scheme や scheme morphism の性質の定義は section3_text.pdf にまとめたので参照すること. 同じ PDF で B-fin.gen. scheme などの独自の用語を定義している. http://stacks.math.columbia.edu/tag/01T0 も参照すると良い.

記法について. Spec $A_f = D_A(f)$ と書く.

Ex3.1 Definition(s) of Locally of Finite Type Morphism.

補題 **Ex3.1.1** (Nike's Lemma). X :: scheme, $U, V \subseteq X, U = \operatorname{Spec} A, V = \operatorname{Spec} B$ かつ $U \cap V \neq \emptyset$ とする. この時, 任意の点 $P \in U \cap V$ に対し, $a \in A, b \in B$ であって

$$P \in D_A(a) = D_B(b) \subset U \cap V$$

となるものがある. 系として Prop2.2 より $A_a \cong B_b$ が得られる.

(証明). 適当に $a \in A, b \in B$ をとり,

$$P \in D_B(b) \subseteq D_A(a) \subseteq U \cap V$$

としよう. $X = \operatorname{Spec} B, X_f = D_B(b), \bar{b} = b|_{D_A(a)} \in A_a$ として Ex2.16a を用いると,

$$D_B(b) = D_A(a) \cap D_B(b) = \operatorname{Spec}(A_a)_{\bar{b}}.$$

なので、あとは $(A_a)_{\bar{b}}$ を調べれば良い.

 $(A_a)_{\bar{b}}$ の元は以下のように書ける.

$$\frac{u/a^m}{\bar{h}^n} = \frac{u}{a^m \bar{h}^n} \quad (m, n \in \mathbb{N}; u \in A).$$

 $\bar{b} \in A_a$ なので $a^N \bar{b} = a' \in A$ となる $N \in \mathbb{N}$ が存在する.

$$\frac{ua^{nN}}{a^ma^{nN}\bar{b}^n} = \frac{ua^{nN}}{a^ma'^n}.$$

仮に $m \ge n$ とすると

$$\frac{ua^{nN}}{a^ma'^n} = \frac{ua^{m-n+nN}}{(aa')^m}$$

 $m\leq n$ でも同様に分子分母に a'^{n-m} をかければ, $(A_a)_{\bar b}$ の元は $A_{aa'}$ の元として書ける.逆に $A_{aa'}$ の元として書くことは直ちに出来る.よって $(A_a)_{\bar b}=A_{aa'}$.

以上より、
$$\alpha = aa' \in A, b \in B$$
 について $D_B(b) = D_A(\alpha)$.

補題 **Ex3.1.2** (Preimage of POS^{†1} is POS.). $f: X \to Y$:: scheme morphism. Spec $B \subseteq Y, f^{-1}\operatorname{Spec} B = \bigcup_{i \in I}\operatorname{Spec} C_i$ とする. この時,以下が成立する.

$$\forall b \in B, \quad \exists \{c_i (\in C_i)\}, \quad f^{-1}D_B(b) = \bigcup_{i \in I} D_{C_i}(c_i).$$

(証明). $U = \operatorname{Spec} B, V_i = \operatorname{Spec} C_i$ とする. すると f の制限により scheme morphism $f|_{V_i}: V_i \to U$ が得られる. これは $V_i \hookrightarrow X \xrightarrow{f} Y$ という写像で,したがって逆写像は $(f|_{V_i})(S) = f^{-1}(S) \cap V_i$ であることに注意. structure sheaf の間の射を考えると,以下が得られる.

$$\phi_i = ((f|_{V_i})^\#)_U : B = \mathcal{O}_U(U) \to (f|_{V_i})_* \mathcal{O}_{V_i}(U) = C_i.$$

 $^{^{\}dagger 1}$ Principle Open Set

ここで Prop2.2 を用いた. Prop2.3 から, ϕ_i は $f|_{V_i}: V_i \to U$ に 1-1 対応し、特に topological space と して

$$f|_{V_i}(\mathfrak{p}) = \phi_i^{-1}(\mathfrak{p}) \ (\mathfrak{p} \in \operatorname{Spec} C_i)$$

が成り立つ. このことから以下が得られる.

$$f^{-1}(D_B(b)) \cap V_i = (f|_{V_i})^{-1}D_B(b) = D_{C_i}(\phi_i(b)).$$

最左辺と最右辺を $\bigcup_{i \in I}$ すれば主張が示せる.

補題 $\mathbf{Ex3.1.3.}$ $f \in A$ とする. 有限生成 A_f 代数は有限生成 A 代数でもある.

(証明). 変数の数は問題にならないので 1 変数で証明する. (つまり以下で $A_f[x]$ を多変数にしても構わ ない.) 有限生成 A_f 代数 B には $A_f[x]$ からの全射が存在する. $A_f[x]$ には A[x,y] から次のような全射 が存在する.

$$y \mapsto 1/f$$

これが全射であることは.

$$ay^n x^m \mapsto (a/f^n) x^m \in A_f[x]$$

のように分かる. あとはこの写像が A 準同型 (代入写像) であることに注意すれば良い. よって $A[x,y] \to A_f[x] \to B$ という全射が存在する.

以下の命題を示す.

$${}^{\exists}\{B_i\}_{i\in I}, \quad \left[Y = \bigcup_{i\in I} \operatorname{Spec} B_i\right] \wedge \left[{}^{\forall} i \in I, \quad f^{-1}(\operatorname{Spec} B_i) :: \operatorname{locally} B_i\operatorname{-fin.gen. scheme}\right]$$

$$\iff {}^{\forall} \operatorname{Spec} A \subseteq X, \quad f^{-1}(\operatorname{Spec} A) :: \operatorname{locally} A\operatorname{-fin.gen. scheme}$$

下から上は自明である.上から下を示そう.

 $U = \operatorname{Spec} A \subset X, V_i = \operatorname{Spec} B_i$ とする. $U \cap V_i$ の各点 P に対し,

$$P \in D_{B_i}(b_{ij}) = D_A(a_{ij}) \subseteq U \cap V_i$$

であるような $b_{ij} \in B_i, a_{ij} \in A$ が取れる. P を動かせば、このようにして U が被覆できる.

$$U = \bigcup_{i,j} D_{B_i}(b_{ij}) = \bigcup_{i,j} D_A(a_{ij}).$$

仮定より、各 V_i は $\{\operatorname{Spec} C_{ik}\}_{i,k}$ で被覆され、これらの C_{ik} は有限生成 B_i 代数 $^{\dagger 2}$ であるようにとれる. Lemma (Preimage of POS is POS) より、 $c_{ijk} \in C_{ik}$ が存在し、以下のようになる.

$$f^{-1}U = \bigcup_{i,j} f^{-1}D_{B_i}(b_{ij}) = \bigcup_{i,j} \bigcup_k D_{C_{ik}}(c_{ijk}).$$

 $D_{C_{ik}}(c_{ijk}) = \operatorname{Spec}(C_{ik})_{c_{ijk}}$ であり、 $(C_{ik})_{c_{ijk}}$ は有限生成 $(B_i)_{b_{ij}}$ 代数. これは有限生成代数の定義から 存在する全射 $B[x_1,\ldots,x_n] \to C_{ik}$ の両辺を局所化 $^{\dagger 3}$ すれば分かる。 $(B_i)_{b_{ij}} \cong A_{a_{ij}}$ (Nike's Lemma の 最後の文)と最後の Lemma より、 $(C_{ik})_{c_{ijk}}$ は有限生成 A 代数.

以上より, $f^{-1}\operatorname{Spec} A$ は $\operatorname{Spec}(C_{ik})_{c_{ijk}}$ で被覆され,各 $(C_{ik})_{c_{ijk}}$ は有限生成 A 代数である.

 $^{^{\}dagger 2}$ $\phi_{ik} = \left((f|_{\operatorname{Spec}\,C_{ik}})^{\#}\right)_{\operatorname{Spec}\,B_i}$ で代数とみなす。 $^{\dagger 3}$ C_{ik} が ϕ_{ik} による B_i 代数であることと $c_{ijk} = \phi_{ik}(b_{ij})$ を用いて計算する.

Ex3.2 Definition(s) of Quasi-Compact Morphism.

以下を示す.

$${}^{\exists}\{B_i\}_{i\in I}, \quad \left[Y=\bigcup_{i\in I}\operatorname{Spec} B_i\right] \wedge \left[{}^{\forall}i\in I, \quad f^{-1}(\operatorname{Spec} B_i) :: \text{ quasi-compact.}\right]$$

$$\iff {}^{\forall}\operatorname{Spec} A\subseteq Y, \quad f^{-1}(\operatorname{Spec} A) :: \text{ quasi-compact.}$$

まず $\operatorname{Spec} A = \bigcup_{i,j} D_{B_i}(b_{ij})$ となるように b_{ij} をとる。 $\operatorname{Ex2.13b}$ より $\operatorname{Spec} A$ は quasi-compact だから b_{ij} は有限個でよい。 $f^{-1}\operatorname{Spec} B_i$ は open subscheme だから, $f^{-1}\operatorname{Spec} B_i = \bigcup_{i,k}\operatorname{Spec} C_{ik}$ なる C_{ik} がある。仮定より $f^{-1}\operatorname{Spec} B_i$ は quasi-compact であるから C_{ik} は有限個。これに $\operatorname{Ex3.1}$ の中で示した Lemma (Preimage of POS is POS) を用いると以下のようになる。

$$f^{-1}\operatorname{Spec} A = \bigcup_{i,j} f^{-1}D_{B_i}(b_{ij}) = \bigcup_{i,j} \bigcup_k D_{C_{ik}}(c_{ijk}).$$

確認したとおり組 (i,j,k) は高々有限の組み合わせしか無い. Ex2.13 の証明にあるとおり, $D_{C_{ik}}(c_{ijk})$ は quasi-compact だから, f^{-1} Spec A は quasi-compact な開集合の有限和. よって f^{-1} Spec A も quasi-compact.

Ex3.3 Definition(s) of Finite Type Morphism.

- (a) Finite Type = Locally Finite Type+Quasi-Compact. 定義より明らか.
- (b) Another Definition of Finite Type Morphism.

Ex3.1 の弱い形である.

- (c) If $f :: Finite Type and Any Spec <math>A \subseteq f^{-1}(\operatorname{Spec} B)$, A :: Fin.Gen B-Alg.
- Ex3.4 Definition(s) of Finite Morphism.

Ex3.1 と同様に証明できる.

Ex3.5 Finite/Quasi-Finite Morphism.

 $f: X \to Y$ が quasi-finite morphism であるとは、任意の点 $y \in Y$ について $f^{-1}(y)$ が有限集合であるという事である.

- (a) Finite ⇒ Quasi-Finite.
- (b) Finite \Longrightarrow Closed.
- (c) Give an Example of morphism that is Surjective, Finite-Type, Quasi-Finite BUT NOT Finite.

Ex3.6 Function Field.

X:: integral scheme とし、 $\mathcal{O}_{X,\zeta}$ が体であることと、任意の affine open subset Spec A について $\mathcal{O}_{X,\zeta}\cong \mathrm{Quot}(A)$ であることを示す.

 $\zeta \in X$ を generic point としよう. $\{\zeta\}$ は X で dense な 1 点集合だから,任意の開集合に含まれる. だから $\operatorname{Spec} A$:: affine open subset をどのように取ってもよい. $\mathcal{O}_{X,\zeta} = (\mathcal{O}_X|_{\operatorname{Spec} A})_{\zeta} = A_{\zeta}$ であり, $A = \mathcal{O}_X|_{\operatorname{Spec} A}(\operatorname{Spec} A)$ が integral であることから, $\zeta = (0) \in \operatorname{Spec} A$.以上から

$$\mathcal{O}_{X,\zeta} = (\mathcal{O}_X|_{\operatorname{Spec} A})_{\zeta} = A_{\zeta} = A_{(0)} = \operatorname{Quot}(A)$$

が得られる.

Ex3.7 Dominant, Generically Finite Morphism of Finite Type of Integral Schemes.

Ex3.8 Normalization.

scheme が normal であるとは、その任意の局所環が integrally closed domain である、という意味である。X:: integral scheme とする。 $U=\operatorname{Spec} A\subseteq X$ に対し、 \tilde{A} を A の integral closure, $\tilde{U}=\operatorname{Spec} \tilde{A}$ とする。

(a) $\{\tilde{U}\}$ can be glued.

Ati-Mac Prop5.1 をつかう.

- (b) \tilde{X} has a UMP.
- (c) X:: finite type $\implies \tilde{X} \to X::$ finite.

Ex3.9 The Topological Space of a Product.

(a) $\mathbb{A}^1_k imes_{\operatorname{Spec} k} \mathbb{A}^1_k \cong \mathbb{A}^2_k$ but $\mathbb{A}^2_k
eq \mathbb{A}^1_k imes \mathbb{A}^1_k$ as sets.

 $\mathbb{A}^1_k = \operatorname{Spec} k[x]$ として $\mathbb{A}^1_k \times_{\operatorname{Spec} k} \mathbb{A}^1_k$ を考える.

- ■ $\mathbb{A}^1_k \times_{\operatorname{Spec} k} \mathbb{A}^1_k \cong \mathbb{A}^2_k$. $\mathbb{A}^1_k \times_{\operatorname{Spec} k} \mathbb{A}^1_k \cong \operatorname{Spec} k[x] \otimes_k k[y]$ かつ, $k[x] \otimes_k k[y] \cong k[x,y]$ (Ch I, Ex3.18 の解答を参照.) なので明らか.
- ■ $\mathbb{A}^1_k \times_{\operatorname{Spec} k} \mathbb{A}^1_k \neq \mathbb{A}^2_k$ as sets. Spec k[x,y] は $(y-x^2)$ のような点 (generic point of a variety) を含むが、 $\mathbb{A}^1_k \times_{\operatorname{Spec} k} \mathbb{A}^1_k$ にこれに対応する点はない.

(b) Describe Spec $k(s) \otimes_{\operatorname{Spec} k} \operatorname{Spec} k(t)$.

 $\operatorname{Spec} k(s) \otimes_{\operatorname{Spec} k} \operatorname{Spec} k(t) \cong \operatorname{Spec} k(s) \otimes_k k(t)$ である. $k(s) \otimes_k k(t)$ の元は 0 でなければ単元であ る. 実際, $f, g, f', g' \neq 0$ であるとき,

$$\frac{f(s)}{g(s)} \otimes \frac{f'(t)}{g'(t)} \cdot \frac{g(s)}{f(s)} \otimes \frac{g'(t)}{f'(t)} = 1 \otimes 1 = 1.$$

よって $k(s) \otimes_k k(t)$ は体で、 $\operatorname{Spec} k(s) \otimes_{\operatorname{Spec} k} \operatorname{Spec} k(t)$ は 1 点 scheme.

Ex3.10 Fibres of a Morphism.

- (a) $\operatorname{sp}(X_u) \approx f^{-1}(y)$.
- (i) Affine Case

 $\phi: B \to A, f: X = \operatorname{Spec} A \to \operatorname{Spec} B = Y$ とし、A を ϕ で B 代数とみなす。 $\mathfrak{p} \in \operatorname{Spec} B, S = B - \mathfrak{p}$ とすると, $A \otimes_B k(\mathfrak{p})$ は以下のようになる. なお, 以下で $\phi(\mathfrak{p})$ から生成されるイデアルを $I_{\mathfrak{p}} = \phi(\mathfrak{p})A =$ $\langle \phi(\mathfrak{p}) \rangle, T = \overline{\phi(S)}$ と置く.

$$A \otimes_{B} \frac{S^{-1}B}{S^{-1}\mathfrak{p}}$$

$$= A \otimes \bar{S}^{-1} \left(\frac{B}{\mathfrak{p}}\right)$$

$$\cong A \otimes \frac{B}{\mathfrak{p}} \otimes S^{-1}B$$

$$\cong \frac{A}{\phi(\mathfrak{p})A} \otimes S^{-1}B$$

$$\cong T^{-1} \left(\frac{A}{I_{\mathfrak{p}}}\right)$$

途中で Ati-Mac Cor3.4, Prop3.5, Ex2.2 を使った.

Ati-Mac Prop1.1, 3.11 より, $T^{-1}\left(\frac{A}{I_{\mathfrak{p}}}\right)$ の素イデアルは,A の素イデアルであって, $I_{\mathfrak{p}}$ を含み,T と 共通部分を持たないものに対応する.

$$\operatorname{Spec} T^{-1}\left(\frac{A}{I_{\mathfrak{p}}}\right) \approx \{\mathfrak{q} \in \operatorname{Spec} A \mid I_{\mathfrak{p}} \subseteq \mathfrak{q} \wedge \phi(S) \cap \mathfrak{q} = \emptyset.\}$$

同相であることは以下のように一般論から分かる. まず, 任意のイデアル $\mathfrak{a}\subseteq A$ について $\operatorname{Spec} \frac{A}{\mathfrak{a}}$ は $\operatorname{Spec} A$ の閉集合 $V(\mathfrak{a})$ と同相である $^{\dagger 4}$. また任意の積閉集合 $S\subseteq A$ について $\operatorname{Spec} S^{-1}A$ は $\operatorname{Spec} A$ の 部分集合と同相 $^{\dagger 5}$. よって $\operatorname{Spec} T^{-1}\left(rac{A}{I_{\mathfrak{p}}}
ight)$ は $V(I_{\mathfrak{p}})$ の部分集合と同相である.

一方,
$$f^{-1}(\mathfrak{p}) = \{\mathfrak{q} \in \operatorname{Spec} A \mid \phi^{-1}(\mathfrak{q}) = \mathfrak{p}\}$$
. なので $\mathfrak{q} \in \operatorname{Spec} A$ についての命題

$$I_{\mathfrak{p}} \subseteq \mathfrak{q} \wedge T \cap \bar{\mathfrak{q}} = \emptyset \iff f(\mathfrak{q}) = \phi^{-1}(\mathfrak{q}) = \mathfrak{p} \quad (*)$$

が示されれば証明が完了する. ただし $\bar{\mathfrak{q}}=\frac{\mathfrak{q}}{I_0}$.

まず $\mathfrak{p} \not\supseteq \ker \phi$ だとしよう. すると $S \cap \ker \phi \neq \emptyset$ なので、 $\phi(S) \ni 0$. 任意の \mathfrak{q} について $\mathfrak{q} \ni 0$ なので、

$$T\cap \bar{\mathfrak{q}}\supseteq \overline{\phi(S)\cap \mathfrak{q}}\supseteq \overline{\{0\}}.$$

 $^{^{\}dagger 4}$ $V(\mathfrak{a})\cap V(I)\leftrightarrow V\left(rac{\mathfrak{a}+I}{\mathfrak{a}}
ight)$ なので同相. $^{\dagger 5}$ みなす時の対応は $\mathfrak{p}S^{-1}A\leftrightarrow P\cap A$ である.

