

Submission Deadline: 8. November 2022, 16:00

Exercise #10

26. October 2022

Problem 1.

Compute the Laplace transform of the following functions.

a)
$$f(t) = 5 + t^3 - 4t^6$$
.

b)
$$f(t) = te^{2t}$$
.

c)
$$f(t) = e^{-t} \cos(5t)$$
.

Problem 2.

Find the inverse Laplace transform of the following functions.

a)
$$F(s) = -\frac{4}{s^2} + \frac{3}{s^5}$$
.

b)
$$F(s) = \frac{s+13}{s^2-6s+6}$$
.

c)
$$F(s) = \frac{2}{(s-1)(s^2+1)}$$
.

Problem 3.

Decide for each of the following statements whether it is true or false. Explain your answer.

- a) If f and g are two functions for which the Laplace transform exists, then $\mathcal{L}(f-g)=\mathcal{L}(f)-\mathcal{L}(g)$.
- b) If f and g are two functions, for which the Laplace transform exists, then $\mathcal{L}(f \cdot g) = \mathcal{L}(f) \cdot \mathcal{L}(g)$.
- c) If the function f satisfies $0 \le f(t)$ for all $t \ge 0$, then $\mathcal{L}(f)(s) \ge 0$ for all s for which $\mathcal{L}(f)(s)$ exists.
- d) If the function f satisfies $0 \le f(t) \le 1$ for all $t \ge 0$, then $\mathcal{L}(f)(s)$ exists for all s > 0.

Problem 4.

Use the Laplace transform in order to solve the following initial value problems:

a)
$$y'' + y' - 6y = 0$$
, $y(0) = 1$, $y'(0) = 1$.

b)
$$y''' + y' = 1$$
, $y(0) = 1$, $y'(0) = -1$, $y''(0) = -1$.

c)
$$y'' + 5y' + 6y = 0$$
, $y(0) = -2$, $y'(0) = 1$.

The next exercises are optional and should not be handed in!

Problem 5.

Compute the Laplace transform of the following functions:

a)
$$f(t) = t^3 \cos(2t)$$
.

b)
$$f(t) = \sin(4t)e^{3t}$$
.

c)
$$f(t) = \sinh(t) \cos(t)$$
.

Problem 6.

Compute the inverse Laplace transform of F(s), where

a)
$$F(s) = \frac{1}{s^2 + s + 1}$$
,

b)
$$F(s) = \frac{as}{s^2 - 2as + a^2 + 1}$$
 for some $a \in \mathbb{R}$,

c)
$$F(s) = \frac{1}{s^3 + s}$$
.

Problem 7.

a) Use the Laplace transform to solve the differential equation,

$$y' = -2y + 1$$
, $y(0) = 0$.

b) Use the Laplace transform to solve the differential equation,

$$y''' = -y' + 2$$
, $y(0) = y'(0) = y''(0) = 0$.