Bases de Dados

Normalização e Dependências Funcionais - Parte 1

Profa. Elaine Parros Machado de Sousa

- Como avaliar a qualidade do esquema relacional (projeto lógico)?
 - semântica completude, consistência,....
 - implementação espaço, eficiência de consultas...
- Controle de consistência:
 - 1) no esquema da base de dados
 - estrutura
 - restrições
 - 2) no SGBD
 - constraints SQL
 - Procedimentos e Triggers (gatilhos)
 - 3) na aplicação
- O que é mais eficaz?

- Avaliando a qualidade do projeto...
 - Análise informal
 - princípios para um bom projeto
 - Análise formal
 - Dependências Funcionais
 - Formas Normais
 - Normalização

• Análise Informal:

- Diretriz 1 => semântica de atributos nas relações
- Diretriz 2 => redução de valores nulos
 - espaço, interpretação, consultas
- Diretriz 3 => redução de redundância em tuplas
 - prevenção de anomalias de inserção
 - prevenção de anomalias de remoção
 - prevenção de anomalias de alteração
- Diretriz 4 => prevenção de geração de tuplas espúrias (tuplas ilegítimas) nas junções

Análise Formal

- Baseada em Dependências Funcionais ⇒ restrições (dependências) entre atributos
 - garantir consistência da base de dados:

NÃO VIOLAR AS DEPENDÊNCIAS FUNCIONAIS

Formas Normais e Normalização

- baseadas em Dependências Funcionais
- avaliação e garantia da qualidade dos esquemas de relação

Dependências Funcionais

Dependência Funcional (DF) – restrição entre 2 conjuntos de atributos X e Y

$$X \rightarrow Y$$

- X determina funcionalmente Y (ou Y depende funcionalmente de X)
 - se $t_1[X] = t_2[X]$ então $t_1[Y] = t_2[Y]$

Dependências Funcionais

Exemplos

NUSP → Nome, Idade, Curso

Sigla_Disc → Nome_Disc, Créditos

Sigla_Disc, NUSP, semestre, ano → Nota

Dependências Funcionais

- Dependência funcional (DF)
 - propriedade <u>semântica</u>
 - identificada pelo projetista da base de dados
 - deve ser <u>validada</u> na instância da base (nos dados)
 - nunca deve ser definida (inferida) a partir dos dados

Garantindo Consistência

 Modelo Relacional – garantia de consistência na construção da base de dados (i.e. no ESQUEMA)

→ Qualidade das relações é baseada na análise de dependências funcionais

Formas Normais (1°, 2°, 3°, 4°, BCNF, ...)

Garantindo Consistência

- Uma relação está em uma determinada Forma Normal quando satisfaz um conjunto de condições baseadas nas dependências funcionais
- Colocando uma relação em uma forma normal...

- ✓ conjunto de DFs para cada relação✓ condições para Formas Normais

NORMALIZAÇÃO

Normalização

- Formas Normais baseadas em dependências funcionais
 - baseadas em chave primária
 - 1^a FN
 - 2^a FN
 - 3^a FN
 - baseadas em chaves candidatas
 - definições genéricas de 2ª FN e 3ª FN
 - FN de Boyce-Codd (BCNF)
- Forma Normal baseada em dependências multivaloradas
 - 4a FN

Parte 1

Parte 2

Normalização

Regras de Inferência de DFs:

- Reflexiva: se $Y \subseteq X \Rightarrow X \rightarrow Y$ (DF trivial)
- Transitiva: se $X \rightarrow Y$, $Y \rightarrow Z \Rightarrow X \rightarrow Z$
- **Decomposição**: se $X \rightarrow YZ \Rightarrow X \rightarrow Y, X \rightarrow Z$
- Aditiva: se $X \rightarrow Y$, $X \rightarrow Z \Rightarrow X \rightarrow YZ$
-

Definições iniciais

- Dados os conjuntos de atributos X e Y, e um atributo (qualquer) a ∈ X:
 - X → Y é dependência funcional total se (X - {a}) não determina Y
 - i.e.: Y depende, semanticamente, de TODO o X
 - ex:

Sigla_Disc, NUSP, semestre, ano → Nota

DF Total

Definições iniciais

- Dados os conjuntos de atributos X e Y, e um atributo (qualquer) a ∈ X:
 - X → Y é dependência funcional parcial se (X - {a}) → Y
 - i.e.: Y depende, semanticamente, só de UMA PARTE de X
 - ex:

Sigla_Disc, NUSP, semestre, ano → Nome_Disc

Definições iniciais

• $X \rightarrow Y$ é uma dependência funcional trivial se $Y \subseteq X$

 X → Y é uma dependência funcional transitiva se existe X → Z e Z → Y, e Z não é chave candidata

 Atributo Primário (ou Atributo Principal) em R => atributo que faz parte de alguma chave candidata no esquema de relação R

- 1a Forma Normal => todos os atributos da relação devem ser Atômicos e
 Monovalorados
 - parte da definição formal do Modelo Relacional
 - exigida pela maioria dos SGBDRs

Colocando uma relação na 1^a FN....

→ Atributo composto: **Endereço**

Aluno = {Nome, Idade, Rua, Nro, Cidade, Estado, CEP}

Colocando uma relação na 1ª FN....

→ Atributo Multivalorado: Nomes dos Pais

Colocando uma relação na 1ª FN....

→ Atributo Multivalorado: Alergias

2ª Forma Normal

- 2ª Forma Normal
 - relação na 1ª Forma Normal
 - todos os atributos <u>não primários</u> possuem dependência total, <u>transitiva ou não</u>, da chave primária
 - lembrando: atributo não primário é aquele que não faz parte de nenhuma chave candidata...

DFs identificadas pelo desenvolvedor:

Professor, Sigla → LivroTexto

NúmeroT, Sigla → Sala

Sigla \rightarrow No.Horas

LivroTexto → LivroExerc

```
Ministra = {Professor, Sigla, LivroTexto, LivroExerc}

Turma = {NúmeroT, Sigla, Sala, No.Horas} 2ª FN: NÃO!!
```

2^a Forma Normal: por que dependência parcial pode gerar inconsistência?

```
    DFs:
    Professor, Sigla → LivroTexto
    NúmeroT, Sigla → Sala
    Sigla → No.Horas
    LivroTexto → LivroExerc
```

```
Turma = {NúmeroT, Sigla, Sala, No.Horas}

1, SCC240, 5-101, 4 OK

2, SCC240, 5-103, 4 Inconsistência
2, SCC241, Lab-6, 6
```

Colocando uma relação na 2ª FN...

Numero, Sigla → Sala Sigla → No.Horas

Turma = {Numero, Sigla, Sala, No.Horas}

Parte da chave que determina o grupo de atributos não primários

Grupo de atributos não primários com dependência parcial

Colocando uma relação na 2ª FN...

```
Numero, Sigla → Sala
Sigla → No.Horas
```

```
Turma = {Numero, Sigla, Sala, No.Horas}

Normalizando...

Turma = {Numero, Sigla, Sala}

Disciplina = {Sigla, No.Horas}
```

Então...

```
DFs :
  Professor, Sigla → LivroTexto
  NúmeroT, Sigla → Sala
  Sigla → No.Horas
  LivroTexto → LivroExerc
Turma = {Numero, Sigla, Sala} > 2a FN
Disciplina = {Sigla, No.Horas} \(\bigsim \) 2a FN
Ministra = {Professor, Sigla, LivroTexto, LivroExerc} \( \brightarrow \) 2a FN
```

mas... existe ainda uma DF transitiva...

Por que DF transitiva pode gerar inconsistência?

