(19) World Intellectual Property Organization International Bureau

- 1 200 A 1815 DE LE SELECTION DE LE CONTROL DE LE CONT

(43) International Publication Date 1 August 2002 (01.08.2002)

PCT

(10) International Publication Number WO 02/059322 A2

(51) International Patent Classification?: C12N 15/52, C12P 21/04

(21) International Application Number: PCT/US01/32354

(22) International Filing Date: 17 October 2001 (17.10.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/240,879 60/272,207 60/310,385 17 October 2000 (17.10.2000) US 28 February 2001 (28.02.2001) US 6 August 2001 (06.08.2001) US

(71) Applicants and

(72) Inventors: MIAO, Vivian, Pak, Woon [CA/CA]; 13750
31 Avenue, Surrey, British Columbia V4P 2B7 (CA).
BRIAN, Paul [GB/CA]; 697 Moberly Road, Vancouver,
British Columbia V5Z 4A4 (CA). BALTZ, Richard, H.
[US/US]; 6438 North Olney Road, Indianapolis, IN 46220
(US). SILVA, Christopher, J. [US/CA]; 1306 Bidwell,
Suite 33, Vancouver, British Columbia V6G 2L1 (CA).

- (74) Agents: HALEY, James, F., Jr. et al.; Fish & Neave, 1251 Avenue of the Americas, New York, NY 10020 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: COMPOSITIONS AND METHODS RELATING TO THE DAPTOMYCIN BIOSYNTHETIC GENE CLUSTER

BACs cover 180-200 kb in dpt region

(57) Abstract: The invention provides nucleic acid molecules comprising all or a part of a daptomycin biosynthetic gene cluster. The daptomycin biosynthetic gene cluster may be derived from *Streptomyces*, preferably from *S. roseosporus*. The invention also provides other nucleic acid molecules from *S. roseosporus*. The invention further provides polypeptides encoded by the nucleic acid molecules, antibodies that specifically bind to the polypeptides, and methods of using the nucleic acid molecules, polypeptides and antibodies to produce daptomycin and other compounds.

2/059322 A

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

COMPOSITIONS AND METHODS RELATING TO THE DAPTOMYCIN BIOSYNTHETIC GENE CLUSTER

BACKGROUND OF THE INVENTION

5

10

15

20

Bacteria, including actinomycetes, and fungi synthesize a diverse array of low molecular weight peptide and polyketide compounds (approx. 2-48 residues in length). The biosynthesis of these compounds is catalyzed by non-ribosomal peptide synthetases (NRPSs) and by polyketide syntheses (PKSs). The NRPS process, which does not involve ribosome-mediated RNA translation according to the genetic code, is capable of producing peptides that exhibit enormous structural diversity, compared to peptides translated from RNA templates by ribosomes. These include the incorporation of D- and L-amino acids and hydroxy acids; variations within the peptide backbone which form linear, cyclic or branched cyclic structures; and additional structural modifications, including oxidation, acylation, glycosylation, N-methylation and heterocyclic ring formation. Many non-ribosomally synthesized peptides have been found which have useful pharmacological (e.g., antibiotic, antiviral, antifungal, antiparasitic, siderophore, cytostatic, immunosuppressive, anti-cholesterolemic and anticancer), agrochemical or physicochemical (e.g., biosurfactant) properties.

Non-ribosomally synthesized peptides are assembled by large (e.g., about 200-2000 kDa), multifunctional NRPS enzyme complexes comprising one or more subunits. Examples include daptomycin, vancomycin, echinocandin and cyclosporin. Likewise, polyketides are assembled by large multifunctional PKS enzyme complexes comprising one or more subunits. Examples include erythromycin, tylosin, monensin

and avermectin. In some cases, complex molecules can be synthesized by mixed PKS/NRPS systems. Examples include rapamycin, bleomycin and epothilone.

An NRPS usually consists of one or more open reading frames that make up an NRPS complex. The NRPS complex acts as a protein template, comprising a series of protein biosynthetic units configured to bind and activate specific building block substrates and to catalyze peptide chain formation and elongation. (See, e.g., Konz and Marahiel, Chem. Biol., 6, pp. 39-48 (1999) and references cited therein; von Döhren et al., Chem. Biol., 6, pp. 273-279, (1999) and references cited therein; and Cane and Walsh, Chem. Biol., 6, pp. 319-325, (1999), and references cited therein – each hereby incorporated by reference in its entirety). Each NRPS or NRPS subunit comprises one or modules. A "module" is defined as the catalytic unit that incorporates a single building block (e.g., an amino acid) into the growing peptide chain. The order and specificity of the biosynthetic modules that form the NRPS protein template dictates the sequence and structure of the ultimate peptide products.

10

15

20

25

30

Each module of an NRPS acts as a semi-autonomous active site containing discrete, folded protein domains responsible for catalyzing specific reactions required for peptide chain elongation. A minimal module (in a single module complex) consists of at least two core domains: 1) an adenylation domain responsible for activating an amino acid (or, occasionally, a hydroxy acid); and 2) a thiolation or acyl carrier domain responsible for transferring activated intermediates to an enzyme-bound pantetheine cofactor. Most modules also contain 3) a condensation domain responsible for catalyzing peptide bond formation between activated intermediates. See Figure 9. Supplementing these three core domains are a variable number of additional domains which can mediate, e.g., N-methylation (M or methylation domain) and L- to Dconversion (E or epimerization domain) of a bound amino acid intermediate, and heterocyclic ring formation (Cy or cyclization domain). The domains are usually characterized by specific amino acid motifs or features. It is the combination of such auxiliary domains acting locally on tethered intermediates within nearby modules that contributes to the enormous structural and functional diversity of the mature peptide products assembled by NRPS and mixed NRPS/PKS enzyme complexes.

The adenylation domain of each minimal module catalyzes the specific recognition and activation of a cognate amino acid. In this early step of non-ribosomal peptide biosynthesis, the cognate amino acid of each NRPS module is bound to the adenylation domain and activated as an unstable acyl adenylate (with concomitant ATP-hydrolysis). See, e.g., Stachelhaus et al., Chem. Biol. 6, pp. 493-505 (1999) and Challis et al., Chem. Biol. 7, pp. 211-224 (2000), each incorporated herein by reference in its entirety. In most NRPS modules, the acyl adenylate intermediate is next transferred to the T (thiolation) domain (also referred to as a peptidyl carrier protein or PCP domain) of the module where it is converted to a thioester intermediate and tethered via a transthiolation reaction to a covalently bound enzyme cofactor (4'-phosphopantetheinyl (4'-PP) intermediate). Modules responsible for incorporating D-configured or N-methylated amino acids may have extra editing domains which, in several NRPSs studied, are located between the A and T domains.

The enzyme-bound thioesterified intermediates in each module are then assembled into the peptide product by stepwise condensation reactions involving transfer of the thioester-activated carboxyl group of one residue in one module to, e.g., the adjacent amino group of the next amino acid in the next module while the intermediates remain linked covalently to the NRPS. Each condensation reaction which mediates peptide chain elongation is catalyzed by a condensation (C) domain which is usually positioned between two modules. The number of condensation domains in a NRPS generally corresponds to the number of peptide bonds present in the final (linear) peptide. An extra C domain has been found in several NRPSs (e.g., at the amino terminus of cyclosporin synthetase and the carboxyl terminus of rapamycin; see, e.g., Konz and Marahiel, *supra*) which has been proposed to be involved in peptide chain termination and cyclization reactions. Many other NRPS complexes, however, release the full length chain in a reaction catalyzed by a C-terminal thioesterase (Te) domain (of approximately 28K-35K relative molecular weight).

Thioesterase domains of most NRPS complexes use a catalytic triad (similar to that of the well-known chymotrypsin mechanism) which includes a conserved serine (less often a cysteine or aspartate) residue in a conserved three-dimensional configuration relative to a histidine and an acidic residue. See, e.g. V. De Crecy-

Lagard in Comprehensive Natural Products Chemistry, Volume 4, ed. J.W. Kelly (New York: Elsevier), 1999, pp. 221-238, each incorporated herein by reference in its entirety. Thioester cleavage is a two step process. In the first (acylation) step, the full length peptide chain is transferred from the thiol tethered enzyme intermediate in the thiolation domain (see above) to the conserved serine residue in the Te domain, forming an acyl-O-Te ester intermediate. In the second (deacylation) step, the Te domain serine ester intermediate is either hydrolyzed (thereby releasing a linear, full length product) or undergoes cyclization, depending on whether the ester intermediate is attacked by water (hydrolysis) or by an activated intramolecular nucleophile (cyclization).

Sequence comparisons of C-terminal thioesterase domains from diverse members of the NRPS superfamily have revealed a conserved motif comprising the serine catalytic residue (GXSXG motif), often followed by an aspartic acid residue about 25 amino acids downstream from the conserved serine residue. A second type of thioesterase, a free thioesterase enzyme, is known to participate in the biosynthesis of some peptide and polyketide secondary metabolites. See e.g., Schneider and Marahiel, Arch. Microbiol., 169, pp. 404-410 (1998), and Butler et al., Chem. Biol., 6, pp. 87-292 (1999), each incorporated herein by reference in its entirety. These thioesterases are often required for efficient natural product synthesis. Butler et al. have postulated that the free thioesterase found in the polyketide tylosin gene cluster—which is required for efficient tylosin production—may be involved in editing and proofreading functions.

The modular organization of the NRPS multienzyme complex is mirrored at the level of the genomic DNA encoding the modules. The organization and DNA sequences of the genes encoding several different NRPSs have been studied. (See, e.g., Marahiel, Chem. Biol., 4, pp. 561-567 (1997), incorporated herein by reference in its entirety). Conserved sequences characterizing particular NRPS functional domains have been identified by comparing NRPS sequences derived from many diverse organisms and those conserved sequence motifs have been used to design probes useful for identifying and isolating new NRPS genes and modules.

The modular structures of PKS and NRPS enzyme complexes can be exploited to engineer novel enzymes having new specificities by changing the numbers and positions of the modules at the DNA level by genetic engineering and recombination *in vivo*. Functional hybrid NRPSs have been constructed, for example, based on whole-module fusions. See, e.g., Gokhale et al., Science, 284, pp. 482-485 (1999); Mootz et al., Proc. Natl. Acad. Sci. U.S.A., 97, pp. 5848-5853 (2000), incorporated herein by reference in their entirety. Recombinant techniques may be used to successfully swap domains originating from a heterologous PKS or NRPS complex. See, e.g., Schneider et al., Mol. Gen. Genet., 257, pp. 308-318 (1998); McDaniel et al., Proc. Natl. Acad. Sci. U.S.A., 96, pp. 1846-1851 (1999); United States Patent Nos. 5,652,116 and 5,795,738; and International Publication WO 00/56896; incorporated herein by reference in their entirety.

Engineering a new substrate specificity within a module by altering residues which form the substrate binding pocket of the adenylation domain has also been described. See, e.g., Cane and Walsh, Chem. Biol., 6, 319-325 (1999); Stachelhaus et al., Chem. Biol., 6, 493-505 (1999); and WO 00/52152; each incorporated herein by reference in its entirety. By comparing the sequence of the *B. subtilis* peptide synthetase GrsA adenylation domain (PheA) (whose structure is known) with sequences of 160 other adenylation domains from pro- and eukaryotic NPRSs, for example, Stachelhaus et al. (*supra*) and Challis et al., Chem. Biol., 7, pp. 211-224 (2000) defined adenylation (A) domain signature sequences (analogous to codons of the genetic code) for a variety of amino acid substrates. From the collection of those signature sequences, a putative NRPS selectivity-conferring code (with degeneracies like the genetic code) was formulated.

The ability to engineer NRPSs having new modular template structures and new substrate specificities by adding, deleting or exchanging modules (or by adding, deleting or exchanging domains within one or more modules) will enable the production of novel peptides having altered and potentially advantageous properties. A combinatorial library comprising over 50 novel polyketides, for example, was prepared by systematically modifying the PKS that synthesizes an erythromycin precursor (DEBS) by substituting counterpart sequences from the rapamycin PKS

5

10

15

30

(which encodes alternative substrate specificities). See, e.g., WO 00/63361 and McDaniel et al., (1999), *supra*, each incorporated herein by reference in its entirety.

A number of bacteria that produce antibiotics and other potentially toxic compounds synthesize ATP-binding cassette (ABC) transporters. ABC transporters use proton-dependent transmembrane electrochemical potential to export toxic cellular metabolites such as antibiotics, and to import materials from the environment, e.g. iron or other metals. There are three types of ABC transporters and genes encoding pumps responsible for antibiotic resistance, and they are often linked to the biosynthetic cluster in antibiotic producer organisms (e.g. actinorhodin resistance in *Streptomyces coelicolor*). See, e.g., Mendez *et al.*, *FEMS Microbiol. Lett.* 158: 1-8 (1998), herein incorporated by reference. All have ATP-binding regions that include Walker A and B motifs. *Id.* Type I systems involve separate genes for a hydrophilic ATP-binding domain and a hydrophobic integral membrane domain. Type III systems involve a single gene encoding a protein with a hydrophobic N-terminus and a hydrophilic, ATP-binding C-terminus. Type II transporters have no hydrophobic domain, and two sets of Walker motifs, in the order A:B:A:B.

The Streptomyces glaucescens genes, StrV (PIR Accession No. S57561) and StrW (PIR Accession No. S57562) encode type III transporters associated with resistance to streptomycin-related compounds. Both genes are within a 5'
10 hydroxystreptomycin antibiotic biosynthetic gene cluster. See, e.g., Beyer et al., Mol. Gen. Genet. 250: 775-84 (1996), herein incorporated by reference. Resistance to doxorubicin and related antibiotics is conferred by two type I transporters in Streptomyces peucetius, which are encoded by drrA and drrB. See, e.g., Guifoile et al., Proc. Natl. Acad. Sci. USA 88:8553-57 (1991), herein incorporated by reference.

10 Further, homologs of drrAB isolated from Streptomyces rochei confer multidrug resistance when expressed under control of the actinorhodin PKS promoter in S. lividans. See, e.g., Fernandez-Moreno et al., J. Bacteriol. 179: 6929-36 (1998),

Daptomycin (described by R.H. Baltz in *Biotechnology of Antibiotics*, 2nd Ed., ed. W.R. Strohl (New York: Marcel Dekker, Inc.), 1997, pp. 415-435) is an example of a non-ribosomally synthesized peptide made by a NRPS. Daptomycin, also known

herein incorporated by reference.

as LY146032, is a cyclic lipopeptide antibiotic that is produced by the fermentation of *Streptomyces roseosporus*. Daptomycin is a member of the factor A-21978C type antibiotics of *S. roseosporus* and comprises an n-decanoyl side chain linked via a three-amino acid chain to the N-terminal tryptophan of a cyclic 10-amino acid peptide. The compound is being developed in a variety of formulations to treat serious infections for which therapeutic options are limited, such as infections caused by bacteria including, but not limited to, methicillin resistant *Staphylococcus aureus*, vancomycin resistant enterococci, glycopeptide intermediary susceptible *Staphylococcus aureus*, coagulasenegative staphylococci, and penicillin-resistant *Streptococcus pneumoniae*. See, e.g., Tally *et al.*, *Exp. Opin. Invest. Drugs 8*:1223-1238, 1999. The antibiotic action of daptomycin against Gram-positive bacteria has been attributed to its ability to interfere with membrane potential and to inhibit lipoteichoic acid synthesis.

Identification of the genes encoding the proteins involved in the daptomycin biosynthetic pathway, including the daptomycin NRPS, will provide a first step in producing modified *Streptomyces roseosporus* as well as other host strains which can produce an improved antibiotic (for example, having greater potency); which can produce natural or new antibiotics in increased quantities; or which can produce other peptide products having useful biological properties. Compositions and methods relating to the *Streptomyces roseosporus* daptomycin biosynthetic gene cluster, including isolated nucleic acids and isolated proteins, are described in United States Provisional Applications 60/240,879, filed October 17, 2000; 60/272,207, filed February 28, 2001; and 60/310,385, filed August 8, 2001; all of which are hereby incorporated by reference in its entirety.

It would be advantageous, moreover, to identify the genetic and modular organization of the *Streptomyces roseosporus* daptomycin biosynthetic gene cluster in order to construct full length daptomycin NRPS templates for expression in *Streptomyces roseosporus* and in heterologous hosts. In particular, it would be advantageous to know whether the daptomycin gene cluster comprises a thioesterase (Te) domain. If so, that Te domain could be isolated and used to catalyze peptide chain termination in new NRPS modules and templates by expression as a fusion or as a free peptide. See, e.g., de Ferra et al., <u>J. Biol. Chem.</u>, 272, pp. 25304-25309 (1997);

5

10

15

20

25

Guenzi et al., J. Biol. Chem., 273, pp. 14403-14410 (1998); and Trauger et al., Nature, 407, pp. 215-218 (2000); each incorporated herein by reference in its entirety. It would also be advantageous to identify other nucleic acid molecules that encode polypeptides involved in daptomycin biosynthesis. These include, without limitation, enzymes involved in attaching a lipid tail to the peptide domain of daptomycin, polypeptides that regulate antibiotic resistance and ABC transporters. Polypeptides that regulate antibiotic resistance and ABC transporters could be used to confer resistance or increase, modify or decrease resistance of a bacteria to daptomycin and related antibiotics. Polypeptides involved in antibiotic resistance would also be useful to determine bacterial mechanisms of resistance, so that daptomycin and related antibiotics can be modified to make them more potent against resistant bacteria.

SUMMARY OF THE INVENTION

The instant invention addresses these problems by providing a nucleic acid molecule that comprises all or a part of a daptomycin biosynthetic gene cluster, preferably one from S. roseosporus. The nucleic acid molecule may encode DptA, DptB, DptC or DptD or may comprise one or more of the dptA, dptB, dptC or dptD genes from the daptomycin biosynthetic gene cluster of S. roseosporus.

The instant invention also provides nucleic acid molecules encoding a free thioesterase and an integral thioesterase from a daptomycin biosynthetic gene cluster. The nucleic acid molecule may encode DptH or the thioesterase domain from DptD, or may comprise the dptH or dptH gene from the daptomycin biosynthetic gene cluster.

Another object of the invention is to provide a nucleic acid molecule comprising a DNA sequence from a bacterial artificial chromosome comprising a nucleic acid sequence from *S. roseosporus*. The nucleic acid molecule preferably comprises a *S. roseosporus* nucleic acid sequence from any one of bacterial artificial chromosome (BAC) clones 01G05, 06A12, 12F06, 18H04, 20C09 or B12:03A05. In a preferred embodiment, the nucleic acid molecule encodes a polypeptide. In another preferred embodiment, the nucleic acid molecule encodes a polypeptide that is involved in daptomycin biosynthesis, such as a *dptA*, *dptB*, *dptC*, *dptD*, *dptE*, *dptF*, *dptH*, an

5

10

15

20

25

30

ABC transporter, or a polypeptide that regulates antibiotic resistance, as described herein.

The invention also provides selectively hybridizing or homologous nucleic acid molecules of the above-described nucleic acid molecules. The invention further provides allelic variants and parts thereof. The invention further provides nucleic acid molecules that comprise one or more expression control sequences controlling the transcription of the above-described nucleic acid molecules. The expression control sequence may be derived from the expression control sequences of the daptomycin biosynthetic gene cluster or may be derived from a heterologous nucleic acid sequence.

In another embodiment, the invention provides a nucleic acid molecule comprising one or more expression control sequences from a gene comprising a nucleic acid sequence that encodes a thioesterase and/or a daptomycin NRPS from the daptomycin biosynthetic gene cluster. Preferably, the nucleic acid molecule comprises a part or all of the expression control sequences of the daptomycin NRPS or dptH.

Another object of the invention is to provide a vector and/or host cell comprising one or more of the above-described nucleic acid molecules. In a preferred embodiment, the vector and/or host cell comprises a nucleic acid molecule encoding all or part of DptA, DptB, DptC, DptD, DptE, DptF and/or DptH, or all or part of a BAC clone described above. A host cell may comprise all or a part of an NRPS or PKS, such as a daptomycin NRPS. The host cell may further comprise one or more thioesterases.

Another object of the invention is to provide a polypeptide derived from the daptomycin biosynthetic gene cluster, preferably a polypeptide from the daptomycin biosynthetic gene cluster of *S. roseosporus*. The polypeptide may be DptA, DptB, DptC or DptD.

The invention also provides a polypeptide derived from an integral or free thioesterase, preferably one derived from a daptomycin biosynthetic gene cluster of *S. roseosporus*. In a preferred embodiment, the polypeptide is derived from thioesterase. The polypeptide may be derived from DptH or the thioesterase domain of DptD.

The invention also provides a polypeptide encoded by a nucleic acid molecule of any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or B12:03A05.

5

10

15

20

25

30

These polypeptides include, among others, enzymes involved in attaching a lipid tail to the peptide domain of daptomycin, polypeptides that regulate antibiotic resistance and ABC transporters.

Another object of the invention is to provide fragments of the polypeptides described above. In one embodiment, the fragment comprises at least one domain or module, as defined herein. In another embodiment, the fragment comprises at least one epitope of the polypeptide.

Another object of the invention is to provide polypeptides that are mutant proteins, fusion proteins, homologous proteins or allelic variants of the daptomycin NRPS polypeptides, thioesterases and polypeptides encoded by the nucleic acid molecules of the BAC clones provided herein.

The invention also provides an antibody that specifically binds to a polypeptide of a daptomycin NRPS, a thioesterase polypeptide of a daptomycin biosynthetic gene cluster or a polypeptide encoded by a nucleic acid molecule from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or B12:03A05. The invention also provides an antibody that can bind to a fragment, polypeptide mutant, a fusion protein, a polypeptide encoded by an allelic variant or a homologous protein of any one of the above-described polypeptides or proteins. The antibodies may be used to detect the presence or amount of a polypeptide of the instant invention or to inhibit or activate an activity of a polypeptide.

Another objective of the instant invention is to provide a method for recombinantly producing a polypeptide using a nucleic acid molecule described herein by introducing a nucleic acid molecule into a host cell and expressing the polypeptide.

The instant invention also provides a method for using the nucleic acid molecules of the instant invention to detect or amplify nucleic acid molecules that have similar or identical nucleic acid sequences compared to the nucleic acid molecules described herein.

The nucleic acid molecules and polypeptides are useful for, for example, the biosynthesis and production of natural products and the engineered biosynthesis of new compounds. The daptomycin NRPS and/or thioesterases may be used to produce daptomycin and other lipopeptides, including both naturally-occurring and novel

5

10

15

20

25

compounds. The polypeptides may be used *in vitro* for the production of cyclic or non-cyclic lipopeptides, as well as other compounds produced by non-ribosomal peptide synthesis. Alternatively, a nucleic acid molecule of the invention may be introduced and expressed in a host cell, and the host cell may then be used to produce lipopeptides and other compounds produced by non-ribosomal peptide synthesis.

Another objective of the invention is to provide a novel gene cluster that can produce novel compounds by non-ribosomal peptide synthesis. A novel gene cluster may be obtained by altering nucleotides of the daptomycin biosynthetic gene cluster, particularly by altering nucleotides, domains or modules of the daptomycin NRPS, to make new polypeptides that are involved in non-ribosomal peptide synthesis. In this manner, different amino acids may be incorporated into a peptide produced by non-ribosomal peptide synthesis than the peptide produced by a naturally-occurring polypeptide. The invention also encompasses the compounds produced by the methods described herein.

Another objective of the invention is to provide a computer readable means of storing the nucleic acid and amino acid sequences of the instant invention. The records of the computer readable means can be accessed for reading and display of sequences and for comparison, alignment and ordering of the sequences of the invention to other sequences.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic diagram of methods in which daptomycin NRPS genes can be manipulated to alter gene expression or expression of the encoded proteins.

Figure 2A is a schematic diagram of BAC clone B12:03A05. The diagram shows a 90 kb region, referred to as the 90 kb fragment, and an approximately 12 kb region, referred to herein as the SP6 fragment. SEQ ID NO: 1 shows the nucleic acid sequence of the 90 kb fragment. SEQ ID NO: 103 shows the nucleic acid sequence of the SP6 fragment. The SP6 fragment abuts the 90 kb fragment. There is approximately 25-28 kb to the right of the 90 kb fragment (the GTC fragment).

Figure 2B shows a schematic diagram of the 90 kb fragment. There are 38 open reading frames (ORFs), which are nucleic acid sequences that encode polypeptides, in the region of the daptomycin biosynthetic gene cluster.

Figure 2C shows a schematic diagram of the SP6 fragment. There are 9 ORFs in the SP6 fragment. See Table 5 for the amino acid and nucleic acid sequence identifiers for the ORFs of the 90 kb and the SP6 fragment.

5

10

15

20

25

30

Figure 3 shows a comparison of the amino acid sequences of DptD (SEQ ID NO: 7) and the CDA III protein of *Streptomyces coelicolor* (SEQ ID NO:) using the Clustal W program. See Example 3.

Figure 4 shows a comparison of the amino acid sequences of DptH (SEQ ID NO: 8) and the CDA III protein of *Streptomyces coelicolor* using the Clustal W program. See Example 3.

Figures 5A-5C shows an analysis of daptomycin produced from the *Streptomyces lividans* TK64 clone containing the daptomycin biosynthetic gene cluster. Figure 5A shows an HPLC analysis of the broth of *Streptomyces lividans* TK64 clone containing BAC clone B12:03A05. The lower panel shows a trace plotting the maximum absorbance observed over the range of 200-600 nm for the HPLC eluate against time. The presence of three native lipopeptides, lipopeptides A21978C1 (the C1 lipopeptide), A21978C2 (the C2 lipopeptide) and A21978C3 (the C3 lipopeptide), is indicated by peaks with retention times of 5.61, 5.77 and 5.89 minutes, respectively. The upper panel shows the UV-visible spectra observed for these peaks. Figure 5B shows an ESI mass spectrum of daptomycin purified from decanoic acid-fed fermentation of *Streptomyces lividans* TK64 clone containing the daptomycin gene cluster. Figure 5C shows a 1H NMR spectrum (400MHz, in d6-DMSO) of daptomycin purified from decanoic acid-fed fermentation of *Streptomyces lividans* TK64 clone containing the daptomycin gene cluster.

Figure 6 is a diagram of the cloning vector pStreptoBAC V.

Figure 7 shows a *Hin*DIII digest of BAC clones from the Daptomycin biosynthetic gene cluster. Lane 1 shows 01G05 (82 kb insert); Lane 2 shows 03A05 (120 kb insert); Lane 3 shows 06A12 (85 kb insert); Lane 3 shows 12FG06 (65 kb insert); Lane 5 shows 18H04 (46 kb insert) and Lane 6 shows 20C09 (65 kb insert).

Figure 8 shows a map of some BAC clones that cover approximately 180 to 200 kb of the daptomycin NPRS region in *Streptomyces roseosporus*.

Figure 9 is a schematic diagram of the gene structure of an NRPS.

Figure 10 is a dendrogram showing the adenylation (A) domain similarities for domains that specify Asn and Asp in the daptomycin NRPS and in the Cda NRPS from Streptomyces coelicolor. See Example 5.

Figure 11 shows the results of an HPLC analysis determining the stereochemistry of Asn. See Example 6.

Figure 12 is a schematic diagram showing the organization of the daptomycin NRPS.

DETAILED DESCRIPTION OF THE INVENTION

Definitions and General Techniques

15

20

25

30

Unless otherwise defined herein, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art. The methods and techniques of the present invention are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989); Sambrook et al. Molecular Cloning: A Laboratory Manual, 3d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2000); Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates (1992, and Supplements to 2000); Ausubel et al., Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, 4th ed., Wiley & Sons (1999); Harlow and Lane Antibodies: A

5

10

15

20

25

30

Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1990); Harlow and Lane Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1998); and T. Kieser et al., Practical Streptomyces Genetics, John Innes Foundation, Norwich (2000); each of which is incorporated herein by reference in its entirety.

Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The nomenclatures used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.

The following terms, unless otherwise indicated, shall be understood to have the following meanings:

The term "thioesterase" refers to an enzyme that is capable of catalyzing the cleavage of a thioester bond, which may result in the production of a cyclic or linear molecule.

The term "thioesterase activity" refers to an enzymatic activity of a thioesterase, or a mutein, homologous protein, analog, derivative, fusion protein or fragment thereof, that catalyzes cleavage of a thioester bond. A thioesterase activity includes, e.g., an association and/or dissociation constants, a catalytic rate and a substrate turnover rate. A thioesterase activity of a polypeptide may be the same as one of the thioesterase activities of DptH, the thioesterase domain of DptD, a polypeptide encoded by dptH, a polypeptide encoded by the thioesterase domain of dptD, a polypeptide having an amino acid sequence of the thioesterase domain of SEQ ID NO: 7 or a polypeptide having the amino acid sequence of SEQ ID NO: 8. The thioesterase activity may also different from that of one of the above-described thioesterases; e.g., it may have an increased or decreased catalytic activity, a different association and/or dissociation constant or a different substrate for catalysis. A "decreased" or "increased" thioesterase activity refers to a decreased or increased catalytic activity of the thioesterase, respectively.

5

10

15

25

30

A "thioesterase derived from a daptomycin biosynthetic gene cluster" is a thioesterase or thioesterase domain that is encoded by one of the genes of a gene cluster that encodes polypeptides involved in the synthesis of daptomycin. Preferably, the thioesterase is derived from a daptomycin biosynthetic gene cluster from Streptomyces, preferably from a daptomycin biosynthetic gene cluster from S. roseosporus.

A "daptomycin biosynthetic gene cluster" is defined herein as a nucleic acid molecule that encodes a number of polypeptides that are necessary for synthesis of daptomycin in an organism, preferably in a bacterial cell. A daptomycin biosynthetic gene cluster comprises a nucleic acid molecule that encodes at least DptA, DptB, DptC, DptD and DptH, or that encode muteins, homologous proteins, allelic variants or fragments thereof, as well as other nucleic acid sequences that encode other polypeptides required for daptomycin synthesis. Preferably, a daptomycin biosynthetic gene cluster comprises that part of BAC B12:03A05 that permits the synthesis of daptomycin when the part is introduced and expressed in a bacterial cell.

A "daptomycin NRPS" is defined herein as an NRPS that is capable of synthesizing daptomycin in an appropriate bacterial cell. A daptomycin NRPS comprises polypeptide subunits DptA, DptB, DptC and DptD, or muteins, homologous proteins, allelic variants or fragments thereof, that are capable, when expressed in an appropriate cell, of directing the synthesis of daptomycin. A daptomycin NRPS may further comprise DptH and/or other polypeptide, such as DptE or DptF. Preferably, the daptomycin NRPS is derived from the daptomycin biosynthetic gene cluster from *Streptomyces*, more preferably, the daptomycin NRPS is derived from *S. roseosporus*. The term "daptomycin NRPS" does not imply that the daptomycin NRPS can be used to synthesize only daptomycin. Rather, as used herein, the term is used solely for the purpose of describing that the NRPS was originally derived from a daptomycin biosynthetic gene cluster. The daptomycin NRPS may be used to synthesize molecules other than daptomycin, as described herein.

A "gene" is defined as a nucleic acid molecule that comprises a nucleic acid sequence that encodes a polypeptide and the expression control sequences that are operably linked to the nucleic acid sequence that encodes the polypeptide. For

instance, a gene may comprise a promoter, one or more enhancers, a nucleic acid sequence that encodes a polypeptide, downstream regulatory sequences and, possibly, other nucleic acid sequences involved in regulation of the expression of an RNA.

A nucleic acid molecule or polypeptide is "derived" from a particular species if the nucleic acid molecule or polypeptide has been isolated from the particular species, or if the nucleic acid molecule or polypeptide is homologous to a nucleic acid molecule or polypeptide isolated from a particular species.

The terms "dptA", "dptB", "dptC" and "dptD" refer to nucleic acid molecules that encode subunits of the daptomycin NRPS. In a preferred embodiment, the nucleic acid molecule is derived from Streptomyces, more preferably the nucleic acid molecule is derived from S. roseosporus. In a preferred embodiment, the dptA, dptB, dptC and dptD encode the polypeptides having the amino acid sequences of SEQ ID NOS: 9, 11, 13 and 7, respectively. The terms "dptA", "dptB", "dptC" and "dptD" also refer to allelic variants of these genes, which may be obtained from other species of Streptomyces or from other S. roseosporus strains.

10

15

20

25

30

The term "dptH" refers to a gene whose coding domain encodes a thioesterase from a daptomycin biosynthetic gene cluster of S. roseosporus, wherein the naturally-occurring thioesterase is a "free" thioesterase. A free thioesterase is one that is not a functional domain of a larger polypeptide when it is naturally occurring. The dptH gene also encompasses the expression control sequences that are upstream of the coding region of the gene, as discussed below. In one embodiment, the expression control sequences of dptH have the nucleic acid sequence of SEQ ID NO: 5. The term "dptH" also refers to the nucleic acid encoding the polypeptide defined by SEQ ID NO: 8. The term "dptH" also refers to allelic variants of this gene, which may be obtained from other species of Streptomyces or from other S. roseosporus strains.

The term "allelic variant" refers to one of two or more alternative naturally-occurring forms of a gene, wherein each allele possesses a different nucleotide sequence. An allelic variant may encode the same polypeptide or a different one. As used herein, an allele is one that has at least 90% sequence identity, more preferably at least 95%, 96%, 97%, 98% or 99% sequence identity to the reference nucleic acid

5

10

15

20

25

30

sequence, and encodes a polypeptide having similar or identical biological properties as the polypeptide encoded by the reference nucleic acid molecule.

The term "polynucleotide" or "nucleic acid molecule" refers to a polymeric form of nucleotides of at least 10 bases in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide. The term includes single and double stranded forms of DNA. In addition, a polynucleotide may include either or both naturally-occurring and modified nucleotides linked together by naturally-occurring and/or non-naturally occurring nucleotide linkages.

An "isolated" or "substantially pure" nucleic acid or polynucleotide (e.g., an RNA, DNA or a mixed polymer) is one which is substantially separated from other cellular components that naturally accompany the native polynucleotide in its natural host cell, e.g., ribosomes, polymerases, or genomic sequences with which it is naturally associated. The term embraces a nucleic acid or polynucleotide that (1) has been removed from its naturally occurring environment, (2) is not associated with all or a portion of a polynucleotide in which the "isolated polynucleotide" is found in nature, (3) is operatively linked to a polynucleotide which it is not linked to in nature, or (4) does not occur in nature as part of a larger sequence. The term "isolated" or "substantially pure" also can be used in reference to recombinant or cloned DNA isolates, chemically synthesized polynucleotide analogs, or polynucleotide analogs that are biologically synthesized by heterologous systems.

A "part" of a nucleic acid molecule or polynucleotide refers to a nucleic acid molecule that comprises a partial contiguous sequence of at least 14 nucleotides of the reference nucleic acid molecule. Preferably, a part comprises at least 17 or 20 nucleotides of a reference nucleic acid molecule. More preferably, a part comprises at least 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 200, 300 400, 500 or 1000 nucleotides up to one nucleotide short of a reference nucleic acid molecule. A part of a nucleic acid molecule may comprise no other nucleic acid sequences. Alternatively, a part of a nucleic acid molecules.

The term "oligonucleotide" refers to a polynucleotide generally comprising a length of 200 nucleotides or fewer. Preferably, oligonucleotides are 10 to 60

5

10

15

20

25

nucleotides in length and most preferably 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50 or 60 nucleotides in length. Oligonucleotides may be single-stranded, e.g. for use as probes or primers, or may be double-stranded, e.g. for use in the construction of a mutant gene. Oligonucleotides of the invention can be either sense or antisense oligonucleotides. An oligonucleotide can include a label for detection, if desired.

The term "naturally-occurring nucleotide" referred to herein includes naturallyoccurring deoxyribonucleotides and ribonucleotides. The term "modified nucleotides" referred to herein includes nucleotides with modified or substituted sugar groups and the like. The term "nucleotide linkages" referred to herein includes nucleotides linkages such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoroaniladate, phosphoroamidate, and the like. See e.g., LaPlanche et al. Nucl. Acids Res. 14:9081 (1986); Stec et al. J. Am. Chem. Soc. 106:6077 (1984); Stein et al. Nucl. Acids Res. 16:3209 (1988); Zon et al. Anti-Cancer Drug Design 6:539 (1991); Zon et al. Oligonucleotides and Analogues: A Practical Approach, pp. 87-108 (F. Eckstein, Ed., Oxford University Press, Oxford England (1991)); Stec et al. U.S. Patent No. 5,151,510; Uhlmann and Peyman Chemical Reviews 90:543 (1990), the disclosures of which are hereby incorporated by reference.

Unless specified otherwise, the left hand end of a polynucleotide sequence in sense orientation is the 5' end and the right hand end of the sequence is the 3' end. In addition, the left hand direction of a polynucleotide sequence in sense orientation is referred to as the 5' direction, while the right hand direction of the polynucleotide sequence is referred to as the 3' direction.

The term "percent sequence identity" or "identical" in the context of nucleic acid sequences refers to the residues in the two sequences which are the same when aligned for maximum correspondence. The length of sequence identity comparison may be over a stretch of at least about nine nucleotides, usually at least about 20 nucleotides, more usually at least about 24 nucleotides, typically at least about 28 nucleotides, more typically at least about 32 nucleotides, and preferably at least about 30 , 36 or more nucleotides. There are a number of different algorithms known in the art which can be used to measure nucleotide sequence identity. In one embodiment,

5

10

15

20

25

30

polynucleotide sequences may be compared using Blast (Altschul et al., J. Mol. Biol. 215: 403-410, 1990). For instance, polynucleotide sequences can be compared using FASTA, Gap or Bestfit, which are programs in Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wisconsin. FASTA provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson, 1990, (herein incorporated by reference). For instance, percent sequence identity between nucleic acid sequences can be determined using FASTA with its default parameters (a word size of 6 and the NOPAM factor for the scoring matrix) or using Gap with its default parameters as provided in GCG Version 6.1, herein incorporated by reference.

The term "substantial homology" or "substantial similarity," when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 50%, more preferably 60% of the nucleotide bases, usually at least about 70%, more usually at least about 80%, preferably at least about 90%, and more preferably at least about 95%, 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or Gap, as discussed above.

Alternatively, substantial homology or similarity exists when a nucleic acid or fragment thereof hybridizes to another nucleic acid, to a strand of another nucleic acid, or to the complementary strand thereof, under selective hybridization conditions.

Typically, selective hybridization will occur when there is at least about 55% sequence identity -- preferably at least about 65%, more preferably at least about 75%, and most preferably at least about 90% -- over a stretch of at least about 14 nucleotides. See, e.g., Kanehisa, 1984, herein incorporated by reference.

Nucleic acid hybridization will be affected by such conditions as salt concentration, temperature, solvents, the base composition of the hybridizing species, length of the complementary regions, and the number of nucleotide base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art. "Stringent hybridization conditions" and "stringent wash conditions" in the context of nucleic acid hybridization experiments depend upon a number of different

physical parameters. The most important parameters include temperature of hybridization, base composition of the nucleic acids, salt concentration and length of the nucleic acid. One having ordinary skill in the art knows how to vary these parameters to achieve a particular stringency of hybridization.

In general, "stringent hybridization" is performed at about 25°C below the thermal melting point (T_m) for the specific DNA hybrid under a particular set of conditions. "Stringent washing" is performed at temperatures about 5°C lower than the T_m for the specific DNA hybrid under a particular set of conditions. The T_m is the temperature at which 50% of the target sequence hybridizes to a perfectly matched probe. See Sambrook et al., *supra*, page 9.51, hereby incorporated by reference.

The T_m for a particular DNA-DNA hybrid can be estimated by the formula: $T_m = 81.5^{\circ}C + 16.6 \; (log_{10}[Na^+]) + 0.41 \; (fraction G + C) - 0.63 \; (\%$

formamide) - (600/1) where l is the length of the hybrid in base pairs.

5

10

15

20

25

30

The T_m for a particular RNA-RNA hybrid can be estimated by the formula:

 $T_m = 79.8^{\circ}C + 18.5 (log_{10}[Na^+]) + 0.58 (fraction G + C) + 11.8$ (fraction G + C)² - 0.35 (% formamide) - (820/l).

The T_m for a particular RNA-DNA hybrid can be estimated by the formula: $T_m = 79.8^{\circ}\text{C} + 18.5(\log_{10}[\text{Na}^+]) + 0.58 \text{ (fraction G + C)} + 11.8 \text{ (fraction G + C)}^2 - 0.50 \text{ (% formamide)} - (820/1).}$

In general, the T_m decreases by 1-1.5°C for each 1% of mismatch between two nucleic acid sequences. Thus, one having ordinary skill in the art can alter hybridization and/or washing conditions to obtain sequences that have higher or lower degrees of sequence identity to the target nucleic acid. For instance, to obtain hybridizing nucleic acids that contain up to 10% mismatch from the target nucleic acid sequence, 10-15°C would be subtracted from the calculated T_m of a perfectly matched hybrid, and then the hybridization and washing temperatures adjusted accordingly. Probe sequences may also hybridize specifically to duplex DNA under certain conditions to form triplex or other higher order DNA complexes. The preparation of such probes and suitable hybridization conditions are well known in the art.

An example of stringent hybridization conditions for hybridization of complementary nucleic acid sequences having more than 100 complementary residues

5

10

15

20

25

30

on a filter in a Southern or Northern blot or for screening a library is 50% formamide/6X SSC at 42°C for at least ten hours, preferably 12-16 hours. Another example of stringent hybridization conditions is 6X SSC at 68°C without formamide for at least ten hours, preferably 12-16 hours. An example of low stringency hybridization conditions for hybridization of complementary nucleic acid sequences having more than 100 complementary residues on a filter in a Southern or northern blot or for screening a library is 6X SSC at 42°C for at least ten hours, preferably 12-16 hours. Hybridization conditions to identify nucleic acid sequences that are similar but not identical can be identified by experimentally changing the hybridization temperature from 68°C to 42°C while keeping the salt concentration constant (6X SSC), or keeping the hybridization temperature and salt concentration constant (e.g. 42°C and 6X SSC) and varying the formamide concentration from 50% to 0%. Hybridization buffers may also include blocking agents to lower background. These agents are well-known in the art. See Sambrook et al., *supra*, pages 8.46 and 9.46-9.58, herein incorporated by reference.

Wash conditions also can be altered to change stringency conditions. An example of stringent wash conditions is a 0.2x SSC wash at 65°C for 15 minutes (see Sambrook et al., *supra*, for SSC buffer). Often the high stringency wash is preceded by a low stringency wash to remove excess probe. An exemplary medium stringency wash for duplex DNA of more than 100 base pairs is 1x SSC at 45°C for 15 minutes. An exemplary low stringency wash for such a duplex is 4x SSC at 40°C for 15 minutes. In general, signal-to-noise ratio of 2x or higher than that observed for an unrelated probe in the particular hybridization assay indicates detection of a specific hybridization.

As defined herein, nucleic acids that do not hybridize to each other under stringent conditions are still substantially homologous to one another if they encode polypeptides that are substantially identical to each other. This occurs, for example, when a nucleic acid is created synthetically or recombinantly using a high codon degeneracy as permitted by the redundancy of the genetic code.

The polynucleotides of this invention may include both sense and antisense strands of RNA, cDNA, genomic DNA, and synthetic forms and mixed polymers of

5

10

15

20

25

30

the above. They may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of skill in the art. Such modifications include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen, etc.), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids, etc.) Also included are synthetic molecules that mimic polynucleotides in their ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules are known in the art and include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of the molecule.

The term "mutated" when applied to nucleic acid sequences means that nucleotides in a nucleic acid sequence may be inserted, deleted or changed compared to a reference nucleic acid sequence. A single alteration may be made at a locus (a point mutation) or multiple nucleotides may be inserted, deleted or changed at a single locus. In addition, one or more alterations may be made at any number of loci within a nucleic acid sequence. In a preferred embodiment, the nucleic acid sequence is the wild type nucleic acid sequence for a thioesterase. The nucleic acid sequence may be mutated by any method known in the art including those mutagenesis techniques described *infra*.

The term "error-prone PCR" refers to a process for performing PCR under conditions where the copying fidelity of the DNA polymerase is low, such that a high rate of point mutations is obtained along the entire length of the PCR product. See, e.g., Leung, D. W., et al., <u>Technique</u>, 1, pp.11-15 (1989) and Caldwell, R. C. & Joyce G. F., <u>PCR Methods Applic.</u>, 2, pp. 28-33 (1992).

The term "oligonucleotide-directed mutagenesis" refers to a process which enables the generation of site-specific mutations in any cloned DNA segment of interest. See, e.g., Reidhaar-Olson, J. F. & Sauer, R. T., et al., Science, 241, pp. 53-57 (1988).

5

10

15

20

25

30

The term "assembly PCR" refers to a process which involves the assembly of a PCR product from a mixture of small DNA fragments. A large number of different PCR reactions occur in parallel in the same vial, with the products of one reaction priming the products of another reaction.

The term "sexual PCR mutagenesis" of "DNA shuffling" refers to a method of error-prone PCR coupled with forced homologous recombination between DNA molecules of different but highly related DNA sequence *in vitro*, caused by random fragmentation of the DNA molecule based on sequence homology, followed by fixation of the crossover by primer extension in an error-prone PCR reaction. See, e.g., Stemmer, W. P., <u>Proc. Natl. Acad. Sci. U.S.A.</u>, 91, pp. 10747-10751 (1994). DNA shuffling can be carried out between several related genes ("Family shuffling").

The term "in vivo mutagenesis" refers to a process of generating random mutations in any cloned DNA of interest which involves the propagation of the DNA in a strain of bacteria such as *E. coli* that carries mutations in one or more of the DNA repair pathways. These "mutator" strains have a higher random mutation rate than that of a wild-type parent. Propagating the DNA in a mutator strain will eventually generate random mutations within the DNA.

The term "cassette mutagenesis" refers to any process for replacing a small region of a double-stranded DNA molecule with a synthetic oligonucleotide "cassette" that differs from the native sequence. The oligonucleotide often contains completely and/or partially randomized native sequence.

The term "recursive ensemble mutagenesis" refers to an algorithm for protein engineering (protein mutagenesis) developed to produce diverse populations of phenotypically related mutants whose members differ in amino acid sequence. This method uses a feedback mechanism to control successive rounds of combinatorial cassette mutagenesis. See, e.g., Arkin, A. P. and Youvan, D. C., <u>Proc. Natl. Acad. Sci. U.S.A.</u>, 89, pp. 7811-7815 (1992).

The term "exponential ensemble mutagenesis" refers to a process for generating combinatorial libraries with a high percentage of unique and functional mutants, wherein small groups of residues are randomized in parallel to identify, at each altered position, amino acids which lead to functional proteins. See, e.g.,

5

10

15

20

25

30

Delegrave, S. and Youvan, D. C., <u>Biotechnology Research</u>, 11, pp. 1548-1552 (1993); and random and site-directed mutagenesis, Arnold, F. H., <u>Current Opinion in Biotechnology</u>, 4, pp. 450-455 (1993). Each of the references mentioned above are hereby incorporated by reference in its entirety.

"Operatively linked" expression control sequences refers to a linkage in which the expression control sequence is contiguous with the gene of interest to control the gene of interest, as well as expression control sequences that act in *trans* or at a distance to control the gene of interest.

The term "expression control sequence" as used herein refers to polynucleotide sequences which are necessary to affect the expression of coding sequences to which they are operatively linked. Expression control sequences are sequences which control the transcription, post-transcriptional events and translation of nucleic acid sequences. Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (e.g., ribosome binding sites); sequences that enhance protein stability, and when desired, sequences that enhance protein secretion. The nature of such control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and transcription termination sequence. The term "control sequences" is intended to include, at a minimum, all components whose presence is essential for expression, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.

The term "vector," as used herein, is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments may be ligated. Other vectors include cosmids, bacterial artificial chromosomes (BAC) and yeast artificial chromosomes (YAC). Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Viral vectors that infect bacterial cells are referred to as bacteriophages. Certain vectors are capable of autonomous replication in a host cell

5

10

15

20

25

30

into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication). Other vectors can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, "expression vectors"). In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" may be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include other forms of expression vectors that serve equivalent functions.

The term "recombinant host cell" (or simply "host cell"), as used herein, is intended to refer to a cell into which a recombinant expression vector has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell" as used herein.

The term "polypeptide" encompasses both naturally-occurring and non-naturally-occurring proteins and polypeptides, polypeptide fragments and polypeptide mutants, derivatives and analogs. As used herein, a polypeptide comprises at least six amino acids, preferably at least 8, 10, 12, 15, 20, 25 or 30 amino acids, and more preferably the polypeptide is the full length of the naturally-occurring polypeptide. A polypeptide may be monomeric or polymeric. Further, a polypeptide may comprise a number of different modules within a single polypeptide each of which has one or more distinct activities. A preferred polypeptide in accordance with the invention comprises a thioesterase derived from the daptomycin biosynthetic gene cluster, as well as a fragment, mutant, analog and derivative thereof.

The term "isolated protein" or "isolated polypeptide" is a protein or polypeptide that by virtue of its origin or source of derivation (1) is not associated with naturally associated components that accompany it in its native state, (2) is free of other proteins from the same species (3) is expressed by a cell from a different species,

5

10

15

20

25

30

or (4) does not occur in nature. Thus, a polypeptide that is chemically synthesized or synthesized in a cellular system different from the cell from which it naturally originates will be "isolated" from its naturally associated components. A polypeptide or protein may also be rendered substantially free of naturally associated components by isolation, using protein purification techniques well known in the art.

A protein or polypeptide is "substantially pure," "substantially homogeneous" or "substantially purified" when at least about 60% to 75% of a sample exhibits a single species of polypeptide. The polypeptide or protein may be monomeric or multimeric. A substantially pure polypeptide or protein will typically comprise about 50%, 60%, 70%, 80% or 90% W/W of a protein sample, more usually about 95%, and preferably will be over 99% pure. Protein purity or homogeneity may be indicated by a number of means well known in the art, such as polyacrylamide gel electrophoresis of a protein sample, followed by visualizing a single polypeptide band upon staining the gel with a stain well known in the art. For certain purposes, higher resolution may be provided by using HPLC or other means well known in the art for purification.

The term "polypeptide fragment" as used herein refers to a polypeptide that has an amino-terminal and/or carboxy-terminal deletion compared to a full-length polypeptide. In a preferred embodiment, the polypeptide fragment is a contiguous sequence in which the amino acid sequence of the fragment is identical to the corresponding positions in the naturally-occurring sequence. Fragments typically are at least 6, 7, 8, 9 or 10 amino acids long, preferably at least 12, 14, 16 or 18 amino acids long, more preferably at least 20 amino acids long, more preferably at least 25, 30, 35, 40 or 45, amino acids, even more preferably at least 50 or 60 amino acids long, and even more preferably at least 70 amino acids long.

A "derivative" refers to polypeptides or fragments thereof that are substantially homologous in primary structural sequence but which include, e.g., in vivo or in vitro chemical and biochemical modifications or which incorporate amino acids that are not found in the native polypeptide. Such modifications include, for example, acetylation, carboxylation, phosphorylation, glycosylation, ubiquitination, labeling, e.g., with radionuclides, and various enzymatic modifications, as will be readily appreciated by those well skilled in the art. A variety of methods for labeling polypeptides and of

substituents or labels useful for such purposes are well known in the art, and include radioactive isotopes such as ¹²⁵I, ³²P, ³⁵S, and ³H, ligands which bind to labeled antiligands (e.g., antibodies), fluorophores, chemiluminescent agents, enzymes, and antiligands which can serve as specific binding pair members for a labeled ligand. The choice of label depends on the sensitivity required, ease of conjugation with the primer, stability requirements, and available instrumentation. Methods for labeling polypeptides are well known in the art. See Ausubel et al., 1992, hereby incorporated by reference.

The term "fusion protein" refers to polypeptides comprising polypeptides or fragments coupled to heterologous amino acid sequences. Fusion proteins are useful because they can be constructed to contain two or more desired functional elements from two or more different proteins. A fusion protein comprises at least 10 contiguous amino acids from a polypeptide of interest, more preferably at least 20 or 30 amino acids, even more preferably at least 40, 50 or 60 amino acids, yet more preferably at least 75, 100 or 125 amino acids. Fusion proteins can be produced recombinantly by constructing a nucleic acid sequence which encodes the polypeptide or a fragment thereof in frame with a nucleic acid sequence encoding a different protein or peptide and then expressing the fusion protein. Alternatively, a fusion protein can be produced chemically by crosslinking the polypeptide or a fragment thereof to another protein.

The term "non-peptide analog" refers to a compound with properties that are analogous to those of a reference polypeptide. A non-peptide compound may also be termed a "peptide mimetic" or a "peptidomimetic." See, e.g., Fauchere, *J. Adv. Drug Res.* 15:29 (1986); Veber and Freidinger *TINS* p.392 (1985); and Evans et al. *J. Med. Chem.* 30:1229 (1987), which are incorporated herein by reference. Such compounds are often developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to useful peptides may be used to produce an equivalent effect. Generally, peptidomimetics are structurally similar to a paradigm polypeptide (i.e., a polypeptide that has a desired biochemical property or pharmacological activity), such as a thioesterase, but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of:

--CH₂NH--, --CH₂S--, --CH₂-CH₂--, --CH=CH--(cis and trans), --COCH₂--,

5

15

20

25

30

--CH(OH)CH₂--, and -CH₂SO--, by methods well known in the art. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) may also be used to generate more stable peptides. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo and Gierasch Ann. Rev. Biochem. 61:387 (1992), incorporated herein by reference); for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.

A "polypeptide mutant" or "mutein" refers to a polypeptide whose sequence 10 contains substitutions, insertions or deletions of one or more amino acids compared to the amino acid sequence of a native or wild type protein. A mutein may have one or more amino acid point substitutions, in which a single amino acid at a position has been changed to another amino acid, one or more insertions and/or deletions, in which one or more amino acids are inserted or deleted, respectively, in the sequence of the naturally-occurring protein, and/or truncations of the amino acid sequence at either or both the amino or carboxy termini. Further, a mutein may have the same or different biological activity as the naturally-occurring protein. For instance, a mutein may have an increased or decreased biological activity. In a preferred embodiment of the present invention, a mutein has the same or increased thioesterase activity as a naturallyoccurring thioesterase. A mutein has at least 50%, 60% or 70% sequence homology to the wild type protein, more preferred are muteins having at least 80%, 85% or 90% sequence homology to the wild type protein, even more preferred are muteins exhibiting at least 95%, 96%, 97%, 98% or 99% sequence identity. Sequence homology may be measured by any common sequence analysis algorithm, such as Gap or Bestfit, using default parameters.

Preferred amino acid substitutions are those which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes. (4) alter binding affinity or enzymatic activity, and (5) confer or modify other physicochemical or functional properties of such derivatives, analogs, fusion proteins and muteins. Single or multiple amino acid substitutions (preferably conservative amino acid substitutions) may be made in the naturally-occurring

sequence (preferably in the portion of the polypeptide outside the domain(s) forming intermolecular contacts. A conservative amino acid substitution should not substantially change the structural characteristics of the parent sequence (e.g., a replacement amino acid should not tend to break a helix that occurs in the parent sequence, or disrupt other types of secondary structure that characterizes the parent sequence). Examples of art-recognized polypeptide secondary and tertiary structures are described in *Proteins, Structures and Molecular Principles* (Creighton, Ed., W. H. Freeman and Company, New York (1984)); *Introduction to Protein Structure* (C. Branden and J. Tooze, eds., Garland Publishing, New York, N.Y. (1991)); and Thornton et at. *Nature* 354:105 (1991), which are each incorporated herein by reference.

As used herein, the twenty conventional amino acids and their abbreviations follow conventional usage. See Immunology - A Synthesis (2nd Edition, E.S. Golub and D.R. Gren, Eds., Sinauer Associates, Sunderland, Mass. (1991)), which is incorporated herein by reference. Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural amino acids such as α-, α-disubstituted amino acids, N-alkyl amino acids, and other unconventional amino acids may also be suitable components for polypeptides of the present invention. Examples of unconventional amino acids include: 4-hydroxyproline, γ-carboxyglutamate, ε-N,N,N-trimethyllysine, ε-N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, s-N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used herein, the lefthand direction is the amino terminal direction and the right hand direction is the carboxy-terminal direction, in accordance with standard usage and convention.

A protein has "homology" or is "homologous" to a protein from another organism if the encoded amino acid sequence of the protein has a similar sequence to the encoded amino acid sequence of a protein of a different organism. Alternatively, a protein may have homology or be homologous to another protein if the two proteins have similar amino acid sequences. Although two proteins are said to be "homologous," this does not imply that there is necessarily an evolutionary relationship between the proteins. Instead, the term "homologous" is defined to mean that the two

proteins have similar amino acid sequences. In a preferred embodiment, a homologous protein is one that exhibits at least 50%, 60% or 70% sequence identity to the wild type protein, preferred are homologous proteins that exhibit at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity. In addition, although in many cases proteins with similar amino acid sequences will have similar functions, the term "homologous" does not imply that the proteins must be functionally similar to each other.

When "homologous" is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions. A "conservative amino acid substitution" is one in which an amino acid residue is substituted by another amino acid residue having a side chain ® group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent sequence identity or degree of homology may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art (see, e.g., Pearson et al., 1994, herein incorporated by reference).

The following six groups each contain amino acids that are conservative substitutions for one another:

1) Serine (S), Threonine (T);

5

10

15

25

30

- 2) Aspartic Acid (D), Glutamic Acid (E);
- 3) Asparagine (N), Glutamine (Q);
- 4) Arginine (R), Lysine (K);
- 5) Isoleucine (I), Leucine (L), Methionine (M), Alanine (A), Valine (V), and
- 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).

Sequence homology for polypeptides, which is also referred to as sequence identity, is typically measured using sequence analysis software. See, e.g., the Sequence Analysis Software Package of the Genetics Computer Group (GCG), University of Wisconsin Biotechnology Center, 910 University Avenue, Madison,

Wisconsin 53705. Protein analysis software matches similar sequences using measure of homology assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions. For instance, GCG contains programs such as "Gap" and "Bestfit" which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1.

A preferred algorithm when comparing a polypeptide sequence to a database containing a large number of sequences from different organisms is the computer program BLAST, especially blastp, tblastn or BlastX. See Altschul et al. Nucleic Acids Res. 25:3389-3402 (1997), herein incorporated by reference. BlastX, which compares a translated nucleotide sequence to a protein database, may be performed through the servers located at the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov). Preferred parameters for blastp, which compares a protein sequence to a protein database are:

Expectation value: 10 (default)

Filter: seg (default)

Cost to open a gap: 11 (default)

Cost to extend a gap: 1 (default

20 Max. alignments: 100 (default)

5

10

15

25

30

Word size: 11 (default)

No. of descriptions: 100 (default)

Penalty Matrix: BLOSUM62

The length of polypeptide sequences compared for homology will generally be at least about 16 amino acid residues, usually at least about 20 residues, more usually at least about 24 residues, typically at least about 28 residues, and preferably more than about 35 residues. When searching a database containing sequences from a large number of different organisms, it is preferable to compare amino acid sequences.

Database searching using amino acid sequences can be measured by algorithms other than blastp known in the art. For instance, polypeptide sequences can be compared using FASTA, a program in GCG Version 6.1. FASTA provides alignments

and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson, 1990, herein incorporated by reference). For example, percent sequence identity between amino acid sequences can be determined using FASTA with its default parameters (a word size of 2 and the PAM250 scoring matrix), as provided in GCG Version 6.1, herein incorporated by reference.

An "antibody" refers to an intact immunoglobulin, or to an antigen-binding portion thereof that competes with the intact antibody for antigen-specific binding. Antigen-binding portions may be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies. Antigen-binding portions include, inter alia, Fab, Fab', F(ab')₂, Fv, dAb, and complementarity determining region (CDR) fragments, single-chain antibodies (scFv), chimeric antibodies, diabodies and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen binding to the polypeptide. An Fab fragment is a monovalent fragment consisting of the VL, VH, CL and CH1 domains; a F(ab')₂ fragment is a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; a Fd fragment consists of the VH and CH1 domains; an Fv fragment consists of the VL and VH domains of a single arm of an antibody; and a dAb fragment (Ward et al., Nature 341:544-546, 1989) consists of a VH domain.

A single-chain antibody (scFv) is an antibody in which a VL and VH regions are paired to form a monovalent molecules via a synthetic linker that enables them to be made as a single protein chain (Bird et al., Science 242:423-426, 1988 and Huston et al., Proc. Natl. Acad. Sci. USA 85:5879-5883, 1988). Diabodies are bivalent, bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see e.g., Holliger, P., et al., Proc. Natl. Acad. Sci. USA 90:6444-6448, 1993, and Poljak, R. J., et al., Structure 2:1121-1123, 1994). One or more CDRs may be incorporated into a molecule either covalently or noncovalently to make it an immunoadhesin. An immunoadhesin may incorporate the CDR(s) as part of a larger polypeptide chain, may covalently link the CDR(s) to another polypeptide chain, or may incorporate the

5

10

15

20

25

30

CDR(s) noncovalently. The CDRs permit the immunoadhesin to specifically bind to a particular antigen of interest. A chimeric antibody is an antibody that contains one or more regions from one antibody and one or more regions from one or more other antibodies.

An antibody may have one or more binding sites. If there is more than one binding site, the binding sites may be identical to one another or may be different. For instance, a naturally-occurring immunoglobulin has two identical binding sites, a single-chain antibody or Fab fragment has one binding site, while a "bispecific" or "bifunctional" antibody has two different binding sites.

An "isolated antibody" is an antibody that (1) is not associated with naturally-associated components, including other naturally-associated antibodies, that accompany it in its native state, (2) is free of other proteins from the same species, (3) is expressed by a cell from a different species, or (4) does not occur in nature.

A "neutralizing antibody" or "an inhibitory antibody" is an antibody that inhibits the activity of a polypeptide or blocks the binding of a polypeptide to a ligand that normally binds to it. For example, a neutralizing anti-thioesterase antibody may be one that blocks the activity of the thioesterase. An "activating antibody" is an antibody that increases the activity of a polypeptide. For example, an activating anti-thioesterase antibody is one that increases the activity of a thioesterase.

The term "epitope" includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. An antibody is said to specifically bind an antigen when the dissociation constant is $\leq 1~\mu\text{M}$, preferably $\leq 100~\text{nM}$ and most preferably $\leq 10~\text{nM}$.

The term patient includes human and veterinary subjects.

Throughout this specification and claims, the word "comprise," or variations such as "comprises" or "comprising," will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

Nucleic Acid Molecules, Regulatory Sequences, Vectors, Host Cells and Recombinant Methods of Making Polypeptides

Nucleic Acid Molecules

5

10

15

20

25

30

In one aspect, the present invention provides a nucleic acid molecule encoding a thioesterase or a daptomycin NRPS or a subunit thereof. In one embodiment, the nucleic acid molecule encodes one or more of DptA, DptB, DptC or DptD. In a preferred embodiment, the nucleic acid molecules encodes a polypeptide comprising any one of the amino acid sequences of SEQ ID NOS: 9, 11, 13 or 7. In another preferred embodiment, the nucleic acid molecule comprises dptA, dptB, dptC and/or dptD. In a further preferred embodiment, the nucleic acid molecule comprises a nucleic acid sequence comprising any one of SEQ ID NOS: 10, 12, 14 or 3.

In another embodiment, the nucleic acid molecule encodes a thioesterase that is derived from a daptomycin biosynthetic gene cluster. In a preferred embodiment, the nucleic acid molecule encodes a thioesterase derived from a daptomycin biosynthetic gene cluster that is a free thioesterase or is an integral thioesterase. In another preferred embodiment, the nucleic acid molecule encodes DptH or the thioesterase domain of DptD. In a more preferred embodiment, the nucleic acid molecule encodes a polypeptide comprising an amino acid sequence of the thioesterase domain of SEQ ID NO: 7 or has the amino acid sequence of SEQ ID NO: 8. In another embodiment, the nucleic acid molecule comprises the thioesterase-encoding domain of dptD or dptH from the daptomycin biosynthetic gene cluster. In another preferred embodiment, the nucleic acid molecule comprises a nucleic acid sequence of SEQ ID NO: 6 or of SEQ ID NO: 3, or the region comprising the thioesterase-encoding portion thereof. In another embodiment, the nucleic acid molecule also encodes a daptomycin NRPS or a subunit thereof. See Examples 1-6 regarding the isolation and identification of dptA, dptB, dptC, dptD and dptH and other genes of the daptomycin biosynthetic gene cluster.

In another embodiment, the nucleic acid molecule encodes an acyl CoA ligase. In a preferred embodiment, the nucleic acid molecule encodes DptE, preferably a nucleic acid molecule encoding SEQ ID NO: 15. In a more preferred embodiment, the nucleic acid molecule comprises dptE. In an even more preferred embodiment, the

nucleic acid molecule comprises SEQ ID NO: 16. In another embodiment, the nucleic acid molecule encodes an acyl transferase. In a preferred embodiment, the nucleic acid molecule encodes DptF, preferably a nucleic acid molecule encoding SEQ ID NO: 17. In a more preferred embodiment, the nucleic acid molecule comprises dptF. In an even more preferred embodiment, the nucleic acid molecule comprises SEQ ID NO: 18.

Another embodiment of the invention provides a nucleic acid molecule comprising a DNA sequence from a bacterial artificial chromosome (BAC) comprising nucleic acid sequences from *S. roseosporus*. In a preferred embodiment, the nucleic acid molecule comprises a *S. roseosporus* nucleic acid sequence from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or B12:03A05. In a preferred embodiment, the nucleic acid molecule comprises a *S. roseosporus* nucleic acid sequence from B12:03A05 (ATCC Deposit PTA-3140, deposited March 1, 2001). The nucleic acid molecule may comprise the entire *S. roseosporus* nucleic acid sequence in the BAC clone or may comprise a part thereof. In a preferred embodiment, the part is a nucleic acid molecule that comprises at least one nucleic acid sequence that can encode a polypeptide, preferably a full-length polypeptide, i.e., a nucleic acid molecule that encodes a polypeptide from its start codon to its stop codon. In one preferred embodiment, the part comprises a nucleic acid molecule encoding a polypeptide involved in daptomycin biosynthesis, such as, without limitation, *dptA*, *dptB*, *dptC*, *dptD*, *dptE*, *dptF* or *dptH*.

In another embodiment, a part from the BAC clone is a nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide selected from SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101. In another embodiment, the part from the BAC clone is a nucleic acid molecule comprising a nucleic acid sequence selected from SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 or 102. The polypeptides having amino acids sequences of SEQ ID NOS: 19, 21, 29, 45, 47, 49, 63, 67, 75 and 77 (nucleic acid sequences of SEQ ID NOS: 20, 22, 30, 46, 48, 50, 64, 68, 76 or 78) are ATP transporters. Some of the polypeptides are pump-like polypeptides with Walker

5

10

15

20

25

30

motifs while others are polypeptides that have a role in metal scavenging, e.g., iron or manganese transport (see Tables 6 and 7). The nucleic acid molecule comprising SEQ ID NO: 76 encodes an ATP-binding component of an ABC transporter system, as determined by its sequence similarity to ORF1 of (AAD44229.1) of S. rochei and the S. peucetius DrrA (P32010) genes. The encoded polypeptide has both a Walker A and a Walker B motif. Further, its synthesis appears to be translationally coupled to that of a nucleic acid molecule comprising SEQ ID NO: 78, which encodes a DrrB-like polypeptide, as determined by its sequence similar to the S. peuticeus DrrB product (AAA74718.1), encoding the integral membrane component. The polypeptide having an amino acid sequence of SEQ ID NO: 21 is a StrV homolog, while the polypeptide having an amino acid sequence of SEQ ID NO: 19 is a StrW homolog. See, e.g., Beyer et al., 1996, supra. The StrV homolog has both Walker motifs, while the StrW homolog has only a Walker B motif. Both nucleic acid sequences encoding the polypeptide are on the complementary strand and appear to be translationally regulated. They have S. coelicolor homologs, G8A.01 and G8A.02 (emb CAB88931, CAB88932). See Tables 6 and 7.

In another aspect, a part of the BAC clone is a nucleic acid molecule comprising a nucleic acid sequence encoding an oxidoreductase, a dehydrogenase; a transcriptional regulator involved in antibiotic resistance; NovABC-related polypeptides, which are involved in the biosynthesis of novobiocin, an antimicrobial agent; a monooxygenase; an acyl CoA thioesterase; a DNA helicase; or a DNA ligase. These nucleic acid molecules and encoded polypeptides may be useful in daptomycin biosynthesis; e.g., the acyl CoA thioesterase may be useful for the reasons provided above for thioesterases and may also be important in addition of the lipid tail to the peptide domain of daptomycin. These nucleic acid molecules encoding enzymes are also useful because they may be used in the same way as other oxidoreductases, dehydrogenases, monooxygenases, DNA helicases or DNA ligases are used in the art. Notably, the transcriptional regulator can be mutated using well-known methods to increase or decrease daptomycin or other antibiotic resistance. The nucleic acid molecules encoding NovABC-related polypeptides may be used in the same way as NovABC is used in the art, e.g., to produce novobiocin or related antimicrobial agents.

5

10

15

20

25

30

The polypeptides having the above-described activity comprise the amino acid sequences of SEQ ID NOS: 23, 25, 27, 29, 33, 35, 37, 91, 93, 97 and 99 and are encoded by nucleic acid sequences of SEQ ID NOS: 24, 26, 28, 30, 34, 36, 38, 92, 94, 98 and 100.

In another aspect, a part of the BAC clone is a nucleic acid molecule that encodes a polypeptide that does not have a defined function but which is highly homologous to nucleic acid molecules and polypeptides from other Streptomyces. These nucleic acid molecules (SEQ ID NOS: 62, 66, 70, 80, 82, 84, 86, 88, 96 and 102), the polypeptides they encode (SEQ ID NOS: 61, 65, 69, 79, 81, 83, 85, 87, 95 and 101) and antibodies to the polypeptides may be used to identify other Streptomyces species using standard molecular biological and protein chemistry techniques (e.g., PCR, RT-PCR, Southern blotting, northern blotting, ELISAs, radioimmunoassays or western blotting), which is useful, e.g., in microbiological testing or forensics. In another embodiment, a part of the BAC clone is a nucleic acid molecule that encodes a polypeptide that does not have a defined function and is not highly homologous to a nucleic acid molecule or polypeptide from another species. These nucleic acid molecules (SEQ ID NOS: 32, 40, 42, 44, 52, 54, 56, 58, 60, 72 and 74) are nevertheless useful because they are close to the daptomycin biosynthetic gene cluster, and as such, they can be used to identify nucleic acid molecules that encode all or a part of the daptomycin biosynthetic gene cluster. Parts of the BAC clone that do not encode a polypeptide are useful for the same reasons. Further, the polypeptides having the amino acid sequence of SEQ ID NOS: 31, 39, 41, 43, 51, 53, 55, 57, 59, 71 and 73 can be used to make antibodies that can be used to identify S. roseosporus. Because the polypeptides are not highly homologous to any other species, the antibodies would likely be highly specific for S. roseosporus.

In another aspect, the invention provides a nucleic acid molecule that selectively hybridizes to a nucleic acid molecule as described above. In a preferred embodiment, the invention provides a nucleic acid molecule that selectively hybridizes to a nucleic acid molecule that encodes DptA, DptB, DptC, DptD or DptH. In another preferred embodiment, the invention provides a nucleic acid molecules that selectively hybridizes to a nucleic acid molecule that encodes SEQ ID NOS: 9, 11, 13, 7 or 8. In

5

10

15

20

25

30

an even more preferred embodiment, the invention provides a nucleic acid molecule that selectively hybridizes to a nucleic acid molecule comprising the nucleic acid sequence of dptA, dptB, dptC, dptD or dptH. In another preferred embodiment, the invention provides a nucleic acid molecule that selectively hybridizes to a nucleic acid molecule comprising the nucleic acid sequence SEQ ID NOS: 10, 12, 14, 3 or 6. The invention also provides a nucleic acid molecule that selectively hybridizes to a nucleic acid molecule comprising an S. roseosporus nucleic acid sequence from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or B12:03A05, preferably that from B12:03A05. In a preferred embodiment, the invention provides a nucleic acid molecule that selectively hybridizes to a nucleic acid molecule encoding SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101 or to a nucleic acid molecule comprising the nucleic acid sequence SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 or 102. The selective hybridization of any of the above-described nucleic acid sequences may be performed under low stringency hybridization conditions. In a preferred embodiment, the selective hybridization is performed under high stringency hybridization conditions. In a preferred embodiment of the invention, the hybridizing nucleic acid molecule may be used to recombinantly express a polypeptide of the invention.

In another aspect, the invention provides a nucleic acid molecule that is homologous to a nucleic acid encoding a daptomycin NRPS or subunit thereof, a thioesterase from a daptomycin biosynthetic gene cluster, or a nucleic acid molecule comprising an *S. roseosporus* nucleic acid sequence from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or, preferably, B12:03A05. The invention provides a nucleic acid molecule homologous to a nucleic acid molecule encoding DptA, DptB, DptC, DptD or DptH. In one embodiment, the nucleic acid molecule is homologous to a nucleic acid molecule encoding a polypeptide having an amino acid sequence of SEQ ID NOS: 9, 11, 13, 7 or 8. In a preferred embodiment, the nucleic acid molecule is homologous to any one or more of *dptA*, *dptB*, *dptC* or *dptD*. In another embodiment, the nucleic acid molecule is homologous to a thioesterase

encoded by the thioesterase domain of dptD or by dptH. In a more preferred embodiment, the nucleic acid molecule is homologous to a nucleic acid molecule having a nucleic acid sequence of SEQ ID NOS: 10, 12, 14, 3 or 6. In another preferred embodiment, the invention provides a nucleic acid molecule that is homologous to a nucleic acid molecule encoding SEQ ID NOS: 19, 21, 23, 25, 27, 29, 5 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101 or to a nucleic acid molecule comprising the nucleic acid sequence SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 or 102. In a preferred embodiment, a 10 homologous nucleic acid molecule is one that has at least 60%, 70%, 80% or 85% sequence identity with a nucleic acid molecule described herein. In a more preferred embodiment, the homologous nucleic acid molecule is one that has at least 90%, 95%, 97%, 98% or 99% sequence identity with a nucleic acid molecule described herein. Further, in one embodiment, a homologous nucleic acid molecule is homologous over 15 its entire length to a nucleic acid molecule encoding a daptomycin NRPS or subunit thereof, a thioesterase, or nucleic acid molecule that encodes a polypeptide as described herein. In another embodiment, a homologous nucleic acid molecule is homologous over only a part of its length to a nucleic acid molecule described herein, wherein the part is at least 50 nucleotides of the nucleic acid molecule, preferably at 20 least 100 nucleotides, more preferably at least 200 nucleotides, even more preferably at

In another embodiment, the invention provides a nucleic acid that is an allelic variant of a gene encoding a daptomycin NRPS or subunit thereof, a thioesterase from a daptomycin biosynthetic gene cluster, or a nucleic acid molecule comprising an S. roseosporus nucleic acid sequence from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or B12:03A05. In a preferred embodiment, the invention provides a nucleic acid that is an allelic variant of dptA, dptB, dptC, dptD or dptH. In an even more preferred embodiment, the allelic variant is a variant of a gene, wherein the gene encodes DptA, DptB, DptC, DptD or DptH. In another preferred embodiment, the allelic variant is a variant of a gene that encodes a polypeptide

least 300 nucleotides.

25

30

5

10

15

20

25

30

comprising an amino acid sequence of SEQ ID NOS: 9, 11, 13, 7 or 8. In a yet more preferred embodiment, the allelic variant is a variant of a gene, wherein the gene has the nucleic acid sequence of SEQ ID NOS: 10, 12, 14, 3 or 6. An allelic variant of dptH or the thioesterase of dptD preferably encodes a thioesterase with the same or similar enzymatic activity compared to that of the polypeptide having the amino acid sequence of the thioesterase domain of SEQ ID NO: 7 or has the amino acid sequence of SEQ ID NO: 8. An allelic variant of dptA, dptB, dptC or dptD preferably encodes a polypeptide having the same activity as the daptomycin NRPS having the amino acid sequences of SEQ ID NOS: 9, 11, 13 or 7, respectively. In another embodiment, the invention provides an allelic variant of a nucleic acid molecule that encodes SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101 or to a nucleic acid molecule comprising the nucleic acid sequence SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 or 102. In a preferred embodiment, the allelic variant encodes a polypeptide having the same biological activity of the polypeptide; e.g., it encodes a polypeptide having ABCtransporter activity.

A further object of the invention is to provide a nucleic acid molecule that comprises a part of a nucleic acid sequence of the instant invention. The invention provides a part of a nucleic acid molecule encoding a daptomycin NRPS, a subunit thereof, a thioesterase from a daptomycin biosynthetic gene cluster, or a part of a nucleic acid molecule that comprises an *S. roseosporus* nucleic acid sequence from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or, preferably, B12:03A05. The invention also provides a part of a selectively-hybridizing or homologous nucleic acid molecule, as described above. The invention provides a part of an allelic variant of a nucleic acid molecule, as described above. A part comprises at least 10 nucleotides, more preferably at least 15, 20, 25, 30, 35, 40, 50, 100, 150, 200, 250 or 300 nucleotides. The maximum size of a nucleic acid molecule encodes more than

5

10

15

20

25

30

one gene, or is one nucleotide shorter than the nucleic acid molecule encoding the full-length protein, if the nucleic acid molecule encodes a single polypeptide.

In another aspect, the hybridizing or homologous nucleic acid molecule, the allelic variant, or the part of the nucleic acid molecule encodes a polypeptide that has the same biological activity as the native (wild-type) polypeptide.

In another aspect, the invention provides a nucleic acid molecule that encodes a fusion protein, a homologous protein, a polypeptide fragment, a mutein or a polypeptide analog, as described below.

A nucleic acid molecule of this invention may encode a single polypeptide or multiple polypeptides. In one embodiment, the invention provides a nucleic acid molecule that encodes multiple, translationally coupled polypeptides, e.g., a nucleic acid molecule that encodes DptA, DptB, DptC and DptD. The invention also provides a nucleic acid molecule that encodes a single polypeptide derived from *S. roseosporus*, e.g., DptA, DptB, DptC or DptD, or a polypeptide fragment, mutein, fusion protein, polypeptide analog or homologous protein thereof. The invention also provides nucleic acid sequences, such as expression control sequences, that are not associated with other *S. roseosporus* sequences.

In one embodiment, the nucleic acid molecule may not consist of any one or more of the plasmids or cosmids designated pRHB152, pRHB153, pRHB154, pRHB155, pRHB157, pRHB159, pRHB160, pRHB161, pRHB162, pRHB166, pRHB168, pRHB169, pRHB170, pRHB172, pRHB173, pRHB174, pRHB599, pRHB602, pRHB603, pRHB613, pRHB614, pRHB680, pRHB678 or pRHB588 by McHenney et al., J. Bacteriol. 180: 143-151 (1998), herein incorporated by reference in its entirety. In another embodiment, the nucleic acid molecule may not consist of the nucleic acid sequence derived from *S. roseosporus* (the *S. roseosporus* insert) in any one of the above-mentioned plasmids or cosmids. In another embodiment, the nucleic acid molecule may not be the nucleic acid molecule may not consist of a vector into which the *S. roseosporus* insert from any one of the above-mentioned plasmids or cosmids has been inserted, wherein the vector comprises no other *S. roseosporus* sequences.

5

10

15

20

25

30

In another embodiment, the invention provides a nucleic acid molecule comprising one or more expression control sequences from a gene comprising a nucleic acid sequence that encodes a thioesterase or daptomycin NRPS from the daptomycin biosynthetic gene cluster. In a preferred embodiment, the nucleic acid molecule comprises a part or all of the expression control sequences of the daptomycin NRPS or *dptH*. In a yet more preferred embodiment, the nucleic acid molecule comprises all or a part of SEQ ID NO: 2 or SEQ ID NO: 5. In another preferred embodiment, the nucleic acid molecule comprises an expression control sequence from an *S. roseosporus* nucleic acid sequence from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or, preferably, B12:03A05. Without wishing to be bound by any theory, it is thought that the nucleic acid sequence upstream of *dptA* in the daptomycin biosynthetic gene cluster (SEQ ID NO: 2) comprises the native expression control sequences for *dptA*, *dptB*, *dptC* and *dptD*. Further, it is thought that a single transcript for *dptA*, *dptB*, *dptC* and *dptD* is generated and that expression of DptA, DptB, DptC and DptD are translationally coupled.

In a preferred embodiment, the entire expression control sequence of a gene comprising a nucleic acid sequence that encodes a daptomycin NRPS and/or a thioesterase from the daptomycin biosynthetic gene cluster is used to control transcription. In another embodiment, only a part of the expression control sequence of a gene comprising a nucleic acid sequence that encodes a daptomycin NRPS and/or a thioesterase from the daptomycin biosynthetic gene cluster is used to control transcription. One having ordinary skill in the art may determine which part(s) of the gene to use to control transcription using methods known in the art. For instance, one may ligate a nucleic acid sequence comprising all or a part of an expression control sequence of a daptomycin NRPS and/or a thioesterase gene into a vector comprising a reporter gene. Examples of such reporter genes include, without limitation, chloramphenicol acetyltransferase (CAT), luciferase, green fluorescent protein, βgalactosidase and the like. The nucleic acid molecule comprising the expression control sequence is ligated into the vector such that it can act as a promoter or enhancer of the reporter gene. The vector is introduced into a host cell and expression is induced. Then, one may assay for the production of the reporter gene product to

determine if the part(s) of the expression control sequence is sufficient to activate or regulate transcription. Methods of determining whether a nucleic acid sequence is sufficient to regulate transcription are routine and well-known in the art. See, e.g., Ausubel et al., *supra*.

A nucleic acid molecule comprising all or a part of an expression control sequence described herein, or multiple copies of these expression control sequences or parts thereof, may be operatively linked to a second nucleic acid molecule to regulate the transcription of the second nucleic acid molecule. In one embodiment, the invention provides a nucleic acid molecule comprising the expression control sequences operatively linked to a heterologous nucleic acid molecule, such as a nucleic acid molecule that encodes a polypeptide not usually expressed by *S. roseosporus*. In another preferred embodiment, the nucleic acid molecule comprising the expression control sequences is inserted into a vector, preferably a bacterial vector. In a more preferred embodiment, the vector is introduced into a bacterial host cell, more preferably into a *Streptomyces* or *E. coli*, and even more preferably into a *S. roseosporus*, *S. lividans* or *S. fradiae* host cell.

The invention also provides a nucleic acid sequence comprising the expression control sequence from *S. roseosporus* as described herein operatively linked to a nucleic acid sequence encoding a polypeptide involved in a daptomycin NRPS, a thioesterase derived from the daptomycin biosynthetic gene cluster, or a nucleic acid molecule from a BAC clone or part there as described herein. The expression control sequence may be operatively linked to a nucleic acid molecule encoding DptA, DptB, DptC, DptD or DptH, to a nucleic acid molecule encoding a polypeptide derived from the *S. roseosporus* sequences from a BAC clone of the invention, preferably B12:03A05, or to a nucleic acid molecule encoding a fragment, homologous protein, mutein, analog, derivative or fusion protein thereof. The expression control sequence may be operatively linked to a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence of SEQ ID NOS: 9, 11, 13, 7 or 8, or to a fragment thereof. Preferably, the expression control sequence is operatively linked to the coding region of one or more of *dptA*, *dptB*, *dptC*, *dptD* or *dptH*. In a more preferred embodiment, the expression control sequence is operatively linked to a

5

10

15

20

25

30

nucleic acid sequence selected from SEQ ID NOS: 10, 12, 14, 3 or 6, or to a part thereof. The invention also provides an expression control sequence operatively linked to the coding region of a polypeptide comprising an amino acid sequence SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101 or to a nucleic acid molecule comprising the nucleic acid sequence SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 or 102.

In another embodiment, the invention provides a nucleic acid molecule comprising one or more expression control sequences that directs the transcription of a nucleic acid molecule encoding a daptomycin NRPS, a subunit, module or domain thereof, a thioesterase, or a nucleic acid molecule encoding a polypeptide derived from the *S. roseosporus* sequences from a BAC clone of the invention, wherein the expression control sequence(s) are not derived from a daptomycin biosynthetic gene cluster. Examples of suitable expression control sequences are provided *infra*.

Expression Vectors, Host Cells and Recombinant Methods of Producing Polypeptides

Nucleic acid sequences may be expressed by operatively linking them to an expression control sequence in an appropriate expression vector and employing that expression vector to transform an appropriate unicellular host. Expression control sequences are sequences which control the transcription, post-transcriptional events and translation of nucleic acid sequences. Such operative linking of a nucleic sequence of this invention to an expression control sequence, of course, includes, if not already part of the nucleic acid sequence, the provision of a translation initiation codon, ATG or GTG, in the correct reading frame upstream of the nucleic acid sequence.

A wide variety of host/expression vector combinations may be employed in expressing the nucleic acid sequences of this invention. Useful expression vectors, for example, may consist of segments of chromosomal, non-chromosomal and synthetic nucleic acid sequences.

In a preferred embodiment, bacterial host cells are used to express the nucleic acid molecules of the instant invention. Useful expression vectors for bacterial hosts

include bacterial plasmids, such as those from *E. coli* or *Streptomyces*, including pBluescript, pGEX-2T, pUC vectors, col E1, pCR1, pBR322, pMB9 and their derivatives, wider host range plasmids, such as RP4, phage DNAs, e.g., the numerous derivatives of phage lambda, e.g., NM989, λGT10 and λGT11, and other phages, e.g., M13 and filamentous single stranded phage DNA. A preferred vector is a bacterial artificial chromosome (BAC). A more preferred vector is pStreptoBAC, as described in Example 2.

In other embodiments, eukaryotic host cells, such as yeast or mammalian cells, may be used. Yeast vectors include Yeast Integrating plasmids (e.g., YIp5) and Yeast Replicating plasmids (the YRp and YEp series plasmids), Yeast centromere plasmids (the YCp series plasmids), pGPD-2, 2µ plasmids and derivatives thereof, and improved shuttle vectors such as those described in Gietz and Sugino, Gene, 74, pp. 527-34 (1988) (YIplac, YEplac and YCplac). Expression in mammalian cells can be achieved using a variety of plasmids, including pSV2, pBC12BI, and p91023, as well as lytic virus vectors (e.g., vaccinia virus, adeno virus, and baculovirus), episomal virus vectors (e.g., bovine papillomavirus), and retroviral vectors (e.g., murine retroviruses). Useful vectors for insect cells include baculoviral vectors and pVL 941.

