UNCLASSIFIED

AD 261 529

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

のでしてい

AREOGRAPHIC COORDINATES FOR 1958

GERARD DE VAUCOULEURS

Harvard College Observatory Cambridge 38, Massachusetts

SCIENTIFIC REPORT NO. 4

ARDC Contract AF19(604)-7461

August, 1961

Prepared for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
AIR FORCE RESEARCH DIVISION
AIR RESEARCH AND DEVELOPMENT COMMAND
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- · Pages smaller or larger than normal.
- · Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

		If th	is bloci	c is ch	ecked,	the co	py furr	nished 1	to DTIC	
C	ont	ained	pages	with o	color pr	inting,	that w	hen re	produce	d in
E	Blac	k and	White,	may	change	detail	of the	origina	l copy.	

AREOGRAPHIC DINATES FOR 1958
Garard de Vaucoulours

Barvard College Observatory Cambridge 38, Massachusetts

SCIENTIFIC REPORT NO. LA
ARDG Contract AF19(604)-7461

August, 1961

Prepared for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
AIR FORCE RESEARCH DIVISION
AIR RESEARCH AND DEVELOPMENT COMMAND
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

Requests for additional copies by Agencies of the Department of Defense, their contractors, and other Government agencies should be directed to the:

ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA

Department of Defense contractors must be established for ASTIA services or have their 'need-to-know' certified by the cognizant military agency of their project or contract.

All other persons and organizations should apply to the:

U. S. DEPARTMENT OF COMMERCE OFFICE OF TECHNICAL SERVICES WASHINGTON 25, D.C.

The work described here was partially supported by Contract AF19(604)-3074, but the report was not issued until after the contract had been concluded and the successor contract, AF19(604)-7461, was in effect. As this research is in line with the objectives of the new contract, it is being issued as a Scientific Report under the present contract.

RACT	•		•		0	•	•		0	•	•	arab	4871	REP.	ODU	CTTO
duc	tion	1	•	o	•	•	•	a	ų.	•		•				i o
ırəm	ents	an	ıd I	Red	uc t	ion	•						•	_	_	7
ssi	n.	•				a	•	ų	a					_	a	6
ris	א מכ	rith	Tı	an	eit	:ď0	ort	/១៤1	ons			Ī	•	•	*	
											•	•		•	٠	7
			_					-06	3 	iuo	•	•	٥	•	•	9
•		•	•	•	•	•	•	•	ħ	•	•	•	٠	•	•	1.1
	•	•	•	•	•	•		3	÷	0	•	•	•	.•	o	3.3
	•	•	٠	•	•	•	Þ	lø.	•	•	q	•	•	•	u	38
3	•	•	•	•	•	•	•	•	•	•	۰	•	,	•	0	61
4	•	•	•	•	•		•	•		•	ų		•		۰	62
5	•	•	•	•		•	•		c						ı	64
6	•	•	•	•	•		•	•			6					64
7	•	•	•		•	•	•									65
8		•			*	•		, .	•		_		•	•		66
9			•								•	•	ď	0	c	
סנ	_	•				•	•	•	v	•	•	c	4	а	•	67
	duc rome said risc ion ence 1 2 3 4 5 6 7 8	rements ssion rison w ion Per ences 1 2 3 4 5 6 7 8	duction aroments and saion with ion Period ences 1	duction rements and lassion rison with Trion Period arences 2 3 4 5 6 7 8 9	duction arements and Red assion rison with Trans ion Period and ences 1 2 3 4 5 6 7 8 9	duction arements and Reduct assion rison with Transit ion Period and Abso ences 1 2 3 4 5 6 7 8 6 7	duction arements and Reduction assion rison with Transit Obs ion Period and Absolut ences 1 2 3 4 5 6 7 8 9	oduction arements and Reduction assion rison with Transit Observ ion Period and Absolute I ences 1 2 3 4 5 6 7 8 9	duction arements and Reduction assion rison with Transit Observati ion Period and Absolute Long ences 1 2 3 4 5 6 7 8 9	oduction arements and Reduction assion rison with Transit Observations ion Period and Absolute Lengituences 1 2 3 4 5 6 7 8 9	duction rements and Reduction ssion rison with Transit Observations ion Period and Absolute Lengitude ences 1 2 3 4 5 6 7 8 9	duction rements and Reduction rison with Transit Observations ion Period and Absolute Longitude ences 1 2 3 4 5 6 7 8 9	rements and Reduction ssion rison with Transit Observations ion Period and Absolute Longitude ences 1 2 3 4 5 6 7 8 9	rements and Reduction ssion rison with Transit Observations ion Period and Absolute Longitude ences 1 2 3 4 5 6 7 8	rements and Reduction ssion rison with Transit Observations fon Period and Absolute Longitude ences 1 2 3 4 5 6 7 8	duction rements and Reduction rison with Transit Observations ion Period and Absolute Longitude ences 1 2 3 4 5 6 7 8

TABLES

- 1. Coding and identification of 546 points of the surface of Mars measured in 1958.
- 2. Mean areographic coordinates of 546 points of the surface of Mars measured in 1958.
- 3. Data for 32 observations of Mars at Flagstaff in 1958.
- 4. Systematic and accidental errors of areographic coordinates measured on 32 drawings of Mars in 1958.
- 5. Standard errors of areographic coordinates as a function of image quality.
- 6. Standard errors of areographic coordinates as a function of point definition.
- 7. Standard errors of areographic coordinates as a function of latitude.
- 8. Example of machine output for point No. 2001 = ML No. 20 (Juventae Fons).
- 9. Data for transit observations in 1939, 1941, and 1958.
- 10. Longitudes derived from transit observations in 1939, 1941, and 1958.

PROM COPY DURY COLLEGE WAS OF POOR

ASTIA.

CORPORTOR

CONTROL OF THE POOR

CONTROL OF THE PO

FIGURES AND MAP

- Figure 1. Method of measuring areographic coordinates with orthographic grids.
- Figure 2s, b. Standard errors of areographic coordinates as a function of image quality I and point definition Q.
- Figure 3. Standard errors of areographic coordinates as a function of areographic latitude.
- Figure 4. Longitude differences (Drawings 1958 transits 1941 or 1958).

Index map of points measured in 1958

ABSTRACT

Areographic coordinates of 546 points of the surface of Mars derived from 2321 measurements on 32 drawings made at Lowell Observatory in October and November 1958 are listed. Longitudes are corrected for phase effect. Probable errors are of the order of 1° or 60 km on Mars. Comparisons are made with longitudes derived from transit observations in 1939, 1941, and 1958. Reduction constants to a system of absolute longitudes are given.

I. INTRODUCTION

The opposition of Mars in 1958 was observed by the suthor with the 24-inch refractor of Lowell Observatory, Flagstaff, Arizona. The expedition was supported by the "Planetary Atmospheres" Project of Harvard Observatory under contract No. AF19(604)-3074 with the Air Force Cambridge Research Center. The general results of the expedition have been described in previous reports (de Vaucouleurs 1959, 1960) to which the reader is referred for details of the observational circumstances. Altogether 32 carefully positioned drawings of Mars were secured between October 4 and November 22, 1958 with the 24-inch refractor generally disphragmed to 18 to 21 inches and magnifications of 350 x to 550 x. Reproductions of the drawings are given in (de Vaucouleurs 1959).

The ereographic coordinates of surface and atmospheric details were measured on these drawings by Mr. R. Wright at Harvard Observatory in 1950-60. The method of measurement consists in superimposing on the drawing orthographic coordinates grids on glass. The grids were carefully drawn on a large scale (200 mm) for each 2 degrees of inclination by Dr. C. S. Yü, Hood College, Maryland and reduced photographically to the size of the drawings (63 to 71 mm). The direction of the axis of rotation was determined by the method originally described by G. Fournier (1913) and used also by the author for the 1939 opposition (de Vaucouleurs

1948). In brief, the proper orientation of the grid is found 1) by plotting on each drawing the successive positions of the center of the disk on adjacent drawings of the series; these positions determine the parallel of latitude Do where the Earth transits at the zenith, 2) rotating the orthographic grid having the correct inclination, i.e. closest to the ephemeris value, until its central parallel gives the best fit of the successive center points (Figure 1). In a few cases where the central parallel was poorly defined by the observations, the determination of the rotation exis was assisted by considering the location of the small south polar cap, the center of which has well-known areographic coordinates (long.: 30°, lat.: -83°).

II. MEASUREMENTS AND REDUCTION

Altogether 2321 measurements of 546 points were made on the 32 drawings. The coding of the points measured and their identification are given in Table 1 and on the outline map No. 1. For easy reference to the finding list of "Areographic coordinates 1909-1954" (de Vaucouleurs and Wright 1961) the "Master List" number for the visual points used in that paper is also listed in Table 2 which gives the provisional mean areographic coordinates derived from the present material for 546 points of the surface of Mars. These coordinates are "provisional" only to the extent that minor revisions may be introduced in the future in connection with a general reduc-

tion of the 1909-1954 data and that slight adjustments in '
the weighting system may be made; no large changes are expected
as a result. The present values are second-approximation data
resulting from calculations carried out with the IBM 704 computer of the Jet Propulsion Laboratory, California Institute
of Technology, Pasadona. I am indebted to Drs. A. R. Hibbs and
R. Elmer for this most valuable contribution; the program was
in the hands of Tr. C. Seafeldt. The raw data were transferred
to proched cards by Mrs. O. Kojan at Harvard Observatory. It is
the first application of an electronic computer to the reduction of areographic coordinates and a much more thorough allowance
could be made for systematic effects, weights and other factors
than was proviously possible. Table 8 gives as an example the
output of the machine for a typical first-class point (No. 2001 =
ML No. 20 - Juventae Fous).

An outline of the reduction program is as follows:

a. Measured coordinates. For each point the latitude was
directly read off the orthographic grid to the nearest degree;
the longitude was given by

$\lambda = \omega + \Delta \lambda$

where (1) is the longitude of the central meridian derived from the American Ephemeris for the middle of the 4 to 6 minutes period during which the main details were sketched in to position the drawing. In addition the "quality" Q of the point in longitude and latitude was estimated by the measurer, on a scale of 1 for a well-defined point, to 3 for a poorly defined point.

e. Adopted values. The adopted values are the weighted means of λ^a and ϕ^a . The mean values of Q_λ and Q_ϕ are unweighted. From the residuals

$$\delta_{\lambda} : \lambda^{\dagger} \sim \overline{\lambda^{\dagger}} \qquad \delta_{\Phi} = \phi^{\dagger} - \phi$$

the standard errors of one observation of unit weight and the probable errors of the mean values were computed in the usual manner. The standard error for each drawing and for several intervals of bange quality ("seeing"), point quality ("definition") and recommissed latitude were also computed as shown in Tables 5 to 7.

ILT. DISCUSSION

The standard error of the longitude measurements increases as expected when the quality of the telescopic seeing decreases (I increases from 2 to 5), and when the quality of volume definition decreases (Q increases from 1 to 3), but, measurements, it seems to be independent of either for the latitude measurements (Figure 2). The standard error increases for both co-ordinates as a function of $(\phi - D_{\alpha})$ as expected (Figure 3) and in agreement with the results of Fournier (1913). The minimum standard error for a point of unit weight measured near the center of the disk $(\phi - D_{\alpha} = -10^{\circ} \text{ in 1958})$ is about 3° in longitude, 2° in latitude. The probable errors of the adopted mean coordinates of well-defined and well-observed points (i.e., observed at least three times) in Table 2 are of the order of \pm 1°0 in longitude, and π 0°5 in latitude. However, longitudes

FIG. 3

can be corrected for systematic errors from internal evidence because any given point can be observed both before and after opposition, and also East and West of the central meridian; latitudes cannot be so corrected, because the inclination of the globe is essentially constant during any given opposition; a comparison of several observers and several oppositions when the planet was seen at widely different presentations (i.e., different D_o) is necessary to evaluate the latitude errors. This will be done later through an inter-comparison of all the areographic coordinates data from 1909 to 1958.

IV. COMPARISON WITH TRANSIT OBSERVATIONS

During the oppositions of 1939, 1941, and 1958 the times of transits of reference points ecross the central meridian were determined by the writer with the 8-inch refractor of the Peridier Observatory, Le Houge, France (1939, 1941) and with the 24-inch refractor of Lowell Observatory.

The observed or interpolated transit times were corrected where required for the inclination of the apparent meridian in the true meridian. The apparent meridian is defined by the center of the south polar cap and the apparent center of the disk; the correction is given by formulae (3) and (5) of Ashborok (1953) or by an equivalent approximate procedure. The correction for phase defect was not applied because an approximate allowance for it was made during the observations and a check of the results shows no significant dependence on phase angle (see below). In 1939 and 1941 the location of

the apparent meridian with respect to the topographical features was marked at arbitrarily observed times and the transit times of selected points were then derived by interpolation; in 1958 the transits of pre-selected points were observed by the (ti) technique described by Ashbrook (1953).

The observational data and adopted corrections are summarized in Table 9. The scale of image quality ("seeing") is from 1 - excellent, to 5 - very poor. The derived longitudes are listed in Table 10 where the identification numbers refer to the 2758 index may No. I supplemented by descriptions. Values in parenthesis, derived by extrapolation, and values observed at phase angles greater than 30° are given lower weight. There are only 4 points in common to the transits of 1941 and 1958 (No. 1001, 1002, 4012, 4506); the weighted mean difference

 $\Delta \lambda (1958 - 1941) = -0.25 \pm 0.30 (p.e.)$

is not significant. The average difference (unweighted, excluding 19/1 July 17) between multiple determinations of the anno point in the same year is ± 2067 (n = 28) or ± 2038 (n = 27, rejecting the outstanding difference 1004 for point No. 4035). This corresponds to a probable error of about 105 per determination. Ashbrook (1963) quotes values of the order of 1° to 3° for several observers.

