Extração, Tarnformação e Carga (ETL) de dados do SUS via Protocolo de Transferência de Arquivos (FTP)

Veja materiais complementares em https://github.com/labxss/curso_r.

Bibliotecas do R

As operações a seguir baixam e carregam os pacotes necessários o para processamento dos dados.

```
if(!require(RCurl)) {install.packages("RCurl"); require(RCurl)}
# funcao getURL
if(!require(downloader)) {install.packages("downloader"); require(downloader)}
if(!require(stringr)) {install.packages("stringr"); require(stringr)}
# lpad str pad
if(!require(gsubfn)) {install.packages("gsubfn"); require(gsubfn)}
if(!require(readr)) {install.packages("readr"); require(readr)}
# para ler csv diretamente do github
```

pacote read.dbc

Saiba mais sobre o read.dbc em https://pt.linkedin.com/pulse/datasus-conhe%C3%A7a-nova-ferramenta-para-ler-arquivos-dbcpetruzalek

```
if(!require(read.dbc)) {devtools::install_github("danicat/read.dbc"); require(read.dbc)}
# le arquivo DBC da estrategia tabnet/tabwin de disseminacao
```

Parâmetros

A título de exemplo vamos trabalhar com o Protocolo Clínico e Diretriz Terapêutica Espondilite Ancilosante, disponível em https://www.gov.br/conitec/pt-br/midias/protocolos/20210428_pcdt-espondilite-ancilosante-1.pdf .

```
cid10=c("M45", "M468") # Espondilite Ancilosante
sigtap=c(
   \cdot \cdot "0601010019", \cdot \# \cdot ADALIMUMABE \cdot (A) \cdot 40 \cdot MG \cdot INJETAVEL - \cdot SERINGA \cdot PREENCHIDA \cdot (POR \cdot TRATAMENTO \cdot MENSAL) \\ \rightarrow Revogado \cdot desde \cdot 06/2010 \cdot MENSAL \cdot (A) \cdot
   ··"0604380062",·#·ADALIMUMABE·40·MG·INJETÁVEL·(POR·SERINGA·PREENCHIDA)→
   ··"0604380097", ·#·ADALIMUMABE·40·MG·INJETÁVEL·(FRASCO·AMPOLA)→
   \cdot \cdot \text{"0604380127"}, \cdot \# \cdot \text{ADALIMUMABE} \cdot 40 \cdot \text{MG} \cdot \text{INJETAVEL} \cdot (\cdot \cdot \text{POR} \cdot \text{SERINGA} \cdot \text{PREENCHIDA}) \\ (\cdot \cdot \text{BIOSSIMILAR} \cdot \text{A}) \rightarrow \text{MG} \cdot \text{
   ··"0604380135",·#·ADALIMUMABE·40·MG·INJETÁVEL·(POR·SERINGA·PREENCHIDA)·(BIOSSIMILAR·B)
   ··"0601010027", ·#·ETANERCEPTE·(A)25·MG·INJETAVEL·-FRASCO-AMPOLA·(POR·TRATAMENTO·MENSAL)→Revogado·desde·06/2010
   \cdot \cdot "0601010051", \cdot \# \cdot \mathsf{ETANERCEPTE} \cdot 50 \mathsf{MG} \cdot \mathsf{INJETAVEL} - \cdot \mathsf{FRASCO} \cdot \mathsf{AMPOLA} \cdot (\mathsf{POR} \cdot \mathsf{TRATAMENTO} \cdot \mathsf{MENSAL}) \\ \rightarrow \mathsf{Revogado} \cdot \mathsf{desde} \cdot 06/2010 \\ + \mathsf{Revogado} \cdot \mathsf{desde} \cdot \mathsf{MENSAL} \cdot 
   ··"0604380020",·#·ETANERCEPTE·25·MG·INJETÁVEL·(POR·FRASCO-AMPOLA·OU·SERINGA·PREENCHIDA)→
   ··"0604380038",·#·ETANERCEPTE·50MG·INJETAVEL·(POR·FRASCO-AMPOLA·OU·SERINGA·PREENCHIDA)(ORIGINADOR)→
   ··"0604380100",·#·ETANERCEPTE·50·MG·INJETÁVEL·(POR·FRASCO-AMPOLA·OU·SERINGA·PREENCHIDA)(BIOSSIMILAR·A)
   ··"0601010035",·#·INFLIXIMABE·(A)10·MG/ML·10·ML·INJETAVEL·(FRASCO-AMPOLA-·POR·TRATAMENTO·MENSAL)→ Revogado·desde·06/2010
   \cdot \cdot \text{"0601010043"}, \cdot \# \cdot \text{INFLIXIMABE} \cdot 10 \cdot \text{MG/ML} \cdot \text{INJETAVEL} \cdot (\text{POR} \cdot \text{FRASCO-AMPOLA} \cdot 10 \cdot \text{ML}) \rightarrow \text{Revogado} \cdot \text{desde} \cdot 06/2010 + 0.000 \cdot 10 \cdot \text{ML}
   \cdot \cdot "0604380046", \cdot \# \cdot \mathsf{INFLIXIMABE} \cdot 10 \cdot \mathsf{MG/ML} \cdot \mathsf{INJETAVEL} \cdot (\mathsf{POR} \cdot \mathsf{FRASCO} - \mathsf{AMPOLA} \cdot \mathsf{COM} \cdot 10 \cdot \mathsf{ML}) \rightarrow \mathsf{MCM} \cdot \mathsf{MCM} 
   \cdots \texttt{"0604380054"}, \cdot \texttt{\#} \cdot \texttt{INFLIXIMABE} \cdot 10 \cdot \texttt{MG/ML} \cdot \texttt{INJETAVEL} \cdot (\texttt{POR} \cdot \texttt{FRASCO} \cdot \texttt{AMPOLA} \cdot \texttt{COM} \cdot 10 \cdot \texttt{ML}) \rightarrow \texttt{MCM} \cdot \texttt{M
   \cdot \cdot "0604380119", \cdot \# \cdot INFLIXIMABE \cdot 10 \cdot MG \cdot / ML \cdot INJETÁVEL \cdot (POR \cdot FRASCO - AMPOLA \cdot COM \cdot 10 \cdot ML) \cdot (BIOSSIMILAR \cdot A)
   ··"0604380089", ·#·GOLIMUMABE·50·MG·INJETÁVEL·(POR·SERINGA·PREENCHIDA
   ··"0604380070", ·#·CERTOLIZUMABE·PEGOL·200·MG/ML·INJETÁVEL·(POR·SERINGA·PREENCHIDA)
   ··"0604690029"·#·SECUQUINUMABE·150·MG/ML·SOLUÇÃO·INJETÁVEL·(POR·SERINGA·PREENCHIDA)
) # biologicos
ufs=c('AC', 'AM', 'AP', 'PA', 'RO', 'RR', 'TO',
                                                                   'AL', 'BA', 'CE', 'MA', 'PB', 'PE', 'PI', 'RN', 'SE', 'ES', 'MG', 'RJ', 'SP', 'PR', 'RS', 'SC', 'DF', 'GO', 'MS', 'MT')
mes=str_pad(1:12, 2, pad="0")
url="ftp://ftp.datasus.gov.br/dissemin/publicos/SIASUS/200801_/Dados/"
```

