LAB8

Siddhant Gupta - 202201272

Q1. Problem Definition

The program will take three inputs: day, month, and year. It should validate these inputs and return the previous date or an error message for invalid dates.

Equivalence Partitioning

- Valid Dates: Combinations of day, month, and year that form valid dates.
- **Invalid Dates**: Combinations that do not conform to the rules (e.g., out-of-range values).

Boundary Value Analysis

- Lower Boundaries: The lowest valid values for day, month, and year.
- **Upper Boundaries**: The highest valid values for day, month, and year.
- Transition Values: Values that are just inside or outside of valid ranges.

Test Cases

Here are the test cases organized into equivalence classes and boundary values:

Tester Action and Input Data	Expected Outcome	Category
Previous date with input (1, 1, 1900)	(31, 12, 1899)	Valid Date
Previous date with input (1, 2, 2000)	(31, 1, 2000)	Valid Date
Previous date with input (1, 3, 2015)	(29, 2, 2015)	Valid Date
Previous date with input (1, 4, 2000)	(31, 3, 2000)	Valid Date
Previous date with input (1, 5, 2015)	(30, 4, 2015)	Valid Date
Previous date with input (1, 12, 2015)	(30, 11, 2015)	Valid Date
Previous date with input (1, 6, 1900)	(31, 5, 1900)	Valid Date
Previous date with input (1, 13, 2000)	An Error message	Invalid Month

Previous date with input (32, 1, 2000)	An Error message	Invalid Day
Previous date with input (1, 1, 1899)	An Error message	Invalid Year
Previous date with input (1, 2, 2016)	An Error message	Invalid Year
Previous date with input (0, 1, 2000)	An Error message	Invalid Day
Previous date with input (1, 0, 2000)	An Error message	Invalid Month
Previous date with input (1, 1, 2015)	(31, 12, 2014)	Valid Date
Previous date with input (29, 2, 2016)	(28, 2, 2016)	Valid Date (Leap Year)
Previous date with input (1, 2, 2015)	(31, 1, 2015)	Valid Date
Previous date with input (1, 2, 2001)	(31, 1, 2001)	Valid Date

Previous Date Calculation

```
def previous_date(day, month,
    year):# Check for invalid input
    if year < 1900 or year > 2015:
        return "An Error message" # Invalid Year
    if month < 1 or month > 12:
        return "An Error message" # Invalid
    Monthif day < 1 or day > 31:
        return "An Error message" # Invalid Day

# Logic for calculating the previous date
# Assuming the implementation is completed here...
```

# Test Cases			
<pre>print(previous date(1,</pre>	1, 1900))	# Expected:	(31, 12, 1899)
<pre>print(previous date(1,</pre>	2, 2000))	# Expected:	(31, 1, 2000)

```
print(previous_date(1, 13, 2000)) # Expected: An Error message
(Invalid Month)

print(previous_date(32, 1, 2000)) # Expected: An Error message
(Invalid Day)

print(previous_date(1, 1, 1899)) # Expected: An Error
message(Invalid Year)
```

Equivalence Partitioning Test Cases

Category	Input (day, month, year)	Expected Outcome
Valid Date	(1, 1, 1900)	(31, 12, 1899)
Valid Date	(1, 2, 2000)	(31, 1, 2000)
Valid Date	(1, 3, 2015)	(29, 2, 2015)
Valid Date	(1, 4, 2000)	(31, 3, 2000)
Valid Date	(1, 5, 2015)	(30, 4, 2015)
Valid Date	(1, 12, 2015)	(30, 11, 2015)
Valid Date	(1, 6, 1900)	(31, 5, 1900)
Invalid Month	(1, 13, 2000)	An Error message

Invalid Day	(32, 1, 2000)	An Error message
Invalid Year	(1, 1, 1899)	An Error message
Invalid Year	(1, 2, 2016)	An Error message
Invalid Day	(0, 1, 2000)	An Error message
Invalid Month	(1, 0, 2000)	An Error message

