

## GOVERNMENT OF INDIA MINISTRY OF SKILL DEVELOPMENT & ENTREPRENEURSHIP DIRECTORATE GENERAL OF TRAINING

### **COMPETENCY BASED CURRICULUM**

# BASIC DESIGNER AND VIRTUAL VERIFIER (MECHANICAL)

(Duration: Two Years)

## CRAFTSMEN TRAINING SCHEME (CTS) NSQF LEVEL- 5



### SECTOR – CAPITAL GOODS AND MANUFACTURING



# BASIC DESIGNER AND VIRTUAL VERIFIER (MECHANICAL)

(Engineering Trade)

(Designed in 2021)

Version: 1.0

### **CRAFTSMEN TRAINING SCHEME (CTS)**

**NSQF LEVEL-5** 

Developed By

Ministry of Skill Development and Entrepreneurship

**Directorate General of Training** 

### **CENTRAL STAFF TRAINING AND RESEARCH INSTITUTE**

EN-81, Sector-V, Salt Lake City, Kolkata – 700 091 www.cstaricalcutta.gov.in

### **CONTENTS**

| S No. | Topics                                       | Page No. |
|-------|----------------------------------------------|----------|
| 1.    | Course Information                           | 1        |
| 2.    | Training System                              | 2-5      |
| 3.    | Job Role                                     | 6-7      |
| 4.    | General Information                          | 8-10     |
| 5.    | Learning Outcome                             | 11       |
| 6.    | Assessment Criteria                          | 12-15    |
| 7.    | Trade Syllabus                               | 16-32    |
|       | Annexure I (List of Trade Tools & Equipment) | 33       |
|       | Annexure II (List of Trade experts)          | 34       |

### 1. COURSE INFORMATION

During the two-year duration of Basic Designer and Virtual Verifier (Mechanical) trade, the candidate is trained on subjects, Professional Skill, Professional Knowledge, Engineering Drawing, Workshop Science & Calculation and Employability Skills related to job role. In addition to this, a candidate is entrusted to make/do project work and Extra-Curricular Activities to build up confidence. The practical skills are imparted in simple to complex manner & simultaneously theory subject is taught in the same fashion to apply cognitive knowledge while executing tasks.

The content broadly covers using computers where in the course introduces to computer aided engineering to learn to develop the geometric designing, modelling, developing finite element models and perform various analysis with the aid of software packages like CAE software. The broad components covered under Professional Skill subject are as below: -

<u>FIRST YEAR</u>: In this year, the contents cover from safety aspect related to trade, basics of product design and development, introduction to Engineering drawing, introduction to Computer Aided Design (CAD), preparing the design for 3D printing, familiarization to Computer Aided Engineering (CAE) software, importing geometry and setting up the geometry for discretization (meshing), meshing the geometry with 1D, 2D and 3D elements, editing and updating the mesh, checking the mesh quality, assigning material and element properties, running a linear static analysis for simple components.

The trainee learns generating the 2D drawing of simple components using basic engineering drawing skills, generating sketches for simple problems, generating 3D model for the concept, editing and modifying of the design, creation of 2D drawings, exploded views of the design, creation of bill of materials, meshing of sheet metal and stamped components, applying the loads and appropriate boundary conditions to simulate the physical problem, analyzing simple automotive / general engineering components for linear static analysis.

**SECOND YEAR**: In this year, advance structural analysis methods such as inertia relief analysis, use of special types of elements such as spring elements, mass elements, rigid elements, material and geometric non-linear analysis, modal analysis, thermal analysis etc. are covered. The trainee learns advanced analysis such as, nonlinear analysis, modal, inertia relief method, thermal analysis, frequency response analysis and other analysis. The list of exercise problems includes of beams, trusses, simple frame, automotive components, simple aircraft component and general machinery components.



#### 2.1 GENERAL

Directorate General of Training (DGT) under Ministry of Skill Development & Entrepreneurship offers range of vocational training courses catering to the need of different sectors of economy/ Labor market. The vocational training programmes are delivered under aegis of Directorate General of Training (DGT). Craftsman Training Scheme (CTS) and Apprenticeship Training Scheme (ATS) are two pioneer programmes of NCVT for propagating vocational training.

Basic Designer and Virtual Verifier (Mechanical) trade under CTS is delivered nationwide through network of ITIs. The course is of two years duration. It mainly consists of Domain area and Core area. The Domain area (Trade Theory & Practical) impart professional skills and knowledge, while Core area (Workshop Calculation and science, Engineering Drawing and Employability Skills) impart requisite core skill & knowledge and life skills. After passing out the training program, the trainee is awarded National Trade Certificate (NTC) by DGT which is recognized worldwide.

### Candidates need broadly to demonstrate that they are able to:

- Read & interpret technical parameters/documentation, plan and organize work processes, identify necessary materials and tools;
- Perform task with due consideration to safety rules, accident prevention regulations and environmental protection stipulations;
- Apply professional knowledge, core skills & employability skills while performing the job and repair & maintenance work.
- Check the task/job for functioning, identify and rectify errors in task/job.
- Document the technical parameters related to the task undertaken.

### **2.2 PROGRESSION PATHWAYS:**

- Can join industry as Technician and will progress further as Senior Technician, Supervisor and can rise up to the level of Manager.
- Can become Entrepreneur in the related field.
- Can take admission in diploma course in notified branches of Engineering by lateral entry.
- Can join Apprenticeship programme in different types of industries leading to National Apprenticeship certificate (NAC).
- Can join Crafts Instructor Training Scheme (CITS) in the trade for becoming instructor in ITIs.
- Can join Advanced Diploma (Vocational) courses under DGT as applicable.

### **2.3 COURSE STRUCTURE:**

Table below depicts the distribution of training hours across various course elements during a period of two years: -

| S No. | Course Element                        | Notional Training Hours |                      |
|-------|---------------------------------------|-------------------------|----------------------|
| 3 NO. | Course Element                        | 1 <sup>st</sup> Year    | 2 <sup>nd</sup> Year |
| 1     | Professional Skill (Trade Practical)  | 1000                    | 1000                 |
| 2     | Professional Knowledge (Trade Theory) | 280                     | 360                  |
| 3     | Workshop Calculation & Science        | 80                      | 80                   |
| 4     | Engineering Drawing                   | 80                      | 80                   |
| 5     | Employability Skills                  | 160                     | 80                   |
|       | Total                                 | 1600                    | 1600                 |

### 2.4 ASSESSMENT & CERTIFICATION:

The trainee will be tested for his skill, knowledge and attitude during the period of course through formative assessment and at the end of the training programme through summative assessment as notified by the DGT from time to time.

- a) The **Continuous Assessment** (Internal) during the period of training will be done by **Formative assessment method** by testing for assessment criteria listed against learning outcomes. The training institute have to maintain individual *trainee portfolio* as detailed in assessment guideline. The marks of internal assessment will be as per the formative assessment template provided on www.bharatskills.gov.in.
- b) The final assessment will be in the form of summative assessment. The All India trade Test for awarding NTC will be conducted by **Controller of examinations**, DGT as per the guidelines. The pattern and marking structure is being notified by DGT from time to time. **The learning outcome and assessment criteria will be basis for setting question papers for final assessment. The examiner during final examination will also check individual trainee's profile as detailed in assessment guideline before giving marks for practical examination.**

### 2.4.1 PASS REGULATION

For the purposes of determining the overall result, weightage of 100% is applied for six months and one year duration courses and 50% weightage is applied to each examination for two years

3



courses. The minimum pass percent for Trade Practical and Formative assessment is 60% & for all other subjects is 33%. There will be no Grace marks.

### **2.4.2 ASSESSMENT GUIDELINE:**

Appropriate arrangements should be made to ensure that there will be no artificial barriers to assessment. The nature of special needs should be taken into account while undertaking assessment. Due consideration to be given while assessing for team work, avoidance/reduction of scrap/wastage and disposal of scarp/wastage as per procedure, behavioral attitude, sensitive to environment and regularity in training. The sensitivity towards OSHE and self-learning attitude to be considered while assessing competency.

Assessment will be evidence based comprising the following:

- Job carried out in labs/workshop
- Record book/ daily diary
- Answer sheet of assessment
- Viva-voce
- Progress chart
- Attendance and punctuality
- Assignment
- Project work

Evidences and records of internal (Formative) assessments are to be preserved until forthcoming examination for audit and verification by examination body. The following marking pattern to be adopted while assessing:

| Performance Level                                                                                                                                                                                                             | Evidence                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) Weightage in the range of 60 -75% to be allo                                                                                                                                                                              | otted during assessment                                                                                                                                                                                                                                                                                                                          |
| For performance in this grade, the candidate with occasional guidance and showing due regard for safety procedures and practices, has produced work which demonstrates attainment of an acceptable standard of craftsmanship. | <ul> <li>Demonstration of good skill in the use of hand tools, machine tools and workshop equipment</li> <li>60-70% accuracy achieved while undertaking different work with those demanded by the component/job.</li> <li>A fairly good level of neatness and consistency in the finish</li> <li>Occasional support in completing the</li> </ul> |

|                                                                                                                                                                                                                                                      | project/job.                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)Weightage in the range of above 75% - 90%                                                                                                                                                                                                         | to be allotted during assessment                                                                                                                                                                                                                                                                                                        |
| For this grade, the candidate, with little guidance and showing due regard for safety procedures and practices, has produced work which demonstrates attainment of a reasonable standard of craftsmanship.                                           | <ul> <li>Good skill levels in the use of hand tools, machine tools and workshop equipment</li> <li>70-80% accuracy achieved while undertaking different work with those demanded by the component/job.</li> <li>A good level of neatness and consistency in the finish</li> <li>Little support in completing the project/job</li> </ul> |
| (c) Weightage in the range of above 90% to be                                                                                                                                                                                                        | allotted during assessment                                                                                                                                                                                                                                                                                                              |
| For performance in this grade, the candidate, with minimal or no support in organization and execution and with due regard for safety procedures and practices, has produced work which demonstrates attainment of a high standard of craftsmanship. | <ul> <li>High skill levels in the use of hand tools, machine tools and workshop equipment</li> <li>Above 80% accuracy achieved while undertaking different work with those demanded by the component/job.</li> <li>A high level of neatness and consistency in the finish.</li> <li>Minimal or no support in completing the</li> </ul>  |

project.



