A study on temporary impact and the Almgren-Chriss Model, an optimal order execution strategy

Chaitanya Agarwal 29 July 2025

1 Modeling temporary impact $g_t(x)$

We know, the temporary impact function $g_t(x)$ can be defined as the amount of slippage that occurs if x orders are placed at the current time t. To effectively model $g_t(x)$, I analyzed the given MBP-10 snapshots of three companies, namely CoreWeave Inc(CRWV), JFrog Ltd(FROG), and SoundHound AI Inc(SOUN). Each snapshot provides the top ten bid and ask price-size pairs, from which I compute the mid-price m_t and the spread. For each snapshot, I then "walk" the ask book, filling shares at successive price levels until x shares are filled. Slippage can then be calculated as:

$$g_t(x) = \frac{1}{x} \sum_{k=1}^K (p_k - m_t) \Delta x_k$$

For my initial simulations, I considered the following order sizes $\{5, 50, 100, 500, 1000\}$ to get a rough sense of the shape of the slippage curves. After plotting the median slippage curves on log-log axes[Figure 1], we observe that for CRWV and FROG, slippage grows with order size. However, slippage remains flat for SOUN until larger order sizes($x \ge 1000$). To capture a more representative curve for SOUN, I used a log-spaced grid of size 6 from 50 to 5000 shares (which increased the filesize from 3.38GB to 4.45GB).

The updated median slippage curves [Figure 2] now show SOUN rise sharply as the order size increases past 1000. The curves exhibit a concave trend where smaller order sizes incur a very small cost. If the order size

Figure 1: Median Slippage for fixed grid

was to be doubled, the increase in slippage would be far less than twofold. From my research, this behaviour points us towards two potential models:

- Linear: $g(x) = \beta x$, which will serve as my baseline.
- Power-law: $g(x) = \alpha x^{\gamma}$, which exhibits concavity similar to the slippage curves.

I fit the aforementioned models to the median slippage data and report the estimated parameters, RMSE, and R^2 for the models, proving that power-law fits significantly better than any linear model.

Ticker	β	RMSE	R^2
CRWV	4.30×10^{-5}	3.407×10^{-3}	-0.6382 -0.8701 -0.5688
FROG	3.10×10^{-5}	4.483×10^{-3}	
SOUN	3.00×10^{-6}	1.400×10^{-5}	

Table 1: Linear fit results.

Figure 2: Median Slippage for log-spaced grid

Ticker	α	γ	RMSE	\mathbb{R}^2
CRWV FROG SOUN	1.2402×10^{-2} 1.1103×10^{-2} 1.7750×10^{-3}	0.2940	1.393×10^{-3}	0.6835

Table 2: Power-law fit results.

2 Order Execution Strategy

2 pages at most.