Camino más corto: algoritmos con heurísticas

Rodrigo Maranzana

Herramientas para modelizar el camino más corto

- Programación matemática (formalización)
- Teoría de grafos
- Algoritmos metaheurísticos (aplicaciones)

- Grafos orientados
- Nodos como "lugares" (estados)

• Arcos pesados, transición entre "lugares"

Ejemplo en una línea de producción

Camino de un nuevo producto por la planta

Grafos de camino más corto

- La complejidad depende del algoritmo y del problema.
- Un buen algoritmo <u>agilizar la búsqueda</u>.
- La densidad y tamaño del grafo pueden ser altísimos.
 - Ej: "Pathfinding"

i Espacio de complejidad exponencial !: $O(8^n)$

- Dependiendo del algoritmo y problema: óptimo local o global.
- Heurística: regla empírica de decisión
- Ventajas: soluciones en grafos extremadamente densos

Breath first search; Depth first search; Dijkstra; Bellman-Ford; A*; ...

