CST207 DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 12: Approximation Algorithms

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432

Office hour: 2pm-4pm Mon & Thur

Why Need Approximation Algorithms?

- Many problems are NP-complete, but are too important to give up merely because obtaining an optimal solution is intractable.
- If a problem is NP-complete, we are unlikely to find a polynomial-time algorithm for solving it exactly, but even so, there may be hope.

Why Need Approximation Algorithms?

- There are at least three approaches to getting around NP-completeness:
 - Approach 1: If the actual inputs are small, an algorithm with exponential running time may be perfectly satisfactory.
 - Approach 2: We may be able to isolate important special cases that are solvable in polynomial time.
 - **Approach 3:** It may still be possible to find *near-optimal* solutions in polynomial time (either in the worst case or on average).
- In practice, near-optimality is often good enough. An algorithm that returns near-optimal solutions is called an *approximation algorithm*.

Approximation Algorithms

- For example, if you only have 5 days to prepare final exams for 5 courses, you have two strategies:
 - Spend 4 days to make 1 course get A and 1 day to make all the other 4 courses get C.
 - Evenly spend 5 days to 5 courses to make each course get B.
- It is same for engineering, sometimes we don't have to pursue perfect solution for a problem due to high cost, because the resource (e.g. hardware, computational time, labour) is limited.
 - A relative good result is enough and we can focus on something else such that the total return is maximized. (GPA for 5 Bs is higher than that of 1 A and 4 Cs).
- In economics, it is call profit maximization, which is achieved when marginal revenue equals marginal cost.

Approximation Ratio

- The optimization problem may be either a maximization or a minimization problem.
- We say that an algorithm for a problem has an *approximation ratio* of $\rho(n)$ if, for **any** input of size n, the cost C of the solution produced by the algorithm is within a factor of $\rho(n)$ of the cost C^* of an optimal solution:

$$\max(\frac{C}{C^*}, \frac{C^*}{C}) \le \rho(n).$$

• We also call an algorithm that achieves an approximation ratio of $\rho(n)$ a $\rho(n)$ approximation algorithm.

Approximation Ratio

- For a minimization problems, we have $0 < C^* \le C$.
- For a maximization problems, we have $0 < C \le C^*$.
- The approximation ratio of an approximation algorithm is never less than 1.
- The smaller the approximation ratio, the better the approximation algorithm.
 - A 1-approximation algorithm produces an optimal solution.

Approximation Algorithms

Now, we look at four problems that can be solved by approximation algorithms:

- The vertex-cover problem
- The set-covering problem
- The travel-salesman problem
- MAX-CNF satisfiability problem

THE VERTEX-COVER PROBLEM

The Vertex-Cover Problem

- A *vertex cover* of an undirected graph G = (V, E) is a subset $V' \subseteq V$ such that if (u, v) is an edge of G, then either $u \in V'$ or $v \in V'$ (or both).
- The size of a vertex cover is the number of vertices in it.
- The vertex-cover problem is to find a vertex cover of minimum size in a given undirected graph.
- This problem is NP-hard and its corresponding decision problem is NP-complete.
 - For the decision problem with parameter k, a straightforward solution is to check all subsets $V' \subseteq V$ of size k.
 - The time complexity is $|V|^k$ (can't be bounded by a polynomial function).

An minimum vertex cover

Approximation Algorithm for the Vertex-Cover Problem


```
vertex_set approx_vertex_cover (graph G)
{
    vertex_set C;
    edge_set E;

    C = Ø;
    E = all the edges of G;
    while (!empty(E)){
        let (u, v) be an arbitrary edge in E;
        C = C U {u, v};
        remove from E every edge whose endpoint is either u or v;
    }
    return C;
}
```

The time complexity of this algorithm is O(|V| + |E|)

Approximation Algorithm for the Vertex-Cover Problem

Theorem 1

approx_vertex_cover is a polynomial-time 2-approximation algorithm.

Proof:

- We have already shown that approx_vertex_cover runs in polynomial time.
- let A denote the set of edges that were picked in the while loop.
- An optimal cover C^* must include at least one endpoint of each edge in A, because C^* covers every edge in A.
- No two edges in A share an endpoint, since once an edge is picked, all other edges that share the same endpoints with the picked edge are deleted from E.

Approximation Algorithm for the Vertex-Cover Problem

Proof (cont'd):

- Thus, no two edges in A are covered by the same vertex in C^* .
- In other words, one vertex in C^* can at most cover one edge in A.
 - It is possible that two vertex in C^* covers one edge in A.
- Therefore, we have the lower bound

$$|C^*| \ge |A|$$
.

Each edge pick puts two new endpoints in C, we have:

$$|C| = 2|A|$$

$$\leq 2|C^*|.$$

THE SET-COVERING PROBLEM

The Set-Covering Problem

• An instance (X, F) of the *set-covering problem* consists of a finite set X and a family F of subsets of X, such that every element of X belongs to at least one subset in F:

$$X = \bigcup_{S \in F} S.$$

■ The problem is to find a minimum number of subsets $C \subseteq F$, which include all elements of X:

$$X = \bigcup_{S \in C} S.$$

- This problem is NP-hard and its corresponding decision problem is NP-complete.
 - Similar to the vertex-cover problem, the time-complexity of a brute-force algorithm for the decision problem is $|F|^k$.

