Gray Level Co-occurance Matrix

261458 & 261753 Computer Vision

#6

3

GLCM

Gray Level Co-occurance Matrix

Asymmetric GLCM

$$C_{ASYM}(i, j, \Delta x, \Delta y) = \begin{cases} \text{The number of pixels where} \\ I_{Q}(x, y) = i \text{ and } I_{Q}(x + \Delta x, y + \Delta y) = j \end{cases}$$

 $I_o(x, y)$: Quantized Image i, j: Intensity Levels (after quantization)

(x, y): Pixel Coordinate $(\Delta x, \Delta y)$: Offset of Neighboring Pixel

GLCM

Gray Level Co-occurance Matrix

R. M. Haralick, K. Shanmugam, I. Dinstein (1973)

- Textural feature
- Using joint probability distributions of pairs of pixels (Second-order histogram)
- Time-consuming

261458 & 261753 Computer Vision

#6

GLCM [Asymmetric]

3	3	2	1	0	0	
3	3	3	2	1	0	
3	3	2	1	0	0	
2	3	2	2	0	0	
1	2	3	1	1	0	
0	1	2	2	0	0	
0	0	0	1	0	0	

Label	0	1	2	3	
Intensity Range	0-63	64-127	128-191	192-255	

STEP 1: Quantize Intensity Level

261458 & 261753 Computer Vision

#6

261458 & 261753 Computer Vision

$$C_{ASYM}(\Delta x = 0, \Delta y = 1) = \begin{bmatrix} 7 & 2 & 3 & i \\ 7 & 2 & 0 & 0 \\ 5 & 2 & -1 \\ 2 & 2 & 2 \\ 0 & 4 & 4 \end{bmatrix} = \begin{bmatrix} (x, y) = i & (x, y + 1) = j \\ 1 & 3 & -1 \end{bmatrix}$$

STEP 2: Count number of occurrence of each pattern of pixel pair

261458 & 261753 Computer Vision

#6

7

j 0 1 2 3 $C_{ASYM}(\Delta x = 0, \Delta y = 1) = \begin{vmatrix} 5 & \boxed{2} & \boxed{2} \\ 2 & \boxed{2} & 2 & \boxed{4} \\ 0 & \boxed{4} & 4 & \boxed{4} \end{vmatrix}$ i(x, y) = i & (x, y+1) = j

> **STEP 2:** Count number of occurrence of each pattern of pixel pair

261458 & 261753 Computer Vision

GLCM [Asymmetric]

STEP 2: Count number of occurrence of each pattern of pixel pair

GLCM [Asymmetric]

$$C_{ASYM} = \begin{bmatrix} 7 & 2 & 0 & 0 \\ 5 & 1 & 2 & 0 \\ 2 & 3 & 2 & 2 \\ 0 & 1 & 4 & 4 \end{bmatrix} \Rightarrow \frac{1}{\sum_{i,j} C} \begin{bmatrix} 7 & 2 & 0 & 0 \\ 5 & 1 & 2 & 0 \\ 2 & 3 & 2 & 2 \\ 0 & 1 & 4 & 4 \end{bmatrix} = \begin{bmatrix} 0.20 & 0.06 & 0 & 0 \\ 0.14 & 0.03 & 0.06 & 0 \\ 0.06 & 0.09 & 0.06 & 0.06 \\ 0 & 0.03 & 0.11 & 0.11 \end{bmatrix}$$

STEP 3: Normalize with $\sum_{i,j} C_{i,j}$

(optional)

GLCM [Asymmetric]

$$C_{ASYM}(\Delta x = 1, \Delta y = -1) = ?$$

$$C_{ASYM}(\Delta x = -1, \Delta y = 1) = ?$$

GLCM

Gray Level Co-occurance Matrix

Symmetric GLCM

$$C_{SYM}(\Delta x, \Delta y) = C_{ASYM}(\Delta x, \Delta y) + C_{ASYM}(-\Delta x, -\Delta y)$$
$$= C_{ASYM}(\Delta x, \Delta y) + \left[C_{ASYM}(\Delta x, \Delta y)\right]^{T}$$

Note that $C_{ASYM}(-\Delta x, -\Delta y) = \left[C_{ASYM}(\Delta x, \Delta y)\right]^T$

261458 & 261753 Computer Vision

12

261458 & 261753 Computer Vision

GLCM [Symmetric]

$$C_{SYM} (\Delta x = 0, \Delta y = 1)$$
$$= C_{ASYM} (0,1) + [C_{ASYM} (0,1)]^T$$

$$= \begin{bmatrix} 7 & 2 & 0 & 0 \\ 5 & 1 & 2 & 0 \\ 2 & 3 & 2 & 2 \\ 0 & 1 & 4 & 4 \end{bmatrix} + \begin{bmatrix} 7 & 5 & 2 & 0 \\ 2 & 1 & 3 & 1 \\ 0 & 2 & 2 & 4 \\ 0 & 0 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 14 & 7 & 2 & 0 \\ 7 & 2 & 5 & 1 \\ 2 & 5 & 4 & 6 \\ 0 & 1 & 6 & 8 \end{bmatrix}$$

$$= \begin{bmatrix} 0.20 & 0.10 & 0.03 & 0 \\ 0.10 & 0.03 & 0.07 & 0.01 \\ 0.03 & 0.07 & 0.06 & 0.09 \\ 0 & 0.01 & 0.09 & 0.11 \end{bmatrix}$$
 (Normalized)

