ASP Course on Microeconometric Methods (2021) - Take Home Assignment -

Project A

Susann Adloff, Linda Maokomatanda, Saskia Meuchelböck

Section 1

Evaluating the impact of foreign direct investment (FDI) on firm-level performance has received a lot of attention in the literature. Researchers are interested in the impact of FDI on the investor (or parent) firm and the target firm of FDI, as well as in potential spillover effects. We briefly review three papers representing these three strands of investigation, focusing on their empirical strategies.

Borin and Mancini (2016) investigate the effects of investing abroad on the performance of the parent firm using survey and balance sheet data for Italy. The authors are confronted with a severe form of endogeneity as firms self-select into investing abroad: firms investing abroad might be inherently different in terms of managerial ability, know-how, and technology, affecting their performance before and after the investment. In light of this self-selection problem, the authors use a propensity score matching procedure to analyze the causal relationship between firm performance and FDI, looking in particular at the effects on productivity and employment of the parent firm. They also evaluate whether these effects are the same across parent firms or concentrated among certain groups of investors. They find that firms investing abroad for the first time show higher productivity and employment dynamics in the years following the investment.

Bajgar and Javorcik (2020) analyze spillover effects from FDI on domestic firm performance resulting from links along the supply chain. More specifically, they investigate the relationship between quality upgrading by Romanian exporters and the presence of foreign affiliates in upstream and downstream industries, using customs data merged with firm-level data. They employ OLS regressions with product quality as the dependent variable and a measure of FDI presence as the independent variable of interest. They control for firm-product-destination fixed effects, region-time fixed effects and linear time trends at the region-industry level. To alleviate the concern of reverse causality, they lag their FDI variable by one year. The results show that a one percentage point increase in FDI presence upstream is related to a 0.5% increase in product quality of domestic exporters, on average and ceteris paribus.

Chen (2011) studies the role of the origin of FDIs on target firm performance changes using data on acquisitions of US firms. The authors differentiate between firms acquired by domestic firms (USFs), firms from industrialized countries (ICFs), and firms from developing countries (DCFs). The identification strategy is based on a diff-in-diff analysis combined with propensity score matching. The scoring is achieved through a multinomial logit model estimation of observables available to acquires before the acquisition that provide information on present and potential future target firm performance, as well as year, industry and state fixed effects. The matching is done using a kernel matching procedure. This allows to

impose pre-treatment homogeneity in firm performance across comparison groups and thus to interpret any difference in performance between matched pairs to result from the difference in treatment. The results show that gains in sales, labor productivity, and employment are highest for firms being acquired by ICFs.

Section 2

The aim of our research project is to estimate the impact of foreign direct investment (FDI) on labor market outcomes. More specifically, we analyze the effect of FDI on employment and wages. We use firm-level data for the years 2015 to 2017. In 2016, a subset of firms in the dataset receive FDI. The receipt of FDI is referred to as treatment in the following. Table 1 shows summary statistics for the main variables included in our dataset, both for 2015 – i.e. our pre-treatment period – and 2017 – i.e. the post-treatment period. We have information on wages, employment, total factor productivity (TFP), debt, export intensity as well as a dummy variable indicating whether a firm engages in research and development activities. In total, 11,323 firms are included in our dataset. On average, wages decreased from 2015 to 2017, while TFP, employment, export intensity, and the share of firms engaging in R&D increased. We do not have information on debt in 2017.

Table 1: Summary statistics

	Mean	Std. Dev.	Min.	Max.	Obs.
Wages in 2015 (logs)	7.333	3.839	-7.332	22.432	11323
Total factor productivity in 2015	3.041	2.047	-5.359	11.357	11323
Employment in 2015 (logs)	4.411	3.040	-6.229	15.993	11323
Debt in $2015 (logs)$	0.504	0.353	-0.200	1.300	11323
Export intensity in 2015	0.159	0.080	0.010	0.483	11323
RD in 2015 (dummy)	0.121	0.326	0.000	1.000	11323
Wages in 2017 (logs)	5.010	3.083	-6.185	17.042	11323
Total factor productivity in 2017	3.656	2.056	-4.701	11.811	11323
Emplyoment in 2017 (logs)	5.030	3.095	-6.218	16.388	11323
Export intensity in 2017	0.270	0.108	0.019	0.950	11323
RD in 2017 (dummy)	0.407	0.491	0.000	1.000	11323

Table 2 reports our main variables by treatment, i.e. for two subsamples: firms receiving FDI in 2016 (4,460 or 39%) and firms not receiving FDI (6,884). In addition, we report the differences in means as well as the p-values of a t-test of the null hypothesis that means are equal across groups. For most of the pre-treatment variables the null hypothesis can be rejected, providing first evidence that treatment is not randomly assigned but depends on firm-level characteristics. Firms receiving FDI, on average, pay lower wages, employ more workers, have a lower level of TFP and export more of their production. There are no significant differences regarding R&D activities.

In addition, our dataset provides information on several firm-level characteristics that do not change over the time period studied: the firm's level of technology, its ownership struc-

Table 2: Summary statistics by treatment status

	No FDI	FDI	Mean diff.	P-value
Wages in 2015 (logs)	7.529	7.031	0.498***	0.000
	(3.849)	(3.804)		
Total factor productivity in 2015	3.185	2.821	0.364^{***}	0.000
	(2.060)	(2.005)		
Employment in 2015 (logs)	3.766	5.405	-1.639***	0.000
	(3.054)	(2.737)		
Export intensity in 2015	0.131	0.204	-0.073***	0.000
	(0.068)	(0.076)		
Debt in 2015 (logs)	0.511	0.493	0.019^{**}	0.006
	(0.349)	(0.358)		
RD in 2015 (dummy)	0.117	0.128	-0.012	0.063
	(0.321)	(0.334)		
Observations	6863	4460		

Means reported in columns 1 and 2, standard deviations in parenthesis.

ture, and its access to the world market, proxied by a dummy variable indicating whether there is a port within 500km of the firm's location. Roughly one third of the firms in our dataset are in the low-tech and medium-high tech industries each, and roughly one sixth each is in the low- and high-tech sector, respectively. At 40%, the largest share of firms in our dataset is independent, followed by state-owned firms (28%) and subsidiaries (23%). Only 8% of firms are listed companies. One third of the firms has access to a port within 500km.

