COMP3670 2021 Theory Assignment 1

Yuxuan Lin - u6828533@anu.edu.au

August 24, 2021

Introduction to Machine Learning

By turning in this assignment, I agree by the ANU honor code and declare that all of this is my own work.

Exercise 1

(a) We first perform Gaussian Elimination on the augmented matrix $\begin{bmatrix} 0 & 1 & 5 & | & -4 \\ 1 & 4 & 3 & | & -2 \\ 2 & 7 & 1 & | & -2 \end{bmatrix}$ to get the row-echelon form.

$$\begin{bmatrix} 0 & 1 & 5 & -4 \\ 1 & 4 & 3 & -2 \\ 2 & 7 & 1 & -2 \end{bmatrix} \xrightarrow[R_1, R_2]{Swap} \begin{bmatrix} 1 & 4 & 3 & -2 \\ 0 & 1 & 5 & -4 \\ 2 & 7 & 1 & -2 \end{bmatrix} \xrightarrow[R_2, R_3]{Swap} \begin{bmatrix} 1 & 4 & 3 & -2 \\ 2 & 7 & 1 & -2 \\ 0 & 1 & 5 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & 3 & -2 \\ 2 & 7 & 1 & -2 \\ 0 & 1 & 5 & -4 \end{bmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{bmatrix} 1 & 4 & 3 & -2 \\ 0 & -1 & -5 & 2 \\ 0 & 1 & 5 & -4 \end{bmatrix} \xrightarrow{R_3 = R_2 - R_3} \begin{bmatrix} 1 & 4 & 3 & -2 \\ 0 & -1 & -5 & 2 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

We can get the REF $\begin{bmatrix} 1 & 4 & 3 & | & -2 \\ 0 & -1 & -5 & | & 2 \\ 0 & 0 & 0 & | & -2 \end{bmatrix}$. From the third row we have 0+0+0=-2, which is a contradiction, hence no solution exists.

The solution space of $\mathbf{A}\mathbf{x} = \mathbf{b}$ is : $\mathbf{S} = \emptyset$.

(b) We first perform Gaussian Elimination on the augmented matrix $\begin{bmatrix} 2 & 3 & 1 & | & 6 \\ 4 & 0 & 3 & | & 12 \end{bmatrix}$ to get the row-echelon form.

$$\begin{bmatrix} 2 & 3 & 1 & 6 \\ 4 & 0 & 3 & 12 \end{bmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{bmatrix} 2 & 3 & 1 & 6 \\ 0 & -6 & 1 & 0 \end{bmatrix}$$

1

We can get the REF $\begin{bmatrix} 2 & 3 & 1 & | & 6 \\ 0 & -6 & 1 & | & 0 \end{bmatrix}$. We observe that the third column is not a pivot column, thus x_3 is a free variable. Then, we perform the following steps to get a general solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Step 1: Find a particular solution to Ax = b.

Let the only free variable be 0 (i.e. let $x_3 = 0$), calculate the value of basic variables.

$$\begin{bmatrix} 2 & 3 & 1 & 6 \\ 0 & -6 & 1 & 0 \end{bmatrix}$$
$$0 - 6x_2 + 0 = 0 \implies x_2 = 0$$
$$2x_1 + 3x_2 + 0 = 6 \implies x_1 = 3$$

Our particular solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is : $\begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$.

Step 2: Find all solutions to Ax = 0.

Let the only free variable to be 1 (i.e. let $x_3 = 1$), calculate the value of basic variables.

$$\begin{bmatrix} 2 & 3 & 1 & 0 \\ 0 & -6 & 1 & 0 \end{bmatrix}$$

$$0 - 6x_2 + 1 = 0 \implies x_2 = \frac{1}{6}$$

$$2x_1 + 3x_2 + 1 = 0 \implies x_1 = -\frac{3}{4}$$

$$\begin{bmatrix} -\frac{3}{4} \\ \frac{1}{6} \\ 1 \end{bmatrix} = \gamma \begin{bmatrix} -9 \\ 2 \\ 12 \end{bmatrix}, \gamma \in \mathbb{R}$$

All solutions to $\mathbf{A}\mathbf{x} = \mathbf{0}$ is : $\left\{ x \in \mathbb{R}^3 : x = \lambda \begin{bmatrix} -9\\2\\12 \end{bmatrix}, \lambda \in \mathbb{R} \right\}$.

Step 3: Combine the solutions from Step 1 and Step 2 to the general solution.

