Bitti: BÖLÜM 1: FA (DFA,NFA), RE, PL

Buradayız: BÖLÜM 2: CFG, CFL, PDA

BÖLÜM 3: TM

Tekrar: Pumping Lemma ile RE İspat

- $\Sigma = \{0, 1\}$, L = $\{u0v : u, v \in \Sigma * \text{ and } |u| = |v|\}$.
- Sözle ifade edersek; L orta sembolü 0 olan tek uzunluktaki katarlardır.
- L dilinin regular olup olmadığını PL yardımı ile gösteriniz.
- L diline ait w=1ⁿ01ⁿ için PL uygularsak regular olmadığını kolayca gösterebiliriz.

Tekrar: Pumping Lemma ile RE İspat

- Çelişki (contradiction) ile L'nin düzenli dil olduğunu varsayalım.
 RE için PL'ye göre, L için bu lemmada ifade edilen özelliği karşılayan n ≥ 1 bir pumping length bulunması gerekir.
- $w \in L$ ve $|w| = 2n + 1 \ge n$ olmak üzere $w = 1^n01^n$ alalım.
- PL'den w = xyz katarları için x, y, z ∈ Σ * olmak üzere
 (i) y ≠ ε, (ii) |xy| ≤ n, ve (iii) xyⁱ z ∈ L her i ∈ N için.

 $w = xyz = 1^n 01^n$ ve $|xy| \le n$ olduğuna göre $y = 1^k$ $k \in N$ olabilir çünkü önek xy tek 0 sembolünü içerirse (iii) sağlanmaz.

- Ayrıca, $y \neq \varepsilon$ olduğu için $k \ge 1$ olmalıdır. i = 2 için $xy^2 z = xyyz = 1^{n+k} 01^n \in L$.
- k≥1 için 1^{n+k}01ⁿ katarı L dilinin elemanı değildir; ya 0 ortada olmaz ya da uzunluğu çift olur. Bu yüzden L düzenli değildir.

Tekrar: DFA ile RE İspat

- d(w), |n m| değerini veriyor olsun. Burada n, w'daki 0'ların sayısı ve m de 1'lerin sayısı olsun
- A = {w ∈ {0, 1} * | d(w) = 0 mod 3} düzenli midir? Cevabınızı kısaca anlatınız.

Tekrar: DFA ile RE İspat

Q0 - start and accept state (same number of 0s and 1s)

Q1 - Ix-yi mod 3 is 1.

Q2 - lx-y1 mod 3 is 2.

x - number of 1s

y - number of 0s

Q0 - start and accept state (same number of 0s and 1s) Q1 - (number of 1s) mod 3 is 1. Q4 - (number of 1s) mod 3 is 2.

Q2 - (number of 0s) mod 3 is 1.

Q3 - (number of 0s) mod 3 is 2.

CENG 306 Biçimsel Diller ve Otomatlar Formal Languages and Automata

BÖLÜM 2BAĞLAMDAN BAĞIMSIZ GRAMER
CONTEXT-FREE GRAMMAR

Konular

- Context-Free (bağlamdan bağımsız, içerikten bağımsız) Grammars (CFGs) and Languages (CFLs)
- Parse Trees (Türetme Ağacı) and Derivations

- Dil tanıyıcı cihaz bir dile ait geçerli string'leri kabul eder.
- Dil üreteci cihaz bir dile ait string'leri oluşturur.
- Dil üreteci cihazlar bir başlangıç işaretiyle bir string oluşturmaya başlarlar ve belirlenmiş kuralları kullanarak string oluştururlar.
- Regular expression bir dil üreteci olarak kabul edilir.

Örnek:

 $a(a^* \cup b^*)b$ regular expression ile önce bir a üretilir; ardından iki durumdan birisine göre devam edilir. istenen sayıda a üretilir veya b üretilir.

Son olarak da bir b üretilir.

- Context-free grammar ile regular ifadelere göre çok daha karmaşık diller üretilebilir. Örnek:
- a(a*Ub*)b regular expression ön kısım, orta kısım ve son kısım olarak ayrıştırılabilir.
- S dilde bir string ve M ise orta kısım olmak üzere
 - **S** → **aMb** şeklinde bir kural yazılabilir.

