

	XV-1P								
References: XP-101	References: XP-113	References: XP-119							
Ø25.4 FLANGE	Ø30 FLANGE	Ø32 BH FLANGE							
References : XP-140	References: XP-161	References: XP-168							
Ø32 HY FLANGE	Standard German Ø32 BH	Ø50.8 SAE AA FLANGE							

	XV-2P									
References : XP-201	References : XP-210	References: XP-213								
Ø36.5 FLANGE	Ø50 BH FLANGE	Ø50 HY FLANGE								
References: XP-216	References : XP-217	References : XP-219								
Standard German Ø52 BH FLANGE	Standard German Ø80 FLANGE	Ø82.5 SAE A FLANGE								

Vivoil Oleodinamica Vivolo s.r.l. presents a new series of gear pumps called XV-P.

The quality of the product has been improved on by exploiting new and innovative solutions, both technical and constructive, for which the company has been awarded 3 patents.

The pumps are divided into four groups:

XV-0P XV1-P XV-2P XV-3P

The main features of the XV-0P are the following

Displacements from 0.16 cm³ / revolution to 2.28 cm³/revolution.

Maximum pressures up to **280 bar**.

Versions w/ flanges: Ø22 – Standard;

Ø22 BH – Sagomata; Ø22 HY – Sagomata.

Rotation speeds up to 9000 rpm.

Configurations with inlet and outlet in the body, flange and cover.

Available shafts: Cylindrical with Woodruff key;

Milled shank;

Tapered 1:8 Woodruff key.

The main features of the XV-1P are the following

Displacements from 0.91 cm³ / revolution to 9.88 cm³ / revolution.

Maximum pressures up to 300 bar.

Versions w/ flanges: Ø25.4 – Standard European;

Ø30 - Standard;

Ø32 BH – Body-Shaped; Ø32 HY – Body-Shaped;

Ø32 BH - Standard German - Body-Shaped;

Ø50.8 - SAE AA

Rotation speeds up to 6000 rpm

Configurations with inlet and outlet in the body, flange and cover.

Available shafts: Tapered 1:8 Woodruff key;

Parallel with key; Milled shank; Splined.

The main features of the XV-2P are the following:

Displacements from 4.2 cm³ / revolution a 39.6 cm³ / revolution.

Maximum pressures up to 300 bar.

Versions w/ flanges: Ø36,5 – Standard Europea;

Ø50 BH – Body-Shaped; Ø50 HY – Body-Shaped;

Ø52 BH - Standard German - Body-Shaped;

Ø80 - Standard German;

Ø82,5 - SAE A.

Rotation speeds up to 3500 rpm

Configurations with inlet and outlet in the body, flange and cover.

Available shafts: Tapered 1:8 Woodruff key;

Parallel with key; Milled shank; Splined.

The main features of the XV-3P are the following:

Displacements from 14.89 cm³ / revolution to 86.87cm³ / revolution.

Maximum pressures up to 320 bar.

Versions w/ flanges: Ø50,8 – Standard European;

Rotation speeds up to 3000 rpm.

Available shafts: Tapered 1:8 Woodruff key;

Parallel with key;

Splined.

INTRODUCTION XV-0P XV-1P XV-2P

XV-3P

Summary: Displacements - Pressures - Speeds

	Туре	Displacement	Max. Pressure	Min speed	Max speed
	XV-0P/0.17	0.16 cm ³ /rev	260 bar	700 rpm	9000 rpm
	XV-0P/0.25	0.24 cm ³ /rev	260 bar	700 rpm	9000 rpm
	XV-0P/0.45	0.45 cm ³ /rev	280 bar	700 rpm	9000 rpm
_	XV-0P/0.57	0.56 cm ³ /rev	280 bar	700 rpm	9000 rpm
XV-0P	XV-0P/0.76	0.75 cm ³ /rev	280 bar	700 rpm	9000 rpm
\sim	XV-0P/0.98	0.92 cm ³ /rev	280 bar	700 rpm	6000 rpm
	XV-0P/1.27	1.26 cm ³ /rev	280 bar	700 rpm	6000 rpm
	XV-0P/1.52	1.48 cm ³ /rev	280 bar	700 rpm	6000 rpm
	XV-0P/2.30	2.28 cm ³ /rev	210 bar	700 rpm	5000 rpm
	XV-1P/0.9	0.91 cm ³ /rev	280 bar	700 rpm	6000 rpm
	XV-1P/1.2	1.17 cm ³ /rev	290 bar	700 rpm	6000 rpm
	XV-1P/1.7	1.56 cm ³ /rev	290 bar	700 rpm	6000 rpm
	XV-1P/2.2	2.08 cm ³ /rev	290 bar	700 rpm	6000 rpm
	XV-1P/2.6	2.60 cm ³ /rev	300 bar	700 rpm	6000 rpm
a	XV-1P/3.2	3.12 cm ³ /rev	300 bar	700 rpm	6000 rpm
XV-1P	XV-1P/3.8	3.64 cm ³ /rev	300 bar	700 rpm	6000 rpm
×	XV-1P/4.3	4.16 cm ³ /rev	300 bar	700 rpm	6000 rpm
	XV-1P/4.9	4.94 cm ³ /rev	300 bar	700 rpm	6000 rpm
	XV-1P/5.9	5.85 cm ³ /rev	300 bar	700 rpm	5000 rpm
	XV-1P/6.5	6.50 cm ³ /rev	300 bar	700 rpm	5000 rpm
	XV-1P/7.8	7.54 cm ³ /rev	260 bar	700 rpm	5000 rpm
	XV-1P/9.8	9.88 cm ³ /rev	230 bar	700 rpm	4000 rpm
	XV-2P/4	4.2 cm ³ /rev	300 bar	700 rpm	3500 rpm
	XV-2P/6	6.0 cm ³ /rev	300 bar	700 rpm	3500 rpm
	XV-2P/9	8.4 cm ³ /rev	300 bar	700 rpm	3500 rpm
	XV-2P/11	10.8 cm ³ /rev	300 bar	700 rpm	3500 rpm
0	XV-2P/14	14.4 cm ³ /rev	290 bar	700 rpm	3500 rpm
XV-2P	XV-2P/17	16.8 cm ³ /rev	270 bar	700 rpm	3500 rpm
>	XV-2P/19	19.2 cm ³ /rev	250 bar	700 rpm	3000 rpm
	XV-2P/22	22.8 cm ³ /rev	240 bar	700 rpm	3000 rpm
	XV-2P/26	26.2 cm ³ /rev	210 bar	700 rpm	3000 rpm
	XV-2P/30	30.0 cm ³ /rev	200 bar	700 rpm	2500 rpm
	XV-2P/34	34.2 cm ³ /rev	190 bar	700 rpm	2500 rpm
	XV-2P/40	39.6 cm ³ /rev	180 bar	700 rpm	2000 rpm
	XV-3P/15	14.89 cm ³ /rev	320 bar	700 rpm	3000 rpm
	XV-3P/18	17.37 cm ³ /rev	320 bar	700 rpm	3000 rpm
	XV-3P/21	21.10 cm ³ /rev	300 bar	700 rpm	3000 rpm
	XV-3P/27	26.97 cm ³ /rev	270 bar	700 rpm	3000 rpm
	XV-3P/32	32.27 cm ³ /rev	270 bar	700 rpm	3000 rpm
	XV-3P/38	38.47 cm ³ /rev	270 bar	700 rpm	2800 rpm
XV-3P	XV-3P/43	43.44 cm ³ /rev	250 bar	700 rpm	2800 rpm
	XV-3P/47 XV-3P/51	47.16 cm ³ /rev 50.88 cm ³ /rev	250 bar	700 rpm	2800 rpm
×	XV-3P/51 XV-3P/54	50.88 cm ⁻ /rev 54.60cm ³ /rev	250 bar	700 rpm	2800 rpm
	XV-3P/54 XV-3P/61	54.60cm ⁻ /rev 60.81 cm ³ /rev	250 bar	700 rpm	2300 rpm
	XV-3P/61 XV-3P/64	60.81 cm ⁻ /rev	220 bar	700 rpm	2300 rpm
	XV-3P/64 XV-3P/70	70.74 cm ³ /rev	220 bar 210 bar	700 rpm 700 rpm	2300 rpm 2300 rpm
	XV-3P/70 XV-3P/74	70.74 cm ³ /rev		•	
	XV-3P/90	86.87 cm ³ /rev	190 bar 160 bar	700 rpm 700 rpm	2300 rpm 2300 rpm
	AV-01 /00	oo.or un /lev	100 bal	700 Ipili	2300 14111

General technical data

Type of fluid to be used	Mineral-based hydraulic oil HLP HV (D IN 51524)
Minimum operating viscosity	10 mm ² /s
Maximum operating viscosity	100 mm ² /s
Maximum admissible viscosity at start-up	1500 mm ² /s
Recommended viscosity	20 mm ² /s - 100 mm ² /s
Ambient temperature	-20 ℃ - 60℃
Fluid operating temperature	-15℃ - 80℃
Recommended fluid operating temperature	30℃ - 50° C
For temperatures above 120℃	Request FKM seals (V iton)
Max. inlet fluid suction pressure (IN)	0.02-0.08 bars
Max. inlet fluid pressure (IN)	0.3 - 0.5 bars (for higher pressures consult the manufacturer)
Inlet fluid filtering (IN)	30 - 60 Microns
Outlet fluid filtering (OUT)	10 - 25 Microns
Max. inlet fluid speed (IN)	0.5 - 1.5 m/s
Max. outlet fluid speed (OUT)	3.0 - 5.5m/s
Use of water-glycol (HF-C)	max n. of revolutions 1100 rpm; max pressure 170 bars

Flow rate tables

TYPE	cm3/									rpm								
	rev		700	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000	7000	8000	9000	
XV 0P/0.17	0,16		0,106	0,152	0,228	0,304	0,380	0,456	0,532	0,608	0,684	0,760	0,836	0,912	1,064	1,216	1,368	
XV 0P/0.25	0,24		0,160	0,228	0,342	0,456	0,570	0,684	0,798	0,912	1,026	1,140	1,254	1,368	1,596	1,824	2,052	
XV 0P/0.45	0,45	_	0,299	0,428	0,641	0,855	1,069	1,283	1,496	1,710	1,924	2,138	2,351	2,565	2,993	3,420	3,848	_
XV 0P/0.57	0,56	l/min	0,372	0,532	0,798	1,064	1,330	1,596	1,862	2,128	2,394	2,660	2,926	3,192	3,724	4,256	4,788	l/min
XV 0P/0.76	0,75	rate	0,499	0,713	1,069	1,425	1,781	2,138	2,494	2,850	3,206	3,563	3,919	4,275	4,988	5,700	6,413	rate
XV 0P/0.98	0,92	Flow	0,612	0,874	1,311	1,748	2,185	2,622	3,059	3,496	3,933	4,370	4,807	5,244				Flow
XV 0P/1.27	1,26	ъ.	0,838	1,197	1,796	2,394	2,993	3,591	4,190	4,788	5,387	5,985	6,584	7,182				
XV 0P/1.52	1,48		0,984	1,406	2,109	2,812	3,515	4,218	4,921	5,624	6,327	7,030	7,733	8,436				
XV 0P/2.30	2,28		1,516	2,166	3,249	4,332	5,415	6,498	7,581	8,664	9,747	10,830						

TVDE	cm3/							ı	rpm						
TYPE	rev		700	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000	
XV 1P/0.9	0,91		0,630	0,900	1,350	1,800	2,250	2,700	3,150	3,600	4,050	4,500	4,950	5,400	
XV 1P/1.2	1,17		0,840	1,200	1,800	2,400	3,000	3,600	4,200	4,800	5,400	6,000	6,600	7,200	
XV 1P/1.7	1,56		1,190	1,700	2,550	3,400	4,250	5,100	5,950	6,800	7,650	8,500	9,350	10,200	
XV 1P/2.2	2,08		1,540	2,200	3,300	4,400	5,500	6,600	7,700	8,800	9,900	11,000	12,100	13,200	
XV 1P/2.6	2,6	,	1,820	2,600	3,900	5,200	6,500	7,800	9,100	10,400	11,700	13,000	14,300	15,600	_
XV 1P/3.2	3,12	l/min	2,240	3,200	4,800	6,400	8,000	9,600	11,200	12,800	14,400	16,000	17,600	19,200	l/min
XV 1P/3.8	3,64	rate	2,660	3,800	5,700	7,600	9,500	11,400	13,300	15,200	17,100	19,000	20,900	22,800	rate
XV 1P/4.3	4,16	Flow	3,010	4,300	6,450	8,600	10,750	12,900	15,050	17,200	19,350	21,500	23,650	25,800	Flow
XV 1P/4.9	4,94	_	3,430	4,900	7,350	9,800	12,250	14,700	17,150	19,600	22,050	24,500	26,950	29,400	
XV 1P/5.9	5,85		4,130	5,900	8,850	11,800	14,750	17,700	20,650	23,600	26,550	29,500			
XV 1P/6.5	6,5		4,550	6,500	9,750	13,000	16,250	19,500	22,750	26,000	29,250	32,500			
XV 1P/7.8	7,54		5,460	7,800	11,700	15,600	19,500	23,400	27,300	31,200	35,100	39,000			
XV 1P/9.8	9,88		6,860	9,800	14,700	19,600	24,500	29,400	34,300	39,200					

XV-1P

XV-2P

TVDE	am2/rav					rpm				
TYPE	cm3/rev		700	1000	1500	2000	2300	2500	3000	
XV 3P/15	14,89		9,90	14,15	21,22	28,29	32,54	35,37	42,44	
XV 3P/18	17,37		11,55	16,51	24,76	33,01	37,96	41,26	49,52	
XV 3P/21	21,10		14,03	20,04	30,06	40,08	46,10	50,11	60,13	
XV 3P/27	26,97		17,94	25,62	38,43	51,24	58,93	64,05	76,86	
XV 3P/32	32,27		21,46	30,65	45,98	61,31	70,50	76,63	91,96	
XV 3P/38	38,47		25,58	36,55	54,82	73,09	84,06	91,37		
XV 3P/43	43,44	/min	28,88	41,26	61,89	82,53	94,91	103,16		/min
XV 3P/47	47,16	Flow rate I/min	31,36	44,80	67,20	89,60	103,04	112,00		Flow rate I/min
XV 3P/51	50,88	Flow	33,84	48,34	72,51	96,67	111,17			Flow
XV 3P/54	54,60		36,31	51,87	77,81	103,75	119,31			
XV 3P/61	60,81		40,44	57,77	86,65	115,54	132,87			
XV 3P/64	64,53		42,91	61,31	91,96	122,61	141,00			
XV 3P/70	70,74		47,04	67,20	100,80	134,40	154,56			
XV 3P/74	74,46		49,52	70,74	106,11	141,47	162,70			
XV 3P/90	86,87		57,77	82,53	123,79	165,05	189,81			

TORQUES ALLOWED ON SHAFT:

FORMULA FOR EVALUATING SH	AFT	SHAFT [IDENTIFIER] - CODE - DESCRIPTION	T.2 [Nm]
	Д.	[A] - Cl001 - Parallel ø 7 - M 7x1 - key thk sp.2	2
	XV-0P	[B] - CF001 - Milled shank ø 7 - sp. 5	9,2
	×	[F] - CF005 - Milled shank ø 7 - sp.4,5 L = 9	8
		[A] - Cl001 - Parallel ø12 - M10x1 - key thk. 3	25,8
		[B] - Cl002 - Parallel ø12.7 - key thk. 3.2 (SAE)	32,8
		[C] - CF001 - Milled shank ø10 - thk.5 ("BH" Standard German)	13,8
		[D] - CF002 - Milled shank ø10 - thk.5	13,8
		[E] - CF003 - Milled shank ø11 - thk.6.63 (SAE)	25,8
		[F] - CO001 - Tapered 1:8 - ø10 - M7x1 - key thk.2.4	43
	<u>a</u>	[G] - CO002 - Tapered 1:8 - ø14 - M10x1 - key thk.3	119,8
	XV-1P	[I] - CO004 - Tapered 1:8 - ø12.7 - 5/16" 24UNF-2A - key thk.3.2 (SAE)	90,4
	×	[J] - SCF04 - Splined ø11.7 - z=6, H=17.5, m=1.6, DIN 5482 12x9	22,6
		[K] - SCF05 - Splined ø12.344, z=9, H=19, SAE J498 9T 20/40DB	32,2
		[L] - SCF02 - Splined ø11.9, z=15, H=17.5, m=0.75	42,8
		[O] - CO002+HK - Tapered 1:8 - ø14 - M10x1, HK 14-12, key thk.3	119,8
$vi \times \Delta p$		[P] - Cl001+HK - Parallel ø12 - M10x1 with bearing HK 14-12 - key thk.3	25,8
$T.2 \le \frac{vi \times \Delta p}{20 \times \pi \times \eta m}$		[Q] - SCF01 - Splined ø11.9, z=15, H=9, m=0.75	42,8
T.2 = max. torque allowed by		[R] - SCF03 - Splined ø11.9, z=15, H=9, m=0.75	42,8
shaft [Nm]		[A] - Cl001 - Parallel ø15 - M6x1 - key thk.4	44.1
		[B] - Cl002 - Parallel ø15.875 – 1/4"28-UNF key thk.4 (SAE A)	67.5
		[C] - CF001 - Miled shank ø15 - thk.8 ("BH" Standard German)	60.5
		[E] - CO001 - Tapered 1:8 - ø17,4 - M12x1,5 - key thk.4	233.2
	<u>a</u>	[F] - CO002 - Tapered 1:5 - ø17,4 - M12x1,5 - key thk.3	233.2
	XV-2P	[G] - SCF02 - Splined ø16,5 - z=9, H=13, m=1.6 DIN 5482 17x14	86.1
	×	[H] - SCF03 - Splined ø16.5 - z=9, H=18,8, m=1,6 DIN 5482 17x14	86.1
		[1] - SCF04 - Splined ø15.456 z=9, H=22.5, SAE J498 9T 16/32DP	67.1
		[K] - SCF05 - Splined ø16.5 z=9 H=8,1 m=1.6 DIN 5482 17x14	86.2
		[L] - SCF01- Splined ø16.5 z=9 H=9,2 m=1.6 DIN 5482 17x14	86.2
		[M] - CO001 - Tapered 1:8 - ø17,4 - M12x1,5 - key thk.3,2	233.2
		[A] - CO001 - Tapered 1:8 - ø22 - M14x1.5 - key thk.4	482
	<u>a</u>	[B] - Cl001 - Parallel ø20 - M8 - key thk.5	181
	XV-3	[C] - SCF03 - Splined ø21.5, z=13, H=25, m=1,6	223
	×	[H] - Cl004 - Parallel ø22.225– 1/4"28-UNF key thk.6.35 (SAE B)	180
		[I] - SCF04 - Splined ø21.8059, z=13, H=25, SAE J498 9T 16/32DP	264

NOTES:

For assemblies with a coupling, you should choose one as balanced as possible in order to reduce the vibrations and dynamic stresses to which the pump shaft may be subject.

Always make sure that the torque applied is less than or equal to the admissible torque of the shaft.

Do not apply a direct axial or radial load on the pump shaft; if necessary, use suitable supports.

Always use well-filtered oils containing no water or other emulsifying substance.

Never run the pump with oil and air solutions.

For pumps with outlets on the flange, it is recommended not to exceed a flow rate of

4 l/min	XV-0P
20 l/min.	XV-1P
35 I/min	XV-2P

Useful calculation formulas

qv	l/min	Flow rate
vi	cm ³ /rev.	Displacement (volume of oil displaced per complete revolution of the shaft)
n	rpm	Shaft rotation speed
p1	bar	inlet pressure
p2	bar	outlet pressure
Δр	bar	Δp=p2 - p1 difference between outlet (OUT) and inlet (IN) pressure
Ph	kW	Hydraulic power delivered
Pm	kW	Mechanical power absorbed
Τ	Nm	Torque absorbed by shaft
ην	-	0.91 – 0.96 volumetric efficiency (volumetric ratio between operation under load and loadless operation)
ηm		0.85 – 0.90 mechanical efficiency
ηt	-	$\eta t = \eta v x \eta m \text{ total efficiency}$

Basic Formulas	Derived	Formulas
$qv = \frac{vi \times n}{1000} \times \eta v$	$vi = \frac{qv \times 1000}{n \times \eta v}$	$n = \frac{qv \times 1000}{vi \times \eta v}$
$T = \frac{vi \times \Delta p}{20 \times \pi \times \eta m}$	$vi = \frac{T \times 20 \times \pi \times \eta m}{\Delta p}$	$\Delta p = \frac{T \times 20 \times \pi \times \eta m}{vi}$
$Ph = \frac{qv \times \Delta p}{600}$	$qv = \frac{Ph \times 600}{\Delta p}$	$\Delta p = \frac{Ph \times 600}{qv}$
$Pm = \frac{vi \times \Delta p \times n}{600000 \times \eta m}$	$vi = \frac{Pm \times 600000 \times \eta m}{\Delta p \times n}$	$\Delta p = \frac{600000 \times \eta m}{vi \times n}$

Constructive features

PART	MATERIAL	MECHANICAL FEATURES
PUMP BODY		Rp = 345 N/mm ² (Yield strength) Rm = 382 N/mm ² (Breaking strength)
FLANGE AND COVER	mechanical features, heat treated and	Rp = 310÷350 N/mm ² (Yield strength) Rm = 350÷400 N/mm ² (Breaking strength)
GEAR BUSH BEARINGS	Special heat-treated tin alloy with excellen mechanical features and high anti-friction	_
GEARS	Steel UNI 7846	Rs = 980 N/mm ² (Yield strength) Rm =1270÷1570 N/mm ² (Breaking strength)
SEALS		70 Shore, thermal resistance 120℃ 80 Shore, thermal resistance 200℃
BACK-UP RINGS	Virgin PTFE Tecnil Q3	

XV-0P CHARACTERISTIC FLOW RATE CURVES

XV-0P MOTOR TORQUE

XV-1P CHARACTERISTIC FLOW RATE CURVES

XV-1P MOTOR TORQUE

XV-2P CHARACTERISTIC FLOW RATE CURVES

XV-2P MOTOR TORQUE

Outlet Pressure bar

XV-3P CHARACTERISTIC FLOW RATE CURVES

XV-3P MOTOR TORQUE

STANDARD EUROPEAN PUMP ø36.5 FLANGE - TAPER SHAFT

X 2 P 5	1 0	2 E	Р	0	Α
Series	Χ	series X	(V		
Group	2	group 2			
Category	Р	unidired	tional p	ump	
Displacement	51	17			
Flange	02	Ø36.5 S	STAND	ARD	EUR
Shaft	Е	CO001	- Tapeı	red 1	:8 - ø
Pody IN	Р	inlet - Ø	40 Ø20	8M (
Body OUT	0	outlet -	Ø30 Ø	13.5	M6
Cover	Α	standar	d		

Technical data table							
TYPE	Displacement	Max. Pressure		₩ CODE	€		
	cm3/rev	P1 bar	P3 bar	Left rotation Right rotation			
XV-2P/04	4,20	260	300	X 2 P 41 01 E O O A X 2 P 41 02 E O O	Α		
XV-2P/06	6,00	260	300	X 2 P 43 01 E O O A X 2 P 43 02 E O O	Α		
XV-2P/09	8,40	260	300	X 2 P 45 01 E O O A X 2 P 45 02 E O O	Α		
XV-2P/11	10,80	260	300	X 2 P 47 01 E O O A X 2 P 47 02 E O O	Α		
XV-2P/14	14,40	250	290	X 2 P 49 01 E P O A X 2 P 49 02 E P O A	Α		
XV-2P/17	16,80	230	270	X 2 P 51 01 E P O A X 2 P 51 02 E P O A	Α		
XV-2P/19	19,20	210	250	X 2 P 53 01 E P O A X 2 P 53 02 E P O	Α		
XV-2P/22	22,80	200	240	X 2 P 55 01 E P O A X 2 P 55 02 E P O A	Α		
XV-2P/26	26,20	170	210	X 2 P <mark>57 01</mark> E Q P A X 2 P <mark>57 02</mark> E Q P A	Α		
XV-2P/30	30,00	160	200	X 2 P <mark>59 01</mark> E Q P A X 2 P <mark>59 02</mark> E Q P A	Α		
XV-2P/34	34,20	150	190	X 2 P 61 01 E Q P A X 2 P 61 02 E Q P A	Α		
XV-2P/40	39,60	140	180	X 2 P <mark>63 01</mark> E Q P A X 2 P <mark>63 02</mark> E Q P A	Α		

P1) Max. working pressure - P3) Max. peak pressure

For heavy-duty applications, it is recommended to check the admissible torque of the shaft