Designer understands, creates, edits and modifies the engineering drawings, creates 2D sketches, 3D CAD models, and detailed assembly models. Import the geometry from native CAD environment, clean up and edit the geometry for design modification. The designer selects the CAD data, clean up the design for meshing, creates the mesh with 1D, 2D and 3D elements, maintains the quality of the mesh by choosing industry accepted quality parameters, applies the appropriate materials & element properties, applies correct loads and boundary conditions, prepare the finite element model for the analysis, analyze the structure depending on the type of the problem, submits the finite element model to the solver and controls the solver. The designer checks the equilibrium and compatibility of the mode, post process the results for various quantities such as deformation, stresses, strains etc., interprets the result by post processing the data, recommends the design changes to improve the design, modifies the mesh and resubmit the model to visualize the effect of the design change. Then the designer details the design and prepares the geometry for additive manufacturing.

In addition, Basic Designer and Virtual Verifier (Mechanical) have the ability to visualize the job, good coordination, attitude, manual dexterity and perform work related mathematical calculations.

Plan and organize assigned work and detect & resolve issues during execution. Demonstrate possible solutions and agree tasks within the team. Communicate with required clarity and understand technical English. Sensitive to environment, self-learning and productivity.

**Design Engineer;** performs complex assignments pertaining to the design, testing and assessment of mechanical and electrical devices and systems to assist in the production or packaging process. They also develop prototypes for testing; provide feasibility testing on new and current designs under modification. They help in functional reviews of product architecture to assure design integrity and compliance with company specifications and recognized industry design practices.

Designer, Machine Mechanical Engineer, Designs; Machine Designer plans and designs various types of machines, tools and equipment for manufacture or experiment. Studies details and performance of existing machinery. Examines manufacturing process, production cost, wastage, etc. for preparing improved designs. Calculates data and develops new designs of machines, tools and equipment involving manufacture, repairs, replacement or modification to effect improvement. Prepares sketches, drawings etc. showing new features, dimensions, specifications, working details, limits (accuracy) and all other necessary information for accurate, easy and economical production. Advices party and management on various technical (Mechanical) problems with regard to construction, erection and installation of machinery, production methods, alteration and modification of machines, tools and equipment purchase of plants and materials, machine and building lay out, etc. May prepare designs for submitting tenders for machines and



equipment. May specialize in preparing a design of a particular type of machinery in any specific industry. Equipment Designer is also known as Tool Designer. Individuals at this job need to design details of the equipment mechanisms, fixtures, tools, gauges and other instruments for manufacturing and measuring the quality standards of the production process.

**Product Design Engineer;** is broadly responsible for designing the product using CAD & CAE systems by understanding all the product requirements. The role is also responsible for supporting the manager in ensuring that the designed product includes aspects related to telematics, human machine interface, ergonomics and design FMEA.

**Verification Engineer**; also known as 'Functional Verification Engineer is responsible for performing checks to ensure functionality of the design conforms to the input output specification. The individual at work studies the design specifications, develops test cases and runs a verification program on the module's function-design using software and specific tools to validate the results with the specification. The individual is also responsible for coordinating with other departments involved in system-on-chip (SOC) design development for effective design implementation.

**Design Engineer-EA**; is responsible for carrying out engineering analysis problems like stress calculations, static and dynamic analysis, thermal analysis, etc. They also provide support in the assessment and testing of advanced technology systems, subsystems and components.

#### **Reference NCO-2015:**

- a) 2523.0401 Design Engineer
- b) 2144.0200 Designer, Machine
- c) 2144.0301 Equipment Designer
- d) 2144.0803 Product Design Engineer
- e) 2152.0901 Verification Engineer
- f) 2512.0601 Design Engineer Engineering Analysis

### 4. GENERAL INFORMATION

| Name of the Trade                                              | BASIC DESIGNER AND VIRTUAL VERIFIER (MECHANICAL)                                                                                                                                                       |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trade Code                                                     | DGT/2025                                                                                                                                                                                               |
| NCO - 2015                                                     | 2523.0401, 2144.0200, 2144.0301, 2144.0803, 2152.0901, 2512.0601                                                                                                                                       |
| NSQF Level                                                     | Level-5                                                                                                                                                                                                |
| Duration of Craftsmen Training                                 | Two Years (3200 Hours)                                                                                                                                                                                 |
| Entry Qualification                                            | Class X Pass plus simultaneously enroll and clear class XII through NIOS or Class XII regular pass or ITI plus simultaneously enroll and clear class X through NIOS or ITI plus regular class X        |
| Minimum Age                                                    | 14 years as on first day of academic session.                                                                                                                                                          |
| Eligibility for PwD                                            | LD, CP, LC, DW, AA, BLIND, LV, DEAF, HH, AUTISM, ID, SLD                                                                                                                                               |
| Unit Strength (No. Of Student)                                 | 24 (There is no separate provision of supernumerary seats)                                                                                                                                             |
| Space Norms                                                    | 192 Sq.m                                                                                                                                                                                               |
| Power Norms                                                    | 17 KW                                                                                                                                                                                                  |
| Instructors Qualification                                      | for                                                                                                                                                                                                    |
| Basic Designer and     Virtual Verifier     (Mechanical) Trade | B.Voc/Degree in Mechanical Engineering from AICTE/UGC recognized Engineering College/ university with one-year experience in the relevant field.                                                       |
| ,                                                              | OR                                                                                                                                                                                                     |
|                                                                | 03 years Diploma in Mechanical Engineering from AICTE recognized board of technical education or relevant Advanced Diploma (Vocational) from DGT with two years' experience in the relevant field.  OR |
|                                                                | NTC/NAC passed in the Trade of "Basic Designer and Virtual Verifier (Mechanical)" With three years' experience in the relevant field.                                                                  |
|                                                                | Essential Qualification:  Relevant National Craft Instructor Certificate (NCIC) in any of the variants under DGT.                                                                                      |
|                                                                | NOTE: Out of two Instructors required for the unit of 2(1+1), one must have Degree/Diploma and other must have NTC/NAC qualifications.                                                                 |

|                        | However, both of them must possess NCIC in any of its variants.                                                          |
|------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 2. Workshop            | B.Voc/Degree in Engineering from AICTE/ UGC recognized Engineering                                                       |
| Calculation & Science  | College/ university with one-year experience in the relevant field.                                                      |
|                        | OR                                                                                                                       |
|                        | 03 years Diploma in Engineering from AICTE / recognized board of                                                         |
|                        | technical education or relevant Advanced Diploma (Vocational) from                                                       |
|                        | DGT with two years' experience in the relevant field.                                                                    |
|                        | OR                                                                                                                       |
|                        | NTC/ NAC in any one of the engineering trades with three years                                                           |
|                        | experience.                                                                                                              |
|                        | ·                                                                                                                        |
|                        | Essential Qualification:                                                                                                 |
|                        | National Craft Instructor Certificate (NCIC) in relevant trade                                                           |
|                        |                                                                                                                          |
|                        | OR                                                                                                                       |
|                        | NCIC in RoDA or any of its variants under DGT                                                                            |
| 3. Engineering         | B.Voc/Degree in Engineering from AICTE/ UGC recognized Engineering                                                       |
| Drawing                | College/ university with one-year experience in the relevant field.                                                      |
|                        | OR                                                                                                                       |
|                        | 03 years Diploma in Engineering from AICTE/recognized board of                                                           |
|                        | technical education or relevant Advanced Diploma (Vocational) from DGT with two years' experience in the relevant field. |
|                        |                                                                                                                          |
|                        | OR                                                                                                                       |
|                        | NTC/ NAC in any one of the Electrical groups (Gr-II) trades categorized                                                  |
|                        | under Engg. Drawing'/ D'man Mechanical / D'man Civil' with three years' experience.                                      |
|                        | years experience.                                                                                                        |
|                        | Essential Qualification:                                                                                                 |
|                        | National Craft Instructor Certificate (NCIC) in relevant trade.                                                          |
|                        | OR                                                                                                                       |
|                        | NCIC in RoDA / D'man (Mech /civil) or any of its variants under DGT.                                                     |
| 4. Employability Skill | MBA/ BBA / Any Graduate/ Diploma in any discipline with Two years'                                                       |
|                        | experience with short term ToT Course in Employability Skills from DGT                                                   |
|                        | institutes.                                                                                                              |
|                        | (Must have studied English/ Communication Skills and Basic Computer                                                      |
|                        | at 12 <sup>th</sup> / Diploma level and above)                                                                           |
|                        |                                                                                                                          |
|                        | OR                                                                                                                       |
|                        | Existing Social Studies Instructors in it is with short term ToT Course in                                               |



|                    | Employability Skills from DGT institutes. |
|--------------------|-------------------------------------------|
| 5. Minimum age for | 21 years                                  |
| Instructor         |                                           |
| List of Tools and  | As nor Annoyuro                           |
| Equipment          | As per Annexure – I                       |

### Distribution of training on Hourly basis: (Indicative only)

| Year            | Total Hrs.<br>/week | Trade<br>Practical | Trade Theory | Workshop<br>Cal. & Sc. | Engg.<br>Drawing | Employability<br>Skills |
|-----------------|---------------------|--------------------|--------------|------------------------|------------------|-------------------------|
| 1 <sup>st</sup> | 40 Hours            | 25 Hours           | 7 Hours      | 2 Hours                | 2 Hours          | 4 Hours                 |
| 2 <sup>nd</sup> | 40 Hours            | 25 Hours           | 9 Hours      | 2 Hours                | 2 Hours          | 2 Hours                 |

10



### Learning outcomes are a reflection of total competencies of a trainee and assessment will

be carried out as per the assessment criteria.

