DECIDABLE AND UNDECIDABLE

PROBLEMS

 Assume we have an arbitrary problem and we don't know whether it is decidable

- Assume we have an arbitrary problem and we don't know whether it is decidable
- Assume further we are able to find a transformation from HALT to our new problem

- Assume we have an arbitrary problem and we don't know whether it is decidable
- Assume further we are able to find a transformation from HALT to our new problem
- Is our problem decidable or undecidable?

- Assume we have an arbitrary problem and we don't know whether it is decidable
- Assume further we are able to find a transformation from HALT to our new problem
- Is our problem decidable or undecidable?
- \bigcirc Notice (important): known problem \rightarrow unknown problem

$$E = \{ \langle \mathcal{A} \rangle \, | \, \varepsilon \in L(\mathcal{A}) \}$$

Definition

$$E = \{ \langle \mathcal{A} \rangle \mid \varepsilon \in L(\mathcal{A}) \}$$

 \bigcirc Is *E* decidable or not?

$$E = \{ \langle \mathcal{A} \rangle \mid \varepsilon \in L(\mathcal{A}) \}$$

- Is *E* decidable or not?
- \bigcirc consider an instance of HALT: $\langle A, x \rangle$

$$E = \{ \langle \mathcal{A} \rangle \mid \varepsilon \in L(\mathcal{A}) \}$$

- Is *E* decidable or not?
- \bigcirc consider an instance of HALT: $\langle A, x \rangle$
- \bigcirc define \mathcal{A}' on input y

$$E = \{ \langle \mathcal{A} \rangle \mid \varepsilon \in L(\mathcal{A}) \}$$

- Is *E* decidable or not?
- \bigcirc consider an instance of HALT: $\langle A, x \rangle$
- \bigcirc define \mathcal{A}' on input y
 - 1. erase y

$$E = \{ \langle \mathcal{A} \rangle \mid \varepsilon \in L(\mathcal{A}) \}$$

- Is *E* decidable or not?
- \bigcirc consider an instance of HALT: $\langle A, x \rangle$
- \bigcirc define \mathcal{A}' on input y
 - 1. erase y
 - 2. write *x*

$$E = \{ \langle \mathcal{A} \rangle \mid \varepsilon \in L(\mathcal{A}) \}$$

- Is *E* decidable or not?
- \bigcirc consider an instance of HALT: $\langle A, x \rangle$
- \bigcirc define \mathcal{A}' on input y
 - 1. erase y
 - 2. write *x*
 - 3. run \mathcal{A} on x

$$E = \{ \langle \mathcal{A} \rangle \mid \varepsilon \in L(\mathcal{A}) \}$$

- Is *E* decidable or not?
- \bigcirc consider an instance of HALT: $\langle A, x \rangle$
- \bigcirc define \mathcal{A}' on input y
 - 1. erase y
 - 2. write *x*
 - 3. run \mathcal{A} on x
 - 4. accept y if \mathcal{A} halts on x

$$\bigcirc L(\mathcal{A}') = \begin{cases} \Sigma^* & \text{if } \mathcal{A} \text{ halts on } x, \\ \emptyset & \text{otherwise} \end{cases}$$

$$\bigcirc L(\mathcal{A}') = \begin{cases} \Sigma^* & \text{if } \mathcal{A} \text{ halts on } x, \\ \emptyset & \text{otherwise} \end{cases}$$

 \bigcirc Deciding HALT: Suppose *E* decidable

$$\bigcirc L(\mathcal{A}') = \begin{cases} \Sigma^* & \text{if } \mathcal{A} \text{ halts on } x, \\ \emptyset & \text{otherwise} \end{cases}$$

- Deciding HALT: Suppose *E* decidable
 - construct A'

$$\bigcirc L(\mathcal{A}') = \begin{cases} \Sigma^* & \text{if } \mathcal{A} \text{ halts on } x, \\ \emptyset & \text{otherwise} \end{cases}$$

- O Deciding HALT: Suppose *E* decidable
 - construct A'
 - decide whether \mathcal{A}' accepts ε

$$\bigcirc L(\mathcal{A}') = \begin{cases} \Sigma^* & \text{if } \mathcal{A} \text{ halts on } x, \\ \emptyset & \text{otherwise} \end{cases}$$

- O Deciding HALT: Suppose *E* decidable
 - construct \mathcal{A}'
 - decide whether \mathcal{A}' accepts ε
 - $\circ \Rightarrow L(\mathcal{A}') \neq \emptyset \Rightarrow \mathcal{A} \text{ halts (Contradiction)}$

Undecidable Problems

- \bigcirc Reg_a = { $\langle \mathcal{A} \rangle \mid \mathcal{A}$ accepts regular set}
- \bigcirc CFL_a = { $\langle \mathcal{A} \rangle \mid \mathcal{A} \text{ accepts CFL}}$
- \bigcirc Rec_a = { $\langle A \rangle \mid A$ accepts recursive set}

REDUCTION

How to decide Undecidability?

