



# Video/Image Codec and Data Pipeline

FTF-CON-F0165

Jones He | System & Architecture April 2.2014









## **Agenda**

- Video/Image/Graphics System in iMX6
- VPU Performance/Capability Overview
- Measured Performance in BSP4.1.0
- VPU Architecture Overview
- VPU Programmable Engine
- VPU Decoder
- VPU Encoder
- Tile Format Support
- JPEG Processing Unit (JPU)
- VPU Software Structure
- Stereo 3D
- VPU with Multimedia Framework
- VPU encode/decode with IPU pre-/post-process
- Use-case Demos







## Video/Graphics System in i.MX6 Dual/Quad (D/Q)



- Outline
  - Video/Graphics Subsystem in i.MX6 D/Q
  - VPU-IPU-GPU Dataflow







### Video/Graphics Subsystem in i.MX6 D/Q













### **VPU Performance/Capability Overview**

#### Outline

- Performance & capability for decoder
- Performance & capability for encoder and simultaneous encode/decode
- Performance & capability for multi-streams (decodes, encodes)
- Performance & capability for transcoding
- i.MX6x VPU vs i.MX53 VPU







## Performance Overview—iMX6Q/D (Decoder)

|              | Standard                               | Profile                     |    | Performance (DDR=532MHz) (VPU=266MHz if not specified)                              |           |
|--------------|----------------------------------------|-----------------------------|----|-------------------------------------------------------------------------------------|-----------|
|              | MPEG-2                                 | Main-High                   |    |                                                                                     | 50Mbps    |
|              | H.264                                  | BP/MP/HP-L4.1               |    |                                                                                     | 50Mbps    |
|              | VC1                                    | SP/MP/AP-L3                 |    | 1080i/p+720p@30fps, or                                                              | 45Mbps    |
|              | MPEG4                                  | SP/ASP                      |    | 2x 1080p@24fps, or<br>2x 1080p@30fps (VPU=352MHz)                                   | 40Mbps    |
|              | DivX/XviD                              | 3/4/5/6                     |    | 1 - 1 (                                                                             | 40Mbps    |
|              | AVS                                    | Jizhun                      | 2D |                                                                                     | 40Mbps    |
|              | H.263                                  | P0/P3                       |    | 1080p+720p@30fps, or<br>2x 1080p@24fps, or<br>2x 1080p@30fps (VPU=352MHz)           | 20Mbps    |
| HW Decoder   | RV10                                   | 8/9/10                      |    |                                                                                     | 40Mbps    |
|              | Sorenson                               | -                           |    | 2X 1000P @ 001P0 (V1 0=002IVII 12)                                                  | 40Mbps    |
|              | MJPEG                                  | Baseline                    |    | 8k x 8k                                                                             | 120Mpel/s |
|              | On2 VP8                                |                             |    | 1080p@30fps (VPU =352MHz)                                                           | 20Mbps    |
|              | H.264-MVC for<br>3D (FW/HW)            | H.264-MVC SHP               |    | 720p@30fps each view<br>1080i/p@24fps each view<br>1080p@30fps (VPU=352MHz)         | 50Mbps    |
|              | Simulcast for 3D                       | Two independent streams     | 3D | 720p@60fps (30fps each view)<br>1080i/p@24fps each view<br>1080p@30fps (VPU=352MHz) | 50Mbps    |
|              | Frame-packing<br>for 3D                | Combine two frames into one |    | 1080p@30fps decode → 1080p@60fps playback (30fps each view)                         | 50Mbps    |
| HW Post-proc | rotation, mirror, deblocking/deringing |                             |    |                                                                                     |           |



## Performance Overview—iMX6DL/S (Decoder)

|              | Standard                               | Profile                     | Pe | Performance (DDR=400MHz)<br>(VPU=266MHz if not specified)                                         |           |  |
|--------------|----------------------------------------|-----------------------------|----|---------------------------------------------------------------------------------------------------|-----------|--|
|              | MPEG-2                                 | Main-High                   |    |                                                                                                   | 50Mbps    |  |
|              | H.264                                  | BP/MP/HP-L4.1               |    |                                                                                                   | 50Mbps    |  |
|              | VC1                                    | SP/MP/AP-L3                 |    | 1080i/p+D1@30fps,<br>1080i/p+720p@30fps (content depend.)<br>Dual 1080p @24fps, (Content depend.) | 45Mbps    |  |
|              | MPEG4                                  | SP/ASP                      |    | Dual 1000p @241ps, (Content depend.)                                                              | 40Mbps    |  |
|              | DivX/XviD                              | 3/4/5/6                     | 2D |                                                                                                   | 40Mbps    |  |
|              | AVS                                    | Jizhun                      |    |                                                                                                   | 40Mbps    |  |
|              | H.263                                  | P0/P3                       |    | 1080p+D1@30fps,                                                                                   | 20Mbps    |  |
|              | RV10                                   | 8/9/10                      |    | 1080p+720p@30fps, (content depend.)                                                               | 40Mbps    |  |
| HW Decoder   | Sorenson                               |                             |    | Dual 1080p @24fps, (content depend.)                                                              | 40Mbps    |  |
|              | MJPEG                                  | Baseline                    |    | 8k x 8k                                                                                           | 120Mpel/s |  |
|              | On2 VP8                                | -                           |    | 1080p@30fps                                                                                       | 20Mbps    |  |
|              | H.264-MVC for<br>3D (FW/HW)            | H.264-MVC SHP               |    | 720p@30fps each view 1080i/p@24fps each view (content depend.)                                    | 50Mbps    |  |
|              | Simulcast for 3D                       | Two independent streams     | 3D | 720p@60fps (30fps each view)<br>1080i/p@24fps each view (content depend.)                         | 50Mbps    |  |
|              | Frame-packing for 3D                   | Combine two frames into one |    | 1080p@30fps decode → 1080p@60fps<br>playback<br>(30fps each view)                                 | 50Mbps    |  |
| HW Post-proc | rotation, mirror, deblocking/deringing |                             |    |                                                                                                   |           |  |



