Troca de Chaves

Faculdade de Informática- PUCRS Prof. Avelino Francisco Zorzo

Sumário

- Troca de chave de maneira simétrica
 - Quebra-cabeças (puzzle) de Merkle
- Troca de chave de maneira assimétrica
 - Diffie-Hellman

Quebra-cabeças de Merkle (Merkle puzzles)

Troca de chave

Meta: Alice e Bob querem compartilhar uma chave, que fique desconhecido por umespião.

• Agora: segurança contra espionagem (sem alteração)

Espião??

Isto pode ser feito através de criptografia simétrica?

Quebra-cabeças de Merkle (1974)

Resposta: sim, mas muito ineficiente.

Forma: quebra-cabeças (puzzle).

- Problemas resolvidos com algum esforço.
- Exemplo: cifra simétrica E(k,m), $k \in \{0,1\}^{128}$
 - -puzzle(P) = E(P, "mensagem") onde

 $P = 0^{96} 11 b_1 ... b_{32}$

- Meta: encontrar P tentando as 232 possibilidades

Quebra-cabeças de Merkle

Alice: prepara 2³² quebra-cabeças

- Para i=1, ..., 2^{32} escolha aleatoriamente $P_i \subseteq \{0,1\}^2$ e $x_i, k_i \in \{0,1\}^{128}$
- $-puzzle_i \leftarrow E(0^{96} 11 P_i, "Puzzle # x_i" 11 k_i)$
- Envie puzzle₁, ..., puzzle₂32 para o Bob

<u>Bob</u>: escolhe aleatoriamente um $puzzle_j$ e resolva ele.

- Obtenha (xj, kj).
- Envie x_j para Alice

Alice: procure o quebra-cabeças com x_j . use k_j como chave compartilhada

Quebra-cabeças de Merkle

Trabalho da Alice: O(n) (preparar n quebra-cabeças)
Trabalho do Bob: O(n) (resolver um quebra-cabeça)

Trabalho do espião: $O(n^2)$ (e.g. 2^{64})

Resultado impossível?

Podemos ter um diferença melhor usando troca de chaves de maneira simétrica?

Resposta: desconhecida

Mas: de maneira geral,

uma diferença quadrática é o melhor possível se tratarmos uma cifra como um oráculo caixa preta

[IR'89, BM'09]

<u>Alice</u>

Diffie-Hellman

O Protocolo Diffie-Hellman

Escolha um grande número primo p (e.g. 600 digitos) Escolha um g que gera \mathbf{Z}_{p}^{*}

p e g são conhecidos por todos.

 $B \leftarrow g^b \mod p$

<u>Bob</u>

 $\mathbf{B}^{\mathbf{a}} \pmod{\mathbf{p}} = (\mathbf{g}^{\mathbf{b}})^{\mathbf{a}} = \mathbf{k}_{\mathbf{A}\mathbf{B}} = \mathbf{g}^{\mathbf{a}\mathbf{b}} \pmod{\mathbf{p}} = (\mathbf{g}^{\mathbf{a}})^{\mathbf{b}} = \mathbf{A}^{\mathbf{b}} \pmod{\mathbf{p}}$

Segurança

Espião vê: $p, g, A=g^a \pmod{p}$, $e B=g^b \pmod{p}$

Consegue computar gab (mod p) ??

Mais genericamente:

defina $DH_g(g^a, g^b) = g^{ab} \pmod{p}$

Quão dificil é calcular a função DH mod p?