Seminar Algorithmen zum Fahrplanentwurf

Graphenmodelle

Analoge Fahrpläne

Wie man sie kennt und nie benutzt...

	- 10 manuscar		5022500		00 01080		Montag	- Freita	q		Cintention		3.2940	_
Darmstadt Hbf	4.35		5.05		\neg		21.35	22.05	22.35		23.35		0.35	
Egelsbach	4.46		5.16		30		21.46	22.16	22.46		23.46		0.46	
Langen (Hess)	4,49	5.04	5.19	5.34	\perp	21.34	21,49	22.19	22.49	23.19	23,49	0.19	0.49	
angen-Flugsicherung	4.51	5.06	5.21	5.36	\neg	21.36	21.51	22.21	22.51	23.21	23.51	0.21	0.51	
Dreieich-Buchschlag	4,53	5.08	5.23	5.38		21,38	21.53	22.23	22.53	23.23	23.53	0.23	0,53	
Neu-Isenburg	4.56	5.11	5.26	5.41	alle	21.41	21.56	22.26	22.56	23.26	23.56	0.26	0.56	
Frankfurt (M) Süd	5.03	5.18	5,33	5.48	15	21,48	22.03	22.33	23.03	23,33	0.03	0.33	1.03	
Frankfurt (M) Ostendstraße	5.07	5.22	5.37	5.52	Min	21.52	22.07	22.37	23.07	23.37	0.07	0.37	1.07	
Frankfurt (M) Hauptwache	5.10	5.25	5.40	5.55	1	21.55	22.10	22.40	23.10	23,40	0.10	0.40	1.10	
Frankfurt (M) Hbf (tief)	5.14	5.29	5.44	5.59	-	21.59	22.14	22.44	23.14	23.44	0.14	0.44	1.13	
Frankfurt (M) West	5,20	5.35	5,50	6.05		22.05	22,20	22.50	23.20	23.50	0.20	0.50		
Niederhöchstadt	5.31	5.46	6.01	6.16		22.16	22.31	23.01	23.31	0.01	0.31	1.01		
Kronberg (Taunus)		5,51		6.21	30	22.21		23.06		0.06		1.06		
Bad Soden (Taunus)	5.39		6.09		30		22.39		23.39		0.39			
							Sam	stag						
Darmstadt Hbf	4.35		5.05		\neg		18.35		21.35	22.05	22.35		23.35	
Egelsbach	4.46		5.16		30		18.46		21.46	22.16	22.46		23.46	
angen (Hess)	4,49	5.04	5.19	5.34	T	18.34	18,49		21,49	22.19	22,49	23.19	23,49	0.1
Langen-Flugsicherung	4.51	5.06	5.21	5.36	=	18.36	18.51	: 13	21.51	22.21	22.51	23.21	23.51	0.2
Dreieich-Buchschlag	4.53	5.08	5.23	5.38		18.38	18.53		21.53	22.23	22.53	23.23	23.53	0.2
Neu-Isenburg	4.56	5.11	5.26	5.41	alle	18.41	18.56	alle	21.56	22.26	22.56	23.26	23.56	0.2
Frankfurt (M) Süd	5.03	5.18	5.33	5.48	15	18.48	19.03	30	22.03	22.33	23.03	23.33	0.03	0.3
Frankfurt (M) Ostendstraße	5.07	5.22	5.37	5.52	Min	18.52	19.07	Min	22.07	22.37	23.07	23.37	0.07	0.3
Frankfurt (M) Hauptwache	5.10	5.25	5.40	5.55	T	18.55	19.10		22.10	22.40	23.10	23,40	0.10	0.4
Frankfurt (M) Hbf (tief)	5.14	5.29	5.44	5.59		18.59	19,14		22.14	22.44	23.14	23,44	0.14	0.4
Frankfurt (M) West	5.20	5.35	5.50	6.05		19.05	19.20	111	22.20	22.50	23.20	23.50	0.20	0.5
Niederhöchstadt	5,31	5.46	6.01	6.16			19,31		22.31	23.01	23.31	0.01	0.31	1.0
Kronberg (Taunus)		5.51		6.21	30					23.06		0.06		1.0
Bad Soden (Taunus)	5,39		6,09		30		19,39	0.00	22.39		23.39		0.39	

Fahrplanauskunftssysteme

Fahrplanauskunftssysteme

Frage 1

Wie wandle ich Fahrpläne zu Graphen um?

Frage 2

Wie modelliere ich meinen Graphen, um das Earliest-Arrival Problem zu lösen?

Überblick

- Grundlagen
- Das 1. GraphenmodellErweiterungen
- Das 2. GraphenmodellErweiterungen
- Vergleiche
- Zusammenfassung

Züge und Stationen

Züge und Stationen

Züge und Stationen

Züge und Stationen

Züge und Stationen

Was ist eine Station?

Züge und Stationen

Was ist eine Station?

Größenordnungen

■ Ein paar Zahlen im Jahr 2008 (**nur** Züge):

Anzahl						
Stationen	etwa™ 5000					
Züge	68073					
Fußwege	425					

Wie modelliere ich einen Fahrplan als Graphen?

Simple Idee: Knoten sind Stationen, Kanten sind Verbindungen

Was ist das Problem hier?

Wie modelliere ich einen Fahrplan als Graphen?

Wir müssen irgendwie Zeitverhältnisse innerhalb des Graphen darstellen!

Was ist das Problem hier?

Die es zu lösen gilt...

Zeitverhältnisse im Graphen

Die es zu lösen gilt...

- Zeitverhältnisse im Graphen
- Taktfahrpläne

Die es zu lösen gilt...

- Zeitverhältnisse im Graphen
- Taktfahrpläne
- Umstiege bzw. Umsteigezeiten

Die es zu lösen gilt...

- Zeitverhältnisse im Graphen
- Taktfahrpläne
- Umstiege bzw. Umsteigezeiten
- Fußwege zwischen Stationen

Die es zu lösen gilt...

- Zeitverhältnisse im Graphen
- Taktfahrpläne
- Umstiege bzw. Umsteigezeiten
- Fußwege zwischen Stationen
- Intermodalität

Zwei gängige Modelle

Time-Expanded vs. Time-Dependent

Das Time-Expanded Modell

Train-Edges

■ Modelliere jedes "**Event**" innerhalb einer Station als eigenen Knoten.

Das Time-Expanded Modell

Waiting-Edge

■ Erstelle eine Stationsinterne Kante, die **Exchange-Edge**.

Das Time-Expanded Modell

Was bringt uns das Ganze jetzt?

Kanten innerhalb einer Station \approx "Umstiege"

Frage 3

Wie modelliere ich Umstiegszeiten mit "Puffer"?

Realistische Umstiegsregeln

- Definiere Konstante und Variable Umstiegsregeln:
 - 1. Standard-Umstiegszeit für alle Züge
 - 2. Regeln basierend auf Transferklassen & Zuglinien
 - 3. Regeln zwischen einzelnen Zügen

Konstante Umstiegszeiten

Spalte Exchange-Edge in Ankunfts- und Abfahrtsknoten

Konstante Umstiegszeiten

■ Erstelle neue Exchange Edge

Konstante Umstiegszeiten

 \blacksquare Kanten von Ankunft \rightarrow Exchange-Edge basierend auf min. Umstiegszeit

Variable Umstiegszeiten

 \blacksquare Erstelle Kanten von Ankunft \to Abfahrt des selben Zuges

Variable Umstiegszeiten

■ Weitere variable Umstiegszeiten als zzgl. Kanten

Taktfahrplanmodellierung

■ Taktfahrplanmodellierung via Exchange-Edge-Schleife

Verfeinerung 1: Verkehrstage

Problem

Der Takt unseres Fahrplans ist nicht nur ein Tag!

- lacktriangle Wie würde unser Graph wachsen, wenn wir N Tage modellieren würden?
 - Wir hätten etwa N-mal so viele Knoten und Kanten!

Verfeinerung 1: Verkehrstage

- Versehe Knoten mit Zeit $t_{Absolut} \mod 1440$ □ $t_{Absolut} \in [0, N \cdot 1440]$
- Versehe Kanten mit einer Liste an Verkehstagen: [d], $d \in N$
- Nutze Absolute Zeit beim SP-Durchlauf:

$$d_i = floor(\frac{t_{Anfrage}}{1440})$$

■ Und wenn der Zug an Tag d_i fährt:

$$length(E) = (t_{Ankunft} - t_{Abfahrt}) \mod 1440$$

Verfeinerung 1: Verkehrstage

Das ganze als Visuelles Beispiel

Verfeinerung 1: Verkehrstage

Problem

Wie behandeln wir besuchte Knoten beim SP-Durchlauf, die invalide sind?

