Lantânio (La) **Propriedades:** - Símbolo: **La** - Número atômico: **57** - Massa atômica: **138,91 u** - Ponto de fusão: **920 °C** - Ponto de ebulição: **3.464 °C** - Eletronegatividade: **1,10** - Estado de oxidação: **+3** - Distribuição eletrônica: **[Xe] 5d¹ 6s²** **Características:** - Metal macio, maleável e prateado - Reage rapidamente com oxigênio e água - Primeiro elemento da série dos lantanídeos **Para que serve?** - Catalisadores em refinarias de petróleo - Lentes de câmeras e telescópios - Baterias de níquel-hidreto metálico (NiMH) - Ligas especiais (aço de alta resistência) **Onde é encontrado?** - Minerais: monazita, bastnasita - Principais produtores: China, Austrália, Rússia ### **Cério (Ce)** **Propriedades:** - Símbolo: **Ce** - Número atômico: **58** - Massa atômica: **140,12 u** - Ponto de fusão: **795 °C**

- **Características:**
- Mais abundante das terras raras

Ponto de ebulição: **3.442 °C**
Eletronegatividade: **1,12**
Estados de oxidação: **+3, +4**

- Pode produzir faíscas quando riscado

- Distribuição eletrônica: **[Xe] 4f1 5d1 6s2**

- Forma óxido que libera oxigênio quando aquecido
- **Para que serve?**
- Conversores catalíticos automotivos
- Polimento de vidros e lentes ópticas
- Ligas pirofóricas (isqueiros)

- Pigmentos amarelos em cerâmicas **Onde é encontrado?** - Bastnasita e monazita - Areias de praia (Índia e Brasil) ### **Praseodímio (Pr)** **Propriedades:** - Símbolo: **Pr** - Número atômico: **59** - Massa atômica: **140,91 u** - Ponto de fusão: **935 °C** - Ponto de ebulição: **3.527 °C** - Eletronegatividade: **1,13** - Estado de oxidação: **+3** - Distribuição eletrônica: **[Xe] 4f3 6s2** **Características:** - Metal esverdeado quando oxidado - Paramagnético a todas as temperaturas - Forma compostos coloridos (verdes e amarelos) **Para que serve?** - Ímãs de neodímio (NdFeB) - Ligas para motores de aviação - Vidros e esmaltes (cor amarela) - Lâmpadas de arco de carbono **Onde é encontrado?** - Associado a outros lantanídeos em monazita ### **Neodímio (Nd)** **Propriedades:** - Símbolo: **Nd** - Número atômico: **60** - Massa atômica: **144,24 u** - Ponto de fusão: **1.021 °C** - Ponto de ebulição: **3.074 °C** - Eletronegatividade: **1,14** - Estado de oxidação: **+3** - Distribuição eletrônica: **[Xe] 4f4 6s2**

Características:

- Metal prateado que mancha no ar

- Forma os ímãs permanentes mais fortes
- Absorve luz amarela (usado em óculos de soldador)
- **Para que serve?**
- Ímãs de alto desempenho (motores, turbinas eólicas)
- Lasers de estado sólido
- Corantes para vidros (roxo/azul)
- Catalisadores industriais
- **Onde é encontrado?**
- Bastnasita e monazita
- China controla ~85% da produção mundial

```
### **Promécio (Pm)**
```

- **Propriedades:**
- Símbolo: **Pm**
- Número atômico: **61**
- Massa atômica: **[145]** (isótopo mais estável)
- Ponto de fusão: **1.042 °C**
- Ponto de ebulição: **3.000 °C** (estimado)
- Eletronegatividade: **1,13**
- Estado de oxidação: **+3**
- Distribuição eletrônica: **[Xe] 4f5 6s2**
- **Características:**
- Único lantanídeo radioativo naturalmente
- Emite luz azul-esverdeada (fosforescente)
- Meia-vida de 17,7 anos (Pm-145)
- **Para que serve?**
- Baterias nucleares (naves espaciais)
- Fontes luminosas autônomas
- Espessamento industrial (medidores)
- **Onde é encontrado?**
- Traços em minérios de urânio
- Produzido artificialmente em reatores

Samário (Sm)

- **Propriedades:**
- Símbolo: **Sm**
- Número atômico: **62**
- Massa atômica: **150,36 u**
- Ponto de fusão: **1.072 °C**

- Ponto de ebulição: **1.794 °C**
- Eletronegatividade: **1,17**
- Estados de oxidação: **+2, +3**
- Distribuição eletrônica: **[Xe] 4f6 6s2**
- **Características:**
- Metal prateado, moderadamente duro
- Três isótopos naturais absorvedores de nêutrons
- Forma compostos magnéticos
- **Para que serve?**
- Ímãs SmCo (alta temperatura)
- Barras de controle nuclear
- Tratamento de câncer ósseo (Sm-153)
- Catalisador em desidrogenação
- **Onde é encontrado?**
- Monazita e bastnasita
- Subproduto da mineração de terras raras

