CS 222 Computer Organization & Architecture

Lecture 34 [26.04.2019]

Input-Output Subsystem

John Jose

Assistant Professor

Department of Computer Science & Engineering Indian Institute of Technology Guwahati, Assam.

Typical I/O Subsystem

Problems in I/O Interfacing

- Wide variety of peripherals
 - Delivering different amounts of data
 - At different speeds
 - In different formats
- All slower than CPU and RAM
- ❖ Need I/O modules with some intelligence

Components of I/O Subsystem

- ❖ I/O Hardware
 - ports, buses, devices, controllers
- ❖ I/O Software
 - Interrupt Handlers, Device Driver, Device-Independent Software, User-Space I/O Software
- ❖ I/O Data transfer mechanisms
 - Polling, Interrupt and DMAs

Where is I/O controller residing?

I/O Mapping

- Memory mapped I/O
 - Devices and memory share an address space
 - ❖I/O looks just like memory read/write
 - ❖No special commands for I/O
 - Large selection of memory access commands available
- Isolated I/O (I/O mapped I/O)
 - Separate address spaces
 - ❖Need I/O or memory select lines
 - Special commands for I/O; Limited set

I/O Mapping

- CPU needs to talk to I/O
- Memory-mapped I/O
 - Devices mapped to reserved memory locations - like RAM
 - Uses load/store instructions just like accesses to memory
- ❖ I/O mapped I/O
 - Special bus line
 - Special instructions

I/O Mapping

- (a) Separate memory & I/O address space
- (b) Memory-mapped I/O
- (c) both

I/O Basics

- ❖ I/O module interface I/O to CPU and Memory
- ❖ I/O controller ←→ I/O devices ports
 - Transfers data to/from device
 - Synchronizes operations with software
- * Status/ control registers: device status, errors
- Data registers
 - ❖Write: CPU/RAM data → device [eg Transmit]
 - ❖Read: CPU← device [eg Receive]

I/O Module and Device Interface

Functions of I/O Module

- Control & Timing
- Processor Communication
- Device Communication
- Data Buffering
- Error Detection (e.g., extra parity bit)

Basic I/O Steps

- CPU checks I/O module device status
- ❖ I/O module returns status
- If ready, CPU requests data transfer by sending a command to the I/O module
- I/O module gets a unit of data (byte, word, etc.) from device
- I/O module transfers data to CPU
- ❖ Variations of these steps for different I/O mechanisms like poling, interrupt and DMA based I/O.

I/O Data Transfer techniques

- ❖ Programmed I/O
- **❖ Interrupt-Driven I/O**
- Direct Memory Access (DMA)

johnjose@iitg.ac.in http://www.iitg.ac.in/johnjose/