Prashanth Manja

USC ID: 3073150764

ML- Assignment -5

1. Supervised, Semi-Supervised, and Unsupervised Learning

Attribute Information:

Given is the variable name, variable type, the measurement unit and a brief description. The "Blood Transfusion Service Center" is a classification problem. The order of this listing corresponds to the order of numerals along the rows of the database.

R (Recency - months since last donation),
F (Frequency - total number of donation),
M (Monetary - total blood donated in c.c.),
T (Time - months since first donation), and
a binary variable representing whether he/she donated blood in March 2007 (1 stand for donating

Check for missing data:

blood; 0 stands for not donating blood).

```
RangeIndex: 748 entries, 0 to 747

Data columns (total 5 columns):

Recency (months) 748 non-null int64

Frequency 748 non-null int64

Monetary (c.c. blood) 748 non-null int64

Time (months) 748 non-null int64

whether donated blood in 03/07 748 non-null int64

dtypes: int64(5)

memory usage: 29.3 KB
```

So, the dataset has a total of 748 data points and no missing data points.

Number of features for each class in the training set:

0 570 1 178

('Number of people who donated in march: '178) ('Number of people who didn't donated in march: 570)

('Total number: **748**)

Pairplot:

Recency vs Class(whether donated blood in 03/07):

Frequency vs Class(whether donated blood in 03/07):

Monetary (c.c. blood) vs Class(whether donated blood in 03/07)

Boxplot grouped by whether donated blood in 03/07 Monetary (c.c. blood)

Time (months) vs Class(whether donated blood in 03/07)

Boxplot grouped by whether donated blood in 03/07 Time (months)

Pivot Table: (mean)

Frequency Monetary (c.c. blood) Recency (months) Time (months)
whether donated blood in 03/07

0 4.801754 1200.438596 10.771930 34.770175
1 7.797753 1949.438202 5.455056 32.719101

Check the correlation between the features and the label:

Test data: (head)(first 20% of positive and negative class)

	Recency (months)	Frequency	Monetary (c.c. blood)	Time (months)	whether donated blood in 03/07
373	9	4	1000	65	0
454	21	1	250	21	0
455	21	1	250	21	0
456	21	1	250	21	0
457	21	1	250	21	0

(150, 5)

Train data: (head)

(598, 5)

	Recency (months)	Frequency	Monetary (c.c. blood)	Time (months)	whether donated blood in 03/07
0	2	50	12500	98	1
4	1	24	6000	77	0
5	4	4	1000	4	0
7	1	12	3000	35	0
10	4	23	5750	58	0

Train Vs Test:

Supervised Learning:

 Accuracy_Score : 0.76
 Confusion Matrix : array([[113, 1],

3. Precision_recall:

support	f1-score	recall	precision	
114	0.86	0.99	0.76	0
36	0.05	0.03	0.50	1
150	0.67	0.76	0.70	avg / total

4. ROC-AUC: 0.88182261208577

ROC Curve w/ AUC=0.88182261208577

Find the optimal threshold and tuning the P:

 $\textbf{Optimal Threshold Value:} \ 0.19618488029573874$

So here we observe that by tuning the default $P\left(0.5\right)$ value for predict function We observe an improved Confusion Matrix.

2. Semi-Supervised Learning/ Self-training:

1. Before adding the closest unlabelled data one by one:

Accuracy_Score: 0.7625418060200669

Confusion Matrix:

2. After adding the closest unlabelled data one by one:

Accuracy_Score :0.766666666666667

Confusion Matrix:

support	f1-score	recall	precision	рі
114	0.87	1.00	0.77	0
36	0.05	0.03	1.00	1
150	0.67	0.77	0.82	avg / total

ROC Curve w/ AUC=0.8725633528265108

3. Unsupervised Learning:

To avoid algorithm to be trapped in the local minimum one way is:

K-means is sensitive to initial placement of cluster centres. So With badly placed cluster centres, the algorithm can converge into a local minimum that isn't particularly useful, when the same analysis with better initial centres will generate a much better solution.

One solution is: We could try many random starting points

Alternative 1: We can use the largest minimum distance algorithm to determine K initial cluster focal points, and then we combine it with the traditional K-Means algorithm, at last, accomplish the classification of pattern congregation. The improved K-Means algorithm is obviously better than traditional one in aspects such as: the precision of cluster, the speed of cluster, stability and so on.

Alternative 2: We could try non-local split-and-merge moves: Simultaneously merge two nearby clusters and split a big cluster into two.

Coordinates of cluster centres:

```
[[8.64509804e+00 3.67254902e+00 9.18137255e+02 2.69627451e+01]
[6.85227273e+00 1.55340909e+01 3.88352273e+03 6.51477273e+01]]
```

Closest data-point to centres C1 and C2 (indexes are): [495 20]

The majority poll becomes the label predicted by k-means for the members of each cluster. Then comparing the labels provided by k-means with the true labels of the training data and report accuracy and the confusion matrix.

```
Accuracy score: 0.7625418060200669

Confusion Matrix: array([[456, 0], [142, 0]],
```

Classifying test data:

```
Accuracy score: 0.76

Confusion Matrix: array([[114, 0], [36, 0]]
```

One expects that supervised learning on the full data set works better than semi-supervised learning with half of the data set labelled. –This holds to be true as per the results obtained from above

One expects that unsupervised learning underperforms in such situations.

