JOSEPH DARBY

MATCH PREDICTIONS
EUROPEAN "FOOTBALL"
CHALLENGE

Leave it all on the pitch

PROCESS

DEFINE THE PROBLEM

GATHER THE DATA

DATA EXPLORATION

MODEL THE DATA

EVALUATE MODEL

ANSWER THE PROBLEM

PROBLEM STATEMENT

Using the Soccer Database provided, can we build a multi-classification model that predicts the outcome of a given match with better accuracy than the bookies, with majority class distribution percentage of 46%?

PROCESS

DEFINE THE PROBLEM

GATHER THE DATA

DATA EXPLORATION

MODEL THE DATA

EVALUATE MODEL

ANSWER THE PROBLEM

ABOUT THE DATABASE

THE TOP LEAGUES FROM

11 COUNTRIES

DATA ON

25,000+ MATCHES 10.000+ PLAYERS & ...

- PLAYER & TEAM ATTRIBUTES SOURCED FROM EA SPORTS FIFA
 VIDEO GAME WITH WEEKLY UPDATES
- TEAM LINEUP & FORMATION IN X AND Y COORDINATES....?
- BETTING ODDS FROM 10 BETTING PROVIDERS
- MATCH EVENT DETAILS FOR 10,000+ MATCHES, SUCH AS GOALS, POSSESSION PERCENTAGE, CARDS, AND CORNER KICKS

OVERALL CORRELATION

HOW DOES THE HOME TEAM PERFORM?

HOW DOES THE NUMBER OF GOALS CORRELATE TO MATCH RESULTS?

TOP 10 HOME TEAMS

Home Team Win %: Top 10

BOTTOM 10 HOME TEAMS

Home Team Win %: Bottom 10

- BETWEEN LEAGUES
- 25,000 MATCHES...YES! MANY DON'T HAVE MATCH **EVENT DETAILS...**NOOOOO
- 10,000 PLAYERS, BUT NO COMMON KEY TO JOIN THEM WITH THEIR TEAM

- 11 DIFFERENT SOURCES OF DATA X AND Y FIELD COORDINATES FOR PLAYER POSITION?...JUST PUT THE POSITION NAME IN A STRING AND I'LL DUMMY THEM!
 - 10 BET BROKERS, YET SO MANY **NULLS**
 - ALL MATCH DETAILS WRAPPED IN **HTML!** LORD HELP ME!

- 7 TABLES OF DATA: used SQLite3 for querying
 - TEAM & TEAM_ATTRIBUTES
 - PLAYERS & PLAYER_ATTRIBUTES
 - COUNTRY & LEAGUE
 - MATCH TABLE
- REMOVED ALL NULLS: SHAPE -> (1762, 311)
 - ORIGINAL DATAFRAME: (25,979, 119)
- DECIDED TO MODEL **TWO DIFFERENT SUBSETS** OF THE DATA:
 - REMOVED ALL NULLS (ABOVE)
 - SELECTION OF FEATURES: MOST RELEVANT
 - TWO REPUTABLE BET SITES: **BET365 & WILLIAM HILL**
- MODELS: LOGISTIC REGRESSION CLASSIFIER & RANDOM FOREST CLASSIFIER

PROCESS

DEFINE THE PROBLEM

GATHER THE DATA

DATA EXPLORATION

MODEL THE DATA

EVALUATE MODEL

ANSWER THE PROBLEM

PURE DATAFRAME LOGISTIC REGRESSION

SHAPE

1762 rows, 311 series

CLASSES

HOME LOSS (0)	0.284336
HOME DRAW (1)	0.259932
HOME WIN (2)	0.455732

LOGISTIC REGRESSION QUICK WORKFLOW

- Set up X & Y: dropped home and away goals
- Train/test/split: 30% test group; Stratify y
- Instantiate model: multi_class='multinomial
- CV Scores, Fit, Predict(X_test), Evaluate Predictions

CV TRAIN SCORE	0.4461
CV TEST SCORE	0.4329
ACCURACY	0.4442

LOGISTIC REGRESSION EVALUATION

84	true_values	pred_probs	model_preds	model_proba
1305	2	0.449876	2	0.449876
302	2	0.306967	1	0.399092
181	0	0.279558	2	0.453942
1700	1	0.224527	0	0.430904
124	0	0.236071	2	0.449106

Logistic Probability Distribution of Match Results Predicted Win 30 Predicted Draw Predicted Loss Win Baseline 25 Loss Baseline Draw Baseline Frequency 52 10 5 0.2 0.3 0.4 0.7 0.1 0.5 0.6 0.8 0.9 Predicted Probability of Result

PURE DATAFRAME RANDOM FOREST

SHAPE

1762 rows, 311 series

CLASSES

HOME LOSS (0)	0.284336
HOME DRAW (1)	0.259932
HOME WIN (2)	0.455732

RANDOM FOREST QUICK WORKFLOW

- Set up X & Y: dropped home and away goals
- Train/test/split: 30% test group; Stratify y
- Instantiate model:
- CV Scores, Fit, Predict(X_test), Evaluate Predictions

5-CV TRAIN SCORE	0.4810
GS TRAIN SCORE	0.5539
GS TEST SCORE	0.5331

PARSED DATAFRAME LOGISTIC REGRESSION

SHAPE 22,568 rows, 549 series

CLASSES

HOME LOSS (0)	0.2878
HOME DRAW (1)	0.2531
HOME WIN (2)	0.4591

LOGISTIC REGRESSION QUICK WORKFLOW

- Set up X & Y: dropped home and away goals
- Train/test/split: 30% test group; Stratify y
- Instantiate model: multi_class = 'multinomial', max_iter = 2000
- CV Scores, Fit, Predict(X_test), Evaluate Predictions

CV TRAIN SCORE	0.5047
CV TEST SCORE	0.4844
ACCURACY	0.5134

RANDOM FOREST EVALUATION

	true_values	pred_probs	model_preds	model_proba
18715	1	0.343823	2	0.451362
10380	1	0.066851	2	0.897474
10108	1	0.359173	0	0.464561
7185	0	0.243779	2	0.513100
9544	0	0.373625	2	0.421978

PARSED DATAFRAME RANDOM FOREST

SHAPE 22,568 rows, 549 series

CLASSES

HOME LOSS (0)	0.2878
HOME DRAW (1)	0.2531
HOME WIN (2)	0.4591

RANDOM FOREST QUICK WORKFLOW

- Set up X & Y: dropped home and away goals
- Train/test/split: 30% test group; Stratify y
- Instantiate model:
- CV Scores, Fit, Predict(X_test), Evaluate Predictions

5-CV TRAIN SCORE	0.4950
GS TRAIN SCORE	0.5350
GS TEST SCORE	0.5322

RANDOM FOREST EVALUATION

	true_values	pred_probs	model_preds	model_proba
18715	1	0.275922	2	0.493343
10380	1	0.179491	2	0.685453
10108	1	0.273887	0	0.397937
7185	0	0.269190	2	0.453119
9544	0	0.381091	0	0.381091

Random Forest Probability Distribution of Match Results Predicted Draw Predicted Win 300 Predicted Loss Win Baseline Loss Baseline 250 Draw Baseline Frequency 1200 100 50 0.0 0.2 0.6 0.4 0.8 1.0 Predicted Probability of Result

PROCESS

DEFINE THE PROBLEM

GATHER THE DATA

DATA EXPLORATION

MODEL THE DATA

EVALUATE MODEL

ANSWER THE PROBLEM

VERDICT: IT CAN BE DONE!!! but, improved upon...