## **Bodyfat Dataset Analysis**

By Yan Chu, Boliang Ma, Jiancheng Xu (Group 5)

Department of Statistics

UW-Madison

#### Outline

Raw Data and Data Visualization

Modeling and Analysis

Diagnostics and Conclusion

|   | IDNO | BODYFAT | DENSITY | AGE | WEIGHT | HEIGHT | ADIPOSITY | NECK | CHEST | ABDOMEN | HIP  | THIGH | KNEE | ANKLE | BICEPS | FOREARM | WRIST |
|---|------|---------|---------|-----|--------|--------|-----------|------|-------|---------|------|-------|------|-------|--------|---------|-------|
| Ī | 1    | 12.6    | 1.0708  | 23  | 154.25 | 67.75  | 23.7      | 36.2 | 93.1  | 85.2    | 94.5 | 59.0  | 37.3 | 21.9  | 32.0   | 27.4    | 17.1  |
|   | 2    | 6.9     | 1.0853  | 22  | 173.25 | 72.25  | 23.4      | 38.5 | 93.6  | 83.0    | 98.7 | 58.7  | 37.3 | 23.4  | 30.5   | 28.9    | 18.2  |
|   | 3    | 24.6    | 1.0414  | 22  | 154.00 | 66.25  | 24.7      | 34.0 | 95.8  | 87.9    | 99.2 | 59.6  | 38.9 | 24.0  | 28.8   | 25.2    | 16.6  |







• Full data model - use all data

• Two age level separate model - divided by age

Full model is obtained use forward selection.

| Method   | thod Variable                                                  |       |  |  |  |
|----------|----------------------------------------------------------------|-------|--|--|--|
| Forward  | Forward Abdomen, Weight, Wrist, Forearm, Thigh, Age            |       |  |  |  |
| Backward | Age, Weight, Height, Adiposity, Abdomen, Thigh, Forearm, Wrist | 14.55 |  |  |  |

- Forward model is simpler and only losing a little accuracy
- Further deleting three variables, keep WEIGHT, ABDOMEN and WRIST.

Separated model

• Under age 45, multicollinearity is a heavy issue.

| Variable  | Age  | Weight | Height | Adiposity | Neck | Chest | Abdomen | Hip   | Thigh | Knee | Ankle | Biceps | Forearm | Wrist |
|-----------|------|--------|--------|-----------|------|-------|---------|-------|-------|------|-------|--------|---------|-------|
| VIF Value | 1.41 | 339.28 | 60.88  | 252.94    | 4.56 | 10.70 | 14.07   | 18.42 | 9.82  | 5.26 | 4.07  | 5.36   | 2.05    | 4.39  |

- Delete variable ADIPOSITY
- Finally find ABDOMEN, WEIGHT, WRIST, BICEPS and ANKLE.

Separated model

Beyond 45

 Forward and backward give the same solution: ABDOMEN and WEIGHT. Simple and accurate.

 Compared Mean square error of the full data model and separated two age level model

|     | Full data model | Combined model |
|-----|-----------------|----------------|
| MSE | 15.32           | 14.44          |

#### Model Diagnostics

#### • Under 45



#### Model Diagnostics

#### • Beyond 45



#### Conclusion

$$BodyFat\% = \begin{cases} -28.927 + 0.920 ABDOMEN - 0.150 WEIGHT - 2.498 WRIST + 0.565 BICEPS + 0.723 ANKLE, \ if \ AGE \leq 45 \\ -46.224 + 0.919 ABDOMEN - 0.112 WEIGHT, \ if \ AGE > 45 \end{cases}$$

#### Possible rule of thumb:

Under 45

$$BodyFat\% = -30 + ABDOMEN - 0.1WEIGHT - 2.5WRIST + 0.5BICEPS + ANKLE$$

Beyond 45

$$BodyFat\% = -46 + ABDOMEN - 0.1WEIGHT$$

#### Strength and Weakness

- All assumptions are well satisfied.
- No advanced techniques for dealing with multicollinearity is employed since we just delete the most correlated variables.
- Due to data constraints, our model is unable to predict bodyfat percentage for children or even more older people.
- We can only predict male's bodyfat.

#### Simple Example

• For a 47 years old man, he has a abdomen circumference 90cm and weight 200 lbs. His bodyfat can be estimated as 90 minus 200 multiplied by 0.1 and then minus 46, which is 24%.

$$BodyFat\% = -46 + ABDOMEN - 0.1WEIGHT$$

#### Future work

• PCA, LASSO, and PLS for multicollinearity

GMC by Prof. Zhengjun Zhang for variable selection

 For large dataset, generate a relatively small sample to start variable selection

• ...

# Thank you!