CS2106 Tutorial 9

AY 25/26 Sem 1 — github/omgeta

Q1. (a.) TLB Miss:

```
if (valid == 0) segfault
else if (resident == 1) insert into TLB
```

Page Fault:

```
if (valid == 0) segfault
writeback victim page into disk if writebit = 1
replace faulting page from swapfile into victim frame
update faulting PTE and set resident = 1
update TLB with PTE
```

(b.) Page 3: TLB Hit \rightarrow Memory access

Page 1: TLB Miss \rightarrow PTE Access (Resident) \rightarrow Update TLB (Evict page 0) \rightarrow Memory access

Page 5: TLB Miss \rightarrow PTE Access (Non-resident) \rightarrow Page Fault (Evict page 0 in frame 4, replace with swap page 15) \rightarrow Update PTE \rightarrow Update TLB (Evict page 0) \rightarrow Memory access

- (c.) Best (Memory resident in TLB): 1ns (TLB) + 30ns (Memory) = 31nsWorst (Page fault): 1ns (TLB) + 30ns (PTE) + 5ns (Disk) + 30ns (Memory) + 5ns(Write-back victim page) = 71ns
- (d.) Yes, as on page fault, two separate page table accesses are required.
- Q2. (a.) Page table entries = $2^{48-12} = 2^36$ so bytes needed is $2^36 \times 8 = 2^39$ bytes
 - (b.) 4
 - (c.) 1 entry (covering the array)
 - (d.) 1 frame (for the page directory)
 - (e.) 2 frame (for the 2 different 513 frame regions)
 - (f.) 513 frames
- Q3. (a.) (i) Frame 2
 - (ii) Set A04 PTE to Non-resident, write back if dirty and remove any TLB entry. Update A08 PTE to resident and set frame 2.
 - (b.) (i.) Frame 0

	Frame	Page	Ref
	0	B13	1
(ii.)	1	A31	0
	2	A8	1
	3	A17	0

(iii.) On page fault, non-resident is not in the inverted page table and we replace the victim page with the non-resident information.