WEEK 1: SEARCHING FOR

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

STA465: Theory and Methods for Complex Spatial Data

Instructor: Dr. Vianey Leos Barajas

Assignment Project Exam Help Ahttps://powcoder.com Add WeChat powcoder

A REMEMBRANCE OF THINGS PAST

Consider the slightly simplified model

$$y_i \mid \beta, \sigma \sim N(X\beta, \sigma^2 I)$$

$$\beta \sim N(0, \tau^2 I)$$

Assignment Project Exam Help

➤ The posterior is

https://powcoder.com
$$\beta \mid y, \sigma \sim N \left[\left(\frac{\text{Add WeChat powcoder}_{T}}{X^{2}X^{2}} \right)^{-1} X^{2}y, \left(\frac{\sigma^{2}}{\tau^{2}} \right)^{-1} \right]$$

The ratio $\frac{\sigma^2}{\tau^2}$ controls the amount of information that comes from the data vs the amount that comes from the prior

AN EXPERIMENT

```
N = 100 #size of problem
x = rnorm(N) #make a covariate
y = 0.2 + 3*x + -.5*rnorm(N)

# a set of lambda = sigma^2/tau^2
lambdas = seq(0,100,length.out=100)
beta_post_mean = rep(NA,100)
beta_post_sd = reassignment Project Exam Help
for (i in 1:100){
   beta_post_mean[i] = \text{1t}(x)\frac{2}{2}\frac{2}{2}\text{1ambdas}[i]\hat{1}\hat{1}(-1)\frac{2}{2}\frac{2}{2}\text{2}\text{2}\text{2}\text{3}\text{4}\text{2}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{5}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{4}\text{2}\text{3}\text{5}\text{5}\text{5}\text{5}\text{4}\text{3}\text{4}\text{2}\text{3}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{5}\text{
```

How the mean changes

How the sd changes

SO THE PRIOR HAS AN EFFECT

So how do we choose this value of $\frac{\sigma^2}{\tau^2}$?

➤ Answer: We don't!

Assignment Project Exam Help

https://powcoder.com

The prior variance is selectech as pweeshowed last week, but we actually don't need to choose a specific value of σ

➤ We can instead run the Bayesian machinery again!

AVERAGE IT OUT

► If we can find the **joint posterior** $p(\beta, \sigma^2 \mid y)$ then we can **marginalize out** the standard deviation

$$p(\beta \mid y) = \int p(\beta, \sigma^2 \mid y) d\sigma^2 = \int p(\beta \mid y, \sigma^2) p(\sigma^2 \mid y) d\sigma^2$$
Assignment Project Exam Help

If we do this, instead of choosing the **best** value of $\frac{\sigma^2}{\tau^2}$ we can average over the values that are most consistent with the data

➤ This allows us to reflect the uncertainty we have about this parameter

BUT HOW DO WE GET THE POSTERIOR FOR SIGMA?

There are lots of ways to do this, but here's one cute trick:

$$p(A, B \mid y) = \frac{p(A, B, y)}{p(y)}$$
Assignment Project Exam Help
$$p(A \mid B, y)p(B \mid y) = \frac{p(A, B, y)}{p(B \mid y)}$$
https://powcoder.com
$$p(A \mid B, y) \times \frac{p(A, B, y)}{p(B \mid y)}$$

$$p(A \mid B, y) \propto \frac{p(A, B, y)}{p(B \mid y)}$$

► So we can get the posterior for σ^2

$$p(\sigma^2 \mid y) \propto \frac{p(y \mid \beta, \sigma^2)p(\beta)p(\sigma^2)}{p(\beta \mid \sigma^2 y)}$$

NB: Left hand side does not depend on beta, so we can put any value of beta on the right!

HOW DO WE CHOOSE THE PRIOR FOR SIGMA

- ➤ The prior on the observation variance can come from two places:
 - Structural knowledge about the measurement process (accuracy of measurement process)
 - > Knowledge of the https://pwceder.com/reathe concrete)
- ➤ One important thing: Add WeChat powcoder variance!
- ➤ Recall: if data is Gaussian, we are always within 3 **standard deviations** of the mean, which makes the standard deviation the natural parameter to put a prior on.

ASIDE: CHANGING VARIABLES

Recall that if we have a prior p(u) and we want a prior for the parameter v = g(u) we need to transform it **carefully!**

$$\Pr(u < t) = \int_{-\infty}^{t} p(u) \, du \underbrace{\operatorname{Ass}}_{\substack{g = 1 \text{(m)} \\ \text{https://powcoder.com}}}^{g^{-1}(t)} \underbrace{\operatorname{Project}}_{\substack{dv}} \underbrace{\operatorname{Help}}_{\substack{dv}} \left[v < g^{-1}(t) \right]$$

