ЭВОЛЮЦИЯ НИЗКОЧАСТОТНЫХ КВАЗИПЕРИОДИЧЕСКИХ ОСЦИЛЛЯЦИЙ В НАЧАЛЬНОЙ ФАЗЕ ВСПЫШКИ МАХІ J1535-571

© 2018 г. И.А. Мереминский *1 , А.В. Просветов 1 , С.А. Гребенев 1 , А.Н. Семена 1 .

¹ Институт космических исследований РАН, Москва Поступила в редакцию 01.12.2017 г.

Ключевые слова:

ВВЕДЕНИЕ

Третьего сентября 2017 года Негоро и др. (2017) было объявлено об обнаружении телескопом *MAXI* (Матцуока и др., 2009; Негоро и др., 2016) нового яркого рентгеновского источника, получившего обозначение MAXI J1535-571. Уже через несколько часов, основываясь на данных телескопов XRT и UVOT обсерватории Swift, Кеннеа и др. (2017b) локализовали источник с точностью до 1.5", что позволило быстро найти оптический компаньон (Скаринги и др., 2017). Источник был также зарегистрирован в радио-(Рассел и др., 2017) и ближнем-ИК диапазонах (Динсер и др., 2017), а также на миллиметровых волнах (Тетаренко и др., 2017). Дополнительным подтверждением того, что оптический источник действительно является компаньоном рентгеновского, является наличие в ИК-спектре источника линии Br_{γ} , которую связывают с аккрецией (Бандиопадхуай и др., 1997). Примерно через неделю после открытия Накахира и др. (2017) и Кеннеа и др. (2017а) сообщили о начале уменьшения жесткости рентгеновского спектра.

Подобное поведение является характерным для маломассивных рентгеновских двойных систем с черными дырами. Общепринято описывать ход вспышки в терминах смены "состояний", причем каждое состояние имеет свои уникальные спектральные и тайминговые характеристики (подробнее см. Танака и др., 1996; Гребенев и др., 1997; Ремиллард и др., 2006; Беллони и др., 2010, и многие другие). Все подобные вспышки начинаются в низком жестком со-

стоянии, в котором доминирующую роль в излучении играет горячая, оптически тонкая корона. После недолгого роста жесткое состояние сменяется промежуточным-жестким, затем промежуточным-мягким и, наконец, высоким мягким состоянием, в котором большая часть энерговыделения происходит во внутренних частях аккреционного диска.

Особенный интерес вызывает вопрос о том, на каком расстоянии от компактного объекта происходит разрушение диска во время низкого жесткого состояния и как изменяется это расстояние - называемое радиусом обрезания - в течение вспышки. Результаты имеющихся исследований зачастую противоречивы - в спектрах некоторых систем обнаруживаются холодные аккреционные диски (с температурой в 0.1..0.5 кэВ: Миллер и др., 2006а, b; Рейс и др., 2011), практически достигающие крайней устойчивой орбиты вокруг черной дыры, в то время как ограничения, получающиеся по измерению отраженной компоненты (в частности уширенной линии нейтрального железа на 6.4 кэВ) демонстрируют как большие радиусы обрезания - Фюрст и др. (2015) -, так и малые - Миллер и др. (2015).

Как уже было сказано, различные состояния отличаются не только формой спектра, но и характером быстрой переменности (Беллони и др., 2010). В низком жестком состоянии спектр мощности обычно представляет собой широкополосный шум, на который накладывается один или несколько узких Лоренцианов с частотами от 0.1 до десятков Гц - т.н. низкочастотные квазипериодические осцилляции (НЧ КПО). Известно, что

^{*}Электронный адрес: i.a.mereminskiy@gmail.com

частота слома, выше которой амплитуда широкополосного шума начинает быстро спадать, связана линейным соотношением с фундаментальной частотой КПО (Виньяндс и др., 1999), причем это соотношение выполняется и для систем с черными дырами и с нейтронными звездами, а коэффициент пропорциональности остается единым на протяжении почти трех порядков по частоте. Природа этих НЧ КПО, называемых также КПО типа-С (Каселла и др., 2005), по прежнему неизвестна, однако важно то, что в некоторых моделях происхождения КПО - в моделях релятивистской прецессии (Стелла и др., 1998) частота КПО зависит от радиуса обрезания аккреционного диска. Это предоставляет нам возможность исследовать изменения радиуса обрезания в ходе вспышки, при условии что КПО будет наблюдаться.

