Population Parameter	Population mean
Null hypothesis	$\mu = \mu_0$
Test statistic	$\frac{\bar{x}-\mu_0}{s/\sqrt{n}}$ OR $\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}$ based on if population variance is known
Case 1	n>40 OR $n<40$ AND population distribution is normal AND population variance is known
Case 2	$n < 40 \ \mathrm{AND}$ population distribution is normal AND variance not known
Otherwise	Consult a knowledgeable statistician

Population Parameter	Sample proportion
Null hypothesis	$p = p_0$
Test statistic	$\frac{p' - p_0}{\sqrt{p_0(1 - p_0)/n}}$
Case 1	$np_0 > 10 \text{ AND } n(1-p_0) > 10$
Otherwise	Consult a knowledgeable statistician

Alternate Hypothesis test type	Rejection region Case 1	Rejection region Case 2
H_a : $\mu > \mu_0$ Or H_a : $p > p_0$	(z_{α},∞)	$(t_{\alpha,n-1},\infty)$
H_a : $\mu < \mu_0$ Or H_a : $p < p_0$	$(-\infty, -z_{\alpha})$	$(-\infty, -t_{\alpha,n-1})$
H_a : $\mu \neq \mu_0$ Or H_a : $p \neq p_0$	$(-\infty, -\underline{z}_{\frac{\alpha}{2}}) \cup (\underline{z}_{\frac{\alpha}{2}}, \infty)$	$(-\infty, -t_{\frac{\alpha}{2},n-1}) \cup (t_{\frac{\alpha}{2},n-1}, \infty)$

Reject if test statistic belongs to rejection region

Hypothesis test type	P-values Case 1
H_a : $\mu > \mu_0$ Or H_a : $p > p_0$	$1-\phi(z)$
H_a : $\mu < \mu_0$ Or H_a : $p < p_0$	$\phi(z)$
H_a : $\mu \neq \mu_0$ Or H_a : $p \neq p_0$	$2[1-\phi(z)]$

Reject if $\alpha > P$ value