Lecture 06 - Artificial Intelligence & Platforms_Ecosystems

Artificial Intelligence & Platforms/Ecosystems

Maryam Washik – Department of Informatics, University of Oslo IN 4150 – Digital Ecosystems

Al in Everyday Life

Al affects many aspects of daily life-often invisibly:

- · Controls traffic flow in cities
- Curates playlists and recommendations (e.g., Spotify, Netflix)
- · Powers automated diagnostics in healthcare
- · Suggests courses in education

"Al technology touches more aspects of our lives than we are even aware of..."

- Zhang Yiming, CEO, ByteDance

Agenda

- 1. What is AI? (Definition & Categories)
- 2. Al-Driven Platforms & Ecosystems
- 3. Data Network Effects
- 4. Al's Disruptive Role in Platforms
- 5. Shifting to Platform Models
- 6. Ethical Implications

what is Artificial Intelligence (AI)?

"Al is technology that enables computers and machines to simulate human learning, comprehension, problem solving, decision making, creativity and autonomy."

- IBM

Al Categories (Kai-Fu Lee's Framework)

- 1. Internet AI: Personalizes content using user data (e.g., Google Search, Netflix)
- 2. Business AI: Automates industry tasks (e.g., chatbots, fraud detection)
- 3. Perception AI: Blends digital & physical with sensors (e.g., smart homes, AR)
- 4. Autonomous AI: Operates independently (e.g., drones, self-driving cars)

Al-Driven Platforms

- Digital platforms are core infrastructure in the digital economy.
- · Ecosystems rely on user-generated data to innovate and scale.
- · Data is the raw material of platform success.

✓ Role of Data in Al & Platform Growth

- Big Data = fuel
- Al algorithms = engine
- Together they power platforms through:

- Insight generation
- Personalization
- Task automation
- Scalable operations

How Al Powers Platforms

Feature	Description
Task Automation	24/7 chatbots, customer service
Personalization	Tailored experiences (e.g., Amazon recommendations)
Security	Spam/phishing detection (e.g., Google's email filters)
Advanced Analytics	Understand user behavior, trends
Decision Optimization	Real-time pricing (e.g., Uber surge pricing)
Product Innovation	Autonomous vehicles, new services
Customer Service	Al agents handling millions of users
Data Network Effects	Self-improving systems that get smarter with more users and data

X Core Al Data Activities

- 1. Data Acquisition: Collect, filter, clean diverse data
- 2. Data Analysis: Detect patterns and trends
- 3. Data Curation: Organize and maintain long-term usability
- 4. Storage: Secure, optimized storage infrastructure
- 5. Interpretation & Decision-Making: Actionable insights, e.g., stock recommendations

A Adoption Challenges

- · Lack of clarity: What AI to use, when, and why?
- Al integration requires strategic planning and governance
- Leverage Data Network Effects for ongoing value creation

What Are Data Network Effects?

Traditional network effects: value increases with more users

Data network effects: value increases as more data improves system intelligence

How It Works:

- Every interaction improves AI predictions (e.g., Google Maps, Spotify)
- Better predictions → better user experience → more users → more data → smarter AI
 - ⇒ Positive feedback loop

Misconceptions

- Not all growth from AI is due to data network effects.
- · Many platforms (e.g., Stack Overflow, Yelp) benefit from regular network effects (user interaction), not Al-based learning.

■ Google Maps Example: Data Network Effects in Action

- 1. User Interaction: Opens app, enters destination
- 2. Data Collection: Routes, traffic, feedback

- 3. Analysis: Predicts travel time, suggests best route
- 4. Feedback Loop: User confirms effectiveness
- 5. Reinforcement Learning: Improves with use
- 6. Virtuous Cycle: Better experience → more users → more data → smarter AI

Strategic Use of Al & Data

- Move beyond traditional data
- · Use continuous feedback to refine systems
- Define clear data ownership and governance
- Al should:
 - · Improve product quality
 - · Drive growth and retention
 - · Enhance strategic decisions

Al Disruption: Stack Overflow Case

- Stack Overflow fed early AI systems (e.g., Copilot, ChatGPT)
- · Developers now use AI instead of contributing back
- · Stack Overflow responded with Overflow AI, an API for integration with platforms like OpenAI and Microsoft
- · Paradox: Al uses SO data but reduces its relevance as a community

© Ecosystems & Platform Transformation

- Platforms (e.g., Facebook, Amazon) excel via multi-sided models + Al
- · Traditional firms must adapt to Al-enabled platform models to stay competitive
- · Al helps:
 - Coordinate services
 - Enhance customer experience
 - · Create higher-value ecosystems

Case Study: Ping An Good Doctor (China)

Challenges:

Doctor shortage, chronic disease burden, rural access

Solutions:

- Online consultations
- Al diagnostics, disease management
- Medicine delivery
- · Partnerships with clinics & labs

Ping An's Digital Healthcare Ecosystem

- 3,000+ AI models used in:
 - Diagnosing diseases
 - · Chronic condition management
 - Serving 2.6 M patients and 500 k+ doctors
- Stakeholders: Government, Hospitals, Doctors, Pharma
 - Improves diagnosis, healthcare distribution, and treatment development

Area	Impact
Chronic Disease	30% improvement in diabetes management
Al Diagnostic Tools	Used 33 million times
Resource Gaps	Al fills shortages in rural areas
Patient Benefits	Faster diagnoses, better access, more options
Global Leadership	Highest number of healthcare AI patents

Key Lessons from Ping An

- Scalability & Accessibility: Wide reach via apps
- · Data-Driven: Strong data infrastructure
- · Partnerships: Collaborate with tech & research orgs
- · Continuous Innovation: Experimentation, culture of learning
- Ethical Use: Al augments, not replaces; must be transparent and accountable

Ethical Implications of Al

1. Information Privacy

• Al may expose personal or location data (e.g., via maps)

2. Extrapolation

- Biased predictions if trained on incomplete/past-biased data
 - Example: Al trained on convictions predicting future crimes → discrimination

3. Automation

- · Can displace jobs and reproduce bias in decisions
 - Example: Algorithmic hiring or sentencing

4. Imitation

• Can help (assistants), or harm (deepfakes, misinformation)

Final Thoughts

- · Al and platforms are deeply intertwined
- · Strategic, ethical implementation is critical
- · Ecosystem-based models powered by AI will define competitive advantage
- · Platforms must evolve or risk becoming obsolete

Al is a tool, not a replacement for human expertise Growth comes from combining AI, data, human judgment, and responsible governance