In addition, any of a wide variety of expression control sequences may be used in these vectors to express the DNA sequences of this invention. Such useful expression control sequences include the expression control sequences associated with structural genes of the foregoing expression vectors. Expression control sequences that control transcription include, e.g., promoters, enhancers and transcription termination sites. Expression control sequences in eukaryotic cells that control post-transcriptional events include splice donor and acceptor sites and sequences that modify the half-life of the transcribed RNA, e.g., sequences that direct poly(A) addition or binding sites for RNA-binding proteins. Expression control sequences that control translation include ribosome binding sites, sequences which direct targeted expression of the polypeptide to or within particular cellular compartments, and sequences in the 5' and 3' untranslated regions that modify the rate or efficiency of translation.

Examples of useful expression control sequences include, for example, the early and late promoters of SV40 or adenovirus, the <u>lac</u> system, the <u>trp</u> system, the <u>TAC</u> or <u>TRC</u> system, the T3 and T7 promoters, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase, e.g., Pho5, the promoters of the yeast α-mating system, the GAL1 or GAL10 promoters, and other constitutive and inducible promoter sequences known to control the expression of genes of prokaryotic or eukaryotic cells or their viruses, and various combinations thereof. Other expression control sequences include those from the daptomycin biosynthetic gene cluster, such as those described *supra*.

Preferred nucleic acid vectors also include a selectable or amplifiable marker gene and means for amplifying the copy number of the gene of interest. Such marker genes are well-known in the art. Nucleic acid vectors may also comprise stabilizing sequences (e.g., ori- or ARS-like sequences and telomere-like sequences), or may alternatively be designed to favor directed or non-directed integration into the host cell genome. Preferred marker genes and stabilizing sequences are disclosed in pStreptoBAC, which is described in Example 2. In a preferred embodiment, nucleic acid sequences of this invention are inserted in frame into an expression vector that allows high level expression of an RNA which encodes a protein comprising the encoded nucleic acid sequence of interest. Nucleic acid cloning and sequencing methods are well known to those of skill in the art and are described in an assortment of laboratory manuals, including Sambrook et al., *supra*, 1989; and Ausubel et al. Product information from manufacturers of biological, chemical and immunological reagents also provide useful information. Example 2 provides preferred nucleic acid cloning and sequencing methods.

15

20

25

30

Of course, not all vectors and expression control sequences will function equally well to express the nucleic acid sequences of this invention. Neither will all hosts function equally well with the same expression system. However, one of skill in the art may make a selection among these vectors, expression control sequences and hosts without undue experimentation and without departing from the scope of this invention. For example, in selecting a vector, the host must be considered because the

5

10

15

20

25

30

vector must be replicated in it. The vector's copy number, the ability to control that copy number, the ability to control integration, if any, and the expression of any other proteins encoded by the vector, such as antibiotic or other selection markers, should also be considered.

In selecting an expression control sequence, a variety of factors should also be considered. These include, for example, the relative strength of the sequence, its controllability, and its compatibility with the nucleic acid sequence of this invention, particularly with regard to potential secondary structures. Unicellular hosts should be selected by consideration of their compatibility with the chosen vector, the toxicity of the product coded for by the nucleic acid sequences of this invention, their secretion characteristics, their ability to fold the polypeptide correctly, their fermentation or culture requirements, and the ease of purification from them of the products coded for by the nucleic acid sequences of this invention.

The recombinant nucleic acid molecules and more particularly, the expression vectors of this invention may be used to express the polypeptides of this invention as recombinant polypeptides in a heterologous host cell. The polypeptides of this invention may be full-length or less than full-length polypeptide fragments recombinantly expressed from the nucleic acid sequences according to this invention. Such polypeptides include analogs, derivatives and muteins that may or may not have biological activity. In a preferred embodiment, the polypeptides are expressed in a heterologous bacterial host cell. In a more preferred embodiment, the polypeptides are expressed in a heterologous *Streptomyces* host cell, still more preferably a *S. lividans* or *S. fradiae* host cell. See, e.g., Example 7, *infra*.

Transformation and other methods of introducing nucleic acids into a host cell (e.g., conjugation, protoplast transformation or fusion, transfection, electroporation, liposome delivery, membrane fusion techniques, high velocity DNA-coated pellets, viral infection and protoplast fusion) can be accomplished by a variety of methods which are well known in the art (see, for instance, Ausubel, *supra*, and Sambrook et al., *supra*). Bacterial, yeast, plant or mammalian cells are transformed or transfected with an expression vector, such as a plasmid, a cosmid, or the like, wherein the expression vector comprises the nucleic acid of interest. Alternatively, the cells may be

infected by a viral expression vector comprising the nucleic acid of interest.

Depending upon the host cell, vector, and method of transformation used, transient or stable expression of the polypeptide will be constitutive or inducible. One having ordinary skill in the art will be able to decide whether to express a polypeptide transiently or in a stable manner, and whether to express the protein constitutively or inducibly.

A wide variety of unicellular host cells are useful in expressing the DNA sequences of this invention. These hosts may include well known eukaryotic and prokaryotic hosts, such as strains of *E. coli*, *Pseudomonas*, *Bacillus*, *Streptomyces*, fungi, yeast, insect cells such as *Spodoptera frugiperda* (SF9), animal cells such as CHO, BHK, MDCK and various murine cells, e.g., 3T3 and WEHI cells, African green monkey cells such as COS 1, COS 7, BSC 1, BSC 40, and BMT 10, and human cells such as VERO, WI38, and HeLa cells, as well as plant cells in tissue culture. In a preferred embodiment, the host cell is *Streptomyces*. In a more preferred embodiment, the host cell is *S. roseosporus*, *S. lividans* or *S. fradiae*.

Particular details of the transfection, expression and purification of recombinant proteins are well documented and are understood by those of skill in the art. Further details on the various technical aspects of each of the steps used in recombinant production of foreign genes in bacterial cell expression systems can be found in a number of texts and laboratory manuals in the art. See, e.g., Ausubel et al., *supra*, and Sambrook et al., *supra*, and Kieser et al., *supra*, herein incorporated by reference.

<u>Polypeptides</u>

5

10

15

20

25

30

Thioesterases and Fragments Thereof

Another object of the invention is to provide a polypeptide derived from a thioesterase involved in daptomycin synthesis. In one embodiment, the polypeptide is derived from a daptomycin biosynthetic gene cluster. In a preferred embodiment, the polypeptide is derived from an integral or free thioesterase. In a more preferred embodiment, the polypeptide comprises the thioesterase domain of DptD or the amino acid sequence of DptH. In an even more preferred embodiment, the polypeptide comprises the amino acid sequence of the thioesterase domain of SEQ ID NO: 7 or the

amino acid sequence of SEQ ID NO: 8. The polypeptide derived from a thioesterase may also be encoded by an *S. roseosporus* nucleic acid sequence from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or B12:03A05, preferably from B12:03A05. A polypeptide as defined herein may be produced recombinantly, as discussed *supra*, may be isolated from a cell that naturally expresses the protein, or may be chemically synthesized following the teachings of the specification and using methods well known to those having ordinary skill in the art. See, e.g., Examples 3-6.

The polypeptide may comprise a fragment of a thioesterase as defined herein. A polypeptide that comprises only a part or fragment of the entire thioesterase may or may not encode a polypeptide that has thioesterase activity. A polypeptide that does not have thioesterase activity, whether it is a fragment, analog, mutein, homologous protein or derivative, is nevertheless useful, especially for immunizing animals to prepare anti-thioesterase antibodies. However, in a preferred embodiment, the part or fragment encodes a polypeptide having thioesterase activity. Methods of determining whether a polypeptide has thioesterase activity are described *infra*. Further, in a preferred embodiment, the fragment comprises an amino acid sequence comprising the GXSXG thioesterase motif (see Example 3). In a more preferred embodiment, the fragment comprises an amino acid sequence comprising the thioesterase motif GWSFG or GTSLG, which are derived from the thioesterase domain of SEQ ID NO: 7 or the amino acid sequence of SEQ ID NO: 8, respectively.

One can produce fragments of a polypeptide encoding a thioesterase by truncating the DNA encoding the thioesterase and then expressing it recombinantly. Alternatively, one can produce a fragment by chemically synthesizing a portion of the full-length polypeptide. One may also produce a fragment by enzymatically cleaving either a recombinant polypeptide or an isolated naturally-occurring polypeptide. Methods of producing polypeptide fragments are well-known in the art (see, e.g., Sambrook et al. and Ausubel et al., *supra*). In one embodiment, a polypeptide comprising only a part or fragment of a thioesterase may be produced by chemical or enzymatic cleavage of a thioesterase. In a preferred embodiment, a polypeptide fragment is produced by expressing a nucleic acid molecule encoding a fragment of the thioesterase in a host cell.

Daptomycin NRPS Polypeptides, and Subunits and Fragments Thereof

5

10

15

20

25

30

Another object of the invention is to provide a polypeptide derived from a daptomycin NRPS or subunit thereof. The daptomycin NRPS comprises the subunits DptA, DptB, DptC and DptD. As discussed in greater detail in Examples 3-6 below, each subunit comprises a number of modules that bind and activate specific building block substrates and to catalyze peptide chain formation and elongation. Further, each module comprises a number of domains that participate in condensation, adenylation and thiolation. In addition, some modules comprise a epimerization domain, discussed in greater detail in Example 6. DptD also comprises a thioesterase domain, as discussed *supra* and in Example 5.

In one embodiment, the polypeptide an amino acid sequence from DptA, DptB, DptC and/or DptD. In an even more preferred embodiment, the polypeptide comprises an amino acid sequence SEQ ID NOS: 9, 11, 13 or 7. A daptomycin NRPS polypeptide may also be encoded by an S. roseosporus nucleic acid sequence from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or B12:03A05, preferably from B12:03A05. A polypeptide as defined herein may be produced recombinantly, as discussed supra, may be isolated from a cell that naturally expresses the protein, or may be chemically synthesized following the teachings of the specification and using methods well known to those having ordinary skill in the art. See, e.g., Examples 3-6 regarding amino acid sequences as well as modules and domains of DptA, DptB, DptC and DptD.

The polypeptide may comprise a fragment of a daptomycin NRPS as defined herein. In one embodiment, a fragment comprises one or more complete modules of a daptomycin NRPS subunit. In another embodiment, a fragment comprises one or more domains of a daptomycin NRPS subunit. In yet another embodiment, a fragment may not comprise a complete domain or module but may comprise only a part of one or more domains or modules. A polypeptide that does not comprise a full domain or module of a daptomycin NRPS, whether it is a fragment, analog, mutein, homologous protein or derivative, is nevertheless useful, especially for immunizing animals to prepare anti-thioesterase antibodies. In a more preferred embodiment, the fragment comprises an amino acid sequence comprising at least that part of an adenylation

domain that is required for binding to an amino acid. This part of the domain is delimited by the amino acid pocket code of a particular adenylation domain, as discussed below in Example 5.

As discussed above, one can produce fragments of a polypeptide of the invention recombinantly, by chemical synthesis or by enzymatic cleavage.

Polypeptides from S. roseosporus BAC Clones

10

15

20

25

30

Another object of the invention is to provide a polypeptide encoded by a nucleic acid molecule or part thereof from a S. roseosporus BAC clone of the invention. In one embodiment, the invention provides a polypeptide encoded by a nucleic acid molecule or part thereof from 1G05, 06A12, 12F06, 18H04, 20C09 or, preferably, B12:03A05. In a preferred embodiment, the invention provides a polypeptide comprising an amino acid sequence SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101 or encoded by a nucleic acid molecule comprising the nucleic acid sequence SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 or 102. In another preferred embodiment, the invention provides a polypeptide that is DptE or DptF, a polypeptide having an amino acid sequence of SEQ ID NO: 15 or SEQ ID NO: 17, or encoded by dptE or dptF, or encoded by a nucleic acid sequence of SEQ ID NO: 16 or SEQ ID NO: 18. In another preferred embodiment, the invention provides an ABC transporter comprising an amino acid sequence SEQ ID NOS: 19, 21, 29, 45, 47, 49, 63, 67, 75 and 77, or encoded by a nucleic acid sequence of SEQ ID NOS: 20, 22, 30, 46, 48, 50, 64, 68, 76 or 78. In another preferred embodiment, the invention provides a polypeptide that is an oxidoreductase, such as a dehydrogenase; a transcriptional regulator involved in antibiotic resistance; NovABC-related polypeptides, which are involved in the biosynthesis of novobiocin, an antimicrobial agent; a monooxygenase; an acyl CoA thioesterase; a DNA helicase; or a DNA ligase, such as provided by a polypeptide having an amino acid sequence selected from SEQ ID NOS: 23, 25, 27, 29, 33, 35, 37, 91, 93, 97 and 99. In another preferred embodiment, the invention

5

10

15

20

25

30

provides a polypeptide that is highly homologous to a *Streptomyces* polypeptide, such as provided by a polypeptide having an amino acid sequence selected from SEQ ID NOS: 61, 65, 69, 79, 81, 83, 85, 87, 95 and 101. A polypeptide as defined herein may be produced recombinantly, as discussed *supra*, may be isolated from a cell that naturally expresses the protein, or may be chemically synthesized following the teachings of the specification and using methods well known to those having ordinary skill in the art. See, e.g., Example X. The invention also provides a polypeptide that comprises a fragment of a nucleic acid molecule that encodes a polypeptide from a BAC clone, as defined herein. As discussed above, one can produce fragments of a polypeptide of the invention recombinantly, by chemical synthesis or by enzymatic cleavage.

Muteins, Homologous Proteins, Allelic Variants, Analogs and Derivatives

Another object of the invention is to provide polypeptides that are mutant proteins (muteins), fusion proteins, homologous proteins or allelic variants of the daptomycin NRPS, subunits thereof, thioesterases or the polypeptides encoded by the S. roseosporus BAC nucleic acid molecules or parts thereof provided herein. A mutant thioesterase may have the same or different enzymatic activity compared to a naturally-occurring thioesterase and comprises at least one amino acid insertion, duplication, deletion, rearrangement or substitution compared to the amino acid sequence of a native protein. In one embodiment, the mutein has the same or a decreased thioesterase activity compared to a naturally-occurring thioesterase. In another embodiment, the mutant thioesterase has an increased thioesterase activity compared to a naturally-occurring thioesterase. In a preferred embodiment, muteins of thioesterases of a daptomycin biosynthetic gene cluster may be used to alter thioesterase activity. See, e.g., Examples 12 and 16. In another embodiment, a mutant daptomycin NRPS or subunit thereof may have the same or different amino acid specificity, thiolation activity, condensation activity, or, if present, epimerization activity, as a naturally-occurring daptomycin NRPS. Daptomycin NRPS muteins may be used to alter amino acid recognition, binding, epimerization or other catalytic properties of an NRPS. See, e.g., Examples 12 and 16. Similarly, a mutein of a

5

10

15

20

25

30

polypeptide encoded by the *S. roseosporus* BAC nucleic acid molecule of the invention may have a similar biological activity or a different one, but preferably has a similar biological activity.

A mutein of the invention may be produced by isolation from a naturallyoccurring mutant microorganism or from a microorganism that has been experimentally mutagenized, may be produced by chemical manipulation of a polypeptide, or may be produced from a host cell comprising an altered nucleic acid molecule. In a preferred embodiment, the mutein is produced from a host cell comprising an altered nucleic acid molecule. Muteins may also be produced chemically by altering the amino acid residue to another amino acid residue using synthetic or semi-synthetic chemical techniques. One may produce muteins of a polypeptide by introducing mutations into the nucleic acid sequence encoding a daptomycin NRPS, subunit thereof or a thioesterase, or into a S. roseosporus BAC nucleic acid molecule, and then expressing it recombinantly. These mutations may be targeted, in which particular encoded amino acids are altered, or may be untargeted, in which random encoded amino acids within the polypeptide are altered. Muteins with random amino acid alterations can be screened for a particular biological activity, such as thioesterase activity, amino acid specificity, thiolation activity, epimerization activity, or condensation activity, as described below. Muteins may also be screened, e.g., for oxidoreductase activity, ABC transporter activity, monooxygenase activity, or DNA ligase or helicase activity using methods known in the art. Multiple random mutations can be introduced into the gene by methods well-known to the art, e.g., by error-prone PCR, shuffling, oligonucleotide-directed mutagenesis, assembly PCR, sexual PCR mutagenesis, in vivo mutagenesis, cassette mutagenesis, recursive ensemble mutagenesis, exponential ensemble mutagenesis and site-specific mutagenesis. Methods of producing muteins with targeted or random amino acid alterations are well known in the art. See, e.g., Sambrook et al., supra, Ausubel et al., supra, U.S. Pat. No. 5,223,408, and the references discussed supra, each herein incorporated by reference.

The invention also provides a polypeptide that is homologous to a daptomycin NRPS, subunit thereof, a thioesterase from a daptomycin biosynthetic gene cluster, or

to a polypeptide encoded by a S. roseosporus BAC nucleic acid molecule as described herein. In one embodiment, the polypeptide is homologous to the thioesterase domain of DptD or to DptH, or to a polypeptide encoded by the thioesterase domain of dptD or by dptH. In a preferred embodiment, the polypeptide is homologous to a 5 thioesterase having the amino acid sequence of the thioesterase domain of SEQ ID NO: 7 or having the amino acid sequence of SEQ ID NO: 8. In another embodiment, the polypeptide is homologous to DptA, DptB, DptC or DptD, or to a polypeptide encoded by dptA, dptB, dptC or dptD. In a more preferred embodiment, the polypeptide is homologous to a polypeptide having the amino acid sequence of SEQ ID NO: 9, 11, 13 or 3. The invention also provides a polypeptide that is homologous 10 to a polypeptide encoded by a nucleic acid molecule from a S. roseosporus BAC clone described herein, e.g., 1G05, 06A12, 12F06, 18H04, 20C09 or, preferably, B12:03A05. In a preferred embodiment, the invention provides a polypeptide homologous to a polypeptide comprising an amino acid sequence of SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 15 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101 or encoded by a nucleic acid molecule comprising a nucleic acid sequence selected from SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 or 102. In a preferred embodiment, the homologous polypeptide is one that exhibits 20 significant sequence identity to a polypeptide of the invention. In a more preferred embodiment, the homologous polypeptide is one that exhibits at least 50%, 60%, 70%, or 80% sequence identity to a polypeptide comprising an amino acid sequence of SEQ ID NOS: 9, 11, 13, 7 or 8 or SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 25 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101. In an even more preferred embodiment, the homologous polypeptide is one that exhibits at least 85%,90%, 95%, 96%, 97%, 98% or 99% sequence identity to a polypeptide comprising an amino acid sequence of SEQ ID NOS: 9, 11, 13, 7 or 8 or SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 30

85, 87, 89, 91, 93, 95, 97, 99 or 101.

5

10

15

20

25

30

The homologous protein may be a naturally-occurring one that is derived from another species, especially one derived from another *Streptomyces* species, or one derived from another *Streptomyces roseosporus* strain, wherein the homologous protein comprises an amino acid sequence that exhibits significant sequence identity to that of SEQ ID NOS: 9, 11, 13, 7 or 8 or SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101. The naturally-occurring homologous protein may be isolated directly from the other species or strain. Alternatively, the nucleic acid molecule encoding the naturally-occurring homologous protein may be isolated and used to express the homologous protein recombinantly. In another embodiment, the homologous protein may be one that is experimentally produced by random mutation of a nucleic acid molecule and subsequent expression of the nucleic acid molecule. In another embodiment, the homologous protein may be one that is experimentally produced by directed mutation of one or more codons to alter the encoded amino acid of the polypeptide.

In another embodiment, the invention provides a polypeptide encoded by an allelic variant of a gene encoding a thioesterase from a daptomycin biosynthetic gene cluster, or a daptomycin NRPS or subunit thereof. In a preferred embodiment, the invention provides a polypeptide encoded by an allelic variant of dptA, dptB, dptC, dptD or dptH. In an even more preferred embodiment, the polypeptide is encoded by an allelic variant of a gene that encodes a polypeptide having the amino acid sequence of SEQ ID NOS: 9, 11, 13, 7 or 8. In a yet more preferred embodiment, the polypeptide is encoded by an allelic variant of a gene, wherein the gene has the nucleic acid sequence of SEQ ID NOS: 10, 12, 14, 3 or 6. An allelic variant may have the same or different biological activity as the thioesterase, daptomycin NRPS or subunit thereof, described herein. In a preferred embodiment, an allelic variant is derived from another species of Streptomyces, even more preferably from a strain of Streptomyces roseosporus. In another embodiment, the invention provides a polypeptide encoded by an allelic variant of an S. roseosporus nucleic acid sequence from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or B12:03A05, preferably from B12:03A05. In a preferred embodiment, the polypeptide is encoded by an allelic

5

10

15

20

25

30

variant of a gene that encodes a polypeptide having the amino acid sequence of SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101, or that is encoded by an allelic variant of a gene, wherein the gene has a nucleic acid sequence of SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 or 102.

In another embodiment, the invention provides a derivative of a polypeptide of the invention. In a preferred embodiment, the derivative has been acetylated, carboxylated, phosphorylated, glycosylated or ubiquitinated. In another preferred embodiment, the derivative has been labeled with, e.g., radioactive isotopes such as ¹²⁵I, ³²P, ³⁵S, and ³H. In another preferred embodiment, the derivative has been labeled with fluorophores, chemiluminescent agents, enzymes, and antiligands that can serve as specific binding pair members for a labeled ligand. In a preferred embodiment, the polypeptide is a thioesterase involved in the biosynthesis of daptomycin. In an even more preferred embodiment, the polypeptide comprises the thioesterase domain of DptD or comprises the amino acid sequence of DptH, or is a thioesterase encoded by the thioesterase-encoding domain of dptD or by dptH. In another preferred embodiment, the polypeptide is a daptomycin NRPS or subunit thereof, more preferably DptA, DptB, DptC or DptD, even more preferably a polypeptide encoded by dptA, dptB, dptC or dptD. In a yet more preferred embodiment, the polypeptide has an amino acid sequence of SEQ ID NOS: 9, 11, 13, 7 or 8 or is a mutein, allelic variant, homologous protein or fragment thereof. Preferably, a thioesterase derivative has a thioesterase activity that is the same or similar to a thioesterase involved in the biosynthesis of daptomycin, more preferably, the derivative has a thioesterase activity that is the same or similar to a thioesterase having an amino acid sequence of the thioesterase domain of SEQ ID NO: 7 or having the amino acid sequence of SEQ ID NO: 8. In another preferred embodiment, a daptomycin NRPS or NRPS subunit derivative has the same or similar activity as a naturally-occurring daptomycin NRPS or subunit thereof. In yet another embodiment, the derivative is derived from a polypeptide encoded by a nucleic acid molecule from a S. roseosporus nucleic acid

sequence from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or, preferably, B12:03A05. In a preferred embodiment, the derivative is derived from a polypeptide having an amino acid sequence of SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101, or that is encoded by a gene having a nucleic acid sequence of SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 or 102.

The invention also provides non-peptide analogs. In a preferred embodiment, the non-peptide analog is structurally similar to a thioesterase involved in daptomycin 10 synthesis, to a daptomycin NRPS or subunit thereof, or to a polypeptide encoded by a nucleic acid molecule from an S. roseosporus BAC clone, but in which one or more peptide linkages is replaced by a linkage selected from the group consisting of --CH₂NH--, --CH₂S--, --CH₂-CH₂--, --CH=CH--(cis and trans), --COCH₂--, --CH(OH)CH₂-- and -CH₂SO--. In another embodiment, the non-peptide analog 15 comprises substitution of one or more amino acids of a thioesterase or daptomycin NRPS or subunit thereof with a D-amino acid of the same type in order to generate more stable peptides. Preferably, both a non-peptide and a peptide analog has a biological activity that is the same or similar to the naturally-occurring polypeptide involved in the biosynthesis of daptomycin, more preferably, the analog has a 20 biological activity that is the same or similar to the polypeptide having an amino acid sequence of SEQ ID NOS: 9, 11, 13, 7 or 8. The invention also provides analogs of polypeptides encoded by an S. roseosporus nucleic acid sequence from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or B12:03A05, preferably from B12:03A05. The invention provides an analog of a polypeptide having an amino acid 25 sequence of SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101, or that is encoded by a gene having a nucleic acid sequence of SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 30 100 or 102.

Fusion Proteins

20

25

30

The polypeptides of this invention may be fused to other molecules, such as genetic, enzymatic or chemical or immunological markers such as epitope tags. Fusion partners include, inter alia, myc, hemagglutinin (HA), GST, immunoglobulins, 5 β-galactosidase, biotin trpE, protein A, β-lactamase, α-amylase, maltose binding protein, alcohol dehydrogenase, polyhistidine (for example, six histidine at the amino and/or carboxyl terminus of the polypeptide), lacZ, green fluorescent protein (GFP), yeast a mating factor, GAL4 transcription activation or DNA binding domain, luciferase, and serum proteins such as ovalbumin, albumin and the constant domain of IgG. See, e.g., Godowski et al., 1988, and Ausubel et al., supra. Fusion proteins may 10 also contain sites for specific enzymatic cleavage, such as a site that is recognized by enzymes such as Factor XIII, trypsin, pepsin, or any other enzyme known in the art. Fusion proteins will typically be made by either recombinant nucleic acid methods, as described above, chemically synthesized using techniques such as those described in Merrifield, 1963, herein incorporated by reference, or produced by chemical cross-15 linking.

Tagged fusion proteins permit easy localization, screening and specific binding via the epitope or enzyme tag. See Ausubel, 1991, Chapter 16. Some tags allow the protein of interest to be displayed on the surface of a phagemid, such as M13, which is useful for panning agents that may bind to the desired protein targets. Another advantage of fusion proteins is that an epitope or enzyme tag can simplify purification. These fusion proteins may be purified, often in a single step, by affinity chromatography. For example, a His⁶ tagged protein can be purified on a Ni affinity column and a GST fusion protein can be purified on a glutathione affinity column. Similarly, a fusion protein comprising the Fc domain of IgG can be purified on a Protein A or Protein G column and a fusion protein comprising an epitope tag such as myc can be purified using an immunoaffinity column containing an anti-c-myc antibody. It is preferable that the epitope tag be separated from the protein encoded by the nucleic acid molecule of the invention by an enzymatic cleavage site that can be cleaved after purification.

5

10

15

20

25

30

A second advantage of fusion proteins is that the epitope tag can be used to bind the fusion protein to a plate or column through an affinity linkage for screening targets.

Therefore, in another aspect, the invention provides a fusion protein comprising all or a part of a thioesterase derived from a daptomycin biosynthetic gene cluster and provides a nucleic acid molecule that encodes such a fusion protein. Another aspect provides a fusion protein comprising all or a part of a daptomycin NRPS or subunit thereof and provides a nucleic acid molecule encoding such a protein. See, e.g., Examples 11-16. The invention also provides a fusion protein comprising all or part of a polypeptide encoded by a nucleic acid molecule from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or B12:03A05. In a preferred embodiment, the fusion protein comprises all or a part of a polypeptide encoded by one or more of dptA, dptB, dptC, dptD or dptH. In another preferred embodiment, the fusion protein comprises a polypeptide encoded by a nucleic acid molecule that selectively hybridizes to dptA, dptB, dptC, dptD or dptH. In a more preferred embodiment, the fusion protein comprises a polypeptide having an amino acid sequence of SEQ ID NOS: 9, 11, 13, 7 or 8, or comprises a polypeptide that is a fragment, mutein, homologous protein, derivative or analog thereof. In an even more preferred embodiment, the nucleic acid molecule encoding the fusion protein comprises all or part of the nucleic acid sequence of SEQ ID NOS: 10, 12, 14, 3 or 6, or comprises all or part of a nucleic acid sequence that selectively hybridizes or is homologous to a nucleic acid molecule comprising said nucleic acid sequence. The invention also provides fusion proteins comprising polypeptide sequences encoded by an S. roseosporus nucleic acid sequence from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or B12:03A05, preferably from B12:03A05. The invention provides a fusion protein comprising a polypeptide having an amino acid sequence of SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101, or comprising a polypeptide that is a fragment, mutein, homologous protein, derivative or analog thereof. The invention also provides a fusion protein comprising a polypeptide encoded by SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66,

68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 or 102, or comprising all or part of a nucleic acid sequence that selectively hybridizes or is homologous to a nucleic acid molecule comprising said nucleic acid sequence.

5

10

15

20

25

30

In one aspect of the invention, the fusion protein that comprises all or a part of a thioesterase derived from a daptomycin biosynthetic gene cluster comprises other modules (including heterologous or hybrid modules) from a polypeptide involved in non-ribosomal protein synthesis. See, e.g., Examples 12E, G and H and Example 16. In another preferred embodiment, the fusion protein comprises one or more amino acid sequences that encode thioesterases, wherein the thioesterases may be identical to one another or may be different. See, e.g., Examples 11E-G (duplication of daptomycin thioesterase genes), Example 12 (producing modified NRPS thioesterase fusion proteins) and Example 16 (producing free thioesterase fusion proteins).

In another embodiment, the invention provides a fusion protein that is a hybrid of amino acid sequences from two or more different thioesterases and a nucleic acid molecule that encodes such a fusion protein. The hybrid fusion protein may consist of two, three or more portions of different thioesterases. The hybrid thioesterase may have a different or the same specificity.

Methods to Assay Thioesterase and Daptomycin NRPS Activity

There are a number of methods known in the art to determine whether a fragment, mutein, homologous protein, analog, derivative or fusion protein of a thioesterase has the same, enhanced or decreased biological activity as a wild-type thioesterase polypeptide. In one embodiment, a thioesterase assay which monitors cleavage of a suitable thioester bond and/or release of a corresponding product is performed *in vitro*. Any of a number of thioesterase assays well-known in the art may be used, including those which use photo- or radio-labeled substrates.

In a preferred embodiment, thioesterase activity associated with peptide synthesis by a NRPS is determined using cellular assays. For example, a nucleic acid molecule encoding a fragment, mutein, homologous protein or fusion protein may be introduced into a bacterial cell comprising a daptomycin biosynthetic gene cluster absent one or both of the thioesterase domains of dptD or dptH. Alternatively, the

5

10

25

30

nucleic acid molecule may be introduced into a bacterial cell comprising a different biosynthetic gene cluster that produces a different compound, e.g., a different lipopeptide. In a preferred embodiment, the bacterial cell may be *S. lividans*. The nucleic acid molecule may be introduced into the bacterial cell by any method known in the art, including conjugation, transformation, electroporation, protoplast fusion or the like. The bacterial cell comprising the nucleic acid molecule is incubated under conditions in which the polypeptide encoded by the nucleic acid molecule is expressed. After incubation, the bacterial cells may be analyzed by, e.g., HPLC and/or LC/MS, to determine if the bacterial cells produce the desired lipopeptide. See, e.g., the method of expressing daptomycin described in Examples 7- 9, *infra*. When the thioesterase activity is associated with synthesis of a peptide having an anti-cell growth property (e.g., an antibiotic, antifungal, antiviral or antimitotic agent) an assay such as that described in Example 15 may be used. See Example 17.

Alternatively, a fragment, mutein, homologous protein, analog, derivative or fusion protein of a thioesterase may be introduced into a cell, particularly a bacterial cell, comprising a daptomycin biosynthetic gene cluster absent one or both of the thioesterase domain of dptD or dptH. After incubation, the bacterial cells may be analyzed by, e.g., HPLC and/or LC/MS, as described in Example 7, to determine if the bacterial cells produce the desired lipopeptide. The same method can be used with a cell comprising a different biosynthetic gene cluster that produces a different compound, e.g., a different lipopeptide.

In a preferred embodiment, a fragment, mutein, homologous protein, analog, derivative or fusion protein comprises an amino acid sequence comprising the GXSXG thioesterase motif (see Example 3). In a more preferred embodiment, a fragment, mutein, homologous protein, analog or derivative comprises an amino acid sequence comprising the thioesterase motif GWSFG or GTSLG, which are derived from SEQ ID NO: 7 and SEQ ID NO: 8, respectively.

Similar methods known in the art may be used to determine whether a fragment, mutein, homologous protein, analog, derivative or fusion protein of a daptomycin NRPS or subunit thereof has the same or different biological activity as a wild-type NRPS or subunit thereof.

Antibodies

5

10

15

20

25

30

The polypeptides encoded by the genes of this invention may be used to elicit polyclonal or monoclonal antibodies that bind to a polypeptide of this invention, as well as a fragment, mutein, homologous protein, analog, derivative or fusion protein thereof, using a variety of techniques well known to those of skill in the art.

Antibodies directed against the polypeptides of this invention are immunoglobulin molecules or portions thereof that are immunologically reactive with the polypeptide of the present invention.

Antibodies directed against a polypeptide of the invention may be generated by immunization of a mammalian host. Such antibodies may be polyclonal or monoclonal. Preferably they are monoclonal. Methods to produce polyclonal and monoclonal antibodies are well known to those of skill in the art. For a review of such methods, see Harlow and Lane, Antibodies: A Laboratory Manual (1988) and Ausubel et al. supra, herein incorporated by reference. Determination of immunoreactivity with a polypeptide of the invention may be made by any of several methods well known in the art, including by immunoblot assay and ELISA.

Monoclonal antibodies with affinities of 10⁻⁸ M⁻¹ or preferably 10⁻⁹ to 10⁻¹⁰ M⁻¹ or stronger are typically made by standard procedures as described, e.g., in Harlow and Lane, 1988. Briefly, appropriate animals are selected and the desired immunization protocol followed. After the appropriate period of time, the spleens of such animals are excised and individual spleen cells fused, typically, to immortalized myeloma cells under appropriate selection conditions. Thereafter, the cells are clonally separated and the supernatants of each clone tested for their production of an appropriate antibody specific for the desired region of the antigen.

Other suitable techniques involve *in vitro* exposure of lymphocytes to the antigenic polypeptides, or alternatively, to selection of libraries of antibodies in phage or similar vectors. See Huse et al., 1989. The polypeptides and antibodies of the present invention may be used with or without modification. Frequently, polypeptides and antibodies will be labeled by joining, either covalently or non-covalently, a substance which provides for a detectable signal. A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific

5

10

15

20

25

30

and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent agents, chemiluminescent agents, magnetic particles and the like. Patents teaching the use of such labels include U.S. Patents 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149 and 4,366,241, herein incorporated by reference. Also, recombinant immunoglobulins may be produced (see U.S. Patent 4,816,567, herein incorporated by reference).

An antibody of this invention may also be a hybrid molecule formed from immunoglobulin sequences from different species (e.g., mouse and human) or from portions of immunoglobulin light and heavy chain sequences from the same species. An antibody may be a single-chain antibody or a humanized antibody. It may be a molecule that has multiple binding specificities, such as a bifunctional antibody prepared by any one of a number of techniques known to those of skill in the art including the production of hybrid hybridomas, disulfide exchange, chemical cross-linking, addition of peptide linkers between two monoclonal antibodies, the introduction of two sets of immunoglobulin heavy and light chains into a particular cell line, and so forth.

The antibodies of this invention may also be human monoclonal antibodies, for example those produced by immortalized human cells, by SCID-hu mice or other non-human animals capable of producing "human" antibodies, or by the expression of cloned human immunoglobulin genes. The preparation of humanized antibodies is taught by U.S. Pat. Nos. 5,777,085 and 5,789,554, herein incorporated by reference.

In sum, one of skill in the art, provided with the teachings of this invention, has available a variety of methods which may be used to alter the biological properties of the antibodies of this invention including methods which would increase or decrease the stability or half-life, immunogenicity, toxicity, affinity or yield of a given antibody molecule, or to alter it in any other way that may render it more suitable for a particular application.

In a preferred embodiment, an antibody of the present invention binds to a thioesterase involved in daptomycin synthesis or to a daptomycin NRPS or subunit thereof. In a more preferred embodiment, the antibody binds to a polypeptide encoded by dptA, dptB, dptC, dptD or dptH, or to a fragment thereof. In another preferred

embodiment, the antibody binds to a polypeptide encoded by a nucleic acid molecule that selectively hybridizes to dptA, dptB, dptC, dptD or dptH. In a more preferred embodiment, the antibody binds to a polypeptide having an amino acid sequence of SEQ ID NOS: 9, 11, 13, 7 or 8, or binds to a polypeptide that is fragment, mutein, homologous protein, derivative, analog or fusion protein thereof. In an even more preferred embodiment, the antibody binds to a polypeptide encoded by a nucleic acid molecule comprising all or part of the nucleic acid sequence of SEQ ID NOS: 10, 12, 14, 3 or 6. In another embodiment, the antibody binds to a polypeptide encoded by a nucleic acid molecule that comprises all or part of a nucleic acid sequence that selectively hybridizes or is homologous to a nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NOS: 10, 12, 14, 3 or 6.

The invention provides an antibody that selectively binds to a polypeptide encoded by an S. roseosporus nucleic acid sequence from any one of BAC clones 01G05, 06A12, 12F06, 18H04, 20C09 or B12:03A05, preferably from B12:03A05. The polypeptide may comprise an amino acid sequence selected from SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101 or is encoded by a nucleic acid sequence SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 or 102. Preferably, the antibody selectively 20 binds to a polypeptide comprising an amino acid sequence selected from SEQ ID NOS: 23, 25, 27, 29, 33, 35, 37, 91, 93, 97 and 99 or from SEQ ID NOS: 61, 65, 69, 79, 81, 83, 85, 87, 95 and 101. The invention also provides an antibody that selectively binds to a fragment, mutein, homologous protein, derivative, analog or fusion protein 25 thereof.

Computer Readable Means

5

10

15

30

A further aspect of the invention is a computer readable means for storing the nucleic acid and amino acid sequences of the instant invention. In a preferred embodiment, the invention provides a computer readable means for storing all of the nucleic acid and amino acid sequences described herein, as the complete set of

5

10

15

20

25

30

sequences or in any combination. The records of the computer readable means can be accessed for reading and display and for interface with a computer system for the application of programs allowing for the location of data upon a query for data meeting certain criteria, the comparison of sequences, the alignment or ordering of sequences meeting a set of criteria, and the like.

The nucleic acid and amino acid sequences of the invention are particularly useful as components in databases useful for search analyses as well as in sequence analysis algorithms. As used herein, the terms "nucleic acid sequences of the invention" and "amino acid sequences of the invention" mean any detectable chemical or physical characteristic of a polynucleotide or polypeptide of the invention that is or may be reduced to or stored in a computer readable form. These include, without limitation, chromatographic scan data or peak data, photographic data or scan data therefrom, and mass spectrographic data.

This invention provides computer readable media having stored thereon sequences of the invention. A computer readable medium may comprise one or more of the following: a nucleic acid sequence comprising a sequence of a nucleic acid sequence of the invention; an amino acid sequence comprising an amino acid sequence of the invention; a set of nucleic acid sequences wherein at least one of said sequences comprises the sequence of a nucleic acid sequence of the invention; a set of amino acid sequences wherein at least one of said sequences comprises the sequence of an amino acid sequence of the invention; a data set representing a nucleic acid sequence comprising the sequence of one or more nucleic acid sequences of the invention; a data set representing a nucleic acid sequence encoding an amino acid sequence comprising the sequence of an amino acid sequence of the invention; a set of nucleic acid sequences wherein at least one of said sequences comprises the sequence of a nucleic acid sequence of the invention; a set of amino acid sequences wherein at least one of said sequences comprises the sequence of an amino acid sequence of the invention; a data set representing a nucleic acid sequence comprising the sequence of a nucleic acid sequence of the invention; a data set representing a nucleic acid sequence encoding an amino acid sequence comprising the sequence of an amino acid sequence of the invention. The computer readable medium can be any composition of matter used to

store information or data, including, for example, commercially available floppy disks, tapes, hard drives, compact disks, and video disks.

Also provided by the invention are methods for the analysis of character sequences, particularly genetic sequences. Preferred methods of sequence analysis include, for example, methods of sequence homology analysis, such as identity and similarity analysis, RNA structure analysis, sequence assembly, cladistic analysis, sequence motif analysis, open reading frame determination, nucleic acid base calling, and sequencing chromatogram peak analysis.

A computer-based method is provided for performing nucleic acid homology identification. This method comprises the steps of providing a nucleic acid sequence comprising the sequence a nucleic acid of the invention in a computer readable medium; and comparing said nucleic acid sequence to at least one nucleic acid or amino acid sequence to identify homology.

10

15

20

30

A computer-based method is also provided for performing amino acid homology identification, said method comprising the steps of: providing an amino acid sequence comprising the sequence of an amino acid of the invention in a computer readable medium; and comparing said an amino acid sequence to at least one nucleic acid or an amino acid sequence to identify homology.

A computer based method is still further provided for assembly of overlapping nucleic acid sequences into a single nucleic acid sequence, said method comprising the steps of: providing a first nucleic acid sequence comprising the sequence of a nucleic acid of the invention in a computer readable medium; and screening for at least one overlapping region between said first nucleic acid sequence and a second nucleic acid sequence.

25 Methods of Using Nucleic Acid Molecules as Probes and Primers

In one embodiment, a nucleic acid molecule of the invention may be used as a probe or primer to identify or amplify a nucleic acid molecule that selectively hybridizes to the nucleic acid molecule. In a preferred embodiment, the probe or primer is derived from a nucleic acid molecule encoding a daptomycin NRPS, subunit thereof or thioesterase from a daptomycin biosynthetic gene cluster. The probe or

5

10

15

20

25

30

primer may also be derived from an expression control sequence derived from a daptomycin NRPS or thioesterase gene of a daptomycin biosynthetic gene cluster. In a preferred embodiment, the probe or primer is derived from *dptA*, *dptB*, *dptC*, *dptD* or *dptH*. In a more preferred embodiment, the probe or primer is derived from a nucleic acid molecule that encodes a polypeptide having an amino acid sequence of SEQ ID NOS: 9, 11, 13, 7 or 8. In a yet more preferred embodiment, the probe or primer is derived from a nucleic acid molecule that has a nucleic acid sequence of SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 or 102. In another embodiment, the probe or primer is derived from a nucleic acid sequence that encodes SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 or 101.

In general, a probe or primer is at least 10 nucleotides in length, more preferably at least 12, more preferably at least 14 and even more preferably at least 16 nucleotides in length. In an even more preferred embodiment, the probe or primer is at least 18 nucleotides in length, even more preferably at least 20 nucleotides and even more preferably at least 22 nucleotides in length. Primers and probes may also be longer in length. For instance, a probe or primer may be 25 nucleotides in length, or may be 30, 40 or 50 nucleotides in length. Methods of performing nucleic acid hybridization using oligonucleotide probes are well-known in the art. See, e.g., Sambrook et al., supra. See, e.g., Chapter 11 and pages 11.31-11.32 and 11.40-11.44, which describes radiolabeling of short probes, and pages 11.45-11.53, which describes hybridization conditions for oligonucleotide probes, including specific conditions for probe hybridization (pages 11.50-11.51). Methods of performing PCR using primers are also well-known in the art. See, e.g., Sambrook et al., supra and Ausubel et al., supra. PCR methods may be used to identify and/or isolate allelic variants and fragments of the nucleic acid molecules of the invention; PCR may also be used to identify and/or isolate nucleic acid molecules that hybridize to the primers and that may be amplified, and may be used to isolate nucleic acid molecules that encode homologous proteins, analogs, fusion protein or muteins of the invention.

Methods of Using Thioesterases for Biosynthesis of Compounds – Manipulations of *Dpt* Genes

Genes of the daptomycin biosynthetic gene cluster of the invention may be manipulated in a variety of ways to produce new biosynthetic peptide products or to alter the regulation of one or more genes expressed from the gene cluster. See, e.g., Figure 1.

Disruption of a Gene Encoding a Thioesterase

5

10

15

20

25

30

In one aspect, the invention provides a method of disrupting or deleting a gene encoding a thioesterase that is involved in a NRPS or PKS pathway in a bacterial cell. Preferably, the method comprises the step of disrupting or deleting a gene or portion thereof that encodes a thioesterase in a daptomycin biosynthetic gene cluster. Disruption or deletion of a gene encoding an integral thioesterase would be likely to result in the production of compounds that are intermediates to the final product. In one aspect, a gene or portion thereof encoding an integral thioesterase may be disrupted or deleted. In a preferred embodiment, disruption or deletion of a gene encoding an integral thioesterase of the daptomycin biosynthetic gene cluster in S. roseosporus would produce a linear lipopeptide compound. The linear lipopeptide compound may be used directly if its release from the NRPS were to be catalyzed by a different endogenous or exogenously provided thioesterase activity within the host cell. Such linear lipopeptide compounds, if not released from the NRPS by an endogenous thioesterase activity, may be useful intermediates for testing potential but as yet unidentified thioesterase polypeptides or for testing thioesterase fusion, fragment, mutein, derivative, analog or homolog polypeptides for activity. The linear lipopeptide compound may alternatively be used as an intermediate for production of novel lipopeptides.

In another aspect, a gene encoding a free thioesterase may be disrupted or deleted in a bacterial cell comprising an NRPS. Because free thioesterases are thought to be involved in proofreading of the peptide compounds produced in NRPS, disruption or deletion of a gene encoding a free thioesterase leads to the production of compounds that have mutations compared to the compound produced in the presence

5

10

15

20

25

30

of the free thioesterase. These mutated compounds may be used to generate novel lipopeptides. See, e.g., Example 16.

In a preferred embodiment, the method comprises the step of disrupting or deleting the thioesterase-encoding portion of dptD or disrupting or deleting dptH in a daptomycin biosynthetic gene cluster. In an even more preferred embodiment, the method comprises the step of disrupting or deleting a gene encoding a thioesterase having an amino acid sequence of the thioesterase domain of SEQ ID NO: 7 or having the amino acid sequence of SEQ ID NO: 8. The invention also comprises a method of disrupting or deleting a gene encoding a thioesterase wherein the gene is one that selectively hybridizes or is homologous to a gene encoding a thioesterase having an amino acid sequence of the thioesterase domain of SEQ ID NO: 7 or the amino acid sequence of SEQ ID NO: 8. In another preferred embodiment, disruption or deletion of a thioesterase may be combined with the methods of altering the gene cluster involved in non-ribosomal peptide synthesis, as described below.

Disruption of a gene encoding a thioesterase may be accomplished by any method known to one having ordinary skill in the art following the teachings of the instant specification. In a preferred embodiment, disruption of a gene encoding a thioesterase may be accomplished by targeted gene disruption using methods taught, e.g., in Hosted and Baltz, J. Bacteriol., 179, pp. 180-186 (1997); Butler et al., Chem. Biol., 6, pp. 287-292 (1999); and Xue et al., Proc. Natl. Acad. Sci. U.S.A., 95, pp. 12111-12116 (1998), each of which is incorporated herein by reference in its entirety. See, e.g., Example 11.

Alteration of Site of Cyclization and Cyclic Peptide Produced Using Thioesterases

In a naturally-occurring polypeptide involved in NRPS, an integral thioesterase is located at the carboxy-terminus of the polypeptide, where it is involved in product cyclization. In one aspect, the invention provides a method to alter the site of cyclization of a cyclic peptide (or release of a linear peptide) by changing the location of a module encoding a thioesterase. In one embodiment, the site of cyclization may be altered by inserting the module encoding the thioesterase into the gene encoding the polypeptide involved in NRPS in a region that is upstream of the region in which the

5

10

15

20

25

thioesterase module naturally occurs. In this embodiment, the cyclic peptide that is produced will be smaller than the naturally-occurring cyclic peptide. See, e.g., Example 12.

In a preferred embodiment, the module encodes an integral thioesterase from a daptomycin biosynthetic gene cluster. In a more preferred embodiment, the module comprises the thioesterase domain of DptD. In an even more preferred embodiment, the module encodes a polypeptide having all or a portion of the amino acid sequence of SEQ ID NO: 7, preferably a portion of SEQ ID NO: 7 that comprises the thioesterase domain. In another preferred embodiment, the module comprises a nucleic acid molecule that is homologous to or selectively hybridizes to a nucleic acid molecule encoding all or a portion of the thioesterase domain of SEQ ID NO: 7 or to a nucleic acid molecule encoding the thioesterase domain that comprises all or a portion of the nucleic acid sequence of SEQ ID NO: 3.

Alternatively, other modules that are involved in adding amino acids to the peptide (or otherwise modifying amino acids within the peptide) may be inserted upstream of the module encoding the thioesterase. See, e.g., Example 12. Such modules include a minimal module comprising at least an adenylation domain and a thiolation or acyl carrier domain. In a preferred embodiment, the inserted module would also include a condensation domain. Additional domains may also be inserted upstream of the thioesterase module including an M domain, an E domain and/or a Cy domain. The type of module(s) that would be inserted upstream of the thioesterase domain would depend upon the type of amino acid residues that were desired.

Methods of inserting modules that will add and/or modify a specific amino acid are well known in the art. See, e.g., Mootz et al., Current Opinion in Biotechnology, 10, pp. 341-348 (1999), herein incorporated by reference in its entirety. Addition of one or more modules upstream of the thioesterase will produce a polypeptide involved in NRPS that is capable of synthesizing a cyclic peptide that is larger and that may contain different amino acid residues than the naturally-occurring cyclic peptide.

In vitro Use of Thioesterases for Production of Linear And Cyclic Peptides

5

10

15

20

25 -

30

In another aspect, the thioesterases of the invention may be used for production of cyclic peptides in vitro. See, e.g., Example 13. This method is particularly useful for generating novel linear and cyclic peptides by generating the peptide-compound substrate in vitro, e.g., by peptide synthesis and chemical linkage to a compound, and then cyclizing the peptide (or releasing a linear peptide) with an isolated thioesterase. In one embodiment, a thioesterase of the invention is recombinantly produced or is isolated from bacteria. The thioesterase of the invention is then incubated with a compound that can act as a substrate for the thioesterase. In a preferred embodiment, the thioesterase is incubated with a peptide of interest chemically linked to a compound. The peptide-compound substrate is one that is recognized by the thioesterase. In a preferred embodiment, the peptide-compound substrate is peptide-N-acetylcysteamine (NAC) thioester (peptide-SNAC). See, e.g., Trauger et al., Nature, 407, pp. 215-218 (2000). In another preferred embodiment, the peptidecompound substrate is peptide-pantetheine thioester. In another preferred embodiment, the peptide-compound substrate is a peptide thioester where the thiol is a . suitable pantetheine mimic. One may use these methods for drug discovery programs using high throughput screening. See, e.g., Example 14. One having ordinary skill in the art in light of the teachings of the instant specification realize that not all peptidecompound substrates will be cyclized and/or released with the same efficiency as a peptide-compound substrate wherein the peptide has a sequence that is the same as the naturally-occurring peptide of daptomycin. Certain alterations in the peptide sequence, compared to the naturally-occurring sequence, are likely to decrease the rate of cyclization by the thioesterase. In particular, alterations of the first, penultimate and ultimate amino acids are likely to decrease the rate of cyclization. See, e.g., Trauger et al., Nature 407:215-218 (2000).

The peptide-compound substrate is incubated with the thioesterase under conditions in which the thioesterase can cyclize and/or release the peptide. In a preferred embodiment, the thioesterase is one that is derived from a daptomycin biosynthetic gene cluster. In a more preferred embodiment, the thioesterase is encoded by the thioesterase-encoding domain of dptD or by dptH. More preferably, the thioesterase has an amino acid sequence of the thioesterase domain of SEQ ID NO: 7

or of SEQ ID NO: 8, or is a homologous protein, fusion protein, mutein, analog, derivative or fragment thereof having thioesterase activity.

In Vivo Use of Thioesterases

5

10

15

20

25

30

Another use of the genes of the present invention is to improve the yield of a product in a cell expressing an NRPS. See, e.g., Example 11. Nucleic acid molecules that may be used to increase yield include nucleic acid molecules that encode positive regulatory factors, acyl CoA thioesterase, ABC transporters, NovABC-related polypeptides, DptA, DptB, DptC, or DptD, polypeptides that encode daptomycin resistance and daptomycin thioesterases, including DptD and DptH. The complete daptomycin biosynthetic gene cluster, daptomycin NRPS or any domain or subunit thereof may also be duplicated. In a preferred embodiment, a free and/or an integral thioesterase from a daptomycin biosynthetic gene cluster are introduced into a cell to improve production of daptomycin. In another preferred embodiment, the additional copies of a thioesterase may be introduced into a cell comprising altered NRPS polypeptides, as described supra. Without wishing to be bound by any theory, additional copies of a free and/or an integral thioesterase may improve the NRPS processing of the peptide by increasing the proofreading capacity (e.g., the free thioesterase) or the cyclization and/or peptide release capacity (e.g., the integral thioesterase) of the bacterial cell.

In a preferred embodiment, additional copies of a nucleic acid molecule encoding thioesterase may be introduced into a cell. See, e.g., Example 11. Introduction of the thioesterase may be performed by any method known in the art. In a more preferred embodiment, the additional copies of the gene are under the regulatory control of strong expression control sequences. These sequences may be derived from another thioesterase gene or may be derived from heterologous sequences, as described *supra*. Further, a nucleic acid molecule encoding a thioesterase may be introduced into a cell such that it is expressed as a separate polypeptide. This may be especially useful for a free thioesterase. Alternatively, a nucleic acid molecule encoding a thioesterase may be introduced into a cell such that it forms part of a multi-domain protein. This can be accomplished, e.g., by homologous

5

10

15

20

25

30

recombination into a polypeptide which forms or interacts with an NRPS. This may be especially useful, although not required, for an integral thioesterase.

In another embodiment, copies of a free and/or an integral thioesterase may be introduced into a cell that expresses a NRPS complex that is other than a daptomycin biosynthetic gene cluster. See, e.g., Example 16. In one preferred embodiment, the complex is a NRPS complex. In another preferred embodiment, the complex is a PKS complex or a mixed PKS/NRPS complex. Numerous PKS and NRPS complexes are known in the art. See, e.g., complexes that produce vancomycin, bleomycin, A54145, CDA, amphomycin, echinocandin, cyclosporin, erythromycin, tylosin, monensin, avermectin, penicillin, cephalosporin, pristinamycins, erythromycin, rapamycin, spinosyn, didemnin, discobahamian, and epothilone. As described above, addition of a free and/or an integral thioesterase may improve the NRPS or PKS processing of a peptide by increasing the proofreading capacity (the free thioesterase) or the cyclization capacity (the integral thioesterase) of the bacterial cell. Addition of a free and/or integral thioesterase may be achieved by the methods described above.

In a preferred embodiment, a nucleic acid molecule encoding a thioesterase that is introduced into a cell is a thioesterase from a daptomycin biosynthetic gene cluster. In a preferred embodiment, the gene is the thioesterase-encoding domain of *dptD* or is *dptH*. More preferably, the nucleic acid molecule encodes a thioesterase having an amino acid sequence of the thioesterase domain of SEQ ID NO: 7 or SEQ ID NO: 8, or is a homologous protein, fusion protein, mutein, derivative, analog or fragment thereof having thioesterase activity.

Methods of Altering Gene Clusters for Production of Novel Compounds by NRPS

Alteration of NRPS Polypeptide Modules and Domains

In another aspect, the invention provides a method of altering the number or position of the modules in an NRPS. In one embodiment, one or more modules may be deleted from the NRPS. These deletions will result in synthesis by the NRPS of a peptide product that is shorter than the naturally-occurring one. In another embodiment, one or more modules or domains may be added to the NRPS. In this case, the peptide synthesized by the NRPS will be longer than the naturally-occurring

one or will have an additional chemical change, e.g., if an epimerization domain or a methylation domain is added, the resultant peptide will contain an extra D-amino acid or will contain a methylated amino acid, respectively. In a yet further embodiment, one or more modules may be mutated, e.g., an adenylation domain may be mutated such that it has a different amino acid specificity than the naturally-occurring adenylation domain. The amino acid pocket code for the daptomycin NRPS – which determines which amino acid will bind within each adenylation domain of modules 1-13 – is described in Example 5; see also Table 2. With the amino acid code in hand, one of skill in the art can perform mutagenesis, by a variety of well known techniques, to exchange the code in one module for another code, thus altering the ultimate amino acid composition and/or sequence of the resulting peptide synthesized by the altered NRPS. See, e.g., Example 12A.

In a still further embodiment, one or more modules or domains may be substituted with another module or domain. In this case, the peptide produced by the altered NRPS will have, e.g., one or more different amino acids compared to the naturally-occurring peptide. In addition, different combinations of insertions, deletions, substitutions and mutations may be used to produce a peptide of interest. Further, the invention contemplates these altered NRPS complexes with and without an integral thioesterase domain. See, e.g., Example 12B-J.

The peptides produced by the NRPSs may be useful as new compounds or may be useful in producing new compounds. In a preferred embodiment, the new compounds are useful as or may be used to produce antibiotic compounds. In another preferred embodiment, the new compounds are useful as or may be used to produce other peptides having useful activities, including but not limited to antibiotic, antifungal, antiviral, antiparasitic, antimitotic, cytostatic, antitumor, immunomodulatory, anti-cholesterolemic, siderophore, agrochemical (e.g., insecticidal) or physicochemical (e.g., surfactant) properties. In a more preferred embodiment, the compounds produced using an altered NRPS polypeptide may be used in the synthesis of daptomycin-related compounds, including those described in United States Application Nos. 09/738,742, 09/737,908 and 09/739,535, filed December 15, 2000.

5

10

15

20

25

30

In addition, diverse variants of non-ribosomally synthesized peptides and polyketides may be achieved by altering the pools of available substrates during host cell cultivation. Commercial production of daptomycin, for example, is the result of cultivating the daptomycin producer Streptomyces roseosporus in the presence of decanoic acid, which alters the lipopeptide profile of the final products. See, e.g., United States Patent 4,885,243. The feeding of N-acetyl cysteamine (SNAC) analogs of polyketide intermediates resulted in substantial increases in incorporation of the intermediates into the polyketide, when compared to the free carboxylic acid or ester analogs. See, e.g., S. Yue et al., J. Am. Chem. Soc., 109, pp. 1253-1255 (1987); D.E. Cane and C-C Yang, J. Am. Chem. Soc., 109, 1255-1257 (1987); D.E. Cane et al., J. Am. Chem. Soc., 115, pp. 522-526 and 527-535 (1993); D.E. Cane et al., J. Am. Chem. Soc., 117, pp. 633-634 (1995); R. Pieder et al., <u>J. Am. Chem. Soc.</u>, 117, pp. 11373-11374 (1995); each of which is incorporated herein by reference in its entirety. SNAC analogs of amino acids have been incorporated into a NRPS in vitro. D.E. Ehmann et al., Chem. Biol., 7, pp. 765-772 (2000). Thus it should be possible to feed SNAC or other pantetheine mimics to incorporate unnatural substrates into a NRPSproduced peptide.

Further diversity of non-ribosomally synthesized peptides and polyketides may also be achieved by expressing one or more NRPS and PKS genes (encoding natural, hybrid or otherwise altered modules or domains) in heterologous host cells, i.e., in host cells other than those from which the NRPS and PKS genes or modules originated.

In addition, one may express an ABC transporter or other polypeptide involved in antibiotic resistance in order to increase the resistance of a bacterial cell to daptomycin or a related compound. The ABC transporter may be overexpressed in a autologous cell (i.e., a cell that comprises the gene) or may be expressed in a heterologous cell (i.e., a cell that normally does not have the gene). Further, one may express an ABC transporter gene of the invention or another polypeptide involved in antibiotic resistance described herein in order to be able to select cells that are resistant to daptomycin. This selection may be useful for determining mechanisms of daptomycin resistance or may be used in standard molecular biological techniques in which antibody resistance is selected for.

5

10

15

20

25

30

Compounds Of The Invention, Pharmaceutical Compositions Thereof And Methods Of Treating Using Compounds And Compositions

Another object of the instant invention is to provide peptides or lipopeptides that may be produced by using the thioesterases, an NRPS or subunits thereof of the instant invention, as well as salts, esters, amides, ethers and protected forms thereof, and pharmaceutical formulations comprising these peptides, lipopeptides or their salts. In a preferred embodiment, the lipopeptide is daptomycin or a daptomycin-related lipopeptide, as described *supra*.

One may determine whether a peptide, lipopeptide or other compound of this invention has antibiotic activity using any of a variety of routine and well-known protocols in the art. One may use either an isolated or purified compound or may use an unpurified compound that is present in, e.g., fermentation culture broth or in a cell lysate. One may use either or both a gram-positive or a gram-negative bacterial test strain, and may use a variety of test strains to determine efficacy. In a preferred embodiment, the bacterial test strain will be a gram-positive test strain. In a more preferred embodiment, the bacterial test strain will be a *Staphylococcus*, more preferably *S. aureus*. An example of methods that can be used to determine antibiotic activity are provided in United States Patents 4,208,408 and 4,537,717. One having ordinary skill in the art will recognize that other potential antibiotics and other test strains may be used.

Peptides, lipopeptides or pharmaceutically acceptable salts thereof can be formulated for oral, intravenous, intramuscular, subcutaneous, aerosol, topical or parenteral administration for the therapeutic or prophylactic treatment of diseases, particularly bacterial infections. In a preferred embodiment, the lipopeptide is daptomycin or a daptomycin-related lipopeptide. Reference herein to "daptomycin," "daptomycin-related lipopeptide" or "lipopeptide" includes pharmaceutically acceptable salts thereof. Peptides, including daptomycin or daptomycin-related lipopeptides, can be formulated using any pharmaceutically acceptable carrier or excipient that is compatible with the peptide or with the lipopeptide of interest. See, e.g., Handbook of Pharmaceutical Additives: An International Guide to More than 6000 Products by Trade Name, Chemical, Function, and Manufacturer, Ashgate

5

10

15

20

25

Publishing Co., eds., M. Ash and I. Ash, 1996; The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals, ed. S. Budavari, annual; Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, PA; Martindale: The Complete Drug Reference, ed. K. Parfitt, 1999; and Goodman & Gilman's The Pharmaceutical Basis of Therapeutics, Pergamon Press, New York, NY, ed. L. S. Goodman et al.; the contents of which are incorporated herein by reference, for a general description of the methods for administering various antimicrobial agents for human therapy. Peptides or lipopeptides of this invention can be mixed with conventional pharmaceutical carriers and excipients and used in the form of tablets, capsules, elixirs, suspensions, syrups, wafers, creams and the like. Peptides or lipopeptides may be mixed with other therapeutic agents and antibiotics, such as discussed herein. The compositions comprising a compound of this invention will contain from about 0.1 to about 90% by weight of the active compound, and more generally from about 10 to about 30%.

The compositions of the invention can be delivered using controlled (e.g., capsules) or sustained release delivery systems (e.g., bioerodable matrices). Exemplary delayed release delivery systems for drug delivery that are suitable for administration of the compositions of the invention are described in U.S. Patent Nos. 4,452,775 (issued to Kent), 5,239,660 (issued to Leonard), 3,854,480 (issued to Zaffaroni).

The compositions may contain common carriers and excipients, such as corn starch or gelatin, lactose, sucrose, microcrystalline cellulose, kaolin, mannitol, dicalcium phosphate, sodium chloride and alginic acid. The compositions may contain croscarmellose sodium, microcrystalline cellulose, corn starch, sodium starch glycolate and alginic acid.

Tablet binders that can be included are acacia, methylcellulose, sodium carboxymethylcellulose, polyvinylpyrrolidone (Povidone), hydroxypropyl methylcellulose, sucrose, starch and ethylcellulose.

Lubricants that can be used include magnesium stearate or other metallic stearates, stearic acid, silicone fluid, talc, waxes, oils and colloidal silica.

5

10

15

20

25

30

Flavoring agents such as peppermint, oil of wintergreen, cherry flavoring or the like can also be used. It may also be desirable to add a coloring agent to make the dosage form more aesthetic in appearance or to help identify the product.

For oral use, solid formulations such as tablets and capsules are particularly useful. Sustained release or enterically coated preparations may also be devised. For pediatric and geriatric applications, suspensions, syrups and chewable tablets are especially suitable. For oral administration, the pharmaceutical compositions are in the form of, for example, a tablet, capsule, suspension or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a therapeutically-effective amount of the active ingredient. Examples of such dosage units are tablets and capsules. For therapeutic purposes, the tablets and capsules which can contain, in addition to the active ingredient, conventional carriers such as binding agents, for example, acacia gum, gelatin, polyvinylpyrrolidone, sorbitol, or tragacanth; fillers, for example, calcium phosphate, glycine, lactose, maize-starch, sorbitol, or sucrose; lubricants, for example, magnesium stearate, polyethylene glycol, silica, or tale; disintegrants, for example, potato starch, flavoring or coloring agents, or acceptable wetting agents. Oral liquid preparations generally are in the form of aqueous or oily solutions, suspensions, emulsions, syrups or elixirs may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous agents, preservatives, coloring agents and flavoring agents. Oral liquid preparations may comprise lipopeptide micelles or monomeric forms of the lipopeptide. Examples of additives for liquid preparations include acacia, almond oil, ethyl alcohol, fractionated coconut oil, gelatin, glucose syrup, glycerin, hydrogenated edible fats, lecithin, methyl cellulose, methyl or propyl para-hydroxybenzoate, propylene glycol, sorbitol, or sorbic acid.

For intravenous (IV) use, a water soluble form of the peptide or lipopeptide can be dissolved in any of the commonly used intravenous fluids and administered by infusion. Intravenous formulations may include carriers, excipients or stabilizers including, without limitation, calcium, human serum albumin, citrate, acetate, calcium chloride, carbonate, and other salts. Intravenous fluids include, without limitation,

5

10

15

20

25

30

physiological saline or Ringer's solution. Peptides or lipopeptides also may be placed in injectors, cannulae, catheters and lines.

Formulations for parenteral administration can be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions or suspensions can be prepared from sterile powders or granules having one or more of the carriers mentioned for use in the formulations for oral administration. Lipopeptide micelles may be particularly desirable for parenteral administration. The compounds can be dissolved in polyethylene glycol, propylene glycol, ethanol, corn oil, benzyl alcohol, sodium chloride, and/or various buffers. For intramuscular preparations, a sterile formulation of a lipopeptide compound or a suitable soluble salt form of the compound, for example the hydrochloride salt, can be dissolved and administered in a pharmaceutical diluent such as Water-for-Injection (WFI), physiological saline or 5% glucose.

Injectable depot forms may be made by forming microencapsulated matrices of the compound in biodegradable polymers such as polylactide-polyglycolide.

Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in microemulsions that are compatible with body tissues.

For topical use the compounds of the present invention can also be prepared in suitable forms to be applied to the skin, or mucus membranes of the nose and throat, and can take the form of creams, ointments, liquid sprays or inhalants, lozenges, or throat paints. Such topical formulations further can include chemical compounds such as dimethylsulfoxide (DMSO) to facilitate surface penetration of the active ingredient. For topical preparations, a sterile formulation of daptomycin, daptomycin-related lipopeptide or suitable salt forms thereof, may be administered in a cream, ointment, spray or other topical dressing. Topical preparations may also be in the form of bandages that have been impregnated with daptomycin or a daptomycin-related lipopeptide composition.

For application to the eyes or ears, the compounds of the present invention can be presented in liquid or semi-liquid form formulated in hydrophobic or hydrophilic bases as ointments, creams, lotions, paints or powders.

For rectal administration the compounds of the present invention can be administered in the form of suppositories admixed with conventional carriers such as cocoa butter, wax or other glyceride.

5

10

15

20

25

30

For aerosol preparations, a sterile formulation of the peptide or lipopeptide or salt form of the compound may be used in inhalers, such as metered dose inhalers, and nebulizers. A sterile formulation of a lipopeptide micelle may also be used for aerosol preparation. Aerosolized forms may be especially useful for treating respiratory infections, such as pneumonia and sinus-based infections.

Alternatively, the compounds of the present invention can be in powder form for reconstitution in the appropriate pharmaceutically acceptable carrier at the time of delivery. In one embodiment, the unit dosage form of the compound can be a solution of the compound or a salt thereof, in a suitable diluent in sterile, hermetically sealed ampules. The concentration of the compound in the unit dosage may vary, e.g. from about 1 percent to about 50 percent, depending on the compound used and its solubility and the dose desired by the physician. If the compositions contain dosage units, each dosage unit preferably contains from 50-500 mg of the active material. For adult human treatment, the dosage employed preferably ranges from 100 mg to 3 g, per day, depending on the route and frequency of administration.

In a further aspect, this invention provides a method for treating an infection, especially those caused by gram-positive bacteria, in humans and other animals. The term "treating" is used to denote both the prevention of an infection and the control of an established infection after the host animal has become infected. An established infection may be one that is acute or chronic. The method comprises administering to the human or other animal an effective dose of a compound of this invention. An effective dose of daptomycin, for example, is generally between about 0.1 and about 25 mg/kg daptomycin, daptomycin-related lipopeptide or pharmaceutically acceptable salts thereof. The daptomycin or daptomycin-related lipopeptide may be monomeric or may be part of a lipopeptide micelle. A preferred dose is from about 1 to about 25

5

10

15

20

25

30

mg/kg of daptomycin or daptomycin-related lipopeptide or pharmaceutically acceptable salts thereof. A more preferred dose is from about 1 to 12 mg/kg daptomycin or a pharmaceutically acceptable salt thereof. These dosages for daptomycin may be used as a starting point by one of skill in the art to determine and optimize effective dosages of other linear and cyclic peptides produced by the modified NRPS complexes of the invention.

In one embodiment, the invention provides a method for treating an infection, especially those caused by gram-positive bacteria, in a subject with a therapeuticallyeffective amount of modified daptomycin or other antibacterial peptide or lipopeptide produced by a modified NRPS of the invention. The daptomycin or antibacterial peptide or lipopeptide may be monomeric or in a lipopeptide micelle. Exemplary procedures for delivering an antibacterial agent are described in U.S. Patent No. 5,041,567, issued to Rogers and in PCT patent application number EP94/02552 (publication no. WO 95/05384), the entire contents of which documents are incorporated in their entirety herein by reference. As used herein the phrase "therapeutically-effective amount" means an amount of modified daptomycin or other antibacterial peptide or lipopeptide produced by a modified NRPS according to the present invention, that prevents the onset, alleviates the symptoms, or stops the progression of a bacterial infection. The term "treating" is defined as administering, to a subject, a therapeutically-effective amount of a compound of the invention, both to prevent the occurrence of an infection and to control or eliminate an infection. The term "subject", as described herein, is defined as a mammal, a plant or a cell culture. In a preferred embodiment, a subject is a human or other animal patient in need of peptide or lipopeptide compound treatment.

The peptide or lipopeptide antibiotic compound can be administered as a single daily dose or in multiple doses per day. The treatment regime may require administration over extended periods of time, e.g., for several days or for from two to four weeks. The amount per administered dose or the total amount administered will depend on such factors as the nature and severity of the infection, the age and general health of the patient, the tolerance of the patient to the antibiotic and the microorganism or microorganisms involved in the infection. A method of

administration is disclosed in United States Serial No. 09/406,568, filed September 24, 1999, herein incorporated by reference, which claims the benefit of U.S. Provisional Application Nos. 60/101,828, filed September 25, 1998, and 60/125,750, filed March 24, 1999.

The methods of the present invention comprise administering modified daptomycin or other peptide or lipopeptide antibiotics, or pharmaceutical compositions thereof to a patient in need thereof in an amount that is efficacious in reducing or eliminating the gram-positive bacterial infection. The antibiotic may be administered orally, parenterally, by inhalation, topically, rectally, nasally, buccally, vaginally, or by an implanted reservoir, external pump or catheter. The antibiotic may be prepared for opthalmic or aerosolized uses. Modified daptomycin, a peptide or lipopeptide antibiotic produced by a modified NRPS of the invention, or a pharmaceutical compositions thereof, also may be directly injected or administered into an abscess, ventricle or joint. Parenteral administration includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, cisternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion. In a preferred embodiment, daptomycin or another peptide or lipopeptide is administered intravenously, subcutaneously or orally.

The method of the instant invention may be used to treat a patient having a bacterial infection in which the infection is caused or exacerbated by any type of grampositive bacteria. In a preferred embodiment, modified daptomycin, daptomycin-related lipopeptide, or another peptide or lipopeptide antibiotic produced by a modified NRPS of the invention, or pharmaceutical compositions thereof, are administered to a patient according to the methods of this invention. In another preferred embodiment, the bacterial infection may be caused or exacerbated by bacteria including, but not limited to, methicillin-susceptible and methicillin-resistant staphylococci (including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus saprophyticus, and coagulase-negative staphylococci), glycopeptide intermediary- susceptible Staphylococcus aureus (GISA), penicillin-susceptible and penicillin-resistant streptococci (including Streptococcus progenes, Streptococcus agalactiae, Streptococcus

avium, Streptococcus bovis, Streptococcus lactis, Streptococcus sangius and
Streptococci Group C, Streptococci Group G and viridans streptococci), enterococci
(including vancomycin-susceptible and vancomycin-resistant strains such as
Enterococcus faecalis and Enterococcus faecium), Clostridium difficile, Clostridium
clostridiiforme, Clostridium innocuum, Clostridium perfringens, Clostridium
ramosum, Haemophilus influenzae, Listeria monocytogenes, Corynebacterium
jeikeium, Bifidobacterium spp., Eubacterium aerofaciens, Eubacterium lentum,
Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus plantarum,
Lactococcus spp., Leuconostoc spp., Pediococcus, Peptostreptococcus anaerobius,
Peptostreptococcus asaccarolyticus, Peptostreptococcus magnus, Peptostreptococcus
micros, Peptostreptococcus prevotii, Peptostreptococcus productus,
Propionibacterium acnes, and Actinomyces spp.

The antibacterial activity of daptomycin against classically "resistant" strains is comparable to that against classically "susceptible" strains in *in vitro* experiments. In addition, the minimum inhibitory concentration (MIC) value for daptomycin against susceptible strains is typically 4-fold lower than that of vancomycin. Thus, in a preferred embodiment, modified daptomycin, daptomycin-related lipopeptide antibiotic, a peptide or lipopeptide antibiotic produced by the modified NRPS of the invention, or pharmaceutical compositions thereof, are administered according to the methods of this invention to a patient who exhibits a bacterial infection that is resistant to other antibiotics, including vancomycin. In addition, unlike glycopeptide antibiotics, daptomycin exhibits rapid, concentration-dependent bactericidal activity against grampositive organisms. Thus, in a preferred embodiment, daptomycin, a lipopeptide antibiotic, or pharmaceutical compositions thereof are administered according to the methods of this invention to a patient in need of rapidly acting antibiotic therapy.

15

20

25

30

The method of the instant invention may be used for a gram-positive bacterial infection of any organ or tissue in the body. These organs or tissue include, without limitation, skeletal muscle, skin, bloodstream, kidneys, heart, lung and bone. The method of the invention may be used to treat, without limitation, skin and soft tissue infections, bacteremia and urinary tract infections. The method of the invention may be used to treat community acquired respiratory infections, including, without

limitation, otitis media, sinusitis, chronic bronchitis and pneumonia, including pneumonia caused by drug-resistant *Streptoococcus pneumoniae* or *Haemophilus influenzae*. The method of the invention also may be used to treat mixed infections that comprise different types of gram-positive bacteria, or which comprise both gram-positive and gram-negative bacteria, including aerobic, caprophilic or anaerobic bacteria. These types of infections include intra-abdominal infections and obstetrical/gynecological infections. The methods of the invention may be used in step-down therapy for hospital infections, including, without limitation, pneumonia, intra-abdominal sepsis, skin and soft tissue infections and bone and joint infections. The method of the invention also may be used to treat an infection including, without limitation, endocarditis, nephritis, septic arthritis and osteomyelitis. In a preferred embodiment, any of the above-described diseases may be treated using daptomycin, lipopeptide antibiotic, or pharmaceutical compositions thereof. Further, the diseases may be treated using daptomycin or lipopeptide antibiotic in either a monomeric or micellar form.

Modified daptomycin, daptomycin-related lipopeptide, or another peptide or lipopeptide produced by a modified NRPS according to the invention, may also be administered in the diet or feed of a patient or animal. If administered as part of a total dietary intake, the amount of modified daptomycin or other peptide or lipopeptide can be less than 1% by weight of the diet and preferably no more than 0.5% by weight. The diet for animals can be normal foodstuffs to which modified daptomycin or the other peptide or lipopeptide can be added or it can be added to a premix.

The method of the instant invention may also be practiced while concurrently administering one or more antifungal agents and/or one or more antibiotics other than modified daptomycin or other peptide or lipopeptide antibiotic. Co-administration of an antifungal agent and an antibiotic other than modified daptomycin or another peptide or lipopeptide antibiotic may be useful for mixed infections such as those caused by different types of gram-positive bacteria, those caused by both gram-positive and gram-negative bacteria, or those that caused by both bacteria and fungus. Furthermore, modified daptomycin or other peptide or lipopeptide antibiotic may improve the toxicity profile of one or more co-administered antibiotics. It has been

5

10

15

20

25

30

shown that administration of daptomycin and an aminoglycoside may ameliorate renal toxicity caused by the aminoglycoside. In a preferred embodiment, an antibiotic and/or antifungal agent may be administered concurrently with modified daptomycin, other peptide or lipopeptide antibiotic, or in pharmaceutical compositions comprising modified daptomycin or another peptide or lipopeptide antibiotic.

Antibacterial agents and classes thereof that may be co-administered with modified daptomycin or other peptide or lipopeptide antibiotics include, without limitation, penicillins and related drugs, carbapenems, cephalosporins and related drugs, aminoglycosides, bacitracin, gramicidin, mupirocin, chloramphenicol, thiamphenicol, fusidate sodium, lincomycin, clindamycin, macrolides, novobiocin, polymyxins, rifamycins, spectinomycin, tetracyclines, vancomycin, teicoplanin, streptogramins, anti-folate agents including sulfonamides, trimethoprim and its combinations and pyrimethamine, synthetic antibacterials including nitrofurans, methenamine mandelate and methenamine hippurate, nitroimidazoles, quinolones, fluoroquinolones, isoniazid, ethambutol, pyrazinamide, para-aminosalicylic acid (PAS), cycloserine, capreomycin, ethionamide, prothionamide, thiacetazone, viomycin, eveminomycin, glycopeptide, glycylcylcline, ketolides, oxazolidinone; imipenen, amikacin, netilmicin, fosfomycin, gentamicin, ceftriaxone, Ziracin, LY 333328, CL 331002, HMR 3647, Linezolid, Synercid, Aztreonam, and Metronidazole, Epiroprim, OCA-983, GV-143253, Sanfetrinem sodium, CS-834, Biapenem, A-99058.1, A-165600, A-179796, KA 159, Dynemicin A, DX8739, DU 6681; Cefluprenam, ER 35786, Cefoselis, Sanfetrinem celexetil, HGP-31, Cefpirome, HMR-3647, RU-59863, Mersacidin, KP 736, Rifalazil; Kosan, AM 1732, MEN 10700, Lenapenem, BO 2502A, NE-1530, PR 39, K130, OPC 20000, OPC 2045, Veneprim, PD 138312, PD 140248, CP 111905, Sulopenem, ritipenam acoxyl, RO-65-5788, Cyclothialidine, Sch-40832, SEP-132613, micacocidin A, SB-275833, SR-15402, SUN A0026, TOC 39, carumonam, Cefozopran, Cefetamet pivoxil, and T 3811.

In a preferred embodiment, antibacterial agents that may be co-administered with modified daptomycin or peptide or lipopeptide antibiotic produced by a modified NRPS according to this invention include, without limitation, imipenen, amikacin,

netilmicin, fosfomycin, gentamicin, ceftriaxone, teicoplanin, Ziracin, LY 333328, CL 331002, HMR 3647, Linezolid, Synercid, Aztreonam, and Metronidazole.

Antifungal agents that may be co-administered with modified daptomycin or other peptide or lipopeptide antibiotic include, without limitation, Caspofungen, Voriconazole, Sertaconazole, IB-367, FK-463, LY-303366, Sch-56592, Sitafloxacin, DB-289 polyenes, such as Amphotericin, Nystatin, Primaricin; azoles, such as Fluconazole, Itraconazole, and Ketoconazole; allylamines, such as Naftifine and Terbinafine; and anti-metabolites such as Flucytosine. Other antifungal agents include without limitation, those disclosed in Fostel et al., Drug Discovery Today 5:25-32 (2000), herein incorporated by reference. Fostel et al. disclose antifungal compounds including Corynecandin, Mer-WF3010, Fusacandins, Artrichitin/LL 15G256γ, Sordarins, Cispentacin, Azoxybacillin, Aureobasidin and Khafrefungin.

Modified daptomycin or other peptide or lipopeptide antibiotics, including daptomycin-related lipopeptides, may be administered according to this method until the bacterial infection is eradicated or reduced. In one embodiment, modified daptomycin, or other peptide or lipopeptide produced by a modified NRPS according to the invention, is administered for a period of time from 3 days to 6 months. In a preferred embodiment, modified daptomycin, or other peptide or lipopeptide, is administered for 7 to 56 days. In a more preferred embodiment, modified daptomycin, or other peptide or lipopeptide is administered for 7 to 28 days. In an even more preferred embodiment, modified daptomycin or other peptide or lipopeptide antibiotic is administered for 7 to 14 days. In another embodiment, the antibiotic is administered for 3 to 7 days. Modified daptomycin, or other peptide or lipopeptide produced by a modified NRPS according to the invention, according to the invention may be administered for a longer or shorter time period if it is so desired.

In order that this invention may be more fully understood, the following examples are set forth. These examples are for the purpose of illustration only and are not to be construed as limiting the scope of the invention in any way.

EXAMPLE 1: Initial sequencing of the Streptomyces roseosporus daptomycin biosynthetic gene cluster

5

10

15

20

25

Streptomyces roseosporus strain A21978.6 (American Type Culture Collection Accession No. 31568) was used for the construction of a cosmid library. Genomic DNA was digested partially with Sau3A1 and alkaline phosphatase (Boehringer Mannheim Biochemicals). DNA of approximately 40 kb in length was isolated and ligated to BamHI-digested cosmid pKC1471 and packaged with a Gigapack packaging extract (Stratagene, Inc.) as described in Hosted and Baltz, J. Bacteriol., 179, pp. 180-186 (1997). Packaged DNA was introduced into E. coli XL1-Blue-MFR (Stratagene, Inc.) and individual clones containing cosmid DNA were stored as an ordered array in a 96-well dot blot apparatus. Twelve cultures from a row of microtiter wells were pooled, and screened by hybridization to a 2.1-kB SphI fragment of DNA from plasmid pRHB153 and to a 5.2-kB DraI-KpnI fragment from pRHB157, both containing NRPS sequences cloned from S. roseosporus (see McHenney et al., supra). Individual cosmids from the hybridizing pools were identified by hybridization to the same probes.

Cosmid and plasmid DNA was hydrodynamically sheared and then separated by electrophoresis on a standard 1% agarose gel. The separated DNA fragments 2500-3000 bp in length were excised from the gel and purified by the GeneCleanTM procedure (BIO 101, Inc.). The ends of the gel-purified DNA fragments were then filled in or made blunt using T4 DNA polymerase. The DNA fragments were ligated to unique BstXI-linker adapters (5'-GTCTTCACCACGGGG-3' – SEQ ID NO:, and 5'GTGGTGAAGAC-3' – SEQ ID NO:, in 100-1000 fold molar excess). These linkers are complementary to the BstXI-cut pGTC vector (Genome Therapeutics Corp., Waltham, MA), while the overhang is not self-complementary. Therefore, the linkers will not concatemerize, nor will the open vector self-ligate easily. The linker-adapted inserts were separated from the unincorporated linkers by electrophoresis on a 1% agarose gel and purified using GeneCleanTM. The purified linker-adapted inserts were ligated to BstXI-cut pGTC vector to construct "shotgun" subclone libraries.

The pGTC library was then transformed into DH5 α competent cells (Gibco/BRL, DH5 α transformation protocol). Transformation was assessed by plating onto antibiotic plates containing ampicillin and IPTG/Xgal (IPTG = isopropyl-b-D-thiogalactopyranoside; Xgal = 5-bromo-4-chloro-3-indoyl-b-D-thiogalactopyranoside.)

5

10

15

20

25

30

The plates were incubated overnight at 37°C. Transformants were plate purified and the purified clones containing the following plasmids were picked for further analysis.

Plasmids pRHB160, containing an insert of approximately 50 kb of *S. roseosporus* DNA, pRHB613, containing an insert of approximately 15 kb, pRHB614, containing an insert of approximately 13 kb, and pRHB159, containing an insert of approximately 51 kb, were chosen for DNA sequencing. (See McHenney, M.A. *et al.*, *supra*).

Individual cultures of strains transformed with the above plasmids were grown overnight at 37°C. DNA was purified using a silica bead DNA preparation method (Engelstein, M. et al., Microb. Comp. Genomics 3(4):237-241, 1998). In this manner, 25 mg of DNA were obtained per clone. These purified DNA samples were then sequenced using primarily ABI dye-terminator chemistry. All subsequent steps were based on sequencing by ABI377 or Amersham automated DNA sequencing methods according to the manufacturer's instructions. The ABI dye terminator sequence reads were run on either ABI377 or Amersham MegaBaceTM capillary machines. The data were transferred to UNIX machines following lane tracking of the gels. Base calls and quality scores were determined using the program PHRED (Ewing et al., Genome Res. 8:175-185, 1998). Reads were assembled using PHRAP (P. Green, Abstracts of DOE Human Genome Program Contractor-Grantee Workshop V, Jan. 1996, p.157) with default program parameters and quality scores. The initial assembly was done at 6x coverage.

EXAMPLE 2: Isolation and analysis of additional DNA molecules of the Streptomyces roseosporus biosynthetic gene cluster

Mycelium for preparation of megabase DNA was obtained from overnight cultures of *Streptomyces roseosporus* (NRRL11379) (ATCC No. 31568) shaken in F10A broth (2% agar, 25% soluble starch, 0.2% dextrose, 0.5% yeast extract, 0.5% peptone and 0.3% calcium carbonate) at 30°C. Washed cells were embedded in SeakemTM GTG agarose (FMC Bioproducts, 1% final concentration), incubated in lysozyme (2mg/mL TE) at 37°C for 3h, then lysed in 0.1x NLS + 0.2mg/mL proteinase K at 50°C overnight to release DNA into the gel matrix. Agarose containing DNA

was washed with 1 mM EDTA (pH 8) before treatment with BamHI at 37° C. Partially digested DNA was then subjected to a two-step size selection process in 0.6% agarose gels (in 0.5X TBE) by pulsed-field electrophoresis using a CHEF Mapper DRIII (Biorad) set at 6V/cm, 120° angle, 12°C. The first selection consisted of a 14 h run with a 22-44 sec linearly ramped switch time. Gel containing DNA co-migrating with 100-200 kb lambda concatamer size markers was excised and cast in a second gel for an 18 h run with a 3-5 sec linear ramp. DNA estimated at 75-145 kb relative to size markers was electroeluted (MiniProtean II Cell model, Biorad) in TAE.

