How the Universe Created What We Observe

A Modern View of History

Clip 1: Big Bang

Create Some Particles from Energy

Event/Epoch	$\mathbf{Redshift}z$	Time	Temp, K
Big bang	∞	0	∞
TOE/Planck time		$10^{-43} { m sec}$	10^{32}
GUT/Strong force separates from Weak/EM		$10^{-36} \mathrm{sec}$	10^{28}
Inflation starts		$10^{-36} { m sec}$	10^{28}
Inflation ends		$10^{-34} \sec$	10^{28}
Weak force separates from EM		$10^{-12} \mathrm{sec}$	10^{16}
Radiation-nucleon soup		$10^{-1} { m sec}$	$3 \cdot 10^{10}$

Frame 2: Big Bang Nucleosynthesis

Combine Particles into Matter

$$\begin{split} \mathbf{n} + \mathbf{e}^+ & \Longrightarrow \overline{\nu}_{\mathbf{e}} + \mathbf{p} \\ \mathbf{n} + \nu \mathbf{e} & \Longrightarrow \mathbf{p} + \mathbf{e}^- \end{split}$$

$$\mathrm{p} + \mathrm{n} \longrightarrow {}^{2}\mathrm{H} + \gamma$$
 $\mathrm{p} + {}^{2}\mathrm{H} \longrightarrow {}^{3}\mathrm{He} + \gamma$
 ${}^{2}\mathrm{H} + {}^{2}\mathrm{H} \longrightarrow {}^{3}\mathrm{He} + \mathrm{n}$
 ${}^{2}\mathrm{H} + {}^{2}\mathrm{H} \longrightarrow {}^{3}\mathrm{H} + \mathrm{p}$
 ${}^{3}\mathrm{He} + {}^{2}\mathrm{H} \longrightarrow {}^{4}\mathrm{He} + \mathrm{p}$
 ${}^{3}\mathrm{H} + {}^{2}\mathrm{H} \longrightarrow {}^{4}\mathrm{He} + \mathrm{n}$

Event/Epoch	$\mathbf{Redshift}z$	Time	Temp, K
Neutrinos decouple from nucleons		1 sec	$3 \cdot 10^{9}$
Big bang Nucleosynthesis begins	• • •	200 sec	$8 \cdot 10^{8}$
BBN ends = H, He, Li nuclei		15 min	$3 \cdot 10^{8}$

Frame 3: Cosmic Microwave Background

Cool Remaining Radiation

Event/Epoch	$\mathbf{Redshift}z$	Time	Temp, K
Radiation-matter energy density equality	3570	50,000 yrs	9,390
Recombination (ionized plasma to neutral atoms)	1380	250,000 yrs	9,390
Photon decoupling (from electrons = CMB)	1070	370,000 yrs	2,970

Frame 4: 14 Gyrs

Gravity works locally

Event/Epoch	$\mathbf{Redshift}z$	Time	Temp, K
First Stars	50	50 Myrs	
Reionization: H, He	8	650 Myrs	
Matter-Lambda energy density equality	0.4	10.2 Gyrs	
Today	0	13.8 Gyrs	2.73

Frame 5: Future State - A Sequel

Expansion Continues to Accelerate

Backup Slides

1. Summary Timeline

1 Timeline

Event/Epoch	$\mathbf{Redshift} z$	${f Time}$	Temp, K
Big bang	∞	0	∞
TOE/Planck time		$10^{-43} { m sec}$	10^{32}
GUT/Strong force separates from Weak/EM	• • •	$10^{-36} { m sec}$	10^{28}
Inflation starts	• • •	$10^{-36} { m sec}$	10^{28}
Inflation ends	• • •	$10^{-34} { m sec}$	10^{28}
Weak force separates from EM		$10^{-12} { m sec}$	10^{16}
Radiation-nucleon soup	• • •	$10^{-1} { m sec}$	$3 \cdot 10^{10}$
Neutrinos decouple from nucleons	• • •	1 sec	$3 \cdot 10^{9}$
Big bang Nucleosynthesis begins		200 sec	$8 \cdot 10^{8}$
BBN ends = H, He, Li nuclei	• • •	15 min	$3 \cdot 10^{8}$
Radiation-matter energy density equality	3570	50,000 yrs	9,390
Recombination (ionized plasma to neutral atoms)	1380	250,000 yrs	9,390
Photon decoupling (from electrons = CMB)	1070	370,000 yrs	2,970
First Stars	50	50 Myrs	• • •
Reionization: H, He	8	650 Myrs	
Matter-Lambda energy density equality	0.4	10.2 Gyrs	
Today	0	13.8 Gyrs	2.73

Table 1: Evolution of the Expanding Universe (flat, Λ CDM)