Warm-Up Problem

Consider the following Grammar

$$S' \rightarrow FS \rightarrow (0)$$

$$S \rightarrow bSd \qquad (1)$$

$$S \rightarrow pSq \qquad (2)$$

$$S \rightarrow C \qquad (3)$$

$$C \rightarrow rC \qquad (4)$$

Compute the nullable and first sets for non-terminal symbols of this grammar.

(And, follow if you're feeling confident; we haven't seen it yet!)

253Wang

Top-Down Parsing, First, and Follow Continued With thanks to Brad Lushman, Troy Vasiga, Kevin Lanctot, and Carmen Bruni SUBMERS

g253wang g253wang g253wang Recall

Our notation:

```
First(β) = {α ∈ Σ : β ⇒* αγ, for some γ ∈ V*}

Nullable(β) = true iff β ⇒* ε and false otherwise

Follow(A) = {b ∈Σ : S' ⇒* αAbβ for some α, β ∈V*}
```

Definition

g253wang

We say that that a $\beta \in V^*$ is **nullable** if and only if Nullable(β) = true.

Updated Predictor Table Definition

g253wang g253wang g253wang

Definition

SWarn

Predict(
$$A$$
, a) = { $A \rightarrow \beta : a \in First(\beta)$ }
 $\cup \{A \rightarrow \beta : Nullable(\beta) \text{ and } a \in Follow(A)$ }

This is the full, correct definition. Notice that this still requires that the table only have one member of the set per entry to be useful as a deterministic algorithm.

Computing First

Algorithm 3 First(A) for all $A \in N'$

```
1: Initialize \operatorname{First}(A) = \{\} for all A \in N'.

2: repeat

3: for each rule A \to B_1B_2 \cdots B_k in P do

4: for i \in \{1, ..., k\} do

5: if B_i \in T' then

6: \operatorname{First}(A) = \operatorname{First}(A) \cup \{B_i\}; break

7: else

8: \operatorname{First}(A) = \operatorname{First}(A) \cup \operatorname{First}(B_i)

9: if \operatorname{Nullable}(B_i) == \operatorname{False} then break

10: end if

11: end for

12: end for

13: until nothing changes
```

SUBMES

Computing First (2)

```
Algorithm 4 First(\beta) where \beta = B_1 \cdots B_n \in V^*

1: result = \emptyset
2: for i \in \{1, ..., n\} do
3: if B_i \in T' then
4: result = result \cup \{B_i\}; break
5: else
6: result = result \cup First(B_i)
7: if Nullable(B_i) == False then break
8: end if
9: end for
```

Computing Follow

```
Algorithm 5 Follow(A) for all A \in N (Recall N = N' \setminus \{ S' \})
```

SUBME

```
1: Initialize Follow(A) = \{\} for all A \in N.

2: repeat

3: for each production A \to B_1B_2 \cdots B_k in P' do

4: for i \in \{1, ..., k\} do

5: if B_i \in N then

6: Follow(B_i) = \text{Follow}(B_i) \cup \text{First}(B_{i+1} \cdots B_k)

7: if \bigwedge_{m=i+1}^k \text{Nullable}(B_m) == \text{True or } i == k then

8: Follow(B_i) = \text{Follow}(B_i) \cup \text{Follow}(A)

9: end if

10: end if

11: end for

12: end for

13: until nothing changes
```

Example of Follow

$S' \rightarrow FSH$	
$S \rightarrow c$	
$S \rightarrow QRS$	
$Q \rightarrow R$	
$Q \rightarrow d$	
$R \rightarrow \varepsilon$	
$R \rightarrow b$	

SWarns

Follow Table:

lter	0	1	2
S	{}	{−}}	{-/}
Q	{}	{b, c, d}	{b, c, d}
R	{}	{b, c, d} {b, c, d}	{b, c, d}

The above makes use of the fact that

$$First(RS) = First(R) \cup First(S) = \{b, c, d\}$$

g253wang g253wang g253wang

where the first equality holds since R is nullable.

