

From Our Reference Phone Pune

MS/EEB-PJ1-PS Sumanth Chatakonda / 6309639731/ 31 July 2024
Rudresh Wanve 7420901147 Report Number

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No

Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials_Report

THCM 41kW Backhoe-Loader Summer Trials

Jaisalmer, Rajasthan

From MS/EEB-PJ1-PS

Our Reference
Sumanth Chatakonda /

Rudresh Wanve

Phone 6309639731/ 7420901147

Pune 31 July 2024 Report Number

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials_Report

Contents

1.	Obj	ectiv	e	. 4
2.	Eng	gine (Configuration	. 4
3.	Нус	drauli	c system Layout	. 4
4.	Ter	mina	l Diagram	. 5
5.	Ser	nsors	and Actuators plausibility check	. 6
6.	Mad	chine	Details	. 7
7.	Clu	ster (Checks	. 7
3.	Sur	nmer	trials	. 8
8	.1.	Bou	ndary conditions	. 8
8	.2.	Hot	start trials	. 8
	8.2.	1.	Start check at ~55°C coolant temperature and 40°C Ambient temperature	. 8
	8.2.	2.	Start check at ~63°C coolant temperature and 40°C Ambient temperature	. 9
	8.2.	.3.	Start check at ~73°C coolant temperature and 40°C Ambient temperature	. 9
	8.2.	4.	Start check at ~82°C coolant temperature and 40°C Ambient temperature	10
	8.2.	5.	Start check at ~90°C coolant temperature and 40°C Ambient temperature	10
	8.2.	6.	Start check at ~95°C coolant temperature and 40°C Ambient temperature	11
	8.2.	7.	Start check at ~101 $^{\circ}\text{C}$ coolant temperature and 40 $^{\circ}\text{C}$ Ambient temperature	11
	8.2.	.8.	Start check at ~105°C coolant temperature and 40°C Ambient temperature	12
8	.3.	Perf	formance check at hot condition	12
8	.4.	Ove	rheat Prevention Calibration	14
	8.4.	1.	TML target for overheat prevention:	14
	8.4.	.2.	Final calibration used to achieve overheat prevention targets:	
	8.4.	.3.	Overheat Prevention Checking Trials	15
	8.4.	4.	Overheat Prevention validation and results:	16
8	.5.	Ope	en Points list and further action	19
8	.6.	Con	clusion and results	19

From Our Reference Phone Pune

MS/EEB-PJ1-PS Sumanth Chatakonda / 6309639731/ 31 July 2024
Rudresh Wanve 7420901147 Report Number

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No

Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials_Report

Document approval				
	OrgUnit	Name	Signature	
Author(s):	MS/EEB-PJ1-PS	Rudresh Wanve	Pos works	
Responsible person:	MS/EEB-PJ1-PS	Sumanth Chatakonda	Blumank	
Reviewer:	MS/EEB-PJ1-PS	Avinash Nanganure		
Releasing person:	MS/EEB-PJ1-PS	Sumanth Chatakonda	Chamank	
Approver	MS/EEB-PJ1-PS	Jagadisha G		

Initial mailing list

dhananjay.shendre@tatamotors.com;dangarear@tatamotors.com;

Recipients: <u>vishal.gholap@tatamotors.com;</u> <u>manohar.kadam@tatamotors.com;</u>

shreedhar.arasule@tatamotors.com; jagadish@in.bosch.com

avinash.nanganure@in.bosch.com; rahul.kishorgujar@bosch.com;

Cc: tejas.kadlaskar@in.bosch.com; chatakonda.venkatasumanth@bosch.com;

ganeshvishnu.badgujar@bosch.com;

From Our Reference Phone Pune

MS/EEB-PJ1-PS Sumanth Chatakonda / 6309639731/ 31 July 2024
Rudresh Wanve 7420901147 Report Number

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No

Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials_Report

1. Objective

TML has developed 497NA engine with 41 kW @2200 RPM power rating for Backhoe Loader application. Representatives from BOSCH, TML, and THCM were present in Jaisalmer to attend the summer trials and ensure the effectiveness of the calibration under extreme conditions. The scope of this report is to summarize the activity along with the analysis and results.

