Ejercicios pre parcial tipo 1 Organización del Computador II

Facundo Ruiz

Departamento de Computación - FCEyN UBA

Segundo cuatrimestre de 2019

Hoy

- La clase de hoy se centrará en hacer ejercicios de parcial relacionados con **segmentación** y **paginación**
- Nos centraremos específicamente en cómo manejar las estructuras que permiten resolver las direcciones
- Ahora ¿cómo se resuelven las direcciones?

Lógica
$$\xrightarrow{\mathsf{Segmentación}} \mathsf{Lineal} \xrightarrow{\mathsf{Paginación}} \mathsf{F\'{isica}}$$

• ¿Qué estructuras son necesarias para la segmentación?

• ¿Y para la paginación?

Segmentación: Repaso de selectores

Repasemos ahora los mecanismos asociados a segmentación:

• ¿Cómo accedemos a un segmento?

A través de una dirección lógica

• ¿Qué forma tiene esta dirección?

(selector-segmento : offset)

• ¿Cómo sabemos a qué segmento estamos referenciando? Con el selector vemos la tabla en que está descripto (TI) y la entrada que lo describe (index)

Segmentación: Descriptor GDT

En base a un selector llegamos a un descriptor de segmento:

Segmentación: Repaso de descriptores (I)

Veamos cómo se describe el segmento en base a sus campos:

- ¿Cómo sabemos si el segmento está presente? Vemos si el bit P de su descriptor está en 1
- ¿Y para saber dónde comienza en memoria?
 Vemos su campo base completo (uniendo sus partes)
- ¿Qué es el campo límite (uniendo sus partes)?

 Indica el máximo desplazamiento dentro de un segmento junto con el bit G
- ¿Cuánto vale el máximo desplazamiento si G está en 1?
 Podemos determinarlo de varias maneras:
 - ((límite + 1) * 4kb) 1 • ((límite + 1) << 12) - 1 • (límite << 12) + 0xFFF
- En base a estos datos determinamos el espacio que ocupa el segmento en memoria

Segmentación: Repaso de descriptores (II)

Veamos otros campos importantes:

- ¿Qué campos determinan el tipo del segmento?
 - Los campos type y S
- ¿Y su nivel de acceso?
 - El campo DPL (veremos más en detalle cómo es esta verificación en la clase de Protección)
- ¿Qué hay del campo D/B?
 - Determina el tamaño por defecto de las operaciones (suele estar en 1 para 32 bits)
- ¿Y los campos L y AVL?
 - Si bien tienen su uso, en nuestro caso van a estar en 0

Segmentación: Tipos de Entradas

Considerando un segmento que no es de sistema (S = 1):

	Type Field				Descriptor	Description
Decimal	11	10 E	9 W	8 A	Туре	
0	0	0	0	0	Data	Read-Only
1	0	0	0	1	Data	Read-Only, accessed
2	0	0	1	0	Data	Read/Write
3	0	0	1	1	Data	Read/Write, accessed
4	0	1	0	0	Data	Read-Only, expand-down
5	0	1	0	1	Data	Read-Only, expand-down, accessed
6	0	1	1	0	Data	Read/Write, expand-down
7	0	1	1	1	Data	Read/Write, expand-down, accessed
		С	R	А		
8	1	0	0	0	Code	Execute-Only
9	1	0	0	1	Code	Execute-Only, accessed
10	1	0	1	0	Code	Execute/Read
11	1	0	1	1	Code	Execute/Read, accessed
12	1	1	0	0	Code	Execute-Only, conforming
13	1	1	0	1	Code	Execute-Only, conforming, accessed
14	1	1	1	0	Code	Execute/Read, conforming
15	1	1	1	1	Code	Execute/Read, conforming, accessed

De segmentación a paginación

Con la descripción del segmento podemos determinar la dirección lineal resultante de la lógica de la que partimos:

¿Cómo hacemos esta traducción?

Tomamos la dirección base del descriptor (juntando sus partes) y le sumamos el offset

• ¿Qué uso tiene la dirección resultante?

Permite determinar la página física a la que queremos acceder

¿Y cómo la determinamos?

A través de los índices en que se divide la dirección:

De una dirección virtual a una física

Paginación: Repaso de descriptores (I)

Recordemos algunas cuestiones referentes a paginación:

- ¿Dónde está el directorio de páginas en memoria?
 En una dirección dada por el registro CR3
- ¿Qué describe cada una de sus entradas (PDE)?
 Los accesos a una tabla de páginas
- ¿Y cada entrada de una tabla de páginas (PTE)?
 Los accesos a una página física (distintas PTE pueden describir la misma página física)
- ¿Cómo se describen estas entradas?

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12	11 10 9	8	7	6	5	4	3	2	1	0	
Address of 4KB page frame	Ignored	G	P A T	D	Α	P C D	PW T	U / S	R / W	1	PTE: 4KB page
Address of page table	Ignored		Q	g n	А	P C D	PW T	U / S	R / W	1	PDE: page table

Paginación: Repaso de descriptores (II)

Repasemos los campos importantes de estos descriptores:

- ¿Cómo sabemos si la pagina está presente en memoria? Vemos si los bits P de su PDE y PTE están en 1
- ¿Y para saber si su acceso es de nivel usuario? Vemos si los bits U/S de su PDE y PTE están en 1
- ¿Qué sucede si alguno está en 0?
 La página es de nivel supervisor
- ¿Y para ver si es escribible?

 Vemos si los bits R/W de su PDE y PTE están en 1

Ejercicio 1

Consigna

Dada la siguiente tabla de traducciones, dar un conjunto de descriptores de segmento, directorio de páginas y tablas de páginas que cumplan con todas las traducciones **en simultáneo**. Completar todos sus campos indicando si hay **identity mapping** en cada acceso

Lógica	Lineal	Física	Características
0x0023:0x000000FF	0x10192FFF	0x00AAEFFF	Datos Nivel 3
			Acción: Lectura de 4 bytes
0x0320:0x00000001	0xFF07A011	0x0391F011	Código Nivel 0
			Acción: Lectura de 2 bytes
0x0320:0x00001233	0xFF07B243	0x003A2243	Código Nivel 0
			Acción: Ejecución de 1 bytes
0x0411:0x00004FFF	0x38442341	0x00333341	Datos Nivel 2
			Acción: Escritura de 4 bytes

Ejercicio 2

Consigna

Dada la siguiente gdt, directorio y tablas de páginas (simplificados), completar la dirección física de cada uno de los accesos indicados. Identificar en cada uno si hay **identity mapping**.

GDT	Base		Atributos
0x002	0x0000020	00	
0x034	0x0001100	00	
0x104	0x04400001		
PD	Base		Atributos
0x000	PT ₁ >> 12	:	
0x011	PT ₂ >> 12		
PT ₁	Base		tributos
0x001	0x73682		
0x141	0x12873		

	2		
	0x000	0x77777	
	0x001	OxODEAD	
	0x077	0x32343	
	0x078	OxOCAFE	
Dirección lógica			D: :/ (/:
L	Direccion	i logica	Dirección física
_	Olrection 0010:0x		Direction fisica
02		00141CFE	Direccion fisica
02	0010:0x	00141CFE 00000123	Direccion fisica
02 02 02	x0010:0x(x0820:0x(x01A0:0x(00141CFE 00000123	Direccion fisica

PT₂ Base Atributos

Eso es todo por hoy

¿Preguntas?