The solution space of
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 is : $\mathcal{S} = \left\{ x \in \mathbb{R}^3 : x = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} -9 \\ 2 \\ 12 \end{bmatrix}, \lambda \in \mathbb{R} \right\}.$

Exercise 2

We first perform Gaussian Elimination on the given matrix to get the row-echelon form.

$$\boldsymbol{A} = \begin{bmatrix} 1 & a & b \\ 1 & 1 & c \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{Swap} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & b \\ 1 & 1 & c \end{bmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & a - 1 & b - 1 \\ 0 & 0 & c - 1 \end{bmatrix}$$

For an upper triangular matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & a-1 & b-1 \\ 0 & 0 & c-1 \end{bmatrix}$, its determinant $\det(\mathbf{A})$ is equal to the product of all the diagonal elements of A, that is

$$\det(\mathbf{A}) = \prod_{i=1}^{3} a_{ii} = 1(a-1)(c-1) = (a-1)(c-1)$$

For the matrix A to be invertible, its determinant should not be zero, that is

$$\det(\mathbf{A}) \neq 0 \implies (a-1)(c-1) \neq 0 \implies a \neq 1 \land c \neq 1$$

Hence, the inverse of the given matrix exists if and only if $a \neq 1$ and $c \neq 1$ for the values of $[a,b,c]^T \in \mathbb{R}^3$.

Exercise 3

- (a) No, \mathbf{A} is not a subspace of \mathbb{R}^2 . Consider the vector $\mathbf{T} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \mathbf{A}$, its multiplication by the scalar $\lambda = -1$ is : $\lambda \mathbf{T} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \notin \mathbf{A}$. Thus, it does not satisfy axiom of closure.
- (b) Yes, \boldsymbol{B} is a subspace of \mathbb{R}^3 .

First we have $\mathbf{B} \subseteq \mathbb{R}^3$, $\mathbf{B} \neq \emptyset$, and in particular, since 0+0+0=0, for the zero vector of the vector space \mathbb{R}^3 we have $\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbf{B}$.

Second, with respect to the outer operation: $\forall \lambda \in \mathbb{R}, \forall T \in B, T = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, then

$$x + y + z = 0$$
, and $\lambda x + \lambda y + \lambda z = \lambda(x + y + z) = 0$, we get $\lambda \mathbf{T} = \begin{bmatrix} \lambda x \\ \lambda y \\ \lambda z \end{bmatrix} \in \mathbf{B}$.

Third, with respect to the inner operation: $\forall \boldsymbol{T}_1, \boldsymbol{T}_2 \in \boldsymbol{B}, \ \boldsymbol{T}_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}, \ \boldsymbol{T}_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$

then
$$x_1 + y_1 + z_1 = 0$$
, $x_2 + y_2 + z_2 = 0$, and $(x_1 + x_2) + (y_1 + y_2) + (z_1 + z_2) = (x_1 + y_1 + z_1) + (x_2 + y_2 + z_2) = 0$, we get $\mathbf{T}_1 + \mathbf{T}_2 = \begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{bmatrix} \in \mathbf{B}$.

Thus, it also satisfies axiom of closure. In sum, all the subspace axioms are satisfied, and we have proved that \mathbf{B} is a subspace of \mathbb{R}^3 .

- (c) No, C is not a subspace of \mathbb{R}^2 . Consider the vectors $T_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in C$, $T_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in C$, the vector of their addition is: $T_1 + T_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \notin C$. Thus, it does not satisfy axiom of closure.
- (d) It depends on the value of \boldsymbol{b} .

If $b \neq 0$, **D** is not a subspace of \mathbb{R}^n :

 $\forall T \in D, AT = b \neq 0$, then $\forall T \in D, T \neq 0$, as known as $0 \notin D$. Thus, it does not satisfy axiom of zero vector.

If b = 0, D is a subspace of \mathbb{R}^n :

First we have $D \subseteq \mathbb{R}^n$, $D \neq \emptyset$, and in particular, for the zero vector $\mathbf{0}$, we have $A * \mathbf{0} = \mathbf{0} = \mathbf{b}$, hence $\mathbf{0} \in D$.

Second, with respect to the outer operation: $\forall \lambda \in \mathbb{R}, \forall T \in D$, then AT = b = 0, and $A(\lambda T) = \lambda(AT) = 0 = b$, we get $\lambda T \in D$.

Third, with respect to the inner operation: $\forall T_1, T_2 \in D$, then $AT_1 = b = 0$, $AT_2 = b = 0$, and $A(T_1 + T_2) = AT_1 + AT_2 = 0 = b$, we get $T_1 + T_2 \in D$.

Thus, it also satisfies axiom of closure. In sum, all the subspace axioms are satisfied, and we have proved that D is a subspace of \mathbb{R}^n if and only if b = 0.

