Глава V. Многочлены от одной переменной

§ 18. Многочлены как последовательности. Делимость многочленов

Б.М.Верников

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

Многочлены как последовательности (1)

Определение

Пусть R — произвольное ассоциативно-коммутативное кольцо с 1. Обозначим через R[x] множество всех последовательностей вида $(\alpha_0,\alpha_1,\ldots,\alpha_n,\ldots)$ с элементами из кольца R, в которых все элементы, начиная с некоторого, равны 0. Определим сумму и произведение последовательностей из R[x] следующим образом: если $f=(\alpha_0,\alpha_1,\ldots,\alpha_n,\ldots)$ и $g=(\beta_0,\beta_1,\ldots,\beta_n,\ldots)$, то $f+g=(\gamma_0,\gamma_1,\ldots,\gamma_n,\ldots)$, а $fg=(\delta_0,\delta_1,\ldots,\delta_n,\ldots)$, где $\gamma_k=\alpha_k+\beta_k$ и $\delta_k=\sum_{i+j=k}\alpha_i\beta_j$ для всякого $k\in\mathbb{N}\cup\{0\}$. Последовательности из R[x] будем называть многочленами над кольцом R. Последовательность, все элементы которой равны 0, обозначим через o и назовем o0 и назовем o1 многочленом.

Как мы увидим позднее, многочлены в смысле данного только что определения — это то же самое, что многочлены от одной переменной в привычном смысле этого слова (разница только в том, что коэффициенты у них могут лежать не в поле \mathbb{R} , а в произвольном кольце R).

Многочлены как последовательности (2)

Замечание о сумме и произведении многочленов

Сумма и произведение двух многочленов над кольцом R являются многочленами над R.

Доказательство. Пусть $f=(\alpha_0,\alpha_1,\ldots,\alpha_n,\ldots)$ и $g=(\beta_0,\beta_1,\ldots,\beta_n,\ldots)$ — многочлены над кольцом R. Существуют такие числа q и r, что $\alpha_n=0$ для всех $n\geqslant q$ и $\beta_n=0$ для всех $n\geqslant r$. Положим $f+g=(\gamma_0,\gamma_1,\ldots,\gamma_n,\ldots)$ и $fg=(\delta_0,\delta_1,\ldots,\delta_n,\ldots)$. Тогда, очевидно, $\gamma_n=0$ для всех $n\geqslant \max\{q,r\}$ и $\delta_n=0$ для всех $n\geqslant q+r$. Следовательно, $f+g,fg\in R[x]$.

Кольцо многочленов (1)

Лемма о кольце многочленов

Множество всех многочленов над кольцом R с операциями сложения и умножения многочленов является ассоциативно-коммутативным кольцом c 1.

 \square оказательство. Сложение и умножение многочленов над кольцом Rявляются бинарными операциями на множестве R[x] (см. замечание на предыдущем слайде). Поскольку $\langle R; + \rangle$ — абелева группа, из определения суммы многочленов вытекает, что $\langle R[x]; + \rangle$ также является абелевой группой (нейтральным по сложению элементом является нулевой многочлен). Из определения произведения многочленов непосредственно вытекает, что умножение многочленов коммутативно, а $(1,0,\ldots,0,\ldots)$ нейтральный элемент по умножению. Проверим ассоциативность умножения. Пусть $f = (\alpha_0, \alpha_1, ..., \alpha_n, ...), g = (\beta_0, \beta_1, ..., \beta_n, ...)$ и $h=(\gamma_0,\gamma_1,\ldots,\gamma_n,\ldots)$. Тогда $f\cdot g=(\delta_0,\delta_1,\ldots,\delta_n,\ldots)$, где $\delta_m = \sum \alpha_k \beta_\ell$ и $g \cdot h = (\varepsilon_0, \varepsilon_1, \dots, \varepsilon_n, \dots)$, где $\varepsilon_r = \sum \beta_s \gamma_t$. Следовательно, $(fg)h = (\mu_0, \mu_1, \dots, \mu_n, \dots)$, где

$$\mu_d = \sum_{m+t=d} \delta_m \gamma_t = \sum_{m+t=d} \left(\sum_{k+\ell=m} \alpha_k \beta_\ell \right) \gamma_t = \sum_{k+\ell+t=d} \alpha_k \beta_\ell \gamma_t.$$

