Hash Tables

Computer Science S-111 Harvard Extension School David G. Sullivan, Ph.D.

Data Dictionary Revisited

• We've considered several data structures that allow us to store and search for data items using their keys fields:

data structure	searching for an item	inserting an item
a list implemented using an array	O(log n) using binary search	O(n)
a list implemented using a linked list	O(n) using linear search	O(n)
binary search tree		
balanced search trees (2-3 tree, B-tree, others)		

• Today, we'll look at hash tables, which allow us to do better than $O(\log n)$.

Ideal Case: Searching = Indexing

- The optimal search and insertion performance is achieved when we can treat the key as an index into an array.
- Example: storing data about members of a sports team
 - key = jersey number (some value from 0-99).
 - class for an individual player's record:

```
public class Player {
    private int jerseyNum;
    private String firstName;
}
```

• store the player records in an array:

```
Player[] teamRecords = new Player[100];
```

 In such cases, we can perform both search and insertion in O(1) time. For example:

```
public Player search(int jerseyNum) {
    return teamRecords[jerseyNum];
}
```

Hashing: Turning Keys into Array Indices

- In most real-world problems, indexing is not as simple as it is in the sports-team example. Why?
 - •
 - •
 - •
- To handle these problems, we perform hashing:
 - use a hash function to convert the keys into array indices
 "Sullivan" → 18
 - use techniques to handle cases in which multiple keys are assigned the same hash value
- The resulting data structure is known as a hash table.

Hash Functions

- A hash function defines a mapping from the set of possible keys to the set of integers.
- We then use the modulus operator to get a valid array index.

key value
$$\Rightarrow$$
 hash function \Rightarrow integer \Rightarrow integer in [0, n - 1] (n = array length)

- Here's a very simple hash function for keys of lower-case letters:
 - h(key) = Unicode value of first char Unicode value of 'a'
 - · examples:

```
h("ant") = Unicode for 'a' - Unicode for 'a' = 0
h("cat") = Unicode for 'c' - Unicode for 'a' = 2
```

- h(key) is known as the key's hash code.
- A *collision* occurs when items with different keys are assigned the same hash code.

Dealing with Collisions I: Separate Chaining

- If multiple items are assigned the same hash code, we "chain" them together.
- Each position in the hash table serves as a *bucket* that is able to store multiple data items.
- Two implementations:
 - 1. each bucket is itself an array
 - disadvantages:
 - · large buckets can waste memory
 - a bucket may become full; overflow occurs when we try to add an item to a full bucket
 - 2. each bucket is a linked list
 - disadvantage:
 - the references in the nodes use additional memory

Dealing with Collisions II: Open Addressing

- When the position assigned by the hash function is occupied, find another open position.
- Example: "wasp" has a hash code of 22, but it ends up in position 23, because position 22 is occupied.
- We will consider three ways of finding an open position – a process known as probing.
- The hash table also performs probing to search for an item.
 - example: when searching for "wasp", we look in position 22 and then look in position 23
 - we can only stop a search when we reach an empty position

-	
0	"ant"
1	
2	"cat"
3	
4	"emu"
5	
6	
7	
22	"wolf"
23	"wasp"
24	"yak"
25	"zebra"

Linear Probing

- Probe sequence: h(key), h(key) + 1, h(key) + 2, ..., wrapping around as necessary.
- Examples:
 - "ape" (h = 0) would be placed in position 1, because position 0 is already full.
 - "bear" (h = 1): try 1, 1 + 1, 1 + 2 open!
 - where would "zebu" end up?
- Advantage: if there is an open position, linear probing will eventually find it.
- Disadvantage: "clusters" of occupied positions develop, which tends to increase the lengths of subsequent probes.
 - probe length = the number of positions considered during a probe

0	"ant"
1	"ape"
2	"cat"
3	"bear"
4	"emu"
5	
6	
7	
22	"wolf"
23	"wasp"
24	"yak"
25	"zebra"

