第三次作品(專題)(3-3):淺度機器學習分類器的評比實驗

學號:410978040

姓名:黃冠翔

作品目標:

利用多元羅吉斯回歸、支援向量機 SVM 和神經網路對資料進行分類學習與測試。

學習分類器的原理並進行評比實驗。

本專題計畫執行分類器比較,即採用三種分類器分別對三組資料進行分類學習與測試。其中分類器包括: (1)多元羅吉斯回歸 (Multinomial Logistic Regression) (2)支援向量機 (Support Vector Machine) (3)神經網路 (Neural Network)

三組資料包括: (1)來自 3 個產區, 178 瓶葡萄酒, 含 13 種葡萄酒成分。 (2)來自 AT&T 40 個人的人臉影像共 400 張,每張大小 64×64。 (3)來自 Yale Face 38 人的人臉影像共 2410 張,每張大小 192×168。

此檔案以 Yale Face 38 人的人臉影像資料進行分類學習與測試。

先讀取資料並設定變數,同時將資料標準化。

```
import pandas as pd
import numpy as np
import scipy.io
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
# Read data
df = scipy.io.loadmat('allFaces.mat')
X = df['faces'] # 32256 \times 2410, each column represents an image
y = np.ndarray.flatten(df['nfaces'])
m = int(df['m']) # 168
n = int(df['n']) # 192
n persons = int(df['person']) # 38
Y=[1]
i=0
for yi in y:
    i=i+1
   Y=Y+([i]*(yi))
Y=np.array(Y)
# Split data into training and testing data
X_train, X_test, y_train, y_test = train_test_split(
X.T, Y, test size=0.30)
#X_train, X_test, y_train, y_test = train_test_split(X.T, Y,
test size=0.30, random state=100)
# Standardize data
scaler = StandardScaler()
X train = scaler.fit transform(X train)
X test = scaler.fit transform(X test)
```

(1)多元羅吉斯回歸 (Multinomial Logistic Regression)

1.00

1.00

0.95

18 19

20

0.91

0.96

1.00

0.95

0.98

0.98

22

24

21

(a)原始資料

1.使用 lbfgs 的演算法

```
from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy score, classification report
opts = dict(tol = 1e-6, max iter = int(1e6), verbose=1)
solver = 'lbfgs' # 'lbfgs' is the default
# solver = 'liblinear'
# solver = 'newton-cg'
clf original = LogisticRegression(solver = solver, **opts)
clf_original.fit(X_train_, y_train)
y pred = clf original.predict(X test )
# 測試資料之準確率回報
print(f"{accuracy_score(y_test, y_pred):.2%}\n")
print(f"{clf original.score(X_test_, y_test):.2%}\n")
print(classification report(y test, y pred))
[Parallel(n jobs=1)]: Using backend SequentialBackend with 1
concurrent workers.
[Parallel(n jobs=1)]: Done 1 out of 1 | elapsed: 35.2min finished
95.57%
95.57%
              precision
                            recall f1-score
                                               support
                              0.95
                                        0.97
           1
                   1.00
                                                     20
           2
                   0.95
                              0.95
                                        0.95
                                                     19
           3
                   1.00
                              1.00
                                        1.00
                                                     23
           4
                   0.93
                              1.00
                                        0.97
                                                     14
           5
                   0.91
                              1.00
                                        0.95
                                                     10
           6
                   0.92
                                        0.96
                                                     22
                              1.00
           7
                   1.00
                              0.95
                                        0.98
                                                     21
           8
                   0.91
                                        0.95
                                                     20
                              1.00
           9
                   0.95
                              1.00
                                        0.97
                                                     19
          10
                   0.84
                              1.00
                                        0.91
                                                     16
                   1.00
                              0.95
                                        0.97
                                                     20
          11
          12
                              1.00
                                                     12
                   1.00
                                        1.00
          13
                   0.94
                              0.88
                                        0.91
                                                     17
          14
                   1.00
                              0.88
                                        0.93
                                                     24
          15
                   1.00
                              1.00
                                        1.00
                                                     14
          16
                   1.00
                              0.86
                                        0.93
                                                     22
          17
                   1.00
                              1.00
                                        1.00
                                                     14
```

	21 22 23	0.95 1.00 1.00	0.83 0.95 1.00	0.89 0.98 1.00	24 21 20
	24	0.94	1.00	0.97	15
	25	1.00	0.94	0.97	18
	26 27	0.95 0.95	1.00 1.00	0.98 0.97	20 19
	28	1.00	0.95	0.98	22
	29	0.82	1.00	0.90	14
	30	1.00	0.91	0.95	23
	31 32	0.95 0.92	1.00 1.00	0.98 0.96	21 24
	33	0.88	1.00	0.94	15
	34	0.95	0.86	0.90	22
	35	1.00	0.96	0.98	23
	36 37	0.81 0.93	0.93 0.87	0.87 0.90	14 15
	38	0.90	0.95	0.92	19
				0.06	722
accura macro a	_	0.95	0.96	0.96 0.96	723 723
weighted a	_	0.96	0.96	0.96	723
J	J				

2.使用 liblinear 的演算法

```
from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy score, classification report
opts = dict(tol = le-6, max_iter = int(le6), verbose=1)
solver = 'liblinear'
# solver = 'newton-cg'
clf original = LogisticRegression(solver = solver, **opts)
clf_original.fit(X_train_, y_train)
y pred = clf original.predict(X test )
# 測試資料之準確率回報
print(f"{accuracy score(y test, y pred):.2%}\n")
print(f"{clf_original.score(X_test_, y_test):.2%}\n")
print(classification_report(y_test, y_pred))
[LibLinear]98.76%
98.76%
             precision recall f1-score
                                             support
          1
                  1.00
                            1.00
                                      1.00
                                                  20
                            0.95
                                      0.97
           2
                   1.00
                                                  19
           3
                            1.00
                                                  23
                  1.00
                                      1.00
                   1.00
                            1.00
                                      1.00
                                                  14
```

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	0.91 1.00 1.00 0.91 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.96 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0.95 1.00 1.00 0.95 1.00 1.00 1.00 0.97 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	10 22 21 20 19 16 20 12 17 24 14 22 14 21 20 15 18 20 19 22 14 23 21 24 21 24 21 22 24 21 20 15 18 20 19 19 19 19 19 19 19 19 19 19 19 19 19	
38	1.00	1.00	1.00	19	
accuracy			0.99	723	
macro avg	0.99	0.99	0.99	723	
weighted avg	0.99	0.99	0.99	723	
5					

3.使用 newton-cg 的演算法

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report

opts = dict(tol = le-6, max_iter = int(le6), verbose=1)
solver = 'newton-cg'
clf_original = LogisticRegression(solver = solver, **opts)
clf_original.fit(X_train_, y_train)
```

```
y pred = clf original.predict(X test )
# 測試資料之準確率回報
print(f"{accuracy_score(y_test, y pred):.2%}\n")
print(f"{clf original.score(X_test_, y_test):.2%}\n")
print(classification report(y test, y pred))
[Parallel(n jobs=1)]: Using backend SequentialBackend with 1
concurrent workers.
[Parallel(n jobs=1)]: Done 1 out of 1 | elapsed: 118.6min finished
95.57%
95.57%
               precision
                             recall f1-score
                                                 support
           1
                    1.00
                               0.95
                                          0.97
                                                       20
           2
                    0.95
                               0.95
                                          0.95
                                                      19
           3
                    1.00
                               1.00
                                          1.00
                                                       23
           4
                    0.93
                                          0.97
                                                       14
                               1.00
           5
                    0.91
                               1.00
                                          0.95
                                                       10
           6
                    0.92
                                          0.96
                               1.00
                                                       22
           7
                    1.00
                               0.95
                                          0.98
                                                      21
           8
                    0.91
                               1.00
                                          0.95
                                                       20
           9
                    0.95
                                          0.97
                                                      19
                               1.00
                    0.84
          10
                               1.00
                                          0.91
                                                       16
          11
                    1.00
                               0.95
                                          0.97
                                                       20
          12
                    1.00
                               1.00
                                          1.00
                                                       12
          13
                    0.94
                               0.88
                                          0.91
                                                       17
          14
                                          0.93
                                                      24
                    1.00
                               0.88
          15
                    1.00
                               1.00
                                          1.00
                                                      14
                    1.00
                               0.86
                                          0.93
                                                      22
          16
          17
                    1.00
                               1.00
                                          1.00
                                                       14
          18
                    1.00
                               0.91
                                          0.95
                                                       22
          19
                    1.00
                               0.96
                                          0.98
                                                      24
          20
                                                      21
                    0.95
                               1.00
                                          0.98
          21
                    0.95
                               0.83
                                          0.89
                                                      24
          22
                    1.00
                               0.95
                                          0.98
                                                      21
          23
                    1.00
                               1.00
                                          1.00
                                                      20
          24
                    0.94
                               1.00
                                          0.97
                                                       15
          25
                    1.00
                               0.94
                                          0.97
                                                       18
          26
                    0.95
                               1.00
                                          0.98
                                                       20
          27
                    0.95
                                          0.97
                                                       19
                               1.00
                                                      22
          28
                    1.00
                               0.95
                                          0.98
          29
                    0.82
                               1.00
                                          0.90
                                                       14
          30
                    1.00
                               0.91
                                          0.95
                                                      23
          31
                    0.95
                               1.00
                                          0.98
                                                      21
                    0.92
                                          0.96
          32
                               1.00
                                                      24
                                                      15
          33
                    0.88
                               1.00
                                          0.94
          34
                    0.95
                                          0.90
                                                      22
                               0.86
```

35	1.00	0.96	0.98	23	
36	0.81	0.93	0.87	14	
37	0.93	0.87	0.90	15	
38	0.90	0.95	0.92	19	
accuracy macro avg weighted avg	0.95 0.96	0.96 0.96	0.96 0.96 0.96	723 723 723	

討論:

- 使用 lbfqs 的演算法時,準確率為 95.57%, 執行時間約 35 分鐘。
- 使用 liblinear 的演算法時,準確率為 98.76%,執行時間約 92 分鐘。
- 使用 newton-cg 的演算法時,準確率為95.57%,執行時間約118分鐘。
- 綜上所述, liblinear 之準確率最高,其餘兩者相同,但論執行時間,lbfgs 的執行時間最短,其餘兩者皆很費時。

(b)主成分資料

1.取 50 個主成分並使用 lbfgs 的演算法

```
from sklearn.decomposition import PCA
pca = PCA(n_components = 50).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)
opts = dict(tol = le-6, max_iter = int(le6), verbose=1)
solver = 'lbfgs' # 'lbfgs' is the default
clf_PCA = LogisticRegression(solver = solver, **opts)
clf_PCA.fit(Z_train, y_train)
y_pred = clf_PCA.predict(Z_test)
print(f"{clf_PCA.score(Z_test, y_test):.2%}\n")

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1
concurrent workers.

90.32%

[Parallel(n_jobs=1)]: Done  1 out of  1 | elapsed: 17.1s finished
```

2.取 100 個主成分並使用 lbfqs 的演算法

```
from sklearn.decomposition import PCA
pca = PCA(n_components = 100).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)
opts = dict(tol = 1e-6, max_iter = int(1e6), verbose=1)
solver = 'lbfgs' # 'lbfgs' is the default
clf_PCA = LogisticRegression(solver = solver, **opts)
```

```
clf_PCA.fit(Z_train, y_train)
y_pred = clf_PCA.predict(Z_test)
print(f"{clf_PCA.score(Z_test, y_test):.2%}\n")

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1
concurrent workers.

94.19%

[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 26.7s finished
```

3.取 500 個主成分並使用 lbfgs 的演算法

```
from sklearn.decomposition import PCA
pca = PCA(n_components = 500).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)
opts = dict(tol = le-6, max_iter = int(le6), verbose=1)
solver = 'lbfgs' # 'lbfgs' is the default
clf_PCA = LogisticRegression(solver = solver, **opts)
clf_PCA.fit(Z_train, y_train)
y_pred = clf_PCA.predict(Z_test)
print(f"{clf_PCA.score(Z_test, y_test):.2%}\n")

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1
concurrent workers.

94.19%

[Parallel(n_jobs=1)]: Done  1 out of  1 | elapsed: 1.8min finished
```

4.取50個主成分並使用liblinear的演算法

```
from sklearn.decomposition import PCA
pca = PCA(n_components = 50).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)
opts = dict(tol = le-6, max_iter = int(le6), verbose=1)
solver = 'liblinear' # 'lbfgs' is the default
clf_PCA = LogisticRegression(solver = solver, **opts)
clf_PCA.fit(Z_train, y_train)
y_pred = clf_PCA.predict(Z_test)
print(f"{clf_PCA.score(Z_test, y_test):.2%}\n")
[LibLinear]89.76%
```

5.取 100 個主成分並使用 liblinear 的演算法

```
from sklearn.decomposition import PCA
pca = PCA(n_components = 100).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)
opts = dict(tol = 1e-6, max_iter = int(1e6), verbose=1)
solver = 'liblinear' # 'lbfgs' is the default
clf_PCA = LogisticRegression(solver = solver, **opts)
clf_PCA.fit(Z_train, y_train)
y_pred = clf_PCA.predict(Z_test)
print(f"{clf_PCA.score(Z_test, y_test):.2%}\n")
[LibLinear]95.30%
```

6.取 500 個主成分並使用 liblinear 的演算法

```
from sklearn.decomposition import PCA
pca = PCA(n_components = 500).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)
opts = dict(tol = le-6, max_iter = int(le6), verbose=1)
solver = 'liblinear' # 'lbfgs' is the default
clf_PCA = LogisticRegression(solver = solver, **opts)
clf_PCA.fit(Z_train, y_train)
y_pred = clf_PCA.predict(Z_test)
print(f"{clf_PCA.score(Z_test, y_test):.2%}\n")
[LibLinear]98.34%
```

7.取 50 個主成分並使用 newton-cg 的演算法

```
from sklearn.decomposition import PCA
pca = PCA(n_components = 50).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)
opts = dict(tol = le-6, max_iter = int(le6), verbose=1)
solver = 'newton-cg' # 'lbfgs' is the default
clf_PCA = LogisticRegression(solver = solver, **opts)
clf_PCA.fit(Z_train, y_train)
y_pred = clf_PCA.predict(Z_test)
print(f"{clf_PCA.score(Z_test, y_test):.2%}\n")
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1
concurrent workers.

90.32%
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 5.1min finished
```

```
from sklearn.decomposition import PCA
pca = PCA(n_components = 100).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)
opts = dict(tol = 1e-6, max_iter = int(1e6), verbose=1)
solver = 'newton-cg' # 'lbfgs' is the default
clf_PCA = LogisticRegression(solver = solver, **opts)
clf_PCA.fit(Z_train, y_train)
y_pred = clf_PCA.predict(Z_test)
print(f"{clf_PCA.score(Z_test, y_test):.2%}\n")

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1
concurrent workers.

94.61%

[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 3.6min finished
```

9.取 500 個主成分並使用 newton-cg 的演算法

```
from sklearn.decomposition import PCA
pca = PCA(n_components = 500).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)
opts = dict(tol = le-6, max_iter = int(le6), verbose=1)
solver = 'newton-cg' # 'lbfgs' is the default
clf_PCA = LogisticRegression(solver = solver, **opts)
clf_PCA.fit(Z_train, y_train)
y_pred = clf_PCA.predict(Z_test)
print(f"{clf_PCA.score(Z_test, y_test):.2%}\n")
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1
concurrent workers.

94.19%
[Parallel(n_jobs=1)]: Done  1 out of  1 | elapsed: 2.3min finished
```

討論:

使用 lbfgs 的演算法:

- 取 50 個主成分時,準確率為 90.32%。
- 取100個主成分時,準確率為94.19%。
- 取 500 個主成分時,準確率為 94.19%。

使用 liblinear 的演算法:

- 取 50 個主成分時,準確率為 89.76%。
- 取 100 個主成分時,準確率為 95.30%。
- 取 500 個主成分時,準確率為 98.34%。

使用 newton-cg 的演算法:

- 取 50 個主成分時,準確率為 90.32%。
- 取 100 個主成分時,準確率為 94.61%。
- 取 500 個主成分時,準確率為 94.19%。

小結:

- 使用 liblinear 的演算法時,準確率最高;使用 lbfgs 的演算法和使用 newton-cg 的演算法 所得之準確率差不多,但 newton-cg 執行時間最長。
- 原則上,取愈多主成分,準確率愈高。
- (2)支援向量機 (Support Vector Machine)
- (a)原始資料
- 1.使用 kernel="linear"

```
from sklearn.svm import SVC, LinearSVC
C = 1 # SVM regularization parameter
opts = dict(C = C, tol = le-6, max_iter = int(le6))
# opts = dict(C = C, decision_function_shape = 'ovo', \
# tol = le-6, max_iter = int(le6))
clf_svm = SVC(kernel="linear", **opts)
# clf_svm = SVC(kernel="rbf", gamma=0.2, **opts)
# clf_svm = SVC(kernel="rbf", degree=3, gamma="auto", **opts)
# clf_svm = LinearSVC(**opts) # one vs the rest
clf_svm.fit(X_train_, y_train)
predictions = clf_svm.predict(X_test_)
print(f"{accuracy_score(y_test, predictions):.2%}\n")
print(classification_report(y_test, predictions))
```

92.25%

		1.1	C 2	
	precision	recall	f1-score	support
1	1.00	0.95	0.97	20
2	0.86	0.95	0.90	19
3	0.96	1.00	0.98	23
4	0.87	0.93	0.90	14
5	0.77	1.00	0.87	10
6	0.88	1.00	0.94	22
7	0.77	0.95	0.85	21
8	0.83	0.95	0.88	20
9	1.00	1.00	1.00	19
10	0.76	1.00	0.86	16
11	1.00	0.95	0.97	20

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	1.00 1.00 0.93 1.00 1.00 0.95 1.00 0.91 0.95 1.00 0.91 0.88 0.95 0.90 0.95 1.00 0.88 0.95 0.90 0.95	1.00 0.88 0.83 0.93 0.91 1.00 0.86 0.92 1.00 0.79 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95	1.00 0.94 0.91 0.93 0.95 1.00 0.90 0.96 0.95 0.86 0.95 0.97 0.93 0.97 0.93 0.97 0.98 0.93 0.95 0.95	12 17 24 14 22 14 22 24 21 20 15 18 20 19 22 14 23 21 24 15 22 23 14 15	
accuracy macro avg weighted avg	0.93 0.93	0.92 0.92	0.92 0.92 0.92	723 723 723	

2.使用 kernel="rbf"

```
from sklearn.svm import SVC, LinearSVC
C = 1 # SVM regularization parameter
opts = dict(C = C, tol = 1e-6, max_iter = int(1e6))
# opts = dict(C = C, decision_function_shape = 'ovo', \
# tol = 1e-6, max_iter = int(1e6))
#clf_svm = SVC(kernel="linear", **opts)
clf_svm = SVC(kernel="rbf", gamma='auto', **opts)
# clf_svm = SVC(kernel="poly", degree=3, gamma="auto", **opts)
# clf_svm = LinearSVC(**opts) # one vs the rest
clf_svm.fit(X_train_, y_train)
predictions = clf_svm.predict(X_test_)
print(f"{accuracy_score(y_test, predictions):.2%}\n")
print(classification_report(y_test, predictions))
```

1	precision recall f1-score sup	port
2 1.00 0.63 0.77 19 3 1.00 0.91 0.95 23 4 0.85 0.79 0.81 14 5 0.67 0.80 0.73 10 6 0.95 0.86 0.90 22 7 0.80 0.76 0.78 21 8 0.76 0.95 0.84 20 9 1.00 0.89 0.94 19 10 0.94 0.94 0.94 16 11 1.00 0.85 0.92 20 12 0.86 1.00 0.92 12 13 1.00 0.82 0.90 17 14 0.89 0.71 0.79 24 15 1.00 0.93 0.96 14 16 1.00 0.68 0.81 22 17 0.93 1.00 0.97 14 18 0.94 0.73 0.82 22 19 1.00 0.79 0.88 24 20 1.00 0.79 0.88 24 20 1.00 0.79 0.88 24 20 1.00 0.79 0.88 24 22 1.00 0.90 0.95 0.95 24 1.00 0.79 0.88 24 25 1.00 0.90 0.95 0.95 26 0.95 0.95 0.95 27 1.00 0.90 0.95 21 28 0.85 0.77 0.81 22 29 0.76 0.89 0.94 19 28 0.85 0.77 0.81 22 29 0.76 0.93 0.83 23 31 0.38 1.00 0.55 21 32 0.83 0.83 0.83 0.84 14 33 0.86 0.80 0.83 0.84 14 34 0.77 0.77 0.77 22 35 0.86 0.83 0.83 0.84 23 36 0.27 0.86 0.41 14 37 0.67 0.86 0.41 14 37 0.67 0.67 0.67 15 38 0.87 0.68 0.76 19		
38 0.87 0.68 0.76 19 accuracy 0.83 723	2 1.00 0.63 0.77 3 1.00 0.91 0.95 4 0.85 0.79 0.81 5 0.67 0.80 0.73 6 0.95 0.86 0.90 7 0.80 0.76 0.78 8 0.76 0.95 0.84 9 1.00 0.89 0.94 10 0.94 0.94 0.94 11 1.00 0.85 0.92 12 0.86 1.00 0.92 13 1.00 0.82 0.90 14 0.89 0.71 0.79 15 1.00 0.93 0.96 16 1.00 0.68 0.81 17 0.93 1.00 0.97 18 0.94 0.73 0.82 19 1.00 0.79 0.88 20 1.00 0.76 0.86 21 1.00 0.79 0.88 22 1.00 0.90 0.95 <	19 23 14 10 22 21 20 19 16 20 12 17 24 14 22 24 21 20 15 18 20 19 22 14 23 21 24 15 22 23
	37 0.67 0.67 0.67	15
	37 0.67 0.67 0.67 38 0.87 0.68 0.76	15 19 723

^{3.}使用 kernel="poly"

