Reactive Designs

Simon Foster James Baxter Ana Cavalcanti Jim Woodcock Samuel Canham

March 8, 2018

Contents

1	Intr	oduction	2		
2	Rea	ctive Designs Healthiness Conditions	3		
	2.1	Preliminaries	3		
	2.2	Identities	3		
	2.3	RD1: Divergence yields arbitrary traces	4		
	2.4	R3c and R3h: Reactive design versions of R3	6		
	2.5	RD2: A reactive specification cannot require non-termination	9		
	2.6	Major healthiness conditions	9		
	2.7	UTP theories	12		
3	Rea	ctive Design Specifications	14		
	3.1	Reactive design forms	15		
	3.2	Auxiliary healthiness conditions	17		
	3.3	Composition laws	18		
	3.4	Refinement introduction laws	24		
	3.5	Distribution laws	25		
4	Reactive Design Triples 26				
	4.1	Diamond notation	26		
	4.2	Export laws	27		
	4.3	Pre-, peri-, and postconditions	28		
		4.3.1 Definitions	28		
		4.3.2 Unrestriction laws	28		
		4.3.3 Substitution laws	29		
		4.3.4 Healthiness laws	30		
		4.3.5 Calculation laws	33		
	4.4	Formation laws	35		
		4.4.1 Order laws	36		
	4.5	Composition laws	36		
	4.6	Refinement introduction laws	41		
	4.7	Closure laws	42		
	4.8	Distribution laws	43		
	4.9	Algebraic laws	45		
	4.10	Recursion laws	46		

5	Normal Reactive Designs 5.1 UTP theory	. 60
_		
6	Syntax for reactive design contracts	60
7	Reactive design tactics	62
8	Reactive design parallel-by-merge	6
	8.1 Example basic merge	
	8.2 Simple parallel composition	. 78
9	Productive Reactive Designs	79
	9.1 Healthiness condition	
	9.2 Reactive design calculations	
	9.3 Closure laws	. 8
10	Guarded Recursion	84
	10.1 Traces with a size measure	
	10.2 Guardedness	
	10.3 Tail recursive fixed-point calculations	. 89
11	Reactive Design Programs	90
	11.1 State substitution	
	11.2 Assignment	
	11.3 Conditional	
	11.4 Assumptions	
	11.5 Guarded commands	. 93
12	Generalised Alternation	94
	12.1 Choose	
	12.2 State Abstraction	
	12.3 While Loop	
	12.4 Iteration Construction	
	12.5 Substitution Laws	
	12.6 Algebraic Laws	
	12.7 Lifting designs to reactive designs	. 10:
13	Instantaneous Reactive Designs	104
14	Meta-theory for Reactive Designs	100

1 Introduction

This document contains a mechanisation in Isabelle/UTP [2] of our theory of reactive designs. Reactive designs form an important semantic foundation for reactive modelling languages such as Circus [3]. For more details of this work, please see our recent paper [1].

2 Reactive Designs Healthiness Conditions

```
theory utp-rdes-healths imports UTP-Reactive.utp-reactive begin
```

```
2.1
       Preliminaries
named-theorems rdes and rdes-def and RD-elim
type-synonym ('s,'t) rdes = ('s,'t,unit) hrel-rsp
translations
 (type) ('s,'t) rdes <= (type) ('s, 't, unit) hrel-rsp
lemma R2-st-ex: R2 (\exists \$st \cdot P) = (\exists \$st \cdot R2(P))
 by (rel-auto)
lemma R2s-st'-eq-st:
 R2s(\$st' =_u \$st) = (\$st' =_u \$st)
 by (rel-auto)
lemma R2c-st'-eq-st:
  R2c(\$st' =_u \$st) = (\$st' =_u \$st)
 by (rel-auto)
lemma R1-des-lift-skip: R1(\lceil II \rceil_D) = \lceil II \rceil_D
 by (rel-auto)
lemma R2-des-lift-skip:
 R2(\lceil II \rceil_D) = \lceil II \rceil_D
 apply (rel-auto) using minus-zero-eq by blast
lemma R1-R2c-ex-st: R1 (R2c \ (\exists \$st' \cdot Q_1)) = (\exists \$st' \cdot R1 \ (R2c \ Q_1))
 by (rel-auto)
```

2.2 Identities

We define two identities fro reactive designs, which correspond to the regular and state-sensitive versions of reactive designs, respectively. The former is the one used in the UTP book and related publications for CSP.

```
definition skip\text{-}rea :: ('t::trace, '\alpha) \ hrel\text{-}rp \ (II_c) \ \text{where} \ skip\text{-}rea\text{-}def \ [urel\text{-}defs]: \ II_c = (II \lor (\neg \$ok \land \$tr \le_u \$tr'))
definition skip\text{-}srea :: ('s, 't::trace, '\alpha) \ hrel\text{-}rsp \ (II_R) \ \text{where} \ skip\text{-}srea\text{-}def \ [urel\text{-}defs]: \ II_R = ((\exists \$st \cdot II_c) \lhd \$wait \rhd II_c)
lemma skip\text{-}rea\text{-}R1\text{-}lemma : \ II_c = R1(\$ok \Rightarrow II)
by (rel\text{-}auto)
lemma skip\text{-}rea\text{-}form : \ II_c = (II \lhd \$ok \rhd R1(true))
by (rel\text{-}auto)
lemma skip\text{-}srea\text{-}form : \ II_R = ((\exists \$st \cdot II) \lhd \$wait \rhd II) \lhd \$ok \rhd R1(true)
by (rel\text{-}auto)
```

```
lemma R1-skip-rea: R1(II_c) = II_c
 by (rel-auto)
lemma R2c-skip-rea: R2c\ II_c = II_c
 by (simp add: skip-rea-def R2c-and R2c-disj R2c-skip-r R2c-not R2c-ok R2c-tr'-qe-tr)
lemma R2-skip-rea: R2(II_c) = II_c
 by (metis R1-R2c-is-R2 R1-skip-rea R2c-skip-rea)
lemma R2c-skip-srea: R2c(II_R) = II_R
 apply (rel-auto) using minus-zero-eq by blast+
lemma skip-srea-R1 [closure]: II_R is R1
 by (rel-auto)
lemma skip-srea-R2c [closure]: II_R is R2c
 by (simp add: Healthy-def R2c-skip-srea)
lemma skip-srea-R2 [closure]: II_R is R2
 by (metis Healthy-def' R1-R2c-is-R2 R2c-skip-srea skip-srea-R1)
2.3
      RD1: Divergence yields arbitrary traces
definition RD1 :: ('t::trace,'\alpha,'\beta) rel-rp \Rightarrow ('t,'\alpha,'\beta) rel-rp where
[upred-defs]: RD1(P) = (P \lor (\neg \$ok \land \$tr \le_u \$tr'))
RD1 is essentially H1 from the theory of designs, but viewed through the prism of reactive
processes.
lemma RD1-idem: RD1(RD1(P)) = RD1(P)
 by (rel-auto)
lemma RD1-Idempotent: Idempotent RD1
 by (simp add: Idempotent-def RD1-idem)
lemma RD1-mono: P \sqsubseteq Q \Longrightarrow RD1(P) \sqsubseteq RD1(Q)
 by (rel-auto)
lemma RD1-Monotonic: Monotonic RD1
 using mono-def RD1-mono by blast
lemma RD1-Continuous: Continuous RD1
 by (rel-auto)
lemma R1-true-RD1-closed [closure]: R1(true) is RD1
 by (rel-auto)
lemma RD1-wait-false [closure]: P is RD1 \Longrightarrow P[false/$wait] is RD1
 by (rel-auto)
lemma RD1-wait'-false [closure]: P is RD1 \Longrightarrow P[false/$wait'] is RD1
 by (rel-auto)
lemma RD1-seq: RD1(RD1(P) ;; RD1(Q)) = RD1(P) ;; RD1(Q)
 by (rel-auto)
```

```
lemma RD1-seq-closure [closure]: \llbracket P \text{ is RD1}; Q \text{ is RD1} \rrbracket \Longrightarrow P ;; Q \text{ is RD1}
 by (metis Healthy-def' RD1-seq)
lemma RD1-R1-commute: RD1(R1(P)) = R1(RD1(P))
 by (rel-auto)
lemma RD1-R2c-commute: RD1(R2c(P)) = R2c(RD1(P))
 by (rel-auto)
lemma RD1-via-R1: R1(H1(P)) = RD1(R1(P))
 by (rel-auto)
lemma RD1-R1-cases: RD1(R1(P)) = (R1(P) \triangleleft \$ok \triangleright R1(true))
 by (rel-auto)
lemma skip-rea-RD1-skip: II_c = RD1(II)
 by (rel-auto)
lemma skip-srea-RD1 [closure]: II_R is RD1
 \mathbf{by} \ (rel-auto)
{f lemma} RD1-algebraic-intro:
 assumes
   P \text{ is } R1 \text{ } (R1(true_h) \text{ } ;; P) = R1(true_h) \text{ } (II_c \text{ } ;; P) = P
 shows P is RD1
proof -
 have P = (II_c ;; P)
   by (simp \ add: \ assms(3))
 also have ... = (R1(\$ok \Rightarrow II) ;; P)
   by (simp add: skip-rea-R1-lemma)
 also have ... = (((\neg \$ok \land R1(true)) ;; P) \lor P)
  by (metis (no-types, lifting) R1-def seqr-left-unit seqr-or-distl skip-rea-R1-lemma skip-rea-def utp-pred-laws.inf-top-left
utp-pred-laws.sup-commute)
 also have ... = ((R1(\neg \$ok) ;; (R1(true_h) ;; P)) \lor P)
   using dual-order.trans by (rel-blast)
 also have ... = ((R1(\neg \$ok) ;; R1(true_h)) \lor P)
   by (simp \ add: \ assms(2))
 also have ... = (R1(\neg \$ok) \lor P)
   by (rel-auto)
 also have ... = RD1(P)
   by (rel-auto)
 finally show ?thesis
   by (simp add: Healthy-def)
qed
theorem RD1-left-zero:
 assumes P is R1 P is RD1
 shows (R1(true) ;; P) = R1(true)
proof -
 \mathbf{have}\ (R1(true)\ ;;\ R1(RD1(P))) = R1(true)
   by (rel-auto)
 thus ?thesis
   by (simp\ add: Healthy-if\ assms(1)\ assms(2))
qed
```

```
theorem RD1-left-unit:
 assumes P is R1 P is RD1
 shows (II_c ;; P) = P
proof -
 have (II_c :: R1(RD1(P))) = R1(RD1(P))
   by (rel-auto)
 thus ?thesis
   by (simp\ add: Healthy-if\ assms(1)\ assms(2))
lemma RD1-alt-def:
 assumes P is R1
 shows RD1(P) = (P \triangleleft \$ok \triangleright R1(true))
 have RD1(R1(P)) = (R1(P) \triangleleft \$ok \triangleright R1(true))
   by (rel-auto)
 thus ?thesis
   by (simp add: Healthy-if assms)
\mathbf{qed}
theorem RD1-algebraic:
 assumes P is R1
 shows P is RD1 \longleftrightarrow (R1(true_h) ;; P) = R1(true_h) \land (II_c ;; P) = P
 using RD1-algebraic-intro RD1-left-unit RD1-left-zero assms by blast
2.4
       R3c and R3h: Reactive design versions of R3
definition R3c :: ('t::trace, '\alpha) \ hrel-rp \Rightarrow ('t, '\alpha) \ hrel-rp \ where
[upred-defs]: R3c(P) = (II_c \triangleleft \$wait \triangleright P)
definition R3h :: ('s, 't::trace, '\alpha) \ hrel-rsp \Rightarrow ('s, 't, '\alpha) \ hrel-rsp \ where
R3h\text{-}def \ [upred\text{-}defs]: R3h(P) = ((\exists \$st \cdot II_c) \triangleleft \$wait \triangleright P)
lemma R3c\text{-}idem: R3c(R3c(P)) = R3c(P)
 by (rel-auto)
lemma R3c-Idempotent: Idempotent R3c
 by (simp add: Idempotent-def R3c-idem)
lemma R3c-mono: P \sqsubseteq Q \Longrightarrow R3c(P) \sqsubseteq R3c(Q)
 by (rel-auto)
lemma R3c-Monotonic: Monotonic R3c
 by (simp add: mono-def R3c-mono)
lemma R3c-Continuous: Continuous R3c
 by (rel-auto)
lemma R3h-idem: R3h(R3h(P)) = R3h(P)
 by (rel-auto)
lemma R3h-Idempotent: Idempotent R3h
 by (simp add: Idempotent-def R3h-idem)
lemma R3h-mono: P \sqsubseteq Q \Longrightarrow R3h(P) \sqsubseteq R3h(Q)
```

```
by (rel-auto)
lemma R3h-Monotonic: Monotonic R3h
 by (simp add: mono-def R3h-mono)
lemma R3h-Continuous: Continuous R3h
 by (rel-auto)
lemma R3h-inf: R3h(P \sqcap Q) = R3h(P) \sqcap R3h(Q)
 by (rel-auto)
lemma R3h-UINF:
 A \neq \{\} \Longrightarrow R3h(\prod i \in A \cdot P(i)) = (\prod i \in A \cdot R3h(P(i)))
 by (rel-auto)
lemma R3h-cond: R3h(P \triangleleft b \triangleright Q) = (R3h(P) \triangleleft b \triangleright R3h(Q))
 by (rel-auto)
lemma R3c-via-RD1-R3: RD1(R3(P)) = R3c(RD1(P))
 by (rel-auto)
lemma R3c-RD1-def: P is RD1 \Longrightarrow R3c(P) = RD1(R3(P))
 by (simp add: Healthy-if R3c-via-RD1-R3)
lemma RD1-R3c-commute: RD1(R3c(P)) = R3c(RD1(P))
 by (rel-auto)
lemma R1-R3c-commute: R1(R3c(P)) = R3c(R1(P))
 by (rel-auto)
lemma R2c-R3c-commute: R2c(R3c(P)) = R3c(R2c(P))
 apply (rel-auto) using minus-zero-eq by blast+
lemma R1-R3h-commute: <math>R1(R3h(P)) = R3h(R1(P))
 by (rel-auto)
lemma R2c-R3h-commute: R2c(R3h(P)) = R3h(R2c(P))
 apply (rel-auto) using minus-zero-eq by blast+
lemma RD1-R3h-commute: RD1(R3h(P)) = R3h(RD1(P))
 by (rel-auto)
lemma R3c-cancels-R3: R3c(R3(P)) = R3c(P)
 by (rel-auto)
lemma R3-cancels-R3c: R3(R3c(P)) = R3(P)
 by (rel-auto)
lemma R3h-cancels-R3c: R3h(R3c(P)) = R3h(P)
 by (rel-auto)
lemma R3c-semir-form:
 (R3c(P) ;; R3c(R1(Q))) = R3c(P ;; R3c(R1(Q)))
 by (rel-simp, safe, auto intro: order-trans)
```

```
lemma R3h-semir-form:
  (R3h(P) ;; R3h(R1(Q))) = R3h(P ;; R3h(R1(Q)))
  by (rel-simp, safe, auto intro: order-trans, blast+)
lemma R3c-seq-closure:
  assumes P is R3c Q is R3c Q is R1
  shows (P ;; Q) is R3c
 by (metis Healthy-def' R3c-semir-form assms)
lemma R3h-seq-closure [closure]:
 assumes P is R3h Q is R3h Q is R1
 shows (P ;; Q) is R3h
 by (metis Healthy-def' R3h-semir-form assms)
lemma R3c-R3-left-seq-closure:
 assumes P is R3 Q is R3c
 shows (P ;; Q) is R3c
proof -
  have (P :; Q) = ((P :; Q) \llbracket true / \$wait \rrbracket \triangleleft \$wait \triangleright (P :; Q))
    by (metis cond-var-split cond-var-subst-right in-var-uvar wait-vwb-lens)
  also have ... = (((II \triangleleft \$wait \triangleright P) ;; Q) \llbracket true / \$wait \rrbracket \triangleleft \$wait \triangleright (P ;; Q))
    by (metis Healthy-def' R3-def assms(1))
  also have ... = ((II[true/\$wait];; Q) \triangleleft \$wait \triangleright (P;; Q))
    by (subst-tac)
  also have ... = (((II \land \$wait') ;; Q) \triangleleft \$wait \triangleright (P ;; Q))
  by (metis (no-types, lifting) cond-def conj-pos-var-subst segr-pre-var-out skip-var utp-pred-laws.inf-left-idem
wait-vwb-lens)
  also have ... = ((II[true/\$wait'] ;; Q[true/\$wait]) \triangleleft \$wait \triangleright (P ;; Q))
  \textbf{by} \ (\textit{metis seqr-pre-transfer seqr-right-one-point true-alt-def uovar-convrupred-eq-true \ utp-rel. unrest-ouvar}
vwb-lens-mwb wait-vwb-lens)
  \textbf{also have} \ \dots = ((II[[true/\$wait']] \ ;; \ (II_c \mathrel{\triangleleft} \$wait \mathrel{\triangleright} Q)[[true/\$wait]]) \mathrel{\triangleleft} \$wait \mathrel{\triangleright} (P \ ;; \ Q))
    by (metis\ Healthy-def'\ R3c-def\ assms(2))
  also have ... = ((II[true/\$wait']; II_c[true/\$wait]) \triangleleft \$wait \triangleright (P;; Q))
    by (subst-tac)
  also have ... = (((II \land \$wait') ;; II_c) \triangleleft \$wait \triangleright (P ;; Q))
  \textbf{by} \ (\textit{metis seqr-pre-transfer seqr-right-one-point true-alt-def uovar-convrupred-eq-true \ utp-rel. unrest-ouvar}
vwb-lens-mwb wait-vwb-lens)
  also have ... = ((II \ ;; \ II_c) \triangleleft \$wait \triangleright (P \ ;; \ Q))
    by (simp add: cond-def seqr-pre-transfer utp-rel.unrest-ouvar)
  also have ... = (II_c \triangleleft \$wait \triangleright (P;; Q))
   by simp
  also have ... = R3c(P ;; Q)
   by (simp \ add: R3c\text{-}def)
  finally show ?thesis
    by (simp add: Healthy-def')
lemma R3c\text{-}cases: R3c(P) = ((II \triangleleft \$ok \triangleright R1(true)) \triangleleft \$wait \triangleright P)
 by (rel-auto)
lemma R3h-cases: R3h(P) = (((\exists \$st \cdot II) \triangleleft \$ok \triangleright R1(true)) \triangleleft \$wait \triangleright P)
  by (rel-auto)
lemma R3h-form: R3h(P) = II_R \triangleleft \$wait \triangleright P
  by (rel-auto)
```

```
lemma R3c-subst-wait: R3c(P) = R3c(P_f)
 by (simp add: R3c-def cond-var-subst-right)
lemma R3h-subst-wait: R3h(P) = R3h(P_f)
 by (simp add: R3h-cases cond-var-subst-right)
lemma skip-srea-R3h [closure]: II_R is R3h
 by (rel-auto)
lemma R3h-wait-true:
 assumes P is R3h
 shows P_t = II_{Rt}
proof -
 have P_t = (II_R \triangleleft \$wait \triangleright P)_t
   by (metis Healthy-if R3h-form assms)
 also have ... = II_{R} t
   by (simp add: usubst)
 finally show ?thesis.
qed
2.5
      RD2: A reactive specification cannot require non-termination
definition RD2 where
[upred-defs]: RD2(P) = H2(P)
RD2 is just H2 since the type system will automatically have J identifying the reactive variables
as required.
lemma RD2-idem: RD2(RD2(P)) = RD2(P)
 by (simp add: H2-idem RD2-def)
lemma RD2-Idempotent: Idempotent RD2
 by (simp add: Idempotent-def RD2-idem)
lemma RD2-mono: P \subseteq Q \Longrightarrow RD2(P) \subseteq RD2(Q)
 by (simp add: H2-def RD2-def segr-mono)
lemma RD2-Monotonic: Monotonic RD2
 using mono-def RD2-mono by blast
lemma RD2-Continuous: Continuous RD2
 by (rel-auto)
lemma RD1-RD2-commute: RD1(RD2(P)) = RD2(RD1(P))
 by (rel-auto)
lemma RD2-R3c-commute: RD2(R3c(P)) = R3c(RD2(P))
 by (rel-auto)
lemma RD2-R3h-commute: RD2(R3h(P)) = R3h(RD2(P))
 by (rel-auto)
2.6
      Major healthiness conditions
definition RH :: ('t::trace,'\alpha) \ hrel-rp \Rightarrow ('t,'\alpha) \ hrel-rp \ (\mathbf{R})
```

where [upred-defs]: RH(P) = R1(R2c(R3c(P)))

```
definition RHS :: ('s,'t::trace,'\alpha) hrel-rsp \Rightarrow ('s,'t,'\alpha) hrel-rsp (\mathbf{R}_s)
where [upred-defs]: RHS(P) = R1(R2c(R3h(P)))
definition RD :: ('t::trace,'\alpha) \ hrel-rp \Rightarrow ('t,'\alpha) \ hrel-rp
where [upred-defs]: RD(P) = RD1(RD2(RP(P)))
definition SRD :: ('s, 't :: trace, '\alpha) \ hrel-rsp \Rightarrow ('s, 't, '\alpha) \ hrel-rsp
where [upred-defs]: SRD(P) = RD1(RD2(RHS(P)))
lemma RH-comp: RH = R1 \circ R2c \circ R3c
 by (auto simp add: RH-def)
lemma RHS-comp: RHS = R1 \circ R2c \circ R3h
 by (auto simp add: RHS-def)
lemma RD-comp: RD = RD1 \circ RD2 \circ RP
 by (auto simp add: RD-def)
lemma SRD-comp: SRD = RD1 \circ RD2 \circ RHS
 by (auto simp add: SRD-def)
lemma RH-idem: \mathbf{R}(\mathbf{R}(P)) = \mathbf{R}(P)
  by (simp add: R1-R2c-commute R1-R3c-commute R1-idem R2c-R3c-commute R2c-idem R3c-idem
RH-def)
lemma RH-Idempotent: Idempotent \mathbf R
 by (simp add: Idempotent-def RH-idem)
lemma RH-Monotonic: Monotonic \mathbf R
 by (metis (no-types, lifting) R1-Monotonic R2c-Monotonic R3c-mono RH-def mono-def)
lemma RH-Continuous: Continuous R
 by (simp add: Continuous-comp R1-Continuous R2c-Continuous R3c-Continuous RH-comp)
lemma RHS-idem: \mathbf{R}_s(\mathbf{R}_s(P)) = \mathbf{R}_s(P)
 by (simp add: R1-R2c-is-R2 R1-R3h-commute R2-idem R2c-R3h-commute R3h-idem RHS-def)
lemma RHS-Idempotent [closure]: Idempotent \mathbf{R}_s
 by (simp add: Idempotent-def RHS-idem)
lemma RHS-Monotonic: Monotonic \mathbf{R}_s
 by (simp add: mono-def R1-R2c-is-R2 R2-mono R3h-mono RHS-def)
lemma RHS-mono: P \sqsubseteq Q \Longrightarrow \mathbf{R}_s(P) \sqsubseteq \mathbf{R}_s(Q)
 using mono-def RHS-Monotonic by blast
lemma RHS-Continuous [closure]: Continuous \mathbf{R}_s
 by (simp add: Continuous-comp R1-Continuous R2c-Continuous R3h-Continuous RHS-comp)
lemma RHS-inf: \mathbf{R}_s(P \sqcap Q) = \mathbf{R}_s(P) \sqcap \mathbf{R}_s(Q)
  using Continuous-Disjunctous Disjunctuous-def RHS-Continuous by auto
lemma RHS-INF:
  A \neq \{\} \Longrightarrow \mathbf{R}_s(\prod i \in A \cdot P(i)) = (\prod i \in A \cdot \mathbf{R}_s(P(i)))
```

```
by (simp add: RHS-def R3h-UINF R2c-USUP R1-USUP)
lemma RHS-sup: \mathbf{R}_s(P \sqcup Q) = \mathbf{R}_s(P) \sqcup \mathbf{R}_s(Q)
 by (rel-auto)
lemma RHS-SUP:
 A \neq \{\} \Longrightarrow \mathbf{R}_s(\bigsqcup i \in A \cdot P(i)) = (\bigsqcup i \in A \cdot \mathbf{R}_s(P(i)))
 by (rel-auto)
lemma RHS-cond: \mathbf{R}_s(P \triangleleft b \triangleright Q) = (\mathbf{R}_s(P) \triangleleft R2c \ b \triangleright \mathbf{R}_s(Q))
 by (simp add: RHS-def R3h-cond R2c-condr R1-cond)
lemma RD-alt-def: RD(P) = RD1(RD2(\mathbf{R}(P)))
by (simp add: R3c-via-RD1-R3 RD1-R1-commute RD1-R2c-commute RD1-R3c-commute RD1-RD2-commute
RH-def RD-def RP-def)
lemma RD1-RH-commute: RD1(\mathbf{R}(P)) = \mathbf{R}(RD1(P))
 by (simp add: RD1-R1-commute RD1-R2c-commute RD1-R3c-commute RH-def)
lemma RD2-RH-commute: RD2(\mathbf{R}(P)) = \mathbf{R}(RD2(P))
 by (metis R1-H2-commute R2c-H2-commute RD2-R3c-commute RD2-def RH-def)
lemma RD-idem: RD(RD(P)) = RD(P)
 by (simp add: RD-alt-def RD1-RH-commute RD2-RH-commute RD1-RD2-commute RD2-idem RD1-idem
RH-idem)
lemma RD-Monotonic: Monotonic RD
 by (simp add: Monotonic-comp RD1-Monotonic RD2-Monotonic RD-comp RP-Monotonic)
lemma RD-Continuous: Continuous RD
 by (simp add: Continuous-comp RD1-Continuous RD2-Continuous RD-comp RP-Continuous)
lemma R3-RD-RP: R3(RD(P)) = RP(RD1(RD2(P)))
 by (metis (no-types, lifting) R1-R2c-is-R2 R2-R3-commute R3-cancels-R3c RD1-RH-commute RD2-RH-commute
RD-alt-def RH-def RP-def)
lemma RD1-RHS-commute: RD1(\mathbf{R}_s(P)) = \mathbf{R}_s(RD1(P))
 by (simp add: RD1-R1-commute RD1-R2c-commute RD1-R3h-commute RHS-def)
lemma RD2-RHS-commute: RD2(\mathbf{R}_s(P)) = \mathbf{R}_s(RD2(P))
 by (metis R1-H2-commute R2c-H2-commute RD2-R3h-commute RD2-def RHS-def)
lemma SRD-idem: SRD(SRD(P)) = SRD(P)
by (simp add: RD1-RD2-commute RD1-RHS-commute RD1-idem RD2-RHS-commute RD2-idem RHS-idem
SRD-def)
lemma SRD-Idempotent [closure]: Idempotent SRD
 by (simp add: Idempotent-def SRD-idem)
lemma SRD-Monotonic: Monotonic SRD
 by (simp add: Monotonic-comp RD1-Monotonic RD2-Monotonic RHS-Monotonic SRD-comp)
lemma SRD-Continuous [closure]: Continuous SRD
```

by (simp add: Continuous-comp RD1-Continuous RD2-Continuous RHS-Continuous SRD-comp)

```
lemma SRD-RHS-H1-H2: SRD(P) = \mathbf{R}_s(\mathbf{H}(P))
 by (rel-auto)
lemma SRD-healths [closure]:
 assumes P is SRD
 shows P is R1 P is R2 P is R3h P is RD1 P is RD2
 apply (metis Healthy-def R1-idem RD1-RHS-commute RD2-RHS-commute RHS-def SRD-def assms)
  apply (metis Healthy-def R1-R2c-is-R2 R2-idem RD1-RHS-commute RD2-RHS-commute RHS-def
SRD-def assms)
 apply (metis Healthy-def R1-R3h-commute R2c-R3h-commute R3h-idem RD1-R3h-commute RD2-R3h-commute
RHS-def SRD-def assms)
 apply (metis Healthy-def' RD1-idem SRD-def assms)
 apply (metis Healthy-def' RD1-RD2-commute RD2-idem SRD-def assms)
done
lemma SRD-intro:
 assumes P is R1 P is R2 P is R3h P is RD1 P is RD2
 shows P is SRD
 by (metis Healthy-def R1-R2c-is-R2 RHS-def SRD-def assms(2) assms(3) assms(4) assms(5))
lemma SRD-ok-false [usubst]: P is SRD \Longrightarrow P[false/\$ok] = R1(true)
 by (metis (no-types, hide-lams) H1-H2-eq-design Healthy-def R1-ok-false RD1-R1-commute RD1-via-R1
RD2-def SRD-def SRD-healths(1) design-ok-false)
lemma SRD-ok-true-wait-true [usubst]:
 assumes P is SRD
 shows P[true, true/\$ok, \$wait] = (\exists \$st \cdot II)[true, true/\$ok, \$wait]
proof -
 have P = (\exists \$st \cdot II) \triangleleft \$ok \triangleright R1 \ true \triangleleft \$wait \triangleright P
   by (metis Healthy-def R3h-cases SRD-healths(3) assms)
  moreover have ((\exists \$st \cdot II) \triangleleft \$ok \triangleright R1 \ true \triangleleft \$wait \triangleright P)[true,true/\$ok,\$wait] = (\exists \$st \cdot II)
II)[true, true/\$ok, \$wait]
   by (simp add: usubst)
 ultimately show ?thesis
   by (simp)
qed
lemma SRD-left-zero-1: P is SRD \Longrightarrow R1(true) :: P = R1(true)
 by (simp add: RD1-left-zero SRD-healths(1) SRD-healths(4))
lemma SRD-left-zero-2:
 assumes P is SRD
 shows (\exists \$st \cdot II)[true, true/\$ok, \$wait];; P = (\exists \$st \cdot II)[true, true/\$ok, \$wait]
 have (\exists \$st \cdot II)[true, true/\$ok, \$wait];; R3h(P) = (\exists \$st \cdot II)[true, true/\$ok, \$wait]
   by (rel-auto)
 thus ?thesis
   by (simp add: Healthy-if SRD-healths(3) assms)
qed
```

2.7 UTP theories

We create two theory objects: one for reactive designs and one for stateful reactive designs.

```
typedecl RDES
typedecl SRDES
```

```
abbreviation RDES \equiv UTHY(RDES, ('t::trace,'\alpha) rp)
abbreviation SRDES \equiv UTHY(SRDES, ('s,'t::trace,'\alpha) \ rsp)
overloading
  rdes-hcond = utp-hcond :: (RDES, ('t::trace,'\alpha) rp) uthy \Rightarrow (('t,'\alpha) rp \times ('t,'\alpha) rp) health
  srdes-hcond = utp-hcond :: (SRDES, ('s,'t::trace,'\alpha) rsp) uthy \Rightarrow (('s,'t,'\alpha) rsp \times ('s,'t,'\alpha) rsp)
health
begin
 definition rdes-hcond :: (RDES, ('t::trace,'\alpha) rp) uthy \Rightarrow (('t,'\alpha) rp \times ('t,'\alpha) rp) health where
 [upred-defs]: rdes-hcond T = RD
 definition srdes-heard :: (SRDES, ('s,'t::trace,'\alpha) \ rsp) \ uthy \Rightarrow (('s,'t,'\alpha) \ rsp \times ('s,'t,'\alpha) \ rsp) \ health
 [upred-defs]: srdes-hcond T = SRD
end
interpretation rdes-theory: utp-theory UTHY(RDES, ('t::trace,'\alpha) rp)
 by (unfold-locales, simp-all add: rdes-hcond-def RD-idem)
\textbf{interpretation} \ \textit{rdes-theory-continuous:} \ \textit{utp-theory-continuous} \ \textit{UTHY}(\textit{RDES}, \ ('t::trace, '\alpha) \ \textit{rp})
  rewrites \bigwedge P. P \in carrier (uthy-order RDES) \longleftrightarrow P \text{ is } RD
 and carrier (uthy-order RDES) \rightarrow carrier (uthy-order RDES) \equiv [RD]_H \rightarrow [RD]_H
 and le (uthy-order RDES) = op \sqsubseteq
 and eq (uthy\text{-}order\ RDES) = op =
 by (unfold-locales, simp-all add: rdes-hcond-def RD-Continuous)
interpretation rdes-rea-galois:
  galois-connection (RDES \leftarrow \langle RD1 \circ RD2, R3 \rangle \rightarrow REA)
proof (simp add: mk-conn-def, rule galois-connectionI', simp-all add: utp-partial-order rdes-hcond-def
rea-hcond-def)
 show R3 \in [\![RD]\!]_H \rightarrow [\![RP]\!]_H
   by (metis (no-types, lifting) Healthy-def' Pi-I R3-RD-RP RP-idem mem-Collect-eq)
 show RD1 \circ RD2 \in [\![RP]\!]_H \to [\![RD]\!]_H
   by (simp add: Pi-iff Healthy-def, metis RD-def RD-idem)
 show isotone (utp-order RD) (utp-order RP) R3
   by (simp add: R3-Monotonic isotone-utp-orderI)
  show isotone (utp-order RP) (utp-order RD) (RD1 \circ RD2)
   by (simp add: Monotonic-comp RD1-Monotonic RD2-Monotonic isotone-utp-orderI)
 fix P :: ('a, 'b) \ hrel-rp
 assume P is RD
 thus P \sqsubseteq RD1 \ (RD2 \ (R3 \ P))
   by (metis Healthy-if R3-RD-RP RD-def RP-idem eq-iff)
next
 \mathbf{fix} \ P :: ('a, 'b) \ hrel-rp
 assume a: P is RP
 thus R3 (RD1 (RD2 P)) <math>\sqsubseteq P
 proof -
   have R3 (RD1 (RD2 P)) = RP (RD1 (RD2(P)))
     by (metis Healthy-if R3-RD-RP RD-def a)
   moreover have RD1(RD2(P)) \sqsubseteq P
     by (rel-auto)
   ultimately show ?thesis
     by (metis Healthy-if RP-mono a)
 qed
qed
```

```
interpretation rdes-rea-retract:
  retract (RDES \leftarrow \langle RD1 \circ RD2, R3 \rangle \rightarrow REA)
 by (unfold-locales, simp-all add: mk-conn-def utp-partial-order rdes-hcond-def rea-hcond-def)
    (metis Healthy-if R3-RD-RP RD-def RP-idem eq-refl)
interpretation srdes-theory: utp-theory UTHY(SRDES, ('s,'t::trace,'\alpha) rsp)
 by (unfold-locales, simp-all add: srdes-hcond-def SRD-idem)
interpretation stress-theory-continuous: utp-theory-continuous UTHY(SRDES, ('s,'t::trace,'\alpha) rsp)
 rewrites \bigwedge P. P \in carrier (uthy-order SRDES) \longleftrightarrow P is SRD
 and P is \mathcal{H}_{SRDES} \longleftrightarrow P is SRD
 and carrier (uthy-order SRDES) \rightarrow carrier (uthy-order SRDES) \equiv [SRD]_H \rightarrow [SRD]_H
 and [\mathcal{H}_{SRDES}]_H \to [\mathcal{H}_{SRDES}]_H \equiv [SRD]_H \to [SRD]_H
 and le\ (uthy\text{-}order\ SRDES) = op\ \sqsubseteq
 and eq (uthy\text{-}order\ SRDES) = op =
 by (unfold-locales, simp-all add: srdes-hcond-def SRD-Continuous)
declare srdes-theory-continuous.top-healthy [simp del]
declare srdes-theory-continuous.bottom-healthy [simp del]
abbreviation Chaos :: ('s,'t::trace,'\alpha) hrel-rsp where
Chaos \equiv \bot_{SRDES}
abbreviation Miracle :: ('s, 't :: trace, '\alpha) \ hrel-rsp \ where
Miracle \equiv \top_{SRDES}
{f thm}\ srdes\mbox{-}theory\mbox{-}continuous.weak.bottom\mbox{-}lower
thm srdes-theory-continuous.weak.top-higher
thm srdes-theory-continuous.meet-bottom
thm srdes-theory-continuous.meet-top
abbreviation srd-lfp (\mu_R) where \mu_R F \equiv \mu_{SRDES} F
abbreviation srd-gfp (\nu_R) where \nu_R F \equiv \nu_{SRDES} F
  -srd-mu :: pttrn \Rightarrow logic \Rightarrow logic (\mu_R - \cdot - [0, 10] 10)
  -srd-nu :: pttrn \Rightarrow logic \Rightarrow logic (<math>\nu_R - \cdot - [0, 10] \ 10)
translations
 \mu_R X \cdot P == \mu_R (\lambda X. P)
 \nu_R \ X \cdot P == \mu_R \ (\lambda \ X. \ P)
The reactive design weakest fixed-point can be defined in terms of relational calculus one.
lemma srd-mu-equiv:
 assumes Monotonic F F \in [SRD]_H \to [SRD]_H
 shows (\mu_R \ X \cdot F(X)) = (\mu \ X \cdot F(SRD(X)))
 by (metis assms srdes-hoond-def srdes-theory-continuous.utp-lfp-def)
```

3 Reactive Design Specifications

theory utp-rdes-designs

end

3.1 Reactive design forms

```
lemma srdes-skip-def: II_R = \mathbf{R}_s(true \vdash (\$tr' =_u \$tr \land \neg \$wait' \land \lceil II \rceil_R))
 apply (rel-auto) using minus-zero-eq by blast+
lemma Chaos-def: Chaos = \mathbf{R}_s(false \vdash true)
proof -
 have Chaos = SRD(true)
   by (metis srdes-hcond-def srdes-theory-continuous.healthy-bottom)
 also have ... = \mathbf{R}_s(\mathbf{H}(true))
   by (simp add: SRD-RHS-H1-H2)
 also have ... = \mathbf{R}_s(false \vdash true)
   by (metis H1-design H2-true design-false-pre)
 finally show ?thesis.
qed
lemma Miracle-def: Miracle = \mathbf{R}_s(true \vdash false)
proof -
 have Miracle = SRD(false)
   by (metis srdes-hcond-def srdes-theory-continuous.healthy-top)
 also have ... = \mathbf{R}_s(\mathbf{H}(false))
   by (simp add: SRD-RHS-H1-H2)
 also have ... = \mathbf{R}_s(true \vdash false)
  by (metis (no-types, lifting) H1-H2-eq-design p-imp-p subst-impl subst-not utp-pred-laws.compl-bot-eq
utp-pred-laws.compl-top-eq)
 finally show ?thesis.
qed
lemma RD1-reactive-design: RD1(\mathbf{R}(P \vdash Q)) = \mathbf{R}(P \vdash Q)
 by (rel-auto)
lemma RD2-reactive-design:
 assumes \$ok' \sharp P \$ok' \sharp Q
 shows RD2(\mathbf{R}(P \vdash Q)) = \mathbf{R}(P \vdash Q)
 using assms
 by (metis H2-design RD2-RH-commute RD2-def)
lemma RD1-st-reactive-design: RD1(\mathbf{R}_s(P \vdash Q)) = \mathbf{R}_s(P \vdash Q)
 by (rel-auto)
lemma RD2-st-reactive-design:
 assumes \$ok' \sharp P \$ok' \sharp Q
 shows RD2(\mathbf{R}_s(P \vdash Q)) = \mathbf{R}_s(P \vdash Q)
 using assms
 by (metis H2-design RD2-RHS-commute RD2-def)
lemma wait-false-design:
 (P \vdash Q)_f = ((P_f) \vdash (Q_f))
 by (rel-auto)
lemma RD-RH-design-form:
  RD(P) = \mathbf{R}((\neg P^f_f) \vdash P^t_f)
proof -
```

```
have RD(P) = RD1(RD2(R1(R2c(R3c(P)))))
   by (simp add: RD-alt-def RH-def)
 also have ... = RD1(H2(R1(R2s(R3c(P)))))
   by (simp add: R1-R2s-R2c RD2-def)
 also have ... = RD1(R1(H2(R2s(R3c(P)))))
   by (simp add: R1-H2-commute)
 also have ... = R1(H1(R1(H2(R2s(R3c(P))))))
   by (simp add: R1-idem RD1-via-R1)
 also have ... = R1(H1(H2(R2s(R3c(R1(P))))))
   by (simp add: R1-H2-commute R1-R2c-commute R1-R2s-R2c R1-R3c-commute RD1-via-R1)
 also have ... = R1(R2s(H1(H2(R3c(R1(P))))))
   by (simp add: R2s-H1-commute R2s-H2-commute)
 also have ... = R1(R2s(H1(R3c(H2(R1(P))))))
   by (metis RD2-R3c-commute RD2-def)
 also have ... = R2(R1(H1(R3c(H2(R1(P))))))
   by (metis R1-R2-commute R1-idem R2-def)
 also have ... = R2(R3c(R1(\mathbf{H}(R1(P)))))
   by (simp add: R1-R3c-commute RD1-R3c-commute RD1-via-R1)
 also have ... = RH(\mathbf{H}(R1(P)))
   by (metis R1-R2s-R2c R1-R3c-commute R2-R1-form RH-def)
 also have ... = RH(\mathbf{H}(P))
   by (simp add: R1-H2-commute R1-R2c-commute R1-R3c-commute R1-idem RD1-via-R1 RH-def)
 also have ... = RH((\neg P^f) \vdash P^t)
   by (simp add: H1-H2-eq-design)
 also have ... = \mathbf{R}((\neg P^f_f) \vdash P^t_f)
   by (metis (no-types, lifting) R3c-subst-wait RH-def subst-not wait-false-design)
 finally show ?thesis.
qed
lemma RD-reactive-design:
 assumes P is RD
 \mathbf{shows}\ \mathbf{R}((\lnot\ P^f{}_f) \vdash P^t{}_f) = P
 by (metis RD-RH-design-form Healthy-def' assms)
lemma RD-RH-design:
 assumes \$ok' \sharp P \$ok' \sharp Q
 shows RD(\mathbf{R}(P \vdash Q)) = \mathbf{R}(P \vdash Q)
 by (simp add: RD1-reactive-design RD2-reactive-design RD-alt-def RH-idem assms(1) assms(2))
lemma RH-design-is-RD:
 assumes \$ok' \sharp P \$ok' \sharp Q
 shows \mathbf{R}(P \vdash Q) is RD
 by (simp\ add:\ RD\text{-}RH\text{-}design\ Healthy\text{-}def'\ assms(1)\ assms(2))
lemma SRD-RH-design-form:
 SRD(P) = \mathbf{R}_s((\neg P^f_f) \vdash P^t_f)
proof -
 have SRD(P) = R1(R2c(R3h(RD1(RD2(R1(P))))))
  by (metis (no-types, lifting) R1-H2-commute R1-R2c-commute R1-R3h-commute R1-idem R2c-H2-commute
RD1-R1-commute RD1-R2c-commute RD1-R3h-commute RD2-R3h-commute RD2-def RHS-def SRD-def)
 also have ... = R1(R2s(R3h(\mathbf{H}(P))))
  by (metis (no-types, lifting) R1-H2-commute R1-R2c-is-R2 R1-R3h-commute R2-R1-form RD1-via-R1
RD2-def)
 also have ... = \mathbf{R}_s(\mathbf{H}(P))
   by (simp add: R1-R2s-R2c RHS-def)
```

```
also have ... = \mathbf{R}_s((\neg P^f) \vdash P^t)
   by (simp add: H1-H2-eq-design)
  also have ... = \mathbf{R}_s((\neg P^f_f) \vdash P^t_f)
   by (metis (no-types, lifting) R3h-subst-wait RHS-def subst-not wait-false-design)
 finally show ?thesis.
qed
lemma SRD-reactive-design:
  assumes P is SRD
 shows \mathbf{R}_s((\neg P^f_f) \vdash P^t_f) = P
  by (metis SRD-RH-design-form Healthy-def' assms)
lemma SRD-RH-design:
  assumes \$ok' \sharp P \$ok' \sharp Q
 shows SRD(\mathbf{R}_s(P \vdash Q)) = \mathbf{R}_s(P \vdash Q)
 \textbf{by} \ (simp \ add: \ RD1-st-reactive-design \ RD2-st-reactive-design \ RHS-idem \ SRD-def \ assms(1) \ assms(2))
lemma RHS-design-is-SRD:
  assumes \$ok' \sharp P \$ok' \sharp Q
 shows \mathbf{R}_s(P \vdash Q) is SRD
 by (simp add: Healthy-def' SRD-RH-design assms(1) assms(2))
lemma SRD-RHS-H1-H2: SRD(P) = \mathbf{R}_s(\mathbf{H}(P))
 by (metis (no-types, lifting) H1-H2-eq-design R3h-subst-wait RHS-def SRD-RH-design-form subst-not
wait-false-design)
3.2
        Auxiliary healthiness conditions
definition [upred-defs]: R3c\text{-}pre(P) = (true \triangleleft \$wait \triangleright P)
definition [upred-defs]: R3c\text{-post}(P) = (\lceil II \rceil_D \triangleleft \$wait \triangleright P)
definition [upred-defs]: R3h-post(P) = ((\exists \$st \cdot \lceil II \rceil_D) \triangleleft \$wait \triangleright P)
lemma R3c-pre-conj: R3c-pre(P \land Q) = (R3c-pre(P) \land R3c-pre(Q))
  by (rel-auto)
lemma R3c-pre-seq:
  (true :; Q) = true \Longrightarrow R3c\text{-}pre(P :; Q) = (R3c\text{-}pre(P) :; Q)
 by (rel-auto)
lemma unrest-ok-R3c-pre [unrest]: \$ok \ \sharp \ P \Longrightarrow \$ok \ \sharp \ R3c\text{-pre}(P)
 by (simp add: R3c-pre-def cond-def unrest)
lemma unrest-ok'-R3c-pre [unrest]: \$ok' \sharp P \Longrightarrow \$ok' \sharp R3c-pre(P)
  by (simp add: R3c-pre-def cond-def unrest)
lemma unrest-ok-R3c-post [unrest]: \$ok \sharp P \Longrightarrow \$ok \sharp R3c\text{-post}(P)
 by (simp add: R3c-post-def cond-def unrest)
lemma unrest-ok-R3c-post' [unrest]: \$ok' \sharp P \Longrightarrow \$ok' \sharp R3c-post(P)
  by (simp add: R3c-post-def cond-def unrest)
lemma unrest-ok-R3h-post [unrest]: \$ok \ \sharp \ P \Longrightarrow \$ok \ \sharp \ R3h-post(P)
  by (simp add: R3h-post-def cond-def unrest)
```

```
lemma unrest-ok-R3h-post' [unrest]: \$ok' \sharp P \Longrightarrow \$ok' \sharp R3h-post(P) by (simp add: R3h-post-def cond-def unrest)
```

