

On Bayesian Value Function Distributions

UiO University of Oslo

VV/a Grover¹

Emilio Jorge*,1

Hannes Eriksson*,1,2

Christos Dimitrakakis*,1,3

Debabrota Basu^{1,4}

Divya Grover¹

WALLENBERG AI, AUTONOMOUS SYSTEMS AND SOFTWARE PROGRAM

*Equal contribution

¹Chalmers university of Technology

²Zenseact

³University of Oslo

⁴Scool, Inria Lille-Nord Europe

The problem

- Setting: Bayesian reinforcement learning (BRL).
- Model-based BRL: Straightforward formalisation by model distributions.
- Model-free BRL: Value function distributions via implicit approximations.
- Solution: Derive correct value function distributions directly.

Reinforcement learning

An unknown Markov Decision Process (MDP) μ with state s_t , action a_t , reward $r_t \sim P_{\mu}(r_t \mid s_t, a_t)$, next state $s_{t+1} \sim P_{\mu}(s_{t+1} \mid s_{t+1}, a_t)$.

Objective: Maximize utility $u_t = \sum_{k=t}^{T} \gamma^t r_t$

The value function V^{π} of a policy π is

$$V_u^{\pi}(s) \triangleq E_u^{\pi}[u_t \mid s_t = s_0], \qquad a_t \sim P^{\pi}(a \mid s_t)$$

Bayesian reinforcement learning

The Bayes-optimal solution is

$$\max E^{\pi}(u|D)$$

Two main Bayesian approaches

• Model based: Belief $\beta \triangleq P(\mu \mid \mathsf{D})$. We can then obtain $V_\beta^\pi(s) = \int V_\mu^\pi(s) dP(\mu \mid \mathsf{D})$

• Model free: Estimate $P(V \mid D)$ directly.

References

Bayesian value function estimates

Existing model-free BRL algorithms follow the GPTD[1] framework.

- Gaussian process prior over the P(V)
- Likelihood function

$$P(D \mid V) \approx \prod_{i=1}^{t} \exp\{-|V(s_i) - r_i - \gamma V(s_{i+1})|^2\}, \ s_i \in D.$$

• At a high level, the inference is :

$$P(V \mid D) = \frac{P(V)P(D \mid V, \hat{\boldsymbol{\mu}}(\boldsymbol{D}))}{P(D)}$$

• Implicitly assumes the empirical MDP $\hat{\mu}(D)$ is correct \Rightarrow ignores model uncertainty.

Inferential induction

We propose a framework, **Inferential Induction**, to calculate the value function distribution $P^{\pi}(V \mid D_t)$ for policy π , correctly.

Data
$$D_t = s_1, a_1, r_1, \dots, s_t, a_t, r_t$$
 \Rightarrow VF posterior $P(V_T|D_t), \dots, P(V_i|D_t), \dots, P(V_t|D_t).$

Calculate the value functions with the inductive integral

$$P^{\pi}(V_{i} \mid D_{t}) = \int_{\mathcal{V}} P^{\pi}(V_{i} \mid V_{i+1}, D_{t}) \, \mathrm{d}P^{\pi}(V_{i+1} \mid D_{t}) \qquad \text{(induction)}$$

$$P^{\pi}(V_{i} \mid V_{i+1}, D_{t}) = \int_{\mathcal{M}} \underbrace{P^{\pi}(V_{i} \mid \mu, V_{i+1})}_{\text{Bellman operator}} \, \mathrm{d}P^{\pi}(\mu \mid V_{i+1}, D_{t}) \, . \quad \text{(marginalisation)}$$

We propose two ways of computing Bayesian value function distributions correctly taking the model uncertainty into account.

Firstly, we introduce **Bayesian Backwards Induction** for calculating $P^{\pi}(V \mid D_t)$.

- Calculate integral through Monte Carlo sampling of V_{i+1} and μ .
- Define Gaussian kernel relating V_i and utility samples from μ to calculate link distribution $P^{\pi}(\mu \mid V_{i+1}, D_t)$.
- Importance sampling weights on $P(V_i \mid \mu, V_{i+1})$
- Utilising link distribution may above all be useful when true μ not in model class.

Secondly, we introduce **Inferential Induction Bayesian Actor-Critic** for computing $\mathbb{P}^{\pi}_{\beta}(V \mid D_t)$, constructing MDPs from value functions through $\mathbb{P}^{\pi}_{\beta}(\mu \mid V)$ using the following transformations.

$$\mathbb{P}_{\beta}^{\pi}(V \mid D_{t}) = \frac{\mathbb{P}_{\beta}^{\pi}(D_{t} \mid V) d \mathbb{P}_{\beta}^{\pi}(V)}{\int_{\mathcal{V}} \mathbb{P}_{\beta}^{\pi}(D_{t} \mid V) d \mathbb{P}_{\beta}^{\pi}(V)}.$$

$$\mathbb{P}_{\beta}^{\pi}(D_{t} \mid V) = \int_{\mathcal{M}} \mathbb{P}_{\mu}^{\pi}(D_{t}) d \mathbb{P}_{\beta}^{\pi}(\mu \mid V).$$

The algorithm becomes

- Sample $V^{(k)} \sim \mathbb{P}^{\pi}_{\beta}(V)$.
- Sample $\mu^{(j)} \sim \mathbb{P}^{\pi}_{\beta}(\mu \mid V^k)$ by constructing a product of Dirichlet distributions over MDPs minimising the temporal difference error for V^k .
- Compute importance weights $\frac{1}{N_{\mu}} \sum_{j=1}^{N_{\mu}} \mathbb{P}_{\mu^{j}}^{\pi}(D_{t})$ to obtain value function posterior $\mathbb{P}_{\beta}^{\pi}(V \mid D_{t})$.
- Use sampled MDPs and posterior value function samples to update the actor network parameters.

Experiments

Conclusion

- New framework for Bayesian RL.
- BBI uses $P(\mu \mid D)$ to obtain $P(\mu \mid V, D)$. II-BAC and other suggested method in the work avoid this.
- It does not appear to be possible to do purely "model-free" Bayesian value function estimation.

^[1] Yaakov Engel, Shie Mannor, and Ron Meir.
Bayes meets Bellman: The Gaussian process approach to temporal difference learning.
In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages 154–161, 2003.