Estrutura dos dados

Criar tabelas vazias no formato data.frame contendo as variáveis desejadas.

O dicionário de dados do Sistema de Informações Ambulatoriais está disponível em ftp://ftp.datasus.gov.br/dissemin/publicos/SIASUS/200801_/Doc/.

Como baixar o dicionário de dados

Alternativa 1

Os enderelos do tipo ftp:// usualmente não funcionam no navegador de internet. Cole o endereço no navegador de arquivos.

Alternativa 2

Baixe usando o R em sua máquina local com a função download.file.

```
# R
download.file(
 "ftp://ftp.datasus.gov.br/dissemin/publicos/SIASUS/200801_/Doc/Informe_Tecnico_SIASUS_2019_07.pdf",
 destfile = "Informe_Tecnico_SIASUS_2019_07.pdf"
 paam_estrutura=data.frame(
  PA AUTORIZ = numeric(),
  PA_CMP = numeric(),
  PA MVM = numeric().
  PA_CIDPRI = character(),
  PA_CIDSEC = character(),
  PA_PROC_ID = character(),
  PA_QTDAPR = numeric(),
  PA_SEX0 = character(),
  PA_IDADE = numeric(),
  PA_MUNPCN = numeric(),
  uf_processamento = character(),
  AP_CNSPCN = character()
pa_estrutura=data.frame(
  PA AUTORIZ = numeric(),
  PA_CMP = numeric(),
  PA_MVM = numeric(),
  PA_CIDPRI = character(),
  PA_CIDSEC = character(),
  PA PROC ID = character(),
  PA_QTDAPR = numeric(),
  PA_SEX0 = character(),
  PA_IDADE = numeric(),
  PA_MUNPCN = numeric(),
  uf_processamento = character()
am estrutura=data.frame(
  AP_AUTORIZ = numeric(),
  AP_PRIPAL = character(),
  AP_CIDPRI = character(),
  AP_CNSPCN = character()
```

▼ Exemplo de dado

O Sistema de Informação Ambulatorial (SIA) apreenta vários subsistemas, a saber:

- PA Produção Ambulatorial
- AB Laudo de Acompanhamento à Cirurgia Bariátrica
- ABO Acompanhamento Pós Cirurgia Bariátrica
- ACF Laudo de Confecção de Fístula
- AD Laudos Diversos
- · AM Laudo de Medicamentos
- AMP Laudo de Acompanhamento Multiprofissional
- AN Laudo de Nefrologia
- AQ Laudo de Quimioterapia
- AR Laudo de Radioterapia
- ATD Laudo de Tratamento Dialítico
- BI Boletim Individual

Os arquivos estão no formado DBF, cujo nome é padronizado:

prefixo | UF | ano com dois dígitos | mês com dois dídigos.

Exemplos: PARR2301.dbc, AMPR2201.dbc, AQBA1801.dbc.

Vamos usar o download.file e o read.dbc para ler um arquivo direto do diretório FTP.

```
download.file(
  paste0(url,'PAAC2212.dbc'),
  destfile = "arquivo.dbc
paac2212=read.dbc("arquivo.dbc")
head(paac2212)
```

PA CODUNI PA GESTAO PA CONDIC PA UFMUN PA REGCT PA INCOUT PA INCURG

	<fct></fct>						
1	2001586	120000	EP	120040	0000	0000	0000
2	5336171	120000	EP	120020	0000	0000	0000
3	0128619	120000	EP	120040	0000	0000	0000
4	2000393	120000	EP	120070	0000	0000	0000
5	2000970	120000	EP	120034	0000	0000	0000
6	2001063	120000	EP	120040	0000	0000	0000
4							•

