FMI, Computer Science, Master Advanced Logic for Computer Science

Seminar 4

(S4.1) Let \mathcal{L} be a first-order language that contains two unary relation symbols S, T and one binary relation symbol R. Find Skolem normal forms for the following formulas of \mathcal{L} :

$$\chi := \exists y \forall x \exists v ((S(y) \lor R(x, v)) \to (T(v) \to S(y)))$$

$$\delta := \forall x \exists u \forall y \exists v ((S(u) \to R(v, y)) \lor (S(v) \to T(x))).$$

Proof. We have that

$$\chi^1 = \forall x \exists v ((S(e) \lor R(x, v)) \to (T(v) \to S(e)))$$
 where e is a new constant symbol
$$\chi^2 = \forall x ((S(e) \lor R(x, g(x))) \to (T(g(x)) \to S(e)))$$
 where g is a new unary function symbol.

Since χ^2 is a universal sentence, it follows that $\chi^{Sk} = \chi^2$ is a Skolem normal form for χ .

$$\begin{array}{lll} \delta^1 &=& \forall x \forall y \exists v \left((S(h(x)) \to R(v,y)) \lor (S(v) \to T(x)) \right) \\ & \text{where h is a new unary function symbol} \\ \delta^2 &=& \forall x \forall y \left((S(h(x)) \to R(n(x,y),y)) \lor (S(n(x,y)) \to T(x)) \right) \\ & \text{where n is a new binary function symbol.} \end{array}$$

Since δ^2 is a universal sentence, it follows that $\delta^{Sk} = \delta^2$ is a Skolem normal form for δ .

(S4.2) Let $\mathcal{M} = (W, R, V)$ be a model for ML_0 and w a state in \mathcal{M} . Prove that for every formula φ ,

$$\mathcal{M}, w \Vdash \Box \varphi$$
 iff for every $v \in W, Rwv$ implies $\mathcal{M}, v \Vdash \varphi$.

Proof. We have that

1

$$\mathcal{M}, w \Vdash \Box \varphi \quad \text{iff} \quad \mathcal{M}, w \Vdash \neg \Diamond \neg \varphi$$

iff
$$\mathcal{M}, w \not\Vdash \Diamond \neg \varphi$$

iff there does not exist $v \in W$ such that $(Rwv \text{ and } \mathcal{M}, v \Vdash \neg \varphi)$

iff for every $v \in W$, we don't have that $(Rwv \text{ and } \mathcal{M}, v \Vdash \neg \varphi)$

iff for every $v \in W$, Rwv is false or $\mathcal{M}, v \not\vdash \neg \varphi$

iff for every $v \in W$, Rwv is false or $\mathcal{M}, v \Vdash \varphi$

iff for every $v \in W$, Rwv implies $\mathcal{M}, v \Vdash \varphi$.

(S4.3) Consider the frame $\mathcal{F} = (W = \{w_1, w_2, w_3, w_4, w_5\}, R)$, where $Rw_i w_j$ iff j = i + 1:

Let us choose a valuation V such that $V(p) = \{w_2, w_3\}$, $V(q) = \{w_1, w_2, w_3, w_4, w_5\}$ and $V(r) = \emptyset$. Consider the model $\mathcal{M} = (\mathcal{F}, V)$. Prove the following:

- (i) $\mathcal{M}, w_1 \Vdash \Diamond \Box p$;
- (ii) $\mathcal{M}, w_1 \not\Vdash \Diamond \Box p \to p$;
- (iii) $\mathcal{M}, w_2 \Vdash \Diamond (p \land \neg r);$
- (iv) $\mathcal{M}, w_1 \Vdash q \land \Diamond (q \land \Diamond (q \land \Diamond (q \land \Diamond q)));$
- (v) $\mathcal{M} \Vdash \Box q$.

Proof. (i) $\mathcal{M}, w_1 \Vdash \Diamond \Box p$ iff there exists $v \in W$ such that Rw_1v and $\mathcal{M}, v \Vdash \Box p$.

Take $v := w_2$. As Rw_1w_2 , it remains to prove that $\mathcal{M}, w_2 \Vdash \Box p$.

We have that

 $\mathcal{M}, w_2 \Vdash \Box p$ iff for every $u \in W$, Rw_2u implies $\mathcal{M}, u \Vdash p$.

iff $\mathcal{M}, w_3 \Vdash p$ (since w_3 is the unique $u \in W$ such that Rw_2u)

iff $w_3 \in V(p)$, which is true.

(ii) Using classical propositional logic, we have that

$$\mathcal{M}, w_1 \Vdash \Diamond \Box p \to p \quad \text{iff} \quad \mathcal{M}, w_1 \Vdash \neg \Diamond \Box p \lor p$$

$$\text{iff} \quad \mathcal{M}, w_1 \Vdash \neg \Diamond \Box p \text{ or } \mathcal{M}, w_1 \Vdash p.$$

By (i), $\mathcal{M}, w_1 \Vdash \Diamond \Box p$, hence $\mathcal{M}, w_1 \not\models \neg \Diamond \Box p$. Since $w_1 \not\in V(p)$, it follows that $\mathcal{M}, w_1 \not\models p$.

Thus, $\mathcal{M}, w_1 \not\Vdash \Diamond \Box p \to p$.

(iii) We have that

$$\mathcal{M}, w_2 \Vdash \Diamond (p \land \neg r)$$
 iff there exists $v \in W$ such that Rw_2v and $\mathcal{M}, v \Vdash p \land \neg r$

iff $\mathcal{M}, w_3 \Vdash p \land \neg r$

since w_3 is the unique v such that Rw_2v

iff $\mathcal{M}, w_3 \Vdash p$ and $\mathcal{M}, w_3 \Vdash \neg r$

iff $\mathcal{M}, w_3 \Vdash p$ and $\mathcal{M}, w_3 \not\Vdash r$

iff $w_3 \in V(p)$ and $w_3 \notin V(r)$, which is true by the definition of V.

