

TablifyMe

TRANSFORMING IMAGES INTO .CSV, EFFORTLESSLY

SUPERVISOR NAME: Dr. Shrikant Salve

XXXX

02

Table of Content

- About Us
- Introduction
- Problem Statement

- Methodology
- Algorithm
- Work Flow

- Results & Discussion
- Future Scope
- Conclusion

Team Members

Jalaj P Patel

112115104

Bhargav Rathod

112115128

Prakhar Jain

112115110

Priyanshu Sudhakar

112115119

Problem Statement

Converting image-based data, such as tables in pictures, into structured Excel-ready formats is a pressing challenge. Our project aims to develop an efficient machine learning solution that allows users to effortlessly upload image data and receive it as a structured table, saving time and enhancing data usability across various industries and domains.

Methodology

1. Data Collection & Preprocessing:

Gather diverse image datasets with tables. Clean and standardize images for consistency

2. Image Recognition & Text extraction

Use CNNs to locate tables in images. Apply OCR for text extraction.

3. Data Structuring

Convert extracted data into structured tables

4. Machine Learing Training & Evaluation

Train models with validation and testing. Assess accuracy and efficiency with metrics.

Methodology

5. User-Friendly Interface:

Create an intuitive UI for image upload and data retrieval.

6. Excel Integration & Export:

Allow direct export to Excel.

7. User Testing & Iteration:

Gather user feedback for enhancements.

Algorithm

Table Detection:

- Define a function, "table_detection," to process an image file.
- Open and convert the image to RGB format.
- Resize the image for better processing.
- Utilize the "TableTransformerForObjectDetection" model to detect tables within the image.
- Visualize the detected tables on the image.
- o Return the coordinates (boxes) of the detected tables.

Cell Detection:

- Define a function, "cell_detection," to process an image file.
- Convert the image to RGB and resize it.
- Extract the cells within the image.
- Visualize the detected cells on the image.
- The cells are extracted with the model "TableTransformerForObjectDetection" from the "table-transformer-structure-recognition" family.

Work Flow Diagram

Results & Discussion

Flavor	Scoops sold	Contains chocolate?	Smooth or chunky
Vanilla	300	No	Smooth
Chocolate	450	Yes	Smooth
Cookies & Cream	275	Yes	Chunky
Mint Chocolate Chip	315	Yes	Chunky
Fudge Brownie	375	Yes	Chunky
Rocky Road	250	Yes	Chunky

data

Flavor	Scoops sold	Contains chocolate?	Smooth or chunky?
Vani	300	No	Smoo
Choc	450	Yes	Smoo
Cook	275	Yes	Chun
Mint	315	Yes	Chun
Fudg	375	Yes	Chun
Rock	250	Yes	Chun

Input Image

Output Table

X X X

Results & Discussion

Performance Evaluation:

Accuracy: Discuss the accuracy of your image-to-table conversion system in detecting and extracting tabular data from a variety of images. Include metrics and statistics that demonstrate the system's overall performance. Efficiency: Evaluate the system's efficiency in terms of processing time and resource usage. Provide insights into its scalability and responsiveness.

User Experience:

Usability: Describe the user interface and its intuitiveness. Evaluate user feedback and any improvements made based on user testing. User Satisfaction: Present feedback from users who have utilized the system for converting images into tables. Discuss areas where user satisfaction was high and areas where improvements may be needed.

Real-world Application:

The project has applications in data digitization, automation, and data analysis across various industries.

Future Scope

Fine-Tuning and Model Optimization:

Support for Multiple Data Formats:

Batch Processing and Automation:

Scalability and Cloud Integration:

Commercialization and Licensing:

- our image-to-table conversion project has showcased its potential to revolutionize data extraction from visual content.
- The project's success in accurately detecting tables, locating cells, and extracting structured data demonstrates its practicality and efficiency.
- As we embark on the journey of future enhancements, including model fine-tuning, user-friendly interfaces, and support for multiple data formats, we aim to offer a powerful and versatile tool that addresses the evolving needs of data digitization and automation across various industries.

Conclusion

Thankyou

For watching this presentation