▼ Lista de arquivos DBC

A lista completa dos arquivos dbc do SIA é obtida com a função getURL.

```
url="ftp://ftp.datasus.gov.br/dissemin/publicos/SIASUS/200801 /Dados/"
```

```
# lista arquivos dbc do diretorio FTP
aux <-
  getURL(
    url,
    verbose = TRUE,
    ftp.use.epsv = FALSE,
    dirlistonly = TRUE,
    crlf = TRUE
listadbc=strsplit(aux, "\r*\n")[[1]]
length(listadbc) # numero de arquivos
listadbc[sample(1:length(listadbc),20, replace = TRUE)]
# amostra de arquivos DBC
      'ADPR1109.dbc' · 'PASC1803.dbc' · 'ADMT1204.dbc' · 'BIRJ1808.dbc' · 'AQTO2104.dbc' ·
      'AMPSC2110.dbc' · 'PAPE0904.dbc' · 'ATDMA1811.dbc' · 'PACE1207.dbc' · 'AQGO1906.dbc' ·
     'RIAC1208 dhe' . 'PAGO0902 dhe' . 'RIAP2107 dhe' . 'AMPI0904 dhe' . 'PSES1411 dhe'
```

▼ Lista de UF por mês de competência

O controle da ordem de manipulação dos arquivos segundo estado e mês é fundamental na carga.

A função expand.grid é empregada para gerar as combinações de UF, ano e mês que integram o nome dos arquivos a serem manipulados.

```
uf='G0'
aux=as.matrix(expand.grid(uf,ano,mes))
ufaamm=sort(paste0(
   aux[,1],
   aux[,2],
   aux[,3]
ufaamm
      ^{\text{'}}\text{GO1801'} \cdot ^{\text{'}}\text{GO1802'} \cdot ^{\text{'}}\text{GO1803'} \cdot ^{\text{'}}\text{GO1804'} \cdot ^{\text{'}}\text{GO1805'} \cdot ^{\text{'}}\text{GO1806'} \cdot ^{\text{'}}\text{GO1807'} \cdot ^{\text{'}}\text{GO1808'} \cdot ^{\text{'}}
     'GO1809' · 'GO1810' · 'GO1811' · 'GO1812' · 'GO1901' · 'GO1902' · 'GO1903' · 'GO1904' ·
     'GO1905' · 'GO1906' · 'GO1907' · 'GO1908' · 'GO1909' · 'GO1910' · 'GO1911' · 'GO1912'
     'GO2001' . 'GO2002' . 'GO2003' . 'GO2004' . 'GO2005' . 'GO2006' . 'GO2007' . 'GO2008'
```

Enriquecimento do subsistema principal do SIA

O subsistema principal do SIA é chamado de corpo da Autorização de Procedimentos Ambulatoriais (antiga sigla APAC) e são disseminados sob o prefixo PA.

Por meio do número de autorização, em geral, PA_AUTORIZ ou AP_AUTORIZ, é possível completar o arquivo principal.

A tarefa é fundamental para computar o número de usuários com quantidade aprovada de dado procedimento, sobretudo a partir do arquivo de medicamentos de prefixo AM.

Veja o exemplo ilustrado para o primeiro valor no índice do vetor ufaamm.

Processamento dos arquivos PA da mesma UF e mês

Eventualmente arquivos do mês mês que ultrapassam cerca de dois milhões de registros são fragmentados e mais de um arquivo, por exemplo, PASP2301a.dbc, PASP2301b.dbc e PASP2301c.dbc.

Por isso é utilizada a estrutura de repetição for .

aux\$uf_processamento = uf pa=rbind(pa,aux)

} head(pa)

Note que os filtros de CID10 e procedimento SIGTAP são usados logo após a carga para reduzir a ocupação na memória e, portanto, o recurso computacional necessário.

Foram estabelecidos filtros segundo a doença selecionada em PA_CIDPRI %in% cid10 e procedimento em PA_PROC_ID %in% sigtap.

```
Adicionalmente, o vetor de atributos foi aplicado a fim de desprezar os demais.
 c("PA_AUTORIZ", "PA_CMP", "PA_MVM", "PA_CIDPRI", "PA_CIDSEC",
   "PA_PROC_ID", "PA_QTDAPR", "PA_SEXO", "PA_IDADE", "PA_MUNPCN"
    Nota: É recomendável baixar previamente os arquivo DBC para o disco local Assim, basta substituir a linha de comando
     download.file(paste0(url,listadbc_pa[j]), destfile = "arquivo.dbc")
    por
     arquivo=paste0(dirdbc, listadbc_pa[j])
i=1
ufaamm[i]
# filtra apenas arquivos contendo o respectivo UFAAMM
listadbc_pa=subset(
      listadbc.
      grepl(paste0("^PA",ufaamm[i]), listadbc)
listadbc pa
pa=pa estrutura
# incorpora o arquivo PA
    for (j in 1:length(listadbc_pa)) {
      arquivo = "arquivo.dbc"
     download.file(paste0(url,listadbc pa[j]), destfile = arquivo)
      # arquivo=paste0(dirdbc,listadbc_pa[j])
        read.dbc(arquivo)[.c(
          "PA_AUTORIZ", "PA_CMP", "PA_MVM", "PA_CIDPRI", "PA_CIDSEC",
          "PA_PROC_ID", "PA_QTDAPR", "PA_SEXO", "PA_IDADE", "PA_MUNPCN"
        )1.
        PA_CIDPRI %in% cid10 &
          PA_PROC_ID %in% sigtap
      if (nrow(aux)==0) {
      } else {
```

'GO1801' 'PAGO1801.dbc'