Кольцо многочленов (2)

Аналогично, $f(gh) = (\nu_0, \nu_1, \dots, \nu_n, \dots)$, где

$$\nu_d = \sum_{k+r=d} \alpha_k \varepsilon_r = \sum_{k+r=d} \alpha_k \left(\sum_{s+t=r} \beta_s \gamma_t \right) = \sum_{k+s+t=d} \alpha_k \beta_s \gamma_t.$$

Сравнивая полученные выражения для μ_d и ν_d , получаем требуемое равенство f(gh)=(fg)h.

Осталось проверить дистрибутивность умножения относительно сложения. В силу коммутативности умножения, достаточно доказать равенство (f+g)h=fh+gh. Ясно, что $(f+g)h=(\mu_0,\mu_1,\ldots,\mu_n,\ldots)$, где

$$\mu_d = \sum_{k+\ell=d} (\alpha_k + \beta_k) \gamma_\ell.$$

С другой стороны, $fh=(\varepsilon_0,\varepsilon_1,\ldots,\varepsilon_n,\ldots)$, где $\varepsilon_m=\sum_{s+t=m}\alpha_s\gamma_t$, а $gh=(\xi_0,\xi_1,\ldots,\xi_n,\ldots)$, где $\xi_m=\sum_{s+t=r}\beta_s\gamma_t$. Следовательно, $fh+gh=(\nu_0,\nu_1,\ldots,\nu_n,\ldots)$, где

$$\nu_d = \varepsilon_d + \xi_d = \sum_{s+t=d} (\alpha_s \gamma_t + \beta_s \gamma_t) = \sum_{s+t=d} (\alpha_s + \beta_s) \gamma_t.$$

Сравнивая полученные выражения для μ_d и ν_d , получаем требуемое равенство (f+g)h=fh+gh.

Степень многочлена. Вложение кольца R в R[x]

Определение

Пусть $f=(\alpha_0,\alpha_1,\dots,\alpha_n,\dots)$. Если $f\neq o$, то существует $m\in\mathbb{N}\cup\{0\}$ такое что $\alpha_m\neq 0$ и $\alpha_k=0$ для любого k>m. Число m называется степенью многочлена f и обозначается через $\deg f$. Степень нулевого многочлена по определению равна $-\infty$, причем символ $-\infty$ меньше любого целого числа и $m+(-\infty)=-\infty+m=-\infty$ для любого целого m.

Лемма о многочленах нулевой степени

Совокупность всех многочленов степени $\leqslant 0$ из кольца R[x] образует подкольцо этого кольца, изоморфное кольцу R.

Доказательство. Многочлены нулевой степени — это последовательности вида $(\alpha,0,\dots,0,\dots)$, где $\alpha\neq 0$, и только они, а единственный многочлен, степень которого меньше нуля, — это нулевой многочлен. Таким образом, многочлены степени $\leqslant 0$ — это последовательности вида $(\alpha,0,\dots,0,\dots)$ и только они. Очевидно, что такие последовательности образуют подкольцо в R[x]. Из определения суммы и произведения многочленов с очевидностью вытекает, что отображение $\varphi\colon R\longrightarrow R[x]$, заданное правилом $\varphi(\alpha)=(\alpha,0,\dots,0,\dots)$, является изоморфизмом из R на это подкольцо.

