Lecture 10 Review

GEOL 4397: Data analytics and machine learning for geoscientists

Jiajia Sun, Ph.D. March 19th, 2019

Announcement

The lab report on ensemble learning due at 5:30 pm, March 21st.

• Exam on March 21st from 5:30 to 6:50 pm.

Outline

- Machine learning basics
 - Example applications
 - Definitions
- Training
 - Cost function
 - Optimization
- Optimization algorithms
 - · Batch gradient descent
 - Stochastic gradient descent
 - Mini-batch gradient descent
- Types of machine learning
 - Supervised vs. unsupervised
 - Regression vs. Classification
- Overfit vs Underfit
 - Diagnose
 - Remedy

Object detection

ResNet applied to COCO dataset.

Source: He et al., Deep residual learning for image recognition, CVPR, 2016

Real time object detection

Video online: https://www.youtube.com/watch?v="zZe27JYi8Y">https://www.youtube.com/watch?v="zze27JYi8Y">https://www.youtube.com/watch?v="zze27JYi8Y">https://www.youtube.com/watch?v="zze27JYi8Y">https://www.youtube.com/watch?v="zze27JYi8Y">https://www.youtube.com/watch?v="zze27JYi8Y">https://www.youtube.com/watch?v="zze27JYi8Y">https://www.youtube.com/watch?v="zze27JYi8Y">https://www.youtube.com/watch?v="zze27JYi8Y">https://www.youtube.com/watch?v="zze27JYi8Y">https://www.youtube.com/watch?v="ze27JYi8Y">https://www.youtube.com/watch?v="zze27JYi8Y">https://ww

Self-driving car

A wheel-hub sensor detects the number of rotations to help determine the car's location

Source: Google Raoul Rañoa / @latimesgraphics

Voice recognition

Source: https://biostore.co.uk/company/news-articles/voice-recognition-biometrics-making-noise/

Face recognition

Source: https://www.pinterest.com/pin/135600638759424941/?lp=true

Hand written digit recognition

MNIST data set

Spam filer

Fraud detection

Source: http://tsigroup.com

Recommender system

Go game

Image credit: theverge.com

Image credit: Nature

What is machine learning?

 the field of study that gives computers the ability to learn from data (e.g., discovering patterns and relations among input data), and make predictions.

Outline

- Machine learning basics
 - Example applications
 - Definitions
- Training
 - Cost function
 - Optimization
- Optimization algorithms
 - Batch gradient descent
 - Stochastic gradient descent
 - Mini-batch gradient descent
- Types of machine learning
 - Supervised vs. unsupervised
 - Regression vs. Classification
- Overfit vs Underfit
 - Diagnose
 - Remedy

Nomenclature

https://www.slideshare.net/SebastianRaschka/nextgen-talk-022015

A simple example

Figure from Aurelien Geron's ML book, page 19

Learn a model from the data

Build a model from the data

• Train a model from the data

Train a model from the training data

- Train a model from the training data
- Make predictions

Training/Learning

- Which ones to choose?
- Or, a more general question is, How to train/learn these model parameters??
- The answer is by

defining a cost function & minimizing it

Cost function: basic idea

- Measures <u>how bad (or good) a candidate model is</u>
- Specifically, measure <u>the difference between</u>
 predictions from our model and the training data
- The objective is to minimize the cost function so as to minimize the difference between predictions and observations

Building a cost function

For simplicity, let us focus on one country, say, U.S.

- What is the predicted value for life satisfaction?
- What is the value from training data?

Difference between predicted and true values

- In our training data, we have M countries. Suppose U.S. is the i^{th} country.
- Predicted value: $h_{\theta}(x^{(i)})$
- True value: $y^{(i)}$
- Difference:

$$(h_{\theta}(x^{(i)}) - y^{(i)})^2$$

- This is only for U.S.
- Remember that we want our model to fit all of our training data, not just one of them. Therefore, we sum the differences over all countries

$$\sum_{i=1}^{M} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cost function

$$\sum_{i=1}^{M} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Remember

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

Cost function

$$\sum_{i=1}^{M} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Remember

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

Therefore,

$$\sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

Cost function

$$\sum_{i=1}^{M} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Remember

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

Therefore,

$$J(\theta_0, \theta_1) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

Minimization

- Cost function measures the difference between predicted and true values
- Remember that, we want to minimize this difference, i.e.,

min
$$J(\theta_0, \theta_1) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

- Learning/training = Minimizing a cost function
- The process of learning a model from training data is essentially the process of minimizing a cost function.

