Student Name: Guangyu Lin
Collaboration Statement:
Total hours spent: 2 hours
I discussed ideas with these individuals:
• TODO
• TODO
•
I consulted the following resources:
Office Hour
• bishop's textbook
•
By submitting this assignment, I affirm this is my own original work that abides by the course collaboration policy.
Links: [HW4 instructions] [collab. policy]
Contents
1a: Solution
1b: Solution
1c: Solution
1d: Solution
1e: Solution
2a: Solution
2b: Solution
3a: Solution

1a: Problem Statement

Find the optimal one-hot assignment vectors r^1 for all N=7 examples, given the initial cluster locations μ^0 . Report the value of the cost function $J(x, r^1, \mu^0)$.

1a: Solution

TODO FILL IN TABLE

μ^0	r^1	$J(x_{1:N}, r^1, \mu^0)$
[[-32.] [1.5 3.] [2. 2.]]	[[1 0 0] [1 0 0] [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1]]	74

1b: Problem Statement

Find the optimal cluster locations μ^1 for all K=3 clusters, using the optimal assignments r^1 you found in 2a. Report the value of the cost function $J(x, r^1, \mu^1)$.

1b: Solution

TODO FILL IN TABLE

μ^1	$\mid r^1$			$J(x_{1:N}, r^1, \mu^1)$
[[-3.5 1.125]	[[1	0	0]	23.8125
[-0.75 3]	[1	0	0]	
[2 2]]	[1	0	0]	
	[1	0	0]	
	0]	1	0]	
	[0	1	0]	
	0]	0	1]]	

1c: Problem Statement

Find the optimal one-hot assignment vectors r^2 for all N=7 examples, using the cluster locations μ^1 from 1b. Report the value of the cost function $J(x, r^2, \mu^1)$.

1c: Solution

TODO FILL IN TABLE

μ^1	r^2	$J(x_{1:N}, r^2, \mu^1)$
[[-3.5 1.125] [-0.75 3] [2 2]]	[[1 0 0] [1 0 0] [1 0 0] [1 0 0] [1 0 0] [0 0 1] [0 0 1]]	18.703125

1d: Problem Statement

Find the optimal cluster locations μ^2 for all K=3 clusters, using the optimal assignments r^2 from above. Report the value of the cost function $J(x, r^2, \mu^2)$.

1d: Solution

TODO FILL IN TABLE

μ^2	r^2	$\int J(x_{1:N}, r^2, \mu^2)$
[[-3.4 1.5]	[[1 0 0]	17.325
[0 0]	[1 0 0]	
[1.75 2.5]]	[1 0 0]	
	[1 0 0]	
	[1 0 0]	
	[0 0 1]	
	[0 0 1]]	

1e: Problem Statement

What interesting phenomenon do you see happening in this example regarding cluster 2? How could you set cluster 2's location in 1d to better fulfill the goals of K-means (find K clusters that reduce cost the most)?

1e: Solution

When we update the second μ , there are no points that assigned to cluster 2. I will choose a data point that has the greatest cost in this case (-3, -2) and choose that point as the new cluster 2. In this way, the cost is much lower than before since the biggest cost becomes 0 now.

2a: Problem Statement

Show (with math) that using the parameter settings defined above, the general formula for γ_{nk} will simplify to the following (inspired by PRML Eq. 9.42):

$$\gamma_{nk} = \frac{\exp(-\frac{1}{2\epsilon}(x_n - \mu_k)^T (x_n - \mu_k))}{\sum_{j=1}^K \exp(-\frac{1}{2\epsilon}(x_n - \mu_j)^T (x_n - \mu_j))}$$
(1)

2a: Solution

As we set $\pi_{1:K}$ over uniform distribution with K=3 clusters, we can regard π_k and π_j as constant $\frac{1}{3}$. Therefore, based on the γ_{nk} 's definition, we can move the π_j outside from the Σ . Then, the denominator of the definition becomes $\pi_j \sum_{j=1}^K \mathcal{N}(x_n | \mu_j, \sum_j)$. Now we can cancel out π_k and π_j since they are the same thing. Then we have $\gamma_{nk} = \frac{\mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \mathcal{N}(x_n | \mu_j, \Sigma_j)}$. Then by substibute with MVN-PDF definition we can have $\frac{\frac{1}{(2\pi\epsilon)^{\frac{1}{2}}} exp(-\frac{1}{2\epsilon}(x_n - \mu_k)^T \Sigma^{-1}(x_n - \mu_k))}{\sum_{j=1}^K \frac{1}{(2\pi\epsilon)^{\frac{1}{2}}} exp(-\frac{1}{2\epsilon}(x_n - \mu_j)^T \Sigma^{-1}(x_n - \mu_j))}$ Now $\frac{1}{(2\pi\epsilon)^{\frac{1}{2}}}$ and the

PDF definition we can have
$$\frac{\frac{1}{(2\pi\epsilon)^{\frac{1}{2}}}exp(-\frac{1}{2\epsilon}(x_{n}-\mu_{k})^{T}\Sigma^{T}(x_{n}-\mu_{k}))}{\sum_{j=1}^{K}\frac{1}{(2\pi\epsilon)^{\frac{1}{2}}}exp(-\frac{1}{2\epsilon}(x_{n}-\mu_{j})^{T}\Sigma^{-1}(x_{n}-\mu_{j}))} \text{ Now } \frac{1}{(2\pi\epsilon)^{\frac{1}{2}}} \text{ and the properties of the$$

 $\Sigma^{-1} = \epsilon^{-1} I$ based on the assumption ,these two terms can be canceled out from numerator and denominator so that we have

$$\frac{exp(-\frac{1}{2\epsilon}(x_n-\mu_k)^T(x_n-\mu_k))}{\sum_{j=1}^K exp(-\frac{1}{2\epsilon}(x_n-\mu_j)^T(x_n-\mu_j))}.$$

2b: Problem Statement

What will happen to the vector γ_n as $\epsilon \to 0$? How is this related to K-means?

