

Approximation theory: f(x) = (c, q([A;b][a;1]))
$= \sum_{k=1}^{q} c_k \varphi(\langle a_k, a_1 \rangle + b_k)$
linear approx in an adaptive = fallby (a)
linear approx in an adaptive fall, by (21) dictionary (Palba) & of 9 atoms
Them: [Cybenko, 1989] (et szc Rt be compact, of: R-> R contrinuous "Universality" and bounded, of (2) 2000 000 00000000000000000000000000
Than finite sums & a party are dense in La (Q).
Intution in 1-0, p=1
- 1/a wif. density of precewsers of precewsers on constant for in Las (1) Let of (1/24 - 1/24) = \frac{12}{20} \frac{7}{4} \frac{7}{2}
Rung: Then means that APEC(SZ), YETO, Zq, ZA, Lc tq.
Max 1 fal - Zck 9 (22, ak) 1 & E
I Plan : how does of depends on of and p (convergence speed) Require smoothness hypothesis on of
Thm: [Barron 93]: if $\int \ \omega\ \ \beta(\omega)\ d\omega \le C$ then $\int \ u\ \ \alpha\ \ \beta\ \ \ $
< 41 (B(0,1)) x (2 n c) q
agent and the second of the se

Proof of the universality theorem of Cybarko. Prop 1: If up is such that Hen the universality than is true. Discr) (Surface) then the universality than is true Proof: let J= { Zapabi aler} c (52) is a linear space let I be its close in C(C(a)) for 11. No (wich is a Barnot ip) If $J_{\pm}L(s)$, pick, $g \neq 0$, $g \in L(e) \setminus J$ We define a Linear parties L on $J \oplus Span(g)$ by $\forall s \in J$, L(s+1g) = 1 (so $L \equiv 0$ on J) Lis a bounded linear form, so by Hahn-Barach Menem, it can be extended in a bounded linear form I: (2) -, R Since IE C(sz)~M(sz), it can be represented as I(f) = [f(x) du(x) with 1x \$0 But I = 0 on 5, so In gab du = 0 H(a,b), so by (Discr), µ=0, controdiction Prop 2: if 4 is continuous, then it potolies (Disco). Partie (a) = $\varphi(\lambda(a_1k)+b)+t$ $\lambda + \omega$ $\begin{cases} 1 & \text{if } (a_1x)+b \neq 0 \end{cases} \geq \chi(x)$ (b) By lebergue dominated convergence, $(a_1x)+b=0$ $\lambda + \omega$ $\lambda +$ where Tab= {x: (a,x)+b=0} Hab- {n: (a,x)+b=0} If u is much that Sigai, L'du =0 \(\frac{1}{a',b'}\) then \(\frac{1}{a,b,t}\), \(\frac{1}{4}\) | \(\frac{1}{14b}\) = 0

By selecting (t.t) such that $\varphi(t)$ one has that $\forall (a,b) \}_{H}$. One now needs to show that $\mu > 0$.	(Hob)=0 (TTOb)=0
For The L [∞] (R), let F(h) & Sh((a, x)) dµ. To F: L [∞] (R) - R is a bounded linear form since IF(h)]¶≤∥FII₀.,
For the L ^{oo} (R), let F(h) & Sh(<a, x="">) du. 10 & R? F: L^{oo}(R) - R is a bounded linear form the IF(h bot h = M₁, +60 [Mon F(M₁), +100] + M₁, +60 [Mon F(M₁), +100] + M(H_{a,-1}) 2</a,>	(a,x>_b>0)} O
fimilarly has in 10, for h(=) = 2 = (1)[3] - 11(5)	10-(
One has $F(h)=0$ for all precewse countaint f^{o} By denoity in $L^{o}(R)$, $F(h)=0$ the $L^{o}(R)$	l h
Taking h (ord - e'i? one has	^R).
Sexp(i(x,a)) $d\mu(x) = \hat{\mu}(a) = 0 \forall a$. By injectivity of the Formie transform, $\mu = 0$	