ds-midterm

January 9, 2023

1 I. Introduction

1.0.1 Domain specific area

For this project we chose to analyze data on the domain of social networks given its content related to natural language processing. We are analyzing texts coming from both instagram and twitter.

1.0.2 Dataset

For the first part of this project, the dataset we chose is a CSV file comprised of information about the top 50 most followed abbount on twitter. It contains features such as the Owner, if it is a brand or an account, the number of followers in millions, the profession of the account owner and the country/continent the account operates at. We will use this for gathering insights about the data and also statistics.

Since the dataset mentioned above has very few data, we chose a second dataset consisting of 3218 tweets from Elon Musk in order to apply a machine learning trained model to analyze the sentiment of each tweet.

Both the datasets are taken from kabble. Check the links below: 1. Top 50 list of most-followed instagram account 2. Elon Musk's Tweets

1.0.3 Objectives

The goal of this project is to collect some statistical information on top of the first dataset, such as:

1. The relationship between profession/activity and number of followers 2. Basic statistics such as the mean, standard deviation, maximum and minimum of followers.

Create some visualization for these statistics and then use a pre-trained Machine Learning model to classify the sentiments of the second dataset (a list of twitters from Elon Musk).

2 II. Implementation

2.0.1 Loading the data

```
[38]: import pandas as pd

df = pd.read_csv('dataset.csv', encoding = "ISO-8859-1")
    df
```

[38]:	Rank	Username	Owner	Brand\naccount	\
0	1	@instagram	Instagram	+	•
1	2	@cristiano	Cristiano Ronaldo	_	
2	3	@leomessi	Lionel Messi	_	
3	4	@kyliejenner	Kylie Jenner	_	
4	5	@selenagomez	Selena Gomez	_	
5	6	@therock	Dwayne Johnson	_	
6	7	@arianagrande	Ariana Grande	_	
7	8	0kimkardashian	Kim Kardashian	_	
8	9	@beyonce	Beyoncé	_	
9	10	@khloekardashian	Khloé Kardashian	_	
10	11	@justinbieber	Justin Bieber	_	
11	12	@kendalljenner	Kendall Jenner	_	
12	13	@nike	Nike	+	
13	14	@natgeo	National Geographic	+	
14	15	@taylorswift	Taylor Swift	_	
15	16	©jlo	Jennifer Lopez	_	
16	17	@virat.kohli	Virat Kohli	_	
17	18	@nickiminaj	Nicki Minaj	_	
18	19	@kourtneykardash	Kourtney Kardashian	_	
19	20	@neymarjr	Neymar	_	
20	21	@mileycyrus	Miley Cyrus	_	
21	22	@katyperry	Katy Perry	_	
22	23	@zendaya	Zendaya	_	
23	24	@kevinhart4real	Kevin Hart	_	
24	25	@iamcardib	Cardi B	_	
25	26	@ddlovato	Demi Lovato	_	
26	27	@kingjames	LeBron James	_	
27	28	@badgalriri	Rihanna	_	
28	29	@realmadrid	Real Madrid CF	+	
29	30	<pre>@theellenshow</pre>	Ellen DeGeneres	_	
30	31	@champagnepapi	Drake	_	
31	32	@chrisbrownofficial	Chris Brown	_	
32	33	@fcbarcelona	FC Barcelona	+	
33	34	<pre>@billieeilish</pre>	Billie Eilish	_	
34	35	<pre>@championsleague</pre>	UEFA Champions League	+	
35	36	@gal_gadot	Gal Gadot	_	
36	37	@k.mbappe	Kylian Mbappé	-	
37	38	@dualipa	Dua Lipa	-	
38	39	@nasa	NASA	+	
39	40	@lalalalisa_m	Lisa	-	
40	41	@vindiesel	Vin Diesel	-	
41	42	@priyankachopra	Priyanka Chopra	-	
42	43	@khaby00	Khaby Lame	-	
43	44	@snoopdogg	Snoop Dogg	-	
44	45	@shakira	Shakira	-	
45	46	@shraddhakapoor	Shraddha Kapoor	-	

40	47	@davidbeckna	m	David Beckham	_	
47	48	@gigihadi	d	Gigi Hadid	-	
48	49	@victoriassecre	t Vic	toria's Secret	+	
49	50	@aliaabhat	t	Alia Bhatt	-	
	Followe	rs(millions)[2]			Profession/Activity	\
0		583.0		So	cial media platform	
1		525.0			Footballer	
2		411.0			Footballer	
3		376.0	Television	personality, mode	l and businesswoman	
4		366.0		Musician, actress	, and businesswoman	
5		355.0		Actor and pr	ofessional wrestler	
6		346.0		Musician, actres	s and businesswoman	
7		337.0	Television	personality, mode	l and businesswoman	
8		288.0		Musician, actres	s and businesswoman	
9		285.0		Television pe	rsonality and model	
10		271.0			Musician	
11		268.0		Model and tel	evision personality	
12		259.0		Sport	swear multinational	
13		252.0			Magazine	
14		237.0		M	usician and actress	
15		230.0		M	usician and actress	
16		229.0			Cricketer	
17		207.0			Musician	
18		206.0		Television pe	rsonality and model	
19		198.0			Footballer	
20		191.0		M	usician and actress	
21		184.0			Musician	
22		162.0			Actress and singer	
23		161.0			Comedian and actor	
24		146.0			usician and actress	
25		145.0		M	usician and actress	
26		140.0			Basketball player	
27		139.0		Musicia	n and businesswoman	
28		129.0		C	Football club	
29		129.0		Comedian and tel	evision personality	
30		128.0			Musician	
31		127.0			Musician	
32		115.0			Football club	
33		107.0		Clark &	Musician	
34		101.0		Club 1	ootball competition	
35 36		92.6 91.8			Actress Footballer	
36 37		91.8 87.5			Musician	
38						
38 39		86.0 85.7			Space agency	
39 40		85.7 85.2			Musician	
40		85.2			Actor	

