1 Introduction

MISB-Series is a FORTRAN program to compute order conditions for a class of one step methods where in each stage again a differential equation has to be solved. We start with the following differential equation

$$y' = F(y, y)$$

where the right hand depends twice on the unknown y. This form of the right hand side involves a large number of ODE's for which special splitting typed integrator are proposed. We list types of equations which appear in the literature

Other types of partitioning Additive splitting:

$$y' = F(y,y) = f(y) + f(y)$$

Additive nonlinear-linear splitting:

$$y' = F(y, y) = f(y) + Ny$$

Vector fields on manifolds in frame representation

$$y' = F(y, y) = \sum_{i=1}^{N} f_i(y) E_i(y)$$

Multiplicative splitting:

$$y' = F(y, y) = A(y)y$$

I all examples the first y argument is the first one in the general framework, and so on.

For this type of equations exponential Runge-Kutta type methods will be analyzed. The methods have the following structure.

$$Y_{1} = y_{n}$$

$$Z'_{i} = \sum_{j=1}^{i-1} \sum_{p=0}^{\rho_{i}} a_{ij}^{p} \left(\frac{\tau}{h}\right)^{p} F(Y_{j}, Z_{i}), \quad Z_{i}(0) = y_{n} + \sum_{j} d_{ij}(Y_{j} - y_{n})$$

$$Y_{i} = Z_{i}(h),$$

where in addition the consistency condition is required

$$\sum_{j=1}^{i-1} a_{ij}^p = 0, \ p = 1, \dots, \rho_i.$$

We will derive order conditions with the help of B-series. Let us start with the elementary differentials. We will use the abbreviation $F_{(i,j)}^{(n)}$, i+j=n to denote the *i*-th derivative of f with respect to the first argument and the *j*-th derivative of f with respect to the second argument.

$$\begin{split} y' &= F \\ y'' &= F_{(1,0)}^{(1)} F + F_{(1,0)}^{(1)} F \\ y^{(3)} &= F_{(2,0)}^{(2)} F F + 2 F_{(1,1)}^{(2)} F F + F_{(0,2)}^{(2)} F F \\ &+ F_{(1,0)}^{(1)} F_{(1,0)}^{(1)} F + F_{(1,0)}^{(1)} F_{(0,1)}^{(1)} F + F_{(0,1)}^{(1)} F_{(0,1)}^{(1)} F \end{split}$$

For a graphical representation we use bi-coloured trees. Black vertices means computation of F at the position (y,y) and and white vertices means computation at the position (y,z). Upwards pointing branches represent partial derivatives with respect to the first argument if the branch leads to a black vertex, and with respect to the second argument if it leads to a white vertex.

The trees are divided in two sets T^b and T^w where T^b contain all trees with a black root and T^w with a white root. Hence, the trees T^b are computed at (y,y) in the leading derivative whereas those of T^w are computed at the mixed argument (y,z). The trees are defined recursively trough:

$$t = [t_{b1} \dots t_{bk}, t_{w1} \dots t_{wl}]_b, \quad \forall t \in T^b$$

$$t = [t_{b1} \dots t_{bk}, t_{w1} \dots t_{wl}]_w, \quad \forall t \in T^w$$

Furthermore we introduce the black operator b which replaces a white root node by a black root node.

$$t^{b} = [t_{b1} \dots t_{bk}, t_{w1} \dots t_{wl}]_{w}^{b} = [t_{b1} \dots t_{bk}, t_{w1} \dots t_{wl}]_{b}$$

$$G_{F}([t_{b,1} \dots t_{b,k}, t_{w1} \dots t_{wl}]_{b})(y_{0}, y_{0}) =$$

$$F_{(k,l)}^{(k+l)}(y_{0}, y_{0})(G(t_{b1})(y_{0}, y_{0}), \dots, G(t_{bk})(y_{0}, y_{0}), G(t_{w1}^{b})(y_{0}, y_{0}), \dots, G(t_{wl}^{b})(y_{0}, y_{0}))$$

$$G_{F}([t_{b,1} \dots t_{b,k}, t_{w1} \dots t_{wl}]_{w})(y_{0}, z_{0}) =$$

$$F_{(k,l)}^{(k+l)}(y_{0}, y_{0})(G(t_{b1})(y_{0}, y_{0}), \dots, G(t_{bk})(y_{0}, y_{0}), G(t_{w1})(y_{0}, z_{0}), \dots, G(t_{wl})(y_{0}, z_{0}))$$

Two types of formal B-series are introduced

$$B(a, hF, y, y) = a(\emptyset)y + \sum_{t \in T^b} \frac{a(t)}{\sigma(t)} G_F(t)(y, y) h^{r(t)}$$
$$C(b, hF, \lambda, y, z) = b(\emptyset)z + \sum_{t \in T^w} \frac{b^{\lambda}(t)}{\sigma(t)} G_F(t)(y, z) h^{r(t)}$$

where the coefficients $b^{\lambda}(t)$ of the second B-series are polynomials in a further parameter λ

$$b^{\lambda}(t) = b_0(t) + \lambda b_1(t) + \lambda^2 b_2(t) + \dots$$

The internal variables are expanded into series by

$$Y_i = B(\eta_i, hf, y, y) := \sum_{t \in T_y} \eta_i(t) \frac{h^{\rho(t)}}{\sigma(t)} G_F(t)(y, y)$$

$$\tag{1}$$

$$Z_i(\lambda) = C(\zeta_i^{\lambda}, hf, y, z) := \sum_{t \in T_w} \zeta_i^{\lambda}(t) \frac{h^{\rho(t)}}{\sigma(t)} G_F(t)(y, z)$$
 (2)

(3)

The series coefficients η_i map T_w to \mathbb{R} , where the ζ_i^{λ} maps to polynomials over \mathbb{R} . Alternatively, we can interpret the B series defined by ζ_i being dependent on a parameter. Note, that we have $\eta_i(\emptyset) = \zeta_i^{\lambda}(\emptyset) = 1$.

We consider the expansion of hf(Y,Z) in a B-series when Y,Z are given by B-series with coefficients η, ζ^{λ} whereas always $\eta(\emptyset) = \zeta(\emptyset) = 1$. The resulting B-series is denoted by $D(\eta, \zeta)$.

Theorem 1.1 For a tree $t = [t_{b1} \dots t_{bk}, t_{w1} \dots t_{wl}]_b$ we have

$$hf(Y,Z) = C(D(\eta,\zeta^{\lambda}), hf, y, z) \tag{4}$$

whereas

$$D(\eta, \zeta))(t) = \prod_{i} \eta(t_{bi}) \prod_{j} \zeta^{\lambda}(t_{wj})$$
 (5)

The proof requires only an exact calculation of the occurrence of the tree t in the Taylor expansion of hf.

