2015 机械 《理论力学》考试卷 (A)

题	数	 =	Ξ	四	五	六	七	总	分	
得	分									

得分

一、单选题 〖每小题 2 分,共计 2×8=16 分〗

1. 不同力系分别作用于刚体上, d 为两力作用线间的距离, 则彼此等效的是

- 2. 平面力系向平面内 A 点简化得主矢 $F_R'=0$,主矩 $M_A\neq 0$,力系向平面内 B 点简化可知()
 - A. $F'_R \neq 0$, $M_R = M_A$;
- B. $F'_R \neq 0$, $M_B \neq M_A$;
- C. $F'_R = 0$, $M_R = M_A$;
- D. $F'_R = 0$, $M_R \neq M_A$
- 3. 平面图形上任意两点的加速度 aA、aB 与方向均与 A、B 连线垂 直,且 $a_A \neq a_B$,则该瞬时,平面图形的角速度 ω 和角加速度 α 应为()。

 $A. \omega \neq 0, \alpha \neq 0$

B. $\omega \neq 0$, $\alpha = 0$

 $C. \omega = 0, \alpha \neq 0$ $D. \omega = 0, \alpha = 0$

- 4. 在某一瞬时,平面运动的刚体作瞬时平移,则其特点是 ()。
- A, 各点轨迹相同; 速度相同, 加速度相同
 - B, 该瞬时图形上各点的速度相同

題3图

- C,该瞬时图形上各点的速度相同,加速度相同 D,每瞬时图形上各点的速度相同

- 5. 图示偏心轮摇杆机构中,偏心轮 OC 的 ω 、 α 为已知,要求摇杆 O_1A 的角加速度 α_1 ,合适的动 点与动系应取()
 - A, 杆上的 M 为动点, 轮为动系。
 - B, 轮上的 M 为动点, 杆为动系。
 - C, 轮心 C 为动点, 杆为动系。
- D, 轮心 C 为动点, 轮为动系。

A. $p_A \le p_B$; B. $p_A \ge p_B$; C. $p_A = p_B$; D. 不能确定

- 7. 图示 A、O、C 为矩形板面上的三点,已知矩形板的质量为m,对 A 轴的 转动惯量为J, 点O为板的形心,点C为板的质心,若已知长度AO = a, CO =e, AC=1, 则板对形心点 O 的转动惯量为 ()

- A. $J-ma^2$ B. $J+ma^2$ C. $J-m(l^2-e^2)$ D. $J-m(l^2+e^2)$

8. 如图所示, 半径为 R, 质量为 m_1 的均质滑轮上, 作用一个常力偶, 其力偶矩为M,吊升一个质量为m2的重物。当重物上升高度h时, 力偶 M 所作的功为()

A. Mh/R; B. m2gh; C. Mh/R- m2gh; D. 0

本题

二、填空题〖每空 2 分, 共计 2×7=14 分〗

1. 图示平面桁架中, 杆 HE 的内力为

2. 试计算下列各图中力 F对 O点的力矩大小为:

3. 图示机构中,曲柄 OA 的质量为 m,长为 a,角速度为 ω ,连杆 AB 的质量为 2 m,长为 L,轮 B的质量为2m, 半径为r, 在水平轨道上作纯滚动。都为均质构件。则图示瞬时:系统的动量

考试形式开卷()、闭卷(√),在选项上打(√)

_____ 命题时间<u>2016.12.12</u> 使用学期<u>2016-2017-1</u> 总张数<u>3</u> 教研室主任审核签字

2016 级《理论力学》考试卷 (A)

使用专业、班级__土木专业____ 学号__

题	数	1	=	Ξ	四	五	六	七	总	分
得	分									

- 一、单选题 〖每小题 2 分, 共计 2×8=16 分〗
- 1. 己知在平面内有一组非平衡汇交力系和一组非平衡力偶系,则最后可能合成 的情况是 ()。
- A, 一合力偶; B, 一合力; C, 相平衡; D, 无法进一步合成。
- 2. 不同力系分别作用于刚体上, d 为两力作用线间的距离, 则彼此等效的是 ()。

3. 平面框架由构件 AB 与 BC 通过光滑节 B 联接, 其上作用一力偶矩为 M 的力偶, 则图 (a) 中 B 点的反力比图(b) 中的 B 点

反力()。 A、大; B, 小; C、相同; D, 无法判断。

4. 在某一瞬时,平面运动的刚体作瞬时平移, 则其特点是 ()。

- A, 各点轨迹相同; 速度相同, 加速度相同;
 - B, 该瞬时图形上各点的速度相同:
- C,该瞬时图形上各点的速度相同,加速度相同; D,每瞬时图形上各点的速度相同。

