

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

O-fucosyltransferase Sequence Similarity between Human, Hamster and *C. elegans*

		C. Elegans		Human		Hamster			
		1	M S N Y R Y S K L N E E I S L E D M P S S A N Q I L T R O E Q I I Q E Q D D E L E L V G N S V R T						
		51	L R G M S S M I G D E L D Q Q S T M L D D L G Q E M E Y S E T R L D T A M K K M A K L T H L E D G M						
CHO		1	- - - - -						- R L A
C. Elegans		101	L L A R R I V Q S M Q N D H G A L S S P V F P R L C P S G L T T Y V P Y I V D F S S L T F H I F I I						
CHO		4	G S W D L A G T L L Y X P X M G R F G N Q A D H F L G S L A F A K L X V R T L A V P P W I E Y Q H H						
Human		1	- - - - -						- N Q A D H F L G S L A F A K L L N R T L A V P P W I E Y Q H H
C. Elegans		151	I I I I I D F C S O S O S K G R F G N Q V D Q F L G V L A F A K A L D R T L V L P N F I E F K H P						
CHO		54	K P P F T N L H - - - - -						
Human		32	K P P F T N L H V S Y Q K Y F K L E P L Q A Y H R V I S L E D F M E K L A P T H W P P E K R V A Y C						
C. Elegans		201	E T K M I P F E F L F Q V G - - - T V A K Y T R V V T M Q Q E F T K K I M P T H F V G T P R Q A Y C						
Human		82	F E V A A Q R S P D K K T C P M K E G N P F G P F W D Q F H V S F N K S E L F T G I S F S A S Y R E						
C. Elegans		247	D K S A E P G C H S K - - - E G N P F G P Y W D Q I D V S F V G D E Y F G D I D P G G F D L N Q						
Human		132	Q W S Q R - - - F S P K E H P V L A L P G A P A O F P V L E E H R P L Q K Y M V W S D E M V K T						
C. Elegans		291	M G S R K K W L E K F P S E E Y P V L A F S S A P A P F P S K G K V W S I Q K Y L R W S S R I T E Q						
Human		177	G E A Q I H A H L V R P Y V G I H L R I G S D W K N A C A M L K D G T A G S H F M A S P Q C V G Y S						
C. Elegans		341	A K K F I S A N L A K P F V A V H L R N D A D W V R V C E H I D T T N R P L F A S E Q C L G - - -						
Human		227	R S T A A P L T M T M C L P D L K E I Q R A V K L W V R S L D A Q S V Y V A T D S E S Y V P E L O Q						
C. Elegans		388	- - - - -						
Human		277	L F K G K V K V V S L K P E V A Q V D L Y I L G Q A D H F I G N C V S S F T A F V K R E R D L Q G R						
C. Elegans		406	Q I L E Q I E A H R Q E P D D M Y T S L A L M G R A D L F V G N C V S T F S H I V K R E R D H A G Q						
Human		327	P S S F F G M D R P P K L R D E F - -						
C. Elegans		456	S P R P S A F F G I R A V K R H I D L						

Similarity between hamster O-fucosyltransferase and human and *C. elegans* genes. N-terminal peptide sequence of hamster O-fucosyltransferase is shaded. Human sequence is a partial cDNA of unknown protein from a myeloblast cell line and *C. elegans* gene is a computer generated coding sequence from its genome.

Figure 9

Northern Blot For O-Fucosyltransferase

Figure 10

Country	Source	Number of cases	Number of deaths	Rate of mortality	Number of cases	Number of deaths	Rate of mortality	Number of cases	Number of deaths	Rate of mortality
Argentina	Ministry of Health	1,000	100	10%	1,000	100	10%	1,000	100	10%
Bolivia	Ministry of Health	100	10	10%	100	10	10%	100	10	10%
Brazil	Ministry of Health	100,000	10,000	10%	100,000	10,000	10%	100,000	10,000	10%
Chile	Ministry of Health	100	10	10%	100	10	10%	100	10	10%
Colombia	Ministry of Health	100	10	10%	100	10	10%	100	10	10%
Ecuador	Ministry of Health	100	10	10%	100	10	10%	100	10	10%
Paraguay	Ministry of Health	100	10	10%	100	10	10%	100	10	10%
Peru	Ministry of Health	100	10	10%	100	10	10%	100	10	10%
Uruguay	Ministry of Health	100	10	10%	100	10	10%	100	10	10%
Venezuela	Ministry of Health	100	10	10%	100	10	10%	100	10	10%

