Basic NLP Text ProcessingMIE223

MIE223 Winter 2025

1 Basic NLP Text Processing. NLP=Natural Language Processing

1.1 NLP Text Processing Pipeline

nltk provides implementations for most operations

- Document → Sections and Paragraphs
- Paragraphs → Sentences (sentence segmentation / extraction)
- Sentences → Tokens
- Tokens → Lemmas or Morphological Variants / Stems
- Tokens → Part-of-speech (POS) Tags
- Tokens, POS Tags \rightarrow Phrase Chunks (Noun & Verb Phrases)
- Tokens, POS Tags \rightarrow Parse Trees
 - Augment above with coreference, entailment, sentiment, ...

2 Basic Text Processing: Word tokenization

2.1 Text Normalization

Every NLP task needs to do text normalization:

- 1. Segmenting/tokenizing words in running text
- 2. Normalizing word formats
- 3. Segmenting sentences in running text

2.2 How many words?

I do uh main- mainly business data processing

• Fragments, filled pauses

Seuss's cat in the hat is different from other cats

- Lemma: same stem, part of speech, rough word sense
- e.g. cat and cats = same lemma
- Wordform: the full inflected surface form
- e.g. cat and cats = different wordforms

they lay back on the San Francisco grass and looked at the stars and their

- Type: an element of the vocabulary.
- Token: an instance of that type in running text.
- How many? Depends on how you segment. San Francisco can be one token

- 15 tokens (or 14)
- 13 types (or 12) (or 11?)

$$N = \text{number of tokens}$$
 (1)

$$V = \text{vocabulary} = \text{set of types}$$
 (2)

$$|V| = \text{size of vocabulary}$$
 (3)

$$|V| > O(N^{1/2}) \tag{4}$$

	Tokens = N	Types = V
Switchboard phone conversations	2.4 million	20 thousand
Shakespeare	884,000	31 thousand
Google N-grams	1 trillion	13 million

2.3 Issues in Tokenization

- Finland's capital → Finland Finlands Finland's ?
- what're, I'm, isn't \rightarrow What are, I am, is not
- Hewlett-Packard → Hewlett Packard ?
- state-of-the-art \rightarrow state of the art ?
- Lowercase ightarrow lower-case lowercase lower case ?
- San Francisco → one token or two?
- m.p.h., PhD. \rightarrow ??

Keep hyphens together? Remove contractions? Does upper and lower case matter?

2.4 Tokenization: language issues

- French
 - L'ensemble → one token or two?
 - L?L'?Le?
 - Want l'ensemble to match with un ensemble
- German noun compounds are not segmented
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - German information retrieval needs compound splitter

- Chinese and Japanese no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在居住 在 美国东南部 的 佛罗里达
 - Sharapova now lives in US southeastern Florida
- Further complicated in Japanese, with multiple alphabets intermingled
 - Dates/amounts in multiple formats

End-user can express query entirely in hiragana!

3 Word Normalization and Stemming

3.1 Normalization

- Need to "normalize" terms
 - Information Retrieval: indexed text & query terms must have same form.
 - * We want to match U.S.A. and USA
- We implicitly define equivalence classes of terms
 - e.g., deleting periods in a term
- Alternative: asymmetric expansion:
 - Enter: window Search: window, windows
 - Enter: windows Search: Windows, windows, window
 - Enter: Windows Search: Windows
- Potentially more powerful, but less efficient

3.2 Case folding

- Applications like IR: reduce all letters to lower case
 - Since users tend to use lower case
 - Possible exception: upper case in mid-sentence?
 - * e.g., General Motors
 - * Fed vs. fed
 - * SAIL vs. sail
- For sentiment analysis, MT, Information extraction
 - Case is helpful (US versus us is important)

3.3 Lemmatization

- · Reduce inflections or variant forms to base form
 - am, are, is \rightarrow be
 - car, cars, car's, cars' → car
- the boy's cars are different colors \rightarrow the boy car be different color
- Lemmatization: have to find correct dictionary headword form
- Machine translation
 - Spanish quiero ('I want'), quieres ('you want') same lemma as querer 'want'

3.4 Morphology

- Morphemes:
 - The small meaningful units that make up words
 - Stems: The core meaning-bearing units
 - Affixes: Bits and pieces that adhere to stems
 - * Often with grammatical functions

3.5 Stemming

- Reduce terms to their stems in information retrieval
- Stemming is crude chopping of affixes
 - language dependent
 - e.g., automate(s), automatic, automation all reduced to automat.
- for example compressed and compression are both accepted as equivalent to compress. → for example compress and compress are both accept as equival to compress.

