Robust Computational Models for Water Waves

Jordan Pitt, Stephen Roberts and Christopher Zoppou Australian National University

September 3, 2018

Outline of the Presentation

- Motivation
- History
- Contribution
 - Method
 - Validation

└─Water Waves

Water Waves

└─Water Waves

Water Waves

Water wave hazards:

▶ Tsunamis

└ Motivation

Water Waves

Tsunamis

Figure: 2004 Indian Ocean Tsunami (Banda Aceh)

Motivation

└─Water Waves

Tsunamis

Figure: 2011 Tohoku Tsunami

Water Waves

Water Waves

Water wave hazards:

- ▶ Tsunamis
- Storm Surges

Storm Surges

Figure: 2012 Hurricane Sandy Storm Surge

Water Waves

Water wave hazards:

- ▶ Tsunamis
- Storm Surges

Phenomena caused by water waves:

- Nutrient Transport
- Beach Erosion
- Breakup of Sea Ice

Motivation

└─Water Waves

Computational Modelling

Goal: Model Physics On Computers

Computational Modelling

Goal: Model Physics On Computers

ANUGA

ANUGA: Water Waves

ANUGA: Shallow Water Wave Equations

ANUGA

Outcome

New project at the ANU to develop a robust computational model for the Serre equations.

Outcome

New project at the ANU to develop a robust computational model for the Serre equations.

Goal:

Serre Model

Mathematical Model

Typical Scenario

Navier Stokes Model

Serre Model

∟Serre Model

Assumptions

Assumptions

Quantity	Shallow Water Wave Equations	Serre Equations
Particle: $v'(x, z, t)$	0	$u\frac{\partial b}{\partial x}-(z-b)\frac{\partial b}{\partial x}$

Assumptions

Quantity	Shallow Water Wave Equations	Serre Equations
Particle: $v'(x, z, t)$	0	$u\frac{\partial b}{\partial x} - (z - b)\frac{\partial b}{\partial x}$
Particle: $p'(x, z, t)$	glpha	$g\alpha + \alpha \Psi + \frac{1}{2}\alpha \left(2h - \xi\right) \Phi$

where

$$\alpha(x,z,t)=(h(x,t)+b(x))-z$$

Assumptions

Quantity	Shallow Water Wave Equations	Serre Equations
Particle: $v'(x, z, t)$	0	$u\frac{\partial b}{\partial x}-(z-b)\frac{\partial b}{\partial x}$
Particle: $p'(x, z, t)$	extstyle g lpha	$g\alpha + \alpha \Psi + \frac{1}{2}\alpha \left(2h - \xi\right) \Phi$

where

$$\alpha(x, z, t) = (h(x, t) + b(x)) - z$$

and

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

Equations

Mass:
$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0$$
,

Momentum:
$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x} \left(u^2 h + \frac{gh^2}{2} + \frac{h^2}{2} \Psi + \frac{h^3}{3} \Phi \right)$$

$$+\frac{\partial b}{\partial x}\left(gh+h\Psi+\frac{h^2}{2}\Phi\right)=0.$$

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

Serre Model

Pros and Cons

Pros:

- Includes dispersive effects
- Considered one of the best models for water waves
- Can apply techniques of ANUGA

Cons:

More complex than the Shallow Water Wave Equations

Computational Model

Previous Work at the ANU

- 2014: Chris Zoppou's PhD thesis Demonstrated computational model for the 1D Serre equations.
- 2014: My Honours thesis Independent reproduction of Chris Zoppou's computational model

Previous Work at the ANU

- 2014: Chris Zoppou's PhD thesis
 Demonstrated computational model for the 1D Serre equations.
- 2014: My Honours thesis Independent reproduction of Chris Zoppou's computational model

Open problems:

2D: Extension of the method to 2D equations

Robust: Validation for steep gradients in free surface

Robust: Inclusion and validation of dry beds

Thesis Goals

Solve these open problems:

2D: 1D method that extends well to 2D

Robust: Validation for steep gradients in free surface

Robust: Inclusion and validation of dry beds

Thesis Goals

Solve these open problems:

2D: 1D method that extends well to 2D

Robust: Validation for steep gradients in free surface

Robust: Inclusion and validation of dry beds

Technique: Develop a robust computational model from the 1D

Serre equations that can be easily extended to 2D.