Optimization

- Cost function measures the difference between predicted and true values
- Remember that, we want to minimize this difference, i.e.,

min
$$J(\theta_0, \theta_1) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

- Learning/training = Minimizing a cost function
- The process of learning a model from training data is essentially the process of minimizing a cost function.
- Optimization: finding optimal parameter values that minimize a cost function

Optimization

- Cost function measures the difference between predicted and true values
- Remember that, we want to minimize this difference, i.e.,

min
$$J(\theta_0, \theta_1) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

- Learning/training = Minimizing a cost function
- The process of learning a model from training data is essentially the process of optimization.
- Optimization: finding optimal parameter values that minimize a cost function

Best fit model

Figure from Aurelien Geron's ML book, page 20

Outline

- Machine learning basics
 - Example applications
 - Definitions
- Training
 - Cost function
 - Optimization
- Optimization algorithms
 - Batch gradient descent
 - Stochastic gradient descent
 - Mini-batch gradient descent
- Types of machine learning
 - Supervised vs. unsupervised
 - Regression vs. Classification
- Overfit vs Underfit
 - Diagnose
 - Remedy

Gradient

• Gradient of a function f(x, y) is defined as

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Understanding gradient

- Consider the topography as a 2D function f(x, y)
- The gradient direction tells you the fastest way up

Picture taken from https://mathoverflow.net/questions/1977/why-is-the-gradient-normal

Gradient in the context of optimization

 Optimization problem is often posed as a minimization problem 100 $J(\theta_0, \theta_1)$ 50 10 10 We want to find where the -10 -10 minimum of a cost function is. θ_1 -20

Picture taken from Andrew Ng's Machine Learning class on Coursera.org

Gradient descent algorithm

- Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$
- While (not convergence):

$$\boldsymbol{\theta}^{(j)} = \boldsymbol{\theta}^{(j-1)} - \alpha \nabla J(\boldsymbol{\theta}^{(j-1)})$$

Gradient descent algorithm

- Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$
- While (not convergence):

$$\theta_{0}^{(j)} = \theta_{0}^{(j-1)} - \alpha \frac{\partial}{\partial \theta_{0}} J(\theta_{0}^{(j-1)}, \theta_{1}^{(j-1)})$$

$$\theta_{1}^{(j)} = \theta_{1}^{(j-1)} - \alpha \frac{\partial}{\partial \theta_{1}} J(\theta_{0}^{(j-1)}, \theta_{1}^{(j-1)})$$

Gradient descent algorithm for linear regression

- Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$
- While (not convergence):

$$\theta_0^{(j)} = \theta_0^{(j-1)} - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0^{(j-1)}, \theta_1^{(j-1)})$$

$$\theta_1^{(j)} = \theta_1^{(j-1)} - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0^{(j-1)}, \theta_1^{(j-1)})$$

$$\min J(\theta_0, \theta_1) = \frac{1}{2} \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

Gradient descent algorithm for linear regression

- Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$
- While (not convergence):

$$\theta_0^{(j)} = \theta_0^{(j-1)} - \alpha \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})$$

$$\theta_1^{(j)} = \theta_1^{(j-1)} - \alpha \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) x^{(i)}$$

• Each step of gradient descent uses ALL the training examples.

Batch gradient descent

 Each step of gradient descent uses ALL the training examples.

Problem with batch gradient descent

When the number of training data is huge, say, M = 300,000,000, batch gradient descent becomes very slow.

Gradient descent algorithm

- Given initial values $\boldsymbol{\theta}^{(0)} = \left[\theta_0^{(0)}, \theta_1^{(0)}\right]$
- While (not convergence):

$$\theta_0 = \theta_0 - \alpha \frac{1}{M} \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})$$

$$\theta_1 = \theta_1 - \alpha \frac{1}{M} \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) x^{(i)}$$

Stochastic gradient descent

```
• Given initial values \boldsymbol{\theta}^{(0)} = \left| \theta_0^{(0)}, \theta_1^{(0)} \right|
   Repeat {
         Shuffle the training set
         For i = 1, ..., m {
                 \theta_0 = \theta_0 - \alpha \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)}\right)
                \theta_1 = \theta_1 - \alpha(\theta_0 + \theta_1 x^{(i)} - y^{(i)}) x^{(i)}
```

SGD vs BGD

- SGD much faster
- Search path very irregular
- Cost function bounces up and down, decreasing only on average
- Over time, it ends up close to minimum, but never settles down.

