Computer Organization & Architecture Review

Zhang Yang 张杨 cszyang@scut.edu.cn Autumn 2021

Chapter 1 (1)

- 知识点1. Computer Types (textbook: 1.1 Computer Types)
 - □ Embedded computers
 - □ Personal computers
 - □ Servers and enterprise systems
 - Supercomputers and grid computers

Chapter 1 (2)

- 知识点2. Five basic functional units of computers (textbook: 1.2 Functional Units)
 - □ Arithmetic and logic unit
 - □ Control unit
 - Memory
 - □ Input unit
 - □ Output unit

Chapter 1 (3)

- 知识点3. Computer Generations (textbook:
 - 1.7 Historical Perspective)
 - □ The first generation: vacuum tubes
 - □ The second generation: transistors
 - ☐ The third generation: integrated circuits
 - □ The fourth generation: LSI&VLSI

Chapter 9 (1)

- 知识点1.Integer Representation (ppt: Integer Representation)
 - □ Signed-magnitude
 - □ Signed one's complement
 - □ Signed two's complement
 - □掌握程度
 - 给定一个整数,正确转换出原码、反码、补码
 - 给定一个整数和机器码制,确定表示范围。
 - 负数原码和补码互相转换: 符号不变, 数值部分求反加1
 - 负数原码和反码之间互相转换: 符号不变,数值部分求反。
 - 负数原码转换成真值
 - 负数补码转换成真值

Chapter 9 (2)

- 知识点2.Addition and Subtraction of Signed Numbers (textbook: 9.1)
 - □ Addition Rule
 - □ Subtraction Rule
 - □ Arithmetic Overflow
 - □ Twos Complement Operation
 - □掌握程度
 - 怎样判别溢出(公式)
 - 给定两个带符号整数,正确计算出两个数的和,并判断是否溢出。
 - 给定两个带符号整数,正确计算出两个数的差,并判断是否溢出。

Chapter 9 (3)

- 知识点3.Ripple Carry Adder (textbook: 9.1)
 - □ 1-bit full adder
 - □ n-bit ripple-carry adder
 - ☐ Hierarchical adder
 - □掌握程度
 - 能够写出1位全加器中和与进位输出的逻辑表达式,并画出逻辑图。
 - ■掌握n位行波进位加法器的原理。
 - 给定一个位数较少的加法器,掌握用来构造较多位数加法器的方法。
 - ■半加器

Chapter 9 (4)

- 知识点4. Gate Delays(textbook: 9.1)
 - □ Delay analysis of n-bit ripple-carry adder
 - □掌握程度
 - 给定位数的行波进位加法器,能够分析各位和以及进位的时间延迟

Chapter 9 (5)

- 知识点5. Carry-lookahead adder(textbook: 9.2)
 - Logic function of Gi and Pi
 - ☐ Figure of Bit-Stage cell (Figure 9.4(a))
 - □ Logic function of 4-bit carry-lookahead adder
 - □ Figure of 4-bit carry-lookahead adder(Figure 9.4(b))
 - □ Delay analysis of n-bit carry-lookahead adder
 - Delay analysis of n-bit ripple-carry adder
 - □掌握程度
 - 熟练写出Gi和Pi的逻辑表达式
 - 能够画出bit-stage cell的逻辑框图
 - 熟练写出4位先行进位加法器中各进位的表达式
 - 能够画出4位先行进位加法器的逻辑框图
 - ■掌握理论上n位先行进位加法器中和与进位的时间延迟

Chapter 9 (6)

- 知识点6. Hierarchical Adder Design (ppt: carry-lookahead adder)
 - □掌握程度
 - 能够用较少位数的先行进位加法器构造更多位数的加法 器并分析出各位和与进位的时间延迟

Chapter 9 (7)

- 知识点7. Sequential Multiplier (textbook: 9.3)
 - □掌握程度
 - 给定两个整数,能够用机器算法计算出结果,写出整个 计算步骤。具体例子参考Figure9.7。

Chapter 9 (8)

- 知识点8. Booth Algorithm (textbook: 9.4)
 - □ Recoding of multiplier
 - Using recoded multiplier to multiply
 - □掌握程度
 - ■使用布斯算法熟练转换乘数
 - ■使用手工算法将转换后的乘数与被乘数相乘

Chapter 9 (9)

- 知识点9. Integer division(textbook: 9.6)
 - Nonrestoring division
 - □掌握程度
 - 给定被除数和除数,使用不恢复余数除法,能够用机器 算法计算出结果,写出整个计算步骤。具体例子参考 Figure 9.25。

Chapter 9 (10)

- 知识点10. Floating-point representation (textbook: 9.7)
 - \Box (-1)^S \times M \times 2^e
 - □ IEEE 754 Standard
 - Single Precision
 - Double Precision
 - Four Special Values
 - □掌握程度
 - 给定一个十进制小数,熟练转换成给定浮点格式的浮点数
 - 给定一个机器数表示的单精度/双精度浮点数,熟练转换成十进制数
 - IEEE单精度浮点数表示方法和表示范围
 - IEEE双精度浮点数表示方法和表示范围

Chapter 9 (11)

