CLASS DISCOVERY AND CLASS PREDICTION BY GENE EXPRESSION MONITORING

Depeng Xu
Xiahan Tang
James Willbanks
Md Kamrul Hasan Khan

OUTLINE

- > Introduction
- ➤ Data Description
- ➤ Data Preprocessing
- > Methods
 - **>** Unsupervised
 - **>**Supervised

INTRODUCTION

We analyzed gene expression data using unsupervised and supervised methods to find possible ways to classify if a leukemia patient has acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML).

DATA DESCRIPTION

- ➤ Data retrieved from a paper by Golub et al. in 1999
- > 72 samples divided into 38 training and 34 testing points
- Each sample has 7129 gene levels
- ➤ Binary response
- \rightarrow ALL = 0 & AML = 1

DATA PREPROCESSING

- ➤ Dudoit, S., Fridlayand, J. and Speed, T. P. (2002), "Comparison of Discrimination Methods for the Classification of Tumor Using Gene Expression Data", *JASA*.
- ➤ Data processed by:

Thresholding: thresholding with floor of 100 and ceiling of 16000

Filtering: excluding genes with max/min ≤ 5 or $(max - min) \leq 500$

Transformation: transforming by base 10 logarithm

Standardization: standardize so that the observations have mean 0 and variance 1 across the variables (genes)

- **>** 3051 Genes
- ➤ 263 Genes

METHODS

> Unsupervised: k-means, KNN, Decision Tree, Hierarchical Clustering, PCA

Supervised: PCR, Regression

UNSUPERVISED METHODS

K-means

K = 2	Actual classifications			
Predicted Classification	ALL AML			
	ALL	25	0	
	AML	2	11	
K = 3	Actual classifications			
Predicted Classification		ALL	AML	
	ALL	26	0	
	AML	1	11	
K = 4	Actual classifications			
Predicted Classification		ALL	AML	
	ALL	27	0	
	AML	0	11	

K-Nearest Neighbor

K = 3		Actual Level		
		ALL	AML	
Cluster	ALL	26	0	
Prediction	AML	1	11	

K = 5		Actual Level		
		ALL	AML	
Cluster	ALL	26	0	
Prediction	AML	1	11	

K = 4		Actual Level		
		ALL	AML	
Cluster	ALL	26	0	
Prediction	AML	1	11	

K = 6		Actual Level		
		ALL	AML	
Cluster	ALL	27	0	
Prediction	AML	0	11	

Decision Trees

HIERARCHICAL CLUSTERING

Cluster Dendrogram

PCA

Eigenvalues, and their contribution to the variance							
	PC1	PC2	PC3	PC4	PC5	•••	PC27
Eigenvalue	171.44	103.52	88.43	62.43	46.60	•••	12.20
Proportion Explained	0.1645	0.0993	0.0849	0.0599	0.0447		0.0117
Cumulative Proportion	0.1645	0.2639	0.3487	0.4086	0.4533	•••	0.9027

SUPERVISED METHODS

RIDGE REGRESSION

Misclassification Error using Ridge Regression

Best Lambda = 17.34371

RIDGE REGRESSION (CTD.)

Ridge Regression

RIDGE REGRESSION(CTD.)

		True Class	
		0	1
Predicted	0	20	5
Class	1	0	9

LASSO REGRESSION

Misclassification Error using Lasso

18 16 15 15 15 15 15 16 16 16 16 15 15 14 14 13 10 10 9 8 7 6 6 6 4 1 1

Lambda.1se = 0.1281825

Lambda.min = 0.1015824

LASSO REGRESSION (CTD.)

LASSO REGRESSION (CTD.)

		True Class		
		0	1	
Predicted	0	19	2	
Class	1	1	12	

ELASTIC NET

Misclassification Error using Elastic Net

Best $\alpha = 0.66666667$

Lambda.1se = 0.02483311

ELASTIC NET (CTD.)

ELASTIC NET (CTD.)

		True Class		
		ALL	AML	
Predicted Class	ALL	20	1	
	AML	0	13	

VARIABLE SELECTION USING RIDGE, LASSO AND ELASTIC NET

	Number of Non-zero Beta	
Ridge	263	
Lasso	8	
Elastic Net	44	

PCR

Cross Validation

		True Class	
		0	1
Predicted	0	20	0
Class	1	0	14

Others- Characteristic genes

Other- Network Analysis

acute lymphoblastic leukemia (ALL)

Cutoff=0.68, #nodes=234, #links=640

acute myeloid leukemia (AML)

Cutoff=0.56, #nodes=88, #links=640

Questions?