1. Give linear system

$$x_1 + 4x_2 + \alpha x_3 = 6$$

 $2x_1 - x_2 + \alpha 2x_3 = 3$
 $\alpha x_1 + 3x_2 + x_3 = 5$

- (a) Find the value(s) of α for which the system has no solutions.
- (b) Find the value(s) of α for which the system has an infinite number of solutions.
- (c) Assuming a unique solution exists for a given α , find the solution.

Solution: https://elearn.mtsu.edu/d2l/le/content/7975386/viewContent/68580743/View (About 9 minutes in)

1	4	α	x ₁	6
2	-1	α	x ₂	3
α	3	1	X ₃	5

(a)

There are no solutions when the sum of all variables on the left does not equal to the right.

1	4	α	6
0	-9	-α	-9
0	-4a+3	-a ² +1	-6a+5

1	4	α	6
0	-9	- α	-9
0	0	-a ² + (1/9)(4a - 3)a + 1	2 - 2a

$$-a^2 + (1/9)(4a - 3)a + 1 = 0$$

 $a = -(3/10) - 3(\sqrt{21})/10$
and
 $a = (3\sqrt{21}/10) - 3/10$

(b)
$$-9 - a = -9$$
 If $a = 0, -9 = -9$, infinite solutions

(c)

-a² + (1/9)(4a - 3)a + 1 = 2 - 2a
-(5a^2/9) + (5a/3) -1 =0
a = (3/2) - (3/2
$$\sqrt{5}$$
)
and
a = (3/2) + (3/2 $\sqrt{5}$)

2. Solve the following system using Gaussian elimination with scaled partial pivoting:

1	-1	2	X ₁	-2
-2	1	-1	X_2	2
4	-1	2	X_3	-1

Show intermediate matrices at each step.

Solution: Page 380

$$s_1 = max\{|1|, |-1|, |2|\} = 2$$

 $s_2 = max\{|-2|, |1|, |-1|\} = 2$
 $s_3 = max\{|4|, |-1|, |2|\} = 4$

$$\frac{|a_{11}|}{s_1} = \frac{|1|}{2} = 0.5$$

$$\frac{|a_{21}|}{s_2} = \frac{|-2|}{2} = 1$$

$$\frac{|a_{31}|}{s_3} = \frac{|4|}{4} = 1$$

$$s2 = s3 > s1$$

4	-1	2	X ₁	-1
-2	1	-1	\mathbf{X}_2	2
1	-1	2	X ₃	-2

4	-1	2	X ₁	-1
0	0.5	0	x_2	1.5
0	-0.75	1.5	X ₃	-1.75

4	-1	2	x ₁	-1
0	0.5	0	X_2	1.5

0 0	1.5	X ₃	0.5
-----	-----	-----------------------	-----

$$(1.5)x_3 = 0.5$$

 $x_3 = 0.5 / 1.5$
 $x_3 = 0.5 / 1.5$
 $x_3 = \frac{1}{3}$
 $(0.5)x_2 = 1.5$
 $x_2 = 1.5 / 0.5$
 $x_2 = 3$
 $(4)x_1 - x_2 + (2)x_3 = -1$
 $(4)x_1 - (3) + (2)(1/3) = -1$
 $(4)x_1 - (7/3) = -1$
 $(4)x_1 - (7/3) = -1$
 $(4)x_1 = -1 + (7/3)$
 $(4)x_1 = (4/3)$

 $x_1 = (4/3) / 4$

 $X_1 = \frac{1}{3}$

3. Find all values of $\alpha > 0$ and $\beta > 0$ so that matrix

A =

3	2	β
α	5	β
2	1	α

A is strictly diagonally dominant.

Solution: https://elearn.mtsu.edu/d2l/le/content/7975386/viewContent/68659394/View

Pg. 417

Around 1:25:10

If strictly diagonally dominant, $|a_{ii}| > \sum a_{ik}$

Row 1: $|3| > |2| + |\beta|$

Row 1: β must be between 0 < β < 1

Row 3: $|\alpha| > |1| + |2|$

Row 3: $|\alpha| > 3$

Row 2: $|5| > |\alpha| + |\beta|$

Row 2:
$$0 < \beta < 1$$
; $3 < a < 5 - |\beta|$

4. Solve the linear system

$$0.211x_1 + 0.811x_2 = 1.52$$

 $1.71x_1 + 1.06x_2 = -0.512$

using 3 digit chopping arithmetic and Gaussian elimination with partial pivoting.

