

Review Session 6

Classification, Cross validation, Accuracy and Bias Variance

Dr Smitha K G

Art and Craft of DATA SCIENCE

COLLECTION

Practical MOTIVATION

PREPARATION

Problem **FORMULATION**

Exploratory ANALYSIS

Statistical DESCRIPTION

VISUALIZATION

Pattern RECOGNITION

Algorithmic OPTIMIZATION

Machine **LEARNING**

Information **PRESENTATION**

Statistical INFERENCE

CONSIDERATION

Intelligent **DECISION**

Admin Announcements

- LAMS DS deadline: 3rd March 11.59 pm (hard deadline)
- DS Theory Quiz in Recess Week: 8 March, Friday. Slots: 12:30 pm - 2:00 pm and 2:30 pm to 4:00 pm. Lab allocations and FAQs posted.
- Mini-Project details posted on NTULearn. Finalize on the team and the dataset and start working towards the same. Keep your TA updated. Deadline for the same is 1st March

Popular Popula

Predicted Response

"Positive": 1 Legendary

"Negative": 0 Non-Legendary

Confusion Matrix: https://en.wikipedia.org/wiki/Confusion matrix

Data Science

Binary Classification

Goodness of Fit of the Model

TP : True predicted as True 19

TN: False predicted as False 552

FN: True predicted as False 24

FP: False predicted as True 5

$$accuracy = \frac{552 + 19}{552 + 19 + 5 + 24}$$

$$tpr = \frac{19}{19 + 24}, \qquad fnr = \frac{24}{24 + 19}$$
$$fpr = \frac{5}{5 + 552}, \qquad tnr = \frac{5}{552 + 5}$$

Actual N	TN	FP
Actual P	FN	TP
	Predicted N	Predicted P

25075

025075

When will you be happy?

Ideal TPR =
$$1$$
, FPR = 0

Bad? TPR = 1, FPR = 1

Bad? TPR = 0, FPR = 0

Trash TPR = 0, FPR = 1

25	0
75	0

0	25
75	0

Balancing classes to achieve the desired TPR and FPR is a tricky thing to do. ©

F1 Score for balanced FPR and FNR: https://en.wikipedia.org/wiki/F-score

Data Science

Binary Classification

How does a Tree "decide" classes?

The tree doesn't! You decide it on your own by choosing Decision Threshold.

If Proportion > T, you call it Positive, and else, you call it Negative class.

Default Threshold for Trees = 0.5

Experiment with the **Decision Threshold!**

Use your tree to find Leaf Nodes.

Vary your decision threshold T in steps from 0 to 1 and note the TPR and FPR.

T = 0: Everyone P TPR = 1, FPR = 1

T = 1 : Everyone N TPR = 0, FPR = 0

(0,1) Best Bad (1,1)

MULTI-VARIATE LINEAR REGRESSION

Explained Variance (R^2) on Train Set: 0.744

Mean Squared Error (MSE) on Train Set: 1484.39 *10^6

Mean Squared Error (MSE) on Test Set: 1795.3 * 10^6

Features taken: 'GrLivArea','TotalBsmtSF', 'GarageArea','OverallQual'

K FOLD CROSSVALIDATION

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html#sklearn.model_selection.cross_validate https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold

How can we select the features that I need for regression fit?

https://towardsdatascience.com/5-feature-selection-method-from-scikit-learn-you-should-know-ed4d116e4172

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest

The main concern of Data Science

ACCURACY OF THE MODEL

OVER-FIT Low Bias High Variance

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model

OVER-FIT

Low Bias High Variance

Model Complexity is the Hyper-Parameter to Tune