1. Determine the domain of the function below.

$$f(x) = \frac{4}{25x^2 - 36}$$

- A. All Real numbers.
- B. All Real numbers except x=a and x=b, where  $a\in[-30,-29]$  and  $b\in[28,31]$
- C. All Real numbers except x = a and x = b, where  $a \in [-2.2, -0.2]$  and  $b \in [0.2, 3.2]$
- D. All Real numbers except x = a, where  $a \in [-2.2, -0.2]$
- E. All Real numbers except x = a, where  $a \in [-30, -29]$
- 2. Choose the equation of the function graphed below.



A. 
$$f(x) = \frac{-1}{x+2} - 3$$

B. 
$$f(x) = \frac{-1}{(x+2)^2} - 3$$

C. 
$$f(x) = \frac{1}{x-2} - 3$$

D. 
$$f(x) = \frac{1}{(x-2)^2} - 3$$

E. None of the above

3. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-4x}{-6x+5} + \frac{-6x^2}{-30x^2+x+20} = \frac{-2}{5x+4}$$

- A. All solutions lead to invalid or complex values in the equation.
- B.  $x \in [-1.41, -1.22]$
- C.  $x_1 \in [0.19, 0.87]$  and  $x_2 \in [-0.9, 1.7]$
- D.  $x_1 \in [0.19, 0.87]$  and  $x_2 \in [-4.7, -0.5]$
- E.  $x \in [-0.9, -0.56]$
- 4. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{40}{20x - 35} + 1 = \frac{40}{20x - 35}$$

- A.  $x \in [0.75, 4.75]$
- B.  $x_1 \in [0.75, 2.75]$  and  $x_2 \in [0.75, 4.75]$
- C. All solutions lead to invalid or complex values in the equation.
- D.  $x \in [-1.75, -0.75]$
- E.  $x_1 \in [-1.75, -0.75]$  and  $x_2 \in [0.75, 4.75]$
- 5. Choose the graph of the equation below.

$$f(x) = \frac{1}{(x-2)^2} + 3$$

Α.







В.



C.

E. None of the above.

6. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-7}{5x - 9} + -6 = \frac{-2}{-30x + 54}$$

- A. All solutions lead to invalid or complex values in the equation.
- B.  $x_1 \in [-3.04, 0.96]$  and  $x_2 \in [1.47, 1.59]$
- C.  $x \in [-3.04, 0.96]$
- D.  $x \in [0.56, 3.56]$
- E.  $x_1 \in [0.56, 2.56]$  and  $x_2 \in [1.57, 1.92]$
- 7. Determine the domain of the function below.

$$f(x) = \frac{3}{36x^2 + 48x + 15}$$

A. All Real numbers except x=a and x=b, where  $a\in[-30.12,-29.31]$  and b=[-18.17,-17.5]

B. All Real numbers except x = a, where  $a \in [-30.12, -29.31]$ 

C. All Real numbers except x = a, where  $a \in [-0.86, -0.54]$ 

D. All Real numbers except x=a and x=b, where  $a\in[-0.86,-0.54]$  and  $b\in[-0.73,0.03]$ 

E. All Real numbers.

8. Choose the graph of the equation below.

$$f(x) = \frac{1}{(x-1)^2} + 2$$









E. None of the above.

9. Choose the equation of the function graphed below.

6232-9639 Fall 2020



A. 
$$f(x) = \frac{1}{(x-3)^2} - 4$$

B. 
$$f(x) = \frac{-1}{x+3} - 4$$

C. 
$$f(x) = \frac{-1}{(x+3)^2} - 4$$

D. 
$$f(x) = \frac{1}{x-3} - 4$$

E. None of the above

10. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-2x}{2x-7} + \frac{-3x^2}{-10x^2 + 25x + 35} = \frac{-3}{-5x-5}$$

A.  $x \in [-1.69, 0.55]$ 

B.  $x_1 \in [0.01, 1.5]$  and  $x_2 \in [0.5, 4.5]$ 

C. All solutions lead to invalid or complex values in the equation.

D.  $x \in [-3.37, -1.37]$ 

E.  $x_1 \in [0.01, 1.5]$  and  $x_2 \in [-6.22, 2.78]$