Solution: pg.381

0.211	0.811	1.52
1.71	1.06	-0.512

|1.71| > |0.211| so we need to switch rows one and two.

1.71	1.06	-0.512
0.211	0.811	1.52

M = 0.211/1.71 = 0.123 (3 digit only)

0.123 * 1.71 = 0.210	0.123 * 1.06 = 0.130	0.123* -0.512 = -0.0629
----------------------	----------------------	-------------------------

1.71	1.06	-0.512
0	0.681	1.58

We turned the first row, first column into zero because of round off error.

$$(0.681)x_2 = 1.58$$

$$x_2 = 1.58/0.681$$

$$x_2 = 2.32$$

$$1.71x_1 + 1.06x_2 = -0.512$$

$$1.71x_1 + 1.06(2.32) = -0.512$$

$$1.71x_1 + 1.06(2.32) = -0.512$$

$$1.71x_1 + 2.45 = -0.512$$

$$1.71x_1 = -2.96$$

 $x_1 = -2.96/1.71$
 $x_1 = -1.73$

5. Let A = LU where

L =

1	0	0
2	1	0
-1	-2	1

and

U =

4	1	-1
0	2	1
0	0	-1

- (a) Solve the linear system Ax = b where b = (0, -2, 2) using Gaussian Elimination
- (b) What is the determinant of A?

Solution:pg. 421

(a)

Forward Elimination

$$Ly = b$$

$$y = \frac{b}{L}$$

1	0	0	y ₁	0
2	1	0	y ₂	-2
-1	-2	1	y ₃	2

$$y_1 = 0$$

$$(2)y_1 + (1)y_2 = -2$$

$$(2)(0) + (1)y_2 = -2$$

$$(1)y_2 = -2$$

$$y_2 = -2$$

$$(-1)y_1 + (-2)y_2 + (1)y_3 = 2$$

 $(-1)(0) + (-2)(-2) + (1)y_3 = 2$

$$-4 + y_3 = 2$$

 $y_3 = 6$

Backward Elimination

Ax = b LUx = b (and) | y = bUx = y

4	1	-1	X ₁	y ₁
0	2	1	\mathbf{X}_{2}	y ₂
0	0	-1	X_3	y ₃

4	1	-1	X ₁	0
0	2	1	\mathbf{X}_2	-2
0	0	-1	X_3	6

$$-1(x_3) = 6$$

 $x_3 = -6$

$$2(x_2) + (1)(x_3) = -2$$

$$2(x_2) -6 = -2$$

$$2(x_2) = 4$$

$$x_2 = 2$$

$$(4)(x_1) + (1)(x_2) + (-1)(x_3) = 0$$

$$(4)(x_1) + (1)(2) + (-1)(-6) = 0$$

$$(4)(x_1) + 2 + 6 = 0$$

$$(4)(x_1) + 8 = 0$$

$$(4)(x_1) = -8$$

$$x_1 = -2$$

$$det(A) = det(Lu)$$

$$det(A) = det(L) * det(u)$$

$$det(A) = (1*1*1) * (4*2*-1)$$

$$det(A) = (1) * (-8)$$

$$det(A) = -8$$

6. Determine values h that will ensure an approximation error of less than 10^{-3} when approximating $\int_{0}^{1} \sin(\pi \, x^2/2) dx$ and employing **Composite Trapezoid Rule**.

Solution:page 206
$$f(x) = \sin(\pi x^2/2)$$

$$f'(x) = \pi x \cos(\pi x^2/2)$$

$$f''(x) = \pi x \cos(\pi x^2/2) - \pi x \sin(\pi x^2/2)$$

$$f''(0) = \pi (0) \cos(\pi (0)^2/2) - \pi (0) \sin(\pi (0)^2/2) = 0$$

$$f''(1) = \pi (1) \cos(\pi (1)^2/2) - \pi x \sin(\pi (1)^2/2) = 1.2508$$

$$|f''(0)| < |f''(1)|$$

$$|E| \le \frac{(b-a)^3}{12n^2} |f''(1)|$$

$$|E| \le \frac{(b-a)^3}{12n^2} |f''(1)|$$

$$0.001 = \frac{(1-0)^3}{12n^2} 1.2508$$

$$0.001 = \frac{1.2508}{12n^2}$$

$$0.00079948 = \frac{1}{12n^2}$$

$$1250.8 = 12n^2$$

$$104.233 = n^2$$

$$n > 10.2$$

$$n > 11$$

7. Find an approximate value of $\int_{1}^{2} x^{-1} dx$ using **Composite Simpson's Rule** with h = 0.25. Give a bound on the error.

