# Aluminium - Chromium - Silicon

Rainer Schmid-Fetzer

## Literature Data

Two ternary phases have been seen in a superficial study of the liquidus surface of the Al-corner [1943Mon]. The shape of the liquidus surface was found to be quite different in a more extensive study [1951Pra1] in which primary crystals from slowly cooled alloys were extracted from sectioned samples and studied by chemical and X-ray analysis. In addition, annealing experiments of chill-cast alloys at 550°C for 21 days and some at 559 to 580°C were performed and the microstructures of these and the slowly cooled samples were studied [1951Pra1]. In a follow-up paper [1951Pra2] results are discussed in view of alloying theory. The basic shape of the liquidus surface and the resulting equilibria [1951Pra1] agree qualitatively with a very detailed study of the Al-corner in the range 0 to 5 mass% Cr and 0 to 14 mass% Si by DTA, metallography on air-cooled and slowly-cooled (DTA) samples and X-ray analysis [1965Ess].

The crystal structures of the two assumed ternary phases,  $\tau$  and  $\beta$ , were determined by [1953Rob1] and [1953Rob2] who used the samples of [1951Pra1]. Single crystals of  $\tau$  with almost stoichiometric  $Cr_4Al_{13}Si_4$  composition were used for a detailed X-ray structure analysis (reported space group  $T_d^2$  - F3m) and a powder photograph was used for determination of the cubic unit cell dimension [1953Rob1]. A probable range of homogeneity of  $\tau$  was also noted [1951Pra1]. The second "ternary" phase,  $\beta$ , turned out to be a solid solution of Al in  $CrSi_2$  as determined by X-ray analysis of single crystals and powders [1953Rob2]. This was confirmed in a detailed X-ray investigation of the solid state equilibria of pressed samples, annealed at 1300°C [1961Bru]. Homogeneous  $CrSi_{2-x}Al_x$  ( $\beta$ ) samples up to 25 at.% Al were obtained [1961Bru], while a  $\beta$ -crystal, precipitated from an Al-rich liquid, contained only 14.3 at.% Al in replacement of Si [1953Rob2] and [1951Pra1]. The lattice parameters given for  $\beta$  at x = 0.43 (a = 449.6, c = 637.7 pm) [1953Rob2] essentially agree with the data of [1961Bru] (Table 1). The possibility of (spinodal) decomposition of the  $\beta$  phase at room temperature is mentioned by [1961Bru] since measured lattice parameters form two groups, separated by about 2 to 5 pm. [1961Bru] also detected extensive solid solubility of Al in the  $Cr_5Si_3$  and the  $Cr_3Si$  phase.

A solubility of Si in  $Cr_2Al(\xi)$  was detected by X-ray investigation in cast samples, annealed at 700°C for 60 to 80 h [1964Ram]. A sample of composition  $Cr_{67}Al_{30}Si_3$  was still homogeneous ( $\xi$ ), but  $Cr_{67}Al_{27}Si_6$  contained  $\xi$  and  $Cr_3Si(\varepsilon)$ . The alloy  $Cr_{67}Al_{17}Si_{16}$  consisted of mostly  $\varepsilon$  and some  $Cr_5Si_3(\delta)$  and  $Cr_5Al_8(\zeta_2)$ . The solubility of Al in  $Cr_5Si_3(\delta)$  was also mentioned by [1964Ram], but not quantitatively given as was done at 1300°C by [1961Bru]. The influence of Si on the primary crystallization of  $CrAl_7$  was investigated by thermal analysis and metallography [1960Zol] and the data of [1951Pra1] were essentially confirmed. Chemical analysis of extracted primary  $CrAl_7$  crystals gave a negligible solubility of Si in  $CrAl_7$  which was confirmed by microhardness and X-ray measurements [1960Zol]. A diffusion couple study Al-Cr/Al-Si at 550°C for 7 days was briefly described and a reaction product in the contact zone, probably CrSi, was found in proximity to non-reacted  $CrAl_7$  [1935Bos].

The critical evaluation made by [1991Sch] covers literature published until the year 1989. The present evaluation updates this work and considers all data available.

# **Binary Systems**

The binary systems Cr-Si, Al-Si and Al-Cr are accepted from [2003Leb], [2003Luk], [2003Cor], respectively. The crystal structures of the Al-Cr phases in the region from 58 to 70 at.% Al have been reinvestigated by [1989Ell], who did not confirm the existence of Cr<sub>3</sub>Al as claimed from TEM analyses [1981Bro]. The Al-Cr phase diagram is essentially based on [1998Mur], and Cr-Si on [2000Du].

