数值計算備忘録

motchy

2022 年 8 月 23 日 \sim 2022 年 8 月 26 日 ver 0.1.0-wip

目次

第Ⅰ部	線形代数	2
第1章 1.1	Cholesky 分解 rank-one update	3
	LDL 分解 rank-one update	5

第Ⅰ部

線形代数

第1章

Cholesky 分解

1.1 rank-one update

主張

 $n\in\mathbb{N},\ A\in\mathbb{C}^{n\times n},\ A\succeq O,\ x\in\mathbb{C}^n$ とし、A は Hermite 行列であるとする。 $A+xx^*$ に対して Cholesky 分解のアルゴリズムを適用すると $O(n^3)$ の計算量を要する。しかし、A の Cholesky 分解 LL^* が既に得られているとき、 $A+xx^*$ の Cholesky 分解を $O(n^2)$ で得ることができる。 xx^* の階数が 1 以下である (特に 0 となるのは x=0 の時かつその時に限る) ことから、この方法は "rank-one update" と呼ばれている。

導出.方針としては、 $n \times n$ 行列の rank-one update を $(n-1) \times (n-1)$ 行列の問題に帰着させ、以降同様に逐次的に行列の次数を縮小しながら解を構築する。このアルゴリズムの総計算量が $O(n^2)$ となるのは明らかであろう。

 $A + \boldsymbol{x}\boldsymbol{x}^*$ の Cholesky 分解を FF^* とする。L の第 i 列ベクトルを $\boldsymbol{l}_i = [0,\ldots,0,l_{i,i},\ldots,l_{n,i}]^{\top} \in \mathbb{C}^{n \times n}$ とし、同様に F の第 i 列ベクトルを $\boldsymbol{f}_i = [0,\ldots,0,f_{i,i},\ldots,f_{n,i}]^{\top} \in \mathbb{C}^{n \times n}$ とすると次式が成り立つ。

$$\sum_{i=1}^{n} f_{i} f_{i}^{*} = x x^{*} + \sum_{i=1}^{n} l_{i} l_{i}^{*}$$

$$f_{1} f_{1}^{*} + \sum_{i=2}^{n} f_{i} f_{i}^{*} = x x^{*} + l_{1} l_{1}^{*} + \sum_{i=2}^{n} l_{i} l_{i}^{*}$$
(1)

 $f_if_i^*$, $l_il_i^*$ $(i=2,3,\ldots,n)$ の第 1 行および第 1 列は 0 であるから、 $f_1f_1^*$ と $xx^*+l_1l_1^*$ の第 1 行および第 1 列が一致する。これより次式が成り立つ。

$$f_{1,1} = \sqrt{l_{1,1}^2 + |x_1|^2} =: r, \ f_{k,1} = \frac{1}{r} (l_{1,1} l_{k,1} + \overline{x_1} x_k) \ (k = 2, 3, \dots, n)$$
 (2)

ただし L の対角成分が非負の実数であることを前提としている。以上より、 $\tilde{l_1}\coloneqq [0,l_{2,1},l_{3,1},\ldots,l_{n,1}]^{\top}$ 、 $\tilde{x}\coloneqq [0,x_2,x_3,\ldots,x_n]^{\top}$ とすると次式が成り立つ。

$$oldsymbol{f}_1 = roldsymbol{e}_1 + rac{l_{1,1}}{r} ilde{oldsymbol{l}_1} + rac{\overline{x_1}}{r} ilde{oldsymbol{x}}$$

