Домашнее задание №7

Дедлайн: 01 апреля 2019 г., 23:00

Основные задачи

- 1. (2+2+2 балла) Рассмотрим такую задачу: на вход подаются 3 целочисленных матрицы A, B, C размеров $n \times n$; нужно проверить, выполнено ли равенство C = AB. Можно решить такую задачу просто перемножив матрицы A и B за $\Theta(n^3)$ арифметических операций стандартным способом (либо за $\Theta(n^{\log_2 7})$ при помощи алгоритма Штрассена перемножения матриц) с целыми числами, длина записи которых составляет $O(\log(nh))$, где h— самое большое абсолютное значение элементов матриц A и B. Вместо этого будем проверять равенство C = AB рандомизированно. Стенерируем случайный вектор $x \in \mathbb{R}^n$, компоненты которого равномерно распределены на $\{0,1,2,\ldots,N-1\}$. Затем проверим равенство Cx = A(Bx). Чтобы его проверить, нам нужно 3 раза умножить матрицу на вектор, то есть нужно произвести $O(n^2)$ арифметических операций с числами, длина записи которых составляет $O(\log(nh))$, где h— самое большое абсолютное значение элементов матриц A, B, C и вектора x. Если равенство не выполнено, то сигнализируем об ошибке (выдаём 0), в противном случае выдаём 1, что означает, что исходное матричное равенство либо верно, либо мы подобрали плохой вектор x.
 - (і) Принадлежность к какому классу сложности показывает описанный алгоритм?
 - (ii) Оцените вероятность того, что $C \neq AB$ в случае Cx = A(Bx)
 - (iii) Каким нужно выбрать N, чтобы гарантировать вероятность ошибки меньше *p*?
- 2. (1+1+1+1 балл) Диаграмма графа G изображена на рисунке.

Путь в графе — это произвольная последовательность смежных вершин (возможны возвраты): $c = \{v_1, \ldots, v_l\}$. По определению, длина пути c равна l-1. Пусть g_n — это число путей в G длины n, которые начинаются в вершине 1. Из определения следует, что g(0) = 1 (единственный путь: $0 \to 0$), а g(1) = 4 (пути: $1 \to 1$, $1 \to 2$, $1 \to 4$, $1 \to 3$). Пусть A — это матрица инциденций графа G:

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}.$$

- (i) Вычислите число g(2) путей в G длины 2 и проверьте, что оно равно сумме элементов первой строки матрицы A^2 . Объясните это совпадение и докажите общую формулу для g(n).
- (ii) Найдите рекуррентное соотношение, которому удовлетворяет последовательность $\{g_n, n=0,1,\ldots\}$. Подсказка. В ответе должна получиться рекуррентность с целыми коэффициентами типа рекуррентности Фибоначчи: $g_{n+2} = Pg_{n+1} + Qg_n$. Можно просто подобрать коэффициенты и доказать, что они искомые. При этом необходимо вычислить хотя бы еще одно значение g(n).

Рассмотрим два способа вычисления $\{g_n, n = 0, 1, \ldots\}$.

Первый, основан на том, что последовательность $\{g_n\}$ удовлетворяет рекуррентному соотношению, т. е. разностному уравнению, и это подсказывает следующий матричный способ ее вычисления. Имеет место матричная формула $\begin{pmatrix} g_n \\ g_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & P \end{pmatrix}^{n-1} \begin{pmatrix} g_1 \\ g_2 \end{pmatrix}$

При вычислении $\{g_n\}$ этим способом можно использовать быстрое, например, "индийское возведение в степень" n за $O(\log n)$ тактов².

Второй способ вычислений основан на явном аналитическом решении линейной рекуррентности, которое можно получить самостоятельно или воспользоваться алгоритмом из текста на сайте. Например, для чист Фибоначи

$$(F_1=1,F_2=1,\ldots F_{n+2}=F_{n+1}+F_n))$$
 этот способ приводит к известной формуле Бине: $F_n=\frac{(\frac{1+\sqrt{5}}{2})^n-(\frac{1-\sqrt{5}}{2})^n}{\sqrt{5}}$

У вас должна получится похожая формула, также содержащая квадратичную иррациональность $\sqrt{d}=\sqrt{P^2+4Q}$. Вычисление по аналитической формуле реализуется чуть хитрее, чем по матричной. Для каждого значения n нужно специфицировать операции и указать с какой точностью их нужно проводить (например, для вычисления \sqrt{d} нужно указать процедуру вычисления, задать точность вычисления и оценить битовую трудоемкость процедуры).

