

Warlock-Studio

– User Manual & Technical Documentation –

Version 4.0.1 Iván Eduardo Chavez Ayub @Ivan-Ayub97 on GitHub

July 24, 2025

Abstract

Warlock-Studio 4.0.1 Technical Documentation

Target Audience: Technical users, system administrators, content creators, and AI enthusiasts seeking in-depth understanding of AI-powered media enhancement workflows.

Coverage: Installation procedures, system architecture, AI model specifications, performance optimization, error resolution, and advanced use cases.

Contents

1	Int	Introduction								
	1.1	What's New in Version 4.0.1	3							
	1.2	Main Features	3							
2	Installation and Program Architecture									
	2.1	Smart AI Model Distribution System	4							
		2.1.1 Advantages of the New System	4							
		2.1.2 Automatic Download Process	4							
		2.1.3 Offline Setup and Manual Configuration	4							
	2.2	System Requirements	4							
	2.3	File Structure and Dependencies	5							
3	Det	tailed Guide to AI Models	5							
	3.1	Model Comparison Table	5							
4	Cor	nfiguration and Performance Optimization	6							
-	4.1	Critical Performance Parameters	6							
	4.2	The User Preferences File	6							
5	Ad	vanced Troubleshooting Guide	7							
6	Ad	vanced Architecture and Processes	8							
	6.1	Inference Engine and Hardware Acceleration	8							
	6.2	Tiling System and Memory Management	8							
	6.3	Resume and Checkpoint Functionality	8							
	6.4	Asynchronous Frame Writing	8							
	6.5	Frame Interpolation Pipeline	8							
	6.6	Logging System and Diagnostics	8							
	6.7	Version 4.0.1 Update Notice	8							
	6.8	Performance Monitoring and Metrics	9							
7	Ad	vanced Error Resolution and System Diagnostics	9							
	7.1	GPU Memory Management and VRAM Optimization	9							
	7.2	Model Loading and Initialization Troubleshooting	9							
	7.3	Video Processing Pipeline Diagnostics	9							
	7.4	Performance Optimization Guidelines	10							
	7.5		10							
	7.6		10							

1. Introduction

Warlock-Studio is an AI-powered media enhancement and upscaling suite, designed to deliver high-quality results through an accessible user interface. Version 4.0.1 introduces a revolutionary smart AI model distribution system that automatically downloads required components on first launch, reducing installer size from 1.4GB to just 150MB. Additionally, it includes key enhancements in GPU management, error handling, and performance efficiency, solidifying its position as a powerful tool for professional content creators.

1.1. What's New in Version 4.0.1

The latest version brings the following key enhancements:

- Smart AI Model Distribution: Revolutionary lightweight installer (150MB vs 1.4GB) with automatic AI model download system that fetches models (327MB) on first launch.
- Enhanced AI Architecture: Implemented robust 'AI_model_base' class with comprehensive error handling and GPU acceleration support.
- Code Quality Improvements: Fixed critical import errors, consolidated duplicate code sections, and improved type annotations for better maintainability.
- Improved Error Handling: Added graceful degradation mechanisms that prevent crashes and provide meaningful error messages.
- Model Optimization: Streamlined AI model collection for improved stability and compatibility across different hardware configurations.

1.2. Main Features

- AI Upscaling: Uses state-of-the-art models like Real-ESRGAN, BSRGAN, and SRVGGNet-Compact.
- Frame Interpolation: Increases FPS or creates smooth slow-motion effects using RIFE models.
- Noise Reduction: Includes dedicated IRCNN models for cleaning images and videos.
- Face Restoration: GFPGAN model for enhancing and restoring faces in photos.
- Hardware Acceleration: Uses the ONNX Runtime engine with the DirectML provider (DmlExecutionProvider) for GPU acceleration compatible with DirectX 12.
- Advanced Video Encoding: Supports hardware-accelerated encoders from NVIDIA (NVENC), AMD (AMF), and Intel (QSV).
- Smart Model Distribution: Automatic AI model download system (327MB) on first launch, reducing installer size from 1.4GB to 150MB.

2. Installation and Program Architecture

2.1. Smart AI Model Distribution System

Warlock-Studio 4.0 introduces a revolutionary AI model distribution system that automatically downloads required components during the application's first launch.

