计算机组成原理

第八章 6.1

- □ 6.1 将十进制数127.125和25/32转换成二进制数,然后再转换成八进制和十六进制数。
- □解: 此题可采用简便方法转换如下:

$$=(001, 111, 111.001)_2 = (177.1)_8$$

以小数点为起点,向左、向右三位一组分组,然后 用八进制缩写。

$$=(0111, 1111.0010)_2 = (7F.2)_{16}$$

以小数点为起点,向左、向右四位一组分组,小数末位补零凑足四位,然后用十六进制缩写。

□ 评注:数制转换的基本方法已在前导课程《数字逻辑》中进行过充分讨论,在《组成》中要求熟练应用,因此,方法上就应更灵活、简便、快速,技巧性更高,更具变通性。这类方法基本建立在数的按权展开多项式的基础上。

- □ 6.2 把下列各数转换为十进制数。
 - (1) $(101.100\ 11)_2$; (2) $(1\ 101\ 000\ 110.101\ 01)_2$
 - (3) $(1702.32)_8$; (4) $(247.63)_8$
 - (5) $(F5B.48)_{16}$; (6) $(AD.4)_{16}$

□解:

- (1) 5.59375; (2) 838.65625
- (3) 962.40625; (4) 167.796875
- (5) **3931.28125**; (6) **173.25**

 \Box 6.3 设某十进制数S, 在八进制中写成 $\sum_{i=0}^{m} = L_i \times 8^i$,

在二进制中写成 $S = \sum_{j=0}^{n} K_j \times 2^j$ 。若令: n = 3m + 2,

试证:
$$(L_0)_8 = (K_2 K_1 K_0)_2$$

 $(L_1)_8 = (K_5 K_4 K_3)_2$
 $(L_m)_8 = (K_n K_{n-1} K_{n-2})_2$

□ 评注: 此题从理论上推导了二、八进制间的转换关系,用同样方法可推导二、十六进制间的转换关系。

 \square 证: 思路: 先将 $(S)_2$ 按权展开,然后整理成位权为8的形式,既得 $(S)_8$ 。

$$(S)_2 = K_n \times 2^n + K_{n-1} \times 2^{n-1} + \dots + K_j \times 2^j + \dots + K_2 \times 2^2 + K_1 \times 2^1 + K_0 \times 2^0$$

将 $n = 3m + 2$ 代入2的幂得:

- □ 6.4 用八位二进制数(含1位符号)表示下列各数的原码、反码、补码、移码。如果是小数,小数点在符号位之后;如果是整数,小数点在LSB之后。
 - (1) -35/64;

- (2) 23/128;
- (3) -127;
- (4) 用小数表示-1; (5) 用整数表示-1
- □解:根据各种机器码与真值关系的远近程度,可按下述 顺序及简易规则进行转换:

工数不变正数不变工数不变补码负数按位
数制转换符号代码化负数反码
实反未位加1变反

十进制真值 → 二进制真值 → 原码 → 反码 → 补码 → 移码

□ 各数的机器码表示列表如下:

第二章 6.4 各数机器码表

	十进制真值	二进制真值	原码	反 码	补码	移码
(1)	-35/64	-0.100 0110	1.100 0110	1.011 1001	1.011 1010	0.011 1010
(2)	23/128	0.001 0111	0.001 0111	0.001 0111	0.001 0111	1.001 0111
(3)	-127	-0111 1111	1 111 1111	1 000 0000	1 000 0001	0 000 0001
(4)	小数表示-1	-1.000 0000	无	无	1.000 0000	0.000 0000
(5)	整数表示-1	-0000 0001	1 000 0001	1 111 1110	1 111 1111	0 111 1111

 \Box 6.5 对于模4补码,设 $[X]_{\uparrow i} = X_s X_0 . X_1 X_2 X_n$

求证:
$$X = -2X_s + X_0 + \sum_{i=1}^n X_i \times 2^{-i}$$
 。

当
$$2 > X \ge 0$$
时, $X_s = 0$,
$$X = [X]_{\stackrel{}{\nearrow}} = 0 \ X_0. \ X_1 X_2......X_n \longrightarrow 位置表示法$$

$$= X_0 + \sum_{i=1}^n X_i \times 2^{-i} = -2X_s + X_0 + \sum_{i=1}^n X_i \times 2^{-i}$$
 \downarrow

多项式表示法 → 配项

综上所述可知:无论X为正还是为负,均有:

$$\mathbf{X} = -2\mathbf{X}_{s} + \mathbf{X}_{0} + \sum_{i=1}^{n} \mathbf{X}_{i} \times 2^{-i}$$

- □ 证毕。
- □ 评注:本题证明了真值与模4补码之间的转换公式,此类题基本上都是利用补码定义进行求证。

- □ 6.6 设X为整数,[X]_补=1,X₁X₂X₃X₄X₅,若要求 X < 16,试问 X₁~X₅ 应取何值?
- **□解**: 若要X < -16,需 $X_1 = 0$, $X_2 \sim X_5$ 任意。
- □注:负数绝对值大的反而小。


```
□ 6.7 用除2取余法求: (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10} = (2019)_{10}
```

```
解: (2019)_{10} = (11 \ 111 \ 100 \ 011)_2; (0.543)_{10} = (0.100 \ 01)_2; (4091.629)_{10} = (111 \ 111 \ 111 \ 011.101)_2; (1\ 010\ 110\ 101\ 001.110\ 100\ 1)_2 = (5535.8203125)_{10}
```


□ 6.8 已知数的补码表示,求数的原码与真值。

$$[X_1]_{\nmid h} = 00011010$$
 $[X_2]_{\nmid h} = 10011010$ $[X_3]_{\nmid h} = 11110001$

□解:已知数的补码表示,数的原码与真值见下表:

补码 [X] _补	原 码 [X] _原	真 值
0 001 1010	同补码	同补码
1 001 1010	1 110 0110	-110 0110
1 111 0001	1 000 1111	-000 1111

- □ 6.9 讨论若[X]_¾>[Y]_¾,是否有X>Y?
- □解:
- □ 若 $[X]_{\lambda}$ > $[Y]_{\lambda}$,不一定有X>Y。
- \square [X]_补> [Y]_补时 X > Y的结论只在 X > 0、Y > 0,及 X<0、Y<0时成立。
- □ 当X>0、Y<0时,有X>Y, 但由于负数补码的符号位为1,则[X]_补<[Y]_补。
- □ 同样,当X<0、 Y >0时,有X < Y,但[X]_补>[Y]_补。

- **□** 6.10 设[X]_补 = $a_0.a_1a_2a_3a_4a_5a_6$, 其中 a_i 取0或1, 若要X>-0.5, 求 a_0 , a_1 , a_2 ,, a_6 的取值。
- □ 解: 根据补码结构特点知:
 - (1) a₀为符号位,因此可任取0或1;
 - (2) 当 a_0 =0时,为正数,必有X > -0.5,因此 $a_1 \sim a_6$ 可任取0或1;
 - (3) 当 a_0 =1时,为负数,必须有: a_1 =1, a_2 + a_3 + a_4 + a_5 + a_6 =1 (即 a_2 ~ a_6 不全为0),才满足X > -0.5的条件。
- □ 评注: 当X为负数,且X > -0.5时,其绝对值小于0.5,则据定义必有[X]₃ > (1.5)₁₀。作此题需注意:
 - ① 负数的绝对值越小,补码值越大;
 - ② 临界值0.5不在题意要求的范围内,条件 $a_2 \sim a_6$ 不全为0就是为此而设。

- □ 6.11 已知X=0.a₁a₂a₃a₄a₅a₆ (a_i为0或1), 讨论下列几种情况时a_i各取何值。
 - (1) X > 1/2; (2) $X \ge 1/8$; (3) $1/4 \ge X > 1/16$

□ 解:

- (1) 若要X > 1/2,只要 $a_1=1$, $a_2 \sim a_6$ 不全为0即可 (a_2 or a_3 or a_4 or a_5 or $a_6=1$);
- (2) 若要 $X \ge 1/8$,只要 $a_1 \sim a_3$ 不全为0即可 (a_1 or a_2 or $a_3 = 1$), $a_4 \sim a_6$ 可任取0或1;
- (3) 若要 $1/4 \ge X > 1/16$,只要 $a_1=0$, a_2 可任取0或1; 当 $a_2=0$ 时,若 $a_3=0$,则必须 $a_4=1$,且 a_5 、 a_6 不全为 $a_6=1$); 若 $a_3=1$,则 $a_4\sim a_6$ 可任取 a_6 可任

第八章 6.12

- □ 6.12 当十六进制数9AH,80H和FFH分别表示原码、补码、反码、移码和无符号数时,对应的十进制真值各为多少(设机器数采用一位符号位)?
- □解: 真值和机器数的对应关系如下:

十六进制	真值	无符号数	原码	反码	补码	移码
9AH	二进制	1001 1010	-001 1010	-110 0101	-110 0110	001 1010
	十进制	154	-26	-101	-102	26
80H	二进制 十进制	1000 0000 128	- 000 0000 - 0	-111 1111 -127	-1000 0000 -128	000 0000
FFH	二进制	1111 1111	-111 1111	-000 0000	-000 0001	111 1111
	十进制	255	-127	-0	-1	127

□注意:9AH、80H、FFH为机器数,本身含符号位。

- □6.13 设机器数字长为16位,写出下列各种情况下它能表示的数的范围。机器数采用一位符号位,答案均用十进制2的幂形式表示。
 - (1) 无符号整数;
 - (2) 原码表示的定点小数;
 - (3) 补码表示的定点小数;
 - (4) 原码表示的定点整数;
 - (5) 补码表示的定点整数。

- □解: 各种表示方法的数据范围如下:
 - (1) 无符号整数: $0 \sim 2^{16} 1$, 即: $0 \sim 65535$;
 - (2) 原码定点小数: (1-2-15) ~ 1-2-15
 - (3) 补码定点小数: -1~1 2-15
 - (4) 原码定点整数: (2¹⁵-1) ~2¹⁵-1 即: 32767 ~ -32767;
 - (5) 补码定点整数: -2¹⁵~2¹⁵-1 即: 32767~-32768;

注意:

- 1)应写出可表示范围的上下限精确值(用≥或≤,不要用>或<);
 - 2) 不要用十进制小数表示,不直观不精确且无意义;
 - 3) 原码正、负域对称,补码正、负域不对称。

0

□ 6.14 设机器字长为8位(含一位符号位),分整数和小数两种情况讨论真值X为何值时,[X]_补= [X]_原成立

第八章 6.15

- □ 6.15 用以下形式表示十进制数5862。
 - (1) 二进制数; (2) 8421码; (3) 余3码; (4) 2421码。

□ 解:

- (1) $(5862)_{10}$ = $(1\ 0110\ 1110\ 0110)_2$ =16E6H
- (2) $(5862)_{10}$ = $(0101\ 1000\ 0110\ 0010)_{8421}$ =5862H
- (3) $(5862)_{10}$ = $(1000\ 1011\ 1001\ 0101)_{E3}$ =8B95H
- (4) $(5862)_{10}$ = $(1011\ 1110\ 1100\ 0010)_{2421}$ =BEC2H

□ 6.16 用前分隔数字串表示法、后嵌入数字串表示法和压缩的十进制数串表示法表示下列十进制数,设存储器按字节编址

□解:

0

(1) 前分隔数字串表示: (ASCII码用十六进制表示,下同)

+1980: 2Bh 31h 39h 38h 30h

-76543: 2Dh 37h 36h 35h 34h 33h

+254: 2Bh 32h 35h 34h

-1992: 2Dh 31h 39h 39h 32h

(2) 后嵌入数字串表示:

+1980: 31h 39h 38h 30h

-76543: 37h 36h 35h 34h 73h

+254: 32h 35h 34h

-1992: 31h 39h 39h 72h

(3) 压缩十进制数串表示:

+1980: 0 1 9 8 0 Ch

-76543: 7 6 5 4 3 Dh

+254: 2 5 4 Ch

-1992: 0 1 9 9 2 Dh

□6.17 用十六进制写出大写字母 "F"、小写字母 "a"和星号 "*"的ASCII码。当最高位用作偶校验位时,写出它们的ASCII机内码字节。

解:通过查ASCII编码表(表2B-1),可得

- □大写字母"F"的ASCII码为46H,当最高位用作偶校验位时,其ASCII机内码字节最高位为"1",46H+80H=C6H
- □同样,小写字母"a"的ASCII码为61H,机内码E1H
- □符号"*"的ASCII码为2AH,机内码为AAH

- □ 6.18 汉字"大"和"小"的国标区位码分别为2083和4801,要求
- □(1)分别写出这两个字对应的国标码;
- □ (2) 若采用汉字两个字节的最高位均设为"1"的机内表示方案,分别写出这两个字的机内码形式。
- □ 解:
- □ (1) 在已知区位码的情况下,只要将区码和位码分别转换成十六进制表示,然后再分别加上20H即可得到国标码。
- \square 2083 \rightarrow (1453H +2020H) = 3473H
- \square 4801 \rightarrow (3001H+2020H) = 5021H
- □则"大"字的国标码为3473H,"小"字的国标码为5021H。
- □ (2) 当采用汉字两个字节的最高位均设为"1"的机内表示方案时,只要将国标码的两个字节分别加上80H即可得其机内码。
- \square 3473H+8080H = B4F3H; 5021H+8080H = D0A1H
- □ 则"大"字的机内码为B4F3H,"小"字的机内码为D0A1H。

第八章 6.19

- □ 6.19 用向量表示法,在32位字长的存储器中,用ASCII码 分别按左→右(大端方式)和右→左(小端方式)的顺序 表示下列字符串:
 - (1) WHAT IS THIS?
 - (2) THIS IS A DISK.
- □ 解: (1) 左→右:

31 0 W H A T I S T H I S ? 右→左:

31 0

T A H W

S I

S I H T

?

(2) 方法同上。

□ 6.20 如果采用偶校验,并将校验位安排在最高位,下 列数据的校验码是什么?采用奇校验呢?

(1) **010 1010** (2) **001 1011**

(3) **111 0001** (4) **100 1110**

□解:对应的校验位设置见下表:

	奇校验位	偶校验位	数据
(1)	0	1	0 101 010
(2)	1	0	0 011 011
(3)	1	0	1 110 001
(4)	1	0	1 001 110

第八章 6.21

- □ 6.21 设有16个信息位,如果采用海明校验,要求能分别指示无错、一位错和二位错,并纠正一位错,至少需要设置多少个校验位?应放在哪些位置上?
- □解:设信息位数为n,校验位数为k,则据式: 2^{k-1}≥n+k+1 可知,纠一检二码至少需要设置6个校验位,应放在位序为 1,2,4,8,16,22的位置上。设海明码用H表示,信息位用B表示,校验位用P表示,则校验位安排情况如下:

 $\begin{aligned} &H_{22}H_{21}H_{20}H_{19}H_{18}H_{17}H_{16}H_{15}H_{14}H_{13}H_{12}H_{11}H_{10}H_{9}H_{8}H_{7}H_{6}H_{5}H_{4}H_{3}H_{2}H_{1}\\ &=P_{6}\;B_{16}\,B_{15}\,B_{14}\,B_{13}\,B_{12}\,P_{5}\;B_{11}\,B_{10}\,B_{9}\;B_{8}\;B_{7}\;B_{6}\;B_{5}\;P_{4}\;B_{4}B_{3}\,B_{2}\,P_{3}\,B_{1}\,P_{2}\,P_{1} \end{aligned}$

□ 6.22 设(7, 4) 码的生成多项式为G(X) = X³+X+1, 写出代码1011 和0101的循环冗余校验码。

解: 编码过程如下:

$$M(X)_1 = 1011$$
, $M(X)_2 = 0101$, $n = 4$

$$G(X) = X^3 + X + 1 = 1011$$
, $k+1=4$, $k=3$

$$M(X)_1 \cdot X^3 = 1011 \ 000, \quad M(X)_2 \cdot X^3 = 0101 \ 000$$

$$M(X)_1 \cdot X^3/G(X) = 1011 \ 000/1011 = 1000 + \frac{000}{1011}$$

$$R(X)_1 = 000$$

$$M(X)_1 \cdot X^3 + R(X) = 1011 \ 000 + 000 = 1011 \ 000 = CRC码$$

$$M(X)_2 \cdot X^3/G(X) = 0101 \ 000/1011 = 0100 + \frac{100}{1011}$$

$$R(X)_2 = 100$$

$$M(X)_2 \cdot X^3 + R(X) = 0101 \ 000 + 100 = 0101 \ 100 = CRC码$$

由于码制和生成多项式均与教材上的例题相同,故此(7,4)码的出错模式同教材 P_{257} 表6-8。

- □ 6.23 已知接收到的8421海明码(按偶校验配置)为110 1100, 1 00 0100, 010 1101, 001 1010, 检查上述代码是否出错?第几位出错?若出错请写出正确代码(不考虑双错及多错情况)。
- □ 解: 设8421码为 $B_4B_3B_2B_1$,校验位为 $P_3P_2P_1$,海明码排列为 $B_4B_3B_2P_3B_1P_2P_1$,则检查结果及纠正情况如下表:

接收代码	出错情况	出错位序	正确代码
110 1100	有	\mathbf{B}_3	100 1100
100 0100	有	P_3	100 1100
010 1101	无		
001 1010	有	\mathbf{B}_{1}	001 1110

- □ 6.24 有两位8421BCD码编码的十进制整数置于寄存器A中,可以通过一个加法器网络将其直接转换成二进制整数。试用半加器、全加器电路画出该加法器网络。
- □解: 算法分析:

设两位8421码
$$A = A_1A_2 = a_8 a_7 a_6 a_5 a_4 a_3 a_2 a_1$$

二进制数 $B = b_7 b_6 b_5 b_4 b_3 b_2 b_1$
则
$$B = A_1 \times 1010 + A_2 = A_1 \times 1000 + A_1 \times 10 + A_2$$
$$= a_8 a_7 a_6 a_5 000 + a_8 a_7 a_6 a_5 0 + a_4 a_3 a_2 a_1$$

□ 为了更加清楚起见,进一步用竖式表示相加关系如下:

□ 该竖式对应的加法网络电路图如下页。

□ 两位8421码—二进制整数转换加法网络电路图

□ 6.25 设机器数字长为8位(含1位符号位),对下列各机器数算术左移一位、两位,算术右移一位、两位,并讨论结果是否正确。

第八章 6.25

□解:算术左移一位:

```
[x_1]_{\bar{\mu}}=0.0110100; 正确
    [y_1]_{\lambda}=0.0101000; 溢出(丢1)出错
    [\mathbf{z}_1]_{\mathbb{Z}}=1.1011111; 溢出(丢0)出错
算术左移两位:
    [x_1]_{\bar{\mu}}=0.1101000; 正确
    [y_1]_{\lambda}=0.1010000; 溢出(丢10)出错
    [z<sub>1</sub>]<sub>反</sub>=1.0111111; 溢出(丢01)出错
算术右移一位:
    [x_1]_{\bar{\mu}}=0.0001101; 正确
    [y_1]_{**}=0.0101010; 正确
    [\mathbf{z}_1]_{\mathbb{p}}=1.1010111; 正确
算术右移两位:
    [x<sub>1</sub>]<sub>原</sub>=0.000 0110 (10);产生误差
    [y_1]_{*}=0.001\ 0101; 正确
    [\mathbf{z}_1]_{\nabla} = 1.110\ 1011; 正确
```


□解:算术左移一位:

```
[x_2]_{原}=1.1010000; 溢出(丢1)出错
     [y<sub>2</sub>]<sub>*</sub>=1.1010000; 正确
     [\mathbf{z}_2]_{\nabla}=1.1010001;正确
算术左移两位:
     [x<sub>2</sub>]<sub>原</sub>=1.0100000; 溢出(丢11)出错
     [y<sub>2</sub>]*=1.0100000; 正确
     [\mathbf{z}_2]_{\mathbb{Z}}=1.0100011; 正确
算术右移一位:
     [\mathbf{x}_2]_{\mathbb{R}}=1.011 0100; 正确
     [y<sub>2</sub>]<sub>补</sub>=1.111 0100; 正确
     [z<sub>2</sub>]辰=1.111 0100(0); 产生误差
算术右移两位:
     [\mathbf{x}_2]_{\mathbb{R}} = 1.001\ 1010; 正确
     [y<sub>2</sub>]<sub>补</sub>=1.111 1010;正确
     [z<sub>2</sub>]<sub>反</sub>=1.111 1010(00); 产生误差
```


□解:算术左移一位:

```
[x<sub>3</sub>]<sub>原</sub>=1.0110010;正确
     [y<sub>3</sub>]<sub>补</sub>=1.0110010; 溢出(丢0)出错
    [z<sub>3</sub>]<sub>反</sub>=1.0110011; 溢出(丢0)出错
算术左移两位:
     [x_3]_{\mathbb{R}}=1.110 0100; 正确
    [y<sub>3</sub>]*=1.110 0100; 溢出(丢00)出错
    [z<sub>3</sub>]<sub>反</sub>=1.110 0111; 溢出(丢00)出错
算术右移一位:
     [x<sub>3</sub>]<sub>原</sub>=1.000 1100(1);产生误差
    [y<sub>3</sub>]<sub>补</sub>=1.1001100(1);产生误差
     [z<sub>3</sub>]<sub>反</sub>=1.1001100;正确
算术右移两位:
     [x<sub>3</sub>]<sub>原</sub>=1.000 0110 (01);产生误差
    [y<sub>3</sub>]<sub>补</sub>=1.1100110(01);产生误差
     [z<sub>3</sub>]<sub>反</sub>=1.110 0110 (01);产生误差
```


□ 6.26 设带符号数[Y]_原=[Y]_反=[Y]_补=1,011 0010,分别对这个8位字长的机器数进行算术左移一位、二位,算术右移一位、二位,逻辑左移一位、二位,逻辑右移一位、二位的操作,比较两种移位运算的区别,并分析结果的真值变化、误差及溢出情况。

□解: 机器数移位结果如下:

注:表中"误差*"表示误差的绝对值。

[Y]_原=1,0110010移位结果及分析

移位操作	溢出值	符号位	$[Y]_{ar{\mathbb{F}}}$	丢掉值	十进制 真值	结果分析
移位前		1	011 0010		-50	
逻辑右移1位		0	101 1001	0	+89	符号位移入MSB位引起 错误,符号位破坏
算术右移1位		1	001 1001	0	-25	-
逻辑右移2位		0	010 1100	10	+44	符号位移入数值位出错 符号位破坏
算术右移2位		1	000 1100	10	-12	误差*=1/2,基本正确
逻辑左移1位	0	0	110 0100		+100	 溢出出错,符号位破坏
算术左移1位	0	1	110 0100		-100	 无溢出,正确
逻辑左移2位	1	1	100 1000		-72	溢出出错,正确值=-200
算术左移2位	1	1	100 1000		-72	溢出出错,正确值=-200

[Y]反=1,0110010移位结果及分析

移位操作	溢出值	符号位	$\left[Y ight] _{oxtless}$	丢掉值	十进制 真值	结果分析
移位前		1	011 0010		-77	
逻辑右移1位		0	101 1001	0	+89	符号位移入MSB位引起 错误,符号位破坏
算术右移1位		1	101 1001	0	-38	误差*=1/2,基本正确
逻辑右移2位		0	010 1100	10	+44	符号位移入数值位出错 符号位破坏
算术右移2位		1	110 1100	10	-19	无误差,正确
逻辑左移1位	0	0	110 0100		+100	 溢出出错,符号位破坏
算术左移1位	0	1	110 0100		-27	 溢出出错,正确值=-155
逻辑左移2位	01	1	100 1000		-55	溢出出错,正确值=-311
算术左移2位	01	1	100 1000		-55	溢出出错,正确值=-311

