Aspects of Higher Order Categorical Logic*

J. Lambek and P. J. Scott

0. Introduction

It has become clear for some time that categorists and logicians have been doing the same thing under different names. This situation is strikingly illustrated in higher order logic, where the connections are particularly illuminating. In this article we briefly survey portions of our forthcoming book [LS6], to which the reader is referred for more details.

Systems of higher order logic have been studied for a long time. We have in mind logical systems in which variables and quantifiers range over functions (as in the λ -calculus) or elements and subsets of given sets (as in type theory), not just over individuals (as in first order logic). Higher order concepts naturally occur in mathematics: algebraists quantify over ideals, topologists over open sets and analysts over functions. Yet, in spite of its expressive advantage, higher order logic never achieved the popularity of first order logic. Perhaps its proof theory and model theory were deemed to be too hard.

Thus, after the monumental work in type theory by Russell and Whitehead (Principia Mathematica, 1908), there are only sporadic important contributions to the literature. Gödel (1931) established his incompleteness theorem for type theory and related systems, Church (1940) combined λ -calculus with type theory, Henkin (1949) discussed models for type theory and, more recently, Abraham Robinson (1964) used type theory in his book "Nonstandard Analysis", a lead not continued by his followers. Let us also mention that type theories have recently become important in computer science.

Theories of functionality, namely λ -calculi, have fared somewhat better. After pioneering work by Schönfinkel, Curry, Church and Rosser in the 1920's and 30's, these systems had a small but devoted following. In the late 60's, an explosion

^{*}The authors belong to the "Groupe interuniversitaire en etudes categoriques" in Montreal. They acknowledge support from the Natural Sciences and Engineering Research Council of Canada and from the Quebec Department of Education. They wish to thank Denis Higgs and the referee for their careful reading of the manuscript.

of activity surrounding the models of Dana Scott (1971) and concomitant work in computer science revived interest in them.

Meanwhile, the categorical side saw rapid development. The ready acceptance of category theory as a working language in many areas of mathematics foreshadowed its introduction into logic and foundations. Nevertheless, it came as a surprise to many people when, in the 1960's, Lawvere (1969, 1970) and one of the present authors [L1] pointed out some remarkable connections between category theory and logic. Indeed, after the discovery of elementary toposes by Lawvere and Tierney (1970), the field of "categorical logic" underwent intense development. The reader is referred to the survey article by Kock and Reyes (1977) and the monograph by Makkai and Reyes (1977).

The situation in higher order logic, as far as it is treated in our book, is summarized as follows:

Logic	Algebra
untyped λ -calculus	C-monoids
typed λ -calculus	cartesian closed categories
type theory	toposes

Indeed, we shall see that each side, when suitably formulated, gives rise to a category. Moreover, the comparison between the two sides is mediated by functors which set up an equivalence or adjointness. In the meantime, Robert Seely, has found another such comparison:

Logic	Algebra
Martin-Löf type theory	locally cartesian closed categories

Undoubtedly, there are many other such situations. For example, it would be interesting to pinpoint the logical equivalent of cartesian closed categories with equalizers.

1. Cartesian closed categories and typed λ -calculi

Cartesian closed categories are becoming increasingly important in many branches of mathematics. Indeed, as we shall see, in logic they play a fundamental role.

A cartesian closed category is a category C with (canonical) finite products and exponentiation. This means that C has a terminal object 1 and objects $A \times B$ and B^A , for all A, B in C, together with natural isomorphisms:

(a)
$$\operatorname{Hom}(C, A) \times \operatorname{Hom}(C, B) \cong \operatorname{Hom}(C, A \times B),$$

(b)
$$\operatorname{Hom}(C \times A, B) \cong \operatorname{Hom}(C, B^A).$$

Cartesian closed categories abound in mathematics. For example, all functor categories $\mathbf{Sets}^{\mathcal{C}}$ (\mathcal{C} small) and all toposes (see below) are cartesian closed. So are the categories of Kelley spaces and Kuratowski limit spaces (see MacLane, 1971).

A useful alternative presentation considers both products and exponentials as adjoint functors, hence equationally definable (e.g., see MacLane, 1971).

Definition 1.1. A cartesian closed category has the following objects, arrows and equations:

Objects:

- (i) 1 is an object.
- (ii) If A and B are objects, so are $A \times B$ and B^A

Arrows:

- (i) $1_A: A \longrightarrow A, 0_A: A \longrightarrow 1, \pi_{A,B}: A \times B \longrightarrow A, \pi'_{A,B}: A \times B \longrightarrow B$, and $\varepsilon_{B,A}: B^A \times A \longrightarrow B$ are arrows.
- (ii) The following rules generate new arrows from old:

$$\frac{f:A\longrightarrow B\quad g:B\longrightarrow C}{qf:A\longrightarrow C},\ \frac{f:C\longrightarrow A\quad g:C\longrightarrow B}{\langle f,q\rangle:C\longrightarrow A\times B},\ \frac{f:C\times A\longrightarrow B}{f^*:C\longrightarrow B^A}$$

Equations:

- (1) $f1_A := f, 1_B f := f$, and (hg)f := g(hf), for all $f: A \longrightarrow B, g: B \longrightarrow C$, $h: C \longrightarrow D$;
- (2) $f := 0_A$, for all $f : A \longrightarrow 1$; $\pi_{A,B}\langle f,g \rangle := f$, $\pi'_{A,B}\langle f,g \rangle := g$, and $\langle \pi_{A,B}h, \pi'_{A,B}h \rangle := h$, for all $f : C \longrightarrow A$, $g : C \longrightarrow B$, and $h : C \longrightarrow A \land B$;
- (3) $\varepsilon_{B,A}\langle f^*\pi_{C,A}, \pi'_{C,A}\rangle := f$, and $(\varepsilon_{B,A}\langle g\,\pi_{C,A}, \pi'_{C,A}\rangle)^* := g$, for all $f: C \times A \longrightarrow B$, and $g: C \longrightarrow B^A$.

It is understood that := is a congruence relationon Hom-sets satisfying the above. There may be other objects, arrows and equations than follow from the above.

The reader may easily verify that the equations (1) to (3) contain not only the equations of a category with a terminal object, but yield also the natural isomorphisms (a) and (b). These equations may be viewed as presenting a multi-sorted partial algebra structure on the Hom-sets, with nullary, unary and binary operations satisfying appropriate identities. Alternatively, they may be looked upon as describing a "graphical algebra" in the spirit of Burroni (1981). To see this, the reader may first wish to replace the rule of arrow formation introducing f^* by another basic arrow $\eta_{C,A}: C \longrightarrow (C \times A)^A$.

