Equations

Past week daily average cases (y-axis value)

Past week daily average cases = $\frac{Dc_n + Dc_{n-1} + \cdots + Dc_{n-6}}{7}$, where DC is the number of daily cases

Past week daily average cases per
$$100K = \frac{Past \text{ week daily average cases}}{country region population} \times 100000$$

Adjusted people vaccinated (x-axis value)

For the meaning of vaccination variables, see vaccination variables explained in the next section.

For countries where people_fully_vaccinated and people_vaccinated are available

Adjusted people vaccinated number of people = people_fully_vaccinated + 0.5*(people_vaccinated - people_fully_vaccinated)

For countries where total_vaccinations is available but people_fully_vaccinated and people vaccinated are NOT available

Adjusted people vaccinated number of people = 0.5* total vaccinations

The reason why some countries/regions uses this equation of 0.5*total_vaccinations is because these countries/regions only provide total_vaccinations number. As the number for fully vaccination is 2 (dosages) for these countries, I have used 0.5*total_vaccinations as the adjusted people vaccinated for these countries.

$$\mbox{Adjusted people vaccinated rate (\%)} = \frac{\mbox{Adjusted people vaccinated}}{\mbox{country_region population}} \times 100$$

Vaccination variables explained

The information below is from the **Github data source** of Our World in Data.

- people_vaccinated: total number of people who received at least one vaccine dose. If a person receives the first dose of a 2-dose vaccine, this metric goes up by 1. If they receive the second dose, the metric stays the same.
- people_vaccinated_per_hundred: people_vaccinated per 100 people in the total population of the country.
- people_fully_vaccinated: total number of people who received all doses prescribed by the vaccination protocol. If a person receives the first dose of a 2-dose vaccine, this metric stays the same. If they receive the second dose, the metric goes up by 1.
- people_fully_vaccinated_per_hundred: people_fully_vaccinated per 100 people in the total population of the country.

Note: for people_vaccinated and people_fully_vaccinated we are dependent on the necessary data being made available, so we may not be able to make these metrics available for some countries.

An example of how we calculate our metrics

4 people take part in a vaccination program, to be given a vaccine that requires 2 doses to be effective against the disease.

- Dina has received 2 doses;
- Joel has received 1 dose;
- Tommy has received 1 dose;
- Ellie has not received any dose.

In our data:

- The total number of doses administered (total_vaccinations) will be equal to 4 (2 + 1 + 1);
- The total number of people vaccinated (people_vaccinated) will be equal to 3 (Dina, Joel, Tommy);
- The total number of people fully vaccinated (people_fully_vaccinated) will be equal to 1 (Dina).

Different equations used for vaccination rate

Note that the plot presented in <u>Our World in Data</u> (also the data source provider) uses the number of at least one dose of COVID-19 vaccine (people_vaccinated) to plot the vaccination rate, while my one uses the equations shown in the Adjusted people vaccinated (x-axis value) section. Therefore, the rate on my dashboard plots would be different from theirs.