Burada M, a'lardan veya b'lerden oluşturulabilir.

 $M \rightarrow A$ ve $M \rightarrow B$ yeni iki kural, A ve B dile ait stringlerdir.

 $A \rightarrow e$, $A \rightarrow aA \ ve B \rightarrow e$, $B \rightarrow bB$

• a(a*Ub*)b regular expression tarafından oluşturulan dil yukarıdaki kurallarla oluşturulabilir. **aaab** string'i aşağıdaki gibi oluşturulur;

 $S \rightarrow aMb$, sonra $M \rightarrow A$ ile aAb $A \rightarrow aA$ ile aaAb yine $A \rightarrow aA$ ile aaaAb $A \rightarrow e$ ile aaab elde edilir.

- Kurallarla değiştirme işlemi, sadece değişecek sembol üzerinde yapılır ve önündeki ve ardındaki kısımlara bakılmaz.
- Bu yüzden context-free olarak adlandırılır.
- S, A, B, M non-terminal, a, b, e terminal olarak adlandırılır.
- Tüm string'ler sadece terminallerden oluşabilir.
- Kuralların uygulanması ve yeni bir string elde edilmesi regular expression'larda yeni bir string elde edilmesi gibidir.

Tanım:

- Bir context-free grammar $G = (V, \sum, R, S)$ șeklinde tanımlanır.
 - *V* alfabe (terminal ve non-terminaller)
 - \sum terminaller ($\sum \subseteq V$)
 - R kurallar $(V \sum) \times V^*$
 - *S* başlangıç sembolü $(S \in (V \sum))$
- $\bullet A \in V \sum ve \ u \in V^* i cin (A, u) \in R i se A \rightarrow_G u yazabiliriz.$
- • $u, v \in V^*$ için $u \Rightarrow_G v$ yazabiliriz sadece ve sadece

$$x, y \in V^* * ve A \in V - \sum ve u = xAy ve v = xv' y ve A \rightarrow_G v' ise$$

- \Rightarrow_{G}^{*} \Rightarrow_{G}^{*} ilişkisinin reflexive, transitive, closure'udur.
- G grammar'i tarafından oluşturulan dil

$$L(G) = \{w \in \sum^* : S \Rightarrow^*_G w\}$$
 şeklindedir.

- Kurallar uygulanarak dile ait tüm string'ler elde edilebilir.
- OluŞturulan L(G) dili **context-free language** olarak adlandırılır.
- $A \rightarrow_G u$ ve $u \Rightarrow_G v$ yerine $A \rightarrow u$ ve $u \Rightarrow v$ yazılabilir.
- $w_0 \Rightarrow_G w_1 \Rightarrow_G ... \Rightarrow_G w_n$ derivation (türetme) olarak adlandırılır. w_n string 'i w_0 'dan türetilmiştir.
- $w_0, \ldots, w_n \in V^*$ olabilir. n **derivation length** (türetme uzunluğu) olarak adlandırılır.

Örnek:

 $G = (V, \sum, R, S)$ grammar'i için

 $V = \{S, a, b\}, \sum = \{a, b\}$ ve R kümesi $S \rightarrow aSb$ ve $S \rightarrow e$ olmak üzere iki tane kurala sahip olsun. Örnek bir derivation aşağıdaki gibi olabilir:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

ilk iki adımda S → aSb ve son olarak S → e uygulanmıştır. Oluşturulan dil

 $L(G) = \{a^nb^n : n \ge 0\}$ olmuştur.

Bazı context-free diller regular degildir, ancak tüm regular diller context-free dildir.

```
Örnek:
```

```
G = (W, \sum, R, S) grammar'i için W = \{S, A, N, V, P\} \cup \sum, 

\sum = \{Jim, big, green, cheese, ate\}, 

R = \{P \rightarrow N, P \rightarrow AP, S \rightarrow PVP, S \rightarrow PVP, S \rightarrow PVP, S \rightarrow big, N \rightarrow big, N \rightarrow cheese, N \rightarrow Jim, V \rightarrow ate\}
```

L(G) deki grammar olarak doğru bazı string'ler aşağıdadır; Jim ate cheese big Jim ate green cheese big cheese ate Jim

Bazı string'ler anlamsız olabilir; big cheese ate green green big green big cheese green Jim ate green big Jim

- Herhangi bir bilgisayar programlama diliyle yazılmış bilgisayar programının, yazımının doğru olabilmesi için katı kurallara uyması gerekir.
- Konuşma dillerindekinin tersine bircok programlama dilinin yazımının doğruluğunu kontrol etmek icin context-free grammar'ler kullanılabilir.
- Özellikle programların syntax analizinde parse edilmesi aşamasında cok faydalıdır.
- Bir programlama dilinde bazı kısımlar regular expression'larla ifade edilebilir, program yapısı veya blok yapıları context-free grammar'ler tarafından ifade edilebilir.