2. Engine Configuration

Engine Details		
Engine configuration	4 Cyl, 2V/Cyl, NA	
Displacement	3.785ltr	
Power rating	41kW @2200RPM	
Torque	225Nm @1400RPM	
Sp. Power	20.8 kW/L	
Drive ratio	1:2	
Max Cylinder Pressure	124 Bar	
Emission target	CEV	
Application	Backhoe-Loader	
Emission norm	CEV5	

3. Hydraulic system Layout

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials_Report

4. Terminal Diagram

From Our Reference Phone Pune

MS/EEB-PJ1-PS Sumanth Chatakonda / 6309639731/ 31 July 2024
Rudresh Wanve 7420901147 Report Number

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No

Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials_Report

5. Sensors and Actuators plausibility check

SI.No	Power train sensors	Plausibility status	Remark
1	Crank Shaft speed sensor	OK	-
2	Camshaft speed sensor.	OK	-
3	Accelerator Pedal Sensor	OK	-
4	Coolant temperature sensor	OK	-
5	TMAP Sensor	OK	-
6	Т4	OK	-
7	Т5	OK	-
8	Delta P sensor	OK	-
9	Oil Pressor sensor	OK	-
10	Rail Pressor sensor	OK	-
11	Remote accelerator pedal	OK	-
SI.No	Actuators	Plausibility status	Remark
1	ITV VIv	OK	-
2	EGR Vlv	OK	-
3	Metering Unit	OK	-
4	Injectors	OK	-
SI.No	Switch	Plausibility status	Remark
1	Hand Brake Switch	OK	
2	Neutral Switch	OK	-
3	Ignition Switch	OK	-
4	DPF Regen Inhibit Switch	TBC	Will be checked by DPF team.
5	Regeneration Start Switch	TBC	Will be checked9 by DPF team.

From Our Reference Phone Pune

MS/EEB-PJ1-PS Sumanth Chatakonda / 6309639731/ 31 July 2024
Rudresh Wanve 7420901147 Report Number

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No

Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials_Report

6. Machine Details

Application	THCM Backhoe Loader	
Vehicle Name	Shinrai Pro	
Maximum load which can be lifted	Loader capacity = 2T	
Accessories (additional load on the engine)	Cabin fan, air pump (brake), headlights	

7. Cluster Checks

SI. No	Cluster Components	Bosch SW status	Vehicle Cluster status
1	Doubing Drobo	HndBrk_stDebVal =1	Р
	Parking Brake	HndBrk_stDebVal =0	Indicator off
2	Low Engine oil pressure/Engine oil	1	Low oil P indication
	pressure switch(OilPLmp_st)	0	Indicator off
3	Water in Fuel	Planned in next visit with the spare WIF	
		sei	nsor
4		Gbx_stNPosRaw =1	N
	Neutral	Gbx_stNPosRaw =0	F
		Gbx_stNPosRaw =0	R
5	DPF lamp		
6	Exhaust High Temperature lamp: HEST	Planned during DPF team visit	
7	DPF Inhibit		
8	POP up messages of Regeneration		
9	MIL check (checked for DFC_DevLibBat-	ErrLmP_stMIL - 64	MIL Lamp ON
	tUHi)		
10	Coolant Temperature gauge	CEngDsT_t =40	С
		CEngDsT_t =80	Middle
		CEngDsT_t =120	Н
11	SVS lamp/ check engine (checked for	-ErrLmP_stSVS - 65	SVS Lamp ON
	DFC_CEnDsTPhysRngHi)		

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No Title: TML CEV5 497 NA 41KW@2200RPM THCM BHL Summer

trials_Report

8. Summer trials

8.1. Boundary conditions

a) Location: Jaisalmer, Rajasthan

b) Altitude: 225mtr

c) Peak Ambient temperature recorded: 43°C.

d) Ambient pressure: 1001hPae) Initial dataset used for trials:

A2L: P2101_CEVST5_V312_TSW4.A2L

Hex: 0024625_TML_497_41kW_CEV_stage5_V312TSW4_THCM_BHL_M2_V09_summertrial.hex

8.2. Hot start trials

The engine coolant temperature remained below 85°C during operation. To increase the coolant temperature and test the starting capability, the radiator (blow-out type) was obstructed from the outside with 2-3 paperboards. This blockage caused the coolant temperature to exceed 95°C while the vehicle was in a stationary condition.

8.2.1. Start check at ~55°C coolant temperature and 40°C Ambient temperature.

➤ Observation: Starting time is 0.979s, No visible smoke & stable start.

From	Our Reference	Phone	Pune
MS/EEB-PJ1-PS	Sumanth Chatakonda /	6309639731/	31 July 2024
	Rudresh Wanve	7420901147	Report Number

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials_Report

8.2.2. Start check at ~63°C coolant temperature and 40°C Ambient temperature.

➤ Observation: Starting time is 0.915s, No visible smoke, stable start

8.2.3. Start check at ~73°C coolant temperature and 40°C Ambient temperature.

Observation: Starting time is 0.972s, No visible smoke, stable start

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials_Report

8.2.4. Start check at ~82℃ coolant temperature and 40℃ Ambient temperature.

> Observation: Starting time is 0.98s, No visible smoke, stable start

8.2.5. Start check at ~90°C coolant temperature and 40°C Ambient temperature.

Observation: Starting time is 0.95s, No visible smoke, stable start

8.2.6.

