Latihan Persiapan Exam Modul 2

1. Jika kode di bawah ini dijalankan

```
np.random.randint(0, 50, 6).reshape(3, 2)
```

Output yang benar adalah ...

- a. array([[0.11272585, 0.50231826], [0.95693598, 0.83532571], [0.24816881, 0.92556657]])
- b. array([[0.11272585, 0.50231826, 0.95693598], [0.83532571, 0.24816881, 0.92556657]])
- c. array([[29, 22], [12, 35], [23, 21]])
- d. array([[29, 22, 12], [35, 23, 21]])
- 2. myArray = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

```
print( myArray * np.array([[10],[10],[10]]) )
```

Output dari adalah ...

- a. array([[10, 20, 30], [40, 50, 60], [70, 80, 90]])
- b. array([[10, 20, 30], [4, 5, 6], [7, 8, 9]])
- c. array([[10, 2, 3], [40, 5, 6], [70, 8, 9]])
- d. error
- 3. Diketahui 2 dataframe bernama df_X dan df_Y seperti di bawah ini.

df_X						
		a	b	c		
	0	1	6	11		
	1	2	7	12		
	2	3	8	13		
	3	4	9	14		
	4	5	10	15		

Manakah cara penggabungan dataframe df_X dan df_Y yang tepat untuk menghasilkan output:

	a	b	c	z
0	1	6	11	100
1	2	7	12	200
2	3	8	13	300
3	4	9	14	400

- a. df_X.merge(df_Y)
- b. df_X.merge(df_Y, how = 'left')
- c. df_X.merge(df_Y, how = 'outer')
- d. df_X.join(df_Y)
- 4. Dataframe df di bawah ini berisikan daftar nama mobil beserta spesifikasinya. Berikut ini adalah 5 baris pertamanya:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu
1	15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320
2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite
3	16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst
4	17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino

Untuk menampilkan nama mobil yang memiliki horsepower paling besar, manakah kode yang benar?

- a. df[df['horsepower'] == df['horsepower'].max()].loc['name']
- b. df['name'][df['horsepower'] == df['horsepower'].max()]
- c. df.iloc[df['horsepower'] == df['horsepower'].max()]['name']
- d. df.loc[df['horsepower'].max()]['name']
- 5. Manakah pernyataan yang benar mengenai populasi dan sampel?
 - a. Parameter adalah ringkasan numerik dari populasi
 - b. Populasi adalah bagian dari sampel
 - c. Pengambilan sampel tidak boleh acak
 - d. Pemanfaatan sampel untuk menarik kesimpulan terhadap populasi dinamakan Statistika Deskriptif
- 6. myNumber = [2,2,3,4,2,7,4,8,9,3,5]

Manakah nilai deskriptif statistik yang tepat dari variable myNumber?

- a. Mean = 4.2
- b. Median = 7

- c. Standard Deviation = 2.78
- d. Q3 = 6
- 7. Manakah pernyataan yang tepat mengenai uji korelasi?
 - a. Uji korelasi Spearman dapat digunakan untuk data numerik yang tidak terdistribusi normal
 - b. Nilai korelasi positif berarti hubungan antara variabel yang diuji sangat kuat
 - c. Uji korelasi Pearson dapat digunakan untuk 2 variabel kategorikal nominal
 - d. Uji korelasi Spearman dapat digunakan untuk 2 variabel kategorikal nominal
- 8. Pilihlah visualisasi yang paling tepat!

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu
1	15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320
2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite
3	16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst
4	17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino

- a. Scatter Plot untuk variabel origin vs horsepower
- b. Bar Plot untuk variabel origin vs weight
- c. Box Plot untuk variabel name
- d. Pie plot untuk variabel displacement vs weight
- 9. Kode yang tepat untuk menampilkan visualisasi di bawah ini adalah ...

- a. plt.plot(data=df, x='cylinders', y='horsepower', hue='origin')
- sns.countplot(data=df, x='cylinders', y='horsepower', hue='origin')
- c. sns.barplot(data=df, x=origin, y='horsepower',

hue='cylinders')

d. sns.barplot(data=df, x='cylinders', y='horsepower', hue='origin')

- a. Variabel Horsepower tidak terdistribusi normal
- b. Sumbu y (vertikal)menunjukkan frekuensi atau jumlah kemunculan data
- c. Mobil dengan horse power pada interval 82.8 101.2 yang muncul paling banyak
- d. Grafik di atas biasa disebut dengan count plot

11. Di bawah ini adalah hasil uji normalitas dari variabel 'weight':

from scipy.stats import normaltest

normaltest(df['weight'])