Proof: We denote by $f^{(n)}$ the full tensor representing the n-th derivative of f with respect to a vectorial column variable (Y; Z), whereas we denote by $f^{(k,l)}$ the tensor denoting a derivative of k-times derivation with respect to Y, and l times derivation with respect to Z, thus excepting exactly k arguments from the Y-part and exactly l arguments with respect to the Z-part.

$$hf(Y,Z) = hf(y,z) + h \sum_{n=1}^{\infty} \frac{1}{n!} f^{(n)} \left[\binom{Y-y}{Z-z}, \dots \right]$$

$$= hf(y,z) + h \sum_{n=1}^{\infty} \sum_{k=0}^{n} \frac{1}{n!} \binom{n}{k} f^{(k,n-k)} \left[Y-y, \dots; Z-z, \dots \right]$$

$$= hf(y,z) + h \sum_{n=1}^{\infty} \sum_{k=0}^{n} \frac{1}{k!(n-k)!} f^{(k,n-k)} \left[Y-y, \dots; Z-z, \dots \right]$$

Now assume we want to count the number of occurrences of a tree $t = [t_{b1}, \ldots, t_{bk}, t_{w1}, \ldots, t_{wl}]$ where $t_{b1}, \ldots, t_{bk} \in T_b, t_{w1}, \ldots, t_{wl}l \in T_w$. Assume that the multiplicities in which children trees occur are μ_1, \ldots, μ_r . Then, such a tree occurs in the Taylor expansion exactly

 $\frac{k!l!}{\mu_1!\cdots\mu_r!}$

times. If all subtrees are distinct we have k!l! occurrences, but for each multiple occurrence μ_i we have to deduct a factor $1/\mu_i!$. Taken into consideration the recursion formula for the expressions $\sigma(t)$, we end up with the proposition

$$D(\eta, \zeta^{\lambda})(t) = \prod_{i} \eta(t_{bi}) \prod_{j} \zeta^{\lambda}(t_{wj})$$
(6)

The algorithm below computes the series coefficients for an algorithm where we have no shift in the initial conditions.

Algorithm 1 Calculate series coefficient for tree $t = [t_1 t_2 \dots t_m]_w$

```
\begin{split} &t = [t_1t_2 \dots t_m]_w \\ &\textbf{for } i = 1 \textbf{ to } ns + 1 \textbf{ do} \\ &\phi_i^{\lambda} = 0 \\ &\textbf{for } j = 1 \textbf{ to } i - 1 \textbf{ do} \\ &r_{ij}^{\lambda} = 1 \\ &\textbf{for } s \in [t_1t_2 \dots t_m] \textbf{ do} \\ &\textbf{ if } s \in T_w \textbf{ then} \\ &r_{ij}^{\lambda} = r_{ij}^{\lambda} * \zeta_{i,\lambda}(s) \textbf{ Comment: Polynomial multiplication} \\ &\textbf{ else} \\ &r_{ij}^{\lambda} = r_{ij}^{\lambda} * \eta_j(s) \textbf{ Comment: Scalar multiplication} \\ &\textbf{ end for} \\ &\textbf{ for } p = 0 \textbf{ to } \rho_i \textbf{ do} \\ &\phi_i^{\lambda} = \phi_i^{\lambda} + a_{ijp} \lambda^p * r_{ij}^{\lambda} \\ &\textbf{ end for} \\ &\textbf{ end for} \\ &\textbf{ end for} \\ &\textbf{ lategrate } \frac{d}{d\lambda} \zeta_i^{\lambda}(t)) = \phi_i^{\lambda} \\ &\zeta_i^{\lambda 0}(t) = 0 \\ &\eta_i(t^b) = \zeta_i^1(t) \\ &\textbf{ end for} \end{split}
```

2 Series coefficients

Let us compute the first coefficients of both series and the intermediate series ϕ for all stages. In addition to the standard case we also add the differentials for general additive splitting and linear additive splitting.

For a compact notification we define also

$$a_{ij}^{[0]}[\lambda] = \sum_{p=0}^{\rho_i} a_{ij}^p \frac{p!}{(p+0)!} \lambda^{p+0}$$

$$a_{ij}^{[1]}[\lambda] = \sum_{p=0}^{\rho_i} a_{ij}^p \frac{p!}{(p+1)!} \lambda^{p+1}$$

$$a_{ij}^{[m]}[\lambda] = \sum_{p=0}^{\rho_i} a_{ij}^p \frac{p!}{(p+m)!} \lambda^{p+m}$$

A further notation is the product of polynomial

$$\begin{split} (qr)[\lambda] &= q[\lambda]r[\lambda] = (\sum_{p=0}^{\rho_1} q^p \lambda^p)(\sum_{p=0}^{\rho_2} r^p \lambda^p) \\ &= q^{\rho_1} p^{\rho_2} \lambda^{\rho_1 + \rho_2} \\ &\quad + (q^{\rho_1} r^{\rho_2 - 1} + q^{\rho_1 - 1} r^{\rho_2}) \lambda^{\rho_1 + \rho_2 - 1} \\ &\quad + (q^{\rho_1} r^{\rho_2 - 2} + q^{\rho_1 - 1} r^{\rho_2 - 1} + q^{\rho_1 - 1} r^{\rho_2 - 1}) \lambda^{\rho_1 + \rho_2 - 2} \\ &\quad + \dots \\ &\quad + (q^0 r^1 + q^1 r^0) \lambda^1 \\ &\quad + q^0 r^0 \lambda^0 \\ &= \sum_{p=0}^{\rho_1 + \rho_2} (\sum_{s=0}^k q^l r^{p-s}) \lambda^p \end{split}$$

where q^p is zero whenever $p \notin [0, \rho_1]$, resp. r^p is zero whenever $p \notin [0, \rho_2]$.

$$(qr)^p = \sum_{s=0}^p q^s q^{p-s}$$

First order:

Differential 1, F, F , \mathbb{N} :

$$r_{ij}^{\lambda}(\tau_w) = 1$$

$$\phi_i^{\lambda}(\tau_w) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda]$$

$$\zeta_i^{\lambda}(\tau_w) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda]$$

$$\eta_i(\tau_b) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[1]$$

$$\eta_j(\tau_b) = \sum_{k=1}^{j-1} a_{jk}^{[1]}[1]$$

Second order: Differential 2, $F_{(1,0)}^{(1)}F$, f'F, N'N:

$$r_{ij}^{\lambda}([\tau_b]_w) = \eta_j^{\lambda}(\tau_b) = \sum_{k=1}^{j-1} a_{jk}^{[1]}[1]$$

$$\phi_i^{\lambda}([\tau_b]_w) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([\tau_b]_w)$$

$$= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1]$$

$$\zeta_i^{\lambda}([\tau_b]_w) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1]$$

$$\eta_i([\tau_b]_b) = \sum_{j=1}^{i-1} a_{jk}^{[1]}[1] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1]$$

$$\eta_j([\tau_b]_b) = \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]$$

Differential 3, $F_{(0,1)}^{(1)}F$, g'F, LN:

$$r_{ij}^{\lambda}([\tau_w]_w) = \zeta_i(\tau_w) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda]$$

$$\phi_i^{\lambda}([\tau_w]_w) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([\tau_w]_w)$$

$$= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda]$$

$$\zeta_i^{\lambda}([\tau_w]_w) = (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]})^{[1]}[\lambda]$$

$$\eta_i([\tau_w]_b) = (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]})^{[1]}[1]$$

$$\eta_j([\tau_w]_b) = (\sum_{k=1}^{j-1} a_{jk}^{[0]} \sum_{k=1}^{k-1} a_{kl}^{[1]})^{[1]}[1]$$

