ID.	problem - +
Quiz section or time:	
Stat/Math 390, Winter, Test 2, February 21, 2014; Marzb Same deal as test 1,	an $7 + 12.5$
Simple Circle all of the statements that are generally true regarding the correlation between x and y .	coefficient, r_{xy}
a) The only way r_{xy} can be 0 is if the scatterplot of y vs. x consists of random sca a) As the slope of a linear relation in y vs. x increases, so does r_{xy} . c) For a quadratic regression model for (x, y) , the proportion of the variation in y	
is equal to r_{xy}^2 . (d) None of the above.	
2. Consider the following three data sets on (x_1, x_2, y) . Although it may not be clear in these figs, the relationship between the response y and the predictors (x_1, x_2) is planar in all three sets. Circle the one which is most suitable for a multiple regression fit.	0 2 - 1 0 1 2 y y x1 x2
3. Which of the following models/fits is NOT possible using the methods of linear rein this class? a) $y = \alpha + \beta \log(x)$ b) $x = e^{(y-\alpha)/\beta}$ c) $e^y = \alpha x^\beta$ d) $2^y = \alpha x^\beta$ (e) Nor	
a) $y = \alpha + \beta \log(x)$ b) $x = e^{(y-\alpha)/\beta}$ c) $e^y = \alpha x^\beta$ d) $2^y = \alpha x^\beta$ e) Note that $y = \alpha + \beta \log(x)$ b) $y = \alpha + \beta \log(x)$ which of the following statements is generally correct? In the model a) $y = \alpha + \beta_1 x + \beta_2 x^2$, β_1 measures the average change in y when x changes by on b) $y = \alpha + \beta_1 x_1 + \beta_2 x_2$, β_1 measures the average change in y when x_1 changes by $x_2 = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$, β_1 measures the average change in y when $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$, $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_3 x_1 x_2$, $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_3 + \beta_3 x_1$	e unit. one unit. i / x_= cmt
that it will rain tomorrow. Also, suppose $p(A)$ and $p(B)$ are nonzero. Based on that and nothing else, then, in general,	ms information,
a) A and A^c are mutually exclusive b) A is independent of A^c d) A is independent of B .	
to 2 and 2, respectively. The std. dev. of the distribution of the sum of three mea a) 3×2 (b) $\sqrt{3} \times 2$ (c) $2/\sqrt{3}$ (d) Depends	s on the sample.
T= \times	Alternatively, population mean
The population is all of the students who have ever	$\Lambda[\overset{\sim}{\perp}]$ $\Lambda[\overset{\sim}{\perp}] = \frac{\varkappa}{2\kappa_3}$
taken 390 (and ever will), etc.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
e-g. with Marzban,	$\frac{1}{N^2}V[T] = \frac{\sigma_k^2}{N}$ $V[T] = N \sigma_k^2 / N$

Nama

Points

1

1

1

1

1

1

8. In a regression problem involving 2 predictors, the errors are found to be -2, +1, 0, -1, 2. The deviation of the predictions from \overline{y} are +1, -1, 0, -1, +1.

a) What is the value of s_e , AND its meaning?

$$S_e^2 = \frac{SSE}{n_-(k_+)} = \frac{4+l+0+l+4}{5-(2+l)} = \frac{10}{2} = 5 \implies S_e = \sqrt{5} \approx 2.3$$

meaning: Typical deviation (error) of data from the fit (prediction) is about 2.3.

b) What is the value of R^2 , AND its interpretation?

$$R^{2} = \frac{SSexpl}{SST} = \frac{\sum_{i} (\hat{Y}_{i} - \overline{Y})^{2}}{SSexpl + SSE} = \frac{1 + 1 + 0 + 1 + 1}{SSexpl + SSE} = \frac{1 + 1 + 0 + 1 + 1}{SSexpl + SSE} = \frac{1 + 1 + 0 + 1 + 1}{SSexpl + SSE}$$

Futerprit: About 30% of the variability in y is explained by (or attributed to) x_1, x_2 .

3.489 Let β denote the OLS estimate of the slope parameter in a simple linear regression fit to (x,y)

data. If all the x_i data are scaled to $x_i' = 2x_i$, and the y_i data are scaled to $y_i' = 3y_i$, show that the OLS estimate of the slope parameter in $y' = \alpha' + \beta' x$ is given by $(3/2)\beta$.

$$\hat{\beta}' = \frac{\overline{x'y'} - \overline{x'}}{\widehat{x'}^2 - \overline{x'}} = \frac{\frac{1}{2} \sum_{i=1}^{n} x'_{i} y'_{i} - \cdots}{\frac{1}{2} \sum_{i=1}^{n} (x'_{i})^2 - \cdots}}$$

$$= \frac{(2)(3) \frac{1}{2} \sum_{x_i = 1}^{2} x_i \cdot y_i - 2 \overline{x} \cdot 3 \overline{y}}{2^2 + \sum_{x_i = 1}^{2} - 2^2 \overline{x}} = \frac{2(3)}{2^2} \widehat{\beta} = \frac{3}{2} \widehat{\beta}$$

10. Use only what we have learned in class to prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

11 The USA has about 100 Small colleges, 200 Medium-size colleges, and 900 Large colleges. Among Small colleges 1/6 of the students are Boys, while the proportion of Boys in Medium-sized and Large colleges are 1/6 and 5/6, respectively. If a random student is selected from the USA and found to be a Boy, what is the probability that he came from a Large college? CLEARLY define the events of interest, and EXPLAIN every step. Do NOT assume Boys and Girls are equally likely.

Let S = the event that student is from Small College. M = --- B = The event that student is Boy. 5/6 900/(100+200+900) Way $1(0\times2)$ for calc. profs. $9(B) \xrightarrow{\text{Bayes}} P(B|L) P(L)$ 9(B|L) P(L) + P(B|M) P(M) + P(B|S) P(S) $\frac{5}{6} \cdot \frac{900}{1200} + \frac{1}{6} \cdot \frac{250}{1200} + \frac{1}{6} \cdot \frac{1000}{1200}$ $= \frac{\frac{5}{6} \cdot 9}{6 \cdot 12} + \frac{1}{6 \cdot 12} = \frac{45}{45+2+6} = \frac{15}{16} - \frac{1}{16}$

 ~ 3 12. A sample of size 25 has been taken from a normal population, and the sample mean and standard deviation are found to be 0.1 and 1.0 respectively. What is the confidence level at which we can conclude that there is evidence that μ exceeds zero? Hints: 1) think about a lower confidence bound, 2) find the z^* , and then 3) find the confidence level.

Lower conf. bound for M_{\times} : $\times - Z^{\times} \frac{S}{\sqrt{n}}$, where Z^{\times} s.t.

Prob($Z \times Z^{\times}$) = Conf. level. $P(\overline{X} - M_{\times} \times Z^{\times}) = Conf. level$ $M_{\times} \times \overline{X} - Z^{\times} \frac{S}{\sqrt{n}} > 0$ $X - Z^{\times} \frac{S}{\sqrt{n}} = 0.1(5) = 1$ $Z^{\times} \times \overline{X} = 0.1(5) = 1$

: Conf. level = $Prob(2 < \frac{1}{2}) = [0.6915]$ Table I.