Options for Silicon waveguides:

First reported by Soref & Lorenzo Electron. Lett., <u>21</u>, 1985. & *IEEE J. Quantum Elect.*, <u>QF-22</u>, 1986.

Intrinsic silicon Al₂O₃ substrate

Silicon on sapphire

First reported by Albares & Soref *Proc. SPIE*, <u>704</u>, 1987.

Intrinsic silicon

Buried Oxide (SiO₂)

Silicon on Insulator (SOI)

First reported by Soref & Lorenzo, OSA Integrated Guided Wave Optics '89, 1989.

Silicon substrate

The Most Popular Waveguides:

Strip waveguide (SM: 200×500 nm; 2-3 dB/cm loss)

Rib/ridge waveguide (H=200-400 nm to several microns; 0.1 dB/cm loss)

Photonic crystal waveguide (L=100 µm; 3-4 dB/cm loss)

Slot waveguide (non-linear effects, sensors)

SOI Rib Waveguides:

i- Large Rib WGs:

SOI rib waveguide

$$\frac{W}{H} \le 0.3 + \frac{r}{\sqrt{1 - r^2}}$$
 (for $0.5 \le r < 1$)

Soref's formula for single mode condition for large rib waveguides

Rib waveguide (H=400 nm to several microns; 0.1 dB/cm loss)

ii- Small Rib WGs

Smaller WG → Stronger polarization dependent behavior

Figure 2.7 (a) TE and (b) TM mode shapes for a rib waveguide in SOI with $H = 1.35 \mu m$, $D = 0.85 \mu m$, and $W = 0.70 \mu m$ [21]

Characteristic curves extracted from simulation of specific Rib waveguide structures: (assuming $\lambda = 1550nm$)

Figure 2.8 Effective-index difference calculation between quasi-TE and quasi-TM polarized modes using the FEM, for waveguide heights of (a) 1.00 μ m; (b) 1.50 μ m [9]

Figure 2.9 The single mode condition and the polarisation independence locus plotted on the same graph, for rib waveguides with height of: (a) 1.35 μ m; (b) 1.5 μ m [9]

Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS):

Fig: 1 LOCOS waveguides fabrication process: a) mask formation,b) oxidation through mask, c) mask removal to reveal waveguide

Fig: 2 SEM of the measured waveguides

waveguide width (microns)
Fig: 4 Polarisation dependent loss with waveguide width.

Low loss etchless silicon photonic waveguides:

Fig. 1. Fabrication process for the etchless waveguides. a) 800 nm of thermal oxide are grown on an SOI wafer with a 3 μ m buried oxide. b) Waveguides are patterned with e-beam lithography and the oxide is etched. c) Waveguide core is defined using thermal oxidation. d) PECVD oxide is deposited as an overcladding.

Fig. 2. TE mode profile for 1 µm wide etchless waveguide with cladding profile.

Fig. 3. Cross-section SEM image of an etchless waveguide.

Fig. 5. Measurement results for etchless waveguides. We measured losses of $0.3 \, dB/cm$ for a $1 \, \mu m$ waveguide and $0.5 \, dB/cm$ for a $1.5 \, \mu m$ waveguide for the TE mode. Each marker denotes a measurement for a different waveguide on the same chip. The solid lines are the linear fit to the experimental data. The output is normalized relative to $-16.1 \, dBm$.

Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation:

Fig. 4. Processing steps for ridge waveguide fabrication.

Fig. 3. Quasi-planar ridge SOI waveguide geometry. BOX thickness is $2\,\mu\mathrm{m}$.

Fig. 6. (a) Ring resonator with add-drop ports and (b) an exemplary drop-port response.

Ring resonator Measurements 0.9 400 µm Ring, 1.44 µm Waveguide 8.0 Drop bort response (arb.) 0.7 0.8 0.0 0.3 0.0 0.3 TE Drop Port Response TM Drop Port response Q_{TE}=1.6x106 - Δv_{FWHM,TE}=124.37 MHz Q_{TM}=6.8x10⁵ Δν_{FWHM,TM}=286.33 MHz 0.1 0 1537.17 1537.15 1537.16 1537.18 1537.19 1537.2

Fig. 7. (Color online) Drop-port responses for the TE and TM modes for a $400\,\mu m$ radius ring resonator with "magic width" waveguide of $1.44\,\mu m$.

Wavelength (nm)