Perbaikan Citra Digital dengan Menggunakan Filtering Technique dan Similarity Measurement

¹Gybert Saselah, ²Winsy Weku, ³Luther Latumakulita

¹Jurusan Matematika, FMIPA, UNSRAT, gybertsaselah@gmail.com ²Jurusan Matematika, FMIPA, UNSRAT,winsyweku@gmail.com ³Jurusan Matematika, FMIPA, UNSRAT, lutherlatu@gmail.com

Abstract

Often the digital image can be contaminated with noise, which usually occurs in the process of retrieval or storage of digital images and delivery process either via satellite or cable. By using the technique of filtering noise reduction process will be performed on a digital image that has previously been given Gaussian noise and followed by a Similarity Measurement to identify similarities between image filtered and original image. This study was conducted to determine the appropriate filtering techniques to reduce the Gaussian noise. Image processing in this study composed by the input image and read the image matrix, converting images, adding noise, denoising digital images by applying filters performed using Matlab R2012a software (version 7.14.0.739). Application of Gaussian filter with a value of $\sigma = 1.0$ produce a digital image that is closest to the original image than the application of a Gaussian filter with another value, for $0.5 \le \sigma \le 10$. As for the application of the Wiener filter is seen that the greater the value, the resulting digital image will be closer to the original image. For further research can be done on other types of noise or to a combination of two or more noise.

Keywords: Digital Image, Noise, Filter, Similarity Measurement.

Abstrak

Seringkali citra digital dapat terkontaminasi derau (noise), yang biasanya terjadi pada proses pengambilan ataupun penyimpanan citra digital serta proses pengiriman citra digital baik melalui satelit maupun melalui kabel juga. Dengan menggunakan teknik filtering akan dilakukan proses pengurangan noise pada suatu citra digital yang sebelumnya telah diberi Gaussian noise dan dilanjutkan dengan Similarity Measurement untuk mengidentifikasi kesa maan citra digital hasil filtering dengan citra original. Penelitian ini dilakukan untuk menentukan teknik filtering yang tepat untuk mengurangi Gaussian noise. Proses pengolahan citra dalam penelitian ini terdiri dengan proses input gambar dan membaca matriks citra, konversi citra, menambahkan noise, denoising citra digital dengan menerapkan filter yang dilakukan dengan menggunakan software Matlab R2012a (versi 7.14.0.739). Penerapan Gaussian filter dengan nilai σ = 1,0 menghasilkan citra digital yang paling mendekati citra original dibandingkan dengan penerapan Gaussian filter dengan nilai σ lain, dimana $0.5 \le \sigma \le 10$. Sedangkan untuk penerapan Wiener filter terlihat bahwa semakin besar nilai σ , maka citra digital yang dihasilkan akan semakin mendekati citra original. Untuk penelitian selanjutnya dapat dilakukan pada jenis noise lain ataupun untuk gabungan dua noise atau lebih.

Kata kunci: Citra digital, Noise, Filter, Similarity Measurement

1. Pendahuluan

Citra memegang peranan sangat penting sebagai bentuk informasi. Seiring kemudahan yang ditawarkan dalam pengambilan, pemrosesan dan penyimpanannya masyarakat mulai banyak yang meninggalkan citra analog dan beralih ke citra digital. Citra digital merupakan salah satu bentuk citra yang paling mudah dipergunakan dari segi pengiriman sebagai data, pengolahan dan pemrosesan citra itu sendiri. Meskipun sebuah citra kaya informasi, namun seringkali citra yang kita miliki mengalami penurunan intensitas mutu, misalnya mengandung cacat atau derau (noise), warnanya terlalu kontras atau kabur. Penurunan intensitas mutu tersebut, biasanya terjadi pada proses pengambilan ataupun penyimpanan gambar (citra digital). Proses pengiriman citra digital baik melalui satelit maupun melalui kabel juga berpeluang membuat gambar yang diterima sering mengalami kerusakan (noise) yang mengakibatkan informasi yang ada menjadi berkurang dan informasi yang diperoleh tidak sebaik yang diharapkan. Untuk menyikapi hal tersebut perlu adanya suatu metode perbaikan gambar (citra digital), sehingga informasi yang diperoleh akan maksimal.

