Spectral clustering

Contents:

- Matrices from the similarity graph
- 1D spectral embedding & clustering
- Unnormalized and normalized spectral clustering
- Important choices

Book: Sections 2.4.4.3, 6.7, 19.3.4

Recommended external material:

von Luxburg (2007): A Tutorial on Spectral Clustering.

Presemo: https://presemo.aalto.fi/mdm2023

Recap: How could you cluster these?

Images: White (2019) https://www.markhw.com/blog/word-similarity-graphs, Cooper (2021) https://spin.atomicobject.com/2021/09/07/spectral-clustering/, Park & Kim (2020) https://doi.org/10.1115/DETC2020-22642, Scikit-learn documentation https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/auto_examples/cluster/plot_cluster_comparison.html

General idea of graph-based clustering

- 1. Present data as a similarity (neighbourhood) graph G
- 2. Cluster nodes of *G* with a network clustering or community detection algorithm
- + can detect arbitrary-shaped clusters
- + even varying cluster densities (given *k* nearest neighbour similarity graph)
- + for any data type (if pairwise similarity/distance defined)
- computationally costly
- many parameter choices

Spectral clustering: Idea

- 1. Create similarity graph G
 - node v_i for the *i*th data point (i = 1, ..., n)
 - edge weight w_{ij} = similarity between nodes v_i and v_j
- 2. Present data in (low-dimensional) vector space (i.e., find vectors y_1, \ldots, y_n) such that local similarity/clustering structure is preserved
 - idea: choose Y to minimize $cost(\mathbf{G}, \mathbf{Y}) = \sum \sum w_{ij}L_2^2(\mathbf{y}_i, \mathbf{y}_j)$
 - intuition: large w_{ij} tends to produce small $d(\mathbf{y}_i, \mathbf{y}_j)$
 - → easy after reformulation with a Laplacian matrix
- 3. Cluster y_i s with K-means (etc.)

What is needed?

From G derive:

- 1. weight matrix W
- 2. diagonal degree matrix Λ
- 3. Laplacian matrix $L = \Lambda W$
- 4. normalized Laplacian matrices L_{rw} , L_{sym} if desired)

Similarity graph and weight matrix W

0.00	0.00	1.00	0.00	0.33	0.00
0.00	0.00	0.00	0.33	0.60	0.33
1.00	0.00	0.00	0.00	0.33	0.00
0.00	0.33	0.00	0.00	0.00	0.33
0.33	0.60	0.33	0.00	0.00	0.00
0.00	0.33	0.00	0.33	0.00	0.00

- W adjacency matrix of a weighted graph
- $W_{ij} = w_{ij}$ (similarity between nodes v_i and v_j)
- if unweighted graph, use weights 1 (edge) or 0

Diagonal degree matrix Λ ($\Lambda_{ii} = \sum_{j=1}^{n} W_{ij}$)

$$\Lambda = \begin{bmatrix}
1.33 & 0 & 0 & 0 & 0 & 0 \\
0 & 1.26 & 0 & 0 & 0 & 0 \\
0 & 0 & 1.33 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.66 & 0 & 0 \\
0 & 0 & 0 & 0 & 1.26 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.66
\end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} 0.00 & 0.00 & 1.00 & 0.00 & 0.33 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.33 & 0.60 & 0.33 \\ 1.00 & 0.00 & 0.00 & 0.00 & 0.33 & 0.00 \\ 0.00 & 0.33 & 0.00 & 0.00 & 0.00 & 0.33 \\ 0.33 & 0.60 & 0.33 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.33 & 0.00 & 0.33 & 0.00 & 0.00 \end{bmatrix}$$

(Unnormalized) Laplacian matrix $L = \Lambda - W$

$$\mathbf{L} = \begin{bmatrix} 1.33 & 0.00 & -1.00 & 0.00 & -0.33 & 0.00 \\ 0.00 & 1.26 & 0.00 & -0.33 & -0.60 & -0.33 \\ -1.00 & 0.00 & 1.33 & 0.00 & -0.33 & 0.00 \\ 0.00 & -0.33 & 0.00 & 0.66 & 0.00 & -0.33 \\ -0.33 & -0.60 & -0.33 & 0.00 & 1.26 & 0.00 \\ 0.00 & -0.33 & 0.00 & -0.33 & 0.00 & 0.66 \end{bmatrix}$$