3.3 Composition laws

```
theorem R1-design-composition:
  fixes P Q :: ('t::trace,'\alpha,'\beta) \ rel-rp
  and R S :: (\dot{t}, \beta, \gamma) \text{ rel-rp}
  assumes \$ok' \sharp P \$ok' \sharp Q \$ok \sharp R \$ok \sharp S
 shows
  (R1(P \vdash Q) ;; R1(R \vdash S)) =
   R1((\neg (R1(\neg P) ;; R1(true)) \land \neg (R1(Q) ;; R1(\neg R))) \vdash (R1(Q) ;; R1(S)))
proof -
 \mathbf{have} \ (R1(P \vdash Q) \ ;; \ R1(R \vdash S)) = (\exists \ ok_0 \cdot (R1(P \vdash Q)) [\![ <\! ok_0 >\! /\$ ok' ]\!] \ ;; \ (R1(R \vdash S)) [\![ <\! ok_0 >\! /\$ ok]\!])
    using seqr-middle ok-vwb-lens by blast
  also from assms have ... = (\exists ok_0 \cdot R1((\$ok \land P) \Rightarrow (\lessdot ok_0 \gg \land Q)) ;; R1((\lessdot ok_0 \gg \land R) \Rightarrow (\$ok))
\wedge S)))
    by (simp add: design-def R1-def usubst unrest)
  also from assms have ... = ((R1((\$ok \land P) \Rightarrow (true \land Q)) ;; R1((true \land R) \Rightarrow (\$ok' \land S)))
                             \vee (R1((\$ok \land P) \Rightarrow (false \land Q)) ;; R1((false \land R) \Rightarrow (\$ok' \land S))))
    by (simp add: false-alt-def true-alt-def)
  also from assms have ... = ((R1((\$ok \land P) \Rightarrow Q) ;; R1(R \Rightarrow (\$ok' \land S)))
                             \vee (R1(\neg (\$ok \land P)) ;; R1(true)))
    by simp
  also from assms have ... = ((R1(\neg \$ok \lor \neg P \lor Q) ;; R1(\neg R \lor (\$ok' \land S)))
                             \vee (R1(\neg \$ok \lor \neg P) ;; R1(true)))
    by (simp add: impl-alt-def utp-pred-laws.sup.assoc)
  also from assms have ... = (((R1(\neg \$ok \lor \neg P) \lor R1(Q)) ;; R1(\neg R \lor (\$ok \land S)))
                               \vee (R1(\neg \$ok \lor \neg P) ;; R1(true)))
    by (simp add: R1-disj utp-pred-laws.disj-assoc)
  also from assms have ... = ((R1(\neg \$ok \lor \neg P) ;; R1(\neg R \lor (\$ok' \land S))))
                               \vee (R1(Q) ;; R1(\neg R \vee (\$ok' \wedge S)))
                               \vee (R1(\neg \$ok \lor \neg P) ;; R1(true)))
    by (simp add: seqr-or-distl utp-pred-laws.sup.assoc)
  also from assms have ... = ((R1(Q) ;; R1(\neg R \lor (\$ok' \land S)))
                               \vee (R1(\neg \$ok \lor \neg P) ;; R1(true)))
    by (rel-blast)
  also from assms have ... = ((R1(Q) ;; (R1(\neg R) \lor R1(S) \land \$ok'))
                               \vee (R1(\neg \$ok \lor \neg P) ;; R1(true)))
    by (simp add: R1-disj R1-extend-conj utp-pred-laws.inf-commute)
  also have ... = ((R1(Q) ;; (R1(\neg R) \lor R1(S) \land \$ok'))
                  \vee ((R1(\neg \$ok) :: ('t, '\alpha, '\beta) \ rel-rp) ;; R1(true))
                  \vee (R1(\neg P) ;; R1(true)))
    by (simp add: R1-disj seqr-or-distl)
  also have ... = ((R1(Q) ;; (R1(\neg R) \lor R1(S) \land \$ok'))
                  \vee (R1(\neg \$ok))
                  \vee (R1(\neg P) ;; R1(true)))
  proof -
    have ((R1(\neg \$ok) :: ('t, '\alpha, '\beta) \ rel-rp) :: R1(true)) =
           (R1(\neg \$ok) :: ('t, '\alpha, '\gamma) \ rel-rp)
      by (rel-auto)
    thus ?thesis
      by simp
  also have ... = ((R1(Q) ;; (R1(\neg R) \lor (R1(S \land \$ok')))))
                  \vee R1(\neg \$ok)
```

```
\vee (R1(\neg P) ;; R1(true)))
   by (simp add: R1-extend-conj)
 also have ... = ((R1(Q); (R1(\neg R)))
                \vee (R1(Q) ;; (R1(S \wedge \$ok')))
                \vee R1(\neg \$ok)
                \vee (R1(\neg P) ;; R1(true)))
   by (simp add: segr-or-distr utp-pred-laws.sup.assoc)
 also have ... = R1((R1(Q); (R1(\neg R)))
                  \vee (R1(Q) ;; (R1(S \wedge \$ok')))
                  \vee (\neg \$ok)
                  \vee (R1(\neg P) ;; R1(true)))
   by (simp add: R1-disj R1-seqr)
 also have ... = R1((R1(Q);;(R1(\neg R)))
                  \vee ((R1(Q) ;; R1(S)) \wedge \$ok')
                  \vee (\neg \$ok)
                  \vee (R1(\neg P) ;; R1(true)))
   by (rel-blast)
 also have ... = R1(\neg(\$ok \land \neg (R1(\neg P) ;; R1(true)) \land \neg (R1(Q) ;; (R1(\neg R))))
                  \vee ((R1(Q) ;; R1(S)) \wedge \$ok'))
   by (rel-blast)
 also have ... = R1((\$ok \land \neg (R1(\neg P) ;; R1(true)) \land \neg (R1(Q) ;; (R1(\neg R))))
                   \Rightarrow (\$ok' \land (R1(Q) ;; R1(S))))
   by (simp add: impl-alt-def utp-pred-laws.inf-commute)
 also have ... = R1((\neg (R1(\neg P) ;; R1(true)) \land \neg (R1(Q) ;; R1(\neg R))) \vdash (R1(Q) ;; R1(S)))
   by (simp add: design-def)
 finally show ?thesis.
qed
theorem R1-design-composition-RR:
 assumes P is RR Q is RR R is RR S is RR
 shows
 (R1(P \vdash Q) ;; R1(R \vdash S)) = R1(((\neg_r P) wp_r false \land Q wp_r R) \vdash (Q ;; S))
 apply (subst\ R1-design-composition)
 apply (simp-all add: assms unrest wp-rea-def Healthy-if closure)
 apply (rel-auto)
done
theorem R1-design-composition-RC:
 assumes P is RC Q is RR R is RR S is RR
 shows
 (R1(P \vdash Q) ;; R1(R \vdash S)) = R1((P \land Q wp_r R) \vdash (Q ;; S))
 by (simp add: R1-design-composition-RR assms unrest Healthy-if closure wp)
lemma R2s-design: R2s(P \vdash Q) = (R2s(P) \vdash R2s(Q))
 by (simp add: R2s-def design-def usubst)
lemma R2c-design: R2c(P \vdash Q) = (R2c(P) \vdash R2c(Q))
 by (simp add: design-def impl-alt-def R2c-disj R2c-not R2c-ok R2c-and R2c-ok')
lemma R1-R3c-design:
  R1(R3c(P \vdash Q)) = R1(R3c\text{-}pre(P) \vdash R3c\text{-}post(Q))
 by (rel-auto)
lemma R1-R3h-design:
  R1(R3h(P \vdash Q)) = R1(R3c\text{-}pre(P) \vdash R3h\text{-}post(Q))
```

```
by (rel-auto)
lemma R3c-R1-design-composition:
  assumes \$ok' \sharp P \$ok' \sharp Q \$ok \sharp R \$ok \sharp S
  shows (R3c(R1(P \vdash Q)) ;; R3c(R1(R \vdash S))) =
       R3c(R1((\neg (R1(\neg P) ;; R1(true)) \land \neg ((R1(Q) \land \neg \$wait') ;; R1(\neg R))))
       \vdash (R1(Q) ;; (\lceil II \rceil_D \triangleleft \$wait \triangleright R1(S)))))
proof -
 have 1:(\neg (R1 (\neg R3c\text{-}pre P) ;; R1 true)) = (R3c\text{-}pre (\neg (R1 (\neg P) ;; R1 true)))
    by (rel-auto)
 have 2:(\neg (R1 \ (R3c\text{-}post \ Q) \ ;; R1 \ (\neg R3c\text{-}pre \ R))) = R3c\text{-}pre(\neg ((R1 \ Q \land \neg \$wait') \ ;; R1 \ (\neg R)))
   by (rel-auto, blast+)
  have 3:(R1 \ (R3c\text{-post}\ Q) \ ;;\ R1 \ (R3c\text{-post}\ S)) = R3c\text{-post}\ (R1\ Q\ ;;\ (\lceil H\rceil_D \triangleleft \$wait \triangleright R1\ S))
    by (rel-auto)
 show ?thesis
    apply (simp add: R3c-semir-form R1-R3c-commute[THEN sym] R1-R3c-design unrest)
    apply (subst\ R1-design-composition)
        apply (simp-all add: unrest assms R3c-pre-conj 1 2 3)
    done
\mathbf{qed}
lemma R3h-R1-design-composition:
  assumes \$ok' \sharp P \$ok' \sharp Q \$ok \sharp R \$ok \sharp S
  shows (R3h(R1(P \vdash Q)) ;; R3h(R1(R \vdash S))) =
       R3h(R1((\neg (R1(\neg P) ;; R1(true)) \land \neg ((R1(Q) \land \neg \$wait') ;; R1(\neg R))))
       \vdash (R1(Q) ;; ((\exists \$st \cdot \lceil II \rceil_D) \triangleleft \$wait \triangleright R1(S)))))
proof -
 have 1:(\neg (R1 (\neg R3c\text{-}pre P) ;; R1 true)) = (R3c\text{-}pre (\neg (R1 (\neg P) ;; R1 true)))
  by (rel-auto)
 have 2:(\neg (R1 \ (R3h\text{-}post \ Q) \ ;; R1 \ (\neg R3c\text{-}pre \ R))) = R3c\text{-}pre(\neg ((R1 \ Q \land \neg \$wait') \ ;; R1 \ (\neg R)))
    by (rel-auto, blast+)
 have 3:(R1\ (R3h\text{-post}\ Q)\ ;;\ R1\ (R3h\text{-post}\ S)) = R3h\text{-post}\ (R1\ Q\ ;;\ ((\exists\ \$st\cdot \lceil H\rceil_D) \triangleleft \$wait \triangleright R1\ S))
    by (rel-auto, blast+)
  show ?thesis
    apply (simp add: R3h-semir-form R1-R3h-commute[THEN sym] R1-R3h-design unrest)
    apply (subst R1-design-composition)
    apply (simp-all add: unrest assms R3c-pre-conj 1 2 3)
  done
qed
lemma R2-design-composition:
  assumes \$ok' \sharp P \$ok' \sharp Q \$ok \sharp R \$ok \sharp S
  shows (R2(P \vdash Q) ;; R2(R \vdash S)) =
        R2((\neg (R1 (\neg R2c P) ;; R1 true) \land \neg (R1 (R2c Q) ;; R1 (\neg R2c R))) \vdash (R1 (R2c Q) ;; R1)
(R2c\ S)))
 apply (simp add: R2-R2c-def R2c-design R1-design-composition assms unrest R2c-not R2c-and R2c-disj
R1-R2c-commute[THEN\ sym]\ R2c-idem\ R2c-R1-seq)
 apply (metis (no-types, lifting) R2c-R1-seq R2c-not R2c-true)
done
{f lemma} RH-design-composition:
  assumes \$ok' \sharp P \$ok' \sharp Q \$ok \sharp R \$ok \sharp S
  shows (RH(P \vdash Q) ;; RH(R \vdash S)) =
       RH((\neg (R1 \ (\neg R2s \ P) \ ;; \ R1 \ true) \land \neg ((R1 \ (R2s \ Q) \land (\neg \$wait')) \ ;; \ R1 \ (\neg R2s \ R))) \vdash
                       (R1 \ (R2s \ Q) \ ;; \ (\lceil II \rceil_D \triangleleft \$wait \triangleright R1 \ (R2s \ S))))
```

```
proof -
  have 1: R2c (R1 (\neg R2s P) ;; R1 true) = (R1 (\neg R2s P) ;; R1 true)
   have 1:(R1 \ (\neg R2s \ P) \ ;; R1 \ true) = (R1(R2 \ (\neg P) \ ;; R2 \ true))
     by (rel-auto)
   have R2c(R1(R2 (\neg P) ;; R2 true)) = R2c(R1(R2 (\neg P) ;; R2 true))
     using R2c-not by blast
   also have ... = R2(R2 (\neg P) ;; R2 true)
     by (metis R1-R2c-commute R1-R2c-is-R2)
   also have ... = (R2 (\neg P) ;; R2 true)
     by (simp add: R2-segr-distribute)
   also have ... = (R1 (\neg R2s P) ;; R1 true)
     by (simp add: R2-def R2s-not R2s-true)
   finally show ?thesis
     by (simp \ add: 1)
  qed
 have 2:R2c\ ((R1\ (R2s\ Q)\ \land \neg\ \$wait')\ ;;\ R1\ (\neg\ R2s\ R)) = ((R1\ (R2s\ Q)\ \land \neg\ \$wait')\ ;;\ R1\ (\neg\ R2s\ R))
R))
  proof -
   have ((R1 \ (R2s \ Q) \land \neg \$wait') ;; R1 \ (\neg R2s \ R)) = R1 \ (R2 \ (Q \land \neg \$wait') ;; R2 \ (\neg R))
     by (rel-auto)
   hence R2c ((R1 (R2s Q) \land \neg $wait');; R1 (\neg R2s R)) = (R2 (Q \land \neg $wait');; R2 (\neg R))
     by (metis R1-R2c-commute R1-R2c-is-R2 R2-seqr-distribute)
   also have ... = ((R1 \ (R2s \ Q) \land \neg \$wait') ;; R1 \ (\neg R2s \ R))
     by (rel-auto)
   finally show ?thesis.
  qed
 have 3:R2c((R1\ (R2s\ Q)\ ;;([II]_D \triangleleft \$wait \triangleright R1\ (R2s\ S)))) = (R1\ (R2s\ Q)\ ;;([II]_D \triangleleft \$wait \triangleright R1
(R2s S)))
 proof -
   have R2c(((R1\ (R2s\ Q))[true/\$wait']);([II]_D \triangleleft \$wait \triangleright R1\ (R2s\ S))[true/\$wait]))
         = ((R1 \ (R2s \ Q))[true/\$wait'] \ ;; \ ([II]_D \triangleleft \$wait \triangleright R1 \ (R2s \ S))[true/\$wait])
   proof -
     have R2c(((R1\ (R2s\ Q))[true/\$wait'];;([II]_D \triangleleft \$wait \triangleright R1\ (R2s\ S))[true/\$wait])) =
           R2c(R1 \ (R2s \ (Q[true/\$wait'])) ;; [II]_D[true/\$wait])
       by (simp add: usubst cond-unit-T R1-def R2s-def)
     also have ... = R2c(R2(Q[true/\$wait']) ;; R2([II]_D[true/\$wait]))
       by (metis R2-def R2-des-lift-skip R2-subst-wait-true)
     also have ... = (R2(Q[true/\$wait']) ;; R2([II]_D[true/\$wait]))
       using R2c\text{-seq} by blast
     also have ... = ((R1 \ (R2s \ Q)) \llbracket true / \$wait' \rrbracket \ ;; (\lceil II \rceil_D \triangleleft \$wait \triangleright R1 \ (R2s \ S)) \llbracket true / \$wait \rrbracket))
       apply (simp add: usubst R2-des-lift-skip)
       apply (metis R2-def R2-des-lift-skip R2-subst-wait'-true R2-subst-wait-true)
       done
     finally show ?thesis.
   moreover have R2c(((R1\ (R2s\ Q)))[false/\$wait']]; ([II]_D \triangleleft \$wait \triangleright R1\ (R2s\ S))[false/\$wait]))
         = ((R1 \ (R2s \ Q))[false/\$wait']] ;; ([II]_D \triangleleft \$wait \triangleright R1 \ (R2s \ S))[false/\$wait]])
     by (simp\ add:\ usubst\ cond\text{-}unit\text{-}F)
      (metis (no-types, hide-lams) R1-wait'-false R1-wait-false R2-def R2-subst-wait'-false R2-subst-wait-false
R2c\text{-}seq)
   ultimately show ?thesis
   proof -
```

```
have [II]_D \triangleleft \$wait \triangleright R1 \ (R2s \ S) = R2 \ ([II]_D \triangleleft \$wait \triangleright S)
       by (simp add: R1-R2c-is-R2 R1-R2s-R2c R2-condr' R2-des-lift-skip R2s-wait)
     then show ?thesis
       by (simp add: R1-R2c-is-R2 R1-R2s-R2c R2c-seq)
   qed
  qed
 have (R1(R2s(R3c(P \vdash Q))) ;; R1(R2s(R3c(R \vdash S)))) =
       ((R3c(R1(R2s(P) \vdash R2s(Q)))) ;; R3c(R1(R2s(R) \vdash R2s(S))))
   by (metis (no-types, hide-lams) R1-R2s-R2c R1-R3c-commute R2c-R3c-commute R2s-design)
 also have ... = R3c (R1 ((\neg (R1 (\neg R2s P) ;; R1 true) \land \neg ((R1 (R2s Q) \land \neg $wait') ;; R1 (\neg R2s
R))) \vdash
                      (R1 \ (R2s \ Q) \ ;; \ (\lceil II \rceil_D \triangleleft \$wait \triangleright R1 \ (R2s \ S)))))
   by (simp add: R3c-R1-design-composition assms unrest)
 also have ... = R3c(R1(R2c((\neg (R1 (\neg R2s P) ;; R1 true) \land \neg ((R1 (R2s Q) \land \neg \$wait') ;; R1 (\neg R2s P) ;; R1 true))))
R2s R))) \vdash
                            (R1 \ (R2s \ Q) \ ;; \ (\lceil II \rceil_D \triangleleft \$wait \triangleright R1 \ (R2s \ S))))))
   by (simp add: R2c-design R2c-and R2c-not 1 2 3)
  finally show ?thesis
   by (simp add: R1-R2s-R2c R1-R3c-commute R2c-R3c-commute RH-def)
qed
lemma RHS-design-composition:
  assumes \$ok' \sharp P \$ok' \sharp Q \$ok \sharp R \$ok \sharp S
  shows (\mathbf{R}_s(P \vdash Q) :: \mathbf{R}_s(R \vdash S)) =
      \mathbf{R}_s((\neg (R1 \ (\neg R2s \ P) \ ;; R1 \ true) \land \neg ((R1 \ (R2s \ Q) \land (\neg \$wait')) \ ;; R1 \ (\neg R2s \ R))) \vdash
                     (R1 \ (R2s \ Q) \ ;; \ ((\exists \$st \cdot \lceil II \rceil_D) \triangleleft \$wait \triangleright R1 \ (R2s \ S))))
proof -
  have 1: R2c (R1 (\neg R2s P) ;; R1 true) = (R1 (\neg R2s P) ;; R1 true)
  proof -
   have 1:(R1 (\neg R2s P) ;; R1 true) = (R1(R2 (\neg P) ;; R2 true))
     by (rel-auto, blast)
   have R2c(R1(R2 (\neg P) ;; R2 true)) = R2c(R1(R2 (\neg P) ;; R2 true))
     using R2c-not by blast
   also have ... = R2(R2 (\neg P) ;; R2 true)
     by (metis R1-R2c-commute R1-R2c-is-R2)
   also have ... = (R2 (\neg P) :: R2 true)
     by (simp add: R2-segr-distribute)
   also have ... = (R1 (\neg R2s P) ;; R1 true)
     by (simp add: R2-def R2s-not R2s-true)
   finally show ?thesis
     by (simp \ add: 1)
  qed
 have 2:R2c ((R1 \ (R2s \ Q) \land \neg \$wait'); R1 \ (\neg R2s \ R)) = ((R1 \ (R2s \ Q) \land \neg \$wait'); R1 \ (\neg R2s \ R))
 proof -
   have ((R1 \ (R2s \ Q) \land \neg \$wait') ;; R1 \ (\neg R2s \ R)) = R1 \ (R2 \ (Q \land \neg \$wait') ;; R2 \ (\neg R))
     by (rel-auto, blast+)
   hence R2c ((R1 (R2s Q) \land \neg $wait');; R1 (\neg R2s R)) = (R2 (Q \land \neg $wait');; R2 (\neg R))
     by (metis (no-types, lifting) R1-R2c-commute R1-R2c-is-R2 R2-seqr-distribute)
   also have ... = ((R1 \ (R2s \ Q) \land \neg \$wait') ;; R1 \ (\neg R2s \ R))
     by (rel-auto, blast+)
   finally show ?thesis.
  qed
```

```
have 3:R2c((R1\ (R2s\ Q)\ ;;\ ((\exists\ \$st\cdot \lceil II\rceil_D) \triangleleft \$wait \triangleright R1\ (R2s\ S)))) =
                 (R1 \ (R2s \ Q) \ ;; \ ((\exists \$st \cdot \lceil II \rceil_D) \triangleleft \$wait \triangleright R1 \ (R2s \ S)))
   proof -
       have R2c(((R1\ (R2s\ Q))[true/\$wait'];;((\exists\ \$st\cdot [II]_D) \triangleleft \$wait \triangleright R1\ (R2s\ S))[true/\$wait]))
                 =((R1\ (R2s\ Q))[true/\$wait'];;((\exists\ \$st\cdot [II]_D) \triangleleft \$wait \triangleright R1\ (R2s\ S))[true/\$wait])
         \mathbf{have} \ R2c(((R1 \ (R2s \ Q)) \llbracket true / \$wait ' \rrbracket \ ;; \ ((\exists \ \$st \cdot \lceil H \rceil_D) \triangleleft \$wait \rhd R1 \ (R2s \ S)) \llbracket true / \$wait \rrbracket)) =
                     R2c(R1\ (R2s\ (Q[true/\$wait']))\ ;;\ (\exists\ \$st\cdot [II]_D)[true/\$wait])
              by (simp add: usubst cond-unit-T R1-def R2s-def)
          also have ... = R2c(R2(Q[true/\$wait']) ;; R2((\exists \$st \cdot [II]_D)[true/\$wait]))
             by (metis (no-types, lifting) R2-def R2-des-lift-skip R2-subst-wait-true R2-st-ex)
          also have ... = (R2(Q[true/\$wait']) ;; R2((\exists \$st \cdot [II]_D)[true/\$wait]))
              using R2c\text{-seq} by blast
        also have ... = ((R1 \ (R2s \ Q)) \lceil true / \$wait' \rceil) ; ((\exists \$st \cdot \lceil II \rceil_D) \triangleleft \$wait \triangleright R1 \ (R2s \ S)) \lceil true / \$wait \rceil)
             apply (simp add: usubst R2-des-lift-skip)
              apply (metis (no-types) R2-def R2-des-lift-skip R2-st-ex R2-subst-wait'-true R2-subst-wait-true)
          done
          finally show ?thesis.
      \mathbf{qed}
     moreover have R2c(((R1\ (R2s\ Q)))[false/\$wait'];;((\exists\ \$st\cdot [II]_D) \triangleleft \$wait \triangleright R1\ (R2s\ S))[false/\$wait]))
                 = ((R1 \ (R2s \ Q)) \llbracket false / \$wait' \rrbracket \ ;; ((\exists \$st \cdot \lceil II \rceil_D) \triangleleft \$wait \rhd R1 \ (R2s \ S)) \llbracket false / \$wait \rrbracket))
          by (simp add: usubst)
           (metis (no-types, lifting) R1-wait'-false R1-wait-false R2-R1-form R2-subst-wait'-false R2-subst-wait-false
R2c\text{-}seq)
       ultimately show ?thesis
          by (smt R2-R1-form R2-condr' R2-des-lift-skip R2-st-ex R2c-seq R2s-wait)
   qed
   have (R1(R2s(R3h(P \vdash Q))) ;; R1(R2s(R3h(R \vdash S)))) =
              ((R3h(R1(R2s(P) \vdash R2s(Q)))) ;; R3h(R1(R2s(R) \vdash R2s(S))))
       by (metis (no-types, hide-lams) R1-R2s-R2c R1-R3h-commute R2c-R3h-commute R2s-design)
    also have ... = R3h (R1 ((\neg (R1 (\neg R2s P) ;; R1 true) \land \neg ((R1 (R2s Q) \land \neg \$wait') ;; R1 (<math>\neg
R2s R))) \vdash
                                        (R1 \ (R2s \ Q) \ ;; \ ((\exists \ \$st \cdot \lceil II \rceil_D) \triangleleft \$wait \triangleright R1 \ (R2s \ S)))))
       by (simp add: R3h-R1-design-composition assms unrest)
   also have ... = R3h(R1(R2c((\neg (R1 (\neg R2s P) :: R1 true) \land \neg ((R1 (R2s Q) \land \neg \$wait') :: R1 (\neg R1s P) \land \neg (R1 (R2s Q) \land \neg R1s P) :: R1 (\neg R1s P) \land \neg (R1 (R2s Q) \land \neg R1s P) :: R1 (\neg R1s P) \land \neg (R1 (R2s Q) \land \neg R1s P) :: R1 (\neg R1s P) :: R1s P) :: R1 (\neg R1s P) :: R1s P) ::
R2s R))) \vdash
                                                    (R1 \ (R2s \ Q) \ ;; \ ((\exists \$st \cdot \lceil II \rceil_D) \triangleleft \$wait \triangleright R1 \ (R2s \ S))))))
       by (simp add: R2c-design R2c-and R2c-not 1 2 3)
   finally show ?thesis
       by (simp add: R1-R2s-R2c R1-R3h-commute R2c-R3h-commute RHS-def)
ged
lemma RHS-R2s-design-composition:
   assumes
       \$ok' \sharp P \$ok' \sharp Q \$ok \sharp R \$ok \sharp S
       P is R2s Q is R2s R is R2s S is R2s
   shows (\mathbf{R}_s(P \vdash Q) :: \mathbf{R}_s(R \vdash S)) =
            \mathbf{R}_s((\neg (R1 (\neg P) ;; R1 true) \land \neg ((R1 Q \land \neg \$wait') ;; R1 (\neg R))) \vdash
                                        (R1\ Q\ ;;\ ((\exists\ \$st\cdot \lceil II\rceil_D) \triangleleft \$wait \triangleright R1\ S)))
proof -
   have f1: R2s P = P
       by (meson\ Healthy-def\ assms(5))
   have f2: R2s Q = Q
```

```
by (meson\ Healthy-def\ assms(6))
  have f3: R2s R = R
    by (meson\ Healthy-def\ assms(7))
  have R2s S = S
    by (meson\ Healthy-def\ assms(8))
  then show ?thesis
    using f3 f2 f1 by (simp add: RHS-design-composition assms(1) assms(2) assms(3) assms(4))
qed
lemma RH-design-export-R1: \mathbf{R}(P \vdash Q) = \mathbf{R}(P \vdash R1(Q))
 by (rel-auto)
lemma RH-design-export-R2s: \mathbf{R}(P \vdash Q) = \mathbf{R}(P \vdash R2s(Q))
  by (rel-auto)
lemma RH-design-export-R2c: \mathbf{R}(P \vdash Q) = \mathbf{R}(P \vdash R2c(Q))
  by (rel-auto)
lemma RHS-design-export-R1: \mathbf{R}_s(P \vdash Q) = \mathbf{R}_s(P \vdash R1(Q))
 by (rel-auto)
lemma RHS-design-export-R2s: \mathbf{R}_s(P \vdash Q) = \mathbf{R}_s(P \vdash R2s(Q))
 by (rel-auto)
lemma RHS-design-export-R2c: \mathbf{R}_s(P \vdash Q) = \mathbf{R}_s(P \vdash R2c(Q))
 by (rel-auto)
lemma RHS-design-export-R2: \mathbf{R}_s(P \vdash Q) = \mathbf{R}_s(P \vdash R2(Q))
  by (rel-auto)
lemma R1-design-R1-pre:
 \mathbf{R}_s(R1(P) \vdash Q) = \mathbf{R}_s(P \vdash Q)
 by (rel-auto)
\mathbf{lemma} \ RHS\text{-}design\text{-}ok\text{-}wait: } \mathbf{R}_s(P[[true,false/\$ok,\$wait]] \vdash Q[[true,false/\$ok,\$wait]]) = \mathbf{R}_s(P \vdash Q)
  by (rel-auto)
lemma RHS-design-neg-R1-pre:
 \mathbf{R}_s ((\neg R1 \ P) \vdash R) = \mathbf{R}_s ((\neg P) \vdash R)
 by (rel-auto)
lemma RHS-design-conj-neg-R1-pre:
 \mathbf{R}_s (((\neg R1 \ P) \land Q) \vdash R) = \mathbf{R}_s (((\neg P) \land Q) \vdash R)
 by (rel-auto)
lemma RHS-pre-lemma: (\mathbf{R}_s \ P)^f_f = R1(R2c(P^f_f))
 by (rel-auto)
lemma RHS-design-R2c-pre:
 \mathbf{R}_s(R2c(P) \vdash Q) = \mathbf{R}_s(P \vdash Q)
 by (rel-auto)
```

3.4 Refinement introduction laws

lemma R1-design-refine: assumes

```
P_1 is R1 P_2 is R1 Q_1 is R1 Q_2 is R1
                           \$ok \sharp P_1 \$ok ' \sharp P_1 \$ok \sharp P_2 \$ok ' \sharp P_2
                           \$ok \ \sharp \ Q_1 \ \$ok \, \H \sharp \ Q_1 \ \$ok \ \sharp \ Q_2 \ \$ok \, \H \sharp \ Q_2
              shows R1(P_1 \vdash P_2) \sqsubseteq R1(Q_1 \vdash Q_2) \longleftrightarrow P_1 \Rightarrow Q_1 \land P_1 \land Q_2 \Rightarrow P_2 \land P_1 \Leftrightarrow Q_1 \land P_1 \land Q_2 \Rightarrow P_2 \land P_
proof -
              have R1((\exists \$ok;\$ok' \cdot P_1) \vdash (\exists \$ok;\$ok' \cdot P_2)) \sqsubseteq R1((\exists \$ok;\$ok' \cdot Q_1) \vdash (\exists \$ok;\$ok' \cdot Q_2))
                                                \longleftrightarrow `R1(\exists \$ok;\$ok` \cdot P_1) \Rightarrow R1(\exists \$ok;\$ok` \cdot Q_1)` \land `R1(\exists \$ok;\$ok` \cdot P_1) \land R1(\exists \$ok;\$ok`
 \cdot Q_2) \Rightarrow R1(\exists \$ok;\$ok' \cdot P_2)
                           by (rel-auto, meson+)
              thus ?thesis
                           by (simp-all add: ex-unrest ex-plus Healthy-if assms)
lemma R1-design-refine-RR:
              assumes P_1 is RR P_2 is RR Q_1 is RR Q_2 is RR
              shows R1(P_1 \vdash P_2) \sqsubseteq R1(Q_1 \vdash Q_2) \longleftrightarrow P_1 \Rightarrow Q_1 \land P_1 \land Q_2 \Rightarrow P_2 \land P_1 \Leftrightarrow Q_1 \land P_1 \land Q_2 \Rightarrow P_2 \land P_
            by (simp add: R1-design-refine assms unrest closure)
lemma RHS-design-refine:
               assumes
                            P_1 is R1 P_2 is R1 Q_1 is R1 Q_2 is R1
                           P_1 is R2c P_2 is R2c Q_1 is R2c Q_2 is R2c
                           \$ok \ \sharp \ P_1 \ \$ok \ \sharp \ P_1 \ \$ok \ \sharp \ P_2 \ \$ok \ \sharp \ P_2
                           \$ok \sharp Q_1 \$ok \acute{\sharp} Q_1 \$ok \sharp Q_2 \$ok \acute{\sharp} Q_2
                           \$wait \sharp P_1 \$wait \sharp P_2 \$wait \sharp Q_1 \$wait \sharp Q_2
            shows \mathbf{R}_s(P_1 \vdash P_2) \sqsubseteq \mathbf{R}_s(Q_1 \vdash Q_2) \longleftrightarrow P_1 \Rightarrow Q_1 \land P_1 \land Q_2 \Rightarrow P_2 \land P_1 \Leftrightarrow Q_1 \land P_2 \land P_2 \Leftrightarrow P_2 \land P_2 \land P_2 \Leftrightarrow P_2 \land P_2 \land P_2 \Leftrightarrow P_2 \land 
proof -
              have \mathbf{R}_s(P_1 \vdash P_2) \sqsubseteq \mathbf{R}_s(Q_1 \vdash Q_2) \longleftrightarrow R1(R3h(R2c(P_1 \vdash P_2))) \sqsubseteq R1(R3h(R2c(Q_1 \vdash Q_2)))
                           by (simp\ add:\ R2c-R3h-commute\ RHS-def)
              also have ... \longleftrightarrow R1(R3h(P_1 \vdash P_2)) \sqsubseteq R1(R3h(Q_1 \vdash Q_2))
                           by (simp add: Healthy-if R2c-design assms)
              also have ... \longleftrightarrow R1(R3h(P_1 \vdash P_2))[false/\$wait] \sqsubseteq R1(R3h(Q_1 \vdash Q_2))[false/\$wait]
                           by (rel-auto, metis+)
              also have ... \longleftrightarrow R1(P_1 \vdash P_2)[false/\$wait] \sqsubseteq R1(Q_1 \vdash Q_2)[false/\$wait]
                           by (rel-auto)
               also have ... \longleftrightarrow R1(P_1 \vdash P_2) \sqsubseteq R1(Q_1 \vdash Q_2)
                           by (simp add: usubst assms closure unrest)
              also have ... \longleftrightarrow 'P_1 \Rightarrow Q_1' \land 'P_1 \land Q_2 \Rightarrow P_2'
                           by (simp add: R1-design-refine assms)
              finally show ?thesis.
qed
lemma srdes-refine-intro:
              assumes P_1 \Rightarrow P_2 \cdot P_1 \wedge Q_2 \Rightarrow Q_1 \cdot Q_
              shows \mathbf{R}_s(P_1 \vdash Q_1) \sqsubseteq \mathbf{R}_s(P_2 \vdash Q_2)
            by (simp add: RHS-mono assms design-refine-intro)
                                                         Distribution laws
lemma RHS-design-choice: \mathbf{R}_s(P_1 \vdash Q_1) \sqcap \mathbf{R}_s(P_2 \vdash Q_2) = \mathbf{R}_s((P_1 \land P_2) \vdash (Q_1 \lor Q_2))
            by (metis RHS-inf design-choice)
lemma RHS-design-sup: \mathbf{R}_s(P_1 \vdash Q_1) \sqcup \mathbf{R}_s(P_2 \vdash Q_2) = \mathbf{R}_s((P_1 \lor P_2) \vdash ((P_1 \Rightarrow Q_1) \land (P_2 \Rightarrow Q_2)))
              by (metis RHS-sup design-inf)
lemma RHS-design-USUP:
```

```
assumes A \neq \{\}
by (subst RHS-INF[OF assms, THEN sym], simp add: design-UINF-mem assms)
```

end

Reactive Design Triples 4

```
theory utp-rdes-triples
 imports \ utp-rdes-designs
begin
```

```
Diamond notation
4.1
definition wait'-cond ::
  ('t::trace,'\alpha,'\beta) rel-rp \Rightarrow ('t,'\alpha,'\beta) rel-rp \Rightarrow ('t,'\alpha,'\beta) rel-rp (infixr \diamond 65) where
[upred-defs]: P \diamond Q = (P \triangleleft \$wait' \triangleright Q)
lemma wait'-cond-unrest [unrest]:
  \llbracket out\text{-}var \ wait \bowtie x; x \ \sharp \ P; x \ \sharp \ Q \ \rrbracket \Longrightarrow x \ \sharp \ (P \diamond Q)
  by (simp add: wait'-cond-def unrest)
lemma wait'-cond-subst [usubst]:
  \$wait' \sharp \sigma \Longrightarrow \sigma \dagger (P \diamond Q) = (\sigma \dagger P) \diamond (\sigma \dagger Q)
  by (simp add: wait'-cond-def usubst unrest)
lemma wait'-cond-left-false: false \diamond P = (\neg \$wait' \land P)
  by (rel-auto)
\mathbf{lemma} \ wait'\text{-}cond\text{-}seq\text{: } ((P \diamond Q) \ ;; \ R) = ((P \ ;; \ (\$wait \land R)) \lor (Q \ ;; \ (\neg \$wait \land R)))
  by (simp add: wait'-cond-def cond-def segr-or-distl, rel-blast)
lemma wait'-cond-true: (P \diamond Q \land \$wait') = (P \land \$wait')
  by (rel-auto)
lemma wait'-cond-false: (P <math>\diamond Q \land (\neg\$wait')) = (Q \land (\neg\$wait'))
  by (rel-auto)
lemma wait'-cond-idem: P \diamond P = P
  by (rel-auto)
lemma wait'-cond-conj-exchange:
  ((P \diamond Q) \land (R \diamond S)) = (P \land R) \diamond (Q \land S)
  by (rel-auto)
lemma subst-wait'-cond-true [usubst]: (P \diamond Q)[true/$wait'] = P[true/$wait']
  by (rel-auto)
lemma subst-wait'-cond-false [usubst]: (P \diamond Q) [false/$wait'] = Q [false/$wait']
  by (rel-auto)
lemma subst-wait'-left-subst: (P[true/\$wait'] \diamond Q) = (P \diamond Q)
  by (rel-auto)
lemma subst-wait'-right-subst: (P \Leftrightarrow Q[false/\$wait']) = (P \Leftrightarrow Q)
```

```
by (rel-auto)
lemma wait'-cond-split: P[[true/\$wait']] \diamond P[[false/\$wait']] = P
  by (simp add: wait'-cond-def cond-var-split)
lemma wait-cond'-assoc [simp]: P \diamond Q \diamond R = P \diamond R
 by (rel-auto)
lemma wait-cond'-shadow: (P \diamond Q) \diamond R = P \diamond Q \diamond R
  by (rel-auto)
lemma wait-cond'-conj [simp]: P \diamond (Q \wedge (R \diamond S)) = P \diamond (Q \wedge S)
 by (rel-auto)
lemma R1-wait'-cond: R1(P \diamond Q) = R1(P) \diamond R1(Q)
 by (rel-auto)
lemma R2s-wait'-cond: R2s(P \diamond Q) = R2s(P) \diamond R2s(Q)
  by (simp add: wait'-cond-def R2s-def R2s-def usubst)
lemma R2-wait'-cond: R2(P \diamond Q) = R2(P) \diamond R2(Q)
 by (simp add: R2-def R2s-wait'-cond R1-wait'-cond)
lemma wait'-cond-R1-closed [closure]:
  \llbracket P \text{ is } R1; Q \text{ is } R1 \rrbracket \Longrightarrow P \diamond Q \text{ is } R1
 by (simp add: Healthy-def R1-wait'-cond)
lemma wait'-cond-R2c-closed [closure]: [P \text{ is } R2c; Q \text{ is } R2c] \implies P \diamond Q \text{ is } R2c
  by (simp add: R2c-condr wait'-cond-def Healthy-def, rel-auto)
4.2
        Export laws
lemma RH-design-peri-R1: \mathbf{R}(P \vdash R1(Q) \diamond R) = \mathbf{R}(P \vdash Q \diamond R)
 by (metis (no-types, lifting) R1-idem R1-wait'-cond RH-design-export-R1)
lemma RH-design-post-R1: \mathbf{R}(P \vdash Q \diamond R1(R)) = \mathbf{R}(P \vdash Q \diamond R)
  by (metis R1-wait'-cond RH-design-export-R1 RH-design-peri-R1)
lemma RH-design-peri-R2s: \mathbf{R}(P \vdash R2s(Q) \diamond R) = \mathbf{R}(P \vdash Q \diamond R)
 by (metis (no-types, lifting) R2s-idem R2s-wait'-cond RH-design-export-R2s)
lemma RH-design-post-R2s: \mathbf{R}(P \vdash Q \diamond R2s(R)) = \mathbf{R}(P \vdash Q \diamond R)
  by (metis (no-types, lifting) R2s-idem R2s-wait'-cond RH-design-export-R2s)
lemma RH-design-peri-R2c: \mathbf{R}(P \vdash R2c(Q) \diamond R) = \mathbf{R}(P \vdash Q \diamond R)
  by (metis R1-R2s-R2c RH-design-peri-R1 RH-design-peri-R2s)
lemma RHS-design-peri-R1: \mathbf{R}_s(P \vdash R1(Q) \diamond R) = \mathbf{R}_s(P \vdash Q \diamond R)
 by (metis (no-types, lifting) R1-idem R1-wait'-cond RHS-design-export-R1)
lemma RHS-design-post-R1: \mathbf{R}_s(P \vdash Q \diamond R1(R)) = \mathbf{R}_s(P \vdash Q \diamond R)
  by (metis R1-wait'-cond RHS-design-export-R1 RHS-design-peri-R1)
lemma RHS-design-peri-R2s: \mathbf{R}_s(P \vdash R2s(Q) \diamond R) = \mathbf{R}_s(P \vdash Q \diamond R)
  by (metis (no-types, lifting) R2s-idem R2s-wait'-cond RHS-design-export-R2s)
```

```
lemma RHS-design-post-R2s: \mathbf{R}_s(P \vdash Q \diamond R2s(R)) = \mathbf{R}_s(P \vdash Q \diamond R)
 by (metis R2s-wait'-cond RHS-design-export-R2s RHS-design-peri-R2s)
lemma RHS-design-peri-R2c: \mathbf{R}_s(P \vdash R2c(Q) \diamond R) = \mathbf{R}_s(P \vdash Q \diamond R)
 by (metis R1-R2s-R2c RHS-design-peri-R1 RHS-design-peri-R2s)
lemma RH-design-lemma1:
  RH(P \vdash (R1(R2c(Q)) \lor R) \diamond S) = RH(P \vdash (Q \lor R) \diamond S)
 by (metis (no-types, lifting) R1-R2c-is-R2 R1-R2s-R2c R2-R1-form R2-disj R2c-idem RH-design-peri-R1
RH-design-peri-R2s)
lemma RHS-design-lemma1:
  RHS(P \vdash (R1(R2c(Q)) \lor R) \diamond S) = RHS(P \vdash (Q \lor R) \diamond S)
 by (metis (no-types, lifting) R1-R2c-is-R2 R1-R2s-R2c R2-R1-form R2-disj R2c-idem RHS-design-peri-R1
RHS-design-peri-R2s)
       Pre-, peri-, and postconditions
4.3
4.3.1
         Definitions
abbreviation pre_s \equiv [\$ok \mapsto_s true, \$ok' \mapsto_s false, \$wait \mapsto_s false]
abbreviation cmt_s \equiv [\$ok \mapsto_s true, \$ok' \mapsto_s true, \$wait \mapsto_s false]
abbreviation peri_s \equiv [\$ok \mapsto_s true, \$ok' \mapsto_s true, \$wait \mapsto_s false, \$wait' \mapsto_s true]
abbreviation post_s \equiv [\$ok \mapsto_s true, \$ok' \mapsto_s true, \$wait \mapsto_s false, \$wait' \mapsto_s false]
abbreviation npre_R(P) \equiv pre_s \dagger P
definition [upred-defs]: pre_R(P) = (\neg_r \ npre_R(P))
definition [upred-defs]: cmt_R(P) = R1(cmt_s \dagger P)
definition [upred-defs]: peri_R(P) = R1(peri_s \dagger P)
definition [upred-defs]: post_R(P) = R1(post_s \dagger P)
4.3.2
        Unrestriction laws
lemma ok-pre-unrest [unrest]: \$ ok \sharp pre<sub>R</sub> P
 by (simp add: pre_R-def unrest usubst)
lemma ok-peri-unrest [unrest]: \$ ok \sharp peri_R P
 by (simp add: peri_R-def unrest usubst)
lemma ok-post-unrest [unrest]: \$ok \sharp post_R P
 by (simp\ add:\ post_R-def\ unrest\ usubst)
lemma ok-cmt-unrest [unrest]: \$ ok \sharp cmt<sub>R</sub> P
 by (simp add: cmt_R-def unrest usubst)
lemma ok'-pre-unrest [unrest]: $ok' \mu pre_R P
 by (simp add: pre_R-def unrest usubst)
lemma ok'-peri-unrest [unrest]: \$ok' \sharp peri_R P
 by (simp add: peri_R-def unrest usubst)
lemma ok'-post-unrest [unrest]: \$ok' \sharp post_R P
 by (simp add: post_R-def unrest usubst)
```

lemma ok'-cmt-unrest [unrest]: $\$ok' \sharp cmt_R$ P

- by (simp add: cmt_R -def unrest usubst)
- **lemma** wait-pre-unrest [unrest]: $wait \sharp pre_R P$ **by** (simp add: pre_R -def unrest usubst)
- **lemma** wait-peri-unrest [unrest]: $wait \sharp peri_R P$ **by** (simp add: peri_R-def unrest usubst)
- **lemma** wait-post-unrest [unrest]: \$wait \sharp post_R P **by** (simp add: post_R-def unrest usubst)
- **lemma** wait-cmt-unrest [unrest]: $wait \sharp cmt_R P$ **by** (simp add: cmt_R -def unrest usubst)
- lemma wait'-peri-unrest [unrest]: \$wait' \mu peri_R P by (simp add: peri_R-def unrest usubst)
- **lemma** wait'-post-unrest [unrest]: $$wait' \mu post_R P$ **by** ($simp\ add$: $post_R$ - $def\ unrest\ usubst$)

