Amendments to the Claims

- 1. (Original) A transformed cell comprising beta-alanine/pyruvate aminotransferase activity, wherein the cell comprises an exogenous nucleic acid molecule encoding a beta-alanine/pyruvate aminotransferase, and wherein the cell produces 3-hydroxypropionic acid (3-HP) from beta-alanine.
- 2. (Original) The transformed cell of claim 1, wherein the exogenous nucleic acid molecule encoding the beta-alanine/pyruvate aminotransferase comprises a sequence having at least 90% sequence identity to SEQ ID NO: 17 or 19.
- 3. (Original) The transformed cell of claim 1, wherein the exogenous nucleic acid molecule encoding the beta-alanine/pyruvate aminotransferase comprises SEQ ID NO: 17 or 19.
- 4. (Original) The transformed cell of claim 1, wherein the beta-alanine/pyruvate aminotransferase comprises a sequence having at least 90% sequence identity to SEQ ID NO: 18 or 20.
- 5. (Original) The transformed cell of claim 1, wherein the cell further comprises dehydrogenase activity capable of converting malonate semialdehyde to 3-HP.
- 6. (Original) The transformed cell of claim 5, wherein the cell further comprises an exogenous nucleic acid molecule encoding a dehydrogenase capable of converting malonate semialdehyde to 3-HP.
- 7. (Original) The transformed cell of claim 6, wherein the dehydrogenase is a 3-hydroxypropionate dehydrogenase.

- 8. (Original) The transformed cell of claim 7, wherein the exogenous nucleic acid molecule encoding the 3-hydroxypropionate dehydrogenase comprises a sequence having at least 90% sequence identity to SEQ ID NO: 27.
- 9. (Original) The transformed cell of claim 8, wherein the exogenous nucleic acid molecule encoding the 3-hydroxypropionate dehydrogenase comprises SEQ ID NO: 27.
- 10. (Original) The transformed cell of claim 7, wherein the 3-hydroxypropionate dehydrogenase comprises SEO ID NO: 28.
- 11. (Currently Amended) The transformed cell of claim 1-or 5, wherein the cell further comprises alanine 2,3-aminomutase activity.
- 12. (Original) The transformed cell of claim 11, wherein the cell further comprises an exogenous nucleic acid molecule encoding an alanine 2,3-aminomutase.
- 13. (Original) The transformed cell of claim 12, wherein the exogenous nucleic acid molecule that encodes an alanine 2,3-aminomutase comprises a sequence having at least 90% sequence identity to SEQ ID NO: 21, 23 or 25.
- 14. (Original) The transformed cell of claim 13, wherein the exogenous nucleic acid molecule that encodes an alanine 2,3-aminomutase comprises SEQ ID NO: 21, 23 or 25.
- 15. (Original) The transformed cell of claim 12, wherein the alanine 2,3-aminomutase comprises SEQ ID NO: 22, 24 or 26.
- 16. (Original) The transformed cell of claim 1, wherein the cell is a prokaryotic cell.
- 17. (Original) The transformed cell of claim 16, wherein the prokaryotic cell is a *Lactobacillus*, *Lactococcus*, *Bacillus*, or *Escherichia* cell.

- 18. (Original) The transformed cell of claim 1, wherein the cell is a yeast cell, plant cell, or fungal cell.
- 19. (Original) A plant comprising the transformed plant cell of claim 18.
- 20. (Currently Amended) The transformed cell of claim 1 or claim 5, wherein the cell further comprises lipase or esterase activity, or a combination thereof.
- 21. (Original) The transformed cell of claim 20, wherein the cell further comprises an exogenous nucleic acid molecule encoding a lipase or an esterase.
- 22. (Original) The transformed cell of claim 1, wherein the cell further comprises:

 3-hydroxypropionate dehydrogenase activity;

 alanine 2, 3-aminomutase activity; and

 lipase or esterase activity.
- 23. (Currently Amended) The transformed cell of claim 20, 21, or 22, wherein the transformed cell produces an ester of 3-HP.
- 24. (Original) The cell of claim 23, wherein the ester of 3-HP is methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, or 2-ethylhexyl 3-hydroxypropionate.
- 25. (Currently Amended) The transformed cell of claim 1-or-claim 5, wherein the cell further comprises aldehyde dehydrogenase activity and alcohol dehydrogenase activity.
- 26. (Original) The transformed cell of claim 25 wherein the cell further comprises an exogenous nucleic acid molecule encoding an aldehyde dehydrogenase and an exogenous nucleic acid molecule encoding an alcohol dehydrogenase.

- 27. (Original) The transformed cell of claim 1, wherein the cell further comprises:

 3-hydroxypropionate dehydrogenase activity;

 alanine 2, 3-aminomutase activity;

 aldehyde dehydrogenase activity; and

 alcohol dehydrogenase activity.
- 28. (Currently Amended) The transformed cell of claim 25, 26, or 27, wherein the transformed cell produces 1,3-propanediol.
- 29. (Currently Amended) The transformed cell of claim 1-or-claim 5, wherein the cell further comprises esterase activity.
- 30. (Original) The transformed cell of claim 29, wherein the cell further comprises an exogenous nucleic acid molecule encoding an esterase.
- 31. (Original) The transformed cell of claim 1, wherein the cell further comprises: 3-hydroxypropionate dehydrogenase activity; alanine 2, 3-aminomutase activity; and esterase activity.
- 32. (Currently Amended) The transformed cell of claim 29, 30, or 31, wherein the transformed cell produces polymerized 3-HP.
- 33. (Currently Amended) A method for making 3-HP from beta-alanine, comprising culturing the transformed cell of claim 1-or claim 5 under conditions that allow the transformed cell to make 3-HP from beta-alanine.

- 34. (Original) The method of claim 33, wherein the transformed cell further comprises an exogenous nucleic acid molecule encoding an alanine 2,3-aminomutase, wherein the alanine 2,3-aminomutase is capable of producing beta-alanine from alpha-alanine.
- 35. (Original) The method of claim 33, wherein the cell is a prokaryotic cell.
- 36. (Currently Amended) A method of producing an ester of 3-HP, comprising culturing the transformed cell of claim 20, 21, or 22 under conditions wherein the transformed cell produces an ester of 3-HP.
- 37. (Original) The method of claim 36, wherein the ester of 3-HP is methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, or 2-ethylhexyl 3-hydroxypropionate.
- 38. (Currently Amended) A method of producing 1,3 propanediol, comprising culturing the transformed cell of claim 25, 26, or 27 under conditions wherein the transformed cell produces 1,3 propanediol.
- 39. (Currently Amended) A method of producing polymerized 3-HP, comprising culturing the transformed cell of claim 29, 30, or 31 under conditions wherein the transformed cell produces polymerized 3-HP.
- 40. (Original) A method for making 3-HP, comprising:
 transfecting the transformed cell of claim 1 with a nucleic acid molecule encoding a
 polypeptide comprising alanine 2,3-aminomutase activity; and
 culturing the transfected cell to allow the transfected cell to make 3-HP.
- 41. (Original) A transformed cell comprising: endogenous beta-alanine/pyruvate aminotransferase activity; and

Application Number Currently unknown

cell produces 3-HP.

an exogenous nucleic acid molecule encoding an alanine 2,3, aminomutase, wherein the

- 42. (Original) A recombinant nucleic acid comprising:

 a nucleic acid molecule encoding a beta-alanine/pyruvate aminotransferase; and
 a nucleic acid molecule encoding a dehydrogenase capable of converting malonate
 semialdehyde to 3-HP.
- 43. (Original) The recombinant nucleic acid of claim 42, wherein the dehydrogenase is a 3-hydroxypropionate dehydrogenase.
- 44. (Original) The recombinant nucleic acid of claim 42, further comprising a nucleic acid molecule that encodes an alanine 2,3-aminomutase.
- 45. (Original) The recombinant nucleic acid of claim 42 operably linked to a promoter sequence.
- 46. (Original) A vector comprising the recombinant nucleic acid of claim 42.
- 47. (Original) A cell transformed with the recombinant nucleic acid of claim 42.
- 48. (Original) A transgenic plant comprising the recombinant nucleic acid of claim 42.
- 49. (Original) A transformed cell comprising at least one exogenous nucleic acid molecule, wherein the at least one exogenous nucleic acid molecule comprises the recombinant nucleic acid of claim 42.
- 50. (Original) The transformed cell of claim 49 wherein the cell produces 3-HP from betaalanine.

Express Mail No. EV668295361US

Date of Deposit: June 2, 2006

Attorney Reference Number 6682-66576-05
Application Number Currently unknown

SLR:dm 06/02/06 533533 CGL03/0362WO01

PATENT

51. (Original) An isolated peptide comprising alanine 2,3 aminomutase activity, wherein the

peptide comprises a sequence having at least 90% sequence identity to SEQ ID NO: 22.

52. (Original) The peptide of claim 51, wherein the peptide comprises one or more

conservative amino acid substitutions.

53. (Original) The peptide of claim 52, wherein the peptide comprises 1-10 conservative

amino acid substitutions.

54. (Original) An isolated nucleic acid molecule comprising a nucleic acid molecule that

encodes the peptide of claim 51.

55. (Original) The isolated nucleic acid molecule of claim 54, operably linked to a promoter

sequence.

56. (Original) The isolated nucleic acid molecule of claim 54, wherein the nucleic acid

molecule comprises a sequence having at least 90% sequence identity to SEQ ID NO: 21.

57. (Original) The isolated nucleic acid molecule of claim 56, wherein the nucleic acid

molecule includes one or more substitutions which results in one or more conservative amino

acid substitutions.

58. (Original) The isolated nucleic acid molecule of claim 56, wherein the nucleic acid

molecule includes one or more substitutions which results in no more than 10 conservative

amino acid substitutions.

59. (Original) A vector comprising the isolated nucleic acid of claim 54.

60. (Original) A recombinant nucleic acid molecule comprising the isolated nucleic acid

molecule of claim 54.

Page 9 of 11

- 61. (Original) A cell transformed with the recombinant nucleic acid molecule of claim 60.
- 62. (Original) A transformed cell comprising at least one exogenous nucleic acid molecule, wherein the at least one exogenous nucleic acid molecule comprises a nucleic acid sequence encoding the peptide of claim 51.
- 63. (Original) The transformed cell of claim 62, wherein the cell produces beta-alanine from alpha-alanine.
- 64. (Original) The cell of claim 62, wherein the cell produces 3-HP.
- 65. (Original) The cell of claim 62, wherein the cell produces 1,3-propanediol, an ester of 3-HP or polymerized 3-HP.