LINEAR MODELS FOR LONGITUDINAL DATA

Sensitivity to Covariance / Correlation Model

• The linear model contains a model for the mean

$$E(Y|X) = X\beta$$

and a model for the variance:

$$var(Y|X) = V$$
 or $var(\epsilon) = V$

• These lead via maximum likelihood (or WLS) for β to:

$$\widehat{\boldsymbol{\beta}} = (X'\widehat{V}^{-1}X)^{-1}X'\widehat{V}^{-1}\boldsymbol{y}$$

and

$$\operatorname{var}(\widehat{\boldsymbol{\beta}}) = (X'\widehat{V}^{-1}X)^{-1}$$

ullet These facts depend on being able to estimate V, which in turn depends on a correct model for V

- ullet What happens if we get the model for V wrong? E.g., here are some possible incorrect assumptions about the v-c-c model:
 - We assume exchangeable correlation and it is really exponential plus exchangeable correlation model
 - We assume homoscedasticity across time and really the variance increases with time
 - We assume independence and the data are really correlated
- This means that we plug estimates \widehat{V}^* of $V^* \neq V$ into the expressions for $\widehat{\beta}$ and $\text{var}(\widehat{\beta})$ above, where:
 - -V =the **true value** of the v-c-c- matrix
 - $V^* = \text{is incorrectly-specified}$ v-c-c model
 - $\hat{V}^*=$ the ReML $\mathbf{estimate}$ of the incorrectly-specified model
- ullet Recall, letting $W=V^{*\,-1}$ be a "weight" matrix, we have the more general WLS estimator:

$$\widehat{\boldsymbol{\beta}}_W = (X'WX)^{-1}X'W\boldsymbol{y}$$

- ullet Does $\widehat{oldsymbol{eta}}_W$ work?
 - It is unbiased:

$$E(\widehat{\boldsymbol{\beta}}_W|X) = \beta$$

- It has variance

$$\operatorname{var}(\widehat{\boldsymbol{\beta}}_{W}|X) = (X'WX)^{-1} \{X'WVWX\} (X'WX)^{-1}$$

(of course, $var(\widehat{\beta}_W|X)$ is not computable because we do not know V)

- If V^* turns out to be right (i.e., $V^* = V$ and $W = V^{-1}$) then

$$\operatorname{var}(\widehat{\boldsymbol{\beta}}_W|X) = (X'V^{-1}X)^{-1}$$

• Loss of efficiency with incorrectly-specified V^* :

Of all possible values of W, the one that yields the smallest variance for $\widehat{\beta}_W$ is the one with $W=V^{-1}$ (ie, BLUE)

Estimation of $var(\hat{\beta}_W|X)$

• Recall,

$$\operatorname{var}(\widehat{\boldsymbol{\beta}}_W|X) = (X'WX)^{-1}X'WVWX(X'WX)^{-1}$$

- Here, $W = V^{*-1}$, where V^* is the v-c-c model that we use to fit the model:
 - $-V^*$ is called the working correlation or working v-c-c model
 - Estimating the v-c-c parameters via ML/ReML/any other technique, using V^* as if it were the correct variance, we obtain:

$$\widehat{V}^*$$
 and $\widehat{W} = \widehat{V}^{*-1}$

which in turn leads to WLS estimate

$$\hat{\boldsymbol{\beta}}_W = (X'\widehat{W}X)^{-1}X'\widehat{W}\boldsymbol{y}$$

• How to estimate

$$\operatorname{var}(\widehat{\boldsymbol{\beta}}_W|X) = (X'WX)^{-1}X'WVWX(X'WX)^{-1}$$

- Estimate $W\colon \widehat{W} = \widehat{V}^{*-1}$
- But how to estimate true V?
- From the **block-diagonal** form of V^* and V, we can write

$$X'WVWX = \sum_{i} X_{i}'W_{i}V_{i}W_{i}X_{i}$$

(i sums over subjects)

also note that

$$V_i = \operatorname{var}(\boldsymbol{\epsilon}_i) = \operatorname{E}(\boldsymbol{\epsilon}_i \boldsymbol{\epsilon}_i')$$