The single-copy BAC library cloning vector pStreptoBAC V is derived from pBACe3.6 (Frengen, E., Weichenhan, D., Zhao, B., Osoegawa, K., van Geel, M. & de Jong, P.J., A modular, positive selection bacterial artificial chromosome vector with multiple cloning sites, Genomics, 58: 250-253 (1999)). The pBACe3.6 was modified to contain two markers, Amp^R for selection in *E. coli* and Apra^R for selection in *Streptomyces*, as well as oriT and attP sequences from the phage φC31 for conjugation and site specific integration in *Streptomyces*. See Figure 6. To prepare the pStreptoBAC V vector for ligation with the *S. roseosporus* DNA, the vector was first digested with *BamH*I and the reaction was inactivated by heat (65°C for 1h). DNA was then dephosporylated with Shrimp Alkaline Phosphatase for 30min. The two bands (13 kb and 3kb corresponding to the pUC fragment) were separated on 0.6% agarose gel and the 13 kb band was purified using Geneclean spin columns.

200 ng of the *S. roseosporus* DNA was ligated to 75 ng of *Bam*HI cut and phosphatased pStreptoBAC V vector DNA using 9 U of T4 DNA ligase (Promega) in a 150 μl reaction. After 16 h at 16°C, the ligations were heated at 65° C for 30 min, dialyzed against 10% polyethylene glycol 8000, and transformed into 10 μl of DH10B electrocompetent cells (Gibco/BRL) using a cell porator with voltage booster (Gibco/BRL) at 300 V and 4 kΩ. Cells were plated on media (LB agar) containing 100mg/mL apramycin and 5% sucrose. Analysis of sample clones showed a range of inserts from 39 kb to 105 kb. The mean insert size was 71.4 kb, with a standard deviation of 14.7 kb. Approximately 2,000 clones were archived at –80°C in 96-well microtiter plates.

This BAC library was screened using the polymerase chain reaction (PCR) using primer pairs P61/P62, P72/P73 and P74/P75, shown below. Nucleotide positions refer to the numbering of SEQ ID NO: 1, and "C" indicates that the primer sequence corresponds to the complementary strand of SEQ ID NO: 1:

5	<u>Primer</u>	Sequence	SEQ <u>ID NO:</u>	Nucleotide Position
10	P61 P62	GCTCGTCCCCCTCCCGCACT CGAACAGGTGGGCTTTGAGTGG		41305-41325 41993-42014 (C)
	P72 P73	CTTCGTGAACACCCTCGTCC GTTCGTCGAGGTCCAGTACG		82104-82124 83011-83030 (C)
	P74 P75	GCACCAGCGTGTGCGGATCG CACGTACGTGACGATCCTCG		92-111 799-818 (C)

PCR was performed under the following conditions: 94° C, 45 sec., 54° C, 30sec., 72° C, 1 min. for 32 cycles. Taq polymerase, as well as the accessory reagents, were supplied by Gibco BRL (Bethesda); all reactions included 5% DMSO.

Clone B12:03A05 was initially detected with primer pair P61/P62 (see above), and subsequently confirmed as a positive hit with the other two primer pairs. DNA of clone B12:03A05 was obtained by standard alkaline lysis procedures and used for DNA sequencing (see below).

20

25

A number of other clones that encompass parts of the daptomycin gene cluster (dpt-related clones) were isolated from the BAC library. These clones include 01G05 (insert size 82 kb), 06A12 (insert size 85 kb), 12F06 (insert size 65 kb), 18H04 (insert size 46 kb) and 20C09 (insert size 65 kb). See Figure 7, which shows a HinDIII digest of these BAC clones. Other BACs that were isolated in the daptomycin gene cluster region include 09D02, 17F08, 05D08, 15H07, 21F10 and 16D12. These BACS cover 180 to 200 kb. Figure 8 shows the approximate location of the BAC clones relative to the daptomycin gene cluster.

Extension of the daptomycin biosynthetic gene cluster sequence determined in 30 Example 2 was accomplished by sequencing 1 µg aliquots of BAC DNA from clone B12:03A05 using the ABI Prism Dye Terminator Cycle Sequencing Ready Reaction

kit (Perkin Elmer), the manufacturer's recommended reaction mix and conditions, and the following primers (C indicates that the primer sequence corresponds to the complementary strand of SEQ ID NO: 1):

SEO

Nucleotide

5	Primer P76	Sequence CGTACTGGACCTCGACGACC	ID NO:	Position 83011-83030
	P78	CGACCAGCGTGTGTACGTCC		83611-83630
	P92	AGTCCTCAGCCATCTCCTCG		84586-84605 (C)
	P84	GAGACCGTCGGCGTGGACG		84224-84242
10	P95	AGGGCCACACCGTCGAACTCC		84711-84731
	P86	ATCGTCGCCGACTACCTCGC		84797-84816
	P96	GGCAGCTACCTCGTACTGG		85299-85317
	P97	TGTACGACAGCGGCGTCGAAC	;	85961-85981
	P101	CGATTCTCGGCATGTTCGCC		86638-86657
15	P105	TCGTCTCCTACATGACCTCG		87196-87215
	P107	TTCACGGAAACCGAACGTCG		87866-87885
	P111	GGTTCAGGCCGCAGCCAACG		88468-88487
	P117	CGCTGACCTTGGTCAGAAGCC		89176-89196

Electrophanerograms were inspected and corrected as appropriate, and the
sequences were aligned using the AssemblyLign Module of MacVectorTM. The aligned sequence (contig) was saved as a MacVectorTM file for analysis and annotation.

Identification of potential ORFs and potential stops/starts was performed using the open reading frames option in MacVectorTM.

Analysis of the 90kb sequence showed a total of 38 open reading frames in the daptomycin biosynthetic gene cluster region. See Figure 2. The ORFs range in size from 228 basepairs (bp) to 17.5 kb. The four largest ORFs are NRPS genes, as discussed below. One of the NRPS genes were predicted to have thioesterase activity based on the presence of conserved motifs, GXSXG (see Example 3). Another predicted open reading frames also encodes a protein with thioesterase activity (see Example 3). A number of potential ABC transporters were also identified.

25

30

5

10

15

20

25

30

The sequence of the daptomycin biosynthetic gene cluster is shown in SEQ ID NO: 1. See also Figure 2. The genes encoding the daptomycin non-ribosomal peptide synthetase (NRPS) are designated dptA, dptB, dptC and dptD. We designate as a promoter region all sequences upstream from the start of an ORF of interest that are not part of an upstream ORF. Because dptA, dptB, dptC and dptD have overlapping start and stop codons and apparently are translationally coupled (e.g., the TGA stop codon of dptC overlaps with the ATG start codon of dptD, which is associated with its own ribosome binding site), we thus indicate the promoter of the whole cluster (comprising dptE, dptF, dptA, dptB, dptC and dptD) as the daptomycin NPRS promoter.

The DNA sequence of the ORF of the daptomycin NRPS dptA gene (nucleotides 38555-56047 of SEQ ID NO: 1) is shown in SEQ ID NO: 10. The ORF is 17493 nucleotides in length. The amino acid sequence of the encoded DptA protein is shown in SEQ ID NO: 9. The protein is 5830 amino acid residues in length.

The DNA sequence of the ORF of the daptomycin NRPS dptB gene (nucleotides 56044-68361 of SEQ ID NO: 1) is shown in SEQ ID NO: 12. The ORF is 12318 nucleotides in length. The amino acid sequence of the encoded DptB protein is shown in SEQ ID NO: 11. The protein is 4105 amino acid residues in length.

The DNA sequence of the ORF of the daptomycin NRPS dptC gene (nucleotides 68358-78062 of SEQ ID NO: 1) is shown in SEQ ID NO: 14. The ORF is 9705 nucleotides in length. The amino acid sequence of the encoded DptC protein is shown in SEQ ID NO: 13. The protein is 3234 amino acid residues in length.

The DNA sequence of the ORF of the daptomycin NRPS dptD gene (nucleotides 78059-85198 of SEQ ID NO: 1) is shown in SEQ ID NO: 3. The ORF is 7140 nucleotides. The dptD gene ORF encodes a type I thioesterase (TEI) domain at the C-terminus. The amino acid sequence of the predicted DptD protein is shown in SEQ ID NO: 7 (see Figure 3). The protein is 2379 amino acids in length

The dptE and dptF are located between dptA and the daptomycin NPRS promoter.

The DNA sequence of the *dptH* thioesterase-encoding gene is shown in SEQ ID NO: 4 (nucleotides 85500-86352 of SEQ ID NO: 1); the promoter region of *dptH*

is shown in SEQ ID NO: 5 (nucleotides 85500-85536 of SEQ ID NO: 1); and the open reading frame of dptH is shown in SEQ ID NO: 6 (nucleotides 85537-86352 of SEQ ID NO: 1). The amino acid sequence of the predicted DptH protein is shown in SEQ ID NO: 8 (see Figure 4).

The promoter region of the daptomycin NRPS (nucleotides 36018-36407 of SEQ ID NO: 1) is shown in SEQ ID NO: 2.

5

10

15

EXAMPLE 3: Identification of the dptD and dptH genes as thioesterases

Amino acid motifs typical of non-ribosomal peptide synthetases and thioesterases were identified by inspection of the *dptD* and *dptH* genes and predicted translation products thereof. The amino acid sequence motif GXSXG, wherein X is any one of the twenty L-amino acids that are inserted translationally into ribosomally produced proteins, is indicative of thioesterases (See Mootz, H.D., *et al.*, *J. Bacteriol.* 179:6843-6850, 1997, incorporated herein by reference in its entirety). SEQ ID NOs 7-8 were inspected for the GXSXG thioesterase motif. In SEQ ID NO:7, the amino acid sequence match to the thioesterase motif GWSFG was found at coordinates 2200-2204, encoded by nucleotides 84656-84670 of SEQ ID NO:1. In SEQ ID NO:8, the amino acid sequence match to the thioesterase motif GTSLG was found at coordinates 97-101, encoded by nucleotides 85825-85840 of SEQ ID NO:1.

Streptomyces coelicolor. The alignment was performed using the Clustal W (v1.4) program in slow pairwise alignment mode. An open gap penalty of 10.0, an extend gap penalty of 0.1, and a blosum similarity matrix to the CDA III protein was used. The CDA III protein is a non-ribosomal peptide synthetase with a carboxy-terminal thioesterase domain (see GENBANK accession number AL035707, version

25 AL035707.1 GI:4490978, hereby incorporated by reference in its entirety). The CDA III amino acid sequence used for the alignment was generated using the MacVector program by creating a contig from two GENBANK cosmid sequences, AL035707 and AL035640, and then translating the open reading frame in the contig annotated in GENBANK. The sequence comparison (Figure 3) revealed an alignment score of

compared sequences. The GXSXG thioesterase motifs of the DptD protein and the CDA III protein were aligned in this analysis.

The GXSXG thioesterase motif of the DptH protein of SEQ ID NO: 8 was aligned to the GXSXG thioesterase motif of the CDA III protein of *Streptomyces coelicolor* (CAA71338 protein, see above). The alignment was performed the Clustal W (v1.4) program in slow pairwise alignment mode. An open gap penalty of 10.0, an extend gap penalty of 0.1, and a blosum similarity matrix to the *Streptomyces* thioesterase protein of GENPEPT record CAA71338 (version CAA71338.1 GI:2647975, hereby incorporated by reference in its entirety) was used. The alignment (Figure 4) revealed an alignment score of 955 and 145 conserved identities indicating significant similarity between the two compared sequences.

These analyses show that *dptD* and *dptH* encode thioesterase proteins, specifically, the proteins of SEQ ID NOS: 7-8.

EXAMPLE 4: Identification of a Daptomycin NRPS

15 A. Identification of dptD as a daptomycin NRPS subunit

10

20

25

30

The predicted translation products of the *dptD* DNA sequences described above (Examples 2 and 3) were inspected visually for the occurrence of various protein motifs described in the NRPS literature. A *dptD* condensation ("M") motif, indicative of a condensation domain, was identified at nucleotides 78488-78511 of SEQ ID NO: 1 (all of the nucleotide positions discussed in Examples 4-6 refer to SEQ ID NO: 1). See, e.g., Kleinkauf, H., et al., Eur. J. Biochem., 236, pp. 335-351 (1996) for the various motifs in the NRPS; and Pospiech, et al., Microbiol., 142, pp. 741-746 (1996). An ATP-binding ("C") motif was identified at nucleotides 79898-79930, an ATP-binding ("E") motif was identified at nucleotides 80453-80488, an ATPase ("F") motif was identified at nucleotides 80558-80581, and an ATP-binding ("G") motif was identified at nucleotides 0654-80677. These motifs collectively are indicative of an adenylation domain. A thiolation ("J") motif, indicative of a thiolation (PCP) domain, was identified at nucleotides 81050-81064. The above motifs, and the domains that they signify, belong to module 1 of dptD; in terms of Daptomycin synthetase, this is module 12.

10

15

20

25

30

Another *dptD* condensation ("M") motif, indicative of a condensation domain, was identified at nucleotides 81623-81646. Another ATP-binding ("C") motif was identified at nucleotides 83117-83149, an ATP-binding ("E") motif was identified at nucleotides 83669-83704, an ATPase ("F") motif was identified at nucleotides 83774-83797, and an ATP-binding ("G") motif was identified at nucleotides 83870-83893. The above motifs collectively are indicative of another adenylation domain. Also a thiolation ("J") motif, an indicator of a thiolation (PCP) domain, was identified at nucleotides 84257-84271. The above motifs, and the domains that they signify, belong to module 2 of *dptD*; in terms of Daptomycin synthetase, this is module 13.

The DptD amino acid sequences corresponding to the above-described predicted motifs and domains were identified (all of the amino acid positions for DptD refer to the amino acid positions in SEQ ID NO: 7). The motifs, and the domains that they signify, belonging to module 1 of DptD (corresponding to module 12 of Daptomycin synthetase) are as follows: A DptD condensation ("M") motif was identified at coordinates 144-151; an ATP-binding ("C") motif was identified at coordinates 614-624; an ATP-binding ("E") motif was identified at coordinates 799-810; an ATPase ("F") motif was identified at coordinates 834-841; an ATP-binding ("G") motif was identified at coordinates 998-1002.

The DptD motifs, and the domains that they signify, belonging to module 2 of DptD (corresponding to module 13 of Daptomycin synthetase) are as follows: A DptD condensation ("M") motif was identified at coordinates 1189-1196; an ATP-binding ("C") motif was identified at coordinates 1687-1697; an ATP-binding ("E") motif was identified at coordinates 1871-1882; an ATPase ("F") motif was identified at coordinates 1906-1913; an ATP-binding ("G") motif was identified at coordinates 1938-1945; and a thiolation ("J") motif was identified at coordinates 2067-2071. The ATP-binding motifs are representative of adenylation domains.

B. Identification of dptA, dptB and dptC as daptomycin NRPS subunits

Certain M, C, E, F, G and J motifs were identified in a similar fashion in dptA,

dptB and dptC. The sequence and type of each motif, the genes and modules in which

each motif is found, as well as the amino acid and nucleotide coordinates of each motif, are shown below in Table 1:

Table 1

	Gene	Module	Motif	Sequence	Amino Acid	Nucleotide
			Туре	•	Coordinates	Coordinates
5	dptA	1	M	HHIALDGY	138-145	38966-38989
	dptA	1	С	QTSGSTGRPKG	603-613	40361-40393
	dptA	1	E	GELYLAGEGLAR	784-795	40904-40939
	dptA	1	F	RMYRTGDL	819-826	41009-41032
	dptA	1	G	RIELGEVQ	851-858	41105-41128
10	dptA	1	J	LGGHS	981-985	41495-41509
	dptA	2	M	HHTAGDGA	1167-1174	42053-42076
	dptA	2	С	YTSGSTGRPKG	1657-1667	43523-43555
	dptA	2	E	GELHVAGEGLAR	1843-1854	44081-44116
	dptA	2	F	RMYRTGDL	1878-1885	44186-44209
15	dptA	2	G	RIELGEVE	1910-1917	44282-44305
	dptA	2	J	LGGDS	2041-2045	44675-44689
	dptA	3	M	HHVILDGW	2751-2758	46805-46828
	dptA	3	С	YTSGSTGLPKG	3238-3248	48266-48298
	dptA	3	Е	GELYVAGDGLAR	3420-3431	48812-48847
20	dptA	3	F	RMYRTGDL	3455-3462	48917-48940
	dptA	3	G	RIELGEVE	3487-3494	49013-49036
	dptA	3	J	LGGHS	3616-3620	49400-49414
	dptA	4	M	HHIAGDGW	3806-3813	49970-49993
	dptA	4	С	YTSGSTGRPKG	4292-4302	51428-51460
25	dptA	4	Е	GEMYVAGAGLAR	4490-4501	52022-52057
	dptA	4	F	RLYRTGDL	4525-4532	52127-52150
	dptA	4	G	RIELGEIE	4557-4564	52223-52246
	dptA	4	J	LGGHS	4688-4692	52616-52630
	dptA	5	M	HHIAGDGW	4873-4880	53171-53194
30	dptA	5	С	HTSGSTGRPKG	5363-5373	54641-54673
	dptA	5	E	GEIHIAGSGLAR	5553-5564	55211-55246
	dptA	5	F	RMYRTGDL	5587-5594	55313-55336
	dptA	5	G	RIELGDVE	5619-5626	55409-55432
	dptA	5	J	LGGDS	5749-5753	55799-55813
35	dptB	1	M	HHVILDGW	142-149	56467-56490
	dptB	1	С	HTSGSTGRPKG	611-621	57874-57906
	dptB	1	Е	GELYLAGTQLAR	803-814	58450-58485
	dptB	1	F	RMYRTGDL	838-845	58555-58578
	dptB	1	G	RIEPAEIE	870-877	58651-58674
40	dptB	1	J	AGGHS	998-1002	59035-59049
	dptB	2	M	HHIAGDGW	1184-1191	59593-59616
	dptB	2	С	YTSGSTGRPKG	1691-1701	61114-61146

	dptB	2	E	GELYVAGVGLAR	1873-1884	61660-61695
	dptB	2	F	RMYRTGDL	1908-1915	61765-61788
	dptB	2	G	RVELGEVE	1940-1947	61861-61884
	dptB	2	J	LGGHS	2069-2073	62248-62262
5	dptB	3	M	HHVAFDAM	2259-2266	62818-62841
	dptB	3	C	YTSGSTGRPKG	2740-2750	64261-64293
	dptB	3	Е	GELYVAGVGLAR	2923-2934	64810-64845
	dptB	3	F	RMYRTGDL	2958-2965	64915-64938
	dptB	3	G	RVELGEVE	2990-2997	65011-65034
10	dptB	3	J	LGGDS	3118-3122	65395-65409
	dptB	4	M	HHVVLDGW	3805-3812	67456-67479
	dptC	1	С	YTSGSTGRPKG	178-188	68889-68921
	dptC	1	Е	GELYVAGVGLAR	360-371	69435-69470
	dptC	l	F	RMYRTGDL	395-402	69540-69563
15	dptC	1	G	RVELGEVE	427-434	69636-69659
	dptC	1	J	LGGHS	558-562	70029-70043
	dptC	2	M	HHIAGDGW	748-755	70599-70622
	dptC	2	С	YTSGSTGQPKG	1236-1246	72063-72095
	dptC	2	E	GELYIAGDGLAR	1422-1433	72621-72656
20	dptC	2	F	RMYRTGDL	1457-1464	72726-72749
	dptC	2	G	RVELGEVE	1489-1496	72822-72845
	dptC	2	J	LGGHS	1618-1622	73208-73223
	dptC	3	M	HHIAGDGW	1809-1816	73782-73805
	dptC	3	C	YTSGSTGRPKG	2290-2300	75225-75257
25	dptC	3	E	GELYLAGAGLAR	2480-2491	75795-75830
	dptC	3	F	RMYRTGDL	2515-2522	75900-75923
	dptC	3	G	RVELGEVE	2547-2554	75996-76019
	dptC	3	J	LGGDS	2677-2681	76386-76400

The amino acid coordinates refer to the amino acid sequence of each protein

(DptA: SEQ ID NO: 9; DptB: SEQ ID NO: 11; DptC: SEQ ID NO: 13). The

nucleotide position refers to the nucleotide position in SEQ ID NO: 1.

EXAMPLE 5: Amino acid pocket code annotation

The amino acid pocket code refers to a set of amino acid residues in the adenylation (A) domain that are believed to be involved in recognition and or binding of the cognate amino acid. The amino acid pocket code for the thirteen daptomycin synthetase modules are shown below (Table 2).

35

The amino acid pocket code for the daptomycin synthetase modules was identified by visual inspection of alignments created using MacVector 7.0 of the

putative Dpt translation product aligned with NRPS A domains (amino acid binding pockets) as described in Stachelhaus, T., H. D. Mootz, and M. A. Marahiel (1999), The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases, Chemistry and Biology 6:493-505. See also Challis, G. L., J. Ravel, and C. A. Townsend (2000), Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains, Chemistry and Biology 7:211-224.

Table 2.

Protein	Module (Amino acid)	Pocket Code	Amino Acid Coordinates	Nucleotide Position
DptA	1 (Trp)	DVSSIGAV	649, 650, 653, 690, 711, 713, 734, 742	40499-40780
DptA	2 (Asn)	DLTKLGDV	1702, 1703, 1706, 1741, 1764, 1766, 1790, 1798	43658-43949
DptA	3 (Asp)	DLTKLGAV	3284, 3285, 3288, 3318, 3341, 3343, 3367, 3375	48404-48679

DptA	4 (Thr)	DFWSVGMV	4338, 4339, 4342, 4381,	51566-51892
1	,		4410, 4412, 4438, 4446	
DptA	5 (Gly)	DILQLGVI	5409, 5410, 5413, 5452,	54779-55087
	` ''		5479, 5481, 5503, 5511	
DptB	1 (Orn)	DTWDMGYV	662, 663, 665, 704, 730,	58027-58332
- -			732, 755, 763	
DptB	2 (Asp)	DLTKLGAV	1737, 1738, 1741, 1771,	61252-61527
	` ''		1794, 1796, 1820, 1828	
DptB	3 (Ala)	DVVSAAFV	2786, 2787, 2790, 2824,	64399-64686
	` ′		2847, 2849, 2873, 2881	
DptB/	4(B)/1(C)	DLTKLGAV	224, 225, 228, 258, 281,	69027-69302
DptC	(Asp)		283, 307, 315	
DptC	2 (Gly)	DILQVGMI	1282, 1283, 1286, 1325,	72201-72497
- F			1348, 1350, 1372, 1380	
DptC	3 (Ser)	DVWHISLV	2336, 2337, 2340, 2379,	75363-75668
	` ′		2404, 2406, 2429, 2437	
DptD	1 (3-MG)	DLGKTGVI	659, 660, 663, 697, 720,	80033-80320
'	1 ` ´		722, 746, 754	
DptD	2 (Kyn)	DAWTTTGV	1733, 1734, 1737, 1775,	83255-83542
1 *	` ´ ´		1796, 1798, 1820, 1828	

The amino acid coordinates refer to the amino acid sequence of each protein (DptA: SEQ ID NO: 9; DptB: SEQ ID NO: 11; DptC: SEQ ID NO: 13; DptD: SEQ ID NO: 7). The nucleotide position refers to the nucleotide position in SEQ ID NO: 1.

Similarities between essentially the entire adenylation domains for aspartate and asparagine in the daptomycin gene cluster and for the adenylation domains for aspartate, asparagine and threonine in the CDA III NRPS of *Streptomyces coelicolor* are shown in Figure 10. Amino acids were aligned and the dendrogram was constructed using the MacVector. The nomenclature is as follows: the name of the gene--the module number in the gene--the amino acid activated (one letter code). The alignment shows that the adenylation domains for aspartate and asparagine in the daptomycin gene cluster are more similar to each other than they are to a domain from an unrelated amino acid such as threonine. Further, the alignment shows that the adenylation domains for aspartate and asparagine in the daptomycin gene cluster are more similar to each other than they are similar to the modules for aspartate and asparagine in Cda.

EXAMPLE 6: Identification of Epimerase Domains in Daptomycin NRPS

The amino acid sequences of DptA, DptB, DptC and DptD were inspected for sequences that are characteristic of epimerase domains. Epimerase domains are responsible for converting an L-amino acid to a D-amino acid and are typically encoded by approximately 1.4-1.6 kb of DNA.

It was expected that there would be a total of two epimerase domains in the daptomycin gene cluster, because it was known that daptomycin contained two D-amino acids, D-Ala and D-Ser. One epimerase domain was identified in each of module 8 (D-Ala) and module 11 (D-Ser). Module 8 and 11 are approximately 1.4 kb larger than modules that did not contain an epimerase domain (approximately 4.6 kb each for modules 8 and 11 compared to 3.2 kb each for modules not containing an epimerase domain). Further, modules 8 and 11 contain motifs that are indicative of an epimerase domain, including the motifs K, L, M, N, O, P and Q (see Kleinkauf and Von Dohren, 236: 335-351 (1996)). See Table 3.

Surprisingly, an epimerase domain was also identified in module 2. Module 2 is 1.6 kb larger than expected. Further, module 2 contains a number of motifs that are characteristic of an epimerase domain, including motifs K, L, M, N, O, P and Q. See Table 3. This unexpected finding suggests that the asparagine in daptomycin is in the D configuration.

Table 3

Gene	Mod	Motif	Sequence	Amino Acid	Nucleotide.
		Type	,	Coordinates	Coordinates
dptA	2	K	RWPVVEWL	2100-2107	44852-44875
dptA	2	L	VRERHDAW	2146-2153	44990-45013
dptA	2	M	HHLVVDGVSWRIVLG	2237-2251	45263-45307
dptA	2	N	VVDVEGHGRN	2374-2383	45674-45703
dptA	2	0	TVGWFTSIYPVRL	2395-2407	45737-45775
dptA	2	P	PDQGLGY	2439-2445	45869-45689
dptA	2	Q	FGFNYLG	2467-2473	45953-45973
dptB	3	K	RWPVVEWL	3183-3190	65590-65613
dptB	3	L	VRDRHEAW	3229-3236	65728-65751
dptB	3	M	HHLVVDGVSWRVVLG	33315-3329	65986-66030

30

25

5

10

15

20

dptB	3	N	VVDVEGHGRN	3452-3461	66397-66426
dptB	3	0	TVGWFTSVYPVRV	3473-3485	66460-66498
dptB	3	P	PDQGLGY	3517-3523	66592-66612
dptB	3	Q	FGFNYLG	3545-3551	66676-66696
dptC	4	K	RWPVVEWL	2742-2749	76581-76604
dptC	4	L	VRDRHEAW	2788-2795	76719-76742
dptC	4	M	HHLVVDGVSWRVVLG	2874-2888	76977-77021
dptC	4	N	VVDVEGHGRN	3011-3020	77385-77417
dptC	4	0	TVGWFTSVYPVRV	3032-3044	77451-77489
dptC	4	P	PDQGLGY	3076-3082	77583-77603
dptC	4	Q	FGFNYLG	3104-3110	77667-77687

The amino acid coordinates refer to the amino acid sequence of each protein (DptA: SEQ ID NO: 9; DptB: SEQ ID NO: 11; DptC: SEQ ID NO: 13; DptD: SEQ ID NO: 7). The nucleotide position refers to the nucleotide position in SEQ ID NO: 1.

To confirm that the asparagine in daptomycin was in the D configuration, high pressure liquid chromatography (HPLC) was performed. A hexa-peptide containing the amino acids ornithine, glycine, threonine, aspartic acid, asparagine, and deacylated tryptophan (Trp-Asn-Asp-Orn-Gly-Thr) was isolated from daptomycin by degradation. The peptide above was analyzed by HPLC under conditions that would separate the peptide containing either the D-Asn or L-Asn. The HPLC showed only a single large peak for the isolated peptide above. See Figure 11, left panel. The peptide isolated from daptomycin was mixed with a peptide of the same sequence that had been synthesized in the laboratory and which contained D-Asn. The peptide mixture was analyzed by HPLC under the same conditions as before and shown to contain only a single peak. See Figure 11, middle panel. In addition, the peptide isolated from daptomycin was mixed with a synthetic peptide of the same sequence that contained L-Asn. HPLC analysis displayed two peaks. See Figure 11, right panel. These experiments confirm that naturally-occurring daptomycin contains D-Asn, not L-Asn.

From the experiments presented in Examples 2-7, the organization of the daptomycin NRPS was determined. Figure 12 shows the organization of dptA, dptB, dptC and dptD. dptA contains five modules (modules 1-5), dptB contains three modules (modules 6-8) and the catalytic domain of module 9, dptC contains the adenylation and thiolation domain of module 9 as well as two other modules (modules 10-11), and dptD contains two modules (modules 12-13) and a thioesterase domain.

Table 4 summarizes the correspondence between the 13 modules, their domains, the dpt genes, and their cognate amino acids. "C" represents a catalytic domain, "A" represents an adenylation domain, "T" represents a thiolation domain, "E" represents an epimerase domain, and "Te" represents a thioesterase domain.

5 Table 4.

20

25

30

	Module	Cognate	Domains	Gene
		Amino		
		Acid		
	01	L-Trp	CAT	dptA
	02	D-Asn	CATE	dptA
	03	L-Asp	CAT	dptA
10	04	L-Thr	CAT	dptA
	05	Gly	CAT	dptA
	06	L-Orn	CAT	dptB
	07	L-Asp	CAT	dptB
	08	D-Ala	CATE	dptB
15	09	L-Asp	CAT	dptB/C
	10	Gly	CAT	dp1C
	11	D-Ser	CATE	dptC
	12	L-MG	CAT	<i>dptD</i>
	13	Kyn	CAT-Te	dptD

EXAMPLE 7: Transformation of Streptomyces lividans With The Daptomycin Gene Cluster From Streptomyces roseosporus

E. coli cells containing the BAC DNA from clone B12:03A05 (see Example 2) were grown in 5 mL of Luria Broth (LB; Difco) with agitation (250 rpm) overnight at 37°C. The BAC DNA was isolated by a standard alkaline lysis procedure (see Sambrook et al., supra, "Small scale preparation of plasmid DNA").

S. lividans TK64 spores were used to inoculate 25 mL of YEME + sucrose media and the culture was incubated for 40 hours at 30°C. The cultures were then harvested and the mycelium was pelleted away from the supernatant and washed several times with P-buffer (Practical Streptomyces Genetics; Tobias Kieser, Mervyn J. Bibb, Mark J. Buttner, Keith F. Chater and David Hopwood (John Innes Foundation, Norwich, 2000) ("the Hopwood Manual")). Fresh protoplasts were prepared

5

10

15

20

25

30

according to the method described in the Hopwood manual (p. 56) and aliquoted into 0.5 mL portions (approximately 10⁸-10⁹ protoplasts) and pelleted by centrifugation at 3000 rpm for 7 minutes. Most of the supernatant was removed, leaving the pellet and approximately 50μL of the supernatant. The pellet was resuspended in the remaining supernatant, to which was added 5μL of BAC DNA from clone B12:03A05 (50 ng/μL in TE). This suspension was gently mixed before and after adding 350μL of a 25 % PEG-1000 in P-buffer solution (Hopwood Manual).

The protoplast suspension mixture was spread, in equal amounts, onto three dried R5T plates (dried to lose approximately 15% of their original weight; see Hopwood Manual). Inoculated plates were incubated overnight at 30°C. After 16-18 hours of growth, the plates were overlaid with 3 mL of an apramycin solution (1 mg/mL) in 20% glycerol to provide a final concentration of approximately 100μg/mL on each plate, and the plates incubated at 30°C. After three days, the plates were determined, by examination, to contain colonies which were growing in the presence of the apramycin selection. Two colonies were picked and streaked onto two F10A agar plates (2.5% agar, 0.3% calcium carbonate, 0.5% distillers solubles, 2.5% soluble starch, 0.5% yeast extract, 0.2% dextrose and 0.5% bactopeptone; suspended in 1 L deionized and autoclaved water) containing 100 μL/mL of apramycin and allowed to incubate at 30°C until the colonies sporulated. Spores were harvested according to the methods described in the Hopwood manual and stored as 20% glycerol suspensions at -20°C.

The spores derived from the transformation of *S. lividans* with BAC DNA containing the daptomycin gene cluster (from clone B12:03A05) were grown in an appropriate medium and analyzed by high pressure liquid chromatography (HPLC) and LC-MS to determine if they produced a wild-type lipopeptide profile (see Example 9).

EXAMPLE 8: Fermentation of Streptomyces lividans TK64 clone containing the daptomycin gene cluster

Spores of the *Streptomyces lividans* TK64 clone containing the daptomycin gene cluster (from clone B12:03A05) were harvested by suspending a 10 day old slant culture of medium A (2% irradiated oats (Quaker), 0.7% tryptone (Difco), 0.2% soya

5

10

15

20

25

30

peptone (Sigma), 0.5% sodium chloride (BDH), 0.1% trace salts solution, 1.8% agar no. 2 (Lab M), 0.01 % apramycin (Sigma)) in 5 mL 10% aqueous glycerol (BDH)). 1 mL of this suspension, in a 1.5 mL cryovial, comprises the starting material, which was retrieved from storage at -135 °C. A pre-culture was produced by aseptically placing 0.3 mL of the starting material onto a slope of medium A1 and incubating for 9 days at 28 °C.

A seed culture was generated by aseptically treating the pre-culture with 4 mL of a 0.1 % Tween 80 (Sigma) solution and gently macerating the slope surface to generate a suspension of vegetative mycelium and spores. A two mL aliquot of this suspension was transferred into a 250 mL baffled flask containing 40 mL of nutrient solution S (1% D-glucose (BDH), 1.5% glycerol (BDH), 1.5% soya peptone (Sigma), 0.3% sodium chloride (BDH), 0.5% malt extract (Oxoid), 0.5% yeast extract (Lab M), 0.1 % Junlon PW100 (Honeywell and Stein Ltd), 0.1% Tween 80 (Sigma), 4.6% MOPS (Sigma) adjusted to pH 7.0 and autoclaved)) and shaken at 240 rpm for 44 hours at 30 °C.

Production cultures were generated by aseptically transferring 5% of the seed culture to baffled 250 mL flasks containing 50 mL medium P (1% glucose (BDH), 2% soluble starch (Sigma), 0.5% yeast extract (Difco), 0.5% casein (Sigma), 4.6% MOPS (Sigma) adjusted to pH 7 and autoclaved)) and shaken at 240 rpm for up to 7 days at 30 °C.

EXAMPLE 9: Purification and Analysis of the A21978C Lipopeptides from Fermentations of the Streptomyces lividans TK64 Clone Containing the Daptomycin Gene Cluster

Production cultures described in Example 8 were sampled for analysis by aseptically removing 2 mL of the whole culture and centrifuging for 10 minutes prior to analysis. Volumes up to 50 microlitres of the supernatant were analyzed to monitor for production of the native lipopeptides (A21978C) as produced by *Streptomyces roseosporus*. This analysis was performed at ambient temperature using a Waters Alliance 2690 HPLC system and a 996 PDA detector with a 4.6 x 50 mm Symmetry C8 3.5 µm column and a Phenomenex Security Guard C8 cartridge. The gradient

initially holds at 90% water and 10% acetonitrile for 2.5 minutes, followed by a linear gradient over 6 minutes to 100% acetonitrile. The flow rate is 1.5 mL per minute and the gradient is buffered with 0.01% trifluoroacetic acid. By day 2 of the fermentation, production of three of the native lipopeptides, C1, C2 and C3, with UV/visible spectra identical to that of daptomycin, was evident, as shown by HPLC peaks with retention times of 5.62, 5.77 and 5.90 minutes (λmax 223.8, 261.5 and 364.5 nm) under the analytical conditions stated, as shown in Figure 5A. The lipopeptides then remained evident in the fermentation at each sample point during the 7-day period. Total yields of lipopeptides C1, C2 and C3 ranged from 10-20 mg per liter of fermentation material.

5

10

15

20

25

Liquid chromatography-mass spectrometry (LC-MS) analysis was performed on a Finnigan SSQ710c LC-MS system using electrospray ionization in positive ion mode, with a scan range of 200-2000 daltons and 2 second scans. Chromatographic separation was achieved on a Waters Symmetry C8 column (2.1x 50mm, 3.5μm particle size) eluted with a linear water-acetonitrile gradient containing 0.01% formic acid, increasing from 10% to 100% acetonitrile over a period of six minutes after a initial delay of 0.5 minutes, then remaining at 100% acetonitrile for a further 3.5 minutes before re-equilibration. The flow rate was 0.35 mL/minute and the method was run at ambient temperature.

The identification of the three native lipopeptides was confirmed, as indicated by molecular ions ([M+H]⁺) at m/z of 1634.7, 1648.7 and 1662.7, which is in agreement with the masses reported for the major A21978C lipopeptide metabolites C1, C2 and C3, respectively, produced by *Streptomyces roseosporus* (Debono, M., et al., J. Antibiotics, 40, pp. 761-777 (1987)).

Similar experiments were performed using the BAC clones 01G06, 06A12, 12F06 and 18H04. None of the *S. lividans* cells containing any one of these BAC clones were able to produce daptomycin.

5

10

15

20

25

30

EXAMPLE 10: Fed-batch fermentation of Streptomyces lividans TK64 Clone Containing the Daptomycin Gene Cluster for the production of Daptomycin

Cells of the *Streptomyces lividans* TK64 clone containing the daptomycin gene cluster (from clone B12:03A05) were regenerated by suspending a 10 day old slope culture of medium A (see Hopwood Manual; 2% irradiate oats (Quaker), 0.7% tryptone (Difco), 0.2% soya peptone (Sigma), 0.5% sodium chloride (BDH), 0.1% trace salts solution, 1.8% agar no. 2 (Lab M), 0.01% apramycin (Sigma) in 5 mL 10% aqueous glycerol (BDH)). A 1.5 mL cryovial containing 1 mL of starting material was retrieved from storage at -135 °C and thawed rapidly. A pre-culture was produced by aseptically placing 0.3 mL of the starting material onto a slope of medium A and incubating for 9 days at 28 °C. Material for inoculation of the seed culture was generated by aseptically treating the preculture with 4 mL of a 0.1 % Tween 80 (Sigma) solution and gently macerating the slope surface to generate a suspension of vegetative mycelium and spores.

A seed culture was produced by aseptically placing 1 mL of the inoculation material into a 2L baffled Erlenmeyer flask containing 250 mL of nutrient solution S (see Hopwood manual) shaken at 240 rpm for 2 days at 30 °C.

A production culture was generated by aseptically transferring the seed culture to a 20L fermenter containing 14 liters of nutrient solution P (see Hopwood manual). The production fermenter was stirred at 350 rpm, aerated at 0.5vvm, and temperature controlled at 30 °C. After 20 hours incubation a 50% (w/v) glucose solution was fed to the culture at 5 g/hr throughout the fermentation.

After 40 hours incubation, a 50:50 (w/w) blend of decanoic acid:methyl oleate (Sigma and Acros Organics, respectively) was fed to the fermenter at 0.5 g/hr for the remainder of fermentation. The culture was harvested after 112 hours, and the biomass removed from the culture supernatant by batch processing through a bowl centrifuge.

The biomass was discarded and the clarified fermentation broth was retained for extraction. The broth (approximately 10L) was loaded onto a 60 mm (diameter) by 300mm (length) column of HP20 resin, which had been pre-equilibrated with water, at

5

10

15

20

25

30

a rate of 100 mL/min. The column was washed with 2L of water and then with 1.5L of 80% methanol (in water) at a similar flow rate. Finally, the bound material was eluted with 2L methanol and then taken to an aqueous concentrate under vacuum. The concentrate was diluted to 1L with purified water and partitioned with ethyl acetate (700 mL) three times. The ethyl acetate fraction was analyzed and discarded, and the aqueous layer was lyophilized to a powder.

Daptomycin was isolated by high performance liquid chromatography (HPLC) using a radially compressed cartridge column consisting of two 40x100mm Waters Nova-Pak C18 6µm units and a 40x10mm Guard-Pak with identical packing. Lyophilized material (150 to 200mg) was dissolved in water and chromatographed on the columns using a gradient in which the initial conditions were 90% water and 10% acetonitrile, followed by a linear gradient over 10 minutes to 20% water and 80% acetonitrile, and then immediately ramping up to 100% acetonitrile over a further minute. UV absorption at 223nm was monitored for elution of daptomycin. The daptomycin peak eluted at about 9 minutes and was collected and combined over many repeated runs. The sample was then evaporated under vacuum and then dried *in vacuo* to yield 30 mg of purified compound. Only a proportion of the total material was processed.

The purified compound was first analyzed by reversed phase HPLC at ambient temperature on a 4.6 x 50 mm Waters Symmetry C8 3.5 μ m particle size column with a Phenomenex Security Guard C8 cartridge using a Waters Alliance 2690 HPLC system and a 996 PDA detector. The column was eluted with a water-acetonitrile gradient, initially holding at 90% water for 2.5 minutes and then rising linearly over 6 minutes to 100% acetonitrile, at a flow rate of 1.5 mL/minute. The gradient was buffered with 0.01% trifluoroacetic acid. This chromatographic analysis confirmed that the retention time (5.52 mins) and the UV absorption spectrum (λ_{max} 223.8, 261.5, 366.9nm) of the purified compound matched those of daptomycin. LC-MS(ESI) confirmed the molecular ion MH⁺ as 1620.6 (Figure 5B) and the ¹H NMR (D6-DMSO) gave a good visual match with that recorded for daptomycin (Figure 5C).

The identification of the material as daptomycin was further confirmed by ¹³CNMR experiments, including DEPT and TOCSY.

Feed-batch fermentation may also be accomplished at a larger scale, for example at 60,000 liters.

EXAMPLE 11: The use of daptomycin genes for yield enhancement A. Duplication of a positive regulatory gene

5

10

15

20

25

30

A neutral genomic site in the chromosome of *Streptomyces roseosporus* is identified by transposon mutagenesis with TN5097, or a related transposon, followed by fermentation analysis. The neutral site is excised from the chromosome using a restriction endonuclease that cuts outside of the neutral site and transposon, and cloned in *Escherichia coli*, selecting for the expression of the antibiotic resistance marker in the transposon (hygromycin resistance in the case of TN5097). An example of this approach was used to identify a neutral site in *Streptomyces fradiae*, the tylosin producer. See Baltz et al., <u>Antonie van Leeuwenhoek</u>, 71, pp. 179-187 (1997), incorporated herein by reference in its entirety. An example of identifying a neutral site in *S. roseosporus* is described in McHenney et al., <u>J. Bacteriol.</u>, 180, pp. 143-151 (1998), incorporated herein by reference in its entirety.

The regulatory gene from the daptomycin gene cluster (SEQ ID NO:1) is cloned into a plasmid within the neutral site. A suitable plasmid would be one containing an antibiotic resistance gene for the selection of primary recombinants containing single crossovers, a counter-selectable marker such as the wild type *rpsL* gene, a ribosomal protein gene that confers sensitivity to streptomycin (Hosted and Baltz, J. Bacteriol., 179, pp. 180-186 (1997)) for selection of recombinants containing double crossovers that insert the cloned regulatory gene, and upstream and downstream sequences, into the chromosomal neutral site, and eliminate the plasmid sequences, and a thermal sensitive replicon that would facilitate the curing of the plasmid. The double crossover is done in a host strain that is normally resistant to streptomycin because it contains a mutation in the *rpsL* gene. Since the wild type (streptomycin-sensitive) allele of *rpsL* is dominant over streptomycin resistance, recombinants expressing streptomycin resistance must have eliminated the *rpsL* gene on the plasmid by a double crossover in the two arms of the neutral site, thus inserting the cloned daptomycin regulatory gene into the chromosome. Recombinants are

fermented to verify that they produce an increased yield compared to the parental strain lacking the cloned daptomycin regulatory gene.

B. Duplication of ABC transporter genes

The pair of ABC transporter genes from the daptomycin gene cluster (SEQ ID NO:1), including upstream and downstream sequences, is cloned into the neutral site vector described above and inserted by double crossover into the S. roseosporus chromosome as described in Example 11A. Recombinants are fermented to verify that they produce increased levels of Daptomycin compared to the parental strain lacking the cloned ABC transporter genes.

10 C. Duplication of novA,B,C homologs

15

20

25

The segment of DNA containing the *novA*, *B*, *C* homology from the daptomycin gene cluster (SEQ ID NO:1), including the upstream and downstream sequences, is cloned into the neutral site vector and inserted by double crossover into the *S. roseosporus* chromosome as described in Example 11A. Recombinants are fermented to verify that they produce increased levels of Daptomycin compared to the parental strain lacking the cloned *novA*, *B*, *C* genes.

D. Duplication of daptomycin biosynthetic genes

The daptomycin biosynthetic genes, dptA, B, C, D, E, F, G and H (SEQ ID NO:1), including the fatty acyl-CoA ligase, the four subunits of the NRPS, the integral thioesterase of dptD and the free thioesterase of dptH, are cloned into a BAC vector that contains the fC31 attachment and integration functions (att/int) and oriT from plasmid RK2 (Baltz, Trends in Microbiology, 6, pp. 76-83 (1998), incorporated herein by reference in its entirety) for conjugation from E. coli to S. roseosporus. The BAC containing the daptomycin genes is introduced into S. roseosporus by conjugation from E. coli S17.1, or a strain containing a self-replicating plasmid RK2 (Id.). Alternatively, the BAC vector inserts into the chromosome by homologous recombination into the daptomycin gene cluster. Recombinants are fermented to verify that they produce

increased levels of Daptomycin compared to the parental strain lacking the cloned daptomycin genes.

E. Duplication of daptomycin thioesterase genes

5

10

15

20

25

30

The daptomycin gene cluster (SEQ ID NO:1) contains at least two genes (dptD and dptH) having open reading frames (SEQ ID NO: 3 and SEQ ID NO: 6, respectively) or domains thereof that encode amino acid sequences which include conserved sequence motifs characteristic of proteins having thioesterase activity. See SEQ ID NO:7 and SEQ ID NO:8 for DptD and DptH amino acid sequences, respectively. Either one (or both) of these thioesterase genes or the thioesterase domains thereof can be duplicated by following the procedure of Example 11A, above.

A segment of DNA containing the *dptD* ORF sequences (e.g., SEQ ID NO: 1; SEQ ID NO:3) optionally linked in an operative fashion to an expression control sequence (such as the natural one in SEQ ID NO:1 or 2) and optionally including the upstream and downstream sequences, is cloned into a neutral site vector and inserted by double crossover into the *S. roseosporus* chromosome as described in Example 11A. Recombinants are fermented to verify that they produce increased levels of Daptomycin compared to the parental strain lacking the cloned *dptD* gene.

Similarly, a segment of DNA containing the *dptH* ORF sequences (e.g., SEQ ID NO:4, SEQ ID NO:6) optionally linked in an operative fashion to an expression control sequence (such as the natural one in SEQ ID NOS:1, 4 or 5) and optionally including the upstream and downstream sequences, is cloned into a neutral site vector and inserted by double crossover into the *S. roseosporus* chromosome as described in Example 11A. Recombinants are fermented to verify that they produce increased levels of Daptomycin compared to the parental strain lacking the cloned *dptH* gene.

Other suitable hosts (i.e., those having NRPS or PKS multienzyme complexes) may be transformed with segments of DNA encoding proteins from the daptomycin gene cluster having thioesterase activity for improved peptide production.

Alternatively, polypeptides encoded by such segments of DNA may be introduced into S. roseosporus or said other suitable hosts by protein transfer techniques well-known to those of skill in the art.

F. Duplication of daptomycin resistance genes

5

10

15

20

25

The daptomycin resistance gene(s) are identified by cloning and expression in an appropriate streptomycete host that is naturally susceptible to Daptomycin. The cloned daptomycin resistance gene(s) are inserted into the neutral site vector within the neutral site, and inserted into the *S. roseosporus* chromosome by double crossover as described in Example 11A. Recombinants are fermented to verify that they produce increased levels of Daptomycin compared to the parental strain lacking the cloned daptomycin resistance genes.

G. Duplication of daptomycin biosynthetic genes and accessory genes

The complete set of daptomycin biosynthetic genes such as those contained on the BAC clone B12:03A05 (see Example 2 and SEQ ID NO:1) are introduced into S. roseosporus by conjugation from E. coli (or by another method of DNA-mediated transformation) and inserted into the chromosome by site-specific integration into the φC31 integration site as in Example 11D, leading to a duplicate version of the daptomycin biosynthetic and accessory genes. Alternatively, the BAC vector inserts into the chromosome by homologous recombination into the daptomycin gene cluster (as verified, e.g., by Southern blot analyses), leading to tandem duplication of the daptomycin biosynthetic and accessory genes at their native location. Recombinants are fermented to verify that they produce increased levels of daptomycin compared to the parental strain lacking the cloned daptomycin genes and accessory genes.

EXAMPLE 12: The Use of Daptomycin Biosynthetic Genes To Produce Novel Products

A. Modification of the peptide structure by site-directed mutagenesis of an amino acid specificity code: conversion of position 2 D-Asn to D-Asp.

The amino acid specificity codes for the thirteen amino acids in Daptomycin are shown in Table 1 (see Example 6, above). See also Stachelhaus et al., <u>Chem. Biol.</u>, 6, pp. 493-505 (1999), incorporated herein by reference in its entirety, for a discussion of identifying and altering adenylation domain amino acid specificity codes in NRPSs.

The code for all three L-asp residues in positions 3, 7, and 9 of daptomycin are

5

10

15

20

25

30

identical: DLTKLGAV (where the letters indicate standard amino acid abbreviations). The code for D-Asn in position 2 is DLTKLGDV, and it differs by a single amino acid (a D instead of A in position 7). The D-Asn specificity code is changed to that specifying D-Asp by making a site specific change in the adenylation domain of module 2 in PS I.

The mutant version of module 2 is inserted into the *S. roseosporus* chromosome by gene replacement (see Example 11). A counter selectable marker (e.g., the wild type rpsL gene) is inserted into the adenylation domain of module 2 by gene replacement. The mutant module 2 adenylation domain containing the coding sequence for D-Asp, and containing flanking DNA (about 1 to 5 kb on each side of the specificity code) on an appropriate thermal sensitive plasmid is introduced into the *S. roseosporus* strain disrupted for daptomycin biosynthesis. Recombinants containing single crossovers are selected at the non-permissive temperature by selection for an antibiotic resistance marker on the plasmid (e.g., hygromycin, apramycin or thiostrepton resistance). If the host strain is streptomycin resistant by a mutation in the chromosomal rpsL gene, then the second crossover completing the gene replacement can be selected for streptomycin resistance. The recombinant is screened for antibiotic production. The novel derivative of Daptomycin is separated and analyzed to confirm the structure according to methods described, e.g., in United States Patents RE 32,333, RE 32,455, 4,874,843, 4,482,487, 4,537,717, and 5,912,226.

B. Molecular exchange of an amino acid coding module for one of different amino acid specificity.

Daptomycin has four acidic amino acids: three L-asp residues at positions 3, 7, and 9, and a 3-methyl-Glu (3-MG) at position 12 (see Table 1, Example 6). Novel derivatives of Daptomycin are generated by exchanging the adenylation domain that specifies 3-MG for one that specifies L-asp. The adenylation domain of the 3-MG module is inserted into segments of the L-asp module flanking the L-asp adenylation domain which has been removed by molecular genetic procedures. The hybrid 3-MG module containing the flanking DNA from an L-asp module is inserted into an appropriately constructed gene replacement vector, and the hybrid module is

exchanged for an L-asp module by homologous double crossover as in Example 11A. This same procedure is repeated for the other two L-asp modules. The recombinants produce three novel derivatives of Daptomycin containing 3-MG substituted for L-asp in positions 3, 7, or 9, and maintain the overall four negative charges in the molecule.

C. Exchange of a non-ribosomal peptide synthetase (NRPS) subunit for one that catalyzes the incorporation of different amino acid(s).

5

10

15

20

25

30

The gene that encodes the fourth subunit of the Daptomycin NRPS (PS-IV; see Table 1, Example 6) contains two modules that encode the specificity for incorporation of amino acids 12 (3-MG) and 13 (L-kyn). The gene that encodes the third subunit for the biosynthesis of the cyclic lipopeptide CDA (Kempter et al., Angew. Chem. Int. Ed. Engl., 36, pp. 498-501 (1997); Chong et al., Microbiology, 144, pp. 193-199 (1998); each of which is incorporated by reference herein in its entirety) also encodes the last two amino acids, in this case amino acids 10 (3-MG) and 11(L-trp). A derivative of Daptomycin containing L-trp instead of L-kyn in position 13 is generated by disrupting gene dptD, and by replacing it with the gene that encodes PSIII for CDA. Expression of the PSIII gene from a strong promoter (e.g., the ermEp* promoter; Baltz, Trends in Microbiology, 6, pp. 76-83 (1998), incorporated herein by reference in its entirety), and inserted into a neutral site in the S. roseosporus genome as described in Example 11A, allows CDAPSIII to complement the dptD mutation and results in the production of the altered daptomycin with L-trp replacing L-kyn. The recombinant is fermented and the product(s) of the recombinant are analyzed by LC-MS as described in Example 9.

D. Insertion of an extra internal module to cause the expansion of the Daptomycin ring from 10 amino acids to 11 amino acids or lengthening of the tail to 4 amino acids.

A simple NRPS elongation module may be defined as comprising domains "C-A-T" (condensation-, adenylation- and thiolation-domains). To link modules, and to identify a permissive site within the Daptomycin NRPS in which to insert additional internal modules, the domain and inter-domain regions are examined for sequences indicative of flexible "linker" sequences. See, e.g., Mootz et al., <u>Proc. Natl. Acad. Sci.</u>

5

10

15

20

25

30

<u>U.S.A.</u>, 97, pp. 5848-5853 (2000), which is incorporated herein by reference in its entirety. Sequences encoding an additional module are inserted in the linker sequence between an upstream T-domain and a downstream C-domain using well-known genetic recombination techniques, e.g., see Example 11A, above.

Isolation of the module DNA is obtained from the chromosomal DNA extracted from the producer organism. Various isolation techniques can be used such as, cutting the chromosomal DNA with restriction enzymes and isolating a fragment coding for the module of interest after it is identified by means of Southern blot or isolation of the module of interest by genetic amplification (PCR) using suitable primers. Sequencing and characterization of the amplified fragments as well as cloning can be performed according to conventional techniques. New modules can be inserted between the modules specifying L-Thr and Gly in *dptA*; between the modules specifying L-Orn and L-Asp or L-Asp and D-Ala in *dptB*; between L-Asp and Gly or Gly and D-Ser in *dptC*; and between modules specifying 3-MG and L-Kyn in *dptD* to expand the ring of daptomycin. New modules can be inserted in the *dptA* gene between the modules specifying L-Trp and D-Asn, D-Asn and L-Asp, or L-Asp and L-Tyr to lengthen the tail of daptomycin. The module insertions can be carried out using the methods for double crossovers described in Example 11A.

E. Insertion of an additional carboxyl terminus module adjacent to and upstream from the thioesterase module.

Carboxy-terminal thioesterase domains ("Te-domains") of a variety of NRPSs and PKSs can cleave (i.e., catalyze chain termination) non-natural peptide and polyketide substrates. See Mootz et al., *supra*; see also de Ferra et al., <u>J. Biol. Chem.</u>, 272, 25304-25309 (1997); each of which is hereby incorporated by reference in its entirety. Te-domains can act as hydrolases, releasing a linear product, or as cyclases, releasing cyclic peptides. Evidence suggests that a Te-domain which functions as a cyclase in its natural configuration within a NRPS or PKS may, nonetheless, function as a hydrolase when engineered into new modular configurations. (An isolated C-terminal Te-domain has been shown to catalyze cyclization on various substrates as

5

25

30

long as key "recognition amino acids" are at the C- and N-termini of the substrate; see Trauger et al., Nature, 407, pp. 215-218 (2000).)

It has also been shown that some C-terminal Te-domains function best, when moved, by retaining their association with a portion of the protein domain occurring directly upstream in the natural NRPS or PKS modular configuration. See Guenzi et al., J. Biol. Chem., 273, pp. 14403-14410 (1998), incorporated herein by reference in its entirety. It is possible that retaining the boundary between the Te-domain and a portion of the domain directly upstream (N-terminal) may also contribute to retaining cyclase function of the Te-domain within a new modular configuration.

Accordingly, to insert an additional module upstream from a Te-domain and have it be operatively linked thereto, one can identify linker sequences between the C-A-T modules and the C-terminal Te-domain, as described above, and insert sequences encoding the additional module therein, using standard genetic manipulations.

Optionally, one can engineer a new, hybrid C-terminal Te-domain in which the C-terminal portion of the penultimate thiolation (T-) domain remains linked (or is otherwise grafted) to the Te-domain ("T-/Te-domain"). See Guenzi et al., 1998, supra. Sequences encoding the additional module are then inserted within the identified linker region upstream from a hybrid T-/Te domain using well-known genetic recombination techniques, as described in Example 11A, above

20 F. Internal deletion of a module to cause the contraction of the Daptomycin ring from 10 amino acids to 9 amino acids or shortening of the tail.

To obtain a deletion of an internal module on the chromosome by double crossing-over and selection on antibiotic plates it is necessary to prepare a plasmid containing a fragment of chromosomal DNA situated upstream from the module to be deleted fused by ligation to a fragment downstream of the module to be deleted. The plasmid also carries a wild type rpsL gene to confer streptomycin sensitivity on recombinants in a streptomycin-resistant genetic background (see Example 11A), an antibiotic resistance gene (e.g., apramycin resistance, thiostrepton resistance or hygromyicin resistance) for selection of single crossovers, and a temperature sensitive replicon that can be cured at elevated temperature. A single crossover inserting the

plasmid by homologous recombination into the region of DNA upstream of the module to be exchanged can be selected for antibiotic resistance at elevated temperature. The second crossover that deletes the module can then be selected on media containing streptomycin (thus eliminating all plasmid sequences). Recombinants containing deletions of the appropriate module can be verified by Southern blot hybridization of S. roseosporus DNA cleaved with appropriate restriction endonucleases. This approach can be taken to delete the L-Asp module from dptB or the Gly module from dptC, for example. It can also be used to delete the modules in the dptA gene specifying L-Asn, L-Asp or both L-Asn and L-Asp together.

10 G. Translocation of the terminal thioesterase module to cause the contraction of the Daptomycin ring.

Sequences encoding the thioesterase (Te) region which resides at the carboxyl terminus of the last module in the daptomycin NRPS (DptD) may be translocated upstream to the end of an internal module encoding region. This translocation will result in the release of a defined shortened product that will yield a truncated linear or cyclic peptide. The translocation of the Te can be accomplished by double crossovers much the same way as described above in Examples 12A and 12F.

15

20

25

H. Molecular exchange between Daptomycin NRPS and other NRPS or PKS genes
a. Dap thioesterase onto different NRPS or PKS

Using well-known molecular and genetic methods such as those described above, sequences encoding a C-terminal Te-domain of the daptomycin NRPS of the invention (e.g., DptD) may be moved (either alone or in combination with one or more upstream modules or portions thereof) into association with sequences encoding other NRPS or PKS modular genes from a variety of other hosts to produce hybrid modular synthetases that are capable of producing new peptide and/or hybrid peptide/polyketide products having useful properties. See, e.g., Stachelhaus et al., Science, 269, pp. 69-72 (1995) and Cane and Khosla, Chem. Biol., 6, pp. 319-325 (1999); each of which is incorporated herein by reference in its entirety. Similarly, daptomycin sequences encoding a free thioesterase of the invention (e.g., DptH) may be moved into

5

10

15

20

25

association other NRPS or PKS encoding modular genes to produce hybrid modular synthetases.

b. Module and domain exchanges between dap and other NRPS and/or PKS Various sequences derived from the daptomycin biosynthetic gene cluster of

the invention -- including but not limited to domains and modular structures -- may be used to construct plasmids and other vectors for use in genetic recombination reactions (gene duplication, conversion, replacement, etc.) between daptomycin sequences and natural or synthetic NRPS and PKS sequences in homologous and heterologous hosts to produce hybrid NRPS and hybrid NRPS/PKS modular synthetases comprising sequences from the daptomycin biosynthetic gene cluster. Such hybrid synthetases will produce novel peptide and polyketide products which are expected to have new and useful properties.

I. Creation of Lipopeptide Derivatives of Nonribosomally-synthesized Peptides That Are Not Normally Acylated.

The fatty acid tail of daptomycin is thought to be attached by the products of the dptE and dptF genes, working in conjunction with the condensation domain at the start of dptA. These genes and gene fragments may be transferred to the beginning of a foreign nonribosomal peptide synthase gene, or to an internal location within the daptomycin gene cluster, either at the start of a gene (e.g. 5' of dptB, C, or D) or within a gene at the start of a module (e.g. 5' of module 2), to create acylated versions of the foreign nonribosomally synthesized peptide, or to create acylated, truncated derivatives of daptomycin. The foreign gene may be derived from another natural organism, or one generated by recombinant techniques, e.g. various versions of daptomycin that have undergone modifications to expand or contract the ring, to have substituted amino acids in the peptide sequence as described herein.

J. Modification of amino acid stereoisomers in the peptide structure.
Stereospecificity in the amino acid backbone produced by an NRPS is
determined by the presence of epimerase domains in the donor module and distinctive

condensation domains in the acceptor module. An alteration in stereochemistry of the amino acids may be achieved by addition of an epimerase domain to a donor module, and substitution of the appropriate condensation domain to the acceptor module. An alteration can also be made by removal of the epimerase domain from a donor module, and the substitution of the appropriate condensation domain in the acceptor, e.g. the epimerase domain can be excised from module 2 of dptD, and the condensation domain of module 3 of dptD can be exchanged for the condensation domain from another module that does not normally accept a D-amino acid. Useful epimerase and condensation domains may be found in the daptomycin cluster as well as in other nonribosomal peptide synthetase genes.

EXAMPLE 13: Procedure for Making a Linear Thioester That Can Be Cyclized to Daptomycin

A. Synthesis of pantetheine derivative of the Daptomycin linear peptide.

Pantetheine is obtained by the method of Overman (Overman, et al., 59 (1974)) from commercially available pantetheine. A column is loaded with a 2-chlorotrityl resin. Protected kynurenine (α-amino protected with 9-Fluorenylmethoxycarbonyl (Fmoc) aromatic amine protected with t-Boc) and its protected Cs salt are prepared and dissolved in N,N-Dimethyl formamide (DMF). This solution is added to a suitably prepared 2-chlorotrityl resin. The reaction proceeds until the protected kynurenine has been loaded onto the resin. The resin is washed to remove any unused reagent and CsCl salt.

Following is the iterative addition of the other 12 amino acids. This is the sort of process that may be done on an automated flow through system. The non α -carboxylic acids are protected as their trityl ester, hydroxyl groups are protected as acetyl esters, the other than α -amines are protected by t-Boc groups. α -amino groups are protected with Fmoc groups, except for acylated tryptophan, which is protected by the acyl group. A 0.02 M tetra-n-butylammonium fluoride trihydrate in DMF is added to cleave the Fmoc group of the resin bound growing peptide. The progress of the reaction is monitored through uv/vis absorption changes due to released Fmoc groups.

30 The resin is rinsed to remove excess reagent.

15

20

25

5

10

15

20

30

To couple the next amino acid, the next suitably protected amino acid is dissolved in DMF to get a 0.1 M solution in DMF with 1 eq of Diisopropylcarbodiimide (DIPCDI) and 1 eq N-Hydroxybenzotriazole (HOBt). The reaction is allowed to proceed to completion. The resin is washed with DMF to insure that any excess reagents are removed.

This process is repeated until the peptide L-Kynurenine (t-Boc protected amine)-L-threo-3-methyl Glu (trityl ester)-D-Ser(acetyl ester)-Gly-L-Asp(trityl ester)-D-Ala-L-Asp(trityl ester)-L-Asp(trityl ester)-L-Orn(t-Boc protected)-Gly-L-Thr(acetyl ester)-L-Asp(trityl ester)-D-Asn-L-acylated tryptophan is obtained.

To obtain cleavage of the protected peptide, a 1:1:3 solution of acetic acid:trifluorethanol; Dichloromethane (DCM) is added to the resin and allowed to stand for 3 hours at 24°C. The protected peptide is precipitated with hexane and the solvent removed in vacuo. The solid is dissolved in tetrahydrofuran (THF) or other appropriate solvent. A 1.2 eq of Dicyclohexylcarbodiimide (DCC) and 1.2 eq of HOBt 1.2 eq of p-nitrophenol is added. After the reaction is completed, 2.5 eq of the sodium salt of pantetheine is added and stirred for as long as necessary for the reaction to go to completion. The crude reaction is chromatographed to yield the protected pantetheine thioester. The protected peptide is dissolved in a 16:3:1 solution of trifluoroacetic acid: DCM: pantetheine and allowed to stir for 3 hours at 24° C. It is precipitated with diethyl ether, dried and purified by preparative HPLC.

EXAMPLE 14: Using the Daptomycin Thioesterase to Build a Synthesis Based Drug Discovery Program (With Ultra-High-Throughput Screening Method)

25 A. Conversion of a lipopeptide synthesis program into a drug discovery program.

Photocleavable resins are available commercially and can be used in the preparation of a library of linear thioester containing peptides that are tethered to the resin by a photocleavable linkage. These linear thioesters are cyclized on resin to yield cyclic lipopeptides that could be cleaved by photolysis to yield lipopeptides of distinct molecular weight. The molecular weight of each member of the library is determined. These resin beads are encapsulated in an alginate matrix (macrodroplet) with a tester

5

10

15

20

25

30

strain and a live or dead strain or some other colorimetric or fluorometric indicator of viability. After an empirically determined growth period the resin is illuminated at 365 nm to release the lipopeptide into the macrodroplet. If a given lipopeptide has bactericidal biological activity, then the cells die, leaving the macrodroplet colorless.

Since the resin bead is spherical and the illumination source is unidirectional, there is approximately half of the lipopeptide material left on the resin bead. The alginate matrix is dissolved, the bead washed and agitated under illumination to yield the active molecule, whose identity is determined by LC-MS. By this method, a large library of synthetic compounds is screened rapidly and efficiently.

There will be some constraints on how the peptide is linked to the resin, for the thioesterase has to be able to cyclize it. This can be accomplished by using the lipid tail as a resin attachment site. By using a long chained carboxylic acid such as sebacic acid (HO₂C(CH₂)₈CO₂H), one side of the carboxylic acid is attached to the photocleavable resin via the amino group of an o-nitrobenzylamine, leaving the other free to build the peptide. This leaves enough freedom to allow for cyclization. An alternative method is to use a resin that has a long alkyl or polyether attachment site, which allows the peptide to be cyclized without interference from the bulky resin. The attachment site is varied so that a future asparagine or glutamine is attached to the orth-o-nitrobenzylamine of the photocleavable resin. Upon photocleavage the corresponding asparagine or glutamine is liberated. This would allow the cyclization to occur on the resin.

EXAMPLE 15: Using an Appropriate Synthetic Molecule To Isolate A Presumed, But Uncharacterized Thioesterase

A plasmid, suitable for library construction, expressible in *E. coli*, that secretes a cloned peptide into the medium is used. A desirable but uncharacterized thioesterase is selected and a DNA library is prepared from either the entire organism or a subset of the entire organism in the described plasmid. A suitable resin-bound linear thioester peptide is prepared that upon cyclization and cleavage yields the desired cyclic lipopeptide. The *E. coli* would have to be resistant to the cyclization product. The *E. coli* library is encapsulated in an alginate matrix along with one or more resin beads,

5

15

20

25

such that only one *E. coli* clone was in each macrodroplet. The *E. coli* is grown for an empirically determined period in a pre-determined medium, so that sufficient secreted enzyme is present to cyclize the resin bound compound. The macrodroplets are placed on an appropriate target lawn and illuminated with 365 nm light. Those macrodroplets containing *E. coli* producing a secreted active thioesterase are readily identified by clearing zones surrounding the macrodroplet. The alginate macrodroplet is dissolved to yield the desired *E. coli* clone, which are then isolated and further evaluated. See, Trauger J. W., *et al*, *Nature*, 407: 215-18, 2000).

EXAMPLE 16: Use of free thioesterase

10 A. Expression of dptD or dptH related sequences in homologous or heterologous systems to increase efficiency of product formation by modular NRPSs and PKSs

The C-terminal Te-domain excised from tyrocidine synthetase has been shown to catalyze cyclization on various peptide substrates as long as key "recognition amino acids" are at the C- and N-termini of the substrate. See Trauger et al., Nature, 407, pp. 215-218 (2000), incorporated herein by reference in its entirety. Sequences derived from the C-terminal domain of daptomycin NRPS (e.g., dptD) may similarly be isolated and expressed – alone or in the form of suitable fusion proteins – in a homologous or heterologous host (or in vitro system) to catalyze cyclization of peptide and polyketide products which naturally (or which have been engineered to) possess key substrate recognition amino acids required for the daptomycin Te-domain to bind and join substrate ends (see below).

As discussed *supra* (Example 13), when isolating sequences derived from the C-terminal Te-domain of daptomycin synthetase (NRPS) for independent expression, it may be preferable to include natural C-terminal sequences from the penultimate amino acid module. See, e.g., Guenzi et al., 1998, *supra*. Various *dptD* and upstreamderived sequence combinations can be tested using techniques well-known in the art to optimize the thioesterase activity of the C-terminal Te-domain of daptomycin NRPS when expressed independently from upstream polypeptides such as DptA, DptB and/or DptC. Independent expression of the C-terminal Te-domain of daptomycin may be

5

10

15

20

25

30

accomplished using standard molecular biology techniques. Independent expression of the C-terminal Te-domain of daptomycin NRPS is accomplished by inserting sequences derived from the thioesterase domain of the *dptD* ORF (SEQ ID NO:3) downstream from natural daptomycin NRPS promoter sequences (SEQ ID NO:2) in an appropriately constructed expression vector. Alternatively, independent expression of the C-terminal Te-domain of daptomycin NRPS is accomplished by inserting the thioesterase domain of the *dptD* ORF (SEQ ID NO:3) downstream from a heterologous promoter, which is constitutively active or from a heterologous promoter which may be turned on or off in a regulated manner. Those of skill in the art will appreciate the factors to be considered in selecting appropriate promoters and vectors for expression or over-expression in a host-dependent manner.

Sequences derived from the free thioesterase domain of the daptomycin biosynthetic gene cluster of the invention (*dptH*) may be similarly expressed in a homologous or heterologous host to test and develop novel cyclic peptides and the like.

The key recognition amino acids of daptomycin are identified by systematic mutagenesis of the amino acid residues of daptomycin followed by cyclization assays using each modified daptomycin substrate in a reaction catalyzed by the isolated Tedomain. C- and N-terminal amino acid residues required for daptomycin cyclization are identified and engineered into new substrate backbones into which peptide and polyketide building block units can be inserted. Substrate engineering can be performed at the nucleic acid sequence level or at the peptide level using techniques well-known to those of skill in the art. The length and composition of preferred substrates may be determined empirically, taking into consideration factors well-known to the skilled worker and including (but not limited to) substrate binding efficiency, catalytic rate, biological activity of resulting cyclic product(s), and ease of purification of the final products.

B. Mutagenize dptD or dptH to affect proof-reading function

The dptH gene from the daptomycin gene cluster is related to free thioesterase enzymes which are known to participate in the biosynthesis of some peptide and

5

10

15

20

25

30

polyketide secondary metabolites. See e.g., Schneider and Marahiel, <u>Arch. Microbiol.</u>, 169, pp. 404-410 (1998), and Butler et al., <u>Chem.& Biol.</u>, 6, pp. 87-292 (1999), hereby incorporated by reference in their entirety. It has been suggested that editing thioesterases are often required for efficient natural product synthesis. Butler et al. have postulated that the free thioesterase found in the polyketide tylosin gene cluster may be involved in editing and proofreading functions, consistent with the suggested role of the thioesterases in efficient product formation.

As described in Example 13A, homologous or heterologous expression of the daptomycin dptH (encoding a free thioesterase) or the thioesterase-encoding domain of dptD (encoding the C-terminal Te) genes may affect the efficiency of product formation by modular NRPSs and PKSs. The proposed editing and proofreading functions of the daptomycin thioesterase type II enzyme (DptH) (and potentially of the type I thioesterase enzyme when detached from the C-terminus of the daptomycin gene cluster and separately expressed) may be altered by conventional mutagenesis and other recombinant DNA techniques, e.g., those known to affect adversely the fidelity of DNA replication. Altered and mutated forms of thioesterase genes may be expressed in appropriate expression systems and screened for those which encode thioesterase enzymes having altered biological properties. Especially desirable would be thioesterase enzymes that have higher than normal rates of amino acid misincorporation. Such mutants would be useful for creating a larger diversity of peptide and peptide/polyketide hybrid products having new and useful biological properties.

EXAMPLE 17: Using an Appropriate Synthetic Molecule To Test NRPS Thioesterase Activity Of Fragments, Muteins, Derivatives, Analogs And Homologous Proteins

A thioesterase fusion polypeptide, fragment, mutein, derivative, analog or homologous protein having potential thioesterase activity associated with a NRPS may be compared to a corresponding wild-type thioesterase polypeptide (e.g., from which it was derived) by transforming a suitable heterologous host cell independently with expression plasmids having nucleic acid sequences encoding the wild-type and the potential thioesterase polypeptides. Culturing the transformed host cells allows

expression of the nucleic acid sequences, and the products of the NRPS may be purified and analyzed according to procedures well known to those of skill in the art. (Alternatively, homologous host cells in which one or more genes necessary for NRPS activity have been disabled or deleted may be used). The methods set forth in Examples 7-9 for analyzing daptomycin lipopeptide production in a heterologous host 5 may be used in modified forms, for example, to monitor peptide production from a modified daptomycin or other NRPS comprising a thioesterase fusion, fragment, mutein, derivative, analog or homolog. Other cell growth or viability-based inhibition assays, such as that described in Example 15 for E. coli, may be used to monitor antibiotic, antifungal, antiviral, anticancer or other anti-cellular growth activities of 10 peptides secreted by one host that may affect cell division, growth or viability of a second cell. Such secretion assays may be appropriately designed and modified to test the ability of a thioesterase to release from a NRPS a linear or cyclic peptide having anti-cellular growth activity. Once designed and optimized for sensitivity, such a secretion assay may then be used to compare systematically the ability of altered or 15 mutated forms of a thioesterase to support the release of the same peptide from the NRPS.

EXAMPLE 18: Using Daptomycin Biosynthetic Genes to Identify and Isolate Related Genes

The nucleic acid and amino acid sequences of the invention can be compared to the corresponding sequences from another lipopeptide pathway in order to identify features that can then be used to identify sequences from an NRPS or a component of an NRPS encoding another lipopeptide.

The amino acid 3-methyl glutamic acid (3MG) is uncommon, but is found in daptomycin, the calcium dependent antibiotic (cda) from *S. coelicolor*, and the A54145 compound made by *S. fradiae*. Comparison of the *S. roseosporus* and *S. coelicolor* nucleic acid sequences that encode the 3MG adenylation domain, as well as from analogous sequences from genes that adenylate other amino acids, were used to create the primer pair P140 and P141:

30 P140 ACSSWSGGSGTSSCCTTCATGAA

20

25

P141 ATGGTGTTCGAGAACTAYCC.

5

10

15

20

25

An S. fradiae cosmid library was screened by PCR using P140 and P141 using standard techniques. The PCR reaction yielded a nucleic acid molecule product of approximately 700 bp, whose sequence proved similar to the region encoding the 3MG adenylation domain in S. roseosporus and S. coelicolor. Extension of the sequence by primer walking confirmed that the region identified was the 3MG module in A54145.

This method was also used to identify portions of an NRPS pathway that encode condensation domains downstream of a D-amino acid activating module. D-amino acids are unusual amino acids found in non-ribosomally synthesized peptides, and primers for condensation domains associated with them can be used to identify pathways with such amino acids. The nucleic acid sequences of the *S. roseosporus* daptomycin and *S. coelicolor* cda sequences that encode these D-amino acid condensation domains were compared to each other and to analogous sequences from other condensation domains associated with L-amino acids in order to create the primer pair P144 and P145:

P144 SCSCTSCAGGAGGGSHTSSTSTTCC

P145 CCGAASACSACGTCGTCSCGSCC.

An S. fradiae cosmid library was screened by PCR using P144 and P145 using standard techniques. The PCR reaction yielded a nucleic acid molecule products of approximately 800 basepairs, the sequences of which proved to be similar to the condensation domains following the D-amino acids in S. roseosporus and S. coelicolor. Sequences corresponding to more than one domain were obtained, indicating that the pathway had more than one D-amino acid.

These approaches, based on understanding the sequence of the daptomycin pathway, can be used to develop special primer sets for other genetic features of lipopeptide pathway gene clusters, such as regions encoding epimerase domains or the condensation domain of the first adenylation module responsible for condensing the fatty acid to the peptide, as well as genes involved in acylation, such as DptE and F.

Table 5

	ORF# - Fragment	Nucleotide Sequence SEQ ID NO:	Amino Acid Sequence SEQ ID NO:
	1 - 90 kb*	20	19
5	2 - 90 kb	22	21
	3 - 90 kb	24	23
	4 - 90 kb	26	25
	5 - 90 kb	28	27
	6 - 90 kb	30	29
10	7 - 90 kb	32	31
	8 - 90 kb	34	33
	9 - 90 kb	36	35
	10 - 90 kb	38	37
	11 - 90 kb	40	39
15	12a - 90 kb	42	41
	12b - 90 kb	44	43
	13 - 90 kb	46	45
	14 - 90 kb	48	47
	15 - 90 kb	50	49
20	16 - 90 kb	52	51
	17 - 90 kb	54	53
	18 - 90 kb	56	55
	19 - 90 kb	58	57
	20 - 90 kb	60	59

^{*} ORF-1 of the 90 kb fragment is a partial sequence of the ORF because the 3' end of the ORF, including the stop codon, terminates in the SP6 fragment. The nucleic acid sequence of the 3' end of the ORF-1 sequence, including the stop codon, corresponds to nucleotides 13020-12876 of SEQ ID NO: 103. Thus, the full open reading frame of ORF-1 of the 90 kb fragment consists of SEQ ID NO: 19 (the complementary strand of nucleotides 1635-1 of SEQ ID NO: 1) followed by the complementary strand of nucleotides 13020-12876 of SEQ ID NO: 103.

