

	Paint 1	Paint 2	Resources Available
Raw material 1	1	2	6
Raw material 2	2	1	8
Price/tonne (£1000)	2	3	

Constraints:

• Can't use more raw material than available:

Row material 1

$$\begin{array}{ccc} x_1 & x_2 \\ & x_1 + 2x_2 & \leq & 6 \end{array}$$

Row material 2

$$2x_1 + x_2 \le 8$$

Warwick Business School wbs.ac.uk

\odot	Decision	Variab	les

 x_1 amount of paint 1 produced

x₂ amount of paint 2 produced

	Paint 1	Paint 2	Resources Available
Raw material 1	1	2	6
Raw material 2	2	1	8
Price/tonne (£1000)	2	3	

Constraints:

• Can't use more raw material than available:

Row material 1

Warwick Business School wbs.ac.uk

3

	Decision Variables
<i>x</i> ₁	amount of paint 1 produced
<i>X</i> ₂	amount of paint 2 produced

	Paint 1	Paint 2	Resources Available
Raw material 1	1	2	6
Raw material 2	2	1	8
Price/tonne (£1000)	2	3	

Constraints:

• Can't use more raw material than available:

Warwick Business School wbs.ac.ul

 x_1 amount of paint 1 produced

 x_2 amount of paint 2 produced

	Paint 1	Paint 2	Resources Available
Raw material 1	1	2	6
Raw material 2	2	1	8
Price/tonne (£1000)	2	3	

Constraints:

• Can't use more raw material than available:

Warwick Business School wbs.ac.uk

5

1.4. The National Coal Board has unlimited supplies of three grades of coal: A,B,C, which contain ash and phosphorus as impurities. A firm requires supplies containing not more than 3% ash and 0.03% phosphorus. The available coal satisfies the following specifications:

	% Phosphorus	%Ash	Profit(£/ton)
A	0.02	3	60
В	0.04	2	75
C	0.03	5	70

Formulate an LP model to determine how the Board should meet the firm's requirements and maximise its own profit.

Warwick Business School wbs.ac.uk

1.4. The National Coal Board has unlimited supplies of three grades of coal: A,B,C, which contain ash and phosphorus as impurities. A firm requires supplies containing not more than 3% ash and 0.03% phosphorus. The available coal satisfies the following specifications:

	% Phosphorus	%Ash	Profit(£/ton)
A	0.02	3	60
В	0.04	2	75
C	0.03	5	70

Formulate an LP model to determine how the Board should meet the firm's requirements and maximise its own profit.

Warwick Business School wbs.ac.uk

7

1.4. The National Coal Board has unlimited supplies of three grades of coal: A,B,C, which contain ash and phosphorus as impurities. A firm requires supplies containing not more than 3% ash and 0.03% phosphorus. The available coal satisfies the following specifications:

	% Phosphorus	%Ash	Profit(£/ton)
A	0.02	3	60
В	0.04	2	75
C	0.03	5	70

Formulate an LP model to determine how the Board should meet the firm's requirements and maximise its own profit.

wbs.ac.uk

1.4. The National Coal Board has unlimited supplies of three grades of coal: A,B,C, which contain ash and phosphorus as impurities. A firm requires supplies containing not more than 3% ash and 0.03% phosphorus. The available coal satisfies the following specifications:

	% Phosphorus	%Ash	Profit(£/tonne)
A	0.02	3	60
В	0.04	2	75
C	0.03	5	70

Formulate an LP model to determine how the Board should meet the firm's requirements and maximise its own profit.

Warwick Business School wbs.ac.uk

9

1.4. The National Coal Board has unlimited supplies of three grades of coal: A,B,C, which contain ash and phosphorus as impurities. A firm requires supplies containing not more than 3% ash and 0.03% phosphorus. The available coal satisfies the following specifications:

_	% Phosphorus	%Ash	Profit(£/tonne)
A	0.02	3	60
В	0.04	2	75
C	0.02	5	70

Formulate an LP model to determine how the Board should meet the firm's requirements and maximise its own profit.

