Controls Notes

M516

March 28, 2023

This document is an ongoing collection of symbols, theorems, tools, and terms I have found useful for studying control theory, available as PDF, HTML, and LATEX source code.

Variables and Symbols

 $\boldsymbol{\chi}$

• state vector (state space) (W) Type: \mathbb{R}^n

Hamiltonian matrix

• Hamiltonian (Hamiltonian mechanics) (W) type: $\mathbb{R}^n \to \mathbb{R}$

- Assuming discrete time linear system:

$$H_k = L(x_k, u_k, k) + p_{k+1}^T f(x_k, u_k, k)$$

 \mathcal{L} • the Lagrangian type: $\mathbb{R}^n \to \mathbb{R}$

 $e_{\#}$ • The #th unit vector

$$e_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \qquad e_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \qquad e_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \qquad \dots$$

 ∇ The del operator, which represents one of many long but similar operators on a vector field $v \in \mathbb{R}^n$.

• ∇f : Gradient of a function $f: \mathbb{R}^n \to \mathbb{R}$, returning an n-dimensional vector. (W) This vector points in the direction of the greatest increase, and its magnitude is the slope.

For example, a mountain climber could approximate the shape of a convex mountain as a function $f_{mountain}$ that computes the altitude given some latitude and longitude (assuming a very small mountain very far from the poles). In other words, $f_{mountain}: \mathbb{R}^2 \to \mathbb{R}$. The climber could know which direction to climb to summit the peak: it's the direction ∇f , and the grade or slope of the mountain is $|\nabla f|$

Note that if n = 1, ∇f is the standard derivative of f. Formally speaking:

$$\nabla f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} e_i$$

- $\nabla \cdot \vec{v}$: The divergence of a vector field \vec{v}
- $\nabla \times \vec{v}$: The curl of a vector field \vec{v}
- Δf : the Laplace operator on a function $f: \mathbb{R}^n \to \mathbb{R}$, equivalent to the divergence of the gradient of f, i.e.

$$\delta f = \nabla^2 f = \nabla \cdot \nabla f$$

J • Cost to go function type: $\mathbb{R}^n \to \mathbb{R}$

p • Lagrange multiplier (W)

Lie bracket notation (W) $< a, b >= b^{T} a$

norm • Vector norm (TODO)

Matrix norm (TODO)

Functional norm (TODO)

Named Theorems and Conditions

Poincaré-Bendixson theo TODO orem

Small-gain Theorem

Given

- ullet H_1 : an Input-Output System with input e_1 and output y_1 that is finite-gain \mathcal{L}_p -stable
- H_2 : an Input-Output System with input e_2 and output y_2 that is finite-gain \mathcal{L}_p -stable
- $y_1 = H_1 e_1$
- $y_2 = H_2 e_2$
- $e_1 = u_1 y_2$
- $e_2 = u_2 y_1$

By the definition of finite-gain \mathcal{L}_p -stable,

$$||y_{1\tau}||_{\mathcal{L}_p} \le \gamma_1 ||e_{1\tau}||_{\mathcal{L}_p} + \beta_1$$

(The \mathcal{L}_p norm of the y_1 is truncated by τ , i.e. the system response is zero when $t > \tau$. This is less than or equal to The \mathcal{L}_p norm of the e_1 truncated by $t < \tau$, multiplied by some gain value γ_1 , plus some bias β_1)

As long as a system does not have a finite escape time, we can compute the \mathcal{L}_p norm of the system.

Likewise.

$$||y_{2\tau}||_{\mathcal{L}_p} \le \gamma_2 ||e_{2\tau}||_{\mathcal{L}_p} + \beta_2$$

The Small-gain Theorem tells us,

$$\left\| \frac{y_{1\tau}}{y_{2\tau}} \right\|_{\mathcal{L}_p} \leq \frac{1}{1 - \gamma_1 \gamma_2} \left(\|u_{1\tau}\|_{\mathcal{L}_p} + \gamma_2 \|u_{2\tau}\|_{\mathcal{L}_p} + \gamma_2 \beta_1 + \beta_2 \right) = \gamma_3 \left(\text{some } \mathcal{L}_p\text{-stable system} \right)$$
 (1)

Therefore, if γ_1 and γ_2 are less than one, the feedback connection is input/output stable (finite-gain \mathcal{L}_p -stable)

Terms

Lipschitz Continuity

W, UC Berkley

Lipschitz continuous functions are continuous and differentiable almost anywhere in a domain.

Given a domain D and a function $f: D \to \mathbb{R}, D \in \mathbb{R}^n$, f is Lipschitz continuous if $\exists L > 0$ such that $|f(x) - f(y)| < L||(x - y)|| \forall x, y \in D$

Hessian

W, Kahn Academy, Wolfram

- A $2n \times 2n$ matrix of all 2nd order partial derivatives of some function $f: \mathbb{R}^n \to \mathbb{R}$
- The determinant of a Hessian matrix

definite

Warning: this definition does not appear to be common outside of controls

Given a real-valued, continuously differentiable function $V(x): \mathbb{R} \to \mathbb{R}$ V(x) can be classified as

• (globally) positive semidefinite if

$$V(x) \ge 0 \quad \forall x \in \mathbb{R}$$

(v is greater than or equal to 0 regardless of x)

• (globally) positive definite if positive semidefinite AND

$$V(x) = 0 \iff x = 0$$

(V(x)) is zero if and only if x is zero)

• (globally) negative semidefinite if

$$V(x) \le 0 \quad \forall x \in \mathbb{R}$$

(v is less than or equal to 0 regardless of x)

• (globally) negative definite if negative semidefinite AND

$$V(x) = 0 \iff x = 0$$

(V(x) is zero if and only if x is zero)

• locally positive definite (l.p.d) if

$$V(x) \ge 0 \qquad \forall x \in N$$

where N is a small open neighborhood containing $\vec{0}$

(v is greater than or equal to 0 regardless of x in some small open neighborhood N that contains the zero vector)

AND

$$V(x) = 0 \iff x = 0$$

(V(x) is zero if and only if x is zero)

Note that the criteria for a function to be locally positive definite are similar, but more relaxed than, those for globally positive definite functions.

• positive definite on some domain $D \in \mathbb{R}^n$ if we only care if the conditions for positive definite functions hold for all x in D.

Stability

- (Lyapunov) stability (TODO)
- Asymptotic stability (TODO)
- Exponential stability (TODO)
- Uniform stability (TODO)
- Global stability (TODO)
- L-stability (TODO)
- I/O L-stability (TODO)
- Small-signal I/O L-stability (TODO)
- Small-signal finite-gain L-stability (TODO)

Class K function

• (TODO)

Radially Unbounded function	• (TODO)
sup (supremum)	Like a maximum of a functions, but includes limits that aren't necessarily a part of the domain of the function. (TODO)
Hurwitz	 Hurwitz (polynomial): A polynomial whose roots that are all in the left-half plane. (In other words, the real part of every root is strictly negative) • Hurwitz (matrix) (W): A square matrix whose characteristic polynomial is Hurwitz, meaning all eigenvalues are in the left-half plane. (In other words, the real part of every eigenvalue is strictly negative) • Routh-Hurwitz stability criterion (IEEE): TODO Any hyperbolic fixed point (or equilibrium point) of a continuous dynamical system is locally asymptotically stable if and only if the Jacobian of the dynamical system is Hurwitz stable at the fixed point. A system is stable if its control matrix is a Hurwitz matrix. The negative real components of the eigenvalues of the matrix represent negative feedback. Similarly, a system is inherently unstable if any of the eigenvalues have positive real components, representing positive feedback.