Boundary Value Analysis Test Cases

Boundary Category	Input (day, month, year)	Expected Outcome
Lower Boundary Valid	(1, 1, 1900)	(31, 12, 1899)
Lower Boundary Invalid	(1, 1, 1899)	An Error message
Lower Boundary Invalid	(1, 0, 2000)	An Error message
Lower Boundary Invalid	(0, 1, 2000)	An Error message
Upper Boundary Valid	(1, 12, 2015)	(30, 11, 2015)
Upper Boundary Invalid	(1, 13, 2015)	An Error message
Upper Boundary Invalid	(1, 12, 2016)	An Error message
Transition to Leap Year	(29, 2, 2016)	(28, 2, 2016)
Transition from Leap Year	(1, 3, 2015)	(29, 2, 2015)
Transition from End of Month	(1, 4, 2000)	(31, 3, 2000)
	(1, 2, 2016)	An Error message

	(0, 1, 2000)	An Error message
	(1, 0, 2000)	An Error message
	(31, 12, 2014)	Valid Date
Previous date with input (29, 2, 2016)	(28, 2, 2016)	Valid Date (Leap Year)
Previous date with input (1, 2, 2015)	(31, 1, 2015)	Valid Date
Previous date with input (1, 2, 2001)	(31, 1, 2001)	Valid Date

• Linear Search

```
#include <stdio.h>
int linearSearch(int v, int a[], int length) {
    if (a == NULL) {
        printf("Error: Null array provided.\n");
        return -1; // Handle error appropriately
    }
    for (int i = 0; i < length; i++) {
        if (a[i] == v) {
           return i; // Return the index of the found value
        }
    return -1; // Value not found
}
// Test
Casesint
main() {
    int arr1[] = \{1, 2, 3, 4, 5\};
   printf("%d\n", linearSearch(3, arr1, 5)); // Expected: 2 (3 found
at index 2)
   printf("%d\n", linearSearch(5, arr1, 4)); // Expected: -1 (5 not
   printf("%d\n", linearSearch(3, NULL, 0)); // Expected: Error
message
   return 0;
```

Test Cases for linearSearch

Equivalence Partitioning

Category Input (value, array) Expected Outcome

Valid Search	(3, (int[]){1, 2, 3, 4, 5}, 5)	2 (3 found at index 2)
Valid Search	(1, (int[]){1, 1, 1, 1}, 4)	0 (1 found at index 0)
Not Found	(5, (int[]){1, 2, 3, 4}, 4)	-1 (5 not found)
Empty Array	(3, (int[]){}, 0)	-1 (empty array)
Null Array	(3, NULL, 0)	Error message

Boundary Value Analysis

Boundary Category	Input (value, array)	Expected Outcome
0	(4. (1. (57) (4.) 4.)	0 (1 found at
Single Element	(1, (int[]){1}, 1)	index 0)
Not Found Single	(0. (1. (57) (4) 4)	-1 (2 not
Element	(2, (int[]){1}, 1)	found)

Multiple Elements	(3, (int[]){1, 2, 3, 4, 5}, 5)	2 (3 found at index 2)
First Element	(1, (int[]){1, 2, 3}, 3)	0 (1 found at index 0)
Last Element	(3, (int[]){1, 2, 3}, 3)	2 (3 found at index 2)

P2. Count Items

```
#include <stdio.h>
int countItem(int v, int a[], int length) {
    // Check if the array is NULL or if the length is non-positive
    if (a == NULL) {
        printf("Error: Null array provided.\n");
        return -1; // Handle error appropriately
    }
    if (length <= 0) {</pre>
```

```
printf("Error: Invalid length provided.\n");
        return -1; // Handle error appropriately
    }
    int count = 0;
    for (int i = 0; i < length; i++) {
        if (a[i] == v) {
            count++;
        }
    return count;
}
int main() {
    // Test cases
    int array1[] = \{1, 2, 3, 1, 4, 1\};
    int array2[] = \{5, 5, 5, 5, 5\};
    int array3[] = \{0, 1, 2, 3, 4, 5\};
    // Test case 1
   printf("Test case 1: %d\n", countItem(1, array1, 6)); // Expected
output: 3 (three 1s in array1)
    // Test case 2
   printf("Test case 2: %d\n", countItem(5, array2, 5)); // Expected
output: 5 (five 5s in array2)
    // Test case 3
    printf("Test case 3: %d\n", countItem(2, array3, 6)); // Expected
output: 1 (one 2 in array3)
    // Test case 4: Testing with a null array
   printf("Test case 4: %d\n", countItem(1, NULL, 6)); // Expected
output: -1 (error for null array)
    // Test case 5: Testing with a zero length
   printf("Test case 5: %d\n", countItem(1, array1, 0)); // Expected
output: -1 (error for invalid length)
```

```
return 0;
```

