

SF1624 Algebra och geometri Tentamen med lösningsförslag fredag, 20 oktober 2017

1. Betrakta det homogena linjära ekvationssystemet $A\vec{x} = \vec{0}$, där

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 4 & -1 & 1 & k \end{bmatrix}$$

där k är en konstant.

(a) Lös ekvationssystemet då k = 3. (3 p)

(b) Bestäm värdet på konstanten k så att lösningsmängden till $A\vec{x} = \vec{0}$ blir ett två-dimensionellt delrum av \mathbb{R}^4 och bestäm sedan en bas för detta delrum. (3 **p**)

Lösningsförslag. Via Gausseliminering reducerar man systemet till matrisen:

$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & 1/3 & 2/3 \\ 0 & 0 & 0 & k-2 \end{bmatrix}$$

Matrisen har rang 3 om $k \neq 2$ och rang 2 om k = 2.

(a) Om k = 3 har matrisen rang 3 och lösningsmängden ges av

$$\{t(-1/3, -1/3, 1, 0)\} = Span((-1/3, -1/3, 1, 0)).$$

(b) Lösningsmängden har dimension 2 bara om k=2. Man konstaterar att lösningmängden blir då:

$$Span((-1/3, -1/3, 1, 0), (-2/3, -2/3, 0, 1)).$$

Vektorerna (-1/3, -1/3, 1, 0), (-2/3, -2/3, 0, 1) är linjärt oberoende vilket innebär att de utgör en bas.

(3p)

2. Matrisen A har egenvärdena -1 och 2 med motsvarande egenvektorer $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ och $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

(a)
$$\text{Är } A \text{ diagonaliserbar}$$
?

(b) Bestäm
$$A$$
.

Lösningsförslag.

(a) A är diagonaliserbar då den är en 2×2 matris som har två distinkta eigenvärden.

(b) Låt $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Enligt uppgiften gäller att:

$$A \begin{bmatrix} 0 \\ 1 \end{bmatrix} = - \begin{bmatrix} 0 \\ 1 \end{bmatrix}, A \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Detta leder till a = 2, b = 0, c = 3/2, d = -1.

3. Låt

$$\mathcal{E} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

vara standardbasen för \mathbb{R}^2 och låt

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix} \right\}.$$

(a) Visa att \mathcal{B} är en bas för \mathbb{R}^2 . (1 p)

(b) Bestäm koordinatvektorn
$$[\vec{v}]_{\mathcal{B}}$$
 för vektorn $\vec{v} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. (2 **p**)

(c) Bestäm matriser M och N sådana att

$$[\vec{x}]_{\mathcal{E}} = M [\vec{x}]_{\mathcal{B}} \quad \text{och} \quad [\vec{x}]_{\mathcal{B}} = N [\vec{x}]_{\mathcal{E}}$$

för alla vektorer \vec{x} i \mathbb{R}^2 . (3 p)

Lösningsförslag.

- (a) Betrakta matrisen $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$ vars kolumner ges av basvektorer. Eftersom $det(A) = 1 \neq 0$ är rank(A) = 2 och \mathcal{B} en bas till $Span(B) = \mathbb{R}^2$.
- $0 \text{ är } rank(A) = 2 \text{ och } \mathcal{B} \text{ en bas till } Span(B) = \mathbb{R}^2.$ (b) Matrisen $\begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & -2 \end{bmatrix}$ Gauss reduceras till $\begin{bmatrix} 1 & 0 & 7 \\ 0 & 1 & -3 \end{bmatrix}$. Detta betyder att

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 3 \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

och att $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 7 \\ -3 \end{bmatrix}$.

(c) Matrisen M är basbyte matris från \mathcal{B} till \mathcal{E} .

$$M = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}.$$

Matrisen M är basbyte matris från \mathcal{E} till \mathcal{B} .

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 1 \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Detta ger:

$$N = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}.$$

4. Låt

$$A = \begin{bmatrix} -2 & 0 \\ 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

(a) Bestäm alla vektorer som ligger i båda $\operatorname{Col}(A)$ och $\operatorname{Col}(B)$. Förklara varför alla vektorer som ligger i båda $\operatorname{Col}(A)$ och $\operatorname{Col}(B)$ bildar ett delrum i \mathbb{R}^3 och beräkna dess dimension.

(4 p)

(b) Bestäm en vektor i Col(A) som inte ligger i Col(B).

(2 p)

Lösningsförslag. (a)
$$\operatorname{Col}(A) = \operatorname{span} \left\{ \begin{bmatrix} -2\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\} \operatorname{och} \operatorname{Col}(B) = \operatorname{span} \left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$

Det betyder att $\operatorname{Col}(A)$ och $\operatorname{Col}(B)$ är delrum in \mathbb{R}^3 och därför är deras snitt också ett delrum.

En normalvektor till planet
$$\operatorname{Col}(A)$$
 ges av vektorprodukten $\begin{bmatrix} -2\\1\\1 \end{bmatrix} \times \begin{bmatrix} 0\\1\\-1 \end{bmatrix} = \begin{bmatrix} -2\\-2\\-2 \end{bmatrix}$.

