# Série 5 : Suivi temporel d'une transformation chimique -Vitesse de réaction



### **EXERCICE 1:**

On étudie l'évolution en fonction du temps d'un mélange obtenu à partir de 100mL d'une solution d'acide éthanedioïque à  $6,00\cdot10^{-2}$  mol.L<sup>-1</sup> et 100mL d'une solution acidifiée de dichromate de potassium à  $1,66\cdot10^{-2}$  mol.L<sup>-1</sup>. On obtient la courbe suivante :

La réaction d'oxydoréduction qui se produit met en jeu les couples Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> / Cr<sup>3+</sup> et CO<sub>2</sub> / H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>

- 1) Citer deux facteurs pouvant modifier la vitesse d'une réaction chimique.
- 2) Ecrire les deux demi-équations électroniques ainsi que l'équation bilan de la réaction qui se produit entre l'ion dichromate Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> et l'acide éthanedioïque H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>.
- 3) Etablir la quantité initiale de chacun des réactifs et en déduire le réactif limitant.
- 4) Dresser le tableau d'avancement de la réaction faisant apparaître l'avancement temporel x(t).
- 5) Définir mathématiquement la vitesse volume v(t) de cette réaction.



- 6) Exprimer cette vitesse de réaction v(t) en fonction de la vitesse de formation des ions Cr³+. Détailler le calcul de cette démonstration.
- 7) Déterminer la valeur de la vitesse de formation des ions  $Cr^{3+}$  à la date t = 50 s.
- 8) En déduire la vitesse volumique de la réaction à cette même date.
- 9) Déterminer le temps de demi-réaction  $t_{1/2}$  de cette réaction.
- 10) Déterminer graphiquement la quantité d'ions Cr³+ présente lorsque la réaction est considérée comme étant terminée.
- 11) En déduire le volume de gaz carbonique dégagé par cette réaction dans les C.N.T.P. (On donne R = 8,31 S.I.)

#### **EXERCICE 2:**

Les ions permanganate  $MnO_4^-$  en milieu acide oxydent lentement l'acide oxalique  $H_2C_2O_4$  en dioxyde de carbone. Les couples mis en jeux sont :  $MnO_4^-$ (aq) /  $Mn^2$ +(aq) et  $CO_2$  (aq) /  $H_2C_2O_4$ (aq).

On place dans une cuve de spectrophotomètre un volume  $V_1 = 1,00$  mL de la solution  $S_1$  avec un volume

V'=1,00 mL d'une solution d'acide oxalique à C' =1,0 $\cdot$ 10<sup>-3</sup> mol $\cdot$ L<sup>-1</sup>.

Le mélange est rapidement homogénéisé, et on mesure à l'aide du spectrophotomètre l'évolution de la concentration de l'ion permanganate en fonction du temps.

On obtient alors la courbe  $C_1 = f(t)$  cicontre:

1) Écrire les demi-équations électroniques pour chacun des deux couples qui interviennent dans cette



www.physiquetous.com

réaction. En déduire l'équation de la réaction entre les ions peroxodisulfate et les ions iodure.

- 2) Ce graphique permet-il de déterminer le réactif limitant ? Justifier.
- 3) A l'aide des grandeurs  $C_1$ , C', V',  $V_1$  et de l'avancement x, dresser le tableau d'avancement.
- 4) Exprimer la vitesse de la réaction notée v en fonction de [MnO<sub>4</sub>-] concentration des ions permanganate.
- 5) Déterminer la vitesse initiale *v* (0) de la réaction.
- **6)** Exprimer la concentration des ions  $Mn^{2+}$  en fonction de x,  $V_1$  et V'. Calculer cette concentration en fin de réaction Déterminer le temps de demi-réaction  $t_{1/2}$

#### **EXERCICE 3:**

Les oxydes d'azote ( $N_2O$ ,  $N_2O_3$ , NO,  $NO_2$ ...) sont émis dans l'atmosphère par les installations de chauffage, les automobiles, les centrales thermiques, les volcans ou les orages.