Method

- ► Finite Volume Method (ANUGA)
- ► Finite Element Method

Thesis: Method

Finite Volume Method

Finite Volume Method

2D: Extends well to 2D

Robust: Stable in the presence of steep gradients

Robust: Stable in the presence of dry beds

Maintains conservation properties of the equations

Thesis: Method

Finite Volume Method

Finite Volume Method

2D: Extends well to 2D

Robust: Stable in the presence of steep gradients

Robust: Stable in the presence of dry beds

Maintains conservation properties of the equations

Chris Zoppou's thesis demonstrated an adaptation of the Finite Volume Method to solve the Serre Equations.

Equations

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x}\left(u^2h + \frac{gh^2}{2} + \frac{h^2}{2}\Psi + \frac{h^3}{3}\Phi\right) + \frac{\partial b}{\partial x}\left(gh + h\Psi + \frac{h^2}{2}\Phi\right) = 0$$

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

Equations

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x}\left(u^2h + \frac{gh^2}{2} + \frac{h^2}{2}\Psi + \frac{h^3}{3}\Phi\right) + \frac{\partial b}{\partial x}\left(gh + h\Psi + \frac{h^2}{2}\Phi\right) = 0$$

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

For a Finite Volume Method we require equations in the form

$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} + s(q) = 0$$

Finite Volume Method Equations

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

 $\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x}\left(u^2h + \frac{gh^2}{2} + \frac{h^2}{2}\Psi + \frac{h^3}{3}\Phi\right) + \frac{\partial b}{\partial x}\left(gh + h\Psi + \frac{h^2}{2}\Phi\right) = 0$

For a Finite Volume Method we require equations in the form

$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} + s(q) = 0$$

Equations

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x}\left(u^2h + \frac{gh^2}{2} + \frac{h^2}{2}\Psi + \frac{h^3}{3}\Phi\right) + \frac{\partial b}{\partial x}\left(gh + h\Psi + \frac{h^2}{2}\Phi\right) = 0$$

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

For a Finite Volume Method we require equations in the form

$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} + s(q) = 0$$

Finite Volume Method

Equations

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x}\left(u^2h + \frac{gh^2}{2} + \frac{h^2}{2}\Psi + \frac{h^3}{3}\Phi\right) + \frac{\partial b}{\partial x}\left(gh + h\Psi + \frac{h^2}{2}\Phi\right) = 0$$

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

For a Finite Volume Method we require equations in the form

$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} + s(q) = 0$$

Reformulation

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\frac{\partial G}{\partial t} + \frac{\partial}{\partial x} \left(uG + \frac{gh^2}{2} - \frac{2}{3}h^3 \left[\frac{\partial u}{\partial x} \right]^2 + h^2 u \frac{\partial u}{\partial x} \frac{\partial b}{\partial x} \right) + \frac{1}{2}h^2 u \frac{\partial u}{\partial x} \frac{\partial^2 b}{\partial x^2} - hu^2 \frac{\partial b}{\partial x} \frac{\partial^2 b}{\partial x^2} + gh \frac{\partial b}{\partial x} = 0.$$

with

$$G = hu \left(1 + \frac{\partial h}{\partial x} \frac{\partial b}{\partial x} + \frac{1}{2} h \frac{\partial^2 b}{\partial x^2} + \left[\frac{\partial b}{\partial x} \right]^2 \right) - \frac{\partial}{\partial x} \left(\frac{1}{3} h^3 \frac{\partial u}{\partial x} \right).$$

Zoppou, C. (2014). Numerical Solution of the One-dimensional and Cylindrical Serre Equations for Rapidly Varying Free Surface Flows. PhD thesis, Australian National University.

