Quantum Mechanics: Fall 2020 Midterm Exam: Brief Solutions

NOTE: Problems start on page 2. Bold symbols are 3-component vectors. Some useful facts: You can use them directly.

- 1D harmonic oscillator: $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2 = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{m\omega^2}{2}x^2$. Here \hat{x} is position operator, \hat{p} is momentum operator, $[\hat{x},\hat{p}] = i\hbar$, and in position representation $\hat{p} = -i\hbar\frac{\partial}{\partial x}$. Define $\hat{a}_{\mp} = \sqrt{\frac{m\omega}{2\hbar}}(\hat{x} \pm i\frac{1}{m\omega}\hat{p}) = \sqrt{\frac{m\omega}{2\hbar}}(x \pm \frac{\hbar}{m\omega}\frac{\partial}{\partial x})$. Then $[\hat{a}_{-},\hat{a}_{+}] = 1$ and $\hat{H} = \hbar\omega$ $(\hat{a}_{+}\hat{a}_{-} + \frac{1}{2})$. It has a unique ground state $|\psi_{0}\rangle$ with $\hat{a}_{-}|\psi_{0}\rangle = 0$, and excited states $|\psi_{n}\rangle \equiv \frac{1}{\sqrt{n!}}(\hat{a}_{+})^{n}|\psi_{0}\rangle$ with energy $E_{n} = (n + \frac{1}{2})\hbar\omega$. The ground state wavefunction is $\psi_{0}(x) = (\frac{m\omega}{n\hbar})^{1/4}\exp(-\frac{m\omega}{2\hbar}x^2)$.
- $\int_{-\infty}^{+\infty} e^{-x^2/a} dx = \sqrt{\pi a}$, for a > 0. Applying $\frac{\partial}{\partial a}$ can produce $\int_{-\infty}^{+\infty} x^{2n} e^{-x^2/a} dx$.
- Central potential problem: $\hat{H} = \frac{1}{2m}\hat{\boldsymbol{p}}^2 + V(r)$. Here $\hat{\boldsymbol{p}}$ is the 3D momentum $-i\hbar\frac{\partial}{\partial \boldsymbol{r}}$, and $r = |\boldsymbol{r}|$ is the radius. Under polar coordinates (r,θ,ϕ) , the eigenfunctions are generally $\psi_{E,\ell,m} = \frac{u(r)}{r} \cdot Y_\ell^m(\theta,\phi)$, where $Y_\ell^m(\theta,\phi)$ is the spherical harmonics, and u(r) satisfies $-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2u}{\mathrm{d}r^2} + \left[V(r) + \frac{\hbar^2}{2m}\frac{\ell(\ell+1)}{r^2}\right] \cdot u = E \cdot u$. Here $\ell = 0,1,\ldots$ is the angular momentum quantum number; $m = -\ell, -\ell+1,\ldots,\ell$ is the "magnetic quantum number"; E is the energy eigenvalue.
 - The spherical harmonics are orthonormal, and are eigenfunctions of $\hat{\boldsymbol{L}}^2$ and \hat{L}_z . $Y_0^0 = \frac{1}{\sqrt{4\pi}}, Y_1^0 = \sqrt{\frac{3}{4\pi}}\cos\theta, Y_1^{\pm 1} = \mp\sqrt{\frac{3}{8\pi}}\sin\theta e^{\pm\mathrm{i}\phi}, \ldots$
- Generic angular momentum: $[\hat{J}_x, \hat{J}_y] = i\hbar \hat{J}_z$, $[\hat{J}_y, \hat{J}_z] = i\hbar \hat{J}_x$, $[\hat{J}_z, \hat{J}_x] = i\hbar \hat{J}_y$. For eigenstate $|j, m\rangle$ of $\hat{\boldsymbol{J}}^2$ and \hat{J}_z , $\hat{\boldsymbol{J}}^2|j, m\rangle = j(j+1)\hbar^2|j, m\rangle$, $\hat{J}_z|j, m\rangle = m\hbar|j, m\rangle$, and $(\hat{J}_x \pm i\hat{J}_y)|j, m\rangle = \hbar\sqrt{(j\mp m)(j\pm m+1)}|j, m\pm 1\rangle$. Here 2j is non-negative integer, $m=-j,-j+1,\ldots,j$.
 - Orbital angular momentum: $\hat{\boldsymbol{L}} \equiv \hat{\boldsymbol{r}} \times \hat{\boldsymbol{p}}$.
 - Spin-1/2: basis states $|\uparrow\rangle$ and $|\downarrow\rangle$. Under this basis, $\hat{S}_a = \frac{\hbar}{2}\sigma_a$, where $\sigma_{x,y,z}$ are Pauli matrices, $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. $\sigma_a \sigma_b = \delta_{ab} \mathbb{1}_{2\times 2} + i \sum_c \epsilon_{abc} \sigma_c$. Generic wavefunction under this basis is $\begin{pmatrix} \psi_{\uparrow} \\ \psi_{\downarrow} \end{pmatrix}$, which means $\psi_{\uparrow} |\uparrow\rangle + \psi_{\downarrow} |\downarrow\rangle$.
 - $-\sum_{a} \epsilon_{abc} \epsilon_{adf} = \delta_{bd} \delta_{cf} \delta_{bf} \delta_{cd}.$

Problem 1. (35 points) Consider the 1D harmonic oscillator (see page 1) under a constant force, $\hat{H}' = \hat{H} - f \cdot \hat{x} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2\hat{x}^2}{2} - f \cdot \hat{x}$, where f is a real constant.