GLCM [Polar Notation]

 $C(d,\theta)$

$$C(d, \theta = 0^\circ) = C(\Delta x = d, \Delta y = 0)$$

$$C(d, \theta = 45^{\circ}) = C(\Delta x = d, \Delta y = d)$$

$$C(d, \theta = 90^\circ) = C(\Delta x = 0, \Delta y = d)$$

$$C(d, \theta = 135^\circ) = C(\Delta x = -d, \Delta y = d)$$

Point of interest

261458 & 261753 Computer Vision

#6

#6

11

261458 & 261753 Computer Vision

1/

Statistical Properties of GLCM

1. Maximum probability $\max_{i,j} C(i,j)$

Measure the strongest response of GLCM.

2. Angular Second Moment $\sum_{i,j} C^2(i,j)$ [Uniformity, Energy]

Measure of uniformity. Uniformity is 1 (maximum) for a constant image

3. Contrast $\sum_{i,j} (i-j)^2 C(i,j)$

Measure of intensity contrast between a pixel and its neighbor.

Note that C(i, j) is a normalized GLCM

261458 & 261753 Computer Vision

#6

Statistical Properties of GLCM

4. Correlation $\sum_{i,j} \frac{(i-\mu_1)(j-\mu_2)C(i,j)}{\sigma_1\sigma_2}$

Measure of how correlated a pixel is to its neighbor. Range of correlation is [-1,1].

$$C = \begin{bmatrix} 7 & 2 & 0 & 0 \\ 5 & 1 & 2 & 0 \\ 2 & 3 & 2 & 2 \\ 0 & 1 & 4 & 4 \end{bmatrix} \qquad \mu_1 = \sum_{i} \left(i \cdot \sum_{j} C(i, j) \right) \qquad \sigma_1^2 = \sum_{i} \left((i - \mu_1)^2 \sum_{j} C(i, j) \right) \qquad \mu_2 = \sum_{j} \left(j \cdot \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{j} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{j} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{j} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{j} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{j} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{j} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{j} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{j} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{j} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{j} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{j} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{j} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_$$

Statistical Properties of GLCM

4. Correlation $\sum_{i,j} \frac{(i-\mu_1)(j-\mu_2)C(i,j)}{\sigma_1\sigma_2}$

Measure of how correlated a pixel is to its neighbor. Range of correlation is [-1,1].

$$C = \begin{bmatrix} 7 & 2 & 0 & 0 \\ 5 & 1 & 2 & 0 \\ \hline 2 & 3 & 2 & 2 \\ \hline 0 & 1 & 4 & 4 \end{bmatrix} \qquad \mu_1 = \sum_{i} \left(i \cdot \sum_{j} C(i, j) \right) \qquad \sigma_1^2 = \sum_{i} \left((i - \mu_1)^2 \sum_{j} C(i, j) \right)$$

$$\mu_2 = \sum_{j} \left(j \cdot \sum_{i} C(i, j) \right) \qquad \sigma_2^2 = \sum_{j} \left((j - \mu_2)^2 \sum_{i} C(i, j) \right)$$

261458 & 261753 Computer Vision

ŧ6

Statistical Properties of GLCM

5. Homogeneity
$$\sum_{i,j} \frac{C(i,j)}{1+|i-j|}$$

Measure spatial closeness. Homogeneity is maximum when GLCM is a diagonal matrix.

6. Entropy
$$-\sum_{i,j} C(i,j) \log_2 C(i,j)$$

Measure a randomness. Entropy is maximum when all elements in GLCM are equal

10

7. Variance

- **13.** Inverse Difference Moment
- 8. Sum Average
- 14. Information Measure of Correlation
- 9. Sum Variance
 - ntropy 15. Maximal Correlation Coefficient
- 10. Sum Entropy
- 11. Difference Variance
- 12. Difference Entropy

http://www.cis.rit.edu/~cnspci/references/dip/segmentation/haralick1973.pdf

261458 & 261753 Computer Vision

#6

- $\begin{vmatrix} 1 \end{vmatrix} \quad C_{SYM} \left(\Delta x = 1, \Delta y = 0 \right)$
- $\boxed{2} \quad C_{SYM} (\Delta x = 0, \Delta y = 1)$

261458 & 261753 Computer Vision

#6

261438 & 261733 Computer Visio

GLCM

Image

261458 & 261753 Computer Vision

Images

#6

 $C_{SYM} (\Delta x = 0, \Delta y = 1)$

Maximum probability 1 2

Uniformity 1 2

Contrast 1 2

Homogeneity 1 2

261458 & 261753 Computer Vision

261458 & 261753 Computer Vision

#6

261458 & 261753 Computer Vision

#6

261458 & 261753 Computer Vision

#6

GLCM Based Feature Extraction

261458 & 261753 Computer Vision

#6