Quadratic Probing

- Probe sequence: h(key), h(key) + 1, h(key) + 4, h(key) + 9, ..., wrapping around as necessary.
 - the offsets are perfect squares: h + 1², h + 2², h + 3², ...
- Examples:
 - "ape" (h = 0): try 0, 0 + 1 open!
 "bear" (h = 1): try 1, 1 + 1, 1 + 4 open!
 - "zebu"?
- Advantage: reduces clustering
- Disadvantage: it may fail to find an existing open position. For example:

table size = 10 x = occupied
trying to insert a key with h(key) = 0
offsets of the probe sequence in italics

4	"emu"	
5	"bear"	
6		
7		
22	"wolf"	
23	"wasp"	
24	" yak"	
25	"zebra"	

"ant"

"ape"

"cat"

1

2

3 **I**

Double Hashing

- Use two hash functions:
 - h1 computes the hash code
 - h2 computes the increment for probing
 - probe sequence: h1, h1 + h2, h1 + 2*h2, ...
- Examples:
 - h1 = our previous h
 - h2 = number of characters in the string
 - "ape" (h1 = 0, h2 = 3): try 0, 0 + 3 open!
 - "bear" (h1 = 1, h2 = 4): try 1 open!
 - "zebu"?
- Combines the good features of linear and quadratic probing:
 - reduces clustering
 - will find an open position if there is one, provided the table size is a prime number

Removing Items Under Open Addressing

- Consider the following scenario:
 - using linear probing
 - insert "ape" (h = 0): try 0, 0 + 1 open!
 - insert "bear" (h = 1): try 1, 1 + 1, 1 + 2 open!
 - remove "ape"
 - search for "ape": try 0, 0 + 1 no item
 - search for "bear": try 1 no item, but "bear" is further down in the table
- When we remove an item from a position, we need to leave a special value in that position to indicate that an item was removed.
- 0 "ant"
 1 2 "cat"
 3 "bear"
 4 "emu"
 5 ...
 22 "wol f"
 23 "wasp"
 24 "yak"
 25 "zebra"
- Three types of positions: occupied, empty, "removed".
- We stop probing when we encounter an empty position, but not when we encounter a removed position.
- We can insert items in either empty or removed positions.

- We use a private inner class for the entries in the hash table.
- To handle duplicates, we maintain a list of values for each key.
- When we remove a key and its values, we set the Entry's hasBeenRemoved field to true; this indicates that the position is a removed position.

Probing Using Double Hashing

- We'll assume that removed positions have a key of null.
 - thus, for non-empty positions, it's always okay to compare the probe key with the key in the Entry

Avoiding an Infinite Loop

The while loop in our probe method could lead to an infinite loop.

```
while (table[i] != null && !key.equals(table[i].key)) {
   i = (i + h2) % table.length;
}
```

- When would this happen?
- We can stop probing after checking n positions (n = table size), because the probe sequence will just repeat after that point.
 - for quadratic probing:

```
(h1 + n^2) % n = h1 % n

(h1 + (n+1)^2) % n = (h1 + n^2 + 2n + 1) % n = (h1 + 1) % n
```

• for double hashing:

```
(h1 + n*h2) \% n = h1 \% n

(h1 + (n+1)*h2) \% n = (h1 + n*h2 + h2) \% n = (h1 + h2) \% n
```

Avoiding an Infinite Loop (cont.) private int probe(String key) { int i = h1(key); // first hash function int h2 = h2(key); // second hash function int positionsChecked = 1; // keep probing until we get an // empty position or a match while (table[i] != null && !key.equals(table[i].key)) { if (positionsChecked == table.length) return -1; i = (i + h2) % table. length; posi ti onsChecked++; } return i; }

Handling the Other Types of Probing

```
private int probe(String key) {
                       // first hash function
   int i = h1(key);
   int h2 = h2(key);
                      // second hash function
   int positionsChecked = 1;
   // keep probing until we get an
    // empty position or a match
   while (table[i] != null && !key.equals(table[i].key)) {
        if (positionsChecked == table.length)
            return -1;
        i = (i + probel ncrement(positionsChecked, h2))
              % table. I ength;
        positionsChecked++;
   }
   return i;
}
```

Handling the Other Types of Probing (cont.)

