Vision Transformer

relative to pyramid

Yinrui Li

December 15, 2023

Fig. 1: mind map

Table of contents

1. <u>Developments in NLP</u>

- 1. motivation
- RNN
- 3. <u>Transformer</u>

2. Developments in CV

- 1. motivation
- Vision Transformer
- 3. <u>PVT</u>
- 4. swin transformer

1.Developments in NLP

1.1

Machine Translation on WMT2014 English-German

sterm	Model	score	SHORMLEH	Person	Date	-Me	Lore	*********	7000	1141 98
্য	Transformer Cycle (flex)	35.14	33.54		38	Lessons on Parameter Sharing across Layers in Transformers	0	-00	2021	Saidcear
2	Noisy back-translation	35.0	33.8		-	Understanding Back-Translation at Scale	0	-83	2018	
3	Transformer+Rep (Unit)	33.89	32.35		ж	Rethinking Perturbations in Exceder- Decoders for Fast Training	C	-8	2021	Services
4	TS-11B	32.1		111100	9	Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer	С	-80	2019	Narohener
5	BIBERT	31.26			×	BERT, mBERT, or BIBERT? A Study on Controllustiond Embeldings for Neural Machine Translation	c	•	2021	
6	Transformer + R-Drop	30.91			38	R-Drop: Regularized Dropout for Neural Networks	0	1	2021	Transver
7	Bi-SimCut	30.78			38	Bi-SimCut: A Simple Strategy for Booking Neural Machine Translation	O	æ	2022	
8	BERT-fused NMT	30.75			9	incorporating SERT into Neural Mechine Translation	O	*	2020	Totallareer
9	Data Diversification - Transformer	30.7			4	Data Diversification: A Simple Strategy For Neural Machine Translation	C	40	2019	Nautores

Early NLP Models: Recurrent Neural Network (RNN)

- In NLP, RNN was the earliest used model.
- RNNs integrate current inputs with past states sequentially to determine outputs.

Fig. 2: The Basic RNN

Early NLP Models: Recurrent Neural Network (RNN)

(a) Recurrent Neural Networks (RNN)

The value of S_t is contingent not only on X_t but also on S_{t-1} .

Early NLP Models: Recurrent Neural Network (RNN)

(1)
$$O_t = g(V \cdot S_t)$$
$$S_t = f(U \cdot X_t + W \cdot S_{t-1})$$

(a) Recurrent Neural Networks (RNN)

The value of S_t is contingent not only on X_t but also on S_{t-1} .

The Challenges of RNN

$$\begin{split} \frac{\partial L_t}{\partial U} &= \sum_{k=0}^t \left(\frac{\partial L_t}{\partial o_t} \frac{\partial o_i}{\partial s_t} \left(\prod_{j=k+1}^t \frac{\partial s_j}{\partial s_{j-1}} \right) \frac{\partial s_k}{\partial U} \right) \\ &\qquad \qquad \prod_{j=k+1}^t \frac{\partial s_j}{\partial s_{j-1}} = \prod_{j=k+1}^t \tanh(W) \end{split}$$

issues:

 Gradient Vanishing and Gradient Explosion: Limitations in Scaling to Large Models

1.3 Transformer

Attention is All You Need

- Google's "Attention is All You Need" paper introduced Transformer.
- The goal was to replace RNN with attention for parallelism and efficiency.

Fig. 6: Basic Transformer

1.3.2 attention

What is attention: Case I

Fig. 7: attention case I

- Attention means focusing on what's most important and "ignoring" the less significant.
- We invest more attention in things that are more important.

What is attention: Case I

Fig. 8: attention case I

• Attention effectively preserves key information over distances.

What is attention: Case II

Hello, how are you?

Bonjour, comment ça va?

Fig. 9: attention case II

• Neural networks focus on inputs that are more likely to be accurate.

What is attention: Case II

Fig. 10: attention case II

Neural networks focus on inputs that are more likely to be accurate.

What is attention: Case II

Fig. 10: attention case II

 Concentrating attention on crucial information saves resources and yields effective insights rapidly.

$$\mathsf{Attention}(\mathit{Q},\mathit{K},\mathit{V}) = \mathsf{softmax}$$

$$Q = query K = key V = value$$

- Calculate similarity between query and key for a relevance score.
- Normalize the score with softmax to create an attention distribution.
- Use the attention distribution to compute the improved value.

Attention(
$$Q$$
, K , V) = softmax $\frac{QK^T}{\sqrt{d_K}}V$ (3)
$$Q = X \times W_Q$$

$$K = X \times W_K$$

$$V = X \times W_V$$

Self-attention is achieved by linearly transforming the input ${\sf X}$ into ${\sf Q},\,{\sf K},$ and ${\sf V}.$

Attention(Q, K, V) = softmax
$$\frac{QK^T}{\sqrt{d_K}}V$$

Why use QK^T

- The dot product is the product of the vector lengths and the cosine of their angle.
- · The dot product reflects the similarity

Attention(Q, K, V) = softmax
$$\frac{QK^T}{\sqrt{d_K}}V$$
 (6)

Why divide by $\sqrt{d_K}$?

- To prevent the value of QK^T from becoming too large
- Preventing overflow during softmax calculation.

multi-head attention

multi-head attention mechanism

A single method of attention calculation is too restrictive.

Fig. 12: Basic Transformer

multi-head attention mechanism

Fig. 13: Multi-Head Attention consists of several attention layers running in parallel.

Multi-head attention uses subspaces for diverse attention learning.

attention

1.3.1 Positional Encoding

$$a^1 a^2 a^3 a^4 = a^2 a^4 a^1 a^3$$

High degree of parallelism

Fig. 15: Basic Transformer

· Attention's parallelism neglect positional cues.

Fig. 15: Basic Transformer

Fig. 16: Positional Encoding

Fig. 17: Basic Transformer

The design principles of positional encoding are as follows:

- · Expressing Absolute Position
- · Expressing Relative Position
- · Compatibility with Word Embeddings
- Generalizing Across Different Sequence Lengths

Fig. 18: Basic Transformer

Positional Encoding - Absolute Position

$$PE(pos, 2i) = \sin \frac{pos}{10000^{\frac{2i}{d}}}$$

$$PE(pos, 2i + 1) = \cos \frac{pos}{10000^{\frac{2i}{d}}}$$

- pos :The positions in the input sequence.
- i :Dimension index.
- d_{model}:Dimension.

Q: What is the capital of France?

A: France is a country in Western Europe. Its capital is Paris.

Positional Encoding - Absolute Position

$$PE(pos, 2i) = \sin \frac{pos}{10000^{\frac{2i}{q_{model}}}}$$

$$PE(pos, 2i + 1) = \cos \frac{pos}{10000^{\frac{2i}{q_{model}}}}$$

- pos :The positions in the input sequence.
- *i* :Dimension index.
- *d_{model}*:Dimension.

Expressing Absolute Position

Unique codes for each position are created by different combinations of position and dimension.

Positional Encoding- Relative Position

$$PE(pos, 2i) = \sin \frac{pos}{10000 \frac{2i}{d_{\text{model}}}}$$

$$PE(pos, 2i + 1) = \cos \frac{pos}{10000 \frac{2i}{d_{\text{model}}}}$$

- pos :The positions in the input sequence.
- i :Dimension index.
- *d*_{model} :Dimension.

Apple Inc. is a technology company.

Positional Encoding-Relative Position

$$PE(pos, 2i) = \sin \frac{pos}{10000 \frac{2i}{d_{\text{model}}}}$$

$$PE(pos, 2i + 1) = \cos \frac{pos}{10000 \frac{2i}{d_{\text{model}}}}$$

- pos :The positions in the input sequence.
- i :Dimension index.
- *d*_{model} :Dimension.

Expressing Relative Position

Using Trigonometric Properties for Relative Positions

$$\cos(A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B$$

$$\sin(A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B$$

Positional Encoding- Relative Position

$$\begin{aligned} & \mathsf{PE}(pos, 2i) = \sin \quad \frac{pos}{10000^{\frac{2j}{d}} \mathsf{nodel}} \\ & \mathsf{PE}(pos, 2i + 1) = \cos \quad \frac{pos}{10000^{\frac{2j}{d}} \mathsf{nodel}} \end{aligned}$$

- pos :The positions in the input sequence.
- *i* :Dimension index.
- d_{model}: Dimension.

Expressing Relative Position

$$PE(pos + k, 2i) = PE(pos, 2i) \cdot PE(k, 2i + 1) + PE(pos, 2i + 1) \cdot PE(k, 2i)$$

 $PE(pos + k, 2i + 1) = PE(pos, 2i + 1) \cdot PE(k, 2i + 1) - PE(pos, 2i) \cdot PE(k, 2i)$

Positional Encoding - Compatibility

$$PE(pos, 2i) = \sin \frac{pos}{10000 \frac{2i}{q_{\text{model}}}}$$

$$PE(pos, 2i + 1) = \cos \frac{pos}{10000 \frac{2i}{q_{\text{model}}}}$$

- pos : The positions in the input sequence.
- *i* :Dimension index.
- d_{model}: Dimension.

