Page : 16 of 75 Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## **APPENDIX 2: SAR Measurement data**

#### **Appendix 2-1: Evaluation procedure**

The SAR evaluation was performed with the following procedure:

- **Step 1:** Measurement of the E-field at a fixed location above the central position of flat phantom was used as a reference value for assessing the power drop.
- **Step 2:** The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and suitable horizontal grid spacing of EUT. Based on these data, the area of the maximum absorption was determined by splines interpolation.
- Step 3: Around this point found in the Step 2 (area scan), a volume of 28mm(X axis)×28mm(Y axis)×22.5mm (Z axis) was assessed by measuring 8×8×6(ratio step method (\*1)) points for 3-6GHz frequency band.

  And for any secondary peaks found in the Step2 which are within 2dB of maximum peak and not with this Step3 (Zoom scan) is repeated.

On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

- (1) The data at the surface were extrapolated, since the center of the dipoles is 1mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 2mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- (2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions) [4], [5]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10×10×10) were interpolated to calculate the average.
- (3) All neighboring volumes were evaluated until no neighboring volume with a higher average value was found
- Step 4: Re-measurement of the E-field at the same location as in Step 1 for the assessment of the power drift.
- Step 5: Repeat Step 1-Step 4 with other condition or/and setup of EUT.

#### \*1. Ratio step method parameters used;

The first measurement point: 2mm from the phantom surface, the initial grid separation: 2mm, subsequent graded grid ratio: 1.5 These parameters comply with the requirement of the KDB 865664.

In the section of SAR Scan Procedures-Zoom Scan, in KDB 865664(October 2006 revised, publication date: April 16, 2007): SAR Measurement Requirements for 3-6GHz, the graded grids requirement is as follows:

"When graded grids are used (z), the first measurement point should be within 3mm of the phantom surface for measurements below  $4.5 \mathrm{GHz}$  and within 2mm at or above  $4.5 \mathrm{GHz}$ . The initial grid separation, closest to the phantom, should be  $\leq 2.0 \mathrm{mm}$ . A subsequent graded ration of 1.5 is recommended and less than 2.0 is required."

Page : 17 of 75 Issued date : November 24, 2011

FCC ID : YR7AERODRP2

#### Appendix 2-2: Measurement data (Body liquid) / W52/53 band

Step 1: Change the channels (Main antenna)

Step 1-1: 5180MHz(36ch) / 11a(6Mbps), Front-touch->Worst SAR(1g) of W52/53 band

EUT: AeroDR SYSTEM; Model: AeroDR P-21; Serial number: 19

Communication System: 11a(6Mbps,BPSK/OFDM); Frequency: 5180 MHz; Crest Factor: 1.0 Medium: MSL5800; Medium parameters used: f = 5180 MHz;  $\sigma = 5.45$  S/m;  $\epsilon_r = 49.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(4.1, 4.1, 4.1); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r2(ant=main),patient&touch(d0),m5180(36,14d),11a(6)/

Area Scan (11x13x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.00 mW/g

Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 1.27 mW/g

Z Scan (1x1x61): Measurement grid: dx=20mm, dy=20mm, dz=2.5mm; Maximum value of SAR (measured) = 1.50 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm; Reference Value = 2.83 V/m; Power Drift = -0.141 dB, Maximum value of SAR (measured) = 1.46 mW/g Peak SAR (extrapolated) = 2.97 W/kg

 $SAR(1 g) = 0.672 \text{ mW/g} ( \sim Worst SAR(1g) \text{ of } W52/53); SAR(10 g) = 0.160 \text{ mW/g}$ 







## Additional information:

- \*.position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 149mm
- \*.ambient: 24.8 deg.C / 57% RH; liquid temperature: (before) 23.4 deg.C. /(after) 23.4 deg.C.
- \*white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*.Tested by: Hiroshi Naka / Tested place: No.7 shielded room / Date tested: August 23, 2011

Page : 18 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 2-2: Measurement data (Body liquid) / W52/53 band (cont'd)

Step 1: Change the channels (Main antenna) (cont'd)

#### Step 1-2: 5240MHz(48ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDR SYSTEM; Model: AeroDR P-21; Serial number: 19

Communication System: 11a(6Mbps,BPSK/OFDM); Frequency: 5240 MHz; Crest Factor: 1.0 Medium: MSL5800; Medium parameters used: f = 5240 MHz;  $\sigma = 5.52$  S/m;  $\varepsilon_r = 49.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(4.1, 4.1, 4.1); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r3(ant=main),patient&touch(d0),m5240(48,14d),11a(6)/

Area Scan (9x10x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.815 mW/g

Area Scan (81x91x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 0.882 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 2.28 V/m; Power Drift = -0.123 dB, Maximum value of SAR (measured) = 1.07 mW/g

Peak SAR (extrapolated) = 2.08 W/kg

SAR(1 g) = 0.479 mW/g; SAR(10 g) = 0.114 mW/g



## Additional information:

<sup>\*.</sup>position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 149mm

<sup>\*.</sup>ambient: 24.8deg..C / 57%RH; liquid temperature: (before) 23.4 deg.C. /(after) 23.4 deg.C.

<sup>\*</sup>white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)

 $<sup>\</sup>hbox{*.} Tested \ by: Hiroshi\ Naka\ /\ Tested\ place: No. 7\ shielded\ room\ /\ Date\ tested: August\ 23,2011$ 

Page : 19 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 2-2: Measurement data (Body liquid) / W52/53 band (cont'd)

Step 1: Change the channels (Main antenna) (cont'd)

#### Step 1-3: 5260MHz(52ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDR SYSTEM; Model: AeroDR P-21; Serial number: 19

Communication System: 11a(6Mbps,BPSK/OFDM); Frequency: 5260 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used(24.0deg.C): f = 5260 MHz;  $\sigma = 5.58$  S/m;  $\varepsilon_r = 49.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.88, 3.88, 3.88); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r4(ant=main),patient&touch(d0),m5260(52,14d),11a(6)/

Area Scan (9x10x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.826 mW/g

Area Scan (81x91x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 0.895 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 2.16 V/m; Power Drift = -0.114 dB, Maximum value of SAR (measured) = 1.09 mW/g

Peak SAR (extrapolated) = 2.10 W/kg

SAR(1 g) = 0.487 mW/g; SAR(10 g) = 0.115 mW/g



#### Additional information:

<sup>\*.</sup>position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 149mm

<sup>\*.</sup>ambient: 24.8deg.C / 58%RH; liquid temperature: (before) 23.4 deg.C. /(after) 23.4 deg.C.

<sup>\*.</sup>white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)

<sup>\*.</sup>Tested by: Hiroshi Naka / Tested place:No.7 shielded room / Date tested: August 23, 2011

Page : 20 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 2-2: Measurement data (Body liquid) / W52/53 band (cont'd)

Step 1: Change the channels (Main antenna) (cont'd)

#### Step 1-4: 5300MHz(60ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDR SYSTEM; Model: AeroDR P-21; Serial number: 19

Communication System: 11a(6Mbps,BPSK/OFDM); Frequency: 5300 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used(24.0deg.C): f = 5300 MHz;  $\sigma = 5.62$  S/m;  $\varepsilon_r = 49.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.88, 3.88, 3.88); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

## r5-re#r1,(ant=main),patient&touch(d0),m5300(60,14d),11a(6)/

Area Scan (9x10x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.852 mW/g

Area Scan (81x91x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 0.919 mW/g

Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 2.45 V/m; Power Drift = -0.171 dB, Maximum value of SAR (measured) = 1.11 mW/g

Peak SAR (extrapolated) = 2.11 W/kg

SAR(1 g) = 0.492 mW/g; SAR(10 g) = 0.116 mW/g



#### Additional information:

<sup>\*.</sup>position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 149mm

<sup>\*.</sup>ambient: 24.8deg.C/58%RH; liquid temperature: (before) 23.4 deg.C. /(after) 23.3 deg.C.

<sup>\*.</sup>white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)

<sup>\*.</sup>Tested by: Hiroshi Naka/Tested place:No.7 shielded room/Date tested: August 23, 2011

Page : 21 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

#### Appendix 2-2: Measurement data (Body liquid) / W52/53 band (cont'd)

#### Step 2: Change the channels (Aux antenna)

### Step 2-1: 5180MHz(36ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDR SYSTEM; Model: AeroDR P-21; Serial number: 19

Communication System: 11a(6Mbps,BPSK/OFDM); Frequency: 5180 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used(24.0deg.C): f = 5180 MHz;  $\sigma = 5.45 \text{ S/m}$ ;  $\varepsilon_r = 49.6$ ;  $\rho = 1000 \text{ kg/m}^3$ 

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(4.1, 4.1, 4.1); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- -Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r6(ant=sub),patient&touch(d0),m5180(36,14d),11a(6)/

Area Scan (13x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.788 mW/g

Area Scan (121x101x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 0.808 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

 $Reference\ Value = 6.04\ V/m;\ Power\ Drift = 0.119\ dB,\ Maximum\ value\ of\ SAR\ (measured) = 0.992\ mW/g$ 

Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 0.477 mW/g; SAR(10 g) = 0.132 mW/g



