

Relatório Trabalho Prático

Arquitectura de Redes Avançada 2018-2019 1°S

Professores:	Rui Aguiar,	<u>rui</u>	laa@	<u> Dua</u>	<u>1.pt</u>	t
--------------	-------------	------------	------	-------------	-------------	---

Daniel Corujo, dcorujo@ua.pt

Alunos: André Cardoso, 65069 <u>marquescadroso@ua.pt</u>

Jorge faustino, 64441 jorgebalseiro@ua.pt

02-01-2019

Relatório Trab	palho Prático	0
Arquitectura	a de Redes Avançada 2018-2019 1°S	0
Contexto		1
	Router Porto	2
	Router Madrid	2
	Router Lisboa1	2
	Router Lisboa2	2
	Router Aveiro	3
	Router EmpA1 e EmpB1	3
	Router Oeiras	3
Configu	ırações BGP e OSPF	4
	BGP	4
	OSPF	5
	Trafego Internet	6
	AS20000 Networks Preferences	7
	SIP Proxy	8
MPLS		9
Conditional	I DNS (CDN)	11
IPv4 & IPv6	6	12

Contexto

Este relatório tem como objectivo evidenciar o contexto, tecnologias, processos e técnicas usados ou que se pretende usar no desenvolvimento do trabalho prático proposto na unidade curricular Arquitectura de Redes Avançada no programa GNS3.

A seguinte imagem representa uma visão geral da arquitectura do projecto implementada no simulador GNS3.

Figura 1 - Visão geral da arquitetura das redes.

Note que os routers PC-A, PC-B, DataCenterLisboa e DataCenterAveiro ligados à rede simulam computadores para exploração das funcionalidades do CDN explicadas na seção dedicada presente neste relatório, isto porque os VPCs são limitados nesse aspecto.

Segue-se abaixo o mapeamento dos endereços (IP) e das portas (Eth) dos routers e o nome do router de origem e destino.

Router Porto

Network ID		Source		D	estination	
Network ID	Name	IP	Eth	Name	IP	Eth
192.168.1.1 /32	Porto	192.168.1.1	loopback0	-	-	-
4.4.4.0 /30	Porto	4.4.4.1	0/0	Madrid	4.4.4.2	0/0
10.0.0.0 /16	Porto	10.0.0.1	1/0	EthernetCore	-	-

Tabela 1. - Descrição ligações do router Porto.

Router Madrid

Network ID		Source		L	Destination	IP Eth 4.4.4.1. 0/0 4.4.4.9 0/0 4.4.4.14 0/0	
Network ID	Name	IP	Eth	Name	IP	Eth	
4.4.4.0 /30	Madrid	4.4.4.2	0/0	Porto	4.4.4.1.	0/0	
4.4.4.8 /30	Madrid	4.4.4.10	0/1	Lisboa1	4.4.4.9	0/0	
4.4.4.12 /30	Madrid	4.4.4.13	2/1	Lisboa2	4.4.4.14	0/0	
	Madrid		2/0	Ir	ternetCore		
190.100.1.0 /24	Madrid	190.100.1.1	1/0	netM2			
190.200.1.0 /24	Madrid	190.200.1.1	1/1	netM1			

Tabela 2. - Descrição ligações do router Madrid.

Router Lisboa1

Network ID		Source		Г	Destination	
Network ID	Name	IP	Eth	Name	IP	Eth
4.4.4.8 /30	Lisboa1	4.4.4.9	0/1	Madrid	4.4.4.10	0/1
4.4.4.4 /30	Lisboa1	4.4.4.6	0/0	Lisboa2	4.4.4.5	0/0
2.2.2.0 /24	Lisboa1	2.2.2.2	2/0	InternetCore		
65.0.1.0 /24	Lisboa1	65.0.1.1	1/0	netL1		

Tabela 3. - Descrição ligações do router Lisboa1.

Router Lisboa2

Network ID		Source		D	Destination	
Network ID	Name	IP	Eth	Name	IP	Eth
192.168.1.2 /32	Lisboa2	192.168.1.2	loopback0		-	
4.4.4.12 /30	Lisboa2	4.4.4.14	1/1	Madrid	4.4.4.13	2/1
4.4.4.4 /30	Lisboa2	4.4.4.5	0/1	Lisboa1	4.4.4.6	0/0
10.0.10.0 /24	Lisboa2	10.0.10.3	0/1	EthernetCore	-	-

10.4.0.0 /16	Lisboa2	10.4.40.1	1/0	Oeiras	10.4.40.2	0/0
10.5.0.0 /16	Lisboa2	10.5.20.3	2/0	Data	Center.Lisboa	ì

Tabela 4. - Descrição ligações do router Lisboa2.

