Norme di Progetto

Informazioni Documento

Versione 1.0.0

Data redazione | 28 dicembre 2017

Responsabile

Redattori

Verificatori

Distribuzione Prof. Tullio Vardanega

Prof. Riccardo Cardin

Gruppo Graphite

Uso Interno

Indice

1	Cha	ngeLo	\mathbf{g}										5
2	Intr 2.1 2.2 2.3 2.4	Scopo	del Docume del Prodotto rio	0	 				 	 	 	 	6 6 6 7 7
3	Pro	cessi p	rimari										8
	3.1	Fornit	ura										8
		3.1.1	Scopo										8
		3.1.2	Rapporti di	i fornitura									8
		3.1.3	Studio di fa	attibilità .									9
			3.1.3.1 Sc	соро									9
			3.1.3.2 De	escrizione									9
		3.1.4	Piano di pr	ogetto									10
			3.1.4.1 Sc	соро									10
			3.1.4.2 De	escrizione									10
		3.1.5	Piano di qu	ıalifica									10
			3.1.5.1 Sc	соро									10
			3.1.5.2 De	escrizione									10
	3.2	Svilup	ро										11
		3.2.1	Scopo										11
		3.2.2	Descrizione										11
		3.2.3	Analisi dei	Requisiti									12
			3.2.3.1 Sc	соро									12
			3.2.3.2 De	escrizione									12
			3.2.3.3 C	lassificazior	ne r	equ	isit	i.					13
			3.2.3.4 Cl	lassificazior	ne c	asi	d'u	ISO	 •	 ٠		•	13

		3.2.4	Progettazione
		5.2.4	3.2.4.1 Scopo
			3.2.4.2 Descrizione
			3.2.4.3 Design Patterns
			3.2.4.4 UML 2.0
		3.2.5	Codifica
		0.2.0	3.2.5.1 Scopo
			3.2.5.2 Descrizione
	3.3	Strum	enti
	0.0	3.3.1	IDE
		3.3.2	Compilazione
		3.3.3	GUI
		3.3.4	Tracciento requisiti e casi d'uso
		3.3.5	Diagrammi UML
		3.3.3	
4	Pro	cessi d	li supporto 19
	4.1	Gestic	one della configurazione
		4.1.1	Versionamento
		4.1.2	Controllo della configurazione
		4.1.3	Stato della configurazione
		4.1.4	Rilasci e consegne
	4.2	Gestic	one della qualità
		4.2.1	Classificazione degli obiettivi
		4.2.2	Classificazione delle metriche
	4.3	Docum	mentazione
		4.3.1	Scopo
		4.3.2	Struttura dei documenti
			4.3.2.1 Template
			4.3.2.2 Frontespizio
		4.3.3	Nomenclatura di versionamento dei documenti 22
			4.3.3.1 Registro delle modifiche 23
			4.3.3.2 Indice
			4.3.3.3 Intestazione
			4.3.3.4 Piè di pagina
			4.3.3.5 Note a piè di pagina
			4.3.3.6 Contenuto principale 24
		4.3.4	Norme tipografiche
			4.3.4.1 Stile del testo
			4.3.4.2 Elenchi puntati
			4.3.4.3 Formati
			4.3.4.4 Sigle

	4.3.5	Elementi grafici
		4.3.5.1 Tabelle
		4.3.5.2 Immagini
	4.3.6	Classificazione dei documenti
		4.3.6.1 Documenti informali
		4.3.6.2 Documenti formali
		4.3.6.3 Documenti interni
		4.3.6.4 Documenti esterni
		4.3.6.5 Verbali
	4.3.7	Ciclo di vita del documento
	4.3.8	Nomenclatura dei documenti
	4.3.9	Formato dei file
	4.3.10	Strumenti
		4.3.10.1 LATEX
		4.3.10.2 TexStudio
		4.3.10.3 Lucidchart
4.4	Verific	a
	4.4.1	Scopo
	4.4.2	Descrizione
	4.4.3	Verifica dei processi
	4.4.4	Verifica dei prodotti
	4.4.5	Verifica dei documenti
		4.4.5.1 Analisi statica
		4.4.5.2 Procedura di verifica dei documenti 31
	4.4.6	Verifica del software
		4.4.6.1 Analisi dinamica
		4.4.6.2 Test
		4.4.6.3 Procedura di verifica del software
	4.4.7	Strumenti a supporto della verifica
		4.4.7.1 Verifica della documentazione
		4.4.7.2 Verifica del software
4.5	Valida	
	4.5.1	Scopo
	4.5.2	Descrizione
	4.5.3	Procedura di validazione dei documenti
	4.5.4	Procedura di validazione del software
	4.5.5	Collaudo

5	Pro	ocessi Organizzativi 3	6
	5.1	Scopo	6
	5.2	Descrizione	6
	5.3	Ruoli di progetto	6
		5.3.1 Amministratore di Progetto	7
		5.3.2 Responsabile di Progetto	7
		5.3.3 Analista	7
		5.3.4 Progettista	8
		5.3.5 Verificatore	8
		5.3.6 Programmatore	8
	5.4	Procedure	8
		5.4.1 Gestione delle comunicazioni	8
		5.4.1.1 Comunicazioni interne	8
		5.4.1.2 Comunicazioni esterne	9
		5.4.2 Gestione degli incontri	9
		5.4.2.1 Incontri interni	9
		5.4.2.2 Incontri Esterni	9
		5.4.3 Gestione degli strumenti di coordinamento 4	0
		5.4.3.1 Ticketing	0
		5.4.4 Gestione degli strumenti di versionamento 4	0
		5.4.4.1 Repository	0
		5.4.4.2 Tipi di file e .gitignore 4	1
		5.4.4.3 Norme sui commit 4	1
		5.4.5 Gestione dei rischi	1
	5.5	Strumenti	1
		5.5.1 Sistema operativo	1
		5.5.2 Slack	2
		5.5.3 Telegram	2
		5.5.4 GitHub	2
		5.5.5 Wrike	3
		5.5.6 Git	3

1. ChangeLog

Versione	Data	Autore	Modifiche
0.0.1	20-11-2017	Focchiatti	Creata Introduzione

2. Introduzione

2.1 Scopo del Documento

Questo documento definisce le norme che i membri del gruppo Graphite seguiranno durante lo svolgimento del progetto per assicurare un modo di lavorare comune che garantisca una collaborazione efficiente tra tutti i diversi membri. Nello specifico, esso definisce:

- Modalità di lavoro durante le fasi di progetto;
- Convenzioni per la stesura di documenti;
- Strumenti utilizzati dai membri del gruppo.

2.2 Scopo del Prodotto

Lo scopo del prodotto $_{\rm G}$ è quello di fornire un $frontend\ grafico$ $_{\rm G}$ utilizzabile come strumento di supporto allo sviluppo di plugin $_{\rm G}$ sulla piattaforma Speect.

Lo strumento darà la possibilità all'utente di salvare i grafi generati a schermo dall'applicazione.

Il funzionamento dell'applicazione sarà garantito su un terminale Linux Ubuntu $_{\rm G}$ versione 17.04 o superiore.

2.3 Glossario

Al fine di evitare ogni ambiguità linguistica e di massimizzare la comprensibilità dei documenti, i termini tecnici e di dominio, gli acronimi e le parole che necessitano di essere chiarite, sono riportati nel documento Glossario v1.0.0. Ogni termine presente nel glossario è marcato da una "G" maiuscola in pedice.

2.4 Riferimenti

2.4.1 Normativi

• Standard ISO/IEC 12207:1995: http://www.math.unipd.it/~tullio/IS-1/2009/Approfondimenti/ISO_12207-1995. pd.

