Regression_Models_Course_Project

Yanyuan Zhu

Aug 28, 2020

Question

You work for *Motor Trend*, a magazine about the automobile industry. Looking at a data set of a collection of cars, they are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome). They are particularly interested in the following two questions:

- "Is an automatic or manual transmission better for MPG"
- "Quantify the MPG difference between automatic and manual transmissions"

Quick answers

- An manual transmission better for MPG
- Weight and drive speed affect mpg
 - Weight increase leads to mpg decrease
 - * With weight increase 1000 lbs, the mpg decease by about 4 for automatic cars, and about 6 for manual cars
 - Drive speed increase ledas to mpg increase
 - * With speed increase 1 second per 1/4 mile, the mpg increase about 0.8 for automatic cars, and about 1.4 for manual cars

Environment settings

```
library(car)
## Loading required package: carData
data(mtcars)
head(mtcars)
                      mpg cyl disp hp drat
                                               wt qsec vs am gear carb
## Mazda RX4
                               160 110 3.90 2.620 16.46
                     21.0
## Mazda RX4 Wag
                     21.0
                               160 110 3.90 2.875 17.02
                                                                       4
                               108 93 3.85 2.320 18.61
## Datsun 710
                     22.8
                                                                       1
                            4
## Hornet 4 Drive
                     21.4
                            6
                               258 110 3.08 3.215 19.44
                                                          1
                                                                  3
                                                                       1
                                                                  3
                                                                       2
## Hornet Sportabout 18.7
                               360 175 3.15 3.440 17.02
                               225 105 2.76 3.460 20.22 1
## Valiant
                     18.1
                                                                       1
```

And each column class is following

```
str(mtcars)
```

```
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
```

```
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
```

EDA

There are 10 variables that may effect dependent variable mpg, we first check the correlations

```
cor(mtcars$mpg, mtcars[,-1])
```

```
## cyl disp hp drat wt qsec vs
## [1,] -0.852162 -0.8475514 -0.7761684 0.6811719 -0.8676594 0.418684 0.6640389
## am gear carb
## [1,] 0.5998324 0.4802848 -0.5509251
```

So that for the 10 independent variables - 5 may be positively related, including drat, qsec, vs, am, gear - 5 may be negatively related, including cyl, disp, hp, wt, carb

Which transmission is better for MPG

We need to change am class from numeric to factor

Besides, check column meanings using ?mtcars, we see am=0 denotes automatic transmission, and am=1 for manual transmission

```
mtcars$am = factor(mtcars$am)
levels(mtcars$am) <- c("Automatic", "Manual")</pre>
```

Conclusion: A box plot with transmission type in x axis and mpg in y axis shows that in genral, the **manual** type autos drive more miles per gallon.

```
boxplot(mtcars$mpg ~ mtcars$am, data = mtcars, xlab="transmission type", ylab="miles per gallon", main
```

mpg analysis by transmission type

MPG difference between automatic and manual transmissions - Quantify analysis

```
fit <- step(lm(mpg ~ . , data = mtcars), trace = 0, steps = 10000)
summary(fit)
##
## Call:
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
                           1.4110 4.6610
  -3.4811 -1.5555 -0.7257
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                 9.6178
                            6.9596
                                     1.382 0.177915
  (Intercept)
## wt
                -3.9165
                            0.7112
                                    -5.507 6.95e-06 ***
                 1.2259
                            0.2887
                                     4.247 0.000216 ***
## qsec
## amManual
                 2.9358
                            1.4109
                                     2.081 0.046716 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
So that we get 3 out of 10 independent variables of importance to mpg change: wt, qsec, and am, with
R^2 = 0.85
```

Furthermore, we examine $mpg \sim wt + qest$ correlation with am

```
fit2 <- lm(mpg ~ am:wt + am:qsec, data = mtcars)
summary(fit2)
##
## Call:
## lm(formula = mpg ~ am:wt + am:qsec, data = mtcars)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -3.9361 -1.4017 -0.1551 1.2695
                                  3.8862
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    13.9692
                                5.7756
                                         2.419 0.02259 *
                    -3.1759
                                0.6362 -4.992 3.11e-05 ***
## amAutomatic:wt
## amManual:wt
                    -6.0992
                                0.9685
                                        -6.297 9.70e-07 ***
## amAutomatic:qsec
                     0.8338
                                0.2602
                                         3.205 0.00346 **
## amManual:qsec
                     1.4464
                                0.2692
                                         5.373 1.12e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.097 on 27 degrees of freedom
## Multiple R-squared: 0.8946, Adjusted R-squared: 0.879
## F-statistic: 57.28 on 4 and 27 DF, p-value: 8.424e-13
```

With total R^2 of 90%, all the coefficients are significant, and we have the following conclusions

- Weight increase leads to mpg decrease
 - With weight increase 1000 lbs, the mpg decease by about 4 for automatic cars, and about 6 for manual cars
- Drive speed increase ledas to mpg increase
 - With speed increase 1 second per 1/4 mile, the mpg increase about 0.8 for automatic cars, and about 1.4 for manual cars