Test Cases for countItem

Normal Test Cases

Category	Input (value, array)	Expected Outcome
Normal Case	(3, (int[]){1, 2, 3, 4, 5}, 5)	1 (3 appears once)
Normal Case	(1, (int[]){1, 1, 1, 1}, 4)	4 (1 appears four times)
Normal Case	(5, (int[]){1, 2, 3, 4}, 4)	0 (5 not found)
Normal Case	(0, (int[]){0, 0, 0, 0}, 4)	4 (0 appears four times)

Normal	(2, (int[]){2, 3, 2, 4, 2}, 5)	3 (2 appears
Case	(2, (III([])(2, 0, 2, 4, 2), 0)	three times)

Equivalence Partitioning Test Cases

Category	Input (value, array)	Expected Outcome
Valid Search	(3, (int[]){1, 2, 3, 4, 5}, 5)	1 (3 appears once)
Valid Search	(1, (int[]){1, 1, 1, 1}, 4)	4 (1 appears four times)
Not Found	(5, (int[]){1, 2, 3, 4}, 4)	0 (5 not found)
Empty Array	(3, (int[]){}, 0)	0 (empty array)
Null Array	(3, NULL, 0)	Error message

Boundary Value Analysis Test Cases

Boundary Category	Input (value, array)	Expected Outcome		Expected Outcome
Single Element	(1, (int[]){1}, 1)	1	(1	appears once)
Not Found Single				

Element	(2, (int[]){1}, 1)	0	(2	not found)
Multiple Elements	(3, (int[]){1, 2, 3, 4, 5}, 5)	1	(3	appears once)
All Elements Same	(5, (int[]){5, 5, 5, 5, 5}, 4)	4	(5	appears four times)
All Elements Different	(1, (int[]){2, 3, 4}, 3)	0 (1 not found)		not found)
	(1, 13, 2015)	An Error message		

· Binary Search

```
#include <stdio.h>
int binarySearch(int v, int a[], int length) {
    if (a == NULL || length <= 0) {</pre>
        printf("Error: Null or empty array
        provided.\n");return -1; // Handle error
        appropriately
    int lo = 0, hi = length -
    1; while (lo <= hi) {
        int mid = (lo + hi) /
        2; if (v == a[mid]) {
            return mid; // Return the index of the found value
        } else if (v < a[mid])</pre>
            {hi = mid - 1;}
        } else {
           lo = mid + 1;
        }
    }
   return -1; // Value not found
```

```
// Test
Casesint
main() {
    int arr2[] = {1, 2, 3, 4, 5};
    printf("%d\n", binarySearch(3, arr2, 5)); // Expected: 2 (3 found at index 2)
    printf("%d\n", binarySearch(6, arr2, 5)); // Expected: -1 (6 not found)
    return 0;
}
```

Test Cases for binarySearch

Normal Test Cases

Category	Input (value, array)	Expected Outcome
Normal	(3, (int[]){1, 2, 3, 4, 5}, 5)	2 (3 found at

Case		index 2)
Normal Case	(1, (int[]){1, 2, 3, 4, 5}, 5)	0 (1 found at index 0)
Normal Case	(5, (int[]){1, 2, 3, 4, 5}, 5)	4 (5 found at index 4)
Normal Case	(6, (int[]){1, 2, 3, 4, 5}, 5)	-1 (6 not found)
Normal Case	(2, (int[]){1, 2, 2, 2, 3}, 5)	1 (first 2 found at index 1)