## Additional information:

- \*.position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 149mm
- \*.ambient: 24.5deg..C / 55%  $\hat{R}H$ ; liquid temperature: (before) 23.4 deg. $\hat{C}$ . /(after) 23.3 deg. $\hat{C}$ .
- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*.Tested by: Hiroshi Naka / Tested place:No.7 shielded room/Date tested: August 23, 2011

Page : 22 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 2-2: Measurement data (Body liquid) / W52/53 band (cont'd)

Step 2: Change the channels (Aux antenna) (cont'd)

#### Step 2-2: 5240MHz(48ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDR SYSTEM; Model: AeroDR P-21; Serial number: 19

Communication System: 11a(6Mbps,BPSK/OFDM); Frequency: 5240 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used(24.0deg.C): f = 5240 MHz;  $\sigma = 5.52$  S/m;  $\varepsilon_r = 49.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(4.1, 4.1, 4.1); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

## r7(ant=sub),patient&touch(d0),m5240(48,14d),11a(6)/

Area Scan (10x9x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.18 mW/g

Area Scan (91x81x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 1.59 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 6.68 V/m; Power Drift = -0.20 dB, Maximum value of SAR (measured) = 1.28 mW/g

Peak SAR (extrapolated) = 2.58 W/kg

SAR(1 g) = 0.638 mW/g; SAR(10 g) = 0.176 mW/g



#### Additional information:

- \*.position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 149mm
- \*.ambient: 24.8deg.C / 56%RH; liquid temperature: (before) 23.3 deg.C. /(after) 23.2 deg.C.
- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*.Tested by: Hiroshi Naka / Tested place:No.7 shielded room / Date tested: August 23, 2011

Page : 23 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 2-2: Measurement data (Body liquid) / W52/53 band (cont'd)

Step 2: Change the channels (Aux antenna) (cont'd)

## Step 2-3: 5260MHz(52ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDR SYSTEM; Model: AeroDR P-21; Serial number: 19

Communication System: 11a(6Mbps,BPSK/OFDM); Frequency: 5260 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used(24.0deg.C): f = 5260 MHz;  $\sigma = 5.58$  S/m;  $\varepsilon_r = 49.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.88, 3.88, 3.88); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r8(ant=sub),patient&touch(d0),m5260(52,14d),11a(6)/

Area Scan (10x9x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.19 mW/g

Area Scan (91x81x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 1.55 mW/g

Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 6.66 V/m; Power Drift = 0.007 dB, Maximum value of SAR (measured) = 1.24 mW/g

Peak SAR (extrapolated) = 2.42 W/kg

SAR(1 g) = 0.611 mW/g; SAR(10 g) = 0.170 mW/g



#### Additional information

- \*.position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 149mm
- \*.ambient: 24.8deg.C/54%RH; liquid temperature: (before) 23.2 deg.C. /(after) 23.1 deg.C.
- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*.Tested by: Hiroshi Naka / Tested place:No.7 shielded room / Date tested: August 23, 2011

Page : 24 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 2-2: Measurement data (Body liquid) / W52/53 band (cont'd)

Step 2: Change the channels (Aux antenna) (cont'd)

## Step 2-4: 5300MHz(60ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDR SYSTEM; Model: AeroDR P-21; Serial number: 19

Communication System: 11a(6Mbps,BPSK/OFDM); Frequency: 5300 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used(24.0deg.C): f = 5300 MHz;  $\sigma = 5.62$  S/m;  $\varepsilon_r = 49.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.88, 3.88, 3.88); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

## r9(ant=sub),patient&touch(d0),m5300(60,14d),11a(6)/

Area Scan (10x9x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.000 mW/g

Area Scan (91x81x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 1.30 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 6.21 V/m; Power Drift = -0.20 dB, Maximum value of SAR (measured) = 1.03 mW/g

Peak SAR (extrapolated) = 2.04 W/kg

SAR(1 g) = 0.512 mW/g; SAR(10 g) = 0.143 mW/g







## Additional information:

- \*.position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 149mm
- \*.ambient: 24.6deg.C / 53%RH; liquid temperature: (before) 23.1 deg.C. /(after) 23.1 deg.C.
- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)

Page : 25 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

#### Appendix 2-3: Measurement data (Body liquid) / W58 band

Step 1: Change the channels (Main antenna)

Step 1-1: 5745MHz(149ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDR SYSTEM; Model: AeroDR P-21; Serial number: 19

Communication System: 11a(6Mbps,BPSK/OFDM); Frequency: 5745 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used(23.5deg.C.): f = 5745 MHz;  $\sigma = 6.22$  S/m;  $\varepsilon_r = 48.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- -Probe: EX3DV4 SN3679; ConvF(3.94, 3.94, 3.94); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- -Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r1(ant=main),patient&touch(d0),m5745(149,14d),11a(6)/

Area Scan 2 (11x13x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.376 mW/g

Area Scan 2 (101x121x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 0.445 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 1.52 V/m; Power Drift = 0.20 dB, Maximum value of SAR (measured) = 0.515 mW/g

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.237 mW/g; SAR(10 g) = 0.070 mW/g



## Additional information:

- \*.position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 149mm
- \*.ambient: 24.1 deg. C / 59%RH; liquid temperature: (before) 23.2 deg. C. /(after) 23.2 deg. C.
- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*.Tested by: Hiroshi Naka / Tested place:No.7 shielded room / Date tested: August 24, 2011

Page : 26 of 75 Issued date : November 24, 2011

FCC ID : YR7AERODRP2

#### Appendix 2-3: Measurement data (Body liquid) / W58 band (cont'd)

Step 1: Change the channels (Main antenna) (cont'd)

#### Step 1-2: 5785MHz(157ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDR SYSTEM; Model: AeroDR P-21; Serial number: 19

Communication System: 11a(6Mbps,BPSK/OFDM); Frequency: 5785 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used(23.5deg.C.): f = 5785 MHz;  $\sigma = 6.27$  S/m;  $\varepsilon_r = 48.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.94, 3.94, 3.94); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r2(ant=main),patient&touch(d0),m5785(157,14d),11a(6)/

Area Scan (9x10x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.452 mW/g

Area Scan (81x91x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 0.510 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 1.69 V/m; Power Drift = 0.20 dB, Maximum value of SAR (measured) = 0.626 mW/g

Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 0.280 mW/g; SAR(10 g) = 0.073 mW/g



## Additional information:

<sup>\*</sup>position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 149mm

<sup>\*.</sup>ambient: 24.6deg.C / 48%RH; liquid temperature: (before) 23.1 deg.C. /(after) 23.0 deg.C.

<sup>\*</sup>white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)

<sup>\*.</sup> Tested by: Hiroshi Naka / Tested place:No.7 shielded room / Date tested: August 24, 2011

: 27 of 75 Page

Issued date : November 24, 2011

: YR7AERODRP2 FCC ID

#### Appendix 2-3: Measurement data (Body liquid) / W58 band (cont'd) Step 1: Change the channels (Main antenna) (cont'd)

## Step 1-3: 5825MHz(165ch) / 11a(6Mbps), Front-touch->Worst SAR(1g) of W58 band

## EUT: AeroDR SYSTEM; Model: AeroDR P-21; Serial number: 19

Communication System: 11a(6Mbps,BPSK/OFDM); Frequency: 5825 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used(23.5deg.C.): f = 5825 MHz;  $\sigma = 6.33$  S/m;  $\varepsilon_r = 48.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

- DASY4 Configuration:
   Probe: EX3DV4 SN3679; ConvF(3.94, 3.94, 3.94); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626: Calibrated: 2011/02/10
- -Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r3(ant=main),patient&touch(d0),m5825(165,14d),11a(6)/

Area Scan (9x10x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.655 mW/g

Area Scan (81x91x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 0.760 mW/g

Z Scan (1x1x61): Measurement grid: dx=20mm, dy=20mm, dz=2.5mm; Maximum value of SAR (measured) = 0.943 mW/g Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 1.82 V/m; Power Drift = -0.20 dB, Maximum value of SAR (measured) = 0.951 mW/g

Peak SAR (extrapolated) = 2.05 W/kg

SAR(1 g) = 0.420 mW/g ( -Worst SAR(1g) of W58); SAR(10 g) = 0.098 mW/g



## Additional information:

- \*position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 149mm
- \*ambient 24.6deg. C / 48% RH; liquid temperature: (before) 23.0 deg. C. /(after) 22.9 deg. C. \*white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*. Tested by: Hiroshi Naka / Tested place: No.7 shielded room / Date tested: August 24, 2011

## UL Japan, Inc. Shonan EMC Lab.

Page : 28 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

#### Appendix 2-3: Measurement data (Body liquid) / W58 band (cont'd)

#### Step 2: Change the channels (Aux antenna)

## Step 2-1: 5745MHz(149ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDR SYSTEM; Model: AeroDR P-21; Serial number: 19

Communication System: 11a(6Mbps,BPSK/OFDM); Frequency: 5745 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used(23.5deg.C.): f = 5745 MHz;  $\sigma = 6.22$  S/m;  $\varepsilon_r = 48.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.94, 3.94, 3.94); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- -Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r4(ant=sub),patient&touch(d0),m5745(149,14d),11a(6)/

Area Scan (13x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.387 mW/g

Area Scan (121x101x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 0.457 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 3.89 V/m; Power Drift = -0.20 dB, Maximum value of SAR (measured) = 0.412 mW/g

