Inatel

M020 – Matemática Discreta

INTRODUÇÃO

Marcelo Vinícius Cysneiros Aragão marcelovca90@inatel.br

Informações Gerais

- Curso: Engenharia de Software
- Carga horária: 4h por semana / 80h ao total
- Coordenador: Guilherme Augusto Barucke Marcondes (guilherme@inatel.br)
 - Localização: Sala da Pró-Diretoria de Graduação (Prédio Central)
- Professor: Marcelo Vinícius Cysneiros Aragão (<u>marcelovca90@inatel.br</u>)
 - Localização: CDG Hub quinta-feira às 17h30
- Monitora: Mariana Venezian Musto Bassi (<u>mariana.bassi@ges.inatel.br</u>)
 - Atendimento: Inatel (sala I-17) quarta-feira às 17h30

Informações Gerais

- NP1: 1ª prova teórica: a definir → sugestão: 19/04/2022
- NP2: 2ª prova teórica: a definir → sugestão: 21/06/2022
- NP3: 3ª prova teórica: a definir → sugestão: 28/06/2022
- NPA = (NP1 + NP2) / 2

- Prova substitutiva:
 - Substitui NP1 ou NP2, via NP3.
 - Solicitação por requerimento no CRA.
 - Prova com o conteúdo de todo o semestre.
 - Caso não passe, será feita outra prova como NP3.

Informações Gerais

- Calendário:
 - Disponível no site do Inatel: https://tinyurl.com/calendario-inatel-2022-1

- Feriados:
 - 28/02 e 01/03 (Carnaval).
 - Atentem-se às reposições de aula no portal acadêmico (se houver).

- Matemática discreta, também chamada matemática finita, é o estudo das estruturas algébricas que são fundamentalmente discretas, em vez de contínuas.
- Trata de funções cujas imagens possuem valores que não variam gradualmente como em funções contínuas, mas assumem valores distintos abruptamente com a mudança do elemento do domínio considerado.
- Em contraste com os números reais que têm a propriedade de variar "suavemente", os objetos estudados na matemática discreta – como números inteiros, grafos e afirmações lógicas – não variam suavemente, mas têm valores distintos separados.
- A matemática discreta, portanto, exclui temas em "matemática contínua", como cálculo e análise.

DISCRETE

CONTINUOUS

1. Lógica formal

Você foi convocado a participar do júri em um processo criminal. O advogado de defesa argumenta o seguinte:

Se meu cliente fosse culpado, a faca estaria na gaveta. Ou a faca não estava na gaveta ou Jason Pritchard viu a faca. Se a faca não estava lá no dia 10 de outubro, segue que Jason Pritchard não viu a faca. Além disso, se a faca estava lá no dia 10 de outubro, então a faca estava na gaveta e o martelo estava no celeiro. Mas todos sabemos que o martelo não estava no celeiro. Portanto, senhoras e senhores do júri, meu cliente é inocente.

Pergunta: O argumento do advogado está correto? Como você deveria votar?

1. Lógica formal

- 1.1 Sentenças, Representação Simbólica e Tautologias
- 1.2 Lógica Proposicional
- 1.3 Quantificadores, Predicados e Validade
- 1.4 Lógica de Predicados
- 1.5 Programação Lógica
- 1.6 Prova de Correção

2. Conjuntos e Combinatória

Você faz um levantamento entre os 87 assinantes de seu boletim informativo, preparando-se para lançar seu novo programa de computador. Os resultados de seu levantamento revelam que 68 assinantes têm disponível um sistema baseado em Windows, 34 têm disponível um sistema Unix e 30 têm acesso a um Mac. Além disso, 19 têm acesso a ambos, Windows e Unix, 11 têm acesso a ambos, Unix e Mac, e 23 podem usar tanto Windows quanto Mac.

Pergunta: Quantos de seus assinantes têm acesso a todos os três tipos de sistema?

- 2. Conjuntos e Combinatória
 - 2.1 Conjuntos
 - 2.2 Contagem

3. Modelagem Aritmética

- O seu grupo está **escrevendo um compilador** para uma nova linguagem de programação, com o codinome FigueiraAmpla, em honra a uma árvore em frente à janela do seu escritório.
- Durante a primeira fase de compilação (chamada de fase de análise léxica), o compilador tem que **quebrar proposições em unidades individuais** chamadas de fichas (*tokens*).
- Em particular, o compilador tem que ser capaz de reconhecer os identificadores na linguagem e de reconhecer duas palavras-chave na linguagem, que são se e em.
- *Pergunta*: como o compilador pode reconhecer as fichas individuais em uma proposição?