Table 3 gives an overview of the frequency distribution of treatment across these characteristics and provides further evidence that treatment is non-random. The share of firms receiving FDI is comparatively high in the low- and medium-low-technology sector. Among the firms receiving FDI, roughly 70% are in those sectors, compared with only 40% of the firms not receiving FDI. Access to ports is also unbalanced across treatment groups, and more prevalent among those firms receiving FDI. Regarding the ownership structure, the share of listed companies is lower among treated than non-treated firms, while the shares of independent and state-owned firms are somewhat higher.

Section 3

The challenge that this dataset poses for the identification of causal effects of FDI is that the treatment (FDI) is not assigned randomly across firms but the result of a selection process. Investors will carefully decide which firms to invest in. Thus, treatment allocation will likely depend on observable firm characteristics in 2015, such that firms in the treatment group will structurally differ from firms in the untreated group. Table 2 shows that in the available dataset this imbalance in pre-treatment characteristics between treated and non-treated firms can be found across all available performance indicators from 2015. In addition, Table 4 presents the result of a logit regression of FDI on pre-treatment characteristics, which

Table 3: Characteristics of treated and non-treated firms

	Treatment					
Characteristics	$No\ FDI$		FI	DI	Total	
	No.	%	No.	%	No.	%
Low-tech	1,869	27.2	2,325	52.1	4,194	37.0
Medium low	904	13.2	781	17.5	1,685	14.9
Medium high	2,432	35.4	1,107	24.8	3,539	31.3
High-tech	1,658	24.2	247	5.5	1,905	16.8
Total	6,863	100.0	4,460	100.0	11,323	100.0
No ports within 500km	4,988	72.7	2,378	53.3	7,366	65.1
Ports within 500km	1,875	27.3	2,082	46.7	3,957	34.9
Total	6,863	100.0	4,460	100.0	11,323	100.0
Listed companies	736	10.7	173	3.9	909	8.0
Subsidiaries	1,615	23.5	1,015	22.8	2,630	23.2
Independent	2,702	39.4	1,891	42.4	4,593	40.6
State	1,810	26.4	1,381	31.0	3,191	28.2
Total	6,863	100.0	4,460	100.0	11,323	100.0

corroborates the statistical significance of correlations with FDI assignment for all available pre-treatment variables except log wages. The set of pre-treatment firm characteristics is, consequently, correlated with post-treatment performance as well as with treatment allocation, which violates the conditional independence assumption necessary for causal identification. As this violation is found across multiple variables, the data suffers from what is called the curse of dimensionality. This can be circumvented by propensity score matching such that causal identification of FDI effects on firm performance can still be achieved.

In order for propensity score matching to successfully alleviate any concerns of selection bias, a scoring function needs to be identified that achieves balancedness in terms of relevant observables, on the one hand, and a good common support, i.e. overlap on the other. This is not trivial. Imagine a situation in which treatment is assigned according to one specific set of variables, z. All subjects receiving treatment exhibit high values in z. If scoring is performed based on this variable set z propensity scores will be high for firms with high values of z and matching of firms with similar propensity scores will produce very little differences in values of z. Yet, this will produce a most certainly bad overlap. Opposed to that using a variable that is not related to treatment assignment for the propensity score matching will produce a high overlap as propensity scores calculated based on an unrelated variable will be similarly distributed within treatment and non-treatment groups, but it will be unlikely that this matching procedure will be able to balance the previously unbalanced variables. Consequently, a scoring function specification has to be found that balances all variables relevant for treatment assignment but in a way that produces high overlap.

In a simple logit regression, almost all pre-treatment performance indicators showed relevance for selection. Figure 1 shows the overlap and Table 5 the balancedness check results of a linear functional specification including all these variables in a logit scoring function. It can be seen that this functional specification is not suited to achieve sample balance in a

Table 4: Logit estimation results of FDI on pre-treatment observables

	FDI in 2	2016
	b	se
log wages in 2015	-0.0008	(0.008)
Total factor productivity in 2015	-0.0917***	(0.016)
log of employment in 2015	0.1905***	(0.011)
EXPORT INTENSITY in 2015	47.2347***	(0.765)
\log of DEBTS in 2015	-0.3426***	(0.109)
R&D dummy in $2015=1$	0.2892***	(0.097)
Medium low-tech industries	-2.1258***	(0.104)
Medium high-tech industries	-5.0274***	(0.112)
High-tech industries	-8.5163***	(0.164)
Subsidiaries	1.8301***	(0.148)
Independent	3.4707***	(0.150)
State	2.1772***	(0.151)
Ports within 500km	-3.0085***	(0.087)
Constant	-7.0707***	(0.212)
Observations	11323	

1 on 1 matching procedure and does not provide sufficient overlap to identify an unbiased average treatment effect. Varying the functional specification in multiple ways (using probit instead of logit, interacting continuous performance indicators with categorical variables) does not produce any considerable improvement in overlap (compare Figure 5 and 6 in the Appendix). If we reduce the number of variables used in the scoring function to a subset of the pre-treatment observables, we find improvements in overlap as is expected based on the above presented argument (compare e.g. Figure 7). However, this comes at the cost of missing control over several variables that could be shown to significantly drive selection. In an attempt to reduce dimensionality of the information used while keeping control over all variables relevant for selection we opt for translating continuous performance indicators into less fine-grained categorical variables. In particular, we construct a variable "EXP2015" CAT" that assigns the values 0, 1 or 2 for firms that have an export intensity of 0, below 25% or larger 25\%, respectively. Using a scoring function in which the remaining continuous variables are interacted with the binary/ categorical variables including "EXP2015_CAT" achieves strong improvements in overlap compared to the other specifications based on the full set of variables (see Figure 2). In addition, we find acceptable balancedness levels in the 1 on 1 matching, with matched differences of close to or above 0.2 in only two cases (compare Table 6). Testing various alternative matching specifications such as matching with the two or four nearest neighbours or using a caliper (compare Tables 14 and 15 in the Appendix) shows that the best results are indeed achieved in a 1 on 1 matching.