ここに e_1 は第 1 要素が 1 で他は 0 であるベクトルである。 $f_1f_1^*$ の右下 (n-1) imes (n-1) 行列を評価すると

次式を得る。

$$\frac{1}{r^{2}} \left(l_{1,1} \tilde{\boldsymbol{l}}_{1} + \overline{x_{1}} \tilde{\boldsymbol{x}} \right) = \frac{1}{r^{2}} \left(l_{1,1}^{2} \tilde{\boldsymbol{l}}_{1} \tilde{\boldsymbol{l}}_{1}^{*} + l_{1,1} x_{1} \tilde{\boldsymbol{l}}_{1} \tilde{\boldsymbol{x}}^{*} + |x_{1}|^{2} \tilde{\boldsymbol{x}} \tilde{\boldsymbol{x}}^{*} + l_{1,1} \overline{x_{1}} \tilde{\boldsymbol{x}} \tilde{\boldsymbol{l}}_{1}^{*} \right)
= \left(1 - \frac{|x_{1}|^{2}}{r^{2}} \right) \tilde{\boldsymbol{l}}_{1} \tilde{\boldsymbol{l}}_{1}^{*} + \frac{l_{1,1} x_{1}}{r^{2}} \tilde{\boldsymbol{l}}_{1} \tilde{\boldsymbol{x}}^{*} + \left(1 - \frac{l_{1,1}^{2}}{r^{2}} \right) \tilde{\boldsymbol{x}} \tilde{\boldsymbol{x}}^{*} + \frac{\overline{x_{1}} l_{1,1}}{r^{2}} \tilde{\boldsymbol{x}} \tilde{\boldsymbol{l}}_{1}^{*}
= \tilde{\boldsymbol{l}}_{1} \tilde{\boldsymbol{l}}_{1}^{*} + \tilde{\boldsymbol{x}} \tilde{\boldsymbol{x}}^{*} - \frac{1}{r^{2}} \left(|x_{1}|^{2} \tilde{\boldsymbol{l}}_{1} \tilde{\boldsymbol{l}}_{1}^{*} + l_{1,1}^{2} \tilde{\boldsymbol{x}} \tilde{\boldsymbol{x}}^{*} - x_{1} l_{1,1} \tilde{\boldsymbol{l}}_{1} \tilde{\boldsymbol{x}}^{*} - \overline{x_{1}} l_{1,1} \tilde{\boldsymbol{x}} \tilde{\boldsymbol{l}}_{1}^{*} \right)
= \tilde{\boldsymbol{l}}_{1} \tilde{\boldsymbol{l}}_{1}^{*} + \tilde{\boldsymbol{x}} \tilde{\boldsymbol{x}}^{*} - \boldsymbol{y} \boldsymbol{y}^{*} \quad \text{where} \quad \boldsymbol{y} = \frac{1}{r} \left(l_{1,1} \tilde{\boldsymbol{x}} - x_{1} \tilde{\boldsymbol{l}}_{1} \right)$$

上式の $\tilde{l_1}\tilde{l_1}^* + \tilde{x}\tilde{x}^*$ は $xx^* + l_1l_1^*$ の右下 $(n-1) \times (n-1)$ 行列である。以上より次式が成り立つ。

$$m{f}_1m{f}_1^* = m{x}m{x}^* + m{l}_1m{l}_1^* - m{y}m{y}^*$$

これを式(1)に適用して次式を得る。

$$\sum_{i=2}^n oldsymbol{f}_i oldsymbol{f}_i^* = oldsymbol{y} oldsymbol{y}^* + \sum_{i=2}^n oldsymbol{l}_i oldsymbol{l}_i^*$$

これは $(n-1) \times (n-1)$ 行列の rank-one update である。このようにして行列の次数を逐次的に縮小し、最後はスカラーの計算に帰着する。次数 k の問題に対し式 (2) の計算量は O(k) であるから、このアルゴリズムの総計算量は n(n+1)/2 に比例する。

このアルゴリズムの Julia 1.8.0 による実装例を Cholesky-decomposition_rank-one_update.ipynb に記した。本文書の Git リポジトリ内でファイル検索すれば見つかる。

第2章

LDL 分解

2.1 rank-one update

主張

 $n\in\mathbb{N},\ A\in\mathbb{C}^{n\times n},\ A\succeq O,\ x\in\mathbb{C}^n$ とし、A は Hermite 行列であるとする。 $A+xx^*$ に対して LDL 分解のアルゴリズムを適用すると $O(n^3)$ の計算量を要する。しかし、A の LDL 分解 LDL^* が既に得られているとき、 $A+xx^*$ の LDL 分解を $O(n^2)$ で得ることができる。 xx^* の階数が 1 以下である (特に 0 となるのは x=0 の時かつその時に限る) ことから、この方法は "rank-one update" と呼ばれている。

導出、方針は Cholesky 分解の rank-one update と同様である。 $A+xx^*$ の LDL 分解を FGF^* とする。D,G の第 i 対角成分をそれぞれ d_i,g_i とする。但し $d_i\geq 0$ を前提とする。L の第 i 列ベクトルを $\boldsymbol{l}_i=[0,\ldots,0,1,l_{i+1,i},\ldots,l_{n,i}]^{\top}\in\mathbb{C}^{n\times n}$ とし、同様に F の第 i 列ベクトルを $\boldsymbol{f}_i=[0,\ldots,0,1,f_{i+1,i},\ldots,f_{n,i}]^{\top}\in\mathbb{C}^{n\times n}$ とすると次式が成り立つ。

$$\sum_{i=1}^{n} \boldsymbol{f}_{i} g_{i} \boldsymbol{f}_{i}^{*} = \boldsymbol{x} \boldsymbol{x}^{*} + \sum_{i=1}^{n} \boldsymbol{l}_{i} d_{i} \boldsymbol{l}_{i}^{*}$$

$$\boldsymbol{f}_{1} g_{1} \boldsymbol{f}_{1}^{*} + \sum_{i=2}^{n} \boldsymbol{f}_{i} g_{i} \boldsymbol{f}_{i}^{*} = \boldsymbol{x} \boldsymbol{x}^{*} + \boldsymbol{l}_{1} d_{1} \boldsymbol{l}_{1}^{*} + \sum_{i=2}^{n} \boldsymbol{l}_{i} d_{i} \boldsymbol{l}_{i}^{*}$$

$$(1)$$

 $f_i g_i f_i^*$, $l_i d_i l_i^*$ $(i=2,3,\ldots,n)$ の第 1 行および第 1 列は 0 であるから、 $f_1 g_1 f_1^*$ と $xx^* + l_1 d_1 l_1^*$ の第 1 行および第 1 列が一致する。これより次式が成り立つ。

$$g_1 = d_1 + |x_1|^2 =: g, \ f_{k,1} = \frac{1}{q} (d_1 l_{k,1} + \overline{x_1} x_k) \ (k = 2, 3, \dots, n)$$
 (2)