2.4.2 Informativi

- Piano di Progetto v 1.0.0;
- Piano di Qualifica v 1.0.0;
- Amministrazione di progetto Slide del corso "Ingegneria del Software":

http://www.math.unipd.it/~tullio/IS-1/2017/Dispense/L07.pdf;

- Guide to the Software Engineering Body of Knowledge (SWE-BOK), 2004: http://www.math.unipd.it/~tullio/IS-1/2007/Approfondimenti/SWEBOK.pdf;
- Software Engineering Ian Sommerville 9 th Edition (2010): (Disponibile nel solo formato cartaceo);
- GNU GCC Coding Conventions: https://gcc.gnu.org/codingconventions.html.

3. Processi primari

3.1 Fornitura

3.1.1 Scopo

Il processo $_{\rm G}$ di fornitura ha lo scopo di trattare le norme e i termini che i membri del gruppo Graphite sono tenuti a rispettare per diventare fornitori della proponente MIVOQ S.R.L. e dei committenti Prof. Tullio Vardanega e Prof. Riccardo Cardin per quanto concerne il prodotto "DeSpeect: interfaccia grafica per Speect".

3.1.2 Rapporti di fornitura

Durante l'intero progetto si intende instaurare con la Proponente MIVOQ S.R.L., nella persona del referente Giulio Paci, un profondo e quanto più possibile costante rapporto di collaborazione orientato a:

- Determinare aspetti chiave per soddisfare i bisogni del proponente;
- Stabilire scelte volte alla definizione e realizzazione del prodotto (vincoli sui requisiti);
- Stabilire scelte volte alla definizione ed esecuzione di processi (vincoli di progetto);
- Stimare i costi;
- Concordare la qualifica del prodotto.

A seguito della consegna del prodotto, il gruppo Graphite non seguirà l'attività di manutenzione dello stesso.

3.1.3 Studio di fattibilità

3.1.3.1 Scopo

Il succitato documento consiste di un'analisi dettagliata di ogni capitolato proposto, con il fine di evidenziare le ragioni che hanno portato il gruppo Graphite a optare per quello scelto.

3.1.3.2 Descrizione

In seguito alla presentazione ufficiale dei Capitolati d'appalto, è compito del Responsabile di Progetto $_{\rm G}$ convocare una riunione interna al gruppo per valutare le proposte di progetto pervenute. Gli Analisti $_{\rm G}$ conducono quindi un'approfondita attività di analisi dei rischi e delle opportunità su ciascun capitolato, che culmina nella stesura del documento Studio di Fattibilità v1.0.0. Tale documento include le motivazioni che hanno portato il gruppo Graphite a proporsi come fornitore per il prodotto indicato, nonché l'analisi di ogni capitolato proposto articolata in:

- Descrizione generale: sintesi del prodotto da sviluppare secondo quanto stabilito dal capitolato d'appalto;
- ullet Dominio applicativo: analisi del *Dominio Applicativo* $_{\rm G}$, cioè l'ambito di utilizzo del prodotto da sviluppare;
- Dominio tecnologico: analisi del *Dominio Tecnologico* G richiesto dal capitolato e raggruppamento delle tecnologie da impiegare nello sviluppo del progetto. Tale analisi include valutazioni sulle conoscenze attuali e sulle possibilità di apprendimento in relazione alle tecnologie richieste per realizzare il prodotto proposto nel capitolato;
- Aspetti positivi: analisi sul costo in rapporto ai risultati previsti e all'interesse del gruppo rispetto alle tematiche del capitolato;
- Fattori di rischio: analisi delle criticità di realizzazione, quali ad esempio mancanza di conoscenze adeguate o difficoltà nell'individuazione di requisiti dettagliati;
- Valutazione Finale: sintesi delle motivazioni, rischi e criticità evidenziate per cui il capitolato in questione è stato respinto o accettato.

3.1.4 Piano di progetto

3.1.4.1 Scopo

Lo scopo del documento è l'esposizione dettagliata della pianificazione cui attenersi nel corso della realizzazione del progetto, redatta dal Responsabile di Progetto coadiuvato dagli Amministratori $_{\rm G}$.

3.1.4.2 Descrizione

Il documento contiene:

- Analisi dei rischi: analisi dettagliata dei rischi che potrebbero insorgere nel corso del progetto e proposta di metodi per affrontarli. Tale analisi include la comprensione della probabilità che i rischi evidenziati si concretizzino e del livello di gravità ad essi associato;
- Pianificazione: relazione sulla pianificazione delle attività da svolgere nel corso del progetto che include delle scadenze temporali precise sulle stesse;
- Preventivo e Consuntivo: stima della quantità di lavoro necessaria per ogni fase, sulla base della pianificazione effettuata. A tale stima consegue un preventivo per il costo totale del progetto. Alla fine di ogni attività si redige inoltre un consuntivo di periodo per tracciare l'andamento rispetto a quanto preventivato.

3.1.5 Piano di qualifica

3.1.5.1 Scopo

Lo scopo del documento è l'esposizione della strategia individuata dai Verificatori $_{\rm G}$ per la Verifica $_{\rm G}$ e la Validazione $_{\rm G}$ del materiale prodotto dal gruppo.

3.1.5.2 Descrizione

Il documento contiene:

• Quadro generale della strategia di verifica: definizione delle procedure di controllo sulla qualità di processo e di prodotto stabilite tenendo in considerazione le risorse a disposizione;

- Misure e metriche: definizione delle metriche stabilite per documenti, processi e software prodotto;
- Gestione della revisione: definizione delle modalità di comunicazione delle anomalie e delle procedure di controllo per la qualità di processo;
- Resoconto delle attività di verifica: sintesi del tracciamento delle attività di verifica e rapporto sulle metriche calcolate durante le stesse.

3.2 Sviluppo

3.2.1 Scopo

Questo processo si prefigge come scopo la stesura delle attività che il gruppo di lavoro deve svolgere.

3.2.2 Descrizione

Per una corretta implementazione di tale processo le aspettative sono le seguenti:

- realizzare un prodotto finale conforme alle richieste del proponente;
- realizzare un prodotto finale soddisfacente i test di verifica;
- realizzare un prodotto finale soddisfacente i test di validazione;
- fissare gli obiettivi di sviluppo G;
- fissare i vincoli tecnologici;
- fissare i vincoli di design.

Il processo di sviluppo si svolge in accordo con lo standard ISO/IEC 12207, pertanto si compone delle seguenti attività:

- Analisi dei requisiti
- Progettazione
- Codifica

3.2.3 Analisi dei Requisiti

3.2.3.1 Scopo

Gli analisti $_{\rm G}$ devono individuare ed elencare i requisiti $_{\rm G}$ del progetto da realizzare.

3.2.3.2 Descrizione

I requisiti dovranno essere estratti dal capitolato d'appalto, dai verbali di riunione e dallo studio dei casi d'uso. Il documento Analisi dei requisiti deve:

- 1. Descrivere il fine del progetto;
- 2. Fissare le funzionalità e i requisiti richiesti dal committente;
- 3. Definire tecniche di raffinamento e di miglioramento del prodotto e processo di sviluppo;
- 4. Definire tecniche per la revisione del codice;
- 5. Fornire ai *Verificatori* _G indicazioni per le attività di test.
- 6. Definire una stima dei costi.

Durante l'Analisi dei requisiti gli analisti analizzano individualmente le varie fonti, quindi, a seguito di una riunione, si confrontano e stilano le varie liste di requisiti suddivise per importanza. Le fonti per gli analisti sono:

- 1. Capitolati d'appalto: requisiti emersi dall'analisi del documento fornito dal committente;
- 2. Verbali esterni: requisiti emersi a seguito di colloqui con i responsabili dell'azienda committente;
- 3. Casi d'uso: requisiti emersi a seguito di uno o più casi d'uso analizzati.
- 4. Definire una stima dei costi.

