THERMINOL® VP-1+350°C

Heat Transfer Fluids By SOLUTIA

+300°C

Vapour Phase Liquid Phase Heat Transfer Fluid

+250°C

+200°C

12°C to

+150°C

+100°C

400°C

+50°C

+0°C

-50°C

-100°C

Therminol VP-1 liquid/vapour phase heat transfer fluid, is a stable, high temperature medium that delivers process heat at temperatures up to 400°C with reliability and precise control.

Therminol VP-1 is a eutectic mixture of 73.5% diphenyl oxide / 26.5% diphenyl, and as such can be used in existing liquid, or vapour phase systems, for top-up or replacement of heat transfer fluids of the same composition. Vapour phase operation is possible at temperature above 257°C.

Heat Tracing System

Since Therminol VP-1 heat transfer fluid solidifies at 12°C, precautions must be taken to ensure lines do not freeze, particularly in outdoor installations. Heat tracing must be installed wherever lines run a danger of cooling below this point. All pipelines and equipment which may contain stagnant liquid should be traced, including all streams, vapour, drain and charge lines.

Thermal Stability at 400°C

Thermal stability of a heat transfer is one of the most important considerations in the selection of a fluid for operation under specific heat transfer conditions. Therminol VP-1 has a reputation for outstanding stability in operation.

Therminol VP-1 is based on raw materials of high purity produced by a first intent manufacturing process. This results in a reduced level of high boiler formation, superior thermal stability and benefits to the user in terms of extended fluid life and dependable trouble-free system operation.

Therminol VP-1 is thermally stable and suitable for operation over long periods at bulk temperatures up to 370-400°C.

Flammability

Although the DP/DPO eutectic can burn at elevated temperature, its chemical nature is such that its use as heat transfer medium in a properly designed and operated system does not normally constitute a serious fire or explosion hazard. Vapour freed into the air rapidly cools to below the fire point. High pressure mists, however, can form an explosive mixture with air.

Typical Physical, Chemical and Thermal Properties of Therminol VP-1

Composition		Diphenyl oxide/diphenyl
Appearance		Clear, sediment free liquid
Max. bulk temperature		400°C
Max. film temperature		430°C
Kinematic viscosity @ 40°C	DIN 51562 - 1	2.48 mm²/s (cSt)
Density @ 15°C	DIN 51757	1068 kg/m³
Flash point	DIN EN 22719	110°C
	DIN 51376	124°C
Fire point	ISO 2592	127°C
Autoignition temperature	DIN 51794	621°C
Pour point	ISO 3016	12°C
Boiling point @ 1013 mbar		257°C
Coefficient of thermal expansion		0.00097/°C
Moisture content	DIN 51777 - 1	< 300 ppm
Total acidity	DIN 51558 - 1	< 0.2 mg KOH/g
Chlorine content	DIN 51577 - 3	< 10 ppm
Copper corrosion	EN ISO 2160	<< 1a
Average molecular weight		166

Note: Values quoted are typical values obtained in the laboratory from production samples. Other samples might exhibit slightly different data. Specifications are subject to change. Write to Solutia for current sales specifications.

Properties of Therminol AEP-1 vs Temperatures - Liquid Phase

Temperature	Density kg/m³	Thermal Conductivity W/m.K	vity Capacity	Viscosity		Vapour pressure	Enthalpy	Latent
°C				Dynamic mPa.s	Kinematic mm²/s**	(absolute) kPa*	kJ/kg	Heat vap. kJ/kg
12	1071	0,137	1,523	5,48	5,12	_	0	419,0
20	1064	0,136	1,546	4,29	4,03	_	12,3	414,7
30	1056	0,135	1,575	3,28	3,10	_	27,9	409,3
40	1048	0,134	1,604	2,60	2,48	_	43,8	403,9
50	1040	0,133	1,633	2,12	2,03	_	60,0	398,6
60	1032	0,132	1,662	1,761	1,707	_	76,4	393,3
70	1024	0,131	1,690	1,492	1,458	_	93,2	388,1
80	1015	0,130	1,719	1,284	1,265	_	110,3	382,9
90	1007	0,129	1,747	1,119	1,111	_	127,6	377,8
100	999	0,128	1,775	0,985	0,986	0,5	145,2	377,3
110	999	0,126	1,773	0,965	0,988	0,5	163,1	367,6
120	991	0,126	1,803	0,875	0,884	1	181,3	362,6
130	974	0,124	1,858	0,707	0,726	2	199,7	357,5
140	965	0,123	1,886	0,642	0,665	3	218,4	352,6
150	957	0,121	1,913	0,585	0,612	5	237,4	347,6
160	948	0,120	1,940	0,537	0,566	7	256,7	342,7
170	940	0,118	1,968	0,494	0,526	9	276,2	337,7
180	931	0,117	1,995	0,457	0,491	13	296,0	332,8
190	922	0,115	2,021	0,424	0,460	18	316,1	327,9
200	913	0,114	2,048	0,395	0,432	24	336,5	323,0
210	904	0,112	2,075	0,368	0,407	32	357,1	318,0
220	895	0,111	2,101	0,345	0,385	42	378,0	313,0
230	886	0,109	2,128	0,324	0,366	54	399,1	308,0
240	877	0,107	2,154	0,305	0,348	68	420,5	303,0
250	867	0,106	2,181	0,288	0,332	86	442,2	297,9
260	857	0,104	2,207	0,272	0,317	108	464,1	292,7
270	848	0,102	2,234	0,258	0,304	133	486,3	287,5
280	838	0,100	2,260	0,244	0,292	163	508,8	282,2
290	828	0,098	2,287	0,232	0,281	198	531,6	276,8
300	817	0,096	2,314	0,221	0,271	239	554,6	271,2
310	806	0,095	2,341	0,211	0,262	286	577,8	265,6
320	796	0,093	2,369	0,202	0,254	340	601,4	259,7
330	784	0,091	2,397	0,193	0,246	401	625,2	253,8
340	773	0,089	2,425	0,185	0,239	470	649,3	247,6
350	761	0,086	2,454	0,177	0,233	548	673,7	241,3
360	749	0,084	2,485	0,170	0,227	635	698,4	234,7
370	736	0,082	2,517	0,164	0,222	732	723,4	227,8
380	723	0,080	2,551	0,158	0,218	840	748,8	220,7
390	723	0,030	2,588	0,150	0,218	959	746,6	213,2
400	694	0,076	2,628	0,132	0,214	1090	800,5	205,3
410	679	0,073	2,628	0,140	0,211	1230	827,0	197,0
	662	0,073						188,0
420 425			2,729	0,137	0,206	1390	854,0 947.7	
425	654	0,070	2,760	0,134	0,205	1470	867,7	183,3

