Introduction to the Course

Building Modern Web Applications - VSP2019

Karthik Pattabiraman Kumseok Jung

What is this course about?

- 1. What is this course about?
- 2. Logistics
- 3. Policies
- 4. Grading
- 5. Other

What is this course about?

- Core principles behind building modern web applications
- Abstractions and design principles
- Application of core web technologies such as HTML, CSS, JavaScript, Node.js to the above

What is it NOT about?

Learning of specific technologies

- These will get outdated by the time you finish
- Fast changing field, so new technologies continuously appear and disappear.
- Can learn any technology if you understand the principles and concepts behind web development

Frameworks or libraries (e.g., jQuery)

- These are built on the principles and concepts
- Too many to cover in a reasonable time

Bottom line

You will understand the principles behind web application development

- Not simply copy-paste code from websites to string together a web application
- You will understand why technologies are the way they are, rather than accept it as a statement of fact, and perhaps change them if needed
- It enables you to design novel techniques and technologies in the web application space
- If you put in the effort, this course will be really fun! :-)

Logistics

1. What is this course about?

- 3. Policies
- 4. Grading
- 5. Other

Instructors: Karthik and Kumseok

Karthik Pattabiraman (karthikp@ece.ubc.ca)

- Associate Professor at UBC (joined 2010)
 - PhD from University of Illinois Urbana-Champaign
 - Detour via Microsoft Research in 2009

Research

- Web applications' reliability and security
- Error resilient applications
- Internet of Things (IoT) security

Instructors: Karthik and Kumseok

Kumseok Jung (<u>kumseok@ece.ubc.ca</u>)

- PhD Student at UBC
 - o BSc from University of British Columbia
- Research
 - Internet of Things (IoT)
 - Cloud/Edge Computing
 - Software Engineering
 - Distributed Systems

TAs: Aarti and Pritam

- Aarti Kashyap (<u>kaarti.sr@gmail.com</u>)
- Pritam Dash (<u>pdash@ece.ubc.ca</u>)
- The TAs will be available during each class to assist during in-class exercises and during the time you will be working on your class project

Logistics - Lectures

- Lectures delivered by the instructors (Karthik and Kumseok)
- Will consist of a mix of teaching (lecturing) sessions mixed with in-class activities

- Contact us if you do not have a laptop.
- You will work in teams of 3
- Participation to activities is important
- Lecture notes will be distributed ahead of time
 - No course textbook required
 - However, you should keep your own notes

Logistics - Software

- Any OS: Windows, Mac OSX, or Linux
- Your favorite web browser + built-in web dev tools
 - Firefox
 - o Chrome
 - Edge
- The text editor of your choice :-)
 - Sublime
 - Atom
 - Notepad++

Logistics - Interactions

- Github for all course-related communications
 - No email unless it's private
 - We will subscribe your VSP email to the group
 - Use it for communication (ask and answer questions) bonus points for active participation
- Github for lecture materials
 - Do not distribute without our permission
- Github for disseminating assignments and for submissions of assignment solutions
 - Email will NOT be accepted in lieu of Github

Logistics - Resources

- There's no textbook for the course
 - Lectures will cover all the material
 - Augment with online resources as needed
 - Attendance expected at all lectures
- Assignments will test you on material not necessarily covered in the lectures
 - You're free to use publicly available online resources on the web, as long as you cite them

Policies

- 1. What is this course about?
- 2. Logistics
- 3. Policies
- 4. Grading
- 5. Other

Policies

- You are responsible for all material you hand in
 - Review UBC's policies for academic dishonesty
 - Plagiarism of any kind will NOT be tolerated
 - Automatically result in you getting an F
 - Lack of knowledge of policies is not a valid excuse
 - No collaboration allowed on assignments (except with your partners more on this later)

Policies

- All material in the exam will be from the lectures covered in class.
 - Will NOT test you on material NOT in the lecture notes!
 - Missing a lecture means that you may miss out
 - Encouraged to ask questions in class and online
- You are encouraged to work on assignments in class and get help from us then and there
 - Office hours will not typically be held outside class

Grading

- 1. What is this course about?
- 2. Logistics
- 3. Policies
- 4. Grading
- 5. Other

Grading

- Assignments (60%)
 - 4 assignments counting for 15% each
 - Due in class every 2-3 days (see schedule)
 - Done in teams of 3 (form teams by today)
 - Encouraged to work during class on laptops
 - Use Github to commit code
 - No late assignments (no exceptions)

Grading

- Final Exam (40%)
 - To be held on the morning of Aug 8th
 - Must be done individually (NO collaboration)
 - Closed notes and Closed book part consisting of multiple choice questions (15%)
 - Open notes and Open book part consisting of 5 programming problems (25%) –
 please bring your laptop for this

Assignments - Git

- Open source distributed version control system
- We will be using Git for version control and GitHub for hosting
- Each group will receive a private GitHub repository

Assignments - Git

- Assignment submissions will take place through GitHub
- Create an assignment branch (i.e., assignment-1, assignment-2, assignment-3, assignment-4) by the due date (we will give more details on this)
 - No other means to submit an assignment will be accepted!
- No late commits will be accepted (unless with instructor permission).
 - Please push your latest changes to the appropriate branch before 11:59:59 PM on the due date!

Class Participation

 To truly learn and benefit from this class, we encourage all of you to participate

- Asking and answering questions in class and on Google groups
- Participating in in-class exercises
- Does NOT mean simply showing up in class
- We may award bonus points for class participation

Other

- 1. What is this course about?
- 2. Logistics
- 3. Policies
- 4. Grading
- 5. Other

Other thoughts

- Hope you have fun and learn too
- It's your responsibility to keep up in class
- If you're struggling, let us know early so we can help to the extent possible – or it may be too late
- Feel free to give us feedback and suggestions for improvement etc. –
 these will NOT impact your grade in any way

TODO for Today

• Find 2 partners to do the assignments with (teams of 3) to get a Github account from Pritam (TA).

- Let us know by end of the first class the composition of your team. One member should write to Pritam (pdash@ece.ubc.ca), an email that contains the following information for all team members:
 - Your IDs (starts with 9)
 - Your first and last names
 - Your email addresses
 - Your GitHub account usernames
- We will then assign a GitHub repository for your team, and all 3 members will be added as collaborators. Make sure you can work with it from your laptops
- If you have difficulty, come talk to us

TODO for Today - Git Demo

- 1. Clone repository
- 2. Commiting changes
- 3. Pushing/pulling changes from repository
- 4. Branching

<u>Useful Git Commands</u>

git clone git pull origin master git push origin master

Creating Branches

git branch assignment-X
git checkout
assignment-X
git push -u origin
assignment-X

git checkout master

git branch

git branch -r

TODO for Today

- Node.js Setup
- MongoDB Setup (on your own)

Extra Resources on JavaScript

If you want to go beyond the VSP course:

- 1. "Eloquent JavaScript: A Modern Introduction to Programming" by Marijn Haverbeke
- 2. "JavaScript: The Good Parts" by Douglas Crockford (where JavaScript quiz is from)
- 3. "Programming JavaScript Applications: Robust Web Architecture with Node, HTML5, and Moderns JS Libraries" by Eric Elliott
- "Effective JavaScript: 68 Specific Ways to Harness the Power of JavaScript" David Herman
- 5. "JavaScript: The Definitive Guide" by David Flanagan
- 6. "You Don't Know JS" by Kyle Simpson

Not required for this VSP course!