- ⇒ normalized Laplacian matrices:
 - Random-walk Laplacian $\mathbf{L}_{rw} = \mathbf{\Lambda}^{-1} \mathbf{L}$
 - Symmetric Laplacian $L_{sym} = \Lambda^{-0.5} L \Lambda^{-0.5}$

Idea of 1D spectral embedding & clustering

Goal: find embedding $\mathbf{y} = (y_1, \dots, y_n)^T$, where each y_i corresponds v_i and $cost(G, \mathbf{y})$ minimal.

$$cost(G, \mathbf{y}) = \sum \sum w_{ij}(y_i - y_j)^2 = 2\mathbf{y}^T \mathbf{L}\mathbf{y}$$

- we want to avoid trivial solution $\forall i: y_i = 0 \rightarrow$
- scaling constraint (e.g.) $\mathbf{y}^T \mathbf{y} = 1$ (i.e., $\sum_i y_i^2 = 1$)
- L is positive semidefinite (eigenvalues λ_i real, $\lambda_i \geq 0$)
- solution smallest non-trivial eigenvector of L

Extra: Why eigenvectors y of L would be the solution?

Task: Find y such that $2y^T L y$ minimal given constraint $y^T y = 1$

Method of Lagrange multipliers:

- 1. Reformulate as a Lagrangian function $\mathcal{L}(\mathbf{y}, \lambda) = \mathbf{y}^T \mathbf{L} \mathbf{y} \lambda (\mathbf{y}^T \mathbf{y} 1)$
- 2. Set the partial derivatives (with respect to y and λ) as 0
- 3. Reduces to Ly = λ y Eigenvalue & -vector definition!

Idea of 1D spectral embedding & clustering

- solution smallest non-trivial eigenvector y of L
- $cost = 2\mathbf{y}^T \mathbf{L} \mathbf{y} = 2\mathbf{y}^T \lambda \mathbf{y} = 2\lambda(y_1^2 + \dots + y_n^2) = 2\lambda (\lambda \text{ eigenvalue})$
- cost minimal, when λ minimal (recall $\mathbf{y}^T\mathbf{y} = 1$)
- but skip trivial solution $\lambda = 0$ with y (proportional to) $\mathbf{1} = (1, ..., 1)^T$
 - exists always when G connected
- ullet optimal solution eigenvector corresponding to the 2nd smallest λ
- cluster elements of y with K-means

Example

Unnormalized Laplacian L

1.33	0.00	-1.00	0.00	-0.33	0.00
0.00	1.26	0.00	-0.33	-0.60	-0.33
-1.00	0.00	1.33	0.00	-0.33	0.00
0.00	-0.33	0.00	0.66	0.00	-0.33
-0.33	-0.60	-0.33	0.00	1.26	0.00
0.00	-0.33	0.00	-0.33	0.00	0.66

Eigenvalues:

 \approx 0, 0.20, 0.99, 0.99, 1.99, 2.33 *

Second smallest eigenvector:

 $(0.48, -0.19, 0.48, -0.48, 0.19, -0.48)^T$

The new representation can be clustered by K-means:

^{* 1}st eigenvalue 1.9e-16 due to imprecision (should be 0)

Another example with 1D embedding

Fully connected weighted graph.

Eigenvector:

 $(0.32, 0.34, 0.28, 0.34, 0.29, -0.32, -0.27, -0.31, -0.36, -0.31)^T$

n = 10

Example by Bruno Ordozgoiti, MDM 2020

Generalization with multidimensional embedding

Unnormalized spectral clustering Input: Graph G with adjacency matrix W, number of clusters K.

- 1. Compute the Laplacian $L = \Lambda W$
- 2. Compute the eigenvectors $y_1, ..., y_k$ of L corresponding to the k smallest eigenvalues (excluding $\lambda = 0$)
- 3. Present the data as matrix \mathbf{Y} whose columns are $\mathbf{y}_1, \dots, \mathbf{y}_k$.
- 4. Cluster Y with K-means.

Note: Usually k = K or k < K. Eigengap $|\lambda_{k+1} - \lambda_k|$ can be used to choose k.

Eigengap heuristic for choosing k

Choose k such that $\lambda_1, \ldots, \lambda_k$ small but λ_{k+1} relatively large.

