

Análisis Avanzado - Sucesiones

Primer cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA

Sucesiones

Sucesiones

Recordemos...

Una sucesión es un función $a: \mathbb{N} \to \mathbb{R}$. $\mathcal{A}(n)$

Notación: $(a_n)_{n\in\mathbb{N}}$. $(a_n)_{n\in\mathbb{N}}$

Sucesiones

Recordemos...

Una sucesión es un función $a: \mathbb{N} \to \mathbb{R}$.

Notación: $(a_n)_{n\in\mathbb{N}}$.

Definición de límite

Una sucesión $(a_n)_{n\in\mathbb{N}}$ de números reales <u>converge</u> a un número $\ell\in\mathbb{R}$ si para todo $\varepsilon>$ 0 existe un $n_0\in\mathbb{N}$ tal que

$$|\underline{a_n} - \underline{\ell}| < \varepsilon, \quad \forall \ n \ge n_0.$$

Ejemplo

$$\frac{1}{\varepsilon}$$
 (e) $\frac{1}{\varepsilon}$ (iii) $\frac{1}{\varepsilon^2}$ (iii)

Una sucesión $(a_n)_{n\in\mathbb{N}}$ de números reales diverge $(\underline{a+infinito})$ si para todo M>0 existe un $n_o\in\mathbb{N}$ tal que

$$a_n > M$$
, $\forall n \geq n_0$

Una sucesión $(a_n)_{n\in\mathbb{N}}$ de números reales diverge (a +infinito) si para todo M > 0 existe un $n_0 \in \mathbb{N}$ tal que

$$a_n > M$$
, $\forall n \geq n_o$.

Notación:

 $\lim_{n\to\infty} a_n = \ell$, $\lim_{n\to\infty} a_n = \infty$

Una sucesión $(a_n)_{n\in\mathbb{N}}$ de números reales diverge (a +infinito) si para todo M>0 existe un $n_0\in\mathbb{N}$ tal que

$$a_n > M, \quad \forall \ n \geq n_o.$$

Notación:

 $\lim_{n\to\infty} a_n = \ell$, $\lim_{n\to\infty} a_n = \infty$

Definición

Una sucesión $(a_n)_{n\in\mathbb{N}}$ de números reales se dice <u>acotada</u> (<u>sup., inf., a secas</u>) si el conjunto $A=\{a_n:n\in\mathbb{N}\}$ es acotado (sup., inf, a secas respectivamente).

Una sucesión $(a_n)_{n\in\mathbb{N}}$ de números reales diverge (a +infinito) si para todo M>0 existe un $n_o\in\mathbb{N}$ tal que

$$a_n > M$$
, $\forall n \geq n_o$.

Notación:

$$\lim_{n\to\infty} a_n = \ell$$
, $\lim_{n\to\infty} a_n = \infty$

Definición

Una sucesión $(a_n)_{n\in\mathbb{N}}$ de números reales se dice *acotada* (*sup., inf., a secas*) si el conjunto $A=\{a_n:n\in\mathbb{N}\}$ es acotado (sup., inf, a secas respectivamente).

Equivalentemente (para acotada): existe M> o tal que $|a_n|\leq M$ para todo $n\in\mathbb{N}$.

Teorema

Si una sucesión es convergente, entonces es acotada.

Álgebra de límites

Teorema

Sean $(a_n)_{n\in\mathbb{N}}$ y $(b_n)_{n\in\mathbb{N}}$ succesiones tales que $\lim_{n\to\infty}a_n=a$ $\lim_{n\to\infty}b_n=b$. Entonces,

- (1) $\lim_{n\to\infty} \mathfrak{Ca}_n = ca$, para todo $c\in\mathbb{R}$;
- (2) $\lim_{n\to\infty} (a_n + b_n) = \underline{a+b};$
- (3) $\lim_{n\to\infty} a_n b_n = ab$;
- (4) Si $b \neq 0$, $\lim_{n \to \infty} (a_n/b_n) = a/b$.
- (5) Si $a_n \leq b_n$ para todo $n \in \mathbb{N}$ $a \leq b$.

