```
In [1]: include("/home/nicole/Jupyter/SSBRJ/src/SSBR.jl")
         using SSBR
 In [2]: function getPos(ped,IDs)
             posAi = Array(Int64, size(IDs, 1))
             for (i,id) = enumerate(IDs[:,1])
                 posAi[i] = ped.idMap[id].seqID
             end
             return posAi
         end
 Out[2]: getPos (generic function with 1 method)
 In [3]: ; cd Data/0.5/G/50QTL
         /home/nicole/Jupyter/JG3/Data/0.5/G/50QTL
 In [4]:
        ;ls
         GenNF.txt
         PedAll.txt
         Phe.txt
         PheAll.txt
 In [5]: | ;awk '{print $1}' PedAll.txt | sort -b > all.ID
 In [6]: ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
         ;join -v1 all.ID genotype.ID > noGenotype.ID
        ;awk '{print $1,$2}' Phe.txt > sim.phenotype
 In [8]:
In [9]: ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [10]: ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]: ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
```

```
In [12]: ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [13]: ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]: ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]: ;join GO.ID genotype.ID > GO.Genotype.ID
In [17]: |;join G1.ID genotype.ID > G1.Genotype.ID
In [18]: ;join G2.ID genotype.ID > G2.Genotype.ID
In [19]: ;join G3.ID genotype.ID > G3.Genotype.ID
In [20]: ;join G4.ID genotype.ID > G4.Genotype.ID
In [21]: ;join G5.ID genotype.ID > G5.Genotype.ID
In [22]: |; join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]: ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [24]: ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [25]: ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [26]: ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]: ;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
```

```
;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc G4.Genotype.ID;wc G5.Genotype
In [28]:
          200 200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]:
         ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype.ID;wc G4.noGenotype.ID;wc G
          7800 7800 46800 GO.noGenotype.ID
          7800 7800 46800 Gl.noGenotype.ID
          7800 7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreeding=false)
In [30]:
         nothing
         df
                = read genotypes("GenNF.txt", numSSBayes)
                                                                                 # with centering
         M_Mats = make_MMats(df,A_Mats,ped,center=true);
         y_Vecs = make_yVecs("sim.phenotype",ped,numSSBayes)
         J_Vecs = make_JVecs(numSSBayes,A_Mats)
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X Mats, W Mats = make XWMats(J Vecs, Z Mats, M Mats, numSSBayes)
                                                                                 # with J
         nothing
```

```
In [31]: | vRes
                = 0.668
         vG
                 = 0.668
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M Mats,y Vecs,J Vecs,Z Mats,X Mats,W Mats,A Mats, numSSBayes,vRes,vG,nIter, outFreq=5000);
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         4956.904947 seconds (23.05 G allocations: 723.785 GB, 6.97% gc time)
In [32]: betaHat
Out[32]: 2-element Array{Float64,1}:
          14.0489
           4.49117
In [33]: using DataFrames
In [34]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',header=false)
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
```

```
In [35]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with epsilon
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n", req1)
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.915
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.968
Out[35]: 0.9148357711064404
In [36]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[36]: -2.6560286123389445
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         req2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # with epsilon
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3f\n", reg2)
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.980
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.082
Out[37]: 0.9798929610052075
         GEBV = aHat1[posAi]
In [38]:
         mean (GEBV)
Out[38]: -1.4936252448025082
```

```
In [39]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 ) # with epsilon
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6.3f\n", req3)
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.877
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.952
Out[39]: 0.8767440924729033
In [40]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: -2.924275543308891
In [41]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.710
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.854
Out[41]: 0.709657446045942
In [42]: GEBV = aHat1[posAi]
         G0GEBV=mean(GEBV)
Out[42]: -4.01839480240412
```

```
In [43]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.779
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.989
Out[43]: 0.7794076373978222
In [44]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[44]: -3.397267553254392
In [45]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         reg5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", req5)
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.770
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 0.989
Out[45]: 0.7695930418856333
In [46]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[46]: -2.8449655371210993
```

```
In [47]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", reg6)
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.770
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 0.995
Out[47]: 0.7699406121106825
In [48]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[48]: -2.341391482794613
In [49]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         req7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", req7)
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.789
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 1.007
Out[49]: 0.7891255466562688