Third order: Differential 4, $F_{(2,0)}^{(2)}FF,\,f''FF,\,N''NN$:

$$r_{ij}^{\lambda}([\tau_b, \tau_b]_w) = (\eta_j(\tau_b))^2 = (\sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^2$$

$$\phi_i^{\lambda}([\tau_b, \tau_b]_w) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([\tau_b, \tau_b]_w)$$

$$= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] (\sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^2$$

$$\zeta_i^{\lambda}([\tau_b, \tau_b]_w) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] (\sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^2$$

$$\eta_i([\tau_b, \tau_b]_b)) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[1] (\sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^2$$

$$\eta_j([\tau_b, \tau_b]_b)) = \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] (\sum_{l=1}^{k-1} a_{kl}^{[1]}[1])^2$$

Differential 5, $F_{(1,1)}^{(2)}FF$:

$$\begin{split} r_{ij}^{\lambda}([\tau_{w},\tau_{b}]_{w} &= \zeta_{i}^{\lambda}(\tau_{w})\eta_{j}(\tau_{b}) = (\sum_{j=1}^{i-1}a_{ij}^{[1]}[\lambda])(\sum_{k=1}^{j-1}a_{jk}^{[1]}[1]) \\ \phi_{i}^{\lambda}([\tau_{w},\tau_{b}]_{w}) &= \sum_{j=1}^{i-1}a_{ij}^{[0]}[\lambda]r_{ij}^{\lambda}([\tau_{w},\tau_{b}]_{w}) \\ &= (\sum_{j=1}^{i-1}a_{ij}^{[1]}[\lambda])(\sum_{j=1}^{i-1}a_{ij}^{[0]}[\lambda]\sum_{k=1}^{j-1}a_{jk}^{[1]}[1]) \\ &= ((\sum_{j=1}^{i-1}a_{ij}^{[1]})(\sum_{j=1}^{i-1}a_{ij}^{[0]}\sum_{k=1}^{j-1}a_{jk}^{[1]}[1]))[\lambda] \\ \zeta_{i}^{\lambda}([\tau_{w},\tau_{b}]_{w}) &= ((\sum_{j=1}^{i-1}a_{ij}^{[1]})(\sum_{j=1}^{i-1}a_{ij}^{[0]}\sum_{k=1}^{j-1}a_{jk}^{[1]}[1]))^{[1]}[\lambda] \\ \eta_{i}([\tau_{w},\tau_{b}]_{b})) &= ((\sum_{j=1}^{i-1}a_{jk}^{[1]})(\sum_{k=1}^{j-1}a_{jk}^{[0]}\sum_{k=1}^{i-1}a_{jk}^{[1]}[1]))^{[1]}[1] \\ \eta_{j}([\tau_{w},\tau_{b}]_{b})) &= ((\sum_{k=1}^{j-1}a_{jk}^{[1]})(\sum_{k=1}^{j-1}a_{jk}^{[0]}\sum_{l=1}^{k-1}a_{kl}^{[1]}[1]))^{[1]}[1] \end{split}$$

Differential 6, $F_{(0,2)}^{(2)}FF$, g''FF:

$$r_{ij}^{\lambda}([\tau_{w}, \tau_{w}]_{w}) = (\zeta_{i}^{\lambda}(\tau_{w}))^{2} = (\sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda])^{2}$$

$$\phi_{i}^{\lambda}([\tau_{w}, \tau_{w}]_{w}) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda]([\tau_{w}, \tau_{w}]_{w})$$

$$= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda](\sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda])^{2}$$

$$\zeta_{i}^{\lambda}([\tau_{w}, \tau_{w}]_{w}) = (\sum_{j=1}^{i-1} a_{ij}^{[0]}(\sum_{j=1}^{i-1} a_{ij}^{[1]})^{2})^{[1]}[\lambda]$$

$$\eta_{i}([\tau_{w}, \tau_{w}]_{b})) = (\sum_{j=1}^{i-1} a_{ij}^{[0]}(\sum_{j=1}^{i-1} a_{ij}^{[1]})^{2})^{[1]}[1]$$

$$\eta_{j}([\tau_{w}, \tau_{w}]_{b})) = (\sum_{k=1}^{j-1} a_{jk}^{[0]}(\sum_{k=1}^{j-1} a_{jk}^{[1]})^{2})^{[1]}[1]$$

Differential 7, $F_{(1,0)}^{(1)}F_{(1,0)}^{(1)}F$, f'f'F , N'N'N:

$$r_{ij}^{\lambda}([[\tau_b]_b]_w) = \eta_j([\tau_b]_b) = \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]$$

$$\phi_i^{\lambda}([[\tau_b]_b]_w) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([[\tau_b]_b]_w)$$

$$= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]$$

$$\zeta_i^{\lambda}([[\tau_b]_b]_w) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]$$

$$\eta_i([[\tau_b]_b]_b)) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[1] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]$$

Differential 8, $F_{(1,0)}^{(1)}F_{(0,1)}^{(1)}F$, f'g'F, N'LN:

$$r_{ij}^{\lambda}([[\tau_w]_b]_w) = \eta_j([\tau_w]_b) = (\sum_{k=1}^{j-1} a_{jk}^{[0]} \sum_{l=1}^{k-1} a_{kl}^{[1]})^{[1]}[1]$$

$$\phi_i^{\lambda}([[\tau_w]_b]_w) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([[\tau_w]_b]_w)$$

$$= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]})^{[1]}[1]$$

$$\zeta_i^{\lambda}([[\tau_w]_b]_w) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] (\sum_{k=1}^{k-1} a_{kl}^{[1]})^{[1]}[1]$$

$$\eta_i([[\tau_w]_b]_b) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[1] (\sum_{k=1}^{k-1} a_{jk}^{[0]} \sum_{l=1}^{k-1} a_{kl}^{[1]})^{[1]}[1]$$

$$\eta_j([[\tau_w]_b]_b) = \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] (\sum_{l=1}^{k-1} a_{kl}^{[0]} \sum_{r=1}^{l-1} a_{lr}^{[1]})^{[1]}[1]$$

