Partioning Intervals

There is a set of n jobs $R = \{1, 2, ..., n\}$, i^{th} job have starting time of s_i and finishing time of f_i . We want to find a minimum d such that we can partition R into d subsets of $R_1, R_2, ..., R_d$ in a way that no two jobs in a subset will overlap.

- 1. Give an efficient greedy algorithm that finds an optimal solution.
- 2. Explain why your algorithm returns an optimal solution.
- 3. Is the solution returned by the algorithm the only possible solution for all possible inputs? Explain your answer.
- 4. Prove that your algorithm returns an/the optimal solution.
- 5. Prove a tight asymptotic bound on the running time of your algorithm.

Scheduling to Minimize Lateness (4.2 of Textbook)

Consider a situation in which we have a single resource and a set of n requests to use the resource for an interval of time. Assume that the resource is available starting at time s. However, each request is flexible. Instead of a start time and finish time, the request i has a deadline d_i , and it requires a contiguous time interval of length t_i , but it is willing to be scheduled at any time before the deadline. Each accepted request must be assigned an interval of time of length t_i , and different requests must be assigned nonoverlapping intervals.

We say that a request i is late if it misses the deadline, that is, if $f(i) > d_i$. The lateness of such a request i is defined to be $l_i = f(i)d_i$. We will say that $l_i = 0$ if request i is not late. The goal in our new optimization problem will be to schedule all requests, using nonoverlapping intervals, so as to minimize the maximum lateness, $L = max_i l_i$.

- 1. Give a counter example for greedy approach which chooses a job with minimum t_i .
- 2. Give a counter example for greedy approach which chooses a job with minimum $d_i t_i$.
- 3. Give an efficient greedy algorithm that finds an optimal solution.
- 4. Explain why your algorithm returns an optimal solution.
- 5. Is the solution returned by the algorithm the only possible solution for all possible inputs? Explain your answer.
- 6. Prove that your algorithm returns an/the optimal solution.
- 7. Prove a tight asymptotic bound on the running time of your algorithm.

Products in Fridge

We bought n products from grocery store, i_{th} product can only be in a fridge if the temprature of that fridge is between c_i to h_i . Each fridge can only be in a fixed temprature. How many fridge we need to buy in order to be able to keep all n products in fridges.

- 1. Give an efficient greedy algorithm that finds an optimal solution.
- 2. Explain why your algorithm returns an optimal solution.
- 3. Is the solution returned by the algorithm the only possible solution for all possible inputs? Explain your answer.
- 4. Prove that your algorithm returns an/the optimal solution.
- 5. Prove a tight asymptotic bound on the running time of your algorithm.