第1次

1. 简述网络的 2 个主要功能

连通性——计算机网络使上网用户之间都可以交换信息,好像这些用户的计算机都可以 彼此直接连通一样。

共享——即资源共享:让每一个人都可以访问所有的程序、设备和数据,并且做到资源和用户的物理位置无关。

2. 简述因特网的组成

边缘部分——由所有连接在因特网上的主机组成。这部分是用户直接使用的,用来进行通信(传送数据、音频或视频)和资源共享。

核心部分——由大量网络和连接这些网络的路由器组成。这部分是为边缘部分提供服务的(提供连通性和交换)。

第2章

2、试将下述功能与 OSI 模型的一层或几层对应

A、确定路由 网络层

B、流量控制数据链路层、运输层

C、到传输媒体(介质)的接口 数据链路层 D、为(终)端用户提供接入 应用层

3、试将下述功能与 OSI 模型的一层或几层对应

A、可靠的进程到进程的报文交付 运输层 B、路由选择 网络层

C、定义帧数据链路层

D、向用户提供服务,如电子邮件和文件传送 应用层

4、试将下述功能与 OSI 模型的一层或几层对应

A、直接和用户的应用程序通信 应用层

B、纠错和重传数据链路层、运输层

C、机械的、电气的和功能的接口 物理层 D、在相邻节点间运载帧的业务 数据链路层

5、试将下述功能与 OSI 模型的一层或几层对应

A、格式和代码的转换服务 运输层

B、建立、管理和终止会话会话层

C、确保可靠的数据传输数据链路层、运输层

D、登录和注销的过程 应用层 E、使数据独立于数据表示的差异 表示层

7、描述图 2.20 所示的简单专用互联网应用层的通信过程

第2次

简述编码和调制的概念

编码:用数字信号承载数字或模拟数据 调制:用模拟信号承载数字或模拟数据

有哪几种常用的信道复用技术?

常用的信道复用技术有频分复用(FDM)、时分复用(TDM)、统计时分复用(STDM) 波分复用(WDM)、码分复用(CDM)

第3章

1、假定 10Base5 的电缆长度是 2500m。如果信号在粗同轴电缆上的传播速率是 200 000 000m/s,试问将一个比特从网络的这一端传到另一端需要多少时间? 忽略设备中的任何传播时延。

已知 D=T*V, D 表示传输距离, T 表示传输时间, V 表示传输速率。那么 T=D/V=2500m/(200000000m/s)=0.0000125s=1.25μs

3、10Base5 的数据率是 10Mbps。产生一个最小的帧需要多少时间? 给出你的计算过程。

已知 L=T*R, L 表示帧长度, T 表示时间, R 表示数据率, 最小帧长度为 64 字节或 512 比特。那么 T=L/R=512bit/(10*1024*1024bit/s)=0.0000048828125s=48μs

5、以太网的 MAC 子层从 LLC 子层收到 42 字节的数据。试问在这个数据上(至少)还要填充多少字节?

一个以太网的帧最少需要有 64 字节的长度。这个长度中有一部分是首部和尾部的长度。如果首部和尾部总共算是 18 字节(6 个字节的源地址,6 个字节的目的地址,2 个字节的长度/类型字段,再加上 4 个字节的 CRC),那么来自上层的数据最小长度为 64-18=46字节。如果上层的分钟少于 46 字节,那么就要进行填充。故 MAC 子层从 LLC 子层收到 42 字节的数据,至少还需要填充 46-42=4字节

第3次

第4章

5、假设 1 台终点计算机正在接收来自多台计算机的报文。它是如何 保证来自某个源的分片不会与来自其他源的分片相混淆?

在数据报分片时,标识字段的值要复制到所有的分片中。换言之,所有的分片都具有相同的标识号,它也是原始数据报的标识号。这个标识号在终点重装数据报时很有用。终点知道所有具有相同标识号的分片必须被组装成一个数据报。因此来自某个源的分片不会与来自其他源的分片相混淆。

6、你认为为什么图 4.7 中的分组既要有地址又要有标号?

