Performance Measures

MMCi Block 2 Matthew Engelhard

Goals

• Understand common performance measures for binary classification

 Recognize that which measure(s) are most appropriate depends on the application

Run through a few different clinical scenarios

Touch on metrics for problems other than binary classification

Let's go back to cancer prediction

ROC versus PR curve: two different tradeoffs

Operating Point:

high sensitivity

Operating Point:

balanced

Operating Point:

high specificity

1. A computer vision model that detects carcinoma

1. A computer vision model that detects carcinoma

2. An EHR-based model that surveils autism risk

1. A computer vision model that detects carcinoma

2. An EHR-based model that surveils autism risk

3. An algorithm that detects COVID in Apple watch users

1. A computer vision model that detects carcinoma

2. An EHR-based model that surveils autism risk

3. An algorithm that detects COVID in Apple watch users

4. An NLP model that identifies urgent text messages received through a maternal health platform with 2 million users

Multi-class problems: "Confusion Matrix"

Multi-class problems: Binary for Label 1

Predicted Label

Multi-class problems: Binary for Label 2

Predicted Label

There are many more, of course, but classification metrics go a long way.

- Regression
 - Mean squared error (MSE)
 - Mean absolute error (MAE)
 - R²
- Survival Analysis (i.e. failure time)
 - Concordance index
 - MSE, MAE
 - Brier Score
 - AUC_t