[Y]_补=1,0110010移位结果及分析

移位操作	溢出值	符号位	$[Y]_{ otan}$	丢掉值	十进制 真值	结果分析
移位前		1	011 0010		-78	
逻辑右移1位		0	101 1001	0	+89	符号位移入MSB位引起 错误,符号位破坏
算术右移1位		1	101 1001	0	-39	无误差,正确
逻辑右移2位		0	010 1100	10	+44	符号位移入数值位出错 符号位破坏
算术右移2位		1	110 1100	10	-20	误差*=1/2,基本正确
逻辑左移1位	0	0	110 0100		+100	 溢出出错,符号位破坏
算术左移1位	0	1	110 0100		-28	 溢出出错,正确值=-156
逻辑左移2位	01	1	100 1000		-56	溢出出错,正确值=-312
算术左移2位	01	1	100 1000		-56	溢出出错,正确值=-312

- \square 6.27 设X₁=0.01 1100 0010, Y₁=-0.01 1100 0010; X₂=0.01 1100 1100, Y₂=-0.01 1100 1100; X₃=0.01 1100 0101; Y₃=-0.01 1100 0101
- □分别用原码和补码表示,如果只要求8位字长,请采用截断法、恒置1法和0舍1入法对每一个操作数进行舍入,并对舍入结果进行比较。
- □解: 先将真值X₁~X₃、Y₁~Y₃表示成机器码形式,再进行舍入。为方便比较,舍入结果用表格列出。注意相同下标的X_i、Y_i互为相反数,LSB*则表示误差方向是相对于最低有效位LSB的绝对值而言,正误差使绝对值增大,负误差使绝对值缩小。

不同舍入方法的比较

舍入前(11位)	舍入后(8位)	丢掉位	结果真值	误差分析
$[X_1]_{\text{ff}} = [X_1]_{\text{iff}} = X_1$ =0.011 1000 010	截断=0舍1入 =0.011 1000 (舍) 恒置1=0.011 1001 (入)	010	0.011 1 0.011 1001	-1/4LSB* +3/4LSB*
[Y ₁] _原 =1.011 1000 010	截断=0舍1入 =1.011 1000 (舍) 恒置1=1.011 1001 (入)	010	-0.011 1 -0.011 1001	-1/4LSB* +3/4LSB*
$[Y_1]_{\not=\downarrow}$ =1.100 0111 110	截断=恒置1 =1.100 0111 (入) 0舍1入=1.1001000 (舍)	110	-0.011 1001 -0.011 1	+3/4LSB* -1/4LSB*
$[X_2]_{\text{$\mathbb{R}$}} = [X_2]_{\text{$\mathbb{A}$}} = X_2$ =0.011 1001 100	截断=恒置1 =0.011 1001 (舍) 0舍1入=0.011 1010 (入)	100	0.011 1001 0.011 101	-1/2LSB* +1/2LSB*
[Y ₂] _原 =1.011 1001 100	截断=恒置1 =1.011 1001 (舍) 0舍1入=1.011 1010 (入)	100	-0.011 1001 -0.011 101	-1/2LSB* +1/2LSB*
[Y ₂] _* =1.100 0110 100	截断=0舍1入 =1.100 0110 (入) 恒置1=1.100 0111 (舍)	100	-0.011 101 -0.011 1001	+1/2LSB* -1/2LSB*
$[X_3]_{\text{$\mathbb{R}$}} = [X_3]_{\text{$\mathbb{A}$}} = X_3$ =0.011 1000 101	截断=0.011 1000 (舍) 恒置1=0舍1入 =0.011 1001 (入)	101	0.011 1 0.011 1001	-5/8LSB* +3/8LSB*
[Y ₃] _原 =1.011 1000 101	截断=1.011 1000 (舍) 恒置1=0舍1入 =1.011 1001 (入)	101	-0.011 1 -0.011 1001	-5/8LSB* +3/8LSB*
$[\mathbf{Y}_3]_{\not\models \mid}$ =1.100 0111 011	截断=恒置1=0舍1入 =1.1000111(入)	011	-0.011 1001	+3/8LSB*

- □ 6.28 设机器数字长为8位(含1位符号位),用补码加减运算规则计算下列各题,并指出是否溢出。
 - (1) X = -17/32, Y = 19/64, $\Re X Y$;
 - (2) X = -21/32, Y = -67/128, $\Re X + Y$;
 - (3) X = 97, Y = -54, $\Re X Y$;
 - (4) X = 118, Y = -36, $\Re X + Y$.

第六章 6.28 (1)

(1)
$$X = -17/32 = (-0.100 \ 0100)_2$$

 $Y = 19/64 = (0.010 \ 0110)_2$
 $[X]_{\frac{1}{2}} = 1.011 \ 1100$
 $[Y]_{\frac{1}{2}} = 0.010 \ 0110$, $[-Y]_{\frac{1}{2}} = 1.101 \ 1010$

$$X-Y = (-0.110 \ 1010)_2 = -53/64$$

第六章 6.28 (2)

(2)
$$X = -21/32 = (-0.101\ 0100)_2$$

 $Y = -67/128 = (-0.100\ 0011)_2$
 $[X]_{\uparrow \uparrow} = 1.010\ 1100$
 $[Y]_{\uparrow \uparrow} = 1.011\ 1101$

$$X+Y = (-1.001\ 0111)_2 = -151/128$$

第二章 6.28 (3)

(3)
$$X = 97 = (110\ 0001)_2$$

 $Y = -54 = (-11\ 0110)_2$
 $[X]_{\frac{1}{7}} = 0,110\ 0001$
 $[Y]_{\frac{1}{7}} = 1,100\ 1010$, $[-Y]_{\frac{1}{7}} = 0,011\ 0110$

$$[X-Y]_{\dagger h} = 0$$
, 110 0001
+ 0, 011 0110
1, 001 0111—溢出

$$X-Y = (+1001\ 0111)_2 = 151$$

第六章 6.28 (4)

(4)
$$X = 118 = (111\ 0110)_2$$

 $Y = -36 = (-10\ 0100)_2$
 $[X]_{\begin{subarray}{l} [X]_{\begin{subarray}{l} [X]_{\begin$

$$X+Y = (+101\ 0010)_2 = 82$$

- □ 注意: ① 单符号位运算要用单符号位的判溢出方法; ② 结果的真值形式上要和原始数据一致。

- □ 6.29 分别用8421码加法和余3码加法求57+48=? 316+258=? 要求 列出竖式计算过程。
- ☐ \mathbf{M} : $(57)_{BCD} = 0101$, 0111; $(48)_{BCD} = 0100$, 1000 $(57)_{E3} = 1000$, 1010; $(48)_{E3} = 0111$, 1011 $(316)_{BCD} = 0011$, 0001, 0110; $(258)_{BCD} = 0010$, 0101, 1000 $(316)_{E3} = 0110$, 0100, 1001; $(258)_{E3} = 0101$, 1000, 1011
- □ 为清楚起见,这里将各位BCD码之间用逗号隔开。
- □ 加法过程如下:

□ 57+48的8421码加法过程:

□ 57+48的余3码加法过程:

□ 316+258的8421码加法过程:

□ 316+258的余3码加法过程:

□ 6.30 假定在一个 8 位字长的计算机中,定点整数用单字长表示,其中带符号整数用补码表示(符号占1位);浮点数用双字长表示,阶码为8位移码(包括1位符号位),尾数用8位原码(包括1位符号位)。运行如下类 C 程序段:

```
int x1 = -124;
int x2 = 116;
unsigned int y1 = x1;
float f1 = x1;
int z1 = x1 + x2;
int z2 = x1 - x2;
```

- □ 请问:
- □ (1)执行上述程序段后,所有变量的值在该计算机内的数据表示形 式各是多少?所有变量的值对应的十进制形式各是多少?
- □ (2)在该计算机中,无符号整数、带符号整数和规格化浮点数的表示范围各是什么? (要求用十进制2的幂形式表示)
- 🗖 (3)执行上述程序段后,哪些运算语句的执行结果发生了溢出?

解: (1) 执行上述程序段后,变量 x1值的十进制表示形式: -124 x1值的机内表示形式: 1,000 0100 x2值的十进制表示形式: 116 x2值的机内表示形式: 0,111 0100 y1 值的十进制表示形式: 132 y1 值的机内表示形式: 1000 0100 f1 值的十进制表示形式: -124.0 f1 值的机内表示形式: 1,000 0111;1.111 1100 z1值的十进制表示形式: -8 z1值的机内表示形式: 1,111 1000 z2值的十进制表示形式: 16 z2值的机内表示形式: 0,001 0000

- □ (2) 无符号整数表示范围: 0~28-1
- □ 带符号整数表示范围: -2⁷~2⁷-1
- □ 规格化浮点数表示范围:

$$-(1-2^{-7})\times 2^{127}\sim -2^{-1}\times 2^{-128}, 0, 2^{-1}\times 2^{-128}\sim (1-2^{-7})\times 2^{127}$$

□ (3) 执行上述程序段后,语句int z2 = x1-x2 的执行结果发生了溢出。

- □ 6.31 已知X和Y,用变形补码计算X±Y,同时指出结果是否溢出。
 - (1) X=0.11011; Y=-0.10101
 - (2) X=0.101111; Y=0.110111
 - (3) X = -0.10110; Y = -0.00011
 - (4) X=0.11011; Y=-0.11111
- □ 解:
- □ 首先将X、Y转换为变形补码(模4补码),然后计算,最后判溢出。

(1)
$$[X]_{\uparrow h} = 00.11011$$
; $[Y]_{\uparrow h} = 11.01011$; $[-Y]_{\uparrow h} = 00.10101$
 $[X+Y]_{\uparrow h} = 00.11011+11.01011=00.00110$
 $0 \oplus 0 = 0$ — 无溢出, $X+Y=0.00110$

$$[X-Y]_{\ref{X}}=[X]_{\ref{X}}+[-Y]_{\ref{X}}=00.11011+00.10101=01.10000$$
 $0\oplus 1=1$ —— 溢出, $X-Y=+1.10000$

- (2) $[X]_{\stackrel{?}{\uparrow}} = 00.10111; \quad [Y]_{\stackrel{?}{\uparrow}} = 00.11011; \quad [-Y]_{\stackrel{?}{\uparrow}} = 11.00101$ $[X+Y]_{\stackrel{?}{\uparrow}} = 00.10111+00.11011=01.10010$ $0 \oplus 1 = 1$ 溢出,X+Y = +1.10010 $[X-Y]_{\stackrel{?}{\uparrow}} = [X]_{\stackrel{?}{\uparrow}} + [-Y]_{\stackrel{?}{\uparrow}} = 00.10111+11.00101 = 11.11100$ $1 \oplus 1 = 0$ 无溢出,X-Y = -0.00100
- (3) $[X]_{\stackrel{}{\uparrow}_{1}} = 11.01010; \quad [Y]_{\stackrel{}{\uparrow}_{1}} = 11.11101; \quad [-Y]_{\stackrel{}{\uparrow}_{1}} = 00.00011$ $[X+Y]_{\stackrel{}{\uparrow}_{1}} = 11.01010 + 11.11101 = 11.00111$ $1 \oplus 1 = 0$ 无溢出,X+Y = -0.11001 $[X-Y]_{\stackrel{}{\uparrow}_{1}} = [X]_{\stackrel{}{\uparrow}_{1}} + [-Y]_{\stackrel{}{\uparrow}_{1}} = 11.01010 + 00.00011 = 11.01101$ $1 \oplus 1 = 0$ 无溢出,X-Y = -0.10011
- (4) $[X]_{\stackrel{}{\uparrow}} = 00.11011; \quad [Y]_{\stackrel{}{\uparrow}} = 11.00001; \quad [-Y]_{\stackrel{}{\uparrow}} = 00.111111$ $[X+Y]_{\stackrel{}{\uparrow}} = 00.11011+11.00001=11.11100$ $1 \oplus 1 = 0$ 无溢出,X+Y = -0.00100 $[X-Y]_{\stackrel{}{\uparrow}} = [X]_{\stackrel{}{\uparrow}} + [-Y]_{\stackrel{}{\uparrow}} = 00.11011+00.11111=01.11010$ $0 \oplus 1 = 1$ 溢出,X-Y = +1.11010
- 注意: ① 补码运算有可能产生模溢出,这是补码运算的正常情况;
 - ② 结果要求真值表示时,应将补码结果转换为真值。

