$\LaTeX 2_{\mathcal{E}} \text{ Introduction *}$

Kim, Wiback † 2016.04.20

Contents

1	Basi	ics	2
	1.1	Pages	3
	1.2	Lines	3
	1.3	Hyphenation	3
	1.4	Internet links	3
	1.5	End of sentences	3
	1.6	Cross-reference	3
	1.7	$Footnotes^1 \dots \dots \dots \dots \dots$	3
	1.8	Emphasizing	3
	1.9	Alignment	4
	1.10	Enumerates & Items & Descriptions	4
	1.11	Quatation	4
	1.12	Raw printing	4
	1.13	Tables	4
	1.14	Floats	4
2	Mat	thematical equations	5
	2.1	Inline equations	5
	2.2	New paragraphic equations	5
	2.3	Cross-reference	5
	2.4	Texts in mathematical equations	5
	2.5	Greeks	5
	2.6	Roots	5

^{*}For anyone who is interested in Latex

 $^{^\}dagger Efficiency^\sim kwb425@icloud.com$

 $^{^1} sample_footnote_1$

2.7	Braces
2.8	Vectors
2.9	Derivatives & Integrals & Summations & Products
2.10	Functions
2.11	Fractions
2.12	Binomials
2.13	Brackets
2.14	Arrays
2.15	Multilines
2.16	Advanced alignment with amsmath package
2.17	Delicate space control
2.18	Bold in equations
2.19	Encapsulated PostScript, .eps
2.20	References

Abstract

You can learn very basics of using LATEX $2\varepsilon as$ well as some advanced mathematical applications.

1 Basics

1.1 Pages

New page

1.2 Lines

Going off the right edge of the paper \rightarrow These strings and numbers (21312903) will be grouped toget 'New line'

"New line"

1.3 Hyphenation

Single-hyphenation Double-hyphenation Triple—hyphenation Minus sign: -1

1.4 Internet links

https://github.com/kwb425/EMCS_Git_Latex_Introduction.git

1.5 End of sentences

Sentence end with CAPITALS. Next Sentence...

1.6 Cross-reference

1.6 on page 3

1.7 Footnotes²

footnote³

1.8 Emphasizing

Three methods are **bold**, *italic*, and <u>underline</u>.

²sample_footnote_1

 $^{^3}$ sample_footnote_2

1.9 Alignment

center alignment

left alignment

right alignment

1.10 Enumerates & Items & Descriptions

- 1. Sample_enumerate_1
 - Sample_item_1
 - Sample_item_2
- $2. \ Sample_enumerate_2$

 $Sample_description_1$ is a sample.

1.11 Quatation

Below is sample quatation.

This sample is written by Kim, Wiback

To Contents

1.12 Raw printing

Raw printing /~!@#\$%^&*()_+

1.13 Tables

1st row	bound	1st sample	bound	1st sample	
2nd row	bound	$2nd\ sample$	${\rm bound}$	2nd sample	
3rd row	bound	3rd sample	bound	3rd sample	
Pi	bound	Value & Rounding			
π	bound	3.1416	bound	3	
π^{π}	bound	36.46	bound	36	
$(\pi^{\pi})^{\pi}$	bound	80662.7	bound	80663	

1.14 Floats

2 Mathematical equations

2.1 Inline equations

$$a^x + y \neq a^{x+y}$$

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$$

2.2 New paragraphic equations

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k^2}=\frac{\pi^2}{6}$$

2.3 Cross-reference

$$\epsilon > 0$$
 (1)

From $(1), \ldots$

2.4 Texts in mathematical equations

Without texts:

$$\forall x \in \mathbf{R}: \qquad x^2 \ge 0$$

(2) To Contents

With texts:

$$x^2 \ge 0$$
 for all $x \in \mathbf{R}$ (3)

2.5 Greeks

Lowers: $\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, \upsilon, \phi, \chi, \psi, \omega$ Uppers: $A, B, \Gamma, \Delta, E, Z, H, \Theta, I, K, \Lambda, M, N, \Xi, O, \Pi, P, \Sigma, T, \Upsilon, \Phi, X, \Psi, \Omega$

2.6 Roots

$$\sqrt[3]{x}$$
 $\sqrt[4]{x^2 + \sqrt[2]{y}}$ $\sqrt[3]{2}$

2.7 Braces

$$\overline{x+y}$$
 $\underline{x+y}$ $\underline{x+y+\cdots+z}$ $x+y+\cdots+z$

2.8 Vectors

$$\vec{a}$$
 \overrightarrow{AB}

2.9 Derivatives & Integrals & Summations & Products

Four processes.

