Assignment -2

Assignment Date	17 September 2022
Team ID	PNT2022TMID38850
Project Name	EMERGING METHODS FOR EARLY
	DETECTION OF FOREST FIRES
Student Name	Jayanth.V
Student Roll Number	421219104006
Maximum Marks	2 Marks

IMPORT LIBRARIES

import numpy as np import pandas as pd import matplotlib.pyplot as pltimport seaborn as sns

LOADING THE DATASET

 $df = pd.read_csv('Churn_Modelling.csv', encoding='latin-1')df$

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender
Age 0	1	15634602	Hargrave	619	France	Female
42 1	2	15647311	Hill	608	Spain	Female
41 2	3	15619304	Onio	502	France	Female
42 3	4	15701354	Boni	699	France	Female
39 4	5	15737888	Mitchell	850	Spain	Female
43					•••	
 9995	9996	15606229	Obijiaku	771	France	Male
39 9996	9997	15569892	Johnstone	516	France	Male
35 9997	9998	15584532	Liu	709	France	Female
36 9998	9999	15682355	Sabbatini	772	Germany	Male
42 9999 28	10000	15628319	Walker	792	France	Female
20						
	Tenure		mOfProducts		IsActiveMember	
0	2	0.00	1	1		1
1		83807.86	1	0		1
2		59660.80	3	1		0
3	1	0.00	2	0		0
4	2 1	25510.82	1	1		1
 9995	 5	0.00	2	 1		0

9996 10 57369.61 1 1

9997	7	0.00	1	0	1
9998	3	75075.31	2	1	0
9999	4	130142.79	1	1	0

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
	•••	
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

[10000 rows x 14 columns]

VISUALIZATIONS

#visualization of categorical features

```
fig, ax = plt.subplots(3, 2, figsize = (15, 12))plt.title("Visualization") sns.countplot('Geography', hue = 'Exited', data = df, ax = ax[0][0],palette='spring') sns.countplot('Gender', hue = 'Exited', data = df, ax = ax[0][1],palette='spring') sns.countplot('Tenure', hue = 'Exited', data = df, ax = ax[1][0],palette='spring') sns.countplot('NumOfProducts', hue = 'Exited', data = df, ax = ax[1][1],palette='spring') sns.countplot('HasCrCard', hue = 'Exited', data = df, ax = ax[2][0],palette='spring') sns.countplot('IsActiveMember', hue = 'Exited', data = df, ax = ax[2][1],palette='spring')
```

```
ax[0][0].set_title('Count Plot of Geography',color='red',fontsize=15)ax[0][1].set_title('Count Plot of Gender',color='red',fontsize=15) ax[1][0].set_title('Count Plot of Tenure',color='red',fontsize=15) ax[1][1].set_title('Count Plot of NumOfProducts',color='red',fontsize=15) ax[2][0].set_title('Count Plot of HasCrCard',color='red',fontsize=15)ax[2][1].set_title('Count Plot of IsActiveMember',color='red',fontsize=15)
```

plt.tight_layout()plt.show()

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

DESCRIPTIVE STATISTICS

df.dtypes

int64
int64
object
int64
object
object
int64
int64
float64
int64
int64
EstimatedSalary
int64

$$\label{eq:condition} \begin{split} df_num &= df[['RowNumber', 'Tenure', 'CustomerId', 'CreditScore', 'Age', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'Exited']] \end{split}$$

 $df_cat = df[['Surname', 'Geography', 'Gender']]df_num.head()$

	RowNumber Tenure C	ustome	erId CreditScore Age NumO	fProduc	tsHasCrCard \	
0	1	2	15634602	619	42	1
1						
1	2	1	15647311	608	41	1
0						
2	3	8	15619304	502	42	3
1						
3	4	1	15701354	699	39	2
0						
4	5	2	15737888	850	43	1
1						
	IsActiveMember	Exite	d			
0	1		1			
1	1		0			
2	0		1			
3	0		0			
4	1		0			

df_cat.head()

Surname Geography Gender

0	Hargrave	France Female		
1	Hill	Spain Female		
2	Onio	France Female		
3	Boni	France Female		
4	Mitchell	Spain Female		

df_num.describe()

	RowNumber	Tenure	CustomerId	CreditScore
Age \				
count 10	0000.00000 10000.0	00000 1.000000e+	-04 10000.000000	
10000.00	00000			
mean	5000.50000	5.012800 1.5	569094e+07	650.528800
38.92180	00			
std	2886.89568	2.892174 7.1	193619e+04	96.653299
10.48780				
min	1.00000	0.000000 1.5	556570e+07	350.000000
18.00000	00			
25%	2500.75000	3.000000 1.5	562853e+07	584.000000
32.00000	00			
50%	5000.50000	5.000000 1.5	569074e+07	652.000000
37.00000	00			
75%	7500.25000	7.000000 1.5	575323e+07	718.000000
44.00000	00			
max	10000.00000	10.000000 1.5	81569e+07	850.000000