Comparison with the longitudes derived from the drawings of 1958 leads to the following systematic differences in the sonse (drawing 1958 - transits):

transits of 10 points, $1958 = -0.25 \pm 0.35$ (p.e.₁ = 1.12) transits of 31 points, $1941 = -1.41 \pm 0.41$ (p.e.₁ = 2.30)

FIG. 4

or restricting to 8 good points

transits of 9 points, 1939 = - 0.38 \pm 1.07 (p.e.₁ = 3.20) or restricting to 3 good points

All comparisons tend to indicate that the longitudes derived from drawings in 1958 may be systematically too small by about 0°3 ± 0°3 (p.e.), but the size of the probable error precludes a definite conclusion. The values of the probable errors of the longitude differences (drawing - transit) for 1958 and 1914 (good points only) indicates that the probable error of each determination assumed of equal precision is about 1°, in agreement with the conclusions of section 3 above.

V. ROTATION PENCIOD AND ABSOLUTE LONGITUDES

The longitudes listed in Table 2 are derived from the longitudes 65 of the central meridian computed from the American Ephemeris. The ephemeris longitude is given by

$$\omega = \omega_0 + \frac{2\pi}{p} (t - t_0)$$

where $\omega_0 \simeq 344941$ on January 15.0, 1909 and P $\simeq 24$ h 37 m 22.6542 s is the siderest rotation period of Mars (for a discussion of these data, see J. Ashbrook 1953). ω_0 is an arbitrary constant so chosen as to make the longitude of the spot "Sinus meridiani" approximately equal to zero in accordance with tradition; t - to is the time elapsed since to measured in Ephemeris Time.

The longitudes measured at time t are consequently subject to two errors:

- a) error in the rotation period adopted in the ephemeris, which has a probable error of about 0.01 second,
- b) error due to the departures between Ephemeris Time (ET) and Universal Time (UT) used in the observations.

Ashbrook (1953) derived from transit observations of 16 First-class points between 1704 and 1952 a mean rotation period

of Ephomeris Time, or more precisely a correction

$$\Delta P = + 0.0347 + 0.0018 \text{ s.(p.e.)}$$

to the rotation period adopted in the ephemeris (*). The cumulative effect of this correction between 1909 and 1939.

1941 and 1958 amounts to - 0265, - 0270, and - 1206 respectively, the longitudes computed with the corrected rotation period being less than the values computed with the ephemeris data.

Ashbrook (1953) has also tebulated, after Brouwer, the

^{*} A positive correction to the ephemeris rotation period as also indicated by a comparison of the longitudes of Table 2 with the longitudes derived from the observations of 1939 (de Vaucouleurs 1948) for 38 points well observed at both oppositions; the derived correction is

 $[\]Delta P = + 0.0058 \pm 0.0090 \text{ s (p.e.)}$

The average deviation of the differences $\Delta\lambda$ (1958-1939) for first-class points corresponds to probable errors of 0.9 in each of the 1939 and 1958 data assumed of equal precision. This are is equivalent to the angular rotation of Mars in 3.7 minutes of time, or again to an angular error of 0"16 near the center of the disk when its diemeter is 20". One equatorial degree of longitude on Mars is equal to 60 kilometers at the surface of the planet.

values of $\Delta t = ET - UT$ and the corresponding corrections to the computed longitudes

$$\Delta_{\rm E}\lambda \approx 2\pi\Delta t/P$$

of the central meridian of Mars. This correction was $-\Delta_{\rm E}\lambda\approx$ ~ 0.07 in 1939 and 1941; according to a personal communication of W. Markowitz, U.S. Naval Observatory, $2\Delta t \approx 32$. a in 1958, and $-\Delta_{\rm E}\lambda=-0.210$.

It follows that the longitudes of Tables 2 and 10 require total corrections

1939 1941 1958 $\Delta \lambda_0 = 0.272 = 0.277 = 1.216$

to place them on an absolute longitude system consistent with the original definition adopted in the ophemeris and freed from the errors in the relation periods of Mars and of the Earth.

REFERENCES

- of the Planet Mars The Astronomical Journal, 58, 145-55.
 - Fournier, G. 1913. Observatoire Jarry-Desloges, Observations don surfaces planeisires. Vol. 3, 236-59.
 - Vaucouleurs, G. de. 1948, Commission de la planète Mars. Rapport sur l'opposition de 1939. L'Astronomio, Paris, 62, 153. 217, 268.
 - Cambridge, 18, 484-89 = AFCRC-TN-59-Sci. Report No. 1, ARDC

Contract AF19(604)-3074, 1959.

- of Planetary and Space Science, London, 2, 26-32 = AFCR-TN-60-289, Sci. Report No. 3, ARDC Contract AF19(604)-3074, April 15, 1960.
- AFCRL-IN 257, Set. Report No. 2, ARDC Contract AF19(604)-7461.

Table 1 - Coding and Identification of 546 Points of the Surface of Mars Measured in 1958

Point	n	Description
1.001	6	South point of Fastigium Aryn
2002	7	Center of Meridiani Sinus
1.003	Ļ	Center of West horn of Meridiani Sinus
1004	2	South point of West horn of Meridiani Sinus
೭೦೦೮	ķ	West point of Moridiani Sinus
3008.	2	Intersection of West horn of Meridiani S. and
		new horn on Aram
1007	3	North tip of new horn on Aram
1008	2	Center of new horn on Aram
1000	2	South point of new horn on (Aram) Daucalionis R.
MOIO	1	Mid-point of Jani Fretum (inv.)
1.011	5	Mouth of Jani Fretum on Margaritifer Sinus
3.03.2	2	South-West point of Deucalionis Regio
0.013	2	North-West point of Pandorae Fr. on Deucalionis R.
3.0 1 4	2	Middle-West point of Pandorae Fr.
1.015	2	South-West point of Pandorae Fr. on Noachis
J. 01 6	4.	East point of Fyrrhae Regio
1017	2	South point of Fyrrhae Regio
2018	2	South point of Margaritifer Sinus on Pyrrhae Regio
1019	2	North point of Pyrrhae R. on Margaritifer S. (Dar-
		gamanes on Pyrrhae R.?)
1020	2	East point of Eos on Margaritifer S. (Dargamanes on
		Pyrrhac R.?)

Point	n	Description
1021	1	Mouth of diffuse band crossing Chryse on West
		shore of Margaritifer Sinus
1.022	4	West point of Margaritifor Sinus on Chryse and
		Eos (Arom. Prom.)
1023	5	East lacus on Chryse under Eos (Arom. From.)
1024	2	West lacus on Chryse under Bos (Arom. From.)
1025	5	Wost point of Eos on Chryse (= East point of
		Aurorae S.)
1026	Lį,	Wost point of Eos on Aurorae. Sinus
1027	ļτ	South-West tip of Eos
1028	Ĵ	(North point of Erythaum Mara on Eos)
1.029	3.	South-Bust tip of Eor
1.030	1	Conter of (Vulcani Felagus)
1031.	2	(South point of Vulcand Felague)
1.032	J.	(North point of Argyro I)
1033	3	(North-East corner of Argyro I on Argyropores)
1034	2	South-West point of brighter northern part of
		Argyre I on Argyroporos
1035	2	South point of brighter northern part of Argyre I
1036	1	Mid-point of Argyroporos?
1037	3.	South point of Moachis
2038	3	South mouth of Argyroporos on M. Australe
1039	ī	South point of Argyre I
торо	1	Dark node South of Argyro I
1.01tg .	3	Conter of intersection Neveldum Fretum and
		"Oceanidum Fretum" (Campi Phlegraei)

Point	n	Description
1042	1	South-West corner of Argyre I
1043	3	West point of brighter northern part of Argyre I
1014	1	Derk node in Nereidum Fretum
1045	6	North-West couper of Argyre I
3046	5	North-Eat tip of Ogygia Regio
1047	3.	Dark node in Bosporos Coumetus
3.0448	1	Enst point of Physical Hogie
$\mathbb{R}Q_{\mathcal{H}}^{G}$	٥.	The transport of The St. Logica
1.050	1	"South point of Cappl Cosma
1051	٤	least point of Cepra volum on Brythreeum Mass
1052	14.	North-East point of Capri Gornu on Auroxas S.
2053	Ç	Morth point of Auroran S.
3.05h	7	Mouth of Bactis on Abrorac S.
1055	\$	Mouth of Coprotes on Jaron o S., North point
		(South point of Ophir)
1056	7	Houth of Coprates on Aurorse S., mid-point
1057	Ó	Mouth of Copretes on Aurorae S., South-point
1058	6	South point of Auron Chorso. = Mouth of Nector
		on Erythracum M., North point
1059	5	Mouth of Nectar on Erythrasum M., mld-point
(2023)	6	Mouth of Nocter on Exythracum M., South point =
		East tip of Thaumasia
1060	28	Center of South polar cap
1501	2	Freceding tip of West horn of Moridiant S.

Point	n	Description
1502	6	Mid point of tip of West horn of Meridiani S.
1503	2	Following tip of West horn of Meridiani S.
1504	2	North tip of Margaritifer Simus, preceding corner
1505	2	North tip of Margaritifor Sinus, mid point
1506	Z	Borth tip of Margaritifor Sinus, following corner
1507	2	Oric Palua, South point
1508	2	Oxia Palus, East point (conal junction)
1509	2	Oxia Palus, North tip
1.51.0	11,	Oxia Palus, contor
1511	2	Oxia Palus, North-West Indontation
251.2	2	Oxia Palus, West tip
1513	3.	Mouth of Douteronlius on East edge of Williams L.
21 5 R Li	ç,	Compar of East lobe of Williacus L.
1515	3	South tip of East lobe of Miliacus L.
N526	بخ	South point of Milleons L. botween E. and W. lobes
NUSAY	9	South hip of West Lobe of Millious L.
2.53.0	ž:	Contrer of Wost lobe of Miliacus L.
1519	Ē.	West reint of Miliacus Lacus on Xanthe
1520	ĭ	North point of bright area on Chryso
1521	1.	Mid-point of broad streak (Jamua?)
1522	3.	Wost point of bright area on Chryse
1.523	Ţ	Point of broad stroak on Chryso
352h	Į,	Contor of diffuse knot on Manthe (Intersection of
		Jarrena and Hydraotos?)
1525	3.	South point of bright region on Northern part of
		Xanthe

Point	n	Description
1526	1	Center of bright region on Northern part of Xanthe
1527	1	North-East tip of bright region on Northern part
		of Xanthe
1528	1	Center of Idaeus Fons
1529	3	East point of Tempe on M. Acidalium
1530	1	West point of dark knot in 1528.
1531	1	South point of dark knot 1528
1532	1	Center of weak spot on Nilokeras
1533	1	West point of weak spot on Nilokeras (or Tractus
		Albus N.)
1.534	1	Mid point of broad streak on Xanthe
1535	1	East point of lighter area on Xanthe
1536	1	Mid point of Hydraotes? on Xanthe
1537	1	South point of lighter area on Xanthe
1538	2	East point of Lunae Lacus
1539	2	South-East point of Lunae Lacus
1540	2	North-East point of Lunae Lacus
1541	1	North point of lighter area on Xanthe
2001	6	Center of Juventae Fons
2002	1	Center of Ophir
2003	1	East point of Melas Lacus (canal junction?)
2004	1	Center of preceding component of Melas L.
2005	1	South point of Melas Lacus
2006	5	Center of Melas Lacus
2007	1	Center following component of Melas L.
2008	3	North point of Melas L. on Ophir

Point	n	Description
2009	3	North-West point of Melas I.
5010	3	West point of Melas L. on .
2011	5	North point of Agathodsemon
2012	5	North point of East end of Sinai on Agathodaemon
2013)t	Contor of Noctis Lacus
2014	· 14.	West point of Tithonius L. (on Tractus Albus)?
2015	ft	West point of Mostin Lacus
2016	ls.	South point of Noctis Lacus (canal junction Calydon?)
2017	7.	North-West point of brighter section of Sinai (on
		Coprates)
2018	ΓŁ	Went point of brightor section of Singi (Aurea
		Chernonesus i
2029	14	North point of Hectaria Fons
2020	3	Conter of Nectoris Fons
2021	6	Book the of Whoumasia (mouth of Mechar on M.
		Erythrasym, S. point)
202 2	5	Contor of Delphini Fortue
2023	2	South volut of Ogygle Regio
2024	1	Intersection of Bespores and Oceanidum Fretum
2025	3	North point of the
2026	3	South point of Corneis Portus
2027	2	Contar Depressio Pontica
8028	Lj	Center of Cornels Fortus
2029	L j.	Mouth of Ambrevia on Coranis Fortus
2030	5	Mouth of Ambrosie on Salts Lacus (Fulgoris D.)