Another view of cartesian closed categories is to consider them as *deductive* systems [L1]. Write the objects 1, $A \times B$, and B^A as \top , $A \wedge B$, and $A \Rightarrow B$ respectively. One may then think of an arrow $f: A \longrightarrow B$ as a *deduction* of B from A or as a *proof* of the *entailment* $A \vdash B$. Proofs may be writ ten in "tree form". For example:

$$\frac{A \wedge B \xrightarrow{\pi'} B \quad A \wedge B \xrightarrow{\pi} A}{A \wedge B \xrightarrow{\langle \pi', \pi \rangle} B \wedge A}$$

proves the commutative law for conjunction, while

$$\frac{}{(A \Rightarrow B) \land A \xrightarrow{\varepsilon_{B,A}} B}$$

may be regarded as an "axiom" (at least in a freely generated deductive system). Logicians might say that we have presented a system of natural deduction for the positive intuitionistic propositional calculus, but with an additional twist: the equations of a cartesian closed category impose an *equality relation* between proofs (or proof trees). For example:

This notion of "equivalence of proofs" is essentially the same as that introduced by logicians (Prawitz, 1971), as pointed out by Mann (1975).

There is still another connection of cartesian closed categories to logic. This is via the language of $typed\ \lambda$ -calculus. Although older than category theory, λ -calculus may also be regarded as an equational theory of functions (or functional processes) in which composition is mirrored by substitution. As we shall see,

some problems in cartesian closed categories are efficiently handled using typed λ -calculus.

Definition 1.2. A typed λ -calculus is a formal theory as follows. It consists of types, terms and equations (between terms of the same type).

- (a) **Types**:
- (a1) 1 is a type.
- (a2) If A and B are types so are $A \times B$ and B^A
- (b) **Terms**: (We write " $t \in A$ " to say that t is a term of type A.)
- (b1) There are countably many variables of each type, say $x_i^A \in A$ if $i \in \mathbb{N}$.
- (b2) $\star \in 1$.
- (b3) If $a \in A$, $b \in B$ and $c \in A \times B$, then $\langle a, b \rangle \in A \times B$, $\pi_{A,B}(c) \in A$ and $\pi'_{A,B}(c) \in B$.
- (b4) If $f \in B^A$ and $a \in A$ then $\varepsilon_{B,A}(f,a) \in B$.
- (b5) If x is a variable of type A and $\phi(x) \in B$ then $\lambda_{x \in A} \varphi(x) \in B^A$.

We often abbreviate $\varepsilon_{B,A}(f,a)$ as $f \wr a$ when the type subscripts are clear from the context.¹

- (c) **Equations**: All equations have the form $a \equiv a'$, where a and a' have the same type and X is a set of variables containing all variables occurring freely in a and a'.
- (c1) \equiv is reflexive, symmetric and transitive. Moreover, if $X \subseteq Y$ we have

$$\frac{a \equiv b}{a \equiv b}$$

(that is, from $a \equiv b$ we may infer $a \equiv b$).

(c2) We have the substitution rules:

$$\frac{c \ \overline{\overline{\chi}} \ c'}{\varphi(c) \ \overline{\overline{\chi}} \ \varphi(c)}, \quad \frac{a \ \overline{\overline{\chi}} \ a', \quad b \ \overline{\overline{\chi}} \ b'}{\psi(a,b), \overline{\overline{\chi}} \ \psi(a',b')}$$

¹Editor's note: Lambek uses this squiggle [≀] to denote a binary operation for function application. It appears here and in his later book about this same subject. I made a best guess about how to translate this into I⁴T_FX.

if $\varphi(z) \equiv \pi(z)$ or $\pi'(z)$ and $\psi(x,y) \equiv \langle x,y \rangle$ or $x^{\wr}y$ and also

$$\frac{\varphi(x) \underset{X \cup \{x\}}{=} \psi(x)}{\lambda_{x \in A} \varphi(x) \underset{X}{=} \lambda_{x \in A} \psi(x)}$$

if $x \notin X$.

(c3) The following identities hold:

$$a \equiv \star$$
, for all $a \in 1$,
$$\pi(\langle a, b \rangle) \equiv a$$
, for all $a \in A, b \in B$,
$$\pi'(\langle a, b \rangle) \equiv b$$
, for all $a \in A, b \in B$,
$$\langle \pi(c), \pi'(c) \rangle \equiv c$$
, for all $c \in A \times B$,
$$\lambda_{x \in A} \varphi(x) = \pi \langle \alpha(a), \beta(a) \rangle = \pi \langle \alpha(a), \beta(a), \beta(a) \rangle = \pi \langle \alpha(a), \beta(a), \beta(a),$$

There may be types, terms and equations other than those following from (a), (b) and (c) above. Some comments are in order. The intuitive meaning of the term forming operations should be clear; for example, $\varepsilon_{B,A}$ means evaluation, $\langle a,b\rangle$ is pairing, and $\lambda_{x\in A}\varphi(x)$ denotes the function $x\longmapsto \varphi(x)$. λ acts like a quantifier, so the variable x in $\lambda_{x\in A}\varphi(x)$ is bound, as in $\forall_x\varphi(x)$ or $\int_a^b f(x)dx$. We have the usual conventions for free and bound variables and when a it is permitted to substitute a term for a variable.

The reader may wonder why we write the subscript X on $\frac{1}{X}$. The reason is that there may be "empty" types, that is, there may not exist any closed terms of certain types. This situation arises naturally when a λ -calculus is the internal language of certain categories (see Section 2).

Proposition 1.3. If $\varphi(x) \equiv \psi(x)$ with x of type A and if a is a term of type A such that X contains all free variables occurring in a (but not x), then $\varphi(a) \equiv \psi(x)$. In particular if f and g do not contain x, $f \equiv_{X \cup \{x\}} g$ provided there is at least one term of type A with free variables in X.

²In their 1986 book on this subject Lambek and Scott write this equation like this: " $\lambda_{x \in A} \varphi(x) \equiv \lambda_{x' \in A} \varphi(x')$ if x' is substitutable for x in $\varphi(x)$ and x' is not free in $\varphi(x)$ ". And I think that's what Lambek means here too.

It follows from this result that, if there are closed terms of each type in a typed λ -calculus, then the subscript X on \equiv is redundant.

The reader may feel a bit uneasy about the lack of examples so far. Let us rectify this at once. We recall that a graph consists of two classes, and two mappings between them:

Graph theorists would call the arrows "oriented edges" and the objects "vertices" or "nodes". We write $f:A\longrightarrow B$ for "source(f)=A" and "target(f)=B".

Example 1.4. Given a graph \mathcal{G} the λ -calculus $\Lambda(\mathcal{G})$ generated by \mathcal{G} is defined as follows. Its types are generated inductively by the type forming operations $(-) \times (-)$ and $(-)^{(-)}$ from the basic type 1 and the vertices of \mathcal{G} (which now count as basic types). Its terms are generated inductively from the basic terms x_i^A and \star by the term forming operations $\langle -, - \rangle$, $\pi(-)$, $\pi'(-)$, $\varepsilon(-, -)$, and $\lambda_{x \in A}(-)$, together with the new term forming operations:

$$\frac{a \in A}{fa \in B}$$

for each arrow $f: A \longrightarrow B$ of \mathcal{G} . Finally, its equations are precisely those which follow from (c1) to (c3) and no others.

In this example there are plenty of "empty" types; for instance, all the nodes of \mathcal{G} .

In the above example, as well as in the next section, we allow our languages to be proper classes in the sense of Gödel-Bernays. If necessary, we work in a set theory with universes, in which "classes" are replaced by "sets in a sufficiently large universe".

2. The equivalence between Cart and λ -calc

In this section we shall establish an equivalence between cartesian closed categories and typed λ -calculi. In order to state this properly, we define two categories:

Cart is the category whose objects are cartesian closed categories and whose arrows are those functors that preserve the structure on the nose.

 λ -calc is the category whose objects are λ -calculi and whose arrows are translations. A translation $\Phi: \mathcal{L} \longrightarrow \mathcal{L}'$ does the following:

- (1) Φ sends types of \mathcal{L} to types of \mathcal{L}' .
- (2) Φ sends terms of \mathcal{L} , say of type A, to terms of \mathcal{L}' of type $\Phi(A)$, in particular, variables to variables.
- (3) Φ preserves everything on the nose, for example: $\Phi(1) = 1$, $\Phi(A \times B) = \Phi(A) \times \Phi(B)$, $\Phi(\star) = \star$, $\Phi(\langle a, b \rangle) = \langle \Phi(a), \Phi(b) \rangle$, and so on.
- (4) Φ preserves equality: if $a \equiv b$ then $\Phi(a) \equiv_{\Phi(X)} \Phi(b)$

Our next aim is to obtain a pair of functors

Cart
$$\stackrel{L}{\longleftarrow} \lambda$$
-calc

In particular, we wish to show that each cartesian closed category \mathcal{C} has an "internal language" $L(\mathcal{C})$ which is a λ -calculus. But to describe this language, we first need to understand "variables".

One can adjoin "variables" or "indeterminates" to cartesian closed categories much as one does to any universal algebra. Given a cartesian closed category \mathcal{C} with objects D and A, we adjoin an indeterminate arrow $x:D\longrightarrow A$ to form the polynomial category $\mathcal{C}[x]$ as follows:

Objects of $\mathcal{C}[x]$ are the same as objects of \mathcal{C} . Arrows of $\mathcal{C}[x]$ are generated from those in \mathcal{C} and the new basic arrow $x:D\longrightarrow A$ using the arrow forming operations: composition, $\langle -,-\rangle$, $(-)^*$. Equality := in $\mathcal{C}[x]$ is the smallest congruence relation on hom-sets of $\mathcal{C}[x]$ which respects equality := \mathcal{C} and assures that $\mathcal{C}[x]$ is a cartesian closed category.

The category $\mathcal{C}[x]$ satisfies the appropriate universal property in **Cart**. For the committed categorist, $\mathcal{C}[x]$ may also be constructed directly as the Kleisli category of a certain co-monad (co-triple) on \mathcal{C} . For our purposes, the most interesting result concerns the normal forms of polynomials in $\mathcal{C}[x]$.

Proposition 2.1. (functional completeness of cartesian closed categories). For every polynomial $\varphi(x): B \longrightarrow C$ in $\mathcal{C}[x]$ in an indeterminate arrow $x: D \longrightarrow A$ there is a unique arrow $f: A^D \times B \longrightarrow C$ in \mathcal{C} such that

$$f\langle (x\pi'_{B,D})^*, 1_B \rangle : \overline{x} \cdot \varphi(x)^3$$

³Editor's note: This notation $\varphi(x)$ is endlessly confusing to me. You want to think that φ maps $x \in B$ to something in C but that's not that is going on. What's going on is that the object $\varphi(x)$ labeled by x is something that maps things in B to things in C. So really φ maps an arrow from D to A to an arrow from B to C? That's the only way the notation makes sense to me.

An interesting alternative interpretation of this result is to think of $\mathcal{C}[x]$ as a deductive system with the indeterminat $x:D\longrightarrow A$ considered as a new assumption. Then functional completeness is simply a form of the deduction theorem in logic, with something extra added at the end: to every proof $\varphi(x):B\longrightarrow C$ under the assumption $x:D\longrightarrow A$ there is a unique proof $f:(D\Rightarrow A)\land B\longrightarrow C$ such that the proof

$$\begin{array}{c|c} \underline{B \wedge D \longrightarrow D & D \stackrel{x}{\longrightarrow} A} \\ \hline B \wedge D \longrightarrow A \\ \hline \underline{B \longrightarrow (D \Rightarrow A) & B \longrightarrow B} \\ \hline B \longrightarrow (D \Rightarrow A) \wedge B & (D \Rightarrow A) \wedge B \stackrel{f}{\longrightarrow} C \\ \hline B \longrightarrow C \end{array}$$

equals $B \xrightarrow{\varphi(x)} C$.

Corollary 2.2. If we adjoin an indeterminate arrow $x: 1 \longrightarrow A$ to a cartesian closed category \mathcal{C} and if $\varphi(x): 1 \longrightarrow B$ is a polynomial in $\mathcal{C}[x]$ there exists a unique arrow $f: A \longrightarrow B$ in \mathcal{C} such that $fx := \varphi(x)$. Equivalently, under the same hypothesis, there is a unique arrow $g: 1 \longrightarrow B^A$ such that $g : x := \varphi(x)$.

