Vladimir Podolskii

Computer Science Department, Higher School of Economics

Outline

Linearity of Expectation

Birthday Problem

 Suppose there are two random variables f and g over the same probability space

- Suppose there are two random variables f and g over the same probability space
- The outcomes for f are a_1,\dots,a_k , the outcomes for g are b_1,\dots,b_k , the probabilities are p_1,\dots,p_k

- Suppose there are two random variables f and g over the same probability space
- The outcomes for f are a_1,\dots,a_k , the outcomes for g are b_1,\dots,b_k , the probabilities are p_1,\dots,p_k
- Consider f + g

- Suppose there are two random variables f and g over the same probability space
- The outcomes for f are a_1,\dots,a_k , the outcomes for g are b_1,\dots,b_k , the probabilities are p_1,\dots,p_k
- Consider f + g
- It is also a random variable over the same probability distribution

- Suppose there are two random variables f
 and g over the same probability space
- The outcomes for f are a_1,\dots,a_k , the outcomes for g are b_1,\dots,b_k , the probabilities are p_1,\dots,p_k
- Consider f + g
- It is also a random variable over the same probability distribution
- Values of f+g are a_1+b_1,\ldots,a_k+b_k

- Suppose there are two random variables f and g over the same probability space
- The outcomes for f are a_1,\dots,a_k , the outcomes for g are b_1,\dots,b_k , the probabilities are p_1,\dots,p_k
- Consider f + g
- It is also a random variable over the same probability distribution
- Values of f+g are a_1+b_1,\dots,a_k+b_k
- Can we say anything about the expectation of f + q?

- Suppose there are two random variables f and g over the same probability space
- The outcomes for f are a_1,\dots,a_k , the outcomes for g are b_1,\dots,b_k , the probabilities are p_1,\dots,p_k
- Consider f + g
- It is also a random variable over the same probability distribution
- Values of f+g are a_1+b_1,\dots,a_k+b_k
- Can we say anything about the expectation of f + g? Yes!

Linearity of Expectation

Suppose there are random variables f and g on the same probability space. Then

$$\mathsf{E}(f+g) = \mathsf{E}f + \mathsf{E}g$$

Linearity of Expectation

Suppose there are random variables f and g on the same probability space. Then

$$\mathsf{E}(f+g) = \mathsf{E}f + \mathsf{E}g$$

· Indeed, we have

$$\begin{split} & \mathsf{E}(f+g) = (f_1+g_1)p_1 + \ldots + (f_k+g_k)p_k \\ & = (f_1p_1 + \ldots + f_kp_k) + (g_1p_1 + \ldots + g_kp_k) = \mathsf{E}f + \mathsf{E}g \end{split}$$

Linearity of Expectation

Suppose there are random variables f and g on the same probability space. Then

$$\mathsf{E}(f+g) = \mathsf{E}f + \mathsf{E}g$$

Linearity is a very useful property

Linearity of Expectation

Suppose there are random variables f and g on the same probability space. Then

$$\mathsf{E}(f+g) = \mathsf{E}f + \mathsf{E}g$$

- Linearity is a very useful property
- Greatly simplifies computation of expectations

Problem

Problem

We throw two dices. What is the expected value of the sum of two numbers on them?

 If we compute it directly, we need to calculate probabilities of all values of the sum

Problem

- If we compute it directly, we need to calculate probabilities of all values of the sum
- Not hard, but requires time

Problem

We throw two dices. What is the expected value of the sum of two numbers on them?

Instead we can consider two random variables on our probability distribution

Problem

- Instead we can consider two random variables on our probability distribution
- f_1 is an outcome of the first dice

Problem

- Instead we can consider two random variables on our probability distribution
- f_1 is an outcome of the first dice
- f_2 is an outcome of the second dice

Problem

- Instead we can consider two random variables on our probability distribution
- f_1 is an outcome of the first dice
- f_2 is an outcome of the second dice
- We are interested in $\mathsf{E}(f_1+f_2)$

Problem

- Instead we can consider two random variables on our probability distribution
- f_1 is an outcome of the first dice
- f_2 is an outcome of the second dice
- We are interested in $\mathsf{E}(f_1+f_2)$
- We already computed the expected value of one dice throw: ${\sf E} f_1 = {\sf E} f_2 = 3.5$

Problem

- Instead we can consider two random variables on our probability distribution
- f_1 is an outcome of the first dice
- f_2 is an outcome of the second dice
- We are interested in $\mathsf{E}(f_1+f_2)$
- We already computed the expected value of one dice throw: ${\rm E} f_1 = {\rm E} f_2 = 3.5$
- Thus, $E(f_1 + f_2) = Ef_1 + Ef_2 = 7$

Problem

Problem

We toss a coin 5 times in a row. What is the expected number of tails?

• Again, can compute directly

Problem

- Again, can compute directly
- But requires computation of probabilities of all possible numbers of tails

Problem

- Again, can compute directly
- But requires computation of probabilities of all possible numbers of tails
- Need to recall Combinatorics, and so on...

