Vector space, Linear independence, Basis, Dimension: Level 3- Tutorial Questions

- 1. Which of the following is/are subspaces of the vector space of all real functions,
 - (1) set of all one-one functions
 - (2) set of all bijective functions
 - (3) set of all onto functions
 - (4) none of the above
- 2. Let M be the vector space of all 3×3 real matrices and let $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, then which of the following

is/are subspaces of M, [J-2011]

- (1) $W_1 = \{X \in M \mid XA = AX\}$
- (2) $W_2 = \{X \in M \mid X + A = A + X\}$
- (3) $W_3 = \{X \in M \mid Trace(AX) = 0\}$
- (4) $W_4 = \{X \in M \mid \det(AX) = 0\}$
- 3. Let n be a +ve integer and $n \ge 3$ and let $\{u_1, u_2, ..., u_n\}$ be n linearly independent elements in a vector space over \mathbb{R} . set $u_0 = 0$ and $u_{n+1} = u_1$, define $v_i = u_i + u_{i+1}$ and $w_i = u_{i-1} + u_i$, i = 1, 2, ..., n, then
 - (1) $v_1, v_2, ..., v_n$ are linearly independent if n = 2010.
 - (2) $v_1, v_2, ..., v_n$ are linearly independent if n = 2011.
 - (3) $w_1, w_2, ..., w_n$ are linearly independent if n = 2010.
 - (4) $w_1, w_2, ..., w_n$ are linearly independent if n = 2011.
- 4. Let $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in \mathbb{R}^3$ be linearly independent. let $\delta_1 = x_2y_3 y_2x_3$, $\delta_2 = x_1y_3 y_1x_3$, $\delta_3 = x_1y_2 y_1x_2$, if V is the span of x, y, then
 - (1) $V = \{(u, v, w) : \delta_1 u \delta_2 v + \delta_3 w = 0\}$
 - (2) $V = \{(u, v, w) : -\delta_1 u + \delta_2 v + \delta_3 w = 0\}$
 - (3) $V = \{(u, v, w) : \delta_1 u + \delta_2 v \delta_3 w = 0\}$
 - (4) $V = \{(u, v, w) : \delta_1 u + \delta_2 v + \delta_3 w = 0\}.$
- 5. The dimension of the vector space formed by the solutions of the system of equations: x + y + z = 0, x + 2y = 0, y z = 0 is
 - (1) 1
 - $(2) \ 2$
 - $(3) \ 3$
 - (4) 0
- 6. Let $U = \{(0, b, c, d, e) \in \mathbb{R}^5\}$ and $W = \{(a, 0, c, d, e) \in \mathbb{R}^5\}$ be subspaces of \mathbb{R}^5 . Then $\dim(U \cap W)$ is
 - (1) 5
 - (2) 4
 - $(3) \ 3$
 - (4) 2
- 7. If $S = \{(1, 1, 0), (2, 1, 3)\}$, then which of the following vectors of \mathbb{R}^3 in not in Span (S)?
 - (1) (0,0,0)
 - (2) (3,2,3)
 - (3) (1,2,3)
 - (4) $(\frac{4}{3},1,1)$

8. Let v be the vector 5 space	v of ordered pairs of complex numbers over the field R . then dimension of v
is	
(1) 1	
(2) 2	
(3) 3	
(4) 4	
9. Let V be the vector space	of polynomials of degree ≤ 3 ; $U_1 < V$ be the subspace of polynomials of

- 9. Let V be the vector space of polynomials of degree ≤ 3 ; $U_1 < V$ be the subspace of polynomials of degree ≤ 2 ; $U_2 < V$ be the subspace of polynomials vanishing at 0. Then which of the following is not true?
 - (1) span of U_1 and U_2 is V.
 - (2) U_1 is isomorphic to U_2
 - (3) $\dim(U_1 \cap U_2) = 2$
 - (4) $\dim U_1 < \dim U_2$
- 10. Consider the set $A = \{(1,0,-i), (1+i,1-i,1), (i,i,1)\}$ of C^3 . Which of the following is/are true?
 - (1) L(A) has dimension 1
 - (2) L(A) has dimension 2
 - (3) A is a basis for C^3
 - (4) Each element of C^3 can be generated as a linear combination of elements of A
- 11. Let U and W be subspaces of a vector space V over a field F and let $\dim V=12, \dim U=6,$ and $\dim W=8.$ Then
 - (1) $\dim(U \cap W) \le 6$ and $\dim(U + W) \ge 8$
 - (2) $\dim(U \cap W) \ge 6$ and $\dim(U + W) \ge 8$
 - (3) $\dim(U \cap W) \ge 6$ and $\dim(U + W) \le 8$
 - (4) $\dim(U \cap W) \leq 6$ and $\dim(U + W) \geq 12$
- 12. Let V be a vector space of dimension 3 and let A and B be its two disjoint subspaces having dimensions 2 and 1 respectively. Then
 - (1) $V = A \cap B$
 - $(2) V = A \cup B$
 - (3) V = A + B
 - (4) Nothing can be said
- 13. If a finite dimensional vector space V over a field F is the direct sum of its two subspaces U and W, then
 - $(1) \dim(U+W) = \dim U + \dim W$
 - $(2) U \cap W = \{0\}$
 - (3) $\dim V = \dim U + \dim W$
 - $(4) \dim(U \cap W) = 0$
- 14. Let n be a positive integer and let H_n be the space of all $n \times n$ matrices $A = (a_{ij})$ with entries in \mathbb{R} satisfying $a_{ij} = a_{rs}$ whenever i + j = r + s for i, j, r, s = 1, 2, ..., n, then the dimension of H_n as a vector space over \mathbb{R} is, [D-2011]
 - (1) n^2
 - (2) $n^2 n + 1$
 - (3) 2n + 1
 - (4) 2n-1