TV-Inpainting via Preconditioned Douglas-Rachford Iteration

Negin Khoeiniha

28 July 2020

Considering an image u on $\Omega \in \mathbb{R}^2$ and its corrupted version u_0 which is only available on $\Omega' \in \Omega$, called the inpainting domain and $\Omega'' = \Omega - \Omega'$. The following TV inpainting model is called the modified ROF model:

$$\min_{u \in U} TV(u) + \frac{\lambda}{2} \|u - f\|_{2}^{2}, \tag{1}$$

where U is the discrete image space, $TV(u) = ||\nabla||$, $f = u_0$ and ∇ is the discrete gradient operator. We want to adapt the Douglas-Rachford approach to the inpainting problem (1):

Discretization. Consider the image domain $\Omega \in \mathbb{Z}^2$:

$$\Omega = \{(i,j)|i,j \in N, 0 \le i \le N_x - 1, 0 \le j \le N_y - 1\},\$$

where N_x and N_y are the image dimensions. For the task of image inpainting, with the above assumptions, the model (1) can then be defined as

$$\min_{u \in U} \|\nabla u\|_1 + \frac{\lambda}{2} \sum_{(i,j) \in \Omega''} (u_{i,j} - f_{i,j})^2, \tag{2}$$

with $\lambda \in (0, +\infty)$ corresponds to joint inpainting and denoising and the choice $\lambda = \infty$ corresponds to pure inpainting.

Using the finite difference for the discretization of the distributional derivative and the adjoint operator $\nabla^* = -div$, we use the notations and definitions in [1], we have

$$(\nabla u) = \left(\begin{array}{c} \partial_x^+ u \\ \partial_y^+ u \end{array}\right),\,$$

where

$$(\partial_x^+ u)_{i,j} = \begin{cases} u_{i+1,j} - u_{i,j} & 0 \le i < N_x - 1, \\ 0 & i = N_x - 1, \end{cases}$$

and

$$(\partial_y^+ u)_{i,j} = \begin{cases} u_{i,j+1} - u_{i,j} & 0 \le j < N_y - 1, \\ 0 & i = N_y - 1. \end{cases}$$

With $V = U^2$ with the standard product, the linear operator $\nabla : U \to V$, is considered. Now, considering the negative adjoint of ∇ , we can get the discrete divergence, i.e. the unique linear mapping $div : V \to U$, satisfying

$$\langle \nabla u, p \rangle_V = \langle u, \nabla^* p \rangle_U = -\langle u, divp \rangle_U \quad \forall u \in U, p \in V \ ,$$

$$divp = \partial_x^- p^1 + \partial_y^- p^2,$$

with the backward difference operators

$$(\partial_x^- u)_{i,j} = \begin{cases} u_{0,j} & i = 0, \\ u_{i,j} - u_{i-1,j} & 0 < i < N_x - 1, \\ -u_{N_x - 1,j} & i = N_x - 1, \end{cases}$$

and

$$(\partial_y^- u)_{i,j} = \begin{cases} u_{i,0} & j = 0, \\ u_{i,j} - u_{i,j-1} & 0 < j < N_y - 1, \\ -u_{i,N_y - 1} & j = N_y - 1, \end{cases}$$

and the discrete form of the L_1 norm for $u \in X$, $v(v_1, v_2) \in Y$, and $1 \le p < \infty$ is

$$\|u\|_{t} = \left(\sum_{(i,j)\in\Omega} |u_{i,j}|^{t}\right)^{1/t}, \quad \|u\|_{\infty} = \max_{(i,j)\in\Omega} |u_{i,j}|,$$

and

$$\|p\|_t = \left(\sum_{(i,j)\in\Omega} \left((p_{i,j}^1)^2 + (p_{i,j}^2)^2\right)^{t/2}\right)^{1/t}, \quad \|p\|_{\infty} = \max_{(i,j)\in\Omega} \sqrt{\left(p_{i,j}^1\right)^2 + \left(p_{i,j}^2\right)^2}.$$