一个原因是该部分的分组路径可能仍然使用无连接的服务,另一个原因是网络层协议在设计之时就设计了这两个地址,要改变现状需要一段时间。

9、讨论为什么在每个路由器上都需要有分片服务?

路由器一般用来连接不同的网络,每个都有不同的 MTU。接收数据包的网络可能比发送数据包的 MTU 大,这意味着路由器需要对包进行分片。

第5章

11. 求以下网络地址的网络标识和主机标识

a、114.34.2.8

该网络地址为 A 类地址(0~127)。网络标识为 114, 主机标识为 34.2.8

b 132.56.8.6

该网络地址为 B 类地址(128~191)。网络标识为 132.56, 主机标识为 8.6

c 208.34.54.12

该网络地址为 C 类地址(192~223)。网络标识为 208.34.54, 主机标识为 12

d、251.34.98.5

该网络地址为 E 类地址(240~255)。保留,未划分网络标识和主机标识。

20、求下列情况的子网掩码

A、A 类地址中的 1024 个子网

把 A 类网络划分为 1024 个子网, $8+\log_2 1024=18$ 。这就意味着该子网掩码有 18 个 1 和 14 个 0 组成。该子网掩码为: 255.255.192.0

B、B 类地址中的 256 个子网

把 B 类网络划分为 256 个子网,16+log₂256=24。这就意味着该子网掩码有 24 个 1 和 8 个 0 组成。该子网掩码为: 255.255.255.0

C、C 类地址中的 32 个子网

把 C 类网络划分为 32 个子网,24+log₂32=29。这就意味着该子网掩码有 29 个 1 和 3 个 0 组成。该子网掩码为: 255.255.255.248

D、C 类地址中的 4 个子网

把 C 类网络划分为 4 个子网,24+log₂4=26。这就意味着该子网掩码有 26 个 1 和 6 个 0 组成。该子网掩码为: 255.255.255.192

23、在固定长度子网划分中,如果需要划分的子网数如下所示,试问分别需要在掩码上增加几个1?

A、2

log₂2=1,需要增加1个1

B、62

Log₂62=5.95,需要增加6个1

C、122

Log₂122=6.93,需要增加7个1

D₂₅₀

log₂250=7.96,需要增加 8 个 1

28、求以下地址块的地址范围

A 123.56.77.32/29

n 的值为 29, 它的网络掩码由 29 个 1 和 3 个 0 组成, 也就是 255.255.255.248。

网络地址为: 132.56.77.32

地址范围: 123.56.77.32~123.56.77.39

B、200.17.21.128/27

n的值为27,它的网络掩码由27个1和5个0组成,也就是255.255.255.224。

网络地址为: 200.17.21.128

地址范围: 200.17.21.128~200.17.21.159

C、17.34.16.0/23

n的值为23,它的网络掩码由23个1和9个0组成,也就是255.255.254.0。

网络地址为: 17.34.16.0

地址范围: 17.34.16.0~17.34.17.255

D、180.34.64.64/30

n的值为30,它的网络掩码由30个1和2个0组成,也就是255.255.255.252。

网络地址为: 180.34.64.64

地址范围: 180.34.64.64~180.34.64.67

33、某 ISP 被授权使用一个起始地址为 150.80.0.0/16 的地址块。这个 ISP 希望将地址分发给 2600 个用户,具体情况如下:

- A、第1组有200个中等大小的用户,每个用户大约需要128个地址
- B、第2组有400个小型企业用户,每个用户大约需要16个地址
- C、第3组有2000个住宅用户,每个用户需要4个地址

请为他们设计子地址块并给出每个地址块的斜线记法。求这些地址块分配出去以后还剩多少地址可用?

第1组

每个用户需要 128 个地址。那么后缀是 log₂128=7, 前缀是 32-7=25。划分方式如下:

第1个用户,从150.80.0.0/25到150.80.0.127/25

第2个用户,从150.80.0.128/25到150.80.0.255/25

.

第 200 个用户,从 150.80.99.128/25 到 150.80.99.255/25

第1组总的地址数量为200*128=25600个地址

第2组

每个用户需要 16 个地址。那么后缀是 log₂16=4, 前缀是 32-4=28。划分方式如下:

第 1 个用户,从 150.80.100.0/28 到 150.80.100.15/28

第2个用户,从150.80.100.16/28到150.80.100.31/28

• • • • •

第 400 个用户,从 150.80.124.240/28 到 150.80. 124.255/28

第 2 组总的地址数量为 400*16=6400 个地址

第3组

每个用户需要 4 个地址。那么后缀是 log₂4=2, 前缀是 32-2=30。划分方式如下:

第1个用户,从150.80.125.0/30到150.80.125.3/30

第2个用户,从150.80.125.4/30到150.80.125.7/30

• • • • •

第 64 个用户,从 150.80.125.4/30 到 150.80.125.7/30

第 65 个用户,从 150.80.126.0/30 到 150.80.126.3/30

••••

第 2048 个用户,从 150.80.156.252/30 到 150.80.156.255/30

第 3 组总的地址数量为 2048*4=8192 个地址

已分配地址数为: 25600+6400+8192=40192 个

剩余可用地址数为: 65536-40192=25344 个

第4次

第6章

3、试写出图 6.8 中路由器 R2 的路由表

地址类别	目标地址	下一跳	接口
A类	111.0.0.0	_	M_1
B 类	145.80.0.0	111.25.19.20	M ₁
B 矢	170.14.0.0	111.25.19.20	M_1
C类	192.16.7.0	111.15.17.32	M_1
默认	0	缺省路由	M_0

10、在图 6.13 中,目的地址为 201.4.16.70 的分组到达路由器 R1。 试说明该分组将怎样被转发。

地址类别	目标地址	下一跳	接口
B 类地址	180.70.65.128	_	M_0
B 关地址	180.70.65.192	_	M_2
C 类地址	210.4.16.0	_	M_1
し矢地址	201.4.22.0	_	M_3
默认	0	_	M ₂

目的地址用二进制表示为: 11001001 000000100000100001100 0110。地址的副本右移 28 位,结果得到 00000000 00000000 00000000 00001100 或 12。目的网络为 C 类。把目的地址的最右边 8 位掩蔽掉就可以提取到网络地址 201.4.16.0。搜索 C 类路由表,在第一行找到这个网络地址。通过接口号 m1 被传递给 arp。

14、如果表 6.3 是路由器 R1 的路由表,试给出该网络的拓扑图

15、图 6.16 中的路由器 R1 能够收到目的地址为 140.24.7.194 的分组吗? 为什么?

如果目的地址为 140.24.7.194 的包到达 R3,将通过 m_0 ,若果到达 R2,通过 m_1 发 送给 R3。R1 能够收到目的地址为 140.24.7.194 的包来自组织 1、2、3,从 m_3 发出。

第7章

4、已知一被分片的数据报的分片偏移为 120, 你如何确定第一个和最后一个的字节的编号?

120*8=960,因此第一个字节的编号是 **960**,但无法确定最后一个字节的编号,除非知道数据的长度。

6、若时间戳选项的标识位为 1, 试问能够被记录的路由器的最大值是多少? 为什么?

首部最多 40 字节,选项格式中类型、长度各 1 字节。路由最多可存 9 个。因为标识位是 1,需要记录 IP 地址和时间戳,所以只能存放 4 对地址和时间戳。

16、在一个数据报中,M 位是 0,HLEN 是 5,总长度值是 200,分片偏移值是 200,试问这个数据报的第一个字节的编号和最后一个字节的编号是多少?这是最后一个分片,还是第一个分片,或者是中间的分片?