## Performance Overview—iMX6Q/D (*Encoder & Full-duplex*)

|                   | Standard            | Profile                             |    | Performance<br>(VPU=266MHz if not specified)                     |           |  |  |
|-------------------|---------------------|-------------------------------------|----|------------------------------------------------------------------|-----------|--|--|
|                   | H.264               | BP                                  |    | 1080p@30fps<br>720p@60fps                                        | 20Mbps    |  |  |
|                   | MJPEG               | Baseline                            |    | 8k x 8k                                                          | 160Mpel/s |  |  |
|                   | MPEG4               | Simple                              | 2D | 720p@30fps (1080p@30fps is doable)                               | 15Mbps    |  |  |
| 1.1547            | H.263               | P0/P3                               |    | 720p@30fps (1080p@30fps is doable)                               | 15Mbps    |  |  |
| HW<br>Encoder     | H.264-MVC<br>for 3D | Stereo HP (no interview prediction) |    | 720p@60fps<br>1080p@48fps (24fps/view, VPU=352MHz)               | 20Mbps    |  |  |
|                   | Simulcast<br>for 3D | All VPU encoder supported profiles  | 3D | 720p@60fps<br>1080p@48fps (24fps/view, VPU=352MHz)               | 20Mbps    |  |  |
|                   | Frame-<br>packing   | All VPU encoder supported profiles  |    | 1080p@30fps encoding → 1080p@60fps capture (30fps for each view) | 20Mbps    |  |  |
| Full-duplex<br>HW | H.264               | BP                                  |    | 720p@30fps<br>1080p@24fps<br>1080p@30fps (VPU = 352MHz)          | 20Mbps    |  |  |
| Codec             | MPEG4               | Simple                              | 2D | 720p@30fps                                                       | 15Mbps    |  |  |
|                   | H.263               | P0/P3                               |    | 720p@30fps                                                       | 15Mbps    |  |  |







## Performance Overview—i.MX6Q/D (Multi-streams)

|               |                    | Profile                 | Max # Streams @ 30fps |                |                 |                 |  |
|---------------|--------------------|-------------------------|-----------------------|----------------|-----------------|-----------------|--|
|               | Standard           |                         | D1@<br>30fps          | 720p@<br>30fps | 1080p@<br>24fps | 1080p@<br>30fps |  |
| HW            | H.264              | BP/MP/HP                | 8                     | 3              | 2               | 2 (VPU >300MHz) |  |
| Decoder       | On2 VP8            |                         | 4                     | 2              | 1               | 1               |  |
|               | VC1                | SP/MP/AP                | 8                     | 3              | 2               | 2 (VPU=352MHz)  |  |
|               | MPEG4              | SP/ASP                  | 8                     | 3              | 2               | 2 (VPU=352MHz)  |  |
|               | H.263              | P0/P3                   | 8                     | 3              | 2               | 2 (VPU=352MHz)  |  |
|               |                    |                         | Max # Streams @ 30fps |                |                 |                 |  |
| HW<br>Encoder | Standard           | Profile                 | D1@<br>30fps          | 720p@<br>30fps | 1080p@<br>30fps | 1080p@<br>24fps |  |
|               | H.264              | BP                      | 6                     | 2              | 1               | 2 (VPU=352MHz)  |  |
|               | MPEG4-<br>SP/H.263 | MPEG4-SP<br>H.263-P0/P3 | 6                     | 2              | 1*              | 2* (VPU=352MHz) |  |





<sup>\*:</sup> MPEG4/H263 108 0fps is doable in HW but may not enabled in SW



## Performance Overview—iMX6Q/D (Transcoding)

| Source Resolution   | Max # Streams @ 30fps Target Resolution (encoded streaming) |                                                |                              |                              |  |
|---------------------|-------------------------------------------------------------|------------------------------------------------|------------------------------|------------------------------|--|
| (decoded streaming) | SD<br>(720x480)                                             | HD720p<br>(1280x720)                           | HD1080p@24fps<br>(1920x1080) | HD1080p@30fps<br>(1920x1080) |  |
| SD                  | 4                                                           |                                                |                              |                              |  |
| HD720p              | 2                                                           | 2 (24fps, VPU=266MHz)<br>2 (30fps, VPU=352MHz) |                              |                              |  |
| HD1080p             | 1                                                           | 1                                              | 1                            | <b>1</b><br>( VPU = 352MHz)  |  |