Point	n	Description
2031	4	West point of Fulgoris Depressio (SW lobe of Solis L.)
2032	5	South point of East lobe of Solis Lacus
2033	5	East point of East lobe of Solis Lacus (East mouth
		of Nectar, mid-point)
2034	3	Center of East lobe of Solis Lacus
2035	2	Center of Lucis Portus (darker knot in E. 1che of
		Solis L.)
2036	5	North point of East lobe of Solis Lacus
2037	5	Conter of Solls Jacus
2038	ĬĻ.	East point of Phoebi Depressio (NW lobe of Solis L.)
2039	4	North point of Phoebi Depressio
2040	3	Mouth of Calydon (?) on Phoebi D.
2041	5	Center of Phoebi D.
2042	4.	Contact point of Phoebi D. and Fulgoris D. (center
		of West lohe of Solis L.)
2043	5	Center of Fulgoris D. (SW lobe of Solis L.)
इ ०११	5	Mouth of Bathys on Fulgoris D.
2045	3	West point of Fulgoris D.
2046	3	South-West point of West lobe of Solis L. (or center
		of small knot?)
2047	4	South-West point of West lobe of Solis L. at West
		end of small knot .
50/ig	2	South-West point of Phoebi D.?
2049	4	West point of Phoebi D. (mouth of Eosphoros)

Point	n	Description
2050	4	South point of Thaumasia (Heraeum Prom.)
2051	4	South-West tip of Chrysokeras (Bosporium Prom.)
2052	5	East point of Bathys Portus (junction of Thaumasia
		and Chrysokeras)
2053	5	Mouth of Bathys on Bathys Portus
با205	5	Center of Bathys Portus
2055	1	South point of Bathys Portus
2056	<i>i</i> . .	West point of Bathys Portus
2057	4	North point of Aonius Sinus (mouth of Phasis)
2058	4	North point of Aonius S. on Icaria?
2059	2	East point of anomalous Icaria (cloud?)
2060	1	South-East point of anomalous Icaria
-2061	1	Point on South edge of anomalous Icaria
2062	1	Mid-point of Hyscus?
2063	5	Intersection of Phasis and canal from Sirenius Lacus
2064	2	Mid point of Araxes
2065	4	
2066	4	Conter Arsia Silva
2067	4	West point of Tractus Albus (Lux)
2068	2	West point of bright formation of Tractus Albus
		South (cloud?)
2069	1	South-West point of bright formation of Tractus
		Albus South
2070	1	South point of bright formation on Tractus Albus
		South

Point	n	Description
2071	5	South point of Tractus Albus (NE point of
		Phoenicis L.)
2072	1	East point of Phoenicis Lacus
2073	5	South point of Phoenicis Lacus (junction Phasis)
2074	5	Genter of Phoenicis Lacus
2075	5	South point of Fulgens Mons
2076	4	East point of Fulgens Mons (West point of Arsia
		Silva?).
2077	5	Center of Fulgens Mons (brightest point)
2078	4	West point of Fulgens Mons
2079	1	?
20 80	1	?
2081	5	North point of Fulgens Mons
2501	3	Center of Lunae Lacus
2502	3	South-West point of Lunae Lacus on Candor
2503	5	West point of Lunae Lacus on Candor
2504	2	North-West point of Lunae Lacus on Candor (junction
		Nilokeras?)
2505	1	North point of Lunae Lacus?
2506	4	Center of Hebes Lacus
2507	1	North point of Hebes Lacus
2508	4	Mouth of Chrysorrhoas on Tithonius Lacus?
2509	1	Mid-point of Uranius?
2510.	2	Center of North angle of Tithonius Lacus
2511	1	Center of Echus Lacus

Point	n	Description
2512	3 -	North point of Echus Lacus
2513.	1.	Mid point of Fortuna (?)
2514	2	East point of bright formation on Tractus Albus
		(cloud?)
2515	ı	Mid point in break in bright formation on Tractus Albus
2516	2	North point of bright formation on Tractus Albus
2517	5	Center of Ascraeus Lacus
2518	1	West mouth of Uranius?
2529). N	Mio point of broad band NE of Ascraeus L.
2520	1	North-West point of Tractus Albus
2521	ĩ	South point of Acidalius Fons
2522	2	Center of Acidalius Fons (?)
2523	5	North point of Acidalius Fons at edge of North
		polar cap
25 2 4	4	South tip of brighter area a on Tempe
2525	2	East point of brighter area & on Tempe
2526	3	East point of Ascuris Lacus (?)
2527	1	West point of area a on Tempe (SE point of Ascuris L.)
25 2 8	2	South point of Ascuris Lacus (?)
25 2 9	14	North point of area \$\beta\$
2530	4	Center of Ascuris Lacus
2531	3	North point of Ascuris Lacus at edge of NPC
2532	4	West point of Ascuris Lacus
2533	٤	East point of area γ (= Alba?) on Ascuris L.
2534	2	Mid point of broad band between a and y

Point	n	Description
2535	4	South point of area y (= Alba?)
2536	4	Mid point of broad channel (south of \gamma)
2537	4	South point of broad channel
2538	3	West point of area B
2539	3	Center of curvature of S part of area \$
2540	4	South point of area \$
2541	1	Mid-point of channel between β and δ
2 542	4	East point bright area ô
2543	4	South point bright area 8
2544	3	Mid-point of dark streak connecting Ascraeus Lacus
		and small bright region to SW
2545	5	Mid-point of Ulysses (?)
2546	2	Center of small bright region
2547	1	(Intersection)
2548	6	Center Hougerius Lacus
2549	1	East point of Hougerius Lacus?
2550	4	East point of Hougerius Lacus
2551	1	North point of Hougerius Lacus
2552	4	South-West point of broad channel
2553	4.	Mid-point of broad channel SW of
2554	2	West point of area
2555	2	South point of Lacus A
2556	4	East point of Lacus A
2557	4.	Center point of Lacus A
2558	3	North point of Lacus A at edge of NPC

Point	n	Description
2559	1	?
2560	3.	?
3001	5	Center of Nodus Gordii
3002	1	Point on Eumenides
3003	3	North-East point of Memnonia
3004	3	?) points on Sirenius
3005	1	?) points on sirenius
3006	4	North-East point of Sirenius Fons (junction Sirenius?)
3007	6	North-East point of Sirenum Sinus (junction Araxes)
3008	6	East point of Sirenum Sinus on Dacdalia
3009	5	West point of Daedalia on Sirenum Sinus (junction
	•	Hyseus)
3010	4	Center of curvature of NE tip of Sirenum Sinus
3011	5	Junction Sirenum Sinus and Sirenius Fons (center
		of Sirenum S. when not resolved)
3012	4	Center of Sirenius Fons
3013	2	North point of Sirenius Fons?
3014	4	West point of Sirenius Fons (junction Erinnys)
3015	5	East point of Sirenum Promontorium
3016	Ļ	South point of distorted Icaria (cloud?)
3017	1	Center of notch at Thermodon (?) mouth on Palinuri Fr.
3018	1	Mouth of Thermodon (?)
3019	1	Mid-point of Thermodon (?)
3020	3	East point of Phaethontis
3021	1	South-East point of notch at Thermodon (?) mouth
		on Sirenum Mare

Point	n	Description
3022	1	Center of notch at Thermoden mouth on Sironum Mare
3023	3	South point of M. Sirenum or mouth of Thermodon(?)
3024	11	South point of Sirenum Promontorium
30 2 5	1	Mid-point of Erionys East
3026	14	Mid-northern limit of Memnonia
3027	2	Mid-point of Eumanides
3028	3	North point of Memmonia East of Gorgon
3029	3	Center of (Lucus Maricae?) intersection of Gorgon-
		Eumenldes
3030	S	Junction of Gorgon on 3029 or NW point of Gorgon
3031	2	North point of Memnonia West of Gorgon
3032	3	Mid-point of East Limit of Mesogeea between 3029
		and 3059
3033	1	Mid-point of Srinnys West
3034	7	North point of Gengorum Sinus (mouth of Gorgon)
3035	1	Junction of Erinnys and Gorgonum Sinus
3036	2	West point of Gorgouum Sinus
3037	14	East point of Gorgonum Sirus?
30 38	8	South-East point of Fusca Depressio (S. point of
		M. Siranum?)
30 39	4.	South-West point of Fusca Depressio (junction of
		Ios Insula?)
3040	6	South-East point of West half of M. Sirenum
3041	2	West point of Caralis Fons
3042	2	Center of Carelie Fons

Point	n	Description
3043	1.	East point of Caralis Fons
3044	6	South point of Phaethontis
3045	4	South-West point of Phaethontis
3046	5	Mouth of Simois on M. Chronium, mid-point (Simoentis S.)
3047	L ₊	East point of Electris
3048	6	Mid-point of mouth of Simois on Mare Cimmerium
30 49	9	East point of M. Cimmerium on Phaethontis-Atlantis
3050	11	Rooth point of Electria
305).	6	North point of M. Cimmerium on Zephyria at junction
		Atlantis-Rasena
3052	5	West point of Atlantis on Zephyria
3058	2	Mid-point of junction Atlantis-Zephyria
3054	c)	West point of M. Sirenum (Atlaneidum Sinus)
3055	Ġ	South point of Gorgonum Promontorium
3056	ħ	West point of Gorgonum Promontorium
3057	1	?
3058	15	Mouth of Erionys on Titanum Sinus
3059	12	North point of Titenum Sinus
3060	2	North point of Tuber (?) on Terterus
3061	3	(North) east point of bright area on Zephyria
3501	l	North point of area
3502	5	East point of Hougeria (West point of Hougerius
		Lacus) area
3503	1.	Centur of area
3504	3	Junction of area and Lacus A

Point	n	Description
3505	4	West point of Lacus A
3506	3	South point of region
3507	2	Center of knot NE of Hougeria
3508	2	East point of region
3509	S	South point of region
3510	1	Center of small node East of Euxinus Lacus
3511	I.	North point of 3510 on edge of NPC
3512	S	East point of Euxinus Lacus
35 13	5	North point of Euxinus Lacus on edge of NPC
3514	3	Center of Euximus Lacus
3515	5	South point of Euxinus Lacus
3516	s	West point of Euxinus Lacus
3517	3	East point of Propontis I
3518	ĭ	North point of Proportia I at edge of NPC
3519	6	Center of Propontis I
3520	1	South point of Propontis I
3521	3	West point of Propontis I
3522	5	Mid-point of Tartarus?
4001	5	East polar of Rasena, junction on Zephyria
4005	12	Fast point of laestrygonum Sinus
4003	1.2	North point of Laestrygonum on Laestrygonum Sinus
floolt	13	Center of Laestrygonum Sinus
4005	X.	North-East point of Laestrygonum Sinus
4006	15	North point of Lasstrygonum Sinus
4007	1	East point of Acolis North of Laestrygonum S.

Point	n	Description
4008	1	Junction of Antaeus and Laestrygon?
4009	3	West point of Laestrygonum Sinus on Draconis Prom.
4010	11	South-West point of Laestrygonum Sinus (mouth of
		Draconis Fretum)
4011	14	West point of Rasena on Draconis Fretum
4012	15	South point of Rasena .
4013	10	South point of Electris
4011;	3	Center of knot in Mare Chronium (Achaeorum Portus?)
4015	14	Mouth of Scamander on Mare Chronium
4016	15	Mouth of Scamander on Mare Cimmerium
4017	8	North point of Eridania (East of Eridani Promontorium?)
4018	7	South point of Draconis Promontorium
4019	2	Center of bright area on Draconis Prom.
4020	3	West point of Draconis Prem. (mouth of canal?)
4021	1	South point of Acolis West of Draconis Prom.
4022	2	Mid-point of Antoous
4023	16	South-East point of Gomer Sinus
40211	1.6	Center of SE lobe of Gomer Sinus
4025	10	North-West point of SE lobe of Gomer Sinus
4026	12	South point of Eridania
4027	1	North point of Eridania (West of Eridani Prom.?)
4028	17	East point of M. Tyrrhenum (junction Hesperia-Eridania)
4029	21	Mouth of Xanthus on M. Tyrrhenum
4030	20	Mouth of Xanthus on Tiphys Fretum
4031	10	Center of dark knot in Tiphys Fretum (Nepheles
		Depressio?)

Point	n	Description
4032	6	North-East point of Cimmeria Depressio (near
		Cyclopieum Sinus)
4033	12	South-East point of NW lobe of Sinus Gomer
4034	3.	Mouth of Cyclops on Gemer Sinus?
4035	18	Center of North-West lobe of Sinus Gomer
4036	9	South-East point of Aethiopis (neer Cerberi Sinus?)
4037	2	Cerberi Sinus?
4038	3	Conver of Cimmeria Depressio
4039	2	South-West polot of Cimmeria Depressio on Hesperia
		(canal junction?)
140140	6	South point of Aeolis West of Draconis Prom.
4501	1.	Mid-point of Hades I (?)
4502	1	East point of small lacus attached to Trivium Charontis
4503	2	Center of small lacus East of Trivium Charontis
450կ	11	East point of Trivium Charontis (West point of lacus)
4505	2	South point of Trivium Charontis
4506	17	Conter of Trivium Charontis
4507	2	North point of Trivium Charontia
4508	.3	Conver of Stygis Lacus (?)
4509	5	North-West point of Stygis Lecus (?)
4510	7	Center of Hecates Lacus
4511	1.	Center of Albor
451.2	3.1	West point of Trivium Charontis
4513	2	Mid-point of break in Cerberus
4514	7	East point of Cerberus Lacus

Point	11	Description
45 15	10	Center of Cerberus Lacus
4516	1	West point of Corberus Lacus
4517	16	Center of Pambotis Lacus
451.8	1	?
4519	6	? Foint on Eurostos I
4520	6	West point of border of Elysium (Hephaestus?)
4521	3	Mid-point of Hyblaeus?
4255	8	Center of Morpheos Lacus?
14523	.,}	Center of Morpheon Incus?
4524	1	Mid-point of Cyclops
4525	ź!	North point of brighter part of Aeolia
4526	20	North point of Gomer Sinus .
5001	1.1	Angle of Ausonia Australia on M. Tyrrhenum
5002	2	Conter of cana; (or Hyria Lacus?) on Hesperia
5003	S	Conter of Twiconis Sinus
500lp	2	North-West point of Mare Cimmerium
5005	3.	North-West point of Tritonis Sinus
5006	3	South point of Amenthes on Hesperis
5007	Ĵ.	Mest negle of M. Tyrrhenum B on Hesperia .
3008	J	East point of M. Tyrrhenum B on Hesperia (canal junction)
5009	t-	South-West point of Hesperia on M. Tyrrhenum
		(Respendent Prom.)
5010	16	North point of Ausonia Australis
5011	7	South point of Ausonia Australia on Tiphys Fr.

West point of fromothel Sinus on Chersoneus

5012

Point	n	Description •
5013	13	East point of Centauri Lacus (and/or Hadriacum Mare)
5014	6	Center of Centauri Lacus .
5015	1	North point of Centauri Lacus
5016	17	North-West point of Ausonia Austrelia
5017	4	East point of Ausonia Borealis (Trincria)
5018	5	North-East point of Ausonia Borealis (Circaeum Prom.)
5019	9	West point of Syrtis Minor on Libya
5020	*I, 3	North wint of Syrtis Minor on Libya
5021	9	Conth-Wenn point of Libya
5022	6	West point of Libys (junction of Croces)
5023	3	West point of Libya?
502/4	14	South point of Syrtis Major
5025	13	South-East point of Nymphaeum Promontorium
5026	5	North point of Ausonia Borealis above 5021
5027	5	North-West point of Ausonia Borealis
502 8	8	North-West point of Posidium Promontorium
5029	L	West point of Ausonia Borealis (when 5028 not marked)
5030	17	North point of Hellas
5031	13	Mouth of Alphous on Mare Hadriacum (Bucoleontis Portus)
5032	1	North-East point of Hellas
5033	16	East point of Hellas
5 03 4.	3	Mouth of Peneus on Mare Hadriacum
5035	10	Center of Zea Lacus
5036	1	South-Mast point of NW lobe of Hellas
5037	2	Mouth of Peneus on W side of Zea Lecus
5038	4	Mouth of Alphous on Mara Amphitrites

Point	n	Description
50 39	1	?
5040	3	South point of 3E lobe of Hellas
504A	10	West point of Chersonesus
5042	ŗį	South-West point of Mare Hadricum (mouth of
		Suripus 1)
5043	5	South-West of Libre of Crocen
5000	5	North-West point of Tritonis Sinus?
550±	1.	Center of bright seem in Astalopts
550	ϵ_{i}	Control of smell known at Mone other of comel
		(Gylienius Lacus?)
550 <u>3</u>	7	Mouth of serial on Nodes Labouantis
55011	1 ()	South Book point of Nodus Andcoortis (mouth of canal)
5505	r,	What point of fodus Loocoontis
5506	£B	Coulor of Medal Europaolia
5507.	ŽĮ.	best point of sea dark region at "water"
350B	t_i	Burk swink of derch fore of new dark region
5500	C	there is of dorest tone of new dark rogion
55.00	1	most assemble at Merch John of now dark region, further
		Neveti
SULT:	t.	
141712	l _!	East order of North Lobe of new dark region at edge
		Oi MPC
5513	1.	Brat point of Nodus Aleyonius
5514	T. A	Rest over the first as the same
5515	Ĭ.	?
		•

Point	n	Description
551 6	8	North point of Amenthes between Nubis Lacus and
		Nodus Laocoontis
5517	2	Mouth of canal (Triton?) on Nubis Lacus
551 8	2	South point of Nubis Lacus (junction East point
		of Nepenthes)
551 9	6	Center of Nubis Lacus
5520	6	Couter of Nubis Lacus
5520	6	Center of dark area including Nubis Lacus
5521	J .	?
5522	Ĭ.	Morth point of dark area including Nubis Lacus
5523	1.	South point of Nodus Alcyonius?
5521	10	Cenver of Nodus Alcyonius
552 5	3	New Not Point of Casius at edge of NPC
5526	3	East point of Neith Regio NW of Nodus Alcyonius
5527) į	Bast point of Isidis Regio NW of Nubla Lacus
5 52 8	1.	West point of Nubis Lucus
55 2 9	5	Mouth of Nopenthes on Nubis Lacus, mid-point
5530	3	Mid-point of Neponthes (near Tritonis Lacus)
553.	8	East point of Moeris Lacus
5532	5	Mouth of Nepenthes on Moeris Lacus, East point
5533	1.1.	Mid-point of mouth of Neponthes on Moeris Lacus
5534	2	Mouth of Nepenthes on Moeris Lacus, West point
5535 °	9	Center of Moeris Lacus
5536	2	North-West point of Moeris Lacus on Osiridis Prom.
5537	9	Mouth of Moeris Lacus on Syrtis Major, South point

Point	n	Description
5538	9	Mouth of Moeris Lacus on Syrtis Major, mid-point
5539	10	Mouth of Moeris Lacus on Syrtis Major, North point
		(Osiridis Prom.)
5540	3	South point of Mili Sinus, junction Arena-Osiridis Prom.
5547.	1.	East point of Nili Simus?
5542	į	Past point Will Minus, Junction of Nili Pons
5543	ŗ,	Mid-point of Mill Fons .
5544	1	Fest point of Nili Lacus, junction of Nilosyrtis
<u> Colta</u>	(۱)	North-Rank point in Gill return Amedica of Nixosyvite
		(mid-soint)
5546	1	North point of Nill Lacus, junction of Nilosyrtia
5547	8	Rest point (conter) of Wilcoyrtis
5548	2	North West point of Noith Regio?
5549	3	Kouch of Milasyetis on Umbra
5550	i ()	Conver of dark kast as mapih of Milosyrvis on Umbra
5552	ì	North point of 1500 at edge of NPC
5552	fs	Cenver of Color Paras
5553	5	Meat point of Astasapas (Psobana), cus?)
5554	1.	West point of Nill Lacus, Junetino of Nill Pons
5555	1	North point of Mili Sinus, junction of Mili Pons
		South point of Moroe I.
5556	1.5	North-West point of Asbusapis Sinus
5557	1	Center of Astusapla Sinus
5558	1.	North-West point of Mili Sinus, on Astusapis Sinus
5559	. 1.	West point of Acrio North of Astusanis Sinus .

Point	n	Description
5560	4	West point of Nili Sinus, junction of Arena-Aeria,
		N. joint
5561	6	Junction of Arena-Aeria, South point
5562	0	West point Syrtis Major
5563	$1l_{\downarrow}$	West point of Syrtis Major on Aeris, North of
		Nymphaeum Prom.
5564	1	South point of Nodus Laocoontis .
5565	7	North Fort Map of Tritonis Sinus? (Cyllenius L.Y)
1009	1	Sampor of dare spok SB of Incurva Insula
6002	. 0	South-East mid-point of Incurva Insula
6003	2	Center of Typhonii Sinus
6004	1.14	North-West point of Deltoton Sinus (Typhonii Sinus)
6005	\mathcal{U}_1	East point of Mare Serpentis
6006	l	?
6007	1	North-West point of Hellas on Yaonis Fretum
8008	8	North-East point of Yaonis Regio
6009	9	Center of Neroi Depressio
601 0	5	Mouth of Peneus on Yaonis Fretum
6011	2	West point of SW lobe of Helias
6012	0	South-West edge of Hellas
6013	3	Mid-South point of Yaonis Fretum
601.l ₊	1	South-East point of Yaonis Regio
6015	1	?
6016	1	?
6017	6	North-East mouth of Hellespontus on M. Serpentis

Point	n	Description
6018	. 3	South-East point of M. Serpentis?
6019	3	South-West point of Mare Serpentis, junction Noachis-
		Pandorae Fretum .
6020	2	West mid-point of Mare Serpentis, junction Pandorae
		Fretun
6021	2	North-West point of Mare Serpentis, junction
		Deucalionis RPandorae F.
6022	2	South point of Deucalionis Regio?
6023	13	East point of Deucalionis Regio (Dium Premontorium)
6024	16	South-East point of Hammonis Cornu
6025	1	?
6026	14	South point of Aeria, East of Sigeus Portus
6027	5	North point of East bay of Sigeus Portus
6028	5	North point of West Bay of Sigeus Portus
6029	3	North point of Deucalionis Regio, South of Sigeus
		Portus W. bay
6030	14.	North-West point of Edom Sinus on Edom
6031	2	North point of Deucalionis Regio, South of Edom Sinus
6032	7	Notch in coast line of Edom, East point of Edom Prom.
6033	6	South point of Edom Promontorium .
6034	6	West point of Edom promontorium
6035	5	North-West point of Edom Promontorium on East horn
	•	of S. Meridiani
6036	1	Center of dark knot in East horn of S. Meridiani
6037	5	Center of East horn of S. Meridiani

Point	n	Description
6038	8	South point of East horn of S. Meridiani
6039	2	Mouth of Hyllus on Pandorse Fretum
6040	2	Mouth of Hyllus on Mars Australe
6501	2	Center East lobe of Ismenius Lacus
6502	1	North point of Lamenius Lacus on NPC
6503	8	Center of Ismonius Lacus
esoli	2	Contor Wost Tobo of Jamenian Leons
6500	.^	South point of America Secue
6500	2	North poins of Middeker
6507	2	North point of Gebon
65 0B	l_1	West end of Dauteronilus, near Dirce Fons
6509	8	North paint of East horn of Sinus Meridiani

Table 2
AREOGRAPHIC COORDINATES

1958 Pt.nc.	Mastor List	Q_{λ}	Q,	λ	W	$\overline{\varphi}$	Wy	n
(00)	1	2.0	2.2	357.8	3.62	- 2.2	4.12	h
3002	195	2.1	2.6	3 58.8	3.72	- 5.3	4.32	7
3003		1.8	2.0	5.0	3.04	- 3.6	3.28	Łį
1004	(116)	3.0	2.0	4.2	1.94	1.01·	1.07	2
$(\Omega \Omega^{f_j})$	* J. *	1, 3, €	3.0	G. O	3.58	· 4.6	81.5	5
1006		2.0	2.5	6.2	1,92	·· 3.6	196	2
1007		2.0	3.0	7.0	2.22	- 0.7	2.46	3
1008		2.0	2.5	7.7	1.94	· 5.6	1.97	2
ፈዕፅዓ	•	2.5	2.5	7.7	1.96	- 9.1	1.98	2
1010	153.	3.0	0,, i	11.6	0.93	8.2	0.99	1
LOLL	1.17	1.4	2.11	13.8	3.13	- 5,2	3.67	5
1018	(293)	15	2.5	T = 0	1.,28	··i0.6	1.54	2
(013	86	3. G	8.()	2.2	1.90	-17.1	1.95	2
1034	30,)	0.6	3.0	359 7	7,82	-22.1	191	2
1015	(303)	3.0	2.5	2.7	1.81	25. t	1.90	5
1010		3.0	2.8	6.5	2.04	-23.3	3.23	l.
1017		3.0	2.0	30.8	7.81	~25.6	1.90	5
:018		3.0	2.5	19.3	1.86	-22 . 0	1.93	2
roral	175	3.0	3.0	25.2	1.81	-20.0	1.90	2
5020	270	8.0	3.0	29.2	1.77	-16.1	1.88	2
¥03T		2.0	°2.0	20.8	0.97	- 1.9	0.98	1
2 02 2	(2001 + 25 (a) 3	2.5	2.0	28.4	2,68	- 8.8	3.13	4.
(023		5.0	2.0	27.7	1.79	- j.1	1.89	2

1958 Pt. no.	Master List	$^{\mathcal{Q}}^{\boldsymbol{\lambda}}$	Q _φ	λ	$^{W}\lambda$	4	W _Y .	n
1024		2.0	2.0	34.0	1.65	- 3.5	1.81	2
1025	11	2.2	2.0	36.3	2.81	- 8.6	3.61	5
1026		2.3	2.5	39,0	2.43	-13.6	3.07	4
1027		2.5	2.8	36.4	2.37	-16.6	3.00	4
1028		0.5	0.8	35.8	0.91	-15.9	0.96	1.
1029		8.0	2.0	34.8	0.91	-19.9	0.95	1
10.11.	12	2.0	2.0	33.8	0.85	-28.9	0.92	1
1031	3.0	2.5	2.0	31.1	1.5x	-32.6	1.74	5
1032		2.0	2.0	27.8	0.86	-31.9	0.93	1
1033	(215)	3.0	2.3	15.7	2.31	-31.4	2.54	3
1034		3.0	3.0	16.1	1.53	ا. ، 9ڏِ ~	1.75	2
1035	(9)	2.5	2.0	33.5	1.26		1.58	2
1036		2.0	3.0	18.5	0.2430	- 44.2	0.80	1
1037	266?	3.0	2.0	0.3	0.5%	-52.9	0.71	1
1038		3.0	2.7	that	1, 30,	55.3	1.95	3
1039	(216)	3.0	3.0	8,85	0.52	-51;.9	0.72	γ.
1040		3.0	2.0	32.8	(1,42	-60.9	0.65	J
1041		2.3	2.3	66.6	1.07	-52.1	1.80	3
10/18	155	3.0	3.0	511.11	0.41	~49.9	O.64	1
1043	818	ار . ج	2.7	49.7	1.33	-44.6	1.99	3
1044		3-11	3.0	46.9	0.49	×38.6	0.70	ì
1045		2.8	2.2	38.7	2.58	-33.1	3.75	6
1046		2.6	2.4	15.1	2.43	-31.5	3.45	5
1047		3.0	3.0	58.9	0.64	-37.6	0.80	1
1048		3.0	2.0	51.9	0.61	-32.6	0.78	1

1958 Pt.no.	Master List	Q_{λ}	Qy	$\overline{\lambda}$.	$^{W}_{\lambda}$	\overline{arphi}	W_{Ψ}	n.
2049		3.0	2.5	55.2	3.00	28.2	4.20	6
1050		3.0	2.0	46.5	0.42	-21.1	0.65	ì
1051		2.3	2.7	46.9	1.93	-21.0	2.40	3
1052		2.5	2.3	47.1	2.45	-15.3	3.11	4
1053	15	2.1	210	47.6	2.70	- 4.5	3,56	5
1054	16	2.3	2.3	53.9	3.42	- 7.4	4.74	7
1035)		2.7	1.7	57.7	3.38	-12.6	4 7(6:	. ń
1036	33	3.6	1.0	58.5	3.57	-13.7	4.79	7
1057		21.5	J . ;	58.0	3.40	~15.1	14-147	6
1058		2.2	2.0	58 . 7	3.20	-22.3	1, 30	6
1059	38	2.2	250	58.0	5,80	-23.9	3.78	5
1060		5.0	1.1	t	0.24	-81.5	2.36	32
1501	(2)	ė.O	1(1	11.77.3	1.74	3.4.	1.87	2
1502	2	$t = \frac{U_t}{t}$	1.7	937-1	1.82	5.0	2. 55	۶,
F503	127	*.O)	350 7	1.77	4.1	n.88	S
(5011)		2.0	(1.0)	11.7	1,66	1.9	1.93	2
1505 {	t. 3	7 (;	1.0	11: 4	$\alpha_s a_1$	9 3	1,13	5
1506.)		2.()	21.Q	17.2	1.33	2.9	1,91	2
1507	())	2.0	0.0	100	1.82	49	1.91	2
1508	(3%	2.0	8.0	14.7	1.73	6.9	T. 89	5
1500	(3)	2.0	2.0	10.7	J. 67	11.9	$\xi B \cup f$	s
1.53.0	3	1.5	1.5	13.1	2.52	9.7	2.97	4
1511	(3)	2.0	2.0	34.7	1.73	8.9	1.86	2
1512	(3)	8.0	2.0	17.7	1.76	69	1.87	2

1958 Pt.no.	Master List	Q_{λ}	Qy	$\overline{\lambda}$, W _{\lambda}	4	Wφ	n
1513	2227	2.0	2.0	15.8	0.57	29.1	0.76	1
1514	2263	2.5	2.5	20.7	0.97	333	1 . 4.0	2
1515	. 185	3.0	2.3	21.6	1.31	31.08	1.91	3
1516	227	3.0	2.5	26.2	1,02	8.0E	1.42	2
1517	289	? 7	2.3	33.9	1.46	30.5	180	3
1518		3.0	2.5	32.6	0.85	33.7	1.31	2
.1519		2.0	2.0	39.0	0.83	31.7	1.28	2
, G. ()		()	2.0	11.1.	200	10.1	o 8o	ā
1521		1.0	- 3.0	35.8	0.66	20,3	0.81	Ţ
1522		5.0	2.0	33.8	0.77	33.1	0.88	¥
1523		3.0	3.0	32.8	0.88	3.1	0.94	¥
1524	(225)	3.0	3.0	40.8	0.71	13.1	0.84	.1
1525		(0	2.0	39.11	0.62	21.)	0.79	٧.
1526		a.0	, , ()	41.6	0.47	30.1	0.69	J.
1527	6.61	e.0	e.Ú	30 8	0.36	38.1	0.,60	i.
1,528	(230)	$\mathcal{F}_\bullet(0)$	2.0	48.3	0.31	38.1	0.56	a
15.39	19?	2.7	() " ز	54 3	0.76	41.8	1.50	3
1530		∠,0	2.0	55.8	0.29	36.1	0.54	1.
1531		3.0	2.0	48.8	038	33.1	0.62	1
3532		3.0	$\rho \cup O$	56.3	0.35	30.1	0.59	1
1533		3.0	3.0	62.8	0.29	30.1	0.54	1
1534		30	3.0	48.8	0.52	22.1	0.72	1
3535	•	2.0	3.0	ц8.8	0.62	13.1	0.79	2.
1536	•	3.0	3.0	8.94	0.64	10.1	0.80	1
1537		2.0	d.0	53.8	0.57	12.1	0.75	1.