以上より、 $\tilde{\boldsymbol{l}}_1\coloneqq [0,l_{2,1},l_{3,1},\ldots,l_{n,1}]^{\top},~\tilde{\boldsymbol{x}}\coloneqq [0,x_2,x_3,\ldots,x_n]^{\top}$ とすると次式が成り立つ。

$$oldsymbol{f}_1 = oldsymbol{e}_1 + rac{d_1}{g} ilde{oldsymbol{l}}_1 + rac{\overline{x_1}}{g} ilde{oldsymbol{x}}$$

ここに e_1 は第 1 要素が 1 で他は 0 であるベクトルである。 $f_1g_1f_1^*$ の右下 (n-1) imes (n-1) 行列を評価する

と次式を得る。

$$\frac{1}{g} \left(d_1 \tilde{\boldsymbol{l}}_1 + \tilde{\boldsymbol{x}} \tilde{\boldsymbol{x}}^* \right) \left(d_1 \tilde{\boldsymbol{l}}_1 + \tilde{\boldsymbol{x}} \tilde{\boldsymbol{x}}^* \right)^* = \frac{d_1}{g} \tilde{\boldsymbol{l}}_1 d_1 \tilde{\boldsymbol{l}}_1^* + \frac{|x_1|^2}{g} \tilde{\boldsymbol{x}} \tilde{\boldsymbol{x}}^* + \frac{d_1}{g} \left(x_1 \tilde{\boldsymbol{l}}_1 \tilde{\boldsymbol{x}}^* + \overline{x_1} \tilde{\boldsymbol{x}} \tilde{\boldsymbol{l}}_1^* \right) \\
= \frac{g - |x_1|^2}{g} \tilde{\boldsymbol{l}}_1 d_1 \tilde{\boldsymbol{l}}_1^* + \frac{g - d_1}{g} \tilde{\boldsymbol{x}} \tilde{\boldsymbol{x}}^* + \frac{d_1}{g} \left(x_1 \tilde{\boldsymbol{l}}_1 \tilde{\boldsymbol{x}}^* + \overline{x_1} \tilde{\boldsymbol{x}} \tilde{\boldsymbol{l}}_1^* \right) \\
= \tilde{\boldsymbol{l}}_1 d_1 \tilde{\boldsymbol{l}}_1^* + \tilde{\boldsymbol{x}} \tilde{\boldsymbol{x}}^* - \frac{d_1}{g} \left[|x_1|^2 \tilde{\boldsymbol{l}}_1 \tilde{\boldsymbol{l}}_1^* + \tilde{\boldsymbol{x}} \tilde{\boldsymbol{l}}_1^* + x_1 \tilde{\boldsymbol{l}}_1 \tilde{\boldsymbol{x}}^* + \overline{x_1} \tilde{\boldsymbol{x}} \tilde{\boldsymbol{l}}_1^* \right] \\
= \tilde{\boldsymbol{l}}_1 d_1 \tilde{\boldsymbol{l}}_1^* + \tilde{\boldsymbol{x}} \tilde{\boldsymbol{x}}^* - \boldsymbol{y} \frac{d_1}{g} \boldsymbol{y}^* \quad \text{where} \quad \boldsymbol{y} = x_1 \tilde{\boldsymbol{l}}_1 + \tilde{\boldsymbol{x}}$$

上式の $\tilde{l_1}{d_1}\tilde{l_1}^* + \tilde{x}\tilde{x}^*$ は $xx^* + l_1d_1l_1^*$ の右下 $(n-1) \times (n-1)$ 行列である。以上より次式が成り立つ。

$$m{f}_1 g_1 m{f}_1^* = m{x} m{x}^* + m{l}_1 d_1 m{l}_1^* - m{y} rac{d_1}{q} m{y}^*$$

これを式(1)に適用して次式を得る。

$$\sum_{i=2}^n \boldsymbol{f}_i g_i \boldsymbol{f}_i^* = \boldsymbol{y} \frac{d_1}{g} \boldsymbol{y}^* + \sum_{i=2}^n \boldsymbol{l}_i d_i \boldsymbol{l}_i^*$$

これは $(n-1) \times (n-1)$ 行列の rank-one update である。このようにして行列の次数を逐次的に縮小し、最後はスカラーの計算に帰着する。次数 k の問題に対し式 (2) の計算量は O(k) であるから、このアルゴリズムの総計算量は n(n+1)/2 に比例する。