2b: Solution

```
import numpy as np
  # Create an array with the float64 data type
  gamma = np.array([[0, 0, 0],
                     [0, 0, 0],
                     [0, 0, 0],
                     [0, 0, 0],
                     [0, 0, 0],
                     [0, 0, 0],
                     [0, 0, 0]], dtype=np.float64) # Specify the data type as np.float64
10
  epsilon = 0.05 # set epsilon as 0.05, when epsilon get closer to 0, the result will
      become nan
  def gamma_nk(x, mu, k, epsilon):
      a = np.exp(-(1/(2*epsilon))*(x-mu[k]).T@(x-mu[k]))
14
      for i in range(3):
15
          b += np.exp(-(1/(2*epsilon))*(x-mu[i]).T@(x-mu[i]))
16
      return a/b
  for i in range(3):
      for j in range (7):
19
           result = gamma_nk(x_ND[j], mu_KD, i, epsilon)
           gamma[j][i] = result
2.1
22
  print (gamma)
```

```
[[1.00000000e+000 2.16853573e-077 9.19644842e-133]
[1.00000000e+000 2.71579428e-048 9.43728467e-143]
[1.00000000e+000 2.86495542e-030 4.83011747e-116]
[1.00000000e+000 8.76396511e-037 2.19286994e-120]
[1.00000000e+000 3.02230902e-012 2.47211306e-089]
[2.04851575e-113 2.34969834e-021 1.00000000e+000]
[4.27723516e-127 1.48151224e-036 1.00000000e+000]]
```

Based on the output, we can see when ϵ approaching 0, the probability vector will approach to 1 for one certain cluster and the probability of other two cluster will close to 0 which is similar to one hot indicator that used in K-means that hard assigned each data points to one cluster.

3a: Problem Statement

Given: $m = \mathbb{E}_{p^{\min(x)}}[x]$. Prove that the covariance of vector x is:

$$\operatorname{Cov}_{p^{\operatorname{mix}}(x)}[x] = \sum_{k=1}^{K} \pi_k (\Sigma_k + \mu_k \mu_k^T) - mm^T$$
 (2)

3a: Solution

Based on hint 3(ii) and the definition of m, we can write 3a as $\sum_{k=1}^K \pi_k(\Sigma_k + \mu_k \mu_k^T) = Cov_{p^{\min}(x)}[x] + mm^T$. Then the task becomes derive the $\mathbb{E}_{p^{mix(x)}}[xx^T]$ to $\sum_{k=1}^K \pi_k(\Sigma_k + \mu_k \mu_k^T)$

Now based on the definition of expectation and the pdf form of p^{mix} we can write $\mathbb{E}_{p^{mix}(x)}[xx^T]$ as $\int xx^T \sum_{k=1}^K \pi_k f_k(x|\mu_k, \Sigma_k) dx$.

Now we can move the summation and π_k outside of the expectation due to linearity and derived the previous formula as $\sum_{k=1}^K \pi_k (\int x x^T f_k(x|\mu_k, \Sigma_k) dx)$

Now we can reuse the hint 3(ii) towards the term $(\int xx^T f_k(x|\mu_k, \Sigma_k)dx)$ is just $\mathbb{E}_{f_k}[xx^T]$ we can write it as $Cov_{fk}(x) + \mathbb{E}_{fk}(x)\mathbb{E}_{fk}(x)^T$

According to the problem statement, we know $Cov_{fk}(x)$ is Σ_k and $\mathbb{E}_{fk}(x)$ is μ_k so we can just substitute into the formula and get $(\Sigma_k + \mu_k \mu_k^T)$

And now we derived that $\mathbb{E}_{p^{mix(x)}}[xx^T] = \sum_{k=1}^K \pi_k(\Sigma_k + \mu_k \mu_k^T)$

4a (OPTIONAL): Problem Statement

Consider any two Categorical distributions q(z) and p(z) that assign positive probabilities over the same size-K sample space. Show that their KL divergence is non-negative. That is, show that

$$KL\left(\text{CatPMF}(z|\mathbf{r})||\text{CatPMF}(z|\pi)\right) \ge 0$$
 (3)

when $\mathbf{r} \in \Delta_+^K$ and $\pi \in \Delta_+^K$.

4a: Solution

Based on the definition of Kl divergence, we know KL(q(z)||p(z)) is $\mathbb{E}_{q(z)}[-log\frac{p(z)}{q(z)}]$. Then based on the Jensen inequality, we can regard the f as -log and we only need to prove $f(\mathbb{E}[A])=0$

Now we have

How we have
$$-log\mathbb{E}[\frac{p(z)}{q(z)}] = -log\sum_{k=1}^{K} r_k \frac{\pi_k}{r_k} \text{ by the definition of } p(z) \text{ and } q(z)$$

$$= -log\sum_{k=1}^{K} \pi_k$$
Since $r, \pi \in \Delta_+^K \sum_{k=1}^K \pi_k$ is 1
now we have $-log1$ which is just 0.