Compatibility with Word Embeddings

Limited value range

The range of positional encoding needs to be limited to avoid dominating the embeddings.

Positional Encoding - Different Sequence Lengths

$$PE(pos, 2i) = \sin \frac{pos}{10000 \frac{2i}{d_{model}}}$$

$$PE(pos, 2i + 1) = \cos \frac{pos}{10000 \frac{2i}{d_{model}}}$$

- pos : The positions in the input sequence.
- i :Dimension index.
- *d*_{model} :Dimension.

Generalizing Across Different Sequence Lengths

The formula can be applied to sequences of any length.

Positional Encoding - Different Sequence Lengths

Why addition instead of concatenation?

Fig. 16: Positional Encoding

The input to the transformer has already undergone a linear transformation.

Fig. 17: Basic Transformer

Why addition instead of concatenation?

$$egin{aligned} W \cdot x_p^i &= [W^I, W^P] \cdot [[x^i]^T, [x^p]^T]^T \ &= W^I \cdot x^i + W^P \cdot x^p \ &= embed^i + pos^i \end{aligned}$$

Addition \approx concatenation

Fig. 17: Basic Transformer

1.3.3 Feed forward

Feed forward

```
class Feed_Forward(nn.Module):
    def __init__(self,input_dim,hidden_dim=2048):
        super(Feed_Forward, self).__init__()
        self.L1 = nn.Linear(input_dim,hidden_dim)
        self.L2 = nn.Linear(hidden_dim,input_dim)

def forward(self,x):
    output = nn.ReLU()(self.L1(x))
    output = self.L2(output)
    return output
```

Fig. 19: Feed forward

· The feed-forward layer introduces non-linearity.

Fig. 20: Basic Transformer

2.Developments in ViT

2.1 Motivation

How can the transformer be used effectively in computer vision?

The Dominant Architecture in CV: CNN Series

In computer vision, the preservation of CNN architecture is a common practice. If attention is desired:

- Combine attention with convolutional neural networks.
- Use attention to replace a part of the CNN model.

The Dominant Architecture in CV: CNN Series

In computer vision, the preservation of CNN architecture is a common practice.

The dependence on CNNs is unnecessary

Challenges of Transformers in Computer Vision

Challenges of Transformers in Computer Vision

Image Data Structure

Challenges of Transformers in Computer Vision

Enormous Computational Load

無城

6 首中国 第二十七章和3 天司 方言的养父母去世之后,方言死者一条信息,去往梅 城,寻找自己的亲生父母,找到了,就为了何他们一 2012777 (新五/俊孝, 被五/) 第五

Fig. 21: ViT

Google introduced the Vision Transformer (ViT) model for large-scale image recognition.

Fig. 22: ViT

In model design, we aim to closely follow the original transformer.

 This design allows easy use of scalable NLP transformer architectures.

Fig. 23: ViT

Image Data Structure

Images are segmented into patches for Transformer input.

Fig. 26: ViT

Enormous Computational Load

• Segment an image into multiple patches

How to perform classification tasks

cls token

The CLS token first appeared in BERT

Fig. 27: ViT

cls token

The final CLS token will contain global information because of the self-attention

· Convenient for fine-tuning

Fig. 28: attention

Fig. 29: ViT

Fig. 31: The ViT model performs well on large-scale datasets.

Fig. 32: The ViT model performs well on large-scale datasets.

Transformers lack some of the inherent biases found in CNNs

- · locality (adjacent regions having similar features)
- · invariance to translation

How to apply it to downstream tasks?

Legacy issues of ViT

However, if ViT is applied to dense prediction tasks, it encounters several problems:

- Computational and memory consumption
- The scale problem

Legacy issues of ViT

• The scale problem

2.4.1 PVT v1

Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions

Wenhai Wang¹, Enze Xie², Xiang Li³, Deng-Ping Fan⁴⁵⁰, Kaitao Song³, Ding Liang⁵, Tong Lu¹⁶⁸, Ping Luo², Ling Shao⁴

¹Nanjing University ²The University of Hong Kong

³Nanjing University of Science and Technology ⁴IIAI ³SenseTime Research

er ber fil i decimo recom una rational

Fig. 33: PVT v1

PVT v1

分辨率高的图像细节信息多但语义信息少 强语义信息的图像细节少,分辨率低

PVT v1

(a) CNNs: VGG [54], ResNet [22], etc.

