Algorytmy Metaheurystyczne

Szymon Brzeziński - 254611 Paweł Prusisz - 254642

05.12.2021

1 Opis

Tematem pracy jest przetestowanie oraz opis algorytmu Tabu Search rozwiązującego instancje problemu komiwojażera.

Badane instancje są wczytywane z biblioteki TSPLIB oraz generowane losowo.

Typy instancji:

- 1. Symetryczne
- 2. Asymetryczne
- 3. Euklidesowe

Badane algorytmy:

- 1. extended nearest neighbour
- 2. two-opt
- 3. tabu-search

2 Jakość rozwiązań

Pierwszą badaną zależnością jest porównanie rozwiązań zwróconych przez tabu searchwzględem rozmiaru problemu w stosunku do wczesniej zaimplementowanych algorytmów. W tym celu dla każdego badanego rozmiaru n zostały wygenerowane 10 różnych instancji na których wywołano algorytmy nearest neighbour extended, two-opt oraz tabu search. Ilość iteracji dla tabu jest równa wielkości problemu. Długość zwróconej ścieżki oraz czas działania algorytmów został uśredniony dla każdego n

2.1 Wykresy

2.1.1 Instacja Symetryczna

2.1.2 Instacja Asymetryczna

2.1.3 Instacja Euklidesowa

2.2 Wnioski

Z uzyskanych wyników mżemy zobaczyć iż tabu search dla danych wywołań zwraca podobne wyniki jak algorytm two-opt. Złożoność obliczeniwa zaimplementowanego przez nas tabu search to $O(n^3)$, podobnie do algorytmu two-opt.

3 Jakość rozwiązań w tym samym czasie

Tym razem zbadany jak poradzi sobie tabu search przy ograniczonym czasie działania. Testy wykoywane były następujący sposób: dla danej losowej instancji uruchamiany był algorytm nearest neighbour extended, jego czasdziałania był ograniczeniem czasowym dla pozostałych 2 algorytmów. Wyniki tego testu prezentują się następująco.

3.1 Wykresy

3.1.1 Instancja Symetryczna

3.1.2 Instancja Asymetryczna

3.1.3 Instancja Euklidesowa

lenght

3.2 Wnioski

W przypadku instancji asymetrycznej tabu search ogazał się goszy od algorytmu two-opt, a dla pozostałych przypadków udało mu się znaleźć lepszą scieżkę przy tym samym ograniczeniu czasowym.

4 Porównanie z optymalnym

 ${\bf W}$ tym badaniu sprawdzimy jak prezentują się wyniki tabu search w porównaniu do rozwiązania optymalnego

4.1 Wykresy

4.1.1 Berlin52

4.1.2 att48

4.1.3 ulysses 22

4.2 Wnioski

Tabu search dla wszytkich testowanych przypadków zwrócił wynik najbliższy optymalnego spośród testowanych algorytmów.

5 Wielkość listy tabu

W tym badaniu sprawdzimy jak wielkość listy tabu wpływa na wynik. Testowane dla 2 instancji, ulysses22 oraz ulysses16 wielkość listy tabu zmieniała sie od 1 do 50. Na wykresach przedstawiono długość znalezionego rozwiązania w zależności od długości listy tabu

5.1 Wykresy

5.1.1 Ulysses 22

5.1.2 Ulysses 16

5.2 Wnioski

Jak widać na wykresach długość listy tabu wpływa na jakość rozwiązania. Dla instancji Ulysses22 długość listy 30 dała najlepszy rezultat, natomiast w przypadku instancji Ulysses16 najlepszy wynik otrzymano dla długości 23 i 25.