Landolt-Börnstein
New Series IV/11A1

MSIT®

## **Solid Phases**

The solid phases observed in this system are given in Table 1. The solubility limit of Si in  $\xi$  is estimated [1964Ram]. The lattice parameters of  $\varepsilon$ ,  $\delta$  and  $\beta$  are from [1961Bru]. They are averaged at the solubility limits from data of the homogeneous region with special emphasis on the c/a ratio in the case of  $\beta$ .

# Invariant Equilibria

A partial reaction scheme for Al-rich liquids involving the solidification of phases in the Al-Si-CrSi<sub>2</sub>( $\beta$ )-Cr<sub>2</sub>Al<sub>11</sub>( $\eta$ ) subsystem was taken from [1965Ess] and adapted to the accepted binaries (Fig. 1). It also agrees with the data of [1951Pra1]. The peritectic formation of  $\tau$  at 710°C (P) was only measured by [1965Ess] while [1961Bru] speculated about a possible congruent melting point at about 600°C which cannot be accepted.

# Liquidus Surface

The liquidus surface of the Al-corner corresponding to Fig. 1 is given in Fig. 2 [1965Ess]. The solid (Al)-phase participating in the three phase equilibria is marked by a line with one arrow. The liquidus surface of  $\tau$  becomes very narrow at higher Si content. It intersects the liquidus surface of Si between the points  $U_3$  and E, which cannot be seen from Fig. 2, but easily from the reaction scheme in Fig. 1.

#### **Isothermal Sections**

The isothermal section at 1300°C in Fig. 3 is based upon [1961Bru]; however, the equilibria with the liquid phase are estimated from the binaries. An isothermal section at 500°C was constructed in Fig. 4 based upon the scattered data of [1951Pra1, 1965Ess] and [1964Ram] and the assumption of similar solubilities of  $\beta$ ,  $\gamma$ ,  $\delta$  and  $\epsilon$  at 1300°C. The ternary compound  $\tau$  plays a dominant role in the Al-Si- $\beta$ -CrAl<sub>4</sub> subsystem, despite its rather low incongruent melting temperature. It probably exhibits a range of homogeneity [1951Pra1].

# **Temperature – Composition Sections**

Vertical sections at 5 mass% Cr and 4 mass% Si in the Al-corner are also reported by [1965Ess]. A typical error in the slope of intersecting liquidus lines in that (Al+4%Si)-Cr section was pointed out by [1988Zak]. The effect of Cr additions (0.25, 0.5 and 0.8 mass%) on the microstructure of cast, near-eutectic Al-Si alloys was examined by [1930Ota].

# Thermodynamics

The enthalpy of the liquid phase at 1677°C was shown in a ternary plot of iso-enthalpy lines, calculated by an extrapolation scheme from the binary systems [2001Sud].

# Miscellaneous

The structure and thermal stability of rapidly solidified alloys  $Cr_{14}Al_{86-x}Si_x$  with x up to 24 was studied by XRD and DTA. Below 24 at.% Si the amorphization was not complete at quenching rates of  $1.5 \cdot 10^6 \text{ K} \cdot \text{s}^{-1}$ . Crystallization temperatures are around 320°C [1986Dun].

The crystal structure of the phase τ, Cr<sub>4</sub>Al<sub>13</sub>Si<sub>4</sub> was studied in relation to "stuffed pyrochlore" [1983Nym].

MSIT<sup>®</sup>
Landolt-Börnstein
New Series IV/11A1

## References

[1930Ota] Otani, B., "Silumin and its Structure" (in Japanese), *Kinzoku no Kenkyu*, 7, 666-686 (1930) (Experimental, 8)