试 卷 专 用 纸

- 5. 一对相互啮合的定轴传动齿轮,若啮合处不打滑,则任一瞬时两轮啮合点处的速度和加速度所 满足的关系为: ()。
- A、速度矢量和加速度矢量均相等; B,速度大小与加速度大小均相等;
- C, 速度矢量和加速度矢量均不相等; D, 速度矢量和切向加速度矢量均相等
- 6. 图示中,已知凸轮半径为 R ,C 点为凸轮的圆心。 图示时,凸轮速度为 v, θ =30 $^{\circ}$. 杆 OA 靠在凸 轮上、杆 OA 与凸轮的接触点为 D.求此瞬时: 杆 OA 的角加速度 α。则合适的动点与动系应取()。
- A, 以 OA 杆上的 D 为动点, 动系固于凸轮上。 B, 以 凸轮上的 D 为动点,动系固于 OA 杆上。
- C, 以 凸轮上的圆心 C 为动点, 动系固于 OA 杆上。
- D, 以 OA 杆上的 A 为动点, 动系固于凸轮上。

7. 图示均质杆和三个均质圆盘的质量均为 m,均质圆盘半径均为 R,均质杆长 2R。均质杆绕固定 端转动, 其质心速度 VC=v; B 盘在水平面上向右作纯滚动转动,其质心速度 VC=v; C 盘在水平面上 向右既滚动又滑动, 其质心速度亦为 VC=v; D 盘绕其质心作定轴转动, 其质心速度 VC=0。在图示 位置时, A, B, C, D 四个构件的动量大小为 PA、PB、PC 和 PD 表示, 则():

A, $P_A = P_B = P_C$, $P_D = 0$; B, $P_{A} = P_{B} = P_{C} = P_{D}$;

 $C, P_A = P_B \neq P_C; P_D = 0;$

D, $P_A = P_B \neq P_C$. $P_D \neq 0$.

既滚动义滑动 題7图

8. 半径为 R,质量为 m 的均质圆盘在其自身平面内作平面运动,在图示位置时,若已知图形上 A,B 二点的速度方向,且 $\varphi=45^\circ$,已知 B 点速度大小为 vB=v,则圆盘的动能为: ()。

A, $mv^2 / 16$;

B, $3mv^2 / 16$

C. $mv^2/4$

D. $3mv^2/4$.

题8图

考试形式开卷()、闭卷(√),在选项上打(√)

命题时间 2017,06.02

使用学期 2016-2017-2 总张数 3 教研室主任审核签字 3

7 _: K小大球主封影 ,__ 付觸出, 國公示图成去。0=00 国心副、品 改量页纬心線, 饭与特店量的 於然心數的 1 代至半 2 小大天主并称中其, 沿简 O 向系代封赞的综心静铁顺, n 改变驱血角, 心改致驱除的综心静缺归 放在我们,写析 EP 的速度 $\sqrt{s} = n$ 加速度 $n = \sqrt{s} = \sqrt{s}$ 加尔· 图 的 的 的 的 的 数据 以络C转动, 套筒 E 与导杆 EF 通过光滑较链联接, 套筒 E 可沿 BD 杆滑动。 己 四、在图示平面机构中 AB=CD=r=2m, AB // CD, AB 杆可以绕 A 转动,DC 杆可 題 本 3. 图本形式 AIO A LOA B = 2R, VIO2 = AB = 2R, 特國キ AB + AIO A 以前速度の匀速转 R 新雲園及 C 郵支家海, 示闲图映七只阿凡伯科各, kN F=20 kN, 各样的几何人可以可求, 示析图映七只阿凡伯科各, kN F=20 kN, -- ; 长小大球 c 的 点 G 核 7 t 中 图 葉 行 宏 . S 代影 三、图示结构由直标 CD、BC 和曲杯 AB 组成。各杯重均不计,已知 M=10 KN·m, 」。 不子面新報中,已知 F1=F2=F3=20KN, 村7 的的力力。

 ϵ_{ζ} .

	£ , , , ,
	8
	水充水补,上解订平条两卦挂悬襟两其,[长 为, m 长量 ng dA
•	
a	anangananan (* * * * * * * * * * * * * * * * * * *
3	〖 代 S I 〗。
京。成務終計面平水招, m 於量調, 对 於 以 本	及 不 子 孫 。 佐 都 土 向 直 垂 老 \ m S = V <u> </u>