Though we have managed to achieve a good balance for our treated and control groups and are able to improve overlap with this specification, it remains evident from Figure 2 that the achieved overlap remains partial. Given the vast space of possible functional specifications that could be implemented, it is difficult to say whether another specification might not perform better and to argue whether our propensity scoring function has indeed been

Table 5: Balance check of the propensity scoring using a logit model (linear variable inclusion) and a 1 on 1 matching procedure

	Diff:Raw	Diff:Match	Ratio:Raw	Ratio:Match
log wages in 2015	1300321	0515036	.9769191	.8845742
Total factor productivity in 2015	178877	.2139231	.9473458	.4003003
log of employment in 2015	.5654306	156559	.803081	.6229867
EXPORT INTENSITY in 2015	1.014184	.5934387	1.228659	1.336483
\log of DEBTS in 2015	0529435	2515877	1.051101	1.021671
R&D dummy in $2015=1$.0356507	0076941	1.085768	.9795245
Medium low-tech industries	.1206088	0152956	1.263082	.9634731
Medium high-tech industries	2329159	1939862	.8156583	.7717778
High-tech industries	5425507	.4301909	.2855456	1.693899
Subsidiaries	018354	088095	.9769702	.858366
Independent	.0616272	0365731	1.02321	.9742405
State	.1016402	4001546	1.100951	.7088027
Ports within 500km	.4092869	3412843	1.253595	.8230184

Figure 1: Overlap resulting from the propensity scoring using a logit model (linear variable inclusion).

	Diff:Raw	Diff:Match	Ratio:Raw	Ratio:Match
0b.RD2015xc.logwages2015	1195646	.0525046	.947075	1.062749
1. RD2015 xc. logwages 2015	.0055913	.0576109	.9912599	1.274914
1b.TECHxc.logwages 2015	.4099088	.0288036	1.446385	1.012937
$2.\mathrm{TECHxc.logwages}2015$.0985765	.0376167	1.221177	1.078534
3.TECHxc.logwages2015	1947846	0195882	.7998561	1.077204
1b.OWNxc.logwages2015	2416651	0406993	.3646025	.8427318
2.0 WNxc.logwages 2015	0501523	078579	.8787442	.8758421
3.0 WNxc.logwages 2015	.0095374	.0352781	.9615021	1.109249
0b.PORTxc.logwages2015	3780525	.1273289	.9245549	1.141669
1b.EXP2015_CATxc.logwages2015	4723787	.0947225	1.179189	1.081208
0b.RD2015xc.TFP2015	1739665	0203347	.9100893	.9091296
$1.\mathrm{RD}2015\mathrm{xc}.\mathrm{TFP}2015$.0080044	.0443347	.9791256	1.135322
1b.TECHxc.TFP2015	.3830039	.0387406	1.517568	1.02464
$2.\mathrm{TECHxc}.\mathrm{TFP}2015$.0592069	.0218559	1.09476	1.039168
$3. \mathrm{TECHxc. TFP} 2015$	2626395	0332445	.6142341	.9655526
1b.OWNxc.TFP2015	2670312	0571476	.2665297	.720536
$2.0 \mathrm{WNxc.TFP} 2015$	064156	0762223	.8276227	.8391969
$3.0 \mathrm{WNxc.TFP} 2015$	0408866	.0100326	.8831729	.9812749
0b.PORTxc.TFP 2015	4416219	.0380993	.7259598	.88749
1b.EXP2015_CATxc.TFP2015	4566127	.0065822	.9833249	.8881018
0b.RD2015xc.logemp2015	.4513985	.1104609	1.015839	.7723211
1.RD2015xc.logemp2015	.1258157	.079598	1.551717	1.236144
1b.TECHxc.logemp2015	.4601552	.050231	1.534047	1.002554
$2.\mathrm{TECHxc.logemp2015}$.2274026	.0593328	1.926955	1.071029
3. TECHxc. logemp 2015	.0899055	0276154	1.370232	.8064564
1b.OWNxc.logemp 2015	0820011	.021356	.9009638	1.11227
2.0 WNxc.logemp2015	.1399032	0275592	1.482211	.9386443
3.0 WNxc.logemp2015	.2656301	.0867379	1.407778	1.052158
0b. $PORTxc.logemp2015$.1339363	.2348676	1.28113	1.007255
$1b. EXP2015_CATxc. logemp2015$.0840549	.190327	1.142787	.8433407
0 b.RD2015 xc.DEBTS2015	0687846	.0401788	1.018707	.9555409
$1.\mathrm{RD}2015\mathrm{xc}.\mathrm{DEBTS}2015$.0328123	.0331289	1.167688	1.141984
1b.TECHxc.DEBTS2015	.3620529	.0212764	1.493647	1.006909
$2.\mathrm{TECHxc.DEBTS}2015$.0875624	.0375397	1.216558	1.07361
$3. \mathrm{TECHxc.} \mathrm{DEBTS} 2015$	1987245	0448235	.7404538	.9192316
1b.OWNxc.DEBTS2015	2451112	0710123	.3194455	.6600723
$2.0 \mathrm{WNxc.DEBTS} 2015$	0444712	0653756	.8861299	.9017093
$3.0 \mathrm{WNxc.DEBTS} 2015$	0148901	.0526032	.9654587	1.074223
0b.PORTxc.DEBTS2015	3147821	.125639	.9126556	1.089006
$1 b. EXP2015_CATxc. DEBTS2015$	3607874	.0926031	1.078069	1.015868

Table 6: Balance check of the propensity scoring using a logit model (interactions between the set of continuous variables excluding exports and the set of categorical/binary variables including exports) and a 1 on 1 matching procedure

Figure 2: Overlap resulting from the propensity scoring using a logit model (interactions between the set of continuous variables excluding exports and the categorical/binary variables including exports)

correctly specified. One way to ease the uncertainty of which specification to use, is to compare results across a range of robust estimators (Wooldridge, 2010; Robins and Rotnitzky, 1995). Hence, we calculate the regression adjustment estimator (RA), the inverse probability weighting estimator (IPW), the Augmented IPW (AIPW) and the regression adjusted IPW (IPWRA). We specify the outcome model in the same way as we specified the treatment model, where required. If we obtain similar results for all these models, we are sure that both models, the outcome and the treatment models have been correctly specified. If we discover that one of the models does not yield results consistent with the other results, we can rely on the double-robust estimator (AIPW) to estimate treatment effects as this estimator can give us confidence in our results, regardless of whether one of the models is incorrectly specified.

