

Параллельная реализация метода эллипсоидов для задач оптимизации большой размерности

Безбородов В.А.

Научный руководитель: к.ф.-м.н., доцент Голодов В.А.

Челябинск, 2015 г.

Безбородов В.А., ВМИ, кафедра ЭММиС Параллельная реализация МЭ (С++) ЮУрГУ, Челябинск, 2015 г. 1 / 26

Содержание

- 1 Метод эллипсоидов
- Кратко об истории
 - Геометрия метода
- Применение метода
 - Алгоритм метода
- 2 Ускорение матричных операций
- Параллельная обработка матриц
 - Достигнутое ускорение
- 3 Параллельная реализация МЭ
- Вычислительный эксперимент

 $\leftarrow \square \times \leftarrow \varnothing \times \leftarrow \cong \times \times \cong \times \otimes \times$ Безбородов В.А., ВМИ, кафедра ЭММиС Параллельная реализация МЭ (С++) ПОФГХ. Челябинск, 2015 г. 2 / 26

проверка и тестирование разработанного ПО. эллипсоидов на вычислительную сложность; произвольной точности; следующие задачи: операций; Задачи Безбородов В.А., ВМИ, кафедра ЭММиС Параллельная реализация МЭ (С++) КОУрГУ, Челябинск, 2015 г. 3 / 26 1. разработка параллельной реализации метода эллипсоидов, эллипсоидов для решения задачи оптимизации большой поддерживающей арифметику произвольной точности; использование полученной реализации метода Целями работы являются: размерности. Цели 2

В соответствии с поставленными целями в работе решаются

исследование операций классического алгоритма метода

- разработка программной реализации алгоритма с
- распараллеливанием наиболее длительных по времени
- обеспечение поддержки арифметики расширенной и
- демонстрация использования разработанного ПО для решения задачи оптимизации большой размерности;

с п > с с > с ≥ г ≥ г ≥ г ≥ г ≥ г с с Везбородов В.А., ВМИ, кафедра ЭММиС Паралислыная реализация МЭ (С++) КОУрГУ. Челябинск, 2015 г. 4 / 26

Метод эллипсоидов Геометрия

Содержание

1 Метод эллипсоидов

- Кратко об истории
 - Геометрия метода
- Применение метода
- Алгоритм метода
- Ускорение матричных операци
- Параллельная обработка матриц
- остигнутое ускорение
- З Параллельная реализация МЭ
- Вычислительный эксперимент

Безбородов В.А., ВМИ, кафедра ЭММиС Параллельная реализация МЭ (С++) КОУрГУ, Челябинск, 2015 г. 7 / 26 Безбород

1-ф эллипсоид и его свойства

Эллипсоид ε_n , содержащий полушар в E^n , имеет параметры

E., имеет параметры
$$b = \left(\alpha + \frac{1}{\alpha}\right)\frac{r}{2}, \quad h = \left(1 - \frac{1}{\alpha^2}\right)\frac{r}{2},$$

где $\alpha = \frac{b}{a}$ и r – радиус шара S_n .

Если пространство «растянуть» с коэффициентом α в направлении полуоси a, то ε_n станет шаром в преобразованном пространстве.

Отношение объема эллипсоида ε_n к объему шара S_n равно

$$q(n) = \frac{vol(\varepsilon_n)}{vol(S_n)} = \frac{1}{\alpha} \left(\frac{b}{r}\right)^n = \frac{1}{\alpha} \left(\frac{1}{2} \left(\alpha + \frac{1}{\alpha}\right)\right)^n.$$

Безбородов В.А., ВМИ, кафедра ЭММиС Параллельная реализация МЭ (С++) КОУрГУ, Челябинск, 2015 г. 8 / 26

Безбородов В.А., ВМИ, кафедра ЭММиС Параллельная реализация МЭ (С++) КОУРГУ, Челябинск, 2015 г. 10 / 26 Предполагается, что оптимальная точка $x^* \in E_n$ существует и выпуклые функции; $g_{\nu}(x)$ – субградиенты функций, $\nu = \overline{0}, \overline{m}$. где E^n — евклидово пространство размерности n>1, $f_{\nu}(x)$ — задача безусловной минимизации выпуклой функции, задача о седловой точке выпукло-вогнутых функций. Использование метода эллипсоидов находится в шаре радиуса R с центром в точке x_0 . Для решения задачи $\min f_0(x)$ при ограничениях общая задача выпуклого программирования, $f_i(x) \le 0, \quad i = 1, \dots, m, \quad x \in E^n,$ К такой задаче сводятся: Безбородов В.А., ВМИ, кафедра ЭММиС Параллельная реализация МЭ (С++) ЮУрГУ, Челябинск, 2015 г. 9 / 26 000 = 4E + 4E + 4 € + 4 □ + ■ Параллельная обработка матриц Вычислительный эксперимент ■ Применение метода Кратко об истории Геометрия метода 1 Метод эллипсоидов Алгоритм метода Содержание 7