Add WeChat powcoder

So a prior for standard deviation $p_{\sigma}(\sigma)$ becomes a prior for variance $v = \sigma^2$

$$p(v) = \frac{1}{2}v^{-1/2}p_{\sigma}\left(\sqrt{v}\right)$$

THE POSTERIOR FOR SIGMA

➤ Putting this in we get

$$\begin{split} p(\sigma^2 \mid y) &\propto \frac{\sigma^{-n} \exp\left[-\frac{1}{2\sigma^2}(y - X\beta)^T(y - X\beta) - \frac{1}{2\tau^2}\beta^T\beta\right] p(\sigma^2)}{|\Sigma_{post}|^{\frac{1}{2}} post} \underbrace{\left[\frac{\text{Project Exam}}{\text{Post}}\right] \text{Help}}_{post}(\beta - \mu_{post})\right]} \\ &\propto \sigma^{-n} |\Sigma_{post}|^{\frac{1}{2}} \exp\left[-\frac{1}{2\sigma^2}y^Ty + \frac{1}{2}\mu_{post}^T\Sigma_{post}^{-1}\mu_{post}\right] p(\sigma^2)} \\ &\quad \text{Add WeChalpowcoder2} \end{split}$$

➤ Yuck!

WE DO IT COMPUTATIONALLY

HISTOGRAMS

BACK TO THE AIR

Last time, we looked at the global PM2.5 data

FITTING ONE LINE TO ALL THE DATA

➤ The (log) PM2.5 measurement is well-predicted by the (log) satellite data

```
load("~/Documents/bayes-vis-paper/bayes-vis.RData")
fit_total = lm(log(pm25) ~ log(sat_2014), data = GM)
summary(fit_tAtsignment Project Exam Help
```

```
https://powcoder.com
##
## Call:
## lm(formula = log(pm25) Wechat powcoder GM)
## Residuals:
##
       Min
                    Median
                 10
                                  30
                                         Max
## -1.86688 -0.26833 -0.06241 0.23273 2.63544
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.87899 0.02938 29.92 <2e-16 ***
## log(sat_2014) 0.70828 0.01058 66.94 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4485 on 2978 degrees of freedom
## Multiple R-squared: 0.6008, Adjusted R-squared: 0.6006
## F-statistic: 4481 on 1 and 2978 DF, p-value: < 2.2e-16
```

FITTING ONE LINE TO EACH REGION

➤ What if we instead fit an individual line to each region?

Add WeChat powcoder

TINY R-Squared!

TWO BAD SOLUTIONS

- ➤ We are doing pretty badly if we use all the data
 - ➤ The estimate is dominated by all the data in high-income countries.

Assignment Project Exam Help

- ➤ We are doing pretty badly if we separate into regions Add WeChat powcoder
 - ➤ A lot of regions don't have enough information to get a good regression line.

➤ Is there a compromise?

Assignment Project Exam Help Chat powcoder.com Add WeChat powcoder

TWO ENDS OF A CONTINUUM

➤ What we saw were two ends of a continuum for fitting regressions over multiple, linked, data sets.

Complete pooling: When Weifitted the global regression, we pooled all of our data together dergen single estimate

Add WeChat powcoder

➤ No pooling: When we fitted individual regressions to each region, we did not share any information between the regions

➤ Partial pooling: ????

LET'S START WITH A SIMPLER CASE

Instead of trying to estimate a mean and an intercept, let's just focus on the intercept (ie we have no covariate).

The complete pooling estimate is Exam Help

➤ The no pooling estimate is

$$\mu_j = \frac{1}{n_j} \sum_{i=1}^{n_j} y_{ij}$$

here y_{ij} is the *i*th measurement of region *j*

WHAT IF WE MADE A BAYESIAN MODEL

Consider the following model

$$y_{ij} \mid \mu, \sigma \sim N(\mu_j, \sigma^2)$$

 $\mu_j \sim N(\mu, \tau^2)$

Assignment Project Exam Help

- This is different from complete pooling because it estimates a https://powcoder.com/different intercept for each region.

 Add WeChat powcoder
- This is different from no pooling because the intercepts are no longer independent: they're *a priori* assumed to be draws from the same normal distribution
- This means that we don't expect the region means to be more than 3τ apart.

THE POSTERIOR MEAN

➤ The partially pooled posterior mean is

So when a region has a lot of data, we are close to the region average, while when there is little data we are close to the global average.

EXTENDING TO REGRESSION

➤ We can extend this model to cover regression in a straightforward way

$$y_{ij} \mid \mu, \beta, \sigma \sim N(\mu_j + \beta_j x_{ij}, \sigma^2)$$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

➤ This allows the slope to change in each region as well.

- ➤ Note that the intercept and slope will generally have different amounts of pooling
- ➤ These models are known as multilevel models

HOW DO WE CHOOSE THE AMOUNT OF POOLING?

➤ We don't!!!!!

➤ Once again, we let Bayes do the hard work for us.

Assignment Project Exam Help

https://powcoder.com

Set a (sensible) prior we compute the posterior, and average over all of the partially pooled models that are consistent with the observed data!

 \blacktriangleright (Once again, the posterior for τ is ugly, but we get it the same way as yesterday)

THIS IS BASICALLY WHAT WE WANT

➤ We want the local data in the region to be represented, but we also want to use the global data when needed.

➤ We're assuming the regions are exchangeable, which may not be the best assurbtes: Inowcoder.com

Add WeChat powcoder

➤ We're going to work on breaking this as we go further in the course.