- Als Beispiel am Dijkstra:
 - lacktriangledown dist $o \infty$
 - Füge Knoten wieder am Ende des Sets ein ("Nächster" Tag).

Weitere Verfeinerungen sind möglich¹...

¹(Pyrga et. al.: Efficient Models for Timetable Information in Public Transportation Systems)

Verfeinerung 2: Fußwege

Die Rückkehr der Terminologie-Kiste

Frage

Was macht Fußwege so besonders?

- Fußwege können zu jeder Zeit genutzt werden
- Man könnte sagen sie sind... Zeitabhängig (Time-Dependent)...

Foreshadow

verb

A literary device used to hint at events yet to come — and to keep readers guessing.

Verfeinerung 2: Fußwege

Alle Fußwege im Graphen speichern ist nicht sinnvoll.

Verfeinerung 2: Fußwege

- Alle Fußwege im Graphen speichern ist nicht sinnvoll.
- Speichere Wege in jeder Station, maskiere Wege in Suchanfragen als Kanten zwischen Stationen
 - Durchsuche Fußwege, wenn eine Arrival-Node bearbeitet wird
- Beachte Fußwege beim Start einer Reise!

Größenordnungen

■ Ein paar Zahlen im Jahr 2008 (**nur** Züge):

Anzahl an Knoten	
Ankunft	801.8 Tsd.
Abfahrt	801.8 Tsd.
Change	556.6 Tsd.
Gesamt	2160.2 Tsd.

Größenordnungen

■ Ein paar Zahlen im Jahr 2008 (**nur** Züge):

Anzahl an Kanten	
Zug	801.8 Tsd.
Weiterfahrt	733.7 Tsd.
Leaving	796.7 Tsd.
Entering	796.7 Tsd.
Waiting	556.6 Tsd.
Besondere Umstiege	20.2 Tsd.
Gesamtanzahl	3705.7 Tsd.

Erinnerung

68073 Zuglinien \rightarrow 801.8 $k - 68k \approx 133k$

Time-Expanded

Alle Konzepte auf einen Blick

■ Denken wir zurück an das erste Beispiel...

Jetzt bauen wir das ganze etwas um...

Oder etwas formeller:

■ Wir definieren für jede Kante (u, v) eine Funktion $f(t) : \mathcal{T} \to \mathcal{T}$.

□ $t \in \mathcal{T}$, $\mathcal{T} \triangleq \mathsf{Zeit}$.

- Wir definieren für jede Kante (u, v) eine Funktion $f(t) : \mathcal{T} \to \mathcal{T}$.

 □ $t \in \mathcal{T}$, $\mathcal{T} \triangleq \mathsf{Zeit}$.
- Dann ist unser Kantengewicht (Reisezeit):

$$travel_time(t) = f_{(u,v)}(t) - t$$

Frage

Wie sieht so eine Funktion in der Realität aus?

- Für konstante Umstiegszeiten definieren wir Zugrouten:
 - Sei R eine Zugroute $S_0, S_1, ..., S_{k-1}, S_k$ für k > 0

- Für konstante Umstiegszeiten definieren wir Zugrouten:
 - Sei R eine Zugroute $S_0, S_1, ..., S_{k-1}, S_k$ für k > 0
 - Erlaubt: $S_i = S_j$, $i, j \in k$, für $i \neq j$ (Schleifen)!

- Jetze gruppieren wir alle Züge, die die gleiche Strecke fahren, in eine Zugroute
- Was ist hier das Problem?

Konstante Umstiegszeiten

In welchen Fällen aber wäre es doch besser, die S3 zu nehmen?