From Our Reference Phone Pune

MS/EEB-PJ1-PS Sumanth Chatakonda / Rudresh Wanve Pane

Phone Pune

6309639731/ 31 July 2024

7420901147 Report Number

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer trials_Report

Start check at ~95°C coolant temperature and 40°C Ambient temperature.

➤ Observation: Rail pressure builds in 0.99 seconds, causing a delayed start time of 1.87 seconds. There's no visible smoke, and the start is stable.

8.2.7. Start check at ~101°C coolant temperature and 40°C Ambient temperature.

➤ Observation: Rail pressure builds in 1.4 seconds, causing a delayed start time of 2.57 seconds. There's no visible smoke, and the start is stable.

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials Report

8.2.8. Start check at ~105°C coolant temperature and 40°C Ambient temperature.

➤ Observation: Rail pressure builds in 1.4 seconds, causing a delayed start time of 2.57 seconds. There's no visible smoke, and the start is stable.

> Summary of hot start trials:

- a. During start, battery voltage dropped to 8.46V (at 43°C ambient and 55°C coolant temperature) which is within ECU working threshold. Battery voltage is regained subsequently, and engine starts with repeatability.
- b. The rail pressure builds up adequately to release ET and consistently follows the set point without any lag.
- c. The starter engages for less than 0.8 seconds, and the engine starts within 1 second on the first crank, which is acceptable to TML.
- d. No visible smoke was observed during startup or low idle conditions at the test location.

8.3. Performance check at hot condition

We conducted comprehensive performance checks to evaluate engine effectiveness under high-temperature conditions. The operator constructed a water storage tank, utilizing leveling, travel, and operations with the Backhoe and Front Loader. These tests aimed to ensure that the calibration performed reliably and efficiently despite the extreme heat. Detailed analysis and results of these performance checks are presented in the following sections of this report.

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials_Report

➤ Low idle and High idle check: Low idle and high idle was observed to be 800RPM and 2430RPM respectively. Both the idles were stable as shown in the below snap.

➤ **<u>Drivability check</u>**: A drivability test was conducted at an ambient temperature of 43°C. To ensure an accurate assessment, travel and leveling operations were performed. These measures ensured a thorough evaluation of drivability under high temperatures.

From	Our Reference	Phone	Pune
MS/EEB-PJ1-PS	Sumanth Chatakonda/	6309639731/	31 July 2024
	Rudresh Wanve	7420901147	Report Number

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials_Report

8.4. Overheat Prevention Calibration

The engine coolant temperature remained below 85°C during operation. To increase the coolant temperature and test the starting capability, the radiator (blow-out type) was obstructed from the outside with 2-3 paperboards. This blockage caused the coolant temperature to exceed 95°C while the vehicle was in a stationary condition.

8.4.1. TML target for overheat prevention:

Coolant Temperature (°C)	Action
Up to 105°C	No overheating prevention needed
105°C to 107°C	Gradually limit engine torque
Above 107°C	Engine shuts off to prevent overheating

The above target can be achieved using the software logic shown below:

8.4.2. Final calibration used to achieve overheat prevention targets:

EngPrt_facOvhtPrvCT_CUR – This curve was calibrated to achieve the target based on CT, as previously discussed. When the factors fall below 1, there is a restriction on torque, and when the factor reaches 0, the engine should shut off.

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials Report

EngPrt_qOvhtPrvNRng_f_MAP – The fuel quantity is determined based on coolant-dependent factors, as detailed in this section. The calibrated coolant-based factor will be applied to the map, and the torque limitation will be enforced accordingly.

8.4.3. Overheat Prevention Checking Trials

During overheat prevention checks, we conducted trials in a standstill condition to thoroughly evaluate the performance and reliability of the overheat protection system.

a. Overheat Prevention Checking Trials at 105°C In Standstill Condition

➤ **Observation:** At 104°C, the overheat protection is not activated. When the coolant temperature reaches 105°C, the overheat protection logic activates, causing the overheat protection quantity curve to decrease and set the limit for the actual fuel quantity.

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials Report

b. Overheat Prevention Checks From 105 °C to 107°C In a Standstill Condition

➤ **Observation:** At 105°C, the overheat prevention activates. By 106°C, the overheat prevention quantity curve and the actual fuel quantity curve intersect, with the overheat prevention curve setting the limit for the actual fuel quantity, and both curves decreasing together thus leading the system to shut-off at 107 °C.

