#### Announcement

Homework 3

■ Due: April 7, 11:59pm

Programming Assignment 3

■ Due: April 12, 11:59pm

#### Announcement

Midterm Review @April 12

- Midterm @April 14 (in class)
  - Location: TBA
  - "Introduction" "Approximate inference on BN"
  - Format
    - Closed-book. You can bring an A4-size cheat sheet and nothing else.
    - Around 5 problems
  - Grade
    - 25% of the total grade

# Bayes Nets: Approximate Inference



AIMA Chapter 14.5, PRML Chapter 11

# Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
  - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- Bayes' nets implicitly encode joint distributions
  - As a product of local conditional distributions
  - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$





#### Variable Elimination

- Interleave joining and marginalizing
- d<sup>k</sup> entries computed for a factor over k variables with domain sizes d
- Ordering of elimination of hidden variables can affect size of factors generated
- Worst case: running time exponential in the size of the Bayes' net





# Sampling

- Goal: probability P
- Basic idea
  - Draw N samples from a sampling distribution S
  - Compute some quantity from the samples
  - Show this converges to the true probability P

- Why sample?
  - Often very fast to get a decent approximate answer
  - The algorithms are very simple and general (easy to apply to fancy models)
  - They require very little memory (O(n))



### Sampling from a discrete distribution

- Sampling from given distribution
  - Step 1: Get sample u from uniform distribution over [0, 1)
    - Random() in many programing languages
  - Step 2: Convert this sample u into an outcome for the given distribution by associating each outcome x with a P(x)-sized subinterval of [0,1)

Example

| С     | P(C) |
|-------|------|
| red   | 0.6  |
| green | 0.1  |
| blue  | 0.3  |

$$\begin{aligned} 0 &\leq u < 0.6, \rightarrow C = red \\ 0.6 &\leq u < 0.7, \rightarrow C = green \\ 0.7 &\leq u < 1, \rightarrow C = blue \end{aligned}$$

- If random() returns u = 0.83, then our sample is C = blue
- E.g, after sampling 8 times:







# Sampling in Bayes Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling





- For i=1, 2, ..., n (in topological order)
  - Sample  $X_i$  from  $P(X_i | parents(X_i))$
- Return  $(x_1, x_2, ..., x_n)$



### Using samples

We'll get a bunch of samples from the BN:



- If we want to know P(W)
  - We have counts  $\langle w:4, \neg w:1 \rangle$
  - Normalize to get  $P(W) = \langle w:0.8, \neg w:0.2 \rangle$
  - This will get closer to the true distribution with more samples
- If we want to know P(C | r, w)
  - Count (c, r, w) and  $(\neg c, r, w)$
  - Normalize to get  $P(C|r, w) = \langle c:0.67, \neg c:0.33 \rangle$

This process generates samples with probability:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{Parents}(X_i)) = P(x_1 \dots x_n)$$
  
...i.e. the BN's joint probability

- Let the number of samples of an assignment be  $N_{PS}(x_1 \dots x_n)$
- So  $\hat{P}(x_1, ..., x_n) = N_{PS}(x_1, ..., x_n)/N$

Then 
$$\lim_{N\to\infty} \hat{P}(x_1,\ldots,x_n) = \lim_{N\to\infty} N_{PS}(x_1,\ldots,x_n)/N$$
  
=  $S_{PS}(x_1,\ldots,x_n)$   
=  $P(x_1\ldots x_n)$ 

I.e., the sampling procedure is consistent

# Rejection Sampling



### Rejection Sampling

- A simple modification of prior sampling for conditional probabilities
- Let's say we want P(C | r, w)
- When generating a sample, reject it immediately if not R=true, W=true
- It is consistent for conditional probabilities (i.e., correct in the limit)



# Rejection Sampling

- Input: evidence  $e_1,...,e_k$
- For i=1, 2, ..., n
  - Sample  $X_i$  from  $P(X_i | parents(X_i))$
  - If x<sub>i</sub> not consistent with evidence
    - Reject: Return, and no sample is generated in this cycle
- Return  $(x_1, x_2, ..., x_n)$





- Problem with rejection sampling:
  - If evidence is unlikely, rejects lots of samples
  - Evidence not exploited as you sample
  - Consider P(Shape | Color=blue)



pyramid, green
pyramid, red
sphere, blue
cube, red
sphere, green



- Idea: fix evidence variables, sample the rest
  - Problem: sample distribution not consistent!
  - Solution: weight each sample by probability of evidence variables given parents