The Set-Covering Problem

X consists of 12 black points, and F is a family of subsets of X.

$$F: \{S_1, S_2, S_3, S_4, S_5, S_6\}.$$

• An optimal solution $C^* \subseteq F$ is:

$$C^* = \{S_3, S_4, S_5\}.$$

• A solution produced by the greedy algorithm $C \subseteq F$ is:

$$C = \{S_1, S_3, S_4, S_5\}.$$

Approximation Algorithm for the Set-Covering Problem

```
set greedy_set_cover (set X, set F)
{
    set U, C;
    U = X;
    C = Ø;

    while (!empty(U)){
        select an S from F that maximizes |S n U|;
        U = U - S;
        C = C u {S};
    }
    return C;
}
```

- At each stage, pick the set S that covers the greatest number of remaining elements that are uncovered.
- Result: Add to C the sets S_1, S_4, S_5, S_3 in order.

Approximation Algorithm for the Set-Covering Problem

- The number of iterations of the loop is bounded from above by min(|X|, |F|).
 - If |X| < |F|, the size of |U| is reduced in each iteration. Therefore there are at most |X| loops.
 - If |X| > |F|, we will not repeat selecting the same S from F. Therefore there are at most |F| loops.
- The loop body can be implemented to run in time O(|X||F|).
- Total time complexity: $O(|X||F|\min(|X|,|F|))$, which is polynomial in |X| and |F|.

```
set greedy_set_cover (set X, set F)
{
    set U, C;
    U = X;
    C = Ø;

    while (!empty(U)){
        select an S from F that maximizes |S n U|;
        U = U - S;
        C = C u {S};
    }
    return C;
}
```


Approximation Algorithm for the Set-Covering Problem

Theorem 2

greedy_set_cover is a polynomial-time ($\ln |X| + 1$)-approximation algorithm.

- The proof is skiped here due to high complexity.
- In this example, the approximation ratio $\rho(n)$ is not a constant but a logarithm function of the size of input X.
 - As the size of the instance gets larger, the size of the approximate solution may grow, relative to the size of an optimal solution.
 - Because the logarithm function grows rather slowly, however, this approximation algorithm may nonetheless give useful results.

THE TRAVEL-SALESMAN PROBLEM

The Travel-Salesman Problem

- Given a complete undirected graph G = (V, E) that has a nonnegative integer cost c(u, v) associated with each edge $(u, v) \in E$, and we must find a Hamiltonian cycle (i.e. a tour) of G with minimum cost.
- This problem is NP-hard and its corresponding decision problem is NP-complete.
 - Worst-case time complexity of dynamic programming solution is $\Theta(n^2 2^n)$.
 - The state space tree in the branch-and-bound algorithm has (n-1)! leaves. The worst-case is that the optimal solution is found on the last leaf, i.e. no node is pruned.

The Travel-Salesman Problem

In many practical situations, it is always cheapest to go directly from a place u to a place w; going by way of any intermediate stop v can't be less expensive.

- Usually true if the cost is distance you walk.
- Sometimes not true if the cost is the flight price.
- Reversely, cutting out an intermediate stop never increases the cost.
- We formalize this notion by saying that the cost function c satisfies the *triangle inequality* if for all vertices $u, v, w \in V$,

$$c(u,w) \le c(u,v) + c(v,w).$$

b+c>a

- We will first use Prim's algorithm to compute a minimum spanning tree (MST), whose weight is a lower bound on the length of an optimal TSP tour.
 - Recall that the every-case time complexity for Prim's algorithm is $T(n^2)$.
 - The optimal cost for TSP must be less than the one for MST (removing any edge from the tour is a spanning tree).
- We will then use the MST to create a tour whose cost is no more than twice that of the MST's weight, as long as the cost function satisfies the triangle inequality.
 - Thus, it is a 2-approximation algorithm.

- Assume that each two vertices are connected in the undirected graph.
- Actually, Prim's algorithm doesn't need to specify the root.
 However, here we need a root to do traversal.
- Full walk of the tree: a, b, c, b, h, b, a, d, e, f, e, g, e, d, a, shown in (c).
- Preorder walk of the tree: a, b, c, h, d, e, f, g, shown in (d).

- Now you may ask: what if c(h, d) is super high, can the total cost of this tour still be at most twice of that of the optimal tour?
- No worry. The triangle inequality helps us dispel worries.

Theorem 3

approx_tsp_tour is a polynomial-time 2-approximation algorithm for TSP with the triangle inequality.

Proof:

- approx_vertex_cover is simply a call to Prim's algorithm with a preorder traversal, that is obviously
 in polynomial time.
- Let H^* denote an optimal tour for the given set of vertices.
- Since we can obtain a spanning tree by deleting any edge from the optimal tour, the cost of the MST T must be a lower bound on the cost of an optimal tour, i.e.

$$c(T) \leq c(H^*)$$
,

where $c(\cdot)$ denotes the total cost of the edges in the tree/tour.