Európio (Eu)

- **Propriedades:**
- Símbolo: **Eu**
- Número atômico: **63**
- Massa atômica: **151,96 u**
- Ponto de fusão: **822 °C**
- Ponto de ebulição: **1.529 °C**
- Eletronegatividade: **1,20**
- Estados de oxidação: **+2, +3**
- Distribuição eletrônica: **[Xe] 4f7 6s2**
- **Características:**
- Mais reativo dos lantanídeos
- Emite luz vermelha intensa
- Absorve nêutrons eficientemente
- **Para que serve?**
- Fósforos em telas de TV e LED
- Cédulas de euro (marcador antifraude)
- Lasers de estado sólido
- Reatores nucleares (absorvedor)
- **Onde é encontrado?**
- Bastnasita (China principal produtor)
- Monazita (areias monazíticas)

Gadolínio (Gd) **Propriedades:** - Símbolo: **Gd**

- Número atômico: **64**

- Massa atômica: **157,25 u**

- Ponto de fusão: **1.312 °C**

- Ponto de ebulição: **3.273 °C**

- Eletronegatividade: **1,20**

- Estado de oxidação: **+3**

- Distribuição eletrônica: **[Xe] 4f⁷ 5d¹ 6s^{2**}

Características:

- Metal com propriedades magnéticas únicas
- Maior captura de nêutrons entre elementos
- Contrastes para ressonância magnética
- **Para que serve?**
- Meios de contraste em MRI (gadolínio quelado)
- Memórias magnéticas
- Barras de controle nuclear
- Ligas magnetocalóricas
- **Onde é encontrado?**
- Associado a outros lantanídeos
- Processamento de monazita e bastnasita

Térbio (Tb) **Propriedades:**

- Símbolo: **Tb**

- Número atômico: **65**

- Massa atômica: **158,93 u**

- Ponto de fusão: **1.356 °C**

- Ponto de ebulição: **3.230 °C**

- Eletronegatividade: **1,20**

- Estados de oxidação: **+3, +4**

- Distribuição eletrônica: **[Xe] 4f9 6s2**

Características:

- Metal prateado, maleável e dúctil
- Emite luz verde intensa
- Paramagnético a baixas temperaturas
- **Para que serve?**
- Fósforos verdes em lâmpadas fluorescentes

- Ligas magnetostritivas (sonares)
- Discos rígidos (camada magnética)
- LEDs e lasers
- **Onde é encontrado?**
- Minérios de terras raras
- China domina a produção

Disprósio (Dy)

- **Propriedades:**
- Símbolo: **Dy**
- Número atômico: **66**
- Massa atômica: **162,50 u**
- Ponto de fusão: **1.412 °C**
- Ponto de ebulição: **2.567 °C**
- Eletronegatividade: **1,22**
- Estado de oxidação: **+3**
- Distribuição eletrônica: **[Xe] 4f10 6s2**
- **Características:**
- Metal terroso prateado
- Altamente magnético em baixas temperaturas
- Absorve nêutrons eficientemente
- **Para que serve?**
- Ímãs de neodímio (aumenta resistência térmica)
- Reatores nucleares (barras de controle)
- Ligas especiais (memória de forma)
- Data storage (discos rígidos)
- **Onde é encontrado?**
- Associado a outros lantanídeos
- Mineração de xenotima

Hólmio (Ho)

- **Propriedades:**
- Símbolo: **Ho**
- Número atômico: **67**
- Massa atômica: **164,93 u**
- Ponto de fusão: **1.470 °C**
- Ponto de ebulição: **2.720 °C**
- Eletronegatividade: **1,23**
- Estado de oxidação: **+3**
- Distribuição eletrônica: **[Xe] 4f11 6s2**

```
**Características:**
```

- Metal mais paramagnético conhecido
- Cor amarela em soluções aquosas
- Propriedades magnéticas incomuns
- **Para que serve?**
- Lasers médicos (cirurgia)
- Colorimetria (padrões de calibração)
- Reatores nucleares (absorvedor)
- Ligas especiais
- **Onde é encontrado?**
- Traços em minérios de terras raras
- Subproduto da extração de ítrio

Érbio (Er)

- **Propriedades:**
- Símbolo: **Er**
- Número atômico: **68**
- Massa atômica: **167,26 u**
- Ponto de fusão: **1.522 °C**
- Ponto de ebulição: **2.510 °C**
- Eletronegatividade: **1,24**
- Estado de oxidação: **+3**
- Distribuição eletrônica: **[Xe] 4f12 6s2**
- **Características:**
- Metal macio e maleável
- Cor rosa em compostos
- Propriedades ópticas únicas
- **Para que serve?**
- Amplificadores de fibra óptica (internet)
- Lasers odontológicos e médicos
- Colorante para vidros e esmaltes
- Nuclear technology (absorvedor)
- **Onde é encontrado?**
- Minérios como xenotima
- China controla a maior parte da produção