A data.frame: 6 × 11

▼ Processamento do arquivo AM por UF e mês

Analogamente ao que ocorreu com o arquivo PA, é processado o arquivo AM.

```
listadbc_am=subset(
      listadbc,
      grepl(paste0("^AM",ufaamm[i]), listadbc)
       for (j in 1:length(listadbc_am)) {
        arquivo = "arquivo.dbc"
        download.file(paste0(url,listadbc_am[j]), destfile = arquivo)
        # arquivo=paste0(dirdbc,listadbc_am[j])
        if (file.exists(arquivo)) {
          aux=subset(
            read.dbc(arquivo)[,c(
              "AP_AUTORIZ", "AP_PRIPAL",
"AP_CIDPRI", "AP_CNSPCN"
            AP_CIDPRI %in% cid10 & AP_PRIPAL %in% sigtap
          am=rbind(am,aux)
head(am)
```

```
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]],
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
ERROR while rich displaying an object: Error in gsub(chr, html_specials[[ch
Traceback:
1. tryCatch(withCallingHandlers({
       if (!mime %in% names(repr::mime2repr))
           stop("No repr * for mimetype ", mime, " in repr::mime2repr")
       rpr <- repr::mime2repr[[mime]](obj)</pre>
       if (is.null(rpr))
           return(NULL)
       prepare_content(is.raw(rpr), rpr)
 . }, error = error_handler), error = outer_handler)
tryCatchList(expr, classes, parentenv, handlers)
3. tryCatchOne(expr, names, parentenv, handlers[[1L]])
doTryCatch(return(expr), name, parentenv, handler)
5. withCallingHandlers({
       if (!mime %in% names(repr::mime2repr))
           stop("No repr * for mimetype ", mime, " in repr::mime2repr")
       rpr <- repr::mime2repr[[mime]](obj)</pre>
       if (is.null(rpr))
          return(NULL)
       prepare_content(is.raw(rpr), rpr)
 . }, error = error_handler)
6. repr::mime2repr[[mime]](obj)
7. repr_markdown.data.frame(obj)
cols = cols, ...)
9. lapply(seq_len(nrow(x)), function(r) {
       row <- escape_fun(slice_row(x, r))</pre>
       cells <- sprintf(cell, row)
       if (has_rownames) {
           row_head <- sprintf(row_head, escape_fun(rownames(x)[[r]]))</pre>
           cells <- c(row_head, cells)</pre>
       sprintf(row_wrap, paste(cells, collapse = ""))
  })
10. FUN(X[[i]], ...)
11. escape_fun(slice_row(x, r))
12. html_escape(values, do_spaces = FALSE)
13. gsub(chr, html_specials[[chr]], text, fixed = TRUE) Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]],
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]],
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
"input string 4 is invalid in this locale"
Warning message in FUN(X[[i]], ...):
```

"input string 4 is invalid in this locale"

Substituição dos caracteres especias do CNS criptografado

A fim de agilizar o processamento, os caracteres especiais do Cartão Nacional de Saúde (CNS) criptografado são substituídos por números.

```
am2=unique(am[,c("AP_AUTORIZ","AP_CNSPCN")])
     am2$AP CNSPCN=
      gsubfn(
        list(
          "{" = "0", "}" = "9", "~" = "5",
          "\177" = "7", "C" = "6", "ä" = "8",
          "ü" = "4", "é" = "1", "|" = "2", "â" = "3"
        iconv(am2$AP_CNSPCN, "CP861", "UTF-8")
head(am2)
```

A data.frame: 6 × 2 AP_AUTORIZ AP_CNSPCN <fct> <chr> **344** 5217203327765 109801621286415 **345** 5217203183050 100405717722145 346 5217203322628 383007002133371 **351** 5218200226162 383009000960458 **352** 5218200062010 383007087503755 **353** 5217202866777 104304919345396 "input string 4 is invalid in this locate

▼ Junção do PA e AM

A junção ocorre segundo código da autorização. Note a incorporação do atributo AP_CNSPCN. Se mais atributos forem necessários basta incorporar ao vetor do arquivo AM.

```
Warning message in FUN(X[[i]], ...):
      paam = merge(
       pa, am2.
       by.x=c("PA_AUTORIZ"),
       by.y=c("AP_AUTORIZ"),
       all.x = TRUE
head(paam)
```

A data frame: 6 x 1

	PA_AUTORIZ	PA_CMP	PA_MVM	PA_CIDPRI	PA_CIDSEC	PA_PROC_ID	PA_QTDAPR
	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<int></int>
1	5217202706364	201801	201801	M45	0000	0604380011	2
2	5217202716407	201801	201801	M45	0000	0604380054	3
3	5217202751365	201801	201801	M45	0000	0604380054	3
4	5217202756403	201801	201801	M45	0000	0604380011	2
5	5217202763003	201801	201801	M45	0000	0604380054	0
6	5217202763400	201801	201801	M45	0000	0604380011	2
√ Wai	ning message	in FUN(X	[[i]]):			+

Veja o código completo para baixar e integrar vários arquivos em

https://github.com/labxss/curso_r/blob/main/dbc2csv_cursoR.R

```
"input string 4 is invalid in this locale"
```

Modelagem de dados para cálculo do impacto orçamentário

Agregação anual para avaliação da quantidade aprovada e número de usuários

A título de exemplo vamos carregar os dados de RR de 2018 a 2022.

A redução deve-se ao grande poder computacional necessário para processar os dados completos do território nacional, disponíveis a partir de 2008. O processamento completo em linguagem R requer um computador com maior capacidade computacional, em geral, 16 a 32GB de RAM e processador comparável ao i7 ou superior.