Reformulation

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\frac{\partial G}{\partial t} + \frac{\partial}{\partial x} \left(uG + \frac{gh^2}{2} - \frac{2}{3}h^3 \left[\frac{\partial u}{\partial x} \right]^2 + h^2 u \frac{\partial u}{\partial x} \frac{\partial b}{\partial x} \right)$$
$$+ \frac{1}{2}h^2 u \frac{\partial u}{\partial x} \frac{\partial^2 b}{\partial x^2} - hu^2 \frac{\partial b}{\partial x} \frac{\partial^2 b}{\partial x^2} + gh \frac{\partial b}{\partial x} = 0.$$

with

$$G = hu \left(1 + \frac{\partial h}{\partial x} \frac{\partial b}{\partial x} + \frac{1}{2} h \frac{\partial^2 b}{\partial x^2} + \left[\frac{\partial b}{\partial x} \right]^2 \right) - \frac{\partial}{\partial x} \left(\frac{1}{3} h^3 \frac{\partial u}{\partial x} \right).$$

Zoppou, C. (2014). Numerical Solution of the One-dimensional and Cylindrical Serre Equations for Rapidly Varying Free Surface Flows. PhD thesis, Australian National University.

Finite Volume Method

Finite Volume Method Example

Conservation equations with a source term:

$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} + s(q) = 0$$

Finite Volume Method

Function at $t = t^0$

Finite Volume Method

Cell Discretisation

Finite Volume Method

Total Amount

Finite Volume Method

Flux Left

Finite Volume Method

Flux Right

Finite Volume Method

Source

$$\overline{q}_{2}^{1}=\overline{q}_{2}^{0}-\left(F_{rac{5}{2}}^{0}-F_{rac{3}{2}}^{0}
ight)-\left(S_{2}^{0}
ight)$$

$$\overline{q}_{2}^{1} = \overline{q}_{2}^{0} - \left(F_{\frac{5}{2}}^{0} - F_{\frac{3}{2}}^{0}\right) - \left(S_{2}^{0}\right)$$
$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} + s(q) = 0$$

$$\overline{q}_{2}^{1} = \overline{q}_{2}^{0} - \left(F_{\frac{5}{2}}^{0} - F_{\frac{3}{2}}^{0}\right) - \left(S_{2}^{0}\right)$$
$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} + s(q) = 0$$

Finite Volume Method

$$\overline{q}_2^1 = \overline{q}_2^0 - \left(F_{\frac{5}{2}}^0 - F_{\frac{3}{2}}^0\right) - \left(S_2^0\right)$$
$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} + s(q) = 0$$

$$\int_{C_{2}} q(x, t^{1}) dx - \int_{C_{2}} q(x, t^{0}) dx + \left(\int_{t^{0}}^{t^{1}} f(q(x_{5/2}, t)) dt \right) - \int_{t^{0}}^{t^{1}} f(q(x_{3/2}, t)) dt + \int_{t^{0}}^{t^{1}} \int_{C_{2}} s(q(x, t)) dt$$

Finite Volume Method

$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} + s(q) = 0$$

$$\int_{C_{2}} q(x, t^{1}) dx - \int_{C_{2}} q(x, t^{0}) dx + \left(\int_{t^{0}}^{t^{1}} f(q(x_{5/2}, t)) dt \right) - \int_{t^{0}}^{t^{1}} f(q(x_{3/2}, t)) dt + \int_{t^{0}}^{t^{0}} \int_{C_{2}} s(q(x, t)) dt$$

$$\overline{q}_{2}^{1} = \overline{q}_{2}^{0} - \left(F_{\frac{5}{2}}^{0} - F_{\frac{3}{2}}^{0} \right) - \left(S_{2}^{0} \right)$$

Update Formula for Serre Equations

$$\overline{h}_{j}^{n+1} = \overline{h}_{j}^{n} - \left[F_{j+1/2}^{n} - F_{j-1/2}^{n} \right]$$
$$\overline{G}_{j}^{n+1} = \overline{G}_{j}^{n} - \left[F_{j+1/2}^{n} - F_{j-1/2}^{n} \right] - S_{j}^{n}$$