Picture taken from https://www.cs.cmu.edu/~yuxiangw/docs/SSGD.pdf

SGD cost function

https://upload.wikimedia.org/wikipedia/commons/f/f3/Stogra.png

Mini-batch gradient descent

 Mini-batch uses a small number (1 < # < M)of training examples to update model parameters

Batch vs stochastic vs Mini-batch

Figure from Aurelien Geron's ML book, page 120

Outline

- Machine learning basics
 - Example applications
 - Definitions
- Training
 - Cost function
 - Optimization
- Optimization algorithms
 - Batch gradient descent
 - Stochastic gradient descent
 - Mini-batch gradient descent
- Types of machine learning
 - Supervised vs. unsupervised
 - Regression vs. Classification
- Overfit vs Underfit
 - Diagnose
 - Remedy

Supervised learning

- Training data come with labels (i.e., answers)
- Also termed labeled data
- E.g., cat classifier

Supervised learning: what is it?

- Let us consider each image as an input variable, x
- Also, consider each label as an output variable, y
- Supervised learning is all about learning a mapping function from the input to the output

$$y = f(x)$$

 So that, given a new image, x, your model learning model can predict y.

Unsupervised learning

- Training data does not have any label
- Unlabeled data
- The goal is to discover the intrinsic, and often complicated structures among data for better decision-making.
- No answer available. Algorithms are left to their own to discover the interesting structures in data.

Unsupervised learning: example

Feature 1

Regression

 Predict continuous numerical values, such as prices, temperatures, etc.

Classification

Predict discrete categorical values, such as class 1,
2, 3, etc.

Outline

- Machine learning basics
 - Example applications
 - Definitions
- Training
 - Cost function
 - Optimization
- Optimization algorithms
 - · Batch gradient descent
 - Stochastic gradient descent
 - Mini-batch gradient descent
- Types of machine learning
 - Supervised vs. unsupervised
 - Regression vs. Classification
- Overfit vs Underfit
 - Diagnose
 - Remedy

Overfit: example

Figure from Aurelien Geron's ML book, page 19

Good fit

Figure from Aurelien Geron's ML book, page 20

Overfit (polynomial degree = 60)

Figure from Aurelien Geron's ML book, page 26

Overfit

- Fit the training data very well (actually too well)
- But, does not generalize well to new data.
- That is, predictions on new data will be bad!
- Remember, the whole purpose of machine learning is to make predications.
- If a machine learning model only works well on training data, but not on new (i.e., unseen) data, it is NOT a good model/product.

How to tell if you are overfitting?

- Split your training data into three parts:
- 1. Training set
- 2. Validation set
- 3. Test set

How to tell if you are overfitting?

- Split your training data into three parts:
- 1. Training set
- 2. Validation set
- 3. Test set
- Use only training set for training (put the other two sets of data aside), calculate the prediction error J_{train}
- After training, apply the learned model to cross-validation set, calculate the prediction error J_{cv}
- If J_{train} is very small, J_{cv} is large, you overfit your data!

Remedy for overfitting

- Overfitting happens when your ML model is overly complex
- Therefore, possible solutions are:
 - 1. Collect more training data
 - 2. Reduce data noise
 - 3. Simplify model
 - using linear model rather than a high-degree polynomial model
 - > using regularization
 - >...

Underfit

- The opposite of overfitting
- Your model is too simple to capture the meaningful information/structures/relations in the data.

Underfit: example

Underfit: example

Overfit vs. underfit

Figure from Aurelien Geron's ML book, page 123

How to tell if you are underfitting?

- Split your training data into three parts:
- 1. Training set
- 2. Validation set
- 3. Test set

How to tell if you are overfitting?

- Split your training data into three parts:
- 1. Training set
- 2. Validation set
- 3. Test set
- Use only training set for training (put the other two sets of data aside), calculate the prediction error E^{train}
- After training, apply the learned model to cross-validation set, calculate the prediction error E^{cv}
- If E^{train} is large, E^{cv} is large, you underfit your data!