ATTGAAATTCTA
TAACCTTAAAG

Human KIAA0180 First EcoRI Fragment. The first Eco RI fragment of the cDNA contains a partial coding sequence within complete amino terminus. The region which matched with CHO peptide sequence is shaded. The two oligonucleotides used to make the probe for the northern blot (Figure 2) are over-scored and double-underlined. The nucleotides over-scored and underlined are two primers used in PCR reaction as described in Methods.

Figure 11

Figure
12A

		Human	MPAGSWDPAGYLLYCPCMGRFGNQADHFGLSЛАFKLLNRTLAVPPWIEYQHHKPPFTNLH
1	ATGCCCGGG GCTCCTGGGA CCCGGCGGT TACCTGCTCT ACTGCCCTCTG CATGGGGC TTTGGAAACC AGGCCGATCA CTTCTTGGGC TCTCTGGCAT		***** * * * * *
101	TTCGAAAGCT GCTAAACCGT ACCCTGGCTG TCCCTCCCTG GATTGAGTAC CAGCATCACAGCCTCCCTT CACCAACTCTC CATGTTCTCT ACACAGAAGTA	10	***** * * * * *
191	CTTCAGCTG GAGCCCCCTCC AGGCTTACCA TCGGGTCACT AGCTGGAGG ATTCTATGGA GAAGCTGGCA CCCACCCACT GGCCCCCTGA GAAGGGGGTG	20	***** * * * * *
281	GCATACTGCT TTGAGGTGGC AGGCCAGATA AGAACAGCTG CCCCATGAG GAAGGAAACC CCTTTGGCC ATTCTGGAT CAGTTCTATG	30	***** * * * * *
371	A Y C F E V A A Q R S P D K K T C P M K E G N P F G P F W D Q F H V	40	***** * * * * *
461	TGAGTTCAA CAAGTCGGAG CTTTTACAG GCATTTCCTT CAGTGGTTCC TACAGAGAAC ATGGAGCCA GAGATTCTTCT CCAAGGAAC ATCCGGTGTCT	50	***** * * * * *
551	S F N K S E L F T G I S F S A S Y R E Q W S Q R F S P K E H P V L	60	***** * * * * *
641	TGCCCTGCCA GGAGCCCCAG CGCAGTTCCC CGTCCTAGAA GAACAGAGGC CACTACAGAA GTACATGGTA TGGTCAGACG AAATGCTGAA GACGGGGAGAG	70	***** * * * * *
731	A L P G A P A Q F P V L E E H R P L Q K Y M V W S D E M V K T G E	80	***** * * * * *
821	GCCAGATTCTGCCATCTTGGCC TATGTCGGCC TTCACTGGCG CATTTGGCTCT GACTGGAAAG AGCCCTGTGC CATGCTGAAAG GACGGGGACTG	90	***** * * * * *
911	A Q I H A H L V R P Y V G I H L R I G S D W K N A C A M L K D G T A	100	***** * * * * *
1001	CAGGCTCGCA CTTCATGGCC TCTCCGCACT GTGTGGCTA CAGGCCAGC ACAGGGGCC CCCTCACGAT GACTATGTC CTGCCGTGACC TGAAGGGAT	110	***** * * * * *
1091	G S H F M A S P Q C V G Y S R S T A A P L T M T M C L P D L K E I	120	***** * * * * *
1181	CCAGAGGCT GTGAAGCTCT GGGTAGGTC GCTGGATGCC CAGTGGGTCT ACCTGGCTAC TGATTCCGAG AGTTATGTC CTGAGCTCCA ACAGCTCTTC	130	***** * * * * *
1271	201 Q R A V K L W V R S L D A Q S V Y V A T D S E S Y V P E L Q Q L F	140	***** * * * * *