- therefore

$$E\{X_i'W_i(\boldsymbol{\epsilon}_i\boldsymbol{\epsilon}_i')W_iX_i\} = X_i'W_iE(\boldsymbol{\epsilon}_i\boldsymbol{\epsilon}_i')W_iX_i = X_i'W_iV_iW_iX_i$$

suggesting that we estimate X'WVWX by replacing V_i with $(\boldsymbol{\epsilon}_i\boldsymbol{\epsilon}_i')$

- where do we get ϵ_i ?

$$\epsilon_i = y_i - X_i \beta$$

so we can estimate ϵ_i by using the estimated β :

$$\widehat{\boldsymbol{\epsilon}}_i = \boldsymbol{y}_i - X_i \widehat{\boldsymbol{\beta}}_W$$

– finally, we can put it all together to estimate $\mathrm{var}(\widehat{\boldsymbol{\beta}}_W|X)$:

$$\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}}_{W}|X) = (X'\widehat{W}X)^{-1} \left\{ \sum_{i} X_{i}' \widehat{W}_{i}(\widehat{\boldsymbol{\epsilon}}_{i}\widehat{\boldsymbol{\epsilon}}_{i}') \widehat{W}_{i} X_{i} \right\} (X'\widehat{W}X)^{-1}$$

- This estimator is due to Huber (1967) and White (1980)
 (Huber-White estimator) and was also used by Liang and Zeger (1986) in their development of generalized estimating equations
- Also called the sandwich estimator
- or the **robust** or **empirical** variance estimator (term "empirical" is a reminder that the true V_i gets replaced by ${\bf data} \ \widehat{\boldsymbol{\epsilon}}_i \widehat{\boldsymbol{\epsilon}}_i')$
- in order for the sandwich estimator to work well, we will need a fairly large number of subjects (m). how many depends on context.

• Example: Protein content of cows' milk. Consider the mean model

$$\mathrm{E}(Y_{ij}) = \beta_0 + \beta_1 \mathrm{mixed}_i + \beta_2 \mathrm{barley}_i + \beta_3 \mathrm{mixed}_i \times \mathrm{week}_{ij} + \beta_4 \mathrm{barley}_i \times \mathrm{week}_{ij} + \alpha_j$$
 where α_j is a factor for time j , $j=1,\ldots,18$ weeks

• Suppose we fit this model naively using the **independence** correlation structure:

Here is the code:

```
data temp;
set cows;
mixed = 1*(diet eq "mixed");
barley = 1*(diet eq "barley");
mixedwk = 1*(diet eq "mixed")*(week-1);
barlewk = 1*(diet eq "barley")*(week-1);
run;
```

```
proc mixed data=temp dfbw ;
    class id week;
    model prot = mixed barley mixedwk barlewk week / s;
    repeated / subject=id ;
    run;
```

(no type= is specified in the repeated statement \longrightarrow an independence working correlation model with constant variance) And here is part of the output:

	Week					
	since		Standard			
Effect	calving	Estimate	Error	DF	t Value	Pr > t
T . I		2 0004	0.05064	7.0	C4 20	4 0004
Intercept		3.2291	0.05261	76	61.38	<.0001
mixed		0.04391	0.03699	76	1.19	0.2388
barley		0.1172	0.03777	76	3.10	0.0027
mixedwk		0.009032	0.003830	1238	2.36	0.0185
barlewk		0.01254	0.003900	1238	3.21	0.0013
week	1	0.5529	0.06975	1238	7.93	<.0001
week	2	0.2454	0.06858	1238	3.58	0.0004
<snip></snip>						

- These standard errors are called **model-based** because they assume the specified variance V^* is correct (i.e., $V^* = V$)
- Note: In Stata, you can use following code to do the same analysis:

```
xtmixed prot mixed barley mixedwk barleywk i.week, ||
id:, noco reml
or
xtgee prot mixed barley mixedwk barleywk i.week,
c(ind)
```

- Now, we know that the standard errors are wrong, because the independence correlation model is wrong
- So, we refit the model using the **empirical variance estimator**: proc mixed data=temp dfbw empirical;

. . .

and obtain:

	Week					
	since		Standard			
Effect	calving	Estimate	Error	DF	t Value	Pr > t
.		0.0004	0.00540	7.0	40.00	
Intercept		3.2291	0.06510	76	49.60	<.0001
mixed		0.04391	0.07162	76	0.61	0.5416
barley		0.1172	0.07431	76	1.58	0.1190
mixedwk		0.009032	0.006200	1238	1.46	0.1454
barlewk		0.01254	0.006466	1238	1.94	0.0527
week	1	0.5529	0.09630	1238	5.74	<.0001
week	2	0.2454	0.08390	1238	2.92	0.0035
<snip></snip>						

