```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib
from matplotlib import pyplot as plt
import warnings
warnings.filterwarnings("ignore")
```

In [3]:

sp=pd.read_csv("C:\\Users\\gajja\\Downloads\\StudentsPerformance.csv")
sp.head(5)

Out[3]:

ge	nder	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	
0 fe	male	group B	bachelor's degree	standard	none	72	72	74	
1 fe	male	group C	some college	standard	completed	69	90	88	
2 fe	male	group B	master's degree	standard	none	90	95	93	
3	male	group A	associate's degree	free/reduced	none	47	57	44	
4	male	group C	some college	standard	none	76	78	75	

In [4]:

sp.describe()

Out[4]:

	math score	reading score	writing score
count	1000.00000	1000.000000	1000.000000
mean	66.08900	69.169000	68.054000
std	15.16308	14.600192	15.195657
min	0.00000	17.000000	10.000000
25%	57.00000	59.000000	57.750000
50%	66.00000	70.000000	69.000000
75%	77.00000	79.000000	79.000000
max	100.00000	100.000000	100.000000

In [7]:

sp['gender'].value_counts().plot.bar(title='Frequency Distribution of Gender',color=

Out[7]: <Axes: title={'center': 'Frequency Distribution of Gender'}>

sp['race/ethnicity'].value_counts().plot.bar(title='Frequency Distribution of Race/E

Out[8]: <Axes: title={'center': 'Frequency Distribution of Race/Ethnicity'}>

In [13]: sp['parental level of education'].value_counts().plot.bar(title='Frequency Distribut

Out[13]: <Axes: title={'center': 'Frequency Distribution of Parental Level of Education'}>

In [15]: sp['lunch'].value_counts().plot.bar(title='Frequency Distribution of Lunch',color=['

Out[15]: <Axes: title={'center': 'Frequency Distribution of Lunch'}>

In [18]: sp['test preparation course'].value_counts().plot.bar(title='Frequency Distribution

Out[18]: <Axes: title={'center': 'Frequency Distribution of Test Preparation Course'}>


```
In [19]:
          plt.rcParams['figure.figsize'] = (30, 12)
          plt.subplot(1, 5, 1)
          size = sp['gender'].value_counts()
          labels = 'Female', 'Male'
          color = ['red', 'green']
          plt.pie(size, colors = color, labels = labels,autopct = '.%2f%%')
          plt.title('Gender', fontsize = 20)
          plt.axis('off')
          plt.subplot(1, 5, 2)
          size = sp['race/ethnicity'].value_counts()
          labels = 'Group C', 'Group D', 'Group B', 'Group E', 'Group A'
          color = ['red', 'green', 'blue', 'cyan', 'orange']
          plt.pie(size, colors = color, labels = labels, autopct = '.%2f%%')
          plt.title('Race/Ethnicity', fontsize = 20)
          plt.axis('off')
          plt.subplot(1, 5, 3)
          size = sp['lunch'].value counts()
          labels = 'Standard', 'Free'
          color = ['red', 'green']
          plt.pie(size, colors = color, labels = labels, autopct = '.%2f%%')
          plt.title('Lunch', fontsize = 20)
          plt.axis('off')
          plt.subplot(1, 5, 4)
          size = sp['test preparation course'].value_counts()
          labels = 'None', 'Completed'
          color = ['red', 'green']
```

```
plt.pie(size, colors = color, labels = labels, autopct = '.%2f%%')
plt.title('Test Course', fontsize = 20)
plt.axis('off')
plt.subplot(1, 5, 5)
size = sp['parental level of education'].value_counts()
labels = 'Some College', "Associate's Degree", 'High School', 'Some High School', "Bach
color = ['red', 'green', 'blue', 'cyan', 'orange', 'grey']
plt.pie(size, colors = color, labels = labels, autopct = '.%2f%%')
plt.title('Parental Education', fontsize = 20)
plt.axis('off')
plt.tight_layout()
plt.grid()
plt.show()
      Gender
                         Race/Ethnicity
                                               Lunch
                                                                   Test Course
                                                                                      Parental Education
```


Number of Male and Female students is almost equal

Number students are greatest in Group C

Number of students who have standard lunch are greater

Number of students who have not enrolled in any test preparation course is greater

Number of students whose parental education is "Some College" is greater followed closely by "Associate's Degree"*

```
plt.rcParams['figure.figsize'] = (20, 10)
sns.countplot(sp['math score'], palette = 'bright')
plt.title('Math Score Comparison',fontsize = 25)
plt.show()
```


Maximum number of students had a Maths Score of 65

```
plt.rcParams['figure.figsize'] = (20, 10)
sns.countplot(sp['reading score'], palette = 'bright')
plt.title('Reading Score Comparison', fontsize = 20)
plt.show()
```


Maximum number of students had a Reading Score of 72

```
plt.rcParams['figure.figsize'] = (20, 10)
sns.countplot(sp['writing score'], palette = 'bright')
plt.title('Writing Score Comparison',fontsize = 20)
plt.show()
```


Maximum number of students had a Writing Score of 74

```
plt.figure(figsize=(15,5))
  plt.subplot(131)
  plt.title('Math Scores')
  sns.violinplot(y='math score',data=sp,color='blue',linewidth=2)
  plt.subplot(132)
  plt.title('Reading Scores')
  sns.violinplot(y='reading score',data=sp,color='green',linewidth=2)
  plt.subplot(133)
  plt.title('Writing Scores')
  sns.violinplot(y='writing score',data=sp,color='red',linewidth=2)
  plt.show()
```


