Physics of Learning Theory

Lecture 1: Probability

February —, 2025 Nilava Metya

1 Introduction

We will recall some probability theory and look at useful deviation or concentration bounds which are frequently used in analyzing algorithms (in learning theory). Recall that a (real-valued) random variable on a probability space (Ω, S, \mathbb{P}) is nothing but a 'measurable function' $X:\Omega\to\mathbb{R}$. Here Ω is the universal or sample space where we think of events in, S is a collection of events in Ω and $\mathbb{P}: S \to [0,1]$ assigns probability to each event in S. The space of events S is constrained to satisfy some obvious rules like Ω is an event, if A is an event then so is $\Omega \setminus A$ and that a countable union of events is an event which makes it sensible to work with the concept of assigning probabilities to each event. We will often say that $\mathbb{P}[A]$ is the probability that event A occurs. If $A = \{a\}$ is a singleton, we always write $\mathbb{P}[a]$ instead of $\mathbb{P}[a]$. The probability function \mathbb{P} is also constrained to a couple of rules, namely, that the probability of the union of a mutually disjoint collection of events, which is an event, is the same as the sum of the probabilities of each of those events and that the probability that Ω occurs is 1. Roughly a random variable is to be thought of as a way of assigning points of the sample space to real numbers which are really real and are more tangible to work with, while respecting the rules of S. Such a random variable induces a map $X^{-1}: 2^{\mathbb{R}} \to S$ by $X^{-1}(A) := \{x \in \Omega \mid X(x) \in S\}$ for any $A \subseteq \mathbb{R}$, and hence induces a probability on \mathbb{R} given by $\mathbb{P}_{\mathbb{R}}[A] = \mathbb{P}[X^{-1}(A)]$ where A is any 'measurable' subset of \mathbb{R} . The random variable being a 'measurable function' precisely means that $X^{-1}(A)$ always lies in S.

$$S \xleftarrow{X^{-1}} 2^{\mathbb{R}}$$

$$\mathbb{P} \downarrow \qquad \mathbb{P}_{\mathbb{R}}$$

$$[0, 1]$$

1.1 Mean

The average or mean of a random variable X, often denoted as $\mathbb{E}[X]$, $\mu(X)$, or simply μ when the context is clear, is $\mathbb{E}[X] = \int_{\Omega} X \, \mathrm{d}\, \mathbb{P}$. For the discrete case, which we will mostly be interested in, this boils down to $\mathbb{E}[X] = \sum_{i \in \Omega} X(i)\mathbb{P}[i]$. Note that if X is an indicator random variable for event A, that is, X = 1 if A occurs and 0 otherwise, then $\mathbb{E}[X] = \mathbb{P}[A]$.

Example 1. Consider tossing a fair coin. Here $\Omega=\{\mathrm{H},\mathrm{T}\}$. The probability function is $\mathbb{P}\left[\varnothing\right]=0,\mathbb{P}\left[\mathrm{H}\right]=\mathbb{P}\left[\mathrm{T}\right]=0.5,\mathbb{P}\left[\{\mathrm{H},\mathrm{T}\}\right]=1.$ A natural random variable to consider is $X(i)=\mathbf{1}_{\mathrm{H}}:=\begin{cases} 1 & \text{if } i=\mathrm{H}\\ 0 & \text{if } i=\mathrm{T} \end{cases}$. The corresponding probability induced on \mathbb{R} is given by $\mathbb{P}_{\mathbb{R}}[A]=\begin{cases} 0 & \text{if } 0\notin A, 1\notin A\\ 0.5 & \text{if } 0\in A, 1\notin A\\ 0.5 & \text{if } 0\notin A, 1\in A \end{cases}$. In this case, $\mathbb{E}\left[X\right]=1\cdot\mathbb{P}\left[\mathrm{H}\right]+0\cdot\mathbb{P}\left[\mathrm{T}\right]=0.5$

