Problem 6.1 Scheduling CS Classes as a CSP

Answer:

According to the problem description,

Variables \Rightarrow One variable per class

Domain ⇒ Professors available for that class

Constraints ⇒ In this binary CSP problem, two classes which has time clash could not have same professor

1. Formulating the problem as a Binary CSP problem:

Set of Variables & Domain are as follows,

Class Name	Class	Class Time	Variables	Domains	
Intro to Artificial Intelligence	Class 1	08:30 – 09:30 am	C_1	$D_{c_1} = \{A\}$	
Intro to Programming	Class 2	08:00 – 09:00 am	C_2	$D_{c_2} = \{A, C\}$	
Natural Language Processing	Class 3	09:00 – 10:00 am	C_3	$D_{c_3} = \{A, B, C\}$	
Machine Learning	Class 4	09:30 – 10:30 am	C ₄	$D_{C_4} = \{A, B, C\}$	
Computer Vision	Class 5	09:00 – 10:00 am	C ₅	$D_{C_5} = \{A, C\}$	

Possible combination of binary constraints $\left[C_2^5 = \frac{5!}{2!(5-2)!} = 10\right]$, and their suitability according to the class time are as follows,

$C_1 \neq C_2$		$C_2 \neq C_3$	×	$C_3 \neq C_4$		$C_4 \neq C_5$	
$C_1 \neq C_3$		$C_2 \neq C_4$	×	$C_3 \neq C_5$		-	
$C_1 \neq C_4$	×	$C_2 \neq C_5$	×	-		-	
$C_1 \neq C_5$		-		-		-	

Therefore, Constraints: $C_1 \neq C_2$, $C_1 \neq C_3$, $C_1 \neq C_5$, $C_3 \neq C_4$, $C_3 \neq C_5$, $C_4 \neq C_5$

2. Constraint Graph:

3. A Total Inconsistent Assignment: $C_1=A$, $C_2=C$, $C_3=B$, $C_4=A$, $C_5=A$

A Solution: $C_1=A$, $C_2=C$, $C_3=B$, $C_4=A$, $C_5=C$