Router Aveiro

Notwork ID	Network ID			Desti	nation	
Network ID	Name	IP	Eth	Name	IP	Eth
192.168.1.0 /24	Aveiro	192.168.1.3	loopback0	-		
10.0.0.0 /16	Aveiro	10.0.10.2	0/0	Ethern	etCore	
10.1.0.0 /16	Aveiro	10.1.30.1	0/1	EmpA1	10.1.30.2	0/0
10.2.0.0 /16	Aveiro	10.2.30.1	1/0	EmpB1	10.2.30.2	0/0
10.3.0.0 /16	Aveiro	10.3.30.1	1/1	Data Cente rAveiro		

Tabela 5. - Descrição ligações do router Aveiro.

Router EmpA1 e EmpB1

Network ID		Source			Destination	
Network ID	Name	IP	Eth	Name	IP	Eth
10.1.0.0 /16	EmpA1	10.1.30.2	0/0	Aveiro	10.1.30.1	0/1
110.1.1.0 /25	EmpA1	110.1.1.1	0/1		netA1	
10.2.0.0 /16	EmpB1	10.2.30.2	0/0	Aveiro	10.2.30.1	1/0
111.1.1.0 /25	EmpB1	111.1.1.1	0/1		netB1	

Tabela 6. - Descrição ligações dos routers EmpA1 e EmpB1.

Router EmpA2 e EmpB2

Network ID		Source		L	Destination	
Network ID	Name	IP	Eth	Name	IP	Eth
10.1.0.0 /16	EmpA2	10.0.40.2	0/0	Oeiras	10.0.40.1	0/1
110.1.1.128 /25	EmpA2	110.1.1.130	0/1		netA1	
10.2.0.0 /16	EmpB2	10.0.40.3	0/0	Oeiras	10.0.40.1	0/1
111.1.1.128 /25	EmpB2	111.1.1.130	0/1		netB1	

Tabela 7. - Descrição ligações dos routers EmpA1 e EmpB1.

Router Oeiras

Network ID		Source		Desi	tination	
Network ID	Name	IP	Eth	Name	IP	Eth
192.168.1.4 /32	Oeiras	192.168.1.4	loopback0		-	
10.4.0.0 /16	Oeiras	10.4.40.2	0/0	Lisboa2	10.4.40.1	1/0

10.0.0.0 /16	Oeiras	10.0.40.1	0/1	netD1
--------------	--------	-----------	-----	-------

Tabela 8. - Descrição ligações do router Oeiras.

Configurações BGP e OSPF

BGP

Routers Madrid, Porto, Lisboa1 e Lisboa2 contêm configurações do protocolo External BGP com a seguinte distribuição de IP's.

Network ID	Source			Destination		
	Name	IP	Eth	Name	IP	Eth
4.4.4.0 /30	Madrid	4.4.4.2	0/0	Porto	4.4.4.1	0/0
4.4.4.4 /30	Madrid	4.4.4.5	1/0	Lisboa2	4.4.4.6	0/0
4.4.4.12 /30	Madrid	4.4.4.13	0/1	Lisboa1	4.4.4.14	0/0
4.4.4.8 /30	Lisboa1	4.4.4.10	0/1	Lisboa2	4.4.4.9	0/1

Tabela 9 - Distribuição de External BGP.

- > External BGP configurado nos routers Madrid, Porto, Lisboa1 e Lisboa2.
- > Internal BGP configurado nos routers Porto, Lisboa2, Aveiro e Oeiras.
- ➤ Nas configurações é possível ver "update-source Loopback0" que é o que permite estabelecer as ligações TCP das relação peer do BGP, sendo que a interface de Loopback0 nunca vai abaixo é melhor ser definida sobre ela.
- ➤ Para além disso também se usou "next-hop-self" quando se tinha uma relação de iBGP na fronteira do AS, porque era necessário mudar o atributo *nexthop* que o router de Lisboa2 e Porto recebiam das relações eBGP (de Madrid e Lisboa1) para eles próprios, se não a rede de iBGP não conhecia o next-hop anunciado e ia falhar a comunicação.
- > Routers fronteira não é redistribuído rotas OSPF para fora do AS.

