One hole: d9 sector

Each symbol denotes a block of states; U denotes int matrix

	d_{\uparrow}^{9}	$d_{\uparrow\downarrow}^8 s_{\uparrow}$	$d_{\uparrow\uparrow}^8 s_{\downarrow}$	d_{\downarrow}^{9}	$d_{\downarrow\downarrow}^8 s_{\uparrow}$	$d_{\downarrow\uparrow}^8 s_{\downarrow}$
d_{\uparrow}^{9}	ϵ_d	t_{ds}	t_{ds}	0	0	0
$d_{\uparrow\downarrow}^8 s_{\uparrow}$		$2\epsilon_d$ +U	U?	0	0?	0?
$d_{\uparrow\uparrow}^8 s_{\downarrow}$			$2\epsilon_d$ +U	0	0?	0?
$\frac{d_{\downarrow}^{9}}{d_{\downarrow\downarrow}^{8}s_{\uparrow}}$ $d_{\downarrow\uparrow}^{8}s_{\downarrow}$	Above red U matrix is only finite between two triplet d8 states: S=Sz=1? All 1A, 1B, 1E symmetry channels are zero?			ϵ_d	t_{ds} $2\epsilon_d$ +U $2\epsilon_d$	t_{ds} U ? $2\epsilon_d$ +U

One hole

The complete VS consists of d_{\uparrow}^9 , d_{\downarrow}^9 , L_{\uparrow} , L_{\downarrow} sectors

To reduce VS, can consider only d_{\uparrow}^9 sector and skip d_{\downarrow}^9 (previous slide);

Similarly, only need keep L_{\uparrow} sector because L_{\downarrow} does not connect with neither L_{\uparrow} nor d_{\uparrow}^9 sectors So only 6 states below:

$$d_{\uparrow}^{9}$$
 $d_{\uparrow\downarrow}^{8}s_{\uparrow}$ $d_{\uparrow\uparrow}^{8}s_{\downarrow}$ L_{\uparrow} $d_{\downarrow}^{9}L_{\uparrow}s_{\uparrow}$ $d_{\uparrow}^{9}L_{\uparrow}s_{\downarrow}$

Two hole (only d9L sector leading to d8)

	$d_{\uparrow}^{9}L_{\sigma} d_{\uparrow\downarrow}^{8}L_{\sigma}s_{\uparrow}$	$d_{\uparrow\uparrow}^{8}L_{\sigma}s_{\downarrow}$	$d_{\downarrow}^{9}L_{\sigma}$	$d_{\downarrow\downarrow}^{8}L_{\sigma}s_{\uparrow}$	$d_{\downarrow\uparrow}^{8}L_{\sigma}s_{\downarrow}$
$d_{\uparrow}^{9}L_{\sigma}$	$\epsilon_{d,p}$ t_{ds}	t_{ds}	0	0	0
$d_{\uparrow\downarrow}^8 L_{\sigma} s_{\uparrow}$	$2\epsilon_d$ +U	U?	0	0?	0?
$d_{\uparrow\uparrow}^{8}L_{\sigma}s_{\downarrow}$		$2\epsilon_d$ +U	0	0?	0?
$d_{\downarrow}^{9}L_{\sigma}$	So above red U only finite bet	$\epsilon_{d,p}$	t_{ds}	t_{ds}	
$d_{\downarrow\downarrow}^8 L_\sigma s_\uparrow$	triplet states: All 1A, 1B, 1E		$2\epsilon_d$ +U	U?	
$d_{\downarrow\uparrow}^8 L_{\sigma} s_{\downarrow}$	channels ar	$2\epsilon_d$ +U			

Two hole

The complete VS consists of $d_{\sigma\sigma'}^8$ $d_{\sigma}^9 L_{\sigma'}$ $d^{10} L_{\sigma\sigma'}$ sectors

To reduce VS, can consider only $d_{\uparrow}^9 L_{\sigma}$ sector and skip $d_{\downarrow}^9 L_{\sigma}$; Hence, only need to keep $d_{\uparrow\sigma}^8$ and $d^{10} L_{\uparrow\sigma}$ sectors connecting with $d_{\uparrow}^9 L_{\sigma}$;

So reduced VS has only states below:

$$\begin{array}{ccc} d_{\uparrow}^9L_{\sigma} & d_{\uparrow\downarrow}^8L_{\sigma}s_{\uparrow} & d_{\uparrow\uparrow}^8L_{\sigma}s_{\downarrow} \\ d_{\uparrow\sigma}^8 & & & \\ d^{10}L_{\uparrow\sigma} & d_{\downarrow}^9L_{\uparrow\sigma}s_{\uparrow} & d_{\uparrow}^9L_{\uparrow\sigma}s_{\downarrow} \end{array}$$
 Only need to consider $\sigma=\uparrow$?