• The probel ncrement() method bases the increment on the type of probing:

```
private int probeIncrement(int n, int h2) {
   if (n <= 0)
      return 0;
   switch (probeType) {
   case LINEAR:
      return 1;
   case QUADRATIC:
      return (2*n - 1);
   case DOUBLE_HASHING:
      return h2;
   }
}</pre>
```

Handling the Other Types of Probing (cont.)

• For quadratic probing, probel ncrement (n, h2) returns

2*n - 1 Why does this work?

- · Recall that for quadratic probing:
 - probe sequence = h1, h1 + 12, h1 + 22, ...
 - nth index in the sequence = h1 + n²
- The increment used to compute the nth index

```
= nth index - (n-1)st index

= (h1 + n^2) - (h1 + (n-1)^2)

= n^2 - (n-1)^2

= n^2 - (n^2 - 2n + 1)

= 2n - 1
```

Search and Removal

Both of these methods begin by probing for the key.

```
public LLList search(String key) {
   int i = probe(key);
   if (i == -1 || table[i] == null)
      return null;
   else
      return table[i].valueList;
}

public void remove(String key) {
   int i = probe(key);
   if (i == -1 || table[i] == null)
      return;

   table[i].key = null;
   table[i].valueList = null;
   table[i].hasBeenRemoved = true;
}
```

Insertion

- We begin by probing for the key.
- Several cases:
 - 1. the key is already in the table (we're inserting a duplicate)
 → add the value to the valueList in the key's Entry
 - 2. the key is not in the table: three subcases:
 - a. encountered 1 or more removed positions while probing

 put the (key, value) pair in the first removed position that we encountered while searching for the key.

 why does this make sense?
 - b. no removed position; reached an empty position
 → put the (key, value) pair in the empty position
 - c. no removed position or empty position encountered
 → overflow; throw an exception

Insertion (cont.)

• To handle the special cases, we give this method its own implementation of probing:

```
void insert(String key, int value) {
   int i = h1(key);
   int h2 = h2(key);
   int positionsChecked = 1;
   int firstRemoved = -1;
   while (table[i] != null && !key.equals(table[i].key)) {
        if (table[i].hasBeenRemoved && firstRemoved == -1)
            firstRemoved = i;
        if (positionsChecked == table.length)
            break;
        i = (i + probelncrement(positionsChecked, h2))
              % table. I ength;
        positionsChecked++;
   }
   // deal with the different cases (see next slide)
}
```

firstRemoved remembers the first removed position encountered

```
Insertion (cont.)
void insert(String key, int value) {
   int firstRemoved = -1;
    while (table[i] != null && !key.equals(table[i].key) {
        if (table[i].hasBeenRemoved && firstRemoved == -1)
            firstRemoved = i;
        if (++positionsChecked == table.length)
            break;
        i = (i + h2) \% table. length;
    }
    // deal with the different cases
    if (table[i] != null && key. equals(table[i]. key))
        table[i].valueList.addltem(value, 0);
                                                         // 2a
    else if (firstRemoved != -1)
        table[firstRemoved] = new Entry(key, value);
    else if (table[i] == null)
                                                         // 2b
        table[i] = new Entry(key, value);
    else throw an exception...
                                                         // 2c
}
```

Tracing Through Some Examples

- · Start with the hashtable at right with:
 - double hashing
 - our earlier hash functions h1 and h2
- Perform the following operations:
 - insert "bear"
 - insert "bison"
 - insert "cow"
 - delete "emu"
 - search "eel"
 - insert "bee"

0	"ant"
1	
2	"cat"
3	
4	"emu"
5	"fox"
6	
7	
8	
9	
n	

Dealing with Overflow

- Overflow = can't find a position for an item
- · When does it occur?
 - linear probing:
 - quadratic probing:
 - double hashing:
 - if the table size is a prime number: same as linear
 - if the table size is not a prime number: same as quadratic
- To avoid overflow (and reduce search times), grow the hash table when the percentage of occupied positions gets too big.
 - problem: if we're not careful, we can end up needing to rehash **all** of the existing items
 - approaches exist that limit the number of rehashed items

