Advanced Data Structures and Algorithms Lecture 1: Number Theory

Mostafa Mahmoud

German University in Cairo

9 February, 2013

Outline

- Fundamental theorem of Arithmetic
- Integer Factorization
- Sieve of Eratosthenes
- Division Lemma and Linear combinations
- LCM, GCD and Euclidean Algorithm
- Bezout's identity and Extended Euclidean Algorithm
- Chinese remainder theorem

Fundamental Theorem of Arithmetic

 The fundamental theorem of arithmetic states that, any natural number n can be factorized into a Unique product of prime numbers.

$$n=p_1^{e_1}\dots p_k^{e_k}$$

- There is no efficient algorithm that factorizes natural numbers.
- Sieve of Eratosthenes is an algorithm that finds all prime numbers in a given interval. In time complexity O(n ln ln(n))

Integer factorization

- Theorem: The factorization of any natural number n, contains at most one factor q such that $q > \sqrt{n}$
- Proof: (By contradiction)
 - If there are two factors a, b such that a, $b > \sqrt{n}$, then we have ab > n which contradicts that a, b are factors of n.
- A basic integer factorization algorithm: find all the prime factors $p <= \sqrt{n}$, then check for the factor $a > \sqrt{n}$. This algorithm has a time complexity $O(\sqrt{n} \ln(n))$
- Another integer factorization algorithm, which is more efficient, is Pollard's Rho Algorithm.

Sieve of Eratosthenes

- Sieve of Eratosthenes is an algorithm, that finds the prime numbers in a range [1, n] for some integer n.
- The algorithm marks all number in [2, n] as primes, then loop for the numbers in this range [2, n], if a number k is prime, then mark all the proper multiples of k as non-primes, those are $2k, 3k, \dots, k^2, \dots$
- The algorithm can be improved by only looping on the numbers in the range $[2, \sqrt{n})$, as the non-primes in $[\sqrt{n}, n]$ will have factors in $[2, \sqrt{n}]$, thus they will still be marked as non-primes.
- Also we can pass by the multiples of k starting from k^2 , as all the multiples $2k, 3k, \dots, (k-1)k$ will be already marked as non-primes as they are multiples of $2, 3, \dots, k-1$ respectively.

Division Lemma and Linear Combination

- Division Lemma:
 - Given two integers n, m, there exist unique r and q, such that 0 <= r < m and n = qm + r
- Given two integers n, m, then any number in the form an + bm, for two integers a, b, is called a linear combination of n, m.
- If d divides two integers n, m, then d divides any linear combination of n, m.

LCM, GCD and Euclidean Algorithm

- The least common multiple(LCM) of two numbers m, n is defined to be equal to the smallest natural number that is divided by both m, n
- The greatest common divisor(GCD) of two numbers m, n is defined to be equal to the largest natural number that divides both m, n.
- Theorem: Given two integers n, m, then $gcd(m, n) \cdot lcm(m, n) = m \cdot n$
- If the GCD of a pair of numbers is equal to 1, then this pair is called coprimes.
- The greatest common divisor can be computed using the Euclidean Algorithm.
- To derive the Euclidean algorithm, first we need to prove the statement:

$$gcd(m+n,n)=gcd(m,n)$$

GCD and Euclidean Algorithm

Proof:

- let $r_1 = gcd(m + n, n)$ and $r_2 = gcd(m, n)$, so we will prove that $r_1 = r_2$
- Since r_1 is a common divisor of m+n and n, then it divides the linear combination 1(m+n)+(-1)(n)=m, and also r_1 divides n by definition, then r_1 is a common divisor of m and n, then $r_1 <= r_2$
- Since r_2 is a common divisor of m and n, then it divides the linear combination 1(m) + 1(n) = m + n, and also r_2 divides n by definition, then r_2 is a common divisor of m + n and n, then $r_2 <= r_1$
- Thus we get $r_1 = r_2$

GCD and Euclidean Algorithm

- By using the proved statement and mathematical induction, we can prove that gcd(m + kn, n) = gcd(m, n)
- By using the division lemma on n and m, we get n = mq + r and $r = n \mod m$
- By using those two statements, we derive that gcd(n, m) = gcd(mq + r, m) = gcd(r, m) = gcd(m, n) mod m)
- For the base case, we have that for any natural number n that gcd(n, 0) = n.
- Thus we constructed the recursive property for the Euclidean Algorithm.

