

John C. Hart

Department of Computer Science University of Illinois at Urbana-Champaign

Data Variance

Data Variance

Data Variance

Covariance Matrix

data

$$[x_1 y_1 z_1 w_1 ...]$$

$$[x_2 y_2 z_2 w_2 ...]$$

$$[x_3 y_3 z_3 w_3 ...]$$

$$[x_4 y_4 z_4 w_4 ...]$$

$$[x_5 y_5 z_5 w_5 ...]$$

$$[x_6 y_6 z_6 w_6 ...]$$

..

$$[x_n y_n z_n w_n ...]$$

subtract mean

-
$$[x_m y_m z_m w_m ...]$$

$$\begin{bmatrix} \frac{1}{n} \sum x_i x_i & \frac{1}{n} \sum x_i y_i & \frac{1}{n} \sum x_i z_i & \frac{1}{n} \sum x_i w_i & \cdots \\ \frac{1}{n} \sum y_i x_i & \frac{1}{n} \sum y_i y_i & \frac{1}{n} \sum y_i z_i & \frac{1}{n} \sum y_i w_i & \cdots \\ \frac{1}{n} \sum z_i x_i & \frac{1}{n} \sum z_i y_i & \frac{1}{n} \sum z_i z_i & \frac{1}{n} \sum z_i w_i & \cdots \\ \frac{1}{n} \sum w_i x_i & \frac{1}{n} \sum w_i y_i & \frac{1}{n} \sum w_i z_i & \frac{1}{n} \sum w_i w_i & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Principal Component Analysis

Large matrix M transforms sphere into an ellipsoid

A = M^TM product creates a square symmetric matrix Eigenvector: \mathbf{x} Eigenvalue: λ

 $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$

Matrix A has same effect on vector **x** as multiplying it by scalar value λ

Eigenvalue represents how ellipsoid is stretched and squashed

Eigenvector represents what direction the stretching and squashing occur in

Principal Component Analysis

keeps only the eigenvectors corresponding to largest magnitude eigenvalues

Bone Replacement

- Work with Dr. Michael
 Goldwasser, Russ Jamison,
 Amy Wagoner Johnson,
 Matei Stroila, and Ben Grosser
- Can print new bone material to replace damaged bone
- Need specification for new bone material
- Focused on the mandible

Mandible

- Can find the shape of the missing bone
 - align the undamaged mandible to the damaged mandible
 - regularized subtraction

 What if we do not have the shape of the undamaged mandible?

healthy mandible

damaged mandible

Mandible Variation

Composite from database of mandibles showing variation in shape

Five medical feature points used to measure mandible variation

Principal component analysis reveals three main variations