### **5.1 LEARNING OUTCOMES (TRADE SPECIFIC)**

### **FIRST YEAR:**

- 1. Identify product concept, design, and development using computers to suit client requirements while adhering to safety precautions.
- 2. Apply engineering drawing approaches and CAD/CAE software, create 2D drawings of simple components and perform finite element analysis viz. create and modify 2D and 3D models of the components in CAD/CAE software.
- 3. Create 2D drawing of the assembly made up of individual components and perform Sheet metal design for essential assembly components.
- 4. Plan and execute 3D printing of a prototype and analyse the method for thermomechanical analysis for determining thermal effects of printing process.
- 5. Demonstrate the FEM (Finite Element Model) capabilities of CAE (Computer Aided Engineering) SOFTWARE.
- Create finite element model of different components like Geometry clean-up to prepare geometry for FE modelling, concept of meshing, modelling 1D, 2D and 3D elements, creating mesh based on structures, setting element quality criteria and checking quality and updating the mesh.
- 7. Preparecomponents for the simple analysis by applying appropriate loads and boundary conditions. [Simple Analysis: Linear static analysis]

### **SECOND YEAR:**

- 8. Analyze component by inertial relief method and by non-linear analysis.
- 9. Perform modal analysis of component, brackets and assemblies and apply the concept about the mode shapes (Rigid and local body) and frequencies.
- 10. Execute basic thermal analysis of simple components like plate, beam for conduction and convection in variable temperature.
- 11. Perform frequency response analysis of beam and any suspension component.
- 12. Perform Thermo-mechanical analysis of engine components, welded joints etc.



| LEARNING OUTCOMES                                                                                                                                                                                                     | ASSESSMENT CRITERIA                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                       | FIRST YEAR                                                                                                                                                                                                                                                                                                                         |
| Identify product concepted design, and development using computers to succion requirements while adhering to safeted precautions.                                                                                     | Brainstorming and generating different concepts for the problem.  Presenting the market research report for appropriate concept.                                                                                                                                                                                                   |
| 2. Apply engineering drawin approaches and CAD/CA software, create 2 drawings of simple components and perform finite element analysis vizing create and modify 2D an 3D models of the components in CAD/CA software. | Engineering drawing methodologies using CAD/CAE software.  Create 3D models of the parts ensuring the dimensional accuracy.  Create a proper model tree.  Check for the geometric clashes and the model integrity, update as required to suit the specification.  Perform the detailing of the design and create the various views |
| 3. Create2D drawing of the assembly made up of individual components and perform Sheet metal design for essential assembly components.                                                                                | assembly. Create the Bill of Materials (BoM). Plan for the proper views ensuring capturing of all the details.                                                                                                                                                                                                                     |
| 4. Plan and execute 3D printin                                                                                                                                                                                        | Select the design/part to be 3D printed.                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                    |

|    | of a prototype and analyze the method for thermo- | Create 3D model of the design and export the model in STL Format. |
|----|---------------------------------------------------|-------------------------------------------------------------------|
|    | mechanical analysis for                           | Import the STL model in 3D printer software.                      |
|    | determining thermal effects                       | Simulate the model for manufacturability by slicing the model.    |
|    | of printing process.                              | Model the part in CAE software to carry out FE analysis (thermal  |
|    |                                                   | check).                                                           |
|    |                                                   | Estimate the time required to manufacture the component.          |
|    |                                                   | Estimate the material required for the process.                   |
|    |                                                   | If the process parameters are not optimized, then fine tune the   |
|    |                                                   | printing parameters.                                              |
|    |                                                   | Generate G codes and M codes for the selected design.             |
|    |                                                   | Carryout the simple thermos mechanical analysis to predict the    |
|    |                                                   | stresses and deformation of the component while                   |
|    |                                                   | manufacturing.                                                    |
|    |                                                   |                                                                   |
| 5. | Demonstrate the FEM                               | GUI of CAE SOFTWARE.                                              |
|    | (Finite Element Model)                            | Building geometric models in the CAE software.                    |
|    | capabilities of CAE                               | Familiarization with the FEM capabilities of CAE software.        |
|    | (Computer Aided                                   | Familiarization with types of finite element modules.             |
|    | Engineering) SOFTWARE.                            | Familiarization the various types of materials, properties, and   |
|    |                                                   | elements, concept of discretization.                              |
|    |                                                   |                                                                   |
| 6. | Create finite element model                       | Import the geometry of the design for the meshing. Critically     |
|    | of different components like                      | assess the mode with regard to the type of meshing required.      |
|    | Geometry cleanup to                               | Modify / edit the geometry to suit the requirement of the         |
|    | prepare geometry for FE                           | meshing. Extract mid surfaces if the meshing needs to be by 2D    |
|    | modeling, concept of                              | elements.                                                         |
|    | meshing, modelling 1D, 2D                         | Create the mesh for the geometry by specified / exploring the     |
|    | and 3D elements, creating                         | meshing technique, associated the software.                       |
|    | mesh based on structures,                         | Check for free edges / free faces, element normal. If failed to   |
|    | setting element quality                           | meet the criteria, correct the mesh                               |
|    | criteria and checking quality                     | Check the element geometry check and compare it against the       |
|    | and updating the mesh.                            | given specifications. Correct the geometry if required.           |
|    |                                                   | Assign the appropriate material and element properties to the     |
|    |                                                   | components of the model.                                          |
|    |                                                   | Perform the sanity checks on the model.                           |
|    |                                                   |                                                                   |
| 7. | Prepare components for the                        | Prepare the finite element model as required or use the finite    |
|    |                                                   |                                                                   |

|    | simple analysis by applying   | element model that has been already created.                       |
|----|-------------------------------|--------------------------------------------------------------------|
|    | appropriate loads and         | Explain the physical behavior of the component.                    |
|    | boundary conditions.          | Based on the physical behavior, assign appropriate boundary        |
|    | [Simple Analysis: - Linear    | conditions.                                                        |
|    | static analysis]              | Apply the specified loads on the finite element model.             |
|    |                               | Export the model to the solver. Run the analysis. Once the         |
|    |                               | results are obtained, check the validity of the results from first |
|    |                               | principles, verify the displacement behavior of the component,     |
|    |                               | interpret the other parameters such as stress etc. Recommend       |
|    |                               | a suitable change if the design is not meeting structural          |
|    |                               | requirement.                                                       |
|    |                               | SECOND YEAR                                                        |
| 8. | Analyze the components by     | Import the geometry/create the geometry of the component.          |
|    | inertial relief method and by | Create finite element model of the component.                      |
|    | non-linear analysis.          | Assign the material properties to the component.                   |
|    |                               | Ensure to have correct nonlinear properties updated for non-       |
|    |                               | Linear analysis                                                    |
|    |                               | Check the elemental orientation and perform mesh quality           |
|    |                               | check.                                                             |
|    |                               | Apply loads and boundary conditions. Ensure to adopt the           |
|    |                               | process of inertia relief method.                                  |
|    |                               | For nonlinear analysis ensure to update the time steps to apply    |
|    |                               | loads in interval of loads.                                        |
|    |                               | Run the analysis to get the reactions.                             |
|    |                               | Review the results, forces and reactions and compare with          |
|    |                               | result with the calculated results data.                           |
|    |                               |                                                                    |
| 9. | Perform modal analysis of     | Import the geometry/create the geometry of the component.          |
|    | component, brackets and       | Create finite element model of the component.                      |
|    | assemblies and apply the      | Assign the material properties to component.                       |
|    | concept about the mode        | Check the elemental orientation and perform mesh quality           |
|    | shapes (Rigid and local       | check.                                                             |
|    | body) and frequencies.        | Select the solution type to Modal analysis, requesting the rigid   |
|    |                               | and local modes for the component.                                 |
|    |                               | Review the results for desired modes and mode shapes and           |
|    |                               | confirm the rigid and local modes as calculated and as desired.    |
|    |                               |                                                                    |
| 10 | . Execute basic thermal       | Import the geometry/create the geometry of the component.          |
|    |                               |                                                                    |

| analysis of simple             | Create finite element model of the component.                    |
|--------------------------------|------------------------------------------------------------------|
| components like plate,         | Assign the material properties to the component. Ensure to       |
| beam for conduction and        | have the correct thermal properties in the material properties.  |
| convection in variable         | Check the elemental orientation and perform mesh quality         |
| temperature.                   | check.                                                           |
|                                | Apply loads and boundary conditions suitable for thermal         |
|                                | analysis.                                                        |
|                                | Select the solution type to Thermal and run for results.         |
|                                | Review the results and check for Temperature distribution        |
|                                | across the component and heat flux.                              |
|                                |                                                                  |
| 11. Perform frequency response | Import the geometry/create the geometry of the component.        |
| analysis of beam and any       | Create finite element model of the component.                    |
| suspension component.          | Assign the material properties for the component. Density of     |
|                                | the material is must.                                            |
|                                | Check the elemental orientation and perform mesh quality         |
|                                | check.                                                           |
|                                | Assign sinusoidal load at the free end of component and          |
|                                | support at the required location.                                |
|                                | Select the solution type to transient analysis.                  |
|                                | Review the results and displacement to have proper               |
|                                | displacement velocity, strains.                                  |
|                                |                                                                  |
| 12. Perform Thermo-mechanical  | Import the geometry/create the geometry of the component.        |
| analysis of engine             | Create finite element model of the component.                    |
| components, welded joints      | Assign the material properties of the component. Ensure to add   |
| etc.                           | the thermal properties of the material.                          |
|                                | Convert any load in terms mechanical loads such that it can be   |
|                                | applied as point load or pressure etc., and include temperature  |
|                                | loads as well applied to required regions of the components.     |
|                                | Select the solution type to static structural analysis.          |
|                                | Review the results and displacement to have proper               |
|                                | displacement, stress and strains and principle stresses to check |
|                                | the levels of stresses to be under the limit of allowable to     |
|                                | ensure the component is safe.                                    |
|                                |                                                                  |