Update Formula for Serre Equations

$$\overline{h}_j^{n+1} = \overline{h}_j^n - \left[F_{j+1/2}^n - F_{j-1/2}^n \right]$$

$$\overline{G}_j^{n+1} = \overline{G}_j^n - \left[F_{j+1/2}^n - F_{j-1/2}^n \right] - S_j^n$$

▶ All the fluxes $F_{j+1/2}^n$ and $F_{j-1/2}^n$ and the source term S_j^n require u at t^n

Calculate Velocity

$$G = hu \left(1 + \frac{\partial h}{\partial x} \frac{\partial b}{\partial x} + \frac{1}{2} h \frac{\partial^2 b}{\partial x^2} + \left[\frac{\partial b}{\partial x} \right]^2 \right) - \frac{\partial}{\partial x} \left(\frac{1}{3} h^3 \frac{\partial u}{\partial x} \right).$$

¹Zoppou, C. (2014). Numerical Solution of the One-dimensional and Cylindrical Serre Equations for Rapidly Varying Free Surface Flows. PhD thesis, Australian National University.

Calculate Velocity

$$G = hu \left(1 + \frac{\partial h}{\partial x} \frac{\partial b}{\partial x} + \frac{1}{2} h \frac{\partial^2 b}{\partial x^2} + \left[\frac{\partial b}{\partial x} \right]^2 \right) - \frac{\partial}{\partial x} \left(\frac{1}{3} h^3 \frac{\partial u}{\partial x} \right).$$

- Previously used a Finite Difference Method ¹
- ► Contribution: use a Finite Element Method

¹Zoppou, C. (2014). Numerical Solution of the One-dimensional and Cylindrical Serre Equations for Rapidly Varying Free Surface Flows. PhD thesis, Australian National University.

Finite Element Method

Finite Element Method

2D: Extends well to 2D

Robust: Stable in the presence of steep gradients

Maintains conservation properties

Finite Flement Method

Finite Element Method Example

Example:

$$-\frac{\partial^2 u}{\partial x^2} = f$$

Finite Element Method Example

Example:

$$-\frac{\partial^2 u}{\partial x^2} = f$$

Weak Form:

$$-\int_{\Omega} \frac{\partial^2 u}{\partial x^2} v \ dx = \int_{\Omega} f v \ dx$$

Finite Element Method Example

Example:

$$-\frac{\partial^2 u}{\partial x^2} = f$$

Weak Form:

$$-\int_{\Omega} \frac{\partial^2 u}{\partial x^2} v \ dx = \int_{\Omega} f v \ dx$$

Integrate by parts

$$\int_{\Omega} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} \ dx = \int_{\Omega} fv \ dx$$

Finite Element Method

$$\int_{\Omega} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} \ dx = \int_{\Omega} fv \ dx$$

Finite Element Method

Finite Element Method

$$\int_{\Omega} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx = \int_{\Omega} fv dx$$

$$\sum_{j} \left[\int_{C_{j}} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx \right] = \sum_{j} \left[\int_{C_{j}} fv dx \right]$$

Finite Flement Method

Piecewise Polynomial Representation

Finite Element Method

Finite Element Method

$$\int_{\Omega} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx = \int_{\Omega} fv dx$$

$$\sum_{j} \left[\int_{C_{j}} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx \right] = \sum_{j} \left[\int_{C_{j}} fv dx \right]$$

$$\sum_{j} \left[\int_{C_{j}} \frac{\partial \hat{u}_{j}}{\partial x} \frac{\partial \hat{v}_{j}}{\partial x} dx \right] = \sum_{j} \left[\int_{C_{j}} \hat{f}_{j} \hat{v}_{j} dx \right]$$