4.3.3 Substitution laws

- **lemma** pre_s - $design: pre_s \dagger (P \vdash Q) = (\neg pre_s \dagger P)$ **by** $(simp\ add:\ design-def\ pre_R$ - $def\ usubst)$
- **lemma** $peri_s$ -design: $peri_s \dagger (P \vdash Q \diamond R) = peri_s \dagger (P \Rightarrow Q)$ **by** $(simp\ add:\ design$ - $def\ usubst\ wait'$ -cond-def)
- **lemma** $post_s$ -design: $post_s \dagger (P \vdash Q \diamond R) = post_s \dagger (P \Rightarrow R)$ **by** $(simp\ add:\ design$ - $def\ usubst\ wait'$ -cond-def)
- **lemma** cmt_s -design: $cmt_s \dagger (P \vdash Q) = cmt_s \dagger (P \Rightarrow Q)$ **by** (simp add: design-def usubst wait'-cond-def)
- **lemma** pre_s -R1 [usubst]: $pre_s \dagger R1(P) = R1(pre_s \dagger P)$ **by** ($simp\ add$: R1- $def\ usubst$)
- lemma pre_s -R2c [usubst]: $pre_s \dagger R2c(P) = R2c(pre_s \dagger P)$ by ($simp\ add$: R2c- $def\ R2s$ - $def\ usubst$)
- lemma $peri_s$ -R1 [usubst]: $peri_s \dagger R1(P) = R1(peri_s \dagger P)$ by $(simp \ add: R1\text{-}def \ usubst)$
- lemma $peri_s$ -R2c [usubst]: $peri_s \dagger R2c(P) = R2c(peri_s \dagger P)$ by $(simp\ add:\ R2c\text{-}def\ R2s\text{-}def\ usubst)$
- lemma $post_s$ -R1 [usubst]: $post_s \dagger R1(P) = R1(post_s \dagger P)$ by ($simp\ add$: R1- $def\ usubst$)
- lemma $post_s$ -R2c [usubst]: $post_s \dagger R2c(P) = R2c(post_s \dagger P)$ by ($simp\ add$: R2c- $def\ R2s$ - $def\ usubst$)
- **lemma** cmt_s -R1 [usubst]: cmt_s † $R1(P) = R1(cmt_s$ † P) **by** ($simp\ add$: R1- $def\ usubst$)
- lemma cmt_s -R2c [usubst]: $cmt_s \dagger R2c(P) = R2c(cmt_s \dagger P)$

```
by (simp add: R2c-def R2s-def usubst)
lemma pre-wait-false:
 pre_R(P[false/\$wait]) = pre_R(P)
 by (rel-auto)
lemma cmt-wait-false:
  cmt_R(P[false/\$wait]) = cmt_R(P)
 by (rel-auto)
lemma rea-pre-RHS-design: pre_R(\mathbf{R}_s(P \vdash Q)) = R1(R2c(pre_s \dagger P))
 by (simp add: RHS-def usubst R3h-def pre<sub>R</sub>-def pre<sub>s</sub>-design R1-negate-R1 R2c-not rea-not-def)
lemma rea-cmt-RHS-design: cmt_R(\mathbf{R}_s(P \vdash Q)) = R1(R2c(cmt_s \dagger (P \Rightarrow Q)))
 by (simp add: RHS-def usubst R3h-def cmt_R-def cmt_s-design R1-idem)
lemma rea-peri-RHS-design: peri_R(\mathbf{R}_s(P \vdash Q \diamond R)) = R1(R2c(peri_s \dagger (P \Rightarrow_r Q)))
 by (simp add:RHS-def usubst peri<sub>R</sub>-def R3h-def peri<sub>s</sub>-design, rel-auto)
lemma rea-post-RHS-design: post_R(\mathbf{R}_s(P \vdash Q \diamond R)) = R1(R2c(post_s \dagger (P \Rightarrow_r R)))
 by (simp\ add:RHS-def\ usubst\ post_R-def\ R3h-def\ post_s-design,\ rel-auto)
lemma peri\text{-}cmt\text{-}def: peri_R(P) = (cmt_R(P))[true/\$wait']
 by (rel-auto)
lemma post-cmt-def: post_R(P) = (cmt_R(P)) \llbracket false / \$wait' \rrbracket
 by (rel-auto)
lemma rdes-export-cmt: \mathbf{R}_s(P \vdash cmt_s \dagger Q) = \mathbf{R}_s(P \vdash Q)
 by (rel-auto)
lemma rdes-export-pre: \mathbf{R}_s((P[true,false/\$ok,\$wait]) \vdash Q) = \mathbf{R}_s(P \vdash Q)
 by (rel-auto)
4.3.4 Healthiness laws
lemma wait'-unrest-pre-SRD [unrest]:
 \$wait' \sharp pre_R(P) \Longrightarrow \$wait' \sharp pre_R (SRD P)
 apply (rel-auto)
 using least-zero apply blast+
done
lemma R1-R2s-cmt-SRD:
 assumes P is SRD
 shows R1(R2s(cmt_R(P))) = cmt_R(P)
  by (metis (no-types, lifting) R1-R2c-commute R1-R2s-R2c R1-idem R2c-idem SRD-reactive-design
assms rea-cmt-RHS-design)
lemma R1-R2s-peri-SRD:
 assumes P is SRD
 shows R1(R2s(peri_R(P))) = peri_R(P)
 by (metis (no-types, hide-lams) Healthy-def R1-R2s-R2c R2-def R2-idem RHS-def SRD-RH-design-form
assms R1-idem peri<sub>R</sub>-def peri<sub>s</sub>-R1 peri<sub>s</sub>-R2c)
lemma R1-peri-SRD:
 assumes P is SRD
```

```
shows R1(peri_R(P)) = peri_R(P)
proof -
 have R1(peri_R(P)) = R1(R1(R2s(peri_R(P))))
   by (simp add: R1-R2s-peri-SRD assms)
 also have ... = peri_R(P)
   by (simp add: R1-idem, simp add: R1-R2s-peri-SRD assms)
 finally show ?thesis.
qed
lemma periR-SRD-R1 [closure]: P is SRD \Longrightarrow peri_R(P) is R1
 by (simp add: Healthy-def' R1-peri-SRD)
lemma R1-R2c-peri-RHS:
 assumes P is SRD
 shows R1(R2c(peri_R(P))) = peri_R(P)
 by (metis R1-R2s-R2c R1-R2s-peri-SRD assms)
lemma R1-R2s-post-SRD:
 assumes P is SRD
 shows R1(R2s(post_R(P))) = post_R(P)
 by (metis (no-types, hide-lams) Healthy-def R1-R2s-R2c R1-idem R2-def R2-idem RHS-def SRD-RH-design-form
assms\ post_R-def post_s-R1 post_s-R2c)
lemma R2c-peri-SRD:
 assumes P is SRD
 shows R2c(peri_R(P)) = peri_R(P)
 by (metis R1-R2c-commute R1-R2c-peri-RHS R1-peri-SRD assms)
lemma R1-post-SRD:
 assumes P is SRD
 shows R1(post_R(P)) = post_R(P)
proof -
 have R1(post_R(P)) = R1(R1(R2s(post_R(P))))
   by (simp add: R1-R2s-post-SRD assms)
 also have ... = post_R(P)
   by (simp add: R1-idem, simp add: R1-R2s-post-SRD assms)
 finally show ?thesis.
qed
lemma R2c-post-SRD:
 assumes P is SRD
 shows R2c(post_R(P)) = post_R(P)
 by (metis R1-R2c-commute R1-R2s-R2c R1-R2s-post-SRD R1-post-SRD assms)
lemma postR-SRD-R1 [closure]: P is SRD \Longrightarrow post_R(P) is R1
 by (simp add: Healthy-def' R1-post-SRD)
lemma R1-R2c-post-RHS:
 assumes P is SRD
 shows R1(R2c(post_R(P))) = post_R(P)
 by (metis R1-R2s-R2c R1-R2s-post-SRD assms)
lemma R2-cmt-conj-wait':
 P \text{ is } SRD \Longrightarrow R2(cmt_R \ P \land \neg \$wait') = (cmt_R \ P \land \neg \$wait')
 by (simp add: R2-def R2s-conj R2s-not R2s-wait' R1-extend-conj R1-R2s-cmt-SRD)
```

```
lemma R2c-preR:
 P \text{ is } SRD \Longrightarrow R2c(pre_R(P)) = pre_R(P)
 by (metis (no-types, lifting) R1-R2c-commute R2c-idem SRD-reactive-design rea-pre-RHS-design)
lemma preR-R2c-closed [closure]: P is SRD \Longrightarrow pre_R(P) is R2c
 by (simp add: Healthy-def' R2c-preR)
lemma R2c-periR:
 P \text{ is } SRD \Longrightarrow R2c(peri_R(P)) = peri_R(P)
 by (metis (no-types, lifting) R1-R2c-commute R1-R2s-R2c R1-R2s-peri-SRD R2c-idem)
lemma periR-R2c-closed [closure]: P is SRD \implies peri_R(P) is R2c
 by (simp add: Healthy-def R2c-peri-SRD)
lemma R2c-postR:
  P \text{ is } SRD \Longrightarrow R2c(post_R(P)) = post_R(P)
 by (metis (no-types, hide-lams) R1-R2c-commute R1-R2c-is-R2 R1-R2s-post-SRD R2-def R2s-idem)
lemma postR-R2c-closed [closure]: P is SRD \Longrightarrow post_R(P) is R2c
 by (simp add: Healthy-def R2c-post-SRD)
lemma periR-RR [closure]: P is SRD \Longrightarrow peri_R(P) is RR
 by (rule RR-intro, simp-all add: closure unrest)
lemma postR-RR [closure]: P is SRD \Longrightarrow post_R(P) is RR
 by (rule RR-intro, simp-all add: closure unrest)
lemma wpR-trace-ident-pre [wp]:
  (\$tr' =_u \$tr \land [II]_R) \ wp_r \ pre_R \ P = pre_R \ P
 by (rel-auto)
lemma R1-preR [closure]:
 pre_R(P) is R1
 by (rel-auto)
lemma trace-ident-left-periR:
  (\$tr' =_u \$tr \land \lceil II \rceil_R) ;; peri_R(P) = peri_R(P)
 by (rel-auto)
lemma trace-ident-left-postR:
 (\$tr' =_u \$tr \land \lceil II \rceil_R) ;; post_R(P) = post_R(P)
 by (rel-auto)
lemma trace-ident-right-postR:
 post_R(P) ;; (\$tr' =_u \$tr \land \lceil II \rceil_R) = post_R(P)
 by (rel-auto)
lemma preR-R2-closed [closure]: P is SRD \Longrightarrow pre_R(P) is R2
 by (simp add: R2-comp-def Healthy-comp closure)
lemma periR-R2-closed [closure]: P is SRD \Longrightarrow peri_R(P) is R2
 by (simp add: Healthy-def' R1-R2c-peri-RHS R2-R2c-def)
```

lemma postR-R2-closed [closure]: P is $SRD \Longrightarrow post_R(P)$ is R2

4.3.5 Calculation laws

```
lemma wait'-cond-peri-post-cmt [rdes]:
 cmt_R P = peri_R P \diamond post_R P
 by (rel-auto)
lemma preR-rdes [rdes]:
 assumes P is RR
 shows pre_R(\mathbf{R}_s(P \vdash Q \diamond R)) = P
 by (simp add: rea-pre-RHS-design unrest usubst assms Healthy-if RR-implies-R2c RR-implies-R1)
lemma periR-rdes [rdes]:
 assumes P is RR Q is RR
 shows peri_R(\mathbf{R}_s(P \vdash Q \diamond R)) = (P \Rightarrow_r Q)
 by (simp add: rea-peri-RHS-design unrest usubst assms Healthy-if RR-implies-R2c closure)
lemma postR-rdes [rdes]:
 assumes P is RR R is RR
 shows post_R(\mathbf{R}_s(P \vdash Q \diamond R)) = (P \Rightarrow_r R)
 by (simp add: rea-post-RHS-design unrest usubst assms Healthy-if RR-implies-R2c closure)
lemma preR-Chaos [rdes]: pre_R(Chaos) = false
 by (simp add: Chaos-def, rel-simp)
lemma periR-Chaos [rdes]: peri_R(Chaos) = true_r
 by (simp add: Chaos-def, rel-simp)
lemma postR-Chaos [rdes]: post_R(Chaos) = true_r
 by (simp add: Chaos-def, rel-simp)
lemma preR-Miracle [rdes]: pre_R(Miracle) = true_r
 by (simp add: Miracle-def, rel-auto)
lemma periR-Miracle [rdes]: peri_R(Miracle) = false
 by (simp add: Miracle-def, rel-auto)
lemma postR-Miracle [rdes]: post_R(Miracle) = false
 by (simp add: Miracle-def, rel-auto)
lemma preR-srdes-skip [rdes]: pre_R(II_R) = true_r
 by (rel-auto)
lemma periR-srdes-skip [rdes]: peri_R(II_R) = false
 by (rel-auto)
lemma postR-srdes-skip [rdes]: post_R(II_R) = (\$tr' =_u \$tr \land [II]_R)
 by (rel-auto)
lemma preR-INF [rdes]: A \neq \{\} \Longrightarrow pre_R(\bigcap A) = (\bigwedge P \in A \cdot pre_R(P))
 by (rel-auto)
lemma periR-INF [rdes]: peri_R(\bigcap A) = (\bigvee P \in A \cdot peri_R(P))
 by (rel-auto)
```

```
lemma postR-INF [rdes]: post_R(\bigcap A) = (\bigvee P \in A \cdot post_R(P))
 by (rel-auto)
lemma preR-UINF [rdes]: pre_R(\bigcap i \cdot P(i)) = (\bigcup i \cdot pre_R(P(i)))
 by (rel-auto)
lemma periR-UINF [rdes]: peri_R(\bigcap i \cdot P(i)) = (\bigcap i \cdot peri_R(P(i)))
 by (rel-auto)
lemma postR-UINF [rdes]: post_R(\bigcap i \cdot P(i)) = (\bigcap i \cdot post_R(P(i)))
 by (rel-auto)
lemma preR-UINF-member [rdes]: A \neq \{\} \Longrightarrow pre_R(\bigcap i \in A \cdot P(i)) = (\coprod i \in A \cdot pre_R(P(i)))
  by (rel-auto)
lemma preR-UINF-member-2 [rdes]: A \neq \{\} \Longrightarrow pre_R( (i,j) \in A \cdot P \ i \ j) = ( (i,j) \in A \cdot pre_R(P \ i \ j) )
  by (rel-auto)
lemma preR-UINF-member-3 [rdes]: A \neq \{\} \Longrightarrow pre_R(\bigcap (i,j,k) \in A \cdot P \ i \ j \ k) = (\bigcup (i,j,k) \in A \cdot pre_R(P \cup i,j,k))
i j k)
 by (rel-auto)
lemma periR-UINF-member [rdes]: peri_R(\bigcap i \in A \cdot P(i)) = (\bigcap i \in A \cdot peri_R(P(i)))
 by (rel-auto)
lemma periR-UINF-member-2 [rdes]: peri_R(\bigcap (i,j) \in A \cdot P \ i \ j) = (\bigcap (i,j) \in A \cdot peri_R(P \ i \ j))
 by (rel-auto)
lemma periR-UINF-member-3 [rdes]: <math>peri_R(\bigcap (i,j,k) \in A \cdot P \ i \ j \ k) = (\bigcap (i,j,k) \in A \cdot peri_R(P \ i \ j \ k))
 by (rel-auto)
lemma postR-UINF-member [rdes]: post_R(\bigcap i \in A \cdot P(i)) = (\bigcap i \in A \cdot post_R(P(i)))
 by (rel-auto)
lemma postR-UINF-member-2 [rdes]: post_R(\bigcap (i,j) \in A \cdot P \ i \ j) = (\bigcap (i,j) \in A \cdot post_R(P \ i \ j))
 by (rel-auto)
lemma postR-UINF-member-3 [rdes]: post_R(\bigcap (i,j,k) \in A \cdot P \ i \ j \ k) = (\bigcap (i,j,k) \in A \cdot post_R(P \ i \ j \ k))
 by (rel-auto)
lemma preR-inf [rdes]: pre_R(P \cap Q) = (pre_R(P) \land pre_R(Q))
  by (rel-auto)
lemma periR-inf [rdes]: peri_R(P \sqcap Q) = (peri_R(P) \lor peri_R(Q))
 by (rel-auto)
lemma postR-inf [rdes]: post_R(P \sqcap Q) = (post_R(P) \lor post_R(Q))
 by (rel-auto)
lemma preR-SUP [rdes]: pre_R(   A) = (  P \in A \cdot pre_R(P) )
 by (rel-auto)
lemma periR-SUP [rdes]: A \neq \{\} \Longrightarrow peri_R(\bigsqcup A) = (\bigwedge P \in A \cdot peri_R(P))
 by (rel-auto)
```

```
lemma postR\text{-}SUP [rdes]: A \neq \{\} \Longrightarrow post_R(\bigsqcup A) = (\bigwedge P \in A \cdot post_R(P)) by (rel\text{-}auto)
```

4.4 Formation laws

```
lemma srdes-skip-tri-design [rdes-def]: II_R = \mathbf{R}_s(true_r \vdash false \diamond II_r)
     by (simp add: srdes-skip-def, rel-auto)
lemma Chaos-tri-def [rdes-def]: Chaos = \mathbf{R}_s(false \vdash true_r \diamond true_r)
     by (simp add: Chaos-def design-false-pre)
lemma Miracle-tri-def [rdes-def]: Miracle = \mathbf{R}_s(true_r \vdash false \diamond false)
     by (simp add: Miracle-def R1-design-R1-pre wait'-cond-idem)
lemma RHS-tri-design-form:
     assumes P_1 is RR P_2 is RR P_3 is RR
     shows \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) = (II_R \triangleleft \$wait \triangleright ((\$ok \land P_1) \Rightarrow_r (\$ok' \land (P_2 \diamond P_3))))
     have \mathbf{R}_s(RR(P_1) \vdash RR(P_2) \diamond RR(P_3)) = (II_R \triangleleft \$wait \triangleright ((\$ok \land RR(P_1)) \Rightarrow_r (\$ok' \land (RR(P_2) \diamond RR(P_3)))) = (II_R \triangleleft \$wait \triangleright ((\$ok \land RR(P_1)) \Rightarrow_r (\$ok' \land RR(P_2))) \Rightarrow_r (\$ok' \land RR(P_2)) \Rightarrow_r (\$ok
RR(P_3)))))
          apply (rel-auto) using minus-zero-eq by blast
     thus ?thesis
          by (simp add: Healthy-if assms)
qed
lemma RHS-design-pre-post-form:
     \mathbf{R}_s((\neg P^f_f) \vdash P^t_f) = \mathbf{R}_s(pre_R(P) \vdash cmt_R(P))
     have \mathbf{R}_{s}((\neg P^{f}_{f}) \vdash P^{t}_{f}) = \mathbf{R}_{s}((\neg P^{f}_{f})[[true/\$ok]] \vdash P^{t}_{f}[[true/\$ok]])
          by (simp add: design-subst-ok)
     also have ... = \mathbf{R}_s(pre_R(P) \vdash cmt_R(P))
          by (simp add: pre_R-def cmt_R-def usubst, rel-auto)
     finally show ?thesis.
qed
{f lemma} SRD-as-reactive-design:
      SRD(P) = \mathbf{R}_s(pre_R(P) \vdash cmt_R(P))
     by (simp add: RHS-design-pre-post-form SRD-RH-design-form)
lemma SRD-reactive-design-alt:
     assumes P is SRD
     shows \mathbf{R}_s(pre_R(P) \vdash cmt_R(P)) = P
     have \mathbf{R}_s(pre_R(P) \vdash cmt_R(P)) = \mathbf{R}_s((\neg P_f) \vdash P_f)
          by (simp add: RHS-design-pre-post-form)
     thus ?thesis
          by (simp add: SRD-reactive-design assms)
qed
{f lemma} SRD-reactive-tri-design-lemma:
     SRD(P) = \mathbf{R}_s((\neg P^f_f) \vdash P^t_f \llbracket true / \$wait' \rrbracket \diamond P^t_f \llbracket false / \$wait' \rrbracket)
     by (simp add: SRD-RH-design-form wait'-cond-split)
lemma SRD-as-reactive-tri-design:
      SRD(P) = \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P))
proof -
```

```
have SRD(P) = \mathbf{R}_s((\neg P^f_f) \vdash P^t_f[[true/\$wait']] \diamond P^t_f[[false/\$wait']])
   by (simp add: SRD-RH-design-form wait'-cond-split)
 also have ... = \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P))
   apply (simp add: usubst)
   apply (subst design-subst-ok-ok'[THEN sym])
   apply (simp add: pre_R-def peri_R-def post_R-def usubst unrest)
   apply (rel-auto)
 done
 finally show ?thesis.
qed
\mathbf{lemma}\ SRD-reactive-tri-design:
 assumes P is SRD
 shows \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)) = P
 by (metis Healthy-if SRD-as-reactive-tri-design assms)
lemma SRD-elim [RD-elim]: P is SRD; Q(\mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P))) \implies Q(P)
 by (simp add: SRD-reactive-tri-design)
lemma RHS-tri-design-is-SRD [closure]:
 assumes \$ok' \sharp P \$ok' \sharp Q \$ok' \sharp R
 shows \mathbf{R}_s(P \vdash Q \diamond R) is SRD
 by (rule RHS-design-is-SRD, simp-all add: unrest assms)
lemma SRD-rdes-intro [closure]:
 assumes P is RR Q is RR R is RR
 shows \mathbf{R}_s(P \vdash Q \diamond R) is SRD
 by (rule RHS-tri-design-is-SRD, simp-all add: unrest closure assms)
lemma USUP-R1-R2s-cmt-SRD:
 assumes A \subseteq [SRD]_H
 shows (   P \in A \cdot R1 \ (R2s \ (cmt_R \ P)) ) = (  P \in A \cdot cmt_R \ P)
 by (rule USUP-cong[of A], metis (mono-tags, lifting) Ball-Collect R1-R2s-cmt-SRD assms)
lemma UINF-R1-R2s-cmt-SRD:
 assumes A \subseteq [SRD]_H
 shows ( \bigcap P \in A \cdot R1 \ (R2s \ (cmt_R \ P))) = ( \bigcap P \in A \cdot cmt_R \ P)
 by (rule UINF-cong[of A], metis (mono-tags, lifting) Ball-Collect R1-R2s-cmt-SRD assms)
         Order laws
4.4.1
lemma preR-antitone: P \subseteq Q \Longrightarrow pre_R(Q) \subseteq pre_R(P)
 by (rel-auto)
lemma periR-monotone: P \sqsubseteq Q \Longrightarrow peri_R(P) \sqsubseteq peri_R(Q)
 by (rel-auto)
lemma postR-monotone: P \sqsubseteq Q \Longrightarrow post_R(P) \sqsubseteq post_R(Q)
 by (rel-auto)
        Composition laws
4.5
theorem RH-tri-design-composition:
 assumes \$ok' \sharp P \$ok' \sharp Q_1 \$ok' \sharp Q_2 \$ok \sharp R \$ok \sharp S_1 \$ok \sharp S_2
          wait' \sharp Q_2  ait \sharp S_1  ait \sharp S_2
 shows (RH(P \vdash Q_1 \diamond Q_2) ;; RH(R \vdash S_1 \diamond S_2)) =
```

```
RH((\neg (R1 (\neg R2s P) ;; R1 true) \land \neg ((R1 (R2s Q_2) \land \neg \$wait') ;; R1 (\neg R2s R))) \vdash
                       ((Q_1 \vee (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond ((R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_2)))))
proof -
  have 1:(\neg ((R1 \ (R2s \ (Q_1 \diamond Q_2)) \land \neg \$wait') ;; R1 \ (\neg R2s \ R))) =
        (\neg ((R1 \ (R2s \ Q_2) \land \neg \$wait') ;; R1 \ (\neg R2s \ R)))
    by (metis (no-types, hide-lams) R1-extend-conj R2s-conj R2s-not R2s-wait' wait'-cond-false)
  have 2: (R1 \ (R2s \ (Q_1 \diamond Q_2)) \ ;; (\lceil II \rceil_D \diamond \$wait \rhd R1 \ (R2s \ (S_1 \diamond S_2)))) =
                 ((R1 \ (R2s \ Q_1) \lor (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_2)))
  proof -
    have (R1 \ (R2s \ Q_1) \ ;; (\$wait \land (\lceil II \rceil_D \triangleleft \$wait \triangleright R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2))))
                       = (R1 \ (R2s \ Q_1) \land \$wait')
    proof -
      have (R1 \ (R2s \ Q_1) \ ;; \ (\$wait \land (\lceil II \rceil_D \triangleleft \$wait \rhd R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2))))
           = (R1 \ (R2s \ Q_1) \ ;; \ (\$wait \land \lceil II \rceil_D))
        by (rel-auto)
      also have ... = ((R1 \ (R2s \ Q_1) \ ;; [II]_D) \land \$wait')
       by (rel-auto)
      also from assms(2) have ... = ((R1 \ (R2s \ Q_1)) \land \$wait')
        by (simp add: lift-des-skip-dr-unit-unrest unrest)
      finally show ?thesis.
    qed
    moreover have (R1 \ (R2s \ Q_2) \ ;; (\neg \$wait \land (\lceil II \rceil_D \triangleleft \$wait \triangleright R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2))))
                  = ((R1 \ (R2s \ Q_2)) \ ;; \ (R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2)))
    proof -
      have (R1 \ (R2s \ Q_2) \ ;; (\neg \$wait \land (\lceil II \rceil_D \triangleleft \$wait \rhd R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2))))
            = (R1 \ (R2s \ Q_2) \ ;; \ (\neg \$wait \land (R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2))))
     by (metis (no-types, lifting) cond-def conj-disj-not-abs utp-pred-laws.double-compl utp-pred-laws.inf.left-idem
utp-pred-laws.sup-assoc utp-pred-laws.sup-inf-absorb)
      also have ... = ((R1 \ (R2s \ Q_2))[false/\$wait']; (R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2))[false/\$wait]]
       by (metis false-alt-def seqr-right-one-point upred-eq-false wait-vwb-lens)
      also have ... = ((R1 \ (R2s \ Q_2)) \ ;; (R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2)))
       by (simp add: wait'-cond-def usubst unrest assms)
      finally show ?thesis.
    qed
    moreover
    have ((R1 \ (R2s \ Q_1) \land \$wait') \lor ((R1 \ (R2s \ Q_2)) \ ;; (R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2))))
          = (R1 \ (R2s \ Q_1) \lor (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond ((R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_2)))
     by (simp add: wait'-cond-def cond-seq-right-distr cond-and-T-integrate unrest)
    ultimately show ?thesis
      by (simp add: R2s-wait'-cond R1-wait'-cond wait'-cond-seq)
  qed
  show ?thesis
    apply (subst RH-design-composition)
    apply (simp-all add: assms)
    apply (simp add: assms wait'-cond-def unrest)
    apply (simp add: assms wait'-cond-def unrest)
    apply (simp \ add: 1\ 2)
    apply (simp add: R1-R2s-R2c RH-design-lemma1)
```

```
done
qed
theorem R1-design-composition-RR:
  assumes P is RR Q is RR R is RR S is RR
  shows
  (R1(P \vdash Q) ;; R1(R \vdash S)) = R1(((\neg_r P) wp_r false \land Q wp_r R) \vdash (Q ;; S))
  apply (subst R1-design-composition)
  apply (simp-all add: assms unrest wp-rea-def Healthy-if closure)
  apply (rel-auto)
done
theorem R1-design-composition-RC:
  assumes P is RC Q is RR R is RR S is RR
  shows
  (R1(P \vdash Q) ;; R1(R \vdash S)) = R1((P \land Q wp_r R) \vdash (Q ;; S))
  by (simp add: R1-design-composition-RR assms unrest Healthy-if closure wp)
theorem RHS-tri-design-composition:
   assumes \$ok' \sharp P \$ok' \sharp Q_1 \$ok' \sharp Q_2 \$ok \sharp R \$ok \sharp S_1 \$ok \sharp S_2
              \$wait \ \sharp \ R \ \$wait \ \sharp \ Q_2 \ \$wait \ \sharp \ S_1 \ \$wait \ \sharp \ S_2
  shows (\mathbf{R}_s(P \vdash Q_1 \diamond Q_2) ;; \mathbf{R}_s(R \vdash S_1 \diamond S_2)) =
         \mathbf{R}_s((\neg (R1 \ (\neg R2s \ P) \ ;; R1 \ true) \land \neg (R1(R2s \ Q_2) \ ;; R1 \ (\neg R2s \ R))) \vdash
                             (((\exists \$st' \cdot Q_1) \lor (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond ((R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_2)))))
proof -
  have 1:(\neg ((R1 \ (R2s \ (Q_1 \diamond Q_2)) \land \neg \$wait') ;; R1 \ (\neg R2s \ R))) =
           (\neg ((R1 \ (R2s \ Q_2) \land \neg \$wait') ;; R1 \ (\neg R2s \ R)))
     by (metis (no-types, hide-lams) R1-extend-conj R2s-conj R2s-not R2s-wait' wait'-cond-false)
  have 2: (R1 \ (R2s \ (Q_1 \diamond Q_2)) \ ;; ((\exists \$st \cdot \lceil II \rceil_D) \diamond \$wait \triangleright R1 \ (R2s \ (S_1 \diamond S_2)))) =
                        (((\exists \$st' \cdot R1 \ (R2s \ Q_1)) \lor (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))
S_2)))
  proof -
     have (R1 \ (R2s \ Q_1) \ ;; (\$wait \land ((\exists \$st \cdot \lceil II \rceil_D) \triangleleft \$wait \rhd R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2))))
                                = (\exists \$st' \cdot ((R1 \ (R2s \ Q_1)) \land \$wait'))
     proof -
        have (R1 \ (R2s \ Q_1) \ ;; (\$wait \land ((\exists \$st \cdot \lceil II \rceil_D) \triangleleft \$wait \rhd R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2))))
               = (R1 \ (R2s \ Q_1) \ ;; \ (\$wait \land (\exists \ \$st \cdot \lceil II \rceil_D)))
           by (rel-auto, blast+)
        also have ... = ((R1 \ (R2s \ Q_1) \ ;; (\exists \$st \cdot \lceil II \rceil_D)) \land \$wait')
          by (rel-auto)
        also from assms(2) have ... = (\exists \$st' \cdot ((R1 \ (R2s \ Q_1)) \land \$wait'))
          by (rel-auto, blast)
        finally show ?thesis.
      moreover have (R1 \ (R2s \ Q_2) \ ;; \ (\neg \$wait \land ((\exists \$st \cdot \lceil II \rceil_D) \triangleleft \$wait \rhd R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2)))
S_2)))))
                         = ((R1 \ (R2s \ Q_2)) \ ;; \ (R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2)))
     proof -
        have (R1 \ (R2s \ Q_2) \ ;; (\neg \$wait \land ((\exists \$st \cdot \lceil II \rceil_D) \triangleleft \$wait \rhd R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2))))
                 = (R1 \ (R2s \ Q_2) \ ;; (\neg \$wait \land (R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2))))
       by (metis (no-types, lifting) cond-def conj-disj-not-abs utp-pred-laws.double-compl utp-pred-laws.inf.left-idem
utp-pred-laws.sup-assoc utp-pred-laws.sup-inf-absorb)
```

also have ... = $((R1 \ (R2s \ Q_2))[false/\$wait']; (R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2))[false/\$wait]]$

```
\mathbf{by} \ (\textit{metis false-alt-def seqr-right-one-point upred-eq-false wait-vwb-lens})
     also have ... = ((R1 \ (R2s \ Q_2)) \ ;; (R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2)))
      by (simp add: wait'-cond-def usubst unrest assms)
     finally show ?thesis.
   qed
   moreover
   have ((R1 \ (R2s \ Q_1) \land \$wait') \lor ((R1 \ (R2s \ Q_2)) ;; (R1 \ (R2s \ S_1) \diamond R1 \ (R2s \ S_2))))
         = (R1 \ (R2s \ Q_1) \lor (R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_1))) \diamond ((R1 \ (R2s \ Q_2) \ ;; R1 \ (R2s \ S_2)))
     by (simp add: wait'-cond-def cond-seq-right-distr cond-and-T-integrate unrest)
   ultimately show ?thesis
     by (simp add: R2s-wait'-cond R1-wait'-cond wait'-cond-seq ex-conj-contr-right unrest)
        (simp add: cond-and-T-integrate cond-seq-right-distr unrest-var wait'-cond-def)
 qed
 from assms(7,8) have \beta: (R1 (R2s Q_2) \land \neg \$wait');; R1 (\neg R2s R) = R1 (R2s Q_2);; R1 (\neg R2s R)
   by (rel-auto, blast, meson)
 show ?thesis
   apply (subst RHS-design-composition)
   apply (simp-all add: assms)
   apply (simp add: assms wait'-cond-def unrest)
   apply (simp add: assms wait'-cond-def unrest)
   apply (simp add: 1 2 3)
   apply (simp add: R1-R2s-R2c RHS-design-lemma1)
   apply (metis R1-R2c-ex-st RHS-design-lemma1)
 done
\mathbf{qed}
theorem RHS-tri-design-composition-wp:
 assumes \$ok' \sharp P \$ok' \sharp Q_1 \$ok' \sharp Q_2 \$ok \sharp R \$ok \sharp S_1 \$ok \sharp S_2
         \$wait \sharp R \$wait' \sharp Q_2 \$wait \sharp S_1 \$wait \sharp S_2
         P is R2c Q_1 is R1 Q_1 is R2c Q_2 is R1 Q_2 is R2c
         R is R2c S_1 is R1 S_1 is R2c S_2 is R1 S_2 is R2c
 shows \mathbf{R}_s(P \vdash Q_1 \diamond Q_2) ;; \mathbf{R}_s(R \vdash S_1 \diamond S_2) =
         ?rhs)
proof
 have ?lhs = \mathbf{R}_s ((\neg R1 \ (\neg P) \ ;; R1 \ true \land \neg Q_2 \ ;; R1 \ (\neg R)) \vdash ((\exists \$st' \cdot Q_1) \sqcap Q_2 \ ;; S_1) \diamond Q_2 \ ;;
   by (simp add: RHS-tri-design-composition assms Healthy-if R2c-healthy-R2s disj-upred-def)
      (metis (no-types, hide-lams) R1-negate-R1 R2c-healthy-R2s assms(11,16))
 also have \dots = ?rhs
   by (rel-auto)
 finally show ?thesis.
qed
theorem RHS-tri-design-composition-RR-wp:
 assumes P is RR Q_1 is RR Q_2 is RR
         R is RR S_1 is RR S_2 is RR
 shows \mathbf{R}_s(P \vdash Q_1 \diamond Q_2) ;; \mathbf{R}_s(R \vdash S_1 \diamond S_2) =
```

```
\mathbf{R}_s(((\neg_r \ P) \ wp_r \ false \land \ Q_2 \ wp_r \ R) \vdash (((\exists \ \$st' \cdot Q_1) \sqcap (Q_2 \ ;; \ S_1)) \diamond (Q_2 \ ;; \ S_2))) \ (\mathbf{is} \ ?lhs = (Q_2 \ ;; \ S_2)) \land (Q_2 \ ;; \ S_2))
?rhs)
  by (simp add: RHS-tri-design-composition-wp add: closure assms unrest RR-implies-R2c)
lemma\ RHS-tri-normal-design-composition:
  assumes
    \$ok' \sharp P \$ok' \sharp Q_1 \$ok' \sharp Q_2 \$ok \sharp R \$ok \sharp S_1 \$ok \sharp S_2
    \$wait \ \sharp \ R \ \$wait' \ \sharp \ Q_2 \ \$wait \ \sharp \ S_1 \ \$wait \ \sharp \ S_2
    P is R2c Q_1 is R1 Q_1 is R2c Q_2 is R1 Q_2 is R2c
    R \ is \ R2c \ S_1 \ is \ R1 \ S_1 \ is \ R2c \ S_2 \ is \ R1 \ S_2 \ is \ R2c
    R1 (\neg P) ;; R1(true) = R1(\neg P) \$st' \sharp Q_1
  shows \mathbf{R}_s(P \vdash Q_1 \diamond Q_2) ;; \mathbf{R}_s(R \vdash S_1 \diamond S_2)
          = \mathbf{R}_{s}((P \land Q_{2} \ wp_{r} \ R) \vdash (Q_{1} \lor (Q_{2} \ ;; \ S_{1})) \diamond (Q_{2} \ ;; \ S_{2}))
proof
  have \mathbf{R}_s(P \vdash Q_1 \diamond Q_2) ;; \mathbf{R}_s(R \vdash S_1 \diamond S_2) =
        \mathbf{R}_s ((R1 (\neg P) wp_r false \land Q_2 wp_r R) \vdash ((\exists \$st' \cdot Q_1) \sqcap (Q_2 ;; S_1)) \diamond (Q_2 ;; S_2))
    by (simp-all add: RHS-tri-design-composition-wp rea-not-def assms unrest)
  also have ... = \mathbf{R}_s((P \land Q_2 \ wp_r \ R) \vdash (Q_1 \lor (Q_2 \ ;; \ S_1)) \diamond (Q_2 \ ;; \ S_2))
    by (simp add: assms wp-rea-def ex-unrest, rel-auto)
  finally show ?thesis.
qed
lemma RHS-tri-normal-design-composition' [rdes-def]:
  assumes P is RC Q_1 is RR \$st' \sharp Q_1 Q_2 is RR R is RR S_1 is RR S_2 is RR
  shows \mathbf{R}_s(P \vdash Q_1 \diamond Q_2) ;; \mathbf{R}_s(R \vdash S_1 \diamond S_2)
          = \mathbf{R}_s((P \land Q_2 \ wp_r \ R) \vdash (Q_1 \lor (Q_2 \ ;; \ S_1)) \diamond (Q_2 \ ;; \ S_2))
proof -
  have R1 (\neg P) ;; R1 true = R1 (\neg P)
    using RC-implies-RC1[OF\ assms(1)]
    by (simp add: Healthy-def RC1-def rea-not-def)
       (metis R1-negate-R1 R1-seqr utp-pred-laws.double-compl)
  thus ?thesis
    by (simp add: RHS-tri-normal-design-composition assms closure unrest RR-implies-R2c)
qed
lemma RHS-tri-design-right-unit-lemma:
  assumes \$ok' \sharp P \$ok' \sharp Q \$ok' \sharp R \$wait' \sharp R
  shows \mathbf{R}_s(P \vdash Q \diamond R) ;; II_R = \mathbf{R}_s((\neg_r (\neg_r P) ;; true_r) \vdash ((\exists \$st' \cdot Q) \diamond R))
proof -
  have \mathbf{R}_s(P \vdash Q \diamond R) ;; II_R = \mathbf{R}_s(P \vdash Q \diamond R) ;; \mathbf{R}_s(true \vdash false \diamond (\$tr' =_u \$tr \land \lceil II \rceil_R))
    by (simp add: srdes-skip-tri-design, rel-auto)
  also have ... = \mathbf{R}_s ((\neg R1 (\neg R2s P);; R1 true) \vdash (\exists \$st' \cdot Q) \diamond (R1 (R2s R);; R1 (R2s (\$tr' =_u
tr \wedge [II]_R))))
    by (simp-all add: RHS-tri-design-composition assms unrest R2s-true R1-false R2s-false)
  also have ... = \mathbf{R}_s ((\neg R1 \ (\neg R2s \ P) \ ;; R1 \ true) \vdash (\exists \$st' \cdot Q) \diamond R1 \ (R2s \ R))
    from assms(3,4) have (R1 (R2s R) ;; R1 (R2s (<math>tr' = u tr \land [H]_R))) = R1 (R2s R)
      by (rel-auto, metis (no-types, lifting) minus-zero-eq, meson order-refl trace-class.diff-cancel)
    thus ?thesis
      by simp
  qed
  also have ... = \mathbf{R}_s((\neg (\neg P) ;; R1 \ true) \vdash ((\exists \$st' \cdot Q) \diamond R))
  by (metis (no-types, lifting) R1-R2s-R1-true-lemma R1-R2s-R2c R2c-not RHS-design-R2c-pre RHS-design-neg-R1-pre
RHS-design-post-R1 RHS-design-post-R2s)
  also have ... = \mathbf{R}_s((\neg_r \ (\neg_r \ P) \ ;; \ true_r) \vdash ((\exists \ \$st' \cdot Q) \diamond R))
```

```
by (rel-auto)
         finally show ?thesis.
qed
lemma SRD-composition-wp:
         assumes P is SRD Q is SRD
         shows (P :; Q) = \mathbf{R}_s (((\neg_r \ pre_R \ P) \ wp_r \ false \land post_R \ P \ wp_r \ pre_R \ Q) \vdash
                                                                                                     ((\exists \$st' \cdot peri_R P) \lor (post_R P ;; peri_R Q)) \diamond (post_R P ;; post_R Q))
         (is ?lhs = ?rhs)
proof -
         have (P :; Q) = (\mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)) :; \mathbf{R}_s(pre_R(Q) \vdash peri_R(Q) \diamond post_R(Q)))
                by (simp\ add:\ SRD\text{-}reactive\text{-}tri\text{-}design\ assms}(1)\ assms(2))
         also from assms
        have \dots = ?rhs
                 by (simp add: RHS-tri-design-composition-wp disj-upred-def unrest assms closure)
        finally show ?thesis.
qed
4.6
                                    Refinement introduction laws
lemma RHS-tri-design-refine:
         assumes P_1 is RR P_2 is RR P_3 is RR Q_1 is RR Q_2 is RR Q_3 is RR
        \mathbf{shows} \ \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) \sqsubseteq \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3) \longleftrightarrow `P_1 \Rightarrow Q_1` \wedge `P_1 \wedge Q_2 \Rightarrow P_2` \wedge `P_1 \wedge Q_3 \Rightarrow P_2` \wedge `P_1 \wedge Q_2 \Rightarrow P_2` \wedge `P_1 \wedge Q_3 \Rightarrow P_2` \wedge `P_1 \wedge Q_2 \Rightarrow P_2` \wedge `P_1 \wedge Q_3 \Rightarrow P_2` \wedge `P_1 \wedge Q_2 \Rightarrow P_2` \wedge `P_1 \wedge Q_3 \Rightarrow P_2` \wedge `P_1 \wedge Q_2 \Rightarrow P_2` \wedge `P_1 \wedge Q_3 \Rightarrow P_2` \wedge `P_1 \wedge Q_2 \Rightarrow P_2` \wedge `P_1 \wedge Q_3 \Rightarrow P_2` \wedge `P_1 \wedge Q_2 \Rightarrow P_2` \wedge `P_1 \wedge Q_3 \Rightarrow P_2` \wedge `P_1 \wedge Q_2 \Rightarrow P_2` \wedge `P_1 \wedge Q_3 
P_3
         (is ?lhs = ?rhs)
proof -
        have ?lhs \longleftrightarrow 'P<sub>1</sub> \Rightarrow Q<sub>1</sub>' \wedge 'P<sub>1</sub> \wedge Q<sub>2</sub> \diamond Q<sub>3</sub> \Rightarrow P<sub>2</sub> \diamond P<sub>3</sub>'
                 by (simp add: RHS-design-refine assms closure RR-implies-R2c unrest ex-unrest)
         also have ... \longleftrightarrow 'P_1 \Rightarrow Q_1' \land '(P_1 \land Q_2) \diamond (P_1 \land Q_3) \Rightarrow P_2 \diamond P_3'
                 by (rel-auto)
        also have ... \longleftrightarrow 'P_1 \Rightarrow Q_1' \land '((P_1 \land Q_2) \diamond (P_1 \land Q_3) \Rightarrow P_2 \diamond P_3) [true/$wait']' \land '((P_1 \land Q_2)
\diamond (P_1 \land Q_3) \Rightarrow P_2 \diamond P_3) \llbracket false / \$wait' \rrbracket'
                 by (rel-auto, metis)
         also have ... \longleftrightarrow ?rhs
                 by (simp add: usubst unrest assms)
        finally show ?thesis.
qed
lemma srdes-tri-refine-intro:
         assumes P_1 \Rightarrow P_2 \cdot P_1 \wedge Q_2 \Rightarrow Q_1 \cdot P_1 \wedge R_2 \Rightarrow R_1 \wedge R_2 \wedge R_
         shows \mathbf{R}_s(P_1 \vdash Q_1 \diamond R_1) \sqsubseteq \mathbf{R}_s(P_2 \vdash Q_2 \diamond R_2)
         using assms
         by (rule-tac srdes-refine-intro, simp-all, rel-auto)
lemma srdes-tri-eq-intro:
         assumes P_1 = Q_1 P_2 = Q_2 P_3 = Q_3
         shows \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) = \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3)
         using assms by (simp)
lemma srdes-tri-refine-intro':
         assumes P_2 \sqsubseteq P_1 \ Q_1 \sqsubseteq (P_1 \land Q_2) \ R_1 \sqsubseteq (P_1 \land R_2)
        shows \mathbf{R}_s(P_1 \vdash Q_1 \diamond R_1) \sqsubseteq \mathbf{R}_s(P_2 \vdash Q_2 \diamond R_2)
         using assms
         by (rule-tac srdes-tri-refine-intro, simp-all add: refBy-order)
```

