Задание #3

Исходные данные:

```
r = np.random.RandomState(42)
d = 10
A = r.random((d,d))
A = (A.T)@A + np.identity(d)
b = r.random((d,))
c = r.random()

def f(x):
    return 1/2*A@x@x - b@x + c + (np.sin(b@x))**3
```

Нелинейная функция, аргумент RandomState в соответствии с вариантом

Содержание работы:

- 1. Найдите приближение к точке минимума функции при помощи метода градиентного спуска (блокнот GD_3). Критерий остановки по аргументу, как в блокноте. В дальнейшем полученный результат f_min следует рассматривать как «удовлетворительный» и с ним сравнивать дальнейшие приближения. Определите число итераций, потребовавшееся для получения приближения к точке минимума, и оцените порядок числа арифметических операций, которое пришлось выполнить.
- 2. Найдите приближение к точке минимума, в котором значение $f(x) <= f_{\min}$ по пункту 1, воспользуйтесь методом Ньютона. Постройте график убывания функции, определите число итераций, потребовавшееся для получения приближения с заданной точностью
- 3. Проверьте, сходится ли модифицированный метод Ньютона для задачи (матрица Гессе вычисляется однократно в «стартовой» точке, далее направление спуска определяется умножением обращенного результата на антиградиент в точкеприближении). Проиллюстрируйте результаты постройте график функции по итерациям
- 4. Найдите приближение к точке минимума при помощи метода Бройдена с выбором параметра демпфирования из решения одномерной задачи (метод золотого сечения, блокнот SR1_opt), проиллюстрируйте результаты и определите число итераций, потребовавшееся для получения удовлетворительного приближения к решению
- 5. Найдите приближение к точке минимума при помощи метода Бройдена с выбором параметра демпфирования при помощи неточного поиска (условия Армихо, блокнот SR1 Armicho).

Параметры неточного поиска нужно подобрать самостоятельно, экспериментальным путем (при затруднениях можно воспользоваться блокнотом Armicho_step_demo, там есть визуализация связи параметров tau, c_1 и шага). Проиллюстрируйте результаты и определите число итераций, потребовавшееся для получения удовлетворительного приближения к решению

6. Проанализируйте полученные результаты, составьте таблицу с оценкой вычислительной сложности рассмотренных методов (оценка числа арифметических операций), найдите среди них наилучший для решаемой задачи

Важно:

Параметры методы золотого сечения, так же как и неточного поиска, при решении можно и нужно менять

Блокноты в архиве:

Название	Что реализовано
SR1_opt	Метод Бройдена, модельная функция, выбор
	шага спуска при помощи метода золотого
	сечения
SR1_Armicho	Метод Бройдена, модельная функция, выбор
	шага спуска на основе условий Армихо
Rosen_SR1_opt	Метод Бройдена, тестовая функция
	Розенброка, выбор шага спуска при помощи
	метода золотого сечения
	для ознакомления
Rosen_SR1_Armicho	Метод Бройдена, тестовая функция
	Розенброка, выбор шага спуска на основе
	условий Армихо
	для ознакомления
Armicho_step_demo	Пример подбора шага спуска из одной
	точки, модельная функция, выбор шага
	спуска на основе условий Армихо
GD_3	Градиентный спуск (поиск приближения к
	точке минимума для сравнение методов)

Страховка от опечатки: sp.minimize