Linear Algebra I Summary of Lectures: Inner Product Spaces

and Bilinear and Sesquilinear Forms

Dr Nicholas Sedlmayr

- 1. Definition 3.1: If V is a vector space over \mathbb{R} , then an inner product on V is a map $(\langle | \rangle)$ from $V \times V$ to \mathbb{R} with the following properties:
 - (a) Symmetry: $\langle v|w\rangle = \langle w|v\rangle \ \forall v, w \in V$.
 - (b) Linearity: $\langle u|\lambda v + \mu w \rangle = \lambda \langle u|v \rangle + \mu \langle u|w \rangle \ \forall u, v, w \in V \ \text{and} \ \forall \lambda, \mu \in \mathbb{R}.$
 - (c) Positive definiteness:
 - (i) $\langle v|v\rangle \geq 0 \ \forall v \in V$, and
 - (ii) $\langle v|v\rangle = 0$ iff v = 0.

As the inner product is linear with respect to both variables it is sometimes called bilinear.

- 2. Definition 3.2: A finite dimensional vector space over \mathbb{R} with an inner product defined is called a Euclidean space.
- 3. Definition 3.3: The norm (or length) of a vector v is written as ||v|| and defined by

$$||v|| = \sqrt{\langle v|v\rangle},$$

the positive square root of the inner product of v with itself. The distance between two vectors v and w is written as d(v, w) and is d(v, w) = ||v - w||.

- 4. Proposition 3.4: $\forall v \in V$, where V is a Euclidean space, and $\forall \lambda \in \mathbb{R}$ then $||\lambda v|| = |\lambda| \cdot ||v||$.
- 5. Proposition 3.5: The "Cauchy-Schwarz inequality" says that $\forall v, w \in V$, where V is a Euclidean space, then

$$|\langle v|w\rangle| \leq ||v|| \cdot ||w||$$
.

6. Proposition 3.6: The "triangle inequality" says that $\forall v, w \in V$, where V is a Euclidean space, then

$$||v+w|| \le ||v|| + ||w||$$
.

7. Definition 3.7: If V is a Euclidean space, and $v, w \in V$, then v and w are said to be orthogonal if $\langle v|w\rangle = 0$. If both v and w are nonzero, then the angle between v and w is defined to be θ , $0 \le \theta \le \pi$ and

$$\cos \theta = \frac{\langle v|w\rangle}{||v|| \cdot ||w||}.$$

- 8. Definition 3.8: If V is a vector space over \mathbb{C} , then a map $(\langle | \rangle)$ from $V \times V$ to \mathbb{C} is an inner product if the following are true:
 - (a) Conjugate-Symmetry: $\langle v|w\rangle = \overline{\langle w|v\rangle} \ \forall v,w \in V.$
 - (b) Linearity: $\langle u|\lambda v + \mu w \rangle = \lambda \langle u|v \rangle + \mu \langle u|w \rangle \ \forall u,v,w \in V \ \text{and} \ \forall \lambda,\mu \in \mathbb{R}.$
 - (c) Positive definiteness:
 - (i) $\langle v|v\rangle \geq 0 \ \forall v \in V$, and
 - (ii) $\langle v|v\rangle = 0$ iff v = 0.

This inner product is sometimes called sesquilinear.

- 9. Definition 3.9: A finite dimensional vector space over \mathbb{C} with an inner product define is called a unitary space.
- 10. A vector space over $\mathbb R$ or $\mathbb C$, of any dimension, we will refer to as an inner product space.
- 11. Definition 3.10: The norm (or length) of a vector $v \in V$, with V a vector space over \mathbb{C} , is written as ||v|| and defined by

$$||v|| = \sqrt{\langle v|v\rangle},$$

the positive square root of the inner product of v with itself. The distance between two vectors v and w is written as d(v, w) and is d(v, w) = ||v - w||.

- 12. Proposition 3.11: $\forall v \in V$, where V is a unitary space, and $\forall \lambda \in \mathbb{R}$ then $||\lambda v|| = |\lambda| \cdot ||v||$.
- 13. Proposition 3.12: The "Cauchy-Schwarz inequality" says that $\forall v,w\in V,$ where V is a unitary space, then

$$|\langle v|w\rangle| \le ||v|| \cdot ||w||.$$

14. Proposition 3.13: The "triangle inequality" says that $\forall v, w \in V$, where V is a unitary space, then

$$||v + w|| \le ||v|| + ||w||$$
.