етоп эллипсоинов Алгоритм метопа

Алгоритм

Выбрать $x_k:=x_0\in E^n$ и радиус R, такие что $\|x_0-x^*\|\leq R$. Положить $h_k=\frac{R}{n+1},\ B_k:=E$, где E – единичная матрица. Для перехода к (k+1)-й итерации выполнить:

- Шаг 1. Вычислить $g(x_k)$. Если $g(x_k) = 0$, то **ОСТАНОВ** $(x^* = x_k)$.
- Шаг 2. Вычислить очередную точку $x_{k+1}=x_k-h_kB_k\xi_k$, где $B_{T,d(x_k)}$

$$\xi_k = rac{B_k^T g(x_k)}{||B_k^T g(x_k)||}.$$

Шаг 3. Пересчитать шаг $h_{k+1} = h_k r$ и матрицу B_{k+1}

$$B_{k+1} = B_k + (\beta - 1)(B_k \xi_k) \xi_k^T, \quad \beta = \sqrt{\frac{n-1}{n+1}}.$$

Шаг 4. Перейти к (k+1)-й итерации с $x_{k+1},\,h_{k+1}$ и $B_{k+1}.$

Тетод эллипсоидов Алгоритм метода

О сходимости метода эллипсоидов

Теорема (О скорости сходимости)

Для всех итераций метода эллипсоидов коэффициент уменьшения объема эллипсоида, локализующего x^* , есть величина постоянная и равная

$$q(n) = \frac{vol(\varepsilon_{k+1})}{vol(\varepsilon_k)} = \frac{1}{\alpha} \left(\frac{1}{2} \left(\alpha + \frac{1}{\alpha} \right) \right)^n < 1, \quad k = 0, 1, 2, \dots$$

Оптимальный коэффициент растяжения пространства

$$\alpha = \sqrt{\frac{n+1}{n-1}} \Rightarrow q(n) = \sqrt{\frac{n-1}{n+1}} \left(\frac{n}{\sqrt{n^2 - 1}} \right)^n < 1$$

Ускорение матричных операций Параллельная обработка матриц

Способы разбиения матриц

Ускорение матричных операций

элементов матрицы для обработки. Вид подмножества Каждому потоку выделяется некоторое подмножество определяется способом разбиения.

Горизонтальный

Вертикальный

Блочный

Безбородов В.А., ВМИ, кафедра ЭММиС Параллельная реализация МЭ (С++) КОУрГУ, Челябинск, 2015 г. 17 / 26

Содержание

Ускорение матричных операций Достигнутое ускорение

- —
- Кратко об истории
 - Геометрия метода
- Применение метода
- Алгоритм метода
- Ускорение матричных операций 2
- Параллельная обработка матриц ■ Достигнутое ускорение
- Вычислительный эксперимент \circ

Безбородов В.А., ВМИ, кафедра ЭММиС Параллельная реализация МЭ (С++) КОУрГУ, Челябинск, 2015 г. 18 / 26

Параллельная реализация МЭ Вычислительный эксперимент $f_m = \sum_{i=1, i \neq m}^{n} x_i^2 + (x_m - \alpha/2)^2 - \alpha^2.$ итерации, точность - 9 знаков. Задача большой размерности $f_0 = \sum_{i=1}^n x_i^2 \to \min.$ Для $n = 100, \ m = \overline{1,n}, \ \alpha =$ Решение найдено за 403 Ограничения: Пример 2 МЭ: 160 итераций, точность — 9 знаков (0.00000000011922745523 2.00000000033459867651 Параллельная реализация МЭ Вычислительный эксперимент χ^* - 15 | $x_1^2 + (x_2 - 2)^2 \to \min.$ $\begin{cases} x_1^2 + x_2^2 - 9; \\ x_1^2 + (x_2 - 4)^2 - 9. \end{cases}$ Задача минимизации 0 2 Ограничения: Пример 1 χ^* Оптимум

Параллельная реализация МЭ Основные выводы

Благодарности Панюкову А.В., Макаровских Т.А., Голодову В.А.

Вопросы?

Заключение

В работе решены следующие задачи:

- операции классического алгоритма метода эллипсоидов исследованы на вычислительную сложность;
- разработана программная реализация алгоритма с распараллеливанием наиболее длительных по времени операций;
- обеспечена поддержка арифметики расширенной и произвольной точности;
- продемонстрировано использование разработанного ПО для решения задачи оптимизации большой размерности;
 - разработанный код проверен и протестирован.

карь каредра ЭММиС Параллельная реализация МЭ (С++) ЮУрГУ, Челябинск, 2015 г. 25 / 26

СПАСИБО ЗА ВНИМАНИЕ!

кородов В.А., ВМИ, кафедра ЭММиС Параллельная реализация МЭ (C++) КОУрГУ, Челябинск, 2015 г. 26 / 26