lemma SRD-peri-under-pre:

```
assumes P is SRD wait' <math>\sharp pre_R(P)
  shows (pre_R(P) \Rightarrow_r peri_R(P)) = peri_R(P)
proof -
  have peri_R(P) =
       peri_R(\mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)))
   by (simp add: SRD-reactive-tri-design assms)
  also have ... = (pre_R \ P \Rightarrow_r peri_R \ P)
   by (simp add: rea-pre-RHS-design rea-peri-RHS-design assms
       unrest usubst R1-peri-SRD R2c-preR R1-rea-impl R2c-rea-impl R2c-periR)
  finally show ?thesis ...
qed
lemma SRD-post-under-pre:
  assumes P is SRD \$wait' \sharp pre_R(P)
  shows (pre_R(P) \Rightarrow_r post_R(P)) = post_R(P)
proof -
 have post_R(P) =
       post_R(\mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)))
   by (simp add: SRD-reactive-tri-design assms)
  also have ... = (pre_R P \Rightarrow_r post_R P)
   \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{rea-pre-RHS-design}\ \mathit{rea-post-RHS-design}\ \mathit{assms}
        unrest usubst R1-post-SRD R2c-preR R1-rea-impl R2c-rea-impl R2c-postR)
  finally show ?thesis ...
qed
lemma SRD-refine-intro:
  assumes
    P is SRD Q is SRD
    pre_R(P) \Rightarrow pre_R(Q), pre_R(P) \land peri_R(Q) \Rightarrow peri_R(P), pre_R(P) \land post_R(Q) \Rightarrow post_R(P)
 shows P \sqsubseteq Q
 by (metis\ SRD\text{-}reactive\text{-}tri\text{-}design\ assms(1)\ assms(2)\ assms(3)\ assms(4)\ assms(5)\ srdes\text{-}tri\text{-}refine\text{-}intro)
lemma SRD-refine-intro':
  assumes
   P is SRD Q is SRD
    pre_R(P) \Rightarrow pre_R(Q) \cdot peri_R(P) \sqsubseteq (pre_R(P) \land peri_R(Q)) \ post_R(P) \sqsubseteq (pre_R(P) \land post_R(Q))
  using assms by (rule-tac SRD-refine-intro, simp-all add: refBy-order)
lemma SRD-eq-intro:
  assumes
    P \text{ is } SRD \text{ } Q \text{ is } SRD \text{ } pre_R(P) = pre_R(Q) \text{ } peri_R(P) = peri_R(Q) \text{ } post_R(P) = post_R(Q)
  shows P = Q
 by (metis SRD-reactive-tri-design assms)
4.7
        Closure laws
lemma SRD-srdes-skip [closure]: II_R is SRD
 by (simp add: srdes-skip-def RHS-design-is-SRD unrest)
lemma SRD-segr-closure [closure]:
  assumes P is SRD Q is SRD
 shows (P :; Q) is SRD
  have (P :; Q) = \mathbf{R}_s (((\neg_r \ pre_R \ P) \ wp_r \ false \land post_R \ P \ wp_r \ pre_R \ Q) \vdash
                      ((\exists \ \$st' \cdot peri_R \ P) \lor post_R \ P \ ;; \ peri_R \ Q) \diamond post_R \ P \ ;; \ post_R \ Q)
```

```
by (simp\ add:\ SRD\text{-}composition\text{-}wp\ assms(1)\ assms(2))
         also have ... is SRD
                 by (rule RHS-design-is-SRD, simp-all add: wp-rea-def unrest)
        finally show ?thesis.
qed
lemma SRD-power-Suc [closure]: P is SRD \Longrightarrow P^{\hat{}}(Suc \ n) is SRD
proof (induct n)
         case \theta
         then show ?case
                 by (simp)
next
         case (Suc \ n)
        then show ?case
                 using SRD-segr-closure by (simp add: SRD-segr-closure upred-semiring.power-Suc)
aed
lemma SRD-power-comp [closure]: P is SRD \implies P ;; P^n is SRD
         by (metis SRD-power-Suc upred-semiring.power-Suc)
lemma uplus-SRD-closed [closure]: P is SRD \Longrightarrow P<sup>+</sup> is SRD
        by (simp add: uplus-power-def closure)
lemma SRD-Sup-closure [closure]:
         assumes A \subseteq [SRD]_H A \neq \{\}
        shows (  A) is SRD
proof -
         have SRD (  A) = (  SRD A) 
                 by (simp\ add:\ ContinuousD\ SRD-Continuous\ assms(2))
        also have ... = (   A )
                 by (simp only: Healthy-carrier-image assms)
        finally show ?thesis by (simp add: Healthy-def)
qed
4.8
                                     Distribution laws
lemma RHS-tri-design-choice [rdes-def]:
        \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) \sqcap \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3) = \mathbf{R}_s((P_1 \land Q_1) \vdash (P_2 \lor Q_2) \diamond (P_3 \lor Q_3))
        apply (simp add: RHS-design-choice)
        apply (rule cong[of \mathbf{R}_s \ \mathbf{R}_s])
            apply (simp)
        apply (rel-auto)
        done
lemma RHS-tri-design-sup [rdes-def]:
          \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) \sqcup \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3) = \mathbf{R}_s((P_1 \lor Q_1) \vdash ((P_1 \Rightarrow_r P_2) \land (Q_1 \Rightarrow_r Q_2)) \diamond ((P_1 \Rightarrow_r Q_2) \land (Q_1 \Rightarrow_r Q_2)) \diamond ((Q_1 \Rightarrow_r Q_2)) \diamond ((Q_1 \Rightarrow_r Q_2) \land (Q_1 \Rightarrow_r Q_2)) \diamond ((Q_1 \Rightarrow_r Q_2))
\Rightarrow_r P_3) \land (Q_1 \Rightarrow_r Q_3)))
        by (simp add: RHS-design-sup, rel-auto)
lemma RHS-tri-design-conj [rdes-def]:
        (\mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) \land \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3)) = \mathbf{R}_s((P_1 \lor Q_1) \vdash ((P_1 \Rightarrow_r P_2) \land (Q_1 \Rightarrow_r Q_2)) \diamond ((Q_1 \Rightarrow_r Q_2) \land (Q_1 \Rightarrow_r Q_2))
\Rightarrow_r P_3) \land (Q_1 \Rightarrow_r Q_3)))
        by (simp add: RHS-tri-design-sup conj-upred-def)
lemma SRD-UINF [rdes-def]:
         assumes A \neq \{\} A \subseteq [SRD]_H
```

```
shows \bigcap A = \mathbf{R}_s((\bigwedge P \in A \cdot pre_R(P)) \vdash (\bigvee P \in A \cdot peri_R(P)) \diamond (\bigvee P \in A \cdot post_R(P)))
proof -
  have \bigcap A = \mathbf{R}_s(pre_R(\bigcap A) \vdash peri_R(\bigcap A) \diamond post_R(\bigcap A))
    by (metis SRD-as-reactive-tri-design assms srdes-hcond-def
                srdes-theory-continuous.healthy-inf srdes-theory-continuous.healthy-inf-def)
  also have ... = \mathbf{R}_s((\bigwedge P \in A \cdot pre_R(P)) \vdash (\bigvee P \in A \cdot peri_R(P)) \diamond (\bigvee P \in A \cdot post_R(P)))
    by (simp add: preR-INF periR-INF postR-INF assms)
  finally show ?thesis.
qed
lemma RHS-tri-design-USUP [rdes-def]:
  assumes A \neq \{\}
  shows (\bigcap i \in A \cdot \mathbf{R}_s(P(i) \vdash Q(i) \diamond R(i))) = \mathbf{R}_s((\bigcup i \in A \cdot P(i)) \vdash (\bigcap i \in A \cdot Q(i)) \diamond (\bigcap i \in A)
\cdot R(i))
  by (subst RHS-INF[OF assms, THEN sym], simp add: design-UINF-mem assms, rel-auto)
lemma SRD-UINF-mem:
  assumes A \neq \{\} \land i. P i is SRD
  (is ?lhs = ?rhs)
proof -
  have ?lhs = ( (P `A))
    by (rel-auto)
  also have ... = \mathbf{R}_s ((\square Pa \in P 'A \cdot pre_R Pa) \vdash (\square Pa \in P 'A \cdot peri_R Pa) \diamond (\square Pa \in P 'A \cdot
post_R Pa))
    by (subst rdes-def, simp-all add: assms image-subsetI)
  also have \dots = ?rhs
    by (rel-auto)
  finally show ?thesis.
qed
lemma RHS-tri-design-UINF-ind [rdes-def]:
  (\bigcap i \cdot \mathbf{R}_s(P_1(i) \vdash P_2(i) \diamond P_3(i))) = \mathbf{R}_s((\bigwedge i \cdot P_1(i) \vdash (\bigvee i \cdot P_2(i)) \diamond (\bigvee i \cdot P_3(i))))
  by (rel-auto)
lemma cond-srea-form [rdes-def]:
  \mathbf{R}_s(P \vdash Q_1 \diamond Q_2) \triangleleft b \triangleright_R \mathbf{R}_s(R \vdash S_1 \diamond S_2) =
   \mathbf{R}_s((P \triangleleft b \triangleright_R R) \vdash (Q_1 \triangleleft b \triangleright_R S_1) \diamond (Q_2 \triangleleft b \triangleright_R S_2))
  have \mathbf{R}_s(P \vdash Q_1 \diamond Q_2) \triangleleft b \triangleright_R \mathbf{R}_s(R \vdash S_1 \diamond S_2) = \mathbf{R}_s(P \vdash Q_1 \diamond Q_2) \triangleleft R2c(\lceil b \rceil_{S <}) \triangleright \mathbf{R}_s(R \vdash S_1 \diamond Q_2)
S_2
    by (pred-auto)
  also have ... = \mathbf{R}_s (P \vdash Q_1 \diamond Q_2 \triangleleft b \triangleright_R R \vdash S_1 \diamond S_2)
    by (simp add: RHS-cond lift-cond-srea-def)
  also have ... = \mathbf{R}_s ((P \triangleleft b \triangleright_R R) \vdash (Q_1 \diamond Q_2 \triangleleft b \triangleright_R S_1 \diamond S_2))
    by (simp add: design-condr lift-cond-srea-def)
  also have ... = \mathbf{R}_s((P \triangleleft b \triangleright_R R) \vdash (Q_1 \triangleleft b \triangleright_R S_1) \diamond (Q_2 \triangleleft b \triangleright_R S_2))
    by (rule cong [of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  finally show ?thesis.
qed
lemma SRD-cond-srea [closure]:
  assumes P is SRD Q is SRD
  shows P \triangleleft b \triangleright_R Q is SRD
proof -
```

```
have P \triangleleft b \triangleright_R Q = \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)) \triangleleft b \triangleright_R \mathbf{R}_s(pre_R(Q) \vdash peri_R(Q) \diamond post_R(Q))
    by (simp add: SRD-reactive-tri-design assms)
  also have ... = \mathbf{R}_s ((pre_R \ P \triangleleft b \triangleright_R \ pre_R \ Q) \vdash (peri_R \ P \triangleleft b \triangleright_R \ peri_R \ Q) \diamond (post_R \ P \triangleleft b \triangleright_R \ post_R
Q))
    by (simp add: cond-srea-form)
  also have ... is SRD
    by (simp add: RHS-tri-design-is-SRD lift-cond-srea-def unrest)
  finally show ?thesis.
qed
4.9
        Algebraic laws
lemma SRD-left-unit:
  assumes P is SRD
  shows II_R;; P = P
  by (simp add: SRD-composition-wp closure rdes wp C1 R1-negate-R1 R1-false
      rpred trace-ident-left-periR trace-ident-left-postR SRD-reactive-tri-design assms)
lemma skip-srea-self-unit [simp]:
  II_R :: II_R = II_R
  by (simp add: SRD-left-unit closure)
lemma SRD-right-unit-tri-lemma:
  assumes P is SRD
  shows P :: II_R = \mathbf{R}_s ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash (\exists \$st' \cdot peri_R \ P) \diamond post_R \ P)
 by (simp add: SRD-composition-wp closure rdes wp rpred trace-ident-right-postR assms)
lemma Miracle-left-zero:
  assumes P is SRD
 shows Miracle;; P = Miracle
proof -
  have Miracle ;; P = \mathbf{R}_s(true \vdash false) ;; \mathbf{R}_s(pre_R(P) \vdash cmt_R(P))
    by (simp add: Miracle-def SRD-reactive-design-alt assms)
  also have ... = \mathbf{R}_s(true \vdash false)
    by (simp add: RHS-design-composition unrest R1-false R2s-false R2s-true)
  also have \dots = Miracle
    by (simp add: Miracle-def)
 finally show ?thesis.
qed
lemma Chaos-left-zero:
  assumes P is SRD
 shows (Chaos ;; P) = Chaos
proof -
  have Chaos ;; P = \mathbf{R}_s(false \vdash true) ;; \mathbf{R}_s(pre_R(P) \vdash cmt_R(P))
    by (simp add: Chaos-def SRD-reactive-design-alt assms)
  also have ... = \mathbf{R}_s ((\neg R1 \ true \land \neg (R1 \ true \land \neg \$wait');; R1 \ (\neg R2s \ (pre_R \ P))) \vdash
                       R1 \ true \ ;; \ ((\exists \$st \cdot \lceil II \rceil_D) \triangleleft \$wait \triangleright R1 \ (R2s \ (cmt_R \ P))))
    by (simp add: RHS-design-composition unrest R2s-false R2s-true R1-false)
  also have ... = \mathbf{R}_s ((false \land \neg (R1 true \land \neg $wait');; R1 (\neg R2s (pre<sub>R</sub> P))) \vdash
                       R1 \ true \ ;; \ ((\exists \$st \cdot \lceil II \rceil_D) \triangleleft \$wait \triangleright R1 \ (R2s \ (cmt_R \ P))))
    by (simp add: RHS-design-conj-neg-R1-pre)
  also have ... = \mathbf{R}_s(true)
    by (simp add: design-false-pre)
  also have ... = \mathbf{R}_s(false \vdash true)
    by (simp add: design-def)
```

```
also have \dots = Chaos
   by (simp add: Chaos-def)
 finally show ?thesis.
qed
\mathbf{lemma}\ SRD	ext{-}right	ext{-}Chaos	ext{-}tri	ext{-}lemma:
 assumes P is SRD
 shows P;; Chaos = \mathbf{R}_s (((\neg_r \ pre_R \ P) \ wp_r \ false \land post_R \ P \ wp_r \ false) \vdash (\exists \ \$st' \cdot peri_R \ P) \diamond false)
 by (simp add: SRD-composition-wp closure rdes assms wp, rel-auto)
lemma SRD-right-Miracle-tri-lemma:
 assumes P is SRD
 shows P ;; Miracle = \mathbf{R}_s ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash (\exists \$st' \cdot peri_R \ P) \diamond false)
 by (simp add: SRD-composition-wp closure rdes assms wp, rel-auto)
Stateful reactive designs are left unital
overloading
  srdes-unit == utp-unit :: (SRDES, ('s,'t::trace,'\alpha) rsp) uthy \Rightarrow ('s,'t,'\alpha) hrel-rsp
begin
 definition srdes-unit :: (SRDES, ('s,'t::trace,'\alpha) rsp) uthy \Rightarrow ('s,'t,'\alpha) hrel-rsp where
 srdes-unit T = II_R
end
interpretation srdes-left-unital: utp-theory-left-unital SRDES
 by (unfold-locales, simp-all add: srdes-hoond-def srdes-unit-def SRD-seqr-closure SRD-srdes-skip SRD-left-unit)
4.10
         Recursion laws
lemma mono-srd-iter:
 assumes mono F F \in [SRD]_H \to [SRD]_H
 shows mono (\lambda X. \mathbf{R}_s(pre_R(F|X) \vdash peri_R(F|X) \diamond post_R(F|X)))
 apply (rule monoI)
 apply (rule srdes-tri-refine-intro')
 apply (meson assms(1) monoE preR-antitone utp-pred-laws.le-infI2)
 apply (meson assms(1) monoE periR-monotone utp-pred-laws.le-infI2)
 apply (meson assms(1) monoE postR-monotone utp-pred-laws.le-infI2)
done
lemma mu-srd-SRD:
 assumes mono F F \in [SRD]_H \to [SRD]_H
 shows (\mu \ X \cdot \mathbf{R}_s \ (pre_R \ (F \ X) \vdash peri_R \ (F \ X) \diamond post_R \ (F \ X))) is SRD
 apply (subst gfp-unfold)
 apply (simp add: mono-srd-iter assms)
 apply (rule RHS-tri-design-is-SRD)
 apply (simp-all add: unrest)
done
lemma mu-srd-iter:
 assumes mono F F \in [SRD]_H \to [SRD]_H
  shows (\mu \ X \cdot \mathbf{R}_s(pre_R(F(X)) \vdash peri_R(F(X)) \diamond post_R(F(X)))) = F(\mu \ X \cdot \mathbf{R}_s(pre_R(F(X)) \vdash peri_R(F(X))))
peri_R(F(X)) \diamond post_R(F(X)))
 apply (subst gfp-unfold)
 apply (simp add: mono-srd-iter assms)
 apply (subst SRD-as-reactive-tri-design[THEN sym])
 using Healthy-func assms(1) assms(2) mu-srd-SRD apply blast
done
```

```
lemma mu-srd-form:
 assumes mono F F \in [SRD]_H \to [SRD]_H
 shows \mu_R \ F = (\mu \ X \cdot \mathbf{R}_s(pre_R(F(X)) \vdash peri_R(F(X)) \diamond post_R(F(X))))
 have 1: F(\mu X \cdot \mathbf{R}_s(pre_R(FX) \vdash peri_R(FX) \diamond post_R(FX))) is SRD
   by (simp add: Healthy-apply-closed assms(1) assms(2) mu-srd-SRD)
 have 2:Monouthy-order SRDES F
   by (simp\ add:\ assms(1)\ mono-Monotone-utp-order)
 hence \beta:\mu_R F = F (\mu_R F)
   by (simp add: srdes-theory-continuous.LFP-unfold[THEN sym] assms)
 hence \mathbf{R}_s(pre_R \ (F \ (\mu_R \ F))) \vdash peri_R \ (F \ (F \ (\mu_R \ F))) \diamond post_R \ (F \ (F \ (\mu_R \ F)))) = \mu_R \ F
   using SRD-reactive-tri-design by force
 hence (\mu \ X \cdot \mathbf{R}_s(pre_R \ (F \ X) \vdash peri_R(F \ X) \diamond post_R \ (F \ X))) \sqsubseteq F \ (\mu_R \ F)
   by (simp add: 2 srdes-theory-continuous.weak.LFP-lemma3 gfp-upperbound assms)
 thus ?thesis
   using assms 1 3 srdes-theory-continuous.weak.LFP-lowerbound eq-iff mu-srd-iter
   by (metis (mono-tags, lifting))
qed
lemma Monotonic-SRD-comp [closure]: Monotonic (op ;; P \circ SRD)
 by (simp add: mono-def R1-R2c-is-R2 R2-mono R3h-mono RD1-mono RD2-mono RHS-def SRD-def
seqr-mono)
end
5
     Normal Reactive Designs
theory utp-rdes-normal
 imports
   utp-rdes-triples
   UTP-KAT.utp-kleene
begin
This additional healthiness condition is analogous to H3
definition RD3 where
[upred-defs]: RD3(P) = P;; II_R
lemma RD3-idem: RD3(RD3(P)) = RD3(P)
proof -
 have a: II_R :: II_R = II_R
   by (simp add: SRD-left-unit SRD-srdes-skip)
 show ?thesis
   by (simp \ add: RD3-def \ seqr-assoc \ a)
lemma RD3-Idempotent [closure]: Idempotent RD3
 by (simp add: Idempotent-def RD3-idem)
lemma RD3-continuous: RD3(\bigcap A) = (\bigcap P \in A. RD3(P))
 by (simp \ add: RD3-def \ seq-Sup-distr)
lemma RD3-Continuous [closure]: Continuous RD3
 by (simp add: Continuous-def RD3-continuous)
```

```
lemma RD3-right-subsumes-RD2: RD2(RD3(P)) = RD3(P)
proof -
  have a:II_R;; J = II_R
   by (rel-auto)
  show ?thesis
   by (metis (no-types, hide-lams) H2-def RD2-def RD3-def a segr-assoc)
qed
lemma RD3-left-subsumes-RD2: RD3(RD2(P)) = RD3(P)
proof -
 have a:J;; II_R = II_R
   by (rel\text{-}simp, safe, blast+)
 show ?thesis
   by (metis (no-types, hide-lams) H2-def RD2-def RD3-def a seqr-assoc)
qed
lemma RD3-implies-RD2: P is RD3 \Longrightarrow P is RD2
 by (metis Healthy-def RD3-right-subsumes-RD2)
lemma RD3-intro-pre:
  assumes P is SRD (\neg_r pre_R(P)) ;; true_r = (\neg_r pre_R(P)) \$st' \sharp peri_R(P)
  shows P is RD3
proof -
  have RD3(P) = \mathbf{R}_s \ ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash (\exists \$st' \cdot peri_R \ P) \diamond post_R \ P)
   by (simp add: RD3-def SRD-right-unit-tri-lemma assms)
  also have ... = \mathbf{R}_s ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash peri_R \ P \diamond post_R \ P)
   by (simp\ add:\ assms(3)\ ex-unrest)
  also have ... = \mathbf{R}_s ((\neg_r pre_R P) wp_r false \vdash cmt_R P)
   by (simp add: wait'-cond-peri-post-cmt)
  also have ... = \mathbf{R}_s (pre<sub>R</sub> P \vdash cmt_R P)
   by (simp add: assms(2) rpred wp-rea-def R1-preR)
  finally show ?thesis
   by (metis\ Healthy-def\ SRD-as-reactive-design\ assms(1))
qed
lemma RHS-tri-design-right-unit-lemma:
  assumes \$ok' \sharp P \$ok' \sharp Q \$ok' \sharp R \$wait' \sharp R
  shows \mathbf{R}_s(P \vdash Q \diamond R) ;; II_R = \mathbf{R}_s((\neg_r (\neg_r P) ;; true_r) \vdash ((\exists \$st' \cdot Q) \diamond R))
proof -
  have \mathbf{R}_s(P \vdash Q \diamond R) ;; II_R = \mathbf{R}_s(P \vdash Q \diamond R) ;; \mathbf{R}_s(true \vdash false \diamond (\$tr' =_u \$tr \land \lceil II \rceil_R))
   by (simp add: srdes-skip-tri-design, rel-auto)
 also have ... = \mathbf{R}_s ((\neg R1 \ (\neg R2s \ P) \ ;; R1 \ true) \vdash (\exists \$st' \cdot Q) \diamond (R1 \ (R2s \ R) \ ;; R1 \ (R2s \ (\$tr' =_u) ) )
tr \wedge [II]_R))))
   by (simp-all add: RHS-tri-design-composition assms unrest R2s-true R1-false R2s-false)
  also have ... = \mathbf{R}_s ((\neg R1 \ (\neg R2s \ P) \ ;; R1 \ true) \vdash (\exists \$st' \cdot Q) \diamond R1 \ (R2s \ R))
  proof -
   from assms(3,4) have (R1 (R2s R) ;; R1 (R2s (<math>tr' = u tr \land [H]_R))) = R1 (R2s R)
     by (rel-auto, metis (no-types, lifting) minus-zero-eq, meson order-refl trace-class.diff-cancel)
   thus ?thesis
     by simp
  qed
  also have ... = \mathbf{R}_s((\neg (\neg P) ;; R1 \ true) \vdash ((\exists \$st' \cdot Q) \diamond R))
  by (metis (no-types, lifting) R1-R2s-R1-true-lemma R1-R2s-R2c R2c-not RHS-design-R2c-pre RHS-design-neg-R1-pre
RHS-design-post-R1 RHS-design-post-R2s)
  also have ... = \mathbf{R}_s((\neg_r \ (\neg_r \ P) \ ;; \ true_r) \vdash ((\exists \ \$st' \cdot Q) \diamond R))
```

```
by (rel-auto)
 finally show ?thesis.
lemma RHS-tri-design-RD3-intro:
  assumes
   \$ok' \sharp P \$ok' \sharp Q \$ok' \sharp R \$st' \sharp Q \$wait' \sharp R
   P \text{ is } R1 \ (\neg_r \ P) \ ;; \ true_r = (\neg_r \ P)
 shows \mathbf{R}_s(P \vdash Q \diamond R) is RD3
 apply (simp add: Healthy-def RD3-def)
 apply (subst RHS-tri-design-right-unit-lemma)
 apply (simp-all add:assms ex-unrest rpred)
done
RD3 reactive designs are those whose assumption can be written as a conjunction of a precon-
dition on (undashed) program variables, and a negated statement about the trace. The latter
allows us to state that certain events must not occur in the trace – which are effectively safety
properties.
lemma R1-right-unit-lemma:
  \llbracket out\alpha \ \sharp \ b; \ out\alpha \ \sharp \ e \ \rrbracket \Longrightarrow (\lnot_r \ b \lor \$tr \ \widehat{}_u \ e \le_u \$tr') \ ;; \ R1(true) = (\lnot_r \ b \lor \$tr \ \widehat{}_u \ e \le_u \$tr')
 by (rel-auto, blast, metis (no-types, lifting) dual-order.trans)
lemma RHS-tri-design-RD3-intro-form:
 assumes
   out\alpha \parallel b \ out\alpha \parallel e \ \$ok' \parallel Q \ \$st' \parallel Q \ \$ok' \parallel R \ \$wait' \parallel R
 shows \mathbf{R}_s((b \land \neg_r \$tr \ \hat{\ }_u \ e \leq_u \$tr') \vdash Q \diamond R) is RD3
 apply (rule RHS-tri-design-RD3-intro)
 apply (simp-all add: assms unrest closure rpred)
 apply (subst R1-right-unit-lemma)
 apply (simp-all add: assms unrest)
done
definition NSRD :: ('s,'t::trace,'\alpha) hrel-rsp \Rightarrow ('s,'t,'\alpha) hrel-rsp
where [upred-defs]: NSRD = RD1 \circ RD3 \circ RHS
lemma RD1-RD3-commute: RD1(RD3(P)) = RD3(RD1(P))
 by (rel-auto, blast+)
lemma NSRD-is-SRD [closure]: P is NSRD \implies P is SRD
 by (simp add: Healthy-def NSRD-def SRD-def, metis Healthy-def RD1-RD3-commute RD2-RHS-commute
RD3-def RD3-right-subsumes-RD2 SRD-def SRD-idem SRD-seqr-closure SRD-srdes-skip)
lemma NSRD-elim [RD-elim]:
  \llbracket P \text{ is NSRD}; Q(\mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P))) \rrbracket \Longrightarrow Q(P)
 by (simp add: RD-elim closure)
lemma NSRD-Idempotent [closure]: Idempotent NSRD
 by (clarsimp simp add: Idempotent-def NSRD-def, metis (no-types, hide-lams) Healthy-def RD1-RD3-commute
RD3-def RD3-idem RD3-left-subsumes-RD2 SRD-def SRD-idem SRD-seqr-closure SRD-srdes-skip)
lemma NSRD-Continuous [closure]: Continuous NSRD
 by (simp add: Continuous-comp NSRD-def RD1-Continuous RD3-Continuous RHS-Continuous)
lemma NSRD-form:
  NSRD(P) = \mathbf{R}_s((\neg_r \ (\neg_r \ pre_R(P)) \ ;; \ R1 \ true) \vdash ((\exists \ \$st' \cdot peri_R(P)) \diamond post_R(P)))
```

```
proof -
 have NSRD(P) = RD3(SRD(P))
  by (metis (no-types, lifting) NSRD-def RD1-RD3-commute RD3-left-subsumes-RD2 SRD-def comp-def)
  also have ... = RD3(\mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)))
   by (simp add: SRD-as-reactive-tri-design)
  also have ... = \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)) ;; II_R
   by (simp add: RD3-def)
 also have ... = \mathbf{R}_s((\neg_r \ (\neg_r \ pre_R(P)) \ ;; R1 \ true) \vdash ((\exists \ \$st' \cdot peri_R(P)) \diamond post_R(P)))
   by (simp add: RHS-tri-design-right-unit-lemma unrest)
 finally show ?thesis.
qed
lemma NSRD-healthy-form:
 assumes P is NSRD
 shows \mathbf{R}_s((\neg_r \ (\neg_r \ pre_R(P)) \ ;; R1 \ true) \vdash ((\exists \ \$st' \cdot peri_R(P)) \diamond post_R(P))) = P
 by (metis Healthy-def NSRD-form assms)
lemma NSRD-Sup-closure [closure]:
 assumes A \subseteq [NSRD]_H A \neq \{\}
 shows \prod A \text{ is } NSRD
proof -
 have NSRD (\bigcap A) = (\bigcap (NSRD 'A))
   by (simp\ add:\ ContinuousD\ NSRD-Continuous\ assms(2))
 also have ... = (   A )
   by (simp only: Healthy-carrier-image assms)
 finally show ?thesis by (simp add: Healthy-def)
qed
lemma intChoice-NSRD-closed [closure]:
 assumes P is NSRD Q is NSRD
 shows P \sqcap Q is NSRD
 using NSRD-Sup-closure [of \{P, Q\}] by (simp \ add: \ assms)
lemma NRSD-SUP-closure [closure]:
  \llbracket \bigwedge i. \ i \in A \Longrightarrow P(i) \ is \ NSRD; \ A \neq \{\} \ \rrbracket \Longrightarrow (\prod i \in A. \ P(i)) \ is \ NSRD
 by (rule NSRD-Sup-closure, auto)
lemma NSRD-neg-pre-unit:
 assumes P is NSRD
 shows (\neg_r \ pre_R(P)) ;; true_r = (\neg_r \ pre_R(P))
 \mathbf{have} \; (\neg_r \; pre_R(P)) = (\neg_r \; pre_R(\mathbf{R}_s((\neg_r \; (\neg_r \; pre_R(P)) \; ; ; R1 \; true) \vdash ((\exists \; \$st' \cdot peri_R(P)) \diamond post_R(P)))))
   by (simp add: NSRD-healthy-form assms)
 also have ... = R1 (R2c ((\neg_r pre_R P) ;; R1 true))
  by (simp add: rea-pre-RHS-design R1-negate-R1 R1-idem R1-rea-not' R2c-rea-not usubst rpred unrest
closure)
 also have ... = (\neg_r \ pre_R \ P) ;; R1 true
   by (simp add: R1-R2c-segr-distribute closure assms)
 finally show ?thesis
   by (simp add: rea-not-def)
qed
\mathbf{lemma}\ NSRD-neg-pre-left-zero:
 assumes P is NSRD Q is R1 Q is RD1
 shows (\neg_r \ pre_R(P)) ;; Q = (\neg_r \ pre_R(P))
```

```
by (metis\ (no-types,\ hide-lams)\ NSRD-neg-pre-unit\ RD1-left-zero\ assms(1)\ assms(2)\ assms(3)\ seqr-assoc)
lemma NSRD-st'-unrest-peri [unrest]:
 assumes P is NSRD
 shows st' \not\equiv peri_R(P)
proof -
 have peri_R(P) = peri_R(\mathbf{R}_s((\neg_r \ (\neg_r \ pre_R(P)) \ ;; \ R1 \ true) \vdash ((\exists \ \$st' \cdot peri_R(P)) \diamond post_R(P))))
   by (simp add: NSRD-healthy-form assms)
 also have ... = R1 (R2c (\neg_r (\neg_r pre_R P) ;; R1 true \Rightarrow_r (\exists \$st' \cdot peri_R P)))
   by (simp add: rea-peri-RHS-design usubst unrest)
 also have $st' \mu ...
   by (simp add: R1-def R2c-def unrest)
 finally show ?thesis.
qed
lemma NSRD-wait'-unrest-pre [unrest]:
 assumes P is NSRD
 shows \$wait' \sharp pre_B(P)
proof -
 have pre_R(P) = pre_R(\mathbf{R}_s((\neg_r \ (\neg_r \ pre_R(P)) \ ;; \ R1 \ true) \vdash ((\exists \ \$st' \cdot peri_R(P)) \diamond post_R(P))))
   by (simp add: NSRD-healthy-form assms)
 also have ... = (R1 \ (R2c \ (\neg_r \ (\neg_r \ pre_R \ P) \ ;; \ R1 \ true)))
   by (simp add: rea-pre-RHS-design usubst unrest)
 also have \$wait' \sharp ...
   by (simp add: R1-def R2c-def unrest)
 finally show ?thesis.
qed
lemma NSRD-st'-unrest-pre [unrest]:
 assumes P is NSRD
 shows \$st' \sharp pre_R(P)
proof -
 have pre_R(P) = pre_R(\mathbf{R}_s((\neg_r \ (\neg_r \ pre_R(P)) \ ;; \ R1 \ true) \vdash ((\exists \ \$st' \cdot peri_R(P)) \diamond post_R(P))))
   by (simp add: NSRD-healthy-form assms)
 also have ... = R1 (R2c (\neg_r (\neg_r pre_R P) ;; R1 true))
   by (simp add: rea-pre-RHS-design usubst unrest)
 also have $st' \mu ...
   by (simp add: R1-def R2c-def unrest)
 finally show ?thesis.
qed
lemma NSRD-alt-def: NSRD(P) = RD3(SRD(P))
 by (metis NSRD-def RD1-RD3-commute RD3-left-subsumes-RD2 SRD-def comp-eq-dest-lhs)
lemma preR-RR [closure]: P is NSRD \implies pre_R(P) is RR
 by (rule RR-intro, simp-all add: closure unrest)
lemma NSRD-neg-pre-RC [closure]:
 assumes P is NSRD
 shows pre_R(P) is RC
 by (rule RC-intro, simp-all add: closure assms NSRD-neg-pre-unit rpred)
lemma NSRD-intro:
 assumes P is SRD (\neg_r pre_R(P)) ;; true_r = (\neg_r pre_R(P)) \$st' \sharp peri_R(P)
 shows P is NSRD
```

```
proof -
  have NSRD(P) = \mathbf{R}_s((\neg_r \ (\neg_r \ pre_R(P)) \ ;; R1 \ true) \vdash ((\exists \ \$st' \cdot peri_R(P)) \diamond post_R(P)))
   by (simp add: NSRD-form)
  also have ... = \mathbf{R}_s(pre_R \ P \vdash peri_R \ P \diamond post_R \ P)
   by (simp add: assms ex-unrest rpred closure)
  also have \dots = P
   by (simp\ add:\ SRD\text{-}reactive\text{-}tri\text{-}design\ assms}(1))
 finally show ?thesis
   using Healthy-def by blast
qed
lemma NSRD-intro':
  assumes P is R2 P is R3h P is RD1 P is RD3
 shows P is NSRD
 by (metis (no-types, hide-lams) Healthy-def NSRD-def R1-R2c-is-R2 RHS-def assms comp-apply)
lemma NSRD-RC-intro:
  assumes P is SRD pre_R(P) is RC \$st' \sharp peri_R(P)
  shows P is NSRD
 by (metis Healthy-def NSRD-form SRD-reactive-tri-design assms(1) assms(2) assms(3)
     ex-unrest rea-not-false wp-rea-RC-false wp-rea-def)
lemma NSRD-rdes-intro [closure]:
  assumes P is RC Q is RR R is RR \$st' \sharp Q
  shows \mathbf{R}_s(P \vdash Q \diamond R) is NSRD
  by (rule NSRD-RC-intro, simp-all add: rdes closure assms unrest)
lemma SRD-RD3-implies-NSRD:
  \llbracket P \text{ is } SRD; P \text{ is } RD3 \rrbracket \Longrightarrow P \text{ is } NSRD \rrbracket
  by (metis (no-types, lifting) Healthy-def NSRD-def RHS-idem SRD-healths(4) SRD-reactive-design
comp-apply)
lemma NSRD-iff:
  P \text{ is } NSRD \longleftrightarrow ((P \text{ is } SRD) \land (\neg_r \text{ } pre_R(P)) \text{ } ;; R1(true) = (\neg_r \text{ } pre_R(P)) \land (\$st' \sharp \text{ } peri_R(P)))
 by (meson NSRD-intro NSRD-is-SRD NSRD-neg-pre-unit NSRD-st'-unrest-peri)
lemma NSRD-is-RD3 [closure]:
  assumes P is NSRD
  shows P is RD3
 by (simp add: NSRD-is-SRD NSRD-neg-pre-unit NSRD-st'-unrest-peri RD3-intro-pre assms)
lemma NSRD-refine-elim:
  assumes
   P \sqsubseteq Q P \text{ is NSRD } Q \text{ is NSRD}
    \llbracket \text{ '}pre_R(P) \Rightarrow pre_R(Q)\text{ '}; \text{ '}pre_R(P) \land peri_R(Q) \Rightarrow peri_R(P)\text{ '}; \text{ '}pre_R(P) \land post_R(Q) \Rightarrow post_R(P)\text{ '} \rrbracket
\Longrightarrow R
 shows R
proof -
  have \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)) \sqsubseteq \mathbf{R}_s(pre_R(Q) \vdash peri_R(Q) \diamond post_R(Q))
   by (simp\ add:\ NSRD\ -is\ -SRD\ -reactive\ -tri\ -design\ assms(1)\ assms(2)\ assms(3))
  hence 1: 'pre<sub>R</sub> P \Rightarrow pre_R Q' and 2: 'pre<sub>R</sub> P \land peri_R Q \Rightarrow peri_R P' and 3: 'pre<sub>R</sub> P \land post_R Q \Rightarrow
post_R P'
   by (simp-all add: RHS-tri-design-refine assms closure)
  with assms(4) show ?thesis
```

```
by simp
qed
lemma NSRD-right-unit: P is NSRD \Longrightarrow P ;; II_R = P
 by (metis Healthy-if NSRD-is-RD3 RD3-def)
lemma NSRD-composition-wp:
 assumes P is NSRD Q is SRD
 shows P :: Q =
       \mathbf{R}_s \ ((\mathit{pre}_R \ P \ \land \ \mathit{post}_R \ P \ \mathit{wp}_r \ \mathit{pre}_R \ Q) \vdash (\mathit{peri}_R \ P \ \lor (\mathit{post}_R \ P \ ;; \ \mathit{peri}_R \ Q)) \diamond (\mathit{post}_R \ P \ ;; \ \mathit{post}_R)
Q))
by (simp add: SRD-composition-wp assms NSRD-is-SRD wp-rea-def NSRD-neg-pre-unit NSRD-st'-unrest-peri
R1-negate-R1 R1-preR ex-unrest rpred)
lemma preR-NSRD-seq-lemma:
 assumes P is NSRD Q is SRD
 shows R1 (R2c (post_R P ;; (\neg_r pre_R Q))) = post_R P ;; (\neg_r pre_R Q)
  have post_R P :: (\neg_r pre_R Q) = R1(R2c(post_R P)) :: R1(R2c(\neg_r pre_R Q))
  by (simp add: NSRD-is-SRD R1-R2c-post-RHS R1-rea-not R2c-preR R2c-rea-not assms(1) assms(2))
 also have ... = R1 (R2c (post_R P ;; (\neg_r pre_R Q)))
   by (simp add: R1-seqr R2c-R1-seq calculation)
 finally show ?thesis ..
qed
lemma preR-NSRD-seq [rdes]:
 assumes P is NSRD Q is SRD
 shows pre_R(P ;; Q) = (pre_R P \land post_R P wp_r pre_R Q)
 by (simp add: NSRD-composition-wp assms rea-pre-RHS-design usubst unrest wp-rea-def R2c-disj
    R1-disj R2c-and R2c-preR R1-R2c-commute [THEN sym] R1-extend-conj' R1-idem R2c-not closure)
    (metis (no-types, lifting) Healthy-def Healthy-if NSRD-is-SRD R1-R2c-commute
     R1-R2c-segr-distribute R1-segr-closure assms(1) assms(2) postR-R2c-closed postR-SRD-R1
     preR-R2c-closed rea-not-R1 rea-not-R2c)
\mathbf{lemma} \ periR\text{-}NSRD\text{-}seq \ [rdes]:
 assumes P is NSRD Q is NSRD
 shows peri_R(P;; Q) = ((pre_R P \land post_R P wp_r pre_R Q) \Rightarrow_r (peri_R P \lor (post_R P;; peri_R Q)))
 by (simp add: NSRD-composition-wp assms closure rea-peri-RHS-design usubst unrest wp-rea-def
     R1-extend-conj' R1-disj R1-R2c-seqr-distribute R2c-disj R2c-and R2c-rea-impl R1-rea-impl'
     R2c-preR R2c-periR R1-rea-not' R2c-rea-not R1-peri-SRD)
lemma postR-NSRD-seq [rdes]:
 \mathbf{assumes}\ P\ is\ NSRD\ Q\ is\ NSRD
 shows post_R(P;; Q) = ((pre_R P \land post_R P wp_r pre_R Q) \Rightarrow_r (post_R P;; post_R Q))
 by (simp add: NSRD-composition-wp assms closure rea-post-RHS-design usubst unrest wp-rea-def
     R1-extend-conj' R1-disj R1-R2c-seqr-distribute R2c-disj R2c-and R2c-rea-impl R1-rea-impl'
     R2c\text{-}preR R2c\text{-}periR R1\text{-}rea\text{-}not' R2c\text{-}rea\text{-}not)
lemma NSRD-segr-closure [closure]:
 assumes P is NSRD Q is NSRD
 shows (P ;; Q) is NSRD
proof -
 have (\neg_r \ post_R \ P \ wp_r \ pre_R \ Q) \ ;; \ true_r = (\neg_r \ post_R \ P \ wp_r \ pre_R \ Q)
   by (simp add: wp-rea-def rpred assms closure seqr-assoc NSRD-neg-pre-unit)
 moreover have st' \not\equiv pre_R P \land post_R P wp_r pre_R Q \Rightarrow_r peri_R P \lor post_R P ;; peri_R Q
```

```
by (simp add: unrest assms wp-rea-def)
  ultimately show ?thesis
   by (rule-tac NSRD-intro, simp-all add: segr-or-distl NSRD-neg-pre-unit assms closure rdes unrest)
qed
lemma RHS-tri-normal-design-composition:
  assumes
   \$ok' \sharp P \$ok' \sharp Q_1 \$ok' \sharp Q_2 \$ok \sharp R \$ok \sharp S_1 \$ok \sharp S_2
   \$wait \ \sharp \ R \ \$wait \ \sharp \ Q_2 \ \$wait \ \sharp \ S_1 \ \$wait \ \sharp \ S_2
    P is R2c Q_1 is R1 Q_1 is R2c Q_2 is R1 Q_2 is R2c
    R is R2c S_1 is R1 S_1 is R2c S_2 is R1 S_2 is R2c
   R1 (\neg P) ;; R1(true) = R1(\neg P) \$st' \sharp Q_1
  shows \mathbf{R}_s(P \vdash Q_1 \diamond Q_2) ;; \mathbf{R}_s(R \vdash S_1 \diamond S_2)
        = \mathbf{R}_s((P \land Q_2 \ wp_r \ R) \vdash (Q_1 \lor (Q_2 \ ;; \ S_1)) \diamond (Q_2 \ ;; \ S_2))
proof -
  have \mathbf{R}_s(P \vdash Q_1 \diamond Q_2) ;; \mathbf{R}_s(R \vdash S_1 \diamond S_2) =
       \mathbf{R}_s ((R1 (\neg P) wp_r false \land Q_2 wp_r R) \vdash ((\exists \$st' \cdot Q_1) \sqcap (Q_2 ;; S_1)) \diamond (Q_2 ;; S_2))
   by (simp-all add: RHS-tri-design-composition-wp rea-not-def assms unrest)
  also have ... = \mathbf{R}_s((P \land Q_2 \ wp_r \ R) \vdash (Q_1 \lor (Q_2 \ ;; S_1)) \diamond (Q_2 \ ;; S_2))
   by (simp add: assms wp-rea-def ex-unrest, rel-auto)
  finally show ?thesis.
qed
\mathbf{lemma}\ RHS\text{-}tri\text{-}normal\text{-}design\text{-}composition'\ [rdes\text{-}def]:}
  assumes P is RC Q_1 is RR \$st' \sharp Q_1 Q_2 is RR R is RR S_1 is RR S_2 is RR
  shows \mathbf{R}_s(P \vdash Q_1 \diamond Q_2) ;; \mathbf{R}_s(R \vdash S_1 \diamond S_2)
        = \mathbf{R}_{s}((P \land Q_{2} \ wp_{r} \ R) \vdash (Q_{1} \lor (Q_{2} \ ;; S_{1})) \diamond (Q_{2} \ ;; S_{2}))
proof
  have R1 (\neg P) ;; R1 true = R1 (\neg P)
   using RC-implies-RC1[OF\ assms(1)]
   by (simp add: Healthy-def RC1-def rea-not-def)
      (metis R1-negate-R1 R1-seqr utp-pred-laws.double-compl)
  thus ?thesis
   by (simp add: RHS-tri-normal-design-composition assms closure unrest RR-implies-R2c)
If a normal reactive design has postcondition false, then it is a left zero for sequential composi-
tion.
lemma NSRD-seq-post-false:
 assumes P is NSRD Q is SRD post_R(P) = false
 shows P :: Q = P
 apply (simp add: NSRD-composition-wp assms wp rpred closure)
  using NSRD-is-SRD SRD-reactive-tri-design assms(1,3) apply fastforce
done
lemma NSRD-srd-skip [closure]: II_R is NSRD
 by (rule NSRD-intro, simp-all add: rdes closure unrest)
lemma NSRD-Chaos [closure]: Chaos is NSRD
  by (rule NSRD-intro, simp-all add: closure rdes unrest)
lemma NSRD-Miracle [closure]: Miracle is NSRD
  by (rule NSRD-intro, simp-all add: closure rdes unrest)
```