NormaltestResult(statistic=46.08618081354447,

pvalue=9.829082726891064e-11)

Pilihlah pernyataan yang tepat mengenai uji di atas

- a. Hasil uji normalitas di atas menunjukkan variabel 'weight' terdistribusi normal
- b. Hasil uji normalitas di atas menunjukkan variabel 'weight' terdistribusi tidak normal
- c. Method normaltest dari scipy di atas menggunakan metode Shapiro-Wilk
- d. Method normaltest dari scipy di atas menggunakan metode

Kolmogorov-Smirnov

- 12. Batas atas dari boxplot adalah
 - a. Q1 + (1.5*IQR)
 - b. Q1 (1.5*IQR)
 - c. Q3 + (1.5*IQR)
 - d. Q2 + (1.5*IQR)
- 13. Tipe data yang bukan merupakan tipe data pada Tableau adalah ...
 - a. Text values
 - b. Date & Time values
 - c. Numerical values
 - d. Float values
- 14. Pernyataan yang tepat mengenai story dan dashboard pada Tableau adalah ...
 - a. Story dan dashboard merupakan kumpulan dari worksheet
 - b. Story bisa berisi urutan dari beberapa dashboard
 - c. Dashboard digunakan untuk menampilkan banyak grafik atau data secara bersamaan
 - d. Semua benar
- 15. Diketahui sebuah dataset berisikan data penjualan rumah secara online di Indonesia memiliki sebuah kolom/variabel bernama 'Harga_Rumah' yang berisi nilai harga dari tiap rumah yang dijual dan distribusi datanya tidak normal. Sebaiknya *measure of central tendency* yang digunakan adalah
 - a. Mean
 - b. Median
 - c. Modus
 - d. Standar deviasi
- 16. Anda memiliki Numpy Array sebagai berikut :

Code apa yg kita gunakan jika ingin mengakses/menghasilkan output:

```
array([[ 7, 8],
```

[11, 12]])

a. arr[1:2,1:2]

b. arr[2:3, 2:3]

c. arr[1:3, 1:3]

d. arr[2:4, 2:4]

MySQL

employees

	emp_no	birth_date	first_name	last_name	gender	hire_date
•	10001	1953-09-02	Georgi	Facello	M	1986-06-26
	10002	1964-06-02	Bezalel	Simmel	F	1985-11-21
	10003	1959-12-03	Parto	Bamford	M	1986-08-28
	10004	1954-05-01	Chirstian	Koblick	M	1986-12-01
	10005	1955-01-21	Kyoichi	Maliniak	M	1989-09-12

salaries

	emp_no	salary	from_date	to_date
•	10001	60117	1986-06-26	1987-06-26
	10001	62102	1987-06-26	1988-06-25
	10001	66074	1988-06-25	1989-06-25
	10001	66596	1989-06-25	1990-06-25
	10001	66961	1990-06-25	1991-06-25

title

	emp_no	title	from_date	to_date
•	10001	Senior Engineer	1986-06-26	9999-01-01
	10002	Staff	1996-08-03	9999-01-01
	10003	Senior Engineer	1995-12-03	9999-01-01
	10004	Engineer	1986-12-01	1995-12-01
	10004	Senior Engineer	1995-12-01	9999-01-01
	10005	Senior Staff	1996-09-12	9999-01-01

dept_emp

	emp_no	dept_no	from_date	to_date
•	10001	d005	1986-06-26	9999-01-01
	10002	d007	1996-08-03	9999-01-01
	10003	d004	1995-12-03	9999-01-01
	10004	d004	1986-12-01	9999-01-01
	10005	d003	1989-09-12	9999-01-01

Keterangan:

- Pada table **employees**. Tiap 'emp_no' adalah karyawan yang berbeda. Tidak ada pengulangan karyawan yang sama pada tabel **employees**.
- Berdasarkan table **salaries**, tiap karyawan bisa memiliki gaji yang berbeda (lebih dari satu record) dikarenakan adanya perubahan gaji tiap tahunnya.
- Berdasarkan table **title**, tiap karyawan bisa memiliki title berbeda (lebih dari satu record) dikarenakan kemungkinan adanya kenaikan pangkat.
- Berdasarkan table **dept_emp**, tiap karyawan bisa memiliki dept_no (departemen) berbeda (lebih dari satu record) dikarenakan kemungkinan adanya pindah departemen.

- 17. Tampilkan daftar karyawan yang pernah bekerja di departemen yang sama dengan Heng Giveon (tidak harus di waktu yang sama)
 - a. SELECT *

FROM employees E

```
JOIN dept_emp D ON E.emp_no = D.emp_no
   WHERE dept_no ON
                 (SELECT dept_no
                  FROM employees E
                  JOIN dept_emp D ON E.emp_no = D.emp_no
                  WHERE E.first_name = 'Heng'
                  AND E.last_name = 'Giveon')
b. SELECT *
   FROM employees E
   JOIN dept_emp D ON E.emp_no = D.emp_no
   WHERE dept_no IN
                 (SELECT dept_no
                  FROM employees E
                  JOIN dept_emp D IN E.emp_no = D.emp_no
                  WHERE E.first_name = 'Heng'
                  AND E.last_name = 'Giveon')
c. SELECT *
   FROM employees E
   JOIN dept_emp D IN E.emp_no = D.emp_no
   WHERE dept_no IN
                 (SELECT dept_no
                  FROM employees E
                  JOIN dept_emp D ON E.emp_no = D.emp_no
                  WHERE E.first_name = 'Heng'
```

```
AND E.last_name = 'Giveon')
       d. SELECT *
           FROM employees E
          JOIN dept_emp D ON E.emp_no = D.emp_no
           WHERE dept_no IN
                         (SELECT dept_no
                          FROM employees E
                          JOIN dept_emp D ON E.emp_no = D.emp_no
                          WHERE E.first_name = 'Heng'
                          AND E.last_name = 'Giveon')
18. Tampilkan 3 karyawan dengan gaji tertinggi pada tahun kerja 2001 (from_date) sampai 2002
   (to date)
       a. SELECT *
          FROM employees E
          JOIN salaries S IN E.emp_no = S.emp_no
          WHERE from_date like '2001%' AND to_date like '2002%'
           ORDER BY salary DESC
          LIMIT 3
       b. SELECT *
           FROM employees E
          JOIN salaries S ON E.emp_no = S.emp_no
           WHERE from_date like '2001%' AND to_date like '2002%'
           ORDER BY salary DESC
           LIMIT 3
```

```
c. SELECT *
           FROM employees E
          JOIN salaries S ON E.emp_no = S.emp_no
          WHERE from date like '2001%' AND to date like '2002%'
           ORDER BY salary DESC
          LIMIT 3
       d. SELECT *
          FROM employees E
          JOIN salaries S ON E.emp_no = S.emp_no
          WHERE from_date like '2001%' AND to_date like '2002%'
           ORDER BY employees ASC
          LIMIT 3
19. Jika query di bawah ini dijalankan, maka output yang ditampilkan adalah ... (jawablah
   dalam kalimat)
   SELECT gender, COUNT(emp_no) FROM employees
   WHERE year(hire_date) IN ('1990','1991') GROUP BY gender;
       a. Jumlah karyawan berdasarkan gender yang direkrut pada tahun 1990 atau 1991
```

- b. Jumlah karyawan berdasarkan gender yang tidak direkrut pada tahun 1990 dan 1991
- c. Jumlah karyawan berdasarkan gender yang direkrut pada tahun 1990 dan 1991
- d. Jumlah gender berdasarkan karyawan yang direkrut pada tahun 1990 dan 1991
- 20. Perhatikan query di bawah ini. Isilah titik-titik untuk menampilkan rata-rata total gaji tiap karyawan (selama bekerja) yang dikelompokkan berdasarkan gender!

```
SELECT gender, AVG(Total_Salary)
   FROM (....) as mySubquery
   GROUP BY gender;
a. SELECT gender, AVG(Total_Salary)
   FROM
     (SELECT E.emp_no, E.gender, SUM(S.salary) is Total_Salary
     FROM employees E JOIN salaries S ON E.emp_no = S.emp_no
     GROUP BY emp_no) as mySubquery
   GROUP BY gender
b. SELECT gender, AVG(Total_Salary)
   FROM
     (SELECT E.emp_no, E.gender, SUM(S.salary) as Total_Salary
     FROM employees E JOIN salaries S IN E.emp_no = S.emp_no
     GROUP BY emp_no) as mySubquery
   GROUP BY gender
c. SELECT gender, AVG(Total_Salary)
   FROM
     (SELECT E.emp_no, E.gender, SUM(S.salary) as Total_Salary
     FROM employees E JOIN salaries S ON E.emp_no = S.emp_no
     GROUP BY emp_no) is mySubquery
   GROUP BY gender
d. SELECT gender, AVG(Total_Salary)
   FROM
   (SELECT E.emp_no, E.gender, SUM(S.salary) as Total_Salary
     FROM employees E JOIN salaries S ON E.emp_no = S.emp_no
```

```
GROUP BY emp_no) as mySubquery
GROUP BY gender
;
```

21.