lab0-visualization-auto_mpg

September 26, 2022

[3]: data.plot()

[3]: <AxesSubplot:>

[4]: data['mpg'].plot.hist();

[5]: data.origin.value_counts()

[5]: 1 249 3 79 2 70

Name: origin, dtype: int64

[6]: axs = data.hist(column='mpg', by='origin')

[8]: data.plot.scatter('mpg', 'horsepower', c='origin', colormap='winter');


```
[10]: colors = {1: 'tab:blue', 2: 'tab:orange', 3: 'tab:green'}
fig, ax = plt.subplots()
for key, group in data.groupby(by='origin'):
    group.plot.scatter('mpg', 'horsepower', c=colors[key], label=key, ax=ax);
```



```
[13]: # Use origin to color (hue) in the same plot
sns.displot(x='mpg', hue='origin', data=data);
```


To have an idea of the split between male and female, we can stack the counts, adding up to total.

```
[14]: sns.displot(x='mpg', hue='origin', data=data, multiple='stack');
```


We can look at the differences in ages with a boxplot too

```
[15]: sns.boxplot(x='origin', y='mpg', data=data);
```



```
[18]: ax = sns.lmplot(x='mpg', y='horsepower', data=data, hue='origin_str')
```


Maybe there are other correlations in the data set. Pairplot is a great way to get an overview

```
[19]: sns.pairplot(data, vars=['mpg', 'horsepower', 'cylinders', 'weight'], ⊔

⇔hue='origin_str');
```


[]: