Model Comparison: Gradient Boosting vs XGBoost

Evaluation Metrics

► MAE (Mean Absolute Error):

$$\mathsf{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Measures the average magnitude of errors in a set of predictions, without considering their direction.

RMSE (Root Mean Squared Error):

$$\mathsf{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Penalizes larger errors more heavily than MAE.

► R² Score (Coefficient of Determination):

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Performance Comparison

Model	MAE	RMSE	R ²
Gradient Boosting	_	3541.33	0.99
XGBoost	45.37	3407.65	_

Table: Comparison of regression models on test set

Predictions vs True Values

Closer points to the red dashed line indicate more accurate predictions.

Interpretation

- Gradient Boosting Regressor:
 - Typically performs well on smaller datasets
 - Easy to interpret and tune
- XGBoost Regressor:
 - Often achieves higher accuracy, especially on large and complex datasets
 - Efficient, handles regularization and missing values well
- Overall: XGBoost is generally preferred for its speed and performance, though both methods can perform similarly depending on tuning and data.