Figura 2, apresenta o resultado do comando <u>show bgp ipv4 unicast</u> no router Lisboa1, Porto e Aveiro.

```
Network
                    Next Hop
                                         Metric LocPrf Weight Path
                                                             0 1000 20000 i
  190.100.1.0/24
                    4.4.4.5
                    4.4.4.10
                                               0
                                                             0 20000 i
  190.200.1.0/24
                    4.4.4.5
                                                             0 1000 20000
                    4.4.4.10
                                               0
                                                             0 20000 i
isboa1#
                                         Metric LocPrf Weight Path
  Network
                    Next Hop
*> 190.100.1.0/24
                    4.4.4.2
                                              0
                                                             0 20000 i
*> 190.200.1.0/24
                    4.4.4.2
                                               0
                                                             0 20000 i
Porto#
  Network
                    Next Hop
                                         Metric LocPrf Weight Path
                                                              0 20000 i
 i190.100.1.0/24
                    192.168.1.2
                                               0
                                                    100
 i190.200.1.0/24
                                                              0 20000 i
                    192.168.1.2
                                               0
                                                    100
 veiro#
```

Figura 2 - External e Internal BGP.

Intra-area Route List

Como podemos verificar em Lisboa1 e Porto temos as redes de External BGP e em Aveiro Internal BGP.

OSPF

Figura 3, apresenta a configuração darede OSPF dentro do ISP PT2 - AS1000, usado o comando *show ip ospf route* nos routers do Porto e Aveiro.

```
10.0.0.0/16, Intra, cost 1, area 0, Connected
     via 10.0.10.1, FastEthernet0/1
   192.168.1.1/32, Intra, cost 1, area 0, Connected
     via 192.168.1.1, Loopback0
Porto#
   Intra-area Route List
   10.2.0.0/16, Intra, cost 1, area 0, Connected
     via 10.2.30.1, FastEthernet1/0
   10.1.0.0/16, Intra, cost 1, area 0, Connected
     via 10.1.30.1, FastEthernet0/1
   10.0.10.0/24, Intra, cost 1, area 0, Connected
     via 10.0.10.2, FastEthernet0/0
   10.4.0.0/16, Intra, cost 2, area 0
     via 10.0.10.3, FastEthernet0/0
   10.0.0.0/16, Intra, cost 3, area 0
     via 10.0.10.3, FastEthernet0/0
   10.3.0.0/16, Intra, cost 1, area 0, Connected
     via 10.3.30.1, FastEthernet1/1
   10.5.0.0/16, Intra, cost 2, area 0
     via 10.0.10.3, FastEthernet0/0
   110.1.1.0/24, Intra, cost 2, area 0
     via 10.1.30.2, FastEthernet0/1
   111.1.1.0/24, Intra, cost 2, area 0
     via 10.2.30.2, FastEthernet1/0
   192.168.1.2/32, Intra, cost 2, area 0
     via 10.0.10.3, FastEthernet0/0
   192.168.1.3/32, Intra, cost 1, area 0, Connected
     via 192.168.1.3, Loopback0
```

Figura 3 - Configuração OSPF.

i 192.168.1.4 [2] via 10.0.10.3, FastEthernet0/0, ASBR, Area 0, SPF 2

192.168.1.4/32, Intra, cost 3, area 0 via 10.0.10.3, FastEthernet0/0

Intra-area Router Path List

Aveiro#

Trafego Internet

Se a rota pertence à internet incrementa-se a preferência local. No trecho de código seguinte podemos ver que se o IP da internet se verificar, coloca uma preferência local acima da default, caso não seja, anuncia a rota como veio.

```
access-list 5 permit 2.2.2.0 0.0.0.255
route-map INTERNET_LP permit 10
match ip address 5
set local-preference 200
route-map INTERNET_LP permit 20

ipv6 prefix-list internet6 seq 16 permit 2001:2:2::/64
route-map INTERNET_LP6 permit 10
match ipv6 address prefix-list internet6
set local-preference 200
route-map INTERNET_LP6 permit 20
```

Figura 4 - Configuração de preferências em Lisboa2.

Pretende dar mais preferência à ligação entre Lisboa1 e Lisboa2 quando o trafego vai para a internet, aplica-se o route-map a todas as rotas anunciadas por Lisboa1 a Lisboa2, sendo que se alguma dessas rotas anunciadas por Lisboa1 pertencer a internet, a preferência local será aumentada.

