An introduction to persistent homology

Part 2: Barcodes

Ulrich Bauer

ПШ

Aug 6, 2019

Summer School on Persistent Homology and Barcodes Schloss Rauischholzhausen

Stability: from point clouds to barcodes

The category of matchings

Consider the category Mch (a subcategory of the category Rel of sets and relations) with

- objects: sets,
- morphisms: matchings (partial bijections).

Composition:

(Co)kernel/(co)image:

The category of matchings

Consider the category Mch (a subcategory of the category Rel of sets and relations) with

- objects: sets,
- morphisms: matchings (partial bijections).

Composition:

(Co)kernel/(co)image:

Mch is *Puppe-exact* (*p-exact*):

- it has a zero object (Ø)
- it has all (co)kernels
- every mono (epi) is (co)kernel
- every morphism $f: A \to B$ has an epi-mono factorization $A \twoheadrightarrow \operatorname{im} f \hookrightarrow B$

The category of matchings

Consider the category Mch (a subcategory of the category Rel of sets and relations) with

- objects: sets,
- morphisms: matchings (partial bijections).

Composition:

(Co)kernel/(co)image:

Mch is *Puppe-exact* (*p-exact*):

- it has a zero object (Ø)
- it has all (co)kernels
- every mono (epi) is (co)kernel
- every morphism $f: A \to B$ has an epi-mono factorization $A \twoheadrightarrow \operatorname{im} f \hookrightarrow B$

but not additive:

it does not have all (co)products

A barcode (collection of intervals) can be read as a diagram $\mathbf{R} \to \mathbf{Mch}$:

$$t\mapsto \{ \text{bars in barcode containing } t\} \qquad (s\le t)\mapsto \{ \text{bars containing both } s,t \}$$

$$(s \le t) \mapsto \{\text{bars containing both } s, t\}$$

• A barcode (collection of intervals) can be read as a diagram $R \rightarrow Mch$:

 $t \mapsto \{ \text{bars in barcode containing } t \}$

$$(s \le t) \mapsto \{\text{bars containing both } s, t\}$$

• A matching diagram defines a barcode:

• A barcode (collection of intervals) can be read as a diagram $R \rightarrow Mch$:

 $t \mapsto \{\text{bars in barcode containing } t\}$

$$(s \le t) \mapsto \{ \text{bars containing both } s, t \}$$

A matching diagram defines a barcode:

intervals formed by equivalence classes of matched elements

• A barcode (collection of intervals) can be read as a diagram $R \rightarrow Mch$:

 $t \mapsto \{\text{bars in barcode containing } t\}$

$$(s \le t) \mapsto \{\text{bars containing both } s, t\}$$

• A matching diagram defines a barcode:

intervals formed by equivalence classes of matched elements

Turn this into an equivalence of categories $Barc \simeq Mch^R$

A category of barcodes

Proposition

The functor category **Mch**^R is equivalent to **Barc**, the category with

- objects: barcodes (as a disjoint union of intervals),
- morphisms: overlap matchings of barcodes $U \rightarrow V$:

A category of barcodes

Proposition

The functor category Mch^R is equivalent to Barc, the category with

- objects: barcodes (as a disjoint union of intervals),
- morphisms: overlap matchings of barcodes U → V:
 if I ∈ U is matched to J ∈ V, then I overlaps J above:
 - I bounds J above,
 - J bounds I below,
- - $I \cap J \neq \emptyset$.