- 1) 第一个字节编号: 200*8=1600, 总长 200, 首部长度 20, 这个数据报中共有 180字节。最后一个字节编号: 1600+180-1=1779。
- 2) 因 M 位是 0, 所以是最后一个分片。

第5次

第8章

2、当协议是 IP 且硬件是以太网时, ARP 分组的长度是多少?

长度为 28 个字节:

硬件类型: 2字节

协议类型: 2字节

硬件地址长度: 1字节

协议地址长度: 1字节

操作类型: 2字节

源 MAC 地址: 6 字节

源 IP 地址: 4 字节

目的 MAC 地址: 6 字节

故长度总和=2+2+1+1+2+6+4+6=28 字节

- 5. 某路由器的 IP 地址是 125. 45. 23. 12 且所在的以太网物理地址是 23:45:AB:4F:67:CD, 它收到了一个分组, 分组的目的 IP 地址是 125. 11. 78. 10, 对应的以太网物理地址是 AA:BB:A2:4F:67:CD。
 - a.试给出这个路由器发出的 ARP 请求分组的各个表项。假定无子网划分。 ARP 请求分组表项如下:

0x0001				0x0800	
0x06	0x04			0x0001	
	0x2345AB4				
125.45.23.12 03			7D2D170C		
0x0000000000					
	125.11.78.10	0x	7D0B4E0A		

b.试给出对 a 题中的请求分组进行相应的 ARP 回答分组的各个表项。

ARP 回答分组表项如下

0x0	0x0800		
0x06	0x04	0x0002	
	0xAABBA24F670	D	
	125.11.78.10	0x7D0B4E0A	
0x2345AB4F67CD			

125.45.23.12 ······ 0x7D2D170C

c.将 a 题中的分组封装到数据链路帧中,请填写所有的字段。

0.13 G/C 1 H3/3 EE23	(C) 3/2/3/1 (C) 1/1 1	, 归.兴一/// 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
ARP 请求		0x0001		0x0800	
		0x06	0x04	0x0001	
		0x2345AB4F67CD			
		125.45.23.12	•••••	0x7D2D170C	
		0xA	ABBA24F6	7CD	
		125.11.78.10 ······· 0x7D0B4E0A			
前同步码	0xFFFFFFFFF	0x2345AB4F67CD	0x0806	数据	CRC

d.将 b 题中的分组封装到数据链路帧中,请填写所有的字段。

0.17 0 亿 1 日 7 7 至 27 9					
ARP 请求		0x0001		0x0800	
		0x06	0x04	0x0002	
		0xAABBA24F67CD			
		125.11.78.10	•••••	0x7D0B4E0A	
		0x2345AB4F67CD			
		125.45.23.12 ······· 0x7D2D170C			
	T			1	
前同步码	0x2345AB4F67CD	0xAABBA24F67CD	0x0806	数据	CRC

第9章

10、ICMP 分组的最小长度是多少? 最大长度又是多少?

ICMP 分组小长度是 8 字节,最大长度是 256*8+8 字节

13、我们如何能确定 IP 分组携带的是不是 ICMP 分组?。

携带 ICMP 分组的 IP 分组的协议字段值为 1

15、某路由器收到一 IP 分组, 其源 IP 地址为 130. 45. 3. 3 且目的地址为 201. 23. 4. 6。这个路由器无法在其路由表中找到该目的 IP 地址。 试填写发出的 ICMP 报文的各个字段(能写多少写多少)

ICMP 报文字段如下:

3	7	校验和			
	0				
4					
130.45.3.3					
201.23.4.6					
	原始数据报的前8个字节				

16、TCP 接收到目的端口为 234 的一个报文段。TCP 检查后发现无法 打开这个目的端口。试填写发送出的 ICMP 报文的各个字段。

ICMP 报文字段如下:

(AH L.:					
3	3	校验和			
	0				
4					
源地址					
目标地址					
	原始数据	报的前8个字节			

第10章

- 6、在哪个协议里有代理通告和询问报文? ICMP 协议。
- 9、试我们有以下的信息:

移动主机归属地址: 130.45.6.7/16

移动主机转交地址: 14.56.8.9/8

远程主机地址: 200.4.7.14/24

归属代理地址: 130.45.10.20/16

外地代理地址: 14.67.34.6/8

试给出从远程主机发送给归属代理的 IP 数据报首部的内容

IP 数据报首部如下:

4	5	0	长度	
		42	0	0
	15	协议		头校验和
	200.4.7.14			
	130.45.6.7			
	数据			

第6次

第11章

4、为什么 OSPF 报文传播的比 RIP 报文快?

OSPF 采用了区域概念,区域之间传播路由信息概要,大大减少传递的信息数量。另外采用组播更新、增量更新的方法,以及 30 分钟重发 LSA 等,因此比 RIP 快得多。

7、一个运行 RIP 的路由器其路由表如表 11.7 所示。试给出这个路由器发送的 RIP 响应报文。

RIP 响应报文如下:

10、参考图 11.26, 回答以下问题:

a. 给出路由器 A 的链路状态更新/路由器链路通告。 链路通告如下:

OSPF 首部类型=4					
	公告数=1				
	LSA 通用首	育部类型=1			
	链路数=2				
	路由器	D地址			
	接口数				
1					
8					
	网络N	1 地址			
	掩码				
3					
		5			

b. 给出路由器 D 的链路状态更新/路由器链路通告。

链路通告如下

OSPF 首部类型=4				
公告数=1				
LSA 通用首部类型=1				
	链路数=2			

路由器 A 地址					
	接口数				
1					
8					
	网络 N3 地址				
	掩码				
3					
		2			

c. 给出路由器 E 的链路状态更新/路由器链路通告。

链路通告如下:

	OSPF 首	部类型=4
	通行	- 数=1
	LSA 通用	首部类型=1
		链路数=3
	路由署	器 B 地址
	接	口数
1		
		4
	网络	N3 地址
	扌	奄码
3		
		5
	网络	N4 地址
	扌	奄码
3		
		2

d. 链路 N2 的链路状态更新/网络链路通告。

链路通告如下:

OSPF 首部类型=4
通告数=1
LSA 通用首部类型=2
N2 网络掩码
路由器C地址

e.链路 N4 的链路状态更新/网络链路通告。

链路通告如下:

OSPF 首部类型=4
通告数=1
LSA 通用首部类型=2
N4 网络掩码
路由器 E 地址

f.链路 N5 的链路状态更新/网络链路通告。

链路通告如下:

OSPF 首部类型=4

14、 在图 11.50 中:

高网-06

图11.50 可达性列表

112

a、试给出路由器 R1 的 BGP 打开报文?

BGP 打开报文如下:

b、试给出路由器 R1 的 BGP 更新报文?

BGP 更新报文如下:

公共首部

差错吗		
2271	撤销路由	
	路径属性	
	24.201.2.0	
	21.201.2.1	
	24.201.2.2	

c、试给出路由器 R1 的 BGP 保活报文?

BGP 保活报文如下:

d、试给出路由器 R1 的 BGP 通知报文?

BGP 通知报文如下:

	公共首部	
		差错妈
差错码		
	差错数据	

第7次

第12章

- 4、将以下 IP 多播地址转换为以太网多播地址。其中有哪几个指向相同的以太网地址?
 - a. 224. 18. 72. 8
 - b. 235. 18. 72. 8
 - c. 237. 28. 6. 88
 - d. 224.88.12.8
 - a) 将 IP 地址的最右边 24 位写成 16 进制 12:48:08, 加上起始以太网多播地址