Túlio (Tm)

Propriedades:

- Símbolo: **Tm**
- Número atômico: **69**
- Massa atômica: **168,93 u**
- Ponto de fusão: **1.545 °C**
- Ponto de ebulição: **1.950 °C**
- Eletronegatividade: **1,25**
- Estado de oxidação: **+3**
- Distribuição eletrônica: **[Xe] 4f13 6s2**
- **Características:**
- Metal mais raro das terras raras
- Emite luz azul sob excitação
- Propriedades magnéticas interessantes
- **Para que serve?**
- Lasers de alta eficiência
- Aparelhos de raio-X portáteis
- Supercondutores de alta temperatura
- Marcadores antifraude
- **Onde é encontrado?**
- Quantidades mínimas em minérios
- Subproduto da extração de ítrio

- ### **Itérbio (Yb)**
- **Propriedades:**
- Símbolo: **Yb**
- Número atômico: **70**
- Massa atômica: **173,05 u**
- Ponto de fusão: **819 °C**
- Ponto de ebulição: **1.196 °C**
- Eletronegatividade: **1,10**
- Estados de oxidação: **+2, +3**
- Distribuição eletrônica: **[Xe] 4f14 6s2**
- **Características:**
- Metal macio, dúctil e brilhante
- Mais volátil entre os lantanídeos
- Comportamento químico similar ao cálcio
- **Para que serve?**
- Relógios atômicos (mais precisos do mundo)
- Aço inoxidável de alta resistência
- Lasers industriais
- Medicina nuclear

- **Onde é encontrado?** - Monazita e xenotima - China principal produtor ### **Lutécio (Lu)** **Propriedades:** - Símbolo: **Lu** - Número atômico: **71** - Massa atômica: **174,97 u** - Ponto de fusão: **1.663 °C** - Ponto de ebulição: **3.402 °C** - Eletronegatividade: **1,27** - Estado de oxidação: **+3** - Distribuição eletrônica: **[Xe] 4f¹⁴ 5d¹ 6s^{2**} **Características:** - Metal duro e denso - Último elemento da série dos lantanídeos - Mais caro das terras raras **Para que serve?** - Catalisador em refino de petróleo - Tomografia por emissão de pósitrons (PET) - Cristais para detectores (cintilografia) - Ligas especiais **Onde é encontrado?** - Associado a minérios pesados de terras raras - Processamento complexo e caro ### **Comparação entre os Lantanídeos** **Características Comuns:** - Metais prateados, macios e maleáveis - Propriedades magnéticas e ópticas notáveis - Estados de oxidação +3 predominantes
- **Aplicações Tecnológicas:**
- **Ímãs**: Nd, Sm, Dy (motores e turbinas eólicas)
- **Fósforos**: Eu (vermelho), Tb (verde) em telas

- Ocorrem juntos na natureza (separação difícil)

- **Lasers**: Er, Yb, Tm (medicina e telecomunicações)
- **Nuclear**: Gd, Sm, Eu (absorvedores de nêutrons)

- **Desafios Ambientais:**
- Mineração gera resíduos radioativos (tório e urânio)
- China controla ~90% do fornecimento global
- Reciclagem ainda é limitada
- **Fatos Interessantes:**
- 1. O nome "terras raras" é enganoso vários são relativamente abundantes
- 2. Um smartphone contém até 8 lantanídeos diferentes
- 3. O promécio é o único lantanídeo radioativo natural
- 4. O neodímio é essencial para turbinas eólicas e veículos elétricos
- 5. O európio é usado como marcador antifraude em cédulas de euro

Conclusão sobre os Lantanídeos

Esta série de 15 elementos é crucial para a tecnologia moderna:

- **Transição energética**: Ímãs de neodímio em veículos elétricos e turbinas
- **Revolução digital**: Fósforos em telas e fibras ópticas
- **Medicina avançada**: Contrastes para diagnóstico e lasers cirúrgicos

Apesar do nome "terras raras", muitos são relativamente abundantes, mas sua extração é complexa e ambientalmente desafiadora. O domínio chinês na produção (controla ~90% do mercado) levou a preocupações geopolíticas, incentivando a busca por fontes alternativas e métodos de reciclagem mais eficientes.

Os lantanídeos ilustram como elementos com propriedades químicas semelhantes podem ter aplicações radicalmente diferentes na tecnologia moderna, sendo componentes essenciais na transição para energias limpas e na revolução digital.