Remedy for underfitting

- Underfitting happens when your ML model is overly simple
- Therefore, possible solutions are:
 - 1. Collect more training data
 - 2. Reduce data noise
 - 3. Make your model more complex
 - > using a high-degree polynomial model rather than a linear model
 - using less regularization
 - Adding more features such as (x_1^2, x_2^2, x_1x_2) to the learning algorithm (feature engineering)

Remember,

 If you are underfitting your data, collecting more data won't help!

Bias vs. Variances

Bias

- Due to over-simplified assumptions
- Your model is heavily limited or biased by your assumptions.
- E.g., assuming a linear model when the training data are actually from a non-linear model
- Lead to underfitting the training data

Variance

- Your model has too much flexibility (or, is allowed to have too many small-scale variations)
- E.g., assume a highly nonlinear model when the data are actually linear
- Lead to overfitting the data

Bias/variance

This slide is taken from Andrew Ng's ML class on coursera

Diagnosing bias vs. variance

Sample Question

- Suppose you trained a ML model on training data, and obtained a prediction accuracy of 89% (i.e., prediction error of 11%)
- Suppose you also applied the learned model to your cross-validation data set, and obtained a prediction accuracy of 96% (i.e., a prediction error of 4%)
- Question: Is this an underfitting or overfitting problem?

Remedy for overfitting

- Overfitting happens when your ML model is overly complex
- Therefore, possible solutions are:
 - 1. Collect more training data
 - 2. Reduce data noise
 - 3. Simplify model
 - using linear model rather than a high-degree polynomial model
 - using regularization

Training data set of M = 10 points, each comprising an observation of input variable x and the corresponding target variable t.

The green curve shows the function $\sin(2\pi x)$ used to generate the data.

Goal: predict the value of t for some new value of x, based on the model learned from training data.

Polynomial curve fitting

Fit the data using a polynomial function of the form:

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_N x^N$$

where N is the degree of the polynomial

Polynomial curve fitting

Fit the data using a polynomial function of the form:

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_N x^N$$

where N is the degree of the polynomial

Question: how to select N?

Training models with N = 0, 1, 3, 9

Overfitting: the learned model captures noise, rather than the true and meaningful features/trends among the training data.

Learned models with N = 9 for M = 10, 15, and 100.

Learned models with N = 9 for M = 10, 15, and 100.

Learned models with N = 9 for M = 10, 15, and 100.

Learned models with N = 9 for M = 10, 15, and 100.

Increasing the size of training data set helps decrease the overfitting.

Learned models with N = 9 for M = 10, 15, and 100.

Increasing the size of training data set helps decrease the overfitting.

However, obtaining more training data is not always doable in reality.

Remedy for overfitting

- Overfitting happens when your ML model is overly complex
- Therefore, possible solutions are:
 - 1. Collect more training data
 - 2. Reduce data noise Not always feasible either!
 - 3. Simplify model
 - using linear model rather than a high-degree polynomial model
 - using regularization
 - **>** ...

	N = 0	N = 1	N = 3	N = 9
θ_0	0.19	0.82	0.31	0.35
θ_1		-1.27	7.99	232.37
$\overline{\theta_2}$			-25.43	-5321.83
θ_3^-			17.37	48568.31
$ heta_4$				-231639.30
θ_5				640042.26
θ_6				-1061800.52
θ_7°				1042400.18
$\theta_{8}^{'}$				-557682.99
θ_9				125201.43

Table of the coefficients θ learned from training data.

Note how the magnitudes of coefficients increase dramatically as the order of polynomial increases.

Regularization

- Discourage the learned model parameters (i.e., coefficients) from being too large.
- Keep the model simple.
- Keep the model from being unnecessarily complicated.

Regularization

$$J(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{M} (h_{\theta}(x^{(i)}) - t^{(i)})^{2}$$

Regularization

$$J(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{M} (h_{\theta}(x^{(i)}) - t^{(i)})^{2} + \frac{1}{2} \lambda \sum_{j=1}^{N} \theta_{j}^{2}$$

Also known as shrinkage because it shrinks/reduces the values of the model parameters

Regularized curve fitting

N = 9 M = 10 with three different regularization parameters

How to select regularization parameter?

- Split the whole data set into training and validation data sets
- Carry out machine learning with different values for regularization parameters
- Calculate the errors for both training and validation data sets for each regularization parameter

Bias/variance as a function of regularization parameter

Diagnosing bias vs. variance

Regularization parameters

Decision trees: max_depth