### SYLLABUS FOR BASIC DESIGNER AND VIRTUAL VERIFIER (MECHANICAL) TRADE

|                |                               |    | FIRST YEAR                                                        |                                          |
|----------------|-------------------------------|----|-------------------------------------------------------------------|------------------------------------------|
| Duration       | Reference<br>Learning Outcome |    | Professional Skills<br>(Trade Practical)<br>With Indicative Hours | Professional Knowledge<br>(Trade Theory) |
| Professional   | Identify product              | 1. | The significance of trade                                         | Newcomers should be given                |
| Skill 75 Hrs   | concept, design,              |    | learning, List of tools &                                         | all required assistance in               |
|                | and development               |    | Machinery utilized in the                                         | learning how the Industrial              |
| Professional   | using computers               |    | trade. (1 hr.)                                                    | Training Institute system                |
| Knowledge      | to suit client                | 2. | The trainee's safety attitude                                     | operates, including store                |
| 21 Hrs         | requirements                  |    | is developed by instructing                                       | procedures.                              |
| /\4/==\c\ 1 2\ | while adhering to             |    | them how to wear Personal                                         |                                          |
| (Week 1-3)     | safety                        |    | Protective Equipment. (PPE).                                      | The necessity of soft skills and         |
|                | precautions.                  |    | (2 hrs)                                                           | the job area at the                      |
|                |                               | 3. | Introduction First Aid kit and                                    | completion of the course,                |
|                |                               |    | its usage in emergency (2                                         | Safety and general measures              |
|                |                               |    | hrs)                                                              | to be taken in the                       |
|                |                               | 4. | Disposal of waste materials                                       | industry/shop floor to be                |
|                |                               |    | such as cotton waste, metal                                       | discussed.                               |
|                |                               |    | chips/burrs, and so on in a                                       |                                          |
|                |                               |    | safe way. (2 hrs)                                                 | Introduction of First aid,               |
|                |                               | 5. | Identifying and avoiding                                          | working with electrical mains            |
|                |                               |    | hazard. (2 hrs)                                                   | and its safety precautions,              |
|                |                               | 6. | Danger, Warning, Caution,                                         | PPEs and is applicability,               |
|                |                               |    | and Personal Safety Message                                       | Response to emergencies                  |
|                |                               |    | Signs. (1 hr.)                                                    | e.g power failure, fire, and             |
|                |                               | 7. | Preventive precautions and                                        | system failure.                          |
|                |                               |    | steps to follow in the event                                      |                                          |
|                |                               |    | of an electrical accident. (2                                     | Introduction to 5S concept &             |
|                |                               |    | hrs)                                                              | its application (kaizen) to              |
|                |                               | 8. | An introduction of fire                                           | practice good housekeeping &             |
|                |                               |    | extinguishers and their                                           | shop floor maintenance.                  |
|                |                               |    | applicability. (2 hrs)                                            |                                          |
|                |                               | 9. | While working on a fitting                                        | Introduction to Occupational             |
|                |                               |    | project, learn and apply                                          | Health& Safety: Guidelines,              |
|                |                               |    | safety practices (2 hrs).                                         | legislations, regulations and            |

|               |                   | 10. Use of tools and equipment    | applicability.                   |
|---------------|-------------------|-----------------------------------|----------------------------------|
|               |                   | in a sensible way. (1 hr.)        | Knowledge of Hot working         |
|               |                   |                                   | conditions, space, material,     |
|               |                   |                                   | equipment handling.              |
|               |                   | 11. Idea generation for the given | Introduction to product,         |
|               |                   | problem. (3 hrs)                  | design, development, stages      |
|               |                   | 12. Brainstorming and creation    | of product development,          |
|               |                   | of different concepts. (10        | design framework.                |
|               |                   | hrs)                              |                                  |
|               |                   | 13. Researching the market for    | Steps in design, need for        |
|               |                   | customer needs, growth            | testing and analysis, selection  |
|               |                   | potential and competition.        | of materials. Concept            |
|               |                   | (10 hrs)                          | generation, concept selection    |
|               |                   | 14. Do a thorough Business        | and concept testing,             |
|               |                   | analysis by understanding if      | relevance of computers in the    |
|               |                   | the product is commercially       | product development.             |
|               |                   | feasible. (10 hrs)                | Concept of load path and         |
|               |                   | 15. Develop the product with      | failure modes, introduction to   |
|               |                   | the detailed technical            | Computer Aided Engineering       |
|               |                   | specifications, analyze the       | (CAE).                           |
|               |                   | product with computer             |                                  |
|               |                   | aided software. (10 hrs)          |                                  |
|               |                   | 16. Testing and quality           |                                  |
|               |                   | assessment. (10 hrs)              |                                  |
|               |                   | 17. Launching the product. (5     |                                  |
|               |                   | hrs)                              |                                  |
| Professional  | Apply engineering | 18. Drawing of simple             | 2D sketching concepts            |
| Skill 175 Hrs | drawing           | components using the              | Introduction to engineering      |
|               | approaches and    | engineering drawing skills        | drawing concepts, to learn       |
| Professional  | CAD/CAE           | and converting them to            | point, line, plane, Projections, |
| Knowledge     | software, create  | geometric model using             | 2d drawings and 3d drawings      |
| 49 Hrs        | 2D drawings of    | sketch tools. Create: Point,      | Introduction to 2D Graphic       |
| (Week 4-10)   | simple            | Line, Circle, Polygon, Arc,       | User Interface of CAD/CAE        |
| (1100 120)    | components and    | Ellipse, Parabola, Spline.        | software.                        |
|               | perform finite    | Basic shapes using CAD/CAE        | Introduction to point, Line,     |
|               | element analysis  | software. (20 hrs)                | different shapes, arc, ellipse,  |
|               | viz. create and   | 19. Using Sketch learn to         | surface generation and           |
|               | modify 2D and 3D  | operations like Move, Copy,       | modifying them using Trim,       |
|               | models of the     | Array, mirror Chamfer, Fillet     | Offset, Fillet, Chamfer etc.,    |
| L             |                   | L                                 |                                  |



| components in | trim offset etc., tools. (10                          | Move, Copy, Array               |
|---------------|-------------------------------------------------------|---------------------------------|
| CAD/CAE       | hrs)                                                  | Commands. Introduction to       |
| software.     | 20. Create basic 2D sketches of different parts using | mid-surface.                    |
|               | sketching and modifying                               | 3D concept modeling             |
|               | tools. Create dimensioning                            | Introduction to 3D Modeling     |
|               | as per the part drawing. (20                          | graphic user interface          |
|               | hrs)                                                  | CAD/CAE Software                |
|               | 21. Smoothing the surface by                          |                                 |
|               | modifying any sharp edges                             | Introduction to user interface  |
|               | by using fillet and chamfer                           | 3d modeling tools like pull,    |
|               | tools. (5 hrs)                                        | extrude, revolve, sweep,        |
|               | 22. Learn using different3D                           | offset, split, mirror, chamfer, |
|               | modelling commands,                                   | loft, fillet, patterns (linear, |
|               | Extrude, Revolve, Sweep Loft                          | circular etc.,), shell, filling |
|               | etc., available in CAE                                | tools, sectioning tools,        |
|               | software. (15 hrs)                                    | generation of coordinate        |
|               | 23. Learn modifying the 3D                            | systems, blending, and other    |
|               | geometry by changing the                              | model generation tools in the   |
|               | dimensions and building                               | CAE software.                   |
|               | parametric mode Editing a                             |                                 |
|               | feature by adding ribs,                               | Editing the 3D model using      |
|               | mirroring, pattern                                    | modifying tool and converting   |
|               | generation, offsets, splitting,                       | it to parametric model to       |
|               | blending, etc., tools. (25 hrs)                       | modify model as per             |
|               | 24. Draw 3D solid part by                             | requirement.                    |
|               | applying Sketching features.                          |                                 |
|               | (20 hrs)                                              | Use of Features like ribs,      |
|               | 25. Create different cross-                           | mirror, offsets thickening, 3D  |
|               | section (I, C, H, T, tube etc.,                       | viewing styles. Introduction to |
|               | section) beam with filleted                           | mid-surface. Material           |
|               | edges using sketcher and 3D                           | selection and assignment        |
|               | commands. (10 hrs)                                    |                                 |
|               | 26. Create different 3D solid                         | Importing CAD model and         |
|               | parts of an assembly. (15                             | carrying out clean up using     |
|               | hrs)                                                  | tools like disfeaturing, split, |
|               | 27. Import existing 3D model.                         | stitching, smoothing surfaces   |
|               | Use the features to edit and                          | etc., to prepare model for      |
|               | clean-up the geometry. (15                            | finite element analysis         |

|                                                                                      |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Professional<br>Skill 200 Hrs<br>Professional<br>Knowledge<br>56 Hrs<br>(Week 11-18) | Create 2D drawing of the assembly made up of individual components and perform sheet metal design for essential assembly components. | hrs)  28. In the assembly window perform assembly operation for the previously created 3D parts. Check for the geometric clashes and the model integrity. (20 hrs)  29. In the drafting window, create the 2D drawing by importing the assembly into the assembly window Plan for the proper views generation, perform design detailing, indicate all dimensions (length, width, angle), Create different cross- section views, exploded views. Bill of Material. (60 hrs)  30. Perform sheet metal design of required parts of assembly and plan for FE modelling of such components. (50 hrs)  31. Geometry editing of simple general components. (35 hrs)  32. Drafting of machine tool assembly. (55 hrs) | Assembly Importing, Design detailing, 2-D Drawings, BOM, Exploded Views.  Design of sheet metal parts, Geometric Parameterization Sheet Metal Design to decide the features to be used during finite element analysis |
| Professional                                                                         | Plan and execute                                                                                                                     | 33. Design and building a simple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Introduction to 3D printing,                                                                                                                                                                                          |
| Skill 75 Hrs                                                                         | 3D printing of a prototype and                                                                                                       | model/ assembly/ sub<br>assembly. (25 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | its relevance in the present industrial scenario, different                                                                                                                                                           |
| Professional<br>Knowledge<br>21 Hrs                                                  | analyze the method for thermo-                                                                                                       | 34. 3D printing simulation simple components (door handle of a car orspur/bevel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | types of 3D printing processes.                                                                                                                                                                                       |
| (Week 19-21)                                                                         | mechanical<br>analysis for<br>determining<br>thermal effects of                                                                      | gear). Import CAD or STL files into the 3D printing software. Checkout the various orientation, various                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Design for 3D printing, simulation of 3D printing process such as import, Repair, Edit Faceted Data,                                                                                                                  |

|                                                                       |                                                                                                       |                                                                                                                                                                                                                                                                                          | T                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                       | printing process.                                                                                     | settings of the part development using slicing software Check, Analyze and apply different process of algorithm for slicing/ supports/ layers/ orientation etc. Estimate the material required for the process to print the component. Generate 2D/3D model of the component, generate a | Shelling and Infills. Understand Roof &Floor layers in the printers Understand accessing wall layers Part design considering requirements for 3D printing, designing supports & slicing techniques.  Develop simple model to |
|                                                                       |                                                                                                       | finite element model, apply relevant material data,                                                                                                                                                                                                                                      | carry out the thermo-<br>mechanical check to                                                                                                                                                                                 |
|                                                                       |                                                                                                       | boundary condition and loads. Solve for thermal analysis. Post process to check the behavior of model with respect to thermal stress and deflection due to temperature loading. (50                                                                                                      | understand the behavior of printed component.                                                                                                                                                                                |
|                                                                       |                                                                                                       | hrs)                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                              |
| Professional Skill 100 Hrs Professional Knowledge 28 Hrs (Week 22-25) | Demonstrate the FEM (Finite Element Model) capabilities of CAE (Computer Aided Engineering) SOFTWARE. | 35. Demonstrate the CAD and FEM capabilities of CAE software (Simple cantilever beam analysis or show short videos explaining the capabilities of the software). (5 hrs)                                                                                                                 | Introduction to engineering problems, methods to solve engineering problems, introduction to matrix theory, introduction finite element method, steps in FEM.                                                                |
| (VVCCN 22-23)                                                         |                                                                                                       | 36. Familiarization of GUI of CAE SOFTWARE, building geometric models using Lines, points, translation, rotation, reflection etc., tools. (25 hrs) 37. Different types of elements, 1D (Rod, beam), 2D (Shell), 3D elements (Hexa, Tetra), spring, Mass, Rigid Link. (15 hrs)            | Familiarization of GUI of CAE Software, Familiarization with geometry, finite element modules, Familiarization with the various types of materials, properties, and elements, concept of discretization.                     |