3.2.3.3 Classificazione requisiti

I requisiti devono essere suddivisi per importanza e classificati come segue: R[Importanza][Tipologia][Codice]

- Importanza: Ogni requisito può appartenere solo ad una delle classi di Importanza elencate di seguito:
 - O (Requisito Obbligatorio): requisito fondamentale per la corretta realizzazione del progetto;
 - D (Requisito Desiderabile): requisito non fondamentale al progetto ma il cui soddisfacimento comporterebbe una maggiore completezza del prodotto;
 - F (Requisito Facoltativo): requisito non richiesto per il corretto funzionamento del prodotto ma che se incluso arricchirebbe il progetto. Prima di soddisfare il requisito è necessaria un'analisi di tempi e costi per evitare ritardi nella consegna e/o costi superiori a quelli preventivati.
- **Tipologia:** Di seguito sono riportate le tipologie di requisito:
 - V: Identifica un requisito di vincolo G;
 - F: Identifica un requisito funzionale G;
 - P: Identifica un requisito prestazionale G;
 - Q: Identifica un requisito di qualità $_{\rm G}$.
- Codice: Ogni requisito è formato da un codice numerico che lo indentifica in modo univoco.

Il codice stabilito secondo la convenzione precedente, una volta associato ad un requisito, non potrà cambiare nel tempo.

Ciascun requisito dovrà inoltre essere accompagnato dalle sue fonti, dalle sue relazioni di dipendenza con altri requisiti e da una descrizione che ne specifichi lo scopo. Sarà inoltre indicata l'importanza.

3.2.3.4 Classificazione casi d'uso

I $casi\ d'uso\ _{G}$ verranno identificati nel seguente modo:

• P (Codice Padre): Identifica il codice del caso d'uso da cui è stato generato il caso d'uso identificato, se non esiste il campo va tralasciato

 $UC[P]^*$.[3

• I (Codice Identificativo): Identifica il caso d'uso univocamente.

Ogni caso d'uso è inoltre definito secondo la seguente struttura:

- **ID:** Il codice del caso d'uso secondo la convenzione specificata precedentemente;
- Nome: Specifica il titolo del caso d'uso;
- Attore Principale: Indica gli attori principale (ad esempio l'utente generico) del caso d'uso;
- Attore Secondario: Indica gli attori secondari (ad esempio entità di autenticazione esterne) del caso d'uso;
- Descrizione: Riporta una breve descrizione del caso d'uso;
- **Precondizione:** Specifica le condizioni che sono identificate come vere prima del verificarsi degli eventi del caso d'uso;
- Postcondizione: Specifica le condizioni che sono identificate come vere dopo il verificarsi degli eventi del caso d'uso;
- Scenari Alternativi: Specifica casi di errore o eventi non previsti nel flusso di esecuzione;
- Flusso di Esecuzione: Rappresenta il flusso degli eventi come lista numerata;

Alcuni casi d'uso possono essere associati ad un Diagramma UMLG 2.x dei casi d'uso riportante lo stesso titolo e codice.

3.2.4 Progettazione

3.2.4.1 Scopo

L'attività di Progettazione deve obbligatoriamente precedere la produzione del software e consiste nel descrivere una soluzione del problema che sia soddisfacente per tutti gli stakeholders $_{\rm G}$.

3.2.4.2 Descrizione

Essa serve a garantire che il prodotto sviluppato soddisfi le proprietà e i bisogni specificati nell'attività di analisi. La progettazione permette di:

- Costruire un'architettura logica del progetto;
- Ottimizzare l'uso delle risorse;
- Garantire una determinata qualità del prodotto, perseguendo la correttezza per costruzione: è questo il principio secondo il quale il software deve funzionare correttamente e soddisfare tutti i requisiti e i vincoli perché è stato progettato per farlo e per essere conforme ed efficacie. Si trova in netta contrapposizione alla correttezza per correzione;
- Organizzare e dividere le parti del progetto in modo da poter ottenere componenti singole e facili da implementare attraverso la codifica.

E' compito dei Progettisti svolgere l'attività di Progettazione, definendo l'architettura logica del prodotto identificando componenti chiare, riusabili e coese, rimanendo nei costi fissati. L'architettura definita dovrà attenersi alle seguenti qualità:

- Sufficienza: dovrà soddisfare i requisiti definiti nel documento Analisi dei Requisiti;
- \bullet Comprensibilità: dovrà essere capita dagli stakeholders $_{\rm G}$ e quindi descritta in modo comprensibile, inoltre dovrà essere tracciabile sui requisiti;
- Modularità: dovrà essere divisa in parti chiare e distinte, ognuna con la sua specifica funzione;
- Robustezza: dovrà essere in grado di gestire malfunzionamenti in modo da rimanere operativa di fronte a situazioni erronee improvvise;
- Flessibilità: dovrà permettere modifiche a costo contenuto nel caso in cui i requisiti dovessero evolversi o se ne dovessero aggiungere di nuovi;
- Riusabilità: dovrà essere costruita in modo da poter permettere il riutilizzo di alcune sue parti;
- Efficienza: dovrà soddisfare tutti i requisiti in modo tale da ridurre gli sprechi di tempo e spazio;

- Affidabilità: dovrà garantire che i servizi esposti siano sempre disponibili, ovvero dovrà svolgere i suoi compiti quando viene usata;
- **Disponibilità:** dovrà necessitare di tempo ridotto per la manutenzione in modo da garantire un servizio il più continuo possibile;
- Sicurezza: dovrà essere sicura rispetto ad intrusioni e malfunzionamenti;
- Semplicità: dovrà prediligere la semplicità, contenendo solo il necessario, rispetto ad una inutile complessità;
- Incapsulazione: dovrà fare in modo che l'interno delle componenti non sia visibile dall'esterno, seguendo il principio del data hiding;
- Coesione: dovrà raggruppare le parti secondo l'obiettivo a cui concorrono, in modo da avere maggiore manutenibilità e riusabilità;
- Basso accoppiamento: non dovrà avere dipendenze indesiderabili.

3.2.4.3 Design Patterns

Finita l'attività di Analisi, sarà compito dei Progettisti adottare opportune soluzioni progettuali a problemi ricorrenti. Tali soluzioni dovranno essere flessibili e consentire una certa libertà d'uso ai Programmatori. Per ogni Design Pattern G utilizzato, esso andrà riportato all'interno del documento di Specifica Tecnica riportando un diagramma che lo illustri e una descrizione testuale inerente la sua applicazione e utilità all'interno dell'architettura.

3.2.4.4 UML 2.0

Al fine di rendere più chiare le scelte progettuali adottate e ridurre le possibili ambiguità, sarà necessario fare largo uso di vari tipi di diagrammi $UML_{\rm G}$ 2.0, tra cui:

- Diagrammi delle classi: definiscono relazioni, metodi e attributi di classi e tipi, astraendosi da un qualsiasi linguaggio di programmazione;
- Diagrammi dei *package* _G : illustrano raggruppamenti di classi che condividono la stessa causa di cambiamento e necessitano di essere riusate assieme;

- Diagrammi di sequenza: servono a descrivere le interazioni che avvengono fra gli oggetti che devono implementare collettivamente un comportamento, rappresentando sequenze di azioni tramite scelte definite (ad esempio, una sequenza di invocazioni tra metodi);
- Diagrammi delle attività: descrivono il flusso di operazioni di una attività (ad esempio un algoritmo), descrivendone la logica procedurale.

E' possibile inoltre fare uso di altre tipologie di diagrammi, come diagrammi delle componenti, di macchine a stati o di $\it deployment$ $_{\rm G}$, se necessario.

3.2.5 Codifica

3.2.5.1 Scopo

Nella seguente sezione sono riporte le norme da seguire durante la programmazione da parte dei programmatori. Lo scopo di queste norme consiste nel dare delle linee guida ai programmatori in modo tale che il codice risulti leggibile e aiuti durante la fase di mantenimento, verifica e validazione.