1. Diagonalisation (we have proven the correctness of this strategy)

How to decide Undecidability?

- 1. Diagonalisation (we have proven the correctness of this strategy)
- 2. Reduction (we saw an example)
 - Idea: reducing known undecidable problem to new one

Effectively Computable

Definition

function f effectively computable iff f computable by total Turing machine that outputs f(x) on input x

Effectively Computable

Definition

function f effectively computable iff f computable by total Turing machine that outputs f(x) on input x

Examples:

- addition, multiplication
- prime numbers

Reduction

Definition

 $A \subseteq \Sigma^*, B \subseteq \Delta^*$

 $\sigma: \Sigma^* \to \Delta^*$ reduction of *A* to *B* iff

- \circ σ total, effectively computable
- $\bigcirc \ \forall x \in \Sigma^* : x \in A \Leftrightarrow \sigma(x) \in B$

Reduction

Definition

 $A \subseteq \Sigma^*, B \subseteq \Delta^*$

 $\sigma: \Sigma^* \to \Delta^*$ reduction of *A* to *B* iff

- \circ σ total, effectively computable
- $\bigcirc \ \forall x \in \Sigma^* : x \in A \Leftrightarrow \sigma(x) \in B$

Definition

 $A \subseteq \Sigma^*, B \subseteq \Delta^*$

A reducible to *B* iff reduction of *A* to *B* exists ($A \leq_{\sigma} B$)

Theorem

- 1. $A \leq_{\sigma} B$, B (recursively) enumerable $\Rightarrow A$ (recursively) enumerable
- **2.** $A \leq_{\sigma} B$, A not (recursively) enumerable $\Rightarrow B$ not (recursively) enumerable

Theorem

- 1. $A \leq_{\sigma} B$, B (recursively) enumerable $\Rightarrow A$ (recursively) enumerable
- **2.** $A \leq_{\sigma} B$, A not (recursively) enumerable $\Rightarrow B$ not (recursively) enumerable

Proof:

Theorem

- 1. $A \leq_{\sigma} B$, B (recursively) enumerable $\Rightarrow A$ (recursively) enumerable
- 2. $A \leq_{\sigma} B$, A not (recursively) enumerable $\Rightarrow B$ not (recursively) enumerable

Proof:

 \bigcirc $A \leq_{\sigma} B$ via σ , B (recursively) enumerable

Theorem

- 1. $A \leq_{\sigma} B$, B (recursively) enumerable $\Rightarrow A$ (recursively) enumerable
- 2. $A \leq_{\sigma} B$, A not (recursively) enumerable $\Rightarrow B$ not (recursively) enumerable

Proof:

- \bigcirc $A \leq_{\sigma} B$ via σ , B (recursively) enumerable
- \bigcirc *M* TM with B = L(M)

 $\bigcirc\ A \leq_{\sigma} B$, B (recursively) enumerable, $\mathcal A$ TM with $B=L(\mathcal A)$

- \bigcirc $A \leq_{\sigma} B$, B (recursively) enumerable, \mathcal{A} TM with $B = L(\mathcal{A})$
 - \bigcirc define TM N on input x

- \bigcirc $A \leq_{\sigma} B$, B (recursively) enumerable, \mathcal{A} TM with $B = L(\mathcal{A})$
 - \bigcirc define TM N on input x
 - compute $\sigma(x)$

- \bigcirc $A \leq_{\sigma} B$, B (recursively) enumerable, \mathcal{A} TM with $B = L(\mathcal{A})$
- \bigcirc define TM N on input x
 - compute $\sigma(x)$
 - run \mathcal{A} on $\sigma(x)$

- \bigcirc $A \leq_{\sigma} B$, B (recursively) enumerable, \mathcal{A} TM with $B = L(\mathcal{A})$
- \bigcirc define TM N on input x
 - compute $\sigma(x)$
 - run \mathcal{A} on $\sigma(x)$
 - o accept if A accepts

