ph1861_hw2_ygu5

Yue Gu

2023-11-21

Meta-Analysis Problem #1 (50 points) The following paper reviewed and meta-analyzed the proportion of Campylobacter cases that develop chronic sequelae, based on studies published prior to July 2011. (Keithlin 2014, "Systematic review and meta-analysis of the proportion of Campylobacter cases that develop chronic sequelae"). Import the number of cases that developed reactive arthritis (ReA) from page 7 of the article and follow the steps below to conduct a meta-analysis of the proportion/prevalence.

Please input data in the exact order from the paper. Calculate the proportion of people with Campylobacter who developed a ReA for each study. Add a count of 0.5 both to those reporting ReA outcome of 0% and to those totals. Calculate the logit of the outcome and logit of the standard error using the equation from Lipsey & Wilson. [Eq 3.5, p40].

```
# read data
keith_data = read.csv("./data/Keithlin2014_ReA.csv") %>%
  janitor::clean_names() %>%
  mutate(prop_seq = round(number_developing_sequelae/number_of_people_with_campylobacter,4)) %>%
  mutate(number_of_people_with_campylobacter_add = ifelse(prop_seq==0.0000, number_of_people_with_campy
         number_developing_sequelae_add = ifelse(prop_seq==0.0000, number_developing_sequelae+0.5, numb
  mutate(prop_seq_add = number_developing_sequelae_add/number_of_people_with_campylobacter_add,
         logit_outcome = log(prop_seq/(1-prop_seq)),
         se_outcome = sqrt(1/(number_of_people_with_campylobacter_add*prop_seq_add)+1/(number_of_people
# check total number of cases
s1=sum(keith_data$number_developing_sequelae_add)
# check total number
s2=sum(keith_data$number_of_people_with_campylobacter)
# check the proportion developing ReA
p1 = s1/s2
# the logit outcome for the K=25 studies
knitr::kable(keith data %>% select(first author year reference number, logit outcome))
```

logit_outcome
-8.111428
-3.183275
-4.269191
-3.731341
-Inf
-Inf
-2.528269
-2.371141
-2.599044
-1.891268

first_author_year_reference_number	logit_outcome
Hannu, [43]	-Inf
Melby, [32]	-5.060886
Pitkanen, [23]	-2.871116
Locht, [37]	-1.687537
Schiellerup, [41]	-1.895664
Hannu, [54]	-3.635228
Pitkanen, [29]	-2.989555
Helms, [38]	-6.724233
Ponka, [40]	-3.832326
Doorduyn, [44]	-3.029746
Eastmond, [35]	-4.462676
Eastmond [35]	-Inf
Melby, [55]	-3.623315
Gumpel, [49]	-1.139566
Bremell, [33]	-4.171143

the standard error for the K=25 studies
knitr::kable(keith_data %>% select(first_author_year_reference_number, se_outcome))

first_author_year_reference_number	se_outcome
Ternhag, [52]	0.2582326
Schoenberg-Norio, jejuni [51]	0.3608065
Townes, [47]	0.1752951
Kosunen, [39]	0.3577625
Petersen, [27]	1.4228107
Short, [25]	1.4375906
Hannu, [43]	0.1549041
Hannu, [43]	0.1450038
Hannu, [43]	0.1703968
Hannu, [43]	0.3792993
Hannu, [43]	1.4411534
Melby, [32]	1.0031596
Pitkanen, [23]	0.5934655
Locht, [37]	0.2094907
Schiellerup, [41]	0.0937037
Hannu, [54]	0.3377035
Pitkanen, [29]	0.3416105
Helms, [38]	0.2133312
Ponka, [40]	0.4126461
Doorduyn, [44]	0.2289442
Eastmond, [35]	1.0057307
Eastmond [35]	1.4226066
Melby, [55]	0.7164728
Gumpel, [49]	0.4062019
Bremell, [33]	1.0076629

Now that the data are set, answer following questions with corresponding STATA or R code: (a) List the number of cases, total number, the proportion developing ReA, the logit outcome, and the logit standard error for the K=25 studies.

The number of cases for the K=25 studies is 448, total number is 83178, the proportion developing ReA is

0.005386, the logit outcome and standard error for each studies could be found above.

- (b) Run a fixed effects meta-analysis using the exponential form (ie, exponentiating the result back to the original scale). Attach the forest plot.
 - (c) What is the pooled estimate? Is it significant? Please interpret the result.
 - (d) If necessary, run a random effect meta-analysis using exponential form.
 - (e) Why don't we have to convert the proportion to Cohen's D?

Write a short methods and results paragraph as if you were reporting these two sections in a journal article (refer to our in-class case studies).