- 知识点11. Floating-point Arithmetic Operation (textbook: 9.7)
 - Addition
 - Subtraction
 - Multiplication
 - Division
 - □掌握程度
 - 给定两个浮点数,根据加减运算规则或乘除运算规则计算出结果
 - 重点放在加减法

Chapter 8 (1)

- 知识点1. Basic concepts of memory (ppt: basic concepts)
 - □ Word
 - □ Word length
 - Address
 - □ Address space
 - □ Byte addressable memory
 - □ Byte ordering: big-endian, little-endian
 - Read and write operation of main memory
 - Physical types of memory: semiconductor, magnetic surface, optical
 - □ Main memory capacity
 - ☐ Unit of transfer: internal memory, external memory
 - Access methods: sequential, random, direct access
 - Performance: memory access time, memory cycle time
 - □ Physical characteristic: volatile/nonvolatile, erasable/nonerasable

Chapter 8 (2)

- 知识点2. Static RAM (textbook: 8.2)
 - □ SRAM Chip
 - □掌握程度
 - ■理解半导体存储器读写操作原理
 - ■掌握SRAM芯片的外部引脚

Chapter 8 (3)

- 知识点3. Dynamic RAM (textbook: 8.2)
 - DRAM cell
 - DRAM Refresh
 - □ DRAM Chip
 - □ SDRAM
 - □ Burst Operation
 - Latency
 - Bandwidth
 - DDR&SDRAM
 - □ 掌握程度
 - 掌握DRAM芯片的外部引脚
 - 理解Burst操作
 - 掌握Latency和Bandwidth概念
 - 知道什么是DDR和SDRAM

Chapter 8 (4)

- 知识点4. Structure of Larger Memory (ppt: structure of larger memory)
- Static Memory Systems
 - ■位扩展法
 - ■字扩展法
 - ■字位同时扩展法
- □ 掌握程度
 - ■使用指定的芯片构造大容量存储器,能够分析出使用多少片芯片,画出芯片排列情况,译码器、数据线、地址线、片选线连接正确。
 - ■会计算地址范围,如课本8.10中,所构造出的2M×32的存储器地址范围为00000H-1FFFFH。

Chapter 8 (5)

- 知识点5. Memory Hierarchy (ppt: Memory Hierarchy)
 - □ Why does a computer have memory hierarchy?
 - □ What is memory hierarchy? Figure 8.14
 - □ Principle: locality of reference
 - Temporal Locality
 - Spatial Locality
 - □掌握程度
 - 理解为什么需要存储器层次结构
 - 掌握存储器层次结构图8.14
 - 理解程序访问的局部性原理(时间局部性、空间局部性)

Chapter 8 (6)

- 知识点6. Cache Principle and Policy (textbook: 8.6)
 - □ Purpose of Cache
 - □ Principle of Cache
 - □ Cache Read Operation
 - □ Load Through/Early Restart Policy
 - □ Valid Bit
 - ☐ Hit and Miss
 - □ Replacement Policy
 - LRU
 - Random
 - □ Write Policy
 - □ Dirty Bit
 - □ Cache Capacity

Chapter 8 (7)

- 知识点7. Cache Mapping Schemes (ppt: cache mapping schemes)
 - □ Direct Mapping
 - □ Associative Mapping
 - □ Set Associative Mapping
 - □掌握程度
 - 掌握Direct Mapping的映射函数,使用主存地址访问cache的方法 ,熟练地将主存地址划分成fields,此种映射方式的优缺点。
 - 掌握Associative Mapping的映射方法,使用主存地址访问cache的方法,熟练地将主存地址划分成fields,此种映射方式的优缺点。
 - 掌握Set Associative Mapping的映射函数,使用主存地址访问 cache的方法,熟练地将主存地址划分成fields,此种映射方式的 优缺点。
 - 会使用三种映射方式解决实际问题。

Chapter 8 (8)

- 知识点8. Multilevel Cache (ppt: Multilevel cache)
 - ☐ Hit rate
 - Miss penalty
 - □ Average access time of single-level cache tavg=hC+(1 – h)M
 - □ Average access time of two-level cache $t_{avg} = h_1C_1 + (1 h_1)(h_2C_2 + (1 h_2)M)$

Chapter 8 (9)

- 知识点9. Virtual Memory
 - □ 了解Motivations of VM
 - □掌握What is VM

Chapter 8 (10)

- 知识点10. Virtual Memory
 - □掌握Address Translation
 - □理解Page hit and Page fault
 - □理解TLB的用途
 - □理解Page table and page table entry
 - □了解Page replacement
 - □理解Write policy
 - □理解Internal fragmentation
 - □掌握Page size
 - Smaller vs. bigger

Chapter 8 (11)

- 知识点11. Magnetic Hard Disk (ppt: Secondary Storage)
 - □会计算Capacity
 - □ Data Organization
 - Track
 - Sector
 - □ Access Time
 - Seek time
 - Rotational delay
 - □理解Cylinder概念

Chapter 2 (1)