AS20000 Networks Preferences

Definiu-se as seguintes *route-map*, tendo em conta que ambos querem aumentar a preferência na netA1, netB1 em Aveiro e netA2, netB2 em Oeiras. A diferença é onde é aplicada a route-map e a gama de ips definida. A Figura 4 apresenta a as configurações feitas em Aveiro. Configurações semelhantes foram feitas em Oeiras.

```
! NetA1 & NetB1 ipv4
access-list 10 permit 110.1.1.0 0.0.0.128
access-list 10 permit 111.1.1.0 0.0.0.128
route-map LNET_LP permit 25
match ip address 10
set local-preference 210
route-map LNET_LP permit 30

! NetA1 & NetB1 ipv6
ipv6 prefix-list lnet6 seq 20 permit 3001:110:100::/48
ipv6 prefix-list lnet6 seq 22 permit 3001:111:100::/48
route-map LNET_LP6 permit 25
match ip address prefix-list lnet6
set local-preference 210
route-map LNET_LP6 permit 30
```

Figura 5 - Route-map para netA1 e netB1.

Aplicou-se a rota ao neighbor respectivo. Se Aveiro receber rota anunciada pelo Porto que cumpa o route-map, aumenta-lhe a perferência. O mesmo acontece se Lisboa2 se receber uma rota anunciada por Oeiras que cumpra o route-map.

SIP Proxy

Para fazer com que a ligação Lisboa1 para Lisboa2 fosse o único peering possível do ISP PT2 para a NetL1, uma estratégia possível, era negar todas as saídas que anunciam NetL. Sendo a rota definida da seguinte maneira no router do Porto:

```
! cancelar netL1 vim de Madrid
access-list 6 permit 65.0.1.0 0.0.0.255
route-map SIP_ROUTE deny 11
   match ip address 6
route-map SIP_ROUTE permit 21

ipv6 prefix-list sip_route seq 16 permit 4301:65:0:/48
route-map SIP_ROUTE6 deny 11
   match ipv6 address prefix-list sip_route
route-map SIP_ROUTE6 permit 21
```

Figura 6 -

Para cancelar rota para netL1 recebida no Porto e Lisboa2 por Madrid, respectivamente, os comandos da Figura 5 no respectivos routers.

MPLS

De forma a que o cliente B tenha dois canais 30 Mbps entre os seus dois *branches* como foi requisitado foi implementado uma interface Tunnel1 em Aveiro e Lisboa2 assim como a interface Tunnel2 em Lisboa2 e Oeiras com uma bandwidth de 30720 Kbps (30 Mbps). Como mostra a Figura 7.

```
interface Tunnel1
    ip unnumbered Loopback0
    tunnel mode mpls traffic-eng
    tunnel destination 192.168.1.3
    tunnel mpls traffic-eng bandwidth 30720
    tunnel mpls traffic-eng path-option 1 dynamic

interface Tunnel2
    ip unnumbered Loopback0
    tunnel mode mpls traffic-eng
    tunnel destination 192.168.1.4
    tunnel mpls traffic-eng bandwidth 30720
    tunnel mpls traffic-eng path-option 1 dynamic
```

Figura 7 - Configuração dos túneis de Lisboa2.

Uma vez que o túnel é bidirecional, as interfaces que albergam os túneis foi dado o dobro dessa capacidade mais uma tolerância de 10 Mbps, perfazendo um total de 71680 Kbps (70 Mbps). Como mostra a Figura 8.

```
! EthernetCore conncetion
interface FastEthernet0/1

ip address 10.0.10.3 255.255.255.0

ip ospf 1 area 0

ip policy route-map TUNNEL1

mpls traffic-eng tunnels

ip rsvp bandwidth 71680

no shutdown

! Oeiras conncetion
interface FastEthernet1/0

ip address 10.4.40.1 255.255.0.0

ip ospf 1 area 0

ip policy route-map TUNNEL2

mpls traffic-eng tunnels

ip rsvp bandwidth 71680

no shutdown
```

Figura 8 - Configuração dos túneis de Lisboa2.

MPLS - VPN

De maneira a implementar uma VPN entre os *branches* de Aveiro e Oeiras da empresa A criou-se uma VRF (Routing and Forwarding), que irá criar um encaminhamento específico para a rede da empresa A.

```
! MPLS-VPN
ip vrf VPN-ClientA
rd 1000:1
route-target export 1000:1
route-target import 1000:1
```

Figura 9 - Configuração VRF.