- Parameter estimates $(\widehat{\beta}'s)$ are **exactly** the same, but the standard errors are now "fixed up" to account for the possibility that the correlation model is wrong
- These standard errors are called robust or empirical
- Note: In Stata, you can use xtgee with option robust to obtain the robust variance estimator: xtgee prot mixed barley mixedwk barleywk i.week, c(ind) robust
- Now suppose we refit the model using the exponential plus measurement error correlation model, making some attempt to get the v-c-c model correct. We obtain

```
proc mixed data=temp dfbw ;
class id week;
model prot = mixed barley mixedwk barlewk week / s;
repeated / subject=id type=sp(pow)(week) local ;
run;
```

	Week					
	since		Standard			
Effect	calving	Estimate	Error	DF	t Value	Pr > t
.		0.4400	0.00050	7.0	47 00	
Intercept		3.1492	0.06653	76	47.33	<.0001
mixed		0.07251	0.07452	76	0.97	0.3336
barley		0.1308	0.07600	76	1.72	0.0892
mixedwk		0.004693	0.006602	1238	0.71	0.4773
barlewk		0.009928	0.006720	1238	1.48	0.1398
week	1	0.6187	0.08884	1238	6.96	<.0001
week	2	0.3119	0.08585	1238	3.63	0.0003
<snip></snip>						

The estimates $(\widehat{\beta}'s)$ are now different

— because the correlation model (hence our W matrix) is different

• Now, redo it using the empirical variance estimate **to protect** ourselves in case the v-c-c model is wrong:

```
proc mixed data=temp dfbw empirical;
    class id week;
    model prot = mixed barley week / s;
    repeated / subject=id type=sp(pow)(week) local;
    run;
and obtain
```

	Week since		Standard			
Effect	calving	Estimate	Error	DF	t Value	Pr > t
Intercept		3.1492	0.06345	76	49.64	<.0001
mixed		0.07251	0.07566	76	0.96	0.3409
barley		0.1308	0.07789	76	1.68	0.0971
mixedwk		0.004693	0.006705	1238	0.70	0.4841
barlewk		0.009928	0.007315	1238	1.36	0.1750
week	1	0.6187	0.1000	1238	6.19	<.0001
week	2	0.3119	0.08570	1238	3.64	0.0003

<snip>

Notes:

- Again, the parameter estimates are the same, but the standard errors are different
- Now the model-based and the empirical standard errors are much closer than under the independence model.
- This is a good sign: We made some attempt to get the correlation model correct, but we protect ourselves in case we get it wrong

• Important notes:

- In practice, you should make some attempt to get the correlation structure approximately right. **Do not** use independence if you know it is wrong
- You should avoid using the empirical variance estimator with less than 50 subjects. 100–200 is probably better. The cows data have only 79 subjects, so this is suspect
- If the v-c-c model is correct, the model-based standard errors are more accurate (especially with smaller sample sizes)
 (more accurate standard errors lead to more accurate hypothesis tests and better confidence interval coveraage)

- However, if the correlation model is wrong, the model-based standard errors are biased, so the empirical standard errors are more accurate with large sample sizes
- Even so, for smaller sample sizes, if the v-c-c model is approximately correct, the model-based s.e.'s might be better than the empirical ones.
- What we have done here can be seen as examples of **GEE** estimators

Critical Concepts: True versus Estimated Standard Errors

- The **true standard error** of $\widehat{\boldsymbol{\beta}}_W$ is the standard deviation of $\widehat{\boldsymbol{\beta}}_W$ over repeated replicates of the "experiment", where "experiment" includes both the study design/data collection **and** the data analysis method (which includes specification of the working model V^*)
- A poor choice of V^* will lead to larger true standard errors (inefficient estimates of β) for a given study design
- The **estimated standard error** is an estimate of the true standard error based on the data and the model
- Model-based standard errors are **estimated** standard errors assuming the v-c-c model is correct
- Robust or standard errors are **estimated** standard errors allowing for the possibility that the v-c-c model is wrong.

• A model fit with lower **estimated** standard errors does not necessarily reflect greater statistical efficiency (**true** standard errors).