#### i.MX6x VPU vs i.MX53 VPU

| Enhancements                                    | iMX53                                            | iMX6x                                                                                                |  |
|-------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| Clock rate                                      | 200MHz                                           | 266MHz (Will change the VPU spec to 350MHz)                                                          |  |
| Video Decoder Perf.                             | 1080i/p@30fps, No 3D support                     | 1080i/p@60fps, 3D support at 30fps per view                                                          |  |
| Video Encoder Perf.                             | 720p@30fps                                       | 1080p@30fps                                                                                          |  |
| VP8 decoder                                     | No                                               | Supported                                                                                            |  |
| AVS decoder                                     | No                                               | Supported                                                                                            |  |
| Theora decoder                                  | No                                               | Partial HW support (no plan to enable it yet)                                                        |  |
| JPEG Decoder Performance                        | 40Mbps/sec at YUV444 format (400, 420, 422, 444) | 120Mbps/sec at YUV444 format (400, 420, 422, 444)                                                    |  |
| JPEG Encoder Performance                        | 80Mbps/sec at YUV422 format (400, 420, 422)      | 160Mbps/sec at YUV444 format (400, 420, 422, 444)                                                    |  |
| Decoding of H.264-MVC S3D and other S3D streams | No                                               | Supported at 1080i/p@30fps for each view                                                             |  |
| Encoding of H.264 MVC S3D video                 | No                                               | Support ed at 720p@30fps for each view (no interview prediction)                                     |  |
| Tiled format                                    | No                                               | Supported (for bandwidth reduction)                                                                  |  |
| 2D cache                                        | No                                               | Cache used for bandwidth reduction for encoder (motion estimation) and decoder (motion compensation) |  |







#### **Measured Performance**

#### Outline

- Measured performance for video playback
- Measured performance for video encoder
- Measured performance for transcoding







#### **Measured Performance (Decoder)**

| Video<br>clips                    | Video<br>content<br>complexity | Measured perf.<br>at 264MHz<br>(linear format) | Measured perf.<br>at 264MHz<br>(tiled format) | Measured perf.<br>at 352MHz<br>(tiled format) |
|-----------------------------------|--------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Sunflower<br>(self-<br>generated) | H264-HP, 40Mbps,<br>1080p      | Effective Dec: 41fps<br>Actual Display: 40fps  | Effective Dec: 57fps<br>Actual Display: 56fps | Effective Dec: 68fps<br>Actual Display: 60fps |
| A Blu-ray clip                    | H264-HP, 37Mbps,               | Effective Dec: 56 fps                          | Effective Dec: 59fps                          | Effective Dec: 74ps                           |
|                                   | 1080p                          | Actual Display: 55fps                          | Actual Display: 59fps                         | Actual Display: 60fps                         |
| Avatar                            | H264-HP, 3.5Mbps,              | Effective Dec: 77fps                           | Effective Dec: 80fps                          | Effective Dec: 100fps                         |
| (Youtube)                         | 1080p                          | Actual Display: 60fps                          | Actual Display: 60fps                         | Actual Display: 60fps                         |
| Sherlock (A                       | H264-HP, 11Mbps,               | Effective Dec: 64fps                           | Effective Dec: 70fps                          | Effective Dec: 86fps                          |
| movie Trailer)                    | 1080p                          | Actual Display: 59fps                          | Actual Display: 60fps                         | Actual Display: 60fps                         |
| A Freescale                       | H264-HP, 10Mbps,               | Effective Dec: 64fps                           | Effective Dec: 73fps                          | Effective Dec: 89fps                          |
| demo clip                         | 1080p                          | Actual Display: 59fps                          | Actual Display: 60fps                         | Actual Display: 60fps                         |
| Parkrun (A                        | H264-HP, 20Mbps,               | Effective Dec: 38fps                           | Effective Dec: 52fps                          | Effective Dec:                                |
| 1080i test clip)                  | 1080i                          | Actual Display: 37fps                          | Actual Display: 45fps                         | Actual Display:                               |

- Performance measured in VPU unit test (without multimedia framework).
- SabreSD board
- Tile format used
- VPU = 264 MHz, 352MHz
- DDR = 532 MHz
- Performance for Interlaced video not measured yet







## Measured Busload (Decoder)

| Video clips                                             | Video content<br>complexity | Measured bandwidth at 264MHz (linear format) at 30fps display rate   | Measured bandwidth at 264MHz (tiled format) at 30fps display rate  |
|---------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|
| Sunflower (self-<br>generated Blu-<br>ray quality clip) | H264-HP, 40Mbps,<br>1080p   | Total bus load: ~77% (53 dec fps) Bus utilization efficiency: ~17.5% | Total bus load: ~67% (59 dec fps) Bus utilization efficiency: ~19% |
| A Blu-ray quality clip                                  | H264-HP, 37Mbps,<br>1080p   | Total bus load: ~66% (56 dec fps) Bus utilization efficiency: ~17%   | Total bus load:~65% (60 dec fps) Bus utilization efficiency: 19%   |
| Avatar (Youtube)                                        | H264-HP, 3.5Mbps, 1080p     | Total bus load: ~55% (76 dec fps) Bus utilization efficiency: ~16%   | Total bus load:~62% (80 dec fps) Bus utilization efficiency: 18%   |
| Sherlock (A<br>movie Trailer)                           | H264-HP, 11Mbps,<br>1080p   | Total bus load: ~60% (60 dec fps) Bus utilization efficiency: ~16%   | Total bus load:~62% (69 dec fps) Bus utilization efficiency: ~18%  |
| A Freescale<br>demo clip                                | H264-HP, 10Mbps,<br>1080p   | Total bus load: ~58% (66 dec fps) Bus utilization efficiency: ~16%   | Total bus load: ~63% (74 dec fps) Bus utilization efficiency: ~18% |
| Parkrun (A 1080i<br>test clip)                          | H264-HP, 20Mbps,<br>1080i   | Total bus load: ~83% (57 dec fps) Bus utilization efficiency: ~17%   | Total bus load: ~80% (57 dec fps) Bus utilization efficiency: ~17% |