Image source: Fig 4 by von Luxburg (2006)

Normalized spectral clustering using random walk Laplacian L_{rw}

Input: Graph G with adjacency matrix W, number of clusters K.

- 1. Compute the random walk Laplacian $L_{rw} = \Lambda^{-1}L$
- 2. Compute the right eigenvectors $\mathbf{y}_1, \dots, \mathbf{y}_k$ of \mathbf{L}_{rw} corresponding to the k smallest eigenvalues (excluding $\lambda = 0$)
- 3. Present the data as matrix \mathbf{Y} whose columns are $\mathbf{y}_1, \dots, \mathbf{y}_k$.
- 4. Normalize the columns of Y to unit norm.
- 5. Cluster Y with K-means.

Normalized spectral clustering using symmetric normalized Laplacian \mathbf{L}_{sym}

Input: Graph G with adjacency matrix W, number of clusters K.

- 1. Compute the symmetric normalized Laplacian $\mathbf{L}_{sym} = \mathbf{\Lambda}^{-1/2} L \mathbf{\Lambda}^{-1/2}$
- 2. Compute the eigenvectors $\mathbf{y}_1, \dots, \mathbf{y}_k$ of \mathbf{L}_{sym} corresponding to the k smallest eigenvalues (excluding $\lambda = 0$)
- 3. Present the data as matrix \mathbf{Y} whose columns are $\mathbf{y}_1, \dots, \mathbf{y}_k$.
- 4. Normalize the rows of Y to unit norm.
- 5. Cluster Y with K-means.

Important choices

- Method: Unnormalized, random walk or symmetric normalized?
 - Usually normalization helps. Suggestion: try random walk first.
- Similarity measure
 - should measure local similarity reliably (close neighbours)
 - for numeric data, Gaussian similarity $exp\left(\frac{-||\mathbf{x}_i-\mathbf{x}_j||^2}{2\sigma^2}\right)$ often used
- Similarity graph and its parameters
 - this has a strong effect on results!

Common choices for the similarity graph

General goal: sparse but connected graph (or number of connected components << K)

- 1. ϵ -neighbourhood graph: keep only $w_{ij} \geq \epsilon$
 - problems if clusters of different densities
- 2. k-nearest neighbour graph: v_i among k nearest neighbours of v_j or vice versa
 - often a good first choice
 - can break the graph into disconnected components
- 3. mutual k-nearest neighbour graph: v_i among k nearest neighbours of v_j and vice versa

Similarity graph examples (von Luxburg, Fig 3)

Similarity graph (cont)

4. fully connected graph

- often with Gaussian similarity $\kappa(\mathbf{x}_i, \mathbf{x}_j) = exp\left(\frac{-||\mathbf{x}_i \mathbf{x}_j||^2}{2\sigma^2}\right)$ (radial basis function, RBF)
- how to choose σ ?
- Note: in scikitlearn parameter $\gamma = \frac{1}{2\sigma^2}$
- graph not sparse → heavy computation

Choice of parameters (ϵ, k, σ) affects a lot, too!

Example: neighbourhood with $\kappa(\mathbf{x}_i, \mathbf{x}_j) = exp\left(\frac{-||\mathbf{x}_i - \mathbf{x}_j||^2}{2\sigma^2}\right)$

Image source: Bruno Ordozgoiti, MDM 2020 slides

Example: Different clustering results with different similarity graphs

Parameters: k=2, $\epsilon=0.3$, RBF with $\gamma=10$ (i.e., $\sigma=\sqrt{5}$) Experiment by Lai Khoa for MDM 2023

Summary

Idea: similarity graph \rightarrow low-dimensional VS presentation (eigenvectors) \rightarrow clustering (K-means etc.)

- + very powerful (virtually any datatype, arbitrary shapes)
- computationally expensive
 - creating similarity graph $O(n^2)$, spectral decomposition $O(n^3)$
- many important parameter choices

Further reading

von Luxburg: A Tutorial on Spectral Clustering. Statistics and Computing, vol. 17, pp. 395–416, 2007.

Reading guide: Sec 2 overview, 2.2, Sec 3 overview + definitions of Laplacian matrices from 3.1-3.2, Sec 4, Sec 5 overview, (possibly Sec 6 overview), Sec 8. ^a

asection overview = text before subsections