1361	301 K G K V K V V S L K P E V A Q V D L Y I L G Q A D H F I G N C V S S	150	***** * * * * *
1451	401 CCTTCACTGCA CTTTGTGAAG CGGGAGGGG ACCCTCCAGGG GAGGGCGCTCT TCTTCTCTCG GCATGGAGAG GCCCCCTAAG CTGGGGAGC AGTTCTGATT	160	***** * * * * *
1541	335 F T A F V K R E R D L Q G R P S S F F G M D R P P K L R D E F O	170	***** * * * * *
1631	268 Q R A V K L W V R S L D A Q S V Y V A T D S E S Y V P E L Q Q L F	180	***** * * * * *
1721	328 K G K V K V V S L K P E V A Q V D L Y I L G Q A D H F I G N C V S S	190	***** * * * * *
1811	428 901 ANAGGGAGG TGAAGGTGGT GAGCCTGAAG CCTGAGGTTG CCCAGGTGCA CTCTGACATC CGGACCACTT TATTGGAAAC TGTGTTCTCT	200	***** * * * * *
1901	528 301 K G K V K V V S L K P E V A Q V D L Y I L G Q A D H F I G N C V S S	210	***** * * * * *
2001	601 901 CCTTCACTGCA CTTTGTGAAG CGGGAGGGG ACCCTCCAGGG GAGGGCGCTCT TCTTCTCTCG GCATGGAGAG GCCCCCTAAG CTGGGGAGC AGTTCTGATT	220	***** * * * * *
2091	688 301 K G K V K V V S L K P E V A Q V D L Y I L G Q A D H F I G N C V S S	230	***** * * * * *
2181	768 901 1101 CTGGGGAG CACCAGACCC TCTGATCTG GAGGGACAG AGTCTGAGCT GGTCCTTCCA GCCAGGGCTG GCAGCCAGAG GTGCTCCGGG ATTGCAAAC	240	***** * * * * *
2271	848 301 K G K V K V V S L K P E V A Q V D L Y I L G Q A D H F I G N C V S S	250	***** * * * * *
2361	928 1101 CCTTCACTGCA CTTTGTGAAG ATGGAGAAGA GTGCCAGGGA CCCCTCAAGG AGGGAGACGC TCCATATCCC AGGGCATAGG ACTTGAGGT TCCTAGGAGC	260	***** * * * * *
2451	1001 1201 AGGAGCATCT CCCCAC TCTGTTCTG CTCTCTGAGG AATTCTCAC ACTGGAAAG CAGTCCAGCC TCCGCTCTCT GGTCCTACTCT GCTCTGAGCA	270	***** * * * * *
2541	1081 1301 1101 1401 GCCTGGGATG CTGAACTCTT CAGAGAGATT TTTTATAGA GAGATTCTA TAATTGTAT ACAAGGTCTAT GACTATCTCTA GAACTCTCTA AAATCTGAA ATTCT	280	***** * * * * *
2631	1161 1401 1501 AAATCTGAA ATTCT 10 20 30 40 50 60	290	***** * * * * *
2721	1241 1301 1401 1501 RLAGSWDLAGYLLYXPXMGRFGNQADHFGLSЛАFKLXVRTLAVPPWIEYQHHKPPFTNLH 10 20 30 40 50 60	300	***** * * * * *

Figure
12 B

Human heart O-fucosyltransferase Sequence. Upper panel, compiled sequence from positive cDNA clones. The region that matches with CHO cell sequence is shaded. The residue A at position 540 of the DNA sequence is different from that of human KIAA0180 (G at position 475 of Figure X). The peptide sequences are the same. Lower panel, comparison of O-fucosyltransferase amino terminal sequences from human heart and CHO cells.