- Performance measured in VPU unit test (without multimedia framework)
- · SabreSD board
- · Tile format used
- VPU = 264 MHz
- DDR = 532 MHz
- Performance for Interlaced video not measured yet







#### **Measured Performance (Encoder)**

| Video clips (250 frames) | Bitrate                         | Maximum measured perf.                   |
|--------------------------|---------------------------------|------------------------------------------|
| Riverbed                 | H264-BP, 32Mbps,<br>1080p@30fps | 40fps (VPU=264MHz)<br>50fps (VPU=352MHz) |
| Riverbed                 | H264-BP, 20Mbps,<br>1080p@30fps | 41fps (VPU=264MHz)<br>51fps (VPU=352MHz) |
| Riverbed                 | H264-BP, 10Mbps,<br>1080p@30fps | 42fps (VPU=264MHz)<br>52fps (VPU=352MHz) |

- Performance measured in VPU unit test (without multimedia framework).
- SabreSD board
- Tile format used
- VPU = 264 MHz, 352MHz
- DDR = 532 MHz
- YUV source data in file in SD card (file reading time not count in performance)







#### **Measured Performance and Busload (Transcoding)**

| Transcoding            | Transcoding description                                                                                                                       | Maximum<br>measured<br>performance                        | Observed bus-load                                                                                                |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| MPEG2→H264             | Tiled format;<br>Decode 1080p MPEG2 video, and<br>display it via HDMI without resizing,<br>and meanwhile re-encode to H264-BP,<br>1080p.      | 27fps (VPU=266MHz)<br>35fps (VPU=352MHz)<br>Tiled format; | ~72% (with ~20% for GUI and others) ~78% (with ~20% for GUI and others)                                          |
| MPEG2→H264             | Linear format;<br>Decode 1080p MPEG2 video, and<br>display it via HDMI with resizing to<br>720p, and meanwhile re-encode to<br>H264-BP, 720p. | 22fps (VPU=266MHz)<br>24fps (VPU=352MHz)<br>Linear format | ~82% (with ~20% for GUI and others) ~84% (with ~20% for GUI and others) -Not too much improvement for VPU=352MHz |
| MPEG4→H264<br>VC1→H264 | Decode 720p MPEG4/VC1, etc, and display it via HDMI without resizing, and meanwhile re-encode to H264-BP, 720p, in <20Mbps                    | >=50fps(VPU=266MHz)<br>>= 60fps(VPU=352MHz)               |                                                                                                                  |

- Performance measured in VPU unit test (without multimedia framework).
- SabreSD board
- Linear format used (tile format not ready for transcoding)
- VPU = 264 MHz, 352MHz
- DDR = 532 MHz
- Measured in tiled format in BSP 4.1.0





#### **VPU Architecture Overview**

#### Outline

- Video coding standard algorithm and process
- Architecture in top-level view
- Architecture in software view
- VPU-IPU interface



## view of video encoding/decoding algorithm (An H.264 example)







#### VPU Architecture Overview (Top-level view)



- Freescale drives this IP development in terms of roadmap, API's and Firmware.
- This is our 6th instantiation of this IP from our vendor (mature technology).
- Very flexible solution that allows us to customize the feature set of each product to the market requirements without compromising power or die size.
- Freescale works closely with our VPU vendor to optimally integrate VPU into all i.MX devices.

- Flexible and optimized area-power accelerator architecture
  - Embedded DSP core providing a certain level of flexibility & programmability (e.g., be able to support H.264-MVC-3D by only firmware change and currently being done in i.MX6x VPU)
  - Shared logic & SRAM for encoder and decoder for optimizing area and minimizing power with clock gating (vs separate enc and dec HW in other vendors)
  - On-chip RAM with secondary AXI option for reducing memory bandwidth (makes it competitive in performance).





#### **VPU Architecture Overview (SW view)**











### **VPU Programmable Engine**

#### Outline

- Features of the embedded DSP
- Examples of programmability & capability
  - Programmability is limited to video slice level or above
  - Not encouraged down to macroblock-level for programmability except for some particular reasons.

- Normally, Freescale does not provide VPU firmware source code to customers.
- Freescale can work with VPU vendor for implementing the customer's needs if necessary.