Differential 9, LN'N:

$$r_{ij}^{\lambda}([[\tau_b]_w]_w) = \zeta_i^{\lambda}([[\tau_b]_w]) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1]$$

$$\phi_i^{\lambda}([[\tau_b]_w]_w)) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([[\tau_b]_w]_w))$$

$$= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1]$$

$$\zeta_i^{\lambda}([[\tau_b]_w]_w) = (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{j=1}^{i-1} a_{ij}^{[1]} \sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^{[1]}[\lambda]$$

$$\eta_i([[\tau_b]_w]_b) = (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{j=1}^{i-1} a_{ij}^{[1]} \sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^{[1]}[1]$$

$$\eta_j([[\tau_b]_w]_b) = (\sum_{k=1}^{j-1} a_{jk}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]} \sum_{l=1}^{i-1} a_{kl}^{[1]}[1])^{[1]}[1]$$

Differential 10, $F_{(0,1)}^{(1)}F_{(0,1)}^{(1)}F$, g'g'F, LLN:

$$\begin{split} r_{ij}^{\lambda}([[\tau_w]_w]_w) &= \zeta_i^{\lambda}([\tau_w]_w) = (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]})^{[1]} [\lambda] \\ \phi_i^{\lambda}([[\tau_w]_w]_w) &= \sum_{j=1}^{i-1} a_{ij}^{[0]} [\lambda] r_{ij}^{\lambda}([[\tau_w]_w]_w)) \\ &= \sum_{j=1}^{i-1} a_{ij}^{[0]} [\lambda] (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]})^{[1]} [\lambda] \\ \zeta_i^{\lambda}([[\tau_w]_w]_w) &= (\sum_{j=1}^{i-1} a_{ij}^{[0]} (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]})^{[1]})^{[1]} [\lambda] \\ \eta_i([[\tau_w]_w]_b) &= (\sum_{j=1}^{i-1} a_{ij}^{[0]} (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]})^{[1]})^{[1]} [1] \\ \eta_j([[\tau_w]_w]_b) &= (\sum_{j=1}^{j-1} a_{jk}^{[0]} (\sum_{j=1}^{j-1} a_{jk}^{[0]} \sum_{k=1}^{k-1} a_{kl}^{[1]})^{[1]})^{[1]} [1] \end{split}$$

Fourth order:

Differential 11, $F_{(3,0)}^{(3)}FFF$, f'''FFF, N'''NNN:

$$r_{ij}^{\lambda}([\tau_b, \tau_b, \tau_b]_w) = (\eta_j(\tau_b))^3 = (\sum_{j=1}^{i-1} a_{ij}^{[1]}[1])^3$$

$$\phi_i^{\lambda}([\tau_b, \tau_b, \tau_b]_w) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([\tau_b, \tau_b, \tau_b]_w))$$

$$= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] (\sum_{j=1}^{i-1} a_{ij}^{[1]}[1])^3$$

$$\zeta_i^{\lambda}([\tau_b, \tau_b, \tau_b]_w) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] (\sum_{j=1}^{i-1} a_{ij}^{[1]}[1])^3$$

$$\eta_i([\tau_b, \tau_b, \tau_b]_b) = (\sum_{j=1}^{i-1} a_{ij}^{[1]}[1])^4$$

$$\eta_j([\tau_b, \tau_b, \tau_b]_b) = (\sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^4$$

Differential 12, $F_{(2,1)}^{(3)}FFF$:

$$r_{ij}^{\lambda}([\tau_{b},\tau_{b},\tau_{w}]_{w}) = \zeta_{i}^{\lambda}(\tau_{w})(\eta_{j}(\tau_{b}))^{2} = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda](\sum_{j=1}^{i-1} a_{ij}^{[1]}[1])^{2}$$

$$\phi_{i}^{\lambda}([\tau_{b},\tau_{b},\tau_{w}]_{w}) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda]r_{ij}^{\lambda}([\tau_{b},\tau_{b},\tau_{w}]_{w}))$$

$$= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda]\sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda](\sum_{j=1}^{i-1} a_{ij}^{[1]}[1])^{2}$$

$$\zeta_{i}^{\lambda}([\tau_{b},\tau_{b},\tau_{w}]_{w}) = (\sum_{j=1}^{i-1} a_{ij}^{[0]}\sum_{j=1}^{i-1} a_{ij}^{[1]})^{[1]}[\lambda](\sum_{j=1}^{i-1} a_{ij}^{[1]}[1])^{2}$$

$$\eta_{i}([\tau_{b},\tau_{b},\tau_{w}]_{b}) = (\sum_{j=1}^{i-1} a_{ij}^{[0]}\sum_{j=1}^{i-1} a_{ij}^{[1]})^{[1]}[1](\sum_{j=1}^{i-1} a_{ij}^{[1]}[1])^{2}$$

$$\eta_{j}([\tau_{b},\tau_{b},\tau_{w}]_{b}) = (\sum_{k=1}^{j-1} a_{jk}^{[0]}\sum_{k=1}^{j-1} a_{jk}^{[1]}[1](\sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^{2}$$

Differential 13, $F_{(1,2)}^{(3)}FFF$:

$$r_{ij}^{\lambda}([\tau_{b}, \tau_{w}, \tau_{w}]_{w}) = (\zeta_{i}^{\lambda}(\tau_{w}))^{2}(\eta_{j}\tau_{b}) = (\sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda])^{2} \sum_{k=1}^{j-1} a_{jk}^{[1]}[1])$$

$$\phi_{i}^{\lambda}([\tau_{b}, \tau_{w}, \tau_{w}]_{w}) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([\tau_{b}, \tau_{w}, \tau_{w}]_{w}))$$

$$= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] (\sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda])^{2} \sum_{k=1}^{j-1} a_{jk}^{[1]}[1]$$

$$\zeta_{i}^{\lambda}([\tau_{b}, \tau_{w}, \tau_{w}]_{w}) = (\sum_{j=1}^{i-1} a_{ij}^{[0]}(\sum_{j=1}^{i-1} a_{ij}^{[1]})^{2}) \sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^{[1]}[\lambda]$$

$$\eta_{i}([\tau_{b}, \tau_{w}, \tau_{w}]_{b}) = (\sum_{j=1}^{i-1} a_{jj}^{[0]}(\sum_{j=1}^{i-1} a_{ij}^{[1]})^{2}) \sum_{k=1}^{i-1} a_{jk}^{[1]}[1])^{[1]}[1]$$

$$\eta_{j}([\tau_{b}, \tau_{w}, \tau_{w}]_{b}) = (\sum_{k=1}^{j-1} a_{jk}^{[0]}(\sum_{k=1}^{j-1} a_{jk}^{[1]})^{2}) \sum_{l=1}^{k-1} a_{kl}^{[1]}[1])^{[1]}[1]$$