Modelling	Variables	Amount of coal A, B, and C used to get the mixture
	x_1, x_2, x_3	x_1, x_2, x_3
$\max 60x_1 + 75x_2 + 70x_3$		
	Constraints	How much phosphorus is in x_1 tonnes of coal A?
£ Total		0.02/100
Profit		$x_1 \cdot 0.02 / 100$

How much phosphorus is in $x_1 + x_2 + x_3$ tonnes of the mixture coal A, B, and C?

$$x_1 \cdot 0.02/100 + x_2 \cdot 0.04/100 + x_3 \cdot 0.03/100$$

What is the percentage of phosphorus in $x_1+x_2+x_3$ tonnes of the mixture coal A, B, and C?

$$(x_1 \cdot 0.02/100 + x_2 \cdot 0.04/100 + x_3 \cdot 0.03/100)/(x_1 + x_2 + x_3)$$

Warwick Business School wbs.ac.uk

1.4. The National Coal Board has unlimited supplies of three grades of coal: A,B,C, which contain ash and phosphorus as impurities. A firm requires supplies containing not more than 3% ash and 0.03% phosphorus. The available coal satisfies the following specifications:

	% Phosphorus	%Ash	Profit(£/tonn
A	0.02	3	60
В	0.04	2	75
C	0.03	5	70

Formulate an LP model to determine how the Board should meet the firm's requirements and maximise its own profit.

$$x_1, x_2, x_3$$
 x_1, x_2, x_3

Constraints How much phosphorus is in x_1 tonnes of coal A?

$$x_1 \cdot 0.02 / 100$$

How much phosphorus is in $x_1+x_2+x_3$ tonnes of the mixture coal A, B, and C?

$$x_1 \cdot 0.02/100 + x_2 \cdot 0.04/100 + x_3 \cdot 0.03/100$$

What is the percentage of phosphorus in $x_1+x_2+x_3$ tonnes of the mixture coal A, B, and C?

$$((x_1 \cdot 0.02/100 + x_2 \cdot 0.04/100 + x_3 \cdot 0.03/100)/(x_1 + x_2 + x_3)) \cdot 100$$

Warwick Business School wbs.ac.uk

11

1.4. The National Coal Board has unlimited supplies of three grades of coal: A,B,C, which contain ash and phosphorus as impurities. A firm requires supplies containing not more than 3% ash and 0.03% phosphorus. The available coal satisfies the following specifications:

•	% Phosphorus	%Ash	Profit(£/tonne)
A	0.02	3	60
В	0.04	2	75
C	0.03	5	70

Formulate an LP model to determine how the Board should meet the firm's requirements and maximise its own profit.

Va	riab	les
x ₁ ,	x ₂ ,	\mathbf{x}_3

$$X_1, X_2, X_3$$

Constraints

How m

What is wrong with this constraint?

 $x_1 \cdot 0.02/1$

How much phosphorus is in $x_1 + x_2 + x_3 = x_1 + x_2 + x_3 = x_3 + x_4 + x_$

$$x_1 \cdot 0.02/100 + x_2 \cdot 0.04/100 + x_3 \cdot 0$$

What is the percentage of phosphorus in $x_1+x_2+x_3$ tonnes of the mixture wal A, B, and C?

$$((x_1 \cdot 0.02/100 + x_2 \cdot 0.04/100 + x_3 \cdot 0.03/100)/(x_1 + x_2 + x_3)) \cdot 100 \le 0.03$$

Warwick Business School wbs.ac.uk

Are you happy with the model below? Vote

Warwick Business School wbs.ac.uk

13

Are you happy with the model below? Vote

Model 2

 $\begin{array}{c} \text{max } 60x_1 + 75x_2 + 70x_3 \\ \text{s.t.} \\ 0.02x_1 + 0.04x_2 + 0.03x_3 \leq 0.03(x_1 + x_2 + x_3) \\ 3x_1 + 2x_2 + 5x_3 \leq 3(x_1 + x_2 + x_3) \\ x_i \geq 0 \end{array}$

