

Processing Data at Scale

Be Boulder.

View the Slides

https://github.com/ResearchComputing/Processing_Data_At_Scale

Meet the User Support Team

Layla Freeborn

John Reiland

Brandon Reyes

Dylan Gottlieb

Andy Monaghan

Mohal Khandelwal

Michael Schneider

Ragan Lee

Workshop Overview

Practice Project – Counting Words

- Project Gutenberg
 - Free e-book repository
 - Started by Michael Hart (creator of first e-book)
 - Structured, but poorly formatted

Accessing Gutenberg Files

Gutenberg Project

Web Scraping Tips

Downloading Files

What is HPC?

Scale

VS

Speed

What can I use HPC for?

Parallelized Job

CURC HPC Resources

Alpine Cluster

Data Storage

Software Modules

CURC HPC Resources

<u>Data</u> <u>Storage</u>

Software Modules

amilan

General Usage

amilan

General Usage

amem

High Memory

amilan

General Usage

amem

High Memory

aa100

Nvidia GPU's

amilan

General Usage

amem

High Memory

aa100

Nvidia GPU's

ami100

AMD GPU's

CURC Web Portal

Data Storage

Core

- Personal Storage
- Includes 3 Directories
 - /home (2 GB)
 - /projects (250 GB)
 - /scratch (10 TB)

PL

- PetaLibrary
- Tiered Storage
 - Active, Archive
- Requires Funding
- Starts at 1 TB

Copy Files

CP – Copy command

\$ cp /pl/active/courses/2025_spring/CMCI_LL/txt-files.tar /scratch/alpine/\$USER/txt-files.tar

\$ cp /pl/active/courses/2025_spring/CMCI_LL/code.tar /projects/\$USER/code.tar

Extract Files

• tar – extract or "unzip" files command

\$ cd /scratch/alpine/\$USER

\$ tar -xvf txt-files.tar

\$ cd /projects/\$USER

\$ tar -xvf code.tar

Dataset Structure

/scratch/alpine/\$USER/cache/epub/n/pgn.txt

Manually counting words

wc -w <file name>

Anatomy of a job script

```
#!/bin/bash
## Directives
#SBATCH --<option>=<value>
## Software
module load <software>
## User scripting
<command>
```


Batch Jobs

job.sh

```
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --time=00:20:00
#SBATCH --partition=amilan
#SBATCH --output=slurm_logs/serial-%j.out
JOB=$SLURM_JOB_ID
TASK=0
START=0
END=10
./count_words.sh "$JOB" "$TASK" "$START" "$END"
```


Submitting a Batch Job

Submitting a Batch Job

\$sbatch <job_file> <other-directives>

Submitting a Batch Job

\$squeue -u <username>

\$sacct -u <username>

Cores!= Performance

Checking Job Performance

\$ module load slurmtools

\$ seff <job number>

Job ID: 8636572

Cluster: alpine

User/Group: ralphie/ralphiegrp

State: COMPLETED (exit code 0)

Nodes: 1

Cores per node: 24

CPU Utilized: 04:04:05

CPU Efficiency: 92.18% of 04:24:48 core-walltime

Job Wall-clock time: 00:11:02

Memory Utilized: 163.49 MB

Memory Efficiency: 0.14% of 113.62 GB

Monitoring Resources

Job Arrays

Scaling with Dask

Creating an Anaconda Environment

- \$ module load anaconda
- \$ conda create -n dask
- \$ conda activate dask
- \$ conda install dask -c conda-forge
- \$ conda install -c conda-forge jupyterlab

Jupyter Session

Kernel:

- \$ conda install -y ipykernel
- \$ python -m ipykernel install --user --name dask --display-name dask

Execute Jupyter Notebook

jupyter execute <notebook.ipynb>

Where to go next?

- Discuss python libraries:
 - Multiprocessing
 - Cuda and optimized ml libraries for mpi
- MPI enabled libraries and compiling c++ code

R libraries – futures

CRDDs office hours and other workshops.

CRDDS Events & Office Hours

Documentation

https://curc.readthedocs.io/en/latest/

Survey and feedback

Survey: http://tinyurl.com/curc-survey18

