Teste 6

Versão A

Justifique todas as respostas.

1. (a) Utilize o algoritmo de Euclides para encontrar inteiros s e t tais que

$$s \cdot 95 + t \cdot 3 = 1.$$

(b) Aplique o teorema do resto chinês para encontrar todas as soluções em $\mathbb Z$ do sistema

$$\begin{cases} x = 2 \mod 3 \\ x = 4 \mod 5 \\ x = 3 \mod 19 \end{cases}.$$

(Nota: pode usar as seguintes igualdades: $23 \cdot 5 - 2 \cdot 57 = 1$ e $4 \cdot 19 - 5 \cdot 15 = 1$.)

- (c) Indique o inverso de $\overline{15}$ em \mathbb{Z}_{19} . (Sugestão: pode utilizar alguma informação das alíneas anteriores, ou calculá-lo directamente.)
- (d) Mostre que $\overline{6}$ é divisor de zero em \mathbb{Z}_{14} .
- 2. Mostre por indução que para qualquer natural n,

$$\sum_{i=0}^{n} 6i = 3n(n+1).$$

- 3. (a) Quantas arestas tem o grafo bipartido completo $K_{7,9}$?
 - (b) Quantos subgrafos de $K_{7,9}$ têm dezasseis vértices e dezasseis arestas? (Sugestão: utilize o resultado anterior.)
 - (c) Algum grafo da alínea anterior é uma árvore?
 - (d) Quantos subgrafos de $K_{7,9}$ são isomorfos ao grafo $K_{5,6}$?
- 4. Seja n um natural positivo e sejam a_1 , a_2 , b_1 , e b_2 inteiros. Mostre que se $a_1=b_1 \mod n$ e $a_2=b_2 \mod n$, então $3a_1-5a_2=3b_1-5b_2 \mod n$.