На самом деле, переход к собственным векторам матрицы $\left(\begin{smallmatrix} 0 & P \\ Q & P \end{smallmatrix} \right)$ показывает, что оба алгоритмы тесно связаны, и матричный алгоритм можно рассматривать как корректный способ округления ответа, полученного по аналитической формуле.

Оценим трудоемкость нескольких алгоритмов вычисления g_n по простому модулю p.

- (iii) Непосредственное вычисление по рекуррентной формуле. Оцените его трудоемкость при вычислении $A = g_{20000} \pmod{29}$.
- (iv) Докажите, что последовательность $\{g_n\}$ периодична по любому модулю. Оцените ее период для (mod 29) и найдите трудоемкость вычисления (сложность нахождения периода + сложность вычисления A) этим способом.
- 3. (1+1+1 балл)
 - (i) Пусть HOД(a,N)=1 и $a^{N-1} \neq 1 \pmod N$. Докажите, что по крайней мере для половины чисел из промежутка $1 \leq b < N$ выполнено $b^{N-1} \neq 1 \pmod N$.
 - (ii) Покажите, что Тест Ферма может быть реализован за полиномиально по входу число операций.
 - (ііі) Покажите, что если N не является числом Кармайкла, то Тест Ферма даёт правильный ответ с вероятностью $\geqslant \frac{1}{2}$.
- 4. (1 балл) Пусть вычет a имеет показатель (порядок) δ_1 по (mod n_1) и показатель δ_2 по (mod n_2), причём n_1 и n_2 взаимно просты. Найдите показатель a по (mod n_1n_2)

Дополнительные задачи

- 1. (1+2+2 балла) Рассмотрим двудольный граф, в каждой доле которого по n вершин. Научимся рандомизированно проверять, есть ли в нём полное паросочетание. Сопоставим этому графу матрицу, такую что a_{ij} равно 1 если между вершиной i первой доли и вершиной j второй доли есть ребро и 0 в противном случае. Такая матрица называется матрицей Эдмондса. Её перманент равен количеству полных паросочетаний в графе (это один из пунктов задачи). Но задача вычисления перманента очень сложна. Тем не менее если нам нужно только проверить, что перманент не равен 0 мы можем использовать следующий подход: заменим a_{ij} равные единице на независимые переменные x_{ij} , а остальные оставим нулями. Тогда перманент матрицы равен нулю тогда и только тогда когда определитель матрицы как многочлен от x_{ij} равен 0 тождественно. Поэтому мы можем подставлять вместо x_{ij} случайные числа из $\{0,1,\ldots,N-1\}$ и считать многочлен в этих точках.
 - (і) Докажите, что перманент матрицы Эдмондса равен количеству полных паросочетаний в графе.
 - (ii) Докажите, что перманент равен $0 \iff$ детерминант как многочлен от x_{ij} равен 0.
 - (ііі) Оцените вероятность ошибки алгоритма и битовую сложность его работы.
- 2. (2+2+2 балла)

 $^{^1}$ Поскольку для $\{g_n\}$ коэффициенты P и Q — целые, то при вычислениях можно использовать только целую арифметику.

²Мы разбирали этот алгоритм в первом задании, и он с необходимыми изменениями переносится на матрицы.