Recap

$S' \rightarrow FS \rightarrow$	(0)	Data:						
$S \rightarrow c$	(1)							
$S \rightarrow QRS$	(2)		Nullable	First	Follow			
$Q \rightarrow R$	(3)	S' False { <i>I</i> -} {}						
$Q \rightarrow d$	(4)	S	False	{b, c, d}	{⊣}			
$R \rightarrow \varepsilon$	(5)	Q	True	{b, d}	{b, c, d}			
$R \rightarrow b$	(6)	R	True	{b}	{b, c, d}			

Definition

Predict(
$$A$$
, a) = { $A \rightarrow \beta : a \in First(\beta)$ }
 $\cup \{A \rightarrow \beta : \beta \text{ is nullable and } a \in Follow(A)$ }

ya dist Table for the grammar

Compute the Predict Table for the grammar.

Predict Table

Definition

Predict(A, a) = { $A \rightarrow \beta : a \in First(\beta)$ } $U \{A \rightarrow \beta : \beta \text{ is nullable and } a \in Follow(A)$ }

d253wand

Cheat Sheet and Examples

Nullable:

- $A \rightarrow \varepsilon$ implies that Nullable(A) = true. Further Nullable(ε) = true.
- If $A \rightarrow B_1...B_n$ and each of Nullable(B_i) = true then Nullable(A) = true.

First:

- $A \rightarrow a\alpha$ then $a \in First(A)$
- $A \rightarrow B_1...B_n$ then First(A) = First(A) U First(B_i) for each $i \in \{1, ..., n\}$ until Nullable(B_i) is false.

Follow:

- $A \rightarrow \alpha B \beta$ then Follow(B) = First(β)
- $A \rightarrow \alpha B \beta$ and Nullable(β) = true, then Follow(B) = Follow(B) \cup Follow(A)

Predict(
$$A$$
, a) = { $A \rightarrow \beta : a \in First(\beta)$ }
 U { $A \rightarrow \beta : \beta \text{ is nullable and } a \in Follow(A)$ }

g253wang g253wang g253wang For More Practice

Swanc http://smlweb.cpsc.ucalgary.ca/start.html

Check out

g253wang g253wang g253wang

Practice

Construct the four tables (Nullable, First, Follow and Predict) for the following examples:

```
G_1
                                                      G_2
                                 (0)
                                                            \rightarrow FSI
                                                                                         (0)
       \rightarrow Bb
                                                                                         (1)
                                 (2)
                                                             \rightarrow +TZ' | \varepsilon
                                                                                         (2,3)
                                 (3)
                                                                                         (4)
                                                              \rightarrow FT'
                                 (4)
                                                             \rightarrow *FT' | \varepsilon
                                                                                         (5,6)
                                 (5)
                                                                                         (7,8,9)
                                                             \rightarrow a | b | c
                                 (6)
```

g253wang g253wang g253wang For G₁

	Nullable	First	Follow
S'	False	{ <i>\</i> -}	{}
S	False	{a, b, c, d}	{-/}
В	True	{a}	{b}
C	True	{c}	{d}

g253wang

Predict

g253Wang

	-	а	b	С	d	7
S'	0					
S' S B		1	1	2	2	
В		3	4			
C				5	6	

g253wang g253wang g253wang For G₂

	Nullable	First	Follow
S'	False	{ <i>\</i> -}	{}
S	False	{a, b, c}	{–}}
Z'	True	{+}	{–}}
T	False	{a, b, c}	{-/,+}
T′	True	{ <i>*</i> }	{-/,+}
F	False	{a, b, c}	{⊣,+,*}

253Wang

Predict (Recall: Nullable(ε) is true).

53พยกฎ

01		<i>\</i>	а	b	С	+	*	\dashv		5
5	S'	0								0
	S		1	1	1					
	Z'					2		3		
	Τ		4	4	4					
	T′					6	5	6		
g253wang	f	J2	7	8	9	ar	ngj	g	253war	ìg