よって (*) の左辺は常に偽. 同じ条件の下で (*) の右辺が偽になることは明らかなので、 $\mathfrak{p} \not\supseteq \ker \phi \implies$ (*) が言えた.

続いて $\mathfrak{p} \supseteq \ker \phi$ だとしよう. この時 $I_{\mathfrak{p}} = \phi(\mathfrak{p})$ となる $^{\dagger 6}$. $\phi(S) = \phi(B - \mathfrak{p})$ だから,

$$\begin{split} \phi(\mathfrak{p}) &\subseteq \mathfrak{q} \wedge T \cap \bar{\mathfrak{q}} = \emptyset \\ \Longrightarrow \phi(\mathfrak{p}) \cap \mathfrak{q} &= \phi(\mathfrak{p}) \wedge \overline{\phi(B - \mathfrak{p}) \cap \mathfrak{q}} = \emptyset \\ \Longrightarrow \phi(\mathfrak{p}) \cap \mathfrak{q} &= \phi(\mathfrak{p}) \wedge \phi(B - \mathfrak{p}) \cap \mathfrak{q}) = \emptyset \\ \Longrightarrow \phi(B) \cap \mathfrak{q} &= (\phi(\mathfrak{p}) \cup \phi(B - \mathfrak{p})) \cap \mathfrak{q} = (\phi(\mathfrak{p}) \cap \mathfrak{q}) \cup (\phi(B - \mathfrak{p}) \cap \mathfrak{q}) = \phi(\mathfrak{p}) \\ \Longleftrightarrow \phi^{-1}(\mathfrak{q}) &= \mathfrak{p}. \end{split}$$

最後の行で準同型定理を用いた. 逆に $\mathfrak{p}=\phi^{-1}(\mathfrak{q})$ ならば $\phi(\mathfrak{p})\subseteq\mathfrak{q}$ は明らか. 同様に $\phi^{-1}(A-\mathfrak{q})=B-\phi^{-1}(\mathfrak{q})=B-\mathfrak{p}$ より $\phi(B-\mathfrak{p})\subseteq A-\mathfrak{q}$ も得られる. 最後に $T\cap \bar{\mathfrak{q}}=\emptyset$ を示す. これは以下と同値である.

このような x,y が存在すると仮定する. $x-y\in\mathfrak{p}=\mathfrak{q}\cap\phi(B)$ なので $x-(x-y)=y\in\mathfrak{q}$. 仮定と合わせて $y\in\mathfrak{q}\cap\phi(B-\mathfrak{p})$ を得るが、 $\mathfrak{q}\cap\phi(B-\mathfrak{p})\subseteq\mathfrak{q}\cap(A-\mathfrak{q})=\emptyset$ なので、矛盾が生じた. 以上より $\mathfrak{p}\supseteq\ker\phi\implies(*)$ が言えた.

(ii) General Case.

Y の y を含む affine open subset \tilde{Y} をとる. すると $f^{-1}\tilde{Y}$ も open afine covering をもつので,それを $f^{-1}\tilde{Y}=\bigcup X_i$ とする. $f:X\to Y$ を制限して $f|_{X_i}:X_i\to Y_i$ とする. すると Them3.3 の証明の Step6,7 より, X_y は

$$(X_y)_i := X_i \times_{\tilde{Y}} \operatorname{Spec}(\mathcal{O}_{\tilde{Y},y}/\mathfrak{m}_{\tilde{Y},y})$$

の貼り合わせ \dagger7 . $\operatorname{sp} X_y$ は $\operatorname{sp}(X_y)_i$ の張り合わせで、Affine Case での議論により $\operatorname{sp}(X_y)_i \approx (f|_{X_i})^{-1}(y) = f^{-1}(y) \cap X_i$. よって $\operatorname{sp} X_y = \bigcup_i (f^{-1}(y) \cap X_i) = f^{-1}(y)$. 位相空間としては $(f|_{X_{ij}})^{-1}(y) \stackrel{\approx}{\to} \operatorname{sp}(X_y)_{ij} \to \operatorname{sp} X_y$ を使って貼り合わせる.

(b) Another Solution of (b).

Ch.I Ex3.18(Product of Affine Varieties) で使った補題を少し変形したものと、中国剰余定理を用いる.

補題 $\mathbf{Ex3.10.1}$. I,J をそれぞれ k[s][t](=k[s,t]),k[s] のイデアルとする. この時,以下が成り立つ.

$$\frac{k[s][t]}{I} \otimes_{k[s]} \frac{k[s]}{I} \cong \frac{k[s][t]}{I + I^e}$$

ただし, $\frac{k[s][t]}{I}$, $\frac{k[s]}{J}$ はそれぞれ $f\mapsto f \bmod I$, $f\mapsto f \bmod J$ で k[s] 代数とみなす.

 $^{^{\}dagger 6}$ $\phi: B \to A$ について $\ker \phi \subseteq \mathfrak{b} \subseteq B$ としよう. $B/\ker \phi \cong \operatorname{im} \phi$ の同型射は $b \operatorname{mod} \ker \phi \mapsto \phi(b)$ なので,これに \mathfrak{b} を入れれば $\mathfrak{b}/\ker \cong \phi(\mathfrak{b})$ となる。 $\ker \phi \subseteq \mathfrak{b}$ より左辺はイデアルだから右辺もイデアル

^{†7} ここで, $y \not\in Y_i$ である場合は $\operatorname{Spec}(\mathcal{O}_{Y_i,y}/\mathfrak{m}_{Y_i,y}) \to Y_i$ が無い.これで大丈夫なのか気になる. $\mathcal{O}_{Y_i,y} = \lim_{\substack{\longrightarrow y \in V \subseteq Y_i}} \mathcal{O}_Y(V)$ は $y \not\in Y_i$ の時 $\{0\}$ の direct limit なので 0 (零環)となる.したがって $\operatorname{Spec}(\mathcal{O}_{Y_i,y}/\mathfrak{m}_{Y_i,y}) \to Y_i$ は零写像から誘導される物になり, $(X_y)_{ij} = X_{ij} \times_{Y_i} \emptyset = 0$ となる.以上から, $y \in Y_i$ かどうか気にせず上のように述べ て問題ない.

