

Introduction to Machine Learning

Linear Regression

A characterization of machine learning problems

Discrete

Continuous

Supervised	Unsupervised
Classification	Clustering
 Regression	Dimensionality reduction

Example - House prices

Goal

- Map data X to real value Y
- Linear regression, mapping is linear function of X

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Choose θ so that h(x) is close to y for training examples (x,y)

Loss (cost) function

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h(x^i) - y^i)^2$$

• Simplified

- Hypothesis
 - $h(x) = \theta_0 + \theta_1 x$
- Parameters
 - θ_0, θ_1
- Cost function

•
$$J(\theta_0, \theta_1) = \frac{1}{2n} \sum_{i=1}^n (h(x^i) - y^i)^2$$

- Goal
 - $min_{\theta_1,\theta_2} J(\theta_0,\theta_1)$

Search for θ

3D surface plot for two dimensions (θ_1 , θ_2)

Contour plot for two dimensions (θ_1 , θ_2)

Contour plot for two dimensions (θ_1, θ_2)

Contour plot for two dimensions (θ_1, θ_2)

Contour plot for Two Dimensions (θ_1 , θ_2)

Update θ using gradient descent

- Start with initial guess for θ
- Repeatedly change θ to make $J(\theta)$ smaller

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Intuition

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Outline:

- Start with some $heta_0, heta_1$
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

Repeat until convergence

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Update j=0 and j=1 simultaneously

Repeat until convergence

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Update j=0 and j=1 simultaneously

Learning rate

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Convergence

Compute the partial derivative

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Compute the partial derivative

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Linear regression algorithm

```
Repeat until convergence { \theta_j = \theta_j + \alpha \sum_{i=1}^n \ (yi \ - \ h \ (xi)) \ x_j^i \qquad (\text{for every } j) }
```

X	Y			
1.00	1.00			
2.00	2.00			
3.00	1.30			
4.00	3.75			
5.00	2.25			

$$\theta_1 = 0.50$$

 $\theta_2 = 0.01$
 $\alpha = 0.01$

X	Y			
1.00	1.00			
2.00	2.00			
3.00	1.30			
4.00	3.75			
5.00	2.25			

$$\theta_1 = 0.50$$

 $\theta_2 = 0.01$
 $\alpha = 0.1$

Batch gradient descent

Linear regression with more features

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Linear regression with more features

Matrix:

$$X = \begin{bmatrix} 2104 & 5 & 1 & 45 \\ 1416 & 3 & 2 & 40 \\ 1534 & 3 & 2 & 30 \\ 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 172 \end{bmatrix}$$

Vector:

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 172 \end{bmatrix}$$

Let's try this out