3.2.5.2 Descrizione

Per le Coding Conventions aderiremo alla GNU GCC https://gcc.gnu.org/codingconventions.html

3.3 Strumenti

3.3.1 IDE

Il gruppo di progetto lavora sul seguente IDE:

• Qt: per la codifica relativa al software richiesto dal progetto il gruppo usa l' $IDE_{\rm G}$ Qt $_{\rm G}$, in virtù della sua diffusione, potenza e semplicità d'uso. Qt è reperibile al seguente link:

https://www.qt.io/

3.3.2 Compilazione

Per la compilazione vengono utilizzati i seguenti strumenti:

 \bullet GCC: il compilatore che verrà usato per la compilazione del software è il GCC $_{\rm G}$ (GNU Compiler Collection). Il compilatore è reperibile al seguente link:

https://gcc.gnu.org/

• Cmake: per semplificare la compilazione verrà usato $\mathit{Cmake}_{\mathsf{G}}$. Lo strumento è reperibile al seguente link:

https://cmake.org/

3.3.3 GUI

Per progettare l'interfaccia grafica vengono utilizzati i seguenti strumenti:

 \bullet Qt Creator: per progettare l'interfaccia grafica viene utilizzato Qt Creator $_{\rm G}$. Questo strumento permette di realizzare interfacce grafiche mediante le librerie grafiche Qt $_{\rm G}$, diventate in questo ambito quasi uno standard per piattaforme Linux Based. Qt Creator è disponibile al seguente link:

https://www.qt.io/qt-features-libraries-apis-tools-and-ide/

3.3.4 Tracciento requisiti e casi d'uso

Per catalogare i requisiti e i casi d'uso il gruppo utilizzerà l'applicativo web $Tender_{\rm G}$, software in grado di velocizzare e automatizzare la gestione dei requisiti e dei casi d'uso.

3.3.5 Diagrammi UML

Per la produzione di diagrammi UML utilizzeremo Astah $_{\rm G}$, software in grado di velocizzare la produzione dei diagrammi. Lo strumento è accessibile al seguenti link:

http://astah.net/

4. Processi di supporto

4.1 Gestione della configurazione

4.1.1 Versionamento

Ogni componente versionabile del progetto, nonché la documentazione formale, è versionata mediante la tecnologia $Git_{\rm G}$, nello specifico utilizzando il servizio gratuito GitHub. Per la condivisione di materiale informale e/o non versionabile si predilige invece una cartella condivisa sullo spazio cloud offerto da $Google\ Drive_{\rm G}$. Le sopracitate tecnologie sono approfondite nel capitolo Strumentazione di questo documento.

4.1.2 Controllo della configurazione

Per identificare e tracciare le richieste di cambiamenti, analizzare e valutare le modifiche effettuate e approvare o meno le quelle proposte, viene utilizzato il sistema di $issue\ _{\rm G}$ di Github. Le issue riportano nella loro descrizione la ragione della modifica effettuata, nonché la o le $commit\ _{\rm G}$ ad esse associate ed eventuali ulteriori issue correlate.

4.1.3 Stato della configurazione

Successivamente ad ogni revisione, l'ultima commit effettuata viene marcata con un'etichetta di versione (essa costituirà la nuova baseline $_{\rm G}$ di riferimento). L'esito delle revisioni vengono riportate in appendice al PQ con le relative correzioni da apportare ai prodotti oggetto della revisione.

4.1.4 Rilasci e consegne

I rilasci e le consegne dei prodotti software e della documentazione correlata sono sottoposti a verifica e validazione. Prima di ogni revisione viene

consegnato al Committente, secondo tempistiche stabilite dal PP e mezzi concordati, un archivio contenente tutta la documentazione richiesta in formato $PDF_{\rm G}$. La consegna è accompagnata da una Lettera di Presentazione, anch'essa inclusa nell'archivio.

4.2 Gestione della qualità

4.2.1 Classificazione degli obiettivi

Gli obiettivi di qualità stabiliti nel PQ rispettano la seguente notazione:

Dove:

- **Tipo:** indica se l'obiettivo si riferisce a prodotti o a processi. Può assumere i valori:
 - **P:** per indicare i processi;
 - **PP:** per indicare i prodotti;
- Oggetto: indica, per gli obiettivi di prodotto, se esso si riferisce a documentazione o a software. Può assumere i valori:
 - **D**: per indicare i documenti;
 - S: per indicare il software;
- **ID:** identifica univocamente l'obiettivo tramite un codice numerico incrementale;
- Nome: titolo dell'obiettivo;
- Descrizione: breve descrizione dell'obiettivo.

4.2.2 Classificazione delle metriche

Le metriche stabilite nel PQ rispettano la seguente notazione:

Dove:

- **Tipo:** indica se la metrica si riferisce a prodotti o a processi. Può assumere i valori:
 - P: per indicare i processi;
 - **PP:** per indicare i prodotti;
- Oggetto: indica, per le metriche di prodotto, se esso si riferisce a documentazione o a software. Può assumere i valori:
 - **D**: per indicare i documenti;
 - S: per indicare il software;
- ID: identifica univocamente la metrica tramite un codice numerico incrementale:
- Nome: titolo della metrica.

4.3 Documentazione

4.3.1 Scopo

Lo scopo del processo di documentazione è descrivere l'insieme di regole adottate dal gruppo per la redazione della documentazione di progetto. Il gruppo si prefigge di definire in questo capitolo norme atte alla stesura di una documentazione il più possibile formale, corretta, coerente e coesa.

4.3.2 Struttura dei documenti

4.3.2.1 Template

Il gruppo utilizza un template LATEX appositamente codificato per uniformare l'aspetto dei documenti e velocizzare il processo di documentazione. Il template include frontespizio, registro delle modifiche, indice, piè di pagina e intestazione, elementi del documento approfonditi di seguito.

4.3.2.2 Frontespizio

Il frontespizio di ogni documento è strutturato nel seguente modo:

• Logo del gruppo: il logo identificativo del gruppo;

- Nome del documento: indica il nome del documento (ex: Norme di progetto);
- Informazioni sul documento: tabella riassuntiva indicante le seguenti informazioni di spicco sul documento:
 - Versione: indica un numero che identifica la versione corrente del documento. La struttura del numero di versionamento è approfondita di seguito in questa sezione;
 - Data di redazione: indica l'ultima data in cui il documento è stato modificato;
 - Redattori: indica il sottoinsieme dei membri del gruppo che ha partecipato alla redazione del documento;
 - Verificatori: indica il sottoinsieme dei membri del gruppo che ha partecipato alla verifica del documento;
 - **Distribuzione:** indica a chi è destinato il documento;
 - Uso: indica se l'uso del documento è interno o esterno al gruppo.

4.3.3 Nomenclatura di versionamento dei documenti

Ogni documento è accompagnato da un numero di versionamento, indicato nella tabella *Informazioni sul documento*, dove ogni versione corrisponde ad una riga nel registro delle modifiche, che è espresso nel modo seguente:

$$v \; \Big\{A\Big\}. \Big\{B\Big\}. \Big\{C\Big\}$$

Dove:

- A: è l'indice principale. Viene incrementato dal Responsabile di Progetto all'approvazione del documento e corrisponde al numero di revisione.
- B: è l'indice di verifica. Viene incrementato dal *Verificatore* $_{\rm G}$ ad ogni verifica. Quando viene incrementato A, riparte da 0.
- C: è l'indice di modifica. Viene incrementato dal redattore del documento ad ogni modifica. Quando viene incrementato B, riparte da 0.

4.3.3.1 Registro delle modifiche

Dopo il frontespizio segue il registro delle modifiche, che cataloga le modifiche apportate al documento durante il suo sviluppo indicando per ognuna:

- Versione del documento dopo la modifica;
- Data della modifica;
- Nome e cognome dell'autore della modifica;
- Breve descrizione della modifica.

4.3.3.2 Indice

Ogni documento possiede un indice che ne agevola la consultazione e permette una visione generale degli argomenti trattati nello stesso. L'indice è strutturato gerarchicamente ed è collocato dopo il registro delle modifiche.

