Nomenclaturas

Se aceptan tres tipos de nomenclaturas para nombrar compuestos químicos inorgánicos:

Nomenclatura sistemática: para nombrar de este modo se usan prefijos numéricos excepto para indicar que el primer elemento de la fórmula solo aparece una vez (mono) o cuando no puede haber confusión posible debido a que tiene un único estado de oxidación.

Prefijos griegos	Número
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

Por ejemplo, CrBr₃ = tribromuro de cromo; CO = monóxido de carbono

Nomenclatura Stock: en este caso, cuando el elemento que forma el compuesto tiene más de una valencia atómica, se indica en números romanos al final y entre paréntesis. Normalmente, a menos que se haya simplificado la fórmula, el estado de oxidación puede verse en el subíndice del otro átomo (en compuestos binarios).

Ejemplo: Fe₂S₃ Sulfuro de hierro (III) [se ve la valencia III en el subíndice del azufre]

Nomenclatura tradicional: aquí se indica el estado de oxidación del elemento que forma el compuesto con una serie de prefijos y sufijos griegos.

Cuando tiene dos valencias diferentes se usan (de menor a mayor valencia)

-oso -ico

Cuando tiene tres distintas se usan (de menor a mayor)

hipo--oso -oso -ico

Y cuando tiene cuatro se utilizan (de menor a mayor)

hipo--oso -oso -ico per--ico

Ejemplo: Mn₂O₇ Óxido permangánico

Óxidos

Son compuestos químicos inorgánicos binarios formados por la unión del oxígeno con otro elemento diferente a los gases nobles. Según si este elemento es <u>metal</u> o <u>no metal</u> serán óxidos básicos u óxidos ácidos. El oxígeno siempre tiene estado de oxidación: -2. Su grupo funcional es el ión oxígeno (O²⁻).

Los óxidos se pueden nombrar en cualquiera de las nomenclaturas; si se utiliza la sistemática no se tienen en cuenta los estados de oxidación sino que se menciona el prefijo de acuerdo al número que posea el oxígeno como subíndice, si se utiliza la Stock el número romano es igual al estado de oxidación del elemento, si se utiliza la común el sufijo es de acuerdo al estado de oxidación del elemento.

Óxidos básicos (metálicos)

Son aquellos óxidos que se producen entre el oxígeno y un metal. Su fórmula general es $Metal_2O_x$. Si la valencia del metal es par, se simplifica. Cuando un óxido básico reacciona con el agua (H_2O) se forma una base o hidróxido, E_j . E_j . Cu E_j Cu E_j Cu(E_j) La nomenclatura Stock es la más frecuente. En la nomenclatura tradicional se nombran con el sufijo -oso e -ico dependiendo del menor o mayor estado de oxidación del metal que acompaña al oxígeno.

Ejemplo	Nomenc. sistem.	Nomenc. Stock	Nomenc. tradicional
K ₂ O	monóxido de dipotasio	óxido de potasio	óxido de potasio
Fe ₂ O ₃	trióxido de dihierro	óxido de hierro (III)	óxido férrico
FeO	monóxido de hierro	óxido de hierro (II)	óxido ferroso
SnO ₂	dióxido de estaño	óxido de estaño (IV)	óxido estáñico

Óxidos ácidos o anhídridos (no metálicos)

Son aquellos formados por la combinación del oxígeno con un <u>no metal.</u> Su fórmula general es No $Metal_2O_x$. De ser posible, se simplifica. En este caso, la nomenclatura tradicional empleaba la palabra anhídrido, ahora se utiliza la palabra óxido. La nomenclatura sistemática es la más frecuente. En la nomenclatura tradicional se nombran con los siguientes sufijos y prefijos en orden de menor a mayor estado de oxidación del no metal

hipo- -oso (óxido hipocloroso)

- -oso (óxido cloroso)
- -ico (óxido clorico)
- per--ico (óxido **per**clor**ico**)

Ejemplo	Nomenc. sistem.	Nomenc. Stock	Nomenc. Tradicional
N_2O_3	trióxido de dinitrógeno	óxido de nitrógeno (III)	óxido nitroso
SO ₃	trióxido de azufre	óxido de azufre (VI)	óxido sulfúrico
Cl ₂ O ₇	heptóxido de dicloro	óxido de cloro (VII)	óxido perclórico

Hidruros metálicos

Son compuestos binarios formados por hidrógeno y un metal. En estos compuestos, el hidrógeno siempre actúa con estado de oxidación: -1. Se nombran con la palabra hidruro. Su fórmula general es MH_x (x=estado de oxidación del metal) La nomenclatura Stock es la más frecuente.

