Chaotic Double Pendulum

Anish Mokkarala & Nico Carballal

Question:

Given some initial perturbation to a ring connected in a double pendulum set-up as seen below(hyperlinked to YouTube), how can we track the center of mass of the ring?

Model:

Referring to the diagram pictured, the model assumptions are as follows:

- Rigid body A is modeled as a thin rod, and rigid body C is modeled as a thin ring.
- A is connected to a Newtonian Frame N with a frictionless revolute joint at N_0 . A and C are connected through a frictionless prismatic joint at A_0 , i.e. a pin attached to A at A_0 can slide freely in a slot along the circumference of C. Also, C can rotate freely about A_0 .
- ❖ The mass in A and C is uniformly distributed.
- The rod has a simple rotation about N_0 , and the ring, has two rotations: one about A_0 and one about C_{cm} .
- Unit vector \hat{a}_y points from N_0 to A_{cm} . \hat{b}_y points from C_{cm} to A_0 , and \hat{c}_y points from C_{cm} to a pre-defined ("painted") point on the ring C. Also, $\hat{n}_z = \hat{a}_z = \hat{b}_z = \hat{c}_z$, and are pointing perpendicularly out of the plane of the model.
- There is no aerodynamic drag.

Model Identifiers:

Quantity	Identifier	Туре	Value
Earth's gravitational constant	g Constant		$9.8m/s^2$
Mass of A	$m_{_{A}}$ Constant		2 kg
Mass of C	$m_{_B}$	Constant	1 kg
Length from N_0 to far end of rod from the ring	L_{1}	Constant	0.6 m
Length from N_0 to A_0	L_2	Constant	0.4 m
Radius of C	$m_{_{A}}$	Constant	0. 25 m
Angle from \hat{n}_y to \hat{a}_y w/ $+\hat{n}_z$ sense	$\theta_{_{A}}$	Variable	-
Angle from \hat{a}_y to \hat{b}_y w/ $+\hat{n}_z$ sense	$\theta_{_B}$	Variable	-
Angle from \hat{b}_y to \hat{c}_y w/ $+\hat{n}_z$ sense	θ_{c}	Variable	-

Physics:

MG Road-Maps:

Variable	Translate/ Rotate	Direction (unit vector)	System S	FBD Of S	About point	MG road-map equation
$\theta_{_A}$	Rotate	$\hat{n}_{_{Z}}=\hat{a}_{_{Z}}$	A, B, C	Below	N_{0}	$oldsymbol{\hat{n}}_z \cdot (oldsymbol{ec{M}}^{S/N_0} = rac{{}^N d}{dt}^{N} oldsymbol{ec{H}}^{S/N_0})$
$\theta_{_B}$	Rotate	$\hat{n}_z = \hat{b}_z$	B, C	Below	A_{0}	$\hat{\boldsymbol{n}}_z \cdot (\vec{\boldsymbol{M}}^{S/A_0} = \frac{{}^N d^{} \vec{\boldsymbol{H}}^{S/A_0}}{dt} +)$
θ_{C}	Rotate	$\hat{n}_z = \hat{c}_z$	С	Below	C_{cm}	$oldsymbol{\hat{n}}_z \cdot (oldsymbol{ec{M}}^{S/C_{cm}} = rac{^N d}{dt}^{N} oldsymbol{ec{H}}^{S/C_{cm}} onumber$

FBDs:

Simplifications/Solve:

No simplifications were made further from the assumptions listed under the **Model** section. MotionGenesis was utilized to form the ODEs for this system in terms of θ_A ", θ_B ", θ_C " and also to solve them numerically. Both MotionGenesis and MATLAB were used for plotting and GIF generation. The code used in MotionGenesis & MATLAB can be seen in the **Appendix** section.

Results and Discussion:

The pendulum is given a perturbation such that $\theta_A = 30 \text{ deg}$, $\theta_B = 90 \text{ deg}$, $\theta_C = 0 \text{ deg}$, $\theta_A' = 0 \text{ rad/sec}$, $\theta_B' = 0 \text{ rad/sec}$, $\theta_C' = 0 \text{ rad/sec}$ initially. No is shown as a \bullet and the Ccm position is shown as a \bullet in the below GIF (link).

Appendix:

MG Code:

```
NewtonianFrame N
RigidBody A % Rod
RigidBody C % Ring
RigidFrame B % to characterize the rotation of Ccm about the joint at Ao
Variable qA" % Az> measure of angle from Nx> to Ax>
Variable qB" % Bz> measure of angle from Ax> to Bx>
Variable qC" % Bz> measure of C's angular velocity in B
Constant L1=0.6 m
Constant L2=0.4 m
Constant r=0.25 m
Constant g=9.8 m/s<sup>2</sup>
A.SetMass(mA=2 kg)
C.SetMass(mC=1 kg)
A.SetInertia(Acm, IAxx, IAyy, IAzz=mA*L^2*1/12)
C.SetInertia(Ccm, ICxx, ICyy, ICzz= mC*r^2)
%Specifying rotations
A.RotateZ(N,qA)
B.RotateZ(A,qB)
C.RotateZ(B, qC)
%Specifying points
Acm.Translate(No, (L1-L2)/2*Ay>)
Ao.Translate(Acm, -(L1+L2)/2*Ay>)
Ccm.Translate(Ao, -r*By>)
%Specifying forces
System.AddForceGravity(-g*Ny>)
Dynamics[1]=Dot(Az>,System(A,C).GetDynamics(No))
Dynamics[2]=Dot(Az>,C.GetDynamics(Ao))
Dynamics[3]=Dot(Az>,C.GetDynamics(Ccm))
KineticEnergy = System.GetKineticEnergy()
GravityPotentialEnergy = System.GetForceGravityPotentialEnergy( -g*Ny>, No )
MechanicalEnergy = KineticEnergy + GravityPotentialEnergy
xc=Dot(Nx>,Ccm.GetPosition(No))
yc=Dot(Ny>,Ccm.GetPosition(No))
```

```
Input tFinal = 10 sec, tStep = 0.02 sec, absError = 1.0E-08
Input qC = 0 deg, qC'=0 rad/sec, qA=30 deg, qB=90 deg, qA'=0 deg/sec, qB'=0 deg/sec
Solve(Dynamics=0,qA",qB",qC")
Output t sec, qC deg, qA deg, qB deg, xc m, yc m, Mechanical Energy Joules
ODE() MIPSI.m
%Plot MIPSI.1 [1,5]
Quit
```

After running the MIPSI.m file generated using the above code, the following code was used to generate the GIF on MATLAB.

```
vars = load( 'MIPSI.1' );
t = vars(:,1);
xc = vars(:,2);
yc = vars(:,3);
h = figure;
filename = 'track Ccm';
for n = 1:length(xc)
   plot(0,0,"Marker","*");
  hold on;
  for i=1:n
     a=1-i/n;
     b=1-i/n;
     c=1-i/n;
     plot(xc(i),yc(i),"Marker","o","Color",[a b c]);
     axis([-0.8,0.8,-1,0.5]);
  end
  hold off;
  drawnow
  % Capture the plot as an image
  frame = getframe(h);
  im = frame2im(frame);
  [imind,cm] = rgb2ind(im,256);
  % Write to the GIF File
  if n == 1
```

```
imwrite(imind,cm,filename,'gif', 'Loopcount',inf);
else
   imwrite(imind,cm,filename,'gif','DelayTime',0.05,'WriteMode','append');
end
end
```