1 Аннотация

В данной работе были исследованы автоэмиссионные свойства и механизмы нестабильности автоэмиссионного тока на примере катода, изготовленного из углеродных волокон, а также получена ВАХ лампы с помощью осциллографа

2 Теория

Теория автоэмиссии

Aвтоэлектронной эмиссией называется явление испускания электронов в вакуум с поверхности твердого тела или другой среды под действием очень сильного электрического поля напряженностью $F=10^7-10^8\mathrm{B/cm}$.

Из-за необходимой величины поля для АЭЭ используются тонкие острия с радиусом вершины порядка 0,1-0,01 мкм. С уменьшением радиуса кривизны катода падает необходимое для протекания АЭЭ напряжение.

Основной физический процесс при A99 — туннелирование электронов сквозь потенциальный барьер на поверхности тела, барьер искривляется приложенным полем, таким об- разом, что появляется область пространства вне тела, где электрон обладал бы такой же полной энергией, как в теле. Таким образом, A99 обуславливается волновыми свойствами электронов. Уравнение, связывающее плотность A9 тока j и напряженность поля - уравнение Фаулера-Нордгейма:

$$j = \frac{e^3}{4\pi^2\hbar} \cdot \frac{E_f^{1/2}}{W_a \varphi^{1/2}} \cdot E^2 \cdot exp(-\frac{4\sqrt{2m}\varphi^{3/2}}{3e\hbar E})$$

где $\varphi = W_a - E_f$ – работа выхода, E_f - энергия Ферми, W_a - уровень вакуума. Формула составлена для температуры в 0 K, однако при 293K разница, вносимая изменением температуры, пренебрежимо мала. Позже уравнение было изменено Нордгеймом путем введения в него функции Нордгейма, уравнение приняло вид:

$$j = A' \cdot \frac{E^2}{\varphi} \cdot exp(-B' \cdot \frac{\varphi_{3/2}}{E}),$$

где
$$A' = \frac{e^3}{16\pi^2\hbar} \cdot exp(0.739 \frac{4\sqrt{2m}e^3}{3e\sqrt{\varphi}}), B' = 0.965 \cdot \frac{4\sqrt{2m}}{3e\hbar}.$$

При построении графика зависимости $ln(\frac{j}{E^2})$ от $\frac{1}{E}$, график будет представлять собой прямую, называемую кривой Φ аулера-Нордгейма, соответствующие координаты - координаты Φ аулера-Нордгейма. Наклон графика равен:

$$S_{FN} = -0.683 \cdot s\left(\frac{3.79\sqrt{E}}{\varphi}\right) \cdot \varphi^{3/2},$$

где
$$s(y) = \nu(y) - \frac{y}{2} \cdot \frac{d\nu}{dy}$$

Одноэмиттерные системы

В случае системы с одним эмиттером имеем $I=Sj, E=\beta U$, где β - форм-фактор острия. Тогда имеем следующее уравнение для тока:

$$I = S_{9} \cdot \frac{1,537 \cdot 10^{10}}{t^{2}(y_{0})} \cdot \frac{\beta^{2}U^{2}}{\varphi} exp(-0,683 \cdot \frac{\varphi^{3/2}}{\beta U} \cdot \nu(y_{0})),$$

где $y_0 = 3.79 \cdot \frac{\sqrt{\beta U}}{\varphi}$

График зависимости $ln(\frac{1}{U^2})$ от $\frac{1}{U^2}$ –прямая Фаулера – Нордгейма для тока и напряжения. Наклон графика в таком случае:

$$tg\alpha = -0.683 \cdot \frac{\varphi^{3/2}}{\beta} \cdot s(\frac{3.79 \cdot \sqrt{\beta E}}{\varphi}). \tag{1}$$

В рабочем диапазоне токов и напряжений имеем $tg\alpha = -0.683 \cdot \frac{\varphi^{3/2}}{\beta}$.

Нестабильность автоэмиссионного тока

Из-за разрушения поверхности эмиссионных центров при работе и адсорбции - десорбции атомов остаточных газов эмиссионный ток может быть нестабильным. В результате измерения ВАХ получается следующая зависимость:

$$ln(\frac{1}{U^2}) = \hat{A} - \hat{B} \cdot \frac{1}{U},$$

где
$$\hat{A}=ln(A\cdot N\cdot \frac{1}{\varphi\cdot ln^2(\frac{R}{B})}),\,\hat{B}=B^*\cdot r\cdot ln(\frac{R}{r})\cdot \varphi^{3/2}$$

Из зависимости от $ln(\hat{B})$ можно качественно получить причину нестабильности тока. При изменении числа центров меняется только ; при изменении работы выхода наблюдается линейная зависимость с коэффициентом 1.5; при изменении размеров центров зависимость линейна в координатах $\hat{A} + 2 \cdot ln(\hat{B})$ от $e^{-\frac{\hat{A}}{2}}$.

3 Экспериментальная установка

В нашей работе исследуются автоэмиссионные свойства и механизмы нестабильности автоэмиссионного тока на примере катодов, изготовленных из углеродных волокон. Исследуемые автокатоды находятся в отпаянной стеклянной лампе, схема которой представлена на рисунке 1.

Рис. 1: Конструкция автоэмиссионной лампы на основе углеродных волокон, для исследования автоэмиссионных свойств углеродных волокон

Рис. 2: Схема экспериментальной установки

4 Ход работы

Снимем ВАХ катода:

І, мА	U, B
0,002	1800
0,01	1990
0,02	2064
0,03	2092
0,045	2142
0,05	2206
0,06	2234
0,07	2325
0,08	2388
0,1	2439
0,11	2500

І, мА	U, B
0,12	2530
0,11	2458
0,1	2430
0,08	2398
0,07	2357
0,06	2326
0,05	2260
0,04	2200
0,03	2150
0,02	2053
0,01	1930

Таблица 1: ВАХ катода

Построим соответствующий график:

Рис. 3: ВАХ катода

Построим тот же график в координатах Фаулера-Нордгейма:

Рис. 4: ВАХ катода в координатах Фаулера-Нордгейма

Из коэффициента наклона k получившейся прямой можем по формуле (1) вычислить форм-фактор β (взяв работу выхода углеродных нанотрубок как $\varphi = 4,5$ эВ):

$$\beta = -0.683 \cdot \frac{\varphi^{3/2}}{k} \approx 3.43 \cdot 10^{-4} \text{ m}^{-1}.$$
 (2)

Снимем ВАХ лампы с помощью осциллографа. Для этого на один канал мы подаем сигнал с напряжением, подаваемым на катод(рис.5), на другой - сигнал с напряжением, пропорциональным току, снимаемому с анода (рис.6). Зависимость напряжения с анода от напряжения на катод - ВАХ лампы(рис.7)

Рис. 5: Напряжение, подаваемое на катод

Рис. 6: Напряжение, пропорциональное току, снимаемому с анода

Рис. 7: ВАХ лампы

5 Вывод

В ходе работы мы познакомились с основными автоэмиссионными свойствами углеродных материалов на примере катода, изготовленного из углеродных волокон; с методом травления пучка углеродных волокон коронным разрядом. На основании полученных в ходе эксперимента данных нами были проделаны следующие действия:

- 1. Была построена вольт-амперная характеристика катода в координатах (U;I) и координатах Фаулера-Нордгейма $(\frac{1}{U};ln(\frac{I}{U^2}))$
- 2. Опираясь на эти графики, мы смогли рассчитать форм-фактор эмиссионного центра:

$$\beta \approx 3.43 \cdot 10^{-4} \text{ m}^{-1}$$

3. С помощью осциллографа была получена ВАХ лампы