Equivalence Partitioning Test Cases

Category	Input (value, array)	Expected Outcome
Valid Search	(3, (int[]){1, 2, 3, 4, 5}, 5)	2 (3 found at index 2)
Valid Search	(1, (int[]){1, 1, 1, 1, 1}, 5)	0 (1 found at index 0)
Not Found	(5, (int[]){1, 2, 3, 4}, 4)	-1 (5 not found)
Empty Array	(3, (int[]){}, 0)	-1 (empty

		array)
Null Array	(3, NULL, 0)	Error message

Boundary Value Analysis Test Cases

Boundary Category	Input (value, array)	Expected Outcome
0: 1 51	(4 (' (17)(4) 4)	0 (1 found at
Single Element	(1, (int[]){1}, 1)	index 0)
Not Found Single	(2 (0 -20) - 1)	-1 (2 not
Element	(2, (int[]){1}, 1)	found)
		2 (3 found at
Multiple Elements	(3, (int[]){1, 2, 3, 4, 5}, 5)	index 2)
	(4 (4 (77) (4 0 0) 0)	0 (1 found at
First Element	(1, (int[]){1, 2, 3}, 3)	index 0)

P4.Problem Definition

The triangle function takes three integer parameters representing the lengths of the sides of a triangle. It returns:

- 0 for equilateral (all sides equal)
- 1 for isosceles (two sides equal)
- 2 for scalene (all sides different)
- 3 for invalid (the sides cannot form a triangle)

Triangle Classification

```
#include <stdio.h>
#define EQUILATERAL 0
#define ISOSCELES 1
#define SCALENE 2
#define INVALID 3

int triangle(int a, int b, int c) {
   if (a <= 0 || b <= 0 || c <= 0)
   {</pre>
```

```
return INVALID; // Handle negative or zero lengths
    if (a >= b + c || b >= a + c || c >= a + b) {
        return INVALID; // Check triangle inequality
    if (a == b && b == c) {
        return EQUILATERAL; // All sides equal
    if (a == b || a == c || b == c) {
       return ISOSCELES; // Two sides
        equal
    }
   return SCALENE; // All sides different
}
// Test
Casesint
main() {
   printf("%d\n", triangle(3, 3, 3)); // Expected: 0 (Equilateral)
   printf("%d\n", triangle(3, 3, 4)); // Expected: 1 (Isosceles)
   printf("%d\n", triangle(1, 2, 3)); // Expected: 3 (Invalid)
   return 0;
}
```

Test Cases for triangle

Normal Test Cases

Category	Input (a, b, c)		Expected Outcome
Equilateral Triangle	(3, 3, 3)	0	equilateral)
Isosceles Triangle	(3, 3, 4)	1	(isosceles)
Isosceles Triangle	(4, 3, 3)	1	(isosceles)
Scalene Triangle	(3, 4, 5)	2	(scalene)
Invalid Triangle	(1, 2, 3)	3	(invalid)

Equivalence Partitioning Test Cases

Category	Input (a, b, c)		Expected Outcome
Valid Equilateral	(5, 5, 5)	0 (6	equilateral)
Valid Isosceles	(2, 2, 3)	1	(isosceles)
Valid Scalene	(2, 3, 4)	2	(scalene)
Invalid (Zero Length)	(0, 3, 4)	3	(invalid)
Invalid (Negative)	(-1, 2, 2)	3	(invalid)
Invalid Triangle	(5, 1, 3)	3	(invalid)

Boundary Value Analysis Test Cases

Boundary Category	Input (a, b, c)		Expected Outcome
Valid Triangle	(1, 1, 1)	0	(equilateral)
Valid Triangle	(1, 1, 2)	1	(isosceles)
Invalid Triangle	(1, 1, 3)	3	(invalid)
Invalid Triangle	(2, 2, 4)	3	(invalid)
Valid Scalene	(3, 4, 5)	2	(scalene)
Valid Scalene	(5, 3, 4)	2	(scalene)
	(1, 12, 2016)	An Error message	

P5.