Finite Flement Method

$$\int_{\Omega} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx = \int_{\Omega} fv dx$$

$$\sum_{j} \left[\int_{C_{j}} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx \right] = \sum_{j} \left[\int_{C_{j}} fv dx \right]$$

$$\sum_{j} \left[\int_{C_{j}} \frac{\partial \hat{u}_{j}}{\partial x} \frac{\partial \hat{v}_{j}}{\partial x} dx \right] = \sum_{j} \left[\int_{C_{j}} \hat{f}_{j} \hat{v}_{j} dx \right]$$

$$\mathbf{A} \vec{u} = \vec{c}$$

Finite Element Method

$$\int_{\Omega} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx = \int_{\Omega} f v dx$$

$$\sum_{j} \left[\int_{C_{j}} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx \right] = \sum_{j} \left[\int_{C_{j}} f v dx \right]$$

$$\sum_{j} \left[\int_{C_{j}} \frac{\partial \hat{u}_{j}}{\partial x} \frac{\partial \hat{v}_{j}}{\partial x} dx \right] = \sum_{j} \left[\int_{C_{j}} \hat{f}_{j} \hat{v}_{j} dx \right]$$

$$\mathbf{A} \vec{u} = \vec{c}$$

where

- **A** depends on \hat{v}_i
- \vec{u} determines \hat{u}_i
- $ightharpoonup \vec{c}$ depends on \hat{f}_i and \hat{v}_i

└─ Finite Element Method

Finite Element Method for Serre Equations

$$G = hu \left(1 + \frac{\partial h}{\partial x} \frac{\partial b}{\partial x} + \frac{1}{2} h \frac{\partial^2 b}{\partial x^2} + \left[\frac{\partial b}{\partial x} \right]^2 \right) - \frac{\partial}{\partial x} \left(\frac{1}{3} h^3 \frac{\partial u}{\partial x} \right)$$

Finite Element Method for Serre Equations

$$G = hu \left(1 + \frac{\partial h}{\partial x} \frac{\partial b}{\partial x} + \frac{1}{2} h \frac{\partial^2 b}{\partial x^2} + \left[\frac{\partial b}{\partial x} \right]^2 \right) - \frac{\partial}{\partial x} \left(\frac{1}{3} h^3 \frac{\partial u}{\partial x} \right)$$

$$\mathbf{A}\vec{u}=\vec{c}$$

where

- ▶ **A** depends on the polynomial representation of *h*, *b* and test function
- $ightharpoonup ec{u}$ determines the polynomial representation of u
- $ightharpoonup ec{c}$ depends on polynomial representation of G and test function

Finite Element Method

Method

Robust Computational Models for Water Waves

Thesis: Method

Finite Element Method

Progress

2D: 1D method that extends well to 2D \checkmark

Robust: Validation for steep gradients in free surface

Robust: Inclusion and validation of dry beds

Validation

- ► Steep gradients in the free surface
- Dry beds

Statement of Problem

How does this initially still body of water evolve?

[☐] Model Validation for Steep Gradients in the Flow

Our New Numerical Solution

Pitt, J., Zoppou, C., and Roberts, S. (2018). Behaviour of the Serre Equations in the Presence of Steep Gradients Revisited. Wave Motion, 76(1):6177.

Our New Numerical Solution

Pitt, J., Zoppou, C., and Roberts, S. (2018). Behaviour of the Serre Equations in the Presence of Steep Gradients Revisited. Wave Motion, 76(1):6177.

What was known

- ► No analytic solutions
- ► Some experimental comparisons ²
- Other numerical solutions from the literature

²Zoppou, C. (2014). Numerical Solution of the One-dimensional and Cylindrical Serre Equations for Rapidly Varying Free Surface Flows. PhD thesis, Australian National University.

Contribution

- Observed this new behaviour
- Demonstrated convergence
- Comprehensive review of numerical solutions from the literature

Pitt, J., Zoppou, C., and Roberts, S. (2018). Behaviour of the Serre Equations in the Presence of Steep Gradients Revisited. Wave Motion, 76(1):6177.

