Low Noise Preamplifier and Our Blue Print

Anyi Rao

Project requirements

Voltage Gain Av≥100

Plan 1: Av=1500

Plan 2: Av=2000

•Band width BW=1k Hz

Central frequency f=4k Hz

•low noise RTI≤5 µ v

Selection of component

Arrangement

Amplifiler and filter

OP27-Typical Performance Characteristics

TPC 1. 0.1 Hz to 10 Hz_{p-p} Noise Tester Frequency Response

TPC 4. Input Wideband Voltage Noise vs. Bandwidth (0.1 Hz to Frequency Indicated)

TPC 7. Voltage Noise Density vs. Supply Voltage

TPC 2. Voltage Noise Density vs. Frequency

TPC 5. Total Noise vs. Sourced Resistance

TPC 8. Current Noise Density vs. Frequency

TPC 3. A Comparison of Op Amp Voltage Noise Spectra

TPC 6. Voltage Noise Density vs. Temperature

TPC 9. Supply Current vs. Supply Voltage

Noise analysis plan 1

```
Req=1.468k\Omega
BW=1kHz
BWn=1.57kHz
enf = 1.2 \times \sqrt{\ln(1.57 \text{kHz}/0.1 \text{Hz})} \text{nV} = 3.7 \text{nV}
enBB= e_{nBB} \times \sqrt{BWn}=3 \times \sqrt{1570}=118.8nV
en-v= √ enf^2+ enBB^2=118.9nV
en-i=Req×einBB× √BWn=17.5nV
en-R= √ 4KTReqBWn=0.195uV
en-RTL= \sqrt{\text{en-v}^2 + \text{en-i}^2 + \text{enR}^2 = 0.230 \text{uV}}
```

仪表放大器噪声

由于仪表放大器主要用于放大微小精密信号,因此,有必要了解所有相关噪声源的效应。 仪表放大器模型如下面图1所示。

图1: 仪表放大器噪声模型

Noise analysis plan 2

RTI1=
$$\sqrt{\text{BWn}} \times \sqrt{\frac{\text{V}_n^2}{\text{G}^2} + V_n^2 + \frac{I_n^2 R^2}{2}} = 914.39 \text{nv}$$

(BW=5kHz BWn=6.1kHz)

RTI2=0.308uV/11=28nv

RTI=0.915uv

PCB of Plan 1

PCB of Plan 2

Process

Analysis of plan 1

Analysis of plan 2

Analysis

$$f_0$$
=4.0kHz

 f_0 =4.0kHz (3.4kHz-4.6kHz)

$$A=1670$$

$$V_{\text{i-noise}} = 62.6 \text{uV}$$

plan2

$$f_0$$
=4.0kHz

(3.5kHz-4.7kHz)

$$V_{\text{i-noise}} = 7.68 \text{uv}$$

Thank you