Proof (cont'd):

 Since the full walk of T (let us call this walk W) traverses every edge of T exactly twice, we have

$$c(W) = 2c(T).$$

Hence, we have

$$c(W) \leq 2c(H^*)$$
.

■ That is, the cost of W is within a factor of 2 of the cost of an optimal tour.

Full walk W of T

Proof (cont'd):

- However, you may notice that a very important problem: W is generally not a tour.
 - It visits each internal nodes twice in T.
- By the triangle inequality, we can delete a visit to any vertex from W and the cost does not increases.
 - If a vertex v is deleted from W between visits to u and w, the resulting ordering specifies going directly from u to w.
- By repeatedly applying this operation, we can remove from W all but the first visit to each vertex, i.e. we obtain the preorder walk of the tree finally.
 - a, b, c, b, h, b, a, d, e, f, e, g, e, d, a.

The Hamiltonian cycle H generated by full walk W

Proof (cont'd):

lacktriangle Since H is obtained by deleting vertices from the full walk W, we have

$$c(H) \leq c(W)$$
.

We therefore have:

$$c(H) \leq 2c(H^*).$$

That is, the theorem is proved.

MAX-CNF SATISFIABILITY PROBLEM

Randomized Approximation Algorithm

- Just as there are randomized algorithms that compute exact solutions, there are randomized algorithms that compute approximate solutions.
- We say that a randomized algorithm for a problem has an approximation ratio of $\rho(n)$ if, for any input of size n, the expected cost E[C] of the solution produced by the randomized algorithm is within a factor of $\rho(n)$ of the cost C^* of an optimal solution:

$$\max(\frac{E[C]}{C^*}, \frac{C^*}{E[C]}) \le \rho(n).$$

- We call this kind of algorithm randomized $\rho(n)$ -approximation algorithm.
 - It is like a deterministic approximation algorithm, except that the approximation ratio is for an expected value.

MAX-CNF Satisfiability Problem

- The input consists of n Boolean variables x_1, \dots, x_n , each of which may be set to either true or false.
- m clauses C_1, \ldots, C_m , each of which consists of an "OR" operator of some number of the variables and their negations
 - For example, $x_3 \vee \neg x_5 \vee x_{11}$, where $\neg x_i$ is the negation of x_i .
- A nonnegative weight w_i for each clause C_i .
- The objective of the problem is to find an assignment of true/false to the x_i that maximizes the total weights of the satisfied clauses.

MAX-CNF Satisfiability Problem

- For example, we have:
 - $C_1: x_1 \vee \neg x_2 \text{ with } w_j = 1.$
 - C_2 : $x_1 \vee x_2$ with $w_j = 2$.
 - $C_3: \neg x_1 \lor \neg x_2 \text{ with } w_j = 3.$
- The optimal solution is $x_1 = false$, $x_2 = true$ with total weight 5.

Randomized Approximation Algorithm for MAX-CNF Satisfiability Problem

Now, we have an extremely simple randomized algorithm:

Set each x_i to true independently with probability 1/2.

And we have the following theorem:

Theorem 4

The randomized algorithm gives a randomized 2-approximation algorithm for the maximum satisfiability problem.

Randomized Approximation Algorithm for MAX-CNF Satisfiability Problem

Proof:

- Consider a random variable Y_j such that Y_j is 1 if clause C_j is satisfied and 0 otherwise.
- Let $W = \sum_{i=1}^m w_i Y_i$ be a random variable that is equal to the total weight of the satisfied clauses.
- Then, recall the lemma for probabilistic analysis: $E[Y_j] = Pr[\text{clause } C_j \text{ satistied}].$

$$E[W] = \sum_{j=1}^{m} w_j E[Y_j] = \sum_{j=1}^{m} w_j Pr[\text{clause } C_j \text{ satistied}].$$

- For each clause C_i , the probability that it is not satisfied is the probability of when
 - each unnegated literal in C_i is set to false;
 - each negated literal in C_i is set to true.

Randomized Approximation Algorithm for MAX-CNF Satisfiability Problem

Proof (cont'd):

Because each of which happens with probability 1/2 independently, we have:

$$Pr[\text{clause } C_j \text{ satistied}] = \left(1 - \left(\frac{1}{2}\right)^{l_j}\right) \ge \frac{1}{2},$$

where $l_i \ge 1$ the size of clause j.

■ Let *OPT* denote the optimum value of the MAX-CNF instance:

$$E[W] = \sum_{j=1}^{m} w_j Pr[\text{clause } C_j \text{ satistied}] \ge \frac{1}{2} \sum_{j=1}^{m} w_j \ge \frac{1}{2} OPT,$$

because the sum over all w_i is the upper bound of OPT.

Conclusion

After this lecture, you should know:

- Why do we need approximation algorithms.
- How to measure the gap between an approximate solution and an optimal solution.
- How to get a polynomial-time approximation algorithm and prove its approximation ratio $\rho(n)$.

Assignment

- No tutorial this week.
- Assignment 6 is released. The deadline is 18:00, 13th July.

Thank you!

Reference:

Chapter 35, Thomas H. Cormen, Introduction to Algorithms, Second Edition.

