Devoir surveillé n°12

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – Centrale Maths 2 MP 2017

Ce problème a pour objet la représentation de la loi d'une variable aléatoire comme loi d'une somme de variables aléatoires indépendantes.

On s'intéresse d'abord au cas d'une somme de deux variables à valeurs entières, puis au cas de variables aléatoires dont la loi est celle de la somme d'un nombre quelconque de variables indépendantes de même loi.

Notations

Toutes les variables aléatoires considérées dans ce problème sont discrètes. On note \mathbb{P}_X la loi d'une variable aléatoire X.

Si X et X' sont deux variables aléatoires définies sur les espaces probabilisés respectifs $(\Omega, \mathcal{A}, \mathbb{P})$ et $(\Omega', \mathcal{A}', \mathbb{P}')$, la notation X \sim X' signifie que X et X' ont même loi, c'est à dire que $\mathbb{P}_X = \mathbb{P}_{X'}$.

Pour toute variable aléatoire X à valeurs dans \mathbb{N} on note G_X sa fonction génératrice, définie, pour $t \in \mathbb{R}$, par

$$G_{\mathbf{X}}(t) = \sum_{n=0}^{\infty} \mathbb{P}(\mathbf{X} = n)t^n$$

lorsque la série converge.

On pourra si nécessaire utiliser librement le résultat suivant.

Si $m \in \mathbb{N}^*$ et si \mathcal{L} est une loi de probabilité sur un espace probabilisé Ω , alors il existe des variables aléatoires X_1, \ldots, X_m définies sur un espace probabilisé Ω_m , mutuellement indépendantes et de loi \mathcal{L} .

Si a et b sont deux entiers tels que $a \le b$, on désigne par [a, b] l'ensemble des entiers k tels que $a \le k \le b$.

I Variables aléatoires entières décomposables

Soit X une variable aléatoire à valeurs dans \mathbb{N} . On appelle *décomposition* de X toute relation de la forme $X \sim Y + Z$ où Y et Z sont deux variables aléatoires indépendantes à valeurs dans \mathbb{N} , définies sur un espace probabilisé pouvant être distinct de celui sur lequel X est définie.

On dit que X est *décomposable* si X admet une décomposition où Y et Z ne sont pas constantes presque sûrement.

I.A Premiers exemples

Soit X et X' deux variables aléatoires à valeurs dans \mathbb{N} . justifier que $X \sim X'$ si et seulement si $G_X = G_{X'}$.

- Soit X une variable aléatoire à valeurs dans \mathbb{N} admettant une décomposition $X \sim Y + Z$, où Y et Z sont des variables aléatoires indépendantes à valeurs dans \mathbb{N} . Quelle relation lie G_X , G_Y et G_Z ?
- 3 Soit X une variable aléatoire suivant la loi binomiale $\mathcal{B}(n,p)$ où $n \geq 1$ et $p \in]0,1[$. Montrer que X est décomposable si et seulement si $n \geq 2$.
- Soit $A(T) \in \mathbb{R}[T]$ le polynôme : $A(T) = T^4 + 2T + 1$.
 - **4.a** Soit U(T) et V(T) deux polynômes à coefficients réels positifs ou nuls tels que U(T)V(T) = A(T). Montrer que l'un des polynômes U(T) ou V(T) est constant. On pourra distinguer les cas selon les valeurs des degrés de U(T) et V(T).
 - **4.b** En déduire qu'il existe une variable aléatoire décomposable X telle que X^2 ne soit pas décomposable. On pourra considérer le polynôme $\frac{1}{4}A(T)$.

I.B Variables uniformes

Dans cette sous-partie, n est un entier naturel supérieur ou égal à 2 et X est une variable aléatoire à valeurs dans \mathbb{N} , définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et suivant la loi uniforme sur [0, n-1]:

$$\mathbb{P}(X = k) = \begin{cases} \frac{1}{n} & \text{si } k \in \llbracket 0, n - 1 \rrbracket \\ 0 & \text{sinon} \end{cases}$$

- **Variables uniformes décomposables** On suppose dans cette question que n n'est pas premier : il existe des entiers a et b, supérieurs ou égaux à 2, tels que n = ab.
 - **5.a** Montrer qu'il existe un unique couple de variables aléatoires entières (Q, R) définies sur Ω telles que

$$X = aQ + R$$
 et $\forall \omega \in \Omega$, $R(\omega) \in [0, a-1]$

On pourra considérer une division euclidienne.

- **5.b** Préciser la loi de (Q, R), puis les lois de Q et de R.
- **5.c** Montrer que X est décomposable. En déduire une expression de G_X comme produit de deux polynômes non constants que l'on précisera.

