- Technika ewolucyjna wzorowana na sposobie poruszania się i inteligencji roju owadów.
- Zaproponowana w 1995 roku przez Jamesa Kennedy'ego i Russella Eberharta.
- Bardzo prosty algorytm, łatwy w implementacji, wymagający doboru jedynie kilku parametrów.
- Podobnie jak w przypadku mrówek, rój składa się z pozornie losowo zachowujących się indywiduów, niemniej jako całość rój zachowuje się w sposób "zdyscyplinowany" i nakierowany na osiągnięcie zamierzonego celu.

- Agenci (cząstki) tworzące rój poszukują optymalnego rozwiązania poruszając się w jego pobliżu w przestrzeni rozwiązań.
- Każda cząstka jest traktowana jako punkt w D-wymiarowej przestrzeni poszukiwań, która dostosowuje swój "lot" zgodnie ze swoim dotychczasowym doświadczeniem oraz doświadczeniem pozostałych uczestników roju (roju jako całości).
- Każda cząstka kontroluje swoje współrzędne w przestrzeni poszukiwań, które są związane z najlepszym dotychczas przez nią znalezionym rozwiązaniem ("personal best" *pbest*).

- Drugą wartością kontrolowaną przez PSO jest dotychczas najlepsza znaleziona pozycja w ramach roju (rozwiązanie) określana jako *gbest* (global best).
- Idea PSO polega na zmianie prędkości (przyspieszaniu) w kierunku jej pozycji *pbest* oraz globalnej pozycji *gbest* w każdym kroku czasowym.
- Każda cząstka modyfikuje swoją aktualna pozycję i prędkość zgodnie z odległością pomiędzy jej pozycją a pozycją *pbest* oraz odległością pomiędzy jej pozycją a pozycją *gbest*.

v_n: prędkość cząstki w iteracji n

x_n: pozycja cząstki w iteracji n

p _{best} : najlepsza dotychczasowa pozycja cząstki

g _{best} : najlepsza dotychczasowa pozycja cząstek w całym roju

c₁: współczynnik przyspieszania związany z p_{best}

c₂: współczynnik przyspieszania związany z g_{best}

W: inercja

rand(): losowa liczba z przedziału (0, 1)

$$v_{n+1} = \underbrace{w \cdot v_n} + \underbrace{c_1 rand() \cdot (p_{best} - x_n)} + \underbrace{c_2 rand() \cdot (g_{best} - x_n)}$$

$$x_{n+1} = x_n + v_{n+1}$$

Algorytm PSO

```
Dla każdej cząstki
      Zainicjuj ją losowo (położenie i prędkość) - zwykle z określonego "dopuszczalnego" zakresu
Do //w każdej iteracji
Dla każdej cząstki //aktualizacja pbest każdej cząstki
    Policz wartość dopasowania
    Jeżeli wartość dopasowania jest większa od najlepszego dotychczasowego dopasowania (pbest) to
    ustaw pbest jako aktualną wartość dopasowania
Wybierz najlepsze dotychczasowe dopasowanie w całym roju jako gbest //aktualizacja gbest roju
Dla każdej cząstki // aktualizacja położenia i prędkości cząstek
    Policz jej szybkość zgodnie zrównaniem szybkości
    Zmodyfikuj jej pozycję zgodnie z równaniem zmiany pozycji
Dopóki nie przekroczono maksymalnej liczby iteracji lub błąd nie osiągnął zamierzonego minimum
```


search space (źródło: Swarm Intelligence Group, Peking University)

Symulacja₈

Funkcja Schwefela

$$f(x) = \sum_{i=1}^{n} (-x_i) \cdot \sin(\sqrt{|x_i|})$$

gdzie

$$-500 \le x_i \le 500$$

minimum globalne : $-n \cdot 418.9829$;

$$x_i = -420.9687$$
, i = 1,..., n

Ewolucja—Inicjalizacja

Ewolucja—5 iteracja

Ewolucja—10 iteracja

(źródło: Swarm Intelligence Group, Peking University)

Ewolucja—15 iteracja

Ewolucja—20 iteracja

(źródło: Swarm Intelligence Group, Peking University)

Ewolucja—25 iteracja

(źródło: Swarm Intelligence Group, Peking University)