Exercise 4

- (a) Since T is a linear transformation, we have $T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0}) + T(\mathbf{0}) = 2T(\mathbf{0})$, and $T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0})$, we derive $T(\mathbf{0}) = 2T(\mathbf{0})$, thus $T(\mathbf{0}) = \mathbf{0}$.
- (b) **Proof:** We will prove by induction that, for all $n \in \mathbb{Z}_+$,

$$T(c_1\boldsymbol{v}_1 + \dots + c_n\boldsymbol{v}_n) = c_1T(\boldsymbol{v}_1) + \dots + c_nT(\boldsymbol{v}_n)$$
(1)

Base case: When n = 1, $LFS = T(c_1 \mathbf{v}_1) = T(c_1 \mathbf{v}_1 + \mathbf{0}) = c_1 T(\mathbf{v}_1) + T(\mathbf{0})$, and we have proved that $T(\mathbf{0}) = \mathbf{0}$ in (a), thus $LFS = c_1 T(\mathbf{v}_1)$, and $RHS = c_1 T(\mathbf{v}_1)$, so both sides are equal and (1) is true for n = 1.

Induction step: Let $k \in \mathbb{Z}_+$ be given and suppose (1) is true for n = k. Then

$$T(c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k + c_{k+1} \mathbf{v}_{k+1}) = T((c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k) + c_{k+1} \mathbf{v}_{k+1})$$

$$= T(c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k) + T(c_{k+1} \mathbf{v}_{k+1})$$

$$= c_1 T(\mathbf{v}_1) + \dots + c_k T(\mathbf{v}_k) + T(c_{k+1} \mathbf{v}_{k+1})$$

$$= c_1 T(\mathbf{v}_1) + \dots + c_k T(\mathbf{v}_k) + c_{k+1} T(\mathbf{v}_{k+1}).$$

Thus, (1) holds for n = k + 1, and the proof of the induction step is complete.

Conclusion: By the principle of induction, (1) is true for all $n \in \mathbb{Z}_+$.

(c) As $\{v_1, ..., v_n\}$ is a set of linearly dependent vectors in V, there exist $\lambda_1, ..., \lambda_2$, with at least one $\lambda_n \neq 0$, such that

$$\lambda_1 \boldsymbol{v}_1 + \lambda_2 \boldsymbol{v}_2 + \ldots + \lambda_n \boldsymbol{v}_n = \mathbf{0}$$

We know $T: V \to W$ is a linear transformation, $\{v_1, ..., v_n\}$ is a set of vectors in V, and $\boldsymbol{w}_n := T(\boldsymbol{v}_n)$, then $\{\boldsymbol{w}_1, ..., \boldsymbol{w}_n\}$ is a set of vectors in W.

Multiply $\lambda_1 \boldsymbol{v}_1 + \lambda_2 \boldsymbol{v}_2 + \dots + \lambda_n \boldsymbol{v}_n$ by T, we get

$$T(\lambda_1 \boldsymbol{v}_1 + \lambda_2 \boldsymbol{v}_2 + \dots + \lambda_n \boldsymbol{v}_n) = \lambda_1 T(\boldsymbol{v}_1) + \lambda_2 T(\boldsymbol{v}_2) + \dots + \lambda_n T(\boldsymbol{v}_n)$$
$$= \lambda_1 \boldsymbol{w}_1 + \lambda_2 \boldsymbol{w}_2 + \dots + \lambda_n \boldsymbol{w}_n$$

 $T(\lambda_1 \boldsymbol{v}_1 + \lambda_2 \boldsymbol{v}_2 + ... + \lambda_n \boldsymbol{v}_n) = T(\boldsymbol{0})$, and we have proved that $T(\boldsymbol{0}) = \boldsymbol{0}$ in (a), then there exist $\lambda_1, ..., \lambda_2$, with at least one $\lambda_n \neq 0$, such that

$$\lambda_1 \boldsymbol{w}_1 + \lambda_2 \boldsymbol{w}_2 + \dots + \lambda_n \boldsymbol{w}_n = \boldsymbol{0}$$

Thus, $\{\boldsymbol{w}_1,...,\boldsymbol{w}_n\}$ is a set of linearly dependent vectors in W.