- Keine Züge z_1, z_2 dürfen S_i um t_1, t_2 ($t_1 \le t_2$) verlassen, und z_2 vor z_1 S_{i+1} erreichen!
- In diesem Fall spalten wir in einzelne Routen:

Konstante Umstiegszeiten

■ Wir teilen eine Station in einen Stationsknoten S und Routenknoten r_i

Konstante Umstiegszeiten

■ Wir erstellen Transferkanten mit ausgehenden Transferkosten

Variable Umstiegszeiten

Wir erstellen spezielle Kanten und Regeln zwischen Knoten

Fußwege

■ Fußwege sind immer abhängig von der Zeit, also einfach zu modellieren

Größenordnungen

■ DB Fahrplan 1996/97 (nur Züge):

	Time Expanded	Time Dependent
Knoten	931746	6961
Kanten	1397619	18664

	Time Expanded	Time Dependent
Algorithmus	Dijkstra	Dijkstra + Binärsuche
∅ Laufzeit	44.17ms	5.61ms
Besuchte Knoten	33653	1515

(Pyrga et al. Time-Expanded vs Time-Dependent Models for Timetable Information)

Performanz

- Aber: Komplexität von TD wächst schnell mit mehr Kriteria und Regeln
- Also in realistischen Szenarien!
 - TD nur 58% schneller (in CPU-Zeit) als TE

(Pyrga et al.: Experimental Comparison of Shortest Path Approaches for Timetable Information, 2004)

Implementation in MOTIS

Graphenmodell

- Time-Expanded mit Verfeinerungen
 - Konstante und Variable Umstiegszeiten
 - Verkehrstage
 - Fußwege

Implementation in MOTIS

Kantengewichtungen

- Reisezeit ($t_{Ankunft} t_{Abfahrt} \mod 1440$)
- Anzahl der Umstiege (Ankunfts- und Spezialkanten)
- $\blacksquare \ \, \text{Ticketpreise} \to \text{Vortrag Spezialangebote}$

Implementation in MOTIS

Algorithmus

Viele Algorithmusverfeinerungen und Spezialattribute
 Thema des nächsten Vortrags!

11.02.2024 | Fachgebiet Algorithmik | R. Buhlmann | 53

Das dritte Graphenmodell

Es ist das dritte Graphenmodell mit einem Klappstuhl?!?!!

- In MOTIS gibt es noch ein drittes großes Graphenmodell: Den Abhängigkeitsgraphen
- Abhängigkeiten zwischen Zügen und Stationen
- Wichtig für Verspätungen!

Zusammenfassung

Sachen zum Mitnehmen für die späteren Vorträge...

- Time-Expanded vs. Time-Dependent
 - Umstiegszeiten, Fußwege, Takt
 - In MOTIS: Time-Expanded
- Größenordnungen der Graphen unterscheiden sich stark
- Für realistische Anwendung: Jeweils unterschiedliche Verfeinerungen und Anpassungen notwendig

Time-Expanded

Nochmal zum Mitnehmen

Literaturquellen

- Schnee, Matthias, Fully Realistic Multi-Criteria Timetable Information Systems, 2009, Technische Universität Darmstadt
- Evangelia Pyrga, Frank Schulz, Dorothea Wagner, Christos Zaroliagis, Towards Realistic Modeling of Time-Table Information through the Time-Dependent Approach, Electronic Notes in Theoretical Computer Science, Volume 92, 2004, Pages 85-103
- Evangelia Pyrga, Frank Schulz, Dorothea Wagner, Christos Zaroliagis
 Efficient models for timetable information in public transportation systems.
 ACM Journal of Experimental Algorithmics, Volume 12, 2007
- Evangelia Pyrga, Frank Schulz, Dorothea Wagner, Christos Zaroliagis Two Approaches for Time-Table Information: a Comparison of Models and Performance., Konstanzer Schriften in Mathematik und Informatik, Volume 190, 2003

Weitere Bildquellen nach Folie

- Verkehrsmittel (8): Wikimedia
- Portrait von Edsger W. Dijkstra (3, 4): https://de.wikipedia.org/wiki/Edsger_W._Dijkstra (06.01.23)
- Fahrplanauszüge (3, 4, 18, 19): www.rmv.de und www.bahn.de (07.01.23)
- Abhängigkeitsgraph (55), (sowie alle weiteren Diagramme in Eigenanfertigung nach) Schnee, Matthias, Fully Realistic Multi-Criteria Timetable Information Systems, 2009, Technische Universität Darmstadt