Extra credit problems

Math 427

- 0. Find a mistake or misprint in the book.
- 4. Describe all the motions of the Manhattan plane.
- 2. Construct a metric space \mathcal{X} and a distance preserving map $f: \mathcal{X} \to \mathcal{X}$ which is not a motion of \mathcal{X} .
- 3. Note that the following quantity

$$\tilde{\angle}ABC = \begin{bmatrix} \pi & \text{if } \angle ABC = \pi \\ -\angle ABC & \text{if } \angle ABC < \pi \end{bmatrix}$$

can serve as the angle measure; that is, the axioms hold if one changes everywhere \measuredangle to $\tilde{\measuredangle}.$

- (a). Show that \angle and $\tilde{\angle}$ are the only possible angle measures on the plane.
- (b). Show that without Axiom IIc, this is not longer true.
- 4. Consider triangle $\triangle ABC$ with $D \in (AC)$ such that $(BD) \perp (AC)$, and points N and M such that AN = DC, CM = AD, $(AN) \perp (AB)$ and $(CM) \perp (BC)$. Prove that M and N are equidistant form B.
- 5. Lines ℓ and m are tangent to two circles of radii r and R on such a way the circles are on one side of ℓ and on different sides of m. Let A and B be tangential points of ℓ and Q be the point of intersection ℓ and m. Show that

$$QA \cdot QB = R \cdot r.$$

- 6. Given two parallel lines ℓ and m and a point P, use only ruler to construct the line through P parallel to ℓ and m. (You can play with the java applet "Third parallel line" on http://anton-petrunin.github.io/birkhoff/car/.)
- 7. Two points A and B lie on one side of line ℓ . Two points M and N are chosen on ℓ such that AM + BM is minimal and AN = BN. Show that points A, B, M and N lie on one circle.
- 8. Give a ruler-and-compass construction of a circle or a line which perpendicular to each of three given circles. (You may assume any two of three given circles do not intersect.)