Exercise 5

(a) Let V be the vector space and $\langle \cdot, \cdot \rangle = \Omega : V \times V \to \mathbb{R}$ is symmetric and linear in the first argument, for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in V, \lambda, \psi \in \mathbb{R}$ that

$$\Omega(\boldsymbol{x}, \lambda \boldsymbol{y} + \psi \boldsymbol{z}) = \Omega(\lambda \boldsymbol{y} + \psi \boldsymbol{z}, \boldsymbol{x}) \cdots (\text{symmetric})$$

$$= \lambda \Omega(\boldsymbol{y}, \boldsymbol{x}) + \psi \Omega(\boldsymbol{z}, \boldsymbol{x}) \cdots (\text{linear in the first argument})$$

$$= \lambda \Omega(\boldsymbol{x}, \boldsymbol{y}) + \psi \Omega(\boldsymbol{x}, \boldsymbol{z}) \cdots (\text{symmetric})$$

We get $\Omega(\boldsymbol{x}, \lambda \boldsymbol{y} + \psi \boldsymbol{z}) = \lambda \Omega(\boldsymbol{x}, \boldsymbol{y}) + \psi \Omega(\boldsymbol{x}, \boldsymbol{z})$, then Ω is linear in the second argument as well. Hence, $\langle \cdot, \cdot \rangle$ is a bilinear mapping.

(b) $\langle \cdot, \cdot \rangle$ is **symmetric**: Let $\boldsymbol{x} := [x_1, x_2]^\top, \boldsymbol{y} := [y_1, y_2]^\top \in \mathbb{R}^2$. Then

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = x_1 y_1 + x_2 y_2 + 2(x_1 y_2 + x_2 y_1)$$

= $y_1 x_1 + y_2 x_2 + 2(y_2 x_1 + y_1 x_2)$
= $y_1 x_1 + y_2 x_2 + 2(y_1 x_2 + y_2 x_1) = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$

where we exploited the commutative of addition and multiplication in \mathbb{R} . Therefore, $\langle \cdot, \cdot \rangle$ is symmetric.

 $\langle \cdot, \cdot \rangle$ is **NOT positive definite**: Consider $\boldsymbol{x} := [1, -1]^{\top} \in \mathbb{R}^2$. Then

$$\langle \boldsymbol{x}, \boldsymbol{x} \rangle = x_1^2 + x_2^2 + 2(x_1x_2 + x_2x_1)$$

= $1^2 + (-1)^2 + 2 \cdot (1 \cdot (-1) + (-1) \cdot 1)$
= -2

we get $\exists x \in V \setminus \{0\} : \langle x, x \rangle < 0$. Hence, $\langle \cdot, \cdot \rangle$ is not positive definite.

 $\langle \cdot, \cdot \rangle$ is **bilinear**: Let $z := [z_1, z_2]^{\top} \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}$. Then

$$\langle \boldsymbol{x} + \boldsymbol{y}, \boldsymbol{z} \rangle = (x_1 + y_1)z_1 + (x_2 + y_2)z_2 + 2((x_1 + y_1)z_2 + (x_2 + y_2)z_1)$$

= $x_1z_1 + x_2z_2 + 2(x_1z_2 + x_2z_1) + y_1z_1 + y_2z_2 + 2(y_1z_2 + y_2z_1)$
= $\langle \boldsymbol{x}, \boldsymbol{z} \rangle + \langle \boldsymbol{y}, \boldsymbol{z} \rangle$

$$\langle \lambda \boldsymbol{x}, \boldsymbol{y} \rangle = \lambda x_1 y_1 + \lambda x_2 y_2 + 2(\lambda x_1 y_2 + \lambda x_2 y_1)$$

= $\lambda (x_1 y_1 + x_2 y_2 + 2(x_1 y_2 + x_2 y_1))$
= $\lambda \langle \boldsymbol{x}, \boldsymbol{y} \rangle$

Thus, $\langle \cdot, \cdot \rangle$ is linear in its first argument. As we have proved in (a), by symmetry, $\langle \cdot, \cdot \rangle$ is bilinear.

Overall, $\langle \cdot, \cdot \rangle$ is **symmetric** and **bilinear**.

Exercise 6

(a) **Theorem:** If x and y are orthogonal, then they are linearly independent. (TRUE)

Proof: By contradiction; assume that if \boldsymbol{x} and \boldsymbol{y} are orthogonal, then they are linearly dependent, which means that there exists a non-trivial linear combination, such that $\lambda_1 \boldsymbol{x} + \lambda_2 \boldsymbol{y} = \boldsymbol{0}$ with at least one $\lambda_n \neq 0$. Since \boldsymbol{x} and \boldsymbol{y} are orthogonal, $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$.