Именно такие НЧ КПО были обнаружены нами (Мереминский и др., 2017) 11 сентября, через восемь дней после открытия MAXI J1535-571и именно им будет посвящена дальнейшая работа.

MAXI J1535-571

Обработка данных

Сразу же после обнаружения источника были инициированы интенсивные наблюдательные программы на практически всех работающих в данный момент рентгеновских телескопах. Мы будем использовать данные обсерваторий Swift (в частности инструментов BAT (Бартелми и др., 2005) и XRT (Барроус и др., 2000)) и INTEGRAL (Винклер и др., 2003), а так же данные монитора MAXIи общедоступные наблюдения телескопа NuSTAR (Харрисон и др., 2013).

В первую очередь нас интересовали данные о переменности источника. Данные телескопа Swift-XRT были пропущены через стандартный конвейер xrtpipeline, затем барицентрированы. Несмотря на то, что фотоприемник Swift-XRT в большей части наблюдений работал в режиме "перегрузки" из-за очень большого темпа счета событий, для анализа временной переменности мы не стали прибегать к стандартному приему - исключению столбцов детектора со слишком большим темпом счета - поскольку "перегрузка" в первую очередь влияет на измеряемый спектр, и не оказывает существенного влияния на положение центроиды КПО, которое нас интересует. Мы проверили это на нескольких наблюдениях, исключая по пять наиболее засвеченных столбцов детектора. Для анализа использовались кривые блеска с разрешением в 20 мс, в диапазоне 0.8-10 кэВ.

Данные телескопов JEM-X (Лунд и др., 2003) и IBIS (Убертини и др., 2003) обсерватории INTEGRAL были обработаны стандартным ПО и барицентрированы. Были извлечены кривые блеска с разрешением в 0.1 с в диапазонах 3—20 и 20—200 кэВ, соответственно. К сожалению, в начале 1861 орбиты спутника произошла мощная солнечная вспышка, из-за чего наблюдения были отменены.

Для анализа данных (наблюдение: 90301013002) телескопа NuSTAR был применен стандартный конвейер nuproducts. Для построения кривой блеска в диапазоне 3–78 кэВ использовался круговой регион вокруг источника радиусом в 2', разрешение кривой блеска составило 10 мс.

Особенный интерес представляет также эволюция спектра источника в ходе вспышки. Для того чтобы получить спектры в широком диапазоне 2–150 кэВ мы использовали данные MAXI и Swift-BAT. Спектры MAXI в диапазоне 2–20 кэВ были получены с веб-страницы монитора (http://maxi.riken.jp/mxondem/). Жесткие спектры были получены из наблюдений Swift-BAT в обзорном режиме. Использовались накопленные во время обзора (характерная экспозиция 0.5–1.5 кс) гистограммы детекторных событий. Поскольку анализ таких данных используется достаточно редко, мы подробнее остановимся на использованной процедуре.

Извлечение спектров из данных обзора Swift-BAT

Телескоп Swift-BAT может работать нескольких различных режимах, причем некоторые режимы могут использоваться одновременно. В течении большой части наблюдений используется обзорный режим - в этом режиме телескоп неподвижно направляется на выбранный объект, а система сбора данных записывает распределение зарегистрированных фотонов по энергии для каждого пикселя детектора за все время экспозиции - обычно от 500 до 1500с. Поскольку $\mathit{Swift\text{-}BAT}\;$ в каждый момент времени осматривает примерно одну шестую часть неба использование обзорных данных позволяет регулярно получать спектры ярких (≥100 мКраб в 15–150 кэВ) источников. Мы использовали следующую процедуру обработки данных:

1. для каждой такой гистограммы отбирались работающие и исправные пиксели детектора (batdetmask, здесь и далее в скобках

указаны наименования команд из пакета Heasoft). Затем строилось изображение детекторной плоскости (batbinevt) и искались "горячие" пиксели (bathotpix)

- 2. еще раз строилось изображение детекторной плоскости (batbinevt), исключая ранее найденные неработающие или "горячие" пиксели. Строились изображение неба и карта частичного кодирования (batfftimage). На изображении неба детектировались источники (batcelldetect)
- 3. если источник был значимо задетектирован, то исходные данные подвергались более точной повторной калибровке (baterebin). Строилось модельное теневое изображение источника в детекторной плоскости (batmaskwtimg) и извлекался спектр источника (batbinevt)
- 4. спектр корректировался с учетом результатов трассировки лучей (batupdatephakw). Ошибки на потоки в энергетических каналах увеличивались с учетом экспериментально определенных систематических погрешностей (batphasyserr) и рассчитывалась матрица отклика телескопа (batdrmgen)

Полученные таким образом спектры использовались для построение широкополосных спектров источника.

Профиль вспышки и переход в мягкое состояние

Общий профиль вспышки в мягком рентгеновском диапазоне (2-4 и 4-10 кэВ по данным MAXIи в жестком (15–50 кэВ, по данным Swift-BAT) приведены на Рис. 1. Хорошо видно, что фаза роста вспышки продолжалась в мягком диапазоне вплоть до MJD 58015 (примерно 16 дней), тогда как рост в жестком диапазоне был гораздо более быстрым и занял всего около пяти дней. Переход из жесткого состояния в мягкое произошел около MJD 58015. В этом легко убедиться исходя из спектров мощности, наблюдений Swift-XRT от MJD 58014 и MJD 58017 (ObsID 00010264010 и 00088245002, соответственно). На Рис. 2 хорошо заметно, что спектр мощности, характерный для жесткого состояния, с ярковыраженным низкочастотным шумом и КПО, сменяется плоским спектром мощности без каких-либо особенностей, характерным для

Рис. 2. Спектры мощности MAXI J1535-571 по данным Swift-XRT. Зеленые точки и кривая - наблюдение от MJD 58014, до перехода в мягкое состояние, синие - от MJD 58017, после. На спектре мощно до перехода хорошо виден низкочастотный широкополосный шум и два пика КПО, соответствующих фундаментальной частоте и второй гармонике.

мягкого состояния. Таким образом, вся фаза роста вспышки заняла примерно 16 дней. Поскольку нас интересуют именно НЧ КПО С-типа, то мы не будем рассматривать дальнейшие данные.

НЧ КПО

Нами были проанализированы все доступные наблюдения телескопа Swift-XRT, выполненные в тайминговом режиме. В случае, если наблюдение включало в себя несколько интервалов, разделенных длительным перерывом интервалы рассматривались отдельно. Спектр мощности каждого наблюдения аппроксимировался комбинацией из функции Кинга, описывающей широкополосный шум, одного или двух Лоренцианов, описывающих КПО и константы, отвечающей за мощность пуассоновского шума. Измеренные центроиды фундаментальной КПО приведены в Таб. .

Кроме того, для поиска КПО мы использовали данные телескопа IBIS . Поскольку общий вклад источника в полный темп счета телескопа с кодирующей апертурой гораздо меньше, чем для фокусирующих телескопов, низкочастотная часть спектра мощности доминированна пуассоновским шумом заряженных частиц. Тем не менее, пик КПО хорошо различим, а использование данных, собранных за больший интервал времени (\approx 15 кс), позволяет измерить центроид с точностью до нескольких сотых Γ ц. Эти измерения также внесены в Таб. . К сожалению, после 1860

Рис. 1. Кривая блеска MAXI J1535-571. Черными точками показан поток в диапазона 15–50 кэВ по данным Swift-BAT, зелеными и синими - данные MAXI в диапазонах 2–4 и 4–10 кэВ, соответственно. Красными линиями указаны наблюдения обсерватории INTEGRAL, черными и синими наблюдения телескопов Swift-XRT и NuSTAR.

Рис. 3. Эволюция частоты КПО во время роста вспышки. Серым показано изменение жесткого (15–50 кэВ) потока в начале вспышки, зелеными точками указаны измеренные частоты КПО.

орбиты жесткий поток от источника упал почти в два раза и КПО перестало регистрироваться. Аналогично, КПО было заметно в наблюдениях телескопа JEM-X во время 1862-1863 орбиты, после значительного увеличения мягкого потока от источника.

На Рис. З показано как изменялась частота КПО во время вспышки. Первое измерение, выполненное во время жесткого пика показало частоту КПО около $0.4~\Gamma$ ц. Затем частота уменьшилась в два раза и начался её монотонный рост. После достижения КПО частоты в $\approx 2~\Gamma$ ц начинается стадия медленного, линейного роста частоты, с большим разбросом наблюдаемых значений от точки к точке. Возможно имеет место антикорреляция с жестким потоком.

