CLAIMS

1	1. A method for creating a three-dimensional engraving,
2	comprising the steps of:
3	providing a three-dimensional solid having a specified shape and size;
4	scanning, into a processor driven and numerically controlled machining
5	center, data corresponding to a three-dimensional illustration;
6	projecting, into said solid, said three-dimensional illustration;
7	machining, in three-dimensional fashion, a three-dimensional surface
8	within said solid corresponding to said illustration; and
9	shading said three-dimensional surface of said solid according to
10	selected depths of machining.
1	2. The method as described in claim 1, further comprising the step
2	of surface preparing said three-dimensional solid prior to machining.
1	3. The method as described in claim 1, further comprising the step
2	of forming recessed surfaces on a non-machined surface of said solid.
1	4. The method as described in claim 1, further comprising the step
2	of securing fastener receiving mounting studs to a non-machined surface.
1	5. The method as described in claim 4, said step of securing studs
2	further comprising welding incorporating a capacitor discharge arcing process.

1	6. The method as described in claim 1, said step of projecting said
2	three-dimensional illustration further comprising assigning a depth of cut per
3	pixel distributed across a selected machining area.
1	7. The method as described in claim 3, further comprising the step
2	of locating said solid upon a machining center platform according to a location
3	of said recessed surfaces.
1	8. The method as described in claim 1, said step of machining
2	further comprising machining a roughing cut in a first direction, and
3	subsequently machining a finishing cut in a second direction.
1	9. The method as described in claim 1, said step of shading further
2	comprising immersing said machined three-dimensional solid within an oxide
3	bath.
1	10. The method as described in claim 9, further comprising the step
2	of applying a neutralizing solution to said solid following said step of
3	immersing.
1	11. The method as described in claim 10, said step of shading
2	further comprising abrading said three-dimensional surface and in order to
3	remove a darkened coating resulting from said oxide bath.

1	12. The method as described in claim 1, further comprising the step
2	of environmentally coating said machined solid.
1	13. The method as described in claim 12, said step of coating
2	further comprising applying a powderized and thermosetting acrylic urethane
3	material.
1	14. The method as described in claim 13, further comprising the
2	step of baking said powder coated solid in an oven.
1	15. The method as described in claim 1, said step of machining
2	further comprising engraving said solid.
1	16. The method as described in claim 6, said step of assigning a
2	depth of cut per machining area further comprising assigning 200 pixels per
3	square inch of area.
1	17. The method as described in claim 6, said step of assigning a
2	depth of cut further comprising establishing a scale of 0-255 projected into an
3	intermediate location of said solid.
1	18. A solid exhibiting a three-dimensional engraved surface,
2	according to the following steps:

3	scanning, into a processor driven and numerically controlled machining
4	center, data corresponding to a three-dimensional illustration;
5	projecting, into said solid, said three-dimensional illustration according
6	to a depth of cut per pixel distributed across a selected machining area;
7	machining, in three-dimensional fashion, a three-dimensional surface
8	within said solid corresponding to said illustration, said step of machining
9	further comprising at least machining a roughing cut in a first direction and
10	subsequently machining a finishing cut in a second direction;
11	immersing said machined solid into an oxide bath;
12	abrading a darkened coating formed by said oxide bath upon said three-
13	dimensional surface and in order to shade said solid according to individual
14	depths of cut;
15	applying a powderized and plasticized material upon said solid; and
16	baking said powder coated solid in an oven and in order to thermoset said
17	powderized material.
1	19. The solid as described in claim 18, further comprising the step
2	of forming recessed locating surface on a non-machined surface of said solid.
1	20. The solid as described in claim 18, further comprising the step
2	of securing fastener receiving mounting studs to a non-machined surface of
3	said solid according to a capacitor discharge arc welding process.