Data Science & Artificial Intelligence Calculus and Optimization

Q1. On the interval [0, 1] the function $x^{25}(1-x)^{75}$ takes its maximum

value at

$$f(x) = (x^{25})(1-x)^{75} \text{ Polynomial } [0,1]$$

$$f(x) = (x^{25})(1-x)^{75} + (x^{25})(1-x$$

$$257^{24}(1-2)^{94}(1-42)=0$$

Local max/min

value of xx and maximum value of

$$\left(\frac{1}{x}\right)^x$$
 is

min
$$f(x) = x^2 \rightarrow (Function)$$
 function $f(x) = (\frac{1}{x})^2 x^{-2}$
value $f'(x) = 0$

$$\Rightarrow \frac{1}{f(x)} \cdot f'(x) = x \cdot \frac{d}{dx} (\log x) + \log x \cdot \frac{d}{dx} (x)$$

(b)
$$e^{-1}$$

$$= \int_{-1/2}^{1/2} f(x) = \int_{-1/2}^{1/2} f(x) \left[\frac{1}{x} + \log x \cdot 1 \right]$$

$$f'(x) = x(1+lex)$$

$$f'(x) = 0$$

(d)
$$e^{-2}$$

$$x = 0$$

$$f(x) = x^{-x}$$

$$\Rightarrow bz_{y} f(x) = -x log x$$

$$\Rightarrow f'(x) = x^{-x} [1 + log x]$$

$$x = \frac{1}{e}$$

$$x = \frac{1}{e}$$
We value
$$f(x) = x^{-x} / e = \frac{1}{e}$$
Then $f(x) = x^{-x} / e = \frac{1}{e}$

$$yalue f(e) = (-1) = (e)$$

Q3. The minimum value of the function defined by f(x) = max(x, x + 1, 2 - x)

is
$$f(x) = \max\{x, x+1, 2-x\}$$

$$Y = x, x+1, z-x$$

$$\max\{x, x+1, z-x\}$$

(a)
$$0 = \frac{3}{2} \text{ Ans}$$

absolute max min

-16[-2,1]

Q4. The greatest and the least values of the function,

$$f(x)=2-\sqrt{1+2x+x^2}, x \in [-2,1]$$
 are
 $f(x)=2-\sqrt{1+2x+x^2}$
 $f(x)=2-\sqrt{1+2x+2x}$
 $f(x)=0-1$ $(0+2+2x)$

(b)
$$2,-1$$

$$= \frac{(\lambda+\lambda x)}{\lambda/1+\lambda x+x^2} =$$

(d) None of these

2 1+22+22

> closed Internal — Glob almax
$$z=-1$$
 — global mun $f(x)=2-\sqrt{1+2x+z^2}$ o $f(-1)=2-\sqrt{1-2+1}=0$ $f(-2)=2-\sqrt{1-2+1}=2$ $f(1)=2-\sqrt{1+2+1}=2$ $f(1)=2-\sqrt{1+2+1}=2$ $f(1)=2-\sqrt{1+2+1}=2$

f(-1)=0

Q5. The difference between the greatest and least values of the function

$$f(x) = \sin 2x - x$$
 on $[-\pi/2, \pi/2]$ is $-\frac{\pi}{2}, \frac{\pi}{2} + \frac{\pi}{2}$

(a)
$$\frac{\sqrt{3}+\sqrt{2}}{2}$$
 (b) $\frac{\sqrt{3}+\sqrt{2}}{2}+\frac{\pi}{6}$

(c)
$$\pi/2$$

$$= \frac{2}{2} = \frac{2}{2} = \frac{1}{2} = \frac{1}{2}$$

$$\frac{\sqrt{3}+\sqrt{2}}{2}+\frac{\pi}{6}$$

$$\begin{cases}
\frac{1}{2}(\pi)=0 \\
2\cos 2\pi-1=0 \\
2\cos 2\pi-1=0 \\
\cos 2\pi-1=0 \\
\cos 2\pi-1=0
\end{cases}$$

$$\frac{1}{2}(\pi)=0$$

$$\frac{1$$

$$f(\frac{\pi}{6}) = \frac{\pi}{2} - \frac{\pi}{6} f(\frac{\pi}{2}) = \frac{\pi}{2} - \frac{\pi}{2} + \frac{\pi}{6} f(-\frac{\pi}{2}) = \frac{\pi}{2} - \frac{\pi}{2} + \frac{\pi}{6} f(-\frac{\pi}{2}) = \frac{\pi}{2} - \frac{\pi}{2} + \frac{\pi}{6} f(-\frac{\pi}{2}) = \frac{\pi}{2} - \frac{\pi}{6} + \frac{\pi}{6} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{6} + \frac{\pi}{2} + \frac{\pi}$$

Q6. If p and q are positive real numbers such that $p^2 + q^2 = 1$, then the $\frac{AM > 4M}{P+M} = \frac{AM}{P+M} =$

$$f(P) = P + \sqrt{1 - p^2}$$

 $f'(P) = 0$

(a)

(c)
$$\frac{1}{\sqrt{2}}$$
 $(-p^2 - p^2 = 0)$ $(-p^2)^2 + (-p^2)^2 + (-p^2)$

Mx value =
$$p+q$$

$$= p+\sqrt{1-p^2}$$

$$= \sqrt{2}$$

$$= \sqrt{2}$$

- Q7. If x is real, the maximum value of $\frac{3x^2 + 9x + 17}{2x^2 + 9x + 7}$
 - = udv-vdu
- (a) 41
 - (b) 1
 - (c) 17/7
 - (d) 1/4

$$f(x) = \frac{3x^2 + 9x + 17}{3x^2 + 9x + 7} = \frac{1}{1 + \frac{3}{1}}$$

$$f'(x) = 0 + \frac{6x + 9}{1 + \frac{3}{1}}$$

$$X = -\frac{3}{1} \text{ critical PL}$$

$$\Rightarrow f''(x) < 0 \text{ at } Pt x = -\frac{3}{2}$$

Max value = 1+10

$$= (41) \frac{3(9)+9x(-3)}{2}+7$$

$$\frac{N}{N} = d$$
 $\frac{N}{N} = d$
 $\frac{N}{N} = d$

Q8. The maximum value $x^3 - 3x$ in the interval [0, 2] is

Crutical Pts =
$$-1$$
, 1 [0 , 2] global max | global min

$$(c)$$
 0

$$(d) -2$$

$$f(1) = 1 - 3 = -2$$
 max value
 $f(2) = 8 - 6 = 2$ max value
 $f(2) = 2$ max value
Put $x = 2$

Q9. Minimum value of
$$\frac{1}{3\sin\theta - 4\cos\theta + 7}$$

$$\frac{3\sin\theta - 4\cos\theta + 7}{3\sin\theta - 4\cos\theta + 7}$$

(b)
$$5/12$$
 $\sqrt{\frac{35m0-4000}{9+16}}$

(a)

7/12

(c)
$$1/12 = 5 \left[\frac{3}{5} \text{ sm} 0 - \frac{4}{5} \text{ coo} \right]$$

(d) $1/6$

$$\frac{1}{5}$$
 $\frac{1}{5}$ $\frac{1}$

$$=5 \left(\text{smocgq-coorma} \right) = 5 \text{sm} \left(x - 0 \right)$$

Maxvalne = 1 nun valne = nung run value Valne MA max value 5X-1+7

オーロン

Q10. The number of values of x where $f(x) = \cos x + \cos \sqrt{2} x$ attains its maximum value is

 $f(x) = conx + co(\sqrt{2})x$ maxvalue

- (b) 0
- (c) 2
- (d) infinite

max value

Value

$$f(0) = \cos 0 + \cos(\sqrt{2}) \circ = 1 + 1$$
 $= 2$

globalmax

Q11. The greatest value of $f(x) = (x + 1)^{1/3} - (x - 1)^{1/3}$ in [0, 1] is

$$f'(x) = 0$$

$$f'(x) = \frac{1}{3} \frac{1}{(x-1)^{2/3}} - \frac{1}{3} \frac{1}{(x-1)^{2/3}}$$

$$= 0 \quad f'(x) \text{ does Not exists}$$

$$= 0 \quad f'(x) \text{ does Not exists}$$

$$= 0 \quad x = 1$$

$$(x-1)^{\frac{2}{3}} - (x+1)^{\frac{2}{3}} = 0 \quad (x-1)^{\frac{2}{3}} = (x+1)^{\frac{2}{3}}$$

$$x = \pm 1$$

$$x = 0$$

$$f(0) = (0-1)^{2/3} - (0+1)^{2/3} = 2$$
 [Max value]

(a) 1

(b) 2

(c) 3

(d) 21/3

Q12.If
$$\int_{1}^{x} \frac{dt}{|t|\sqrt{t^2-1}} = \frac{\pi}{6}$$
, then x can be equal to

(a)
$$\frac{2}{\sqrt{3}}$$
 $\Rightarrow ke^{-1}x-ke^{-1}$ (b) $\sqrt{3}$ $=\frac{11}{6}$

(d) None of these

Q13. if
$$f(x) = \begin{cases} x; x < 1 \end{cases}$$
, then $\int_0^2 x^2 f(x) dx$ is equal to
$$\begin{cases} x - 1; x \ge 1 \\ x - 1; x \ge 1 \end{cases}$$

$$\begin{cases} x > 1 \\ x \ge 1 \end{cases} \Rightarrow \begin{cases} x > 1 \end{cases}$$
(a) 1
$$\begin{cases} x > 1 \\ x \ge 1 \end{cases} \Rightarrow \begin{cases} x > 1 \end{cases}$$
(b) 4/3
$$\begin{cases} x > 1 \end{cases} \Rightarrow \begin{cases} x$$

