$model_optimization$

December 15, 2022

1

NVIDIA Jetson Raspberry Pi

1.1

paddle-bfloat	0.1.7
paddlepaddle-gpu	2.3.2.post112
paddleslim	2.2.1
paddlex	2.1.0
pandas	1.3.5
pexpect	4.8.0
pickleshare	0.7.5
Pillow	9.2.0
numpy	1.21.6
opencv-python	4.6.0.66
openpyxl	3.0.10
scikit-learn	0.23.2
scipy	1.7.3

1.2 cuda

```
$ nvcc --version $ nvidia-smi
        cuda

ubuntu20.04
Driver Version: 525.60.11
Cuda compilation tools, release 11.2, V11.2.142
Build cuda_11.2.r11.2/compiler.29558016_0
cuDNN Version: 8.2

paddlepaddle-gpu ubuntu20.04
```

```
1.3
```

1. paddlepaddle-gpu: .3.2 paddlepaddle-gpu 2.4.1 bugcudaconda conda install paddlepaddle-gpu==2.3.2 cudatoolkit=10.2 --channel https://mirrors.tuna.tsi pip: python -m pip install paddlepaddle-gpu==2.3.2 -i https://pypi.tuna.tsinghua.edu.cn/simple docker: 1. PaddlePaddle nvidia-docker pull registry.baidubce.com/paddlepaddle/paddle:2.3.2-gpu-cuda10.2-cudnn7.6-trt7. nvidia-docker run --name paddle -it -v \$PWD:/paddle registry.baidubce.com/paddlepaddle/paddle: /usr/local/ pytorch paddlepaddle-gpu cuda.cudnndockercudacudapaddle2. paddlex: pip install paddlex==2.1.0 -i https://mirror.baidu.com/pypi/simple $https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/quick_start_API.md$ $\mathbf{2}$ PaddleSlim 2.0.1 1. 2. 3. 2 1 OCR2.1725 58 sftp://10.10.2.208:50022/data/data1/zhangyl/meter_det

```
YOLOv3_ResNet34
PPyolov2_ResNet50vd_dcn
YOLOv3_MobileNetV3
ppyolov2_r50vd_dcn
```

sftp://10.10.2.208:50022/data/data1/zhangyl/output1/ppyolov2_r50vd_dcn/best_model

num_epochs=270,
train_batch_size=4,
learning_rate=0.000125/2,
warmup_steps=500,
warmup_start_lr=0.0,
lr_decay_epochs=[213, 240],
lr_decay_gamma=0.1,
save_interval_epochs=10,
log_interval_steps=25,
pretrain_weights='COCO'

	(MiB)	GPU	(MiB)		(s)	(MB)
PPyolov2_ResNet50vd_dcn	3750.9	2774		0.991	2.53	364.6
$YOLOv3_ResNet34$	4552.4	2534		0.986	2.88	306.3
$YOLOv3_MobileNetV3$	3988.4	2194		0.978	1.84	185.7

:

2.2

```
PaddleSlim 2.1.0
```

```
params_analysis.py, ppyolov2_r50vd_dcn
```

 ${\tt sftp://10.10.2.208:50022/data/data1/zhangyl/yibiaopan/params_analysis.py}$

API

• step 1:

API:

• step 2: FLOPs

python model.prune(pruned_flops=.2, save_dir='./')

FLOPs 0.2

sensi.data

• step 3:

sensi.data

"'python model.train(num_epochs=270, train_dataset=train_dataset, train_batch_size=8, eval_dataset=eval_dataset, learning_rate=0.001 / 8, warmup_steps=1000, warmup_start_lr=0.0, save_interval_epochs=5, lr_decay_epochs=[216, 243], save_dir='output/yolov3_darknet53/prune')

"

output/yolov3_darknet53/prune

 $pretrain_weights$ None $pretrain_weights$

2.2.1

:

	(MiB)	GPU	(MiB)		(s)	(MB)
PPyolov2_ResNet50vd_dcn	2408.8	945		0.989	0.38	221.4
$YOLOv3_ResNet34$	2330.8	938		0.983	0.64	306.3
$YOLOv3_MobileNetV3$	1767.6	909		0.975	0.101	101.9

 $1000 {\rm Mb~GPU} \quad 1500~{\rm b} \qquad \qquad 85 \qquad 40$ NVIDIA Jetson, Raspberry Pi

3

/

3.1

##

```
python quantize.py.py
   quantize.py,
sftp://10.10.2.208:50022/data/data1/zhangyl/yibiaopan/quantize.py
quantize.py
              API
step 1:
model = pdx.load_model('output/mobilenet_v3/best_model')
step 2:
model.quant_aware_train(
   num_epochs=100,
   train_dataset=train_dataset,
   train_batch_size=4,
   eval_dataset=eval_dataset,
   learning_rate=0.0001 / 4,
   save_dir='output/mobilenet_v3/quant',
   use_vdl=True)
     output/mobilenet_v3/quant
```

3.1.1

:

	(MiB)	GPU	(MiB)		(s)	(MB)
PPyolov2_ResNet50vd_dcn	4152.8	950		0.981	0.72	224.2
$YOLOv3_MobileNetV3$	2586.8	936		0.965	0.34	97.1

GPU

4

Python memory_profiler Pytorch-Memory-Utils

4.0.1 memory_profiler

> pip install memory_profiler#Load its magic function

```
\%load\_ext\ memory\_profiler
    from memory profile import profile
  1.
                   %memit,
    memit x = 10+5
    #Output
    peak memory: 54.01 MiB, increment: 0.27 MiB
        (peak memory)
  2.
def addition():
   a = [1] * (10 ** 1)
   b = [2] * (3 * 10 ** 2)
    sum = a+b
   return sum
%memit addition()
#Output
peak memory: 36.36 MiB, increment: 0.01 MiB
          : @profile , "'python from memory_profiler import profile
@profile def addition(): a = [1] * (10 ** 1) b = [2] * (3 * 10 ** 2) sum = a+b return sum %memit
addition() ""
#Output
Line #
                      Increment
                                 Line Contents
        Mem usage
_____
    2
          36.4 MiB
                       36.4 MiB
                                  @profile
    3
                                   def addition():
    4
          36.4 MiB
                                      a = [1] * (10 ** 1)
                      0.0 MiB
                                      b = [2] * (3 * 10 ** 2)
    5
       3851.1 MiB
                      3814.7 MiB
    6
        7665.9 MiB
                      3814.8 MiB
                                      sum = a+b
        7665.9 MiB
                        0.0 MiB
                                      return sum
peak memory: 7665.88 MiB, increment: 7629.52 MiB
4.0.2 Pytorch-Memory-Utils
                                        GPU
Pytorch-Memory-Utils
import torch
import inspect
```

from torchvision import models

from gpu_mem_track import MemTracker #

```
device = torch.device('cuda:0')

frame = inspect.currentframe()
gpu_tracker = MemTracker(frame) #

gpu_tracker.track() #
cnn = models.vgg19(pretrained=True).to(device) #
gpu_tracker.track()
```