Convex Optimization

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Fall 2014

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- Convexity
 - Convex Sets
 - Convex Functions
- Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- 4 Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- Duality
 - Weak Duality
 - Strong Duality

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- Convexity
 - Convex Sets
 - Convex Functions
- Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- 4 Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- Duality
 - Weak Duality
 - Strong Duality

Functional Form

• An *optimization problem* is to minimize an *objective* (or cost) function $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $\mathbf{x} \in C$

where $C \subseteq \mathbb{R}^n$ is called the **feasible set** containing **feasible points** (or variables)

- ullet If $C=\mathbb{R}^n$, we say the optimization problem is unconstrained
- Maximizing f equals to minimizing -f
- C can be a set of function constrains, i.e., $C = \{x : g_i(x) \leq 0, i = 1, \dots, m\}$
 - Sometimes, we single out equality constrains $C = \{x : g_i(x) \leq 0, h_i(x) = 0, i = 1, \dots, m, j = 1, \dots, p\}$
 - Each equality constrain can be written as two inequality constrains

Epigraph form

• We can always assume that the objective is a linear function of the variables, via the epigraph $(epi(f) := \{(x,t) \in \mathbb{R}^{n+1} : x \in \mathbb{R}^n, t \geqslant f(x)\})$ representation of the problem

$$\min_{\pmb{x},t} t$$
 subject to $f(\pmb{x}) - t \leqslant 0, \pmb{x} \in C$

- The objective function is $A: \mathbb{R}^{n+1} \to \mathbb{R}$, with values A(x,t) = t
- Consider the t-sublevel set of $\{ (i.e., \{x: t \geqslant f(x)\}) \}$, the problem amounts to finding the smallest t for which the corresponding sub-level set intersects the set of points satisfying the constraints

Geometric View

Functional form:

$$\begin{aligned} & \min_{\pmb{x}} 0.9x_1^2 - 0.4x_1x_2 - 0.6x_2^2 - 6.4x_1 - 0.8x_2 : -1 \leqslant x_1 \leqslant 2, 0 \leqslant x_2 \leqslant 3 \\ & \text{Epigraph form:} \\ & \min_{\pmb{x},t} t : t \geqslant 0.9x_1^2 - 0.4x_1x_2 - 0.6x_2^2 - 6.4x_1 - 0.8x_2, -1 \leqslant x_1 \leqslant 2, 0 \leqslant x_2 \leqslant 3 \end{aligned}$$

The level sets of the objective function are shown as blue lines, and the feasible set is the light-blue box. The problem amounts to find the smallest value of t such that t = f(x) for some feasible x. The two dots are the unconstrained and constrained optimal values respectively

Terminology (1)

- $p^* := \inf_{\mathbf{x}} f(\mathbf{x}) : \mathbf{x} \in C$ is called the **optimal value**, which
 - may not exist if the problem is infeasible
 - may not be attained (e.g., in $\min_x e^{-x}$, $p^*=0$ is attained only when $x\to\infty$)
- We allow p^* to take on the values ∞ and $-\infty$ when the problem is either
 - infeasible (the feasible set is empty), or
 - ullet unbounded below (there exists feasible points such that $f({m x}) o -\infty$), respectively
- A feasible point x^* is called the **optimal point** if $f(x^*) = p^*$
- The *optimal set* X^* is the set of all optimal points, i.e., $X^* := \{x \in C : f(x) = p^*\} = \arg\min_x f(x) : x \in C$
- We say the problem is *attained* iff $C \neq \emptyset$ and p^* is attained (or equivalently, $X^* \neq \emptyset$)

Terminology (2)

• The ϵ -suboptimal set X^{ϵ} is defined as $X^{\epsilon} := \{x \in \mathcal{C} : f(x) \leqslant p^* + \epsilon\}$

An ϵ -suboptimal set is marked in darker color. This corresponds to the set of feasible points that achieves an objective value less or equal than $p^* + \epsilon$

In practice, we may be only interested in suboptimal solutions

Local vs. Global Optimality

• A point z is *locally optimal* if there is a value $\delta > 0$ such that z is optimal for problem (with new objective $\widetilde{f}(x,z) = f(x)$)

$$\min_{\mathbf{x}} f(\mathbf{x}) : \mathbf{z}, \mathbf{x} \in C, \|\mathbf{x} - \mathbf{z}\| \leqslant \delta$$

 That is, a local minimizer minimizes f, but only for its nearby points in the feasible set

Minima of a nonlinear function. The value at a local minimizer is not necessarily the (global) optimal value of the problem, unless f is a "convex" function (in the sense that epi(f) is a "convex" set)

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- Convexity
 - Convex Sets
 - Convex Functions
- Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- 4 Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- Duality
 - Weak Duality
 - Strong Duality

Linear Programming

• Linear Programming (LP) has the form:1

$$\mathsf{min}_{x} \, c^{ op} x$$
 subject to $Gx \leqslant h, Ax = b$

where $c \in \mathbb{R}^n$, $G \in \mathbb{R}^{m \times n}$, $h \in \mathbb{R}^m$, $A \in \mathbb{R}^{p \times n}$, and $b \in \mathbb{R}^p$

- The objective and the m+p constrain functions are **all affine** (i.e., translated linear)
 - Note $\min_{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x} + d$ for some fixed $d \in \mathbb{R}$ amounts to $\min_{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x}$

¹The term "programming" has nothing to do with computer programs. It is named so due to historical reasons.

Quadratic Programming

• Quadratic Programming (QP) has the form:

$$\min_{\pmb{x}} \pmb{x}^{ op} \pmb{Q} \pmb{x} + \pmb{c}^{ op} \pmb{x}$$
 subject to $\pmb{G} \pmb{x} \leqslant \pmb{h}, \pmb{A} \pmb{x} = \pmb{b}$

where
$$Q \in \mathbb{R}^{n \times n}$$
, $c \in \mathbb{R}^n$, $G \in \mathbb{R}^{m \times n}$, $h \in \mathbb{R}^m$, $A \in \mathbb{R}^{p \times n}$, and $b \in \mathbb{R}^p$

• The objective is a quadratic function, and the m+p constrain functions are affine

Convex Optimization

A convex optimization problem is of the form:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $\mathbf{x} \in C$

where f is a convex function, and C is a convex set

In particular, with constrains

$$C = \{x : g_i(x) \leq 0, h_j(x) = 0, i = 1, \dots, m, j = 1, \dots, p\}$$

- gi must be convex functions
- h_j must be **affine** functions (since h_j can be expressed as two g's, the only way to make both g's convex is by letting h_j affine)
- ullet Includes LP, QP with positive semidefinite $oldsymbol{Q}$, and more

Combinatorial Optimization

- In combinatorial optimization, some (or all) the variables are Boolean or integers, reflecting discrete choices to be made
 - E.g., Let $\pmb{A} \in \mathbb{R}^{m \times n}$ be an incidence matrix of a directed graph where $A_{i,j}$ equals to 1 if the arc j starts at node i; -1 if j ends at i; 0 otherwise. The problem of finding the shortest path between nodes 1 and m can be expressed as

$$\min_{\mathbf{x}} \mathbf{1}^{\top} \mathbf{x} : \mathbf{A} \mathbf{x} = [1, 0, \dots, 0, -1]^{\top}, \mathbf{x} \in \{0, 1\}^n$$

- E.g., the traveling salesman problem
- Generally, extremely hard to solve
- However, they can often be approximately solved with linear or convex programming
 - E.g., the LP-*relaxed* single-pair shortest path problem:

$$\min_{\mathbf{x}} \mathbf{1}^{\top} \mathbf{x} : \mathbf{A} \mathbf{x} = [1, 0, \cdots, 0, -1]^{\top}, \mathbf{0} \leqslant \mathbf{x} \in \mathbb{R}^{n} \leqslant \mathbf{1}$$

Hard vs. Easy Problems

- We say a problem is hard if cannot be solved in a reasonable amount of time and/or memory space
- Roughly speaking, convex problems are easy; non-convex ones are hard
- Of course, not all convex problems are easy, but a (reasonably large) subset
 - ullet E.g., LP and QP with positive semidefinite $oldsymbol{Q}$
- Conversely, some non-convex problems are actually easy
 - E.g., the LP-relaxed single-pair shortest path problem has optimal points turn out to be Boolean, so these points are also optimal to the original problem

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- Convexity
 - Convex Sets
 - Convex Functions
- 3 Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- 4 Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- Duality
 - Weak Duality
 - Strong Duality

Convex Sets

Definition (Convex Set)

A set C of points is **convex** iff for any $x, y \in C$ and $\theta \in [0, 1]$, we have $(1-\theta)x + \theta y \in C$.