- (a) (5pts) Write down the ground state wave function $\psi_0'(x)$ of \hat{H}' . [Hint: you can directly read off the result; but for later questions, it's better to find new ladder operators $\hat{a}'_{\pm} = \hat{a}_{\pm} + (\text{constant})$, such that $[\hat{a}'_{-}, \hat{a}'_{+}] = 1$, $\hat{H}' = \hbar\omega \cdot \hat{a}'_{+}\hat{a}'_{-} + (\text{constant})$, then $\hat{a}'_{-}\psi'_{0} = 0$.]
- (b) (10pts) Measure the original Hamiltonian \hat{H} under $\psi'_0(x)$. What are the possible measurement results and their probabilities? [Hint: ψ'_0 is actually a "coherent state"].
- (c) (10pts) Let the initial state be $\psi(x,t=0)=\psi_0'(x)$. Evolve it by \hat{H} (not \hat{H}'), namely $i\hbar\frac{\partial}{\partial t}\psi(x,t)=\hat{H}\psi(x,t)$. Solve the explicit expression of $\psi(x,t)$. [Hint: $\psi(x,t)$ would still be a coherent state.]
- (d) (10pts) Evaluate expectation values $\langle \hat{x} \rangle$, $\langle \hat{p} \rangle$, $\langle \hat{p}^2 \rangle$, under the state $\psi(x,t)$ defined in (c). Check that the uncertainty relation $\sigma_{\hat{x}}^2 \cdot \sigma_{\hat{p}}^2 \geq \frac{\hbar^2}{4}$ is satisfied.

Solution: this is essentially the same as homework Problem 3.35.

(a)
$$\hat{H}' = -\frac{\hbar^2}{2m}\partial_x^2 + \frac{m\omega^2}{2}(x - \frac{f}{m\omega^2})^2 - \frac{f^2}{2m\omega^2}$$
.

Define
$$x' = x - \frac{f}{m\omega^2}$$
, then $\hat{p}' = -i\hbar \partial_{x'} = \hat{p}$, $\hat{H}' = -\frac{\hbar^2}{2m} \partial_{x'}^2 + \frac{m\omega^2}{2} x'^2 - \frac{f^2}{2m\omega^2}$.

Therefore the eigenstates are $\psi_n(x') = \psi_n(x - \frac{f}{m\omega^2})$ with energy $E'_n = E_n - \frac{f^2}{2m\omega^2} = \hbar\omega \cdot (n + \frac{1}{2}) - \frac{f^2}{2m\omega^2}$.

The ground state is $\psi_0'(x) = \psi_0(x - \frac{f}{m\omega^2}) = (\frac{m\omega}{\pi\hbar})^{1/4} \exp[-\frac{m\omega}{2\hbar}(x - \frac{f}{m\omega^2})^2].$

Define
$$\hat{a}'_{\pm} = \sqrt{\frac{m\omega}{2\hbar}}(x' \mp i\frac{\hat{p}'}{m\omega}) = \hat{a}_{\pm} - \sqrt{\frac{m\omega}{2\hbar}}\frac{f}{m\omega^2}.$$

Then
$$[\hat{a}'_{-}, \hat{a}'_{+}] = 1$$
, $\hat{H}' = \hbar \omega \hat{a}'_{+} \hat{a}'_{-} + \frac{1}{2} \hbar \omega - \frac{f^{2}}{2m\omega^{2}}$, $\hat{a}'_{-} \psi'_{0} = 0$.

(b) $\hat{a}'_{-}\psi'_{0} = 0$, namely $\hat{a}_{-}\psi'_{0} = \sqrt{\frac{m\omega}{2\hbar}} \frac{f}{m\omega^{2}} \cdot \psi'_{0}$, for notation simplicity, define $\alpha = \sqrt{\frac{m\omega}{2\hbar}} \frac{f}{m\omega^{2}}$, then this is the same as homework Problem 3.35.

 ψ'_0 is a coherent state, and can be expanded in terms of \hat{H} eigenstates as [Problem 3.35(c)], $\psi'_0(x) = \sum_{n=0}^{\infty} c_n \psi_n(x) = \sum_{n=0}^{\infty} e^{-|\alpha|^2/2} \frac{\alpha^n}{\sqrt{n!}} \psi_n(x)$.

Measuring \hat{H} can get result $E_n = \hbar \omega (n + \frac{1}{2})$ with probability $|c_n|^2 = e^{-|\alpha|^2 \frac{|\alpha|^{2n}}{n!}}$ (Poisson distribution).

(c)
$$\psi(x,t) = \sum_{n=0}^{\infty} e^{-iE_n t/\hbar} c_n \psi_n(x) = e^{-i\omega t/2} \sum_{n=0}^{\infty} e^{-|\alpha|^2/2} \frac{(\alpha e^{-i\omega t})^n}{\sqrt{n!}} \psi_n(t)$$
.

So except for the overall phase factor $e^{-i\omega t/2}$, this is still a coherent state, with α replaced by $\alpha e^{-i\omega t}$ [Problem 3.35(e)].

Therefore $\hat{a}_{-}\psi(x,t) = \alpha e^{-i\omega t} \cdot \psi(x,t)$.

$$\sqrt{\frac{m\omega}{2\hbar}}(x+\frac{\hbar}{m\omega}\partial_x)\psi(x,t) = \sqrt{\frac{m\omega}{2\hbar}}\frac{f}{m\omega^2}e^{-i\omega t}\psi(x,t).$$

$$-\frac{m\omega}{\hbar}(x - \frac{f}{m\omega^2}e^{-i\omega t})dx = \frac{d\psi}{\psi} = d(\log \psi).$$

Then $\psi \propto \exp(-\frac{m\omega}{2\hbar}x^2 + \frac{f}{\hbar\omega}e^{-i\omega t}x) \propto \exp\{-\frac{m\omega}{2\hbar}[x - \frac{f}{m\omega^2}\cos(\omega t)]^2\}\exp[-i\frac{f}{\hbar\omega}\sin(\omega t)x].$

Normalize it and put back the overall $e^{-i\omega t/2}$ factor,

$$\psi(x,t) = e^{-\mathrm{i}\omega t/2} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \exp\left\{-\frac{m\omega}{2\hbar} \left[x - \frac{f}{m\omega^2}\cos(\omega t)\right]^2\right\} \exp\left[-\mathrm{i}\frac{f}{\hbar\omega}\sin(\omega t)x\right].$$

As consistency check, when f = 0, this is $\psi_0(x, t)$.

(d) this is the same as Problem 3.35(a)

Use $\hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(\hat{a}_- + \hat{a}_+)$, $\hat{p} = \frac{m\omega}{i}\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}_- - \hat{a}_+)$, $\hat{a}_-|\psi(x,t)\rangle = \alpha e^{-i\omega t} \cdot |\psi(x,t)\rangle$, and therefore $\langle \psi(x,t)|\hat{a}_+ = \langle \psi(x,t)| \cdot \alpha^* e^{i\omega t}$.

$$\langle \hat{x} \rangle = \sqrt{\frac{\hbar}{2m\omega}} (\alpha e^{-i\omega t} + \alpha^* e^{+i\omega t}) = \frac{f}{m\omega^2} \cos(\omega t).$$

$$\langle \hat{p} \rangle = \frac{m\omega}{i} \sqrt{\frac{\hbar}{2m\omega}} (\alpha e^{-i\omega t} - \alpha^* e^{+i\omega t}) = -\frac{f}{\omega} \sin(\omega t).$$

$$\langle \hat{x}^2 \rangle = \frac{\hbar}{2m\omega} \cdot \langle \hat{a}_{-}^2 + \hat{a}_{+}^2 + 2\hat{a}_{+}\hat{a}_{-} + 1 \rangle = \frac{\hbar}{2m\omega} \{ [\frac{f}{m\omega^2} \cos(\omega t)]^2 + 1 \}$$

$$\langle \hat{p}^2 \rangle = (m\omega)^2 \frac{\hbar}{2m\omega} \cdot \langle -\hat{a}_-^2 - \hat{a}_+^2 + 2\hat{a}_+\hat{a}_- + 1 \rangle = \frac{\hbar m\omega}{2} \{ [\frac{f}{\omega} \sin(\omega t)]^2 + 1 \}$$

Therefore $\sigma_x^2 = \frac{\hbar}{2m\omega}$, $\sigma_p^2 = \frac{\hbar m\omega}{2}$, and $\sigma_x^2 \sigma_p^2 = \frac{\hbar^2}{4}$, satisfies the minimal uncertainty relation.

Problem 2. (20 points) Consider the electron in hydrogen atom with Hamiltonian $\hat{H} = \frac{\hat{p}^2}{2m} - \frac{e^2}{4\pi\epsilon_0} \frac{1}{r}$. Note that electron is spin-1/2 particle, so should be described by spinor wave function $\begin{pmatrix} \psi_{\uparrow}(\boldsymbol{r}) \\ \psi_{\downarrow}(\boldsymbol{r}) \end{pmatrix}$. Restrict the orbital wave functions within the n=2 energy level, namely $\psi_{\uparrow,\downarrow}$ are linear combinations of normalized eigenstates $\psi_{2\ell m} = R_{2l}(r)Y_{\ell}^m(\theta,\phi)$ of spinless hydrogen atom problem. Define the total angular momentum operators $\hat{\boldsymbol{J}} = \hat{\boldsymbol{L}} + \hat{\boldsymbol{S}}$.

- (a) (5pts) Show explicitly that $[\hat{\boldsymbol{J}}^2, \hat{\boldsymbol{L}}^2] = 0$, $[\hat{\boldsymbol{J}}^2, \hat{J}_z] = 0$, $[\hat{\boldsymbol{L}}^2, \hat{J}_z] = 0$.
- (b) (5pts) Within this restricted Hilbert space, what are the possible combinations of eigenvalues of $\hat{\boldsymbol{J}}^2$ and $\hat{\boldsymbol{L}}^2$ and $\hat{\boldsymbol{J}}_z$.
 - (c) (10pts) Solve the normalized spinor wave functions ψ_{j,ℓ,m_j} of eigenstates of

 $\hat{\boldsymbol{J}}^2 = j(j+1)\hbar^2$ and $\hat{\boldsymbol{L}}^2 = \ell(\ell+1)\hbar$ and $\hat{J}_z = m_j\hbar$ within this restricted Hilbert space, in terms of $\psi_{2\ell m}$. NOTE: you don't need explicit formula of $\psi_{2\ell m}$.

Solution: this problem is related to homework Problem 4.36(b) and 4.19(c).

(a) the calculation is related to homework Problem 4.19(c),

First show that $[\hat{J}_a, \hat{L}_b] = i\hbar \sum_c \epsilon_{abc} \hat{L}_c$, then $[\hat{J}_a, \hat{\boldsymbol{L}}^2] = [\hat{J}_a, \sum_b \hat{L}_b^2] = i\hbar \sum_{b,c} (\epsilon_{abc} \hat{L}_c \hat{L}_b + \epsilon_{abc} \hat{L}_b \hat{L}_c) = i\hbar \sum_{b,c} \hat{L}_b \hat{L}_c (\epsilon_{acb} + \epsilon_{abc}) = 0$, then $[\hat{\boldsymbol{J}}^2, \hat{\boldsymbol{L}}^2] = [\sum_a \hat{J}_a^2, \hat{\boldsymbol{L}}^2] = 0$. Similarly, $[\hat{J}_a, \hat{J}_b] = i\hbar \sum_c \epsilon_{abc} \hat{J}_c$ leads to $[\hat{J}_a, \hat{\boldsymbol{J}}^2] = 0$.

(b)(c) The nontrivial C.-G. coefficients used here are also used in Problem 4.36(b).

For n=2 energy level of hydrogen atom, ℓ can be 0 or 1.

When $\ell = 1$, j can be $\frac{3}{2}$ or $\frac{1}{2}$; when $\ell = 0$, j must be $\frac{1}{2}$. $m_j = -j, \ldots, j$.