1958 Ptno.	Master Li st	Q_{λ}	Ø 4	7.	W λ	79	W. _p	n
1538		3.O	3.0	55.3	1.11	16.1	1.48	2
1539		3.0	3.0	57.1	1. eli	11.5	1.57.	2
1540		30	3.0	57.8	0.05	26.8	1.36	2
tshr		3.0	2.0.	57.5	0.61	0,4	0.78	1
2001	20	1.2	5.O	4,2 , 4	3.50	- 1.6	4.51	6
2002		3.0	2.0	₹3.0	0.39	. 4),15	0.63	1.
2003		3.O	2.0	87.5	0.79	-10.1	0.89	1
2001;		1.0	0.0	70.5	0.83	-11.1	0.91	1
2005		2.0	1.00	74.0	0.82	-12.7	0.90	l
2006	89	8.t	1.8	8,95	3 . Fil.	. O. Z	4.2%	5
2007	897	2.0	2.0) ، ن <i>ي ا</i>	0.89	- 8.3	0.92	Ĺ
2008		2.0	.2.0	72.5	23	A , χ	2.6x	٤
2009		2.3	2.3	10.0	2.44	14	2.70	3
2010		÷.()	2.0	16.5	2.45	-10.1	2.71	.3
201£	56	3 ., ()	3.8	84-2	3.91	- 15° 25	4.19	5
2013		3.0	1,6	A 3.14	3.89	<u>. 3.9</u>	4.18	15
2013	ĠΟ	2.0	c ^s _r ()	02.11	3.86	- 8.5	3.03	4
2014		8.0	2.0	94.3	1.86	. " ", ",	3.93	1;
2015	207	2.3	2.8	95.1	3.88	- 8.5	3.94	4
ć() <u>)</u> 4.		2.3	2.3	or. H	3.89	-11.0	3.92	4
2017		2.0	8.0	67.0	0.54	-14.5	0.74	1.
8078		1.5	1.0	68.9	3.03	-16.8	3.47	4
501 0	295	2.5	210	64.6	2.74	-20.2	3.29	L
2020	(88, 295, 296	02	8.0	53.7	2.18	8.15-	2.55	,3
1205		2.3	2.3	6).0	3.08	-211.9	4.38	6

1958 Pt. no.	Master List	$^{\mathcal{O}}^{\mathcal{Y}}$	Q _y	λ	Мγ	$\overline{\varphi}$	Wφ	n
2022	•	3.0	3.0	65.5	2.89	-32.1	3.77	5
2023		2.5	2.5	62.4	0 - 84	-50.3	1.29	2
505/1		3.0	3.0	73.9	0.59	-48.6	0.77	1
2 025	•	3.0	2.0	80.1	1.49	-53.2	2.12	3
2026		2.3	2.3	81.4	1,80	-47.X	2.32	.3
2027		3.0	,3 O	84.4	0.76	-144-3	1.10	2
2028		2,5	2.5	7 9.5	2.48	-43.1	3.15	4
20180	45 (F)	1.	2.5	100-1	2.71	10.5	3.29	4
2030		A. (5	2.0	811.9	3.45	-30.5	4.01	5
2031		2.3	2.3	80.6	3.27	-27.2	3.61	Lį
2032		2.6	2.0	75.9	3.43	-26.3	4.07	5
2033	221	2.2	2.0	70.4	3.37	-23.1	4.06	5
2031	187	2.0	2.0	76.6	1.76	-22.6	2.25	3
2035	. (187).	1. 5	55	74.2	1.77	6.12-	1.88	2
2036		8.5	8.4	75.6	3.63	-18.9	11.19	5
2037	13.50	2.2	2.4	80.8	3.63	-23.6	4.16	5.
2038		5.0	2.0	82.1	3.47	-22.3	3.72	4
2039	122	3.0	1.8	86.4	2.92	-18.6	3.26	ĹĻ
50110	(38£)	2.3	1.7	89.4	2.87	-18.8	2.93	3
2041		2.2	2.0	87.1	3.79	-22.1	4.13	5
2042	157	2.8	2.5	866	3.50	• -25.2	3.74	4
2043		9.6	2.6	86.0	3.55	-27.6	4.00	5
2044		2.6	2.4	890	3.52	-30.2	3.99	5
2045.		2.0	2.3	90.8	2.59	-27.8	2.79	3
2046		2.3	2.3	91.4	2.71	-26.5	2.85	3

1958 Pt.no.	Master List	$^{\mathbb{Q}}\lambda$	Q.W	λ	$^{W}_{\lambda}$	\$	WA	n
2047	1.24	2.3	2.5	93.9	อไ95	-26.3	3.24	4
2048	(µsr)	0.5	3.0	92.6	1.78	-24.6	1.89	2
50149		2.0	2.5	92.6	268	~22.5	3.83	1.4
205 0	24	2.0	2.0	86.7	2.63	-43.0	3.24	14
2051		2.0	ā.0	t01.1	1.86	-55.7	2.73	l_{\downarrow}
2052		2.2	2.4	93.9	2.98	-1,0.7	3.68	- 5
2053		a. 2	2.0	95.0	3.20	-37.8	3.82	5
dord.	. 25	1 1	. 0	* , , *	; (t _i)	30.0	1.75	ß
205%		1 .	ϵ ϕ	110,000	0.36	-1411 . 3	0.3%	ſ
2056		2.8	8.3	102.3	2.86	a40.2	3.38	4
2057	(386)	2.0	2.0	103.0	3.17	-34.2	3 .5 6	4
2058	156	a	2.0	108, 3	2.45	-35.i	3.02	14
2059		والمان	3,0	110.6	1.00	-41.1	1.26	2
2060		5.0	, ; , ()	121.0	0.55	-49.5	0.74	. J
2061		→. 0	3 0	ΔMC	0.46	-53.5	0.68	1
2062		5.40	30	1.15.0	0.83	-38.5	0.91	1
2063		2.2	2.2	1.06L0	3.85	-25.5	հ. 20	5
\$06H		2,5	2.5	156.0	1.57	-19.7	1.77	2.
2065		8.8	2.8	1244	3.02	- 2.5	s.կ6	4
2066		4.5	1.5	112.8	3,60	- 9.8	379	4
2 0 67	_	2.0	218	108.6	3.35	- 6.2	3.47	4.
8002	•	2.0	2.0	104.2	1.84	- 5.4	1.92	2
2069		3.0	2.0	90.9	0.92	- 6.6	0.96	1
2070		2.0	2.0	102.5	0. 98	- 6.1	0.99	1

1958 Pt. no.	Master List	$^{\mathrm{Q}}{_{\boldsymbol{\lambda}}}$	ပ္ရ	λ	Wλ	\$, W4	n
2071		2.4	1.8	203.0	4.23	~10.1	it. 710	5
2072		2.0	30	101.0	0.97	[]	0,99	1
2073		2.4	2.2	104.7	4.12	-17.6	4.35	5
2074	25	1.6	4.6	106.6	4.17	-13.8	4.37	5
2075		2,0	3.8	119.8	3.80	-15.8	4.17	•5
2076		1.8	≥.0	117.0	3.43	· 9,5	3.70	4.
2077		1.0	1.0	110.5	3.86	- 9.9	4.20	5
			: . :	٠. الما	. 11	· * * * · · · · · · · · · · · · · · · ·	1.177	1,
2070			3.0	Ullab	0.47	- W.A	0.53	1
2080		. 2.0	3.0	122.6	0.5h	~10.2	0.37	1
2081.		2.4	2.0	116.0	3.94	- 2.1	4.25	5
2501	19	2.7	2.3	64.9	1.75	15.8	2.27	3
8503		8.0	2.0	73-4	2.25	15.4	2,60	3
2503		2.8	2.8	73.4	2.97	15.6	3,80	5
250h		$\exists_{ij} O$	1.0	6.6. LL	1.17	23.6	1.53	s
2505		3.0	2.0	73.8	0.23	23.1	0.47	1
2508		2.3	2.3	78.0	3.41	O.S	3.69	4
2507		3.0	3.0	78.9	0.96	0.4	0.98	1
2508		18	1:8	80.0	3.27	7.2	3.61	14
2500		3.0	2.0	82.5	0.77	15.9	0.88	1
2510	(888)	3.0	3.0	811.7	1.84	0.1	1.92	2
2511		2.0	2.0	85.9	0.97	0.14	0.98	1
2512		2.0	2.0	85.7	2.56	5.9	2.77	3
2513		3.0	3.0	88.9	0.95	2.4	0.97	1

1958 F t. no.	Master List	$Q_{\boldsymbol{\lambda}}$	Q _q	λ	₩ _λ	$\overline{\varphi}$	Wife	n
2514		2.0	2.5	90.2	1.81	7.1	1.90	2
2515		a.c	2.0	91.9	0.90	7.4	0.95	l
2516		2.0	2.0	93.2	1.76	9.1	1.88	2
2517	23	8.0	5.0	990	3.71	11.9	4.12	5
2518		3.0	3.0	93.5	0.82	14.9	0.91	1
2519		2.8	3.0	90.3	2.84	21.0	3.37	14
25 2 0		3.0	1.0	91.5	6.35	47.c	0.39	1
2521	(2,11) 9	3.0	2 D	595	.0.30	46.9	0.44	1
2522		() . ز	2.5	56.9	0.28	50.7	0.75	2
2523		3.0	1.5	56.0	0.24	52.1	0.70	2
2524		2.8	2.8	86.2	2.11	31.8	2.90	4
252 5		2.5	3.0	92.5	1.30	25.3	1.61	2
2526	(123)?	3.0	2.7	77.5	0.73	47.6	1.48	3
2527		30	3.0	84.0	0.39	39.3	0.63	1
252 8	••	3.0	2.5	88.7	0.74	42.6	1.21	2
2529		2.8	2.8	92.4	1.93	35.2	2.78	lį
2530	1977	2.5	2.5	88.3	1.07	48.3	2.07	4
2531		3.0	2.0	87.5	0.58	53.2	1.32	3
2532		3.0	3.0	97.0	1.09	48.2	2.09	Lj.
2533		2.7	2.7	95.1	0.98	44.9	1.71	3
25,34.		3.0	3.0	97.2	1.00	34.7	1.42	2
2535		3.0	8.0	106.4	2.14	31.5	2.92	4
2536		3.0	2.5	106.5	2.41	27.2	3.10	4.
2537						24.0		
2538		2.3	3.0	105.8	2.10	22.6	2.51.	3

1958 Pt.no.	Master . List	Q_{λ}	o b	T	W _λ	Ġ.	W _{ct}	n
2539		2.3	2.3	100.5	2.10	22.9	2.51	3
2540		2.5	2.3	101.9	3.06	17.3	3.50	4
2541		3.0	3.0	107.5	0.73	18.9	0.85	1
2542		2.0	2:8	106.2	3.19	13.7	3.57	4
2543		.2.8	2.0	109.8	3.24	10.9	3.60	<u> </u>
2544		3.0	2.7	310.2	2.64	7.6	2.81	3
2545		3.0	3.0	106.5	4.07	0.7	4.32	5
2546	•	9.5	2.5	1.14-5	1.84	2.9	1.92	.2
2547		30	3,0	370.0	0.88	8.5	0.914.	Ì,
2548	92	2.2	2.2	121.2	3.19	15.2	4.07	6
2549		2.0	2.0	122.6	0.48	13.8	0.54	1
2550		2.5.	2.5	116.0	. 5.81	16.4	3.35	4
2551		3.0	3.0	126.6	0.47	18.8	0.53	1
25 52		2.8	2.8 -	115.2	2.21	27.6	2.97	4
2553		3.0	3.0	113.7	2.10	30.2	2.89	4
2554		2,0	3.0	113.6	0.97	35.4	1.39	3
2555	1.27?	3.0	3.0	118.6	0.90	36.4	1.3/4	5
2556		8.8	3.0	111.6	1.03	48.0	2.03	4.
2557	27	2.0	2.0	123.7	0.89	47.9	1.88	4
2558		3.0	1.7	129.0	0.31	56.5	0.95	3
2559		3.0	٥.ز	101.9	0.80	10.4	0.89	1
2560		2.3	2.3	95.8	2.64	8.9	2.81	3
3001	267	2.6	.3.0	126.1	3.56	- 8.6	4.02	5.
3002		3.0	3.0	130.0	0.74	- 9.7	0.86	1