Consider the inner product $\langle \lambda_1 \boldsymbol{x} + \lambda_2 \boldsymbol{y}, \boldsymbol{y} \rangle$, apply homogeneity in the first argument, we have

$$\langle \lambda_1 \boldsymbol{x} + \lambda_2 \boldsymbol{y}, \boldsymbol{y} \rangle = \langle \boldsymbol{0}, \boldsymbol{y} \rangle$$

= $\langle 0 \boldsymbol{y}, \boldsymbol{y} \rangle$
= $0 \langle \boldsymbol{y}, \boldsymbol{y} \rangle$
= 0

Consider the inner product $\langle \lambda_1 \boldsymbol{x} + \lambda_2 \boldsymbol{y}, \boldsymbol{y} \rangle$, apply linear mapping in the first argument, we have

$$\langle \lambda_1 \boldsymbol{x} + \lambda_2 \boldsymbol{y}, \boldsymbol{y} \rangle = \lambda_1 \langle \boldsymbol{x}, \boldsymbol{y} \rangle + \lambda_2 \langle \boldsymbol{y}, \boldsymbol{y} \rangle$$

= $0 + \lambda_2 \langle \boldsymbol{y}, \boldsymbol{y} \rangle$
= $\lambda_2 \langle \boldsymbol{y}, \boldsymbol{y} \rangle$

Thus, we have $\lambda_2 \langle \boldsymbol{y}, \boldsymbol{y} \rangle = 0$. Because inner product is positive definite, and \boldsymbol{y} is a non-zero vector, we have $\langle \boldsymbol{y}, \boldsymbol{y} \rangle > 0$, then $\lambda_2 = 0$.

Similarly, consider the inner product $\langle \boldsymbol{x}, \lambda_1 \boldsymbol{x} + \lambda_2 \boldsymbol{y} \rangle$, apply homogeneity in the first argument and linear mapping in the first argument, we have

$$\langle \boldsymbol{x}, \lambda_1 \boldsymbol{x} + \lambda_2 \boldsymbol{y} \rangle = 0 = \lambda_1 \langle \boldsymbol{x}, \boldsymbol{x} \rangle$$

Thus, we have $\lambda_1 \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$. Because inner product is positive definite, and \boldsymbol{x} is a non-zero vector, we have $\langle \boldsymbol{x}, \boldsymbol{x} \rangle > 0$, then $\lambda_1 = 0$.

From above, we have $\lambda_1 = \lambda_2 = 0$. However, this contradicts our earlier assumption that at least one $\lambda_n \neq 0$, so our assumption must have been wrong. Therefore, if \boldsymbol{x} and \boldsymbol{y} are orthogonal, then they are linearly independent.

(b) **Theorem:** If \boldsymbol{x} and \boldsymbol{y} are linearly independent, then they are orthogonal. (FALSE) **Disproof:** Let $\boldsymbol{x'}$, $\boldsymbol{y'}$ be non-zero and orthogonal vectors in V, and $\boldsymbol{x'} \neq \boldsymbol{y'}$, then we have $\langle \boldsymbol{x'}, \boldsymbol{x'} \rangle > 0$, $\langle \boldsymbol{y'}, \boldsymbol{y'} \rangle > 0$, and $\langle \boldsymbol{x'}, \boldsymbol{y'} \rangle = 0$. From the conclusion in (a), we derive $\boldsymbol{x'}$ and $\boldsymbol{y'}$ are linearly independent.

Let x := x' - y' and y := y', I will first prove that x and y are linearly independent.

Proof by contradiction: Assume that \boldsymbol{x} and \boldsymbol{y} are linearly dependent, which means that there exists a non-trivial linear combination, such that $\lambda_1 \boldsymbol{x} + \lambda_2 \boldsymbol{y} = \boldsymbol{0}$ with at least one $\lambda_n \neq 0$. Then

$$\lambda_1 \boldsymbol{x} + \lambda_2 \boldsymbol{y} = \lambda_1 (\boldsymbol{x'} - \boldsymbol{y'}) + \lambda_2 \boldsymbol{y'}$$

= $\lambda_1 \boldsymbol{x'} + (\lambda_2 - \lambda_1) \boldsymbol{y'} = \boldsymbol{0}$

We get $\lambda_1 x' + (\lambda_2 - \lambda_1)y' = 0$. Since x' and y' are linearly independent, only the trivial solution exists, thus $\lambda_1 = (\lambda_2 - \lambda_1) = 0$. Then, $\lambda_1 = \lambda_2 = 0$. However, this contradicts our earlier assumption that at least one $\lambda_n \neq 0$, so our assumption must have been wrong. Therefore, x and y are linearly independent.

For the next, I will prove that \boldsymbol{x} and \boldsymbol{y} are not orthogonal.