Note: Values quoted are typical values obtained in the laboratory from production samples. Other samples might exhibit slightly different data. Specifications are subject to change. Write to Solutia for current sales specifications

Physical Property Formulae of Liquid

```
Density (kg/m³) = -0.90797 * T(°C) + 0.00078116 * T²(°C) - 2.367 * 10^6 * T³(°C) + 1083.25

Heat capacity ( kJ/kg.K ) = +0.002414 * T(°C) + 5.9591 * 10^6 * T²(°C) - 2.9879 * 10^8 * T³(°C) + 4.4172 * 10^{-11} * T³(°C) + 1.498

Thermal Conductivity (W/m.K) = -8.19477 * 10^5 * T(°C) - 1.92257 * 10^{-7} * T²(°C) + 2.5034 * 10^{-11} * T³(°C) - 7.2974 * 10^{-15} * T⁴(°C) + 0.137743

Kinematic viskosity (mm²/s) = e
```

Vapour pressure (kPa) = $-0.190859 * T(°C) + 4.35824 * 10^3 * T^2(°C) - 3.6106 * 10^5 * T^3(°C) + 1.08408 * 10^7 * T^4(°C) + 2.12329$

Latent Heat Vaporisation (kJ/kg) = $-0.528933 * T(^{\circ}C) - 7.50103 * 10^{5} * T^{2}(^{\circ}C) + 1.5622 * 10^{6} * T^{3}(^{\circ}C) - 3.771 * 10^{9} * T^{4}(^{\circ}C) + 425.18$

Properties of Therminol VP-1 vs Temperatures - Vapour Phase

			Conductivity	Capacity		Dynamic Viskosity
	°C	kg/m³	W/m.K	kJ/kg.K	kJ/kg	mPa.s
	12	-	0,0081	0,975	419,0	0,0057
	20	-	0,0085	1,003	427,0	0,0059
	30	-	0,0090	1,037	437,2	0,0061
	40	-	0,0095	1,070	447,7	0,0063
	50	-	0,0100	1,104	458,6	0,0065
	60	-	0,0105	1,137	469,7	0,0067
	70	-	0,0110	1,170	481,3	0,0069
	80	-	0,0116	1,203	493,2	0,0071
ı	90	-	0,0121	1,235	505,4	0,0073
ı	100	-	0,0126	1,267	517,9	0,0075
I	110	0,042	0,0132	1,299	530,7	0,0077
I	120	0,065	0,0137	1,331	543,9	0,0079
ı	130	0,099	0,0143	1,362	557,2	0,0081
ı	140	0,148	0,0149	1,393	571,0	0,0083
ı	150	0,214	0,0154	1,424	585,0	0,0085
ı	160	0,303	0,0160	1,454	599,4	0,0087
ı	170	0,422	0,0166	1,484	613,9	0,0089
ı	180	0,575	0,0171	1,514	628,8	0,0091
ı	190	0,772	0,0177	1,543	644,0	0,0094
ı	200	1,02	0,0183	1,572	659,5	0,0096
ı	210	1,33	0,0189	1,601	675,1	0,0098
I	220	1,71	0,0195	1,629	691,0	0,0100
ı	230	2,17	0,0201	1,657	707,1	0,0102
ı	240	2,72	0,0207	1,685	723,5	0,0104
ı	250	3,38	0,0213	1,712	740,1	0,0106
ı	260	4,17	0,0220	1,739	756,8	0,0108
ı	270	5,09	0,0226	1,766	773,8	0,0110
ı	280	6,17	0,0232	1,792	791,0	0,0112
	290	7,42	0,0238	1,819	808,4	0,0114
I	300	8,86	0,0245	1,845	825,8	0,0116
	310	10,5	0,0251	1,871	843,4	0,0118
	320	12,4	0,0258	1,897	861,1	0,0120
	330	14,6	0,0264	1,923	879,0	0,0122
I	340	17,0	0,0271	1,948	896,9	0,0124
	350	19,8	0,0277	1,974	915,0	0,0126
	360	22,9	0,0284	2,001	933,1	0,0128
	370	26,5	0,0291	2,027	951,2	0,0130
	380	30,5	0,0298	2,054	969,5	0,0132
	390	35,0	0,0304	2,082	987,6	0,0134
	400	40,1	0,0311	2,111	1005,8	0,0136
	410	45,8	0,0318	2,142	1024,0	0,0138
	420	52,4	0,0325	2,175	1042,0	0,0140