1958 Pt.no.	Master List	Q_{λ}	Qφ	īλ	٧	ζp	$W_{oldsymbol{arphi}}$	n
3003		2.7	2.7	128.4	2.15	-13.4	2.36	3
3004		2.3	\$.0	128.1	2.12	-16.9	2.50	ئ ہ
3005		2.0	2.0	116.6	0.48	-16.2	0.54	1
3006		2.0	1.8	126.6	2.74	-211.7	3.29	Lį.
3007	29	2.0	.540	123.0	3.53	-25.6	14.28	6
3008	129	2.2	2.5	121.4	3.48	-27.9	li . 19	6
3009	(198)?	2.0	$\mathcal{L}_{v}()$	1.801	1.27	-30.8	3:83	5
3010		2.5	2.5	123.9	2.55	-28.8	3.01	14
3011	33£	8.0	8.0	1,26.6	3.12	-28.5	3.77	5
,301.2	268?	2.0	2.0	128.3	2.45	-27.3	2.95	14
3013		2.0	2.0	131.0	0.75	-22.8	0.97	2
3014		2.0	2.0	131.9	2.38	-26.4	3.06	L 4.
3015		2.2	2.8	131.0	2.51	-28.6	3.41	5
3016		2.8	12.5	130.0	1.15	-55. 5	2.02	14.
3017		2.0	2.0	128.0	0.43	-57.7	0.66	1
30#8		2.0	2.()	125.0	0.50	-48.7	0.71	T
1018		2.0	3.0	124.0	0.58	43.7	0.76	1
3080		0,5	2.7	120.6	1.42	-45.1	1.92	3
302 1		2.0	2.0	124.0	0.64	~38.7	0.80	1
3052		2.0	€ .0	128.0	0.61	-37.7	0.78	1
3023	(93)	3.0	20	133.1	. 7.61	~38.3	2.04	3
3024	3.59	2.9	2.0	138.2	3.82	-30.5	5.93	11
3025		3.0	3.0	135.6	0.51	-27.2	0.56	1
302 6		2,8	2.5	138.3	2,50	-10.7	2.98	14

1958 Pt.no.	Master List	${\boldsymbol{\varrho}}_{\lambda}$	Qq	īλ	W_{λ}	$\overline{\varphi}$	Wq	n
3027		3.0	3.0	138.8	1.25	- 4.8	1.58	2
3028		2.7	2.0	149.4	1.49	- 7.4	1.93	3
3029	255?	3.0	3.0	156.1	1.21	- 2.2	1.70	3
3030		3.0	3.0	156.6	0.75	- 7.6	1.22	2
3031		3.0	2.0	159.2	0.76	- 8.4	1.05	2
3032		3.0	3.0	163.1	0.97	- 8.6	1.49	3
3033		3.0	3.0	152.6	0.53	-21.2	0.57	1 .
3034	30	2.0	1.9	150.1	2.77	-22.1	4.08	7
3035		2.0	2.0	142.0	0.66	-24.5	0.81	1
3036		2.5	2.0	145.6	.0.91	-30.6	1.12	2
3037		2.0	2.0	155,1	1.81	-21.2	2.46	4
3038	(93)	2.9	1.9	145.5	2.37	-37.6	4.17	8
3039	208	2.8	2.5	147:3	1.64	-36.2	2.34	14
3040		2.7	2.3	154.1	2.18	-35.1	3.36	6
3041		2.5	2.0	159.1	0.32	-39.9	0.80	2
3042 }	202	2.5	2.0	158.4	0.30	-40.4	0.77	5
3043		2.0	2.0	145.0	0.36	~40.7	0.60	1
3044		3.0	2.0	146.6	1.55	-53.3	2.82	6
3045	(94)	2.3	2.5	168.8	0.82	-49.9	1.54	4
3046	914	2.6	2.1	162.6	1.82	-48.2	2.82	5
3047	161	2.3	3.0	168.6	1.04	-43.2	1.77	4
3048		2.2	2.2	169.9	2.90	-36.6	3.85	6
3049	1 7 9	2.2	2.7	163.1	3.34	-36.9	4.85	9
3050	133	3.0	2.0	185.8	5.56	-34.1	6.75	11 .
3051		2.2	2.0	180.6	4.61	-20.5	4.98	6•

1958 Pt.no.	Master List	Q_{λ}	Qp	ī	Ψλ	4	Wg	n
3052		2.0	2.0	175.3	0.67	-20.3	0.89	2
3053	180	5 °2	2.5	177.7	0.43	-25.8	0.76	2
3054	37	2.2	2.1	176.0	5.20	-19.3	6.02	9
3055		2.8	2.2	152.4	2.50	-27.4	3.61	6
3056		2.8	3.0	157.5	1.66	-26.4	2.33	4
3057		2.0	2.0	156.6	0.50	-23.2	0.55	1
3058		2.4	2.0	162.6	1.77	-20.5	2.65	5
3059	314	1.6	1.7	168.1	5.37	-13.9	7.05	12
3060	35?	2.5	2.5	171.3	1.13	- 9.6	1.26	2
3061		2.5	2.0	182.3	1.11	- 9.6	1.23	2
3501		3.0	3.0	126.6	0.52	10.8	0 56	1
3502	•	2.4	2.8	126.1	2.96	15.6	3.67	5
35 03		3:0	3.0	130.0	0.72	- 1.7	0.85	1
3504		2.7	2.7	1.29.1	1.84	41.3	1.57	3
3505		2.5	2.5	1.36.7	0.59	50.1	1.52	4
3506		2.7	2.0	133.9	1.84	13.4	2.18	3
3507	270?	3.0	3.0	130.8	1.42	9.9	1.69	2
3508	•	1.5	2.5	138.9	1.18	11.9	1.54	2
350 9		3.0	1.5	143.2	1.09	9.4	1.47	2
3510		2.0	2.0	147.6	0.18	50.8	0.33	1
3511		3.0	2.0	147.6	0.15	53.8	0.30	1
3512	130	3.0	3.0	152.5	0.34	47.5	0.69	2
35 1 3		3.0	2.0	165.6	0.31	50.7	0.66	2
3514	250	2.3	2.0	161.5	0.62	. 45.0	1.22	3
3515		3.0	∞ 2.O	165.3	0.47	41.7	0.82	5

1958 1 Pt.no.	Master List	${\tt Q}_{\pmb{\lambda}}$	Qq	λ	Wλ	φ	Wφ *	n
3516		2.5	3.0	171.4	0.37	46.9	0.72	2
3517	•	2.0.	3.0	175.0	0.27	43.2	0.47	1.
3518		3.0	2.0	185.6	0.08	53.8	0.22	1
3519	36	2.5	2.0	182.0	1.33	45.0	2.51	8
3520		3.0	2.0.	181.6	0.13	45.8	0.28	1
3521)		2.5	2.5	186.1	0.69	41.1	1.12	2
3522	234?	3.0	3.0	180.9	320	2.0	3.57	5
4001		2.4	2.2	177.6	168	-22.9	2. 42	5
1,002		2.4	2.0	186.3	7.05	-17.8	7. 96	12
4003		2.7	2.0	191.14	7.42	-20.9	8.41	12
1,004		2.2	2.0	192.5	7.83	-17.1	8.68	13
4005	164	2.0	2.0	193.0	0.79	-14.8	0.80	1
14006	$l_1 l_{\pm}$	1.8	1.9	194.3	8.70	-12.8	9.83	15
1,007	•	2.0	3.0	202.6	0.13	-16.2	0.28	1.
1,008		2.0	2.0	200.0	0.78	- 6.8	0.79	1
14003		2.3	2.3	197.3	1.72	-15.4	1.85	3
lioto		2,5	2.1	198.0	6.50	-19.7	7.36	11
4011	•	21	2.2	199.6	8.30	-23.0	9.27	14
4012		2.9	1.9	190.4	7.40	-29.2	9.03	15
4013	162	3.0	2.1	182.9	3.3l ₊	-53.0	5.17	10
4014	ſħΟ	2.7	2.7	197.6	1.04	-55.4	1.44	3
4015	235	2. 6	2.1	505.0	5.27	-50.5	7.55	14
4016	42	2.6	2.1	200.6	7.46	~37.4	9.29	15
4017		2.6	2.3	217.8	4.65	-33.3	5.61	8
lio18				203.9	* 4.86	-21.3	5.21	7

1958 Pt.no.	Master List	$^{Q}\lambda$	Q_{φ}	$\overline{\lambda}$	W _λ	. 	w _y	n
4 01 9		1.5	1.5	204.5	1.71	-16.1	1.75	2
4050	(167)	8.0	2.0	206.5	1.70	-17.5	1.84	3
4021	(167)	2.0	2.0	209.9	0.60	-18.6	0.60	1
4022		3.0	3.0.	205.3	1.53	- 1.5	1.57	2
4023 .		2.0	2.0	207.7	10.30	-14.8	11.33	16
4024		2.4	2.4	213.9	10.68	-12.3	11.56	16
4025		2.9	8.8	220.2	7.07	- 9.0	7.60	10
4026	. 198	3.0	1.9	216.6	4.40	-52.8	6.47	12
4027	46	3.0	3.0	227.9	0.82	-31.2	0.90	1
1405g	50	2.7	2.3	227.1	8.44	-34.1	10.81	17
4029	52	2.1	2.2	236.0	9.50	-38.3	12.48	21
l ₁ 030	257	2.3	2.3	236.1	7.06	-49.7	10.51	20
4031	•	2.3	2.1	236.9	3.33	-54.2	5.13	10
4032		3.0	2.3	227.1	4.07	- 9.3	4.50	6
4033		2.8	2.8	228.7	7,81	- 4.4	8.78	12
4034		3.0	3.0	227.5	0.82	- 1.9	0.91	1
· 4035		2.2	2.1	235.4	10.94	0.7	12.45	18
4036	(258)	2.0	2.0	237.3	5.03	- 3.5	5.81	9
4037	(189)	2.5	2.0	238.5	0.93	- 4.4	0.97	2
403 8	194	2.0	2.0	232.2	2.14	-10.5	2.26	3
14039		2,5	2.5	233.2	1.35	-15.4	1.55	2
140140	167 .	3.0	1.8	204.4	3.54	-38.4	3.99	6
4501		3.0	3.0	191.0	0.49	29.2	0.63	1
4502	•	2.0	2.0	188.0	0.70	11.2	0.75	ı
4503		2.0	2.0	187.5	1.04	13.3	1.21	2
45 0 4	203	1.8	1.7	191.5	5.75	14.0	6.87	11
~	•					_		

1958 Pt.no.	Master List	\mathtt{Q}_{λ}	Q _{\varphi}	$\overline{\lambda}$	$^{\mathtt{W}}_{\lambda}$	$\overline{\varphi}$	Wφ	n
4505		3.0	3.0	197.4	1.16	9.4	1.27	2
4506	43	1.5	1.3	196.4	7.88	14.9	10.01	17
4507	210	3.0	2.0	197.3	1.04	16.0	1.20	2
4508		2.0	2.3	198.6	1.62	21.6	1.97	3
4509		2.8	2.8	197.4	2.71	27.4	3.45	5
4510	45	3.0	3.0	199.9	2.64	36.6	3.98	7
4511		2.0.	2.0	205.0	0.72	19.2	0.85	1
4512	21.1	5.0	1.8	201.1	6.00	13.9	7.01	3.3.
4513		1.5	1.5	205.3	1,20	13.2	1.46	2
4514		2.1	1.9	201.3	4.22	10.7	4.68	7
4515	193	2.0	1.5	205.2	6.12	10.8	6.89	11
4516		3.0	3.0	206.0	0.71	4.2	0.76	1
4517	47	2.1	1.9	217.6	9.67	8.5	11.02	16
4518		3.0	3.0	212.8	0.35	21.1	0.46	1.
4519		2.3	3.0	226.4	2.65	19.7	3.33	6
4520 (53,138)	2.5	3.0	226.0	3.27	21.5	4.10	٠6
452)		2.0	3.0	230.2	0.89	29.4	1.40	3
4522		2.5	2.5	220.4	3.01	38.0	4.65	8
4523	51	3.0	3.0	228.4	0.44	42.2	0.93	3
4524		3.0	3.0	224.5	0.82	4.1	0.91	1
4525		2.5	2.0	228.3	1.19	17.0	1.46	,2
4526	(95)	1.8	1.8	238.1	11.15	6.6	13.29	20
5001	515	2.3	2.2	248.5	5.47	-32.7	6.83	11
5002	54?	5.0	2.5	242.7	1.26	-15.4	1.42	2
5003	278?	2.5	2.5	240.6	1.37	- 5.7	1.57	2

1958 Pt.no.	Master List	Q_{λ}	Q up	$\overline{\lambda}$	W_{λ}	$\overline{\varphi}$	Wq	n
5004	(55)	2.0	2.3.	245.2	1.03	- 3.2	1.20	3
5005	(57)	1.0	1.0	245.7	0.65	+ 2.5	0.72	1
5006		2.3	2.0	250.5	2.41	- 4.1	2.50	3
5007	182	3.0	2.0	252.3	0.69	-12.4	0.74	1
5008		3.0	3.0	246.7	0.65	-1 5.5	0.72	1
5009		3.0	2.8	252.1	4.33	-20.0	4.74	6
5010	171	2.9	2.4	260.6	9.66	-24.9	11.47	18
ंत्र		2.8	2.0	2000	2.07	-54.2	3.43	7
5013	60	1.9	2.8	265.4	4.92	-140.8	6.81	13
501h		2.0	2.2	265.2	2.63	-41.8	3.45	6
5015		2.0	2.0	273.0	0.24	-37.7	0.44	1
5016	172	2.6	2.7	269.1	8.21	-29,9	10.18	17
5017	(237)	2.5	2.5	258.8	1.74	-19.9	2.38	4
5018		٥.٤	3.0	267.2	3.52	-15.3	3.75	5
5019		2.8	2.1	262.3	5.65	- 4.6	6.32	9
5 0 20	58	2.1	2.1	256.5	7.25	# O.1	8.37	13
5021	•	2.6	2.4	275.9	6.32	- 4.4	6.72	9
5022		2.0	2.5	278.8	3.73	1.4	4.11	6
5023	143	1.7	2.3	280.2	1.51	- 0.3	1.64	3
5024	105	2.2	2.1	286.5	7.97	- 1.4		14.
5025	(72)	2.2						13
5026		3.0	2.4	277.2	3.56			5
5027		3.0	2.8	283.5	3.11	-12.2		
5028	108	3.0	3.0	286.7	4.46	-17.1		.8
5 029	•	3.0	3.0	287.2			•	4

1958 Pt. no.	Master List	\mathtt{Q}_{λ}	Qp	$\overline{\lambda}$	W	$\overline{\varphi}$	$^{\mathrm{W}}\!\phi$	n	
5030	70	2.9	1.6	298.0	6.90	-24.6	9.11	17	
5031	294	2.2	2.2	286.9	6.77	-28.8	8.15	13	
5032		3.0	2.0	270.9	0.47	-32.1	0.61	• 1	
5033	98	2.1	2.9	272.5	6.39	-42.3	8.79	16	
50.34		2.7	2.3	278.7	1.53	-49.1	2.06	3	
5035	. 101	1.4	1.4	294.3	3.79	-43.1	5.17	10	
5036	68	2.0	2.0	295.2	0.67	-38.3	0.82	1	
30137		د کی ک	1. 4 5	306.3.	0.95	17 . A.	t. 2:8	2	
5038		2.8	2.8	308.2	1.20	-54.7	2.11	4	
5 0 ,39		3.0	2.0	-304.4	0.22	~55. 8	0.36	1	
5040	99	3.0	2.7	301.5	0.45	-59.5	1.01	3	
5041		2.8	1.9	. 289.9	2.1,6	-59.1	4.42	10	
5042		2.8	2.3	284.3	0.63	-51.4	1.32	Į,	
5043	•	2.4	2.8	280.1	1.70	- 5.2	2.40	5	
50 Џ ,	55	2.5	2.5	250.6	0.51	- 1.8	0.95	2	
5501		2.0	2.0	243.5	0.56	2.1	0.75	1	
5502		2.0	2.5	250 J	8.08	7.7	2.91	6	
5503		2.4	2.3	247.2	2.34	12.4	3.36	7	
5504		2.0	8.1	240.7	9.12	13.0	11.38	18	
5505		3.0	2.6	237.6	1.97	17.3	2.51	5	•
5506		1.9	2.0	242.5	8.17	18.7	10.55	18	
5507		2.0	2.8	240.7	1.74	26.0	2.28	•4	
550 8		2.0	3.0	238.0	1.85	34.3	2.814	6	
5509	300	2.2	2.6	242.6	1.76	34.0	2.65	5	
5510		2.3	3.0	242.2	0.85	39.4	1.54	3	

1958 Me Pt. no. I	ster list	Q _λ	વ ્	ኧ	W _λ	$\overline{\Phi}$	Wy	n
5511		3.0	2.0	242.9	0.20	48.5	0.40	1.
5512		2.5	3.0	241.3	1.04	45.3	1.81	4.
5513		2.0	3.0	247.2	0.52	34.2	0.72	1
551.4		2.0	3.0	21,8.8	0.48	31.7	0.62	1
55 1.5		3.0	3.0	241.6	0.13	24.0	0.16	1
5516		2.5	2.4	249.9	3.97	17.9	5.08	8
5517		1.5	8.0	250.7	0.64	17.0	0.80	2
551 8		2.5	2.0	257.8	1.05	16.5	1.29	2
5519	96.	1.9	1.9.	253.9	3.78	1.9.7	4.51	7
5520	(96)	2.5	2.8	252.8	2.69	21.7	3.50	6
5521		3.0	3.0	.256.7	0.35	28.5	0.53	3.
5522		2.0	3.0	254.9	0.48	27.5	0.62	1
5523	Offer	2.0	1.0	260.9	0.44	29.9	0.59	3.
55 2 4	50	2.0	2.4	252.2	3.50	35.4	5 .35	10
552 5		3.0	2.7	261.1	0.59	45.5	1.18	3
5526		2.3	2.7	259.9	0.67	38.4	1.21	3
5527		2.0	3.0	256.2	1.43	27.8	2.03	4
5 52 8		3.0	3.0	252.6	0.13	22.0	0.16	1
552 9		3.0	3:0	258.8	2.17	16.7	2.84	5
5530	•	3.0	3.0	257.9	2.00	13.1	2.28	3
55 31		1.9	2.1	261.4	4.32	5.8	4.98	8
5532		1.8	2.4	260.9	3.21	9.3	3.66	5
55 3 3	97	2.8.	2.7	263.6	5.82	10.9	6.91	11
5534		2.4	.1.5	262.0	1.20	12.9	1.39	2

1958 Pt. no	Master . List	$^{\mathrm{Q}}{_{\boldsymbol{\lambda}}}$	Qφ	$\overline{\lambda}$	w_{λ}	$\overline{\varphi}$	Wφ	n
5535	63,279	2.3	1,9	269.4	4.68	7.1	5.49	9
5536		2.0	2.0	273.7	0.68	11.2	0.82	2
5537	(107)	2.1	1.8	277.3	5.32	3.9	6.10	1.0
553 8	207	2.2	2.4	280.3	3.84	5,2	4.90	9
5539	1.03	1.3	1.5	278.0	5 .71	7.7	6.66	10
5540		2,0	2.3	279.2	1.50	11.6	1.65	3
554%		2.5	3 11	701.7	0.43	111.6	0.59	·:
5542		3.0	2.0	275.0	0.714	20.0	0.86	1.
5543	103	2.0	2.0	276.0	0.70	23.0	0.84	1.
55141		1.0	1.0	274.0	0.55	24.9	0.66	1
5545.		2.1	1.9	274.2	6.15	24.9	8.35	3.5
5546		2.0	10	276.0	0.54	26.9	0.66	1.
5547	24 .2 7	2.3	2.9	267.7	2.78	33.3	3.94	8
5548		3.0	5.0	260.4	0.31	45.9	0.55	2
5549		2.3	2.0	274.9	0.66	42.9	1.09	3
5550	21/17	2.4	1.8	272.5	2.15	44.9	3.97	10
5551		3.0	2.0	275.6	0.03	L18.0	0.08	1
5552	71	1.8	1.5	288.9	1.28	47.7	2.37	6
5553		2.4	2.6	292.1	1.72	34.5	2.54	5
5554	307	8.0	2.0	277.0	0.66		•	
5555						25.0		
5556	69							
5557						26.0		
5558				281.0	•	24.0		

1958 Pt.no.	Master List	$^{\mathrm{Q}}{_{\lambda}}$	Qy	$\overline{\lambda}$	₩ _λ	$\overline{\varphi}$	Wp	n
5559		J.,O	J. " O	290.7	0.47	19.6	0.62	1.
55 60		2.8	3.0	286.4	2.14	1.7.7	2.45	14
5561		2.5	2.8	289.2	2.73	15.8	3.21	6
5563	106	1.7	2.8	292.8	6.29	. 8.5	7.89	14
5564		3.0	٥.٤٠	25li.0	0.20	12.2	0.45	1
5565	•	1.6	1.7	249.8	4.57	5.1	5.29	7
6001		e.o	2.0	2 94.0	0.95	-12.0	0.98	l
6002		8.8	2.8	294.3	5.01	- 8.4	5.45	8
6003	(201)	1.0	1.0	299.0	1.67	- 3.9	1.73	2
600l ₄	5 15	2.2	2.3	303.7	6.81	- 1.1	8.57	14
6005		2.1	2.8	305.7	6.57	-18.4	8.37	717
6006		3.0	3.0	307.7	0.62	-24.7	0.79	1
6007	(173)	3.0	2.0	311.9	0:14	-25:5	0.34	1
6008	(109)	2.4	2.4	310.9	3.82	-25.6	4.73	8
6 00 9		1.4	1.9	317.8	3.68	-40.0	5.03	9
6010	243?	2.0	2.4	312.8	1.74	-36.3	2.69	5
6011		2.0	3.0	314.5	1.00	-43.9	1.40	2
6013		3.0	2.7	329.4	0.47	-53.0	1.01	
6014		3.0	3.0	329.0	0.31	-45.0	0.55	1
6015		3.0	3.0	350.0	0.09	-46.0	0.30	1
6016		3.0	2.0	٥. بلباد	0.17	-43.1	0.37	1
6017	111	2.8	2.2	320.1	2.69	-26.7	3.48	6
5018	•	3.0	2.0	323.4	0.82	-25.1	1.41	3
501 9				335.2			1.70	3
6020	147	2.5	2.5	332.5	1.16	-22.5	1.52	. 2

1958 Pt. no.	Master List	\mathtt{Q}_{λ}	Q	$\overline{\lambda}$	Wa	τp	Wę	n
6021	186	2.5	2.0	335.5	1.28	-19.5	1.59	2
6022	•	3.0	1.0	332.7	1.59	-18.8	1.69	2
6023	115	2.5	2.5	320.0	5 .7 5	-17.0	7.47	13.
6024	174	2.1	2.1	307.3	6.73	-12.8	8.78	16
6025		3.0	2.0	317.6	0.48	-10.2	0.69	· ı
6026		2.8	1.8	320.8	2.16	-10.0	2.73	4
6027	175	2.4	1.14	328.7	2.33	- 6.7	2.95	5.
6028	176	2.4	1.4	333.5	3.19	- 5.9	3.84	5
6029		3.0	1.7	334.8	1.61	-12.8	2.11	3
6030	265	1.8	1.5	342.1.	2.27	- 5.5	2.60	4
6031	•	3.0	2.0	347.5	1.65	-13.1	1.82	2
6032		1.7	1.6	345.0	408	- 6.5	4.71	7
6033	$2.1l_{\rm p}$	2.3	1.5	348.8	3.96	- 7.7	4.54	6
6034		1.3	1.8	35 1 .5	3.43	- 7.0	4.14	6
6035	149	1.2	2.0	351.9	3.21	- 2.4	3.65	5
5036		1.0	1.0	354.7	0.49	0.6	0.62	1
6037	191	1.6	2.0	354.7	2.76	4.9	3.10	•5
6038	(116)	2.6	1.8	356.0	3.97	-10.8	4.77	8
6039	848	3.0	2.0	350.9	0.94	-28.6	1.05	į
6040	247	3.0	2.5	347.0	0.57	-53.2	0.82	2
6501	291?	2,0	1.5	316.7	0.53	47.2	0.98	2
6502		3.0	2.0	31.9.6	0.10	53.8	0.31	1
6503	79	8.5	2.3	323.0	1.24	47.5	2.76	8
6504	2929	1.0	1.0.	325.8	0.55	46.1	0.99	2
6505)	0.و	2.0	330.6	0.44	41.8	0.94	2

1958 Pt. no.	Master List	$\mathtt{Q}_{\pmb{\lambda}}$	Qφ	$\overline{\lambda}$	Wλ	$\overline{\varphi}$	Wy	n•
6506		3.0	3.0	342.5	0.93	27.5	1.36	2
6507		2.5	3.0	351.6	1.11	26.1	1.49	2
6508	150?	2.8		353.7		4x.8	2.02	4.
6509	85	13	1.5	352.0	3.85	3.2	4.76	8

Table 3 DATA FOR 32 OBSERVATIONS OF MARS AT FLAGSTAFF IN 1958 No. Date Ap(in) Magn. đ Do μ 1 1 Oct 4 7:46 316° 18 16"2 -894 350 2899 3394 2 3 11 11 10:14 6:58 352° 240° 15 350 332 18 17"0 310 -8:5 3390 45 -3000 2880 11 10:12 21-24 550 550 48 11 12:28 320° 21 2 6 12 12 550 550 550 550 9:48 272° 21 17"2 3 -826 33?7 -2829 78 11:48 302° 21 2 6:48 13 **|220°** 21 2 17"3 -896 34:2 -28:1 9 13 10:49 2780 21-24 2 10 14 9:13 2460 21 550 3 17"4 -8:7 34.8 -27:7 11 11:03 272° 6:15 194° 14 18 550 310,550 15 12 15-18 1775 3 -897 3594 -27:0 13 9:13 2370 18 310 3 14 12:48 2890 15-21 310 43 - • 10:53 2520 16 18 310 17"6 -8:8 3690 -26:3 16 17 18 9:53 2280 17"7 12-18 310 36°5 37°1 -8:9 -2596 1860 7:33 9:58 17 4 1778 18 310 -900 -25:3 18 18 220° 21 550 19 18 12:08 2520 21 310 20 19 9:28 2040 21 17"9 310,550 3797 -9:0 -24:3 21 19 12:03 242° 9:28 **1**95° 21 310;550 22 20 3.8 4 18"0 -9°2 310 38:3 -23:6 23 6:53 140° 10:28 192° 22 21 18"3 310 3994 2J, 25 -22:1 22 21 310 23 5:24 109° 21-24 18"4 310,550 2 -9:5 4000 -21?3 26 24 5:28 1019 21 18"5 40°5 41°7 42°3 46°7 48°5 310,550 2 -9:6 -20% 27 28 26 940 6:13 -9°9 -9°9 -11°3 -11°8 21-24 18"6 310 3 -1990 820 Oct 27 6:03 18"7 **2**lį 310 -18:2 -11:4 29 5:35 Nov 5° 19"i 21 310 30 8:23 20° 21 19"2 310 -897 31 22 6:48 224° 18-24 310,550 310,550 18"6 18"5 -14**?**6 -14**?**8 5698 +500 32 2100 23 6:28 24 5793 3 +599

Table 4

SYSTEMATIC AND ACCIDENTAL ERRORS OF AREOGRAPHIC COORDINATES

MEASURED ON 32 DRAWINGS OF MARS IN 1958 (*)

No -	rλ	rφ	M5	σ_{λ}	G.	Σνλ	Σwφ	n ₂	n ₁	1
12345	-0°4 -2°0 +1°1 -3°2 +2°5	+0°00 +2°00 +	1.0 0.8 0.8 0.8 0.8	3°89 5.20 4.84 3.34 3.19	2°18 3.36 2.48 2.20 2.79	113.16 115.99 304.94 244.11 165.78	145.13 148.93 376.43 307.92 207.43	26 36 52 57 40	45 46 63 79 54	
· 6 8 9 10	-2°6 +3°8 -3°6 -4°9	+300 +300 +100 +200 +200 +200 +200 +200 +200 +2	8000 0000 0000 0000	2.92 4.71 4.92 2.67 3.58	2.81 3.67 2.46 2.26 3.25	264.98 182.75 337.40 291.49 400.17	333.85 229.60 414.89 369.41 439.70	51 45 64 71	60 62 73 83 96	
11 12 13 14 15	-2:0 -0:8 +5:9 -0:8	-1°2 -1°2 -1°9 -2°4 +0°7	1.0 1.0 1.0 0.6 1.0	3.70 3.62 4.53 3.01 2.96	2.84 2.56 2.10 2.28 2.20	287.44 283.86 398.29 218.83 273.43	362.70 349.40 490.36 281.78 348.12	59 49 68 43 45	• 76 75 92 52 69	
16 17 18 19 20	-5.8 +3.8 -1.9 -0.1 +0.1	+3.4 -0.2 -1.9 -1.0	0.6 0.8 0.8 0.8	4.28 .4.98 4.68 5.36 2.55	2.41 2.06 2.26 2.72 2.11	191.25 265.23 281.94 262.37 326.75	237.56 324.09 349.10 330.96 404.48	28 45 48 46 60	52 63 84 81 91	
21 22 23 24 25	+2°8 +1°7 -1°6 -0°5 -0°5	+2°1 +1°8 -3°6 -0°5 -0°3	0.2 1.0 0.6 0.8	5.64 3.61 6.24 3.02 2.74	3.40 2.18 3.27 3.11 1.55	348.79 295.75 232.17 299.23 341.44	428.52 369.58 283.06 371.31 419.24	60 55 67 -58 124	102 81 113 106 161	
26 27 28 29 30	+104 -100 -100 +108 +008	+0°8 +0°2 -0°3 -1°1 -0°2	1.0 1.0 1.0 1.0	2.49 2.38 2.62 4.31 4.04	1.82 2.08 1.49 1.73 2.14	327.25	142.06 140.47 399.83 206.51 225.20	130 131 116 54 63	182 173 167 104 143	
31 32	+1°8 +2°8	+2°6 +2°9	0.6	4.23 5.13	2.41 2.16			63 67	81 95	

^(*) Successive columns are:

Mean systematic residuals $\mathbf{r}_{\lambda},\ \mathbf{r}_{\varphi}$ from first approximation before phase and drawing corrections.

