

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

IRF830/831/832/833 IRF830R/831R/832R/833R

N-Channel Power MOSFETs Avalanche Energy Rated*

August 1991

Features

- 4.0A and 4.5A, 450V ~ 500V
- $r_{DS}(on) = 1.5\Omega$ and 2.0Ω
- Single Pulse Avalanche Energy Rated*
- SOA is Power-Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- · High Input Impedance

Description

The IRF830, IRF831, IRF832, and IRF833 are n-channel enhancement-mode silicon-gate power field-effect transistors. IRF830R, IRF831R, IRF832R and IRF833R types are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits.

The IRF types are supplied in the JEDEC TO-220AB plastic package.

Terminal Diagram

N-CHANNEL ENHANCEMENT MODE

Absolute Maximum Ratings (TC = +25°C), Unless Otherwise Specified

	IRF830 IRF830R	IRF831 IRF831R	IRF832 IRF832R	IRF833 IRF833R	UNITS
Drain-Source Voltage (1) VDS	500	450	500	450	V
Drain-Gate Voltage (RGS = $20k\Omega$) (1)	500	450	500	450	V
Continuous Drain Current					
T _C = +25°Cl _D	4.5	4.5	4.0	4.0	Α
$T_C = +100^{\circ}C$	3.0	3.0	2.5	2.5	Α
Pulsed Drain Current (3)	18	18	16	16	Α
Gate-Source Voltage VGS	±20	±20	±20	±20	V
Maximum Power Dissipation					
$T_C = +25^{\circ}C \dots P_D$	75	75	75	75	w
Linear Derating Factor	0.6	0.6	0.6	0.6	W/°C
Inductive Current, Clamped	18	18	16	16	A
Single Pulse Avalanche Energy Rating (4)EAS*	300	300	300	300	mJ
Operating and Storage Junction	-55 to +150	-55 to +150	-55 to +150	~55 to +150	°C
Maximum Lead Temperature for Soldering	300	300	300	300	oC.

NOTES:

- 1. $T_J = +25^{\circ}C$ to $+150^{\circ}C$.
- 2. Pulse Test: Pulse width \leq 300 μ s, Duty Cycle \leq 2%.
- Repetitive rating: Pulse width limited by maximum junction temperature.
 See Transient Thermal Impedance Curve (Figure 5).
 *R Suffix Types Only
- 4. V_{DD} = 50V, starting T_J = +25°C, L = 25mH, R_{GS} = 25 Ω , I_{PEAK} = 4.5A. See Figure 15.

