Nitrogen cycle

Plants need **ammonium** (NH_4^+) or sometimes **nitrate** (NO_3^-) as the usable form of nitrogen. But most nitrogen exists as N_2 gas, which plants cannot use directly. The cycle has microbial partners at almost every step.

Big picture flow

- 1. $N_2(0) \rightarrow NH_3/NH_4^+(-3)$ by fixation.
- 2. NH₄⁺ taken up OR oxidized to nitrate (nitrification).
- 3. NO_3^- absorbed \rightarrow reduced back to NH_4^+ (assimilation).
- 4. NH₄⁺ → organic nitrogen (amino acids, proteins).
- 5. Denitrification returns N_2 to atmosphere.

1. Nitrogen fixation (symbiosis with bacteria)

- Atmosphere: \sim 78% N₂, but it's very stable (triple bond, oxidation state 0).
- Certain bacteria (*Rhizobium* in legumes, cyanobacteria, etc.) convert N₂ → NH₃/NH₄⁺ using nitrogenase, powered by ATP + reductants.

Equation:

```
N2 + 8H + 8e - + 16ATP \rightarrow 2NH3 + H2 + 16ADP + 16Pi
```

Goal: introduce reduced nitrogen (–3 oxidation state) into ecosystems.

For plants: NH_3 immediately protonates to NH_4^+ in soil solution \rightarrow taken up.

2. Ammonification (decomposition / mineralization)

- Organic nitrogen (proteins, nucleic acids) → NH₃/NH₄⁺ via microbial breakdown.
- Example reaction (generic):

```
R-NH2 + H20 \rightarrow NH3 + R-OH
```

Free ammonia (NH_3) in soil solution usually exists as ammonium (NH_4^+), which plants can absorb:

```
NH3 + H20 ≠ NH4+ + OH-
```

3. Nitrification (microbial oxidation, aerobic)

• Carried out by *Nitrosomonas* and *Nitrobacter*.

• Converts NH₄⁺ into NO₃⁻, which is more mobile in soils (but also more prone to leaching).

Step 1: ammonia → nitrite

$$NH3 + 1.5 02 \rightarrow N02 - + H + + H20$$

(N: $-3 \rightarrow +3$, oxidation, energy released)

Step 2: nitrite → nitrate

$$N02- + 0.5 02 \rightarrow N03-$$

(N: $+3 \rightarrow +5$, oxidation, energy released)

Goal: microbes harvest energy; product NO₃⁻ can be taken up by plants.

4. Assimilation (in plants)

- Plants absorb both $\mathbf{NH_4}^+$ and $\mathbf{NO_3}^-$.
- If NO_3^- is taken up, it must be reduced back to NH_4^+ inside the plant (because amino acids/proteins require N at -3).

Step A: $NO_3^- \rightarrow NO_2^-$ (via nitrate reductase, NADH donor)

$$N03- + 2H+ + 2e- \rightarrow N02- + H20$$

Step B: $NO_2^- \rightarrow NH_4^+$ (via nitrite reductase, ferredoxin donor)

$$NO2- + 8H+ + 6e- \rightarrow NH4+ + 2H20$$

Goal: make reduced nitrogen available for incorporation into glutamine, glutamate, and eventually all amino acids.

5. Denitrification (microbial, anaerobic)

- NO_3^- or $NO_2^- \rightarrow N_2$ gas, returning nitrogen to atmosphere.
- Carried out by bacteria in low-oxygen soils (e.g. waterlogged).

Simplified:

$$2N03 - + 10e - + 12H + \rightarrow N2 + 6H20$$

Goal: close the cycle, but from agriculture view \rightarrow loss of available nitrogen.