华中科技大学研究生课程考试试卷

课程	程名称: ₋	应用高等	工程数学	_ 课程类别	☑公共课□专业课	考核形式	<u>□开卷</u> ☑闭卷
学生	生类别	研究生	考试日期20	14-12-16	生所在院系_		
学	号		姓名	任	课教师		
—,	. 填空题	(任选 10 小	题,每小题2分	,共计 20 分	,多答不加允)。)	
1.	设 $A = \{A$	_{ij} } _{3×3} 的最小	多项式为 $m_{\scriptscriptstyle A}(\lambda)$:	$= (\lambda - 1)(\lambda - 2)$)(2-3) 则与	A 相似的	」对角阵
<i>B</i> =	= .						
2.	设矩阵 A	$\in C^{n \times n}$ 满足	等式: $A^2 + A = 2$	2I,问 A 是否	可对角化	·	
3.	矩阵的谱	半径是指		·			
4.	矩阵特征	值的根空间	维数等于			_•	
5.	对任何非	奇异矩阵 A	,都有 cond(A)) _p _1, 当A	为正交矩阵时	$\dagger cond (A)$	
6.	己知√5 =	= 2.23606797	7499…,则其近	似值 2.23607	有	位有效数字	z,通过
	四舍五入	、得到其有匹	位有效数字的近	似值为	·		
7.	已知 $f(x)$	$0 = 2x^3 - 4x^2$	+1,则 f[0,1,2,3]=	, f[0,1,2,3	8,4]=	·
8.	当 n 为奇	数时,等距	节点的插值型(/	V − C) 求积公	$\overline{\mathbb{R}} I_n = (b - a)$	$\sum_{i=1}^{n} C_i f(x_i)$	至少有
	次代	、数精度.					
9.	$\varphi(x) = x$	$+\lambda(x^2-3)$,	要使迭代法 x_{k+1}	$= \varphi(x_k)$ 局部	收敛到 $x^* = v$	3, 则ん的	J取值范
	围是						
10.	试写出力	方程 $f(x) = x$	a - a = 0的牛顿这	迭代格式		·	
11.	设 (X ₁ ,·	\cdots, X_n) 为 X	~ N(0,1) 的样本	$, X_{(1)} \le X_{(2)}$	≤····≤ <i>X</i> _(n) 为	次序统计	量,则
	$X_{(1)}^{2} + 2$	$X_{(2)}^2 + \cdots + X$	² ~	·			

- 12. 给出点估计评价的三个标准 .
- 13. 给出假设检验中显著性水平 α 与统计假设 H_0 的关系_____.
- 14. 设 (X_1, \dots, X_n) 为 $X \sim N(\mu, \sigma^2)$ 的样本, μ 未知, σ^2 已知, μ 的置信水平为 $1-\alpha$ 的 双侧区间估计为______.
- 15. 使用方差分析时对数据的要求是_____
- 二、计算证明题(任选 4 题,每小题 10 分,满分 40 分,多答不加分。)
- 16. 已知 R^3 中的两个基底 $B_1 = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$, $B_2 = \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$, 求从 B_1 到 B_2 的基变换矩阵。
- 17. 设 \mathbf{R}^4 中的向量 $x_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}$, $x_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $x_3 = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 1 \end{bmatrix}$, $x_4 = \begin{bmatrix} -1 \\ -1 \\ 3 \\ 7 \end{bmatrix}$, 分别张成

 $w_1 = span\{x_1, x_2\}$, $w_2 = span\{x_3, x_4\}$, 求 $w_1 + w_2$ 及 $w_1 \cap w_2$ 的基底及维数。

18. 设T 是线性空间 V^3 的线性变换,已知T 在基 $B = \{\alpha_1, \alpha_2, \alpha_3\}$ 下的矩阵 A 为

$$A = \begin{bmatrix} 2 & 2 & -1 \\ -1 & -1 & 1 \\ -1 & 2 & 2 \end{bmatrix},$$

求T的特征值和对应的特征向量。

19. 设 $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & 0 \\ 1 & 1 & 2 \end{pmatrix}$, 求可逆矩阵 P 和 Jordan 矩阵 J,使 AP = PJ。

20. 设
$$A = \begin{bmatrix} 0.2 & 0.1 & 0.2 \\ 0.5 & 0.5 & 0.4 \\ 0.1 & 0.3 & 0.2 \end{bmatrix}$$
,问 $\lim_{k \to \infty} A^k = 0$ 成立吗?若成立证明之。