Peak SAR (extrapolated) = 0.742 W/kg

SAR(1 g) = 0.187 mW/g; SAR(10 g) = 0.053 mW/g



#### Additional information:

- \*.position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 149mm
- \*.ambient: 24.8 deg.C. / 52% RH; liquid temperature: (before) 23.0 deg.C. /(after) 22.9 deg.C.
- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*. Tested by: Hiroshi Naka / Tested place: No.7 shielded room / Date tested: August 24, 2011

Page : 29 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

#### Appendix 2-3: Measurement data (Body liquid) / W58 band (cont'd)

Step 2: Change the channels (Aux antenna) (cont'd)

#### Step 2-2: 5785MHz(157ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDR SYSTEM; Model: AeroDR P-21; Serial number: 19

Communication System: 11a(6Mbps,BPSK/OFDM); Frequency: 5785 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used(23.5deg.C.): f = 5785 MHz;  $\sigma = 6.27$  S/m;  $\varepsilon_r = 48.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.94, 3.94, 3.94); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

## r5(ant=sub),patient&touch(d0),m5785(157,14d),11a(6)/

Area Scan (10x9x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.464 mW/g

Area Scan (91x81x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 0.621 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 3.84 V/m; Power Drift = -0.176 dB, Maximum value of SAR (measured) = 0.471 mW/g

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.232 mW/g; SAR(10 g) = 0.066 mW/g



#### Additional information:

- \*.position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 149mm
- \*.ambient: 24.8deg..C / 45%RH; liquid temperature: (before) 22.9 deg.C. /(after) 22.8 deg.C.
- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*. Tested by: Hiroshi Naka / Tested place: No. 7 shielded room / Date tested: August 24, 2011

: 30 of 75 Page

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 2-3: Measurement data (Body liquid) / W58 band (cont'd)

Step 2: Change the channels (Aux antenna) (cont'd)

## Step 2-3: 5825MHz(165ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDR SYSTEM; Model: AeroDR P-21; Serial number: 19

Communication System: 11a(6Mbps,BPSK/OFDM); Frequency: 5825 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used(23.5deg.C.): f = 5825 MHz;  $\sigma = 6.33$  S/m;  $\varepsilon_r = 48.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.94, 3.94, 3.94); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626: Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r6(ant=sub),patient&touch(d0),m5825(165,14d),11a(6)/

Area Scan (10x9x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.525 mW/g

Area Scan (91x81x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 0.694 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 4.37 V/m; Power Drift = -0.173 dB, Maximum value of SAR (measured) = 0.513 mW/g

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.245 mW/g; SAR(10 g) = 0.070 mW/g



#### Additional information:

- \*.position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 149mm
- \*.ambient: 24.6deg.C / 44%RH; liquid temperature: (before) 22.8 deg.C. /(after) 22.7 deg.C. \*. Tested by: Hiroshi Naka / Tested place: No. 7 shielded room / Date tested: August 24, 2011
- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)

Page : 31 of 75 Issued date : November 24, 2011

FCC ID : YR7AERODRP2

#### Appendix 2-4: Measurement data (Body liquid) / W56 band

Step 1: Change the channels (Main antenna)

Step 1-1: 5520MHz(104ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDRSYSTEM; Type: AeroDR P-21; Serial: 19

Communication System: 11a(6Mbps, BPSK/OFDM); Frequency: 5520 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used (23.0deg C.): f = 5520 MHz;  $\sigma = 5.91$  S/m;  $\epsilon_r = 49.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.65, 3.65, 3.65); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- -Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r5(ant=main),patient&touch(d0),m5520(104,14d),11a(6)/

Area Scan:80x80,10 (9x10x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.31 mW/g Area Scan:80x80,10 (81x91x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 1.44 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 2.05 V/m; Power Drift = 0.107 dB, Maximum value of SAR (measured) = 1.27 mW/g

Peak SAR (extrapolated) = 2.50 W/kg

SAR(1 g) = 0.572 mW/g; SAR(10 g) = 0.150 mW/g



## additional information:

<sup>\*.</sup>position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 145mm

<sup>\*</sup>ambient: 24.9deg.C/48 %RH; liquid temperature: (before) 22.6 deg.C./(after) 22.6 deg.C.

<sup>\*.</sup>white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)

<sup>\*.</sup>Tested by: Hiroshi Naka/Tested place:No.7 shielded room/Date tested: November 21, 2011

: 32 of 75 Page

FCC ID

Issued date : November 24, 2011

: YR7AERODRP2

Appendix 2-4: Measurement data (Body liquid) / W56 band (cont'd)

Step 1: Change the channels (Main antenna)

## Step 1-2: 5580MHz(116ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDRSYSTEM; Type: AeroDR P-21; Serial: 19

Communication System: 11a(6Mbps, BPSK/OFDM); Frequency: 5580 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used (23.0deg.C.): f = 5580 MHz;  $\sigma = 5.97 \text{ S/m}$ ;  $\epsilon_r = 49.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.45, 3.45, 3.45); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- -Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

## r2(ant=main),patient&touch(d0),m5580(116,14d),11a(6)/

Area Scan:70x80,10 (8x9x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.52 mW/g Area Scan:70x80,10 (71x81x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (interpolated) = 2.02 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 2.74 V/m; Power Drift = 0.118 dB, Maximum value of SAR (measured) = 1.59 mW/g

Peak SAR (extrapolated) = 3.43 W/kg

SAR(1 g) = 0.748 mW/g; SAR(10 g) = 0.193 mW/g



- \*.position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 145mm
- \*.ambient: 24.9deg.C/47 %RH; liquid temperature: (before) 22.6 deg.C./(after) 22.6 deg.C.
- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*.Tested by: Hiroshi Naka/Tested place:No.7 shielded room/Date tested: November 21, 2011

: 33 of 75 Page

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 2-4: Measurement data (Body liquid) / W56 band (cont'd)

Step 1: Change the channels (Main antenna)

#### Step 1-3: 5600MHz(120ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDRSYSTEM; Type: AeroDR P-21; Serial: 19

Communication System: 11a(6Mbps, BPSK/OFDM); Frequency: 5600 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used (23.0deg.C.): f = 5600 MHz;  $\sigma = 5.99 \text{ S/m}$ ;  $\epsilon_r = 49.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.45, 3.45, 3.45); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r1(ant=main),patient&touch(d0),m5600(120,14d),11a(6)/

Area Scan:100x120,10 (11x13x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.51 mW/g Area Scan:100x120,10 (101x121x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 1.93 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 2.57 V/m; Power Drift = -0.147 dB, Maximum value of SAR (measured) = 1.62 mW/g

Peak SAR (extrapolated) = 3.27 W/kg

SAR(1 g) = 0.742 mW/g; SAR(10 g) = 0.193 mW/g



- \*.ambient: 24.7deg.C/43 %RH; liquid temperature: (before) 22.6 deg.C./(after) 22.6 deg.C.
- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*Tested by: Hiroshi Naka / Tested place: No.7 shielded room / Date tested: November 21, 2011

: 34 of 75 Page

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 2-4: Measurement data (Body liquid) / W56 band (cont'd)

Step 1: Change the channels (Main antenna)

## Step 1-4: 5620MHz(124ch) / 11a(6Mbps), Front-touch - Worst SAR(1g) of W56 band

#### EUT: AeroDRSYSTEM; Type: AeroDR P-21; Serial: 19

Communication System: 11a(6Mbps, BPSK/OFDM); Frequency: 5620 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used (23.0deg.C.): f = 5620 MHz;  $\sigma = 6.04 \text{ S/m}$ ;  $\epsilon_r = 49.1$ ;  $\rho = 1000 \text{ kg/m}^3$ 

- Probe: EX3DV4 SN3679; ConvF(3.45, 3.45, 3.45); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r3(ant=main),patient&touch(d0),m5620(124,14d),11a(6)/

Area Scan:80x80,10 (9x10x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.99 mW/g Area Scan:80x80,10 (81x91x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 2.13 mW/g Z Scan (1x1x61): Measurement grid: dx=20mm, dy=20mm, dz=2.5mm; Maximum value of SAR (measured) = 1.95 mW/g

Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm; Reference Value = 2.65 V/m; Power Drift = -0.049 dB, Maximum value of SAR (measured) = 1.97 mW/g Peak SAR (extrapolated) = 3.91 W/kg

SAR(1 g) = 0.865 mW/g (<-Worst SAR(1g) of W56); SAR(10 g) = 0.222 mW/g



- 5: position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 145mm
- \*ambient: 24.9deg. C / 47 % RH; liquid temperature: (before) 22.6 deg. C. /(after) 22.6 deg. C. \*white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*.Tested by: Hiroshi Naka / Tested place:No.7 shielded room / Date tested: November 21, 2011

## UL Japan, Inc. Shonan EMC Lab.

Page : 35 of 75 Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 2-4: Measurement data (Body liquid) / W56 band (cont'd)

Step 1: Change the channels (Main antenna)

#### Step 1-5: 5680MHz(136ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDRSYSTEM; Type: AeroDR P-21; Serial: 19

Communication System: 11a(6Mbps, BPSK/OFDM); Frequency: 5680 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used (23.0deg.C.): f = 5680 MHz;  $\sigma = 6.1$  S/m;  $\varepsilon_r = 49.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.45, 3.45, 3.45); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- -Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r4(ant=main),patient&touch(d0),m5680(136,14d),11a(6)/