Ewolucja—100 iteracja

(źródło: Swarm Intelligence Group, Peking University)

Ewolucja—500 iteracja

(źródło: Swarm Intelligence Group, Peking University)

Wyniki

_					
Iteracja	Znalezione rozw.				
0	-416.245599				
5	-515.748796				
10	-759.404006				
15	-793.732019				
20	-834.813763				
100	-837.911535				
5000	-837.965771				
Globalne	-837.965745				

gbest / lbest (sąsiedztwo)

• Wersja globalna:

$$v_{n+1} = w \cdot v_n + c_1 rand() \cdot (p_{best} - x_n) + c_2 rand() \cdot (g_{best} - x_n)$$

• Wersja lokalna:

$$v_{n+1} = w \cdot v_n + c_1 rand() \cdot (p_{best} - x_n) + c_2 rand() \cdot (l_{best} - x_n)$$

Wersja lokalna_2:

$$v_{n+1} = w \cdot \left[v_n + \sum_{k \in Neighbors} c \cdot rand() \cdot (p_k - x_n) \right]$$

• Wersja lokalna/globalna ogólnie:

$$v_{n+1} = a \cdot v_n + b \cdot (r - x_n)$$
 $gdzie$ $r \approx p_{best}$ lub $r \approx g_{best}$

$$v_{k+1} = a \cdot v_k + b \cdot (r - x_k)$$

Pojęcie chaosu deterministycznego

System chaotyczny charakteryzuje się nieregularnym, nieprzewidywalnym zachowaniem (tzw. *butterfly effect*).

System chaotyczny jest bardzo wrażliwy na warunki początkowe. Trajektorie zaczynające się w punktach położonych blisko siebie bardzo szybko rozchodzą się.

Przejście od zachowania liniowego do chaotycznego (bądź odwrotnie) zawiera bardzo często fazę *bifurkacji* po niej fazę *quadruplikacji*, itd. Możliwe są też inne zachowania chaotyczne.

Równanie logistyczne – przykład systemu chaotycznego

Jeden z klasycznych przykładów systemów chaotycznych to równanie logistyczne:

$$x_{n+1} = rx_n(1 - x_n),$$

gdzie r > 0 jest stałą.

Własności:

- \cdot Zależnie od doboru stałej r oraz wyboru x_0 otrzymuje się różne zbiory punktów, które reprezentują różne zachowania chaotyczne
- Dla $x_0 \in [0,1]$ system utrzymuje się w przedziale [0,1] wtw., gdy $r \in (0,4]$

Równanie logistyczne – przykład (r = 4)

Przykłady innych systemów chaotycznych

Sunspot series: liczba zaobserwowanych plam na słońcu w kolejnych dniach (dostępne dane od XVIII wieku)

Mackey-Glass equation (model różnych zburzeń fizjologicznych, np. produkcji białych krwinek u pacjentów chorych na leukemię): $x'(t) = \frac{ax(t-\tau)}{1+x^c(t-\tau)} - bx(t),$

gdzie, np. $a = 0.2, b = 0.1, c = 10, \tau = 30.$

"Miara chaotyczności" systemu

"Miarą chaotyczności" systemu jest tzw. wykładnik Lapunova, który mierzy ekspotencjalne odchylenie trajektorii systemu chaotycznego wynikające z nieznacznego odchylenia (zaburzenia) warunków

początkowych.

PSO - topologia roju

Dwie podstawowe topologie roju rozpatrywane w literaturze:

- pierścień (sąsiedztwo lokalne 3 cząstki)
- gwiazda (sąsiedztwo globalne)

Inne warianty metody PSO

• Klasyczna (globalna) PSO:

$$v_{n+1} = v_n + c_1 rand() \cdot (p_{best} - x_n) + c_2 rand() \cdot (g_{best} - x_n)$$

$$lub$$

$$v_{n+1} = w \cdot v_n + c_1 rand() \cdot (p_{best} - x_n) + c_2 rand() \cdot (g_{best} - x_n)$$

• LPSO (Liniowa zmiana współczynnika bezwładności)

$$\begin{aligned} v_{n+1} &= w_n \cdot v_n + c_1 rand() \cdot (p_{best} - x_n) + c_2 rand() \cdot (g_{best} - x_n) \\ w_n &= (w_{init} - w_{final}) \frac{it_{max} - n}{it_{max}} + w_{final} \end{aligned}$$