Örnek: Bütün programlama dillerindeki ortak bir kısmı oluşturan bir dil tanımlayalım.

Bu dil doğru yazılmış aritmetik ifadeleri göstersin.

```
id * (id * id + id) yazımı dogru ancak * id + (ve + * id) yanlıştır.
(id değişken adlarıdır)
                G = (V, \sum_{i} R, E)
                V = \{+, *, (, ), id, T, F, E \},\
                \sum = \{+, *, (, ), id\},
                                                                E = ifade (expression)
                R = \{ E \rightarrow E + T, (R1) \}
                       E \rightarrow T.
                                             (R2)
                                                                 T = terim
                       T \rightarrow T * F.
                                             (R3)
                                                                F = \ddot{o} ge(factor)
                       T \rightarrow F
                                             (R4)
                       F \rightarrow (E)
                                             (R5)
                        F \rightarrow id
                                             (R6)
```

```
Ornek: (devam)
G grammar'i (id * id + id) * (id + id) string'ini aşağıdaki gibi oluşturur;
E \Rightarrow T(R2)
                                                                  G = (V, \sum_{i} R, E)
 \Rightarrow T * F(R3)
                                                                  V = \{+, *, (, ), id, T, F, E \},\
 \Rightarrow T*(E)(R5)
 \Rightarrow T * (E + T) (R1)
                                                                  \sum = \{+, *, (, ), id\},
 \Rightarrow T*(T+T)(R2)
                                                                  R = \{ E \rightarrow E + T, (R1) \}
 \Rightarrow T * (F + T) (R4)
                                                                  E \rightarrow T
                                                                                                                T = teri
                                                                                          (R2)
 \Rightarrow T*(id+T)(R6)
 \Rightarrow T*(id+F)(R4)
                                                                  T \rightarrow T * F,
                                                                                          (R3)
                                                                                                                F = \ddot{\phi} \check{g} \epsilon
 \Rightarrow T * (id + id) (R6)
 \Rightarrow F * (id + id) (R4)
\Rightarrow (E) * (id + id) (R5)
                                                                  T \rightarrow F
                                                                                          (R4)
                                                                 F \rightarrow (E),
                                                                                          (R5)
                            \Rightarrow (E+T)*(id+id)(R1)
                            \Rightarrow (E+F)*(id+id)(R4)
                                                                  F \rightarrow id
                                                                                          (R6)
                            \Rightarrow (E + id) * (id + id) (R6)
                            \Rightarrow (T+id)*(id+id)(R2)
                            \Rightarrow (T * F + id) * (id + id) (R3)
                            \Rightarrow (F * F + id) * (id + id) (R4)
                            \Rightarrow (F * id + id) * (id + id) (R6)
                            \Rightarrow (id * id + id) * (id + id) (R6)
```

Örnek: Düzgün dağılımlı sağ ve sol parantezleri üreten bir grammar oluşturalım.

$$G = (V, \sum, R, S)$$

$$V = \{S, (,)\},$$

$$\sum = \{(,)\},$$

$$R = \{S \rightarrow e, S \rightarrow SS, S \rightarrow (S)\}$$

Aşağıdaki türetmeleri G grammar'i oluşturur;

$$S \Rightarrow SS \Rightarrow S(S) \Rightarrow S((S)) \Rightarrow S(()) \Rightarrow ()(())$$

 $S \Rightarrow SS \Rightarrow (S)S \Rightarrow ()S \Rightarrow ()(S) \Rightarrow ()(())$

Örnek: Bir $M = (K, \sum, \delta, s, F)$ DFA tarafından tanınan regular dil L(M),

 $G(M) = (V, \sum, R, S)$ grammar'i tarafından oluşturulabilir. Burada,

$$V=K\cup \sum,$$

$$S = s$$
,

$$R = \{q \rightarrow ap : \delta(q, a) = p\} \cup \{q \rightarrow e : q \in F\}$$

Nonterminaller otomatın durumları ve a girişi için yapılan q dan

p'ye geçiş R içinde q → ap şeklinde bir kural olarak alınır.