- [1935Bos] Bosshard, M., "Diffusion Research as a Means for the Simple Micrographic Detection of Compound Formation Between Alloy Constituents in Ternary and Polynary Systems" (in German), *Aluminium*, **17**, 477-481 (1935) (Experimental, 1)
- [1937Bra] Bradley, A.J., Lu, S.S., "An X-Ray Study of the Chromium-Aluminium Equilibrium Diagram", *J. Inst. Met.*, **60**, 319-337 (1937) (Crys. Structure, Experimental, Equi. Diagram, 8)
- [1941Kna] Knappwost, A., Nowotny, H., "Magnetic Investigation of Aluminium Chromium Copper System" (in German), *Z. Metallkd.*, **33**, 153-157 (1941) (Equi. Diagram, Experimental, #, \*, 27)
- [1943Mon] Mondolfo, L.F., "Metallography of Aluminium Alloys", Wiley, & Sons, Inc., New York, 74pp. (1943) (Equi. Diagram, Experimental, #, 0)
- [1951Pra1] Pratt, J.N., Raynor, G.V., "The Intermetallic Compounds in the Alloys of Aluminium and Silicon with Chromium, Manganese, Iron, Cobalt and Nickel", *J. Inst. Met.*, **79**, 211-232 (1951) (Equi. Diagram, Experimental, #, 32)
- [1951Pra2] Pratt, J.N., Raynor, G.V., "Intermetallic Compounds in Ternary Aluminium-Rich Alloys Containing Transition Metals", *Proc. Roy. Soc. London*, **205**(Al), 103-118 (1951) (Equi. Diagram, Experimental, 14)
- [1953Rob1] Robinson, K., "The Structure of (AlCrSi)-Cr<sub>4</sub>Si<sub>4</sub>Al<sub>13</sub>", *Acta Crystallogr.*, **6**, 854-859 (1953) (Crys. Structure, Experimental, 12)
- [1953Rob2] Robinson, K., "The Structure of (AlCrSi)", *Acta Crystallogr.*, **6**, 667 (1953) (Crys. Structure, Experimental, 6)
- [1960Coo] Cooper, M.J., "The Structure of the Intermetallic Phase θ (Cr-Al)", *Acta Crystallogr.*, **13**, 257-263 (1960) (Crys. Structure, Experimental, 10)
- [1960Zol] Zoller, H., "The Influence of Zn, Mg, Si, Cu, Fe, Mn and Ti on the Primary Crystallisation of Al<sub>7</sub>Cr" (in German), *Schweiz. Arch. Angew. Wiss. u. Techn.*, **26**, 437-448 and 478-491 (1960) (Equi. Diagram, Experimental, 33)
- [1961Bru] Brukl, C., Nowotny, H., Benesovsky, F., "Investigations in the Ternary Systems V-Al-Si, Nb-Al-Si, Cr-Al-Si, Mo-Al-Si, or Cr(Mo)-Al-Si" (in German), *Monatsh. Chem.*, **92**, 967-980 (1961) (Crys. Structure, Equi. Diagram, Experimental, #, \*, 20)
- [1963Koe] Köster, W., Watchel, E., Grube, K., "Structure and Magnetic Properties of Aluminium-Chromium Alloys" (in German), *Z. Metallkd.*, **54**, 393-401 (1963) (Equi. Diagram, Crys. Structure, Thermodyn., Magn. Prop., Experimental, 33)
- [1964Ram] Raman, A., Schubert, K., "The Occurrence of Zn<sub>2</sub>Cu- and Cr<sub>2</sub>Al-Type Intermetallic Compounds" (in German), *Z. Metallkd.*, **55**, 798-804 (1964) (Crys. Structure, Experimental, 23)
- [1965Ess] Esslinger, P., Quartrehomme, F., Bleidorn, H., "Constitution of Al-Rich Al-Cr-Si Alloys" (in German), Z. Metallkd., **56**, 735-739 (1965) (Equi. Diagram, Experimental, #, \*, 11)
- [1968Lin] Lindahl, T., Pilotti, A., Westman, S., "Rhombohedrally Distorted Gamma Phases in the Copper-Mercury and Chromium-Aluminium Systems", *Acta. Chem. Scand.*, **22**, 748-752 (1968) (Crys. Structure, Experimental, 9)
- [1975Ohn] Ohnishi, T., Nakatani, Y., Okabayashi, K., *Bull. Univ. Osaka Prefect.*, **24**, 183-191 (1975) (Equi. Diagram, Crys. Structure, Experimental) quoted by [1998Mur]
- [1977Bra] Brandon, J.K., Pearson, W.B., Riley, P.W., Chieh, C., Stokhuyzen, R., "γ-Brasses with R Cells", *Acta Crystallogr.*, **3B**, 1088-1095 (1977) (Crys. Structure, Experimental, 16)
- [1977Vis] Visser J.W., "On The Structure of Chromium-Aluminum (Cr<sub>5</sub>Al<sub>8</sub>) 26r A Correction", *Acta Crystallogr., Sect. B*, **33B**(1), 316 (1977) (Experimental, Crys. Structure)
- [1981Bro] den Broeder, F.J.A., van Tendeloo, G., Amelinckx, S., Hornstra, J., de Ridder, R., van Landuyt, J., van Daal, H.J., "Microstructure of  $Cr_{100-x}Al_x$  Alloys (10 at% < x < 33 at%)

