01 데이터 처리(1)

결측치(missing value) 및 이상치(outlier) 처리

학습 내용

- 결측치에 대해 알아본다.
- 결측치를 찾고 이에 사용한 연산을 알아본다.
- 결측치를 대체하는 것에 대해 알아본다.
- 이상치에 대해 알아본다.

01 결측값(Missing Value)이란?

- 결측치는 누락된 값, 비어 있는 값을 의미한다.
- 결측치가 있으면 함수 적용이 안되거나 분석 결과가 왜곡되는 현상이 있을 수 있다.

In [169]:

Pclass	Embarked	Fare
1	С	NA
2	S	150
3	Q	200
NA	NA	300
1	NA	100

R Stuido 출력결과

```
Pclass Embarked Fare
1
    1
             C NA
2
     2
             S 150
3
     3
             Q 200
4
     NA
           <NA> 300
5
    1
           <NA> 100
```

- 문자에서는 < >로 둘러싸여 있음.
- 숫자에서는 NA로 되어 있음.

결측치 확인하기 - is.na(데이터셋)

In [170]:

is.na(df)

Pclass	Embarked	Fare
FALSE	FALSE	TRUE
FALSE	FALSE	FALSE
FALSE	FALSE	FALSE
TRUE	TRUE	FALSE
FALSE	TRUE	FALSE

결측치의 개수 확인

In [171]:

```
table(is.na(df))

## PClass 결측치 확인
table(is.na(df$Pclass))

## EMbarked 결측치 확인
table(is.na(df$Embarked))

## Fare 결측치 확인
table(is.na(df$Fare))
```

```
FALSE TRUE
4

FALSE TRUE
3

FALSE TRUE
3

FALSE TRUE
4

TRUE
4

TRUE
4
```

왜 결측치 처리를 해야 하나?

• 결측치가 포함되면 데이터는 정상적인 연산이 안되고 NA가 출력

In [172]:

```
mean(df$Pclass)
mean(df$Fare)
```

<NA>

<NA>

결측치가 제거된 행만 가져오기

In [173]:

```
library(dplyr)
df %>% filter(!is.na(Pclass))
```

Pclass	Embarked	Fare
1	С	NA
2	S	150
3	Q	200
1	NA	100

In [174]:

```
library(dplyr)
df %>% filter(!is.na(Pclass) & !is.na(Embarked))
```

Pclass	Embarked	Fare
1	С	NA
2	S	150
3	Q	200

결측치가 하나라도 있으면 제거.

• na.omit(df): 결측치가 하나라도 있으면 제거되지만, 분석에 필요한 정보까지 삭제됨.

In [175]:

```
df_no <- na.omit(df)
df_no</pre>
```

	Pclass	Embarked	Fare
2	2	S	150
3	3	Q	200

결측치를 제외하고 연산 수행하기

• na.rm 파라미터 사용

In [176]:

df

Pclass	Embarked	Fare
1	С	NA
2	S	150
3	Q	200
NA	NA	300
1	NA	100

In [177]:

mean(df\$Fare, na.rm=T)

187.5

mtcars의 데이터 셋의 10행 mpg_part에 저장

In [178]:

mtcars[seq(1,10,1),]

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4

In [179]:

1:5

1 2 3 4 5

In [180]:

mc_part <- mtcars[seq(1,10,1), 1:5] # 1행부터 10행, 그리고 1열부터 5열까지 mc_part

	mpg	cyl	disp	hp	drat
Mazda RX4	21.0	6	160.0	110	3.90
Mazda RX4 Wag	21.0	6	160.0	110	3.90
Datsun 710	22.8	4	108.0	93	3.85
Hornet 4 Drive	21.4	6	258.0	110	3.08
Hornet Sportabout	18.7	8	360.0	175	3.15
Valiant	18.1	6	225.0	105	2.76
Duster 360	14.3	8	360.0	245	3.21
Merc 240D	24.4	4	146.7	62	3.69
Merc 230	22.8	4	140.8	95	3.92
Merc 280	19.2	6	167.6	123	3.92

결측치 적용

In [181]:

mc_part[c(4,8),'drat'] <- NA
mc_part</pre>

	mpg	cyl	disp	hp	drat
Mazda RX4	21.0	6	160.0	110	3.90
Mazda RX4 Wag	21.0	6	160.0	110	3.90
Datsun 710	22.8	4	108.0	93	3.85
Hornet 4 Drive	21.4	6	258.0	110	NA
Hornet Sportabout	18.7	8	360.0	175	3.15
Valiant	18.1	6	225.0	105	2.76
Duster 360	14.3	8	360.0	245	3.21
Merc 240D	24.4	4	146.7	62	NA
Merc 230	22.8	4	140.8	95	3.92
Merc 280	19.2	6	167.6	123	3.92