Dalam penelitian ini akan dilakukan metode pengolahan citra yaitu proses pengurangan gaussian noise pada suatu citra digital dengan menggunakan filtering Technique dan similarity measurement untuk membandingkan citra hasil filtering yang paling mendekati citra original. Proses pengurangan noise akan dilakukan dengan menggunakan software Matlab 2012a (versi 7.14.0.739). Penelitian ini dibatasi hanya pada dua jenis filter yaitu gaussian filter dan wiener filter serta dua jenis similarity measurement yaitu Euclidean distance dan Manhattan distance.

2. Tinjauan Pustaka

2.1. Penelitian Sebelumnya

Menurut Syamani (2008), Euclidean Distance memiliki akurasi yang lebih tinggi dari pada Manhattan Distance. Selain itu, dalam jurnal dengan judul "Similarity Measurement Between Images" dijelaskan bahwa suatu similarity measurement dapat dipilih untuk menentukan seberapa dekat suatu vektor dengan vektor lainnya. Dalam penelitian tersebut digunakan metode pengukur jarak Euclidean Distance dan Chord distance dan disarankan untuk mempertimbangkan penggunaan metode pengukur jarak lainnya. (Chen dan Chu, 2005). Sehingga penelitian ini diasumsikan dapat menggunakan Euclidean Distance, Manhattan Distance dan beberapa metode pengukuran jarak lain untuk membandingkan citra digital hasil filtering dan citra digital original.

Dari hasil penelitian yang pernah dilakukan, dikatakan bahwa hasil penerapan wiener filter pada citra digital yang terdegredasi *Speckle noise* dan *Gaussian noise*, akan menghasilkan citra hasil yang lebih baik dibandingkan dengan citra hasil penerapan *median filter* (Kumar, S., *et.al*, 2010). Hal ini semakin diperkuat dengan hasil penelitian (Patidar, *et.al*, 2010), yang menegaskan bahwa *Wiener filter* memberikan hasil lebih baik dibandingkan dengan *mean filter* ataupun *median filter* dalam mengurangi *Speckle noise*, *Poisson noise* ataupun *Gaussian noise* pada suatu *noisy image*. Sehingga di dalam penelitian ini akan coba dibandingkan kemampuan dua jenis filter yaitu *Gaussian filter* dan *Wiener filter* dalam mengurangi *Gaussian noise* pada suatu citra digital.

2.2.Citra Digital

Definis i citra menurut Kamus Webster adalah "suatu representasi, kemiripan, atau imitasi dari suatu objek atau benda" (Handoko, et.al, 2011). Citra dapat dikelompokan menjadi citra tampak dan citra tak tampak.

Gambar 1. Pengelompokan jenis-jenis citra (Castleman,1996)

Citra adalah suatu fungsi intensitas cahaya suatu objek dua dimensi yang dinotasikan dalam f(x, y) dimana x dan y adalah koordinat titik citra, sedangkan nilai f(x, y) merupakan tingkat intensitas citra pada titik tersebut. Fungsi citra dinyatakan sebagai berikut :

$$I = f(x, y) \dots (1)$$

Karena f(x, y) merupakan fungsi intensitas cahaya, maka f(x, y) adalah merupakan bentuk energi sehingga memiliki daerah intensitas dari nol sampai tak terhingga.

$$0 < f(x, y) < \infty$$
(2)

2.3. Spatial Filtering

Spatial filtering dapat dianggap sebagai suatu konsep modifikasi nilai piksel citra digital dengan menerapkan suatu fungsi pada piksel tetangga dari piksel tersebut. Dua jenis spatial filtering yang digunakan dalam penelitian ini akan dijelaskan di bawah ini :

2.3.1. Gaussian Filtering

Gaussian Filtering termasuk dalam kelas low-pass filters, yang didasarkan pada fungsi distribusi peluang Gaussian

$$f(x) = e^{-\frac{x^2}{2\sigma^2}} \tag{3}$$

dimana σ adalah standar deviasi. Sedangkan fungsi Gauss pada dimensi 2 adalah sebagai berikut :

$$f(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$
(4)