Problem

- Again, can compute directly
- But requires computation of probabilities of all possible numbers of tails
- Need to recall Combinatorics, and so on...
- Linearity, on the other hand, can give the answer almost immediately

Problem

We toss a coin 5 times in a row. What is the expected number of tails?

• Let f_i be an outcome of the i-th coin: it is 1 if the outcome is "tails" and it is 0 if it is "heads"

Problem

- Let f_i be an outcome of the i-th coin: it is 1 if the outcome is "tails" and it is 0 if it is "heads"
- We are interested in ${\sf E}(f_1 + f_2 + f_3 + f_4 + f_5)!$

Problem

- Let f_i be an outcome of the i-th coin: it is 1 if the outcome is "tails" and it is 0 if it is "heads"
- We are interested in $\mathsf{E}(f_1+f_2+f_3+f_4+f_5)!$
- It is easy to compute the expectation for a single coin: ${\sf E} f_i=0\times \tfrac12+1\times \tfrac12=\tfrac12$

Problem

- Let f_i be an outcome of the i-th coin: it is 1 if the outcome is "tails" and it is 0 if it is "heads"
- We are interested in $\mathsf{E}(f_1+f_2+f_3+f_4+f_5)!$
- It is easy to compute the expectation for a single coin: ${\sf E} f_i=0\times \tfrac12+1\times \tfrac12=\tfrac12$
- Thus, $\mathsf{E}(f_1+f_2+f_3+f_4+f_5) = \\ \mathsf{E}f_1+\mathsf{E}f_2+\mathsf{E}f_3+\mathsf{E}f_4+\mathsf{E}f_5 = 2.5$

Outline

Linearity of Expectation

Birthday Problem

Birthday Problem

Consider 28 randomly chosen people. Consider the number of pairs (i,j) such that the i-th person has a birthday on the same day as the j-th person. Show that the expectation of this number is greater than 1

Birthday Problem

Consider 28 randomly chosen people. Consider the number of pairs (i,j) such that the i-th person has a birthday on the same day as the j-th person. Show that the expectation of this number is greater than 1

 If there are two people with the same birthday, they will contribute 1 to the number of pairs in the problem

Birthday Problem

Consider 28 randomly chosen people. Consider the number of pairs (i,j) such that the i-th person has a birthday on the same day as the j-th person. Show that the expectation of this number is greater than 1

- If there are two people with the same birthday, they will contribute 1 to the number of pairs in the problem
- If there are three people with the same birthday, they form 3 pairs

Birthday Problem

Consider 28 randomly chosen people. Consider the number of pairs (i,j) such that the i-th person has a birthday on the same day as the j-th person. Show that the expectation of this number is greater than 1

- If there are two people with the same birthday, they will contribute 1 to the number of pairs in the problem
- If there are three people with the same birthday, they form 3 pairs
- So they will contribute 3 to the number of pairs in the problem

Birthday Problem

- Looks surprising: not many people
- But we will prove it!

Birthday Problem

Consider 28 randomly chosen people. Consider the number of pairs (i,j) such that the i-th person has a birthday on the same day as the j-th person. Show that the expectation of this number is greater than 1

Formalization is needed

Birthday Problem

- · Formalization is needed
- We assume that birthdays are distributed uniformly among 365 days of the year

Birthday Problem

- · Formalization is needed
- We assume that birthdays are distributed uniformly among 365 days of the year
- We will not discuss it, but a nonuniform distribution on days of the year only increases the expectation!

Birthday Problem

- · Formalization is needed
- We assume that birthdays are distributed uniformly among 365 days of the year
- We will not discuss it, but a nonuniform distribution on days of the year only increases the expectation!
- · People are chosen independently

• We will use the linearity of expectation; denote the number of pairs of people with the same birthday by f

- We will use the linearity of expectation; denote the number of pairs of people with the same birthday by f
- Enumerate people from 1 to 28; consider a random variable g_{ij} that is equal to 1 if persons i and j have birthday on the same day, and is equal to 0 otherwise

- We will use the linearity of expectation; denote the number of pairs of people with the same birthday by f
- Enumerate people from 1 to 28; consider a random variable g_{ij} that is equal to 1 if persons i and j have birthday on the same day, and is equal to 0 otherwise
- Observation: f is equal to the sum of g_{ij} over all (unordered) pairs of i and j!

- We will use the linearity of expectation; denote the number of pairs of people with the same birthday by f
- Enumerate people from 1 to 28; consider a random variable g_{ij} that is equal to 1 if persons i and j have birthday on the same day, and is equal to 0 otherwise
- Observation: f is equal to the sum of g_{ij} over all (unordered) pairs of i and j!
- · Why?