M020					
1	07/02/2022	seg	Introdução à Disciplina		
2	08/02/2022	ter			
3	14/02/2022	seg			
4	15/02/2022	ter	Lógica Formal Parte 1.1: Sentenças, Representação Simbólica e Tautologias		
5	21/02/2022	seg			
6	22/02/2022	ter			
-	28/02/2022	seg	Feriado (Carnaval)		
-	01/03/2022	ter	reriado (Carnavai)		
7	07/03/2022	seg			
8	08/03/2022	ter			
9	14/03/2022	seg	Lógica Formal Parte 1.2: Lógica Proposicional		
10	15/03/2022	ter			
11	21/03/2022	seg			
12	22/03/2022	ter			
13	28/03/2022	seg			
14	29/03/2022	ter			
15	04/04/2022	seg	Lógica Formal Parte 1.3: Quantificadores, Predicados e Validade		
16	05/04/2022	ter			
17	11/04/2022	seg			
18	12/04/2022	ter			
19	18/04/2022	seg	Resolução de dúvidas		
20	19/04/2022	ter	Prova 1		

M020					
21	25/04/2022	seg	Lógica Formal Parte 1.4: Lógica de Predicados		
22	26/04/2022	ter			
23	02/05/2022	seg			
24	03/05/2022	ter			
25	09/05/2022	seg			
26	10/05/2022	ter	Lógica Formal Parte 1.5: Programação Lógica		
27	16/05/2022	seg			
28	17/05/2022	ter			
29	23/05/2022	seg	Lógica Formal Parte 1.6: Demonstração de Correção		
30	24/05/2022	ter			
31	30/05/2022	seg			
32	31/05/2022	ter			
33	06/06/2022	seg	Conjuntos e Combinatória 3.1: Conjuntos		
34	07/06/2022	ter			
35	13/06/2022	seg	Conjuntos e Combinatória 3.2: Contagem		
36	14/06/2022	ter			
37	20/06/2022	seg	Resolução de dúvidas		
38	21/06/2022	ter	Prova 2		
39	27/06/2022	seg	Resolução de dúvidas		
40	28/06/2022	ter	Prova 3		

Referência Bibliográfica Básica

a. GERSTING, Judith L., Fundamentos
matemáticos para a ciência da computação: um
tratamento moderno de matemática discreta.
5 ed. Rio de Janeiro, RJ: LTC, 2004, 597 p.
ISBN 978-8521614227.

Referência Bibliográfica Básica

b. GERSTING, Judith L., Fundamentos
matemáticos para a ciência da computação:
matemática discreta e suas aplicações.
7 ed. Rio de Janeiro, RJ: LTC, 2016, 908 p.
ISBN 978-8521632597.

Referência Bibliográfica Básica

c. MENEZES, Paulo Blauth, Matemática discreta: para computação e informática. 2 ed. Porto Alegre, RS: Editora Bookman, 2013, 258 p. ISBN 978-85-7780-269-2.

d. SCHEINERMAN, Edward R.; FARIAS, Alfredo Alves de,
 Matemática discreta: uma introdução. São Paulo, SP: Editora
 Cengage Learning, 2003, 532 p. ISBN 85-221-0291-0.

Referência Bibliográfica Complementar

- a. AGUILAR, Luis Joyanes (Luis Joyanes Aguilar); VALLE, Paulo Heraldo Costa do; SILVA, Flávio Soares Corrêa da, Fundamentos de programação: algoritmos, estruturas de dados e objetos. 3 ed. São Paulo, SP: McGraw-Hill, 2008, 690 p. ISBN 978-85-86804-96-0.
- b. FORBELLONE, André Luiz Villar; EBERSPÄCHER, Henri Frederico, Lógica de programação. 2 ed. São Paulo, SP: Makron Books do Brasil Editora Ltda., 2000, 197 p. ISBN 85.346.1124-6.
- c. HOLLOWAY, James Paul; CUNHA, Sueli; RIBEIRO, João Araújo, Introdução à programação para engenharia: resolvendo problemas com algoritmos. Rio de Janeiro, RJ: LTC, 2006, 339 p. ISBN 85-216-1453-5.
- d. LIPSCHUTZ, Seymour; LIPSON, Marc Lars; MEDEIROS, Heloisa Bauzer, Teoria e problemas de matemática discreta. 2 ed. Porto Alegre, RS: Editora Bookman, 2004, 511 p. ISBN 978-85-363-0361-1.
- e. MANZANO, José Augusto N. G.; OLIVEIRA, Jayr Figueiredo de, Algoritmos: lógica para desenvolvimento de programação de computadores. São Paulo, SP: Érica, 1996-2000, ISBN 85-7194-329-X / 85-7194-718-X.