2.1.1 Advantages of the New System

- Lightweight Installer: 78% size reduction (from 1.4GB to 150MB)
- Smart Download: AI models (327MB) are automatically downloaded on first use
- Multiple Sources: Redundant URLs (GitHub, SourceForge) ensure availability
- Progress Tracking: Visual indicators show download speed and completion percentage
- Error Recovery: Automatic retry mechanisms and clear error messages
- Resume Support: Interrupted downloads can be resumed seamlessly

2.1.2 Automatic Download Process

When starting Warlock-Studio for the first time, the system will perform the following operations:

- 1. Model Verification: Checks if AI models are present
- 2. Confirmation Dialog: Requests permission to download 327MB of AI models
- 3. Progressive Download: Shows real-time progress with visual indicators
- 4. Integrity Validation: Verifies that downloaded files are complete
- 5. Automatic Extraction: Decompresses and organizes models in the correct structure

2.1.3 Offline Setup and Manual Configuration

For users with limited connectivity or specific preferences:

Offline Installation:

Models can be downloaded separately and manually placed in the AI-onnx folder

Manual Location:

Download AI-onnx-models.zip from GitHub Releases and extract to the installation directory

File Verification:

The application will automatically verify the presence of all required models

2.2. System Requirements

Component	Requirement		
Operating System	Windows 10 (64-bit) or later		
RAM	8 GB (Minimum), 16 GB (Recommended)		
Graphics Card (GPU)	DirectX 12 compatible. Recommended: 4+ GB VRAM.		
Storage	2 GB of free space. An SSD is recommended for better performance.		

Table 1: Hardware and software requirements for Warlock-Studio 4.0.

2.3. File Structure and Dependencies

Warlock-Studio is a self-contained application. The following components are included in the installation and require no action from the user.

- ffmpeg.exe: Located in the Assets folder, it is the engine for all video manipulation, encoding, and decoding.
- exiftool.exe: Also in Assets, it is used to read and write metadata (EXIF, XMP), ensuring that the original file information is preserved.
- AI Models: The models in .onnx format are located in the AI-onnx folder.
- User Preferences: A file named Warlock-Studio_4.0_UserPreference.json is saved in the user's **Documents** folder.
- Logs: Log files are stored in Documents\Warlock-Studio_4.0_Logs.

3. Detailed Guide to AI Models

The choice of AI model is the most important factor for quality and processing time.

3.1. Model Comparison Table

The following table details the relative VRAM usage of each model.

Model	Function	Scale	VRAM (GB)	Recommended Use Case & Details	
	$Denoising\ Models$				
IRCNN_Mx1	Denoise	x1	4.0	Moderate noise reduction. Good for cleaning old photos with medium artifact levels.	
IRCNN_Lx1	Denoise	x1	4.0	Intense noise reduction. Best for heavily degraded images with severe artifacts.	
	High-Quality Upscaling Models (Slower Processing)			els (Slower Processing)	
BSRGANx4	Upscale	x4	0.6	Realistic photos with excellent fine detail preservation. Best for portraits and natural	
BSRGANx2	Upscale	x2	0.7	scenes. Similar quality to x4 variant but for moderate upscaling needs. Faster processing.	
RealESRGANx4	Upscale	x4	0.6	General purpose model. Excellent for textures and mixed content types.	
RealESRNetx4	Upscale	x4	2.2	Alternative to RealESRGAN. May offer better speed-quality balance on some systems.	
$High ext{-}Speed\ Upscaling\ Models\ (Lightweight)$					
RealESR_Gx4	Upscale	x4	2.2	Fast processing ideal for videos. Good balance of speed and quality.	

Model	Function	Scale	$\begin{array}{c} { m VRAM} \\ { m (GB)} \end{array}$	Recommended Use Case & Details
RealESR_Animex4	Upscale	x4	2.2	Specialized for anime, cartoons, and illustrated content. Preserves artistic style.
		Face	Restoratio	n Models
GFPGAN	Restore	x1	1.8	AI-powered face enhancement and restoration. Repairs damaged faces in old photos.
	Frame Interpolation Models (Video Only)			
RIFE	Interpolate	N/A	N/A	Maximum interpolation quality. Creates smooth motion between frames for high FPS.
RIFE_Lite	Interpolate	N/A	N/A	Optimized version for GPUs with limited VRAM ($< 4~\mathrm{GB}$). Faster processing.

