Modelación y Simulación Laboratorio 3

1. Objetivo

El objetivo de este laboratorio es complementar el aprendizaje de modelos de estado y sistemas discretos, a través de la realización de actividades prácticas en MATLAB.

2. Modelos de estado

La función ss(A, B, C, D) es usada para obtener el modelo de estado de un sistema, dado las correspondientes matrices A, B, C y D. El modelo obtenido puede ser usado en funciones como step, impulse y lsim.

Un ejemplo de ss esto sería

```
A = [-2 2; 1 -5];
B = [1/2; 0];
C = [1 0; 0 1];
D = [0; 0];
M = ss(A, B, C y D);
step(M)
```

3. Respuestas de un sistema

Anteriormente, ya se ha trabajado con la función step(H), la cual retorna el comportamiento de un sistema representado por H con un escalón como entrada. Sin embargo, MATLAB ofrece dos funciones mas para analizar sistemas, impulse y lsim. impulse, como indica su nombre, retorna el comportamiento del sistema ante un impulso. lsim por el otro lado, retorna el comportamiento del sistema ante una función u(t) para t en un intervalo [a, b].

Un ejemplo de 1sim para un entrada sinusoidal definida entre $[0, 2\pi]$.

```
s = tf('s');
H = 1/(s + 1);
t = linspace(0, 2*pi, n);
u = sin(t);
lsim(H, u, t);
```

n corresponde a un valor entero que indica la cantidad de puntos a obtener del intervalo. Mientras mayor sea n, más precisión se tiene.

4. Continuo a discreto

Dado un modelo continuo, se puede obtener la forma discreta de este a través de la función c2d(M, T_m, d), donde M corresponde al modelo, T_m al tiempo de muestreo, y d corresponde al tipo de discretización usado. Un modelo discreto también puede ser usado en la función step, impulse y lsim.

Un ejemplo de c2d corresponde a

```
A = [-2 2; 1 -5];
B = [1/2; 0];
C = [1 0; 0 1];
D = [0; 0];
M = ss(A, B, C y D);
M_z = c2d(M, 1e-4, 'zoh');
step(M_z);
```

En este laboratorio se hará uso de dos tipos de discretización: zoh (Zero order hold) y foh (First order hold).

5. Informe

El informe debe contener lo siguiente:

5.1. Primera parte

Dado el diagrama de bloques mostrado en la Figura 1, escriba una función llamada bam que reciba los valores a, b, c, d, e y f y retorne las matrices correspondientes del modelo de estados. De la misma forma, escriba una función llamada mab que tenga como entrada la salida de la función anterior y retorne la función de transferencia H del sistema.

En el informe incluya el desarrollo de manera algebraica tanto de la función bam como mab. Grafique el resultado de la función mab y comparelo con step(feedback(H1, H2)) para verificar que lo obtenido este correcto.

Figura 1: Diagrama de bloque

Nota: Incluya un solo gráfico que incluya ambos resultados, incluir leyenda.

5.2. Segunda parte

Dado el sistema mostrado en la Figura 2, y sabiendo que este se rige por la Ecuación 1, obtenga el modelo de estado algebraico del sistema. Grafique el resultado del sistema ante un impulso, un escalón y una función u(t) cuando $A_1=2m^2,\ A_2=4m^2,\ R_{i1}=0.25\frac{s}{m^2},\ R_{i2}=0.0625\frac{s}{m^2},\ R_{s1}=0.1\frac{s}{m^2},\ R_{s2}=0.1\frac{s}{m^2}.$ La definición de u(t) corresponde a

```
t = linspace(0, 12*pi, 5000);

u = 100*sin(t/4);

u(u<0) = 0.;
```

En el informe incluya el desarrollo algebraico, la salida a estudiar, el modelo de estado resultante, los gráficos y un análisis sobre la respuesta ante distintas entradas.

$$F_{i1} = \frac{h_1 - h_2}{R_{i1}}$$

$$F_{i2} = \frac{h_2 - h_1}{R_{i2}}$$

$$F_{s1} = \frac{h_1}{R_{s1}}$$

$$F_{s2} = \frac{h_2}{R_{s2}}$$
(1)

Figura 2: Diagrama de vasos comunicantes

Nota: La nota de la primera parte también aplica para esta.

5.3. Tercera parte

Para el sistema anterior y teniendo en cuenta los mismos valores para los parámetros, obtener el sistema discreto para los tipos de discretización zero order hold y first order hold, y graficar la respuesta del sistema ante una entrada a elección. Para ambos casos, tenga en cuenta un tiempo de muestreo $T_1 = 0.001s$, $T_2 = 0.1s$ y $T_3 = 2s$.

En el informe incluya dos gráficos, uno por cada tipo de discretización que incluya la respuesta del sistema ante los distintos tipos de muestreo, y un análisis de las distintas respuestas donde compare los resultados obtenidos.

5.4. Formato del informe

El informe debe contener:

- 1. Portada
- 2. Introducción
- 3. Marco teórico
- 4. Desarrollo de la Primera Parte.
- 5. Desarrollo de la Segunda Parte.
- 6. Desarrollo de la Tercera Parte
- 7. Conclusión
- 8. Referencias (Formato APA).

El informe debe ser escrito según formato tesis.
El código fuente debe estar correcto y completamente comentado.
Los laboratorios son individuales.
La copia de trabajos será evaluada con nota mínima.
Entrega informe: 15 de junio de 2022 (23:55).
¡Éxito!