Selected Problems Chapter 2 Introduction to Probability for Data Science Stanley Chan

Mustaf Ahmed

April 14, 2022

Problem 2.1. A space S and three of its subsets are given by $S = \{1, 3, 5, 7, 9, 11\}$, $A = \{1, 3, 5\}$, $B = \{7, 9, 11\}$, and $C = \{1, 3, 9, 11\}$. Find $A \cap B \cap C$, $A^c \cap B$, A - C, and $(A - B) \cup B$.

- **1.** $A \cap B \cap C = \{\}$
- **2.** $A^c \cap B = B$
- 3. $A C = \{5\}$
- **4.** $(A B) \cup B = S$

Problem 2.2. Let $A = (-\infty, r]$ and $B = (-\infty, s]$ where $r \leq s$. Find an expression for C = (r, s] in terms of A and B. Show that $B = A \cup C$, and $A \cap C = \emptyset$.

 $\begin{tabular}{ll} \textbf{Problem 2.3.} & \textbf{Simplify the following sets.} \end{tabular}$

- (a). $[1,4] \cap ([0,2] \cup [3,5])$

- (d). $[1, \frac{1}{2}] + ([0, \frac{1}{2}] \cup [0, \frac{1}{2}])^c$ (b). $([0, 1] \cup [2, 3])^c$ (c). $\bigcap_{i=1}^{\infty} (\frac{-1}{n}, \frac{1}{n})$ (d). $\bigcup_{i=1}^{\infty} [5, 8 \frac{1}{2^n}]$
- (a). $[1,2] \cup [3,4]$
- **(b).** $(-\infty, 0) \cup (1, 2) \cup (3, \infty)$
- $(c).\{0\}$
- (d).[5,8)

Problem Theorem 2.5 Part 2. Prove that $(A \cup B)^c = A^c \cap B^c$.

Proof. We'll prove this with a series of equivalences:

$$x \in (A \cup B)^c \iff x \notin A \cup B$$

 $\iff x \notin A \text{ and } x \notin B$
 $\iff x \in A^c \text{ and } x \in B^c$
 $\iff x \in A^c \cap B^c$
 $\iff x \in A^c \cap B^c$

Problem Corollary 2.1 (a). Prove that $P(A^c) = 1 - P(A)$.

Proof.

$$1 = P(\Omega)$$

$$= P(A^c \cup A)$$

$$= P(A^c) + P(A).$$

Subtracting P(A) from both sides gives the desired result.

Problem Corollary 2.1 (b). Prove that $P(A) \leq 1$.

Proof. By corollary 2.1.(a), we have $P(A) = 1 - P(A^c)$. Since $P(A^c) \ge 0$, it is clear that $P(A) \le 1$.

Problem Corollary 2.1 (c). Prove that $P(\emptyset) = 0$.

Proof.

$$P(\emptyset) = P(\emptyset \cup \emptyset)$$

= $P(\emptyset) + P(\emptyset)$.

Subtracting $P(\emptyset)$ from both sides gives the desired result.

Problem Corollary 2.3 (a). Prove that $P(A \cup B) \leq P(A) + P(B)$.

Proof. By Corollary 2.2, we have $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. Since $P(A \cap B) \ge 0$, the desired result is clear.

Problem Corollary 2.3 (b). Prove that if $A \subseteq B$, $P(A) \le P(B)$.

Proof. Assume that $A \subseteq B$. We have

$$P(A) \le P(A) + P(B - A)$$

= $P(A \cup (B - A))$
= $P(B)$,

as desired.