- \bigcirc $A \leq_{\sigma} B$, B (recursively) enumerable, \mathcal{A} TM with $B = L(\mathcal{A})$
- \bigcirc define TM N on input x
 - compute $\sigma(x)$
 - run \mathcal{A} on $\sigma(x)$
 - accept if A accepts
- \bigcirc *N* accepts $x \Leftrightarrow A$ accepts $\sigma(x) \Leftrightarrow \sigma(x) \in B \Leftrightarrow x \in A$

Definition

 $\text{FIN} = \left\{ \left\langle \mathcal{A} \right\rangle \mid \left| L(\mathcal{A}) \right| < \infty \right\}$

Definition

$$FIN = \{ \langle \mathcal{A} \rangle \, | \, |L(\mathcal{A})| < \infty \}$$

Lemma

FIN and $\overline{\text{FIN}}$ are not recursively enumerable.

Definition

$$FIN = \{ \langle \mathcal{A} \rangle \mid |L(\mathcal{A})| < \infty \}$$

Lemma

FIN and $\overline{\text{FIN}}$ are not recursively enumerable.

Definition

$$FIN = \{ \langle \mathcal{A} \rangle \mid |L(\mathcal{A})| < \infty \}$$

Lemma

FIN and $\overline{\text{FIN}}$ are not recursively enumerable.

Proof:

 \bigcirc Plan: Reduction from $\overline{\text{HALT}}$

Definition

$$FIN = \{ \langle \mathcal{A} \rangle \mid |L(\mathcal{A})| < \infty \}$$

Lemma

FIN and $\overline{\text{FIN}}$ are not recursively enumerable.

- \bigcirc Plan: Reduction from $\overline{\text{HALT}}$
- \bigcirc we need: σ with $\langle \mathcal{A}, x \rangle \in \overline{\text{HALT}} \Leftrightarrow \sigma(\langle \mathcal{A}, x \rangle) \in \text{FIN}$

Definition

$$FIN = \{ \langle \mathcal{A} \rangle \, | \, |L(\mathcal{A})| < \infty \}$$

Lemma

FIN and $\overline{\text{FIN}}$ are not recursively enumerable.

- \bigcirc Plan: Reduction from $\overline{\text{HALT}}$
- \bigcirc we need: σ with $\langle \mathcal{A}, x \rangle \in \overline{\text{HALT}} \Leftrightarrow \sigma(\langle \mathcal{A}, x \rangle) \in \text{FIN}$
- \bigcirc i.e. we need TM \mathcal{A}' with (\mathcal{A} does not halt on $x \Leftrightarrow L(\mathcal{A}')$ finite)

- Reduction from $\overline{\text{HALT}}$, i.e. we need TM \mathscr{A}' with (\mathscr{A} does not halt on $x \Leftrightarrow L(\mathscr{A}')$ finite)
- \bigcirc define \mathcal{A}'

- Reduction from \overline{HALT} , i.e. we need TM \mathscr{A}' with (\mathscr{A} does not halt on $x \Leftrightarrow L(\mathscr{A}')$ finite)
- \bigcirc define \mathcal{A}'
 - 1. erase input

- Reduction from $\overline{\text{HALT}}$, i.e. we need TM \mathscr{A}' with (\mathscr{A} does not halt on $x \Leftrightarrow L(\mathscr{A}')$ finite)
- \bigcirc define \mathcal{A}'
 - 1. erase input
 - 2. write x on tape

- Reduction from $\overline{\text{HALT}}$, i.e. we need TM \mathscr{A}' with (\mathscr{A} does not halt on $x \Leftrightarrow L(\mathscr{A}')$ finite)
- \bigcirc define \mathcal{A}'
 - 1. erase input
 - 2. write x on tape
 - 3. run \mathcal{A} on x

- Reduction from $\overline{\text{HALT}}$, i.e. we need TM \mathscr{A}' with (\mathscr{A} does not halt on $x \Leftrightarrow L(\mathscr{A}')$ finite)
- \bigcirc define \mathcal{A}'
 - 1. erase input
 - 2. write *x* on tape
 - 3. run \mathcal{A} on x
 - 4. accept if A halts

- Reduction from $\overline{\text{HALT}}$, i.e. we need TM \mathscr{A}' with (\mathscr{A} does not halt on $x \Leftrightarrow L(\mathscr{A}')$ finite)
- \bigcirc define \mathcal{A}'
 - 1. erase input
 - 2. write *x* on tape
 - 3. run \mathcal{A} on x
 - 4. accept if A halts
- \bigcirc \mathscr{A} does not halt on $x \Leftrightarrow L(\mathscr{A}')$ finite

