苏州大学 高等数学一(上) 期中试卷 共6页

考试形式: 闭卷

院系	年级	专业	
学号	姓名		
特别提醒:请	将答案填写在答题组	氏上,若填写在试卷	纸上无效.
一. 选择题:	(每小题3分,共	15分)	
1. 下列极限存在	E的是 ()		
A. $\lim_{x \to 1} \frac{1}{1 - e^{\frac{1}{x-1}}}$		B. $\lim_{x \to \infty} \frac{x^3 + 2x^2 + 1}{x^4 + 5x^3 + 2}$	$2\cos x-1$
$C. \lim_{x \to 0} \frac{\sin x}{ x }$		D. $\lim_{x \to \infty} \left(\sqrt{x^2 + x} - \sqrt{x^2 + x} \right) = -\sqrt{x^2 + x^2}$	$\overline{x^2-x}$
2. 当 $x \rightarrow 0$ 时,	用" $o(x)$ "表示比 x 高阶的	的无穷小,则下列式子中	错误的是 (
A. $x \cdot o(x^2) = c$	$p(x^3)$	B. $o(x) \cdot o(x^2) = o(x^2)$	x^3)
$C. o(x^2) + o(x^2)$	$^2) = o(x^2)$	D. $o(x) + o(x^2) = o$	(x^2)
3. 设函数 $f(x)$ =	$(e^x - 1)(e^{2x} - 2) \cdots (e^{nx} - n)$	n),其中 n 为正整数,则 f	'(0) = ()
A. $(-1)^{n-1}(n-1)$	1)! B. $(-1)^n (n-1)$! C. $(-1)^{n-1}n!$	D. $(-1)^n n!$
4. 设 $f(x) = \begin{cases} (1+x) & \text{if } x < x < x \end{cases}$	$\begin{array}{l} -x)\arctan\frac{1}{x^2-1}, x \neq 1\\ -1, x =1 \end{array}$	$\exists x = -1 \text{为} f(x) \text{的}(\qquad)$	
A. 可去间断	点 B. 跳跃间断;	点 C. 无穷间断点	D. 连续点
5. 己知 <i>f</i> (x) 在 x	=0处可导,且 f(0)=0	$, \iiint_{x \to 0} \frac{x^2 f(x) - 2 f(x^3)}{x^3} = $: ()
A. 0	B. $f'(0)$	C. $-2f'(0)$	D. $-f'(0)$
二. 填空题:	(每小题3分,共1	5分)	
1. 函数 $f(x) = -\frac{1}{x}$	1 的连续区间是		

2. 若函数
$$f(x) = \begin{cases} \frac{\cos\sqrt{x} - 1}{a \cdot \arctan x}, x > 0, & \text{在 } x = 0 \text{ 处连续,则 } ab = \underline{\qquad} \\ b, & x \le 0 \end{cases}$$

- 3. 设 $y = f(x^2 y^3)$, 其中f可微, 则 $dy = ____.$
- 4. 曲线 $\sin(xy) + \ln(y-x) = x$ 在点 (0,1) 处的切线方程是_____
- 5. 设 f(t) 具有二阶导数, $f(\frac{1}{2}x) = x^2$,则 $(f(f(x)))'' = ______$

三. 解下列各题: (每小题 8 分, 共 40 分)

1. 求下列函数的极限:

(1)
$$\lim_{x \to \infty} x \left[\ln \left(1 + \frac{4}{x} \right) - \ln \left(1 - \frac{1}{x} \right) \right];$$
 (2) $\lim_{x \to 0} \frac{e - e^{\cos x}}{\sqrt[3]{1 + x^2} - 1}.$

- 2. 设当 $x\to 0$ 时, $(1-\cos x)\ln(1+x^2)$ 是比 $x\sin x^n$ 高阶的无穷小,而 $x\sin x^n$ 是比 $\left(e^{x^2}-1\right)$ 高阶的无穷小,求正整数n.
- 3. 设 $\begin{cases} x = \sin t, \\ y = t \sin t + \cos t \end{cases} (t 为参数), 求 \frac{d^2 y}{dx^2} \bigg|_{t = \frac{\pi}{4}}.$
- 4. 已知 $y = \frac{x}{x^2 3x + 2}$, 求 $y^{(n)}(x)$.
- 5. 设函数 $f(x) = \lim_{t \to +\infty} \frac{x^2 e^{t(x-2)} + ax 1}{e^{t(x-2)} + 1}$, 若 f(x) 在 $(-\infty, +\infty)$ 连续,求常数 a.

