Personalized Phased Diploid Genomes of the EN-TEx Samples

Michael Schatz, Fritz Sedlazeck, Han Fang, Maria Nattestad, Ruibang Luo, Srividya Ramakrishnan, Charlotte Darby, Philipp Rescheneder, Alex Dobin, Carrie Davis, Ashwin Prakash, Anna Vlasova, Alessandra Breschi, Roderic Guigo, Tom Gingeras

Oct 2, 2017 ENTex Update

"NGMLR + Sniffles paper": Accurate detection of complex structural variations using single molecule sequencing Sedlazeck, FJ et al. (2017) bioRxiv https://doi.org/10.1101/169557

"NGMLR + Sniffles paper": Accurate detection of complex structural variations using single molecule sequencing Sedlazeck, FJ et al. (2017) bioRxiv https://doi.org/10.1101/169557

"NGMLR + Sniffles paper": Accurate detection of complex structural variations using single molecule sequencing Sedlazeck, FJ et al. (2017) bioRxiv https://doi.org/10.1101/169557

Data Set	Tech.	Cov.	Avg. read length(bp)	Total SVs	DEL	DUP	INS	INV	TRA
Arabidopsis Col-0	PacBio	127x	6,482	355	67	63	106	68	51
Arabidopsis CVI	PacBio	123x	6,073	9,652	3,822	904	1,823	478	2,625
Arabidopsis Col-0 x CVI F1	PacBio	155x	11,206	11,935	4,974	582	4,049	567	1,763
Arabidopsis Col-0 X CVI F1	Illumina	40x	250	10,950	4,324	643	0	671	5,312
Giab HG002 (son)	PacBio	69x	8,540	19,131	7,957	1,084	9,656	232	202
Giab HG002 (son)	Illumina	80x	148	10,822	5,018	863	0	823	4,118
Giab HG003 (father)	PacBio	32x	6,284	11,964	5,296	408	6,048	99	113
Giab HG003 (father)	Illumina	80x	148	11,395	5,553	869	0	818	4,155
Giab HG004 (mother)	PacBio	30x	7,285	10,463	4,590	276	5,436	93	68
Giab HG004 (mother)	Illumina	80x	148	8,901	5,000	868	0	829	2,204
NA12878 (healthy female)	PacBio	55x	4,334	15,499	6,734	606	7,880	160	119
NA12878 (healthy female)	Oxford Nanopore	28x	6,432	17,155	12,301	323	4,401	87	43
NA12878 (healthy female)	Illumina	50x	101	7,275	3,744	553	0	731	2,247
SKBR3 (Breast Cancer)	PacBio	69x	9,872	19,165	7,268	1,019	10,391	328	159
SKBR3 (Breast Cancer)	Illumina	25x	101	5,046	2,776	483	0	627	1,160

Table 1: Summary of detected SVs across 15 different data sets. SVs were reported with a min. size of 50bp using SURVIVOR based on Delly, Lumpy and Manta for Illumina or Sniffles for PacBio or Oxford Nanopore requiring at least 10 reads. Supplementary Table 5 shows all the data sets used.

Figure 1 | Variants found in SK-BR-3 with PacBio long-read sequencing. (A) Circos plot showing long-range (larger than 10 kbp or interchromosomal) variants found by Sniffles from split-read alignments, with read coverage shown in the outer track. (B) Variant size histogram of deletions and insertions from size 50 bp up to 1 kbp found by log-read (Sniffles) and short-read (Survivor 2-caller consensus) variant-calling, showing similar size distributions for insertions and deletions from long reads but not for short reads where insertions are entirely missing. (C) Sniffles variant counts by type for variants above 1 kbp in size, including translocations and inverted duplications.

"NGMLR + Sniffles paper": Accurate detection of complex structural variations using single molecule sequencing Sedlazeck, FJ et al. (2017) bioRxiv https://doi.org/10.1101/169557

Structural Variations Concordance (ENC-002)

Main Diagonal

Calls per tool

Outer triplets

Concordance by Technology

Inner triplets

- Concordance by Assembly
- Concordance by Mappers

Overall:

 We need multiple technologies and approaches

Sniffles PacBio Variant Calls (ENC-002)

Sniffles calls

	All SVs (50bp+)	Large SVs (10kbp+)
Deletions	7,124	163
Duplications	1,642	153
Insertions	7,904	0
Inversions	275	144
Translocations	162	162
All	17,107	622

Ribbon: Visualizing complex genome alignments and structural variation Nattestad et al. (2016) bioRxiv doi: http://dx.doi.org/10.1101/082123

Sniffles PacBio Variant Calls

ENC-002

	All SVs (50bp+)	Large SVs (10kbp+)
Deletions	7,124	163
Duplications	1,642	153
Insertions	7,904	0
Inversions	275	144
Translocations	162	162
All	17,107	622

ENC-003

	All SVs (50bp+)	Large SVs (10kbp+)
Deletions	7,747	128
Duplications	1,511	116
Insertions	9,528	0
Inversions	224	106
Translocations	101	101
All	19,111	451

Current Calls: 50bp+ & supported by 10+ reads (High Confidence)
Sensitive Analysis: 10bp+ event & supported by 5+ reads

Variants Per Chromosome

ENC-002 **ENC-003**

Chr	DEL	DUP	INV	INS	TRA
1	459	106	13	606	19
2	550	116	10	576	21
3	376	50	7	453	16
4	526	50	9	451	7
5	400	69	13	383	4
6	443	88	5	502	7
7	441	103	10	445	16
8	372	75	2	388	7
9	242	50	15	340	13
10	372	84	10	408	10
11	285	72	16	397	4
12	315	64	16	405	7
13	252	56	3	319	8
14	179	26	1	210	1
15	168	27	1	212	1
16	358	226	115	250	2
17	271	63	2	273	2
18	204	46	3	219	0
19	215	42	6	255	0
20	199	88	7	244	8
21	161	44	3	167	7
22	124	44	5	156	0
X	197	41	2	201	2
Υ	15	11	0	29	0
M	0	1	1	15	0

Chr	DEL	DUP	INV	INS	TRA
1	480	91	11	727	10
2	609	125	9	686	7
3	390	46	6	560	9
4	525	47	6	557	2
5	439	62	13	461	4
6	490	75	7	594	3
7	507	105	9	546	9
8	372	73	7	482	4
9	286	49	19	397	12
10	409	78	9	450	1
11	316	71	11	439	4
12	344	49	9	451	1
13	294	57	3	389	11
14	182	31	3	244	1
15	189	21	0	235	1
16	347	163	67	266	2
17	261	71	5	352	1
18	232	41	2	283	0
19	262	54	3	302	0
20	206	78	12	306	8
21	157	45	4	188	8
22	168	37	1	188	1
Χ	273	39	8	403	2

18

Raw Coverage: 165,114,151,916bp / 3Gb = 55.0x

Raw Length: 7538 +/- 5610 bp

Mean alignment length: 5257 +/- 5457 bp

Raw coverage: 171,860,416,260bp / 3Gb = 57.2x

Raw length: 6974 +/- 5854 bp

Mean alignment length: 5682 +/- 4673 bp

Diploid Construction

Deletion must be on the orange haplotype!

SVPhaser Testing (standard AlleleSeq)

\$ nucmer mutA.fasta chr1 hapA.fa

[S1]	[E1]		[S2]	[E2]	l 	[LEN 1]	[LEN 2]		[% IDY]		[LEN R]	[LEN Q]		[COV R]	[COV Q]		[TAGS]	
1	6093		1	6093		6093	6093	1	100.00		705447	699930		0.86	0.87		chr1	 chr1 maternal
7339	21137	1	6094	19892		13799	13799		99.99		705447	699930	- 1	1.96	1.97	- 1	chr1	chr1 maternal
22158	28972	1	19892	26706		6815	6815		100.00		705447	699930		0.97	0.97	- 1	chr1	chr1 maternal
28973	66028		28648	65703		37056	37056		100.00		705447	699930		5.25	5.29		chr1	chr1_maternal
66833	71776		65699	70641		4944	4943		99.94		705447	699930		0.70	0.71		chr1	chr1_maternal
71768	75348		71610	75190		3581	3581		100.00		705447	699930		0.51	0.51		chr1	chr1_maternal
75348	103011		76044	103707		27664	27664		99.98		705447	699930		3.92	3.95		chr1	chr1_maternal
103011	123468		104645	125102		20458	20458		100.00		705447	699930		2.90	2.92		chr1	chr1_maternal
124039	141409		125103	142473		17371	17371		100.00		705447	699930		2.46	2.48	- 1	chr1	chr1_maternal
142112	145387		142474	145749		3276	3276		100.00		705447	699930		0.46	0.47	- 1	chr1	chr1_maternal
146107	178148		145750	177791		32042	32042		99.99		705447	699930		4.54	4.58	- 1	chr1	chr1_maternal
178826	189042		177792	188008		10217	10217		99.97		705447	699930		1.45	1.46		chr1	chr1_maternal
189665	195023		188009	193367		5359	5359		100.00		705447	699930		0.76	0.77	- 1	chr1	chr1_maternal
195024	200386		195238	200600		5363	5363		100.00		705447	699930		0.76	0.77		chr1	chr1_maternal
201520	231233		200601	230315		29714	29715		99.99		705447	699930		4.21	4.25		chr1	chr1_maternal
231222	268940		232037	269755		37719	37719		100.00		705447	699930		5.35	5.39		chr1	chr1_maternal
268941	273282		271210	275551		4342	4342		99.98		705447	699930		0.62	0.62		chr1	chr1_maternal
273282	275274		276293	278285		1993	1993		100.00		705447	699930		0.28	0.28		chr1	chr1_maternal
276698	292589		278286	294177		15892	15892		100.00		705447	699930		2.25	2.27		chr1	chr1_maternal
294512	306412		294178	306078		11901	11901		100.00		705447	699930		1.69	1.70		chr1	chr1_maternal
307636	313944		306078	312386		6309	6309		100.00		705447	699930		0.89	0.90		chr1	chr1_maternal
313942	323954		313941	323953		10013	10013		100.00		705447	699930		1.42	1.43		chr1	chr1_maternal
325156	327294		323952	326090		2139	2139		100.00		705447	699930		0.30	0.31		chr1	chr1_maternal
327987	340849		326090	338952		12863	12863		100.00		705447	699930		1.82	1.84		chr1	chr1_maternal
340843	345937		340468	345562		5095	5095		100.00		705447	699930		0.72	0.73		chr1	chr1_maternal
347851	361244		345563	358956		13394	13394		100.00		705447	699930		1.90	1.91		chr1	chr1_maternal
361838	378128		358957	375247		16291	16291		100.00		705447	699930		2.31	2.33		chr1	chr1_maternal
379230	427511		375248	423529		48282	48282		99.99		705447	699930		6.84	6.90		chr1	chr1_maternal
427511	447306		424063	443858		19796	19796		100.00		705447	699930		2.81	2.83		chr1	chr1_maternal
447307	448221		445585	446499		915	915		100.00		705447	699930		0.13	0.13		chr1	chr1_maternal
449845	480347		446500	477002		30503	30503		99.99		705447	699930		4.32	4.36		chr1	chr1_maternal
480348	506343		478764	504759		25996	25996		100.00		705447	699930		3.69	3.71		chr1	chr1_maternal
507867	509684	1	504760	506577		1818	1818		100.00		705447	699930		0.26	0.26		chr1	chr1_maternal
509684	528583	1	507296	526195		18900	18900		100.00	-	705447	699930		2.68	2.70		chr1	chr1_maternal