Para facilitar a análise vamos atribuir uma sigla comum para o mesmo medicamento dotado de diferentes códigos.

```
"input string 4 is invalid in this locale"
options(scipen=999) # para evitar notacao cientifica
\verb|paam_atendimento=read_csv("https://raw.githubusercontent.com/labxss/curso_r/main/csv/sia_pa_RR.csv")|
paam_atendimento$ano=substr(paam_atendimento$PA_CMP,1,4)
head(paam atendimento)
```

```
New names:
       -> `...1`
Rows: 11123 Columns: 13
   Column specification
Delimiter:
chr (6): PA_CIDPRI, PA_CIDSEC, PA_PROC_ID, PA_SEXO, PA_IDADE, uf_processame
dbl (7): ...1, PA_AUTORIZ, PA_CMP, PA_MVM, PA_QTDAPR, PA_MUNPCN, AP_CNSPCN
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this me
```

1	PA_AUTORIZ	PA_CMP	PA_MVM	PA_CIDPRI	PA_CIDSEC	PA_PROC_ID	PA_QT
<fh1></fh1>	<1h1>	< dh1 >	<fh1></fh1>	<chr></chr>	<chr></chr>	<chr></chr>	<1

<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<1
1	1417200234318	201801	201801	M45	0000	0604380038	
2	1417200234550	201801	201801	M45	0000	0604380011	
3	1417200234879	201801	201801	M45	0000	0604380011	
4	1417200235176	201801	201801	M45	0000	0604380011	
5	1417200236727	201801	201801	M45	0000	0604380011	
6	1417200234318	201801	201801	M45	0000	0604380038	
Warning massage in EUM/V[[i]]							

Assinalar uma siga para os diferentes códigos do medicamento.

```
"input string 4 is invalid in this locale"
paam atendimento$medicamento="'
paam atendimento$medicamento[paam atendimento$PA PROC ID == '0601010019'] <- 'ADA'
paam_atendimento$medicamento[paam_atendimento$PA_PROC_ID == '0604380127'] <- 'ADA'</pre>
paam\_atendimento\$pa\_PROC\_ID == \ '0604380097'] <- \ 'ADA' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '0604380097' = \ '060438009
paam_atendimento$medicamento[paam_atendimento$PA_PROC_ID == '0604380011'] <- 'ADA'</pre>
paam_atendimento$medicamento[paam_atendimento$PA_PROC_ID == '0604380135'] <- 'ADA'</pre>
paam\_atendimento\$medicamento[paam\_atendimento\$PA\_PROC\_ID == '0604380070'] <- 'CER' + 'CER' +
paam_atendimento$medicamento[paam_atendimento$PA_PROC_ID == '0601010027'] <- 'ETA25'</pre>
paam_atendimento$medicamento[paam_atendimento$PA_PROC_ID == '0604380020'] <- 'ETA25'</pre>
paam_atendimento$medicamento[paam_atendimento$PA_PROC_ID == '0604380100'] <- 'ETA50'</pre>
paam_atendimento$medicamento[paam_atendimento$PA_PROC_ID == '0604380038'] <- 'ETA50'</pre>
paam\_atendimento\$medicamento[paam\_atendimento\$PA\_PROC\_ID == '0604380089'] <- 'GOL' + 'GOL' +
paam atendimento$medicamento[paam atendimento$PA PROC ID == '0601010035'] <- 'INF'</pre>
paam_atendimento$medicamento[paam_atendimento$PA_PROC_ID == '0604380119'] <- 'INF'</pre>
paam_atendimento$medicamento[paam_atendimento$PA_PROC_ID == '0601010043'] <- 'INF'</pre>
paam\_atendimento\$medicamento[paam\_atendimento\$PA\_PROC\_ID == '0604380046'] <- 'INF' + 10004380046' | - 'INF' + 1000480046' | - 'INF' + 100048006' | - 'INF' + 10006' | - 'INF' + 100060
paam\_atendimento\$medicamento[paam\_atendimento\$PA\_PROC\_ID == '0604380054'] <- 'INF' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '0604380054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '060480054' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005'' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '06048005' = '060480
paam_atendimento$medicamento[paam_atendimento$PA_PROC_ID == '0604690029'] <- 'SEC'</pre>
```

head(paam_atendimento)

PA_AUTORIZ PA_CMP PA_MVM PA_CIDPRI PA_CIDSEC PA_PROC_ID PA_QTI

	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<(
	1	1417200234318	201801	201801	M45	0000	0604380038	
	2	1417200234550	201801	201801	M45	0000	0604380011	
	3	1417200234879	201801	201801	M45	0000	0604380011	
	4	1417200235176	201801	201801	M45	0000	0604380011	
	5	1417200236727	201801	201801	M45	0000	0604380011	
	6	1417200234318	201801	201801	M45	0000	0604380038	
4	(>

Uma vez a tabela carregada na variável paam_atendimento, onde cada linha representa um atendimento, é necessário extrair o ano do mês de competência PA_CMP em função do procedimento SIGTAP PA_PROC_ID, somando a quantidade aprovada PA_QTDAPR e contando o número de usuários distintos AP_CNSPCN.

```
{\tt quantidade=aggregate(}
  PA_QTDAPR ~ ano + medicamento,
  data = paam_atendimento,
  FUN = sum,
 na.rm = TRUE
head(quantidade,20)
```