David Beckham

46

47

@davidbeckham

41	84.1		Actress and musician
42	80.2		Social media personality
43	78.5		Musician
44	77.9		Musician
45	76.9		Actress
46	76.6	Former	FootballerPresident of Inter Miami
47	76.4		Model
48	73.8		Lingerie company
49	73.6		Actress and musician
		4.50	
0		y/Continent	
0	Un	ited States	
1		Portugal	
2	IIn	Argentina ited States	
3		ited States	
4 5		ited States	
6		ited States	
7		ited States	
8		ited States	
9		ited States	
10	011	Canada	
11	Un	ited States	
12		ited States	
13		ited States	
14		ited States	
15		ited States	
16		India	
17	Trinidad and Tobago Un	ited States	
18	Un	ited States	
19		Brazil	
20	Un	ited States	
21	Un	ited States	
22		ited States	
23		ited States	
24		ited States	
25		ited States	
26	Un	ited States	
27		Barbados	
28	**	Spain	
29	Un	ited States	
30 21	TT	Canada	
31 32	Un	ited States	
32 33	IIn	Spain ited States	
34	UII	Europe	
35		Israel	
		151401	

```
36
                                 France
37
                United Kingdom Albania
38
                          United States
                               Thailand
39
40
                          United States
41
                                  India
42
                          Italy Senegal
43
                          United States
44
                               Colombia
45
                                  India
46
                        United Kingdom
47
                          United States
                          United States
48
49
                  United Kingdom India
```

2.0.2 Statistical Summary and Data Visualization

```
[7]: # Inspecting a little more on the dataframe: 50 rows and 7 columns df.shape
```

[7]: (50, 7)

```
[10]: # Inspecting information about the datatypes df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 7 columns):
```

#	Column	Non-Null Count	Dtype		
0	Rank	50 non-null	int64		
1	Username	50 non-null	object		
2	Owner	50 non-null	object		
3	Brand				
acco	unt 50 non-nul	l object			
4	Followers(millions)[2]	50 non-null	float64		
5	Profession/Activity	50 non-null	object		
6	Country/Continent	50 non-null	object		
<pre>dtypes: float64(1), int64(1), object(5)</pre>					
memory usage: 2.9+ KB					

```
[11]: import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
```

```
[14]: # Finding nulls
sns.pairplot(df)
```

[14]: <seaborn.axisgrid.PairGrid at 0x14721a140>


```
[17]: # A value count by distinct professions
df['Profession/Activity'].value_counts().plot(kind='bar')
```

[17]: <AxesSubplot: >


```
[21]: # A scatterplot of number of followers by profession activity
sns.scatterplot(x=df['Profession/Activity'],y=df['Followers(millions)[2]'])
plt.xticks(rotation=90)
plt.show()
```



```
[39]: # Some more statistical information about the numbers of followers

print('Mean of followers (in millions):',df['Followers(millions)[2]'].mean())

print('Standard deviation (in millions):',df['Followers(millions)[2]'].std())
```

```
Mean of followers (in millions): 191.19600000000003
Standard deviation (in millions): 121.43767186066594
Minimum number of followers (in millions): 73.6
Maximum number of followers (in millions): 583.0
90percentile: (in millions): 356.1
70percentile: (in millions): 232.0999999999997
25percentile: (in millions): 88.575
```