We remark that one may also adjoin several indeterminates simultaneously to a cartesian closed category, for example, one may adjoin $x: 1 \longrightarrow A$ and $y: 1 \longrightarrow B$ to obtain a cartesian closed category $\mathcal{C}[x,y]$. It is not difficult to see that $\mathcal{C}[x,y] \cong \mathcal{C}[x][y]$ and also $\mathcal{C}[x,y] \cong \mathcal{C}[z]$ where $z: 1 \longrightarrow A \times B$.

We now introduce another example of a typed λ -calculus.

Example 2.3. The internal language $L(\mathcal{C})$ of a cartesian closed category \mathcal{C} is defined as follows. Its types are the objects of \mathcal{C} . Variables of type A are indeterminate arrows $1 \longrightarrow A$ over \mathcal{C} and terms of type B with free variables x_1, \ldots, x_n are polynomials $1 \longrightarrow B$ in $\mathcal{C}[x_1, \ldots, x_n]$. It is not difficult to show that $L(\mathcal{C})$ is a typed λ -calculus. In particular, for any term $\varphi(x)$ of type B, that is, an arrow $\varphi(x): 1 \longrightarrow B$ in $\mathcal{C}[x]$, $\lambda_{x \in A} \varphi(x) \in B^A$ is the unique arrow $g: 1 \longrightarrow B^A$ such that $g^{\dagger}x : \overline{x} \cdot \varphi(x)$ according to Corollary 2.2.

The object function L described in Example 2.3 may easily be extended to a functor $L: \mathbf{Cart} \longrightarrow \lambda\text{-}\mathbf{calc}$. There is also a functor $C: \lambda\text{-}\mathbf{calc} \longrightarrow \mathbf{Cart}$ in the opposite direction. Its action on objects will be described in the following example of a cartesian closed category.

Example 2.4. The cartesian closed category $\mathcal{C}(\mathcal{L})$ generated by a λ -calculus \mathcal{L} is defined as follows. Its objects are types of \mathcal{L} . The arrows $A \longrightarrow B$ in $C(\mathcal{L})$ are pairs $(x, \varphi(x))$ where where x is a variable of type A and $\varphi(x)$ a term of type B

with no free variables but x (Think of this as the function $x \mapsto \varphi(X)$. We agree to identify $(x, \varphi(x))$ with $(x', \psi(x'))$ if $\varphi(x) \equiv \psi(x)$ in \mathcal{L} . The identity arrow $A \longrightarrow A$ is of course (x, x), and composition of arrows is given by substitution of polynomials. It is easily seen that $C(\mathcal{L})$ is a cartesian closed category. In particular, the rule

$$\frac{C \times A \longrightarrow B}{C \longrightarrow B^A}$$

assigns to the upper arrow $(y, \psi(y))$ of type $C \times A$, and the lower arrow $(z, \lambda_{x \in A} \psi(z, x))$, z of type C.

Theorem 2.5. The functors L and C yield an equivalence of categories between Cart and λ -calc, that is, $LC \cong id$ and $CL \cong id$.

The proof of this theorem depends on the useful observation that $C(\mathcal{L})[x] \cong C(\mathcal{L}(x))$, where $\mathcal{L}(x)$ is the λ -calculus obtained from \mathcal{L} by adjoining a "parameter" x of type A. In other words, closed terms of $\mathcal{L}(x)$ are terms of \mathcal{L} with at most the free variable x.

The equivalence between **Cart** and λ -calc may be put to good use. For example, one easily constructs a functor Λ from the category $\mathbf{Grph} \equiv \mathbf{Sets}^{:\rightrightarrows}$ of graphs to λ -calc, whose values on objects \mathcal{G} of \mathbf{Grph} is given in Example 1.4, and Λ is left adjoint to the forgetful functor λ -calc \longrightarrow \mathbf{Grph} . Hence $C\Lambda$ is left adjoint to the forgetful functor $\mathbf{Cart} \longrightarrow \mathbf{Grph}$ and $C\Lambda(\mathcal{G})$ is the *free* cartesian closed category generated by the graph \mathcal{G} .

Additional equational data may easily be added to a cartesian closed category. For example, one may introduce finite co-products. More interesting to us is a weak natural numbers object, namely a diagram $1 \xrightarrow{0} N \xrightarrow{S} N$ such that for every diagram $1 \xrightarrow{a} A \xrightarrow{f} A$ there is an arrow $g \equiv J(a, f) : N \longrightarrow A$ such that the following diagram commutes:

Cartesian closed categories with a weak natural numbers object were introduced by M.F. Thibault (1977, 1982) under the name "prerecursive categories". If one also insists on the uniqueness of g, one obtains a natural numbers object in the sense of Lawvere; but it is not obvious that the uniqueness of g can be expressed equationally.

Linguistically, a weak natural numbers object amounts to introducing into typed λ -calculus the following data: a type N, a term $0 \in N$ and two term

forming operations (successor and iterator):

$$\frac{n \in N}{Sn \in N} \qquad \frac{a \in N \qquad h \in A^A \qquad n \in N}{I(a, h, n) \in A}$$

satisfying the "recursion' equations:

$$I(a, h, 0) \equiv a, \quad I(a, h, Sn) = h {}^{\wr} I(a, h, n).$$

The equivalence in Theorem 2.5 extends to one between \mathbf{Cart}_N and λ - \mathbf{calc}_N . where the subscript N refers to a weak natural numbers object. Moreover, the above mentioned functor Λ also extends to a functor $\mathbf{Grph} \longrightarrow \lambda$ - \mathbf{calc}_N . Applying this to the empty graph \emptyset we obtain an initial object $\Lambda(\emptyset)$ in λ - \mathbf{calc}_N , the pure typed λ -calculus with a weak natural numbers object. Hence $C\Lambda(\emptyset)$ is an initial object in \mathbf{Cart}_N .

A question of interest to categorists is that of coherence: when do certain diagrams commute? In particular, one wants to decide when two arrows $A \rightrightarrows B$ in $C\Lambda(\emptyset)$ are equal. This is equivalent to the decision problem for equality in $\Lambda(\emptyset)$, which has a positive solution. This solution depends on a Church-Rosser theorem, dear to combinatory logicians, and a normalizability theorem following Tait (1967). In the presence of surjective pairing such a theorem was first obtained by de Vrijer (1982) using methods of Troelstra (1970). A coherence theorem for cartesian closed categories has also been obtained by Szabo (1974, 1978).

