9.4 Linear Inequalities in Two Variables

Method:

- 1. Replace the inequality symbol with an equal sign and graph the equation. Use a dashed line if the symbol is < or > and a solid line otherwise.
- 2. Decide on which side of the line to shade.
 - (a) Choose a test point. If the inequality evaluated at the point is true, graph on the side that contains the test point; otherwise, graph the other side.
 - (b) If the inequality is solved for y, shade based on the inequality symbol. Shade below the line if you have $y < \dots$ and shade above the line if you have $y > \dots$

Example 9.4.1. Graph: $4x - 2y \ge 8$

Math 0098 Page 1 of 4

Example 9.4.2. Graph: $y > \frac{-3}{4}x$

Example 9.4.3. Graph: $x \leq -2$

Graphing Systems of Inequalities

Systems of linear inequalities have a *solution set* that is a portion of the plane, not just a point. To find this solution set, graph each of the inequalities individually and look for the overlap (intersection) of their solutions.

Example 9.4.4. Graph the solution set of the following system:

$$\begin{cases} x - 3y < 6 \\ 2x + 3y \geqslant -6 \end{cases}$$

Math 0098 Page 3 of 4

Example 9.4.5. Graph the solution set of the following system:

$$\begin{cases} x + y < 2 \\ -2 \leqslant x < 1 \\ y > -3 \end{cases}$$

Math 0098 Page 4 of 4