Większe wartości na początku (większa eksploracja), stopniowo malejące ("dopieszczanie" rozwiązania)

Inne warianty metody PSO

• RPSO (Losowa zmiana współczynnika bezwładności)

$$w_n = 0.5 + \frac{rand()}{2}$$
 Wartość średnia = 0.75

- HPSO (Hybrid PSO)
 - Wykorzystanie idei PSO w połączeniu z ideą ewolucji (selekcji) z AE

- Algorytm odkrywców/wynalazców (PSOO)
 - Idea: część populacji nie jest ograniczona przez g_best oraz
 l_best.
 - Większa swoboda w poszukiwaniu nowych atrakcyjnych rejonów. Jeżeli znajdą obiecujący obszar, to populacja może się w ten rejon przenieść.

Pierwsza funkcja de Jonga

$$f(x) = \sum_{i=1}^{n} x_i^2$$

$$x^* = (0,0,...,0)$$

$$f(x^*) = 0$$

Dolina Rosenbrocka

$$f(x) = \sum_{i=1}^{n-1} \left[100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2 \right]$$

$$x^* = (1,1,...,1)$$

$$f(x^*) = 0$$

Piąta funkcja de Jonga

$$f(x) = \left(\sum_{i=-2}^{2} \sum_{j=-2}^{2} \left(5(i+2) + j + 3 + (x_1 - 16j)^6 + (x_2 - 16i)^6\right)^{-1}\right)^{-1}$$

$$x^* = (-32, -32)$$

$$f(x^*) = 0,998$$

Funkcja Rastrigina

$$f(x) = 10n + \sum_{i=1}^{n} \left[x_i^2 - 10\cos(2\Pi x_i) \right]$$

$$x^* = (0,0,...,0)$$

$$f(x^*) = 0$$

Wyniki skuteczności PSOO / PSO

- Standardowa początkowa przestrzeń poszukiwań
- Początkowa przestrzeń poszukiwań nie zawiera minimum globalnego
- Początkowa przestrzeń przeszukiwań położona jest w bliskim sąsiedztwie minimum lokalnego
- Średnia ze 100 przebiegów algorytmu
- Każdy przebieg dotyczył 100 cząsteczek i trwał 100 iteracji
- Przebieg był uznawany za sukces jeżeli

$$||x_{zn}^* - x^*|| < 0.05$$
 lub $\sqrt{f(x_{zn}^*) - f(x^*)} < 0.05$

Wyniki skuteczności PSOO / PSO

	% sukcesu			wartość funkcji			średnia liczba iteracji		
FUNKCJA	test 1	test 2	test 3	test 1	test 2	test 3	test 1	test 2	test 3
Pierwsza funkcja de	100/	100/		0,00/	0,00/				
Jonga	100	100	_	0,00	0,00	_	27/22	32/26	-
				0,05/	0,05/				
Dolina Rosenbrocka	2/1	1/0	_	0,05	0,20	_	48/26	95/X	-
				1,00/	1,00/	1,00/			
Piąta funkcja de Jonga	71/96	21/12	25/0	1,00	1,00	23,81	32/27	43/49	66/X
				0,11/	0,13/	1,08/			
Funkcja Rastrigina	4/12	1/0	0/0	0,01	1,01	4,14	30/41	21/X	X/X

- Skuteczność różna dla różnych funkcji (dobór parametrów?)
- Bliskie sąsiedztwo minimum lokalnego ewidentnie przeszkadza (test 3)
- Wskazana jest inicjalizacja w obszarze zawierającym minimum globalne (testy 1 i 2)

Inne warianty metody PSO

• PSOwPPE – PSO with Particle Performance Evaluation

$$v_{n+1} = w \cdot v_n + c_1 rand() \cdot (p_{best} - x_n) + c_2 rand() \cdot (g_{best} - x_n)$$

$$v_{n+1} = w \cdot v_n + c_1() \cdot rand() \cdot (p_{best} - x_n) + c_2 rand() \cdot (g_{best} - x_n)$$

$$c_1() = \begin{cases} \frac{2}{0,05} \end{cases}$$
 zależnie od tego czy **gbest** była/nie była aktualizowana przez daną cząstkę w okresie ostatnich k iteracji

