A flip flop is an electronic circuit with two stable states that can be used to store binary data. The stored data can be changed by applying varying inputs. Flip-flops and latches are fundamental building blocks of digital electronics systems used in computers, communications, and many other types of systems. Flip-flops and latches are used as data storage elements. It is the basic storage element in sequential logic. But first, let's clarify the difference between a latch and a flip-flop.

For example, let us talk about SR latch and SR flip-flops. In this circuit when you Set S as active the output Q would be high and Q' will be low. This is irrespective of anything else. (This is an active-low circuit so active here means low, but for an active high circuit active would mean high)



### There are basically four different types of flip flops and these are:

- Set-Reset (SR) **flip-flop** or Latch.
- JK flip-flop.
- D (Data or Delay) flip-flop.
- T (Toggle) flip-flop.

**Difference between Flip-flop and Latch:** 

| SNO | FLIP-FLOP                                   | LATCH                              |
|-----|---------------------------------------------|------------------------------------|
|     | Flip-flop is a bistable device i.e., it has | Latch is also a bistable device    |
|     | two stable states that are represented as   | whose states are also represented  |
| 1   | 0 and 1.                                    | as 0 and 1.                        |
|     | It checks the inputs but changes the        | It checks the inputs continuously  |
|     | output only at times defined by the         | and responds to the changes in     |
| 2   | clock signal or any other control signal.   | inputs immediately.                |
| 3   | It is a edge triggered device.              | It is a level triggered device.    |
|     | Gates like NOR, NOT, AND, NAND              |                                    |
| 4   | are building blocks of flip flops.          | These are also made up of gates.   |
|     | They are classified into asynchronous or    | There is no such classification in |
| 5   | synchronous flipflops.                      | latches.                           |
|     |                                             | These can be used for the          |
|     | It forms the building blocks of many        | designing of sequential circuits   |
| 6   | sequential circuits like counters.          | but are not generally preferred.   |
| 7   | a, Flip-flop always have a clock signal     | latche doesn't have a clock signal |
| 8   | Flip-flop can be build from Latches         | Latches can't build from gates     |

| 9 | ex:D Flip-flop, JK Flip-flop | ex:SR Latch, D Latch |
|---|------------------------------|----------------------|
|   |                              |                      |

Counter is a sequential circuit. A digital circuit which is used for a counting pulses is known counter. Counter is the widest application of flip-flops. It is a group of flip-flops with a clock signal applied. Counters are of two types.

- Asynchronous or ripple counters.
- Synchronous counters.

## Asynchronous or ripple counters

The logic diagram of a 2-bit ripple up counter is shown in figure. The toggle (T) flip-flop are being used. But we can use the JK flip-flop also with J and K connected permanently to logic 1. External clock is applied to the clock input of flip-flop A and Q<sub>A</sub> output is applied to the clock input of the next flip-flop i.e. FF-B.

### Logical Diagram



# Synchronous counters

If the "clock" pulses are applied to all the flip-flops in a counter simultaneously, then such a counter is called as synchronous counter.

## 2-bit Synchronous up counter

The  $J_A$  and  $K_A$  inputs of FF-A are tied to logic 1. So FF-A will work as a toggle flip-flop. The  $J_B$  and  $K_B$  inputs are connected to  $Q_A$ .

## Logical Diagram

