Olimpiada de Matematică

Etapa județeană și a Municipiului București 11 Martie 2006

CLASA A X-A

Problema 1. Se consideră numerele reale $a, b, c \in (0, 1)$ şi $x, y, z \in (0, \infty)$, astfel încât

$$a^x = bc$$
, $b^y = ca$, $c^z = ab$.

Să se arate că

$$\frac{1}{2+x} + \frac{1}{2+y} + \frac{1}{2+z} \le \frac{3}{4}.$$

Problema 2. Considerăm triunghiul ABC și punctele $M \in (BC)$, $N \in (CA), P \in (AB)$ astfel încât $\frac{AP}{PB} = \frac{BM}{MC} = \frac{CN}{NA}$. Să se arate că dacă triunghiul MNP este echilateral, atunci triunghiul ABC este echilateral.

Problema 3. Spunem că o prismă este *binară* dacă există o etichetare a vârfurilor sale cu numere din mulţimea $\{-1, +1\}$, astfel încât produsul numerelor atribuite vârfurilor oricărei feţe (bază sau faţă laterală) este -1.

- a) Să se arate că orice prismă binară are numărul vârfurilor divizibil cu 8.
 - b) Să se arate că orice prismă cu 2000 de vârfuri este binară.

Problema 4. a) Să se găsească două mulțimi X, Y astfel încât $X \cap Y = \emptyset$, $X \cup Y = \mathbb{Q}_+^*$ și $Y = \{a \cdot b \mid a, b \in X\}$.

b) Să se găsească două mulțimi U,V astfel încât $U\cap V=\emptyset$, $U\cup V=\mathbb{R}$ și $V=\{x+y\mid x,y\in U\}.$

Timp de lucru: 3 ore

Fiecare subject este punctat cu 7 puncte.