NORX

A Parallel and Scalable Authenticated Encryption Scheme

Jean-Philippe Aumasson¹ (@veorq)
Philipp Jovanovic² (@daeinar)
Samuel Neves³ (@sevenps)

¹Kudelski Security, Switzerland ²University of Passau, Germany

³University of Coimbra, Portugal

ASFWS 2014 Yverdon-les-bains, November 05, 2014

"Nearly all of the symmetric encryption modes you learned about in school, textbooks, and Wikipedia are (potentially) insecure."

-Matthew Green

When Encryption Modes Go Bad

Picture credits: Ange Albertini (@angealbertini, @corkami) https://code.google.com/p/corkami/

When Encryption Modes Go Bad

Picture credits: Ange Albertini (@angealbertini, @corkami) https://code.google.com/p/corkami/

When Encryption Modes Go Bad

Picture credits: Ange Albertini (@angealbertini, @corkami)
https://code.google.com/p/corkami/

Block Cipher Modes

Today's modes of operation designed in the 70s.

> FCR. CRC OFR CFR CTR

- Concern of the time: error propagation
- ► Little attention given to malleability
- Status quo until late 90s

United States Patent [19] Tuckerman, III

[54] BLOCK-CIPHER CRYPTOGRAPHIC SYSTEM WITH CHAINING

[75] Inventor: Louis Bryant Tuckerman, III. Briarcliff Manor, N.Y.

[73] Assignee: International Business Machines Corporation, Armonk, N.Y.

Appl. No.: 680,405

Filed:

Apr. 26, 1976

"A third consideration is fault-tolerance. Some applications need to parallelize encryption or decryption, while others need to be able to preprocess as much as possible. In still others it is important that the decrypting process be able to recover from bit errors in the ciphertext stream, or dropped or added bits."

—Bruce Schneier, Applied Cryptography

Active Attacks

Exploiting Malleability

- ► ECB: Rearrange/replay blocks
- ► CTR, OFB: XOR ciphertext trivially changes plaintext
- ► CBC: Randomize current block to predictably change next

Chosen-boundary Attacks

- ▶ ECB, CBC, CFB: Partial chosen-plaintext control
- Decrypt messages byte by byte

Authenticated Encryption

Authenticated Encryption

Types

- ▶ AE: ensure *confidentiality*, *integrity*, and *authenticity* of a message
- ► AEAD: AE + ensure *integrity* and *authenticity* of associated data (e.g. routing information in IP packets)

Applications

- Standard technology to protect in-transit data
- ► Examples: IPSec, SSH, TLS, ...

AE(AD) Constructions

Generic Composition

- Symmetric encryption algorithm (confidentiality)
- Message Authentication Code (MAC) (authenticity, integrity)
- ► Examples: AES128-CBC+HMAC-SHA256, ChaCha20+Poly1305

Dedicated Solutions

- Block cipher modes: GCM, OCB, CCM, EAX (often instantiated with AES)
- ▶ Hybrid approaches (Grain-128a, Helix, Phelix, Hummingbird-1/2)
- Sponge functions

Bellare and Namprempre (2000)

	Privacy			Inte	grity
Composition Method	IND-CPA	IND-CCA	NM-CPA	INT-PTXT	INT-CTXT
Encrypt-and-MAC MAC-then-Encrypt Encrypt-then-MAC	insecure secure secure	insecure insecure secure	insecure insecure secure	secure secure secure	insecure insecure secure

Authenticated Encryption

Problems

- Very easy to screw up deployment of AE(AD)
- Generic composition: easy to introduce interaction flaws between encryption and authentication
- ▶ No reliable standards
- ▶ No "misuse resistant" solutions
- Legacy crypto still very common

Led to countless security disasters ...

Crypto Disasters I

Padding Oracle Attacks

- 2002: Vaudenay discovers a padding oracle attack on MAC-Then-Encrypt schemes using CBC mode
- ▶ 2002-2014: Repeately exploited to mount attacks on TLS
- ► Latest variant, October 2014:

Padding Oracle On Downgraded Legacy Encryption

Crypto Disasters II

Wired Equivalent Privacy (WEP)

- 2007: Attack against WEP recovers secret key within minutes from a few thousand intercepted messages
- Exploits weaknesses in RC4
- ▶ Tools like aircrack-ng allow everyone to easily run the attack

Crypto Disasters III

TLS (yet again)

- ▶ 2013: RC4 biases shown to be usable against TLS
- ► Exploits weaknesses in RC4 (again)

Crypto Disasters IV

And RC4 Once More

▶ Kenneth G. Paterson on 31.10.14:

Folks really need to stop using RC4 ... we just broke another RC-4 dependent system, HIVE, from next week's CCS: eprint.iacr.org/2014/901

