Explainable AI

Introduction to Al May 10, 2022

Outline

Explainable Al

- Categorization of explanations
 - Local v.s Global
 - Self-explaining v.s Post-hoc
- Generating and presenting explanations
 - Explainability techniques
 - Visualization techniques
- Evaluation of explanations
- Attacks in NLP

Black Box AI v.s Explainable AI

Motivation

- From **business** perspective
 - Medical AI: e.g., diagnostics, anesthesiology
 - Financial AI: e.g., credit scoring, loan approval

- From model perspective
 - Debug mispredictions
 - Understand weaknesses and improve ML model
 - Learn new insights

Why did the network label this image as "clog"?

Example: Explanability for Computer Vision

(a) Original Image

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

(d) Explaining Labrador

Example: Explanability for NLP

Categorization of different types of explanation

- Local v.s Global
- Self-explaining vs. Post-hoc explanation

Local explanation v.s Global explanation

Self-explaining vs. Post-hoc explanation

Self-explaining	Post-hoc explanation
Directly get the explanation with the prediction Only one model	Does not come directly with the prediction Model 1 Explainer
15 reducest normal astignatism vestignation returns the contraction of	Explainer if $(age = 18 - 20)$ and $(sex = male)$ then predict yes else if $(age = 21 - 23)$ and $(priors = 2 - 3)$ then predict yes else if $(priors > 3)$ then predict yes else predict no

9

Explainability Techniques in NLP

- Feature importance
- Surrogate model
- Example-driven
- Provenance-based
- Declarative induction

Explainability - 1. Feature Importance

- The main idea of feature importance is to derive explanation by investigating the
 importance scores of different features used to output the final prediction
- 3 types of features
 - Manual features from feature engineering
 - Lexical features including words/tokens and N-gram
 - Latent features learned by neural nets

Explainability - 1. Feature Importance

Example 1: Attention mechanism

Example 2: Integrated Gradients

Question: Why was Polonia relegated from the country's top flight in 2013? **Answer:** disastrous financial situation

- L0 Polonia was relegated from the country's top flight in 2013 because of their disastrous financial situation. They are now playing in the 4th league....
- L1 Polonia was relegated from the country's top flight in 2013 because of their disastrous financial situation.

 They are now playing in the 4th league....
- L2 Polonia was relegated from the country's top flight in 2013 because of their disastrous financial situation.
 They are now playing in the 4th league....
- Polonia was relegated from the country's top flight in 2013 because of their disastrous financial situation. They are now playing in the 4th league....
- L10 Polonia was relegated from the country's top flight in 2013 because of their disastrous financial situation. They are now playing in the 4th league....
- L11 Polonia was relegated from the country's top flight in 2013 because of their disastrous financial situation. They are now playing in the 4th league....

Explainability - 2. Surrogate Model

 Model predictions are explained by learning a second, usually more explainable model, as a proxy

Explainability - 2. Surrogate Model

Example: LIME (Local Interpretable Model-agnostic Explanations)

Explainability - 3. Example-driven

- Such approaches explain the prediction of an input instance by identifying and
 presenting other instances that are <u>semantically similar to the input instance</u>
- Example

"What is the capital of Germany?" refers to a Location. WHY?

Because "What is the capital of California?" which also refers to a **Location** in the training data

Explainability - 4. Provenance-based

- Explanations are provided by illustrating (some of) the prediction derivation process
- Example: QUINT a live system for question answering over knowledge bases
 - E.g. "Where was Obama educated?" and the answer entity ColumbiaUniversity

Explainability - 5. Declarative Induction

- The main idea of declarative induction is to construct human-readable representations such as trees, programs, and rules
- Example: ExplorePropose-Assemble reader (EPAr)

Query subject: Sulphur Spring, Query body: located in the administrative territorial entity

- Sulphur Spring (also known as Crater Hills Geyser), is a geyser in the Hayden Valley region of Yellowstone National Park in the United States
- Hayden Valley is a large, sub-alpine valley in Yellowstone
 National Park straddling the Yellowstone River ...
- The Yellowstone River is a tributary of the Missouri River ...
- Yellowstone Falls consist of two major waterfalls on the Yellowstone River, within Wyoming, United States. ...
- Yellowstone National Park is a national park located in the U.S. states of Wyoming, Montana and Idaho. ...