四. 解下列各题: (每小题 10 分, 共 30 分)

- 1. 己知函数 y = f(x) 在 x = 2 处连续, 且 $\lim_{x \to 2} \frac{f(x) 3x + 2}{x 2} = 2$, 证明: f(x) 在 x = 2 处可导, 并求 f'(2).
- (1) 利用极限存在准则证明数列 $\{x_n\}$ 极限存在;
- (2) 求 $\lim_{n\to\infty} x_n$.
- 3. 设函数 f(x) 在 [a,b] 上连续,且 f(a)=f(b),证明一定存在长度为 $\frac{b-a}{2}$ 的区间 $[\alpha,\beta]\subset [a,b]$,使 $f(\alpha)=f(\beta)$,即 在 区 间 $[a,\frac{a+b}{2}]$ 上 一 定 存 在 α ,使 得 $f(\alpha)=f(\alpha+\frac{b-a}{2})$.

参考答案

一、选择

(1) B (2) D

(3) A (4) A

(5) D

二、填空

1. $(-\infty,0)$ 2. $-\frac{1}{2}$

3. $\frac{2xf'(x^2-y^3)}{1+3y^2f'(x^2-y^3)}dx$

5. $768x^2$

三、解答题

1. (1) $\lim_{x \to \infty} x \left[\ln(1 + \frac{4}{x}) - \ln(1 - \frac{1}{x}) \right] = \lim_{t \to 0} \frac{\ln(1 + 4t) - \ln(1 - t)}{t} = 5$

(2) $\lim_{x \to 0} \frac{e - e^{\cos x}}{\sqrt[3]{1 + x^2}} = \lim_{x \to 0} \frac{e(1 - e^{\cos x - 1})}{r^2 / 3} = 3e \lim_{x \to 0} \frac{1 - \cos x}{r^2} = \frac{3}{2}e$

2. $(1-\cos x)\ln(1+x^2) = O(x^4)$, $e^{x^2} - 1 = O(x^2)$, $x\sin x^n = O(x^{n+1}) \implies n = 2$

3. $\frac{dy}{dx} = t$, $\frac{d^2y}{dx^2} = \frac{1}{\cos t}$, $\frac{d^2y}{dx^2}\Big|_{t=\frac{\pi}{2}} = \sqrt{2}$

4. $y^{(n)} = \left(\frac{2}{x-2} + \frac{1}{1-x}\right)^{(n)} = 2(-1)^n n! (x-2)^{-(n+1)} + n! (1-x)^{-(n+1)}$

5. $f(x) = \begin{cases} x^2, x > 2\\ \frac{2a+3}{2}, x = 2\\ ax-1.x < 2 \end{cases} \Rightarrow a = \frac{5}{2}$

四、解答题

$$\exists \lim_{x \to 2} \frac{f(x) - 3x + 2}{x - 2} = \lim_{x \to 2} \frac{f(x) - 4 - 3(x - 2)}{x - 2} = \lim_{x \to 2} \frac{f(x) - 4}{x - 2} - 3 \, \text{f}$$

$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{f(x) - 4}{x - 2} = 5 \,,$$

故 f'(2) 存在且 f'(2) = 5.

2. (1)
$$x_{n+1} = \sqrt{-(x_n - \frac{3}{2})^2 + \frac{9}{4}} \le \frac{3}{2}$$
, 故对任意的 $n \ge 2$ 有 $x_n \in [0, \frac{3}{2}]$ (4)

(2)
$$(x_{n+1})^2 - (x_n)^2 = 3x_n - 2x_n^2 = 3x_n(1 - \frac{2}{3}x_n) \ge 0$$
, 故任意的 $n \ge 2$ 有 x_n 单增 (4)

3.
$$\Rightarrow F(x) = f(x) - f(x + \frac{b-a}{2})$$
, (3)

若
$$f(\frac{b+a}{2}) = f(a)$$
, 取 $\alpha = 0$ 即可; (2)

若
$$f(\frac{b+a}{2}) \neq f(a) \Rightarrow F(\frac{b+a}{2})F(a) < 0 \Rightarrow \exists \alpha \in (0, \frac{b+a}{2})$$
 使得 $F(\alpha) = 0$. (5)