

# ARNSat



### A fully comprehensive implementation of a 32 bit microsatellite

## **Project Goals**

https://github.com/solderneer/ARMsat



#### 32-bit microsatellite

. Improve performance . Faster loop time



#### **Durable frame**

. Capable of carrying a payload . Light and compact



#### **User-friendly ground station**

- . Self-sufficient control unit
- . Complementary desktop app

# Design of hardware components



**Ventilation** Holes to allow for better ventilation





**Magnetic latch** Increased electronics accessibility

## **Electronics**

**Primary MCU:** Nucleo F411RE, Arduino Fio

Onboard sensors: BMP085, TMP102, HIH-4030,

GP2Y1010AU0F, MD0550

Additional Peripherals: MicroSD card slot, XBee Pro

**Constructed a DIY Nucleo-64 shield** 

- . Easily removable
- . One mounting point
- . Components of headers
- . Modularized



**Electronics Design** 

Results



**Ground Station interface** 

## **Software Design**

**Pan-tilt system** 

2 SG90 servos

5g ultralight camera

- . Firmware coded in embedded C
  - . Custom libraries and drivers
  - . More low level control
- . App coded in HTML, CSS and Javascript
  - Electron.js cross platform compatibility
  - . NPM modules for functionality





**Altitude graph** 



**Temperature graph** 



**Pressure graph** 



**Humidity graph**