Differential 14, $F_{(0,3)}^{(3)}FF$, g'''FFF:

$$r_{ij}^{\lambda}([\tau_{w}, \tau_{w}, \tau_{w}]_{w}) = (\zeta_{i}^{\lambda}(\tau_{w}))^{3} = (\sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda])^{3}$$

$$\phi_{i}^{\lambda}([\tau_{w}, \tau_{w}, \tau_{w}]_{w}) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda]r_{ij}^{\lambda}([\tau_{w}, \tau_{w}, \tau_{w}]_{w}))$$

$$= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda](\sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda])^{3}$$

$$\zeta_{i}^{\lambda}([\tau_{w}, \tau_{w}, \tau_{w}]_{w}) = (\sum_{j=1}^{i-1} a_{ij}^{[0]}(\sum_{j=1}^{i-1} a_{ij}^{[1]})^{3})^{[1]}[\lambda]$$

$$\eta_{i}([\tau_{w}, \tau_{w}, \tau_{w}]_{b}) = (\sum_{j=1}^{i-1} a_{ij}^{[0]}(\sum_{j=1}^{i-1} a_{ij}^{[1]})^{3})^{[1]}[1]$$

$$\eta_{j}([\tau_{w}, \tau_{w}, \tau_{w}]_{b}) = (\sum_{k=1}^{j-1} a_{jk}^{[0]}(\sum_{k=1}^{j-1} a_{jk}^{[1]})^{3})^{[1]}[1]$$

Differential 15,
$$F_{(2,0)}^{(2)}F_{(1,0)}^{(1)}FF, f''f'FF, N''N'NN$$

$$r_{ij}^{\lambda}([\tau_{b}, [\tau_{b}]_{b}]_{w}) = \eta_{j}(\tau_{b})\eta_{j}([\tau_{b}]_{b}) = \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] (\sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1])$$

$$\phi_{i}^{\lambda}([\tau_{b}, [\tau_{b}]_{b}]_{w}) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([\tau_{w}, \tau_{w}, \tau_{w}]_{w}))$$

$$= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] (\sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1])$$

$$\zeta_{i}^{\lambda}([\tau_{b}, [\tau_{b}]_{b}]_{w}) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] (\sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1])$$

$$\eta_{i}([\tau_{b}, [\tau_{b}]_{b}]_{b}) = \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1] (\sum_{l=1}^{k-1} a_{kl}^{[1]}[1] \sum_{r=1}^{l-1} a_{lr}^{[1]}[1])$$

$$\eta_{j}([\tau_{b}, [\tau_{b}]_{b}]_{b}) = \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1] (\sum_{l=1}^{k-1} a_{kl}^{[1]}[1] \sum_{r=1}^{l-1} a_{lr}^{[1]}[1])$$

Differential 16, $F_{(1,1)}^{(2)}F_{(1,0)}^{(1)}FF$

$$r_{ij}^{\lambda}([\tau_{b}, [\tau_{b}]_{w}]_{w}) = \eta_{j}(\tau_{b})\zeta_{i}^{\lambda}([\tau_{b}]_{w}) = \sum_{k=1}^{j-1} a_{jk}^{[1]}[1](\sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1])$$

$$\phi_{i}^{\lambda}([\tau_{b}, [\tau_{b}]_{w}]_{w}) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda]r_{ij}^{\lambda}([\tau_{b}, [\tau_{b}]_{w}]_{w})$$

$$= (\sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1])(\sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1])$$

$$\zeta_{i}^{\lambda}([\tau_{b}, [\tau_{b}]_{w}]_{w}) = ((\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]}[1])(\sum_{j=1}^{i-1} a_{ij}^{[1]} \sum_{k=1}^{j-1} a_{jk}^{[1]}[1]))^{[1]}[\lambda]$$

$$\eta_{i}([\tau_{b}, [\tau_{b}]_{w}]_{b}) = ((\sum_{k=1}^{i-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{ij}^{[1]}[1])(\sum_{k=1}^{j-1} a_{ij}^{[1]} \sum_{k=1}^{j-1} a_{jk}^{[1]}[1]))^{[1]}[1]$$

$$\eta_{j}([\tau_{b}, [\tau_{b}]_{w}]_{b}) = ((\sum_{k=1}^{j-1} a_{jk}^{[0]} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1])(\sum_{k=1}^{j-1} a_{jk}^{[1]} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]))^{[1]}[1]$$

Differential 17, $F_{(2,0)}^{(2)}F_{(0,1)}^{(1)}FF$

$$r_{ij}^{\lambda}([\tau_w, [\tau_b]_b]_w) = \zeta_i^{\lambda}(\tau_w)\eta_j([\tau_w]_w) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]$$

$$\phi_i^{\lambda}([\tau_w, [\tau_b]_b]_w) = \sum_{i=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([\tau_w, [\tau_b]_b]_w))$$

Differential 18, $F_{(2,0)}^{(2)}F_{(0,1)}^{(1)}FF$, f''g'FF, N''LNN

$$\begin{split} r_{ij}^{\lambda}([\tau_{b}, [\tau_{w}]_{b}]_{w}) &= \eta_{j}^{\lambda}(\tau_{b})\eta_{j}^{\lambda}([\tau_{w}]_{b}) = \sum_{k=1}^{j-1} a_{jk}^{[1]}[1](\sum_{k=1}^{j-1} a_{jk}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]})^{[1]}[1] \\ \phi_{i}^{\lambda}([\tau_{b}, [\tau_{w}]_{b}]_{w}) &= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda]r_{ij}^{\lambda}([[\tau_{w}]_{w}]_{w})) \\ &= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1](\sum_{k=1}^{j-1} a_{jk}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]})^{[1]}[1] \\ \zeta_{i}^{\lambda}([\tau_{b}, [\tau_{w}]_{b}]_{w}) &= (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]}[1](\sum_{k=1}^{j-1} a_{jk}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]})^{[1]}[1])^{[1]}[\lambda] \\ \eta_{i}([\tau_{b}, [\tau_{w}]_{b}]_{w}) &= (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]}[1](\sum_{k=1}^{j-1} a_{jk}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]})^{[1]}[1])^{[1]}[1] \end{split}$$

Differential 24, $F_{(0,1)}^{(1)}F_{(2,0)}^{(2)}FF$, g'f''FF, LN''NN:

$$\begin{split} r_{ij}^{\lambda}([[\tau_b,\tau_b]_w]_w) &= \zeta_i^{\lambda}([\tau_b,\tau_b]_w)) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] (\sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^2 \\ \phi_i^{\lambda}([[\tau_b,\tau_b]_w]_w) &= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([\tau_b,\tau_b]_b)_w) \\ &= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] (\sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^2 \\ \zeta_i^{\lambda}([[\tau_b,\tau_b]_w]_w) &= (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{j=1}^{i-1} a_{ij}^{[1]})^{[1]}[\lambda] (\sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^2 \\ \eta_i([[\tau_b,\tau_b]_w]_b) &= (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{j=1}^{i-1} a_{ij}^{[1]})^{[1]}[1] (\sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^2 \end{split}$$

