| Chip 1                       | 1  |
|------------------------------|----|
| Chip 1 Variations In Designs | 14 |
| Chip 2                       | 14 |

## Chip 1

## Why a thickness of 220nm is used for waveguides and how it impacts the TE modes? Thickness = 220nm

Mode: The EM field that can propagate through the slab waveguide.

Modes can be classified as TE (E field is perpendicular to direction of propagation) or TM B field is perpendicular to direction of propagation. Each mode has a effective index which determines how light propagates through the waveguide. Thinner waveguides support fewer modes than thicker waveguides. Supporting one mode reduces losses and enhances confinement.

TE Polarization Mode Profile using Matlab script wg\_1D\_slab.m: We want the waveguide to support one mode only and not multiple, as you increase the thickness it may support more modes.



Effective index value(s) of the TE mode(s): 2.84185 Effective index value(s) of the TM mode(s): 2.04889

# Effective Index Method:Calculating the Effective Index and Mode Solution For a Slab

Using wg\_EIM\_profile\_main.m

With parameters:

[neff\_TEwg] = wg\_EIM\_profile(1.31e-6, 0.22e-6, 0.35e-6, 0, 3.47, 1.44, 1.44, 100, 2);
(lambda, t, w, t\_slab, n\_core, n\_clad, n\_oxide, pts, M)

Slab Mode and effective index found:



Procedure repeat but in the in plane direction. Slab effective index is used as the input into the second step: This provides the effective index of the 2D waveguide:



#### 2D Mode Profile:



**Lumerical Mode Simulations:** Si Waveguide:

#### Width = 350nm, 220nm thickness

### Re Index = 3.5 at wavelength of 1310nm Im Index = 1.4e-9 at wavelength of 1310nm



SiO2 Material Dispersion Captures ReIndex = 1.44 at 1310nm Im Index = 1.025 e-10 at 1310nm



Mode Simulation at 1310nm Linear Effective Index of first mode is 2.4 and is quasi polarized



| mode # | effective<br>index      | wavelength<br>(µm) | loss<br>(dB/cm) | group<br>index         | TE polarization fraction (Ex) | waveguide TE/TM<br>fraction (%) |
|--------|-------------------------|--------------------|-----------------|------------------------|-------------------------------|---------------------------------|
| 1      | 2.432751+1.580621e-09i  | 1.31               | 0.00065849      | 4.498554+3.707324e-09i | 98                            | 70.24 / 84.02                   |
| 2      | 2.011675+1.381512e-09i  | 1.31               | 0.00057554      | 4.593208+5.943398e-09i | 5                             | 63.19 / 87.9                    |
| 3      | 1.466727+3.669182e-10i  | 1.31               | 0.00015286      | 2.073480+1.757221e-09i | 45                            | 92.65 / 98.86                   |
| 4      | 1.387351+3.025568e-10i  | 1.31               | 0.00012605      | 2.011487+3.947927e-09i | 6                             | 98.98 / 72.66                   |
| 5      | 1.338043+2.028817e-10i  | 1.31               | 8.4521e-05      | 1.829420-4.343849e-10i | 0                             | 93.85 / 86.67                   |
| 6      | 1.297733+1.451085e-10i  | 1.31               | 6.0453e-05      | 1.681700-1.976978e-10i | 99                            | 96.16 / 85.37                   |
| 7      | 1.296440+1.196355e-10i  | 1.31               | 4.9841e-05      | 1.651038-2.050792e-10i | 74                            | 99.41 / 80.2                    |
| 8      | 1.219599+1.344275e-10i  | 1.31               | 5.6003e-05      | 1.746593-2.423637e-10i | 9                             | 90.36 / 81.61                   |
| 9      | 1.216081+2.112087e-10i  | 1.31               | 8.7990e-05      | 1.986581-6.772020e-11i | 56                            | 67.71 / 98.57                   |
| 10     | 1.186289+7.247230e-10i  | 1.31               | 0.00030192      | 3.213641+2.155017e-09i | 30                            | 98.79 / 40.04                   |
| 11     | 1.105650+3.560496e-10i  | 1.31               | 0.00014833      | 2.450192-1.634924e-09i | 0                             | 74.97 / 82.47                   |
| 12     | 1.099572+3.059926e-10i  | 1.31               | 0.00012748      | 2.221451-6.617469e-10i | 95                            | 65.86 / 94.27                   |
| 13     | 1.071102+1.475465e-10i  | 1.31               | 6.1468e-05      | 2.013558-3.482246e-10i | 27                            | 99.06 / 55.07                   |
| 14     | 0.9518516+3.335136e-10i | 1.31               | 0.00013894      | 2.660851-1.099847e-09i | 52                            | 99.33 / 37.46                   |
| 15     | 0.8344429+1.965319e-10i | 1.31               | 8.1876e-05      | 2.546078-6.785752e-10i | 14                            | 97.93 / 36.21                   |
| 16     | 0.7882326+1.994756e-10i | 1.31               | 8.3102e-05      | 2.685785-7.792908e-10i | 96                            | 96.83 / 33.2                    |
| 17     | 0.7613070+4.344592e-10i | 1.31               | 0.00018100      | 3.422520-9.500937e-10i | 79                            | 25.8 / 99.3                     |
| 18     | 0.7604632+2.901233e-10i | 1.31               | 0.00012087      | 3.011141-1.326173e-09i | 84                            | 99.45 / 26.3                    |
| 19     | 0.7016898+2.560345e-10i | 1.31               | 0.00010666      | 3.089904-1.085257e-09i | 9                             | 90.52 / 32.34                   |
| 20     | 0.6561016+2.722418e-10i | 1.31               | 0.00011342      | 3.417327-1.120795e-09i | 34                            | 21.32 / 98.02                   |