- The point $(1-\theta)x + \theta y$ is called the *convex* combination of points x and y
- Non-convex set:
- Any convex set you know?

橢圓(內)、凸多邊形(內)、 拋物線(焦點所在的半平面)...

Convex Sets

Definition (Convex Set)

A set C of points is **convex** iff for any $x, y \in C$ and $\theta \in [0, 1]$, we have $(1-\theta)x + \theta y \in C$.

- The point $(1-\theta)x + \theta y$ is called the *convex* combination of points x and y
- Non-convex set:
- Any convex set you know? \mathbb{R}^n , non-negative orthant \mathbb{R}^n_+ , \emptyset , $\{x\}$, line segments, etc.

- A set is said to be a *convex cone* if it is convex, and has the property that if $x \in C$, then $\theta x \in C$ for every $\theta \ge 0$
 - E.g., \mathbb{R}^n , \mathbb{R}^n_+ , union of scalings of a convex set (must contains $\mathbf{0}$)

More Examples

- Subspaces and affine subspaces such as lines, hyperplanes, and higher-dimensional "flat" sets
- Half-spaces, linear varieties (polyhedra, intersections of half-spaces)
- The convex hulls of a set of points {x₁,...,x_m} is a convex set: 將某集合中所有點包起來的 問長/表面積/...最小的形狀

$$Co(\mathbf{x}_1, \dots, \mathbf{x}_m) := \left\{ \sum_{i=1}^m \theta_i \mathbf{x}_i : \theta_i \geqslant 0, \forall i, \sum_{i=1}^m \theta_i = 1 \right\}$$

- Norm balls: $N = \{x : ||x|| \le 1\}$, where $||\cdot||$ is some norm on \mathbb{R}^n
 - As for any $x, y \in N$, $\|(1-\theta)x + \theta y\| \le \|(1-\theta)x\| + \|\theta y\| = (1-\theta)\|x\| + \theta\|y\| \le 1$
- The set of all (symmetric) positive semidefinite matrices, denoted by $\mathbb{S}^n_+ \subset \mathbb{R}^{n \times n}$, is a convex cone
 - For any $A, B \in \mathbb{S}^n_+$ and $x \in \mathbb{R}^n$, $x^\top ((1-\theta)A + \theta B)x = x^\top (1-\theta)Ax + x^\top \theta Bx \geqslant 0$

Operations That Preserve Convexity

- Given a convex set C_1 , $C_2 \subseteq \mathbb{R}^n$,
 - Scaling: $\beta C = \{\beta x : x \in C\}$ is convex for any $\beta \in \mathbb{R}$
 - Sum: $C_1 + C_2 = \{x_1 + x_2 : x_1 \in C_1, x_2 \in C_2\}$ is convex
 - Augmentation: $\{(x_1, x_2) : x_1 \in C_1, x_2 \in C_2\} \subseteq \mathbb{R}^{2n}$ is convex
 - *Intersection:* $C_1 \cap C_2$ is convex [Homework]
- Affine transformation: if a map $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine, and C is convex, then the set

$$f(C) := \{f(\mathbf{x}) : \mathbf{x} \in C\}$$

is convex [Proof]

• In particular, the projection of a convex set on a subspace is convex

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- 2 Convexity
 - Convex Sets
 - Convex Functions
 - 3 Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- Duality
 - Weak Duality
 - Strong Duality

Convex Functions

Definition (Convex Function)

A function $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ is **convex** iff a) \mathcal{D} is convex; and b) for any $x, y \in \mathcal{D}$ and $\theta \in [0, 1]$, we have $f((1-\theta)x + \theta y) \leq (1-\theta)f(x) + \theta f y$

- We say that a function f is
- function f 是 convex function iff epi (f) 是 convex set

 \bullet Condition a) is necessary (what if \mathcal{D} is

epigraph $epi(f) := \{(x, t) \in \mathbb{R}^{n+1} : x \in \mathbb{R}^n\}$

union of two line segments?) • Alternatively, f is convex iff its

 \mathbb{R}^n , $t \ge f(x)$ is convex

- strictly convex if $f((1-\theta)x+\theta y) < (1-\theta)f(x)+\theta f y$ for $x \neq y$
- concave if -f is convex

More Alternate Definitions

• First-order condition: if $f \in \mathbb{C}^1$ is differentiable (that is, \mathcal{D} is open and the gradient exists everywhere on \mathcal{D}), then f is convex iff for any x and y, $f(y) \geqslant f(x) + \nabla f(x)^{\top}(y-x)$

- I.e., the graph of f is bounded below everywhere by anyone of its tangent planes
- Restriction to a line: f is convex iff its restriction to any line is convex, i.e., for every x_0 , $v \in \mathbb{R}^n$, the function $g(t) := f(x_0 + tv)$ is convex when $x_0 + tv \in \mathcal{D}$
- Second-order condition: If f is twice differentiable, then it is convex iff its Hessian $\nabla^2 f$ is positive semidefinite everywhere on \mathcal{D} ; i.e., for any $\mathbf{x} \in \mathcal{D}$, $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$

Examples

- $f(x) = e^{ax}$ for $a \in \mathbb{R}$, f(x) = |x|, $f(x) = -\log x$ on \mathbb{R}_{++} (strict positive real numbers), negative entropy $f(x) = x \log x$ on \mathbb{R}_{++}
- Affine functions f(x) = Ax + b
- Quadratic functions $f(x) = x^{T}Ax + bx + c$ with positive semidefinite A
- Function $\lambda_{\max}(\boldsymbol{X})$ that maps an $n \times n$ symmetric matrix \boldsymbol{X} to it maximum eigenvalue λ_{\max}
 - Since the condition $\lambda_{\max}(\boldsymbol{X}) \leqslant t$ is equivalent to the condition that $t\boldsymbol{I} \boldsymbol{X} \in \mathbb{S}^n_+$, the epigraph is convex
- Norms
 - As $||(1-\theta)x + \theta y|| \le ||(1-\theta)x|| + ||\theta y|| = (1-\theta)||x|| + \theta||y||$
- Log-sum-exp $f(x) = \log \sum_{i} e^{x_i}$ (a smooth approximation to $f(x) = \max\{x_i\}$)

Convexity of Sublevel Sets

• Convex functions give rise to a particularly important type of convex set, the *t*-sublevel set:

Theorem

Given a convex function $f: \mathbb{D} \to \mathbb{R}$ and $t \in \mathbb{R}$. The t-sublevel set (i.e., $\{x \in \mathbb{D}: f(x) \leqslant t\}$ is Convex.

Proof.

[Homework]

- Consider a inequality constrain $g \leqslant 0$ in a convex optimization problem, if g is a convex function, then it defines a convex feasible set, the 0-sublevel set
 - When there are multiple inequality constrains, the final feasible set is the intersection of multiple convex sets, which is still convex

Operations That Preserve Convexity (1)

- Composition with an affine function: if A in $\mathbb{R}^{m \times n}$, b in \mathbb{R}^m and $f: \mathbb{R}^m \to \mathbb{R}$ is convex, then the function $g: \mathbb{R}^n \to \mathbb{R}$ with values g(x) = f(Ax + b) is convex
- **Point-wise maximum**: the pointwise maximum of a family of convex functions is convex—if $\{f_i\}_{i\in\mathcal{A}}$ is a family of convex functions, then the function $f(\mathbf{x}) := \max_{i\in\mathcal{A}} f_i(\mathbf{x})$ is convex
 - E.g., $f(x) = \max\{x_i\}$, induced matrix norm $\|A\| = \max_{x:\|x\|=1} \|Ax\|$ is convex
 - Extension: $\sup_{y \in \mathcal{A}} f(x, y)$ is convex if for each $y \in \mathcal{A}$, f(x, y) is convex in x
- Nonnegative weighted sum of convex functions is convex
 - E.g., entropy $f(\mathbf{x}) = -\sum_{i=1}^{n} x_i \log x_i$ for a distribution $\mathbf{x} \in [0,1]^n$ and $\mathbf{1}^{\top} \mathbf{x} = 1$ is concave
- Partial minimum: If f is a convex function in (y,z), then the function $g(y) := \min_{z} f(y,z)$ is convex
 - Note that joint convexity in (y, z) is essential

Operations That Preserve Convexity (2)

- Composition with monotone convex functions: if $f(x) = h(g_1(x), \dots, g_k(x))$, with $g_i : \mathbb{R}^n \to \mathbb{R}$ convex, $h : \mathbb{R}^k \to \mathbb{R}$ convex and non-decreasing in each variable, then f is convex
 - For simplicity, assume k=1 and $h,g\in \mathbb{C}^2$. The above conditions ensure that $\nabla^2 g_1(x)\in \mathbb{R}^{n\times n}\succeq \mathbf{O},\ h''(y)\in \mathbb{R}^n\geqslant 0$, and $h'(y)\in \mathbb{R}^n\geqslant 0$
 - Then for any $x \in \mathcal{D}$, (remember the chain and product rules?)

$$\nabla^{2} f(\mathbf{x}) = (\nabla f)'(\mathbf{x})^{\top} = \left\{ [\nabla g_{1}(\mathbf{x}) h'(g_{1}(\mathbf{x}))]' \right\}^{\top}$$

$$= \left\{ \nabla g_{1}(\mathbf{x}) h''(g_{1}(\mathbf{x})) g'_{1}(\mathbf{x}) + (\nabla g_{1})'(\mathbf{x}) h'(g_{1}(\mathbf{x})) \right\}^{\top}$$

$$= h''(g_{1}(\mathbf{x})) \left\{ \nabla g_{1}(\mathbf{x}) \nabla g_{1}(\mathbf{x})^{\top} \right\} + h'(g_{1}(\mathbf{x})) \left\{ \nabla^{2} g_{1}(\mathbf{x}) \right\}$$

$$\succeq \mathbf{0}$$

• E.g., $\log \sum_{i} \exp(g_i)$ is convex if g_i is

Operations That Preserve Convexity (3)

- Let $g(x) = x^2$, $h(y) = y^2$ for $y \ge 0$, and $f(x) = h \circ g(x) = x^4$
- To show that epi(f) is convex, observe first that $f(x) \le z$ in is equivalent to the existence of y such that $h(y) \le z$ and $g(x) \le y$
- The above conditions ensure that the set $\{(x,y,z):h(y)\leqslant z,g(x)\leqslant y\}$ in the space of (x,y,z)-variables is convex
- Hence, epi(f), the projection of that convex set onto the space of (x, z)-variables, is convex

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- Convexity
 - Convex Sets
 - Convex Functions
- 3 Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- 4 Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- Duality
 - Weak Duality
 - Strong Duality

Problem Revisited

Form:

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 subject to $g_i(\boldsymbol{x}) \leqslant 0, h_i(\boldsymbol{x}) = 0, i = 1, \cdots, m, j = 1, \cdots, p$

where f is a **convex function**, g_i are **convex** functions, and h_j are **affine** functions

- epi(f) is a convex set
- $C = \{x : g_i(x) \le 0, h_j(x) = 0, i = 1, \dots, m, j = 1, \dots, p\}$ is a convex set
 - g_i 's are convex implies that the 0-sublevel sets $\{x:g_i(x)\leqslant 0\}$ are convex sets
 - ullet C is the intersection of convex sublevel sets and hyperplanes
- The problem amounts to finding the "lowest" point in the set $epi(f) \cap \{(x,t) : x \in C, t \in \mathbb{R}\}$, which is convex
 - Local optimal points are also global optima

Global vs. Local Optima in Convex Optimization

Theorem

For convex problems with objective $f: \mathcal{D} \to \mathbb{R}$, any locally optimal point is globally optimal. In addition, the optimal set is convex.

Proof.

Let y and x^* be a point and a local minimizer of f on the intersection of feasible set C and D. We need to prove that $f(y) \geqslant f(x^*) = p^*$. By convexity of f and C, we have $x_{\theta} := \theta y + (1-\theta)x^*$, and:

$$f(\boldsymbol{x}_{\theta}) - f(\boldsymbol{x}^*) \leqslant \theta f(\boldsymbol{y}) + (1 - \theta) f(\boldsymbol{x}^*) - f(\boldsymbol{x}^*) = \theta (f(\boldsymbol{y}) - f(\boldsymbol{x}^*)).$$

Since \mathbf{x}^* is a local minimizer, the left-hand side in this inequality is nonnegative for all small enough values of $\theta>0$. We conclude that the right hand side is nonnegative, i.e., $f(\mathbf{y})\geqslant f(\mathbf{x}^*)=p^*$ as claimed. Also, the optimal set is convex, since it can be written as $X^*=\{\mathbf{x}\in C\cap \mathcal{D}: f(\mathbf{x}^*)\leqslant p^*\}$. This ends our proof.

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- Convexity
 - Convex Sets
 - Convex Functions
- 3 Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- Duality
 - Weak Duality
 - Strong Duality

Disciplined Convex Programming and CVX

- A convex optimization software can solve a convex optimization problem efficiently
 - E.g., CVX, optimization toolbox in Matlab (for LP and QP)
- But it cannot identify whether a problem, in an arbitrary form, is convex or not
 - Don't expect it to accept any problem you give, and tell you the problem is not convex
- Discipline convex optimization defines
 - A library of convex functions
 - The rule sets corresponding to operations that preserve convexity. E.g., sum, affine composition, pointwise maximum, partial minimization, composition with monotone convex functions, etc.

