!!! WRITE YOUR NAME, STUDENT ID. BELOW !!!

NAME:

PURDUE ID:

10

10

1(30pts) Is each of following groups a cyclic group or not? Explain the reason. If it is a cyclic group, then write down an element that generates the whole group.

- (1) $\mathbb{Z}_2 \times \mathbb{Z}_2$;
- (2) $\mathbb{Z}_2 \times \mathbb{Z}_3$;
- (3) $\mathbb{Z}_2 \times \mathbb{Z}$.
- (1). Not a cyclic group: The group has order 4 but each clement has order at most 2. So no element can generate the whole group. $ord((\overline{\tau}, \overline{z}))$
- (2) It is cyclic group. $ord((t, \overline{1})) = 6$ and $((t, \overline{1})) = \{(\overline{0}, \overline{0}), (\overline{1}, \overline{1}), (\overline{2}, \overline{2}), (\overline{3}, \overline{3}), (\overline{4}, \overline{4}), (\overline{5}, \overline{5})\}, (\overline{6}, \overline{6})$ $((\overline{1}, \overline{2})) = \{(\overline{0}, \overline{0}), (\overline{1}, \overline{1}), (\overline{2}, \overline{2}), (\overline{3}, \overline{3}), (\overline{4}, \overline{4}), (\overline{5}, \overline{5})\}, (\overline{6}, \overline{6})$ $((\overline{1}, \overline{2})) > (\overline{1}, \overline{2})$
- (3) Nota yelle group: (\bar{o}, n) can not generale the group $\{(\bar{o}, k \cdot n); k \in \mathbb{Z}\}$.
 - $\langle (\overline{1},\overline{n})\rangle = \{(\overline{1},(\overline{2k+1})n),(\overline{0},2kn)\} \neq \mathbb{Z}_2 \times \mathbb{Z} \text{ since}$ $(\overline{1},2kn) \notin \langle (\overline{1},\overline{n})\rangle,(\overline{0},(\overline{2k+1})n) \notin \langle (\overline{1},\overline{n})\rangle$

So no element can generate the whole group and Z=xZ zo not a cyclic group.

2(30pts) Let $G = \langle a, b \mid a^2 = b^4 = e, ba = ab^3 \rangle$ be the group of symmetries of a square. Write down a table for G. Is G isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_4$?

le	a	b	6	3	ab	ab	ab^3		
le	a	P	2	b3	ab	ab^2	abs		ba=ab=ab2
a	e	ab	abe	ab^3	b	Ps	P3		b3a = bab2 = ab5
P	abs	Ps	P3	e	a	ab	as		=ab
								2.0	
	e a b 5 3 ab ab ab	e a e b ab b ab ab ab ab ab ab	e a b a e ab b ab b ab b ab ab ab ab ab	e a b b² ab² ab² ab² ab² ab² ab² ab² ab²	e a b b² b³ a e ab ab² ab³ b ab² b² e b b² ab e b b² ab b² ab³ ab³ a ab² b² ab³ a	e a b b² b³ ab a e ab ab² ab³ b b ab³ b² b³ e a b² ab² b³ e b ab³ ab e b b² ab² ab b³ ab² ab³ a e ab² b² ab³ a ab b³	e a b b² b³ ab ab² a e ab ab² ab³ b b² b ab³ b³ b³ e a ab b² ab² b³ e b ab³ a b³ ab e b b² ab² ab³ ab b³ ab³ ab a e b ab² b² ab³ a ab b³ e	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e a b b² b³ ab ab² ab³ a e ab ab² ab³ b b² b³ b ab³ b² b³ e a ab ab² b² ab² b³ e b ab³ a ab b² ab e b b² ab² ab³ a ab b³ ab² ab³ a e b b² ab² b² ab³ a ab b³ e b

G is not abelian
$$\Rightarrow$$
 G is not somorphic to $Z_2 \times Z_4$. 10 $Z_2 \times Z_4$ abelian

3(20pts) G is the set of positive real numbers with the operation x * y = 2xy. Find an isomorphism of $(\mathbb{R}_{>0}, \times)$ to G.

First find the identity of G, X * C = X $\forall X$ $\exists X * C = X \forall X$ $\exists X$

SO f is an isomorphism.

8

4(20pts) Calculate the product $(123)(234)(123)^{-1}$ in S_4 . Is the resulting permutation an odd or even permutation?

$$(123)^{-1} = \begin{pmatrix} 1 \rightarrow 2 \\ 1 \rightarrow 2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 \leftarrow 2 \\ 1 \rightarrow 3 \end{pmatrix} = (132).$$

$$(123)(234)(123)^{-1} = (123)(234)(132) = (143)(2) = (143)$$

$$(123)^{-1} = (1234)^{-1} = (1234) = (132)(4) = (132).$$