```
from sklearn.svm import SVC, LinearSVC
C = 1 # SVM regularization parameter
opts = dict(C = C, tol = 1e-6, max_iter = int(1e6))
# opts = dict(C = C, decision function shape = 'ovo', \
# tol = 1e-6, max iter = int(1e6))
#clf_svm = SVC(kernel="linear", **opts)
\# cl\overline{f}\_svm = SVC(kernel="rbf", gamma=0.2, **opts)
clf_svm = SVC(kernel="poly", degree=1, gamma="auto", **opts)
# clf svm = LinearSVC(**opts) # one vs the rest
clf svm.fit(X train , y train)
predictions = clf_svm.predict(X_test_)
print(f"{accuracy_score(y_test, predictions):.2%}\n")
print(classification_report(y_test, predictions))
79.94%
               precision
                             recall f1-score
                                                  support
            1
                               0.75
                                          0.86
                     1.00
                                                        20
            2
                               0.68
                                                        19
                     1.00
                                          0.81
            3
                     1.00
                               0.87
                                          0.93
                                                        23
            4
                     0.55
                               0.86
                                          0.67
                                                        14
            5
                     0.78
                               0.70
                                          0.74
                                                        10
            6
                     1.00
                               0.91
                                          0.95
                                                        22
            7
                                          0.72
                                                        21
                     0.78
                               0.67
            8
                     0.63
                               0.85
                                          0.72
                                                        20
            9
                     1.00
                               0.89
                                          0.94
                                                        19
           10
                    1.00
                               0.94
                                          0.97
                                                        16
                                          0.92
           11
                     1.00
                               0.85
                                                        20
           12
                     0.92
                               1.00
                                          0.96
                                                        12
           13
                     1.00
                               0.71
                                          0.83
                                                        17
           14
                                                        24
                     1.00
                               0.67
                                          0.80
           15
                                                        14
                    1.00
                               0.79
                                          0.88
                               0.73
                                                        22
           16
                     0.89
                                          0.80
           17
                     0.93
                               1.00
                                          0.97
                                                        14
           18
                     0.94
                               0.73
                                          0.82
                                                        22
           19
                     1.00
                               0.58
                                          0.74
                                                        24
           20
                                                        21
                     1.00
                               0.71
                                          0.83
           21
                               0.71
                                          0.83
                                                        24
                     1.00
           22
                     1.00
                               0.86
                                          0.92
                                                        21
           23
                     1.00
                               0.95
                                          0.97
                                                        20
           24
                     0.92
                               0.73
                                          0.81
                                                        15
           25
                     1.00
                               1.00
                                          1.00
                                                        18
           26
                     0.94
                               0.80
                                          0.86
                                                        20
           27
                     1.00
                               0.89
                                          0.94
                                                        19
           28
                                                        22
                     1.00
                               0.73
                                          0.84
           29
                     0.60
                               0.86
                                          0.71
                                                        14
           30
                     0.95
                               0.78
                                          0.86
                                                        23
           31
                     0.49
                               1.00
                                          0.66
                                                        21
           32
                     0.95
                               0.79
                                          0.86
                                                        24
```

33	0.92	0.80	0.86	15
34	0.27	0.77	0.40	22
35	0.90	0.78	0.84	23
36	0.41	0.86	0.56	14
37	0.43	0.67	0.53	15
38	0.93	0.74	0.82	19
accuracy macro avg weighted avg	0.87 0.88	0.81 0.80	0.80 0.82 0.82	723 723 723

討論:

- 使用 kernel="linear"時,準確率為92.25%。
- 使用 kernel="rbf"時,準確率為82.57%。
- 使用 kernel="poly"時,準確率為79.94%。
- 綜上所述,kernel="linear"之準確率最高,kernel="rbf"次之,kernel="poly"之準確率最低。

(b)主成分資料

1.取 50 個主成分並使用 kernel="linear"

```
from sklearn.decomposition import PCA
from sklearn.svm import SVC, LinearSVC
pca = PCA(n components = 50).fit(X train)
Z_train = pca.transform(X_train_)
Z test = pca.transform(X test )
C = 1 # SVM regularization parameter
opts = dict(C = C, tol = 1e-6, max_iter = int(1e6))
clf svm = SVC(kernel="linear", **opts)
clf svm.fit(Z train, y train)
predictions = clf svm.predict(Z test)
print(f"{clf svm.score(Z test, y test):.2%}\n")
print(classification report(y test, predictions))
89.90%
                            recall f1-score
              precision
                                                support
                    1.00
                              0.85
                                        0.92
                                                     20
           2
                    0.86
                              0.95
                                        0.90
                                                     19
           3
                                                     23
                    1.00
                              0.96
                                        0.98
           4
                              0.93
                                        0.90
                                                     14
                    0.87
           5
                    0.83
                              1.00
                                        0.91
                                                     10
           6
                   0.81
                              1.00
                                        0.90
                                                     22
           7
                    0.70
                              0.90
                                        0.79
                                                     21
           8
                    0.80
                              1.00
                                        0.89
                                                     20
```

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 accuracy	1.00 0.88 0.95 0.92 1.00 1.00 0.92 0.95 1.00 0.90 1.00 0.95 0.81 1.00 0.95 0.78 0.81 1.00 0.95 0.78 0.81 1.00 0.95	0.95 0.88 0.95 1.00 0.94 0.83 0.79 0.86 1.00 0.92 0.90 0.75 0.95 1.00 0.95 1.00 0.91 1.00 0.91 0.91 0.90 1.00 0.87 0.96	0.97 0.88 0.95 0.96 0.97 0.91 0.85 0.90 1.00 0.81 0.88 0.90 0.98 0.98 0.98 0.97 0.95 0.93 0.88 0.95 0.96 0.84 0.95 0.96 0.84 0.85 0.96 0.87 0.97	19 16 20 12 17 24 14 22 14 22 24 21 20 15 18 20 19 22 14 23 21 24 15 22 23 14 15 19 723	
				723	
macro avg weighted avg	0.91 0.91	0.90 0.90	0.90 0.90 0.90	723 723 723	

2.取 100 個主成分並使用 kernel="linear"

```
from sklearn.decomposition import PCA
from sklearn.svm import SVC, LinearSVC

pca = PCA(n_components = 100).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)
C = 1 # SVM regularization parameter
opts = dict(C = C, tol = 1e-6, max_iter = int(1e6))
clf_svm = SVC(kernel="linear", **opts)
clf_svm.fit(Z_train, y_train)
predictions = clf_svm.predict(Z_test)
```

```
print(f"{clf_svm.score(Z_test, y_test):.2%}\n")
print(classification report(y test, predictions))
90.59%
                precision
                               recall f1-score
                                                     support
                      0.90
                                 0.90
                                             0.90
            1
                                                           20
            2
                      0.78
                                 0.95
                                             0.86
                                                           19
            3
                      1.00
                                 0.96
                                             0.98
                                                           23
            4
                      0.93
                                 0.93
                                             0.93
                                                           14
            5
                                 1.00
                                                           10
                      0.77
                                             0.87
            6
                                                           22
                      0.85
                                 1.00
                                             0.92
            7
                      0.67
                                 0.95
                                             0.78
                                                           21
            8
                      0.83
                                             0.91
                                 1.00
                                                           20
            9
                      0.94
                                 0.89
                                             0.92
                                                           19
           10
                      0.84
                                 1.00
                                             0.91
                                                           16
           11
                      0.95
                                 0.95
                                             0.95
                                                           20
           12
                      0.92
                                 1.00
                                             0.96
                                                           12
           13
                                             0.94
                                                           17
                      1.00
                                 0.88
           14
                      1.00
                                 0.83
                                             0.91
                                                           24
           15
                      0.87
                                             0.90
                                                           14
                                 0.93
           16
                      0.95
                                 0.82
                                             0.88
                                                           22
           17
                      1.00
                                 1.00
                                             1.00
                                                           14
                                                           22
           18
                      0.79
                                 0.86
                                             0.83
           19
                      0.96
                                 0.92
                                             0.94
                                                           24
           20
                      0.86
                                 0.90
                                             0.88
                                                           21
           21
                      0.95
                                 0.79
                                             0.86
                                                           24
           22
                      1.00
                                 0.95
                                             0.98
                                                           21
           23
                      0.95
                                 1.00
                                             0.98
                                                           20
                      0.94
                                 1.00
           24
                                             0.97
                                                           15
                                             0.97
           25
                      0.95
                                 1.00
                                                           18
           26
                      1.00
                                 0.95
                                             0.97
                                                           20
           27
                      1.00
                                 1.00
                                             1.00
                                                           19
           28
                      1.00
                                 0.91
                                             0.95
                                                           22
           29
                      0.82
                                 1.00
                                             0.90
                                                           14
           30
                                             0.91
                                                           23
                      0.91
                                 0.91
           31
                      0.95
                                 0.90
                                             0.93
                                                           21
           32
                      0.89
                                             0.94
                                 1.00
                                                           24
                      0.93
                                             0.90
                                                           15
           33
                                 0.87
           34
                      0.90
                                 0.82
                                             0.86
                                                           22
           35
                      1.00
                                 0.70
                                             0.82
                                                           23
           36
                      0.76
                                 0.93
                                             0.84
                                                           14
           37
                      0.89
                                 0.53
                                                           15
                                             0.67
           38
                      1.00
                                 0.63
                                             0.77
                                                           19
                                             0.91
                                                         723
    accuracy
   macro avg
                      0.91
                                 0.91
                                             0.90
                                                          723
weighted avg
                      0.92
                                 0.91
                                             0.90
                                                          723
```