- Reduction from $\overline{\text{HALT}}$, i.e. we need TM \mathscr{A}' with (\mathscr{A} does not halt on $x \Leftrightarrow L(\mathscr{A}')$ finite)
- \bigcirc define \mathcal{A}'
 - 1. erase input
 - 2. write *x* on tape
 - 3. run \mathcal{A} on x
 - 4. accept if A halts
- \bigcirc \mathscr{A} does not halt on $x \Leftrightarrow L(\mathscr{A}')$ finite
- \circ σ total, effectively computable since
 - \circ $\sigma(\langle \mathcal{A}, x \rangle) = \mathcal{A}$ works

RICE'S THEOREM

Non-trivial Properties of Recursively Enumerable Sets

Definition

 ${\mathcal R}$ set of all recursively enumerable sets over Σ

 \bigcirc $P:\mathcal{R} \to \{\text{true, false}\}$ non-trivial property iff P is surjective

(the property is neither universally true nor false)

Non-trivial Properties of Recursively Enumerable Sets

Definition

 ${\mathcal R}$ set of all recursively enumerable sets over Σ

 \bigcirc $P: \mathcal{R} \rightarrow \{\text{true, false}\}$ non-trivial property iff P is surjective

(the property is neither universally true nor false)

Examples: finiteness, regularity, context-freedom, completeness

Theorem (Rice)

Every non-trivial property of the recursively enumerable sets is undecidable.

Theorem (Rice)

Every non-trivial property of the recursively enumerable sets is undecidable.

Proof:

 \bigcirc *P* non-trivial property (w.l.o.g. $P(\emptyset)$ = false)

Theorem (Rice)

Every non-trivial property of the recursively enumerable sets is undecidable.

- \bigcirc *P* non-trivial property (w.l.o.g. $P(\emptyset)$ = false)
- \bigcirc *P* non-trivial $\Rightarrow \exists A \in \Re : P(A) = \mathsf{true}$

Theorem (Rice)

Every non-trivial property of the recursively enumerable sets is undecidable.

- \bigcirc *P* non-trivial property (w.l.o.g. $P(\emptyset)$ = false)
- \bigcirc P non-trivial $\Rightarrow \exists A \in \Re : P(A) = \mathsf{true}$
- \bigcirc K TM accepting A

Theorem (Rice)

Every non-trivial property of the recursively enumerable sets is undecidable.

- \bigcirc *P* non-trivial property (w.l.o.g. $P(\emptyset)$ = false)
- \bigcirc P non-trivial $\Rightarrow \exists A \in \Re : P(A) = \mathsf{true}$
- *K* TM accepting *A*
- Plan: Reduction of HALT to $\{M | P(L(M)) = \text{true}\}$

 \bigcirc Reduction: HALT to $\{M | P(L(M)) = \text{true}\}$

- \bigcirc Reduction: HALT to $\{M | P(L(M)) = \text{true}\}$
- $\bigcirc M' = \sigma(\langle M, x \rangle)$ with input *y*

- \bigcirc Reduction: HALT to $\{M | P(L(M)) = \text{true}\}$
- $\bigcirc M' = \sigma(\langle M, x \rangle)$ with input *y*
 - 1. save y on an empty tape

- \bigcirc Reduction: HALT to $\{M | P(L(M)) = \text{true}\}$
- $\bigcirc M' = \sigma(\langle M, x \rangle)$ with input *y*
 - 1. save y on an empty tape
 - 2. write x on a tape

- \bigcirc Reduction: HALT to $\{M | P(L(M)) = \text{true}\}$
- $\bigcirc M' = \sigma(\langle M, x \rangle)$ with input *y*
 - 1. save y on an empty tape
 - 2. write x on a tape
 - 3. $\operatorname{run} M \operatorname{on} x$

- Reduction: HALT to $\{M | P(L(M)) = \text{true}\}$
- $\bigcirc M' = \sigma(\langle M, x \rangle)$ with input *y*
 - 1. save y on an empty tape
 - 2. write x on a tape
 - 3. $\operatorname{run} M \operatorname{on} x$
 - 4. M halts on $x \Rightarrow \text{run } K$ on y and accept iff K accepts