Landolt-Börnstein
New Series IV/11A1

MSIT®

- Studied by Means of Transmission Electron Microscopy and Diffraction. II. Discovery of a New Phase", *Phys. Status Solidi, A*, **67**, 233-248 (1981) (Equi. Diagram, Experimental, 2)
- [1981Ten] van Tendeloo, G., den Broeder, F.J.A., Amelinckx, S., de Ridder, R., van Landuyt, J., van Daal, H.J., "Microstructure of  $\operatorname{Cr}_{100-x}\operatorname{Al}_x$  Alloys (10 at% < x < 33 at%) Studied by Means of Transmission Electron Microscopy and Diffraction. I. Microstructure of the  $\beta$ -Phase", *Phys. Status Solidi A*, **67**, 217-232 (1981) (Equi. Diagram, Experimental, 10)
- [1983Nym] Nymon, H., "A Relation Between the Structures of Ce<sub>24</sub>Co<sub>11</sub>, Ru<sub>7</sub>B<sub>3</sub>, and Pyrochlore", J. Solid State Chem., **49**, 263-263 (1983) (Crys. Structure, Theory, 10)
- [1986Dun] Dunlap, R.A., Dini, K., "Amorphization of Rapidly Quenched Quasicrystalline Al-Transition Metal Alloys by the Addition of Si", *J. Mater. Res.*, **1**(3), 415-419 (1986) (Crys. Structure, Experimental, 19)
- [1988Zak] Zakharov, A.M., "Typical Errors Encountered on State Diagrams of Ternary Metallic Systems", *Izv. Vyss. Uchebn. Zaved., Tsvetn. Metall.*, **5**, 76-87 (1988) (Equi. Diagram, Review, 33)
- [1989Ell] Ellner, M., Braun, J., Predel, B., "X-ray Investigations on the Cr-Al Phases Belonging to the W Family" (in German), *Z. Metallkde.*, **80**(5), 374-383 (1989) (Equi. Diagram, Crys. Structure, Experimental, 38)
- [1990Ram] Ramon, J.J., Shechtman, D., Dirnfeld, S.F., "Synthesis of Al-Cr Intermetallic Crystals", *Scr. Metall. Mater*, **24**, 1087 (1990) (Experimental, Crys. Structure)
- [1991Sch] Schmid-Fetzer, R., "Aluminium Chromium Silicon", MSIT Ternary Evaluation Program, in *MSIT Workplace*, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; Document ID: 10.12728.1.20, (1991) (Crys. Structure, Equi. Diagram, Assessment, 12)
- [1992Wen] Wen, K.Y., Chen, Y.L., Kuo, K.H., "Crystallographic Relationships of the Al<sub>4</sub>Cr Crystalline and Quasicrystalline Phases", *Met. Trans. A*, **23A**, 2437-2445 (1992) (Crys. Structure, Experimental, 36)
- [1993Sut] Sutliff, J.A., Bewlay, B.P., Lipsitt, H.A., "High Temperature Phase Equilibria in Cr-Cr3Si Two Phase Alloys", *J. Phase Equilib.*, **14**, 583-587 (1993) (Crys. Structure, Equi. Diagram, Experimental, 12)
- [1994Sel] Selke, H., Vogg, U., Ryder, P.L., "New Quasiperiodic Phase in Al<sub>85</sub>Cr<sub>15</sub>", *Phys. Status Solidi A*, **141**, 31-41 (1994) (Crys. Structure, Experimental, 19)
- [1995Aud] Audier, M., Durand-Charre, M., Laclau, E., Klein, H., "Phase Equilibria in the Al-Cr System", *J. Alloys Compd*, **220**, 225-230 (1995) (Crys. Structure, Experimental, \*, 17)
- [1997Li] Li, X.Z., Sugiyama, K., Hiraga, K., Sato, A., Yamamoto, A., Sui, H.X, Kuo, K.H., "Crystal Structure of Orthorhombic α-Al<sub>4</sub>Cr", *Z. Kristallogr.*, **212**, 628-633 (1997) (Crys. Structure, Experimental, 17)
- [1998Li] Li, X.Z., Sui, H.X., Kuo, K.H., Sugiyama, K., Hiraga, K., "On the Structure of the Al<sub>4</sub>Cr ε Phase and its Relation to the Al-Cr-Ni χ Phase", *J. Alloys Compd.*, **264**, L9-L12 (1998) (Crys. Structure, Experimental, 11)
- [1998Mur] Murray, J.L., "The Al-Cr (Aluminium-Chromium) System", *J. Phase Equilib.*, **19**(4), 368-375 (1998) (Equi. Diagram, Assessment, Calculation, Review, #, \*, 43)
- [2000Du] Du, Y., Schuster, C., "Experimental Reinvestigations of the CrSi-Si Partial System and Update of the Thermodynamic Description of the Entire Cr-Si system", *J. Phase Equilib.*, **21**, 281-286 (2000) (Calculation, Equi. Diagram, Experimental, Thermodyn., \*, #, 35)
- [2000Mah] Mahdouk, K., Gachon, J.-C., "Thermodynamic Investigation of the Aluminium-Chromium System", *J. Phase Equilib.*, **21**(2), 157-166 (2000) (Equi. Diagram, Thermodyn., Experimental, \*, 26)
- [2000Sha1] Shao, G., Tsakiropoulos, P., "On the ω Phase Formation in Cr-Al and Ti-Al-Cr Alloys", *Acta Mater.*, **48**, 3671-3685 (2000) (Crys. Structure, Experimental, 39)
- [2000Sha2] Shao, G., Nguyen-Manh, D., Pettifor, D.G., Tsakiropoulos, P., "ω-Phase Formation in a Rapidly Solidified Cr-40 at.% Al Alloy", *Philos. Mag. Let.*, **80**(11), 703-710 (2000) (Crys. Structure, Thermodyn., Experimental, 22)

MSIT<sup>®</sup>
Landolt-Börnstein
New Series IV/11A1

| [2001Oka] | Okamoto, H., "Cr-Si (Chromium-Silicon)", J. Phase Equilib., 22, 593 (2001) (Crys.         |
|-----------|-------------------------------------------------------------------------------------------|
|           | Structure, Equi. Diagram, Review, *, #, 4)                                                |
| [2001Sud] | Sudavtsova, V.S., Kudin, V.G., "About Thermodynamic Properties of the Alloys of the       |
|           | Si-Al-Me(VIb) Ternary Systems" (in Russian), Metally, (1), 29-31 (2001) (Experimental,    |
|           | Thermodyn., 8)                                                                            |
| [2001Tan] | Tanaka, K., Nawata, K., Inui, H., Yamaguchi, M., Koiwa, M., "Refinement of                |
|           | Crystallograpic Parameters in Transition Metal Disilicides with the C11b, C40 and C54     |
|           | Structures", Intermetallics, 9, 603-607 (2001) (Experimental, Crys. Structure, 12)        |
| [2003Cor] | Cornish, L., Saltykov, P., Cacciamani, G., Velikanova, T., "Al-Cr                         |
|           | (Aluminum-Chromium)", MSIT Binary Evaluation Program, in MSIT Workplace,                  |
|           | Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart, to be |
|           | published, 2003 (Equi. Diagram, Assessment, Crys. Structure, 51)                          |
| [2003Luk] | Lukas, H.L., "Al-Si (Aluminum-Silicon)", MSIT Binary Evaluation Program, in MSIT          |
|           | Workplace, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH,       |
|           | Stuttgart, to be published, 2003 (Equi. Diagram, Assessment, Crys. Structure, 29)         |
| [2003Leb] | Lebrun, N., "Cr-Si" (Chromium-Silicon)", MSIT Binary Evaluation Program, in MSIT          |
|           | Workplace, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH,       |
|           | Stuttgart, to be published, 2003 (Equi. Diagram, Assessment, Crys. Structure, 31)         |