En normalvektor till planet
$$\operatorname{Col}(B)$$
 ges av vektorprodukten $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

Vi kan konstatera att planen Col(A) och Col(B) är olika och därför är deras snitt en linje. Eftersom linjen är ortogonal mot båda normalvektorer ges linjens riktningsvektor av:

$$\begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix}$$

Därför linjen är lika med span $\left\{ \begin{bmatrix} 2\\-4\\2 \end{bmatrix} \right\}$ som har dimension 1

- (b) Vektor $\begin{bmatrix} -2\\1\\1 \end{bmatrix}$ ligger i $\operatorname{Col}(A)$ och ligger inte i span $\left\{ \begin{bmatrix} 2\\-4\\2 \end{bmatrix} \right\}$. Det betyder att $\begin{bmatrix} -2\\1\\1 \end{bmatrix}$ kan inte ligga i $\operatorname{im}(q)$.
- **5.** Visa att sammansättningen av två speglingar i olika linjer genom origo i \mathbb{R}^2 är en rotation kring origo. (6 p)

Lösningsförslag. Låt L_1 och L_2 vara två olika linjer genom origo i \mathbb{R}^2 . Låt $\phi_1 \colon \mathbb{R}^2 \to \mathbb{R}^2$ vara speglingen i L_1 ; och $\phi_2 \colon \mathbb{R}^2 \to \mathbb{R}^2$ vara speglingen i L_2 . Välj följande vektorer:

- en riktnings vektor \vec{u} till L_1 som har längden 1;
- en normal vektor \vec{n} till L_1 som har längden 1;
- \vec{v} en riktnings vektor till L_2 som har längden 1;

Betrakta en ortonormal bas $\{\vec{u}, \vec{n}\}$. Låt $\vec{v} = a\vec{u} + b\vec{n}$. For att \vec{v} har längden 1, då $a^2 + b^2 = 1$. Låt $0 \le \alpha \le \pi$ vara en vinkel så att $\cos(\alpha) = a$ och $\sin(\alpha) = b$ (α är vinkeln mellan linjerna L_1 och L_2).

$$\phi_1(\vec{u}) = \vec{u} \quad \phi_1(\vec{n}) = -\vec{n}$$

$$\phi_2\phi_1(\vec{u}) = \phi_2(\vec{u}) = 2(\vec{v} \cdot \vec{u})\vec{v} - \vec{u} = 2a(a\vec{u} + b\vec{n}) - \vec{u} = (2a^2 - 1)\vec{u} + 2ab\vec{n} = (a^2 - b^2)\vec{u} + 2ab\vec{n}$$

$$\phi_2\phi_1(\vec{n}) = \phi_2(-\vec{n}) = -2(\vec{v} \cdot \vec{n})\vec{v} + \vec{n} = -2b(a\vec{u} + b\vec{n}) + \vec{n} = -2ab\vec{u} + (1 - 2b^2)\vec{n} =$$

$$= -2ab\vec{u} + (a^2 - b^2)\vec{n}$$

Det betyder att i basen $\{\vec{u}, \vec{n}\}$, sammansättningen $\phi_2 \phi_1$ har följande matris:

$$\begin{bmatrix} a^2 - b^2 & -2ab \\ 2ab & a^2 - b^2 \end{bmatrix} \text{ som "ar likamed } \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

För att $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ är rotation i α radianer, kan vi konstatera att $\phi_2\phi_1$ är rotation i 2α radianer.

6. Låt V vara vektorrummet av alla 2×2 -matriser och $f \colon V \to V$ den linjära avbildning som ges av

$$f(M) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} M.$$

Välj en godtycklig bas \mathcal{B} till V. Låt A vara matrisen $[f]_{\mathcal{B}}$ till f med avseende på basen \mathcal{B} . Beräkna determinanten av A. OBS: det är inte determinanten till $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ som sökes! (6 p)

Lösningsförslag. Välj följande bas:

$$\beta = \left\{ M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, M_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, M_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, M_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

För att få matrisen till f avseende på basen β behöver vi beräkna följande vektorer:

$$f(M_1) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} M_1 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix} = 2M_1 + M_3$$

$$f(M_2) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} M_2 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix} = 2M_2 + M_4$$

$$f(M_3) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} M_3 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} = M_1 + 2M_3$$

$$f(M_4) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} M_4 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} = M_2 + 2M_4$$

Det betyder att metrisen till f med avseende på basen β är lika med:

$$A = \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}$$

Vi kan: 1. subtrahera från tredje raden hälften av första raden och 2. subtrahera från fjärde raden hälften av andra raden och få:

$$\begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 3/2 & 0 \\ 0 & 0 & 0 & 3/2 \end{bmatrix}$$

För att determinanten en ändras inte under rad operationerna, kan vi konstatera att determinanten av A är lika med $2 \cdot 2 \cdot (3/2) \cdot (3/2) = 9$.