

Zadanie B: Robaczek

Limit czasowy: 5s, limit pamięciowy: 512MB.

Na krakowskich Plantach jest wielkie drzewo, na którym mieszka Robaczek. Upraszczając, możemy powiedzieć, że drzewo 1 (jak zwykle drzewa) ma n wierzchołków, a Robaczek jest tak długi, że zajmuje całą ścieżkę prostą 2 pomiędzy wierzchołkami a i b.

Robaczek chce przenieść się na inną ścieżkę – pomiędzy wierzchołkami c i d – ponieważ tam jest więcej słońca. Wiadomo, że ścieżka początkowa $(a \leftrightarrow b)$ i docelowa $(c \leftrightarrow d)$ nie mają żadnego wspólnego wierzchołka.

Żeby zmieniać swoje miejsce na drzewie, Robaczek może wykonywać pewne ruchy: przechodzić którymkolwiek swoim końcem do wolnego wierzchołka. Formalnie: jeśli Robaczek aktualnie zajmuje ścieżkę pomiędzy wierzchołkami x i y, to może w jednym kroku wybrać wierzchołek z, który jest sąsiadem x, i który nie jest na ścieżce $x \leftrightarrow y$. Następnie zwalnia (przestaje zajmować) y, a zamiast niego zajmuje z. Analogicznie, może też wybrać wierzchołek z' będący sąsiadem y, zwolnić x i zająć z'. Po całej operacji Robaczek dalej zajmuje pewną ścieżkę, a jego długość nie zmieniła się.

Robaczek bardzo chce dostać się do ścieżki pomiędzy c i d, ale jako że jest dosyć wyluzowany i bardzo leniwy, nie planuje na to popołudnie więcej niż $10 \cdot n$ ruchów. Czy pomożesz mu w tym zadaniu?

Wejście

Pierwsza linia wejścia zawiera liczbę zestawów danych z (1 $\leq z \leq$ 7000). Potem kolejno podawane są zestawy w następującej postaci:

Pierwsza linia zestawu zawiera liczbę całkowitą n ($4 \le n \le 100\,000$) – liczbę wierzchołków drzewa. Każda z kolejnych n-1 linii zawiera dwie liczby całkowite u,v ($1 \le u \ne v \le n$), oznaczające numery wierzchołków drzewa połączonych krawędzią.

Kolejna linia zestawu zawiera dwie liczby całkowite a i b $(1 \le a \ne b \le n)$ – końce ścieżki, na której aktualnie leży Robaczek.

Kolejna linia zestawu zawiera dwie liczby całkowite c i d $(1 \le c \ne d \le n)$ – końce ścieżki, na którą Robaczek chce się przenieść.

Liczba wierzchołków na ścieżce pomiędzy a i b jest dokładnie taka sama, jak liczba wierzchołków na ścieżce pomiędzy c i d. Możesz również założyć, że ścieżka pomiędzy a i b nie ma żadnego wspólnego wierzchołka ze ścieżką pomiędzy c i d.

Suma wartości n we wszystkich zestawach danych nie przekroczy 1 000 000.

Wyjście

Dla każdego zestawu danych, jeśli robaczek nie może dostać się do swojej mety w $10 \cdot n$ ruchach, wypisz -1. W przeciwnym razie wypisz możliwą trasę Robaczka. Opis takiej trasy powinien składać się z dwu linii, pierwszej zawierającej liczbę q $(1 \le q \le 10 \cdot n)$ ruchów, i drugiej, w której będzie q liczb całkowitych v_1, v_2, \ldots, v_q – opisy ruchów Robaczka. Każdy opis ruchu to jedna liczba – numer wierzchołka, do którego przechodzi Robaczek w danym ruchu. Możesz wypisać dowolny z poprawnych ciągów ruchów – zwróć uwagę, że nie musisz minimalizować liczby ruchów,

Zadanie B: Robaczek

¹ Drzewo to graf spójny, który nie zawiera cykli.

² Jak wiadomo, w każdym drzewie pomiędzy każdą parą wierzchołków jest dokładnie jedna ścieżka prosta.

Kraków 2019-10-27

a tylko zmieścić się w limicie $10 \cdot n$. Załóż również, że Robaczek jest symetryczny i kolejność jego końców nie ma znaczenia – może w każdym momencie pójść w obie strony, a na pola docelowe wejść dowolnym końcem.

Przykład

Dla danych wejściowych:	Możliwą poprawną odpowiedzią jest:
3	-1
6	7
1 2	15 5 2 1 6 7 3
1 3	3
1 4	2 1 3
4 5	
4 6	
2 3	
5 6	
15	
1 2	
1 6	
2 3	
2 4	
2 5	
6 7	
6 8	
5 9	
6 10	
9 11	
9 12	
9 13	
12 14	
14 15	
14 13	
3 6	
6	
1 2	
1 3	
2 4	
4 5	
5 6	
4 6	
3 2	

Zadanie B: Robaczek 2/2