92.000000

	NumOfProducts	HasCrCard	IsActiveMember	Exited
count	10000.000000	10000.00000	10000.000000	10000.000000
mean	1.530200	0.70550	0.515100	0.203700
std	0.581654	0.45584	0.499797	0.402769
min	1.000000	0.00000	0.000000	0.000000
25%	1.000000	0.00000	0.000000	0.000000
50%	1.000000	1.00000	1.000000	0.000000
75%	2.000000	1.00000	1.000000	0.000000
max	4.000000	1.00000	1.000000	1.000000

df_cat.describe(exclude = ['int64','float64'])Surname Geography Gender

PANDLE	THE MASS	ING ♥ALU	S 5457
top	Smith	France	Male
unique	2932	3	2
count	10000	10000	10000

Column	Missing values				
D M 1	0				
RowNumber	0				
CustomerId	0				
Surname	0				
CreditScore	0				
Geography	0				
Gender	0				
Age	0				
Tenure	0				
Balance	0				
NumOfProducts	0				
HasCrCard	0				
IsActiveMember	0				
EstimatedSalary	0				
Exited	0				
dtype: int64					

Our target variable is Exited. We can observe that it has only twopossible variables: [1, 0] df.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1, inplace=True)

df.rename(columns=new_names, inplace=True)df.head()

credit_score		country	gender	age	tenure	balance
number_products 0	619	France	Female	42	2	0.00
1	600	а :	г 1	41	1	02007.07
1	608	Spain	Female	41	1	83807.86
2	502	France	Female	42	8	159660.80
3	699	France	Female	39	1	0.00
2					_	
4	850	Spain	Female	43	2	125510.82
1						

	owns_credit_card	is_active_member	estimated_salary exi	ted0	1
		1	101348.88	1	
1		0	1	112542.58	0
2		1	0	113931.57	1
3		0	0	93826.63	0
4		1	1	79084.10	0

REPLACE OUTLIERS

```
def detect_outlier(df):
  outlier = [] threshold =
  3 mean = np.mean(df)std =
  np.std(df) for i in df:
      z_score = (i - mean)/std
  if np.abs(z_score)>threshold:
      outlier.append(i)
  return outlier
  CreditScore_list = df['CreditScore'].tolist()Balance_list =
  df['Balance'].tolist()
```

```
EstimatedSalary_list = df_cat['EstimatedSalary'].tolist()CreditScore_outlier =
 detect_outlier(CreditScore_list) CreditScore_outlier
 Output-[359, 350, 350, 358, 351, 350, 350, 350]
 Balance_outlier = detect_outlier(Balance_list)Balance_outlier
 EstimatedSalary_outlier = detect_outlier(EstimatedSalary_list)
 EstimatedSalary_outlier
print("Shape of Data before removing outliers: {}".format(df.shape))Shape of Data before removing
outliers: (10000, 11)
ENCODING
# Encoding Categorical variables into numerical variables# One Hot Encoding
x = pd.get\_dummies(x)x.head()
x.shape
(10000, 13)
SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES
# splitting the dataset into x(independent variables) and y(dependent variables)
x = df.iloc[:,0:10]
y = df.iloc[:,10]
```

```
print(x.shape)
print(y.shape)
print(x.columns)
#print(y)
(10000, 10)
(10000,)
Index(['credit score', 'country', 'gender', 'age', 'tenure', 'balance',
           'number_products', 'owns_credit_card', 'is_active_member', 'estimated_salary'],
         dtype='object')
```

SCALE THE INDEPENDENT VARIABLES

from sklearn.preprocessing import StandardScalersc = StandardScaler()

$x_{train} = pd.DataFrame(x_{train})$ $x_{train.head}()$

	credit_score r_products \	count	ry gender	age tenure		balance	
2967		579	Germany	Female	39	5 117833.30	
3 700		750	France	Female	32	5 0.00	
2 3481		729	Spain	Female	34	9 53299.96	
2 1621		689	Spain	Male	38	5 75075.14	
1 800		605	France	Male	52	7 0.00	
2							
	owns_credit_	_card	is_active_member			estimated_salary	
2967			0		0	5831.00	
700		1		0	95611.47		
3481		1		1	42855.97		
1621		1		1	8651.92		
800		1		1	173952.50		

SPLIT THE DATA INTO TRAINING AND TESTING

splitting the data into training and testing set

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size =0.25, random_state = 0)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
(7500, 10)
```

(7500, 10) (7500,) (2500, 10) (2500,)