- □ 6.32 已知真值X, Y, 用移码运算求X±Y=? 并判断溢出。
 - (1) X=101101; Y=-110110
 - (2) X=-101101; Y=-110110
 - (3) X=-10001; Y=101011
- □解: 为了判溢出,运算采用双符号位移码,最高符号位初始为零。
 - (1) $[X]_{38} = 01,101 \ 101; \ [Y]_{38} = 00,001 \ 010;$

$$[Y]_{k}=11,001\ 010;\ [-Y]_{k}=00,110\ 110;$$

$$[X+Y]_{8}=[X]_{8}+[Y]_{4}=01,101\ 101+11,001\ 010=00,110\ 111$$

无溢出

 $[X-Y]_{8}=[X]_{8}+[-Y]_{4}=01,101\ 101+00,110\ 110=10,100\ 011$

→溢出

 $X+Y=-001\ 001; X-Y=+1\ 100\ 011$

- □ (2) [X]_穆=00,010 011; [Y]_穆=00,001 010 [Y]_补=11,001 010; [-Y]_补=00,110 110 [X+Y]_穆=[X]_豫+[Y]_补=00,010 011+11,001 010 = 11,011 101——溢出 [X-Y]_豫=[X]_豫+[-Y]_补=00,010 011+00,110 110 = 01,001 001——无溢出 X+Y=-1 100 011; X-Y=+001 001
- □ (3) [X]_移=00,101 111; [Y]_移=01,101 011 [Y]_补=00,101 011; [-Y]_补=11,010 101 [X+Y]_移=[X]_移+[Y]_补=00,101 111+00,101 011 = 01,011 010——无溢出 [X-Y]_移=[X]_移+[-Y]_补=00,101 111+11,010 101 = 00,000 100——无溢出 X+Y=+011 010; X-Y=-111 100

- □ 6.33 用原码一位乘法和补码一位乘比较法、两位乘比较法 计算X×Y。
 - (1) X = 0.1101111, Y = -0.101110;
 - (2) X = -0.010 111, Y = -0.010 101;
- □ 解:
- □ 先将数据转换成所需的机器数,然后计算,最后结果转换成真值。
 - (1) $[X]_{\mathbb{F}} = X = 0.110111$, $[Y]_{\mathbb{F}} = 1.101110$ $X^* = 0.110111$, $Y^* = 0.101110$ $X_0 = 0$, $Y_0 = 1$, $Z_0 = X_0 \oplus Y_0 = 0 \oplus 1 = 1$ $X^* \times Y^* = 0.100$ 111 100 010 $[X \times Y]_{\mathbb{F}} = 1.100$ 111 100 010 $X \times Y = -0.100$ 111 100 010

第六章 6.33 (1) 原码一位乘

	部分	积			乘	数Y	*	
	0.000	000	.1	0	1	1	1	<u>0</u> —— +0
$\rightarrow 1$	0.000	$0\ 0\ 0$	0	.1	0	1	1	<u>1</u> ——+X*
+	0.110	111						
	0.110	111			•			
$\rightarrow 1$	0.011	011	1	0	.1	0	1	<u>1</u> +X*
+	0.110	111						
	1.010	$0\ 1\ 0$				1		
$\rightarrow 1$	0.101	001	0	1	0	.1	0	<u>1</u> +X*
+	0.110	111						
	1.100	000						
$\rightarrow 1$	0.110	$0\ 0\ 0$	0	0	1	0	.1	<u>0</u> ——+0
→1	0.011	$0\ 0\ 0$	0	0	0	1	0	$0 \longrightarrow +0$ $1 \longrightarrow X^*$
+	0.110	111						
	1.001	111						
$\rightarrow 1$	0.100	111	1	0	0	0	1	0

第六章 6.33 (1) 补码乘

$$\begin{array}{ll} [\mathbf{X}]_{\nmid \mid} = \mathbf{X} = \mathbf{0.110111} \\ [\mathbf{Y}]_{\nmid \mid} &= \mathbf{1.010010} \\ [-\mathbf{X}]_{\nmid \mid} &= \mathbf{1.001001} \\ [2\mathbf{X}]_{\nmid \mid} &= \mathbf{01.101110} \\ [-2\mathbf{X}]_{\nmid \mid} &= \mathbf{10.010010} \end{array}$$

$$[X \times Y]_{\uparrow \uparrow} = 1.011 \ 000 \ 011 \ 110 \ 0$$

 $X \times Y = -0.100 \ 111 \ 100 \ 010 \ 0$

补码一位乘、两位乘运算过程如下:

第六章 6.33 (1) 补码一位乘

	部分积	乘数[Y] _补 Y _n Y _{n+1}
	00.000 000	$1.0 \ 1 \ 0 \ 0 \ 1 \ 0 \+0$
$\rightarrow 1$	00.000000	$\begin{array}{ c cccccccccccccccccccccccccccccccccc$
+	11.001 001	+[-X] _≵ ⊾
	11.001 001	
$\rightarrow 1$	11.100 100	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
+	00.110 111	+[X] _{ネト}
	00.011 011	
$\rightarrow 1$	00.001 101	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\rightarrow 1$	00.000 110	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
+	11.001 001	+[-X] _{ネト}
	11.001 111	
$\rightarrow 1$	11.100 111	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
+	00.110 111	+[X] _{≵\}
	00.011 110	
$\rightarrow 1$	00.001 111	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
+	11.001 001	+[-X] _{ネト}
	11.011 000	0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

第六章 6.33 (1) 补码两位乘

部分积	乘数[Y] _补 Y _{n-1} Y _n Y _{n+1}
000.00000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
+ 110.010010	+[-2X] _{ネト}
$110.010\ 010$	
$\rightarrow 2$ 111.100 100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
+ 000.110 111	+[X] _{ネト}
000.011 011	
$\rightarrow 2 0 \ 0 \ 0 \ . \ 0 \ 0 \ 1 \ 1 \ 0$	$1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0$
+ 000.110 111	+[X] _*
$000.111\ 101$	
$\rightarrow 2$ 000.001 111	$0\ 1\ 1\ 1\ 1\ 0\ \underline{1\ 1\ .0}$
+ 111.001 001	+[-X]补
111.011 000	01 111 0 0 0 清0
结果同补码一位乘, X·	Y= -0. 100 111 100 010 00

第六章 6.33 (2)

(2) X=-0.010111, Y=-0.010101 [X]_原=1.010111, [Y]_原=1.010101 X*=0.010111, Y*=0.010101 [-X*]_补=1.101001 X₀=1, Y₀=1, Z₀=X₀
$$\oplus$$
 Y₀=1 \oplus 1=0 [X]_补=1.101001, [Y]_补=1.101011 [-X]_补=0.010111, [2X]_补=1.010010 [-2X]_补=0.101110 X*×Y*=0.000 111 100 011 [X×Y]_原=0.000 111 100 011 [X×Y]_补=0.000 111 100 011 © X×Y=0.000 111 100 011 © X×Y=0.000 111 100 011

第六章 6.33 (2) 原码一位乘

部分积	乘数Y*
0.000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
+ 0.010 111	
0.010 111	
$\rightarrow 1$ 0.001 011	$1 \ \underline{.0} \ 1 \ 0 \ 1 \ \underline{0} + 0$
$\rightarrow 1$ 0.000 101	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
+ 0.010 111	
$0.011\ 100$	
$\rightarrow 1$ 0.001 110	$0 \ 1 \ 1 \ .0 \ 1 \ 0 \longrightarrow +0$
$\rightarrow 1$ 0.000 111	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
+ 0.010111	
0.011 110	
$\rightarrow 1$ 0.001 111	$0 \ 0 \ 0 \ 1 \ 1 \ .0 +0$
$\rightarrow 1$ 0.000 111	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

第六章 6.33 (2) 补码一位乘

	部分积	乘数 $[Y]_{{\mathbb{A}}}$ Y_n Y_{n+1}
	00.000 000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
+	00.010 111	+[-X] _{ネト}
	00.010 111	
$\rightarrow 1$	00.001 011	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
→1	00.000 101	$1 \ 1 \ 1.1 \ 0 \ 1 \ 0 \ 1$
+	11.101 001	+[X] _{ネト}
	11.101 110	
$\rightarrow 1$	11.110 111	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
+	00.010 111	+[-X] _{ネト}
	00.001 110	
$\rightarrow 1$	00.000 111	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
+	11.101 001	+[X] _{ネト}
	11.110 000	
$\rightarrow 1$	11.111 000	$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \end{bmatrix} 1.1 0$
+	00.010 111	+[-X] _{ネト}
	00.001 111	
$\rightarrow 1$	00.000 111	$1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ .1 \longrightarrow +0$
		清0

第六章 6.33 (2) 补码两位乘

	部分积	乘数 $Y_{n-1}Y_n Y_{n+1}$
	000.000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
+	000.010 111	+[-X] _{ネト}
	000.010 111	
$\rightarrow 2$	000.000 101	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
+	000.010 111	+[-X] _{ネト}
	000.011 100	
$\rightarrow 2$	000.000 111	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
+	000.010 111	+[-X] _{ネト}
	000.011 110	
$\rightarrow 2$	000.000 111	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		+0,清0
	结果同补码一位乘,	$X \times Y = 0.000 111 100 011 00$

- □ 6.34 用原码加减交替除法和补码加减交替除法计算X÷Y。
 - (1) X=-0.10101, Y=0.11011;
 - (2) X=13/32, Y=-27/32.

□ 解:

(1) $[X]_{\bar{\mathbb{R}}} = 1.101 \ 01$, $X^* = 0.101 \ 01$ $Y^* = [Y]_{\bar{\mathbb{R}}} = Y = 0.110 \ 11$ $[-Y^*]_{\bar{\mathbb{A}}} = 1.001 \ 01$ $Q_0 = X_0 \oplus Y_0 = 1 \oplus 0 = 1$

> $X*\div Y*=0.110\ 00$, $[X\div Y]_{\mathbb{R}}=1.110\ 00$ $X\div Y=-0.110\ 00$,

R*=0.110 00×2⁻⁵=0.000 001 100 0 计算过程如下:

第六章 6.34 (1) 原码加减多替除法 Science

被除数/余数	商
0.101 01	0.000 00
+ 1.001 01	试减,+[-Y*] _补
$\frac{1.110 \cdot 10}{}$,,
1 ← 1.101 00	0.
+ 0.110 11	R<0, +Y*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$1 \leftarrow 0.11110$	0.1
+ 1.001 01	$\mathbf{R}>0$, $+[-\mathbf{Y}^*]_{ eqn}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$1 \leftarrow 0.00110$	0.11
+ 1.001 01	R>0, $+[-Y^*]_{ eqh}$
1.010 11	
$1 \leftarrow 0.10110$	0.1 10
+ 0.110 11	R<0, $+Y*$
$\frac{1.10001}{}$	
$1 \leftarrow 1.00010$	0.1 1 0 0
+ 0.110 11	R<0, +Y*
1.111 01	1 ← 0.1 1 0 0 0
+ 0.110 11	R<0, +Y*(恢复余数)
0.11000	

第六章 6.34 (1) 补码加减变替除法 Science Computer

$$[X \div Y]_{\nmid \mid} = 1.001 \ 11$$

 $X \div Y = -0.110 \ 01$
 $[R]_{\nmid \mid} = 1.010 \ 00$
 $R = -0.000 \ 001 \ 100 \ 0$

运算过程如下:

第六章 6.34 (1) 补码加减金替除法 Science Science

被除数/余数	商
11.010 11	0.00000
+ 00.110 11	试减,X、Y异号,+[Y] _补
00.001 10	,,
$1 \leftarrow 00.01100$	1.
$\underline{} + 11.001 01$	R、Y同号,+[-Y] _补
11.100 01	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1 ← 11.000 10	1.0
+ 00.110 11	R、Y异号, +[Y] _补
11.111 01	
$1 \leftarrow 11.11010$	1.0 0
+ 00.110 11	R、Y异号, +[Y] _补
00.101 01	
$1 \leftarrow 01.01010$	1.001
+ 11.001 01	R、Y同号, +[-y] _补
$00.011\ 11$, , , , , , , , , , , , , , , , , , ,
$1 \leftarrow 00.11110$	1.0 011
$\phantom{0$	R、Y同号,+[-Y] _补
00.000 11	1←1.0 01111 —— 恒置1
+ 11.001 01	R、X异号,恢复余数
11.010 00	且R、Y同号,+[-Y] _补
注、	11

第二章 6.34(2)

$$\begin{array}{|c|c|c|c|c|c|}\hline & X=13/32=(0.011 & 01)_2\\ & Y=-27/32=(-0.110 & 11)_2\\ & X^*=[X]_{\bar{\mathbb{R}}}=X=0. & 011 & 01\\ & [Y]_{\bar{\mathbb{R}}}=1.110 & 11\\ & Y^*=0.110 & 11\\ & [-Y^*]_{\dot{\mathbb{H}}}=1.001 & 01\\ & Q_0=X_0\oplus Y_0=0\oplus 1=1\\ & X^*\div Y^*=0.011 & 11\\ & [X\div Y]_{\bar{\mathbb{R}}}=1.011 & 11\\ & X\div Y=(-0.011 & 11)_2=-15/32\\ & R^*=0.010 & 11\times 2^{-5}=0.000 & 000 & 101 & 1\\ \hline \end{array}$$

运算过程如下:

第六章 6.34 (2) 原码加减变替除法 Science Computer

被除数/余数	商
0.011 01	0.00000
+ 1.001 01	试减,+[-Y*] _补
1.100 10	"
$1 \leftarrow 1.00100$	0.
+ 0.110 11	R<0, +Y*
1.111 11	
1 ← 1.111 10	0.0
+ 0.110 11	R<0, +Y*
0.11001	
$1 \leftarrow 1.10010$	0.0 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 1 R>0, +[-Y*] _{ネト}
•	
+ 1.001 01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R>0$, $+[-Y^*]_{ eqh}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R>0, +[-Y*] _{≱♭}
$\begin{array}{c} + & 1.001 & 01 \\ \hline & 0.101 & 11 \\ 1 \leftarrow & 1.011 & 10 \\ + & 1.001 & 01 \end{array}$	R>0, +[-Y*] _{≱♭}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R>0$, $+[-Y^*]_{\frac{1}{2h}}$ 0.011 $R>0$, $+[-Y^*]_{\frac{1}{2h}}$
$\begin{array}{c} + \ 1.001 \ 01 \\ \hline 0.101 \ 11 \\ 1 \leftarrow \ 1.011 \ 10 \\ + \ 1.001 \ 01 \\ \hline 0.100 \ 11 \\ 1 \leftarrow \ 1.001 \ 10 \\ \end{array}$	$R>0$, $+[-Y^*]_{\frac{1}{2h}}$ 0.011 $R>0$, $+[-Y^*]_{\frac{1}{2h}}$ 0.0111

第二章 6.34 (2) 补码知减多替除法 Computer

$$X=13/32=(0.011 \ 01)_2$$

 $Y=-27/32=(-0.110 \ 11)_2$
 $[X]_{\stackrel{?}{\uparrow}}=x=0.011 \ 01$
 $[Y]_{\stackrel{?}{\uparrow}}=1.001 \ 01$
 $[-Y]_{\stackrel{?}{\downarrow}}=0.110 \ 11$

$$[X \div Y]_{\nmid h} = 1.100 \ 01$$

 $X \div Y = (-0.011 \ 11)_2 = -15/32$
 $[R]_{\nmid h} = 0.010 \ 11$
 $R = R^* = 0.000 \ 000 \ 101 \ 1$

运算过程如下:

第六章6.34 (2) 补码加减变替除法 Science

被除数(余数)	商
00.011 01	0.000 00
+ 11.001 01	试减,X、Y异号,+[Y] _补
11.100 10	,,
$1 \leftarrow 11.00100$	1.
+ 00.110 11	R、Y同号,+[-Y] _补
11.111 11	,
$1 \leftarrow 11.11110$	1.1
+ 00.110 11	R、Y同号,+[-Y] _补
00.11001	,
$1 \leftarrow 01.10010$	1.1 0
+ 11.001 01	R、Y异号,+[Y] _补
00.101 11	
$1 \leftarrow 01.01110$	1.100
+ 11.001 01	R、Y异号, +[Y] _补
00.100 11	, , , , , , , , , , , , , , , , , , ,
$1 \leftarrow 01.00110$	1.1 000
+ 11.001 01	R、Y异号,+[Y] _补
00.010 11	1←1.1 000 <mark>1</mark> —— 恒置1
	R、X同号,结束

第八章 6.35

□ 6.35 设机器字长为16位(含1位符号位),若一次移位 需1μs,一次加法需1μs,试问原码一位乘法、补码一位 乘法、原码加减交替除法和补码加减交替除法最多各需 多少时间?

□解:

原码一位乘最多需时= $1\mu s \times 15$ (加)+ $1\mu s \times 15$ (移位)= $30\mu s$ 补码一位乘最多需时= $1\mu s \times 16 + 1\mu s \times 15 = 31\mu s$ 原码加减交替除最多需时= $1\mu s \times (16+1) + 1\mu s \times 15 = 32\mu s$ 补码加减交替除最多需时= $1\mu s \times (16+1) + 1\mu s \times 15 = 32\mu s$

第六章 6.36

□ 有下列16位字长的逻辑数(八进制表示):

$$A = 000 \ 377; \ B = 123 \ 456; \ C = 054 \ 321.$$

试计算: $X_1 = (B \oplus C) \cdot A;$
 $X_2 = /(/B \cdot /C) + A;$
 $X_3 = (A \oplus B) + /(A \cdot C);$
 $X_4 = (A \oplus B) \oplus C;$

□ 解:

$$X_1=000$$
 377;
 $X_2=177$ 777;
 $X_3=177$ 777;
 $X_4=177$ 400

- \Box 6.37 设4位二进制加法器进位信号为 $C_4C_3C_2C_1$,最低位进位输入为 C_0 ;输入数据为 $A_3A_2A_1A_0$ 和 $B_3B_2B_1B_0$;进位生成函数为 $g_3g_2g_1g_0$,进位传递函数为 $p_3p_2p_1p_0$;请分别按下述两种方式写出 $C_4C_3C_2C_1$ 的逻辑表 达式:
 - (1) 串行进位方式; (2) 并行进位方式。

□ 解:

$$\diamondsuit$$
 $g_i=A_iB_i$; $p_i=A_i\oplus B_i$; (i=0, 1, 2, 3) 则

(1) 串行进位方式: (2) 并行进位方式:

$$\begin{array}{lll} C_1 = g_0 + p_0 C_0; & C_1 = g_0 + p_0 C_0 \\ C_2 = g_1 + p_1 C_1; & C_2 = g_1 + p_1 g_0 + p_1 p_0 C_0 \\ C_3 = g_2 + p_2 C_2; & C_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 C_0 \\ C_4 = g_3 + p_3 C_3; & C_4 = g_3 + p_3 g_2 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 C_0 \end{array}$$

- □ 6.38 设机器字长为32位,用与非门和与或非门设计一个并行加法器(假设与非门的延迟时间为10ns,与或非门的延迟时间为15ns),要求完成32位加法时间不得超过0.2μs。画出进位线路逻辑框图及加法器逻辑框图。
- □解: 首先根据题意要求选择进位方案:
- 1) 若采用串行进位链(行波进位),则在g_i、p_i函数的基础上,实现32位进位需要的时间为:

T=2ty×32=64ty=64×10=640ns=0.64μs 不满足0.2μs的加法时间限制,不能用。 (设1ty=10ns)

2) 若采用成组先行-级联进位方式,则在g_i、p_i的基础上,4位一组分组,小组内部先行进位,小组间串行进位,则32位进位需:

T=2.5ty×8组=20ty=20×10=200ns= 0.2μs

刚好满足0.2μs加法时间的限制。

考虑到一次加法除进位时间外,还需 g_i 、 p_i 函数的产生时间、和的产生时间(最高位和)等因素,故此进位方案仍不适用。

结论: 若采用成组先行-级联进位,小组规模需在6位以上较为合适。即:

T=2.5ty×6组=15ty=15×10=150ns= 0.15μs

除进位外还有50ns(约5ty)左右的时间供加法开销,较充裕。

3) 若采用二级先行-级联进位方式,4位一小组,4小组为一大组分组。小组内部先行进位,小组间即大组内也先行进位,大组间串行进位,则32位进位需:

T=2.5ty×4级=10ty=10×10=100ns

完全满足0.2μs的加法时间限制,可以使用。

进位线路及加法器逻辑框图如下页。

32位二级先行-级联进位线路

注:为讨论方便,上述电路忽略门电路扇入系数的影响。另外,一个完整的加法器还应考虑g_i、p_i产生电路、 求和电路等。

32位加法器逻辑框图:图中进位电路可选上述两种方案之一

第八章 6.39

- □ 6.39 设机器字长为16位,分别按4、4、4、4和3、5、3、5分组后,
- (1) 画出两种分组方案的成组先行-级联进位线路框图 ,并比较哪种方案运算速度快。
- (2) 画出两种分组方案的二级先行进位线路框图,并对这两种方案的速度进行比较。
- (3) 用74181和74182画出成组先行-级联进位和二级先行进位的并行进位线路框图。

解:

(1) 4-4-4-4分组的16位成组先行-级联进位线路框图见下页。

第六章 6.39 (1) 4-4-4-4分類 Science Computer Technology

4-4-4-4分组16位成组先行-级联进位线路框图

□ 4-4-4-4分组16位成组先行-级联进位线路最长进位延迟时间为: 2.5t_y×4=10t_y

第六章 6.39 (1) 3-5-3-5分類 Science Computer

3-5-3-5分组16位成组先行-级联进位线路框图

□ 运算速度比较: 4-4-4-4分组的进位时间=2.5ty×4=10ty; 3-5-3-5分组的进位时间=2.5ty×4=10ty;

两种分组方案最长加法时间相同。

- □ 结论: 成组先行-级联进位的最长进位时间只与组数有关,与 组内位数无关。
- □注: 为便于比较,3-5-3-5分组忽略扇入影响。

第六章 6.39 (2) 4-4-4-4分類 Science Computer

4-4-4-4分组16位二级先行进位线路框图

□ 4-4-4-4分组16位二级先行进位线路最长进位延迟时间为: 2.5t_y×3=7.5t_y

第六章 6.39 (2) 3-5-3-5分類 Science Computer

3-5-3-5分组16位二级先行进位线路框图

□ 3-5-3-5分组16位二级先行进位线路最长进位延迟时间为: 2.5t_y×3=7.5t_y

第六章 6.39 (2)

□ 运算速度比较:

4-4-4-4分组的进位时间=2.5ty×3=7.5ty; 3-5-3-5分组的进位时间=2.5ty×3=7.5ty; 两种分组方案最长加法时间相同。

□ 结论: 二级先行进位的最长进位时间只与组数 和级数有关,与组内位数无关。

第六章 6.39 (3)

□ 16位成组先行-级联进位加法器逻辑图(正逻辑)

□ 16位二级先行进位加法器逻辑图(正逻辑)