In [182]:

mc_part %>% summarise(mean_drat = mean(drat))

mean_drat

NA

na.rm을 적용 후, 평균 구하기

In [183]:

```
mc_part %>% summarise(mean_drat = mean(drat, na.rm=T))
```

mean_drat

3.57625

In [184]:

mean_drat	sum_drat	med_drat		
3.57625	28.61	3.875		

	mpg	cyl	disp	hp	drat
Mazda RX4	21.0	6	160.0	110	3.90
Mazda RX4 Wag	21.0	6	160.0	110	3.90
Datsun 710	22.8	4	108.0	93	3.85
Hornet 4 Drive	21.4	6	258.0	110	NA
Hornet Sportabout	18.7	8	360.0	175	3.15
Valiant	18.1	6	225.0	105	2.76
Duster 360	14.3	8	360.0	245	3.21
Merc 240D	24.4	4	146.7	62	NA
Merc 230	22.8	4	140.8	95	3.92
Merc 280	19.2	6	167.6	123	3.92

drat 컬럼의 NA을 평균값을 대체하기

In [185]:

```
mean(mc_part$drat, na.rm=T)
```

3.57625

In [186]:

```
mc_part$drat <- ifelse(is.na(mc_part$drat), 3.57625, mc_part$drat )
mc_part
table(is.na(mc_part$drat) )</pre>
```

	mpg	cyl	disp	hp	drat
Mazda RX4	21.0	6	160.0	110	3.90000
Mazda RX4 Wag	21.0	6	160.0	110	3.90000
Datsun 710	22.8	4	108.0	93	3.85000
Hornet 4 Drive	21.4	6	258.0	110	3.57625
Hornet Sportabout	18.7	8	360.0	175	3.15000
Valiant	18.1	6	225.0	105	2.76000
Duster 360	14.3	8	360.0	245	3.21000
Merc 240D	24.4	4	146.7	62	3.57625
Merc 230	22.8	4	140.8	95	3.92000
Merc 280	19.2	6	167.6	123	3.92000

FALSE 10

(실습해보기) L1-1

- mpg 데이터 셋에 대해 결측치를 대해 만들고, 이에 대한 mean_mpg, sum_mpg, med_mpg을 구해보자
- 결측치를 중앙값으로 대체해 보자.

02 이상치 찾고, 이를 처리하기

In [187]:

```
outlier <- data.frame(Pclass=c(1,2,3,4,55,3,1,1,2), family=c(1,2,3,1,2,3,1,1,1)) outlier
```

Pclass	family	
1	1	
2	2	
3	3	
4	1	
55	2	
3	3	
1	1	
1	1	
2	1	

In [188]:

library(ggplot2)

In [189]:

ggplot(outlier, aes(x=Pclass)) + geom_bar()

In [190]:

outlier\$Pclass %in% c(1,2,3)

TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE

In [191]:

install.packages("Hmisc") # 설치는 한번만, 설치 후, 이 행은 주석처리

In [192]:

library(Hmisc)

```
In [193]:
```

```
# ?Negate
```

In [194]:

```
`%notin%` <- Negate(`%in%`)
```

In [195]:

```
outlier$Pclass %in% c(1,2,3)
```

TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE

In [196]:

```
## outlier
outlier[outlier$Pclass %notin% c(1,2,3), ]
```

Pclass		family	
4	4	1	
5	55	2	

In [197]:

table(outlier\$Pclass)

```
1 2 3 4 55
3 2 2 1 1
```

아래 내용 참고, 다음과 같이 최빈값 확인 가능.

```
# Create the function.
getmode <- function(v) {
   uniqv <- unique(v) # 유일한 값.
   uniqv[which.max(tabulate(match(v, uniqv)))]
}
# Calculate the mode using the user function.
result <- getmode(outlier$Pclass)
print(result)
```

In [198]:

```
## outlier
outlier[outlier$Pclass %notin% c(1,2,3), 'Pclass'] = 1
outlier[c(4,5),] # 아까 행 4,5행 확인
outlier
```

	Pclass	family	
4	1	1	
5	1	2	

Pclass	family
1	1
2	2
3	3
1	1
1	2
3	3
1	1
1	1
2	1

ggplot(outlier, aes(x=Pclass)) + geom_bar()

(실습해 보기)

- mpg 데이터 셋의 일부인 mc_part의 cyl에 4,8행에 이상치 50을 만들자.
- 이 결측치를 중앙값으로 처리 후, 이를 다시 그래프를 통해 확인해 보자.

(더해보기)

• 타이타닉 데이터 셋을 결측치 처리를 해보자.

REF

• %notin%: https://www.r-bloggers.com/the-notin-operator/ (https://www.r-bloggers.com/the-notin-operator/)