1, j can be $\frac{3}{2}$ or $\frac{1}{2}$; when $\ell = 0$, j must be $\frac{1}{2}$. $m_j = -\frac{1}{2}$									
	(j,ℓ,m_j)	$\hat{m{J}}^2$	$oldsymbol{\hat{L}}^2$	\hat{J}_z	ψ_{j,ℓ,m_j}				
are	$\left(\frac{3}{2},1,\frac{3}{2}\right)$	$\frac{15}{4}\hbar^2$	$2\hbar^2$	$\frac{3}{2}\hbar$	$\begin{pmatrix} \psi_{2,\ell=1,m=1} \\ 0 \end{pmatrix}$				
	$\left(\frac{3}{2},1,\frac{1}{2}\right)$	$\frac{15}{4}\hbar^2$	$2\hbar^2$	$\frac{1}{2}\hbar$	$\frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{2}\psi_{2,\ell=1,m=0} \\ \psi_{2,\ell=1,m=1} \end{pmatrix}$				
	$(\frac{3}{2}, 1, -\frac{1}{2})$	$\frac{15}{4}\hbar^2$	$2\hbar^2$	$-\frac{1}{2}\hbar$	$\frac{1}{\sqrt{3}} \begin{pmatrix} \psi_{2,\ell=1,m=-1} \\ \sqrt{2}\psi_{2,\ell=1,m=0} \end{pmatrix}$				
	$\left(\frac{3}{2},1,-\frac{3}{2}\right)$	$\left \frac{15}{4} \hbar^2 \right $	$2\hbar^2$	$-\frac{3}{2}\hbar$	$\begin{pmatrix} 0 \\ \psi_{2,\ell=1,m=-1} \end{pmatrix},$				
	$\left(\frac{1}{2},1,\frac{1}{2}\right)$				$\left(-\sqrt{2\psi_{2,\ell=1,m=1}}\right)$				
	$(\frac{1}{2}, 1, -\frac{1}{2})$	$\frac{3}{4}\hbar^2$	$2\hbar^2$	$-\frac{1}{2}\hbar$	$\frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{2}\psi_{2,\ell=1,m=-1} \\ -\psi_{2,\ell=1,m=0} \end{pmatrix}$				
	$\left(\frac{1}{2},0,\frac{1}{2}\right)$	$\frac{3}{4}\hbar^2$	0	$\frac{1}{2}\hbar$	$\begin{pmatrix} \psi_{2,\ell=0,m=0} \\ 0 \end{pmatrix}$				
	$\left \left(\frac{1}{2}, 0, -\frac{1}{2} \right) \right $	$\left \frac{3}{4}\hbar^2 \right $	0	$-rac{1}{2}\hbar$	$\begin{pmatrix} 0 \\ \psi_{2,\ell=0,m=0} \end{pmatrix}$				

up to overall phase factor of ψ_{j,ℓ,m_j} for the same j,ℓ .

The results

Problem 3. (30 points) Consider two spin-1/2 moments $\hat{\boldsymbol{S}}_1$ and $\hat{\boldsymbol{S}}_2$, satisfying $[\hat{S}_{i,a}, \hat{S}_{j,b}] = \delta_{i,j} i\hbar \sum_c \epsilon_{abc} \hat{S}_{i,c}$, for i, j = 1, 2 and a, b, c = x, y, z. The basis for the entire system can be chosen as tensor products of S_z -basis $|S_1 = \frac{1}{2}, S_{1z}\rangle|S_2 = \frac{1}{2}, S_{2z}\rangle$, with $S_{1z}, S_{2z} = \pm \frac{1}{2}$. Denote them as $|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\downarrow\rangle$ hereafter.

- (a) (10pts) Consider the Hamiltonian $\hat{H} = \frac{J}{\hbar^2} \cdot (\hat{\boldsymbol{S}}_1 \cdot \hat{\boldsymbol{S}}_2 \frac{\hbar^2}{4}) \frac{B}{\hbar} \cdot (\hat{S}_{1,x} + \hat{S}_{2,x})$. Here J, B are real constants. Solve the eigenvalues and eigenstates (in terms of the S_z -basis) of \hat{H} . [Hint: the J-term is related to total spin square $\hat{\boldsymbol{S}}^2$ where $\hat{\boldsymbol{S}} = \hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2$]
- (b) (5pts) Let the initial state be $|\psi(t=0)\rangle = |\uparrow\downarrow\rangle$, evolve it under \hat{H} , namely $i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$. Solve $|\psi(t)\rangle$ in terms of S_z -basis.
- (c) (5pts**) Define "vector chirality operators" $\hat{\chi} = \hat{S}_1 \times \hat{S}_2$, here '×' means vector cross product. Compute the commutators $[\hat{H}, \hat{\chi}_a]$ for a = x, y, z, the results should be polynomials of $\hat{S}_{i,a}$ of at most degree 2. [Hint: cyclic permutation symmetry of indices x, y, z can be used]
 - (d) (10pts**) Compute the expectation values of $\hat{\chi}$ under $|\psi(t)\rangle$ in (b).

Solution:

(a) you can view \hat{H} as a 4×4 matrix under the S_z -basis: $\hat{S}_{1,a} = \frac{\hbar}{2} \sigma_a \otimes \sigma_0$, $\hat{S}_{2,a} = \frac{\hbar}{2} \sigma_0 \otimes \sigma_a$, then $\hat{H} = -\frac{1}{2} \begin{pmatrix} 0 & B & B & 0 \\ B & J & -J & B \\ 0 & B & B & 0 \end{pmatrix}$, and try to diagonalize it by brute-force (by some symmetry consideration, this can be reduced to a 2×2 problem).

Or rewrite $\hat{H} = \frac{J}{2\hbar^2}\hat{\boldsymbol{S}}^2 - J - \frac{B}{\hbar}\hat{S}_x$, where $\hat{\boldsymbol{S}} = \hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2$ is the total spin operator. Total spin quantum number S can be 1 or 0. Then the eigenvalues of \hat{H} are

$$\frac{J}{2\hbar^2} \cdot 1 \cdot (1+1)\hbar^2 - J - \frac{B}{\hbar} \cdot m\hbar = -m \cdot B$$
, for $|S=1, S_x=m\rangle$ state, $m=-1, 0, 1$; and $\frac{J}{2\hbar^2} \cdot 0 \cdot (0+1)\hbar^2 - J - \frac{B}{\hbar} \cdot 0\hbar = -J$ for $|S=0, S_x=0\rangle$ state.

To get these states in terms of S_z -basis, use the cyclic permutation symmetry of indices x, y, z, then

$$\begin{split} |S=1,S_x=1\rangle &= |S_1=\tfrac{1}{2},S_{1,x}=\tfrac{1}{2}\rangle |S_2=\tfrac{1}{2},S_{2,x}=\tfrac{1}{2}\rangle;\\ |S=1,S_x=0\rangle \\ &= \tfrac{1}{\sqrt{2}}(|S_1=\tfrac{1}{2},S_{1,x}=-\tfrac{1}{2}\rangle |S_2=\tfrac{1}{2},S_{2,x}=\tfrac{1}{2}\rangle + |S_1=\tfrac{1}{2},S_{1,x}=\tfrac{1}{2}\rangle |S_2=\tfrac{1}{2},S_{2,x}=-\tfrac{1}{2}\rangle);\\ |S=1,S_x=-1\rangle &= |S_1=\tfrac{1}{2},S_{1,x}=-\tfrac{1}{2}\rangle |S_2=\tfrac{1}{2},S_{2,x}=-\tfrac{1}{2}\rangle. \end{split}$$

$$\begin{split} |S=0,S_x=0\rangle \\ &= \tfrac{1}{\sqrt{2}} (|S_1=\tfrac{1}{2},S_{1,x}=-\tfrac{1}{2}\rangle|S_2=\tfrac{1}{2},S_{2,x}=\tfrac{1}{2}\rangle - |S_1=\tfrac{1}{2},S_{1,x}=\tfrac{1}{2}\rangle|S_2=\tfrac{1}{2},S_{2,x}=-\tfrac{1}{2}\rangle). \\ &\text{For a single spin-1/2}, \end{split}$$

 $|S = \frac{1}{2}, S_x = +\frac{1}{2}\rangle \propto \frac{1}{\sqrt{2}}(|\uparrow\rangle + |\downarrow\rangle), |S = \frac{1}{2}, S_x = -\frac{1}{2}\rangle \propto \frac{1}{\sqrt{2}}(|\uparrow\rangle - |\downarrow\rangle).$ Here the phase factors have not been determined, because we have not defined "ladder operators" for \hat{S}_x , and demanded Condon-Shortley convention for the ladder operators for \hat{S}_x .

	S	S_x	\hat{H}	eigenstate
	1	1	-B	$\frac{1}{2}(\uparrow\uparrow\rangle + \uparrow\downarrow\rangle + \downarrow\uparrow\rangle + \downarrow\downarrow\rangle)$
The results are	1	0	0	$\frac{1}{\sqrt{2}}(\uparrow\uparrow\rangle - \downarrow\downarrow\rangle)$
	1	-1	+B	$\frac{1}{2}(\uparrow\uparrow\rangle - \uparrow\downarrow\rangle - \downarrow\uparrow\rangle + \downarrow\downarrow\rangle)$
	0	0	-J	$\frac{1}{\sqrt{2}}(\uparrow\downarrow\rangle - \downarrow\uparrow\rangle)$

(b)
$$|\uparrow\downarrow\rangle = \frac{1}{2}|S = 1, S_x = 1\rangle - \frac{1}{2}|S = 1, S_x = -1\rangle + \frac{1}{\sqrt{2}}|S = 0, S_x = 0\rangle,$$

$$|\psi(t)\rangle$$

$$= e^{-i(-B)t/\hbar \cdot 1}|S = 1, S_x = 1\rangle - e^{-i(-B)t/\hbar \cdot 1}|S = 1, S_x = -1\rangle + e^{-i(-J)t/\hbar \cdot 1}|S = 0$$

$$=e^{-\mathrm{i}(-B)t/\hbar} \frac{1}{2} |S=1, S_x=1\rangle - e^{-\mathrm{i}(+B)t/\hbar} \frac{1}{2} |S=1, S_x=-1\rangle + e^{-\mathrm{i}(-J)t/\hbar} \frac{1}{\sqrt{2}} |S=0, S_x=0\rangle \\ = \frac{\mathrm{i}}{2} \sin(\frac{Bt}{\hbar}) (|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle) + \frac{1}{2} [\cos(\frac{Bt}{\hbar}) + e^{\mathrm{i}Jt/\hbar}] |\uparrow\downarrow\rangle + \frac{1}{2} [\cos(\frac{Bt}{\hbar}) - e^{\mathrm{i}Jt/\hbar}] |\downarrow\uparrow\rangle.$$

(c)
$$\hat{\chi}_a = \sum_{b,c} \epsilon_{abc} \hat{S}_{1,b} \hat{S}_{2,c}$$
.
Use $[\hat{S}_a, \hat{S}_{i,b}] = i\hbar \sum_c \hat{S}_{i,c}$, $\sum_a \epsilon_{abc} \epsilon_{adf} = \delta_{bd} \delta_{cf} - \delta_{bf} \delta_{cd}$.
 $[\hat{S}_a, \hat{\chi}_b] = [\hat{S}_a, \sum_{c,d} \epsilon_{bcd} \hat{S}_{1,c} \hat{S}_{2,d}] = i\hbar \sum_{c,d,f} \epsilon_{bcd} (\epsilon_{acf} \hat{S}_{1,f} \hat{S}_{2,d} + \epsilon_{adf} \hat{S}_{1,c} \hat{S}_{2,f})$
 $= i\hbar (-\hat{S}_{1,b} \hat{S}_{2,a} + \hat{S}_{1,a} \hat{S}_{2,b}) = i\hbar \sum_c \epsilon_{abc} \hat{\chi}_c$.