Привычная запись многочленов

Последовательность $(0,1,0,\dots,0,\dots)$ обозначим через x. По индукции положим $x^m=x^{m-1}\cdot x$ для всякого натурального m>1. Легко проверить, что $x^m=(\underbrace{0,0,\dots,0},1,0,\dots,0,\dots)$ и

т элементов

$$\alpha_n x^n + \alpha_{n-1} x^{n-1} + \dots + \alpha_1 x + \alpha_0 = (\alpha_0, \alpha_1, \dots, \alpha_n, 0, \dots, 0, \dots)$$

для любых $\alpha_0,\alpha_1,\ldots,\alpha_n\in R$. Таким образом, многочлен $(\alpha_0,\alpha_1,\ldots,\alpha_n,0,\ldots,0,\ldots)$ можно записывать в виде $\alpha_nx^n+\alpha_{n-1}x^{n-1}+\cdots+\alpha_1x+\alpha_0$. В дальнейшем мы будем придерживаться этой привычной записи многочленов.

Определение

Элементы $\alpha_0,\alpha_1,\dots,\alpha_n$ называются коэффициентами многочлена $f=\alpha_nx^n+\alpha_{n-1}x^{n-1}+\dots+\alpha_1x+\alpha_0$. Если $\alpha_n\neq 0$, то $n=\deg f,\,\alpha_nx^n$ называется старшим членом многочлена f и обозначается через $\mathrm{Im}(f)$, а α_n называется старшим коэффициентом многочлена f и обозначается через $\mathrm{Ic}(f)$. Элемент α_0 называется свободным членом многочлена f.

Степень произведения и суммы многочленов

Замечание о степени произведения и суммы многочленов

Если f и g — ненулевые многочлены над полем F, то

- 1) $\deg(fg) = \deg f + \deg g$,
- 2) если $\deg f \neq \deg g$, то $\deg(f+g) = \max\{\deg f, \deg g\}$,
- 3) если $\deg f = \deg g$, то $\deg(f+g) \leqslant \deg f$.

Доказательство. Пусть $\operatorname{Im}(f) = ax^n$, а $\operatorname{Im}(g) = bx^m$. В частности, $a,b \neq 0$.

- 1) Очевидно, что в многочлене fg все коэффициенты при x^k , где k>n+m, равны 0, а коэффициент при x^{n+m} равен ab. Поскольку F- поле, имеем $ab\neq 0$. Следовательно, $\deg(fg)=n+m=\deg f+\deg g$.
- 2) Положим $r=\max\{n,m\}$. Очевидно, что в многочлене f+g все коэффициенты при x^k , где k>r, равны 0, а коэффициент при x^r равен либо a, либо b. В частности, последний коэффициент отличен от 0. Следовательно, $\deg(f+g)=r=\max\{\deg f,\deg g\}$.
- 3) Очевидно, что в данном случае в многочлене f+g все коэффициенты при x^k , где k>n, равны 0. Отсюда вытекает требуемое заключение.

Отметим, что если $\deg f = \deg g = n$, то $\deg(f+g) < \deg f$ тогда и только тогда, когда $\mathrm{lc}(f) = -\mathrm{lc}(g)$ (так как в этом и только этом случае коэффициент при x^n в f+g равен 0).

Необратимые многочлены

Замечание о необратимых многочленах

Ненулевой многочлен f над полем F является необратимым элементом кольца F[x] тогда и только тогда, когда $\deg f\geqslant 1$.

Доказательство. Необходимость. Предположим, что $\deg f \leqslant 0$. Это означает, что $f \in F$. Учитывая, что $f \neq o$, а F — поле, получаем, что многочлен f обратим. Следовательно, если f необратим, то $\deg f \geqslant 1$.

Достаточность. Предположим, что f обратим. Тогда fg=1 для некоторого $g\in F[x]$. Следовательно, $\deg f+\deg g=\deg(fg)=\deg 1=0$, откуда $\deg f\leqslant 0$. Следовательно, если $\deg f\geqslant 1$, то f необратим.

Теорема о делении многочленов с остатком (1)

Теорема о делении многочленов с остатком

Пусть F — поле и $f,g \in F[x]$, причем $g \neq o$. Тогда существуют такие однозначно определенные многочлены $q,r \in F[x]$, что

$$f = qg + r \ \textit{u} \ \deg r < \deg g. \tag{1}$$

Доказательство. Существование многочленов q и r. По условию $\deg g\geqslant 0$. Если $\deg g=0$, то $g\in F$. При этом $g\neq 0$. Имеем $f=f\cdot \frac{g}{g}=\frac{f}{g}\cdot g$ и равенство (1) выполнено при $q=\frac{f}{g}$ и r=0. Предположим теперь, что $\deg g>0$.

