Relatório AirFryer

Universidade de Aveiro

Eduardo Moreno, Pedro Laredo

Relatório AirFryer

Dept. de Eletrónica, Telecomunicações e Informática Universidade de Aveiro

Eduardo Moreno, Pedro Laredo (120393) moreno21@ua.pt, (118655) pedro.laredo@ua.pt

3 de junho de 2024

Índice

	Manual de Utilização									
2.1	Caracterização dos programas									
2.2	Funcionamento									
2.3	Visualização da placa									
Arquitetura/Implementações										
3.1	Debouncer									
3.2	PulseGen									
3.3	AirFryerFSM									
3.4	Counter									

Lista de Figuras

2.1	Tabela com os vários programas	4
2.2	Visualização da placa FPGA	,
3.1	Visualização da arquitetura top-level	,
3.2	Máquina de estados	(

Introdução

Este relatório descreve o desenvolvimento e a implementação de um sistema para uma airfryer utilizando VHDL (VHSIC Hardware Description Language) e sua implementação numa placa FPGA. O objetivo principal do projeto é criar um modelo funcional de uma airfryer que possa ser controlado eletronicamente, simulando o seu funcionamento em tempo real.

Manual de Utilização

2.1 Caracterização dos programas

o Default: (200°, 18 mins).

o User: o utilizador define temperatura, tempo de pré-aquecimento, tempo de cocção. Note que em pré-aquecimento a cuba de cocção de verá estar vazia.

o Rissóis: 180°, 3 mins pré-aq., 15 mins cocção.

o Batatas: 200°, 5 mins pré-aq., 20 mins cocção

o Filetes de peixe: 170°, 3 mins pré-aq, 20 mins cocção.

o Hamburger: 170°, 5 mins pré-aq., 20 mins cocção

Programas/ Tempo de cozedura	Default	User	Rissóis	Batatas	Filetes de peixe	Hamburguer
Pré- Aquecimento	0 mins	Por definir	3 mins	5 mins	3 mins	5 mins
Cocção	18 mins	Por definir	15 mins	20 mins	20 mins	20 mins
Temperatura	180 graus	Por definir	180 graus	200 graus	170 graus	170 graus

Figura 2.1: Tabela com os vários programas

2.2 Funcionamento

A placa inicializa quando o interruptor "Enable" está ligado. Após isso, o utilizador tem que selecionar os programas nos interruptores indicados para tal. Sempre que o "Enable" é desligado e ligado, a placa reinicia o processo. A máquina tem 5 estados, sendo eles: IDLE, PREHEAT, COOK, FINISH e COOL.

- 3 LEDS ligados \rightarrow IDLE
- 2 LEDS ligados \rightarrow PREHEAT
- 1 LED ligado \rightarrow Cozer ou Tempo Extra
- \bullet 0 LEDS ligados \to Standby, Atraso Inicial ou Espera da Confirmação do Tempo Extra/Reinicialização

2.3 Visualização da placa

Figura 2.2: Visualização da placa FPGA

- **Display:**(HEX5,HEX4) \rightarrow Display para mostrar o tempo de pré-aquecimento/cozedura de cada programa.
- Display: $(HEX2,HEX1,HEX0) \rightarrow Display para mostrar a temperatura de cada programa.$
- Switch(0): Enable \rightarrow Interruptor para iniciar ou parar o programa.
- Switch(4): Abrir Forno \rightarrow Interruptor para abrir e fechar a cúpula da Air Fryer.
- Switch (6..4): Programas \rightarrow Interruptores para escolher o programa desejado pelo utilizador.
- Switch(7): Correr → Interruptor para começar a executar o programa, de acordo com as devidas instruções.
- LEDR(2..0):luzvermelha \rightarrow LEDs utilizados para verificar o estado dos programas.
- LEDG(1..0): luzverde \rightarrow LEDs utlizados para verificar o estado dos programas.

Arquitetura/Implementações

Figura 3.1: Visualização da arquitetura top-level

3.1 Debouncer

O debouncer é responsável por fazer o Debounce dos interruptores. A sua principal função é filtrar os pulsos indesejados por parte dos interruptores da máquina, pois isso pode gerar uma mudança de estado.

3.2 PulseGen

O PulseGen implementa um contador de 5 bits com sinais de controlo para carregar, habilitar e decrementar a contagem. Indica quando o contador atinge zero através do sinal ${\rm Time}_S tatus$.

3.3 AirFryerFSM

Figura 3.2: Máquina de estados

1. **IDLE**

 \hookrightarrow O LED vermelho está aceso , indicando que a máquina está inativa. A temperatura define-se para 20 graus. Se o botão Correr for pressionado e um programa for selecionado, a FSM muda para o estado PREHEAT e define o tempo e a temperatura de cozimento de acordo com o programa escolhido.

2. PREHEAT

→ O LED vermelho está aceso para indicar o pré-aquecimento. A temperatura de cozimento é definida com base no programa selecionado. Se o sinal EstadoTempo estiver ligado, o LED verde acende e a FSM aguarda que a porta do forno seja fechada e o sinal Correr fique desligado para iniciar o cozimento. Caso contrário, o tempo de cozimento é ligado.

3. **COOK**

 \hookrightarrow O LED verde está aceso, indicando que o cozimento foi iniciado. O LED vermelho está aceso. A temperatura e o tempo de cozimento são definidos com base no programa selecionado. Se ambos os sinais EstadoTempo e Correr estiverem altos, a FSM muda para o estado FINISH (Finalizado).

4. FINISH

→ O LED verde está aceso. O LED vermelho está aceso, indicando o fim do cozimento. A temperatura de cozimento é definida com base no programa selecionado. Se a porta do forno for aberta, a FSM muda para o estado COOL (Arrefecimento)

5. **COOL**

 \hookrightarrow Não implementado.

3.4 Counter

O counter gera um pulso de clock alto na saída pulse com duração de um ciclo do clock, a cada MAX ciclos de clock de entrada. O valor de MAX define a frequência do pulso de saída. A entrada reset permite zerar o contador e, consequentemente, sincronizar o gerador de pulso.

Validações

Durante o processo da implementação da airfryer , foram realizados diversos testes para assegurar que a maior parte das funcionalidades estivessem a ser executadas conforme as instruções. Os testes foram conduzidos tanto em ambiente de simulação como implementação na placa FPGA. Os principais componentes testados foram o controlador de temperatura, controlador de tempo, e a interface do usuário.

Devido a uma gestão de recursos, para a maior eficiência do projeto, algumas funções não foram implementadas, como o estado COOL, e o programa manual (User).

Conclusões

Em suma, após a realização do projeto, houve uma notável melhoria e evolução das nosssas capacidades em VHDL, principalmente após ultrapassarmos várias desafios que este projeto propocionou. Concluindo, autoavaliamos o nosso trabalho em 15 valores.

5.1 Contribuições dos autores

Percentagem da contribuição de cada autor. Eduardo Moreno (EM), Pedro Laredo (PL): 40%, 60%

Acrónimos

EM Eduardo MorenoPL Pedro Laredo