SVPhaser Testing (enhanced AlleleSeq)

\$ nucmer mutA.fasta chr1 hapA.fa

[S1]	[E1]	[S2]	[E2]	[LEN 1]	[LEN 2]	[% IDY]	- 1	[LEN R]	[LEN Q]		[COV R]	[COV Q]	[TAGS]	
========	=========	======		=======			-===	=======		===			=======	====
1	705447	1	706650 I	705447	706650 I	99.52	- 1	705447	706650	1	100.00	100.00	chr1	chr1 maternal

\$ nucmer mutB.fasta chr1 hapB.fa

	[S1]	[E1]	[S2]	[E2]	[LEN 1]	[LEN 2]	1	[% IDY]	-1	[LEN R]	[LEN Q]	-	[COV R]	[COV Q]	[TAGS]	
====									===			===				====
	1	706496 I	1	707791 I	706496	707791	1	99.49	- 1	706496	707791		100.00	100.00	L chrl	chr1 paternal

SVPhaser Testing (after)

\$ nucmer mutA.fasta chr1 hapA.fa

[S1]	[E1]	[S2]	[E2]	[LEN 1]	[LEN 2]	[% IDY]		[LEN R]	[LEN Q]	[COV R]	[COV Q] [TAGS]	
========								======				====
1	705447 I	1	706650 I	705447	706650 I	99.52	1	705447	706650	100.00	100.00 chr1	chr1 maternal

\$ nucmer mutB.fasta chr1 hapB.fa

[S1]	[E1]	[S2]	[E2]	[L	EN 1]	[LEN 2]	- 1	[% IDY]		[LEN R]	[LEN Q]		[COV R]	[COV Q]		[TAGS]		
========							===		===			===					=	
1	706496	1	707791	1 7	06496	707791	1	99 49	1	706496	707791	1	100 00	100 00	1 0	rhr1	chr1 naternal	

One end-to-end alignment per haplotype All SVs correctly phased and inserted

SVPhaser Testing (after)

\$ nucmer mutA.fasta chr1 hapA.fa

[S1]	[E1]	[S2]	[E2]	[LEN 1]	[LEN 2]	[% IDY]		[LEN R]	[LEN Q]	[COV R]	[COV Q] [TAGS]	
========								======				====
1	705447 I	1	706650 I	705447	706650 I	99.52	1	705447	706650	100.00	100.00 chr1	chr1 maternal

\$ nucmer mutB.fasta chr1 hapB.fa

[S1]	[E1]	[S2]	[E2]	[LE	N 1]	[LEN 2]		[% IDY]		[LEN R]	[LEN Q]		[COV R]	[COV Q]	- 1	[TAGS]	
========							===		===			===			====		=
1	706496	1	707791	1 70	6496	707791	1	99 49	1	706496	707791	1	100 00	100 00	- 1	chr1	chr1 paternal

Small amount of residual differences (0.5%)

- Nearly impossible to have 100% perfect SNP calling
- A small percent of insertions have misreported sequence
 - -> Fix is in progress

One end-to-end alignment per haplotype All SVs correctly phased and inserted

