$$\forall s, a, \quad \sum_{s' \in \text{States}} T(s, a, s') = 1$$

 \square Politique – Une politique π est une fonction liant chaque état s à une action a, i.e.

$$\pi: s \mapsto a$$

 \square Utilité – L'utilité d'un chemin $(s_0, ..., s_k)$ est la somme des récompenses dévaluées récoltées sur ce chemin. En d'autres termes,

Remarque : la figure ci-dessus illustre le cas k = 4.

 \square Q-value – La fonction de valeur des états-actions (Q-value en anglais) d'une politique π évaluée à l'état s avec l'action a, aussi notée $Q_{\pi}(s,a)$, est l'espérance de l'utilité partant de l'état s avec l'action a et adoptant ensuite la politique π . Cette fonction est définie par :

$$Q_{\pi}(s,a) = \sum_{s' \in \text{ States}} T(s,a,s') \left[\text{Reward}(s,a,s') + \gamma V_{\pi}(s') \right]$$

 \Box Fonction de valeur des états d'une politique – La fonction de valeur des états d'une politique π évaluée à l'état s, aussi notée $V_{\pi}(s)$, est l'espérance de l'utilité partant de l'état s et adoptant ensuite la politique π . Cette fonction est définie par :

$$V_{\pi}(s) = Q_{\pi}(s, \pi(s))$$

Remarque: $V_{\pi}(s)$ vaut 0 si s est un état final.

2.2.2 Applications

- □ Évaluation d'une politique Étant donnée une politique π , on peut utiliser l'algorithme itératif d'évaluation de politiques (en anglais policy evaluation) pour estimer V_{π} :
 - <u>Initialisation</u>: pour tous les états s, on a

$$V_{\pi}^{(0)}(s) \longleftarrow 0$$

— <u>Itération</u> : pour t allant de 1 à T_{PE} , on a

$$\forall s, \quad V_{\pi}^{(t)}(s) \longleftarrow Q_{\pi}^{(t-1)}(s,\pi(s))$$

avec