Мы решили также исследовать зависимость между частотой КПО и спектральными характеристиками источника. В первую очередь интересно проверить наблюдается ли характерное насыщение фотонного индекса при повышении частоты КПО (см. например Собчак и др., 2000; Вигнарка и др., 2003). Для этого мы использовали широкополосные спектры MAXI+Swift-BAT, которые аппроксимировались в диапазоне 5–150 кэВ поглощенным степенным законом с экспоненциальным завалом (const*phabs*cutoffpl), причем величина поглощения была зафиксирована нами на значении 4×10^{22} см⁻², а константа кросс-калибровки во всех случаях отличалась от единицы не более чем на 0.15. К сожалению, небольшая экспозиция наблюдений Swift-BAT не позволяет точно измерять энергии экс-

Рис. 4. Зависимость фотонного индекса от частоты КПО.

поненциального завала (характерная ошибка \approx 15 кэВ, для значений 40..60 кэВ), поэтому в дальнейшем анализе эти данные мы не учитывали. Диапазон энергий 2–5 кэВ не учитывался, поскольку значительный вклад в него могла вносить компонента связанная с излучением чернотельного диска с температурой 0.3–1 кэВ. Полученные результаты приведены в Таб. и показаны на Рис. 4. Насыщение на высоких частотах действительно присутствует на значении фотонного индекса $\Gamma \approx 2.4$.

ЗАКЛЮЧЕНИЕ

Мы исследовали эволюцию низкочастотного КПО типа-С в фазе роста вспышки кандидата в черные дыры MAXI J1535-571. Используя данные трех рентгеновских телескопов мы проследили рост частоты КПО от 0.2 до 3 Гц за период в 11 дней, до перехода источника в высокое мягкое состояние.

Интересно, что первое детектирование КПО (на частоте $0.42~\Gamma$ ц) совпало с наблюдением источника телескопом NuSTAR. Результаты исследования спектральных данных, полученных в ходе этого наблюдения, представлены в Ксу и др. (2017) и представляют значительный интерес - авторам удалось получить жесткие ограничения на спин черной дыры ($a{>}0.84$) и на радичения на спин черной дыры ($a{>}0.84$) и на радичения мы можем проверить предсказания модели образования КПО за счет прецессии Ленсе-Тирринга внутреннего горячего потока, разработанной Инграм и др. (2009). Используя формулу (3) из Инграм и Мотта (2014) мы можем посчитать ожидаемые частоты НЧ КПО для черных

Instrument	ObsId	observation start	observation end	QPO frequency
		MJD	MJD	Hz
Swift-XRT	00010264003	58004.28	58004.36	0.42 ± 0.02
IBIS	1860/0206	58004.53	58004.75	0.23 ± 0.01
IBIS	1860/0711	58004.75	58004.96	0.24 ± 0.01
IBIS	1860/1216	58004.96	58005.18	0.28 ± 0.02
IBIS	1860/1721	58005.18	58005.39	0.37 ± 0.01
IBIS	1860/2226	58005.39	58005.63	0.45 ± 0.01
IBIS	1860/2731	58005.63	58005.88	0.53 ± 0.01
IBIS	1860/3237	58005.89	58006.14	0.68 ± 0.02
IBIS	1860/3842	58006.14	58006.36	0.89 ± 0.02
IBIS	1860/4347	58006.36	58006.57	1.03 ± 0.01
Swift- XRT	00010264004	58007.27	58007.29	1.87 ± 0.03
Swift- XRT	00010264005	58008.26	58008.27	2.15 ± 0.02
Swift- XRT	00010264007	58009.01	58009.02	2.67 ± 0.03
JEM- X	18620019	58010.54	58010.58	1.98 ± 0.05
Swift- XRT	00010264006	58010.93	58010.94	2.22 ± 0.03
JEM- X	18620034	58011.19	58011.23	2.11 ± 0.06
Swift- XRT	00010264008	58011.39	58011.40	2.32 ± 0.03
$Swift ext{-}XRT$	00010264009	58012.12	58012.13	2.29 ± 0.02
Swift- XRT	00088245001	58013.18	58013.20	2.59 ± 0.02
$Swift ext{-}XRT$	00088245001	58013.24	58013.25	2.89 ± 0.06
JEM- X	18630034	58013.89	58013.92	2.64 ± 0.04
Swift- XRT	00010264010	58014.18	58014.19	3.22 ± 0.04

Таблица 1. НЧ КПО в MAXI J1535-571

дыр разных масс и спинов. Из Рис. 5 хорошо видно, что предсказание теории сильно отличается от наблюдений, причем как для стандартной массы черной дыры $(10~{\rm M}_{\odot})$, так и для существенно большей $(100~{\rm M}_{\odot})$. Это противоречие может возникать как из-за неправильной интерпретации спектров, так и из-за несоответствия механизма генерации КПО предложенному.