Maximum number of students have scored between 60-80 marks in all 3 subjects

```
plt.figure(figsize=(15,5))
  plt.subplot(131)
  plt.title('Math Scores')
  sns.barplot(x="gender", y="math score", data=sp)
  plt.subplot(132)
```

```
plt.title('Reading Scores')
sns.barplot(x="gender", y="reading score", data=sp)
plt.subplot(133)
plt.title('Writing Scores')
sns.barplot(x="gender", y="writing score", data=sp)
plt.show()
```


Male students scored higher in Maths whereas Female students scored higher in Reading and Writing

Students who completed the test preparation course acheived higher score in all 3 subject

```
In [42]:
    plt.figure(figsize=(15,5))
    plt.subplot(131)
    plt.title('Math Scores')
    sns.barplot(hue="gender", y="math score", x="lunch", data=sp)
    plt.subplot(132)
    plt.title('Reading Scores')
    sns.barplot(hue="gender", y="reading score", x="lunch", data=sp)
    plt.subplot(133)
    plt.title('Writing Scores')
    sns.barplot(hue="gender", y="writing score", x="lunch", data=sp)
    plt.show()
```


Students who chose standard lunch acheived higher score in all 3 subject

```
In [43]:
    passingmark=33
    sp['pass_math'] = np.where(sp['math score']>= passingmark, 'Pass', 'Fail')
    sp['pass_math'].value_counts(dropna = False).plot.bar(color=['green','red'], figsize

    plt.title('Comparison between Pass/Fail in Maths')
    plt.xlabel('Result')
    plt.ylabel('Count')
    plt.show()
    sp['pass_math'].value_counts()
```



```
Out[43]: Pass 981
Fail 19
Name: pass_math, dtype: int64
```

```
sp['pass_read'] = np.where(sp['reading score']>= passingmark, 'Pass', 'Fail')
sp['pass_read'].value_counts(dropna = False).plot.bar(color = ['green','red'], figsi
plt.title('Comparison between Pass/Fail in Reading')
plt.xlabel('Result')
plt.ylabel('Count')
plt.show()
sp['pass_read'].value_counts()
```

Comparison between Pass/Fail in Reading


```
Out[44]: Pass 989
Fail 11
Name: pass_read, dtype: int64
```

```
In [45]:
sp['pass_write'] = np.where(sp['writing score']>= passingmark, 'Pass', 'Fail')
sp['pass_write'].value_counts(dropna = False).plot.bar(color = ['green','red'], figs
plt.title('Comparison between Pass/Fail in Writing')
plt.xlabel('Result')
plt.ylabel('Count')
plt.show()
sp['pass_write'].value_counts()
```

Comparison between Pass/Fail in Writing


```
Out[45]: Pass 988
Fail 12
Name: pass_write, dtype: int64
```

```
In [55]: sp['total_score'] = sp['math score'] + sp['reading score'] + sp['writing score']
    sp['total_score'].value_counts(normalize = True)
    sp['total_score'].value_counts(dropna = True).plot.bar(color = 'green', figsize = (4
    plt.title('Comparison Of Total Score Of All Students',size=30,c="red")
    plt.xlabel('Total Score',size=30)
```

```
plt.ylabel('Count',size=30)
plt.show()
```


Maximum number of students had a Total Score of 204

```
In [56]:
#For calculating percentage scored by each student
from math import *
sp['percentage'] = sp['total_score']/3
for i in range(0, 1000):
    sp['percentage'][i] = ceil(sp['percentage'][i])

sp['percentage'].value_counts(normalize = True)
sp['percentage'].value_counts(dropna = False).plot.bar(figsize = (20, 8), color = 'g

plt.title('Comparison Of Percentage Of All The Students')
plt.xlabel('Percentage')
plt.ylabel('Count')
plt.show()
```


Maximum number of students scored 69%

```
In [64]:
    sns.pairplot(sp,hue = 'gender')
    plt.show()
```


In [68]:
 plt.rcParams['figure.figsize'] = (20,10)
 plt.subplot(1, 1, 1)
 sns.swarmplot(sp['parental level of education'], sp['total_score'], hue = sp['gender plt.title('Parental Education vs Total Score', fontsize = 20)
 plt.show()


```
plt.rcParams['figure.figsize'] = (20,10)
plt.subplot(1, 1, 1)
sns.swarmplot(sp['race/ethnicity'], sp['total_score'], hue = sp['gender'], palette =
plt.title('Race/Ethnicity vs Total Score', fontsize = 20)
plt.show()
```



```
In [70]: #Visualizing realtions between various attributes using heatmap
plt.figure(figsize=(20,10))
plt.rcParams['figure.figsize'] = (18, 16)
sp_corr = sp.corr()
ax = sns.heatmap(sp_corr, annot=True,cmap="Greens")
bottom, top = ax.get_ylim()
ax.set_ylim(bottom + 0.5, top - 0.5)
sp_corr
```

Out[70]:	math score	reading score	writing score	total_score	percentage
	 1 000000	0.047500	0.000640	0.040746	0.040504

	1 000000	0.017500	0.002642	0.010746	0.010531
math score	1.000000	0.817580	0.802642	0.918746	0.918521
reading score	0.817580	1.000000	0.954598	0.970331	0.970271
writing score	0.802642	0.954598	1.000000	0.965667	0.965422
total_score	0.918746	0.970331	0.965667	1.000000	0.999813
percentage	0.918521	0.970271	0.965422	0.999813	1.000000

In []: