

CloudNativeCon

Europe 2022

WELCOME TO VALENCIA

Jet Energy Corrections with GNN Regression using Kubeflow at CERN

Daniel Holmberg, CERN Dejan Golubovic, CERN

Introduction

Machine Learning and Kubeflow at CERN

Jet Energy Corrections with GNN

Jet Energy Corrections with GNN - Kubeflow Demo

Conclusions

CERN

Mission - uncover what the universe is made of and how it works

Study of subatomic particles

Largest particle physics laboratory in the world

International collaboration

17 000 employees

110 nationalities

Collaboration with institutes in 70 countries

Large Hadron Collider - LHC

Largest particle accelerator in the world

27 km ring of superconducting magnets

100 m underground

Accelerate particles

Near the speed of light

4 collision points - detectors

CMS, ATLAS, LHCb, ALICE

Introduction

Machine Learning and Kubeflow at CERN

Jet Energy Corrections with GNN

Jet Energy Corrections with GNN - Kubeflow Demo

Conclusions

High Energy Physics Data at CERN

Around 40 million collisions per second in LHC

90 petabytes of data per year produced by all experiments

Potential for machine learning in different stages of data acquisition

The amount of data accessible can benefit machine learning algorithms

CMS Data Acquisition System

Machine Learning at CERN

Wide range of ML applications at CERN

Data acquisition

Coarse grain event selection - fast inference on FPGAs

Fine grain event selection - GPU inference

Particle tracking and reconstruction

Beam calibration - reinforced learning

Simulations - 3D GANs as a faster alternative to Monte Carlo

IT infrastructures - notification delivery system, anomaly detection in cloud monitoring

Kubeflow at CERN

Centralized ML platform to improve resource utilization across CERN

Reduce maintenance work for researchers

Easier access to GPUs

Scaling capabilities

On-premise cluster, using Openstack

GitOps with ArgoCD

Integration with CERN services

SSO, Harbor registry, CSI, Gitlab CI

In production since April 2021

Kubeflow at CERN

Previous talks

A Better and More Efficient ML Experience for CERN Users

Building and Managing a Centralized ML Platform with Kubeflow at CERN

Focus on infrastructure and admin workflows

Today - focus on a specific use case from CERN

Show application of machine learning in high energy physics

Demonstrate utilization of Kubeflow to scale ML workloads

Introduction

Machine Learning and Kubeflow at CERN

Jet Energy Corrections with GNN

Jet Energy Corrections with GNN - Kubeflow Demo

Conclusions

Jet Energy Corrections

Colliding protons at high energies produces color-charged partons

Hadronization gives rise to a spray of color-neutral particles that are clustered into a jet

Measured **energy** differs from theory due to detector inaccuracies, invisible particles etc.

Can machine learning help with energy calibration?

https://cms.cern/news/jets-cms-and-determination-their-energy-scale

Representing Jets as Particle Clouds

Use detector coordinates to represent jets as **particle clouds**Analogous to **point clouds** in computer vision problems

Learning on Particle Clouds

Map set of particle feature vectors x_i towards energy target y

$$f\left(\begin{array}{c} x_4 \\ x_2 \\ x_3 \end{array}\right) = y$$

Learning on Particle Clouds

Map set of particle feature vectors x_i towards energy target y

The model must be invariant to the order of the particles

$$f\left(\begin{array}{c} x_4 \\ x_2 \\ x_1 \end{array}\right) = y = f\left(\begin{array}{c} x_1 \\ x_2 \\ x_4 \end{array}\right)$$

Particle Flow Network

ParticleNet

ML Pipeline

Kubeflow Pipelines: "Engine for scheduling multi-step ML workflows"

Define end-to-end ML pipeline as a directed graph

Start with running a <u>Katib AutoML</u> experiment

Export the optimal model

Finally serve using **KServe**

Training

Dataset with 14 million jets = 10GB stored on S3

Minimize mean absolute error (MAE) loss

Tune hyperparameters using Random Search to reach a lower loss

Scalability

Multi-node training by using the PyTorchJob operator Multiple CPU workers can read data simultaneously Additionally, many Katib trials can be run in parallel Monitor training with Tensorboard component

Inference

Export best PyTorch model to **ONNX**

Serve model with Nvidia Triton inference server

Use Triton's Python client to request predictions and get usage statistics

Analyze inference time and plot physics result in a notebook server on Kubeflow

Physics Results

Energy resolution: 10% improvement

Flavor dependence: factor 3 improvement

Introduction

Machine Learning and Kubeflow at CERN

Jet Energy Corrections with GNN

Jet Energy Corrections with GNN - Kubeflow Demo

Conclusions

Introduction

Machine Learning and Kubeflow at CERN

Jet Energy Corrections with GNN

Jet Energy Corrections with GNN

Conclusions

Challenges

Finding a correct version of the triton server image

Tensorboard S3 integration

Tensorboard controller customized downstream to pick up S3 credentials from a secret

Issue - https://github.com/awslabs/kubeflow-manifests/issues/118

Be careful with model logs outputs

Can make obtaining StdOut metrics difficult

Better option - use file metrics collector

Katib UI could be better suited for multiple metrics

Conclusions

ML can provide **significant improvements** in high energy physics use cases

Jet tagging example

Energy resolution improved by 10%

Flavour dependance improved by factor of 3

Kubeflow greatly facilitates the scalability of large-scale workloads

Excellent mutual integration of components (Pipelines, AutoML, operators, KServe)

Customizable and reproducible environments

Well accepted across CERN scientific community

PromCon North America 2021

Thank you for the attention!

Questions?

Backup

Particle Flow Network [arXiv:1810.05165]

An MLP ϕ is applied to every particle x_i

$$\mathbf{h}_i = \phi(\mathbf{x}_i)$$

Aggregate latent features h_i using sum pooling (order invariant operation)

Feed into another MLP p mapping to the regression target

$$f(\mathbf{X}) = \rho \left(\sum_{i \in \mathcal{V}} \phi(\mathbf{x}_i) \right)$$

ParticleNet [arXiv:1902.08570]

Initial graph in (η, φ) space — updated after each edge convolution

Local patch for every particle using *k*-nearest neighbors

Define edge features for each center-neighbor pair

$$\mathbf{e}_{ij} = \psi(\mathbf{x}_i, \, \mathbf{x}_j)$$

Aggregate using average pooling and concatenate with skip connection

$$\mathbf{h}_i = \phi \left(\mathbf{x}_i, \frac{1}{k} \sum_{j \in \mathcal{N}_i^k} \psi(\mathbf{x}_i, \mathbf{x}_j) \right)$$

Pool outputs and feed into another MLP mapping to the target

$$f(\mathbf{X}, \mathbf{A}) = \rho \left(\frac{1}{n} \sum_{i \in \mathcal{V}_i^n} \phi(\mathbf{x}_i, \mathbf{X}_{\mathcal{N}_i^k}) \right)$$

