Relational Algebra

Prof Dr Melike Şah Direkoğlu

Slide credit: Juliana Freire, Yasemin Bay Ayzeren

DBMS Architecture

How does a SQL query engine work?

- SQL query → relational algebra plan
- Relational algebra plan → Optimized plan
- Execute each operator of the plan

What is an 'Algebra'

- Mathematical system consisting of:
 - Operands; variables or values from which new values can be constructed.
 - Operators; symbols denoting procedures that construct new values from given values.

Is this the Algebra you know?

Algebra -> operators and operands

Expressions -> applying operators to atomic operands and/or other expressions

Algebra of arithmetic expression: operands are variables (i.e. x, y) and constants (i.e. 2, 7, 3), and operators are the usual arithmetic operators (i.e. +, *, -)

E.g.,
$$(x+y)*2$$
 or $((x+7)/(y-3)) + x$

What is Relational Algebra?

- An algebra whose operands are variables that represent relations.
- Operators include *union*, *intersection*, *selection*, *projection*, *Cartesian product*, *etc*. are designed to do the most common things that we need to do with relations in a database.
 - The result is an algebra that can be used as a query language for relations
 - E.g., (π ownerChecking-account) ∩(π ownerSavings-account)

Relational Algebra

- Formalism for creating new relations from existing ones
- Its place in the big picture:

SQL, relational calculus

Relational algebra

Relational Algebra

- Five operators:
 - Union: \cup
 - Difference: -
 - Selection: σ
 - Projection: Π
 - Cartesian Product: ×
- Derived or auxiliary operators:
 - Intersection, complement
 - Joins (**natural**, left join, right join etc.)
 - Renaming: ρ

Core Relational Algebra

- Union, intersection, and difference: Usual set operations, but both operands must have the same relation schema.
- Selection: Picking certain rows.
- Projection: Picking certain columns.
- Products and joins: Compositions of relations.
- Renaming of relations and attributes.

Relational Algebra Notations

- Five operators:
 - Union: \cup
 - Difference: -
 - Selection: σ
 - Projection: Π
 - Cartesian Product: ×
- Derived or auxiliary operators:
 - Intersection, complement
 - Joins (natural, equi-join, theta join, semi-join)
 - Renaming: ρ

1. Union and 2. Difference

- R1 \cup R2 (remove duplicates)
- Example (AllEmployees):

- $A \qquad B$
- ActiveEmployees ∪ RetiredEmployees

- R1 R2
- Example (ActiveEmployees):
 - AllEmployees -- RetiredEmployees

Union (Distinct) Operation—Example

Relations *r*, *s*:

A	В
α	1
α	2
β	1

n $r \cup s$:

 $egin{array}{c|c} A & B \ \hline lpha & 1 \ lpha & 2 \ eta & 1 \ eta & 3 \ \hline \end{array}$

Union Example

Union-Distinct

Table1		
column1	column2	
а	b	
а	С	
а	d	

U

Table 2		
column1	column2	
b	С	
а	d	

	Table1 Union Table2		
	column1	column2	
	а	b	
	а	С	
(а	d)
	b	С	

Duplicate row not repeated in results

Union Example

Union-ALL

Table1		
column1	column2	
а	b	
a	С	
а	d	

U

Table 2		
column1	column2	
b	С	
a	d	

Duplicate Rows are Repeated in Results

Set Difference Operation – Example

• Relations r, s A B

α 1 α 2 β 1
 A
 B

 α
 2

 β
 3

r

n r - s

A	В
α	1
β	1

Set Difference Operation – Example

R

Α	В
1	2
3	4

S

Α	В
1	2
5	6

R - S

Α	В
3	4

What about Intersection?

- It is a derived operator, cannot be directly implemented. We can use the set difference:
- $R1 \cap R2 = R1 (R1 R2)$
- Also expressed as a join (will see later)
- Example
 - UnionizedEmployees
 ○ RetiredEmployees

3. Selection

- Returns all tuples which satisfy a condition (Selects certain rows (tuples/records)
- Notation: $\sigma_c(R)$
- Examples
 - $-\sigma_{Salary > 40000}$ (Employee)
 - $-\sigma_{\text{name} = \text{"Smith"}}$ (Employee)
- The condition c can be connective operators $=, <, \le, >, \ge, <>$
- Logical operators ∧ (and), ∨ (or), ¬ (not)

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

$\sigma_{Salary > 400000}$ (Employee)

SSN	Name	Salary
5423341	Smith	600000
4352342	Fred	500000

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

 $\sigma_{Name = "Smith"}$ (Employee)

SSN	Name	Salary
5423341	Smith	600000

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

$$\sigma \neg (Name = "Smith" \lor Name = "Fred")(Employee)$$

SSN	Name	Salary
1234545	John	200000

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

 σ (Name = "Smith" \land Salary $\gt 500000$) (Employee)

SSN	Name	Salary
5423341	Smith	600000

4. Projection

- Eliminates columns, then removes duplicates (Selecting certain Attributes and removes duplicates)
- Notation: $\Pi_{A1,...,An}(R)$
- Example: project social-security number and names:
 - $\Pi_{SSN, Name}$ (Employee)
 - Output schema: Answer(SSN, Name)

SSN	Name	Salary
1234545	John	200000
5423341	Alice	600000
4352342	Jane	250000

$\Pi_{\text{Name,Salary}}$ (Employee)

Name	Salary
John	200000
Alice	600000
Jane	250000

SSN	Name	Salary
1234545	John	200000
5423341	Alice	600000
4352342	Jane	250000

 $\Pi_{SSN, Salary}$ ($\sigma_{Salary < 300000)}$) (Employee)

SSN	Salary
1234545	200000
4352342	250000

Comparing Select and Project Queries

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

σ_{(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)} (EMPLOYEE).

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5

Comparing Select and Project Queries

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

$\pi_{\text{Lname, Fname, Salary}}(\text{EMPLOYEE}).$

Lname	Fname	Salary
Smith	John	30000
Wong	Franklin	40000
Zelaya	Alicia	25000
Wallace	Jennifer	43000
Narayan	Ramesh	38000
English	Joyce	25000
Jabbar	Ahmad	25000
Borg	James	55000

5. Cartesian Product

- Combining tuples of two relations R1 and R2
- Each tuple in R1 with each tuple in R2
- Notation: $R1 \times R2$
- Example:
 - Employee × Dependents
- Very rare in practice; mainly used to express joins

Cartesian-Product Operation – Example

n *r* x s:

Α	В	С	D	E
α	1	α	10	а
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Cartesian Product Example

Employee

Name	SSN
John	99999999
Tony	77777777

Dependents

EmployeeSSN	Dname
99999999	Emily
77777777	Joe

Employee x Dependents

Name	SSN	EmployeeSSN	Dname
John	99999999	99999999	Emily
John	99999999	77777777	Joe
Tony	77777777	99999999	Emily
Tony	77777777	77777777	Joe

Cartesian Product Example

Employee

emp_no	ename	salary	dept_no
001	Smith	2500	1
002	Adams	3000	1
003	Mary	2750	2
004	John	3000	1

Department

dept_no	dname
1	Accounting
2	Sales

Employee × **Department**

emp_no	ename	salary	dept_no	dept_no	dname
001	Smith	2500	1	1	Accounting
001	Smith	2500	1	2	Sales
002	Adams	3000	1	1	Accounting
002	Adams	3000	1	2	Sales
003	Mary	2750	2	1	Accounting
003	Mary	2750	2	2	Sales
004	John	3000	1	1	Accounting
004	John	3000	1	2	Sales

Cartesian Product Example (Cont.)

Employee V Department

Employee × Department			. Em	Employee.dept_no Department.dept_no				
	emp_no	ename	salary	dept_no	dept_no	dname		
	001	Smith	2500	1	1	Accounting		
	001	Smith	2500	1	2	Sales		
	002	Adams	3000	1	1	Accounting		
	002	Adams	3000	1	2	Sales		
	003	Mary	2750	2	1	Accounting		
	003	Mary	2750	2	2	Sales		
	004	John	3000	1	1	Accounting		
	004	John	3000	1	2	Sales		

Denartment dent no

 $\sigma_{Employee.dept_no=Department.dept_no}$ (Employee × Department)

emp_no	ename	salary	dept_no	dept_no	dname
001	Smith	2500	1	1	Accounting
002	Adams	3000	1	1	Accounting
003	Mary	2750	2	2	Sales
004	John	3000	1	1	Accounting