Solution:pg 204
(a)
$$f(x) = x^{-1}$$

$$f(x) = \frac{1}{x}$$

$$f(1) = \frac{1}{1} = 1$$

$$f(1.25) = \frac{1}{1.25} = \frac{4}{5}$$

$$f(1.50) = \frac{1}{1.5} = \frac{2}{3}$$

$$f(1.75) = \frac{1}{1.75} = \frac{4}{7}$$

$$\int_{1}^{2} x^{-1} dx = \frac{0.25}{3} [f(1) + 4f(1.25) + 2f(1.5) + 4f(1.75) + f(2)]$$

$$\int_{1}^{2} x^{-1} dx = \frac{0.25}{3} [1 + 4(\frac{4}{5}) + 2(\frac{2}{3}) + 4(\frac{4}{7}) + \frac{1}{2}]$$

$$\int_{1}^{2} x^{-1} dx = 0.6933$$

(b)

$$f(x) = x^{-1}$$

 $f'(x) = \frac{1}{x^2}$
 $f''(x) = \frac{2}{x^3}$

$$f'''(x) = \frac{6}{x^4}$$

 $f''''(x) = \frac{24}{x^5}$

$$f''''(1) = \frac{24}{(1)^5} = 24$$

$$f''''(2) = \frac{24}{(2)^5} = 0.75$$

$$|\mathsf{E}| \le \frac{(b-a)}{180} \; \mathsf{h}^4 \, \mathsf{f}'''(\zeta)$$

$$|E| \le \frac{1}{180} (0.25)^4 * 24$$

 $|E| \le 0.0005208$

8. Criticize the following analysis. By Taylor's formula, we have

$$f(x + h) - f(x) = hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(\zeta_1)$$

$$f(x - h) - f(x) = -hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(\zeta_2)$$

Therefore, we have

$$\frac{1}{h^2} \left(f(x+h) - 2f(x) + f(x+h) \right) = f''(x) + \frac{h}{6} \left(f'''(\zeta_1) + f'''(\zeta_2) \right)$$

The error in the approximation formula for f' is thus O(h).

Solution: The two errors are not qualifying for the same criteria so they cannot be summed up. ζ_1 is for x to x + h while ζ_2 is for x to x - h. The combined equation is assuming $\frac{h^3}{6}$ f"(ζ_1) = $\frac{h^3}{6}$ f"(ζ_2) which is not true.

9. Let $f(x) = 3xe^x$ - cosx. Using the following data and the formula to approximate f''(1.3) with h = 0.1 and with h = 0.01

$$f''(x_0) = \frac{1}{h^2} (f(x_0 - h) - 2f(x_0) + f(x_0 + h)) - \frac{h^2}{12} f^{(4)}(\zeta)$$

for some ζ , where $x_0 - h < \zeta < x_0 + h$

х	1.20	1.29	1.30	1.31	1.40
f(x)	11.59006	13.78176	14.04276	14.30741	16.86187

Solution:

$$f''(x_0) = \frac{1}{h^2} (f(x_0 - h) - 2f(x_0) + f(x_0 + h))$$

$$f''(1.3) = \frac{1}{(0.1)^2} (f(1.3 - 0.1) - 2f(1.3) + f(1.3 + 0.1))$$

$$f''(1.3) = \frac{1}{(0.1)^2} (f(1.2) - 2f(1.3) + f(1.4))$$

$$f''(1.3) = \frac{1}{0.01} (11.59006 - 2(14.04276) + 16.86187)$$

$$f''(1.3) = \frac{1}{0.01} (0.36641)$$

$$f''(x_0) = \frac{1}{h^2} (f(x_0 - h) - 2f(x_0) + f(x_0 + h))$$

$$f''(1.3) = \frac{1}{(0.01)^2} (f(1.3 - 0.01) - 2f(1.3) + f(1.3 + 0.01))$$

$$f''(1.3) = \frac{1}{(0.01)^2} (f(1.29) - 2f(1.3) + f(1.31))$$

$$f''(1.3) = \frac{1}{0.0001} (13.78176 - 2(14.04276) + (14.30741))$$

$$f''(1.3) = 36.5$$

.____

10. In a circuit with impressed voltage ϵ (t) and inductance L, Kirchoff's first law gives the relationship

$$\varepsilon(t) = L \frac{di}{dt} + Ri$$

where R is the resistance in the circuit and i is the current. Suppose we measure the current for several values t and obtain:

t	1.00	1.01	1.02	1.03	1.04
i	3.10	3.12	3.14	3.18	3.24

"t" is measured in seconds, "i" is in amperes, the inductance "L" is a constant 0.98 henries, and the resistance is 0.142 ohms. **Approximate the voltage** ϵ (t) **when** t = 1.00, 1.01, 1.02, 1.03, 1.04

Solution: pg 175
$$f(x_0) = \frac{1}{2h} (-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h))$$

$$f(1.00) = \frac{1}{2h(0.01)} (-3f(1.00) + 4f(1.00 + 0.01) - f(1.00 + 2(0.01)))$$

$$f(1.00) = \frac{1}{0.02} (-3f(1.00) + 4f(1.01) - f(1.02))$$

$$f(1.00) = \frac{1}{0.02} (-3(3.10) + 4(3.12) - 3.14)$$

$$f(1.00) = 2$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.00) = (0.98)(2) + (0.142)(3.10)$$

$$\epsilon(1.00) = 2.4002$$

$$f(x_0) = \frac{1}{2h} (f(x_0 + h) - f(x_0 - h))$$

$$f(1.01) = \frac{1}{0.02} (f(1.02) - f(1.00))$$

$$f(1.01) = \frac{1}{0.02} (f(1.02) - f(1.00))$$

$$f(1.01) = 2$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.01) = (0.98)(2) + (0.142)(3.12)$$

$$\epsilon(1.01) = 2.40304$$

$$f(x_0) = \frac{1}{2h} (f(x_0 + h) - f(x_0 - h))$$

$$f(1.02) = \frac{1}{0.02} (f(1.03) - f(1.01))$$

$$f(1.02) = \frac{1}{0.02} (f(1.03) - f(1.01))$$

$$f(1.02) = 3$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.02) = 3$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.02) = 3$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.02) = 3$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.02) = 3$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.02) = 3$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.02) = 3$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.02) = 3$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.02) = 3$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.02) = 3$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.02) = 3$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.02) = (0.98)(3) + (0.142)(3.14)$$

$$\epsilon(1.02) = 3$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.02) = (0.98)(3) + (0.142)(3.14)$$

$$\epsilon(1.02) = 3$$

$$\epsilon(t) = L \frac{di}{dt} + Ri$$

$$\epsilon(1.02) = (0.98)(3) + (0.142)(3.14)$$

$$\epsilon(1.03) = \frac{1}{0.02} (f(1.04) - f(1.02))$$

$$f(1.03) = \frac{1}{0.02} (f(1.04) - f(1.02))$$

$$f(1.03) = \frac{1}{0.02} (3.24 - 3.14)$$

$$f(1.03) = 5$$

$$\varepsilon(t) = L \frac{di}{dt} + Ri$$

$$\varepsilon(1.03) = (0.98)(5) + (0.142)(3.14)$$

$$\varepsilon(1.03) = 5.34588$$

$$f'(x_0) = \frac{1}{2h} (-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h))$$

$$f'(1.04) = \frac{1}{2(-0.01)} (-3f(1.04) + 4f(1.04 - 0.01) - f(1.04 + 2(-0.01)))$$

$$f'(1.04) = \frac{1}{-0.02} (-3f(1.04) + 4f(1.03) - f(1.02))$$

$$f'(1.04) = \frac{1}{-0.02} (-3(3.24) + 4(3.18) - 3.14)$$

$$f'(1.04) = 7$$

$$\varepsilon(t) = L \frac{di}{dt} + Ri$$

$$\varepsilon(1.04) = (0.98)(7) + (0.142)(3.14)$$

$$\varepsilon(1.04) = 7.30588$$