	21 - 90 kb	62	61
	22 - 90 kb	64	63
	23 - 90 kb	66	65
	24 - 90 kb	68	67
5	25 - 90 kb	70	69
	26a - 90 kb	72	71
	26b - 90 kb	74	73
;	27 - 90 kb	76	75
	28 - 90 kb	78	77
10	29 - 90 kb <i>dptE</i>	16	15
	30 - 90 kb <i>dptF</i>	18	17
15	31 - 90 kb <i>dptA</i>	10	9
	32 - 90 kb <i>dptB</i>	12	11
	33 - 90 kb <i>dptC</i>	14	13
20	34 - 90 kb <i>dptD</i>	3	7
	35 - 90 kb	80	79
	36 - 90 kb <i>dptH</i>	6	8
25	37 - 90 kb	82	81
	38 - 90 kb	84	83
	1 - SP6	86	85
	2 - SP6	88	87
	3 - SP6	90	89
30	4 - SP6	92	91
	5 - SP6	94	93

6 - SP6	96	95
7 - SP6	98	97
8 - SP6	100	99
9 - SP6	102	101

Table 6: BlastX Results for ORFs in 90 kb Fragment

- emb[CABB8922.1] (AL.353863) putative ABC transporter [Strept 732 0.0 prij[S57562 strW protein - Streptomyces glaucescens > prij[S17562 strW protein - Streptomyces glaucescens > spliz[2 330 e-144] similar to Streptomyces glaucescens strW gene emb[CABB8932.1] (AL353863) putative ABC transporter [Streptomyces coelicolor A3(2)] streptomycin; has Walker Length = 593	S	Stop St	Str BLASTX (accession numbers, entry title, P-value, E-value)	/alue, E-value)		Polypeptide
putative ABC transporter [Streptomyces coelicolor A3(2)] sitives = 405/462 (87%) putative ABC transporter transme. putative ABC transporter transmembrane subunit [Streptomyces coelicolor A3(2)] st = 0.0 sitives = 510/637 (79%), Gaps = 17/637 (2%) ILCRO-3,4-DIHYDROXYCYCLO HE HYDROXYPHTHALATE DEHYDRO 120 4.6e-06 120 4.6e-06 120 4.6e-06 120 4.6e-06 120 4.6e-06 120 4.6e-06 120 8.6-10 120 8.6-10 120 8.6-10 120 8.6-10 120 8.6-10 120 8.6-10 120 8.6-10	-	,	emb CAB88932.1 (AL353863) putative ABC pir S57562 strW protein - Streptomyces gla	C transporter [Strept ucescens >gi[212	114	Type III ABC transporter similar to Streptomyces glaucescens strW gene
itives = 405/462 (87%) putative ABC transporter transme. 854 0.0 tomyces glaucescens >gi[212 320 4e-86 putative ABC transporter transmembrane subunit [Streptomyces coelicolor A3(2)] st = 0.0 sitives = 510/637 (79%), Gaps = 17/637 (2%) ILORO-3,4-DIHYDROXYCYCLO HE 158 1.6e-10 HYDROXYPHTHALATE DEHYDRO 120 4.6e-06 ALCSB 1-CARBOXY-3-CHLORO-3,4-DIHYDROXYCYCLO HEXA-1,5-DIENE = 1.6e-10, P = 1.6e-10 ives = 180/218 (82%), Gaps = 24/218 (11%)	······································			transporter [Streptomyces o		(resistance to streptomycin); has Walker A motife Translationally
putative ABC transporter transme. 854 0.0 tomyces glaucescens >gi[212 320 4e-86 putative ABC transporter transmembrane subunit [Streptomyces coelicolor A3(2)] st = 0.0 sitives = 510/637 (79%), Gaps = 17/637 (2%) H/DROXYPHTHALATE DEHYDRO 120 4.6e-06 HYDROXYPHTHALATE DEHYDRO 120 4.6e-06 = 1.6e-10, P = 1.6e-10 ives = 180/218 (82%), Gaps = 24/218 (11%)			Score = 732 bits (1870), Expect(2) = 0.0 Identities = 367/462 (79%), Positives = 405/	1462 (87%)		coupled to Ortz.
ane subunit [Streptomyces coelicolor A3(2)] 37 (2%) 158 1.6e-10 120 4.6e-06 -DIHYDROXYCYCLO HEXA-1,5-DIENE	1634	1	- emb[CAB88931.1 (AL353863) putative ABC pir S57561 strV protein - Streptomyces glan	sme.	320 4e-86	ABC transporter similar to Streptomyces glaucescens strV dene fresistance to
37 (2%) 158 1.6e-10 120 4.6e-06 -DIHYDROXYCYCLO HEXA-1,5-DIENE	<u></u>		emb CAB8931.1 (AL353863) putative ABC Length = 623	Ctransporter transmembrane	subunit [Streptomyces coelicolor A3(2)]	streptomycin); has Walker B motif. Translationally coupled to Orf1.
158 1.6e-10 120 4.6e-06 -DIHYDROXYCYCLO HEXA-1,5-DIENE 3 (11%)			Score = 854 bits (2183), Expect = 0.0 Identities = 456/637 (71%), Positives = 510/	/637 (79%), Gaps = 17/637 (;	5%)	
gij3913215 sp Q44258 CBAC_ALCSB 1-CARBOXY-3-CHLORO-3,4-DIHYDROXYCYCLO HEXA-1,5-DIENE DEHYDROGENASE Length = 397 Score = 158 (66.0 bits), Expect = 1.6e-10, P = 1.6e-10 Identities = 59/218 (27%), Positives = 180/218 (82%), Gaps = 24/218 (11%)	3659	ı	- gij3913215 1-CARBOXY-3-CHLORO-3,4-E gij3914351 PUTATIVE 4,5,-DIHYDROXYP	DIHYDROXYCYCLO HE PHTHALATE DEHYDRO	158 1.6e-10 120 4.6e-06	Oxidoreductase
Score = 158 (66.0 bits), Expect = 1.6e-10, P = 1.6e-10 Identities = 59/218 (27%), Positives = 180/218 (82%), Gaps = 24/218 (11%)	<u> · · · · · · · · · · · · · · · · · ·</u>		gij3913215 sp Q44258 CBAC_ALCSB 1-C/ DEHYDROGENASE Length = 397	ARBOXY-3-CHLORO-3,4-DIF	HYDROXYCYCLO HEXA-1,5-DIENE	
			Score = 158 (66.0 bits), Expect = 1.6e-10, P Identities = 59/218 (27%), Positives = 180/2	° = 1.6e-10 :18 (82%), Gaps = 24/218 (11	(%)	

Transmembrane, FAD- dependent dehydrogenase	Mar family-related protein Transcriptional regulator Involved in antibiotic susceptibility and resistance	NovA-related protein (novobiocin biosynthetic gene cluster) that is ABC transporter; has Walker A, B motifs	Hypothetical protein with no significant match identified by BlastX belicolor A3(2)}
- gij 2506961 D-LACTATE DEHYDROGENASE [CYTOCHROME], MI 251 5.1e-21 gij 3023651 D-LACTATE DEHYDROGENASE [CYTOCHROME] PRE 212 1.9e-16 gij2506961 spip22891 DLD1_YEAST_D-LACTATE DEHYDROGENASE [CYTOCHROME], MITOCHONDRIAL PRECURSOR (D-LACTATE FERRICYTOCHROME C OXIDOREDUCTASE) (D-LCR) Length = 587 Score = 251 (102.2 bits), Expect = 5.1e-21, P = 5.1e-21 Identities = 119/502 (23%), Positives = 374/502 (74%), Gaps = 91/502 (18%)	- gil10803169jembjCAC13097.1 (AL445503) putative marR-family 107 38-23 gil15896528jrefjNP_349877.1 Transcriptional regulator, Mar 56 1e- 07 gil10803169jembjCAC13097.1 (AL445503) putative marR-family regulator [Streptomyces coelicolor] Length = 153 Score = 107 bits (268), Expect = 3e-23 Identities = 66/110 (60%), Positives = 79/110 (71%)	+ Gb AAF67494.1 AF170880_1 (AF170880) NovA [Streptomyces sphe 1017 0.0 emb CAC13096.1 (AL445503) putative ABC transporter ATP-bin 946 0.0 gb AAF67494.1 AF170880_1 (AF170880) NovA [Streptomyces spheroides] Length = 635 Score = 1017 bits (2602), Expect = 0.0 Identities = 526/609 (86%), Positives = 559/609 (91%), Gaps = 3/609 (0%)	+ emb CAB91142.1 (AL355913) putative translation initiation 64 3e-09 pir JQ0405 hypothetical 119.5K protein (uvrA region) - Mic 62 7e-09 emb CAB91142.1 (AL355913) putative translation initiation factor IF-2(fragment)[Streptomyces coelicolor A3(2)] Length = 835 Score = 63.6 bits (152), Expect = 3e-09 Identities = 74/237 (31%), Positives = 84/237 (35%), Gaps = 6/237 (2%)
5410	8416	10853	11544
8364	8916	9030	10933
4	တ	σ	2

8 11990	12850 +	gij7688708igb AAF67495.1 AF170880_2 (AF170880) NovB [Strept 319 2e-86 gij10803167 emb CAC13095.1 (AL445503) conserved hypothetic 297 9e-80	NovB-related protein (novobiocin biosynthetic gene cluster)
······································		gi 7688708 gb AAF67495.1 AF170880_2 (AF170880) NovB [Streptomyces spheroides] Length = 284	
		Score = 319 bits (817), Expect = 2e-86 Identities = 156/247 (63%), Positives = 188/247 (75%)	
9 14038	12878	0 6-146 1 1e-68	Nov-C related protein that is oxidoreductase
		gbjAAF67496.1jAF170880_3 (AF170880) NovC [Streptomyces spheroides] Length = 352	
		Score = 520 bits (1324), Expect = e-146 Identities = 260/346 (75%), Positives = 283/346 (81%), Gaps = 1/346 (0%)	
10 14348	14070	pir 139929 hypothetical protein orfM - Bacillus subtilis 78 2e-14 pir D69817 sulfate starvation-induced protein 6 homolog yg 78 2e-14	Monooxygenase
		pir[39929 hypothetical protein orfM - Bacillus subtilis (fragment) gb AAA64350.1 (L16808) Gene disrupted by Tn917 insertion after base 3033.Translation product hydrophilic, no homologues in the databases.; putative [Bacillus subtilis] Length = 372	
11 15697	7 14522	- gil1723069 HYPOTHETICAL 69.5 KDA PROTEIN RV1364C 86 0.04 gil8928323 SIGMAB REGULATION PROTEIN PHOSPHATASE 2C 85 0.053	Hypothetical protein
		gij1723069jsplQ11034jyD64_MYCTU HYPOTHETICAL 69.5 KDA PROTEIN RV1364C Length = 653	
		Score = 86 (37.9 bits), Expect = 0.041, P = 0.04 ldentities = 45/153 (29%), Positives = 132/153 (86%), Gaps = 6/153 (3%)	

Hypothetical protein			Hypothetical Protein	olor		Iron (ABC) transporter Association with orfs 14 and 15			Iron transporter Association with orfs 13 and 15		
- gij728850 GLUCOAMYLASE S1/S2 PRECURSOR (GLUCAN 1,4 113 1.9e-05 gij138350 GLYCOPROTEIN X PRECURSOR 91 0.0072	gij728850 sp p08640 AMYH_YEAST_GLUCOAMYLASE S1/S2 PRECURSOR (GLUCAN 1,4-ALPHA-GLUCOSIDASE) (1,4-ALPHA-D-GLUCAN GLUCOHYDROLASE) Length = 1367	Score = 113 (48.4 bits), Expect = 1.9e-05, P = 1.9e-05 Identities = 47/186 (25%), Positives = 158/186 (84%), Gaps = 12/186 (6%)	+ gi 8546911 emb CAB94663.1 (AL359216) hypothetical protein 34 1.3 gi 8546913 emb CAB94625.1 (AL359215) putative membrane pro 33 2.9	gi 8546911 emb CAB94663.1 (AL359216) hypothetical protein SC1D2.05 (fragment). [Streptomyces coelicolor A3(2)] Length = 192	Score = 34.3 bits (77), Expect = 1.3 Identities = 28/94 (29%), Positives = 40/94 (41%), Gaps = 5/94 (5%)	- emb CAB94641.1 (AL359215) putative iron transport lipoprot 250 2e-65 pir C83282 hypothetical protein PA2913 [imported] - Pseudo 168 1e-40	emb CAB94641.1 (AL359215) putative iron transport lipoprotein. [Streptomyces_coelicolor A3(2)] Length = 345	Score = 250 bits (632), Expect = 2e-65 Identities = 133/322 (41%), Positives = 188/322 (58%), Gaps = 13/322 (4%)	- emb[CAB94640.1] (AL359215) putative iron transport protein, 279 3e-74 emb[CAC14366.1] (AL445963) Fe uptake system permease [Strep 250 2e-65	emb[CAB94640.1 (AL359215) putative iron transport protein, ATP-binding component.[Streptomyces coelicolor A3(2)] Length = 258	Score = 279 bits (706), Expect = 3e-74 Identities = 141/251 (56%), Positives = 181/251 (71%)
16938			18682			18915			19907		
17597			17870			19898			20674		
12a			12b			13			14		

23953 - 929576 - 923953 - 923955 - 923955 - 923955 - 923955 - 923955 - 923955 - 923955 - 923555 - 92355 - 92555 - 9255 - 9255 - 92555 - 92555 - 92555 - 9255 - 9255 - 9255 - 9	Iron transporter Association with orfs 13 and 14	3(2)]	Hypothetical protein			Hypothetical protein			Hypothetical protein		
		emblCAB94639.1 (AL359215) putative FecCD-family membrane transport protein. Streptomyces coelicolor A. Length = 368 Score = 371 bits (943), Expect = e-102 Identities = 192/365 (52%), Positives = 248/365 (67%)	gil138350 GLYCOPROTEIN X PRECURSOR gil728850 GLUCOAMYLASE S1/S2 PRECURSOR (GLUCAN 1,4	gij138350 sp P28968 VGLX_HSVEB GLYCOPROTEIN X PRECURSOR Length = 797	Score = 94 (41.0 bits), Expect = 0.0088, P = 0.0088 Identities = 51/216 (23%), Positives = 181/216 (83%), Gaps = 9/216 (4%)	4	gi[14591289 ref[NP_143367.1 hypothetical protein [Pyrococcus horikoshii] Length = 248	Score = 46.2 bits (108), Expect = 3e-04 Identities = 31/119 (26%), Positives = 62/119 (52%), Gaps = 2/119 (1%)	NE SULF 162 4.3e-11	gij543960jspJP32232JCBS_RAT_CYSTATHIONINE BETA-SYNTHASE (SERINE SULFHYDRASE) (BETA-THIONASE) (HEMOPROTEIN H-450)	Score = 162 (67.5 bits), Expect = 4.3e-11, P = 4.3e-11 Identities = 76/290 (26%), Positives = 243/290 (83%), Gaps = 17/290 (5%)
0 - 10	20676		21877		-						
15 21782 16 23130 17 2395' 18 2496	21782		23130			23951			3 24966		

25228 26127 + gil8928195 MEVALONATE KINASE (MK) gil8928178 MEVALONATE KINASE (MK)	+ gij8928195 MEVALONATE KINAS gij8928178 MEVALONATE KINAS	gil8928195 MEVALONATE KINAS gil8928178 MEVALONATE KINAS	SE (MK) SE (MK) 90 0.011 AB MEVALONATE KINASE (MK)	Hypothetical protein
gli6926 1991sptus V 107 prime F 1750 income Length = 335 Score = 99 (43.0 bits), Expect = 0.00096, P = 0.00096 Identities = 25/61 (40%), Positives = 49/61 (80%)	glidaza i solsplusvi oz įvime_r i nado mi Length = 335 Score = 99 (43.0 bits), Expect = 0.00096, Identities = 25/61 (40%), Positives = 49/6′	gliosza i sojsplusy rozyniwie_r r rwap wie Length = 335 Score = 99 (43.0 bits), Expect = 0.00096, Identities = 25/61 (40%), Positives = 49/6′	P = 0.00096	
26445 27212 + gi 731172 SKIN SECRETORY PROTE	ì	ì	SKIN SECRETORY PROTEIN XP2 PRECURSOR (AP 87 0.019 MYOSIN IC HEAVY CHAIN 86 0.025	Hypothetical protein
gi 731172 sp P17437 XP2_XENLA SKIR Length = 439	gi 731172 sp P17437 XP2_XENLA SKII Length = 439	gi 731172 sp P17437 XP2_XENLA SKII Length = 439	gij731172 sp P17437 XP2_XENLA SKIN SECRETORY PROTEIN XP2 PRECURSOR (APEG PROTEIN) Length = 439	
Score = 87 (38.3 bits), Expect = 0.019, P = 0.019 Identities = 20/54 (37%), Positives = 39/54 (72%)	Score = 87 (38.3 bits), Expect = 0.019, F Identities = 20/54 (37%), Positives = 39/	Score = 87 (38.3 bits), Expect = 0.019, F Identities = 20/54 (37%), Positives = 39/	54 (72%)	
28124 27381 - emb CAB56736.1 (AL121600) ABC transport protein, ATP-bindi.	- emb[CAB56736.1] (AL121600) ABC tran pir]H75293 probable manganese ABC tr	embjCAB56736.1 (AL121600) ABC tran pir H75293 probable manganese ABC tr	sport protein, ATP-bindi 351 4e-96 ansporter, ATP-binding 154 1e-36	ABC Transporter (Mn transporter)
emb CAB56736.1 (AL121600) ABC trans Length = 252			ABC transport protein, ATP-binding subunit [Streptomyces coelicolor A3(2)]	
Score = 351 bits (892), Expect = 4e-96 Identities = 181/247 (73%), Positives = 193/247 (77%)	Score = 351 bits (892), Expect = 4e-96 Identities = 181/247 (73%), Positives = 1	Score = 351 bits (892), Expect = 4e-96 Identities = 181/247 (73%), Positives = 1	93/247 (77%)	
28139 29098 + emb CAB56735.1 (AL121600) ABC transporter protein, integra	+	+	nsporter protein, integra 462 e-129 ransporter, permease pr 208 1e-52	ABC transporter (integral membrane protein) Role in Mn or Fe transport
emb CAB56735.1 (AL121600) ABC tran A3(2)] Length = 283	4B56735.1 (AL121600) = 283	4B56735.1 (AL121600) = 283	ABC transporter protein, integral membrane subunit [Streptomyces coelicolor	
Score = 462 bits (1177), Expect = e-129 Identities = 241/272 (88%), Positives = 252/272 (92%)	Score = 462 bits (1177), Expect = e-129 Identities = 241/272 (88%), Positives = 2	Score = 462 bits (1177), Expect = e-129 tdentities = 241/272 (88%), Positives = 2	52/272 (92%)	

Hypothetical protein	ABC transporter protein Translationally coupled to orf 23	Hypothetical Protein	Hypothetical protein
+ gi 6002369 emb CAB56734.1 (AL121600) hypothetical protein 484 e-136 gi 13592175 gb AAK31375.1 AC084329_1 (AC084329) ppg3 [Leish 61 2e-08 gi 6002369 emb CAB56734.1 (AL121600) hypothetical protein SCF76.14c [Streptomyces coelicolor A3(2)] Length = 415 Score = 484 bits (1247), Expect = e-136 Identities = 245/395 (62%), Positives = 287/395 (72%), Gaps = 1/395 (0%)	+ gij6002368jemblCAB56733.1 (AL121600) putative solute-bindi 123 2e-27 gij15807666[ref[NP_296243.1] adhesin B [Deinococcus radiodu 123 2e-27 gij6002368jemb CAB56733.1 (AL121600) putative solute-binding lipoprotein [Streptomyces coelicolor A3(2)] Length = 329 Score = 439 bits (1128), Expect = e-122 Identities = 222/315 (70%), Positives = 253/315 (79%)	+ emb CAB56732.1 (AL121600) putative secreted protein [Strep 620 e-176 gb AAA59875.1 (M74027) mucin [Homo sapiens] 130 3e-29 emb CAB56732.1 (AL121600) putative secreted protein [Streptomyces coelicolor A3(2)] Length = 402 Score = 620 bits (1581), Expect = e-176 identities = 299/402 (74%), Positives = 341/402 (84%), Gaps = 1/402 (0%)	- gi 8039818 HYPOTHETICAL 23.1 KDA PROTEIN MLCL581.27 159 5.3e-11 gi 2829591 HYPOTHETICAL 23.0 KDA PROTEIN RV2637 143 4e-09 gi 8039818 sp Q49642 YQ37_MYCLE HYPOTHETICAL 23.1 KDA PROTEIN MLCL581.27 Length = 214 Score = 159 (66.3 bits), Expect = 5.3e-11, P = 5.3e-11 identities = 57/197 (28%), Positives = 166/197 (84%), Gaps = 14/197 (7%)
30285	31244	32537	33427
29095 30	30282 3	31332	32816
23	24	52	26a

26b 32	32590	32868	+	+ gi[15805506 ref]NP_294202.1 penicillin-binding protein 1 [33 0.72 gi[7248459]gb]AAF43497.1 AF134579_1 (AF134579) arabinogalac 32 0.95	Hypothetical Protein
				gi[15805506[ref]NP_294202.1] penicillin-binding protein 1 [Deinococcus radiodurans] gi[7473266 pir B75514 penicillin-binding protein 1 - Deinococcus radiodurans (strain R1) gi[6458167[gb]AAF10059.1]AE001907_5 (AE001907) penicillin-binding protein 1 [Deinococcus radiodurans] Length = 873	
				Score = 32.7 bits (73), Expect = 0.72 Identities = 24/55 (43%), Positives = 28/55 (50%)	
27 34	34195	35154	+	pir T36741 probable ABC-type transport system ATP-binding 291 6e-78 gb AAD44229.1 AF143772_35 (AF143772) DrrA [Mycobacterium av 290 2e-77	Type I ABC transporter similar to daunorubicin resistance gene, DrrA, in
······································				pir T36741 probable ABC-type transport system ATP-binding protein - Streptomyces coelicolor emb CAB50934.1 (AL096849) putative ABC-transporter ATP-binding protein [Streptomyces coelicolor A3(2)] Length = 332	Streptomyces antibioticus; has Walker A, B motifs.
 -				Score = 291 bits (738), Expect = 6e-78 Identities = 168/303 (55%), Positives = 204/303 (66%), Gaps = 2/303 (0%)	
28	35148	36017	+	+ pir[[S32909 hypothetical protein 5 - Streptomyces antibioti 120 2e-26 pir[]T50567 probable ABC-type transport protein, transmembr 115 6e-25	ABC transporter (integral membrane protein) similar to daunorubicin resistance
				pir S32909 hypothetical protein 5 - Streptomyces antibioticus gb AAA26794.1 (L06249) membrane protein [Streptomyces antibioticus] Length = 273	gene, DrrB, in Streptomyces antibioticus; has Walker A, B motifs
				Score = 120 bits (299), Expect = 2e-26 Identities = 72/226 (31%), Positives = 113/226 (49%)	

Hypothetical Protein		Hypothetical Protein Translationally coupled to orf 38			Hypothetical Protein Translationally coupled to orf37		
pir[T36310 probable small conserved hypothetical protein S 111 9e-25 gb AAG29779.1 AF235050_2 (AF235050) CumB [Streptomyces rish 101 1e-21 pir T36310 probable small conserved hypothetical protein SCE8.11c - Streptomyces coelicolor gb AAD18046.1 (AF124138) Cda-orfX [Streptomyces coelicolor A3(2)] emb CAB38589.1 (AL035654) putative small conserved hypothetical protein [Streptomyces coelicolor A3(2)] Length = 71	Score = 111 bits (276), Expect = 9e-25 Identities = 46/67 (68%), Positives = 56/67 (82%)	pir T36307 hypothetical protein SCE8.08c - Streptomyces co 175 7e-43 gb AAA59875.1 (M74027) mucin [Homo sapiens] 94 3e-18	pir T36307 hypothetical protein SCE8.08c - Streptomyces coelicolor emb CAB38586.1 (AL035654) hypothetical protein [Streptomyces coelicolor A3(2)] Length = 338	Score = 175 bits (439), Expect = 7e-43 Identities = 120/330 (36%), Positives = 164/330 (49%), Gaps = 13/330 (3%)	pir E83323 hypothetical protein PA2579 [imported] - Pseudo 102 3e-21 pir G75588 probable tryptophan 2,3-dioxygenase - Deinococc 87 2e-16	pir G75588 probable tryptophan 2,3-dioxygenase - Deinococcus radiodurans (strain R1) gb AAF12443.1 AE001863_68 (AE001863) tryptophan 2,3-dioxygenase, putative [Deinococcus radiodurans] Length = 287	Score = 87.4 bits (213), Expect = 2e-16 Identities = 73/259 (14%)
+		+		····	+		
85499		87422	٠		88153		
85272	······	86436			87419		
35		37			38		

The BlastX box contains the two top BlastX scores for each ORF (top two lines) and details regarding the database protein entry and the alignment of the ORF to the database entry. Str refers to whether the gene is encoded on the DNA molecule (relative to SEQ ID NO: 1) from left to right (+) or from right to left on the complementary strand.

137

Table 7: BlastX Results for ORFs in SP6 Fragment

Т							П			\neg
Folypeplide	Hypothetical Protein			Hypothetical Protein			Hypothetical Protein	Acyl CoA thioesterase; enzyme involved in short chain fatty acid biosynthesis		
Str BLASTX (accession numbers, entry title, P-value, E-value)	1 - pir T34645 hypothetical protein SC10H5.07 SC10H5.07 - Stre 352 2e-96 pir T36710 hypothetical protein SCH69.11c - Streptomyces c 206 2e-52	pir][734645 hypothetical protein SC10H5.07 SC10H5.07 - Streptomyces coelicolor emb]CAA20279.1] (AL031232) hypothetical protein SC10H5.07 [Streptomyces coelicolor A3(2)] Length = 469	Score = 352 bits (904), Expect = 2e-96 Identities = 179/305 (58%), Positives = 216/305 (70%)	- pir T35566 probable integral membrane protein - Streptomyc 206 3e-52 gb AAA53486.1 (U03114) unknown [Streptomyces albus] 139 3e-32	pir <u> T35566</u> probable integral membrane protein - Streptomyces coelicolor emb <u>CAA20393.1</u> (AL031317) putative integral membrane protein [Streptomyces coelicolor] Length = 315	Score = 206 bits (523), Expect = 3e-52 Identities = 114/311 (36%), Positives = 180/311 (57%), Gaps = 2/311 (0%)	192 +	- emb[CAB8937.1 (AL353863) acyl-coA thioesterase [Streptomy 535 e-151 emb[CAB87210.1 (AL163641) acyl CoA thioesterase II [Strept 293 1e-78	emblCAB88937.1 (AL353863) acyl-coA thioesterase [Streptomyces coelicolor A3(2)] Length = 288	Score = 535 bits (1379), Expect = e-151 Identities = 258/288 (89%), Positives = 273/288 (94%)
stop				1948			2392	2405	.	
start	965	•		989			2099	3277		
ORF	-	 		2			6	4		

		_	
	Score = 311 bits (798), Expect = 3e-84 Identities = 166/264 (62%), Positives = 182/264 (68%)		
	embiCAB57411.1] (AL121746) hypothetical protein SCF73.06c [Streptomyces coelicolor A3(2)] Length = 333		
Hypothetical Protein	- emb[CAB57411.1 (AL121746) hypothetical protein SCF73.06c [311 3e-84 gb AAK61383.1 (AY035849) basic proline-rich protein [Sus s 115 6e-25	9921	10784
	Score = 299 bits (766), Expect = 8e-81 Identities = 147/185 (79%), Positives = 165/185 (88%), Gaps = 1/185 (0%)		
	emb[CAB93757.1] (AL357613) putative oxidoreductase. [Streptomyces coelicolor A3(2)] Length = 481	<u> </u>	•
Oxidoreduciase	 emb[CAB93757.1] (AL357613) putative oxidoreductase. [Strept 299 8e-81 pir T34726 probable dehydrogenase - Streptomyces coelicolo 130 9e-30 	9860 8433	0986

Str refers to whether the gene is encoded on the DNA molecule (relative to SEQ ID NO: 1) from left to right (+) or from right to left on the complementary strand.

The BlastX box contains the two top BlastX scores for each ORF (top two lines) and details regarding the database protein entry and the alignment of the ORF to the database entry.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and

5 example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

SEQUENCE LISTING

SEQ ID NO: 1

1	GCCACCACCG	TACGGCCCTC	CAGCACCCGG	GCCAGGGAAC	GCTCCAGATG	ACGGGCGGCC
61	CGCGGGTCCA	GCAGCGACGT	CGCCTCGTCC	AGCACCAGCG	TGTGCGGATC	GGCCAGCACC
121	AGCCGGGCCA	GCGCGATCTG	CTGCGCCTGG	GCCGGGGTCA	GCGTGAACCC	GCCCGAACCG
181	ACCTCGGTGT	CCAGCCCCTT	CTCCAGCGCC	TTCGCCCAGC	CGTCCGCGTC	GACCGCGGCC
241	AGCGACGCCC	ACAGCTCGGC	GTCCTTCGCC	CCTTCCCTGG	CCAGGCGCAG	ATTGTCCCGG
301	AGCGAACCGA	CGAAGACATG	GTGCTCCTGG	TTGACCAGGG	CCACATGCTC	ACGGACCCGC
361	TCCGCCGTCA	TCCGCGACAA	CTCCGCCCCG	CCGAGCGTCA	CCTCACCGGT	GCGCGGTGCG
421	TAGATCCCCG	CCAGCAGCCG	GCCCAGCGTC	GACTTGCCCG	CGCCGGACGG	GCCGACCAGG
481	GCGAGCCGGG	TGCCCGGAGC	CACGTCGAGC	GACACCTTGT	GCAGGACGTC	GACACCTTCC
541	CGGTACCCGA	AGCGGACCTC	GTCCGCCCGT	ACGTCCCGGC	CTTCCGGGCC	GACCTCGGCG
601	TCGCCCGCGT	CCGGCTCGAT	GTCCCGGACG	CCGACCAGCC	GGGCCAGCGA	CACCTGGGCC
661	ACCTGGAGCT	CGTCGTACCA	GCGCAGGATC	AGACCGATCG	GGTCGACCAT	CATCTGGGCC
721	AGCAACGCCC	CCGTCGTCAG	CTGCCCGACC	GTCAGCCACC	CCTCCAGCAC	GAACCAGCCG
781	CCGAGCAGCA	GGACCGCGCC	GAGGATCGTC	ACGTACGTGG	CGTTGATGAC	GGGGAAGAGC
841	ACCGAGCGGA	GGAAGAGTGT	GTACCGTTCC	CACGCTGTCC	ATTGAGAAAT	CCGCCGGTCC
901	GACAGCGCCA	CCCGGCGGCC	GCCGAGGCGG	TGCGCCTCCA	CGGTCCGCCC	CGCGTCCACG
961	GTCTCCGCGA	GCATCGCGGC	GACGGCGGCG	TAACCGGCGG	CCTCCGAGCG	GTACGCGGAG
1021	GGGGCCCGGC	GGAAGTACCA	GCGGCAGCCC	ACGATCAGCA	CCGGCAGCGC	GATCAGCACG
1081	GCCAGCGCCA	GCGGGGGAGC	GGTCACCGTC	AGCGCGCCGA	GCAGCAGCCC	GGCCCACACG
1141	ACGCCGATCG	CCAGCTGCGG	CACGGCCTCG	CGCATCGCGT	TCGCCAGCCG	GTCGATGTCC
1201	GTGGTGATCC	GGGACAGCAG	ATCGCCCGTC	CCGGCCCGCT	CCAGCACACC	GGGCGGCAGC
1261	CCGACGGACC	GGACGAGGAA	GTCCTCGCGC	AGATCCGCGA	GCATCTCCTC	GCCCAGCATC
1321	GCGCCGCGCA	GCCGCATGGA	GCGGGTGAAC	AGGACCTGGA	CGACCAGCGC	CACCGCGAAG
1381	ATCGCGGCCG	TACGCTCCAG	ATGCAGGTCG	GTGACCCCGG	CCGAGAGGTC	CTCGACCAGA
1441	CCGCCCAGCA	GATACGGTCC	GGTGATCGAG	GCGACCACCG	CCACCGCGTT	GACCGCGATC
1501	AGGACGGTGA	ACGCCCTGCG	GTGCCGACGC	AGCAGACTCC	GTACGTAACT	CCGCACGGTC
1561	GTCGGTGTGC	CCACGGGCAG	TGTCGTCGCC	GACTCCGGGG	CCGCGGGGTC	GTACGCCGGG
1621	GGTGCGACGC	CGATCATGCC	CTCTCCTCGA	TTTCCTCGAT	GCTCTTCATG	GCGGGGACGT
1681	CGCCGCTCTT	CATGACGGAG	ACGTCGTCAC	CGACGCCGTT	CACCGCGTCC	GCCGCGGCCG
1741	CCTCGTCGTC	GGTCTCGCGG	GTGACGACCG	CCCGGTAGCG	CGGTTCGTTG	CGCAGCAGGT
1801	CGTGGTGGGT	TCCCACGGCG	ACGACCGTGC	CCTCGTGGAC	GAGGACCACC	CGGTCGGCGG
1861	CGTCGAGCAG	CAGCGGCGAC	GAGGCGAACG	CCACCGTCGT	ACGACCCTGG	CGCAGCTTCG
1921	CGATGCCGGC	GGCGACCCGT	GCCTCGGTGT	GCGAGTCGAC	CGCGGAGGTC	GGCTCGTCCA
1981	GCACCAGCGC	CTCCGGGTCG	GTGACCAGGG	ACCGGGCCAG	CGCCAGACGC	TGGCGCTGGC
2041	CGCCGGACAG	GGACCGGCCG	CGCTCGGTGA	TCCGGGTCCG	CATCGGGTCC	CCGTCGTTGT
2101	CGACGGACGC	CTGGGCCAGA	GCGCTCAGCA	. CATCGGCGCA	CTGGGCCGCC	TCCAGCGCCG
2161	TGTCCGGGGT	GACCAGGCCC	GAGGACGGGA	CGTCCAGCAG	CTCCTGGAGC	GTGCCGGACA
2221	GCAGCACCGG	GTCCTTGTCC	TGGACCAGGA	CCGCCGCTCG	TGCGGCGTCC	AGCGGGATCT
2281	CGTCCAGGGC	GACCCCGCCG	AGCAGCACCG	ACGGGGTCGC	CGCGGCGGCC	TTGTCGTCCT
2341	CCTCGCCGGT	CTCCGCGTGC	CCGCCGAGCC	GTTCGGCCAG	CCGGCCCGCC	TCGTCCGGGT
2401	CACCGCAGAC	GACGGCCGTG	AACTGCCCGC	GCGGAGCCAT	CAGCCCGGTC	GCCGGGTCGT
2461	ACAGATCACC	GGTGGGCGTC	ACACCCTCCA	CCGTGGCCTC	CTGCGCACTG	CGGTGCAGCG
2521	ACAGCACCCG	CACCGCACGC	TGCGCGGACG	GCCGGGAGAA	GGAGTACGCC	ATCGCGATCT
2581	CCTCGAAGTG	ACGCAGGGGG	AACAGCATCA	. GGGTGGCCGC	GCTGTAGACC	GTGACGAGCT
2641	GGCCGACGTC	GATGCGGCCG	TCCCGGGCGA	GCGTCGCCCC	GTACCAGACC	AGGCAGATCA
2701	GCAGGATCCC	CGGCAGCAGC	ACCTGCACCG	CCGAGATCAG	CGCCCACATC	CTGGCGCTGC
2761	GCACGGCCGC	GCGGCGGACC	TCCTGGGAGG	CGCGGCGGTA	. GCGGCCGAGG	AACAGCTCCT
2821	CGCCGCCGAT	ACCGCGCAGC	ACCCGCAGAC	: CGGCCACGGT	GTCCGAGGCC	AGCTCGGTGG
2881	CCTTGCCCGC	CTTCTCGCGC	TGCTCGTCGG	CGCGGCGGGT	GGCGCGCGGC	AGCAACGGCA
2941	GCACGGCCAG	GGCCAGCACC	GGCATGGCGA	GCGCCACCAC	CAGCCCGAGG	GACGGCAGAT
3001	AGACCGCCAG	GCCGACGCAG	ATCACCACGA	\ GGGCGGTGGC	CGCGGCCGCG	AACCGGGAGA
3061	GCGCCTCGAC	GAACCAGCCG	ATCTTCTCCA	CGTCACCGGT	CGACACGGCC	ACGACCTCAC
3121	CGGCCGCGAC	CCGTCGGGTC	: AGCGCGGAGC	CCAGCTCGGC	: GGTCTTGCGG	GCGAGTAGTT
3181	GCTGGACCCG	CGCGGCGGCG	GTGATCCAGT	' TGGTCACGGC	: GGTCCGGTGG	AGCATGGTGT
3241	CGCCGACGGC	GATCAGTACE	CCGAGGGCCA	\ CGATGAGGCC	GCCCGCCAGG	GCGAGCCGCC
3301	CTCCGGAGCG	GTCGATGACG	GCCTGGACGG	CGAGCCCCAC	GGTGACCGGC	AGACCGGCGA
3361	TGCCGAGCTG	GTGCAGCAGC	CCCCAGGAGA	A GGGACTTCAG	CTGCCCGCCG	AGCTGATTGC

3421	GCCCGAGCCA	GAACAGGAAG	CGAGGGCCCG	AACGTACATC	GGGGTCGCCG	GGATCCGAAT
3481	ACGGAAGGTC	GCGAATCTGC	ATGACGTCCC	AGGGCTCGTG	AAACGGAGGT	CCGGACAGAC
3541	CTCGAAGACG	GGGTGACGTG	CAAGGCTCCC	TGTTCGTCCC	GTTCCGGGGC	AACCGGTTTT
3601	TTTCGGTCGC	CCCCGCCCTG	CGGGGTCCCG	GGCCGAGCAG	GCCCGGGACC	CCACAGACGT
3661	CACTCCGCGG	GCTTCTCCGA	GTCCATGCCG	GACCGGGTCT	TCTTCCACTC	GCCCCGGGTG
2721	AAGTCCGGGA	TCCCCACCC	CACGCCCTTG	GCCTTGATGG	ACAGATGGCT	CAGCGGCACG
2721	GGGGCCGTCC	A CA CCCCCCC	CTCCTACACC	TCGAAGTCGG	CCACCAGACC	GAGCCGCATG
3/81	CACTGCATCA	AGACCGCCGC	CAMCAMCMAC	MCCVMCCCCC	CCTCCCCCCC	CCCCCGATTC
3841	CACTGCATCA	GGCGGAACAC	CATGATGTAG	TOCATOCOGO	CG1GGCCGCC	CTCCCACTCC
3901	GCGTGCTCCT	TCCACAGCCA	GTGGTCCCAC	TCGGCGTACT	TCTTGAAGTC	CACCCCCTTTC
3961	TGGTTGGTGT	TCGTGGGCTC	CAGATAGATC	CGCTCCGGGT	AGTCCTCGAA	CACGCCCIIG
4021	GTCCCGCCGA	GGCTGTTGAT	CCGCGAGTAC	GGGTGGGGCG	ACGACACGTC	GTGCTCCAGG
4081	CGGATCACCC	GGCCCTTGGC	GGTCTGCACG	AGGCTGATCG	TCCGGTCGGC	CCCGATGTAC
4141	GACTCCTTCC	AGCTCGGGTC	GCCCGCAGGC	ATGTGCTCCT	CGCGGTAGGC	GGCGAGGCCC
4201	AGGGGGGTGG	TGCCGACACT	GCTGATGCTG	ACGACCCGGT	CGCCCCGGTT	GACGTCCATG
4261	TAGTTGGCGA	CCGGACCGAA	CCCGTGGTTG	GGGTAGAGGT	CACCGCGCAG	CCGGGTGTGC
4321	CACAGCCGCC	GCCACGGACC	CTCGTAGTAG	TCGGGGTCGA	ACATCAGCTC	ACGCAGATCG
1201	TGGTTGTAGG	רכבבפנינים	GTGCTGCAGC	TCACCGAAGA	GACCCGCGTG	CGCCATCCGC
4301	AGCACCCGCA	mcmccmmcmm	CCCCTAACAA	CACTTCTCCA	GCTGCATGCA	GTGCCGCCGG
4441	GTGCGCTCGG	TCTCGTTCTT	CACCTRACTAC	אַכּריירייירראַ	GGCGCATCGC	GATCGGGCAC
4501	TCCACCCCGA	AGAGATCCAC	GMGC1GCCAC	CCCCTCTTCCC	CCATCGGAA	GTGCAGCTCC
4561	TCCACCCCGA	CGTGCTTGCC	GTTCAGCATC	mcccccccc	TOTAL CONTRACTOR	CTCCTACTCC
4621	CACGGCGTCA	CCACGTAGAC	GAAGTCGATG	TUCCUCGUGUT	TGCAGAGGII	CICGIAGICG
4681	TGCTCGTCCT	TGGCATAGAT	CGCCGGGGCG	GGCTGACCGG	CGGCCGTCAC	CTTCTTGGCG
4741	GCCTTCTCCG	CCTTGTCCCG	GACCGTGTCG	CACACCGCCT	TGACCTGGAC	GCCCGGGAGG
4801	GCGAGGAAGA	GGTCGATCAT	GCTGTCGCCG	CGGTTGCCGA	GGCCGATGAT	GCCGACCCGG
4861	ACCGTGGAGC	GCCGCTCGAA	GGGCACGCCC	GCCATGGTGC	GGCCCTGCCG	GGGAGGGGCG
4921	GCGGCCACGG	CTTCCGCGGC	GGCGACGGCG	TCCGGGGCGC	TCCGCCCGGC	CGCCGAAGCG
4981	GTGCCTGCGC	CCAGTGCGCC	GAGGCCGAGT	CCGGCCCCGG	CCACGCCCGC	CGTGGTCCAC
5041	AGCACCGAAC	GGCGGCTGGG	ATCCTGCCGG	TTCACCTCGT	CGGCCGCGCC	GCTGTGCGGG
5101	GGTATGTCCT	CCCCTTCCGG	TGCGGGCCGG	GCGTCGTCGT	TCATCGAGCC	TCCAGGTGGG
5161	GTTTGGGGGT	TCAGACGGTG	CCCCACCCC	CCCGGTCCCG	CCGTACGGAT	ACGGGCGGC
2101	GGGACCGGGG	CTCCCTAACC	ACCCTGGAGG	GTGAGGCTGA	TGGTGCGCAA	GGGAAGTATT
5221	TGGACTCTTG	CICGGIAAGG	MUCCA CUUMU	CTCACGCAC	CCCCAACCCC	CGACTGGTGC
5281	AACCAATCGG	TCCTCAAACC	TIGGACTITI	mccaccccc	CCCCCCCTCCC	CECECCCECA
5341	AACCAATCGG	GGCCGTAAAA	CGCTCATCTG	CCCCCCCCC	ACTOR CONTROL	CCCCCCACCC
5401	GTCACCGACT	CACGGGAGAG	TCGGCCGGGT	GGCGTGTTCC	AGIICGAICA	CCCACACAGO
5461	GTACGGGTGC	CCGGTGGCGC	GTTCCATGCC	GATCTCGCAC	ATCCGGTTCG	CCGACAGAIA
5521	GGCGTCGTAG	GGGCGGCGGT	CGACCTCGGC	GGCCTCCTTG	GCCGTCGCCG	AGTCGGTCAA
5581	CTCCTTGTGG	AGCATGCCCC	GGTCGCCCGC	GAACGCACAG	CACCCCGCGT	CGTCCGGGAC
5641	CACGACCTCC	TGCGCGCAGG	CCTCGGCCAG	CGCCCGCAAC	TGCCCCACGT	CACCCAGATG
5701	TTCCATCGAA	CAGGTCGGAT	GCAGGACCGC	CGAGCCGGCC	GTCCGGAACA	CCGTCAGATG
5761	CGGCAGCAGC	TCCTCGGCCG	CCCACACCAG	CGAGTCCACG	ACGGTCAGTT	CGCGGTGGAG
5821	CGCCCGGTTG	TCCTCGGTGA	GGTAGGGCAC	CACCTCCTCG	GCGATGCCGA	GCGTGCACGA
5881	GGAGGCGTCC	ACGACCAGCG	GCAGCGTCCC	GCCCGCCGTC	CAGCCCCAGG	CGGCCTCCAC
5001	GATCCGGTTC	GCCATGATCC	TGTTGCCCGC	GTCGTATCCC	TTGGAATGCC	AGATCGTCGC
6001	GCAGCACGTG	CCCGTGACGT	CCTCGGGGAT	CCACACCGGC	TTTCCGGCCC	GCCCGGACAC
6061	GGCGACCACC	CCCTCGGCCA	GGGAGAGAGG	GGGCCCCGCG	TCGCCGTCGT	CGGGCCCGGC
6061	GAAGATGCGG	. GCCICGGCCA	CCCCCTACTA	CACGGCGCTC	GCCCCCACGC	GTGCGGTGTC
0121	CGGCAGCCGC	1 IGACACAGG	CACCCCCAM	CTCCCCCACC	CACTCCGGTA	CGAGATCGGG
6181	CGGCAGCCGC CGCACGGCC	CGGGCCGCAG	CACCGGGGAI	CIGCGGCAGC	CACTCCCTCCC	CCACCCGGTT
6241	GCGCACGGCC	TTGCGGGCGA	GGCGCGICAC	CCCCCCCAA	CCCTCCACCG	CCCCCAACTT
6301	CCCGACGGT	TCGGCCGCCG	CCACGGCCAG	CCGCGCCGAA	. GCCTCCACCG	CCCCCAACCC
6361	CTTCGCGGTG	: AGGGCCGCGA	TCCGCTCCTC	GCGCGGGGTG	TGCCTGCGGT	GCCGGAAGCC
6423	CTTCATCATC	: GCCCCGGTGT	CGATGCCGAC	CGGGCAGGCG	AGTTTGCAGG	TGGAATCCCC
6481	GGCGCAGGTG	TCCACGGCGT	CATAGCCGTA	. CGCGTCCAGA	. AGGCCGGACT	CCACCGGTGA
6543	GCCGTCGGTC	TGCCGCATCA	TCTCCCGGCG	CAGCACGATC	CGCTGGCGCG	GAGTGGTGGT
660	CAGATCCTCA	CTGGGGCAGG	TCGGCTCGCA	GAAGCCGCAC	TCGATGCACG	GGTCGGCGAC
666	CGCCTCCACC	TTCGGAATGG	TCTTCAGGCC	: CCGCAGATGG	GCCCGCGGGT	CCCGGTCCAG
672	CACGATGCGT	GGAGCGAGCA	CCCCGGCGG	GTCGATGACC	TGCTTGGTCC	GCCACATCAG
679	CTCGGTGGC	Ceceecccc	ACTCGCGCTC	CAGGAACGGC	GCGATATTGC	GTCCGGTGGC
6010	1 GTGCTCCGC	. TTCDGCCGDTC	CGTCGAACCG	GTCCACCACC	AGCGCGCAGA	ACTCCTGCAT
004.	1 CNVCCCCWC(. IIGAGCGAIC	, CG1CGA10CC	בייטטונטטונטט ביידרפררפרפ	TCGAACGCGA	GCAGGAAGTG
690.	L GAACGCGTCC	, TWCCGGGCC%	CCCCCCC	, G11000000	AAGCCGTGGC	GCGACTGGAG
696	L CAGATTGCCC	- 101000001	COMPOSES	, cececerce	CCCACCCCA	AGTOCTOCCT
702	L CTCCAGCAGO	GCCGCGCAGG	CGTCCGCCAG		CMCNCCONCCA	AGTCCTCCGT
708	1 GATCAGGGT	GTGCCCGAGG	GCCGGGAGCC	COCCACGGCG	COCUMOCOMACO	CCTTGCGGGC
714	1 CTTCCAGTA	CCGGCGATCG	TCCCGGCGTC	CCGGGTGAAC	, GCGTTGGTCA	CGGACGCCGC
720	1 CGGACGCAC	AGGTCCAGAC	CGGCCACGAC	CGCGTCCGCC	GUCUGUTUGA	ACGCCGCCCG
726	1 GCCCGCCTC	TCGGCCGCCC	GGAACTCCAG	CAGCAGCGCG	GTCGTCTCCC	GGGGCAGCGC

7321	CGCCCAGTCC	GCCGGAACGC	CCGGCACGCT	GACGGAGGCG	CGCAGGGTGT	TGCCGTCCAT
7381	CAGCTCCACG	GCGATCGCCC	CCGCCTCGTT	GAACCGGGGC	ACGGCCGCCG	CGGCGGCGGT
7447	GAGGGAGGGG	AAGAACAGCA	GGCCGCTGGA	GACCCGCCGG	TCGAGCGGGA	GGGTGTCGAA
7501	CACCACCTCC	GAGATGAAGC	CGAACGTGCC	CTCGGAGCCG	ACCATCAGCC	CGCGCAGGAT
7561	CTCCACCCCC	GTCGCCCCGT	CGAGGAAGGC	GTCCAGGCGA	TAGCCATTGG	TGTTCTTGAT
7301	CIGCACCOGC	GCGCGGATCC	CCCCCCTCAG	CTCCGCGTCC	GCCTCGATCT	CCGCCTTCAG
7621	CGTGTACTTG	CCCGCGCACA	CCTCCCCTTC	CCCCTCCCCC	ACCTCCTCGT	CGGCGGCGGG
7681	CTCCAGCAGC	CCCGCGCACA	TCCCCGGIIC	CACCACCAAC	CTCACCCACC	CCACCCTCCC
7741	GTGCGCGGTG	TCGACGACGG	TGCCGCTCGG	CAGCACGAAG	TT CTT CCCC	CCACCCCCCC
7801	GTAGGAGTTG	CGGGTGGTGC	CCGCCGTCAT	GCCCGAGGCG	TTGTTGGCGA	2 CCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7861	GAGGGTGCAG	GCGATGGCGC	TGGCCGGATC	GGGGCCCAGC	AGCCTGCCGT	ACCGGGCGAG
7921	GGCGGCGTTG	GCCCGCATGA	CGGTGGTGCC	CGGCAGGATC	CGGGCCCGCG	CCCCGTCGTC
7981	CAGCACCTCC	ACGCCGGTCC	AGTGACGGCG	TACGTCGACG	AGGATGTCCT	CGCCCTGGGC
8041	СТЕСССЕТТЕ	AGGCTGGTGC	CCGCGGCCCG	GAAGACCACG	GATCGGCCCT	TGCCATGGGC
9101	CTACCACAGG	ATCGCGGACA	CGTCGTCGAG	GTCCTCGGGG	ACCAGCACGA	CCCGGGGGAG
0161	CAACCCCTAC	GGGCTGGCGT	CGGAGGCGTA	CCGCACGAGG	TCGGAGATCT	TCCAGAGCAC
0101	CMMCMCCCCC	CCGAGCAGCG	CGCTCAGCTC	CCTCCGCAGC	GGCTCCGGGG	TGCCGCCCGC
8221	CITGICCGCG	GTGACCCGGT	CCCCCCCCCC	TTCCCCCCCCC	CTTCCGGGGC	GCAGCGCTTC
8281	GCTGCCGTCG	TCCAGCAGCG	CGGGGGGGGG	CHACCCCCCCCC	CCTCGGCGCT	CAGCGGTGGC
8341	CGGGTCGGGC	TCCAGCAGCG	GCATGTCGGC	CITCCCCTCG	MCCVCCVCVC	CCCACACCAC
8401	ACGCGGCAGC	GGCGCTCAGC	AGTGGCGCTC	CGGCATTCCG	TCGACCAGAG	CEGACAGCAG
8461	CTCGCCGAAC	ACCTCGCGCT	GATCGGCGGT	CAATGGAGCC	AGGATCTCCT	CTGCGGCGGC
8521	CCGGCGCGCG	CTGCGCAGGG	ACCGCAGCGT	GGCGCGCCCC	TCGTCGGTGA	TCTCGATACG
8581	GACCACCCGG	CGGCTGTCGG	GATCCGGGGC	GCGGCGCACC	CGGCCGCTCG	CCTCCAGGGC
8641	GTCGACCAGC	GTGGTCACGG	CGCGCGGGAC	GACGTCGAGC	CGTCGGGCCA	GATCCGCCAT
9701	CCGGGGGGGCC	GCGTCGTAAC	TCGCGACCGT	CCGCAACAGG	CGGAACTGGG	CCGGAGTGAT
0761	CTCCATCGCC	TCCAGCTGGC	GGCGCTGGAT	GCGGTGCAGC	CGCCGGGTGA	GCCGCAGCAG
0/01	CTCGATCGGC	AGCAAGCCGT	CACGGGAGTC	CCGGGAATCG	CGAGAGTCCC	GGGACTCGGG
8821	CIGITOGGCG	GAGTCGGGGG	AAMCCCCCCC	CTCCATACGG	GAACAATATC	AGGACCTTGT
8887	GGAATCAGGG	CATAGGTAAC	AAICCGGGGC	CCTCTCACTC	TECEGGACCE	GGACTGCCCG
8941	TCATTGTGAG	CATAGGTAAC	AATGAGCIAG	TCD D D CCCCD	CCAACCCACG	TEGACECCCC
9001	GCCCCGCCTC	ACGCCCGACG	AAGGAGCCCA	TGAAACCCGA	COMMCCCACG	ATCCTCCCCC
9061	CGCCCGATGC	CCGCCCGCC	GCCGACCGGC	GGCCCGCCGA	GGIGCGCCGC	ATCCTCCCCC
9121	TCTTCCGCCC	CTATCGCGGC	CGCCTGGCCG	TCGTCGGCCT	GCTGGTCGGC	GCATCCTCCC
9181	TGGTCGGGGT	CGCCTCCCG	TTCCTGCTGC	GCGAGATCCT	CGACACCGCC	ATCCCGCAGG
0217	CACGCACGGG	CCTGCTGACC	CTGCTGGCGC	TCGGCATGAT	CCTCACCGCC	GTGATGACCA
0301	CCCTCTTCGG	CGTGCTCCAG	ACCCTCATCT	CGACCACCGT	CGGCCAGCGC	GTCATGCACG
9361	ACCTGCGCAC	CGCCGTCTAC	ACCCAGCTCC	AGCGGATGCC	GCTCGCCTTC	TTCACCCGGA
0/21	CCCCCACGG	CCACCTCCAG	TCCCGCATCG	CCAACGACAT	CGGCGGCATG	CAGGCGACGG
0401	TCACCTCCAC	CGCGACCTCG	CTGGTCTCCA	ACCTCACGGC	CGTCATCGCG	ACCGTCGTCG
05401	CCAMCCMCCC	CCTCGACTGG	CGGCTCACCG	TCGTCTCGCT	GCTCCTGCTG	CCGGTCTTCG
	TOTAL GCT CGC	CCGCCGCGTC	CCCCCCCAAC	GCAAGAAGAT	CACCACCCAG	CGCCAGAAAC
9601	TUGUGATUAG	GATGGCCGCC	ACCCTCACCC	AGTCCCTCTC	GGTCAGCGGC	ATCCTCCTCG
9661	AGATGGCCGC	GATGGCCGCC	ACCGICACCG	CCCACCCCC	CCCCCACCAC	TCCGAGCGCC
9721	GCCGCACGAT	GGGCCGCTCC	GACTUCUTCA	CCCAGGGCII	CCCCAMCMCC	CTCATCGCCA
9781	TGGTCGACCT	CGAAGTGCGC	TCCAACATGG	CCGGCCGCIG	GCGGATGICC	mmccccmccc
9841	TTGTGATGGC	CGCCATGCCC	GCCGTCATCT	ACTGGGCGGC	CGGACTCACC	TICGCGICCG
0001	CACCCCCCCC	• උርጥርጥርርልጥር	GGCACACTCG	TCGCCTTCGT	CACGCTCCAG	CAGGGGCIGI
9961	TCCCCCCCCC	GGTCAGCCTG	CTCTCCACCG	GTGTGCAGA'I'	GCAGACCTCC	CTCGCCCTCT
10021	ጥሮሮ አርሮርር አባ	ι σπποσαάπαο	CTCGACCTCA	CGGTGGACAT	CACCGAACCG	GAACACCCGG
10001	TOCCCOTCC	CAGGATCCGC	GGCGAGATCG	CCTTCGAGGA	CGTCGACTTC	AGCTACGACG
101/11	ACAACAACC	CCCGACGCTG	ACCGGCATCG	ACGTGACCGT	CCCCGCGGGC	GACAGCCTCG
10201	CCCTCCTCC	CTCCACCGGC	TCCGGCAAGT	CCACCCTCAG	CTACCTGGTG	CCCCGGCTGT
10201	ACCACCTCAC	ceeceeccee	GTCACGCTCG	ACGGCATCGA	CGTCCGCGAC	CTGGACTTCG
10201	ACGACGICAC	COCCCCCC	CCCCTCCTCT	CCCAGGAGAC	GTACCTCTTC	CACGCCTCGG
10321	ACACCCTCGC		CCCAACCCCC	ACCCCACCA	CGAGGAGATO	GAGGCCGCGG
10381	TCGCCGACAA	A CCTCCGCTTC	CARGCCGG	CCTCCCTCCC	CCACGGCTAC	GACACGATGG
10441	CCCGCGCCG	GCAGATCCAC	GACCACATCO	, CCICCIGC	CCCCCTCCCC	GACACGATGG
10501	TCGGCGAGC	G CGGCTACCGC	TTCTCGGGCG	GCGAGAAGCA	CACCACCCC	ATCGCCCGCA
10561	CCATCCTGC	G CGACCCTCCG	GTGCTGATCC	TCGACGAGGC	GACCAGCGCG	CTCGACACCC
10621	CTACCCAAC	A GGCCGTGCAG	GAGGCGATCG	ACGCCCTGTC	CGCCGGACGG	ACCACGCTCA
10681	CCATCCCCC	A CCGGCTCTCC	: ACCGTCCGCG	: ACGCGGACC	GATCGTCGTC	CIGGAGGACG
10741	CCCGGGTCG	r reacreres	ACGCACGAGG	: AACTGCTCG/	CCGCGACGGC	. CGCTACGCCG
10001	<u> </u>	- CCGCGACTCC	CACCCGGTCC	: CGGTCCCGG'I	CCCGGCTCCC	TGACCACCCI
10961	TATCACCCCCCC	C CCCCTCCATC	: AGACCGCCCC	TGACGTCACC	GCCATGGCCC	. GCATACGGCA
10021	中でカヤではてては	C CCATGAGAGC	: TCTCCTCGG	GTGGAACTC	CUGGUTACU	CACCGICGAC
10001	カペペペカペカペペ	r cccrcaacci	L CCACGGGGAT	' GTGCTGTCC	TGCACTICIA	. CGACCIGCCG
10981	ACCGACACC	r ceccecece	CCACGGCGA	. CCGGCCCTG	GGCACGGTCT	GACCCACTTC
11041	CCGGACCTG		COMODMOCO	2 ACATCGGTG	AGCGGCTGGG	CGAGCTGCCC
11101	ACCGCCAGG		DOMESTICATE OF A	TOUTOGER	CCAGCGGCC	GGCGTTCATC
11161	L GCCCTGCGG	C AGATACTCA	A ACTGCCGCT	CUGAMUUMG	, conscissoor	A GGCGTTCATC

11221	GGCAGCTTCA	CCGTGCCGCG	CGCCGGATGC	AGCACCGTGG	TGAAGATCCA	GGCGGCGGAG
11281	CGCGGCATGA	CGGGCATGCG	GGAAGCCGTG	GTGATGGCCA	AGCTCGGCCC	CGACCAGTAC
11341	TTCCGGCCGC	ACCCCTACGC	CCCCGAGGTC	CAGGGCGGGC	TGCCCTTTCA	CACGGCGGAT
11401	CACGTCCAGT	GGGACGCGGA	GTTCCCGGAC	CATCCGCTCA	CCCGGGTCCG	CCGGACGCTC
11461	GACACCCTCG	CGGCGGCGGT	GACGGTGGCA	CCCGAGTTCG	CCGCGCTGCC	GCCCTTCACC
11521	GGACCGGCTC	AGGCGAACGG	CTGAGCCGAC	CGGCTGCGTA	CACACAGCAC	ACAGCACACA
11581	GGGCACACGG	CGCACACAGC	ACACACGGCG	GCGCCGCCGC	TCCCGTGGGA	CGGGGAGCGA
11641	CGGCGCCGGG	CGGAGCAATG	GTCAGACGAG	CCAACCCACG	AAGTGGACGA	CGCCGGCAAG
11701	CAGGTTGGTC	AGGAAGTTCA	TCTGGTCTTT	CTCCTTGTAC	GTGGTGCATC	TGTGGGACTG
11761	CGCAGTAGCG	GTCTGCAGCC	CGTTGACTGC	GCTCTGCAAT	CATCACGCCC	CGGACGAGTG
11821	AAGAGCAACG	AATCCCCTGA	CGATCACGCG	TTCCAGCGAA	CACCCGATCT	CTTGTTCGTG
11881	TGTTCCGGCT	ACGGGTGTTC	TGTCCGCGTC	GTACGGCGTT	CGTGTCGCCG	GGGCCGACGC
11941	CGTGGTCGGG	CTACCGGCCC	TGGCTCGCAC	CCCGGGTTAA	CGTGCCCGCA	TGGTGAACGA
12001	GTCCCCGGAC	GCCCGACCCC	GTCGCAGACT	CCGCCCGACC	CGCCGCGGAA	AGATCGTCCT
12061	GGTCGTCGGC	GCACTGCTCG	TCGTGACGGC	CGCCGTCCTG	ATCCCCCTGT	CCCTGACCGG
12121	ATCGGACGAG	CCGCCGAAGA	AGCAGGAGAC	CCCGCAGAGC	ACGCTGATGA	TCCCCGAAGG
12181	CCGCCGAGTG	TCCCAGGTGT	ACGAAGCGGT	CGACAAGGCG	CTCGACCTGA	AGCCCGGCAG
12241	CACGCTGAAG	GCCGCGTCGA	CGGTGGACCT	GAAGCTGCCC	GCCCAGGCCG	AGGGCAACCC
12301	CCAGGGGTAC	CTCTTCCCGG	CCACGTATCC	GATCGACGAC	ACGACCGAGC	CCGCGGGCC'I'
12361	GCTGCGCTAC	ATGGCCGACA	CCGCCCGCAA	ACACTTCGCC	GCGGACCATG	TCACGGCCGG
12421	GGCCCAGCGG	AACAACGTCT	CCGTCTACGA	CACGGTCACC	ATCGCCAGCA	TCGTCCAGGC
12481	CGAGGCCGAC	ACCCCGGCCG	ACATGGGCAA	GGTGGCCCGC	GTCGTCTACA	ACCGGCTGCT
12541	CAAGGACATG	CCGCTCCAGA	TGGACTCCAC	CATCAACTAC	GCCCTCAAGC	GCTCCACCCT
12601	GGACACGTCG	ACCGCCGACA	CCCAGCTGGA	CAGCCCGTAC	AACAGCTACC	GGATCAAGGG
12661	CCTGCCGCCG	ACGCCCATCG	GCAATCCGGG	AGAGGACGCG	CTGCGCGCCG	CCGTCAGGCC
12721	CACGCCCGGC	CCCTGGCTCT	ACTTCGTCAC	GGTCGGCCCC	GGCGACACCC	GGTTCACGGA
12721	CAGCTACGAC	GAGCAGCAGA	AGAACGTCGA	GGAGTTCAAC	CGCGGCCGTG	GCTCCGCCAC
12701	GACGGGCTGA	CCGAATCGGC	AGACGGGGCG	GGGGGATTCA	CACCCCGGC	ACGGGCGCGG
12901	CCACGGAGAC	GACCGCCGAG	GCCCCTCCGT	CGGCGCCCGT	CTCCTTCAGC	AGCCGCATGA
12061	CCGACCGGAC	CECCECECE	CCGGCGCGGT	TCGCGCCGAT	GGTGCTGGCG	GAAGGGCCGT
12001	ACCCGACGAG	ATGGACGCGC	CCGTCCCGTA	CGGCACGGGT	GTCCTCGGCC	CGGATGCCAC
13021	CACCCGGCTC	GCGCAGCTTC	AGCGGGGCCA	GATGGTCCAC	GGCGGGCCGG	AACCCGGTCG
13141	CCCAGAGGAT	CACGTCGGTC	TCGACGGTAC	GGCCGTCGTC	CCAGGCCACA	CCGGTCGGCG
13201	TGATCCGGTC	GAACATCGGC	AGCCGGTCCA	GCACTCCCCG	CTCCCGGGCC	CGCCGCACGG
13261	$C\Delta$ TCGTTCAG	CGGCAGCCCG	GTCACGCTGA	CCACGCTCTT	CGGCGGCAGC	CCGTTGCGTA
13321	CCCGCTCCTC	CACCATCGCC	ACGGCCGCCC	GCCCCCACTC	CTCGGTGAAC	GGACCTTCGC
13321	GGAACACCGG	TTCGCTGCGG	GTCACCCAGA	AGGTGTCGGC	CGCGTGCTCG	GCGATCTCCA
13//1	TCAGATGCTG	CGTACCGGAA	GCGCCACCCC	CGACCACGAG	GACGCGCTGC	CCGGCGAACT
13501	CCTCGGGCCC	CGGATAGTTC	GCCGTGTGCA	ACTGCCGCCC	CCGGAACGTC	TCCTGGCCCG
13561	GATAGCGCGG	CCAGAACGGC	CGGTCCCAGG	TGCCGGTGGC	GTTGATCAGA	GCCCGCGCGG
12621	COMMICATOR	CTCGGACGTC	TCCACCAGCA	GCCGACCGCC	GCTTCCCTCC	CGTACGGCGC
13691	TCACCTCCAC	CECCCECTEC	ACCCGCAGGC	CGAAGCGGTC	CTCGTACGCG	GCGAAGTACG
127/1	$CCCCC\DeltaTC\DeltaC$	CTCCGACGAG	GGCCGGTCGG	GGTCGGCCCC	GGTCAGCTCC	WI GCCCGGWW
12901	CCCCCTCCAT	CCCGTGGACC	TTGCCGTACG	TCAGCGAGGG	CCAĢCGGAAC	TGCCACGCAC
13061	. GCGCGIGCAI	CCCCCCCTGG	TCCAGCACGA	CGAAGTCGTT	GTCCGGCTCC	AGCCCGACGC
12021	CCCCCACATC	CTACCCCCCC	GACAGTCCCG	CCTGACCCGC	: GCCGATGACG	ACCACGTCCA
13921	CCTCCCCCAC	CCCAGAAATG	TTCACGCTTC	TACTAACTCG	TCGGGCGCCC	GGGATCATCC
1/0/1		L ACGAGCGTCA	. CCGCACGGCT	CAGCGACCCC	CGGCGAGCAG	CAGGGGAGCC
141011	. 000000000	CCGTGGCGGT	CCGGCTCTCG	GCGCCACTCA	CACCCAGCAG	CGGCGACGCG
14101	. CCCDCCCCCCC	ACAGCAGCCC	GCGGCGGGAC	AGCTCGGGTG	TGACGCCCTC	GCCGAACCAG
14201	TACECCTCCT	CCAGATGCGG	ATATCCGGAG	AGCACGAAGT	GCTCCACGCC	CAGCGCGTGG
14221	TACGCCICCI	TCCGGTCCGC	GACCTCCGCA	TGGCTGCCCA	CCAGCGCGGT	CCCGGCCCCG
14201	CCCCCCACCA	CACCGACCC	TGTGTGCGCG	AGTGGAGATG	ATCCTGCACG	GCACGCCCCA
14341	CATCCCATCC	ACCETTTCTC	AGGTCTGTGC	CGTGGCCTCT	CGGACATGGC	CACGGCGAGG
14401	CAIGCGAICG	THE CARACTEA	CGTGTGTCGT	TGAGTCGGCG	GCTCGGGCGG	GGGTGGCGTG
14401	CUCDICCOL	CCCTCCCCC	GCGGCTGAGG	CTTGGTGGGT	GTCCGCGCCG	GAGCTGACGT
14341	F GIOWWOOGII	. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CCGTGCCAGT	CCAGGCACAG	CACGGTGGCG	TCGTCTTCGA
14201	r eeceetety	. TGCGGCGTCG	CGTACGGCGG	AGGTCAGCAT	CAGGGTGGTC	TCGCGTGGGT
1404.	L CCACCCCCC	. 1000000100	, DCIACGCOGC	CTACGTCGAT	CTTCTCTCC	TGGCGTTCGA
14/U.	L CCARCCICC	. GGICIGCOGI	AGGAGCCGG	CTCCCGGGT	CAGGTCCAGG	GTTTGGACGC
14/0.	T GOVIGCOCC	CGICAGCAIG	ACGGCCAGCC	CGAAAGGCT	GTCGACCTGG	CAGGGGATGG
1402.	I MUMUCOVOCAU T GGTWGGGGG	P CCCTCCACCC	, <u>გე</u> ცენები	GCCAGGGAT	GCCGGCGTTG	ACGAGCTCGG
1400.	TITICCACCA	r GCCIGCACGC	ATCCCCATCC	GTTGTCCGG	GGCGTGGCCC	TGTCCGTGGC
1500	1 TCCTCACCC		TGGCGGGCC1	CTTCGGCGA	3 GGGGGCTCCG	99999999999
1500	T TAGICWARA	CIGGICGCCC	. ACCACCCTC	CCGCCAGGG	TGCGCCGAGG	TCATGGCCCA
1200	T CICIGCACM	_ COCCONC				

15121	TGGGGTCGGT	CACCGACAGG	TGCAGGGTGT	CGCGGTCCAG	TGCGTAGTCG	AACGTGTCGC
15181	CGCTGAGGTC	CTCGGAGGGC	TCCAGGCTCC	CGCTCAGGGT	GAACTGCGCG	GCCTCGCAGG
15241	ACAGGGCCTG	TGGAAGCAGC	TGATACTGGA	TCTCCGCTGC	CAGGGTCGGG	GGTCTGGAGC
15201	GTTTGCCCCA	CCTCTAGAAG	TCGGTGAAGC	GCCCGTTGGC	GATCACGACG	TAGGCCAGCG
15361	CGTGAGCGGC	TTCCCCCACA	GCGAGCACAA	CCTCTTCCTC	GTCGCTCCTG	CCGGCCGGCA
12201	GGAGCAGTTC	CACCACACC	איירפרפייררר	CCCGGTTGGT	CACGGGAACT	ATTACCCGCT
15421	GTTCTTGTCC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TENTECEECE	CCTCCCTCCC	GATCACCTGC	TCGTAGACGC
15481	TCCCCCGAA	CACACCCATC	CCCTCCCTTT	CGTTTTTCACT	GCCCGCGGCA	GTCGTGGTGG
15541	AGAGCCGCGC	CAGAGGGAIC	CGCTCCGTTT	CCACAATCAG	CAATGTGACC	TTCGTAGCCG
15601	CGAACCGCCT	GAGCGCTCTA	CCGG1CAGA1	CCACAATCAG	CTCAACCGGA	GCCGCCGTCT
15661	CCGCCGCCGT	GCGCAGATCT	CACACCACCA	TCCACCCACG	CTCATCCCA	GCGGTTCCCT
15721	CCGCCGCCGT	CAGCAGTCGG	CHRECCECC	CCCCCCCACT	CCCCCCCCC	CGTACCTGCC
15781	TCTCTGGATG	TTTGGGGCCC	GTTGCGCCCC	CCCCCCACCC	CCCCCCCCC	TCTCGGCCCA
15841	TTGCGCTCCA	CGGTGGTCGA	CAGCGAGCAG	A CERCENCA A CC	TCN NTCGGCC	CTTTCTCCCC
15901	TTGCGTGACA	GTCCTGCATC	CACCIGITCC	AGICIGAACC	CACCAAGGCG	CCCACCGCCA
15961	ATGAGGGACC	GGGTCGGCCG	GAGGCGAGGC	GCCACCGGG1	CCCCCTTCTC	CCGCACCACC
16021	CCTCGATGGG	GTCGGGGCGG	ACGATGTCAC	CGAACTCGGT	ACCACCACCA	CACCCCCCC
16081	CCGAGCAGAG	CGTTGTCCAC	GGGCGATGTT	CGTCGCCGAC	ACCAGCAGGA	TACGCCGCCC
16141	CTGGGCGATG	CGGTCGCCGA	TGGCTCGCCG	GAGGACGGTG	GTCTTCCCTG	CCCCACCAMC
16201	CCCCACACCA	GGTGGACGCC	CTCGCCGAGG	CATGCTCGAT	ACGCGAGCCT	GGGCAGGAIG
16261	GAAGCCCGGC	GGATCGATGG	CGTGGGCAGA	GCGACCGCCG	ATCATCGCGG	TCGCCAGAGC
16321	AGTGGCGAGA	GGATGCTCAC	CCAGCCAGGC	GATACCGTCA	CGCAAGGCCT	CGATCAGGAA
16381	GGTGGGCGGC	TGCTTGAGCA	TCCACAGGTG	AGGGTCGTCG	ATCTGCGAAA	TCTGCTACCC
16441	GCAATGTGAG	CAGGGAGCCG	TTCTGTACAG	CCTCGAAGAC	TGCGAAACCC	TCGATCTCGA
16501	TGCCGTCGTT	GCCCGTCCCG	GGCGGCCTCA	GGGAGTCCAG	CTGCCCAGGT	CCGATGTCGG
16561	AGCCCAGCAG	ATCGACCACG	TACCGGCCCG	GGTCACCGCT	CCTGGCCGCC	CGCCCGACGA
16621	GCTGCCAGCG	TGGCTGCCTG	CCCACGCCTC	CTTCGACAGC	GATCCACTCT	CCGAGTGCCG
16681	AGGCGATTTT	CTCACGCCAT	CCCACCTACC	GTCCCCCCGA	TCAGCCTCGG	TCCGATCGCC
16741	TGCCCGCTGC	TGCGCTGTGC	CCTCCGGCTG	CGATCCGGTT	CGCTCGAAGT	GCCTGCGGCC
16801	TGTTCACGGG	GCCGGTGGAT	CCGCTCCGGA	TGCGCTGTCC	TTGCAGGCAC	GTTCGTCCAG
16861	GCAGTCGGCT	CCCGAAGCCG	TCCAGGGCGC	ATCACTCCGC	AGGGAGCTAG	AGGGCTGTCC
16921	CGTAAAAAAAC	CTCCGTCTCA	GGGGCGTTGG	GGGTAGTCAG	GGTGATCTGC	GTAGGGTGAC
16981	GCGAGACCGA	GCAGGTCATC	GCATGGCCAG	GTCGCGCCGT	CGTACCGACA	GTCATCGCGG
17041	TTGTCCCACG	GCAGTTCGGG	GTCACCCGTG	GCAGGGCTGA	GCCCATGTCG	GGCGAGCACG
17101	CGCCGCTTGG	CCTCGGCTTC	CCGCAGGACG	CGAGCCGGGT	CGTGCAGCGC	GACGTGCAGG
17161	GCGATCGTGG	AATGGAAGCC	GGAGAGTTCT	CCCTGGCAGA	AGTCGACCGT	GTGTCCGTGA
17221	GGGGCCCACT	CCCCGCAGCC	GTCACCGTCG	CACCGGCCGG	CCAGGTTGGC	CTCCTCGTCC
17281	AGCCGAGCGT	GGAGGAACGT	CACAAGGTCT	TGGCTCATGG	GGTCATCCTG	GCCGACGGCT
17341	CGGCCGGTGG	CCGGCCCACT	GTTTGCGAAC	TTGCGGGCGG	TCTGTCGCAG	GGCACCGCCC
17401	ТСТСССТСТТ	CGGCACGGAC	GCGGGAGCGG	GAGGCCCCTT	GGAACGCGAA	TGCTCCAGCT
17461	TCGAAGGCAA	CGGCGAGCAG	CAAGGGGTCC	GGCACCATCC	CCGCACTCCG	TGCGCCACAC
17521	CTCCCCCTCT	СССССТСТТС	TGTCACGAGA	ACTCCCAGAC	CGCAAAGCGC	CACACCCACC
17581	TGCAGTCGGA	CGCGCATAGT	CCGCCCTGGA	TGCTGCGGAA	TCGCATCCTC	AGCCCGCGTC
176/1	CCACTATACA	TAGTCCGGGT	TGTCCCAACG	GTTGTTGGTG	GACACCAACA	AGGACAATGC
17701	CANCCCTCAC	CTTCGCCTGA	CCTTCTTCGG	AGGGTGAGCC	GATCTGGTTG	CACGAGAGGC
17761	CAACCGICAG	GCCGCACCAA	CCGGACGCTC	GGACCGTGTG	TCCGAACCTG	TCACGCAAGC
1701	CTCCACACC	CCCCCCCCTG	CAATCGAAGG	GCTGCTCCTG	GTGCCCGTGA	TGTCGGTACG
17021	CIGCACAGGC	CCCATCCCCT	GTCACCCGTG	CGAACCGCCA	CGCCGCGCCG	AGGGGCGCCG
17041	CCCCCCCCCTC	CCCACCATCA	CCTCCTCGAA	GGGGGTGCTG	ATGACGGTTC	GGCATCAGGG
10001	CCTCCCCTC		**************************************	CGTCGGGTGC	GTGGTCTGTG	TCCTCTGCGT
10001	CCTCCCCCTC	ACCCCCCCCC	CCCACTACTT	CGGGCTCTCC	TTGTGGGCGG	GCATCGCGCT
10101	CGICGCGCIC	CCCCCCCTCT	**************************************	GGGGCTGGGC	TTCCTGTACT	GGGTGGACGA
18171	CGTGGTGGTG	CACCACACTO	TICCCCTCAA	CTTCCTGTGC	TTCGTCGCCC	ACTCCGCCGT
18181	CGGCCGGTCC	CONCCCCTCT	CCTCCTCCACC	CCTCACCC	TGGGCCTTTG	AGCAGCGCGG
18241	CCTCGGGCTG	GCAGCCGICI	CGIGCACCAMA	CACCCCCCCC	CGGGTGGTCC	CGGGTGATCC
18301	GCGGTGGACG	GAGGCGACGG	, CCMCCCCCC	CAGCCCCCCC	CAGGGCGAAC	GCGTCCGGCC
T8361	. GUUGAUGAAG	GreceGecGT	. CCMCCCCC	CCCCCTCCC	CACGGGTCCC	GCGTCCGGCC GCCTCGACGT
18421	. CCGGCTGCCG	GAGGGCCGCG	mccmccccc		, GAGGGGICCC	ACCACGGGGT
18481	GCTGTACGAC	CCCCGGGGTC	, TGCTGGCGCC	, CCGGGGCCACC	, <u>G</u> AGCCCAIGC	ACCACGGCGT
18541	. CACCGTCCCG	GTCCTCGGGG	, GCGTGGCGAC	. COTGTCCGGI	. CCCACCCAC	GTGTCGCCCT
18601	. CGCCTGGCGG	TGGGAAACCC	TCCGGGTACG	CAGCGCGCGCGC	, CGCACGGCAG	CGCGCCGAGG
18661	. GCGGGAATCC	GCAGCCGGTT	AGGGGGTGGG	GGCGTTCGCC	, GGCICICCII	GCCGCCGTGA
18721	. CCTGGAGCGC	GGCGCGGCTG	GAGCCCACCI		Y DENCALCACA	GCACTGCGCC
18781	CTTCTCGCCG	TGGGAGATCG	TGGCTGAGGC	GATGGGCGG	ACANCACCCC	CCTTCCCGG
18841	TTCAGAGGG	AAGGCCGGGT	GTCAGGCGCA	AGGACCTGCG	, AGAACCCGG	AGGATCCTGC
18901	TGCCGGGCCG	GTCATCATTI	CTTGAATGC	CGCATGTACT	TTCCGAACTI	CTCCAGGCCG
18961	TCGATATTGC	C GCGGGCTGC1	GATGCCCTC	TTGTAGTCG	A GGACGAAGAA	GTTGTTCTTC

19021	TTCACGGCCG	GCAGTTCCTT	GGTGTGCGGC	GACTTCTTCA	GGAACTCGAT	CTTCTTCTCG
19087	GCGGGCTGGT	CGCCGTAGTC	GAAGATCATG	ATGACCTCGG	GCTCGGCCTG	GGTGACGGCT
	TCCCAGTTCA					
19141	GTCTTGATGA	mcmccmmccc	CCCCACCTCC	MMCCCCCCCC	TCA A CCCCTC	CTCGGTCCCG
	GAGTCGTAGA					
19321	TCGCGCTTCT	TCAAGCCGGC	GACGACCTTC	TCCGCCTCCT	CTTCGACCTG	GAAGATCCGT
19381	CCGAGGCGTT	CGAGGTCGGT	GTAGAGGCCC	TTGAAAGGCG	TCAACTTCTC	CGGATGGCCC
19441	GGGTAGTTGT	ACCACCTCTC	ACTGTGCATG	AAGCTCTGTA	CGCCGAGCTT	GTCGAGGATC
10501	TCCGGGGTGA	MCCCCCCCCCC	CECCCECYYC	CCCCACTTCC	ACCCCCCCAC	CACCAACTCC
19501	TCCGGGGTGA	TGCCCCGCTG	GICGCIGAAG	CCCGAGIICC	ACCEDED COAM	CUMCACCUMC
19561	GACTTGGCGT	CCACGACGAT	CTCCTTGTTG	AGGAGGTCGT	CGCTGAGCAT	CTTCACCTTG
19621	GCGTAGTCCT	TCGCCCAGGG	AGACTCGCTG	ACCGGCGGGT	TGGCCGGCGG	CATGACGTAG
19681	CCGTGCACGT	GGTCGGCCAG	GCCCAGACTG	AACAGCTTGT	CGGCGCTGCC	GCCCTCGTAG
19741	GCGACGGCCC	GCTTCGGCAC	CGTGTACTCG	ACGGACTCGC	CGCAGCGCTT	CACGGTGCTC
10801	TTCCCGGAGC	ССТТССССТС	CCATTCGACC	TCGGCGCCAC	ACCCCGTGAG	CAGGAGCGCG
10001	GACGCGGCGA	CCCCCAMCCC	CACEMERCEEC	AACTTCATCC	TOTOCOCOLORG	CAATCCACTC
19861	GACGCGGCGA	CGGGGATGGC	GAGITIGGIG	AACTICATGG	COLOCICAG	CCCCCCC
19921	AGTAGAGCAA	CTGGGGGTCG	CCCGTCAGCG	GATGCGGGAC	GACGGAGGCG	CGGACCCCGA
19981	ATACCTCGTC	GACGAGTTCG	GGCGTGAGGA	CGTCCTTGGG	CGTGCCCGAG	GTGATCAGGC
20041	GGCCTTCGCT	GAGTACGCCG	ATCCGGTCGC	ACGCGGCGGC	CGCGAGGTTC	AGGTCGTGGA
20101	GTACGACGAG	GACGGTCAGG	CCGGCACCGC	GCAGCAGGGA	CAGGAGCCGC	ACCTGATGGC
	GTACGTCGAG					
20221	CGCGGGCGAG	CAGGACGCGC	TGGCGCTCGC	CGCCGGAGAG	GGTGAGGATG	CCGCGICGG
20281	CCAGGTGCAG	GATGTCGAGC	CGACGCATGG	CGTGCTCGCA	CAGATCCCGT	TCGTGACCGT
20341	TCAACGGGGT	GCTGCCGCGC	TGGTGGGGTG	TGCGGCCGAG	GGCGATCACC	TCCTCGACGG
20401	TGAAGTCGAG	GTCGACGGCG	CCGTCCTGGG	TCATCGCCGC	GATGAGCTGG	GCGCTGCGGC
20461	GCATGGTCAG	CGACGAGAGC	TCCTGGCCGT	CCACCTTCAC	GGTGCCGGAG	CTGGGTTTCA
20501	GGGCCCGGTA	CACCCACCCC	ACCECCETEE	ACTTCCCCCT	CCCCTTCCCC	CCGACGAGGC
20321	GGGCCCGGIA	CACGCACCGC	AGGGCGG1GG	ACTIGOCOCI	MACCACCCTC	mmccccmccc
20581	CGACCACCTG	ACCGCTGCCG	ACGTCCAGGG	AGAGGTCCCG	TACCAGGCTC	1160061066
20641	TCACCACCGA	GAGCCCGTCG	AGTTCGAGGT	CCATCTCAAC	GGCCTCCGAA	CATGTAGGAC
20701	TTGCGGCGCA	TCAGGGTGAT	GAACACCGGG	ACGCCGACCA	GCGCGGTGAT	GACGCCGAGC
20761	GGCAGCTCGC	GGGGGGCGAC	CAGGGTCCGC	GACACGAGAT	CGACCCAGAC	CATGAAGACC
20821	GCCCCGGCGA	GTGGTGCGAC	GGCGAGCACC	CGCGCGTGCG	TCGCGCCCAC	CACCATGCGT
20021	ACGAGGTGCG	CCATCACCAC	CCCCACCAAC	CCCATCCAAC	CCCTCACGC	GACCATCACG
20001	ACGAGGIGCG	CCCACACAC	CACCACCACC	CACOMICCCCO	CECTORCOCC	CCTCATCCCC
20941	CCCGTCACCA	GGGAGACGAG	CAUGAGUAGG	GACTTGCGGT	GTCGGTCGGG	GCIGAIGCCC
21001	AGGCTGGCTG	CGGTCTCGTC	ACCGAGAGCC	AGGACGTCGA	GCGGGCGGCC	GTGCCGGTGC
21061	AGGACGAGGA	CACCGAGCAG	CACGGCGGCG	GTGACCACCG	GCAGCGAACC	CCAGGAAGCG
21121	GCGCCGAAGC	TGCCCATGGT	CCAGTACAGG	ACCATGCTGG	TCGCCTCGGA	GCTGGGCGCG
21181	AAGTAGATGA	TGACACTCAT	CACGGCCTGG	AAACCCAGCG	ACATGGCGAC	ACCGGTCAGT
212/1	ACGAGCCGCA	CCCCCCACAC	CCCCCCTTC	GTGGACGAGG	CGCCGTACAC	CAGGACTGAG
21241	GCCACGAGCG	CCCCCACCAA	CCCCCCTTG	CACACCCCCT	ACATCCCCAA	CACGGGGAGG
21361	CCGCCCATGA	CCGTCACACC	GACGGCGCCC	ACGGAGGCCC	CCGAGGAGAC	GCCCAGAACG
21421	AACGGGTCGG	CCAGCGCGTT	GCGCACCAGG	GCCTGGATGG	CGACACCGAC	CGCGCTGAGC
21481	CCGGCCCCCA	CGAGCGCCGC	GAGCAGGACG	CGCGGGGTGC	GGATCTGCCA	GATGATCTGG
21541	TACGTCGTCA	CCTCGTCCGC	CGAGATCGGC	CCGCCACTGA	GCGCGGCCCA	GAGGAAGCGC
21601	GCGGTCTCGG	CCGGGGGAC	CACGGCAGGC	CCGAGACCGA	TGGCGACGAC	GACGGAGACG
21001	ACGAGCGCGG	CCAACACCCT	CACCCACATC	CCCACCAGGC	CCCTCCGGGA	CCCCCTCCGA
21001	ACGAGCGCGG	CGAACAGGCI	CACGCAGAIC	TOOR COCCO	CCGTCCGGGA	CCCCCCCCCC
21721	ACCGGCTCTT	GCGCGGTGGG	CGCGGGACGT	TGCAGCGCCT	CGGGTGGCGC	GGGCGGIGAC
21781	ATGTGGATCG	GCCTTCCGGT	TTCGGAGCGT	TGATGAACGG	TGGATGTGCG	TCCGTGGGGT
21841	GCCCGCGACC	TTGGGCGGGC	GCCCCGTCGG	CTTCGGCTAC	GCCGAACCGG	GGATCTCGTC
21901	CTCGGAGCGC	AGCACCAGGA	GCCCGGCCAC	CACGGCCACG	GCGACGAGCA	GCCCGAACGC
21961	GGCGGCGATC	CCCGGGTACC	CCGCGAGCCC	GAGTCCCGCT	CCGCCGAGGG	CGGCGCCGGC
22201	GAAGACGCCG	A CCCMCMCCC	CCCCCCCCCTT	CAGGCTCAGC	CCCCAACCCC	CCATCGATCC
22021	GAAGACGCCG	AGGCICIGGC	TCGCCGCG11	CCCCCCACC	CCCCCCCCCC	MACCCCCCCCCC
22081	GCAGCGCCTG	ACCAGCAGAC	TGACGGCGCA	GGCGGCGACG	GCCGCGTGGC	TAGCGGCGTG
22141	CAGCGAAGTA	AAGGCCAGGG	CGAGCGGCAG	CCAGGTCGTG	AACCAGAAAC	CGGTAGCGGT
22201	GACCAGGGCC	GCCAACAGTC	CGACGAGCAA	GAGCTGTTCG	GTACCCACGG	TGGATTTCTC
22261	GGCGTTGGTG	ATGCGGCCCG	TGAGCAGGTT	GCTGACGAAG	AACGAGGCGC	CGCTGAGCGT
22321	CCACACCAGC	GAGAACAGGG	CGGGGTCGAG	GTGGAACCGG	TCGTCGTAGT	AGACCGCGAG
22321	GTAGGCGAGG	UNICACION DE LA CASTRACA DEL CASTRACA DEL CASTRACA DE LA CASTRACA	DCDCCCCCCC	CCCCACCAAC	CACATCCCCA	GCAGCGGCAC
22301	GIAGGCGAGG	TAGCCCATGA	AGACCGCGG1	CCACCCAA	TA CCCCCTCC	CCCCCCCCCCC
22441	CGAGCCGCGG	ACCTGGGCCA	GGGCCTTGAA	CGAGGCGAAG	TAGCCCGTGC	GCGGGCCACC
22501	CTCGACCACC	GGGTCCTCGC	CCTTCCTGCC	GCGTACGAGG	AAGACCGCGG	CGAGCAGCAG
22561	CGAGACGACG	GTGACGGCGA	GCAGGTCGCC	CTCCCATCCC	CACAGCAGGG	CCGGCAGGGC
22621	GATCAGGGGC	GCGGCGAGCA	TCGCCGTCAT	CGAGGTCGTC	GACGTGACGA	GGGTGGCCGC
22681	ACGGGCGGCG	GACTTGCCGT	CGCCGAACCG	GTCGGCGGCG	GCAGCGGTGA	GCGCCGGGTT
22301	GATCACCGCG	GTGCCGGCGG	CCACCACCAC	CCACAACACC	GCGGTCAGGA	GGAAGTCTCC
22741	GAICACCGCG	P.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C	A CA CCCCCA C	TACCACCACA	CCCACCCCA	CCCCCTTCCA
7580I	GCTCGCGCCG	AGGGCTGAGG	AGACGGCGAG	IACGACGAGA	ACCCCC CCC	CCGCCTTCGA
22861	CTTGGGTACC	CGGTCGATCA	GGGGGGCCAG	GGCCGTGCCC	ACGGCGAGCG	CCGCGAGGCC

22921	CCCCAGGCCG	CGCAGGCCGC	CCACCGCGGC	GACACCGCTC	CCGGTCTCCT	CGGCGATCGG
22981	CACCAGATAC	GTGCTGAAGA	CGGTGAACGG	CAGCAGGCCG	ACGGCGGAGG	CCACCAGGAC
	CGGCCACAGG					
	GACGGCCGAA					
	GTCGTCTCGT					
	CCCGAGCCGA					
	ACCTTCTGCT					
	CCCGTGGCGA					
	TCTCCCCACT					
	CGGATCGCGG					
	ATGTCGAGCA					
23581	ACCGGCAGCG	GGACGGCCTC	CTGCTCCGGG	GCTTCCCGAT	GCGGCTGTAT	CTGTGCGAGG
	TAGGCGTCGA					
	GGGTGCCCGG					
	CCGCCGAAGG					
	CCGGCGAGCC					
	TCGGGGCCGT					
	GGAAAGGGCA					
	GGCGGACCAG					
.24061	GATGTCGGGC	GCCTCGGTGT	GCTTGGCGTA	CGCGCTGTCG	ACGTAGCGGT	GACCTGTGTC
	CGCCGCGATG					
	GTAGGCGGCG					
	GCCTGCGAGC					
24301	GTTCTCGAAC	GGGATGGCGC	TGCCGATGCC	GGCGATGATC	ATGTCCGGGT	CCGAGACGTG
24361	CTCCGAGCCG	AACGTGACGC	TGCCGAAGGG	CTGGACTCCG	ACGAGGGAGA	CGTCTCGGCC
	CGCCTCGCGC					
	CAAGGTCAGG					
	GTAGTAGTGG					
	GATCTCGGCG					
	CACCTGCTCG					
	GGTCGACCCC					
24/81	CGCGTAGATG	CCGCTCGAAC	TGTCGACGAG	GGTGTCACCG	A M C C M C C A	ACCCCACACACA
24841	AAGGAGGTGC	CGCACCGCCC	CCAGAGCCGA	GTAGATCTTC	ATGGTCTCGA	ACCGCAGACA
24901	GACCAGGTCC	GGCCGCAGTG	CTATGAGATC	GGGTTTCTTG	ATCGCTTCAG	CTATGTGCTC
24961	GTACATCTCC	GTCTTCCGGT	CGAGCGGGAC	ATGAACCGTC	TGCCTCGATC	AGGTCCGGCT
	GGGCTGGGCC					
25081	GTCAAAACCG	AGTAAGGTGT	GCGCCAGTCA	TCACCACGGG	AGCCGCACAG	GCAGCTCTAC
25141	GCCCCGTGAC	GGGCAGCAAG	GCTTTTGGAG	GAACTCATGC	ATCTGCCCCG	GGTCGGTCCG
25201	CGATCCTGCC	TGTCGGGTCG	GGCGGGCATG	GACACTGGAG	TGGGCACCGC	CTACGGAACG
25261	TTCGGGGAAC	TGCTCCAGGG	TGAACTGCCG	GAGGAGGCAG	GCGATTTCCT	CGTCACGCTG
25321	CCTGTCGCCC	GGTGGGCGAG	GGCGTCCTTC	CGGTGCGACC	CGGCCATGGG	AGATGTCATC
25381	GTCAGGCCGT	CGCACAAGGA	GAAGGCGAGG	CGGCTGGCCT	GCCTGATCCT	GGAGGAGGCA
25441	CCGGGGATGA	CCGGTGGGGT	GCTGACGGTC	AACAGCGTGA	TCCCGGAGGG	CAAAGGGCTG
25501	GCCAGTTCAT	CCCCCCACCT	GCTCGCCACG	cccccccc	TEGGGCGGGC	CCTGCGGCTC
25501	GACATGCCGC	CAUCCCCCAU	CCACCCCCCC	CTCACCCTCA	TCGAACCGAC	CGATGGTGTC
25301	CTGTACCCGG	CVICACACVI	COMOGGGGCIG	CENCCECTEC	CACTECECEC	CATCCTCCCC
25681	TCGTTGCCCG	CCATGTCGGT	CGTCGGTGTC	CACGAGGGGG	CEC CET CET	CACGGICGAC
	TTCAACCGCA					
25801	AACCGGCTGA	GTGGGGCCGT	TCGCTCACGC	GACCTCGCGG	AGGTGGGCAG	GGTGGCGACG
	CGCAGCGCGC					
	ATCTGCAGGG					
	GTGCTCCTGG					
26041	TGCGGGGATC	TGGCCGGGGC	CGTCGCGGTC	TATCGGACCC	TCAGTTTCCC	GAACGCCGTC
26101	AGCCATGGTG	GTCGGACCGT	CGGCTGAGGG	CGGTTCCCGG	AGGCATGCCC	CGACGGGGCC
26161	CGATGGCGCG	GCAAGCAGGG	ATTCGCCTGA	CGTTGAGGGT	GGCCCGGATC	GCTGTATGGT
26221	CACCGCGGTG	CCGGTGCGTG	GACCGTGTCA	CTCCCGGCTC	CCTTGTGAAG	CCGATCGCCG
26281	GTGCTCCGCG	GACGCTGTGA	AGGTGGACGG	CCTCGACCGG	TTCGTCCAAG	GGCCCGAGGT
26341	GCCAAGGCCT	CTGCGACCGG	TATCGCGGAC	GCCCTCGGGC	ACGTGGACTT	CCTCTCGGCC
26401	GCCGCCGGGC	CAACCCTTCC	CCACAATCCA	DEGEDETCE	GTTCATGCTC	ACCGCACAGC
26461	AGCCTGCTCC	CULCOGIIC	CCCCCCCC	TCCDACCTAG	CCACACCTTC	GAGGCCGCTC
20401	ACCCGCTCGC	CCCMCACCCC	CCTCTCCCTC	TOCACGICAC	CCACCCCTCC	GGTGACGGCC
20021	MACCOGUTUGU	CGCTGACGG	CMCCMCCCC	1 GACAGGCGT	CCACCACCAC	CCTCACCCCC
26581	TGGTCCTCGC	CGCCGCAGCC	-GTCCTGGGGG	AGCGGCTGCA	GCAGGIGIIC	CACAMACCACC
26641	TGCGGGCGTC	CGACGGCTCG	AACTTCGTCC	ACCTTCATGC	GGACAGCTTC	CMCCMCAMCC
26701	TCAACGTAGG	GGGCGTCGAG	CATCGCCGAC	GTGATCCGGA	TGAGGACTAT	GICCTCATCC
26761	AGTGCGTCCG	GCAGTCCGAC	TCCGGCGGCG	ACTCCTTCGT	GGCTGACGCC	TATUGUTTUG

