FPV Week 1: Implications, Assertions and Conditions

Exercises

- There will be tutorial exercises every week
- In non-programming weeks, there will be quizzes to be solved during tutorials
- In programming weeks, there will be homework
- All exercises will be managed on Artemis artemis.ase.in.tum.de
- Programming exercises will be graded automatically, with secret tests
- This means you see your results already before the deadline ("What you see is what you get")

Grade Bonus

- Successful participation ($\geq 70\%$) in quizzes and programming tasks will lead to a bonus of 0.3 in the final exam, provided that you passed the exam.
- Programming homework and quizzes are to be submitted individually.
- Discussing solutions before the end of the week is considered plagiarism.
- Plagiarism will not be tolerated and will (at the very least) lead to exclusion from the bonus system

Material

https://github.com/Funky-Punky/FPV_SoSe23_Mo-15-17

Quiz

Week 01 Tutorial 01 Recap: Implications

$$1. x = 1 \implies 0 < x$$

$$2. x < 6 \implies x = 3$$

$$3. x > 0 \implies x > 0$$

$$4. x = -2 \implies x < -1 \lor x > 1$$

$$5. x = 0 \lor x = 7 \implies 4 \neq x$$

6.
$$x = 1 \implies x < 3 \land y > 0$$

$$7. x < 8 \land y = x \implies y \neq 12$$

8.
$$x = 1 \lor y = 1 \implies x > 0$$

9.
$$x \neq 5 \implies false$$

10.
$$true \implies x \neq y$$

11.
$$false \implies x = 1$$

12.
$$x > 1 \implies 2x + 3 = 5$$

13.
$$A \wedge x = y \implies A$$

14.
$$B \implies A \vee B$$

15.
$$A \Longrightarrow (B \Longrightarrow A)$$

16.
$$(A \Longrightarrow B) \Longrightarrow A$$

Week 01 Tutorial 02 Assertions

1. Which of the following assertions hold at point A?

- \circ a) $i \geq 0$
- \circ b) x=0
- \circ c) $i \leq 10 \land x
 eq 0$
- od) true
- \circ e) i=0
- \circ f) x=i

Week 01 Tutorial 02 Assertions

2. Which of the following assertions hold at point B?

$$\circ$$
 a) $x=0 \land i=0$

$$\circ$$
 b) $x=i$

$$\circ$$
 c) $i < x$

$$\circ$$
 d) $0 < i < 10$

$$\circ$$
 e) $i \geq 0 \land x \geq 0$

$$\circ$$
 f) $n=1 \implies x=i$

Week 01 Tutorial 02 Assertions

3. Which of the following assertions hold at point C?

$$\circ$$
 a) $i \geq 0$

$$\circ$$
 b) $i=10$

$$\circ$$
 c) $i>0$

$$\circ$$
 d) $x
eq n$

$$\circ$$
 e) $x=10n$

$$\circ$$
 f) $x=i*n \wedge i=10$

Week 01 Tutorial 03 The Strong and the Weak

3. Which of the following assertions hold at point C?

$$\circ$$
 a) $i \geq 0$

$$\circ$$
 b) $i=10$

$$\circ$$
 c) $i>0$

$$\circ$$
 d) $x
eq n$

$$\circ$$
 e) $x = 10n$

$$\circ$$
 f) $x=i*n \wedge i=10$

- 1. When annotating the control flow graph, can you say that one of the given assertions is "better" than the others?
- 2. Can you arrange the given assertions in a meaningful order?
- 3. How can you define a *stronger than* relation formally?
- 4. How do true and false fit in and what is their meaning as an assertion?
- 5. What are the strongest assertions that still hold at A, B and C?

Week 01 Tutorial 04 Strongest Postconditions

3.

Week 01 Tutorial 04 Strongest Postconditions

2.

Week 01 Tutorial 04 Strongest Postconditions

7.