Consider the inner product $\langle x, y \rangle$, apply linear mapping in the first argument, we have

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{x'} - \boldsymbol{y'}, \boldsymbol{y'} \rangle = \langle \boldsymbol{x'}, \boldsymbol{y'} \rangle + (-1)\langle \boldsymbol{y'}, \boldsymbol{y'} \rangle$$

= $0 + (-1)\langle \boldsymbol{y'}, \boldsymbol{y'} \rangle$
= $(-1)\langle \boldsymbol{y'}, \boldsymbol{y'} \rangle$

Since $\langle \boldsymbol{y'}, \boldsymbol{y'} \rangle > 0$, we derive $\langle \boldsymbol{x}, \boldsymbol{y} \rangle \neq 0$, then \boldsymbol{x} and \boldsymbol{y} are NOT orthogonal. We have found a counter-example to the original theorem.

Overall, if x and y are linearly independent, we cannot derive that they are orthogonal.

Exercise 7

(a) Yes, $\|\cdot\|_a \stackrel{\varepsilon}{\sim} \|\cdot\|_a$ for all $\varepsilon \in (0,1]$.

Since $0 < \varepsilon \le 1$, then $1 - \varepsilon \ge 0$, and notice $\|\boldsymbol{v}\|_a \ge 0$, we have

$$(1 - \varepsilon) \| \mathbf{v} \|_{a} \ge 0$$

$$\| \mathbf{v} \|_{a} - \varepsilon \| \mathbf{v} \|_{a} \ge 0$$

$$\| \mathbf{v} \|_{a} \ge \varepsilon \| \mathbf{v} \|_{a}$$
(1)

Since $0 < \varepsilon \le 1$, then $\frac{1}{\varepsilon} \ge 1$, and notice $\|\boldsymbol{v}\|_a \ge 0$, multiple (1) by $\frac{1}{\varepsilon}$, we have

$$\frac{1}{\varepsilon} \|\boldsymbol{v}\|_a \ge \|\boldsymbol{v}\|_a \tag{2}$$

Combine (1) and (2), we have : $\varepsilon ||v||_a \le ||v||_a \le \frac{1}{\varepsilon} ||v||_a$.

Hence, it is true that $\|\cdot\|_a \stackrel{\varepsilon}{\sim} \|\cdot\|_a$, ε -equivalence is reflexive for all $\varepsilon \in (0,1]$.

(b) Yes, $\|\cdot\|_a \stackrel{\varepsilon}{\sim} \|\cdot\|_b$ implies $\|\cdot\|_b \stackrel{\varepsilon}{\sim} \|\cdot\|_a$ for all $\varepsilon \in (0,1]$.

From $\|\cdot\|_a \stackrel{\varepsilon}{\sim} \|\cdot\|_b$, we have $\varepsilon \|v\|_a \leq \|v\|_b \leq \frac{1}{\varepsilon} \|v\|_a$, then

$$\|\boldsymbol{v}\|_b \le \frac{1}{\varepsilon} \|\boldsymbol{v}\|_a \tag{1}$$

$$\varepsilon \|\boldsymbol{v}\|_a \le \|\boldsymbol{v}\|_b \tag{2}$$

Since $0 < \varepsilon \le 1$, and notice $\|\boldsymbol{v}\|_a, \|\boldsymbol{v}\|_b \ge 0$, multiple (1) by ε , we have

$$\varepsilon \|\boldsymbol{v}\|_b \le \|\boldsymbol{v}\|_a \tag{3}$$

Since $0 < \varepsilon \le 1$, then $\frac{1}{\varepsilon} \ge 1$, and notice $\|\boldsymbol{v}\|_a$, $\|\boldsymbol{v}\|_b \ge 0$, multiple (2) by $\frac{1}{\varepsilon}$, we have

$$\|\boldsymbol{v}\|_a \le \frac{1}{\varepsilon} \|\boldsymbol{v}\|_b \tag{4}$$

Combine (3) and (4), we have : $\varepsilon \| \boldsymbol{v} \|_b \le \| \boldsymbol{v} \|_a \le \frac{1}{\varepsilon} \| \boldsymbol{v} \|_b$. Hence, $\| \cdot \|_b \stackrel{\varepsilon}{\sim} \| \cdot \|_a$.

Overall, $\|\cdot\|_a \stackrel{\varepsilon}{\sim} \|\cdot\|_b$ implies $\|\cdot\|_b \stackrel{\varepsilon}{\sim} \|\cdot\|_a$, ε -equivalence is symmetric for all $\varepsilon \in (0,1]$.