Table 2: Comprehensive guide to AI model selection and VRAM requirements.

4. Configuration and Performance Optimization

4.1. Critical Performance Parameters

- Input Resolution %: The most effective adjustment for speed. It reduces the resolution before processing it with AI. A value between 50% and 75% is usually ideal.
- **GPU VRAM Limiter (GB):** Define your GPU's VRAM. It is used to calculate the size of the processing *tiles* and prevent memory errors.
- AI Multithreading: For videos only. It processes multiple frames in parallel, speeding up the process but consuming more VRAM and CPU.
- AI Blending: Blends the original image with the processed image. Useful for reducing artifacts when using a low *Input Resolution*.
- Frame Generation: For RIFE models, allows creating interpolated frames for higher FPS or slow-motion effects.

4.2. The User Preferences File

The Warlock-Studio 4.0 User Preference. json file saves your settings.

JSON Key	Description
default_AI_model	The last selected AI model.
default_AI_multithreading	The number of processing threads for video.
default_gpu	The last selected GPU (Auto, GPU 1, etc.).
default_keep_frames	Whether to keep the video frames ("ON" or "OFF").
default_image_extension	Default image extension (.png, .jpg, etc.).
default_video_extension	Default video extension (.mp4, .mkv, etc.).
default_video_codec	The default video encoder (x264, hevc_nvenc, etc.).
default_blending	The selected blending level (Low, Medium, High).
default_output_path	The last selected output path.
default_input_resize_factor	The input resolution percentage value.
default_output_resize_factor	The output resolution percentage value.
default_VRAM_limiter	The GPU VRAM limiter value.

Table 3: Keys saved in the user preferences file.

5. Advanced Troubleshooting Guide

A Warning

The Number 1 cause of errors is special characters in file paths and names. Avoid using: ', ", @, #, \$, %, &, *, [,], ?, etc..

♦ Error: "FFmpeg encoding failed: Invalid argument"

Cause: Invalid file name or path. Solution: Rename the file and/or its containing folder, removing any special characters.

Error: "out of memory" or unexpected crash

Cause: The GPU ran out of video memory (VRAM). Solution:

- 1. Lower the VRAM Limiter to a value equal to or less than your GPU's actual VRAM.
- 2. Lower the **Input Resolution** % to 75% or less.
- 3. For videos, decrease the AI Multithreading threads or turn it "OFF".
- 4. The application will try to recover from this error automatically.

Error: "cannot convert float NaN to integer"

Cause: GPU driver timeout, often due to overload or overheating. Solution: Restart the process without deleting the generated frames folder. The application will read the existing frames and resume work from where it failed.

◄* Issue: Output video has no audio

Cause: The original video had no audio track, a *Slowmotion* mode was used, or the audio codec was incompatible. Solution: The program first tries to copy the audio stream directly. If that fails, it tries to re-encode to AAC. If all fails, it saves the video without audio. Using the .mkv container for the output may help.

? Issue: Application won't open or closes on startup

Cause: Corrupt settings, lack of permissions, or an environment error. Solution:

1. Go to your **Documents** folder and delete the

A2Issue: Frame interpolation not working

Cause: RIFE models are not selected or incompatible video format. Solution: Ensure

you have selected a RIFE model (RIFE or RIFE_Lite) and that the frame generation option is properly configured.

6. Advanced Architecture and Processes

6.1. Inference Engine and Hardware Acceleration

Warlock-Studio uses **ONNX Runtime** with the **DirectML** provider (DmlExecutionProvider). This translates AI operations into **DirectX 12** calls, ensuring broad compatibility with NVIDIA, AMD, and Intel GPUs.

6.2. Tiling System and Memory Management

To handle high-resolution files, the application splits each frame into fragments (tiles). The size of these tiles is dynamically calculated using the **VRAM Limiter**. Additionally, Python's garbage collector (gc.collect()) is invoked to force memory release and ensure stability.

6.3. Resume and Checkpoint Functionality

If a video process is interrupted, the processed frames are saved. When restarting the task, the check_video_upscaling_resume function detects these files and resumes work from where it left off, saving time.

6.4. Asynchronous Frame Writing

During video upscaling, the frames processed by the GPU are sent to a separate writer thread. This allows the GPU to immediately start processing the next batch without waiting for the (slower) disk writing operation to finish, thus maximizing performance.