```
from sklearn.decomposition import PCA
from sklearn.svm import SVC, LinearSVC
pca = PCA(n components = 500).fit(X train)
Z train = pca.transform(X train )
Z test = pca.transform(X test )
C = 1 # SVM regularization parameter
opts = dict(C = C, tol = 1e-6, max_iter = int(1e6))
clf svm = SVC(kernel="linear", **opts)
clf svm.fit(Z train, y train)
predictions = clf svm.predict(Z test)
print(f"{clf_svm.score(Z_test, y_test):.2%}\n")
print(classification_report(y_test, predictions))
91.56%
                             recall f1-score
               precision
                                                  support
            1
                    0.95
                               0.95
                                          0.95
                                                       20
            2
                    0.75
                               0.95
                                          0.84
                                                       19
            3
                                          0.98
                    0.96
                               1.00
                                                       23
            4
                    0.93
                               0.93
                                          0.93
                                                       14
           5
                                                       10
                    0.77
                               1.00
                                          0.87
            6
                    0.88
                               1.00
                                          0.94
                                                       22
            7
                    0.77
                                          0.85
                                                       21
                               0.95
           8
                    0.83
                               0.95
                                                       20
                                          0.88
           9
                    1.00
                               1.00
                                          1.00
                                                       19
           10
                    0.73
                               1.00
                                          0.84
                                                       16
           11
                    1.00
                               0.95
                                          0.97
                                                       20
           12
                    1.00
                               1.00
                                          1.00
                                                       12
           13
                    1.00
                               0.88
                                          0.94
                                                       17
           14
                    1.00
                               0.83
                                          0.91
                                                       24
          15
                    0.93
                                                       14
                               0.93
                                          0.93
           16
                    1.00
                               0.91
                                          0.95
                                                       22
          17
                    1.00
                               1.00
                                          1.00
                                                       14
           18
                    0.90
                               0.86
                                          0.88
                                                       22
           19
                    1.00
                               0.92
                                          0.96
                                                       24
          20
                    0.91
                               0.95
                                          0.93
                                                       21
                               0.79
          21
                    0.95
                                          0.86
                                                       24
          22
                    1.00
                               0.95
                                          0.98
                                                       21
          23
                    0.91
                               1.00
                                          0.95
                                                       20
          24
                    0.88
                               1.00
                                          0.94
                                                       15
          25
                    0.95
                               1.00
                                          0.97
                                                       18
          26
                    0.90
                               0.95
                                          0.93
                                                       20
                    0.95
                               1.00
                                          0.97
                                                       19
          27
          28
                    1.00
                               0.95
                                          0.98
                                                       22
          29
                    0.88
                               1.00
                                          0.93
                                                       14
          30
                    0.84
                               0.91
                                          0.87
                                                       23
```

4.取 50 個主成分並使用 kernel="rbf"

```
from sklearn.decomposition import PCA
from sklearn.svm import SVC, LinearSVC

pca = PCA(n_components = 50).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)
C = 1 # SVM regularization parameter
opts = dict(C = C, tol = 1e-6, max_iter = int(1e6))
clf_svm = SVC(kernel="rbf", gamma='scale', **opts)
clf_svm.fit(Z_train, y_train)
predictions = clf_svm.predict(Z_test)
print(f"{clf_svm.score(Z_test, y_test):.2%}\n")
print(classification_report(y_test, predictions))

72.20%

precision recall f1-score support
```

	precision	recall	f1-score	support
	precision	recatt	11-30010	3uppor c
1	0.87	0.65	0.74	20
2	1.00	0.47	0.64	19
3	0.90	0.83	0.86	23
4	0.50	0.79	0.61	14
5	0.58	0.70	0.64	10
6	0.81	0.77	0.79	22
7	0.60	0.57	0.59	21
8	0.50	0.85	0.63	20
9	0.94	0.89	0.92	19
10	1.00	0.88	0.93	16
11	1.00	0.70	0.82	20
12	0.86	1.00	0.92	12
13	1.00	0.65	0.79	17
14	0.81	0.54	0.65	24
15	0.79	0.79	0.79	14
16	1.00	0.55	0.71	22

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	0.70 0.80 0.93 1.00 1.00 0.88 0.89 1.00 0.94 0.94 1.00 0.80 0.60 0.79 0.38 0.82 0.71 0.59	1.00 0.55 0.54 0.67 0.71 0.67 0.85 0.53 0.94 0.75 0.84 0.73 0.86 0.65 1.00 0.75 0.80	0.82 0.65 0.68 0.80 0.83 0.76 0.87 0.70 0.94 0.83 0.91 0.76 0.71 0.75 0.75 0.67	14 22 24 21 24 21 20 15 18 20 19 22 14 23 21 24 15 22 23	
26	0.94	0.75	0.83	20	
33	0.71	0.80	0.75		
	0.59	0.77	0.67	22	
36	0.18	0.64	0.28	14	
37	0.62	0.67	0.65	15	
38	0.73	0.58	0.65	19	
20011201			0.72	723	
accuracy macro avg	0.80	0.73	0.72	723 723	
weighted avg	0.81	0.73	0.74	723	
morgined dvg	0.01	0172	0174	, 23	

5.取 100 個主成分並使用 kernel="rbf"

```
from sklearn.decomposition import PCA
from sklearn.svm import SVC, LinearSVC
pca = PCA(n components = 100).fit(X train)
Z train = pca.transform(X train )
Z test = pca.transform(X test)
C = 1 # SVM regularization parameter
opts = dict(C = C, tol = 1e-6, max iter = int(1e6))
clf_svm = SVC(kernel="rbf", gamma='scale', **opts)
clf svm.fit(Z train, y train)
predictions = clf_svm.predict(Z_test)
print(f"{clf_svm.score(Z_test, y_test):.2%}\n")
print(classification report(y test, predictions))
78.15%
              precision
                           recall f1-score
                                              support
           1
                   0.93
                             0.65
                                       0.76
                                                   20
           2
                   1.00
                             0.53
                                       0.69
                                                   19
```

	3 4	1.00 0.85	0.87 0.79	0.93 0.81	23 14
	5	0.64	0.70	0.67	10
	6	0.95	0.82	0.88	22
	7	0.68	0.71	0.70	21
	8	0.64	0.90	0.75	20
	9	1.00	0.89	0.94	19
	10	1.00	0.94	0.97	16
	11	1.00	0.80	0.89	20
	12 13	0.92 0.93	1.00 0.76	0.96 0.84	12 17
	13 14	0.88	0.62	0.73	24
	15	0.75	0.86	0.80	14
	16	0.94	0.68	0.79	22
	17	0.82	1.00	0.90	14
	18	0.87	0.59	0.70	22
	19	1.00	0.67	0.80	24
	20	1.00	0.67	0.80	21
	21	1.00	0.75	0.86	24
	22	1.00	0.86	0.92	21
	23 24	0.90 1.00	0.90 0.67	0.90 0.80	20 15
	2 4 25	1.00	0.07	0.97	18
	26	0.94	0.80	0.86	20
	27	1.00	0.89	0.94	19
	28	0.89	0.77	0.83	22
2	29	0.59	0.93	0.72	14
	30	0.81	0.74	0.77	23
	31	0.38	1.00	0.55	21
	32	0.95	0.79	0.86	24
	33	0.85	0.73	0.79	15 22
	34 35	0.65 0.86	0.77 0.78	0.71 0.82	23
	36	0.22	0.79	0.34	14
	37	0.59	0.67	0.62	15
	38	0.76	0.68	0.72	19
accurac	CV.			0.78	723
macro av	_	0.85	0.79		723
weighted av		0.86	0.78		723

6.取 500 個主成分並使用 kernel="rbf"

```
from sklearn.decomposition import PCA
from sklearn.svm import SVC, LinearSVC

pca = PCA(n_components = 500).fit(X_train_)
Z_train = pca.transform(X_train_)
```

```
Z test = pca.transform(X test )
C = 1 # SVM regularization parameter
opts = dict(C = C, tol = 1e-6, max_iter = int(1e6))
clf svm = SVC(kernel="rbf", gamma='scale', **opts)
clf svm.fit(Z train, y train)
predictions = clf svm.predict(Z test)
print(f"{clf svm.score(Z test, y test):.2%}\n")
print(classification report(y test, predictions))
82.43%
               precision
                             recall f1-score
                                                  support
            1
                    1.00
                               0.75
                                          0.86
                                                       20
            2
                    1.00
                               0.63
                                          0.77
                                                        19
            3
                    1.00
                               0.91
                                          0.95
                                                        23
            4
                    0.85
                               0.79
                                          0.81
                                                        14
            5
                    0.67
                               0.80
                                          0.73
                                                        10
            6
                    0.95
                               0.91
                                          0.93
                                                       22
            7
                    0.80
                               0.76
                                          0.78
                                                        21
            8
                    0.76
                               0.95
                                          0.84
                                                       20
            9
                               0.89
                    1.00
                                          0.94
                                                        19
           10
                    1.00
                               0.94
                                          0.97
                                                        16
           11
                    1.00
                               0.85
                                          0.92
                                                        20
           12
                               1.00
                                          0.96
                    0.92
                                                        12
           13
                                          0.90
                                                        17
                    1.00
                               0.82
                                          0.76
                                                        24
           14
                    0.89
                               0.67
           15
                    1.00
                               0.93
                                          0.96
                                                        14
                                          0.81
                                                        22
           16
                    1.00
                               0.68
                               1.00
           17
                    0.93
                                          0.97
                                                        14
           18
                    0.94
                               0.73
                                          0.82
                                                       22
           19
                    1.00
                               0.75
                                          0.86
                                                        24
           20
                                                       21
                    1.00
                               0.76
                                          0.86
                               0.79
                                                        24
           21
                    1.00
                                          0.88
           22
                    1.00
                               0.90
                                          0.95
                                                        21
           23
                    0.95
                               0.95
                                          0.95
                                                       20
           24
                    1.00
                               0.73
                                          0.85
                                                        15
           25
                               1.00
                                          1.00
                    1.00
                                                        18
           26
                    0.94
                               0.80
                                          0.86
                                                        20
```

27

28

29

30

31

32

33

34

35

36

37

1.00

0.85

0.72

0.83

0.38

0.79

0.86

0.74

0.86

0.27

0.67

0.89

0.77

0.93

0.83

1.00

0.79

0.80

0.77

0.83

0.86

0.67

0.94

0.81

0.81

0.83

0.55

0.79

0.83

0.76

0.84

0.41

0.67

19

22

14

23

21

2415

22

23 14

15

38	0.87	0.68	0.76	19
accuracy macro avg weighted avg	0.88 0.89	0.83 0.82	0.82 0.84 0.84	723 723 723

7.取 50 個主成分並使用 kernel="poly"