As a final historical remark, let us point out that the pure λ -calculus $\Lambda(\emptyset)$ corresponds to Gödel's primitive recursive functionals of finite type (Gödel, 1958; Tait, 1967; Troelstra, 1970). Gödel used such a system to give an elementary proof of the consistency of arithmetic, his so-called *Dialectica interpretation*. In a sense, the present paper may be considered as a categorical examination of principles implicit in Gödel's Dialectica interpretation (see also [S]).

3. Untyped λ -calculus and C-monoids

Suppose we have a cartesian closed category with only two non-isomorphic objects 1 and U, that is to say, every object is isomorphic to 1 or U, and that

$$U^U \cong U \cong U \times U$$

so functions, individuals and pairs are all on the same level. This allows, for example, functions to apply to themselves as arguments.

Such a category is then completely determined by the monoid $\mathcal{M} \equiv \operatorname{Hom}(U,U)$. The equations specifying the cartesian closed structure when specialized to elements of \mathcal{M} reduce drastically: ignoring the terminal object, we simply erase all subscripts on the equations of a cartesian closed category.

Definition 3.1. A *C-monoid* \mathcal{M} is a monoid with extra structure $(\pi, \pi', \varepsilon, (-)^*, \langle -, - \rangle)$ where π, π' , and ε are elements of \mathcal{M} (i.e. nullary operations), $(-)^*$ a unary and $\langle -, - \rangle$ is a binary operation satisfying the following identities:

C1.
$$\pi \langle a, b \rangle = a$$

C2.
$$\pi'\langle a,b\rangle=b$$

C3.
$$\langle \pi c, \pi' c \rangle = c$$

C4.
$$\varepsilon \langle h^* \pi, \pi' \rangle = h$$

C5.
$$(\varepsilon \langle k\pi, \pi' \rangle)^* = k$$

C-monoids are the objects of a category, whose arrows are monoid homo-morphisms preserving the additional structure. We may apply the usual techniques of universal algebra to the variety of C-monoids. For example, the *polynomial* C-monoid $\mathcal{M}[x]$ has as elements polynomials, that is, words in x modulo the smallest congruence relation satisfying Cl to C5. Evidently, $\mathcal{M}[x]$ has the appropriate universal property.

 \mathcal{C} -monoids, like cartesian closed categories, satisfy a version of functional completeness.

Theorem 3.2. If $\varphi(x)$ is a polynomial in the indeterminate x over a \mathcal{C} -monoid \mathcal{M} , there exists a unique constant $f \in \mathcal{M}$ such that

$$f\langle (x\pi')^*, 1\rangle = \varphi(x)$$

in $\mathcal{M}[x]$.

We may carry over various definitions from cartesian closed categories to C-monoids. For example, we write

$$g \, a \equiv \varepsilon \langle g(a\pi')^*, 1 \rangle,$$

$$\lambda_x \varphi(x) \equiv f^*,$$

where f is the constant from Theorem 3.2.⁴ It follows that

$$\lambda_x \varphi(x) \, {}^{\wr} a = \varphi(a).$$

An amusing feature of the possibility of self-application is the following fixed point theorem for C-monoids, which is also behind Russell's paradox.

 $^{^4\}mathrm{In}$ the paper this is mis-labeled as 4.2

Proposition 3.3. For every polynomial $\varphi(x)$ in $\mathcal{M}[x]$ there exists an element $a \in \mathcal{M}$ such that $\varphi(a) = a$.

Proof. Put
$$b = \lambda_x \varphi(x^{\wr} x)$$
 and let $a \equiv b^{\wr} b$.

To make the connection between C-monoids and cartesian closed categories precise, we recall the following.

Definition 3.4. The Karoubi envelope (or idempotent splitting envelope) K(A) of a category A is a category whose objects are the idempotent arrows of A and whose arrows $f \longrightarrow g$, where $f^2 = f : A \longrightarrow A$ and $g^2 = g : B \longrightarrow B$, are triplets (f, φ, g) such that $g\varphi f = \varphi$.

The following is due to Dana Scott (1980).

Theorem 3.5. Let \mathcal{M} be a C-monoid.

- (i) $K(\mathcal{M})$ is a cartesian closed category with terminal object $T \equiv (\pi')^*$.
- (ii) If \mathcal{A} is any cartesian closed category with an object U such that $U^U \cong U \cong U \times U$, then $\operatorname{End}_{\mathcal{A}}(U)$ is a \mathcal{C} -monoid. In particular if $\mathcal{A} = K(\mathcal{M})$ and U is the object of \mathcal{M} regarded as a one-object category, then $\operatorname{End}_{\mathcal{A}} \cong \mathcal{M}$.

We remark that, if $K_0(\mathcal{M})$ is the full subcategory of $K(\mathcal{M})$ consisting of all objects isomorphic to T or U, then $K_0(\mathcal{M})$ is a cartesian closed category with (at most) two non-isomorphic objects.

Examples of C-monoids or, equivalently, of cartesian closed categories with an object U such that $U^U \cong U \cong U \times U$ have been constructed by Dana Scott (1972), using the category of continuous lattices, to mention only one such example.

 \mathcal{C} -monoids are also closely related to an extended version of the usual untyped λ -calculus.

Definition 3.6. An (untyped) λ -calculus is a formal language consisting of terms and equations as follows. Among the terms there are countably many variables. Moreover, if a, b and c are terms, then so are $\pi(c)$, $\pi'(c)$, (a,b), and $b^{\dagger}a$. Finally, if $\varphi(x)$ is a term, possibly with a free occurrence of the variable x, then $\lambda_x \varphi(x)$ is also a term (in which all occurrences of x are bound). Equality is an equivalence relation between terms which satisfies the usual rules allowing substitution of equals for equals, including the rule

$$\frac{\varphi(x) = \psi(x)}{\lambda_x \varphi(x) = \lambda_x \psi(x)},$$

which furthermore satisfies the substitution rule

$$\frac{\varphi(x) = \psi(x)}{\varphi(a) = \psi(a)},$$

where it is assumed that a is substitutable for x, and which finally satisfies the following equations:

L1.
$$\lambda_x \varphi(x) \, {}^{\wr} x = \varphi(x)$$
.

L2. $\lambda_x(f^{\wr}x) = f$, if x is not free in f.