└ Model Validation for Steep Gradients in the Flow

Convergence

As we increase number of cells the numerical solutions should converge to the true solution

└ Model Validation for Steep Gradients in the Flow

└ Model Validation for Steep Gradients in the Flow

Model Validation for Steep Gradients in the Flow

Model Validation for Steep Gradients in the Flow

Comprehensive Review

- Demonstrated consistent behaviour across many numerical methods
- Were able to explain why the behaviour had not previously been observed

└ Model Validation for Steep Gradients in the Flow

Result

Validated our computational model when steep gradients are present in the free surface. $^{\rm 3}$

³Pitt, J., Zoppou, C., and Roberts, S. (2018). Behaviour of the Serre Equations in the Presence of Steep Gradients Revisited. Wave Motion, 76(1):6177.

☐ Model Validation for Steep Gradients in the Flow

Progress

2D: 1D method that extends well to 2D \checkmark

Robust: Validation for steep gradients in free surface \checkmark

Robust: Inclusion and validation of dry beds

Statement of Problem

Properly handle interaction of waves and the dry bed

└Solution in the Presence of Dry Beds

What was known

- ► No analytic solutions
- A variety of numerical techniques only compared to experimental data

Solution in the Presence of Dry Beds

Contribution

- Solved modified equations that did possess analytic solutions
- Compared with experimental data

Constructing Modified Equations

- ▶ Pick functions for height, velocity and bed: h^* , u^* and b^*
- Add source terms to Serre equations that force h^* , u^* and b^* to be solutions
- Validation tests

Pick Functions

Modify Equations

$$\begin{split} \frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} &= S_h^*, \\ \frac{\partial G}{\partial t} + \frac{\partial}{\partial x} \left(uG + \frac{gh^2}{2} - \frac{2}{3}h^3 \left[\frac{\partial u}{\partial x} \right]^2 + h^2 u \frac{\partial u}{\partial x} \frac{\partial b}{\partial x} \right) \\ &+ \frac{1}{2}h^2 u \frac{\partial u}{\partial x} \frac{\partial^2 b}{\partial x^2} - hu^2 \frac{\partial b}{\partial x} \frac{\partial^2 b}{\partial x^2} + gh \frac{\partial b}{\partial x} &= S_G^*. \end{split}$$

 S_h^* and S_G^* are just the LHS with the quantities replaced by their associated chosen function.

Robust Computational Models for Water Waves

_ Thesis: Validation

Solution in the Presence of Dry Beds

Results

Solution in the Presence of Dry Beds

Modified Equations Validation Conclusions

- Very strong test as all terms must be accurately approximated
- Only source of error is the method

Solution in the Presence of Dry Beds

Experimental Data

└─Solution in the Presence of Dry Beds

$$t = 30s$$

└─Solution in the Presence of Dry Beds

t = 40s

Robust Computational Models for Water Waves

Thesis: Validation

└─Solution in the Presence of Dry Beds

$$t = 50s$$

Robust Computational Models for Water Waves

__ Thesis: Validation

└─Solution in the Presence of Dry Beds

$$t = 60s$$

└─Solution in the Presence of Dry Beds

t = 70s

Experimental Validation Conclusions

- Demonstrates agreement of computational model and physical process
- Many sources of errors

Solution in the Presence of Dry Beds

Progress

2D: 1D method that extends well to 2D \checkmark

Robust: Validation for steep gradients in free surface ✓

Robust: Inclusion and validation of dry beds ✓

Solution in the Presence of Dry Beds

Conclusions

▶ Developed a Robust Computational Model from the 1D Serre equations for the 2D water wave problem

References I

Pitt, J., Zoppou, C., and Roberts, S. (2018).

Behaviour of the serre equations in the presence of steep gradients revisited.

Wave Motion, 76(1):61–77.

Zoppou, C. (2014).

Numerical Solution of the One-dimensional and Cylindrical Serre Equations for Rapidly Varying Free Surface Flows.

PhD thesis, Australian National University, Mathematical Sciences Institute, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 2600, Australia