Post-composing a miracle filters out the non-terminating behaviours

```
lemma NSRD-right-Miracle-tri-lemma:
  assumes P is NSRD
  shows P ;; Miracle = \mathbf{R}_s \ (pre_R \ P \vdash peri_R \ P \diamond false)
  by (simp add: NSRD-composition-wp closure assms rdes wp rpred)
The set of non-terminating behaviours is a subset
\mathbf{lemma}\ \mathit{NSRD-right-Miracle-refines}\colon
  assumes P is NSRD
  shows P \sqsubseteq P ;; Miracle
proof -
  have \mathbf{R}_s (pre_R \ P \vdash peri_R \ P \diamond post_R \ P) \sqsubseteq \mathbf{R}_s \ (pre_R \ P \vdash peri_R \ P \diamond false)
    by (rule srdes-tri-refine-intro, rel-auto+)
  thus ?thesis
    by (simp add: NSRD-elim NSRD-right-Miracle-tri-lemma assms)
qed
lemma upower-Suc-NSRD-closed [closure]:
  P \text{ is } NSRD \Longrightarrow P \hat{\ } Suc \text{ } n \text{ } is \text{ } NSRD
proof (induct \ n)
 case \theta
  then show ?case
    \mathbf{by} \ (simp)
next
  case (Suc \ n)
  then show ?case
    by (simp add: NSRD-segr-closure upred-semiring.power-Suc)
lemma NSRD-power-Suc [closure]:
  P \text{ is } NSRD \Longrightarrow P \text{ ;; } P \hat{\ } n \text{ is } NSRD
 by (metis upower-Suc-NSRD-closed upred-semiring.power-Suc)
lemma uplus-NSRD-closed [closure]: P is NSRD \Longrightarrow P<sup>+</sup> is NSRD
  by (simp add: uplus-power-def closure)
lemma preR-power:
  assumes P is NSRD
 shows pre_R(P ;; P \hat{\ } n) = ( \bigsqcup \ i \in \{0..n\}. \ (post_R(P) \hat{\ } i) \ wp_r \ (pre_R(P)) )
proof (induct \ n)
  case \theta
  then show ?case
    by (simp add: wp closure)
  case (Suc n) note hyp = this
  have pre_R (P \hat{\ } (Suc \ n+1)) = pre_R (P ;; P \hat{\ } (n+1))
    by (simp add: upred-semiring.power-Suc)
  also have ... = (pre_R \ P \land post_R \ P \ wp_r \ pre_R \ (P \ \widehat{\ } (Suc \ n)))
    using NSRD-iff assms preR-NSRD-seq upower-Suc-NSRD-closed by fastforce
  also have ... = (pre_R \ P \land post_R \ P \ wp_r \ (\bigsqcup i \in \{0..n\}. \ post_R \ P \ \hat{} \ i \ wp_r \ pre_R \ P))
    by (simp add: hyp upred-semiring.power-Suc)
  also have ... = (pre_R \ P \land (\bigsqcup i \in \{0..n\}. \ post_R \ P \ wp_r \ (post_R \ P \ \hat{} \ i \ wp_r \ pre_R \ P)))
    by (simp \ add: wp)
  also have ... = (pre_R \ P \land (\bigsqcup i \in \{0..n\}, (post_R \ P \ \hat{} \ (i+1) \ wp_r \ pre_R \ P)))
  proof -
    have \bigwedge i. R1 \ (post_R \ P \hat{\ } i \ ;; \ (\neg_r \ pre_R \ P)) = (post_R \ P \hat{\ } i \ ;; \ (\neg_r \ pre_R \ P))
```

```
by (induct-tac i, simp-all add: closure Healthy-if assms)
    thus ?thesis
      by (simp add: wp-rea-def upred-semiring.power-Suc seqr-assoc rpred closure assms)
  qed
  also have ... = (post_R \ P \ \hat{} \ 0 \ wp_r \ pre_R \ P \land ( \sqcup i \in \{0..n\}. \ (post_R \ P \ \hat{} \ (i+1) \ wp_r \ pre_R \ P)))
    by (simp add: wp assms closure)
  also have ... = (post_R \ P \ \hat{} \ 0 \ wp_r \ pre_R \ P \land ( \bigsqcup i \in \{1..Suc \ n\}. \ (post_R \ P \ \hat{} \ i \ wp_r \ pre_R \ P)))
  proof -
    have (\bigsqcup i \in \{0..n\}. (post_R \ P \ \hat{} (i+1) \ wp_r \ pre_R \ P)) = (\bigsqcup i \in \{1..Suc \ n\}. (post_R \ P \ \hat{} i \ wp_r \ pre_R \ P))
      by (rule cong[of Inf], simp-all add: fun-eq-iff)
        (metis (no-types, lifting) image-Suc-atLeastAtMost image-cong image-image)
    thus ?thesis by simp
  qed
  also have ... = (\coprod i \in insert \ 0 \ \{1..Suc \ n\}. \ (post_R \ P \ \hat{} \ i \ wp_r \ pre_R \ P))
    by (simp add: conj-upred-def)
  also have ... = (||i \in \{0..Suc\ n\}. post_R\ P \hat{i} wp_r\ pre_R\ P)
    by (simp add: atLeast0-atMost-Suc-eq-insert-0)
 finally show ?case by (simp add: upred-semiring.power-Suc)
qed
lemma preR-power' [rdes]:
  assumes P is NSRD
  shows pre_R(P :: P^n) = (    i \in \{0..n\} \cdot (post_R(P) \cap i) wp_r (pre_R(P)) )
 by (simp add: preR-power assms USUP-as-Inf[THEN sym])
lemma preR-power-Suc [rdes]:
  assumes P is NSRD
  shows pre_R(P^{\hat{}}(Suc\ n)) = (|\ |\ i \in \{0..n\} \cdot (post_R(P)\ \hat{}\ i)\ wp_r\ (pre_R(P)))
  by (simp add: upred-semiring.power-Suc rdes assms)
declare upred-semiring.power-Suc [simp]
lemma periR-power:
 assumes P is NSRD
 shows peri_R(P ;; P \hat{\ } n) = (pre_R(P \hat{\ } (Suc \ n)) \Rightarrow_r ( [ i \in \{0..n\}. post_R(P) \hat{\ } i) ;; peri_R(P))
proof (induct n)
  case \theta
  then show ?case
    by (simp add: NSRD-is-SRD NSRD-wait'-unrest-pre SRD-peri-under-pre assms)
next
  case (Suc\ n) note hyp = this
  have peri_R (P \hat{\ } (Suc\ n+1)) = peri_R (P ;; P \hat{\ } (n+1))
   by (simp)
  also have ... = (pre_R(P \cap (Suc \ n+1)) \Rightarrow_r (peri_R \ P \lor post_R \ P ;; peri_R \ (P ;; P \cap n)))
   by (simp add: closure assms rdes)
 also have ... = (pre_R(P \cap (Suc\ n+1)) \Rightarrow_r (peri_R\ P \vee post_R\ P ;; (pre_R\ (P \cap (Suc\ n)) \Rightarrow_r (\bigcap i \in \{0..n\}.
post_R \ P \ \hat{} \ i) \ ;; \ peri_R \ P)))
   by (simp only: hyp)
 also
 have ... = (pre_R \ P \Rightarrow_r peri_R \ P \lor (post_R \ P \ wp_r \ pre_R \ (P \ ;; \ P \ \hat{} \ n) \Rightarrow_r post_R \ P \ ;; \ (pre_R \ (P \ ;; \ P \ \hat{} \ n)
\Rightarrow_r ( \prod i \in \{0..n\}. post_R P \hat{i} ;; peri_R P)))
    by (simp add: rdes closure assms, rel-blast)
 have ... = (pre_R \ P \Rightarrow_r peri_R \ P \lor (post_R \ P \ wp_r \ pre_R \ (P \ ;; \ P \ \hat{} \ n) \Rightarrow_r post_R \ P \ ;; (( \bigcap i \in \{0..n\}. \ post_R \ p \ respectively)))
P \hat{i} : peri_R P)))
```

```
proof -
    have (\bigcap i \in \{0..n\}. post<sub>R</sub> P \cap i) is R1
    by (simp add: NSRD-is-SRD R1-Continuous R1-power Sup-Continuous-closed assms postR-SRD-R1)
    hence 1:((\bigcap i \in \{0..n\}, post_R P \hat{i});; peri_R P) is R1
      by (simp add: closure assms)
    hence (pre_R (P ;; P \hat{\ } n) \Rightarrow_r (\prod i \in \{0..n\}. post_R P \hat{\ } i) ;; peri_R P) is R1
      by (simp add: closure)
   hence (post_R \ P \ wp_r \ pre_R \ (P \ ;; \ P \ \hat{} \ n) \Rightarrow_r post_R \ P \ ;; \ (pre_R \ (P \ ;; \ P \ \hat{} \ n) \Rightarrow_r ( \bigcap i \in \{0..n\}. \ post_R \ P \ ;) )
\hat{i} i) ;; peri_R P))
          = (post_R \ P \ wp_r \ pre_R \ (P \ ;; \ P \ \hat{} \ n) \Rightarrow_r R1(post_R \ P) \ ;; \ R1(pre_R \ (P \ ;; \ P \ \hat{} \ n) \Rightarrow_r (\bigcap i \in \{0..n\}.
post_R P \hat{i}) ;; peri_R P)
      by (simp add: Healthy-if R1-post-SRD assms closure)
    thus ?thesis
     by (simp only: wp-rea-impl-lemma, simp add: Healthy-if 1, simp add: R1-post-SRD assms closure)
  qed
  also
 have ... = (pre_R \ P \land post_R \ P \ wp_r \ pre_R \ (P \ ;; \ P \ \hat{} \ n) \Rightarrow_r peri_R \ P \lor post_R \ P \ ;; ((\bigcap i \in \{0..n\}. \ post_R \ P \ ;))
P \hat{i} : peri_R P)
    by (pred-auto)
  also
  have ... = (pre_R \ P \land post_R \ P \ wp_r \ pre_R \ (P \ ;; \ P \ \hat{} \ n) \Rightarrow_r peri_R \ P \lor ((\bigcap i \in \{0..n\}. \ post_R \ P \ \hat{} \ (Suc
    by (simp add: seq-Sup-distl seqr-assoc[THEN sym])
 have ... = (pre_R \ P \land post_R \ P \ wp_r \ pre_R \ (P \ ;; \ P \ \hat{} \ n) \Rightarrow_r peri_R \ P \lor (( [ i \in \{1..Suc \ n\}, post_R \ P \ \hat{} \ i)))
:: peri_R P)
 proof -
    have ( \bigcap i \in \{0..n\}. post_R P \cap Suc i) = ( \bigcap i \in \{1..Suc n\}. post_R P \cap i)
      apply (rule cong[of Sup], auto)
    apply (metis\ at Least OAt Most\ at Most-iff\ image-Suc-at Least At Most\ rev-image-eq I\ upred-semiring.power-Suc)
      using Suc-le-D apply fastforce
    done
    thus ?thesis by simp
  qed
  also
 have ... = (pre_R \ P \land post_R \ P \ wp_r \ pre_R \ (P \ ;; \ P \ \hat{} \ n) \Rightarrow_r ((\bigcap i \in \{0..Suc \ n\}. \ post_R \ P \ \hat{} \ i)) \ ;; \ peri_R \ P)
    by (simp add: SUP-atLeastAtMost-first uinf-or seqr-or-distl seqr-or-distr)
  also
 have ... = (pre_R(P^{\hat{}}(Suc\ (Suc\ n))) \Rightarrow_r ((\prod i \in \{0..Suc\ n\}, post_R\ P^{\hat{}}\ i) ;; peri_R\ P))
    by (simp add: rdes closure assms)
 finally show ?case by (simp)
qed
lemma periR-power' [rdes]:
  assumes P is NSRD
  shows peri_R(P :; P \hat{\ } n) = (pre_R(P \hat{\ } (Suc \ n)) \Rightarrow_r ( [ i \in \{0..n\} \cdot post_R(P) \hat{\ } i) :; peri_R(P))
  by (simp add: periR-power assms UINF-as-Sup[THEN sym])
lemma periR-power-Suc [rdes]:
  assumes P is NSRD
 shows peri_R(P^{\hat{}}(Suc\ n)) = (pre_R(P^{\hat{}}(Suc\ n)) \Rightarrow_r ( [ i \in \{0..n\} \cdot post_R(P) \hat{} i) ;; peri_R(P))
 by (simp add: rdes assms)
lemma postR-power [rdes]:
  assumes P is NSRD
```

```
shows post_R(P :; P \hat{\ } n) = (pre_R(P \hat{\ } (Suc \ n)) \Rightarrow_r post_R(P) \hat{\ } Suc \ n)
proof (induct \ n)
  case \theta
  then show ?case
    by (simp add: NSRD-is-SRD NSRD-wait'-unrest-pre SRD-post-under-pre assms)
next
  case (Suc \ n) note hyp = this
  have post_R (P \hat{\ } (Suc\ n+1)) = post_R (P ;; P \hat{\ } (n+1))
    by (simp)
  also have ... = (pre_R(P \cap (Suc \ n+1)) \Rightarrow_r (post_R \ P :; post_R \ (P :; P \cap n)))
   by (simp add: closure assms rdes)
  \textbf{also have} \ ... = (pre_R(P \ \hat{\ } (Suc \ n + 1)) \Rightarrow_r (post_R \ P \ ;; (pre_R \ (P \ \hat{\ } Suc \ n) \Rightarrow_r post_R \ P \ \hat{\ } Suc \ n)))
   by (simp\ only:\ hyp)
  also
 have ... = (pre_R \ P \Rightarrow_r (post_R \ P \ wp_r \ pre_R \ (P \ \ Suc \ n) \Rightarrow_r post_R \ P \ ;; \ (pre_R \ (P \ \ Suc \ n) \Rightarrow_r post_R
P \cap Suc(n))
   by (simp add: rdes closure assms, pred-auto)
 have ... = (pre_R \ P \Rightarrow_r (post_R \ P \ wp_r \ pre_R \ (P \ \hat{\ } Suc \ n) \Rightarrow_r post_R \ P \ ;; post_R \ P \ \hat{\ } Suc \ n))
  by (metis (no-types, lifting) Healthy-if NSRD-is-SRD NSRD-power-Suc R1-power assms hyp postR-SRD-R1
upred-semiring.power-Suc wp-rea-impl-lemma)
  have ... = (pre_R \ P \land post_R \ P \ wp_r \ pre_R \ (P \land Suc \ n) \Rightarrow_r post_R \ P \land Suc \ (Suc \ n))
    by (pred-auto)
  also have ... = (pre_R(P^{\hat{}}(Suc\ (Suc\ n))) \Rightarrow_r post_R P^{\hat{}} Suc\ (Suc\ n))
    by (simp add: rdes closure assms)
 finally show ?case by (simp)
qed
lemma postR-power-Suc [rdes]:
  assumes P is NSRD
 \mathbf{shows}\ post_R(P\widehat{\ }(Suc\ n)) = (pre_R(P\widehat{\ }(Suc\ n)) \Rightarrow_r post_R(P)\ \widehat{\ } Suc\ n)
 by (simp add: rdes assms)
lemma power-rdes-def [rdes-def]:
 assumes P is RC Q is RR R is RR \$st' \sharp Q
  shows (\mathbf{R}_s(P \vdash Q \diamond R))^{\hat{}}(Suc\ n)
        =\mathbf{R}_s((\bigsqcup i\in\{0..n\}\cdot(R\hat{\ }i)\ wp_r\ P)\vdash((\bigcap i\in\{0..n\}\cdot R\hat{\ }i)\ ;;\ Q)\diamond(R\hat{\ }Suc\ n))
proof (induct \ n)
  case \theta
  then show ?case
    by (simp add: wp assms closure)
next
  case (Suc \ n)
  have 1: (P \land (\bigsqcup i \in \{0..n\} \cdot R \ wp_r \ (R \hat{\ } i \ wp_r \ P))) = (\bigsqcup i \in \{0..Suc \ n\} \cdot R \hat{\ } i \ wp_r \ P)
    (is ?lhs = ?rhs)
  proof -
    have ?lhs = (P \land (\bigsqcup i \in \{0..n\} \cdot (R \hat{\ } Suc \ i \ wp_r \ P)))
      by (simp add: wp closure assms)
    also have ... = (P \land (| | i \in \{0..n\}, (R \land Suc \ i \ wp_r \ P)))
      by (simp only: USUP-as-Inf-collect)
    also have ... = (P \land (\bigsqcup i \in \{1..Suc\ n\}, (R \land i wp_r\ P)))
      by (metis (no-types, lifting) INF-cong One-nat-def image-Suc-atLeastAtMost image-image)
```

```
by (simp add: wp assms closure conj-upred-def)
   by (simp add: atLeastAtMost-insertL)
   finally show ?thesis
     by (simp add: USUP-as-Inf-collect)
 qed
 have 2: (Q \vee R ;; (\bigcap i \in \{0..n\} \cdot R \hat{i}) ;; Q) = (\bigcap i \in \{0..Suc\ n\} \cdot R \hat{i}) ;; Q
   (is ?lhs = ?rhs)
 proof -
   have ?lhs = (Q \lor (\prod i \in \{0..n\} \cdot R \land Suc i) ;; Q)
    by (simp add: seqr-assoc[THEN sym] seq-UINF-distl)
   also have ... = (Q \lor (\bigcap i \in \{0..n\}. R \land Suc i) ;; Q)
    by (simp only: UINF-as-Sup-collect)
   also have ... = (Q \lor (\bigcap i \in \{1..Suc\ n\}.\ R \hat{i});; Q)
     by (metis One-nat-def image-Suc-atLeastAtMost image-image)
   also have ... = (( \mid i \in insert \ 0 \ \{1..Suc \ n\}. \ R \hat{i}) ;; \ Q)
    by (simp add: disj-upred-def[THEN sym] segr-or-distl)
   by (simp add: atLeastAtMost-insertL)
   finally show ?thesis
     by (simp add: UINF-as-Sup-collect)
 qed
 have \beta: ( \bigcap i \in \{0..n\} \cdot R \hat{i}) ;; Q is RR
 proof -
   by (simp add: UINF-as-Sup-collect)
   by (simp add: atLeastAtMost-insertL)
   also have ... = (Q \lor (\prod i \in \{1..n\}, R \hat{i});; Q)
   by (metis (no-types, lifting) SUP-insert disj-upred-def seqr-left-unit seqr-or-distl upred-semiring.power-0)
   also have ... = (Q \lor (\bigcap i \in \{0... < n\}. R \land Suc i) ;; Q)
   \textbf{by} \ (metis\ One-nat-def\ at Least Less Than Suc-at Least At Most\ image-Suc-at Least Less Than\ image-image)
   also have ... = (Q \lor (\prod i \in \{0... < n\} \cdot R \land Suc\ i) ;;\ Q)
     by (simp add: UINF-as-Sup-collect)
   also have \dots is RR
     by (simp-all add: closure assms)
   finally show ?thesis.
 qed
 from 1 2 3 Suc show ?case
   by (simp add: Suc RHS-tri-normal-design-composition' closure assms wp)
qed
declare upred-semiring.power-Suc [simp del]
theorem uplus-rdes-def [rdes-def]:
 assumes P is RC Q is RR R is RR \$st' <math>\sharp Q
 shows (\mathbf{R}_s(P \vdash Q \diamond R))^+ = \mathbf{R}_s(R^{\star r} wp_r P \vdash R^{\star r} :: Q \diamond R^+)
 have 1:(\prod i \cdot R \hat{\ } i) ;; Q = R^{\star r} ;; Q
   by (metis (no-types) RA1 assms(2) rea-skip-unit(2) rrel-thy.Star-def ustar-alt-def)
 show ?thesis
   by (simp add: uplus-power-def seq-UINF-distr wp closure assms rdes-def)
     (metis 1 seq-UINF-distr')
```

5.1 UTP theory

```
typedecl NSRDES
abbreviation NSRDES \equiv UTHY(NSRDES, ('s, 't::trace, '\alpha) rsp)
overloading
  nsrdes-hcond = utp-hcond :: (NSRDES, ('s,'t::trace,'\alpha) rsp) uthy \Rightarrow (('s,'t,'\alpha) rsp \times ('s,'t,'\alpha) rsp)
health
 nsrdes-unit = utp-unit :: (NSRDES, ('s,'t::trace,'\alpha) rsp) uthy \Rightarrow ('s, 't, '\alpha) hrel-rsp
begin
  definition nsrdes-hcond :: (NSRDES, ('s,'t::trace,'\alpha) rsp) uthy \Rightarrow (('s,'t,'\alpha) rsp \times ('s,'t,'\alpha) rsp)
health where
  [upred-defs]: nsrdes-hcond T = NSRD
 definition nsrdes-unit :: (NSRDES, ('s,'t::trace,'\alpha) rsp) uthy \Rightarrow ('s, 't, '\alpha) hrel-rsp where
 [upred-defs]: nsrdes-unit T = II_R
end
interpretation nsrd-thy: utp-theory-kleene UTHY(NSRDES, ('s,'t::trace,'\alpha) rsp)
 rewrites \bigwedge P. P \in carrier (uthy-order NSRDES) \longleftrightarrow P is NSRD
 and P is \mathcal{H}_{NSRDES} \longleftrightarrow P is NSRD
 and carrier (uthy-order NSRDES) \rightarrow carrier (uthy-order NSRDES) \equiv [\![NSRD]\!]_H \rightarrow [\![NSRD]\!]_H
 and [\mathcal{H}_{NSRDES}]_H \to [\mathcal{H}_{NSRDES}]_H \equiv [NSRD]_H \to [NSRD]_H
 and II_{NSRDES} = II_R
 and le (uthy-order NSRDES) = op \sqsubseteq
  by (unfold-locales, simp-all add: nsrdes-hcond-def nsrdes-unit-def closure Healthy-if SRD-left-unit
NSRD-right-unit)
declare nsrd-thy.top-healthy [simp del]
declare nsrd-thy.bottom-healthy [simp del]
abbreviation TestR (test_R) where
test_R P \equiv utest NSRDES P
abbreviation StarR :: ('s, 't::trace, '\alpha) \ hrel-rsp \Rightarrow ('s, 't, '\alpha) \ hrel-rsp \ (-\star^R \ [999] \ 999) \ where
StarR\ P \equiv P \star_{NSRDES}
lemma StarR-rdes-def [rdes-def]:
 assumes P is RC Q is RR R is RR \$st' \sharp Q
```

 \mathbf{end}

6 Syntax for reactive design contracts

shows $(\mathbf{R}_s(P \vdash Q \diamond R))^{\star R} = \mathbf{R}_s((R^{\star r} wp_r P) \vdash R^{\star r} ;; Q \diamond R^{\star r})$

```
theory utp-rdes-contracts
imports utp-rdes-normal
begin
```

We give an experimental syntax for reactive design contracts $[P \vdash Q|R]_R$, where P is a precondition on undashed state variables only, Q is a pericondition that can refer to the trace and before state but not the after state, and R is a postcondition. Both Q and R can refer only to

by (simp add: rrel-thy.Star-alt-def nsrd-thy.Star-alt-def assms closure rdes-def unrest rpred disj-upred-def)

```
the trace contribution through a HOL variable trace which is bound to &tt.
definition mk-RD :: 's \ upred \Rightarrow ('t::trace \Rightarrow 's \ upred) \Rightarrow ('t \Rightarrow 's \ hrel) \Rightarrow ('s, 't, 'a) \ hrel-rsp \ where
mk-RD P Q R = \mathbf{R}_s(\lceil P \rceil_{S <} \vdash \lceil Q(x) \rceil_{S <} \llbracket x \rightarrow \&tt \rrbracket \diamond \lceil R(x) \rceil_S \llbracket x \rightarrow \&tt \rrbracket)
definition trace-pred :: ('t::trace \Rightarrow 's \ upred) \Rightarrow ('s, 't, '\alpha) \ hrel-rsp \ where
[upred-defs]: trace-pred P = [(P x)]_{S < [x \rightarrow \&tt]}
syntax
  -trace-var :: logic
  -mk-RD :: logic \Rightarrow logic \Rightarrow logic ([-/ \vdash -/ \mid -]_R)
  -trace-pred :: logic \Rightarrow logic ([-]<sub>t</sub>)
parse-translation \langle \langle
let
  fun\ trace-var-tr\ [] = Syntax.free\ trace
    | trace-var-tr - = raise Match;
[(@{syntax-const -trace-var}, K trace-var-tr)]
end
\rangle\rangle
translations
  [P \vdash Q \mid R]_R = > CONST \ mk-RD \ P \ (\lambda \ -trace-var. \ Q) \ (\lambda \ -trace-var. \ R)
  [P \vdash Q \mid R]_R \le CONST \ mk-RD \ P \ (\lambda \ x. \ Q) \ (\lambda \ y. \ R)
  [P]_t = CONST \ trace-pred \ (\lambda \ -trace-var. \ P)
  [P]_t \le CONST \ trace-pred \ (\lambda \ t. \ P)
lemma SRD-mk-RD [closure]: [P \vdash Q(trace) \mid R(trace)]_R is SRD
  by (simp add: mk-RD-def closure unrest)
lemma preR-mk-RD [rdes]: pre_R([P \vdash Q(trace) \mid R(trace) \mid_R) = R1([P]_{S<})
  by (simp add: mk-RD-def rea-pre-RHS-design usubst unrest R2c-not R2c-lift-state-pre)
lemma trace-pred-RR-closed [closure]:
  [P \ trace]_t \ is \ RR
  by (rel-auto)
lemma unrest-trace-pred-st' [unrest]:
  \$st' \sharp [P \ trace]_t
  by (rel-auto)
lemma R2c-msubst-tt: R2c (msubst (\lambda x. \lceil Q x \rceil_S) &tt) = (msubst (\lambda x. \lceil Q x \rceil_S) &tt)
  by (rel-auto)
\mathbf{lemma} \ periR - mk - RD \ [rdes]: periR([P \vdash Q(trace) \mid R(trace) \mid_R) = ([P]_{S<} \Rightarrow_r R1(([Q(trace)]_{S<})[trace \rightarrow \&tt]))
  by (simp add: mk-RD-def rea-peri-RHS-design usubst unrest R2c-not R2c-lift-state-pre
      R2c-disj R2c-msubst-tt R1-disj R2c-rea-impl R1-rea-impl)
\mathbf{lemma} \ postR-mk-RD \ [rdes]: post_R([P \vdash Q(trace) \mid R(trace)]_R) = (\lceil P \rceil_{S<} \Rightarrow_r R1((\lceil R(trace) \rceil_S)[[trace \rightarrow \&tt]]))
```

Refinement introduction law for contracts

lemma *RD-contract-refine*:

by (simp add: mk-RD-def rea-post-RHS-design usubst unrest R2c-not R2c-lift-state-pre

impl-alt-def R2c-disj R2c-msubst-tt R2c-rea-impl R1-rea-impl)

```
assumes
    Q \text{ is } SRD \text{ `}\lceil P_1 \rceil_{S<} \Rightarrow pre_R Q \text{'}
    `\lceil P_1 \rceil_{S<} \land peri_R \ Q \Rightarrow \lceil P_2 \ x \rceil_{S<} \llbracket x \rightarrow \&tt \rrbracket `
    \lceil P_1 \rceil_{S<} \land post_R \ Q \Rightarrow \lceil P_3 \ x \rceil_S \llbracket x \rightarrow \&tt \rrbracket
  shows [P_1 \vdash P_2(trace) \mid P_3(trace)]_R \sqsubseteq Q
proof -
  have [P_1 \vdash P_2(trace) \mid P_3(trace)]_R \sqsubseteq \mathbf{R}_s(pre_R(Q) \vdash peri_R(Q) \diamond post_R(Q))
   using assms
   by (simp add: mk-RD-def, rule-tac srdes-tri-refine-intro, simp-all)
  thus ?thesis
   by (simp \ add: SRD\text{-}reactive\text{-}tri\text{-}design \ assms(1))
qed
end
7
      Reactive design tactics
theory utp-rdes-tactics
 imports utp-rdes-triples
begin
Theorems for normalisation
lemmas rdes-rel-norms =
  prod.case-eq-if
  conj-assoc
  disj-assoc
  conj-UINF-dist
  conj-UINF-ind-dist
  segr-or-distl
  segr-or-distr
  seq	ext{-}UINF	ext{-}distl
  seq-UINF-distl'
  seq	ext{-}UINF	ext{-}distr
  seq-UINF-distr'
The following tactic can be used to simply and evaluate reactive predicates.
method rpred-simp = (uexpr-simp simps: rpred usubst closure unrest)
Tactic to expand out healthy reactive design predicates into the syntactic triple form.
method rdes-expand uses cls = (insert \ cls, (erule \ RD-elim)+)
Tactic to simplify the definition of a reactive design
method rdes-simp uses cls cong simps =
  ((rdes-expand cls: cls)?, (simp add: rdes-def rdes-rel-norms rdes rpred cls closure alpha usubst unrest
wp simps cong: cong))
Tactic to split a refinement conjecture into three POs
method rdes-refine-split uses cls cong simps =
  (rdes-simp cls: cls cong: cong simps: simps; rule-tac srdes-tri-refine-intro)
Tactic to split an equality conjecture into three POs
method rdes-eq-split uses cls cong simps =
```

(rdes-simp cls: cls cong: cong simps: simps; (rule-tac srdes-tri-eq-intro))

```
Tactic to prove a refinement
method rdes-refine uses cls conq simps =
 (rdes-simp cls: cls conq: conq simps: simps; rule-tac srdes-tri-refine-intro; (insert cls; rel-auto))
Tactics to prove an equality
method rdes-eq uses cls cong simps =
 (rdes-simp cls: cls conq: conq simps: simps; (rule-tac srdes-tri-eq-intro; rel-auto))
Via antisymmetry
method rdes-eq-anti uses cls cong simps =
 (rdes-simp cls: cls cong: cong simps: simps; (rule-tac antisym; (rule-tac srdes-tri-refine-intro; rel-auto)))
Tactic to calculate pre/peri/postconditions from reactive designs
method rdes-calc = (simp add: rdes rpred closure alpha usubst unrest wp prod.case-eq-if)
The following tactic attempts to prove a reactive design refinement by calculation of the pre-,
peri-, and postconditions and then showing three implications between them using rel-blast.
method rdspl-refine =
 (rule-tac SRD-refine-intro; (simp add: closure rdes unrest usubst; rel-blast?))
The following tactic combines antisymmetry with the previous tactic to prove an equality.
method rdspl-eq =
 (rule-tac antisym, rdes-refine, rdes-refine)
end
8
     Reactive design parallel-by-merge
theory utp-rdes-parallel
 imports
   utp-rdes-normal
   utp-rdes-tactics
begin
R3h implicitly depends on RD1, and therefore it requires that both sides be RD1. We also
require that both sides are R3c, and that wait_m is a quasi-unit, and div_m yields divergence.
lemma st-U0-alpha: [\exists \$st \cdot II]_0 = (\exists \$st \cdot [II]_0)
 by (rel-auto)
lemma st-U1-alpha: [\exists \$st \cdot II]_1 = (\exists \$st \cdot [II]_1)
 by (rel-auto)
definition skip-rm :: ('s,'t::trace,'\alpha) rsp merge (II_{RM}) where
 [upred-defs]: II_{RM} = (\exists \$st_{<} \cdot skip_m \lor (\neg \$ok_{<} \land \$tr_{<} \leq_u \$tr'))
definition [upred-defs]: R3hm(M) = (II_{RM} \triangleleft \$wait_{<} \triangleright M)
lemma R3hm-idem: R3hm(R3hm(P)) = R3hm(P)
 by (rel-auto)
```

lemma R3h-par-by-merge [closure]:

shows $(P \parallel_M Q)$ is R3h

assumes P is R3h Q is R3h M is R3hm

```
proof -
     \mathbf{have} \ (P \parallel_M Q) = (((P \parallel_M Q)\llbracket true /\$ok \rrbracket) \triangleleft \$ok \rhd (P \parallel_M Q)\llbracket false /\$ok \rrbracket) \llbracket true /\$wait \rrbracket \triangleleft \$wait \rhd (P \parallel_M Q) \llbracket false /\$ok \rrbracket) \rrbracket 
        by (simp add: cond-var-subst-left cond-var-subst-right)
     also have ... = (((P \parallel_M Q)[true, true/\$ok, \$wait]] \triangleleft \$ok \triangleright (P \parallel_M Q)[false, true/\$ok, \$wait]) \triangleleft \$wait
\triangleright (P \parallel_M Q))
        by (rel-auto)
    \textbf{also have} \ \dots = (((\exists \$st \cdot H)[[true, true/\$ok, \$wait]] \triangleleft \$ok \rhd (P \parallel_M Q)[[false, true/\$ok, \$wait]]) \triangleleft \$wait) \land (P \parallel_M Q)[[false, true/\$ok, \$wait]]) \land (P \parallel_M Q)[[false, true/$ok, \$wait]]) \land (P \parallel_M Q)[[false, t
\triangleright (P \parallel_M Q))
    proof
     \mathbf{have} \ (P \parallel_M Q) \llbracket true, true / \$ok, \$wait \rrbracket = ((\lceil P \rceil_0 \land \lceil Q \rceil_1 \land \$\mathbf{v}_{<}' =_u \$\mathbf{v}) \ ;; R3hm(M)) \llbracket true, true / \$ok, \$wait \rrbracket
             by (simp add: par-by-merge-def U0-as-alpha U1-as-alpha assms Healthy-if)
        also have ... = (([P]_0 \land [Q]_1 \land \$\mathbf{v}_{<'} =_u \$\mathbf{v}) ;; (\exists \$st_{<} \cdot \$\mathbf{v}' =_u \$\mathbf{v}_{<}))[[true, true/\$ok, \$wait]]
             by (rel-blast)
      also have ... = ((\lceil R3h(P) \rceil_0 \land \lceil R3h(Q) \rceil_1 \land \$\mathbf{v}_{<}' =_u \$\mathbf{v});; (\exists \$st_{<} \cdot \$\mathbf{v}' =_u \$\mathbf{v}_{<})) \llbracket true, true/\$ok, \$wait \rrbracket
             by (simp add: assms Healthy-if)
        also have ... = (\exists \$st \cdot II) \llbracket true, true / \$ok, \$wait \rrbracket
             by (rel-auto)
        finally show ?thesis by (simp add: closure assms unrest)
    also have ... = (((\exists \$st \cdot II)[true,true/\$ok,\$wait]] \triangleleft \$ok \triangleright (R1(true))[false,true/\$ok,\$wait]) \triangleleft \$wait)
\triangleright (P \parallel_M Q))
    proof -
     \mathbf{have}\;(P\parallel_M Q)\llbracket \mathit{false}, \mathit{true}/\$\mathit{ok}, \$\mathit{wait} \rrbracket = ((\lceil P \rceil_0 \wedge \lceil Q \rceil_1 \wedge \$\mathbf{v}_{<} ' =_u \$\mathbf{v}) \; ; \; R3\mathit{hm}(M)) \llbracket \mathit{false}, \mathit{true}/\$\mathit{ok}, \$\mathit{wait} \rrbracket
             by (simp add: par-by-merge-def U0-as-alpha U1-as-alpha assms Healthy-if)
        also have ... = ((\lceil P \rceil_0 \land \lceil Q \rceil_1 \land \$\mathbf{v}_{<'} =_u \$\mathbf{v}) ;; (\$tr_{<} \leq_u \$tr')) \llbracket false, true/\$ok, \$wait \rrbracket
            by (rel-blast)
        also have ... = ((\lceil R3h(P) \rceil_0 \land \lceil R3h(Q) \rceil_1 \land \$\mathbf{v}_{<'} =_u \$\mathbf{v}) ;; (\$tr_{<} \leq_u \$tr')) \llbracket false, true/\$ok, \$wait \rrbracket
            by (simp add: assms Healthy-if)
        also have ... = (R1(true)) [false, true/$ok, $wait]
            by (rel-blast)
        finally show ?thesis by simp
    also have ... = (((\exists \$st \cdot II) \triangleleft \$ok \triangleright R1(true)) \triangleleft \$wait \triangleright (P \parallel_M Q))
        by (rel-auto)
     also have ... = R3h(P \parallel_M Q)
        by (simp add: R3h-cases)
    finally show ?thesis
        by (simp add: Healthy-def)
definition [upred-defs]: RD1m(M) = (M \lor \neg \$ok_{<} \land \$tr_{<} \le_{u} \$tr')
lemma RD1-par-by-merge [closure]:
    assumes P is R1 Q is R1 M is R1m P is RD1 Q is RD1 M is RD1m
    shows (P \parallel_M Q) is RD1
proof -
    have 1: (RD1(R1(P)) \parallel_{RD1m(R1m(M))} RD1(R1(Q))) \llbracket false / \$ok \rrbracket = R1(true)
        by (rel-blast)
    \mathbf{have}\ (P\parallel_M Q) = (P\parallel_M Q) \llbracket true/\$ok \rrbracket \, \triangleleft \, \$ok \rhd (P\parallel_M Q) \llbracket false/\$ok \rrbracket
        by (simp add: cond-var-split)
    also have ... = R1(P \parallel_M Q) \triangleleft \$ok \triangleright R1(true)
        by (metis 1 Healthy-if R1-par-by-merge assms calculation
                               cond-idem cond-var-subst-right in-var-uvar ok-vwb-lens)
    also have ... = RD1(P \parallel_M Q)
```

```
by (simp\ add:\ Healthy-if\ R1-par-by-merge\ RD1-alt-def\ assms(3))
 finally show ?thesis
   by (simp add: Healthy-def)
qed
lemma RD2-par-by-merge [closure]:
 assumes M is RD2
 shows (P \parallel_M Q) is RD2
proof -
 have (P \parallel_M Q) = ((P \parallel_s Q) ;; M)
   by (simp add: par-by-merge-def)
 also from assms have ... = ((P \parallel_s Q) ;; (M ;; J))
   by (simp add: Healthy-def' RD2-def H2-def)
 also from assms have ... = (((P \parallel_s Q) ;; M) ;; J)
   by (simp add: seqr-assoc)
 also from assms have ... = RD2(P \parallel_M Q)
   by (simp add: RD2-def H2-def par-by-merge-def)
 finally show ?thesis
   by (simp add: Healthy-def')
\mathbf{qed}
lemma SRD-par-by-merge:
 assumes P is SRD Q is SRD M is R1m M is R2m M is R3hm M is RD1m M is RD2
 shows (P \parallel_M Q) is SRD
 by (rule SRD-intro, simp-all add: assms closure SRD-healths)
definition nmerge-rd\theta (N_0) where
[upred-defs]: N_0(M) = (\$wait' =_u (\$0-wait \lor \$1-wait) \land \$tr_{<} \leq_u \$tr'
                      \land (\exists \$0-ok;\$1-ok;\$ok<;\$ok';\$0-wait;\$1-wait;\$wait<;\$wait' \cdot M))
definition nmerge-rd1 (N_1) where
[\mathit{upred-defs}] \colon \mathit{N}_{1}(\mathit{M}) = (\$\mathit{ok}\, ' =_{\mathit{u}} (\$\mathit{0} - \mathit{ok}\, \wedge\, \$\mathit{1} - \mathit{ok})\, \wedge\, \mathit{N}_{0}(\mathit{M}))
definition nmerge-rd (N_R) where
[upred-defs]: N_R(M) = ((\exists \$st_< \cdot \$\mathbf{v'} =_u \$\mathbf{v}_<) \triangleleft \$wait_< \triangleright N_1(M)) \triangleleft \$ok_< \triangleright (\$tr_< \le_u \$tr')
definition merge-rd1 (M_1) where
[upred-defs]: M_1(M) = (N_1(M) ;; II_R)
definition merge-rd (M_R) where
[upred-defs]: M_R(M) = N_R(M);; II_R
abbreviation rdes-par (- \parallel_{R-} - [85,0,86] 85) where
P \parallel_{RM} Q \equiv P \parallel_{M_R(M)} Q
Healthiness condition for reactive design merge predicates
definition [upred-defs]: RDM(M) = R2m(\exists \$0-ok;\$1-ok;\$ok';\$0-wait;\$1-wait;\$wait';\$wait'
• M)
lemma nmerge-rd-is-R1m [closure]:
 N_R(M) is R1m
 by (rel-blast)
lemma R2m-nmerge-rd: R2m(N_R(R2m(M))) = N_R(R2m(M))
 apply (rel-auto) using minus-zero-eq by blast+
```

```
lemma nmerge-rd-is-R2m [closure]:
 M \text{ is } R2m \Longrightarrow N_R(M) \text{ is } R2m
 by (metis Healthy-def' R2m-nmerge-rd)
lemma nmerge-rd-is-R3hm [closure]: N_R(M) is R3hm
 by (rel-blast)
lemma nmerge-rd-is-RD1m [closure]: N_R(M) is RD1m
 by (rel-blast)
lemma merge-rd-is-RD3: M_R(M) is RD3
 by (metis Healthy-Idempotent RD3-Idempotent RD3-def merge-rd-def)
lemma merge-rd-is-RD2: M_R(M) is RD2
 by (simp add: RD3-implies-RD2 merge-rd-is-RD3)
lemma par-rdes-NSRD [closure]:
 assumes P is SRD Q is SRD M is RDM
 shows P \parallel_{RM} Q is NSRD
proof -
 have (P \parallel_{N_R M} Q ;; II_R) is NSRD
   by (rule NSRD-intro', simp-all add: SRD-healths closure assms)
      (metis (no-types, lifting) Healthy-def R2-par-by-merge R2-seqr-closure R2m-nmerge-rd RDM-def
SRD-healths(2) assms skip-srea-R2
     , metis Healthy-Idempotent RD3-Idempotent RD3-def)
 thus ?thesis
   by (simp add: merge-rd-def par-by-merge-def seqr-assoc)
lemma RDM-intro:
 assumes M is R2m \$0-ok \ddagger M \$1-ok \ddagger M \$ok < \sharp M \$ok ' \ddagger M
        \$0-wait \sharp M \$1-wait \sharp M \$wait < \sharp M \$wait ' \sharp M
 shows M is RDM
 using assms
 by (simp add: Healthy-def RDM-def ex-unrest unrest)
lemma RDM-unrests [unrest]:
 assumes M is RDM
 shows \$0-ok \sharp M \$1-ok \sharp M \$ok < \sharp M \$ok' \sharp M
      \$0-wait \sharp M \$1-wait \sharp M \$wait < \sharp M \$wait ' \sharp M
 by (subst Healthy-if [OF assms, THEN sym], simp-all add: RDM-def unrest, rel-auto)+
lemma RDM-R1m [closure]: M is RDM \implies M is R1m
 by (metis (no-types, hide-lams) Healthy-def R1m-idem R2m-def RDM-def)
lemma RDM-R2m [closure]: M is RDM \Longrightarrow M is R2m
 by (metis (no-types, hide-lams) Healthy-def R2m-idem RDM-def)
lemma ex-st'-R2m-closed [closure]:
 assumes P is R2m
 shows (\exists \$st' \cdot P) is R2m
proof -
 have R2m(\exists \$st' \cdot R2m P) = (\exists \$st' \cdot R2m P)
   by (rel-auto)
```

```
thus ?thesis
    by (metis Healthy-def' assms)
qed
lemma parallel-RR-closed:
  assumes P is RR Q is RR M is R2m
           \$ok < \sharp M \$wait < \sharp M \$ok ' \sharp M \$wait ' \sharp M
  shows P \parallel_M Q is RR
  by (rule RR-R2-intro, simp-all add: unrest assms RR-implies-R2 closure)
lemma parallel-ok-cases:
((P \parallel_s Q) ;; M) = (
  ((P^t \parallel_s Q^t) ;; (M[true, true/\$0 - ok, \$1 - ok])) \vee
  ((P^f \parallel_s Q^t) ;; (M[false, true/\$0 - ok, \$1 - ok])) \vee
  (P^t \parallel_s Q^f) ;; (M[true,false/\$0-ok,\$1-ok])) \lor
  ((P^f \parallel_s Q^f) :: (M \llbracket false, false / \$0 - ok, \$1 - ok \rrbracket)))
proof -
  \mathbf{have} \ ((P \parallel_{s} \ Q) \ ;; \ M) = (\exists \ ok_{0} \cdot (P \parallel_{s} \ Q) [\![ \ll ok_{0} \gg /\$\theta - ok \, \H] \ ;; \ M [\![ \ll ok_{0} \gg /\$\theta - ok \, \rrbracket])
    by (subst segr-middle[of left-uvar ok], simp-all)
 also have ... = (\exists ok_0 \cdot \exists ok_1 \cdot ((P \parallel_s Q) \llbracket \langle ok_0 \rangle / \$0 - ok' \rrbracket \llbracket \langle ok_1 \rangle / \$1 - ok' \rrbracket) ;; (M \llbracket \langle ok_0 \rangle / \$0 - ok \rrbracket \llbracket \langle ok_1 \rangle / \$1 - ok \rrbracket))
    by (subst seqr-middle[of right-uvar ok], simp-all)
 \textbf{also have} \ ... = (\exists \ ok_0 \cdot \exists \ ok_1 \cdot (P[\ll ok_0 \gg /\$ok \, \check{} \ ]) \parallel_s Q[\ll ok_1 \gg /\$ok \, \check{} \ ]) \ ;; \ (M[\ll ok_0 \gg , \ll ok_1 \gg /\$0 - ok, \$1 - ok]))
    by (rel-auto robust)
  also have \dots = (
      ((P^t \parallel_s Q^t) ;; (M[true, true/\$0 - ok, \$1 - ok])) \vee
      ((P^f \parallel_s Q^t) ;; (M[false, true/\$0 - ok, \$1 - ok])) \lor
      (P^t \parallel_s Q^f) :: (M \llbracket true, false / \$0 - ok, \$1 - ok \rrbracket)) \vee
      (P^f \parallel_s Q^f) ;; (M \llbracket false, false/\$0 - ok, \$1 - ok \rrbracket)))
    by (simp add: true-alt-def [THEN sym] false-alt-def [THEN sym] disj-assoc
      utp-pred-laws.sup.left-commute utp-pred-laws.sup-commute usubst)
  finally show ?thesis.
qed
lemma skip-srea-ok-f [usubst]:
  II_R{}^f = R1(\neg\$ok)
  by (rel-auto)
lemma nmerge0-rd-unrest [unrest]:
  \$0-ok \sharp N_0 M \$1-ok \sharp N_0 M
  by (pred-auto)+
lemma parallel-assm-lemma:
  assumes P is RD2
  shows pre_s \dagger (P \parallel_{M_R(M)} Q) = (((pre_s \dagger P) \parallel_{N_0(M) ;; R1(true)} (cmt_s \dagger Q))
                                     \forall ((cmt_s \dagger P) \parallel_{N_0(M)} :: R1(true) (pre_s \dagger Q)))
proof -
  \mathbf{have}\ pre_s \dagger (P \parallel_{M_R(M)} Q) = pre_s \dagger ((P \parallel_s Q) \ ;; \ M_R(M))
    \mathbf{by}\ (simp\ add\colon par\text{-}by\text{-}merge\text{-}def)
  also have ... = ((P \parallel_s Q)[true,false/\$ok,\$wait];; N_R M ;; R1(\neg \$ok))
    by (simp add: merge-rd-def usubst, rel-auto)
  also have ... = ((P[true,false/\$ok,\$wait]) \parallel_s Q[true,false/\$ok,\$wait]);; N_1(M);; R_1(\neg \$ok))
    by (rel-auto\ robust,\ (metis)+)
  also have \dots = ((
       (((P[true,false/\$ok,\$wait])^t \parallel_s (Q[true,false/\$ok,\$wait])^t) ;; ((N_1 M)[true,true/\$0-ok,\$1-ok])^t) ;
;; R1(\neg \$ok))) \lor
```

```
(((P[true,false/\$ok,\$wait])^f \parallel_s (Q[true,false/\$ok,\$wait])^t);;((N_1 M)[false,true/\$0-ok,\$1-ok])^t)
;; R1(\neg \$ok))) \lor
     (((P[true,false/\$ok,\$wait])^t \parallel_s (Q[true,false/\$ok,\$wait])^f);;((N_1 M)[true,false/\$0-ok,\$1-ok])^f)
R1(\neg \$ok)) \lor
     (((P[true,false/\$ok,\$wait])^f \parallel_s (Q[true,false/\$ok,\$wait])^f);;((N_1 M)[false,false/\$0-ok,\$1-ok]]
;; R1(\neg \$ok)))))
   (\mathbf{is} -= (?C1 \vee_p ?C2 \vee_p ?C3 \vee_p ?C4))
   by (subst parallel-ok-cases, subst-tac)
 also have ... = (?C2 \lor ?C3)
 proof -
   have ?C1 = false
     by (rel-auto)
   moreover have ?C4 \Rightarrow ?C3 (is (?A;;?B) \Rightarrow (?C;;?D))
   proof -
     from assms have P^f \Rightarrow P^t.
       by (metis RD2-def H2-equivalence Healthy-def')
     hence P: P^f_f \Rightarrow P^t_f
       by (rel-auto)
     have ?A \Rightarrow ?C
       using P by (rel-auto)
     moreover have ?B \Rightarrow ?D
       by (rel-auto)
     ultimately show ?thesis
       by (simp add: impl-seqr-mono)
   qed
   ultimately show ?thesis
     by (simp add: subsumption2)
 qed
 also have \dots = (
     (((pre_s \dagger P) \parallel_s (cmt_s \dagger Q)) ;; ((N_0 M ;; R1(true)))) \lor
     (((cmt_s \dagger P) \parallel_s (pre_s \dagger Q)) ;; ((N_0 M ;; R1(true)))))
   by (rel-auto, metis+)
 also have \dots = (
     ((pre_s \dagger P) \parallel_{N_0 M};; R1(true) (cmt_s \dagger Q)) \lor
     ((cmt_s \dagger P) \parallel_{N_0 M ;; R1(true)} (pre_s \dagger Q)))
   by (simp add: par-by-merge-def)
 finally show ?thesis.
qed
lemma pre_s-SRD:
 assumes P is SRD
 shows pre_s \dagger P = (\neg_r \ pre_R(P))
proof -
 have pre_s \dagger P = pre_s \dagger \mathbf{R}_s(pre_R P \vdash peri_R P \diamond post_R P)
   by (simp add: SRD-reactive-tri-design assms)
 also have ... = R1(R2c(\neg pre_s \dagger pre_R P))
   by (simp add: RHS-def usubst R3h-def pre<sub>s</sub>-design)
 also have ... = R1(R2c(\neg pre_R P))
   by (rel-auto)
 also have ... = (\neg_r \ pre_R \ P)
   by (simp add: R2c-not R2c-preR assms rea-not-def)
 finally show ?thesis.
qed
```

```
lemma parallel-assm:
  assumes P is SRD Q is SRD
  shows pre_R(P \parallel_{M_R(M)} Q) = (\neg_r ((\neg_r pre_R(P)) \parallel_{N_0(M)} :: R1(true) cmt_R(Q)) \land
                                    \neg_r \left( cmt_R(P) \parallel_{N_0(M) \ ;; \ R1(true)} (\neg_r \ pre_R(Q))) \right)
  (is ?lhs = ?rhs)
proof -
  have pre_R(P \parallel_{M_R(M)} Q) = (\neg_r (pre_s \dagger P) \parallel_{N_0 M} ;; R1 true (cmt_s \dagger Q) \land
                              \neg_r (cmt_s \dagger P) \parallel_{N_0 M :: R1 \ true} (pre_s \dagger Q))
    by (simp add: pre<sub>R</sub>-def parallel-assm-lemma assms SRD-healths R1-conj rea-not-def [THEN sym])
  also have \dots = ?rhs
    by (simp add: pre_s-SRD assms cmt_R-def Healthy-if closure unrest)
  finally show ?thesis.
qed
lemma parallel-assm-unrest-wait' [unrest]:
  \llbracket P \text{ is } SRD; Q \text{ is } SRD \rrbracket \Longrightarrow \$wait' \sharp pre_R(P \parallel_{M_R(M)} Q)
  by (simp add: parallel-assm, simp add: par-by-merge-def unrest)
lemma JL1: (M_1 \ M)^t [false, true/\$0 - ok, \$1 - ok] = N_0(M) ;; R1(true)
  by (rel-blast)
lemma JL2: (M_1 \ M)^t [true, false/\$0 - ok, \$1 - ok] = N_0(M) ;; R1(true)
  by (rel-blast)
lemma JL3: (M_1 \ M)^t [false, false/\$0 - ok, \$1 - ok] = N_0(M) ;; R1(true)
 by (rel-blast)
lemma JL_4: (M_1 M)^t [true, true/\$0 - ok, \$1 - ok] = (\$ok' \land N_0 M) ;; <math>II_R^t
  by (simp add: merge-rd1-def usubst nmerge-rd1-def unrest)
{\bf lemma}\ parallel-commitment-lemma-1:
  assumes P is RD2
  shows cmt_s \dagger (P \parallel_{M_R(M)} Q) = (
 ((cmt_s \dagger P) \parallel_{(\$ok' \land N_0 M) ;; H_R^t} (cmt_s \dagger Q)) \lor
  ((pre_s \dagger P) \parallel_{N_0(M) ;; R1(true)} (cmt_s \dagger Q)) \lor
  ((cmt_s \dagger P) \parallel_{N_0(M) :: R1(true)} (pre_s \dagger Q)))
proof -
  have cmt_s \dagger (P \parallel_{M_R(M)} Q) = (P[[true,false/\$ok,\$wait]] \parallel_{(M_1(M))^t} Q[[true,false/\$ok,\$wait]])
    by (simp add: usubst, rel-auto)
  also have ... = ((P[true,false/\$ok,\$wait]) \parallel_s Q[true,false/\$ok,\$wait]);; (M_1 M)^t)
    by (simp add: par-by-merge-def)
  also have \dots = (
      (((cmt_s \dagger P) \parallel_s (cmt_s \dagger Q)) ;; ((M_1 M)^t \llbracket true, true / \$0 - ok, \$1 - ok \rrbracket)) \lor
      (((pre_s \dagger P) \parallel_s (cmt_s \dagger Q)) ;; ((M_1 M)^t \llbracket false, true/\$0 - ok, \$1 - ok \rrbracket)) \lor
      (((cmt_s \dagger P) \parallel_s (pre_s \dagger Q)) \; ;; \; ((M_1 \; M)^t \llbracket true, false / \$0 - ok, \$1 - ok \rrbracket)) \; \lor \;
      (((pre_s \dagger P) \parallel_s (pre_s \dagger Q)) ;; ((M_1 M)^t \llbracket false, false/\$0 - ok, \$1 - ok \rrbracket)))
    by (subst parallel-ok-cases, subst-tac)
  also have \dots = (
      (((pre_s \dagger P) \parallel_s (cmt_s \dagger Q)) ;; (N_0(M) ;; R1(true))) \lor
      (((cmt_s \dagger P) \parallel_s (pre_s \dagger Q)) ;; (N_0(M) ;; R1(true))) \vee
      (((pre_s \dagger P) \parallel_s (pre_s \dagger Q)) ;; (N_0(M) ;; R1(true))))
      (is - = (?C1 \lor_p ?C2 \lor_p ?C3 \lor_p ?C4))
```

```
by (simp add: JL1 JL2 JL3)
  also have \dots = (
     (((cmt_s \dagger P) \parallel_s (cmt_s \dagger Q)) ;; ((M_1(M))^t \llbracket true, true / \$0 - ok, \$1 - ok \rrbracket)) \vee \\
     (((pre_s \dagger P) \parallel_s (cmt_s \dagger Q)) ;; (N_0(M) ;; R1(true))) \lor
     (((cmt_s \dagger P) \parallel_s (pre_s \dagger Q)) ;; (N_0(M) ;; R1(true))))
  proof -
   from assms have 'P^f \Rightarrow P^t'
     by (metis RD2-def H2-equivalence Healthy-def')
   hence P: P^f_f \Rightarrow P^t_f
     by (rel-auto)
   have '?C4 \Rightarrow ?C3' (is '(?A;; ?B) \Rightarrow (?C;; ?D)')
   proof -
     have '?A \Rightarrow ?C'
       using P by (rel-auto)
     thus ?thesis
       by (simp add: impl-seqr-mono)
   qed
   thus ?thesis
     by (simp add: subsumption2)
  qed
  finally show ?thesis
   by (simp add: par-by-merge-def JL4)
qed
lemma parallel-commitment-lemma-2:
  assumes P is RD2
  shows cmt_s \dagger (P \parallel_{M_R(M)} Q) =
        (((cmt_s \dagger P) \parallel_{(\$ok' \land N_0 M) ;; II_R^t} (cmt_s \dagger Q)) \lor pre_s \dagger (P \parallel_{M_R(M)} Q))
  by (simp add: parallel-commitment-lemma-1 assms parallel-assm-lemma)
lemma parallel-commitment-lemma-3:
  M \text{ is } R1m \Longrightarrow (\$ok' \land N_0 M) ;; II_R^t \text{ is } R1m
  by (rel\text{-}simp, safe, metis+)
lemma parallel-commitment:
  assumes P is SRD Q is SRD M is RDM
 \mathbf{shows}\ cmt_R(P\parallel_{M_R(M)} Q) = (pre_R(P\parallel_{M_R(M)} Q) \Rightarrow_r cmt_R(P)\parallel_{(\$ok'\land N_0\ M)\ ;;\ II_R} t\ cmt_R(Q))
 by (simp add: parallel-commitment-lemma-2 parallel-commitment-lemma-3 Healthy-if assms cmt_R-def
pre<sub>s</sub>-SRD closure rea-impl-def disj-comm unrest)
theorem parallel-reactive-design:
  assumes P is SRD Q is SRD M is RDM
 shows (P \parallel_{M_R(M)} Q) = \mathbf{R}_s(
   (\neg_r ((\neg_r pre_R(P)) \parallel_{N_0(M) ;; R1(true)} cmt_R(Q)) \land
    \neg_r \left( cmt_R(P) \parallel_{N_0(M) ;; R1(true)} (\neg_r \ pre_R(Q))) \right) \vdash
   (cmt_R(P) \parallel_{(\$ok' \land N_0 M) ;; II_R^t} cmt_R(Q))) (is ?lhs = ?rhs)
proof -
 have (P \parallel_{M_R(M)} Q) = \mathbf{R}_s(pre_R(P \parallel_{M_R(M)} Q) \vdash cmt_R(P \parallel_{M_R(M)} Q))
  by (metis Healthy-def NSRD-is-SRD SRD-as-reactive-design assms(1) assms(2) assms(3) par-rdes-NSRD)
  also have \dots = ?rhs
   by (simp add: parallel-assm parallel-commitment design-export-spec assms, rel-auto)
  finally show ?thesis.
qed
```

```
lemma parallel-pericondition-lemma1:
     (\$ok' \land P) ; II_R[[true, true/\$ok', \$wait']] = (\exists \$st' \cdot P)[[true, true/\$ok', \$wait']]
proof -
     have ?lhs = (\$ok' \land P) ;; (\exists \$st \cdot II) \llbracket true, true/\$ok', \$wait' \rrbracket
         bv (rel-blast)
     also have \dots = ?rhs
         by (rel-auto)
    finally show ?thesis.
qed
\textbf{lemma} \ \textit{parallel-pericondition-lemma2} :
     assumes M is RDM
     shows (\exists \$st' \cdot N_0(M))[true, true/\$ok', \$wait'] = ((\$\theta - wait \lor \$1 - wait) \land (\exists \$st' \cdot M))
proof -
     have (\exists \$st' \cdot N_0(M))[true, true/\$ok', \$wait'] = (\exists \$st' \cdot (\$0 - wait \lor \$1 - wait) \land \$tr' \ge_u \$tr_<)
\wedge M)
         by (simp add: usubst unrest nmerge-rd0-def ex-unrest Healthy-if R1m-def assms)
     also have ... = (\exists \$st' \cdot (\$\theta - wait \lor \$1 - wait) \land M)
      by (metis (no-types, hide-lams) Healthy-if R1m-def R1m-idem R2m-def RDM-def assms utp-pred-laws.inf-commute)
     also have ... = ((\$\theta - wait \lor \$1 - wait) \land (\exists \$st' \cdot M))
         by (rel-auto)
     finally show ?thesis.
qed
lemma parallel-pericondition-lemma3:
     ((\$0 - wait \lor \$1 - wait) \land (\exists \$st' \cdot M)) = ((\$0 - wait \land \$1 - wait \land (\exists \$st' \cdot M)) \lor (\neg \$0 - wait \land (\exists \$st' \cdot M))) \lor (\neg \$0 - wait \land (\exists \$st' \cdot M))
\$1-wait \land (\exists \$st' \cdot M)) \lor (\$0-wait \land \neg \$1-wait \land (\exists \$st' \cdot M)))
    by (rel-auto)
lemma parallel-pericondition [rdes]:
     fixes M :: ('s, 't :: trace, '\alpha) \ rsp \ merge
     assumes P is SRD Q is SRD M is RDM
    \mathbf{shows} \ peri_R(P \parallel_{M_R(M)} Q) = (pre_R \ (P \parallel_{M_R \ M} Q) \Rightarrow_r peri_R(P) \parallel_{\exists \ \$st'} . \ _{M} \ peri_R(Q)
                                                                                                                        \begin{array}{c|c} \vee \ post_R(P) \parallel_{\exists \ \$st' \cdot M} \ peri_R(Q) \\ \vee \ peri_R(P) \parallel_{\exists \ \$st' \cdot M} \ post_R(Q)) \end{array} 
proof -
     have peri_R(P \parallel_{M_R(M)} Q) =
                   (pre_R \ (P \parallel_{M_R \ M} Q) \Rightarrow_r cmt_R P \parallel_{(\$ok' \land N_0 \ M)};; II_R \llbracket true, true/\$ok', \$wait' \rrbracket \ cmt_R \ Q)
         by (simp add: peri-cmt-def parallel-commitment SRD-healths assms usubst unrest assms)
    \textbf{also have} \ ... = (pre_R \ (P \parallel_{M_R \ M} \ Q) \Rightarrow_r cmt_R \ P \parallel_{(\exists \ \$st' \ \cdot \ N_0 \ M)[[true, true/\$ok', \ \$wait']]} \ cmt_R \ Q)
         by (simp add: parallel-pericondition-lemma1)
     also have ... = (pre_R \ (P \parallel_{M_R \ M} \ Q) \Rightarrow_r cmt_R \ P \parallel_{(\$\theta-wait \ \lor \$1-wait) \ \land \ (\exists \ \$st' \ . \ M)} \ cmt_R \ Q)
         by (simp add: parallel-pericondition-lemma2 assms)
     \textbf{also have} \ ... = (pre_R \ (P \parallel_{M_R \ M} \ Q) \Rightarrow_r ((\lceil cmt_R \ P \rceil_0 \ \land \ \lceil cmt_R \ Q \rceil_1 \ \land \ \$\mathbf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\$\theta - wait \ \land \ \mathsf{v}_{<} \ ' =_u \ \mathsf{v}_{<} \ ' =_u \ \mathsf{v}_{<} \ )
\$1-wait \land (\exists \$st' \cdot M))
                                                                                             \vee (\lceil cmt_R \ P \rceil_0 \wedge \lceil cmt_R \ Q \rceil_1 \wedge \$\mathbf{v}_{\leq'} =_u \$\mathbf{v}) ;; (\neg \$\theta - wait \wedge \$1 - wait)
\wedge (\exists \$st' \cdot M))
                                                                                             \vee (\lceil cmt_R \ P \rceil_0 \wedge \lceil cmt_R \ Q \rceil_1 \wedge \$\mathbf{v} \leq =_u \$\mathbf{v}) ;; (\$\theta - wait \wedge \neg \$1 - wait)
\wedge (\exists \$st' \cdot M)))
         by (simp add: par-by-merge-alt-def parallel-pericondition-lemma3 seqr-or-distr)
    \textbf{also have} \ \dots = (\textit{pre}_R \ (P \parallel_{M_R \ M} Q) \Rightarrow_r ((\lceil \textit{peri}_R \ P \rceil_0 \ \land \ \lceil \textit{peri}_R \ Q \rceil_1 \ \land \ \$\mathbf{v}_{<} \ ' =_u \ \$\mathbf{v}) \ ;; \ (\exists \ \$\textit{st} \ ' \cdot M)
                                                                                              \bigvee \left( \lceil post_R \ P \rceil_0 \land \lceil peri_R \ Q \rceil_1 \land \$\mathbf{v}_{<'} =_u \$\mathbf{v} \right) ;; (\exists \$st' \cdot M) 
 \vee \left( \lceil peri_R \ P \rceil_0 \land \lceil post_R \ Q \rceil_1 \land \$\mathbf{v}_{<'} =_u \$\mathbf{v} \right) ;; (\exists \$st' \cdot M)) 
       by (simp add: seqr-right-one-point-true seqr-right-one-point-false cmt_R-def post_R-def po
```

```
unrest assms)
  also have ... = (pre_R \ (P \parallel_{M_R \ M} \ Q) \Rightarrow_r peri_R(P) \parallel_{\exists \ \$st' \ . \ M} peri_R(Q) 
\lor post_R(P) \parallel_{\exists \ \$st' \ . \ M} peri_R(Q) 
\lor peri_R(P) \parallel_{\exists \ \$st' \ . \ M} post_R(Q))
    by (simp add: par-by-merge-alt-def)
  finally show ?thesis.
qed
lemma parallel-postcondition-lemma1:
  (\$ok' \land P) ; II_R[true,false/\$ok',\$wait'] = P[true,false/\$ok',\$wait']
  (is ?lhs = ?rhs)
proof -
  have ?lhs = (\$ok' \land P) ;; II \llbracket true, false/\$ok', \$wait' \rrbracket
    by (rel-blast)
  also have \dots = ?rhs
    by (rel-auto)
  finally show ?thesis.
\mathbf{lemma}\ parallel\text{-}postcondition\text{-}lemma 2:
  assumes M is RDM
  shows (N_0(M))[true,false/\$ok',\$wait'] = ((\neg \$0-wait \land \neg \$1-wait) \land M)
proof -
  \mathbf{have} \ (N_0(M))[\mathit{true}, \mathit{false}/\$\mathit{ok}', \$\mathit{wait}'] = ((\neg \$\mathit{0} - \mathit{wait} \land \neg \$\mathit{1} - \mathit{wait}) \land \$\mathit{tr}' \geq_u \$\mathit{tr}_{<} \land M)
    by (simp add: usubst unrest nmerge-rd0-def ex-unrest Healthy-if R1m-def assms)
  also have ... = ((\neg \$0 - wait \land \neg \$1 - wait) \land M)
    by (metis Healthy-if R1m-def RDM-R1m assms utp-pred-laws.inf-commute)
  finally show ?thesis.
lemma parallel-postcondition [rdes]:
  fixes M :: ('s, 't :: trace, '\alpha) \ rsp \ merge
  assumes P is SRD Q is SRD M is RDM
  shows post_R(P \parallel_{M_R(M)} Q) = (pre_R (P \parallel_{M_R M} Q) \Rightarrow_r post_R(P) \parallel_M post_R(Q))
  have post_R(P \parallel_{M_R(M)} Q) =
        (pre_R \ (P \parallel_{M_R \ M} Q) \Rightarrow_r cmt_R P \parallel_{(\$ok' \land N_0 \ M)};; II_R \llbracket true, false/\$ok', \$wait' \rrbracket \ cmt_R \ Q)
    by (simp add: post-cmt-def parallel-commitment assms usubst unrest SRD-healths)
  also have ... = (pre_R \ (P \parallel_{M_R \ M} \ Q) \Rightarrow_r cmt_R \ P \parallel_{(\neg \$0-wait \ \land \ \neg \$1-wait \ \land \ M)} cmt_R \ Q)
    by (simp add: parallel-postcondition-lemma1 parallel-postcondition-lemma2 assms,
         simp add: utp-pred-laws.inf-commute utp-pred-laws.inf-left-commute)
  also have ... = (pre_R (P \parallel_{M_R M} Q) \Rightarrow_r post_R P \parallel_M post_R Q)
  by (simp add: par-by-merge-alt-def seqr-right-one-point-false usubst unrest cmt_R-def post_R-def assms)
  finally show ?thesis.
qed
lemma parallel-precondition-lemma:
  fixes M :: ('s, 't :: trace, '\alpha) \ rsp \ merge
  assumes P is NSRD Q is NSRD M is RDM
  shows (\neg_r \ pre_R(P)) \parallel_{N_0(M) \ ;; \ R1(true)} cmt_R(Q) =
         ((\neg_r \ pre_R \ P) \parallel_{M \ :: \ R1(true)} \ peri_R \ Q \lor (\neg_r \ pre_R \ P) \parallel_{M \ :: \ R1(true)} \ post_R \ Q)
proof -
  have ((\neg_r \ pre_R(P)) \parallel_{N_0(M)} :: R1(true) \ cmt_R(Q)) =
        ((\neg_r \ pre_R(P)) \parallel_{N_0(M) \ ;; \ R1(true)} (peri_R(Q) \diamond post_R(Q)))
```

```
by (simp add: wait'-cond-peri-post-cmt)
  also have ... = ((\lceil \neg_r \ pre_R(P) \rceil_0 \land \lceil peri_R(Q) \diamond post_R(Q) \rceil_1 \land \$\mathbf{v}_{<}' =_u \$\mathbf{v}) ;; N_0(M) ;; R1(true))
    by (simp add: par-by-merge-alt-def)
  also have ... = ((\lceil \neg_r \ pre_R(P) \rceil_0 \land \lceil peri_R(Q) \rceil_1 \triangleleft \$1 - wait' \triangleright \lceil post_R(Q) \rceil_1 \land \$\mathbf{v}_{<'} =_u \$\mathbf{v}) ;; N_0(M)
R1(true)
    by (simp add: wait'-cond-def alpha)
  \textbf{also have} \ \dots = (((\lceil \neg_r \ \mathit{pre}_R(P) \rceil_0 \ \land \ \lceil \mathit{peri}_R(Q) \rceil_1 \ \land \ \$\mathbf{v}_{<}{'} =_u \$\mathbf{v}) \ \triangleleft \ \$1 - \mathit{wait}{'} \ \vartriangleright \ (\lceil \neg_r \ \mathit{pre}_R(P) \rceil_0 \ \land \ \lVert \mathsf{v}_{>} \rVert ) \ \rvert 
\lceil post_R(Q) \rceil_1 \land \$\mathbf{v}_{<}' =_u \$\mathbf{v}) ; N_0(M) ; R1(true)
    (is (?P ;; -) = (?Q ;; -))
  proof -
    have ?P = ?Q
       by (rel-auto)
    thus ?thesis by simp
   also have ... = (([\neg_r \ pre_R \ P]_0 \land [peri_R \ Q]_1 \land \$\mathbf{v}_{<'} =_u \$\mathbf{v})[[true/\$1-wait']];; (N_0 \ M \ ;; R1)
true)[true/\$1-wait]
                                (\lceil \neg_r \ pre_R \ P \rceil_0 \ \land \ \lceil post_R \ Q \rceil_1 \ \land \ \$\mathbf{v}_{<}' =_u \ \$\mathbf{v}) \llbracket false/\$1 - wait' \rrbracket \ ;; \ (N_0 \ M \ ;; \ R1) \rrbracket = (N_0 \ M \ ;; \ R1)
true)[false/$1-wait])
    by (simp add: cond-inter-var-split)
  also have ... = ((\lceil \neg_r \ pre_R \ P \rceil_0 \land \lceil peri_R \ Q \rceil_1 \land \$\mathbf{v}_{<}' =_u \$\mathbf{v}) ;; N_0 \ M[[true/\$1-wait]] ;; R1 \ true \lor 
                        (\lceil \neg_r \ pre_R \ P \rceil_0 \land \lceil post_R \ Q \rceil_1 \land \$\mathbf{v}_{<'} =_u \$\mathbf{v}) ;; N_0 \ M \llbracket false/\$1-wait \rrbracket ;; R1 \ true)
    by (simp add: usubst unrest)
  also have ... = ((\lceil \neg_r \ pre_R \ P \rceil_0 \land \lceil peri_R \ Q \rceil_1 \land \$\mathbf{v}_{<'} =_u \$\mathbf{v}) ;; (\$wait' \land M) ;; R1 \ true \lor
                        (\lceil \neg_r \ pre_R \ P \rceil_0 \land \lceil post_R \ Q \rceil_1 \land \$\mathbf{v}_{<'} =_u \$\mathbf{v}) ;; (\$wait' =_u \$0 - wait \land M) ;; R1 \ true)
  proof -
    have (\$tr' \ge_u \$tr_< \land M) = M
       using RDM-R1m[OF assms(3)]
       by (simp add: Healthy-def R1m-def conj-comm)
    thus ?thesis
       by (simp add: nmerge-rd0-def unrest assms closure ex-unrest usubst)
  also have ... = ((\lceil \neg_r \ pre_R \ P \rceil_0 \land \lceil peri_R \ Q \rceil_1 \land \$\mathbf{v}_{<}' =_u \$\mathbf{v}) ;; M ;; R1 \ true \lor
                        (\lceil \neg_r \ pre_R \ P \rceil_0 \land \lceil post_R \ Q \rceil_1 \land \$\mathbf{v}_{<'} =_u \$\mathbf{v}) ;; M ;; R1 \ true)
    (is (?P_1 \lor_p ?P_2) = (?Q_1 \lor ?Q_2))
    have ?P_1 = (\lceil \neg_r \ pre_R \ P \rceil_0 \land \lceil peri_R \ Q \rceil_1 \land \$\mathbf{v}_{<'} =_u \$\mathbf{v}) ;; (M \land \$wait') ;; R1 \ true
       by (simp add: conj-comm)
    hence 1: ?P_1 = ?Q_1
       by (simp add: seqr-left-one-point-true seqr-left-one-point-false add: unrest usubst closure assms)
    have ?P_2 = ((\lceil \neg_r \ pre_R \ P \rceil_0 \land \lceil post_R \ Q \rceil_1 \land \$\mathbf{v}_{<}' =_u \$\mathbf{v}) ;; (M \land \$wait') ;; R1 \ true \lor
                     (\lceil \neg_r \ pre_R \ P \rceil_0 \land \lceil post_R \ Q \rceil_1 \land \$\mathbf{v}_{<}' =_u \$\mathbf{v}) ;; (M \land \neg \$wait') ;; R1 \ true)
       by (subst seqr-bool-split|of left-uvar wait|, simp-all add: usubst unrest assms closure conj-comm)
    hence 2: ?P_2 = ?Q_2
       by (simp add: seqr-left-one-point-true seqr-left-one-point-false unrest usubst closure assms)
    from 1 2 show ?thesis by simp
  also have ... = ((\neg_r \ pre_R \ P) \parallel_{M :: R1(true)} peri_R \ Q \lor (\neg_r \ pre_R \ P) \parallel_{M :: R1(true)} post_R \ Q)
    by (simp add: par-by-merge-alt-def)
  finally show ?thesis.
qed
lemma swap-nmerge-rd0:
  swap_m ; N_0(M) = N_0(swap_m ; M)
  by (rel-auto, meson+)
```

```
lemma SymMerge-nmerge-rd0 [closure]:
  M \text{ is } SymMerge \Longrightarrow N_0(M) \text{ is } SymMerge
  by (rel-auto, meson+)
lemma swap-merge-rd':
  swap_m ;; N_R(M) = N_R(swap_m ;; M)
  by (rel-blast)
lemma swap-merge-rd:
  swap_m :: M_R(M) = M_R(swap_m :: M)
  by (simp add: merge-rd-def seqr-assoc[THEN sym] swap-merge-rd')
lemma SymMerge-merge-rd [closure]:
  M \text{ is } SymMerge \Longrightarrow M_R(M) \text{ is } SymMerge
  by (simp add: Healthy-def swap-merge-rd)
lemma nmerge-rd1-merge3:
 assumes M is RDM
 shows M\beta(N_1(M)) = (\$ok' =_u (\$0 - ok \land \$1 - 0 - ok \land \$1 - 1 - ok) \land
                     \$wait' =_u (\$\theta - wait \lor \$1 - \theta - wait \lor \$1 - 1 - wait) \land
                     \mathbf{M}3(M)
proof -
 have \mathbf{M}\beta(N_1(M)) = \mathbf{M}\beta(\$ok' =_u (\$\theta - ok \land \$1 - ok) \land
                      \$wait' =_u (\$\mathit{0} - wait \lor \$\mathit{1} - wait) \land \\
                      tr < \leq_u tr' \land
                      (\exists \{\$\theta-ok,\$1-ok,\$ok_{\leq},\$ok',\$\theta-wait,\$1-wait,\$wait_{\leq},\$wait'\} \cdot RDM(M)))
   by (simp add: nmerge-rd1-def nmerge-rd0-def assms Healthy-if)
  also have ... = \mathbf{M} \Im(\$ok' =_u (\$0 - ok \land \$1 - ok) \land \$wait' =_u (\$0 - wait \lor \$1 - wait) \land RDM(M))
   by (rel-blast)
  also have ... = (\$ok' = (\$0 - ok \land \$1 - 0 - ok \land \$1 - 1 - ok) \land \$wait' = (\$0 - wait \lor \$1 - 0 - wait)
\vee \$1-1-wait) \wedge \mathbf{M}3(RDM(M))
   by (rel-blast)
  also have ... = (\$ok' =_u (\$0-ok \land \$1-0-ok \land \$1-1-ok) \land \$wait' =_u (\$0-wait \lor \$1-0-wait)
\vee \$1-1-wait) \wedge \mathbf{M}3(M)
   by (simp add: assms Healthy-if)
 finally show ?thesis.
qed
lemma nmerge-rd-merge3:
 \mathbf{M}\beta(N_R(M)) = (\exists \$st_{<} \cdot \$\mathbf{v'} =_u \$\mathbf{v}_{<}) \triangleleft \$wait_{<} \triangleright \mathbf{M}\beta(N_1 M) \triangleleft \$ok_{<} \triangleright (\$tr_{<} \leq_u \$tr')
 by (rel-blast)
lemma swap-merge-RDM-closed [closure]:
  assumes M is RDM
  shows swap_m ;; M is RDM
proof -
 have RDM(swap_m ;; RDM(M)) = (swap_m ;; RDM(M))
   by (rel-auto)
  thus ?thesis
   by (metis Healthy-def' assms)
qed
lemma parallel-precondition:
  fixes M :: ('s, 't :: trace, '\alpha) \ rsp \ merge
 assumes P is NSRD Q is NSRD M is RDM
```

```
shows pre_R(P \parallel_{M_R(M)} Q) =
          (\neg_r ((\neg_r pre_R P) \parallel_{M :: R1(true)} peri_R Q) \land
           \neg_r ((\neg_r \ pre_R \ P) \parallel_{M \ ;; \ R1(true)} post_R \ Q) \land
           \neg_r ((\neg_r \ pre_R \ Q) \parallel_{(swap_m \ ;; \ M) \ ;; \ R1(true) \ peri_R \ P) \land
           \neg_r ((\neg_r \ pre_R \ Q) \parallel_{(swap_m \ :: \ M) \ :: \ R1(true) \ post_R \ P))
proof -
  have a: (\neg_r \ pre_R(P)) \parallel_{N_0(M) \ ;; \ R1(true)} cmt_R(Q) =
           ((\neg_r \ pre_R \ P) \parallel_{M \ ;; \ R1(true)} \ peri_R \ Q \lor (\neg_r \ pre_R \ P) \parallel_{M \ ;; \ R1(true)} \ post_R \ Q)
    by (simp add: parallel-precondition-lemma assms)
 have b: (\neg_r \ cmt_R \ P \parallel_{N_0 \ M} :: R1 \ true \ (\neg_r \ pre_R \ Q)) =
           (\neg_r \ (\neg_r \ pre_R(Q))) \parallel_{N_0(swap_m \ ;; \ M) \ ;; \ R1(true) \ cmt_R(P))}
   by (simp add: swap-nmerge-rd0[THEN sym] seqr-assoc[THEN sym] par-by-merge-def par-sep-swap)
 have c: (\neg_r \ pre_R(Q)) \parallel_{N_0(swap_m \ ;; \ M) \ ;; \ R1(true)} cmt_R(P) =
          ((\neg_r \ pre_R \ Q) \parallel_{(swap_m \ ;; \ M) \ ;; \ R1(true) \ peri_R \ P \lor (\neg_r \ pre_R \ Q) \parallel_{(swap_m \ ;; \ M) \ ;; \ R1(true) \ post_R)}
    by (simp add: parallel-precondition-lemma closure assms)
 show ?thesis
    by (simp add: parallel-assm closure assms a b c, rel-auto)
Weakest Parallel Precondition
definition wrR ::
  ('t::trace, '\alpha) \ hrel-rp \Rightarrow
  ('t :: trace, '\alpha) \ rp \ merge \Rightarrow
   ('t, '\alpha) \ hrel-rp \Rightarrow
   ('t, '\alpha) \ hrel-rp \ (- \ wr_R'(-') - [60,0,61] \ 61)
where [upred-defs]: Q \ wr_R(M) \ P = (\neg_r \ ((\neg_r \ P) \parallel_{M} :: R1(true) \ Q))
lemma wrR-R1 [closure]:
  M \text{ is } R1m \Longrightarrow Q \text{ } wr_R(M) \text{ } P \text{ is } R1
  by (simp add: wrR-def closure)
lemma R2-rea-not: R2(\neg_r P) = (\neg_r R2(P))
  by (rel-auto)
lemma wrR-R2-lemma:
  assumes P is R2 Q is R2 M is R2m
 shows ((\neg_r \ P) \parallel_M Q) ;; R1(true_h) is R2
proof -
  have (\neg_r P) \parallel_M Q is R2
   by (simp add: closure assms)
  thus ?thesis
    by (simp add: closure)
qed
lemma wrR-R2 [closure]:
  assumes P is R2 Q is R2 M is R2m
  shows Q wr_R(M) P is R2
proof -
  have ((\neg_r \ P) \parallel_M Q) ;; R1(true_h) is R2
    by (simp add: wrR-R2-lemma assms)
  thus ?thesis
```

```
by (simp add: wrR-def wrR-R2-lemma par-by-merge-seq-add closure)
qed
lemma wrR-RR [closure]:
    assumes P is RR Q is RR M is RDM
    shows Q wr_R(M) P is RR
    apply (rule RR-intro)
    apply (simp-all add: unrest assms closure wrR-def rpred)
    apply (metis (no-types, lifting) Healthy-def' R1-R2c-commute R1-R2c-is-R2 R1-rea-not RDM-R2m
                                  RR-implies-R2 assms(1) assms(2) assms(3) par-by-merge-seq-add rea-not-R2-closed
                                  wrR-R2-lemma)
done
lemma wrR-RC [closure]:
    assumes P is RR Q is RR M is RDM
    shows (Q wr_R(M) P) is RC
    apply (rule RC-intro)
    apply (simp add: closure assms)
    apply (simp add: wrR-def rpred closure assms)
    apply (simp add: par-by-merge-def seqr-assoc)
done
lemma wppR-choice [wp]: (P \vee Q) wr_R(M) R = (P wr_R(M) R \wedge Q wr_R(M) R)
proof -
    have (P \vee Q) wr_R(M) R =
                  (\neg_r ((\neg_r R) :: U0 \land (P :: U1 \lor Q :: U1) \land \$\mathbf{v} \le ' =_u \$\mathbf{v}) :: M :: true_r)
         by (simp add: wrR-def par-by-merge-def seqr-or-distl)
    \mathbf{also} \ \mathbf{have} \ \dots = (\lnot_r \ ((\lnot_r \ R) \ ;; \ U0 \ \land \ P \ ;; \ U1 \ \land \ \$\mathbf{v}_{<}{'} =_u \ \$\mathbf{v} \ \lor \ (\lnot_r \ R) \ ;; \ U0 \ \land \ Q \ ;; \ U1 \ \land \ \$\mathbf{v}_{<}{'} =_u \ \$\mathbf{v} \ \lor \ (\lnot_r \ R) \ ;; \ U0 \ \land \ Q \ ;; \ U1 \ \land \ \$\mathbf{v}_{<}{'} =_u \ \$\mathbf{v} \ \lor \ (\lnot_r \ R) \ ;; \ U0 \ \land \ Q \ ;; \ U1 \ \land \ \$\mathbf{v}_{<}{'} =_u \ \$\mathbf{v} \ \lor \ (\lnot_r \ R) \ ;; \ U0 \ \land \ Q \ ;; \ U1 \ \land \ \$\mathbf{v}_{<}{'} =_u \ \$\mathbf{v} \ \lor \ (\lnot_r \ R) \ ;; \ U0 \ \land \ Q \ ;; \ U1 \ \land \ \$\mathbf{v}_{<}{'} =_u \ \$\mathbf{v} \ \lor \ (\lnot_r \ R) \ ;; \ U0 \ \land \ Q \ ;; \ U1 \ \land \ \$\mathbf{v}_{<}{'} =_u \ \$\mathbf{v} \ \lor \ (\lnot_r \ R) \ ;
\mathbf{v}) :; M :; true_r)
         by (simp add: conj-disj-distr utp-pred-laws.inf-sup-distrib2)
    also have ... = (\neg_r (((\neg_r R) ;; U0 \land P ;; U1 \land \$\mathbf{v}_{<}' =_u \$\mathbf{v}) ;; M ;; true_r \lor 
                                                      ((\neg_r R) ;; U0 \land Q ;; U1 \land \$\mathbf{v}_{<}' =_u \$\mathbf{v}) ;; M ;; true_r))
         by (simp add: seqr-or-distl)
    also have ... = (P wr_R(M) R \wedge Q wr_R(M) R)
         by (simp add: wrR-def par-by-merge-def)
    finally show ?thesis.
lemma wppR-miracle [wp]: false wr_R(M) P = true_r
    by (simp\ add:\ wrR\text{-}def)
lemma wppR-true [wp]: P wr_R(M) true_r = true_r
    by (simp \ add: wrR-def)
lemma parallel-precondition-wr [rdes]:
    assumes P is NSRD Q is NSRD M is RDM
    \mathbf{shows} \ \mathit{pre}_R(P \parallel_{M_R(M)} Q) = (\mathit{peri}_R(Q) \ \mathit{wr}_R(M) \ \mathit{pre}_R(P) \ \land \ \mathit{post}_R(Q) \ \mathit{wr}_R(M) \ \mathit{pre}_R(P) \ \ldotp{post}_R(Q) \ \mathit{wr}_R(M) \ \mathit{pre}_R(P) \ \ldotp{post}_R(Q) \ \mathit{wr}_R(M) \ \mathit{pre}_R(P) \ \ldotp{post}_R(Q) \ \mathit{wr}_R(M) \ \mathit{pre}_R(P) \ \mathrel{post}_R(Q) \ \mathrel{pre}_R(P) \ \mathrel{post}_R(Q) \ \mathrel{po
                                                                    peri_R(P) \ wr_R(swap_m \ ;; \ M) \ pre_R(Q) \land post_R(P) \ wr_R(swap_m \ ;; \ M) \ pre_R(Q))
    by (simp add: assms parallel-precondition wrR-def)
lemma parallel-rdes-def [rdes-def]:
    assumes P_1 is RC P_2 is RR P_3 is RR Q_1 is RC Q_2 is RR Q_3 is RR
                      \$st' \sharp P_2 \$st' \sharp Q_2
                      M is RDM
    shows \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) \parallel_{M_R(M)} \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3) =
```

```
\mathbf{R}_s (((Q_1 \Rightarrow_r Q_2) wr_R(M) P_1 \land (Q_1 \Rightarrow_r Q_3) wr_R(M) P_1 \land
                            (P_1 \Rightarrow_r P_2) wr_R(swap_m ;; M) Q_1 \wedge (P_1 \Rightarrow_r P_3) wr_R(swap_m ;; M) Q_1) \vdash
                   proof
    have ?lhs = \mathbf{R}_s \ (pre_R \ ?lhs \vdash peri_R \ ?lhs \diamond post_R \ ?lhs)
        \mathbf{by}\ (simp\ add\colon SRD\text{-}reactive\text{-}tri\text{-}design\ assms\ closure})
    also have \dots = ?rhs
        by (simp add: rdes closure unrest assms, rel-auto)
    finally show ?thesis.
\mathbf{qed}
lemma Miracle-parallel-left-zero:
    assumes P is SRD M is RDM
    shows Miracle \parallel_{RM} P = Miracle
proof -
     have pre_R(Miracle \parallel_{RM} P) = true_r
        by (simp add: parallel-assm wait'-cond-idem rdes closure assms)
     moreover hence cmt_R(Miracle \parallel_{RM} P) = false
        \mathbf{by}\ (simp\ add\colon rdes\ closure\ wait'\text{-}cond\text{-}idem\ SRD\text{-}healths\ assms})
     ultimately have Miracle \parallel_{RM} P = \mathbf{R}_s(true_r \vdash false)
     \textbf{by} \ (metis \ NSRD\text{-}iff \ SRD\text{-}reactive-design-alt} \ assms \ par-rdes\text{-}NSRD \ srdes\text{-}theory\text{-}continuous.weak.top-closed)
     thus ?thesis
        by (simp add: Miracle-def R1-design-R1-pre)
qed
lemma Miracle-parallel-right-zero:
    assumes P is SRD M is RDM
    shows P \parallel_{RM} Miracle = Miracle
proof -
    have pre_R(P \parallel_{RM} Miracle) = true_r
        by (simp add: wait'-cond-idem parallel-assm rdes closure assms)
     moreover hence cmt_R(P \parallel_{RM} Miracle) = false
        by (simp add: wait'-cond-idem rdes closure SRD-healths assms)
     ultimately have P \parallel_{RM} Miracle = \mathbf{R}_s(true_r \vdash false)
     by (metis NSRD-iff SRD-reactive-design-alt assms par-rdes-NSRD srdes-theory-continuous.weak.top-closed)
     thus ?thesis
        by (simp add: Miracle-def R1-design-R1-pre)
qed
8.1
                 Example basic merge
\textbf{definition} \ \textit{BasicMerge} \ :: ((\textit{'s}, \ \textit{'t} :: \textit{trace}, \ \textit{unit}) \ \textit{rsp}) \ \textit{merge} \ (N_B) \ \textbf{where}
[\textit{upred-defs}]: \textit{BasicMerge} = (\$tr_{<} \leq_{u} \$tr' \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$\theta - tr - \$tr_{<} =_{u} \$tr_{<} \land \$tr' - \$tr_{<} =_{u} \$tr_{<} =_{u} \$tr_{<} \land \$tr
 - \$tr_{<} \land \$st' =_{u} \$st_{<})
abbreviation rbasic-par (- \parallel_B - [85,86] 85) where
P \parallel_B Q \equiv P \parallel_{M_R(N_B)} Q
lemma BasicMerge-RDM [closure]: N<sub>B</sub> is RDM
    by (rule\ RDM-intro,\ (rel-auto)+)
lemma BasicMerge-SymMerge [closure]:
     N_B is SymMerge
    by (rel-auto)
```

```
lemma BasicMerge'-calc:
  assumes \$ok' \sharp P \$wait' \sharp P \$ok' \sharp Q \$wait' \sharp Q P is R2 Q is R2
  shows P \parallel_{N_B} Q = ((\exists \$st' \cdot P) \land (\exists \$st' \cdot Q) \land \$st' =_u \$st)
proof -
  have P:(\exists \{\$ok',\$wait'\} \cdot R2(P)) = P \text{ (is } ?P' = -)
    by (simp add: ex-unrest ex-plus Healthy-if assms)
  have Q:(\exists \{\$ok',\$wait'\} \cdot R2(Q)) = Q \text{ (is } ?Q' = -)
    by (simp add: ex-unrest ex-plus Healthy-if assms)
  have ?P' \parallel_{N_B} ?Q' = ((\exists \$st' \cdot ?P') \land (\exists \$st' \cdot ?Q') \land \$st' =_u \$st)
    by (simp add: par-by-merge-alt-def, rel-auto, blast+)
  thus ?thesis
    by (simp \ add: P \ Q)
qed
8.2
         Simple parallel composition
definition rea-design-par ::
  (s, t:t:trace, \alpha) hrel-rsp \Rightarrow (s, t, \alpha) hrel-rsp \Rightarrow (s, t, \alpha) hrel-rsp (infixr \parallel_R 85)
where [upred-defs]: P \parallel_R Q = \mathbf{R}_s((pre_R(P) \land pre_R(Q)) \vdash (cmt_R(P) \land cmt_R(Q)))
lemma RHS-design-par:
  assumes
    \$ok' \sharp P_1 \$ok' \sharp P_2
  shows \mathbf{R}_{s}(P_{1} \vdash Q_{1}) \parallel_{R} \mathbf{R}_{s}(P_{2} \vdash Q_{2}) = \mathbf{R}_{s}((P_{1} \land P_{2}) \vdash (Q_{1} \land Q_{2}))
proof
  have \mathbf{R}_{s}(P_{1} \vdash Q_{1}) \parallel_{R} \mathbf{R}_{s}(P_{2} \vdash Q_{2}) =
           \mathbf{R}_s(P_1[true,false/\$ok,\$wait]] \vdash Q_1[true,false/\$ok,\$wait]) \parallel_R \mathbf{R}_s(P_2[true,false/\$ok,\$wait]] \vdash
Q_2[true,false/\$ok,\$wait])
    by (simp add: RHS-design-ok-wait)
  also from assms
  have \dots =
        \mathbf{R}_s((R1\ (R2c\ (P_1)) \land R1\ (R2c\ (P_2))) \llbracket true, false/\$ok,\$wait \rrbracket \vdash
           (R1 \ (R2c \ (P_1 \Rightarrow Q_1)) \land R1 \ (R2c \ (P_2 \Rightarrow Q_2))) \llbracket true, false / \$ok, \$wait \rrbracket)
      apply (simp add: rea-design-par-def rea-pre-RHS-design rea-cmt-RHS-design usubst unrest assms)
      apply (rule cong [of \mathbf{R}_s \mathbf{R}_s], simp)
      using assms apply (rel-auto)
  done
  also have ... =
        \mathbf{R}_s((R2c(P_1) \wedge R2c(P_2)) \vdash
           (R1 \ (R2s \ (P_1 \Rightarrow Q_1)) \land R1 \ (R2s \ (P_2 \Rightarrow Q_2))))
    by (metis (no-types, hide-lams) R1-R2s-R2c R1-conj R1-design-R1-pre RHS-design-ok-wait)
  also have ... =
        \mathbf{R}_s((P_1 \land P_2) \vdash (R1 \ (R2s \ (P_1 \Rightarrow Q_1)) \land R1 \ (R2s \ (P_2 \Rightarrow Q_2))))
    by (simp add: R2c-R3h-commute R2c-and R2c-design R2c-idem R2c-not RHS-def)
  also have ... = \mathbf{R}_s((P_1 \wedge P_2) \vdash ((P_1 \Rightarrow Q_1) \wedge (P_2 \Rightarrow Q_2)))
    by (metis (no-types, lifting) R1-conj R2s-conj RHS-design-export-R1 RHS-design-export-R2s)
  also have ... = \mathbf{R}_s((P_1 \land P_2) \vdash (Q_1 \land Q_2))
    by (rule cong [of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  finally show ?thesis.
qed
lemma RHS-tri-design-par:
  assumes \$ok' \sharp P_1 \$ok' \sharp P_2
```

```
shows \mathbf{R}_s(P_1 \vdash Q_1 \diamond R_1) \parallel_R \mathbf{R}_s(P_2 \vdash Q_2 \diamond R_2) = \mathbf{R}_s((P_1 \land P_2) \vdash (Q_1 \land Q_2) \diamond (R_1 \land R_2)) by (simp\ add:\ RHS\text{-}design\text{-}par\ assms\ unrest\ wait'\text{-}cond\text{-}conj\text{-}exchange}) lemma RHS\text{-}tri\text{-}design\text{-}par\text{-}RR\ [rdes\text{-}def]:} assumes P_1\ is\ RR\ P_2\ is\ RR shows \mathbf{R}_s(P_1 \vdash Q_1 \diamond R_1) \parallel_R \mathbf{R}_s(P_2 \vdash Q_2 \diamond R_2) = \mathbf{R}_s((P_1 \land P_2) \vdash (Q_1 \land Q_2) \diamond (R_1 \land R_2)) by (simp\ add:\ RHS\text{-}tri\text{-}design\text{-}par\ unrest\ assms}) lemma RHS\text{-}comp\text{-}assoc: assumes P\ is\ NSRD\ Q\ is\ NSRD\ R\ is\ NSRD shows (P\parallel_R Q)\parallel_R R = P\parallel_R Q\parallel_R R by (rdes\text{-}eq\ cls:\ assms)
```

end

9 Productive Reactive Designs

```
theory utp-rdes-productive imports utp-rdes-parallel begin
```

9.1 Healthiness condition

A reactive design is productive if it strictly increases the trace, whenever it terminates. If it does not terminate, it is also classed as productive.

```
 \begin{aligned} & \textbf{definition} \ \textit{Productive} :: ('s, \ 't::trace, \ '\alpha) \ \textit{hrel-rsp} \Rightarrow ('s, \ 't, \ '\alpha) \ \textit{hrel-rsp} \ \textbf{where} \\ & [\textit{upred-defs}] : \textit{Productive}(P) = P \parallel_R \mathbf{R}_s(\textit{true} \vdash \textit{true} \diamond (\$\textit{tr} <_u \ \$\textit{tr}')) \end{aligned} \\ & \textbf{lemma} \ \textit{Productive-RHS-design-form:} \\ & \textbf{assumes} \ \$\textit{ok} \ ' \ \sharp \ P \ \$\textit{ok} \ ' \ \sharp \ Q \ \$\textit{ok} \ ' \ \sharp \ R \\ & \textbf{shows} \ \textit{Productive}(\mathbf{R}_s(P \vdash Q \diamond R)) = \mathbf{R}_s(P \vdash Q \diamond (R \land \$\textit{tr} <_u \ \$\textit{tr}')) \\ & \textbf{using} \ \textit{assms} \ \textbf{by} \ (\textit{simp} \ \textit{add} : \textit{Productive-def} \ \textit{RHS-tri-design-par} \ \textit{unrest}) \end{aligned} \\ & \textbf{lemma} \ \textit{Productive-form:} \\ & \textit{Productive}(SRD(P)) = \mathbf{R}_s(\textit{pre}_R(P) \vdash \textit{peri}_R(P) \diamond (\textit{post}_R(P) \land \$\textit{tr} <_u \ \$\textit{tr}')) \\ & \textbf{proof} \ - \\ & \textbf{have} \ \textit{Productive}(SRD(P)) = \mathbf{R}_s(\textit{pre}_R(P) \vdash \textit{peri}_R(P) \diamond \textit{post}_R(P)) \parallel_R \mathbf{R}_s(\textit{true} \vdash \textit{true} \diamond (\$\textit{tr} <_u \ \$\textit{tr}')) \\ & \textbf{by} \ (\textit{simp} \ \textit{add} : \textit{Productive-def} \ \textit{SRD-as-reactive-tri-design}) \\ & \textbf{also} \ \textbf{have} \ ... = \mathbf{R}_s(\textit{pre}_R(P) \vdash \textit{peri}_R(P) \diamond (\textit{post}_R(P) \land \$\textit{tr} <_u \ \$\textit{tr}')) \\ & \textbf{by} \ (\textit{simp} \ \textit{add} : \textit{RHS-tri-design-par} \ \textit{unrest}) \\ & \textbf{finally} \ \textbf{show} \ ?\textit{thesis} \ . \end{aligned}
```