In [50]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[50]: -1.8846615833488458
```

```
In [51]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", reg8)
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.977
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 1.081
Out[51]: 0.9773288484091962
In [52]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[52]: -1.4494907151105982
In [53]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         req9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.974
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 1.097
Out[53]: 0.97388811482882
         GEBV = aHat1[posAi]
In [54]:
         mean (GEBV)
Out[54]: -2.7394771590796063
```

```
In [55]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         req9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.979
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 1.043
Out[55]: 0.9792150839457098
In [56]:
         GEBV = aHat1[posAi]
         mean (GEBV)
Out[56]: -2.24051648218705
In [57]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         req10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req10)
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.972
         SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = 1.059
Out[57]: 0.9723804990091306
         GEBV = aHat1[posAi]
In [58]:
         mean (GEBV)
Out[58]: -1.7859814881920952
```

```
In [59]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req11)
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.976
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 1.065
Out[59]: 0.9758731544196928
In [60]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[60]: -1.4122598125681065
In [61]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg12)
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.962
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 1.070
Out[61]: 0.9615659245809142
         GEBV = aHat1[posAi]
In [62]:
         mean (GEBV)
Out[62]: -1.0552724696620845
```

```
In [63]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req13)
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.977
         SSBRJC from Gibbs - G5.Genotype.ID: regression of TBV on GEBV = 1.081
Out[63]: 0.9773288484091962
In [64]: TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[64]: 12.573878249999998
In [65]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[65]: -1.4494907151105982
In [66]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.690
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 0.855
Out[66]: 0.6901729453567725
In [67]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[67]: -4.051187562489364
```

```
In [68]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.762
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 0.993
Out[68]: 0.7622780105346335
In [69]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[69]: -3.4269278371279133
In [70]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         req15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor15 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg15)
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.752
         SSBRJC from Gibbs - G2.noGenotype.ID: regression of TBV on GEBV = 0.989
Out[70]: 0.7517105034997498
         GEBV = aHat1[posAi]
In [71]:
         mean (GEBV)
Out[71]: -2.8721189742731252
```

```
In [72]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor16 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", req16)
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID: correlation = 0.754
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 0.992
Out[72]: 0.75354484988484
In [73]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[73]: -2.36521537177478
In [74]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         req17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor17 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", req17)
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.777
         SSBRJC from Gibbs - G4.noGenotype.ID: regression of TBV on GEBV = 1.005
Out[74]: 0.7773727581443894
In [75]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[75]: -1.9059279708792758
In [76]: numSSBayes
Out[76]: SSBR.NumSSBayes(54906,45906,9000,40000,39000,1000,200)
```

```
In [77]: J1 = sortrows(J_Vecs.J1)
Out[77]: 45906x1 Array{Float64,2}:
          -0.999676
          -0.997643
          -0.988757
          -0.987284
          -0.985823
          -0.985587
          -0.985551
          -0.985066
          -0.984633
          -0.984498
          -0.984346
          -0.984273
          -0.984156
           6.08279e-17
           6.14904e-17
           6.60531e-17
           6.67238e-17
           6.67549e-17
           7.5108e-17
           8.07893e-17
           8.88438e-17
           9.974e-17
           1.0006e-16
           1.10761e-16
           1.10949e-16
```

```
In [78]: J1[J1 .< 0.0,:]
Out[78]: 43936x1 Array{Float64,2}:
          -0.999676
          -0.997643
          -0.988757
          -0.987284
          -0.985823
          -0.985587
          -0.985551
          -0.985066
          -0.984633
          -0.984498
          -0.984346
          -0.984273
          -0.984156
          -7.21871e-36
          -7.20816e-36
          -7.20816e-36
          -7.20812e-36
          -7.20812e-36
          -7.20395e-36
          -7.05053e-36
          -4.91411e-36
          -2.5921e-65
          -5.33294e-67
          -2.66647e-67
          -1.78216e-67
```

```
In [79]: J1[J1 .> 0.0,:]
Out[79]: 1264x1 Array{Float64,2}:
          8.00262e-52
          8.02614e-52
          1.60052e-51
          1.60476e-51
          1.60523e-51
          1.60523e-51
          2.40174e-51
          3.19885e-51
          3.20388e-51
          3.20953e-51
          4.53675e-51
          4.80349e-51
          6.42512e-51
          6.08279e-17
          6.14904e-17
          6.60531e-17
          6.67238e-17
          6.67549e-17
          7.5108e-17
          8.07893e-17
          8.88438e-17
          9.974e-17
          1.0006e-16
          1.10761e-16
          1.10949e-16
```