 Table 1: Crystallographic Data of Solid Phases

| Phase/<br>Temperature Range<br>[°C] | Pearson Symbol/<br>Space Group/<br>Prototype | Lattice Parameters [pm]                            | Comments/References                                                                                                                |
|-------------------------------------|----------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| (Al)<br><660.452                    | cF4<br>Fm3̄m<br>Cu                           | a = 404.96                                         | at 25°C [Mas]<br>0 to 0.37 at.% Cr<br>in equilibria; to 3 at.% Cr after spinning;<br>to 5 at.% Cr by gun technique<br>[1998Mur]    |
| (Al) (I)                            | $hP2$ $P6_3/mmc$ $Mg$                        | a = 269.3<br>c = 439.8                             | at 25°C, 20.5 GPa<br>[Mas2]                                                                                                        |
| (Cr) < 1907                         | cI2<br>Im3m<br>W                             | $a = 288.47$ $a = 288.47 \pm 5$ $a = 288.09 \pm 2$ | at 25°C [Mas2]<br>0 - 13 at.% Si [20010ka]<br>at 4.5 ± 0.2 at.% Si [1993Sut] at 1200°C<br>at 6.7 ± 0.2 at.% Si [1993Sut] at 1400°C |
| (Cr) (I)                            | tI2<br>I4/mmm<br>α'Cr                        | a = 288.2<br>c = 288.7                             | at 25°C, high pressure phase [Mas2]                                                                                                |
| (Si) < 1414                         | $cF8$ $Fd\overline{3}m$ C (diamond)          | a = 543.06                                         | at 25°C [Mas2]<br>≈ 100 at.% Si [2001Oka]                                                                                          |
| (Si) (III)                          | hP4<br>P6 <sub>3</sub> /mmc<br>αLa           | a = 380 $c = 628$                                  | at 25°C, 16 GPa → 1 bar [Mas2]                                                                                                     |
| (Si) (II)                           | cI16<br>Ia3̄<br>γSi                          | a = 663.6                                          | at 25°C, 16 GPa [Mas2]                                                                                                             |

| Phase/<br>Temperature Range<br>[°C]                                     | Pearson Symbol/<br>Space Group/<br>Prototype                           | Lattice Parameters [pm]                                                                                | Comments/References                                                                                                                                                             |
|-------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Si) (I)                                                                | tI4<br>I4 <sub>1</sub> /amd<br>βSn                                     | a = 468.6<br>c = 258.5                                                                                 | at 25°C, 9.5 GPa [Mas2]                                                                                                                                                         |
| θ, Cr <sub>2</sub> Al <sub>13</sub> (CrAl <sub>7</sub> )<br><790        | mC104<br>C2/m<br>V <sub>7</sub> Al <sub>45</sub>                       | a = 2519.6<br>b = 757.4<br>c = 1094.9<br>$\beta = 128.7$                                               | at room temperature 13.5 at.% Cr<br>[1960Coo, 1975Ohn, 1995Aud]                                                                                                                 |
| η, Cr <sub>2</sub> Al <sub>11</sub> (CrAl <sub>5</sub> )<br>940-790     | Orthorhombic  oC584  Cmcm                                              | a = 1240 $b = 3460$ $c = 2020$ $a = 1252.1$ $b = 3470.5$ $c = 2022.3$ $a = 1260$ $b = 3460$ $c = 2000$ | quenched from 920°C<br>16.9 to 19.2 at.% Cr;<br>[1995Aud, 2000Mah]<br>single crystal<br>"εCrAl <sub>4</sub> " [1997Li, 1998Li]<br>"εCrAl <sub>4</sub> " [1992Wen]               |
| CrAl <sub>4</sub> < 1030                                                | hP574<br>P6 <sub>3</sub> /mmc<br>μMnAl <sub>4</sub>                    | a = 1998<br>c = 2467<br>a = 2010<br>c = 2480                                                           | at room temperature,<br>20.9 ± 0.3 at.% Cr<br>[1995Aud, 2000Mah]<br>[1990Ram]<br>20.6 to 21.2 at.% Cr [1995Aud];<br>22.3 ± 0.1 at.% Cr<br>at Cr-rich border at 1000°C [2000Mah] |
| Cr <sub>4</sub> Al <sub>9</sub> (h2)<br>1170-1060                       |                                                                        |                                                                                                        | [2003Cor]                                                                                                                                                                       |
| Cr <sub>4</sub> Al <sub>9</sub> (h1) ≤ 1060                             | cI52<br>I43m<br>Cu <sub>4</sub> Al <sub>9</sub>                        | a = 912.3                                                                                              | ~31 to 45 at.% Cr quenched from liquid [1941Kna, Mas2];<br>29 at.% Cr at Al-rich border at 920°C [1995Aud]                                                                      |
| Cr <sub>4</sub> Al <sub>9</sub> (r) < 700 (?)                           | <i>h</i> R52<br><i>R</i> 3̄ <i>m</i><br>Cr₄Al <sub>9</sub>             | a = 1291<br>c = 1567.7                                                                                 | 32.8 to 35 at.% Cr<br>[1968Lin, Mas2]                                                                                                                                           |
| $\zeta_1, \operatorname{Cr}_5 \operatorname{Al}_8(h)$ $\geq 1100 \ (?)$ | <i>I</i> 52<br><i>I</i> 43 <i>m</i><br>Cu <sub>5</sub> Zn <sub>8</sub> | a = 910.4 to 904.7                                                                                     | 30 to 42 at.% Cr, quenched from liquid [1989Ell]                                                                                                                                |
| ζ <sub>2</sub> , Cr <sub>5</sub> Al <sub>8</sub> (r) ≤ 1100 (?)         | hR78-1.50<br>R3m<br>Cr <sub>5</sub> Al <sub>8</sub>                    | a = 1271.9<br>c = 793.6<br>a = 1272.8<br>c = 794.2<br>a = 1281.3<br>c = 795.1                          | [1977Vis, Mas2] [1977Bra] [1989Ell]                                                                                                                                             |

MSIT®

Landolt-Börnstein
New Series IV/11A1

| Phase/<br>Temperature Range<br>[°C]                                                                                         | Pearson Symbol/<br>Space Group/<br>Prototype                           | Lattice Parameters [pm]                                                         | Comments/References                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\xi$ , $Cr_2Al_{1-x}Si_x$ $Cr_2Al$ $< 910$                                                                                 | <i>tI</i> 6<br><i>I4/mmm</i><br>MoSi <sub>2</sub>                      | a = 300.45<br>c = 864.77<br>a = 300.5 to 302.8<br>c = 864.9 to 875.5<br>a = 300 | $0 \le x \le 0.12$ at 700°C [1964Ram]<br>at $x = 0$ , binary Al-Cr<br>~65.5 to ~71.4 at.% Cr<br>[1937Bra, 1963Koe, 1998Mur]<br>[1989Ell]<br>at $x = 0$ [1964Ram] |
| $\mathrm{Cr}_{2}\mathrm{Al}_{0.91}\mathrm{Si}_{0.09}$                                                                       |                                                                        | c = 864 $a = 300$ $c = 861$                                                     | x = 0.09 [1964 Ram]                                                                                                                                              |
| <i>X</i> (Al-Cr) ≤ 400                                                                                                      | Cr <sub>5</sub> Al <sub>3</sub> or<br>Cr <sub>3</sub> Al super lattice |                                                                                 | ~75 to ~80 at.% Cr [1981Bro, 1981Ten]; possibly metastable [1998Mur]                                                                                             |
| "ε'CrAl <sub>4</sub> "                                                                                                      | Ртст                                                                   |                                                                                 | in as-cast alloy 15 at.% Cr, lattice<br>parameters are the same as for "ɛ'CrAl <sub>4</sub> "<br>metastable [1994Sel]                                            |
| <i>i</i> CrAl <sub>4</sub>                                                                                                  | icosahedral                                                            |                                                                                 | in spinning alloy of 8 to 13 at.% Cr; by decomposition of amorphous 20 at.% Cr, metastable [1998Mur]                                                             |
| dCrAl <sub>4</sub>                                                                                                          | decagonal                                                              |                                                                                 | 19 at.%, 4 at.% Si [1994Sel]                                                                                                                                     |
| ω(Al-Cr)                                                                                                                    | -                                                                      | -                                                                               | in quenched Al-Cr alloy of 60-100 at.%<br>Cr, like metastable ωTi [2000Sha1,<br>2000Sha2]                                                                        |
| $\frac{\varepsilon, \operatorname{Cr}_3\operatorname{Si}_{1-x}\operatorname{Al}_x}{(\operatorname{Cr}_3\operatorname{Si})}$ | <i>cP</i> 8<br><i>Pm</i> 3 <i>n</i><br>Cr <sub>3</sub> Si              | $a = 455.60 \pm 0.04$                                                           | $0 \le x \le 0.5$ [1961Bru]<br>at $x = 0$ , binary Cr-Si [V-C2]<br>20.8 - 25.3 at.% Si [2001Oka]                                                                 |
| < 1780                                                                                                                      | 01301                                                                  | $a = 456.27 \pm 0.04$                                                           | at $22.5 \pm 0.4$ at.% Si, at $1200$ °C, [1993Sut]                                                                                                               |
|                                                                                                                             |                                                                        | $a = 456.46 \pm 0.02$                                                           | at 21.5 ± 0.4 at.% Si, at 1400°C,<br>[1993Sut]                                                                                                                   |
|                                                                                                                             |                                                                        | $a = 456.67 \pm 0.02$                                                           | at 20.8 ± 0.4 at.% Si, at 1600°C,<br>[1993Sut]                                                                                                                   |
|                                                                                                                             |                                                                        | $a = 456.65 \pm 0.03$                                                           | as solidified [1993Sut]                                                                                                                                          |
| Cr. Si. Al                                                                                                                  |                                                                        | a = 454.7<br>a = 456.3                                                          | at $x = 0$ [1961Bru]<br>at $x = 0.5$ [1961Bru]                                                                                                                   |
| Cr <sub>3</sub> Si <sub>0.5</sub> Al <sub>0.5</sub><br>Cr <sub>5</sub> Si <sub>3</sub> (h)<br>1666-1488                     |                                                                        | <i>u</i> – 430.3                                                                | 37.5 - 37.7 at.% Si [2001Oka]                                                                                                                                    |
| $\delta$ , $Cr_5(Si_{1-x}Al_x)_3(r)$                                                                                        | <i>tI</i> 32                                                           |                                                                                 | x = 0  to  0.2  [1961Bru]                                                                                                                                        |
| $0, 0.15(0.11-x^{2} 1.1x)$ $3(1)$                                                                                           | I4mcm                                                                  | a = 917.0                                                                       | at $x = 0$ , binary Cr-Si [V-C2]                                                                                                                                 |
| $Cr_5Si_3(r)$                                                                                                               | $W_5Si_3$                                                              | c = 463.6                                                                       | 37.5 at.% Si [2001Oka]                                                                                                                                           |
| < 1488                                                                                                                      | <i>ა ა</i>                                                             | a = 914 $c = 463$                                                               | at $x = 0$ [1961Bru]                                                                                                                                             |
| $\text{Cr}_5\text{Si}_{2.4}\text{Al}_{0.6}$                                                                                 |                                                                        | a = 915.7<br>c = 464.2                                                          | at $x = 0.2$ [1961Bru]                                                                                                                                           |
| γ, CrSi<br>< 1424                                                                                                           | <i>cF</i> 8<br><i>P</i> 2 <sub>1</sub> 3<br>FeSi                       | $a = 462.2 \pm 0.1$                                                             | [V-C2]<br>50 at.% Si [2001Oka]                                                                                                                                   |

