Dersi veren: Prof. Dr. Ali Yapar **Dersin yardımcısı:** Araş. Gör. Furkan Şahin 23.03.2021

- 1. $f(x) = x^3 7x^2 + 14x 6$ fonksiyonunun [0,1] aralığında tek kökü olduğu bilinmektedir.
 - (a) İkiye bölme yöntemini kullanarak f(x) fonksiyonunun kökü [0,1] aralığında 10^{-3} hassasiyetle kaç adımda bulunacağını hesaplayınız.
 - (b) İkiye bölme yöntemi ile f(x) fonksiyonunun kökünü [0,1] aralığında 10^{-3} hassasiyetle hesaplayınız. $n,a_n,b_n,c_n,|b_n-c_n|$ değerlerini ve $f(a_n)f(c_n)$ işlem sonucunun işaretini tablo halinde yazınız.
 - (c) MATLAB programında fzero () fonksiyonunu kullanarak f(x) fonksiyonunun kökünü [0,1] aralığında bulunuz ve ikiye bölme yöntemiyle hesapladığınız değeri bu sonuç ile karşılaştırınız.

Çözüm:

a.

$$n \ge \frac{\log\left(\frac{b-a}{\varepsilon}\right)}{\log 2}$$

$$n \ge \frac{\log\left(\frac{1}{10^{-3}}\right)}{\log 2} = 9.97 \sim n \to 10$$

b.

n = 1:

$$a_1 = 0, b_1 = 1, c_1 = 0.5$$

 $|b_1-c_1|=0.5>10^{-3}$ olduğu için yönteme devam edilir.

n = 2:

$$f(a_1)f(c_1) = 3.75 > 0 \Longrightarrow a_2 = 0.5, b_2 = 1, c_2 = 0.75$$

 $|b_2 - c_2| = 0.25 \not< 10^{-3}.$

n = 3:

$$f(a_2)f(c_2) = -0.61523 < 0 \Longrightarrow a_3 = 0.5, b_3 = 0.75, c_3 = 0.625$$

 $|b_3 - c_3| = 0.125 \not< 10^{-3}.$

n=4:

$$f(a_3)f(c_3) = -0.16235 < 0 \Longrightarrow a_4 = 0.5, b_4 = 0.625, c_4 = 0.5625$$

 $|b_4 - c_4| = 0.0625 \not< 10^{-3}.$

n = 5:

$$f(a_4)f(c_4) = 0.101166 > 0 \Longrightarrow a_5 = 0.5625, b_5 = 0.625, c_5 = 0.59375$$

$$|b_5 - c_5| = 0.03125 \not< 10^{-3}.$$

n = 6:

$$f(a_5)f(c_5) = -0.00875 < 0 \Longrightarrow a_6 = 0.5625, b_6 = 0.59375, c_6 = 0.578125$$

$$|b_6 - c_6| = 0.015625 \not< 10^{-3}.$$

n = 7:

$$f(a_6)f(c_6) = 0.00851 > 0 \Longrightarrow a_7 = 0.578125, b_7 = 0.59375, c_7 = 0.5859375$$

$$|b_7 - c_7| = 0.0078125 \not< 10^{-3}.$$

n = 8:

$$f(a_7)f(c_7) = -5.42761 \times 10^{-5} < 0 \Longrightarrow a_8 = 0.578125, b_8 = 0.5859375, c_8 = 0.58203125$$

$$|b_8 - c_8| = 0.00390625 \not< 10^{-3}.$$

n = 9:

$$f(a_8)f(c_8) = 0.00135 > 0 \Longrightarrow a_9 = 0.58203125, b_9 = 0.5859375, c_9 = 0.583984375$$

$$|b_9 - c_9| = 0.001953125 \not< 10^{-3}.$$

n = 10:

$$f(a_9)f(c_9) = 3.16880 \times 10^{-4} > 0 \Longrightarrow a_{10} = 0.583984375, b_{10} = 0.5859375, c_{10} = 0.5849609375$$

 $|b_{10}-c_{10}|=0.0009765625<10^{-3}$ olduğu için iterasyon sonlandırılır ve kök c_n teriminin son değeri olarak belirlenir.

$$x_y = 0.5849609375$$

\mathbf{n}	$\mathbf{a_n}$	$\mathbf{b_n}$	$\mathbf{c_n}$	$ \mathbf{b_n} - \mathbf{c_n} $	$sgn\left[f(a_n)f(c_n)\right]$
1	0	1	0.5	0.5	+1
2	0.5	1	0.75	0.25	-1
3	0.5	0.75	0.625	0.125	-1
4	0.5	0.625	0.5625	0.0625	+1
5	0.5625	0.625	0.59375	0.03125	-1
6	0.5625	0.59375	0.578125	0.015625	+1
7	0.578125	0.59375	0.5859375	0.0078125	-1
8	0.578125	0.5859375	0.58203125	0.00390625	+1
9	0.58203125	0.5859375	0.583984375	0.001953125	+1
10	0.583984375	0.5859375	0.5849609375	0.0009765625	iterasyon sonu

c.

ans =

0.585786437626905

$$x_q = 0.585786437626905$$

$$|x_g - x_y| = 8.255001269050766 \times 10^{-4} < 10^{-3}$$

- 2. $2 \ln x = -2x^2$ denkleminin kökünü 10^{-8} hassasiyetle
 - (a) Newton yöntemini kullanarak $x_0=1$ başlangıç değerinden hareketle bulunuz.
 - (b) Sekant yöntemini kullanarak $x_0=0.5$, $x_1=1$ başlangıç değer çiftinden hareketle bulunuz.

Çözüm: Denklem kökü bulmak için $f(x) = 2 \ln x + 2x^2$ fonksiyonu tanımlanır.

a.

Newton yöntemi

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

iterasyon adımıyla uygulanır. Bu yüzden öncelikle f(x) fonksiyonunun türevi bulunmalıdır.

$$f'(x) = \frac{2}{x} + 4x$$

 $\underline{n=0}$:

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.66666666666666666666 - \frac{0.077958672672561}{5.66666666666666} = 0.652909253842097$$

$$|x_2 - x_1| = 0.01375741282457 \not< 10^{-8}.$$

 $\underline{n = 2}$:

$$x_3 = 0.652909253842097 - \frac{-5.32673851338927 \times 10^{-5}}{5.674849840475153} = 0.652918640413836$$

$$|x_3 - x_2| = 9.386571738656535 \times 10^{-6} \angle 10^{-8}.$$

n = 3:

$$x_4 = 0.652918640413836 - \frac{-3.046751739788078 \times 10^{-11}}{5.674843349013521} = 0.652918640419205$$

 $|x_4-x_3|=5.368927524784795\times 10^{-12}<10^{-8}$ olduğu için iterasyon sonlandırılır ve kök x_n teriminin son değeri olarak belirlenir.

$$x_y = 0.652918640419205$$

\mathbf{n}	$\mathbf{x_n}$	$\mathbf{f}(\mathbf{x_n})$	$\mathbf{f'}(\mathbf{x_n})$	$ \mathbf{x}_{n-1} - \mathbf{x}_n $
0	1	2	6	_
1	0.666666666666666667	0.077958672672561	5.666666666666666	0.333333333333333
2	0.652909253842097	-5.326738513389273e-5	5.674849840475153	0.01375741282457
3	0.652918640413836	-3.046751739788078e-11	5.674843349013521	9.386571738656535e-6
4	0.652918640419205	iterasyon s	5.368927524784795e-12	

b.

Sekant yöntemi

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

iterasyon adımıyla uygulanır.

\mathbf{n}	$\mathbf{x_n}$	$\mathbf{f}(\mathbf{x_n})$	$ \mathbf{x_{n-1}} - \mathbf{x_n} $
0	0.5	-0.136294361119891	_
1	1	2	0.5
2	0.653534991624348	0.00349756575073346	0.346465008375652
3	0.652928038120894	5.33304543935964e-5	0.000606953503454077
4	0.652918640067814	-1.99408745071850e-9	9.39805307997865e-6
5	0.652918640419205	iterasyon sonu	3.51390916364380e-10

3. $e^x = 1/x$ denkleminin kökü $\alpha = 0.567143290409784$ olmak üzere, bu kökü sabit nokta iterasyonu ile bulmak için üç farklı iterasyon kuralı oluşturunuz. Bu kuralların yakınsamalarını kontrol ediniz. Yakınsayan kurallardan bir tanesini seçerek iterasyonu $x_0 = 1$ başlangıç değeri için ilk 10 adım için uygulayınız.

Çözüm:

 $f(x) = e^x - 1/x = 0$ denklemini sabit nokta iterasyonu ile çözebilmek için x yalnız bırakılarak x = g(x) haline getirilmelidir.

$$x = e^{-x} = g_1(x)$$

$$x^2 e^x = x^2 \frac{1}{x} \Rightarrow x = x^2 e^x = g_2(x)$$

$$\ln(e^x) = \ln\left(\frac{1}{x}\right) \Rightarrow x = -\ln x = g_3(x)$$

Yakınsamaları kontrol etmek için $|g'(\alpha)| < 1$ eşitsizliğine bakılır.

$$\begin{split} g_1'(x) &= -\operatorname{e}^{-x} \Rightarrow |g_1'(\alpha)| = 0.567143290409784 < 1 \to \operatorname{yakınsar} \\ g_2'(x) &= 2x\operatorname{e}^x + x^2\operatorname{e}^x \Rightarrow |g_2'(\alpha)| = 2.567143290409784 \not< 1 \to \operatorname{ıraksar} \\ g_3'(x) &= -\frac{1}{x} \Rightarrow |g_3'(\alpha)| = 1.763222834351897 \not< 1 \to \operatorname{ıraksar} \end{split}$$

Bu durumda

$$x_{n+1} = g_1(x_n) = e^{-x_n}$$

iterasyon kuralı uygulanır.

n=0:

$$x_1 = g_1(x_0) = e^{-1} = 0.367879441171442$$

n = 1:

$$x_2 = g_1(x_1) = 0.692200627555346$$

n = 2:

$$x_3 = g_1(x_2) = 0.500473500563637$$

n = 3:

$$x_4 = g_1(x_3) = 0.606243535085597$$

n = 4:

$$x_5 = g_1(x_4) = 0.545395785975027$$

n = 5:

$$x_6 = g_1(x_5) = 0.579612335503379$$

$$\underline{n=6}$$
: $x_7=g_1(x_6)=0.560115461361089$

$$\underline{n=7:}$$
 $x_8=g_1(x_7)=0.571143115080177$

$$\underline{n=8}$$
: $x_9=g_1(x_8)=0.564879347391050$

$$\underline{n=9:}$$
 $x_{10}=g_1(x_9)=0.568428725029061$

n	$\mathbf{x_n}$	$ \mathbf{x_n} - \mathbf{x_{n-1}} $	
0	1	_	
1	0.367879441171442	0.432856709590216	
2	0.692200627555346	0.199263849238342	
3	0.500473500563637	0.125057337145562	
4	0.606243535085597	0.0666697898461470	
5	0.545395785975027	0.0391002446758133	
6	0.579612335503379	0.0217475044347569	
7	0.560115461361089	0.0124690450935949	
8	0.571143115080177	0.00702782904869481	
9	0.564879347391050	0.00399982467039306	
10	0.568428725029061	0.00226394301873445	