Lineární Algebra 2 - NMAI058

LS 2019/2020

Mgr. Pavel Hubáček, Ph.D.

18. 2. 2020

https://iuuk.mff.cuni.cz/~hubacek/LA2

Lineární Algebra 2

- skalární součin
- determinanty
- vlastní čísla
- positivně (semi)definitiní matice
- kvadratické formy

Dnes

skalární součin

Definice 8.2 - Skalární součin nad R

Buď V vektorový prostor nad \mathbb{R} .

Pak skalární součin je zobrazení $\langle\cdot,\cdot\rangle\colon V^2\to\mathbb{R}$, splňující $\forall x,y,z\in V$, $\forall \alpha\in\mathbb{R}$:

- 1. $\langle x, x \rangle \geq 0$ a rovnost nastane pouze pro x = 0,
- 2. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$,
- 3. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$,
- 4. $\langle x, y \rangle = \langle y, x \rangle$.

Definice 8.3 - Skalární součin nad C

Buď V vektorový prostor nad \mathbb{C} .

Pak skalární součin je zobrazení $\langle\cdot,\cdot\rangle\colon V^2\to\mathbb{C}$, splňující $\forall x,y,z\in V$, $\forall \alpha\in\mathbb{C}$:

- 1. $\langle x, x \rangle \ge 0$ a rovnost nastane pouze pro x = 0,
- 2. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$,
- 3. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$,
- 4. $\langle x, y \rangle = \overline{\langle y, x \rangle}$.

Příklady skalárních součinů

• V prostoru \mathbb{R}^n :

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i .$$

• V prostoru \mathbb{C}^n :

$$\langle x, y \rangle = x^T \overline{y} = \sum_{i=1}^n x_i \overline{y}_i$$
.

• V prostoru $\mathbb{R}^{m \times n}$:

$$\langle A, B \rangle = \sum_{i=1}^{m} \sum_{i=1}^{n} a_{ij} b_{ij} .$$

• V prostoru $C_{[a,b]}$:

$$\langle f,g\rangle = \int_a^b f(x)g(x)dx$$
.

Definice 8.8 - Norma indukovaná skalárním součinem

Norma indukovaná skalárním součinem je definována pro $x \in V$ jako

$$||x|| := \sqrt{\langle x, x \rangle}$$
.

Norma a skalární součin v \mathbb{R}^n

ullet Standardní skal. součin v \mathbb{R}^n indukuje eukleidovskou normu

$$||x|| = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}$$
.

• Pro vektory $x,y \in \mathbb{R}^n$ svírající úhel φ platí

$$\langle x, y \rangle = \|x\| \cdot \|y\| \cos(\varphi) .$$

Definice 8.9 - Kolmost

Vektory $x, y \in V$ jsou kolmé, pokud $\langle x, y \rangle = 0$. Značení: $x \perp y$.

Příklady kolmých vektorů

- V prostoru \mathbb{R}^3 : $(1,2,3) \perp (1,1,-1)$.
- V prostoru $C_{[-\pi,\pi]}$: $\sin x \perp \cos x \perp 1$.

Věta 8.11 - Pythagorova

Pokud $x, y \in V$ jsou kolmé, tak $||x + y||^2 = ||x||^2 + ||y||^2$.

Věta 8.13 - Cauchyho-Schwarzova nerovnost

Pro každé $x,y\in V$ platí

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$
.

Konkrétní nerovnosti pro specifické skalární součiny

 $V \mathbb{R}^n$ pro standardní skalární součin dostáváme:

$$\left(\sum_{i=1}^n x_i y_i\right)^2 \le \left(\sum_{i=1}^n x_i^2\right) \left(\sum_{i=1}^n y_i^2\right).$$

Důsledek 8.14 - Trojúhelníková nerovnost

Pro každé $x, y \in V$ platí

$$||x + y|| \le ||x|| + ||y||$$
.

Definice 8.15 - Norma

Buď V vektorový prostor nad $\mathbb R$ resp. $\mathbb C$.

Pak norma je zobrazení $\|\cdot\|\colon V\to\mathbb{R}$, splňující $\forall x,y\in V$ a $\forall \alpha\in\mathbb{R}$ resp. $\forall \alpha\in\mathbb{C}$:

- 1. $||x|| \ge 0$ a rovnost nastane pouze pro x = 0,
- $2. \|\alpha x\| = |\alpha| \cdot \|x\|,$
- 3. $||x + y|| \le ||x|| + ||y||$.

Tvrzení 8.16 - Norma indukovaná skalárním součinem

Norma indukovaná skalárním součinem je normou.

Příklady norem v \mathbb{R}^n

Pro $p=1,2,\ldots$ definujeme p-normu vektoru $x\in\mathbb{R}^n$ jako

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}.$$

• pro p = 2: eukleidovská norma

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$
,

• pro p=1: součtová norma

$$||x||_1 = \sum_{i=1}^n |x_i|$$
,

ullet pro $p=\infty$: maximová (Čebyševova) norma

$$||x||_{\infty} = \max_{i=1,\ldots,n} |x_i|.$$

Pozorování 8.20 - Rovnoběžníkové pravidlo

Pro normu indukovanou skalárním součinem platí:

$$||x - y||^2 + ||x + y||^2 = 2||x||^2 + 2||y||^2$$
.

Důsledek pro součtovou a maximovou normu

- Součtová a maximová norma nejsou indukovány žádným skalárním součinem.
- Nesplňují rovnoběžníkové pravidlo například pro $(1,0)^T$ a $(0,1)^T$.

Definice 8.21 - Metrika

Metrika na množině M je zobrazení $d: M^2 \to \mathbb{R}$, splňující pro všechna $x, y, z \in M$:

- 1. $d(x,y) \ge 0$ a rovnost nastane pouze pro x = y,
- 2. d(x, y) = d(y, x),
- 3. $d(x,z) \le d(x,y) + d(y,z)$.

Metrika indukovaná normou

- Každá norma indukuje metriku d(x, y) := ||x y||.
- Naopak tato diskrétní metrika není indukována žádnou normou:

$$d(x,y) = \begin{cases} 1, & \text{pro } x \neq y, \\ 0, & \text{pro } x = y. \end{cases}$$

1. přednáška - shrnutí

- skalární součin
 - kolmost
 - norma
 - metrika

Příští přednáška

ortonormální báze