A category of barcodes

Proposition

The functor category Mch^R is equivalent to Barc, the category with

- objects: barcodes (as a disjoint union of intervals),
- morphisms: overlap matchings of barcodes U → V: if I ∈ U is matched to J ∈ V, then I overlaps J above:
 - I bounds J above,
 - J bounds I below,
 - $I \cap J \neq \emptyset$.
- composition of overlap matchings: $\tau \bullet \sigma = \{(I, K) \in \tau \circ \sigma \mid I \text{ overlaps } K \text{ above}\}$ (where $\tau \circ \sigma$ is the standard composition of matchings)

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

Bottleneck distance: $d_B(U, V) = \inf\{\delta \mid \exists \delta \text{-matching } U \nrightarrow V\}$

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

Bottleneck distance: $d_B(U, V) = \inf\{\delta \mid \exists \delta \text{-matching } U \nrightarrow V\}$

• δ -interleaving between diagrams $X, Y : \mathbf{R} \to \mathcal{C}$ (in any category \mathcal{C}): natural transformations $f_t : X_t \to Y_{t+\delta}, g_t : Y_t \to X_{t+\delta}$ yielding commutative diagrams

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

Bottleneck distance: $d_B(U, V) = \inf\{\delta \mid \exists \delta \text{-matching } U \nrightarrow V\}$

• δ -interleaving between diagrams $X, Y : \mathbf{R} \to \mathcal{C}$ (in any category \mathcal{C}): natural transformations $f_t : X_t \to Y_{t+\delta}, g_t : Y_t \to X_{t+\delta}$ yielding commutative diagrams

Interleaving distance: $d_I(X, Y) = \inf\{\delta \mid \exists \delta \text{-interleaving } X \leftrightarrow Y\}$

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

Bottleneck distance: $d_B(U, V) = \inf\{\delta \mid \exists \delta \text{-matching } U \nrightarrow V\}$

• δ -interleaving between diagrams $X, Y : \mathbf{R} \to \mathcal{C}$ (in any category \mathcal{C}): natural transformations $f_t : X_t \to Y_{t+\delta}, g_t : Y_t \to X_{t+\delta}$ yielding commutative diagrams

Interleaving distance: $d_I(X, Y) = \inf\{\delta \mid \exists \delta \text{-interleaving } X \leftrightarrow Y\}$

Proposition

 $d_I = d_B$ (using the equivalence **Barc** \simeq **Mch**^R).

Structure of persistence sub-/quotient modules

Proposition

Let M woheadrightarrow N be an epimorphism.

Then there is an injection of barcodes $B(N) \hookrightarrow B(M)$ such that if J is mapped to I, then

- I and J are aligned below, and
- I bounds J above.

This construction is functorial.

Dually, there is an injection $B(M) \hookrightarrow B(N)$ for monomorphisms $M \hookrightarrow N$.

Structure of persistence sub-/quotient modules

Proposition

Let M woheadrightarrow N be an epimorphism.

Then there is an injection of barcodes $B(N) \to B(M)$ such that if J is mapped to I, then

- I and J are aligned below, and
- I bounds J above.

This construction is functorial.

Dually, there is an injection $B(M) \hookrightarrow B(N)$ for monomorphisms $M \hookrightarrow N$.

Rephrased for Mch^R:

Proposition

There is a functor from epimorphisms of persistence modules to epimorphisms of matching diagrams.

Dually, there is a functor from monomorphisms to monomorphisms.

Induced matchings

For $f: M \to N$ a morphism of pfd persistence modules, the epi-mono factorization

$$M \rightarrow \inf \hookrightarrow N$$

gives an *induced matching* $\chi(f)$ between their barcodes:

Induced matchings

For $f: M \to N$ a morphism of pfd persistence modules, the epi-mono factorization

$$M \rightarrow \inf \hookrightarrow N$$

gives an *induced matching* $\chi(f)$ between their barcodes:

• compose the functorial injections $B(M) \leftarrow B(\operatorname{im} f) \hookrightarrow B(N)$ from before to a matching

$$\chi(f): B(M) \nrightarrow B(N).$$

Induced matchings

For $f: M \to N$ a morphism of pfd persistence modules, the epi-mono factorization

$$M \twoheadrightarrow \operatorname{im} f \hookrightarrow N$$

gives an *induced matching* $\chi(f)$ between their barcodes:

• compose the functorial injections $B(M) \leftarrow B(\operatorname{im} f) \hookrightarrow B(N)$ from before to a matching

$$\chi(f): B(M) \nrightarrow B(N).$$

Theorem

Assume that $\ker f$ is δ -trivial. If $\chi(f)$ matches I to J, then

- I overlaps J, and J overlaps $I(\delta)$.
- **2** Any unmatched interval of B(M) is δ -trivial.