#### **VPU Programmable Engine & Features**

- A highly optimized DSP processor for handling bit streams in various video codecs
- Supports special instructions for bitstream packing/unpacking with variable length code and Exp-Golomb code
- Supports program memory up to 128KB address space (20KB in i.MX6x)
- Supports data memory up to 128KB address space (6KB in i.MX6x)







### **VPU Programmable Engine Capability & Example**

#### Capability of VPU Programmable Engine

- In general, programmable on slice level and above (e.g., MVC codec implementation)
- Specifically, programmability can be extended to macroblock-level for some codecs, e.g., VP8, macroblock-level encoder rate control, etc

#### Examples implemented by only firmware change:

- Implemented MVC-Stereo High Profile for both encoder and decoder
- Enhanced encoder rate control for achieving better visual quality
- Enhanced error handling capability for robust streaming and video playback





## **VPU Decoder**

- Outline
  - Decoder pipeline
  - Decoder API and process flow
  - Decoding operation steps
  - Major differences between i.MX6x VPU and i.MX5x VPU



# (example of H264/RV/AVS/VP8 decoder)





## NP

## driver API (decoder)

External Use





#### **Decoder Operation Steps**

- 1. Call vpu\_Init() to initialize the VPU
- Open a decoder instance using vpu\_DecOpen()
- To provide the proper amount of bitstream, get the bitstream buffer address using vpu\_DecGetBitstreamBuffer()
- 4. After transferring the decoder input stream, inform the amount of bits transferred into the bitstream buffer using vpu\_DecUpdateBitstreamBuffer()
- 5. Before starting a picture decoder operation, get the crucial parameters for decoder operations such as picture size, frame rate, required frame buffer size using **vpu\_DecGetInitialInfo()**
- 6. Using the returned frame buffer requirement, allocate the proper size of the frame buffers and convey this data to the i.MX 6Dual/Quad VPU using vpu\_DecRegisterFrameBuffer()
- Start a picture decoder operation picture-by-picture using vpu\_DecStartOneFrame()
- 8. Wait for the completion of the picture decoder operation interrupt event
- Check the results of the decoder operation using vpu\_DecGetOutputInfo()
- 10. After displaying nth frame buffer, clear the buffer display flag using vpu\_DecClrDispFlag()
- 11. If there is more bitstream to decode, go to Step 7, otherwise go to the next step
- 12. Terminate the sequence operation by closing the instance using **vpu\_DecClose()**
- 13. Call vpu\_UnInit() to release the system resources







#### Major API differences from iMX5x VPU

- "Streaming mode with prescan" in i.MX5x VPU is replaced by "rollback" mode in i.MX6x VPU. Reason:
  - Simplify the firmware

} MvcPicInfo

- Improve the performance
- Add "MvcPicInfo" for S3D in *DecOutputInfo* typedef struct { int viewIdxDisplay; //view index of display frame buffer int viewIdxDecoded; //view index of decoded frame buffer
- Add "AvcFpaSei" for frame-packing for S3D in *DecOutputInfo*. typedef struct {

```
unsigned frame packing arrangement id;;
   unsigned frame_packing_arrangement_type
   unsigned frame packing arrangement repetition period;
} AvcFpaSei
```





## **VPU Encoder**

- Outline
  - Encoder pipeline
  - Encoder API and process flow
  - Encoder operation steps
  - Encoder visual quality
  - Encoder rate control concept
  - Encoder configuration example







#### Video Process Flow (example pipeline of H264 encoder)





#### **VPU driver API (encoder)**









### **Encoder Operation Steps**

- 1. Call vpu\_Init() to initialize the VPU
- Open an encoder instance using vpu\_EncOpen()
- 3. Before starting a picture encoder operation, get crucial parameters for encoder operations such as required frame buffer size using **vpu\_EncGetInitialInfo()**
- 4. Using the returned frame buffer requirement, allocate size of frame buffers and convey this information to the VPU using **vpu\_EncRegisterFrameBuffer()**
- Generate high-level header syntaxes using vpu\_EncGiveCommand()
- 6. Start picture encoder operation picture-by-picture using vpu\_EncStartOneFrame()
- 7. Wait the completion of picture encoder operation interrupt event
- 8. After encoding a frame is complete, check the results of encoder operation using vpu\_EncGetOutputInfo()
- 9. If there are more frames to encode, go to Step 4, otherwise go to the next step
- 10. Terminate the sequence operation by closing the instance using **vpu\_EncClose()**
- 11. Call vpu\_UnInit() to release the system resources





#### i.MX6x VPU encoder—Visual quality

- At the same frame rate, bitrate, and resolution, the visual quality of i.MX6x VPU has similar visual quality to the i.MX5x VPU.
- Visual quality can be measured as:
  - Objective such as PSNR, SSIM, etc.
  - Subjective
- Encoder visual quality is determined by:
  - Rate control algorithm for CBR
  - Prediction algorithms
  - Entropy coding methods
  - Encoder configurations
- Visual quality and rate control accuracy can be improved by fine-tuning the VPU encoder rate control algorithm and parameters in firmware.