Table 7 reports the treatment effects of receiving FDI in 2016 on log employment in 2017 by estimator type. The average treatment effect is 0.79 in the propensity scoring estimation using psmatch. We find that the RA estimator, which estimates a linear outcome model and no treatment model, yields an average treatment effect of 0.3. This is similar to the IPW estimator which estimates a weighted mean for the outcome model, and a logit regression for the treatment model. Looking further, the augmented IPW which estimates a maximum likelihood outcome model, and a logit treatment model also yields a comparable result of 0.28. So does the IPWRA estimator, which estimates a linear outcome model and a logit treatment model. Though the results of the IPW are like those of the other three robust estimators, the standard errors are surprisingly high, rendering the estimate of the ATE insignificantly different from zero. This gives us a slight indication that the treatment model, estimated by logit might indeed be incorrectly specified. In the presence of this finding, we default to the double-robust estimator which is able to give us consistent estimators in the event that one of the models is incorrectly specified. Taking a look at the balancing across variables (compare Table 16), we find that the there is slightly less balance in variables across groups as obtained with the psmatch approach. The loss in balance accuracy after switching from psmatch to aipw reveals the balance overlap trade-off that we face when trying to consistently estimate ATEs using observational data in that, having a well specified model increases overlap accuracy, however using the aipw estimator instead which is consistent in the case of a model misspecification reduces balance.

Finally, the ATE estimated by the AIPW identifies an impact of FDI on log employment of 0.28. This translates into an increase in employment by 31.7% from FDI one year after the investment took place. We repeat this exercise to obtain the effects of FDI on wages. Results are displayed in Table 8. Using again the AIPW estimate we find average treatment effects for log wages to be 0.23. In light of the overall negative trend in wage changes from 2015 to 2017, thus, wages of firms that did receive FDIs fell by 25.6% less than wages of firms that did not receive any FDI.

Table 7: Impact of FDI on Employment in 2017 (logs)

	(1)	(2)	(3)	(4)	(5)
	psmatch	RA	IPW	AIPW	IPWRA
	b/se	b/se	b/se	b/se	b/se
ATE	0.7867***	0.3074***	0.3275	0.2754***	0.2827***
	(0.194)	(0.008)	(0.410)	(0.020)	(0.012)
Observations	11323	11323	11323	11323	11323

^{*} p<0.1, ** p<0.05, *** p<0.01

Table 8: Impact of FDI on Wages in 2017 (logs)

	(1)	(2)	(3)	(4)	(5)
	psmatch	$\stackrel{\circ}{ m RA}$	IPW	AIPW	IPWRA
	b/se	b/se	b/se	b/se	b/se
ATE	0.7456***	0.2260***	0.2997	0.2282***	0.2361***
	(0.181)	(0.008)	(0.400)	(0.016)	(0.009)
Observations	11323	11323	11323	11323	11323

^{*} p<0.1, ** p<0.05, *** p<0.01

Section 4

When analyzing the impact of FDI on wages and employment at the firm level, the motive of the foreign investor might also play a role. For example, investors trying to sell their products in the destination country of their investment may be particularly concerned about their reputation in the host country, potentially leading to higher wage payments. Our dataset also provides information on the type of FDI and distinguishes across four categories: exports-oriented FDI (1), technology-intensive FDI (2), and domestic market seeking FDI (3). Of the firms receiving FDI, 44% receive domestic-market seeking FDI, followed by 35% that receive technology-intensive FDI. The share of firms receiving export-oriented FDI is 21%.

Figure 3 provides a graphical illustration of the main variables by type of FDI, displaying the means of wages, employment, TFP, export intensity and R&D for 2015 and 2017, respectively. In addition, the graph displays the means for firms not receiving FDI (0). The corresponding Tables can be found in the Appendix (Tables 11 and 12). While the differences in means across types of FDI are relativley small when it comes to wages, employment, export intensity and TFP both in 2015 and 2017, the differences across FDI types are large regarding R&D activities.

Figure 3: Pre- and post-treatment characteristics by treatment group

With this knowledge in mind, we re-estimate the causal effects of FDI by type to examine

Figure 4: Overlap by type of treatment.

if there are any differences in effects between types of FDI. Using the interacted scoring function specification, employed in Section 3, we find that the overlap improvements achieved in the previous section are found again evenly distributed of treatment types (compare Figure 4). Thus, also with regard to FDI types it still remains partial as we do not manage to get a good overlap for propensity score values between 0 and 0.1. We test again IPW estimation performance given our suspicion that our treatment model is potentially incorrectly specified. As is the case in Section 3, the IPW estimator produces exceptionally large standard errors – an indication of possible misspecification in our treatment model. This is not the case for a linear model specification (excluding interaction effects), yet because balance improves when we use interactions in our model, we only estimate the interacted model for our further analysis (compare Tables 17 & 18). Given these findings, we rely on the AIPW estimates in this section as well.

Table 9 shows that for all the types of FDI the average treatment effect is the same. The coefficient estimated by the AIPW estimator for employment is 0.27 - 0.28 when compared to firms which do not have any FDI at all. The average log employment of the untreated is estimated to be 4.9. For wages, we observe the same trend, shown in Table 10. The ATE for export-oriented, technology-intensive FDIs and domestic market seeking FDIs being 0.21-0.23, with the average log wages value for the non-treated firm is 4.9.

Section 5

In our research project, using firm-level data from 2015 to 2017, we find that FDI has positive effects on labor market outcomes. Thus, we find that receiving FDI increases both firm-level employment and wages by 31.7% and 25.6%, respectively. Interestingly, analyzing whether the motive for the foreign investment matters for these effects does not reveal any significant differences. More specifically, the impact of FDI on employment and wages, respectively, does not vary by type of FDI when we distinguish between domestic market seeking FDI, export-oriented FDI, and technology-intensive FDI.