Area Scan:80x80,10 (9x10x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 1.53 mW/g Area Scan:80x80,10 (81x91x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 1.86 mW/g

Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 2.33 V/m; Power Drift = 0.038 dB, Maximum value of SAR (measured) = 1.56 mW/g

Peak SAR (extrapolated) = 3.07 W/kg

SAR(1 g) = 0.693 mW/g; SAR(10 g) = 0.182 mW/g







## additional information:

- \*.position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 145mm
- \*ambient: 24.9deg.C/47 %RH; liquid temperature: (before) 22.6 deg.C./(after) 22.6 deg.C.
- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*. Tested by: Hiroshi Naka / Tested place: No. 7 shielded room / Date tested: November 21, 2011

Page : 36 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 2-4: Measurement data (Body liquid) / W56 band (cont'd)

## Step 2: Change the channels (Aux antenna)

### Step 2-1: 5520MHz(104ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDRSYSTEM; Type: AeroDR P-21; Serial: 19

Communication System: 11a(6Mbps, BPSK/OFDM); Frequency: 5520 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used (23.0deg C.): f = 5520 MHz;  $\sigma = 5.91$  S/m;  $\varepsilon_r = 49.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- -Probe: EX3DV4 SN3679; ConvF(3.65, 3.65, 3.65); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r8(ant=sub),patient&touch(d0),m5520(104,14d),11a(6)/

Area Scan:90x80,10 (10x9x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.699 mW/g
Area Scan:90x80,10 (91x81x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 0.811 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm; Reference Value = 2.75 V/m; Power Drift = 0.068 dB, Maximum value of SAR (measured) = 0.832 mW/g Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 0.402 mW/g; SAR(10 g) = 0.126 mW/g



- \*.ambient: 23.4deg.C / 41 %RH; liquid temperature: (before) 22.3 deg.C. /(after) 22.2 deg.C.
- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*.Tested by: Hiroshi Naka / Tested place:No.7 shielded room / Date tested: November 22, 2011

Page : 37 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 2-4: Measurement data (Body liquid) / W56 band (cont'd)

Step 2: Change the channels (Aux antenna)

#### Step 2-2: 5580MHz(116ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDRSYSTEM; Type: AeroDR P-21; Serial: 19

Communication System: 11a(6Mbps, BPSK/OFDM); Frequency: 5580 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used (23.0deg.C.): f = 5580 MHz;  $\sigma = 5.97 \text{ S/m}$ ;  $\epsilon_r = 49.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.45, 3.45, 3.45); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### re-r6(ant=sub),patient&touch(d0),m5580(116,14d),11a(6)/

Area Scan:120x100,10 (13x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.979 mW/g Area Scan:120x100,10 (121x101x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 1.21 mW/g

Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 3.40 V/m; Power Drift = -0.20 dB, Maximum value of SAR (measured) = 1.12 mW/g

Peak SAR (extrapolated) = 2.40 W/kg

SAR(1 g) = 0.576 mW/g; SAR(10 g) = 0.177 mW/g







## additional information:

- \*.position: distance of EUT to phantom: 0mm (2mm to liquid), liquid depth: 145mm
- \*.ambient: 23.9deg.C/41 %RH; liquid temperature: (before) 22.1 deg.C./(after) 22.1 deg.C.
- \*white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- $\hbox{*.} Tested \ by: Hiroshi \ Naka \ / \ Tested \ place: No. 7 \ shielded \ room \ / \ Date \ tested: \ November \ 22,2011$

Page : 38 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 2-4: Measurement data (Body liquid) / W56 band (cont'd)

Step 2: Change the channels (Aux antenna)

#### Step 2-3: 5620MHz(124ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDRSYSTEM; Type: AeroDR P-21; Serial: 19

Communication System: 11a(6Mbps, BPSK/OFDM); Frequency: 5620 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used (23.0deg.C.): f = 5620 MHz;  $\sigma = 6.04 \text{ S/m}$ ;  $\epsilon_r = 49.1$ ;  $\rho = 1000 \text{ kg/m}^3$ 

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.45, 3.45, 3.45); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- -Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r7(ant=sub),patient&touch(d0),m5620(124,14d),11a(6)/

Area Scan:90x80,10 (10x9x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.804 mW/g Area Scan:90x80,10 (91x81x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 0.897 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm; Reference Value = 2.98 V/m; Power Drift = -0.20 dB, Maximum value of SAR (measured) = 0.914 mW/g

Peak SAR (extrapolated) = 1.89 W/kg

SAR(1 g) = 0.455 mW/g; SAR(10 g) = 0.143 mW/g



<sup>\*.</sup>ambient: 23.4deg.C/41 %RH; liquid temperature: (before) 22.3 deg.C./(after) 22.2 deg.C.

<sup>\*.</sup>white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)

<sup>\*.</sup> Tested by: Hiroshi Naka / Tested place: No. 7 shielded room / Date tested: November 22, 2011

Page : 39 of 75 Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 2-4: Measurement data (Body liquid) / W56 band (cont'd)

Step 2: Change the channels (Aux antenna)

#### Step 2-4: 5680MHz(136ch) / 11a(6Mbps), Front-touch

#### EUT: AeroDRSYSTEM; Type: AeroDR P-21; Serial: 19

Communication System: 11a(6Mbps, BPSK/OFDM); Frequency: 5680 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used (23.0deg.C.): f = 5680 MHz;  $\sigma = 6.1$  S/m;  $\varepsilon_r = 49.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

#### DASY4 Configuration:

- Probe: EX3DV4 SN3679; ConvF(3.45, 3.45, 3.45); Calibrated: 2011/05/19
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- -Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

#### r9(ant=sub),patient&touch(d0),m5680(136,,14d),11a(6)/

Area Scan:90x80,10 (10x9x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.732 mW/g Area Scan:90x80,10 (91x81x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 1.10 mW/g

**Zoom Scan:28x28x22.5/4x4xstp2&r1.5&d2 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 2.79 V/m; Power Drift = -0.028 dB, Maximum value of SAR (measured) = 0.846 mW/g

Peak SAR (extrapolated) = 1.70 W/kg

SAR(1 g) = 0.413 mW/g; SAR(10 g) = 0.133 mW/g



- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*.Tested by: Hiroshi Naka/Tested place:No.7 shielded room/Date tested: November 22, 2011

Page : 40 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## **APPENDIX 3:** Test instruments

## Appendix 3-1: Equipment used

## Appendix 3-1-1: SAR test of W52/53 and W58

| Control No.           | Instrument                                       | Manufacturer                     | Model No                                       | Serial No           | Test Item                                        | Calibration Date * Interval(month)           |
|-----------------------|--------------------------------------------------|----------------------------------|------------------------------------------------|---------------------|--------------------------------------------------|----------------------------------------------|
| COTS-KSAR-0<br>1      | DASY4                                            | Schmid&Partner<br>Engineering AG | DASY4 V4.7 B80                                 | -                   | SAR                                              | _                                            |
| COTS-KSEP-0<br>1      | Dielectric measurement                           | Agilent                          | 85070                                          | 1                   | SAR                                              | _                                            |
| KSAR-01               | SAR measurement system                           | Schmid&Partner<br>Engineering AG | DASY4                                          | 1088                | SAR                                              | Pre Check                                    |
| SSRBT-01              | SAR robot                                        | Schmid&Partner<br>Engineering AG | RX60B L                                        | F04/5Z71A1/A<br>/01 | SAR                                              | 2011/02/02 * 12                              |
| KDAE-01               | Data Acquisition<br>Electronics                  | Schmid&Partner<br>Engineering AG | DAE4                                           | 626                 | SAR                                              | 2011/02/10 * 12                              |
| KPB-01                | Dosimetric E-Field<br>Probe                      | Schmid&Partner<br>Engineering AG | EX3DV4                                         | 3679                | SAR                                              | 2011/05/19 * 12                              |
| KSDA-02               | Dipole Antenna                                   | Schmid&Partner<br>Engineering AG | D5GHzV2                                        | 1070                | SAR                                              | 2011/02/16 * 24                              |
| KPFL-01               | Flat Phantom                                     | Schmid&Partner<br>Engineering AG | Oval flat phantom<br>ELI 4.0                   | 1059                | SAR                                              | Pre Check                                    |
| SSNA-01               | Network Analyzer                                 | Agilent                          | 8753ES                                         | US39171777          | SAR                                              | 2011/01/04 * 12                              |
| KEPP-01               | Dielectric probe                                 | Agilent                          | 8710-2036                                      | 2540                | SAR                                              | 2011/01/16 * 12                              |
| SSG-03                | Signal Generator                                 | Agilent                          | N5181A                                         | MY48181119          | SAR                                              | 2011/04/11 * 12                              |
| KPA-12                | RF Power Amplifier                               | MILMEGA                          | AS2560-50                                      | 1018582             | SAR                                              | Pre Check                                    |
| KCPL-07               | Directional Coupler                              | Pulsar Microwave Corp.           | CCS30-B26                                      | 0621                | SAR                                              | Pre Check                                    |
| KPM-06                | Power Meter                                      | Rohde & Schwarz                  | NRVD                                           | 101599              | SAR                                              | 2011/01/27 * 12                              |
| KIU-08                | Power sensor                                     | Rohde & Schwarz                  | NRV-Z4                                         | 100372              | SAR(Pf)                                          | 2010/09/03 * 12                              |
| KIU-09                | Power sensor                                     | Rohde & Schwarz                  | NRV-Z4                                         | 100371              | SAR(dipl)                                        | 2011/01/27 * 12                              |
| KAT10-P1              | Attenuator                                       | Weinschel                        | 24-10-34                                       | BY5927              | SAR                                              | 2011/02/17 * 12                              |
| KAT20-P1              | Attenuator                                       | TME                              | SFA-01AXPJ                                     | -                   | SAR                                              | 2011/02/17 * 12                              |
| KPM-08                | Power meter                                      | Anritsu                          | ML2495A                                        | 6K00003356          | Ant.pwr.                                         | 2010/09/22 * 12                              |
| KPSS-04               | Power sensor                                     | Anritsu                          | MA2411B                                        | 012088              | Ant.pwr.                                         | 2010/09/22 * 12                              |
| KAT10-S3              | Attenuator                                       | Agilent                          | 8490D 010                                      | 50924               | Ant.pwr.                                         | 2011/02/17 * 12                              |
| SSA-04                | Spectrum Analyzer                                | Advantest                        | R3272                                          | 101100994           | SAR(moni.)                                       | 2010/12/09 * 12                              |
| KRU-04                | Ruler(300mm)                                     | Shinwa                           | 13134                                          | -                   | SAR                                              | 2011/05/26 * 12                              |
| KRU-05                | Ruler(100x50mm,L)                                | Shinwa                           | 12101                                          | -                   | SAR                                              | 2011/05/26 * 12                              |
| KOS-13                | Digtal thermometer                               | HANNA                            | Checktemp-2                                    | KOS-13              | SAR                                              | 2011/01/19 * 12                              |
| KOS-14                | Thermo-Hygrometer data logger                    | SATO KEIRYOKI                    | SK-L200THII $\alpha$ /<br>SK-LTHII $\alpha$ -2 | 015246/08169        | SAR                                              | 2011/01/19 * 12                              |
| SOS-11                | Humidity Indicator                               | A&D                              | AD-5681                                        | 4063424             | SAR                                              | 2011/02/23 * 12                              |
| KSLM580-02            | Tissue simulation liqud<br>(5800MHz,body)        | Schmid&Partner<br>Engineering AG | SL AAM 501 AB                                  | 110520-3            | SAR                                              | (Daily check)<br>Target value ±5%            |
| No.7<br>Shielded room | SAR shielded room<br>(2.76m(W)x3.76m(D)x2.4m(H)) | TDK                              | -                                              | -                   | SAR                                              | (Daily check)<br>Ambient noise:<br>< 12mW/kg |
|                       | <del> </del>                                     | <del> </del>                     | +                                              | +                   | <del>                                     </del> | +                                            |