6 Variables uniformes non décomposables

On suppose dans cette question que *n* est un nombre premier et on établit que X n'est pas décomposable.

6.a Montrer qu'il suffit de prouver le résultat suivant : si U et V sont des polynômes de $\mathbb{R}[T]$ unitaires et à coefficients dans \mathbb{R}_+ tels que $U(T)V(T) = 1 + T + \cdots + T^{n-1}$, alors l'un des deux polynômes U ou V est constant.

Dans ce qui suit, on fixe des polynômes U et V de $\mathbb{R}[T]$ unitaires à coefficients dans \mathbb{R}_+ tels que

$$U(T)V(T) = 1 + T + \cdots + T^{n-1}$$

On pose $r = \deg(U)$ et $s = \deg(V)$ et on suppose par l'absurde que r et s sont non nuls.

6.b Montrer que $U(T) = T^r U\left(\frac{1}{T}\right)$ et $V(T) = T^s V\left(\frac{1}{T}\right)$.

On note alors $U(T) = 1 + u_1T + \cdots + u_{r-1}T^{r-1} + T^r$ et $V(T) = 1 + v_1T + \cdots + v_{s-1}T^{s-1} + T^s$ avec $r \le s$ (quitte à échanger les rôles de U et V).

- **6.c** Montrer que $\forall k \in [1, r]$, $u_k v_k = 0$.
- **6.d** En déduire que $\forall k \in [1, r]$, $u_k \in \{0, 1\}$ et $v_k \in \{0, 1\}$.
- **6.e** Conclure.

On pourra d'abord montrer que tous les coefficients de V sont à valeurs dans {0,1}.

II Variables infiniment divisibles : exemples

Soit X une variable aléatoire discrète à valeurs dans \mathbb{R} . On dit que X est *infiniment divisible* si, pour tout $m \in \mathbb{N}^*$, il existe des variables aléatoires réelles discrètes $X_{m,1}, \ldots, X_{m,m}$ mutuellement indépendantes, de même loi, et vérifiant $X \sim X_{m,1} + \cdots + X_{m,m}$. Dans cette définition, l'espace probabilisé Ω_m sur lequel sont définies les $X_{m,i}$ peut dépendre de m.

II.A Variables bornées

7 On suppose que X est constante égale à $a \in \mathbb{R}$. Montrer que X est infiniment divisible.

L'objectif de cette sous-partie est de montrer que toute variable aléatoire bornée infiniment divisible est presque sûrement constante.

Soit X une variable aléatoire bornée infiniment divisible définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On note $M = \sup_{\Omega} |X|$, de sorte que $|X(\omega)| \leq M$ pour tout $\omega \in \Omega$.

- Soit $n \in \mathbb{N}^*$ et soient X_1, \dots, X_n des variables aléatoires indépendantes et de même loi, et telles que $X_1 + \dots + X_n$ ait même loi que X.
 - **8.a** Pour tout $i \in [1, n]$, montrer que $X_i \le \frac{M}{n}$ presque sûrement, puis $|X_i| \le \frac{M}{n}$ presque sûrement.
 - **8.b** En déduire que $\mathbb{V}(X) \leq \frac{M^2}{n}$ où $\mathbb{V}(X)$ désigne la variance de X.
- 9 Conclure que X est presque sûrement constante.

II.B Etude du caractère infiniment divisible de quelques variables entières

- 10 Une variable binomiale est-elle infiniment divisible?
- Soit n un entier naturel non nul et soit X_1, \ldots, X_n des variables aléatoires mutuellement indépendantes suivant des lois de Poisson de paramètres respectifs $\lambda_1, \ldots, \lambda_n$. Montrer que $X_1 + \cdots + X_n$ suit une loi de Poisson de paramètre $\lambda_1 + \cdots + \lambda_n$.
- 12 Soit X une variable aléatoire de Poisson. Montrer que X est infiniment divisible.
- Soit r un entier naturel non nul et soit X_1, \dots, X_r des variables aléatoires de Poisson mutuellement indépendantes. Montrer que $\sum_{i=1}^{r} iX_i$ est une variable aléatoire infiniment divisible.

