Matematická analýza/MA 1 zkoušková písemka

Každý příklad je hodnocen 10 body, celkem je tedy možno získat 100 bodů. Pečlivě odpovězte na všechny otázky, svůj postup vysvětlete. Na každý list papíru napište své jméno.

Příklad 1

Pomocí integrace určete plochu množiny $N = \{[x,y]; x \in \langle 1,2 \rangle, 0 \le y \le x^2\}$. Množinu nakreslete.

Příklad 2

Uveďte definici spojitosti funkce v bodě. Mějme funkci $f(x) = \frac{x^2-x-2}{x-2}$. Určete její definiční obor. Jestliže nějaký bod do definičního oboru nepatří, uveďte, jak je možno funkci v tomto bodě dodefinovat, abychom dostali spojitou funkci.

Příklad 3

Načrtněte graf funkce tangens (proměnné x) a určete definiční obor této funkce. Napište rovnici tečny k této funkci v bodě x=0.

Příklad 4

Vysvětlete, co to je primitivní funkce (neurčitý integrál) k dané funkci. Nechť F_1 a F_2 jsou dvě různé primitivní funkce k funkci f(x). Co platí pro rozdíl $F_1 - F_2$ na intervalu (a, b)? Nalezněte neurčitý integrál k funkci

$$f(x) = (3x - 2)^{13}.$$

Příklad 5

Jaké jsou limity pro x se blíží zleva a zprava k 0 funkcí $\frac{1}{x}$, |x| a signum(x)? Načrtněte pečlivě grafy těchto funkcí.

Příklad 6

Uveďte přesnou definici konkávní a konvexní funkce a inflexního bodu. Formulujte souvislost s druhou derivací funkce. Rozhodněte na kterých intervalech je funkce $f(x) = x^3 - 3x^2 + 4x + 7$ konvexní či konkávní a určete její inflexní body.

Příklad 7

Pro funkci $f(x,y)=6xy^2$ nalezněte v bodě x=y=1 první parciální derivace. Vypočtěte dvojný určitý integrál z této funkce přes množinu

$$\{[x,y]: x \in (0,1), y \in (-1,2)\}.$$

Příklad 8

Vysvětlete co to je geometrická a aritmetická posloupnost. Uveďte příklad nekonečně mnoha kladných čísel, jejichž součet je konečný. Tento součet vypočítejte.

Příklad 9

Uveďte definici derivace funkce v bodě pomocí limity. Vysvětlete geometrický význam derivace. Uveďte příklad funkce f(x), pro kterou platí f'(0) = 2. Uveďte příklad funkce, která v nule derivaci nemá.

Příklad 10

Definujte co to znamená, že zobrazení je prosté. Mějme zobrazení, z množiny $\{a, b, c\}$ do množiny $\{1, 2, 3\}$, které je dané uspořádanými dvojicemi $\{(a; 2), (b; 3), (c; *)\}$. Co je třeba zvolit za *, aby zobrazení nebylo prosté?