Теорема о делении многочленов с остатком (2)

При $\deg f < \deg g$ достаточно положить q=0, r=f. Пусть теперь $\deg f \geq \deg g$, $\deg f = k$, $\deg g = m$, $\mathrm{lc}(f) = \alpha$ и $\mathrm{lc}(g) = \beta$. В частности, $k \geq m$. Положим $q_1 = \frac{\alpha}{\beta} x^{k-m}$ и $r_1 = f - q_1 g$. Тогда $\mathrm{lm}(q_1 g) = \mathrm{lm}(f)$, и потому $\deg r_1 < \deg f$. Итак, существуют такие многочлены q_1 и r_1 , что $f = q_1 g + r_1$ и $\deg r_1 < \deg f$. Если $\deg r_1 < \deg g$, то требуемое утверждение выполнено при $q = q_1$ и $r = r_1$.

Пусть теперь $\deg r_1 \geq \deg g$. Тогда можно подобрать такой многочлен q_2 , что $\mathrm{Im}(q_2g) = \mathrm{Im}(r_1)$. Положим $r_2 = r_1 - q_2g$. Тогда $\deg r_2 < \deg r_1$, $r_1 = q_2g + r_2$ и $f = q_1g + r_1 = q_1g + q_2g + r_2 = (q_1 + q_2)g + r_2$. Если $\deg r_2 < \deg g$, то требуемое утверждение выполнено при $q = q_1 + q_2$ и $r = r_1$.

Если $\deg r_2 \geq \deg g$, продолжим этот процесс. На каждом шаге будет строиться одночлен r_k и многочлен q_k такие, что $\deg r_k < \deg r_{k-1}$ и $f = (q_1 + q_2 + \dots + q_k)g + r_k$. Поскольку $\deg r_1 > \deg r_2 > \dots$, при некотором k будет выполнено неравенство $\deg r_k < \deg g$. Полагая $q = q_1 + q_2 + \dots + q_k$ и $r = r_k$, мы получаем требуемое утверждение.

Единственность многочленов q и r. Предположим, что $f=q_1g+r_1$ и $f=q_2g+r_2$ для некоторых многочленов $q_1,\ q_2,\ r_1$ и r_2 таких что $\deg r_1,\deg r_2<\deg g$. Из равенства $q_1g+r_1=q_2g+r_2$ получаем $(q_1-q_2)g=r_2-r_1$. Но если $q_1-q_2\neq 0$, то это невозможно, так как $\deg((q_1-q_2)g)\geqslant \deg g$, а $\deg(r_2-r_1)<\deg g$. Следовательно, $q_1-q_2=0$, откуда $q_1=q_2$ и $r_1=r_2$.

Определение

Если выполнено равенство (1), то многочлен q называется частным, а многочлен r- остатком от деления (с остатком) f на g. Если r=0, то говорят, что многочлен f делится на многочлен g; в этом случае f=qg. При этом говорят также, что многочлен g делит многочлен f; этот факт будет обозначаться через $g\mid f$.

Следующее утверждение проверяется непосредственно.

Предложение о свойствах делимости многочленов

Пусть $f,g,g_1,g_2,h\in R[x]$. Если $f\mid g$, то $f\mid (gh)$, а если $f\mid g_1$ и $f\mid g_2$, то $f\mid (g_1+g_2)$.

Ассоциированные многочлены

Очевидно, что

! отношение делимости на множестве R[x] рефлексивно и транзитивно, т. е. является отношением квазипорядка.

В то же время, если R — поле, то это отношение не антисимметрично, поскольку в этом случае многочлены f и αf , где $\alpha \in R \setminus \{0,1\}$, делят друг друга, но различны. В соответствии с общим понятием ассоциированных элементов квазиупорядоченного множества (см. конец $\S 2$), будем называть многочлены f и g из R[x] ассоциированными, если $f \mid g$ и $g \mid f$.