Derivatives:

$$y = x^2$$
 $y' = 2 \cdot x$ $y'' = 2$ $\frac{\partial f(x)}{\partial x} = \frac{\partial g(x)}{\partial y}$

Integrals:

$$\int_{-\infty}^{\infty} dx dy \iiint_{-\infty}^{\infty} dx dy$$

summations:

$$\sum_{\substack{0 < x < n \\ 1 < y < m}} P(x, y) = \sum_{\substack{x \in I \\ 1 < y < m}} Q(x, y)$$

products:

$$\prod_{\epsilon}^{\infty}$$

To Contents

2.10 Functions

Example among many functions (cos, sin, exp, ...):

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

2.11 Fractions

$$\frac{x^2}{k+1}$$
 $x^{\frac{2}{k+1}}$ $x^{1/2}$

2.12 Binomials

$$\binom{n}{k}$$
 C_n^k

2.13 Brackets

Two ways of dealing with the brackets Automatic sizings:

$$[a,b,c] \equiv [a,b,c] \left[\frac{1}{1-x^2} \right]^3 \qquad (a,b,c) \equiv (a,b,c) \left(\frac{1}{1-x^2} \right)^3 \qquad a,b,c \neq \{a,b,c\} \left\{ \frac{1}{1-x^2} \right\}^3$$

Self sizings:

$$(x+1)\cdot(x-1)^2$$
 $(((()$

2.14 Arrays

Three forms.

Full matrix form:

$$\mathbf{X} = \left(\begin{array}{ccc} x_{11} & x_{12} & \dots \\ x_{21} & x_{22} & \dots \\ \vdots & \vdots & \ddots \end{array} \right)$$

Half matrix form:

$$y = \begin{cases} a & \text{if } good \\ b+c & \text{well...} \\ l & \text{good for you?} \end{cases}$$

To Contents

Separated form:

$$\left(\begin{array}{c|c} 1 & 2 \\ \hline 3 & 4 \end{array}\right)$$

2.15 Multilines

$$f(x) = \cos x \tag{4}$$

$$f'(x) = -\sin x \tag{5}$$

$$\int_0^x f(y)dy = \sin x \tag{6}$$

2.16 Advanced alignment with amsmath package

Total five environments.

Equation environment:

$$e^{\pi i} - 1 = 0 \tag{7}$$

Split environment:

$$A = \frac{\pi r^2}{2}$$

$$= \frac{1}{2}\pi r^2$$
(8)

Multiline environment:

$$p(x) = 3x^6 + 19x^3y^3$$

$$p(x) = 3x^6 + 19x^3y^3$$
$$p(x) = 3x^6 + 19x^3y^3$$

$$p(x) = 3x^6 + 19x^3y^3$$

Gather environment:

$$2x - 5y = 8$$
$$3x^2 + 9y = 1$$

Align environment:

$$x=y$$
 $w=z$ $a=b-1$

$$2x=-y$$
 $3w=\frac{1}{2}z$ $a=b$

$$-4+5x=2+y$$
 $w+2=-1+w$ $ab=cb$

To Contents

2.17 Delicate space control

$$\Gamma_{xy}^{z}$$
 vs Γ_{xy}^{z}

2.18 Bold in equations

$$\mu, M \qquad \boldsymbol{\mu}, \boldsymbol{M}$$

${\bf 2.19}\quad {\bf Encapsulated~PostScript, .eps}$

Figure 1: Upper caption

Figure 2: Bottom caption

2.20 References

Kim [1] has proposed that ...

References

[1] Kim: Korea, Introduction to LATEX $2_{\mathcal{E}}(2016)$