4.3.3.3 Intestazione

Fatta eccezione per il frontespizio, tutte le pagine del documento contengono un'intestazione. Essa contiene:

- Logo del gruppo: il logo identificativo del gruppo Graphite, collocato a sinistra;
- **Titolo del capitolo:** indicazione del titolo del capitolo corrente, collocata a destra;

4.3.3.4 Piè di pagina

Fatta eccezione per il frontespizio, tutte le pagine del documento contengono un piè di pagina. Esso contiene:

- Data e ora: indica data e ora dell'ultima modifica del documento, collocate a sinistra;
- Numero di pagina: numerazione progressiva delle pagine, collocato a destra.

4.3.3.5 Note a piè di pagina

In caso di presenza in una pagina interna di note da esplicare, esse vanno indicate nella pagina corrente, in basso a sinistra. Ogni nota deve riportare un numero, corrispondente alla relativa parola o frase che la riferisce, e una descrizione.

4.3.3.6 Contenuto principale

Il contenuto principale del documento è organizzato secondo la seguente struttura gerarchica:

- 1. Capitolo;
- 2. Sezione;
- 3. Sottosezione;
- 4. Sottosottosezione.

4.3.4 Norme tipografiche

4.3.4.1 Stile del testo

- Glossario: ogni parola contenuta nel glossario deve essere marcata, solo alla sua prima occorrenza in ogni documento, in corsivo e con una G maiuscola a pedice. Tale formattazione viene assicurata dalla macro $\glossario\{termine\}\{riferimento\ al\ glossario\}$ che stampa il termine con la giusta formattazione $(termine_G)$ e controlla che il suo riferimento sia presente nel glossario, restituendo un errore di compilazione in caso contrario:
- Grassetto: il grassetto viene applicato ai titoli e agli elementi di un elenco puntato seguiti da una descrizione. Esso può inoltre essere usato per mettere in particolare risalto termini significativi;
- Corsivo: il corsivo viene utilizzato per:
 - citazioni;
 - termini di glossario;
 - attività del progetto;
 - ruoli del progetto;
 - riferimenti ad altri documenti.

Esso può inoltre essere usato per mettere in particolare risalto termini particolari solitamente poco usati o conosciuti;

• Maiuscolo: il maiuscolo viene usato solo per gli acronimi.

4.3.4.2 Elenchi puntati

Gli elenchi puntati servono ad esprimere in modo sintetico un concetto, evitando frasi lunghe e dispersive. Ogni voce di un elenco puntato termina con un punto e virgola, ad eccezione dell'ultima, che termina invece con un punto.

4.3.4.3 Formati

• Date:

GG-MM-AAAA

- **GG:** rappresenta il giorno del mese in cifre;
- MM: rappresenta il mese in cifre;
- **AAAA:** rappresenta l'anno in cifre per intero.

• Orari:

HH:MM

- **HH:** rappresenta l'ora;
- MM: rappresenta i minuti.

• Nomi ricorrenti:

- Ruoli di progetto: ogni nome di ruolo di progetto viene scritto in corsivo e con l'iniziale maiuscola;
- Nomi dei documenti: ogni nome di documento viene scritto in corsivo e con l'iniziale di ogni parola che non sia un articolo maiuscola;
- Nomi propri: ogni nome proprio di persona deve essere scritto nella forma Nome Cognome.
- Link: i link esterni devono essere scritti attraverso il comando L^AT_EX *url* e sono distinti dal colore blu. I link interni, per esempio quelli dell'indice, non vengono evidenziati.

4.3.4.4 Sigle

È previsto l'utilizzo delle seguenti sigle:

- AR: Analisi dei Requisiti;
- **PP:** Piano di Progetto;
- **NP:** Norme di Progetto;
- **SF:** Studio di Fattibilità;
- **PQ**: Piano di Qualifica;
- **ST:** Specifica Tecnica;
- MU: Manuale utente G;
- **DP:** Definizione di Prodotto;
- RR: Revisione dei requisiti;
- **RP:** Revisione di progettazione;
- **RQ**: Revisione di qualifica;
- RA: Revisione di accettazione;
- Re: Responsabile di Progetto;
- Am: Amministratore di Progetto;
- An: Analista;
- \bullet Pt: Progettista;
- **Pr:** Programmatore _G;
- Ve: Verificatore.

4.3.5 Elementi grafici

4.3.5.1 Tabelle

Ogni tabella è corredata da una didascalia in cui compare il suo numero identificativo (per agevolarne il tracciamento) ed una breve descrizione del suo contenuto.

4.3.5.2 Immagini

Ogni immagine deve essere centrata e separata dai paragrafi a lei precedenti e successivi. Le immagini sono corredate da una didascalia analoga a quella delle tabelle. Tutti i diagrammi vengono inseriti come immagini.

4.3.6 Classificazione dei documenti

4.3.6.1 Documenti informali

Tutte le versioni dei documenti che non siano state approvate dal *Responsabile di Progetto* sono ritenute informali e, in quanto tali, sono considerate esclusivamente ad uso interno.

4.3.6.2 Documenti formali

Una versione di un documento viene considerata formale quando è stata approvata dal *Responsabile di Progetto*. Solo i documenti formali possono essere distribuiti all'esterno del gruppo.

4.3.6.3 Documenti interni

Un documento viene considerato interno quando il suo utilizzo è destinato al solo gruppo Graphite.

4.3.6.4 Documenti esterni

Un documento viene considerato esterno quando il documento viene condiviso con i Committenti e con la Proponente.

4.3.6.5 Verbali

Per ogni incontro interno o esterno è prevista la redazione di un verbale, contenente le seguenti informazioni:

• Informazioni generali:

- Luogo;
- Data:
- Orario di inizio;
- Orario di fine;
- Assenti(se presenti);

- Partecipanti esterni(nel caso fosse un incontro esterno);
- **Resoconto:** contenente annotazioni riguardo gli argomenti discussi ed eventuali decisioni prese.

I verbali esterni dovranno avere la seguente nomenclatura:

$$VE - DATA$$

Mentre quelli interni la seguente:

$$VI - DATA$$

I verbali dovranno essere approvati dal Responsabile di Progetto al termine di ogni incontro.

4.3.7 Ciclo di vita del documento

Ogni documento non formale completato dovrà essere sottoposto al Responsabile di Progetto, che a sua volta si occuperà di incaricare i Verificatori di controllarne la correttezza del contenuto e della forma. Se vengono individuati degli errori, i Verificatori li riporteranno al Responsabile di Progetto, che a sua volta incaricherà il redattore del documento di correggerli. Questo ciclo va ripetuto fino a che il documento non è considerato corretto. Successivamente sarà sottoposto al Responsabile di Progetto, che potrà approvarlo o meno. Quando approvato, il documento verrà considerato un documento formale. In caso contrario il Responsabile di Progetto dovrà comunicare le motivazioni per cui il documento non è stato approvato, specificando le modifiche da apportare.

4.3.8 Nomenclatura dei documenti

I documenti formali, fatta eccezione per i Verbali di riunione, adottano il seguente sistema di nomenclatura:

NomeDelDocumento vX.Y.Z

Dove:

- NomedelDocumento: indica il nome del documento, senza spazi con lettera maiuscola per ogni parola che non sia un articolo o una preposizione;
- vX.Y.Z: indica l'ultima versione del documento approvata dal Responsabile di Progetto.

4.3.9 Formato dei file

I file legati alla documentazione vengono salvati in formato .tex durante il loro ciclo di vita. Quando un documento raggiunge lo stato di "Approvato" viene creato un file in formato PDF contenente la versione del documento approvata dal *Responsabile*.

4.3.10 Strumenti

4.3.10.1 LATEX

Per la stesura della documentazione il gruppo ha utilizzato il linguaggio LATEX per via delle possibilità che esso offre:

- creazione di documenti formali e divisi in sezioni molto velocemente;
- separazione del contenuto dalla formattazione tramite un file template separato e condiviso da tutti i documenti;
- personalizzazione del documento grazie all'elevato numero di librerie.

