LOGIKA MATEMATIKA

ALJABAR BOOLEAN

EKO SUHARYANTO - 081310792300

SISTEM INFORMASI

FAKULTAS ILMU KOMPUTER UNIVERSITAS PAMULANG

PENDAHULUAN

- Aljabar Boolean ditemukan oleh George Boole, pada tahun 1854.
- Boole melihat bahwa himpunan dan logika proposisi mempunyai sifat-sifat yang serupa (perhatikan kemiripan hukum-hukum aljabar logika dan hukumhukum aljabar himpunan).
- Dalam buku *The Laws of Thought, Boole* memaparkan aturan-aturan dasar logika.
- Aturan dasar logika ini membentuk struktur matematika yang disebut **aljabar Boolean.**
- Aplikasi: perancangan rangkaian pensaklaran, rangkaian digital, dan rangkaian IC (integrated circuit) komputer

PENDAHULUAN

Can Stock Photo - csp10410713

Integarted Circuit (IC)

Jaringan saklar

Misalkan B adalah himpunan yang didefinisikan pada dua operator biner, + dan ., dan sebuah operator uner, '. Misalkan O dan 1 adalah dua elemen yang berbeda dari B. Maka, tupel

disebut **aljabar Boolean** jika untuk setiap a, b, $c \in B$ berlaku aksioma berikut:

- 1. Identitas
- (i) a + 0 = a
- (ii) a . 1 = a

2. Komutatif

(i)
$$a + b = b + a$$

(ii)
$$a . b = b . a$$

3. Distributif

(i)
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

(ii)
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

4. Komplemen

Untuk setiap $a \in B$ terdapat elemen unik $a' \in B$ sehingga

(i)
$$a + a' = 1$$

(ii)
$$a \cdot a' = 0$$

- Berhubung elemen-elemen *B* tidak didefinisikan nilainya (kita bebas menentukan anggota-anggota *B*), maka terdapat banyak sekali aljabar boolean.
- Untuk mempunyai sebuah aljabar Boolean, orang harus memperlihatkan:
 - 1. elemen-elemen himpunan B,
 - 2. kaidah/aturan operasi untuk dua operator biner dan operator uner,
 - 3. himpunan *B*, bersama-sama dengan dua operator tersebut, memenuhi keempat aksioma di atas

- Aljabar himpunan dan aljabar logika proposisi juga merupakan aljabar Boolean karena memenuhi empat aksioma di atas.
- Dengan kata lain, aljabar himpunan dan aljabar proposisi adalah himpunan bagian (*subset*) dari aljabar Boolean.
- Pada aljabar proposisi misalnya:
 - B berisi semua proposisi dengan n peubah.
 - dua elemen unik berbeda dari B adalah T dan F,
 - operator biner: v dan ^, operator uner: ~
 - semua aksioma pada definisi di atas dipenuhi Dengan kata lain <*B*, v, ^, ~, **F**, **T** > adalah aljabar Booelan

ALJABAR BOOLEAN 2-NILAI

- Merupakan aljabar Boolean yang paling popular, karena aplikasinya luas.
- Pada aljabar 2-nilai:

(i)
$$B = \{0, 1\},$$

- (ii) operator biner: + dan ., operator uner: '
- (iii) Kaidah untuk operator biner dan operator uner:

а	b	a.b
0	0	0
0	1	0
1	0	0
1	1	1

а	b	a + b
0	0	0
0	1	1
1	0	1
1	1	1

а	b
0	1
1	0

(iv) Keempat aksioma di atas dipenuhi

EKSPRESI BOOLEAN

 Ekspresi Boolean dibentuk dari elemen-elemen B dan/atau peubah-peubah yang dapat dikombinasikan satu sama lain dengan operator +, ., dan '.

Contoh 1:

```
0
1
a
b
a + b
a . b
a'. (b + c)
a . b' + a . b . c' + b', dan sebagainya
```

HUKUM-HUKUM ALJABAR BOOLEAN

 Hukum identitas: (i) a + 0 = a (ii) a · 1 = a 	 Hukum idempoten: (i) a + a = a (ii) a · a = a
 3. Hukum komplemen: (i) a + a' = 1 (ii) aa' = 0 	 4. Hukum dominansi: (i) a · 0 = 0 (ii) a + 1 = 1
 Hukum involusi: (i) (a')' = a 	 6. Hukum penyerapan: (i) a + ab = a (ii) a(a + b) = a
 7. Hukum komutatif: (i) a + b = b + a (ii) ab = ba 	 8. Hukum asosiatif: (i) a + (b + c) = (a + b) + c (ii) a (b c) = (a b) c
 9. Hukum distributif: (i) a + (b c) = (a + b) (a + c) (ii) a (b + c) = a b + a c 	10. Hukum De Morgan: (i) (a + b)' = a'b' (ii) (ab)' = a' + b'
11. Hukum 0/1	

HUKUM-HUKUM ALJABAR BOOLEAN

Contoh 2: Buktikan bahwa untuk sembarang elemen a dan b dari aljabar Boolean maka kesamaaan berikut:

$$a + a'b = a + b dan a(a' + b) = ab$$

adalah benar.

Penyelesaian:

(i)
$$a + a'b = (a + ab) + a'b$$
 (Hukum Penyerapan)
 $= a + (ab + a'b)$ (Hukum Asosiatif)
 $= a + (a + a')b$ (Hukum Distributif)
 $= a + 1 \cdot b$ (Hukum Komplemen)
 $= a + b$ (Hukum Identitas)

HUKUM-HUKUM ALJABAR BOOLEAN

```
(ii) a(a' + b) = a a' + ab (Hukum Distributif)
= 0 + ab (Hukum Komplemen)
= ab (Hukum Identitas)
```

FUNGSI BOOLEAN

• Contoh-contoh fungsi Boolean:

$$f(x) = x$$

 $f(x, y) = x'y + xy' + y'$
 $f(x, y) = x'y'$
 $f(x, y) = (x + y)'$
 $f(x, y, z) = xyz'$

- Setiap peubah di dalam fungsi Boolean, termasuk dalam bentuk komplemennya, disebut **literal.**
- Fungsi h(x, y, z) = xyz' terdiri dari 3 buah literal, yaitu x, y, dan z'.
- Jika diberikan x = 1, y = 1, z = 0, maka nilai fungsinya: $h(1, 1, 0) = 1 \cdot 1 \cdot 0' = (1 \cdot 1) \cdot 1 = 1 \cdot 1 = 1$

- Ekspresi Boolean yang menspesifikasikan suatu fungsi dapat disajikan dalam dua bentuk berbeda.
- Pertama, sebagai **penjumlahan dari hasil kali** dan kedua sebagai **perkalian dari hasil jumlah.**

Contoh 3:

$$f(x, y, z) = x'y'z + xy'z' + xyz$$

dan
 $g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$

adalah dua buah fungsi yang sama.

- Minterm: suku (term) di dalam ekspresi boolean mengandung literal yang lengkap dalam bentuk hasil kali
- Maxterm: suku (term) di dalam ekspresi boolean mengandung literal yang lengkap dalam bentuk hasil jumlah.

• Contoh 4:

$$f(x, y, z) = x'y'z + xy'z' + xyz$$
 3 buah minterm: $x'y'z$, $xy'z'$, xyz
 $g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z')$
 \rightarrow 5 buah maxterm: $(x + y + z)$, $(x + y' + z)$, $(x + y' + z')$,

(x' + y + z'), dan (x' + y' + z)

 Misalkan peubah (variable) fungsi Boolean adalah x, y, dan z
 Maka:

 $x'y \rightarrow bukan minterm$ karena literal tidak lengkap $y'z' \rightarrow bukan minterm$ karena literal tidak lengkap $xy'z, xyz', x'y'z \rightarrow minterm$ karena literal lengkap $(x + z) \rightarrow bukan maxterm$ karena literal tidak lengkap $(x' + y + z') \rightarrow maxterm$ karena literal lengkap

 $(x' + y + z') \rightarrow maxterm$ karena literal lengkap $(xy' + y' + z) \rightarrow$ bukan maxterm

 Ekspresi Boolean yang dinyatakan sebagai penjumlahan dari satu atau lebih minterm atau perkalian dari satu atau lebih maxterm disebut dalam bentuk kanonik.

- Jadi, ada dua macam bentuk kanonik:
 - 1. Penjumlahan dari hasil kali (*sum-of-product atau SOP*)
 - 2. Perkalian dari hasil jumlah (product-of-sum atau POS)
- Fungsi f(x, y, z) = x'y'z + xy'z' + xyz dikatakan dalam bentuk SOP
- Fungsi g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)

dikatakan dalam bentuk POS

Cara membentuk minterm dan maxterm:

- Untuk minterm, setiap peubah yang bernilai 0 dinyatakan dalam bentuk komplemen, sedangkan peubah yang bernilai 1 dinyatakan tanpa komplemen.
- Sebaliknya, untuk *maxterm, setiap peubah yang* bernilai 0 dinyatakan tanpa komplemen, sedangkan peubah yang bernilai 1 dinyatakan dalam bentuk komplemen.

• Cara membentuk *minterm* dan *maxterm* dari table kebenaran untuk dua peubah:

		Mi	interm	Maxterm	
x	y	Suku	Lambang	Suku	Lambang
0	0	x'y'	m_0	x + y	M_0
0	1	x'y	m_1	x+y	M_1
1	0	xy'	m_2	x' + y	M_2
1	1	xy	m_3	x' + y'	M_3

• Cara membentuk *minterm* dan *maxterm* dari table kebenaran untuk tiga peubah:

			M	interm	Max	xterm
x	y	Z	Suku	Lambang	Suku	Lambang
0	0	0	x'y'z'	m_0	x+y+z	M_0
0	0	1	x'y'z	m_1	x+y+z	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x+y'+z'	M_3
1	0	0	xy'z'	m_4	x'+y+z	M_4
1	0	1	xy'z	m_5	x'+y+z'	M_5
1	1	0	xyz	m_6	x'+y'+z	M_6
1	1	1	xyz	m_7	x'+y'+z'	M_7

- Jika diberikan sebuah tabel kebenaran, kita dapat membentuk fungsi Boolean dalam bentuk kanonik (SOP atau POS) dari tabel tersebut dengan cara:
 - mengambil minterm dari setiap nilai fungsi yang bernilai 1 (untuk SOP)
 atau
 - mengambil maxterm dari setiap nilai fungsi yang bernilai 0 (untuk POS).

Contoh 5:

Tinjau fungsi Boolean yang dinyatakan oleh Tabel di bawah ini.

Nyatakan fungsi tersebut dalam bentuk kanonik

SOP dan POS

х	y	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Penyelesaian:

SOP

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 1 adalah 001, 100, dan 111, maka fungsi Booleannya dalam bentuk kanonik SOP adalah

$$f(x, y, z) = x'y'z + xy'z' + xyz$$

atau (dengan menggunakan lambang minterm),

$$f(x, y, z) = m_1 + m_4 + m_7 = \sum (1, 4, 7)$$

Penyelesaian:

POS

x	y	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0 0 0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 0 adalah 000, 010, 011, 101, dan 110, maka fungsi Booleannya dalam bentuk kanonik POS adalah

$$f(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z')$$

$$z')(x' + y' + z)$$

atau dalam bentuk lain,

$$f(x, y, z) = M_0 M_2 M_3 M_5 M_6 = \prod (0, 2, 3, 5, 6)$$

Contoh 6:

Nyatakan fungsi Boolean f(x, y, z) = x + y'z dalam bentuk kanonik SOP dan POS.

Penyelesaian:

(a) SOP

Lengkapi terlebih dahulu literal untuk setiap suku agar jumlahnya sama.

$$x = x(y + y')$$

= $xy + xy'$
= $xy (z + z') + xy'(z + z')$
= $xyz + xyz' + xy'z + xy'z'$
dan
 $y'z = y'z (x + x') = xy'z + x'y'z$

Jadi
$$f(x, y, z) = x + y'z$$

= $xyz + xyz' + xy'z + xy'z' + xy'z + xy'z + x'y'z$
= $x'y'z + xy'z' + xy'z + xyz' + xyz$

atau

$$f(x, y, z) = m_1 + m_4 + m_5 + m_6 + m_7 = \sum (1,4,5,6,7)$$

(b) POS

$$f(x, y, z) = x + y'z$$
$$= (x + y')(x + z)$$

Lengkapi terlebih dahulu literal pada setiap suku agar jumlahnya sama:

$$x + y' = x + y' + zz'$$

= $(x + y' + z)(x + y' + z')$
 $x + z = x + z + yy'$
= $(x + y + z)(x + y' + z)$

Jadi:

$$f(x, y, z) = (x + y' + z)(x + y' + z')(x + y + z)(x + y' + z)$$
$$= (x + y + z)(x + y' + z)(x + y' + z')$$

atau

$$f(x, y, z) = M_0 M_2 M_3 = \prod (0, 2, 3)$$

Contoh 7:

Nyatakan fungsi Boolean f(x, y, z) = xy + x'z dalam bentuk kanonik POS.

Penyelesaian:

$$f(x, y, z) = xy + x'z$$

$$= (xy + x') (xy + z)$$

$$= (x + x') (y + x') (x + z) (y + z)$$

$$= (x' + y) (x + z) (y + z)$$

Lengkapi literal untuk setiap suku agar jumlahnya sama:

$$x' + y = x' + y + zz' = (x' + y + z) (x' + y + z')$$

 $x + z = x + z + yy' = (x + y + z) (x + y' + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
Jadi,
 $f(x, y, z) = (x + y + z) (x + y' + z) (x' + y + z)$
 $(x' + y + z')$

Atau

$$f(x, y, z) = M_0 M_2 M_4 M_5 = \prod (0,2,4,5)$$

KONVERSI ANTAR BENTUK KANONIK

Misalkan f adalah fungsi Boolean dalam bentuk SOP dengan tiga peubah:

$$f(x, y, z) = \Sigma (1, 4, 5, 6, 7)$$

dan f'adalah fungsi komplemen dari f,

$$f'(x, y, z) = \Sigma (0, 2, 3) = m_0 + m_2 + m_3$$

KONVERSI ANTAR BENTUK KANONIK

Dengan menggunakan hukum De Morgan, kita dapat memperoleh fungsi f dalam bentuk POS:

$$f(x, y, z) = (f'(x, y, z))' = (m_0 + m_2 + m_3)' = m_0' \cdot m_2' \cdot m_3'$$

$$= (x'y'z')' (x'yz')' (x'yz)'$$

$$= (x + y + z) (x + y' + z) (x + y' + z')$$

$$= M_0 M_2 M_3 = \prod (0,2,3)$$
Jadi, $f(x, y, z) = \sum (1, 4, 5, 6, 7) = \prod (0,2,3)$.

Kesimpulan: $m_j' = M_j$

RANGKAIAN LOGIKA

- Fungsi Boolean dapat juag direpresentasikan dalam bentuk rangkaian logika.
- Ada tiga gerbang logika dasar: gerbang AND, gerbang OR, dan gerbang NOT

Contoh 8:

Nyatakan fungsi f(x, y, z) = xy + x'y ke dalam rangkaian logika.

Penyelesaian:

Ada beberapa cara penggambaran

Cara pertama:

Cara kedua:

Cara ketiga:

 Gerbang logika turunan: NAND, NOR, XOR, dan XNOR

Keempat gerbang di atas merupakan kombinasi dari gerbang-gerbang dasar, misalnya gerbang NOR disusun oleh kombinasi gerbang OR dan gerbang NOT:

$$y \longrightarrow (x+y)'$$

ekivalen dengan

$$x \rightarrow (x+y)$$

Selain itu, dengan menggunakan hukum De Morgan, kita juga dapat membuat gerbang logika yang ekivalen dengan gerbang NOR dan NAND di atas:

$$y'$$
 y'

ekivalen dengan

$$y$$
 y $(x+y)'$

Transistor untuk gerbang logika

- Menyederhanakan fungsi Boolean artinya mencari bentuk fungsi lain yang ekivalen tetapi dengan jumlah literal atau operasi yang lebih sedikit.
- Contoh:

$$f(x, y) = x'y + xy' + y'$$

disederhanakan menjadi
 $f(x, y) = x' + y'$.

 Dipandang dari segi aplikasi aljabar Boolean, fungsi Boolean yang lebih sederhana berarti rangkaian logikanya juga lebih sederhana (menggunakan jumlah gerbang logika lebih sedikit).

- Tiga metode yang dapat digunakan untuk menyederhanakan fungsi Boolean:
 - 1. Secara aljabar, menggunakan hukumhokum aljabar Boolean.
 - 2. Metode Peta Karnaugh.
 - 3. Metode Quine-McCluskey (metode tabulasi)

- Tiga metode yang dapat digunakan untuk menyederhanakan fungsi Boolean:
 - 1. Secara aljabar, menggunakan hukumhokum aljabar Boolean.
 - 2. Metode Peta Karnaugh.
 - 3. Metode Quine-McCluskey (metode tabulasi)
- Yang dibahas hanyalah Metode Peta Karnaugh

- Peta Karnaugh (atau K-map) merupakan metode grafis untuk menyederhanakan fungsi Boolean.
- Metode ini ditemukan oleh Maurice Karnaugh pada tahun 1953. Peta Karnaugh adalah sebuah diagram/peta yang terbentuk dari kotak-kotak (berbentuk bujursangkar) yang bersisian.

- Tiap kotak merepresentasikan sebuah minterm.
- Tiap kotak dikatakan bertetangga jika minterm-minterm yang merepresentasikannya berbeda hanya 1 buah literal.

Peta Karnaugh dengan dua peubah

	18	
m_0	m_1	X
m_2	m_3	

Penyajian 1

		j	2
		0	1
x	0	<i>x</i> ' <i>y</i> '	x'y
	1	xy'	xy

Penyajian 2

г	<i>y</i> '	y
x'	<i>x</i> ' <i>y</i> '	x'y
x	xy'	xy

Penyajian 3

Peta Karnaugh dengan tiga peubah

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

		00	01	11	10
x	0	x'y'z'	x'y'z	x'yz	x'yz'
	1	xy'z'	xy'z	xyz	xyz'

Peta Karnaugh dengan empat peubah

127

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	m 9	m_{11}	m_{10}

	00	01	11	10
wx 00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
11	wxy'z'	wxy'z	wxyz	wxyz'
10	wx'y'z'	wx'y'z	wx'yz	wx'yz'

Cara mengisi peta Karnaugh

- Kotak yang menyatakan minterm diisi "1"
- Sisanya diisi "0"
- Contoh: f(x, y, z) = x'yz' + xyz' + xyz

	00	уz 01	11	10
x 0	0	0	0	1
1	0	0	1	1

Contoh: f(x, y, z) = xz' + y

xz': Irisan antara:

x → semua kotak pada baris ke-2

z' → semua kotak pada kolom ke-1 dan kolom ke-4

y:

y → semua kotak pada kolom ke-3 dan kolom ke-4

	yz 00	01	11	10
x 0	0	0	1	1
1	1	0	1	1

Pengisian peta Karnaugh dari tabel kebenaran

x	y	z	f(x, y, z)
0	0	0	0
0 0 0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Tinjau hanya nilai fungsi yang memberikan 1. Fungsi Boolean yang merepresentasikan tabel kebenaran adalah f(x, y) = x'y'z + xy'z' + xy'z + xyz.

	00	01	11	10
x 0	0	1	0	0
1	1	1	1	0

TERIMA

KASIH