Większe znaczenie przypisywane jest jednostkom "aktywnie poprawiającym" rozwiązanie globalne, ponieważ to *gbest* stanowi "współdzieloną wiedzę w ramach roju" dotyczącą poszukiwanego rozwiązania

Algorytm PSO dla problemów z ograniczeniami

```
Dla każdej cząstki
      Zainicjuj ją losowo ale tak by spełniała ograniczenia problemu
Do
Dla każdej cząstki
    Policz wartość dopasowania
    Jeżeli wartość dopasowania jest większa od najlepszego dotychczasowego dopasowania (pbest)
    i cząstka jest w dopuszczalnej podprzestrzeni (spełnia ograniczenia) to ustaw pbest jako aktualną
    wartość dopasowania
Wybierz cząstkę z najlepszym dopasowaniem w całym roju jako gbest
Dla każdej cząstki
    Wybierz cząstkę z największą wartością pbest spośród jej sąsiadów i ustaw ją jako lbest
    Policz jej szybkość zgodnie z równaniem szybkości
    Zmodyfikuj jej pozycję zgodnie z równaniem zmiany pozycji
```

Dopóki nie przekroczono maksymalnej liczby iteracji lub błąd nie osiągnął zamierzonego minimum

Przykład: rekomendacja filmów

- Baza filmów wraz z profilami użytkowników
- Dobór na podstawie danych personalnych, oceny obejrzanych filmów oraz porównań z profilami innych użytkowników
- Baza MovieLens dostępna pod http://www.grouplens.org
 - 100,000 ocen (1-5) przez 943 użytkowników dla 1682 filmów
 - Każdy użytkownik ocenił co najmniej 20 filmów
- Pojedynczy wektor: 22 wymiary: ocena filmu, dane personalne (wiek, płeć, zawód), informacje o gatunkach filmów (18 cech)
- Odpowiednio dobrana funkcja odległości pomiędzy profilami.
- PSO z mutacją osobników

(D)CVRP(wTJ)

- $G=(V,E); V=\{v_0, v_1, ..., v_n\}$
- $E = \{(v_i, v_j) / v_i, v_j \in V, i < j\}$
- v_0 centralny magazyn.
- q_i zapotrzebowanie klienta w lokalizacji v_i ; $(q_i << Q)$
- d_{ij} zmienia się w funkcji korka

$$\sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij} \sum_{k=1}^{n} x_{ij}^{k}$$

$$x_{ij}^{k} = \begin{cases} 1, & (v_{i}, v_{j}) \text{ jest fragmentem drogi } k - tej \\ 0, & w \text{ p.p.} \end{cases}$$

Porównanie PSO z algorytmem mrówkowym

• Podobieństwa:

- metoda heurystyczna,
- iteracyjny schemat działania,
- na zróżnicowanie populacji ma wpływ kilka parametrów, których dobór ma kluczowe znaczenie.

Porównanie PSO z algorytmem mrówkowym

• Różnice:

- dane wejściowe populacja losowych (PSO) / nielosowych (ANT) osobników,
- cząstki posiadają (PSO) / nie posiadają (ANT)
 pamięci o najlepszym dotychczasowym położeniu (rozwiązaniu),
- wymiana informacji poprzez interakcje z g/l best
 (PSO) vs wiedza całego zbiorowiska (ANT).

Porównanie PSO z algorytmem ewolucyjnym

• Podobieństwa:

- metoda heurystyczna;
- iteracyjny schemat działania;
- dane wejściowe populacja losowych osobników;
- na zróżnicowanie populacji ma wpływ kilka parametrów, których dobór ma kluczowe znaczenie.

Porównanie PSO z algorytmem ewolucyjnym

• Różnice:

- brak ewolucyjnego operatora mutacji;
- w AE następowała wymiana informacji poprzez krzyżowanie (każdy z każdym), w PSO schemat (każdy z jednym: *gbest* lub *lbest*);
- cząstki posiadają pamięć o najlepszym dotychczasowym położeniu (rozwiązaniu).

Pytania?