Yandaki otomat için oluşturulan kurallar;

$$S \rightarrow aS$$
, $S \rightarrow bA$, $A \rightarrow bA$, $A \rightarrow aB$, $B \rightarrow aS$, $B \rightarrow bA$, $B \rightarrow e$.

- Regular olmayan context-free diller vardır.
- Ancak bütün regular diller context-free dildir.
- Regular olan ^Φ ve {a} basit context-free dillerdir. Kuralı olmayan ve sadece S → a şeklinde kuralı olan dillerdir.
- Context-free diller union, concatenation ve Kleene star işlemleri icin kapalıdır.
- Context-free diller pushdown otomatlar tarafından tanınır. Pushdown otomatlar finite otomatların genelleştirilmiş şeklidir.
- Her finite otomat basit yapıdaki pushdown otomat olarak düşünülür. (Her PDA bir FA gibi çalışabilir ama tersi olmaz)

- G context-free grammar olsun. Bu grammar ile bir string'in oluşturulması farklı şekillerde olabilir.
- Dengeli parantez üreten bir context-free dil aşağıdaki farklı şekillerde aynı string'i üretir.

$$S \Rightarrow SS \Rightarrow S(S) \Rightarrow (S)(S) \Rightarrow (S)(I) \Rightarrow (I)(I)$$

 $S \Rightarrow SS \Rightarrow (S)S \Rightarrow (I)S$

• iki türetmede yandaki şekildeki gibi gösterilebilir.

Bu şekil parse tree olarak adlandırılır.

- Her node V içinde bir nonterminal semboldOr.
- Yapraklar (leaves) terminallerdir ve ∑ icinde bir semboldür.
- Yapraklar soldan sağa concatenate edildiğinde oluşan string üretilir.

Bir context-free grammar $G = (V, \sum, R, S)$ için parsetree, roots, leaves aşağıdaki gibi tanımlanır.

1. o *a*

Her $a \in \Sigma$ için bu bir parse tree'dir. Tek node hem roothem de yapraktır ve a oluşturur.

2.

 $A \rightarrow e$, R içinde bir kural ise bu bir parse tree'dir.

A root ve *e* yapraktır. Sadece *e* üretir.

3.

Hepsi parse tree'dir. $n \ge 1$ için A_1 , ..., A_n root ve y_1 , ..., y_n üretilir. $A \to A_1$, ..., A_n , R içinde kural ise aşağıdaki parse tree'dir. Üretilen string y_1 ... y_n olur.

4. Bunların dışında hiçbir şey parse tree değildir.

Örnek: Aritmetik ifadeleri o luşturan grammar'in

$$id * (id + id)$$

için oluşturduğu parse tree aşağıdaki gibidir.

Bir context-free grammar $G = (V, \sum, R, S)$ için

$$D = x_1 \Rightarrow x_2 \Rightarrow \ldots \Rightarrow x_n$$
 ve $D' = x'_1 \Rightarrow x'_2 \Rightarrow \ldots \Rightarrow x'_n$ iki farklı türetmedir.

Burada
$$x_i, x'_i \in V^*$$
 ve $x_1, x'_1 \in V - \sum ve x_n, x'_n \in \sum^*$

iki türetmede bir nonterminalden terminal string'leri türetilir.

D türetmesi *D*' türetmesinden öncedir ve $D \prec D'$ şeklinde gösterilir **eğer**;

n > 2 için 1 < k < n olacak şekilde bir k değeri varsa ve;

1. Tüm $i \neq k$ için $x_i = x'_i$

$$2.x_{k-1} = x'_{k-1} = uAvBw burada u, v, w \in V^* ve A, B \in V - \sum_{k=1}^{\infty} ve A_k \in V^* ve A_k \in V^*$$

$$3.x_k = uyvBw$$
, burada $A \rightarrow y \in R$

$$4.x'_{k} = uAvzw$$
, burada $B \rightarrow z \in R$

$$5.x_{k+1} = x'_{k+1} = uyvzw$$

En soldaki nonterminali önce degiştiren türetme diğerinden önce gelir.

