Lecture 25: Taylor's Theorem & Taylor Series

October 11, 2019

Sunil Kumar Gauttam

Department of Mathematics, LNMIIT

25.1 Taylor's Theorem

Taylors Theorem paves approximation of functions by polynomials.

Theorem 25.1 (Taylor's Theorem) Let $n \in \mathbb{Z}$, $n \geq 0$, and $f : [a,b] \to \mathbb{R}$ be such that $f, f', \dots, f^{(n)}$ exist on [a,b] and further, $f^{(n)}$ is continuous on [a,b] and differentiable on (a,b). Fix $x_0 \in [a,b]$. Then for each $x \in [a,b]$ with $x \neq x_0$, there exists c between x and x_0 such that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}.$$

The polynomial given by

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

is called the *n*th Taylor polynomial of f around x_0 . The difference $R_n(x) = f(x) - P_n(x)$ is called the remainder of order n. Note that the Taylor formula for f around x_0 shows that the remainder R_n is given by

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$
 for some c between x_0 and x.

The above expression for $R_n(x)$ is sometimes called the Lagrange form of remainder in Taylor formula. Notice that if the degree of Taylors polynomial is higher, the approximation is better.

Example 25.2 Let $f(x) = e^x$. Then the nth degree Taylor's polynomial of f around 0 is

$$P_n(x) = 1 + x + \dots + \frac{x^n}{n!}.$$

Example 25.3 Suppose we are stuck on an island without calculator and a demon ask us to find an approximate value of $2^{1/3}$. Since we can easily compute the addition and multiplication of rational numbers hence let us take $f:[1,2] \to \mathbb{R}$ defined as $f(x) = x^{1/3}$.

Note that

$$f'(x) = \frac{1}{3}x^{-\frac{2}{3}}, \quad f''(x) = -\frac{2}{9}x^{-\frac{5}{3}}, \quad f'''(x) = \frac{10}{27}x^{-\frac{8}{3}}$$

The Taylor's polynomial involves evaluation of derivatives hence we should choose Taylor's ployonomial around such a point for which derivatives are easy to compute. So we take $x_0 = 1$ and consider second degree polynomial

$$P_2(x) = 1 + \frac{1}{3}(x-1) - \frac{1}{2!}\frac{2}{9}(x-1)^2$$

Now
$$P_2(2) = 1 + \frac{1}{3}(2-1) - \frac{1}{9}(2-1)^2 = \frac{4}{3} - \frac{1}{9} = \frac{11}{9} = 1.2222 \cdots$$

Note that $2^{1/3} = 1.25992105$, hence we do get a good estimate by second degree polynomial.

Suppose we use third degree polynomial Then The third Taylor's polynomial around x = 1 for f is

$$P_3(x) = 1 + \frac{1}{3}(x-1) - \frac{1}{9}(x-1)^2 + \frac{10}{27}\frac{1}{3!}(x-1)^3$$

Now
$$P_3(2) = 1 + \frac{1}{3}(2-1) - \frac{1}{9}(2-1)^2 + \frac{10}{27}\frac{1}{3!} = \frac{11}{9} + \frac{5}{81} = \frac{99+5}{81} = 1.283950617.$$

If we use higher degree polynomial then we should expect better approximation.

You may feel that P_2 and P_3 both gives correct value of $2^{1/3}$ upto one decimal place but a close look at the error shows that in P_3 we have reduced the error. |1.283950617 - 1.25992105| = 0.024029567 and |1.25992105 - 1.2222| = 0.0377.

So there is indeed some improvement in the approximation.

Suppose we choose the Taylor's polynomial around x = 8 then

$$P_2(x) = 1 + \frac{1}{3}2^{-2}(x-8) - \frac{2}{9}2^{-5}(x-8)^2$$

Now $P_2(2) = 1 + \frac{1}{3}2^{-2}(2-8) - \frac{2}{9}2^{-5}(2-8)^2 = 1 - \frac{1}{2} - \frac{2}{9}\frac{6^2}{2^5} = 1/2 - \frac{1}{4} = \frac{1}{4}$. This is very bad estimate, because Taylor's polynomial approximate the function in the neighborhood of its center. Point 2 is quite far from 8, hence we get this bad estimate.

Example 25.4 Suppose f is a three times differentiable function on [-1, 1] such that f(-1) = 0, f(1) = 1 and f'(0) = 0. Using Taylor's theorem prove that $f'''(c) \ge 3$ for some $c \in (-1, 1)$.

Solution: By Taylor's theorem,

$$f(1) = f(0) + f'(0) + \frac{f''(0)}{2!} + \frac{f'''(c_1)}{3!} \quad \text{for some} \quad c_1 \in (0, 1).$$

$$f(-1) = f(0) - f'(0) + \frac{f''(0)}{2!} - \frac{f'''(c_2)}{3!} \quad \text{for some} \quad c_1 \in (-1, 0).$$

Therefore, $\frac{f'''(c_1)+f'''(c_2)}{6} = 1$. Hence either $f'''(c_1)$ or $f'''(c_2) \ge 3$.

Example 25.5 For x > -1, $x \neq 0$ prove that

- (a) $(1+x)^{\alpha} > 1 + \alpha x$ whenever $\alpha < 0$, or $\alpha > 1$
- (b) $(1+x)^{\alpha} < 1 + \alpha x \text{ whenever } 0 < \alpha < 1.$

Solution: $f(x) = (1+x)^{\alpha}$. For any x > -1 and we consider interval [-1, y] where $y > \max\{x, 0\}$. Then by Taylor's Theorem

$$f(x) = f(0) + f'(0)x + f''(c)\frac{x^2}{2} = 1 + \alpha x + \alpha(\alpha - 1)(1 + c)^{\alpha - 2}\frac{x^2}{2}$$

for some c between 0 and x. Observe that, $x \neq 0$ implies that $\frac{x^2}{2}$ greater than 0 and since x > -1 so c > -1 hence $(1+c)^{\alpha-2}$ is also greater than 0.

- 1. Now $\alpha(\alpha 1) > 0$ whenever $\alpha < 0$ and $\alpha > 1$. Hence $f(x) > 1 + \alpha x$, whenever $\alpha < 0$, or $\alpha > 1$.
- 2. Now $\alpha(\alpha 1) < 0$ whenever $0 < \alpha < 1$. Hence $f(x) < 1 + \alpha x$.

Example 25.6 Using Taylor's theorem, for any $k \in \mathbb{N}$ and for all x > 0, show that

$$x - \frac{1}{2}x^2 + \dots - \frac{1}{2k}x^{2k} < \log(1+x) < x - \frac{1}{2}x^2 + \dots + \frac{1}{2k+1}x^{2k+1}.$$

Solution: Let $f(x) = \log(1+x)$ which is defined for x > -1. We have

$$f'(x) = \frac{1}{1+x}, f''(x) = \frac{-1}{(1+x)^2}, f'''(x) = \frac{2}{(1+x)^3}.$$

By induction it is easy to see that

$$f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$$

By Taylor's theorem, $\exists c \in (0, x)$ s.t.

$$\log(1+x) = x - \frac{x^2}{2} + \ldots + \frac{(-1)^{n-1}}{n} x^n + \frac{(-1)^n}{n+1} \frac{x^{n+1}}{(1+c)^{n+1}}.$$

Note that, for any x > 0, $\frac{(-1)^n}{n+1} \frac{x^{n+1}}{(1+c)^{n+1}} > 0$ if n = 2k Hence

$$\log(1+x) > x - \frac{x^2}{2} + \ldots + \frac{(-1)^{2k-1}}{2k} x^{2k}$$

if n = 2k + 1 then for any x > 0, $\frac{(-1)^n}{n+1} \frac{x^{n+1}}{(1+c)^{n+1}} < 0$ Hence

$$\log(1+x) < x - \frac{x^2}{2} + \ldots + \frac{(-1)^{2k}}{2k+1}x^{2k+1}$$

25.2 Taylor Series

Let $a \in \mathbb{R}, I$ be an interval containing a, and $f: I \to \mathbb{R}$ be an infinitely differentiable function at a. The infinite series

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k.$$

is called the Taylor series of f around a. It is clear that $P_n(x)$ (nth Taylor polynomial of f around a) is the nth partial sum of the Taylor series. If f is infinitely differentiable at a then the corresponding Taylor series is defined. Also the Taylor series of f around a converges to f(a) at x = a. However, at some other point $x \in I$, this series may be divergent.

Example 25.7 Consider $f:(-1,\infty)\to\mathbb{R}$ defined by $f(x):=\log(1+x)$. Then

$$f'(x) = \frac{1}{1+x}$$

$$f''(x) = -\frac{1}{(1+x)^2}$$

$$f^{(3)}(x) = \frac{(-1)(-2)}{(1+x)^3}$$

$$f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{(1+x)^n}$$

So f is infinitely times differentiable on $(-1, \infty)$ and its Maclaurin series is

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k.$$

Now we apply ratio test to determine the values of x for which Taylor series converges convergence.

$$\lim_{k \to \infty} \frac{|x|^{k+1}}{k+1} \frac{k}{|x|^k} = |x|$$

Hence series converges absolutely for |x| < 1 and diverges for |x| > 1. Note that f is infinitely times differentiable on $(-1, \infty)$. However, the Taylor series does not converge for x > 1.

The following result gives a sufficient condition for the convergence of a Taylor series of a function.

Theorem 25.8 Let $a \in \mathbb{R}$, I be an interval containing a, and $f: I \to \mathbb{R}$ be an infinitely differentiable function. If there is $\alpha > 0$ such that

$$|f^{(n)}(x)| \le \alpha^n$$
, for all $n \in \mathbb{N}$ and $x \in I$,

then the Taylor series of f converges to f(x) for each $x \in I$.