Consider an example of 5 people

Five people: 1, 2, 3, 4, 5

Consider an example of 5 people

Five people: 1, 2, 3, 4, 5

List of all pairs:

{1,2}	{2,4}
{1,3}	{2,5}
{1,4}	{3,4}
{1,5}	{3,5}
{2,3}	{4,5}

Consider an example of 5 people

Five people: 1, 2, 3, 4, 5

List of all pairs:

```
 \begin{array}{llll} \{ \hbox{1,2} \} & g_{1,2} = 0 & \{ \hbox{2,4} \} & g_{2,4} = 0 \\ \{ \hbox{1,3} \} & g_{1,3} = 1 & \{ \hbox{2,5} \} & g_{2,5} = 0 \\ \{ \hbox{1,4} \} & g_{1,4} = 0 & \{ \hbox{3,4} \} & g_{3,4} = 0 \\ \{ \hbox{1,5} \} & g_{1,5} = 0 & \{ \hbox{3,5} \} & g_{3,5} = 0 \\ \{ \hbox{2,3} \} & g_{2,3} = 0 & \{ \hbox{4,5} \} & g_{4,5} = 1 \\ \end{array}
```

Consider an example of 5 people

Five people: 1, 2, 3, 4, 5

List of all pairs:

Note that f is the number of pairs $\{i, j\}$ with $g_{ij} = 1$.

Consider an example of 5 people

Five people: 1, 2, 3, 4, 5

List of all pairs:

Note that f is the number of pairs $\{i,j\}$ with $g_{ij}=1$. The sum of g_{ij} is the same number!

Birthday Problem

Birthday Problem

Consider 28 people randomly chosen people. Consider the number of pairs of people among them having birthday on the same day. Show that the expectation of this number is greater than 1

Let's get back to the proof

Birthday Problem

- Let's get back to the proof
- We know that $\mathsf{E} f$ is equal to the sum of $\mathsf{E} g_{ij}$ over all pairs $\{i,j\}$

Birthday Problem

- Let's get back to the proof
- We know that $\mathsf{E} f$ is equal to the sum of $\mathsf{E} g_{ij}$ over all pairs $\{i,j\}$
- We need to compute $\mathsf{E} g_{ij}$

Birthday Problem

- Let's get back to the proof
- We know that $\mathsf{E} f$ is equal to the sum of $\mathsf{E} g_{ij}$ over all pairs $\{i,j\}$
- We need to compute $\mathsf{E} g_{ij}$
- We also need to count how many pairs of i and j do we have

• Expectation of individual g_{ij} is easy to compute:

$$\mathsf{E}g_{ij} = 1 \times \frac{1}{365} + 0 \times \frac{364}{365} = \frac{1}{365}$$

• Expectation of individual g_{ij} is easy to compute:

$$\mathrm{E}g_{ij} = 1 \times \frac{1}{365} + 0 \times \frac{364}{365} = \frac{1}{365}$$

• Why $\frac{1}{365}$?

- Expectation of individual $g_{i\,i}$ is easy to compute:

$$\mathrm{E}g_{ij} = 1 \times \frac{1}{365} + 0 \times \frac{364}{365} = \frac{1}{365}$$

- Why $\frac{1}{365}$?
- There are 365×365 outcomes for birthdays of two people

• Expectation of individual g_{ij} is easy to compute:

$$\mathrm{E}g_{ij} = 1 \times \frac{1}{365} + 0 \times \frac{364}{365} = \frac{1}{365}$$

- Why $\frac{1}{365}$?
- There are 365×365 outcomes for birthdays of two people
- And only 365 outcomes with birthdays on the same day

• How many pairs of i and j do we have?

- How many pairs of i and j do we have?
- There are 28 people in total

- How many pairs of i and j do we have?
- There are 28 people in total
- There are $\binom{28}{2} = \frac{28 \times 27}{2} = 378$ ways to choose an unordered pair among them

- How many pairs of i and j do we have?
- There are 28 people in total
- There are $\binom{28}{2} = \frac{28 \times 27}{2} = 378$ ways to choose an unordered pair among them
- Short reminder: we have 28 options for the first one in the pair, we have 27 options for the second one, and we counted each pair twice

Birthday Problem

Birthday Problem

Consider 27 people randomly chosen people. Consider the number of pairs of people among them having birthday on the same day. Show that the expectation of this number is greater than 1

Finally, we have the following

Birthday Problem

- Finally, we have the following
- Ef is the sum of E g_{ij} over all pairs $\{i,j\}$

Birthday Problem

- Finally, we have the following
- Ef is the sum of E g_{ij} over all pairs $\{i,j\}$
- $\mathsf{E}g_{ij} = \tfrac{1}{365}$

Birthday Problem

- Finally, we have the following
- Ef is the sum of $\mathsf{E} g_{ij}$ over all pairs $\{i,j\}$
- $\mathsf{E}g_{ij} = \tfrac{1}{365}$
- There are 378 pairs of people

Birthday Problem

- Finally, we have the following
- Ef is the sum of Eg_{ij} over all pairs $\{i, j\}$
- $\mathsf{E}g_{ij} = \tfrac{1}{365}$
- There are 378 pairs of people
- · Overall, we have

$$\mathsf{E}f = 378 \times \frac{1}{365} > 1$$