AMATH 567, Problem Set 1

Lucas Cassin Cruz Burke

October 12, 2022

- 1. Problem 1: Express each of the following in polar exponential form.
 - (a) -i
 - (b) 1 + i
 - (c) $\frac{1}{2} + \frac{\sqrt{3}}{2}i$

Solution:

We can rewrite a general complex number of the form a+bi to the form $re^{i\theta}=r(\cos\theta+i\sin\theta)$ by first calculating the magnitude $r=|z|=\sqrt{a^2+b^2}$ and then calculating the angle $\theta=\arcsin\frac{b}{r}=\arccos\frac{a}{r}$. Applying this technique, we find the following results:

- (a) $-i = e^{-i\pi/2}$
- (b) $1 + i = \sqrt{2}e^{i\pi/4}$
- (c) $\frac{1}{2} + \frac{\sqrt{3}}{2}i = e^{i\pi/3}$

- 2. Problem 2: Express each of the following in the form of a+bi, where a and b are real.
 - (a) $e^{2+i\pi/2}$
 - (b) $\frac{1}{1+i}$
 - (c) $(1+i)^3$
 - (d) |3+4i|
 - (e) $\cos(i\pi/4 + c)$, where c is real.

Solution:

- (a) $e^{2+i\pi/2} = e^2 e^{i\pi/2} = e^2 i$
- (b) $\frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{2} = \frac{1}{2} \frac{1}{2}i$
- (c) $(1+i)^3 = (\sqrt{2}e^{i\pi/4})^3 = 2^{3/2}e^{i3\pi/4} = 2^{3/2}(\cos 3\pi/4 + i\sin 3\pi/4) = 2^{3/2}(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i) = -2 + 2i$
- (d) $|3+4i| = \sqrt{(3+4i)(3-4i)} = \sqrt{9+16} = \sqrt{25} = 5$
- (e) $\cos(i\pi/4+c) = \frac{1}{2} \left(e^{i(i\pi/4+c)} + e^{-i(i\pi/4+c)} \right) = \frac{1}{2} \left(e^{-\pi/4+ic} + e^{\pi/4-ic} \right) = \frac{1}{2} \left(e^{-\pi/4} + e^{\pi/4} \right) \cos c + \frac{i}{2} \left(e^{-\pi/4} e^{\pi/4} \right) \sin c$

- 3. Problem 3: Solve for the roots of the following equations.
 - (a) $z^3 = 4$
 - (b) $z^4 = -1$

Solution:

A general equation $z^n=w$ can be solved by writing z and w in polar form $z=|z|e^{i\theta}$ and $w=|w|e^{i\gamma}$. Then the equation becomes $|z|^ne^{in\theta}=|w|e^{i\gamma}$, which leads us to $|z|=|w|^{1/n}$ and $n\theta\pmod{2\pi}=\gamma$. Our solutions are therefore $|w|^{1/n}e^{i\gamma/n}$ multiplied by all the nth roots of unity.

- (a) $z \in 2^{2/3} \{1, e^{i2\pi/3}, e^{-i2\pi/3}\}$
- (b) $z \in \left\{ e^{i\frac{\pi}{4}}, e^{i\frac{3\pi}{4}}, e^{-i\frac{3\pi}{4}}, e^{-i\frac{\pi}{4}} \right\}$

- 4. Problem 4: Establish the following results.
 - (a) (z+w)*=z*+w*
 - (b) $\Re(z) \le |z|$
 - (c) $|wz*+w*z| \le 2|wz|$
 - (d) $|z_1 z_2| = |z_1||z_2|$

Solution:

(a) Write z and w in Cartesian form as $z=z_x+iz_y$ and $w=w_x+iw_y$ where $z_x,z_y,w_x,w_y\in\mathbf{R}$, then

$$(z+w)^* = (z_x + w_x + i(z_y + w_y))^* = z_x + w_x - i(z_y + w_y) = (z_x - iz_y) + (w_x - iw_y) = z^* + w^*$$

.

(b) Let $z=\Re(z)+i\Im(z)$. By definition, $|z|^2=\Re(z)^2+\Im(z)^2$. Since $\Im(z)$ is real, $\Im(z)^2\geq 0$, and therefore

$$\Re(z)^2 \le |z|^2$$

Since both sides of this equation are real and positive definite, we can take the square root of either side to show that

$$\Re(z) \le |z|$$

(c) We write w and z in polar form as $w=|w|e^{i\phi}$ and $z=|z|e^{i\varphi}$. Then, by Euler's formula

$$wz^* + w^*z = |w||z|\left(e^{i(\phi-\varphi)} + e^{-i(\phi-\varphi)}\right) = 2|w||z|\cos\left(\phi-\varphi\right)$$

In (d) we prove that |w||z| = |wz|. Taking the absolute value of the above and applying this fact leads us to

$$|wz^* + w^*z| = 2|w||z||\cos(\phi - \varphi)| = 2|wz||\cos(\phi - \varphi)| \le 2|wz|$$

(d) Consider z_1 and z_2 in polar form $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_1 e^{i\theta_2}$. We see that $|z_1| = r_1$ and $|z_2| = r_2$. We have

$$|z_1 z_2| = |r_1 r_2 e^{i(\theta_1 + \theta_2)}| = r_1 r_2 = |z_1||z_2|$$