- 15. Definition 3.14: A bilinear form on a real vector space V is a map $F: V \times V \to \mathbb{R}$ which $\forall u, v, w \in V$ and $\forall \alpha, \beta \in \mathbb{R}$ satisfies
 - (a) $\langle \alpha u + \beta v | w \rangle = \alpha \langle u | w \rangle + \beta \langle v | w \rangle$, and
 - (b) $\langle u|\alpha v + \beta w \rangle = \alpha \langle u|v \rangle + \beta \langle u|w \rangle$.
- 16. Definition 3.15: A bilinear form on a real vector space V is symmetric if

- (c) $F(u, v) = F(v, u) \ \forall u, v \in V$.
- 17. Definition 3.16: The matrix $\mathbf{A} = (a_{ij})$ with $a_{ij} = F(e_i, e_j)$ is called the 'matrix of the bilinear form F with respect to the ordered basis $e_1, e_2, \ldots e_n$ of V'. If F is symmetric then \mathbf{B} is symmetric.
- 18. Proposition 3.17: Suppose V is a real vector space with ordered basis $e_1, e_2, \ldots e_n$ and F is a bilinear form defined on V, with matrix \mathbf{A} with respect to this basis. Then for any vectors $v, w \in V$ and their corresponding coordinate forms $\mathbf{v} = (v_1, v_2, \ldots v_n)^T$ and $\mathbf{w} = (w_1, w_2, \ldots w_n)^T$ with respect to the same basis we have

$$F(v, w) = \mathbf{v}^T \mathbf{A} \mathbf{w}$$
.

- 19. The base change matrix from a basis $e_1, e_2, \dots e_n$ to $f_1, f_2, \dots f_n$ is $\mathbf{P} = (p_{ij})$ where $f_i = \sum_{k=1}^n p_{ki} e_k$.
- 20. Proposition 3.18: (The base change formula) Given two ordered bases of a Euclidean space V, $e_1, e_2, \ldots e_n$ and $f_1, f_2, \ldots f_n$ related by the base change matrix \mathbf{P} from basis $e_1, e_2, \ldots e_n$ to $f_1, f_2, \ldots f_n$, suppose \mathbf{A} and \mathbf{B} are the matrices of the inner product with respect to $e_1, e_2, \ldots e_n$ and $f_1, f_2, \ldots f_n$. Then $\mathbf{B} = \mathbf{P}^T \mathbf{A} \mathbf{P}$.
- 21. Definition 3.19: A sesquilinear form on a complex vector space V is a map $F: V \times V \to \mathbb{C}$ which $\forall u, v, w \in V$ and $\forall \alpha, \beta \in \mathbb{C}$ satisfies
 - (a) $\langle \alpha u + \beta v | w \rangle = \bar{\alpha} \langle u | w \rangle + \bar{\beta} \langle v | w \rangle$, and
 - (b) $\langle u|\alpha v + \beta w \rangle = \alpha \langle u|v \rangle + \beta \langle u|w \rangle$.
- 22. Definition 3.20: A sesquilinear form on a complex vector space V is conjugate-symmetric if
 - (c) $F(u,v) = \overline{F(v,u)} \ \forall u,v \in V.$
- 23. Definition 3.21: The matrix $\mathbf{B} = (a_{ij} \text{ with } a_{ij} = F(e_i, e_j) \text{ is called the 'matrix of the bilinear form } F \text{ with respect to the ordered basis } e_1, e_2, \dots e_n \text{ of the complex vector space } V'. \text{ If } F \text{ is conjugate-symmetric then } \mathbf{B} \text{ is conjugate-symmetric, i.e. } \mathbf{\bar{B}}^T = \mathbf{B}.$
- 24. Proposition 3.22: Suppose V is a complex inner product space with ordered basis $e_1, e_2, \ldots e_n$ and F is a sesquilinear form defined on V, with matrix \mathbf{A} with respect to this basis. Then for any vectors $v, w \in V$ and their corresponding coordinate forms $\mathbf{v} = (v_1, v_2, \ldots v_n)^T$ and $\mathbf{w} = (w_1, w_2, \ldots w_n)^T$ with respect to the same basis we have

$$F(v, w) = \overline{\mathbf{v}}^T \mathbf{A} \mathbf{w} .$$

25. Proposition 3.23: (The base change formula) Given two ordered bases of a complex inner product space V, e_1 , e_2 , ... e_n and f_1 , f_2 , ... f_n related by the base change matrix \mathbf{P} from basis e_1 , e_2 , ... e_n to f_1 , f_2 , ... f_n , suppose \mathbf{A} and \mathbf{B} are the matrices of the inner product with respect to e_1 , e_2 , ... e_n and f_1 , f_2 , ... f_n . Then $\mathbf{B} = \overline{\mathbf{P}}^T \mathbf{A} \mathbf{P}$.