2.3.2. Wiener Filtering

Wiener Filtering adalah salah satu jenis filter spasial non-linear. Jika noisy image dimodelkan sebagai berikut:

$$M' = M + N \tag{5}$$

Dimana M adalah gambar original dan N adalah *noise*; dengan asumsi terdistribusi normal dengan *mean* 0. Terkadang, dalam *mask* yang dihasilkan, *mean* tidak selalu bernilai 0; misalkan m_f adalah *mean*, σ_f^2 varians *mask* dan σ_g^2 adalah varians *noise* yang bekerja pada gambar serta g adalah *current value* dari piksel pada *noisy image*. (McAndrew, 2004), maka nilai *output* dapat dihitung dengan rumus berikut:

$$m_f + \frac{{\sigma_f}^2}{{\sigma_f}^2 + {\sigma_g}^2} (g - m_f)$$
(6)

2.4.*Noise*

Noise adalah suatu bentuk kerusakan pada *image signal* yang disebabkan oleh gangguan eksternal. Gangguan pada citra umumnya berupa variasi intensitas suatu piksel yang tidak berkorelasi dengan piksel-piksel tetangganya (Yuwono, 2010).

2.4.1. Gaussian Noise

Gaussian noise adalah bentuk ideal dari white noise yang menyebabkan fluktuasi acak dalam suatu sinyal. Gaussian noise adalah white noise yang terdistribusi normal. Jika citra digital (gambar) direpresentasikan sebagai I dan Gaussian Noise sebagai N, maka dapat dibentuk model noisy image sebagai berikut (McAndrew, 2004):

$$I+N$$
(7)

Gambar 2. Noisy image disebabkan oleh Gaussian noise

2.5. Similarity Measurement

Similarity Measurement adalah proses pengukuran kemiripan suatu objek terhadap objek acuan. Dalam Similarity Measurement akan dilakukan pengukuran jarak (distance), dimana semakin meningkat jarak (distance) antara dua objek, maka semakin berbeda dua objek tersebut, distance biasanya adalah ukuran dari ketidakmiripan (Rencher, A. C., 2002)

2.5.1. Euclidean Distance

Pada dasarnya merupakan perluasan dari Teorema Phytagoras pada data multidimensional. (J.F.Hair Jr.et.al, 2010). *Euclidean distance* adalah jumlah kuadrat dari dua nilai vektor (x, y), dan didefinisikan sebagai berikut (Yampolskiy dan Govindaraju,2005):

$$d_E(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (8)

2.5.2. Manhattan Distance

Manhattan distance adalah jumlah nilai fungsi mutlak dari dua nilai vektor (x, y). Manhattan distance juga biasanya disebut City-block distance. Metode ini mengasumsikan bahwa variabel dalam cluster variate tidak berkorelasi.

$$d_M(x, y) = \sum_{i=1}^n |x_i - y_i|$$
(9)

2.6.Root Mean Squared Error (RMSE)

RMSE digunakan untuk mengukur tingkat error pada citra hasil *filtering* dengan membandingkannya dengan citra *original*. Untuk f'(x, y) adalah piksel citra hasil *filtering*, f(x, y) adalah piksel citra *original*, m adalah panjang citra dan n adalah lebar citra, RMSE dihitung dengan persamaan sebagai berikut :

$$RMSE = \sqrt{\frac{1}{m \times n} \sum_{x=1}^{m} \sum_{y=1}^{n} (f(x, y) - f'(x, y))^{2}} \quad \dots \dots \dots (10)$$

Semakin besar nilai RMSE, maka citra hasil filtering tersebut memiliki tingkat error yang semakin besar, sehingga citra yang dihasilkan semakin tidak mirip dengan citra original, begitupun sebaliknya.

2.7. Peak Signal to Noise Ratio (PSNR)

PSNR adalah perbandingan antara nilai maksimum dari sinyal yang diukur dengan besarnya derau yang berpengaruh pada sinyal tersebut. *PSNR* merupakan parameter standar untuk menilai kualitas suatu citra secara obyektif dengan membandingkan *noise* terhadap sinyal puncak. Semakin besar nilai *PSNR* citra hasil, maka citra tersebut akan semakin mendekati citra asli. *PSNR* dapat dihitung dengan persamaan berikut:

$$PSNR = 20.\log\left(\frac{Max_I}{RMSE}\right) \dots (11)$$

dimana Max_I adalah nilai maksimum piksel (untuk citra grayscale, Max_I =255) dan RMSE adalah nilai Root Mean Square Error.