(証明). $\pi_1: k[s][t] \to \frac{k[s][t]}{I}, \pi_2: k[s] \to \frac{k[s]}{I}$ を標準的全射とする. すると $\pi_1 \otimes_{k[s]} \pi_2$ も全射である. $\kappa: k[s][t] \to k[s][t] \otimes_{k[s]} k[s]$ を標準的同型だとすると,以下は全射である.

$$\kappa \circ \pi_1 \otimes_{k[s]} \pi_2 : k[s][t] \to k[s][t] \otimes_{k[s]} k[s] \to k[s][t] \otimes k[s] \to \frac{k[s][t]}{I} \otimes_{k[s]} \frac{k[s]}{I}$$

これの ker を計算すると $I + J^e$ となり、準同型定理により主張が得られる.

これをつかって (b) を計算していく.

■At $y=(s-a)\in Y$ $(a\neq 0)$. $\phi(y)=(\overline{t}^2-a)=(\overline{t}-\sqrt{a})\cap(\overline{t}+\sqrt{a})$ だから, (a) から以下が成り立つ.

$$\operatorname{sp}(X_y) \approx f^{-1}(y) = f^{-1}V(y) = V(\phi(\mathfrak{a})) = \{(\bar{t} - \sqrt{a}), (\bar{t} + \sqrt{a})\}.$$

 $k(y)=B_y/yB_y\cong (B/y)_{\bar{y}}$ だが, $B/y\cong k$ は体だから k(y)=k. $X_y=\operatorname{Spec} A\otimes_B B/y$ なので補題が使える.

$$\begin{split} \frac{k[s,t]}{(s-t^2)} \otimes_{k[s]} \frac{k[s,u]}{(s-a,u)} & \cong \frac{k[s,t,u]}{(s-t^2,s-a,u)} \\ & \cong \frac{k[t]}{(t^2-a)} \\ & = \frac{k[t]}{(t-\sqrt{a})\cap(t+\sqrt{a})} \\ & \cong \frac{k[t]}{(t-\sqrt{a})} \oplus \frac{k[t]}{(t+\sqrt{a})} \\ & \cong k \times k \end{split}$$

途中で中国剰余定理を使った.このことから $X_y = \operatorname{Spec}(k \times k)$ で,各点での剰余体は k.

 \blacksquare At $y = (s) \in Y$.

$$\frac{k[s,t]}{(s-t^2)} \otimes_{k[s]} \frac{k[s,u]}{(s,u)} \cong \frac{k[s,t,u]}{(s-t^2,s,u)}$$
$$\cong \frac{k[t]}{(t^2)}$$

 $\frac{k[t]}{(t^2)}$ は (t) mod (t^2) を唯一の極大イデアルとする局所環なので、Ex2.3b より Spec $\frac{k[t]}{(t^2)}$ は 1 点空間. また、non-reduced scheme である.

■At $y=(0)=\eta\in Y$. $(B/\eta)_{\eta}=B_{(0)}=k(s)$ なので $k(\eta)=k(s)$. $S=k[s]-\{0\}$ とすると以下のように計算できる.

$$\frac{k[s,t]}{(s-t^2)} \otimes_{k[s]} S^{-1}k[s] \cong \bar{S}^{-1} \frac{k[s,t]}{(s-t^2)}$$

$$\cong \frac{S^{-1}k[s,t]}{S^{-1}(s-t^2)}$$

$$\cong \frac{k(s)[t]}{(t^2-s)}$$

 t^2-s は k(s) 係数既約多項式だから,この環は体.なので $X_y={
m Spec}\, {k(s)[t]\over (t^2-s)}$ は 1 点空間である.しかも剰余体は k(s)=k(y) の 2 次拡大体.

Ex3.11 Closed Subschemes.

- (a) Closed Immersions are Stable under Base Extension.
- (b) * Closed Subscheme of Affine Scheme is Determined by a Suitable Ideal.

 $X = \operatorname{Spec} A$ とその closed subscheme Y を考える. Y = X ならば主張は自明なので $Y \subseteq X$ とする.

- (c) The Smallest Subscheme Structure on a Closed Subset.
- (d) The Scheme-Theoretic Image of f.
- Ex3.12 Closed Subschemes of Proj S.
- Ex3.13 Properties of Morphisms of Finite Type.
- Ex3.14 The Closed Points of Scheme of Finite Type over a Field.
- Ex3.15 Geometrically Irreducible/Reduced/Integral Schemes.

k :: field, X :: scheme of finite type over k. この時 X は $\operatorname{Spec} \frac{k[x_1,\dots,x_n]}{I}$ という形の open affine subscheme で被覆できる。以下ではこの被覆のうちの一つの open affine subscheme を取って考察をする。 $R = \frac{k[x_1,\dots,x_n]}{I}$ としておく。また, $X \times_{\operatorname{Spec} k} \operatorname{Spec} \bar{k}$ を $X \times_k \bar{k}$ と略す。

(a) Geometrically Irreducible.

以下の条件の同値性を示す.

- (i) $X \times_k \bar{k}$ is irreducible.
- (ii) $X \times_k k_s$ is.
- (iii) $X \times_k K$ is, for every extension field K of k.

ただし k_s は k の分離閉包で、 \bar{k} の部分体である.これらのいずれか(したがって全部)が成り立つ X は geometrically irreducible である,という.

 $(iii) \Longrightarrow (i),(ii)$ は明らか、また、一般の位相空間 T について以下が成り立つ、(TODO: check)

T:: irreducible $\iff \exists \{U_i\}::$ open cover of $T, \forall i,j, U_i \cap U_j \neq \emptyset \land U_i::$ irreducible.

よって, $(i) \Longrightarrow (ii) \Longrightarrow (iii)$ を affine case で確かめれば十分である. Ati-Mac Ex1.19 より, これは更に, 次の 3 つの条件が同値であることだと言い換えられる.

- (i) $Nil(R \otimes_k \bar{k})$ is a prime ideal.
- (ii) $Nil(R \otimes_k k_s)$ is.
- (iii) $Nil(R \otimes_k K)$ is, for every extension field K of k.
- (b) Geometrically Reduced.

以下の条件の同値性を示す.

- (i) $X \times_k \bar{k}$ is reduced.
- (ii) $X \times_k k_p$ is.
- (iii) $X \times_k K$ is, for every extension field K of k.

ただし k_p は k の完全閉包で、 \bar{k} の部分体である.これらのいずれか(したがって全部)が成り立つ X は geometrically reduced である,という.