Warwick Business School wbs.ac.uk

Final model

Correct Model

Warwick Business School wbs.ac.uk

15

Final model

Correct Model

$$\max_{\substack{\text{S.t.}\\ 0.02x_1+0.04x_2+0.03x_3 \leq 0.03(x_1+x_2+x_3)\\ 3x_1+2x_2+5x_3 \leq 3(x_1+x_2+x_3)\\ (x_1+x_2+x_3)=1\\ x_i \geq 0}$$

Warwick Business School wbs.ac.uk

Final model

Correct Model

Warwick Business School

17

Your new task: solve the model graphically

```
max 60x_1 + 75x_2 + 70x_3
s.t.
  0.02x_1 + 0.04x_2 + 0.03x_3 \le 0.03(x_1 + x_2 + x_3)
      3x_1 + 2x_2 + 5x_3 \le 3(x_1 + x_2 + x_3)
(x_1+x_2+x_3)=1
x_i \ge 0
```

Warwick Business School wbs.ac.uk

Cargo problem

1.5. A ship has three cargo holds: forward, aft and centre. The capacity limits are:

Forward	2000 tons	100,000 cu ft
Centre	3000 tons	135,000 cu ft
Aft	1500 tons	30,000 cu ft

The following cargoes are offered and the shipowners may accept all or any part of each commodity

Commodity	<u>Amount</u>	Vol per ton	Profit(£/ton)
A	6,000	60	6
В	4,000	50	8
C	2,000	25	5

Aft

Formulate an LP model to determine how the cargo should be distributed to maximise profits.

Warwick Business School

wbs.ac.uk

19

Cargo problem

$$\max_{s.t.} 8(x_{1A} + x_{2A} + x_{3A}) + 8(x_{1B} + x_{2B} + x_{3B}) + 5(x_{1C} + x_{2C} + x_{3C})$$
 s.t.
$$x_{1A} + x_{2A} + x_{3A} \leq 6000$$

$$x_{1B} + x_{2B} + x_{3B} \leq 4000$$

$$x_{1C} + x_{2C} + x_{3C} \leq 2000$$

$$x_{1A} + x_{1B} + x_{1C} \leq 2000$$

$$x_{2A} + x_{2B} + x_{2C} \leq 3000$$

$$x_{3A} + x_{3B} + x_{3C} \leq 1500$$

$$60x_{1A} + 50x_{1B} + 25x_{1C} \leq 100\ 000$$

$$60x_{2A} + 50x_{2B} + 25x_{2C} \leq 135\ 000$$

$$60x_{3A} + 50x_{3B} + 25x_{3C} \leq 30\ 000$$

$$x_{ij} \geq 0, \ i \in \{1, 2, 3\}, \ j \in \{A, B, C\}$$

Centre

Warwick Business School wbs.ac.uk

Forward

Cargo problem: Check data!!!

Warwick Business School wbs.ac.uk

21

Comments on basic solutions

Solving Systems of

Linear Equations

Example_3.8 Solve the system

$$\mathbf{x_1} + \mathbf{x_2} = 1$$

 $\mathbf{x_2} + \mathbf{x_3} = 3$
 $\mathbf{x_1} + 2\mathbf{x_2} + \mathbf{x_3} = 4$

For the system $x_1+x_2=1$ $x_2+x_3=3$ the solution $x_1=1$, $x_3=3$, $x_2=0$ is the **basic solution** with the set of **basic variables** $\{x_1,x_3\}$ and the set on **nonbasic** variables $\{x_2\}$.

Comments on basic solutions

$$\mathbf{x_1} + \mathbf{x_2} = 1$$

 $\mathbf{x_2} + \mathbf{x_3} = 3$
 $\mathbf{x_1} + 2\mathbf{x_2} + \mathbf{x_3} = 4$

For the system

$$x_1 = 1 - x_2$$

$$x_3 = 3 - x_2$$

the solution $x_1=1$, $x_3=3$, $x_2=0$ is the **basic solution** with the set of **basic variables** $\{x_1,x_3\}$ and the set on **nonbasic** variables $\{x_2\}$.