Q14. $\int_{0}^{\pi} |1 + 2 \cos x| dx$ equal to :

Telegram.
$$I = \int_{0}^{T} |1+2\cos x| dx$$

$$= Do yourself$$

(a)
$$2\pi/3$$

$$\frac{\pi}{3} + 2\sqrt{3}$$

Q15. The value of $\int_{-1}^{3} (|x-2|+[x]) dx$ is equal to (where [*]

$$\int_{-1}^{3} |x-2| dx + \int_{-1}^{3} [x] dx \qquad [-1] = -2 - \frac{1}{100}$$

$$\Rightarrow \int_{-1}^{2} (x-2) dx + \int_{2}^{3} + (x-2) dx + \int_{-1}^{0} -1 dx + \int_{0}^{1} dx + \int_{0}^{1} dx$$

$$= (7)$$

$$+ \int_{2}^{3} 2 dx$$

Q17.
$$\int_{log \, \pi - log \, 2}^{log \, \pi} \frac{e^x}{1 - cos\left(\frac{2}{3}e^x\right)} \, dx \text{ is equal to}$$

(d)
$$-\frac{1}{\sqrt{3}}$$

$$=\frac{3}{3}\frac{1}{1-cnt}$$

$$=\frac{3}{3}\frac{1}{1-cnt}$$

$$=\frac{3}{3}\frac{1}{1-cnt}$$

Q16. If $\int_{-1}^{3/2} |x \sin \pi x| dx = \frac{k}{\pi^2}$, then the value of k is

(a)
$$3\pi + 1$$

(b) $2\pi + 1$

$$f(x) = |x smTTx|$$

 $f(-1) = |-1 sm(-TT)|$
 $= 0$

$$f(x) = |x \le m \pi x|$$
 = $\int_{-1}^{1} x \le m \pi x + \int_{-1}^{3/2} -x \le m \pi x dx$

$$\frac{3\Pi+1}{\Pi^2}=\frac{R}{\Pi^2}$$

Q18. If
$$I_1 = \int_e^{e^2} \frac{dx}{\ln x}$$
 and $I_2 = \int_1^2 \frac{e^x}{x} dx$, then

(a)
$$I_1 = I_2$$

$$= I_2$$

(b)
$$2I_1 = I_2$$

(c)
$$I_1 = 2 I_2$$

(d) None of these

$$I_{1} = \begin{cases} \frac{e^{2} dx}{mx} & mx = t \\ \frac{e^{2} dx}{mx} & dx = e^{2} t \\ \frac{e^{2} dx}{dx} & e^{2} = e^{2} t \\ \frac{e^{2} dx}{t} & \frac{e^{2} dx}{t} & \frac{e^{2} e^{2} t}{t} \\ \frac{e^{2} dx}{t} & \frac{e^{2} dx}{t} & \frac{e^{2} e^{2} t}{t} \\ \frac{e^{2} dx}{t} & \frac{e^{2} dx}{t} & \frac{e^{2} e^{2} t}{t} \\ \frac{e^{2} dx}{t} & \frac{e^{2} dx}{t} & \frac{e^{2} dx}{t} & \frac{e^{2} dx}{t} \\ \frac{e^{2} dx}{t} & \frac{e^{2} dx}{t} & \frac{e^{2} dx}{t} & \frac{e^{2} dx}{t} \\ \frac{e^{2} dx}{t} & \frac{e^{2} dx}{t} & \frac{e^{2} dx}{t} \\ \frac{e^{2} dx}{t} & \frac{e^{2} dx}{t} & \frac{e^{2} dx}{t} \\ \frac{$$

Q19.
$$\int_{2-\log 3}^{3+\log 3} \frac{\log(4+x)}{\log(4+x) + \log(9-x)} dx \implies \int_{a}^{b} \frac{f(x)}{f(a+b-x) + f(x)} = \frac{(b-a)^{3+\log 3}}{a}$$

(d) Is equal to
$$\frac{1}{2} + \log 3$$

$$\int_{a}^{b} \frac{f(x)}{f(a+b-x)+f(x)} = \frac{(b-a)}{2}$$

Q20. $\int_0^\infty [2e^{-x}] dx$ is equal to

(where [*] denotes the greatest integer function)

$$T = \int_0^\infty \left[\frac{2e^{-x}}{2e^{-x}} \right] dx \Rightarrow -\int_0^\infty \left[t \right] \cdot \frac{dt}{2e^{-x}}$$

