Amendments to the Claims

This listing of the claims will replace all prior versions and listings.

Listing of Claims:

- 1. (Currently Amended) A method for controlling SO₃ in a combustion process of a sulfur-containing fuel utilizing selective catalytic reduction for the control of NOx emissions, the method steps comprising:
 - a) partially combusting the fuel in a first stage to create a reducing environment;
 - b) adjusting the reducing environment for a time period such that SO₃ is reduced to SO₂ prior to selective catalytic reduction to achieve a desirable level of SO₃ for optimizing precipitator function;
 - c) combusting the remainder of the fuel and combustion intermediates in a second stage with oxidizing environment; thereby controlling the levels of SO₃ in the flue gases.
- 2. (Original) The method of claim 1, further including the step of micro-staging the first stage fuel combustion.
- 3. (Original) The method of claim 2, wherein the micro-staging is provided through the use of low-NOx burners.
- 4. (Original) The method of claim 1, further including the step of macro-staging the first stage of fuel combustion.
- 5. (Original) The method of claim 4, wherein the macro-staging is provided through the use of over-fired air.
- 6. (Original) The method of claim 1, further including a combination of microstaging and macro-staging.

93207.doc 2

- 7. (Original) The method of claim 6, wherein the micro-staging is provided by low-NOx burners and the macro-staging is provided by over-fired air.
 - 8. (Original) The method of claim 1, wherein the fuel is coal.
- 9. (Currently Amended) A combustion furnace <u>utilizing selective catalytic reduction</u> for the control of NOx emissions and a precipitator, said furnace operated with a method for controlling SO₃ in a combustion process of a sulfur-containing fuel, the method steps comprising:
 - a) partially combusting the fuel to create a reducing environment;
 - b) adjusting the reducing environment for a time period such that SO₃ is reduced to SO₂ to achieve a desirable level of SO₃ for optimizing precipitator function;
 - c) combusting the remainder of the fuel in an oxidizing environment; thereby reducing the conversion of levels of SO₃ in the flue gases.
- 10. (Original) The method of claim 9, further including the step of micro-staging the first stage fuel combustion.
- 11. (Original) The method of claim 10, wherein the micro-staging is provided through the use of low-NOx burners.
- 12. (Original) The method of claim 9, further including the step of macro-staging the first stage of fuel combustion.
- 13. (Original) The method of claim 12, wherein the macro-staging is provided through the use of over-fired air.
- 14. (Original) The method of claim 9, further including a combination of microstaging and macro-staging.

93207.doc 3

- 15. (Original) The method of claim 14, wherein the micro-staging is provided by low-NOx burners and the macro-staging is provided by over-fired air.
 - 16. (Original) The method of claim 9, wherein the fuel is coal.
- 17. (Original) A method for controlling SO₃ concentrations in a combustion process of a sulfur-containing fuel, the method steps comprising:
 - a) partially combusting the fuel in a first stage to create a reducing environment;
 - b) adjusting the reducing environment time period such that SO₃ is preferentially reduced to SO₂ to achieve a desirable level of SO₃ for optimizing precipitator function;
 - c) combusting the remainder of the fuel and combustion intermediates in a second stage with oxidizing environment; thereby controlling the levels of SO₃ in the flue gases.
- 18. (Original) The method of claim 17, further including the step of micro-staging the first stage fuel combustion.
- 19. (Original) The method of claim 18, wherein the micro-staging is provided through the use of low-NOx burners.
- 20. (Original) The method of claim 17, further including the step of macro-staging the first stage of fuel combustion.
- 21. (Original) The method of claim 20, wherein the macro-staging is provided through the use of over-fired air.
- 22. (Original) The method of claim 17, further including a combination of microstaging and macro-staging.

93207.doc 4

23. (Original) The method of claim 22, wherein the micro-staging is provided by low-NOx burners and the macro-staging is provided by over-fired air.

24. (Original) The method of claim 17, wherein the fuel is coal.

93207.doc

5