Segurança de Redes e Sistemas de Computadores 2017/2018 Ficha de Reporte do Trabalho Prático nº 1 (TP1) Grupo

Nº de Aluno	Nome (elementos do grupo)
43149	Gil Alves
43858	Miguel Pereira

1. Introdução e contexto do trabalho

Indique X conforme o seu caso

Implementação e completude do trabalho	SIM	NÃO	PARC. (Parcialmente)
Foram implementados totalmente todos os requisitos da FASE 1 (ou protocolo STGC/TLP)	X		
Foram implementados totalmente todos os requisitos da FASE 2 (ou protocolo STGC-SAP)			X
A minha implementação da FASE 1 (ou implementação do STGC/STGC-TLP) concretiza completamente e exatamente as especificações desse protocolo que constam do enunciado	X		
A minha implementação da FASE 2 (ou implementação do STGC/STGC-SAP) concretiza completamente e exatamente as especificações desse protocolo que constam do enunciado			X

Se colocou X anteriormente em alguma posição PARC /Parcialmente do quadro, indique porque o fez e porque considera que a implementação é parcial. Se não deixe em branco ou indique N/A

A segunda fase está parcialmente implementada por falta de tempo. A implementação é parcial porque falta a parte do cliente processar a mensagem do servidor (2ª ronda). O envio do pacote por parte do servidor está a ser feito, assim como a recepção por parte do cliente, só faltou mesmo o processamento da mensagem.

2. Generalidade do desenvolvimento do protocolo STGC (Subprotocolo STGC-TLP) e sua evidência

Para suportar a aplicação de teste fornecida (testeMulticast) e para que esta seja protegida pela implementação do protocolo STGC-TLP, dado o código inicial (sem proteção da comunicação) dessa aplicação:

- 2.1 Apenas foi necessário modificar __2__ linhas de código, em relação ao número de linhas de código da aplicação inicial
- 2.2 É preciso modificar ___2__ linhas de código em relação ao número de linhas de código inicial, tendo ainda que se acrescentar mais __8__ linhas de código em relação ao código inicial

Diga em que consiste no essencial a modificação do código da aplicação para ser protegida pela sua implementação com o STGC/TLP:

A modificação do código testMulticast centra-se na troca da inicialização da socket Multicast (1 linha de código no receiver e 1 linha de código no sender) para a socket por nós implementada

		~ A	1 1			1 .
~ I	1	('N/I	1111	1000	+	ヘレヘモ
\mathcal{L}	J		uı	ucai	\sim	cket.

As 8 linhas de código adicionadas são referentes à introdução da password da keystore por parte do utilizador (através de Scanner in) e inicialização do protocolo STGC.

3. Caracterização da implementação do protocolo STCG / subprotocolo STGC-TLP

A minha implementação do subprotocolo STGC foi feita do seguinte modo (caracterize com uma boa síntese, como construiu e desenvolveu o suporte do protocolo STGC/STGC-TLP.

O nosso subprotocolo STGC-TLP é constituído por 2 entidades (classes) essenciais: a primeira representa o subprotocolo TLP, que contém todas as operações referentes a segurança e interage com o ficheiro de configuração. A segunda representa uma socket Multicast protegida (recebe as mensagens da aplicação e processa-as de forma a ficarem seguras, antes de serem enviadas). Utiliza um objecto do subprotocolo TLP para adicionar as restrições de segurança necessárias.

4. Comprovação da correção da implementação do protocolo STGC-TLP

4.1 Utilizei como aplicação de comprovação e prova do funcionamento da minha implementação STGC/STGC-TLP	SIM	NÃO
a) a aplicação MCHAT	X	
b) a aplicação STREAMING		Х

4.2 Nas minhas observações experimentais, a aplicação protegida pela minha implementação do protocolo STGC/STGC-TLP:	SIM	NÃO
a) Funciona corretamente	X	
b) Funciona bem mas apenas parcialmente		X

Justifique,	apenas	no	caso	de	ter	respondi	do	SIM	a 4.	2 b)	. Se	não	deixe	em	branco	ou
coloque N/	\mathbf{A}					-										

5. Flexibilidade e configuração de parametrizações de segurança para a execução do protocolo STGC/STGC-TLP

A minha implementação STCG/STGC-TLP segue as especificações do enunciado do trabalho, sendo os endpoints de comunicação parametrizáveis pelos seguintes ficheiros (configuração):

	SIM	NÃO
5.1 Ficheiro de configuração ciphersuite.conf	X	

5.2 keystore.jceks	X	
--------------------	---	--

5.3 Uma configuração tipo no ficheiro ciphersuite, conf pode ser estabelecida do seguinte modo (exemplifique):

<224.0.0.1>

CIPHERSUITE: AES/ECB/PKCS5Padding

KEYSIZE: 128

MACKM: HMacSHA1

MACKMEYSIZE: 128

MACKA: HMacSHA1

MACKAKEYSIZE: 128

</224.0.0.1> <224.0.0.0>

CIPHERSUITE: AES/CTR/NoPadding

KEYSIZE: 128

MACKM: HMacSHA256

MACKMEYSIZE: 128

MACKA: HMacSHA256

MACKAKEYSIZE: 128

</224.0.0.0> <224.0.0.2>

CIPHERSUITE: AES/CBC/PKCS5Padding

KEYSIZE: 128

MACKM: HMacSHA384

MACKMEYSIZE: 128

MACKA: HMacSHA384

MACKAKEYSIZE: 128

</224.0.0.2>

5.4 Com o suporte de configuração **ciphersuite.conf** e com a geração / utilização adequadas (correspondentes) do **keystore.jceks**, verifiquei que se suportarão de forma flexível quaisquer combinações criptográficas. No meu caso testei e comprovei experimentalmente as seguintes:

LISTA DE CIPHERSUITES testadas com sucesso: (ALG/MODO/PADDING):

AES/ECB/PKCS5Padding

AES/CTR/NoPadding

AES/CBC/PKCS5Padding

```
LISTA DE MACs (HMACs ou CMACs) testadas com sucesso:
HMacSHA1
HMacSHA384
HMacSHA256
```

- 6. RESPONDA A ESTA SECÇÃO APENAS SE IMPLEMENTOU O SUB-PROTOCOLO STGC-SAP, de acordo com os requisitos do enunciado. Se não, passe ao ponto 7 (Conclusões)
- 6.1 Apresente (usando notação apropriada) a especificação (o mais completa possível) das mensagens trocadas no contexto do processamento do subprotocolo STGC/SAP:

```
Ronda 1: Client > AS: Formato da mensagem com os componentes criptográficos e sua
descrição:
Username | | NonceC | | MulticastAddress | | AuthenticatorC
tal que
AuthenticatorC = E[K, (X) | MACk(X)]
X = NonceC \mid \mid MulticastAddress \mid \mid SHA512(password)
K = PBE(SHA512(password))
k = PBE(MD5(NonceC | SHA512(password)))
Ronda 12 AS > Client: Formato da mensagem com os componentes criptográficos e sua
descrição:
E[K, (X) | MACk(X)]
tal que
X = NonceC+1 \mid \mid NonceS \mid \mid TicketAS
K = PBE(SHA512(password) | NonceC+1)
k = PBE(MD5(NonceC \mid SHA512(password)))
TicketAS = ciphersuite | | macKmAlg | | macKaAlg | | ks | | km | | ka
```

6.2 O servidor AS possui configurações com os seguintes ficheiros, conforme a especificação do enunciado:

Ficheiro de configuração	SIM	NÃO
ciphersuite.conf		X
//gestão de ciphersuites utilizáveis para as sessões		
keystore.jceks		X
//chaves (criptográficas simétricas ou para MACs – HMACs ou CMACs)		
users.conf	X	
//Utilizadores registados que podem participar em grupos multicast		
seguros STGC		
dacl.conf	X	
//configuração de listas de controlo de acesso (DAC) de utilizadores que		
podem participar em cada grupo multicast definido como grupo seguro		

STGC		
stgcsap.conf	X	
//configuração criptográfica para possíveis construções PBEncryption e		
MACs para o protocolo STGC-SAP		

6.3 A minha implementação do protocolo STGC-SAP pode ser configurável no ficheiro stgcsap.conf, tendo sido verificado experimentalmente com configurações envolvendo:

PBE (Password-Based Encryption)	SIM	NÃO
PBEWithSHAAnd3KeyTripleDES	X	
BEWITHSHA256AND256BITAES-CBC-BC		X
PBEWITHSHA-1AND256BITAES-CBC-BC		X
PBEWithHmacSHA224AndAES_256		X
OUTRA(S) QUAIS:		X
MACS (HMACS)	SIM	NÃO
HMacSHA1		X
HMAC/SHA384		X
HMAC-SHA3-224		X
HMAC-SHA3-256		X
HMAC-SHA512	X	
OUTROS (QUAIS ?):		
MACS (CMACS)	SIM	NÃO
SKIPJACKMAC		X
AESGMAC		X
RC6GMAC		X
RC5MA		X
DES		X
OUTROS (QUAIS ?)		

6.4 Indique em que consiste o formato de um TocketAS (devolvido na ronda 2 do subprotocolo STGC-SAP). Pode copiar a estrutura de dados que o descreve:

O TicketAS tem o formato de um byte array concatenando	
TicketAS = ciphersuite macKmAlg macKaAlg ks km ka.	

7.	Conclusões	e ası	pectos	comp	lemen	tares

Inclua as conclusões sobre o seu desenvolvimento do TP1, podendo realçar aspectos complementares ou diferenciados da sua implementação. Se achar relevante pode argumentar sobre aspectos qualitativos que considera valorizáveis

7.1 Conclusões resumidas:

Numa perspetiva mais geral sobre o projecto, achamos que esteve dentro das expectativas. Um projecto demasiado grande para o tempo e carga de todas as cadeiras do semestre. Apesar disso fez com que o grupo assumisse responsabilidades ao nível das decisões de planeamento, bem como experiência em todas as fases de desenvolvimento de código, trazendo maior relevância a esta cadeira.

7.2 Aspectos complementares a salientar:	
Nada a salientar.	
7.3 Argumentação sobre fatores diferenciados e qualitativos implementados no TP1	
Nada a salientar.	