```
from sklearn.decomposition import PCA
from sklearn.svm import SVC, LinearSVC

pca = PCA(n_components = 50).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)
C = 1 # SVM regularization parameter
opts = dict(C = C, tol = le-6, max_iter = int(le6))
clf_svm = SVC(kernel="poly", degree=1, gamma="auto", **opts)
clf_svm.fit(Z_train, y_train)
predictions = clf_svm.predict(Z_test)
print(f"{clf_svm.score(Z_test, y_test):.2%}\n")
print(classification_report(y_test, predictions))
91.84%

precision recall f1-score support
```

	precision	recall	f1-score	support
1	0.94	0.85	0.89	20
2	0.95	0.95	0.95	19
3	1.00	0.96	0.98	23
4	0.88	1.00	0.93	14
5	0.83	1.00	0.91	10
6	0.81	1.00	0.90	22
7	0.70	0.90	0.79	21
8	0.95	1.00	0.98	20
9	1.00	1.00	1.00	19
10	0.93	0.88	0.90	16
11	1.00	0.95	0.97	20
12	0.92	1.00	0.96	12
13	1.00	0.88	0.94	17
14	1.00	0.83	0.91	24
15	1.00	0.79	0.88	14
16	0.95	0.86	0.90	22
17	1.00	1.00	1.00	14
18	0.79	0.86	0.83	22
19	0.88	0.92	0.90	24
20	0.95	0.90	0.93	21
21	0.95	0.75	0.84	24
22	1.00	0.95	0.98	21
23	0.95	1.00	0.98	20

	24	0.88	1.00	0.94	15
	25	1.00	1.00	1.00	18
	26	1.00	0.95	0.97	20
	27	0.95	1.00	0.97	19
	28	0.95	0.91	0.93	22
	29	0.82	1.00	0.90	14
	30	0.91	0.91	0.91	23
	31	0.83	0.90	0.86	21
	32	0.92	1.00	0.96	24
	33	0.94	1.00	0.97	15
	34	0.86	0.82	0.84	22
	35	1.00	0.96	0.98	23
	36	0.72	0.93	0.81	14
	37	0.90	0.60	0.72	15
	38	1.00	0.79	0.88	19
	accuracy			0.92	723
	macro avg	0.92	0.92	0.92	723
we	eighted avg	0.93	0.92	0.92	723
	_				

8.取 100 個主成分並使用 kernel="poly"

```
from sklearn.decomposition import PCA
from sklearn.svm import SVC, LinearSVC
pca = PCA(n_components = 100).fit(X_train_)
Z train = pca.transform(X train )
Z test = pca.transform(X test )
C = 1 # SVM regularization parameter
opts = dict(C = C, tol = 1e-6, max iter = int(1e6))
clf svm = SVC(kernel="poly", degree=1, gamma="auto", **opts)
clf_svm.fit(Z_train, y_train)
predictions = clf svm.predict(Z test)
print(f"{clf_svm.score(Z_test, y_test):.2%}\n")
print(classification_report(y_test, predictions))
93.08%
                           recall f1-score
              precision
                                               support
           1
                   0.95
                             0.90
                                        0.92
                                                    20
           2
                   1.00
                             0.95
                                        0.97
                                                    19
           3
                   1.00
                             0.96
                                        0.98
                                                    23
           4
                   0.93
                             0.93
                                        0.93
                                                    14
           5
                   0.91
                             1.00
                                        0.95
                                                    10
           6
                   0.92
                                        0.96
                                                    22
                             1.00
           7
                   0.74
                             0.95
                                        0.83
                                                    21
           8
                   0.91
                             1.00
                                        0.95
                                                    20
           9
                             0.95
                                        0.97
                                                    19
                   1.00
```

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	0.94 0.95 1.00 1.00 1.00 0.95 1.00 0.95 0.95 0.95 1.00 1.00 1.00 1.00 0.82 0.95 0.81 0.95 0.95	1.00 0.95 1.00 0.88 0.88 0.93 0.82 1.00 0.92 0.90 0.79 0.95 1.00 1.00 1.00 0.95 1.00 0.91 1.00 0.91 1.00 0.93 0.82	0.97 0.95 1.00 0.94 0.93 0.96 0.88 1.00 0.83 0.94 0.93 0.98 0.99 0.97 1.00 0.97 0.97 1.00 0.95 0.90 0.93 0.86 0.93	16 20 12 17 24 14 22 14 22 24 21 20 15 18 20 19 22 14 23 21 24 15 22 23 14 15 19	
38	1.00	0.89	0.94	19	
50	00	2.33			
accuracy macro avg weighted avg	0.94 0.94	0.93 0.93	0.93 0.93 0.93	723 723 723	

9.取 500 個主成分並使用 kernel="poly"

```
from sklearn.decomposition import PCA
from sklearn.svm import SVC, LinearSVC

pca = PCA(n_components = 500).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)
C = 1 # SVM regularization parameter
opts = dict(C = C, tol = 1e-6, max_iter = int(1e6))
clf_svm = SVC(kernel="poly", degree=1, gamma="auto", **opts)
clf_svm.fit(Z_train, y_train)
predictions = clf_svm.predict(Z_test)
```

```
print(f"{clf_svm.score(Z_test, y_test):.2%}\n")
print(classification report(y test, predictions))
94.05%
                precision
                               recall f1-score
                                                     support
                                 0.95
                                             0.97
            1
                      1.00
                                                           20
            2
                      1.00
                                 0.95
                                             0.97
                                                           19
            3
                      1.00
                                 0.96
                                             0.98
                                                           23
            4
                      0.87
                                 0.93
                                             0.90
                                                           14
            5
                                 1.00
                                                           10
                      0.91
                                             0.95
            6
                                                           22
                      0.88
                                 1.00
                                             0.94
            7
                      0.83
                                 0.95
                                                           21
                                             0.89
            8
                                 0.95
                      1.00
                                             0.97
                                                           20
            9
                      1.00
                                 1.00
                                             1.00
                                                           19
           10
                      0.94
                                 1.00
                                             0.97
                                                           16
           11
                      1.00
                                 0.95
                                             0.97
                                                           20
           12
                      1.00
                                 1.00
                                             1.00
                                                           12
           13
                                             0.94
                                                           17
                      1.00
                                 0.88
           14
                      1.00
                                 0.83
                                             0.91
                                                           24
           15
                      1.00
                                             0.96
                                                           14
                                 0.93
           16
                      1.00
                                 0.86
                                             0.93
                                                           22
           17
                      1.00
                                 1.00
                                             1.00
                                                           14
                                                           22
           18
                      0.95
                                 0.86
                                             0.90
           19
                      0.96
                                 0.96
                                             0.96
                                                           24
           20
                      0.91
                                 0.95
                                             0.93
                                                           21
           21
                      0.95
                                 0.83
                                             0.89
                                                           24
           22
                      1.00
                                 0.95
                                             0.98
                                                           21
           23
                      0.95
                                 1.00
                                             0.98
                                                           20
                                 0.93
           24
                      1.00
                                             0.97
                                                           15
           25
                      0.95
                                 1.00
                                             0.97
                                                           18
           26
                      1.00
                                             1.00
                                                           20
                                 1.00
           27
                      1.00
                                 0.95
                                             0.97
                                                           19
           28
                      1.00
                                 0.95
                                             0.98
                                                           22
           29
                      0.88
                                 1.00
                                             0.93
                                                           14
           30
                                             0.93
                                                           23
                      0.95
                                 0.91
           31
                      0.75
                                 1.00
                                             0.86
                                                           21
           32
                      0.92
                                             0.96
                                 1.00
                                                           24
                                                           15
           33
                      0.88
                                 1.00
                                             0.94
           34
                      0.90
                                 0.82
                                             0.86
                                                           22
                      0.96
                                 0.96
           35
                                             0.96
                                                           23
           36
                      0.62
                                 0.93
                                             0.74
                                                           14
           37
                      1.00
                                 0.67
                                             0.80
                                                           15
           38
                      1.00
                                 1.00
                                             1.00
                                                           19
                                             0.94
                                                         723
    accuracy
   macro avg
                      0.95
                                 0.94
                                             0.94
                                                          723
weighted avg
                      0.95
                                 0.94
                                             0.94
                                                          723
```

討論:

使用 kernel="linear":

- 取 50 個主成分時,準確率為89.90%。
- 取100個主成分時,準確率為90.59%。
- 取 500 個主成分時,準確率為 91.56%。

使用 kernel="rbf":

- 取 50 個主成分時,準確率為72.20%。
- 取 100 個主成分時,準確率為 78.15%。
- 取 500 個主成分時,準確率為82.43%。

使用 kernel="poly":

- 取50個主成分時,準確率為91.84%。
- 取 100 個主成分時,準確率為93.08%。
- 取 500 個主成分時,準確率為 94.05%。

小結:

- 使用 kernel="poly"時,準確率最高;使用 kernel="linear"次之;使用 kernel="rbf"準確率 最低。
- 取愈多主成分,準確率愈高。
- (3)神經網路 (Neural Network)
- (a)原始資料
- 1.使用 activation = 'logistic'且 hidden_layers = (30,)

```
from sklearn.neural network import MLPClassifier
# hidden layers = (512,) # one hidden layer
# activation = 'relu' # the default
hidden_layers = (30,)
activation = 'logistic'
opts = dict(hidden layer sizes = hidden layers , verbose = False, \
activation = activation, tol = 1e-6, max iter = int(1e6))
# solver = 'sgd' # not efficient, need more tuning
# solver = 'lbfgs' # not suitable here
solver = 'adam' # default solver
clf MLP = MLPClassifier(solver = solver, **opts)
clf MLP.fit(X train_, y_train)
predictions = clf MLP.predict(X test )
print(f"{accuracy_score(y_test, predictions):.2%}\n")
print(classification report(y test, predictions))
94.74%
              precision recall f1-score support
```

```
0.91
                                1.00
                                           0.95
                                                         20
            1
            2
                     0.95
                                0.95
                                           0.95
                                                         19
            3
                     1.00
                                0.96
                                           0.98
                                                         23
            4
                     0.93
                                           0.97
                                                         14
                                1.00
            5
                     0.69
                                0.90
                                           0.78
                                                         10
            6
                                                         22
                     0.88
                                1.00
                                           0.94
            7
                                           0.95
                                                         21
                     1.00
                                0.90
            8
                     1.00
                                0.95
                                           0.97
                                                         20
            9
                     1.00
                                1.00
                                           1.00
                                                         19
           10
                     1.00
                                1.00
                                           1.00
                                                         16
                                1.00
                                           1.00
                     1.00
                                                         20
           11
           12
                     0.92
                                1.00
                                           0.96
                                                         12
           13
                     1.00
                                0.88
                                           0.94
                                                         17
           14
                     1.00
                                0.79
                                           0.88
                                                         24
                                1.00
           15
                     0.93
                                           0.97
                                                         14
           16
                     1.00
                                0.91
                                           0.95
                                                         22
           17
                     1.00
                                1.00
                                           1.00
                                                         14
                                                         22
           18
                     1.00
                                1.00
                                           1.00
           19
                     1.00
                                0.96
                                           0.98
                                                         24
                     0.95
           20
                                0.95
                                           0.95
                                                         21
           21
                     1.00
                                0.88
                                           0.93
                                                         24
           22
                     1.00
                                0.95
                                           0.98
                                                         21
           23
                     1.00
                                1.00
                                           1.00
                                                         20
           24
                     1.00
                                0.87
                                           0.93
                                                         15
           25
                     1.00
                                1.00
                                           1.00
                                                         18
           26
                     0.83
                                1.00
                                           0.91
                                                         20
           27
                     0.86
                                1.00
                                           0.93
                                                         19
           28
                     1.00
                                0.95
                                           0.98
                                                         22
           29
                     1.00
                                1.00
                                           1.00
                                                         14
           30
                                                         23
                     1.00
                                0.87
                                           0.93
           31
                     0.95
                                1.00
                                           0.98
                                                         21
           32
                     0.96
                                1.00
                                           0.98
                                                         24
           33
                     0.93
                                0.93
                                           0.93
                                                         15
           34
                     0.95
                                0.82
                                           0.88
                                                         22
           35
                     0.88
                                0.96
                                           0.92
                                                         23
           36
                     0.61
                                1.00
                                           0.76
                                                         14
           37
                     0.92
                                0.73
                                           0.81
                                                         15
           38
                     1.00
                                0.95
                                           0.97
                                                         19
    accuracy
                                           0.95
                                                        723
                     0.95
                                0.95
                                           0.95
                                                        723
   macro avg
weighted avg
                     0.96
                                0.95
                                           0.95
                                                        723
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay
fig, ax = plt.subplots(1, 1, figsize=(12,12))
score = 100*clf_MLP.score(X_test_, y_test)
title = 'Testing score ={:.2f}%'.format(score)
disp = ConfusionMatrixDisplay.from estimator(
```

```
clf_MLP,
X_test_,
y_test,
xticks_rotation=45, #'vertical',
# display_labels=class_names,
cmap=plt.cm.Blues,
normalize='true',
ax = ax
)
disp.ax_.set_title(title)
plt.show()
```

1.0

Testing score =94.74% 0.8 6-000001000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00.0480 0 0.9 0 0 0 0 0 0 00.0480 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 - 0 0 0 0 14 - 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 210 0420 0 00.0830 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0.4 26-0000000000000000000 0 0 0000010000000000000 28-00000000000000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00.0870 0 .8 0 00.0430 0 0 0 0 0.2 37 Predicted label 0.0

2.使用 activation = 'relu'且 hidden_layers = (512,)

```
from sklearn.neural network import MLPClassifier
hidden layers = (512,) # one hidden layer
activation = 'relu' # the default
# hidden layers = (30,)
# activation = 'logistic'
opts = dict(hidden_layer_sizes = hidden_layers , verbose = False, \
activation = activation, tol = 1e-6, max iter = int(1e6))
# solver = 'sgd' # not efficient, need more tuning
# solver = 'lbfgs' # not suitable here
solver = 'adam' # default solver
clf MLP = MLPClassifier(solver = solver, **opts)
clf_MLP.fit(X_train_, y_train)
predictions = clf MLP.predict(X test )
print(f"{accuracy_score(y_test, predictions):.2%}\n")
print(classification_report(y_test, predictions))
91.98%
               precision
                             recall f1-score
                                                 support
           1
                    1.00
                               0.80
                                          0.89
                                                       20
           2
                    1.00
                               0.95
                                          0.97
                                                       19
           3
                    1.00
                               0.96
                                          0.98
                                                       23
           4
                    0.92
                               0.86
                                          0.89
                                                       14
           5
                    0.91
                               1.00
                                          0.95
                                                       10
           6
                    0.88
                               1.00
                                          0.94
                                                       22
           7
                               0.90
                    1.00
                                          0.95
                                                       21
           8
                    0.83
                               0.95
                                          0.88
                                                       20
           9
                    1.00
                               0.89
                                          0.94
                                                       19
          10
                    1.00
                               0.94
                                          0.97
                                                       16
                    0.95
                               0.95
                                          0.95
                                                       20
          11
          12
                    1.00
                               1.00
                                          1.00
                                                       12
          13
                    1.00
                               0.94
                                          0.97
                                                       17
                               0.88
          14
                    0.91
                                          0.89
                                                       24
          15
                    1.00
                               0.93
                                          0.96
                                                       14
                               0.82
                                                       22
          16
                    1.00
                                          0.90
          17
                    1.00
                               1.00
                                          1.00
                                                       14
          18
                    1.00
                               0.86
                                          0.93
                                                       22
          19
                                          0.94
                                                       24
                    0.96
                               0.92
          20
                    0.95
                               1.00
                                          0.98
                                                       21
                                          0.91
          21
                    1.00
                               0.83
                                                       24
          22
                    0.66
                               1.00
                                          0.79
                                                       21
          23
                    0.95
                               0.95
                                          0.95
                                                       20
          24
                               0.93
                                          0.97
                                                       15
                    1.00
          25
                    0.90
                               1.00
                                          0.95
                                                       18
          26
                    0.95
                               1.00
                                          0.98
                                                       20
          27
                    0.95
                               0.95
                                          0.95
                                                       19
          28
                    1.00
                               0.91
                                          0.95
                                                       22
```

```
29
                    0.86
                               0.86
                                          0.86
                                                       14
          30
                    1.00
                               0.87
                                          0.93
                                                      23
          31
                    0.64
                               1.00
                                          0.78
                                                      21
                    0.96
                                          0.96
                                                       24
          32
                               0.96
          33
                    1.00
                               0.93
                                          0.97
                                                      15
                                                      22
          34
                    1.00
                               0.77
                                          0.87
                    0.64
                               1.00
                                                      23
          35
                                          0.78
          36
                    1.00
                               0.86
                                          0.92
                                                      14
          37
                    1.00
                               0.60
                                          0.75
                                                       15
          38
                    1.00
                               1.00
                                          1.00
                                                      19
                                          0.92
                                                     723
    accuracy
                                          0.92
   macro avg
                    0.94
                               0.92
                                                      723
weighted avg
                    0.94
                               0.92
                                          0.92
                                                      723
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay
fig, ax = plt.subplots(\frac{1}{1}, figsize=(\frac{12}{12}))
score = 100*clf_MLP.score(X_test_, y_test)
title = 'Testing score ={:.2f}%'.format(score)
disp = ConfusionMatrixDisplay.from estimator(
clf MLP,
X_test_,
y test,
xticks_rotation=45, #'vertical',
# display_labels=class_names,
cmap=plt.cm.Blues,
normalize='true',
ax = ax
disp.ax .set title(title)
plt.show()
```


討論:

- 使用 activation = 'logistic'且 hidden_layers = (30,)時,準確率為94.74%。
- 使用 activation = 'relu'且 hidden_layers = (512,)時,準確率為 91.98%。
- 綜上所述,使用 activation = 'logistic'且 hidden_layers = (30,)之準確率較高。

(b)主成分資料

1.取 50 個主成分並使用 activation = 'logistic'且 hidden_layers = (30,)

```
from sklearn.decomposition import PCA
from sklearn.neural_network import MLPClassifier
```

```
pca = PCA(n components = 50).fit(X train)
Z train = pca.transform(X train )
Z test = pca.transform(X test )
hidden layers = (30,)
activation = 'logistic'
opts = dict(hidden layer sizes = hidden layers , verbose = False, \
activation = activation, tol = 1e-6, max iter = int(1e6))
# solver = 'sgd' # not efficient, need more tuning
# solver = 'lbfgs' # not suitable here
solver = 'adam' # default solver
clf MLP = MLPClassifier(solver = solver, **opts)
clf_MLP.fit(Z_train, y_train)
predictions = clf MLP.predict(Z test)
print(f"{clf_MLP.score(Z_test, y_test):.2%}\n")
print(classification report(y test, predictions))
93.50%
               precision
                             recall f1-score
                                                 support
           1
                    1.00
                               1.00
                                          1.00
                                                       20
           2
                               0.84
                    0.89
                                          0.86
                                                       19
           3
                    1.00
                               0.91
                                          0.95
                                                       23
           4
                    0.93
                               1.00
                                          0.97
                                                       14
           5
                    1.00
                               1.00
                                          1.00
                                                       10
           6
                                                       22
                    0.91
                               0.95
                                          0.93
           7
                               0.90
                                          0.95
                    1.00
                                                       21
           8
                    0.95
                               1.00
                                          0.98
                                                       20
           9
                    1.00
                               0.95
                                          0.97
                                                       19
           10
                    1.00
                               1.00
                                          1.00
                                                       16
           11
                    0.95
                               0.95
                                          0.95
                                                       20
          12
                    0.80
                               1.00
                                          0.89
                                                       12
          13
                    0.89
                               0.94
                                          0.91
                                                       17
           14
                    1.00
                               0.88
                                          0.93
                                                       24
           15
                    1.00
                                          1.00
                                                       14
                               1.00
           16
                    0.95
                               0.82
                                          0.88
                                                       22
          17
                    0.88
                               1.00
                                          0.93
                                                       14
                                                       22
           18
                    0.95
                               0.95
                                          0.95
          19
                    0.96
                               0.92
                                          0.94
                                                       24
          20
                    0.95
                               0.86
                                          0.90
                                                       21
          21
                    1.00
                               0.75
                                          0.86
                                                       24
          22
                    0.95
                               0.95
                                          0.95
                                                       21
          23
                    0.95
                               0.95
                                          0.95
                                                       20
          24
                    1.00
                               0.87
                                          0.93
                                                       15
          25
                    1.00
                               1.00
                                          1.00
                                                       18
                    1.00
                               0.95
                                          0.97
                                                       20
          26
          27
                               0.95
                                          0.97
                                                       19
                    1.00
          28
                    0.87
                               0.91
                                          0.89
                                                       22
```

```
29
                    0.78
                               1.00
                                          0.88
                                                       14
          30
                    0.95
                               0.87
                                          0.91
                                                      23
          31
                    0.91
                               1.00
                                          0.95
                                                      21
                                          0.98
                                                       24
          32
                    0.96
                               1.00
          33
                    0.79
                               1.00
                                          0.88
                                                      15
                                                      22
          34
                    0.95
                               0.86
                                          0.90
                                          0.90
                                                      23
          35
                    0.82
                               1.00
          36
                    0.88
                               1.00
                                          0.93
                                                      14
          37
                    0.81
                               0.87
                                          0.84
                                                       15
          38
                    0.95
                               0.95
                                          0.95
                                                      19
                                          0.93
                                                     723
    accuracy
   macro avg
                    0.94
                               0.94
                                          0.94
                                                     723
weighted avg
                    0.94
                               0.93
                                          0.94
                                                     723
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay
fig, ax = plt.subplots(\frac{1}{1}, figsize=(\frac{12}{12}))
score = 100*clf_MLP.score(Z_test, y_test)
title = 'Testing score ={:.2f}%'.format(score)
disp = ConfusionMatrixDisplay.from estimator(
clf MLP,
Z_test,
y test,
xticks_rotation=45, #'vertical',
# display_labels=class_names,
cmap=plt.cm.Blues,
normalize='true',
ax = ax
disp.ax .set title(title)
plt.show()
```


2.取 100 個主成分並使用 activation = 'logistic'且 hidden_layers = (30,)

```
from sklearn.decomposition import PCA
from sklearn.neural_network import MLPClassifier

pca = PCA(n_components = 100).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)

hidden_layers = (30,)
activation = 'logistic'
opts = dict(hidden_layer_sizes = hidden_layers , verbose = False, \
```