26821	TGGACCACTG	CGCGACGGCC	GATCCTGAAC	TGTGGGACTT	CCTGACCCGA	GGGGACGTCG
26881	ACCTGTACGG	CGCGTGGTCC	GGACTGCGTG	GTATGCCCGC	AACCCCCTTT	GTGGGCAGGC
26941	ATGTCGAGTA	CACCCGCGCC	GGTCGGCGTA	TCGTCCGGCG	CGGCGACGGG	GTGACCCCTC
27001	TGCACCGGGA	CCCTGGCGCG	GACCACACCC	GGCGGATGCT	CGCCCGTCTG	GAGGAAGCCG
27061	TCCATGCGCT	GGAGGAGACG	CTCCCGCGAT	TCCGGCTCGA	CAAGGGCGAA	ATCCTCGTCC
27121	TGGACAACTA	CCGCTGCTGG	CACGGCCGCG	AGGCTCACAC	GGGAGATCGC	GCGGTACGTA
27181	TCCTCACGGT	GCGCAGCAGC	GACGCCCGCT	GAGGCGCTGT	TGGTTCGCCT	CACTCGCCGT
27241	GACACAGGGG	CAGGCGTCTG	CGGCGGTGCT	GTTTCCGCGC	GGGACGGACC	GGGGGAGATT
27301	CCCCGGTCGG	TAAAGGGGGC	GACCGGCGAT	CCGCTCACCC	CGCCTCGATC	ATTGCGCAGG
27361	CTCTTCGAGC	GCTTCGTGCT	TCACGCCGGC	TGCCAGATCC	GGGCCAGTGC	CTCCGGGGTG
27421	AGTACTTCCT	CCGGTGATCC	CTGCCCGATC	AGTCGTCCGT	CGGCCAGGAG	CAGGCAGGCG
27481	TCGGCCGAGC	GGGCGGCGTC	CAGGTCGTGG	GTGGCCTGGA	CGACGGTGGT	GCCGTCGGCG
27541	ACCAGGTCCG	TCAGCAGGGC	CGTGATCCGC	TCCCGCGCCT	CGGGGTCGAG	TCCGGTGGTC
27601	GGCTCGTCCA	GGAGAAGCAG	GTCGGACTGT	TGGGCGAGGC	CCTGCGCGAT	CAGCACGCGC
27661	TGACGCTGGC	CCCCCCACAG	CTCGCCGAGC	TGGCGGGCGC	CGAGGTCGGC	GACCCCCAGC
27721	CTCTCCATGG	CGCACTCGAC	CECEGTCCEG	TCCGTGCGGG	TCAGCCGCCG	CCACAGGCCC
27721	CGCTGTCCCC	ACCCCCCAT	CTCCACCGTC	TECCECECE	TGAGGGGGAG	GGTGTCGCCG
277041	ACGGCACCGC	CCTCCCCCAC	CICCACCGIC	GGGGAGCCCT	CTGCGTACCG	GAGTTGTCCG
2/041	GATGTGGCGG	TC T TC T CT CC	CCCCACCACC	CCCACCACCC	TCGACTTGCC	GCTTCCGTTG
27901	GGTCCGACCA	CCCCCCTCNT	CCCCAACGCC	CCCAGCAGCG	CCCTCACTTC	GTGGAGCACG
2/961	GGGCGGCCGG	GGGCGGTCAT	CCTCACCCCC	TCC AACCCCA	CCCCTTCATT	CCGCAGTTCG
28021	GGGCGGCCGG	GGTAGCCGGC	CENTCHEAGUCGC	A A CAMCCOUR	TCATTATATATA	CTCCTCGTAT
28081	GTGGCCGGCG	GGAACGGAGG	GTTGTTATTG	AACATGGIIG	ACCCCCCTAT	CCCCCCCAT
28141	GGAGTGGTTG	ACGGCCCCTT	TCGAGGTGGC	CTTTGTGCAG	AGGGCCCIAI	CCATCCCCTT
28201	CCTGGTGTCG	GCGATATGCG	CCCTCGCGGG	AACGTGGGTG	GIGCIGCGCG	CCCTCCTCCC
28261	CCTCGGTGAC	GCGATGTCGC	ACGGGCTGCT	GCCCGGCGTC	PECCECCE	CCCTGCTGGG
28321	AGGCAACCTG	CTGGTGGGGG	CGGTGGTGAG	CGCGGCCGTG	ATGGCGGCGG	GCGTCACGGC
28381	CCTCGGGCGG	ACTCCGCGAC	TGTCCCAGGA	CACCGGCATC	GGCCTGCTGT	TCGTGGGCAT
28441	GCTGTCGCTC	GGCGTCATCA	TCGTGTCGCG	GTCGCAGTCC	TTCGCGGTGG	ACCTCACCGG
28501	CTTCCTGTTC	GGAGACGTCC	TCGCCGTGCG	GGGGAGCGAT	CTGCTGCTTC	TTGGAGTAGC
28561	CCTGCTGCTG	GCGCTGGCCG	TCTCGGTGCT	CGGCTACCGG	GCTTTCCTGG	CCCTCGCGTT
28621	CGACGAGCGC	AAGGCCCGGA	CACTCGGGCT	GCGTCCCCGG	CTCGCCCATG	CCGTGCTGCT
28681	CGGCCTGCTG	GCGCTGGCCA	TCGTGGCCTC	CTTCCACATC	GTGGGCACGC	TGCTCGTCCT
28741	CGGTCTGCTC	ATCGCCCCGC	CCGCGGCGGC	CATGCCCTGG	GCGCGAAGCG	TCCAGGCGGT
28801	CATGGTCCTC	GCGGCGCTCC	TCGGCGCCGC	CGCCACCTTC	GGCGGCCTGC	TCCTGTCCTG
28861	GCATCTGCGC	ACCGCGGCCG	GAGCGACCGT	CTCGGCCCTC	GCCGTCGCTC	TCTTCTTCCT
28921	GTCCCACCTG	GCATCCGGAC	TTCGGCACCG	CCGCCGTGCG	CGCCGGGGCG	GTCTTGCCGA
28981	ACCGGCGGTC	GCCCCGGGCC	GCGACCTCCT	CCACGTCCTG	ACCGAGAGAA	ACCTGAGGCG
29041	ATCTCCTTGC	TCGTCCGAAA	AAACGTCACA	TCGCTGGCTC	CGGCGCTTGC	GGCCGTGATC
29101	CTCCTGACCG	CCGGATGCGG	GGGCGGGGAC	GAGGCCAAGT	CCGGTTCCGG	GCCCGCCTCT
29161	TCGTCCCCCA	CTCCGCACGG	CTATGTCGAA	GGCGCCACCG	AGGCGGCCGA	GCAGCAGTCC
29221	AGACTTCTGC	TCGGCGACCC	CGGGAGCGGT	GAGACCCGCG	TGCTGGACCT	GATCACCGGC
29281	AAGGTGTACG	ACATCGCCCG	CAGCCCCGGT	GCCACCGCAC	TCACCACGGA	CGGCCGCTTC
29341	GGCTACTTCC	ACGGCCCGGA	CGGCATACGG	GTGCTCGACA	GCGGTGCGTG	GATGGTGGAC
29401	CACGGCGACC	ACGTCCACTA	TTACCGCGCG	AAGATCAAGG	AGGTCGGCGA	ACTCCCGGGC
29461	GGCACCGGTA	CGAGCATCCG	CGGCGACGCG	GGCGTGACCG	TGGCCTCGTC	GGCGGACGGG
29521	AAGGCGAGCG	TGTATCGCAG	GGCGGACCTG	GAGAAAGGCG	CCCTGGGCAC	GCCGTCCCCG
29581	CTGCCCGGCA	CGTTCGCCGG	CGCCGTCGTG	CCGTACGCGG	AACACCTGGT	GACACTCACC
29641	GCTGAGAGCG	GGGCTCCGGC	GAAGGTCGCC	GTGCTGGACC	GTTCCGGCAA	GCGCGTCGCC
29701	GCTCCGGAGG	CGGAGTGCGA	GGAGCCTCAG	GGCGACGCGG	TCACCCGGCG	CGGGGTTGTC
20761	CTCGGCTGCG	CCGACGGCGC	TCTGCTCGTC	CATGAGGACG	ACGGCGCCTT	CACGGCGGAG
20021	AAGATTCCGT	ACCCCCACCA	CGTGCCGAAG	ACCGAGCGGG	CCGTGGAGTT	CCGGCACCGC
20021	CCGGGCAGCA	GCACCCTCAC	GGCACCCGCC	GGCAAGGACG	CTGTCTGGGT	CCTGGATGCC
2001	GGCGAGGGCG	CCTCCACCC	CCTCAAGACC	GGCCCCGTGG	TCGCCGCCAA	CACGGCCGGC
20001	GAAGGCTCGC	CCTGGACCCG	CCTCCACACC	GACGGGGGCCC	TGCACGGCTA	CGACATACCC
20001	. GAAGGCTCGC . ACCGGCAAGG	DCDCTGGTCGT	CACCEATOR	CTGCTCAAGG	AACTGCCCGG	AACCGGTGCG
20001	. GCCGGCAAGG	CCCCTCCCCT	GACCGAICCC	CACCECAECC	GGGCCTACCT	CAACGACCCC
30121	GGCGGCGGCG GAGGGCAAGC	CCCCCCT	CYMCCYCMYC	DACCOCAGCC	TCCGC1716C1	CCGTACGTTC
30181	GAGGGCAAGC	. GCGIGIACGA	CCMCVMCCMC	- WCGWCGWIC	CATCACCCC	CGCGTGGGCG
30243	GACGTCGACG	TACGGCCGTC	COLGAIGGIG	TOCOCCONTO	, <u>GRIGRGCGCG</u> , СФФССФССФС	GCCGGTGCGG
30301	CTCCACGGAT	GUGTGUUTG	CIGGIGICO	CCCCCCCCCCC	CIICGICGIC	ACCAACATCC
30361	CGACCGGCTG	CGCGGGCGC	GGAGACGAAC	ACCACCCCCCCCC	CGIGGIGWCC	CTCATCATCC
30421	TCGGCGACAT	CACCCGGGAG	ATCGTCGGGG	ACGAGGCCGG	CGICAGIGIC	TTCCACAACC
30481	CCAACGCCGA	CCCGCACTCC	TTCGGCCTCT	CGGCCGTGCA	CCTCTGAG	TTGGAGAACG
30541	CCGACCTGGI	CGTCTACAAC	GGGCTCGGCC	TGGAGGAGAA	CCCCCCCC	CACGTGGAGG
30601	L CTGCCCGCGA	GTCCGGAGTG	GCCGCCTTCG	CCGCGGGTGA	GGCGGCCGAC	CCCCACTTCT
30661	LTCCATGCCGC	ACAGGACGGC	GGCCCCGAAG	AGGACGCCGG	CAAGUUUGAT	CCGCACTTCT

30721	GGACCGACCC	CGACCGCGTA	CGCGAGGCCG	CCGGCCTGAT	CGCCGACCAG	GTCGCCGAGC
30781	ATGTGGAGGG	CGTCGACGAG	AAGAAGGTCC	GGGAGAACGC	CGAGCGGTAC	GACGGACAAC
30841	TCGCCGACCT	CACGGGATGG	ATGGAGAAGT	CCTTCGCCGC	CATCCCCGAG	GACCGGCGTG
30041	CCCTGGTGAC	CAACCACCAC	GTCTTCGGCT	ACCTCGCCGA	CCGCTTCGGC	CTCCGCGTCA
30361	TCGGCGCGGT	CATCCCCAGC	GGAACCACGC	TCGCCTCGCC	CAGCTCCTCC	GACCTGCGCT
31021	CTCTCACCCA	GGCCATGGAG	AAGGCCAAGG	TGCGCACCGT	CTTCGCCGAC	TCCTCCCAGC
31021	CCACCCGGCT	CGCCGAGGTC	CTGCGCCAGG	AGATGGGCGG	CGACGTGGAC	GTCGTCTCGC
211/1	TCTACTCCGA	CTCCCTCACC	GAGAAGGGCA	AGGGCGCCGG	AACCTACCTG	GAGATGATGC
21201	GCGCCAACAC	CTCCCCCATC	GCCGAGGGCC	TCACCGGCGA	CTGAACGAGC	TTCCCCGCGG
31201	CACGGCACTT	CEACCECCE	CCGCTCCACC	CCACAAACCC	GCGCCTGAGG	GCCGGAGAGG
31201	AAACACCGAT	CATCAACAAC	CCCACCCGCG	CCAGAGTCTT	CACGGGCACG	GCGCTGGTCG
31321	TGGCGGCGTC	CATGAACAAG	ACCECCTECE	GCGGCAACGG	CAACGACGAC	GCCCCTTCCG
21741	GCAAAGAGCC	CAACCACCAC	AACACCACCG	AGGCCGCGGC	GGTCGGGAAC	CCGATCGTCG
21601	CCTCGTACGA	CCCCCCACTG	TACCTCCTC	ACGGCGAGAC	CCTGAAGCTC	GCGAAGACGA
31301	TCGCACTGCC	CCCCTTCNAC	CCCCTCAACC	CGGCGGGCGA	CAACGAGCAC	GTCGTCGTCT
31201	CCACGGACTC	CCCCTTCAAC	CTCTTCCACC	CCACCCGACA	GGAGTTCACC	GACGCCGAGT
31021	TCAAGGGTTC	CAACCCCCCC	CACCTCCTCC	GCACGGCGG	CAAGACGGTC	CTGTTCACCG
21241	ACGGCACGGG	ACACCTCA AC	CTCTTCGACC	CCGCCGACCT	GTCCGACGGG	AAGAAGCCGG
31/41	ACGGCCGCAC	AGAGGI GAAC	CCCAACCCCC	ACCACGGTGT	CGCCATCGAA	CTGGCCGGCG
31801	GAGAACTCGT	CACCACGICC	CCCACCCACC	ACAAGCGCAC	CGGAGCCCTC	GTCCTGGACA
31001	AGGACAACAA	CACCACCCIC	CCCCCCAGA	ACTGCCCCGG	AGTGCACGGC	GAGGCCGCCG
31921	CCCAGGGCGA	CCTCCCCCC	TTCGGCTGCG	AGGACGGCGT	CCTGCTCTAC	AAGGACGGCA
31901	AGTTCACCAA	CCTCCACCCC	CCCGCCACT	ACGCCCGCAC	CGGCAACCAG	GCCGGCAGCG
32041	ACGCCTCCCC	CAMCCACCC	CCCGACTACA	AGACCGACCC	CGACGCCGAA	CTGGAACGCC
32101	CCACCCGCAT	AMCCCMCAMC	CACACCCCTA	CGGCGAAGAT	GAAGCTGGTC	GACCTCGGCA
32101	CCACCCGCAT	CUMCCCCTCC	CTCCCCCCCC	CCCCCCACGG	CGAAGCCCTC	GTGCTCGGCA
32221	CCAGCTACTC	CTTCCGCTCC	ATTCACCCGG	ACACCGGAAA	GGTCGAGAAG	AAGATCGACG
32281	CGGTCGGCGA	CUICCACGIC	CCCCTCGACT	CCCACCACCC	CAGGCCCACC	CTGTTCGTCC
32341	GGGACCACAC	CCCCMACCOAG	TCCCDACCG	CCAACCCCCA	ACTCCACTCC	ATCGACCTGG
32401	AATCGGGGAA	CAACCTCCCA	TCCGAACCGG	TECCEDAGE	CACCAACGAA	CTGTCCGGCA
32461	CGGTCGCCGG	GAAGCIGGCA	CTCCCCCTTCC	CTCTTTTTCCT	CGGGCCCCGA	GGAGCGCAAC
32521	GCCTGCCGGA	TCACTGACCT	CCCACCCCTT	CCTCTTTCCT	GAGCCTGCAA	CCTTGACGAC
32581	CCTGCCGAGG	TTCGTGTTCC	GGCAGGCGII	CCCTCCCCTC	CGCAGATGGA	ACTGTGCGCG
32641	CTCCACTCCA	AGAACCGTTT	CACCACGGAG	AAGACCTGTG	CCGCCGGCCG	CCCGAAACGC
32701	AAGCCGTCGT	A CCCCCTTCCT	CGCCACCGTC	ACAGCCGCCG	AGGAGCTCGC	CGCGGTCACG
32/61	AGCTGCGGCG	CCCCTCCCTC	CCCCCCACC	ACACGATCGC	GAGCGTGAAG	GCGGCCGCAA
32821	CGCCCAGCAG	CCCCCACAGG	ATECTCCAGA	GCACGCTCTC	GGCCTCGCGC	AGGGAGGTCG
32881	AGACCAGCAG	TCCCCCGGAC	ACCTAGAGCG	CGGACCACAT	CGCGGCTCCG	GCGAGGGAGG
32941	CGGGCAGGAA	CCCCACCTAC	CCCACCCACC	CGACGCCGGC	GGTCGCGGGG	GTGAGGGTGC
33001	GTACCACGGG	CANANCCCCC	CTCACCAAGA	CGGCGCGCGC	CCCGTACCGG	TGGCAGAGCT
33061	CTTGCGCGCG	CAAAAGGCGG	TECTECCEA	TCCGCCGTAC	CAGGCGCGTC	TCCCGCATCC
33121	GCTGCCCGTA	CCCCATCCC	ACCAACTACC	CGATGTGGTC	GCCGGCCGAG	CTGCTGAGTG
33101	TGACGACGAG	CANCAGGGCC	AACAGCGGGC	GTGTCCCCTC	CGTTCCGGCG	CTCAGGGCCA
33241	GTACCGCGAC	CTCCCCCCC	ACCCCCATGO	CGGCCCCAAG	GCCGGATTCC	GCGAACGCGA
33301	ATACGGAGGC	CICGCCGAAT	CTCCTGACCG	GGTTCATGTC	CGACACCGCT	GTCAGTACAT
33301	CGTTCATCCA	CAGCOCGAAL	CTGGTGTGT	GTCTCTCCTC	GTTCGTGGAG	CCCTCCCGAC
33421	GGCGCCACGG	CGACACGCA		CGAGAACACA	CCGAAGAGAA	CAGCGGAACG
22541	ACTTCCCGGC	CTCACCGGAC	CCATACCCGG	GCGGCCGGTG	GGAGCGCCTG	AAAAAGAACG
22241	ACTICCEGGC AAGGGACACC	NACCTACCAC	CCAACCGCTG	GACGACTCCT	CCCTCCCGGC	CACGACCACC
33601	CCGCGACGGA	. AACCIACCAG		AACCATTCCC	CTTCACCCAC	CCCGTCCGCC
33001	L GACGGAGGA	CCCCGCAGAC	CGTACAGATO	CGGGCCTCGT	TGATCCACTG	GGTGAGAACG
22721	L CACGGAGGA	. ccccccccc	CARGGCGGCC	CGGTAGTGAG	ACAGACGCTT	CTCGCCCTTT
33/01		CCCCGGCCGC	CTCGACCTCC	GGGGGGGGGG	CATCGGATGC	GGCAGCCGCG
33041	L CICACCGCCC	CCCTCACCCT	CCCCCTCAGE	CGTTCCGGCG	CGAAGGCACG	GGCGATCCAC
3390.	L TGCGTCAGGG	CGGIGAGGI	CATGTCCTC(CGCAGGCACA	TCATGTCCTC	CCGCGGGCAC
3390.	T TOGICONGIC	CCGGGCWGWI	. TCCGGGGGTGG	AGGGCCTTGT	TCCTGGGACC	CGCTCCTGAC
2400	T WORRESTROOM	CCTCCCACC	. CGGCTCAGG	GATCGCGGTC	AACTACCCC	TGGGCTACAG
2414	T CGIGIACGG	CCTCCGVGGT	CACACGCCC	CCGGCACCGA	CGACGCGGAG	AAGCATGGGC
2420	T TOCGTIGACT	TO THE PROPERTY OF THE PROPERT	CACHEGGEOR	AAGCACTTCC	GTGCGGTGCA	GGCGCTGGTC
3420	L GGGWGCGCGY	TCAGGACCCG	CGCGGGGGAGG	GTGCTGGGG	TCCTGGGACA	CAACGGTGCC
2420	1 GGCGIGGAIC	, LGCYGGIGCC	CATCOTOTO	ACGGTGCTC	CCCCGTCCG	TGGGTCCGCC
2422	T GGGWWGWCC	CGCIGAICCA	. CGTGCGCG21	GCCCGACGG	TACGCGCCTC	TATCGGGGTG
2444	1 ACCCCCACA	L ACTIONOWI	CGACGAGCA	CTGTCCGGG	TCGCCAATCT	GGTGCTGATC
2444.	1 MCCCCCCCAC.	. 1000100001	CCCGAGGGA	GCCAGACGC	GGGCGGCCGA	ACTGGTCGAA
3430	1 CVVDDCCCD(TGGGIGCCC	ACCCCACOAN	CCGATGCGG	CCTACTCCG	CGGAATGCGG
3430.	T CANTICECT	. I MUCCONGG	, ACCEPTACE			