Dimensions table										
TYPE	Weight	Α	В	С	D	Е	F	D	Е	F
	kg	mm	mm	mm		II	N	OUT		JT
XV-2P/04	2,200	87,2	41,7	77,2	ø13,5	30	M6x1	ø13,5	30	M6x1
XV-2P/06	2,300	90,2	43,2	80,2	ø13,5	30	M6x1	ø13,5	30	M6x1
XV-2P/09	2,400	94,2	45,2	84,2	ø13,5	30	M6x1	ø13,5	30	M6x1
XV-2P/11	2,500	98,2	47,2	88,2	ø13,5	30	M6x1	ø13,5	30	M6x1
XV-2P/14	2,700	104,2	50,2	94,2	ø20	40	M8X1,25	ø13,5	30	M6x1
XV-2P/17	2,800	108,2	52,2	98,2	ø20	40	M8X1,25	ø13,5	30	M6x1
XV-2P/19	2,900	112,2	54,2	102,2	ø20	40	M8X1,25	ø13,5	30	M6x1
XV-2P/22	3,050	118,2	57,2	108,2	ø20	40	M8X1,25	ø13,5	30	M6x1
XV-2P/26	3,150	122,2	59,2	112,2	ø23,5	40	M8X1,25	ø20	40	M8X1,25
XV-2P/30	3,400	130,2	63,2	120,2	ø23,5	40	M8X1,25	ø20	40	M8X1,25
XV-2P/34	3,600	137,2	66,7	127,2	ø23,5	40	M8X1,25	ø20	40	M8X1,25
XV-2P/40	3,800	146,2	71,2	136,2	ø23,5	40	M8X1,25	ø20	40	M8X1,25

B 13,2

 $T.1 = 54 \div 58.9 \text{ [Nm]}$ - screw tightening torque M10

XP201

T.3 = 40 [Nm] - torque wrench setting 19

T.2 = 233.2 [Nm] - admissible shaft torque (N.B. When choosing a shaft, always check the admissible torque).

ø36.5 FLANGE

Shaft							
Cl001 - Parallel		Cl002 - Parallel					
T.2 = 44.1 [Nm]	Α	T.2 = 67.5 [Nm]	В				
6,45 30 30 30 30 30 30 30 30 30 30 30 30 30		13 8.7 23.8 8.7					
CO001 - Tapered		CO002 - Tapered					
T.2 = 233.2 [Nm]	E	T.2 = 233.2 [Nm]	F				
SCF02 - Splined		SCF03 - Splined					
T.2 = 86.1 [Nm] m=1.6 Z=9 DIN 5482-17x14. g:	G	T.2 = 86.1 [Nm] m=1.6. Z=9 DN 5482 - 17x14 gg s 6.55 18.8	Н				
SCF04 - Splined		SCF01 - Splined					
T.2 = 67.1 [Nm] SAE J 498 9T 16/32 DP	I	T.2 = 86.2 [Nm] m=1.6 Z=9 DIN 5492-17x14	L				

	Cover	
Left rotation	Right rotation	
		Α
19,5 88 27 19,5 1N	19.5 as a contract of the cont	В
19,5 d 8 8 2 7 7 9 0UT	19,5 88 27 04	С
19,5 08 80 19,5 19,5 08 19,5 00 19,5 08 19,5 0	19,5 d SS S	D
60		N

Internal drainage

External drainage

Displacement					
TYPE	CODE				
XV-2P/04	41				
XV-2P/06	43				
XV-2P/09	45				
XV-2P/11	47				
XV-2P/14	49				
XV-2P/17	51				
XV-2P/19	53				
XV-2P/22	55				
XV-2P/26	57				
XV-2P/30	59				
XV-2P/34	61				
XV-2P/40	63				

XP201

Standard bodies								
Displacement cm3/rev		Sta	ndard threa	ads				
4	0-0	S-R	B - B	L - M	Z - Z			
6	0-0	S-R	B - B	L - M	Z - Z			
9	0-0	S-R	B - B	L - M	Z - Z			
11	0-0	S-R	B - B	L - M	Z - Z			
14	P - O	S-R	C - B	L - M	Z - Z			
17	P - O	S-R	C - B	L - M	Z - Z			
19	P - O	S-R	C - B	L - M	Z - Z			
22	P - O	S-R	C - B	L - M	Z - Z			
26	Q - P	S-R	D-C	L - M	Z - Z			
30	Q - P	S-S	D-C	L - M	Z - Z			
34	Q - P	S-S	D-C	L - M	Z - Z			
40	Q - P	S-S	D-C	L - M	Z - Z			

Table showing standard flange and thread

combinations available in stock

STANDARD EUROPEAN PUMP ø36.5 FLANGE - TAPER SHAFT

V 2 D E	1 0	2 =		D	٨
X 2 P 5	U	2 E	6	D	Α
Series	Х	series X	V		
Group	2	group 2			
Category	Р	unidirect	tional p	oump	
Displacement	51	17			
Flange	02	Ø36.5 S	TAND	ARD	EUR
Shaft	Е	CO001 -	- Tapei	red 1	:8 - ø
Body IN	С	inlet - 3/4	4" GAS	3	
OUT	В	outlet - 1	1/2" G <i>A</i>	\S	
Cover	Α	standard	t		

Technical data table								
TYPE	Displacement	Max. Pressure		placement Max. Pressure			DDE	\$
	cm3/rev	P1 bar	P3 bar	L	eft rotation	Right ro	tation	
XV-2P/04	4,20	260	300	X 2 P	41 01 E B B A	X 2 P 41 02	EBBA	
XV-2P/06	6,00	260	300	X 2 P	43 01 E B B A	X 2 P 43 02	EBBA	
XV-2P/09	8,40	260	300	X 2 P	45 01 E B B A	X 2 P <mark>45</mark> 02	EBBA	
XV-2P/11	10,80	260	300	X 2 P	47 01 E B B A	X 2 P <mark>47</mark> 02	EBBA	
XV-2P/14	14,40	250	290	X 2 P	49 01 E C B A	X 2 P <mark>49</mark> 02	ECBA	
XV-2P/17	16,80	230	270	X 2 P	51 01 E C B A	X 2 P <mark>51</mark> 02	ECBA	
XV-2P/19	19,20	210	250	X 2 P	53 01 E C B A	X 2 P <mark>53</mark> 02	ECBA	
XV-2P/22	22,80	200	240	X 2 P	55 01 E C B A	X 2 P <mark>55</mark> 02	ECBA	
XV-2P/26	26,20	170	210	X 2 P	57 01 E D C A	X 2 P <mark>57</mark> 02	EDCA	
XV-2P/30	30,00	160	200	X 2 P	59 01 E D C A	X 2 P <mark>59</mark> 02	EDCA	
XV-2P/34	34,20	150	190	X 2 P	61 01 E D C A	X 2 P <mark>61 0</mark> 2	EDCA	
XV-2P/40	39,60	140	180	X 2 P	63 01 E D C A	X 2 P <mark>63</mark> 02	EDCA	

P1) Max. working pressure - P3) Max. peak pressure

For heavy-duty applications, it is recommended to check the admissible torque of the shaft

Dimensions table							
TYPE	Weight	Α	В	С	D	D	
	kg	mm	mm	mm	IN	OUT	
XV-2P/04	2,200	87,2	41,7	77,2	1/2" BSPP	1/2" BSPP	
XV-2P/06	2,300	90,2	43,2	80,2	1/2" BSPP	1/2" BSPP	
XV-2P/09	2,400	94,2	45,2	84,2	1/2" BSPP	1/2" BSPP	
XV-2P/11	2,500	98,2	47,2	88,2	1/2" BSPP	1/2" BSPP	
XV-2P/14	2,700	104,2	50,2	94,2	3/4" BSPP	1/2" BSPP	
XV-2P/17	2,800	108,2	52,2	98,2	3/4" BSPP	1/2" BSPP	
XV-2P/19	2,900	112,2	54,2	102,2	3/4" BSPP	1/2" BSPP	
XV-2P/22	3,050	118,2	57,2	108,2	3/4" BSPP	1/2" BSPP	
XV-2P/26	3,150	122,2	59,2	112,2	1" BSPP	3/4" BSPP	
XV-2P/30	3,400	130,2	63,2	120,2	1" BSPP	3/4" BSPP	
XV-2P/34	3,600	137,2	66,7	127,2	1" BSPP	3/4" BSPP	
XV-2P/40	3,800	146,2	71,2	136,2	1" BSPP	3/4" BSPP	

Ø 17,4

 $T.1 = 54 \div 58.9 \text{ [Nm]}$ - screw tightening torque M10

XP207

T.3 = 40 [Nm] - torque wrench setting 19

T.2 = 233.2 [Nm] - admissible shaft torque (N.B. When choosing a shaft, always check the admissible torque).

ø36.5 FLANGE

Shaft							
Cl001 - Parallel		Cl002 - Parallel					
T.2 = 44.1 [Nm]	Α	T.2 = 67.5 [Nm]	В				
CO001 - Tapered		CO002 - Tapered					
T.2 = 233.2 [Nm]	Е	T.2 = 233.2 [Nm]	F				
SCF02 - Splined		SCF03 - Splined					
T.2 = 86.1 [Nm] m=1.6 Z=9 DN 5482-17x14 g 6.555	G	T.2 = 86.1 [Nm] m=1.6 Z=9 DIN 5482-17x14 g 9	Н				
SCF04 - Splined		SCF01 - Splined					
T.2 = 67.1 [Nm] SAE J 498 9T 16/32 DP 95 95	1	T.2 = 86.2 [Nm] m=1.6 Z=9 DIN 5482 - 17x14 g.2 g.2 1.8	L				

C	Cover	
Left rotation	Right rotation	
		Α
19,5 88 27 19,5	19.5 ds 22 l	В
19.5 88 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	19,5 SB CI OUT	С
19.5 ds 82/1 ds 19.5 d	0 19,5 S S S S S S S S S S S S S S S S S S S	D
A- 60		N

Internal drainage

External drainage

Displac	ement
TYPE	CODE
XV-2P/04	41
XV-2P/06	43
XV-2P/09	45
XV-2P/11	47
XV-2P/14	49
XV-2P/17	51
XV-2P/19	53
XV-2P/22	55
XV-2P/26	57
XV-2P/30	59
XV-2P/34	61
XV-2P/40	63

XP201

Standard bodies									
Displacement cm3/rev		Sta	ndard threa	ads					
4	0-0	S-R	B - B	L - M	Z - Z				
6	0-0	S-R	B - B	L - M	Z - Z				
9	0-0	S-R	B - B	L - M	Z - Z				
11	0-0	S-R	B - B	L - M	Z - Z				
14	P - O	S-R	C - B	L - M	Z - Z				
17	P - O	S - R	C - B	L - M	Z - Z				
19	P - O	S - R	C - B	L - M	Z - Z				
22	P - O	S - R	C - B	L - M	Z - Z				
26	Q - P	S - R	D-C	L - M	Z - Z				
30	Q - P	S-S	D-C	L - M	Z - Z				
34	Q - P	S-S	D-C	L - M	Z - Z				
40	Q - P	S-S	D-C	L - M	Z - Z				

Table showing standard flange and thread

combinations available in stock

"BH" TYPE PUMP ø50 BODY-SHAPED FLANGE - TAPER SHAFT

Technical data table								
TYPE	Displacement	Max. Pi	ressure	¥⇔ COD	DE OF			
	cm3/rev	P1 bar	P3 bar	Left rotation	Right rotation			
XV-2P/04	4,20	260	300	X 2 P 41 11 F S R A X	X 2 P 41 12 F S R A			
XV-2P/06	6,00	260	300	X 2 P <mark>43</mark> 11 F S R A 2	X 2 P 43 12 F S R A			
XV-2P/09	8,40	260	300	X 2 P <mark>45 11</mark> F S R A X	X 2 P <mark>45 12 F S R A</mark>			
XV-2P/11	10,80	260	300	X 2 P <mark>47 11</mark> F S R A X	X 2 P <mark>47 12 F S R A</mark>			
XV-2P/14	14,40	250	290	X 2 P <mark>49 11</mark> F S R A X	X 2 P 49 12 F S R A			
XV-2P/17	16,80	230	270	X 2 P <mark>51 11 F S R A </mark>	X 2 P <mark>51 12 F S R A</mark>			
XV-2P/19	19,20	210	250	X 2 P <mark>53 11 F S R A </mark>	X 2 P 53 12 F S R A			
XV-2P/22	22,80	200	240	X 2 P <mark>55 11</mark> F S R A X	X 2 P <mark>55 12 F S R A</mark>			
XV-2P/26	26,20	170	210	X 2 P <mark>57 11</mark> F S R A X	X 2 P <mark>57 12 F S R A</mark>			
XV-2P/30	30,00	160	200	X 2 P <mark>59 11 F S S A </mark>	X 2 P 59 12 F S S A			
XV-2P/34	34,20	150	190	X 2 P <mark>61 11 F S S A </mark>	X 2 P 61 12 F S S A			
XV-2P/40	39,60	140	180	X 2 P <mark>63 11 F S S A </mark>	X 2 P <mark>63 12 F S S A</mark>			

For heavy-duty applications, it is recommended to check the admissible torque of the shaft

Dimensions table										
TYPE	Weight	Α	В	С	D E F			D	Ε	F
	kg	mm	mm	mm		11	N		Ol	JT
XV-2P/04	2,100	87,2	38,6	77,2	ø20	40	M6x1	ø15	35	M6x1
XV-2P/06	2,200	90,2	38,6	80,2	ø20	40	M6x2	ø15	35	M6x1
XV-2P/09	2,300	94,2	40,6	84,2	ø20	40	M6x3	ø15	35	M6x1
XV-2P/11	2,400	98,2	45,0	88,2	ø20	40	M6x4	ø15	35	M6x1
XV-2P/14	2,600	104,2	45,0	94,2	ø20	40	M6x5	ø15	35	M6x1
XV-2P/17	2,700	108,2	45,0	98,2	ø20	40	M6x6	ø15	35	M6x1
XV-2P/19	2,800	112,2	45,0	102,2	ø20	40	M6x7	ø15	35	M6x1
XV-2P/22	2,950	118,2	52,5	108,2	ø20	40	M6x8	ø15	35	M6x1
XV-2P/26	3,050	122,2	52,5	112,2	ø20	40	M6x9	ø15	35	M6x1
XV-2P/30	3,300	130,2	60,7	120,2	ø20	40	M6x10	ø20	40	M6x1
XV-2P/34	3,500	137,2	60,7	127,2	ø20	40	M6x11	ø20	40	M6x1
XV-2P/40	3,700	146,2	60,7	136,2	ø20	40	M6x12	ø20	40	M6x1

 $T.1 = 54 \div 58.9$ [Nm] - screw tightening torque M10

XP210

T.3 = 40 [Nm] - torque wrench setting 19

T.2 = 233.2 [Nm] - admissible shaft torque (N.B. When choosing a shaft, always check the admissible torque).

ø50 "BH" Body-Shaped FLANGE

	Sh	aft	
Cl001 - Parallel		Cl002 - Parallel	
T.2 = 44.1 [Nm]	Α	T.2 = 67.5 [Nm] V 1:8 V 125 A 12.5 V 12.5	В
CO001 - Tapered T.2 = 233.2 [Nm]	_	CO002 - Tapered T.2 = 233.2 [Nm]	_
27	Е	11.5 Table 1.5	F
SCF03 - Splined			
T.2 = 86.1 [Nm] m=16 Z=9 DIN 5482 - 17x14	Н		

	over	
Left rotation	Right rotation	
		Α
19.5 N	19.5 SB CV	В
19,5 Sag CCI + OUT	98 19,5 CUT	С
19.5 ds 82 21 2 82 2 1 2 82 2 1 2 82 2 1 2 82 2 1 2 82 2 1 2 1	19,5 d g g Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	D
Internal of	drainage	N
CH 22 CH 13	CH 22 CH 13	0

External drainage

Displacement					
TYPE	CODE				
XV-2P/04	41				
XV-2P/06	43				
XV-2P/09	45				
XV-2P/11	47				
XV-2P/14	49				
XV-2P/17	51				
XV-2P/19	53				
XV-2P/22	55				
XV-2P/26	57				
XV-2P/30	59				
XV-2P/34	61				
XV-2P/40	63				

XP210

Standard bodies								
Displacement cm3/rev		Sta	indard threa	ads				
4	0-0	S-R	B - B	L - M	Z - Z			
6	0-0	S - R	B - B	L - M	Z - Z			
9	0-0	S - R	B - B	L - M	Z - Z			
11	0-0	S - R	B - B	L - M	Z - Z			
14	P - O	S - R	C - B	L - M	Z - Z			
17	P - O	S - R	C - B	L - M	Z - Z			
19	P - O	S - R	C - B	L - M	Z - Z			
22	P - O	S - R	C - B	L - M	Z - Z			
26	Q - P	S - R	D-C	L - M	Z - Z			
30	Q - P	S-S	D-C	L - M	Z - Z			
34	Q - P	S - S	D-C	L - M	Z - Z			
40	Q - P	S - S	D-C	L - M	Z - Z			

Table showing standard flange and thread

combinations available in stock

"HY" TYPE PUMP ø50 BODY-SHAPED FLANGE - TAPER SHAFT

X 2 P	51	22	F	S	R	Α
Series)	K se	ries X'	V		
Group	2	2 gr	oup 2			
Category	F	o un	idirect	ional	pump	
Displacement	5	1 17	•			
Flange	2	2 Ø	50 HY	GER	MAN S	STAR
Shaft	F	= C(0002 -	Таре	ered 1	:5 - ø
Body	1 8	S inl	et - Ø4	40 a 4	5° Ø2	20 M6
OU	IT F	R ou	tlet - Q	ð35 a	45° Ø	≬15 N
Cover	A	A sta	andard	ł		

Technical data table								
TYPE	Displacement	Max. Pi	ressure		CODE	\$		
	cm3/rev	P1 bar	P3 bar	Left rotation	Right	rotation		
XV-2P/04	4,20	260	300	2 P <mark>41 21 F</mark> S F	R <mark>A X</mark> 2 P <mark>41</mark>	22 F S R A		
XV-2P/06	6,00	260	300	2 P <mark>43 21 F</mark> S F	R <mark>A X</mark> 2 P <mark>43</mark>	22 F S R A		
XV-2P/09	8,40	260	300	2 P <mark>45 21 F S F</mark>	R <mark>A X</mark> 2 P <mark>45</mark>	22 F S R A		
XV-2P/11	10,80	260	300	2 P <mark>47 21</mark> F S F	R A X 2 P <mark>47</mark>	22 F S R A		
XV-2P/14	14,40	250	290	2 P <mark>49 21</mark> F S F	R A X 2 P <mark>49</mark>	22 F S R A		
XV-2P/17	16,80	230	270	2 P <mark>51 21</mark> F S F	R A X 2 P <mark>51</mark>	22 F S R A		
XV-2P/19	19,20	210	250	2 P <mark>53 21</mark> F S F	R A X 2 P <mark>53</mark>	22 F S R A		
XV-2P/22	22,80	200	240	2 P <mark>55 21</mark> F S F	R A X 2 P <mark>55</mark>	22 F S R A		
XV-2P/26	26,20	170	210	2 P <mark>57 21</mark> F S F	R A X 2 P <mark>57</mark>	22 F S R A		
XV-2P/30	30,00	160	200	2 P <mark>59 21 F S \$</mark>	6 A X 2 P <mark>59</mark>	22 F S S A		
XV-2P/34	34,20	150	190	2 P <mark>61 21 F S \$</mark>	6 A X 2 P <mark>61</mark>	22 F S S A		
XV-2P/40	39,60	140	180	2 P <mark>63 21 F S 3</mark>	S A X 2 P <mark>63</mark>	22 F S S A		

P1) Max. working pressure - P3) Max. peak pressure

For heavy-duty applications, it is recommended to check the admissible torque of the shaft

Dimensions table										
TYPE	Weight	Α	В	С	D	Ε	F	D	Е	F
	kg	mm	m mm mm IN			Ol	JT I			
XV-2P/04	2,100	87,2	38,6	77,2	ø20	40	M6x1	ø15	35	M6x1
XV-2P/06	2,200	90,2	38,6	80,2	ø20	40	M6x2	ø15	35	M6x1
XV-2P/09	2,300	94,2	40,6	84,2	ø20	40	M6x3	ø15	35	M6x1
XV-2P/11	2,400	98,2	45,0	88,2	ø20	40	M6x4	ø15	35	M6x1
XV-2P/14	2,600	104,2	45,0	94,2	ø20	40	M6x5	ø15	35	M6x1
XV-2P/17	2,700	108,2	45,0	98,2	ø20	40	M6x6	ø15	35	M6x1
XV-2P/19	2,800	112,2	45,0	102,2	ø20	40	M6x7	ø15	35	M6x1
XV-2P/22	2,950	118,2	52,5	108,2	ø20	40	M6x8	ø15	35	M6x1
XV-2P/26	3,050	122,2	52,5	112,2	ø20	40	M6x9	ø15	35	M6x1
XV-2P/30	3,300	130,2	60,7	120,2	ø20	40	M6x10	ø20	40	M6x1
XV-2P/34	3,500	137,2	60,7	127,2	ø20	40	M6x11	ø20	40	M6x1
XV-2P/40	3,700	146,2	60,7	136,2	ø20	40	M6x12	ø20	40	M6x1

 $T.1 = 54 \div 58.9$ [Nm] - screw tightening torque M10

XP213

T.3 = 40 [Nm] - torque wrench setting 19

T.2 = 233.2 [Nm] - admissible shaft torque (N.B. When choosing a shaft, always check the admissible torque).

ø50 "HY" Body-Shaped FLANGE

Α	Cl002 - Parallel T.2 = 67.5 [Nm]	
Α	T.2 = 67.5 [Nm]	
Α	T.2 = 67.5 [Nm]	
	Ø 17,42 W12x1.5 Ø 17,42	В
	6.45 12.5	
	CO002 - Tapered	
Е	T.2 = 233.2 [Nm]	F
Н		
		E T.2 = 233.2 [Nm]

Cov	/er	
Left rotation	Right rotation	
		Α
19,5 ESB 27 19,5	19,5	В
19.5 d 88 d 8 d 8 d 8 d 8 d 8 d 8 d 8 d 8 d	19,5 OUT	С
19,5 ds 8 21 19,5 mg ZI	19,5 S S S S S S S S S S S S S S S S S S S	D
Internal dra	ainage	N
	ainage	0

Displac	ement
TYPE	CODE
XV-2P/04	41
XV-2P/06	43
XV-2P/09	45
XV-2P/11	47
XV-2P/14	49
XV-2P/17	51
XV-2P/19	53
XV-2P/22	55
XV-2P/26	57
XV-2P/30	59
XV-2P/34	61
XV-2P/40	63

XP213

Standard bodies											
Displacement cm3/rev	v Standard threads										
4	0-0	S-R	B - B	L - M	Z - Z						
6	0-0	S-R	B - B	L - M	Z - Z						
9	0-0	S-R	B - B	L - M	Z - Z						
11	0-0	S-R	B - B	L - M	Z - Z						
14	P - O	S-R	C - B	L - M	Z - Z						
17	P - O	S-R	C - B	L - M	Z - Z						
19	P - O	S-R	C - B	L - M	Z - Z						
22	P - O	S-R	C - B	L - M	Z - Z						
26	Q - P	S-R	D-C	L - M	Z - Z						
30	Q - P	S-S	D-C	L - M	Z - Z						
34	Q - P	S-S	D-C	L - M	Z - Z						
40	Q - P	S-S	D-C	L - M	Z - Z						

Table showing standard flange and thread

combinations available in stock

STANDARD GERMAN "BH" TYPE PUMP ø52 BODY-SHAPED FLANGE - MILLED SHANK

X 2	Р	51	32	C	S	R	Α	
Series			X	series X	(V			
Group		:	2	group 2				
Category		F	Р	unidired	tional	pump)	
Displacer	nent	5	51	17				
Flange		3	32	Ø52 BH	I GER	MAN	STAF	RE
Shaft		(C	CF001	- Mille	d sha	nk ø1	15
Body	IN		S	inlet - Ø	i40 a 4	45° Ø:	20 M6	6
Бойу	OU ⁻	ΓF	R	outlet -	Ø35 a	45° ۵	ð15 N	M6
Cover		/	Α	standar	d			

	Technical data table										
TYPE	Displacement	Max. Pi	ressure	*	CO	DE 👉 €					
	cm3/rev	P1 bar	P3 bar	Le	eft rotation	Right rotation					
XV-2P/04	4,20	260	300	X 2 P	41 31 C S R A	X 2 P <mark>41</mark> 32	CSRA				
XV-2P/06	6,00	260	300	X 2 P	43 31 C S R A	X 2 P <mark>43</mark> 32	CSRA				
XV-2P/09	8,40	260	300	X 2 P	45 31 C S R A	X 2 P <mark>45</mark> 32	C S R A				
XV-2P/11	10,80	260	300	X 2 P	47 31 C S R A	X 2 P <mark>47</mark> 32	CSRA				
XV-2P/14	14,40	250	290	X 2 P	49 31 C S R A	X 2 P <mark>49</mark> 32	CSRA				
XV-2P/17	16,80	230	270	X 2 P	51 31 C S R A	X 2 P <mark>51</mark> 32	CSRA				
XV-2P/19	19,20	210	250	X 2 P	53 31 C S R A	X 2 P <mark>53</mark> 32	CSRA				
XV-2P/22	22,80	200	240	X 2 P	55 31 C S R A	X 2 P <mark>55</mark> 32	CSRA				
XV-2P/26	26,20	170	210	X 2 P	57 31 C S R A	X 2 P <mark>57</mark> 32	CSRA				
XV-2P/30	30,00	160	200	X 2 P	59 31 C S S A	X 2 P <mark>59</mark> 32	CSSA				
XV-2P/34	34,20	150	190	X 2 P	61 31 C S S A	X 2 P <mark>61</mark> 32	CSSA				
XV-2P/40	39,60	140	180	X 2 P	63 31 C S S A	X 2 P <mark>63</mark> 32	CSSA				