```
activation = activation, tol = 1e-6, max iter = int(1e6))
# solver = 'sgd' # not efficient, need more tuning
# solver = 'lbfgs' # not suitable here
solver = 'adam' # default solver
clf MLP = MLPClassifier(solver = solver, **opts)
clf_MLP.fit(Z_train, y_train)
predictions = clf MLP.predict(Z test)
print(f"{clf_MLP.score(Z_test, y_test):.2%}\n")
print(classification report(y test, predictions))
95.44%
                             recall f1-score
               precision
                                                 support
            1
                    0.95
                               0.95
                                          0.95
                                                       20
            2
                    0.90
                               0.95
                                          0.92
                                                       19
            3
                    0.96
                               1.00
                                          0.98
                                                       23
           4
                    0.93
                               1.00
                                          0.97
                                                       14
           5
                    1.00
                               1.00
                                          1.00
                                                       10
            6
                               1.00
                                          1.00
                                                       22
                    1.00
           7
                    0.95
                               0.95
                                          0.95
                                                       21
           8
                    1.00
                               0.95
                                          0.97
                                                       20
           9
                    0.95
                               1.00
                                          0.97
                                                       19
           10
                    0.89
                               1.00
                                          0.94
                                                       16
                    0.95
                               0.95
                                          0.95
                                                       20
           11
                                                       12
           12
                    1.00
                               1.00
                                          1.00
          13
                                                       17
                    1.00
                               0.94
                                          0.97
          14
                    1.00
                               0.88
                                          0.93
                                                       24
          15
                    0.88
                                          0.93
                                                       14
                               1.00
           16
                    1.00
                               0.91
                                          0.95
                                                       22
          17
                    1.00
                               1.00
                                          1.00
                                                       14
           18
                    1.00
                               0.86
                                          0.93
                                                       22
          19
                                                       24
                    0.88
                               0.96
                                          0.92
          20
                                          0.92
                                                       21
                    1.00
                               0.86
          21
                    1.00
                               0.88
                                          0.93
                                                       24
          22
                    1.00
                               1.00
                                          1.00
                                                       21
          23
                    1.00
                               1.00
                                          1.00
                                                       20
```

24

25

26

27

28

29

30

31

32

33

34

35

36

1.00

1.00

0.95

1.00

1.00

0.93

1.00

0.95

0.88

0.88

1.00

0.96

0.78

0.87

0.94

1.00

0.95

0.86

1.00

0.96

1.00

0.96

1.00

0.86

1.00

1.00

0.93

0.97

0.98

0.97

0.93

0.97

0.98

0.98

0.92

0.94

0.93

0.98

0.88

15

18

20

19

22

14 23

21

24

15

22

23

14

```
37
                   0.79
                              1.00
                                        0.88
                                                    15
          38
                   0.95
                              1.00
                                        0.97
                                                    19
                                        0.95
                                                   723
    accuracy
                   0.96
                              0.96
                                        0.96
                                                   723
   macro avg
weighted avg
                   0.96
                              0.95
                                        0.95
                                                   723
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay
fig, ax = plt.subplots(1, 1, figsize=(12,12))
score = 100*clf_MLP.score(Z_test, y_test)
title = 'Testing score ={:.2f}%'.format(score)
disp = ConfusionMatrixDisplay.from estimator(
clf MLP,
Z test,
y test,
xticks rotation=45, #'vertical',
# display labels=class_names,
cmap=plt.cm.Blues,
normalize='true',
ax = ax
)
disp.ax_.set_title(title)
plt.show()
```


3.取 500 個主成分並使用 activation = 'logistic'且 hidden_layers = (30,)

```
from sklearn.decomposition import PCA
from sklearn.neural_network import MLPClassifier

pca = PCA(n_components = 500).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)

hidden_layers = (30,)
activation = 'logistic'
opts = dict(hidden_layer_sizes = hidden_layers , verbose = False, \
```

```
activation = activation, tol = 1e-6, max iter = int(1e6))
# solver = 'sgd' # not efficient, need more tuning
# solver = 'lbfgs' # not suitable here
solver = 'adam' # default solver
clf MLP = MLPClassifier(solver = solver, **opts)
clf_MLP.fit(Z_train, y_train)
predictions = clf MLP.predict(Z test)
print(f"{clf_MLP.score(Z_test, y_test):.2%}\n")
print(classification report(y test, predictions))
96.54%
                             recall f1-score
               precision
                                                 support
            1
                    1.00
                               1.00
                                          1.00
                                                       20
            2
                    1.00
                               0.95
                                          0.97
                                                       19
            3
                    0.96
                               1.00
                                          0.98
                                                       23
            4
                    1.00
                               1.00
                                          1.00
                                                       14
           5
                    1.00
                               1.00
                                          1.00
                                                       10
            6
                               1.00
                                          1.00
                                                       22
                    1.00
           7
                    1.00
                               0.95
                                          0.98
                                                       21
           8
                    0.95
                               1.00
                                          0.98
                                                       20
           9
                    0.95
                               1.00
                                          0.97
                                                       19
           10
                    0.84
                               1.00
                                          0.91
                                                       16
                    1.00
                               0.95
                                          0.97
                                                       20
           11
                                                       12
           12
                    1.00
                               1.00
                                          1.00
          13
                                                       17
                    1.00
                               0.88
                                          0.94
          14
                    1.00
                               0.88
                                          0.93
                                                       24
          15
                               0.93
                                          0.96
                                                       14
                    1.00
           16
                    1.00
                               0.95
                                          0.98
                                                       22
          17
                    1.00
                               1.00
                                          1.00
                                                       14
                                          0.95
           18
                    1.00
                               0.91
                                                       22
          19
                                                       24
                    1.00
                               0.96
                                          0.98
          20
                               0.95
                                          0.95
                                                       21
                    0.95
          21
                    1.00
                               0.88
                                          0.93
                                                       24
          22
                    1.00
                               1.00
                                          1.00
                                                       21
          23
                    1.00
                               1.00
                                          1.00
                                                       20
          24
                    0.93
                               0.87
                                          0.90
                                                       15
```

26

27

28

29

30

31

32

33

34

35

36

1.00

0.95

1.00

0.95

0.93

1.00

0.95

1.00

0.83

1.00

1.00

0.64

1.00

1.00

1.00

0.91

0.93

0.96

1.00

1.00

1.00

0.91

1.00

1.00

1.00

0.98

1.00

0.93

0.93

0.98

0.98

1.00

0.91

0.95

1.00

0.78

18

20

19

22

14 23

21

24

15

22

23

```
37
                   1.00
                              1.00
                                        1.00
                                                    15
          38
                   0.90
                              1.00
                                        0.95
                                                    19
                                        0.97
                                                   723
    accuracy
                   0.97
                              0.97
                                        0.96
                                                   723
   macro avg
weighted avg
                   0.97
                              0.97
                                        0.97
                                                   723
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay
fig, ax = plt.subplots(1, 1, figsize=(12,12))
score = 100*clf_MLP.score(Z_test, y_test)
title = 'Testing score ={:.2f}%'.format(score)
disp = ConfusionMatrixDisplay.from estimator(
clf MLP,
Z test,
y test,
xticks rotation=45, #'vertical',
# display labels=class_names,
cmap=plt.cm.Blues,
normalize='true',
ax = ax
)
disp.ax_.set_title(title)
plt.show()
```


4.取 50 個主成分並使用使用 activation = 'relu'且 hidden_layers = (512,)

```
from sklearn.decomposition import PCA
from sklearn.neural_network import MLPClassifier

pca = PCA(n_components = 50).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)

hidden_layers = (512,)
activation = 'relu'
opts = dict(hidden_layer_sizes = hidden_layers , verbose = False, \
```

```
activation = activation, tol = 1e-6, max iter = int(1e6))
# solver = 'sgd' # not efficient, need more tuning
# solver = 'lbfgs' # not suitable here
solver = 'adam' # default solver
clf MLP = MLPClassifier(solver = solver, **opts)
clf_MLP.fit(Z_train, y_train)
predictions = clf MLP.predict(Z test)
print(f"{clf_MLP.score(Z_test, y_test):.2%}\n")
print(classification report(y test, predictions))
91.70%
                             recall f1-score
               precision
                                                 support
           1
                    0.95
                               0.90
                                          0.92
                                                       20
           2
                    0.94
                               0.89
                                          0.92
                                                       19
           3
                    1.00
                               0.96
                                          0.98
                                                       23
           4
                                          0.93
                    0.88
                               1.00
                                                       14
           5
                    0.91
                               1.00
                                          0.95
                                                       10
           6
                    0.91
                               0.95
                                          0.93
                                                       22
           7
                    0.83
                               0.90
                                          0.86
                                                       21
           8
                    0.95
                               1.00
                                          0.98
                                                       20
           9
                    0.95
                               1.00
                                          0.97
                                                       19
          10
                    1.00
                               0.94
                                          0.97
                                                       16
                               0.85
                                          0.92
                                                       20
          11
                    1.00
                    0.92
                                          0.96
                                                       12
          12
                               1.00
          13
                    1.00
                                                       17
                               0.82
                                          0.90
          14
                    0.95
                               0.79
                                          0.86
                                                       24
          15
                    0.82
                                          0.90
                                                       14
                               1.00
          16
                    0.95
                               0.82
                                          0.88
                                                       22
          17
                    0.88
                               1.00
                                          0.93
                                                       14
          18
                    0.90
                               0.86
                                          0.88
                                                       22
          19
                                                       24
                    0.96
                               0.96
                                          0.96
          20
                    0.90
                                          0.90
                                                       21
                               0.90
          21
                    0.95
                               0.75
                                          0.84
                                                       24
          22
                    1.00
                               0.90
                                          0.95
                                                       21
          23
                    1.00
                               1.00
                                          1.00
                                                       20
          24
                    0.92
                               0.73
                                          0.81
                                                       15
```

26

27

28

29

30

31

32

33

34

35

36

0.95

0.95

1.00

0.95

0.74

1.00

0.95

0.86

0.94

0.86

0.95

0.72

1.00

0.95

1.00

0.86

1.00

0.87

1.00

1.00

1.00

0.82

0.91

0.93

0.97

0.95

1.00

0.90

0.85

0.93

0.98

0.92

0.97

0.84

0.93

0.81

18

20

19

22

14

23

21

24

15

22

23

```
37
                   0.65
                              0.73
                                        0.69
                                                    15
          38
                   0.86
                              1.00
                                        0.93
                                                    19
                                        0.92
                                                   723
    accuracy
                   0.92
                              0.92
                                        0.92
                                                   723
   macro avg
weighted avg
                   0.92
                              0.92
                                        0.92
                                                   723
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay
fig, ax = plt.subplots(1, 1, figsize=(12,12))
score = 100*clf_MLP.score(Z_test, y_test)
title = 'Testing score ={:.2f}%'.format(score)
disp = ConfusionMatrixDisplay.from estimator(
clf MLP,
Z test,
y test,
xticks rotation=45, #'vertical',
# display labels=class_names,
cmap=plt.cm.Blues,
normalize='true',
ax = ax
)
disp.ax_.set_title(title)
plt.show()
```


5.取 100 個主成分並使用使用 activation = 'relu'且 hidden_layers = (512,)

```
from sklearn.decomposition import PCA
from sklearn.neural_network import MLPClassifier

pca = PCA(n_components = 100).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)

hidden_layers = (512,)
activation = 'relu'
opts = dict(hidden_layer_sizes = hidden_layers , verbose = False, \
```

```
activation = activation, tol = 1e-6, max iter = int(1e6))
# solver = 'sgd' # not efficient, need more tuning
# solver = 'lbfgs' # not suitable here
solver = 'adam' # default solver
clf MLP = MLPClassifier(solver = solver, **opts)
clf_MLP.fit(Z_train, y_train)
predictions = clf MLP.predict(Z test)
print(f"{clf_MLP.score(Z_test, y_test):.2%}\n")
print(classification report(y test, predictions))
94.19%
                             recall f1-score
               precision
                                                 support
            1
                    1.00
                               1.00
                                          1.00
                                                       20
            2
                    1.00
                               0.95
                                          0.97
                                                       19
            3
                    1.00
                               1.00
                                          1.00
                                                       23
           4
                    0.93
                               1.00
                                          0.97
                                                       14
           5
                    1.00
                               1.00
                                          1.00
                                                       10
            6
                    0.88
                               0.95
                                          0.91
                                                       22
           7
                    0.95
                               0.95
                                          0.95
                                                       21
           8
                    0.95
                               0.95
                                          0.95
                                                       20
           9
                    1.00
                               1.00
                                          1.00
                                                       19
           10
                    1.00
                               1.00
                                          1.00
                                                       16
                               0.95
                                          0.97
                                                       20
           11
                    1.00
                                                       12
           12
                    1.00
                               1.00
                                          1.00
          13
                                                       17
                    0.94
                               0.88
                                          0.91
          14
                    1.00
                               0.83
                                          0.91
                                                       24
          15
                                                       14
                    1.00
                               1.00
                                          1.00
           16
                    1.00
                               0.82
                                          0.90
                                                       22
          17
                    1.00
                               1.00
                                          1.00
                                                       14
           18
                    1.00
                               0.95
                                          0.98
                                                       22
          19
                    0.96
                                                       24
                               0.96
                                          0.96
          20
                    0.91
                                          0.95
                                                       21
                               1.00
          21
                    0.95
                               0.75
                                          0.84
                                                       24
          22
                    0.95
                               0.90
                                          0.93
                                                       21
          23
                    1.00
                               1.00
                                          1.00
                                                       20
          24
                    0.83
                               1.00
                                          0.91
                                                       15
```

26

27

28

29

30

31

32

33

34

35

36

0.95

1.00

1.00

0.90

0.82

1.00

0.72

0.86

0.94

0.86

1.00

0.82

1.00

0.95

1.00

0.86

1.00

0.91

1.00

1.00

1.00

0.82

0.96

1.00

0.97

0.97

1.00

0.88

0.90

0.95

0.84

0.92

0.97

0.84

0.98

0.90

18

20

19

22

14 23

21

24

15

22

23

```
37
                   0.91
                              0.67
                                        0.77
                                                    15
          38
                   0.95
                              0.95
                                        0.95
                                                    19
                                        0.94
                                                   723
    accuracy
                   0.95
                              0.95
                                        0.94
                                                   723
   macro avg
weighted avg
                   0.95
                              0.94
                                        0.94
                                                   723
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay
fig, ax = plt.subplots(1, 1, figsize=(12,12))
score = 100*clf_MLP.score(Z_test, y_test)
title = 'Testing score ={:.2f}%'.format(score)
disp = ConfusionMatrixDisplay.from estimator(
clf MLP,
Z test,
y test,
xticks rotation=45, #'vertical',
# display labels=class_names,
cmap=plt.cm.Blues,
normalize='true',
ax = ax
)
disp.ax_.set_title(title)
plt.show()
```


6.取 500 個主成分並使用使用 activation = 'relu'且 hidden_layers = (512,)

```
from sklearn.decomposition import PCA
from sklearn.neural_network import MLPClassifier

pca = PCA(n_components = 500).fit(X_train_)
Z_train = pca.transform(X_train_)
Z_test = pca.transform(X_test_)

hidden_layers = (512,)
activation = 'relu'
opts = dict(hidden_layer_sizes = hidden_layers , verbose = False, \
```

```
activation = activation, tol = 1e-6, max iter = int(1e6))
# solver = 'sgd' # not efficient, need more tuning
# solver = 'lbfgs' # not suitable here
solver = 'adam' # default solver
clf MLP = MLPClassifier(solver = solver, **opts)
clf_MLP.fit(Z_train, y_train)
predictions = clf MLP.predict(Z test)
print(f"{clf_MLP.score(Z_test, y_test):.2%}\n")
print(classification report(y test, predictions))
94.47%
                             recall f1-score
               precision
                                                 support
            1
                    1.00
                               0.90
                                          0.95
                                                       20
            2
                    0.95
                               0.95
                                          0.95
                                                       19
            3
                    0.96
                               1.00
                                          0.98
                                                       23
           4
                    0.93
                               1.00
                                          0.97
                                                       14
           5
                    1.00
                               1.00
                                          1.00
                                                       10
            6
                               0.95
                                          0.98
                                                       22
                    1.00
           7
                    1.00
                               0.86
                                          0.92
                                                       21
           8
                    0.95
                               0.95
                                          0.95
                                                       20
           9
                    1.00
                               0.95
                                          0.97
                                                       19
           10
                    0.67
                               1.00
                                          0.80
                                                       16
                               0.95
                                          0.97
                                                       20
           11
                    1.00
                                                       12
           12
                    1.00
                               1.00
                                          1.00
          13
                                                       17
                    1.00
                               0.88
                                          0.94
          14
                    1.00
                               0.96
                                          0.98
                                                       24
          15
                               0.93
                                          0.96
                                                       14
                    1.00
           16
                    0.95
                               0.82
                                          0.88
                                                       22
          17
                    0.93
                               1.00
                                          0.97
                                                       14
           18
                    1.00
                               0.86
                                          0.93
                                                       22
          19
                                                       24
                    0.96
                               1.00
                                          0.98
          20
                    0.95
                                          0.98
                                                       21
                               1.00
          21
                    1.00
                               0.79
                                          0.88
                                                       24
          22
                    1.00
                               0.90
                                          0.95
                                                       21
          23
                    0.95
                               1.00
                                          0.98
                                                       20
          24
                    0.78
                               0.93
                                          0.85
                                                       15
```

26

27

28

29

30

31

32

33

34

35

36

1.00

1.00

0.95

1.00

1.00

0.95

0.84

0.89

1.00

0.89

0.85

0.88

1.00

1.00

1.00

1.00

1.00

0.91

1.00

1.00

1.00

0.77

1.00

1.00

1.00

1.00

0.97

1.00

1.00

0.93

0.91

0.94

1.00

0.83

0.92

0.93

18

20

19

22

14 23

21 24

15

22

23

```
37
                   0.92
                              0.80
                                        0.86
                                                    15
          38
                   0.95
                              0.95
                                        0.95
                                                    19
                                        0.94
                                                   723
    accuracy
                   0.95
                              0.95
                                        0.95
                                                   723
   macro avg
weighted avg
                   0.95
                              0.94
                                        0.95
                                                   723
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay
fig, ax = plt.subplots(1, 1, figsize=(12,12))
score = 100*clf_MLP.score(Z_test, y_test)
title = 'Testing score ={:.2f}%'.format(score)
disp = ConfusionMatrixDisplay.from estimator(
clf MLP,
Z test,
y test,
xticks rotation=45, #'vertical',
# display labels=class_names,
cmap=plt.cm.Blues,
normalize='true',
ax = ax
)
disp.ax_.set_title(title)
plt.show()
```


討論:

使用 activation = 'logistic'且 hidden_layers = (30,):

- 取 50 個主成分時,準確率為 93.50%。
- 取 100 個主成分時,準確率為 95.44%。
- 取 500 個主成分時,準確率為 96.54%。

使用 activation = 'relu'且 hidden_layers = (512,):

- 取50個主成分時,準確率為91.70%。
- 取100個主成分時,準確率為94.19%。

取 500 個主成分時,準確率為 94.47%。

小結:

- 使用 activation = 'logistic'和 hidden layers = (30,)時,準確率較高。
- 取愈多主成分,準確率愈高。

總結:

依照準確率比較:

- 多元羅吉斯回歸 (Multinomial Logistic Regression) (1)無論是何種演算法,原始資料的準確率較主成分資料的準確率高。(2)在主成分資料中,無論是何種演算法,取愈多主成分,準確率愈高。(3)在原始資料中,使用 liblinear 的演算法有最高的準確率 98.76%。
- · 支援向量機 (Support Vector Machine) (1)大部分的 kernel,原始資料的準確率較主成分資料的準確率高,但當 kernel='poly'時卻相反。(2)在主成分資料中,無論是何種 kernel,取愈多主成分,準確率愈高。(3)取 500 個主成分且使用kernel='poly'有最高的準確率 94.05%。
- · 神經網路 (Neural Network) (1)無論是使用 activation = 'logistic'且 hidden_layers = (30,)或使用 activation = 'relu'且 hidden_layers = (512,),取 50 個主成分時,原始資料的準確率較主成分資料的準確率高;但取 100 或 500 個主成分時,主成分資料的準確率較原始資料的準確率高。(2)在主成分資料中,無論是何種 activation和 hidden_layers,取愈多主成分,準確率愈高。(3)取 500 個主成分並使用activation = 'logistic'和 hidden_layers = (30,)有最高的準確率 96.54%。

依照執行時間比較:

- (1)無論是何種分類器,主成分資料的執行時間都較原始資料短。
- (2)無論是何種分類器,取愈多的主成分,執行時間會愈長。
- (3)原始資料中,多元羅吉斯回歸的執行時間較長(其中又以 newton-cg 的演算法最長),支援向量機和神經網路差異不大。
- (4)主成分資料中,支援向量機的執行時間較短,多元羅吉斯回歸的執行時間較長(其中又以 newton-cq 的演算法最長)。

綜上所述:

- 我認為最佳分類器為神經網路中取 500 個主成分並使用 activation = 'logistic'和 hidden_layers = (30,),因為它的準確率為所有分類器中第二高(96.54%),且執行時間大約1分鐘,有很好的效率。
- 雖然多元羅吉斯回歸的原始資料中,使用 liblinear 的演算法會有最高的準確率 98.76%,但執行時間過長(約 92 分鐘),效率不彰。