Example 2. Consider tossing n fair coins sequentially and independently. Here $\Omega = \{H, T\}^n$. So the singleton outcomes are tuples of H, T. The probability function is given by $\mathbb{P}[\mathbf{x}] = 2^{-n}$ for any element $x \in \Omega$ and then extending by countable additivity of \mathbb{P} . Consider n random variables X_1, \cdots, X_n where $X_i(\mathbf{x}) := \begin{cases} 1 & \text{if } x_i = H \\ 0 & \text{if } x_i = T \end{cases}$. Each X_i is the same random variable as the previous example after looking at the i^{th} coordinate. A natural variable to consider is the total number of heads obtained in one round of tossing,

that is $X = X_1 + \dots + X_n$. The corresponding probability induced on \mathbb{R} is given by $\mathbb{P}_{\mathbb{R}}[k] = \begin{cases} \binom{n}{k} 2^{-n} & \text{if } k \in \{0, \dots, n\} \\ 0 & \text{otherwise} \end{cases}$ and extend by countable additivity. Here $\mathbb{E}[X] = \frac{n}{2}$.

One useful result used for calculating expectations of sums of random variables is that if $a,b \in \mathbb{R}$ and X,Y are random variables then $\mathbb{E}\left[aX+bY\right]=a\mathbb{E}\left[X\right]+b\mathbb{E}\left[Y\right]$. It's worthy to note that sums and scalings of random variables are random variables. This result does **not** depend on 'independence' of X,Y. Independence plays an important role for the average of products of random variables (which is a random variable). We say random variables X_1,\cdots,X_n are (mutually) independent if $\mathbb{P}\left[\bigcap_{i=1}^n \{X_i \le a_i\}\right] = \prod_{i=1}^n \mathbb{P}\left[X_i \le a_i\right] \ \forall \ a_i \in \mathbb{R}$. This is a stronger notion than pairwise independence where we demand that only every pair of them are independent. Note that mutual independence implies pairwise independence. If X,Y are independent then $\mathbb{E}\left[XY\right] = \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right]$.

For a random variable $X \ge 0$ and $a \in \mathbb{R}$ let Y be the indicator random variable indicating whether $X \ge a$, that is, Y is 1 if $X \ge a$ and 0 otherwise. Then clearly $X \ge aY$. Indeed if $X \ge a$ then Y = 1 so $X \ge aY$ and if X < a then Y = 0 so that $X \ge aY$. Expectation preserves inequalities, so $\mathbb{E}[X] \ge a\mathbb{E}[Y] = a\mathbb{P}[X \ge a]$. This establishes

Theorem 1 (Markov's inequality)

If X is a non-negative random variable and $a \in \mathbb{R}$ then $\mathbb{P}[X \geq a] \leq \frac{\mathbb{E}[X]}{a}$.

1.2 Variance

Let's come to deviation now. One natural way to measure *deviation* is to look how on average much a random variable deviates either way from its mean (behavior). To look for deviation in either direction of $\mathbb{E}[X]$ we consider the random variable $(X - \mathbb{E}[X])^2$. Define the variance of a random variable X as $\text{Var}[X] := \mathbb{E}[(X - \mathbb{E}[X])^2]$. One useful result to compute variance is that if X, Y are independent then $\text{Var}[aX + bY] = a^2 \text{Var}[X] + b^2 \text{Var}[Y]$. This extends to n pairwise independent random variables. Another useful result is $\text{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$.

Applying Theorem 1 to $(X - \mathbb{E}[X])^2 \ge 0$ gives

Theorem 2 (Chebyshev's inequality)

If X is a random variable and $a \in \mathbb{R}_{\geq 0}$ then $\mathbb{P}[|X - \mathbb{E}[X]| \geq a] \leq \frac{\operatorname{Var}[X]}{a^2}$.

1.3 Higher moments

One might just ask why stop at the second power to measure deviation. What about the random variable $(X - \mathbb{E}[X])^k$ for $k \geq 2$? These are called higher centeral moments. Note that $\mathbb{E}\left[(X - \mathbb{E}[X])^k\right] = 0$ when k is odd and the distribution of X is symmetric about $\mathbb{E}[X]$. So it makes sense to consider the random variables $\mu_k := |X - \mathbb{E}[X]|^k$ instead. If we have access to such numbers, we can use the same trick as the proof of Chebyshev's inequality and get $\mathbb{P}[|X - \mathbb{E}[X]| \geq a] \leq \frac{\mu_k}{a^k}$. Knowing all higher moments means that we know something known as the 'characteristic function' (not yet defined) of X which uniquely determines X. But our aim was the study deviations using small information. Generally, higher moments are not known.