Univariate Time Series Analysis; ARIMA Models

Heino Bohn Nielsen

1 of 41

Univariate Time Series Analysis

- We consider a single time series, $y_1, y_2, ..., y_T$. We want to construct simple models for y_t as a function of the past: $E[y_t | \text{history}]$.
- Univariate models are useful for:
 - (1) Analyzing the dynamic properties of time series.
 What is the dynamic adjustment after a shock?
 Do shocks have transitory or permanent effects (presence of unit roots)?
 - (2) Forecasting. A model for $E[y_t \mid x_t]$ is only useful for forecasting y_{t+1} if we know (or can forecast) x_{t+1} .
 - (3) Univariate time series analysis is a way to introduce the tools necessary for analyzing more complicated models.

Outline of the Lecture

- (1) Characterizing time dependence: ACF and PACF.
- (2) Modelling time dependence: the ARMA(p,q) model
- (3) Examples:
 - AR(1).
 - AR(2).
 - MA(1).
- (4) Lag operators, lag polynomials and invertibility.
- (5) Model selection.
- (6) Estimation.
- (7) Forecasting.

3 of 41

Characterizing Time Dependence

• For a stationary time series the autocorrelation function (ACF) is

$$\rho_k = \operatorname{Corr}(y_t, y_{t-k}) = \frac{Cov(y_t, y_{t-k})}{\sqrt{V(y_t) \cdot V(y_{t-k})}} = \frac{Cov(y_t, y_{t-k})}{V(y_t)} = \frac{\gamma_k}{\gamma_0}.$$

An alternative measure is the partial autocorrelation function (PACF), which is the conditional correlation:

$$\theta_k = \mathsf{Corr}(y_t, y_{t-k} \mid y_{t-1}, ..., y_{t-k+1}).$$

Note: ACF and PACF are bounded in [-1;1], symmetric $\rho_k=\rho_{-k}$ and $\rho_k=\theta_0=1$.

ullet Simple estimators, $\widehat{
ho}_k$ and $\widehat{ heta}_k$, can be derived from OLS regressions

ACF:
$$y_t=c+$$
 $\rho_k y_{t-k}+$ residual PACF: $y_t=c+\theta_1 y_{t-1}+\ldots+\theta_k y_{t-k}+$ residual

• For an IID time series it hold that $V(\widehat{\rho}_k)=V(\widehat{\theta}_k)=T^{-1}$, and a 95% confidence band is given by $\pm 2/\sqrt{T}$.

4 of 41

Example: Danish GDP

5 of 41

The ARMA(p,q) Model

- First define a white noise process, $\epsilon_t \sim IID(0, \sigma^2)$.
- The autoregressive AR(p) model is defined as

$$y_t = \theta_1 y_{t-1} + \theta_2 y_{t-2} + \dots + \theta_p y_{t-p} + \epsilon_t.$$

Systematic part of y_t is a linear function of p lagged values. We need p (observed) initial values: $y_{-(p-1)}, y_{-(p-2)}, ..., y_{-1}, y_0$.

• The moving average MA(q) model is defined as

$$y_t = \epsilon_t + \alpha_1 \epsilon_{t-1} + \alpha_2 \epsilon_{t-2} + \dots + \alpha_q \epsilon_{t-q}.$$

 y_t is a moving average of past shocks to the process.

We need q initial values: $\epsilon_{-(p-1)} = \epsilon_{-(p-2)} = \dots = \epsilon_{-1} = \epsilon_0 = 0$.

They can be combined into the ARMA(p,q) model

$$y_t = \theta_1 y_{t-1} + \dots + \theta_p y_{t-p} + \epsilon_t + \alpha_1 \epsilon_{t-1} + \dots + \alpha_q \epsilon_{t-q}$$

Dynamic Properties of an AR(1) Model

Consider the AR(1) model

$$Y_t = \delta + \theta Y_{t-1} + \epsilon_t$$
.

Assume for a moment that the process is stationary.

As we will see later, this requires $|\theta| < 1$.

• First we want to find the expectation. Stationarity implies that $E[Y_t] = E[Y_{t-1}] = \mu$. We find

$$E[Y_t] = E[\delta + \theta Y_{t-1} + \epsilon_t]$$

$$E[Y_t] = \delta + \theta E[Y_{t-1}] + E[\epsilon_t]$$

$$(1 - \theta) \mu = \delta$$

$$\mu = \frac{\delta}{1 - \theta}.$$

Note the following:

- (1) The effect of the constant term, δ , depends on the autoregressive parameter, θ .
- (2) μ is not defined if $\theta = 1$. This is excluded for a stationary process.

