A Big Data Analysis Framework Using Apache Spark & Deep Learning

Lecturer: Mr. CHAN Sophal

Presented by: TOUCH Sopheak

HENG Seyha

OUTLINES

- INTRODUCTION
- RELATED WORK
- PROPOSED APPROACH
- EXPERIMENTATION
- CONCLUSION

INTRODUCTION

- The amount of data is growing at an exponential rate, and organizations need tools to manage and analyze it.
- Big data analytics can lead to faster and more efficient operations.
- There are many different big data tools available, including Hadoop and Apache Spark.
- GPUs can be used for big data processing, but they are not always economically feasible or accessible.
- Apache Spark is a more efficient and robust tool than Hadoop for big data processing.

RELATED WORK

- Apache Spark: Parallel computing RDDs, MLlib, usage of Spark to analyze Twitter dataset.
- Deep learning: Data classification, fuzzy NN model based on MLP backpropagation.
- Cascade learning: Connector between Apache Spark & MLP, case where class are heavily imbalanced and a suitable inference can't be gathered from data. OnionNet is a feature-sharing classifier, where subsequent stages add both new layers as well as new feature channel to the previous ones.

PROPOSED APPROACH

- Big data analysis using Spark: pre-processed data through MLlib to create probability of each data points.
- Cascading: using the knowledge obtained from 1 model to train another model, modified original dataset which give an attribute that closely assemble, strong distinguishing feature in the dataset.
- Deep learning: knowledge obtained from cascading is used to train MLP, which can define the depth of the network according to the complexity of the problem and system computational complexity.

PROPOSED APPROACH (Cont.)

Fig. 1: Schematic Representation of the Proposed Framework

EXPERIMENT

H-1B Visa Application

Task 1: Classification on the basis of "Case-status", which try to predict the status of the Visa.

Task 2: Classification on the basis of the "Prevailing_wage", which try to predict the salary for the set of the threshold.

Task 3: Recommendation on the basis of prevailing wage, which recommed the otimal salary range that applicant should be negotiate.

CONCLUSION

- Novel framework: combine Apache Spark, Deep learning with the Cascading.
- Improved accuracy and efficiency: Enable faster analysis with less computational complexity and higher accuracy.
- Versatility: Applicable to various machine learning tasks.

THANK YOU!!!