There is a dual statement for coker f δ -trivial.

The categorified induced matching theorem

Induced matching theorem, rephrased in Mch^R:

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does the induced matching $\chi(f): B(M) \nrightarrow B(N)$.

The categorified induced matching theorem

Induced matching theorem, rephrased in Mch^R:

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does the induced matching $\chi(f): B(M) \nrightarrow B(N)$.

Note:

- We always have $B(\operatorname{im} f) = \operatorname{im} \chi(f)$ by construction.
- But ker $\chi(f)$ may differ from $B(\ker f)$.
- The induced matching may strictly decrease the triviality of the kernel.

A general criterion for δ -trivial (co)kernels

Lemma

Consider a morphism $f: M \to N$ between diagrams $M, N: \mathbf{R} \to \mathcal{A}$ in a Puppe-exact category \mathcal{A} , and let $s: N(-\delta) \to N$ be the internal shift morphism. The following are equivalent:

- **1** coker f is δ -trivial;
- **2** the image monomorphism $\operatorname{im} s \hookrightarrow N$ factors through the image monomorphism $\operatorname{im} f \hookrightarrow N$ as

A dual statement holds for $\ker f$.

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does $\chi(f)$.

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does $\chi(f)$.

Proof outline.

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does $\chi(f)$.

Proof outline.

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does $\chi(f)$.

Proof outline.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Proof outline.

Forward direction:

• A δ -interleaving morphism $f: M \to N(\delta)$ has 2δ -trivial kernel and cokernel.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Proof outline.

Forward direction:

- A δ -interleaving morphism $f: M \to N(\delta)$ has 2δ -trivial kernel and cokernel.
- By the induced matching theorem, $\chi(f):B(M)\to B(N(\delta))$ has 2δ -trivial kernel and cokernel.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Proof outline.

Forward direction:

- A δ -interleaving morphism $f: M \to N(\delta)$ has 2δ -trivial kernel and cokernel.
- By the induced matching theorem, $\chi(f):B(M)\to B(N(\delta))$ has 2δ -trivial kernel and cokernel.
- Equivalently, B(M) and B(N) being δ -interleaved in $\mathbf{Mch}^{\mathbf{R}}$.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Proof outline.

Forward direction:

- A δ -interleaving morphism $f: M \to N(\delta)$ has 2δ -trivial kernel and cokernel.
- By the induced matching theorem, $\chi(f): B(M) \to B(N(\delta))$ has 2δ -trivial kernel and cokernel.
- Equivalently, B(M) and B(N) being δ -interleaved in Mch^R.

Converse direction:

Apply the canonical functor Mch → Vect.

Barcodes from scratch

- Goal: construct barcode/matching diagram of persistence module without decomposition
- At each index in the matching diagram, the set should be natural numbers $\{1, \ldots, n\}$

Barcodes from scratch

- Goal: construct barcode/matching diagram of persistence module without decomposition
- At each index in the matching diagram, the set should be natural numbers $\{1, \ldots, n\}$

Approach:

Order intervals in barcode (lexicographically) by birth (increasing), then death (decreasing)

Barcodes from scratch

- Goal: construct barcode/matching diagram of persistence module without decomposition
- At each index in the matching diagram, the set should be natural numbers $\{1, ..., n\}$

Approach:

- Order intervals in barcode (lexicographically) by birth (increasing), then death (decreasing)
- At each index t, enumerate the intervals containing t in that order

Barcodes from scratch

- Goal: construct barcode/matching diagram of persistence module without decomposition
- At each index in the matching diagram, the set should be natural numbers $\{1, \ldots, n\}$

Approach:

- Order intervals in barcode (lexicographically) by birth (increasing), then death (decreasing)
- At each index t, enumerate the intervals containing t in that order
- Between any two indices, match numbers according to their associated barcode intervals

Barcodes from scratch

- Goal: construct barcode/matching diagram of persistence module without decomposition
- At each index in the matching diagram, the set should be natural numbers $\{1, ..., n\}$

Approach:

- Order intervals in barcode (lexicographically) by birth (increasing), then death (decreasing)
- At each index t, enumerate the intervals containing t in that order
- Between any two indices, match numbers according to their associated barcode intervals

	_	

M: persistence module, *D*: matching diagram of *M* (intervals ordered by birth, then death).