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- Convexity
 - Convex Sets
 - Convex Functions
- 3 Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- Duality
 - Weak Duality
 - Strong Duality

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- Convexity
 - Convex Sets
 - Convex Functions
- Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- Duality
 - Weak Duality

Unconstrained Problems

Form:

$$\min_{\mathbf{x}} f(\mathbf{x})$$

where f is convex

- For simplicity, here we assume $f \in \mathbb{C}^1$
- Optimality condition: x^* is optimal iff $\nabla f(x^*) = 0$
- For general f (other than affine or quadratic), we may not be able to solve x^* in a close form
- In practice, suboptimal solutions may be acceptable
- There exist iterative algorithms that yield suboptimal points much faster

Iterative Algorithms

• Assumption: the problem is attained (i.e., $C \neq \emptyset$ and p^* is attained)

Algorithm 4.1: General Descent Method

```
Input: x^{(0)}, an initial guess from \mathcal{D}
```

- 1 repeat
- 2 Determine a search direction $d^{(t)} \in \mathbb{R}^n$;
- 3 Line search: Choose a step size $\eta^{(t)}$ such that
 - $f(x^{(t)} + \eta^{(t)}d^{(t)}) < f(x^{(t)});$
- 4 Update rule: $x^{(t+1)} \leftarrow x^{(t)} + \eta^{(t)} d^{(t)}$;
- 5 until convergence criterion is satisfied;
 - Convergence criterion: $\|x^{(t+1)} x^{(t)}\| \le \epsilon$, $\|\nabla f(x^{(t+1)})\| \le \epsilon$, etc.
 - Line search could be exact: $\eta^{(t)} \leftarrow \arg\min_{\eta>0} \phi(\eta) := f(\boldsymbol{x}^{(t)} + \eta \boldsymbol{d}^{(t)}),$ which minimizes f along the ray $\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} + \eta \boldsymbol{d}^{(t)}, \ \forall \eta \in \mathbb{R} > 0$

Backtracking Line Search

• In practice, $\eta^{(t)}$ is usually obtained by another iterations called backtracking linear search

 $(\eta = t \text{ here})$

Input:
$$\alpha \in (0, 0.5), \ \beta \in (0, 1)$$

- $1 \eta \leftarrow 1$;
- 2 while $x^{(t)} + \eta d^{(t)} \notin \mathcal{D}$ do
- 3 $\eta \leftarrow \beta \eta$;
- 4 end
- 5 while $f(\mathbf{x}^{(t)} + \eta \mathbf{d}^{(t)}) = \phi(\eta) > \phi(0) + \alpha \phi'(0) \eta = f(\mathbf{x}^{(t)}) + \alpha \nabla f(\mathbf{x}^{(t)})^{\top} \mathbf{d}^{(t)} \eta$ do
- 6 $\eta \leftarrow \beta \eta$;
- 7 end
- α , typically in [0.01,0.3], indicates how much relaxation we accept to the descent direction predicted by the linear extrapolation
- ullet eta, typically in [0.1,0.8], determines how fine-grained the search is

Newton's Method (1)

- Recall that when $f(x) = x^{\top} Q x + c^{\top} x$ is quadratic and $Q \succeq 0$, we cab obtain x^* by solving $Q x^* = -c$
 - No solution if $c \notin \mathcal{R}(Q)$; otherwise $X^* = \{-Q^{\dagger}c + z : z \in \mathcal{N}(Q)\}$ (remember how to solve linear equations using SVD?)
 - When $Q \succ 0$, $x^* = -Q^{-1}c$ is unique
 - Complexity?

Newton's Method (1)

- Recall that when $f(x) = x^{\top} Q x + c^{\top} x$ is quadratic and $Q \succeq 0$, we cab obtain x^* by solving $Q x^* = -c$
 - No solution if $c \notin \mathcal{R}(Q)$; otherwise $X^* = \{-Q^{\dagger}c + z : z \in \mathcal{N}(Q)\}$ (remember how to solve linear equations using SVD?)
 - When $Q \succ 0$, $x^* = -Q^{-1}c$ is unique
 - Complexity? $O(n^3)$
- We can leverage the quadratic approximation of a general f to give an iterative algorithm

Newton's Method (2)

• Assumption: $f \in \mathcal{C}^2$ and is strictly convex (i.e., $\nabla^2 f(x) \succ O$ everywhere)

Update rule:
$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - (\nabla^2 f(\mathbf{x}^{(t)}))^{-1} \nabla f(\mathbf{x}^{(t)})$$
;

- Based on a *local quadratic* approximation of the the function at the current point x_t : $\widetilde{f}(x) := f(x^{(t)}) + \nabla f(x^{(t)})(x x^{(t)}) + \frac{1}{2}(x x^{(t)})^{\top} \nabla^2 f(x^{(t)})(x x^{(t)})$
- $\mathbf{x}^{(t+1)}$ is set to be a solution to the problem of minimizing \widetilde{f}

Remarks (1)

- Pros:
 - No need for line search (although in practice, we often set $\mathbf{d}^{(n)} = -(\nabla^2 f(\mathbf{x}^{(t)}))^{-1} \nabla f(\mathbf{x}^{(t)})$ and perform linear search)
 - Converges fast (1 iteration for quadratic f)
- Cons:
 - ullet Computing $(
 abla^2 f(oldsymbol{x}_t))^{-1}$ may be too costly for large-scale problems
 - $\nabla^2 f(\mathbf{x}_t)$ may be singular or ill-conditioned (try $\mathbf{d}^{(n)} = -[\nabla^2 f(\mathbf{x}^{(t)}) + \mu \mathbf{I}]^{-1} \nabla f(\mathbf{x}^{(t)})$ instead)

Remarks (2)

- Might fail to converge for some convex functions
 - Works best for self-concordant functions, whose the Hessians do not vary too fast

Failure of the Newton method. x₀ is chosen in a region where the function is almost linear. As a result, the quadratic approximation is almost a straight line, and the Hessian is close to zero, sending x₁ to a relatively large negative value. The method quickly diverges in this case

Gradient Descent (1)

- ullet Assumption: $f \in \mathbb{C}^1$
- Recall that at a given point x, $\nabla f(x)$ points to the steepest ascend direction

Search direction: $\mathbf{d}^{(t)} = -\nabla f(\mathbf{x}^{(t)});$

• Since $\nabla f(\mathbf{x}^{(t)} + \mathbf{\eta}^{(t)} \mathbf{d}^{(t)})^{\top} \mathbf{d}^{(t)} = 0$, the next gradient $\nabla f(\mathbf{x}^{(t+1)})$ is orthogonal to the current descent direction $\mathbf{d}^{(t)} = -\nabla f(\mathbf{x}^{(t)})$

Remarks

Pros:

- Easy to implement
- Requires only the first order information on f (computing each iteration is cheap)

Cons:

- Much more iterations (as compared to the Newton's method) to convergence
- "Zig-zagging" around a narrow valley with flat bottom
 - E.g., Rosenbrock's banana: $f(x) = 100(x_2 - x_1^2) + (1 - x_1^2)$

Conjugate Gradient Descent (1)

- A simple variation of the gradient descent
 - Line search and update rule are the same
 - ullet But tilt the next search direction to better aim at the minimum of the Hessian of f

Search direction: $\mathbf{d}^{(t)} = -\nabla f(\mathbf{x}^{(t)}) + c^{(t)}\mathbf{d}^{(t-1)}$ for some constant $c^{(t)}$;

- $\begin{aligned} \bullet \ c^{(t)} \ \mathsf{can} \ \mathsf{be} \ & \frac{\|\nabla f(\mathbf{x}^{(t)})\|^2}{\|\nabla f(\mathbf{x}^{(t-1)})\|^2}, \\ & \frac{(\nabla f(\mathbf{x}^{(t)}) \nabla f(\mathbf{x}^{(t-1)}))^\top \nabla f(\mathbf{x}^{(t)})}{\|\nabla f(\mathbf{x}^{(t-1)})\|^2}, \\ & \mathsf{etc.} \end{aligned}$
- Designed to perform well on quadratic functions

$$(\mathbf{g}^{(t)} := \nabla f(\mathbf{x}^{(t)})$$

Conjugate Gradient Descent (2)

- Suppose $f(x) = \frac{1}{2}x^{\top}Ax + b^{\top}x$ is quadratic (so that $\nabla f(x) = Ax + b$)
- Idea: instead of searching for $\mathbf{x}^{(t+1)}$ minimizing f along $\mathbf{x}^{(t)} \eta \nabla f(\mathbf{x}^{(t)})$, seek for $\mathbf{x}^{(t+1)}$ minimizing f in the affine space $\mathcal{W}^{(t+1)} := \mathbf{x}^{(0)} + \operatorname{span}(\mathbf{d}^{(0)}, \mathbf{d}^{(1)}, \cdots, \mathbf{d}^{(t-1)}, \nabla f(\mathbf{x}^{(t)}))$

Lemma

If $\mathbf{x}^{(t+1)}$ is the minimizer of f in $\mathcal{W}^{(t+1)}$, then $\nabla f(\mathbf{x}^{(t+1)}) \perp \mathcal{W}^{(t+1)}$.

Proof.

Otherwise, we can decrease f along the projection of $\nabla f(x^{(t+1)})$ onto $\mathcal{W}^{(t+1)}$, contradicting to that $x^{(t+1)}$ is the minimizer.

Conjugate Gradient Descent (3)

Lemma

Let $\mathbf{x}^{(t)}$ be the minimizer of f in $\mathcal{W}^{(t)}$. From $\mathbf{x}^{(t)}$, the direction $\mathbf{d}^{(t)}$ points to the minimizer $\mathbf{x}^{(t+1)}$ in $\mathcal{W}^{(t+1)}$ iff $\mathbf{d}^{(t)\top}\mathbf{A}\mathbf{d}^{(i)}=0$ for $0\leqslant i\leqslant t-1$. The direction $\mathbf{d}^{(t)}$ is said to be **conjugate** to all previous $\mathbf{d}^{(i)}$.

Proof.

By definition, we have $\pmb{x}^{(t+1)} = \pmb{x}^{(t)} + \eta \pmb{d}^{(t)}$ and

$$\nabla f(\mathbf{x}^{(t+1)}) = \mathbf{A}\mathbf{x}^{(t+1)} + \mathbf{b} = \nabla f(\mathbf{x}^{(t)}) + \eta \mathbf{A}\mathbf{d}^{(t)}.$$

From the above lemma $\nabla f(\pmb{x}^{(t+1)}) \perp \mathcal{W}^{(t+1)}$ and $\nabla f(\pmb{x}^{(t)}) \perp \mathcal{W}^{(t)}$, we have

$$0 = \nabla f(\boldsymbol{x}^{(t+1)})^{\top} \nabla f(\boldsymbol{x}^{(t)}) = \|\nabla f(\boldsymbol{x}^{(t)})\|^2 + \eta \boldsymbol{d}^{(t)}^{\top} \boldsymbol{A} \nabla f(\boldsymbol{x}^{(t)}),$$

implying $\eta \neq 0$. Furthermore,

$$0 = \nabla f(\mathbf{x}^{(t+1)})^{\top} \mathbf{d}^{(i)} = \nabla f(\mathbf{x}^{(t)}) \mathbf{d}^{(i)} + \eta \mathbf{d}^{(t)\top} \mathbf{A} \mathbf{d}^{(i)} = \eta \mathbf{d}^{(t)\top} \mathbf{A} \mathbf{d}^{(i)},$$

implying $\mathbf{d}^{(t)\top} \mathbf{A} \mathbf{d}^{(i)} = 0$ for all i.

Conjugate Gradient Descent (4)

- How to find $d^{(t)}$ such that it is conjugate to all $d^{(i)}$?
- Notice that $\nabla f(\mathbf{x}^{(t+1)}) \nabla f(\mathbf{x}^{(t)}) = \mathbf{A}(\mathbf{x}^{(t+1)} \mathbf{x}^{(t)}) = \eta \mathbf{A} \mathbf{d}^{(t)}$ (see the proof of the above lemma).
- So, $\boldsymbol{d}^{(t)\top} \boldsymbol{A} \boldsymbol{d}^{(i)} = 0 \Rightarrow \boldsymbol{d}^{(t)\top} (\nabla f(\boldsymbol{x}^{(t+1)}) \nabla f(\boldsymbol{x}^{(t)})) = 0 \Rightarrow \boldsymbol{d}^{(t)\top} \nabla f(\boldsymbol{x}^{(t+1)}) = \boldsymbol{d}^{(t)\top} \nabla f(\boldsymbol{x}^{(t)}) = \text{some constant}$
- Since $\nabla f(\mathbf{x}^{(i)})$ forms an orthogonal family, we have $\mathbf{d}^{(t)}$ a scaling of $\sum_{i=0}^{t} \frac{\nabla f(\mathbf{x}^{(i)})}{\|\nabla f(\mathbf{x}^{(i)})\|^2}$
- Apply the above to $\boldsymbol{d}^{(0)}, \boldsymbol{d}^{(1)}, \cdots, \boldsymbol{d}^{(t)}$, we have $\boldsymbol{d}^{(t)} = -\nabla f(\boldsymbol{x}^{(t)}) + c^{(t)} \boldsymbol{d}^{(t-1)}$
 - You can easily verify that $c^{(t)} = \frac{\|\nabla f(\mathbf{x}^{(t)})\|^2}{\|\nabla f(\mathbf{x}^{(t-1)})\|^2}$ makes the equation holds

Remarks

Pros:

- Easy to implement
- Still a first order method (same cheap iterations as in gradient descent)
- Converges fast (at most n iterations for quadratic function $f: \mathbb{R}^n \to \mathbb{R}$)
- Can be applied to non-quadratic f, by replacing A with the Hessian of f
 - Works well if $\nabla^2 f(\mathbf{x}^{(t+1)})$ and $\nabla^2 f(\mathbf{x}^{(t)})$ do not vary too much
- Caution:
 - For general f, d^n may not be a descent direction. Set it to $-\nabla f(\mathbf{x}^{(t)})$ in this case

(Gradient vs. Conjugate Gradient)

Outline

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- Convexity
 - Convex Sets
 - Convex Functions
- 3 Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- 4 Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- Duality
 - Weak Duality
 - Strong Duality

Constrained Problems

Form:

$$\min_{\pmb{x}} f(\pmb{x})$$
 subject to $\pmb{x} \in C = \{\pmb{x}: g_i(\pmb{x}) \leqslant 0, h_j(\pmb{x}) = 0, i = 1, \cdots, m, j = 1, \cdots, p\}$

where f and g_i are convex, h_i are affine

- ullet For simplicity, here we assume $f\in \mathcal{C}^1$
- Optimality condition: \mathbf{x}^* is optimal iff $\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} \mathbf{x}^*) \geqslant 0, \forall \mathbf{x} \in C$, as $f(\mathbf{x}) \geqslant f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} \mathbf{x}^*)$

Active Sets

- Define the *active set* $\mathcal{A}(x)$ at a point x as the set of constrains θ 's such that $\theta(x) = 0$, i.e., $\mathcal{A}(x) := \{\theta : \theta(x) = 0\}$
 - Equality constrains h_j 's are always active
- Recall for any constrain θ , the gradient $\nabla \theta(x)$ is orthogonal to a tangent line/space passing through the level set at x
- x* occurs when
 - $\forall j$, $\nabla h_j(\mathbf{x}^*)$ and $-\nabla f(\mathbf{x}^*)$ are *parallel* (i.e., $-\nabla f(\mathbf{x}^*) = \nu_i \nabla h_i(\mathbf{x}^*)$ for some $\nu_i \neq 0$)
 - $\forall i$ such that g_i is active, $-\nabla g_i(x^*)$ and $-\nabla f(x^*)$ are **opposite** (i.e., $-\nabla f(x^*) = \lambda_i \nabla g_i(x^*)$ for some $\lambda_i > 0$)

Iterative Algorithms

- Assumption: the problem is attained (i.e., $C \neq \emptyset$ and p^* is attained)
- Iterative algorithms in the presence of constrains?

Iterative Algorithms

- Assumption: the problem is attained (i.e., $C \neq \emptyset$ and p^* is attained)
- Iterative algorithms in the presence of constrains?
- Transform the constrained problem into a unconstrained one, or
- ② Make sure that $x^{(t+1)}$ falls inside the feasible set during each iteration

Exterior-Point Methods

- For equality constrains $h_i(x) = 0$
- Idea: penalize non-admissible solutions
- Create "barrier functions" $\psi_j(\mathbf{x})$ such that $\psi_j(\mathbf{x}) = 0$ if $h_j(\mathbf{x}) = 0$; $\psi_j(\mathbf{x}) \gg 0$ otherwise
 - E.g., $\psi_i(\mathbf{x}) = \mu \|h_i(\mathbf{x})\|^2$ for some large μ
- Solve the unconstrained problem: $\min_{\mathbf{x}} f(\mathbf{x}) + \mu \sum_{i=1}^{p} \psi_{i}(\mathbf{x})$
 - Objective is still convex
- A solution falls outside the feasible set, an "exterior point"

Interior-Point Methods

- For inequality constrains $g_i(x) \leq 0$
- Assumption: the original problem is **strictly** feasible (i.e., there exists $x \in X^*$ such that $g_i(x) < 0$ for all i)
- Idea: penalize non-admissible solutions
- Create barrier functions $\psi_i(\mathbf{x})$ such that $\psi_i(\mathbf{x}) = 0$ if $g_i(\mathbf{x}) \leqslant 0$; $\psi_i(\mathbf{x}) \gg 0$ otherwise
 - E.g., the *logarithmic barrier* $\psi_i(x) = -\mu log(-g_i(x))$ for some μ
- Solve the unconstrained problem (still convex): $\min_{\mathbf{x}} f(\mathbf{x}) \mu \sum_{i=1}^{m} \log(-g_i(\mathbf{x}))$
- A solution falls inside the feasible set, an "interior point"

Remarks

- For μ large, solving the above problem results in a point well aligned/inside the feasible set
- As $\mu \to 0$ the solution converges to a global minimizer for the original, constrained problem
 - In fact, the theory of convex optimization says that if we set $\mu=m/\varepsilon$ (or $\mu=p/\varepsilon$ for equality constrains), then the minimizer is ε -suboptimal.
- \bullet In practice, we solve the unconstrained problem several times, with μ from large to small

Projected Gradient Descent (1)

- $x^{(t+1)}$ may fall outside C during an iteration
- Idea: if so, project $x^{(t+1)}$ onto the boundary of C

Update rule:
$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{P}(\mathbf{x}^{(t)} - \mathbf{\eta}^{(t)} \nabla f(\mathbf{x}^{(t)}))$$
 for some projector \mathbf{P} ;

- For simplicity, we consider only the affine constrains here
- Suppose $x^{(t)}$ is already on the boundary of C
- We can identify the active set $\mathcal{A}(\mathbf{x}^{(t)})$ at $\mathbf{x}^{(t)}$
- Define the tangent space of active constrains at $\mathbf{x}^{(t)}$: $\bigcap_{\theta \in \mathcal{A}(\mathbf{x}^{(t)})} \{\mathbf{x} : \nabla \theta(\mathbf{x}^{(t)})^{\top} (\mathbf{x} \mathbf{x}^{(t)}) = 0\}$
- We seek for the projection of x^(t+1) onto that tangent space

Projected Gradient Descent (2)

• Since $\mathbf{x}^{(t)}$ is already in the tangent space, the update rule can be written as $\mathbf{x}^{(t+1)} \leftarrow (\mathbf{x}^{(t)} - \mathbf{n}^{(t)} P \nabla f(\mathbf{x}^{(t)}))$

$$\mathbf{x}^{(t+1)} \leftarrow (\mathbf{x}^{(t)} - \mathbf{\eta}^{(t)} \mathbf{P} \nabla f(\mathbf{x}^{(t)}))$$

(recall $\mathbf{P}^2 = \mathbf{P}$)

- $\begin{aligned} & \nabla \theta(\boldsymbol{x}^{(t)})^{\top}(\boldsymbol{x}^{(t+1)} \boldsymbol{x}^{(t)}) = 0 \\ & \text{implies} \\ & \nabla \theta(\boldsymbol{x}^{(t)})^{\top}(-\eta^{(t)} P \nabla f(\boldsymbol{x}^{(t)})) = 0 \end{aligned}$
- Let $\mathbf{\Theta} = \left[\nabla \theta_1(\mathbf{x}^{(t)}), \cdots, \nabla \theta_a(\mathbf{x}^{(t)}) \right] \in \mathbb{R}^{n \times a}$, where $a = |\mathcal{A}(\mathbf{x}^{(t)})|$
- We instead seek for the projection of $-\nabla f(\mathbf{x}^{(t)})$ onto $\{\mathbf{x}: \boldsymbol{\Theta}^{\top} \mathbf{x} = \mathbf{0}\}$

Projected Gradient Descent (3)

• Target: $-P\nabla f(x^{(t)}) \in \{x : \Theta^{\top} x = 0\}$. How to find P?

Projected Gradient Descent (3)

- Target: $-P\nabla f(x^{(t)}) \in \{x : \Theta^{\top} x = 0\}$. How to find P?
- Recall from the fundamental theorem of linear algebra that $\{x: \Theta^{\top}x = 0\} = \mathcal{R}(\Theta)^{\perp} = span(\nabla \theta_1(x^{(t)}), \cdots, \nabla \theta_a(x^{(t)}))^{\perp}$
- Also, recall that the projection of any point y onto $\mathcal{R}(\Theta)$ is Θx^* , where $x^* = (\Theta^\top \Theta)^{-1} \Theta^\top y$ is the solution to the least square problem

$$\arg\min_{\mathbf{x}} \|\mathbf{\Theta}\mathbf{x} - \mathbf{y}\|^2$$

• Let $Q = \Theta(\Theta^{\top}\Theta)^{-1}\Theta^{\top}$, the projection of y onto $\Re(\Theta)^{\perp}$ is y - Qy = (I - Q)y, so P = I - Q

The Changing Active Sets

• We may encounter $-P\nabla f(\mathbf{x}^{(t)}) = \mathbf{0}$ during an iteration. Should we stop?

The Changing Active Sets

- We may encounter $-P\nabla f(\mathbf{x}^{(t)}) = \mathbf{0}$ during an iteration. Should we stop?
- No, some constrains θ in $\mathcal{A}(\boldsymbol{x}^{(t)})$ may be "unnecessary," i.e., we cannot find $\eta > 0$ such that $\boldsymbol{x}^{(t)} \eta \boldsymbol{P}_{\theta} \nabla f(\boldsymbol{x}^{(t)})$ is on the boundary of C,
 - P_{θ} projects $d^{(t)}$ onto $\{x : \nabla \theta(y^{(t)})^{\top} x = 0\}$
 - We can obtain η by first solving $g(\mathbf{x}^{(t)} \eta \mathbf{P}_{\theta} \nabla f(\mathbf{x}^{(t)})) = 0$ for each another constrain $g \in \mathcal{C}$, and then take the minimum of the solutions that are in $(0, \infty)$

• Remove all such constrains θ 's in $\mathcal{A}(\mathbf{x}^{(t)})$. Stop only if $\mathcal{A}(\mathbf{x}^{(t)}) = \emptyset$

