Computational Physics Laboratory - I

Feedback

Feedback

- We find that most of the students did not understand amplitude modulation, properly.
- Therefore, we provide the basic information of the amplitude modulation in this document.
- Moreover, we added an example to show how to programmatically finding the Fourier Spectrum of a signal.
- Read this document and solve the problems related to amplitude modulation sections of CPL106 lab sheet.
- You have one week to submit the answers.
- Remember that when you plot the Fourier spectrum (Results of FFT), you need to plot only for positive frequencies (This is valid for all the FFT related questions).

Amplitude Modulation (AM)

- Signals are modulated to transmit and receive the information from one location to another.
- Original signal or the information we need to transmit is known as modulating signal.

$$S_m(t) = A_m \sin(2\pi F_m t)$$

The high frequency signal which carry the signal is known as carrier signal.

$$S_c(t) = A_c \sin(2\pi F_c t)$$

- In amplitude modulation, amplitude of the carrier wave is varying according to the modulating signal.
- Thus, the modulated signal becomes

$$S(t) = \underbrace{(A_c + A_m \sin(2\pi F_m t))}_{\text{New Amplitude}} \sin(2\pi F_c t)$$

Amplitude Modulation (AM)

$$S(t) = (A_c + A_m \sin(2\pi F_m t)) \sin(2\pi F_c t)$$

$$F_c > F_m$$

If you plot the modulated signal s(t), you will obtain a graph like above.

Fourier Transform of AM Signal

- Three frequencies are appearing in the Fourier spectrum.
- Those frequencies are

•
$$F_c - F_m$$

- F_c
- $F_m + F_c$
- Bandwidth = $F_{\text{max}} F_{\text{min}} = 2 F_m$

Fourier Transform of AM signal

The following modulating signal, $S_m(t)$, is an addition of two signals with different frequencies (F_{m1} and F_{m2}).

$$S_m(t) = A_{m1}\sin(2\pi F_{m1}t) + A_{m2}\sin(2\pi F_{m2}t)$$

The carrier signal, $S_c(t)$, is given by

$$S_c(t) = A_c \sin(2\pi F_c t)$$

So, the modulated signal, S(t), is given by

$$S(t) = (A_c + A_{m1}\sin(2\pi F_{m1}t) + A_{m2}\sin(2\pi F_{m2}t))\sin(2\pi F_c t)$$

$$F_{m2} > F_{m1}$$

Example

You are given an amplitude modulated (AM) signal x(t) defined as follows:

```
x(t) = (1 + 0.5\sin(2\pi.10t) + 0.2\sin(2\pi.40t))\cos(2\pi.100t)
```

```
#The function for generating the signal
def xm(t):
    return (1+0.5* np.sin(2*np.pi*10*t)+0.2* np.sin(2*np.pi*40*t))*np.cos(2*np.pi*100*t)
```

We need to obtain the Fourier Transform of the above modulated signal.

We need to sample the signal first. The sampling frequency 1000 Hz. The duration of the signal is 1s.

```
#Total number of samples is 1000
#Signal duration is 1 seconds
#Sampling frequency is 1000 Hz
tmax=1
Fs=1000
ts=1/Fs
t=np.arange(0,tmax,ts)

#The signal
x_sig = xm(t)
```

• Let's plot the sampled modulated signal.

```
plt.plot(t,x_sig)
plt.xlabel("Time")
plt.ylabel("X")
```

Text(0, 0.5, 'X')

• You need to plot the Fourier transformed signal only for the positive frequencies

```
#Fourier transforming the signal
ft=fft(x_sig)

#Finding the frequencies
F_sig= fftfreq(len(x_sig),d=ts)
```

```
#Need to find the magnitudes of the Fourier transformed signal
magnitude = np.abs(ft)

# Select only the positive frequencies
positive_mask = F_sig >= 0
positive_F_sig = F_sig[positive_mask]

# Select only the magnitudes corresponding to the positive frequencies
positive_magnitude = magnitude[positive_mask]

plt.plot(positive_F_sig,positive_magnitude)
plt.xlim(0,200)
plt.xlabel("Frequencies")
plt.ylabel("Frequencies")
```

Text(0, 0.5, 'Ft')