 $(iii) \Longrightarrow (i),(ii)$ は明らか、また、Ex2.3a より、reduced という性質は local な性質であるから、一般の scheme S について以下が成り立つ。

 $S :: \text{ reduced} \iff {}^{\exists}\{U_i\} :: \text{ open cover of } S, {}^{\forall}i, {}^{\mathcal{O}}_S(U_i) :: \text{ reduced.}$

よって, $(i) \Longrightarrow (iii)$ を affine case で確かめれば十分である. これは affine case では更に言い換えられる.

- (i) $\operatorname{Nil}(R \otimes_k \bar{k}) = 0$
- (ii) $Nil(R \otimes_k k_s) = 0$.
- (iii) $Nil(R \otimes_k K) = 0$, for every extension field K of k.

(c) Geometrically Integral.

 $X \times_k \bar{k}$ が integral であるとき X は geometrically integral であるという. **integral** scheme だが geometrically irreducible でない,または geometrically reduced でない例を作る.

Ex3.16 Noetherian Induction.

Ex3.17 Zariski Spaces.

X:: topological space について、X が noetherian かつ X の任意の irreducible closed subset がただひとつの generic point を持つとき、X は Zariski space であるという.

(a) X :: Noetherian Scheme \implies $\operatorname{sp}(X)$:: Zariski Space. Ex2.9 より明らか.

(b) Minimal Nonempty Closed Subset of a Zariski Space = One Point Set.

X:: Zariski Space,M:: minimal nonempty closed subset of X とする. この時, M:: irreducible である. 実際, $M = Z_0 \cup Z_1$ と空でない閉集合の和へ分解できるならば $Z_0, Z_1 \subsetneq M$ となり, minimality に反するからである. また, Ch I, Ex1.7 より M は Noetherian. なので $g \in M$:: generic point が存在 する. $M - \{g\}$ が空でないと仮定し, $g \in M - \{g\}$ をとる. $\operatorname{cl}_X(\{g\}) \subseteq M$ であるが, M は極小な閉集合だから $\operatorname{cl}_X(\{g\}) = M$. これは M の generic point として g, g の二つが取れることを意味し, generic point の唯一性に矛盾する.

(c) Zariski Space is a T_0 -Space.

互いに異なる $2 \le x, y \in X$ をとる。これらのうち一方を含み、もう一方を含まない閉集合が存在することを示す。まず、一般の空間における閉包作用素の性質より、以下が成り立つ。

$$cl_X(\{x,y\}) = cl_X(\{x\}) \cup cl_X(\{y\}).$$

左から順に C_{xy}, C_x, C_y とする.

- $\blacksquare C_{xy}$:: not irreducible. $\{x\}\subseteq C_y$ ならば $C_x\subseteq \operatorname{cl}_X(C_y)=C_y$ となる. よって $C_{xy}=C_y$ が導かれる. しかし C_y :: irreducible $^{\dagger 8}$ だから,これは矛盾.したがって $x\not\in C_y$.逆に $y\not\in C_x$ も得られる.
- $\blacksquare C_{xy}$:: irreducible. C_x, C_y は空でない閉集合だから, C_{xy} が irreducible であったとすると, C_x, C_y の いずれかは C_{xy} と一致している. なので x,y のどちらか一方は C_{xy} の generic point である. x がその generic point だと仮定しよう. $\{x\}\subseteq C_y$ であれば $C_{xy}=\operatorname{cl}_X(C_y)=C_y$ となるから, $\{x\}\subseteq C_y$ から y が C_{xy} の generic point であることが導かれる. これは generic point の唯一性に反するから, $x\not\in C_y$.

(d) The Generic Point of Irreducible Zariski Space is in Any Open Subset of That.

X:: irreducible Zariski space, g:: generic point of X とおく、g を含まない空でない開集合 U が存在したと仮定する、すると $g \in U^c$ であり、 U^c は真の閉部分集合である、これは $\operatorname{cl}_X(\{g\}) \subseteq \operatorname{cl}_X(U^c) \subsetneq X$ を意味するので、矛盾、

(e) Specialization.

X :: Zariski space とし、X の点に以下のように順序を入れたものを Σ とする.

$$x_1 \ge x_0 \iff x_1 \leadsto x_0 \iff \operatorname{cl}_X(\{x_1\}) \ni x_0.$$

これは半順序集合をなす (CHECK). $x_1 \rightsquigarrow x_0$ であるとき x_0 は x_1 の specialization という. 逆に x_1 は x_0 の generization だという.

(i) The Minimal/Maximal Elements of Σ .

 Σ の極小元 x は以下を満たす点である.

$$^{\exists} y \in \Sigma, \quad x \neq y \wedge \operatorname{cl}_X(\{x\}) \ni y.$$

つまり x は $\{x\}$ が閉集合であるような点である. よって x は closed point.

次にxを Σ の極大元だとする.これは以下を満たす.

$$^{\exists} y \in \Sigma, \quad x \neq y \wedge \operatorname{cl}_X(\{y\}) \ni x.$$

x を含む irreducible component の generic point を g とする. $y \neq g$ であるとき $\operatorname{cl}_X(\{y\}) \ni g$ は generic point の唯一性に反するから,g は Σ の極大元である。逆に,任意の元 $x \neq g$ に対し, $\operatorname{cl}_X(\{g\}) \ni x$ が成立する。結局,x がその generic point(すなわち x = g)であるときかつその時に限り,x は Σ の極大元となる。

 $^{^{\}dagger 8}$ $\operatorname{cl}_X(\{x\})$ が x を含む最小の閉集合であることから、 $\operatorname{cl}_X(\{x\})$ は x を含む真の部分閉集合を持たない。 よって $\operatorname{cl}_X(\{x\})=Z_0\cup Z_1$ ならば、 Z_0,Z_1 のどちらか一方は真の部分閉集合になり得ない。

(ii) Closed/Open Subset is Stable under Specialization/Generization. $S \subset X$ に対し,

$$S_S = \{ y \in X \mid \exists x \in S, \ x \leadsto y. \}, \quad S_G = \{ x \in X \mid \exists y \in S, \ x \leadsto y. \}$$

とおく. $x \leadsto x$ なので $S \subseteq S_S, S_G$ となる.

