

				_	_
()	n	D.	riv	VC	10
v	v		u	V	J
		_			

	Noção	de a	lgoritmo	е	programa
--	-------	------	----------	---	----------

□ Invocação e criação de métodos

□ Decomposição de um programa

☐ Repetição simples com o ciclo for

☐ Condições e repetição condicional com o ciclo while

□ Seleção com a instrução if

Ficheiros necessários

☐ LAB2.zip

Exercícios

1. Repita o último exercício da aula prática anterior, aplicando o que aprendeu sobre decomposição e legibilidade de um programa.

2. Dada a qualidade do trabalho anterior, a Karel foi contratada para reparar uma estrada com 10 blocos de comprimento. Os buracos estão igualmente espaçados, perfazendo um total de 5 buracos.

3. Na maior parte das grandes cidades podemos andar à volta de um quarteirão repetindo as seguintes ações quatro vezes: andar até ao próximo cruzamento, virar à esquerda ou à direita (sempre a mesma direção). Se for feito corretamente, voltaremos ao local de partida. Programe a Karel para andar à volta do quarteirão (assuma que cada lado do quarteirão ocupa sempre quatro ruas/avenidas). O programa irá funcionar para a situação inicial na imagem?

- 4. Crie os seguintes métodos:
 - a. MoveMile, sabendo que uma milha ocupa oito blocos (avenidas/ruas)
 - b. MoveBackward, que move a Karel um bloco para trás, mas deixa-a voltada para a mesma direção.
 - c. MoveKiloMile, que move a Karel 1000 milhas para a frente use o cérebro, não a força bruta!
- 5. No mundo representado na imagem, existe uma divisão com uma porta. Programe a Karel para entrar na divisão.

6. O mundo representado na imagem abaixo contém uma linha diagonal com 7 beepers. Programe a Karel para apanhar todos os beepers.

- 7. A Karel foi miniaturizada e assumiu o tamanho de uma formiga. A sua missão é subir o degrau, apanhar a migalha (representada na imagem por um beeper) e continuar a andar até à parede direita. No entanto, a Karel apenas sabe que a migalha está algures em cima do degrau. Não sabe a altura do degrau, nem o seu comprimento. Programe a Karel para executar as seguintes subtarefas:
 - a. Andar até ao degrau
 - b. Subir o degrau
 - c. Andar até à migalha
 - d. Apanhar a migalha
 - e. Continuar até à parede

Sugestões:

Escreva um método para cada um dos passos acima. O objetivo do exercício é ganhar familiaridade com o fluxo básico de um programa e ganhar experiência a dividir problemas em subtarefas mais pequenas (Decomposição!)
Escreva o código e os comentários em inglês: como <i>developer</i> , será frequente trabalhar em equipas internacionais com outros <i>developers</i> que não falam português. O inglês é o padrão reconhecido mundialmente para escrever código.
Use nomes descritivos para os métodos que criar

8. Programe uma nova solução para o exercício 1, garantindo agora que o programa funciona corretamente seja qual for o tamanho do quarteirão.

9.	A Karel continua a treinar para as Olimpíadas Robóticas, desta vez para a corrida com
	obstáculos. Neste evento, a Karel tem de percorrer uma distância fixa, saltando os obstáculos
	que encontrar no caminho. Assuma os seguintes pressupostos:

Α	distância	а	percorrer	corresponde	sempre a	11	blocos

	Os obstáculos têm semp	re 1 bloco de altura e	estão dispostos	aleatoriamente na	ı pista
--	------------------------	------------------------	-----------------	-------------------	---------

A imagem ilustra uma possível situação.

[□] O número de obstáculos é variável (no limite pode não haver obstáculos!)