7 of 41

• Next we want to calculate the variance and the autocovariances. It is convenient to define the deviation from mean, $y_t = Y_t - \mu$, so that

$$Y_{t} = \delta + \theta Y_{t-1} + \epsilon_{t}$$

$$Y_{t} = (1 - \theta) \mu + \theta Y_{t-1} + \epsilon_{t}$$

$$Y_{t} - \mu = \theta (Y_{t-1} - \mu) + \epsilon_{t}$$

$$y_{t} = \theta y_{t-1} + \epsilon_{t}.$$

• We note that $\gamma_0 = V[Y_t] = V[y_t]$. We find:

$$V[y_t] = E[y_t^2]$$

$$= E[(\theta y_{t-1} + \epsilon_t)^2]$$

$$= E[\theta^2 y_{t-1}^2 + \epsilon_t^2 + 2\theta y_{t-1}\epsilon_t]$$

$$= \theta^2 E[y_{t-1}^2] + E[\epsilon_t^2] + 2\theta E[y_{t-1}\epsilon_t]$$

$$= \theta^2 V[y_{t-1}] + \sigma^2 + 0.$$

Using stationarity, $\gamma_0 = V[y_t] = V[y_{t-1}]$, we get

$$\gamma_0(1-\theta^2)=\sigma^2 \quad \text{or} \quad \gamma_0=\frac{\sigma^2}{1-\theta^2}.$$

ullet The covariances, $Cov[y_t,y_{t-k}]=E[y_ty_{t-k}]$, are given by

$$\gamma_{1} = E[y_{t}y_{t-1}] = E[(\theta y_{t-1} + \epsilon_{t})y_{t-1}] = \theta E[y_{t-1}^{2}] + E[y_{t-1}\epsilon_{t}] = \theta \gamma_{0} = \theta \frac{\sigma^{2}}{1 - \theta^{2}}$$

$$\gamma_{2} = E[y_{t}y_{t-2}] = E[(\theta y_{t-1} + \epsilon_{t})y_{t-2}] = \theta E[y_{t-1}y_{t-2}] + E[\epsilon_{t}y_{t-2}] = \theta \gamma_{1} = \theta^{2} \frac{\sigma^{2}}{1 - \theta^{2}}$$

$$\vdots$$

$$\gamma_{k} = E[y_{t}y_{t-k}] = \theta^{k}\gamma_{0}$$

The ACF is given by

$$\rho_k = \frac{\gamma_k}{\gamma_0} = \frac{\theta^k \gamma_0}{\gamma_0} = \theta^k.$$

• The PACF is simply the autoregressive coefficients: $\theta_1, 0, 0, ...$

9 of 41

Examples of Stationary AR(1) Models

Examples of AR(1) Models

11 of 41

Dynamic Properties of an AR(2) Model

• Consider the AR(2) model given by

$$Y_t = \delta + \theta_1 Y_{t-1} + \theta_2 Y_{t-2} + \epsilon_t.$$

• Again we find the mean under stationarity:

$$E[Y_t] = \delta + \theta_1 E[Y_{t-1}] + \theta_2 E[Y_{t-2}] + E[\epsilon_t]$$

$$E[Y_t] = \frac{\delta}{1 - \theta_1 - \theta_2} = \mu.$$

ullet We then define the process $y_t = Y_t - \mu$ for which it holds that

$$y_t = \theta_1 y_{t-1} + \theta_2 y_{t-2} + \epsilon_t.$$

ullet Multiplying both sides with y_t and taking expectations yields

$$E[y_t^2] = \theta_1 E[y_{t-1}y_t] + \theta_2 E[y_{t-2}y_t] + E[\epsilon_t y_t]$$

$$\gamma_0 = \theta_1 \gamma_1 + \theta_2 \gamma_2 + \sigma^2$$

Multiplying instead with y_{t-1} yields

$$E[y_{t}y_{t-1}] = \theta_{1}E[y_{t-1}y_{t-1}] + \theta_{2}E[y_{t-2}y_{t-1}] + E[\epsilon_{t}y_{t-1}]$$