P1) Max. working pressure - P3) Max. peak pressure

For heavy-duty applications, it is recommended to check the admissible torque of the shaft

	Dimensions table												
TYPE	Weight	Α	В	С	D	Е	F	D	Е	F			
	kg	mm	mm	mm		II	V		Ol	JI			
XV-2P/04	2,100	87,2	38,6	77,2	ø20	40	M6x1	ø15	35	M6x1			
XV-2P/06	2,200	90,2	38,6	80,2	ø20	40	M6x2	ø15	35	M6x1			
XV-2P/09	2,300	94,2	40,6	84,2	ø20	40	M6x3	ø15	35	M6x1			
XV-2P/11	2,400	98,2	45,0	88,2	ø20	40	M6x4	ø15	35	M6x1			
XV-2P/14	2,600	104,2	45,0	94,2	ø20	40	M6x5	ø15	35	M6x1			
XV-2P/17	2,700	108,2	45,0	98,2	ø20	40	M6x6	ø15	35	M6x1			
XV-2P/19	2,800	112,2	45,0	102,2	ø20	40	M6x7	ø15	35	M6x1			
XV-2P/22	2,950	118,2	52,5	108,2	ø20	40	M6x8	ø15	35	M6x1			
XV-2P/26	3,050	122,2	52,5	112,2	ø20	40	M6x9	ø15	35	M6x1			
XV-2P/30	3,300	130,2	60,7	120,2	ø20	40	M6x10	ø20	40	M6x1			
XV-2P/34	3,500	137,2	60,7	127,2	ø20	40	M6x11	ø20	40	M6x1			
XV-2P/40	3,700	146,2	60,7	136,2	ø20	40	M6x12	ø20	40	M6x1			

 $T.1 = 54 \div 58.9 \text{ [Nm]}$ - screw tightening torque M10

XP216

T.2 = 60.5 [Nm] - admissible shaft torque (N.B. When choosing a shaft, always check the admissible torque).

Standard German ø52 "BH" FLANGE

	Sh	aft	
CF001 - Milled shank		SCF05 - Splined	
T.2 = 60.5 [Nm]	С	T.2 = 86.2 [Nm] m=1.6 Z=9 DIN 5482 - 17x14 THE SECOND SECO	K
SCF01 - Splined T.2 = 86.2 [Nm] ==1.6 Z=9 DN 5482 - 17x14	L		

C	Cover	
Left rotation	Right rotation	
		А
19,5 88 87 19,5 10	19.5 dg 22	В
19.5 S S S S C C C C C C C C C C C C C C C	19,5 88 80 19,5 0UT	С
19,5 & 8 8 2 19,5 & 19,5 & 8 2 19,5 & 8 19,5 & 8 10,5 & 8	19,5 d S8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	D
Internal	drainage	N
CH 22 CH 13 External	CH 22 CH 13	0

Displacement							
TYPE	CODE						
XV-2P/04	41						
XV-2P/06	43						
XV-2P/09	45						
XV-2P/11	47						
XV-2P/14	49						
XV-2P/17	51						
XV-2P/19	53						
XV-2P/22	55						
XV-2P/26	57						
XV-2P/30	59						
XV-2P/34	61						
XV-2P/40	63						

XP216

Standard bodies											
Displacement cm3/rev	Standard threads										
4	0-0	S-R	B - B	L - M	Z - Z						
6	0-0	S-R	B - B	L - M	Z - Z						
9	0-0	S - R	B - B	L - M	Z - Z						
11	0-0	S - R	B - B	L - M	Z - Z						
14	P - O	S - R	C - B	L - M	Z - Z						
17	P - O	S - R	C - B	L - M	Z - Z						
19	P - O	S - R	C - B	L - M	Z - Z						
22	P - O	S-R	C - B	L - M	Z - Z						
26	Q - P	S-R	D-C	L - M	Z - Z						
30	Q - P	S-S	D-C	L - M	Z - Z						
34	Q - P	S-S	D-C	L - M	Z - Z						
40	Q - P	S-S	D-C	L - M	Z - Z						

Table showing standard flange and thread

combinations available in stock

STANDARD GERMAN PUMP ø80 FLANGE - TAPER SHAFT

	Technical data table										
TYPE	Displacement	Max. Pi	ressure	→	CO	DE 👉 🗧					
	cm3/rev	P1 bar	P3 bar	Left rotation	on	Right	rotation				
XV-2P/04	4,20	260	300	X 2 P <mark>41 41 F</mark>	SRA	X 2 P 41	42 F S R A				
XV-2P/06	6,00	260	300	X 2 P <mark>43</mark> 41 F	SRA	X 2 P 43	42 F S R A				
XV-2P/09	8,40	260	300	X 2 P <mark>45</mark> 41 F	SRA	X 2 P 45	42 F S R A				
XV-2P/11	10,80	260	300	X 2 P <mark>47</mark> 41 F	SRA	X 2 P <mark>47</mark>	42 F S R A				
XV-2P/14	14,40	250	290	X 2 P <mark>49</mark> 41 F	SRA	X 2 P <mark>49</mark>	42 F S R A				
XV-2P/17	16,80	230	270	X 2 P <mark>51</mark> 41 F	SRA	X 2 P <mark>51</mark>	42 F S R A				
XV-2P/19	19,20	210	250	X 2 P <mark>53 41</mark> F	SRA	X 2 P <mark>53</mark>	42 F S R A				
XV-2P/22	22,80	200	240	X 2 P <mark>55</mark> 41 F	SRA	X 2 P <mark>55</mark>	42 F S R A				
XV-2P/26	26,20	170	210	X 2 P <mark>57</mark> 41 F	SRA	X 2 P <mark>57</mark>	42 F S R A				
XV-2P/30	30,00	160	200	X 2 P <mark>59 41 F</mark>	SSA	X 2 P <mark>59</mark>	42 F S S A				
XV-2P/34	34,20	150	190	X 2 P <mark>61 41</mark> F	SSA	X 2 P 61	42 F S S A				
XV-2P/40	39,60	140	180	X 2 P <mark>63 41</mark> F	SSA	X 2 P <mark>63</mark>	42 F S S A				

P1) Max. working pressure - P3) Max. peak pressure

For heavy-duty applications, it is recommended to check the admissible torque of the shaft

Dimensions table												
TYPE	Weight	Α	В	С	D	Е	F	D	Е	F		
	kg	mm	mm	mm		II	N		Ol	JT		
XV-2P/04	2,330	89,7	41,1	79,7	ø20	40	M6x1	ø15	35	M6x1		
XV-2P/06	2,430	92,7	41,1	82,7	ø20	40	M6x2	ø15	35	M6x1		
XV-2P/09	2,530	96,7	43,1	86,7	ø20	40	M6x3	ø15	35	M6x1		
XV-2P/11	2,630	100,7	47,5	90,7	ø20	40	M6x4	ø15	35	M6x1		
XV-2P/14	2,730	106,7	47,5	96,7	ø20	40	M6x5	ø15	35	M6x1		
XV-2P/17	2,830	110,7	47,5	100,7	ø20	40	M6x6	ø15	35	M6x1		
XV-2P/19	2,930	114,7	47,5	104,7	ø20	40	M6x7	ø15	35	M6x1		
XV-2P/22	3,180	120,7	55,0	110,7	ø20	40	M6x8	ø15	35	M6x1		
XV-2P/26	3,280	124,7	55,0	114,7	ø20	40	M6x9	ø15	35	M6x1		
XV-2P/30	3,530	132,7	63,2	122,7	ø20	40	M6x10	ø20	40	M6x1		
XV-2P/34	3,730	139,7	63,2	129,7	ø20	40	M6x11	ø20	40	M6x1		
XV-2P/40	3,930	148,7	63,2	138,7	ø20	40	M6x12	ø20	40	M6x1		

T.1 = 54÷58.9 [Nm] - screw tightening torque M10

XP217

T.3 = 40 [Nm] - torque wrench setting 19

T.2 = 233.2 [Nm] - admissible shaft torque (N.B. When choosing a shaft, always check the admissible torque).