Namely, $\hat{\chi}$ transform as a vector under rotation generated by \hat{S} .

For spin-1/2,
$$\hat{S}_{i,a}\hat{S}_{i,b} = \frac{\hbar^2}{4}\delta_{ab} + i\frac{\hbar}{2}\sum_{c}\epsilon_{abc}\hat{S}_{c}$$
 (see page 1, about Pauli matrices).
$$[\hat{S}_{1}\cdot\hat{S}_{2},\hat{\chi}_{a}] = \sum_{b,c,d}\epsilon_{acd}(\hat{S}_{1,b}\hat{S}_{2,b}\hat{S}_{1,c}\hat{S}_{2,d} - \hat{S}_{1,c}\hat{S}_{2,d}\hat{S}_{1,b}\hat{S}_{2,b})$$

$$= \sum_{b,c,d}\epsilon_{acd}(\frac{\hbar^2}{4}\delta_{bc}[\hat{S}_{2,b},\hat{S}_{2,d}] + i\frac{\hbar}{2}\sum_{f}\epsilon_{bcf}\hat{S}_{1,f}\{\hat{S}_{2,b},\hat{S}_{2,d}\})$$

$$= \sum_{b,c,d,f}\epsilon_{acd}(\frac{\hbar^2}{4}\delta_{bc}i\hbar\epsilon_{bdf}\hat{S}_{2,f} + i\frac{\hbar}{2}\epsilon_{bcf}\hat{S}_{1,f}\frac{\hbar^2}{2}\delta_{bd}) = i\frac{\hbar^3}{2}(\hat{S}_{2,a} - \hat{S}_{1,a}).$$

$$\text{Finally, } [\hat{H},\hat{\chi}_x] = i\frac{\hbar J}{2}(\hat{S}_{2,x} - \hat{S}_{1,x}), \ [\hat{H},\hat{\chi}_y] = i\frac{\hbar J}{2}(\hat{S}_{2,y} - \hat{S}_{1,y}) - iB\hat{\chi}_z,$$

$$[\hat{H},\hat{\chi}_z] = i\frac{\hbar J}{2}(\hat{S}_{2,z} - \hat{S}_{1,z}) + iB\hat{\chi}_y.$$

You can also compute the commutators $[\hat{S}_{1,b}\hat{S}_{2,b},\hat{\chi}_a]$ and use the cyclic permutation symmetry, so only $[\hat{S}_{1,x}\hat{S}_{2,x},\hat{\chi}_z]$, $[\hat{S}_{1,y}\hat{S}_{2,y},\hat{\chi}_z]$, $[\hat{S}_{1,z}\hat{S}_{2,z},\hat{\chi}_z]$ need to be explicitly computed.

(d) directly use the result of (b), and $\hat{\chi}_x = \frac{1}{2i}[(\hat{S}_{1,+} - \hat{S}_{1,-})\hat{S}_{2,z} - \hat{S}_{1,z}(\hat{S}_{2,+} - \hat{S}_{2,-})],$ $\hat{\chi}_y = \frac{1}{2}[\hat{S}_{1,z}(\hat{S}_{2,+} + \hat{S}_{2,-}) - (\hat{S}_{1,+} + \hat{S}_{1,-})\hat{S}_{2,z}],$ $\hat{\chi}_z = \frac{1}{2i}[\hat{S}_{1,-}\hat{S}_{2,+} - \hat{S}_{1,+}\hat{S}_{2,-}],$ compute one-by-one the expectation values of these "non-branching terms" (each term acting on one S_z -basis will produce just one S_z -basis).

$$\begin{split} & \hat{S}_{1,+} \hat{S}_{2,z} |\psi(t)\rangle = \frac{\hbar^2}{2} \{ -\frac{\mathrm{i}}{2} \sin(\frac{Bt}{\hbar}) |\uparrow\downarrow\rangle + \frac{1}{2} [\cos(\frac{Bt}{\hbar}) - e^{\mathrm{i}Jt/\hbar}] |\uparrow\uparrow\rangle \}, \text{ then} \\ & \langle \psi(t) |\hat{S}_{1,+} \hat{S}_{2,z} |\psi(t)\rangle = \frac{\hbar^2}{8} \{ -\mathrm{i} \sin(\frac{Bt}{\hbar}) [\cos(\frac{Bt}{\hbar}) - e^{\mathrm{i}Jt/\hbar}] + [\cos(\frac{Bt}{\hbar}) + e^{-\mathrm{i}Jt/\hbar}] (-\mathrm{i} \sin(\frac{Bt}{\hbar}) \} \\ & = \frac{\hbar^2}{4} [-\mathrm{i} \sin(\frac{Bt}{\hbar}) \cos(\frac{Bt}{\hbar}) - \sin(\frac{Bt}{\hbar}) \sin(\frac{Jt}{\hbar})], \end{split}$$

$$\langle \psi(t)|\hat{S}_{1,-}\hat{S}_{2,z}|\psi(t)\rangle = (\langle \psi(t)|\hat{S}_{1,+}\hat{S}_{2,z}|\psi(t)\rangle)^* = \frac{\hbar^2}{4}[+\mathrm{i}\sin(\frac{Bt}{\hbar})\cos(\frac{Bt}{\hbar}) - \sin(\frac{Bt}{\hbar})\sin(\frac{Jt}{\hbar})].$$