Landolt-Börnstein New Series IV/11A1

| Phase/<br>Temperature Range<br>[°C]                                      | Pearson Symbol/<br>Space Group/<br>Prototype     | Lattice Parameters [pm] | Comments/References                                          |
|--------------------------------------------------------------------------|--------------------------------------------------|-------------------------|--------------------------------------------------------------|
| $\beta, \operatorname{Cr}(\operatorname{Si}_{1-x}\operatorname{Al}_x)_2$ | hP9<br>P6 <sub>4</sub> 22                        |                         | x = 0 to 0.75 [1961Bru],<br>microhardness 8530 MPa [1965Ess] |
| CrSi <sub>2</sub>                                                        | CrSi <sub>2</sub>                                |                         | at $x = 0$ , binary Cr-Si                                    |
| $< 1438 \pm 2$                                                           |                                                  |                         | 66.3 - 68 at.% Si [2000Du]                                   |
|                                                                          |                                                  | $a = 442.83 \pm 0.01$   | [2001Oka]                                                    |
|                                                                          |                                                  | $c = 636.80 \pm 0.09$   | [2001Tan]                                                    |
|                                                                          |                                                  | a = 442.0               | at $x = 0$ [1961Bru]                                         |
|                                                                          |                                                  | c = 635.4               |                                                              |
| CrSi <sub>1.25</sub> Al <sub>0.75</sub>                                  |                                                  | a = 453.2               | at $x = 0.375$ [1961Bru]                                     |
| 1.23 0.75                                                                |                                                  | c = 639                 |                                                              |
| * τ, Cr <sub>4</sub> Al <sub>13</sub> Si <sub>4</sub>                    | cF84                                             | $a = 1091.7 \pm 0.1$    | [1953Rob1], probably with a range of                         |
| < 710                                                                    | $F\overline{4}3m$                                |                         | homogeneity [1951Pra1],                                      |
|                                                                          | Cr <sub>4</sub> Al <sub>13</sub> Si <sub>4</sub> |                         | microhardness 5710 MPa [1965Ess]                             |



Fig. 1: Al-Cr-Si. Partial reaction scheme

 $MSIT^{\circledR}$ 



**Fig. 3:** Al-Cr-Si. Isothermal section at 1300°C