• Prefix Function

```
java
Сору
code
public class PrefixTest {
   public static boolean prefix(String s1, String s2) {
        if (s1.length() > s2.length()) {
            return false; // s1 cannot be a prefix if longer
        for (int i = 0; i < s1.length(); i++)
            {if (s1.charAt(i) != s2.charAt(i))
                return false; // Found a mismatch
        return true; // All characters matched
    }
   public static void main(String[] args) {
        System.out.println(prefix("abc", "abcde")); // Expected:
        trueSystem.out.println(prefix("abc", "ab"));// Expected:
        false
```

Test Cases for prefix

Normal Test Cases

Category	Input (s1, s2)	Expected Outcome
Exact Match	("abc", "abcde")	TRUE
Partial Match	("ab", "abcde")	TRUE
No Match	("abc", "ab")	FALSE
Different Characters	("abc", "def")	FALSE

Equivalence Partitioning Test Cases

Category	Input (s1, s2)	Expected
Category	111put (31, 32)	

		Outcome
Valid Prefix	("abc", "abcde")	TRUE
Valid Prefix	("ab", "abcd")	TRUE
Not a Prefix	("abc", "abcd")	FALSE
Empty Prefix	("", "abcde")	TRUE
Longer s1	("abcde", "abc")	FALSE

Boundary Value Analysis Test Cases

Boundary Category	Input (s1, s2)	Expected Outcome
Same Length	("abc", "abc")	TRUE
Same Length, No Match	("abc", "abd")	FALSE
One Character Match	("a", "abc")	TRUE

One Character No Match	("b", "abc")	FALSE
Single Character Prefix	("a", "a")	TRUE
Both Empty	("", "")	TRUE

P6. a) Identify the Equivalence Classes

- Valid Triangles:
 - Equilateral Triangle: All sides are equal (A = B = C).
 - Isosceles Triangle: Two sides are equal $(A = B \neq C, A = C \neq B, B = C \neq A)$.
 - Scalene Triangle: All sides are different (A \neq B, B \neq C, A \neq C).
 - **Right-Angled Triangle:** Fulfills the Pythagorean theorem $(A^2 + B^2 = C^2)$ or any permutation).
- Invalid Triangles:
 - **Non-Triangle:** Fails the triangle inequality $(A + B \le C, A + C \le B, B + C \le A)$.
 - Non-Positive Inputs: Any side length is less than or equal to zero (A \leq 0, B \leq 0, C \leq 0).
- Identify Test Cases for Equivalence Classes

t	Test Case Input (A, B, C)	Expected Outcome
Equilateral Triangle	(3.0, 3.0, 3.0)	Equilateral
Isosceles Triangle	(3.0, 3.0, 4.0)	Isosceles
Isosceles Triangle	(4.0, 3.0, 3.0)	Isosceles
Scalene Triangle	(3.0, 4.0, 5.0)	Scalene
Right-Angled Triangle	(3.0, 4.0, 5.0)	Right-angled
Non-Triangle	(1.0, 2.0, 3.0)	Non-triangle
Non-Positive Input	(-1.0, 2.0, 2.0)	Non-triangle
Non-Positive Input	(0.0, 2.0, 2.0)	Non-triangle

Boundary Condition: A + B > C (Scalene Triangle)

Test Case Input (A, B, C)	Expected Outcome
(2.0, 3.0, 4.0)	Scalene
(3.0, 4.0, 5.0)	Scalene
(1.0, 2.0, 2.9)	Scalene

Boundary Condition: A = C (Isosceles Triangle)

Test Case Input (A, B, C)	Expected Outcome
(3.0, 4.0, 3.0)	Isosceles
(2.0, 1.0, 2.0)	Isosceles

Boundary Condition: A = B = C (Equilateral Triangle)

Test Case Input (A, B, C)	Expected Outcome
(3.0, 3.0, 3.0)	Equilateral
(1.0, 1.0, 1.0)	Equilateral

• Boundary Condition: A² + B² = C² (Right-Angled Triangle)

Test Case Input (A, B, C)	Expected Outcome	
(3.0, 4.0, 5.0)	Right-angled	

(5.0, 12.0, 13.0)	Right-angled
(3.0, 12.0, 13.0)	Nigni-angleu

• Non-Triangle Case Test Cases

Test Case Input (A, B, C)	Expected Outcome
(1.0, 1.0, 3.0)	Non-triangle
(2.0, 2.0, 5.0)	Non-triangle
(2.0, 1.0, 2.0)	Non-triangle

• Non-Positive Input Test Cases

Test Case Input (A, B, C)	Expected Outcome
(0.0, 2.0, 2.0)	Non-triangle
(-1.0, 1.0, 1.0)	Non-triangle
(1.0, 0.0, 1.0)	Non-triangle