- 知识点1. Instruction Format (ppt: Instruction Format)
 - □ What is Instruction Set?
 - □ Elements of An Instruction
 - □ Instruction Length
 - Address Field Format
 - Zero-address
 - One-address
 - Two-address
 - Three-address
 - □ Opcode Field Format (Expanding Opcode)
 - ■熟练掌握用扩展操作码方法设计指令格式

Chapter 2 (2)

- 知识点2. Addressing Modes (ppt: Addressing Modes)
 - What is addressing modes?
 - □ Typical Addressing Modes
 - Immediate
 - Absolute
 - Indirect (CISC)
 - Register
 - Register indirect
 - Index mode and variation
 - □掌握程度
 - 针对每种寻址方式,掌握该种方式的操作数存放位置,有效地址如何计算,优缺点。

Chapter 2 (3)

- 知识点3. RISC & CISC (textbook: 2.10,2.11)
 - □ CISC Addressing Modes
 - Autoincrement Mode
 - Autodecrement Mode
 - Relative Mode
 - □ Condition Code
 - N
 - Z
 - C
 - V
 - □ RISC Characteristics
 - □ CISC Characteristics

Chapter 5 (1)

- 知识点1. Execution steps of an instruction (textbook: 5.4,5.5)
 - □掌握程度
 - ■理解图5.8的数据通路
 - 给出数据通路图,能够写出Add、Load、Store、Branch、Subroutine Call指令的执行步骤。
 - ■记住图5.12的指令格式。
 - 结合图5.18,理解指令执行过程中各步骤需要的控制信号。

Chapter 5 (2)

- 知识点2. Hardwired Control Unit(textbook: 5.6)
 - □掌握程度
 - ■会画课本图5.21,并描述原理。

Chapter 5 (3)

- 知识点3. Microprogram Control Unit(ppt: CISC-style Processors)
 - □ Principle of microprogram control: Figure 5.27
 - □ Terminologies
 - Control word : A control word is a word whose individual bits represent the various
 - Microprogram: A sequence of CWs corresponding to the control sequence of a machine instruction constitute the microroutine for that instruction.
 - Control store: The microinstruction for all instructions in the instruction set of a computer are stored in a special memory called control store.
 - ■掌握程度
 - □理解概念,会画课本图5.27,并描述原理。

Chapter 6 (1)

- 知识点1. Basic Concept of Pipeline (ppt: Basic Concepts and Pipeline Organization)
 - □ What is pipelining?
 - □ Principle of pipeline
 - □ Pipeline terminology
 - Pipeline stage
 - Pipeline depth
 - Pipeline latency
 - Pipeline throughput
 - □掌握程度
 - 理解概念
 - 掌握流水线的原理

Chapter 6 (2)

- ■知识点2. Pipeline Issues (ppt: Pipeline Issues and Data Dependencies)
 - □Data Hazard
 - Instruction Hazard or Control Hazard
 - □Structural Hazard
 - □掌握程度
 - ■理解并记住三种hazard的定义
 - ■掌握引起三种hazard的原因

Chapter 6 (3)

- 知识点3. Data Dependencies (ppt: Pipeline Issues and Data Dependencies)
 - □掌握程度
 - ■定义
 - ■解决方法
 - □Operand Forwarding (注意并不是所有的 data hazard都能够用此方法解决)

Chapter 3 (1)

- 知识点1. I/O Interface (ppt: I/O Interface)
 - Constituents of I/O Interface
 - Address decoder
 - Data Register
 - Status Register
 - Control Register
 - Control Circuitry
 - □ Addressing mode of I/O Interface
 - Memory-mapped I/O
 - Isolated I/O

Chapter 3 (2)

- 知识点2. Program Controlled I/O (ppt: Program Controlled I/O)
 - Principle
 - ■Advantage and disadvantage

Chapter 3 (3)

- 知识点3. Interrupt concepts and processing (ppt: Interrupt concept and processing)
 - □掌握What is interrupt?
 - □ 掌握Advantages of interrupt-driven I/O
 - □理解Concepts of Interrupt
 - Interrupt request
 - Interrupt acknowledge
 - Interrupt handler
 - Interrupt latency

Chapter 3 (4)

- 知识点3. Interrupt concepts and processing (ppt: Interrupt concept and processing) (ctd.)
 - Difference between subroutine and interruptservice routine
 - □能够描述Interrupt processing (flowchart)
 - Enabling and disabling interrupt
 - At processor end
 - At device end

Chapter 3 (5)

- 知识点4. Multiple device interrupt system Design Issues (ppt: Multiple device interrupt system Design Issues)
 - □ Identify Interrupt Source
 - Polling (Non-vectored Interrupt)
 - Vectored Interrupt
 - Multiple-level Interrupt (Interrupt Nesting)
 - □ Simultaneous Interrupt
 - Software polling
 - Daisy chain

Chapter 3 (6)

- 知识点5. DMA (ppt: DMA)
 - □理解DMA Operation的三个步骤
 - □ 掌握Registers in a DMA Controller
 - Data register
 - Count register
 - Address register
 - Control register
 - □理解DMA的三种数据传输方式
 - Burst
 - Cycle stealing
 - Transparent

Summary

- ■需要复习的内容
 - □前面总结的知识点
 - □作业习题
 - □课件上的exercise