My Project

Generated by Doxygen 1.8.11

Contents

1	Tod	o List			1
2	Mod	lules Ind	dex		3
	2.1	Module	es List		3
3	File	Index			5
	3.1	File Lis	st		5
4	Mod	lule Doc	cumentati	on	7
	4.1	makeo	pticalelem	nents Module Reference	7
		4.1.1	Detailed	Description	7
		4.1.2	Function	/Subroutine Documentation	7
			4.1.2.1	abt(i, j, ft, nspec)	7
			4.1.2.2	alloc_temparrays(nspace, nspec)	8
			4.1.2.3	amp(a)	8
			4.1.2.4	bbd(i, j, ft, nspec)	8
			4.1.2.5	dealloc_temparrays	9
			4.1.2.6	g4(ft, nspec)	9
			4.1.2.7	make_bs(nspace, nspec, symp_mat, m1, m2, theta)	9
			4.1.2.8	make_sq(nspace, nspec, symp_mat, m1, m2, alpha, beta)	9
		4.1.3	Variable	Documentation	10
			4.1.3.1	ident	10
	4.2	olis_f9	Ostdlib Mo	odule Reference	10
		4.2.1	Function	/Subroutine Documentation	10
			4.2.1.1	alloc_complex_eigenvects(matrix, eigenvals, u, v)	10

iv CONTENTS

			4.2.1.2	alloc_complex_svd(matrix, sigma, u, vt)	11
			4.2.1.3	c_identity(n)	11
			4.2.1.4	c_inv2(m_in)	11
			4.2.1.5	complex_eigenvects(a, w, vl, vr)	11
			4.2.1.6	complex_svd(a, sigma, u, vt)	12
			4.2.1.7	complextrace(a)	12
			4.2.1.8	expmatrix(matrix, n)	12
			4.2.1.9	factorial(n)	13
			4.2.1.10	$matrixmul(x,n)\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots$	13
			4.2.1.11	matrixnorm(c)	13
			4.2.1.12	$outerproduct(a,b) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	13
			4.2.1.13	printvectors(vect, desc, f)	13
			4.2.1.14	randseed(seed)	13
			4.2.1.15	tprod(a, b)	14
		4.2.2	Variable	Documentation	14
			4.2.2.1	imaginary	14
			4.2.2.2	pi	14
5	File	Docum	entation		15
•					
	5.1	makeo	pticalelem	ents.f90 File Reference	15
	5.2	num_h	iom.f90 Fil	e Reference	16
		5.2.1	Function	Subroutine Documentation	16
			5.2.1.1	f(w1, w2, sig)	16
			5.2.1.2	num_hom	17
	5.3	olis_f9	0stdlib.f90	File Reference	17
Ind	dex				19
					_

Todo List

```
Subprogram makeopticalelements::abt (i, j, ft, nspec)
check this

Subprogram makeopticalelements::bbd (i, j, ft, nspec)
check this
```

2 Todo List

Modules Index

2.1 Modules List

Here is a list of all modules with brief descriptions:

makeopticalelements	
Module for building symplectic matrices for optical elements	7
olis f90stdlib	10

4 Modules Index

File Index

3.1 File List

Here is a list of all files with brief descriptions:

