Zadanie 1. Portfel ryzyk składa się z dwóch niezależnych subportfeli. W każdym z nich ryzyka są niezależne. Pojedyncze ryzyko może wygenerować co najwyżej jedną szkodę, a rozkład wartości szkody (warunkowy, o ile do niej dojdzie) dany jest odpowiednią dystrybuantą. Niech S_i oznacza łączną wartość wypłat w i-tym subportfelu, zaś \widetilde{S}_i aproksymację zmiennej S_i powstałą przez zastąpienie rozkładu dwumianowego takim rozkładem Poissona, że $E(\widetilde{S}_i) = E(S_i)$ - przy pozostawieniu bez zmian rozkładu wartości szkody. Jeśli parametry subportfeli wynoszą:

Nr subportfela	ilość ryzyk	p-stwo zajścia	oczekiwana	2-gi moment
		szkody	wart. szkody	zwykły rozkł.
				wart. szkody
i	n(i)	q(i)	p1(i)	p2(i)
1	2500	0.005	4	20
2	400	0.02	5	30

to $VAR(\tilde{S}_1 + \tilde{S}_2) - VAR(S_1 + S_2)$ wynosi:

- (A) 2.2
- (B) 5.0
- (C) 7.8
- (D) 10.6
- (E) 13.4

Wskazówka: być może nie wszystkie informacje zawarte w tabeli są niezbędne do udzielenia odpowiedzi.

Zadanie 2. Portfel ryzyk składa się z dwóch subportfeli dokładnie takich, jak w treści zadania nr 1. Teraz jednak aproksymujemy zmienną $(S_1 + S_2)$ za pomocą zmiennej \overline{S} o rozkładzie złożonym dwumianowym i parametrach:

$$n=n_1+n_2,$$

$$q = \frac{n_1 q_1 + n_2 q_2}{n} \,,$$

oraz o dystrybuancie rozkładu pojedynczej szkody określonej dla wszystkich liczb rzeczywistych *x* wzorem:

$$F(x) = \frac{n_1 q_1 F_1(x) + n_2 q_2 F_2(x)}{n_1 q_1 + n_2 q_2},$$

gdzie $F_1(\cdot)$ oraz $F_2(\cdot)$ to odpowiednie dystrybuanty w subportfelach.

 $VAR(\overline{S}) - VAR(S_1 + S_2)$ wynosi (w zaokrągleniu):

- (A) -2.2
- (B) 0.0
- (C) 2.2
- (D) 5.0
- (E) 7.2

Wskazówka: w wyborze prawidłowej odpowiedzi może Ci pomóc porównanie z wynikiem rozwiązania zadania nr. 1.

Zadanie 3. Dla pewnego ryzyka składka netto za nadwyżkę łącznej szkody X ponad d jest dla wszystkich d należących do zbioru $[0,3] \cup [6,10]$ dana wzorem:

$$E[(X-d)_{+}] = \frac{(10-d)^{2}}{20}.$$

Zbiór możliwych wartości dla $E[(X-4)_+]$ wynosi:

- (A) [1.75; 1.90]
- (B) [1.60; 1.90]
- (C) [1.60; 1.75]
- (D) [1.65; 1.85]
- (E) [1.75; 1.85]

Zadanie 4. W modelu nadwyżki ubezpieczyciela z czasem dyskretnym nadwyżka początkowa wynosi 1.5, składka roczna wynosi 1, a łączna wartość szkód w każdym roku z prawdopodobieństwem sześć dziesiątych wynosi 0 i z prawdopodobieństwem cztery dziesiąte wynosi 2 (niezależnie od łącznej wartości szkód w innych latach). Prawdopodobieństwo ruiny wynosi:

- $(A) \qquad \frac{1}{3}$
- (B) $\frac{2}{3\sqrt{3}}$
- (C) $\frac{4}{9}$
- $(D) \qquad \frac{2\sqrt{2}}{3\sqrt{3}}$
- (E) $\frac{5}{9}$

Wskazówka: zauważ, iż w tym przypadku łatwo można obliczyć wartość wyrażenia: $E\left(\exp\left(-RU_{\widetilde{T}}\right)/\widetilde{T}<\infty\right)$, gdzie \widetilde{T} jest okresem, na koniec którego doszło do ruiny.

Zadanie 5. W pewnym jednorodnym portfelu ryzyk ilość szkód ma rozkład Poissona z wartością oczekiwaną 5, a wartość szkody *Y* ma rozkład Gamma (2, 10), tzn. dany jest on gestością:

$$f_{Y}(y) = \begin{cases} 100 \cdot y \cdot \exp(-10y) & dla & y > 0 \\ 0 & dla & y \le 0 \end{cases}$$

Łączną wartość szkód z tego portfela aproksymujemy za pomocą zmiennej o rozkładzie przesuniętym $Gamma(x_0, \alpha, \beta)$ - a więc takiej, która po odjęciu stałej x_0 ma rozkład $Gamma(\alpha, \beta)$ - zachowując przy tym wartość pierwszych trzech momentów. Parametry (x_0, α, β) wynoszą:

(A)
$$\left(1 - \frac{1}{\sqrt{3}}; \frac{10}{9}; \frac{10}{3\sqrt{3}}\right)$$

(B)
$$\left(0; \frac{10}{3}; \frac{10}{3}\right)$$

(C)
$$(-0.2; 4.8; 4)$$

(D)
$$(-0.5; 7.5; 5)$$

(E)
$$\left(1-\sqrt{3}; 10; \frac{10}{\sqrt{3}}\right)$$

Zadanie 6. Wartość szkody Y ma rozkład wykładniczy o wartości oczekiwanej β^{-1} .