- 01:00:5E:00:00:00, 结果是 01:00:5E12:48:08
- b) 将 IP 地址的最右边 24 位写成 16 进制 12:48:08,加上起始以太网多播地址 01:00:5E:00:00:00,结果是 01:00:5E:12:48:08
- c) 将 IP 地址的最右边 24 位写成 16 进制 1C:06:58,加上起始以太网多播地址 01:00:5E:00:00:00,结果是 01:00:5E:1C:06:58
- d) 将 IP 地址的最右边 24 位写成 16 进制 58:0C:08,加上起始以太网多播地址 01:00:5E:00:00:00,结果是 01:00:5E:58:0C:08

其中 a 和 b 指向相同的以太网地址

8、有一台主机具有两个套接字: S1 和 S2,请给出它的套接字状态表 (与图 12.11 类似)。其中 S1 是组 232.14.50.24 的成员,S2 是组 232.17.2.8 的成员。S1 希望只接收来自 17.8.5.2 的多播报文,而 S2 希望接收除了 130.2.4.6 以外的其他所有源发来的多播报文。

套接字状态表如下:

Socket	Multicast group	Filter	Source addresses
S1	232.14.50.24	Include	17.8.5.2
S2	232.17.2.8	Exclude	130.2.4.6

9、试给出练习8中主机的接口状态。

Multicast group	Group timer	Filter	Source addresses
232.14.50.24	(P)	Include	17.8.5.2
232.17.2.8	(P)	Exclude	130.2.4.6

11、如果练习 9 中的套接字 S2 声称它想退出组 232. 17. 2. 8,试给出其主机发送的组记录。

主机发送的组记录如下:

0	8	16	31
0x22	Reserved	Checksum	
Rese	erved	2	

1	0	1
	232.14	1.20.54
	17.8	3.5.2

6 0 1

第8次

第13章

1、发送方使用 5 位的序号向同一个终点发送了一个分组序列。如果序号从 0 开始,那么第 100 个分组的序号是什么?

包的序号和包的数量存在以下关系:
seqNo =(start seqNo+ packet number – 1)mod 2^m
故第 100 个分组的序号 seqNo=(0+100-1)mod 2⁵=99 mod 32=3

- 2、使用 5 位的序号,对以下几种协议来说,发送窗口和接收窗口的最大值分别是多少?
- a、停止等待; b、返回 N; c、选择重传
 - a) 在停止等待协议中,发送窗口和接收窗口的最大值均为1。
 - b) 在返回 N 协议中,发送窗口大小必须小于 2^m,接收窗口大小始终为 1。故发送窗口的最大值为 2⁵-1=31,接收窗口的最大值为 1。
 - c) 选择重传协议中发送窗口和接收窗口的最大值只能是 2^m的一半,故发送窗口和接收窗口的最大值均为 2⁵/2=16。

第14章

- 2、UDP 和 IP 是否不可靠程度相同?为什么是或者为什么不是? 不相同,因为 IP 协议仅校验首部,而? UDP 协议校验整个数据报
- 6、回答以下问题:
- a、UDP 数据报的最小长度是多少?

 最小长度为 8
- b、UDP 数据报的最大长度是多少? 最大长度为 63335
- c、能够封装在一个 UDP 数据报中的进程数据的最小长度是多少?

最小长度为0

- d、能够封装在一个 UDP 数据报中的进程数据的最大长度是多少? 最大长度为 65535-20-8=65507
- 10、下面是十六进制格式的 UDP 首部。0045DF000058FE20
- a、源端口号是什么?

源端口号是最前面的四位 16 进制数字(004516),代表着源端口号是 69

b、目的端口号是什么?

目的端口号是第二个四位十六进制数字(DF0016),代表着目的端口号为 57088。

c、用户数据报的总长度是多少?

第三个四位十六进制数字(005816)定义了整个 UDP 分组的长度为 88 字节。

d、数据的长度是多?

数据的长度是整个分组的长度减去首部的长度,也就是88-8=80字节

e、该分组是从客户发送到服务器还是相反方向?

因为源端口号是69(熟知端口),所以这个分组是从服务器到客户端的。

f、客户进程是是什么?

客户进程是 TFTP