PATTERN RECOGNITION

WITH SINGLE LAYER NEURAL NETWORK

Margarita Geleta, Ibrar Malik

Mathematical Optimization | Data Science

About the project

The aim of the project is to build a *Single Layer Neural Network* (abbreviated as SLNN) from zero in *Python* that would be capable of recognizing a set of target numbers. The numbers from the [0,9] interval will be used as targets. Each number has a 7x5 pixel matrix representation, with values 0 and 1 (*figure 1*).

Figure 1: Pixel matrix representation of $\lceil 0,9 \rceil$ numbers.

Network architecture

Our neural network is a *perceptron*, that is, a single neuron model, in our case, with 35 entries – all the pixels of a number stored in the input vector \boldsymbol{x} . Then, \boldsymbol{x} combined with the vector of weights \boldsymbol{w} and finally, the *sigmoid function* is applied to obtain a binary output 0/1.

Figure 2: Architecture of a perceptron (SLNN) with a sigmoidal activation function.

So, our neural network (y) is defined as:

$$y(\mathbf{x}, \mathbf{w}) \coloneqq \frac{1}{1 + e^{-(\sum_{i=1}^{n} w_i \cdot \sigma(x_i))}}$$

We define in *Python* as follows:

Network training

Now the big question is: how do we get our neural network to learn? It is going to learn from errors. Thus, we need to define an "error/loss function". Before formulating that function, note that we are going to use a set of numbers to train our network and a separate test for testing the predictions. These sets are called training $(\mathbf{X}^{TR}, \mathbf{y}^{TR})$ and test $(\mathbf{X}^{TE}, \mathbf{y}^{TE})$ sets, respectively.

The loss function is defined as follows:

$$L(\mathbf{X}^{TR}, \mathbf{y}^{TR}) = \sum_{i=1}^{p} (y(\mathbf{x}_{j}^{TR}, \mathbf{w}) - \mathbf{y}_{j}^{TR})^{2}$$

being p the size of the training set. We can also add a regularization parameter λ (of type L2):

$$\tilde{L}(\boldsymbol{X}^{TR}, \boldsymbol{y}^{TR}) = L(\boldsymbol{X}^{TR}, \boldsymbol{y}^{TR}) + \lambda \cdot \frac{\|\boldsymbol{w}\|^2}{2}$$

We define them in *Python* in one method. If $\lambda = 0$, then we return $L(\mathbf{X}^{TR}, \mathbf{y}^{TR})$, otherwise we return $\tilde{L}(\mathbf{X}^{TR}, \mathbf{y}^{TR})$ with its corresponding regularization parameter λ :

def loss(
$$\boldsymbol{w}$$
, \boldsymbol{X}^{TR} , \boldsymbol{y}^{TR} , λ =0):
return np.linalg.norm($y(\boldsymbol{X}^{TR}, \boldsymbol{w})$
 $-\boldsymbol{y}^{TR}$)**2 + λ /2 *
np.linalg.norm(\boldsymbol{w})**2

To train the network, i.e. find the optimum \boldsymbol{w} , we need to minimize $L(\boldsymbol{X}^{TR}, \boldsymbol{y}^{TR})$ with some optimization algorithm. To minimize the loss function, we need its gradient:

$$\frac{\partial \tilde{L}(\mathbf{X}^{TR}, \mathbf{y}^{TR})}{\partial w_i} = \sum_{j=1}^{p} 2 \cdot \left(y(\mathbf{x}_j^{TR}, \mathbf{w}) - \mathbf{y}_j^{TR} \right) \cdot y(\mathbf{x}_j^{TR}, \mathbf{w}) \cdot \left(1 - y(\mathbf{x}_j^{TR}, \mathbf{w}) \right) \cdot \left(\frac{1}{1 + e^{-\mathbf{x}_{ij}^{TR}}} \right) + \lambda \cdot w_i$$

def g_loss(
$$\boldsymbol{w}$$
, \boldsymbol{X}^{TR} , \boldsymbol{y}^{TR} , λ =0):
return np.squeeze(2 *
sigmoid(\boldsymbol{X}^{TR} .T) @
(($\boldsymbol{y}(\boldsymbol{X}^{TR}$, \boldsymbol{w}) - \boldsymbol{y}^{TR}) *
 $\boldsymbol{y}(\boldsymbol{X}^{TR}$, \boldsymbol{w}) * (1 -
 $\boldsymbol{y}(\boldsymbol{X}^{TR}$, \boldsymbol{w}))) + λ * \boldsymbol{w} .T)

Solving for target = [4]

Now that we are ready – we have the objective function $L(\mathbf{X}^{TR}, \mathbf{y}^{TR})$, the first-derivative optimization algorithms which we have implemented during this course (GM, CGM and BFGS), the data sets \mathbf{X}^{TR} , \mathbf{y}^{TR} and \mathbf{X}^{TE} , \mathbf{y}^{TE} – we can solve the pattern recognition problem for any set of numbers. We are going to start with the target set [4]. The training data set for this problem:

- Has 500 observations (p = 500).
- Train frequency = 0.5
- Noise frequency = 0.1

The hyperparameters for optimization defined for this problem are the following:

- $-\lambda = 0.0$ (*L2* regularization).
- $\varepsilon = 1.0e-0.6$
- $-k^{max} = 1000$ (iterations).