$$\begin{split} & \hat{S}_{1,z} \hat{S}_{2,+} |\psi(t)\rangle = \frac{\hbar^2}{2} \{ -\frac{\mathrm{i}}{2} \sin(\frac{Bt}{\hbar}) |\downarrow\uparrow\rangle + \frac{1}{2} [\cos(\frac{Bt}{\hbar}) + e^{\mathrm{i}Jt/\hbar}] |\uparrow\uparrow\rangle \}, \text{ then} \\ & \langle \psi(t) | \hat{S}_{1,z} \hat{S}_{2,+} |\psi(t)\rangle = \frac{\hbar^2}{8} \{ -\mathrm{i} \sin(\frac{Bt}{\hbar}) [\cos(\frac{Bt}{\hbar}) + e^{\mathrm{i}Jt/\hbar}] + [\cos(\frac{Bt}{\hbar}) - e^{-\mathrm{i}Jt/\hbar}] (-\mathrm{i} \sin(\frac{Bt}{\hbar}) \} \\ & = \frac{\hbar^2}{4} [-\mathrm{i} \sin(\frac{Bt}{\hbar}) \cos(\frac{Bt}{\hbar}) + \sin(\frac{Bt}{\hbar}) \sin(\frac{Jt}{\hbar})], \end{split}$$

$$\langle \psi(t)|\hat{S}_{1,z}\hat{S}_{2,-}|\psi(t)\rangle = (\langle \psi(t)|\hat{S}_{1,z}\hat{S}_{2,+}|\psi(t)\rangle)^* = \frac{\hbar^2}{4}[+\mathrm{i}\sin(\frac{Bt}{\hbar})\cos(\frac{Bt}{\hbar}) + \sin(\frac{Bt}{\hbar})\sin(\frac{Jt}{\hbar})].$$

$$\begin{split} & \hat{S}_{1,-}\hat{S}_{2,+}|\psi(t)\rangle = \hbar^2 \cdot \frac{1}{2}[\cos(\frac{Bt}{\hbar}) + e^{\mathrm{i}Jt/\hbar}]|\downarrow\uparrow\rangle, \text{ then} \\ & \langle \psi(t)|\hat{S}_{1,-}\hat{S}_{2,+}|\psi(t)\rangle = \frac{\hbar^2}{4}[\cos(\frac{Bt}{\hbar}) - e^{-\mathrm{i}Jt/\hbar}][\cos(\frac{Bt}{\hbar}) + e^{\mathrm{i}Jt/\hbar}] \\ & = \frac{\hbar^2}{4}\{[\cos(\frac{Bt}{\hbar}) + \mathrm{i}\sin(\frac{Jt}{\hbar})]^2 - \cos^2(\frac{Jt}{\hbar})\}. \end{split}$$

$$\hat{S}_{1,+}\hat{S}_{2,-}|\psi(t)\rangle = (\hat{S}_{1,-}\hat{S}_{2,+}|\psi(t)\rangle)^* = \frac{\hbar^2}{4}\{[\cos(\frac{Bt}{\hbar}) - i\sin(\frac{Jt}{\hbar})]^2 - \cos^2(\frac{Jt}{\hbar})\}$$

Finally, we have

$$\langle \hat{\chi}_x \rangle = 0, \ \langle \hat{\chi}_y \rangle = \frac{\hbar^2}{2} \sin(\frac{Bt}{\hbar}) \sin(\frac{Jt}{\hbar}), \ \langle \hat{\chi}_z \rangle = \frac{\hbar^2}{2} \cos(\frac{Bt}{\hbar}) \sin(\frac{Jt}{\hbar}).$$

(Not required) You may want to use the Heisenberg equations of motion, $\frac{\mathrm{d}}{\mathrm{d}t}\langle\hat{O}\rangle=\frac{\mathrm{i}}{\hbar}\langle[\hat{H},\hat{O}]\rangle$. However we need the equations of motion for "staggered moment" operators $\hat{M}\equiv\hat{S}_2-\hat{S}_1$, to get a closed set of differential equations.

$$[\hat{\boldsymbol{S}}_1 \cdot \hat{\boldsymbol{S}}_2, \hat{M}_a] = -2i\hbar \cdot \hat{\chi}_a$$
 (textbook Problem 4.37).

 $[\hat{S}_b, \hat{M}_a] = \sum_c i\hbar \epsilon_{bac} \hat{M}_c$. \hat{M} transform as a vector under rotation generated by \hat{S} .

Then
$$[\hat{H}, \hat{M}_x] = -2i\frac{J}{\hbar}\hat{\chi}_x$$
, $[\hat{H}, \hat{M}_y] = -2i\frac{J}{\hbar}\hat{\chi}_y - iB\hat{M}_z$, $[\hat{H}, \hat{M}_z] = -2i\frac{J}{\hbar}\hat{\chi}_z + iB\hat{M}_y$.

The equations of motion are

 $V_{-,-}(t) = e^{i(-J-B)t/\hbar} V_{-,-}(0) = e^{i(-J-B)t/\hbar} (\frac{\hbar^2}{2}).$

Then $\langle \chi_y \rangle = (V_{+,+} + V_{+,-} + V_{-,+} + V_{-,-})/4 = \frac{\hbar^2}{2} \sin(\frac{Jt}{2}) \sin(\frac{Bt}{2}),$

 $\langle \chi_{\nu} \rangle = (V_{+,+} - V_{+,-} + V_{-,+} - V_{-,-})/(4i) = \frac{\hbar^2}{2} \sin(\frac{Jt}{2}) \cos(\frac{Bt}{2}).$

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\hat{\chi}_x\rangle = -\frac{1}{2}\langle\hat{M}_x\rangle,$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\hat{\chi}_y\rangle = -\frac{1}{2}\langle\hat{M}_y\rangle + \frac{B}{\hbar}\langle\chi_z\rangle,$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\hat{\chi}_z\rangle = -\frac{1}{2}\langle\hat{M}_z\rangle - \frac{B}{\hbar}\langle\chi_y\rangle,$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\hat{M}_x\rangle = 2\frac{J}{\hbar^2}\langle\hat{\chi}_x\rangle,$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\hat{M}_x\rangle = 2\frac{J}{\hbar^2}\langle\hat{\chi}_x\rangle + \frac{B}{\hbar}\langle\hat{M}_z\rangle,$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\hat{M}_z\rangle = 2\frac{J}{\hbar^2}\langle\hat{\chi}_z\rangle - \frac{B}{\hbar}\langle\hat{M}_y\rangle.$$
With the initial condition, $\langle\hat{\chi}_x\rangle = \langle\hat{\chi}_y\rangle = \langle\hat{\chi}_z\rangle = 0$, $\langle\hat{M}_x\rangle = \langle\hat{M}_y\rangle = 0$, $\langle\hat{M}_z\rangle = -\hbar$, at $t = 0$.