While in principle the propensity score matching techniques we employ allow us to identify

Table 9: Causal effects of FDI (by type) on \log employment

	(1) ipw (no Interatcions)	(2) ipw (interactions)	(3) aipw (interactions)
	b/se	b/se	b/se
ATE			
Export Oriented FDI	0.73***	0.25	0.27***
	(0.07)	(0.42)	(0.03)
Technology Intenstive FDI	0.87^{***}	0.59	0.28***
	(0.08)	(0.42)	(0.03)
Domestic Market Seeking FDI	0.72^{***}	0.21	0.27^{***}
	(0.06)	(0.44)	(0.03)
No FDI	5.01***	5.63	4.93***
	(0.05)	(0.41)	(0.03)
Observations	11,323	11,318	11,318

^{*} p<0.1, ** p<0.05, *** p<0.01

Table 10: Causal effects of FDI (by type) on log wages

	(1) aipw (interactions)
	b/se
ATE	
Export Oriented FDI	0.21***
Technology Intenstive FDI	(0.02) 0.22***
Domestic Market Seeking FDI	(0.03) 0.23***
No FDI	(0.02) 4.93***
	(0.03)
Observations	11,318

^{*} p<0.1, ** p<0.05, *** p<0.01

the causal effect of FDI on employment and wages, the reliability of our estimates rely on the balancedness and common support assumptions to be fulfilled. As presented in Sections 3 and 4, we tried optimizing our models to find the best balance between the two criteria. However, it might be possible to further optimize our models in this respect. For example, overlap is quite poor in some regions when performing the analysis by type of FDI. Trimming the sample could be one way to address this issue – but, of course, this comes at the cost of losing observations which is why we opted against it in our analysis.

In addition, our analysis is limited by data availability. There may be other factors driving FDI that, at the same time, also affect firm-level performance. For example, we do know the country of location of the firms in our dataset. Information on the location of the investor-origin and recipient country of FDI would enable us to control for both country-specific time-invariant characteristics by using country dummies, and time varying country variables such as macroeconomic conditions. Using growth variables relative to pre-treatment levels is another strategy to at least eliminate unobserved time-invariant confounders. We leave these optimizations to future ASP students.

References

- Bajgar, M. and B. Javorcik (2020). Climbing the rungs of the quality ladder: Fdi and domestic exporters in romania. The Economic Journal 130(628), 937-955.
- Borin, A. and M. Mancini (2016). Foreign direct investment and firm performance: an empirical analysis of italian firms. *Review of World Economics* 152(4), 705–732.
- Chen, W. (2011). The effect of investor origin on firm performance: Domestic and foreign direct investment in the united states. *Journal of international economics* 83(2), 219–228.
- Robins, J. M. and A. Rotnitzky (1995). Semiparametric efficiency in multivariate regression models with missing data. *Journal of the American Statistical Association* 90 (429), 122–129.
- Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press.

Appendix

Table 11: Summary statistics for pre-treatment variables by treatment categories

	0	1	2	3
	No FDI	Exports-oriented	Techn. intensive	Dom. market
	Mean/SD	Mean/SD	Mean/SD	Mean/SD
Wages in 2015 (logs)	7.529	6.833	7.006	7.146
	(3.849)	(3.741)	(3.814)	(3.824)
Total factor productivity in 2015	3.185	2.747	2.759	2.905
	(2.060)	(2.030)	(2.006)	(1.991)
Employment in 2015 (logs)	3.766	5.274	5.479	5.409
	(3.054)	(2.759)	(2.706)	(2.749)
Export intensity in 2015	0.131	0.201	0.199	0.209
	(0.068)	(0.073)	(0.076)	(0.077)
Debt in $2015 (logs)$	0.511	0.488	0.505	0.485
	(0.349)	(0.353)	(0.367)	(0.352)
RD in 2015 (dummy)	0.117	0.061	0.089	0.191
	(0.321)	(0.239)	(0.285)	(0.393)
Observations	6863	940	1555	1965

Table 12: Summary statistics for post-treatment variables by treatment categories

	1	2	3	4
	Mean/SD	Mean/SD	Mean/SD	Mean/SD
Wages in 2017 (logs)	4.271	6.035	6.216	6.147
	(3.063)	(2.766)	(2.712)	(2.768)
Total factor productivity in 2017	3.683	3.548	3.543	3.703
	(2.073)	(2.053)	(2.033)	(2.014)
Emplyoment in 2017 (logs)	4.265	6.078	6.289	6.206
	(3.066)	(2.769)	(2.719)	(2.764)
Export intensity in 2017	0.247	0.303	0.296	0.313
	(0.086)	(0.125)	(0.126)	(0.130)
RD in 2017 (dummy)	0.377	0.417	0.430	0.491
	(0.485)	(0.493)	(0.495)	(0.500)
Observations	6863	940	1555	1965

Table 13: Characteristics of firms by FDI type received

	Treatment by FDI type									
Characteristics	No	FDI	Expo	rts FDI	Tech.	FDI	Domes	tic FDI	Tot	tal
	No.	%	No.	%	No.	%	No.	%	No.	%
Low-tech	1,869	27.2	530	56.4	805	51.8	990	50.4	4,194	37.0
Medium low	904	13.2	150	16.0	290	18.6	341	17.4	1,685	14.9
Medium high	$2,\!432$	35.4	220	23.4	381	24.5	506	25.8	3,539	31.3
High-tech	1,658	24.2	40	4.3	79	5.1	128	6.5	1,905	16.8
Total	$6,\!863$	100.0	940	100.0	$1,\!555$	100.0	1,965	100.0	11,323	100.0
No ports within 500km	4,988	72.7	479	51.0	871	56.0	1,028	52.3	7,366	65.1
Ports within 500km	1,875	27.3	461	49.0	684	44.0	937	47.7	3,957	34.9
Total	$6,\!863$	100.0	940	100.0	$1,\!555$	100.0	1,965	100.0	11,323	100.0
Listed companies	736	10.7	30	3.2	63	4.1	80	4.1	909	8.0
Subsidiaries	1,615	23.5	233	24.8	351	22.6	431	21.9	2,630	23.2
Independent	2,702	39.4	403	42.9	636	40.9	852	43.4	4,593	40.6
State	1,810	26.4	274	29.1	505	32.5	602	30.6	3,191	28.2
Total	6,863	100.0	940	100.0	1,555	100.0	1,965	100.0	11,323	100.0

Figure 5: Overlap resulting from the propensity scoring using a logit model (interactions between the set of continuous variables and the set of categorical/binary variables)

Figure 6: Overlap resulting from the propensity scoring using a probit model (interactions between the set of continuous variables and the set of categorical/binary variables)