makeopticalelements.f90	15
num_hom.f90	16
olis f90stdlib.f90	17

6 File Index

Module Documentation

4.1 makeoptical elements Module Reference

module for building symplectic matrices for optical elements

Functions/Subroutines

- subroutine make_bs (nspace, nspec, symp_mat, m1, m2, theta)
 makes beamsplitter symplectic matrix takes in an allocated matrix for the beamsplitter matrix to be written to uses the private ident_spec, spatial_work, n_work arrays
- subroutine make_sq (nspace, nspec, symp_mat, m1, m2, alpha, beta)
 - make symplectic squeezing matrix from exponetiated JSA a lot is broken...
- real(kind=dp) function g4 (ft, nspec)
 - calculates g4 using matrix elements sum
- real(kind=dp) function amp (a)
 - returns the absolute value squared |a|**2
- complex(kind=dp) function abt (i, j, ft, nspec)
 - calculates matrix elements Alpha-Beta**T for M = (A B) (B* A*) computes AB**T and returns the i,j-th element
- complex(kind=dp) function bbd (i, j, ft, nspec)
 - calculates the matrix elements Beta*Beta**H for $M = (A\ B\)$ $(B*\ A*)$ computes B*B**H (Hermitian conjg) and returns the i,j-th element
- subroutine alloc_temparrays (nspace, nspec)
 - allocates temp arrays for matrices
- subroutine dealloc_temparrays

Variables

real(kind=dp), public ident

4.1.1 Detailed Description

module for building symplectic matrices for optical elements

4.1.2 Function/Subroutine Documentation

4.1.2.1 complex(kind=dp) function makeopticalelements::abt (integer *i*, integer *j*, complex(kind=dp), dimension(:,:), intent(in), allocatable *ft*, integer *nspec*)

calculates matrix elements Alpha-Beta**T for M = (A B) (B*A*) computes AB**T and returns the i,j-th element

8 Module Documentation

Parameters

i	input index 1
j	input index 2
ft	input symplectic transform matrix for the optical circuit
nspec	input number of spectral DOF

Todo check this

4.1.2.2 subroutine makeopticalelements::alloc_temparrays (integer, intent(in) nspace, integer, intent(in) nspec)

allocates temp arrays for matrices

Parameters

nspace	input
nspec	input allocates memory for ident_spec a spectral size matrix for tensor producting.

allocates mem for spatial_work, array size of spatial modes

allocates mem for n_work, work array size of alpha or beta in sympectic matrix

4.1.2.3 real(kind=dp) function makeopticalelements::amp (complex(kind=dp) a)

returns the absolute value squared |a|**2

Parameters

ĺ	а	input complex number to be a **2

4.1.2.4 complex(kind=dp) function makeopticalelements::bbd (integer, intent(in) *i*, integer, intent(in) *j*, complex(kind=dp), dimension(:,:), intent(in), allocatable *ft*, integer, intent(in) *nspec*)

calculates the matrix elements Beta*Beta**H for $M = (A\ B\)\ (B*\ A*)$ computes B*B**H (Hermitian conjg) and returns the i,j-th element

Parameters

i	input index 1
j	input index 2
ft	input symplectic transform matrix for the optical circuit
nspec	input number of spectral DOF

Todo check this

- 4.1.2.5 subroutine makeopticalelements::dealloc_temparrays ()
- 4.1.2.6 real(kind=dp) function makeopticalelements::g4 (complex(kind=dp), dimension(:,:), intent(in), allocatable ft, integer, intent(in) nspec)

calculates g4 using matrix elements sum

Parameters

ft	input is the full symplectic transfor	
nspec	input spectral DOF	

4.1.2.7 subroutine makeopticalelements::make_bs (integer *nspace*, integer *nspec*, complex(kind=dp), dimension(:,:), allocatable *symp_mat*, integer *m1*, integer *m2*, real(kind=dp) *theta*)

makes beamsplitter symplectic matrix takes in an allocated matrix for the beamsplitter matrix to be written to uses the private ident_spec, spatial_work, n_work arrays

Parameters

nspace	is number of total spatial modes
nspec	is number of total spectral modes
m_bs	allocated n*n matrix for beamsplitter
m1	is spatial mode 1 for beam splitter
m2	is spatial mode 2 for beam splitter

4.1.2.8 subroutine makeopticalelements::make_sq (integer *nspace*, integer *nspec*, complex(kind=dp), dimension(:,:), allocatable *symp_mat*, integer *m1*, integer *m2*, complex(kind=dp), dimension(:,:), intent(inout) *alpha*, complex(kind=dp), dimension(:,:), intent(inout) *beta*)

make symplectic squeezing matrix from exponetiated JSA a lot is broken...

Note

only works if modes are consectutive

Note

alpha & beta are 2 spatial modes and all spectral modes dim 2*nspace*nspec

loop for alpha

check this is legal... full diag sq symp_mat(m1s:m1s+nspec, m1s+n:m1s+nspec+n)=beta(1:nspec, 1+nspec :2*nspec)

probably not legal symp_mat(m2s:m2s+nspec, m2s+n:m2s+nspec+n)=beta(nspec+1:2*nspec, 1:nspec)

loop for beta, offset to col+n

10 Module Documentation

4.1.3 Variable Documentation

4.1.3.1 real(kind=dp), public makeopticalelements::ident

4.2 olis_f90stdlib Module Reference

Functions/Subroutines

• subroutine alloc complex eigenvects (matrix, eigenvals, u, v)

allocates eigenvals, u & v arrays for eigenvals & eigenvects

• subroutine alloc_complex_svd (matrix, sigma, u, vt)

allocates sigma (singular vals), u and vt for complexSVD allocates temp work arrays too

• subroutine randseed (seed)

generates random seed

subroutine printvectors (vect, desc, f)

print formatted matrices can take optional args for labels or write directly to a file

• complex(kind=dp) function, dimension(2, 2) outerproduct (a, b)

outerproduct of two complex vectors, returns a complex matrix

• complex(kind=dp) function, dimension(n, n) c_identity (n)

makes complex identity matrix dim (nxn)

complex(kind=dp) function, dimension(:,:), allocatable tprod (a, b)

tensor product for complex matrices aXb

complex(kind=dp) function complextrace (a)

computes the trace of a complex matrix

subroutine complex_eigenvects (a, w, vl, vr)

computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack

• subroutine complex_svd (a, sigma, u, vt)

computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack

• complex(kind=dp) function, dimension(2, 2) c inv2 (m in)

inverse for a complex 2x2 matrix

• real(kind=dp) function matrixnorm (c)

computed Frobenieus matrix norm of complex matrix using lapack zlange

- complex(kind=dp) function, dimension(size(matrix, 1), size(matrix, 2)) expmatrix (matrix, n)
- recursive complex(kind=dp) function, dimension(size(x, 1), size(x, 2)) matrixmul (x, n)
- recursive real(kind=dp) function factorial (n)

Variables

- real(kind=dp), parameter pi =4.0_dp*atan(1.0)
- complex(kind=dp), parameter imaginary =(0.0_dp, 1.0_dp)

4.2.1 Function/Subroutine Documentation

4.2.1.1 subroutine olis_f90stdlib::alloc_complex_eigenvects (complex(kind=dp), dimension(:,:), intent(in) *matrix*, complex(kind=dp), dimension(:,:), intent(inout), allocatable *eigenvals*, complex(kind=dp), dimension(:,:), intent(inout), allocatable *u*, complex(kind=dp), dimension(:,:), intent(inout), allocatable *v*)

allocates eigenvals, u & v arrays for eigenvals & eigenvects allocated temp work arrays also

Author

Oliver Thomas August 2018

Parameters

matrix	input complex matrix
eigenvals	1d array for eigenvalues, is overwriten on exit
и	2d array of left eigenvectors
V	3d array of right eigenvectors

4.2.1.2 subroutine olis_f90stdlib::alloc_complex_svd (complex(kind=dp), dimension(:,:), intent(in) *matrix,* real(kind=dp), dimension(:), intent(inout), allocatable *sigma,* complex(kind=dp), dimension(:,:), intent(inout), allocatable *u,* complex(kind=dp), dimension(:,:), intent(inout), allocatable *vt*)

allocates sigma (singular vals), u and vt for complexSVD allocates temp work arrays too

Parameters

matrix	input complex matrix	
sigma	real vector of singular values sorted in descending order	
и	unitary matrix	
vt	unitary matrix returns V**H NOT v	

4.2.1.3 complex(kind=dp) function, dimension(n,n) olis_f90stdlib::c_identity (integer, intent(in) n)

makes complex identity matrix dim (nxn)

