$\ddot{\mathbf{U}}\mathbf{bungsblatt}\ \mathbf{2}$

Hausaufgabe 4

 \mathcal{A}_1

 \mathcal{A}_2

Hausaufgabe 5

(b) Potenzmengenkonstruktion:

	a	b
$S_0 = \{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$S_1 = \{q_0, q_1\}$	$\{q_0,q_1\}$	$\{q_0, q_2\}$
$S_2 = \{q_0, q_2\}$	$\{q_0,q_1\}$	$\{q_0, q_3\}$
$S_3 = \{q_0, q_3\}$	$\left\{q_0,q_1\right\}$	$\{q_0\}$

$$\Rightarrow \mathcal{P} = \{Q', \Sigma, S_0, \Delta', F'\}$$

$$Q' = \{S_0, S_1, S_2, S_3\}, F' = \{S_3\}$$

$$\Delta' = \{(S_0, a, S_1), (S_0, b, S_0), (S_1, a, S_1), (S_1, b, S_1), (S_2, a, S_1), (S_2, b, S_3), (S_3, a, S_1), (S_3, b, S_0)\}$$

Hausaufgabe 6

Hausaufgabe 7

Wir beweisen: L ist nicht erkennbar. Wir führen einen direkten Beweis:

Sei n_0 eine beliebige natürliche Zahl mit $n_0 \ge 1$.

Wir wählen $w = v \cdot v^R$ mit $v = a^{n_0} b, v^R = b a^{n_0}$. Es gilt $w \in L$ und $|w| \ge n_0$.

Sei w = xyz eine beliebige Zerlegung mit $y \neq \epsilon, |xy| \leq n_0$.

Für diese Zerlegung gilt:

Da $|xy| \le n_0$, besteht xy nur aus as, und es besteht $y \ne \epsilon$ auch nur aus mindestens a, sodass |y| > 0.

Für k = 2 gilt also $xy^k z = a^{n_0 + |y|} b \cdot ba^{n_0}$.

Es gilt für die obige Zerlegung nicht mehr $w = v \cdot v^R$, da v links mehr as enthält als v^R rechts. Dies widerspricht allerdings der geg. Definition des Spiegelwortes, nämlich dass ein beliebiges Spiegelwort w^R alle Buchstaben von w enthalten muss.

Somit ist das Wort nicht in der Sprache und für k=2 gilt $xy^kz\notin L$.

Da n_0 und die Zerlegung xyz beliebig sind, folgt durch das Pumping-Lemma im Kontrapositiv: L ist nicht erkennbar.