						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
34621	CGGCGCATCG	ACCTGGCGGC	GAGTCTGGTG	GCCAGGCCCT	CGGTGCTGTT	CCTCGACGAG
34681	CCCACCACCG	GGCTGGACCC	GGTGAGCCGC	ACCGCACTCT	GGGAGACGGT	GGAAGGGCTG
3/7/1	CTCGCCGAGG	GCACGACGGT	TCTGCTGACC	ACCCAGTACC	TCGACGAGGC	CGACCGGCTG
3/801	CCCCACCGGA	TAGCGGTGCT	GTCGTCCGGC	CACGTGGTGA	CGGTCGGCAC	GGCGGCGGAG
24861	CTCAAGGCGG	CGGGCACCCG	GTCCGTCCGC	CTGACCTTCG	GGTCCGCGGC	GGATCTGGAG
24001	ACCCCCCAAG	GAGCGCTGCG	CCTGGAGGGC	CTCGGCCTCA	CAACGGATCC .	GGTGTCCCGG
34921	AGCGCGGAAG	TGCCGCTGGC	CCLANCECCC	GAGCTGGCCG	GGATCTTCCG	GATTCTCGGC
34981	ACGGTGTCAC	TGGAGCTCGC	CCNACTOCCC	CTCAAGGAGC	CCACGCTGGA	CGACGTGTAT
35041	GCGGCGGGCG	TGGAGCTCGC	CGAACTGGCG	ACCCCCCCAA	CCCTCCCCTC	CTGACCACAC
35101	CTGAGCCTGG	CGGAGAGCTG	GGAGACCACG	AGCGGGGAA	CCCCTCCCCC	CCCGGGGGTG
35161	GACGTACGGG	TCCGGGGACC	TCGCCGGTGG	CGGACGGGCC	CGGGTGGCGC	7 m cm 7 C C C C
35221	CGGGGATCGG	CACCCAGTTC	CGGGTGCTGA	CCGGCCGGCA	GTTCCGGATC	ATCTACGGGG
25291	ACCGCCGGAT	CGCGCTGTTC	AGCCTGCTCC	AGCCGATCAT	CATGCTCATG	CTGTTCAGTC
25211	ACCTCCTCCC	CCGCATGGCC	AATCCGGAGA	TCTTCCCGCC	GGGTGTGCGC	TACCTCGACT
35401	ACCTGGTGCC	GGCTCTGCTG	CTGACGACCG	GGATCGGTTC	CGCGCAGGGC	GGCGGGCIGG
25/61	CTCTCCTCAG	GGACATGGAG	TCCGGGATGA	TGGTCCGGCT	GCGGGTGATG	CCGGTACGGC
35401	TCCCCCTCCT	CCTGGTGGCC	CGGTCGCTGG	CCGATCTGGC	GCGGGTCGCC	CTGCAGCTCG
35521	mccccmmccm	CGCCTGTGCG	ATGGGGCCGC	TEGECTACEG	GCCGGCCGGG	GGCGTGTCGG
35581	TGGCGTTGCT	CGCGACGCTG	CTCCCCTTCC	TCCTCCCCTC	GTCGCTGATC	TGGGTGTTCC
35641	GGATCGTCGG	CGCGACGCTG	CICGCGIIGC	A CCMCCMCMC	CACCATCEC	TTCCTCGTCA
35701	TGGCCCTCGC	CGCGTGGCTG	CGGAGCATCG	AGGIGCIGIC	CAGCAICGGG	CCGCGATGGC
35761	CCTTCCCCCT	GATGTTCGCG	TCGAGTGCCT	TCGTCCCGCT	CGACATTCIG	CCCCAMCTCC
35821	TCAGGGTCAT	CGCGACGGTC	AATCCCCTCA	CGTACGCGGT	GGAGGCGTCC	CGCGATCTGG
35881	CGCTGGACCA	CAGCGCGCTG	GGCGCGGCGC	TCGCGGCCGT	CGGCACCAGT	CTTGCGCTCT
25041	TO COCCOTO A C	CCCTCTCCTC	GCGGTACGCG	GGCTGCGGCG	CCCGCCGGGT	97999999
26001	CCCACCGGAC	GCCCTGACCC	CTCCCCACCA	CCTGCCCAGT	GTGACGTTTG	CGCAGATGAG
26061	እአሮርምር <b>ርር</b> ሞል	AACGCCGCAT	ACGCAAAGAT	CGTCCCTGCC	GGGACCCATT	GACGITCGCA
20001	AACGIGCGIA	ACATACTGGC	GATCAAGTCG	CACAGGAACC	AACAGGCACA	CCAACCACAG
30121	GGGGCGIGGA	GGGGGTTGGT	CTTTCCTCCA	TATCAAGTGG	TTTGGTCCGC	CGAAGCGGTT
36181	GCGTTACAGG	TGACGGCAAC	ACCCCAMTCC.	CACATGCCTG	ATGACGGGAC	GGCACACCTC
36241	GGACCTCACA	GACCGGTCGC	AGGGCATICG	CCCDATCACT	CCCTCCCTTA	CAGGTATGCG
36301	ACGCAGCGGC	GACCGGTCGC	AAGCCGGACG	CACCCCACT	CCCTCCCCTG	AGTGAGAGCC
36361	AGCGCGGATG	CGTCGTTCGA	CCGGAGTCAG	DAGGGGGAGI	CCCACCCACA	CCTCCCCCCC
36421	GCTGTGCCGG	GCAGGGCCTG	GTGGGGGCAC	TGCGGACCTG	GGCACGGACA	TCCCTCGACT
36481	AGACTGCCGT	GGTTCTCGTA	CGGGACACCG	GAACCACCGA	CGACACGGCG	TUGGIGGACI
26541	ACCCACACACCT	CCACCACTCC	GCCAGAAGCA	TCGCGGTGAC	CCTCCGACAG	CAACICGCGC
26601	CCCCCCCACC	CCCACTTCTG	CTGCTGCCGT	CCGGCCCGGA	GTTCACGGCC	GCGTACCTCG
26661	この中でこの中に中国	CCCCCCTCTC	GCCGCCGTAC	CGGCGCCGCT	600066666	CGCCACTICG
26721	NACCCCCCCC	TETTECCECC	ATCGCCGCCG	ACAGCGGAGC	CGGCGTGGTG	CIGACCGICG
26701	CCCCTCACAC	<ul><li>" CCCCTCCCTC</li></ul>	CACGACTGGC	TGACCGAGAC	CACGGCCCCG	GCIACICGCG
26041	meemeecee	CCACCACCG	- GCGGCGCTCG	GCGACCCGGC	GCAGTGGGAC	GACCCGGGCG
36641	. ICGIGGCCGI	CGACGTGGCT	CTCATCCAGT	ACACCTCGGG	CTCGACCGGC	AACCCCAAGG
36901	TCGCGCCCGF	GACCCACGCC	A A CCTCCTCC	CCAACGCGCG	GAATCTCGCC	GAGGCCTGCG
36961	GCGTGGTCGT	CGCCACTCCC	AACCIGCIGG	CCCTCCCCAT	GTACCACGAC	ATGGGGCTCC
37021	AGCTGACCGC	CGCCACTCCC	ATGGGGGGGCI	CCACCACCEC	CCTCCTCATC	AGCTCCACGG
37081	L TGGGCACGC1	GACACCGGCC	CTGTACCTCG	GCACCACGIG	CGIGCIGAIG	CTCCTCTCCT
3714:	L CATTCATCA!	A ACGGCCGCAC	CTGTGGCTAC	GGACCATCGA	CCGGIICGGC	CIGGICIGGI
2720	_ ccmccccmc(	. CCACTTCCC	TACGACA''G'I	GTCTGAAGCG	CGTCACCGAC	GAGCAGATOO
2726		<b>\ ~~~~~~~~~~~~~~</b>	TCCCCCCCTCCC	CCGGCAACGG	, CGCGGAGCCC	WICCGGGCWG
2722		· CCCCTTCCCC	CAACGGTTCG	CCCGGTACGG	, CCTGCGCCCC	GAGGCGCICA
2720	COCCCCCC	<u> </u>	GAGGCCACCC	TGTTCGTGTC	CAGGICGCAG	GGGCI GCHCH
		<b>, ~~~~~~~~~~~~</b>	' CCCCTCGAAC	: GCCACGAA1"1		GIACCCGGCG
		- ~~~~~~~~~~~	<u>, усстессест</u>	CCGTCGGCCA	CTTCCGCGCC	CGCMICGICO
3/50.	AGGCAGCCC	S GGAGAICGIC	. CTCCCCCCCC	GCCAGGTCGG	CGAGCTGGTC	CTCCAGGGAG
3756	1 AACCCGGCG	5 GCACCGIGII	TECENCECC	ACCACCACACAC	CGAGCAGACC	TTCGGCCTCA
3762	1 CCGCCGTCT	G CGCCGGCTAC	TGGCAGGCCA	AGGAGGAGA	,	CTGCACGAAG
3768	1 CCCTCGACG	G CGAGGACGG1	CACTGGCTGG	, GCACCGGCGA	L CAMACCACCA	CTGCACGAAG
3774	1 GGAATCTCC	A CATCACCGGC	CGCTGCAAA	AGGCCCTGG	CONTRUCTOR	CGCAATCTGT
2200	1 300000000000	አ ሮአጥሮርአርሮአር	'GAACTCCGCC	: TGCAACACC	, GGMACIIGAG	AGCG1CCCC
2226	1 00000mmch	c compercee	: CCXCCTGGC/	1 (((((((((((((((((((((((((((((((((((((	[ GAIGGIGGIC	, CACOLLICE
.0000		m <i>cccccccc</i>	י כארכארכננו	CCCTGGTCAC	3 CGCCC1GCG	GGGACGALA
0000	* * * * * * * * * * * * * * * * * * *	m <i>~~~</i> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	' CCCCAGGGC	A TOTAL CLUTTED.	L GAGCCGCGC	, Accorre
0004	4	<i>~ ~~~~</i> እአ <i>~~</i> ሞ/	י רכררפנינוניי	: CCATGCGTG/	4 (()1()16()16	,
	1 mannamac	m	י אאככככרדננני	ACGCCATUG	_ CGGCACGGC	, Gorrorion.
2026	1 maccacaca	C	וי ככאכאייככנו	: ACCUCGUGTA	A WICGCCGGW	, 00000000
3816	1 TUGUUCCCA	C CCCN CCCC	THE CONTROLL CONTROL	CACCGACGA	TAGCTCCACA	TGAACCCGCC
3822	1 CCCTGGAAC	G GGCACCGCGC		- CECEMECY.	C ACCGGACAGA	TCGCCGAGTT
3828	1 CGAAGCGGT	C AGCACGCCC	A GUGAGGTUA	COCOLOGAI	כ השכטכהפונו	TCGCCGAGTT TGGCCTCGA
	4 ~~ m ~ n ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ <i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>	* <i>CENTRECCE</i>	- '1'(-AL.(-LACL)		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	·	~ ~~~~~~~~~~~~~~	~	A GGALLIAL A	C CGCIACGGC	7 100,100100.
3846	1 CCCGGAGCT	G CTGTGGAGC	G TCCCCACAC	r caacgagtt	C GTCCAGGCAC	TGATGCCCCA
						•

38521	GTTGGCCGAC	CGCACCTGAG	GGGATCCGCG	AGAGATGGAC	ATGCAGTCGC	AGCGCCTCGG
38581	CGTCACCGCC	GCCCAACAGA	GCGTCTGGCT	CGCCGGCCAG	CTGGCGGACG	ACCACCGCCT
20/41	GTACCACTGT	CCCCCCTACC	TCTCACTCAC	CGGGTCCATC	GACCCGCGA	CACTCGGCAC
38641	GTACCACTGT	GCGGCGTACC	IGICACICAC	CGGGTCCATC	ACCCCCOMMCC	MACCCCACCA
38701	GGCGGTCCGG	CGGACCCTCG	ACGAGACCGA	GGCGCTGCGT	ACCCGGIICG	1ACCGCAGGA
38761	CGGGGAACTG	CTGCAGATCC	TCGAACCCGG	TGCCGGACAG	CTCCTGCTGG	AAGCCGACTT
38821	CTCCGGCGAC	CCGGACCCCG	AGCGGGCGGC	ACACGACTGG	ATGCACGCGG	CGCTCGCCGC
38881	ACCGGTCCGC	CTCGACCGCG	CCGGGACCGC	CACCCACGCC	CTGCTCACCC	TCGGCCCGTC
380/1	CCGCCACCTG	CTCTACTTCC	GCTACCACCA	CATCGCGCTC	GACGGCTACG	GTGCCCTGCT
20241	CCACCTGCGC	CCCCTCCCCC	A C C T C T A C A C	CCCCCTCACC	A A C G G G A C G	ACCCCGGCCC
39001	CTGCCCGTTC	CGCCICGCCC	ACCICIACAC	CACCCACCAC	CCCCCCTACC	CTCACTCCCA
39061	CTGCCCGTTC	GGCCCCCTGG	CCGGTGTCCT	CACGGAGGAG	GCGGCCTACC	ACCACCCCC
39121	CAACCATCGG	CGCGACGGGG	AATTCTGGAC	CCGGTCCCTC	GCCGGTGCGG	ACGAGGCCCC
39181	CGGGCTGAGC	GAGCGGGAGG	CCGGCGCTCT	CGCCGTCCCG	CTGCGCCGCA	CCGTGGAGCT
39241	GTCCGGCGAA	CGGACGGAGA	AGCTGGCCGC	CTCGGCCGCG	GCCACTGGAG	CTCGCTGGTC
39301	GTCACTGCTC	GTCGCCGCCA	CCGCCGCGTT	CGTACGCCGC	CACGCTGCCG	CCGACGACAC
39361	CGTCATCGGC	CTGCCCGTCA	CCGCCCGGCT	CACCGGGCCG	GCGCTGCGTA	CCCCGTGCAT
20/21	GCTCGCCAAC	CACCTCCCCC	TGCGCCTCGA	CGCCCGGCTC	GATGCCCCGT	TCGCCGCGCT
37421	CCTTGCCGAC	ACCACCCCC	CCCTCCCCAC	CCTCCCCCCC	CACCAGCGGT	TCCGCGGGGA
39481	CCTTGCCGAC	ACCACCCGCG	CCGICGGCAC	202020000	CCCCTCCCC	CCCTCACCCT
39541	AGAACTCCAC	CGGAACCTGG	GGGGCGTCGG	CCGCACCGCG	GGCCTGGCGC	mccmcca cca
39601	CAACGTCCTG	GCGTATGTCG	ACAACATCCG	GTTCGGCGAC	TGCCGGGCCG	TGGTCCACGA
39661	GTTGTCCTCG	GGACCGGTCC	GCGACTTCCA	CATCAACTCC	TACGGCACCC	CCGGCACCCC
39721	CGACGGCGTC	CAGCTGGTCT	TCAGCGGTAA	CCCCGCCCTG	TACACGGCCA	CCGATCTGGC
39781	CGACCACCAG	GAGCGGTTCC	TGCGCTTCCT	CGACGCTGTG	ACCGCCGACC	CGGACCTGCC
20011	GACCGGAAGA	CACCECCTCC	TGTCGCCGGG	CACCCGCGCC	CGGCTGCTCG	ACGACTCCCG
35041	CGGCACGGAA	CCCCCCTAC	CCCCTCCCAC	CTTGCCGGAA	CTCTTCGCCG	AACAGGCCCG
39901	GCGCACCCCC	CRECCECCE	CCCTCCACCA	CCACCCCACC	CTCCTCACCT	ACCGCGACCT
39961	GCGCACCCCC	GACGCGCCCG	CCGICCACA	CONCOCCCCC	CTCCCCCTCC	CTACCCACCA
40021	GCACCGGAGT	GTCGAACGGG	CGGCCGGACG	GCTGGCCGGC	CTCGGCCTGC	TACCOAGGA
40081	CGTCGTCGCC	CTCGCCCTCC	CCAAGTCCGC	CGAGAGCGTC	GCGATCCTGC	TCGGCATCCA
40141	GCGGGCCGGC	GCCGCCTACG	TGCCGCTGGA	CCCCACCCAT	CCGGCCGAGC	GGCTGGCCCG
40201	TGTACTCGAC	GACACCCGAC	CCCGGTACCT	CGTCACCACC	GGACACATCG	ACGGCCTGTC
40261	CCACCCCACG	CCGCAGTTGG	CCGCCGCCGA	CCTCCTCCGT	GAGGGCGGCC	CAGAGCCCGC
40321	CCCGGGCCGC	CCGGCACCCG	GCAACGCGGC	GTACATCATC	CAGACCTCCG	GCTCCACCGG
40321	ACGGCCGAAG	CCTCTCCTCC	TCACTCACGA	AGGGCTGGCC	ACCCTCGCCG	CCGACCAGAT
40301	CCGGCGCTAC	CCCACCCCAC	CCCACCCCC	CCTACTCCAC	TTCATCTCCC	CGGGGTTCGA
40441	CCGGCGCTAC	CGCACGGGAC	CGAMCACCC	CCTACTGCAG	CCCTCCCTCC	TEATACCECC
40501	CGTCTTCGTC	TCCGAACTGA	GCATGACCCT	CCIGICCGGC	CCCCACCCC	TGATACCGCC
40561	GGACGGCCTG	ACCGGCCGTC	ACCTCGCCGA	CTTCCTTGCC	GCGGAGGCCG	TCACCACCAC
40621	ATCCCTCACC	CCCGGCGCAC	TCGCCACCAT	GCCCGCCACA	GATCTCCCGC	ACCTGCGGAC
40681	TCTGATCGTC	GGCGGAGAGG	TCTGCCCGCC	GGAGATCTTC	GACCAGTGGG	GCCGGGGCCG
40741	GGACATCGTC	AACGCGTACG	GGCCCACCGA	GACAACCGTC	GAGGCGACCG	CCTGGCACCG
40801	TGACGGTGCC	ACCCACGGCC	CCGTCCCGCT	. CGGCCGCCCC	ACCCTCAACC	GGCGCGGCTA
40861	CGTCCTCGAC	CCGGCGCTCG	AACCCGTCCC	CGACGGGACG	ACCGGCGAAC	TGTACCTGGC
40001	CGGCGAGGGC	CTCCCCCCC	CCTACCTCCC	TECTCCCEGG	CCCACCGCCG	AGCGTTTCGT
40921	CGCCGACCCG	mmcccccccc	CCCCCACCCC	CATGTACCGC	ACCGGTGACC	TGGTGCGGCG
40981	CGCCGACCCG	TICGGCCCGC	2 2 DO CACOCO	ACCACCCCAC	CCDCDCCTCD	AACTCCCCCG
41041	GCGCTCCGGC	GGCATGCTGG	AATTCGTCGG	ACGAGCCGAC	CCECECCCC	CCCTACCTCA
41101	CTTCCGCATC	GAACTCGGCG	AGGTCCAGGC	CGCGCTCACC	GCTCTCCCCG	GGGTACGTCA
41161	GGCCGGCGTC	CTGATCCGCG	AGGACCGCCC	CGGGGACCCC	CGGCTCGTCG	GGTACATCGT
41221	GCCCGCGCCC	GGCGCCGAAC	CGGACGCCGG	TGAGCTCCGT	GCGGCCCTGG	CCCGTACCCT
41281	CCCGCCCCAC	ATGGTGCCCT	GGGCGCTCGT	CCCCCTCCCC	GCACTGCCGC	TGACGTCCAA
41341	CGGCAAACTG	GACAGGGCGG	CCCTTCCCGT	CCCCGCCGCC	CGCGCCGGCG	GATCCGGGCA
41401	ACGCCCGGTC	ACCCCACAGG	AGAAGACACT	CTGCGCCCTG	TTCGCCGACG	TCCTCGGCGT
41461	AACCCACCTC	CCCACCCACC	ACGTGTTCTT	CGAGCTCGGC	GGCCACTCCC	TCAACGGCAC
41401	AACGGAGGIC	CCCCCCATCA	CCACCCACTT	CCCCACCGAC	CTCACCCTCC	GCGACCTGTT
41521	CCGGCTGCTC	B CCCCGGATCA	CCCMMCMCCC	CCTCCTCCAC	CACAACGGAC	GGCAGCACAC
41581	CGCCTTCCCC	ACCGTCGCCG	GCCTTCTCCC	GCTCCTGGAC	mcccaccocc	A CCACCCACT
41641	CACCCCGCCG	CTGCCTCCGC	GCCCGGAGCG	CCTCCCCCTG	TUGUAUGUGU	AGCAGCGACT
41701	GTGGTTCCTC	GACCAGGTCG	AAGGCCCCAG	CCCCGCGTAC	AACATUCUCA	CCGCCGTCCG
41761	GCTCGAAGGC	CCGCTCGACA	TCCCGGCCCT	CGCTGTCGCC	CTGCAGGACG	TCACCAACCG
41821	CCACGAGCCC	TTGCGTACTC	TCCTCGCCGA	. GGACTCCGAA	GGCCCCCACC	AGGTCATCCT
41881	GCCCCCCGAG	GCCGCCCGCC	CCGAACTGAC	CCACAGCACC	GTCGCGCCCG	GCGATCTCGC
41941	CGCAGCCCTC	GCCGAAGCCG	CACGCCGCCC	: CTTCGACCTC	: GCCGGTGAGA	TCCCACTCAA
42001	AGCCCACCTC	. TTCCCC	GCCCGGACGA	CCACACCCTC	CTGCTCCTCG	TCCACCACAC
42001	CCCCCCCC	CCDCCCMCCC	TOCOGGACGA	CGTACCCGAT	CTCGCCCACG	CCTACGGCGC
42001	. CGCCGGCGAC	CCCCTCCCC	CCCACMMCCA	COLACGOGAL	CTGCAGTACC	CCGACCACAC
42121	. CCGCCGCGCC	. GGCGACGCCC	CGCACTTCGA		, CIGCUGIUCC	CCGACCACAC
42181	CCTGCGCCGA	CGGCACCTGC	TGGACGATCC	GILGGACAGC	ACACAGCICO	ACCACTGGCG
42241	CGACGCCCTG	GCCGGCCTGC	CCGAGCAGCI	CGAACTGCCC	ACCGACCACA	CCCGGCCCGC
42301	CGTTCCCACC	: ccccccccc	AGGCGATCGC	: CTTCACCGT	CCCGAGCACA	CGCACCACAC
42361	GCTGCGGGCC	: ATGGCCCAGG	CCCACGGCGI	CACCGTGTTC	: ATGGTCATGC	AGGCCGCGCT

42421	CGCCGCCCTG	CTGTCGCGGC	ACGGCGCGGG	CCACGACATC	CCCCTCGGAA	CACCCGTCGC
42481	GGGCCGCTCC	GACGACGGCA	CGGAAGACCT	CGTCGGGTTC	TTCGTCAACA	CGCTCGTACT
42541	GCGCAACGAC	GTCTCCGGGG	ACCCGACGTT	CGCGGAACTC	GTGTCGCGGG	TGCGGGCCGC
42601	CAACCTGGAC	GCGTACGCCT	ACCAGGACGT	TCCCTTCGAG	CGTCTCGTCG	ACGTACTCAA
42661	ACCGGAGCGG	TCCCTGTCCT	GGCACCCGCT	CTTCCAGATC	ATGATCGCGT	ACAACGGCCC
42721	GGCGACGAAC	GACACCGCCG	ACGGGTCCCG	CTTCGCGGGC	CTCACCAGCC	GCGTCCATGC
42781	CGTCCACACC	GGCATGTCCA	AGTTCGACCT	GTCGTTCTTC	CTCACCGAGC	ACGCGGACGG
42841	CCTCGGCATC	GACGGCGCTC	TCGAGTTCAG	CACCGATCTC	TTCACGCGGA	TCACCGCGGA
42901	GCGCCTGGTC	CAGCGCTACC	TCACCGTCCT	GGAGCAAGCC	GCCGGAGCAC	CGGACCGCCC
42961	CATCAGTTCG	TACGAACTCC	TCGGCGACGA	CGAACGCGCA	CTCCTCGCCC	AATGGAACGA
43021	CACCECCCAC	CCCACCCCCC	CAGGCACGGT	GCTCGATCTC	CTCGAAAGCC	GTGCGGCGCG
13021	CACCCCCCAC	CECCCECCE	TCGTCGAGAA	CGACCACGTC	CTCACCTACG	CCGACCTGCA
43001	CACCCCCCAC	AACCGCCTCG	CCCGCCACCT	GATCACCGCC	CACGGCGTCG	GTCCCGAACG
42141	TCTCCTCCCC	CTCCCCCTCC	CCCGGTCCGC	CGAGCTGCTG	GTGGCACTTC	TCGCGGTCCT
43201	CANCACCGGA	CCCCCTACC	TCCCTCTCGA	CCTCACCCAC	CCCGCCGAGC	GCACCGCCGT
43201	CAAGACCGGA	CACTCCCGC	CCCCCCTCAT	CCTCACCGAC	GCCGGTGCGG	CCCGTGAACT
43321	CGTCCTCGAC	CACIGCCGGC	A C C T C C C C C T	CCACCAACCC	GAGGTCCACG	CGGCGATCGC
43381		GACATCCCAC	MCACCCACCC	CCACCAACCC	TGCGTCACTC	CGGTCAGCGG
43441	GGAACAACCG	GGGGGTCCGG	TCACCGACCG	CCCCTCCACC	GGCCGGCCCA	ACCCTCTCCC
43501	CGAGCACGTG	GCATACGTGA	CCCACMMCCM	CCCCTACTCC	GTGACCGCGT	ACCCCGGAGC
43561	GGTGGAACAC	CGTTCACTGG	ACACCACCAC	CACCUMCCAC	CTCACCGTGA	CCTCCCTCTT
43621	CTTCGACGTC	ACCCTGCTGC	ACAGCCCCGT	TOTAL CONTRACTOR OF THE CONTRA	CTCACCGTGA	CCTCCCCACC
43681	CCCGCCACTG	GTCGTCGGTG	GCGCCATCCA	TGTCGCGGAC	CTGACCGAGG	AUCUCCACC
43741	GAGCCTGGCC	GCGGCGGGCG	GGCCGACGTT	CGTCAAGGCC	ACACCGAGCC	CCCCCCACA
43801	GCTCACGCAC	GAGGCGACAT	GGGCCGCGTC	CGCGAAGGTG	CTGCTCGTCG	mccmcmmca a
43861	GTTGCTGGGA	AGGGAGCTGG	ACAAGTGGCG	GGCCGGGTCG	CCGGAGGCCG	AMCCCCCACA
43921	CGACTACGGC	CCCACCGAGG	CCACGGTCAA	CTGCGTGGAC	TTCCGTATCG	ATCCGGGACA
43981	ACCGATCGGT	GCGGGGCCGG	TGGCGATCGG	CCGCCCGTTG	CGGAACACGC	AMCMCCCCCC
44041	GCTCGACGGT	GGGTTGCGGG	CGGTGCCGGT	CGGTGTGGTC	GGTGAGCTCC	ATGTGGCGGG
44101	CGAGGGGCTG	GCGCGGGGTT	ATCTCGGGCA	GCCGGGTCTG	ACGGCGGAGC	GGTT CGT GGC
44161	GTGTCCGTTC	GGTGATGCCG	GGGAGCGGAT	GTACCGCACG	GGTGACCTGG	TGCGGTGGCG
44221	TGCGGATGGG	ATGCTGGAGT	TCGTCGGCCG	GGTCGACGAT	CAGGTCAAGG	TGCGGGGTTT
44281	CCGGATCGAG	CTGGGCGAGG	TGGAGGCCGC	TGTCGCGGCC	TGCCCGGGTG	TGGACCGCTC
44341	CGTGGTGGTG	GTACGGGAGG	ACCGACCGGG	AGACCGCCGG	CTGGTGGCGT	ATGTGACGGC
44401	CGCCGGTGAC	GAGGCGGAGG	GGCTGGCACC	GCTGATCGTG	GAGACGGCCG	CGGGCCGTCT
44461	GCCCGGGTAC	ATGGTGCCGT	CGGCCGTGGT	CGTACTGGAC	GAGATTCCCC	TGACGCCGAA
44521	CGGCAAGGTG	GACCGTGCCG	CGCTGCCCGC	GCCGCGCGTC	GCCCGGCCG	CGGAGTTCCG
44581	CGTCACCGGA	TCACCCCGTG	AAGAGGCTCT	GTGCGCCCTG	TTCGCGGAAG	TGCTGGGCGT
44641	GGAACGGGTC	GGCGTGGACG	ACGGGTTCTT	CGACCTCGGC	GGAGACAGCA	TTCTGTCCAT
44701	TCAACTGGTG	GCGCGGGCGC	GCCGGGCGGG	TCTGGAGGTG	TCGGTGCGGG	ACGTTTTCGA
44761	GCACCGCACC	GTACGGGCGC	TGGCCGGTGT	GGTGCGGGAG	TCCGGAGGCG	TCGCTGCCGC
44821	CGTCGTGGAC	TCCGGTGTGG	GTGCGGTGGA	GCGGTGGCCG	GTGGTGGAGT	GGCTGGCGGA
44881	GCGTGGTGGC	GGTGGGCTCG	GCGGTGCGGT	CAGGGCCTTC	AACCAGTCCG	TCGTGGTCGC
44941	CACACCGGCC	GGTATCACCT	GGGACGAACT	GCGGACGGTC	CTGGACGCGG	TACGCGAACG
45001	CCACGACGCC	TGGCGGCTAC	GGGTAGTGGA	TTCCGGTGAC	GGCGCCTGGT	CCCTGCGCGT
45061	CGACGCGCCC	GCCCCCGGCG	GTGAGCCCGA	CTGGATCACC	CGGCACGGCA	TGGCCAGCGC
45121	CGACCTGGAG	GAGCAGGTGA	ACGCCGTGCG	GGCCGCCGCC	GTGGAGGCCC	GGAGCCGGCT
45181	CCATCCACTG	ACCGGACGGA	TGGTCCGCGC	GGTATGGCTG	GACCGTGGAC	CCGACCGCCG
45241	GGGAGTCCTG	GTCCTGGTGG	CGCACCACCT	GGTCGTCGAC	GGCGTCTCCT	GGCGCATCGT
45301	CCTCGGCGAC	CTCGGCGAAG	CCTGGACACA	GGCACGCGCT	GGCGGGCATG	TGCGGTTGGA
45361	CACGGTCGGC	ACATCGCTGC	GCGGCTGGGC	GGCGGCGCTG	GCGGAACAGG	GCCGCCACGG
45421	CECCCECEC	ACCGAAGCAA	ACCTGTGGGC	ACAGATGGTC	CACGGCTCGG	ACCCTCTGGT
45481	CGGCCCACGC	GCGGTGGACC	CTTCGGTGGA	CGTCTTCGGC	GTGGTGGAGT	CGGTGGGTTC
45541	ACGGGCGTCG	GTGGGGGTGT	CGCGTGCCCT	GCTGACGGAG	GTCCCGTCGG	TCCTGGGTGT
45601	GGGCGTGCAG	GAAGTGCTGC	TGGCGGCATT	CGGCCTGGCA	. GTGACGCGCT	GGCGCGGCCG
45661	CCCCCCAACC	GTCGTCGTGG	ACGTCGAGGG	TCACGGCCGC	: AACGAAGACG	CCGTACCCGG
4200T	CGGCGGAAGC	тесетотов тесетотов	TGGGGGTGGTT	CACCAGCATO	TACCCCGTCC	GCCTCCCCCT
45701 45701	CGCGGACCIC	CCCTCCCACC	AGATACCCC	CGGCGGTCCC	GCCGTCGGAC	GCACCGTCCG
42/01	CCACAMCAAC	CAATCCCTCC	GCACCCTGCC	CGACCAGGGC	CTGGGCTACG	GCATCCTGCG
45041	CUAGATCAAG	CCCCDDDDCC	CACCCETGCC	CGCCCAGCAC	CCCACCCCGC	ACTTCGGCTT
40901	CIACCICGAC	COCGAAAACG	, GACCCGCCCI	GGACGCTGCC	TCACTGGACG	AAGGCGACGC
45961	CAACTACCTC	CCCCTCCCCC	. CGG1C1CGGC	. CGCCAGGGCA	GCGGCGGACT	CCGACGAGGA
46021	ACACHGCCGAC	. GGGCICGGC	. GCCICGICGG	,	GTGGGGGGGG	GTCAGGACCC
46081	ACAGTGGGCC	. CMCCCCCAACC	. CGGIGICGG	CAACCCCAMC	ACCCTGGACA	CACCCGACGG
46141	CGTTCTGCCG	TOGULUALU	CGGIGGAGII	CARCOCORIO	CTGTCCGAAT	CCCGGATACG
46201	NON TORSES	AGCGTGACAT	. ACCNACCC	, GACGACACIO	GTCGCACAC	CCCGCCGTCC
46261	AGAACTCGCC	, CGCTTCTGGG	ACGMAGCCCI	COMMOGGCIC	, 3,000,000	

						> 000000 > 200
46321	CGACGCGGGC	GGACTGACCC	CCTCGGACCT	GCCGCTGGTC	GCCCTCGACC	ACGCGGAACT
46381	GGAGGCCCTG	CAGGCCGACG	TCACCGGTGG	CGTGCACGAC	ATCCTGCCCG	TATCACCGCT
46441	TCAGGAAGGA	CHCCHCHHCC	እርእርርጥርርጥጥ	CCCCCCCGAC	GGGGTCGACG	TCTACGTGGG
46441	TCAGGAAGGA	CIGCICITCC	ACAGCICCII	CGCCGCCGAC	OGGGT COACG	TOTACOTOGO
46501	ACAACTCACG	TTCGACCTGA	CCGGACCAGT	CGACGCCGAC	CACCTGCACG	CCGTGGTCGA
46561	AAGCCTGGTG	ACACGCCACG	ACGTCCTGCG	CACCGGCTAC	CGCCAGGCAC	AGTCCGGCGA
46501	ATGGATCGCC	CHCCHCCCAC	CACAACMCCA	CACCCCCTCC	CACMACAMCC	ACACACTCCA
46621	ATGGATUGCU	GTCGTGGCAC	GACAAGTCCA	CACCCCCIGG	CAGIACAICC	ACACACTCGA
46681	CACGGACGCC	GACACCCTCA	CAAACGACGA	GCGCTGGCGG	CCGTTCGACA	TGACGCAGGG
16711	CCCACTCGCA	CCDTTCDCCC	TCCCACCCAT	CAACGACACC	CACTTCCGCT	TCATCGTCAC
40/41	CCCACTCCCA		2000100011	COMCCCCCMM	CMCAMACCCC	A A CTCTTTCAC
46801	GTACCACCAC	GTCATCCTCG	ACGGCTGGTC	CGTGGCGGTT	CICATACGCG	AACICIICAC
46861	CACCTATCGC	GACACCGCCC	TCGGCCGCCG	GCCGGAGGTT	CCGTACTCCC	CACCGCGCCG
46021	TGACTTCATG	CCCTCCCTCC	CCCDACGCGA	CCAGACCGCT	GCGGGACAGG	CATGGCGTTC
40321	IGACIICAIG	GCGTGGCTCG	CCGAACGCGA		CCNNCCCNCC	CCACECCCE
46981	CGCGCTGGCC	GGACTCGCGG	AGCCCACAGT	GCTCGCCCTC	GGAACGGAGG	GCAG1 GGGG1
47041	GATTCCCGAA	GTCCTTGAGG	AAGAGATCAG	CGAGGAACTG	ACCTCGGAAC	TGGTGGCGTG
47101	GGCGCGTGGG	CCMCCMCMCD	CCCTCCCCTC	CCTCCTCCAC	CCCCCCTCCC	ССТТССТССТ
4/101	99919399	CGIGGIGIGM	CGGTCGCGTC		3000000000	5555555555
47161	GGGGCGGCTG	GTGGGCCGGG	ACGACGTGGT	GTTCGGCCTG	ACCGTGTCGG	GCCGGCCCGC
47221	CGAAGTGGCG	GGTGTGGAGG	ACATGGTCGG	TCTGTTCGTG	AACACCATTC	CGTTGCGGGC
47001	CCGGATGGAC	CCCCCCCACT	CACTCCCCCC	CTTCCTCCAC	CGGCTGCAGC	GGGAACAGAC
4/281	CCGGATGGAC	CCGGCGGAGI	CACTGGGGG	CITCGIGGAG	CGGCIGCAGC	COCATONO
47341	GGAACTGCTC	GAGCACCAGC	ACGTCCGGCT	GGCCGAGGTC	CAGCGCTGGG	CCGGACACAA
47401	GGAACTCTTC	GACGTCGGAA	TEGTETTEGA	GAACTACCCG	ATGGATTCCC	TGCTGCAGGA
47401	GGAACTCTTC	CACCACCA CTC	CCCTCCACAT	CCACCCAAMA	CACCCTCCCC	ATCCCACCCA
4/461	TTCACTGTTC	CACGGCAGTG	GCCTGCAGAT	CGACGGAAIA	CAGGGIGCCG	AIGCGACGCA
47521	TTTCGCTTTG	AACCTGGCAG	TGGTTCCCCT	TCCCGCCATG	CGATTCCGGC	TCGGCTATCG
17581	GCCGGACGTG	TTTCACCCCC	GTCGGGTGCG	TGAGCTGTGG	GGTTGGATCG	TCCGGGCCTT
47501	GCCGGACGIG	TTTOACCTCO	OT COUCTOCC	CCMCMCCCCM	CMCCAMCMCC	TECETECES
47641	GGAGTGCGTG	GTCTGCGAGC	GTGATGTGCC	GGTGTCCGGT	GICGAIGIGC	100010000
47701	TGAGCGGGAG	ACGCTGCTGG	GCTGGGGTGC	GGGCGCGGAA	CCCGGCGTGC	GTGCGCTGCC
17761	GGGTGCGGGT	CCCCCTCCCC	CTCCCCCCCCT	CCTCCCCTTC	TTCGAGGAGC	GGGTGCGGAC
4//01	666166661	9000010000	9190900001	CCCACMCCAA	mccy cmmy cc	CCCACCTCAA
47821	CGACCCGGAC	GCGGTGGCCG	TGCGCGGGGG	GGGAGTGGAA	TGGAGTTACG	CGGAGCIGAA
47881	CGCGCGGGCG	AATGCGGTGG	CCCGGTGGCT	GATCGGCCGG	GGCGTGGGAC	CCGAGCGCGG
47041	TGTCGGGGTG	CTCATCCACC	CCCCCCCCA	CETTETTECC	ATECTCCTCG	CGGTCGCCAA
4/941	TGTCGGGGTG	GIGAIGGACC	GCGGCCCGGA	C010010000	NGGCNNCCCN	mcca cmcccm
48001	AAGCGGCGGC	TTCTACCTGC	CCGTCGACCC	GCAATGGCCC	ACCGAACGCA	ICGACIGGGI
48061	ACTCGCCGAC	GCCGGCATCG	ACCTGGCCGT	CGTGGGCGAG	AACCTGGCCG	CTGCGGTCGA
40101	GGCCGTCCGC	CACTCCCACC	TCCTCCACTA	CCCCCAGATC	GCCCGCGAAA	CACGGCTGAA
40121	GGCCGICCGC	GACIGCGAGG	10010070171	03.0003.0000	CACCCCCCCC	CCCCTCTCCT
48181	CGAGCAGGCG	GCCACCGACG	CCGGTGATGT	GACGGACGGG	GAGCGCG1G1	CGGCICIGCI
48241	GTCCGGGCAT	CCGCTGTATG	TCATCTACAC	CTCCGGCTCG	ACGGGCCTGC	CCAAGGGCGT
40201	GGTGGTCACC	CACCCCTCCC	TCCCCCCCTA	TCTGCGGCGC	GGCCGCAACG	CCTACCGCGG
40301	GGIGGICACC	CACGCCICGG	1 COGCOCCIA	CMCACMCCCC	mmcca ccmca	CCCTCACCCT
48361	CGCCGCCGAC	GGCCTGGGCC	ACGTGCACTC	CTCACTCGCG	TTCGACCIGA	CCGIGACCGI
48421	TCTGTTCACC	CCCCTGGTCT	CCGGCGGCTG	CGTCACCCTC	GGCGATCTCG	ACGACACCGC
10101	CAACGGCCTG	CCCCCCACCT	TCCTCAAGGC	CACTCCTTCC	CACCTGCCCC	TGCTCGGCCA
46461	CAACGGCCIG	GGCGCCACCI	TCCTCARGOC	CACTCOTTO	CCCCCCCAAC	CCCDCACCCC
48541	ACTCGACCGG	GTACTCGCCC	CCGACGCCAC	CCTCCTCCTC	GGCGGCGAAG	CCCTCACCGC
48601	CGGCGCCCTG	CACCACTGGC	GCACCCACCA	CCCCCACACC	ACGGTCATCA	ACGCCTACGG
40.001	CCCGACCGAA	CTCACCCTCA	NCTCCCCCCA	ATACCCCATC	CCCCCCGGCC	ACTGCCTCCC
48661	CCCGACCGAA	CICACCGICA	ACTOCOCCOA	AIACCCCATC	CT CCTCCTTCC	mccmccaccc
48721	CGACGCCCC	GTCCCCATCG	GACGCCCCTT	CACCGGCCAC	CACCTUTTUG	TCCTCGACCC
48781	CECCCTCCEC	CTCACACCCC	CCGACACCAT	CGGCGAACTG	TATGTGGCCG	GTGACGGCCT
40041	GCCCCGGGC	mamcmccccc	CCCCCCACCT	CACCCCCAA	СССТТССТСС	CCTGCCCCTT
48841	. 666666666	IAICICGGGC		GACCCCCOTI	CONCCUECC	CCACCCACCC
48901	CCGCAGCCCC	GGCGAACGCA	TGTACCGCAC	CGGCGACCTC	GCACGCTGGC	GCAGCGACGG
48961	AACACTCGAA	TTCATCGGCC	GTGCCGACGA	CCAGGTCAAG	ATCCGCGGCT	TCCGCATCGA
40001	ACTCGGCGAA	CTCCACCCC	CTCTCCCCCC	CCATCCGCAC	GTGGCGCGGG	CCATCGCCGT
49021	. ACICGGCGAA	GICGAGGCGG	C1G1CGCGG	00111 0000110	ma comeacae	CCACCCACCC
49081	CGTACGCGAG	GACCGGCCCG	GCGACCAGCG	CCTGGTCGCG	TACGTGACAG	GCAGCGACCC
49141	GAGCGGCCTG	TCCTCGGCGG	TGACGGACAC	CGTCGCCGGC	CGCCTGCCCG	CGTACATGGT
40001	GCCGTCGGCC	CHCCHCCHAC	теслестелет	CCCCCTCACC	CCCAACGGCA	AGGTCGACCG
49201	. GCCG1CGGCC	GICGICGIAC	IGGACCAGAI	**********	magacacaca.	CCCCCACACC
49261	CGCCGCCTC	CCCGCGCCCG	GGACCGCCTC	CGGAACCACC	TCCCGAGCAC	CCGGCACAGC
49321	CCGTGAAGAG	ATCCTGTGCA	CCCTGTTCGC	CGACGTACTC	GGTCTGGATC	AGGTCGGCGT
40001	GGACGAGGAC	mmcmmccacc	TCCCCCCCCA	TTCCCTCCTC	GCCACCCGCC	TCACCTCACG
49381	. GGACGAGGAC	TTCTTCGACC	1 CGGCGGCCA		000000000000000000000000000000000000000	CCCCCACACCC
49441	. GATCCGGTCG	GCCCTCGGCA	TCGACCTCGG	TGTCCGAGCC	CTCTTCAAAG	CCCCGACCGT
49501	CGGCCGCCTG	GACCAGCTGC	TCCAGCAACA	GACCACCAGO	CTCCGGGCAC	CCCTGGTCGC
10001		VCCCCmmcmc	A CCCCCTCTC	CTTCCCCAC	CAGCGCCTCT	GGTTCCTCCA
4956	GUGGGAGUGU	ACCEGITETE	Vaccaciaic	- GIICGCGCAG		
49621	L CCAGCTCGAA	GGCCCCAACG	CCGCGTACAA	CATCCCCATG	GUTUTGUGAC	TCACCGGCCG
49683	CCTGGACCTG	ACCGCGCTGG	AAGCGGCCCT	GACGGATGTG	ATCGCCCGCC	ACGAAAGCCT
4074		AUCCCCCA CC	ארכאייירכרי	ССССТСТСТСС	САСААСАТСС	TGCCCACCGA
49/4.	L GUGAAUGGTU	ATCGCCCAGG	ACGAII CGGG			CCCMCCACAA
4980	L CGACACCCGC	ACCCACCTCA	. CCCTCGACAC	CATGCCGGTC	. GAUGUGUACA	CCCTGCAGAA
4986	TCGGGTGGAC	GAGGCCGCCC	GCCATCCGTT	CGACCTCACC	ACCGAGATCC	CCCTCCGCGC
4000	CACCCCCCC	CCCCDCACCC	ארכארכאכרא	ССФССФССФ	CTCGTGCTCC	ACCACATCGC
4992.	LUACUGICITU	CGCGTCACCG	ACGACGAGCA		. D.C.C.C.C.C.C.	JCJCCCCCCC
4998:	L CGGCGACGGC	TGGTCCATGG	CCCCCTGGC	CCACGACCTG	TUCGCCGCCT	ACACCGTCAG
5004	ACTCGAGCAC	CACGCACCGC	AACTGCCCGC	: TCTGGCCGTC	CAATACGCCG	ACTACGCCGC
E 0 1 0 1		CACCMCCMCC	CCACCCACAA	ראאראראיירי	AGCCAACTCT	CCACCCAACT
2010	L CTGGCAACGC	GACGTCCTGG	GCACCGAGAA	CANCACATO	AUGUCTUTOTOT	201100011101
5016	L CGACTACTGG	TACAGCAAAC	TCGAAGGCCT	CCCCGCCGAA	CTGACCCTCC	CCACCAGTCG

50221	CGTCCGGCCC	GCCGTGGCCT	CCCACGCATG	CGACCGCGTC	GAGTTCACCG	TGCCCCACGA
50281	CGTGCACCAA	GGCCTGACCG	CACTCGCCCG	CACCCAGGGC	GCCACCGTCT	TCATGGTGGT
50341	GCAGGCGGCC	CTGGCGGCCC	TGCTGTCCCG	ACTCGGCGCC	GGCACCGACA	TCCCCATCGG
50341	CACCCCCATC	GCCGGCCGCA	CCGACCAGGC	GATGGAGAAC	CTGATCGGAC	TCTTCGTCAA
50401	CACCCCCAIC	CTGCGCACCG	» CCMCTCCCC	CCACCCGACC	TTCGCCGAGC	TCCTGGCCCG
50461	CACCUTCGTA	CTGCGCACCG	ACGICICCGG	- CACCOCCC	AMCCCCMMCC	A A C C C C C C C C C
50521	TGTGCGCACC	ACTGCTCTCG	ACGCATACGC	ACACCAGGAC	ATCCCCTTCG	AACGCCIGGI
50581	AGAAGCCATC	AACCCCGAAC	GATCCCTCAC	CCGGCACCCC	CTCTTCCAGG	TCATGCTCGC
50641	CTTCAACAAC	ACGGACCGCC	GATCCGCGCT	CGACGCGCTC	GACGCCATGC	CCGGCCTTCA
50701	CCCACGACCG	GCCGACGTCC	TGGCTGTGAC	CAGCCCCTAC	GATCTCGCGT	TCTCGTTCGT
50761	CCDCACACCC	GGCAGCACGG	ACATECCCE	CATCCTGGAC	TACGCAACCG	ACCTGTTCGA
50701	GGAGACACCC	GCCGAGGCCA	MCACCCAACC	mcmccmcccc	CTCCTCCCC	AGATCGCCCG
20821	CUGUTUCACG	GCCGAGGCCA	TGACCGAACG	1C1GG1GCGC	CICCICGCGG	MCAN CCCCC
50881	CCGGCCCGAG	CTGTCCGTGG	GCGACATCGG	CATCCTGTCG	GCCGACGAGG	TGAAGGCCCT
50941	CAGCCCCGAG	GCTCCCCGG	CAGCCGAGGA	ACTTCACACC	TCCACACTGC	CTGAGCTGTT
51001	CGAGGAGCAG	GTGGCGGCTC	GGGGCCATGC	GGTCGCGGTG	GTGTGCGAAG	GAGAGGAGCT
51061	GTCGTACAAG	GAGTTGAACG	CGCGGGCGAA	TCGCCTGGCC	AGGGTGCTGA	TGGAGCGCGG
51121	CECAEECCCC	GAACGGTTCG	TEGGCGTGGC	ACTACCGCGT	GGCCTGGACC	TCATCGTGGC
51121	ACTOCAGGCCCC	GTGACCAAAA	CCCCCCCCC	אייארכיייררכ	CTCGACCCCG	AATACCCCAC
21101	ACTUCTEGUE	GIGACCAMAA	7000000000	CARCCCCACC	CCCCTCCTCA	CCTCDDCCCD
51241	CGACCGCCTC	GCGTACATGG	TCACCGACGC	CAACCCCACC	GCGGTCGTGA	MCCCCAACCCA
51301	CGTACACATC	CCCCTGATCG	CCCCCCGCAT	CGAGCTCGAC	GACGAGGCAA	TCCGCACCGA
51361	ACTCGCCGCC	GCTCCCGACA	CAGCCCCCTG	TGTCGGGAGC	GGCCCCGCCC	ACCCCGCCTA
51421	CGTCATCTAC	ACCTCCGGCT	CCACCGGTCG	CCCCAAGGGC	GTCGTCATCA	GCCACGCCAA
51481	TGTCGTACGC	CTGTTCACCG	CATGCTCCGA	CAGTTTCGAC	TTCGGACCGG	ACCACGTCTG
51401 E1E/11	CACCCCCCTC	CACTCGTACG	CCTTCGACTT	CTCGGTCTGG	GAGATCTGGG	GCGCGCTGCT
31341	GACGCICIIC	CGGCTCGTCG	mccmccccmm	CICCICIC	CCTTCTCCCC	CCCAATTCCT
21601	TCACGGCGGG	CGGCTCGTCG	TUGTGUUGII	COMOGIONCI	DCD CCCECCC	CCGAATICCI
51661	CGCGCTGCTC	GCCGAGCAGC	AGGTCACGCT	GCTGAGCCAG	ACACCGICCG	CGIICCAICA
51721	GCTGACGGAG	GCCGCCGCC	AGGAGCCGGC	GCGCTGCGCC	GGGCTGGCCC	TGCGACATGT
51781	GGTCTTCGGC	GGCGAGGCGC	TCGACCCGTC	GCGACTGCGC	GACTGGTTCG	ACCTGCCGCT
51841	CGGCTCACGG	CCGACGCTCG	TGAACATGTA	CGGCATCACC	GAGACCACCG	TCCACGTCAC
51901	CCTCCTCCCG	CTGGAGGATC	GCGCGACGAG	TCTTTCCGGC	AGCCCGATCG	GTCGGCCCTT
51901	CCCCCATCTC	CAGGTGTACG	TCCTCGACGA	ACCCCTCCCC	CCGGTGCCCC	CAGGCACCGT
21301	GGCCGAICIG	TACGTGGCAG	CCCCCCCCCCC	ACCCCCCCCCC	TATCTCCCAC	CCCCCCCTCT
52021	CGGCGAGATG	TACGTGGCAG	GCGCCGGTC1	mmaaaammaa	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TCTACCCCAC
52081	GACCGCCGAG	CGGTTCGTGG	CCGACCCGAA	TTCCCGTTCC	GGCGGCCGTC	TGTACCGCAC
52141	AGGCGACCTG	GCCAAGGTGC	GGCCCGACGG	GGGACTGGAG	TATGTGGGCC	GCGGGGACCG
52201	GCAGGTGAAG	ATCCGCGGCT	TCCGGATCGA	ACTCGGCGAG	ATCGAGGCCG	CGCTGGTCAC
52261	ACACGCGGGT	GTCGTCCAGG	CGGTGGTCCT	GGTGCGGGAC	GAGCAGACCG	ACGACCAACG
52201	CCTTCTCCCC	CACGTGGTGC	CCGCGCTGCC	GCACCGGGCG	CCGACCCTGG	CCGAACTCCA
52321	CCACCACCTC	GCGGCGACCC	TCCCGCCCTA	CATGGTGCCG	TCCGCGTACC	GGACCCTGGA
52361	CGAGCACCIC	CTGACGGCCA	ACCCANACCE	CCACCCCCCC	CCCCTCCCCC	CCCACTCCCA
52441	CGAGCTGCCG	CTGACGGCCA	ACGGAAAGCT	COACCOCCA	CAACACAMCC	mcmcccacm
52501	GGGCGGAACC	CGCACCCGGA	GACTGCCTCG	GACGCCGCAG	GAAGAGATCC	TGIGCGAGII
52561	GTTCGCCGAC	GTCCTCCGGT	TGCCCGCCGC	CGGGGCCGAC	GACGACTTCT	TCGCCCTGGG
52621	AGGCCATTCC	CTGCTGGCGA	CGCGCCTCCT	GTCGGCTGTC	AGGGGCACCC	TGGGTGTGGA
52681	ACTCGGCATC	CGCGACCTCT	TCGCCGCGCC	CACGCCTGCC	GGGCTCGCGA	CCGTACTGGC
52741	GGCCTCCGGC	ACCGCCCTGC	CACCTGTGAC	CAGGATCGAC	CGGCGCCCTG	AACGGCTCCC
52741	CCMCMCCCMC	GCACAGCGGC	CACTCTCCTT	CCTGAGCAAG	CTGGAAGGGC	CCAGCGCCAC
22801	GCTGTCCTTC	CCGGTCGCCG	MCCCCCMC)C	CCCCCCCCTC	CACCTCCCC	CTCTCCCCCC
52861	CTACAACATC	CCGGTCGCCG	TCCGGCTCAC		ACCURCUMCC	CCCACCACCC
52921	CGCCCTGGGG	GACGTCACCG	CACGGCACGA	ATCACTGCGT	ACGGICITCC	CCCACCACGG
52981	GGGCGAACCC	CGCCAGCTGG	TGCTCCCACA	CGCCGAACCC	CCCTTCCTCA	CGCACGAGGT
53041	GACCGTCGGA	GAGGTGGCGG	AACAGGCGGC	GTCCGCCACC	GGGTACGCCT	TCGACATCAC
53101	CAGCGATACG	CCGCTGCGGG	CCACCCTGTT	GCGCGTCTCA	CCGGAGGAAC	ACGTCCTCGT
53161	CCTCCTCATC	CACCACATCG	CCGGCGACGG	CTGGTCCATG	GGGCCGTTGG	TGCGTGACCT
53101	CCMCACCCCC	TACCGGGCCC	CAACCCCCCC	CEACECCCC	GAGTACACCC	CGCTTCCCGT
53221	GGTCACCGCC	GACTACGCCC	mcmccca a ca	CCCTCTTCCC	CCCCACCACC	ACGCCCCGGA
53281	GCAGTACGCC	GACTACGCCC	TGTGGCAACA	CGCIGIIGCG	CECCCCCCC	TCCCCCCACCA
53341	CGGCCGGACG	GCGCGTCGGC	TCGGGTACTG	GCGCGAGATG	CIGGCCGGGC	TGCCCGAGGA
53401	GCACACGCTG	CCCGCCGACC	GGCCCCGGCC	CGTTCGGTCC	TCGCACCGGG	GCGGCCGGGT
53461	ACGGTTCGAA	CTGCCCGCCG	GCGTGCACCG	GAGTCTGCTG	GCCGTGGCGC	GTGACCGTCG
53521	GGCCACGCTG	TTCATGGTGG	TGCAGGCTGC	GCTCGCCGGT	CTGTTGTCCC	GGCTCGGCGC
53591	GGGCGACGAC	ATCCCCATCG	GCACCCCGGT	CGCCGGGCGG	GGCGATGAAG	CGCTGGACGA
50641	CCTCCTCCCC	TTTTTCGTCA	አጥልርርርጥርርጥ	CCTTCGGACG	AATCTCGCGG	GGGATCCGTC
53041	CGTCGTCGGG	1 11111CG1CW	CCCMCNCCNC	CCCCCACCMC	CACCCCTTCC	CGCACCAGGA
53/01	CTTCGCCGAC	. CTGGTGGACC	GGGTCAGGAC	magagas as	. GACGCGIICG	CGCACCAGGA
53761	CGTGCCCTTC	GAACGGCTCG	TGGAGGCGCT	TGCGCCACGG		CCCGCCACCC
53821	GCTGTTCCAG	ATCTGGTACA	. CCCTCACCAA	. CGCCGACCAG	GACATCACCG	GCCAGGCACT
53881	CAACGCCCTC	CCGGGCCTGA	CCGGGGACGA	GTACCCGCTG	GGGGCCAGTG	CCGCCAAGTT
53941	CGACCTGTCG	TTCACCTTCA	CTGAACACCG	CACCCCCGAC	GGAGACGCCG	CCGGCCTGTC
54001	ССТТСТССТС	GACTACAGCA	GCGACCTGTA	CGACCACGGC	ACTGCCGCCG	CACTGGGCCA
54061	CCCCCCCC	CCDTTCTTC	CACCACTCC	CCCCGACCCC	ACCGCCCCC	TGGGCACCGT
24001	CCGGCIGACC	, GOMITCIICG	. CAGCACIGGC	. JGCCGACCCC		

54121	CCCGCTCCTC	ACCGACGACG	AGCGGGACCG	CATCCTCGGT	GACTGGGGCA	GCGGTACGCA
54181	CACCCCGCTG	CCCCCGCGCA	GCGTGGCCGA	GCAGATCGTC	CGCCGGGCCG	CGCTGGACCC
54241	GGACGCCGTC	GCCGTCATCA	CCGCGGAAGA	GGAACTCTCG	TACCGGGAAC	TGGAAAGGCT
54301	CAGCGGTGAG	ACGGCGCGGC	TGCTGGCCGA	CCGGGGGATC	GGCCGCGAGA	GCCTCGTCGC
54361	CGTCGCCCTG	CCCCGCACGG	CCGGCCTGGT	CACCACCCTG	CTCGGCGTCC	TGCGCACCGG
54421	CGCCGCCTAC	CTCCCGCTCG	ACACCGGGTA	CCCCGCCGAG	CGACTCGCGC	ACGTGCTCTC
54481	CGACGCCCGT	CCCGACCTCG	TCCTCACCCA	CGCCGGCCTC	GCCGGACGGC	TGCCGGCCGG
54541	CCTCGCGCCC	ACCGTCCTCG	TCGACGAGCC	GCAGCCGCCC	GCCGCAGCCG	CCCCCGCGGT
54601	TCCCACGTCC	CCGTCGGGCG	ACCACCTCGC	GTACGTCATC	CACACCTCCG	GCTCCACCGG
54661	CAGGCCCAAG	GGCGTCGCGA	TCGCCGAGTC	CTCCCTGCGC	GCCTTCCTCG	CGGACGCGGT
54721	CCGGCGCCAC	GACCTGACCC	CGCACGACCG	GTTGCTCGCG	GTGACCACCG	TCGGCTTCGA
54721	CATCGCCGGC	CTCGAACTGT	TCGCCCCGCT	CCTCGCCGGT	GCCGCGATCG	TGCTGGCCGA
54941	CGAGGACGCC	CTACCCCACC	CCGCCTCGAT	CACCTCCCTG	TGCGCACGCC	ACCACGTCAC
54041	CGTCGTCCAG	CCCACCCCCA	CTTCCTCCC	GGCCATGCTC	GACGGAGCAC	CGGCCGACGC
54901	CGCCGCCCGG	CTCCACCACA	TACGGATCCT	GETCGGCGGC	GAACCGCTGC	CCGCCGACCT
54961	GCCCGTGTC	CTCGAGCACG	CCCCCCCCC	CGTCACCAAC	GTGTACGGAC	CCACCGAAGC
22021	CACCATCTGG	CIGACCGCAA	CCCCACTCAC	CGCCGGCGAC	GACCGCACAC	CCGGCATCGG
22081	CACCATCTGG	GCCACCGCCG	CCCCACTCAC	ACTCGACGCG	GCCCTCGGAC	CCGTTCCCCC
55141	GGGTGTTCCG	GACAACTGGC	ACATECCECE	CTCCCCCCTC	CCCCCCCCCC	ATCTGCGCCG
55201	CCCGGACCTC	DCCCCCC D DC	CCTTCCTCCC	CNACCCGTTC	GCCCGCGGC	AGCGGATGTA
55261	CCCGGACCTC	ACCGCCGAAC	CCMECCCCC	CCACCCCACC	CTCGAACACC	TOGGCCGCGT
55321	CCGCACCGGC	GACCTCGGCC	GGIICCGCCC	CARCCAACT	CCCCACCTCC	AGGCCGCCCT
55381	GGACGACCAG	GTCAAGGTAC	GGGGCTTCCG	CATCGAACTC	CCCCCCCACC	ACCECEECCA
55441	CGCCCGGCAT	CCCGACGTGG	GGCGCGCGC	TECCECCACC	CCCCCACCC	ACCCCCCCA
55501	GGGCCGCCTT	GTCGCGTACG	TCGTCCCCCG	TCCCGGCACC	CECCCECCC	CCCACCTCAC
55561	ACTGCGCGAG	ACGGTACGCG	AACTTCTGCC	TGACTACATG	CCCCCCCCC	TCCCAGGIGAC
55621	TCTCACCACC	CTGCCTCACA	CCCCGAACGG	CAAACTCGAC	CECGCCGCGC	TGCCCGCCCC
55681	CGTGTTCGGC	ACCCCTGCCG	GACGCGCCCC	CGCCACCCGC	GAGGAAAAGA	mcmmccaccag
55741	GCTCTTCGCG	GACATCCTGG	GCCTGCCCGA	CGTGGGAGCC	GACAGCGGCT	TCTTCGACCI
55801	CGGCGGCGAC	AGCGTGCTGT	CCATCCAGCT	CGTGAGCCGC	GCCCGGAGGG	AAGGACIGCA
55861	CATCACCGTA	CGAGACGTGT	TCGAGCACGG	GACGGTCGGC	GCACTCGCCG	TCCCTTTCCAT
55921	TCCGGCACCG	GCCGACGACG	CGGACGACAC	CGTCCCCGGC	ACGGACGTAC	TGCCTTCGAT
55981	CAGCGACGAC	GAATTCGAGG	AGTTCGAGCT	GGAGCTCGGA	CTCGAGGGGG	AGGAAGAGCA
56041	GTGGTGAACC	GCCGGTCGAA	GGTAGTCGAG	GAGATCCTGC	CTGTCTCGGC	GCTCCAGGAA
56101	GGACTGCTGT	TCCACAGCTC	CTTCGCCGCC	GCCGACGGAG	TCGACGTGTA	CGCGGGACAG
56161	CTCGCGTTCG	ACCTGGTCGG	CGCGGTGGAC	ACCGGTCGGC	TGCGGGCCGC	CGTCGAAAGC
5.6221	CTCGTGGCGC	GGCACGGCGT	CCTGCGCTCA	AGCTACCGTC	AGGCGCGCTC	CGGGGAGTGG
56281	GTCGCGGTCG	TGGCGCGGCG	CGTCGCGACG	CCATGGCGCG	CCGTCGACGC	CCGCGACGGT
56341	GCCACGGACG	CTGCCGCCGT	GGCCCGGGAG	GAACGCTGGC	GCCCGTTCGA	CCTGGGCCGG
56401	GCCCGCTGG	CTCGGTTCGT	GCTCGTACGG	ACCGACGACG	ACCGTTTCCG	GTTCGTGATC
56461	ACGTACCACC	ACGTCATCCT	CGACGGCTGG	TCGCTGCCGG	TACTGCTGCG	CGAACTCCTT
56521	GCCCTGTACG	GAAGCGGCGC	CGACCCGTCG	GTGCTGCCGC	CCGTCCGCCC	CTACGGCGAC
56581	T	GGGCCGCCGC	GCGCGACGAC	GCCGCCGCCG	AAACCGCCTG	GCGCGACGCG
56641	CTCACCGGCC	TGGACGAGCC	CTCCCTGGTC	GCACCCGGCG	CTTCCCCCGA	CGGCGTCGTG
56701	CCGGCCTCCG	TCCACGCCGA	ACTCGACAAG	GCCGGCACCG	AGAACCTCGC	CGCCTGGGCC
56761	AGGCACCGCG	GCATCACCCA	GGCCACCGCC	GTCCGCGCCG	CGTGGGCCCT	CGTTCTCGGC
56921	CAGCACACCG	GCCGCGACGA	CGTCGTGTTC	GGCGTCACCG	TCTCCGGACG	GCCCGCCGAA
56881	CTCGCCGGCG	CCGAGCACAT	GGTCGGACTC	TTCATCAACA	CCGTCCCCCT	GCGCACGGTC
56941	CTCGACCCCG	CCGACACCCT	CGGCACGTTC	GCCGCTCGCC	: TCCAGGCCGA	ACAGACCACC
57001	CTCCTCGAAC	ACCAGCACGT	GCGGCTCTCC	GACATCCAGC	GCTGGGCCGG	ACACAAAGAA
57063	CTCTTCCACA	CCATTGTCGT	CTTCGAGAAC	TACCCCATCG	GCCACAGCGG	CCCCGGCTCC
57121	ATCCGCACCG	ACGACTTCAC	CGTCACCGCC	ACCGAAGGCT	CCGACGCCAC	CCACTACCCC
57191	て で こ ひ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ	CCGCCGTACC	CGGCGAAACC	CTGCGCCTCA	AGCTCGACCA	CCGCCCGAC
57241	CTCACCTCACA	CCACCACCGC	CACCGCCCTG	CTGCGCCGCG	TGACCCGCGT	CCTGGAAACC
57301	CCCACCGACG	ACACCGGGCA	CACCCTCGCC	CGCCTCGACC	: TCCTCGACGA	CGACGAACGC
57361	CACCCCCCCCCC	TECECEECTE	GAACGACACC	ACGCGCGAGC	AGCCGCCCAC	CTACTACCAC
57301	CACCAAMMCC	: ACCAACACACC	CCCCACCCC	CCCCACGACA	CGGCCCTTGT	CTTCACCAGC
57461	ACCTCCTCCA	CCTACCAGGC	ACTCAACCAC	CGCGCCAACC	GGCTCGCCCG	CCTGCTCGTC
5/481	CCCCCCCCCC	CGIVCGWWGW	CEDCHACGAC	GCGCTCGCCT	TCCCCCGTTC	CGCGGAATCC
5/541	CMCCMCCCCC	, CCGGCICCG	· PCACTICATO	: GGCGTGGGGT	ACCTGCCGCT	CGACATGGAC
5/601	GICGICGCCA	7 10010000001	TCICMAMGCC	, GGCGCCGC01	ACCCGACCGT	CGTCCTCACG
2/001	ACCACCACCA	. CCNCCCCC	CGGCWICCIC	CCCCACCOAC	TCGTCCTCGA	CAGCCCCACC
5//23	ACCACCACCA	CCACCCCGC1	CCCACCCC	CACAACCTC	CCGACGCCGA	CCGCCGTACC
57783	ACCGCCGCG	CCCCCAACC	, GGCACCCA	· VACCUUCCICE	. CCGGCTCCAC	CGGACGCCCC
5/843	CUGUTCAACO	B DCDGCAACGC	CCCCACMCMC	, AICCACACCI	TCCACGACCA	TCGGCGCGCC
5790]	. AAGGGCGTCG	TCATCGAACA	COGCAGTOTO	, GCCMMCCICI		TCGGCGCGCC
57961	CTCATAGAAC	CCCATGCCGC	. CGGAGGATCA	CGGCTCAAGC	- CCGGCCTCAC	CGCCTCCCTC

58021	TCCTTCGACA	CCTCCTGGGA	AGGTCTGATC	TGCCTGGCCG	CCGGCCACGA	ACTGCACCTT
58081	ATTGACGACG	ACACCCGCCG	AGACGCCGAA	CGCGTCGCCG	AACTCATCGA	CCGGCAGCGC
58141	ATCGACGTCA	TCGACGTCAC	CCCCTCCTTC	GCCCAGCAAC	TCGTAGAGAC	CGGAATCCTC
58201	GACGAGGGCC	GCCACCACCC	CGCCGCCTTC	ATGCTCGGCG	GTGAAGGCGT	CGACGCGAAA
58261	CTCTGGACCA	GGCTCTCCGA	CGTCCCCGGC	GTCACCTCGT	ACAACTACTA	CGGCCCCACC
58321	GAATTCACCG	TCGACGCCCT	CGCCTGCACG	GTCGGCATCG	CACCCCGCCC	CGTCATCGGC
50321	CACCCCTCG	ACAACACGGC	CGCCTACATC	CTCGACGGCT	TCCTGCGTCC	CGTACCCGAA
50//1	GGCGTCGCCG	CCCACCTCTA	CCTCGCCGGC	ACCCAGCTCG	CCCGCGGCTA	CGCCGGCCGG
50501	CCCGGCCTGA	CCCCCCAACC	CTTCGTGGCC	TGCCCCTTCG	GCGCGCCGGG	CGAACGCATG
20201	TACCGCACCG	CCCACCTCCT	CCGGCGCAGT	CCCGGCGGCG	TGGTCGAATA	CCTCGGACGC
20201	GTGGACGATC	ACAMCA AACT	CCCCCCCTTC	CCCATCGAAC	CCGCCGAGAT	CGAGCTCGCC
20021	CTGGCCGGCC	AGAICAAACI	CCCCCGCTIC	CTCCTCCTCC	TECACCECTC	CGCCACCGGA
28681	GAGGCTCGCC	ACCCCGCCG1	CGCCCAGAAC	GCCACACCC	TCGACCCGCG	GGAACTCACC
58/41	GGGCACCTCG	CCCCCCCCC	CCCCCCCTAC	ATTICATECTO	CCCCTTTCCT	TCTCCTCGAC
28801	ACCCTCCCGC	TCACCCCCAA	CCCCAAACTC	CACCECECC	CCCTGCCGGA	CCCCCCTTC
28891	GGTACCGCGC	TCACCCCCAA	CCCCCCCCCC	ACACCCCCTCC	ACCACATOO	CTCCCCCTC
58921	TACGCCGACG	TCCCGCCCCGA	mcccmccmmc	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ACCACTTCTT	CCACECCEEC
28381	TACGCCGACG	TGCTCGGGCT	TCCCTCGTTC	A CCCCTTATICC	CUNCCNNCCT	CAAAACCGAA
59041	GGGCACTCGC	TGCTGGCCAG	CAAACTCGTC	AGCCGIAICC	CCCECCCCAC	CCCCCTCCAC
59101	CTCAACGTCC	GCGCCCTCTT	CGAGCACCGC	ACGGTCTCCT	CCCCCCCACC	CATCCCCCTC
59161	CGGGCCGCGC	AGGCCGGCCC	CGCGCTCACC	GCCGGACCGC	D C C C C C D C D C	CCCCCCCTAC
59221	TCGTACGCCC	AGCGCCGCCT	GTGGTTCCTC	AACCGGCTCG	ACCGCGACAG	COCCOCCIAC
59281	AACATGCCCG	TCGCACTCCG	CCTGCGTGGC	CCCCTGGACA	GCACCGCCAT	GTGCGCCGCA
59341	CTCACCGACG	TCGCCGAACG	CCACGAGGCG	CTGCGCACCG	TGTTCGAGGA	GGACCGGGAC
59401	GGTGCCCACC	AGATCGTGCT	GCCCGCGACC	GGCCTCGGCC	CTCTGCTCAC	CGTGACCGGG
59461	GCCGACGGGA	CGACCCTGCG	TGCCCTCATC	ACCGAGTTCG	TACGCAGGCC	CTTCGACCTG
59521	GCGGCGGAGA	TCCCCTTCCG	CGCCGCACTG	TTCCGCGTCG	GCGACGAGGA	ACATGTACTG
59581	GTCGTCGTCC	TGCACCACAT	CGCCGGGGAC	GGCTGGTCCA	TGGGACCGCT	CGCACGCGAC
59641	GTGGCCGAGG	CCTACCGGGC	GCGGGCGGCC	GGGAGGGCAC	CCGACTGGGA	ACCGCTGCCC
59701	GTGCAGTACG	CCGACTACGC	GCTCTGGCAG	CGGGAGGTGC	TGGGCGCGGA	GGACGACGAG
59761	ACCGGCGAAC	TCTCCGCCCA	ACTCGCCCAC	TGGCGCACCC	GCCTCGCAGG	GGCCCCCGCA
59821	GAACTCACGC	TGCCCACCGA	CCGCCCACGC	CCCGCTGTCG	CCTCCACCGC	CGGAGACCGC
59881	GTCGAATTCA	CCGTGCCCGC	CGGACTCCAC	CAGGCCCTCG	CCGACCTGGC	ACGGGCCCAC
59941	GGCGCGACGG	TCTTCATGGT	CGTCCAGGCC	GCCCTCGCCG	TCCTGCTGTC	ACGTCTCGGC
60001	GCCGGCGACG	ACATCCCCAT	CGGCACCCCG	GTCGCCGGCC	GCACCGACGA	GGCCACGGAG
60061	GAACTGATCG	GGTTCTTCGT	CAACACGCTG	GTGCTGCGCA	CCGACGTGTC	CGGCGACCCG
60121	ACGTTCGCCG	AACTCCTCGC	GCGGGTGCGG	GCCACCGACC	TCGACGCGTA	CGCACACCAG
60181	GACGTGCCAT	TCGAACGTCT	GGTCGAGGTG	TTGAACCCGG	AGCGGTCACT	GGCACGGCAT
60241	CCACTGTTCC	AGGTCATGCT	GACGTTCAAC	GTCCCGGACA	TGGACGGGGT	CGGAAGCGCG
60301	CTGGGGAATC	TGGGGGAACT	GGAGGTCTCC	GGTGAGGCCA	TCCGGACGGA	TCAGACCAAG
60361	GTGGATCTCG	CTTTCACGTG	CACGGAGATG	TACGCCGCGG	ACGGTGCGGC	CTCGGGAATG
60421	CGCGGGGTGC	TGGAATACCG	GCTTGATGTG	TTCGGTGCGG	TACAGGCCCG	GGAAACGACG
60481	GAGCGGTTGG	TGCGGGTGTT	GGAGGGTGTG	GTTTCTGGTG	GGGGTGGGGT	GTCTGTGTCG
60541	GGGGTTGATG	TGTTGGGTGT	GGGTGAGCGG	GAGAGGTTGT	TGGGGTGGGG	TGTGGGTGGG
60601	CCGGTGCCTG	TGGTGCCGGG	TGGTGGGTTG	GTGGGGTTGT	TCGAGGAGCG	GGTGCGGGCC
60661	GACGCGGACG	CGGTGGCCGT	GCGTGGCGCG	GGGGTGGTGT	GGAGTTATGG	GGAGTTGAÁT
60721	GCGCGGGTGA	ATGTGGTGGC	GCGGTGGTTG	GTGGGTCGGG	GTGTGGGGGC	GGAGTGTGGT
60781	GTGGGTGTGG	TGATGGGCCG	CGGGGTGGAT	GTGGTGGTGA	TGTTGCTGGC	GGTGGCGAAG
60841	GCGGGTGGGT	TTTATGTGCC	GGTGGATCCG	GAGTGGCCGG	TGGAGCGGGT	GGGGTGGGTG
60901	CTGGCGGATG	CCGGGGTGGG	GCTGGTTGTG	GTGGGGGAGG	GGTTGTCGCA	TGTGGTGGGG
60961	GATTTTCCTG	GGGGTGAGGT	TTTCGAGTTT	TCGCGGGTTG	TTCGTGAGTC	GTGTCTTGTG
61021	GAGTTGGTGG	CTGCGGATGG	GGTTGAGGTT	CGGAATGTGA	CGGATGGTGA	GCGGGCGTCG
61081	CGTCTGTTGC	CGGGGCATCC	GTTGTATGTG	GTTTATACGT	CGGGTTCGAC	GGGGCGGCCG
611/1	AAGGGTGTTG	TEGTGACECA	TECTTCEETE	GGTGGGTATT	TGGCGCGTGG	TCGGGATGTG
61201	TATGCGGGTG	CCGTTGGTGG	тстссссттт	GTGCATTCGT	CGCTTGCGTT	CGATCTGACG
61261	GTGACGGTTC	#GT#CACGCC	<b>ጥጥጥርርጥርጥርጥ</b>	GGCGGTTGTG	TTGTGTTGGG	TGAGTTGGAC
61221	GAGTCGGCGC	DECECETEES	######################################	GTGAAGGTGA	CTCCGTCGCA	TCTGGGTTTG
61361	CTGGGTGAGC		CCTCCCCC	AACGGCATGC	TGCTGGTGGG	GGGTGAGGCG
01301	TTGTCGGGTG	TOGMOGGIGI	TCACTCCCCT	CACCCTAATC	ССССТСТССТ	GGTGGTGAAT
61441	TTGTCGGGTG	CCACCCACC	T GWG I GGCGI	AVACATVVIC	ТССТТАТССС	GCCTGGTGAG
61201	GCTTATGGTC GAGGTTCCGG	ATTCCCCCTCT	GACGGIGAAC	1919CCGVG1	CGGGTCAGCG	GATGTTTGTT
01201	. GAGGTTCCGG . CTGGATGCGG	AIGGGCCTGT	GCCGWICGGG	CGICCIIICG	GTGAGTTGTA	TGTGGCGGGT
61621	CTGGATGCGG	CGCTGCGGGT	GG TGCCGGTC	GGIGIGGIGG	LCCCCCTCT	GTTCGGGCT
61681	GTGGGTCTGG	CGCGGGGCTA	TCTCGGGCGT	MACCCMACCC	СССУТСТЕСТ	GCGGTGGCG
61741	TGCCCCTTCG	Grececeee	TGAGCGTATG	TACCGTACGG	ACCACY VCCA	CCCGTGGGGG
61801	GTGGACGGCG	CGCTTGAGTT	TGTTGGTCGT	GCGGATGATC	AGGIGAAGGI	CCGIGGITIC
61861	. CGTGTGGAGT	TGGGTGAGGT	GGAGGGTGCT	GTTGCGGCGC	AICCIGAIGI	GGTGCGTGCG

61921	GTTGTTGTGG	TGCGTGAGGA	CCGGCCGGGT	GATCACCGGT	TGGTTGCGTA	TGTCACCGGT
61981	GTTGACACGG	GTGGACTGTC	CTCTGCGGTG	ATGCGTGCCG	TTGCTGAGCG	TCTGCCTGCG
62041	TACATGGTGC	CGTCGGCGGT	GGTGGTTCTG	GATGAGATCC	CGTTGACGCC	GAATGGGAAG
62101	GTGGACCGGG	CGGCGCTTCC	GGTGCCGGGG	GTGGAGGCGG	GCGCGGGCTA	CCGGGCGCCT
62161	CTTTTCCCCCC	GGGAGGAGGT	GTTGTGTGGT	CTGTTCGCGG	AGGTGCTGGG	GCTGGAGCGG
62221	CTCCCCCTCC	ACGATGATTT	CTTCCCCCTTC	CCTCCTCATT	СТСТТСТССС	GACTCGTCTG
62221	ADDECCED	TCCGTGCGGT	CTICGGGTTG	CACCCCCCTC	TECEGECETT	CTTCGAGGCG
62281	ATTTCGCGTG	TCCGTGCGGT	GITGGGIGII	CAGGCGGGTG	CCCCMMMCCC	CCTCCGGGTG
62341	CCGACGGTGA	GCCGTTTGGA	GCGGTTGCTG	CGGGAGCGGI	CGGCIIIGGG	CCACCCTCTC
62401	CCTCTGGTGG	CACGGGAGCG	GACGGGTCGG	GAGCCGTTGT	CGTTCGCTCA	GCAGCGTCTG
62461	TGGTTCCTTG	AGGAACTGGA	AGGGCCCGGT	GCTGCGTACA	ACATTCCGAT	GGCGCTGCGT
62521	CTGGCCGGTG	TTCTGGACGT	CGAAGCGCTG	CACCAGGCGC	TCATTGATGT	CATCGCCCGC
62581	CACGAAAGCC	TCCGCACCCT	CATCGCGCAG	GATGCGGGTA	CTGCCTGGCA	GCACATCCTG
62641	CCCGTTGACG	ACCCTCGCAC	CCGTCCCGGT	CTCCCTCTTG	TGGACATCGG	TGCCGACGCC
62701	CTTCAGGAGC	GGCTCGACGA	AGCCGCCGGC	CGGCCCTTCG	ATCTCGCGGC	CGATCTCCCG
62761	GTCCGGGCCA	CAGTCTTCCG	CCTCACCGAC	AACGACCACA	TCCTCCTGGT	CGTGGCCCAT
62821	CACGTGGCCT	TCGACGCGAT	GTCCCGTGTG	CCGTTCATCC	GGAACGTCAA	GCGCGCCTTC
62881	GAGGCCCGTA	CGAACGGCGC	GGCCCCGAC	TGGAGGCCGC	TGCCCGTGCA	GTACGCGGAT
62001	TATECCECCT	GGCAGCGCGA	CGTACTCGGC	ACGGAGGACG	ACGAGTCGAG	CGAGCTGTCG
62001	CCCACCECC	CCTACTGGCG	CACCCAACTA	CCCTCACTAC	CGGCCGAGTT	GGCGCTCCCG
63001	BOCCAGCICG	CCCGGCCCGC	CACCCAACIA	TACCAACCC	CCAACCTCCA	CTTCACCGTC
63061	ACGGACCGGG		CGTCGCCTCG	CMCCCCCCCCC	CCCACCCTCT	CACCCTCTTC
63121	CCCGCCGGGG	TGTATGACGG	CCTGGTGGCT	CTCGCCCGTG	CCGAGGGIGI	CACGGICIIC
63181	ATGGTCGTGC	AGGCGGCGCT	GGCCGCGCTC	CTCTCCCGGC	1 CGGCGCCGG	COACGACATC
63241	CCCATCGGCA	CCCCGATCGC	CGGCCGCACC	GACCAGGCCA	CCGAAGATCT	CATCGGCTTC
63301	TTCGTGAACA	CCCTCGTCCT	GCGCACCGAC	GTGTCCGGCG	ACCCGACGTT	CGCCGAACTC
63361	CTCGCGCGCG	TCCGGGCCAC	CGACCTCGAC	GCCTACGCCC	ACCAGGACAT	CCCCTTCGAA
63421	CGACTGGTCG	AAGCGGTCAA	CCCCGAGCGC	TCCCTCGCCC	GCCACCCCCT	CTTCCAGGTC
63481	ATGCTGACCT	TCGACAACAC	GATTGACCGT	GAGGTCACGG	AGGGCTTCGC	GGGCCTCGGG
63541	GTGGAAGGCC	TGCCGCTGGG	TGCGGGAGCG	GTCAAATTCG	ATCTGCTCTT	CGGTCTCTCC
63601	GAGGTGGGCG	GCGAGCTGCG	CGGAGCCGTG	GAGTACCGCT	GCGATCTCTT	CGACCACCCG
63661	ACGGTGGCGC	AGCTCGCGGA	GCGCCTGGTG	CGGGTACTGG	AGCGCGTGGC	TTCCGACGCT
63721	TCGGTACGCA	CGGGTGAACT	GCCGGTCGTC	GGCGAGGCGG	AGCGCGCCCG	TGTCCTGACG
63781	CACTCCAATC	ACACGGGCGT	CCCCGGTGTG	CCGGAAACAT	TCCTGGAGTT	GTTCGAGGCG
62011	CACCECCCC	CCCGGGGTGA	CCCCCCCCCC	GTCGTGTACG	AGGGTGAGGT	TCTGTCGTAC
63641	CAGGICGCGG	ACGCGCGGGC	CAACCGCCTG	CCCCCCCTCC	TECTECCECE	CGGTGCGGGC
63901	CGGGAACTCG	TCGTGGGGGT	CCCCCTCCCC	CCTCCCCTCC	ATCTGATCGT	GGCCCTGCTG
63961	CCGGAGCATT	AGTCCGGTGC	CCCCTACCTT	CCCCTGGACC	CCCACTACCC	GGCCGAGCGG
64021	GCCGTGCTCA	TGGTCACCGA	CGCGTACGTT	CTCCTGGACC	TCACCTCCAC	CCACCTACCT
64081	CTGGTCCACA	TGGTCACCGA		CACCACCACC	CCACCCCCC	CACCCTCCTC
64141	ACTCTGCGGA	CCGTTCCCCG	GGTCGAGCTG	BACGACGAGG	CGACCCCCCC	CMCCCTGGTC
64201	GCAGCCCCCG	CCACAGGGCC	CGACGTGAAG	ATGTCCGCCT	TCCACCCGC	CACCCACCC
64261	TACACCTCCG	GGTCCACGGG	CCGCCCCAAG	GGCGTCGTCA	TCAGCCACGG	CAGCCTGGCC
64321	AACTTCCTCG	CCTGGGCGCG	GGAAGACCTG	GGTGCCGAGC	GGCTCCGGCA	CGTCGTGTTG
64381	TCCACGTCCC	TCAGCTTCGA	CGTCTCCGTG	GTCGAACTCT	TCGCCCCGCT	GTCCTGCGGC
64441	GGCACCGTCG	AGATCGTCCG	GAATCTGCTG	GCCCTCGTCG	ACCGCCCCGG	CCGATGGTCC
64501	GCGAGCCTGG	TCAGCGGCGT	GCCGTCGGCC	TTCGCGCAGC	TGCTGGAAGC	CGGCCTCGAC
64561	CGGGCCGACG	TGGGCATGAT	CGCCCTGGCC	GGCGAGGCGC	TGTCCGCTCG	CGACGTGCGC
64621	CGCGTCCGCG	CTGTGCTGCC	CGGGGCCCGC	GTGGCCAACT	TCTACGGCCC	GACCGAAGCC
64681	ACCGTCTACG	CCACGGCCTG	GTACGGCGAC	ACCCCCATGG	ACGCCGCGGC	CCCCATGGGC
64741	CECCCCTEC	GCAACACGTG	TGTGTATGTG	CTGGACGACG	GGCTGCGCGT	GGTGCCGGTC
6/801	CCTCTCCTCC	GTGAGCTGTA	TGTGGCGGGT	GTGGGTCTGG	CGCGGGGCTA	TCTCGGGCGT
6/061	CTCCCTCTCA	CGGCGGAGCG	GTTTGTGGCG	TGTCCGTTCG	GTGCGCGGG	TGAGCGTATG
04001	MARCCCACCC	GGGATTTGGT	CCCCTCCCC	GTGGACGGCA	CGCTTGAGTT	TGTTGGTCGT
04921	CCCCNTCNTC	AGGTGAAGGT	CCCTCCTTCC	CCTCTCCACT	TGGGTGAGGT	GGAGGGTGCT
64981	GCGGATGATC	ATCCTGATGT	CCGIGGIIIC	CTTCTTCTC	TCCCTCACCA	CCGGCCGGGT
65041	GTTGCGGCGC	ATCCTGATGT	GGTGCGTGCG	CUMCACACC	CMCCACMCMC	CTCTCCCCTC
65101	GATCACCGGT	TGGTTGCGTA	TGTCACCGGT	GTTGACACGG	GIGGACIGIC	CTCTGCGGTG
65161	ATGCGTGCCG	TTGCTGAGCG	TCTGCCTGCG	TACATGGTGC	CGTCGGCGGT	GGIGGIICIG
65221	GATGAGATCC	CGTTGACGCC	GAACGGGAAG	GTGGACCGGG	CGGGTCTTCC	GGTGCCGGTG
65281	GTGTCGGTGG	CGGGGTTCTG	TGCGCCGTCG	TCGCCGCGGG	AGGAGGTGTT	GTGTGGTCTG
65341	TTCGCGGAGG	TGCTGGGTGT	TGAGCGGGTG	GGGGTGGACG	ATGGGTTCTT	CGATCTGGGC
65401	GGGGACAGCA	TTCTGTCGAT	TCAGTTGGTG	GCGCGGGCTC	GTCGGGCGGG	TCTGGAGTTG
65461	TCGGTTCGGG	ATGTTTTCGA	GGGCCGTACG	GTACGTGCTC	TGGCGGCTGT	GGTGCGTGGT
65521	TCGGACGCTG	GGGCGGTTGG	TGTGGTGGGG	GGTGCTGAGA	. TTGTGCTGCC	GGGTGTGGGT
65581	GAGGTGGAGC	GGTGGCCGGT	GGTGGAGTGG	CTGGCGGAGC	GTGGTGGGGG	GTCGCTGGGT
65641	GGTGTGGTTC	GGGGTTTCAA	TCAGTCTGTT	GTGCTTGCTG	TGCCTGCTGG	GTTGGTGTGG
65701	GAGGAGTTGC	GGGTGTTGTT	GGGTGCGGTG	CGGGATCGGC	: ATGAGGCGTG	GCGGTTGCGG
65761	. CTCCTCT	י ככפנפפפרפידיי	GTGTGTTGAT	GGTGTTGTTC	CGGATGACGG	GTCGTGGATT
00/01	. GIGGIGGAII	. 5555555511		5020220		

65821	GTCCGGTGTG	ACCTGAGCGG	TATGGGTGTG	GATGGTCAGG	TGGATGCTGT	GCGGGCTGCG
65881	GCTGTGGAGG	CGCGTGCGTG	GCTGGATCCG	TCGGTGGGCC	GGGTGGTGCG	GGCGGTGTGG
65941	CTGGAGCGTG	GTGGTGATCG	TTCGGGGGTG	TTGGTGCTGG	TGGCGCATCA	CCTGGTGGTG
66001	GACGGTGTGT	CGTGGCGGGT	GGTGCTGGGG	GATCTGGCGG	AGGGGTGGGC	GCAGGTGCGT
66061	TCGGGTGGCC	GTGTGGAGTT	GGGTGTGGTG	GGGACGTCGT	TGCGGGGTTG	GGCGGCGGCG
66121	TTGGCGGAGC	AGGGCCGGCG	GGGCGAGCGT	GCGGGGGAGG	TGGAGTTGTG	GTCGCGGATG
66181	GTTCGGGGTG	CGGATGTTCT	GGTGGGGTCG	CGTGCTGTGG	ATGGTGCGGT	GGATGTTTTC
66241	GGCGGGGTGG	TGTCGGTTGA	TTCGCGGGCG	TCGGTGTCGG	TGTCGCGTGC	GTTGCTGACG
66201	GAGGTGCCGT	CCCTTCTCCC	TETTEGTETE	CAGGAGGTGT	TGCTGGCGGC	ATTCGGGCTG
66361	GCGGTCGCGC	CCTCCCCCC	CCGGGGTGGG	CCGGTTGTGG	TGGATGTTGA	GGGGCACGGG
66421	CGTAATGAGG	ACCCTCTCCC	CCCCCCTCAT	СТСТСТССТА	CTGTCGGTTG	GTTCACCAGT
00421	GTGTATCCGG	TCCCTCTCCC	CCTCCACTCC	CCTTCCTGGG	ACGAGGTGCG	TGCGGGTGGT
00401	CCGGTGGTGG	CCCCTCTCCC	CCCTCACCTC	AACCACACTC	TECETTEET	GCCTGACCAG
66541	GGTCTGGGTT	AMCCCAMCCM	CCCCMARCTC	CARCCCCACC	ACCOTOCT	TCTGGCCCGG
9990T	CATGCCACCC	ATGGCATCCT	GCGCTATCIC	CTCCCCCCCT	TCACCACCGC	DACCGACGAC
66661	CATGCCACCC	CGCAGTTCGG	TTTCAACTAC	CICGGCCGCI	CCCCCTTCCC	CCTCCCACCAC
66721	ACCGGTGACG	AGGGGATGAC	GGACTGGGTC	CCCGTGTCAG	GGCCG11CGC	CACCCTGGAC
66781	GGCCAGGACC	CCGAACTGCC	CGTGGCGCAC	GCGGTCGAGT	TCAACGCGAT	CAUGUIGGAU
66841	ACCCCGGAGG	GCCCGCGCCT	GGGCGTGACA	TGGTCGTGGC	CGACGACGCT	CCTCCAACAC
66901	TCCCGGATAC	GGGAGCTGGC	CCGCTACTGG	GACGAGGCCC	TGGAAGGGCT	GGTCGAACAC
66961	GCCCGGCACC	CCGAAGCCGG	CGGCCTCACG	CCGTCCGACG	TGACGCTGGT	GGAAGTGAAC
67021	CAGGTGGAGC	TCGACCGTCT	GCAGGCGGGG	GTCGCCGGTG	GTGCGGAGGA	GATTCTGCCG
67081	GTGTCGGCCC	TGCAAGAGGG	GCTGCTGTTC	CACAGCGCGT	TGGCCTCTGG	TGGGGTGGAC
67141	GTGTATGTGG	GGCAGCTGGT	GTTCGATCTG	GTCGGTCCGG	TGGACGTCGA	CCGGCTGCGC
67201	GCGGCTGTCG	AAGGTCTGGT	GGCGCGGCAC	GGGGTGCTGC	GGTCGGGATA	CCGCCAACTG
67261	CGGTCGGGCG	AATGGGTTGC	GGTCGTCGCA	CGACAGGTGG	ATCTGCCGTG	GCAGTCCATC
67321	GACGTGCGCG	ACGGCGGTAT	CGACGGGTTG	GTGGAAGAGG	AGCGCTGGCG	CCGGTTCGAC
67381	ATGGGCCGGG	GTCCACTGGC	GCGCTTCGTG	CTCATCCGGA	CGCACGACGA	TCGTTTCCGG
67441	TTCGTCATCA	CGTACCACCA	CGTCGTCCTC	GACGGCTGGT	CCGTCCCGGT	GCTGCTGCGT
67501	GAGCTGCTGG	CCCTGTACGG	CAGCTCGGGG	GACGTATCGG	TTCTGCCGGG	GGTCCGCTCG
67561	TACGGCGATT	TCCTGCGATG	GGTCGCCGCG	CGAGACGCCG	CAGCCGCCGA	AGGCGCATGG
67621	CGGCGGGCGC	TGACGGGCCT	GGAGGAGCCG	TCGCTCGTCG	CGCCAGGCGT	TTCCCGAGAC
67681	GGGGTCGTCC	CGGCGGCGTT	CCACGGTGCG	GTCGACGGCG	ACCTCTCGCA	GAAGATCGTG
67741	GCGTGGGCGC	GCGGGCGTGG	TGTGACGGTT	GCGTCGGTGG	TACAGGCGGC	GTGGGCCTTG
67801	GTGCTGGGGC	GGTTGATGGG	TCGGGACGAT	GTGGTGTTCG	GGGTGACGGT	GTCGGGTCGG
67861	CCTGCCGAGG	TGGTGGGTGT	GGAGGACATG	GTCGGTCTGT	TCGTGAACAC	CATTCCGTTG
67921	CGGGCGCGGC	TGGATCCGGC	GGAGTCGCTG	GGTGGTTTCG	TGGAGCGGCT	GCAGCGGGAG
67981	CAGACGGAGC	TGCTGGAGCA	TCAGCATGTC	CGGCTGGCGG	AAGTCCAGCG	GTGGGCCGGG
68041	CACAAGGAAC	TCTTCGATGT	CGGAATGGTC	TTCGACAACT	ACCCGGTTTC	TTCTGAATCC
68101	CCGGAAGCGG	AATTCCAGAT	CTCACGAACA	GGCGGATACA	ACGGAACCCA	CTACGCACTG
68161	AACCTCGTTG	CTTCCATGCA	CGGCCTGGAG	CTGGAACTGG	AAATCGGTTA	TCGGCCGGAT
68221	GTGTTTGATG	CGGGTCGGGT	GCGTGAGGTG	TGGGGATGGT	TGGTGCGGGT	GTTGGAGGGT
68281	GTGGTTTCTG	GTGGGGGTGG	GGTGTCTGTG	TCGGGGGTTG	ATGTGTTGGG	TGTGGGTGAG
68341	CGGGAGAGGT	TGTTGGGGTG	AGGGGTGTGG	GTGGGCCGGT	GCCTGTGGTG	CCGGGTGGTG
68401	GGTTGGTGGG	GTTGTTCGAG	GAGCGGGTGC	GGGCCGACGC	GGACGCGGTG	GCCGTGCGTG
68461	GCGCGGGGGT	GGTGTGGAGT	TATGGGGAGT	TGAATGCGCG	GGTGAATGTG	GTGGCGCGGT
68521	GGTTGGTGGG	TCGGGGTGTG	GGGGCGGAGT	GTGGTGTGG	TGTGGTGATG	GGCCGCGGG
68581	TGGATGTGGT	GGTGATGTTG	CTGGCGGTGG	CGAAGGCGGG	TGGGTTTTAT	GTGCCGGTGG
68641	ATCCGGAGTG	GCCGGTGGAG	CGGGTGGGGT	GGGTGCTGGC	GGATGCCGGG	GTGGGGCTGG
69701	TTGTGGTGGG	GGAGGGGTTG	TCGCATGTGG	TGGGGGATTT	TCCTGGGGGT	GAGGTTTTCG
69761	AGTTTTCGCG	GGTTGTTCGT	GAGTCGTGTC	TTGTGGAGTT	GGTGGCTGCG	GATGGGGTTG
60701	AGGTTCGGAA	TETENCEGNT	GGTGAGCGGG	CGTCGCGTCT	GTTGCCGGGG	CATCCGTTGT
60021	ATGTGGTTTA	TACCTCGGGT	TCGACGGGGC	GCCGAAGGG	TGTTGTGGTG	ACGCATGCTT
60001	CGGTGGGTGG	CTATTTCCCC	CCTCCTCCC	ATGTGTATGC	GGGTGCCGTT	GGTGGTGTGG
60001	GGTTTGTGCA	TO THE TENED OF THE PROPERTY O	CCCTTCCATC	TEACGGTGAC	GGTTCTGTTC	ACGCCTTTGG
69001	TGTCTGGCGG	. 11CG1CGC11	TTCCCTCACT	TGACCGIGAC	GGCGCAGGGG	GTGGGTGCCT
C0101	CGTTCGTGAA	CCMCVCMCCC	TIGGGIGAGI	CTTTCCTC	TGAGCTGGAG	GGTGTGGTGG
69121	CGTTCGTGAA	CAMCCACTCCG	CECCCCCE	PCCCCLACAGG	GGGTGGTGCG	CTGCGTGAGT
69181	GGCGTGAGCG	CAIGCIGCIG	GIGGGGGGIG	4000011010	TEGTCCGACG	GAGCTGACGG
69241	GGCGTGAGCG	TAATUUGGT	A TO COCCO	TGWWIGCIIW	1991000ACG	CCTCTCCCCA
69301	TGAACTGTGC	. CGAGTTCCTT	ATCGCGCCTG	MINCHINCHOCA MINCHINCHOCA	TCCGGVIGG	CGGGTGGTGC
69361	TCGGGCGTCC	TTTCGCGGGT	CAGCGGATGT	TIGITOTGA		GGCTATCTC
69421	CGGTCGGTGT	GGTGGGTGAG	TTGTATGTGG	TOUGHT TOTOGG	CTTGGCGCGG	CCCCCTCICC
69481	GGCGTGTGGG	TCTGACGGCG	GAGCGGTTTG	TGGCGTGTCC	CCCCCCCCC	COGGGIGAGC
69541	GTATGTATCG	CACGGGGGAT	TIGGIGCGGI	CMMTCCTCCA		GVGIICGIIG
69601	GCCGTGCGGA	TGATCAGGTG	AAGGTCCGTG	GTTTCCGTGT	BCBCCBCCCB	CACCA CCCCC
69661	GTGCTGTTGC	GGCGCATCCT	GATGTGGTGC	GTGCGGTTGT	TGTGGTGCGT	GAGGACCGGC

69721	CGGGTGATCA	CCGGTTGGTG	GCTTACGTGA	CTGCGGGTGG	TGTTGGTGGG	GATGGTCTTC
69781	GTTCCGCGAT	CTCTGGTTTG	GTGGCTGAGC	GTCTGCCTGC	GTACATGGTG	CCGTCGGCGG
69841	TGGTGGTTCT	GGATGAGATC	CCGTTGACGC	CGAACGGGAA	GGTGGACCGG	GCGGCGCTTC
69901	CGGTGCCGGA	GGTGGAGGCG	GGCACGGGCT	ACCGGGCGCC	TGTTTCGCCG	CGGGAGGAGG
69961	TGTTGTGTGG	TCTGTTCGCG	GAGGTGCTGG	GTGTTGAGCG	GGTGGGGGTG	GACGATGACT
70021	TCTTCGAGTT	GGGTGGTCAT	TCTCTTCTGG	CGACTCGTCT	GATTTCGCGT	GTCCGTGCGG
70081	тсттссстст	TGAGGCGGGT	GTGCGGGCGT	TGTTCGAGGC	GCCGACGGTG	AGCCGTCTGG
70141	AGCGGTTGCT	CCGGGAGCGG	TCGGGTTTGG	GGGTGCGGGT	GCCTCTGGTG	GCACGGGAGC
70201	GGACGGGTCG	GGAGCCGTTG	TCGTTCGCTC	AGCAGCGTCT	GTGGTTCCTT	GAGGAACTCG
70261	AAGGCCCGG	TGCTGCGTAC	AACATTCCGA	TGGCGCTGCG	TCTGGCCGGT	GTTCTGGACG
70321	TCGAAGCGCT	GCACCAGGCG	CTCATTGATG	TCATCGCCCG	CCATGAAAGC	CTCCGCACCC
70381	TCATCGCGCA	GGATGCGGGT	ACTGCCTGGC	AGCACATCCT	GCCCGTTGAC	GACCCTCGCA
70441	CCCGTCCCGG	TCTCCCTCTT	GTGGACATCG	GTGCCGACGC	CCTTCAGGAG	A CA CACATA
70501	AAGCCGCCGG	CCGGCCCTTC	GACCTCGCGG	CCGATCTCCC	GGTCCGGGCC	ACAGICITCC CCCCA CGCCT
70561	GCCTCACCGA	CAACGACCAC	ATCCTCCTGC	TGGTCCTGCA	CACATCGCC	CCCCCACGAC
70621	GGTCGATGGG	CCCGCTCGCC	CGCGATCTCT	CCACGGCGTA	TEN TO COCCO	TCCCACCACC
70681	CCGCCTCGGC	CTGGCGGCCC	CTCTCCGTGC	AGTACGCGGA	CCCCACCTC	CCTACTCC
70741	ACGTACTCGG	CACGGAGGAC	GACGAGTCGA	GCGAGCIGIC	CACCCACCIC	CCCLCCCCC
70801	GCACCCAACT CCGTCGCCAC	AGCGTCACTC	CCAGCCGAGT	A CTT CACCAT	CCCCCCCCAC	GTCCACCGCA
70861	GCCTCGCCGA	CTACCGGGGC	CCCCACCCTC	TCACCAT	CATECTCCTC	CAGGGGGGGG
70921	TGGCCGCGA	CCTCGCCCGT	CTCCCCCCCC	CCCACGACAT	CCCCATCGGC	ACCCCGATCG
70981	CCGGCCGCGCT	CCTCTCCCGG	ACCCA ACATIC	TCATCGGCTT	CTTCGTGAAC	ACCCTCGTCC
71041	TGCGCACCGA	CCTCTCTCCCCC	CACCCCACCT	TCGCCGAACT	CCTCGCGCGC	GTCCGGGCCA
11101	CCGACCTCGA	CCCCTACGCC	CACCAGGACA	TCCCCTTCGA	ACGACTGGTC	GAAGCGGTCA
71701	ACCCCGAGCG	CTCCTCGCC	CECCACCCC	TCTTCCAGGT	CATGCTCGCC	TTCAACAACG
71261	CCGAGACGAG	CACCCCCCTG	CCCATGGCCG	AAGGCCTGGC	TGCCTCCCGG	CAGGACATCG
71201	AACCGGGCGT	GGCGAAATTC	GATCTGGCCC	TGTATTGCAA	CGAATCCCGC	GGTGAGACGG
71401	GCGACCACCA	GGGCATCAGA	AGTGTCTTCG	AGTACCGCCG	CGACCTGTGG	GACGAGGACA
71461	CCGTGCGGCA	GCTCGCCGAC	CGGTTCCTGC	ATGTTCTCGC	TGCTTTTGCG	GCAGCCCCGG
71521	AGCAACGTGC	GAGCAGCGTC	GACGTGCTCC	GGGCGGGCGA	GCGCGACCAA	CTGCTGCACG
71581	ACTEGAACGA	CACGGCTGCC	GCTCTCCCCC	CGGCACTGCT	GCCCCAGCTG	TTCGAGGAGC
71641	AGGTGCGGCG	CACCCCGCAC	GATGTCGCTC	TCGTCTCGGG	GAACATCCGG	CTCACGTACG
71701	CGGAGCTGGA	CGCGCGCGCG	AACCGCCTGG	CCCACTTGCT	GCTCGCCCGG	GGCGCGGCCC
71761	CCGAGACGTT	CGTCGCGGTG	GCCCTGCCCC	GGACCGAAGA	GCTCCTGGTG	GCCCTGCTGG
71821	CCGTACAGAA	AACAGGTGCC	GGACATCTGC	CGCTGGATCC	CGGCTTCCCG	GCCGAGCGGC
71881	TCAGCTACAT	GCTGGATGAC	GCCCGCCCTG	CGGTGGTCCT	CACCACGGAG	GACATCAGCG
71941	CCCGCATACC	CGGCGGAAGC	CATGTGGTAC	TCGACTCCGA	GCAGGTGACC	GGCGAGCTCC
72001	ACGACCACCC	GGCCACGTCC	CCCGCCGGCC	GGGGCAACCC	CGCCGGCCCG	GCGTACGTGA
72061	TCTACACCTC	CGGATCCACC	GGCCAGCCCA	AGGGCGTCGT	CGTACCGTCG	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
72121	TGAACTTCCT	GGCCGACATG	GTGCCCAGGC	TCGGGCTCCG	CGGTGGCGAC	CGCCIGCIGI
72181	CCGTGACCAC	CGTGGGCTTC	GACATCGCGG	CCCTCGAGCT	CTTCGTCCCG	CCCCCCAGA
72241	GCGCCACCGT	CGTCCTCGCG	GACGGGGAGA	POGGTCCGCGA	COCGGCGCTG	GCCCGCCAGA
72301	CGTGCGAGGA	CCACGGCGTC	ACCATGGTCC	AGGCGACACC	CCTCCCCCT	CACGCCCCTGA
72361	TCGCCGACGC	GGGCGACAGC	CTGCGCGGCG	TGCACGCCGT	CGTGGGGGGT	GAGGCCCTGA
72421	GCCCCGGGTT	GCGCGACGCG	CIGACACGAG	CCCCCCACCIC	CGCCGGGGAC	AGCGCTCCCC
72481	CGACGGAGAC	GACCATCTGG	TCCACCAGCG	CCCTCTATCT	CCTCCACCCT	GCTTTGTGTG
72541	CTTCGATCGG	CACACCCATC	CCCCACCACTC	ACATCCCCC	CCACGCCTC	GCGCGGGGCT
72601	. TCGTGCCACC	BCCCCCTCGCA	, GGCGWGCIGI	COUNTRACT	CTGCCCCTTC	GGTGCGCCGG
72661	ATCTCGGGCG	TGCGGGTCIG	CCCCATCTCC	TGCGGTGGCG	GGTGGACGGC	GCGCTTGAGT
72701	. GTGAGCGTAT	TCCCCATCO	CACCTCAACC	TCCGTGGTTT	CCGTGTGGAG	TTGGGTGAGG
72041	TIGITGGICG	, IGCGGYIGYI , жешжесесе	CATCCTGATG	TGGTGCGTGC	GGTTGTTGTG	GTGCGTGAGG
72011	ACCGGCCGGG	TGIIGCGGCC	TTGGTTGCGT	ATGTCACCGG	TGTTGACACG	GGTGGACTGT
72901	CCTCTCCCCT	CATCCCTCCC	GTTGCTGAGC	GTCTGCCTGC	GTACATGGTG	CCGTCGGCGG
72001	. ССТСТОСОВТ ПССТСТОСОВТ	. CCDACDCOC	CCGTTGACGC	CGAATGGGAA	GGTGGACCGG	GCGGCGCTTC
73081	CGGTGCCGG	GGTGGAGGCG	GGCGCGGGCT	ACCGGGCGCC	: TGTTTCGCCG	CGGGAGGAGG
73141	TGTTGTGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TCTGTTCGCG	GAGGTGCTGG	GTGTTGAGCG	GGTGGGGGTG	GACGATGATT
73201	$ \pi$ C $\pi$ T $C$ CCCCT $T$	GGGTGGTCAT	TCTCTTCTGG	GACTCGTCI	GATTTCGCGT	GICCGIGCGG
73261	T	TGAGGCGGGT	GTGCGGGCGT	TGTTCGAGGC	: GCCGACGGTG	AGCCGTTTGG
73321	ACCCCTTCCT	CCGGGAGCGG	TCGGGTTTGG	GGGTGCGGGT	GCCTCTGGTG	GCACGGGAGC
73381	I GGACGGGTCG	GGAGCCGTTC	F TCGTTCGCTC	AGCAGCGTCI	GTGGTTCCTT	GAGGAACTGG
73441	L AAGGGCCCGG	TGCTGCGTAC	: AACATTCCGA	A TGGCGCTGCG	TCTGGCCGG1	GITCIGGACG
73501	L TCGAAGCGCT	GCACCAGGC	CTCATTGAT	TCATCGCCCC	CCACGAAAGC	CICCGCACCC
73567	1 TCATCGCCC	CGACAGTGAC	GGCACGGCC	GGCAGCAGG1	GCTGCCCGTC	GGTGACCCCG

73621	CCGCGCGACC	GGCTCTTCCG	GTCGTACAGA	CCGACGCCGA	CACCCTCGTC	GCGAAACTGA
73681	ACGAGGCCGT	CGGCCGCCCC	TTCGACCTCA	CGGCCGAGAT	GCCCCTGCGT	GCCACCGTCT
73741	TCCGGGTGGC	CGACGAGGAC	CACGCGCTGC	TGCTGGTGTT	CCACCACATC	GCCGGCGACG
73801	GCTGGTCGAC	GGGCCTGCTC	GCCCGCGACC	TGTCCACCGC	GTACGCAGCC	AGGCTCGAAG
73861	GCCGGGACCC	CCAACTGCCA	CCCCTCCCCG	TGCAGTACGC	GGACTACGCG	GCCTGGCAGC
73001	GCGACGTACT	CGGCACGGAG	GACGACGAGT	CGAGCGAGCT	GTCGGCCCAG	CTCGCCTACT
72091	GGCGCACCCA	ACTTGCCGAC	CTCCCAGCCG	AGTTGGCCCT	CCCGGCGGAC	CGGGTCCGGC
74041	CCGCCAGGGC	CTCCTACGAA	GGAGGCCGGG	TCGGCTTCAC	CGTCCCCGCC	GGGGTCCTCC
74101	GCGACCTCAC	CCCCCTCCCC	CGTGTCGAGG	GTGTCACGGT	CTTCATGGTC	GTGCAGGCGG
74101	CGCTGGCCGC	GCGCCTGGCC	CGCCTCGGCG	CCGGCGACGA	CATCCCCATC	GGCACCCCGA
74201	TCGCCGGCCG	CACCGACCAG	GCCACCGAAG	ATCTCATCGG	CTTCTTCGTG	AACACCCTCG
74221	TCCTGCGCAC	CACCGACCAC	GCCGACCCGA	CGTTCGCCGA	ACTCCTCGCG	CGCGTCCGGG
74201	CCACCGACCT	CGACGCCTAC	GCCCACCAGG	ACATCCCCTT	CGAACGACTG	GTCGAAGCGG
74341	TCAACCCCGA	CCCCTCCTTC	CCCCCCCACC	CCCTCTTCCA	GGTCATGCTC	GCCTTCGACA
74401	ACACGGCCGA	CCCACCCCC	GTAGAAGACT	TCCCCGGACT	GTCCGCAGCC	GGGCTGCCGT
74401	TGGGTGCGGG	CCCCCCAAC	TTCGATCTGC	TCTTCGGTCT	CTCCGAGGTG	GGCGGCGAGC
74521	TGCGCGGAGC	CCTCCACTAC	CCCTCCCATC	TCTTCGACCA	CCCGACGGCC	GCACGGATCG
74501	CGGAGCGCCT	CCTCCCCCTC	CTCCACCGC	TCGCCGCCGA	CCCGTCGGTA	CGCCTGGGCG
74041	AGCTGCCCGT	CCTCACCCAC	CCCCACCCC	CCTGCGTCCT	GACGGAGTGG	AACGACACCG
74701	CCGTCCCCGG	CCTCACCCCA	ACCCTCTCCC	CGCTGTTCGA	GGCACGGGCC	GCAGCCCGGG
74/01	GCGACGCGCC	CCCCCTCCTC	TACCACCETC	AAGAACTGTC	GTACCGTGAA	CTGAACACAC
74021	GCGCCAACCG	CCTCCCCAT	CTCCTGGCCG	AGCACGGCGC	AGGCCCCGAG	CGGTTCGTCG
74881	GTGTGGCCCT	CCTCGCCCAT	CCCCACCTCC	TACTECCACT	CTCCCCCTC	GTGAAATCGG
74941	GCGCGGCCTA	CCMACCCCMC	CACCCCGACT	ACCCGCCCGA	CCGCCTCGCG	TACATGGCCG
75001	GCGCGGCCTA	CCCCCCCCCC	CTCCTCACCC	CCCCCCACCT	CGAACTCCCC	GGGTCCGTCC
/2001	CGCGGATCGG	CCCCGTGGCG	ACACACACACC	CCCCCACACT	CCCCACCCC	CCCGGCACGA
75121	ACCCCGGCAC	GCTGGACGAC	CACCCCCACC	CCCCCTACAT	GATCTACACC	TCCGGATCCA
\219T	CCGGCCGCCC	CARCCCCCCC	CTCCTCTCC	ACGGCGCCAT	CGTCAACCGG	CTCGCCTGGA
75241	TGCAGGCGGA	CHAGGGGGGC	GACGCGACCG	ATCGTGTCTT	GCAGAAGACT	CCGGCCGGTT
75301	TCGACGTGTC	CCTCTCCCAC	TTCTTCTCCC	CCCTCCTCGA	GGGCGCGGTC	CTCGTGTTCG
75361	CCCGGCCCGG	CCCCCACCCC	CACCCCCCC	ATCTGGCCGG	ACTCATCGAG	CGCGAGCGCA
75421	TCACCACGGC	A CAMPUTCOTO	CCCTCCATCC	TECECETETT	CCTCGAAGAG	CCCGGCGCGG
75481	CACTCTGCAC	CCCACTCACC	CCCCCCATAC	CCACCCCCCA	GGCCCTCGGC	ACGGACCTGG
75541	CCGTGGACTT	CCCCCCAAA	CTCCCCCTCC	CCCTCCACAA	TCTGTACGGC	CCGACCGAAG
75601	CGGTGGACTT	TOUCH COCA	CACCCCTATC	ACCCCCCCAC	CGGCACGGCC	ACGGTCCCCA
12007	TTGGCCGCCC	TGTCACCCAC	ATCCCCACCT	ACGTCCTCGA	CGCCGCCCTG	CGTCCTGTGC
75721	CACCGGGCGT	CAICIGGAAC	CTCTATCTCC	CCGCCCCCGC	CCTGGCCCGC	GGCTACCACG
12181	GCCGCCCGGC	ACTCACCCCC	CACCCCTTTC	TEGESTETE	GTTCGGTGTG	CCGGGTGAGC
75001	GTATGTATCG	CACCCCCCAT	TTCCTCCCCT	GGCGGGTGGA	CGGCACGCTT	GAGTTTGTTG
75901	GTCGTGCGGA	TCACGGGGGAI	AACCTCCCTC	GTTTCCGTGT	GGAGTTGGGT	GAGGTGGAGG
75961	GTGCTGTGC	CCCCCATCCT	CATCTCCTC	CTCCCCTTCT	TGTGGTGCGT	GAGGACCGGC
76021	CGGGTGATCA	CCCCMMCCMC	CCTTACCTCA	CTGTGGGTGG	TGTTGGTGGG	GATGGCCTTC
76001	CGGGIGAICA	CTCTCCTCTC	CTCCCTCACC	GTCTGCCTGC	GTACATGGTG	CCGTCGGCGG
76141	BCCBCCBBC	CICIGGICIG	CCCTTCACGC	CGAACGGGAA	GGTGGACCGG	GCGGGTCTTC
76201	CCCTCCCCC	CCTCTCCCTC	CCGITGACC	GTGCGCCGTC	GTCGCCGCGG	GAGGAGGTGT
76201	TCGG1GCCGG1	CTTCCCCCAC	CTCCTCCCTC	TTGAGCGGGT	GGGGGTGGAC	GATGGGTTCT
76201	TGIGIGGICI TCCNTCTCCC	CCCCCACAG	ATTCTGTCGA	TTCAGTTGGT	GGCGCGGGCT	CGTCGGGCGG
76441	COCATCIGGG	CTCCCTTCGG	CATCTUTUS	AGGGCCGTAC	GGTACGTGCT	CTGGCGGCTG
76501	TCTGGAGII	TTCCCACCCT	CCCCCCCTTC	GTGTGGTGGG	GGGTGCTGAG	ATTGTGCTGC
70501	CCCCCCCCCCC	TICGGACGCI	CGCTGGCCGG	ТССТССАСТС	GCTGGCGGAG	CGTGGTGGGG
76261	CGGGTGTGGG	TGAGGIGGAG	CCCCCTTTCA	ATCACTCTCT	TGTGCTTGCT	GTGCCTGCTG
76621	CCMMCCMCMC	CCACCACTTC	ССССТСТТСТ	TEGETECEET	GCGGGATCGG	CATGAGGCGT
76741	CCCCCTTCCC	CCTCCTCCAT	TCCGGGCCCCT	ТСТСТСТТСА	TGGTGTTGTT	. CCGGATGACG
76001	CCTCCTCCAT	TOTOCIGGAL	CACCTGAGCG	CTATEGETET	GGATGGTCAG	GTGGATGCTG
76061	MCCCCCCMCC	CCCTCTCCAC	CCCCCTCCCT	GGCTGGATCC	GTCGGTGGGC	CGGGTGGTGC
76001	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCMCCACCC	, GCGCGIGCGI	CTTCGGGGGGT	GTTGGTGCTG	GTGGCGCATC
76921	ACCRCCRCCRC	CCIGGAGCGI	TO TO THE PERSON I	. TECTECTEC	GGATCTGGCG	GAGGGGTGGG
10901	CCCACCTCCC	947CGG1G1G1	, 100166066 , ССТСТССАСТ	. 10010016G0 У ТЕСЕТСТЕСТ	GGGGACGTCG	TTGCGGGGTT
7777	COCCCCCCCCC	, 1100001000	, CGIGIGGAGI	GGGGCGAGCG	TGCGGGGGAG	GTGGAGTTGT
77101	<i>」</i> 2000000000000000000000000000000000000	, GIIGGCGGAG	CAGGGCCGGC	, TGGTGGAGGG	GCGTGCTGTG	GATGGTGCGG
//16]	TCCAMCOMM	CGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CTCTCCCTTC	, 1001000010 ; ATTCCCCCCC	GTCGGTGTCG	GTGTCGCGTG
77223	TGGATGTTT	CGGCGGGGTG	. 4.6.6.6.4.6.6.1.6	, A1100000000 ; GTCTTCCTCT	GCAGGAGGTG	TTGCTGGCGG
77281	CAMMCCCCC	, GGMGGIGCCG	CCCTCCCCC	, G101166161 ; GCCGGGGGTGG	GCCGGTTGTG	GTGGATGTTG
7740	ACCCCCACCC		- CAGIGGCGCG	, GCCGCG1G0	TCTGTCTCGT	ACTGTCGGTT
7/40]	AGUGUGUACO	THE TANK OF THE TA	- GWCGC1G1G(	, CGGGGGGTGA	CGCTTCGTGG	GACGAGGTGC
//461	GGIICACCAG	, IGIGIMICCO	, GICCGIGIGC	, COSTOGNOTO		, , ,

77521	GTGCGGGCGG	TCCGGTGGTG	GGCCGTGTGG	TGCGTGAGGT	GAAGGAGACT	CTGCGTTCGC
77581	TGCCTGACCA	GGGTCTGGGT	TATGGCATCC	TGCGCTATCT	CGATCCCGAG	CACGGTCCTG
77641	CTCTGGCCCG	GCATGCCACC	CCGCAGTTCG	GTTTCAACTA	CCTCGGCCGC	TTCACCACCG
77701	GAACCGACGA	AACCACCACG	CCCCACCCC	TCGACCGGGC	CCCCGCGTGG	AGCCTTCTCG
77701	CCCGCAGCGC	CCCCCCCCAC	CACCCCCAAC	TGCCCGTGGC	GCACGCGGTC	GAGTTCAACG
11161	CCCGCAGCGC	CGCCGGCCAG	CACCCCCAAC	CCCMCCCCCM	CACATCCTCC	TCCCCCACCA
77821	CGATCACGCT	GGACACCCCG	GAGGGCCCGC	macaaaaaaa	CHCCCACCAA	CCCCTCCAAC
77881	CGCTGCTGCC	GGAGTCCCGG	ATACGGGAGC	TGGCCCGCTA	CTGGGACGAA	GCCCTGGAAG
77941	GGCTGGTCGA	ACACGCCCGG	CACCCGAAG	CCGGCGGCCT	CACGCCGTCC	GACGTGGGCC
78001	TCGCGGAACT	CTCCTTTGCT	GAGATCGAAC	TGCTCGAAGA	CGACTGGAGG	ACACAGGGAT
78061	GACGCAGCGC	GCGATGGAGG	ACATACTTCC	TCTCACTCCG	CTGCAGGAGG	GACTGCTGTT
78121	CCACAGTGTT	TACGACGAGC	AGTCCGTCGA	CGTGTACACC	GTGCAGGTGG	TCGTCGACCT
78181	CGAGGGGCCC	GTCGACCCCG	AAGCACTGCG	CGCCGCCGCG	GCCGCCCTGC	TGCGTCGGCA
78241	CGCCAACCTG	CGGGCGGCCT	TCCGGTACGA	GCGGCTGCAG	CGCCCCGTGC	AGATCATCCC
78301	GCGCGAGGTT	GCGGTGCCGT	GGGAGCACAC	CGACGTCGCG	AAGCTCGAGG	GCGCCGAGCA
78361	GAAGGCCGAG	ATCGAACGCC	TGCTGCACGA	CCAGCGGTGG	CGCCGCTTCG	ATCTGACGGC
70301	TCCGCCCCTG	CTCCCCTTCC	TECTCETECE	CACAGGCCAC	GACCGGCACC	GTTTCGCGCT
70461	GACTTTCCAT	CACATCCTCA	TCCACCCTC	GTCGATGCCC	GTCCTGCTGC	GGGAACTCAT
70401	CACCCTCTAC	CACATCCTCA	ACCACACCC	CCTCCCCCCCC	GTCCGGCCGT	ACCGGGACTA
78541	CCTGGCCTGG	PERCECCE	CCCACACCCCA	CCACCCCCC	CCCCCCCCCC	CCAACCCACT
7860T	CCTGGCCTGG	ATCTCCCGCC	GCGACCGGGA	CGAGGCCGGG	CACCCCCC	CCAAGGCACI
78661	GGCCGGGGTT	GACGAGGCCA	CCCTCGTCGC	CCCGGGTGCC	BACCGGGCCG	CCGAGCCGCC
78721	GCTGTGGACC	GAGTCCCGGC	TCGAACCGGA	CCTGGCGGCG	ACGCTCGCCG	TACE COCCO
78781	CGAGTTCGGC	GTCACCCTCA	ACACCCTCGT	CCAGGCCGCC	TGGGCGCTCG	TCCTCGGCCG
78841	CCTCACCGGC	CGCGACGACG	TCGTGTTCGG	CGTGACCGTG	TCCGGCCGGC	CGCCGGAGCT
78901	CGCAGGTGTC	GAGGACATGG	TGGGCCTCTT	CATCAACACC	GTGCCGCTGC	GTGCCGAGCT
78961	GCTGCCGCAC	GAGAGCCTCC	GGGACTTCAC	CGTCCGCCTC	CAGCGCGAAC	AGATACAGCT
79021	CCTCGACCAC	CAGTACGAAC	GACTGGCGGT	CATCCAGCGG	CTCGCCGGCC	GGACAGAACT
79081	CTTCGACACG	GTGATGGTCT	TCGAGAACTA	CCCCGTCGCC	GCCGCATCCT	CCGCCGGCGC
79141	CGACGGCCCC	GCGGCCGAAC	CCCGGGTCGC	CGACGTCCAC	GTACGCGACG	CCATGCACTA
79201	CCCCTCGGT	CTGCTGGTCC	TGCCCGGCCC	GCCGCTGCGC	CTGCGCTTTG	GCCACCGGCC
79261	GAGCGCCCTG	CCCGCCGAAC	GCGTCACGAC	GATCCGCGAC	AGCCTCGTGC	GAGCCCTGGA
70321	GCTCATGGCC	GACCAGCCGG	ACCTCGCCGT	CGGCAGGGCC	GACATCCTCG	GCGAGGAGGA
70201	GAAACAGCAT	CTCCTCACCG	GCCTCAACGA	CACCCACCGC	GACGTGCCCC	CGCTCACCGT
70441	GCCCGGAATG	ATCCACCCC	ACCCCCCCC	CACCCCCGGC	AGGCCGGCGG	TCCATGCCCG
79441	CGACGGCGAA	CTCTCCTACC	CCCAACTCAA	CECECECECE	AACCGGCTCG	CACGCCACCT
19501	CGCCGCGGCC	CICICCIACG	CCGAACICAA	CCTCACCCTC	CTCCTCCCGC	TCTCCGCCCG
79561	CATGGTCGTG	GGCGTGGGCC	CCCMCAMCAA	CACCCCCCC	CCCTACCTTC	CCGTGGACCC
79621	CATGGTCGTG	GCCGCTCTCG	TCCCCT GAT GAA	CCMMCCCCAC	ATCCCCCCC	CCCTCCTCCT
79681	GGAGTATCCG	GCCGACCGCA	TCGCGTACAT	GCTTGGCGAC	CCCCCCCCCCC	TCACCCTCCA
79741	CACCGACTCC	CGCTCGGCCG	CGGCCATGCC	CGCCGGCCCG	CACCACCTCC	CCACCCACCC
79801	CGACGACGCC	CTCGACACGG	GCGTTCGCGC	CCTGCCCGAA	CACGACCICG	CCACCGACGG
79861	TATCGCGCCG	CTTCCCGACC	AGCCCGCGTA	CGTCATCTAC	ACCTCGGGCT	CCACCGGCCG
79921	CCCCAAGGGC	GTCGTGATCC	TGCACCGTTC	CGTCACCGGC	TACCTCCTGC	GCACGATCGA
79981	GGAATACCCC	GAAGCCGCCG	GCAAGGCATT	CGTGCACTCG	CCCGTGTCCT	TCGACCTCAC
80041	CGTCGGAGCG	CTGTACGCAC	CCCTGGTGAG	CGGTGGCTGC	CTGCGCCTCG	GATCGTTCAC
80101	CGACGACAAG	ATCCTCGACC	TGGGCGAGGA	CAGCCCCACC	TTCATGAAGG	CCACCCCCAG
80161	CCATCTCGCC	GTCCTCGACT	CCCTCCCCGA	CGAGATCTCC	CCCACCGGGG	CCATCACCCT
80221	CGGCGGTGAG	CAACTCCTGA	GCGAGACCCT	CGACCCGTGG	CGCGCCCGCC	ACCCCGGCGT
80281	GACCGTCTTC	AACGTGTACG	GCCCCACCGA	GACCACGATC	AACTGCGCCG	AACACCGCAT
80341	CGCCCCCGGC	ACCACCCTGC	CTCCCGGCCC	CGTCCCCATC	GGCCGGCCCC	TGTGGAACAC
80401	CCGCCTGTAC	GTCCTCGACG	GCGGCCTGCG	CGTCGTGCCC	ACGGGCGTCG	CCGGCGAGCT
80461	GTACGTGGCC	GGCGCGGGCC	TGGCCCGCGG	CTATCTCGGA	CGCCCGGCC	TGACGGCCGA
80521	ACGCTTCGTG	GCCTGCCCCT	TCGGCGCACC	GGGCGAACGC	ATGTACCGCA	CCGGTGACCT
00521	CCTCCCCTCC	ACAACCGACG	GCACGCTGGA	GTTCGTCGGC	CGCGTCGACG	ACCAGGTCAA
00201	CCMVCCCCCC	TOTALCCOACC	ACCTCCCTCA	GGTCGAGGCC	ACCGTCGCCG	CCACCCCGG
00701	BCECCCCCC	CCCAMCCMCC	CTCTCCCCA	GCACCGCCCC	GGCGACCAGC	GGCTCGTGGC
80701	TGTGGCGCGC	CCMCCCCACC	TCCACCCCAC	CGCCGCCCTG	CCGTCGGCGG	TGACCGCCCA
80/61	GTACGTGACA	CCTGCCGACG	T COMCCCCAC	CCCCTCCCCC	CTCCTCCTAC	TGCACGAGGT
80821	TGCCGCCGCC	CGCCTGCCCG	CGIACATGGT	GCCGICCGCC	GICGIGGIAC	TGCACGAGGT
80881	ACCCCTCACC	CCCAACGGCA	AGATCAACAG	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		AGGCCGTCTC
80941	CGGCGCCGGC	TTCCGTGCCC	CCGGCACGGC	CCGTGAGGAA	GIICIGIGCO	GCCTGTTCGC
81001	CGAAGTCCTC	GGCCTCGAAC	GGGTCGGCAC	GGCCGACGAC	TTCTTCGAAC	TCGGCGGCCA
81061	CTCGCTGCTC	GCCACCCGCC	TGGTGTCCCG	CGTCCGTTCG	GTCCTCGGCG	TCGAACTCGG
81121	CGTCCGCGCC	CTCTTCGACG	CCCCTACCCC	CGGCCGCCTC	GACCGGCTCC	TGGGGGAACG
81181	CTCCGGCGCC	CCCGTCCGCG	CCCCCTGAC	CGCGCGGGAA	CGCACCGGGC	GGGACCCCCT
81241	GTCGTACGCC	CAGCAGCGCC	TGTGGTTCCT	CCACGAACTC	GAGGGCCACG	GCGCCACATA
81301	CAACATCCCT	CTCGCGCTGC	GCCTCACCGG	; TCCTCTCGAC	GTGACCGCCC	TCGAAGCCGC
81361	CCTGACGGAT	GTCGTCGCCC	GCCACGAGAG	CCTGCGCACA	CTCATCGCCC	GGGACGGCAC

81	421	CGGCACCGCG	TGGCAGCACA	TCCTGCCCAC	CGGCGACCCT	CGCGCCCGAA	TCACCCTTGA
81	481	GGCCGTACCC	CTGCACAGGG	ACGAACTGGC	CGGGCGCCTC	GCCGAAGCGG	CCCGCCACCC
81	541	CTTCGACCTC	ACCGCCGAGA	TCCCCGTCCG	CGCCACCGTC	TTCCGCACCG	AGCGCGACGA
81	601	CCACACCCTG	CTCGTCGTCA	CCCACCACAT	CGCAAGCGAC	CGTTGGTCCC	GCGAGCCGTT
81	1661	CCTCCGTGAC	CTGTCCGCCG	CCTACGCAGC	CCGGCGCGCA	CACTCCGCGC	CGGAACTGCC
81	721	CCCGCTGTCC	GTGCAGTACG	CTGACTACGC	CGCCTGGCAG	CGCGACGTAC	TCGGCACCGA
81	781	GGACGACGGG	ACGAGCGAGA	TGGCCGGCCA	GCTCGCCCAC	TGGCGGGGCA	GACTCGCCGG
81	1841	CCTCCCGCAG	GGCCTGGACC	TGCCCACCGA	CCGCCCCGA	CGCCCCGACG	TCGGCCGCCG
81	1901	CGGCGGCCGG	TGCCGGCTGG	AGATCCCCGC	CGCGCTGCAC	CGCGACATCG	TCACCCTCGC
81	L961	CCGCGTCACC	AGTACCACCG	TGTTCATGGT	GGTCCAGGCG	GCCCTCGCCG	GTCTGCTGTC
82	2021	GCGGCTGGGC	GCGGGCACCG	ACATCCCCAT	CGGCACGCCG	ATCGCGGGCC	GCACCGACGA
82	2081	GGCCACCGAG	CACCTCATCG	GGTTCTTCGT	GAACACCCTC	GTCCTGCGCA	CCGACGTCTC
82	2141	CGGCGATCCG	ACGTTCGCCG	AACTCCTCGC	GCGCGTGCGG	GCCACCGACC	TCGACGCGTA
82	2201	CGCACACCAG	GACGTGCCCT	TCGAACGCCT	GGTGGAGGTC	CTCAACCCGG	AACGCTCACT
82	2261	GCTGCGCCAC	CCCCTCTTCC	AGATACTGCT	CGCCTTCCAG	AACACCGAGG	ACCGCAGCAT
82	2321	CTCCGACCGC	CCCGGGACCC	TGCTGCCCGA	CCTGCAGGTC	ACCGAACAGC	CCCTCGACGC
82	2381	CGGGACGGCC	AAGTTCGACC	TCGCGTTCGC	GTTCACCGAG	CGGCCCCCGG	AGAAGGGCGA
82	2441	ACCCTCCGGC	ATCACCGGAA	TCGTCGAATA	CCACGCCGAC	CTGTACGACG	AGGGCACCGT
82	2501	CCGGCAGATC	GCGGACTGCT	TCGTGCAGTT	CCTCGACGCG	GCCGTCCACG	CCCCGGGCAC
82	2561	CCGCGTCGAC	GCGGTCGGGC	TGCTCCCGGA	ACACACCCTC	CACAAACTGC	TGACCCGCAG
82	2621	CCGCGGCACT	GTCACCGGCC	TGCCGCCCGC	CACCCTGCCC	GAGCTGTTCG	AGGCCCGGGT
82	2681	GGCGGCGCAC	CCCGGTCACA	TCGCGGTCGA	GGTCGCCGGC	CGCCGGCCCG	CCACTACGAC
82	2741	GTACGACGCA	CTGAACCGGC	GGGCCAACCG	GCTCGCCCGG	CTGCTCACCG	ACCGGGGCGT
82	2801	ACGGCCCGAA	CAGCGCGTGG	CGATCGCCCT	GCCCCGCTCC	GCGGACCTGG	TGACGGCCTG
82	2861	GCTCGGGATC	CTCAAGGCCG	GCGCCGTGTG	CGTGCCCGTC	GACCCCGCCT	ACCCCGACGA
82	2921	CCGCATCGCC	CACATGGCCG	CCGACGCGGC	CCCGGCGCTC	CTCATCGCCT	CCGCAGCCAC
82	2981	CCGCGACCGC	ATGCTCCCCA	CCGGCATCCC	CGTACTGGAC	CTCGACGACC	CGGCCGTCAC
83	3041	CGCCGCACTC	GCCGCCGCGC	CCGACGGCAA	TCCGCGCGGC	ACGGGACTGC	TGCCCGCCCA
83	3101	TCCCGCCTAC	GTCATCTACA	CCTCCGGCTC	CACCGGCACA	CCCAAGGGCG	TCGTCGTCAC
83	3161	CCACGAAGGC	ATCCCGGCGC	TGGCCGCCAC	CCAGCAGGAG	GCACTGCGCG	CGGGCCCCGG
83	3221	AGACCGGGTĆ	CTGCAACTGG	TGTCGACCAG	CTTCGACGCC	TCCGTCTGGG	ACCTGTGCTC
83	3281	CGCGCTGCTG	TCGGGCGCGA	CCCTCGTCCT	CGCCCGGAC	GCGGACCTCT	TCGGTGACGA
83	3341	ACTCGCCGCC	GCGCTCACCG	CACACCGCAT	CACGCACGTC	ACCCTGCCCC	CGGCCGCGCT
83	3401	GGCCGCTGTC	CCGGCAGGCG	CGGCACCCCC	CCGGCTGACG	GTCACCGTCA	CCGGCGACGT
83	3461	GTGCGGACCC	CAACTCGTCG	ACCGCTGGGC	CGGTGGCGAA	CGGCGGATCC	TCAACGGCTA
83	3521	CGGGCCCACC	GAGGTCACCG	TCGGCGCCAC	CTACGCCGTG	TGCGAACGGA	CCGGTGACGG
83	3581	CGCGCCCGTG	CCGATCGGCG	CACCCTGGCC	CGACCAGCGT	GTGTACGTCC	TCGAACACCG
83	3641	GCTCCGGCCC	GTACCCGCCG	GCTGCGTCGG	CGAGATCTAC	GTCGCCGGG	CCGGACTGGC
83	3701	CCGCGGCTAT	CTGGGCCGCC	CCGGACAGAC	CGCCGAACGC	TTCGTCGCCG	ACCCCTTCGG
8:	3761	CGCCCCCGGC	GAGCGCATGT	ACCGCACCGG	TGACCTGGCC	CGCCGCCGCA	GCGACGGCCA
8	3821	CCTGCTGTTC	GAGGGACGCG	CCGACACGCA	GGTCAAAATC	CGCGGCTTCC	GCGTCGAACT
83	3881	CGCCGAGATC	GAGGCGGCCC	TCGCATCGCA	CCCCGGCGTC	GAGGACGCGG	TGGTCACCGT
8	3941	GTACGACGAC	GGGCTCGGCG	ACCAGCGGCT	CGTCGCGTAC	GTCACCGGCG	GCCCCGGCAC
8	4001	ACCGTCGGCC	GCCGCGCTGC	GCGCCCACCT	GGCGTCCCGG	CTGCCCCGGC	ACATGGTGCC
8	4061	CGGTGACGTC	CTCACCCTGG	ACGCCCTGCC	GCTCACCGCC	AACGGCAAGG	TGGACCGCAC
8	4121	GGCGCTGCCC	GGCCCCGGCA	CCCAGACCGC	CGCCCCCGGG	CGCGCACCCC	MCCCCCCCC
8	4181	GGAACGGGTG	CTGTGCGCCT	TGTTCGCCGA	CGTGCTCGGC	ACTICCCOTICC	CCCCCCCCCCC
8	4241	CGAGGGGTTC	TTCGACCTGG	GCGGTCACTC	GCTGCTCGCC	MUCCACCCC	CCACCCCTCC
8	4301	CCGCGCGGCG	CTGGGCGTGG	AGATUTUUGT	GCGCACCCTG	CACCCCTTCC	NCNCGCTGCT
8	4361	CCTGCTCGCG	TCGGCGTGCA	CGGCGGACGC	CGCGGCGTAC	CTCCACCCC	CARTGGGCCT
8	4421	GCCGCTGCGG	CGCACGGGCA	BCCBGCCACC	GCTGTTCTGC TCTGGACGCG	CACCACGCCG	TTTACCGACT
8	4481	GAGCTGGGCG	TACGCCGGCC	TGCTCAGCCA	GCTGCCCGGG	ACCGTCGAGG	ACATGGCTGA
8	4541	GCAGGCCCGG	AGGCTCACCG	CCCCCCTCTC	CCCCCATCCC	CCCTACCGC	TECTCECTE
8	4601	GGACTACGCC	GGTGAGATCC	CCCACCCCC	CCCGGATGGG CGCGACCCGC	CTCCTACCGGC	AGGGCCACAC
8	4001	GTCCTTCGGC	CMCCCCCMCC	TCCACCCCT	CCCCGTCACC	GEGGCCCGCC	CCGACGCCGA
8	4121	CCTCGAACTC	CICGCCCITCC	TCGACGCCIA	CCTCGCCCAG	CTCGGTTCCC	CCGTCGCCCC
ğ	4 1 Q T	GGIGGACGAA	CAGCGCAICG	CGTGGCTTCCC	GGAGTTCCTC	GAGTTCGTAC	GGCGCACCGA
ğ	1001 104T	CORGCCCCCCC	ACCCACMPCC	PCGLGGGIGGG	GATCCTCGCG	ATGAAGGACG	TCTTCCTCAA
ō	1061 1061	CAACECCCCC	CTCACCCCC	GTTTCDCDCCC	CGGCGTGTTC	ACCGGCGACA	TGGTGTTCTT
0	2001	CAACGCCCGG		CCGAGCAGGC	CGCCGAACGC	GTCGGCCTGT	GGCACCCCCA
Q	5021	CGCCICCGCA	GACCTCGACC	TGCACCTGAT	CGACTGCGCA	CACGAGGAGA	TGACCGATCC
Ω	5111	ACCCCC ACTC	ACCCCCATCC	GCCCCGTGAT	CGCCGCACGG	CTGGGCGCCG	GCACCTGACC
ρ	5201	CCCAGGACTC	CACACGGGAC	ACCGGACACG	GGGGCGCCCC	CCTGTCCGTA	CACGAAAGGA
Ω	5261	AACATACCCC	CATECCCAAC	CCCTTCCACA	ACAACGACGG	CAGCTACCTC	GTACTGGTCA
O	-20I	ALONIACOGO	or red country	SOSTICENON			

85321	ACGACGAGGG	CCAGTACTCC	CTTTGGCCCG	CGTTCGCCGA	TGTCCCGGCG	GGCTGGACCG
05321	TCACCTTCGG	CCACAGCAGT	ССССВССВВТ	GCCTCGACCA	CATCAACGAG	AACTGGACCG
82301	TCACCTTCGG	CGAGAGCAGI	TOCCACOANI	TCC1 CO11CO11	CCCCACCACC	CCCCCCCCCCC
85441	ATATGCGCCC	CAAGAGCCTC	ATCCGGCAGA	TGGAGAACGA	CCGGACGACC	GCGGCCIGAC
85501	CCGCAGCCGG	ACAGCGGAGA	CGGAAGGAGG	GCCGACATGA	GGGCGACATC	CAGGATGATC
85561	CAGGTCAACG	GCGCCCGGAT	CGCCTGCTCC	GACAGCGGCT	GCGGTGACCC	GGTGCTGATG
05501	ATCGCCGGCA	CCCCCACMAC	CCCCCCCCCC	TECEACECCT	ACCAGGTGCC	TGACCTGCAC
82621	ATCGCCGGCA	CCGGCAGIAC	CGGCCGGGIG	TARRESCECCE	MACCCCCCCCCC	CCACCACTCC
85681	GCGGCCGGAT	TCCGCACCAT	CACGTTCACC	AATCGCGGCG	TACCGCCGTC	CGACGAGIGC
85741	GAGCGGGGCT	TCACCCTCGC	CGACCTCGCC	GCCGACACCG	CCGCGCTGAT	CGAACAGGTG
85801	GCGGGCGGAC	CCTGCCGCGT	CGTGGGCACG	TCCCTGGGCG	CCCAGGTGGC	CCAGGAAGTC
05001	GCCCTGGCCC	CCCCCCACCT	CCTCACCCAC	CCCCTCTTCA	TEECCACCCE	GGGTCGCACC
92991	GCCCIGGCCC	GCCCGGACCI	GGTGACCCAG	ccccccccc	TOOCCITCOC	CCCCCTCCNN
85921	GACGCGATGC	GGGCCGCCGC	CACCAGGGCG	GCCGCCGCCC	IGIACGACAG	CGGCGTCGAA
85981	CTGCCCCCCG	CCTACGCGGC	GGCTGTCCGC	GCGCTGCAGA	ACCTCTCCCC	CCACACCCTC
86041	CGGGACCGCC	ATCAGGTCGA	GGACTGGCTC	CCACTCTTCG	AGTACGCCGA	ACGGGACGGG
06101	CCGGGGGTCC	CTCCCCACTT	CCAACTCCCC	CTECTECCCE	ACCGCCTCGC	GGACTACCGG
90101	GACATCACCG	GIGCGCAGII	CCMCAMCCCC	THE CACCACC	ACCUCCTCAC	CCCCCCCTAC
86161	GACATCACCG	TCCCCTGCCT	GGTCATCGCG	TICGAGGACG	ACGICGICAC	TARACCOTAC
86221	CTGGGCCGCG	AAGTGGCCGA	CGCGATCCCC	GGCGCCCGCT	TCGAGACCGT	TCCCCGCTGC
86281	GGCCACTACG	GCTACCTCGA	GGATGCGAGC	GCGGTCAACA	AGATTCTTCG	CGATTTCTTC
96341	CGAACGAGCT	CAAAGGCACG	ACGACCTTGT	CCAGTACCGG	CAGAGAGGGG	CCCGTCGTGA
00341	CCGGCGAAAC	000000000000000000000000000000000000000	ACCUPACE CO	CCCCCATCAC	CCTCCACCAC	TACCACGTGA
86401	CCGGCGAAAC	CCGCACCACC	ACCIACCICC	CCGGCATGAC	COCCACOAC	CHCCHCCCCC
86461	CCGTCAAGGA	ACAGCACCCG	GCGCTCTTCG	AGCTCCTGGA	CCCCGCACGC	CTCGTCGCCG
86521	TCACGGACGA	GCCTTGGGTC	ACGGAGGGAA	ACGAGTTCGA	CGACGACCAC	GCCGGCCGCG
86581	GCGTCTCCTA	CCGCTGTGCC	CAGCAGCACG	GCGAAGCCCG	CCGCACCGGC	ATTGAGACGA
00501	TTCTCGGCAT	COUNTECCCCCC	CCCCCCCCCCC	TCCCCCACAT	CCCCCCTCTC	CTCGATGTAC
86641	TTCTCGGCAT	GIICGCCGGC	200000000	CCCCCCAACT	GCCCCCCCC	CCCCACCCC
86701	TCGGAGGCGA	AGGCCTGCTC	AGCCGCGTGT	GGCGGCAACT	GGCCGGCGCC	GGCGACGGGG
86761	ACTCCGTGCC	ACTGGTCACC	GGAGACCTCA	GCGGCCACAT	GGTGGCCGCA	GCCCTCCGGT
86821	CCGGCCTGCC	CGCCGTACGC	CAGCCGGCCG	ACCGCATGCT	GCAGCGAGAC	CACTGCCTGG
06021	ACGGCGTGCT	CTTCCCCTAC	CCCACTCACC	ACGTCGACCG	CTCTGTACGC	CCCCGCATGC
90001	TGACAGAGGC	CTTCGCGTAC	CECCCCCCC	CACCCCCCC	CCTCCTCCAC	CACTTCGCGG
86941	TGACAGAGGC	CTCCCGGGTC	CIGGCCCCIG	GAGGCCGCGI	CGICCICCAC	GACTICOCGO
87001	AGGGATCCCC	CGAAGAACGC	TGGTTCCGCG	AAGTCGTCCA	CCCCCCCTCC	CICGCGGGCC
87061	ACGCGTACGA	CCACTTCACC	GCCCACGAGA	TGACCGGCTA	CCTCGCCGAC	GCGGGCTTCA
07121	CCGACATCAC	ССТСССССССС	GTGTACGACC	CGATGACCCT	GACCGGGGAG	ACCGACGAGA
07121	GCGCACTGGC	mccccmccmc	mccmacamca	CCTCCATCTA	CCCCATCCTC	CCCGACGGCG
8 \ 181	GCGCACTGGC	TCGGCTCGTC	ICCIACAIGA	CCICGAIGIA	CGGCNICOIO	maccacacac
87241	ACCGGAGCAA	CGAGCGGACG	GAAGCCGCCC	TCCGCGACAT	CTTCCGTTTC	TCGGCCGGCG
87301	ACCTCCCGA	GGACGTCCCC	CGCGACGAGG	CGGTCCTGGA	ACTTACCGTC	CGTCCGCACG
87361	GCAATGCCTT	CCGGGCCGAG	CTCCCCCGGA	TAGCCCTCGT	CGCCCACGGA	CGCAAACCAT
07/21	GACAGCGCAG	CACACCCGGA	CGACCGGGAG	TGACGGTGGC	GGCCGGGGCG	CCACGTACCA
07421	CGAGAGCCCG	A CCMA CCCCC	ACCTCCTCCC	CCTCCACCAC	CTCCTCAACC	TOGOGOACOT
87481	CGAGAGCCCG	ACCTACGGGG	AGCIGCIGCG	CCIGGAGGAC	CIGCIGAACG	A CAMCOCCOOL
87541	GCGCGACGCG	GCCGCCCCGG	TCCTCTTCCT	TGCCACGCAC	CAGTCGGCGG	AGAICIGGII
87601	CGGCATCGTG	CTGCGCCACC	TGGAGGAAAT	CCGCGCGGCC	CTCACGGACG	ACGACCCGGA
87661	CACGGCACTG	CATCTGCTGC	CGCGACTGCC	GGAGATCTTC	GAACTGCTCG	TCCGCCACTT
07701	CGACATGCTG	CCCACCCTCA	GTACGGAGGA	ATTCGGCAAG	ATCCGCGCGC	GGCTGGGCAC
0//21	GGCGAGCGGC	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	CCCACMACCC	CCACATCCAC	TTCCTCTCCC	CTCTGCGCGA
87781	GGCGAGCGGC	TTCCAGTCGG	CGCAGTACCG	GGAGAICGAG	110010100	Decee Con a ce
87841	CCACCGCCAC	ATCTCCACAC	CGGGCTTCAC	GGAAACCGAA	CGTCGGCGAC	TGCGGGAACG
87901	GGCCCGCCAG	CCCTCCGTGG	CGGAGGCCTA	CGACGCCTTC	CGGACCCGAT	GCGCCAACGG
87961	GAAGGACGCG	GAACGGATCG	GGGAAGCGCT	CCTGAGGTTC	GACGAACGGG	TCACCGTCTG
00001	GCGCGCCCGC	CACCCCCCCC	TECCECAACE	CTTCCTGGGC	CCCCTTGAAG	GGACGGCCGG
88021	GCGCGCCCGC	CACGCGGGCCC	TOUCGOARCO	CACCCCCAC	みとことではいませんと	CCCCGGAGGC
88081	CACCGCCGGA	GCCGACTACT	TGTGGCGGT	CACCCGGCAC	AGGCICIICC	CCCCCCACCA
88141	GTGGGGCGCC	GGCTGACGGC	ACCGCCCCGG	CCCCGGGGAC	GGGACAGGCC	GGTTCCCGCA
88201	CCCCGGCCCC	GGGGGCGGGA	AACGGCCTTG	CCGTGCCGTC	AGAAGGCCGT	CAACCGGTCC
88261	CACACGAGGG	TOCGAGOCOT	TCGTCGAGCA	AGCGTCGCCA	CTCTGACGTT	CGGTCTGTCG
00201	ACGCTCATAC	CCCCCCCCTC	CCTCACCCC	ACCECCACCC	TGGTCAGGAA	GCTGGTGAAG
88321	ACGCTCATAC	CGGCGGGCAC	CGICACGGCC	ACCOCCACC	TOOLOGICS.	CCCACTCCAC
88381	GAGGCGGGCG	AGGAAGCGGC	CGGTTGCATC	ATGTCCACGC	TGACCGAGCC	CGCAGIGCAG
88441	GCGATCGAGA	ACGTCGCCGC	CGACCTGGCG	GTTCAGGCCG	CAGCCAACGC	GGTCGGGCTG
88501	CAGAACGGGA	TCGACACCGG	GTCAGGCCGT	CCACGCCGGC	AAGGAGGGGT	TCCAGGACGG
00521	AGTCGCGGGT	CCCDACCDAC	CACTCCCACT	ССССТСССТС	GACGGCGGTC	CGCCGCCGGG
00201	AGICGCGGT	OCCOMO TOCO	CCCN CCMCN N	CCCCACCAAC	CCCTTTCCC	ACCATOGGGC
88621	ATCGACGGGC	CGGCTGATGG	GCGACCTCAA	GOCGACCAAG	GGCTTTGGCG	CCECCCCAC
88681	GCCAAGACGT	GCAAGAACGA	CCCCGTGGAC	GTCGCCACCG	GTGAGATGCT	GCTCCCGCAG
88741	ACCGTCCTGG	GGCTCCCCGG	CGTCCTGCAG	CTGGTCCTGG	GGCGGACTCA	TCCGTGCTCG
88801	GCTGCCGACC	GTCGGCAACC	TCGACGCCGC	CGTGAACTCA	TCAGGTTCGC	CAGTGCGGTT
00001	CACCOCCCC	CCCCVDCCVC	CCCTC ACCTC	CACCACCCAC	TGCAACGACG	CCACCTTCCG
00001	CACCIGCGAC	GCCGAIGGAC	GCG1CACCIC	CACCACCAAA	CCCCC@AC@@	СУДСССССССССССССССССССССССССССССССССССС
88921	TACGTCTACG	ACCAGGCCGG	CCGGGTGGTG	CGGACCGAAG		CCCCMMCCCC
88981	TCGTCCTGTG	CCTATGGAGA	GCCGGAACCC	GACACCGGGC	CGCGCACGAC	GCGCAAGGGC
89041	GGCCGGTGAT	CCGTCGGAGC	TCAACGCTCC	GTGGCCGCAC	: AGCGGTCTGG	CACTTCACCT
80101	GGGACGCTCA	GGACCGGCTC	GCCGAGGCCG	CCGACCACTO	CTGGGACTGC	GCGCGGTTCC
00161	CCCCCCCCC	, ACCCCCCCC	ChCy CCumco	TCACAACCCT	TGCGCGATCA	CGAGCGTCAC
02101	CGCGCCTGAG	AGGGGGGGGG	CIGACCIIGG	100000001		

