四川大学期末考试试卷(A)

(2005-2006 学年第二学期)

科 目: 《大学数学》(微积分)

适用专业年级:四川大学数学一类 2005 级各专业本科生

题号	_	1	Ξ		四四	Ŧi.	六 二	总分	
得分									

考试须知

四川大学学生参加由学校组织或由学校承办的各级各类考试,必须严格执行《四川大学考试工作管理办法》和《四川大学考场规则》。有考试违纪作弊行为的,一律按照《四川大学学生考试违纪作弊处罚条例》进行处理。

四川大学各级各类考试的监考人员,必须严格执行《四川大学考试工作管理办法》、 《四川大学考场规则》和《四川大学监考人员职责》。有违反学校有关规定的,严格按照《四川大学教学事故认定及处理办法》进行处理。

得 分	
评阅人	

一、填空題(每小题3分,共15分)

1. 设 $u = e^{-x} \sin(x + y)$, 则 $\frac{\partial^2 u}{\partial x \partial y}$ 在点(0, π)处的值

为_____

- 3. 设 Σ 是球面 $x^2 + y^2 + z^2 = 4$, 在 $Z \ge 0$ 的部分, 曲面积分 $I = \iint_{\Sigma} z ds = \underline{\hspace{1cm}}$
- 4. 已知函数 $f(x) = \begin{cases} x^2 + 1 & -\pi < x \le 0 \\ 2x & 0 < x \le \pi \end{cases}$,则它的傅里叶级数在区间($-\pi$, π)内的

和函数 $S(x) = _____.$

5. 曲线 $y = x^2$ 绕 y 轴旋转一周,则旋转体的方程为______

得分评例人

二、选择题(每小题3分,共15分)

1. 幂级数 $\sum_{n=1}^{\infty} \left(1 + \frac{(-1)^n}{2^n}\right) x^n$ 的收敛半径 R= ().

(A) 1

- (B) 2
- (C) 3
- (D) $\frac{1}{2}$

$$\begin{cases} x = t \\ 2. \text{ 在曲线} \end{cases} \begin{cases} y = -t^2 \text{ 的所有切线中,与平面 } x + 2y + z = 4 \text{ 平行的切线} \end{cases}$$

$$z = t^3$$

- (A) 只有1条
- (B) 只有两条
- (C) 至少有三条
- (D) 不存在
- 3. 由方程 $xyz + x^2 + y^2 + z^2 = 2$ 所确定的函数 z = z(x, y) 在点 (1, 0, -1) 处的

全微分 dz = (

(A)
$$dz = -\frac{1}{2}dx + dy$$
 (B) $dz = dx - \frac{1}{2}dy$

(B)
$$dz = dx - \frac{1}{2}dy$$

$$(C) dz = \frac{1}{2}dx + dy$$

(C)
$$dz = \frac{1}{2}dx + dy$$
 (D) $dz = dx + \frac{1}{2}dy$

- 4. 函数 $z = x^2 + y^2$ 从 (1,2) 点到 (2, $2 + \sqrt{3}$) 方向的方向导数为 (
 - $(A) \{2,4\}$
- (B) $8+2\sqrt{3}$ (C) $1+2\sqrt{3}$
- 5. 求微分方程 $x^2y' + xy = y^2$ 满足 $y \mid_{x=1} = 1$ 的特解 y = (

(A)
$$y = \frac{2x^2}{1+x^2}$$
 (B) $y = \frac{2x^2}{1-x^2}$

(B)
$$y = \frac{2x^2}{1-x^2}$$

(C)
$$y = \frac{2x}{1-x^2}$$
 (D) $y = \frac{2x}{1+x^2}$

(D)
$$y = \frac{2x}{1+x^2}$$

三、计算题 (每小题 8 分,共 24 分)

得分	
评阅人	

1. 设
$$z = z(x, y)$$
 由方程 $z^3 - x + yz = 1$ 所确定,求 $\frac{\partial^2 z}{\partial x \partial y} \Big|_{(0,0)}$ 的值.

得分	
评阅人	

2. 求由 $x^2 + y^2 + z^2 = 4$ 和 $z^2 - x^2 - y^2 = 0$ 在 $z \le 0$ 的部分所围成的立体体积.

得分	
评例人	

3. 求微分方程 $y'' - 4y' + 4y = e^x$ 的通解.

四、解答題(毎小題8分,共16分)

得 分	
评阅人	

1. 设曲线积分 $\int_{L} x^{2}y^{2}dx + y\varphi(x)dy$ 与路径无关, 其中 $\varphi(x)$ 有一阶连

续导数,且 $\varphi(0) = 1$,计算: $\int_{(0,-0)}^{(1,-1)} x^2 y^2 dx + y \varphi(x) dy$ 的值.

得分	
评阅人	

2. \sum 为有向曲面 $z = x^2 + y^2$ $(0 \le z \le 1)$, \sum 的方向为外侧, 计算曲面积分 $\iint_{\Sigma} x dy dz + y dx dz + dx dy$.

五、应用题(每小题8分,共16分)

得分	
评阅人	

1. 在第一卦限作椭圆面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的切平面,使切平面与三

坐标面围成的四面体体积最小, 求此切平面的切点和最小体积.

得分	
评阅人	

2. 某曲线经过原点,且在点(x,y)处的切线斜率等于2x+y, 求此曲线的方程

六、证明题(每小题7分,共14分)

得分	
评例人	_

1. 设 $a_n > 0$ $(n = 1, 2, 3, \cdots)$ 且级数 $\sum_{n=1}^{\infty} a_n$ 收敛,

求证: $\sum_{n=1}^{\infty} (-1)^n (narc \tan \frac{\lambda}{n}) a_{2n}$ 绝对收敛 $(0 < \lambda < \frac{\pi}{2})$ 为常数).

得	分	
评阅	人	

2. 设函数 $u(x,y) = \varphi(x+y) + \varphi(x-y) + \int_{x-y}^{x+y} \psi(t)dt$, 其中: 函数

 $\varphi(t), \psi(t)$ 都具有二阶连续导数,求证: $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$.