2.1 Preprocessing

2.1.1 Machine Learning Model

```
[62]: # Loading the new CSV
tweets_df = pd.read_csv('data_elonmusk.csv', encoding='latin-1')
tweets_df.head(10)
```

```
[62]:
       row ID
                                                            Tweet \
                @MeltingIce Assuming max acceleration of 2 to ...
          Row0
          Row1
               RT @SpaceX: BFR is capable of transporting sat...
      1
      2
          Row2
                                                   @bigajm Yup :)
         Row3
                                   Part 2 https://t.co/8Fvu57muhM
      3
      4
          Row4 Fly to most places on Earth in under 30 mins a...
               RT @SpaceX: Supporting the creation of a perma...
      5
          Row6 BFR will take you anywhere on Earth in less th...
      6
               Mars City\nOpposite of Earth. Dawn and dusk sk...
      7
         Row7
      8
          Row8
                          Moon Base Alpha https://t.co/voY8qEW9kl
          Row9 Will be announcing something really special at...
      9
                        Time Retweet from
                                               User
      0 2017-09-29 17:39:19
                                      NaN elonmusk
      1 2017-09-29 10:44:54
                                   SpaceX elonmusk
      2 2017-09-29 10:39:57
                                      NaN elonmusk
      3 2017-09-29 09:56:12
                                      NaN elonmusk
      4 2017-09-29 09:19:21
                                      NaN elonmusk
      5 2017-09-29 08:57:29
                                   SpaceX elonmusk
      6 2017-09-29 08:53:00
                                      NaN elonmusk
                                      NaN elonmusk
      7 2017-09-29 06:03:32
      8 2017-09-29 05:44:55
                                      NaN elonmusk
      9 2017-09-29 02:36:17
                                      NaN elonmusk
[64]: # Preprocessing the tweets so we can later analyze
      sentences = preprocess(tweets_df.Tweet.values)
```

2.1.2 Using Vader, a pre-trained Machine Learning Model to analyze the sentiment of the tweets

```
[68]: # Analyzing if tweet is positive or negative using VADER's Sentiment Analyzer
from nltk.sentiment import SentimentIntensityAnalyzer

nltk.download('vader_lexicon')
sia = SentimentIntensityAnalyzer()
def get_polarity_score(tweet: str) -> bool:
    return sia.polarity_scores(tweet)

def classify(sentences):
    analysis_result_json = []
    for element in sentences:
    sentiment = 'POS' if get_polarity_score(element)["compound"] > 0 else_u
    'NEG'
```

```
compound = get_polarity_score(element)["compound"]
              sentiment_dictionary = {
                  "Sentence": element,
                  "Compound Score": compound,
                  "Sentiment": sentiment
              }
              analysis_result_json.append(sentiment_dictionary)
          return analysis result json;
      classify(tweets df.Tweet.values[:10])
     [nltk data] Downloading package vader lexicon to
     [nltk_data]
                     /Users/lucas.viola/nltk_data...
                   Package vader_lexicon is already up-to-date!
     [nltk_data]
[68]: [{'Sentence': "@MeltingIce Assuming max acceleration of 2 to 3 g's, but in a
      comfortable direction. Will feel like a mild to moder? https://t.co/fpjmEgrHfC",
        'Compound Score': 0.8271,
        'Sentiment': 'POS'},
       {'Sentence': 'RT @SpaceX: BFR is capable of transporting satellites to orbit,
      crew and cargo to the @Space_Station and completing missions to the Moon an?',
        'Compound Score': 0.3818,
        'Sentiment': 'POS'},
       {'Sentence': '@bigajm Yup:)', 'Compound Score': 0.4588, 'Sentiment': 'POS'},
       {'Sentence': 'Part 2 https://t.co/8Fvu57muhM',
        'Compound Score': 0.0,
        'Sentiment': 'NEG'},
       {'Sentence': 'Fly to most places on Earth in under 30 mins and anywhere in
      under 60. Cost per seat should be? https://t.co/dGYDdGttYd',
        'Compound Score': 0.0,
        'Sentiment': 'NEG'},
       {'Sentence': 'RT @SpaceX: Supporting the creation of a permanent, self-
      sustaining human presence on Mars. https://t.co/kCtBLPbSg8
      https://t.co/ra6hKsrOcG',
        'Compound Score': 0.6124,
        'Sentiment': 'POS'},
       {'Sentence': 'BFR will take you anywhere on Earth in less than 60 mins
     https://t.co/HWt9BZ1FI9',
        'Compound Score': 0.0,
        'Sentiment': 'NEG'},
       {'Sentence': 'Mars City\nOpposite of Earth. Dawn and dusk sky are blue on Mars
      and day sky is red. https://t.co/XHcZIdgqnb',
        'Compound Score': 0.0,
        'Sentiment': 'NEG'},
       {'Sentence': 'Moon Base Alpha https://t.co/voY8qEW9kl',
        'Compound Score': 0.0,
```

```
'Sentiment': 'NEG'},
{'Sentence': "Will be announcing something really special at today's talk
https://t.co/plXTBJY6ia",
'Compound Score': 0.4576,
'Sentiment': 'POS'}]
```

3 III. Conclusions

In terms of the first dataset (the list of the most followed accounts on instagram), we can see that it is easier to gather insights on the data than it is to do any ML evaluation in it. This is due to the properties of the data in the spreadsheet which are most objects. In our analysis we were able to capture insights such as information about the kind of professions that have the most followers, we showed this information both in a scatterplot format and in a bar plot format, and also we gathered some basic statistics on top of the datasetm such as the mean of followers and standard deviation comparing all acounts.

As for the second dataset, it was easier then to apply Machine Learning to it because we had more data in the form of sentences in the english language which we could use to do a Sentiment Analysis. Since for this dataset we did not have any previous classification in order to train a new model we decided to use a pre-trained model called Vader which is part of the NLTK library. With this model we could check information such as if the sentiment of the tweet is positive or negative and also the compound score (the polarity score) of each tweet.