Parameters

n	input dimension

 $4.2.1.4 \quad \text{complex(kind=dp) function, dimension(2,2) olis_f90stdlib::c_inv2 (\ \text{complex(kind=dp), dimension(2,2), intent(in)} \ \textit{m_in} \)$

inverse for a complex 2x2 matrix

Parameters

m⊷	is input complex 2x2 matrix
_in	

4.2.1.5 subroutine olis_f90stdlib::complex_eigenvects (complex(kind=dp), dimension(:,:), allocatable *a,* complex(kind=dp), dimension(:,:), allocatable *vI,* complex(kind=dp), dimension(:,:), allocatable *vr*)

computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack

12 Module Documentation

Parameters

а	input allocatable complex matrix to be diagonalised
W	output allocatable complex 1d array containing eigenvals
vI	output allocatable complex 2d array containing left eigenvectors
vr	output allocatable complex 2d array containing right eigenvectors

Note

need to check this is optimised

4.2.1.6 subroutine olis_f90stdlib::complex_svd (complex(kind=dp), dimension(:,:), intent(inout), allocatable *a*, real(kind=dp), dimension(:,:), allocatable *u*, complex(kind=dp), dimension(:,:), allocatable *vt*)

computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack

Parameters

а	input allocatable complex matrix to be SVD'd	
sigma	output allocatable complex 1d array containing ordered singular values	
и	output allocatable complex 2d array containing u	
vt	output allocatable complex 2d array containing v**H	

Note

need to check this is optimised

4.2.1.7 complex(kind=dp) function olis_f90stdlib::complextrace (complex(kind=dp), dimension(:,:) a)

computes the trace of a complex matrix

Parameters

a is the complex matrix in

4.2.1.8 complex(kind=dp) function, dimension(size(matrix,1),size(matrix,2)) olis_f90stdlib::expmatrix (complex(kind=dp), dimension(:,:) matrix, integer n)

Parameters

n is the number of terms in taylor expansion to consider

- 4.2.1.9 recursive real(kind=dp) function olis_f90stdlib::factorial (integer n)
- 4.2.1.10 recursive complex(kind=dp) function, dimension(size(x,1),size(x,2)) olis_f90stdlib::matrixmul (complex(kind=dp), dimension(:,:) x, integer n)
- 4.2.1.11 real(kind=dp) function olis_f90stdlib::matrixnorm (complex(kind=dp), dimension(:,:) c)

computed Frobenieus matrix norm of complex matrix using lapack zlange

Parameters

c input complex matrix

4.2.1.12 complex(kind=dp) function, dimension(2,2) olis_f90stdlib::outerproduct (complex(kind=dp), dimension(:), intent(in) a, complex(kind=dp), dimension(:), intent(in) b)

outerproduct of two complex vectors, returns a complex matrix

Parameters

а	is input vector 1, ket>
b	is input vector 2, <bra< td=""></bra<>

4.2.1.13 subroutine olis_f90stdlib::printvectors (complex(kind=dp), dimension(:,:), intent(in) *vect*, character(len=*), intent(in), optional *desc*, integer, intent(in), optional *f*)

print formatted matrices can take optional args for labels or write directly to a file

Parameters

vect	is the input complex matrix
desc	is the optional string to be written above the matrix
f	is the optional file output unit to write to, default is console

4.2.1.14 subroutine olis_f90stdlib::randseed (integer, dimension(:), allocatable seed)

generates random seed

Parameters

seed	is input allocatable 1d array

14 Module Documentation

4.2.1.15 complex(kind=dp) function, dimension(:,:), allocatable olis_f90stdlib::tprod (complex(kind=dp), dimension (:,:), intent(in) a, complex(kind=dp), dimension (:,:), intent(in) b)

tensor product for complex matrices aXb

Parameters

а	complex matrix in
b	complex matrix in

4.2.2 Variable Documentation

- 4.2.2.1 complex(kind=dp), parameter olis_f90stdlib::imaginary =(0.0_dp, 1.0_dp)
- 4.2.2.2 real(kind=dp), parameter olis_f90stdlib::pi =4.0_dp*atan(1.0)