The hyperparameters for *line search*:

- $\alpha_0^{max} = 1$ initially. Later on, we update it by $\alpha_k^{max} = \frac{2(f^k f^{k-1})}{\nabla f^{kT} \cdot a^k}$.
- $-c_1 = 0.01$
- $-c_2=0.45$
- $\varepsilon = 1.0e-0.6$
- $-k^{max}=500.$

First, we use the *Gradient Descent* (GM) algorithm to minimize the loss function in the neural network.

$$m{X}^{TR}$$
, $m{X}^{TE}$, $m{y}^{TR}$, $m{y}^{TE}$ = gen_data(123456, 500, [4], 0.5, 0.1) net = SLNN() net.train("GM", $m{X}^{TR}$, $m{y}^{TR}$) net.summary($m{X}^{TE}$, $m{y}^{TE}$)

The output (300 iterations):

	alpha	f(x)	g(x)				
0	NaN	125.000000	40.188919	0 -			
1	1.000000	15.796008	24.173601	1 -	1		
2	0.093438	0.008158	0.053878	2 -			
3	10.622513	0.000228	0.000674	-			-
4	136.503566	0.000210	0.000291	3 -			_
295	1910.660877	0.000019	0.000010	4 -			
296	2484.514941	0.000019	0.000012	5 -			
297	1929.837670	0.000018	0.000010	6 -			
298	2532.521113	0.000018	0.000011	o :	1 2	3	4
299	1949.029427	0.000018	0.000010				

Loss: Training accuracy: Test accuracy: 1.8216667708018856e-05 100.0% 100.0%

```
Gradient:
 [ 1.39508877e-06
                  6.86067063e-07
                                 1.25624980e-06
  1.24933761e-06
                 1.02400665e-06
                                 1.45817790e-06
                                                 2.27446974e-06
 -2.02614002e-07
                 9.31133081e-07
                                 2.83716521e-08
                                                  1.18237844e-06
 2.22951532e-06
                 -1.55850183e-06
                                 7.33653553e-07
                                                  3.12194833e-07
 3.87212822e-06
                 1.61579652e-06
                                 2.89661978e-08
                                                 1.05201981e-06
 5.01824374e-07
                 1.10124825e-06
                                 3.82445203e-07 -8.19933923e-07
 5.95582419e-08
                 3.78435258e-06
                                 1.08067482e-06 2.50751307e-06
                 1.07753526e-06
 -3.45722870e-07
                                 1.09897810e-06 3.78349079e-06
 3.42813547e-06
                 1.57444321e-06
                                 1.03685962e-061
```

Solving with *Conjugate Gradient Descent* (CGM), Fletcher-Reeves variant without restart condition yields a result in just 4 iterations, which is really fast:

Loss: 4.110601874626356e-11
Training accuracy: 100.0%
Test accuracy: 100.0%

Gradient:

[4.48663204e-11 4.48608548e-11 6.01015057e-11 6.01014082e-11 6.00959844e-11 4.11058070e-11 5.63409937e-11 4.11452196e-11 4.11478962e-11 4.1112718e-11 5.63408964e-11 4.11058293e-11 4.11059052e-11 4.11058086e-11 4.11112716e-11 5.63464458e-11 5.63408968e-11 5.63409914e-11 6.01014082e-11 4.11085815e-11 5.63409323e-11 4.48608664e-11 6.00593936e-11 6.00931965e-11 5.6340940e-11 5.63408964e-11 4.48663188e-11 4.11452195e-11 4.11112725e-11 4.11479542e-11 6.00592961e-11 5.63381635e-11 5.63409822e-11 5.63409939e-11 4.11058071e-11]

Eventually, we solve it by *Broyden-Fletcher-Goldfarb-Shanno* (BFGS), we finish in 8 iterations, but the accuracy is a bit smaller (<100%) than in the first two methods:

Loss: 0.009458452706506937
Training accuracy: 100.0%
Test accuracy: 99.96%

Gradient: [1.90968642e-03 1.86146849e-03 2.36618691e-04 2.27888247e-04 2.23956476e-03 1.61965271e-04 -1.33871647e-03 2.09608661e-04 -1.84461578e-03 -3.16866392e-06 -1.50840200e-03 1.75381442e-04 1.86910383e-04 -1.50048964e-03 1.94071284e-04 -4.27414678e-04 5.45561543e-04 -5.78870631e-04 2.28663380e-04 -1.88968978e-03 -1.49841345e-03 4.06025417e-04 3.33071068e-04 8.74324829e-04 -1.50408204e-03 -2.60932272e-04 1.89829357e-03 2.15254052e-04 -1.62546809e-03 2.25169324e-04 2.21815169e-03 5.46615144e-04 -1.48662094e-04 -1.49958220e-03 1.62244701e-041

Solving for target = [8]Now that we are ready – we have the objective