Differential 30, $F_{(0,1)}^{(1)}F_{(1,0)}^{(1)}F_{(1,0)}^{(1)}F$, g'f'f'F, LN'N'N

$$r_{ij}^{\lambda}([[[\tau_{b}]_{b}]_{w}]_{w}) = \zeta_{i}^{\lambda}([[\tau_{b}]_{b}]_{w}]) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]$$

$$\phi_{i}^{\lambda}([[[\tau_{w}]_{b}]_{b}]_{w}) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([[[\tau_{b}]_{b}]_{w}]_{w})$$

$$= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]$$

$$\zeta_{i}^{\lambda}([[[\tau_{b}]_{b}]_{w}]_{w}) = (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{j=1}^{i-1} a_{ij}^{[1]})[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]$$

$$\eta_{i}([[\tau_{b}]_{b}]_{w}]_{b}) = (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{j=1}^{i-1} a_{ij}^{[1]})[1])[1] \sum_{j=1}^{j-1} a_{jk}^{[1]}[1] \sum_{j=1}^{k-1} a_{kl}^{[1]}[1]$$

Differential 31,
$$F_{(1,0)}^{(1)}F_{(0,1)}^{(1)}F_{(1,0)}^{(1)}F$$
, $f'g'f'F$, $N'LN'N$

$$\begin{split} r_{ij}^{\lambda}([[[\tau_b]_w]_b]_w) &= \eta_j([[\tau_b]_w]_b) = (\sum_{k=1}^{j-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1])^{[1]}[1] \\ \phi_i^{\lambda}([[[\tau_b]_w]_b]_w) &= \sum_{j=1}^{i-1} a_{ij}^{[0]} [\lambda] r_{ij}^{\lambda}([[[\tau_b]_w]_b]_w) \\ &= \sum_{j=1}^{i-1} a_{ij}^{[0]} [\lambda] (\sum_{k=1}^{j-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1])^{[1]}[1] \\ \zeta_i^{\lambda}([[[\tau_b]_w]_b]_w) &= \sum_{j=1}^{i-1} a_{ij}^{[1]} [\lambda] (\sum_{k=1}^{j-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1])^{[1]}[1] \\ \eta_i([[[\tau_b]_w]_b]_b) &= \sum_{j=1}^{i-1} a_{ij}^{[1]}[1] (\sum_{k=1}^{j-1} a_{ij}^{[0]} \sum_{k=1}^{j-1} a_{jk}^{[1]} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1])^{[1]}[1] \end{split}$$

Differential 32, $F_{(1,0)}^{(1)}F_{(1,0)}^{(1)}F_{(0,1)}^{(1)}F$, f'f'g'F, N'N'LN:

$$\begin{split} r_{ij}^{\lambda}([[[\tau_{b}]_{b}]_{w}]_{w}) &= \zeta_{i}^{\lambda}([[\tau_{b}]_{b}]_{w}]) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1] \\ \phi_{i}^{\lambda}([[[\tau_{w}]_{b}]_{b}]_{w}) &= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([[[\tau_{b}]_{b}]_{w}]_{w}) \\ &= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1] \\ \zeta_{i}^{\lambda}([[[\tau_{b}]_{b}]_{w}]_{w}) &= (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{j=1}^{i-1} a_{ij}^{[1]})[1)[\lambda] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1] \\ \eta_{i}([[[\tau_{b}]_{b}]_{w}]_{b}) &= (\sum_{j=1}^{i-1} a_{ij}^{[0]} \sum_{j=1}^{i-1} a_{ij}^{[1]})[1])[1] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} a_{kl}^{[1]}[1] \end{split}$$

3 Adding shifted initial conditions

Algorithm:

An identity

$$DR = D(I - D)^{-1} = (D - I + I)(I - D)^{-1} = -I + (I - D)^{-1} = -I + R$$

First order:

Algorithm 2 Calculate series coefficient for tree t

```
\begin{split} \mathbf{t} &= [t_1t_2\dots t_m] \\ \mathbf{for} \ i = 1 \ \mathbf{to} \ ns + 1 \ \mathbf{do} \\ \phi_i^{\lambda} &= 0 \\ \mathbf{for} \ j = 1 \ \mathbf{to} \ i - 1 \ \mathbf{do} \\ r_{ij}^{\lambda} &= 1 \\ \mathbf{for} \ s \in [t_1t_2\dots t_m] \ \mathbf{do} \\ \mathbf{if} \ s \in T_w \ \mathbf{then} \\ r_{ij}^{\lambda} &= r_{ij}^{\lambda} * \zeta_{i,\lambda}(s) \ \mathrm{Comment: Polynomial \ multiplication} \\ \mathbf{else} \\ r_{ij}^{\lambda} &= r_{ij}^{\lambda} * \eta_j(s) \ \mathrm{Comment: Scalar \ multiplication} \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{for} \ p = 0 \ \mathbf{to} \ \rho_i \ \mathbf{do} \\ \phi_i^{\lambda} &= \phi_i^{\lambda} + a_{ijp}\lambda^p * r_{ij}^{\lambda} \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{end} \ \mathbf{for} \\ \mathbf{Integrate} \ \frac{d}{d\lambda} \zeta_i^{\lambda}(t)) &= \phi_i^{\lambda} \\ \zeta_i^0(t) &= 0 \\ \mathbf{for} \ j = 0 \ \mathbf{to} \ i - 1 \ \mathbf{do} \\ \zeta_i^0(t) &= \zeta_i^0(t) + d_{ij}\eta_j(t) \\ \mathbf{end} \ \mathbf{for} \\ \eta_i(t) &= \zeta_i^1(t) \\ \mathbf{end} \ \mathbf{for} \end{split}
```

Differential 1, F, F , N:

$$\begin{split} r_{ij}^{\lambda}(\tau_w) &= 1\\ \phi_i^{\lambda}(\tau_w) &= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda]\\ \zeta_i^{\lambda}(\tau_w) &= \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] + \sum_{j=1}^{i-1} d_{ij}\eta_j(\tau_b)\\ \eta_i(\tau_b) &= \sum_{j=1}^{i-1} a_{ij}^{[1]}[1] + \sum_{j=1}^{i-1} d_{ij}\eta_j(\tau_b)\\ \eta_i(\tau_b) &= \sum_{j=1}^{i-1} r_{ij} \sum_{k=1}^{j-1} a_{jk}^{[1]}[1]\\ \eta_j(\tau_b) &= \sum_{k=1}^{i-1} r_{jk} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]\\ \zeta_i^{\lambda}(\tau_w) &= \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] + \sum_{j=1}^{i-1} d_{ij} \sum_{k=1}^{j-1} r_{jk} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1] \end{split}$$

