Advanced Mathematics (I) Midterm

• Time: Nov 21, 2021

Question 1

$$1. \quad \lim_{n \to +\infty} (1 + \frac{2}{n})^n = \underline{\hspace{1cm}}$$

$$2. \quad \lim_{n \to +\infty} \left(\frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 1} + \dots + \frac{n}{n^2 + n + 1} \right) = \underline{\hspace{1cm}}$$

$$\lim_{x o +\infty}rac{x-ln(e^x+x)}{x\sin(rac{1}{x})}=$$

4.
$$\lim_{x\to 0^+} (ln\frac{1}{x})^x =$$

5. The equation of the line tangent to the graph of $y = 4x^3 - 2x^2 + 1$ at the point (1,3) is ____

6. Suppose that the function
$$y = \arctan(2x)$$
. Then $\left. \frac{d^2y}{dx^2} \right|_{x=0} =$

7. Suppose that the function f(x) is derivable, and $y = f(e^x)e^{f(x)}$. Then dy = ______

Question 2

Discuss the continuity of the function
$$f(x)=egin{cases} \dfrac{x(2x+\pi)}{2\cos x} & x<0,\\ 1 & x=0 & \text{in the interval}[-\pi,\pi].\\ \dfrac{\sin x}{x} & x>0 \end{cases}$$

Question 3

Suppose that
$$f(x) = \begin{cases} \dfrac{2}{x^2}(1-\cos x) & x < 0, \\ 1 & x = 0, \\ \dfrac{\sin x}{x} & x > 0. \end{cases}$$
 Discuss the derivability of the function $f(x)$ at $x = 0$.

Question 4

Determine the constants a,b such that $f(x)=e^x-rac{1+ax}{1+bx}$ is a 3-order infinitesimal quantity as x o 0.

Question 5

Find the derivative $\left.\frac{dy}{dx}\right|_{t=0}$ and the second derivative $\left.\frac{d^2y}{dx^2}\right|_{t=0}$ of the function y=y(x) defined by the parametrix equitions $\begin{cases} x=3t^2+2t+3,\\ e^y\sin t-y+1=0. \end{cases}$

$$egin{cases} x=3t^2+2t+3, \ e^y\sin t-y+1=0. \end{cases}$$