Problem Set 5

David Bunger

October 2022

Problem 1

a)

```
R_1 = \{((x,y),(z,t)) : (|x-z| > 1) \land (|y-t| > 1)\}
```

Theorem: R_1 is not transitive.

Hypothesis: The statement "If a,b, and c are points whose values are real numbers $R_1(a,b)$ and $R_1(b,c)$, then $R_1(b,c)$ " false.

Proof:

Let a be (0,0), b be (2,2), and c be (0,0). Suppose that R_1 is transitive. That means if $R_1(a,b)$ and $R_1(b,c)$, then $R_1(a,c)$. $R_1(a,b)$ is true because $(|0-2|>1) \wedge (|0-2|>1)$ is true, and $R_1(b,c)$ is true because $((|2-0|>1) \wedge (|2-0|>1)$ is true. However, $R_1(a,c)$ is false because $(0-0|>1) \wedge (|0-0|>1)$ is false. Therefore, R_1 is not transitive.

b)

$$R_2 = \{((x, y), (z, t)) : (x > z) \land (y > t)\}$$

Theorem: R_2 is transitive.

Hypothesis: If a,b, and c are points whose values are real numbers, $R_2(a,b)$, and $R_2(b,c)$, then $R_2(b,c)$

Proof:

Assume that $R_2(a, b)$ and $R_2(b, c)$ are true. This means that the x value of $a(a_x)$ is greater than the x value of $b(b_x)$, and the y value of $a(a_y)$ is greater than the y value of $b(b_y)$. This also means that $b_x > c_x$ and $b_y > c_y$. If the theorem is true, then $a_x > c_x$ and $a_y > c_y$. We know that i is transitive, because if a number x is greater than another number y, and y is greater than a third number z, x must be greater than z. Because we know this, it must be true that $a_x > c_x$ and $a_y > c_y$, and therefore R_2 is transitive.

c)

```
R_3 = \{((x, y), (z, t)) : (x > z) \lor (y > t)\}
```

Theorem: R_3 is not transitive.

Hypothesis: The statement "If a,b, and c are points whose values are real numbers $R_3(a,b)$ and $R_3(b,c)$, then $R_3(b,c)$ " false.

Proof:

Let a be (1,2), b be (4,1), and c be (3,3). Suppose that R_3 is transitive. That means if $R_3(a,b)$ and $R_3(b,c)$, then $R_3(a,c)$. $R_3(a,b)$ is true because $(1>4)\vee(2>1)$ is true, and $R_3(b,c)$ is true because $(4>3)\vee(1>3)$ is true. However, $R_3(a,c)$ is false because $(1>3)\vee(2>3)$ is false. Therefore, R_3 is not transitive.

Problem 2

Prove that if a and b are integers and 5|a, then 5|ab.

Proof:

Assume a and b are integers and 5|a. This means that a is divisible by 5, meaning there exists an integer k that when multiplied with 5 results in a, or 5k = a. If both sides of this equation are multiplied by the integer b, the resulting equation would be 5kb = ab, which would also be true by the laws of algebra. kb can be simplified to k, because the product of two integers is itself an integer, resulting in 5k = ab. This means that there exists an integer k that when multiplied by 5 results in ab. Therefore, 5|ab.

Problem 3

Prove that $multiples(69) \subseteq multiples(23)$.

Proof:

The formula to describe multiples(x), $\{y \in \mathbb{Z} : x|y\}$, can be described as the set of all integers that can be divided by x. Because 69 can be divided by 23, 69 is a multiple of 23. This also means 69a is also a multiple of 23, where a is an integer. This shows that every number that can be divided by 69 can also be divided by 23. Therefore, multiples(69) \subseteq multiples(23).

Problem 4

a)

Proof: Proof:

The function divisors(x) can be defined as $S = \{i \in \mathbb{Z} : i | x\}$. The intersection of divisors(a) and divisors(b) can be defined as $S = \{i \in \mathbb{Z} : i | a \land i | b\}$. Suppose that if i | a and i | b, then i | (a - b). By the definition of divides, that means there exists an integer k that when multiplied by i results in (a - b). There also exists integers j and l that when multiplied by i, result in a and b respectively. k can be found by subtracting l from j, showing that a, b, and (a - b) can all be divided by the same i. This means that divisors(a-b) includes, but is not limited to, the intersection of divisors(a) and divisors(b). When intersected with divisors(b), the set becomes equivalent to the intersection of divisors(a) and divisors(b). Therefore, divisors(b) \cap divisors(a-b) \subseteq divisors(a) \cap divisors(b).

Problem 5

Prove that if 131 doesn't divide 111x then 131 doesn't divide x. Proof:

If 131 divides 111x, that means there exists an integer k that when multiplied with 131 results in 111x, or 131k = 111x. By basic algebra, this can be rewritten as 131k/111 = x. As k can be any integer, k/111 can be rewritten as k, so long as 111 divides k. If an integer k does not exist for 131k = 111x, then it will also not exist for 131k = x, as 131 itself does not divide 111. Therefore, if 131 doesn't divide 111x then 131 doesn't divide x.

Problem 6

Prove that if $a \in \mathbb{Z}$ and $b \notin \mathbb{Z}$ then $c = a + b \notin \mathbb{Z}$

If b is not an integer, that means $b-\lfloor b\rfloor$ is greater than zero and less than one. If a is an integer, that means $a-\lfloor a\rfloor$ is zero. a+b can be written as $a+\lfloor b\rfloor+(b-\lfloor b\rfloor)$. Since we know that $b-\lfloor b\rfloor$ is greater than zero and less than one and $a-\lfloor a\rfloor$ is zero, $c-\lfloor c\rfloor$ must equal $b-\lfloor b\rfloor$. Because $c-\lfloor c\rfloor$ is not zero, c is not an integer, and therefore if $a\in\mathbb{Z}$ and $b\notin\mathbb{Z}$ then $c=a+b\notin\mathbb{Z}$