(iv) Let us denote

$$\varphi := q \land \Diamond (q \land \Diamond (q \land \Diamond (q \land \Diamond q))), \quad \psi := \Diamond (q \land \Diamond (q \land \Diamond (q \land \Diamond q)))$$
$$\gamma := \Diamond (q \land \Diamond (q \land \Diamond q)).$$

We have that

$$\mathcal{M}, w_1 \Vdash \varphi$$
 iff $\mathcal{M}, w_1 \Vdash q$ and $\mathcal{M}, w_1 \Vdash \psi$

- ff $\mathcal{M}, w_1 \Vdash \psi$ (since $w_1 \in V(q)$, hence $\mathcal{M}, w_1 \Vdash q$)
- iff there exists $v \in W$ such that Rw_1v and $\mathcal{M}, v \Vdash q \land \chi$
- iff $\mathcal{M}, w_2 \Vdash q \land \chi$ since w_2 is the unique $v \in W$ such that Rw_1v
- iff $\mathcal{M}, w_2 \Vdash \chi$ (since $w_2 \in V(q)$, hence $\mathcal{M}, w_2 \Vdash q$)
- iff there exists $u \in W$ such that Rw_2u and $\mathcal{M}, u \Vdash q \land \Diamond(q \land \Diamond q)$
- iff $\mathcal{M}, w_3 \Vdash q \land \Diamond (q \land \Diamond q)$ since w_3 is the unique $u \in W$ such that Rw_2u
- iff $\mathcal{M}, w_3 \Vdash \Diamond (q \land \Diamond q)$ since $w_3 \in V(q)$, hence $\mathcal{M}, w_3 \Vdash q$
- iff there exists $v' \in W$ such that Rw_3v' and $\mathcal{M}, v' \Vdash q \land \Diamond q$
- iff $\mathcal{M}, w_4 \Vdash q \land \Diamond q$ since w_4 is the unique $v' \in W$ such that Rw_3v'
- iff $\mathcal{M}, w_4 \Vdash \Diamond q$ (since $w_4 \in V(q)$, hence $\mathcal{M}, w_4 \Vdash q$)
- iff there exists $u' \in W$ such that Rw_4u' and $\mathcal{M}, u' \Vdash q$
- iff $\mathcal{M}, w_5 \Vdash q$ since w_5 is the unique $u' \in W$ such that Rw_4u'
- iff $w_5 \in V(q)$, which is true.
- (v) Let $w \in W$ be arbitrary. We have that $\mathcal{M}, w \Vdash \Box q$ iff for every $v \in W$, Rwv implies $\mathcal{M}, v \Vdash q$ iff for every $v \in W$, Rwv implies $v \in V(q)$, which is true, since V(q) = W.

(S4.4) Verify if the following formulas of ML_0 are satisfiable:

- (i) $\Diamond p \wedge \Box \neg p$;
- (ii) $\Diamond p \wedge \Diamond \neg p$.

Proof. (i) For any model $\mathcal{M} = (W, R, V)$ and state w in \mathcal{M} , we have that

$$\mathcal{M}, w \Vdash \Diamond p \land \Box \neg p \quad \text{iff} \quad \mathcal{M}, w \Vdash \Diamond p \text{ and } \mathcal{M}, w \Vdash \Box \neg p$$

$$\text{iff} \quad (*) \text{ and } (**),$$

where

- (*) there exists $v \in W$ such that Rwv and $\mathcal{M}, v \Vdash p$,
- (**) for every $u \in W$, Rwu implies $\mathcal{M}, u \Vdash \neg p$.

Assume that (*) and (**) are satisfied. Let $v \in W$ be such that Rwv and $\mathcal{M}, v \Vdash p$. Applying (**) with u := v, it follows that $\mathcal{M}, v \Vdash \neg p$, hence $\mathcal{M}, v \not\Vdash p$. We have

obtained a contradiction. It follows that (*) and (**) can not be simultaneously true, hence $\mathcal{M}, w \not\models \Diamond p \land \Box \neg p$.

Thus, $\Diamond p \wedge \Box \neg p$ is not satisfiable.

(ii) For any model $\mathcal{M} = (W, R, V)$ and state w in \mathcal{M} , we have that

$$\mathcal{M}, w \Vdash \Diamond p \land \Diamond \neg p \quad \text{iff} \quad (*) \text{ and } (**),$$

where

- (*) there exists $v \in W$ such that Rwv and $\mathcal{M}, v \Vdash p$,
- (**) there exists $u \in W$ such that Rwu and $\mathcal{M}, u \Vdash \neg p$.

Let $\mathcal{M}_0 = (W_0, R_0, V_0)$, where

$$W_0 = \{a, b\}, \quad R_0 = \{(a, a), (a, b)\}, \quad V_0(p) = \{a\}.$$

We prove that

$$\mathcal{M}_0, a \Vdash \Diamond p \land \Diamond \neg p.$$

We have that R_0aa and $\mathcal{M}_0, a \Vdash p$, hence (*) is satisfied with w := a and v := a.

Furthermore, R_0ab and $\mathcal{M}_0, b \Vdash \neg p$, since $b \notin V_0(p)$, so $\mathcal{M}_0, b \not\Vdash p$. Thus (**) is satisfied with w := a and u := b.

It follows that $\Diamond p \wedge \Diamond \neg p$ is satisfiable.