ø80 FLANGE

Shaft					
Cl001 - Parallel		Cl002 - Parallel			
T.2 = 44.1 [Nm]	Α	T.2 = 67.5 [Nm]	В		
CO001 - Tapered		CO002 - Tapered			
7.2 = 233.2 [Nm]	Е	7.2 = 233.2 [Nm]	II.		
SCF03 - Splined					
T.2 = 86.1 Nm = 1.6 2-9 Nm DN 5482 - 17x14 18.8	Н				

C	Cover	
Left rotation	Right rotation	
		Α
19,5 R 2 I	19.5 ds 82 cc 1	В
19.5 OUT	9 19,5 0 19,5	С
19,5 % 8 19,5 19,5 % 19,5 0UT	19,5 d S8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	D
Internal	drainage	N
CH 22 CH 13 External	CH 22 CH 13	0

Displac	ement
TYPE	CODE
XV-2P/04	41
XV-2P/06	43
XV-2P/09	45
XV-2P/11	47
XV-2P/14	49
XV-2P/17	51
XV-2P/19	53
XV-2P/22	55
XV-2P/26	57
XV-2P/30	59
XV-2P/34	61
XV-2P/40	63

XP217

Standard bodies									
Displacement cm3/rev		Standard threads							
4	0-0	O-O S-R B-B L-M Z-							
6	0-0	S - R	B - B	L - M	Z - Z				
9	0-0	S-R	B - B	L - M	Z - Z				
11	0-0	S - R	B - B	L - M	Z - Z				
14	P - O	S - R	C - B	L - M	Z - Z				
17	P - O	S - R	C - B	L - M	Z - Z				
19	P - O	S-R	C - B	L - M	Z - Z				
22	P - O	S - R	C - B	L - M	Z - Z				
26	Q - P	S - R	D-C	L - M	Z - Z				
30	Q - P	S-S	D-C	L - M	Z - Z				
34	Q - P	S-S	D-C	L - M	Z - Z				
40	Q - P	S-S	D-C	L - M	Z - Z				

 $Table \ showing \ standard \ flange \ and \ thread$

 $combinations\ available\ in\ stock$

"SAE A" TYPE PUMP ø82.5 FLANGE - SPLINED SHAFT

Technical data table							
TYPE	Displacement	Max. Pressure		*	cc	DDE	\$
	cm3/rev	P1 bar	P3 bar	L	eft rotation	Right ro	tation
XV-2P/04	4,20	260	300	X 2 P	41 51 I S R A	X 2 P 41 52	ISRA
XV-2P/06	6,00	260	300	X 2 P	43 51 I S R A	X 2 P 43 52	ISRA
XV-2P/09	8,40	260	300	X 2 P	45 51 I S R A	X 2 P <mark>45</mark> 52	ISRA
XV-2P/11	10,80	260	300	X 2 P	47 51 I S R A	X 2 P <mark>47</mark> 52	ISRA
XV-2P/14	14,40	250	290	X 2 P	10 01 1 0 11 71	X 2 P <mark>49</mark> 52	ISRA
XV-2P/17	16,80	230	270	X 2 P	51 51 I S R A	X 2 P <mark>51</mark> 52	ISRA
XV-2P/19	19,20	210	250	X 2 P	53 51 I S R A	X 2 P <mark>53</mark> 52	ISRA
XV-2P/22	22,80	200	240	X 2 P	55 51 I S R A	X 2 P <mark>55</mark> 52	ISRA
XV-2P/26	26,20	170	210	X 2 P	57 51 I S R A	X 2 P <mark>57</mark> 52	ISRA
XV-2P/30	30,00	160	200	X 2 P	59 51 I S S A	X 2 P <mark>59</mark> 52	ISSA
XV-2P/34	34,20	150	190	X 2 P	61 51 I S S A	X 2 P <mark>61 5</mark> 2	ISSA
XV-2P/40	39,60	140	180	X 2 P	63 51 I S S A	X 2 P <mark>63</mark> 52	ISSA

P1) Max. working pressure - P3) Max. peak pressure

For heavy-duty applications, it is recommended to check the admissible torque of the shaft

Dimensions table										
TYPE	Weight	Α	В	С	D	Ε	F	D	Е	F
	kg	mm	mm	mm		II	N		Ol	JT
XV-2P/04	2,280	88,0	39,4	78,0	ø20	40	M6x1	ø15	35	M6x1
XV-2P/06	2,380	91,0	39,4	81,0	ø20	40	M6x2	ø15	35	M6x1
XV-2P/09	2,480	95,0	41,4	85,0	ø20	40	M6x3	ø15	35	M6x1
XV-2P/11	2,580	99,0	45,8	89,0	ø20	40	M6x4	ø15	35	M6x1
XV-2P/14	2,780	105,0	45,8	95,0	ø20	40	M6x5	ø15	35	M6x1
XV-2P/17	2,880	109,0	45,8	99,0	ø20	40	M6x6	ø15	35	M6x1
XV-2P/19	2,980	113,0	45,8	103,0	ø20	40	M6x7	ø15	35	M6x1
XV-2P/22	3,130	119,0	53,3	109,0	ø20	40	M6x8	ø15	35	M6x1
XV-2P/26	3,230	123,0	53,3	113,0	ø20	40	M6x9	ø15	35	M6x1
XV-2P/30	3,480	131,0	61,5	121,0	ø20	40	M6x10	ø20	40	M6x1
XV-2P/34	3,680	138,0	61,5	128,0	ø20	40	M6x11	ø20	40	M6x1
XV-2P/40	3,880	147,0	61,5	137,0	ø20	40	M6x12	ø20	40	M6x1

11,4

X2P5152ISRA.dft

95,5

 $T.1 = 54 \div 58.9$ [Nm] - screw tightening torque M10

XP219

T.2 = 67.1 [Nm] - admissible shaft torque (N.B. When choosing a shaft, always check the admissible torque).

ø82.5 FLANGE "SAE A"

	Sh	aft	
Cl001 - Parallel		Cl002 - Parallel	
T.2 = 44.1 [Nm]	Α	T.2 = 67.5 [Nm]	В
13 24 5 6 6 5 5 6 5 1 30 W		1 13 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½	
CO001 - Tapered		CO002 - Tapered	
T.2 = 233,2 [Nm]	Е	T.2 = 233.2 [Nm]	F
SCF04 - Splined			
T.2 = 67.1 [Nm] SAE J 498 9T 16/32 DP 92 92 22.5	I		

C	Cover	
Left rotation	Right rotation	
		Α
19,5 18 20 19,5 18 20 19,5	19.5 a SB CV	В
19.5 ds 8 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98 19,5 20 19,5 OUT	С
19.5 ds 88 21 19.5 ds 80 21 19.5 ds 19.5 ds 80 21 19.5 ds 19.5	0 19.5 19.5 88 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	D
Internal	drainage	N
CH 22 CH 13 External	CH 22 CH 13	0

Displacement				
TYPE	CODE			
XV-2P/04	41			
XV-2P/06	43			
XV-2P/09	45			
XV-2P/11	47			
XV-2P/14	49			
XV-2P/17	51			
XV-2P/19	53			
XV-2P/22	55			
XV-2P/26	57			
XV-2P/30	59			
XV-2P/34	61			
XV-2P/40	63			

XP219

Standard bodies									
Displacement cm3/rev		Standard threads							
4	0-0	O-O S-R B-B L-M Z-							
6	0-0	S - R	B - B	L - M	Z - Z				
9	0-0	S - R	B - B	L - M	Z - Z				
11	0-0	S - R	B - B	L - M	Z - Z				
14	P - O	S - R	C - B	L - M	Z - Z				
17	P - O	S - R	C - B	L - M	Z - Z				
19	P - O	S-R	C - B	L - M	Z - Z				
22	P - O	S - R	C - B	L - M	Z - Z				
26	Q - P	S - R	D-C	L - M	Z - Z				
30	Q - P	S - S	D-C	L - M	Z - Z				
34	Q - P	S - S	D-C	L - M	Z - Z				
40	Q - P	s-s	D-C	L - M	Z - Z				

Table showing standard flange and thread

combinations available in stock