$$3/(2) \stackrel{\text{Exo}}{=} |au + bu - a - b| = |au - a + bu - b|$$

$$\langle |au - a| + |bu - b| \langle \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \frac{\varepsilon}{2}$$

$$\langle \frac{\varepsilon}{2} | \frac{\varepsilon}{2} | \frac{\varepsilon}{2} | \frac{\varepsilon}{2} = \frac{\varepsilon}{2}$$
Simplify: Simplify:

Equivalencia 2

Sea $A \subset \mathbb{R}$ un <u>conjunto no vacío</u> y <u>acotado superiormente</u> y sea $s \in \mathbb{R}$. Entonces $s = \sup A$ si y sólo si s cumple:

Equivalencia 2

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado superiormente y sea $s \in \mathbb{R}$. Entonces $s = \sup A$ si y sólo si s cumple:

(a")
$$s \ge x$$
 para todo $x \in A$; (S Cofa Sup)

Equivalencia 2

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado superiormente y sea $s \in \mathbb{R}$. Entonces $\underline{s} = \sup A$ si y sólo si s cumple:

(a") $s \ge x$ para todo $x \in A$;

(b") existe una sucesión $(a_n)_{n\in\mathbb{N}}\subset A$ tal que $\lim_{n\to\infty}a_n=s$.

Sucesiones monótonas

Definición

Una sucesión $(a_n)_{n\in\mathbb{N}}$ se dice:

- monótona creciente si $a_n \leq a_{n+1}$ pata todo $n \in \mathbb{N}$;
- monótona decreciente si $a_{n+1} \le a_n$ pata todo $n \in \mathbb{N}$;
- monótona si es creciente o decreciente.

Sucesiones monótonas

Definición

Una sucesión $(a_n)_{n\in\mathbb{N}}$ se dice:

- monótona creciente si $a_n \leq a_{n+1}$ pata todo $n \in \mathbb{N}$;
- monótona decreciente si $a_{n+1} \le a_n$ pata todo $n \in \mathbb{N}$;
- · monótona si es creciente o decreciente.

Teorema

Las sucesiones monótonas y acotadas convergen.

A= $fau: ne Ny es acot. sep, <math>+\phi \rightarrow \exists$ s=sup(A). Veauves que s=liu au $u\rightarrow \infty$ Seo E70. Por la def. de surcus, I moen / aux > 5-E. Sala: SE 19 Si mzmo => 6-E< aus € au => lan-SI < E + uzuz

Análisis Avanzado

Daniel Carando - Victoria Paternostro

DM-FCEN-UBA

9

Más concretamente

(i) Si $(a_n)_{n\in\mathbb{N}}$ es creciente y acotada superiormente, entonces $\lim_{n\to\infty}a_n=\sup\{a_n:n\in\mathbb{N}\};$

.

Más concretamente

- (i) Si $(a_n)_{n\in\mathbb{N}}$ es creciente y acotada superiormente, entonces $\lim_{n\to\infty} a_n = \sup\{a_n : n\in\mathbb{N}\};$
- (ii) Si $(a_n)_{n\in\mathbb{N}}$ es decreciente y acotada inferiormente, entonces $\lim_{n\to\infty} a_n = \inf\{a_n : n\in\mathbb{N}\}.$

Subconjuntos de $\mathbb N$

Sea $A \subset \mathbb{N}$ un subconjunto no vacío. Entonces:

Subconjuntos de $\mathbb N$

Sea $A \subset \mathbb{N}$ un subconjunto no vacío. Entonces:

(i) A tiene primer elemento;

Subconjuntos de \mathbb{N} Sea $A \subset \mathbb{N}$ un subconjunto no vacío. Entonces: (i) A tiene primer elemento; = prio de luclución \cdot (ii) Si A es acotado, tiene último elemento.

Dem: (ii) ASIN apprado grz Atiene mox. 3= Sup (A). Supengames of 3 & A B-al = acA 1=1a-5+5-2/<1a-5/+15-2/< + w => \m-w/>1