CAESAR

- Competition for Authenticated Encryption: Security, Applicability, and Robustness.
- ▶ **Goals**: Identify a portfolio of *authenticated ciphers* that
 - offer advantages over AES-GCM (the current de-facto standard) and
 - are suitable for widespread adoption.
- Overview:
 - March 15 2014 End of 2017
 - 1st round: 57 submissions
 - http://competitions.cr.yp.to/caesar.html
- ► Further Information:
 - AEZoo: https://aezoo.compute.dtu.dk
 - Speed comparison: http://www1.spms.ntu.edu.sg/~syllab/speed

CAESAR - Current Status

ACORN	++AE	AEGIS	AES-CMCC	AES-COBRA
AES-COPA	AES-CPFB	AES-JAMBU	AES-OTR	AEZ
Artemia	Ascon	AVALANCHE	Calico	CBA
CBEAM	CLOC	Deoxys	ELmD	Enchilada
FASER	HKC	HS1-SIV	ICEPOLE	iFeed[AES]
Joltik	Julius	Ketje	Keyak	KIASU
LAC	Marble	McMambo	Minalpher	MORUS
NORX	OCB	OMD	PAEQ	PAES
PANDA	π -Cipher	POET	POLAWIS	PRIMATEs
Prøst	Raviyoyla	Sablier	SCREAM	SHELL
SILC	Silver	STRIBOB	Tiaoxin	TriviA-ck
Wheesht	YAES			

Source: https://aezoo.compute.dtu.dk

CAESAR - Current Status

ACORN	++AE	AEGIS	AES-CMCC	AES-COBRA
AES-COPA	AES-CPFB	AES-JAMBU	AES-OTR	AEZ
Artemia	Ascon	AVALANCHE	Calico	CBA
CBEAM	CLOC	Deoxys	ELmD	Enchilada
FASER	HKC	HS1-SIV	ICEPOLE	iFeed[AES]
Joltik	Julius	Ketje	Keyak	KIASU
LAC	Marble	McMambo	Minalpher	MORUS
NORX	OCB	OMD	PAEQ	PAES
PANDA	π -Cipher	POET	POLAWIS	PRIMATEs
Prøst	Raviyoyla	Sablier	SCREAM	SHELL
SILC	Silver	STRIBOB	Tiaoxin	TriviA-ck
Wheesht	YAES			

Source: https://aezoo.compute.dtu.dk

NO(T A)RX

	3	D			
				i	ı
3	ь	6	С	d	

Overview of NORX

Main Design Goals

- ► High security
- Efficiency
- Simplicity
- Scalability

- Online
- Side-channel robustness (e.g. constant-time operations)
- High key agility

Overview of NORX

Parameters

Word size	Number of rounds	Parallelism degree	Tag size
$W \in \{32, 64\}$	$1 \leq R \leq 63$	$0 \le D \le 255$	$ A \leq 10W$

Instances

NORX <i>W-R-D</i>	Nonce size $(2W)$	Key size (4W)	Tag size $(4W)$	Classification
NORX64-4-1	128	256	256	Standard
NORX32-4-1	64	128	128	Standard
NORX64-6-1	128	256	256	High security
NORX32-6-1	64	128	128	High security
NORX64-4-4	128	256	256	High throughput

NORX Mode

NORX in Sequential Mode (D=1)

Features

- ► (Parallel) monkeyDuplex construction (derived from Keccak/SHA-3)
- Processes header, payload and trailer data in one-pass
- ▶ Data expansion via multi-rate padding: 10*1
- Extensible (e.g. sessions, secret message numbers)
- Parallelisable

NORX Mode

NORX in Parallel Mode (D=2)

Features

- (Parallel) monkeyDuplex construction (derived from Keccak/SHA-3)
- Processes header, payload and trailer data in one-pass
- Data expansion via multi-rate padding: 10*1
- Extensible (e.g. sessions, secret message numbers)
- ▶ Parallelisable

The State

▶ NORX operates on a state of 16 W-bit sized words

W	Size	Rate	Capacity
32	512	320	192
64	1024	640	384

► Arrangement of rate (data processing) and capacity (security) words:

\mathbf{s}_0	$\mathbf{s_1}$	$\mathbf{s_2}$	$\mathbf{s_3}$
s_4	s_5	s_6	S ₇
s ₈	$\mathbf{s_9}$	s_{10}	s ₁₁
S ₁₂	s_{13}	S ₁₄	S ₁₅

Initialisation

▶ Load nonce, key and constants into state *S*:

u_0	n_0	n_1	u_1
k_0	k_1	k_2	k_3
u_2	u_3	u_4	u_5
u_6	u_7	u_8	u_9

▶ Parameter integration (v1):

$$s_{14} \leftarrow s_{14} \oplus (R \ll 26) \oplus (D \ll 18) \oplus (W \ll 10) \oplus |A|$$

