Possibilidades para o Ensino de Métodos Numéricos no Ensino Médio

Vitaliano S. Amaral - UFPI

V Encontro do Profmat do Piauí

01 de Novembro de 2024

Introdução

O desenvolvimento do pensamento computacional no ensino médio pode contribuir para a compreensão de conceitos matemáticos.

A seguir, algumas formas como isso pode ocorrer:

- A introdução de métodos iterativos, como os métodos da secante e bissecção, conecta teoria e prática, preparando os alunos para desafios reais.
- Os métodos da secante e bissecção são ferramentas acessíveis e eficazes para a determinação de raízes de funções, permitindo explorar conceitos matemáticos em contextos cotidianos.
- Por meio de atividades práticas, como analisar taxas de inflação ou comparar opções de financiamento, os alunos desenvolvem habilidades de resolução de problemas e entendem a importância dos métodos numéricos na tomada de decisões.

O método da secante

O método da secante é um processo iterativo para encontrar raízes de funções, adequado para alunos do ensino fundamental e médio com conhecimento básico de funções. Sua acessibilidade, por não exigir cálculo diferencial, facilita o aprendizado e a aplicação, permitindo que estudantes iniciantes explorem métodos numéricos sem a necessidade de conhecimentos avançados.

A ideia básica do método da secante é iniciar com dois pontos x_0 e x_1 e gerar uma sequência de pontos x_2, x_3, \ldots que se aproximam da raiz da função.

A fórmula iterativa é dada por:

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k).$$
 (1)

Mas de onde surgiu essa fórmula?

A seguir, faremos uma ilustração geométrica do método da secante. Consideramos a reta secante ao gráfico de f nos pontos $B=(x_{k-1},f(x_{k-1}))$ e $E=(x_k,f(x_k))$.

Chamamos de x_{k+1} a abscissa do ponto onde a reta cruza o eixo O_x . Consideramos os triângulos retângulos ABC (maior) e AEF (menor).

Como esses dois triângulos são semelhantes, então

$$\frac{|AF|}{|AC|} = \frac{|EF|}{|BC|}.$$

onde $|AF| = x_k - x_{k+1}$, $|AC| = x_{k-1} - x_{k+1}$, $|EF| = f(x_k)$ e $|BC| = f(x_{k-1})$.

Daí obtemos

$$\frac{x_k - x_{k+1}}{x_{k-1} - x_{k+1}} = \frac{f(x_k)}{f(x_{k-1})},$$

ou seja,

$$x_k f(x_{k-1}) - x_{k+1} f(x_{k-1}) = x_{k-1} f(x_k) - x_{k+1} f(x_k).$$

O que é equivalente a

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k).$$

Durante o processo de dedução da fórmula mencionada, o professor pode abordar os seguintes conceitos matemáticos:

- Frações;
- Equações de retas;
- Semelhança de triângulos.

Essa abordagem mais ampla:

- Permite uma compreensão mais profunda do tema;
- ► Enfatiza a importância da teoria na construção do ensino;
- Contribui para a formação de uma base sólida para os alunos.

O procedimento do método da secante é da seguinte forma:

Método da Secante: Escolhe inicialmente dois pontos x_0 e x_1 tais que $f(x_0) \neq f(x_1)$ e duas estimativas $\varepsilon > 0$ e $\theta > 0$.

Passo 1: Se $|f(x_1)| > \epsilon$ e $|f(x_0)| > \epsilon$, vá para o Passo 2. Caso contrário, pare o método e determine entre x_0 e x_1 qual deles resulta em um valor menor de |f| para considerar a raiz aproximada de f.

Passo 2: Determine

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k).$$

Passo 3: Se $|f(x_{k+1})| < \varepsilon$ ou $|x_{k+1} - x_k| < \theta$, pare o método e considere x_{k+1} como a raiz aproximada de f. Caso contrário, faça k = k+1 e volte ao Passo 2.

Podemos observar que para a execução do método da secante é necessário apenas conhecimentos básicos das propriedades de números reais e da função envolvida.

O método da secante usado para encontrar as raízes da função:

$$f(x) = \left(1 + \frac{x}{100}\right)^n - F_n$$

onde n é um número natural.

Esta função é relevante no ensino por vários motivos:

- Permite discutir problemas cotidianos relacionados à taxa média de juros em um período n.
- $ightharpoonup F_n$ representa o fator de aumento.
- A raiz positiva x da função $f(x) = \left(1 + \frac{x}{100}\right)^{10} 3$ representa a taxa média anual de x% para que, em 10 anos, o valor triplique.

Explorar as raízes da função $f(x) = \left(1 + \frac{x}{100}\right)^n - F_n$ permite que os alunos:

- Conectem conceitos teóricos a situações práticas.
- Fortaleçam habilidades computacionais.
- Ilustrem como a matemática é uma ferramenta poderosa na resolução de problemas reais.

Esta abordagem interdisciplinar visa:

- Mostrar como a matemática e a computação podem ser aliadas na compreensão de desafios cotidianos.
- Promover curiosidade e interesse.
- Inspirar uma apreciação duradoura pela aplicação da matemática no mundo real.

Aplicação: Consideramos $F_{10}=\frac{23.36}{4.99}$ que indica quantas vezes o preço do produto aumentou nos últimos dez anos. ou seja:

$$f(x) = \left(1 + \frac{x}{100}\right)^{10} - 4.69$$

onde sua raiz é aproximadamente 16, 69.

Iteração k	χ ^k	f(xk)
0	36.000000	16.965207
1	37.000000	18.610578
2	25.689128	5.158231
3	21.352035	2.244448
4	18.011229	0.557455
5	16.907282	0.087509
6	16.701716	0.004315
7	16.691054	0.000036

Método da Bissecção

O método da bisseção é uma técnica iterativa e intuitiva para encontrar aproximações de zeros de uma função, baseada no Teorema do Valor Intermediário e não requerendo derivadas.

Este método consiste em dividir um intervalo inicial ao meio, formando dois novos intervalos e selecionando aquele que contém a raiz.

Esse processo se repete até atingir a precisão desejada."

Método da Bisseção

Passo 0: Escolha dois valores iniciais, α e b, com sinais opostos para $f(\alpha)$ e f(b). O intervalo $[\alpha, b]$, denotado como $[\alpha_0, b_0]$, contém a raiz x.

Passo 1: Calcule o ponto médio $c = \frac{a+b}{2}$.

Passo 2: Avalle f(c).

Passo 3: Com base no sinal de f(c), siga uma das opções:

- (i) Se f(c) = 0, então c é a solução e o processo termina.
- (ii) Se f(c) tem o mesmo sinal que f(a), substitua a por c. O novo intervalo será (c,b_0) , denotado como (a_1,b_1) , onde $a_1=c$ e $b_1=b_0$.
- (iii) Se f(c) tem o mesmo sinal que f(b), substitua b por c. O novo intervalo será (a_0,c) , denotado também como (a_1,b_1) , onde $a_1=a_0$ e $b_1=c$.

Repita os passos 1 a 3 até que f(c) seja zero ou esteja próximo de zero com a precisão desejada.

$$x_0 = 30$$
, $x_1 = 10$.

$$x_0=30, \ x_1=10, \ x_2=20.$$

$$x_0 = 30$$
, $x_1 = 10$, $x_2 = 20$, $x_3 = 15$.

$$x_0 = 30$$
, $x_1 = 10$, $x_2 = 20$, $x_3 = 15$, $x_4 = 17$, 5.

$$x_0=30,\ x_1=10,\ x_2=20,\ x_3=15,\ x_4=17,5,\ x_5=16,25,\ x_6=16,875,\ x_7=16,56.$$

OBRIGADO A TODOS PELA PACIÊNCIA!!