L3.
$$\pi((a,b)) = a$$
.

L4.
$$\pi'((a,b)) = b$$
.

L5.
$$(\pi(c), \pi'(c)) = c$$
.

The usual untyped λ -calculus omits the term forming operations $\pi(-)$, $\pi'(-)$, and (-,-), together with the equations L3, L4 and L5. Unfortunately, the presence of L5 ("surjective pairing") adds an unexpected complication: the Church-Rosser theorem then fails (Barendregt, 1981, Exercise 15.4.4).

The (untyped) λ -calculi are the objects of a category whose arrows are translations. A *translation* is a mapping from terms to terms which sends variables to variables and preserves the term forming operations.

Theorem 3.7. The category of C-monoids is isomorphic to the category of (untyped) λ -calculi.

Proof. (Sketch). Starting with a C-monoid \mathcal{M} , we form the λ -calculus $L(\mathcal{M})$ whose terms in the variables $x_1, ..., x_n$ are elements of $\mathcal{M}[x_1, ..., x_n]$ with term forming operations defined as follows:

$$\pi(c) \equiv \pi^{\wr} c,$$

$$\pi'(c) \equiv \pi'^{\wr} c,$$

$$(a,b) \equiv \langle \lambda_x a, \lambda_x b \rangle^{\wr} 1,$$

$$f^{\wr} a \equiv \varepsilon \langle f(a\pi')^*, 1 \rangle,$$

$$\lambda_x \varphi(x) \equiv f^* \text{ by functional completeness.}^5$$

 $^{^5{\}rm This}$ is a guess based on the discussion after Theorem 3.2

Conversely, starting with a λ -calculus \mathcal{L} , we form the \mathcal{C} -monoid $M(\mathcal{L})$ whose elements are the closed terms of \mathcal{L} with operations defined as follows:

$$1 \equiv \lambda_x x,$$

$$gf \equiv \lambda_x (g^{\wr}(f^{\wr}x)),$$

$$\pi \equiv \lambda_x \pi(x),$$

$$\pi' \equiv \lambda_x \pi'(x),$$

$$\langle f, g \rangle \equiv \lambda_x (f^{\wr}x, g^{\wr}x),$$

$$\varepsilon \equiv \lambda_z (\pi(z)^{\wr} \pi'(z)),$$

$$h^* \equiv \lambda_x \lambda_y (h^{\wr}(x, y)).$$

It is easily checked that

$$ML(\mathcal{M}) = \mathcal{M}, \ LM(\mathcal{L}) = \mathcal{L}.$$

It can also be shown that M and L extend to functors inverse to one another. \square

4. Toposes and intuitionistic type theory

One of the most important concepts in category theory is that of a topos. For our purposes, it will be convenient to insist that a topos contains a natural numbers object in the sense of Lawvere.

Definition 4.1. A *topos* is a cartesian closed category with a subobject classifier and a natural numbers object.

A subobject classifier is an object Ω together with a natural isomorphism sub $\cong \operatorname{Hom}(-,\Omega)$ where sub is the contravariant functor which assigns to each object A the set of its subobjects. There are several ways of making this more precise; we prefer the following: there is given an arrow $\top: 1 \longrightarrow \Omega$ such that

- (i) For every arrow $h: A \longrightarrow \Omega$ an equalizer of h and $T_{0_A}: A \longrightarrow 1 \longrightarrow \Omega$ exists, denoted by $\ker h : \operatorname{Ker} h \longrightarrow A$ (the *kernel* of h),⁶
- (ii) For every monomorphism $m: B \longrightarrow A$ there is a unique characteristic morphism char $m: A \longrightarrow \Omega$ such that

$$\operatorname{char}(\ker h) := h, \quad \ker(\operatorname{char} m) \cong m.$$

 $^{^6}$ This definition is very mysterious. First the arrow mentioned is not unique, so it should be a kernel, not the kernel. Second, we never see a definition of what Ker h is, although one guesses that it's the collection of things that h maps to some initial object in the category In their book Lambek and Scott use such a definition in a later proof related to a specific topos. But it's never made more clear in this definition.

Examples of toposes are the category **Sets** (with $\Omega \equiv \{\bot, \top\}$), functor categories **Sets**^{\mathcal{C}} (including \mathcal{M} -sets when \mathcal{C} is a monoid \mathcal{M} , the category of sheaves on a topological space and, more generally, any Grothendieck topos (Johnstone, 1977).

One simplification in Definition 4.1, first observed by Mikkelsen, is of importance to us. Instead of requiring arbitrary exponents B^A one need only require $PA \cong \Omega^A$ and its associated structure. More precisely, we postulate a power—structure (P, ε, \star) : for each object A there is an object PA, an arrow $\varepsilon_A : PA \times A \longrightarrow \Omega$ and an arrow forming operation

$$\frac{h:B\times A\longrightarrow\Omega}{h^*:B\longrightarrow PA}$$

such that (subscripts being omitted)

$$\varepsilon \langle h^* \pi, \pi' \rangle := h, (\varepsilon \langle k \pi, \pi' \rangle)^* := k$$

for all $h: B \times A \longrightarrow \Omega$ and $k: B \longrightarrow PA$.

While in the category **Sets** the subsets of a given set form a Boolean algebra, in an arbitrary topos the subobjects of a given object A form a Heyting algebra; hence so does the set $\text{Hom}(A,\Omega)$. This permits an interpretation of intuitionistic propositional logic in any topos, which can be extended to higher order intuitionistic logic, which may be regarded as a variant of set theory.

Definition 4.2. An *intuitionistic type theory* is a formal theory consisting of types, terms and an entailment relation as follows.

- (a) **Types**. 1, N and 0 are types and, if A and B are types, so are $A \times B$ and PA.
- (b) **Terms**. There are countably many variables of each type; other basic terms and term forming operations are specified by the following chart, in which terms are listed under their types:

Here n is a term of type N, a and a' are terms of type A, b is a term of type B, α is a term of type PA and $\varphi(x)$ is a term of type Ω possibly containing a free variable x of type A.

Terms of type Ω are usually called *formulas*. The usual logical symbols⁷ are introduced by definitions:

The symbols \perp , \wedge and \exists may be defined in terms of the above (Prawitz, 1965); also

$$\neg p \equiv p \Rightarrow \bot$$
.