4.3.10.2 TexStudio

Per la stesura del codice LaTeX viene utilizzato l'editor $TexStudio_{\rm G}$, in virtù delle innumerevoli feature che offre gratuitamente e del fatto che si tratta di un'applicazione cross-platform supportata dai maggiori sistemi operativi.

http://www.texstudio.org/

4.3.10.3 Lucidchart

Per la realizzazione di diagrammi illustrativi per i documenti viene utilizzata la piattaforma web $\ Lucidchart$ $_{\rm G}$.

https://www.lucidchart.com/

4.4 Verifica

4.4.1 Scopo

Il processo di verifica ha lo scopo di accertare che non vengano introdotti errori nel prodotto a seguito dello svolgimento delle attività dei processi.

4.4.2 Descrizione

Il processo di verifica viene instanziato per ogni processo in esecuzione, qualora esso raggiunga un livello di maturità significativo o vi fossero modiche sostanziali al suo stato. Per ogni processo viene verificata la qualità dello stesso e dei suoi prodotti. Ognuno dei 5 periodi descritti nel Piano di Progetto v 4.0.0 produce degli esiti diversi, dunque le procedure di verifica saranno specializzate per ognuno di essi. Gli esiti delle attività di verifica sono riportati in un'appendice dedicata nel PQ. Concluso il processo di verifica, viene instanziato quello di validazione, in cui nuovi Verificatori designati dal Responsabile accertano che i risultati prodotti siano conformi agli obiettivi di qualità. Se l'esito del processo di validazione è positivo, il Responsabile di Progetto provvede all'approvazione dei documenti eødel software a lui sottoposti. In relazione alle attività di verifica, il gruppo si riferisce alle metriche descritte nelle sezioni §3 "Metriche e misure" del Piano di Qualifica v 1.0.0.

- Analisi: consiste nell'analisi del codice sorgente e la sua successiva esecuzione. Viene effettuata tramite due tecniche, l'analisi statica e l'analisi dinamica;
- Test: definisce tutti i test che vengono eseguiti sul prodotto software.

4.4.3 Verifica dei processi

L'esecuzione dei processi viene monitorata e documentato a fine periodo nell'appendice §B "Resoconto delle attività di verifica" nel PQ, secondo le metodologie indicate dallo standard ISO/IEC 15504 $_{\rm G}$ illustrato in appendice §A.1 dello stesso.

4.4.4 Verifica dei prodotti

La verifica dei prodotti assume connotazioni differenti a seconda della tipologia di prodotto in esame: per i documenti si prediligono tecniche di analisi statica, per il software tecniche di analisi dinamica.

4.4.5 Verifica dei documenti

4.4.5.1 Analisi statica

L'analisi statica è una tecnica che permette di individuare anomalie all'interno di documenti e codice sorgente durante tutto il loro ciclo di vita. Si può realizzare tramite due tecniche diverse:

- Walkthrough: viene svolta effettuando una lettura a largo spettro. Si tratta di un'attività collaborativa onerosa e poco efficiente. Essa viene utilizzata principalmente durante la fase iniziale del progetto, in cui non tutti i membri del gruppo hanno piena padronanza e conoscenza delle Norme di Progetto e del PQ. Tramite analisi Walkthrough è possibile stilare una lista di controllo contenente gli errori più comuni.
- Inspection: viene svolta una lettura mirata e strutturata, volta a localizzare gli errori segnalati nella lista di controllo con il minor costo possibile. Con l'incremento dell'esperienza, la lista di controllo viene progressivamente estesa rendendo l'inspection via via più efficacie.

Il gruppo utilizza entrambe le tecniche di analisi statica e fa inoltre uso di uno strumento automatico per il calcolo dell' $indice\ Gulpease\ _{\rm G}$, la cui descrizione è illustrata nel capitolo Strumentazione di questo documento.

4.4.5.2 Procedura di verifica dei documenti

- 1. Assegnazione della issue di verifica ad un *Verificatore* da parte del *Responsabile di progetto*;
- 2. Controllo degli errori comuni secondo checklist;
- 3. Lettura dei contenuti e correzione degli errori logici e sintattici;
- 4. Tracciamento degli errori rilevati;
- 5. Notifica dell'issue come verified (precedentemente verify).

4.4.6 Verifica del software

La verifica del software avviene mediante tecniche di analisi dinamica, con la creazione di test automatici e tramite misu- razioni apposite delle metriche illustrate in §3 "Metriche e Misure" del PQ.

4.4.6.1 Analisi dinamica

L'analisi dinamica è una tecnica di analisi del prodotto software che richiede la sua esecuzione. Viene effettuata mediante dei test volti a verificare il funzionamento del prodotto e nel caso in cui vengano riscontrate anomalie ne permette l'identificazione. I test devono essere ripetibili, cioè deve essere possibile, dato lo stesso input nello stesso ambiente, ottenere lo stesso output. Per ogni test devono dunque essere definiti i seguenti parametri:

- Ambiente: il sistema hardware e software sul quale verrà eseguito il test;
- Stato iniziale: lo stato iniziale dal quale il test viene eseguito;
- **Input**: l'input inserito;
- Output: l'output atteso;
- Istruzioni aggiuntive: ulteriori istruzioni su come eseguire il test e su come interpretare i risultati ottenuti.

4.4.6.2 Test

Di seguito vengono riportate le tipologie di test eseguite sul software prodotto:

• Test di unità: i test di unità hanno l'obiettivo primario di isolare la parte più piccola di software testabile, indicata col nome di unità, per stabilire se essa funziona esattamente come previsto. Ogni test di unità deve avere almeno un metodo correlato da testare e deve rispettare la seguente nomenclatura:

TU[Progressivo]

• Test di integrazione: i test di integrazione valutano due o più unità già sottoposte a test come fossero un solo componente, testando le interfacce presenti tra loro al fine di rilevare eventuali inconsistenze. Risulta conveniente testare le unità a coppie aggiungendone gradualmente altre, così da poter rendere immediatamente tracciabile l'origine delle anomalie. Ogni test d'integrazione deve avere almeno un paio di componenti correlate da testare e rispettare la seguente nomenclatura:

TI[Progressivo]

• Test di regressione: i test di regressione devono essere eseguiti ad ogni modifica di un' *implementazione* _G all'interno del sistema. A tal fine è necessario eseguire sul codice modificato i test esistenti, in modo da stabilire se le modifiche apportate hanno alterato elementi precedentemente funzionanti. Ogni test di regressione deve rispettare la seguente nomenclatura:

TR[Progressivo]

• Test di sistema: i test di sistema determinano la validazione del prodotto software finale e verificano dunque che esso soddisfi in modo

completo i requisiti fissati. Ogni test di sistema deve avere un requisito correlato da testare e deve rispettare la seguente nomenclatura:

TS[Tipologia][Importanza][Codice]

Dove Tipologia, Importanza e Codice sono dedotti dal requisito correlato che il test va a verificare.

• Test di accettazione: il test di accettazione prevede il collaudo G del prodotto in presenza del proponente G e, in caso del superamento di tale collaudo, ne consegue il rilascio ufficiale del prodotto sviluppato. Ogni test di validazione deve avere un requisito correlato da testare e deve rispettare la seguente nomenclatura:

TV[Tipologia][Importanza][Codice]

Dove Tipologia, Importanza e Codice sono dedotti dal requisito correlato che il test va a verificare.

4.4.6.3 Procedura di verifica del software

- 1. Implementazione del codice;
- 2. Commit del codice sul repository;
- 3. Esecuzione della build;
- 4. Esecuzione della suite di test;
- 5. Esecuzione della build testata;
- 6. Calcolo della copertura del codice e delle altre metriche pertinenti con relativa documentazione dei risultati.

4.4.7 Strumenti a supporto della verifica

4.4.7.1 Verifica della documentazione

- Verifica ortografica: Per eseguire controlli ortografici sulla documentazione viene utilizzata la verifica dell'ortografia in tempo reale, strumento integrato in TexStudio che sottolinea in rosso le parole errate secondo la lingua italiana;
- Verifica della leggibilità: Per calcolare l' indice Gulpease G a verifica della leggibilità dei documenti viene utilizzato il tool fornito dal sito https://farfalla-project.org/readability_static/.