	D:@D	D.C.M. 1	D +: D	D :: M : 1
ol ppoort 1	Diff:Raw	Diff:Match	Ratio:Raw	Ratio:Match
0b.RD2015xc.logwages2015	1195646	.0533576	.947075	1.083427
1.RD2015xc.logwages2015	.0055913	.0622468	.9912599	1.316477
1b.TECHxc.logwages2015	.4099088	.0368431	1.446385	1.028314
2.TECHxc.logwages2015	.0985765	.0250057	1.221177	1.058754
3.TECHxc.logwages2015	1947846	0206775	.7998561	1.052487
1b.OWNxc.logwages2015	2416651	0436965	.3646025	.827438
2.0 WNxc.logwages 2015	0501523	073387	.8787442	.8821358
$3.0 \mathrm{WNxc.logwages} 2015$.0095374	.0913069	.9615021	1.220857
0b.PORTxc.logwages2015	3780525	.1312182	.9245549	1.171242
1b.EXP2015_CATxc.logwages2015	4723787	.1005806	1.179189	1.120247
0 b. RD2015 xc. TFP 2015	1739665	.0116561	.9100893	1.012206
1.RD2015xc.TFP2015	.0080044	.0449328	.9791256	1.146995
1b.TECHxc.TFP2015	.3830039	.0380806	1.517568	1.029373
$2.\mathrm{TECHxc}.\mathrm{TFP}2015$.0592069	.0059181	1.09476	.9937183
$3. \mathrm{TECHxc}. \mathrm{TFP} 2015$	2626395	0239952	.6142341	1.017338
1b.OWNxc.TFP2015	2670312	0545362	.2665297	.7563862
2.0 WNxc. TFP 2015	064156	0591638	.8276227	.8711978
$3.0 \mathrm{WNxc.TFP} 2015$	0408866	.0506196	.8831729	1.080465
0b.PORTxc.TFP2015	4416219	.0664575	.7259598	.989018
$1b. EXP2015_CATxc. TFP2015$	4566127	.0384141	.9833249	.9922028
0b.RD2015xc.logemp2015	.4513985	.1458985	1.015839	.8251611
1.RD2015xc.logemp2015	.1258157	.0770499	1.551717	1.230311
1b.TECHxc.logemp2015	.4601552	.0557388	1.534047	1.003494
2.TECHxc.logemp2015	.2274026	.0438903	1.926955	1.024059
3.TECHxc.logemp2015	.0899055	0193275	1.370232	.8302818
1b.OWNxc.logemp2015	0820011	.0187964	.9009638	1.111048
2.0 WNxc.logemp 2015	.1399032	0080772	1.482211	1.009055
3.OWNxc.logemp2015	.2656301	.1355491	1.407778	1.151253
0b.PORTxc.logemp2015	.1339363	.2636523	1.28113	1.094793
1b.EXP2015_CATxc.logemp2015	.0840549	.2223448	1.142787	.9004376
0b.RD2015xc.DEBTS2015	0687846	.0529298	1.018707	.9896502
$1.\mathrm{RD}2015\mathrm{xc}.\mathrm{DEBTS}2015$.0328123	.0247653	1.167688	1.089759
1b.TECHxc.DEBTS2015	.3620529	.0286521	1.493647	1.017304
2.TECHxc.DEBTS2015	.0875624	.0298535	1.216558	1.069462
3.TECHxc.DEBTS2015	1987245	0287849	.7404538	.9846953
1b.OWNxc.DEBTS2015	2451112	0661205	.3194455	.6951376
2.OWNxc.DEBTS2015	0444712	0452431	.8861299	.9559771
$3.0 \mathrm{WNxc.DEBTS} 2015$	0148901	.0841772	.9654587	1.139031
0b.PORTxc.DEBTS2015	3147821	.1120791	.9126556	1.079805
1b.EXP2015 CATxc.DEBTS2015	3607874	.0860133	1.078069	1.028403

Table 14: Balance check of the propensity scoring using a logit model (interactions between the set of continuous variables excluding exports and the set of categorical/binary variables including exports) and a 2 on 1 matching procedure

	D:@D	D:CM / 1	D 4: D	D /: M / 1
01 DD001F 1 001F	Diff:Raw	Diff:Match	Ratio:Raw	Ratio:Match
0b.RD2015xc.logwages2015	1195646	.0512606	.947075	1.061216
1.RD2015xc.logwages2015	.0055913	.0554608	.9912599	1.266693
1b.TECHxc.logwages2015	.4099088	.0453662	1.446385	1.037856
2.TECHxc.logwages2015	.0985765	.011763	1.221177	1.008307
3.TECHxc.logwages2015	1947846	0112131	.7998561	1.071675
1b.OWNxc.logwages2015	2416651	00517	.3646025	.9595119
2.0 WNxc.logwages 2015	0501523	0700267	.8787442	.8936324
3.0 WNxc.logwages 2015	.0095374	.0653864	.9615021	1.159856
0b.PORTxc.logwages2015	3780525	.120801	.9245549	1.140006
$1b. EXP2015_CATxc. logwages 2015$	4723787	.0957885	1.179189	1.085749
0b.RD2015xc.TFP2015	1739665	0176556	.9100893	.9616481
1.RD2015xc.TFP2015	.0080044	.0449186	.9791256	1.144561
1b.TECHxc.TFP2015	.3830039	.0394225	1.517568	1.019847
2.TECHxc.TFP2015	.0592069	.0021288	1.09476	.9735207
3. TECHxc. TFP 2015	2626395	0295988	.6142341	.9941437
1b.OWNxc.TFP2015	2670312	0223185	.2665297	.8203311
2.OWNxc.TFP2015	064156	0677646	.8276227	.8347698
$3.0 \mathrm{WNxc.TFP}$ 2015	0408866	.0193216	.8831729	1.021586
0b.PORTxc.TFP 2015	4416219	.041847	.7259598	.9348855
$1b. EXP2015_CATxc. TFP2015$	4566127	.0159171	.9833249	.9485514
0b.RD2015xc.logemp2015	.4513985	.1416871	1.015839	.8061887
$1.\mathrm{RD}2015\mathrm{xc.logemp}2015$.1258157	.078879	1.551717	1.246292
1b.TECHxc.logemp2015	.4601552	.0592596	1.534047	1.00785
$2.\mathrm{TECHxc.logemp2015}$.2274026	.0425132	1.926955	1.032892
3.TECHxc.logemp2015	.0899055	0237793	1.370232	.8161867
1b.OWNxc.logemp2015	0820011	.0683805	.9009638	1.402103
2.OWNxc.logemp2015	.1399032	0186314	1.482211	.9648858
3.OWNxc.logemp2015	.2656301	.1108782	1.407778	1.093449
0b.PORTxc.logemp2015	.1339363	.2622673	1.28113	1.085431
1b.EXP2015_CATxc.logemp2015	.0840549	.2246056	1.142787	.8873473
0b.RD2015xc.DEBTS2015	0687846	.0601309	1.018707	1.00674
$1.\mathrm{RD}2015\mathrm{xc}.\mathrm{DEBTS}2015$.0328123	.0212035	1.167688	1.081422
1b.TECHxc.DEBTS2015	.3620529	.0308845	1.493647	1.013492
2.TECHxc.DEBTS2015	.0875624	.0220798	1.216558	1.041233
3.TECHxc.DEBTS2015	1987245	0172314	.7404538	1.008782
1b.OWNxc.DEBTS2015	2451112	0274972	.3194455	.8041278
2.OWNxc.DEBTS2015	0444712	047437	.8861299	.9560576
3.OWNxc.DEBTS2015	0148901	.0678248	.9654587	1.114978
0b.PORTxc.DEBTS2015	3147821	.1155958	.9126556	1.103188
1b.EXP2015_CATxc.DEBTS2015	3607874	.0898824	1.078069	1.043331