Ils participent à 3 phénomènes différents de pollution atmosphérique :

- formation de pluies acides,
- pollution photochimique : création de composés oxydants tels que l'ozone,
- augmentation de l'effet de serre.

À température élevée, le pentaoxyde de diazote, de formule N<sub>2</sub>O<sub>5</sub> se décompose selon la réaction lente suivante :

$$2 \text{ N}_2\text{O}_{5 \text{ (g)}} \rightarrow 4 \text{ NO}_{2 \text{ (g)}} + \text{O}_{2 \text{ (g)}}$$

On se propose d'étudier la cinétique de cette réaction lente et totale.

## Protocole expérimental

On place du pentaoxyde de diazote dans une enceinte fermée de volume V = 0,50 L à température constante T=318 K.

Un baromètre mesure l'évolution de la pression P de l'enceinte en fonction du temps.

A t = 0, on mesure une pression  $P_0 = 463.8 \text{ hPa} = 4.638 \times 10^4 \text{ Pa}$ .

Les mesures du rapport P/P<sub>0</sub> en fonction du temps sont reportées dans le tableau ci-dessous.

| Dates t en       | 0     | 10    | 20    | 40    | 60    | 80    | 100   |
|------------------|-------|-------|-------|-------|-------|-------|-------|
| P/P <sub>0</sub> | 1,000 | 1,435 | 1,703 | 2,047 | 2,250 | 2,358 | 2,422 |

À partir de ces mesures, on représenter le graphique de la quantité  $P/P_0$  en fonction du temps (**figure ci- contre**).

## **Données:**

Constante des gaz parfaits R = 8,31 J.mol<sup>-1</sup>. $K^{-1}$ . Équation d'état des gaz parfaits :  $PV = n_G RT$ ,  $n_G$  correspondant à la quantité de matière totale de gaz du système chimique. On rappelle que dans cette expression P est en Pascal (Pa), V en mètres cubes ( $m^3$ ),  $n_G$  en nombre de moles (mol) et T en Kelvin (K).

On considère que tous les gaz se comportent, au cours de l'expérience, comme des gaz parfaits



- 1. Soit no la quantité de matière initiale du pentaoxyde de diazote.
- 1.1. Montrer que  $n_0 = 8.8.10^{-3}$  mol.
- 1.2. Dresser le tableau d'avancement de la transformation chimique étudiée.
- 1.3. Montrer que l'avancement maximal  $x_{max}$  de la réaction a pour valeur 4,4 mmol.
- **2.** Pour réaliser ce suivi temporel de la réaction, il a fallu trouver la relation entre  $\frac{P}{P_0}$  et x.
- 2.1. En utilisant le tableau d'avancement, exprimer la quantité de matière totale de gaz  $n_G$  en fonction de  $n_0$  et de x avancement de la réaction.
- 2.2. En déduire, en appliquant l'équation d'état des gaz parfaits, la relation suivante :  $\frac{P}{P_0} = 1 + \frac{3x}{n_0}$
- 2.3. En utilisant le résultat du 1.3, calculer le rapport  $\frac{P_{max}}{P_0}$  où  $P_{max}$  est la valeur de la pression de

l'enceinte lorsque l'avancement maximal est atteint.

- 2.4. Justifier à l'aide du tableau de mesures que la réaction n'est pas terminée à t=100 s.
- 3. Étude de la cinétique de la réaction.
- 3.1. Trouver l'expression de la vitesse volumique de la réaction en fonction de  $n_0$ ,V et la dérivée par rapport au temps de la fonction  $\frac{P}{P_0}$ . Calculer sa valeur à t=0
- .3.1. Comment varie la vitesse volumique de réaction au cours du temps ? Justifier à l'aide de la courbe.
- 3.2 Définir le temps de demi-réaction t<sub>1/2</sub> et déterminer sa valeur à l'aide du graphe.