$$\gamma_{1} = \theta_{1}\gamma_{0} + \theta_{2}\gamma_{1}$$

Multiplying instead with y_{t-2} yields

$$E[y_{t}y_{t-2}] = \theta_{1}E[y_{t-1}y_{t-2}] + \theta_{2}E[y_{t-2}y_{t-2}] + E[\epsilon_{t}y_{t-2}]$$

$$\gamma_{2} = \theta_{1}\gamma_{1} + \theta_{2}\gamma_{0}$$

Multiplying instead with y_{t-3} yields

$$E[y_{t}y_{t-3}] = \theta_{1}E[y_{t-1}y_{t-3}] + \theta_{2}E[y_{t-2}y_{t-3}] + E[\epsilon_{t}y_{t-3}]$$

$$\gamma_{3} = \theta_{1}\gamma_{2} + \theta_{2}\gamma_{1}$$

• These are the so-called Yule-Walker equations.

13 of 41

- To find the variance we can substitute γ_1 and γ_2 into the equation for γ_0 . This is, however, a bit tedious.
- \bullet We can find the autocorrelations, $\rho_k=\gamma_k/\gamma_0$, as

$$\begin{array}{rcl} \rho_1 & = & \theta_1 + \theta_2 \rho_1 \\ \\ \rho_2 & = & \theta_1 \rho_1 + \theta_2 \\ \\ \rho_k & = & \theta_1 \rho_{k-1} + \theta_2 \rho_{k-2}, \quad k \ge 3 \end{array}$$

or alternatively that

$$\begin{array}{lcl} \rho_1 & = & \frac{\theta_1}{1 - \theta_2} \\ \\ \rho_2 & = & \frac{\theta_1^2}{1 - \theta_2} + \theta_2 \\ \\ \rho_k & = & \theta_1 \rho_{k-1} + \theta_2 \rho_{k-2}, \quad k \geq 3. \end{array}$$

Examples of AR(2) Models

15 of 41

Dynamic Properties of a MA(1) Model

• Consider the MA(1) model

$$Y_t = \mu + \epsilon_t + \alpha \epsilon_{t-1}.$$

The mean is given by

$$E[Y_t] = E[\mu + \epsilon_t + \alpha \epsilon_{t-1}] = \mu$$

which is here identical to the constant term.

- ullet Define the deviation from mean: $y_t = Y_t \mu.$
- Next we find the variance:

$$V[Y_t] = E\left[y^2\right] = E\left[\left(\epsilon_t + \alpha\epsilon_{t-1}\right)^2\right] = E\left[\epsilon_t^2\right] + E\left[\alpha^2\epsilon_{t-1}^2\right] + E\left[2\alpha\epsilon_t\epsilon_{t-1}\right] = \left(1 + \alpha^2\right)\sigma^2.$$

ullet The covariances, $Cov[y_t,y_{t-k}]=E[y_ty_{t-k}]$, are given by

$$\gamma_{1} = E[y_{t}y_{t-1}]$$

$$= E[(\epsilon_{t} + \alpha\epsilon_{t-1}) (\epsilon_{t-1} + \alpha\epsilon_{t-2})]$$

$$= E[\epsilon_{t}\epsilon_{t-1} + \alpha\epsilon_{t}\epsilon_{t-2} + \alpha\epsilon_{t-1}^{2} + \alpha^{2}\epsilon_{t-1}\epsilon_{t-2}] = \alpha\sigma^{2}$$

$$\gamma_{2} = E[y_{t}y_{t-2}]$$

$$= E[(\epsilon_{t} + \alpha\epsilon_{t-1}) (\epsilon_{t-2} + \alpha\epsilon_{t-3})]$$

$$= E[\epsilon_{t}\epsilon_{t-2} + \alpha\epsilon_{t}\epsilon_{t-3} + \alpha\epsilon_{t-1}\epsilon_{t-2} + \alpha^{2}\epsilon_{t-1}\epsilon_{t-3}] = 0$$

$$\vdots$$

$$\gamma_{k} = E[y_{t}y_{t-k}] = 0$$

The ACF is given by

$$\rho_1 = \frac{\gamma_1}{\gamma_0} = \frac{\alpha \sigma^2}{(1 + \alpha^2) \sigma^2} = \frac{\alpha}{(1 + \alpha^2)}$$

$$\rho_k = 0, \quad k \ge 2.$$

17 of 41

Examples of MA Models

The Lag- and Difference Operators

ullet Now we introduce an important tool called the lag-operator, L. It has the property that

$$L \cdot y_t = y_{t-1},$$

and, for example,

$$L^2 y_t = L(Ly_t) = Ly_{t-1} = y_{t-2}.$$

• Also define the first difference operator, $\Delta = 1 - L$, such that

$$\Delta y_t = (1 - L) y_t = y_t - L y_t = y_t - y_{t-1}.$$

ullet The operators L and Δ are not functions, but can be used in calculations.

19 of 41

Lag Polynomials

• Consider as an example the AR(2) model

$$y_t = \theta_1 y_{t-1} + \theta_2 y_{t-2} + \epsilon_t.$$

That can be written as

$$y_t - \theta_1 y_{t-1} - \theta_2 y_{t-2} = \epsilon_t$$

$$y_t - \theta_1 L y_t - \theta_2 L^2 y_t = \epsilon_t$$

$$(1 - \theta_1 L - \theta_2 L^2) y_t = \epsilon_t$$

$$\theta(L) y_t = \epsilon_t,$$

where

$$\theta(L) = 1 - \theta_1 L - \theta_2 L^2$$

is a polynomial in L, denoted a lag-polynomial.

ullet Standard rules for calculating with polynomials also hold for polynomials in L.

Characteristic Equations and Roots

• For a model

$$y_t - \theta_1 y_{t-1} - \theta_2 y_{t-2} = \epsilon_t$$

$$\theta(L) y_t = \epsilon_t,$$

we define the characteristic equation as

$$\theta(z) = 1 - \theta_1 z - \theta_2 z^2 = 0.$$

The solutions, z_1 and z_2 , are denoted characteristic roots.

- An AR(p) has p roots. Some of them may be complex values, $h \pm v \cdot i$, where $i = \sqrt{-1}$.
- Recall, that the roots can be used for factorizing the polynomial

$$\theta(z) = 1 - \theta_1 z - \theta_2 z^2 = (1 - \phi_1 z) (1 - \phi_2 z),$$

where $\phi_1=z_1^{-1}$ and $\phi_2=z_2^{-1}$ are the inverse roots.

21 of 41

Invertibility of Polynomials

• Define the inverse of a polynomial, $\theta^{-1}(L)$ of $\theta(L)$, so that

$$\theta^{-1}(L)\theta(L) = 1.$$

• Consider the AR(1) case, $\theta(L) = 1 - \theta L$, and look at the product

$$(1 - \theta L) \left(1 + \theta L + \theta^2 L^2 + \theta^3 L^3 + \dots + \theta^k L^k \right)$$

$$= (1 - \theta L) + \left(\theta L - \theta^2 L^2 \right) + \left(\theta^2 L^2 - \theta^3 L^3 \right) + \left(\theta^3 L^3 - \theta^4 L^4 \right) + \dots$$

$$= 1 - \theta^{k+1} L^{k+1}.$$

If $|\theta| < 1$, it holds that $\theta^{k+1} L^{k+1} \to 0$ as $k \to \infty$ implying that

$$\theta^{-1}(L) = (1 - \theta L)^{-1} = \frac{1}{1 - \theta L} = 1 + \theta L + \theta^2 L^2 + \theta^3 L^3 + \dots = \sum_{i=0}^{\infty} \theta^i L^i.$$

• If $\theta(L)$ is a finite polynomial, the inverse polynomial, $\theta^{-1}(L)$, is infinite.

ARMA Models in AR and MA form

• Using lag polynomials we can rewrite the stationary ARMA(p,q) model as

$$y_t - \theta_1 y_{t-1} - \dots - \theta_p y_{t-p} = \epsilon_t + \alpha_1 \epsilon_{t-1} + \dots + \alpha_q \epsilon_{t-q}$$

$$\theta(L) y_t = \alpha(L) \epsilon_t.$$
(*)

where $\theta(L)$ and $\alpha(L)$ are finite polynomials.

ullet If heta(L) is invertible, (*) can be written as the infinite $\mathsf{MA}(\infty)$ model

$$y_t = \theta^{-1}(L)\alpha(L)\epsilon_t$$

$$y_t = \epsilon_t + \gamma_1\epsilon_{t-1} + \gamma_2\epsilon_{t-2} + \dots$$

This is called the MA representation.