Second order: Differential 2, $F_{(1,0)}^{(1)}F$, f'F, N'N:

$$r_{ij}^{\lambda}([\tau_{b}]_{w}) = \eta_{j}^{\lambda}(\tau_{b}) = \sum_{k=1}^{j-1} r_{jk} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]$$

$$\phi_{i}^{\lambda}([\tau_{b}]_{w}) = \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([\tau_{b}]_{w})$$

$$= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] \sum_{k=1}^{j-1} r_{jk} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]$$

$$\zeta_{i}^{\lambda}([\tau_{b}]_{w}) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] \sum_{k=1}^{j-1} r_{jk} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1] + \sum_{j=1}^{i-1} d_{ij}\eta_{j}([\tau_{b}]_{b})$$

$$\eta_{i}([\tau_{b}]_{b}) = \sum_{j=1}^{i-1} r_{ij} \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{l=1}^{k-1} r_{kl} \sum_{r=1}^{l-1} a_{lr}^{[1]}[1]$$

$$\eta_{j}([\tau_{b}]_{b}) = \sum_{k=1}^{j-1} r_{jk} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1] \sum_{r=1}^{l-1} r_{lr} \sum_{s=1}^{r-1} a_{rs}^{[1]}[1]$$

Differential 3, $F_{(0,1)}^{(1)}F$, g'F, LN:

$$\begin{split} r_{ij}^{\lambda}([\tau_w]_w) &= \zeta_i(\tau_w) = \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] + \sum_{j=1}^{i-1} d_{ij} \sum_{k=1}^{j-1} r_{jk} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1] \\ \phi_i^{\lambda}([\tau_w]_w) &= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] r_{ij}^{\lambda}([\tau_w]_w) \\ &= \sum_{j=1}^{i-1} a_{ij}^{[0]}[\lambda] (\sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] + \sum_{j=1}^{i-1} d_{ij} \sum_{k=1}^{j-1} r_{jk} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]) \\ \zeta_i^{\lambda}([\tau_w]_w) &= \frac{1}{2} (\sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda])^2 + \sum_{j=1}^{i-1} a_{ij}^{[1]}[\lambda] \sum_{j=1}^{i-1} d_{ij} \sum_{k=1}^{j-1} r_{jk} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1] + \sum_{j=1}^{i-1} d_{ij} \eta_j([\tau_w]_b)) \\ \eta_i([\tau_w]_b) &= \frac{1}{2} (\sum_{j=1}^{i-1} a_{ij}^{[1]}[1])^2 + \sum_{j=1}^{i-1} a_{ij}^{[1]}[1] \sum_{j=1}^{i-1} d_{ij} \sum_{k=1}^{j-1} r_{jk} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1] + \sum_{j=1}^{i-1} d_{ij} \eta_j([\tau_w]_b)) \\ \eta_i([\tau_w]_b) &= \sum_{j=1}^{i-1} r_{ij} (\frac{1}{2} (\sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^2 + \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{k=1}^{j-1} d_{jk} \sum_{l=1}^{k-1} r_{kl} \sum_{r=1}^{l-1} a_{jk}^{[1]}[1]) \\ &= \sum_{j=1}^{i-1} r_{ij} (\frac{1}{2} (\sum_{k=1}^{j-1} a_{jk}^{[1]}[1])^2 - \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] - \sum_{k=1}^{j-1} a_{jk}^{[1]}[1] \sum_{k=1}^{j-1} r_{jk} \sum_{l=1}^{k-1} a_{kl}^{[1]}[1]) \\ \eta_j([\tau_w]_b) &= (\sum_{k=1}^{j-1} a_{jk}^{[0]} \sum_{l=1}^{k-1} a_{kl}^{[1]})^{[1]}[1] \end{split}$$

	El. Diff.	El. Diff.	El. Diff.	t Notation	Notation	$\sigma(t)$	Order Conditions Or	Order Owren
	F	F	N	τ_b		1	$\sum a_{ij}^{[1]}[1]$	
2	$F_{(1,0)}^{(1)}F$	f'F	N'N	$[\tau_b]_b$	\equiv	Н	$\sum a_{ij}^{[1]}[1] \sum a_{jk}^{[1]}[1]$	
က	$F_{(0,1)}^{(1)}F$	g'F	LN	$ \left[\tau_w \right]_b$	[0]	П	$(\sum a_{ij}^{[0]} \sum a_{jk}^{[1]})^{[1]}[1]$	
4	$F_{(2,0)}^{(2)}FF$	f''FF	NN''N	$\bigvee_{[au_b, au_b]_b}$	$[\cdot,\cdot]$	\vdash	$\sum a_{ij}^{[1]}[1](\sum a_{jk}^{[1]}[1])^2$	
ಬ	$F_{(1,1)}^{(2)}FF$,	$\int\limits_{\Omega} [au_w, au_b]_b$	$[o,\cdot]$	2	$((\sum a_{ij}^{[1]})(\sum a_{ij}^{[0]}\sum a_{jk}^{[1]}[1]))^{[1]}[1]$	
9	$F_{(0,2)}^{(2)}FF$	g''FF		$\bigvee_{\left[\tau_{w},\tau_{w}\right]_{b}}$	[o,o]	\vdash	$(\sum a_{ij}^{[0]}(\sum a_{ij}^{[1]})^2)^{[1]}[1]$	
-1	$F_{(1,0)}^{(1)}F_{(1,0)}^{(1)}F$	f'f'F	N'N'N	$\bigcap_{b} \left[\left[\tau_b \right]_b \right]_b$		П	$\sum a_{ij}^{[1]}[1] \sum a_{jk}^{[1]}[1] \sum a_{kl}^{[1]}[1]$	
∞	$F_{(1,0)}^{(1)}F_{(0,1)}^{(1)}F$	f'g'F	N'LN	$[[\tau_w]_b]_b$	[[o]]	Н	$\sum a_{ij}^{[1]}[1](\sum a_{jk}^{[0]}\sum a_{kl}^{[1]})^{[1]}[1]$	
6	$F_{(0,1)}^{(1)}F_{(1,0)}^{(1)}F$	g'f'F	LN'N	$\begin{bmatrix} [7b]w]b \\ \\ \\ \end{bmatrix}$	[(·)]	Н	$(\sum a_{ij}^{[0]} \sum a_{ij}^{[1]} \sum a_{jk}^{[1]}[1])^{[1]}[1]$	
10	$10 F_{(0,1)}^{(1)} F_{(0,1)}^{(1)} F$	g'g'F	LLN	$\left[\left[\tau_{w} \right]_{w} \right]_{b}$	[0]		$(\sum a_{ij}^{[0]} (\sum a_{ij}^{[0]} \sum a_{jk}^{[1]})^{[1]})^{[1]}[1]$	