Замечание об ассоциированных многочленах

Ненулевые многочлены f и g над полем F ассоциированы тогда и только тогда, когда $f=\alpha g$ для некоторого $\alpha\in F\setminus\{0\}.$

Доказательство. Необходимость. Если f и g ассоции рованы, то $f=\alpha g$ и $g=\beta f$ для некоторых $\alpha,\beta\in F[x]$. Следовательно, $\deg f=\deg g+\deg \alpha$ и $\deg g=\deg f+\deg \beta$, откуда $\deg f=\deg f+\deg \alpha+\deg \beta$. Следовательно, $\deg \alpha,\deg \beta\leqslant 0$, т. е. $\alpha,\beta\in F$. Кроме того, $f=\alpha g=\alpha\beta f$. Поскольку $f\neq o$, получаем, что $\alpha\beta\neq 0$. В частности, $\alpha\neq 0$.

Достаточность. Если $f=\alpha g$ и $\alpha \neq 0$, то $g=\frac{1}{\alpha}\cdot f$. Из первого равенства вытекает, что $f\mid g$, а из второго — что $g\mid f$.

Алгоритм деления многочлена на многочлен

Из доказательства теоремы о делении многочлена с остатком можно извлечь следующий

Алгоритм деления многочлена на многочлен

Пусть f и g — многочлены над полем F,

$$f = \alpha_n x^n + \alpha_{n-1} x^{n-1} + \dots + \alpha_1 x + \alpha_0$$
 u $g = \beta_m x^m + \beta_{m-1} x^{m-1} + \dots + \beta_1 x + \beta_0$,

причем $\alpha_n, \beta_m \neq 0$ и $n \geqslant m > 0$. Положим q = 0. Заменим многочлен f на многочлен $f_1 = f - \frac{\alpha_n}{\beta_m} \cdot x^{n-m} g$, а многочлен q — на многочлен $q + \frac{\alpha_n}{\beta_m} \cdot x^{n-m}$. Будем повторять эти действия до тех пор, пока выполняется неравенство $\deg f_1 \geqslant m$. Так как степень f_1 на каждом шаге уменьшается на m, алгоритм закончит работу. При этом частное будет равно q, а остаток — последнему значению f_1 .

Наибольший общий делитель

Определение

Пусть F — поле и $f,g\in F[x]$. Многочлен $h\in F[x]$ называется наибольшим общим делителем (НОД) многочленов f и g, если $h\mid f$, $h\mid g$ и для любого $p\in F[x]$ из того, что $p\mid f$ и $p\mid g$ следует, что $p\mid h$.

Следующее замечание показывает, что НОД двух многочленов определен не однозначно, а с точностью до ассоциированности.

Замечание о многочленах, ассоциированных с НОД

Пусть d — НОД многочленов f и g. Многочлен e также является НОД многочленов f и g тогда и только тогда, когда он ассоциирован c d.

Доказательство. Необходимость. Пусть d и e — наибольшие общие делители многочленов f и g. Тогда каждый из многочленов d и e делит как f, так и g. По определению НОД это означает, что многочлены d и e делят друг друга, т. е. ассоциированы.

Достаточность. Пусть d — НОД многочленов f и g, а многочлен e ассоциирован с d. Из того, что d делит f и g, а e делит d, вытекает, что e делит f и g. Далее, если h делит f и g, то h делит e, то и h делит e. Следовательно, e — НОД f и g.

Алгоритм Евклида (1)

Теорема о наибольшем общем делителе

Для любых ненулевых многочленов f и g над полем F существует НОД d и существуют многочлены $u,v\in F[x]$ такие, что

$$d = uf + vg. (2)$$

Правая часть равенства (2) называется линейной формой НОД. В доказательстве теоремы о наибольшем общем делителе содержится алгоритм Евклида построения НОД двух многочленов.

Доказательство. Без ограничения общности предположим, что $\deg f \geqslant \deg g$. Применяя теорему о делении многочленов с остатком, запишем равенства:

$$\begin{cases} f = q_{1}g + r_{1}, \ r_{1} \neq o, \ \deg r_{1} < \deg g; \\ g = q_{2}r_{1} + r_{2}, \ r_{2} \neq o, \ \deg r_{2} < \deg r_{1}; \\ r_{1} = q_{3}r_{2} + r_{3}, \ r_{3} \neq o, \ \deg r_{3} < \deg r_{2}; \\ \dots \\ r_{k-1} = q_{k+1}r_{k} + r_{k+1}, \ r_{k+1} \neq o, \ \deg r_{k+1} < \deg r_{k}; \\ r_{k} = q_{k+2}r_{k+1}. \end{cases}$$

$$(3)$$

Поскольку $\deg g, \deg r_1, \deg r_2, \ldots \in \mathbb{N} \cup \{0\}$ и $\deg g > \deg r_1 > \deg r_2 > \cdots$, этот процесс должен завершиться получением нулевого остатка. 🍃 🗦

Алгоритм Евклида (2)

Докажем, что r_{k+1} является НОД многочленов f и g. Поднимаясь по цепочке равенств (3) снизу вверх, покажем, что $r_{k+1} \mid f$ и $r_{k+1} \mid g$. Из последнего равенства получаем, что $r_{k+1} \mid r_k$, из предпоследнего в силу предложения о свойствах делимости многочленов — что $r_{k+1} \mid r_{k-1}$, из каждого последующего рассматриваемого равенства $r_s = q_{s+2}r_{s+1} + r_{s+2}$, получаем по предложению о свойствах делимости многочленов, что $r_{k+1} \mid r_s$, так как уже доказано, что $r_{k+1} \mid r_{s+1}$ и $r_{k+1} \mid r_{s+2}$. Дойдя до второго и первого равенства, получим $r_{k+1} \mid g$ и $r_{k+1} \mid f$.

Опускаясь по цепочке равенств (3) сверху вниз, покажем, что если $h \mid f$ и $h \mid g$, то $h \mid r_{k+1}$. Пусть $h \mid f$ и $h \mid g$. Из первого равенства получаем $r_1 = f - q_1g$; по предложению о свойствах делимости многочленов получаем $h \mid r_1$. Рассматривая следующее равенство, получаем $r_2 = g - q_2r_1$, откуда в силу предложения о свойствах делимости многочленов следует , что $h \mid r_2$. Опускаясь по цепочке равенств (3) сверху вниз, получим, что $h \mid r_s$ при $s = 3, \ldots, k+1$.

Осталось доказать равенство (2). Из предпоследнего равенства в системе (3) вытекает, что $r_{k+1}=r_{k-1}-q_{k+1}r_k$. Подставим в это равенство выражение $r_k=r_{k-2}-q_kr_{k-1}$, полученное из предыдущего равенства системы (3). Получим:

$$r_{k+1} = r_{k-1} - q_{k+1}(r_{k-2} - q_k r_{k-1}) = -q_{k+1} r_{k-2} + (q_{k+1} q_k + 1) r_{k-1}.$$

Алгоритм Евклида (3)

Полагая $u_2 = -q_{k+1}$, $v_2 = q_{k+1}q_k + 1$, имеем $r_{k+1} = u_2r_{k-2} + v_2r_{k-1}$. Подставляя в это равенство выражение $r_{k-1} = r_{k-3} - q_{k-1}r_{k-2}$, полученное из соответствующего равенства системы (3), получим

$$r_{k+1} = u_2 r_{k-2} + v_2 (r_{k-3} - q_{k-1} r_{k-2}) = v_2 r_{k-3} + (u_2 - v_2 q_{k-1}) r_{k-2}.$$

Следовательно, $r_{k+1} = u_3 r_{k-3} + v_3 r_{k-2}$, где $u_3 = v_2$, а $v_3 = u_2 - v_2 q_{k-1}$. Продолжая движение снизу вверх, на каждом шаге будем получать равенство $r_{k+1} = u_s r_{k-s} + v_s r_{k-s+1}$ для некоторых u_s и v_s , где $s=4,\ldots,k-1$. При s=k-1 получаем $r_{k+1}=u_{k-1}r_1+v_{k-1}r_2$. Подставляя в это равенство выражение $r_2 = g - q_2 r_1$, полученное из второго равенства системы (3), получаем

$$r_{k+1} = u_{k-1}r_1 + v_{k-1}(g - q_2r_1) = v_{k-1}g + (u_{k-1} - v_{k-1}q_2)r_1.$$

Подставляя в равенство $r_{k+1} = v_{k-1}g + (u_{k-1} - v_{k-1}q_2)r_1$ выражение $r_1 = f - q_1 g$, полученное из первого равенства системы (3), окончательно имеем

$$r_{k+1} = v_{k-1}g + (u_{k-1} - v_{k-1}q_2)(f - q_1g) =$$

$$= (u_{k-1} - v_{k-1}q_2)f + (v_{k-1}(1 + q_1q_2) - u_{k-1}q_1)g.$$

Полагая $u=u_{k-1}-v_{k-1}q_2$ и $v=v_{k-1}(1+q_1q_2)-u_{k-1}q_1$, получаем $r_{k+1} = uf + vg$. Поскольку, как показано выше, r_{k+1} является НОД многочленов f и g, это завершает доказательство.

Взаимно простые многочлены (1)

Определение

Многочлены f и g над полем F называются ${\it взаимно простыми},$ если 1 является их НОД.

Учитывая замечание об ассоциированных многочленах и замечание о многочленах, ассоциированых с НОД, мы видим, что

!! если многочлены f и g над полем F взаимно просты, то любой ненулевой элемент из F является их НОД. В этой ситуации мы будем для краткости писать НОД(f,g)=1.

Из теоремы о наибольшем общем делителе вытекает

Следствие о взаимно простых многочленах

Многочлены f и g над полем F являются взаимно простыми тогда и только тогда, когда существуют многочлены $u,v\in F[x]$ такие, что

$$uf + vg = 1. (4)$$

Доказательство. Необходимость обеспечивается равенством (2).

Взаимно простые многочлены (2)

Достаточность. Пусть выполнено равенство (4). Предположим, что h- общий делитель многочленов f и g, т. е. f=hp и g=hq для некоторых многочленов p и q. Тогда

$$1 = uf + vg = uph + vqh = (up + vq)h,$$

т. е. h делит 1. Следовательно, $\mathsf{HO} \ensuremath{\square} (f,g) = 1.$

Предложение о взаимно простых многочленах

Пусть f, g и h — многочлены над полем F.

- 1) Если f и g взаимно просты, $f \mid h$ и $g \mid h$, то $(fg) \mid h$.
- 2) Если f и g взаимно просты и $f \mid (gh)$, то $f \mid h$.
- Если f и h взаимно просты и g и h взаимно просты, то fg и h взаимно просты.

Доказательство. 1) Пусть h = fp и h = gq для некоторых над многочленов p и q. Так как f и g взаимно просты, в силу следствия о взаимно простых многочленах существуют многочлены u и v такие, что выполняется равенство (4). Умножая обе части этого равенства на h, получим h = huf + hvg, откуда h = gquf + fpvg = fg(qu + pv).

Взаимно простые многочлены (3)

- 2) По условию gh=fp для некоторого многочлена p. В силу следствия о взаимно простых многочленах uf+vg=1 для некоторых многочленов u и v. Следовательно, huf+hvg=h, откуда h=huf+fpv=f(hu+pv). Следовательно, f делит h.
- 3) В силу следствия о взаимно простых многочленах uf+vh=1 для некоторых многочленов u и v. Следовательно, ufg+vhg=g. Предположим, что $p=\text{HOД}(fg,h)\neq 1$. Тогда, с одной стороны, p делит h, а значит и vhg, а с другой, p делит fg, а значит и ufg. Следовательно, p делит vgh+ufg=g. Но это противоречит взаимной простоте g и h. Следовательно, vgh=g0.