File Documentation

5.1 makeopticalelements.f90 File Reference

Modules

· module makeopticalelements

module for building symplectic matrices for optical elements

Functions/Subroutines

- subroutine makeopticalelements::make_bs (nspace, nspec, symp_mat, m1, m2, theta)

 makes beamsplitter symplectic matrix takes in an allocated matrix for the beamsplitter matrix to be written to uses the private ident_spec, spatial_work, n_work arrays
- subroutine makeopticalelements::make_sq (nspace, nspec, symp_mat, m1, m2, alpha, beta) make symplectic squeezing matrix from exponetiated JSA a lot is broken...
- real(kind=dp) function makeopticalelements::g4 (ft, nspec)
 - calculates g4 using matrix elements sum
- real(kind=dp) function makeopticalelements::amp (a)
 - returns the absolute value squared |a|**2
- complex(kind=dp) function makeopticalelements::abt (i, j, ft, nspec)
 - calculates matrix elements Alpha-Beta**T for M = (A B) (B* A*) computes AB**T and returns the i,j-th element
- complex(kind=dp) function makeopticalelements::bbd (i, j, ft, nspec)
 - calculates the matrix elements Beta*Beta**H for M = (A B) (B*A*) computes B*B**H (Hermitian conjg) and returns the i.j-th element
- subroutine makeopticalelements::alloc_temparrays (nspace, nspec)
 - allocates temp arrays for matrices
- subroutine makeopticalelements::dealloc_temparrays

Variables

• real(kind=dp), public makeopticalelements::ident

16 File Documentation

5.2 num_hom.f90 File Reference

Functions/Subroutines

• program num_hom

program to compute matrix of a JSA

• complex(kind=dp) function f (w1, w2, sig)

JSA function taking two freq.

5.2.1 Function/Subroutine Documentation

5.2.1.1 complex(kind=dp) function num_hom::f (real(kind=dp), intent(in) w1, real(kind=dp), intent(in) w2, real(kind=dp), intent(in) sig)

JSA function taking two freq.

Note

files to write to

to make off diagonal for fmatrix m_sq=0.0_dp ! top right m_sq(1:1*f_size, 3*f_size+1:4*f_size)=1 ! mid right m_sq(1*f_size+1:2*f_size, 2*f_size+1:3*f_size)=2 ! mid left m_sq(2*f_size+1:3*f_size, 1*f_size+1:2*f_ \Leftrightarrow size)=3 ! bot left m_sq(3*f_size+1:4*f_size, 1:1*f_size)=4 !h= 0.0 F_JSA F_JSA*T 0.0

f_jsa = f_mat

 $M_sq = exp(i (0 H) (-H* 0)$

 $M_sq = exp(i (0 0 0 F_JSA) (0 0 F_JSA**T 0) (0 -conjg(F_JSA) 0 0) (-F_JSA**H 0 0 0)$

Note

alpha beta are top left and top right of M M = (A B) (B*A*)

Parameters

alpha_size	is 2*f_size as all spectral modes for 2 spatial
------------	---

Note

allocate for sq on modes 1&2

Parameters

w1	input signal freq
w2	input idler freq
sig	input variance

```
5.2.1.2 program num_hom ( )
```

program to compute matrix of a JSA

5.3 olis_f90stdlib.f90 File Reference

Modules

· module olis f90stdlib

Functions/Subroutines

- subroutine olis_f90stdlib::alloc_complex_eigenvects (matrix, eigenvals, u, v)
 allocates eigenvals, u & v arrays for eigenvals & eigenvects
- subroutine olis_f90stdlib::alloc_complex_svd (matrix, sigma, u, vt)

allocates sigma (singular vals), u and vt for complexSVD allocates temp work arrays too

- subroutine olis_f90stdlib::randseed (seed)
 - generates random seed
- subroutine olis_f90stdlib::printvectors (vect, desc, f)

print formatted matrices can take optional args for labels or write directly to a file