```
89221 GTTGGCGGGC GACTTGCTCC GCCGAGTTGA AGCCGTACGA AGTGCCGACT GGATCGATGC
89281 GGCCAGCCAT CCTCAGGGTT GCCCTGACAG AGTTTGGTGG ACACGAACCG GAACAACCCG
89341 GACCGCCAGA TGTGGTTGAG TTTTCCGGGA CAGTTGATCC ACACACCGTC CCGCCGCTCA
89401 GTCCCGTTCG GACCATGAGC CTCACCGAAG GACCCCACCT GCACATGAGC ACCCCCGACA
89461 CTCGTCCCCC GCGGTGGCCT TTACCTCCCG CCCCGCCCGC CCATGACCCC GTCCTCTCG
89521 CGCGGGCGAT GCGGGACATG CGCCTGACGT GGCGTGCCCG CGGGATCCTG GCCGAACTCT
89581 CCGTCGGCTA CGGCCCCGGG CAGGACCCCA CGATCAGCGA GCTGGTCGCG CTCAACCGCG
89641 ACGAGCGTCT GGCTGCAGAG GGCCGCGAGG CCTTCCGCAC GGCGGTCCGT GAGCTGCGCG
89701 GCCTCGGCTA CCTCACTCCG GACGCCACCA CGGCCTCCGG CGTCGGGGAG CGTCTGATCG
89761 TCGATCTCGC CCCGGCCGCG GAAGCCTGGC TGATCCCGCA GCAACCCGGT TTCGGGTTCT
89821 ACGTGGACGG GAGCTGACCG TCCGACTCTC TGCCGGGCGT GGCCGAACGC CGTCCTCGTG
89881 TGACGGGGAC GGCCCGCCTA TCCTGCGGGC ATGGCCCAAC CCATTGAACT CGTCATATTC
89941 GACTGCGACG GCGTACTCGT CGACAGCGAA CGCATCGCGG TGCGCGTGGA CGCACTCGTC
90001 CTGGCCGAGC TGGGGTGGAA TCTCACCGAA GCCGAGATCG TCGACCGGTT CATGGGCCTG
90061 TCGAGCCGGT CGATGACGCG GCAGATCGAG GACCACCTCG GGCGCCGTCT GCCGGCCGAC
90121 TGGGAGGAAG AGTTCAAGCC CCTCTACGAC GAGGCGCTCG CCGCCGAACT CACGCCGGTC
90181 GAGGGCATCG TCGACGCCCT CGACGCGCTC ACGCATCTCC CCACCTGTGT GGCATCCAGC
90241 GGGAGCCACG ACAAGATGCG TTTCACGCTG GGGATGACCG GTCTCCGCCC GCGCTTCGAA
90301 GGCCGCATTT TCAGTGCCAC CGAGGTCGAG CACGGCAAGC CGGCCCCGGA TCTGTTCCTA
90361 CTCGCCGCGC GGAAGATGGG GGTCGTGCCC GAGGCGTGCG CCGTGGTCGA GGACAGTCAG
90421 TACGGTCTTC AGGCAGCCCG GGCCGCGGC ATGCGAGCCT TCGCCTACGC CGGGGGACTG
90481 ACTCCCGCGG ACCGTCTCGA AGGCCCCGGC ACCGTCGTCT TCGACGACAT GCGCAGACTG
90541 CCCGGCCTCC TCGCGGATCA CTGACCGCCG CCTGGATCAC TCCACTCCAT CGGCCACTGT
```

## SEO ID NO: 2

Nucleotides 36018-36407 of SEQ ID NO: 1

SEQ ID NO: 3

Nucleotides 78059-85198 of SEQ ID NO: 1

SEO ID NO: 4

Nucleotides 85500-86352 of SEQ ID NO: 1

SEQ ID NO: 5

Nucleotides 85537-86352 of SEQ ID NO: 1

SEQ ID NO: 6

Nucleotides 85537-86352 of SEQ ID NO: 1

SEQ ID NO: 7

MTQRAMEDILPLTPLQEGLLFHSVYDEQSVDVYTVQVVVDLEGPVDPEALRAAAALLRRHANLRAAFRYERLQRP
VQIIPREVAVPWEHTDVAKLEGAEQKAEIERLLHDQRWRRFDLTAPPLLRFLLVRTGHDRHRFALTFHHILMDGWS
MPVLLRELITLYRTGDETALPWVRPYRDYLAWISRRDRDEAGRAWSKALAGVDEATLVAPGADRAAEPPLWTESRL
EPDLAATLAARAREFGVTLNTLVQAAWALVLGRLTGRDDVVFGVTVSGRPPELAGVEDMVGLFINTVPLRAELLPH
ESLRDFTVRLQREQIQLLDHQYERLAVIQRLAGRTELFDTVMVFENYPVAAASSAGADGPAAEPRVADVHVRDAMH
YPLGLLVLPGPPLRLRFGHRPSALPAERVTTIRDSLVRALELMADQPDLAVGRADILGEEEKQHLLTGLNDTHRDV
PPLTVPGMIEAQAARTPGRPAVHARDGELSYAELNARANRLARHLAAAGVGPEQYVTLLLPLSARMVVAALAVMKT
GAAYVPVDPEYPADRIAYMLGDIGPALVLTDSRSAAAMPAGPARVLTLDDDALDTGVRALPEHDLGTDGIAPLPDQ
PAYVIYTSGSTGRPKGVVILHRSVTGYLLRTIEEYPEAAGKAFVHSPVSFDLTVGALYAPLVSGGCLRLGSFTDDK

ILDLGEDSPTFMKATPSHLAVLDSLPDEISPTGAITLGGEQLLSETLDPWRARHPGVTVFNVYGPTETTINCAEHR IAPGTTLPPGPVPIGRPLWNTRLYVLDGGLRVVPTGVAGELYVAGAGLARGYLGRPGLTAERFVACPFGAPGERMY  ${\tt RTGDLVRWRTDGTLEFVGRVDDQVKVRGFRIELGEVEATVAATPGVARAIVAVREDRPGDQRLVAYVTPADVDPTG}$ GLPSAVTAHAAARLPAYMVPSAVVVLHEVPLTPNGKINRAALPAPEAVSGAGFRAPGTAREEVLCGLFAEVLGLER VGTADDFFELGGHSLLATRLVSRVRSVLGVELGVRALFDAPTPGRLDRLLGERSGAPVRAPLTARERTGRDPLSYA QQRLWFLHELEGHGATYNIPLALRLTGPLDVTALEAALTDVVARHESLRTLIARDGTGTAWQHILPTGDPRARITL EAVPLHRDELAGRLAEAARHPFDLTAEIPVRATVFRTERDDHTLLVVTHHIASDRWSREPFLRDLSAAYAARRAHS APELPPLSVQYADYAAWQRDVLGTEDDGTSEMAGQLAHWRGRLAGLPQGLDLPTDRPRRPDVGRRGGRCRLEIPAA  $\verb|LHRDIVTLARVTSTTVFMVVQAALAGLLSRLGAGTDIPIGTPIAGRTDEATEHLIGFFVNTLVLRTDVSGDPTFAE|$ LLARVRATDLDAYAHQDVPFERLVEVLNPERSLLRHPLFQILLAFQNTEDRSISDRPGTLLPDLQVTEQPLDAGTA KFDLAFAFTERPPEKGEPSGITGIVEYHADLYDEGTVRQIADCFVQFLDAAVHAPGTRVDAVGLLPEHTLHKLLTR SRGTVTGLPPATLPELFEARVAAHPGHIAVEVAGRRPATTTYDALNRRANRLARLLTDRGVRPEQRVAIALPRSAD LVTAWLGILKAGAVCVPVDPAYPDDRIAHMAADAAPALLIASAATRDRMLPTGIPVLDLDDPAVTAALAAAPDGNP RGTGLLPAHPAYVIYTSGSTGTPKGVVVTHEGIPALAATQQEALRAGPGDRVLQLVSTSFDASVWDLCSALLSGAT LVLAPDADLFGDELAAALTAHRITHVTLPPAALAAVPAGAAPPRLTVTVTGDVCGPQLVDRWAGGERRILNGYGPT EVTVGATYAVCERTGDGAPVPIGAPWPDQRVYVLEHRLRPVPAGCVGEIYVAGAGLARGYLGRPGQTAERFVADPF GAPGERMYRTGDLARRRSDGHLLFEGRADTQVKIRGFRVELAEIEAALASHPGVEDAVVTVYDDGLGDQRLVAYVT GGPGTPSAAALRAHLASRLPRHMVPGDVLTLDALPLTANGKVDRTALPGPGTQTAAPGRAPQSPQERVLCALFADV LGRETVGVDEGFFDLGGHSLLATRLAARVRAALGVEISVRTLFEAPTPALLASACTADAAAYDPFETVLPLRRTGS  ${\tt RPPLFCVHAGMGLSWAYAGLLSHLDADVPVYGLQARRLTAPGGLPGSVEEMAEDYAGEIRRLCPDGPYRLLGWSFG}$ GTVAHAVATRLQQQGHTVELLAVLDAYPVTGARPDAEVDEQRIVADYLAQLGSPVAPERLEGDAWLPEFLEFVRRT DGPARDFDAGRI LAMKDVFLNNARLTRRFTPGVFTGDMVFFASARPGSEQAAERVGLWHPHVTGDLDLHLI DCAHE EMTDPAALTRIGPVLAARLGAGT*

SEQ ID NO: 8

See Figure 4, DptH sequence.

SEQ ID NO: 9

MDMQSQRLGVTAAQQSVWLAGQLADDHRLYHCAAYLSLTGSIDPRTLGTAVRRTLDETEALRTRFVPQDGELLQIL
EPGAGQLLLEADFSGDPDPERAAHDWMHAALAAPVRLDRAGTATHALLTLGPSRHLLYFGYHHIALDGYGALLHLR
RLAHVYTALSNGDDPGPCPFGPLAGVLTEEAAYRDSDNHRRDGEFWTRSLAGADEAPGLSEREAGALAVPLRRTVE
LSGERTEKLAASAAATGARWSSLLVAATAAFVRRHAAADDTVIGLPVTARLTGPALRTPCMLANDVPLRLDARLDA
PFAALLADTTRAVGTLARHQRFRGEELHRNLGGVGRTAGLARVTVNVLAYVDNIRFGDCRAVVHELSSGPVRDFHI

NSYGTPGTPDGVQLVFSGNPALYTATDLADHQERFLRFLDAVTADPDLPTGRHRLLSPGTRARLLDDSRGTERPVP RATLPELFAEQARRTPDAPAVQHDGTVLTYRDLHRSVERAAGRLAGLGLRTEDVVALALPKSAESVAILLGIQRAG AAYVPLDPTHPAERLARVLDDTRPRYLVTTGHIDGLSHPTPQLAAADLLREGGPEPAPGRPAPGNAAYIIQTSGST GRPKGVVVTHEGLATLAADQIRRYRTGPDARVLQFISPGFDVFVSELSMTLLSGGCLVIPPDGLTGRHLADFLAAE AVTTTSLTPGALATMPATDLPHLRTLIVGGEVCPPE1FDQWGRGRDIVNAYGPTETTVEATAWHRDGATHGPVPLG RPTLNRRGYVLDPALEPVPDGTTGELYLAGEGLARGYVAAPGPTAERFVADPFGPPGSRMYRTGDLVRRRSGGMLE FVGRADGQVKLRGFRIELGEVQAALTALPGVRQAGVLIREDRPGDPRLVGYIVPAPGAEPDAGELRAALARTLPPH MVPWALVPLPALPLTSNGKLDRAALPVPAARAGGSGQRPVTPQEKTLCALFADVLGVTEVATDDVFFELGGHSLNG TRLLARIRTEFGTDLTLRDLFAFPTVAGLLPLLDDNGRQHTTPPLPPRPERLPLSHAQQRLWFLDQVEGPSPAYNI PTAVRLEGPLDI PALAVALQDVTNRHEPLRTLLAEDSEGPHQVI LPPEAARPELTHSTVAPGDLAAALAEAARRPF DLAGEIPLKAHLFGCGPDDHTLLLLVHHTAGDGASVEVLVRDLAHAYGARRAGDAPHFEPLPLQYADHTLRRRHLL DDPSDSTQLDHWRDALAGLPEQLELPTDHTRPAVPTRRGEAIAFTVPEHTHHTLRAMAQAHGVTVFMVMQAALAAL LSRHGAGHDIPLGTPVAGRSDDGTEDLVGFFVNTLVLRNDVSGDPTFAELVSRVRAANLDAYAYQDVPFERLVDVL KPERSLSWHPLFQIMIAYNGPATNDTADGSRFAGLTSRVHAVHTGMSKFDLSFFLTEHADGLGIDGALEFSTDLFT RITAERLVQRYLTVLEQAAGAPDRPISSYELLGDDERALLAQWNDTAHPTPPGTVLDLLESRAARTPDRPAVVEND HVLTYADLHTRANRLARHLITAHGVGPERLVAVALPRSAELLVALLAVLKTGAAYVPLDLTHPAERTAVVLDDCRP AVILTDAGAARELPRRDIPQLRLDEPEVHAAIAEQPGGPVTDRDRTCVTPVSGEHVAYVIYTSGSTGRPKGVAVEH RSLADFVRYSVTAYPGAFDVTLLHSPVTFDLTVTSLFPPLVVGGAIHVADLTEACPPSLAAAGGPTFVKATPSHLP LLTHEATWAASAKVLLVGGEQLLGRELDKWRAGSPEAVVFNDYGPTEATVNCVDFRIDPGQPIGAGPVAIGRPLRN TRYFYLDGGLRAVPVGVVGELHVAGEGLARGYLGQPGLTAERFVACPFGDAGERMYRTGDLVRWRADGMLEFVGRV DDQVKVRGFRIELGEVEAAVAACPGVDRSVVVVREDRPGDRRLVAYVTAAGDEAEGLAPLIVETAAGRLPGYMVPS AVVVLDEIPLTPNGKVDRAALPAPRVAPAAEFRVTGSPREEALCALFAEVLGVERVGVDDGFFDLGGDSILSIQLV ARARRAGLEVSVRDVFEHRTVRALAGVVRESGGVAAAVVDSGVGAVERWPVVEWLAERGGGGLGGAVRAFNQSVVV ATPAGITWDELRTVLDAVRERHDAWRLRVVDSGDGAWSLRVDAPAPGGEPDWITRHGMASADLEEQVNAVRAAAVE ARSRLDPLTGRMVRAVWLDRGPDRRGVLVLVAHHLVVDGVSWRIVLGDLGEAWTQARAGGHVRLDTVGTSLRGWAA ALAEQGRHGARATEANLWAQMVHGSDPLVGPRAVDPSVDVFGVVESVGSRASVGVSRALLTEVPSVLGVGVQEVLL AAFGLAVTRWRGRGGSVVVDVEGHGRNEDAVPGADLSRTVGWFTSIYPVRLPLEPAAWDEIRAGGPAVGRTVREIK ECLRTLPDQGLGYGILRYLDPENGPALAQHPTPHFGFNYLGRVSVSADAASLDEGDAHADGLGGLVGGRAAADSDE EQWADWVPVSGPFAVGAGQDPVLPVAHAVEFNAITLDTPDGPRLSVTWSWPTTLLSESRIRELARFWDEALEGLVA  ${\tt HARRPDAGGLTPSDLPLVALDHAELEALQADVTGGVHDILPVSPLQEGLLFHSSFAADGVDVYVGQLTFDLTGPVD}$ ADHLHAVVESLVTRHDVLRTGYRQAQSGEWIAVVARQVHTPWQYIHTLDTDADTLTNDERWRPFDMTQGPLARFTL ARINDTHFRFIVTYHHVILDGWSVAVLIRELFTTYRDTALGRRPEVPYSPPRRDFMAWLAERDQTAAGQAWRSALA

GLAEPTVLALGTEGSGVIPEVLEEEISEELTSELVAWARGRGVTVASVVQAAWALVLGRLVGRDDVVFGLTVSGRP AEVAGVEDMVGLFVNTIPLRARMDPAESLGAFVERLQREQTELLEHQHVRLAEVQRWAGHKELFDVGMVFENYPMD SLLQDSLFHGSGLQIDGIQGADATHFALNLAVVPLPAMRFRLGYRPDVFDAGRVRELWGWIVRALECVVCERDVPV SGVDVLGAGERETLLGWGAGAEPGVRALPGAGAGAGAGLVGLFEERVRTDPDAVAVRGAGVEWSYAELNARANAVA RWLIGRGVGPERGVGVVMDRGPDVVAMLLAVAKSGGFYLPVDPQWPTERIDWVLADAGIDLAVVGENLAAAVEAVR DCEVVDYAQIARETRLNEQAATDAGDVTDGERVSALLSGHPLYVIYTSGSTGLPKGVVVTHASVGAYLRRGRNAYR GAADGLGHVHSSLAFDLTVTVLFTPLVSGGCVTLGDLDDTANGLGATFLKATPSHLPLLGQLDRVLAPDATLLLGG EALTAGALHHWRTHHPHTTVINAYGPTELTVNCAEYRIPPGHCLPDGPVPIGRPFTGHHLFVLDPALRLTPPDTIG ELYVAGDGLARGYLGRPDLTAERFVACPFRSPGERMYRTGDLARWRSDGTLEFIGRADDQVKIRGFRIELGEVEAA VAAHPHVARAIAVVREDRPGDQRLVAYVTGSDPSGLSSAVTDTVAGRLPAYMVPSAVVVLDQIPLTPNGKVDRAAL PAPGTASGTTSRAPGTAREEILCTLFADVLGLDQVGVDEDFFDLGGHSLLATRLTSRIRSALGIDLGVRALFKAPT VGRLDQLLQQQTTSLRAPLVARERTGCEPLSFAQQRLWFLHQLEGPNAAYNIPMALRLTGRLDLTALEAALTDVIA RHESLRTVIAQDDSGGVWQNILPTDDTRTHLTLDTMPVDAHTLQNRVDEAARHPFDLTTEIPLRATVFRVTDDEHV LLLVLHHIAGDGWSMAPLAHDLSAAYTVRLEHHAPQLPALAVQYADYAAWQRDVLGTENNTSSQLSTQLDYWYSKL EGLPAELTLPTSRVRPAVASHACDRVEFTVPHDVHQGLTALARTQGATVFMVVQAALAALLSRLGAGTDIPIGTPI AGRTDQAMENLIGLFVNTLVLRTDVSGDPTFAELLARVRTTALDAYAHQDIPFERLVEAINPERSLTRHPLFQVML AFNNTDRRSALDALDAMPGLHARPADVLAVTSPYDLAFSFVETPGSTEMPGILDYATDLFDRSTAEAMTERLVRLL AEIARRPELSVGDIGILSADEVKALSPEAPPAAEELHTSTLPELFEEQVAARGHAVAVVCEGEELSYKELNARANR LARVLMERGAGPERFVGVALPRGLDLIVALLAVTKTGAAYVPLDPEYPTDRLAYMVTDANPTAVVTSTDVHIPLIA PRIELDDEAIRTELAAAPDTAPCVGSGPAHPAYVIYTSGSTGRPKGVVISHANVVRLFTACSDSFDFGPDHVWTLF HSYAFDFSVWEIWGALLHGGRLVVVPFEVTRSPAEFLALLAEQQVTLLSQTPSAFHQLTEAARQEPARCAGLALRH VVFGGEALDPSRLRDWFDLPLGSRPTLVNMYGITETTVHVTVLPLEDRATSLSGSPIGRPLADLQVYVLDERLRPV PPGTVGEMYVAGAGLARGYLGRPALTAERFVADPNSRSGGRLYRTGDLAKVRPDGGLEYVGRGDRQVKIRGFRIEL GEI EAALVTHAGVVQAVVLVRDEQTDDQRLVAHVVPALPHRAPTLAELHEHLAATLPAYMVPSAYRTLDELPLTAN GKLDRAALAGQWQGGTRTRRLPRTPQEEILCELFADVLRLPAAGADDDFFALGGHSLLATRLLSAVRGTLGVELGI RDLFAAPTPAGLATVLAASGTALPPVTRIDRRPERLPLSFAQRRLWFLSKLEGPSATYNIPVAVRLTGALDVPALR AALGDVTARHESLRTVFPDDGGEPRQLVLPHAEPPFLTHEVTVGEVAEQAASATGYAFDITSDTPLRATLLRVSPE EHVLVVVIHHIAGDGWSMGPLVRDLVTAYRARTRGDAPEYTPLPVQYADYALWQHAVAGDEDAPDGRTARRLGYWR EMLAGLPEEHTLPADRPRPVRSSHRGGRVRFELPAGVHRSLLAVARDRRATLFMVVQAALAGLLSRLGAGDDIPIG TPVAGRGDEALDDVVGFFVNTLVLRTNLAGDPSFADLVDRVRTADLDAFAHQDVPFERLVEALAPRRSLARHPLFQ  ${ t IWYTLTNADQDITGQALNALPGLTGDEYPLGASAAKFDLSFTFTEHRTPDGDAAGLSVLLDYSSDLYDHGTAAALG$ HRLTGFFAALAADPTAPLGTVPLLTDDERDRILGDWGSGTHTPLPPRSVAEQIVRRAALDPDAVAVITAEEELSYR

ELERLSGETARLLADRGIGRESLVAVALPRTAGLVTTLLGVLRTGAAYLPLDTGYPAERLAHVLSDARPDLVLTHA
GLAGRLPAGLAPTVLVDEPQPPAAAAPAVPTSPSGDHLAYVIHTSGSTGRPKGVAIAESSLRAFLADAVRRHDLTP
HDRLLAVTTVGFDIAGLELFAPLLAGAAIVLADEDAVRDPASITSLCARHHVTVVQATPSWWRAMLDGAPADAAAR
LEHVRILVGGEPLPADLARVLTATGAAVTNVYGPTEATIWATAAPLTAGDDRTPGIGTPLDNWRVHILDAALGPVP
PGVPGEIHIAGSGLARGYLRRPDLTAERFVANPFAPGERMYRTGDLGRFRPDGTLEHLGRVDDQVKVRGFRIELGD
VEAALARHPDVGRAAAAVRPDHRGQGRLVAYVVPRPGTRGPDAGELRETVRELLPDYMVPSAQVTLTTLPHTPNGK
LDRAALPAPVFGTPAGRAPATREEKILAGLFADILGLPDVGADSGFFDLGGDSVLSIQLVSRARREGLHITVRDVF
EHGTVGALAAAALPAPADDADDTVPGTDVLPSISDDEFEEFELELGLEGEEEQW*

SEQ ID NO: 10

Nucleotides 38555-56047 of SEQ ID NO: 1

SEO ID NO: 11

VNRRSKVVEEILPVSALQEGLLFHSSFAAADGVDVYAGQLAFDLVGAVDTGRLRAAVE SLVARHGVLRSSYRQARS

GEWVAVVARRVATPWRAVDARDGATDAAAVAREERWRPFDLGRAPLARFVLVRTDDDRFRFVITYHHVILDGWSLP VLLRELLALYGSGADPSVLPPVRPYGDFLRWAAARDDAAAETAWRDALTGLDEPSLVAPGASPDGVVPASVHAELD KAGTENLAAWARHRGITQATAVRAAWALVLGQHTGRDDVVFGVTVSGRPAELAGAEHMVGLFINTVPLRTVLDPAD TLGTFAARLQAEQTTLLEHQHVRLSDIQRWAGHKELFDTIVVFENYPIGHSGPGSIRTDDFTVTATEGSDATHYPL  $\verb|TLTAVPGETLRLKLDHRPDLVDTTTATALLRRVTRVLETATDDTGHTLARLDLLDDDERHRLLRGWNDTTREQPPT|$ YYHQEFEEQARRRPHDTALVFTSTSWTYEELNDRANRLARLLVAAGAGSDDFVALAFPRSAESVVAILAVLKAGAA YLPLDMDQPAERLTGILADAHPTVVLTTTTATPLPHPGRTLVLDSPTTARALAAAPAHNLTDADRRTPLNARNAAY IIHTSGSTGRPKGVVIEHRSLANLFHDHRRALIEPHAAGGSRLKAGLTASLSFDTSWEGLICLAAGHELHLIDDDT RRDAERVAELIDRQRIDVIDVTPSFAQQLVETGILDEGRHHPAAFMLGGEGVDAKLWTRLSDVPGVTSYNYYGPTE FTVDALACTVGIAPRPVIGHPLDNTAAYILDGFLRPVPEGVAGELYLAGTQLARGYAGRPGLTAERFVACPFGAPG ERMYRTGDLVRRSPGGVVEYLGRVDDQIKLRGFRIEPAEIELALAGHPAVAQNVVLLHRSATGEARLVAYVVPGTP VDPRELTGHLAARLPAYMVPSAFVLLDTLPLTPNGKLDRGALPEPAFGTAPRPERPRTPVEEILCGLYADVLGLPS  ${\tt FGADDDFFDAGGHSLLASKLVSRIRTNLKTELNVRALFEHRTVSSLATALHRAAQAGPALTAGPRPARIPLSYAQR}$ RLWFLNRLDRDSAAYNMPVALRLRGPLDSTAMCAALTDVAERHEALRTVFEEDRDGAHQIVLPATGLGPLLTVTGA DGTTLRALITEFVRRPFDLAAEIPFRAALFRVGDEEHVLVVVLHHIAGDGWSMGPLARDVAEAYRARAAGRAPDWE PLPVQYADYALWQREVLGAEDDETGELSAQLAHWRTRLAGAPAELTLPTDRPRPAVASTAGDRVEFTVPAGLHQAL ADLARAHGATVFMVVQAALAVLLSRLGAGDDIPIGTPVAGRTDEATEELIGFFVNTLVLRTDVSGDPTFAELLARV

RATDLDAYAHQDVPFERLVEVLNPERSLARHPLFQVMLTFNVPDMDGVGSALGNLGELEVSGEAIRTDQTKVDLAF TCTEMYAADGAASGMRGVLEYRLDVFGAVQARETTERLVRVLEGVVSGGGGVSVSGVDVLGVGERERLLGWGVGGP VPVVPGGGLVGLFEERVRADADAVAVRGAGVVWSYGELNARVNVVARWLVGRGVGAECGVGVVMGRGVDVVVMLLA VAKAGGFYVPVDPEWPVERVGWVLADAGVGLVVVGEGLSHVVGDFPGGEVFEFSRVVRESCLVELVAADGVEVRNV TDGERASRLLPGHPLYVVYTSGSTGRPKGVVVTHASVGGYLARGRDVYAGAVGGVGFVHSSLAFDLTVTVLFTPLV SGGCVVLGELDESAQGVGASFVKVTPSHLGLLGELEGVVAGNGMLLVGGEALSGGALREWRERNPGVVVVNAYGPT ELTVNCAEFLIAPGEEVPDGPVPIGRPFAGQRMFVLDAALRVVPVGVVGELYVAGVGLARGYLGRAGLTAERFVAC PFGAPGERMYRTGDLVRWRVDGALEFVGRADDQVKVRGFRVELGEVEGAVAAHPDVVRAVVVVREDRPGDHRLVAY VTGVDTGGLSSAVMRAVAERLPAYMVPSAVVVLDEIPLTPNGKVDRAALPVPGVEAGAGYRAPVSPREEVLCGLFA EVLGLERVGVDDDFFGLGGHSLLATRLISRVRAVLGVEAGVRALFEAPTVSRLERLLRERSALGVRVPLVARERTG REPLSFAQQRLWFLEELEGPGAAYNIPMALRLAGVLDVEALHQALIDVIARHESLRTLIAQDAGTAWQHILPVDDP RTRPGLPLVDIGADALQERLDEAAGRPFDLAADLPVRATVFRLTDNDHILLVVAHHVAFDAMSRVPFIRNVKRAFE ARTNGAAPDWRPLPVQYADYAAWQRDVLGTEDDESSELSAQLAYWRTQLASLPAELALPTDRARPAVASYEGGKVE FTVPAGVYDGLVALARAEGVTVFMVVQAALAALLSRLGAGDDIPIGTPIAGRTDQATEDLIGFFVNTLVLRTDVSG DPTFAELLARVRATDLDAYAHQDIPFERLVEAVNPERSLARHPLFQVMLTFDNTIDREVTEGFAGLGVEGLPLGAG AVKFDLLFGLSEVGGELRGAVEYRCDLFDHPTVAQLAERLVRVLERVASDASVRTGELPVVGEAERARVLTEWNDT GVPGVPETFLELFEAQVAARGDAPAVVYEGEVLSYRELDARANRLAGLLVGRGAGPEHFVGVALPRGLDLIVALLA VLKSGAAYVPLDPEYPAERLVHMVTDAAPVVVVTSTDVRTLRTVPRVELDDEATRATLVAAPATGPDVKMSASHPA YVIYTSGSTGRPKGVVISHGSLANFLAWAREDLGAERLRHVVLSTSLSFDVSVVELFAPLSCGGTVEIVRNLLALV DRPGRWSASLVSGVPSAFAQLLEAGLDRADVGMIALAGEALSARDVRRVRAVLPGARVANFYGPTEATVYATAWYG DTPMDAAAPMGRPLRNTCVYVLDDGLRVVPVGVVGELYVAGVGLARGYLGRVGLTAERFVACPFGARGERMYRTGD LVRWRVDGTLEFVGRADDQVKVRGFRVELGEVEGAVAAHPDVVRAVVVVREDRPGDHRLVAYVTGVDTGGLSSAVM RAVAERLPAYMVPSAVVVLDEIPLTPNGKVDRAGLPVPVVSVAGFCAPSSPREEVLCGLFAEVLGVERVGVDDGFF DLGGDSILSIQLVARARRAGLELSVRDVFEGRTVRALAAVVRGSDAGAVGVVGGAEIVLPGVGEVERWPVVEWLAE RGGGSLGGVVRGFNQSVVLAVPAGLVWEELRVLLGAVRDRHEAWRLRVLDSGALCVDGVVPDDGSWIVRCDLSGMG VDGQVDAVRAAAVEARAWLDPSVGRVVRAVWLERGGDRSGVLVLVAHHLVVDGVSWRVVLGDLAEGWAQVRSGGRV ELGVVGTSLRGWAAALAEQGRRGERAGEVELWSRMVRGADVLVGSRAVDGAVDVFGGVVSVDSRASVSVSRALLTE VPSVLGVGVQEVLLAAFGLAVARWRGRGGPVVVDVEGHGRNEDAVRGADLSRTVGWFTSVYPVRVPVESASWDEVR AGGPVVGRVVREVKETLRSLPDQGLGYGILRYLDPEHGPALARHATPQFGFNYLGRFTTGTDDTGDEGMTDWVPVS GPFAVGAGQDPELPVAHAVEFNAITLDTPEGPRLGVTWSWPTTLLPESRIRELARYWDEALEGLVEHARHPEAGGL TPSDVTLVEVNQVELDRLQAGVAGGAEEILPVSALQEGLLFHSALASGGVDVYVGQLVFDLVGPVDVDRLRAAVEG LVARHGVLRSGYRQLRSGEWVAVVARQVDLPWQSIDVRDGGIDGLVEEERWRRFDMGRGPLARFVLIRTHDDRFRF

VITYHHVVLDGWSVPVLLRELLALYGSSGDVSVLPGVRSYGDFLRWVAARDAAAAEGAWRRALTGLEEPSLVAPGV
SRDGVVPAAFHGAVDGDLSQKIVAWARGRGVTVASVVQAAWALVLGRLMGRDDVVFGVTVSGRPAEVVGVEDMVGL
FVNTIPLRARLDPAESLGGFVERLQREQTELLEHQHVRLAEVQRWAGHKELFDVGMVFDNYPVSSESPEAEFQISR
TGGYNGTHYALNLVASMHGLELELEIGYRPDVFDAGRVREVWGWLVRVLEGVVSGGGGVSVSGVDVLGVGERERLL
G*

SEO ID NO: 12

Nucleotides 56044-68361 of SEQ ID NO: 1

SEQ ID NO: 13

VRGVGGPVPVVPGGGLVGLFEERVRADADAVAVRGAGVVWSYGELNARVNVVARW LVGRGVGAECGVGVVMGRGVD

VVVMLLAVAKAGGFYVPVDPEWPVERVGWVLADAGVGLVVVGEGLSHVVGDFPGGEVFEFSRVVRESCLVELVAAD GVEVRNVTDGERASRLLPGHPLYVVYTSGSTGRPKGVVVTHASVGGYLARGRDVYAGAVGGVGFVHSSLAFDLTVT VLFTPLVSGGCVVLGELDESAQGVGASFVKVTPSHLGLLGELEGVVAGNGMLLVGGEALSGGALREWRERNPGVVV VNAYGPTELTVNCAEFLIAPGEEVPDGPVPIGRPFAGQRMFVLDAALRVVPVGVVGELYVAGVGLARGYLGRVGLT AERFVACPFGVPGERMYRTGDLVRWRVDGALEFVGRADDQVKVRGFRVELGEVEGAVAAHPDVVRAVVVVREDRPG DHRLVAYVTAGGVGGDGLRSAISGLVAERLPAYMVPSAVVVLDEIPLTPNGKVDRAALPVPEVEAGTGYRAPVSPR EEVLCGLFAEVLGVERVGVDDDFFELGGHSLLATRLISRVRAVLGVEAGVRALFEAPTVSRLERLLRERSGLGVRV PLVARERTGREPLSFAQQRLWFLEELEGPGAAYNIPMALRLAGVLDVEALHQALIDVIARHESLRTLIAQDAGTAW QHILPVDDPRTRPGLPLVDIGADALQERLDEAAGRPFDLAADLPVRATVFRLTDNDHILLLVLHHIAGDGWSMGPL ARDLSTAYSARAAGAASAWRPLSVQYADYAAWQRDVLGTEDDESSELSAQLAYWRTQLASLPAELALPTDRARPAV ATYRGGRIEFTIPADVHRSLADLARAEGVTVFMVVQAALAALLSRLGAGDDIPIGTPIAGRTDQATEDLIGFFVNT LVLRTDVSGDPTFAELLARVRATDLDAYAHQDIPFERLVEAVNPERSLARHPLFQVMLAFNNAETSTPLPMAEGLA  $\tt ASRQDIEPGVAKFDLALYCNESRGETGDHQGIRSVFEYRRDLWDEDTVRQLADRFLHVLAAFAAAPEQRASSVDVL$ RAGERDQLLHEWNDTAAALPPALLPQLFEEQVRRTPHDVALVSGNIRLTYAELDARANRLAHLLLARGAAPETFVA VALPRTEELLVALLAVQKTGAGHLPLDPGFPAERLSYMLDDARPAVVLTTEDISARIPGGSHVVLDSEQVTGELHD ${\tt HPATSPAGRGNPAGPAYVIYTSGSTGQPKGVVVPSAALVNFLADMVPRLGLRGGDRLLSVTTVGFDIAALELFVPL}$ LSGATVVLADGETVRDPALARQTCEDHGVTMVQATPSWWHGMLADAGDSLRGVHAVVGGEALSPGLRDALTRGARS  $\tt VTNMYGPTETTIWSTSAGQAAGDSAPPSIGTPILNTRVYVLDAALCVVPPGVAGELYIAGDGLARGYLGRAGLTAE$ RFVACPFGAPGERMYRTGDLVRWRVDGALEFVGRADDQVKVRGFRVELGEVEGAVAAHPDVVRAVVVVREDRPGDH RLVAYVTGVDTGGLSSAVMRAVAERLPAYMVPSAVVVLDEIPLTPNGKVDRAALPVPGVEAGAGYRAPVSPREEVL CGLFAEVLGVERVGVDDDFFGLGGHSLLATRLISRVRAVLGVEAGVRALFEAPTVSRLERLLRERSGLGVRVPLVA

RERTGREPLSFAQQRLWFLEELEGPGAAYNIPMALRLAGVLDVEALHQALIDVIARHESLRTLIARDSDGTARQQV LPVGDPAARPALPVVQTDADTLVAKLNEAVGRPFDLTAEMPLRATVFRVADEDHALLLVFHHIAGDGWSTGLLARD LSTAYAARLEGRDPQLPPLPVQYADYAAWQRDVLGTEDDESSELSAQLAYWRTQLADLPAELALPADRVRPARASY EGGRVGFTVPAGVLRDLTRLARVEGVTVFMVVQAALAALLSRLGAGDDIPIGTPIAGRTDQATEDLIGFFVNTLVL RTDVSGDPTFAELLARVRATDLDAYAHQDIPFERLVEAVNPERSLARHPLFQVMLAFDNTADGGPVEDFPGLSAAG LPLGAGAAKFDLLFGLSEVGGELRGAVEYRCDLFDHPTAARIAERLVRVLERVAADASVRLGELPVVSDAERACVL TEWNDTAVPGVTGTLSALFEARAARGDAPAVVYEGEELSYRELNTRANRLAHVLAEHGAGPERFVGVALPRSPDL VVALLAVVKSGAAYVPLDPEYPADRLAYMAGDAAPVAVLTRGDVELPGSVPRIGLDDTEIRATLATAPGTNPGTPV TEAHPAYMIYTSGSTGRPKGVVVSHGAIVNRLAWMQAEYRLDATDRVLQKTPAGFDVSVWEFFWPLLEGAVLVFAR PGGHRDAAYLAGLI ERERITTAHFVPSMLRVFLEEPGAALCTGLRRVICSGEALGTDLAVDFRAKLPVPLHNLYGP TEAAVDVTHHAYEPATGTATVPIGRPIWNIRTYVLDAALRPVPPGVPGELYLAGAGLARGYHGRPALTAERFVACP FGVPGERMYRTGDLVRWRVDGTLEFVGRADDQVKVRGFRVELGEVEGAVAAHPDVVRAVVVVREDRPGDHRLVAYV TVGGVGGDGLRSAISGLVAERLPAYMVPSAVVVLDEIPLTPNGKVDRAGLPVPVVSVAGFCAPSSPREEVLCGLFA EVLGVERVGVDDGFFDLGGDSILSIQLVARARRAGLELSVRDVFEGRTVRALAAVVRGSDAGAVGVVGGAEIVLPG VGEVERWPVVEWLAERGGGSLGGVVRGFNQSVVLAVPAGLVWEELRVLLGAVRDRHEAWRLRVLDSGALCVDGVVP DDGSWIVRCDLSGMGVDGQVDAVRAAAVEARAWLDPSVGRVVRAVWLERGGDRSGVLVLVAHHLVVDGVSWRVVLG DLAEGWAQVRSGGRVELGVVGTSLRGWAAALAEQGRRGERAGEVELWSRMVRGADVLVGSRAVDGAVDVFGGVVSV DSRASVSVSRALLTEVPSVLGVGVQEVLLAAFGLAVARWRGRGGPVVVDVEGHGRNEDAVRGADLSRTVGWFTSVY PVRVPVESASWDEVRAGGPVVGRVVREVKETLRSLPDQGLGYGILRYLDPEHGPALARHATPQFGFNYLGRFTTGT DETTTADALDRAPAWSLLARSAAGQDPELPVAHAVEFNAITLDTPEGPRLGVTWSWPTTLLPESRIRELARYWDEA LEGLVEHARHPEAGGLTPSDVGLAELSFAEIELLEDDWRTQG*

SEQ ID NO: 14

Nucleotides 68358-78062 of SEQ ID NO: 1

**SEQ ID NO: 15** 

VSESRCAGQGLVGALRTWARTRARETAVVLVRDTGTTDDTASVDYGQLDEWARSIAVTLRQQL APGGRALLLPSGPEFTAAYLGCLYAGLAAVPAPLPGGRHFERRVAAIAADSGAGVVLTVAG ETASVHDWLTETTAPATRVVAVDDRAALGDPAQWDDPGVAPDDVALIQYTSGSTGNPKGVVVT HANLLANARNLAEACELTAATPMGGWLPMYHDMGLLGTLTPALYLGTTCVLMSSTAFIKRPHL WLRTIDRFGLVWSSAPDFAYDMCLKRVTDEQIAGLDLSRWRWAGNGAEPIRAATVRAFGERFA RYGLRPEALTAGYGLAEATLFVSRSQGLHTARVATAALERHEFRLAVPGEAAREIVSCGPVGH FRARIVEPGGHRVLPPGQVGELVLQGAAVCAGYWQAKEETEQTFGLTLDGEDGHWLRTGDLAA LHEGNLHITGRCKEALVIRGRNLYPQDIEHELRLQHPELESVGAAFTVPAAPGTPGLMVVHEV

RTPVPADDHPALVSALRGTINREFGLDAQGIALVSRGTVLRTTSGKVRRGAMRDLCLRGELNI VHADKGWHAIAGTAGEDIAPTDHAPHPHPA*

**SEQ ID NO: 16** 

Nucleotides 36,408-38,201 of SEQ ID NO: 1

**SEQ ID NO: 17** 

MNPPEAVSTPSEVTAWITGQIAEFVNETPDRIAGDAPLTDHGLDSVSGVALCAQVEDRYGIEV DPELLWSVPTLNEFVQALMPQLADRT*

**SEO ID NO: 18** 

Nucleotides 38,270-38,539 of SEQ ID NO: 1

**SEQ ID NO: 19** 

MIGVAPPAYDPAAPESATTLPVGTPTTVRSYVRSLLRRHRRAFTVLIAVNAVAVVASITGPYL LGGLVEDLSAGVTDLHLERTAAIFAVALVVQVLFTRSMRLRGAMLGEEMLADLREDFLVRSVG LPPGVLERAGTGDLLSRITTDIDRLANAMREAVPQLAIGVVWAGLLLGALTVTAPPLALAVLI ALPVLIVGCRWYFRRAPSAYRSEAAGYAAVAAMLAETVDAGRTVEAHRLGGRRVALSDRRISQ WTAWERYTLFLRSVLFPVINATYVTILGAVLLLGGWFVLEGWLTVGQLTTGALLAQMMVDPIG LILRWYDELQVAQVSLARLVGVRDIEPDAGDAEVGPEGRDVRADEVRFGYREGVDVLHKVSLD VAPGTRLALVGPSGAGKSTLGRLLAGIYAPRTGEVTLGGAELSRMTAERVREHVALVNQEHHV FVGSLRDNLRLAREGAKDAELWASLAAVDADGWAKALEKGLDTEVGSGGFTLTPAQAQQIALA RLVLADPHTLVLDEATSLLDPRAARHLERSLARVLEGRTVV*

SEO ID NO: 20

Nucleotides 1637-1 of SEQ ID NO: 1

**SEQ ID NO: 21** 

MSPPAPPEALQRPAPTAQEPVRTGSRTGLVAICVSLFAALVVSVVVAIGLGPAVVPPAETARF LWAALSGGPISADEVTTYQIIWQIRTPRVLLAALVGAGLSAVGVAIQALVRNALADPFVLGVS SGASVGAVGVTVMGGLAVFGIYAVSVGAFLGALVASVLVYGASSTKGALSPLRLVLTGVAMSL GFQAVMSVIIYFAPSSEATSMVLYWTMGSFGAASWGSLPVVTAAVLLGVLVLHRHGRPLDVLA LGDETAASLGISPDRHRKSLLVLVSLVTGVMVAVSGSIAFVGLVMPHLVRMVVGATHARVLAV APLAGAVFMVWVDLVSRTLVAPRELPLGVITALVGVPVFITLMRRKSYMFGGR*

SEQ ID NO: 22

Nucleotides 3502-1634 of SEQ ID NO: 1

SEO ID NO: 23

MNDDARPAPEPQDIPPHSGAADEVNRQDPSRRSVLWTTAGVAGAGLGLGALGAGTASAAGRSAPDAVAAAEAVAAA PPRQGRTMAGVPFERRSTVRVGIIGLGNRGDSMIDLFLALPGVQVKAVCDTVRDKAEKAAKKVTAAGQPAPAIYAK DEHDYENLCKRGDIDFVYVVTPWELHFPMAKTAMLNGKHVGVECPIAMRLEELWQLVDLSERTRRHCMQLENCCYG KNEMRVLRMAHAGLFGELQHGAGAYNHDLRELMFDPDYYEGPWRRLWHTRLRGDLYPNHGFGPVANYMDVNRGDRV VSISSVGTTPLGLAAYREEHMPAGDPSWKESYIGADRTISLVQTAKGRVIRLEHDVSSPHPYSRINSLGGTKGVFE DYPERIYLEPTNTNHQWDDFKKYAEWDHWLWKEHANPPGGHGGMDYIMVFRLMQCMRLGLVPDFDVYDAAVWTAPV PLSHLSIKAKGVPLPIPDFTRGEWKKTRSGMDSEKPAE*

**SEQ ID NO: 24** 

Nucleotides 4927-3659 of SEQ ID NO: 1

SEQ ID NO: 25

MPLLEPDPEALRPGTAREPAPDRVTDGSAGGTPEPLRSELTALLGADKVLWKISDLVRYASDASPYRFLPRVVLVP
EDLDDVSAILSYAHGKGRSVVFRAAGTSLNGQAQGEDILVDVRRHWTGVEVLDDGARARILPGTTVMRANAALARY
GRLLGPDPASAIACTLGGVVANNASGMTAGTTRNSYRTLASLTFVLPSGTVVDTAHPAADEELAHAEPELCAGLLE
LKAEIEADAELTARIRAKYTIKNTNGYRLDAFLDGATPVQILRGLMVGSEGTFGFISEVVFDTLPLDRRVSSGLLF
FPSLTAAAAAVPRFNEAGAIAVELMDGNTLRASVSVPGVPADWAALPRETTALLVEFRAADEAGRAAFERAADAVV
AGLDLVRPAASVTNAFTRDAGTIAGYWKARKAFVTAVGGSRPSGTTLITEDFAVPPARLADACAALLELQSRHGFD
AAVAGHAAHGNLHFLLAFDAAKPADVARYDAFMQEFCALVVDRFDGSLKAEHATGRNIAPFLEREWGPRATELMWR
TKQVIDPAGVLAPRIVLDRDPRAHLRGLKTIPKVEAVADPCIECGFCEPTCPSEDLTTTPRQRIVLRREMMRQTDG
SPVESGLLDAYGYDAVDTCAGDSTCKLACPVGIDTGAMMKGFRHRRHTPREERIAALTAKNFRAVEASARLAVAAA
DTVGNRVGDAPLQAVTRLARKAVRPDLVPEWLPQIPGAAARRLPDTARVGASAVYYPACVNRIFAGPDDGDAGPAL
SLAEAVVAVSGRAGKPVWIPEDVTGTCCATIWHSKGYDAGNRIMANRIVEAAWGWTAGGTLPLVVDASSCTLGIAE
EVVPYLTEDNRALHRELTVVDSLVWAAEELLPHLTVFRTAGSAVLHPTCSMEHLGDVGQLRALAEACAQEVVVPDD
AGCCAFAGDRGMLHKELTDSATAKEAAEVDRRPYDAYLSANRMCEIGMERATGHPYRSALIELEHATRPTLP*

SEQ ID NO: 26

Nucleotides 8364-5410 of SEQ ID NO: 1

SEQ ID NO: 27

MDAPDSPDSPDSPESRDSRDSRDSRDGLLAEQLLRLTRRLHRIQRRQLEPIDITPAQFRLLRTVASYDAAPRMADL ARRLDVVPRAVTTLVDALEASGRVRRAPDPDSRRVVRIEITDEGRATLRSLRSARRAAAEEILAPLTADQREVFGE LLSALVDGMPERHC*

SEQ ID NO: 28

Nucleotides 8916-8416 of SEQ ID NO: 1

SEQ ID NO: 29

MKPDEPTWTPPPDARPAADRRPAEVRRILRLFRPYRGRLAVVGLLVGASSLVGVASPFLLREILDTAIPQGRTGLL
TLLALGMILTAVMTSVFGVLQTLISTTVGQRVMHDLRTAVYTQLQRMPLAFFTRTRTGEVQSRIANDIGGMQATVT
STATSLVSNLTAVIATVVAMLALDWRLTVVSLLLLPVFVAISRRVGRERKKITTQRQKQMAAMAATVTESLSVSGI
LLGRTMGRSDSLTQGFAEESERLVDLEVRSNMAGRWRMSVIGIVMAAMPAVIYWAAGLTFASGAAAVSIGTLVAFV
TLQQGLFRPAVSLLSTGVQMQTSLALFQRIFEYLDLTVDITEPEHPVRLERIRGEIAFEDVDFSYDEKNGPTLTGI
DVTVPAGDSLAVVGSTGSGKSTLSYLVPRLYDVTGGRVTLDGIDVRDLDFDTLARAVGVVSQETYLFHASVADNLR
FAKPEATDEEIEAAARAAQIHDHIASLPDGYDTMVGERGYRFSGGEKQRLAIARTILRDPPVLILDEATSALDTRT
EQAVQEAIDALSAGRTTLTIAHRLSTVRDADQIVVLEDGRVAERGTHEELLDRDGRYAALIRRDSHPVPVPVPAP*

SEQ ID NO: 30

Nucleotides 9030-10853 of SEQ ID NO: 1

SEQ ID NO: 31

HRHLAERPRRCAVLALLRPAAGPAGRAGRRPGPAARSDPLHRQGGRRPHRDIGEAAGRAARPAADTQTAAAEPAQR PGVHRQLHRAARRMQHRGEDPGGGARHDGHAGSRGDGQARPRPVLPAAPLRPRGPGRAALSHGGSRPVGRGVPGPS AHPGPPDARHPRGGGDGGTRVRRAAALHRTGSGERLSRPAAYTQHTAHRAHGAHSTHGGAAAPVGRGATAPGGAMV RRANPRSGRRRQAGWSGSSSGLSPCTWCICGTAQ*

SEQ ID NO: 32

Nucleotides 10933-11544 of SEQ ID NO: 1

**SEQ ID NO: 33** 

MVNESPDARPRRLRPTRRGKIVLVVGALLVVTAAVLIPLSLTGSDEPPKKQETPQSTLMIPEGRRVSQVYEAVDK ALDLKPGSTLKAASTVDLKLPAQAEGNPEGYLFPATYPIDDTTEPAGLLRYMADTARKHFAADHVTAGAQRNNVSV YDTVTIASIVQAEADTPADMGKVARVVYNRLLKDMPLQMDSTINYALKRSTLDTSTADTQLDSPYNSYRIKGLPPT PIGNPGEDALRAAVRPTPGPWLYFVTVGPGDTRFTDSYDEQQKNVEEFNRGRGSATTG*

SEQ ID NO: 34

Nucleotides 11990-12850 of SEQ ID NO: 1

SEQ ID NO: 35

MIPGARRVSRSVNISGVRELDVVVIGAGQAGLSAAYHLRRVGLEPDNDFVVLDHAPRPGGAWQFRWPSLTYGKVHG MHALPGMELTGADPDRPSSEVIGAYFAAYEDRFGLRVHRPVEVSAVREGSGGRLLVETSEGTYAARALINATGTWD RPFWPRYPGQETFRGRQLHTANYPGPEEFAGQRVLVVGGGASGTQHLMEIAEHAADTFWVTRSEPVFREGPFTEEW GRAAVAMVEERVRNGLPPKSVVSVTGLPLNDAVRRARERGVLDRLPMFDRITPTGVAWDDGRTVETDVILWATGFR PAVDHLAPLKLREPGGGIRAEDTRAVRDGRVHLVGYGPSASTIGANRAGRAAVRSVMRLLKETGADGGASAVVSVP APVPGV*

SEQ ID NO: 36

Nucleotides 14038-12878 of SEQ ID NO: 1

**SEQ ID NO: 37** 

VPGLARPTRSTPPRQLRRGHPPSLSRPPTEPLTTPPPPEPPTQRHTSLCNTDSLAVAMSERPRHRPQKRSIACGAC RAGSSPLAHTGVGLVRGGAGTALVGSHAEVADRIEEYHALGVEHFVLSGYPHLEEAYWFGEGVTPELSRRGLLSTV PASPLLGVSGAESRTATAPGGAPLLLAGGR*

SEQ ID NO: 38

Nucleotides 14348-14070 of SEQ ID NO: 1

SEQ ID NO: 39

VAVVAEDLRRRFAATKVTFLIVDLTGRALARLSTTTAAGSENETERIPLFGGSVYEQVIRTQRPHHEPAGQEQRVI VPVTNRGDAIGLLELLLPAGRSDEEEVVLAVGEAAHALAYVVIANGRFTDFYTWGKRSRPPTLAAEIQYQLLPQAL SCEAAQFTLSGSLEPSEDLSGDTFDYALDRDTLHLSVTDPMGHDLGAALAATVLVGALRRARRAGAPLAEQARQGD QALTSHGQGHATGQLLRINLHTGKAELVNAGHPWPMRMRAGMVETIPCQVDQPFGLAVVSPRPYRVQTLDLHPGDR LLMLTDGMLERHGEKIDVAALLRQTRSLHPRETTLMLTSAVRDAAGGRLEDDATVVCLDWHGPQEVHRHVSSGADT HOASAARPPNR*

SEQ ID NO: 40

Nucleotides 15697-14522 of SEQ ID NO: 1

SEQ ID NO: 41

MRVRLQVGVALCGLGVLVTQERERRRCGARSAGMVPDPLLLAVAFEAGAFAFQGASRSRVRAEHGQGGALRQTARK FANSGPATGRAVGQDDPMSQDLVTFLHARLDEEANLAGRCDGDGCGEWAPHGHTVDFCQGELSGFHSTIALHVALH DPARVLREAEAKRRVLARHGLSPATGDPELPWDNRDDCRYDGATWPCDDLLGLASPYADHPDYPQRP*

SEQ ID NO: 42

Nucleotides 17597-16938 of SEQ ID NO: 1

**SEQ ID NO: 43** 

MSVRDLVGMPCHPCEPPRRAEGRRRGVGRMRWWKGVLMTVRHQGVRWWFALLALVGCVVCVLCVVALSGAGHYFGL SLWAGIALVVVGALFPLGGLGFLYWVDDGRSEDSFLVKFLCFVAHSAVLGLAAVSCTGAEAWAFEQRGRWTEATVV GYSPPRVVPGDPPTKVRASCALETAEGERVRPRLPEGRGCRDGVRHGSRLDVLYDPRGLLAPRATEPMDHGVTVPV LGGVATLSGFLGCVALAWRWETLRVRSARRTAARRGRESAAG*

SEQ ID NO: 44

Nucleotides 17870-18682 of SEQ ID NO: 1

SEQ ID NO: 45

MKFTKLAIPVAASALLLTGCGAEVESQGKGSGKSTVKRCGESVEYTVPKRAVAYEGGSADKLFSLGLADHVHGYVM
PPANPPVSESPWAKDYAKVKMLSDDLLNKEIVVDAKSDFVVAGWNSGFSDQRGITPEILDKLGVQSFMHSESCYNY
PGHPEKLTPFKGLYTDLERLGRIFQVEEEAEKVVAGLKKREAAVAEQAPKGKPVPVFLYDSGTDQPFTAGNQVPPN
DIIKTAGGKNIFDGLEERWTQVNWEAVTQAEPEVIMIFDYGDQPAEKKIEFLKKSPHTKELPAVKKNNFFVLDYNE
GISSPRNIDGLEKFGKYMRAFKK*

**SEQ ID NO: 46** 

Nucleotides 19898-18915 of SEQ ID NO: 1

SEQ ID NO: 47

MDLELDGLSVVTDGKSLVRDLSLDVGSGQVVGLVGPNGSGKSTALRCVYRALKPSSGTVKVDGQELSSLTMRRSAQ LIAAMTQDGAVDLDFTVEEVIALGRTPHQRGSTPLNGHERDLCEHAMRRLDILHLARRGILTLSGGERQRVLLARA LVQEPKILVLDEPTNHLDVRHQVRLLSLLRGAGLTVLVVLHDLNLAAAACDRIGVLSEGRLITSGTPKDVLTPELV DEVFGVRASVVPHPLTGDPQLLYSLDS*

SEQ ID NO: 48

Nucleotides 20674-19907 of SEQ ID NO: 1

**SEQ ID NO: 49** 

MSPPAPPEALQRPAPTAQEPVRTGSRTGLVAICVSLFAALVVSVVVAIGLGPAVVPPAETARFLWAALSGGPISAD EVTTYQIIWQIRTPRVLLAALVGAGLSAVGVAIQALVRNALADPFVLGVSSGASVGAVGVTVMGGLAVFGIYAVSV GAFLGALVASVLVYGASSTKGALSPLRLVLTGVAMSLGFQAVMSVIIYFAPSSEATSMVLYWTMGSFGAASWGSLP VVTAAVLLGVLVLHRHGRPLDVLALGDETAASLGISPDRHRKSLLVLVSLVTGVMVAVSGSIAFVGLVMPHLVRMV VGATHARVLAVAPLAGAVFMVWVDLVSRTLVAPRELPLGVITALVGVPVFITLMRRKSYMFGGR*

SEQ ID NO: 50

Nucleotides 21782-20676 of SEQ ID NO: 1

**SEO ID NO: 51** 

VSAGTSRSAVAPEKSPEMPGDLKMARALWPVLVASAVGLLPFTVFSTYLVPIAEETGSGVAAVGGLRGLGGLAALA
VGTALAPLIDRVPKSKAVAVGLVVLAVSSALGASGDFLLTAVFCLLVGAGTAVINPALTAAAADRFGDGKSAARAA
TLVTSTTSMTAMLAAPLIALPALLWGWEGDLLAVTVVSLLLAAVFLVRGRKGEDPVVEGGPRTGYFASFKALAQVR
GSVPLLAISFLRTAVFMGYLAYLAVYYDDRFHLDPALFSLVWTLSGASFFVSNLLTGRITNAEKSTVGTEQLLLVG
LLAALVTATGFWFTTWLPLALAFTSLHAASHAAVAACAVSLLVRRCGSMRGSALSLNAAGQSLGVFAGAALGGAGL
GLAGYPGIAAAFGLLVAVAVVAGLLVLRSEDEIPGSA*

SEQ ID NO: 52

Nucleotides 23130-21877 of SEQ ID NO: 1

**SEQ ID NO: 53** 

MTPPPTRRKPSDMPFPTPQSVAELTDAVLAGDYGPDPKDMTVTSAFWLYHTTRLAGGPVTYHNHYLVLRVGRSFGG CSFEAGELTPDFCENASGHPLEKLLRHESAPVRIAALDAYLAQIQPHREAPEQEAVPLPVGTPEVRAKARDASIAG LLDIEEGAKVALIGVVNPLVAAIRERGGVCLPCDLNLRTTQWGEPVADDMTEVLAEAHAVVATGMTLSNGTFDLIL EHCREQKVPLVVYAQTGSAVARAFLGSGVTALNAEPFPFSQFSADETTMYRYRAGGDL*

SEQ ID NO: 54

Nucleotides 23951-23127 of SEQ ID NO: 1

SEQ ID NO: 55

MYEHIAEAIKKPDLIALRPDLVCLRFETMKIYSALGAVRHLLESGTVKPGDTLVDSSSGIYAQALALACHRYGMKC HIVGSTTVDRTLKAQLEILGATLEQVRPSRNLRLDQELRVRRIAEILEENPSYHWMRQYHDSIHYYGYREVAETIA DEVPAGPLTLVGGVGSGASTGAIASYLREAGRDVSLVGVQPFGSVTFGSEHVSDPDMIIAGIGSAIPFENVRHDLY DRIHWVSFDSALAGAVHLLRSSGIFAGLSAGAAYLTTRWERSKDDSRTYVFIAADTGHRYVDSAYAKHTEAPDIED LEPREITSLDELSHPWSAMTWTDDSTSDQKKAL*

**SEQ ID NO: 56** 

Nucleotides 24966-23953 of SEQ ID NO: 1

SEO ID NO: 57

MDTGVGTAYGTFGELLQGELPEEAGDFLVTLPVARWARASFRCDPAMGDVIVRPSHKEKARRLACLILEEAPGMTG GVLTVNSVIPEGKGLASSSADLVATARAVGRALRLDMPPSRIEGLLRLIEPTDGVLYPGIVAFHHRAVRLRAMLGS LPAMSVVGVDEGGAVDTVDFNRIPKPFTPADRREYADLLNRLSGAVRSRDLAEVGRVATRSALMNQPLRYKRLLEP MREICRDAGGLGVAVGHSGTALGVLLDAADPAYPHRATAVARACGDLAGAVAVYRTLSFPNAVSHGGRTVG*

SEQ ID NO: 58

PCT/US01/32354 WO 02/059322

Nucleotides 25228-26127 of SEQ ID NO: 1

**SEO ID NO: 59** 

MLTAQQPAPGVVPARIHVTDRLEAAHPLAADGAVVLTGVEPSGDGLVLAAAAVLGERLQQVFPHRLRASDGSNFVH LHADSFDFVVNVGGVEHRRRDPDEDYVLIQCVRQSDSGGDSFVADAYRFVDHCATADPELWDFLTRGDVDLYGAWS GLRGMPATPFVGRHVEYTRAGRRIVRRGDGVTPLHRDPGADHTRRMLARLEEAVHALEETLPRFRLDKGEILVLDN YRCWHGREAHTGDRAVRILTVRSSDAR*

SEQ ID NO: 60

Nucleotides 26445-27212 of SEQ ID NO: 1

**SEO ID NO: 61** 

MTTMFNNNPPFPPATELRNERVRFQRLSAGYPGRPVLHQLSAAIPPLAMTALVGPNGSGKSTLLGVLAGVITATSG QLRYAEGSPPAFVPQRGAVGDTLPLTARQTVEMGRWGQRGLWRRLTRTDRTAVDSAMERLGVADLGARQLGELSGG QRQRVLIAQGLAQQSDLLLLDEPTTGLDPEARERITALLTDLVADGTTVVQATHDLDAARSADACLLLADGRLIGQ GSPEEVLTPEALARIWQPA*

**SEO ID NO: 62** 

Nucleotides 28124-27381 of SEQ ID NO: 1

SEQ ID NO: 63

MEWLTAPFEVAFVQRALWAGILVSAICALAGTWVVLRGMAFLGDAMSHGLLPGVAVASLLGGNLLVGAVVSAAVMA  ${\tt AGVTALGRTPRLSQDTGIGLLFVGMLSLGVIIVSRSQSFAVDLTGFLFGDVLAVRGSDLLLLGVALLLALAVSVLG}$ YRAFLALAFDERKARTLGLRPRLAHAVLLGLLALAIVAS FHIVGTLLVLGLLIAPPAAAMPWARSVQAVMVLAALL GAAATFGGLLLSWHLRTAAGATVSALAVALFFLSHLASGLRHRRRARRGGLAEPAVAPGRDLLHVLTERNLRRSPC SSEKTSHRWLRRLRP*

SEO ID NO: 64

Nucleotides 28139-29098 of SEQ ID NO: 1

SEO ID NO: 65

VILLTAGCGGGDEAKSGSGPASSSPTPHGYVEGATEAAEQQSRLLLGDPGSGETRVLDLITGKVYDIARSPGATAL TTDGRFGYFHGPDGIRVLDSGAWMVDHGDHVHYYRAKIKEVGELPGGTGTSIRGDAGVTVASSADGKASVYRRADL EKGALGTPSPLPGTFAGAVVPYAEHLVTLTAESGAPAKVAVLDRSGKRVAAPEAECEEPQGDAVTRRGVVLGCADG ALLVHEDDGAFTAEKIPYGEDVPKTERAVEFRHRPGSSTLTAPAGKDAVWVLDAGEGAWTRVKTGPVVAANTAGEG SPLVVLETDGALHGYDIPTGKETGVTDPLLKELPGTGAGGGAAPVIEVDRSRAYLNDPEGKRVYEIDYNDDLRVAR TFDVDVRPSLMVETGR*

SEQ ID NO: 66

Nucleotides 29095-30285 of SEQ ID NO: 1

**SEO ID NO: 67** 

 ${\tt MSARVGAPRMRALLVSLAGFFVVAGAATGCAGGGDERPRVVVTTNILGDITREIVGDEAGVSVLMKPNADPHSFGL}$ SAVQAAELENADLVVYNGLGLEENVLRHVEAARESGVAAFAAGEAADPLTFHAGQDGGPEEDAGKPDPHFWTDPDR VREAAGLIADQVAEHVEGVDEKKVRENAERYDGQLADLTGWMEKSFAAIPEDRRALVTNHHVFGYLADRFGLRVIG AVIPSGTTLASPSSSDLRSLTQAMEKAKVRTVFADSSQPTRLAEVLRQEMGGDVDVVSLYSESLTEKGKGAGTYLE MMRANTSAMAEGLTGD*

**SEQ ID NO: 68** 

Nucleotides 30282-31244 of SEQ ID NO: 1

**SEO ID NO: 69** 

MNKPTRARVFTGTALVVAASMALTACGGNGNDDAPSGKEPKEQKSSEAAAVGNPIVASYDGGLYVLDGETLKLAKT IALPGFNRVNPAGDNEHVVVSTDSGFRVFDATRQEFTDAEFKGSKPGHVVRHGGKTVLFTDGTGEVNVFDPADLSD  $\verb|GKKPDGRTYTSAKPHHGVAIELAGGELVTTLGTEKRTGALVLDKDNKEIARAENCPGVHGEAAAQGEVAGFGCED|$ GVLLYKDGKFTKVDAPGDYARTGNQAGSDASPILLGDYKTDPDAELERPTRISLIDTRTAKMKLVDLGTSYSFRSL

 $\label{eq:local_vlgtngtlhvidpetgkvekkidavgdwtepldwqqprptlfvrdhtayvsepgkrqlhsidlesgkklasvtlpkgtnelsgtvagh*$ 

SEQ ID NO: 70

Nucleotides 31332-32537 of SEQ ID NO: 1

SEQ ID NO: 71

VSWMNDVLTAVSDMNPVTRFALASVFAFAESGLGAGMAVPGEVAVLALSAGTEGTRPLLALFLVVTLSSSAGDHIG YFLGIRYGQRMRETRLVRRIGQHHWDRAQELCHRYGARAVFLTRLLPVVRTLTPATAGVGSVRYLRFLPASLAGAA MWSALYVSAGTLVSTSLREAESVLSTILWALLGVAAAFTLAIVWWRRRHRRRSS*

SEQ ID NO: 72

Nucleotides 32816-33427 of SEQ ID NO: 1

SEQ ID NO: 73

MELCALHSRDRDATVKTCAAGRPKRKPSYGFLGRPTAAEELAAVTSCGGGACAATTRSRA*

SEQ ID NO: 74

Nucleotides 32590-32868 of SEQ ID NO: 1

SEQ ID NO: 75

MGGSAIRTRQLTKHFGAVQALVGVDLEVPAGSVLGLLGHNGAGKTTLIQILSTVLPPSGGSAEVAGFDIVRDARRV RACIGVTGQFAALDEHLSGLANLVLISRLLGARPREARRAAELVEQFGLTEAADRPMRTYSGGMRRRIDLAASLV ARPSVLFLDEPTTGLDPVSRTALWETVEGLVAEGTTVLLTTQYLDEADRLADRIAVLSSGHVVTVGTAAELKAAGT RSVRLTFGSAADLESAEGALRLEGLGLTTDPVSRTVSLPLAATAELAGIFRILGAAGVELAELALKEPTLDDVYLS LAESWETTSGGTVRC*

SEQ ID NO: 76

Nucleotides 34195-35154 of SEQ ID NO: 1

SEQ ID NO: 77

LTTRRTGPGTSPVADGPGWRGGGAGIGTQFRVLTGRQFRIIYGDRRIALFSLLQPIIMLMLFSQVLGRMANPEIFP PGVRYLDYLVPALLLTTGIGSAQGGGLGLVRDMESGMMVRLRVMPVRLPLVLVARSLADLARVALQLVALLACAMG PLGYRPAGGVSGIVGATLLALLVAWSLIWVFLALAAWLRSIEVLSSIGFLVTFPLMFASSAFVPLDILPGWLRVIA TVNPLTYAVEASRDLALDHSALGAALAAVGTSLALLAVTGLLAVRGLRRPPGAGGPHRTP*

SEQ ID NO: 78

Nucleotides 35148-36017 of SEQ ID NO: 1

**SEQ ID NO: 79** 

MANPFENNDGSYLVLVNDEGQYSLWPAFADVPAGWTVTFGESSRQECLDHINENWTDMRPKSLIRQMENDRTTAA*

SEQ ID NO: 80

Nucleotides 85272-85499 of SEQ ID NO: 1

**SEO ID NO: 81** 

MTVHDYHVTVKEQHPALFELLDPARLVAVTDEPWVTEGNEFDDDHAGRGVSYRCAQQHGEARRTGIETILGMFAGP GGLRDMGRVLDVLGGEGLLSRVWRQLAGAGDGDSVPLVTGDLSGHMVAAALRSGLPAVRQPADRMLQRDHCLDGVL FAYGTHHVDRSVRPRMLTEASRVLAPGGRVVLHDFAEGSPEERWFREVVHPRSLAGHAYDHFTAHEMTGYLADAGF TDITVGPVYDPMTLTGETDESALARLVSYMTSMFGILPDGDRSNERTEAALRDIFRFSAGDLPEDVPRDEAVLELT VRPHGNAFRAELPRIALVAHGRKP*

**SEQ ID NO: 82** 

Nucleotides 86436-87422 of SEQ ID NO: 1

SEQ ID NO: 83

MTAQDTRTTGSDGGGRGATYHESPTYGELLRLEDLLNVAHLRDAAAPVLFLATHQSAEIWFGIVLRHLEEIRAALT DDDPDTALHLLPRLPEIFELLVRHFDMLATLSTEEFGKIRAGLGTASGFQSAQYREIEFLCGLRXHRHISTPGFTE TERRDCGNGPASPPWRRLRRLPDPMRQREGRERIGEALLRFDERVTVWRARHAALAERFLGPLEGTAGTAGADYLW RVTRHRLFPPEAWGAG*

SEQ ID NO: 84

Nucleotides 87419-88153 of SEQ ID NO: 1

SEQ ID NO: 85

MDREAEAPLRAAPHATPAERAALGKAARREAPRSGHAEFSPSPRRPDPLTVLEAQSADRVPELVPIRYARMTESPF RFYRGAAALMAADLAGTPVSGIRAQLCGDAHLLNFRLLASPERNLLFDINDFDETLPGPWEWDVKRLAASLVIAGR ANSFTLRERAGVVRATVRSYREAMARFAGMRNLDVWYARTDAERLRTVATEQLGGRGRRNVDRALGKARSRDSLQA FGKLAEVVDGRLRIAADPPMVVPLTDLTPGVDRDAVFRQFGSMLAGYARSLPSDRRSLLEDFALVDVARKVVGVGS VGTRCWIVLLLGRDGGD

SEQ ID NO: 86

Nucleotides 965-1 of SEQ ID NO: 103

SEQ ID NO: 87

MIHÎRAVSPPDLTDEVVGLLSADPCVLNLIVQRDAARRPDGDAIACDVLTGAANDVLHRLRAAHLDRRGSLVIEPV DMAFSGAATEGGQRELGPLSRAPVWEQVEARIRSGGRYPPSFYLYLVIAGLIGSVGIVTNSQILIVGAMVVGPEYG AIVSVALGIDRRHRSMVRSGLAALGVGLLLTIVVTFLFALLIRGFGLESEAFDRGLRPVSHLINTPNFFSVAVATL AGIVGIVSLTEARTSALLGVFISVTTIPAAADIAVSTAYTSWSDVRGSAIQLVVNILVLIVVGAFALKAQRAIWQR VRLRRDRERRIAEQA*

SEO ID NO: 88

Nucleotides 989-1948 of SEQ ID NO: 103

SEQ ID NO: 89

VTRPGWDHEGVDTPDTPDAFPEPLPGADEAVREERATDDGTPEGRRLVRCRLCGRPLTGADSRRAGLGPSCDAKLH PAPPDIRTRRHEVDQDPLPGT*

SEQ ID NO: 90

Nucleotides 2099-2392 of SEQ ID NO: 103

**SEO ID NO: 91** 

MTNPAERLVDLLDLERIEVNIFRGRSPEESLQRVFGGQVAGQALVAAGRTTDGERPVHSLHAYFLRPGRPGVPIVY QVERVRDGRSFTTRRVTAVQEGRTIFNLTASFHRPEEAGFEHQLPPARIVPDPEELPTVAEEVREHLGALPEALER MARRQPFDIRYVDRLRWTKDEIQDADPRSAVWMRAVGPLGDDPLVHTCALTYASDMTLLDAVRIPVEPLWGPRGYD LASLDHAMWFHRPFRADEWFLYDQESPIATGGRGLARGRIYDRSGQLLVSVVQEGLFRRLEQ*

SEQ ID NO: 92

Nucleotides 3277-2405 of SEQ ID NO: 103

**SEO ID NO: 93** 

VIFVPSAGSLIRAEDRQDGGVTLIDQLPQTADPDALFEAFSSWTESQGITMYPAQEEALIEVVSGANVILSTPTGS
GKSLVAAGAHFTALAQDKVTFYTAPIKALVSEKFFDLCKLFGTENVGMLTGDASVNADAPVICCTAEVLASIALRD
GKYADIGQVVMDEFHFYAEPDRGWAWQIPLLELPQAQFVLMSATLGDVSMFEKDLTRRTGRPTSVVRSATRPVPLS
YEYRFTPITETLTELLDTRQSPVYIVHFTQAAAVERAQSLMSINMCTKEEKEKIADLIGSFRFTTKFGQNLSRYVR
HGIGVHHAGMLPKYRRLVEKLAQAGLLKVICGTDTLGVGVNVPIRTVLFTALTKYDGNRVRTLRAREFHQIAGRAG
RAGFDTAGFVVAQAPEHVIENEKALKKAGDDPKKKRKVVRKKAPEGFVAWSESTFDKLIQSEPEPLTSRFRVTHTM
LLAVIARPGNAFEAMRHLLEDNHEPRRAQLRHIRRAIAIYRSLLDGGVVEQLDTPDAEGRIVRLTVDLQQDFALNQ
PLSTFALAAFDLLDAESPSYALDMVSVVESTLDDPRQILPAQQNKARGEPVGQMKADGVEYEERMERLQEVTYPKP
LSELLWHAYDVYRTSHPWVNDHPVSPKSVIRDMYERAMTFTEFTSHYELARTEGIVLRYLASAYKALEHTIPDDVK
SEDLQDLISWLGEMVRQVDSSLLDEWEQLANPEVETAEQAQEKADEVKPVTANARAFRVLVRNAMFRRVELAALDR

AGALGELDGESGWDEDAWGEALDAYWDAHEEIGTGPDARGPKLLKIEEDPAHGLWRVWQAFADPAGDHDWGIKAEV DLAASDEEGRAVVRVTEVGQL*

**SEQ ID NO: 94** 

Nucleotides 5885-3312 of SEQ ID NO: 103

### **SEQ ID NO: 95**

MMGPAHSLSGAAAWLGVGAAAAAAGHTMPWPVLVVGALICAGAALAPDLDHKSATISRAFGPVSKALCEIVDKLSY AVYKATKSAGDPRRTGGHRTLTHTWLWAVLIGGGCSVAAITGGRWAVLVILFVHLVLAVEGLLWRAARVSSDVLVW LLGATSAWILAGVLDKPGYGADWLFDAPGQEYMWLGLPIVLGALVHDIGDALTVSGCPILWPIPIGRKRWYPIGPP KAMRFRAGSWVEMKVLMPAFMVLGGVGGAAALNYI*

**SEQ ID NO: 96** 

Nucleotides 5963-6754 of SEQ ID NO: 103

### SEQ ID NO: 97

MLLAELAQVSLEVAATSARSKKVALLAGLFRDAGPEDVPVVIPYLAGRLPQGRIGVGWRSLGDPVEPAAEPTLTVT GVDARLTALAAVSGPGSQARRKEHLRALFAAATEDEQRFLRALLTGEVRQGALDALAADALARAADAPPADVRRAV MLAGSLQEVAGVLLADGPEALAAFRLTVGRPVQPMLAHTAASVGEALDKLGACAVEEKLDGIRVQVHRDGDRIRAY TRTLDDITDRLPELTAXVAALPAGRFI

**SEQ ID NO: 98** 

Nucleotides 6850-8403 of SEQ ID NO: 103

### SEQ ID NO: 99

VNHPVNGAGERRTTQAREGTQTVAPPRILVVGAGFAGVECVRRLERRLAPGEAQITLVTPFSYQLYLPLLPQVASG VLTPQSVAVSLRRSRRHRTRIVPGGAIGVDTQAKVCVIRKITDEIVNEPYDYLVLAAGSVTRTFDIPGLLDNARGM KTLAEAAYVRDHVIAQLDLADASHDEAERASRLQFVVVGGGYAGTETAACLQRLTTNAVKHYPRLDPRLIKWHLID IAPKLMPELGDKLGQAALEVLRKRNIEVSLGVSIAEAGPEEVTFTDGRVLPCRTLIWTAGVAASPLVATLGAETVR GRLAVTPQMRLPGADGVFSLGDAAAVPDLAKGDGAVCPPTAQHAMRQGRVLADNLIASLRHEPLKDYVHKDLGLVV DLGGTDAVSKPLGIELRGLPAQAVARGYHWSALRTNVAKTRVMTNWLLNAVAGDDFVRTGFQSRKPATLRDFEYTD VYLTPEQIKEHTAATVIKH*

**SEQ ID NO: 100** 

Nucleotides 9860-8433 of SEQ ID NO: 103

### SEO ID NO: 101

VTGRDLTWTDTTSTVDRGRFPDAVTPWEDPAWRAEALAWVTEGLAAHGLTETGPRAVRLRPWSVLVRLAVAGPAPV WFKAVPPAAAFEAGLTEALARWVPARVLAPLAVEAERGWILVPDGGPVLSEVLDGRPGAPDPGYWEEPLRQYAÄMQ RELTPYAEAIEALGVPAARPRDLPALFDRLVAGNAALPREDRVALEVLRPRVADWCEELASSGVADSLDHADLHEK QLFAPVSGRYAFFDWGDALVGHPFCSLLVPARAARERCGPEVLPRLRDAYLEPWTGGGVTAAGLRRAVSLAWRLAA LGRAASWGRMFPVPPGGPGVAGDAEGAHWLRELAAAPPL*

**SEQ ID NO: 102** 

Nucleotides 10784-9921 of SEQ ID NO: 103

### **SEQ ID NO: 103**

1 GGATCCCGC CGTCCCGGCC GAGCAGCAGG ACGATCCAGC ACCGGTGCC GACACTGCCC
61 ACACCGACGA CCTTCCGGGC CACGTCCACC AGCGCGAAGT CCTCCAGCAG ACTGCGCCGA
121 TCGGATGGCA GGCTGCGTGC GTACCCCGCC AGCATGGAGC CGAACTGCCG GAACACCGCG
181 TCCCGGTCCA CCCCCGGCGT CAGATCGGTC AGCGGGACGA CCATCGGCGG ATCCGCCGCG
241 ATCCGCAGCC GCCCGTCGAC CACCTCGGCG AGCTTCCCGA ACGCCTGAAG GCTGTCCCGG
301 GACCGGGCCT TCCCCAACGC CCGGTCGACA TTCCTGCGCC CCCGCCCGCC CAACTGTTCC
361 GTGGCCACCG TGCGCAGCCG CTCGGCATCC GTCCGCGCGT ACCAGACGTC CAGATTGCGC
421 ATGCCCGCGA ACCGGGCCAT CGCCTCCCGG TACGAGCGGA CCGTGGCCCG GACGACCCCG
481 GCCCGCTCCC GGAGCGTGAA GCTGTTCGCC CGCCCCGCGA TGACGAGGCT CGCCCGCGAGC
541 CGCTTGACGT CCCACTCCCA GGGACCCGGC AGCGTCTCGT CGAAGTCGTT GATGTCGAAC

601	AGGAGATTCC	GCTCGGGGGA	GGCCAGCAGC	CGGAAGTTCA	GCAGATGGGC	GTCACCGCAC
661	AACTGCGCCC	TGATTCCCGA	CACCGGGGTG	CCGGCCAGGT	CGGCGGCCAT	CAGCGCGGCC
721	GCTCCCCGGT	AGAAGCGGAA	CGGGGACTCC	GTCATCCGGG	CATAGCGGAT	CGGGACCAGC
701	TCGGGAACCC	GCTCCCCCGA	רייהההרייירה	ACCACCCTCA	GCGGATCGGG	GCGGCGCGGC
	77.0000AACCC	NOTICE CONTE	CCCCCACCCC	CCCCCCTCAC	GGCGGGCCGC	CTTCCCCAGT
841	GACGGGGAGA	ACTCCGCATG	GCCCGACCGG	GGCGCCTCAC	GGCGGGCCGC	CIIGCCCAGI
901	GCCGCCCGTT	CGGCCGGTGT	CGCGTGCGGT	GCGGCGCGCA	GCGGCGCCTC	GGCTTCCCGG
961	TCCATGACGT	GGCTCCTTCC	GGTCTTCCTC	AGGCCTGTTC	GGCGATCCGG	CGCTCACGGT
1021	CGCGGCGGAG	GCGGÄCCCGC	TGCCAGATCG	CCCGCTGGGC	CTTGAGCGCG	AACGCGCCCA
1081	CCACGATCAG	CACGAGGATG	TTGACGACGA	GCTGTATGGC	CGAGCCCCGT	ACGTCGGACC
11/11	AGCTGGTGTA	CCCCCCCCAC	ACGCCGATGT	CCCCCCCCCC	CGGGATCGTC	GTCACGGAGA
_	MOCIGOIGIA	CACCACACCA	CUCCUMCACC	CCTCCCTCAC	CGACACGATC	CCCACCATTC
1201	TGAACACCCC	GAGCAGAGCA	CIGGIICIGG	CCICGGIGAG	CONCACONIC	MCCCACOTITC
1261	CGGCCAGGGT	GGCGACGGCG	ACGGAGAAGA	AGTTCGGCGT	GTTGATGAGA	TGGGAGACGG
1321	GCCGCAGCCC	CCGGTCGAAC	GCCTCCGACT	CCAGCCCGAA	ACCCCGGATG	AGGAGGGGA
1381	AGAGGAAGGT	GACCACGATG	GTCAGGAGAA	GGCCGACGCC	CAGGGCGGCC	AGCCCGCTGC
1441	GCACCATGGA	CCGGTGGCGC	CGGTCGATCC	CCAGCGCCAC	GCTGACGATG	GCGCCGTACT
1501	CCGGGCCGAC	GACCATCGCC	CCGACGATCA	GGATCTGCGA	GTTGGTGACG	ATGCCGACCG
1501	ACCCGATCAG	ACCCCCCAMC	ACCACCTACA	CCTACAACCT	CGGCGGATAC	CGGCCCCCGG
1201	ACCCGATCAG	ACCEGCGATE	MCCAGGIAGA mcmmcccacaca	CCCCCCCCCC	CCTCACCCCC	CCCACCTCGC
1621	ACCTGATGCG	GGCCTCGACC	TGTTCCCAGA		GCTCAGCGGC	DECAGOLOGO
1681	GCTGCCCGCC	CTCGGTGGCC	GCGCCGGAGA	AGGCCATGTC	GACGGGTTCG	ATGACGAGGG
1741	AGCCCCGCCG	GTCGAGGTGG	GCGGCGCGCA	GCCGGTGCAG	TACGTCGTTG	GCCGCCCCCG
1801	TCAGTACGTC	GCAGGCGATG	GCGTCGCCGT	CGGGGCGGCG	CGCGGCGTCG	CGCTGGACGA
1861	TCAGATTGAG	CACGCACGGG	TCGGCCGAGA	GCAGGCCGAC	GACCTCGTCG	GTCAGGTCCG
1921	GCGGGCTCAC	CCCCCCGATG	ТССАТСАТСТ	CCATCCCGGC	ACCTCCGCGG	CTCCCTGCCC
1321	CGTCACACGG	A COMCMCCCC	CCCACCCCCC	CCCCCCCTCA	CTCCACTAAC	CCCCCACCGC
	CGTCACACGG	AGCTGTGCCC	COCACCCC	CCGGGGCTCA	CICCAGIAAC	CCCCCCCCC
2041	CAACGTTCGG	CAAACCGGCG	GTCGCCCGCA	CGGGCCGGGG	CACCGGGGCC	GCGGGCGGGI
2101	GACCCGCCCG	GGCTGGGATC	ATGAAGGGGT	GGACACCCCC	GACACACCCG	ATGCCTTCCC
2161	CGAACCGCTG	CCCGGGGCCG	ACGAAGCGGT	CCGGGAGGAG	AGGGCCACCG	ACGACGGGAC
2221	GCCGGAGGGC	CGCCGCCTCG	TCCGCTGCCG	TCTCTGCGGC	CGGCCCCTGA	CCGGGGCCGA
2281	CTCGCGGCGG	GCCGGCCTCG	GCCCGTCCTG	CGACGCCAAG	CTGCACCCGG	CGCCGCCGGA
2201	CATCCGCACC	CCCCCCCACC	ACCTCGACCA	GGACCCGCTG	CCGGGCACCT	GAGCCGGAAC
2341	GGGGCTACTG	COCCOCCCCC	AGGI CGACCA	CCTCCTCCAC	CACCCACACACC	ACCACCTCCC
2401	GGGGCTACTG	CTCCAGCCGC	CGGAACAGCC	CCTCCTGCAC	CACCGACACC	AGCAGCIGCC
2461	CCGAACGGTC	GTAGATCCGC	CCCCGCGCCA	GGCCCCGCCC	GCCCGTGGCG	ATCGGCGACI
2521	CCTGGTCGTA	CAGGAACCAC	TCGTCCGCCC	GGAACGGCCG	GTGGAACCAC	ATGGCGTGGT
2581	CCAGGGACGC	AAGGTCATAT	CCGCGCGGGC	CCCACAGCGG	CTCCACCGGG	ATACGGACCG
2641	CGTCCAGCAG	CGTCATGTCG	CTCGCGTACG	TCAGCGCGCA	CGTGTGCACC	AGCGGGTCGT
2701	CGCCCAGCGG	GCCCACCGCC	CGCATCCACA	CCGCGCTGCG	CGGATCGGCG	TCCTGGATCT
2761	CGTCCTTCGT	CCAGCGCAGC	CGGTCGACGT	AACGGATGTC	GAAGGGCTGG	CGGCGGGCCA
2001	TCCGCTCCAG	CCCCTCCCCC	VCCCCCCCCCV	CATCCTCCC	CACCTCCTCG	GCGACCGTCG
2021	TCCGCTCCAG	CGCCTCCGGC	ACCOUNTE	CCCCCCCCAC	CTCCTCCTCC	AACCCCCCCT
2881	GCAGCTCCTC	CGGGTCCGGG	ACGATCCGGG	CGGGCGCAG	CIGGIGITCG	MAGCCCGCCI
2941	CCTCGGGGCG	GTGGAAGGAC	GCCGTCAGGT	TGAAGATCGT	CCGGCCCTCC	TGGACCGCCG
3001	TCACCCGACG	GGTGGTGAAG	GACCGGCCGT	CCCGCACCCG	CTCCACCTGG	TAGACGATCG
3061	GCACACCGGG	ACGCCCCGGC	CGCAGGAAAT	AGGCGTGCAG	CGAGTGCACC	GGCCGCTCCC
3121	CGTCGGTGGT	CCGGCCCGCC	GCCACCAGCG	CCTGGCCCGC	GACCTGCCCG	CCGAAGACCC
3181	GTTGCAGGGA	CTCCTCCGG	CTGCGCCCCC	GGAAGATGTT	GACCTCGATC	CGCTCCAGGT
2701	CGAGCAGGTC	CACCACACCC	TCCCCCCCAT	TCCTCATCCC	GCACCTCTCC	CGTCACACGT
3241	CGAGCAGGTC	GACCAGACGC	CCCCACCTICC	CMCACCCCCA	CCACCCCCC	CCCCTCCTCC
3301	CAGGGTCCGC	TTCACAGCTG	GCCGACCTCG	GIGACCCGGA	CGACCGCCCG	GCCCTCCTCG
3361	TCGGACGCCG	CGAGGTCCAC	CTCGGCCTTG	ATGCCCCAGT	CGTGATCGCC	CGCCGGAICG
3421	GCGAACGCCT	GCCAGACCCG	CCACAGCCCG	TGCGCCGGGT	CCTCCTCGAT	CTTCAGCAGC
3481	TTCGGGCCCC	GCGCGTCCGG	ACCGGTCCCG	ATCTCCTCGT	GCGCGTCCCA	GTACGCGTCC
3541	AGCGCCTCGC	CCCACGCGTC	CTCGTCCCAC	CCGGACTCGC	CGTCCAGCTC	GCCCAGCGCG
3601	CCGGCCCGGT	CCACCCCCCC	CAGCTCCACC	CGGCGGAACA	TCGCGTTGCG	CACCAGCACC
3661	CGGAAGGCGC	CCCCCTTCCC	CCTCACCGC	<b>ጥጥር እርርጥርርጥ</b>	CCGCCTTCTC	CTGAGCCTGC
2001	CGGAAGGCGC	GCGCGTTCGC	CGIGACCGGC	TIGNOCIOCI TONCCIOCI	CCTCCACCAG	እር <b>ጥ</b> ርር እርጥር ር
3721	TCCGCGGTCT	CCACCTCGGG	GTTGGCCAGC	TGCTCCCACT	CGICCAGCAG	ACIGGAGICC
3781	ACCTGACGCA	CCATCTCGCC	CAGCCAGGAG	ATCAGGTCCT	GGAGGTCCTC	CGACTTCACG
3841	TCGTCCGGGA	TCGTGTGCTC	CAGCGCCTTG	TACGCGCTCG	CCAGATACCG	CAGCACGATG
3901	CCCTCGGTCC	GGGCCAGCTC	GTAGTGCGAA	GTGAACTCCG	TGAACGTCAT	GGCCCGCTCG
3961	TACATGTCCC	GGATCACCGA	CTTCGGCGAC	ACCGGATGGT	CGTTCACCCA	CGGGTGGCTC
4021	GTGCGGTACA	CGTCGTACGC	GTGCCACAGC	AGCTCGCTCA	GCGGCTTGGG	GTACGTGACC
4001	TCCTGGAGCC	CCTCGIACGC	ChCChCVGC	TCC2CCCC	CCGCCTTCAT	CTGCCCCACG
4081	TCCTGGAGCC	GCICCATCCG	CICCICGIAC	TOGMCCOGI	CCCCCTTONI	CTCCACCCTC
4141	GGCTCGCCGC	GUGUUTTGTT	CIGCIGGGG	GGCAGGAICI	AUMCCCCCMC	CACCACCTC
4201	GACTCGACGA	CCGAGACCAT	GTCCAGCGCA	TACGACGGCG	ATTUGGUGTU	CAGCAGGICG
4261	AACGCGGCCA	GCGCGAACGT	GGACAGCGGC	TGGTTCAGCG	CGAAGTCCTG	CTGGAGGTCG
4321	ACCGTCAGCC	GCACGATCCG	GCCCTCGGCG	TCCGGGGTGT	CCAACTGCTC	CACCACCCCG
4381	CCGTCCAGCA	GCGAGCGGTA	GATGGCGATG	GCCCGCCGGA	. TGTGCCGCAG	CTGCGCCCGG
4441	CCCCCCTCCT	GGTTGTCCTC	CAGCAGATGC	CGCATCGCCT	CGAAGGCGTT	GCCCGGGCGG
7747			2			

4501	GCGATGACCG	CGAGCAGCAT	CGTGTGGGTG	ACCCGGAAAC	GGGAGGTCAG	CGGCTCCGGC
4561	TCGGACTGGA	TCAGCTTGTC	GAACGTCGAC	TCCGACCAGG	CGACGAAGCC	CTCCGGGGCC
4621	TTCTTGCGGA	CCACCTTGCG	CTTCTTCTTC	GGGTCGTCGC	CCGCCTTCTT	CAGCGCCTTC
4681	TCGTTCTCGA	TGACATGCTC	GGGGGCCTGT	GCCACGACGA	ACCCGGCCGT	GTCGAACCCG
4741	GCCCGCCGG	CCCGGCCCGC	GATCTGGTGG	AACTCCCGCG	CGCGCAGCGT	CCGCACCCGG
4801	TTCCCGTCGT	ACTTGGTGAG	CGCCGTGAAC	AGCACCGTAC	GGATGGGGAC	GTTGACGCCG
4861	ACGCCGAGCG	TGTCCGTCCC	GCAGATCACC	TTCAGCAGCC	CCGCCTGGGC	CAGCTTCTCC
4921	ACCAGGCGGC	GGTACTTCGG	CAGCATCCCC	GCGTGGTGCA	CCCCGATGCC	GTGGCGTACG
1081	TAACGGGAGA	GGTTCTGGCC	GAACTTGGTG	GTGAAGCGGA	AGCTGCCGAT	CAGATCGGCG
5041	ATCTTCTCCT	TCTCCTCCTT	CGTGCACATG	TTGATGCTCA	TCAGCGACTG	CGCCCGCTCC
5101	ACGGCCGCCG	CCTCCCTGAA	GTGCACGATG	TAGACCGGCG	ACTGCCGGGT	GTCCAGCAGC
5161	TCGGTGAGCG	TCTCCCTCAT	CGGCGTGAAG	CGGTACTCGT	AGCTCAGCGG	CACCGGGCGG
5221	GTCGCCGAGC	CCACCACCGA	GCTCGGGCGG	CCGGTACGGC	GGGTCAGGTC	CTTCTCGAAC
5221	ATCGAGACGT	CCCCCACCGT	CGCCGACATC	AGCACGAACT	GCGCCTGCGG	CAGCTCCAGC
5201	AGCGGAATCT	CCCACCCCA	CCCCCGGTCC	GGCTCGGCGT	AGAAGTGGAA	CTCGTCCATC
5341	ACGACCTGGC	CCAMCTCCC	GTACTTGCCG	TCGCGCAGCG	CGATGGAGGC	CAGCACCTCG
5401	GCCGTACAGC	ACAMCACCCC	CCCCTCCCC	TTGACCGAGG	CGTCGCCGGT	GAGCATGCCG
2401	ACGTTCTCGG	MCCCCA ACAC	CTTCCACAGG	TCGAAGAACT	TCTCCGACAC	CAGCGCCTTG
227T	ATCGGAGCCG	TGCCGAAGAG	CITGCACAGG	TCCCCCACCC	CCGTGAAGTG	CGCGCCCGCC
2281	GCCACCAGGC	TGIAGAAGGI	CCCCCTCCCC	CTCCACACCA	TCACGTTCGC	CCCGGAGACC
5641	ACCTCGATCA	CCCCCTCCTC	CTCACCCGG	TACATCCTCA	TECCCTEECT	CTCGGTCCAT
5/01	GAGGAGAAGG	GCGCCTCCTC	CCCCTCCCCC	TACATOSTOA	GGGGAAGCTG	GTCGATGAGG
5/61	GTCACGCCCC	CCICGAAGAG	CTCTTCCCCC	CCCATCACCC	AACCGGCGGA	CGGCACGAAG
5821	ATCACGCCCC	CATCTTGCCI	CACECAACCE	CCCCCCCCCC	CACCGGTGAT	GGGCGCACGA
5881	ACCACTGGGG	GTACGCTGCG	GACTCAACCI	ACCCCCACAC	TCTCTCTCAC	GGGCAGCGGC
5941	ACCACTGGGG	GCGGGACAGA	CCATGATGGG	CCCCCCCCAC	ACCATECCCT	GGCCCGTCCT
6001	CTGGCTGGGG	GTGGGCGCGG	CGGCCGCCGC	CGCGGGCCAC	ACGAI GCCCI	ACCACAACTC
6061	CGTCGTCGGG	GCGCTGATCT	GCGCGGGAGC	CGCACTCGCC	CUCGACCICG	TCCTCTTG1C
6121	CGCGACCATC	TCGCGCGCCT	TCGGCCCGGT	CICCAAAGCC	CICIGCGAGA	CCACCECCE
6181	GCTCTCCTAC	GCCGTCTACA	AGGCCACCAA	GAGUGUUGG	AMCCCCCCCC	CCTCCTCCCT
6241	GCACCGCACC	CTCACCCACA	CCTGGCTGTG	GGCCGTCCTC	ATCGGCGGCG	A CCTCCCTCCT
6301	GGCGGCGATC	ACCGGCGGCC	GCTGGGCCGT	CCTCGTGATC	ACCCA CCTTC	MCCTCGTGCT
6361	CGCCGTCGAG	GGCCTGCTGT	GGCGGGCCGC	CCGCGTCTCC	AGCGACGIIC	CCMACCGGGC
6421	GCTCGGCGCG	ACCAGCGCGT	GGATCCTGGC	CGGCGTCCTG	CMCCCCCTCC	CCATCCTCCT
6481	CGACTGGCTC	TTCGACGCCC	CCGGCCAGGA	GTACATGTGG	TCCGGCC1GC	CCATCGIGCI
6541	CGGCGCCTC	GTCCACGACA	TCGGCGACGC	CCTCACGGTC	CCCCCCAACC	CCATCCIGIG
6601	GCCCATCCCG	ATCGGCCGCA	AGCGCTGGTA	CCCGATCGGC	CCGCCGAAGG	TCCTCCCCCC
6661	cceeecceec	AGCTGGGTGG	AGATGAAGGT	GUTGATGUCU	CCCCCTCAIGG	CCCCCTCCCT
6721	AGTGGGCGGG	GCCGCCGCCC	TCAACTACAT	ATGACGCACC	GCCGGTCGCG	CCCGGIGCGI
6781	CTCCGGCGGG	CGGCGCGTCC	GGTGTCCTTC	CGGCGGGCGG	mccaccmccc	CCCCACCTCC
6841	CATGGGCGCA	TGCTGCTCGC	CGAGCTCGCC	CAGGTGTCCC	TGGAGGICGC	ACCCACCICC
6901	GCCCGGTCCA	AGAAGGTGGC	GCTCCTCGCC	GGACTCTTCC	A CCCCCCCAT	CCCCCTCGGG
6961	GTCCCCGTCG	TCATCCCGTA	CCTCGCCGGA	CGGCTGCCCC	AGGGCCGGAI	CCTCACCGC
7021	TGGCGCTCCC	TCGGCGACCC	GGTGGAGCCC	GCGGCGGAAC	CCACCCTCAC	CGTCACCGGC
7081	GTCGACGCCC	GGCTGACCGC	CCTCGCCGCC	GTCTCGGGCC	2 CCGGCTCCCA	CERCCEGGGGG
7141	AAGGAGCACC	TGCGCGCCCT	CTTCGCCGCC	GCCACCGAGG	ACGAACAGCG	CITCCIGCGG
7201	GCCCTGCTCA	CCGGCGAGGT	ACGCCAGGGG	GCCCTGGACG	CCCTCGCCGC	CCCCCCATCC
7261	GCCGCGCG	CCGACGCCCC	GCCCGCCGAC	GTCCGGCGCG	CCGTGATGCT	CCCCTTCCCC
7321	CTCCAGGAAG	TCGCCGGGGT	CCTCCTCGCG	GACGGGCCCG	AGGCGCTCGC	CGCCTTCCGG
7381	CTCACCGTCG	GACGGCCCGT	CCAGCCGATG	CTGGCGCACA	CCGCCGCCTC	TOCCOTOCA C
7441	GCCCTCGACA	. AACTGGGCGC	GTGCGCGGTC	GAGGAGAAGC	TCGACGGCAT	CAMCACCAC
7501	GTCCACCGCG	ACGGCGACCG	GATCCGCGCC	TACACCCGGA	CCCTCGACGA	CATCACCGAC
7561	CGGCTGCCCG	AGCTCACCGC	CGMCGTCGCC	GCCCTCCCGG	CCGGCCGCTT	CATCCTGGAC
7621	GGCGAGGTGA	TCGCCCTGGG	GGAGGACGGC	AGGCCCCGGC	CCTTCCAGGA	GACCGCCTCC
7681	CGGGTGGGCT	CGCGGCGGGA	CGTGGCGGAG	GCGGCGGCGC	ACGTGCCCGT	CGCCCCGGTC
7741	TTCTTCGACG	CGCTCCTCGT	CGACGACGAG	GACCTGCTCG	ACCTGCCCTT	CACCGACCGC
7801	CACGCCGCCC	TGGCCCGGCT	CCTCCCCGAG	CACCTGCGCG	TCCGCCGCAC	COTOGTTCCC
7861	GACGCGGAGG	: ACCCGAAAGC	CCGCGCGGCG	GCCGACGCGT	TCCTCACCGA	CACCCTGGAA
7921	L CGCGGCCACG	AGGGAGTCGT	CGTCAAGGAC	: CTCGCCGCCG	CCTACAGCGC	GGGCCGCCGG
7981	GGCGCGTCCT	GGCTGAAGGT	GAAGCCCGTG	CACACCCTGG	ACCTGGTGGT	GCTGGCCGTC
8041	L GAGTGGGGCA	GCGGCCGGCG	CACCGGCAAG	CTCTCCAACC	TGCACCTGGG	CGCCCGCCGC
8101	CCCGACGGTA	CGTTCGCGAT	GCTCGGCAAG	ACCTTCAAGG	GGCTCACGGA	CGCCCTGCTC
8161	I GACTGGCAGA	CCCAGCGCCT	GGGCGAGCTG	GCCACCGACG	ACGACGGGCA	CGTCGTCACC
8221	GTACGCCCGG	AACTCGTCGT	GGAGATCGCC	TACGACGGAC	TCCAGCGCTC	CACCCGCTAC
828		TCACCCTCCG	CTTCGCCCGC	: GTCCTGCGCT	ACCGCGACGA	CAAGACCGCC
834:	L CAGGAGGCGG	ACACCGTGGA	GACGGTCCT	TTCCCGGCGG	CGGTGAGCGC	GCCCCGTCC

				COMON CINCOID	mcamcaccem	CCCCCCCTC
8401	TGAAGGGGCG	CGCTCGTACA	GGGCCCGGCG	GCTCAGTGCT	A COLCAR A COLC	CCCCACCCTC
8461	TGCTCCTTGA	TCTGCTCGGG	CGTCAGGTAG	ACGTCCGTGT	ACTUGAAGTU	CCCCMMCACC
8521	GCCGGCTTGC	GGGACTGGAA	CCCGGTCCGT	ACGAAGTCGT	CACCGGCGAC	CGCGTTCAGC
8581	AGCCAGTTCG	TCATGACGCG	GGTCTTCGCC	ACGTTCGTCC	GCAGCGCCGA	CCAGIGGIAG
8641	CCCCGGGCCA	CCGCCTGCGC	GGGCAGCCCG	CGCAGCTCGA	TGCCCAGCGG	CTTGGACACG
8701	GCGTCCGTGC	CGCCGAGGTC	CACGACGAGC	CCCAGATCCT	TGTGCACGTA	GTCCTTGAGC
8761	GGCTCGTGGC	GCAGCGAGGC	GATCAGGTTG	TCCGCCAGCA	CCCGGCCCTG	ACGCATCGCG
8821	TGCTGTGCGG	TGGGCGGCA	GACCGCCCCG	TCGCCCTTCG	CCAGATCGGG	CACGGCGGCC
8881	GCGTCGCCGA	GCGAGAACAC	CCCGTCCGCG	CCCGGCAGTC	TCATCTGCGG	GGTCACGGCG
8941	AGCCGGCCGC	GTACCGTCTC	CGCGCCGAGC	GTGGCGACCA	GCGGACTCGC	GGCCACGCCG
9001	GCGGTCCAGA	TCAGCGTCCG	GCAGGGCAGC	ACCCGGCCGT	CGGTGAACGT	GACCTCCTCC
9061	GGCCCCGCCT	CGGCGATCGA	CACCCCGAGC	GACACCTCGA	TGTTCCGCTT	GCGGAGCACC
9121	TCCAGCGCGG	CCTGCCCGAG	CTTGTCGCCG	AGCTCCGGCA	TCAGCTTCGG	CGCGATGTCG
9181	ATCAGATGCC	ATTTGATCAG	GCGCGGGTCA	AGACGCGGAT	AGTGCTTCAC	CGCGTTGGTG
9241	GTCAGACGCT	GGAGACAGGC	GGCCGTCTCC	GTGCCCGCGT	ACCCGCCGCC	GACCACCACG
0301	AACTGGAGCC	GGGAGGCCCG	CTCGGCCTCG	TCGTGACTGG	CGTCCGCCAG	GTCCAGCTGG
9361	CCCATCACCT	GATCCCGTAC	GTACGCGGCC	TCGGCCAGCG	TCTTCATCCC	CCGCGCGTTG
0421	GCGAIGACGI	CCGGGATGTC	CAAGGTGCGG	GTGACGCTGC	CCGCCGCCAG	CACGAGGTAG
9421	TCCAGCAGCC	CGTTCACGAT	CTCCTCCCTC	ATCTTCCGGA	TCACACAGAC	CTTCGCCTGC
9481	TUGTAUGGUT	CGATCGCCCC	CTCGTCCGTG	ATCTTCCTCC	CCTCACGGCG	GCTGCGGCGC
9541	GTGTCCACGC	CCACGGACTG	CCCCCTCACC	VCCCCCCVCC	CCACCTGGGG	GAGCAGCGGC
9601	AGCGACACCG	GGTAGGAGAA	CCCTCTCACC	ACCCCCGCACC	CCACCTCCCC	CGGAGCGAGC
9661	AGATACAGCT	GACGGCGTAC	CCACTCTCACC	CCTCCCAACC	CCCCCCCAC	GACGAGAATC
9721	CTGCGCTCCA	GACGGCGTAC	GCACTCGACG	CCIGCGAAGC	TCCTTCTCCC	CTCCCCTCCC
9781	CTGGGTGGTG	CCACGGTCTG	CGTCCCTTCT	CGGGCTTGCG	TGGTTCTGCG	CTCGCCTGGC
9841	CCGTTTACCG	GGTGATTCAC	CCCTCATCCT	CACCGGAGGC	CCACCECCC	CACCCACTGG
9901	AGGGGTGAAA	CGGGGCCCGG	TCACAGGGGC	GGGGGGGGGGG	CCAGCTCCCG	CAGCCAGIGG
9961	GCACCCTCGG	CGTCCCCGGC	CACGCCCGGA	CCACCCGGCG	GTACGGGGAA	ACCCCCCACC
10021	CACGAGGCGG	CCCGGCCCAG	CGCCGCCAGC	CGCCACGCCA	GGCTCACCGC	ACGGCGCAGC
10081	CCGGCCGCCG	TGACGCCCCC	GCCGGTCCAC	GGCTCCAGAT	AGGCGTCCCG	CAGCCGGGGC
10141	AGCACCTCGG	GACCACAGCG	CTCACGGGCC	GCACGGGCGG	GTACCAGCAG	GCTGCAGAAC
10201	GGATGGCCGA	CGAGGGCGTC	CCCCCAGTCG	AAGAAGGCGT	ACCGCCCGGA	CACGGGCGCG
10261	AACAGCTGCT	TCTCGTGCAG	ATCGGCGTGG	TCCAGCGAGT	CCGCCACCCC	CGACGACGCC
10321	AGCTCCTCGC	ACCAGTCGGC	CACCCGGGGC	CGCAGCACCT	CCAGCGCCAC	CCGGTCCTCC
10381	CGGGGCAGCG	CGGCGTTCCC	CGCGACCAGC	CGGTCGAACA	GCGCGGGAAG	GTCGCGCGGC
10441	CGGGCCGCCG	GAACCCCCAG	GGCCTCGATC	GCCTCCGCGT	ACGGGGTCAG	CTCCCGCTGC
10501	ATCGCGGCGT	ACTGGCGCAG	CGGCTCCTCC	CAGTAGCCGG	GGTCAGGGGC	GCCGGGACGC
10561	CCGTCGAGGA	CCTCCGACAG	CACCGGGCCG	CCGTCCGGGA	CGAGTATCCA	GCCGCGTTCC
10621	GCCTCGACGG	CGAGCGGGGC	CAGCACCCGG	GCCGGGACCC	AGCGCGCCAG	CGCCTCGGTG
10681	AGCCCCGCCT	CGAAGGCCGC	GGCGGGCGGA	ACGGCCTTGA	ACCAGACGGG	CGCGGGGCCCG
10741	GCGACGGCCA	GCCGCACCAG	CACCGACCAG	GGACGCAGCC	GCACCGCCCG	GGGGCCCGTC
10801	TCCGTCAGCC	CGTGAGCGGC	GAGGCCCTCG	GTCACCCAGG	CGAGGGCCTC	CGCCCGCCAG
10861	GCCGGGTCCT	CCCAGGGCGT	CACGGCGTCC	GGGAAGCGCC	CCCGGTCCAC	GGTCGAGGTC
10921	GTGTCGGTCC	AGGTCAGGTC	TCTTCCGGTC	ACGGCGGTCG	TGGTCGTGCC	GGGGCCGTCA
10081	CCCCCCTCCT	GGTCACGGCA	TCCGGGGCCG	CGTCGGGCAT	GGGCATCTCG	TCTCCGCGCA
11041	TCCGATCATG	GGATCACCGG	CCCCGGCGCG	TGCGCACCGC	AATTTCCGGG	AACACCCGTT
11101	CCCGTCCTGC	CCGGATCGGC	TGTCCTCCCC	CCTCCGGCCC	CTGGAACGGC	GGGAGTTCGG
11161	CCGCCCGCCC	CGTGCGAGGA	TGCTGTGGTG	ACCACÇTCGC	CCTCCTCGCC	CGTGGCCGAC
11221	GACTCTTCCG	TGTCTTCCGT	GGACGACGCC	CCGCCCCGCG	ACCAGGGGCT	GAGCTCCCGG
11281	GCCGCGGCGG	TACTCGTCTT	CGGGTCCTCC	GCCGCGGTCC	TCGTGGTCGA	GATCGTCGCC
11341	CTGCGGCTGC	TCGCCCCGTA	CCTCGGCCTC	ACCCTGGAGA	CCAGCACGCT	GGTGATCGGC
11401	ATCGCGCTGA	CCGCCATCGC	CCTGGGTTCC	TGGCTGGGCG	GGCGCATCGC	GGACCAGGTC
11461	GATCCGCACC	GGCTCATCGC	CCCCGCGCTC	GGGGTGTCGG	GCGTGGGCGT	CGCGCTCACC
11521	CCGCTCCTGC	TCCGTACCAC	CGCGGAGTGG	TCTCCCGCGC	TGCTCCTGCT	GGTCGCTTCG
11581	GCGACCCTCC	TGGTGCCGGG	CGCGCTGCTC	TCCGCGGTGA	CCCCGTTCGT	GACGAAGTTG
11641	CGGCTCACCA	GCCTCGCCGA	GACCGGGACG	GTCGTCGGGC	GGCTGTCGGG	CGTCGGCACC
11701	TTCGGAGCCA	TCGTCGGCAC	GGTGCTCACC	: GGATTCGTCC	TGGTCACGCG	GCTGCCCGTC
11761	ACCTCCATCC	TGATCGGCCT	CGGCACGCTG	CTGGTGCTCG	GGGCGGCCCT	CGTCGGATGG
11821	CAGGCCCGGC	: GGTGGCGGCG	CGCCACGGCC	: GTGGCCCTCG	CCACCGTCGT	CGCGGGCACT
11881	CTCGCCACCG	GGTTCGCTCC	: CGGCGGCTGC	: GACGCGGAGA	. CCCGCTACCA	Crececces
11941	GTTCGTCGCG	GACCCCGACC	: GGGGACAGCG	GGCCGCACCC	CTCGTCCTCG	GCACGGGCCT
12001	CCCCCACTCC	TACGTCGATG	TCGAGGACCC	CGAGTACCTG	AAGTTCGCGT	ACGTACGCGC
12061	CTTCGCCTCC	: GTGGTCGACA	CGGCCTTCCC	CGAGGGCGAG	CCGCTGACCG	CCCACCACAT
12121	CGGGGGGGGGG	GGCCTCACCT	TCCCCCGCTA	\ CCTCGCGGCC	ACCCGCCCCG	GAACCCGCAG
12181	CCTCGTCTCC	GAGATCGACC	: CCGGGGTCGI	CCGCATCGAC	CGCGACCGGC	TCGGCCTCGG
12201	CACCCCTGCC	GCGACCGGCA	TCGACGTAC	CGTCGAGGAC	GGGCGTCTCG	GCCTGCGGCG
	. 000001000					

12301	GCTGGACGCG	GGCAGCCACG	ACCTGGTCGT	CGGCGACGCC	TTCGGAGGCG	TCAGCGCGCC
12361	CTGGCACCTC	ACGACGTCCC	AGGCACTCAA	GGACGTACGC	CGGGCGCTCG	ACGCGGACGG
12421	CCTGTACGTC	ACCAACCTCA	TCGACCACGG	CCGGCTCGCC	TTCGCCCGCG	CCGAGGTCGC
12481	CACCCTCGCC	GCGACCTTCC	CGCATGTCGC	GCTGCTCGGG	CAGCCCGCGG	ACATCGGCCT
12541	GGACCCCACG	GCTTCGAGCA	TCGGCGGCAA	CATGGTGGTC	GTCGCCTCCG	CCCGGCCGGT
12601	CGACGCCCCC	GCCATCCAGA	AAGCCATGGA	CGCCCGGGAC	GTCGGCTGGA	GGATCGCCAC
12661	CGGCGACACC	CTCACCACCT	GGACGGGGAA	CGCCCGGGTG	CTCACCGACG	ACCACGCGCC
12721	CGTCGACCAA	CTCCTCCAGC	CCCACCCCGT	CCCATCGGCC	CGGTAAGGCC	CGAACGGGCC
12781	CGATGATCCC	GCCCGAACGC	CCCGGTAACG	CACGAACGGC	CCGGTGATCC	CCGSCCGTTC
12841	GCGCGGGGAT	CACCGGGCCG	TTCGGCCAAG	ACGCCTCACC	CGTGCCAGGA	CCGCCACAGC
12901	GACGCGTACG	CGCCGCCCGC	CGCCACCAGC	TCGTCATGGC	TGCCCAGTTC	ACTGATCCGG
12961	CCGTCCTCCA	CGACCGCGAT	CACATCCGCG	TCGTGCGCGG	TGTGCAGCCG	GTGCGCGATC

### CLAIMS

### We claim:

5

10

- 1. An isolated nucleic acid molecule comprising a nucleic acid sequence that encodes a thioesterase or thioesterase domain, wherein a gene encoding the thioesterase or thioesterase domain is derived from a bacterial daptomycin biosynthetic gene cluster.
  - 2. The nucleic acid molecule according to claim 1, wherein the bacterial daptomycin biosynthetic gene cluster is derived from *Streptomyces*.
- 3. The nucleic acid molecule according to claim 2, wherein the bacterial daptomycin biosynthetic gene cluster is derived from *S. roseosporus*.
  - 4. The nucleic acid molecule according to claim 3, wherein the molecule is an allelic variant of a nucleic acid sequence comprising SEQ ID NO: 3, the thioesterase-encoding domain of SEQ ID NO: 3, or SEQ ID NO: 6.
- 5. The nucleic acid molecule according to claim 1, comprising a nucleic acid sequence which encodes the amino acid sequence GXSXG, wherein each X is independently selected from any one of the twenty naturally-occurring L-amino acids.
  - 6. The nucleic acid molecule according to claim 5, wherein the nucleic acid sequence encodes an amino acid sequence comprising the amino acid sequence GWSFG or GTSLG.
- 7. An isolated nucleic acid molecule comprising a nucleic acid sequence that encodes a thioesterase or a thioesterase domain, wherein the nucleic acid sequence is selected from the group consisting of:
  - (a) a nucleic acid sequence of dptD;
  - (b) a nucleic acid sequence of dptH;
- 25 (c) a nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 7;
  - (d) a nucleic acid sequence encoding the amino acid sequence of SEO ID NO: 8;
- (e) a nucleic acid sequence comprising the nucleic acid sequence of SEQ ID NO: 3;

(f)

a nucleic acid sequence comprising the nucleic acid sequence of

SEQ ID NO: 6; a nucleic acid sequence encoding a thioesterase domain of (g) DptD, wherein said nucleic acid sequence comprises at least a portion of a nucleic acid molecule selected from dptD, SEQ ID NO: 3 or a nucleic acid molecule encoding SEQ 5 ID NO: 7; a nucleic acid sequence encoding an amino acid sequence (h) comprising the amino acid sequence GWSFG or GTSLG; a nucleic acid sequence comprising the nucleic acid sequence (i) selected from the group consisting of 10 (1) nucleotides 78488-78511 of SEQ ID NO: 1, (2) nucleotides 79898-79930 of SEQ ID NO: 1, (3) nucleotides 80453-80488 of SEQ ID NO: 1, (4) nucleotides 80558-80581 of SEQ ID NO: 1, (5) nucleotides 80654-80677 of SEQ ID NO: 1, 15 (6) nucleotides 81050-81064 of SEQ ID NO: 1, (7) nucleotides 81623-81646 of SEQ ID NO: 1, (8) nucleotides 83117-83149 of SEQ ID NO: 1, (9) nucleotides 83669-83704 of SEQ ID NO: 1, (10) nucleotides 83774-83797 of SEQ ID NO: 1, 20 (11) nucleotides 83870-83893 of SEQ ID NO: 1, (12) nucleotides 84257-84271 of SEQ ID NO: 1, (13) nucleotides 80033-80320 of SEQ ID NO: 1, and (14) nucleotides 83255-83542 of SEQ ID NO: 1; a nucleic acid sequence encoding an amino acid sequence 25 (j) selected from the group consisting of (1) amino acids 144-151 of SEQ ID NO: 7, (2) amino acids 614-624 of SEQ ID NO: 7, (3) amino acids 799-810 of SEQ ID NO: 7, (4) amino acids 834-841 of SEQ ID NO: 7, 30 (5) amino acids 866-873 of SEQ ID NO: 7,

5

- (6) amino acids 998-1002 of SEQ ID NO: 7,
- (7) amino acids 1189-1196 of SEQ ID NO: 7,
- (8) amino acids 1687-1697 of SEQ ID NO: 7,
- (9) amino acids 1871-1882 of SEQ ID NO: 7,
- (10) amino acids 1906-1913 of SEQ ID NO: 7,
- (11) amino acids 1938-1945 of SEQ ID NO: 7,
- (12) amino acids 2067-2071 of SEQ ID NO: 7,
- (13) amino acids 659-754 of SEQ ID NO: 7, and
- (14) amino acids 1733-1828 of SEQ ID NO: 7;
- 10 (k) a nucleic acid sequence from an S. roseosporus nucleic acid sequence from BAC clone B12:03A05;
  - (l) a nucleic acid sequence encoding an amino acid sequence D-L- $X-X-G-X_{1-33}-K-X_{1-22}-T-X-G-X_{1-23}-V-X_{1-7}-I$ , wherein each X is independently selected from any one of the twenty naturally-occurring L-amino acids;
- 15 (m) a nucleic acid sequence encoding an amino acid sequence D-A-X-X-W-X₁₋₃₇-T-X₁₋₂₀-T-X-T-X₁₋₂₁-G-X₁₋₇-V, wherein each X is independently selected from any one of the twenty naturally-occurring L-amino acids;
  - (n) a nucleic acid sequence comprising at least 50% sequence identity to the nucleic acid sequence of any one of (a) to (k); and
- 20 (o) a nucleic acid sequence, wherein a nucleic acid molecule comprising said sequence selectively hybridizes to the complementary strand of a nucleic acid molecule comprising the nucleic acid sequence of any one of (a) to (k).
  - 8. The nucleic acid molecule according to claim 7, wherein the homologous molecule exhibits at least 60% sequence identity to the nucleic acid sequence of any one of (a) to (k).
  - 9. The nucleic acid molecule according to claim 8, wherein the sequence identity is at least 70%.
  - 10. The nucleic acid molecule according to claim 9, wherein the sequence identity is at least 80%.
- The nucleic acid molecule according to claim 10, wherein the sequence identity is at least 90%.

12. The nucleic acid molecule according to claim 11, wherein the sequence identity is at least 95%.

- 13. An isolated nucleic acid molecule comprising a part of a nucleic acid sequence that encodes a thioesterase, wherein said part is at least 13 nucleotides, and wherein the nucleic acid sequence is derived from a gene from a bacterial daptomycin biosynthetic gene cluster.
- 14. The nucleic acid molecule according to claim 13, wherein the nucleic acid sequence is selected from the group consisting of:
  - (a) a nucleic acid sequence encoding DptD;
  - (b) a nucleic acid sequence encoding DptH;
- (c) a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 7;
- (d) a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 8;
  - (e) a nucleic acid sequence comprising SEQ ID NO: 3;
  - (f) a nucleic acid sequence comprising SEQ ID NO: 6;
- (g) a nucleic acid sequence from an S. roseosporus nucleic acid sequence from BAC clone B12:03A05;
- (h) a nucleic acid sequence encoding an amino acid sequence

  20 GXSXG, wherein each X is independently selected from any one of the twenty
  naturally-occurring L-amino acids;
  - (i) a nucleic acid sequence comprising the nucleic acid sequence selected from the group consisting of
    - (1) nucleotides 78488-78511 of SEQ ID NO: 1,
    - (2) nucleotides 79898-79930 of SEQ ID NO: 1,
    - (3) nucleotides 80453-80488 of SEQ ID NO: 1,
    - (4) nucleotides 80558-80581 of SEQ ID NO: 1,
    - (5) nucleotides 80654-80677 of SEQ ID NO: 1,
    - (6) nucleotides 81050-81064 of SEQ ID NO: 1,
    - (7) nucleotides 81623-81646 of SEQ ID NO: 1,
    - (8) nucleotides 83117-83149 of SEQ ID NO: 1,

30

25

5

10

		(9) nucleotides 83669-83704 of SEQ ID NO: 1,
		(10) nucleotides 83774-83797 of SEQ ID NO: 1,
		(11) nucleotides 83870-83893 of SEQ ID NO: 1,
		(12) nucleotides 84257-84271 of SEQ ID NO: 1,
5		(13) nucleotides 80033-80320 of SEQ ID NO: 1, and
		(14) nucleotides 83255-83542 of SEQ ID NO: 1;
	<b>(</b> j)	a nucleic acid sequence encoding an amino acid sequence
	selected from the gro	oup consisting of
		(1) amino acids 144-151 of SEQ ID NO: 7,
10		(2) amino acids 614-624 of SEQ ID NO: 7,
		(3) amino acids 799-810 of SEQ ID NO: 7,
		(4) amino acids 834-841 of SEQ ID NO: 7,
		(5) amino acids 866-873 of SEQ ID NO: 7,
		(6) amino acids 998-1002 of SEQ ID NO: 7,
15		(7) amino acids 1189-1196 of SEQ ID NO: 7,
		(8) amino acids 1687-1697 of SEQ ID NO: 7,
		(9) amino acids 1871-1882 of SEQ ID NO: 7,
		(10) amino acids 1906-1913 of SEQ ID NO: 7,
		(11) amino acids 1938-1945 of SEQ ID NO: 7,
20		(12) amino acids 2067-2071 of SEQ ID NO: 7,
		(13) amino acids 659-754 of SEQ ID NO: 7, and
		(14) amino acids 1733-1828 of SEQ ID NO: 7;
	(k)	a nucleic acid sequence encoding an amino acid sequence D-L-
	$X-X-G-X_{1-33}-K-X_{1-23}$	$_{2}$ -T-X-G-X $_{1-23}$ -V-X $_{1-7}$ -I, wherein each X is independently selected
25	from any one of the	twenty naturally-occurring L-amino acids;
	(1)	a nucleic acid sequence encoding an amino acid sequence D-A-
	$X-X-W-X_{1-37}-T-X_{1-2}$	$_{0}$ -T-X-T-X $_{1-21}$ -G-X $_{1-7}$ -V, wherein each X is independently selected
	from any one of the	twenty naturally-occurring L-amino acids;
	(m)	a nucleic acid sequence comprising at least 70% sequence
30	identity to a nucleic	acid sequence of any one of (a) to (j), and

(n) a nucleic acid sequence, wherein a nucleic acid molecule comprising said sequence selectively hybridizes to the complementary strand of a nucleic acid molecule comprising the nucleic acid sequence of any one of (a) to (j).

15. The nucleic acid molecule according to claim 14, wherein the part comprises at least 14 nucleotides of the nucleic acid sequence.

5

25

- 16. The nucleic acid molecule according to claim 15, wherein the part comprises at least 17 nucleotides of the nucleic acid sequence.
- 17. The nucleic acid molecule according to claim 16, wherein the part comprises at least 20 nucleotides of the nucleic acid sequence.
- 10 18. The nucleic acid molecule according to claim 17, wherein the part comprises at least 25 nucleotides of the nucleic acid sequence.
  - 19. The nucleic acid molecule according to either of claims 13 or 14, wherein the part encodes an amino acid sequence comprising the amino acid sequence GWSFG or GTSLG.
- The nucleic acid molecule according to any one of claims 11-19, wherein the part encodes a polypeptide with thioesterase activity.
  - 21. The nucleic acid molecule according to any one of claims 11-19 that is an oligonucleotide from 14 to 60 nucleotides in length.
- 22. An isolated nucleic acid molecule comprising a nucleic acid sequence encoding a daptomycin non-ribosomal peptide synthetase (NRPS) or subunit thereof from *Streptomyces*, wherein said nucleic acid molecule is not pRHB153, pRHB157, pRHB159, pRHB160, pRHB166, pRHB168, pRHB172, pRHB599, pRHB602, pRHB603, pRHB680, pRHB613 or pRHB614.
  - 23. The nucleic acid molecule according to claim 22, wherein the daptomycin NRPS or subunit thereof is from *S. roseosporus*.
    - An isolated nucleic acid molecule comprising a nucleic acid sequence encoding a daptomycin non-ribosomal peptide synthetase (NRPS) or subunit thereof from *Streptomyces roseosporus*, wherein the nucleic acid molecule encodes a polypeptide selected from the group consisting of DptA, DptB, DptC and DptD, wherein said nucleic acid molecule is not pRHB153, pRHB157, pRHB159, pRHB160,

pRHB166, pRHB168, pRHB172, pRHB599, pRHB602, pRHB603, pRHB680, pRHB613 or pRHB614.

5

10

- 25. The nucleic acid molecule according to claim 24, wherein the nucleic acid molecule encodes a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 and SEQ ID NO: 7.
- 26. The nucleic acid molecule according to claim 23, wherein the nucleic acid molecule is selected from the group consisting of *dptA*, *dptB*, *dptC* and *dptD* or wherein the nucleic acid molecule comprises a nucleic acid sequence selected from the group consisting of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 and SEQ ID NO: 3.
- 27. The nucleic acid molecule according to claim 24, wherein the nucleic acid molecule comprises a nucleic acid sequence from an *S. roseosporus* nucleic acid sequence from BAC clone B12:03A05.
- 28. An isolated nucleic acid molecule that encodes a daptomycin NRPS or subunit thereof, wherein the isolated nucleic acid molecule selectively hybridizes to a reference nucleic acid molecule that encodes a daptomycin NRPS or subunit thereof, wherein the reference nucleic acid molecule comprises a nucleic acid sequence selected from the group consisting of:
  - (a) a nucleic acid sequence selected from the group consisting of dptA, dptB, dptC or dptD;
    - (b) a nucleic acid sequence encoding the amino acid sequence of a polypeptide selected from the group consisting of DptA, DptB, DptC or DptD;
- (c) a nucleic acid sequence encoding the amino acid sequence of a polypeptide selected from the group consisting of SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 and SEQ ID NO: 7;
  - (d) a nucleic acid sequence selected from the group consisting of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 and SEQ ID NO: 3; and
- (e) a nucleic acid sequence from an S. roseosporus nucleic acid sequence from BAC clone B12:03A05; and

wherein said nucleic acid molecule is not pRHB153, pRHB157, pRHB159, pRHB160, pRHB166, pRHB168, pRHB172, pRHB599, pRHB602, pRHB603, pRHB680, pRHB613 or pRHB614.

- The isolated nucleic acid molecule according to claim 28, wherein the nucleic acid molecule hybridizes under conditions selected from the group consisting of low stringency conditions, moderate stringency conditions and high stringency conditions.
  - 30. An isolated nucleic acid molecule that encodes a daptomycin NRPS or subunit thereof, wherein the isolated nucleic acid molecule comprises a nucleic acid sequence that has at least 50% sequence identity to a nucleic acid sequence selected from the group consisting of:

10

20

- (a) a nucleic acid sequence selected from the group consisting of dptA, dptB, dptC or dptD;
- (b) a nucleic acid sequence encoding the amino acid sequence of a polypeptide selected from the group consisting of DptA, DptB, DptC or DptD;
  - (c) a nucleic acid sequence encoding the amino acid sequence of a polypeptide selected from the group consisting of SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 and SEQ ID NO: 7;
  - (d) a nucleic acid sequence selected from the group consisting of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 and SEQ ID NO: 3; and
    - (e) a nucleic acid sequence from an *S. roseosporus* nucleic acid sequence from BAC clone B12:03A05; and wherein said nucleic acid molecule is not pRHB153, pRHB157, pRHB159, pRHB160, pRHB166, pRHB168, pRHB172, pRHB599, pRHB602, pRHB603, pRHB680, pRHB613 or pRHB614.
    - 31. The nucleic acid molecule according to claim 30, wherein the homologous molecule exhibits at least 60% sequence identity to the nucleic acid sequence of any one of (a) to (e).
- The nucleic acid molecule according to claim 31, wherein the sequence identity is at least 70%.

33. The nucleic acid molecule according to claim 32, wherein the sequence identity is at least 80%.

- 34. The nucleic acid molecule according to claim 33, wherein the sequence identity is at least 90%.
- 5 35. The nucleic acid molecule according to claim 34, wherein the sequence identity is at least 95%.
  - 36. An isolated nucleic acid molecule that encodes a daptomycin NRPS or subunit thereof, wherein the isolated nucleic acid molecule is an allelic variant of a nucleic acid molecule that comprises a nucleic acid sequence selected from the group consisting of:
  - (a) a nucleic acid sequence selected from the group consisting of dptA, dptB, dptC or dptD;

10

- (b) a nucleic acid sequence encoding the amino acid sequence of a polypeptide selected from the group consisting of DptA, DptB, DptC or DptD;
- 15 (c) a nucleic acid sequence encoding the amino acid sequence of a polypeptide selected from the group consisting of SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 and SEQ ID NO: 7;
  - (d) a nucleic acid sequence selected from the group consisting of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 and SEQ ID NO: 3; and
  - (e) a nucleic acid sequence from an *S. roseosporus* nucleic acid sequence from BAC clone B12:03A05; and wherein said nucleic acid molecule is not pRHB153, pRHB157, pRHB159, pRHB160, pRHB166, pRHB168, pRHB172, pRHB599, pRHB602, pRHB603, pRHB680, pRHB613 or pRHB614.
- 37. An isolated nucleic acid molecule that encodes at least one domain from a daptomycin NRPS, wherein the nucleic acid molecule comprises a part of a nucleic acid sequence of at least 14 nucleotides, selected from the group consisting of:
  - (a) a nucleic acid sequence selected from the group consisting of dptA, dptB, dptC or dptD;
- 30 (b) a nucleic acid sequence encoding the amino acid sequence of a polypeptide selected from the group consisting of DptA, DptB, DptC or DptD;

(c) a nucleic acid sequence encoding the amino acid sequence of a polypeptide selected from the group consisting of SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 and SEQ ID NO: 7;

- (d) a nucleic acid sequence selected from the group consisting of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 and SEQ ID NO: 3; and
  - (e) a nucleic acid sequence from an *S. roseosporus* nucleic acid sequence from BAC clone B12:03A05; and wherein said nucleic acid molecule is not pRHB153, pRHB157, pRHB159, pRHB160, pRHB166, pRHB168, pRHB172, pRHB599, pRHB602, pRHB603, pRHB680, pRHB613 or pRHB614.

10

- 38. An isolated nucleic acid molecule that encodes at least one module from a daptomycin NRPS, wherein the nucleic acid molecule comprises a part of a nucleic acid sequence of at least 14 nucleotides selected from the group consisting of:
- (a) a nucleic acid sequence selected from the group consisting of dptA, dptB, dptC or dptD;
  - (b) a nucleic acid sequence encoding the amino acid sequence of a polypeptide selected from the group consisting of DptA, DptB, DptC or DptD;
  - (c) a nucleic acid sequence encoding the amino acid sequence of a polypeptide selected from the group consisting of SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 and SEQ ID NO: 7;
  - (d) a nucleic acid sequence selected from the group consisting of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 and SEQ ID NO: 3; and
  - (e) a nucleic acid sequence from an  $\dot{S}$ . roseosporus nucleic acid sequence from BAC clone B12:03A05; and
- wherein said nucleic acid molecule is not pRHB153, pRHB157, pRHB159, pRHB160, pRHB166, pRHB168, pRHB172, pRHB599, pRHB602, pRHB603, pRHB680, pRHB613 or pRHB614.
- 39. An isolated nucleic acid molecule comprising a part of a nucleic acid sequence, wherein said part is at least 14 nucleotides, selected from the group
   30 consisting of:

(a) a nucleic acid sequence selected from the group consisting of dptA, dptB, dptC or dptD;

- (b) a nucleic acid sequence encoding the amino acid sequence of a polypeptide selected from the group consisting of DptA, DptB, DptC or DptD;
- 5 (c) a nucleic acid sequence encoding the amino acid sequence of a polypeptide selected from the group consisting of SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 and SEQ ID NO: 7;
  - (d) a nucleic acid sequence selected from the group consisting of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 and SEQ ID NO: 3; and
- 10 (e) a nucleic acid sequence from an *S. roseosporus* nucleic acid sequence from BAC clone B12:03A05; and wherein said nucleic acid molecule is not pRHB153, pRHB157, pRHB159, pRHB160, pRHB166, pRHB168, pRHB172, pRHB599, pRHB602, pRHB603, pRHB680, pRHB613 or pRHB614.
- 15 40. The nucleic acid molecule according to claim 39, wherein the part comprises at least 17 nucleotides of the nucleic acid sequence.
  - 41. The nucleic acid molecule according to claim 40, wherein the part comprises at least 20 nucleotides of the nucleic acid sequence.
  - 42. The nucleic acid molecule according to claim 41, wherein the part comprises at least 25 nucleotides of the nucleic acid sequence.

- 43. The nucleic acid molecule according to claim 42, wherein the part comprises at least 50 nucleotides of the nucleic acid sequence.
- 44. The nucleic acid molecule according to any one of claims 39-43 that is an oligonucleotide from 14 to 60 nucleotides in length.
- 25 45. A vector comprising the nucleic acid molecule according to any one of claims 1-44.
  - 46. The vector according to claim 45, wherein the vector comprises expression control sequences controlling the transcription of the nucleic acid molecule.
- The vector according to claim 46 wherein the expression control sequences control the expression of the nucleic acid molecule in a prokaryotic cell.

48. A host cell comprising the nucleic acid molecule according to any one of claims 1-44.

- 49. A host cell comprising the vector according to any one of claims 44-47.
- 50. A method for producing a polypeptide selected from the group consisting of a thioesterase, a daptomycin NRPS, and a daptomycin NRPS subunit, comprising the step of culturing the host cell according to claims 48 or 49 under conditions in which the polypeptide is produced, optionally comprising the step of isolating the polypeptide.

5

15

- 51. An isolated nucleic acid molecule comprising an expression control sequence derived from a gene encoding a thioesterase or a daptomycin NRPS derived from a bacterial daptomycin biosynthetic gene cluster, wherein said nucleic acid molecule is not pRHB153, pRHB157, pRHB159, pRHB160, pRHB166, pRHB168, pRHB172, pRHB599, pRHB602, pRHB603, pRHB680, pRHB613 or pRHB614.
  - 52. The nucleic acid molecule according to claim 51, wherein the bacterial daptomycin biosynthetic gene cluster is derived from *Streptomyces*.
  - 53. The nucleic acid molecule according to claim 52, wherein the bacterial daptomycin biosynthetic gene cluster is derived from *S. roseosporus*.
  - 54. The nucleic acid molecule according to claim 53, wherein the expression control sequence is derived from the daptomycin NRPS or DptH.
- 20 55. The nucleic acid molecule according to claim 53, wherein the nucleic acid molecule comprises all or a part of the nucleic acid sequence of SEQ ID NO: 2 or SEQ ID NO: 5.
  - 56. The nucleic acid molecule according to claim 55, wherein said part is at least 30 nucleotides in length.
  - 57. The nucleic acid molecule according to claim 56, wherein said part is at least 50 nucleotides in length.
    - 58. The nucleic acid molecule according to claim 57, wherein said part is at least 100 nucleotides in length.
- 59. The nucleic acid molecule according to claim 58, wherein said part is at least 200 nucleotides in length.

5

20

25

60. A vector comprising the nucleic acid molecule according to any one of claims 51-59.

- 61. The vector according to claim 60, wherein the nucleic acid molecule is operatively linked to a second nucleic acid molecule so as to regulate the expression of the second nucleic acid molecule.
- 62. The vector according to claim 61, wherein the second nucleic acid molecule encodes a polypeptide derived from a bacterial daptomycin biosynthetic gene cluster selected from the group consisting of a thioesterase, a daptomycin NRPS and a daptomycin NRPS subunit.
- 10 63. The vector according to claim 61, wherein the second nucleic acid molecule is a heterologous nucleic acid molecule.
  - An isolated polypeptide comprising an amino acid sequence that encodes a thioesterase or a fragment thereof, wherein said thioesterase is derived from a bacterial daptomycin biosynthetic gene cluster.
- 15 65. An isolated polypeptide comprising an amino acid sequence that encodes a daptomycin NRPS, a subunit thereof, a module thereof or a domain thereof, wherein said daptomycin NRPS is derived from a bacterial daptomycin biosynthetic gene cluster.
  - 66. The polypeptide according to claim 64 or 65, wherein the bacterial daptomycin biosynthetic gene cluster is derived from *Streptomyces*.
    - 67. The polypeptide according to claim 66, wherein the bacterial daptomycin biosynthetic gene cluster is derived from *S. roseosporus*.
    - The polypeptide according to claim 65, wherein the polypeptide is a thioesterase or fragment thereof, which comprises the amino acid sequence GXSXG, wherein each X is independently selected from any one of the twenty naturally-occurring L-amino acids.
    - 69. The polypeptide according to claim 68, wherein the thioesterase or fragment thereof comprises the amino acid sequence GWSFG or GTSLG.
- 70. An isolated polypeptide comprising an amino acid sequence that

  30 encodes a thioesterase or a fragment thereof, wherein the polypeptide comprises an
  amino acid sequence selected from the group consisting of:

	(a)	all allillo acid sequence from a unocsterase domain of DptD,
	(b)	an amino acid sequence of DptH;
	(c)	the amino acid sequence of a thioesterase domain of SEQ ID
	NO: 7;	•
5	(d)	the amino acid sequence of SEQ ID NO: 8;
	(e)	an amino acid sequence encoded by a thioesterase-encoding
	region of the nucleic	acid sequence of SEQ ID NO: 3;
	(f)	an amino acid sequence encoded by a coding region of the
	nucleic acid sequenc	e of SEQ ID NO: 6;
10	(g)	the amino acid sequence GXSXG, wherein each X is
	independently select	ed from any one of the twenty naturally-occurring L-amino acids;
	(h)	an amino acid sequence encoded by the nucleic acid sequence
	selected from the gr	oup consisting of
	-	(1) nucleotides 78488-78511 of SEQ ID NO: 1,
15		(2) nucleotides 79898-79930 of SEQ ID NO: 1,
		(3) nucleotides 80453-80488 of SEQ ID NO: 1,
		(4) nucleotides 80558-80581 of SEQ ID NO: 1,
		(5) nucleotides 80654-80677 of SEQ ID NO: 1,
		(6) nucleotides 81050-81064 of SEQ ID NO: 1,
20		(7) nucleotides 81623-81646 of SEQ ID NO: 1,
	•	(8) nucleotides 83117-83149 of SEQ ID NO: 1,
		(9) nucleotides 83669-83704 of SEQ ID NO: 1,
		(10) nucleotides 83774-83797 of SEQ ID NO: 1,
		(11) nucleotides 83870-83893 of SEQ ID NO: 1,
25		(12) nucleotides 84257-84271 of SEQ ID NO: 1,
		(13) nucleotides 80033-80320 of SEQ ID NO: 1, and
	. 1	(14) nucleotides 83255-83542 of SEQ ID NO: 1;
	(i)	an amino acid sequence selected from the group consisting of
		(1) amino acids 144-151 of SEQ ID NO: 7,
30		(2) amino acids 614-624 of SEQ ID NO: 7,
		(3) amino acids 799-810 of SEQ ID NO: 7,

5

10

20

25

30

(4) amino acids 834-841 of SEQ ID NO: 7,

- (5) amino acids 866-873 of SEQ ID NO: 7,
- (6) amino acids 998-1002 of SEQ ID NO: 7,
- (7) amino acids 1189-1196 of SEQ ID NO: 7,
- (8) amino acids 1687-1697 of SEQ ID NO: 7,
- (9) amino acids 1871-1882 of SEQ ID NO: 7,
- (10) amino acids 1906-1913 of SEQ ID NO: 7,
- (11) amino acids 1938-1945 of SEQ ID NO: 7,
- (12) amino acids 2067-2071 of SEQ ID NO: 7,
- (13) amino acids 659-754 of SEQ ID NO: 7, and
- (14) amino acids 1733-1828 of SEQ ID NO: 7;
- (j) an amino acid sequence encoded by a nucleic acid sequence from an S. roseosporus nucleic acid sequence from BAC clone B12:03A05;
- (k) an amino acid sequence D-L-X-X-G-X₁₋₃₃-K-X₁₋₂₂-T-X-G-X₁₋₂₃
  V-X₁₋₇-I, wherein each X is independently selected from any one of the twenty naturally-occurring L-amino acids;
  - (i) an amino acid sequence D-A-X-X-W- $X_{1-37}$ -T- $X_{1-20}$ -T-X-T- $X_{1-21}$ -G- $X_{1-7}$ -V, wherein each X is independently selected from any one of the twenty naturally-occurring L-amino acids;
  - (m) an amino acid sequence comprising at least 50% sequence identity to the amino acid sequence of any one of (a) to (j); and
  - (n) an amino acid sequence encoded by a nucleic acid sequence, wherein a nucleic acid molecule comprising said nucleic acid sequence selectively.

    hybridizes to the complementary strand of a nucleic acid molecule encoding the amino acid sequence of any one of (a) to (j).
  - 71. The polypeptide according to claim 70, wherein the polypeptide has thioesterase activity.
  - 72. The polypeptide according to claim 71, wherein the polypeptide exhibits at least 60% identity to the amino acid sequence of any one of (a) to (j).
  - 73. The polypeptide according to claim 72, wherein the sequence identity is at least 70%.

74. The polypeptide according to claim 73, wherein the sequence identity is at least 80%.

- 75. The polypeptide according to claim 74, wherein the sequence identity is at least 90%.
- The polypeptide according to claim 75, wherein the sequence identity is at least 95%.
  - 77. The polypeptide according to claim 70, wherein the polypeptide is a polypeptide fragment, a fusion polypeptide, a polypeptide derivative, a polypeptide analog, a mutein or a homologous polypeptide of a naturally-occurring thioesterase derived from a daptomycin biosynthetic gene cluster.
  - 78. The polypeptide according to claim 77, wherein the polypeptide is a polypeptide fragment comprising at least 5 contiguous amino acids.

10

- 79. The polypeptide according to claim 78, wherein the fragment comprises at least 10 amino acids.
- 15 80. The polypeptide according to claim 79, wherein the fragment comprises at least 20 amino acids.
  - The polypeptide according to claim 80, wherein the fragment comprises at least 50 amino acids.
  - 82. The polypeptide according to claim 77, which is a fusion protein comprising at least 10 amino acids from the thioesterase.
    - 83. The polypeptide according to claim 82, comprising at least 50 amino acids from the thioesterase.
    - The polypeptide according to claim 82, wherein the fusion protein comprises the amino acid sequence encodes thioesterase activity.
- 25 85. An isolated polypeptide according to any one of claims 65-67, wherein the polypeptide has an amino acid sequence selected from the group consisting of
  - (a) an amino acid sequence encoded by a nucleic acid sequence selected from the group consisting of dptA, dptB, dptC or dptD;
- (b) an amino acid sequence selected from the group consisting of30 DptA, DptB, DptC or DptD;

(c) a nucleic acid sequence encoding the amino acid sequence of a polypeptide selected from the group consisting of SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 and SEQ ID NO: 7;

(d) a nucleic acid sequence selected from the group consisting of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 and SEQ ID NO: 3; and

5

20

- (e) a nucleic acid sequence from an S. roseosporus nucleic acid sequence from BAC clone B12:03A05.
- 86. An isolated polypeptide that is encoded by the nucleic acid molecule according to any one of claims 28-36.
- 10 87. An isolated polypeptide that is encoded by the nucleic acid molecule according to claim 37.
  - 88. An isolated polypeptide that is encoded by the nucleic acid molecule according to claim 38.
- An antibody that selectively binds to the polypeptide according to any one of claims 64-88.
  - 90. The antibody according to claim 89 that is an intact immunoglobulin; an antigen-binding portion thereof that is Fab, Fab', F(ab')₂, Fv, dAb or a CDR fragment; a single-chain antibody, a chimeric antibody; a diabody; or a polypeptide comprising at least a portion of the immunoglobulin sufficient to confer specific antigen binding to the polypeptide.
  - 91 The antibody according to claim 90, wherein the antibody is a neutralizing antibody.
  - 92. The antibody according to claim 90, wherein the antibody is an activating antibody.
  - 93. The antibody according to claim 90, wherein the antibody is a monoclonal antibody or a polyclonal antibody.
    - 94. A method for preparing an antibody that selectively binds to the polypeptide according to any one of claims 64-88, comprising the steps of
      - a) immunizing a non-human animal with the polypeptide; and
- 30 b) isolating the antibody.

95. A method for determining if a sample contained a nucleic acid molecule encoding a thioesterase, a daptomycin NRPS or a daptomycin NRPS subunit, comprising the steps of

a) providing a nucleic acid molecule according to any one of claims 1-43;

5

- b) contacting the nucleic acid molecule with the sample under selective hybridization conditions; and
- c) determining if the nucleic acid molecule selectively hybridized to a nucleic acid molecule in the sample.
- 10 96. A method for amplifying a second nucleic acid molecule encoding a thioesterase or a portion thereof from a sample comprising the second nucleic acid molecule, comprising the steps of
  - a) providing a first nucleic acid molecule, wherein the first nucleic acid molecule comprises the nucleic acid sequence according to any one of claims 1-12 and comprises at least 10 contiguous nucleotides of the nucleic acid sequence;
  - b) contacting the first nucleic acid molecule with the sample comprising the second nucleic acid molecule under conditions in which the first and second nucleic acid molecules will selectively hybridize to each other; and
- c) amplifying the second nucleic acid molecule using polymerase chain reaction (PCR).
  - 97. A method to produce daptomycin comprising the steps of
  - a) introducing a nucleic acid molecule comprising a daptomycin biosynthetic gene cluster or a portion thereof sufficient to direct the synthesis of daptomycin into a host cell; and
- b) culturing the host cell under conditions in which daptomycin is produced.
  - 98. The method according to claim 97, wherein the nucleic acid molecule is derived from *Streptomyces*.
- 99. The method according to claim 98, wherein the nucleic acid molecule is derived from S. roseosporus.

100. The method according to claim 99, wherein the nucleic acid molecule comprises the entire daptomycin biosynthetic gene cluster.

- 101. The method according to claim 97, wherein the host cell is S. lividans.
- 102. The method according to claim 101, wherein the host cell is S. lividans
  5 TK64.
  - 103. The method according to claim 97, further comprising the step of isolating the daptomycin.
  - 104. A method to increase the production of daptomycin by a cell comprising the steps of

10

15

20

25

- a) providing a host cell that expresses daptomycin;
- b) introducing a nucleic acid molecule into a neutral site of a chromosome of said host cell, wherein the introduction of the nucleic acid molecule results in increased production of daptomycin by a cell compared to the cell without the nucleic acid molecule; and
- c) culturing the host cell under conditions in which daptomycin is produced;

wherein said nucleic acid molecule is not pRHB153, pRHB157, pRHB159, pRHB160, pRHB166, pRHB168, pRHB172, pRHB599, pRHB602, pRHB603, pRHB680, pRHB613 or pRHB614.

- 105. The method according to claim 104, wherein the host cell is S. roseosporus or S. lividans comprising the daptomycin biosynthetic gene cluster.
- 106. The method according to either of claims 104 or 105, wherein the nucleic acid molecule is selected from the group consisting of NovA,B,C, dptA, dptB, dptC, dptD, dptE, dptF, dptG, dptH, and fatty acyl-CoA ligase from the daptomycin biosynthetic gene cluster and any combination of two or more nucleic acid molecules thereof.
- 107. The method according to either of claims 104 or 105, wherein the nucleic acid molecule is a daptomycin resistance gene.
- 108. The method according to claim 106, further comprising the step of introducing a daptomycin resistance gene into the host cell.

109. The method according to either of claims 104 or 105, wherein the nucleic acid molecule is the entire daptomycin biosynthetic gene cluster or BAC clone B12:03A05.

110. The method according to claim 109, further comprising the step of introducing a daptomycin resistance gene into the host cell.

- 111. A method for producing a modified daptomycin, comprising the steps of
- a) providing a cell comprising a daptomcyin biosynthetic gene
   cluster or a portion thereof sufficient to direct the synthesis of daptomycin into a host
   cell;
  - b) modifying or replacing one or more modules of the daptomycin biosynthetic gene cluster or portion thereof to alter the amino acid that is incorporated into the modified daptomycin; and
- c) culturing the host cell under conditions in which modified
   daptomycin is produced.
  - 112. The method according to claim 111, wherein one or more modules specifying incorporation of aspartate is modified to specify incorporation of asparagine or 3-methyl-glutamate.
- 113. The method according to claim 111, wherein the module is replaced by a module derived from a non-ribosomal peptide synthetase other than the daptomycin biosynthetic gene cluster.
  - 114. The method according to claim 113, wherein the module specifying incorporation of L-kynurnine is replaced by a module specifying incorporation of L-tryptophan.
- 25 115. A method for producing a modified daptomycin, comprising the steps of
  - a) providing a cell comprising a daptomycin biosynthetic gene cluster or a portion thereof sufficient to direct the synthesis of daptomycin into a host cell;

b) inserting or deleting one or more modules of the daptomycin biosynthetic gene cluster or portion thereof to insert or delete one or more amino acids in the cyclic peptide of the modified daptomycin; and

- c) culturing the host cell under conditions in which modified
   daptomycin is produced.
  - 116. The method according to claim 115, further comprising the step of altering one or more adenylation domains.
  - 117. The method according to claim 115, wherein the module is inserted directly upstream from a thioesterase module.
  - 118. A method to create a modified daptomycin, comprising the steps of

10

- a) providing a cell comprising a daptomcyin biosynthetic gene
   cluster or a portion thereof sufficient to direct the synthesis of daptomycin into a host
   cell;
- b) inserting or translocating a thioesterase domain to the end of an
   15 internal module to delete one or more amino acids in the cyclic peptide of the modified daptomycin; and
  - c) culturing the host cell under conditions in which modified daptomycin is produced.
- The method according to claim 118, wherein the thioesterase domain is translocated.
  - 120. A method to produce a hybrid non-ribosomal peptide synthetase (NRPS) or polyketide synthetase (PKS) comprising the steps of
  - a) providing a nucleic acid molecule encoding a thioesterase from a daptomycin biosynthetic gene cluster; and
  - b) linking the nucleic acid molecule encoding the thioesterase to a nucleic acid molecule encoding a natural or synthetic NRPS or PKS.
  - 121. The method according to claim 120, wherein the nucleic acid molecule encoding the thioesterase is linked to nucleic acid sequences from the daptomycin biosynthetic gene cluster and one or more other NRPS or PKS.

122. The method according to claim 120, wherein the nucleic acid molecule encoding the thioesterase is linked to nucleic acid sequences not derived from the daptomycin biosynthetic gene cluster.

123. The method according to claim 120, wherein the method is used to produce a novel cyclic peptide or linear peptide.

5

15

20

- 124. A method to produce a cyclic thioester comprising the steps of providing a pantetheine-peptide thioester intermediate to a thioesterase derived from a daptomycin biosynthetic gene cluster.
- 125. The method according to claim 124, wherein the thioesterase is derived from a nucleic acid molecule comprising SEQ ID NO: 3 or SEQ ID NO:6.
  - 126. A method to determine whether a lipopeptide is an antibiotic, comprising the steps of
    - a) providing a linear thioester tethered to a cleavable resin;
    - b) adding a thioester to cyclize the thioester;
    - c) encapsulating the lipopeptide with a test strain of bacteria;
    - d) cleaving the cyclic thioester from the resin; and
  - e) determining if the cyclic thioester has antibiotic activity against the test strain.
  - 127. The method according to claim 126, wherein the resin is a photocleavable resin and the cleaving step is performed using light.
    - 128. The method according to claim 126, wherein the method is used in high throughput screening.
    - 129. The method according to claim 126, wherein the peptide is attached to the resin via a lipid, alkyl or polyether linker.
    - 130. A method for identifying a thioesterase, comprising the steps of
    - a) providing a linear thioester peptide tethered to a cleavable resin, wherein the thioester peptide, when cyclized, has antibiotic activity;
    - b) providing a DNA library in an expression vector that does not lyse a host cell;
- 30 c) introducing the DNA library into a host cell that is resistant to the cyclized peptide product;

d) encapsulating the host cell comprising the DNA library and the linear thioester peptide into a matrix to form a macrodroplet;

- e) incubating the macrodroplet such that the host cell expresses the polypeptide from the DNA library;
- f) placing the macrodroplet on an appropriate target lawn and cleaving the thioester peptide;
  - g) determining whether the thioester peptide in each macrodroplet has antibiotic activity, and
- h) isolating the DNA from the macrodroplet that has antibiotic activity.
  - 131. A method to cyclize peptides, comprising the steps of
  - a) providing a peptide that contains and C-terminal amino acid residues that are recognized by a thioesterase derived from a daptomycin biosynthetic gene cluster; and
- b) contacting the peptide with the thioesterase under conditions in which cyclization occurs.
  - 132. The method according to claim 131, wherein the peptide is produced by an NRPS or a PKS.
- The method according to claim 132, wherein the peptide is located within a cell.
  - 134. The method according to claim 133, wherein the thioesterase is encoded by a nucleic acid molecule that has been introduced into the cell.
  - 135. The method according to claim 134, wherein the nucleic acid molecule encoding the thioesterase is operatively linked to a heterologous promoter.
  - 136. The method according to claim 135, wherein the nucleic acid molecule encoding the thioesterase is operatively linked to its naturally-occurring promoter.

25

30

137. A nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 and 102 or encoding a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NOS: 19, 21, 23, 25, 27,

29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 and 101;

wherein said nucleic acid molecule is not pRHB153, pRHB157, pRHB159, pRHB160, pRHB166, pRHB168, pRHB172, pRHB599, pRHB602, pRHB603, pRHB680, pRHB613 or pRHB614.

5

10

138. A polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOS: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99 and 101 or encoded by a nucleic acid molecule selected from the group consisting of SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 and 102.

139. An antibody that binds to the polypeptide according to claim 138.

Figure 1

### Manipulations of Dpt genes



Figure 2A

<u></u>		(GTC about 25-28 kb)
Sp6 about 13 Kb	90 kb	
B12	2:03A05 insert (about 135 kb	<u> </u>



Figure 2B



Figure 2c