DFs:

```
Professor, Sigla → LivroTexto
NúmeroT, Sigla → Sala
Sigla → No.Horas
LivroTexto → LivroExerc
```

```
Ministra = {Professor, Sigla, LivroTexto, LivroExerc}

Elaine, SCC-240, BD, BD Prática

Elaine, SCC-540, BD, BD Prática

Cristina, SCC-240, BD, POO Prática
```

- 3ª Forma Normal:
 - relação na 1ª e 2ª Formas Normais
 - todos os atributos <u>não primários</u> possuem <u>dependência total</u>, **não transitiva**, da <u>chave</u> primária

se existir as DFs X → Z e Z → Y, e se Z não é chave candidata, então X → Y é transitiva

Colocando uma relação na 3ª FN...

```
Professor, Sigla → LivroTexto
LivroTexto → LivroExerc
```

```
Ministra = {Professor, Sigla, LivroTexto, LivroExerc}

Normalizando...

Ministra = {Professor, Sigla, LivroTexto}

Livro = {LivroTexto, LivroExerc}
```

```
Sigla, Número → Sala, Horário

Sigla → LivroTexto, Depto, ChefeDepto

Depto → ChefeDepto
```

Turma = {Sigla, Número, Horário, Sala} 3ª FN OK!!

Disciplina = {Sigla, LivroTexto, Depto, ChefeDepto} NÃO!

Colocando uma relação na 3ª FN...

```
Sigla → LivroTexto, Depto, ChefeDepto
Depto → ChefeDepto
```

```
Disciplina = {Sigla, LivroTexto, Depto, ChefeDepto}

Normalizando...

Disciplina = {Sigla, LivroTexto, Depto}
```

Chefia = {Depto, ChefeDepto}

Considerações Gerais...

- A 2ª FN e a 3ª FN evitam:
 - Inconsistência e anomalias causadas por redundância de informações
 - Perda de informação em operações de remoção/alterações na relação

Considerações Gerais (cont.)...

- Normalização:
 - ✓ uma relação por vez
 - √ decomposição de relações
 - aumenta consistência
 - reduz desempenho ⇒ operações de junção

Considerações Gerais (cont.)...

- Normalização:
 - Propriedades desejáveis:
 - 1) decomposição sem perda de junção (sem geração de tuplas ilegítimas)
 - 2) decomposição com preservação de dependências (possibilidade de avaliar a DF ⇒ <u>atributos na mesma tabela</u> ou relacionados por FK)

Exemplo...

Normalizando para 3ª FN...

```
Sigla → LivroTexto, Depto, ChefeDepto
Depto → ChefeDepto
```

Disciplina = {Sigla, LivroTexto, Depto, ChefeDepto}

Disciplina = {Sigla, LivroTexto, Depto}

Chefia = {<u>Depto</u>, ChefeDepto}

- 1) SEM PERDA DE JUNÇÃO
- 2) PRESERVAÇÃO DE DFs

Sugestão de Leitura

- **ELMASRI, R; NAVATHE, S.B.** *Sistemas de Banco de Dados,* Addison Wesley
 - 4ª Edição
 - Capítulo 10 Dependência Funcional e normalização em um banco de dados relacional
 - 6ª Edição
 - Capítulo 15 Fundamentos de dependências funcionais e normalização para bancos de dados relacionais

EXERCÍCIO

- 1) Cite e explique as anomalias (inserção, remoção, alteração, geração de tuplas ilegítimas) que podem ocorrer nas relações abaixo. Exemplifique.
- a) Piloto_TipoAviao = {NroLicençaPiloto, CpfPiloto, NomePiloto,EndereçoPiloto, <u>TipoAviao</u>, FabricanteTipoAviao,NroMaxPoltronas}

b) Estudante= {<u>Nusp</u>, Idade, Curso}

Matrícula = {NomeEstudante, Disciplina, Curso}

EXERCÍCIO

2) Para a seguinte relação e suas dependências funcionais, indique se as formas normais 1FN, 2FN e 3FN são atendidas (e o porquê). Normalize a relação para atender a cada uma dessas formas.

```
Peça = {codigo, fornecedor, cidadeForn, estadoForn, qtdEstoque, peso, custoTransporte, valor}
```

```
código, fornecedor → valor;
fornecedor → cidadeForn, estadoForn, custoTransporte;
código → peso, qtdEstoque;
cidadeForn, estadoForn → custoTransporte;
```