A data.frame: 16×3 ano medicamento PA_QTDAPR

	<chr></chr>	<chr></chr>	<dbl></dbl>
1	2018	ADA	3358
2	2019	ADA	4227
3	2020	ADA	3356
4	2021	ADA	2812
5	2022	ADA	1514
6	2022	CER	118
7	2018	ETA50	876
8	2019	ETA50	872
9	2020	ETA50	1240
10	2021	ETA50	360
11	2022	ETA50	92
12	2022	GOL	18
13	2019	SEC	299
14	2020	SEC	596
15	2021	SEC	584
16	2022	SEC	114

```
usuarios=aggregate(
··AP_CNSPCN·~·ano·+·medicamento,·
··data·=·paam_atendimento,·
..function(x).length(unique(x))
head(usuarios,20)
```

A data.frame: 16 × 3

ano medicamento AP_CNSPCN

```
paam_anual = merge(
         usuarios, quantidade,
         by.x=c("ano","medicamento"),
by.y=c("ano","medicamento"),
         all.x = TRUE
paam_anual
```

A data.frame: 16×4

ano	medicamento	AP_CNSPCN	PA_QTDAPR
<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>
2018	ADA	5	3358
2018	ETA50	2	876
2019	ADA	10	4227
2019	ETA50	1	872
2019	SEC	1	299
2020	ADA	11	3356
2020	ETA50	1	1240
2020	SEC	1	596
2021	ADA	18	2812
2021	ETA50	1	360
2021	SEC	2	584
2022	ADA	24	1514
2022	CER	1	118
2022	ETA50	1	92
2022	GOL	1	18
2022	SEC	1	114

Agora vamos imputar o valor médio unitário multiplicado pela quantidade aprovada.

Aqui foi utilizada a média ponderada (soma da quantidade todal adquirida)

valor=read_csv("https://raw.githubusercontent.com/labxss/curso_r/main/bps_valor_unitario.csv") valor

```
Rows: 7 Columns: 6
        Column specification
     Delimiter: "
     chr (1): medicamento
     dbl (5): bps2018, bps2019, bps2020, bps2021, bps2022
Agora vamos fazer a junção dos valores atribuídos com os dados de mundo real.
     valor=read\_csv("https://raw.githubusercontent.com/labxss/curso\_r/main/bps\_valor\_unitario\_tranposto.csv") \\
paam_anual_valor = merge(
       paam_anual, valor,
       by.x=c("ano","medicamento"),
       by.y=c("ano","medicamento"),
       all.x = TRUE
      )
# percentual de difusao ao ano do numero de usuarios
paam_anual_valor=transform(paam_anual_valor, usuario_perc = ave(AP_CNSPCN, ano, FUN = prop.table))
paam_anual_valor$usuario_perc=round(paam_anual_valor$usuario_perc*100,1)
# produto entre total aprovado e valor unitario
paam\_anual\_valor\$total=round(paam\_anual\_valor\$PA\_QTDAPR*paam\_anual\_valor\$unidade)
# percentual de difusao ao ano do total
paam_anual_valor=transform(paam_anual_valor, total_perc = ave(total, ano, FUN = prop.table))
paam anual valor$total perc=round(paam anual valor$total perc*100,1)
paam_anual_valor$unidade=round(paam_anual_valor$unidade,2)
paam_anual_valor
     Rows: 35 Columns: 3
     — Column specification 
Delimiter: ","
     chr (1): medicamento
     dbl (2): ano, unidade
     i Use `spec()` to retrieve the full column specification for this data.
     i Specify the column types or set `show_col_types = FALSE` to quiet this me
                                           A data.frame: 16 × 8
        ano medicamento AP_CNSPCN PA_QTDAPR unidade usuario_perc
                                                                               total to
                                            <dbl>
                                                     <dbl>
                                                                     <dbl>
                                                                               <dbl>
      <chr>
                                <int>
                    <chr>
       2018
                      ADA
                                    5
                                             3358
                                                    2532.56
                                                                       71.4
                                                                             8504336
                                    2
       2018
                    FTA50
                                                    1435.36
                                                                             1257375
                                              876
                                                                       28.6
       2019
                      ADA
                                   10
                                             4227
                                                    2555.51
                                                                       83.3 10802141
       2019
                    ETA50
                                    1
                                              872
                                                    1493.86
                                                                       8.3
                                                                             1302646
                      SEC
                                              299
                                                    2366.09
                                                                       8.3
                                                                              707461
       2019
                                    1
       2020
                      ADA
                                    11
                                             3356
                                                    1628.34
                                                                       84.6
                                                                             5464709
       2020
                    ETA50
                                             1240
                                                    1089.86
                                                                        7.7
                                                                             1351426
                                    1
       2020
                      SEC
                                    1
                                              596
                                                    2786.01
                                                                        7.7
                                                                             1660462
       2021
                      ADA
                                   18
                                             2812
                                                     701.16
                                                                       85.7
                                                                             1971662
       2021
                    ETA50
                                              360
                                                     685.86
                                                                        4.8
                                                                              246910
                                    1
       2021
                      SEC
                                    2
                                              584
                                                    3205.94
                                                                        9.5
                                                                             1872269
                                   24
       2022
                      ADA
                                             1514
                                                     507.62
                                                                       85.7
                                                                              768537
       2022
                      CER
                                    1
                                              118
                                                     731.51
                                                                        3.6
                                                                               86318
       2022
                    ETA50
                                    1
                                               92
                                                     410.41
                                                                       3.6
                                                                               37758
       2022
                      GOL
                                    1
                                               18
                                                    2786.35
                                                                        3.6
                                                                               50154
       2022
                      SEC
                                    1
                                              114
                                                    2437.32
                                                                        3.6
                                                                              277854
```

Cálculo da difusão de uso

Vamos explorar visualmente a difusão do percentual de uso com ggplot.

```
if(!require(ggplot2)) {install.packages("ggplot2"); require(ggplot2)} # funcao getURL
```

```
paam_anual_valor,
  aes (
    fill = medicamento,
    y = usuario_perc,
    x = ano.
    label = usuario_perc
  )
) + geom_bar(stat = "identity") +
  xlab('ano') +
  ylab('usuarios (%)') +
  geom\_text(size = 3, position = position\_stack(vjust = 0.5)) +
  coord_flip() +
  theme(
    legend.text = element_text(size = rel(1.3)),
    axis.title.x = element_text(size = rel(1.3)),
    axis.title.y = element_text(size = rel(1.3)),
    axis.text.x = element_text(size = rel(1.3)),
    axis.text.y = element_text(size = rel(1.3))
```



```
ggplot(
 paam_anual_valor,
    fill = medicamento,
    y = total_perc,
    x = ano,
    label = total_perc
) + geom_bar(stat = "identity") +
  xlab('ano') +
  ylab('valor (%)') +
  geom_text(size = 3, position = position_stack(vjust = 0.5)) +
  coord_flip() +
  theme(
    legend.text = element_text(size = rel(1.3)),
    axis.title.x = element_text(size = rel(1.3)),
    axis.title.y = element_text(size = rel(1.3)),
    axis.text.x = element_text(size = rel(1.3)),
    axis.text.y = element_text(size = rel(1.3))
C→
```

head(total,20)

```
paam_mensal_valor = merge(
    paam_atendimento, valor,
    by.x=c("ano","medicamento"),
    by.y=c("ano","medicamento"),
    all.x = TRUE
)

# produto entre total aprovado e valor unitario
paam_mensal_valor$total=round(paam_mensal_valor$PA_QTDAPR*paam_mensal_valor$unidade)

    total=aggregate(
    total ~ PA_CMP + medicamento,
    data = subset(
        paam_mensal_valor,
        medicamento == 'ADA'
    ),
    FUN = sum,
    na.rm = TRUE
)
```

A data.frame: 20 × 3

	PA_CMP	medicamento	total
	<dbl></dbl>	<chr></chr>	<dbl></dbl>
1	201801	ADA	911700
2	201802	ADA	298835
3	201803	ADA	587540
4	201804	ADA	1154820
5	201805	ADA	835725
6	201806	ADA	557150
7	201807	ADA	820530
8	201808	ADA	536890
9	201809	ADA	790140
10	201810	ADA	258315
11	201811	ADA	759750
12	201812	ADA	992740
13	201901	ADA	1226640
14	201902	ADA	480434
15	201903	ADA	705318
16	201904	ADA	1149975
17	201905	ADA	899536
18	201906	ADA	439546
19	201907	ADA	643986
20	201908	ADA	838204

▼ Projeção com ARIMA

Os dados de mundo real obtidos podem ser processados com técnicas de regressão ou séries temporais.

Vamos ilustrar com o método ARIMA.

10/04/2023, 18:03

```
xlab = "",
  ylab = "Total (R$)",
  main = "",
  las = 3,
 xaxt = 'n'
)
axis(1,
     at = 1:(nrow(total)+61),
     labels = 1:(nrow(total)+61),
    las = 3)
arima_data=as.data.frame(arima_data)
colnames(arima_data)=c("previsão","min80","min95","max80","max95")
tail(arima_data,60)
```

xaxt = 'n'

```
A data.frame: 60 × 5
                        min80
                                 min95
                                             max80
                                                        max95
           previsão
                        <dbl>
                                  <dbl>
                                              <dbl>
              <dbl>
                                                        <dbl>
      61
            29811.22 -297012.4 356634.8 -470022.4 529644.8
            29811.22 -312242.4 371864.9
                                          -493314.7
                                                      552937.2
      62
            29811.22 -326822.7 386445.1
                                                      575235.7
      63
                                          -515613.3
            29811.22 -340829.8 400452.3
      64
                                          -537035.3
                                                      596657.8
            29811.22 -354326.5 413949.0
                                          -557676.8
      65
                                                      617299.2
      66
            29811.22 -367364.9 426987.3
                                          -577617.2
                                                      637239.6
      67
            29811.22 -379988.6 439611.0
                                          -596923.5
                                                      656545.9
      68
            29811.22 -392234.9 451857.3
                                           -615652.6
                                                      675275.0
      69
            29811.22 -404135.7 463758.2
                                          -633853.3
                                                      693475.8
            29811.22 -415718.8 475341.2
      70
                                           -651568.1
                                                      711190.5
      71
            29811.22 -427008.2 486630.7
                                           -668833.8
                                                      728456.3
      72
            29811.22 -438025.3 497647.8
                                           -685683.0
                                                      745305.5
      73
            29811.22 -448788.9 508411.3
                                          -702144.5
                                                      761766.9
      74
            29811 22 -459315 6 518938 1 -718243 8
                                                      777866.2
            29811.22 -469620.6 529243.0
      75
                                          -734003.8
                                                      793626.3
      76
            29811.22 -479717.1 539339.6
                                          -749445.2
                                                      809067.6
      77
            29811.22 -489617.5 549239.9
                                          -764586.4
                                                      824208.9
      78
            29811.22 -499332.6 558955.1
                                          -779444.5
                                                      839066.9
            29811.22 -508872.6 568495.0
      79
                                          -794034.6
                                                      853657.0
      80
            29811.22 -518246.5 577869.0
                                          -808370.8
                                                      867993.2
      81
            29811.22 -527462.8 587085.2
                                           -822465.8
                                                      882088.3
      82
            29811.22 -536529.1 596151.5
                                           -836331.6
                                                      895954.0
      83
            29811.22 -545452.5 605075.0
                                           -849978.8
                                                      909601.2
      84
            29811.22 -554239.6 613862.1
                                          -863417.5
                                                      923040.0
            29811.22 -562896.5 622519.0
      85
                                          -876657.0
                                                      936279.5
            29811.22 -571428.7 631051.2
                                          -889705.9
                                                      949328 4
      86
            29811.22 -579841.6 639464.0
      87
                                          -902572.3
                                                      962194.7
      88
            29811.22 -588139.9 647762.3
                                          -915263.4 974885.9
            29811.22 -596328.2 655950.7 -927786.4
      89
                                                     987408.8
      90
            29811.22 -604410.8 664033.3
                                          -940147.7
                                                      999770.2
            29811.22 -612391.7 672014.2 -952353.5 1011975.9
      91
            29811.22 -620274.7 679897.1
      92
                                          -964409.4 1024031.8
      93
            29811.22 -628063.2 687685.6 -976320.8 1035943.3
            20211 22 -635760 5 605323 N -022002 0 1047715 A
usuarios=aggregate(
  AP_CNSPCN ~ PA_CMP + medicamento,
  data = subset(
     paam_atendimento,
     medicamento == 'ADA'
  function(x) length(unique(x))
tail(usuarios,20)
arima_data=forecast(auto.arima(
    usuarios$AP CNSPCN,
    allowmean = TRUE
  ), h = 60)
plot(
  arima data,
  xlab = "".
  ylab = "Usuários",
  main = "",
  las = 3
```

```
axis(1,
     at = 1:(nrow(total)+61),
    labels = 1:(nrow(total)+61),
    las = 3)
arima_data=as.data.frame(arima_data)
colnames(arima_data)=c("previsão","min80","min95","max80","max95")
tail(arima_data,60)
```