Visualization Techniques

- 1. Saliency
- 2. Declarative Representations
- 3. Natural language explanation
- 4. Others: raw example...

Visualization - 1. Saliency

Has been primarily used to visualize the importance scores of different types of elements in XAI learning systems

Most used!

- E.g.
 - input-output word alignment 0
 - highlighting words in input text 0
 - displaying extracted relations

declarative rules (Pezeshkpour et al., 2019b)

Target, R(a, b)

isLocatedIn

wasBornIn

wasBornIn

isLocatedIn

influences

exports

isLocatedIn

isLocatedIr

wasBornIn wasBornIn

diedIn

graduatedFrom

diedIn

participatedIn

hasChild

Visualization - 2. Declarative Representations

- Directly present the learned declarative representations
- E.g. logic rules, trees, and programs

(d) Raw declarative program (Amini et al., 2019)

"What is the capital of Zimbabwe?" refers to a Location since it recalls me of "what is the capital of California", which also refers to a Location.

(e) Raw examples (Croce et al., 2019)

Visualization - 3. Natural Language Explanation

- The explanation is **verbalized in human-comprehensible language**
- Generated by using
 - sophisticated deep learning approaches
 - simple template-based approaches

Tutorial in ICML2021 21

Evaluation - Challenge

Unlike in traditional Machine Learning (ML), the task of explaining inherently **lacks "ground-truth" data** — there is no universally accepted definition of what constitutes a "correct" explanation.

Evaluation

Informal Examination

- High-level discussions of how examples of generated explanations align with human intuition
- Compared to other explainable approaches

Comparison to Ground Truth

Quantify the performance of explainability techniques

Human Evaluation

- Humans directly evaluate the effectiveness of the generated explanations via one or more user studies
- Pros: avoid the assumption that there is only one good explanation that could serve as ground truth

Summary of XAI

- Categorization of explanations
 - Local v.s Global
 - Self-explaining v.s Post-hoc
- Generating and presenting explanations
 - Explainability techniques
 - Visualization techniques
- Evaluation of explanations

DistilBERT model in HW2 can be attacked?

• Results of attacking against various fine-tuned BERT models.

Dataset	Method	Original Acc	Attacked Acc	Perturb %	Query Number	Avg Len	Semantic Sim
	BERT-Attack(ours)		11.4	4.4	454	232	0.86
IMDB -	TextFooler	90.9	13.6	6.1	1134	215	0.86
	GA		45.7	4.9	6493		=

Attacks in NLP

Introduction to Al May 10, 2022

Why we should care about adversarial attack?

The man posted a picture of himself leaning against a bulldozer with the caption "يصبحهم", or "yusbihuhum", which translates as "good morning". But Facebook's artificial intelligence-powered translation service, which it built after parting ways with Microsoft's Bing translation in 2016, instead translated the word into "hurt them" in English or "attack them" in Hebrew

News reference 27

White box attack v.s Black box attack

White box attack	Black box attack
The attacker has access to the model's parameters	The attacker has no access to these parameters , i.e., it uses a different model or no model at all to generate adversarial images with the hope that these will transfer to the target model

NLP Attacks

• Useful toolkit: <u>Textattack</u>

1. Goal	Stipulate the goal of the attack , like to change the prediction score of a classification model, or to change all of the words in a translation output
2. Constrains	Determine if a potential perturbation is valid with respect to the original input
3. Transformation	Take a text input and transform it by inserting and deleting characters, words, and/or phrases
4. Search method	Explore the space of possible transformations within the defined constraints and attempt to find a successful perturbation which satisfies the goal function

Attacks In HW4

1. Goal	Change the prediction, i.e., positive $ ightarrow$ negative, negative $ ightarrow$ positive
2. Constrains	No constrain. But it will be better if you minimum the difference between original sentence and attacked sentence
3. Transformation	Try it by yourself
4. Search method	You can based on the result of LIME and SHAP

Summary of Attacks in NLP

Model robustness in NLP is important, instead of encouraging you to attack online
 APIs or release toxic datasets, we should think about how to prevent the attack