(c) **Proof:** Since $V = \mathbb{R}^2$, let $\|\boldsymbol{v}\|_1 := |v_1| + |v_2|$ and $\|\boldsymbol{v}\|_2 := \sqrt{v_1^2 + v_2^2}$.

Helper inequation (1): $(|v_1| - |v_2|)^2 \ge 0$, then

$$(|v_1| - |v_2|)^2 = v_1^2 + v_2^2 - 2|v_1v_2|$$

$$= 2(v_1^2 + v_2^2) - (v_1^2 + v_2^2 + 2|v_1v_2|)$$

$$= 2(\sqrt{v_1^2 + v_2^2})^2 - (|v_1| + |v_2|)^2$$

$$= 2||\mathbf{v}||_2^2 - ||\mathbf{v}||_1^2 \ge 0$$

Since $2\|\boldsymbol{v}\|_{2}^{2} - \|\boldsymbol{v}\|_{1}^{2} \geq 0$, we have $\|\boldsymbol{v}\|_{2}^{2} \geq \frac{1}{2}\|\boldsymbol{v}\|_{1}^{2}$, and notice $\|\boldsymbol{v}\|_{1}, \|\boldsymbol{v}\|_{2} \geq 0$, we derive by square root that : $\|\boldsymbol{v}\|_{2} \geq \frac{1}{\sqrt{2}}\|\boldsymbol{v}\|_{1}$, then $\frac{\|\boldsymbol{v}\|_{2}}{\|\boldsymbol{v}\|_{1}} \geq \frac{1}{\sqrt{2}}$.

Consider $\varepsilon \in (0,1]$ that makes $\varepsilon \|\boldsymbol{v}\|_1 \leq \|\boldsymbol{v}\|_2$, then $\varepsilon \leq \frac{\|\boldsymbol{v}\|_2}{\|\boldsymbol{v}\|_1}$. Since $\frac{\|\boldsymbol{v}\|_2}{\|\boldsymbol{v}\|_1} \geq \frac{1}{\sqrt{2}}$, the largest ε possible is : $\varepsilon = \frac{1}{\sqrt{2}}$, and it makes

$$\frac{1}{\sqrt{2}} \|\boldsymbol{v}\|_1 \le \|\boldsymbol{v}\|_2 \tag{1}$$

Helper inequation (2): $v_1^2 + v_2^2 + 4|v_1v_2| \ge 0$, then

$$2v_1^2 + 2v_2^2 + 4|v_1v_2| \ge v_1^2 + v_2^2$$

$$2(v_1^2 + v_2^2 + 2|v_1v_2|) \ge v_1^2 + v_2^2$$
$$2(|v_1| + |v_2|)^2 \ge (\sqrt{v_1^2 + v_2^2})^2$$
$$2||\boldsymbol{v}||_1^2 \ge ||\boldsymbol{v}||_2^2$$

Notice $\|\boldsymbol{v}\|_1, \|\boldsymbol{v}\|_2 \geq 0$, we derive by square root that

$$\sqrt{2} \|\boldsymbol{v}\|_1 \ge \|\boldsymbol{v}\|_2 \tag{2}$$

Combine (1) and (2), we have : $\frac{1}{\sqrt{2}} \| \boldsymbol{v} \|_1 \le \| \boldsymbol{v} \|_2 \le \sqrt{2} \| \boldsymbol{v} \|_1$.

Hence, for $V = \mathbb{R}^2$, it is true that $\|\cdot\|_1 \stackrel{\varepsilon}{\sim} \|\cdot\|_2$ for the the largest possible $\varepsilon = \frac{1}{\sqrt{2}}$.

Exercise 8

(a) We perform Gaussian Elimination on the augmented matrix $\begin{bmatrix} 1 & 2 & | & 12 \\ 1 & 1 & | & 12 \\ 1 & 0 & | & 18 \end{bmatrix}$ to get the row-echelon form.

$$\begin{bmatrix} 1 & 2 & 12 \\ 1 & 1 & 12 \\ 1 & 0 & 18 \end{bmatrix} \xrightarrow{R_2 = R_1 - R_2} \begin{bmatrix} 1 & 2 & 12 \\ 0 & 1 & 0 \\ 0 & 2 & -6 \end{bmatrix} \xrightarrow{R_3 = 2R_2 - R_3} \begin{bmatrix} 1 & 2 & 12 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

We can get the REF $\begin{bmatrix} 1 & 2 & 12 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \end{bmatrix}$. From the third row we have 0 + 0 = 6, which is a

contradiction, hence no solution exists. Thus, $\begin{bmatrix} 12\\12\\18 \end{bmatrix}$ cannot be represented by a linear

combination of $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$, then $\boldsymbol{x} \notin U$.