8.4.4. Overheat Prevention validation and results:

The machine was run to validate overheat prevention measures in both Travel and Backhoe modes. During this comprehensive test, we aimed to ensure the effectiveness of the overheat prevention system under various operational conditions.

8.4.4.1. Overheat Prevention validation and results for Travel Mode

The machine was run in travel mode to validate overheat prevention measures. During this test, the overheat prevention system started to activate when the coolant temperature exceeded 105°C. As the coolant temperature continued to rise and exceeded 107°C, the engine RPM dropped to zero, causing the vehicle to shut down.

From Our Reference Phone Pune

MS/EEB-PJ1-PS Sumanth Chatakonda / Rudresh Wanve Pane

Our Reference Phone Pune

6309639731/ 31 July 2024

7420901147 Report Number

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials_Report

a. Overheat prevention check in Travel Mode.

Observation: Over-heat prevention logic is working as intended.

8.4.4.2. Overheat Prevention validation and results for Backhoe Mode

The machine was tested in Backhoe mode with E, S and P Mode to validate the overheat prevention system. The protection system kicks in when the coolant temperature exceeds 105°C, and the engine shuts down at 107°C Coolant temp.

a. Overheat prevention check in Backhoe E mode(DrvPrgSwt=2).

Observation: Over-heat prevention logic is working as intended.

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials_Report

b. Overheat prevention check in Backhoe S mode(DrvPrgSwt=0).

> Observation: Over-heat prevention logic is working as intended.

c. Overheat prevention check in Backhoe P mode(DrvPrgSwt=1).

> Observation: Over-heat prevention logic is working as intended.

Report Number

From Our Reference Phone Pune MS/EEB-PJ1-PS Sumanth Chatakonda / 6309639731/ 31 July 2024 Rudresh Wanve 7420901147

Summer Trials R&D Report:

Confidential Security Class: Export control relevant: Title:

TML CEV5 497 NA 41KW@2200RPM THCM BHL Summer

trials Report

8.5. Open Points list and further action

SI.No	Open Points	Action Plan
1	Sometimes "DFC_OilPNpl" is popping up after starting the engine although oil pressure switch is properly connected	 No errors are observed in THCM with same dataset on Proto 1 Kept disabled in current dataset to avoid misdetections. Wiring Harness must be checked again and DSM team to revalidate the same during their visit
2	Sometimes "DFC_StDrvPrgSwtErr" is popping up after key ON	 Only observed on INCA but not on cluster as P code is not available for this DFC in current DSM sheet DSM team to check this during their visit
3	High water coolant lamp is glowing when coolant temperature reaches 102 °C but THCM requirement is 105°C	 Label to calibrate this target temperature is enabled in new V401 SW. -V401 SW was not available during trials

8.6. Conclusion and results

All the tests detailed in the report were successfully conducted at the machine level. The summary of the completed activities is as follows:

- A. Sensor-actuator plausibility checks were performed before starting the trials. Since there was no ambient temperature sensor available, the ambient temperature was obtained using a thermometer.
- B. At an ambient temperature of approximately 43°C, start ability, low idle (LI) condition, engine ramp to high idle (HI), high idle conditions, and white smoke behavior were evaluated. Calibration and verification were conducted to ensure the observed behavior met the acceptability criteria defined by TML.
- C. Basic checks on engine stability and performance were conducted at part and full acc. pedal positions under hot conditions (ambient temperature around 45°C). The performance was deemed acceptable by TML.
- D. The overheat prevention calibration was checked and verified to ensure machine safety at higher coolant temperatures. The overheat prevention function operated as intended.

All the application-relevant functions tested and discussed in the report are performing as intended, and the results meet TML's acceptance criteria.

From Our Reference Phone Pune

MS/EEB-PJ1-PS Sumanth Chatakonda / 6309639731/ 31 July 2024
Rudresh Wanve 7420901147 Report Number

R&D Report: Summer Trials

Security Class: Confidential Export control relevant: No

Title: TML_CEV5_497_NA_41KW@2200RPM_THCM_BHL_Summer

trials_Report

Dataset finalized:

HEX:

20240628_TML_497_41kW_CEV_Stage5_V312TSW4_THCM_BHL_M2_V09_summer trial_OilPMin&OilPNpl&CEngDST_Phys_Rng-Hi_enabled_LIM_FID_changed_CEng-PhysRng_Max-105°C_2.hex

A2L:

P2101_CEVST5_V312_TSW4.A2L