- \bigcirc Reduction: HALT to $\{M | P(L(M)) = \text{true}\}$
- $\bigcirc M' = \sigma(\langle M, x \rangle)$ with input *y*
 - 1. save *y* on an empty tape
 - 2. write *x* on a tape
 - 3. $\operatorname{run} M \operatorname{on} x$
 - 4. *M* halts on $x \Rightarrow \text{run } K$ on y and accept iff K accepts
- \bigcirc *M* halts on $x \Rightarrow L(M') = A \Rightarrow P(L(M')) = P(A) = true$

- \bigcirc Reduction: HALT to $\{M | P(L(M)) = \text{true}\}$
- $\bigcirc M' = \sigma(\langle M, x \rangle)$ with input *y*
 - 1. save *y* on an empty tape
 - 2. write x on a tape
 - 3. run *M* on *x*
 - 4. *M* halts on $x \Rightarrow \text{run } K \text{ on } y \text{ and accept iff } K \text{ accepts}$
- \bigcirc M halts on $x \Rightarrow L(M') = A \Rightarrow P(L(M')) = P(A) = true$
- \bigcirc M loops on $x \Rightarrow L(M') = \emptyset \Rightarrow P(L(M')) = P(\emptyset) = false$

Monotone Properties

Definition

assume: false ≤ true

 $P:\mathcal{R} \to \{\text{false, true}\}\ \text{monotone iff}$

$$\forall A,B\in \mathcal{R}:A\subseteq B\Rightarrow P(A)\leq P(B).$$

Monotone Properties

Definition

assume: false ≤ true

 $P: \mathcal{R} \to \{\text{false, true}\}\ \text{monotone iff}$

$$\forall A,B\in \mathcal{R}:\,A\subseteq B\Rightarrow P(A)\leq P(B).$$

Examples:

 \bigcirc infinity, equality to Σ^* are monotone

Monotone Properties

Definition

assume: false ≤ true

 $P: \mathcal{R} \to \{\text{false, true}\}\ \text{monotone iff}$

$$\forall A,B\in \mathcal{R}:\,A\subseteq B\Rightarrow P(A)\leq P(B).$$

Examples:

- \bigcirc infinity, equality to Σ^* are monotone
- of initeness, emptyness not

Rice's Theorem Part II

Theorem

No non-monotone propety of recursively enumerable sets is semidecidable

(i.e. P non-monotone property $\Rightarrow T_P = \{M | P(L(M)) = \text{true}\}\$ not recusively enumerable)

Rice's Theorem Part II

Theorem

No non-monotone propety of recursively enumerable sets is semidecidable

(i.e. P non-monotone property $\Rightarrow T_P = \{M | P(L(M)) = \text{true}\}\$ not recusively enumerable)

we omit the proof

UNDECIDABLE PROBLEMS ABOUT

CFLs

Emptyness Problem for CFLs

○ decidable or undecidable?

Emptyness Problem for CFLs

- o decidable or undecidable?
- Pumping-Lemma ⇒ if CFL not empty, then it contains short word

Emptyness Problem for CFLs

- O decidable or undecidable?
- Pumping-Lemma ⇒ if CFL not empty, then it contains short word
- \bigcirc CYK-Algo \Rightarrow test all short words

Emptyness Problem for CFLs

- o decidable or undecidable?
- Pumping-Lemma ⇒ if CFL not empty, then it contains short word
- \bigcirc CYK-Algo \Rightarrow test all short words
- Emptyness problem for CFLs decidable (procedure not nice)

Backward-Chaining

better algorithm for deciding $\ensuremath{\mathsf{EMPTY}_{\mathsf{CFL}}}$ by considering the grammar w.l.o.g. in $\ensuremath{\mathsf{CNF}}$

1. mark all terminal symbols

Backward-Chaining

better algorithm for deciding EMPTY $_{\mbox{\footnotesize CFL}}$ by considering the grammar w.l.o.g. in CNF

- 1. mark all terminal symbols
- if right hand side of production is completely marked then mark left-hand side and all occurrences of this left-hand side in the right-hand side

Backward-Chaining

better algorithm for deciding EMPTY $_{\mbox{\footnotesize CFL}}$ by considering the grammar w.l.o.g. in CNF

- 1. mark all terminal symbols
- if right hand side of production is completely marked then mark left-hand side and all occurrences of this left-hand side in the right-hand side
- if nothing newly marked then return false if S is marked, true otherwise else goto (2)

Chomsky Hierarchy in Grammars

Туре о	Туре 1	Type 2	Туре 3
unrestricted	context-sensitive	context-free	right-linear
TM		PDA	DFA/NFA

Chomsky Hierarchy in Grammars

Туре о	Type 1	Type 2	Туре 3
unrestricted	context-sensitive	context-free	right-linear
TM		PDA	DFA/NFA

 \bigcirc context-sensitive |LHS| \leq |RHS|

Chomsky Hierarchy in Grammars

Туре о	Туре 1	Type 2	Туре 3
unrestricted	context-sensitive	context-free	right-linear
TM		PDA	DFA/NFA

- \bigcirc context-sensitive $|LHS| \le |RHS|$
- \bigcirc right-linear $A \rightarrow aB$

Syntax of While-Programs

$$Var = \{x, y, \dots\} \text{ ranging over } \mathbb{N} \text{ and } \circ \in \{<, >, \le, \ge, =, \ne\}$$

- 1. simple assignment x := 0, x := y + 1, x := y
- **2**. sequential composition p; q
- 3. conditional if $x \circ y$ then p else q
- 4. for loop for y do p
- 5. while loop for $x \circ y$ do p

Semantics of While-Programs

Definition

- \circ σ state/environment: σ : Var $\rightarrow \mathbb{N}$
- Env set of all environments
- \circ $\sigma[x \leftarrow a](x) = a \text{ and } \sigma[x \leftarrow a](y) = \sigma(y) \text{ for } y \neq x$

$$\bigcirc \ \llbracket x := 0 \rrbracket_{\sigma} = \sigma[x \leftarrow 0]$$

- $\bigcirc \ \llbracket x := 0 \rrbracket_{\sigma} = \sigma[x \leftarrow 0]$
- $\bigcirc \ \llbracket x := y \rrbracket_{\sigma} = \sigma[x \leftarrow \sigma(y)]$

- \bigcirc $[x := 0]_{\sigma} = \sigma[x \leftarrow 0]$
- $\bigcirc \ \llbracket x := y \rrbracket_{\sigma} = \sigma[x \leftarrow \sigma(y)]$
- $\bigcirc \ \llbracket x := y+1 \rrbracket_{\sigma} = \sigma[x \leftarrow \sigma(y)+1]$

- $\bigcirc [x := 0]_{\sigma} = \sigma[x \leftarrow 0]$
- $\bigcirc \ \llbracket x := y \rrbracket_{\sigma} = \sigma[x \leftarrow \sigma(y)]$
- $\bigcirc \ \llbracket x := y+1 \rrbracket_{\sigma} = \sigma[x \leftarrow \sigma(y)+1]$
- $\bigcirc \llbracket p;q \rrbracket_{\sigma} = \llbracket q \rrbracket_{\sigma}(\llbracket p \rrbracket_{\sigma})$

 \bigcirc [for y do p]] $_{\sigma} = [p]]_{\sigma}^{\sigma(y)}$


```
\bigcirc \llbracket x := 0 \rrbracket_{\sigma} = \sigma [x \leftarrow 0]
\bigcirc [x := y]_{\sigma} = \sigma[x \leftarrow \sigma(y)]
\bigcirc \llbracket x := y + 1 \rrbracket_{\sigma} = \sigma[x \leftarrow \sigma(y) + 1]
\bigcirc \llbracket p;q \rrbracket_{\sigma} = \llbracket q \rrbracket_{\sigma}(\llbracket p \rrbracket_{\sigma})
\bigcirc \text{ [if } x \circ y \text{ then } p \text{ else } q \text{]]}_{\sigma} = \begin{cases} \llbracket p \rrbracket_{\sigma} & \text{if } \sigma(x) \circ \sigma(y), \\ \llbracket q \rrbracket_{\sigma} & \text{otherwise.} \end{cases}
\bigcirc [for y do p]]_{\sigma} = [p]]_{\sigma}^{\sigma(y)}
\bigcirc [while x \circ y do p]]_{\sigma} =
          \begin{cases} \llbracket p \rrbracket_{\sigma}^{n} & \text{if } n = \min\{k \in \mathbb{N} | \llbracket p \rrbracket_{\sigma}^{k} \text{ defined and } \\ \neg (\llbracket p \rrbracket_{\sigma}^{k}(x) \circ \llbracket p \rrbracket_{\sigma}^{k}(y)) \} \\ \text{undefined otherwise.} \end{cases}
```

μ -recursion and while-programmes

Theorem

- 1. μ -recursive functions are as powerful as while-programmes and v.v.
- **2.** *primitive recursive functions are as powerful as for-programmes and v.v.*