K-Means Clustering on Multi-Class and Multi-Label DataSet Anuran Calls (MFCCs) Data Set

This dataset was used in several classifications tasks related to the challenge of anuran species recognition through their calls.

It is a multilabel dataset with three columns of labels. This dataset was created segmenting 60 audio records belonging to 4 different families, 8 genus, and 10 species.

Each audio corresponds to one specimen (an individual frog), the record ID is also included as an extra column.

The amount of instances per class are:

Families:

Bufonidae 68 Dendrobatidae 542 Hylidae 2165 Leptodactylidae 4420

Genus:

Adenomera 4150 Ameerega 542 Dendropsophus 310 Hypsiboas 1593 Leptodactylus 270 Osteocephalus 114 Rhinella 68 Scinax 148

Species:

AdenomeraAndre 672 AdenomeraHylaedact… 3478 Ameeregatrivittata 542 HylaMinuta 310 HypsiboasCinerascens 472 HypsiboasCordobae 1121 LeptodactylusFuscus 270 OsteocephalusOopha… 114 Rhinellagranulosa 68 ScinaxRuber 148

Each instance has three labels: Families, Genus, and Species. Each of the labels has multiple classes. We wish to solve a multi-class and multi-label problem.

Data Pre-processing:

Count of Each Class in Each of the Label:

1. Family -Label

Leptodactylidae	3075
Hylidae	1518
Dendrobatidae	394
Bufonidae	50

2. Genus-Label

Adenomera	2891
Hypsiboas	1138
Ameerega	394
Dendropsophus	208
Leptodactylus	184
Scinax	90
Osteocephalus	82
Rhinella	50

3. Species-Label

AdenomeraHylaedactylus	2430
HypsiboasCordobae	801
AdenomeraAndre	461
Ameeregatrivittata	394
HypsiboasCinerascens	337
HylaMinuta	208
LeptodactylusFuscus	184
ScinaxRuber	90
OsteocephalusOophagus	82
Rhinellagranulosa	50

Understanding Data Further

Determine the number of clusters:

1. Elbow Method:

2. Silhouette Coefficient

```
For n_clusters=2, The Silhouette Coefficient is 0.348677841028
For n_clusters=3, The Silhouette Coefficient is 0.367692708115
For n_clusters=4, The Silhouette Coefficient is 0.378750934331
For n_clusters=5, The Silhouette Coefficient is 0.371653028394
For n_clusters=6, The Silhouette Coefficient is 0.264008021117
For n_clusters=7, The Silhouette Coefficient is 0.260615450976
For n_clusters=8, The Silhouette Coefficient is 0.270172962249
For n_clusters=9, The Silhouette Coefficient is 0.276188844822
For n_clusters=10, The Silhouette Coefficient is 0.281115232943
```

Since we observe that Silhouette Coefficient value is maximum when **cluster value = 4**, we choose.

Determine which class in each label is the majority by reading the true labels.

Cluster_1:

pred_Family	pred_Genus	pred_Species
Hylidae	Hypsiboas	HypsiboasCordobae

Cluster_2:

pred_Family	pred_Genus	pred_Species
Leptodactylidae	Adenomera	AdenomeraHylaedactylus

Cluster_3:

pred_Family	pred_Genus	pred_Species
Dendrobatidae	Ameerega	Ameeregatrivittata

Cluster_4:

pred_Family	pred_Genus	pred_Species
Hylidae	Hypsiboas	HypsiboasCinerascens

Hamming loss

The Hamming loss is the fraction of labels that are incorrectly predicted.

In multiclass classification, the Hamming loss correspond to the Hamming distance between **y_true** and **y_pred** which is equivalent to the subset **zero_one_loss** function.

The Hamming loss is upperbounded by the subset zero-one loss. When normalized over samples, the Hamming loss is always between 0 and 1.

In multilabel classification, the Hamming loss is different from the subset zero-one loss. The zero-one loss considers the entire set of labels for a given sample incorrect if it does entirely match the true set of labels. Hamming loss is more forgiving in that it penalizes the individual labels.

```
Average Hamming Distance of Cluster 0: 0.444836865119408
Average Hamming Distance of Cluster 1: 0.028494020926756354
Average Hamming Distance of Cluster 2: 0.5150339476236664
Average Hamming Distance of Cluster 3: 0.14006514657980457
```

	1
10.6.2:-	
(a). We already have:	0.3 0.4 0.7
(W). 1 C CAT WITE OF THE COLUMN TO THE COLUM	0.3 0.5 0.8
	0.4 0.5 0.45
	0.7 0.8 0.45
Stepa: i=4: We have i=	A: We may see that 03
is the pringers of	uimilarity, so we true
objections a and	2 to form cluter (1,2)
at highet a 2 We	now hour the new
divincilarità matri	row have the new
can raise any man	
0.5 0.9	3
0.5	1
0.8 0.45	1
i= 2: The mim. disimilar	ity û 0.45. 30 we
i=3: The mim disimilar merge observations	(3) 8 (4) tohich
result in a cluter	(3,4) with height 0.45
Dissimilarity matrix	
0.8	
0.8	
i=4: Fueing cluters C	1,2) and (3,4) to form)) at height 0.8
cluster O((1,2), (3,4))) at height 0.8
a = as dist Cmatrix (c (o	,0.3,0.4,0.7,
0.3	3,0,0.5,0.8,
	.4,0.5,0.0,0.45
	7,08,0.45,0.0), nrause)
plot (helust (a, method =)	"complete"))