Natural Join

• Notation: $R1 \times R2$

• Meaning: R1 \times R2 = $\Pi_A(\sigma_C(R1 \times R2))$

• Where:

- The selection σ_C checks equality of all common attributes
- The projection eliminates the duplicate common attributes

Natural Join Example

Employee

Name	SSN
John	99999999
Tony	77777777

Dependents

SSN	Dname
99999999	Emily
77777777	Joe

Employee Dependents =

 $\Pi_{\text{Name, SSN, Dname}}(\sigma_{\text{SSN=SSN}}(\text{Employee x }\rho_{\text{SSN, Dname}}(\text{Dependents}))$

Name	SSN	Dname
John	99999999	Emily
Tony	77777777	Joe

Natural Join

$$\bullet \quad \mathbf{R} = \begin{array}{|c|c|c|c|c|} \mathbf{A} & \mathbf{B} & & & \\ & \mathbf{X} & \mathbf{Y} & & \\ & \mathbf{X} & \mathbf{Z} & & \\ & \mathbf{Y} & \mathbf{Z} & & \\ & \mathbf{Z} & \mathbf{V} & & \end{array}$$

$$S = \begin{bmatrix} B & C \\ Z & U \\ V & W \\ Z & V \end{bmatrix}$$

. D . C_	A	В	С
• $R \times S = $	X	Z	U
	X	Z	V
	Y	Z	U
	Y	Z	V
	Z	V	W

Join: Example

	\bowtie	= jc	in			Acc	ou	nt ⋉	1 Nur	mber=Acc	ount De	eposit
Acco	ount	Num	ber		Owner		Ва	Balance		Туре	Type	
		101	/			Smith			00.00		check	The C
		102	-\			/. Wei			00.00		check	_
		103	- 1			Smith		50	00.00)	saving	
		104		\	M	l. Jones		100	00.00)	check	ing
		105		1	Н	. Martin		10,	.000.	00	<u>chec</u> k	ing
	Depo	sit	Ac	count T	ra	nsaction-	id	Date		Amoun	t	
			100	2	1		1	0/22/0	0	500.00		
			100	2 :	2		1	0/29/0	0	200.00		
			104	4 :	3		1	0/29/0/	0	1000.00		
			103	5 4	4		1	1/2/00		10,000.0	0	
	Number	Owne	Γ	Balance		Туре	Acc	ount T	rans	action-id	Date	Amount
	102	W. We	i	2000.00		checking		102	1		10/22/00	500.00
	102	W. We	ej.	2000.00		checking		102	2		10/29/00	200.00
	104	M. Jor	165	1000.00		checking		104	3		10/29/00	1000.00
	105	H. Ma	rtin	10,000.0	0	checking		105	4		11/2/00	10000.00

Join: Example

Note that when the join is based on equality, then we have two identical attributes (columns) in the answer.

	$\overline{}$					<u>/ </u>			
	Number	Owner	Balance	Type	Acg	Sount 1	rans-id	Date	Amount
	102	W. Wei	2000.00	checking	ŀ	102	1	10/22/00	500.00
{	102	W. Wei	2000.00	checking	ŀ	102	2	10/29/00	200.00
V	104	M. Jones	1000.00	checking	k	104	/3	10/29/00	1000.00
7	105 /	H. Martin	10,000.00	checking	1	05	4	11/2/00	10000.00

6. Renaming

- Changes the schema (attribute names), not the instance
- Notation: $\rho_{B1,...,Bn}(R)$
- Example:
 - $\ \rho_{LastName, \, SocSocNo} \, (Employee)$
 - Output schema:Answer(LastName, SocSocNo)

Renaming Example

Employee

Name	SSN
John	99999999
Tony	7777777

ρ_{LastName, SocSocNo} (Employee)

LastName	SocSocNo
John	99999999
Tony	77777777

Renaming Example

Employee

emp_no	ename	salary	dept_no
001	Smith	2500	1
002	Adams	3000	1
003	Mary	2750	2
004	John	3000	1

П emp_no, ename, P Annual Salary (salary*12), dept_no (employee)

emp_no	ename	Annual	dept_no
		Salary	
001	Smith	30,000	1
002	Adams	36,000	1
003	Mary	33,000	2
004	John	36,000	1