□ 图中,设与进位无关或不用的引脚省略不画。

第六章 6.39 注意

- □ 181芯片正、负逻辑引脚的表示方法;
- □为强调可比性,3-5-3-5分组时不考虑扇入影响;
- □ 181芯片只有最高、最低两个进位输入/输出端,组内进位无引脚;
- □ 181为4位片,无法3-5-3-5分组,只能4-4-4-4分组;
- □ 成组先行-级联进位只用到181,使用182的一般是二级以上先行进位;
- □ 成组先行-级联进位是并行进位和串行进位技术的结合;注意在位数较少时,二级以上进位可以采用全先行进位技术实现;位数较多时,可采用二级并行进位和串行进位技术结合实现(二级先行-级联进位)。

第六章 6.40

- □ 6.40 用预加6方案设计一位8421码加法单元,并以设计好的加法单元为模块,进一步设计一个4位的8421码加法器。
- □ 解: 预加6方案一位8421码加法器算法分析:
 - ① 相加前,对其中一个加数预加6;
 - ② 做二进制加法;
 - ③ 十进制进位自动产生;
 - ④ 有进位时,不修正;
 - ⑤ 无进位时,减6修正(+1010)。
- □ 一位8421码加法单元线路见下页:(采用MSI芯片74LS283设计)

一位预加6方案8421码加法单元线路图

第六章 6.40

□ 用一位8421码加法器作基本加法单元,4位8421码加 法器线路如下:

- □ 6.41(1)设计一个一位的余3码加法器,并分析其修正规律;
 - (2) 用8位并行二进制加法器实现2位余3码加法,试提出你的方案。
- □ 解:
- □(1)由一位余3码加法和的修正关系表可得:
 - 一位余3码加法修正规律: 无进位, -3(+1101)修正; 有进位, +3(+0011)修正。

一位余3码加法器结构:

由两级4位二进制加法器组成,第一级常规的二进制加法器实现二进制加法,第二级简化的二进制加法器实现+3、-3修正,加减3的控制由第一级加法器的进位信号完成。线路实现既可采用SSI加法器件,也可采用MSI芯片。设计方案如下:

方案一:采用SSI全加器构成,线路见下页。

第二章 6.41(1) SSI设计

采用SSI全加器设计方案的线路图

第二章 6.41(1) MSI设计

□方案二:采用4位先行进位二进制加法器MSI芯片构成 (74LS283,也可选其他MSI加法器),线路如下:

第二章 6.41 (2)

- □ (2) 2位余3码加法实现方案:用两个一位余3码加法器作为加法单元,采用较简单的串行进位方式,构成2位余3码加法线路(也可采用其他进位方式,进位原理与n位二进制加法器基本一样)。此方法也适用于n位余3码加法器的构成。线路结构如下:

- □ 6.42 试用74LS181、74LS182等中规模集成电路芯片组成一个分级先行进位的60位ALU。
- □解: 分级先行进位的60位ALU线路如下(正逻辑):

□ 6.43 用4位位片式运算器芯片AM2901和AM2902组成一个32位定点加、减、乘、除四则运算器,采用二级先行级联进位结构,请画出其逻辑电路图。

□解: 32位定点四则运算器逻辑电路图如下:

- □ 6.44 浮点数的格式为: 阶码6位(含1位阶符), 尾数10 位(含1位数符)。按下列要求分别写出正数和负数的表示范围,答案均用2的幂形式的十进制真值表示。
 - (1) 阶原尾原非规格化数;
 - (2) 阶移尾补规格化数;
 - (3) 按照(2)的格式,写出-27/1024和7.375的浮点机器数。
- □解: (1) 据题意画出该浮点数格式:

第六章 6.44 (1)

- □ 当采用阶原尾原非规格化数时,
 - ○最大正数=0,11111;0.11111111
 - ○最小正数=1,11111;0.00000001
 - ○则正数表示范围为:

$$2^{-31} \times 2^{-9} \sim 2^{31} \times (1-2^{-9})$$

- ○最大负数=1,11111;1.00000001
- ○最小负数=0,11111;1.11111111
- ○则负数表示范围为:

$$-2^{31} \times (1-2^{-9}) \sim -2^{-31} \times 2^{-9}$$

□注: 零视为中性数,不在此范围内。

第二章 6.44 (2)

- (2) 当采用阶移尾补规格化数时,
 - ○最大正数=1,11111;0.11111111
 - ○最小正数=0,00000;0.100000000
 - ○其对应的正数真值范围为:

$$2^{-32} \times 2^{-1} \sim 2^{31} \times (1-2^{-9})$$

- ○最大负数=0,00000;1.01111111
- ○最小负数=1,11111;1.0000000
- ○其对应的负数真值范围为 2³¹×(-1)~-2⁻³²×(2⁻¹+2⁻⁹)
- □注意:原码正、负域对称,补码正、负域不对称。浮点补码规格化尾数范围满足条件:数符⊕MSB位=1

第二章 6.44 (3)

- (3) 首先将十进制数-27/1024和7.375转换为二进制:
 - \bigcirc -27/1024 =(-0.000 001 101 1)₂ = 2⁻⁵ ×(-0.110 11)₂
 - \bigcirc 7.375=(111.011)₂ =2³ ×(0.111 011)₂
 - 再写成浮点机器数形式:
 - -27/1024的阶移尾补规格化数=0,11011;1.001 010 000
 - ○7.375的阶移尾补规格化数=1,00011;0.111011000
- 注: 以上浮点数也可采用如下格式:

1	1	5	9
数符	阶符	阶 码	尾数

- □此时只要将上述答案中的数符位移到最前面即可。
- □ 注意: 机器数末位的0不能省。

第八章 6.45

- □ 6.45(1)将十进制数138.75 转换成32位的IEEE754短浮点数格式,并 用十六进制缩写表示。
 - (2) 将IEEE754短浮点数C1B7 0000H转换成对应的十进制真值。
- □ 解:
- □ (1) 首先把十进制真值转换成符合IEEE754标准要求的二进制规格化 真值形式: (138.75)₁₀ =(10001010.11)₂=1.0001 0101 1×2¹¹¹

然后计算阶码的移码(=偏置常数+阶码真值)

E=+127+7=11111111+111=10000110

写成短浮点数格式

S=0, E=1000 0110, 隐藏位=1.

M=.0001 0101 1000 0000 0000 000 (23位)

则 (138.75)10的短浮点数机器码为:

□ 对应的十六进制缩写为: 430A C000H

第八章 6.45

□ (2) 首先把十六进制缩写展开成二进制机器码形式,并分离出符号 位、阶码和尾数部分

- □ 则 S=1, E=1000 0011, 隐藏位=1. M=. 011 0111 0000 0000 0000 0000 (23位)
- □ 计算出阶码的真值(即移码一偏置常数)1000 0011 -111 1111=100
- □ 写出此数的规格化二进制真值形式: -1. 011 0111×2100
- □ 进一步去掉指数项: -1.0110111×2¹⁰⁰=-10110.111
- □ 转换成十进制真值: (-1011 0.111)2=(-22.875)₁₀

第六章 6.46

- □ 6.46 设浮点数字长为32位, 欲表示±60000间的十进制数, 在保证数的最大精度条件下,除阶符、数符各取一位外,阶码和尾数各取几位?按这样分配,该浮点数溢出的条件是什么?
- □解: 若要保证数的最大精度,应取阶的基=2。 若要表示±6万间的十进制数,由于32768(2¹⁵)< 6万 <65536(2¹⁶),则: 阶码除阶符外还应取5位(向上取2的幂)。

故: 尾数位数=32-1-1-5=25位 按此格式,该浮点数上溢的条件为: 阶码≥32 该浮点数格式如下:

1	5	1	25
阶符	阶 值	数符	尾数

□ 6.47 对于尾数为40位的浮点数(不包括符号位在内) ,若采用不同的机器数表示,试问当尾数左规或右规 时,最多移位次数各为多少?

□解:

□对于尾数为40位的浮点数,若采用原码表示,当尾数左规时,最多移位39次;反码表示时情况同原码;若采用补码表示,当尾数左规时,正数最多移位39次,同原码;负数最多移位40次。当尾数右规时,不论采用何种码制,均只需右移1次。

第二章 6.48

- □ 6.48 按机器补码浮点运算步骤计算[X±Y]_补
 - (1) $X=2^{-0.11}\times 0.101 \ 100$, $Y=2^{-0.10}\times (-0.011 \ 100)$
 - (2) $X = 2^{101} \times (-0.100 \ 101)$, $Y = 2^{100} \times (-0.001 \ 111)$

解:设检测0步骤省略。

(1) 先将X、Y转换成浮点机器数形式:

 $[X]_{\nmid h} = 1$, 101; 0.101 100 $[Y]_{\nmid h} = 1$, 110; 1.100 100

注:为简单起见,源操作数可直接写成浮点格式,不必规格化。

第二章 6.48 (1)

1) 对阶:

[
$$\Delta E$$
]_补=[Ex]_补+[- Ey]_补=11, 101+00, 010=11, 111
[ΔE]_补<0, 应 Ex 向 Ey 对齐,则:
[Ex]_补+1=11, 101+00, 001=11, 110
[ΔE]_补+1=11, 111+00, 001=00, 000=0
至此, Ex = Ey , 对阶毕。
[X]_补=1, 110; 0.010 110

2) 尾数相加减:

$$[Mx]_{\frac{1}{7}} + [My]_{\frac{1}{7}} = 00.010 110$$

$$+ 11.100 100$$

$$11.111 010$$

$$[Mx]_{\frac{1}{7}} + [-My]_{\frac{1}{7}} = 00.010 110$$

$$+ 00.011 100$$

$$00.110 010$$

第二章 6.48 (1)

3) 结果规格化:

- 4) 舍入: 无
- 5) 溢出: 无

则:
$$X+Y=2^{-101}\times$$
 (-0.110 000)
 $X-Y=2^{-010}\times 0.110$ 010

第六章 6.48 (2)

(2)
$$X=2^{101}\times$$
 (-0.100 101), $Y=2^{100}\times$ (-0.001 111)
[$X]_{\frac{1}{2}h}=0$, 101; 1.011 011, [$Y]_{\frac{1}{2}h}=0$, 100; 1.110 001

1) 对阶:

[
$$\Delta E$$
]_补=[Ex]_补+[- Ey]_补=00,101+11,100=00,001
[ΔE]_补>0,应 Ey 向 Ex 对齐,则:
[Ey]_补+1=00,100+00,001=00,101
[ΔE]_补+[-1]_补=00,001+11,111=00,000=0
至此, $Ey=Ex$,对阶毕。
[Y]_补=0,101;1.111 000(1)

2) 尾数运算:

$$[Mx]_{\nmid h} + [My]_{\nmid h} = 11.011 \quad 011$$

$$+ 11.111 \quad 000 \quad (1)$$

$$11.010 \quad 011 \quad (1)$$

$$[\mathbf{Mx}]_{\nmid h} + [-\mathbf{My}]_{\nmid h} = 1 \ 1 \ . \ 0 \ 1 \ 1$$

$$+ 0 \ 0 \ . \ 0 \ 0 \ 1 \ 1 \ 1 \ (1)$$

$$1 \ 1 \ . \ 1 \ 0 \ 0 \ 1 \ 0 \ (1)$$

第六章 6.48 (2)

3) 结果规格化:

4) 舍入:

$$[X+Y]_{\stackrel{}{\uparrow}}=00,101; 11.010 011 (含) [X-Y]_{\stackrel{}{\uparrow}}不变。 [X-Y]_{\stackrel{}{\downarrow}}=00,100; 11.000 101$$

5) 溢出: 无

则:
$$X+Y=2^{101}\times$$
 (-0.101 101)
 $X-Y=2^{100}\times$ (-0.111 011)

第六章 6.49

- □6.49 设浮点数阶码取3位,尾数取6位(均不包括符号位),要求阶码用移码运算,尾数用原码运算,计算X×Y和X÷Y,且结果保留1倍字长。
 - (1) $X=2^{100}\times 0.100 111$, $Y=2^{011}\times (-0.101 011)$
 - (2) $X=2^{101}\times(-0.101\ 101)$, $Y=2^{001}\times(-0.111\ 100)$

