Homework 2

Problem 1. Show that there are infinitely many primes congruent to -1 modulo 6.

Proof. Suppose there are finitely many such, p_1, \ldots, p_n and let $m = 3p_1 \ldots p_n + 2$. Then $m \equiv -1 \pmod 6$. Assume that m is not prime so that $m = q_1 \ldots q_k$ with q_i prime. Note that $3 \nmid m$ since $m \equiv 2 \pmod 3$ and no q_i is congruent to -1 modulo 6 because m is not a multiple of any p_i . Then every q_i is congruent to 1 modulo 6 so $m \equiv 1 \pmod 6$, a contradiction. Thus there must be infinitely many primes congruent to -1 modulo 6.

Problem 2. Show that the equation $3x^2 + 2 = y^2$ has no integer solutions.

Proof. If we reduce modulo 3 we're left with $2 \equiv y^2 \pmod{3}$. But $1^2 \equiv 2^2 \equiv 1 \pmod{2}$ so there are no integers y such that $y^2 \equiv 2 \pmod{3}$.

Problem 3. Extend the notion of congruence to the ring $\mathbb{Z}[i]$ and prove that a + bi is always congruent to 0 or 1 modulo 1 + i.

Proof. The definition will be the same as that of \mathbb{Z} . Namely, $a + bi \equiv c + di \pmod{m + ni}$ if there exists $e + fi \in \mathbb{Z}[i]$ such that (e + fi)(m + ni) = (a + bi) - (c + di).

Now note that (e+fi)(1+i)=(e-f)+(e+f)i. Without loss of generality assume a < b. Let k=2((b-a)/2-[(b-a)/2]) so that k is 0 if b-a is even and 1 if b-a is odd. Now let f=[b-a/2] and e=a+f+k. Then e+f=b and e-f is either a or a+1 depending on k. Thus (e+fi)(i+1)=(a+bi) or (e+fi)(i+1)=(a+bi)-1 so that $a+bi\equiv 0 \pmod{1+i}$ or $a+bi\equiv 1 \pmod{1+i}$.

Problem 4. Extend the notion of congruence to $\mathbb{Z}[\omega]$ and prove that $a + b\omega$ is always congruent to either -1, 1 or 0 modulo $1 - \omega$.

Proof. The definition of congruence is exactly like that in Problem 3. Let $a+b\omega \in \mathbb{Z}[\omega]$ and suppose $(e+f\omega)(1-\omega)=(a+b\omega)-(c+d\omega)$. Note that $(e+f\omega)(1-\omega)=(e+f)+(2f-e)\omega$. Choose f=[(a+b)/3] and e=a-f+k where k=0 if $a+b\equiv 0\pmod 3$, k=1 if $a+b\equiv 1\pmod 3$ and k=-1 if $a+b\equiv -1\pmod 3$. Then b=2f-e and a=e+f or $a=e+f\pm 1$ depending on the value of k. Thus $(e+f)(1-\omega)=a+b\omega$ or $(e+f)(1-\omega)=(a+b\omega)\pm 1$. Thus $a+b\omega$ is congruent to either 0, 1 or -1 modulo $1-\omega$.

Problem 5. Let $\lambda = 1 - \omega \in \mathbb{Z}[\omega]$. If $\alpha \in \mathbb{Z}[\omega]$ and $\alpha \equiv 1 \pmod{\lambda}$, prove that $\alpha^3 \equiv 1 \pmod{9}$.

Proof. We can write $\alpha = 1 + \beta \lambda$ so that $\alpha^3 = 1 + 3\beta\lambda + 3\beta^2\lambda^2 + \beta^3\lambda^3$. Note also that $-\omega^2\lambda^2 = -\omega^2(1-\omega)^2 = -\omega^2(1-2\omega+\omega^2) = -\omega^2(-3\omega) = 3$. Putting this in the first equation we have $\alpha^3 = 1 - \beta\omega^2\lambda^3 - \beta^2\omega^2\lambda^4 + \beta^3\lambda^3$. Reducing modulo λ^4 we have $\alpha^3 \equiv 1 + (\beta^3 - \beta\omega^2)\lambda^3 \pmod{\lambda^4}$. But note that $\lambda \mid \beta^3 - \beta\omega^2$ so this equation reduces to $\alpha^3 \equiv 1 \pmod{\lambda^4}$. By the above statement $9 \mid \lambda^4$ so we're done.

Problem 6. Use Exercise 25 to show that if $\xi, \eta, \zeta \in \mathbb{Z}[\omega]$ are not zero and $\xi^3 + \eta^3 + \zeta^3 = 0$ then λ divides at least one of the elements ξ, η, ζ .

Proof. From Problem 4 we know that each of ξ , η and ζ is congruent to either -1, 1 or 0 modulo λ . Moreover, from Problem 5 we know that if any one of ξ , η or ζ is congruent to 1 modulo λ then it's cube also congruent to 1 modulo 9. Therefore it's not possible that all three of these are congruent to 1 modulo λ because otherwise $\xi^3 + \eta^3 + \zeta^3 \equiv 3 \pmod{9}$. It's also not possible that any two of these are congruent to 1 modulo λ since then the congruence of the cubic sum would be at least 1. So at most 1 of ξ , η or ζ can be congruent to 1 modulo λ . Since the congruences must sum to 0 we can either have one value congruent to 1, one value congruent to -1 and one value congruent to 0, or all three congruent to 0. In either case we have at least one value congruent to 0 which means λ divides at least one value.