23

Basic Solutions

$$m \qquad A \qquad n \ge m$$

A basic solution to Ax=b is obtained by setting n-m variables (the nonbasic variables) equal to 0 and solving for the values of the remaining m variables (the basic variables). That assumes that setting n-m variables equal to 0 yields unique values for the remaining m variables.

Basic Solutions

A basic solution to Ax=b is obtained by setting n-m variables (the nonbasic variables) equal to 0 and solving for the values of the remaining m variables (the basic variables). That assumes that setting n-m variables equal to 0 yields unique values for the remaining m variables.

$$\mathbf{x_1} + \mathbf{x_2} = \mathbf{1}$$

$$x_2 + x_3 = 3$$

$$x_1 + 2x_2 + x_3 = 4$$

For the system

$$x_1 = 1 - x_2$$

$$x_3 = 3 - x_2$$

the solution $x_1=1$, $x_3=3$, $x_2=0$ is the **basic solution** with the set of **basic variables** $\{x_1,x_3\}$ and the set on **nonbasic** variables $\{x_2\}$.

25

Basic Solutions

 $m \qquad n \\ m \qquad A \qquad n \ge m$

A basic solution to Ax=b is obtained by setting n-m variables (the nonbasic variables) equal to 0 and solving for the values of the remaining m variables (the basic variables). That assumes that setting n-m variables equal to 0 yields unique values for the remaining m variables.

$$x_1 + x_2 = 1$$

 $x_2 + x_3 = 3$

For the system

$$x_2 = 1 - x_1$$

$$x_3 = 2 + x_1$$

the solution $x_2=1$, $x_3=2$, $x_1=0$ is the **basic solution** with the set of **basic variables** $\{x_2, x_3\}$ and the set on **nonbasic** variables $\{x_1\}$.

Basic Solutions

n n $n \ge m$

A basic solution to Ax=b is obtained by setting n-m variables (the nonbasic variables) equal to 0 and solving for the values of the remaining m variables (the basic variables). That assumes that setting n-m variables equal to 0 yields unique values for the remaining m variables.

$$x_1 + x_2 = 1$$

 $x_2 + x_3 = 3$

For the system

$$x_1 = -2 + x_3$$

$$x_2 = 3 - x_3$$

the solution $x_1=-2$, $x_2=3$, $x_3=0$ is the **basic solution** with the set of **basic variables** $\{x_1,x_2\}$ and the set on **nonbasic** variables $\{x_3\}$.

27

Basic Solutions

 $m \cap A \cap n \geq m$

A basic solution to $A\mathbf{x}=\mathbf{b}$ is obtained by setting n-m variables (the nonbasic variables) equal to 0 and solving for the values of the remaining m variables (the basic variables). That assumes that setting n-m variables equal to 0 yields unique values for the remaining m variables.

$$x_1 + x_2 = 1$$

 $x_2 + x_3 = 3$

For the system

$$x_1 = -2 + x_3$$

$$x_2 = 3 - x_3$$

the solution x_1 =-2, x_2 =3, x_3 =0 is the *basic solution* with the set of *basic variables* $\{x_1, x_2\}$ and the set on *nonbasic* variables $\{x_3\}$.

For the system

$$x_2 = 1 - x_1$$

$$x_3 = 2 + x_1$$

the solution $x_2=1$, $x_3=2$, $x_1=0$ is the **basic solution** with the set of **basic variables** $\{x_2,x_3\}$ and the set on **nonbasic** variables $\{x_1\}$.

For the system

$$x_1 = 1 - x_2$$

$$x_3 = 3 - x_2$$

the solution $x_1=1$, $x_3=3$, $x_2=0$ is the **basic solution** with the set of **basic variables** $\{x_1,x_3\}$ and the set on **nonbasic** variables $\{x_2\}$.