(c) Pyramid Vision Transformer (ours)

PVT v1 - patch embedding

Through patch embedding Generate features at different scales

Fig. 35: patch embedding

PVT v1 - SRA

Patch embedding significantly increases computational complexity.

Fig. 36: SRA

Design SRA to reduce computational complexity.

PVT v1 - SRA

Fig. 37: SRA

Spatial Reduction Attention, adds a Spatial Reduction step to the conventional multi-head self-attention.

PVT v1 - SRA

$$SRA(Q, K, V) = Concat(head_0, ..., head_N)W^O$$
 (7)

head_j = Softmax
$$\frac{QW_j^{Q}(SR(K)W_j^{K})^{T}}{\sqrt{d_k}} SR(V)W_j^{V}$$
 (8)

$$SR(x) = Norm(Reshape(x, R_i)W^S)$$
 (9)

SRA downsamples K and V before performing self-attention, changing feature map resolution.

Legacy issues of PVT

However,PVT v1 encounters several problems:

- 1.PVT v1's use of 4x4 patches can neglect local image continuity.
- 2.PVT v1's fixed-size positional encodings are less effective for varying image sizes.
- 3. These methods still entail a high computational cost.

2.4.2 PVT v2

PVT v2

PVT v2: Improved Baselines with Pyramid Vision Transformer

Wenhai Wang^{1,2}, Enze Xie³, Xiang Li⁴, Deng-Ping Fan⁵,
Kaitao Song⁴, Ding Liang⁶, Tong Lu², Ping Luo³, Ling Shao⁵

Shanghai Al Laboratory ²Nanjing University ³The University of Hong Kong

⁴Nanjing University of Science and Technology ⁵IIAI ⁶SenseTime Research

wangwenhai@pjlab.org.cn,

Fig. 38: PVT v2

PVT v2 - issue 1

Improve the patch embedding module of PVT v1 to enhance the interaction between neighboring patches.

By enlarging the patch window, the overlap area between adjacent windows is reduced by half.

PVT v2 - issue 2

Depth-wise convolution in the FeedForward module replaces positional encoding, reducing computation.

Fig. 40: pos

PVT v2 - issue 3

Pooling replaces convolution in SRA to reduce complexity.

Fig. 41: linear SRA

2.3 Swin transformer

Swin transformer

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu[†] Yutong Lin^{†*} Yue Cao^{*} Han Hu^{*‡} Yixuan Wei[†] Zheng Zhang Stephen Lin Baining Guo Microsoft Research Asia

(v-zeliul, v-yutlin, yuecao, hanhu, v-yixwe, zhez, stevelin, bainguo)@microsoft.com

Fig. 42: swin transformer

Swin transformer

Fig. 43: Swin transformer

The Swin Transformer introduces hierarchical, multi-scale feature extraction similar to CNNs.

Patch merging:
Similar to the pooling operation in CNN

Swin transformer - patch merging

Fig. 44: swin transformer

It merges smaller patches into larger ones for enhanced receptive field and multi-scale feature capture.

Swin transformer - patch merging

Fig. 45: patch merging

The Transformer's Patch Merging layer reduces feature map dimensions while increasing depth.

The small patches result in an unbearable sequence length.

Swin transformer - W- MSA

Fig. 46: swin transformer

It uses a windowing approach for multi-head attention in non-overlapping regions of the feature map.

Swin transformer - W-MSA

Fig. 47: Window-MSA

The W-MSA module divides the map into MxM windows for separate Self-Attention in each.

Swin transformer - W- MSA

$$\Omega(MSA) = 4hwC^2 + 2(hw)^2C, \tag{1}$$

$$\Omega(W-MSA) = 4hwC^2 + 2M^2hwC, \qquad (2)$$

Fig. 48: W-MSA

The amount of computation is greatly reduced!

Issue with W-MSA: Limited Information Interaction and Reduced Receptive Field.

Swin transformer - SW-MSA

Fig. 49: Shifted Window-MSA

 Window movement in the Transformer enables interactive learning and information exchange between patches.

Swin transformer

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)), W-MSA and SW-MSA are multi-head self-attention modules with regular and shifted windowing configurations, respectively.

Fig. 50: swin transformer

RetNet

Thanks for listening!