The expiration date of calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations. All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

[Test Item] SAR: Specific Absorption Rate, Ant.pwr: Antenna terminal conducted power

Page : 41 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 3-1: Equipment used (cont'd)

## Appendix 3-1-2: SAR test of W56

| ASY4                                             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                           | Calibration Date * Interval(month)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A314                                             | Schmid&Partner<br>Engineering AG                                                                                                                                                                                                                       | DASY4 V4.7 B80                                                                                                                                                                                                                                                                                                                                                                 | -                                  | SAR                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ielectric measurement                            | Agilent                                                                                                                                                                                                                                                | 85070                                                                                                                                                                                                                                                                                                                                                                          | 1                                  | SAR                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AR measurement                                   | Schmid&Partner<br>Engineering AG                                                                                                                                                                                                                       | DASY4                                                                                                                                                                                                                                                                                                                                                                          | 1088                               | SAR                                       | Pre Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AR robot                                         | Schmid&Partner<br>Engineering AG                                                                                                                                                                                                                       | RX60B L                                                                                                                                                                                                                                                                                                                                                                        | F04/5Z71A1/A<br>/01                | SAR                                       | 2011/02/02 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ata Acquisition<br>lectronics                    | Schmid&Partner<br>Engineering AG                                                                                                                                                                                                                       | DAE4                                                                                                                                                                                                                                                                                                                                                                           | 626                                | SAR                                       | 2011/02/10 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| osimetric E-Field<br>robe                        | Schmid&Partner<br>Engineering AG                                                                                                                                                                                                                       | EX3DV4                                                                                                                                                                                                                                                                                                                                                                         | 3679                               | SAR                                       | 2011/05/19 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ipole Antenna                                    | Schmid&Partner<br>Engineering AG                                                                                                                                                                                                                       | D5GHzV2                                                                                                                                                                                                                                                                                                                                                                        | 1070                               | SAR                                       | 2011/02/16 * 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| lat Phantom                                      | Schmid&Partner<br>Engineering AG                                                                                                                                                                                                                       | Oval flat phantom<br>ELI 4.0                                                                                                                                                                                                                                                                                                                                                   | 1059                               | SAR                                       | 2011/10/26 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| etwork Analyzer                                  | Agilent                                                                                                                                                                                                                                                | 8753ES                                                                                                                                                                                                                                                                                                                                                                         | US39171777                         | SAR                                       | 2011/01/04 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ielectric probe                                  | Agilent                                                                                                                                                                                                                                                | 8710-2036                                                                                                                                                                                                                                                                                                                                                                      | 2540                               | SAR                                       | 2011/01/16 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ignal Generator                                  | Rohde & Schwarz                                                                                                                                                                                                                                        | SMT06                                                                                                                                                                                                                                                                                                                                                                          | 100763                             | SAR                                       | 2011/06/07 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| F Power Amplifier                                | MILMEGA                                                                                                                                                                                                                                                | AS2560-50                                                                                                                                                                                                                                                                                                                                                                      | 1018582                            | SAR                                       | Pre Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| irectional Coupler                               | Pulsar Microwave Corp.                                                                                                                                                                                                                                 | CCS30-B26                                                                                                                                                                                                                                                                                                                                                                      | 0621                               | SAR                                       | Pre Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ower Meter                                       | Rohde & Schwarz                                                                                                                                                                                                                                        | NRVD                                                                                                                                                                                                                                                                                                                                                                           | 101599                             | SAR(dipl)                                 | 2011/09/13 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ower sensor                                      | Rohde & Schwarz                                                                                                                                                                                                                                        | NRV-Z4                                                                                                                                                                                                                                                                                                                                                                         | 100371                             | SAR(dipl)                                 | 2011/09/13 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ower sensor                                      | Rohde & Schwarz                                                                                                                                                                                                                                        | NRV-Z4                                                                                                                                                                                                                                                                                                                                                                         | 100372                             | SAR(pf)                                   | 2011/09/13 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ttenuator                                        | Weinschel                                                                                                                                                                                                                                              | 24-10-34                                                                                                                                                                                                                                                                                                                                                                       | BY5927                             | SAR                                       | 2011/02/17 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ttenuator                                        | TME                                                                                                                                                                                                                                                    | SFA-01AXPJ                                                                                                                                                                                                                                                                                                                                                                     | -                                  | SAR                                       | 2011/02/17 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| uler(300mm)                                      | Shinwa                                                                                                                                                                                                                                                 | 13134                                                                                                                                                                                                                                                                                                                                                                          | -                                  | SAR                                       | 2011/05/26 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| uler(100x50mm,L)                                 | Shinwa                                                                                                                                                                                                                                                 | 12101                                                                                                                                                                                                                                                                                                                                                                          | -                                  | SAR                                       | 2011/05/26 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| igtal thermometer                                | HANNA                                                                                                                                                                                                                                                  | Checktemp-2                                                                                                                                                                                                                                                                                                                                                                    | KOS-13                             | SAR                                       | 2011/01/19 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| hermo-Hygrometer<br>ata logger                   | SATO KEIRYOKI                                                                                                                                                                                                                                          | SK-L200THII $\alpha$ /<br>SK-LTHII $\alpha$ -2                                                                                                                                                                                                                                                                                                                                 | 015246/08169                       | SAR                                       | 2011/01/19 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| umidity Indicator                                | A&D                                                                                                                                                                                                                                                    | AD-5681                                                                                                                                                                                                                                                                                                                                                                        | 4063424                            | SAR                                       | 2011/02/23 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ower meter                                       | Anritsu                                                                                                                                                                                                                                                | ML2495A                                                                                                                                                                                                                                                                                                                                                                        | 6K00003356                         | Ant.pwr                                   | 2011/09/12 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ower sensor                                      | Anritsu                                                                                                                                                                                                                                                | MA2411B                                                                                                                                                                                                                                                                                                                                                                        | 012088                             | Ant.pwr                                   | 2011/09/12 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ttenuator                                        | Agilent                                                                                                                                                                                                                                                | 8490D 010                                                                                                                                                                                                                                                                                                                                                                      | 50924                              | Ant.pwr                                   | 2011/02/17 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| issue simulation liqud<br>i800MHz,body)          | Schmid&Partner<br>Engineering AG                                                                                                                                                                                                                       | SL AAM 501 AB                                                                                                                                                                                                                                                                                                                                                                  | 110520-3                           | SAR                                       | (Daily check)<br>Target value ±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SAR shielded room<br>2.76m(W)x3.76m(D)x2.4m(H))  | TDK                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                              | -                                  | SAR                                       | (Daily check)<br>Ambient noise:<br>< 12mW/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ir or or or ttt ttt ul ul ig he att ul or or ttt | ectional Coupler wer Meter wer sensor wer sensor wer sensor tenuator tenuator ter(300mm) ter(100x50mm,L) ttal thermometer termo—Hygrometer tal logger midity Indicator wer meter wer sensor tenuator sue simulation liqud 00MHz,body)  R shielded room | ectional Coupler Pulsar Microwave Corp. wer Meter Rohde & Schwarz wer sensor Rohde & Schwarz wer sensor Rohde & Schwarz wer sensor Weinschel tenuator TME tenuator TME tenuator Shinwa ter(100x50mm,L) Shinwa ter(100x50mm,L) Shinwa tal thermometer HANNA termo-Hygrometer Anvitau wer meter Anritsu wer sensor Anritsu tenuator Agilent sue simulation liqud 00MHz,body) TDK | Pulsar Microwave Corp.   CCS30-B26 | Pulsar Microwave Corp.   CCS30-B26   0621 | ectional Coupler         Pulsar Microwave Corp.         CCS30−B26         0621         SAR           wer Meter         Rohde & Schwarz         NRVD         101599         SAR(dipl)           wer sensor         Rohde & Schwarz         NRV−Z4         100371         SAR(dipl)           wer sensor         Rohde & Schwarz         NRV−Z4         100372         SAR(pf)           tenuator         Weinschel         24−10−34         BY5927         SAR           tenuator         TME         SFA−01AXPJ         -         SAR           ter(400x50mm)         Shinwa         13134         -         SAR           ter(100x50mm,L)         Shinwa         12101         -         SAR           tel tertifunce         HANNA         Checktemp-2         KOS-13         SAR           tel termo-Hygrometer         SATO KEIRYOKI         SK-L200THII α/ SK-L200THII α/ SK-LTHII α/-2         015246/08169         SAR           wer meter         Anritsu         ML2495A         6K00003356         Ant.pwr           wer sensor         Anritsu         MA2411B         012088         Ant.pwr           sue simulation liqud 00MHz,body)         Schmid&Partner Engineering AG         SL AAM 501 AB         110520-3         SAR           AR shiel |

