人物検出 RTC マニュアル

マニュアル目次

- 1. 本コンポーネントの概要
- 2. 開発環境
- 3. 本コンポーネントを使用するまでの手順
 - (1) Kinect SDK のインストール
 - (2) コンポーネントの準備
- 4. 本コンポーネントの使用方法
 - (1) Kinect v2の仕様
 - (2) 起動時の注意点
 - (3) 出力ポート・出力データについて
 - (4) コンフィグレーションについて
- 5. 問い合わせ先

1. 本コンポーネントの概要

PeopleDetectionRTC は、Kinect v2 を用いて人物を検出する RTC です。RTC の具体的な使用方法などは『4. コンポーネントの使用方法』に記述してあります。

Kinect v2 を使用するには USB3.0 のポートが必要となります。

2. 開発環境

本コンポーネントの開発環境は以下の通りです。

OS	Windows 10 Pro (64bit)
コンパイラ	Microsoft Visual Studio Community 2013
RT ミドルウェア (C++)	OpenRTM-aist-1.1.2-RELEASE
Eclipse	Eclipse SDK-4.4.2
CMake	CMake-3.5.2
Kinect SDK	Kinect for Windows SDK v2.0

<次ページへ続く>

3. 本コンポーネントを使用するまでの手順

- (1) Kinect SDK のインストール
- [1] 【<u>https://developer.microsoft.com/en-us/windows/kinect/develop</u>】のウェブページにアクセスし、『Get the Kinect for Windows SDK』をクリックします。

[2] 『Continue』をクリックします。

[3] ①については登録してもしなくてもよいので適当な方を選んで、②の『Next』をクリックすると、インストーラのダウンロードが始まります。

[4]ダウンロードしたインストーラを実行し、Kinect SDK をインストールします。

(注意:インストーラを実行する前に Kinect v2 はパソコンから外しておくこと)

(2) コンポーネントの準備

- OCMake について
 - [1] CMake とダウンロードした PeopleDetectionRTC のフォルダを開きます。
 - [2] ファイル内の CMakeLists.txt を CMake の『Where is the source code』のテキストボックスにドラック&ドロップします。

- [3] ①『Where to build the binaries』のテキストボックス内の最後に【/build2】を追加します。
 - ②『Configure』をクリックします。

[4] Create Directory のウィンドウが出たら、『Yes』をクリックします。

- [5] ①『Specify the generator for this project』のうち、自分が使用している Visual Studio のバージョンを選択します。
 - ②『Finish』をクリックします。

[6] 『Configure』の下のテキストボックスに、【Configuring done】と出てきたら、『Generate』をクリックします。

[7] 先ほどのテキストボックスに【Generating done】とでてきたら CMake を閉じて、CMakeLists.txt と同じ階層にある build2 フォルダ内の SoundDirection.sln を開きます。

[9] ソリューションエクスプローラー内の『PeopleDetectionComp』を右クリックし、『ビルド』をクリックします。

[10] build2 フォルダ→src フォルダ→Release フォルダ (Debug) フォルダ内に、PeopleDetectionComp.exe ができます。

4. 本コンポーネントの使用方法

(1) Kinect v2の仕様

下記の表は、本コンポーネントに関わる Kinect v2 の動作仕様になります。

Color 画像	1920x1080
Color フレームレート	30 fps
水平視野角	70 deg
垂直視野角	60 deg
人の検出	0~6人
人の検出距離範囲	0.5∼4.5 m
検出骨格数	25 点 / 1 人

(2) 起動時の注意点

PeopleDetectionRTC は Kinect v2 をパソコンに接続した後に起動してください。

(3) 出力ポート・出力データについて

	名前	データ型	概要
出力ポー	num_people	TimedLong	検出した人数を出力
1	positions	TimedDoubleSeq	検出した人の指定関節*1の xyz 座標を出力*2

^{*1} 指定関節については(4)コンフィグレーションにて説明します。

positions.data の配列の個数は 18 個となっています。単位は m (メートル) です。

データは

positions. data[0]: 検出された1人目の指定関節の x 座標 positions. data[1]: 検出された1人目の指定関節の y 座標 positions. data[2]: 検出された1人目の指定関節の z 座標 positions. data[3]: 検出された2人目の指定関節の x 座標 positions. data[4]: 検出された2人目の指定関節の y 座標 positions. data[5]: 検出された2人目の指定関節の z 座標 positions. data[6]: 検出された3人目の指定関節の x 座標

のように入っています。

また、検出人数が6人より少ない場合には、各配列には0が入った状態で出力されます。

^{*2} 配列でのこれらのデータの出力方法について

(4) コンフィグレーション

ompor	entName: PeopleD	Detecti ConfigurationSet: default		編集
ctive	config	name	value	適用
	default joint_for_get	joint_for_getting_position	1	
		person_or_people	people	キャンセル
		yardstick	xz	
		Julianiek		

これらのコンフィグレーションは『編集』をクリックすることで変更することができます。『編集』ボタンをクリックすると次のようなウィンドウが表示されます。

これらを変更し『OK』をクリックすることで変更が適用されます。

名前	データ型	概要
joint_for_getting	int	検出した人物の関節のうち、どこの関節の位置を出力するか* ³
_position		
person_or_people	String	1人のみ検出するか複数人検出するか*4
yardstick	string	1人のみ検出する場合、Kinect から人までの距離として、z座標のみの距離を
		使用するか、x 座標 z 座標の距離を使用するか*4

*3 関節について

関節の番号は右図のようになっています。 デフォルトでは1の位置の関節位置を取得する よう設定されています。

*4 1人検出モードについて

本コンポーネントは Kinect v2 の視野内にいるすべての人を検出するのではなく、Kinect v2 から最も距離の近い 位置にいる人のみを検出するモードを使用することができます。

この際、距離の取り方として①zモード②xzモードがあります。それぞれについて下図に示します。

①z モードの場合の距離は図の赤矢印で示したものとなります。この場合、Kinect v2 から最も距離が近いのは Person②となります。

②xz モードの場合の距離は図の青矢印で示したものとなります。この場合、Kinect v2 から最も距離が近いのは Person①となります。

5. 問い合わせ先

本コンポーネントについての質問がございましたら、以下のメールアドレスまでご連絡ください。

東京理科大学理工学研究科

機械工学専攻2年

佐古 奈津希

mail:7517624@ed.tus.ac.jp