4.4.7.2 Verifica del software

• Analisi statica: Per l'analisi statica del codice viene usato il software Valgrind G. La suite G di strumenti Valgrind fornisce numerosi strumenti di debugging G e di profiling G che aiutano a rendere i programmi più performanti e più corretti. Il più popolare di questi strumenti è chiamato Memcheck, ed è in grado di rilevare molti errori relativi alla memoria comuni nei programmi C e C ++ e che possono causare arresti anomali e comportamenti imprevedibili. Valgrind è accessibile al seguente link:

http://valgrind.org/

• Analisi dinamica: Per l'esecuzione dei test di analisi dinamica viene usato il software SonarQube G, una piattaforma open source per la gestione della qualità del codice. SonarQube è un'applicazione web che produce report sul codice duplicato, sugli standard di programmazione, i test di unità, il code coverage G, la complessità, i bug potenziali, i commenti, la progettazione e l'architettura. SonarQube è accessibile al seguente link:

https://www.sonarqube.org/

• Metriche legate al software: Per il controllo delle varie metriche viene utilizzato il software Better Code Hub G. Better Code Hub è un servizio di analisi del codice sorgente web-based che controlla il codice per la conformità rispetto a 10 linee guida per l'ingegneria del software e fornisce un feedback G immediato per capire dove concentrarsi per miglioramenti di qualità. Better Code Hub è accessibile al seguente link:

https://bettercodehub.com/

4.5 Validazione

4.5.1 Scopo

Il processo di validazione ha lo scopo di accertare se il prodotto software e relativa documentazione verificati sono conformi a quanto preventivato.

4.5.2 Descrizione

Questo processo consta di due principali attività:

• Test di sistema e di validazione;

• Collaudo;

Le attività svolte nel processo di validazione sono dunque le seguenti:

- Pianificazione dei test da eseguire e relativo tracciamento;
- Conduzione di test che stressino il software nei suoi punti critici, ovvero laddove è più probabile il verificarsi di errori;
- Verifica del soddisfacimento dei requisiti secondo le informazioni di tracciamento.

È compito dei *Progettisti* definire la pianificazione e la progettazione dei test. Compito dei *Verificatori* è invece eseguirli e tracciarne i risultati tramite gli strumenti a ciò preposti. Per garantire la dovuta imparzialità nell'esecuzione, chi esegue un determinato test è necessariamente un membro del gruppo che non lo ha progettato ed implementato. Ad ulteriore garanzia di indipendenza, è intenzione del gruppo concordare un incontro con il committente in cui effettuare i test di sistema e validazione.

4.5.3 Procedura di validazione dei documenti

- 1. Assegnazione della issue relativa alla validazione ad un *Verificatore* da parte del *Responsabile*;
- 2. Calcolo dell'indice Gulpease e confronto del valore ottenuto con i parametri di riferimento;
- 3. Se i risultati rilevati vengono ritenuti soddisfacenti, il documento viene approvato.

4.5.4 Procedura di validazione del software

- 1. Esecuzione dei test di unità;
- 2. Esecuzione dei test di integrazione;
- 3. Esecuzione dei test di sistema;
- 4. Esecuzione dei test di validazione;

4.5.5 Collaudo

A seguito di una soddisfacente verifica e validazione del software, è intenzione del gruppo concordare un incontro con il Committente per eseguire un collaudo.

5. Processi Organizzativi

5.1 Scopo

Lo scopo di questo processo è fornire norme e strumenti per organizzare il lavoro del gruppo per il corretto svolgimento del progetto.

5.2 Descrizione

Durante questo processo sono trattati:

- Ruoli di progetto;
- Comunicazioni;
- Incontri;
- Strumenti di coordinamento;
- Strumenti di versionamento;
- Rischi.

5.3 Ruoli di progetto

Ogni ruolo viene ricoperto da ciascun componente del gruppo a turno, dando la possibilità ad ogni membro di fare esperienza in ognuno di essi. L'organizzazione e la pianificazione delle attività da svolgere in ogni ruolo è regolata dal documento *Piano di Progetto v1.0.0*.

I ruoli si suddividono in:

5.3.1 Amministratore di Progetto

L'Amministratore di Progetto deve controllare e amministrare tutto l'ambiente di lavoro con piena responsabilità sulla capacità operativa e sull'efficienza. Le sue mansioni sono:

- ricerca di strumenti che migliorino l'ambiente di lavoro e che lo automatizzino ove possibile;
- gestione del versionamento;
- controllo di versioni e configurazioni del prodotto software;
- risoluzione dei problemi di gestione dei processi;
- \bullet controllo della $\ \mathit{qualit\`a}_{\ \mathrm{G}}\ \ \mathrm{sul}$ prodotto.

5.3.2 Responsabile di Progetto

Il Responsabile di Progetto è il punto di riferimento sia per il committente G che per il fornitore. Esso deve anche approvare le scelte prese dal gruppo e se ne assume la responsabilità.

Le sue mansioni sono:

- coordinare e pianificare le attività di progetto;
- approvare la documentazione;
- effettuare uno studio e gestire in modo corretto i rischi;
- approvare l'offerta economica;
- gestire le risorse umane distribuendo in modo corretto i carichi di lavoro.

5.3.3 Analista

L'Analista si occupa dell'analisi dei problemi e del dominio applicativo. Normalmente questo ruolo non rimane attivo per tutta la durata del progetto, bensì concentra tutta la propria attività nelle fasi iniziali.

Le sue principali mansioni sono:

- comprensione del problema e della sua complessità;
- produzione dello Studio di Fattibilità e dell'Analisi dei Requisiti.

5.3.4 Progettista

Il *Progettista* gestisce gli aspetti tecnologici e tecnici del progetto. Le sue mansioni sono:

- rendere facilmente mantenibile il progetto;
- effettuare scelte efficienti ed ottimizzate su aspetti tecnici del progetto.

5.3.5 Verificatore

Il *Verificatore* deve garantire una verifica completa ed esaustiva del progetto basandosi sulle sue solide conoscenze delle sue normative.

Le sue mansioni sono:

• controllare le attività del progetto secondo le normative prestabilite.

5.3.6 Programmatore

Il *Programmatore* è il responsabile della codifica del progetto e delle componenti di supporto, che serviranno per effettuare le prove di verifica e validazione sul prodotto.

Le sue mansioni sono:

- versionamento del codice prodotto;
- implementare le decisioni del *Progettista*;
- realizzazione degli strumenti per la verifica e la validazione del software;
- scrittura di un codice pulito e facile da mantenere, che rispetti le *Norme* di *Progetto*.

5.4 Procedure

5.4.1 Gestione delle comunicazioni

5.4.1.1 Comunicazioni interne

Le comunicazioni interne avvengono tramite un tool di messaggistica multipiattaforma di nome $Slack_{\rm G}$ con funzionalità specifiche per gruppi di lavoro. Tale strumento offre la possibilità di ricevere notifiche riguardanti le modifiche della $repository_{\rm G}$ $GitHub_{\rm G}$, creare canali tematici per rendere più

efficiente lo scambio e il reperimento delle informazioni, condividere file ed immagini utili allo sviluppo del progetto.

Per comunicazioni informali e per ricevere notifiche riguardanti le modifiche della repository $_{\rm G}$ GitHub $_{\rm G}$ verrà usato un ulteriore tool di messaggistica di nome Telegram $_{\rm G}$.

Per mantenere sotto continuo controllo l'avanzamento dei lavori è prevista, almeno una volta a settimana, una conversazione su Slack in cui ogni membro del gruppo indica lo stato di avanzamento del Task G assegnatogli.

5.4.1.2 Comunicazioni esterne

Il Responsabile del Progetto è tenuto a mantenere le comunicazioni esterne utilizzando una cartella di posta elettronica appositamente creata:

graphite.swe@gmail.com.

