1.曲线
$$L:$$
 $\begin{cases} x = a(t-\sin t) \\ y = a(1-\cos t) \end{cases}$ $(a > 0)$ 在 $t = \frac{\pi}{2}$ 对应点处的曲率为 $\frac{\Gamma}{4a}$.

$$\frac{dy}{dx} = \frac{dy/dt}{dx} = \frac{a \sin t}{a(1-\cos t)} = \frac{d\frac{dy}{dx}}{dt} \cdot \frac{dt}{dx} = \frac{a \cos t(1-\cos t) - a \sin t}{a^2 (1-\cos t)^2} = \frac{1}{a(1-\cos t)}$$

3.求曲线 $y = \ln \sec x$ 在点 (x, y) 处的曲率及曲率半径.

$$y' = \frac{1}{secx}$$
 + tanx. $secx = tanx$
 $y'' = secx$

4. 求抛物线
$$y = x^2 - 4x + 3$$
 在其顶点处的曲率及曲率半径.

コープを
ス、求抛物线
$$y = x^2 - 4x + 3$$
 在其顶点处的曲率及曲率半径.
 2 よことに 2 よこ

5、求曲线 $x = a \cos^3 t$, $y = a \sin^3 t$ 在 $t = t_0$ 相应的点处的曲率.

6.对数曲线 $y = \ln x$ 上哪一点处的曲率半径最小?求出该点处的曲率

$$y= \frac{1}{x}$$
 $y''= -\frac{1}{x^2}$ $y'= -\frac{1}{x^2$

8.(16-2)已知动点P在曲线 $y=x^3$ 上运动,记坐标原点与点P间的距离为l.若点P的横

坐标对时间的变化率为堂数 v 则当占 p 运动到占 (11) 时 1 对时间的变化率

$$y: x^3 = \int \int \int x^2 + y^2 = \sqrt{x^2 + x^2}$$

$$\frac{dl}{dt} = \frac{dl}{dx} \cdot \frac{dx}{dt} = \frac{1}{2} \int \frac{J \times + b \times^5}{J \times^2 + x^2} \cdot V_0 \bigg|_{x=1} = J \int V_0$$

9. (91-2) 质点以速度 $t \sin t^2$ 米/秒作直线运动,则从时刻 $t_1 = \sqrt{\frac{\pi}{t}}$ 秒到 $t_2 = \sqrt{\pi}$ 秒内质点

所经过的路程等于_____米.

$$S = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} t \sin t^{2} dt = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin t^{2} dt^{2}$$

$$= -\frac{1}{2} \cos t^{2} \Big|_{\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{1}{2}$$

已知线段 MP 的长度为 $\frac{(1+y_0'^2)^{\frac{5}{2}}}{y_0''}$ (其中 $y_0' = y'(x_0)$, $y_0'' = y''(x_0)$),试推导出点 $P(\xi,\eta)$ 的坐

标表达式.