函子范畴与 Yoneda 引理

戚天成 ⋈

复旦大学 数学科学学院

2023年8月8日

Definition 1 (函子范畴). 设 \mathcal{C},\mathcal{D} 是范畴, 其中 \mathcal{C} 是小范畴, 称如下定义范畴 $\mathbf{Fun}(\mathcal{C},\mathcal{D})$ 为函子范畴:

- (1) 定义 Fun(C, D) 的对象类为 C 到 D 的 (共变) 函子全体;
- (2) 对任意两个函子 $F,G \in \text{obFun}(\mathcal{C},\mathcal{D})$, 定义 $\text{Hom}_{\text{Fun}(\mathcal{C},\mathcal{D})}(F,G) = \text{Nat}(F,G)$ 为 F 到 G 的自然变换全体;
- (3) 用函子的合成定义 $Fun(C, \mathcal{D})$ 中态射合成.

Remark 2. 因为 ob \mathcal{C} 是集合, 所以 $\mathbf{Nat}(F,G)$ 是集合, 进而知函子范畴定义合理.

下面的 Yoneda 引理使得对范畴到集范畴的任意共 (逆) 变函子与给定共 (逆) 变 Hom 函子之间的自然变换都可以完全确定 (因为证明很简单, 这里仅略去证明).

Yoneda lemma. 设 \mathcal{C} 是范畴, $F: \mathcal{C} \to \mathbf{Set}$ 是函子, $A \in \text{ob}\mathcal{C}$. 对任何 $a \in FA$ 和 $B \in \text{ob}\mathcal{C}$, 记 $\eta_{a,B}: \text{Hom}_{\mathcal{C}}(A,B) \to FB, k \mapsto F(k)(a)$, 那么

$$\eta_a : \text{ob}\mathcal{C} \to \bigcup_{B \in \text{ob}\mathcal{C}} \text{Hom}_{\mathbf{Set}}(\text{Hom}_{\mathcal{C}}(A, B), FB), B \mapsto \eta_{a, B}$$

是函子 $\operatorname{Hom}_{\mathcal{C}}(A,-)$ 到 F 的自然变换. 并且映射 $\theta: FA \to \operatorname{Nat}(\operatorname{Hom}_{\mathcal{C}}(A,-),F), a \mapsto \eta_a$ 是双射.

Remark 3. 对逆变函子有完全类似的结论成立. 这里指出根据 Neumann-Bernays-Gödel 公理系统中的替换公理立即得到 $Nat(Hom_{\mathcal{C}}(A,-),F)$ 是集合. 特别地, 两个共 (逆) 变 Hom 函子之间的自然变换全体是集合.

Corollary 4. 设 \mathcal{C} 是小范畴, 其中 \mathcal{C} 是小范畴, 如下定义逆变函子 $F: \mathcal{C} \to \mathbf{Fun}(\mathcal{C}, \mathbf{Set})$: 对每个 $X \in \mathrm{ob}\mathcal{C}$, 命 $FX = \mathrm{Hom}_{\mathcal{C}}(X, -)$, 对任意 $X, Y \in \mathrm{ob}\mathcal{C}$, 命 $F: \mathrm{Hom}_{\mathcal{C}}(X, Y) \to \mathbf{Nat}(\mathrm{Hom}_{\mathcal{C}}(Y, -), \mathrm{Hom}_{\mathcal{C}}(X, -))$, $f \mapsto f^*$. 那么 F 是忠实的满函子. 对逆变 Hom 函子有类似结论成立.

Proof. 需要验证对任何 $X, Y \in ob\mathcal{C}$, 命 $F : Hom_{\mathcal{C}}(X, Y) \to \mathbf{Nat}(Hom_{\mathcal{C}}(Y, -), Hom_{\mathcal{C}}(X, -)), f \mapsto f^*$ 是双射. 在 Yoneda 引理中取 $F = Hom_{\mathcal{C}}(X, -), A = Y$, 并注意到 $\eta_f = F(f), \forall f \in Hom_{\mathcal{C}}(X, Y)$, 故结论成立.

Corollary 5. 设 \mathcal{C} 是范畴, 如果 \mathcal{C} 中态射 $f: X \to Y$ 满足 $f^* \in \mathbf{Nat}(\mathrm{Hom}_{\mathcal{C}}(Y, -), \mathrm{Hom}_{\mathcal{C}}(X, -))$ 是自然同构, 那么 f 是同构. 对逆变 Hom 函子有类似结论成立.