# Rate control basic concept, leaking bucket







# ....6x VPU encoder— **Encoder configuration example**

```
//General setting
vpu enc->width=704
                                                 // picture width
vpu_enc->height=480
                                                 // picture height
vpu_enc->tgt_framerate=30
                                                 // frame rate
avc_constrainedIntraPredFlag=0
                                                                   // constrained_intra_pred_flag
encOP->gopSize = vpu enc->gopsize
                                                 //e.g., 30, GOP picture number (0 : only first I, 1 : all I, 3 : I,P,P,I,)
//DEBLKING FILTER
avc_disableDeblk = 0
                                                 // disable_deblk (0 : enable, 1 : disable, 2 : disable at slice boundary)
avc deblkFilterOffsetAlpha = 0
                                                 // deblk filter offset alpha (-6 ~ 6)
avc deblkFilterOffsetBeta = 0
                                                 // deblk filter offset beta (-6 ~ 6)
avc chromaQpOffset = 0
                                                 // chroma qp offset (-12 \sim 12)
//SLICE STRUCTURE
slicemode.sliceMode = 0
                                                 // slice mode (0 : one slice, 1 : multiple slice)
slicemode.sliceSizeMode = 0
                                                 // slice size mode (0 : slice bit number, 1 : slice mb number)
slicemode.sliceSize = 0
                                                 // slice size number (bit count or mb number)
//RATE CONTROL
vpu enc->bitrate=1024
                                                 //bit rate in kbps (ignored if rate control disable)
vpu enc->encOP->initialDelay=0
                                                 // delay in ms (initial decoder buffer delay) (0 : ignore)
vpu enc->encOP->vbvBufferSize=0
                                                 // VBV buffer size in bits (0 : ignore)
vpu enc->encOP->rcIntraQp=40
                                                 // rcIntraQp, gp value for constant intra frame QP function.
                                                 // userQpMax, maximum qp (13 ~ 51)
vpu_enc->max_qp=45
vpu enc->min qp =10
                                                 // userQpMin,
                                                 // encOP->userGamma, gamma value in RC (0 ~ 0.99999) x 32768
vpu enc->gamma=0
                                                 // rate control interval mode (0 - default mode, 1 - frame based, 2 - slice based, 3 - MB interval)
vpu_enc->rc_interval_mode=0
                                                 // rate control interval, This value is only valid when mode is 3
Vpu_enc->rc_mb_interval=100
// ERROR RESILIENCE
vpu_enc->intraRefresh=0
                                                 // Intra MB Refresh (0 - None, 1 ~ MbNum-1
//Intra mode selection
                                                 // For enabling or disaling Intra4x4 mode
vpu_enc->intra16x16_mode_only
```







# Tile format support



- Outline
  - Tiled format concept and benefits
  - Tiled format handling in Video Data Order Adapter (VDOA)







# **VPU tiled format support**



| Linear format storage |       |  |
|-----------------------|-------|--|
| 0 1                   | 14 15 |  |
|                       |       |  |
|                       |       |  |
|                       |       |  |
| 40.47                 | 00.04 |  |
| 16 17                 | 30 31 |  |
|                       |       |  |
|                       |       |  |
|                       |       |  |
| 3234                  | 16.17 |  |
| 32 34                 | 46 47 |  |
|                       |       |  |
|                       |       |  |
|                       |       |  |



- Why tiled format:
  - Much more efficient DDR access
- i.MX6x VPU supports the following tile format:
  - Linear map (Type 0)
  - Tiled macroblock raster frame map (Type 1)
  - Tiled macroblock raster field map (Type 2)







# Tiled format handling in Video Data Order Adapter (VDOA)

- Tiled format handling in Video Data Order Adapter (VDOA)
  - The decoded data from VPU is stored in system memory in tiled format (each tile is 16x16 macroblock)
  - VDOA converts the tiled data (16x16 tile) into raster-scan format
  - VDOA outputs the raster-scan format data to IPU for display









# JPEG Processing Unit (JPU)



- Outline
  - JPU overview and facts
  - JPU process and pipeline
  - API consideration for JPEG/MJPEG codec





# NP

# JPEG Processing Unit (JPU)

- An enhanced JPEG codec with higher performance compared to i.MX5x VPU
  - A separate JPU hardware module without firmware control
- □ Decoding up to 120Mpixels/sec at YUV444 format
  - Support YUV4:0:0, 4:2:0, 4:2:2, and 4:4:4 formats
  - Performance will be doubled for the input format of YUV4:2:0
- Encoding up to 160Mpixels/sec at YUV444 format
  - Support YUV4:0:0, 4:2:0, 4:2:2, and 4:4:4 formats
  - Performance will be doubled for the input format of YUV4:2:0
- JPEG API consideration
  - Linux libjpeg compatible API
  - i.MX5x VPU compatible API





# NP

# JPEG Processing Unit (JPU)—encoder example



JPEG decoding process is the inverse of encoding process





# NXP

### **JPEG API Consideration**

- Considered to support Linux libjpeg compatible API for still image decoding
  - Adding a wrapper on top of the existing VPU API
  - Difficult to fully support libjpeg API
- i.MX5x compatible API for local MJPG file playback (file-play mode) and streaming mode







### **VPU Software Structure**

The VPU software can be divided into two parts:

- Kernel driver: takes responsibility for system control and reserving resources(memory/IRQ). It provides an IOCTL interface for the application layer in user-space as a path to access system resources.
- User space library: the application in user-space calls related IOCTLs and codec library functions to implement a complex codec system.
  - VPU library (e.g., libvpu.so) is located in: /usr/lib/
  - VPU firmware binary (e.g., vpu\_fw\_imx6q.bin) is located in: /lib/firmware/vpu/







# **Source Code Structure (Kernel Driver)**

The table below lists the kernel space source files available in the following directories:

- <ltib\_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach/
- <ltib\_dir>/rpm/BUILD/linux/drivers/mxc/vpu/

| File      | Description                                                   |  |
|-----------|---------------------------------------------------------------|--|
| mxc_vpu.h | Header file defining IOCTLs and memory structures             |  |
| mxc_vpu.c | Device management and file operation interface implementation |  |







# **Source Code Structure (User space)**

The table below lists the user space library source files available in the following directory:

<ltib\_dir>/rpm/BUILD/imx-lib-xxxx/vpu

| File       | Description                                                                        |  |
|------------|------------------------------------------------------------------------------------|--|
| vpu_io.c   | Interfaces with the kernel driver for opening the VPU device and allocating memory |  |
| vpu_io.h   | Header file for IOCTLs                                                             |  |
| vpu_lib.c  | Core codec implementation in user space                                            |  |
| vpu_lib.h  | Header file of the codec                                                           |  |
| vpu_reg.h  | Register definition of VPU                                                         |  |
| vpu_util.c | File implementing common utilities used by the codec                               |  |
| vpu_util.h | Header file                                                                        |  |





# Stereo 3D



- Outline
  - S3D coding methods
    - Simulcast method
    - Combined Frame (Frame Packing, or Frame compatible)
    - H.264-MVC S3D







# **Stereo 3D Coding Methods**

| Name                    | Coding method                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Simulcast Method        | Left view and right view coded separately in a simulcast way                                                                                                                                                                                                                                                                                                                                         |  |
| Frame-packing<br>Method | Combination of two views into one frame in various frame packing methods  MPEG-2 Multiview profile using temporal L/R interleaving for stereo video  H.264 Stereo SEI message and Frame Packing Arrangement SEI message allow various methods of L/R packing (Frame Compatible S3D)  Temporal interleaving spatial row/column, spatial side-by-side, Spatial up-and-bottom, checkerboard (quincunx), |  |
| H.264-MVC S3D<br>Method | Coded in H.264-MVC Stereo High Profile with base view and enhanced view, with the exploitation of interview prediction                                                                                                                                                                                                                                                                               |  |





# NIP Simulcast Method







# ne-Packing Method

























### H.264-MVC-S3D Method



S3D can be generated using only two views, S0 and S1





# NP

### **VPU** with Multimedia Framework

- Outline
  - Multimedia Framework
  - Supported Multimedia Format







# Video playback using VPU









# **Supported Streaming Containers**

- MP4:
  - Playback: MPEG4, H.264, H.263
  - Capture, MPEG4, H.264
- AVI:
  - Playback: MPEG4, Divx/Xvid, H.264, WMV/VC1
  - Capture: MPEG4, H.264
- MPEG2-TS: Playback: MPEG2, H.264, VC1
- MPEG2-PS: Playback: MPEG2, H.264, MPEG4, AVS
- FLV: Playback: H.264, Sorenson, VP6
- ASF: Playback: WMV/VC1
- WebM: Playback: VP8
- RMVB: Playback: RV8/9/10
- Matroska (MKV): Playback: MPEG4, Divx/Xvid, H.264, WMV/VC1
- 3GP: Playback: MPEG4, H.264
- Ogg: Playback: Theora







# **Streaming Protocol Support**

| Protocol | File format                                                                        | Supported OS     |
|----------|------------------------------------------------------------------------------------|------------------|
| HTTP     | .mp4/.3gp/.mov, .flv/ .f4v, .avi, .wmv/.asf, .mpg/.vob/.ts, .mp3, .aac, .wma, .mkv | Android<br>Linux |
| RTSP     | .mp4                                                                               | Android          |
| HTTPLive | .m3u8                                                                              | Android          |
| RTP      | .ts                                                                                | Android          |
| UDP      | .ts                                                                                | Android          |







# VPU encode/decode with IPU pre-/post process

- Outline
  - The Display Ports In i.MX6 D/Q
  - Max Display Port Resolutions
  - The Video Input Ports In i.MX6 D/Q
  - IPU Internal Structure and Process Flow







## The Display Ports In i.MX6 D/Q

- Six ports
  - Two parallel driven directly by the IPU
  - Two LVDS channels driven by the LVDS bridge
  - One HDMI driven by the HDMI transmitter
  - One MIPI/DSI driven by the MIPI/DSI transmitter
- Four simultaneous outputs
  - Each IPU has two display ports (DI0 and DI1)
  - Therefore, only up to four external ports can be active at any given time.
  - Additional asynchronous data flows can be sent through the parallel ports and the MIPI/DSI port









# **Max Display Port Resolutions**

- MIPI DSI, 2 lanes
  - WXGA (1366 x 768) or 720p (1280 x 720)
- RGB
  - Port 1 4XGA (2048 x 1536)
  - Port 2 4XGA (2048 x 1536)
- LVDS
  - Single channel WXGA (1366 x 768) or 720p (1280 x 720)
  - Dual channel UXGA (1600 x 1200) or 1080p (1920 x 1080)
- HDMI
  - 1080p (1920 x 1080) or 4XGA (2048 x 1536)

Note: Assuming 30% blanking intervals overhead, 24bpp, 60fps







## The Video Input Ports In i.MX6 D/Q

#### Three ports; up to six input channels

- Two parallel connected directly to the **IPUs**
- One MIPI/CSI-2 connected to the MIPI/DSI receiver, can transfer up to four concurrent channels

#### Four concurrent channels

- Each IPU has two input ports (CSI0 and CSI1), each can process an input channel from one of the external ports.
- The MIPI/CSI-2 bridge sends all its channels to all the IPU input ports and each port can select for processing a different channel, identified by its DI (Data Identifier).
- Additional channels can be transferred through a CSI transparently – as generic data – directly to the system memory.