A reactive design is productive provided that the postcondition, under the precondition, strictly increases the trace.

```
lemma Productive\text{-}intro:
assumes P is SRD (\$tr <_u \$tr') \sqsubseteq (pre_R(P) \land post_R(P)) \$wait' \sharp pre_R(P)
shows P is Productive
proof -
have P: \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond (post_R(P) \land \$tr <_u \$tr')) = P
proof -
have \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)) = \mathbf{R}_s(pre_R(P) \vdash (pre_R(P) \land peri_R(P))) \diamond (pre_R(P) \land post_R(P)))
by (metis (no-types, hide-lams) design-export-pre wait'-cond-conj-exchange wait'-cond-idem)
```

```
also have ... = \mathbf{R}_s(pre_R(P) \vdash (pre_R(P) \land peri_R(P)) \diamond (pre_R(P) \land (post_R(P) \land \$tr <_u \$tr')))
     by (metis assms(2) utp-pred-laws.inf.absorb1 utp-pred-laws.inf.assoc)
   also have ... = \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond (post_R(P) \land \$tr <_u \$tr'))
     by (metis (no-types, hide-lams) design-export-pre wait'-cond-conj-exchange wait'-cond-idem)
   finally show ?thesis
     by (simp\ add:\ SRD\text{-}reactive\text{-}tri\text{-}design\ assms}(1))
 qed
 thus ?thesis
  by (metis Healthy-def RHS-tri-design-par Productive-def ok'-pre-unrest unrest-true utp-pred-laws.inf-right-idem
utp-pred-laws.inf-top-right)
qed
{\bf lemma}\ Productive	ext{-}post	ext{-}refines	ext{-}tr	ext{-}increase:
 assumes P is SRD P is Productive wait' \not\equiv pre_R(P)
 shows (tr <_u tr') \sqsubseteq (pre_R(P) \land post_R(P))
proof -
 have post_R(P) = post_R(\mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond (post_R(P) \land \$tr <_u \$tr')))
   by (metis Healthy-def Productive-form assms(1) assms(2))
 also have ... = R1(R2c(pre_R(P) \Rightarrow (post_R(P) \land \$tr <_u \$tr')))
   by (simp add: rea-post-RHS-design unrest usubst assms, rel-auto)
  also have ... = R1((pre_R(P) \Rightarrow (post_R(P) \land \$tr <_u \$tr')))
   by (simp add: R2c-impl R2c-preR R2c-postR R2c-and R2c-tr-less-tr' assms)
 also have (\$tr <_u \$tr') \sqsubseteq (pre_R(P) \land ...)
   by (rel-auto)
 finally show ?thesis.
qed
lemma Continuous-Productive [closure]: Continuous Productive
 by (simp add: Continuous-def Productive-def, rel-auto)
       Reactive design calculations
9.2
lemma preR-Productive [rdes]:
 assumes P is SRD
 shows pre_R(Productive(P)) = pre_R(P)
proof -
 have pre_R(Productive(P)) = pre_R(\mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond (post_R(P) \land \$tr <_u \$tr')))
   by (metis Healthy-def Productive-form assms)
   by (simp add: rea-pre-RHS-design usubst unrest R2c-not R2c-preR R1-preR Healthy-if assms)
\mathbf{qed}
lemma periR-Productive [rdes]:
 assumes P is NSRD
 shows peri_R(Productive(P)) = peri_R(P)
proof -
 have peri_R(Productive(P)) = peri_R(\mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond (post_R(P) \land \$tr <_u \$tr')))
   \mathbf{by}\ (\mathit{metis}\ \mathit{Healthy-def}\ \mathit{NSRD-is-SRD}\ \mathit{Productive-form}\ \mathit{assms})
 also have ... = R1 (R2c (pre<sub>R</sub> P \Rightarrow_r peri_R P))
   by (simp add: rea-peri-RHS-design usubst unrest R2c-not assms closure)
 also have ... = (pre_R P \Rightarrow_r peri_R P)
   by (simp add: R1-rea-impl R2c-rea-impl R2c-preR R2c-peri-SRD)
                R1-peri-SRD assms closure R1-tr-less-tr' R2c-tr-less-tr')
 finally show ?thesis
   by (simp add: SRD-peri-under-pre assms unrest closure)
```

 \mathbf{qed}

```
lemma postR-Productive [rdes]:
 assumes P is NSRD
 shows post_R(Productive(P)) = (pre_R(P) \Rightarrow_r post_R(P) \land \$tr <_u \$tr')
proof -
  have post_R(Productive(P)) = post_R(\mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond (post_R(P) \land \$tr <_u \$tr')))
   by (metis Healthy-def NSRD-is-SRD Productive-form assms)
  also have ... = R1 (R2c (pre<sub>R</sub> P \Rightarrow_r post_R P \land \$tr' >_u \$tr))
   by (simp add: rea-post-RHS-design usubst unrest assms closure)
 also have ... = (pre_R P \Rightarrow_r post_R P \land \$tr' >_u \$tr)
   by (simp add: R1-rea-impl R2c-rea-impl R2c-preR R2c-and R1-extend-conj' R2c-post-SRD
            R1-post-SRD assms closure R1-tr-less-tr' R2c-tr-less-tr')
 finally show ?thesis.
qed
lemma preR-frame-seq-export:
 assumes P is NSRD P is Productive Q is NSRD
 shows (pre_R \ P \land (pre_R \ P \land post_R \ P) ;; \ Q) = (pre_R \ P \land (post_R \ P ;; \ Q))
proof -
 have (pre_R \ P \land (post_R \ P \ ;; \ Q)) = (pre_R \ P \land ((pre_R \ P \Rightarrow_r post_R \ P) \ ;; \ Q))
   by (simp add: SRD-post-under-pre assms closure unrest)
  also have ... = (pre_R \ P \land (((\neg_r \ pre_R \ P) \ ;; \ Q \lor (pre_R \ P \Rightarrow_r R1(post_R \ P)) \ ;; \ Q)))
   by (simp add: NSRD-is-SRD R1-post-SRD assms(1) rea-impl-def seqr-or-distl R1-preR Healthy-if)
 also have ... = (pre_R \ P \land (((\neg_r \ pre_R \ P) \ ;; \ Q \lor (pre_R \ P \land post_R \ P) \ ;; \ Q)))
 proof -
   have (pre_R P \vee \neg_r pre_R P) = R1 true
     by (simp add: R1-preR rea-not-or)
   then show ?thesis
     by (metis (no-types, lifting) R1-def conj-comm disj-comm disj-conj-distr rea-impl-def seqr-or-distl
utp-pred-laws.inf-top-left utp-pred-laws.sup.left-idem)
 also have ... = (pre_R \ P \land (((\neg_r \ pre_R \ P) \lor (pre_R \ P \land post_R \ P) ;; \ Q)))
   by (simp add: NSRD-neg-pre-left-zero assms closure SRD-healths)
 also have ... = (pre_R \ P \land (pre_R \ P \land post_R \ P) ;; \ Q)
   by (rel-blast)
 finally show ?thesis ..
qed
9.3
        Closure laws
lemma Productive-rdes-intro:
 assumes (\$tr <_u \$tr') \sqsubseteq R \$ok' \sharp P \$ok' \sharp Q \$ok' \sharp R \$wait \sharp P \$wait' \sharp P
 shows (\mathbf{R}_s(P \vdash Q \diamond R)) is Productive
proof (rule Productive-intro)
  show \mathbf{R}_s (P \vdash Q \diamond R) is SRD
   by (simp add: RHS-tri-design-is-SRD assms)
 from assms(1) show (\$tr' >_u \$tr) \sqsubseteq (pre_R (\mathbf{R}_s (P \vdash Q \diamond R)) \land post_R (\mathbf{R}_s (P \vdash Q \diamond R)))
   {\bf apply}\ (simp\ add:\ rea-pre-RHS-design\ rea-post-RHS-design\ usubst\ assms\ unrest)
   using assms(1) apply (rel-auto)
   apply fastforce
   done
 show \$wait' \sharp pre_R (\mathbf{R}_s (P \vdash Q \diamond R))
   by (simp add: rea-pre-RHS-design rea-post-RHS-design usubst R1-def R2c-def R2s-def assms unrest)
qed
```

We use the R4 healthiness condition to characterise that the postcondition must extend the trace for a reactive design to be productive.

```
\mathbf{lemma}\ \mathit{Productive-rdes-RR-intro}:
  assumes P is RR Q is RR R is RR R is R4
  shows (\mathbf{R}_s(P \vdash Q \diamond R)) is Productive
  using assms by (simp add: Productive-rdes-intro R4-iff-refine unrest)
lemma Productive-Miracle [closure]: Miracle is Productive
  unfolding Miracle-tri-def Healthy-def
  by (subst Productive-RHS-design-form, simp-all add: unrest)
lemma Productive-Chaos [closure]: Chaos is Productive
  unfolding Chaos-tri-def Healthy-def
  by (subst Productive-RHS-design-form, simp-all add: unrest, rel-auto)
lemma Productive-intChoice [closure]:
  assumes P is SRD P is Productive Q is SRD Q is Productive
  shows P \sqcap Q is Productive
proof -
  have P \sqcap Q =
         \mathbf{R}_s(\mathit{pre}_R(P) \vdash \mathit{peri}_R(P) \diamond (\mathit{post}_R(P) \land \$\mathit{tr} <_u \$\mathit{tr}')) \sqcap \mathbf{R}_s(\mathit{pre}_R(Q) \vdash \mathit{peri}_R(Q) \diamond (\mathit{post}_R(Q) \land \mathsf{tr}')) \cap \mathbf{R}_s(\mathit{pre}_R(Q) \vdash \mathit{peri}_R(Q) \diamond (\mathit{post}_R(Q) \land \mathsf{tr}'))
tr <_u tr'
    by (metis Healthy-if Productive-form assms)
  also have ... = \mathbf{R}_s ((pre_R \ P \land pre_R \ Q) \vdash (peri_R \ P \lor peri_R \ Q) \diamond ((post_R \ P \land \$tr' >_u \$tr) \lor (post_R \ P)
Q \wedge \$tr' >_u \$tr)))
    by (simp add: RHS-tri-design-choice)
  also have ... = \mathbf{R}_s ((pre_R \ P \land pre_R \ Q) \vdash (peri_R \ P \lor peri_R \ Q) \diamond (((post_R \ P) \lor (post_R \ Q)) \land $tr'
>_u \$tr))
    by (rule cong [of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  also have ... is Productive
    by (simp add: Healthy-def Productive-RHS-design-form unrest)
  finally show ?thesis.
qed
lemma Productive-cond-rea [closure]:
  assumes P is SRD P is Productive Q is SRD Q is Productive
  shows P \triangleleft b \triangleright_R Q is Productive
proof -
  have P \triangleleft b \triangleright_R Q =
        \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond (post_R(P) \land \$tr <_u \$tr')) \triangleleft b \triangleright_R \mathbf{R}_s(pre_R(Q) \vdash peri_R(Q) \diamond (post_R(Q)) \land \mathsf{R}_s(pre_R(Q) \land \mathsf{R}_s(Q))
\wedge \$tr <_u \$tr'))
    by (metis Healthy-if Productive-form assms)
  \textbf{also have} \ ... = \mathbf{R}_s \ ((\textit{pre}_R \ \textit{P} \mathrel{\triangleleft} \textit{b} \mathrel{\triangleright}_{\textit{R}} \textit{pre}_R \ \textit{Q}) \vdash (\textit{peri}_R \ \textit{P} \mathrel{\triangleleft} \textit{b} \mathrel{\triangleright}_{\textit{R}} \textit{peri}_R \ \textit{Q}) \diamond ((\textit{post}_R \ \textit{P} \ \land \$tr' \mathrel{>_u}
\$tr) \triangleleft b \triangleright_R (post_R Q \land \$tr' >_u \$tr)))
    by (simp add: cond-srea-form)
  also have ... = \mathbf{R}_s ((pre_R \ P \triangleleft b \triangleright_R \ pre_R \ Q) \vdash (peri_R \ P \triangleleft b \triangleright_R \ peri_R \ Q) \diamond (((post_R \ P) \triangleleft b \triangleright_R \ (post_R \ P))
Q)) \wedge \$tr' >_u \$tr))
    by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  also have ... is Productive
    by (simp add: Healthy-def Productive-RHS-design-form unrest)
  finally show ?thesis.
qed
lemma Productive-seq-1 [closure]:
```

assumes P is NSRD P is Productive Q is NSRD

```
shows P;; Q is Productive
proof -
    have P :: Q = \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond (post_R(P) \land \$tr <_u \$tr')) :: \mathbf{R}_s(pre_R(Q) \vdash peri_R(Q) \diamond
(post_R(Q))
         by (metis Healthy-def NSRD-is-SRD SRD-reactive-tri-design Productive-form assms(1) assms(2)
assms(3)
   also have ... = \mathbf{R}_s ((pre<sub>R</sub> P \land (post_R P \land \$tr' >_u \$tr) wp_r pre_R Q) <math>\vdash
                                             (peri_R \ P \lor ((post_R \ P \land \$tr' >_u \$tr) \ ;; \ peri_R \ Q)) \diamond ((post_R \ P \land \$tr' >_u \$tr) \ ;;
post_R Q))
       by (simp add: RHS-tri-design-composition-wp rpred unrest closure assms wp NSRD-neg-pre-left-zero
SRD-healths ex-unrest wp-rea-def disj-upred-def)
   also have ... = \mathbf{R}_s ((pre<sub>R</sub> P \land (post_R P \land \$tr' >_u \$tr) wp_r pre_R Q) <math>\vdash
                                             (peri_R \ P \lor ((post_R \ P \land \$tr' >_u \$tr) \ ;; \ peri_R \ Q)) \diamond ((post_R \ P \land \$tr' >_u \$tr) \ ;;
post_R \ Q \wedge \$tr' >_u \$tr))
   proof -
      have ((post_R P \land \$tr' >_u \$tr'); R1(post_R Q)) = ((post_R P \land \$tr' >_u \$tr'); R1(post_R Q) \land \$tr'
>_u \$tr
           by (rel-auto)
       thus ?thesis
           by (simp add: NSRD-is-SRD R1-post-SRD assms)
   qed
   also have ... is Productive
       by (rule Productive-rdes-intro, simp-all add: unrest assms closure wp-rea-def)
   finally show ?thesis.
qed
lemma Productive-seq-2 [closure]:
   assumes P is NSRD Q is NSRD Q is Productive
   shows P;; Q is Productive
proof -
   have P :: Q = \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond (post_R(P))) :: \mathbf{R}_s(pre_R(Q) \vdash peri_R(Q) \diamond (post_R(Q) \wedge \$tr))
<_u \$tr')
       by (metis Healthy-def NSRD-is-SRD SRD-reactive-tri-design Productive-form assms)
   also have ... = \mathbf{R}_s ((pre_R \ P \land post_R \ P \ wp_r \ pre_R \ Q) \vdash (peri_R \ P \lor (post_R \ P \ ;; peri_R \ Q)) \diamond (post_R \ P \ ;; peri_R \ Q)
P :: (post_R \ Q \land \$tr' >_u \$tr)))
       by (simp add: RHS-tri-design-composition-wp rpred unrest closure assms wp NSRD-neq-pre-left-zero
SRD-healths ex-unrest wp-rea-def disj-upred-def)
   also have ... = \mathbf{R}_s ((pre<sub>R</sub> P \land post<sub>R</sub> P wp<sub>r</sub> pre<sub>R</sub> Q) \vdash (peri<sub>R</sub> P \lor (post<sub>R</sub> P ;; peri<sub>R</sub> Q)) \diamond (post<sub>R</sub>
P :: (post_R \ Q \land \$tr' >_u \$tr) \land \$tr' >_u \$tr))
   proof -
      have (R1(post_R P) :: (post_R Q \land \$tr' >_u \$tr) \land \$tr' >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R P) :: (post_R Q \land \$tr') >_u \$tr) = (R1(post_R Q \land \$tr') >_u \$tr') 
>_u \$tr)
          by (rel-auto)
       thus ?thesis
           by (simp add: NSRD-is-SRD R1-post-SRD assms)
   also have ... is Productive
       by (rule Productive-rdes-intro, simp-all add: unrest assms closure wp-rea-def)
   finally show ?thesis.
qed
```

end

Guarded Recursion 10

```
theory utp-rdes-guarded
 imports \ utp-rdes-productive
begin
```

10.1 Traces with a size measure

Guarded recursion relies on our ability to measure the trace's size, in order to see if it is decreasing on each iteration. Thus, we here equip the trace algebra with the ucard function that provides this.

```
class \ size-trace = trace + size +
 assumes
   size-zero: size \theta = \theta and
   size-nzero: s > 0 \implies size(s) > 0 and
   size-plus: size(s + t) = size(s) + size(t)
   These axioms may be stronger than necessary. In particular, 0 < ?s \Longrightarrow 0 < \#_u(?s) requires that a
non-empty trace have a positive size. But this may not be the case with all trace models and is possibly
more restrictive than necessary. In future we will explore weakening.
begin
lemma size-mono: s \le t \Longrightarrow size(s) \le size(t)
 by (metis le-add1 local.diff-add-cancel-left' local.size-plus)
lemma size-strict-mono: s < t \Longrightarrow size(s) < size(t)
  by (metis cancel-ab-semigroup-add-class.add-diff-cancel-left' local.diff-add-cancel-left' local.less-iff lo-
cal.minus-gr-zero-iff local.size-nzero local.size-plus zero-less-diff)
lemma trace-strict-prefixE: xs < ys \Longrightarrow (\bigwedge zs. \llbracket ys = xs + zs; size(zs) > 0 \rrbracket \Longrightarrow thesis) \Longrightarrow thesis
 by (metis local.diff-add-cancel-left' local.less-iff local.minus-gr-zero-iff local.size-nzero)
lemma size-minus-trace: y \le x \Longrightarrow size(x-y) = size(x) - size(y)
 by (metis diff-add-inverse local.diff-add-cancel-left' local.size-plus)
end
Both natural numbers and lists are measurable trace algebras.
instance nat :: size-trace
 by (intro-classes, simp-all)
instance list :: (type) size-trace
 by (intro-classes, simp-all add: zero-list-def less-list-def plus-list-def prefix-length-less)
syntax
             :: logic \Rightarrow logic (size_u'(-'))
  -usize
translations
  size_u(t) == CONST \ uop \ CONST \ size \ t
10.2
         Guardedness
```

```
definition gvrt :: (('t::size-trace,'\alpha) \ rp \times ('t,'\alpha) \ rp) chain where
[upred-defs]: gvrt(n) \equiv (\$tr \leq_u \$tr' \land size_u(\&tt) <_u \ll n \gg)
```

lemma gvrt-chain: chain gvrt

```
apply (simp add: chain-def, safe)
 apply (rel-simp)
 apply (rel-simp) +
done
lemma gvrt-limit: \prod (range gvrt) = (\$tr \le_u \$tr')
 by (rel-auto)
definition Guarded :: (('t::size-trace,'\alpha) \ hrel-rp \Rightarrow ('t,'\alpha) \ hrel-rp) \Rightarrow bool where
[upred-defs]: Guarded(F) = (\forall X \ n. \ (F(X) \land gvrt(n+1)) = (F(X \land gvrt(n)) \land gvrt(n+1)))
lemma GuardedI: [\![ \bigwedge X n. (F(X) \land gvrt(n+1)) = (F(X \land gvrt(n)) \land gvrt(n+1)) ]\!] \Longrightarrow Guarded F
 by (simp add: Guarded-def)
Guarded reactive designs yield unique fixed-points.
theorem guarded-fp-uniq:
 assumes mono F F \in [id]_H \to [SRD]_H Guarded F
 shows \mu F = \nu F
proof -
 have constr F gvrt
   using assms
   by (auto simp add: constr-def gvrt-chain Guarded-def tcontr-alt-def')
 hence (\$tr \leq_u \$tr' \wedge \mu F) = (\$tr \leq_u \$tr' \wedge \nu F)
   apply (rule constr-fp-uniq)
    apply (simp add: assms)
   using gvrt-limit apply blast
   done
 moreover have (\$tr \leq_u \$tr' \land \mu F) = \mu F
 proof -
   have \mu F is R1
     by (rule SRD-healths(1), rule Healthy-mu, simp-all add: assms)
   thus ?thesis
     by (metis Healthy-def R1-def conj-comm)
 qed
 moreover have (\$tr \leq_u \$tr' \land \nu F) = \nu F
 proof -
   have \nu F is R1
     by (rule SRD-healths(1), rule Healthy-nu, simp-all add: assms)
   thus ?thesis
     by (metis Healthy-def R1-def conj-comm)
 \mathbf{qed}
 ultimately show ?thesis
   by (simp)
qed
lemma Guarded-const [closure]: Guarded (\lambda X. P)
 by (simp add: Guarded-def)
lemma UINF-Guarded [closure]:
 assumes \bigwedge P. P \in A \Longrightarrow Guarded P
 shows Guarded (\lambda X. \prod P \in A \cdot P(X))
proof (rule GuardedI)
 \mathbf{fix}\ X\ n
 have \bigwedge Y. ((\bigcap P \in A \cdot P \ Y) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \ Y \land gvrt(n+1))) \land gvrt(n+1))
 proof -
```

```
\mathbf{fix} \ Y
       let ?lhs = ((\bigcap P \in A \cdot P \ Y) \land gvrt(n+1)) and ?rhs = ((\bigcap P \in A \cdot (P \ Y \land gvrt(n+1))) \land gvrt(n+1))
        have a:?lhs[false/\$ok] = ?rhs[false/\$ok]
            by (rel-auto)
        have b:?lhs[true/\$ok][true/\$wait] = ?rhs[true/\$ok][true/\$wait]
            by (rel-auto)
        have c:?lhs[true/\$ok][false/\$wait] = ?rhs[true/\$ok][false/$wait]
            by (rel-auto)
        \mathbf{show} ? lhs = ? rhs
            using a \ b \ c
            by (rule-tac bool-eq-splitI of in-var ok], simp, rule-tac bool-eq-splitI of in-var wait], simp-all)
    qed
    moreover have ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \times A \land gvrt(n+1)))) \land gvrt(n+1)) = ((\bigcap P \in A \land gvrt(n+1))) \land gvrt(n+1)) = ((\bigcap P \in A \land gvrt(n+1))) \land gvrt(n+1)) = ((\bigcap P \in A \land gvrt(n+1))) \land gvrt(n+1)) = ((\bigcap P \in A \land gvrt(n+1))) \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1) = ((\bigcap P \cap A \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1) = ((\bigcap P \cap A \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) = ((\bigcap P \cap A \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) \land gvrt(n+1) = ((\bigcap P \cap A \land gvrt(n+1))) = ((\bigcap P \cap A \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) = ((\bigcap P \cap A \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) = ((\bigcap P \cap A \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) = ((\bigcap P \cap A \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1))) = ((\bigcap P \cap A \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1)) = ((\bigcap P \cap A \land gvrt(n+1)) = ((\bigcap P \cap A \land gvr
gvrt(n+1)) \land gvrt(n+1)
    proof -
        have (\bigcap P \in A \cdot (P \mid X \land gvrt(n+1))) = (\bigcap P \in A \cdot (P \mid (X \land gvrt(n)) \land gvrt(n+1)))
        proof (rule UINF-conq)
            fix P assume P \in A
            thus (P X \land gvrt(n+1)) = (P (X \land gvrt(n)) \land gvrt(n+1))
                using Guarded-def assms by blast
        qed
        thus ?thesis by simp
    qed
    ultimately show ((\bigcap P \in A \cdot P \ X) \land gvrt(n+1)) = ((\bigcap P \in A \cdot (P \ (X \land gvrt(n)))) \land gvrt(n+1))
qed
lemma intChoice-Guarded [closure]:
    assumes Guarded P Guarded Q
    shows Guarded (\lambda X. P(X) \sqcap Q(X))
proof -
   have Guarded (\lambda X. \prod F \in \{P,Q\} \cdot F(X))
        by (rule UINF-Guarded, auto simp add: assms)
    thus ?thesis
        by (simp)
qed
lemma cond-srea-Guarded [closure]:
    assumes Guarded P Guarded Q
    shows Guarded (\lambda X. P(X) \triangleleft b \triangleright_R Q(X))
    using assms by (rel-auto)
A tail recursive reactive design with a productive body is guarded.
lemma Guarded-if-Productive [closure]:
    fixes P :: ('s, 't::size-trace, '\alpha) hrel-rsp
   assumes P is NSRD P is Productive
   shows Guarded (\lambda X. P ;; SRD(X))
proof (clarsimp simp add: Guarded-def)
     — We split the proof into three cases corresponding to valuations for ok, wait, and wait' respectively.
   \mathbf{fix}\ X\ n
   have a:(P :: SRD(X) \land gvrt (Suc n))[false/\$ok] =
                (P :: SRD(X \land gvrt \ n) \land gvrt \ (Suc \ n)) \llbracket false / \$ok \rrbracket
        by (simp add: usubst closure SRD-left-zero-1 assms)
   have b:((P :; SRD(X) \land gvrt (Suc n))[true/\$ok])[true/\$wait]] =
                     ((P :: SRD(X \land qvrt \ n) \land qvrt \ (Suc \ n))[true/\$ok])[true/\$wait]
```

```
by (simp add: usubst closure SRD-left-zero-2 assms)
   have c:((P ;; SRD(X) \land gvrt (Suc n))[true/\$ok])[false/\$wait]] =
                ((P ;; SRD(X \land gvrt \ n) \land gvrt \ (Suc \ n))[true/\$ok])[false/\$wait]
   proof -
      have 1:(P[true/\$wait']; (SRD\ X)[true/\$wait] \land qvrt\ (Suc\ n))[true,false/\$ok,\$wait] =
                (P[true/\$wait']; (SRD\ (X \land gvrt\ n))[true/\$wait] \land gvrt\ (Suc\ n))[true,false/\$ok,\$wait]
          by (metis (no-types, lifting) Healthy-def R3h-wait-true SRD-healths(3) SRD-idem)
      \mathbf{have} \ 2: (P[false/\$wait'] \ ;; \ (SRD \ X)[false/\$wait] \land gvrt \ (Suc \ n))[true,false/\$ok,\$wait]] =
                (P[false/\$wait']; (SRD\ (X \land gvrt\ n))[false/\$wait]] \land gvrt\ (Suc\ n))[true,false/\$ok,\$wait]]
      proof -
       \mathbf{have}\ exp: \land\ Y::('s,\ 't,'\alpha)\ hrel-rsp.\ (P\llbracket false/\$wait'\rrbracket\ ;;\ (SRD\ Y)\llbracket false/\$wait\rrbracket \land gvrt\ (Suc\ n))\llbracket true,false/\$ok,\$wait\rrbracket
                                          ((((\neg_r \ pre_R \ P) \ ;; \ (SRD(Y))[false/\$wait]] \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y))[false/\$wait]]
 Y)[true,false/\$ok,\$wait]))
                                   \land gvrt (Suc n))[true,false/\$ok,\$wait]
          proof -
             fix Y :: ('s, 't, '\alpha) \ hrel-rsp
             have (P[false/\$wait']; (SRD\ Y)[false/\$wait] \land gvrt\ (Suc\ n))[true,false/\$ok,\$wait] =
                  ((\mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond (post_R(P) \land \$tr <_u \$tr'))) \llbracket false/\$wait' \rrbracket \; ;; \; (SRD \; Y) \llbracket false/\$wait \rrbracket
\land gvrt (Suc n) [true, false/$ok,$wait]
                by (metis (no-types) Healthy-def Productive-form assms(1) assms(2) NSRD-is-SRD)
             also have ... =
               ((R1(R2c(pre_R(P) \Rightarrow (\$ok' \land post_R(P) \land \$tr <_u \$tr')))) \llbracket false/\$wait' \rrbracket \; ;; (SRD \; Y) \llbracket false/\$wait \rrbracket
\land gvrt (Suc n))[true,false/\$ok,\$wait]
                by (simp add: RHS-def R1-def R2c-def R2s-def R3h-def RD1-def RD2-def usubst unrest assms
closure design-def)
             also have ... =
                     (((\neg_r \ pre_R(P) \lor (\$ok' \land post_R(P) \land \$tr <_u \$tr')))[false/\$wait']]; (SRD Y)[false/\$wait]]
\land gvrt (Suc n))[true,false/\$ok,\$wait]
                by (simp add: impl-alt-def R2c-disj R1-disj R2c-not assms closure R2c-and
                       R2c-preR rea-not-def R1-extend-conj' R2c-ok' R2c-post-SRD R1-tr-less-tr' R2c-tr-less-tr')
                            Y)[[false/\$wait]]) \land gvrt (Suc n))[[true,false/\$ok,\$wait]]
                by (simp add: usubst unrest assms closure segr-or-distl NSRD-neg-pre-left-zero SRD-healths)
               ((((\neg_r \ pre_R \ P) \ ;; (SRD(Y)) \llbracket false / \$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; (SRD(Y) \llbracket true, false / \$ok, \$wait \rrbracket)))))
\land gvrt (Suc n))[true,false/\$ok,\$wait]
             proof -
                have (\$ok' \land post_R P \land \$tr' >_u \$tr) ; (SRD Y) \llbracket false / \$wait \rrbracket =
                           ((post_R \ P \land \$tr' >_u \$tr) \land \$ok' =_u true) ;; (SRD \ Y) \llbracket false/\$wait \rrbracket
                   by (rel-blast)
                also have ... = (post_R P \land \$tr' >_u \$tr) \llbracket true/\$ok' \rrbracket ;; (SRD Y) \llbracket false/\$wait \rrbracket \llbracket true/\$ok \rrbracket
                    using seqr-left-one-point of ok (post_R P \land \$tr' >_u \$tr) True (SRD Y) \llbracket false / \$wait \rrbracket \rrbracket
                    by (simp add: true-alt-def[THEN sym])
                finally show ?thesis by (simp add: usubst unrest)
             qed
             finally
             ((((\neg_r \ pre_R \ P) \ ;; \ (SRD(Y)) \llbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$tr) \ ;; \ (SRD(Y)) \rrbracket false/\$wait \rrbracket \lor (post_R \ P \land \$tr' >_u \$t
 Y)[true,false/\$ok,\$wait]))
                            \land gvrt (Suc n))[true,false/\$ok,\$wait].
          qed
```

```
\mathbf{have} \ 1:((post_R \ P \ \land \$tr' >_u \$tr) \ ;; \ (SRD \ X)[[true,false/\$ok,\$wait]] \ \land \ gvrt \ (Suc \ n)) =
          ((post_R \ P \land \$tr' >_u \$tr) ;; (SRD \ (X \land gvrt \ n))[true,false/\$ok,\$wait]] \land gvrt \ (Suc \ n))
     apply (rel-auto)
      apply (rename-tac tr st more ok wait tr' st' more' tr<sub>0</sub> st<sub>0</sub> more<sub>0</sub> ok')
      apply (rule-tac x=tr_0 in exI, rule-tac x=st_0 in exI, rule-tac x=more_0 in exI)
      apply (simp)
      apply (erule trace-strict-prefixE)
      apply (rename-tac tr st ref ok wait tr' st' ref' tr_0 st_0 ref_0 ok' zs)
      apply (rule-tac x=False in exI)
      apply (simp add: size-minus-trace)
      apply (subgoal-tac\ size(tr) < size(tr_0))
      apply (simp add: less-diff-conv2 size-mono)
     using size-strict-mono apply blast
     apply (rename-tac tr st more ok wait tr' st' more' tr_0 st_0 more_0 ok')
     apply (rule-tac x=tr_0 in exI, rule-tac x=st_0 in exI, rule-tac x=more_0 in exI)
     apply (simp)
     apply (erule trace-strict-prefixE)
     apply (rename-tac tr st more ok wait tr' st' more' tr_0 st_0 more_0 ok' zs)
     apply (auto simp add: size-minus-trace)
     apply (subgoal-tac\ size(tr) < size(tr_0))
      apply (simp add: less-diff-conv2 size-mono)
     using size-strict-mono apply blast
     done
   \mathbf{have} \ 2: (\neg_r \ pre_R \ P) \ ;; \ (SRD \ X) \llbracket false / \$wait \rrbracket = (\neg_r \ pre_R \ P) \ ;; \ (SRD (X \land gvrt \ n)) \llbracket false / \$wait \rrbracket
     by (simp add: NSRD-neg-pre-left-zero closure assms SRD-healths)
   show ?thesis
     by (simp add: exp 1 2 utp-pred-laws.inf-sup-distrib2)
 qed
 show ?thesis
 proof -
   have (P :: (SRD X) \land gvrt (n+1))[true,false/$ok,$wait] =
       ((P[true/\$wait'];;(SRD\ X)[true/\$wait]] \land gvrt\ (n+1))[true,false/\$ok,\$wait]] \lor
       (P[false/\$wait']; (SRD\ X)[false/\$wait] \land gvrt\ (n+1)[true,false/\$ok,\$wait])
     by (subst seqr-bool-split[of wait], simp-all add: usubst utp-pred-laws.distrib(4))
  \mathbf{have} \dots = ((P[true/\$wait']; (SRD\ (X \land gvrt\ n))[true/\$wait]] \land qvrt\ (n+1))[true,false/\$ok,\$wait]]
            (P[false/\$wait']; (SRD\ (X \land gvrt\ n))[false/\$wait] \land gvrt\ (n+1))[true,false/\$ok,\$wait])
     by (simp add: 1 2)
   also
   have ... = ((P[true/\$wait']; (SRD (X \land gvrt n))[true/\$wait]] \lor
             P[false/\$wait'] ; (SRD (X \land gvrt n))[false/\$wait]) \land gvrt (n+1))[true,false/\$ok,\$wait]]
     by (simp\ add:\ usubst\ utp-pred-laws.distrib(4))
   also have ... = (P :: (SRD (X \land gvrt n)) \land gvrt (n+1))[true, false/\$ok, \$wait]]
     by (subst segr-bool-split[of wait], simp-all add: usubst)
   finally show ?thesis by (simp add: usubst)
 qed
qed
show (P : SRD(X) \land gvrt (Suc n)) = (P : SRD(X \land gvrt n) \land gvrt (Suc n))
 apply (rule-tac bool-eq-splitI[of in-var ok])
```

V

```
apply (simp-all \ add: \ a)
   apply (rule-tac bool-eq-splitI[of in-var wait])
     apply (simp-all \ add: b \ c)
 done
qed
```

Tail recursive fixed-point calculations 10.3

declare upred-semiring.power-Suc [simp] lemma mu-csp-form-1 [rdes]: fixes $P :: ('s, 't::size-trace,'\alpha) \ hrel-rsp$ assumes P is NSRD P is Productive shows $(\mu \ X \cdot P \ ;; SRD(X)) = (\prod i \cdot P \hat{\ } (i+1)) \ ;; Miracle$ proof have 1: Continuous ($\lambda X.\ P$;; $SRD\ X$) using SRD-Continuous by (clarsimp simp add: Continuous-def seq-SUP-distl[THEN sym], drule-tac x=A in spec, simp) have 2: $(\lambda X. P ;; SRD X) \in [\![id]\!]_H \rightarrow [\![SRD]\!]_H$ by (blast intro: funcsetI closure assms) with 1 2 have $(\mu \ X \cdot P \ ;; SRD(X)) = (\nu \ X \cdot P \ ;; SRD(X))$ by (simp add: guarded-fp-uniq Guarded-if-Productive[OF assms] funcsetI closure) also have ... = $(\prod i. ((\lambda X. P ;; SRD X) \hat{i}) false)$ by (simp add: sup-continuous-lfp 1 sup-continuous-Continuous false-upred-def) **also have** ... = $((\lambda X. P ;; SRD X) \hat{} 0) false \sqcap (\prod i. ((\lambda X. P ;; SRD X) \hat{} (i+1)) false)$ **by** (subst Sup-power-expand, simp) also have ... = $(\prod i. ((\lambda X. P ;; SRD X) \hat{} (i+1)) false)$ by (simp)also have ... = $(\prod i. P \hat{} (i+1) ;; Miracle)$ proof (rule SUP-cong, simp-all) \mathbf{fix} i **show** $P :: SRD (((\lambda X. P :: SRD X) \hat{i}) false) = (P :: P \hat{i}) :: Miracle$ **proof** (induct i) case θ then show ?case by (simp, metis srdes-hoond-def srdes-theory-continuous.healthy-top) nextcase $(Suc\ i)$ then show ?case by (simp add: Healthy-if NSRD-is-SRD SRD-power-comp SRD-seqr-closure assms(1) seqr-assoc[THEN sym[srdes-theory-continuous.weak.top-closed)qed qed also have ... = $(\prod i. P \hat{} (i+1))$;; Miracle **by** (simp add: seq-Sup-distr) finally show ?thesis **by** (simp add: UINF-as-Sup[THEN sym]) qed **lemma** mu-csp-form-NSRD [closure]: fixes $P :: ('s, 't::size-trace,'\alpha) \ hrel-rsp$ assumes P is NSRD P is Productive shows $(\mu \ X \cdot P \ ;; SRD(X))$ is NSRDby (simp add: mu-csp-form-1 assms closure)

lemma *mu-csp-form-1* ':

```
fixes P::('s, 't::size-trace,'\alpha) hrel-rsp assumes P is NSRD P is Productive shows (\mu \ X \cdot P \ ;; \ SRD(X)) = (P \ ;; \ P^*) \ ;; \ Miracle proof - have (\mu \ X \cdot P \ ;; \ SRD(X)) = (\prod \ i \in UNIV \cdot P \ ;; \ P \ i) \ ;; \ Miracle by (simp \ add: \ mu\text{-}csp\text{-}form\text{-}1 \ assms \ closure \ ustar\text{-}def) also have ... = (P \ ;; \ P^*) \ ;; \ Miracle by (simp \ only: \ seq\text{-}UINF\text{-}distl[THEN \ sym], \ simp \ add: \ ustar\text{-}def) finally show ?thesis. qed declare upred\text{-}semiring.power\text{-}Suc \ [simp \ del]
```

11 Reactive Design Programs

```
\begin{array}{c} \textbf{theory} \ utp\text{-}rdes\text{-}prog\\ \textbf{imports}\\ utp\text{-}rdes\text{-}normal\\ utp\text{-}rdes\text{-}tactics\\ utp\text{-}rdes\text{-}parallel\\ utp\text{-}rdes\text{-}guarded\\ UTP\text{-}KAT.utp\text{-}kleene\\ \textbf{begin} \end{array}
```

11.1 State substitution

```
lemma srd-subst-RHS-tri-design [usubst]:
   \lceil \sigma \rceil_{S\sigma} \dagger \mathbf{R}_s(P \vdash Q \diamond R) = \mathbf{R}_s((\lceil \sigma \rceil_{S\sigma} \dagger P) \vdash (\lceil \sigma \rceil_{S\sigma} \dagger Q) \diamond (\lceil \sigma \rceil_{S\sigma} \dagger R))
  by (rel-auto)
lemma srd-subst-SRD-closed [closure]:
  assumes P is SRD
  shows \lceil \sigma \rceil_{S\sigma} \dagger P \text{ is } SRD
proof -
  have SRD(\lceil \sigma \rceil_{S\sigma} \dagger (SRD P)) = \lceil \sigma \rceil_{S\sigma} \dagger (SRD P)
     by (rel-auto)
  thus ?thesis
     by (metis Healthy-def assms)
qed
lemma preR-srd-subst [rdes]:
  pre_R(\lceil \sigma \rceil_{S\sigma} \dagger P) = \lceil \sigma \rceil_{S\sigma} \dagger pre_R(P)
  by (rel-auto)
lemma periR-srd-subst [rdes]:
  peri_R(\lceil \sigma \rceil_{S\sigma} \dagger P) = \lceil \sigma \rceil_{S\sigma} \dagger peri_R(P)
  by (rel-auto)
lemma postR-srd-subst [rdes]:
  post_R(\lceil \sigma \rceil_{S\sigma} \dagger P) = \lceil \sigma \rceil_{S\sigma} \dagger post_R(P)
  by (rel-auto)
lemma srd-subst-NSRD-closed [closure]:
```

```
shows \lceil \sigma \rceil_{S\sigma} \dagger P \text{ is NSRD}
  by (rule NSRD-RC-intro, simp-all add: closure rdes assms unrest)
11.2
           Assignment
definition assigns-srd :: 's usubst \Rightarrow ('s, 't::trace, '\alpha) hrel-rsp (\langle - \rangle_R) where
[upred-defs]: assigns-srd \sigma = \mathbf{R}_s(true \vdash (\$tr' =_u \$tr \land \neg \$wait' \land \lceil \langle \sigma \rangle_a \rceil_S \land \$\Sigma_S' =_u \$\Sigma_S))
syntax
  -assign\text{-}srd :: svids \Rightarrow uexprs \Rightarrow logic ('(-') :=_R '(-'))
  -assign-srd :: svids \Rightarrow uexprs \Rightarrow logic \ (infixr :=_R 90)
translations
  -assign-srd \ xs \ vs => CONST \ assigns-srd \ (-mk-usubst \ (CONST \ id) \ xs \ vs)
  -assign-srd x \ v \leftarrow CONST \ assigns-srd \ (CONST \ subst-upd \ (CONST \ id) \ x \ v)
  -assign-srd \ x \ v \le -assign-srd \ (-spvar \ x) \ v
  x,y:=_R u,v <= CONST \ assigns-srd \ (CONST \ subst-upd \ (CONST \ subst-upd \ (CONST \ id) \ (CONST \ id)
svar x) u) (CONST svar y) v)
lemma assigns-srd-RHS-tri-des [rdes-def]:
  \langle \sigma \rangle_R = \mathbf{R}_s(true_r \vdash false \diamond \langle \sigma \rangle_r)
  by (rel-auto)
lemma assigns-srd-NSRD-closed [closure]: \langle \sigma \rangle_R is NSRD
  by (simp add: rdes-def closure unrest)
lemma preR-assigns-srd [rdes]: pre_R(\langle \sigma \rangle_R) = true_r
  by (simp add: rdes-def rdes closure)
lemma periR-assigns-srd [rdes]: peri_R(\langle \sigma \rangle_R) = false
  by (simp add: rdes-def rdes closure)
lemma postR-assigns-srd [rdes]: post<sub>R</sub>(\langle \sigma \rangle_R) = \langle \sigma \rangle_r
  by (simp add: rdes-def rdes closure rpred)
11.3
           Conditional
lemma preR-cond-srea [rdes]:
  pre_R(P \triangleleft b \triangleright_R Q) = ([b]_{S \triangleleft} \land pre_R(P) \lor [\neg b]_{S \triangleleft} \land pre_R(Q))
  by (rel-auto)
lemma periR-cond-srea [rdes]:
  assumes P is SRD Q is SRD
  shows peri_R(P \triangleleft b \triangleright_R Q) = ([b]_{S <} \land peri_R(P) \lor [\neg b]_{S <} \land peri_R(Q))
proof -
  have peri_R(P \triangleleft b \triangleright_R Q) = peri_R(R1(P) \triangleleft b \triangleright_R R1(Q))
    by (simp add: Healthy-if SRD-healths assms)
  thus ?thesis
    by (rel-auto)
qed
lemma postR-cond-srea [rdes]:
  assumes P is SRD Q is SRD
  shows post_R(P \triangleleft b \triangleright_R Q) = ([b]_{S <} \land post_R(P) \lor [\neg b]_{S <} \land post_R(Q))
proof -
```