- complex(kind=dp) function, dimension(2, 2) olis_f90stdlib::outerproduct (a, b)
 - outerproduct of two complex vectors, returns a complex matrix
- complex(kind=dp) function, dimension(n, n) olis_f90stdlib::c_identity (n)

makes complex identity matrix dim (nxn)

- complex(kind=dp) function, dimension(:,:), allocatable olis_f90stdlib::tprod (a, b)
 - tensor product for complex matrices aXb
- complex(kind=dp) function olis_f90stdlib::complextrace (a)

computes the trace of a complex matrix

• subroutine olis_f90stdlib::complex_eigenvects (a, w, vl, vr)

computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack

- subroutine olis_f90stdlib::complex_svd (a, sigma, u, vt)
 - computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack
- complex(kind=dp) function, dimension(2, 2) olis_f90stdlib::c_inv2 (m_in)

inverse for a complex 2x2 matrix

- real(kind=dp) function olis_f90stdlib::matrixnorm (c)
 - computed Frobenieus matrix norm of complex matrix using lapack zlange
- complex(kind=dp) function, dimension(size(matrix, 1), size(matrix, 2)) olis f90stdlib::expmatrix (matrix, n)
- recursive complex(kind=dp) function, dimension(size(x, 1), size(x, 2)) olis_f90stdlib::matrixmul (x, n)
- recursive real(kind=dp) function olis_f90stdlib::factorial (n)

Variables

- real(kind=dp), parameter olis_f90stdlib::pi =4.0_dp*atan(1.0)
- complex(kind=dp), parameter olis_f90stdlib::imaginary =(0.0_dp, 1.0_dp)

18 File Documentation

Index

abt	amp, 8
makeopticalelements, 7	bbd, 8
alloc_complex_eigenvects	dealloc_temparrays, 9
olis_f90stdlib, 10	g4, <mark>9</mark>
alloc_complex_svd	ident, 10
olis_f90stdlib, 11	make_bs, 9
alloc_temparrays	make_sq, 9
makeopticalelements, 8	makeopticalelements.f90, 15
amp	matrixmul
makeopticalelements, 8	olis_f90stdlib, 13
	matrixnorm
bbd	olis f90stdlib, 13
makeopticalelements, 8	5116_1000td110; 10
7	num_hom
c_identity	num_hom.f90, 16
olis_f90stdlib, 11	num_hom.f90, 16
c_inv2	- f, 16
olis_f90stdlib, 11	num hom, 16
complex_eigenvects	
olis_f90stdlib, 11	olis_f90stdlib, 10
complex_svd	alloc complex eigenvects, 10
olis_f90stdlib, 12	alloc_complex_svd, 11
complextrace	c_identity, 11
olis f90stdlib, 12	c_inv2, 11
0113_1903td1110, 12	complex_eigenvects, 11
dealloc_temparrays	complex_svd, 12
makeopticalelements, 9	complextrace, 12
makeopticalelements, 3	expmatrix, 12
expmatrix	factorial, 12
olis_f90stdlib, 12	imaginary, 14
0110_1000ta110, 12	matrixmul, 13
f	matrixnorm, 13
num_hom.f90, 16	outerproduct, 13
factorial	•
olis_f90stdlib, 12	pi, 14
0110_1000ta110, 12	printvectors, 13
g4	randseed, 13
makeopticalelements, 9	tprod, 13
	olis_f90stdlib.f90, 17
ident	outerproduct
makeopticalelements, 10	olis_f90stdlib, 13
imaginary	ni
olis f90stdlib, 14	pi
<u> </u>	olis_f90stdlib, 14
make bs	printvectors
makeopticalelements, 9	olis_f90stdlib, 13
make sq	randseed
makeopticalelements, 9	
makeopticalelements, 7	olis_f90stdlib, 13
abt, 7	tprod
alloc_temparrays, 8	olis_f90stdlib, 13
anoo_tompanays, o	