Bezouts's identity and Extended Euclidean Algorithm

 Bezout's identity states that, given two integers n, m, then there are two integers a, b such that:

$$an + bm = gcd(n, m)$$

- The identity is proved by using the Extended Euclidean algorithm to derive a, b, yet the values of a, b are not unique.
- Theorem: The values of a, b, then the values an, bm are unique mod lcm(m, n)

Bezouts's identity and Extended Euclidean Algorithm

Proof:

- If we have two solutions for the equation, an + bm = r and (a + a')n + (b + b')m = r
- Thus we get a'n = -b'm, by dividing by r, we get $a'\frac{n}{r} = -b'\frac{m}{r}$
- Since $gcd(\frac{n}{r}, \frac{m}{r}) = 1$, then all the factors in n/r are in b', and all the factors in m/r are in a', thus n/r divides b' and m/r divides a'
- Since m/r divides a', we get $m/r = a'k_1$, and since n/r divides b', we get $n/r = b'k_2$, for two integers k_1, k_2
- By substitution, we get $k_1 = -k_2$, thus $a'\frac{n}{r} = -b'\frac{n}{r} = k \cdot lcm(m, n)$

Extended Euclidean Algorithm

We will construct the Extended Euclidean algorithm.

• From the Euclidean algorithm we have:

$$gcd(n, m) = gcd(m, n \mod m)$$

We will try to construct the algorithm recursively, thus if we have a solution for the pair $(m, n \mod m)$ then we will construct the solution for the pair (n, m)

• Let a', b' be the solution for $(m, n \mod m)$, then we have:

$$a'm + b'(n \mod m) = \gcd(m, n \mod m)$$

• If a, b is the solution for (n, m), then we have:

$$an + bm = gcd(n, m)$$

Extended Euclidean Algorithm

- By substitution, we get $an + bm = a'm + b'(n m\lfloor \frac{n}{m} \rfloor)$
- By rearranging, we arrive at: $a = b', b = a' b' \lfloor \frac{n}{m} \rfloor$
- The base case for the recursion is have a pair (n, 0), in that case we have $an + b \cdot 0 = n$, thus a = 1 and b is any integer, for simplicity, we let b = 0.
- The values of a, b will vary depending on the choosen value of b in the base case.

The Chinese remainder theorem states that there's an integer *x* that solves the system of modular linear equations:

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$
 \vdots
 $x \equiv a_m \pmod{n_m}$

to form a solution in the form

$$x \equiv a \pmod{n}$$

where $n = lcm(n_1, \dots, n_m)$, and $a_i \equiv a_j \pmod{\gcd(n_i, n_j)}$ for all i, j.

We will construct an algorithm to find this integer the value of a.

- Without loss of generality, we will solve a system of only 2 equations, then by accumulation of merging the equations, we arrive at the solution for the m equations.
- We let $n = lcm(n_1, n_2)$ and $r = gcd(n_1, n_2)$
- By Bezout's identity we have p₁n₁ + p₂n₂ = r, for some integers p₁, p₂
- If we have the 2 equations:

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$

• We also assume a necessary condition that $a_1 \equiv a_2 \pmod{r}$, thus r divides $a_1 - a_2$

- We get that $a \equiv a_1 \pmod{n_1}$, and $a \equiv a_2 \pmod{n_2}$.
- By definition of congruency, $a = a_1 + k_1 n_1 = a_2 + k_2 n_2$
- By subtraction of equations we get $k_1 n_1 k_2 n_2 = a_2 a_1$
- By multiplying Bezout's identity by $(a_2 a_1)/r$, we arrive at:

$$\frac{a_2-a_1}{r}p_1n_1+\frac{a_2-a_1}{r}p_2n_2=a_2-a_1=k_1n_1-k_2n_2$$

- By substitution, we get $k_1 = \frac{a_2 a_1}{r} p_1$, $k_2 = \frac{a_1 a_2}{r} p_2$
- Thus we arrive at $a = a_1 + \frac{a_2 a_1}{r} p_1 n_1 = a_2 + \frac{a_1 a_2}{r} p_2 n_2$
- By Bezout's identity, we get that p₁ n₁, p₂ n₂ are unique mod n, thus The solution a is unique mod n

- Definition: \mathbb{Z}_n is the set of remainders $\mod n$, $\mathbb{Z}_n := \{0, 1, \cdots, n-1\}$
- Theorem: Given two integers n_1 , n_2 , such that $n = lcm(n_1, n_2)$, then there is a bijection(one-to-one correspondence) between the sets \mathbb{Z}_n and $\{(a_1, a_2) \in \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} | a_1 \equiv a_2 \pmod{gcd(n_1, n_2)}\}.$

Proof:

- We show that the mapping $a \mapsto (a \mod n_1, a \mod n_2)$ is injective and surjective.
- If $(a_1, a_2) = (b_1, b_2)$, then by the Chinese remainder theorem, we get that there's a unique solution for the pair, then a = b, thus the mapping is injective.
- If (a_1, a_2) is in the range of the mapping, then by the Chinese remainder theorem, there's an element in $a \in \mathbb{Z}_n$, such that $a \mapsto (a_1, a_2)$, thus the mapping is surjective.

Sources

Mathematics for Computer Science 2005

```
https://ocw.mit.edu/courses/
electrical-engineering-and-computer-science/
6-042j-mathematics-for-computer-science-fall-20
lecture-notes/
```

- https://en.wikipedia.org/wiki/Chinese_ remainder_theorem
- https://en.wikipedia.org/wiki/Sieve_of_ Eratosthenes