```
DptD, Cdall Multiple Alignm
Tuesday, December 19, 2000 9:25
ClustalW (v1.4) multiple sequence alignment
                                                          Alignment Score = 7705
                                                           Conserved Identities - 1223
Cape Inserted = 22
Pairvise Alignment Mode: Slow
 Pairvise Alignment Parameters:
Open Gap Penalty = 10.0 Extend Gap Penalty = 0.1
Similarity Matrix: blosums
Multiple Alignment Parameters:
Open Gap Penalty = 10.0 Extend Gap Penalty = 0.1
Dolay Divergent = 406 Gap Distance = 8
        Similarity Matrix: blosum
Processing time: 18.0 seconds
                     1 MICRIAGO IL PLI PLO GOLLI PISVIDEOS VIDVITVOV VILEGIPO DEPALRAMANLAR RIPELOR PRO IL PREVIDENTI DI MARSOLGO IL PLI PLO GOLLI PRI VIDENTI DE GELI MINOVE ID LOCATO DEPALAMONTE DI SANCONI DEI SANCONI PRO IL PRIVAL PROFERIO, SANCONI PRO IL PRIVAL PROFERIO, SANCONI PR
 T36180
                 DptD
T36180
                 240 MERGYTINTLYQANALVLGILTGEDDVYGYTVSGREFELAGYEIMGIFINTVPLARELLEHESLADFTVRLGREGIGLIDHGYERLAVIGRLAGREFUTWWFENTPVAARS-
241 MENGITVNTVIQGGGGGLVLSHLIGGDDVYGYTVSGREFELGUDIMGLFHTLILTAVLRENETLIGFLRIGGEDARLIDHGWGLAEIGNGGSGEFUTWWFENTPLASSRGR
350
 DotD
T36180
                          - ACADC PAAEPRVAD VITVRDADSTYPLCILLVLPCP PIRLIFCGG, PSALPAERVITIROS LVRALELHADD? DLA VCRAD ILGEEEXCHILTCINDTHRUVPPLITVPCGIEADAARTPCG, PA
DptD
T36180
                 361 PPCAAPDAELPTVLGVRSKOOHYPLGILALPRETLRFSLGYLPGVFDPARVEAVIAAFRRALRTVLDADDTRVGAVALLDPEVRGTVLERVSGSDDVRPAERFTDLFEEGVARTFGRTA 480
                 478 VHARDDELSYAEIARANRIARHIAAGSSEPETYVTLLLEFLARMYVALAVHSTGAAYVPVDPEYFADRIAYHLGDIGALVLITDS---RSAAMPAGPARVLTLDDDALDTGSRALFE 594
481 LLAPDGRITYAELDAAANRIARRIVELGSGPERHVAVANGRIELVSGALAVLKAGGAYVPVDFEYPPDRIKHPHQDDALDVLTTSDVDDRIGEECCGRITFYMDDRYGTSLGRASGT 600
 DptD
T36180
                  595 HILLITIGTARLPD-OPAYVTYTSGSTGRPKGWTLHRSYTGTLLRT-1EEYPEAAGKAFVHSFVSFBLTVGALYAPLVSGGCLRLGSFTDDKILLILGE---DSPTDKKATDSKLAVLDSL 709
DptD
T36180
                  ALTDADRAAFLEGHPAYVIYISTITGIPKOVVEHRALSAFVRHCRSGAPDISGLSYMASASFDOSVGSLHAPLISGGVRLITDLAALAETAGSERGPRATFRGTFS:HALLATM
                  710 PDEISPTGATILOGECLLSETLDPHRARHROVTVFNVYGPTETTINCAERLARGTIL®FGFVFTGFDJANTRLYVLDGGLRVVFTGVGELYVAGAGLARGYLGRFGLTAERFVACPFG
721 PPEVAPSGTILTLOGEELRGETLAPHREAGDVTVVNVYGPTEATGAGLDBVTAERFVARGVGFVTAGVGLARGYLGRGGTAERFTADPFG
840
 736180
                  830 ARGENYRYGDINKWRTDGTLEFVGRVDDOYKVRGFRIELGEVEATVAAT RGVARAIVAVREDR PGDORLVAYYT PADVDPTGGLIPSAVTAHAARLPAYMV RSAVVLHEVPLTPHCKI 949
841 ARGENYRYGDVAHANEAGELYFAGRADROYKLRGYRIELGELIEAAVAGGGVRQAAVVLREDR PGDORLVAYVVP---DRGHIDEAARARLALSLIPDEPMISAFVALDALDILSINGKI 957
 DptD
T36180
                  950 kraalpapeavscastrargtareevloglfaevlglervitaddffelgeksllatrlvskvrsvlgvelgvralfdap: rgrldrligersgapvrapltarekkæddflsyagorlm 1069
DptD
T36180
                 958 DRALLAPHTTGTTMGTAPRTPAEETICIL/AEYLSLIGS/TVDDDFFDLGGISL.ATRLVSRVRTTLGAELS IROFFEAFTFAALAVVIAG--AGRARALTARPRPERLIFLS/MOORIM 1075
 DDID 1070 PINELDOKATATIPLALAINGPLOVIALEALITOVVARHESIRTLIANDGROTANGHILPTGDPRARITLEAVFLERDELAGALARAPPETLAEIPVRATVFRTERDDHILIVVH 1189
T16180 1076 FINELDOKATATIPLALAINGPLOVIALEALITOVVARHESIRTTFTDEEG-AROVNIPAGG-VAPVFETAESTEADFADLARAANAAFIGAEIPVARHILISEBERHILIVH 1192
 DDLD 1190 HIASDEMSREPFIRDLSAAYAARRAHSAPELPFLSVOYADYAANGRUVLITEDDITSEMAQQLAHMIGULALIPOT.DLPTDRFRRPDVERGGGCULEIPALHRUIVITLARVISTIVF 13109
T36180 1193 HIASDAMSGGNAQQHIAATTARCAGQAPAAQRLAVQYADYALAQQELICDUTDPUTLAGQCAYMOOLAGLIFELDLPTDRFRFATADHTGGRVEFALFADLHTRUTELAAATDITLY 1312
 DDLD 1310 MYQAMAGLISHLGATTDIFIGTPIAGRTDEATEHLIGFFYNTLVLRTDVSGDEFFAEILARVRATDLAYAN,DVFFERLVEVLNFERSLLRHFLFQILLAFONTEIRSISDRFGTLL 1429
T36180 1313 MYLAALATLIRHEAGEDIFIGTFYAGRTDARTHAWRFYNTLVLRTDTSCNPFFERLLTAVRUTDLAYAN,DVFFERLVEXLNFRSLINHFILGWVLSLRSTAFRAADGEGAPAL 1432
DDLD 1430 PDLDVTEDP--LDAGTAKFILAPAPTER PPEKIEPSGITGIVEYHADLTDEGTVRQIADCFVOFLDAAVHAPGTRVDAVGLLPERTLHGLJTRSGGTVGLDPATLPELFERRVAAHPEH 1547
T36180 1433 PDGRVSGTGLAATAAKVILEFSVTERRADAT PDGVAGVLDFRTDLFERGTAGLJVELLAVAHPDRILSRIDVLGFRERRVEED-ROTAKGLAPATLFELFERHYRERGA 1552
 DDLD 1548 IAVEYAGRAPATTYDALAGRARICAGLITURGVRPECRVALALPRSAILVIAMLGILKAGAVCVPVDPAYPDDRIAHOAADAAPALLIASAATRORULPIGIPUDLDDP-AVTAALA 1665
T36190 1550 EAVVAG---DISLSVAELAGRARICAGLIVARAGAPPELVALALPRSAELPVAVLAVAAGAAYLPIDPAPAERIAGTLDDAAPVALLTIAAVAAGLPDTDVRLLLDEEPAGGGEDA 1669
                 1666 Arpponprotulpahbayviyiscsrotprovvvnedipalaatoobalragkourvlolvstsfdasvmilcsallagativlapdadlegdelaaaltahbitkvtlppaalaavp 1785
 736180 1670 ADLIDADRIAMILIPHEAVYTYTSGTTGREGYTYTHSGLPALLDIFTSGLDWEGSKYLJDLSPAFDGTPWELAWILLTGAALWWEFOTYRGPALALAVRHRYTHAAITPAVLOLIP 1789
  DDLD 1786 AGAAPPRLITYPYKGUKGEPGLYDRHAGGERILIATYGFTEYTYKATYAVCERTGGGAPVFIGAPWFIGRYVYLEHRIAPVFAGCVGELYVAGAGLARGILGRKUTAERIVADFFGADGE 1905
TJ6190 1790 BGALPAGTTIVYFABECPPELVARKSAG-RLARKSYGFTETTYKATHSAFLAG--AAVPFIGRFIADIAGYVLDDALQPVFFGVFGELYVRGRGLARGILGRSUTAGRVACFFGPAGG 1906
                 1906 RMYRTGILARRESUGILLFEFRADTOVKIRGFRVELAE IEAALASHFGVEDAVVTVYDDGLGDORLVXYVTGGF-GTPSAAALRAHLASHLFRIMVFGDVLTLDALFLTANGKVTRTALF 2024
 DDLD 2025 GFGTGTAARGRARGSPGERVLGALFAEVLGRETVSVDEGFFTLGGHSLIATFLAARVRAALGVELSVKTLFEAFT PALLASACTADAAAYDPFETVLFURRTGGRPFLFCVHAGHLISAA 2144
TJ6180 2027 APTWRTVE-GRSPKTFREEXLCRLFAEVLGLEIVGLDGGFFTLGGHSLIATFLVERVRAELGEELGVRUIFAAPTVARLAVGTRARGGR-EPHERLLPLRAAGTRAFVFCVHRGSGHSKC 2144
 DPLD 2145 YAGILSKI,DADYPYMCI,OARRUTAPOCI,PGSVEDNAEDYAGETRRICFDGPYRILGHSPOGTVAHAVATRLOQOGHTVEIJAVLDAYP/TGARPDAEVDEQRTVADVIAQLGSPVAPERL 2264
T36180 2145 YAGILSKI,DADYPYMCI,OARGI,DAGGRI,PATLQDAAASYADLYROTOFDDPYRILGHSLOGNVAFADRI,RARGISVEIJAFLDAYPRVA,RAGGPPAFLAEVFABRI,RADAGTVVAFEDL 2263
  DPLD 2265 EG-DANLPEFLEFVRRTDGPARDFDACRILANKDVFLANGLUTRFFT RGVPTGDMVFFASARP-GSEDAAERVGLMHPHATGDLIHLIDCAHEEMTDP-AALITRIGPVLANGLACHTM 2180
T36180 2264 TGGRFFTARYRAFLANAGDPHGPLDEAELANVLEVFHYDDALLARGHT RGTTDGDVLVLAAERADGDKLARGAESHI PANGRIERVGVDALHAIGUNSDALLANGRUDPANGH 2183
```

DptD,CdaII Multiple Alignments Tuesday, December 19, 2000 9:25

DDED 2381 2380 T36180 2384 AASAAVPETESTTAMINPSPEPAPSPESLDSTEVAN 2418

PCT/US01/32354 WO 02/059322

tiple Alignments

DptH/Cda prot alignment Tuesday, December 19, 3:37 AM ClustalW (v1.4) multiple sequence alignment Alignment Score = 955 2 Sequences Aligned Conserved Identities = 145 Gaps Inserted = 1 Pairwise Alignment Mode: Slow Pairwise Alignment Parameters: Open Gap Penalty = 10.0 Extend Gap Penalty = 0.1 Similarity Matrix: blosum Multiple Alignment Parameters: Open Gap Penalty = 10.0 Extend Gap Penalty = 0.1 Delay Divergent = 40% Gap Distance = 8 Similarity Matrix: blosum Processing time: 0.4 seconds 10 20 30 40 50 60 DptH protein MRATSRMIQVNGARIACSDSG-----CGDPVLMIAGTGSTGRVWDAYQVPDLHAAGFRT MPVLTVNGIRINYYDDAPPAGAQNAPAVLLVMGSGGSGRAWHLHQVPALVAAGFRV T36181 **.. *.* .** * 70 80 90 100 DptH protein ITFTNRGVPPSDECERGFTLADLAADTAALIEQVAGGPCRVVGTSLGAQVAQEVALARPD I SFDNRGIAPSEECPGGFGIDDLVADTAALVEELRLGPCRVAGISMGAHIAQELALSRPD T36181 * * *** ** ** ** . ** ***** * . **** * * . ** . ** . ** . ** 130 140 150 160 DptH protein LVTQAVFMATRGRTDAMRAAATRAAAALYDSGVELPPAYAAAVRALQNLSPHTLRDRHQV LVDRLVLMATRARPDALREALCRAEMELYDQGIRLPAAYEAVVQAMQNLSPRTLDNDVQA T36181 200 210 220 DptH protein EDWLPLFEYAERDGPGVRAQLELGLLPDRLADYRDITVPCLVIAFEDDVVTPPYLGREVA RDWLDVLELTRRSGAGYRAQLGVRVDGDRREAYRGIRAATRVVAFQDDLIAPPHLGREVA T36181 *** . * . * * * **** . . ** ** * . *.**.**...** 250 270 260 DptH protein DAIPGARFETVPRCGHYGYLEDASAVNKILRDFFRTSN DAIPGAEYELVPDCGHYGYLESPDAVNKSLVEFLRRN T36181 ***** * *** ******* *** * . . .

Figure 5A





Figure 5B



Figure 5C





## Recovery of dpt-related clones



BACs cover 180-200 kb in dpt region



### NRPS gene structure







dptD

# Organisation of 46.6 kb dpt region

dpIA

ا. ل																
5400	10800	10800 16200	21600	27000	32400	37800	43200	48600	54000	59400	64800	70200	75600	81000	21600 27000 32400 37800 43200 48600 54000 59400 64800 70200 75600 81000 86400 ³	
	O	ORF		mc	modules	လျှ			01	domains	ains					
	dp	¥4			rV		O	AT	CAJ	[E•C	CAT•CATE•CAT•CAT•CAT	CA]		ΥŢ		
	dp	ŧB			$\epsilon$		O	AT	CA.	L•C	CAT•CAT•CATE•C	Ď				
	dp	, J			3			AT	AT•CAT•CATE	I•C	ATE					
	dp	dptD			7		J	CAT	CAT•CATTe	ITe					-	
	•						-		,						{	

Epimerisation domains assocated with asn, ala and ser modules One of the asp modules is split between dptB and dptC Thioesterase (Te) domain at end of dptD 4 ORFs translationally coupled