The expiration date of calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards. [Test Item] SAR: Specific Absorption Rate, Ant.pwr: Antenna terminal conducted power

Page : 42 of 75 Issued date : November 24, 2011

FCC ID : YR7AERODRP2

#### Appendix 3-2: Dosimetry assessment setup

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9 m), which positions the probes with a positional repeatability of better than +/- 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetry probes EX3DV4, SN: 3679 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [2] with accuracy of better than +/-10%. The spherical isotropy was evaluated with the procedure described in [3] and found to be better than +/-0.25 dB.

Appendix 3-3: Configuration and peripherals



The DASY4 system for performing compliance tests consist of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software.
- An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset
- 3 measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital
- 4 communication to the DAE and for the analog signal from the optical surface detection.
- The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6 A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 7 A computer operating Windows XP.
- 8 DASY4 software.
- 9 Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- 10 The phantom.
- 11 The device holder for EUT. (low-loss dielectric palette)
- 12 Tissue simulating liquid mixed according to the given recipes.
- 13 Validation dipole kits allowing to validate the proper functioning of the system.

Page : 43 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## **Appendix 3-4:** System components

## 1) EX3DV4 Probe Specification

#### **Construction:**

- Symmetrical design with triangular core.
- Built-in shielding against static charges.
- PEEK enclosure material (resistant to organic solvents, e.g., DGBE).

#### Calibration (S/N 3679):

Basic broad band calibration in air.

Conversion Factors(Head and Body): 2450, 5200, 5300, 5500, 5600, 5800MHz

#### Frequency:

10 MHz to > 6GHz, Linearity:  $\pm 0.2$  dB (30MHz to 6GHz)

Directivity:

 $\pm 0.3$  dB in HSL (rotation around probe axis)

 $\pm 0.5$  dB in tissue material (rotation normal to probe axis)

#### **Dynamic Range:**

 $10\mu \text{W/g}$  to > 100 mW/g; Linearity:  $\pm 0.2 \text{ dB}$  (noise: typically  $< 1\mu \text{W/g}$ )

#### **Dimensions:**

Overall length: 330mm (Tip: 20mm) Tip diameter: 2.5mm (Body: 12mm)

Typical distance from probe tip to dipole centers: 1mm

#### Application:

High precision dosimetric measurement in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6GHz with precision of better 30%.

#### 2) Phantom (Flat type)

#### **Construction:**

A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom position and measurement grids by manually teaching three points with the robot.

## Shell Thickness:

Bottom plate: 2 ±0.2mm

#### **Dimensions:**

Bottom elliptical: 600×400mm, Depth: 190mm

# Filling Volume: Approx. 30 liters







Page : 44 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

#### **Appendix 3-5:** Test system specification

RX60L Robot

Number of Axes : 6
 Reach : 800mm
 Control Unit : CS7M
 Payload : 1.6 kg
 Repeatability : ±0.025mm
 Programming Language : V+

Manufacture : Stäubli Unimation Corp. Robot Model: RX60

**DASY4** Measurement server

• Features : 166MHz low power Pentium MMX.

32MB chipdisk and 64MB RAM Serial link to DAE (with watchdog supervision) 16 Bit A/D converter for surface detection system. Two serial links to robot (one for real-time communication which is supervised by

watchdog) Ethernet link to PC (with watchdog supervision).

Emergency stop relay for robot safety chain. Two expansion slots for future applications.

•Manufacture : Schmid & Partner Engineering AG

**Data Acquisition Electronic (DAE)** 

• Features : Signal amplifier, multiplexer, A/D converter and control logic.

Serial optical link for communication with DASY4 embedded system (fully remote controlled). 2 step probe touch detector for mechanical surface detection and emergency robot stop (not in -R

version)

•Measurement Range :  $1\mu V$  to > 200 mV (16bit resolution and two range settings: 4 mV, 400 mV)

•Input Offset voltage :  $< 1\mu V$  (with auto zero)

•Input Resistance :  $200M\Omega$  •Battery Power : >10hr of operation (with two 9V battery) •Dimension :  $60\times60\times68$ mm •Manufacture : Schmid & Partner Engineering AG

Software

•Item : Dosimetric Assessment System DASY4

•Software version No. : DASY4, V4.7 B80 •Manufacture / Origin : Schmid & Partner Engineering AG

**E-Field Probe** 

•Model : EX3DV4 (sn: 3679) •Construction : Symmetrical design with triangular core

•Frequency : 10MHz to 6GHz •Linearity : ±0.2dB (30MHz to 6GHz)

•Manufacture : Schmid & Partner Engineering AG

Phantom

•Type : ELI 4.0 oval flat phantom •Shell Material : Fiberglass

•Shell Thickness : Bottom plate: 2 ±0.2mm •Dimensions : Bottom elliptical: 600×400mm, Depth: 190mm

•Manufacture : Schmid & Partner Engineering AG

Page : 45 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## **Appendix 3-6: Simulated tissue composition**

| Inquedient                      | Mixture (%)                               |
|---------------------------------|-------------------------------------------|
| Ingredient                      | <b>Body 5800MHz</b> (type: SL AAM 501 AB) |
| Water                           | 60-80 %                                   |
| Esters, Emulsifiers, Inhibitors | 20-40 %                                   |
| Sodium salt                     | 0-1.5 %                                   |
| Manufacture                     | Schmid&Partner Engineering AG             |

#### **Appendix 3-7:** Simulated tissue parameter confirmation

The dielectric parameters were checked prior to assessment using the 85070E dielectric probe kit. The dielectric parameters measurement is reported in each correspondent section.

|            | Dielectric parameter measurement results |                    |          |        |                       |       |                               |              |         |          |           |       |           |       |
|------------|------------------------------------------|--------------------|----------|--------|-----------------------|-------|-------------------------------|--------------|---------|----------|-----------|-------|-----------|-------|
|            | Freq.                                    | Emag Ambient Liq.1 |          | Liq.T. | Liq.T.[deg.C.] Liquid |       |                               | Target value |         |          | Deviation | Limit | Deviation | Limit |
| Date       | [MHz]                                    | Temp               | Humidity | Before | After                 | Depth | Parameters                    | #1:Std.      | #2:Cal. | Measured | for#1     | [%]   | for #2    | [%]   |
|            |                                          | [deg.C.]           | [%RH]    |        |                       | [mm]  |                               | (*1)         | (*2)    |          | (Std.)[%] |       | (Cal.)[%] | (*2)  |
| August 23, | 5200                                     | 23.9               | 60       | 24.0   | 24.0                  | (149) | Relative permittivity: ɛr [-] | 49.01        | 47.2    | 49.56    | +1.1      | ±5    | +5.0      | ±6    |
| 2011       | 3200                                     | 23.9               | 00       | 24.0   | 24.0                  | (149) | Conductivity: σ [S/m]         | 5.299        | 5.37    | 5.468    | +3.2      | ±5    | +1.8      | ±6    |
| August 24, | 5800                                     | 23.6               | 60       | 23.5   | 23.5                  | (149) | Relative permittivity: ɛr [-] | 48.20        | 46.2    | 48.46    | +0.5      | ±5    | +4.9      | ±6    |
| 2011       | 3800                                     | 23.0               | 00       | 23.3   | 23.3                  | (149) | Conductivity: σ [S/m]         | 6.000        | 6.16    | 6.287    | +4.8      | ±5    | +2.1      | ±6    |
| Nov.21&22, | 5500                                     | 23.9               | 52       | 23.0   | 23.0                  | (145) | Relative permittivity: ɛr [-] | 48.61        | 46.6    | 49.31    | +1.4      | ±5    | +5.8      | ±6    |
| 2011       | 5500                                     | 23.9               | 32       | 23.0   | 23.0                  | (143) | Conductivity: σ [S/m]         | 5.650        | 5.75    | 5.861    | +3.7      | ±5    | +1.9      | ±6    |

<sup>\*1.</sup> The target value is a parameter defined in OET65, Supplement C.

#### \*. Decision on Simulated Tissues of 5200MHz and SAR tested frequencies of 5GHz band.

In the current standards (e.g., IEEE 1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given at 3000MHz and 5800MHz. As an intermediate solution, dielectric parameters for the frequencies between 5180 to 5800 MHz were obtained using linear interpolation. Furthermore, dielectric parameters for the frequencies above 5800MHz were obtained using linear extrapolation. Therefore the dielectric parameters of 5200 and 5500MHz (the frequency for the validation), and other SAR tested frequencies in listed below were decided as following.

Standard and interpolated dielectric parameters for head and body tissue simulating liquid in the frequency range 3000 to 5825MHz.

| f (MHz)   | Head | Tissue  | Body  | Tissue  | Reference    |  |
|-----------|------|---------|-------|---------|--------------|--|
| I (MIIIZ) | er . | σ [S/m] | er    | σ [S/m] | Reference    |  |
| 3000      | 38.5 | 2.40    | 52.0  | 2.73    | Standard     |  |
| 5800      | 35.3 | 5.27    | 48.2  | 6.00    | Standard     |  |
| 5180      | -    | -       | 49.04 | 5.276   | Interpolated |  |
| 5200      | -    | -       | 49.01 | 5.299   | Interpolated |  |
| 5240      | -    | -       | 48.96 | 5.346   | Interpolated |  |
| 5260      | -    | -       | 48.93 | 5.369   | Interpolated |  |
| 5300      | -    | -       | 48.88 | 5.416   | Interpolated |  |
| 5500      | -    | -       | 48.61 | 5.650   | Interpolated |  |

| f (MHz)  | Head | Tissue  | Body  | Tissue  | Reference    |
|----------|------|---------|-------|---------|--------------|
| I (MIHZ) | ٤r   | σ [S/m] | ٤r    | σ [S/m] | Reference    |
| 5520     | 1    | -       | 48.58 | 5.673   | Interpolated |
| 5580     | 1    | -       | 48.50 | 5.743   | Interpolated |
| 5600     | -    | -       | 48.47 | 5.766   | Interpolated |
| 5620     | -    | -       | 48.44 | 5.790   | Interpolated |
| 5680     | -    | -       | 48.36 | 5.860   | Interpolated |
| 5745     | -    | -       | 48.27 | 5.936   | Interpolated |
| 5785     |      | -       | 48.22 | 5.982   | Interpolated |
| 5825     | _    | -       | 48 17 | 6.029   | Extrapolated |

<sup>\*2</sup> For 5200MHz and 5800MHz, the target value and limit are parameter defined in the calibration data sheet of D5GHzV2 (sn:1070) dipole calibrated by Schmid & Partner Engineering AG (Certification No. D5GHzV2-1070\_Feb11, the data sheet was filed in this report.).

: YR7AERODRP2

Page : 46 of 75

Issued date : November 24, 2011 FCC ID

## Appendix 3-8: System validation data

Prior to the SAR assessment of EUT, the system validation kit was used to test whether the system was operating within its specifications of  $\pm 10\%$ . The validation results are in the table below.

|                    | System validation results |                           |                  |                   |        |         |         |        |              |              |        |                  |                           |            |       |
|--------------------|---------------------------|---------------------------|------------------|-------------------|--------|---------|---------|--------|--------------|--------------|--------|------------------|---------------------------|------------|-------|
| Date               | _                         | Freq. Liquid<br>MHz] Type | Aml              | bient             | Liquid | Temp. [ | deg.C.1 | Liquid | Permittivity | Conductivity | Power  |                  | n dipole validation targe | et & measu | ıred  |
|                    |                           |                           | Т                | 11                | -      |         |         | Depth  | measured     | measured     | drift  |                  | 1g [W/kg] (at 1W)         | Deviation  | Limit |
|                    | [WILIZ]                   |                           | Temp<br>[deg.C.] | Humidity<br>[%RH] | Check  | Before  | After   | [mm]   | εr [-]       | σ[S/m]]      | [dB]   | Target value     | Measured (*4)             | [%]        | [%]   |
| August 23,<br>2011 | 5200                      | Body                      | 24.5             | 55                | 24.0   | 23.6    | 23.5    | 149    | 49.6         | 5.47         | -0.047 | <b>77.1</b> (*3) | 80.4<br>(8.04 (at 100mW)) | +4.3       | ±10   |
| August 24,<br>2011 | 5800                      | Body                      | 23.8             | 57                | 23.5   | 23.3    | 23.3    | 149    | 48.5         | 6.29         | -0.010 | <b>72.4</b> (*3) | 70.6<br>(7.06 (at 100mW)) | -2.5       | ±10   |
| Nov. 21,<br>2011   | 5500                      | Body                      | 24.3             | 43                | 23.0   | 22.7    | 22.6    | 145    | 49.3         | 5.86         | -0.081 | <b>82.7</b> (*3) | 81.4<br>(8.14 (at 100mW)) | -1.6       | ±10   |
| Nov. 22,<br>2011   | 5500                      | Body                      | 24.0             | 43                | 23.0   | 22.1    | 22.1    | 145    | 49.3         | 5.86         | -0.076 | <b>82.7</b> (*3) | 82.1<br>(821 (at 100mW))  | -0.7       | ±10   |

- Note: Refer to Appendix 3-9 Validation measurement data for the above result representation in plot data.

  \*3. The target value is a parameter defined in the calibration data sheet of D5GHzV2(sn:1070) dipole calibrated by Schmid & Partner Engineering AG (Certification No. D5GHzV2-1070\_Feb11, the data sheet was filed in this report.).
- \*4. The measurement value was normalized to 1W forward power.



Test setup for the system performance check

: 47 of 75 Page

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

#### Appendix 3-9: Validation measurement data

(August 23, 2011) 5200MHz system check (Body) / Forward conducted power: 100mW

EUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1070

Communication System: CW; Frequency: 5200 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used(24.0deg.C.): f = 5200 MHz;  $\sigma = 5.47 \text{ S/m}$ ;  $\varepsilon_r = 49.6$ ;  $\rho = 1000 \text{ kg/m}^3$ 

DASY4 Configuration: - Probe: EX3DV4 - SN3679; ConvF(4.1, 4.1, 4.1); Calibrated: 2011/05/19

- Electronics: DAE4 Sn626; Calibrated: 2011/02/10 - Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

-Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan: (61x61x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 16.9 mW/g Z Scan (1x1x10): Measurement grid: dx=20mm, dy=20mm, dz=2mm; Maximum value of SAR (measured) = 15.6 mW/g

Zoom Scan:28x28x22.5stp4/2.5 (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 60.0 V/m; Power Drift = -0.047 dB, Maximum value of SAR (measured) = 15.6 mW/g

Peak SAR (extrapolated) = 30.2 W/kg (-2.8%, vs. speag-cal.=31.1 W/kg)

#### SAR(1 g) = 8.04 mW/g (+4.3%, vs. speag-cal. = 7.71 mW/g); SAR(10 g) = 2.29 mW/g



#### Additional information:

- \*.position: distance of dipole to phantom: 8mm (10mm to liquid), liquid depth: 149mm
- \*.âmbient: 24.5deg.C/55 %RH; liquid temperature: (before) 23.6 deg.C./(after) 23.5 deg.C.
- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*. Tested by: Hiroshi Naka / Tested place: No. 7 shielded room / Date tested: August 23, 2011

## (August 24, 2011) 5800MHz system check (Body) / Forward conducted power: 100mW

EUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1070

Communication System: CW; Frequency: 5800 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used(23.5deg,C.): f = 5800 MHz;  $\sigma = 6.29 \text{ S/m}$ ;  $\epsilon_r = 49.5$ ;  $\rho = 1000 \text{ kg/m}^3$ 

DASY4 Configuration: - Probe: EX3DV4 - SN3679; ConvF(3.94, 3.94, 3.94); Calibrated: 2011/05/19

- Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn626; Calibrated: 2011/02/10

- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

-Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan: (61x61x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 15.4 mW/g Z Scan (1x1x10): Measurement grid: dx=20mm, dy=20mm, dz=2mm; Maximum value of SAR (measured) = 14.5 mW/g

Zoom Scan:28x28x22.5stp4/2.5 (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 55.1 V/m; Power Drift = -0.010 dB, Maximum value of SAR (measured) = 14.7 mW/g

Peak SAR (extrapolated) = 29.4 W/kg (-10.9%, vs.speag-cal.=33.0 W/kg)

### SAR(1 g) = 7.06 mW/g (-2.5%, vs. speag-cal. = 7.24 mW/g); SAR(10 g) = 1.96 mW/g



#### Additional information:

- \*.position: distance of dipole to phantom: 8mm (10mm to liquid), liquid depth: 149mm
- \*.ambient: 23.8deg.C/57 %RH; liquid temperature: (before) 23.3 deg.C./(after) 23.3 deg.C.
- \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*. Tested by: Hiroshi Naka / Tested place: No. 7 shielded room / Date tested: August 24, 2011

Page : 48 of 75 Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## Appendix 3-9: Validation measurement data (cont'd)

#### (November 21, 2011) 5500MHz system check (Body) / Forward conducted power: 100mW

#### EUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1070

Communication System: CW; Frequency: 5500 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used (23.0deg,C.): f = 5500 MHz;  $\sigma = 5.86 \text{ S/m}$ ;  $\epsilon_r = 49.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

DASY4 Configuration: - Probe: EX3DV4 - SN3679; ConvF(3.65, 3.65, 3.65); Calibrated: 2011/05/19

- Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn626; Calibrated: 2011/02/10

-Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan:60x60,10 (61x61x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 17.1 mW/g Z Scan (1x1x10): Measurement grid: dx=20mm, dy=20mm, dz=2mm; Maximum value of SAR (measured) = 16.5 mW/g

**Zoom Scan:28x28x22.5,4/2-r1.5 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 60.7 V/m; Power Drift = -0.081 dB, Maximum value of SAR (measured) = 16.7 mW/g

Peak SAR (extrapolated) = 31.4 W/kg (-11.8%, vs. speag-cal.=35.6 W/kg)

## SAR(1 g) = 8.14 mW/g (-1.6%, vs. speag-cal. = 8.27 mW/g); SAR(10 g) = 2.29 mW/g



additional information:

- \*.position: distance of dipole to phantom: 8mm (10mm to liquid), liquid depth: 145mm; \*.ambient: 24.3deg..C / 43 %RH;
- \*liquid temperature: (before) 22.7 deg C. /(after) 22.6 deg C.; \*.white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*.Tested by: Hiroshi Naka / Tested place: No.7 shielded room / Date tested: November 21, 2011

#### (November 22, 2011) 5500MHz system check (Body) / Forward conducted power: 100mW

#### EUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1070

Communication System: CW; Frequency: 5500 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used (23.0deg.C.): f = 5500 MHz;  $\sigma = 5.86$  S/m;  $\epsilon_r = 49.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

DASY4 Configuration: - Probe: EX3DV4 - SN3679; ConvF(3.65, 3.65, 3.65); Calibrated: 2011/05/19

- -Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn626; Calibrated: 2011/02/10
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan:60x60,10 (61x61x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (interpolated) = 17.5 mW/g

Z Scan (1x1x10): Measurement grid: dx=20mm, dy=20mm, dz=2mm; Maximum value of SAR (measured) = 17.0 mW/g

**Zoom Scan:28x28x22.5,4/2-r1.5 (8x8x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm;

Reference Value = 61.5 V/m; Power Drift = -0.076 dB, Maximum value of SAR (measured) = 15.7 mW/g

Peak SAR (extrapolated) = 31.6 W/kg (-11.2%, vs. speag-cal.=35.6 W/kg)

#### SAR(1 g) = 8.21 mW/g (-0.7%, vs. speag-cal. = 8.27 mW/g); SAR(10 g) = 2.31 mW/g



additional information:

- \*.position: distance of dipole to phantom: 8mm (10mm to liquid), liquid depth: 145mm; \*.ambient: 24.0deg..C / 43 %RH;
- \*.liquid temperature: (before) 22.1 deg.C. /(after) 22.1 deg.C.; \*white cubic: zoom scan area, red big cubic: SAR(10g), red small cubic: SAR(1g)
- \*. Tested by: Hiroshi Naka/Tested place:No.7 shielded room/Date tested: November 22, 2011

Page : 49 of 75

Issued date : November 24, 2011

FCC ID : YR7AERODRP2

## **Appendix 3-10: Validation uncertainty**

| Uncertainty of SAR measurement system                            | 5~6 GHz |         |  |  |
|------------------------------------------------------------------|---------|---------|--|--|
| /Validation                                                      | 1g SAR  | 10g SAR |  |  |
| combined measurement uncertainty of the measurement system (k=1) | ± 12.1% | ± 11.9% |  |  |
| expanded uncertainty (k=2)                                       | ± 24.2% | ± 23.7% |  |  |

|    | Error Description                               | Uncertainty<br>Value | Probability<br>distribution | Divisor    | ci<br>(1g) | ci<br>(10g) | ui<br>(1g)         | ui<br>(10g)       | vi, veff |
|----|-------------------------------------------------|----------------------|-----------------------------|------------|------------|-------------|--------------------|-------------------|----------|
| A  | Measurement System                              |                      |                             |            | (-8/       | (= "8/      | (std. uncertainty) | (std.uncertainty) |          |
| 1  | Probe calibration                               | ±6.8 %               | Normal                      | 1          | 1          | 1           | ±6.8 %             | ±6.8 %            | $\infty$ |
| 2  | Axial isotropy                                  | ±4.7 %               | Rectangular                 | √3         | 0.7        | 0.7         | ±1.9 %             | ±1.9 %            | $\infty$ |
| 3  | Hemispherical isotropy (*flat phantom, <5°)     | ±2.6 %               | Rectangular                 | √3         | 0.7        | 0.7         | ±1.1 %             | ±1.1 %            | $\infty$ |
| 4  | Boundary effects                                | ±2.0 %               | Rectangular                 | $\sqrt{3}$ | 1          | 1           | ±1.2 %             | ±1.2 %            | $\infty$ |
| 5  | Probe linearity                                 | ±4.7 %               | Rectangular                 | $\sqrt{3}$ | 1          | 1           | ±2.7 %             | ±2.7 %            | $\infty$ |
| 6  | System detection limit                          | ±1.0 %               | Rectangular                 | √3         | 1          | 1           | ±0.6 %             | ±0.6 %            | $\infty$ |
| 7  | System readout electronics                      | ±0.3 %               | Normal                      | 1          | 1          | 1           | ±0.3 %             | ±0.3 %            | $\infty$ |
| 8  | Response time                                   | ±0.8 %               | Rectangular                 | $\sqrt{3}$ | 1          | 1           | ±0 %               | ±0 %              | 00       |
| 9  | Integration time                                | ±2.6 %               | Rectangular                 | $\sqrt{3}$ | 1          | 1           | ±0 %               | ±0 %              | ∞        |
| 10 | RF ambient - noise                              | ±3.0 %               | Rectangular                 | $\sqrt{3}$ | 1          | 1           | ±1.7 %             | ±1.7 %            | $\infty$ |
| 11 | RF ambient - reflections                        | ±3.0 %               | Rectangular                 | √3         | 1          | 1           | ±1.7 %             | ±1.7 %            | $\infty$ |
| 12 | Probe positioner mechanical tolerance           | ±0.8 %               | Rectangular                 | $\sqrt{3}$ | 1          | 1           | ±0.5 %             | ±0.5 %            | $\infty$ |
| 13 | Probe positioning with respect to phantom shell | ±9.9 %               | Rectangular                 | $\sqrt{3}$ | 1          | 1           | ±5.7 %             | ±5.7 %            | ∞        |
| 14 | Max.SAR evaluation                              | ±4.0 %               | Rectangular                 | $\sqrt{3}$ | 1          | 1           | ±2.3 %             | ±2.3 %            | $\infty$ |
| В  | Dipole                                          |                      |                             |            |            |             |                    |                   |          |
| 15 | Dipole axis to liquid distance                  | ±2.0 %               | Rectangular                 | $\sqrt{3}$ | 1          | 1           | ±1.2 %             | ±1.2%             | $\infty$ |
| 16 | Input power and SAR drift measurement           | ±4.7 %               | Normal                      | 1          | 1          | 1           | ±4.7 %             | ±4.7 %            | ∞        |
| C  | Phantom and Setup                               |                      |                             |            |            |             |                    |                   |          |
| 17 | Phantom uncertainty                             | ±4.0 %               | Rectangular                 | √3         | 1          | 1           | ±2.3 %             | ±2.3 %            | $\infty$ |
| 18 | Liquid conductivity (target)                    | ±5.0 %               | Rectangular                 | √3         | 0.64       | 0.43        | ±1.8 %             | ±1.2 %            | $\infty$ |
| 19 | Liquid conductivity (meas.)                     | ±3.0 %               | Normal                      | 1          | 0.64       | 0.43        | ±1.9 %             | ±1.3 %            | $\infty$ |
| 20 | Liquid permittivity (target)                    | ±5.0 %               | Rectangular                 | $\sqrt{3}$ | 0.6        | 0.49        | ±1.7 %             | ±1.4 %            | $\infty$ |
| 21 | Liquid permittivity (meas.)                     | ±3.2 %               | Normal                      | 1          | 0.6        | 0.49        | ±1.9 %             | ±1.6 %            | × ×      |
|    | Combined Standard Uncertainty                   |                      |                             |            |            |             | ±12.1 %            | ±11.9 %           | $\infty$ |
|    | Expanded Uncertainty (k=2)                      |                      |                             |            |            |             | ±24.2 %            | ±23.7 %           |          |

<sup>\*.</sup> This measurement uncertainty budget is suggested by Schmid & Partner Engineering AG. [6]