1.3 等可能模型与几何概型

一、等可能概型(古典概型)

二、几何概型

一、等可能概型(古典概型)

观察以下两个试验:

试验 E1: 抛一枚硬币, 观察正反两面出现的情况;

E2:掷一枚骰子,观察出现的点数。

再看一个例子:

例如,一个袋子中装有10个大小、形状完全相同的球. 将球编号为1-10.把球搅匀, 蒙上眼睛,从中任取一球.

因为抽取时这些球是完全平等的,我们没有理由认为10个球中的某一个会比另一个更容易取得.也就是说,10个球中的任一个被取出的机会是相等的,均为1/10.

10个球中的任一个被取出的机会都是1/10

以上例子都具有两个共同的特点:

- 1、试验的样本空间只包含有限个元素;
- 2、试验中每个基本事件发生的可能性相同.

具有上面两个特点的试验称为等可能概型,也称为古典概型。

问题:如何计算古典概型的概率?

设试验的样本空间为 $\Omega=\{e_1,e_2,...,e_n\}$. 由于在试验中每个基本事件发生的可能性相同, 即有

$$P({e_1})=P({e_2})=...=P({e_n}).$$

又由于基本事件是两两互不相容的,于是

$$1=P(\Omega)=P(\{e_1\}\cup\{e_2\}\cup...\cup\{e_n\})=$$

$$P(\{e_1\})+P(\{e_2\})+...+P(\{e_n\})=nP(\{e_i\}),$$

$$P({e_i}) = \frac{1}{n}, i = 1, 2, \dots, n.$$

设试验 E 的样本空间由n 个样本点构成, A 为 E 的任意一个事件,且包含 m 个样本点,即

$$A = \{e_{i_1}\} \cup \{e_{i_2}\} \cup \cdots \cup \{e_{i_m}\}$$

则事件 A 出现的概率记为:

称此为概率的古典定义.

古典概型所具有的三个常用性质:

$$(1) \quad 0 \le P(A) \le 1 ;$$

(2)
$$P(\Omega) = 1$$
, $P(\emptyset) = 0$;

(3) 设
$$A \cap B = \emptyset$$
 ,则 $P(A \cup B) = P(A) + P(B)$

例1 将一枚硬币抛掷三次.(1) 设事件 A_1 为"恰有一次出现正面",求 $P(A_1)$. (2) 设事件 A_2 为"至少有一次出现正面",求 $P(A_2)$.

解 (1)设H为出现正面,T为出现反面.

则 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

而 $A_1 = \{HTT, THT, TTH\}$. 得 $P(A_1) = 3/8$,

(2) $A_2 = \{HHHH, HHT, HTH, THHH, HTT, THT, TTH\}.$

因此 $P(A_2) = 7/8$.

古典概型的基本模型:摸球模型

(1) 无放回地摸球

问题1 设袋中有M个白球和N个黑球,现从袋中无 放回地依次摸出m+n个球,求所取球恰好含m个白 球, n个黑球的概率?

解 设 $A=\{$ 所取球恰好含m个白球,n个黑球 $\}$

样本点总数为
$$\binom{M+N}{m+n}$$
,

A 所包含的样本点个数为 $\binom{M}{m}\binom{N}{n}$,

故
$$P(A) = {M \choose m} {N \choose n} / {M+N \choose m+n}$$

$$\binom{M}{m}\binom{N}{n}$$
,

(2) 有放回地摸球

问题2 设袋中有4只红球和6只黑球,现从袋中有放回地摸球3次,求前2 次摸到黑球、第3 次摸到红球的概率.

解 设 $A = \{$ 前2次摸到黑球,第三次摸到红球 $\}$

样本点总数为 10×10×10=103,

A 所包含样本点的个数为 $6\times6\times4$,

故
$$P(A) = \frac{6 \times 6 \times 4}{10^3} = 0.144.$$

课堂练习

骰子问题 掷3颗均匀骰子,求点数之和为4的概率. (答案: $p = 3/6^3$)

例2(摸彩模型) 袋中有a只白球,b只红球,k个人依次在袋中取一只球,(1)作放回抽样;(2)作不放回抽样,求第i(i=1,2,...,k)个人取到白球(记为事件B)的概率(k<a+b).

古典概型的基本模型:球放入杯子模型

(1)杯子容量无限

问题1 把 4 个球放到 3个杯子中去,求第1、2个杯子中各有两个球的概率,其中假设每个杯子可放任意多个球.

4个球放到3个杯子的所有放法 3×3×3×3=3⁴种,

因此第1、2个杯子中各有两个球的概率为

$$p = {4 \choose 2} {2 \choose 2} / 3^4 = \frac{2}{27}.$$

(2) 每个杯子只能放一个球

问题2 把4个球放到10个杯子中去,每个杯子只能放一个球,求第1 至第4个杯子各放一个球的概率.

解 第1至第4个杯子各放一个球的概率为

$$p = \frac{P_4^4}{P_{10}^4} = \frac{4 \times 3 \times 2 \times 1}{10 \times 9 \times 8 \times 7}$$

$$=\frac{1}{210}.$$

课堂练习

1° 分房问题 将张三、李四、王五3人等可能地分配到3间房中去,试求每个房间恰有1人的概率.

(答案:3!/3³)

2° 生日问题 某班有20个学生都是同一年出生的,求有10个学生生日是1月1日,另外10个学生生日是12月31日的概率.

(答案:
$$p = \binom{20}{10} \binom{10}{10} / 365^{20}$$
)

例3(分房问题) 有 n 个人,每个人都以同样的概率 1/N 被分配在 $N(n \le N)$ 间房中的每一间中,试求下列各事件的概率:

- (1)某指定 n 间房中各有一人;
- (2)恰有 n 间房,其中各有一人;
- (3) 某指定一间房中恰有 $m(m \le n)$ 人。

解 先求样本空间中所含样本点的个数。

首先,把 \mathbf{n} 个人分到 \mathbf{N} 间房中去共有 \mathbf{N}^n 种分法,其次,求每种情形下事件所含的样本点个数。

- (a) 某指定n间房中各有一人,所含样本点的个数,即可能的的分法为 n!;
- (b)恰有n间房中各有一人,所有可能的分法为 $C_N^n n!$;
- (c) 某指一间房中恰有m人,可能的分法为 $C_n^m(N-1)^{n-m}$.

进而我们可以得到三种情形下事件的概率,其分别为:

(1)
$$n!/N^n$$
 (2) $C_N^n \cdot n!/N^n$ (3) $C_n^m (N-1)^{n-m}/N^n$.

上述分房问题中,若令 N = 365, n = 64, m = 2则可演化为生日问题.

例4 假设每人的生日在一年 365 天中的任一天是等可能的,即都等于 1/365,求 64 个人中至少有2人生日相同的概率.

假设每人的生日在一年365天中的任一天是等可能的,即都等于1/365,求64个人中至少有2人生日相同的概率.

解 64 个人生日各不相同的概率为

$$p_1 = \frac{365 \cdot 364 \cdot \cdots \cdot (365 - 64 + 1)}{365^{64}}$$

故64个人中至少有2人生日相同的概率为

$$p=1-\frac{365\cdot 364\cdot \cdots \cdot (365-64+1)}{365^{64}}=0.997.$$

说明

随机选取 $n(\leq 365)$ 个人,他们的生日各不相同的概率为

$$p = \frac{365 \times 364 \times \cdots \times (365 - n + 1)}{365^{n}}$$

而n个人中至少有两个人生日相同的概率为

$$p = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^{n}}$$

我们利用软件包进行数值计算.

```
人数
                          两
                              人生
                                    日
                                        相
                                            同
                                               的
 1 0
 2 0
 5 0
 7 0
 8 0
 9 0
1 0 0
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0
```

例5 设有 N 件产品,其中有 D 件次品,今从中任取n 件,问其中恰有 $k(k \le D)$ 件次品的概率是多少? **解** 在N件产品中抽取n件的所有可能取法共有

$$\binom{N}{n}$$
 \neq \uparrow

在N件产品中抽取n件,其中恰有k件次品的取法

共有
$$\binom{D}{k}\binom{N-D}{n-k}$$
种,

于是所求的概率为
$$p = \binom{D}{k} \binom{N-D}{n-k} / \binom{N}{n}$$
.

即所谓超几何分布的概率公式.

例6 某接待站在某一周曾接待过 12次来访,已知 所有这 12 次接待都是在周二和周四进行的,问是 否可以推断接待时间是有规定的.

解 假设接待站的接待时间没有规定,且各来访者在一周的任一天中去接待站是等可能的.

7 7 7 7 7

周一周二周三周四周五周六周日

故一周内接待 12 次来访共有 712种.

周一 周二 周三 周四 周五 周六 周日

- 12 次接待都是在周二和周四进行的共有 212种.
- 故12次接待都是在周二和周四进行的概率为

$$p = \frac{2^{12}}{7^{12}} = 0.0000003$$

小概率事件在实际中几乎是不可能发生的,从而可知接待时间是有规定的.

"概率很小的事件在一次试验中实际上几乎是不发生的"(称之为实际推断原理)

古典概型应用两例

1.野生资源的估计:

在一池塘中有鱼若干条,现要估计池中鱼的数量。 方法如下:在池中捞出m条鱼来,做上记号,放回池中,过一段时间,待池中的鱼均匀地游散之后,再 从池中捞出n条鱼来,数一数期中有多少条被做过 记号,便可估计出池塘中原来的鱼数。

古典概型应用两例

2.废品率的抽样检查:

在180只集成电路中,有172只合格,8只不合格。 问任意抽取4只集成电路,则恰有k只不合格的概率 是多少? 例7 将4只球随机地放入6个盒子中去,试求每个盒子至多有一只球的概率.

解将4只球随机地放入6个盒子中去,共有64种放法.

每个盒子中至多放一只球共有6×5×4×3 种不同放法. 因而所求的概率为

$$p = \frac{6 \times 5 \times 4 \times 3}{6^4} = 0.2778.$$

例8 将 15 名新生随机地平均分配到三个班级中去,这15名新生中有3名是优秀生.问 (1) 每一个班级各分配到一名优秀生的概率是多少? (2) 3 名优秀生分配在同一个班级的概率是多少?

解 15名新生平均分配到三个班级中的分法总数:

$$\binom{15}{5}\binom{10}{5}\binom{5}{5} = \frac{15!}{5! \ 5! \ 5!}.$$

(1)每一个班级各分配到一名优秀生的分法共有

$$\binom{3}{1}\binom{2}{1}\binom{1}{1}\binom{12}{4}\binom{8}{4}\binom{4}{4} = \frac{(3!\times12!)}{(4!\ 4!\ 4!)}$$

因此所求概率为

$$p_1 = \frac{3! \times 12!}{4! \ 4! \ 4!} / \frac{15!}{5! \ 5! \ 5!} = \frac{25}{91}.$$

(2)将3名优秀生分配在同一个班级的分法共有3种,

对于每一种分法,其余12名新生的分法有 $\frac{12!}{2!5!5!}$ 种.

因此3名优秀生分配在同一个班级的分法共有

(3×12!)/(2!5!5!)种,因此所求概率为

$$p_2 = \frac{3 \times 12!}{2! \, 5! \, 5!} / \frac{15!}{5! \, 5! \, 5!} = \frac{6}{91}.$$

例9 n双相异的鞋共2n只,随机地分成n堆,每堆2只.问:"各堆都自成一双鞋"(事件A)的概率是多少?

解 把2n只鞋分成n堆,每堆2只的分法 总数为

$$\frac{(2n)!}{2!2!\cdots 2!} = \frac{(2n)!}{2^n}$$

而出现事件A的分法数为n!,故

$$P(A) = \frac{n!}{(2n)!/2^n} = \frac{n!2^n}{(2n)!}$$

二、古典概型推广—几何概型

向某一可度量的区域G内投一点,如果所投点落在G中任一区域g内的可能性的大小与g 的度量成正比,而与g的位置和形状无关. 则我们把具有这种特征的随机试验称为几何概型. 其点投中区域g的概率为

$$P = \frac{g \text{ 的度量(长度、面积、体积等)}}{G \text{ 的度量(长度、面积、体积等)}}.$$

例10(会面问题)甲、乙约在0时到T时在某地会面,先到者等候t(t≤T),过时即可离去,试求两人能会面的概率。

例11(投针问题)平面上画一些平行线,相邻两条之间距离为a,向该平面任意投1根长度为l(*l*<a)的针,试求针与平行线中任意一条相交的概率。

求 $_{\pi}$ 方法: 投针 N 次,记录针与平行线相交的次数 n ,用 n/N≈p ,得近似计算公式:

 $\Pi = (2lN)/(an)$

试验者	年代	针长	投掷次数	相交次数	π的试验值
Wolf	1850	8.0	5000	2532	3.1596
Smith	1855	0.6	3204	1218.5	3.1554
Morgan	1860	1.0	600	382.5	3.137
Fox	1884	0.75	1030	489	3.1595
Lazzerini	1901	0.83	3408	1808	3.1415929
Reina	1925	0.5419	2520	859	3.1795

建立一个与我们感兴趣的量有关的概率模型,然后设计恰当的随机试验,并通过大量随机试验的结果来确定这些量,这种方法叫统计模拟方法或统计试验法,也叫蒙特卡洛方法。