Depois da definição do VRF é necessário associar às interfaces dos routers de Aveiro e Oeiras, que se designam por Provider Edges (PE). Também é necessário indicar quais são os pacotes que pertencem à VPN. Para isso executam-se os seguintes comandos.

```
router bgp 1000

address-family vpnv4

neighbor 192.172.100.4 activate
neighbor 192.172.100.4 send-community both
exit-address-family
address-family ipv4 vrf VPN-ClientA
redistribute connected
exit-address-family
```

Figura 10 - Configuração VRF.

Após efectuar a configuração, reparou-se que apenas se tinha ligação entre a rede directamente ligada a Aveiro e a rede directamente ligada a Oeiras, com a VPN a funcionar. Isto deve-se a VRF estar completamente vazia apenas com as directamente ligadas.

Para resolver este problema e ter conectividade não só com a rede directamente ligada a Aveiro mas também com a rede da Empresa A1 e da Empresa A2 foi activar um processo OSPF na VRF, com o seguinte comando.

```
router ospf 200 vrf VPN-ClientA

mpls traffic-eng router-id Loopback0

mpls traffic-eng area 0

network 10.1.0.0 0.0.255.255 area 0
```

Figura 11 - Configuração VRF.

Por fim para se obter conectividade externa é preciso indicar à rede VPN como sair, para isso usa-se uma rota estática definida na VRF indicando o interface de saída. Essa rota estática será redistribuída pelo OSPF da VRF.

```
ip route vrf VPN-ClientA 0.0.0.0 0.0.0.0 192.168.1.2 global
```

Figura 12 - Configuração rota estática de saída da VPN.

Conditional DNS (CDN)

Para fazer o reencaminhamento para o data center mais perto utilizou-se o serviço bind9.

No ficheiro **GeoIP.acI** introduziram-se os IP das empresas de aveiro.

```
acl AUR {
    10.1.0.0/16;
    110.1.1.0/25;
    111.1.1.0/25;
    10.2.0.0/16;
    10.3.0.0/16;
};
```

Figura 13 - Conteúdo do ficheiro GeoIP.acl

No ficheiro **aracdn.com-aveiro.db** introduziu-se o IP do servidor que fornece o serviço CDN (10.5.100.100) e o IP do *data center* de Aveiro (10.3.30.10)

```
STTL 604800
$ORIGIN aracdn.com.
       IN
                SOA
                        nsl.aracdn.com. adm.arxcdn.com. (
                                 2
                                          : Serial
                           604800
                                          ; Refresh
                             86400
                                           Retru
                          2419200
                                           Expire
                            604800 )
                                          : Negative Cache TTL
       IN
                NS
                         nsl.aracdn.com.
                        10.5.100.100
       IN
                Ĥ
                        10.3.30.10
nsl
       IN
```

Figura 14 - Conteúdo do ficheiro aracdn.com-aveiro.db

No ficheiro **aracdn.com-other.db** introduziu-se o IP do servidor que fornece o serviço CDN (10.5.100.100) e o IP do *data center* de Lisboa (10.5.20.10)


```
STTL 604800
$ORIGIN aracdn.com.
       IN
                SOA
                        nsl.aracdn.com. adm.arxcdn.com. (
                                          : Serial
                                 2
                            604800
                                          : Refresh
                             86400
                                          : Retry
                           2419200
                                          : Expire
                                          : Negative Cache TTL
                            604800 )
       IΝ
                NS
                         nsl.aracdn.com.
       IN
                        10.5.100.100
                A
nsl
       IN
                A
                        10.5.20.10
```

Figura 15 - Conteúdo do ficheiro aracdn.com-other.db

E por fim no ficheiro **named.conf.local** faz-se a ligação entre os ficheiros anteriores, fazendo com que os IP que foram colocados no **GeoIP.acl** sejam encaminhados para o IP colocado no ficheiro **aracdn.com-aveiro.db**, e todos os restantes para o IP colocado em **aracdn.com-other.db**

```
view "aveiro" {
  match-clients { AVR; };
  recursion no;
  zone "aracdn.com" {
    type master;
    file "/etc/bind/aracdn.com-aveiro.db";
  };
};

view "other" {
  match-clients { any; };
  recursion no;
  zone "aracdn.com" {
    type master;
    file "/etc/bind/aracdn.com-other.db";
  };
};
```

Figura 16 - Conteúdo do ficheiro named.conf.local

IPv4 & IPv6

Associado a este relatório existem scripts de configuração para IPv4 e IPv6 separados de cada router representado na Figura 1.