• Two distinct ideas:

- true standard errors reflect (in)efficiency due to (in)correct working model V^{\ast} for V
- incorrect working model can lead to biased estimates of the true standard errors

Exploiting the Empirical Variance Estimator Generalized Estimating Equations (GEE)

- Suppose that the **mean model** (β) is of **scientific interest**
- And, we do not care about the correlation model
 - it is **not** of scientific interest
 - the correlation model is a nuisance
- We need correlation model to get **efficient inferences** on β
- So we use a **working** correlation model:
 - admittedly an approximation, but yields valid inferences
 - simpler correlation structures to choose from, for example:
 - exchangeable
 - exponential or AR(1)
 - independence
 - but not:

- exchangeable plus exponential
- exponential plus measurement error
- We also use **simple**, **crude**, **estimators** for correlation parameters (not ML or ReML). We will discuss further when we do models for categorical data, which is where GEE is much more useful
 - Note: These are available in Stata's xtgee: simple estimators available for exchangeable (corr(exch)), for exponential (corr(ar 1) force), and for unstructured (corr(uns)) correlation models
- Using the estimated working correlation model, obtain weights $\widehat{W}_i = \widehat{V}_i^{*\,-1}$ for each subject and obtain WLS estimator $\widehat{\boldsymbol{\beta}}_W$ (The W could stand for "weights" or for "working"!)

- Then, because correlation model is "working" **and** because it may not be as well estimated:
 - use sandwich estimator to obtain $\widehat{\mathrm{var}}(\widehat{\boldsymbol{\beta}}_W)$ that is robust to misspecification or poor estimation of the correlation model
 - construct Z-tests, χ^2 -tests, Cl's for $\boldsymbol{\beta}$ using the robust variance estimate

• Note:

If can get the correlation model approximately correct, can do almost as well in estimating β with GEE as getting the correlation model exactly correct and estimating it using ML or ReML

• Caveat: we must rely on much larger sample sizes so that the sandwich estimator provides a good estimate of standard errors

SUMMARY

Where Have We Been?

• The linear model for longitudinal data

$$Y = X\beta + \epsilon$$

contains a model for the mean

$$E(Y|X) = X\beta$$

and a model for the variance (covariance / correlation model):

$$var(Y|X) = var(\epsilon) = V$$

ullet The mean model parameters eta have a **population-average** interpretation

(i.e., the same interpretation as in OLS)

• One general model for the covariance is

$$\epsilon_{ij} = U_i + W_{ij} + Z_{ij}$$

where

$$\operatorname{var}(U_i) = \nu^2$$
 , $\operatorname{var}(W_{ij}) = \delta^2$ and $\operatorname{var}(Z_{ij}) = \tau^2$

and where the W_{ij} 's are autocorrelated with

$$corr(W_{ij}, W_{ik}) = function(u), \quad u = lag = |t_{ij} - t_{ik}|$$

We considered $\operatorname{corr}(W_{ij}, W_{ik}) = \alpha^u$, but others such as $\operatorname{corr}(W_{ij}, W_{ik}) = \alpha^{u^2}$ are possible

- Estimation and inferences for the covariance model parameter γ :
 - ML: jointly estimate ${\pmb \beta}$ and ${\pmb \gamma}$ fine if mean model does not have a lot of parameters or if N large

- ReML: only have to estimate γ
 - more robust γ -inferences
 - more flexible mean model
 good when covariance / correlation model is the focus of the
 study
- Model tests and evaluation: autocorrelation function, LRT, AIC,
 BIC; careful with one-sided hypothesis tests
- Importantly: Covariance is among the residuals from a given mean model

different mean model --- different covariance model

- Inference in the mean model under a **given** correlation model:
 - WLS estimation
 - $-\mathcal{F}$ -tests, Wald tests and Wald Cl's
 - Valid even if normality of ϵ_{ij} does not hold
 - test statistics follow the same asymptotic distribution

- Inference in mean model when correlation model is (may be) wrong:
 - do ML or ReML for v-c-c- parameters γ
 - $-\widehat{\boldsymbol{\beta}}$ still unbiased
 - use HW estimator to fix-up variance
- Inference in mean model under working correlation model (GEE):
 - just assume that correlation model wrong (working correlation)
 - crude estimates of correlation model parameters (it is wrong, so who cares?)
 - use HW estimator to fix-up variance
 - We will talk more about GEE later for categorical data