Implementing the Hash Function

- · Characteristics of a good hash function:
 - 1) efficient to compute
 - 2) uses the entire key
 - · changing any char/digit/etc. should change the hash code
 - 3) distributes the keys more or less uniformly across the table
 - 4) must be a function!
 - · a key must always get the same hash code
- In Java, every object has a hashCode() method.
 - the version inherited from 0bj ect returns a value based on an object's memory location
 - · classes can override this version with their own

Hash Functions for Strings: version 1

- h_a = the sum of the characters' Unicode values
- Example: h_a("eat") = 101 + 97 + 116 = 314
- All permutations of a given set of characters get the same code.
 - example: h_a("tea") = h_a("eat")
 - could be useful in a Scrabble game
 - allow you to look up all words that can be formed from a given set of characters
- The range of possible hash codes is very limited.
 - example: hashing keys composed of 1-5 lower-case char's (padded with spaces)
 - 26*27*27*27*27 = over 13 million possible keys
 - smallest code = h_a ("a ") = 97 + 4*32 = 225 largest code = h_a ("zzzzzz") = 5*122 = 610 = 385 codes

Hash Functions for Strings: version 2

• Compute a weighted sum of the Unicode values:

$$h_b = a_0 b^{n-1} + a_1 b^{n-2} + ... + a_{n-2} b + a_{n-1}$$

where a_i = Unicode value of the ith character

b = a constant

n = the number of characters

- Multiplying by powers of b allows the positions of the characters to affect the hash code.
 - different permutations get different codes
- We may get arithmetic overflow, and thus the code may be negative. We adjust it when this happens.
- Java uses this hash function with b = 31 in the hashCode() method of the String class.

Hash Table Efficiency

- In the best case, search and insertion are O(1).
- In the worst case, search and insertion are linear.
 - open addressing: O(m), where m = the size of the hash table
 - separate chaining: O(n), where n = the number of keys
- With good choices of hash function and table size, complexity is generally better than O(log n) and approaches O(1).
- load factor = # keys in table / size of the table.
 To prevent performance degradation:
 - open addressing: try to keep the load factor < 1/2
 - separate chaining: try to keep the load factor < 1
- Time-space tradeoff: bigger tables have better performance, but they use up more memory.

Hash Table Limitations

- It can be hard to come up with a good hash function for a particular data set.
- The items are not ordered by key. As a result, we can't easily:
 - print the contents in sorted order
 - perform a range search
 - perform a rank search get the kth largest item

We can do all of these things with a search tree.

Application of Hashing: Indexing a Document

- Read a text document from a file and create an index of the line numbers on which each word appears.
- Use a hash table to store the index:
 - key = word
 - values = line numbers in which the word appears

See WordIndex.java

Optional: Computing h_b More Efficiently

- Use Horner's method of evaluating a polynomial:
 - $a_0b^{n-1} + a_1b^{n-2} + \dots + a_{n-2}b^{n-1} + a_{n-1}$ = $(\dots((a_0b + a_1)b + a_2)b + \dots + a_{n-2})b + a_{n-1}$
 - example: 101*31² + 97*31 + 116 = ((101*31 + 97)*31 + 116
 - here it is in Java for the string s:

```
int hash = 0;
for (int i = 0; i < s.length(); i++)
    hash = hash * b + s.charAt(i);
```

- Use the left-shift operator (<<) to multiply by 31:
 - n << i shifts the binary representation of n left by i places
 - $n << i = n * 2^{i}$
 - n * 31 = n * (32 1) = (n * 32) n = (n << 5) n
 - example: $n = 100 = 000000001100100_2$ $100 << 5 = 0000110010000000_2 = 3200$ 100 * 31 = 3200 - 100 = 3100

Optional: Hash Functions for Numeric Keys

- If the keys are ints (or a smaller numeric type e.g., byte), we can use the keys themselves as the hash codes.
- If the keys are I ongs or doubl es (64 bits), we could cast the keys to ints, but that means that half of the bits in the keys won't contribute to the hash codes.
- Instead, use folding as we did in h_a for strings.
 - break the 64 bits into two 32-bit pieces
 - combine the pieces by adding them or by applying the exclusive-or operator (^) – see the textbooks for more info.
- · Example:

```
long key;
long leftMostBits = key >> 32; // shift bits right by 32
int hash = (int)(key ^ leftMostBits);
```