Problem 7. Suppose that a is a primitive root modulo p^n , p and odd prime. Show that a is a primitive root modulo p.

Proof. Let n be the order of a modulo p. We can write $a^n = 1 + mp$ for some m. Then $a^{np^{n-1}} = (1+mp)^{p^{n-1}} = 1 + p^{n-1}mp + \cdots$ where we've expanded using the binomial theorem. Reducing this equation modulo p^n we have $a^{np^{n-1}} \equiv 1 \pmod{p^n}$. Since a is a primitive root modulo p^n we must have $np^{n-1} = \phi(p^n) = p^{n-1}(p-1)$. Therefore n = p - 1 and a is a primitive root modulo p.

Problem 8. Consider a prime p of the form 4t + 1. Show that a is a primitive root modulo p iff -a is a primitive root modulo p.

Proof. If a is a primitive root modulo p then a has order $\phi(p) = 4t \mod p$. Let n be the order of $-a \mod p$ and suppose n < 4t. Note $(-a)^n \equiv (-1)^n a^n \equiv 1 \pmod p$. Thus n must be odd otherwise $(-1)^n = 1$. But then $(-a)^{2n} \equiv (-1)^{2n} a^{2n} \equiv a^{2n} \equiv 1 \pmod p$. But since n is odd $4 \nmid 2n$ and since a has order $4t \mod p$ we have a contradiction. Thus the order of $-a \mod p$ is $4t \mod -a$ is a primitive root modulo p.

Now suppose -a is a primitive root modulo p so that the order of -a modulo p is 4t. Let n be the order of a modulo p. Then $a^n \equiv 1 \pmod{p}$ and $1 \equiv a^{2n} \equiv (-1)^{2n}a^{2n} \equiv (-a)^{2n} \pmod{p}$. Thus $4t \mid 2n$ and n must be even. But then $a^n \equiv (-1)^n a^n \equiv (-a)^n \pmod{p}$ and we see that n = 4t is the order of a modulo p so a is a primitive root modulo p.

Problem 9. Consider a prime p of the form 4t + 3. Show that a is a primitive root modulo p iff -a has order (p-1)/2.

Proof. Suppose a is a primitive root modulo p so that the order of a modulo p is $\phi(p) = 4t + 2 = 2(2t + 1)$. Let n be the order of -a modulo p and suppose n < 4t + 2. Then $(-a)^n \equiv (-1)^n a^n \equiv 1 \pmod{t}$ so that n must be odd otherwise $(-1)^n = 1$. Then $(-a)^{2n} \equiv a^{2n} \equiv 1 \pmod{p}$ so $4t + 2 \mid 2n$ and $2t + 1 \mid n$. This shows that either n = 2t + 1 or n = 4t + 2 and since n is odd we must have n = 2t + 1 so that the order of -a modulo p is 2t + 1 = (p - 1)/2.

Now suppose -a has order (p-1)/2=2t+1 modulo p so that $(-a)^{2t+1}\equiv 1\pmod{p}$. Let n be the order of a modulo p. Then $(-a)^{4t+2}\equiv (-1)^{2(2t+1)}a^{4t+2}\equiv 1\pmod{p}$ so that $4t+2\mid n$. But $\phi(p)=4t+2$ so we must have n=4t+2 and a is a primitive root modulo p.

Problem 10. Show that the product of all the primitive roots modulo p is congruent to $(-1)^{\phi(p-1)}$ modulo p.

Proof. Let a be a primitive root modulo p. There are $\phi(p-1)$ primitive roots modulo p and note that every primitive root modulo p can be expressed as some power of a, a^{n_i} . Furthermore we must have $(n_i, p-1) = 1$ otherwise these can't be primitive roots. Note that for every integer n, the sum of all integers t with $1 \le t \le n$ and (t, n) = 1 is $\frac{1}{2}n\phi(n)$. Thus the product of all the primitive roots is

$$a^{\sum_{i=1}^{\phi(p-1)} n_i} = a^{\frac{1}{2}(p-1)\phi(p-1)}.$$

But note that $a^{(p-1)/2} \equiv -1 \pmod{p}$ so this reduces to $(-1)^{\phi(p-1)}$ modulo p as desired.

Problem 11. Let K be a field and $G \subseteq K^*$ a finite subgroup of the multiplicative group of K. Extend the arguments used in the proof of Theorem 1 to show that G is cyclic.

Proof. Let |G| = n and for $d \mid n$ define $\psi(d)$ to be the number of elements in G of order d. In any finite commutative group the set of elements x such that $x^d = 1$ form a subgroup. Moreover the order of this subgroup must be at least d. Thus $\sum_{c\mid d} \psi(c) \leq d$. If we apply Möbius inversion we have $\psi(d) \geq \sum_{c\mid d} \mu(c)d/c = \phi(d)$. In particular $\psi(n) \geq \phi(n)$ which for n > 1 is greater than 1. Thus there is at least one element of G which generates the entire group and thus G is cyclic.