Now, let us apply the discrete framework on (2):

We have the following TV-inpainting problem

$$\min_{u \in U} TV(u) + F(u), \tag{3}$$

where $TV(u) = \|\nabla u\|_1$, $F(u) = \frac{\lambda}{2} \sum_{(i,j) \in \Omega''} (u_{i,j} - f_{i,j})^2$. Since both F and $\|.\|$ are continuous and we are in finite dimensions, we will use Fenchel-Rockafellar duality to obtain the saddle-point problem of the type

$$\min_{x \in X} \max_{y \in Y} \langle Kx, y \rangle + F(x) - G(y)$$

by assuming X = U, Y = V, $K = \nabla$, and $G = I_C$, while I_C is the indicator function of the set C defined as:

$$I_C(y) = \begin{cases} 0 & y \in Y \\ \infty & else \end{cases}, here \ C = \{v \in V : ||v||_{\infty} \le 1\}.$$

The operator M needs to be a feasible preconditioner for $T_{PDR} = I + \sigma^2 K^* K = I - \sigma^2 div \nabla = I - \sigma^2 \Delta$.

Now, in order to state the algorithm, the resolvent operators with respect to these functions needs to be evaluated [2]:

$$S_{\sigma}(u,f) = (I + \sigma \partial F)^{-1}(u) \Leftrightarrow S_{\sigma}(u,f) = \arg\min_{\bar{u} \in U} \frac{1}{2} \|\bar{u} - u\|_{2}^{2} + \sigma F(u)$$

$$\Rightarrow S_{\sigma}(u_{i,j}, f_{i,j}) = \begin{cases} u_{i,j} & (i,j) \in \Omega', \\ \frac{u_{i,j} + \sigma \lambda f_{i,j}}{1 + \sigma \lambda} & else, \end{cases}$$

$$(4)$$

and

$$P(v) = (I + \tau \partial G)^{-1}(v) \Leftrightarrow P(v) = \arg\min_{\bar{v} \in Y} \frac{1}{2} \|\bar{v} - v\|_{2}^{2} + \tau G(\bar{v})$$

$$= \arg\min_{\bar{v} \in V} \frac{1}{2} \|\bar{v} - v\|_{2}^{2} + \tau I_{\{\|v\|_{\infty} \le 1\}}(\bar{v})$$

$$= \frac{v}{\max(1, |v|)},$$
(5)

with $|v| = \sqrt{(v^1)^2 + (v^2)^2}$.

The Preconditioner. Observe that M is needed to be feasible for the operators with the form $T = \lambda I - \mu \Delta$, $\lambda, \mu > 0$, where $\Delta = div\nabla$ is the discrete Laplace operator with homogeneous Neumann boundary conditions. In fact, Tu = b is equal to a discrete version of the BVP bellow:

$$\left\{ \begin{array}{cc} \lambda u - \mu \Delta u = b & in \ \Omega \\ \frac{\partial u}{\partial v} = 0 & on \ \partial \Omega \end{array} \right.$$

with the choice of ∇u , we have a finite difference equation with five-point stencils. Following the approach in [1, 3], we use a symmetric Gauss-Seidel update in conjuction with a Red-Black enumeration scheme:

$$\Omega_{\text{Red}} = \{(i,j) \in \Omega | i+j \text{ even} \},
\Omega_{Black} = \{(i,j) \in \Omega | i+j \text{ odd} \},$$

and $u = (u_{Red}, u_{Black}).$

A Gauss-Seidel update then performs an update according to $Red \to Black$ and the adjoint is $Black \to Red$.

