression Selective Memory Retention 	

6 Model Specifications

Model Parameters	
Total Parameters	20 million (19.8M trainable)
Layer Configuration	 12 Mamba blocks 768 hidden dimensions 16 SSM states per block 4 attention heads
Context Window	2048 tokens (expandable to 4096)
Vocabulary	32,000 tokens (SentencePiece tokenizer)
Model Dimension	$d_{\text{model}} = 768, d_{\text{state}} = 16, d_{\text{conv}} = 4$

7 Training Infrastructure

Component	Specification	Cost (INR)
Primary Computing	2x RTX 4060 8GB (Training)	140,000
Secondary Computing	1x RTX 3060 (Testing)	35,000
Development System	AMD Ryzen 9 5900X64GB DDR4 RAM2TB NVMe SSD	125,000
Cloud Resources	 AWS S3 Storage (2TB) MongoDB Atlas GitHub Enterprise 	45,000
Development Tools	 PyTorch Enterprise Weights & Biases Pro VS Code Enterprise Docker Enterprise 	35,000
Infrastructure	 UPS System Networking Equipment Cooling Solution	40,000
Miscellaneous	 Testing Resources Documentation Tools Monitoring Systems	30,000
	Total	450,000

8 Development Phases

Phase	Activities	Duration
Data Engineering	 Data Collection Cleaning & Preprocessing Validation Set Creation Tokenizer Training 	4 weeks
Architecture Development	 Mamba Implementation Bayesian Layer Design HD Computing Integration Architecture Testing 	6 weeks
Training Pipeline	 Pre-training Setup Optimization Strategy Monitoring Systems Checkpointing Logic 	4 weeks
Model Training	 Initial Training Hyperparameter Tuning Performance Analysis Model Pruning 	8 weeks
Deployment	 Model Optimization API Development Documentation Performance Testing 	4 weeks

9 Performance Metrics

Metric	Description	Target
Perplexity	Language modeling quality	< 12
Inference Speed	Token generation latency	< 30ms/token
Memory Footprint	Runtime memory usage	< 1.5GB
ROUGE-L	Text generation quality	> 0.40
BLEU	Translation accuracy	> 0.35
Response Quality	Human evaluation score	> 4.0/5.0

10 Technical Innovations

• Bayesian State Updates:

- Uncertainty-aware state transitions
- Probabilistic sequence modeling
- Adaptive learning rates

• Hyperdimensional Computing:

- Vector symbolic architectures
- Distributed representations
- Robust pattern recognition

• Adaptive Sequence Processing:

- Dynamic context window
- Memory-efficient processing
- Selective attention mechanism

11 Risk Management

Risk	Impact	Probability	Mitigation
Training Divergence	High	Medium	 Gradient monitoring Early stopping Learning rate scheduling
Memory Constraints	High	Low	 Gradient accumulation Mixed precision training Model sharding
Performance Issues	Medium	Medium	Regular profilingOptimization sprintsHardware upgrades

12 Deployment Strategy

Deployment Specifications		
Container Solution	Docker with CUDA support	
API Framework	FastAPI with async support	
Serving Infrastructure	 Kubernetes cluster Load balancing Auto-scaling 	
Monitoring	Prometheus + Grafana	