Örnek: Herhangi bir grammar için aşağıdaki üç türetmenin önceliklerini çıkaralım.

$$D_1 = S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow (())S \Rightarrow (())(S) \Rightarrow (())($$

$$D_2 = S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow ((S))(S) \Rightarrow (())(S) \Rightarrow (())(S)$$

$$D_3 = S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow ((S))(S) \Rightarrow$$

Burada $D_1 \prec D_2 ve D_2 \prec D_3$ olur.

 $D_1 \prec D_3$ olamaz çünkü birden fazla ara string'te farklılık vardır. Bütün türetmeler aynı parse tree'ye sahiptir.

örnek: devam

Buradaki tüm öncelik ilişkileri aşağıdaki şekille gösterilebilir.

celik ilişkileri aşağıdaki şekille gösterilebilir.
$$D_1 \prec D_2 \overset{\nearrow}{\searrow} D_3 \overset{\nearrow}{\searrow} D_5 \prec D_6 \overset{\nearrow}{\searrow} D_9 \prec D_{10} \overset{\nearrow}{\searrow} D_7 \prec D_8 \overset{\nearrow}{\searrow} D_9 \prec D_{10}$$

Bir parse tree üzerinde **leftmost derivation** ve**rightmost derivation** elde edilebilir.

Leftmost derivation için ağacın root node'undan başlanır ve **sürekli en soldaki nonterminal degiştirilir.**

Rightmost derivation için ağacın root node'undan başlanır ve sürekli en sağdaki nonterminal degiştirilir.

Önceki örnekte D_1 leftmost D_{10} ise rightmost derivation n türetmedir.

$$D_1 \prec D_2 \overset{\downarrow}{\sim} D_3 \overset{\downarrow}{\sim} D_5 \prec D_6 \overset{\downarrow}{\sim} D_9 \prec D_{10}$$

$$\overset{\uparrow}{\sim} D_7 \prec D_8 \overset{\downarrow}{\sim} D_9 \prec D_{10}$$

Leftmost derivation için $x \Rightarrow L y$ ve rightmost derivation için $x \Rightarrow R y$ kullanılır.

 $x \Rightarrow^L y$ yazabiliriz eğer sadece ve sadece $x = wA\beta$, $y = w\alpha\beta$, ise ve burada $w \in \sum^* ve \alpha$, $\beta \in V^*$ ve $A \in V - \sum ve A \Rightarrow \alpha$ kuralı grammar'de varsa.

 $|x_1 \Rightarrow L| x_2 \Rightarrow L \dots \Rightarrow L| x_n$ tüm leftmost türetme sırasını ifade eder.

- L1 = $\{a^n b^m c d^m e^n \mid n, m >= 0\}$
- L2 = $\{(ab)^n cd^m | n, m > = 0\}$
- L3 = $\{a^n b(cd)^n e^n | n > = 0\}$

One of the languages is regular, one context-free and not regular and one not context-free. Which are the regular and the non-regular context-free languages?

L1 = {aⁿ b^mcd^mfⁿ | n, m >= 0}
 G=(V,∑,R,S) V={S,A,B,C,a,b,c,d,f} ∑={a,b,c,d,f}
 S={S}

R={S->aSf | aAf, A->bAd | bCd, C->c | e }

Öyle ise L1 context-free

• $L2 = \{(ab)^n cd^m | n, m > = 0\}$

- L2a=(ab)ⁿ regular
- L2b=c regular
- L2c=d^m regular
- Öyle ise L2 = L2a.L2b.L2c regular (closure under concatenation)

- L3 = $\{a^n b(cd)^n e^n | n > = 0\}$
- L3 ne RL ne de CFL

Ödev

- Problemleri çözünüz 3.1.1b, 3.1.1c, 3.1.1c (sayfa 120)
- Problemleri çözünüz 3.1.2, 3.1.3 (sayfa 120)
- Problemleri çözünüz. 3.1.8 (sayfa 121)
- Problemleri çözünüz 3.2.4 (sayfa 129)