2.8. Signal to Noise Ratio (SNR)

SNR digunakan untuk mengukur tingkat kualitas sinyal. Nilai ini dihitung berdasarkan perbandingan antara citra asli dengan citra hasil filtering. Semakin besar nilai *SNR*, semakin baik kualitas sinyal yang dihasilkan. *SNR* dihitung dalam satuan decibels (dB) dengan persamaan sebagai berikut:

$$SNR = 10 \log_{10} \left[\frac{\sum_{m,n} I_{m,n}^2}{\sum_{m,n} I_{m,n} - I_{m,n}^-} \right] \qquad (12)$$

Dimana : $I_{m,n}$ adalah citra original, $I_{m,n}$ adalah citra hasil dan m, n adalah ukuran citra m \times n.

3. Metode Penelitian

Penelitian ini akan dilakukan pada jenis data gambar (citra digital) karena sangat umum dipakai dan memiliki ukuran yang relatif kecil untuk suatu jenis data yang dapat memberikan banyak informasi. Proses pengolahan citra digital akan dilakukan dengan menggunakan software matlab karena penelitian ini cenderung menggunakan pendekatan melalui matriks citra untuk membandingkan citra original dan citra hasil filtering.

Gambar 3. Diagram Alir Penelitian dan Arsitektur Penelitian

4. Hasil Dan Pembahasan

Proses pengolahan citra dalam penelitian ini terdiri dengan proses input gambar dan membaca matriks citra, konversi citra, menambahkan *noise*, *denoising* citra digital dengan menerapkan *filter* yang dilakukan dengan menggunakan *software* Matlab R2012a (versi 7.14.0.739).

4.1. Input Gambar (citra digital) dan membaca matriks citra original

Setelah menginput citra gambar pada matlab, maka citra tersebut akan ditampilkan dalam bentuk matriks m×n sesuai ukuran gambar tersebut.

4.2. Konversi citra *RGB* ke *Grayscale*

Setelah proses pembacaan matriks citra tadi, akan menghasilkan matriks citra digital dengan nilai piksel 0-255 pada 3 dimensi warna yaitu Red, Green, dan Blue (RGB), sehingga untuk mempermudah proses selanjutnya, maka perlu dilakukan proses konversi citra digital RGB menjadi Grayscale.

4.3. Menambahkan Noise pada citra digital

Noise yang akan ditambahkan pada citra digital adalah Gaussian noise.

4.4. Melakukan proses filtering

Proses ini dilakukan untuk mengurangi noise.

4.4.1. Gaussian Filtering

Ukuran matriks yang akan dipakai adalah 3×3 , 5×5 , 7×7 , 9×9 , dengan standar deviasi 0,5; 2,5; 5; 7,5; 10; sehingga dari ukuran matriks dan standar deviasi yang dipakai maka akan dihasilkan 20 jenis kombinasi filter (g1,g2,...g20).

4.4.2. Wiener Filtering

Ukuran matriks yang akan dipakai adalah 3×3 , 5×5 , 7×7 , 9×9 , dengan standar deviasi 0.5;

4.5. Similarity Measurement

Setelah proses *filtering* yang menghasilkan 40 citra hasil, akan dilanjutkan dengan proses similarity measurement untuk melihat citra hasil *filtering* yang paling mendekati citra original. Hasil similarity measurement tersebut dapat dilihat pada tabel 1.

Tabel 1. Hasil Similarity Measurement

Gaussian Filtering										
		Eudidean	Distance		Manhattan Distance					
	3×3	5×5	7×7	9×9	3×3	5×5	7×7	9×9		
0,5	3,2847	3,2817	3,2817	3,2817	735,0602	734,7291	734,7290	734,7290		
2,5	2,3644	2,5343	2,8056	3,0005	599,0559	582,9100	602,4893	622,9277		
5	2,3822	2,6253	3,0222	3,3959	600,2601	590,3961	623,2758	664,0793		
7,5	2,3857	2,6432	3,0659	3,4801	600,5146	591,9726	627,6943	673,0943		
10	2,3869	2,6495	3,0814	3,5102	600,6054	592,5387	629,2814	676,3312		
Wiener Filtering										
		Eudidean	Distance		Manhattan Distance					
	3×3	5×5	7×7	9×9	3×3	5×5	7×7	9×9		
0,5	4,9610	4,9613	4,9616	4,9619	903,9965	904,0524	904,0866	904,1131		
2,5	4,9455	4,9469	4,9484	4,9496	902,3441	902,6281	902,7996	902,9322		
5	4,9261	4,9289	4,9318	4,9343	900,2772	900,8446	901,1882	901,4539		
7,5	4,9067	4,9109	4,9153	4,9191	898,2107	899,0576	899,5739	899,9732		
10	4,8875	4,8929	4,8988	4,9038	896,1435	897,2670	897,9567	898,4900		

4.6. Analisis Teknik *Filtering*

a. Dari hasil pengukuran jarak (*Distance Measure*) maupun pengukuran tingkat error (*Error Measure*) terlihat bahwa pada penerapan *gaussian filtering* dengan ukuran matriks 3×3 dan nilai $\sigma=2,5$ menghasilkan jarak terkecil pada *Euclidean Distance*.

- b. Untuk pengukuran jarak manhattan (*Manhattan Distance*) diperoleh hasil bahwa gaussian filtering dengan ukuran matriks 5×5 dan nilai $\sigma=2,5$ menghasilkan jarak terkecil.
- c. Dari hasil pengukuran jarak (*Distance Measure*) maupun pengukuran tingkat error (*Error Measure*) terlihat bahwa pada penerapan *Wiener filtering* dengan ukuran matriks 3×3 dan nilai $\sigma=10$ menghasilkan jarak terkecil pada *Euclidean Distance* dan Manhattan distance.
- d. Hasil *Euclidean distance* tidak konsisten dengan hasil *manhattan distance*, dimana pada *euclidean distance*, hasil yang paling mendekati citra digital original adalah citra hasil penerapan gaussian filter dengan ukuran matriks 3×3 dan nilai $\sigma=2,5$. Sedangkan untuk *Manhattan distance*, hasil yang paling mendekati citra digital original adalah citra hasil penerapan gaussian filter dengan ukuran matriks 5×5 dan nilai $\sigma=2,5$. Sehingga perlu dilakukan pengujian ulang untuk melihat ketidakkonsistenan hasil *similarity measurement* tersebut. Hasil pengujian ulang dapat dilihat pada tabel 2.

Tabel 2. Hasil pengukuran pada penerapan Gaussian filter dengan $0.5 < \sigma < 5.0$ pada matriks *filter* 3×3 dan 5×5

