2.004 Dynamics and Control II Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING

2.004 Dynamics and Control II Spring Term 2008

Problem Set 4

Assigned: Feb. 29, 2008 Due:March 7, 2008

Reading:

• 2.004 Class Handout: Introduction to the Operational Amplifier

Problem 1:

Do this problem before your Lab 3 session and take your solution with you.

In Lab 3 you will be designing and implementing a closed-loop controller to regulate the angular velocity of the copper flywheel. In Lab 2 you measured the characteristics of the system components. This problem asks you to predict the closed-loop behavior of the system, so that you may compare your predicted and measured behavior in the lab:

- (a) Derive the transfer function relating the angular velocity Ω of the motor to the voltage input command in terms of the controller gain K, servo amp gain K_a , motor torque constant K_t , and tachometer gain K_{Ω} . Ignore nonlinearities such as Coulomb friction. (Question: Why did I include the block K_{Ω} , in the input?)
- (b) Now put in numerical values:
 - You computed the value of J.
 - The motor-drive gears have 44 and 180 teeth.
 - The value of $K_a = 2$ amps/volt. The value of $K_{\Omega} = 0.016$ v/rpm.
 - Assume a value K=3 for the controller.
 - We will start with one damping magnet. From Lab. 1, an average over several groups for the damping with one magnet was B = 0.014 N.m.s/rad.
- (b) With all of the numerical values substituted, except for the controller gain K, derive the closed loop time-constant in terms of K.

(c) Similarly, determine the steady-state error to a constant (step) input as a function of the controller gain K.

<u>Hint:</u> You may find certain similarities between this problem and the automobile cruise control example we discussed in class.

Problem 2: A parts assembly station on a production line exhibits a severe vibration problem. A simplified schematic representation is shown below:

$$K_1$$
 K_1
 K_2
 K_3
 K_4
 K_4

Two large tables of mass m_1 and m_2 are each mounted to a sliding metal plate on resilient rubber mounts, with shear stiffness K_1 and K_2 as shown. The tables are each subjected to a vibrational excitation force, $F_1(t)$ and $F_2(t)$. The plates are able to slide viscously on a second pair of deformable rubber mounts, with shear stiffness K_3 and K_4 as shown. The viscous sliding coefficients are B_1 and B_2 . The two plates are coupled by a shaft with longitudinal stiffness K_5 .

- (a) Draw a linear graph for the system using the two forces F_1 and F_2 as inputs.
- (b) Write continuity (force balance) equations for each of the nodes on your graph. (You don't have to consider the reference node.)
- (c) Using the elemental impedances/admittances substitute the component values and generate a set of simultaneous algebraic equations in the nodal velocities.

Do not attempt to solve the equations.

<u>Problem 3:</u> The op-amp circuit shown below is commonly used as a "filter" in control systems.

In the class handout we showed that the output of the standard inverting amplifier is

$$v_{out} = -\frac{R_f}{R_{in}}v_{in}$$

(a) Extend the argument in the handout to show that for any impedance elements Z_f and Z_{in} the output may be written

$$V_{out}(s) = -\frac{Z_f}{Z_{in}} V_{in}(s).$$

- (b) Find the transfer function $V_{out}(s)/V_{in}(s)$ for the circuit above.
- (c) Find the differential equation relating $v_{out}(t)$ to $v_{in}(t)$.
- (d) If $R_2 = 22 \text{ k}\Omega$ (22,000 Ω), $R_1 = 6.8 \text{ k}\Omega$, and $C = 0.47 \mu\text{Fd}$ (these are common values), find (i) The time-constant, and (ii) the steady-state output voltage v_{out} when the input is 2.5 v.

Problem 4: Nise Ch, 2, Prob. 30. For each system:

- (a) Draw the linear graph representation of the system.
- (b) Write the equations of motion (as Nise requests) in the Laplace domain using the node equations. (Do not solve.)

Problem 5: Consider the rotational system shown below:

The torsional stiffness of a cylindrical shaft of diameter D and length l is

$$K_r = G \frac{\pi}{32} \frac{D^4}{l}$$

where G is the shear modulus of the shaft material. A steel shaft, 5 m long and 5 cm in diameter, drives a steel cylindrical flywheel with a 30 cm diameter and a thickness of 5 cm. Steel has a density of $\rho = 7.8 \text{ gm/cm}^3$ and a shear modulus of G = 83 GPa. Assume that each of the bearings exhibits a rotational viscous frictional coefficient B = 0.1 N-m-s/rad. The input is an angular velocity source $\Omega_s(t)$.

As a controls engineer you have been asked to design a closed-loop controller to maintain the flywheel at a constant speed under varying load conditions. In order to do this you need a transfer function model of the plant:

- (a) What are the values of the shaft stiffness K_r and the flywheel moment of inertia J.
- (b) Derive the transfer function (with numerical coefficients) relating the flywheel angular velocity Ω_1 to the input $\Omega_s(t)$.