II.C Séries de variables aléatoires à valeurs entières

- **14** Soit X et Y deux variables aléatoires définies sur $(\Omega, \mathcal{A}, \mathbb{P})$ et à valeurs dans \mathbb{N} .
 - **14.a** Montrer que si A et B sont des événements de A, et si \overline{A} et \overline{B} sont leurs événements contraires respectifs, alors

$$|\mathbb{P}(A) - \mathbb{P}(B)| \le \mathbb{P}(A \cap \overline{B}) + \mathbb{P}(\overline{A} \cap B)$$

- **14.b** En déduire que, pour tout $t \in [-1, 1]$, $|G_X(t) G_Y(t)| \le 2\mathbb{P}(X \ne Y)$.
- Soit $(U_i)_{i\in\mathbb{N}^*}$ une suite de variables aléatoires mutuellement indépendantes à valeurs dans \mathbb{N} telle que la série des $\mathbb{P}(U_i \neq 0)$ soit convergente.
 - **15.a** Soit $Z_n = \{\omega \in \Omega \mid \exists i \geq n, \ U_i(\omega) \neq 0\}$. Montrer que (Z_n) est une suite décroissante d'événements et que $\lim_{n \to \infty} \mathbb{P}(Z_n) = 0$.
 - **15.b** En déduire que l'ensemble $\{i \in \mathbb{N}^* \mid U_i \neq 0\}$ est presque sûrement fini.

- **15.c** On pose $S_n = \sum_{i=1}^n U_i$ et $S = \sum_{i=1}^\infty U_i$. Justifier que S est définie presque sûrement. Montrer que G_{S_n} converge uniformément vers G_S sur [-1,1].
- Soit $(\lambda_i)_{i\in\mathbb{N}^*}$ une suite de réels positifs ou nuls. On suppose que la série $\sum \lambda_i$ est convergente, et on note $\lambda = \sum_{i=1}^{\infty} \lambda_i$.

Soit $(X_i)_{i\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes telles que, pour tout i, X_i suive une loi de Poisson de paramètre λ_i . On convient que, si $\lambda_i = 0$, X_i est la variable aléatoire nulle.

- **16.a** Montrer que la série $\sum \mathbb{P}(X_i \neq 0)$ est convergente.
- **16.b** Montrer que la série $\sum_{i\geq 1} X_i$ est presque sûrement convergente et que sa somme (définie presque sûrement) suit une loi de Poisson de paramètre λ .
- **16.c** Montrer que la série $\sum_{i\geq 1} iX_i$ est presque sûrement convergente et que sa somme $X=\sum_{i=1}^{\infty} iX_i$ définit une variable aléatoire infiniment divisible.

III Variables entières infiniment divisibles : étude générale

III.A Série entière auxiliaire

Dans cette sous-partie, X est une variable aléatoire à valeurs dans \mathbb{N} telle que $\mathbb{P}(X=0) > 0$.

17 Montrer qu'il existe une unique suite réelle $(\lambda_i)_{i\in\mathbb{N}^*}$ telle que, pour tout $k\in\mathbb{N}^*$

$$k\mathbb{P}(X = k) = \sum_{j=1}^{k} j\lambda_{j}\mathbb{P}(X = k - j)$$

18 Pour tout $k \in \mathbb{N}^*$, montrer

$$|\lambda_k| \mathbb{P}(X = 0) \le \mathbb{P}(X = k) + \sum_{j=1}^{k-1} |\lambda_j| \mathbb{P}(X = k - j) \le (1 - \mathbb{P}(X = 0)) \left(1 + \sum_{j=1}^{k-1} |\lambda_j|\right)$$

- 19 Pour tout $k \in \mathbb{N}^*$, montrer : $1 + \sum_{j=1}^k |\lambda_j| \le \frac{1}{\mathbb{P}(X=0)^k}$.
- Montrer que la série entière $\sum \lambda_k t^k$ a un rayon de convergence $\rho(X)$ supérieur ou égal à $\mathbb{P}(X=0)$.

Pour tout réel t de] – $\rho(X)$, $\rho(X)$ [, on pose

$$H_{\mathbf{X}}(t) = \ln \left(\mathbb{P}(\mathbf{X} = 0) \right) + \sum_{k=1}^{\infty} \lambda_k t^k$$

A toute variable aléatoire X à valeurs dans \mathbb{N} et telle que $\mathbb{P}(X=0) > 0$, on associe ainsi une série entière H_X . Dans la suite du problème, H_X sera appelée *série entière auxiliaire* de X.

- On pose $\sigma(X) = \min(1, \rho(X))$. Pour $t \in]-\sigma(X), \sigma(X)[$, montrer $G_X'(t) = H_X'(t)G_X(t)$, puis $G_X(t) = \exp(H_X(t))$.
- Soient X et Y deux variables aléatoires indépendantes, définies sur l'espace Ω et à valeurs dans \mathbb{N} , et soit H_X et H_Y leurs séries entières auxiliaires. Montrer $H_{X+Y}(t) = H_X(t) + H_Y(t)$ pour tout réel t vérifiant $|t| < \min(\sigma(X), \sigma(Y))$.

III.B Variables aléatoires entières λ -positives

Soit X une variable aléatoire à valeurs dans $\mathbb N$ telle que $\mathbb P(X=0)>0$, et soit H_X sa série entière auxiliaire :

$$H_{\mathbf{X}}(t) = \ln \left(\mathbb{P}(\mathbf{X} = 0) \right) + \sum_{k=1}^{\infty} \lambda_k t^k$$

On dira que X est λ -positive si $\lambda_k \ge 0$ pour tout $k \ge 1$.

On suppose dans cette sous-partie que X est λ -positive.

- Pour tout $k \in \mathbb{N}^*$, montrer que $\lambda_k \leq \frac{\mathbb{P}(X = k)}{\mathbb{P}(X = 0)}$. En déduire que la série $\sum \lambda_k$ converge.
- **24** Montrer que, pour tout $t \in [-1, 1]$, $G_X(t) = \exp(H_X(t))$ et que $\sum_{k=1}^{\infty} \lambda_k = -\ln(\mathbb{P}(X=0))$.
- **25** Soit (X_i) la suite de variables aléatoires définie au **16**. Montrer que $X \sim \sum_{i=1}^{\infty} iX_i$.

III.C Caractérisation des variables entières infiniment divisibles

Soit X une variable aléatoire infiniment divisible à valeurs dans \mathbb{N} et vérifiant $\mathbb{P}(X = 0) > 0$. Le but de cette sous-partie est de montrer que les trois assertions suivantes sont équivalentes.

- (i) X est infiniment divisible;
- (ii) X est λ -positive;
- (iii) il existe une suite $(X_i)_{i\geq 1}$ de variables de Poisson indépendantes, comme au **16**, telle que $X \sim \sum_{i=1}^{\infty} iX_i$.

Dans les questions 26 à 29, on suppose que X est une variable aléatoire infiniment divisible à valeurs dans \mathbb{N} et telle que $\mathbb{P}(X=0)>0$. Pour tout $n\in\mathbb{N}^*$, il existe donc n variables aléatoires indépendantes $X_{n,1},\ldots,X_{n,n}$ de même loi telles que la variable aléatoire $X_{n,1}+\cdots+X_{n,n}$ suive la loi de X.

- **26.a** Pour tout $n \in \mathbb{N}^*$, montrer que $X_{n,1}$ est presque sûrement positive ou nulle.
 - **26.b** Pour tout $n \in \mathbb{N}^*$, montrer que $\mathbb{P}(X_{n,1} = 0) > 0$.
 - **26.c** Montrer que les variables aléatoires $X_{n,i}$ sont presque sûrement à valeurs dans \mathbb{N} .
- **27.a** Montrer $\lim_{n \to \infty} \mathbb{P}(X_{n,1} = 0) = 1.$
 - **27.b** En déduire que, pour tout $i \in \mathbb{N}^*$, $\lim_{n \to \infty} \mathbb{P}(X_{n,1} = i) = 0$.
- Soit H_X la série entière auxiliaire de X, comme elle est définie à la question 20, et soit $\rho(X)$ son rayon de convergence.

Pour tout $n \in \mathbb{N}^*$, soit H_n la série entière auxiliaire de $X_{n,1}$.

- **28.a** Pour tout $n \in \mathbb{N}^*$, montrer $nH_n = H_X$.
- **28.b** En déduire, pour tous n et k dans \mathbb{N}^*

$$kn\mathbb{P}\left(\mathbf{X}_{n,1}=k\right)=\sum_{j=1}^{k}j\lambda_{j}\mathbb{P}\left(\mathbf{X}_{n,1}=k-j\right)$$

Pour tout $k \in \mathbb{N}^*$, montrer que la suite $(n\mathbb{P}(X_{n,1} = k))_{n \in \mathbb{N}^*}$ converge vers λ_k . En déduire que X est λ -positive.

30 Conclusion

30.a Montrer le résultat annoncé au début de cette sous-partie III.C.

30.b Comment adapter ce résultat aux variables aléatoires à valeurs dans \mathbb{N}^* ?

30.c Soit X une variable aléatoire suivant la loi géométrique $\mathcal{G}(p)$, où $p \in]0,1[$:

$$\forall k \in \mathbb{N}^*, \ \mathbb{P}(X = k) = (1 - p)^{k - 1} p$$

La variable aléatoire X est-elle infiniment divisible?