Dozent: Denis Vogel Tutor: Marina Savarino

Aufgabe 26

Sei R ein Ring, M, N R-Moduln und $\varphi: M \longrightarrow N$ ein R-Modulhomomorphismus. Sei $\iota: \ker \varphi \longrightarrow M$ die kanonische Inklusion.

Behauptung: Zu jedem R-Modul U und jedem R-Modulhomomorphismus $f:U\longrightarrow M$ mit $\varphi\circ f=0$ existiert einen eindeutig bestimmten R-Modulhomomorphismus $g:U\longrightarrow \ker \varphi$ mit $f=\iota\circ g$.

Beweis. (i)

Existenz: Wir definieren die Funktion

$$g: U \longrightarrow \ker \varphi$$

 $u \longrightarrow f(u).$

g ist wohldefiniert, denn $\varphi \circ f = 0$, also ist im $f \subseteq \ker \varphi$. Weil f ein Modulhomomorphismus ist, ist somit auch g einer. Für $u \in U$ ist $f(u) = g(u) = \iota(g(u)) \Leftrightarrow f = \iota \circ g$.

(ii)

Eindeutigkeit von g: Seien $g, g': U \longrightarrow \ker \varphi$ zwei R-Modulhomomorphismen mit $f = \iota \circ g = \iota \circ g'$. Dann gilt für alle $u \in U$:

$$g'(u) = \iota(g'(u)) = f(u) = \iota(g(u)) = g(u).$$

Es gilt also

$$g = g'$$

Aufgabe 27

- (a) Das ist wörtlich die universellen Eigenschaft freier Moduln (UF) für das Tupel $(M_i, (x_{i,j})_{j \in J_i})$.
- (b) Wir zeigen, dass M frei ist mit Basis $q_i(x_{i,j})_{(i,j)\in K}$. Sei also ein R-Modul N und eine Familie $(y_{i,j})_{(i,j)\in K}$. Zu zeigen: $\exists!f:M\to N$ mit $f(q_i(x_{i,j}))=y_{i,j}\forall (i,j)\in K$.

Beweis. Nach Aufgabe a gibt es für alle $i \in I$ einen eindeutigen R-Modulhomomorphismus $f_i: M_i \to N$ mit $f_i(x_{i,j}) = y_{i,j}$ für alle $j \in J_i$. Die universelle Eigenschaft der direkten Summe besagt, dass für jeden R-ModulN und jede Familie $(f_i)_{i \in I}$ von R-Modulhomomorphismen $f_i: N \mapsto M_i$ genau ein R-Modulhomomorphismus $f: N \mapsto M$ mit $f_i = f \circ q_i$ für alle $i \in J$ existiert, insbesondere also auch für die Familie $(f_i)_{i \in I}$ aus Teilaufgabe (a). Es gilt demnach

$$f(q_i(x_{i,j})) = f_i(x_{i,j}) = y_{i,j}.$$

Also erfüllt f die geforderte Eigenschaft. Angenommen, es gäbe nun ein f' mit $f'(q_i(x_{i,j})) = y_{i,j}$. Sei dann $f'_i = f' \circ q_i$. Dann gilt $f'_i(x_{i,j}) = y_{i,j}$. Allerdings ist nach Teilaufgabe (a) f_i eindeutig über diese Eigenschaft bestimmt. Also ist $f'_i = f_i$. Also gilt $f_i = f' \circ q_i$. Nach der universellen Eigenschaft der direkten Summe ist f aber darüber eindeutig definiert, also ist f' = f.