• If $\alpha(L)$ is invertible, (*) can be written as an infinite $\mathsf{AR}(\infty)$ model

$$\alpha^{-1}(L)\theta(L)y_t = \epsilon_t$$

$$y_t - \gamma_1 y_{t-1} - \gamma_2 y_{t-2} - \dots = \epsilon_t.$$

This is called the AR representation.

23 of 41

Invertibility and Stationarity

- A finite order MA process is stationary by construction.
 - It is a linear combination of stationary white noise terms.
 - Invertibility is sometimes convenient for estimation and prediction.
- An infinite MA process is stationary if the coefficients, α_i , converge to zero.
 - We require that $\sum_{i=1}^{\infty} \alpha_i^2 < \infty$.
- An AR process is stationary if $\theta(L)$ is invertible.
 - This is important for interpretation and inference.
 - In the case of a root at unity standard results no longer hold.
 We return to unit roots later.

• Consider again the AR(2) model

$$\theta(z) = 1 - \theta_1 z - \theta_2 z^2 = (1 - \phi_1 L) (1 - \phi_2 L).$$

The polynomial is invertible if the factors $(1-\phi_i L)$ are invertible, i.e. if

$$|\phi_1| < 1$$
 and $|\phi_2| < 1$.

• In general a polynomial, $\theta(L)$, is invertible if the characteristic roots, $z_1, ..., z_p$, are larger than one in absolute value.

In complex cases, this corresponds to the roots being outside the complex unit circle. (Modulus larger than one).

25 of 41

Solution to the AR(1) Model

• Consider the model

$$Y_t = \delta + \theta Y_{t-1} + \epsilon_t$$
$$(1 + \theta L)Y_t = \delta + \epsilon_t.$$

The solution is given as

$$Y_{t} = (1 + \theta L)^{-1} (\delta + \epsilon_{t})$$

$$= (1 + \theta L + \theta^{2} L^{2} + \theta^{3} L^{3} + ...) (\delta + \epsilon_{t})$$

$$= (1 + \theta + \theta^{2} + \theta^{3} + ...) \delta + \epsilon_{t} + \theta \epsilon_{t-1} + \theta^{2} \epsilon_{t-2} + \theta^{3} \epsilon_{t-3} + ...$$

• This is the MA-representation. The expectation is given by

$$E[Y_t] = (1 + \theta + \theta^2 + \theta^3 + \dots) \delta \longrightarrow \frac{\delta}{1 - \theta}.$$

• An alternative solution method is recursive subtitution:

$$Y_{t} = \delta + \theta Y_{t-1} + \epsilon_{t}$$

$$= \delta + \theta (\delta + \theta Y_{t-2} + \epsilon_{t-1}) + \epsilon_{t}$$

$$= (1 + \theta) \delta + \epsilon_{t} + \theta \epsilon_{t-1} + \theta^{2} Y_{t-2}$$

$$= (1 + \theta) \delta + \epsilon_{t} + \theta \epsilon_{t-1} + \theta^{2} (\delta + \theta Y_{t-3} + \epsilon_{t-2})$$

$$= (1 + \theta + \theta^{2}) \delta + \epsilon_{t} + \theta \epsilon_{t-1} + \theta^{2} \epsilon_{t-2} + \theta^{3} Y_{t-3}$$

$$\vdots$$

$$= (1 + \theta + \theta^{2} + \theta^{3} + \dots) \delta + \epsilon_{t} + \theta \epsilon_{t-1} + \theta^{2} \epsilon_{t-2} + \dots + \theta^{t-1} Y_{1}$$

where we see the effect of the initial observation.