Il Responsabile del Progetto deve mantenere informati i restanti componenti del gruppo riguardo alle discussioni con terzi utilizzando i canali di comunicazione interna.

In ogni caso per evitare disguidi interni è previsto che alla ricezione di una mail sull'indirizzo di posta elettronica il messaggio venga inoltrato a tutti i componenti del gruppo.

5.4.2 Gestione degli incontri

5.4.2.1 Incontri interni

Il Responsabile di progetto è incaricato di organizzare gli incontri interni dando comunicazione di data e ora tramite i canali di comunicazione. Inoltre deve essere comunicato prima di ogni riunione l'ordine del giorno sempre dal Responsabile di progetto.

Per mantenere sotto continuo controllo l'avanzamento dei lavori è previsto almeno un incontro settimanale con l'intero gruppo.

Ogni componente del gruppo ha diritto di presentare una richiesta di organizzazione di un incontro al *Responsabile di progetto* il quale può accogliere o meno la proposta.

5.4.2.2 Incontri Esterni

Il Responsabile di Progetto deve organizzare gli incontri esterni con il committente e comunicare al proprio gruppo data e ora in cui essi avvengono. Come per gli incontri interni, ogni componente del gruppo ha diritto ad una

richiesta di organizzazione di un incontro esterno.

Per ogni incontro esterno deve essere preventivamente stilata una serie di domande tale da giustificare la richiesta di un appuntamento con il committente.

5.4.3 Gestione degli strumenti di coordinamento

5.4.3.1 Ticketing

Per la suddivisione del carico di lavoro in Task equamente distribuiti tra tutti i componenti del gruppo viene utilizzata la piattaforma $Wrike_{\rm G}$. Tale compito è dato al Responsabile di Progetto. Wrike mostra in modo efficace nella propria interfaccia il quadro completo di tutti i Task inseriti con relativo status (completato, in corso o libero), persona assegnata e scadenza. Quando viene inserito, viene assegnato o cambia stato un Task viene inviata una mail ad ogni componente del gruppo e, per tutti i componenti che fanno uso dell'applicazione mobile, viene inviata una notifica sugli smartphone collegati a Wrike.

L'assegnazione dei Task avviene secondo il seguente schema:

- inserire un titolo al Task;
- dividere in più Subtask il Task e titolarli;
- indicare la persona a cui è stato assegnato ogni Subtask;
- inserire la data entro cui consegnare i documenti/file nella repository prefissata;
- inserire una descrizione che contiene un breve riassunto del compito assegnato e il ruolo assunto in quella fase del progetto.

5.4.4 Gestione degli strumenti di versionamento

5.4.4.1 Repository

Per il versionamento e il salvataggio dei file è previsto l'utilizzo di repository su GitHub. L'Amministratore di Progetto si deve occupare della creazione dei repository. In seguito l'Amministratore inserirà tutti i componenti del gruppo, i quali dovranno essere in possesso di un account personale, come collaboratori.

È previsto l'utilizzo di un repository di nome *progettoSWE* suddiviso nel seguente modo:

- Documenti: contiene la documentazione dell'attività di progetto.
- Prodotto: contiene i file del prodotto da realizzare.

5.4.4.2 Tipi di file e .gitignore

Nelle cartelle contenenti tutti i documenti saranno presenti solamente i file .tex, .pdf, .jpg, .png. Le estensioni dei file generati automaticamente dalla compilazione sosno stati aggiungi a .gitignore, e quindi vengono ignorati e resi invisibili a $Git_{\rm G}$.

5.4.4.3 Norme sui commit

Ogni volta che vengono effettuate delle modifiche ai file del repository, le quali poi vengono caricate su di esso, bisogna specificarne le motivazioni. Questo avviene utilizzando il comando *commit* accompagnato da un messaggio riassuntivo e una descrizione in cui va specificato:

- la lista dei file coinvolti;
- la lista delle modifiche effettuate, ordinate per ogni singolo file.

5.4.5 Gestione dei rischi

Il Responsabile di Progetto ha il compito di rilevare i rischi indicati nel Piano di Progetto v1.0.0. Nel caso ne vengano individuati di nuovi dovrà aggiungerli nell'analisi dei rischi.

La procedura da seguire per la gestione dei rischi è la seguente:

- registrare ogni riscontro dei rischi nel *Piano di Progetto v1.0.0*;
- aggiungere i nuovi rischi individuati nel Piano di Progetto v1.0.0;
- individuare problemi non calcolati e monitorare i rischi già previsti;
- ridefinire, se necessario, le strategie di progetto.

5.5 Strumenti

5.5.1 Sistema operativo

Il gruppo di progetto lavora sui seguenti sistemi operativi:

• Ubuntu 17.10 x64;

- Ubuntu 16.04 *LTS* _G x64;
- Windows 10 Home x64;
- Windows 10 Pro x64;
- Windows 7 Home Premium.

5.5.2 Slack

Slack è uno strumento di collaborazione aziendale utilizzato particolarmente per lo scambio di messaggi tra componenti di un team. L'idea di partenza di questo software è di essere un totale rimpiazzo degli scambi di E-mail e sms ma a questo si aggiunge la possibilità di aggiungere plugin per la notifica di attività annesse al proprio ambiente di lavoro.

Verranno in particolare sfruttati i plugin per la notifica di attività sulla repository e per discussioni riguardo ai task presenti sulla piattaforma Wrike.

5.5.3 Telegram

Telegram è una applicazione di messaggistica nata come applicazione mobile e successivamente portata anche su Windows, Mac e varie distribuzioni Linux. Rispetto agli altri sistemi di messaggistica Telegram consente un facile passaggio di immagini e documenti in più formati mantenendo inoltre nel proprio cloud storage tali file per un agevole recupero su qualsiasi dispositivo. È possibile creare gruppi di utenti la cui chat ha soprattutto il valore aggiunto di poter contenere sistemi automatici per l'organizzazione di sondaggi e la comunicazione di messaggi importanti da tenere in sovraimpressione.

5.5.4 GitHub

Git Hub è un servizio di *hosting* $_{\rm G}$ per progetti software. Il sito è principalmente utilizzato dagli sviluppatori, che caricano il codice sorgente dei loro programmi e lo rendono scaricabile dagli utenti. Può essere utilizzato anche per la condivisione e la modifica di file di testo e documenti revisionabili. Un utente può interagire con lo sviluppatore tramite un sistema di issue tracking, pull request e commenti che permette di migliorare il codice della repository, risolvendo bug o aggiungendo funzionalità.

5.5.5 Wrike

Wrike è un' applicazione web disponibile anche per dispositivi mobile creata per aiutare i team a tracciare il proprio lavoro. Le sue principali funzionalità si dividono in:

- possibilità di creare dei task, assegnarvi delle persone, darne una priorità e controllarne lo stato di completamento;
- capacità di creare in modo automatico diagrammi di Gantt basati sui task inseriti dall'utente;
- possibilità di condivisione file con la possibilità di farci delle modifiche online;
- possibilità di creazione di resoconti e discussioni riguardo a specifici argomenti;
- servizio di notifica e modifica rapida tramite l'applicazione per dispositivi mobile.

Questi servizi sono normalmente disponibili soltanto per la versione a pagamento del software, dando però la possibilità agli studenti di usufruirne con una limitazione di 15 persone per gruppo di lavoro.

5.5.6 Git

Git è un software di controllo versione distribuito utilizzabile da interfaccia a riga di comando. Pensato per mantenere un grande progetto di sviluppo distribuito, Git supporta fortemente lo sviluppo non lineare del software. Tramite strumenti appositi è possibile creare più diramazioni di sviluppo del software con la garanzia di poter mantenere in locale la cronologia di sviluppo completa.

In sostituzione ai comandi testuali molti membri del gruppo utilizzeranno Gitkraken G come interfaccia grafica per la gestione della repository.