### **Setting for plotting:**



#### Log Scale Mode

- Field decays in the x direction but not in the y direction



Expanded simulation region by 0.6: Still see x component decay



## Ex Component:







| mode # | effective<br>index     | wavelength<br>(µm) | loss<br>(dB/cm) | group<br>index         | TE polarization fraction (Ex) |
|--------|------------------------|--------------------|-----------------|------------------------|-------------------------------|
| 1      | 2.433749+1.583954e-09i | 1.31               | 0.00065988      | 4.507478+3.727410e-09i | 98                            |
| 2      | 2.005431+1.390915e-09i | 1.31               | 0.00057946      | 4.620122+5.835228e-09i | 5                             |
| 3      | 1.465835+3.335569e-10i | 1.31               | 0.00013896      | 2.000054+1.951383e-09i | 54                            |
| 4      | 1.379141+2.991080e-10i | 1.31               | 0.00012461      | 2.003111+4.601437e-09i | 9                             |
| 5      | 1.375687+1.638336e-10i | 1.31               | 6.8254e-05      | 1.685610-4.590318e-10i | 0                             |
| 6      | 1.374869+1.300521e-10i | 1.31               | 5.4180e-05      | 1.579365-2.147980e-10i | 100                           |
| 7      | 1.371596+1.099672e-10i | 1.31               | 4.5813e-05      | 1.548582-2.115957e-10i | 56                            |
| 8      | 1.313594+2.166807e-10i | 1.31               | 9.0270e-05      | 1.874443-3.105320e-10i | 60                            |
| 9      | 1.294560+1.171199e-10i | 1.31               | 4.8793e-05      | 1.634981-2.456676e-10i | 2                             |
| 10     | 1.272512+3.842652e-10i | 1.31               | 0.00016009      | 2.282432+2.817309e-09i | 70                            |

## **Frequency Sweep Simulations:**

- Effective index decreases with wavelength



# Group Index is decreasing...but according to lecures it should be increasing with wavelength



### Group velocity:



#### Loss:



#### **Waveguide Compact Model**

#### **FSR Calculations:**

If a desired FSR of 25Ghz is required, then the following length difference is needed using the equations below.

We can convert  $\Delta \lambda$  [nm] to  $\Delta \nu$  [GHz] by the following,

$$\Delta \nu \approx -\frac{c\Delta \lambda}{\lambda^2} = \frac{c}{\Delta L n_g}$$

$$FSR = \Delta \lambda = \frac{\lambda^2}{\Delta L \left( n - \lambda \frac{dn}{d\lambda} \right)} = \frac{\lambda^2}{\Delta L n_g}$$

Given the length difference, I'll make 3 designs with slightly different length differences. 2.5mm, 2.66mm 2.7mm and duplicates of these.

## Chip 1 Variations In Designs

To account for manufacturing differences that impact the width of the waveguide, different calculations were performed for varying waveguide widths, the group index was found from simulations in lumericla mode and the target length difference for each was calculated.

| Width (nm) | Group Index | FSR | Wavelength<br>(nm) | Target Length Difference (microns) |
|------------|-------------|-----|--------------------|------------------------------------|
| 350        |             | 25  | 1310               | 2667                               |
| 335        | 2630        | 25  | 1310               | 2630                               |
| 340        | 4.53        | 25  | 1310               | 2649                               |
| 360        | 4.46        | 25  | 1310               | 2690                               |

## Chip 2





| Chip 2                  |               |
|-------------------------|---------------|
| FSR Desired (Ghz)       | 25            |
| Wavelength (nm)         | 1310          |
| c (m/s)                 | 30000000      |
| FSR in (nm)             | -0.1430083333 |
| nG                      | 4.785922      |
| Length Difference       | -2507353.86   |
| Target Length (um)      | 2507          |
| Length Difference in mm | -2.6          |