Ejemplo	Nomenc. Stock
КН	hidruro de potasio

Hidruros No metálicos

Son aquellos compuestos binarios constituidos por hidrógeno y un no metal. Son compuestos moleculares que existen en estado gaseoso. El hidrógeno siempre tiene estado de oxidación: +1. Muchos de ellos tienen nombres especiales de uso más generalizado que los sistemáticos:

Ejemplo	Nombre más usado
---------	------------------

NH ₃	amoníaco o nitruro de hidrógeno
H ₂ O	agua u oxiduro de hidrógeno
PH ₃	fosfina o fosfuro de hidrógeno
BH_3	borano o boruro de hidrógeno
AsH ₃	arsina o arseniuro de hidrógeno
CH ₄	metano o carburo de hidrógeno
SiH ₄	silano o siliciuro de hidrógeno

Hidrácidos

Son aquellos hidruros no metálicos que forman disolución ácida en agua. Son los formados por S, Se, Te, F, Cl, Br e I. Si están puros son hidruros no metálicos y se nombran como se explicó en el punto anterior, y si están disueltos, tienen propiedades acidas y se nombran: ácido -hídrico.

Ejemplo	Hiruro No metálico (en estado puro)	Hidrácido (en disolución)
HF	fluoruro de hidrógeno	ácido fluorhídrico
HC1	cloruro de hidrógeno	ácido clorhídrico
HBr	bromuro de hidrógeno	ácido bromhídrico
НІ	yoduro de hidrógeno	ácido yodhídrico

H_2S	sulfuro de hidrógeno	ácido sulfhídrico
H ₂ Se	selenuro de hidrógeno	ácido selenhídrico
H ₂ Te	teluro de hidrógeno	ácido telurhídrico

Hidróxidos

Son compuestos formados por la unión de un óxido básico con el agua. Para formularlo, se escribe el metal y el grupo hidroxilo OH, que siempre tiene carga total: -1. La fórmula general es M (OH)_x siendo x el estado de oxidación del metal. La nomenclatura Stock es la más frecuente. Aquí la nomenclatura sistemática no antepone el prefijo mono cuando solo hay un OH.

Ejemplo	Nomenclatura sistemática	Nomenclatura Stock	Nomenclatura tradicional
LiOH	hidróxido de litio	hidróxido de litio	hidróxido de litio
Pb(OH) ₂	dihidróxido de plomo	hidróxido de plomo(II)	hidróxido plumboso
Al(OH) ₃	trihidróxido de aluminio	hidróxido de aluminio	hidróxido de aluminio

Oxoácidos (oxácidos o ácidos oxigenados)

Son compuestos ternarios formados por oxígeno, hidrógeno y un no metal. Se obtienen al agregar una molécula de agua al correspondiente óxido ácido. Su fórmula general es $H_2O+N_2O_x=H_aN_bO_c$ (aquí N es un no metal).

La **nomenclatura funcional** es ácido oxo-, dioxo-, trioxo-(según número de O) + no metal terminado en -ico seguido de la valencia en números romanos entre paréntesis. Si hay más de un átomo del no metal, este también lleva prefijo.

La **nomenclatura sistemática** es oxo-, dioxo- (según número de oxígenos) + no metal terminado en -ato seguido de la valencia en números romanos entre paréntesis + "de hidrógeno". Si hay más de un átomo del no metal, este también lleva prefijo.

La <u>nomenclatura tradicional</u> no cambia con respecto a compuestos anteriores; tan sólo empieza por la palabra "ácido". Esta nomenclatura es la más frecuente.

Ejemplo	Nom. funcional	Nom. sistemática	Nom. Tradicional
SO+H ₂ O=H ₂ SO ₂	ácido dioxosulfúrico (II)	dioxosulfato (II) de hidrógeno	ácido hiposulfuroso
Cl ₂ O ₇ +H ₂ O=H ₂ Cl ₂ O ₈ =HClO ₄	ácido tetraoxoclórico (VII)	tetraoxoclorato (VII) de hidrógeno	ácido perclórico
SO ₃ +H ₂ O=H ₂ SO ₄	ácido tetraoxosulfúrico (VI)	tetraoxosulfato (VI) de hidrógeno	ácido sulfúrico

El fósforo, el arsénico y el antimonio forman ácidos especiales según se agregue 1, 2 ó 3 moléculas de agua llevando los prefijos meta-, piro- y orto-, respectivamente, en la nomenclatura tradicional (se puede omitir el prefijo en el caso orto-).

Ejemplo	Nom. func.	Nom. sistem.	Nom. tradicional
P ₂ O ₅ +H ₂ O=H ₂ P ₂ O ₆ =HPO ₃	ácido trioxofosfórico (V)	trioxofosfato (V) de hidrógeno	ácido metafosfórico
Sb ₂ O ₃ +2H ₂ O=H ₄ Sb ₂ O ₅	ácido pentaoxodiestíbico (III)	pentaoxodiestibato (III) de hidrógeno	ácido piroestiboso
P ₂ O ₅ +3H ₂ O=H ₆ P ₂ O ₈ = H ₃ PO ₄	ácido tetraoxofosfórico (V)	tetraoxofosfato (V) de hidrógeno	ácido ortofosfórico o fosfórico

Algunos metales también forman oxiácidos, como el cromo y el manganeso.

Ejemplo	Nomenclatura tradicional
H ₂ CrO ₄	ácido crómico

H ₂ MnO ₃	ácido manganoso
H ₂ MnO ₄	ácido mangánico
HMnO ₄	ácido permangánico

Poliácidos

Se trata de aquellos oxiácidos que resultan de la unión de 2 ó 3 moléculas de oxiácidos con la pérdida de una molécula de agua por cada unión que se realice. Es como si fuesen dímeros o trimeros. Se nombran indicando el número de moléculas de ácido que se han unido con un prefijo (Nomenclatura tradicional) o indicando con prefijos el número de átomos del no metal o metal en los pocos casos en que ocurre (demás nomenclaturas).

Ejemplo	Nom. Stock	Nom. sistemática	Nom. tradicional
H ₂ S ₂ O ₇	ácido heptaoxodisulfúrico (VI)	heptaoxodisulfato (VI) de hidrógeno	ácido disulfúrico
H ₂ Cr ₂ O ₇	ácido heptaoxodicrómico (VI)	heptaoxodicromato (VI) de hidrógeno	ácido dicrómico
H ₅ P ₃ O ₁₀	ácido decaoxotrifosfato (V)	decaoxotrifosfato (V) de hidrógeno	ácido trifosfórico

Sales binarias (o sales de hidrácidos)

Estas sales se obtienen sustituyendo los hidrógenos de los hidrácidos por un metal. También hay otros no metales que forman sales iónicas como el boro, el silicio y el nitrógeno. Su nombre empieza por el no metal terminado en -uro. La nomenclatura Stock es la más frecuente.

Ejemplo	Nomenclatura sistemática	Nomenclatura Stock	Nomenclatura tradicional
CaF ₂	difluoruro de calcio	fluoruro de calcio	fluoruro de calcio

FeCl ₃	tricloruro de hierro	cloruro de hierro (III)	cloruro férrico	
CoS	monosulfuro de cobalto	sulfuro de cobalto (II)	sulfuro cobaltoso	

Sales dobles y triples

Se trata de aquellas sales, normalmente iónicas, en las que hay varios cationes o aniones diferentes. Se nombran de forma análoga a las sales binarias (también llamadas sales de hidrácidos). Si entre esos iones hay un óxido o un hidróxido se pueden colocar los prefijos oxi- o hidroxi- según el caso.

Ejemplo	Nomenclatura sistemática y Stock	Nomenclatura tradicional
AgNa (NO ₃) ₂	trioxonitrato (V) de plata y sodio	nitrato de plata y sodio
NH ₄ SrF ₃	fluoruro de amonio y estroncio	fluoruro de amonio y estroncio
LiNaHPO ₄	hidrógenotetraoxofosfato (V) de litio y sodio	fosfato acido de litio y sodio
BaBrCl	bromuro y cloruro de bario	bromuro y cloruro de bario
AINO ₃ SO ₄	trioxonitrato (V) y tetraoxosulfato (VI) de aluminio	nitrato y sulfato de aluminio
Ca ₅ F (PO ₄) ₃	fluoruro tris (tetraoxofosfato(V)) de calcio	fluoruro tris (fosfato) de calcio
MgCl (OH)	cloruro hidróxido de magnesio o hidroxicloruro de magnesio	cloruro hidróxido de magnesio o hidroxicloruro de magnesio

Sales de oxoácidos (u oxisales)

Se trata de compuestos ternarios formados a partir de oxoácidos sustituyendo los hidrógenos por un metal, es decir, metal, no metal y oxígeno. También se puede decir

que son compuestos ternarios que resultan de la unión de un metal con un anión (un no metal con oxígeno) Hay dos tipos:

Sales neutras

Son aquellas oxisales que han sustituido todos sus hidrógenos por un metal. La nomenclatura Stock y la sistemática coinciden. La tradicional es igual que las anteriores salvo en que los sufijos -oso e -ico se sustituyen por -ito y -ato respectivamente. La nomenclatura tradicional es la más frecuente.