解:设检测0步骤省略。

(1) 先将X、Y转换成机器数形式:

[X]_{阶移尾原}=1,100; 0.100 111

[Y]_{阶移尾原}=1,011; 1.101 011

1) 阶码相加减:

 $[Ex]_{8}+[Ey]_{4}=01,100+00,011=01,111 (无溢出)$ $[Ex]_{8}+[-Ey]_{4}=01,100+11,101=01,001 (无溢出)$

第六章 6.49 (1)

2) 尾数相乘除:

○尾数相乘:

```
\begin{split} [Mx]_{\text{$\not$\scalebox{$|$}}} = &0.100\ 111\ , \quad [My]_{\text{$\not$\scalebox{$|$}}} = &1.101\ 011 \\ Mx^* = &0.100\ 111\ , \quad My^* = &0.101\ 011 \\ Mx_0 = &0\ , \quad My_0 = &1\ , \quad Mp_0 = &Mx_0 \oplus My_0 = &0 \oplus 1 = 1 \\ Mx^* \times &My^* = &0.011\ 010\ 001\ 101 \\ [Mx \times &My]_{\text{$\not$\scalebox{$|$}}} = &1.011\ 010\ 001\ 101 \\ [P]_{\text{$\not$\scalebox{$|$}}} = &[X \times Y]_{\text{$\not$\scalebox{$|$}}} = &01,111\ ; \quad 1.011\ 010\ 001\ 101 \end{split}
```

○ 尾数相除:

运算过程如下:

第二章6.49(1)原码一位乘法

部分积	乘数Y*
0.000000	.1 0 1 0 1 $\underline{1}$ — + X^*
+ 0.100 111	
0.100 111	
$\rightarrow 1$ 0.010 011	1 .1 0 1 0 $\underline{1}$ +X*
+ 0.100111	
$0.111 \ 010$	
$\rightarrow 1$ 0.011 101	$0 \ 1 \ .1 \ 0 \ 1 \ 0+0$
$\rightarrow 1 0.001 110$	1 0 1 .1 0 $\underline{1}$ +X*
+ 0.100 111	
0.110 101	
$\rightarrow 1$ 0.011 010	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\rightarrow 1$ 0.001 101	$0 \ 1 \ 1 \ 0 \ 1 \ .1 +X*$
+ 0.100 111	
$0.110\ 100$	
$\rightarrow 1$ 0.011 010	$\begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$

第六章6.49 (1)原码加减多替除法 Science Computer

商		
0.000 000		
试减, +[-My*] _补		
r<0,商0		
0.		
$+\mathbf{M}\mathbf{y}^*$		
r>0,商1		
0.1		
+[-My*] _{ネト}		
+[-My*] _补 r>0,商1		
0.1 1		
+[-My*] _补 r>0,商1		
r>0,商1		
0.11 <mark>1</mark>		
+[-My*] _补 r<0,商0		
r<0,商0		
0.1 11 <mark>0</mark>		
$+\mathbf{M}\mathbf{y}^*$		
r>0,商1		
0.1 1 1 0 1		
+[-M y*] _{ネト}		
1←0.111 010, r<0, 商0		
(恢复余数),+My*_		

第六章6.49 (1)

3) 结果规格化:

4) 舍入:

$$[P]_{\mathscr{P}}=[X\times Y]_{\text{阶移尾原}}=01,110; \quad 1.110\ 100\ 011\ 010 =01,110; \quad 1.110\ 100\ (舍)$$
 $[Q]_{\mathscr{P}}=[X\div Y]_{\text{阶移尾原}}=01,001; \quad 1.111\ 010\ (不变)$

5) 溢出: 无

则

$$X \times Y = 2^{110} \times (-0.110 \ 100)$$

 $X \div Y = 2^{001} \times (-0.111 \ 010)$

第六章 6.49 (2)

(2) $X=2^{101}\times(-0.101\ 101)$, $Y=2^{001}\times(-0.111\ 100)$

[X]_{阶移尾原}=1, 101; 1.101 101

[Y]_{阶移尾原}=1,001;1.111 100

1) 阶码相加减:

$$[Ex]_{8}+[Ey]_{4}=01$$
, $101+00$, $001=01$, 110 (无溢出) $[Ex]_{8}+[-Ey]_{4}=01$, $101+11$, $111=01$, 100 (无溢出)

- 2) 尾数相乘除:
 - ○尾数相乘:

$$[Mx]_{\text{\mathbb{R}}}=1.101\ 101,\ [My]_{\text{\mathbb{R}}}=1.111\ 100$$

$$Mx^*=0.101\ 101,\ My^*=0.111\ 100$$

$$Mx_0=1,\ My_0=1,\ Mp_0=Mx_0\oplus My_0=1\oplus 1=0$$

第六章 6.49 (2) —— 尾数相乘除。

○ 尾数相乘:

$$Mx* \times My* = 0.101 \ 010 \ 001 \ 100$$
 $[Mx \times My]_{\bar{\mathbb{F}}} = 0.101 \ 010 \ 001 \ 100$
 $[P]_{\underline{\mathscr{P}}} = [X \times Y]_{\underline{\mathsf{M}} \mathcal{R} \underline{\mathsf{R}}} = 01,110; \ 0.101 \ 010 \ 001 \ 100$

○ 尾数相除:

$$[-My^*]_{\uparrow h} = 1.000 \ 100$$
 $Mx^* \div My^* = [Mx \div My]_{\cappa} = 0.110 \ 000$
 $r^* = 0.000 \ 000 \times 2^{-6} = 0.000 \ 000 \ 000 \ 000 = 0$
 $[Q]_{\cappa} = [X \div Y]_{\cappa} = 01,100; \ 0.110 \ 000$

○ 运算过程如下:

第六章 6.49 (2) 原码一位乘法 Science Science

部分积	乘数Y*
0.000000	$1 \ 1 \ 1 \ 0 \ \underline{0} - + 0$
$\rightarrow 1$ 0.000 000	$0 \ .1 \ 1 \ 1 \ 0 \longrightarrow +0$
$\rightarrow 1$ 0.000 000	$0 \ 0 \ 1 \ 1 \ 1 \ 1 \ X^*$
+ 0.101101	
0.101101	
$\rightarrow 1$ 0.010110	1 0 0 .1 1 $\underline{1}$ + X^*
+ 0.101101	
1.000 011	
$\rightarrow 1$ 0.100001	1 1 0 0 .1 $\underline{1}$ + X^*
+ 0.101101	
1.001110	
$\rightarrow 1 0.100111$	$0 \ 1 \ 1 \ 0 \ 0 \ .1 +X*$
+ 0.101101	
1.010100	
$\rightarrow 1$ 0.101010	0 0 1 1 0 0

第六章6.49 (2)原码加减变替除法 Science Science

	1			
被除数(余数)	商			
$00.101\ 101$	0.000000			
+ 11.000 100	试减,+[-Mv*]¾			
$\overline{11.110\ 001}$	r<0,商0			
$1 \leftarrow 11.100 010$	0.			
+ 00.111 100	+ M y*			
00.011 110	r>0,商1			
$1 \leftarrow 00.111100$	0.1			
+ 11.000100	+[-My*] _{≵⊾}			
00.000 000	r>0,商1			
$1 \leftarrow 00.000000$	0.1 1			
+ 11.000 100	+[- M y*] _{≵\}			
11.000100	r<0,商0			
$1 \leftarrow 10.001000$	0.110			
+ 00.111 100	+ M y*			
11.000 100	r<0, 商0			
$1 \leftarrow 10.001000$	0.1 10 <mark>0</mark>			
+ 00.111 100	$+\mathbf{M}\mathbf{y}^{*}$			
11.000 100	r<0,商0			
$1 \leftarrow 10.001 000$	0.1 1 0 0 0			
+ 00.111 100	+ M y*			
11.000 100	1←0.110 000, r<0, 商0			
+ 00.111 100	恢复余数,+ M y*			
00.000 000				

第六章 6.49(2)

- 3) 结果规格化: 已是规格化数。
- 4) 舍入:

$$[P]_{\mathscr{P}}=[X\times Y]_{\text{阶移尾原}}=01,110;\ 0.101\ 010\ 001\ 100 = 01,110;\ 0.101\ 010\ (舍)$$
 $[Q]_{\mathscr{P}}=[X\div Y]_{\text{阶移尾原}}=01,100;\ 0.\ 110\ 000\ (不变)$

5) 溢出: 无

则 $X \times Y = 2^{110} \times 0.101 \ 010$ $X \div Y = 2^{100} \times 0.110 \ 000$

注:由于加减爱替除法算法中缺少对部分余数判 "0"的步骤,因此算法运行中的某一步已除尽时,算法不会自动停止,而是继续按既定步数运行完。

第六章 6.50

- □ 6.50 设数的阶码3位,尾数6位,均不含符号位; 阶码用移码表示, 尾数用补码表示; 阶的基为2。用浮点算法计算 X+Y、X-Y、X×Y、X÷Y,结果要求为规格化数。 已知: X=2⁻²×11/16; Y=2³×(-15/16)
- □解:为判溢出方便,阶符和尾符均采用双符号位,先将X、Y转换成浮点规格化格式(如果仅作为练习,原始数据也可直接转换,不要求一定为规格化形式,运算完后再规格化):

 $[X]_{\text{M}8}=00$, 110; 00.101 100 $[Y]_{\text{M}8}=01$, 011; 11.000 100

□为便于讨论,设阶码用E表示,尾数用M表示。

第六章 6.50 浮点加减法

1. 浮点加减法:

(1) 对阶:

求阶差: $[\Delta E]_{8}=[E_{x}]_{8}+[-E_{y}]_{+}=00\ 110+11\ 101=00\ 011$ $[\Delta E]_{8}<0$, $E_{x}<E_{y}$, $\Delta E=-5$, E_{x} 向 E_{y} 对齐。 M_{x} 右移5位。每右移一次, $E_{x}+1$,直到 $E_{x}=E_{y}$ 为止。 对阶后: $[X]_{\text{阶移屠}}=01$,011; 00.000 001 (01100)

(2) 尾数运算:

$$\begin{split} [\mathbf{M}_{+}]_{\dot{\gamma}\dot{\gamma}} = & [\mathbf{M}_{x}]_{\dot{\gamma}\dot{\gamma}} + [\mathbf{M}_{y}]_{\dot{\gamma}\dot{\gamma}} \\ = & 00.000\ 001\ (011)\ + 11.000\ 100 \\ = & 11.000\ 101\ (011) \\ [\mathbf{M}_{-}]_{\dot{\gamma}\dot{\gamma}} = & [\mathbf{M}_{x}]_{\dot{\gamma}\dot{\gamma}} + [-\mathbf{M}_{y}]_{\dot{\gamma}\dot{\gamma}} \\ = & 00.000\ 001\ (011)\ + 00.111\ 100 \\ = & 00.111\ 101\ (011) \end{split}$$

第六章6.50 浮点加减法

(3) 结果规格化:

设尾数的高三位为 $M_sM_0.M_{MSB}.....$,

加法时: $M_0 \oplus M_{MSB} = 1 \oplus 0 = 1$;

减法时: M₀⊕M_{MSB}=0⊕1=1;

则: [M+]₄、[M-]₄已是规格化数,不需再规格化。

(4) 舍入:

采用0舍1入法

[X+Y]_{阶移尾补}=01,011;11.000 101(舍)

[X-Y]_{阶移尾补}=01, 011; 00.111 101 (舍)

(5) 溢出判断:

由于[X+Y]_{阶移尾补}、[X-Y]_{阶移尾补}的阶码均未溢出,故结果无溢出。

则: $X+Y=2^3\times (-59/64)$; $X-Y=2^3\times 61/64$

第六章6.50 浮点乘法

2. 浮点乘法:

(1) 阶码相加:

$$[E_{\times}]_{8}$$
= $[E_{x}]_{8}$ + $[E_{v}]_{4}$ =00 110+ 00 011=01 001—无溢出

(2) 尾数相乘:

采用补码两位乘比较法,有:

机器运算步骤如下:

第二章6.50 浮点乘法

部分积	乘数 Y _{n-1} Y _n Y _{n+1}
0 0 0.0 0 0 0 0	1 1. 0 0 0 1 <u>0 0 0</u> —+0
\rightarrow 2 0 0 0.0 0 0 0 0	0 0 1 1.0 0 0 1 0
+ 0 0 0 . 1 0 1 1 0 0	$+[\mathbf{M}_{\mathbf{x}}]_{ eqh}$
$0\ 0\ 0\ .\ 1\ 0\ 1\ 1\ 0\ 0$	
\rightarrow 2 0 0 0.0 0 1 0 1 1	$0 \ 0 \ 0 \ 0 \ 1 \ 1. \ 0 \ 0 \ 0 -+0$
\rightarrow 2 0 0 0.0 0 0 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
+ 1 1 1. 0 1 0 1 0 0	$+[-\mathbf{M}_{\mathbf{x}}]_{ eq h}$
1 1 1. 0 1 0 1 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	清0

第二章 6.50 浮点除法

(3) 结果规格化:

 $M_0 \oplus M_{MSB} = 1 \oplus 0 = 1$, $[M_{\times}]_{\stackrel{.}{\otimes}}$ 已是规格化数。

- (4) 舍入: 采用0舍1入法 [X×Y]_{阶移尾补}=01,001; 11.010 111(入)
- (5) 判溢出: 由于[X×Y]_{阶移尾补}的阶码未溢出,故结果无溢出。 则: X×Y=2¹×(-41/64)
- 3. 浮点除法:
 - (1) 阶码相减:

 $[E_{\div}]_{8} = [E_{x}]_{8} + [-E_{v}]_{4} = 00\ 110 + 11\ 101 = 00\ 011$ ——无溢出

(2) 尾数相除:

采用补码加减交替除法,由于满足 $X^*<Y^*$ 条件,除法过程无溢出。 $[M_x]_{\dot{\gamma}}=00.101\ 100;\ [M_y]_{\dot{\gamma}}=11.000\ 100;\ [-M_y]_{\dot{\gamma}}=00.111\ 100 \\ [M_{\div}]_{\dot{\gamma}}=1.010\ 001,余数忽略。$

若考虑余数还要进行一次恢复余数操作。机器运算步骤如下:

第二章6.50 浮点除法

被除数[M _x] _补 /余数[M _r] _补	商q
00 .101100	0.00000
+ 11 .000100	X、Y异号,+[M _v] _补
11 .110000	•
$\leftarrow 1 11 100000$	1. —— R、Y同号,商1
+ 00 .111100	$+ [-\mathbf{M}_{\mathbf{v}}]_{ eq h}$
00.011100	· · ·
$\leftarrow 1 00 .111000$	1.0 —— R、Y异号,商0
+ 11 .000100	$+[\mathbf{M_v}]_{ eq h}$
11 .111100	<i>x</i> ···
$\leftarrow 1 11 .111000$	1.01 — R、Y同号,商1
+ 00 .111100	$+[-\mathbf{M}_{\mathbf{y}}]_{ eqh}$
00 .110100	
$\leftarrow 1 01 .101000$	1.0 1 0 R、Y异号,商0
+ 11 .000100	$+[\mathbf{M_v}]_{ eq h}$
00 .101100	·
$\leftarrow 1 01 011000$	1.0 1 0 0 R、Y异号,商0
+ 11 .000100	$+[\mathbf{M}_{\mathbf{y}}]_{ eq h}$
00 .011100	
$\leftarrow 1 0 0 1 1 1 0 0 0$	1.0 1 0 0 0 R、Y异号,商0
+ 11 .000100	$+[\mathbf{M_v}]_{ eq h}$
$11.111100 \leftarrow 1$	1.010001—— 恒置1

第六章6.50 浮点除法

(3) 结果规格化:

 $M_0 \oplus M_{MSB} = 1 \oplus 0 = 1$, $[M_{\div}]_{\dagger}$ 已是规格化数。

(4) 舍入:

由于尾数除法采用了恒置1法舍入,故不用再进行其他舍入操作。 (若采用0舍1入法舍入,可多求几位商作为保护位。) [X÷Y]_{阶移尾补}=00,011;11.010001

(5) 判溢出:

由于 $[X \div Y]_{\text{阶移尾}}$ 的阶码无溢出,故结果无溢出。则: $X \div Y = 2^{-5} \times (-47/64)$

□ 评注: 浮点运算与定点运算的主要区别在运算步骤上,每一步的具体操作方法基本以定点算法为基础;阶码运算与尾数运算分别进行,溢出判断以阶码溢出为标志,尾数溢出可通过规格化操作进行调整。浮点运算时舍入问题比较突出,为尽量减少精度损失,一般设有若干保护位,因此本题在运算过程中保留多余位,直到舍入操作时才对保留位进行处理。注意最后结果按题意要求用浮点真值表示,真值的形式要与原始数据一致。

第二章 6.51

□ 6.51 当采用最高位为奇校验位的ASCII码方案时,写出下列字符的机内码。

G, g, 7, !, &

□解:

□ G的ASCII码=47H; G的ASCII机内码=C7H g的ASCII码=67H; g的ASCII机内码=67H 7的ASCII码=37H; 7的ASCII机内码=37H ! 的ASCII码=21H; ! 的ASCII机内码=A1H

&的ASCII码=26H; &的ASCII机内码=26H

Copyright ©2012 Computer Organization Group. All rights reserved

第六章 6.52

- □ 6.62 设有效信息为110, 试用生成多项式G(X) =11011将 其编成循环冗余校验码。
- □解:编码过程如下:

$$M(X) = 110, n = 3$$

$$n = 3$$

$$G(X) = 11011, k+1=5, k=4$$

$$k+1 = 5$$
,

$$k = 4$$

$$M(X) \cdot X^4 = 110\ 0000$$

$$M(X) \cdot X^4/G(X) = 110\ 0000/11011$$

$$=100+1100/11011$$
,

$$R(X) = 1100$$

$$M(X)\cdot X^4 + R(X) = 110\ 0000 + 1100$$

□注: 此题的G(X)选得不太好, 当最高位和最低位出错时 ,余数相同,均为0001。此时只能检错,无法纠错。

第二章 6.53

- □ 6.53 试比较逻辑移位和算术移位。
- □解:逻辑移位和算术移位的区别: 逻辑移位是对逻辑数或无符号数进行的移位, 其特点是不论左移还是右移,空出位均补0,移位时

不考虑符号位。

算术移位是对带符号数进行的移位操作,其关键规则是移位时符号位保持不变,空出位的补入值与数的正负、移位方向、采用的码制等有关。补码或反码右移时具有符号延伸特性。左移时可能产生溢出错误,右移时可能丢失精度。

- □ 6.54 在整数定点机中,设机器数采用一位符号位,写出±0的原码、补码、反码和移码,得出什么结论?
- □解:不同码制0的机器数形式如下:

真值	原码	补码	反码	移码
+0	0, 000	0, 000	0, 000	1, 000
-0	1, 000	0, 000	1, 111	1, 000

- □结论: 补、移码0的表示唯一,原、反码不唯一。
- □注意:本题不用分析不同编码间的其他特性。

- □ 6.55 求证: 定点小数运算时, [X]_¾+[Y]_¾=[X + Y]_¾ (mod 4)
- □证:根据模4补码定义:

$$[X]_{\nmid h} = \begin{cases} X & 2 > X \ge 0 \\ 4 + X & 0 > X \ge -2 \end{cases}$$
 (mod 4)

- □ 设X、Y为定点小数,X+Y亦为定点小数,分四种情况证明:

(2) $1 > X \ge 0$, $0 > Y \ge -1$, 则 [X]_补+[Y]_补=X+4+Y

$$=4+(X+Y)=\left\{\begin{array}{ll}X+Y=[X+Y]_{\not\nmid \mid},&1>X+Y\geq 0\\\\[1mm] (mod\ 4)\\[1mm] (X+Y]_{\not\nmid \mid}&0>X+Y\geq -1\end{array}\right.$$

- (3) 1 >Y≥0, 0 >X≥-1, 证明方法同(2), 略。
- (4) 0 > X \geq -1, 0 > Y \geq -1, 则

$$[X]_{\nmid \mid} + [Y]_{\nmid \mid} = 4 + X + 4 + Y = 4 + (4 + X + Y) = 4 + X + Y \pmod{4}$$

= $[X + Y]_{\nmid \mid} \pmod{4}$

当-1>X+Y≥-2时, X+Y溢出。

□注:此题需用模4补码定义进行论证。

- □ 6.56 求证: $-[Y]_{3k} = [-Y]_{3k}$ (mod 4)
- □ 证: 利用模4补码加法公式进行证明。
 因为 [X]_补 + [Y]_补 = [X + Y]_补 (mod 4)
 令 X=-Y 代入上式得
 [-Y]_补+ [Y]_补=[-Y + Y]_补= [0]_补 = 0 (mod 4)
 所以 [-Y]_补= -[Y]_补 (mod 4) 证毕。
- □ 评注: [-Y]_补称为[Y]_补的机器负数,利用此关系,可方便地将补码减法转换成加法来做。

第二章 6.57

回证: 当
$$1>Y\geq 0$$
 时, $Y_0=0$, $[Y]_{\stackrel{}{\uparrow}}=[Y]_{\stackrel{}{\mathbb{R}}}=0.Y_1Y_2......Y_n$ $[-Y]_{\stackrel{}{\mathbb{R}}}=1.Y_1Y_2......Y_n$; 则 $[-Y]_{\stackrel{}{\mathring{\uparrow}}}=1./Y_1/Y_2....../Y_n+2^{-n}=/Y_0./Y_1/Y_2...../Y_n+2^{-n}$ 当 $0>Y\geq -1$ 时, $Y_0=1$, $[Y]_{\stackrel{}{\mathring{\uparrow}}}=1.Y_1Y_2......Y_n$ $[Y]_{\stackrel{}{\mathbb{R}}}=1./Y_1/Y_2....../Y_n+2^{-n}$ $[-Y]_{\stackrel{}{\mathbb{R}}}=0./Y_1/Y_2....../Y_n+2^{-n}$ $[-Y]_{\stackrel{}{\mathring{\uparrow}}}=[-Y]_{\stackrel{}{\mathbb{R}}}=0./Y_1/Y_2....../Y_n+2^{-n}$ $=/Y_0./Y_1/Y_2....../Y_n+2^{-n}$

□ 所以:不论Y是正还是负,在整个补码定义域均有 $[-Y]_{i}=/Y_0./Y_1/Y_2...../Y_n+2^{-n}$

- □ 6.58 某16位机的加法器,由低至高位输出序号为F₀~F₁₅,4位一组分组,组内组间均采用先行进位结构,使用的器件为与-非、或-非、与或非、反相器等SSI门电路:
- (1) 按所用的逻辑结构写出第6位进位信号 C_6 的逻辑表达式;
- (2) 画出与 C_6 有关部分的逻辑图,令原始输入为 A_i 、 B_i (i=0 ~15)、 C_0 ;
- (3) 估算产生 C_6 所需的最长时间,设与-非、或-非、反相器等标准门电路的时延为T,与或非门的时延为1.5T。
- □解:该加法器逻辑框图如下所示:

第二章 6.58 (1)

第二章 6.58 (2)

(2) 与C₆有关部分的逻辑图如下:

(3) 产生 C_6 所需的最长路径为: A_i 、 $B_i \rightarrow g_i$ 、 $p_i \rightarrow G_0$ 、 $P_0 \rightarrow C_4 \rightarrow C_6$; 与非(或非) 与或非 与或非 与或非

则产生 C_6 所需的最长时间为: $T_{max} = T + 1.5T \times 3 = 5.5T$