(b) First, we determine a basis of U. Writing the spanning vectors as the columns of a matrix A, we use Gaussian elimination to bring A into reduced row echelon form:

$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} \xrightarrow[R_3=R_1-R_3]{R_2=R_1-R_2} \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 2 \end{bmatrix} \xrightarrow[R_3=R_3-2R_2]{R_1=R_1-R_3} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

We get the RREF: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. From here, we see that the both two columns are pivot columns, i.e., these two vectors in the generating set of U form a basis of U:

$$U = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$$

Now, we define

$$\boldsymbol{B} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$$

where we define two basis vectors $\boldsymbol{b}_1, \boldsymbol{b}_2$ of U as the columns of \boldsymbol{B} .

We know that the projection of \boldsymbol{x} on U exists and we define $\boldsymbol{p} := \pi_U(\boldsymbol{x})$. Moreover, we know that $\boldsymbol{p} \in U$. We define $\boldsymbol{\lambda} := [\lambda_1, \lambda_2]^{\top} \in \mathbb{R}^2$, such that \boldsymbol{p} can be written $\boldsymbol{p} = \lambda_1 \boldsymbol{b}_1 + \lambda_2 \boldsymbol{b}_2 = \boldsymbol{B} \boldsymbol{\lambda}$.

As \boldsymbol{p} is the orthogonal projection of \boldsymbol{x} onto U, then $\boldsymbol{x}-\boldsymbol{p}$ is orthogonal to all the basis vectors of U, so that

$$oldsymbol{B}^{ op}(oldsymbol{x}-oldsymbol{B}oldsymbol{\lambda})=\mathbf{0}$$

Therefore,

$$oldsymbol{B}^ op oldsymbol{B} oldsymbol{\lambda} = oldsymbol{B}^ op oldsymbol{x}$$

Solving in λ the inhomogeneous system $\boldsymbol{B}^{\top}\boldsymbol{B}\lambda = \boldsymbol{B}^{\top}\boldsymbol{x}$ gives us a single solution

$$\lambda = (\mathbf{B}^{\top} \mathbf{B})^{-1} \mathbf{B}^{\top} \mathbf{x} = \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} \end{pmatrix}^{-1} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 12 \\ 12 \\ 18 \end{bmatrix} \\
= \begin{bmatrix} \frac{5}{6} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 12 \\ 12 \\ 18 \end{bmatrix} \\
= \begin{bmatrix} -\frac{1}{6} & \frac{1}{3} & \frac{5}{6} \\ \frac{1}{2} & 0 & -\frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 12 \\ 12 \\ 18 \end{bmatrix} \\
= \begin{bmatrix} 17 \\ -3 \end{bmatrix}$$

and, therefore, the desired projection

$$\mathbf{p} = \mathbf{B} \boldsymbol{\lambda} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 17 \\ -3 \end{bmatrix} = \begin{bmatrix} 11 \\ 14 \\ 17 \end{bmatrix} \in U$$

Overall, the orthogonal projection is $\pi_U(\boldsymbol{x}) = \begin{bmatrix} 11\\14\\17 \end{bmatrix}$.

(c) Suppose that for $c_1, c_2 \in \mathbb{R}$, such that

$$\pi_U(\boldsymbol{x}) = \begin{bmatrix} 11\\14\\17 \end{bmatrix} = c_1 \begin{bmatrix} 1\\1\\1 \end{bmatrix} + c_2 \begin{bmatrix} 2\\1\\0 \end{bmatrix}$$

This can be turned into a system of equations shown below:

$$c_1 + 2c_2 = 11$$
$$c_1 + c_2 = 14$$
$$c_1 = 17$$

Solving this we get $c_1 = 17$ and $c_2 = -3$.

Therefore, $\pi_U(\boldsymbol{x})$ can be written as a linear combination as

$$\pi_U(\boldsymbol{x}) = 17 [1, 1, 1]^{\top} - 3 [2, 1, 0]^{\top}$$

(d) The minimum distance is simply the length of x - p:

$$\|\boldsymbol{x} - \boldsymbol{p}\|_2 = \left\| \begin{bmatrix} 12\\12\\18 \end{bmatrix} - \begin{bmatrix} 11\\14\\17 \end{bmatrix} \right\|_2$$
$$= \left\| \begin{bmatrix} 1\\-2\\1 \end{bmatrix} \right\|_2$$
$$= \sqrt{1^2 + (-2)^2 + 1^2}$$
$$= \sqrt{6}$$

Overall, the minimum distance is $d(\mathbf{x}, U) = \sqrt{6}$.