Ejemplo	Nomenclatura sistemática y Stock	Nomenclatura tradicional
Zn ₂ SiO ₄	tetraoxosilicato (IV) de zinc	silicato de zinc
Fe ₄ (P ₂ O ₇) ₃	heptaoxodifosfato (V) de hierro (III)	pirofosfato férrico
$Al_2(SO_4)_3$	tetraoxosulfato (VI) de aluminio	sulfato de aluminio

Las sales de los poliácidos se nombran de forma análoga a las oxisales.

Ejemplo	Nomenclatura sistemática y funcional	Nomenclatura tradicional
CaCr ₂ O ₇	heptaoxodicromato (VI) de calcio	dicromato de calcio
Mg ₂ P ₂ O ₇	heptaoxodifosfato (V) de magnesio	difosfato de magnesio
Na ₂ S ₂ O ₇	heptaoxodisulfato (VI) de sodio	disulfato de sodio

Sales ácidas

Son aquellas sales en las que sólo se han sustituido parte de los hidrógenos. Se les nombra agregando la palabra acido al nombre del anión, según quede uno o dos H en la molécula. En la nomenclatura tradicional también se puede indicar anteponiendo bi- si queda un hidrógeno.

Ejemplo	Nomenclatura sistemática y Stock	Nomenclatura tradicional
NaHSO ₄	hidrógenotetraoxosulfato (VI) de sodio	sulfato ácido de sodio o bisulfato de sodio
KH ₂ PO ₄	dihidrógenotetraoxofosfato (V) de potasio	fosfato diacido de potasio
Ca (HCO ₃) ₂	hidrógenotrioxocarbonato (IV) de calcio	carbonato acido de calcio o bicarbonato de cálcio

Peróxidos

Son aquellos compuestos binarios que contienen el grupo peroxo (-O-O-), es decir, ${\rm O_2}^{2^-}$. Se nombran con la palabra peróxido tanto en la nomenclatura Stock como en la tradicional; la nomenclatura sistemática sigue la regla general de los prefijos numéricos. Se los suele reconocer en la fórmula en que aparentemente el oxígeno tiene estado de oxidación: -1. El grupo peróxido no se simplifica si de esta forma sólo apareciese un átomo de oxígeno en la fórmula, como ocurre en el agua oxigenada, que también es un nombre especial que no sigue las reglas normales de la nomenclatura tradicional.

Ejemplo	Nomenclatura
H_2O_2	peróxido de hidrógeno
CaO ₂	peróxido de calcio
ZnO ₂	peróxido de zinc

Iones

Son aquellos átomos o moléculas cargados eléctricamente. Pueden ser de carga positiva (cationes) o de carga negativa (aniones).

Cationes mono y poliatómicos

Son iones con carga positiva. Si son monoatómicos, se nombran simplemente nombrando el elemento después de la palabra catión. Por ejemplo, Li⁺ catión litio. Si el

elemento tiene varios estados de oxidación se usan números romanos (Stock) o los afijos hipo--oso, -oso, -ico, per--ico (tradicional).

Ejemplo	Nomenclatura Stock	Nomenclatura tradicional
Fe ³⁺	catión hierro (III)	catión férrico
Cu ⁺	catión cobre (I)	catión cuproso

Caso especial de catión poliatómico: (NH₄)⁺: catión amonio.

Aniones mono y poliatómicos

Son iones con carga negativa, se puede anteponer la palabra ion. Se distinguen tres casos:

a) Si son homoatómicos (todos los átomos son del mismo elemento) se añade el sufijo uro a la raíz del nombre del elemento. Si hay varios átomos, se usan prefijos cuantitativos y, si fuese necesario, la carga entre paréntesis.

Ejemplo	Nombre (s)
H-	Hidruro
O^{2-}	óxido (los aniones del oxígeno tienen nombres especiales)
N ³⁻	Nitruro
C1 ⁻	Cloruro
Br ⁻	Bromuro
I-	Yoduro
S ²⁻	Sulfuro

S_2^{2-}	ion disulfuro
------------	---------------

b) Si son heteroatómicos y proceden de oxiácidos, es decir, son los que intervienen en oxisales y similares se nombran como éstas, con sufijos -ato (Stock), -ato o -ito (tradicional).

Ejemplo	Nomenclatura tradicional	Nomenclatura Stock
SO ₄ ²⁻	ion sulfato	ion tetraoxosulfato (VI)
SO ₃ ²⁻	ion sulfito	ion trioxosulfato (IV)
ClO	ion hipoclorito	ion monoxoclorato (I)

c) Si son heteroatómicos pero no proceden de oxisales o similares suelen terminar en - uro o en -óxido.

Ejemplo	Nombre (s)
OH-	Hidróxido
CN ⁻	Cianuro
NH ₂	Amiduro