IRF830, IRF831, IRF832, IRF833 IRF830R, IRF831R, IRF832R, IRF833R

Electrical Characteristics T_C = 25°C, Unless Otherwise Specified

	SYMBOL		LIMITS			
CHARACTERISTIC		TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain-Source Breakdown Voltage IRF830/832, IRF830R/832R	BVDSS	V _{GS} = 0V, I _D = 250μA	500	_	_	٧
IRF831/833, IRF831R/833R			450	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} = V _{GS} , I _D = 250μA	2.0	-	4.0	V
Gate-Source Leakage Forward	IGSS	V _{GS} = 20V	-	-	500	nA
Gate-Source Leakage Reverse	IGSS	V _{GS} = -20V	-	-	-500	nA
Zero Gate Voltage Drain Current	IDSS	VDS = Max Rating, VGS = 0V	-		250	μА
		$V_{DS} = Max Rating \times 0.8, V_{GS} = 0V,$ $T_{J} = +125^{\circ}C$	-	-	1000	μА
On-State Drain Current (Note 2) IRF830/831, IRF830R/831R	ID(ON)	V _{DS} > I _{D(ON)} x R _{DS(ON)} Max, V _{GS} = 10V	4.5	-	-	А
IRF832/833, IRF832R/833R			4.0		-	Α
Static Drain-Source On-State Resistance (Note 2)	rDS(ON)	$V_{GS} = 10V, I_D = 2.5A$		1,3	1.5	Ω
IRF830/831, IRF830R/831R			<u> </u>			
IRF832/833, IRF832R/833R	<u> </u>	1/> 50// 1 0.54	2.7	1.5 4.2	2.0	Ω
Forward Transconductance (Note 2)	g _{fs}	$V_{DS} \ge 50V$, $I_D = 2.5A$	2.7		-	S(ၓ)
Input Capacitance	CISS	VGS = 0V, VDS = 25V, f = 1.0MHz See Figure 10		100	ļ -	pF
Output Capacitance	coss	- Cooringuio 10				pF
Reverse Transfer Capacitance	CRSS			20		pF
Turn-On Delay Time	td(ON)	V_{DD} = 250V, I_{D} = 4.5A, R_{G} = 12 Ω See Figure 16. (MOSFET switching times		10	17	ns
Rise Time	tr	are essentially independent of operating		15	23	ns
Turn-Off Delay Time	td(OFF)	temperature)		33	53	ns
Fall Time	t _f	1000	<u> </u>	16	23	ns
Total Gate Charge (Gate-Source + Gate-Drain)	Qg	VGS = 10V, ID = 4.5A, VDS = 0.8V Max Rating. See Figure 17 for test circuit. (Gate charge is essentially independent of	_	22	32	nC
Gate-Source Charge	Qgs	operating temperature.)		3.5	<u> </u>	nC
Gate-Drain ("Miller") Charge	Q_{gd}		-	11	-	пC
Internal Drain Inductance	LD	Measured from the contact screw on tab to center of die internal device inductances.	-	3.5	-	nΗ
		Measured from the drain lead, 6mm (0.25in.) from package to center of die	-	4.5	-	nH
Internal Source Inductance	LS	Measured from the source lead, 6mm (0.25") from header and source bonding pad.	-	7.5	-	nН
Junction-to-Case	R ₀ JC	· · · · · · · · · · · · · · · · · · ·	-	T '	1.67	°C/W
Case-to-Sink	Recs	Mounting surface flat, smooth and greased	-	0.5	-	°C/W
Junction-to-Ambient	R ₀ JA	Free air operation	-	-	80	°C/W
Source Drain Diode Ratings	and Cha	aracteristics				-
Continuous Source Current (Body Diode)	IS	Modified MOSFET symbol showing the	-	-	4.5	A
Pulse Source Current (Body Diode) (Note 3)	ISM	integral reverse P-N junc. rectifier.	_	-	18	A

Continuous Source Current (Body Diode)	Is	Modified MOSFET symbol showing the	-	-	4.5	A
Pulse Source Current (Body Diode) (Note 3)	Ism	integral reverse P-N junc. rectifier.	-	-	18	A
Diode Forward Voltage (Note 2)	V _{SD}	$T_J = +25^{\circ}C$, $I_S = 4.5A$, $V_{GS} = 0V$	-	-	1.6	V
Reverse Recovery Time	t _{rr}	$T_J = +25^{\circ}C$, $I_F = 4.5A$, $dI_F/dt = 100A/\mu s$	180	350	760	ns
Reverse Recovered Charge	QRR	$T_J = +25^{\circ}C$, $I_F = 4.5A$, $dI_F/dt = 100A/\mu s$	0.96	2.2	4.3	μC
Forward Turn-on Time	tON	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Ls + Lp.	-	-	-	-

NOTES: 1. T_J = +25°C to +150°C 2. Pulse Test: Pulse width ≤ 300µs, Duty Cycle ≤ 2%

^{3.} Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Figure 5)

^{4.} $V_{DD} = 50V$, Start $T_{J} = +25^{\circ}C$, L = 25mH, $R_{GS} = 25\Omega$, $I_{PEAK} = 4.5A$ (See Figure 15)

80 us PULSE TEST

NO ... PULSE TEST

10. DRAIN CURRENT (AMPERES)

Fig. 3 - Typical Saturation Characteristics

Fig. 4 - Maximum Safe Operating Area

Fig. 5 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

Fig. 6 — Typical Transconductance Vs. Drain Current

Fig. 7 — Typical Source-Drain Diode Forward Voltage

Fig. 8 - Breakdown Voltage Vs. Temperature

Fig. 9 - Normalized On-Resistance Vs. Temperature

Fig. 10 - Typical Capacitance Vs. Drain-to-Source Voltage

Fig. 11 - Typical Gate Charge Vs. Gate-to-Source Voltage

IRF830, IRF831, IRF832, IRF833 IRF830R, IRF831R, IRF832R, IRF833R

Fig. 12 — Typical On-Resistance Vs. Drain Current

Fig. 13 — Maximum Drain Current Vs. Case Temperature

Fig. 14a -- Clamped Inductive Test Circuit

Fig. 15a - Unclamped Energy Test Circuit

Fig. 14b — Clamped Inductive Waveforms

Fig. 15b — Unclamped Energy Waveforms

Fig. 16 - Switching Time Test Circuit

Fig. 17 — Gate Charge Test Circuit