

Theoretische Informatik

Prof. Dr. Juraj Hromkovič Prof. Dr. Emo Welzl http://www.ita.inf.ethz.ch/theoInf15

Übungsaufgaben – Blatt 2

Zürich, 25. September 2015

Aufgabe 4

- (a) Sei $w_n = 0^{2^{2^{5 \cdot n^2}}} \in \{0,1\}^*$ für alle $n \in \mathbb{N}$. Geben Sie eine möglichst gute obere Schranke für die Kolmogorov-Komplexität von w_n an, gemessen in der Länge von w_n .
- (b) Geben Sie eine unendliche Folge von natürlichen Zahlen y_1, y_2, y_3, \ldots mit $y_i < y_{i+1}$ an, so dass eine Konstante c existiert, so dass für alle $i \ge 1$

$$K(y_i) \le \lceil \log_2 \log_2 \log_2 \sqrt{y_i} \rceil + c$$

gilt.

10 Punkte

Aufgabe 5

Sei $n \in \mathbb{N}$. Zeigen Sie, dass mindestens die Hälfte aller Wörter $w \in \{0,1\}^*$ mit $|w| \leq n$ zufällig ist.

Aufgabe 6

Wir betrachten die Sprache

$$L=\left\{1^i0^j1^k\mid i+j=2k \text{ und } i,j,k\in\mathbb{N},k\geq 1\right\}.$$

Sei x_n das kanonisch n-te Wort in L. Zeigen Sie, dass es eine Konstante $c \in \mathbb{N}$ gibt, so dass für alle $n \in \mathbb{N}$ gilt:

$$K(x_n) \le c + 2 \cdot \log_2(|x_n|).$$

10 Punkte

Abgabe: Am 2. Oktober nach der Vorlesung im Raum CAB G 61 oder bis 10:15 Uhr in die Sammelkästen im Raum CAB F 17.1.