Drawing relative weight w2.

Standard deviations \mathcal{G}_{λ} , \mathcal{G}_{ϕ} for unit weight $w = w_1w_2$ in second approximation after phase and drawing corrections. Sums of weights $\sum w$ for all points on drawing.

Total number of points on drawing measured at least twice (n_2) .

Total number of points on drawing (n_1) .

Table 5 STANDARD ERRORS OF AREOGRAPHIC COORDINATES AS A FUNCTION OF IMAGE QUALITY ZW, Σwφ υ¬λ 04 I 934.09 1579.73 2368.37 2571.29 841.98 265.23 191.25 3.44 3.84 3.87 4.19 2.49 2.30 2.35 2.72 2.49 2.0 1164.19 266 372 596 524 150 48 1964.94 2939.35 3209.16 1049.95 324.09 237.56 3.05055 4.23 4.98 4.28 2.06

Ī	, , , , , , , , , , , , , , , , , , , 	- 	7	able 6					
	STANDARD ERRORS OF AREOGRAPHIC COORDINATES								
	•	AS A F	UNCTION	OF POINT	DEFINITIO	N			
•	ঠ	σ_{λ}	Op	Σw _λ ·	Σwφ	nλ	nφ		
	1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0	3.44 3.45 3.87 4.33	3.08 2.47 2.46 2.52.	251.58 1185.51 3372.62 3704.16	541.94 2446.25 5912.75 2226.33	64 203 662 958	142 398 996 539		

Table 7
STANDARD ERRORS OF AREOGRAPHIC COORDINATES
AS A FUNCTION OF LATITUDE

φ	مع	उφ	∑w _λ	Σ¥φ	n .
(+60)-(+50)	6.91	3.02	7.40	17.47	11
(+50)-(+40)	8.56	3.46	104.91	193.92	82
(+40)-(+30)	4.99	2.95	142.79	213.09	66
(+30)-(+20)	4.27	2.91	403.29	530.36	104
(+20)-(+10)	3.63	2.76	960.85	1170.89	190
(+10)-(+ 0)	2.79	2.28	1178.08	1385.20	199
(0)-(-10)	2.58	1.84	1229.80	1410.10	282
(-10)-(-20)	3.02	1.71	1581.28	1838.54	303
(-20)-(-30)	4.12	2.32	1365.58	1654.90	295
(-30)-(-40)	. 4.95	2.46	998.69	1289.67	201
(-40)-(-50)	4.95	3.50	495.87	690.06	122
(-50)-(-60)	6.50	3.54	260.02	400.36	93.
(-60)-(-70)	8.18	5.97	16.77	28.59	7

Table 8

EXAMPLE OF OUTPUT FOR POINT NO. 2001 = ML 20 = JUVENTAE FONS

Point 2001		$\overline{Q}_{\lambda} = 1.2$			w = 62	Σw _λ = 3.50		
		Qy ==	1.0	$\overline{\varphi}$	w = -3	326	Σwφ ≔	4.51
λ	\mathfrak{sq}_{λ}	δ _λ	w_{λ}	φ	δQφ	ōφ	• ₩ .	Dr.
62.0 62.5 62.9 68.6 62.8	2	5 -2.1 -2.1 6.1	.48 .62 .73 .88 .27	-4.57 -3.1 -5.6 -3.9	.0	9 -2.0 1.7	.70 .79 .85 .94 .52	25 26 27 28 29 30
८ (२,	. ***	41 5 (∫ ∳) ≈1		σ _λ = :	1 ?9 8 0 ?7 1	σφ= 19 ε _{φ=} σ	

The entries are as follows:

lst. line: Mean value of point definition Q_{λ} ; weighted mean λ ; sum of weights in λ . 2nd line: Mean value of point definition Q_{ϕ} ; weighted mean ϕ ; sum of weights in ϕ

Successive columns give: longitude corrected for phase effect and drawing error in λ , residual of Q_{λ} , residual of λ , weight w_1w_2 in λ ; latitude corrected for drawing error in ϕ , residual of Q_{ϕ} , residual of ϕ , weight w_1w_2 in ϕ ; drawing number,

Last two lines give: standard error of Q_{λ} , standard error of Q_{λ} ; standard error of λ , standard error of ϕ (both for unit weight) probable error of mean λ , probable error of mean ϕ .

Table 9
DATA FOR TRANSIT OBSERVATIONS 1939, 1941, 1958. (*)

	DATA LON	THUMBLE	ODDER (A.W.	110NB 1737, 1741,	1950. (1	«)
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Year	Date	N ₁	N ₂ .	I .	δλ	ΔA
1939	July 26	15	8	4 - 5.5	0	* 0%6
-	July 27	8	5	4 - 5	0	+ 1.4
•	Aug 8	6	1	3	, о	+1.1.4
1941	July 17	7 11	9	1.7 - 3.0	- 190	-48.2
-	Aug 11	L 5	1	4.3	0	-42.3
-	Sept 22	2. 22	8	2.5 - 4	- 1.0	-17.2
-	Sept 2	3 13	12	2.5 - 3.0	- 1.0	-16.3
-	Oct	5 7	4	3.0	+ 1.0	- 5.0
-	Oct	6 9	3	3.3 - 3.7	- 0.9	- 4.0
-	Oct	9 5	6	4.0 - 4.5	o	- 1.1
-	Oct 1	0 3	3	2.5	o	- 0.1
-	Nov 13	to 17 12	13	4.0	- 0.9	+28.2
1958	0ct 2	o · · · · · · · · · · · · · · · · · · ·	2	4.5	0	-22.6
-	0ct 2	3 15	3	2 . 2.5	0	-20.4
-	0ct 2	6 4	1	3	0	-18.2
-	0ct 2	7 57	4	2.5 - 3.5	0	-17.4
-	Nov	4 11	2	3.5	O	-11.0

(*) N_1 = number of observed times

 N_2 = number of derived points

I = image quality

δλ = reduction to true meridian

AA = phase angle in longitude

Table 10. AREOGRAPHIC LONGITUDES FROM MERIDIAN TRANSITS, 1939,
1941, 1958

1958 _no.	Date	A PCO REGISTAÇÃO POR PORTO POR PORTO	n Ž	Description	Rem
1001	41 Sept 22	022	15)	South point of .	** •
	- Sept 23	358.4	9 359	Fastigium Aryn	
	58 Nov 4	358.5	11		
700%	41 July 17	(350.2)	7)	Center Sinus	w=1/4
	- Sept 22	0.2	15 / 358	.4 Meridiani	
	- Sept 23	358.5	9)		
	58 Nov 4	358.5	11	·	
1.003	41 Sept 22	3.9	15)	Center following horn	
	- Sept 23	1.2	9)	of Sinus Meridiani	
1.005	41 Sept 22	(6.9)	7) .	Following point of	w≊1/2
	- Sept 23	ц. г	9).	Sinus Meridiani	
1005	41 Sept 23	3.8	9		
1009	41 July 17	(354.2)	7	•	
1010	41 Sept 23	(7.6)	4		
1011	41 Sept 23	(10.4)	4	•	
1022	39 July 26	(34.6)	10	6.1 Aromatum Promontorium	
1025	39 July 25	37.7	10 }		
1054	39 July 26	58.0	10 \ 5	7.5 Mouth of Baetis	
	- July 27	56.9	5)	· · · · · · · · · · · · · · · · · · ·	
1.056	39 July 26	60.9	10 } 6	0.4 Mouth of Coprates	
	- July 27	59. 8	. 5)	TOTAL COMMENT OF THE STATE OF T	

1958 no.	Date	λ		Description	Rem.
1061	39 July 26	33-7	10	Aromatum Promontorium?	(1)
1502	41, July 17	(351.5)	7)	North point of follow-	w=1/4
	- Sept 22	2.1	15 359.8	ing horn of Sinus	
	- Sept 23	359.4	9)	Meridiani	
2001	39 July 27	62.2	5	Juventae Fons, center	
2006	39 July 26	70.8	11) 72.1	Combon of the	
	- July 27	(74.7)	3} /2.1	Center of Melas Lacus	w=1/2
2013	39 July 26	85.1	11 87.9	Combon of W. I	
	- July 27	(93.5)	3) 07.9	Center of Noctis Lacus	w=1/2
2074	39 July 26	97.6	11	Center of Phoenicis	
	58 Oct 26	106.5	14	Lacus	
3008	58 Oct 23	122.7	4) 122.6	Preceding point of	
	Oct 27	122.6	17	Sirenum Sinus	
3009	41 Aug 11	129.3	5	Following point of Daedalia	w=1/2
3010	58 Oct 27	125.4	19	Center of Sirenum Sinus	3
3011	58 Oct '23	126.3	7	Following point of Sirenum Sinus	
3012	58 Oct ·27	130.2	19	Center Sirenius Lacus	
3015	58 Oct 23	129.2	4 131.1	Following point of	
	- Oct 27	133.0	5),,,,,	Sirenius Lacus	
3054	41. Nov 13-18	179.4	. 7	Following point of Mare Sirenum	
3059	41 Nov 13-18	(171.5)	3	North point of Titanum Sinus	

1958 no.		Pate	in_viv(ett.ana	λ	n	λ	Description	Rem.
4002	41	Oct	9	192.5	51		Preceding point of	
	#1	Oct	10	(190.5)	2	191.3	Laestrygonum Sinus	w=1/2
	£.	Nov :	1,1-18	189.7	7)			
4003	43.	Oct	c)	195.5	5)			
	**	Oct	10	196.2	{ د	195.5	North point of Rasena	
	**	Nov J	L3-38	191444	7)			w≈1/2
4006	41	Oct	9	1993	51	ia9.8	North point of	
	ris.	Nov	<u>H-iB</u>	20 0 "B	T_{c}^{t}	7. ·) • O	Laestrygonum Sinus	w=1/2
14010	41	Oct	()	1997年	5	199.8	Laestrygonum Fretum	
		Nov	13-18	200.5	7)	,		w=1/2
4012	47.	3.90	ġ	194.6	5`			
	-	Ve t	(0)	190.5	3,	192.7	South point of Rasena	
	**	Nov.	1,348	193.0	7			Ma:1/S
	58	Oct	30	198-7	1			W#1/2
LACY-27	41	Nov:	13-18	(218.75	•)		Neeth point of Eridania	w=1/4
froso	43	Nov	718	206.5	I		Mouth of Oraconis canal	W##1/2
14023	41	Nov.	13-10	213.9	9		Preceding point of Comer Sinus	w=1/2
4035	41	Oct	ሪ	243.2	2)	(241.1)	Center of following lobe	
	146	Nov	13-18	232.8	9)	t hat fall to the f	of Gomer Sinus	w=1/4
45 0 6	41	Oct	9	(±94.0) 192.7	3)	103.1	Center of Trivium	w#1/2
							Charontis	w=1/2
4526	41	0ct	5	(234.0) (232.9)	3)	233.6	North point of Gomer	w≈1/2
	æ	Nov	13-18	(232.9)	5)		Sinus	wee 1/4

1958 _no.		Dat	8	λ	n	አ	Description	Rem.
5005		1 Oct - Oct		(251.2)	7) 2	247.5	Following point.of Cimmerium Sinus	w=1/2 w=1/2
5020		- Nov l Oct	13 - 18	(259.0)	5) 4		North point of Syr- tis Minor	w=1/4 w=1/2
5532	41	Oet	5	(275.5)	4		Nepenthes on Moeris Lacus	W=1/2
6023	43	. July	17	(318.5)	4		Preceding point of Deucalionis R.	w=1/ 4
6024	43	July	17	(314.0)	5		Tip of Hammonis Cornu	w=1/4
6027-28	39	Aug	8	336.:	5		Mid-pt of Signus Portus	w=1/2
6030	· 41	July	17	341.2	11		Preceding pt of Edom	w=1/2
6032	41	Sept	23	(348.5)	4		Edom Promontorium	w=1/2
6035	41	Sept	23	352.8	9		Following pt of Edom	
6036	41.	Sept	22	356.1	15	٠	Node in preceding horm of Sinus Meridiani	1
6037	41	Sept	22	356.7	15		Center of preceding horn of Sinus Meridi	Lani
6509	41	July	17	348.0	11)	·	North p' of preced-	w=1/2
	-	Sept	22	(354.8)	7 { .	352.9	ing horn of Sinus	w=1/2
	•	Sept	23	354.3	9)		Meridiani	
SAF 60	41	July	17	(317.0)	4		Proceding pt of Sabaous Sinus	w=1/4

⁽¹⁾ Not consistent with 1022, 1025.