UPPSALA UNIVERSITET

LECTURE NOTES

Complex Analysis

Rami Abou Zahra

Contents

1.	Intro	2
1.1.	. Operations over $\mathbb C$	2
1.2.	. Cartesian representation	3
1.3.	. Polar form	4
1.4.	. Exponential form	5
1.5.	. Logarithmic form	5

1. Intro

In this course, we shall study functions $f: \mathbb{C} \to \mathbb{C}$ (or more generally, $f: D \to \mathbb{C}$ where $D \subseteq \mathbb{C}$)

Definition/Sats 1.1: Complex Number

A complex number is a number of the form x + iy, where $x, y \in \mathbb{R}$

Two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ are said to be equal iff $x_1 = x_2$ and $y_1 = y_2$

Anmärkning:

The number x is called the real part (Re(z) = x) of the complex number, and y is called the imaginary part (Im(z) = y) of the complex number

Anmärkning:

The set of all complex numbers is denoted by \mathbb{C}

Anmärkning:

$$i^2 = -1$$

1.1. Operations over \mathbb{C} .

We define the operations addition and multiplication of two complex unmebrs as follows:

Definition/Sats 1.2: Addition of complex numbers

$$(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$$

Definition/Sats 1.3: Multiplication of complex numbers

$$(x_1 + iy_1) \cdot (x_2 + iy_2) = x_1x_2 - y_1y_2 + i(x_1y_2 + x_2y_1)$$

With respect to these two operations, $\mathbb C$ forms a commutative field.

This means that the following holds for addition:

- $z_1 + z_2 = z_2 + z_1$
- $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$

And for multiplication:

- $z_1 z_2 = z_2 z_1$
- $z_1(z_2z_3) = (z_1z_2)z_3$
- $\bullet \ z_1(z_2+z_3)=z_1z_2+z_1z_3$

Definition/Sats 1.4: Complex conjugate

The complex conjugate of a complex number z = x + iy, denoted by \overline{z} , is defined by $\overline{z} = x - iy$

The following holds for the complex conjugate:

- $\bullet \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $\bullet \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
- \bullet $\overline{\overline{z}} = z$

3

Anmärkning:

$$Re(z) = \frac{z + \frac{\overline{z}}{2}}{2}$$
$$Im(z) = \frac{z - \overline{z}}{2i}$$

1.2. Cartesian representation.

It is natural to represent a complex number z = x + iy as a tuple (x, y), and we can therefore represent it in the standard cartesian plane:

Anmärkning:

This is sometimes called the *complex plane*

Definition/Sats 1.5: Absolute value/Modulus

The absolute value of a complex number z = x + iy (geometrically the length of the vector), denoted by |z|, is defined by

$$|z| = \sqrt{x^2 + y^2}$$

It holds that:

- $|z|^2 = z \cdot \overline{z}$ $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$

Anmärkning:

Every $z \in \mathbb{C}$ such that $z \neq 0$ (that is, $x \neq 0$ or $y \neq 0$) has a multiplicative inverse $\frac{1}{z}$ given by:

$$\frac{1}{z} = \frac{\overline{z}}{\left|z\right|^2}$$

Definition/Sats 1.6: Triangle inequality

For $z_1, z_2 \in \mathbb{C}$, it holds that $|z_1 + z_2| \le |z_1| + |z_2|$

Lemma 1.1: Reversed triangle inequality

For $z_1, z_2 \in \mathbb{C}$, it holds that:

$$||z_1| - |z_2|| \le |z_1 - z_2|$$

Bevis 1.1

$$z_1 = |(z_1 - z_2) + z_2| \le |z_1 - z_2| + |z_2|$$

So that $|z_1| - |z_2| \le |z_1 - z_2|$

1.3. Polar form.

Let $z = x + iy \neq 0$. The point $\left(\frac{x}{|z|}, \frac{y}{|z|}\right)$ lies on the unit circle, and hence there exists θ such that:

$$\frac{x}{|z|} = \cos(\theta)$$
 $\frac{y}{|z|} = \sin(\theta)$

Therefore z = x + iy can be written as:

$$z = r(\cos(\theta) + i\sin(\theta))$$

Where r = |z| is uniquely determined by z, while θ is 2π -periodic. This is called the *polar form* of z and just as the cartesian representation requires a tuple of information $(|z|, \theta)$

