Proofs are Programs Summary

- Write purely functional programs in Coq
 - natural numbers, lists, maps, trees, program syntax
- Verify these programs by proving theorems about them
 - case analysis, induction, inversion, tactics, ...
- Curry-Howard correspondence
 - proofs = typed purely functional programs
- Simple imperative programming language
 - syntax and operational semantics

["Le coq mécanisé" picture by Lilia Anisimova]

Course evaluation starts today

Please participate

- your feedback is very important to us
- help us make this better!

2 evaluation forms

- one standard form from RUB
- one specific form from us
- More details via email/Moodle today

Follow-up course next semester

Lecturers: Cătălin Hrițcu and Rob Blanco

Foundations of Everything

Programming Languages

- Imp and Simply Typed Lambda-Calculus (functional)
- type systems, program equivalence, semantics, metatheory

Verification

- Hoare Logic: verify Imp programs
- Relational Hoare Logic

Security

- Information Flow Control: enforcing <u>noninterference</u>
 - Static enforcement: types, RHL, cryptographic constant time
 - Dynamic enforcement: Secure Multi-Execution, ...

reflect <u>+</u>

Maps.v