	111000	iks juler 3	3 x 3	,,, <u>s</u>	5 x 5					
	Euclidean	Manhattan	RMSE	PSNR	SNR	Euclidean	Manhattan	RMSE	PSNR	SNR
0,6	2,6971	664,8131	12,9465	25,7850	17,3982	2,6786	662,3630	12,8577	25,8447	17,4579
0,7	2,4412	628,5854	11,7181	26,6509	18,2641	2,3953	621,4087	11,4977	26,8158	18,4290
0,8	2,3435	611,6494	11,2494	27,0054	18,6186	2,2728	598,4510	10,9096	27,2718	18,8850
0,9	2,3103	603,6768	11,0896	27,1297	18,7429	2,2282	584,9022	10,6959	27,4436	19,0568
1,0	2,3024	599,9346	11,0520	27,1592	18,7724	2,2247	577,1127	10,6788	27,4576	19,0708
1,1	2,3045	598,2193	11,0621	27,1512	18,7644	2,2426	573,0796	10,7648	27,3879	19,0011
1,2	2,3103	597,4923	11,0896	27,1297	18,7429	2,2706	571,3837	10,8992	27,2801	18,8933
1,3	2,3170	597,2687	11,1221	27,1043	18,7175	2,3021	571,0894	11,0505	27,1604	18,7736
1,4	2,3237	597,2772	11,1542	27,0792	18,6924	2,3336	571,5913	11,2014	27,0426	18,6558
1,5	2,3299	597,4042	11,1841	27,0560	18,6692	2,3632	572,5329	11,3436	26,9330	18,5462
1,6	2,3356	597,5881	11,2110	27,0351	18,6483	2,3903	573,6934	11,4737	26,8339	18,4471
1,7	2,3405	597,7845	11,2349	27,0166	18,6298	2,4147	574,9266	11,5907	26,7458	18,3590
1,8	2,3449	597,9791	11,2561	27,0003	18,6135	2,4364	576,1611	11,6952	26,6679	18,2811
1,9	2,3488	598,1679	11,2748	26,9859	18,5991	2,4558	577,3464	11,7880	26,5992	18,2124
2,0	2,3523	598,3466	11,2912	26,9732	18,5864	2,4729	578,4715	11,8704	26,5387	18,1519
2,1	2,3553	598,5129	11,3058	26,9620	18,5752	2,4882	579,5189	11,9435	26,4853	18,0985
2,2	2,3580	598,6668	11,3187	26,9521	18,5653	2,5017	580,4835	12,,0086	26,4381	18,0513
2,3	2,3604	598,8084	11,3301	26,9433	18,5565	2,5138	581,3658	12,0667	26,3963	18,0095
2,4	2,3625	598,9382	11,3404	26,9355	18,5487	2,5246	582,1724	12,1185	26,3590	17,9722
2,5	2,3644	599,0559	11,3495	26,9285	18,5417	2,5343	582,9100	12,1650	26,3258	17,9390
2,6	2,3661	599,1630	11,3577	26,9222	18,5354	2,5403	583,5820	12,2068	26,2960	17,9092
2,7	2,3677	599,2622	11,3651	26,9166	18,5298	2,5508	584,1976	12,2444	26,2692	17,8824
2,8	2,3690	599,3531	11,3718	26,9115	18,5247	2,5579	584,7597	12,2784	26,2451	17,8583
2,9	2,3703	599,4361	11,3778	26,9069	18,5201	2,5644	585,2746	12,3093	26,2234	17,8366
3,0	2,3714	599,5120	11,3833	26,9027	18,5159	2,5702	585,7475	12,3373	26,2036	17,8168
3,1	2,3725	599,5815	11,3882	26,8989	18,5121	2,5755	586,1817	12,3628	26,1857	17,7989
3,2	2,3734	599,6453	11,3928	26,8954	18,5086	2,5804	586,5813	12,3861	26,1693	17,7825
3,3	2,3743	599,7042	11,3970	26,8922	18,5054	2,5848	586,9493	12,4075	26,1544	17,7676
3,4	2,3751	599,7585	11,4008	26,8993	18,5025	2,5889	587,2891	12,4270	26,1407	17,7539

3,5	2,3758	599,8087	11,4043	26,8866	18,4998	2,5926	587,6026	12,4450	26,1281	17,7413
3,6	2,3765	599,8552	11,4075	26,8842	18,4974	2,5961	587,8923	12,4616	26,1165	17,7297
3,7	2,3771	599,8985	11,4105	26,8819	18,4951	2,5993	588,1608	12,4769	26,1058	17,7190
3,8	2,3777	599,9387	11,4133	26,8798	18,4930	2,6022	588,4106	12,4911	26,0960	17,7092
3,9	2,3782	599,9762	11,4158	26,8779	18,4911	2,6050	588,6431	12,5043	26,0869	17,7001
4,0	2,3787	600,0113	11,4182	26,8760	18,4892	2,6075	588,8599	12,5164	26,0784	17,6916
4,1	2,3792	600,0440	11,4204	26,8744	18,4876	2,6099	589,0620	12,5278	26,0705	17,6837
4,2	2,3796	600,0747	11,4225	26,8728	18,4860	2,6121	589,2507	12,5384	26,0632	17,6764
4,3	2,3800	600,1033	11,4244	26,8713	18,4845	2,6141	589,4274	12,5482	26,0564	17,6696
4,4	2,3804	600,1301	11,4262	26,8700	18,4832	2,6160	589,5929	12,5574	26,0500	17,6632
4,5	2,3807	600,1552	11,4279	26,8687	18,4819	2,6178	589,7481	12,5661	26,0440	17,6572
4,6	2,3811	600,1788	11,4294	26,8675	18,4807	2,6195	589,8939	12,5741	26,0384	17,6516
4,7	2,3814	600,2010	11,4309	26,8664	18,4796	2,6211	590,0309	12,5817	26,0332	17,6464
4,8	2,3817	600,2219	11,4323	26,8653	18,4785	2,6226	590,1598	12,5889	26,0283	17,6415
4,9	2,3819	600,2416	11,4336	26,8643	18,4775	2,6240	590,2814	12,5956	26,0237	17,6369

5. Kesimpulan

- a. Penerapan *gaussian filter* dengan nilai $\sigma=1$ menghasilkan citra digital yang paling mendekati citra original dibandingkan dengan penerapan *Gaussian filter* dengan nilai σ lain, dimana $0.5 \le \sigma \le 10$. Sedangkan untuk penerapan *Wiener filter* terlihat bahwa semakin besar nilai σ , maka citra digital yang dihasilkan akan semakin mendekati *citra original*.
- b. Berdasarkan *similarity measurement*, untuk *Euclidean distance* diketahui bahwa penerapan *gaussian filter* dengan ukuran matriks 3×3 dan nilai $\sigma=1$ menghasilkan jarak paling kecil dibandingkan dengan yang lain, tetapi untuk *Manhattan distance*, diketahui bahwa penerapan *gaussian filter* dengan ukuran matriks 5×5 dan nilai $\sigma=1$ menghasilkan jarak paling kecil dibandingkan dengan yang lain.
- c. Berdasarkan *similarity measurement*, untuk *Euclidean distance* dan juga *Manhattan distance* diketahui bahwa penerapan *Wiener filter* dengan ukuran matriks 3×3 dan nilai $\sigma=10$ menghasilkan jarak paling kecil dibandingkan dengan yang lain, untuk $0,5 \le \sigma \le 10$ dan semakin kecil untuk nilai $\sigma>10$, sehingga dapat dikatakan bahwa semakin besar nilai σ pada *filter*, maka citra digital yang dihasilkan akan semakin mendekati *citra original*.
- d. Dari hasil pengukuran tingkat *error* (RMSE) dan juga *ratio noise* (PSNR dan SNR), diketahui bahwa *Euclidean distance* menghasilkan jarak yang konsisten dengan hasil pengukuran RMSE, PSNR dan SNR dibandingkan dengan *Manhattan distance*.

6. Daftar Pustaka

- [1] Castleman, K.R. 1996. Digital Image Processing Vol. 1 Ed.2. Prentice Hall, New Jersey.
- [2] Chen, Chaur-Chin and Hsueh-Ting Chu. 2005. Similarity Measurement Between Images. 29th Annual International Computer Software and Applications Conference. COMPSAC. 2:41-42.
- [3] Hair Jr., Joseph F., Black, William C., Babin, Barry C., dan Rolph E. Anderson. 2010. Multivariate Data Analysis 7/e. Pearson Prentice Hall, New Jersey.
- [4] Handoko W.T., Ardhianto E. dan E. Safriliyanto. 2011. Analisis Dan Implementasi Image Denoising dengan Metode Normal Shrink sebagai Wavelet Thresholding Analysis. *Jurnal Teknologi Informasi DINAMIK*. **16** (1): 56-63.
- [5] Ku mar, S. et.al. 2010. Performance Comparison of Median and Wiener Filter in Image De-noising. *International Journal of Computer Applications* (0975-8887). **9(4)**: 27-31.

- [6] McAndrew, A. 2004. *An Introduction to Digital Image Processing with Matlab*. School of Computer Science and Mathematics Victoria University of Technology.
- [7] Patidar, P. et.al. 2010. Image De-noising by Various Filters for Different Noise. *International Journal of Computer Applications* (0975-8887). **9(4)**: 45-50.
- [8] Rancher, A. C. 2004. *Methods of Multivariate Analysis Second Edition*. Joh Wiley & Sons, Canada.
- [9] Syamani. 2008. Komparasi Algoritma Non-Parametrik K-Nearest Neighbour Classifier Menggunakan Euclidean Distance dan Manhattan Distance untuk Klasifikasi Multispektral Tutupan Lahan. Laporan Penelitian, Fakultas Kehutanan Universitas Lambung Mangkurat, Banjarbaru.
- [10] Yampolskiy, Roman P. and Venu Govindaraju. 2005. Similarity Measure Functions for Strategy-Based Biometrics. *International Journal of Biological and Life Sciences*. **1(4)**: 227-228.
- [11] Yuwono, Bambang. 2010. Image Smoothing Menggunakan Mean Filtering, Median Filtering, Modus Filtering dan Gaussian Filtering. *Telematika*. **7**(1). 65-75.