Problem7: CPA Game

In our solution, we just consider the first block of CBC.

• i = 1: Victor chooses $m_{1,0} = 0^n$ and $m_{1,1} = 0^n$. After Alice's encryption, Victor obtains $c_1 = c_{1,0} = c_{1,1} = (IV||E(IV))$

After the first iteration, we know IV and E(IV)

• i = 2: Victor chooses $m_{2,0} = 0^n$ and $m_{2,1} = IV \oplus E(IV)$. After Alice's encryption, Victor obtains two possible c_2 corresponding to $m_{2,0}$ and $m_{2,1}$

$$c_{2,0} = (E(IV)||E^{2}(IV)),$$

 $c_{2,1} = (E(IV)||E(IV))$

Because Victor already knows E(IV), he can realise the ciphertext c_2 sent to him is the encryption of $m_{2,0}$ or $m_{2,1}$. In other words, he knows exactly which is the bit of b.

CPA Game Generalize

Notation:

1. Given a message M of the i^{th} query for bit b:

$$M_{i,\,b} = \{m_1,m_2,...,m_k \ : \ m_j \ \in \ F_2^n\}$$

We call the j^{th} block (m_i) of the i^{th} message ($M_{i,\,b}$) as $M_{i,\,b}[j]$

2. Given a ciphertext C of the i^{th} query for bit b:

$$C_{i, b} = \{c_0, c_1, ..., c_k : c_j \in F_2^n\}$$

We call the j^{th} block (c_i) of the i^{th} ciphertext $(C_{i,b})$ as $C_{i,b}[j]$ or $C_i[j]$

From the property of Alice encryption, we have: $C_i[0] = C_{i-1}[k]$ and $C_1[0] = IV$

We can generalize for any 2 sequential query with message M of k blocks ($k \ge 1$).

• For any i^{th} query, Victor send:

$$M_i = M_{i,0} = M_{i,1} = \{M_i [1] \parallel ... \parallel M_i [k-1] \parallel M_i [k]\}$$

Victor will receive: $C_i = C_{i,0} = C_{i,1}$

$$C_i = \{C_i [0] \parallel ... \parallel C_i [k-1] \parallel C_i [k]\}$$

• For the $(i+1)^{th}$ query, Victor modifies the 1st block the message M_{i+1} :

$$M_{i+1,\,1}[1]=C_i[k]\oplus C_i[k-1]\oplus M_i[k]$$

$$M_{i+1,\,0}[1]\neq M_{i+1,\,1}[1]$$

Then, Victor has two possible of $C_{i+1}[1]$:

$$C_{i+1, 0}[1] = E(C_{i+1}[0] \oplus M_{i+1, 0}[1])$$

= $E(C_i[k] \oplus M_{i+1, 0}[1])$

```
\begin{split} C_{i+1,\,1}[1] &= E(C_{i+1}[0] \oplus M_{i+1,\,1}[1]) \\ &= E(C_i[k] \oplus M_{i+1,\,1}[1]) \\ &= E(C_i[k] \oplus C_i[k] \oplus C_i[k-1] \oplus M_i[k]) \\ &= E(C_i[k-1] \oplus M_i[k]) \\ &= C_i[k] \end{split}
```

Because Victor knew $C_i[k]$, based on the value of $C_{i+1}[1]$, Victor can realise whether the ciphertext C_{i+1} was created using $M_{i+1,\,0}$ or $M_{i+1,\,1}$. Therefore, Victor knows exactly the value of bit b.