• The expectation is

$$E[Y_t] = (1 + \theta + \theta^2 + \theta^3 + \dots) \delta + \frac{\theta^{t-1} Y_1}{1 - \theta} \rightarrow \frac{\delta}{1 - \theta}.$$

27 of 41

ARMA Models and Common Roots

ullet Consider the stationary ARMA(p,q) model

$$y_{t} - \theta_{1} y_{t-1} - \dots - \theta_{p} y_{t-p} = \epsilon_{t} + \alpha_{1} \epsilon_{t-1} + \dots + \alpha_{q} \epsilon_{t-q}$$

$$\theta(L) y_{t} = \alpha(L) \epsilon_{t}$$

$$(1 - \phi_{1} L) (1 - \phi_{2} L) \cdots (1 - \phi_{p} L) y_{t} = (1 - \xi_{1} L) (1 - \xi_{2} L) \cdots (1 - \xi_{q} L) \epsilon_{t}.$$

- If $\phi_i = \xi_j$ for some i, j, they are denoted common roots or canceling roots. The ARMA(p,q) model is equivalent to a ARMA(p-1,q-1) model.
- As an example, consider

$$y_t - y_{t-1} + 0.25y_{t-2} = \epsilon_t - 0.5\epsilon_{t-1}$$

$$(1 - L + 0.25L^2) y_t = (1 - 0.5L) \epsilon_t$$

$$(1 - 0.5L) (1 - 0.5L) y_t = (1 - 0.5L) \epsilon_t$$

$$(1 - 0.5L) y_t = \epsilon_t.$$

Unit Roots and ARIMA Models

- A root at one is denoted a unit root.
 We consider the consequences later, here we just remove them by first differences.
- Consider an ARMA(p,q) model

$$\theta(L)y_t = \alpha(L)\epsilon_t.$$

If there is a unit root in the AR polynomial, we can factorize into

$$\theta(L) = (1 - L)(1 - \phi_2 L) \cdots (1 - \phi_n L) = (1 - L)\theta^*(L),$$

and we can write the model as

$$\theta^*(L)(1-L)y_t = \alpha(L)\epsilon_t$$

$$\theta^*(L)\Delta y_t = \alpha(L)\epsilon_t.$$

• An ARMA(p,q) model for $\Delta^d y_t$ is denoted an ARIMA(p,d,q) model for y_t .

29 of 41

Example: Danish Real House Prices

• Estimating an AR(2) model for 1972:1-2004:2 yields

$$p_t = 1.545 \ p_{t-1} - 0.5646 \ p_{t-2} + 0.003359 \ {}_{(21.0)} \ {}_{(-7.58)} \ {}_{(1.29)}$$

The lag polynomial is given by

$$\theta(L) = 1 - 1.545 \cdot L + 0.5646 \cdot L^2,$$

with inverse roots given by 0.953 and 0.592.

ullet One root is close to unity and we estimate an ARIMA(1,1,0) model for p_t :

$$\Delta p_t = 0.5442 \ \Delta p_{t-1} + 0.0008369 \ .$$
(7.35) (0.416)

The second root is basically unchanged.

31 of 41

ARIMA(p,d,q) Model Selection

- ullet Find a transformation of the process that is stationary, e.g. $\Delta^d Y_t$.
- Recall, that for the stationary AR(p) model
 - The ACF is infinite but convergent.
 - The PACF is zero for lags larger than p.
- For the MA(q) model
 - The ACF is zero for lags larger than q.
 - The PACF is infinite but convergent.
- ullet The ACF and PACF contains information p and q. Can be used to select relevant models.

- If alternative models are nested, they can be tested.
- Model selection can be based on information criteria

$$IC = \underbrace{\log \widehat{\sigma}^2}_{\text{Measures the likelihood}} + \underbrace{\text{penalty}(T, \#parameters})_{\text{A penalty for the number of parameter}}$$

The information criteria should be minimized!

Three important criteria

$$AIC = \log \widehat{\sigma}^2 + \frac{2 \cdot k}{T}$$

$$HQ = \log \widehat{\sigma}^2 + \frac{2 \cdot k \cdot \log(\log(T))}{T}$$

$$BIC = \log \widehat{\sigma}^2 + \frac{k \cdot \log(T)}{T},$$

where k is the number of estimated parameters, e.g. k = p + q.

