IN THE CLAIMS

Please amend the claims as follows:

- 1. (Currently Amended): Method A method for pre-processing speech, in particular in a method for recognizing speech, comprising the steps of:
 - [[-]] receiving a speech signal; [[(S),]]
- [[-]] separating [[a]] an entire spectrum [[(F)]] of said speech signal [[(S)]] into a [[given]] number [[(N)]] of predetermined frequency sub-bands; $(F_1, ..., F_N)$,
- [[-]] analyzing said speech signal [[(S)]] within each of said frequency sub-bands; $(F_1, ..., F_N)$,
- [[-]] thereby generating respective band-dependent acoustic feature data $(O_1, ..., O_N)$ for each of said respective frequency sub-bands $(F_1, ..., F_N)$, [[which]] the band-dependent acoustic feature data $(O_1, ..., O_N)$ are being at least in part representative for representative of said speech signal [[(S)]] with respect to a respective frequency sub-band; $(F_1, ..., F_N)$,
- [[-]] deriving band-dependent likelihoods $(b_1, ..., b_N)$ for occurrences of speech elements $(P_1, ..., P_m)$ or of sequences thereof within said speech signal [[(S)]] based on said band-dependent acoustic feature data; $(O_1, ..., O_N)$ and/or a derivative thereof,
 - [[-]] analyzing said speech signal [[(S)]] within said entire spectrum; [[(F),]]
- [[-]] thereby generating full-band acoustic feature data, (FBE-F; FFBE; FBE-F-SSUB; O_{F,SSUB}), which are the full-band acoustic feature data being at least in part representative [[for]] of said speech signal [[(S)]] with respect to said entire spectrum; [[(F),]]
- [[-]] deriving a full-band likelihood (B_{FF}; B_{SSUB}) for occurrences of speech elements (P₁, ..., P_m) or of sequences thereof within said speech signal [[(S)]] based on said full-band acoustic feature data; and (FBE F; FFBE; FBE F SSUB; O_{F,SSUB}) and/or a derivative thereof,

Application No. 10/809,162 Reply to Office Action of June 12, 2007.

- [[-]] deriving an overall likelihood [[(B)]] for occurrences of speech elements $(P_{17}, ..., P_{m})$ or of sequences thereof within said speech signal [[(S)]] based on said band-dependent likelihoods $(b_{17}, ..., b_{N})$ and said full-band likelihood $(B_{FF}; B_{SSUB})$.
- 2. (Currently Amended): The method according to claim 1, wherein characterized in that when deriving said overall likelihood [[(B)]] includes combining said band-dependent likelihoods (b_1 , ..., b_N) are combined to a union model likelihood ($B_{U,MFCC}$) by determining [[the]] a number of uncorrupted frequency sub-bands of said frequency sub-bands (F_1 , ..., F_N), and adding all possible combinations of products of different the band-dependent likelihoods (b_1 , ..., b_N) corresponding to the respective frequency sub-bands.
- 3. (Currently Amended): The method according to claim 1, eharacterized in that wherein the step of generating the band-dependent acoustic feature data comprises generating said band-dependent acoustic feature data $(O_1, ..., O_N)$ comprise that include respective band-dependent mel-frequency cepstral coefficient features, which are based on mel-frequency cepstral coefficients and/or a derivative thereof derived from the respective frequency sub-bands $(F_1, ..., F_N)$.
- 4. (Currently Amended): The method according to claim 1, characterized in that further comprising:

applying a predetermined broadband noise robustness technique is applied prior to deriving said full-band likelihood term (B_{FF}: B_{SSUB}).

5. (Currently Amended): The method according to claim 4, eharacterized in that wherein the step of applying the predetermined broadband noise robustness technique

comprises applying said broadband noise robustness technique [[is]] based on a frequency-filtering technique.

- 6. (Currently Amended): The method according to claim 4, eharacterized in that wherein the step of applying the predetermined broadband noise robustness technique comprises applying said broadband noise robustness technique [[is]] based on a method of spee-tral-subtraction.
- 7. (Currently Amended): The method according to claim 1, characterized in that wherein the step of generating the full-band acoustic feature data comprises generating said full-band acoustic feature data (FBE-F; FFBE; FBE-F-SSUB; O_{F,SSUB}) comprise that include filter bank energy features (FBE-F), which are based on filter bank energies derived from said entire spectrum [[(F)]].
- 8. (Currently Amended): The method according to claim 1, characterized in that wherein the step of generating the full-band acoustic feature data comprises generating said full-band acoustic feature data (FBE-F; FFBE; FBE-F-SSUB; O_{F,SSUB}) comprise that include filtered filter bank energy features (FFBE), which are based on fil-tered filtered filter bank energies derived from said entire spectrum [[(F)]].
- 9. (Currently Amended): The method according to claim 1, eharacterized in that wherein the step of generating said full-band acoustic feature data comprises generating said full-band acoustic feature data (FBE F; FFBE; FBE F-SSUB; O_{F,SSUB}) comprise that include full-band mel-frequency cepstral coefficient features, which are based on mel-frequency

cepstral coefficients and/or a derivative thereof de-rived derived from said entire spectrum [[(F)]].

- 10. (Currently Amended): The method according to claim 1, eharacterized in that wherein the step of generating said full-band acoustic feature data and/or said band-dependent acoustic feature data comprises generating said full-band acoustic feature data (FBE F; FFBE; FBE F SSUB; O_{F,SSUB}) and/or said band-dependent acoustic feature data (O₁; ..., O_N) comprise that include PLP-linear prediction filter features, which are based on PLP-linear prediction filter features.
- 11. (Currently Amended): The method according to claim 1, characterized in that wherein the step of generating the full-band acoustic feature data comprises generating said full-band acoustic feature data (FBE; FFBE; FBE-F-SSUB; O_{F,SSUB}) comprise that include spectrally-changed full-band mel-frequency cepstral coefficient features features (O_{F,SSUB}), which are generated by applying a method of spectral sub-traction subtraction to said full-band mel-frequency cepstral coefficient features [[(O_F)]].
- 12. (Currently Amended): The method according to claim 1, characterized in that further comprising:

determining, using a probability estimator, said band-dependent likelihoods (b_1 , ..., b_N) and said <u>full-band</u> likelihood term (B_{FF} ; B_{SSUB} ; $B_{U,FF}$) are determined using a probability estimator.

13. (Currently Amended): The method according to claim 1, characterized in that further comprising:

deriving said filtered filter bank energies (FFBE) are derived from said filter bank energies [[(FBE)]] by subtracting (f(i) = f(i+1) - f(i-1)) a first filter bank energy [[(FBE_{i-1})]] from a second filter bank energy [[(FBE_{i+1})]], wherein said first filter bank energy [[(FBE_{i-1})]] corresponds to a first discrete frequency and said second filter bank energy [[(FBE_{i+1})]] corresponds to a second discrete frequency, lying two discrete frequency steps after said first filter bank energy [[(FBE_{i-1})]].

14. (Currently Amended): Speech A speech pre-processing system, in particular integrated into a speech processing system, which is capable of performing or realizing a method for pre-processing speech according to claim 1 and/or the steps thereof comprising.

means for receiving a speech signal;

means for separating an entire spectrum of said speech signal into a number of predetermined frequency sub-bands;

means for analyzing said speech signal within each of said frequency sub-bands;

means for generating respective band-dependent acoustic feature data for each of said

respective frequency sub-bands, the band-dependent acoustic feature data being at least in

part representative of said speech signal with respect to a respective frequency sub-band;

means for deriving band-dependent likelihoods for occurrences of speech elements or of sequences thereof within said speech signal based on said band-dependent acoustic feature data;

means for analyzing said speech signal within said entire spectrum;

means for generating full-band acoustic feature data, the full-band acoustic feature data being at least in part representative of said speech signal with respect to said entire spectrum;

means for deriving a full-band likelihood for occurrences of speech elements or of sequences thereof within said speech signal based on said full-band acoustic feature data; and means for deriving an overall likelihood for occurrences of speech elements or of sequences thereof within said speech signal based on said band-dependent likelihoods and said full-band likelihood.

15. (Cancelled).

16. (Currently Amended): Computer A computer readable storage medium, having embedded therein computer executable instructions, wherein the instructions, when executed by a processor, cause the processor to perform a method comprising:

comprising a computer program product according to claim 15 receiving a speech signal;

separating an entire spectrum of said speech signal into a number of predetermined frequency sub-bands;

analyzing said speech signal within each of said frequency sub-bands;

generating respective band-dependent acoustic feature data for each of said respective frequency sub-bands, the band-dependent acoustic feature data being at least in part representative of said speech signal with respect to a respective frequency sub-band;

deriving band-dependent likelihoods for occurrences of speech elements or of sequences thereof within said speech signal based on said band-dependent acoustic feature data;

analyzing said speech signal within said entire spectrum;

generating full-band acoustic feature data, the full-band acoustic feature data being at least in part representative of said speech signal with respect to said entire spectrum;

Application No. 10/809,162 Reply to Office Action of June 12, 2007.

deriving a full-band likelihood for occurrences of speech elements or of sequences

thereof within said speech signal based on said full-band acoustic feature data; and

deriving an overall likelihood for occurrences of speech elements or of sequences

thereof within said speech signal based on said band-dependent likelihoods and said full-band likelihood.