Thus, n steps of symmetric red-Black Gauss-Seidel, $SRBGS_{\lambda,\mu}^n$ is denoted bellow:

$$SRBGS_{\lambda,\mu}^{n}(u^{k}, b^{k}) = (u_{red}^{k+1}, u_{black}^{k+1}),$$

$$(u_{red}^{k+(v+1/2)/n})_{i,j} = \frac{1}{\lambda + c_{i,j}\mu} (b_{i,j}^{k} + \mu \sum_{(i',j') \in N(i,j)} (u_{black}^{k+v/n})_{i',j'}), \qquad (i,j) \in \Omega_{red},$$

$$(u_{black}^{k+(v+1)/n})_{i,j} = \frac{1}{\lambda + c_{i,j}\mu} (b_{i,j}^{k} + \mu \sum_{(i',j') \in N(i,j)} (u_{red}^{k+(v+1/2)/n})_{i',j'}), \qquad (i,j) \in \Omega_{black} \qquad v = 0, \dots, n-1,$$

$$(u_{red}^{k+1})_{i,j} = \frac{1}{\lambda + c_{i,j}\mu} (b_{i,j}^{k} + \mu \sum_{(i',j') \in N(i,j)} (u_{black}^{k+1})_{i',j'}), \qquad (i,j) \in \Omega_{red},$$

$$(i,j) \in \Omega_{red},$$

and $N(i,j) = \{(i',j') \in \Omega | |i-i'| + |j-j'| = 1\}$ is the set of neighbor pixels of (i,j) in Ω , and $c_{i,j} = \#N(i,j)$.

Now, we can derive the algorithm for PDR method:

Algorithm 1 PDR Objective: TV-Inpainting $\min_{u_0 \in BV(\Omega)} TV(u) + I_{\{v:v|_{\Omega''}=u_0\}}(u)$

```
1: Initialize (u^0, \bar{u}^0, \bar{v}^0) \in U \times U \times V inital guess,
```

 $\sigma > 0$ step size, $\tau > 0$ gradient scaling,

n < 0 inner iteration for symmetric Gauss-Seidel.

2: Iteration

$$\begin{split} u^{k+1} &= SRBGS^n_{\lambda,(\sigma\tau)}(u^k, \bar{u}^k + \sigma\tau div\bar{v}^k), \\ v^{k+1} &= \bar{v}^k + \sigma\tau\nabla u^{k+1}, \\ u^{k+1}_{test} &= S_\sigma(2u^{k+1} - \bar{u}^k, f), \quad \text{with (4)} \\ \bar{u}^{k+1} &= \bar{u}k + u^{k+1}_{test} - u^{k+1}, \\ v^{k+1}_{test} &= P(2v^{k+1} - \bar{v}^k), \quad \text{with (5)} \\ \bar{v}^{k+1} &= \bar{v}^k + v^{k+1}_{test} - v^{k+1}. \end{split}$$

Figure (1) shows the application of the inpainting model to the recovery of lost region in Lena image. The parameters used in this model are $\sigma = 0.1$, $\tau = 1$ and the inner iterations for symmetric Gauss–Seidel n is equal to one. In (6), $\lambda = 1$ and $\mu = \sigma \tau$ are considered.

We should note here, this algorithm is sensitive to the values τ , $\sigma and \lambda$. With the general form of the inpainting problem in mind, an image with both noise and missing parts, the de-noising part of TV model is also considered. In a situation where the image is noise free, we can consider $\sigma = 0$, $\tau = 0.1$ and $\lambda = tau$.

Referências

- [1] Bredies K, Sun H. Preconditioned Douglas-Rachford splitting methods for convex-concave saddle-point problems. SIAM Journal on Numerical Analysis. 2015;53(1):421-44.
- [2] Bredies K. Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty. In Efficient algorithms for global optimization methods in computer vision 2014 (pp. 44-77). Springer, Berlin, Heidelberg.
- [3] Bredies K, Sun HP. Preconditioned Douglas—Rachford algorithms for TV-and TGV-regularized variational imaging problems. Journal of Mathematical Imaging and Vision. 2015 Jul 1;52(3):317-44.

Figura 1: Recovery of lost image information. (a) shows the Lena image, (b) the destroyed image (c) the recovered image using PDR model form Algorithm 1 with 100 iterations, (d) the recovered image using PDR model form Algorithm 1 with 1000 iterations.