3.6 Porter's algorithm: The most common English stemmer

Step 1a Step 2 (for long stems) sses → ss caresses → caress ational → ate relational → relate ies \rightarrow i ponies → poni digitizer → digitize izer→ ize \rightarrow ss caress → caress operator → operate ator→ ate S \rightarrow \emptyset cats \rightarrow cat Step 1b Step 3 (for longer stems) (*v*)ing $\rightarrow \emptyset$ walking \rightarrow walk al \rightarrow \emptyset revival → reviv \rightarrow sing sing able \rightarrow Ø $adjustable \rightarrow adjust$ (*v*)ed $\rightarrow \emptyset$ plastered \rightarrow plaster ate \rightarrow \emptyset activate → activ

3.7 Viewing morphology in a corpus Why only strip –ing if there is a vowel?

3.8 Dealing with complex morphology is sometimes necessary

- Some languages requires complex morpheme segmentation
- Turkish
- Uygarlastiramadiklarimizdanmissinizcasina
- '(behaving) as if you are among those whom we could not civilize'
 - Uygar 'civilized' + las 'become'
 - tir 'cause' + ama 'not able'
 - dik 'past' + lar 'plural'
 - imiz 'p1pl' + dan 'abl'
 - mis 'past' + siniz '2pl' + casina 'as if'

4 Sentence Segmentation and Decision Trees

4.1 Sentence Segmentation

- !, ? are relatively unambiguous
- Period "." is quite ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Build a binary classifier
- f(input) = True, False
- "The car is traveling 10 m.p.h."
- Check which period is ending the sentence
 - Looks at a "."
 - Decides EndOfSentence/NotEndOfSentence
 - Classifiers: hand-written rules, regular expressions, or machine-learning

4.2 Determining if a word is end-of-sentence: a Decision Tree

4.3 More sophisticated decision tree features

- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number
- Numeric features
 - Length of word with "."
 - Probability(word with "." occurs at end-of-s)
 - Probability(word after "." occurs at beginning-of-s)

5 Regular Expressions: Detecting word pattern variations

5.1 Regular expressions

- A formal language for specifying text strings
- How can we search for any of these?
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks

5.2 Regular Expressions: Disjunctions

Letters inside square brackets []

Pattern	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

Ranges [A-Z]

Pattern	Matches	
[A-Z]	An upper case letter	Drenched Blossoms
[a-z]	A lower case letter	my beans were impatient
[0-9]	A single digit	Chapter 1: Down the Rabbit Hole

5.3 Regular Expressions: Negation in Disjunction

 $\begin{array}{c} Negations \ [\hat{S}s] \\ Carat \ means \ negation \ only \ when \ first \ in \ [] \end{array}$

Pattern	Matches	
[^A-Z]	Not an upper case letter	Oyfn pripetchik
[^Ss]	Neither 'S' nor 's'	$\underline{\mathtt{I}}$ have no exquisite reason"
[^e^]	Neither e nor ^	Look here
a^b	The pattern a carat b	Look up <u>a^b</u> now

5.4 Regular Expressions: More Disjunction

Woodchucks is another name for groundhog! The pipe — for disjunction.

Pattern	Alternative
groundhog woodchuck	
yours mine	
a b c	= [abc]
[gG]roundhog [Ww]oodchuck	

5.5 Regular Expressions: ? * + .

Pattern	Matches	
colou?r	Optional previous char	<u>color</u> <u>colour</u>
oo*h!	0 or more of previous char	oh! ooh! oooh!
o+h!	1 or more of previous char	oh! ooh! oooh!
baa+		baa baaa baaaa baaaaa
beg.n		begin begun beg3n

Stephen C Kleene Kleene *, Kleene +

5.6 Regular Expressions: Anchors: \$

Pattern	Matches
^[A-Z]	Palo Alto
^[^A-Za-z]	<pre>1 "Hello"</pre>
\.\$	The end.
.\$	The end? The end!

5.7 Example

Find me all instances of the word "the" in a text. the: Misses capitalized examples [tT]he: Incorrectly returns other or theology [â-zA-Z][tT]he[â-zA-Z]

5.8 Errors

- The process we just went through was based on fixing two kinds of errors
 - Matching strings that we should not have matched (there, then, other)
 - * False positives (Type I)
 - Not matching things that we should have matched (The)
 - * False negatives (Type II)

- In NLP we are always dealing with these kinds of errors.
- Reducing the error rate for an application often involves two antagonistic efforts:
 - Increasing accuracy or precision (minimizing false positives)
 - Increasing coverage or recall (minimizing false negatives).

5.9 Exercise

- Write a regular expression to match dates
 - November 9, 1989
 - 17 December 1967
 - 11-09-1989 (likely this form on midterm)
 - 12/17/67
- Write a regular expression to match time expressions
 - Next Wednesday at noon
 - Tomorrow morning
 - Can't really as there's no general pattern

5.10 Regex Summary

- Regular expressions play a surprisingly large role
 - Sophisticated sequences of regular expressions are often the first model for any text processing text
- For many hard tasks, we use machine learning classifiers
 - But regular expressions are used as features in the classifiers
 - Can be very useful in capturing generalizations

5.11 On the exam

- Match dates from 2000 to 2025 (Reg-Ex)
 - Only compound statements allowed
 - Do not just list out all the options
 - **-** 20[0-1][0-9] 202[0-5]