

Zadanie D Znajdowanie dopasowania doskonałego

Napisz program znajdujący dopasowanie doskonałe w grafie. Należy zaimplementować algorytm probabilistyczny działający w czasie $O(n^3)$ oparty na testowaniu wyznacznika macierzy Tutte grafu metodą eliminacji Gaussa oraz na dynamicznym obliczaniu macierzy odwrotnej.

Pierwsza linia zawiera liczbę parzystą n ($2 \le n \le 800$), określającą rozmiar grafu oraz liczbę $m, m \le \frac{n(n-1)}{2}$, określającą liczbę krawędzi grafu. W kolejnych m liniach znajdują się opisy krawędzi: linia x y oznacza krawędź z x do y, gdzie $0 \le x, y \le n-1$. O grafie wejściowym wiemy, że zawiera pewne skojarzenie doskonałe.

Wyjście

W kolejnych liniach wypisz wszystkie krawędzie należące do pewnego dopasowania doskonałego.

Dostępna pamięć: 64MB

Przykład

Dla danych wejściowych:	Poprawną odpowiedzią jest:
6 6	0 1
0 1	2 3
1 2	4 5
2 3	
3 0	
2 4	
4 5	