Algorithm

Algorithm 4.3: Projected Gradient Descent Method

```
Input: x^{(0)}, an initial guess from \mathcal{D} \cap C
 1 repeat
              \boldsymbol{d}^{(t)} \leftarrow -\nabla f(\boldsymbol{x}^{(t)}):
             Determine n^{(t)}:
 3
             \mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} + \mathbf{n}^{(t)} \mathbf{d}^{(t)}
              if x^{(t+1)} \notin C then
                     \mathbf{v}^{(t)} \leftarrow \mathbf{x}^{(t)} + \mathbf{n}' \mathbf{d}^{(t)} is the intersect between \{\mathbf{x}^{(t)} + \mathbf{n} \mathbf{d}^{(t)} : \mathbf{n} > 0\} and
                     the boundary of C:
                     \mathcal{A}(\mathbf{y}^{(t)}) \leftarrow \text{set of active constrains at } \mathbf{y}^{(t)}, excluding those \theta's such that
                      there is no intersect between \{x^{(t)} + \eta P_{\theta} d^{(t)} : \eta > 0\} and the boundary
                      of C:
                      if \mathcal{A}(\mathbf{y}^{(t)}) \neq \emptyset then \mathbf{x}^{(t+1)} \leftarrow \mathbf{y}^{(t)} + (\mathbf{n}^{(t)} - \mathbf{n}') P \mathbf{d}^{(t)} else \mathbf{x}^{(t+1)} \leftarrow \mathbf{v}^{(t)}:
 8
              end
10 until convergence criterion is satisfied;
```

Outline

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- Convexity
 - Convex Sets
 - Convex Functions
- Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- Duality
 - Weak Duality
 - Strong Duality

Decomposition Methods

TBA

Weak and Strong Duality

- Next, we shows how the notion of weak duality allows to develop, in a systematic way, approximations of non-convex problems based on convex optimization.
- Starting with any given minimization problem, which we call the primal problem, we can form a dual problem, which
 - Is always convex (specifically, a concave maximization problem)
 - Provides a lower bound on the values of the primal
- When the primal is convex, the strong duality holds—the dual problem shares the same optimal value as that of the primal
 - Gives more insights to the optimality conditions

Outline

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- Convexity
 - Convex Sets
 - Convex Functions
- Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- Duality
 - Weak Duality
 - Strong Duality

Primal Problem

Consider a primal problem:

$$\begin{aligned} \min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) \\ \text{subject to} & \quad g_i(\boldsymbol{x}) \leqslant \boldsymbol{0}, h_j(\boldsymbol{x}) = 0, i = 1, \cdots, m, j = 1, \cdots, p \\ & \quad g_i \otimes h_i \text{ are constraints} \end{aligned}$$

- ullet f, g_i , and h_j can be arbitrary (need not be convex or affine)
- For simplicity, let $f(x) = \infty$ (resp., $g_i(x)$ and $h_j(x)$) if x is not in the domain of f (resp., g_i and h_j)
- $p^* := \inf_{\mathbf{x}: g_i(\mathbf{x}) \leqslant 0, h_j(\mathbf{x}) = 0} f(\mathbf{x})$ and \mathbf{x} are call **primal value** and **variables** respectively

Lagrange Function

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
subject to $g_i(\mathbf{x}) \leq 0$, $h_i(\mathbf{x}) = 0$, $i = 1, \dots, m, j = 1, \dots, p$

 Define a Lagrange function (or simply Lagrangian) $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ with values

$$\mathcal{L}(\mathbf{x}, \alpha, \beta) := f(\mathbf{x}) + \sum_{i=1}^{m} \alpha_{i} g_{i}(\mathbf{x}) + \sum_{j=1}^{p} \beta_{j} h_{j}(\mathbf{x})$$

Then the primal problem can be written as

先固定
$$x$$
找 α , β ,使後面這坨最大

 \sup :最小上界,可以想像成 $\min_{x \in \mathbb{R}^n} \sup_{\alpha \geqslant 0} \mathcal{L}(x,\alpha,\beta)$

min sup
$$\mathcal{L}(x, \alpha, \beta)$$
 $x \in \mathbb{R}^n$ $\alpha \geqslant 0$ 用剛剛找到的 α . β α

- $p^* = \inf_{x \in \mathbb{R}^n} \sup_{\alpha \ge 0} \mathcal{L}(x, \alpha, \beta)$
- This creates "barriers" that penalize $g_i(x) > 0$ and $h_i(x) \neq 0$
- The constrains $\alpha \geqslant 0$ are essential

如果 $q^{i}(x) > 0$,因為 $\sup \alpha^{i}q^{i}(x)$ 會變成無限大,那麼就不會被接下來的 \min 選到 如果qi(x)>0,因為 $\alphai≥0$,因此 $\alphaiqi(x)$ 最大就是0。所以它會找到「合理的x」

Dual Problem

• Given a primal problem $\min_{x \in \mathbb{R}^n} \sup_{\alpha \ge 0} \mathcal{L}(x, \alpha, \beta)$, define its **dual** problem as

$$\max_{\alpha \geqslant 0} \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x}, \alpha, \beta)$$

- $d^* := \sup_{\alpha \geq 0} \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \alpha, \beta)$ is called the **dual value**
- It can be easily shown that

$$d^* = \sup_{\alpha \geqslant 0} \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \alpha, \beta) \leqslant \inf_{x \in \mathbb{R}^n} \sup_{\alpha \geqslant 0} \mathcal{L}(x, \alpha, \beta) = p^*$$
(called max-min inequality) [Homework] —開始就inf了 · 就只能在inf裡找sup · 最後就會比較小

- d^* is a lower bound of p^*
- $p^* d^*$ is called the **duality gap** duality gap 來自max-min 不等式
- $dual(\alpha, \beta; x) := \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \alpha, \beta)$ is called the **dual function**
 - Defined as a point-wise minimum (in x), therefore concave
- The dual problem $\max_{\alpha\geqslant 0} dual(\alpha,\beta)$ is always a 因為1欠函數 $\sum_{i=1}^{m} \alpha_{i}g_{i}(\mathbf{x})$ 是 concave-maximization problem (convex)

固定α,β找**x** · " convex也是concave min(concave)是concave

Example

• Consider a primal problem:

$$\min_{\pmb{x}} \frac{1}{2} \|\pmb{x}\|^2$$
 subject to $\pmb{A}\pmb{x} \leqslant \pmb{b}$

- Dual problem:

$$\max_{\pmb{\alpha}} -\frac{1}{2} \|\pmb{A}^{\top} \pmb{\alpha}\|^2 - \pmb{b}^{\top} \pmb{\alpha}$$
 subject to $\pmb{\alpha} \geqslant \pmb{0}$

• Equivalent to $\min_{\alpha \geqslant 0} \frac{1}{2} \| \boldsymbol{A}^{\top} \boldsymbol{\alpha} \|^2 + \boldsymbol{b}^{\top} \boldsymbol{\alpha}$ 找一個正確的 $\alpha \cdot$ 使得Ax-b>0 的「損害」可以被正確地懲罰

Geometric Interpretation (1)

找最低點,在深藍區域

- Consider a primal problem: $\min_{x} f(x)$ subject to $g(x) \leq 0$
- Dual problem: $\max_{\alpha \geqslant 0} dual(\alpha) = \max_{\alpha \geqslant 0} \inf_{\mathbf{x}} f(\mathbf{x}) + \alpha g(\mathbf{x})$
- Let $A := \{(u, t) : u \geqslant g(x), t \geqslant f(x)\}$, the blue area

The solutions are feasible only in the dark blue area

Geometric Interpretation (2)

- $\inf_{\mathbf{x}} f(\mathbf{x}) + \alpha g(\mathbf{x})$ is attained, so we can rewrite the dual function as $dual(\alpha) = \min_{(u,t) \in A} t + \alpha u = t^* + \alpha u^*$
- Given any fixed $\alpha \ge 0$, $\{(u,t): t = dual(\alpha) \alpha u\}$ is a line with slop $-\alpha$ intercepting A at (t^*, u^*)
 - The line intercepts $\{(u, t) : u = 0\}$ at $(0, dual(\alpha))$
- The dual problem is to find the best line intercepting A that produce the highest intercept with $\{(u,t): u=0\}$