|               |                     | T                                |                                |
|---------------|---------------------|----------------------------------|--------------------------------|
|               |                     | 38. Working with FE mesh using   |                                |
|               |                     | commands Translation,            |                                |
|               |                     | Rotation, Symmetry,              |                                |
|               |                     | Extrude, Scale, Sweep. (15       |                                |
|               |                     | hrs)                             |                                |
|               |                     | 39. Materials models (Isotropic, |                                |
|               |                     | Orthotropic), Loading and        |                                |
|               |                     | Boundary Conditions (Single      |                                |
|               |                     | Point and Multi point            |                                |
|               |                     | Constraints, Nodal forces        |                                |
|               |                     | and moments). (15 hrs)           |                                |
|               |                     | 40. Element quality checking for |                                |
|               |                     | connectivity, duplicates,        |                                |
|               |                     | aspect ratio, skew, warpage.     |                                |
|               |                     | (15 hrs)                         |                                |
|               |                     | 41. Familiarization with the     |                                |
|               |                     | different properties and         |                                |
|               |                     | types of inbuilt materialsin     |                                |
|               |                     | library and different            |                                |
|               |                     | boundary condition options.      |                                |
|               |                     | (10 hrs)                         |                                |
| Professional  | Create finite       | 42. Create a finite element      | Introduction to the concept of |
| Skill 200 Hrs | element model of    | model of cantilever beam.        | meshing.                       |
| Professional  | different           | Create geometry using            | Selection of type of the mesh  |
| Knowledge     | components like     | points and lines command         | /element based on the          |
| 56 Hrs        | Geometry cleanup    | Perform meshing with             | structure.                     |
| 3313          | to prepare          | Beam/Bar element and erase       |                                |
| (Week 26-33)  | geometry for FE     | the curve/geometry Select        | Importing the geometry,        |
|               | modeling, concept   | material as Isotropic and        | cleaning up the geometry for   |
|               | of meshing,         | select the appropriate cross     | the meshing.                   |
|               | modelling 1D, 2D    | section (I-section /             |                                |
|               | and 3D elements,    | Rectangle/Circle). (25 hrs)      | Creating the mesh using 1D,    |
|               | creating mesh       | 43. FE modelling of truss        | 2D, and 3D elements, editing   |
|               | based on            | structure. (35 hrs)              | / modifying the mesh to meet   |
|               | structures, setting | 44. 2D Meshing and analysis of   | the requirements.              |
|               | element quality     | electrical support bracket       |                                |
|               | criteria and        | Import the geometry of the       | Geometric quality              |
|               | checking quality    | design for the meshing.          | parameters, apply the correct  |
|               | and updating the    | Critically assess the model      | material and properties,       |

| mesh. | with regard to the type of    | checking the integrity and    |
|-------|-------------------------------|-------------------------------|
|       | meshing required. Modify /    | sanity of the mesh.           |
|       | edit the geometry to suit the | ,                             |
|       | requirement of the meshing.   | Introduction to the various   |
|       | Extract mid surfaces Create   | types of available 3D         |
|       | the mesh (shell) for the      | elements (Hexa, Tetra, Penta) |
|       | geometry by specified /       | in the FEA software.          |
|       | exploring the meshing         |                               |
|       | technique, associated the     |                               |
|       | software. Check for free      |                               |
|       | edges / free faces, element   |                               |
|       | normal. If failed meet the    |                               |
|       | criteria, correct the mesh.   |                               |
|       | Check the element geometry    |                               |
|       | check and compare it against  |                               |
|       | the given specifications.     |                               |
|       | Correct the geometry if       |                               |
|       | required. (30 hrs)            |                               |
|       | 45. Assign the appropriate    |                               |
|       | material and element          |                               |
|       | properties to the             |                               |
|       | components of the model.      |                               |
|       | (25 hrs)                      |                               |
|       | 46. 3D meshing of flywheel    |                               |
|       | using tetrahedral element.    |                               |
|       | Import geometry and check     |                               |
|       | for discontinuities and       |                               |
|       | correct the geometry. Select  |                               |
|       | Tetra elements and select     |                               |
|       | Auto-mesh to generate the     |                               |
|       | mesh. Check element           |                               |
|       | quality, if required re-mesh  |                               |
|       | the model by controlling the  |                               |
|       | mesh size in the failed       |                               |
|       | location. Assign the material |                               |
|       | properties and element        |                               |
|       | properties. (35 hrs)          |                               |
|       | 47.3D meshing of typical lug  |                               |
|       | fitting. (20 hrs)             |                               |



|                |                     | 48. FE modelling of automotive     |                                 |
|----------------|---------------------|------------------------------------|---------------------------------|
|                |                     | chassis frame. (30 hrs)            |                                 |
| Professional   | Prepare             | 49. Find out the deflection,       | Apply the appropriate loads     |
| Skill 175 Hrs  | components for      | stress, strain, shear force        | and boundary conditions.        |
| 3KIII 1/3/11/3 | the simple analysis |                                    | and boundary conditions.        |
| Professional   |                     | and bending moment                 | Dranara the FF model for the    |
| Knowledge      | by applying         | diagram of cantilever beam.        | Prepare the FE model for the    |
| 49 Hrs         | appropriate loads   | Import the finite element          | analysis, submit the FE model   |
|                | and boundary        | model of the cantilever            | to the solver.                  |
| (Week 34- 40)  | conditions.         | beam from the previous             |                                 |
|                | [Simple Analysis: - | steps of meshing. Assign           | Checking the correctness of     |
|                | Linear static       | appropriate loading (point         | the analysis, post processing   |
|                | analysis]           | load/ pressure) and                | of results, result              |
|                |                     | boundary condition                 | interpretation of the analysis. |
|                |                     | (constrain one of the end          |                                 |
|                |                     | node for all 6 DOFs to depict      |                                 |
|                |                     | cantilever beam). Run the          |                                 |
|                |                     | static stress analysis.            |                                 |
|                |                     | Perform post processing            |                                 |
|                |                     | activities by plotting             |                                 |
|                |                     | Deflection, Stress, Strain,        |                                 |
|                |                     | bending moment diagram.            |                                 |
|                |                     | (25 hrs)                           |                                 |
|                |                     | 50. Perform linear static analysis |                                 |
|                |                     | of Plate with hole. (40 hrs)       |                                 |
|                |                     | 51. Perform linear static analysis |                                 |
|                |                     | of typical lug. (40 hrs)           |                                 |
|                |                     | 52. Perform static analysis of     |                                 |
|                |                     | bracket (30hrs)                    |                                 |
|                |                     | 53. Perform linear static analysis |                                 |
|                |                     | of automotive chassis frame.       |                                 |
|                |                     | (40 hrs)                           |                                 |
|                | ing/Droject work    | l ` '                              |                                 |

### **In-plant training/ Project work**

### **Broad area:**

- a) Visit industry and learn the advanced way of doing the analysis.
- b) Project work involving 3D printing the live industry components such as simple gear, connecting rod, piston or any other components etc., with QC reports with focus on functional prototypes.



### SYLLABUS FOR BASIC DESIGNER AND VIRTUAL VERIFIER (MECHANICAL) TRADE

|               | SECOND YEAR                   |                                                                   |                                          |  |
|---------------|-------------------------------|-------------------------------------------------------------------|------------------------------------------|--|
| Duration      | Reference<br>Learning Outcome | Professional Skills<br>(Trade Practical)<br>With Indicative Hours | Professional Knowledge<br>(Trade Theory) |  |
| Professional  | Analyze                       | 54. Gather geometric details of                                   | Advanced structural Analysis             |  |
| Skill 200 Hrs | component by                  | the component using the                                           | Introduction to element such             |  |
|               | inertial relief               | detailed drawing such as                                          | as mass element, rigid                   |  |
| Professional  | method and by                 | dimensions, shapes, legacy                                        | elements, spring element.                |  |
| Knowledge     | non- linear                   | data etc. (15 hrs.)                                               | introduction to linear static            |  |
| 72 Hrs        | analysis.                     | 55. Create the geometry using                                     | analysis using inertial loads            |  |
|               |                               | the curve surface, extrude,                                       | Introduction to inertial relief          |  |
| (Week 1-8)    |                               | revolve, fillets champers                                         | method and analyzing the                 |  |
|               |                               | etc., tools from software.                                        | component using inertial relief          |  |
|               |                               | (15 hrs)                                                          | method (static analysis).                |  |
|               |                               | 56. Assign the cross sectional                                    | Introduction to concept of               |  |
|               |                               | details of the component                                          | non- linearity.                          |  |
|               |                               | wherever necessary and                                            | Geometric, material and                  |  |
|               |                               | clean up the model to carry                                       | topology non linearity.                  |  |
|               |                               | out the finite element                                            |                                          |  |
|               |                               | model. (10 hrs)                                                   |                                          |  |
|               |                               | 57. Gather the physical and                                       |                                          |  |
|               |                               | material properties of the                                        |                                          |  |
|               |                               | component. (10 hrs)                                               |                                          |  |
|               |                               | 58. Create the finite element                                     |                                          |  |
|               |                               | model of the component                                            |                                          |  |
|               |                               | and assign the applicable                                         |                                          |  |
|               |                               | material and physical                                             |                                          |  |
|               |                               | properties. (45 hrs)                                              |                                          |  |
|               |                               | 59. Check the elemental                                           |                                          |  |
|               |                               | orientation, normal, free                                         |                                          |  |
|               |                               | edges, and elemental                                              |                                          |  |
|               |                               | quality check. (10 hrs)                                           |                                          |  |
|               |                               | 60. Apply the loads and                                           |                                          |  |
|               |                               | consider the inertial relief                                      |                                          |  |
|               |                               | instead of constrains from                                        |                                          |  |
|               |                               | the solver package. (15 hrs)                                      |                                          |  |

|                               |                           | <ul> <li>61. Request the results as deflection, stresses and strains etc. as desired. (5 hrs)</li> <li>62. Run the analysis to get the reactions. (5 hrs)</li> <li>63. Review the results, forces and reactions must be 0 and compare with result with the calculated results data. (10 hrs)</li> <li>64. For non-linear analysis, add non- linear material instead of the standard material. (15 hrs)</li> <li>65. The analysis steps are increased by adding steps and add time steps. Large deflection is switched on. For non-linearity check. (40 hrs)</li> </ul> |                                                |
|-------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Professional<br>Skill 175 Hrs | Perform modal analysis of | 66. Gather geometric details of the components. Such as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Why modal analysis and need for modal analysis |
|                               | component,                | length, width, height, cross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Concept of natural frequency                   |
| Professional                  | brackets and              | sectional details and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and equation of natural                        |
| Knowledge                     | assemblies and            | detailed drawing of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | frequency                                      |
| 63 Hrs                        | apply the concept         | component under test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |
|                               | about the mode            | (bracket, angles, simple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Concept of mass and stiffness                  |
| (Week 9-16)                   | shapes (rigid and         | assemblies and any other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in the calculation of natural                  |
|                               | local body) and           | components). (15 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | frequencies.                                   |
|                               | frequencies.              | 67. Create the detailed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|                               |                           | geometry of the component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Concept of resonance and                       |
|                               |                           | using the geometric details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | methods to arrest resonance.                   |
|                               |                           | and geometric tool like lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |
|                               |                           | surface, extrude, fillets,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concept of rigid body modes                    |
|                               |                           | champers etc. (30 hrs) 68. Create the finite element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and mode shapes occurring in                   |
|                               |                           | model of the component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the component.                                 |
|                               |                           | using geometric details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Difference between rigid body                  |
|                               |                           | 330 8000110 4014113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Difference between rigid body                  |

| using 1d and 2D elements        | modes and local modes and its |
|---------------------------------|-------------------------------|
| for surface panels and 3D       | mode shapes.                  |
| elements for solids and         | inode snapes.                 |
| establish connection at the     |                               |
|                                 |                               |
| required junctions. (55 hrs)    |                               |
| 69. Collect the material        |                               |
| properties and strength         |                               |
| properties of the material      |                               |
| used for the component.         |                               |
| Density of the material is      |                               |
| must. (10 hrs)                  |                               |
| 70. Assign the material         |                               |
| properties to finite element    |                               |
| model of the component.         |                               |
| (10 hrs)                        |                               |
| 71. Collect the physical        |                               |
| properties of component         |                               |
| such as thickness. (10 hrs)     |                               |
| 72. Assign the physical         |                               |
| properties to the finite        |                               |
| element model. (10 hrs)         |                               |
| 73. Check the elemental         |                               |
| orientation and normal,         |                               |
| free edges, and elemental       |                               |
| quality check. (10 hrs)         |                               |
| 74. Select the solution type to |                               |
| Modal analysis. Requesting      |                               |
| the rigid and local modes       |                               |
| (at least 10 mode shapes)       |                               |
| for the component. (10 hrs)     |                               |
| 75. Review the results and      |                               |
| compare with test data          |                               |
| available. The first 6 most to  |                               |
| be rigid body modes i.e.,       |                               |
| deflection in translation and   |                               |
| rotation wrt axes and           |                               |
| natural frequencies less        |                               |
| than 0 hurts. Local modes       |                               |
| natural frequencies to be       |                               |
| natural frequencies to be       |                               |

|               |                     | more than 0 hurts. (15 hrs)     |                                |
|---------------|---------------------|---------------------------------|--------------------------------|
| Professional  | Execute basic       | 76. Gather geometric details of | Heat transfer                  |
| Skill 300 Hrs | thermal analysis of | the components by detailed      | Heat transfer analysis, its    |
|               | Simple              | drawing of component            | requirements significance and  |
| Professional  | components like     | under test (plate, beam,        | its types i.e., conduction,    |
| Knowledge     | plate, beam for     | angles and other simple         | convection and radiation       |
| 108 Hrs       | conduction and      | components). (20 hrs)           | Symbols and mathematical,      |
|               | convection in       | 77. Create the detailed         | Expressions for conduction,    |
| (Week 17-28)  | variable            | geometry or import the          | Convection and radiation.      |
|               | temperature.        | geometry if readily             | Basic requirements for heat    |
|               |                     | available. Perform              | transfer analysis such as      |
|               |                     | geometry cleanup. (50 hrs)      | temperature, heat flux, heat   |
|               |                     | 78. Create the finite element   | flow, temperature gradient     |
|               |                     | model of the component          | and its application on to the  |
|               |                     | using geometric details         | component such as nodal, on    |
|               |                     | using 1d and 2D and 3D          | surface etc.                   |
|               |                     | elements and establish          | Material data collection and   |
|               |                     | connection at the required      | physical data collection to    |
|               |                     | junctions. (80 hrs)             | check the condition of heat    |
|               |                     | 79. Collect the material        | transfer.                      |
|               |                     | properties and strength         | Study the output of the        |
|               |                     | properties of the material      | analysis such as heat flux and |
|               |                     | used for the component.         | temperature distribution etc.  |
|               |                     | Density, thermal coefficient    |                                |
|               |                     | of expansion is must.           |                                |
|               |                     | Collect the physical            |                                |
|               |                     | properties for FE modelling.    |                                |
|               |                     | (25 hrs)                        |                                |
|               |                     | 80. Assign the material         |                                |
|               |                     | properties and physical         |                                |
|               |                     | properties to finite element    |                                |
|               |                     | model of the component.         |                                |
|               |                     | (15 hrs)                        |                                |
|               |                     | 81. Check the elemental         |                                |
|               |                     | orientation and normal,         |                                |
|               |                     | free edges and elemental        |                                |
|               |                     | quality check. (30 hrs)         |                                |
|               |                     | 82. Assign boundary condition   |                                |
|               |                     | and loads such as initial       |                                |

|               |                   | temperature and final           |                                |
|---------------|-------------------|---------------------------------|--------------------------------|
|               |                   | temperature. Requesting         |                                |
|               |                   | the heat flux and               |                                |
|               |                   | temperature distribution.       |                                |
|               |                   | (40 hrs)                        |                                |
|               |                   | 83. Select the solution as      |                                |
|               |                   | Thermal analysis and run        |                                |
|               |                   | for results. (15 hrs)           |                                |
|               |                   | 84. Review the results and      |                                |
|               |                   | check for Temperature           |                                |
|               |                   | distribution across the         |                                |
|               |                   | component and heat flux.        |                                |
|               |                   | (25 hrs)                        |                                |
| Professional  | Perform frequency | 85. Gather geometric details of | Advanced Analysis              |
| Skill 150 Hrs | response analysis | the components. Such as         | Introduction to dynamic        |
|               | of beam and any   | length, width, height, cross    | loading.                       |
| Professional  | suspension        | sectional details and           | Introduction to dynamic        |
| Knowledge     | components.       | detailed drawing of             | stiffness                      |
| 54 Hrs        |                   | component under test. (10       | Introduction to frequency      |
|               |                   | hrs)                            | response analysis, input as    |
| (Week 29- 34) |                   | 86. Create the detailed         | sinusoidal frequencies.        |
|               |                   | geometry of the component       | Introduction to time           |
|               |                   | using the geometric details     | dependent loading such as      |
|               |                   | and geometric tool like lines   | sinusoidal load, impulse load. |
|               |                   | surface, extrude, fillets,      |                                |
|               |                   | champers etc. (20 hrs)          |                                |
|               |                   | 87. Create the finite element   |                                |
|               |                   | model of the component          |                                |
|               |                   | using geometric details         |                                |
|               |                   | using 1d and 2D elements        |                                |
|               |                   | for surface panels and 3D       |                                |
|               |                   | elements for solids and         |                                |
|               |                   | establish connection at the     |                                |
|               |                   | required junctions. (45 hrs)    |                                |
|               |                   | 88. Collect the material        |                                |
|               |                   | properties and strength         |                                |
|               |                   | properties of the material      |                                |
|               |                   | used for the component.         |                                |
|               |                   | Density of the material is      |                                |

| must. Assign the material properties to finite element model of the component. (10 hrs)  89. Collect the physical properties to the finite element model. (10 hrs)  90. Check the elemental quality check. (10 hrs)  91. Assign sinusoidal load at the free edges, and elemental quality check. (10 hrs)  91. Assign sinusoidal load at the free edges, and elemental quality check. (10 hrs)  91. Assign sinusoidal load at the free edges, and elemental quality check. (10 hrs)  91. Assign sinusoidal load at the free edges on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement to have proper displacement welocity, strains etc. (15 hrs)  Professional Skill analysis of engine components. Such as length, width, height, cross applied on the component as a spectional details and detailed drawing of incomposition and thermal loads and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 1                   |                                   |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|-----------------------------------|-------------------------------|
| model of the component. (10 hrs)  89. Collect the physical properties of component such as thickness. Assign the physical properties to the finite element model. (10 hrs)  90. Check the elemental orientation and normal, free edges, and elemental quality check. (10 hrs)  91. Assign sinusoidal load at the free end of component using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional  Perform Thermo- mechanical analysis of engine components, welded joints etc., welded joints etc., welded joints etc.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                     | _                                 |                               |
| (10 hrs)  89. Collect the physical properties of component such as thickness. Assign the physical properties to the finite element model. (10 hrs)  90. Check the elemental orientation and normal, free edges, and elemental quality check. (10 hrs)  91. Assign sinusoidal load at the free end of component using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional  Perform Thermomechanical analysis 94. Gather geometric details of analysis of engine components, welded joints etc., welded joints etc., welded joints etc.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                     |                                   |                               |
| 89. Collect the physical properties of component such as thickness. Assign the physical properties to the finite element model. (10 hrs)  90. Check the elemental orientation and normal, free edges, and elemental quality check. (10 hrs)  91. Assign sinusoidal load at the free end of component using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional  Perform Thermomental analysis of engine components, welded joints etc., sectional details and mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                     | •                                 |                               |
| properties of component such as thickness. Assign the physical properties to the finite element model. (10 hrs)  90. Check the elemental orientation and normal, free edges, and elemental quality check. (10 hrs)  91. Assign sinusoidal load at the free end of component using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional  Perform Thermomechanical analysis  94. Gather geometric details of the components, such as length, width, height, cross professional welded joints etc., sectional details and mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                     | , ,                               |                               |
| such as thickness. Assign the physical properties to the finite element model. (10 hrs)  90. Check the elemental orientation and normal, free edges, and elemental quality check. (10 hrs)  91. Assign sinusoidal load at the free end of component using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional  Perform Thermomechanical analysis  150 Hrs  analysis of engine components, welded joints etc.,  welded joints etc.,  analysis of engine components, welded joints etc.,  sectional details and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     | · <i>'</i>                        |                               |
| the physical properties to the finite element model. (10 hrs)  90. Check the elemental orientation and normal, free edges, and elemental quality check. (10 hrs)  91. Assign sinusoidal load at the free end of component using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill analysis of engine components, welded joints etc., welded joints etc., welded joints etc., welded joints etc., sectional details and mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                     |                                   |                               |
| the finite element model. (10 hrs)  90. Check the elemental orientation and normal, free edges, and elemental quality check. (10 hrs)  91. Assign sinusoidal load at the free end of component using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill  150 Hrs  Professional smechanical analysis of engine components, welded joints etc., welded joints etc., sectional details and  the finite elemental orientation and normal, free edges, and elemental equality check. (10 hrs)  91. Assign sinusoidal total the free edges, and elemental equality check. (10 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement to have proper displacement velocity, strains etc. (15 hrs)  Loading type is converted applied on the component as a mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                     | _                                 |                               |
| Sectional   Perform Thermo- Skill   Professional   Short   S   |              |                     |                                   |                               |
| Professional   Perform Thermo-mechanical analysis   Professional   Skill   mechanical analysis of engine   Components, Professional   Shill   mechanical analysis of engine   components, Professional   melanical analysis or engine   components, professional   melanical analysis or engine   components, professional   melanical analysis or engine   components, professional   melanical analysis of engine   components, professional   melanical analysis of engine   components, professional   melanical analysis of engine   melanical or education depending on model with required   desired location depending on model with required   desired location depending on model with required   desired location depending on model with required   boundary condition. (15   hrs)   92. Select the solution type to transient analysis. update time steps and end time as   load step and request the displacement, velocity and strains. Run the model. (15   hrs)   93. Review the results and   displacement to have   proper displacement   velocity, strains etc. (15 hrs)   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                     |                                   |                               |
| orientation and normal, free edges, and elemental quality check. (10 hrs)  91. Assign sinusoidal load at the free end of component using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill mechanical analysis 94. Gather geometric details of the components. Such as length, width, height, cross sectional details and mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                     | , ,                               |                               |
| free edges, and elemental quality check. (10 hrs)  91. Assign sinusoidal load at the free end of component using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill mechanical analysis of engine components, welded joints etc., Professional Welded joints etc., Professional Welded joints etc.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                     | 90. Check the elemental           |                               |
| quality check. (10 hrs)  91. Assign sinusoidal load at the free end of component using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill mechanical analysis of engine components, welded joints etc.,  Professional Welded joints etc.,  Professional welded joints etc.,  Professional skill show welded joints etc.,  professional welded joints etc.,  professional skill show welded joints etc.,  professional show welded joints etc.,  professional show welded joints etc.,  professional show parametric details on the component as a mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                     | orientation and normal,           |                               |
| 91. Assign sinusoidal load at the free end of component using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill mechanical analysis of engine components, welded joints etc., Professional welded joints etc., sectional details and  91. Assign sinusoidal load at the free end of component using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Introduction to Thermo- mechanical analysis. Any Loading type is converted applied on the component as a mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                     | free edges, and elemental         |                               |
| free end of component using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill analysis of engine components, welded joints etc., Professional Welded joints etc., Professional Welded joints etc.,  sectional details and  free end of component using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement velocity, strains etc. (15 hrs)  Final Thermo-mechanical analysis p4. Gather geometric details of the components. Such as length, width, height, cross applied on the component as a mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                     | quality check. (10 hrs)           |                               |
| using the parametric equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill Thermo-mechanical analysis 94. Gather geometric details of the components. Such as length, width, height, cross sectional details and mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                     | 91. Assign sinusoidal load at the |                               |
| equation and support at desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill  150 Hrs  analysis of engine components, welded joints etc.,  Professional  Perform Thermomechanical analysis of the components. Such as length, width, height, cross sectional details and mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                     | free end of component             |                               |
| desired location depending on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill  150 Hrs  Professional  Perform Thermomechanical analysis analysis of engine components, welded joints etc.,  Professional  Welded joints etc.,  Professional details and  desired location depending on model with required boundary condition. (15 hrs)  Ptrofessional displacement to have proper displacement velocity, strains etc. (15 hrs)  Introduction to Thermomechanical analysis. Any Loading type is converted applied on the component as a mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                     | using the parametric              |                               |
| on model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill 150 Hrs analysis of engine components, Professional welded joints etc., Professional welded joints etc.,  no model with required boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Introduction to Thermo- mechanical analysis. Any Loading type is converted applied on the component as a mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                     | equation and support at           |                               |
| boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill analysis of engine components, Professional Welded joints etc., Professional Welded joints etc., Professional Welded joints etc.,  boundary condition. (15 hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement velocity, strains etc. (15 hrs)  Introduction to Thermo- mechanical analysis. Any Loading type is converted applied on the component as a mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                     | desired location depending        |                               |
| hrs)  92. Select the solution type to transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill mechanical analysis of engine components, welded joints etc.,  Professional Welded joints etc.,  Professional welded joints etc.,  hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Introduction to Thermomechanical analysis and because the components. Such as length, width, height, cross sectional details and mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                     | on model with required            |                               |
| Professional Skill Perform Thermomechanical analysis of engine components, Professional Professional Welded joints etc.,  Professional Skill welded joints etc.,  Professional Professional Skill welded joints etc.,  Professional Professional Skill and welded joints etc.,  Professional Professional Skill welded joints etc.,  Professional Professional Skill and welded joints etc.,  Professional Professional  |              |                     | boundary condition. (15           |                               |
| transient analysis. update time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill Perform Thermo- mechanical Skill analysis of engine components, Professional Perform Thermo- mechanical analysis 94. Gather geometric details of the components. Such as length, width, height, cross sectional details and mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                     | hrs)                              |                               |
| time steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Perform Thermomechanical analysis 94. Gather geometric details of the components. Such as length, width, height, cross welded joints etc.,  Professional welded joints etc.,  stime steps and end time as load step and request the displacement, velocity and strains. Run the model. (15 hrs)  150 Hrs load in the components and mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                     | 92. Select the solution type to   |                               |
| load step and request the displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Perform Thermomechanical analysis Skill mechanical analysis of engine components, analysis of engine components, welded joints etc., sectional details and mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                     | transient analysis. update        |                               |
| displacement, velocity and strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Perform Thermomechanical analysis Skill mechanical 94. Gather geometric details of the components. Such as length, width, height, cross welded joints etc.,  Professional welded joints etc.,  displacement, velocity and strains. Run the model. (15 hrs)  Professional details and strains. Run the model. (15 hrs)  Introduction to Thermomechanical analysis. Any Loading type is converted applied on the component as a mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                     | time steps and end time as        |                               |
| strains. Run the model. (15 hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill nechanical analysis of engine components, Professional Professional Nechanical analysis of engine components, welded joints etc., Professional Nechanical analysis lintroduction to Thermo- mechanical analysis. Any Loading type is converted applied on the component as a mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                     | load step and request the         |                               |
| hrs) 93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill mechanical analysis of engine components, Professional Professional welded joints etc., Professional  hrs)  93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Thermo-mechanical analysis 94. Gather geometric details of the components. Such as length, width, height, cross applied on the component as a mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                     | displacement, velocity and        |                               |
| 93. Review the results and displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Perform Thermomechanical analysis Skill mechanical 94. Gather geometric details of analysis of engine components, length, width, height, cross welded joints etc.,  Professional Welded joints etc.,  93. Review the results and displacement where proper displacement to have proper d |              |                     | strains. Run the model. (15       |                               |
| displacement to have proper displacement velocity, strains etc. (15 hrs)  Professional Skill Perform Thermomechanical analysis of engine components, welded joints etc.,  Professional Perform Thermomechanical analysis Introduction to Thermomechanical analysis of mechanical analysis. Any Loading type is converted applied on the component as a mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                     | hrs)                              |                               |
| proper displacement velocity, strains etc. (15 hrs)  Professional Perform Thermomechanical analysis Skill mechanical 94. Gather geometric details of analysis of engine components, welded joints etc.,  Professional Perform Thermomechanical analysis Introduction to Thermomechanical analysis. Any Loading type is converted applied on the component as a mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                     | 93. Review the results and        |                               |
| Professional Perform Thermo- Skill mechanical malysis of engine components, welded joints etc.,  Professional Perform Thermo- Mechanical analysis of engine components, welded joints etc.,  Professional velocity, strains etc. (15 hrs)  Thermo-mechanical analysis  94. Gather geometric details of the components. Such as length, width, height, cross applied on the component as a mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                     | displacement to have              |                               |
| Professional Perform Thermo- Skill mechanical 94. Gather geometric details of analysis of engine components, welded joints etc.,  Professional Perform Thermo- Mechanical analysis Introduction to Thermo- Mechanical analysis. Any Loading type is converted applied on the component as a mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                     | proper displacement               |                               |
| Skill mechanical 94. Gather geometric details of analysis of engine components, welded joints etc., Professional 94. Gather geometric details of the components. Such as length, width, height, cross sectional details and mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                     | velocity, strains etc. (15 hrs)   |                               |
| 150 Hrs analysis of engine components, welded joints etc., the components. Such as length, width, height, cross sectional details and mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Professional | Perform Thermo-     | Thermo-mechanical analysis        | Introduction to Thermo-       |
| components, length, width, height, cross applied on the component as a sectional details and mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Skill        | mechanical          | 94. Gather geometric details of   | mechanical analysis. Any      |
| Professional welded joints etc., sectional details and mechanical load along with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150 Hrs      | analysis of engine  | the components. Such as           | Loading type is converted     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | components,         | length, width, height, cross      | applied on the component as a |
| Knowledge detailed drawing of and thermal loads and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Professional | welded joints etc., | sectional details and             | mechanical load along with    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Knowledge    |                     | detailed drawing of               | and thermal loads and         |

| 54 Hrs       | component under test analyzed. |  |
|--------------|--------------------------------|--|
|              | (engine component, welded      |  |
| (Week 35-40) | joints, component exposed      |  |
|              | to thermal loads). (20 hrs)    |  |
|              | 95. Create the detailed        |  |
|              | geometry of the component      |  |
|              | using the geometric details    |  |
|              | and geometric tool like lines  |  |
|              | surface, extrude, fillets,     |  |
|              | champers etc. (25hrs)          |  |
|              | 96. Create the finite element  |  |
|              | model of the component         |  |
|              | using geometric details        |  |
|              | using 1d and 2D elements       |  |
|              | for surface panels and 3D      |  |
|              | elements for solids and        |  |
|              | establish connection at the    |  |
|              | required junctions. (40 hrs)   |  |
|              | 97. Collect the material       |  |
|              | properties and strength        |  |
|              | properties of the material     |  |
|              | used for the component.        |  |
|              | Density of the material is     |  |
|              | must. Assign the material      |  |
|              | properties to finite element   |  |
|              | model of the component.        |  |
|              | (10 hrs)                       |  |
|              | 98. Collect the physical       |  |
|              | properties of component        |  |
|              | such as thickness. Assign      |  |
|              | the physical properties to     |  |
|              | the finite element model.      |  |
|              | (10 hrs)                       |  |
|              | 99. Check the elemental        |  |
|              | orientation and normal,        |  |
|              | free edges, and elemental      |  |
|              | quality check. (10 hrs)        |  |
|              | 100.Convert any load in terms  |  |
|              | mechanical loads such that     |  |

|   | it can applied as point load    |  |
|---|---------------------------------|--|
|   | or pressure etc., and           |  |
|   | include temperature loads       |  |
|   | as well. (15 hrs)               |  |
|   | 101.Select the solution type to |  |
|   | static analysis and request     |  |
|   | the displacement, velocity      |  |
|   | and strains. Run the model.     |  |
|   | (10 hrs)                        |  |
|   | 102.Review the results and      |  |
|   | displacement to have            |  |
|   | proper displacement             |  |
|   | velocity, strains etc. (10      |  |
|   | hrs)                            |  |
| U | l                               |  |

### Project work / Industrial visit

### **Broad areas:**

- a) Visit to industry to have a greater knowledge of how the analysis is performed on the actual components and get to know the processes of developing actual analysis types & do work on the similar components.
- b) Based on the analysis performed drawing conclusion to recommend design updates if any.
- c) Know more about writing technical documentation.



### **SYLLABUS FOR CORE SKILLS**

- 1. Workshop Calculation & Science (Common for two years course) (80 Hrs + 80 Hrs)
- 2. Engineering Drawing (Common for Group-II (Electrical, Electronics & IT Trade Group)) (80 Hrs + 80 Hrs)
- 3. Employability Skills (Common for all CTS trades) (160 Hrs + 80 Hrs)

Learning outcomes, assessment criteria, syllabus and Tool List of Core Skills subjects which is common for a group of trades, provided separately in <a href="www.bharatskills.gov.in">www.bharatskills.gov.in</a>



### **List of Tools & Equipment**

### BASIC DESIGNER AND VIRTUAL VERIFIER (MECHANICAL) (for batch of 24 candidates)

| S No.  | Name of the Tools and<br>Equipment              | Specification                                                                                                                                                                                                                        | Quantity |  |
|--------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| A. GEN | A. GENERAL MACHINERY / SOFTWARE INSTALLATIONS   |                                                                                                                                                                                                                                      |          |  |
| 1.     | 3D Printer Plastic                              |                                                                                                                                                                                                                                      | 2 Nos.   |  |
| 2.     | UPS (Common to other trades)                    | 3 KVA With Battery & Trolley                                                                                                                                                                                                         | 1 No.    |  |
| 3.     | Industrial Workstation (Common to other trades) | 32 GB RAM, NVIDIA Qdr 4GB,<br>Intel XeonW-2123 3.6 4C,<br>1TB<br>HDD, USB Keyboard & USB<br>Optical Mouse                                                                                                                            | 20 Nos.  |  |
| 4.     | Monitor (Common to other trades)                | IPS Display, Narrow Bezel                                                                                                                                                                                                            | 20 Nos.  |  |
| 5.     | Server with rack (Common to other trades)       | Intel Xeon Silver 4114 2.2G,<br>10C/20T, 9.6GT/s, 14M<br>Cache, Turbo, HT (85W)<br>DDR4-2400, 600GB<br>x 5nos. 10K RPM SAS, 12Gbps<br>512n 2.5in Hot plug Hard<br>Drive                                                              | 1 No.    |  |
| 6.     | CAE SOFTWARE - ANSYS                            | Static Structural Analysis, Modal Analysis, Topology Optimization, Topology Optimization, Steady State Thermal, Transient Thermal, Conduction, Convection                                                                            | 20 Nos.  |  |
| 7.     | CAE SOFTWARE - FEAST                            | Linear static analysis, Free-<br>vibration analysis, Buckling<br>analysis, Transient response,<br>Frequency response, Random<br>response, Base excitation,<br>Inertia relief method, Visco-<br>elastic Analysis, Thermal<br>Analysis | 3 Nos.   |  |



The DGT sincerely acknowledges contributions of the Industries, State Directorates, Trade Experts, Domain Experts, trainers of ITIs, NSTIs, faculties from universities and all others who contributed in revising the curriculum.

Special acknowledgement is extended by DGT to the following expert members who had contributed immensely in this curriculum.

### List of Expert Members participated for finalizing the course curriculum of Basic Designer and Virtual Verifier (Mechanical) trade

|       | Termer (meenamen, maae                     |                                                                                                                                                          |                 |
|-------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| S No. | Name & Designation<br>Shri/Mr./Ms.         | Organization                                                                                                                                             | Remarks         |
| 1.    | G.N. Eswarappa, JDT                        | CSTARI, Kolkata                                                                                                                                          | Coordinator     |
| 2.    | Prashanth Handgund                         | Tata Technologies Ltd, Pune                                                                                                                              | Industry Expert |
| 3.    | Sunil Mahadikar                            | Tata Technologies Ltd, Pune                                                                                                                              | Industry Expert |
| 4.    | Madhu H A                                  | Tata Technologies Ltd, Pune                                                                                                                              | Industry Expert |
| 5.    | Vijay B Hiremath, Senior<br>Manager        | Badve Engineering Ltd., Komal<br>Plast Tech., Plot No. 163/A,<br>Belur Industrial Area, Dharwad-<br>580011                                               | Industry Expert |
| 6.    | Viinod Atpadkar, Chief<br>Executive Office | SVR Info Tech, 301/302 Amber<br>Plaza, Nr. Bank of MH, Sinhgad<br>College Road, Ambegaon BK,<br>Pune-411046                                              | Industry Expert |
| 7.    | Sunil J, Partner                           | Modtech Engineering, Plot No.<br>95, Behind Omex Auto,<br>Bommasandra Jiganl Link Road,<br>Jigini Post, Bengaluru-562105,<br>Karnataka                   | Industry Expert |
| 8.    | Bhagyashree Gapchup                        | XM Excellence Pvt. Ltd., J/05,<br>SN118/A, Aditya Nakoda<br>Enclave Parvati, Maharashtra,<br>Pune- 411030                                                | Industry Expert |
| 9.    | Salman Shaikh, PhD, CEO & Founder          | MetaFix Ortho Pvt. Ltd., 3 <sup>rd</sup> Floor, SIT Building, Symbiosis International University, Symbiosis Knowledge Village, Pune- 412115, Maharashtra | Industry Expert |
| 10.   | P. Krishnamoorthy, Director                | ANSYS Software Pvt. Ltd. Plot                                                                                                                            | Industry Expert |



|     | Channel Sales – India, SAARC &  | no. 34/1, Rajiv Gandhi Infotech    |                 |
|-----|---------------------------------|------------------------------------|-----------------|
|     | ASEAN                           | Part, MIDC Hinjewadi, Pune –       |                 |
|     |                                 | 411057.                            |                 |
| 11. | Dr. Kotresh M, Assistant        | Institute for Training of Trainer, | Industry Expert |
|     | Director                        | Davanagere                         |                 |
| 12. | Mr. Ajmeer Khwaja Sab           | ITI, Hosur Road                    | Industry Expert |
|     | Kankalkar, Training Officer I/C |                                    |                 |
| 13. | Mr. Hemanth, Sr. Engineer       | KGTTI                              | Industry Expert |
| 14. | Shrinivas Bhat, Chief Placement | GTTC, Bangalore                    | Industry Expert |
|     | Officer                         |                                    |                 |
| 15. | A. Rarhi, DDT                   | CSTARI, Kolkata                    | Member          |
| 16. | B. Biswas, Training Officer     | CSTARI, Kolkata                    | Member          |
| 17. | P.K. Bairagi, TO                | CSTARI, Kolkata                    | Member          |
| 18. | R.N. Manna, TO                  | CSTARI, Kolkata                    | Member          |
| 19. | Bharat Kumar Nigam, TO          | CSTARI, Kolkata                    | Member          |
| 20. | K.V.S. Narayana, TO             | CSTARI, Kolkata                    | Member          |
| 21. | Himanshu, ADT                   | CSTARI, Kolkata                    | Coordinator     |
| 22. | B. Sharanappa, ADT              | CSTARI, Kolkata                    | Member          |
| 23. | Bhagat Singh, ADT               | CSTARI, Kolkata                    | Member          |
| 24. | Vijay Kumar, ADT                | CSTARI, Kolkata                    | Member          |

### **ABBREVIATIONS**

| CTS  | Craftsmen Training Scheme                          |  |
|------|----------------------------------------------------|--|
| ATS  | Apprenticeship Training Scheme                     |  |
| CITS | Craft Instructor Training Scheme                   |  |
| DGT  | Directorate General of Training                    |  |
| MSDE | Ministry of Skill Development and Entrepreneurship |  |
| NTC  | National Trade Certificate                         |  |
| NAC  | National Apprenticeship Certificate                |  |
| NCIC | National Craft Instructor Certificate              |  |
| LD   | Locomotor Disability                               |  |
| СР   | Cerebral Palsy                                     |  |
| MD   | Multiple Disabilities                              |  |
| LV   | Low Vision                                         |  |
| НН   | Hard of Hearing                                    |  |
| ID   | Intellectual Disabilities                          |  |
| LC   | Leprosy Cured                                      |  |
| SLD  | Specific Learning Disabilities                     |  |
| DW   | Dwarfism                                           |  |
| MI   | Mental Illness                                     |  |
| AA   | Acid Attack                                        |  |
| PwD  | Person with disabilities                           |  |