- (i) Пусть известно, что 5 является квадратичным вычетом по \pmod{p} , например, p=29, т. е. разрешимо уравнение $x^2=5\pmod{p}$. Обоснуйте алгоритм непосредственного вычисления A по аналитической формуле, т. е. прямо извлекая квадратный корень в конечном поле \pmod{p} и проводя дальнейшие арифметические вычисления. Вычислите A этим способом. Оцените трудоемкость вычисления $g_n \pmod{p}$ для этого случая.
- (ii) Пусть теперь 5 HE является квадратичным вычетом по \pmod{p} , например, p=23. Придумайте и обоснуйте использующий аналитическую формулу алгоритм вычисления чисел $\{g_n\}$ по такому модулю. Проведите вычисления $A=g_{10000}\pmod{23}$. Оцените трудоемкость вычисления $g_n\pmod{p}$ для этого случая.
 - В этой задаче вам предстоит разобраться, как использовать матричный алгоритм для вычислении реккурентности по простому модулю. Мы уже знаем, что эффективность процедуры сильно (или даже критически) зависит от вычисления периода $\{g_n\}$ (mod p). И, собственно, основной вопрос, на который хочется найти ответ, как найти период в матричном представлении $\{g_n\}$. Предлагается придумать алгоритм самостоятельно и/или проанализировать следующий способ. Заметим, что нам повезло, и матрицу $\begin{pmatrix} 0 & 1 \\ Q & P \end{pmatrix}$ можно диагонализировать, т. е. привести ее к виду $S\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} S^{-1}$, где λ_1, λ_2 это собственные числа, а S невырожденная матрица. Возводя в n-ю степень, получим $S\begin{pmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{pmatrix} S^{-1}$.
- (iii) Наша задача состоит в том, чтобы обосновать эти манипуляции при вычислениях \pmod{p} и понять, в какую степень нужно возвести матрицу, чтобы получилась единичная матрица, т. е. получить аналог малой теоремы Ферма для матриц указанного вида 3

Оцените сложность вычисления периода и вычисления $\{g_n\} \pmod{p}$ матричным способом и сравните его с алгоритмами из пунктов (i)–(ii).

Комментарий. В последней задаче в пунктах (i)–(ii) речь идет о т.н. $\kappa eadpamuuhusx$ вычетах и возникает естественный вопрос, как по данному числу a проверить разрешимость уравнения $x^2=a\pmod{p}$ (в задаче $a=5,\,n=29,23$). Можно, конечно, перебрать все вычеты, используя O(p) операций, но есть и более интеллигентный полиномиальный по длине записи $\log p$ алгоритм, Он основан на знаменитом $\kappa eadpamuuhom$ законе esaumhocmu, о котором можно прочитать в книге [Виноградов, гл. 2] (и придумать алгоритм самостоятельно). Но есть и еще более простой способ, основанной на обобщении малой теоремы Ферма. Если определить (см. , [Виноградов, гл. 2]) т. н. cumeon $\Lambda eshcandpa: \left(\frac{a}{p}\right)$, равный +1, если число $a\neq 0\pmod{p}$ является квадратичным вычетом \pmod{p} , и, равный -1, в противном случае, то имеет место равенство $a^{\frac{p-1}{2}}=\left(\frac{a}{p}\right)\pmod{p}$. Таким образом, можно эффективно проверить, является ли a квадратичным вычетом, используя быстрое возведение в степень. Кроме того, можно построить быстрый вероятностный алгоритм поиска квадратичного вычета или невычета. Что понимается по этим, поясняет задача 3 (i).

- 3. (1+2 балла) Рассмотрим систему RSA.
 - (i) Пусть открытый ключ Боба (25, 2021). Он хочет послать сообщение (число), используя протокол RSA. В какую степень он должен его возвести?
 - (ii) Докажите или опровергните, что кодирование в системе RSA $M \to M^e \mod n$ биективно отображает множество $\{0, 1, \dots, n-1\}$ в себя.
- 4. (2 балла) Предложите алгоритм вычисления символа Лежандра по простому модулю, битовая сложность которого равна $O(\log^2 n)$. Ответ обосновать.
- 5. (1+1 балл) Докажите теоремы 15 и 16 из конспекта шестого семинара.
- 6. (1+3 балла) Докажите теоремы 17 и 18 из конспекта шестого семинара.

³Обратите внимания, что прямого аналога малой теоремы Ферма для матриц быть не может, поскольку, например, существуют т.н. нильпотентные матрицы (какая-то их степень равна нулевой матрице). Удивительно, но тексты, посвященные аналогам теоремы Ферма для матриц, появились только в этом тысячелетии (см., www.mathnet.ru/mp238). В принципе, их мог написать сильный студент.