6.5. Frame Interpolation Pipeline

The RIFE models use a specialized interpolation pipeline that analyzes motion between frames to generate smooth intermediate frames. This enables higher frame rates or slow-motion effects with minimal artifacts.

6.6. Logging System and Diagnostics

Warlock-Studio implements a comprehensive logging system that includes:

- Process Logs: Record every stage of AI processing
- Error Logs: Capture detailed errors with stack traces
- Performance Logs: Measure processing times and resource usage
- Debug Logs: Detailed information for troubleshooting

6.7. Version 4.0.1 Update Notice

A

Warning

The SuperResolution-10 model has been removed in version 4.0.1 due to compatibility conflicts with certain hardware configurations. Users requiring extreme upscaling should use BSRGANx4 or RealESRGANx4 models in combination with multiple processing passes for similar results.

6.8. Performance Monitoring and Metrics

The application provides detailed performance metrics:

Processing Speed:

Frames per second (FPS) and images per minute metrics

Memory Usage:

Real-time VRAM and system RAM monitoring

GPU Utilization:

DirectML provider performance statistics

Disk I/O:

Read/write speeds for temporary frame storage

7. Advanced Error Resolution and System Diagnostics

7.1. GPU Memory Management and VRAM Optimization

Warlock-Studio implements sophisticated GPU memory management:

Dynamic Tile Sizing:

Automatically calculates optimal tile sizes based on available VRAM

Memory Pool Management:

Pre-allocates and reuses memory buffers to reduce allocation overhead

Garbage Collection Integration:

Forces Python garbage collection at strategic points to free unused memory

VRAM Monitoring:

Real-time monitoring of GPU memory usage with automatic fallback to smaller tiles

7.2. Model Loading and Initialization Troubleshooting

Warning

Model loading failures are often caused by corrupted ONNX files, insufficient system permissions, or DirectML provider initialization errors.

Model File Corruption:

Verify model file integrity by checking file sizes against expected values

Provider Initialization Failures:

Check DirectML compatibility and ensure DirectX 12 is properly installed

Permission Issues:

Run application as administrator if model loading fails consistently

7.3. Video Processing Pipeline Diagnostics

The video processing pipeline consists of several stages that can be individually diagnosed:

- 1. Frame Extraction: Verify FFmpeg can read the input video format
- 2. AI Processing: Monitor VRAM usage and processing times per frame

- 3. Frame Assembly: Check for missing or corrupted intermediate frames
- 4. Video Encoding: Validate codec compatibility and hardware encoder availability

7.4. Performance Optimization Guidelines

Scenario	Recommended Settings		
Low VRAM (< 4GB)	Input Resolution: 50%, Multithreading: OFF, Use RIFE_Lite		
Medium VRAM (4-8GB)	Input Resolution: 75%, Multithreading: 2-4 threads, Standard models		
High VRAM (> 8GB)	Input Resolution: 100%, Multithreading: 6-8 threads, High-quality models		
SSD Storage	Keep frames: ON for faster resume, Use higher multithreading		
HDD Storage	Keep frames: OFF to save space, Lower multithreading to reduce ${\rm I/O}$		

Table 4: Optimization settings based on system configuration.

7.5. Log File Analysis and Debugging

Warlock-Studio generates comprehensive logs in the Documents folder:

warlock studio.log:

General application events, model loading, and processing status

error log.txt:

Detailed error messages with Python stack traces

performance log.txt:

Processing times, memory usage, and performance metrics

7.6. Common Error Patterns and Solutions

Error Pattern	Typical Cause	Solution Strategy	
"DirectML device not	GPU drivers outdated or Di-	Update GPU drivers, verify DirectX	
found"	rectX 12 not supported	12 compatibility	
"ONNX Runtime ini-	Corrupted model files or insuf-	Re-download models, run as admin-	
tialization failed"	ficient permissions	istrator	
"FFmpeg process termi-	Unsupported codec or cor-	Convert input to supported format	
nated"	rupted input file	(MP4, H.264)	
"Tile processing time-	GPU overheating or driver in-	Reduce tile size, check GPU temper-	
out"	stability	ature, update drivers	
"Memory allocation	System RAM exhausted	Close other applications, reduce	
failed"		multithreading	

Table 5: Common error patterns and resolution strategies.

