IN THE CLAIMS:

Please amend the claims as follows, substituting any amended claim(s) for the corresponding pending claim(s):

l	17. (withdrawn) A method of fabricating a portion of a semiconductor device comprising:
2	forming a gate structure on a substrate by:
3	depositing an insulating oxide layer on the substrate;
4	depositing a nitride layer on the oxide layer; and
5	depositing a polysilicon layer on the nitride layer; and
5	reoxidizing the gate structure to form a layer of oxide over the gate structure.
l	18. (withdrawn) The method of claim 17, wherein the depositing step includes depositing the nitride
2	layer on the insulating oxide layer to a thickness from about 10 Å to about 50 Å.
1	19. (withdrawn) The method of claim 17, wherein the reoxidizing step includes reoxidizing the gate
2	structure to form an oxide layer from about 25 Å to about 500 Å thick.

ATTORNEY DOCKET NO. 92-C-074D3 (STMI01-00024) U.S. SERIAL NO. 09/858,397 PATENT

1	20. (withdrawn) The method of claim 1/, further comprising:
2	patterning the gate structure by selectively etching away portions of the insulating oxide,
3	nitride and polysilicon layers to expose a portion of the substrate and form a peripheral edge around
4	the gate structure; and
5	exposing the substrate to an oxidizing ambient during reoxidation to oxidize the exposed
6	portion of the substrate.
1	21. (withdrawn) The method of claim 20, wherein the reoxidation causes an uplift in a peripheral
2	portion of the nitride layer.
1	22. (withdrawn) The method of claim 20, wherein the reoxidation causes an indentation in the
2	substrate near the peripheral edge of the gate structure.
1	23. (withdrawn) The method of claim 17, further comprising:
2	prior to the reoxidizing step, forming source and drain regions in the substrate.

ATTORNEY DOCKET No. 92-C-074D3 (STMI01-00024) U.S. SERIAL No. 09/858,397 PATENT

1	25. (withdrawn) A method for fabricating a portion of a semiconductor device, comprising:
2	forming an oxide gate layer on a surface of a substrate;
3	forming a nitride layer on the oxide gate layer by depositing the nitride layer on the oxide
4	gate layer;
5	forming a polysilicon layer on the nitride layer;
6	patterning the polysilicon and nitride layers to form a gate structure; and
7	reoxidizing the gate structure to form a layer of oxide over the gate structure and on sidewalls
8	of the gate structure.
1	46. (unchanged) An integrated circuit device comprising:
2	a substrate;
3	a gate structure, wherein the gate structure includes:
4	a gate oxide layer on the substrate,
5	a nitride layer on the gate oxide layer, and
6	a polysilicon layer over the nitride layer;
7	a channel region under the gate structure; and
8	source/drain regions in the substrate adjacent the channel region.

ATTORNEY DOCKET NO. 92-C-074D3 (STMI01-00024) U.S. SERIAL NO. 09/858,397 PATENT

1	47. (unchanged) The integrated circuit device of claim 46, wherein the nitride layer is from about
2	10 Å to about 50 Å thick.
1	48. (unchanged) The integrated circuit device of claim 46, wherein the nitride layer is deposited over
2	said gate oxide layer.
1	49. (unchanged) The integrated circuit device of claim 46, wherein the nitride layer is formed by
2	nitrogen implantation to form an implanted area and by annealing of the implanted area.
1	50. (unchanged) The integrated circuit device of claim 46, wherein the gate structure has a
2	peripheral edge and further including an uplift in portions of the nitride layer proximate the
3	peripheral edge of the gate structure, the uplift caused by reoxidation of the gate structure, wherein
4	asperities are absent from the polysilicon layer.
1	51. (unchanged) The integrated circuit device of claim 46, wherein the substrate has a surface and
2	further including an indentation in the surface of the substrate located proximate to the peripheral
3	edge of the gate structure, the indentation resulting from reoxidation of the gate structure.

ATTORNEY DOCKET NO. 92-C-074D3 (STMI01-00024) U.S. SERIAL NO. 09/858,397 PATENT

- 52. (unchanged) The integrated circuit device of claim 46 further wherein the gate structure includes 1 2 sidewall spacers located on each edge of the gate structure and lightly doped drain regions in the 3 substrate below the sidewalls spacers. 53. (unchanged) The integrated circuit device of claim 46, wherein the substrate is a p-type substrate 1 and wherein the source/drain regions are formed by implanting n-type impurities in the p-type 2 3 substrate. 54. (amended) The integrated circuit device of claim 51, wherein the source/drain regions are 1 implanted prior to reoxidation. 2 55. (amended) The integrated circuit device of claim 53, wherein the source/drain regions are
- 1 56. (unchanged) The integrated circuit device of claim 46, wherein the channel region has a length
- 2 not greater than 0.8 μm .

implanted after reoxidation.

2

ATTORNEY DOCKET No. 92-C-074D3 (STMI01-00024) U.S. SERIAL No. 09/858,397 PATENT

- 1 57. (unchanged) The integrated circuit device of claim 46, wherein the gate oxide layer is not greater
- than 200 Å thick.
- 1 58. (withdrawn) The method of claim 23, wherein a channel region beneath the gate structure
- between the source/drain regions has a length not greater than 0.8 μm.
- 1 59. (withdrawn) The method of claim 25, further comprising:
- forming the oxide gate layer to a thickness not greater than 200 Å.