Α	data	.frame:	20	×	3

PA_CMP medicamento AP_CNSPCN

	PA_CMP	medicamento	AP_CNSP	LN	
	<dbl></dbl>	<chr></chr>	<in< th=""><th>t></th><th></th></in<>	t>	
41	202105	ADA		9	
42	202106	ADA		9	
43	202107	ADA	;	12	
44	202108	ADA		8	
45	202109	ADA		9	
46	202110	ADA		7	
47	202111	ADA	:	10	
48	202112	ADA		11	
49	202201	ADA		11	
50	202202	ADA	;	13	
51	202203	ADA	:	13	
52	202204	ADA	;	13	
53	202205	ADA	:	10	
54	202206	ADA		9	
55	202207	ADA		11	
56	202208	ADA		8	
57	202209	ADA		9	
58	202210	ADA		9	
59	202211	ADA		11	
60	202212			11 -	
	nrevis	A data.r ão min80	rame: 60 × 5 min95		max95
	•		<dbl></dbl>		<dbl></dbl>
61	10.688	396 8.542094			
62		871 8.579313			
63		846 8.620599			
64		322 8.665479			
65	11.227	797 8.713570	13.74236	7.382529	15.07340
66	11.362	272 8.764550	13.96088	7.389163	15.33627
67	11.497	747 8.818148	14.17679	7.399801	15.59513
68	11.632	222 8.874132	14.39031	7.414089	15.85035
69	11.766	8.932304	14.60164	7.431723	16.10222
70	11.901	172 8.992492	14.81095	7.452439	16.35100
71	12.036	9.054543	15.01840	7.476005	16.59694
72	12.171	9.118325	15.22412	7.502218	16.84023
73	12.305	9.183719	15.42823	7.530898	17.08105
74	12.440	9.250622	15.63083	7.561883	17.31956
75	12.575	9.318937	15.83201	7.595030	17.55592
76	12.710	9.388581	16.03187	7.630208	17.79024
77	12.844	198 9.459477	16.23048	7.667301	18.02265
78	12.979	9.531555	16.42790	7.706203	18.25325
79	13.114	9.604752	16.62420	7.746815	18.48214
80	13.249	9.679010	16.81945	7.789050	18.70941
81	13.383	9.754276	17.01368	7.832827	18.93513
82	13.518	9.830502	17.20696	7.878071	19.15939
83	13.653	9.907641	17.39932	7.924713	19.38225
84	13.788	9.985654	17.59081	7.972690	19.60378

85 13.92298 10.064501 17.78147 8.021943 19.82402

					20.02.02
86	14.05773	10.144146	17.97132	8.072417	20.04305
87	14.19249	10.224556	18.16041	8.124062	20.26091
88	14.32724	10.305701	18.34877	8.176829	20.47764
89	14.46199	10.387551	18.53642	8.230674	20.69330
90	14.59674	10.470079	18.72340	8.285557	20.90792
91	14.73149	10.553259	18.90972	8.341438	21.12154
92	14.86624	10.637069	19.09541	8.398281	21.33420
93	15.00099	10.721485	19.28050	8.456051	21.54593
94	15.13574	10.806485	19.46500	8.514716	21.75677
95	15.27049	10.892052	19.64893	8.574245	21.96674
96	15.40524	10.978164	19.83232	8.634610	22.17588
97	15.53999	11.064805	20.01518	8.695784	22.38420
98	15.67474	11.151958	20.19753	8.757740	22.5%:75 conclusão: 17:59 • x
99	15.80950	11.239607	20.37938	8.820454	22.79854
100	15.94425	11.327736	20.56076	8.883903	23.00459
101	16.07900	11.416332	20.74166	8.948065	23.20993
102	16.21375	11.505379	20.92212	9.012919	23.41458
103	16.34850	11.594867	21.10213	9.078445	23.61855