Table 15: Balance check of the propensity scoring using a logit model (interactions between the set of continuous variables excluding exports and the set of categorical/binary variables including exports) and a 4 on 1 matching procedure

	D:ff.D	D:C.M-4-1-	D-4:D	D-+:M-+-l-
0h DD2015 la grava grav2015	Diff:Raw	Diff:Match .0075964	Ratio:Raw	Ratio:Match 1.111949
0b.RD2015xc.logwages2015	1195646		.947075	
1.RD2015xc.logwages2015	.0055913	.0678727	.9912599	1.29589
1b.TECHxc.logwages2015	.4099088	.0882317	1.446385	1.06342
2.TECHxc.logwages2015	.0985765	.0323807	1.221177	1.063771
3.TECHxc.logwages2015	1947846	1157132	.7998561	.979123
1b.OWNxc.logwages2015	2416651	0474861	.3646025	.81565
2.OWNxc.logwages2015	0501523	0520133	.8787442	.9046346
3.OWNxc.logwages2015	.0095374	.0802055	.9615021	1.167214
0b.PORTxc.logwages2015	3780525	.1182721	.9245549	1.138085
1b.EXP2015_CATxc.logwages2015	4723787	.1161452	1.179189	1.043137
0b.RD2015xc.TFP2015	1739665	.0042368	.9100893	.9940214
$1.\mathrm{RD}2015\mathrm{xc}.\mathrm{TFP}2015$.0080044	.0585258	.9791256	1.20869
1b.TECHxc.TFP2015	.3830039	.0836885	1.517568	1.071151
2.TECHxc.TFP2015	.0592069	.0318663	1.09476	1.067882
3. TECHxc. TFP 2015	2626395	0953681	.6142341	.9447969
1b.OWNxc.TFP2015	2670312	0664198	.2665297	.6787129
2.OWNxc.TFP2015	064156	0446857	.8276227	.8718027
$3.0 \mathrm{WNxc.TFP} 2015$	0408866	.0486999	.8831729	1.057604
0b.PORTxc.TFP2015	4416219	.0625049	.7259598	.9615733
$1b.EXP2015_CATxc.TFP2015$	4566127	.0591635	.9833249	.9540943
0 b. RD 2015 xc. log emp 2015	.4513985	0328685	1.015839	.5844724
1. RD2015 xc. logemp 2015	.1258157	.0947427	1.551717	1.318069
1b.TECHxc.logemp2015	.4601552	.0884816	1.534047	.9960945
2.TECHxc.logemp2015	.2274026	.0507278	1.926955	1.019688
$3. \mathrm{TECHxc. logemp 2015}$.0899055	2195556	1.370232	.4494659
1b.OWNxc.logemp2015	0820011	.030118	.9009638	1.240997
2.0 WNxc.logemp2015	.1399032	003491	1.482211	.9428245
3.0 WNxc.logemp2015	.2656301	.1296749	1.407778	1.105473
0b. $PORTxc.logemp2015$.1339363	.2443691	1.28113	1.037298
1b.EXP2015_CATxc.logemp2015	.0840549	.2410722	1.142787	.8458924
0b.RD2015xc.DEBTS2015	0687846	0252322	1.018707	.9472902
$1.\mathrm{RD}2015\mathrm{xc}.\mathrm{DEBTS}2015$.0328123	.0394126	1.167688	1.141701
1b.TECHxc.DEBTS2015	.3620529	.0882979	1.493647	1.077583
2.TECHxc.DEBTS2015	.0875624	.0364184	1.216558	1.08119
3.TECHxc.DEBTS2015	1987245	1889552	.7404538	.7389029
1b.OWNxc.DEBTS2015	2451112	0669317	.3194455	.6746464
2.OWNxc.DEBTS2015	0444712	0128759	.8861299	1.01678
3.OWNxc.DEBTS2015	0148901	.071986	.9654587	1.111722
0b.PORTxc.DEBTS2015	3147821	.12112	.9126556	1.099798
1b.EXP2015 CATxc.DEBTS2015	3607874	.1209194	1.078069	1.019338

Table 16: Balance check of AIPW estimation (using interactions between the set of continuous variables excluding exports and the set of categorical/binary variables including exports)