assumes P is NSRD

```
have post_R(P \triangleleft b \triangleright_R Q) = post_R(R1(P) \triangleleft b \triangleright_R R1(Q))
    by (simp add: Healthy-if SRD-healths assms)
  thus ?thesis
    by (rel-auto)
qed
lemma NSRD-cond-srea [closure]:
  assumes P is NSRD Q is NSRD
  shows P \triangleleft b \triangleright_R Q is NSRD
proof (rule NSRD-RC-intro)
  show P \triangleleft b \triangleright_R Q is SRD
   by (simp add: closure assms)
  show pre_R (P \triangleleft b \triangleright_R Q) is RC
  proof -
    have 1:([\neg b]_{S<} \vee \neg_r pre_R P) ;; R1(true) = ([\neg b]_{S<} \vee \neg_r pre_R P)
    by (metis (no-types, lifting) NSRD-neg-pre-unit aext-not assms(1) seqr-or-distl st-lift-R1-true-right)
    have 2:(\lceil b \rceil_{S<} \vee \neg_r \ pre_R \ Q) ;; R1(true) = (\lceil b \rceil_{S<} \vee \neg_r \ pre_R \ Q)
      by (simp add: NSRD-neg-pre-unit assms seqr-or-distl st-lift-R1-true-right)
    show ?thesis
      by (simp add: rdes closure assms)
  qed
  show \$st' \sharp peri_R (P \triangleleft b \triangleright_R Q)
  by (simp add: rdes assms closure unrest)
qed
11.4
          Assumptions
definition Assume R: 's \ cond \Rightarrow ('s, 't::trace, '\alpha) \ hrel-rsp ([-]^{\top}_R) where
[upred-defs]: AssumeR \ b = II_R \triangleleft b \triangleright_R Miracle
lemma AssumeR-rdes-def [rdes-def]:
  [b]^{\perp}_{R} = \mathbf{R}_{s}(true_{r} \vdash false \diamond [b]^{\perp}_{r})
  unfolding AssumeR-def by (rdes-eq)
lemma AssumeR-NSRD [closure]: [b]^{\top}_{R} is NSRD
  by (simp add: AssumeR-def closure)
lemma AssumeR-false: [false]^{\top}_{R} = Miracle
  by (rel-auto)
lemma AssumeR-true: [true]^{\top}_{R} = II_{R}
  by (rel-auto)
lemma AssumeR-comp: [b]^{\top}_{R};; [c]^{\top}_{R} = [b \land c]^{\top}_{R}
  by (rdes-simp)
lemma AssumeR-choice: [b]^{\top}_{R} \sqcap [c]^{\top}_{R} = [b \lor c]^{\top}_{R}
 by (rdes-eq)
lemma AssumeR-refine-skip: II_R \sqsubseteq [b]^{\top}_R
  by (rdes-refine)
lemma AssumeR-test [closure]: test_R [b]<sup>\top</sup><sub>R</sub>
  by (simp add: AssumeR-refine-skip nsrd-thy.utest-intro)
lemma Star-AssumeR: [b]^{\top}_{R} *^{R} = II_{R}
```

```
by (simp add: AssumeR-NSRD AssumeR-test nsrd-thy.Star-test)
lemma AssumeR-choice-skip: II_R \sqcap [b]^{\top}_R = II_R
  by (rdes-eq)
\mathbf{lemma}\ cond\text{-}srea\text{-}Assume R\text{-}form:
  assumes P is NSRD Q is NSRD
 shows P \triangleleft b \triangleright_R Q = ([b]^{\top}_R ;; P \sqcap [\neg b]^{\top}_R ;; Q)
 by (rdes-eq cls: assms)
lemma cond-srea-insert-assume:
  assumes P is NSRD Q is NSRD
 shows P \triangleleft b \triangleright_R Q = ([b]^{\top}_R ;; P \triangleleft b \triangleright_R [\neg b]^{\top}_R ;; Q)
 by (simp add: AssumeR-NSRD AssumeR-comp NSRD-segr-closure RA1 assms cond-srea-AssumeR-form)
\mathbf{lemma}\ Assume R\text{-}cond\text{-}left:
  assumes P is NSRD Q is NSRD
  shows [b]^{\top}_{R};; (P \triangleleft b \triangleright_{R} Q) = ([b]^{\top}_{R};; P)
 by (rdes-eq cls: assms)
lemma AssumeR-cond-right:
  assumes P is NSRD Q is NSRD
  \mathbf{shows} \ [\neg b]^{\top}_{R} \ ;; \ (P \triangleleft b \triangleright_{R} Q) = ([\neg b]^{\top}_{R} \ ;; \ Q)
 by (rdes-eq cls: assms)
11.5
          Guarded commands
definition GuardedCommR:: 's cond \Rightarrow ('s, 't::trace, '\alpha) hrel-rsp \Rightarrow ('s, 't, '\alpha) hrel-rsp (- \rightarrow_R - [85,
86 | 85) where
gcmd-def[rdes-def]: GuardedCommR \ g \ A = A \triangleleft g \triangleright_R Miracle
lemma gcmd-false[simp]: (false \rightarrow_R A) = Miracle
  unfolding gcmd-def by (pred-auto)
lemma gcmd-true[simp]: (true \rightarrow_R A) = A
  unfolding gcmd-def by (pred-auto)
lemma gcmd-SRD:
  assumes A is SRD
  shows (g \to_R A) is SRD
 by (simp add: gcmd-def SRD-cond-srea assms srdes-theory-continuous.weak.top-closed)
lemma gcmd-NSRD [closure]:
 assumes A is NSRD
 shows (g \rightarrow_R A) is NSRD
 \mathbf{by}\ (simp\ add\colon gcmd\text{-}def\ NSRD\text{-}cond\text{-}srea\ assms\ NSRD\text{-}Miracle)
lemma gcmd-Productive [closure]:
 assumes A is NSRD A is Productive
 shows (g \rightarrow_R A) is Productive
 by (simp add: gcmd-def closure assms)
\mathbf{lemma}\ gcmd\text{-}seq\text{-}distr:
  assumes B is NSRD
  shows (g \rightarrow_R A) ;; B = (g \rightarrow_R (A ;; B))
  by (simp add: Miracle-left-zero NSRD-is-SRD assms cond-st-distr gcmd-def)
```

```
\mathbf{lemma}\ gcmd-nondet-distr:
  assumes A is NSRD B is NSRD
  shows (g \rightarrow_R (A \sqcap B)) = (g \rightarrow_R A) \sqcap (g \rightarrow_R B)
  by (rdes-eq cls: assms)
lemma Assume R-as-gcmd:
  [b]^{\top}_R = b \to_R II_R
  by (rdes-eq)
12
          Generalised Alternation
definition AlternateR
  :: 'a \ set \Rightarrow ('a \Rightarrow 's \ upred) \Rightarrow ('a \Rightarrow ('s, 't::trace, '\alpha) \ hrel-rsp) \Rightarrow ('s, 't, '\alpha) \ hrel-rsp \Rightarrow ('s, 't, '\alpha)
hrel-rsp where
[upred-defs, rdes-def]: AlternateR I g A B = (\bigcap i \in I \cdot ((g \ i) \to_R (A \ i))) \cap ((\neg (\bigvee i \in I \cdot g \ i)) \to_R (A \ i))
definition AlternateR-list
  :: ('s upred \times ('s, 't::trace, '\alpha) hrel-rsp) list \Rightarrow ('s, 't, '\alpha) hrel-rsp \Rightarrow ('s, 't, '\alpha) hrel-rsp where
[upred-defs, ndes-simp]:
  AlternateR-list xs \ P = AlternateR \ \{0... < length \ xs \} \ (\lambda \ i. \ map \ fst \ xs \ ! \ i) \ (\lambda \ i. \ map \ snd \ xs \ ! \ i) \ P
syntax
  -altindR-els :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic \Rightarrow logic \Rightarrow logic (if _R -\in - · · · \rightarrow - else - fi)
                     :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic \Rightarrow logic \; (if_R \; \text{-}{\in}\text{-}\; \cdot\; \text{-}\; \rightarrow\; \text{-}\; fi)
  \hbox{-} altindR
  -altgcommR-els :: gcomms \Rightarrow logic \Rightarrow logic (if_R - else - fi)
  -altgcommR
                      :: gcomms \Rightarrow logic (if_R - fi)
translations
  if_R \ i \in I \cdot g \rightarrow A \ else \ B \ fi \ \rightharpoonup CONST \ AlternateR \ I \ (\lambda i. \ g) \ (\lambda i. \ A) \ B
  if_R i \in I \cdot g \rightarrow A fi \rightarrow CONST \ AlternateR \ I \ (\lambda i. \ g) \ (\lambda i. \ A) \ (CONST \ Chaos)
  if_R \ i \in I \cdot (g \ i) \rightarrow A \ else \ B \ fi \ \leftarrow CONST \ AlternateR \ I \ g \ (\lambda i. \ A) \ B
  -altgcommR \ cs \rightharpoonup CONST \ AlternateR-list \ cs \ (CONST \ Chaos)
  -altgcommR (-gcomm-show cs) \leftarrow CONST AlternateR-list cs (CONST Chaos)
  -altgcommR-els\ cs\ P\ 
ightharpoonup\ CONST\ AlternateR-list\ cs\ P
  -altgcommR-els (-gcomm-show cs) P \leftarrow CONST AlternateR-list cs P
lemma AlternateR-NSRD-closed [closure]:
  assumes \bigwedge i. i \in I \Longrightarrow A i is NSRD B is NSRD
  shows (if R i \in I \cdot g i \rightarrow A i else B fi) is NSRD
proof (cases\ I = \{\})
  case True
  then show ?thesis by (simp add: AlternateR-def assms)
next
  case False
  then show ?thesis by (simp add: AlternateR-def closure assms)
lemma AlternateR-empty [simp]:
  (if_R \ i \in \{\} \cdot g \ i \rightarrow A \ i \ else \ B \ fi) = B
  by (rdes-simp)
```

lemma AlternateR-Productive [closure]:

```
assumes
   \bigwedge i. i \in I \Longrightarrow A i is NSRD B is NSRD
   \bigwedge i. i \in I \Longrightarrow A i is Productive B is Productive
 shows (if R i \in I \cdot g i \rightarrow A i else B fi) is Productive
proof (cases\ I = \{\})
  case True
  then show ?thesis
   by (simp \ add: \ assms(4))
next
  case False
  then show ?thesis
   by (simp add: AlternateR-def closure assms)
qed
lemma AlternateR-singleton:
 assumes A k is NSRD B is NSRD
 shows (if_R \ i \in \{k\} \cdot g \ i \to A \ i \ else \ B \ fi) = (A(k) \triangleleft g(k) \triangleright_R B)
 by (simp add: AlternateR-def, rdes-eq cls: assms)
Convert an alternation over disjoint guards into a cascading if-then-else
\mathbf{lemma}\ \mathit{AlternateR-insert-cascade} \colon
  assumes
   \bigwedge i. i \in I \Longrightarrow A i is NSRD
   A \ k \ is \ NSRD \ B \ is \ NSRD
   (g(k) \land (\bigvee i \in I \cdot g(i))) = false
 shows (if_R \ i \in insert \ k \ I \cdot g \ i \to A \ i \ else \ B \ fi) = (A(k) \triangleleft g(k) \triangleright_R (if_R \ i \in I \cdot g(i) \to A(i) \ else \ B \ fi))
proof (cases\ I = \{\})
  case True
  then show ?thesis by (simp add: AlternateR-singleton assms)
next
  have 1: (\bigcap i \in I \cdot g \ i \rightarrow_R A \ i) = (\bigcap i \in I \cdot g \ i \rightarrow_R \mathbf{R}_s(pre_R(A \ i) \vdash peri_R(A \ i) \diamond post_R(A \ i)))
   by (simp add: NSRD-is-SRD SRD-reactive-tri-design assms(1) cong: UINF-cong)
  from assms(4) show ?thesis
   by (simp add: AlternateR-def 1 False)
       (rdes-eq\ cls:\ assms(1-3)\ False\ conq:\ UINF-conq)
qed
12.1
          Choose
definition choose-srd :: ('s,'t::trace,'\alpha) hrel-rsp (choose_R) where
[upred-defs, rdes-def]: choose_R = \mathbf{R}_s(true_r \vdash false \diamond true_r)
lemma preR-choose [rdes]: pre_R(choose_R) = true_r
 by (rel-auto)
lemma periR-choose [rdes]: peri_R(choose_R) = false
 by (rel-auto)
lemma postR-choose [rdes]: post_R(choose_R) = true_r
 by (rel-auto)
lemma choose-srd-SRD [closure]: choose<sub>R</sub> is SRD
 by (simp add: choose-srd-def closure unrest)
lemma NSRD-choose-srd [closure]: choose<sub>R</sub> is NSRD
```

12.2 State Abstraction

lemma Sup-power-false:

fixes $F :: '\alpha \ upred \Rightarrow '\alpha \ upred$

```
definition state-srea ::

  's itself \Rightarrow ('s,'t::trace,'\alpha,'\beta) rel-rsp \Rightarrow (unit,'t,'\alpha,'\beta) rel-rsp where
[upred-defs]: state-srea t P = \langle \exists \{\$st,\$st'\} \cdot P \rangle_S
syntax
  -state-srea :: type \Rightarrow logic \Rightarrow logic (state - \cdot - [0,200] 200)
translations
 state 'a \cdot P == CONST state-srea TYPE('a) P
lemma R1-state-srea: R1(state 'a · P) = (state 'a · R1(P))
 by (rel-auto)
lemma R2c-state-srea: R2c(state 'a \cdot P) = (state 'a \cdot R2c(P))
 by (rel-auto)
lemma R3h-state-srea: R3h(state 'a \cdot P) = (state 'a \cdot R3h(P))
 by (rel-auto)
lemma RD1-state-srea: RD1(state 'a · P) = (state 'a · RD1(P))
 by (rel-auto)
lemma RD2-state-srea: RD2(state 'a \cdot P) = (state 'a \cdot RD2(P))
 by (rel-auto)
lemma RD3-state-srea: RD3(state 'a \cdot P) = (state 'a \cdot RD3(P))
 by (rel-auto, blast+)
lemma SRD-state-srea [closure]: P is SRD \Longrightarrow state 'a \cdot P is SRD
 by (simp add: Healthy-def R1-state-srea R2c-state-srea R3h-state-srea RD1-state-srea RD2-state-srea
RHS-def SRD-def)
lemma NSRD-state-srea [closure]: P is NSRD \Longrightarrow state 'a \cdot P is NSRD
 by (metis Healthy-def NSRD-is-RD3 NSRD-is-SRD RD3-state-srea SRD-RD3-implies-NSRD SRD-state-srea)
lemma preR-state-srea [rdes]: pre_R(state 'a \cdot P) = \langle \forall \{\$st,\$st'\} \cdot pre_R(P) \rangle_S
 by (simp add: state-srea-def, rel-auto)
lemma periR-state-srea [rdes]: peri_R(state 'a \cdot P) = state 'a \cdot peri_R(P)
 by (rel-auto)
lemma postR-state-srea [rdes]: post_R(state 'a \cdot P) = state 'a \cdot post_R(P)
 by (rel-auto)
12.3
         While Loop
definition While R: 's \ upred \Rightarrow ('s, 't::size-trace, '\alpha) \ hrel-rsp \ \phi ('s, 't, '\alpha) \ hrel-rsp \ (while_R - do - od)
where
While R b P = (\mu_R X \cdot (P ;; X) \triangleleft b \triangleright_R II_R)
```

```
shows (\prod i. (F \hat{i}) false) = (\prod i. (F \hat{i}) false)
proof -
  have (\bigcap i. (F \hat{i}) false) = (F \hat{i}) false \cap (\bigcap i. (F \hat{i}) false)
    by (subst Sup-power-expand, simp)
  also have ... = (\prod i. (F ^{\hat{}} (i+1)) false)
    by (simp)
  finally show ?thesis.
qed
theorem WhileR-iter-expand:
  assumes P is NSRD P is Productive
  shows while a b do P od = (\bigcap i \cdot (P \triangleleft b \triangleright_R II_R) \hat{i}; (P ;; Miracle \triangleleft b \triangleright_R II_R)) (is ?lhs = ?rhs)
proof -
  have 1: Continuous (\lambda X.\ P;; SRD\ X)
    using SRD-Continuous
    by (clarsimp simp add: Continuous-def seq-SUP-distl[THEN sym], drule-tac x=A in spec, simp)
  have 2: Continuous (\lambda X. P;; SRD X \triangleleft b \triangleright_R II_R)
    by (simp add: 1 closure assms)
  have ?lhs = (\mu_R \ X \cdot P \ ;; \ X \triangleleft b \triangleright_R II_R)
    by (simp add: WhileR-def)
  also have ... = (\mu \ X \cdot P \ ;; \ SRD(X) \triangleleft b \triangleright_R II_R)
    by (auto simp add: srd-mu-equiv closure assms)
  also have ... = (\nu \ X \cdot P \ ;; \ SRD(X) \triangleleft b \triangleright_R II_R)
    by (auto simp add: guarded-fp-uniq Guarded-if-Productive[OF assms] funcsetI closure assms)
  also have ... = ( \bigcap i. ((\lambda X. P ;; SRD X \triangleleft b \triangleright_R II_R) \hat{\ } ) false)
    by (simp add: sup-continuous-lfp 2 sup-continuous-Continuous false-upred-def)
  also have ... = (\bigcap i. ((\lambda X. P ;; SRD X \triangleleft b \triangleright_R II_R) \hat{} (i+1)) false)
    by (simp add: Sup-power-false)
  also have ... = (\bigcap i. (P \triangleleft b \triangleright_R II_R)^* i ;; (P ;; Miracle \triangleleft b \triangleright_R II_R))
  proof (rule SUP-cong, simp)
    \mathbf{fix} i
    show ((\lambda X. P ;; SRD X \triangleleft b \triangleright_R II_R) \hat{} (i+1)) false = (P \triangleleft b \triangleright_R II_R) \hat{} i ;; (P ;; Miracle \triangleleft b)
\triangleright_R II_R
    proof (induct i)
      case \theta
      thm if-eq-cancel
      then show ?case
        by (simp, metis srdes-hcond-def srdes-theory-continuous.healthy-top)
    next
      case (Suc\ i)
      show ?case
      proof -
        have ((\lambda X. P ;; SRD X \triangleleft b \triangleright_R II_R) \hat{} (Suc i + 1)) false =
               P :: SRD (((\lambda X. P :: SRD X \triangleleft b \triangleright_R II_R) \hat{\ } (i+1)) false) \triangleleft b \triangleright_R II_R)
          by simp
        also have ... = P;; SRD ((P \triangleleft b \triangleright_R II_R) \hat{i};; (P;; Miracle \triangleleft b \triangleright_R II_R)) \triangleleft b \triangleright_R II_R
          using Suc.hyps by auto
        also have ... = P ;; ((P \triangleleft b \triangleright_R II_R) \hat{\ } i ;; (P ;; Miracle \triangleleft b \triangleright_R II_R)) \triangleleft b \triangleright_R II_R
               by (metis (no-types, lifting) Healthy-if NSRD-cond-srea NSRD-is-SRD NSRD-power-Suc
NSRD-srd-skip SRD-cond-srea SRD-segr-closure assms(1) power, power-eq-if segr-left-unit srdes-theory-continuous. top-closure
        also have ... = (P \triangleleft b \triangleright_R II_R) \hat{\ } Suc \ i \ ;; \ (P \ ;; Miracle \triangleleft b \triangleright_R II_R)
        proof (induct i)
          case \theta
          then show ?case
             by (simp add: NSRD-is-SRD SRD-cond-srea SRD-left-unit SRD-seqr-closure SRD-srdes-skip
```

```
assms(1) cond-L6 cond-st-distr srdes-theory-continuous.top-closed)
         next
           case (Suc\ i)
          have 1: II_R;; ((P \triangleleft b \triangleright_R II_R);; (P \triangleleft b \triangleright_R II_R) \hat{\ } i) = ((P \triangleleft b \triangleright_R II_R);; (P \triangleleft b \triangleright_R II_R) \hat{\ } i)
             by (simp add: NSRD-is-SRD RA1 SRD-cond-srea SRD-left-unit SRD-srdes-skip assms(1))
           then show ?case
           proof -
             have \bigwedge u. (u :; (P \triangleleft b \triangleright_R II_R) \hat{\ } Suc \ i) :; (P :; (Miracle) \triangleleft b \triangleright_R (II_R)) \triangleleft b \triangleright_R (II_R) =
                         ((u \triangleleft b \triangleright_R II_R) ;; (P \triangleleft b \triangleright_R II_R) \hat{\ } Suc i) ;; (P ;; (Miracle) \triangleleft b \triangleright_R (II_R))
               by (metis (no-types) Suc.hyps 1 cond-L6 cond-st-distr power.power.power-Suc)
             then show ?thesis
               by (simp add: RA1 upred-semiring.power-Suc)
           qed
         qed
         finally show ?thesis.
      qed
    qed
  qed
  also have ... = ( [ i \cdot (P \triangleleft b \triangleright_R II_R) \hat{i} ;; (P ;; Miracle \triangleleft b \triangleright_R II_R) )
    by (simp add: UINF-as-Sup-collect')
  finally show ?thesis.
qed
theorem WhileR-star-expand:
  assumes P is NSRD P is Productive
  shows while R b do P od = (P \triangleleft b \triangleright_R II_R)^{\star R};; (P;; Miracle \triangleleft b \triangleright_R II_R) (is ?lhs = ?rhs)
proof -
  have ?lhs = (\bigcap i \cdot (P \triangleleft b \triangleright_R II_R) \hat{i}) ;; (P ;; Miracle \triangleleft b \triangleright_R II_R)
    by (simp add: WhileR-iter-expand seq-UINF-distr' assms)
  also have ... = (P \triangleleft b \triangleright_R II_R)^* ;; (P ;; Miracle \triangleleft b \triangleright_R II_R)
    by (simp add: ustar-def)
  also have ... = ((P \triangleleft b \triangleright_R II_R)^*; II_R) ; (P ; Miracle \triangleleft b \triangleright_R II_R)
    by (simp add: seqr-assoc SRD-left-unit closure assms)
  also have ... = (P \triangleleft b \triangleright_R II_R)^{\star R};; (P :: Miracle \triangleleft b \triangleright_R II_R)
    by (simp add: nsrd-thy.Star-def)
  finally show ?thesis.
qed
lemma WhileR-NSRD-closed [closure]:
  assumes P is NSRD P is Productive
  shows while R b do P od is NSRD
  by (simp add: WhileR-star-expand assms closure)
theorem While R-iter-form-lemma:
  assumes P is NSRD
  shows (P \triangleleft b \triangleright_R II_R)^{\star R} ;; (P :; Miracle \triangleleft b \triangleright_R II_R) = ([b]^{\top}_R :; P)^{\star R} ;; [\neg b]^{\top}_R
  have (P \triangleleft b \triangleright_R II_R)^{\star R};; (P :: Miracle \triangleleft b \triangleright_R II_R) = ([b]^{\top}_R :: P \sqcap [\neg b]^{\top}_R)^{\star R};; (P :: Miracle \triangleleft b)
\triangleright_R II_R
   by (simp add: AssumeR-NSRD NSRD-right-unit NSRD-srd-skip assms(1) cond-srea-AssumeR-form)
  also have ... = (([b]^{\top}_R ;; P)^{\star R} ;; [\neg b]^{\top}_R {}^{\star R})^{\star R} ;; (P ;; Miracle \triangleleft b \triangleright_R II_R)
    by (simp add: AssumeR-NSRD NSRD-seqr-closure nsrd-thy.Star-denest assms(1))
  also have ... = (([b]^{\top}_R ;; P)^{\star R})^{\star R} ;; (P ;; Miracle \triangleleft b \triangleright_R II_R)
    by (metis (no-types, hide-lams) RD3-def RD3-idem Star-AssumeR nsrd-thy.Star-def)
  also have ... = (([b]^{\top}_R ;; P)^{*R}) ;; (P ;; Miracle \triangleleft b \triangleright_R II_R)
```

```
by (simp add: AssumeR-NSRD NSRD-seqr-closure nsrd-thy.Star-invol assms(1))
  also have ... = (([b]^{\top}_{R} ;; P)^{*R}) ;; ([b]^{\top}_{R} ;; P ;; Miracle \sqcap [\neg b]^{\top}_{R})
    by (simp add: AssumeR-NSRD NSRD-Miracle NSRD-right-unit NSRD-seqr-closure NSRD-srd-skip
assms(1) cond-srea-AssumeR-form)
  also have ... = (([b]^{\top}_{R} ;; P)^{*R}) ;; [b]^{\top}_{R} ;; P ;; Miracle \sqcap (([b]^{\top}_{R} ;; P)^{*R}) ;; [\neg b]^{\top}_{R}
    by (simp add: upred-semiring.distrib-left)
  also have ... = ([b]^{\top}_{R} ;; P)^{*R} ;; [\neg b]^{\top}_{R}
  proof -
    have (([b]^{\top}_R ;; P)^{\star R}) ;; [\neg b]^{\top}_R = (II_R \sqcap ([b]^{\top}_R ;; P)^{\star R} ;; [b]^{\top}_R ;; P) ;; [\neg b]^{\top}_R
      by (simp add: AssumeR-NSRD NSRD-segr-closure nsrd-thy.Star-unfoldr-eq assms(1))
    also have ... = [\neg b]^{\top}_{R} \sqcap (([b]^{\top}_{R} ;; P)^{*R} ;; [b]^{\top}_{R} ;; P) ;; [\neg b]^{\top}_{R}
        \mathbf{by}\ (\textit{metis}\ (\textit{no-types},\ \textit{lifting})\ \textit{Assume} R\text{-}\textit{NSRD}\ \textit{Assume} R\text{-}\textit{as-gcmd}\ \textit{NSRD-srd-skip}\ \textit{Star-Assume} R
nsrd-thy. Star-slide\ gcmd-seq-distr\ skip-srea-self-unit\ urel-dioid. distrib-right')
    also have ... = [\neg b]^{\top}_{R} \sqcap (([b]^{\top}_{R} ;; P)^{\star R} ;; [b]^{\top}_{R} ;; P ;; [b \lor \neg b]^{\top}_{R}) ;; [\neg b]^{\top}_{R}
      by (simp add: AssumeR-true NSRD-right-unit assms(1))
    also have ... = [\neg \ b]^{\top}_{R} \sqcap (([b]^{\top}_{R} \ ;; \ P)^{\star R} \ ;; \ [b]^{\top}_{R} \ ;; \ P \ ;; \ [b]^{\top}_{R}) \ ;; \ [\neg \ b]^{\top}_{R}

\sqcap (([b]^{\top}_{R} \ ;; \ P)^{\star R} \ ;; \ [b]^{\top}_{R} \ ;; \ P \ ;; \ [\neg \ b]^{\top}_{R}) \ ;; \ [\neg \ b]^{\top}_{R}
     \mathbf{by}\ (metis\ (no\text{-}types, hide\text{-}lams)\ Assume R\text{-}choice\ upred\text{-}semiring. add\text{-}assoc\ upred\text{-}semiring. distrib\text{-}left
upred-semiring.distrib-right)
    also have ... = [\neg \ b]^{\top}_{R} \sqcap ([b]^{\top}_{R} \ ;; \ P)^{*R} \ ;; \ [b]^{\top}_{R} \ ;; \ P \ ;; \ ([b]^{\top}_{R} \ ;; \ [\neg \ b]^{\top}_{R})

\sqcap ([b]^{\top}_{R} \ ;; \ P)^{*R} \ ;; \ [b]^{\top}_{R} \ ;; \ P \ ;; \ ([\neg \ b]^{\top}_{R} \ ;; \ [\neg \ b]^{\top}_{R})
      by (simp \ add: RA1)
    also have ... = [\neg b]^{\top}_{R} \sqcap (([b]^{\top}_{R} ;; P)^{*R} ;; [b]^{\top}_{R} ;; P ;; Miracle)
                                 \sqcap (([b]^{\top_{R}};; P)^{*R};; [b]^{\top_{R}};; P ;; [\neg b]^{\top_{R}})
      by (simp add: AssumeR-comp AssumeR-false)
    finally have ([b]^{\top}_{R} ;; P)^{*R} ;; [\neg b]^{\top}_{R} \sqsubseteq (([b]^{\top}_{R} ;; P)^{*R}) ;; [b]^{\top}_{R} ;; P ;; Miracle
      by (simp add: semilattice-sup-class.le-supI1)
    \mathbf{thus}~? the sis
      by (simp add: semilattice-sup-class.le-iff-sup)
  qed
  finally show ?thesis.
qed
theorem WhileR-iter-form:
  {\bf assumes}\ P\ is\ NSRD\ P\ is\ Productive
  shows while R b do P od = ([b]^{\top}_{R};;P)^{*R};;[\neg b]^{\top}_{R}
  by (simp add: WhileR-iter-form-lemma WhileR-star-expand assms)
theorem WhileR-false:
  assumes P is NSRD
  shows while R false do P od = II_R
  by (simp add: WhileR-def rpred closure srdes-theory-continuous.LFP-const)
theorem WhileR-true:
  assumes P is NSRD P is Productive
  shows while R true do P od = P^{*R};; Miracle
  by (simp add: WhileR-iter-form AssumeR-true AssumeR-false SRD-left-unit assms closure)
lemma WhileR-insert-assume:
  assumes P is NSRD P is Productive
  shows while R b do ([b]^{\top}_{R};;P) od = while R b do P od
 by (simp add: AssumeR-NSRD AssumeR-comp NSRD-seqr-closure Productive-seq-2 RA1 WhileR-iter-form
assms)
theorem WhileR-rdes-def [rdes-def]:
```

```
assumes P is RC Q is RR R is RR \$st' \sharp Q R is R4
  shows while R b do \mathbf{R}_s(P \vdash Q \diamond R) od =
         \mathbf{R}_{s} \ (([b]^{\top}_{r} \ ;; \ R)^{\star r} \ wp_{r} \ ([b]_{S<} \Rightarrow_{r} P) \vdash ([b]^{\top}_{r} \ ;; \ R)^{\star r} \ ;; \ [b]^{\top}_{r} \ ;; \ Q \diamond ([b]^{\top}_{r} \ ;; \ R)^{\star r} \ ;; \ [\neg \ b]^{\top}_{r})
  (is ?lhs = ?rhs)
proof -
  have ?lhs = ([b]^{\top}_R ;; \mathbf{R}_s (P \vdash Q \diamond R))^{\star R} ;; [\neg b]^{\top}_R
    by (simp add: WhileR-iter-form Productive-rdes-RR-intro assms closure)
  also have \dots = ?rhs
    by (simp add: rdes-def assms closure unrest rpred wp del: rea-star-wp)
  finally show ?thesis.
qed
           Iteration Construction
12.4
definition IterateR
  :: 'a \ set \Rightarrow ('a \Rightarrow 's \ upred) \Rightarrow ('a \Rightarrow ('s, 't::size-trace, '\alpha) \ hrel-rsp) \Rightarrow ('s, 't, '\alpha) \ hrel-rsp)
where IterateR A g P = while<sub>R</sub> (\bigvee i \in A \cdot g(i)) do (if<sub>R</sub> i \in A \cdot g(i) \rightarrow P(i) ft) od
syntax
  -iter-srd :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic \Rightarrow logic (do_R - \in - \cdot - \rightarrow - fi)
translations
  -iter-srd x A g P => CONST IterateR A (\lambda x. g) (\lambda x. P)
  -iter-srd x A g P \leq CONST IterateR A (\lambda x. g) (\lambda x'. P)
lemma IterateR-NSRD-closed [closure]:
  assumes
    \bigwedge i. i \in I \Longrightarrow P(i) \text{ is NSRD}
    \bigwedge i. i \in I \Longrightarrow P(i) \text{ is Productive}
  shows do_R i \in I \cdot g(i) \rightarrow P(i) fi is NSRD
  by (simp add: IterateR-def closure assms)
lemma IterateR-empty:
  do_R \ i \in \{\} \cdot g(i) \rightarrow P(i) \ fi = II_R
  by (simp add: IterateR-def srd-mu-equiv closure rpred gfp-const WhileR-false)
\mathbf{lemma}\ \mathit{IterateR-singleton}:
  assumes P k is NSRD P k is Productive
  shows do_R i \in \{k\} \cdot g(i) \rightarrow P(i) \text{ fi} = while_R g(k) \text{ do } P(k) \text{ od } (is ?lhs = ?rhs)
proof -
  have ?lhs = while_R \ g \ k \ do \ P \ k \triangleleft g \ k \triangleright_R \ Chaos \ od
    by (simp add: IterateR-def AlternateR-singleton assms closure)
  also have ... = while_R \ g \ k \ do \ [g \ k]^{\perp}_R \ ;; \ (P \ k \triangleleft g \ k \triangleright_R \ Chaos) \ od
    by (simp add: WhileR-insert-assume closure assms)
  also have ... = while_R g k do P k od
    by (simp add: AssumeR-cond-left NSRD-Chaos WhileR-insert-assume assms)
  finally show ?thesis.
qed
12.5
           Substitution Laws
```

```
lemma srd-subst-Chaos [usubst]: \sigma \dagger_S Chaos = Chaos by (rdes-simp)
```

 $\mathbf{lemma}\ srd\text{-}subst\text{-}Miracle\ [usubst]:$

```
\sigma \dagger_S Miracle = Miracle
  by (rdes-simp)
lemma srd-subst-skip [usubst]:
  \sigma \dagger_S II_R = \langle \sigma \rangle_R
  by (rdes-eq)
\mathbf{lemma}\ srd\text{-}subst\text{-}assigns\ [usubst]:
  \sigma \dagger_S \langle \varrho \rangle_R = \langle \varrho \circ \sigma \rangle_R
  by (rdes-eq)
            Algebraic Laws
12.6
theorem assigns-srd-id: \langle id \rangle_R = II_R
  by (rdes-eq)
theorem assigns-srd-comp: \langle \sigma \rangle_R ;; \langle \varrho \rangle_R = \langle \varrho \circ \sigma \rangle_R
  by (rdes-eq)
theorem assigns-srd-Miracle: \langle \sigma \rangle_R ;; Miracle = Miracle
  by (rdes-eq)
theorem assigns-srd-Chaos: \langle \sigma \rangle_R ;; Chaos = Chaos
  by (rdes-eq)
theorem assigns-srd-cond : \langle \sigma \rangle_R \triangleleft b \triangleright_R \langle \varrho \rangle_R = \langle \sigma \triangleleft b \triangleright_s \varrho \rangle_R
  by (rdes-eq)
theorem assigns-srd-left-seq:
  assumes P is NSRD
  shows \langle \sigma \rangle_R;; P = \sigma \dagger_S P
  by (rdes-simp cls: assms)
lemma AlternateR-seq-distr:
  assumes \bigwedge i. A i is NSRD B is NSRD C is NSRD
  shows (if_R \ i \in I \cdot g \ i \rightarrow A \ i \ else \ B \ fi) \ ;; \ C = (if_R \ i \in I \cdot g \ i \rightarrow A \ i \ ;; \ C \ else \ B \ ;; \ C \ fi)
proof (cases\ I = \{\})
  case True
  then show ?thesis by (simp)
next
  {f case} False
  then show ?thesis
    by (simp add: AlternateR-def upred-semiring.distrib-right seq-UINF-distr gcmd-seq-distr assms(3))
\mathbf{lemma}\ \mathit{AlternateR-is-cond-srea} :
  assumes A is NSRD B is NSRD
  shows (if_R \ i \in \{a\} \cdot g \rightarrow A \ else \ B \ fi) = (A \triangleleft g \triangleright_R B)
  by (rdes-eq cls: assms)
lemma AlternateR-Chaos:
  if_R i \in A \cdot g(i) \rightarrow Chaos fi = Chaos
  by (cases\ A = \{\}, simp, rdes-eq)
lemma choose-srd-par:
```

 $choose_R \parallel_R choose_R = choose_R$

12.7 Lifting designs to reactive designs

```
definition des-rea-lift :: 's hrel-des \Rightarrow ('s,'t::trace,'\alpha) hrel-rsp (\mathbf{R}_D) where
[upred-defs]: \mathbf{R}_D(P) = \mathbf{R}_s(\lceil pre_D(P) \rceil_S \vdash (false \diamond (\$tr' =_u \$tr \land \lceil post_D(P) \rceil_S)))
definition des-rea-drop :: ('s,'t::trace,'\alpha) hrel-rsp \Rightarrow 's hrel-des (\mathbf{D}_R) where
[upred-defs]: \mathbf{D}_R(P) = |(pre_R(P))[\$tr/\$tr']| \upharpoonright_v \$st|_{S<}
                     \vdash_n \lfloor (post_R(P)) \llbracket \$tr/\$tr' \rrbracket \upharpoonright_v \{\$st,\$st'\} \rfloor_S
lemma ndesign-rea-lift-inverse: \mathbf{D}_R(\mathbf{R}_D(p \vdash_n Q)) = p \vdash_n Q
 apply (simp add: des-rea-lift-def des-rea-drop-def rea-pre-RHS-design rea-post-RHS-design)
 apply (simp add: R1-def R2c-def R2s-def usubst unrest)
 apply (rel-auto)
  done
lemma ndesign-rea-lift-injective:
 assumes P is \mathbb{N} Q is \mathbb{N} \mathbb{R}_D P = \mathbb{R}_D Q (is ?RP(P) = ?RQ(Q))
  shows P = Q
proof -
  have ?RP(\lfloor pre_D(P) \rfloor < \vdash_n post_D(P)) = ?RQ(\lfloor pre_D(Q) \rfloor < \vdash_n post_D(Q))
    by (simp add: ndesign-form assms)
  hence |pre_D(P)| < \vdash_n post_D(P) = \lfloor pre_D(Q) \rfloor < \vdash_n post_D(Q)
    by (metis ndesign-rea-lift-inverse)
  thus ?thesis
    by (simp add: ndesign-form assms)
qed
lemma des-rea-lift-closure [closure]: \mathbf{R}_D(P) is SRD
  by (simp add: des-rea-lift-def RHS-design-is-SRD unrest)
lemma preR-des-rea-lift [rdes]:
 pre_R(\mathbf{R}_D(P)) = R1(\lceil pre_D(P) \rceil_S)
 by (rel-auto)
lemma periR-des-rea-lift [rdes]:
  peri_R(\mathbf{R}_D(P)) = (false \triangleleft \lceil pre_D(P) \rceil_S \triangleright (\$tr \leq_u \$tr'))
 by (rel-auto)
lemma postR-des-rea-lift [rdes]:
  post_R(\mathbf{R}_D(P)) = ((true \triangleleft \lceil pre_D(P) \rceil_S \triangleright (\neg \$tr \leq_u \$tr')) \Rightarrow (\$tr' =_u \$tr \land \lceil post_D(P) \rceil_S))
 apply (rel-auto) using minus-zero-eq by blast
lemma ndes-rea-lift-closure [closure]:
  assumes P is N
 shows \mathbf{R}_D(P) is NSRD
proof -
  obtain p \ Q where P \colon P = (p \vdash_n Q)
    by (metis H1-H3-commute H1-H3-is-normal-design H1-idem Healthy-def assms)
 show ?thesis
    apply (rule NSRD-intro)
      apply (simp-all add: closure rdes unrest P)
    apply (rel-auto)
    done
\mathbf{qed}
```

```
lemma R-D-mono:
  assumes P is \mathbf{H} Q is \mathbf{H} P \sqsubseteq Q
 shows \mathbf{R}_D(P) \sqsubseteq \mathbf{R}_D(Q)
 apply (simp add: des-rea-lift-def)
  apply (rule srdes-tri-refine-intro')
   apply (auto intro: H1-H2-refines assms aext-mono)
  apply (rel-auto)
  apply (metis (no-types, hide-lams) aext-mono assms(3) design-post-choice
    semilattice-sup-class.sup.orderE utp-pred-laws.inf.coboundedI1 utp-pred-laws.inf.commute utp-pred-laws.sup.order-iff
  done
Homomorphism laws
lemma R-D-Miracle:
 \mathbf{R}_D(\top_D) = Miracle
 by (simp add: Miracle-def, rel-auto)
lemma R-D-Chaos:
 \mathbf{R}_D(\perp_D) = Chaos
proof -
 have \mathbf{R}_D(\perp_D) = \mathbf{R}_D(false \vdash_r true)
   by (rel-auto)
 also have ... = \mathbf{R}_s (false \vdash false \diamond (\$tr' =_u \$tr))
   by (simp add: Chaos-def des-rea-lift-def alpha)
 also have ... = \mathbf{R}_s (true)
   by (rel-auto)
  also have \dots = Chaos
   by (simp add: Chaos-def design-false-pre)
 finally show ?thesis.
qed
lemma R-D-inf:
 \mathbf{R}_D(P \sqcap Q) = \mathbf{R}_D(P) \sqcap \mathbf{R}_D(Q)
 by (rule antisym, rel-auto+)
lemma R-D-cond:
 \mathbf{R}_D(P \triangleleft \lceil b \rceil_{D \triangleleft} \triangleright Q) = \mathbf{R}_D(P) \triangleleft b \triangleright_R \mathbf{R}_D(Q)
 by (rule antisym, rel-auto+)
lemma R-D-seq-ndesign:
 \mathbf{R}_D(p_1 \vdash_n Q_1) ;; \mathbf{R}_D(p_2 \vdash_n Q_2) = \mathbf{R}_D((p_1 \vdash_n Q_1) ;; (p_2 \vdash_n Q_2))
 apply (rule antisym)
  apply (rule SRD-refine-intro)
      apply (simp-all add: closure rdes ndesign-composition-wp)
  using dual-order.trans apply (rel-blast)
  using dual-order.trans apply (rel-blast)
  apply (rel-auto)
  apply (rule SRD-refine-intro)
     apply (simp-all add: closure rdes ndesign-composition-wp)
   apply (rel-auto)
  apply (rel-auto)
  apply (rel-auto)
  done
```

lemma R-D-seq:

```
assumes P is N Q is N
  shows \mathbf{R}_D(P) ;; \mathbf{R}_D(Q) = \mathbf{R}_D(P ;; Q)
  by (metis R-D-seq-ndesign assms ndesign-form)
Thes laws are applicable only when there is no further alphabet extension
lemma R-D-skip:
 \mathbf{R}_D(II_D) = (II_R :: ('s, 't :: trace, unit) \ hrel-rsp)
 apply (rel-auto) using minus-zero-eq by blast+
lemma R-D-assigns:
 \mathbf{R}_D(\langle \sigma \rangle_D) = (\langle \sigma \rangle_R :: ('s, 't::trace, unit) \ hrel-rsp)
 by (simp add: assigns-d-def des-rea-lift-def alpha assigns-srd-RHS-tri-des, rel-auto)
end
13
        Instantaneous Reactive Designs
theory utp-rdes-instant
 imports utp-rdes-prog
begin
definition ISRD1 :: ('s,'t::trace,'\alpha) hrel-rsp \Rightarrow ('s,'t,'\alpha) hrel-rsp where
[upred-defs]: ISRD1(P) = P \parallel_R \mathbf{R}_s(true_r \vdash false \diamond (\$tr' =_u \$tr))
definition ISRD :: ('s, 't::trace, '\alpha) hrel-rsp \Rightarrow ('s, 't, '\alpha) hrel-rsp where
[upred-defs]: ISRD = ISRD1 \circ NSRD
lemma ISRD1-idem: ISRD1(ISRD1(P)) = ISRD1(P)
 by (rel-auto)
lemma ISRD1-monotonic: P \sqsubseteq Q \Longrightarrow ISRD1(P) \sqsubseteq ISRD1(Q)
 by (rel-auto)
lemma ISRD1-RHS-design-form:
  assumes \$ok' \sharp P \$ok' \sharp Q \$ok' \sharp R
  shows ISRD1(\mathbf{R}_s(P \vdash Q \diamond R)) = \mathbf{R}_s(P \vdash false \diamond (R \land \$tr' =_u \$tr))
  using assms by (simp add: ISRD1-def choose-srd-def RHS-tri-design-par unrest, rel-auto)
lemma ISRD1-form:
  ISRD1(SRD(P)) = \mathbf{R}_s(pre_R(P) \vdash false \diamond (post_R(P) \land \$tr' =_u \$tr))
 by (simp add: ISRD1-RHS-design-form SRD-as-reactive-tri-design unrest)
lemma ISRD1-rdes-def [rdes-def]:
  \llbracket P \text{ is } RR; R \text{ is } RR \rrbracket \Longrightarrow ISRD1(\mathbf{R}_s(P \vdash Q \diamond R)) = \mathbf{R}_s(P \vdash false \diamond (R \land \$tr' =_u \$tr))
  by (simp add: ISRD1-def rdes-def closure rpred)
lemma ISRD-intro:
 assumes P is NSRD peri_R(P) = (\neg_r \ pre_R(P)) \ (\$tr' =_u \$tr) \sqsubseteq post_R(P)
  shows P is ISRD
proof -
  have \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)) is ISRD1
   apply (simp add: Healthy-def rdes-def closure assms(1-2))
   using assms(3) least-zero apply (rel-blast)
```

done

hence P is ISRD1

```
by (simp\ add:\ SRD\text{-}reactive\text{-}tri\text{-}design\ closure\ assms}(1))
  thus ?thesis
   by (simp \ add: ISRD-def \ Healthy-comp \ assms(1))
qed
lemma ISRD1-rdes-intro:
 assumes P is RR Q is RR (\$tr' =_u \$tr) \sqsubseteq Q
 shows \mathbf{R}_s(P \vdash false \diamond Q) is ISRD1
 unfolding Healthy-def
 by (simp add: ISRD1-rdes-def assms closure unrest utp-pred-laws.inf.absorb1)
\mathbf{lemma} \ \mathit{ISRD-rdes-intro} \ [\mathit{closure}]:
 assumes P is RC Q is RR (\$tr' =_u \$tr) \sqsubseteq Q
 shows \mathbf{R}_s(P \vdash false \diamond Q) is ISRD
 unfolding Healthy-def
 by (simp add: ISRD-def closure Healthy-if ISRD1-rdes-def assms unrest utp-pred-laws.inf.absorb1)
lemma ISRD-implies-ISRD1:
 assumes P is ISRD
 shows P is ISRD1
proof -
 have ISRD(P) is ISRD1
   by (simp add: ISRD-def Healthy-def ISRD1-idem)
 thus ?thesis
   by (simp add: assms Healthy-if)
ged
lemma ISRD-implies-SRD:
 assumes P is ISRD
 shows P is SRD
proof -
 have 1:ISRD(P) = \mathbf{R}_s((\neg_r \ (\neg_r \ pre_R \ P) \ ;; \ R1 \ true \land R1 \ true) \vdash false \diamond (post_R \ P \land \$tr' =_u \ \$tr))
   by (simp add: NSRD-form ISRD1-def ISRD-def RHS-tri-design-par rdes-def unrest closure)
 moreover have ... is SRD
   by (simp add: closure unrest)
  ultimately have ISRD(P) is SRD
   by (simp)
 with assms show ?thesis
   by (simp add: Healthy-def)
qed
lemma ISRD-implies-NSRD [closure]:
 assumes P is ISRD
 shows P is NSRD
proof -
 have 1:ISRD(P) = ISRD1(RD3(SRD(P)))
   by (simp add: ISRD-def NSRD-def SRD-def, metis RD1-RD3-commute RD3-left-subsumes-RD2)
 also have ... = ISRD1(RD3(P))
   by (simp add: assms ISRD-implies-SRD Healthy-if)
  also have ... = ISRD1 (\mathbf{R}_s ((\neg_r pre<sub>R</sub> P) wp<sub>r</sub> false<sub>h</sub> \vdash (\exists $st' • peri<sub>R</sub> P) \diamond post<sub>R</sub> P))
   by (simp add: RD3-def, subst SRD-right-unit-tri-lemma, simp-all add: assms ISRD-implies-SRD)
 also have ... = \mathbf{R}_s ((\neg_r \ pre_R \ P) \ wp_r \ false_h \vdash false \diamond (post_R \ P \land \$tr' =_u \$tr))
   by (simp add: RHS-tri-design-par ISRD1-def unrest choose-srd-def rpred closure ISRD-implies-SRD
assms)
 also have \dots = (\dots ;; II_R)
```

```
by (rdes-simp, simp add: RHS-tri-normal-design-composition' closure assms unrest ISRD-implies-SRD
wp rpred wp-rea-false-RC)
 also have ... is RD3
   by (simp add: Healthy-def RD3-def segr-assoc)
 finally show ?thesis
   by (simp add: SRD-RD3-implies-NSRD Healthy-if assms ISRD-implies-SRD)
qed
lemma ISRD-form:
 assumes P is ISRD
 shows \mathbf{R}_s(pre_R(P) \vdash false \diamond (post_R(P) \land \$tr' =_u \$tr)) = P
proof
 have P = ISRD1(P)
   by (simp add: ISRD-implies-ISRD1 assms Healthy-if)
 also have ... = ISRD1(\mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)))
   by (simp add: SRD-reactive-tri-design ISRD-implies-SRD assms)
 also have ... = \mathbf{R}_s(pre_R(P) \vdash false \diamond (post_R(P) \land \$tr' =_u \$tr))
   by (simp add: ISRD1-rdes-def closure assms)
 finally show ?thesis ..
\mathbf{qed}
lemma ISRD-elim [RD-elim]:
  \llbracket P \text{ is } ISRD; \ Q(\mathbf{R}_s \ (pre_R(P) \vdash false \diamond (post_R(P) \land \$tr' =_u \$tr))) \ \rrbracket \Longrightarrow Q(P)
 by (simp add: ISRD-form)
lemma skip-srd-ISRD [closure]: II_R is ISRD
 by (rule ISRD-intro, simp-all add: rdes closure)
lemma assigns-srd-ISRD [closure]: \langle \sigma \rangle_R is ISRD
 by (rule ISRD-intro, simp-all add: rdes closure, rel-auto)
lemma seq-ISRD-closed:
 assumes P is ISRD Q is ISRD
 shows P ;; Q is ISRD
 apply (insert assms)
 apply (erule ISRD-elim)+
 apply (simp add: rdes-def closure assms unrest)
 apply (rule ISRD-rdes-intro)
   apply (simp-all add: rdes-def closure assms unrest)
 apply (rel-auto)
 done
lemma ISRD-Miracle-right-zero:
 assumes P is ISRD pre_R(P) = true_r
 shows P;; Miracle = Miracle
 by (rdes-simp cls: assms)
end
```

14 Meta-theory for Reactive Designs

```
theory utp-rea-designs
imports
utp-rdes-healths
utp-rdes-designs
```

```
utp-rdes-triples
utp-rdes-normal
utp-rdes-contracts
utp-rdes-tactics
utp-rdes-parallel
utp-rdes-prog
utp-rdes-instant
utp-rdes-guarded
begin end
```

References

- [1] S. Foster, A. Cavalcanti, S. Canham, J. Woodcock, and F. Zeyda. Unifying theories of reactive design contracts. *Submitted to Theoretical Computer Science*, Dec 2017. Preprint: https://arxiv.org/abs/1712.10233.
- [2] S. Foster, F. Zeyda, and J. Woodcock. Unifying heterogeneous state-spaces with lenses. In *ICTAC*, LNCS 9965. Springer, 2016.
- [3] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus. PhD thesis, Department of Computer Science University of York, UK, 2006. YCST-2006-02.