	El. Diff. El. Diff.	El. Diff.	El. Diff.	4	t Notation Notation $\sigma(t)$	Notation	$\sigma(t)$	Order Conditions	Order Owren
11	11 $F_{(3,0)}^{(3)}FFF$ $f'''FFF$	f'''FFF	NNN'''N		$[au_b, au_b, au_b]_b$	[,,,.]	1	$(\sum a_{ij}^{[1]}[1])^4$	
12	12 $F_{(2,1)}^{(3)}FFF$				$\left[\tau_b,\tau_b,\tau_w\right]_b$	[.,.,o]	Н	$(\sum a_{ij}^{[0]} \sum a_{ij}^{[1]})^{[1]} [1] (\sum a_{ij}^{[1]} [1])^2$	
13	13 $F_{(1,2)}^{(3)}FFF$				$\left[\tau_b,\tau_w,\tau_w\right]_b$	[.,o,o]	Н	$(\sum a_{ij}^{[0]}(\sum a_{ij}^{[1]})^2)^{[1]}[1]\sum a_{ij}^{[1]}[1]$	
14	14 $F_{(0,3)}^{(3)}FFF$ $g'''FFF$	g'''FFF			$[\tau_w, \tau_w, \tau_w]_b \qquad [o, o, o]$	[o,o,o]	П	$(\sum a_{ij}^{[0]}(\sum a_{ij}^{[1]})^3)^{[1]}[1]$	

	El. Diff.	El. Diff.	El. Diff.	<u>ب</u>	Notation	Notation	$\sigma(t)$	Order Conditions	Order Owren
15	15 $F_{(2,0)}^{(2)}F_{(1,0)}^{(1)}FF$ $f''f'FF$ $N''N'N$	$f^{\prime\prime}f^{\prime}FF$	N''N'NN		$[\tau_b,[\tau_b]_b]_b$	[:, [:]]	\vdash	$\sum a_{ij}^{[1]}[1] \sum a_{jk}^{[1]}[1] (\sum a_{jk}^{[1]}[1] \sum a_{kl}^{[1]}[1])$	
16	$16 F_{(1,1)}^{(2)} F_{(1,0)}^{(1)} FF$			~	$\left[\tau_b, \left[\tau_b\right]_w\right]_b$	$[\cdot,(\cdot)]$	Н	$((\sum a_{ij}^{[0]} \sum a_{jk}^{[1]}[1])(\sum a_{ij}^{[1]} \sum a_{jk}^{[1]}[1]))^{[1]}[1]$	
17	$17 F_{(1,1)}^{(2)} F_{(1,0)}^{(1)} FF$			• •	$\left[\tau_{w},\left[\tau_{b}\right]_{b}\right]_{b}$	[o,[.]]	Н		
18	$18 F_{(2,0)}^{(2)} F_{(0,1)}^{(1)} FF$	f''g'FF	N''LNN	~ ·	$\big[\tau_b, [\tau_w]_b \big]_b$	$[\cdot, [o]]$	Н		
19	$19 F_{(1,1)}^{(2)} F_{(0,1)}^{(1)} FF$			• • • •	$\left[\tau_b, \left[\tau_w\right]_w\right]_b$	$[\cdot,(o)]$	П		
20	$F_{(1,1)}^{(2)}F_{(1,0)}^{(1)}FF$			•••	$[\tau_w, [\tau_b]_b]_b$	[o,[o]]	Н		
21	$F_{(0,2)}^{(2)}F_{(1,0)}^{(1)}FF$	$g^{\prime\prime}f^{\prime}FF$		•	$[\tau_w, [\tau_b]_w]_b$	[o,(.)]	Н		
22	$22 F_{(0,2)}^{(2)} F_{(0,1)}^{(1)} FF g''g'FF$	g''g'FF			$[\tau_w, [\tau_w]_w]_b$	[o,(o)]			

	El. Diff.	El. Diff.	El. Diff.	t	Notation	Notation	$\sigma(t)$
23	$F_{(1,0)}^{(1)}F_{(2,0)}^{(2)}FF$	f'f''FF	N'N''NN	Ĭ V	$[[au_b, au_b]_b]_b$	[[.,.]]	1
24	$F_{(0,1)}^{(1)}F_{(2,0)}^{(2)}FF$	g'f''FF	LN''NN	•	$[[au_b, au_b]_w]_b$	[(.,.)]	1
25	$F_{(1,0)}^{(1)}F_{(1,1)}^{(2)}FF$			↓	$[[au_b, au_b]_b]_b$	[[.,.]]	1
26	$F_{(1,0)}^{(1)}F_{(2,0)}^{(2)}FF$				$[[au_b, au_b]_b]_b$	[[.,.]]	1
27	$F_{(1,0)}^{(1)}F_{(0,2)}^{(2)}FF$	f'g''FF			$[[au_w, au_w]_b]_b$	[[o,o]]	1
28	$F{(1,0)}^{(1)}F_{(2,0)}^{(2)}FF$	g'g''FF			$[[\tau_w, \tau_w]_w]_b$	[(o,o)]	1
	El. Diff.	El. Dif	f. El. Dif	f.	t Notation	Notation	$\sigma(t)$
29	$F_{(1,0)}^{(1)}F_{(1,0)}^{(1)}F_{(1,0)}^{(1)}$				$[[[au_b]_b]_b]_b$	[[[.]]]	1
30	$F_{(0,1)}^{(1)}F_{(1,0)}^{(1)}F_{(1,0)}^{(1)}$	F = g'f'f'I	F=LN'N' .	N	$ \begin{bmatrix} \begin{bmatrix} [[\tau_w]_b]_b \end{bmatrix}_b \end{bmatrix} $	[([.])]	1
31	$F_{(1,0)}^{(1)}F_{(0,1)}^{(1)}F_{(1,0)}^{(1)}$	F = f'g'f'I	F = N'LN'.	N	$\begin{bmatrix} [[[\tau_b]_w]_b]_b \end{bmatrix}$	[[(.)]]	1
32	$F_{(1,0)}^{(1)}F_{(1,0)}^{(1)}F_{(0,1)}^{(1)}$	F = f'f'g'I	= N'N'L	N	$ \begin{bmatrix} [[\tau_b]_b]_w]_b \end{bmatrix} $	[[[o]]]	1

	El. Diff.	El. Diff.	El. Diff.	t	Notation	Notation	$\sigma(t)$
33	$F_{(0,1)}^{(1)}F_{(0,1)}^{(1)}F_{(0,1)}^{(1)}F$	g'g'g'F	LLLN	• • • • •	$[[[au_w]_w]_w]_b$	[((o))]	1
34	$F_{(0,1)}^{(1)}F_{(0,1)}^{(1)}F_{(1,0)}^{(1)}F$	f'g'g'F	N'LLN		$[[[\tau_w]_w]_b]_b$	[[(o)]]	1
35	$F_{(1,0)}^{(1)}F_{(0,1)}^{(1)}F_{(1,0)}^{(1)}F$	g'f'g'F	LN'LN		$[[[au_w]_b]_w]_b$	[([o])]	1
36	$F_{0,1)}^{(1)}F_{(0,1)}^{(1)}F_{(0,1)}^{(1)}F$	g'g'f'F	LLN'N		$[[[\tau_b]_w]_w]_b$	[((.))]	1