 $\blacksquare S$:: closed $\implies S_S = S$. $S \supseteq S_S$ を示せば良い. これは以下と同値.

$$\forall x \in S, \ \forall y \in X, \ \operatorname{cl}_X(\{x\}) \ni y \implies y \in S$$

これは以下から示せる.

$$\{x\} \subseteq S \implies \operatorname{cl}_X(\{x\}) \subseteq \operatorname{cl}_X(S) = S$$

 $\blacksquare S$:: open $\implies S_G = S$. $S \supseteq S_G$ を示せば良い. これは以下と同値.

$$\forall y \in S, \ \forall x \in X, \ \operatorname{cl}_X(\{x\}) \ni y \implies x \in S$$

これの対偶は以下のようになる.

$$\forall y \in S, \ \forall x \in X, \ x \in S^c \implies y \notin \operatorname{cl}_X(\{x\}) \subseteq \operatorname{cl}_X(S^c) = S^c$$

これは明らかに成立する $(y \in S$ に注意).

(f) X :: Noetherian Topological Space $\implies t(X)$:: Zariski Space.

t(X) は X の irreducible closed subsets であり、t(X) の閉集合は X の閉集合 Y を用いて t(Y) と表せる集合である.

- ■X:: Noetherian \Longrightarrow Irreducible Subset in t(X) has Unique Generic Point. $Y\subseteq X$ が closed だとし、さらに $t(Y)\subseteq t(X)$ が irreducible closed subset だとする. t(Y) の点は X の irreducible closed subset だから、X:: Noetherian より、t(Y) は極小元 $G\subseteq Y$ をもつ。 $G\in t(Z)$ すなわち $G\in t(Y\cap Z)$ ならば $Y\cap Z=Y$ すなわち $Y\subseteq Z$ 、ということを示せば、G:: generic point が得られる.
- $\blacksquare X$:: Noetherian $\implies t(X)$:: Noetherian. 以下を使う.

$$\forall Y, Z :: \text{ open in } X, Y \subseteq Z \iff t(Y) \subseteq t(Z).$$

これは次のように示される。まず(\Longrightarrow)は, $z\in Z-Y$ とすると, $\operatorname{cl}_X(z)\in t(Z)-t(Y)$ となることから得られる。 $\operatorname{cl}_X(z)\in t(Y)$ ならば $z\in\operatorname{cl}_X(z)\subseteq Y$ だが, $z\not\in Y$ なのでこれはありえない。また(\Longleftrightarrow)は,t(Z)-t(Y) の極小元を考えれば得られる。その極小元を M とし, $m\in M$ とすると $\operatorname{cl}_X(m)\subseteq M$ の極小性から等号が成り立つ。もし $m\in Y$ ならば $\operatorname{cl}_X(m)\subseteq Y$ かつ $\operatorname{cl}_X(m)\not\in t(Y)$ となり,これはありえない。今示したことから,以下の同値が得られ,t(X) :: Noetherian が示せる.

$$X_0 \supseteq X_1 \supseteq \cdots \iff t(X_0) \supseteq t(X_1) \supseteq \cdots$$

ただし X_0, X_1, \ldots は X の閉集合である.

Ex3.18 Constructible Sets.

X:: Zariski topological space の部分集合族 \mathfrak{F}_X を,以下のように定める.

- (1) 任意の開集合は \mathfrak{F}_X に属す.
- \mathfrak{F}_X の有限個の元の共通部分は \mathfrak{F}_X に属す.
- (3) \mathfrak{F}_X の元の補集合は \mathfrak{F}_X に属す.
- (4) 以上の操作を繰り返して得られる集合のみが \mathfrak{F}_X の元である.

 \mathfrak{F}_X の元を X の constructible subset と呼ぶ. ひとつの Zariski space しか扱わない時は \mathfrak{F}_X を \mathfrak{F} と略す.

(a) $\mathfrak{F}=\{$ Finite Disjoint Union of Locally Closed Subsets. $\}=:\mathfrak{L}$

補題 **Ex3.18.1.** $Z \subseteq X$:: finite union of locally closed then Z :: finite **disjoint** union of locally closed.

(証明). $Z = \bigcup_{i=1}^r C_i \cap O_i$ が disjoint union であるためには, $\bigcup_{i=1} C_i$ が locally closed subset \mathcal{O} disjoint union で書ければ十分であることに注意する $^{\dagger 9}$. 実際, $\bigcup_{i=1} C_i = \bigcup_{j=1}^s D_j \cap V_j$ となったとする.

$$W_j = \bigcup_{i; \ C_i \cap D_j \cap V_j = D_j \cap V_j} O_i$$

とおくと, $C_i \cap D_j \cap V_j = D_j \cap V_j$ or \emptyset (以下の構成から分かる) から $\bigcup_i C_i \cap D_j \cap V_j \cap O_i = D_j \cap V_j \cap W_j$. これより以下が得られる.

$$Z = \bigcup_{i=1}^{r} \left(\bigcup_{j=1}^{s} D_j \cap V_j \cap C_i \right) \cap O_i$$

$$= \bigcup_{i=1}^{r} \bigcup_{j=1}^{s} D_j \cap V_j \cap C_i \cap O_i$$

$$= \bigcup_{j=1}^{s} \bigcup_{i=1}^{r} D_j \cap V_j \cap C_i \cap O_i$$

$$= \bigcup_{j=1}^{s} D_j \cap (V_j \cap W_j).$$

 $\bigcup_{i=1} C_i$ を locally closed subset \mathcal{O} disjoint union で書く. $n=1,\ldots,r$ に対し,

$$\Sigma_n = \{(i_1, \dots, i_n) \mid i_1 < \dots < i_n \land i_1, \dots i_n \in \{1, \dots, r\}\}$$

とおく. これは要素数 $\binom{r}{n-r}$ の有限集合である. さらに $\sigma=(i_1,\ldots,i_n)\in\Sigma_n$ に対して $C_\sigma=C_{i_1}\cap C_{i_n}$ とする. 以下は明らかに locally closed.

$$K_{\sigma} = C_{\sigma} \cap \left(\bigcup_{m=n+1}^{r} \bigcup_{\tau \in \Sigma_{m}} C_{\tau}\right)^{c}$$

これらは disjoint である.実際に $\sigma \in \Sigma_n, \sigma' \in \Sigma_{n'}$ を考えてみる.n < n' ならば明らかに disjoint.n = n' のとき,例えば $\sigma = (i_1, \ldots, i_n), \sigma' = (i'_1, \ldots, i_n), i'_1 < i_1$ に対して $\sigma \cap \sigma' = (i'_1, i_1, \ldots, i_n)$ とすると, $C_{\sigma} \cap C_{\sigma'} = C_{\sigma \cap \sigma'}$ となる. $\sigma \cap \sigma' \in \Sigma_{n+1}$ なのでやはり disjoint.