• Which numbers j are in D_t ? This is $\{1, \ldots, \dim M_t\}$.

- Which numbers j are in D_t ? This is $\{1, \ldots, \dim M_t\}$.
- Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{1, \dots, \operatorname{rank} M_{s,t}\}$.
 - In D_t , bars containing s come before bars not containing s

- Which numbers j are in D_t ? This is $\{1, \ldots, \dim M_t\}$.
- Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{1, \dots, \operatorname{rank} M_{s,t}\}$.
 - In D_t , bars containing s come before bars not containing s
- Given $j \in D_t$, to which $i \in D_s$ is it matched? The difference i - j is the number of bars that

 - **b** die between s and t.

- Which numbers j are in D_t ? This is $\{1, \ldots, \dim M_t\}$.
- Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{1, \dots, \operatorname{rank} M_{s,t}\}$.
 - In D_t , bars containing s come before bars not containing s
- Given $j \in D_t$, to which $i \in D_s$ is it matched? The difference i - j is the number of bars that

 - **b** die between s and t.
- Given j ∈ D_t, what indices are below the jth interval at index t? This is {r < t | rank M_{r,t} < j}.

- Which numbers j are in D_t ? This is $\{1, \ldots, \dim M_t\}$.
- Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{1, \dots, \operatorname{rank} M_{s,t}\}$.
 - In D_t , bars containing s come before bars not containing s
- Given $j \in D_t$, to which $i \in D_s$ is it matched? The difference i - j is the number of bars that

 - **b** die between s and t.
- Given j ∈ D_t, what indices are below the jth interval at index t? This is {r < t | rank M_{r,t} < j}.
- Together, this yields $i-j = \max \{ \operatorname{rank} M_{r,s} \operatorname{rank} M_{r,t} \mid r < s, \operatorname{rank} M_{r,t} < j \}.$

M: persistence module, *D*: matching diagram of *M* (intervals ordered by birth, then death).

- Which numbers j are in D_t ? This is $\{1, \ldots, \dim M_t\}$.
- Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{1, \dots, \operatorname{rank} M_{s,t}\}$.
 - In D_t , bars containing s come before bars not containing s
- Given $j \in D_t$, to which $i \in D_s$ is it matched? The difference i - j is the number of bars that

 - **b** die between s and t.
- Given j ∈ D_t, what indices are below the jth interval at index t? This is {r < t | rank M_{r,t} < j}.
- Together, this yields $i-j = \max \{ \operatorname{rank} M_{r,s} \operatorname{rank} M_{r,t} \mid r < s, \operatorname{rank} M_{r,t} < j \}.$

This specifies the barcode of M (as a matching diagram) based on ranks only.

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

The previous construction extents to a functor of epimorphisms $M \twoheadrightarrow N$ from persistence modules to matching diagrams.

• $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

 $\max \big\{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \big\}.$

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

• $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

$$\max \{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \}.$$

• Dually for monomorphisms

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

• $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

$$\max \{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \}.$$

- Dually for monomorphisms
- Epi-mono factorization yields an induced matching

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

• $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

$$\max \{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \}.$$

- Dually for monomorphisms
- Epi-mono factorization yields an induced matching
- Coincides with previous induced matching (under the equivalence Barc ≃ Mch^R)

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

• $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

$$\max \{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \}.$$

- Dually for monomorphisms
- Epi-mono factorization yields an induced matching
- Coincides with previous induced matching (under the equivalence Barc ≃ Mch^R)

Obtain induced matching and algebraic stability theorems without invoking the interval decomposition theorem

