Wine!

How Does What's In The Bottle And What's Outside The Bottle Differ in Predicting Wine Quality?

About the Datasets

Wine Quality Dataset:

contains about 6500 rows of data comparing the chemical breakdown of red and white wines with their rating.

Wine Reviews Dataset:

Contains 130k different wines describing their characteristics such as points, brand, reviewer, country of origin, etc. This data was gathered from a WineEnthusiest website.

Quality vs. Points

Wine Quality

• Median of at least 3 evaluations made by wine experts. Each expert graded the wine quality between 0 (very bad) and 10 (very excellent).

Points

Wine Spectator tasters review wines on the following 100-point scale:

- . 95-100 Classic: a great wine
- 90-94 Outstanding: a wine of superior character and style
- . 85-89 Very good: a wine with special qualities
- . 80-84 Good: a solid, well-made wine
- . 75-79 Mediocre: a drinkable wine that may have minor flaws
- 50-74 Not recommended

Thoughts Behind This Analysis

- Goal: Is there bias in the Wine Reviews data?
 - Chemical makeup and variety are both indicators to how the wine is going to taste
- Wine Quality data doesn't disclose brand information
 - More scientific in collecting data

- Wine Reviews is actively trying to sell to customers
 - The reviewers are named

Wine Reviews

Building a model

Wine Reviews Dataset

Correlation between variable and points:

description length	0.5282095837360421
price	0.45111736218256504
taster name Michael Schachner	-0.24683378570475292
country Chile	-0.2018660991979389
title length	0.16559143968374196

Created a separate dataframe only containing variables where the correlation > .1 and < -.1.

['price', 'title_length', 'description_length',

'country_Argentina', 'country_Chile',

'designation none',

'province Mendoza Province',

'region 1 California', 'region 1 Mendoza',

'region 1 None', 'region 2 California Other',

'taster name Anne Krebiehl\xa0MW',

'taster name Matt Kettmann',

'taster name Michael Schachner',

'variety Pinot Noir',

'variety Sauvignon Blanc']

Reviews Dataset Methods:	Results Using All of the columns		Results Using Correlated Columns	
SVM	Accuracy: < .2 for all c	Evaluating model: C= =10 Accuracy: 0.19542572463768115 Avg. F1 (Micro): 0.19542572463768113 Avg. F1 (Macro): 0.07555018046321006 Avg. F1 (Weighted): 0.26239090996739955	=~.2 For all c	Evaluating model: C= =6.0 Accuracy: 0.21460436722235265 Avg. F1 (Micro): 0.21460436722235265 Avg. F1 (Macro): 0.12962588206615633 Avg. F1 (Weighted): 0.22544413943357228
Naive Bayes	Accuracy = ~0.186		Accuracy = ~0.137	
Random Forest	Accuracy = ~0.28 n_estimators =50, max_depth = 300		Accuracy = ~0.243 n_estimators =80, max_depth = 16	
Quadratic Regression (Degree =2)	R ² = -8166956925598678.0		R^2 = 0.5158	

Wine

Wine Quality

Building a model

Wine Quality Methods:	Results	Random Forest Evaluating model: n_estimators =50, max_depth = 12 Evaluating model: n_estimators =80, max_depth = 12				
Random Forest	Accuracy = 0.65	Accuracy: 0.6548076923076923 Confusion Matric: [[0				
KNN K = 3	Accuracy 0.548	[0 0 0 15 13 6 0] [0 0 0 17 11 6 0] [0 0 0 1 0 0]] Knn EVALUATING MODEL: k = 3- Accuracy: 0.5480769230769231				
Naive Bayes	Accuracy = 0.467	Confusion Matric: [[0				
Linear Regression	R ² = 0.337	[0 0 20 17 4 0 0] [0 0 214 93 29 0 0] [0 0 170 200 79 0 0] [0 0 24 81 72 0 0] [0 0 5 15 14 0 0] [0 0 0 0 1 0 0]]				

Conclusion

Which Model performed the best?

Dataset:	Wine Reviews	Wine Quality
Best Model on Training Data	R^2 0.5158349218104092 Median Absolute Error 1.4536091386854082	Random Forest Evaluating model: n_estimators =50, max_depth = 12 ccuracy: 0.6413461538461539 onfusion Matric: [0
Best Model on Testing Data	124861 88 87.996376 12566 87 88.389977 122629 83 83.452636 129224 86 86.619013	Accuracy stayed around 0.64