MATH2715 Workshop 7 Questions

Only question Q4 counts towards the continuous assessment for this module.

Q1. Suppose $X_i \stackrel{\text{ind}}{\sim} N(0, \sigma^2)$ and σ^2 is estimated using

$$T = \frac{1}{n} \sum_{i=1}^{n} X_i^2.$$

Obtain the mean of T, the bias of T, the variance of T, and the mean square error of T.

Hint: To obtain
$$E[T^2]$$
 notice that $\left(\sum_{i=1}^n Y_i\right)^2 = \left(\sum_{i=1}^n Y_i\right) \left(\sum_{j=1}^n Y_j\right) = \sum_{i=1}^n Y_i^2 + \sum_{\substack{i=1\\i\neq j}}^n \sum_{j=1}^n Y_i Y_j.$

Remember that if Y_i and Y_j are independent, then $E[Y_iY_j] = E[Y_i]E[Y_j]$. How many terms are in the summation with $i \neq j$? Now put $Y_i = X_i^2$.

<u>Hint:</u> If $X \sim N(\mu, \sigma^2)$, then $E[(X - \mu)^4] = 3\sigma^4$ (see lecture 3 notes).

- **Q2.** If $X_1, X_2, ..., X_n$ are independent and identically distributed random variables with a $N(\mu, \sigma_0^2)$ distribution with known variance σ_0^2 , obtain the maximum likelihood estimator for μ .
- Q3. The time interval X between successive feedings of a certain type of insect has an exponential distribution with mean proportional to a positive measured characteristic z of the insect. Thus the probability density function of X for an insect with characteristic z is

$$f_X(x; z, \theta) = \frac{1}{\theta z} \exp\left\{-\frac{x}{\theta z}\right\}, \quad x > 0.$$

Suppose we observe n independent insects, observing time intervals X_1, X_2, \ldots, X_n with associated characteristics z_1, z_2, \ldots, z_n .

(a) Find the maximum likelihood estimator $\hat{\theta}$ of θ and show that it is unbiased.

<u>Hint:</u> $X_i \stackrel{\text{ind}}{\sim} \text{exponential}(\lambda_i = 1/(\theta z_i)).$

(b) Show that $\operatorname{Var}[\widehat{\theta}] = \theta^2/n$.

<u>Hint:</u> The z_i are known constants. Only θ is an unknown parameter to be estimated.

- **Q4.** (WILL BE MARKED) An individual taken from a very large biological population is of type A with probability $\theta = \frac{1}{2}(1+\phi)$ and of type B with probability $\frac{1}{2}(1-\phi)$ where $0 \le \phi \le 1$, all individuals being independent.
- (a) Suppose that X denotes the number of type A individuals in a random sample of size n. What is the probability $\operatorname{pr}\{X=x;\theta\}$ that X=x? (Write your answer as a function of ϕ .) Hint: Individuals are independent and either of type A or type B.
- (b) Find the maximum likelihood estimator $\widehat{\phi}$ of ϕ based upon x, and show that it is unbiased.

<u>Hint:</u> To obtain $E[\widehat{\phi}]$ recall the distribution of X. The likelihood function is $L(\theta; x) = \operatorname{pr}\{X = x; \theta\}$. Write this as a function of ϕ .

(c) Find $Var[\widehat{\phi}]$.