Note: Values quoted are typical values obtained in the laboratory from production samples. Other samples might exhibit slightly different data. Specifications are subject to change. Write to Solutia for current sales specifications.

Physical Property Formulae of Vapour

```
Density (kg/m³) = -0.0303917 * T(°C) + 4.34615 * 10^{-4} * T^{2}(°C) - 2.41006 * 10^{-6} * T^{3}(°C) + 5.33458 * 10^{-9} * T^{4}(°C) + 0.553905
Heat Capacity (kJ/kg.K) = +0.003703 * T(°C) - 3.0274 * 10^{-6} * T^{2}(°C) + 2.9324 * 10^{-9} * T^{3}(°C) + 0.92709
```

Dynamic Viskosity (mPa.s) = $+ 2,0124 * 10^{-5} * T(°C) + 3,4557 * 10^{-9} * T^{2}(°C) - 7,1288 * 10^{-12} * T^{3}(°C) + 0,005449$ Thermal Conductivity (W/m.K) = $+ 4,84257 * 10^{-5} * T(°C) + 2,9067 * 10^{-8} * T^{2}(°C) - 6,5306 * 10^{-12} * T^{3}(°C) + 0,0075110$

The Therminol® Range

Therminol VP-1 is one of the of the Solutia synthetic heat transfer fluids covering an operating range from -85°C to +400°C, suitable for most process heating or waste heat recovery applications, and capable of operation at or near atmospheric pressure within their recommended operating temperature range.

As a user's process temperature demands change there is always a Therminol fluid capable of meeting the new requirements. In addition, Therminol fluids are often interchangeable allowing conversion by a simple top-up procedure where this is preferred.

Asia

Solutia Singapore Pte. Ltd. 101 Thomson Road - #19-00 United Square Singapore 307591

Tel.: (+65) 355 7231 - Fax: (+65) 254 3138

Latin America

Solutia Brasil Ltda.

Rua Gomes de Carvalho 1306 - 60 andar - conj. 61 e 62

CEP: 04547-005 • Vila Olímpia - Sao Paulo, SP, Brasil

Phone: (+55) 11-5087 3000 - Fax: (+55) 11-5087 3030

North America

Solutia Inc. 10300 Olive Boulevard - PO Box 66760 St Louis, MO 63166-6760 - USA Tel.: (+1) 314 674 10 00

People's Republic of China

Solutia Chemical Co. Ltd., Suzhou
9th floor, Kings Tower
16 Shi Shan Road - Suzhou New District - Suzhou, PRC 215011
Phone: (+86) 512 8258167 - Fax: (+86) 512 8250417

Quality Management

All our manufacturing units have obtained ISO 9002 quality control certification. This registration means that plant procedures, quality control systems, material sampling, product storage, handling, packaging, shipping, product literature and characteristic data, record keeping and other company procedures are in line with the quality requirements of the ISO 9002 standards and its other national equivalents.

This is your quality assurance.

Health, Safety and Environmental Information

Please contact the Solutia Europe/Africa HQ for the Material Safety Data Sheet, or if any other information concerning health, safety and environmental issues is required during filling or operation of your heat transfer system with this product.

Europe

Solutia Europe S.A./N.V.
Rue Laid Burniat 3 - Parc Scientifique - Fleming
B-1348 Louvain-la-Neuve (Sud) - Belgium
Tel.: (+32) 10 48 15 47 - Fax: (+32) 10 48 14 86
http://www.solutia.com

Please	contact	u s	for	more	information	:

Therminol is a trademark of Solutia. Therminol has now been adopted as a world-wide brand for the Solutia Heat Transfer Fluid range.

Fluids known previously under the Santotherm and Gilotherm brands are identical in composition and performance to the corresponding Therminol brand fluids.