Define $\mathbf{V}_{\pm} = \langle\hat{\chi}\rangle \pm i\frac{\hbar}{2}\langle\hat{M}\rangle$, then
$$\frac{\mathrm{d}}{\mathrm{d}t}V_{\pm,x} = \pm i\frac{J}{\hbar}V_{\pm,x}, \text{ so } V_{\pm,x}(t) = e^{\pm iJt/\hbar}V_{\pm,x}(0) = 0, \text{ so } \langle\hat{\chi}_x\rangle = (V_{+,x} + V_{-,x})/2 = 0;$$

$$\frac{\mathrm{d}}{\mathrm{d}t}V_{\pm,y} = \pm i\frac{J}{\hbar}V_{\pm,y} + \frac{B}{\hbar}V_{\pm,z},$$

$$\frac{\mathrm{d}}{\mathrm{d}t}V_{\pm,z} = \pm i\frac{J}{\hbar}V_{\pm,z} - \frac{B}{\hbar}V_{\pm,y}.$$
Define $V_{\sigma,\pm} = V_{\sigma,y} \pm iV_{\sigma,z}$ where $\sigma = \pm i\frac{J}{\hbar}V_{\sigma,\pm} = (\sigma i\frac{J}{\hbar} \mp i\frac{B}{\hbar})V_{\sigma,\pm}.$

$$V_{+,+}(t) = e^{i(J-B)t/\hbar}V_{+,+}(0) = e^{i(J-B)t/\hbar}(\frac{\hbar^2}{2}),$$

$$V_{+,-}(t) = e^{i(J+B)t/\hbar}V_{+,-}(0) = -e^{i(J+B)t/\hbar}(\frac{\hbar^2}{2}),$$

$$V_{-+}(t) = e^{i(J-B)t/\hbar}V_{-+}(0) = -e^{i(J-B)t/\hbar}(\frac{\hbar^2}{2}),$$

Problem 4. (15 points) Consider the harmonic oscillator with an additional δ -function potential, $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2\hat{x}}{2} - \alpha \cdot \delta(x)$, where α is a positive constant.

- (a) (6pts) Draw qualitatively the wave functions for the ground state, 1st excited state, and 2nd excited state.
- (b) (6pts) For the stationary Schrödinger equation $\hat{H}\psi = E\psi$, define $\xi = \sqrt{\frac{m\omega}{\hbar}}x$, $K = \frac{2E}{\hbar\omega}$, $\beta = \frac{2\alpha}{\hbar\omega}\sqrt{\frac{m\omega}{\hbar}}$. Then $\frac{\mathrm{d}^2}{\mathrm{d}\xi^2}\psi = [\xi^2 \beta \cdot \delta(\xi) K] \cdot \psi$. Assume $\psi(\xi) = h(\xi) \cdot e^{-\xi^2/2}$, then $\frac{\mathrm{d}^2h}{\mathrm{d}\xi^2} 2\xi \frac{\mathrm{d}h}{\mathrm{d}\xi} + [K 1 + \beta \cdot \delta(\xi)] \cdot h = 0$. Consider the ground state in (a), assume $h(\xi) = \sum_{j=0}^{\infty} a_j \xi^j$ for $\xi \geq 0$. Derive the recursion relation for a_j , derive the boundary condition at $\xi = 0$ in terms of a_j .
 - (c) $(3pts^{***})$ The recursion relation for a_j in (b) is actually the same as the original

harmonic oscillator. But the ground state energy is not the original eigenvalues of harmonic oscillator without the δ -potential, therefore the series for h will not be truncated to finite order. How can this reconcile with the requirement that ψ should be normalizable?

Solution:

(a) Schematic picture of the ground state, 1st excited state, and 2nd excited state.

The ground state is even, nodeless, has a cusp at x = 0.

The 1st excited state is odd, has one node at x = 0, is smooth everywhere.

The 2nd excited state is even, has two nodes, has a cusp at x = 0.

(b) The recursion relation is the same as the original Harmonic oscillator (textbook equation [2.81]), because the differential equation in x>0 region is exactly the same as the harmonic oscillator, $a_{j+2}=\frac{(2j+1-K)}{(j+1)(j+2)}a_j$.

The boundary condition at x = 0 should be $\partial_{\xi} \psi|_{\xi=-0}^{+0} = -\beta \psi(0)$.

Note that the ground state is an even function, then $h(\xi) = h(|\xi|) = \sum_{j=0}^{\infty} a_j |\xi|^j$.

$$\partial_{\xi}\psi|_{\xi=-0}^{+0} = \partial_{\xi}h|_{\xi=-0}^{+0} = 2a_1, \ \psi(0) = a_0.$$

So the boundary condition for even eigenstates is $a_1 = -\frac{\beta}{2}a_0$.

(c) For the ground state energy E'_0 with the δ -potential, the original stationary Schrödinger equation $\left[-\frac{\hbar^2}{2m}\partial_x^2 + \frac{m\omega^2}{2}x^2\right]\psi = E'_0\psi$ have two solutions (related to certain "hypergeometric functions"), one even function [the even j terms in (b)] and one odd function [the odd j terms in (b)], both solutions are asymptotically $\sim \exp(+\xi^2/2)$.

But by making a proper linear combination ["parabolic cylinder function" $D_{\frac{K-1}{2}}(\sqrt{2}\xi)$] of these two solutions, we can cancel the divergence as $\xi \to +\infty$. This linear combination would diverge as $\exp(+\xi^2/2)$ when $\xi \to -\infty$, but we are only using it for $\xi \geq 0$ region.