(b) **Entailment**. We introduce an entailment relation $p_1, \ldots, p_n \vdash_X q$ between formulas whose free variables are all contained in $X = \{x_1, \ldots, x_n\}$. This must satisfy the obvious structural rules, sufficiently many logical rules to yield the usual intuitionistic predicate calculus, together with comprehension, extensionality, products and Peano's axioms (see [LS1,LS2]).

The reason for the subscript X on \vdash_X , as in typed λ -calculus, is the possibility of "empty" types. For example, we may infer:

$$\frac{\forall_{x \in A} \varphi(x) \vdash_X \varphi(x) \qquad \varphi(x) \vdash_X \exists_{x \in A} \varphi(x)}{\forall_{x \in A} \varphi(x) \vdash_X \exists_{x \in A} \varphi(x)}$$

The subscript in the conclusion may only be erased if there is a closed term of type A. Otherwise we would be able to infer from "all unicorns are horned" that "some unicorns are horned".

There may be types, terms and entailments other than those following from (a), (b) and (c) above.

We shall discuss two examples of type theories in this section.

Example 4.3. Pure type theory is the type theory in which there are no types, terms or entailments other than those that follow inductively from Definition 4.2. Its philosophical interest derives from the claim that it represents much of the reasoning acceptable to a moderate intuitionist or constructivist.

Example 4.4. The internal language $L(\mathcal{T})$ of a topos \mathcal{T} is defined as follows. Its types are the objects of \mathcal{T} ; in particular the type Ω is the object Ω , etc. Terms of type A with free variables x_1, \ldots, x_n are arrows $1 \longrightarrow A$ in $\mathcal{T}[x_1, \ldots, x_n]$, the

⁷Here they mean \top , \wedge , \Rightarrow and \forall . This is clarified in the book so I brought it over.

cartesian closed category obtained by adjoining indeterminates to \mathcal{T} (warning: $\mathcal{T}[x]$ is not in general a topos, just as F[x] is not in general a field, even if F is). In particular, we have the following dictionary:

variables of type
$$A \equiv \text{indeterminates } 1 \longrightarrow A$$

$$\star \equiv 1 \longrightarrow 1$$

$$0 \equiv 1 \xrightarrow{0} N$$

$$S_n \equiv 1 \xrightarrow{n} N \xrightarrow{S} N$$

$$\langle a, b \rangle \equiv 1 \xrightarrow{\langle a, b \rangle} A \times B$$

$$a = a' \equiv 1 \xrightarrow{\langle a, a' \rangle} A \times A \xrightarrow{\delta_A} \Omega$$
where $\delta_A = \text{char}\langle 1_A, 1_A \rangle$

$$a \in \alpha \equiv 1 \xrightarrow{\langle \alpha, a \rangle} PA \times A \xrightarrow{\varepsilon_A} \Omega$$

$$\{x \in A \mid \varphi(x)\} \equiv \lambda_{x \in A} \varphi(x)$$

which, by functional completeness of cartesian closed categories, is the unique arrow $f: 1 \longrightarrow PA$ in $\mathcal{T}[x]$ such that $x \in f \underset{X \cup \{x\}}{=} \varphi(x)$ in $\mathcal{T}[X, x]$. Here X comprises all variables other than x which happen to be free in $\varphi(x)$.

Finally, entailment $p_1, \ldots, p_m \vdash_X q$ in $L(\mathcal{T})$ is defined as follows. To simplify matters, take m = 1 and $X = \{x\}$, x a variable of type A. Then $\varphi(x) \vdash_X \psi(x)$ means:

For all objects C and all arrows $a:C\longrightarrow A$, if $fa:=\top 0_C$ then $ga:=\top T_{C}$.

Here we have used functional completeness to write $\varphi(x) := fx$ and $\psi(x) := gx$ with $f, g: A \longrightarrow \Omega$.

The description of $L(\mathcal{T})$ is now complete. The definition of \vdash_X in $L(\mathcal{T})$ is the crux of the so-called Beth-Kripke-Joyal semantics of a topos, which views arrows $a:C\longrightarrow A$ as "elements of A at stage C." We shall not pursue this theme any further here. Instead, we point out that the internal language of a topos allows us to work in \mathcal{T} as we would in **Sets**, provided we use only intuitionistic logic. The following dictionary shows how a few external statements about \mathcal{T} are translated into the internal language. If p is a closed formula in $L(\mathcal{T})$, that is, an arrow $p:1\longrightarrow\Omega$ in \mathcal{T} , it is customary to write $p\longrightarrow \top$ in \mathcal{T} as $\mathcal{T}\Vdash p$ and read this as " \mathcal{T} satisfies p" or "p holds in \mathcal{T} ."

In \mathcal{T}	In $L(\mathcal{T})$
$f := g : A \rightrightarrows B$	$\mathcal{T} \Vdash \forall_{x \in A} fx = gx$
$f:A\longrightarrow B$ is mono	$\mathcal{T} \Vdash \forall_{x \in A} \forall_{x' \in A} fx = fx' \Rightarrow x = x'$
$f:A\longrightarrow B$ is epi	$\mathcal{T} \Vdash \forall_{y \in B} \exists_{x \in A} fx = y$
P is projective	for all formulas $\varphi(z,x)$, if $\mathcal{T} \Vdash \forall_{z \in P} \exists_{x \in A} \varphi(z,x)$ then $\mathcal{T} \Vdash \forall_{z \in P} \varphi(z,fz)$ for some $f: P \longrightarrow A$. $\mathcal{T} \Vdash \forall_{t \in \Omega} (t \land \neg t)$
$\Omega = 1 + 1$	$\mathcal{T} \Vdash \forall_{t \in \Omega} (t \land \neg t)$

Some historical remarks are in order. The internal logic of a topos is implicit in Lawvere's definition of the logical connectives in any topos (1972). As a formal language it first appears explicitly in the article by Mitchell (1972), having also served as a working language in the Paris seminar of Bénabou (see. Coste, 1972-4). It was probably discovered independently by many people; the first detailed exposition appears in a paper by Osius (1975), see also Fourman (1974) and Boileau (1975).

Finally, topos semantics includes as special cases Beth and Kripke models, forcing in model theory and set theory and some versions of realizability.

5. Adjointness between toposes and languages

Toposes are the objects of a category **Top**, whose arrows are *strict logical functors*, that is, functors which preserve the topos structure on the nose (with exponentiation replaced by power set structure). Type theories are the objects of a category **Lang**, whose arrows are translations, that is, mappings from types to types and from terms to terms sending variables to variables, and which preserve type assignments, type forming operations, term forming operations and entailments.

The construction of the internal language in Section 4 induces a functor $L: \mathbf{Top} \longrightarrow \mathbf{Lang}$. We shall try to construct a functor T in the opposite directions which is left adjoint to L.

To any type theory \mathcal{L} we associate the topos $T(\mathcal{L})$ generated by \mathcal{L} as follows. Its objects are (names of) sets in \mathcal{L} , that is, closed terms of type PA in \mathcal{L} for some type A. If α of type PA and β of type PB are two objects of $T(\mathcal{L})$, an arrow $\alpha \longrightarrow \beta$ is a triplet (α, ρ, β) where ρ is (the name of) a provably functional relation, that is, a closed term of type $P(A \times B)$ such that in \mathcal{L} we can prove:

(1)
$$\vdash \rho \subseteq \alpha \times \beta$$

$$(2) \vdash \forall_{x \in A} (x \in \alpha \Rightarrow \exists!_{y \in B} \langle x, y \rangle \in \rho)$$

So far we have only got a category $T(\mathcal{L})$, but it is easily endowed with the structure of a topos by imitating familiar constructions in the category of sets. Furthermore, one can show that T is a functor.

The following result supports the philosophical position called nominalism: every topos is equivalent to one constructed linguistically.

Proposition 5.1. Every topos \mathcal{T} is equivalent to $TL(\mathcal{T})$.

While T looks very much like a left adjoint to L, this is not strictly speaking correct and cannot be asserted without handwaving. To make the adjointness precise we need another idea.

Linguistic toposes $T(\mathcal{L})$ have an important property: they have canonical subobjects. What this means is that every monomorphism is isomorphic to a unique canonical one, just as in **Sets** every monomorphism is isomorphic to the inclusion mapping of its image. Indeed, a reasonable axiomatic description of "canonical subobjects" leads to the conclusion that all the toposes that have been mentioned as examples so far have them. In any case, Proposition 5.1 assures that every topos is equivalent to one with canonical subobjects.

Let \mathbf{Top}_0 be the subcategory of \mathbf{Top} whose objects are toposes with canonical subobjects and whose arrows are strict logical functors preserving canonical subobjects. \mathbf{Top}_0 is a reflective (but not full) subcategory of \mathbf{Top} .

Theorem 5.2. $T: \mathbf{Lang} \longrightarrow \mathbf{Top}_0$ is left adjoint to $L: \mathbf{Top}_0 \longrightarrow \mathbf{Lang}$.

This result, with some handwaving, is due to Volger (1975) and, with canonical subobjects, to one of the authors [L4]. In both these articles type theories were disguised as cartesian categories with additional equational structure.

How close are we to having an equivalence between Lang and \mathbf{Top}_0 ? Even if we ignore the technical point that Proposition 5.1 yields an equivalence rather than an isomorphism, the best we can say about the adjunction $\mathcal{L} \longrightarrow LT(\mathcal{L})$ for an arbitrary type theory \mathcal{L} is that it is a conservative extension. One might assure that it is an isomorphism either by making the definition of type theory more restrictive or by relaxing the notion of translation. However, it appears that the adjointness asserted by Theorem 5.2 suffices for many useful applications, some of which we shall now discuss.

Application 5.3.

If \mathcal{L}_0 is pure type theory (see Example 4.3), it follows from Theorem 5.2 that $\mathcal{F} \equiv T(\mathcal{L}_0)$ is an initial object in \mathbf{Top}_0 , which has come to be known as the *free*

topos. One could argue that \mathcal{F} is the universe of mathematics for a moderate intuitionist or constructivist. The terminal object of \mathcal{F} has the important algebraic properties of being indecomposable and projective. As first observed by Peter Freyd (1978), these translate into the following meta-theorems about pure type theory, which are basic to the philosophy of intuitionism:

- (i) if $\vdash p \land q$ then either $\vdash p$ or $\vdash q$
- (ii) if $\vdash \exists_{x \in A} \varphi(x)$ then $\vdash \varphi(x)$ for some closed term a of type A.

These results may be proved either algebraically, as Freyd would have it, or linguistically [LS1,LS5].

Application 5.4.

Composing adjoint functors as follows:

$$\mathbf{Top}_0 \leftrightarrows \mathbf{Lang} \rightleftarrows \mathbf{Grph} \equiv \mathbf{Sets}^{:\rightrightarrows}$$

we see that the forgetful functor $\mathbf{Top}_0 \longrightarrow \mathbf{Grph}$ has a left adjoint. Much more is true, \mathbf{Top}_0 is tripleable (monadic) over \mathbf{Grph} (or \mathbf{Cat}), even algebraic in a sense recently propounded by Burroni (1981, see also [L5]).

Application 5.5.

We saw earlier how to adjoin an indeterminate arrow $x: 1 \longrightarrow A$ to a topos to obtain a cartesian closed category $\mathcal{T}[x]$. What if we want to obtain a topos $\mathcal{T}(x)$? This can be done in several ways, but we favour

$$\mathcal{T}(x) = T(L(\mathcal{T})(x)).$$

We recall that a parameter x may be adjoined to any language \mathcal{L} (see the discussion of $\mathcal{L}(x)$ following Theorem 2.5 above), in particular, to $L(\mathcal{T})$, We note that $\mathcal{T}(x)$ is equivalent (but not isomorphic) to \mathcal{T}/A , which had been proposed as a candidate for $\mathcal{T}(x)$ by Joyal.

Of special interest is $\mathcal{F}(x)$ when \mathcal{F} is the free topos and : $1 \longrightarrow A = PB$ for some object B of \mathcal{F} . In $\mathcal{F}(x)$ too the terminal object is projective, which fact is equivalent to the projectivity of A in \mathcal{F} and which gives rise in \mathcal{L}_0 to Troelstra's uniformity principle (1970):

if
$$\vdash \forall_{x \in PB} \exists_{y \in N} \varphi(x, n)$$
 then $\exists_{y \in N} \forall_{x \in PB} \varphi(x, y)$.

Similarly, for certain arrows $\underline{p}: 1 \longrightarrow \Omega$ in \mathcal{F} coming from closed formulas p of \mathcal{L}_0 , $\text{Ker }\underline{p}$ is projective in \mathcal{F} , and this translates into what logicians call "independence of premises".