Algebra2

siriehn_nx Tsinghua University siriehn_nx@outlook.com February 26, 2024

6 特征值与特征向量(Eigenvalues & eigenvector)

6.1 特征值与特征向量:定义与性质

Definition 6.1.1 设 ϕ 是 V 上的一个线性变换,如果存在 $\lambda \in \mathbb{F}$ 以及一个非零向量 $\xi \in V$ 使得 $\phi(\xi) = \lambda \xi$,那么称 λ 是 ϕ 的一个特征值,并且称 ξ 是 ϕ 中属于 λ 的特征向量.

Example 6.1.2

- 1. $V = C^{\infty}(\mathbb{R})$ 实数集上无限次可微实函数构成的向量空间,考虑映射 $V \to V, f(x) \mapsto f'(x)$,它是 V 上的一个线性变换,对于任意 $\lambda \in \mathbb{F}$,都有 $\delta(e^{\lambda x} = \lambda e^{\lambda x})$ 因此,每个实数都是 δ 的一个特征值.
- 2. $V = \mathbb{F}[x]$,于是映射 $\phi: V \to V$, $f(x) \mapsto xf(x)$ 是 V 上的一个线性变换,设 λ 是 ϕ 的一个特征值,即存在一个非零多项式 g(x) 使得 $\phi(g(x)) = \lambda g(x)$,此时不存在 g(x),于是 ϕ 中没有特征值.
- 3. $V \in \mathbb{R}$ 上二维向量空间,且 $\{\varepsilon_1, \varepsilon_2\}$ 是 V 的一个基,考虑 V 上的线性变换 ϕ ,满足

$$\phi(\varepsilon_1) = \varepsilon_2, \phi(\varepsilon_2) = \varepsilon_1 \tag{6.1.1}$$

易见, $\varphi(\varepsilon_1 + \varepsilon_2) = \varepsilon_1 + \varepsilon_2$, $\Longrightarrow 1$ 是 ϕ 的特征值,且 $\varepsilon_1 + \varepsilon_2$ 是 ϕ 的属于 1 的特征向量,同理 $\phi(\varepsilon_1 - \varepsilon_2) = \varepsilon_2 - \varepsilon_1$.

4. 定义 V 上的线性变换 $\psi: \psi(\varepsilon_1) = \varepsilon_2, \psi(\varepsilon_2) = -\varepsilon_1$,假设 $\lambda \in \mathbb{R}$ 是 ψ 的一个特征值,且 $0 \neq \eta = a\varepsilon_1 + b\varepsilon_2$ 是 ψ 的属于 λ 的特征向量,即 $\psi(\eta) = \lambda a\varepsilon_1 + \lambda b\varepsilon_2$,那么得到 $\lambda^2 = -1$,因此 ψ 没有特征值.

Problem -

如何求一个线性变换的特征值与特征向量?

下面总假定 V 是有限维向量空间.

设 $\phi \in \mathcal{L}(V)$, $\{\alpha_1,...,\alpha_n\}$ 是 V 的一个基,且设 ϕ 的在这个基下表示矩阵为 $A=\left(a_{ij}\right) \in M_{n(\mathbb{F})}$ 即 $(\varphi(\alpha_1),...,\varphi(\alpha_n))=(\alpha_1,...,\alpha_n)A$.

设
$$\lambda \in \mathbb{F}$$
 且 $0 \neq \xi = \sum_{i=1}^n a_i \alpha_i \in V$,记 $\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$ 则 $\phi(\xi)$ 在 $\{\alpha_1,...,\alpha_n\}$ 下的坐标向量是 $A\alpha$ 并

且 $\lambda \xi$ 在 $\{\alpha_1,...,\alpha_n\}$ 下的坐标向量是 $\lambda \alpha$,因此 $\varphi(\xi) = \lambda \xi \Leftrightarrow A\alpha = \lambda \alpha \Leftrightarrow (\lambda I_n - A)\alpha = 0$. 综上得到:

1. $\lambda \in \mathbb{F}$ 是 ϕ 中的特征值 \iff $\det(\lambda I_n - A) = 0$.

2. $0 \neq \xi \in V$ 是 ϕ 中的特征值 λ 的特征向量 \Longleftrightarrow 他的坐标向量是个齐次线性方程组 $(\lambda I_n - A) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$ 的一个解.

Definition 6.1.3 设 $A \in M_{n(\mathbb{F})}$ 如果 $\lambda \in \mathbb{F}$ 与 $0 \neq \eta \in \mathbb{F}^n$ 满足 $A\eta = \lambda \eta$ 那么称 λ 是 A 的一个特征 值,且称 η 是 A 的属于 λ 的特征向量.

Definition 6.1.4 设 $A = \left(a_{ij} \in M_{n(\mathbb{F})}\right)$ 称行列式

$$\det(xI_n - A) = \begin{vmatrix} x - a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & x - a_{22} & \dots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \dots & x - a(nn) \end{vmatrix}$$
(6.1.2)

是 A 的特征多项式 (characteristic polynomial), 记作 $C_A(x)$ 或 C(x).

特征多项式的基本性质:

- 1. $C_A(x)$ 是一个 n 次首一多项式.
- 2. $\lambda \in \mathbb{F}$ 是 A 的特征值 $\iff \lambda$ 是 $C_A(x)$ 的根,特别地,A 的特征值的个数不超过 n.
- 3. 记 $C_A(x) = x^n a_1 x^{n-1} + \ldots + (-1)^i x^{n-i} + \ldots + (-1)^n a_n$,于是 a_i 等于 A 所有 i 阶主子式的和 $= \sum_{1 \leq k_1 < \ldots < k_i \leq n} \begin{vmatrix} a_{k_1 k_1} & \ldots & a_{k_1 k_n} \\ \vdots & \ddots & \vdots \\ a_{k_n k_1} & \ldots & a_{k_n k_n} \end{vmatrix}$
- 4. 设 $A,B\in M_{n(\mathbb{F})}$ 是相似的,即存在一个可逆矩阵 $P\in M_{n(\mathbb{F})}$,使得 $B=P^{-1}BP$,于是 $C_B(x)=|xI_n-B|=|xI_n-P^{-1}AP|=|P^{-1}(xI_n-A)P|=|xI_n-A|=C_A(x)$

Definition 6.1.5 设 V 是一个有限维向量空间,且 $\phi \in \mathcal{V}$,称 ϕ 的任意给定基下的矩阵 A 的特征多项式 $C_A(x)$ 为 ϕ 特征多项式