БЛАГОДАРНОСТИ

СПИСОК ЛИТЕРАТУРЫ

- 1. Бандиопадхуай и др. (R. Bandyopadhyay, T. Shahbaz, P. A. Charles, M. H. van Kerkwijk, and T. Naylor), MNRAS. **285**, 718 (1997).
- 2. Барроус и др. (D. N. Burrows, J. E. Hill, J. A. Nousek, A. A. Wells, A. D. Short, R. Willingale, et al.), in K. A. Flanagan and O. H. Siegmund (eds.), X-Ray and Gamma-Ray Instrumentation for Astronomy XI, Vol. 4140 of Proc. of the SPIE, pp 64–75 (2000).
- 3. Бартелми и др. (S. D. Barthelmy, L. M. Barbier, J. R. Cummings, E. E. Fenimore, N. Gehrels, D. Hullinger, et al.), Space Science Reviews **120**, 143 (2005).

Рис. 5. Зависимость частоты НЧ КПО от радиуса обрезания из работы Инграм и Мотта (2014). Зеленым показано измерение внутреннего радиуса по данным NuSTAR и одновременное измерение частоты КПО по данным SwiftXRT.

Swift- BAT obsId	observation start	observation end	QPO frequency	Γ	
	MJD	MJD	Hz		
00010264003	58004.28	58004.36	0.42 ± 0.02	1.79 ± 0.12	
00039407002	58004.63	58004.93	0.24 ± 0.01	1.74 ± 0.16	
00087473001	58005.28	58005.45	0.37 ± 0.01	1.99 ± 0.11	
00030806051	58006.27	58006.95	1.03 ± 0.01	2.03 ± 0.11	
00010264004	58007.27	58007.29	1.87 ± 0.03	2.39 ± 0.15	
00010264007	58009.01	58009.02	2.67 ± 0.03	2.38 ± 0.24	
00010264006	58010.93	58010.94	2.22 ± 0.03	2.28 ± 0.23	
00010264008	58011.39	58011.40	2.32 ± 0.03	2.44 ± 0.17	
00010264009	58012.12	58012.13	2.29 ± 0.02	2.35 ± 0.17	
00010264010	58014.18	58014.19	3.22 ± 0.04	2.50 ± 0.17	

Таблица 2. Параметры широкополосного рентгеновского спектра

- 4. Беллони и др. (T. M. Belloni), in T. Belloni (ed.), Lecture Notes in Physics, Berlin Springer Verlag, Vol. 794 of Lecture Notes in Physics, Berlin Springer Verlag, p. 53 (2010).
- 5. Вигнарка и др. (F. Vignarca, S. Migliari, T. Belloni, D. Psaltis, and M. van der Klis), Astron. Astrophys. **397**, 729 (2003).
- 6. Винклер и др. (C. Winkler, T. J.-L. Courvoisier, G. Di Cocco, N. Gehrels, A. Giménez, S. Grebenev, et al.), Astron. Astrophys. 411, L1 (2003).
- 7. Виньяндс и др. (R. Wijnands and M. van der Klis), Astrophys. J. **514**, 939 (1999).
- 8. Гребенев и др. (S. A. Grebenev, R. A. Sunyaev, and M. N. Pavlinsky), Advances in Space Research 19, 15 (1997).
- 9. Динсер и др. (T. Dincer), The Astronomer's Telegram 10716 (2017).
- 10. Инграм и Мотта (A. Ingram and S. Motta), MNRAS. **444**, 2065 (2014).
- 11. Инграм и др. (A. Ingram, C. Done, and P. C. Fragile), MNRAS. **397**, L101 (2009).
- 12. Каселла и др. (P. Casella, T. Belloni, and L. Stella), Astrophys. J. **629**, 403 (2005).
- 13. Кеннеа и др. (J. A. Kennea), The Astronomer's Telegram 10731 (2017a).
- 14. Кеннеа и др. (J. A. Kennea, P. A. Evans, A. P. Beardmore, H. A. Krimm, P. Romano, K. Yamaoka, et al.), The Astronomer's Telegram 10700 (2017b).
- 15. Ксу и др. (Y. Xu, F. A. Harrison, J. A. Garcia, A. C. Fabian, F. Fuerst, P. Gandhi, et al.), ArXiv e-prints (2017).
- 16. Лунд и др. (N. Lund, C. Budtz-Jørgensen, N. J. Westergaard, S. Brandt, I. L. Rasmussen, A. Hornstrup, et al.), A&A 411, L231 (2003).
- 17. Матцуока и др. (M. Matsuoka, K. Kawasaki, S. Ueno, H. Tomida, M. Kohama, M. Suzuki, et al.), Publications of the Astronomical Society of Japan **61**, 999 (2009).

