The Battle of Neighborhoods - Madrid

Applied DataScience Capstone

June, 2020

Problem Description

- The basis of this study is to help an investor to open a new business in Madrid. The investor needs to know the most common venues in the city and the areas where the businesses are located.
- The objective is to identify the top ten common venues for each Neighborhood in Madrid classified by category and locate them in clusters in a map.

Data

- The information needed about districts, neighborhoods and population can be found in the website "Portal de datos abiertos del Ayuntamiento de Madrid":
 - https://datos.madrid.es/portal/site/egob
- From this website can be obtained a excel file ("PANEL_INDICADORES") with several indicators about the population classified by neighborhood from which the necessary data will be extracted, such as district and neighborhood codes and their names that will be used for it.

Data

PANEL_INDICADORES

Data

- The information about districts and neighborhoods will be used to obtain de geographical coordinates (latitude and longitude) where these are located by using the geocoder library.
- The Foursquare API will be used to collect information about the venues and possible competitors in the neighborhoods of Madrid.
- With the venues obtained from Foursquare it will be possible to classify them by category and finally stablish a clustering for neighborhood by means of KMeans algorithm.

Methodology

- These are the necessary steps followed to identify the top ten common venues for each neighborhood in Madrid:
 - The first step is to obtain a dataframe with codes and descriptions about districts and neighborhoods of Madrid city
 - Next, it is necessary to clean the dataframe, define columns and drop duplicates.
 - Then, call argcis from geocoder library to obtain the latitude and longitude coordinates for each neighborhood in the dataframe. This will be necessary to find the Madrid venues by means of the Foursquare API.

Code	Borough	Neighborhood	Latitude	Longitude		
111	Centro	Palacio	40.409630	-3.879790		

Methodology

• After that, by calling the Foursquare API for each neighborhood, the venues are obtained within a radius of 500 meters.

Neighborhood	Neighborhood Latitude	Neighbor hood Longitud e	Venue	Venue Latitude	Venue Longitude	Venue Category
Palacio	40.40963	-3.87979	Proverbium	40.408192	-3.877232	Italian Restaurant

• By using Pandas, obtain the places by categories organizing them in columns, grouping them by Neighborhood, and classifying them according to the number of repetitions.

Methodology

• With this new dataframe, get the top ten common venues for each Neighborhood based on the number of repetitions.

999	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue	
Alar	meda de Osuna	Restaurant	Tapas Restaurant	Plaza	Bookstore	Hobby Shop	Fried Chicken Joint	Italian Restaurant	Metro Station	Cocktail Bar	Pizza Place

- Now, through K-Means Clustering unsupervised algorithm, it divides the data into K non-overlapping clusters grouping similar venues. It will be used for K=5.
- Next, merge the madrid data containing neighborhoods and coordinates, with the neighborhoods venues clustered.
- Finally, through the folium library show a map with the clusters.

Results

The 1st Most Common Venues

Neighborhood	1st Most Common Venue	Cluster Labels Population			
Recoletos	Spanish Restaurant	2.0	15756		
Alameda de Osuna	Restaurant	2.0	19446		

• The top ten most common venues

Cluster Labels	Neighborhoo d	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	Alameda de Osuna	Restaurant	Tapas Restaurant	Plaza	Bookstore	Hobby Shop	Fried Chicken Joint	Italian Restaurant	Metro Station	Cocktail Bar	Pizza Place
0	Bellas Vistas	Spanish Restaurant	Bar	Grocery Store	Bakery	Supermarket	Tapas Restaurant	Pizza Place	Coffee Shop	Seafood Restaurant	Farmers Market

Results

• The clusters are visualized via folium map:

Recomendation

- Based on the criteria given by the investor group and the cluster data, the main recommendation for a new business would be a *Chinese**Restaurant* in neighborhood *Ventas* due to the largest population.
- A secondary recommendation is made for the neighborhood of *Villaverde Alto* for a *Mediterranean Restaurant* with the second largest population.
- In general terms it can be seen that in all the neighborhoods the main business is related to the restaurant business.