Remarks

- The dual function dual may not be easy to compute: it is itself an optimization problem!
 - Duality works best when dual can be computed in closed form
- Even if it is possible to compute *dual*, it might not be easy to maximize: convex problems are not always easy to solve
- A lower bound might not be of great practical interest: often we need a sub-optimal solution
 - Duality does not seem at first to offer a way to compute such a primal point
- However, duality is a powerful tool in understanding the problem

Outline

- Optimization Problems
 - Standard Forms and Terminology
 - Problem Classes
- Convexity
 - Convex Sets
 - Convex Functions
- Convex Optimization
 - Optimality
 - Disciplined Convex Programming and CVX
 - LP and QP
- 4 Algorithms
 - Unconstrained Problems
 - Constrained Problems
 - Large-Scale Problems**
- Duality
 - Weak Duality
 - Strong Duality

Strong Duality

Primal problem:

$$\min_{\pmb{x}\in\mathbb{R}^n}f(\pmb{x})$$
 subject to $g_i(\pmb{x})\leqslant 0, h_j(\pmb{x})=0, i=1,\cdots,m, j=1,\cdots,p$

- $p^* := \inf_{x:g_i(x) \leq 0, h_i(x)=0} f(x)$
- Dual problem:

$$\max_{\alpha \geqslant 0} \inf_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) + \sum_{i=1}^m \alpha_i g_i(\mathbf{x}) + \sum_{j=1}^p \beta_j h_j(\mathbf{x})$$

- $d^* := \sup_{\alpha \geq 0} \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \alpha, \beta)$
- ullet We say that **strong duality** holds if the duality gap is zero: $d^*=p^*$

Slater's Sufficient Condition for Strong Duality (1)

• How to make $(0, d^*) = (0, p^*)$?

Slater's Sufficient Condition for Strong Duality (1)

- How to make $(0, d^*) = (0, p^*)$?
- One sufficient condition:
 - $A = \{(u, t) : u \geqslant g(x), t \geqslant f(x)\}$ (the blue area) is a convex set
 - ② The line $\{(u, t) : t = dual(\alpha) \alpha u\}$ is not vertical (so d^* is attained)

Slater's Sufficient Condition for Strong Duality (2)

- The above two points imply:
- The primal problem is convex
 - Since $\{u: u \geqslant g(x)\}$ and $\{t: t \geqslant f(x)\}$ are convex, so does A [Proof]
- ② Slater condition: the primal problem is strictly feasible:

$$\exists \mathbf{x} : g_i(\mathbf{x}) < 0, h_j(\mathbf{x}) = 0$$

- The interior points of $A = \{(u, t) : u \geqslant g(x), t \geqslant f(x)\}$ (the blue area) cut into the area $\{(u, t) : u < 0\}$
- If $g_i(x)$ is affine, we can relax the feasibility above by $g_i(x) \leq 0$
- Sufficient condition for strong duality, but not necessary

Solving the Dual Problem

- Suppose the strong duality holds, then by solving the dual problem, we obtain:
 - The primal value $p^* = d^*$
 - Furthermore, \mathbf{x}^* if we can write \mathbf{x}^* in a close form with respect to $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ in $dual(\boldsymbol{\alpha}, \boldsymbol{\beta}; \mathbf{x}) := \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})$
- Why solving the dual problem instead?

Solving the Dual Problem

- Suppose the strong duality holds, then by solving the dual problem, we obtain:
 - The primal value $p^* = d^*$
 - Furthermore, \mathbf{x}^* if we can write \mathbf{x}^* in a close form with respect to $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ in $dual(\boldsymbol{\alpha}, \boldsymbol{\beta}; \mathbf{x}) := \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})$
- Why solving the dual problem instead?
 - We gain insights to the primal problem

Karush-Kuhn-Tucker (KKT) Conditions

Theorem

Suppose f, g_i , and h_j are continuously differentiable at \mathbf{x}^* , and the primal problem is attained, convex, and satisfies the Slate condition. Then a primal variable \mathbf{x}^* is optimal iff there exists $\mathbf{\alpha}^*$ and $\mathbf{\beta}^*$ such that the following conditions, called Karush-Kuhn-Tucker (KKT) conditions are satisfied:

Lagrangian stationarity:

$$\begin{array}{l} \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \alpha_i^* \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \beta_j^* \nabla h_j(\mathbf{x}^*) = 0 \\ \textbf{Primal feasibility} \colon g_i(\mathbf{x}^*) \leqslant 0 \text{ and } h_j(\mathbf{x}^*) = 0 \text{ for all } i = 1, \cdots, m \text{ and } j = 1, \cdots, p \end{array}$$

Dual feasibility: $\alpha_i^* \ge 0$ for all $i = 1, \dots, m$

Complementary slackness: $\alpha_i^* g_i(x^*) = 0$ for all $i = 1, \dots, m$

Complementary Slackness

- Why $\alpha_i^* g_i(\mathbf{x}^*) = 0$ for all $i = 1, \dots, m$?
- When strong duality holds and both primal and dual problems are attained, by (x^*, α^*, β^*) , we have

$$f(\mathbf{x}^*) + \sum_{i=1}^m \alpha_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^p \beta_j^* h_j(\mathbf{x}^*) = dual(\alpha^*, \beta^*; \mathbf{x}^*) = d^* = p^* = f(\mathbf{x}^*)$$

- Since $\alpha^* \geqslant 0$, each term in $\sum_{i=1}^m \alpha_i^* g_i(x^*)$ must be 0
- So what?

Complementary Slackness

- Why $\alpha_i^* g_i(\mathbf{x}^*) = 0$ for all $i = 1, \dots, m$?
- When strong duality holds and both primal and dual problems are attained, by (x^*, α^*, β^*) , we have

$$f(\mathbf{x}^*) + \sum_{i=1}^m \alpha_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^p \beta_j^* h_j(\mathbf{x}^*) = dual(\alpha^*, \beta^*; \mathbf{x}^*) = d^* = p^* = f(\mathbf{x}^*)$$

- Since $\alpha^* \geqslant 0$, each term in $\sum_{i=1}^m \alpha_i^* g_i(x^*)$ must be 0
- So what? If $\alpha_i^* > 0$, then $g_i(\mathbf{x}^*) = 0$
- We can tell from the values of α_i^* 's which inequality constraint is **active**

Example

• Suppose $\mathbf{A} \in \mathbb{R}^{m \times n}$, in the primal problem:

$$\min_{oldsymbol{x} \in \mathbb{R}^n} rac{1}{2} \|oldsymbol{x}\|^2$$
 subject to $oldsymbol{A}oldsymbol{x} \leqslant oldsymbol{b}$

Dual problem:

$$\min_{\boldsymbol{lpha} \in \mathbb{R}^m} \frac{1}{2} \| \boldsymbol{A}^{\top} \boldsymbol{\alpha} \|^2 + \boldsymbol{b}^{\top} \boldsymbol{\alpha}$$

subject to $\boldsymbol{\alpha} \geqslant \boldsymbol{0}$

•
$$\mathbf{x}^* = \mathbf{A}^\top \boldsymbol{\alpha}$$

- We now solve m instead of n variables
 - If $n \gg m$, solving the dual problem takes less time
- Furthermore, by complementary slackness, $\boldsymbol{\alpha}^{\top}(\boldsymbol{A}\boldsymbol{x}-\boldsymbol{b})=\mathbf{0}$
 - ullet We can tell that the j-th constraint is active (i.e., $oldsymbol{A}_{j,\cdot}oldsymbol{x}=b_j)$ iff $lpha_j
 eq 0$