- 18. Мереминский и др. (I. A. Mereminskiy and S. A. Grebenev), The Astronomer's Telegram 10734 (2017).
- 19. Миллер и др. (J. M. Miller, J. Homan, and G. Miniutti), The Astrophysical Journal Letters **652(2)**, L113 (2006a).
- 20. Миллер и др. (J. M. Miller, J. Homan, D. Steeghs, M. Rupen, R. Hunstead, R. Wijnands, et al.), The Astrophysical Journal **653(1)**, 525 (2006b).
- 21. Миллер и др. (J. M. Miller, J. A. Tomsick, M. Bachetti, D. Wilkins, S. E. Boggs, F. E. Christensen, et al.), Astrophys. J. (Letters) 799, L6 (2015).
- 22. Накахира и др. (S. Nakahira, H. Negoro, T. Mihara, W. Iwakiri, M. Sugizaki, M. Shidatsu, et al.), The Astronomer's Telegram 10729 (2017).
- 23. Негоро и др. (H. Negoro, M. Kohama, M. Serino, H. Saito, T. Takahashi, S. Miyoshi, et al.), Publications of the Astronomical Society of Japan 68, S1 (2016).
- 24. Негоро и др. (H. Negoro, M. Ishikawa, S. Ueno, H. Tomida, Y. Sugawara, N. Isobe, et al.), The Astronomer's Telegram 10699 (2017).
- 25. Рассел и др. (T. D. Russell, J. C. A. Miller-Jones, G. R. Sivakoff, A. J. Tetarenko, and Jacpot Xrb Collaboration), The Astronomer's Telegram 10711 (2017).
- 26. Рейс и др. (R. C. Reis, J. M. Miller, A. C. Fabian, E. M. Cackett, D. Maitra, C. S. Reynolds, et al.), MNRAS. 410, 2497 (2011).
- 27. Ремиллард и др. (R. A. Remillard and J. E. McClintock), Ann. Rev. of Astron. and Astrophys. 44, 49 (2006).
- 28. Скаринги и др. (S. Scaringi and ASTR211 Students), The Astronomer's Telegram 10702 (2017).
- 29. Собчак и др. (G. J. Sobczak, J. E. McClintock, R. A. Remillard, W. Cui, A. M. Levine, E. H. Morgan, et al.), Astrophys. J. **531**, 537 (2000).

- 30. Стелла и др. (L. Stella and M. Vietri), Astrophys. J. (Letters) **492**, L59 (1998).
- 31. Танака и др. (Y. Tanaka and N. Shibazaki), Ann. Rev. of Astron. and Astrophys. **34**, 607 (1996).
- 32. Тетаренко и др. (A. J. Tetarenko, T. D. Russell, J. C. A. Miller-Jones, G. R. Sivakoff, and Jacpot Xrb Collaboration), The Astronomer's Telegram 10745 (2017).
- 33. Убертини и др. (P. Ubertini, F. Lebrun, G. Di Cocco, A. Bazzano, A. J. Bird, K. Broenstad, et al.), Astron. Astrophys. **411**, L131 (2003).
- 34. Фюрст и др. (F. Fürst, M. A. Nowak, J. A. Tomsick, J. M. Miller, S. Corbel, M. Bachetti, et al.), Astrophys. J. **808(2)**, 122 (2015).
- 35. Харрисон и др. (F. A. Harrison, W. W. Craig, F. E. Christensen, C. J. Hailey, W. W. Zhang, S. E. Boggs, et al.), Astrophys. J. **770**, 103 (2013).