33 of 41

Example: Consumption-Income Ratio


```
ARMA(2,2) 130 5 300.82151 -4.4408 -4.5063 -4.5511
ARMA(2,1) 130 4 300.39537 -4.4717 -4.5241 -4.5599
ARMA(2,0) 130 3 300.38908 -4.5090 -4.5483 -4.5752
ARMA(1,2) 130 4 300.42756 -4.4722 -4.5246 -4.5604
ARMA(1,1) 130 3 299.99333 -4.5030 -4.5422 -4.5691
ARMA(1,0) 130 2 296.17449 -4.4816 -4.5078 -4.5258
ARMA(0,0) 130 1 249.82604 -3.8060 -3.8191 -3.8281
```

log-lik

Model

Тр

SC

AIC

HQ

35 of 41

```
--- Maximum likelihood estimation of ARFIMA(1,0,1) model ----
The estimation sample is: 1971 (1) - 2003 (2)
The dependent variable is: cy (ConsumptionData.in7)
           Coefficient
                         Std.Error
                                       t-value
                                                  t-prob
AR-1
              0.857361
                          0.05650
                                         15.2
                                                    0.000
MA-1
             -0.300821
                          0.09825
                                        -3.06
                                                    0.003
Constant
             -0.0934110
                          0.009898
                                         -9.44
                                                    0.000
log-likelihood 299.993327
sigma 0.0239986 sigma^2 0.000575934
--- Maximum likelihood estimation of ARFIMA(2,0,0) model ----
The estimation sample is: 1971 (1) - 2003 (2)
The dependent variable is: cy (ConsumptionData.in7)
           Coefficient
                         Std.Error
                                      t-value
                                                   t-prob
AR-1
              0.536183
                           0.08428
                                         6.36
                                                    0.000
AR-2
              0.250548
                          0.08479
                                        2.95
                                                    0.004
             -0.0935407
Constant
                          0.009481
                                        -9.87
                                                    0.000
log-likelihood 300.389084
sigma 0.0239238 sigma^2 0.000572349
```

Estimation of ARMA Models

• The natural estimator is maximum likelihood. With normal errors

$$\log L(\theta, \alpha, \sigma^2) = -\frac{T}{2} \log(2\pi\sigma^2) - \sum_{t=1}^{T} \frac{\epsilon_t^2}{2 \cdot \sigma^2},$$

where ϵ_t is the residual.

• For an AR(1) model we can write the residual as

$$\epsilon_t = Y_t - \delta - \theta_1 \cdot Y_{t-1}$$

and OLS coincides with ML.

• Usual to condition on the initial values. Alternatively we can postulate a distribution for the first observation, e.g.

$$Y_1 \sim N\left(\frac{\delta}{1-\theta}, \frac{\sigma^2}{1-\theta^2}\right),$$

where the mean and variance are chosen as implied by the model for the rest of the observations. We say that Y_1 is chosen from the invariant distribution.

37 of 41

For the MA(1) model

$$Y_t = \mu + \epsilon_t + \alpha \epsilon_{t-1},$$

the residuals can be found recursively as a function of the parameters

$$\begin{array}{rcl} \epsilon_1 & = & Y_1 - \mu \\ \epsilon_2 & = & Y_2 - \mu - \alpha \epsilon_1 \\ \epsilon_3 & = & Y_3 - \mu - \alpha \epsilon_2 \\ & & \cdot \end{array}$$

Here, the initial value is $\epsilon_0 = 0$, but that could be relaxed if required by using the invariant distribution.

ullet The likelihood function can be maximized wrt. lpha and $\mu.$

Forecasting

- Easy to forecast with ARMA models.
 Main drawback is that here is no economic insight.
- We want to predict y_{T+k} given all information up to time T, i.e. given the information set

$$\mathcal{I}_T = \{y_{-\infty}, ..., y_{T-1}, y_T\}.$$

The optimal predictor is the conditional expectation

$$y_{T+k|T} = E[y_{T+k} \mid \mathcal{I}_T].$$

39 of 41

• Consider the ARMA(1,1) model

$$y_t = \theta \cdot y_{t-1} + \epsilon_t + \alpha \epsilon_{t-1}, \quad t = 1, 2, ..., T.$$

- To forecast we
 - Substitute the estimated parameters for the true.
 - Use estimated residuals up to time T. Hereafter, the best forecast is zero.
- The optimal forecasts will be

$$y_{T+1|T} = E[\theta \cdot y_T + \epsilon_{T+1} + \alpha \cdot \epsilon_T \mid \mathcal{I}_T]$$

$$= \widehat{\theta} \cdot y_T + \widehat{\alpha} \cdot \widehat{\epsilon}_T$$

$$y_{T+2|T} = E[\theta \cdot y_{T+1} + \epsilon_{T+2} + \alpha \cdot \epsilon_{T+1} \mid \mathcal{I}_T]$$

$$= \widehat{\theta} \cdot y_{T+1|T}.$$

41 of 41