 $^{^{\}dagger 9} \ \ [D_j \cap (V_j \cap W_j)] \cap [D_k \cap (V_k \cap W_k)] = ([D_j \cap V_j] \cap [D_k \cap V_k]) \cap (W_j \cap W_k) = \emptyset$

℃の元は、以下のように書ける.

$$\bigsqcup_{i=1}^r (C_i \cap O_i) \text{ where } \{C_i\}_{i=1}^r, \{O_i\}_{i=0}^r :: \text{ closed,open subsets of } X.$$

 $\mathfrak{F}\supseteq\mathfrak{L}$ は

$$\bigsqcup_{i=1}^r C_i \cap O_i = \left(\bigcap_{i=1}^r (C_i^c)^c \cap O_i\right)^c$$

から明らか.

 $\mathfrak{F}\subseteq\mathfrak{L}$ を示すために、induction by construct of constructible subset を行う。開集合全体を \mathfrak{F}_0 とし、これらの元に (2),(3) の操作を $n(\geq 0)$ 回繰り返して得られる集合族を \mathfrak{F}_n とする。任意の n について $\mathfrak{F}_n\subseteq\mathfrak{L}$ であることを示す。(1) \mathfrak{F}_0 の元、すなわち開集合は明らかに \mathfrak{L} に属す。以下、 $\mathfrak{F}_n\subseteq\mathfrak{L}$ と仮定して、数学的帰納法により $\mathfrak{F}_{n+1}\subseteq\mathfrak{L}$ を示す。(2) \mathfrak{F}_n の 2 個の元は \mathfrak{L} に属す。それらの共通部分は \mathfrak{F}_{n+1} に属すが、これは以下のように書ける。

$$\left(\bigsqcup_{i=1}^r (C_i \cap O_i)\right) \cap \left(\bigsqcup_{j=1}^s (D_i \cap P_i)\right) = \bigsqcup_{\substack{1 \le i \le r \\ 1 \le j \le s}} (C_i \cap D_j) \cap (O_i \cap P_j).$$

よって \mathfrak{F}_n の有限個の元の共通部分は $\mathfrak L$ に属す. (3) \mathfrak{F}_n の元は $\mathfrak L$ に属す. その補集合は

$$\bigcap_{i=1}^r (C_i^c \cup O_i^c) = \bigcup_{1 \leq i,j \leq r} (C_i^c \cap O_j^c)$$

これは locally closed subset の union だから、Lemma より、 $\mathfrak L$ に属す。以上より、任意の n について $\mathfrak F_n\subseteq \mathfrak L$ である。まとめて、 $\mathfrak F=\bigcup_{n=0}^\infty \mathfrak F_n\subseteq \mathfrak L$

(b) Dense Constructible Subset In Irreducible Zariski Space.

constructible subset が dense なのはそれが generic point ζ を含むときに限る. これを示そう. (a) から constructible subset Z は以下のように書ける.

$$Z = \bigsqcup_{i=1}^r (C_i \cap O_i)$$
 where $\{C_i\}_{i=1}^r, \{O_i\}_{i=0}^r$:: closed,open subsets of X .

Ex3.17d より,各 O_i は ζ を含む.なのですべての C_i が ζ を含まない時に限り Z は ζ を含まない.この時, $\zeta \not\in \bigcup_{i=1}^r C_i$ なので $\bigcup_{i=1}^r C_i$ は真の閉部分集合である. $C_i \cap O_i \subseteq C_i$ より

$$\operatorname{cl}_X(Z) \subseteq \bigcup_{i=1}^r C_i \subsetneq X$$

また、constructible subset Z が dense ならば、ある i について $\zeta \in C_i \cap O_i$ となる.しかも $\zeta \in C_i$ より $C_i = X$.よって $C_i \cap O_i = O_i \subseteq Z$ となり、Z は X の開集合を含む.

(c) $S \subseteq X$:: Closed $\iff S$:: Constructible And Stable Under Specialization.

(⇒) は constructible subset の定義と Ex3.17e から得られる. (←) を示す.

 $Z = \bigsqcup_{i \in I_0} C_i \cap O_i$ をとり、 $\bigcup_{i \in I_0} C_i$ を $(X \circ O)$ irreducible components に分解して $\bigcup_{i \in I_0} C_i = \bigcup_{(i,i) \in I_1} K_{ij}$ とする $(X :: noetherian と Ch.I Prop1.5 を用いた).更に、<math>K_{ij} \cap O_i \neq \emptyset$ となる

 $(i,j)\in I_1$ を選び出して I_2 とする.この時 $Z=\bigcup_{(i,j)\in I_2}K_{ij}\cap O_i$ となる.さて, K_{ij} は irreducible なので $K_{ij}\cap O_i$ は K_{ij} の generic point ζ_{ij} を含む.Z が stable under specialization ならば以下が成り立つ。

$$\bigcup_{(i,j)\in I_2} K_{ij} = \bigcup_{(i,j)\in I_2} \operatorname{cl}_X(\{\zeta_{ij}\}) \subseteq Z \subseteq \bigcup_{(i,j)\in I_2} K_{ij}$$

よって $Z = \bigcup_{(i,j) \in I_2} K_{ij}$ となり、これは閉集合.

(d) If $f: X \to Y$:: Continuous Map then $f^{-1}(\mathfrak{F}_Y) = \mathfrak{F}_X$.

すべて基本的な位相空間の結果である. (1) U :: open in Y について $f^{-1}(U)$:: open in X. (2) $Z, W \in \mathfrak{F}_Y$ について $f^{-1}(Z \cap W) = f^{-1}(Z) \cap f^{-1}(W)$. (3) $Z \in \mathfrak{F}_Y$ について $f^{-1}(Z^c) = (f^{-1}(Z))^c$.

- Ex3.19 Chevalley's Theorem on Constructible Set.
- Ex3.20 Dimension.
- Ex3.21 Spec of D.V. Ring Gives Counterexample for Ex3.20a,d,e.
- Ex3.22 Dimension of the Fibres of a Morphism.
- Ex3.23 $t(V \times W) = t(V) \times_{\operatorname{Spec} k} t(W)$.