21.
$$A = \begin{bmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 2 & 2 & -2 & -1 \\ -2 & -4 & 2 & -2 \end{bmatrix}$$
, $\bar{x}A$ 的满秩分解。

22. 设有微分方程组
$$\begin{cases} \frac{dx_1(t)}{dt} = 2x_1(t) + e^{2t} \\ \frac{dx_2(t)}{dt} = x_1(t) + x_2(t) + x_3(t) + e^{2t} \\ \frac{dx_3(t)}{dt} = x_1(t) - x_2(t) + 3x_3(t) \end{cases}$$

 $x(0) = [-1,1,0]^T$, 求满足初始条件的特解。

23. 设
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, 求 A 的奇异值分解。

- 三、计算证明题(任选 4 题,每小题 10 分,满分 40 份,多答不加分。)
- 24. 对函数 f(0) = -1, f'(0) = -2, f(1) = 0, f'(1) = 10, 试求过这 2 点的三次 Hermite 插值多项式 $H_3(x)$, 并写出插值余项的表达式。
- 25. 试构造两点 Gauss-Chebyshev 求积公式

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) dx \approx A_0 f(x_0) + A_1 f(x_1)$$

并由此计算积分
$$\int_{-1}^{1} \sqrt{\frac{3+2x^2}{1-x^2}} dx$$
 。

26. 设有常微分方程初值问题
$$\begin{cases} y'(x) = f(x, y) \\ y(0) = a \end{cases}$$
 的隐式中点公式

$$y_{n+1} = y_n + hf\left(x_{n+\frac{h}{2}}, \frac{y_n + y_{n+1}}{2}\right)$$
, 证明该方法是无条件稳定的。

27. 方程
$$Ax = b$$
 的系数矩阵为 $A = \begin{bmatrix} a & 5 & 0 \\ 1 & a & 2 \\ 0 & 2 & a \end{bmatrix}$,问 a 取何值时,Jacobi 迭代收敛?

- 28. 设 (X_1,\dots,X_n) 为总体X的一个样本, $EX = \mu$, μ 未知。
 - (1) \bar{X} 是否为 μ 的无偏估计?
 - (2) 由 (X_1,\cdots,X_n) 构造 μ 的n个无偏估计.

(3)
$$\bigvee_{i=1}^{n} \sum_{i=1}^{n} a_i = 1, a_i > 0, i = 1, \dots, n.$$

问 $\hat{\mu} = \sum_{i=1}^{n} a_i X_i$ 是否为 μ 的无偏估计,若是 μ 的无偏估计,确定 a_i , $i=1,\cdots,n$,使 $\hat{\mu}$ 的方差最小。

29. 某纺织厂生产的某种产品的纤度,设服从正态分布,标准差 σ =0.048,现抽取 5 根测得纤度为 1.32,1.55,1.36,1.40,1.44,问在显著性水平 α =0.10下,能否认为 σ^2 无显著变化。($\chi^2_{0.05}(4)$ =0.711, $\chi^2_{0.95}(4)$ =9.488)

30. 设有三个工厂生产同一种机械锻件,为比较这三个厂生产的锻件强度无显著差异,分别从每个厂随机抽4件,测得强度数据如下:

工厂		强度	强度数据			
$oldsymbol{A}_1$	103	101	98	110		
A_2	113	107	108	116		
A_3	82	92	84	86		

设第i个厂的强度服从 $N(\mu_i, \sigma^2)$,i=1,2,3。检验三个厂的平均强度有无显著差异? α =0.05($F_{0.95}(2,9)$ =4.26, $F_{0.95}(3,12)$ =3.49)

31. 已知 y 与三个自变量的观察值如下表:

x_1	-1	-1	-1	-1	1	1	1	1
x_2	-1	-1	1	1	-1	-1	1	1
x_3	-1	1	-1	1	-1	1	-1	1
У	7.6	10.3	9.2	10.2	8.4	11.1	9.8	12.6

求 y 对 x_1, x_2, x_3 的回归方程。

32. 有经过 xmin 反应之后的数据如下:

x_i	1	2	3	4	5	6
y_i	28.5	16.9	17.5	14.0	9.8	8.9

设 $y = \beta_0 \beta_1^x \varepsilon$ (ε 满足回归分析条件), 求 β_0, β_1 的点估计, 并求 $\hat{y} = \hat{\beta}_0 \hat{\beta}_1^x$.