#### Formats supported:

- BT.656
- BT.1120
- BT 1358 (not validated)
- YUV422, RGB888, YUV444 = over an 8 bit bus
- RAW format up to 16bpp which will be translated to 8 bit using companding
- Generic data up to 20bit







### IPUv3H - Internal Structure and Process Flow

#### Cameras CSI (Camera SMFC (Sensor Sensor I/F) Multi FIFO Ctrl.) IPUv3H VDI (Video De-Interlacer) **IDMAC** 64-bit (Image ➤ Memory DI DMA **AXI** IC (Image (Display I/F) Controller) Converter) **Displays** DP (Display Processor) DC DMFC (Display Multi FIFO Ctrl.) (Display Contr.) CM (Control IRT (Image Module) Rotator) 32-bit AHB MCU

#### **Use-case Demos**

- Outline
  - Demo for unit test (linear format vs tile format)
    - Single-stream playback
    - MVC-3D playback (not show real 3D, but in temporal interleaving format)
    - Transcoding
  - Demo for Gstreamer (linear format vs tile format)
    - Single-stream playback
    - Dual-stream playback
    - Transcoding
    - 3D demo (with 3D TV and glasses)







#####Unit test with tiled format and display to 1080p hdmi display####### cp /home/linaro/FAE/sunflower\_2B\_2ref\_WP\_40Mbps.264 /dev/shm/tmp\_video /unit\_tests/mxc\_vpu\_test.out -D "-i /dev/shm/tmp\_video -f 2 -t 1 -a 60 -y 1" /unit\_tests/mxc\_vpu\_test.out -D "-i /dev/shm/tmp\_video -f 2 -t 1 -a 60 -v 0"

/unit\_tests/mxc\_vpu\_test.out -D "-i balloons\_view01\_3d.264 -f 2 -l 2"

#####Unit test with linear format and display to 264p or 1080p hdmi display##### /unit\_tests/mxc\_vpu\_test.out -T "-i /home/linaro/FAE/Coral\_Reef\_Adventure\_720\_video.wmv3 -f 3 -t 1 -x 0 -y 0 -a 60 -w 1280 -h 720 -o /dev/shm/transcode.264 -q 25 -g 30"

cp /home/linaro/FAE/mpeg2\_1080p25\_video1.mpv /dev/shm/tmp\_video /unit\_tests/mxc\_vpu\_test.out -T "-i /dev/shm/tmp\_video -f 4 -t 1 -x 0 -y 0 -a 60 -w 1920 -h 1088 -o /dev/shm/transcode.264 -q 25 -q 30"





sudo cp /home/linaro/FAE/Container\_clips/Avatar\_1920x1080\_30fpsH264\_2x44100AAC\_3.6Mbps\_246sec.mp4 /dev/shm/tmp\_video time gst-launch filesrc location=/dev/shm/tmp\_video typefind=true! aiurdemux! vpudec output-format=4 framedrop=false! queue max-size-buffers=2! mfw\_v4lsink sync=false

sudo cp

/home/linaro/FAE/Container\_clips/Sherlock\_1920x1080\_24fpsH264\_2x48000AAC\_9.6Mbps\_140s ec.mp4 /dev/shm/tmp video

time gst-launch filesrc location=/dev/shm/tmp\_video typefind=true! aiurdemux! vpudec output-format=4 framedrop=false! queue max-size-buffers=2! mfw\_v4lsink sync=false

gst-launch playbin2

uri=file:///home/linaro/FAE/Container\_clips/FTF20033\_1920x1080\_30fpsH264\_2x44100AAC\_9.7m pbs\_137sec.mp4 flags=0x57 video-sink="mfw\_v4lsink" &

gst-launch playbin2

uri=file:///home/linaro/FAE/Container\_clips/Mosaic\_1920x1080\_H.264\_10mbps\_video1\_repeat.mp 4 flags=0x57 video-sink="mfw\_v4lsink device=/dev/video18"





time gst-launch filesrc location=/home/linaro/FAE/Container\_clips/mpeg2\_1080p25\_new.ts typefind=true! aiurdemux! vpudec output-format=4 framedrop=false! queue max-size-buffers=2! tee name=t! vpuenc codec=avc quant=28! matroskamux! filesink location=/dev/shm/h264.mkv t.! queue max-size-buffers=2! mfw\_v4lsink sync=false

time gst-launch filesrc location=/home/linaro/FAE/Container\_clips/mpeg2\_1080p25\_new.ts typefind=true! aiurdemux! vpudec output-format=0 framedrop=false! 'video/x-raw-yuv, format=(fourcc)NV12'! queue max-size-buffers=2! tee name=t! mfw\_ipucsc! 'video/x-raw-yuv, width=640, height=480'! vpuenc codec=avc quant=30! matroskamux! filesink location=/dev/shm/h264\_vga.mkv t.! queue max-size-buffers=2! mfw\_v4lsink sync=false

gplay FLIGHT\_3D\_sideByside.mkv.mp4











www.Freescale.com