- Input: evidence  $e_1,...,e_k$
- w = 1.0
- for i=1, 2, ..., n
  - if  $X_i$  is an evidence variable
    - $x_i$  = observed value<sub>i</sub> for  $X_i$
    - Set  $w = w * P(x_i | Parents(X_i))$
  - else
    - Sample x<sub>i</sub> from P(X<sub>i</sub> | Parents(X<sub>i</sub>))
- return (x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>), w



# Using samples

We'll get a bunch of weighted samples from the BN:

| c, ¬s, r, w  | 0.1 |
|--------------|-----|
| c, s, r, w   | 0.2 |
| ¬c, s, r, w  | 0.3 |
| c, ¬s, r, w  | 0.1 |
| ¬c, ¬s, r, w | 0.5 |



- If we want to know  $P(C \mid r, w)$ 
  - We have weight sums <(c, r, w): 0.4,  $(\neg c, r, w)$ : 0.8>
  - Normalize to get  $P(C | r, w) = \langle c : 0.33, \neg c : 0.67 \rangle$
  - This will get closer to the true distribution with more samples

Sampling distribution (z is sampled and e is fixed evidence)

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$



Together, weighted sampling distribution is consistent

$$S_{\text{WS}}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i))$$
$$= P(\mathbf{z}, \mathbf{e})$$

- Likelihood weighting is good
  - All samples are used
  - The values of *downstream* variables are influenced by *upstream* evidence



- Likelihood weighting still has weaknesses
  - The values of *upstream* variables are unaffected by downstream evidence
  - With many downstream evidence, we may
    - mostly get samples that are inconsistent with the evidence and thus have very small weights
    - get a few lucky samples with very large weights,
       which dominate the result
- We would like each variable to "see" all the evidence!

# Gibbs Sampling



### Gibbs Sampling

- Generate each sample by making a random change to the preceding sample
  - Evidence variables remain fixed. For each of the non-evidence variable, sample its value conditioned on all the other variables
  - $X_i' \sim P(X_i \mid X_1,...,X_{i-1},X_{i+1},...,X_n)$
  - In a Bayes net

$$P(X_i \mid x_1,...,x_{i-1},x_{i+1},...,x_n)$$

$$= P(X_i \mid markov\_blanket(X_i))$$

$$= \alpha P(X_i \mid u_1,...,u_m) \prod_i P(y_i \mid parents(Y_i))$$



# Gibbs Sampling Example: P(S | r)

- Step 1: Fix evidence
  - $\blacksquare$  R = true



- Step 2: Initialize other variables
  - Randomly



- Step 3: Repeat
  - Choose an arbitrary non-evidence variable X
  - Resample X from P(X | markov\_blanket(X))



Sample  $S \sim P(S \mid c, r, \neg w)$ 

Sample  $C \sim P(C \mid s, r)$ 

Sample  $W \sim P(W \mid s, r)$ 

## Why doing this?



- Samples soon begin to reflect all the evidence in the network
- Eventually they are being drawn from the true posterior!

Theorem: Gibbs sampling is consistent

# Why does it work? (see AIMA 14.5.2 for details)

- Suppose we run it for a long time and predict the probability of reaching any given state at time t:  $\pi_t(x_1,...,x_n)$  or  $\pi_t(\underline{\mathbf{x}})$
- Each Gibbs sampling step (pick a variable, resample its value) applied to a state  $\underline{\mathbf{x}}$  has a probability  $q(\underline{\mathbf{x'}} \mid \underline{\mathbf{x}})$  of reaching a next state  $\underline{\mathbf{x'}}$
- So  $\pi_{t+1}(\underline{\mathbf{x'}}) = \sum_{\underline{\mathbf{x}}} q(\underline{\mathbf{x'}} \mid \underline{\mathbf{x}}) \, \pi_t(\underline{\mathbf{x}})$  or, in matrix/vector form  $\pi_{t+1} = Q\pi_t$
- When the process is in equilibrium  $\pi_{t+1} = \pi_t$  so  $Q\pi_t = \pi_t$
- This has a unique solution  $\pi_t = P(x_1,...,x_n \mid e_1,...,e_k)$
- So for large enough t the next sample will be drawn from the true posterior



### Markov Chain Monte Carlo (MCMC)

- MCMC is a family of randomized algorithms for approximating some quantity of interest over a very large state space
  - Markov chain = a sequence of randomly chosen states ("random walk"),
     where each state is chosen conditioned on the previous state
  - **■** Monte Carlo = a very expensive city in Monaco with a famous casino
  - Monte Carlo = an algorithm (usually based on sampling) that is likely to find a correct answer
- MCMC = sampling by constructing a Markov chain
- Gibbs, Metropolis-Hastings, Hamiltonian, Slice, etc.

#### Summary

Prior Sampling P



Rejection Sampling P(Q | e )



Likelihood Weighting P(Q | e)



