Series 4b

1. Polynomial Growth in Metric Spaces

a) Let (E, d_E) and (F, d_F) be metric spaces with $E \neq \emptyset$, and let $f: E \to F$ be a function. Prove that f grows at most polynomially if and only if there exist $v \in E$ and $w \in F$ such that

$$\limsup_{c \to \infty} \sup_{x \in E} \frac{d_f(w, f(x))}{(1 + d_e(v, x))^c} < \infty.$$
(1)

b) Let $k, l, \nu \in \mathbb{N}$ and let $f : \mathbb{R}^k \to \mathbb{R}^l$ be a ν -times continuously differentiable function with at most polynomially growing derivatives. Prove that for all $w = 0, 1, \ldots, \nu$, the w-th derivative

$$f^{(w)}$$
 grows at most polynomially. (2)

2. Convergence Types at Time T for Stochastic Processes

For a probability space (Ω, \mathcal{F}, P) and T > 0, consider a sequence of real-valued stochastic processes $Y^N : [0, T] \times \Omega \to \mathbb{R}, N \in \mathbb{N}_0$, defined at time T by

$$Y_T^N = \frac{1}{N}Z$$
, where $Z(P) = \mathcal{N}_{0,1}$ and $Y_T^0 = 0$ (3)

(that is, Z is a standard normal random variable). Identify the types of convergence, as defined in Section 4.2, for which $Y_T^N \to Y_T^0$ holds as $N \to \infty$. For each type of convergence that applies, determine the order α of convergence, if applicable.

3. Equivalence of Bounded Derivatives and Quadratic Inequalities

Let $\mu \in C^1(\mathbb{R}, \mathbb{R})$ and $L \in \mathbb{R}$. Prove that:

$$\sup_{x \in \mathbb{R}} \mu'(x) \le L \quad \text{if and only if} \quad \forall x, y \in \mathbb{R} : (x - y)(\mu(x) - \mu(y)) \le L(x - y)^2. \tag{4}$$

4. Increment-Tamed Euler-Maruyama

(The following does not distinguish between pseudorandom numbers and actual random numbers.) Implement an *Increment-Tamed Euler-Maruyama* approximation $Y: \{0, 1, ..., N\} \times \Omega \to \mathbb{R}^d$ (see Section 4.5.4) for the stochastic differential equation

$$dX_t = \mu(X_t)dt + \sigma(X_t)dW_t, \quad t \in [0, T], \quad X_0 = \xi, \tag{5}$$

with time step size T/N, where the SDE (5) is set as in Definition 4.5.7 of the lecture notes.

Do this by writing a MATLAB function IncrementTamed(T, d, m, N, ξ , μ , σ) which takes as input $T \in (0, \infty)$, d, m, $N \in \mathbb{N}$, $\xi \in \mathbb{R}^d$, $\mu \in \mathcal{M}(\mathcal{B}(\mathbb{R}^d), \mathcal{B}(\mathbb{R}^d))$, $\sigma \in \mathcal{M}(\mathcal{B}(\mathbb{R}^d), \mathcal{B}(\mathbb{R}^d \times m))$ and returns as output a realisation of an $Y_N(P)$ -distributed random variable.

Submission Deadline: Wednesday, 20 November 2024, by 2:00 PM.