AI1103 - Assignment 5

I.Rajasekhar Reddy – CS20BTECH11020

Download all latex codes from

https://github.com/rajasekhar156/Assignment-5/blob/main/main.tex

OUESTION

Let X_1 and X_2 be a random sample of size two from a distribution with probability density function

$$f_{\theta}(x) = \theta \left(\frac{1}{\sqrt{2\pi}}\right) e^{-\frac{1}{2}x^2} + (1-\theta)\left(\frac{1}{2}\right) e^{-|x|},$$

 $-\infty < x < \infty$

where $\theta \in \left\{0, \frac{1}{2}, 1\right\}$. If the observed values of X_1 and X_2 are 0 and 2, respectively, then the maximum likelihood estimate of θ is

- 1) 0
- 2) $\frac{1}{2}$
- 3) 1
- 4) not unique

ANSWER

Given $X_1 = 0$, $X_2 = 2$, n=2 and

$$f_{\theta}(x) = \theta \left(\frac{1}{\sqrt{2\pi}}\right) e^{-\frac{1}{2}x^2} + (1-\theta)\left(\frac{1}{2}\right) e^{-|x|} \quad (0.0.1)$$

Then log of likelihood function is given by

$$l(\theta) = \sum_{i=1}^{i=n} \log f_{\theta}(x_i)$$

$$= \log f_{\theta}(x_1) + \log f_{\theta}(x_2)$$

$$= \log \left(\theta \left(\frac{1}{\sqrt{2\pi}}\right) e^{-\frac{1}{2}0^2} + (1-\theta)\left(\frac{1}{2}\right) e^{-|0|}\right)$$

$$+ \log \left(\theta \left(\frac{1}{\sqrt{2\pi}}\right) e^{-\frac{1}{2}2^2} + (1-\theta)\left(\frac{1}{2}\right) e^{-|2|}\right)$$

$$(0.0.4)$$

$$= \log\left(\theta\left(\frac{1}{\sqrt{2\pi}}\right) + (1-\theta)\left(\frac{1}{2}\right)\right)$$

$$+ \log\left(\theta\left(\frac{1}{\sqrt{2\pi}}\right)e^{-2} + (1-\theta)\left(\frac{1}{2}\right)e^{-2}\right) \quad (0.0.5)$$

$$= 2\log\left(\theta\left(\frac{1}{\sqrt{2\pi}}\right) + (1-\theta)\left(\frac{1}{2}\right)\right) - 2 \quad (0.0.6)$$

Since likelihood $L(\theta) = e^{l(\theta)}$.

Likelihood function $L(\theta)$ at $\theta = 0, \frac{1}{2}, 1$ is given by

1) At
$$\theta = 0$$
 $L(\theta = 0) = \frac{1}{4}e^{-2} = 0.0338$

2) At
$$\theta = 1$$
 $L(\theta = 1) = \frac{1}{2\pi}e^{-2} = 0.0215$

3) At
$$\theta = \frac{1}{2}$$
 $L(\theta = \frac{1}{2}) = \left(\frac{1}{2\sqrt{2\pi}} + \frac{1}{4}\right)^2 e^{-2} = 0.0273$
Hence the maximum likelihood estimate of θ is at $\theta = 0$