Definition/Sats 1.7: Argument

The argument of a complex number z, denoted by arg(z), is the angle θ between z and the real number line in the complex plane

Anmärkning:

Since the argument is 2π periodic, the angle is usually given as $\theta + k2\pi$ $k \in \mathbb{Z}$, but we are only intersted in θ

This θ is called the *principal value* of $\arg(z)$, denoted by $\operatorname{Arg}(z)$ and belongs to $(-\pi, \pi]$

Anmärkning:

We are always allowed to change an angle by multiples of 2π , the principal value argument is the angle after changing the argment such that it lies between $(-\pi, \pi]$

Anmärkning:

One calls Arg(z) a branch of arg(z). Also, note that Arg(z) is "discontinous" along the negative real axis. This is called a branch-cut

Suppose
$$z_1 = r_1(\cos(\theta_1) + i\sin(\theta_1)), z_2 = r_2(\cos(\theta_2) + i\sin(\theta_2))$$

Then:

$$z_1 \cdot z_2 = r_1 r_2(\cos(\theta_1) + i\sin(\theta_1))(\cos(\theta_2) + i\sin(\theta_2))$$

$$= r_1 r_2[(\cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2)) + i(\sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2))]$$

$$r_1 r_2(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$$

Anmärkning:

- $\bullet |z_1 \cdot z_2| = |z_1| \cdot |z_2|$
- $\bullet \arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2)$

1.4. Exponential form.

Definition/Sats 1.8

For
$$z = x + iy \in \mathbb{C}$$
, let $e^z = e^x(\cos(y) + i\sin(y))$

Anmärkning:

$$e^{iy} = \cos(y) + i\sin(y)$$
 $y \in \mathbb{R}$ (Eulers formula)

We can see that the definition holds through some Taylor expansions:

$$e^{z} = e^{x+iy} = e^{x} \cdot e^{iy}$$

$$e^{iy} = 1 + iy + \frac{(iy)^{2}}{2!} + \frac{(iy)^{3}}{3!} + \frac{(iy)^{4}}{4!} + \cdots$$

$$\Rightarrow e^{iy} = 1 + iy - \frac{\theta^{2}}{2!} - i\frac{\theta^{3}}{3!} + \frac{\theta^{4}}{4!} + \cdots = \underbrace{\left(1 - \frac{\theta^{2}}{2!} + \frac{\theta^{4}}{4!} - \cdots\right)}_{\cos(\theta)} + i\underbrace{\left(\theta - \frac{\theta^{3}}{3!} + \frac{\theta^{5}}{5!} - \cdots\right)}_{\sin(\theta)}$$

$$\Rightarrow e^{z} = e^{x}(\cos(\theta) + i\sin(\theta))$$

Anmärkning:

One can through comparing see that $|e^z| = e^x$, and that $|e^{iy}| = 1$

Definition/Sats 1.9: deMoivre's formula

For
$$n \in \mathbb{Z}$$
, $(r(\cos(\theta) + i\sin(\theta)))^n = r^n(\cos(n\theta) + i\sin(n\theta))$

1.5. Logarithmic form.

In real analysis, we have defined the logarithm as the inverse of e^x . This has previously worked since for $x \in \mathbb{R}$, e^x is injective.

The problem is that for e^z where $z \in \mathbb{C}$, it is not injective and should therefore not have an inverse.

Given $z \in \mathbb{C} \setminus \{0\}$, we define $\ln(z)$ as the cut of all $w \in \mathbb{C}$ whose image undre the exponential form is z, i.e $w = \ln(z) \Leftrightarrow z = e^w$.

Here, $\ln(z)$ is a multivaled form

We can use the fact that $|z| = r = e^x$ to derive some interesting properties of the logarithm:

$$\begin{split} z = re^{i\theta} & w = u + iv \\ & \text{If } z = e^w \Leftrightarrow re^{i\theta} = e^u \cdot e^{iv} \\ \Leftrightarrow u = \ln{(r)} = \ln{(|z|)} & v = \theta + k2\pi = \arg(z) \quad k \in \mathbb{Z} \end{split}$$

Definition/Sats 1.10: Complex logarithm

For $z \neq 0$, we define the complex logarithm for $z \in \mathbb{C}$ as:

$$\ln(z) = \ln(|z|) + i \cdot \arg(z)$$
$$= \ln(|z|) + i(\operatorname{Arg}(z) + k2\pi) \quad k \in \mathbb{Z}$$