Mustapha Tidoo Yussif

15th April 2019.

Question 1

Linear regression is a technique whose dependent variable is continuous, and the independent variable is continuous or discrete. Linear regression sets up a relationship between the dependent(Y) and one or independent variables (X) by finding the line of best fit. The relationship between the dependent, and independent variables is linear.

Logistic regression has binary dependent variables (yes or no, 1 or 0, positive or negative). Logistic regression is mostly used for binary classifications.

	Linear Regression	Logistic Regression	
Dependent variable	Linear regression is used	Logistic regression is used	
	when the dependent variable	when the dependent variable	
	is continuous. Example GPA	is discrete — example yes/no,	
	of students.	diabetes/ no diabetes.	
Outcome	In linear regression, the result	In logistic regression, the	
	can take on any value. In other	outcome has limited possible	
	words, the result in linear	values. The result is a	
	regression is continuous.	probability value and falls	
		between 0 and 1 inclusive.	
Error minimizing technique	Linear regression uses least	Logistic regression uses	
	square error method to find	maximum likelihood	

	the weights that minimize the	estimation to minimize the
	error and arrive at the best	errors and arrive at the best
	possible fit.	possible fit.
Residuals distribution	In linear regression, residuals	In logistic regression,
	are assumed to be normally	residuals are independent, but
	distributed.	not distributed normally.

Question 2

(a). What is reinforcement learning?

Reinforcement learning is about (an agent) taking action through trial and error to maximize reward in a particular situation. In simple terms, reinforcing learning is learning by experience. It allows an agent to take actions in its environment and get rewarded or penalized based on the correctness of the action chosen. It uses concepts such as agent, action, reward, environment.

- 1. Agent: an agent takes action. For example, the super Mario moving in a video game.
- 2. **Action**: it's the set of all possible moves the agent can make.
- 3. **Discount factor**: the **discount factor** is multiplied by future rewards as discovered by the agent to dampen these rewards' effect on the agent's choice of action.
- **4. Environment** is the world through which the agent lives.
- **5. State:** A **state** is an immediate situation in which the agent finds itself.
- (b). The differences between reinforcement learning, supervised learning and unsupervised learning.

Supervised learning	reinforcement learning	unsupervised learning.
Supervised works on existing	works on interacting with the	works on existing data that is
labeled or sample labeled data	environment	not labeled
The two main tasks of	Reinforcement learning has	Unsupervised learning has
supervised learning are	different tasks such as	tasks such as clustering and
regression and classification.	exploration vs. exploitation,	association.
	Markov decision process,	
	deep learning, value learning,	
	and policy learning.	

(c). The similarities and differences between classical reinforcement learning and deep reinforcement learning.

Differences

The classical reinforcement learning uses the Q function, i.e. Q (s, a) to estimate the return reward. The function is defined in a table which maps the (state, action) pairs to rewards. However, when the environment becomes large, or the number of states becomes larger, it becomes problematic to store the mappings in a table; hence approximation of the function becomes difficult. This is where deep reinforcement learning takes the floor. Deep reinforcement learning is used to generalize or approximate the function without storing the mappings. Deep reinforcement learning will be able to capture the intricate details of the function because it has many hidden layer and units.

Similarities

The classical and deep reinforcement learning both have agents who takes actions and get rewarded or penalized.

(d).

- 1. Supervise learning models are easy to work with as compared to reinforcement learning.
- 2. Reinforcement learning requires more computations than supervised learning.

Question 3

Coordinate descent	Gradient descent	
Coordinate descent is an optimization	Gradient descent is also an optimization	
algorithm that successfully minimizes a multivariable function along one direction at a		
time. In other words, given an objective	location to minimize the objective function.	
function, the algorithm minimizes the function concerning each coordinate at a time.		
Coordinate descent updates one parameter at a time	gradient descent attempts to update all parameters at once	

Finding the gradient of the k-means objective function can sometimes be challenging.