**Figure
13 A**

Figure
13 B

4301	GAACCAGGCC GATCACTTCT TGCGCTCTCT GGCAATTGCA AAGGTGCTAA ACCGTCACCTT GGCTGTCTCT CCTTGATTT AGTACCAAGCA TCACAGGCC	N Q A D H F L G S L A F A K L N R T L A V P P W I E Y Q H H K P
4401	CCTTCACCA ACCTCCATGT GTCCTACCAG AACTACTTCA AGCTCGAGCC CCTCCAGGCT TACCATCGGG TCATCAGCTT GGAGGATTTC ATGGAGAAC	P F T N L H V S Y Q K Y F K L E P L Q A Y H R V I S L E D F M E K L
4501	TGGCACCCAC CCACATGGCCC CCTGAGAAGC GGGTGGCATA CTGCTTGAG GTGCTTGAG AGCGAAGGCC AGATAAGAAG ACGTGCCCCA TGAAAGGAGG	A P T H W P P E K R V A Y C F E V A A Q R S P D K K T C P M K E G
4601	AAACCCCTTT GGCCATTCTT CGGATCAGTT TCATGTGAGT TTCAACAAAGT CGGAGCTTT TAGGGCAATT TCCTTCAGTGG CTTCTACAG AGAACATGG	N P F G P F W D Q F H V S F N K S E L F T G I S F S A S Y R E Q W
4701	AGCCAGGAGAT TTCTCCAAA GGAAACATCCG GTGCTTGCCC TGCCAGGAGC CCCAGCCAG TTCCCGTCC TAGAGGAACA CAGGCCACTA CAGAAAGTACA	S Q R F T S P K E H P V L A L P G A P A Q F P V L E E H R P L Q K Y M
4801	TGGTATGGTC AGACCAAATG GTGAAGACGG GAGAGGCCA GATTATGCC CACCTTGTC GGCCTATGT GGGCATTAT CAT CTGCCATTG GCTCTGACTG	V W S D E M V K T G I H A H L V R P Y V G I H L R I G S D W
4901	GAAGAACGCC TGTGCCATGC TGAAAGACGG GACTGCAGGC TCGGACTTCA TGGCCCTCTCC GCACTGTG TGCTAGGCC GCAGGACAGC GCCCCCCCCTC	K N A C A M L K D G T A G S H F M A S P Q C V G Y S R S T A A P L
5001	ACGATGACTA TGTGCCATGC TGACCTGAAG GAGATCCAGA GGGCTGTGAA GCTCTGGTGG AGGTCTGCTGG ATGCCAGTC GGCTCTACGTT GCTACTGATT	T M T M C L P D L K E I Q R A V K L W V R S L D A Q S V Y V A T D S
5101	CCGAGAGTTA TGTGCCATGC CTCCAAACAGC TCTTCAAAAGG GAAGGTGAAG GTGGTGAAGC TGAAGCTGAA GGTTGGCCAG GTGGMCCCTGT ACATCCCTGG	E S Y V P E L Q Q L F K G K V V S L K P E V A Q V D L Y I L G
5201	CCAAGCCGAC CACTTATG GCAACTGTGT CTCTCCTTC ACTGCCTTG TGAAAGGGGA GCGGGACCTC CAGGGAGGC CGTCTCTCTT CTTCGGGATG	Q A D H F I G N C V S S F T A F V K R E R D L Q G R P S S F F G M
5301	GACAGGGCCC CTAAGCTGCC CGACGAGTTC TGATTCTGGC CGGAGCACCA GACCCCTGAA TCTCTGGAGGG ACCAGAGTCT GAGCTGGTCC TTCCAGCCAG	D R B P K L R D E F O
388		

Plasmid construct for expression of human β -fucosidyltransferase. Upper panel is a schematic drawing of the plasmid. Lower panel is the sequence of the insert. The artificial signal peptide is shaded and the poly histidine tag is double underlined. Human β -fucosidyltransferase part is the same as in Figure 5.

Figure 14

Figure 15