Aproksymujemy zmienną Y za pomocą zmiennej \widetilde{Y} o rozkładzie określonym na zbiorze liczb naturalnych z zerem, o własnościach:

$$\Pr(\widetilde{Y} = k + 1) = \Pr(\widetilde{Y} = k) \cdot \exp(-\beta)$$
 dla $k = 1, 2, 3, ..., \text{ oraz:}$

$$E(\widetilde{Y}) = E(Y)$$
.

Wtedy $Pr(\tilde{Y} = 0)$ wynosi:

(A)
$$1 - e^{-\beta}$$

(B)
$$\frac{1 - e^{-\beta}}{\beta}$$

$$(C) \qquad 1 - \frac{1 - e^{-\beta}}{\beta}$$

(D)
$$\frac{e^{-\beta} - e^{-2\beta}}{\beta}$$

(E)
$$1 - \frac{e^{-\beta} - e^{-2\beta}}{\beta}$$

Zadanie 7. Pewne ryzyko generuje szkody w ilości danej rozkładem Poissona z wartością oczekiwaną $1.6 \cdot t$ za okres o długości t lat. Jeśli szkoda wystąpi, to jej wartość jest zawsze jeden. Niech S_R oznacza łączną wartość szkód za rok, a S_Q łączną wartość szkód za kwartał z tego ryzyka. Jeśli zarówno w ubezpieczeniu rocznym, jak i w kwartalnym wprowadzimy limit odpowiedzialności 3, to stosunek

składek netto $\frac{E(\min\{S_Q, 3\})}{E(\min\{S_R, 3\})}$ wyniesie (w przybliżeniu):

- (A) 0.244
- (B) 0.250
- (C) 0.256
- (D) 0.262
- (E) 0.268

Zadanie 8. W klasycznym modelu nadwyżki ubezpieczyciela z czasem ciągłym rozkład wartości pojedynczej szkody *Y* ma gęstość:

$$f_Y(y) = \begin{cases} \frac{64}{(2+y)^5} & dla \quad y > 0\\ 0 & dla \quad y \le 0 \end{cases},$$

oczekiwana ilość szkód na jednostkę czasu $\lambda = 3$, a pochodna funkcji gromadzonej składki c = 2.5. Współczynnik przystosowania (*adjustment coefficient*) R wynosi:

- $(A) \qquad \frac{1}{2}$
- (B) $\frac{2}{3}$
- (C) 1
- (D) $\frac{4}{3}$
- (E) jest nieokreślony

Zadanie 9. Niech w pewnym jednorodnym portfelu ryzyk X_t oznacza łączną wartość szkód, n_t ilość jednostek ryzyka, a μ_t składkę netto na jednostkę ryzyka w roku t. Fluktuacje łącznej szkody opisują założenia:

$$E(X_{t-1} / \mu_{t-1}) = \mu_{t-1} \cdot n_{t-1}$$

$$E(X_{t} / \mu_{t}, \mu_{t-1}) = \mu_{t} \cdot n_{t}$$

$$VAR(X_{t-1} / \mu_{t-1}) = s^{2} \cdot n_{t-1}$$

$$VAR(X_{t} / \mu_{t}, \mu_{t-1}) = s^{2} \cdot n_{t}$$

$$COV(X_{t}, X_{t-1} / \mu_{t}, \mu_{t-1}) = 0$$

$$COV(X_{t}, \mu_{t-1} / \mu_{t}) = 0$$

Natomiast zmiany μ_t w kolejnych latach opisują założenia:

$$E(\mu_{t} / \mu_{t-1}) = \mu_{t-1}$$

$$VAR(\mu_{t} / \mu_{t-1}) = a$$

$$COV(\mu_{t}, X_{t-1} / \mu_{t-1}) = 0$$

Jeśli a = 1, $s^2 = 6$, $n_{t-1} = 40$, $n_t = 60$, to wartość oczekiwana

$$E\left(\left(\frac{X_t}{n_t} - \frac{X_{t-1}}{n_{t-1}}\right)^2\right)$$
 wynosi:

- (A) 1.24
- (B) 1.25
- (C) 1.74
- (D) 2.24
- (E) 2.25

Zadanie 10. Ubezpieczyciel ma portfel liczący 9644 terminowych polis na życie z terminem jednego roku. Prawdopodobieństwo zgonu każdego z ubezpieczonych wynosi 0.01, a świadczenie wynosi b. Ubezpieczyciel pobiera składkę w wysokości 125% składki netto. Reasekurator w zamian za zobowiązanie pokrycia $\alpha \cdot b$ w razie śmierci ubezpieczonego żąda 150% swojego udziału w składce netto. Ubezpieczyciel chce utrzymać prawdopodobieństwo straty na udziale własnym w tym portfelu na poziomie 0.05. Nie ma kosztów, stopa procentowa jest zerowa. Wobec tego ubezpieczyciel powinien ustalić wskaźnik α na poziomie:

- (A) 0.5
- (B) 0.4
- (C) $\frac{1}{3}$
- (D) 0.25
- (E) 0.2

Wskazówka: zastosuj aproksymację normalną, pamiętając iż standaryzowana zmienna normalna przekracza wartość 1.645 z prawdopodobieństwem 0.05.

Egzamin dla Aktuariuszy z 18 stycznia 1997 r.

Matematyka ubezpieczeń majątkowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI		
Pasal			

Zadanie nr	Odpowiedź	Punktacja⁴
1	В	
2	С	
3	A	
4	С	
5	D	
6	C	
7	E	
8	Е	
9	В	
10	D	

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.