	Diff:Raw	Diff:Match	Ratio:Raw	Ratio:Match
1.FDITYPE2016				
logwages 2015	1833482	0775263	.9447749	.9885428
TFP2015	2141912	0189986	.9704629	.9696796
logemp2015	.5183995	.142593	.8161114	.6903682
DEBTS2015	0665162	.0074036	1.024821	.9533787
1.RD2015	1977282	0191328	.5536423	.9559508
2.TECH	.0789971	.0300216	1.173675	1.061674
3.TECH	2663044	.0036531	.7842619	1.003009
4.TECH	5946766	2029308	.222571	.6424416
2.0WN	.029319	0311193	1.037004	.9586857
3.0WN	.0711904	.0264498	1.026993	1.008708
4.0WN	.0619914	.0556757	1.064555	1.051182
1.PORT	.4585716	.1199939	1.259737	1.06046
$2.\text{EXP}2015_\text{CAT}$.5482088	.208658	3.463197	1.613835
2.FDITYPE2016				
logwages 2015	1365085	0176343	.9818968	.964301
TFP2015	2091214	0832816	.9481316	.8809731
logemp2015	.5938534	.1894544	.7854578	.6807336
DEBTS2015	0186904	060695	1.105096	1.057282
1.RD2015	0894951	.007645	.7908312	1.017695
2.TECH	.1501373	.0255113	1.327181	1.052394
3.TECH	2403611	0555915	.8089302	.9520515
4.TECH	5607553	048154	.2633246	.9148397
2.0WN	0227822	.0100106	.9717411	1.013084
3.0WN	.0312067	0221334	1.013148	.9917068
4.0WN	.1341894	0233179	1.12989	.977133
1.PORT	.35328	.0423472	1.241452	1.024525
$2.\text{EXP}2015_\text{CAT}$.5766847	.1424828	3.575408	1.415785
3.FDITYPE2016				
logwages 2015	0997247	0381648	.9871457	.9776796
TFP2015	1378965	0716242	.9336303	.9616974
logemp2015	.5657183	.142937	.8102666	.685713
DEBTS2015	0741218	0066211	1.020553	.9933471
1.RD2015	.2082867	.0155665	1.503124	1.036068
2.TECH	.1164522	.0416732	1.254467	1.085569
3.TECH	211331	055968	.8359902	.951721
4.TECH	5049792	1151655	.3324869	.7959768
2.0WN	0381328	0036603	.9519123	.9952129
3.0WN	.0810348	.0286379	1.02923	1.009355
4.0WN	.0945175	.0476214	1.094776	1.044094
1.PORT	.4301813	.0750269	1.256799	1.041115
2.EXP2015_CAT	.6502364	.1613248	3.846266	1.472161

Table 17: Balance check of the IPW estimation using a linear model specification

	Diff:Raw	Diff:Match	Ratio:Raw	Ratio:Match
1.FDITYPE2016		-	-	-
0b.RD2015xc.logwages2015	0417353	.0772705	.8313042	1.187987
. RD2015 xc. logwages 2015	2214369	0573885	.4076095	.7975514
b.TECHxc.logwages2015	.4679844	.1047176	1.490472	1.142261
TECHxc.logwages2015	.0768919	.0299032	1.204546	1.080308
3.TECHxc.logwages2015	2624855	0335344	.6655882	1.084763
b.OWNxc.logwages2015	2904057	0735662	.2559606	.8238489
.OWNxc. $logwages2015$	0280099	1100696	.8988267	.7814677
.OWNxc. $logwages2015$	0070295	.1890318	.9142079	1.404455
b.PORTxc.logwages2015	4458524	.0721897	.8589603	1.185591
b.EXP2015_CATxc.logwages2015	4516393	.0917058	1.169811	1.182501
b.RD2015xc.TFP2015	1225623	.0717348	.8884687	.9753954
.RD2015xc.TFP2015	1542618	0236025	.5857445	.8868057
b.TECHxc.TFP2015	.4415338	.0906152	1.528238	1.037872
2.TECHxc.TFP2015	.012003	.0350377	.9950454	1.170915
3.TECHxc.TFP2015	3086471	.0005838	.5703893	1.100999
b.OWNxc.TFP2015	2736994	0953624	.2587218	.6129908
$2.0 \mathrm{WNxc.TFP}$	0496846	0735768	.8335471	.8314006
.OWNxc.TFP2015	0106324	.1243204	.95261	1.118699
b.PORTxc.TFP2015	4804077	.0662396	.7234277	1.015353
b.EXP2015_CATxc.TFP2015	4205473	.0588322	1.008022	.9463707
b.RD2015xc.logemp2015	.5480149	0061104	.9080825	.5440918
.RD2015xc.logemp2015	1039828	.0080106	.675771	1.02899
b.TECHxc.logemp2015	.4949398	.1025391	1.464382	1.010676
.TECHxc.logemp2015	.2056374	.0588757	1.928631	1.092554
.TECHxc.logemp2015	.0571705	1750947	1.318783	.4666459
b.OWNxc.logemp2015	1177741	.0031695	.7578988	1.18529
.OWNxc.logemp2015	.1828982	0467943	1.518635	.8172591
.OWNxc.logemp2015	.2550617	.1962232	1.409348	1.163879
b.PORTxc.logemp2015	.0920422	.1869803	1.282133	.9984231
b.EXP2015_CATxc.logemp2015	.0960493	.1935018	1.108387	.8178385
b.RD2015xc.DEBTS2015	.0222817	002136	.976707	.859603
.RD2015xc.DEBTS2015	1866737	0383684	.4421542	.8046198
b.TECHxc.DEBTS2015	.4025035	.0994909	1.517814	1.107299
.TECHxc.DEBTS2015	.0304309	.0260865	1.001984	1.020939
3.TECHxc.DEBTS2015	2266896	1003646	.6782163	.7954913
b.OWNxc.DEBTS2015	2584867	0781266	.2973709	.7063508
OWNxc.DEBTS2015	0092311	0486479	.9525109	.9265962
OWNxc.DEBTS2015	.009667	.1735096	1.0201	1.243396
b.PORTxc.DEBTS2015	3520623	.090458	.8667765	1.00124
b.EXP2015_CATxc.DEBTS2015	353942	.0882816	1.047213	.9397665
2.FDITYPE2016		3-3		
b.RD2015xc.logwages2015	0521804	0180175	.9087863	1.098592
.RD2015xc.logwages2015	1172872	.1542824	.6498042	1.608411
b.TECHxc.logwages2015	.4080336	.0722672	1.415907	1.032029
TECHxc.logwages2015	.1129916	.0255545	1.244861	1.033806
.TECHxc.logwages2015	1910966	1555407	.831949	.950804
b.OWNxc.logwages2015	22554242	.0760114	.3858717	1.212857
OWNxc.logwages2015	0407807	.0000321	.9278922	1.038516
OWNxc.logwages2015	0307657	0367643	.9123834	.9678838
b.PORTxc.logwages2015	3529353	.1780598	.9123634 $.9263922$	1.10427
b.EXP2015_CATxc.logwages2015	4561006	.1749131	1.163313	.9686664
b.RD2015xc.TFP2015	4301000	1044609	.8831681	.8421724

Figure 7: Overlap resulting from the propensity scoring using a logit model (linear inclusion of continuous variables only)