Apply round permutation:

$$S \leftarrow \mathsf{F}^R(S)$$

Initialisation

▶ Load nonce, key and constants into state *S*:

u_0	n_0	n_1	u_1
k_0	k_1	k_2	k_3
u_2	u_3	u_4	u_5
u_6	u_7	u_8	u_9

► Parameter integration (v2):

$$s_{12} \leftarrow s_{12} \oplus W$$

$$s_{13} \leftarrow s_{13} \oplus R$$

$$s_{14} \leftarrow s_{14} \oplus D$$

$$s_{15} \leftarrow s_{15} \oplus |A|$$

Apply round permutation:

$$S \leftarrow \mathsf{F}^R(S)$$

The Permutation F^R

The Permutation F

The Permutation G

1:
$$a \leftarrow H(a, b)$$

2:
$$d \leftarrow (a \oplus d) \gg r_0$$

3:
$$c \leftarrow H(c, d)$$

4:
$$b \leftarrow (b \oplus c) \gg r_1$$

5:
$$a \leftarrow H(a, b)$$

6:
$$d \leftarrow (a \oplus d) \gg r_2$$

7:
$$c \leftarrow H(c, d)$$

8:
$$b \leftarrow (b \oplus c) \gg r_3$$

The Non-linear Operation H

$$H: \{0,1\}^{2n} \to \{0,1\}^n, \ (x,y) \mapsto (x \oplus y) \oplus ((x \wedge y) \ll 1)$$

Rotation Offsets (r_0, r_1, r_2, r_3)

The Permutation F^R

Features

- ► F and G derived from ARX-primitives ChaCha/BLAKE2
- ▶ H is an "approximation" of integer addition

$$x + y = (x \oplus y) + ((x \wedge y) \ll 1)$$

where + is replaced by \oplus

- ► LRX permutation
- No SBoxes or integer additions
- SIMD-friendly
- Hardware-friendly
- High diffusion
- ► Constant-time

NORX

Requirements for Secure Usage

- 1. Unique nonces
- 2. Abort on tag verification failure

Security

Is NORX secure?

► To be determined...

Current status

- No differentials in the nonce for 1 round with probability $> 2^{-60}$ (32), 2^{-53} (64)
- ▶ Best results for 4 rounds and full state: 2^{-584} (32), 2^{-836} (64)
- ▶ Initialization has ≥ 8 rounds
- \blacktriangleright Capacity chosen conservatively: can decrease and get $\approx 16\%$ speedup

Performance

SW Performance (x86)

Platform	Implementation	cpb	MiBps
Ivy Bridge: i7 3667U @ 2.0 GHz	AVX	3.37	593
Haswell: i7 4770K @ 3.5 GHz	AVX2	2.51	1390

Table: NORX64-4-1 performance

SW Performance (ARM)

Platfo	orm	Implementation	cpb	MiBps
BBB: Cortex-A	.8 @ 1.0 GHz	NEON	8.96	111
iPad Air: Apple	A7 @ 1.4 GHz	Ref	4.07	343

Table: NORX64-4-1 performance

SW Performance (SUPERCOP)

Source: http://www1.spms.ntu.edu.sg/~syllab/speed

- NORX among the fastest CAESAR ciphers
- ► Fastest Sponge-based scheme
- ▶ Reference implementation has competitive speed, too

HW Performance (ASIC)

ASIC implementation and hardware evaluation by ETHZ students (under supervision of Frank K. Gürkaynak):

▶ Parameters: $W \in \{32,64\}$, $R \in \{2,\ldots,16\}$ and D=1

► Technology: 180 nm UMC

► Frequency: 125 MHz

► Area requirements: 59 kGE

▶ NORX64-4-1 performance: $10 \, \text{Gbps} \approx 1200 \, \text{MiBps}$

2

NORX vs AES-GCM

NORX vs AES-GCM

	NORX	AES-GCM
High performance High key agility Timing resistance Misuse resistance	yes (on many platforms) yes yes $A+N / LCP+X (exposes P \oplus P')$	depends (high with AES-NI) no no (bit-slicing, AES-NI required) no (exposes K)
Parallelisation Extensibility Simple implementation	yes (sessions, secret msg. nr., etc.) yes	yes no no

34

Conclusion

Take Aways

Features of NORX

- ► Secure, fast, and scalable
- Based on well-analysed primitives: ChaCha/BLAKE(2)/Keccak
- ► Clean and simple design
- ► HW and SW friendly
- Parallelisable

- Side-channel robustness considered during design phase
- Straightforward to implement
- ► No padding problems
- No AES dependence

Fin

Further Information

https://norx.io

Jean-Philippe Aumasson (@veorq) — Philipp Jovanovic (@Daeinar) — Samuel Neves (@sevenps) contact@norx.io

