Journal Club May 4, 2021

Universität Tübingen

Jakob Schlör

machine in climate science

May 5, 2021

ournal of Statistical Mechanics: Theory and Experiment

Deep learning for physical processes: incorporating prior scientific knowledge*

Emmanuel de Bézenac^{1,3}, Arthur Pajot^{1,3} and Patrick Gallinari²

Sorbonne Universites, UMR 7606, LIP6, F-75005 Paris, France

Sorbonne Université, UMR 7606, LIP6, Paris and Criteo AI Lab, Paris, France

Motivation

Earth System Observation Data

Successive research on **explainable and interpretable AI** will make hybrid models more physically tractable

Combining the advantages of process-based with machine learning models will drastically improve Earth system and climate projections

Irrgang et al., Will Artificial Intelligence supersede Earth System and ClimateModels? (2021)

In short

Question:

How to incorporate physical knowledge for designing a NN aimed at forecasting sea surface temperatures?

Results:

Improve SST forecasting (6 days) by combining NN with the advection-diffusion equation.

Impact:

Proposed hybrid model generalizes to a class of problems for forecasting spatio-temporal data.

Advection-diffusion equation

Advection: transport of substance or quantity by motion of a fluid

Diffusion: Movement of substance or quantity from regions of higher to regions of lower concentration

$$\underbrace{\frac{\partial I}{\partial t} + (\omega \cdot \nabla) I}_{\text{advection}} = \underbrace{D\nabla^2 I}_{\text{diffusion}}$$

I(x,t): sea surface temperature $\omega \sim \frac{\Delta x}{\Delta t}$: motion field

D: diffusion coefficient

Advection-diffusion equation

$$\underbrace{\frac{\partial I}{\partial t} + (\omega \cdot \nabla) I}_{\text{advection}} = \underbrace{D\nabla^2 I}_{\text{diffusion}}$$

I(x,t): sea surface temperature

 $\omega \sim \frac{\Delta x}{\Delta t}$: motion field

D: diffusion coefficient

Global Solution:

$$I(x,t) = \int_{\mathbb{R}^2} k(x - t\omega, x') I_0(x') dx'$$

RBF - kernel

$$k(x, x') = \frac{1}{4\pi Dt} e^{-\frac{1}{4Dt}|x-x'|^2}$$

Motion estimation

Covolution Deconvolution NN (CDNN)

Properties:

- Skip connections
- Batch normalization
- Leaky ReLU

Loss:

$$L_{t} = \sum_{x \in \Omega} \rho \left(\hat{I}_{t+1}(x) - I_{t+1}(x) \right) + \underbrace{\lambda_{\text{div}} \left(\nabla \cdot w_{t}(x) \right)^{2}}_{\text{divergence}} + \underbrace{\lambda_{\text{magn}} \left\| w_{t}(x) \right\|^{2}}_{\text{magnitude}} + \underbrace{\lambda_{\text{grad}} \left\| \nabla w_{t}(x) \right\|^{2}}_{\text{smoothness}}$$

Charbonnier penalty function: $\rho(x) = (x + \epsilon)^{\frac{1}{\alpha}}$

Dataset

- Normalized sea surface temperature anomalies
- Daily temperature
- NOAA 6 satellite (with NEMO assimilation)
- Training/Validation data: 2006-2015
- Test data: 2016-2017

Assumption: sub-region contains enough information for forecasting

Results

ullet 6 day forecasts: $I_t
ightarrow I_{t+6}$

- Comparison to:
 - Numerical model based on shallow-water equation
 - Autoregressive CDNN directly on SST prediction
 - ConvLSTM
 - Autoregressive CNN trained as a GAN

Results

Model	Average score (MSE)	Average time (s)
Numerical model (Béréziat and Herlin 2015)	1.99	4.8
ConvLSTM (Shi et al 2015)	5.76	0.018
ACNN	15.84	0.54
GAN video generation (Mathieu et al 2015)	4.73	0.096
Proposed model with regularization	1.42	0.040
Proposed model without regularization	2.01	0.040

- Proposed model performs similarly to the numerical model
- Computational time is strongly decreased in comparison to the numerical model

Results

Forecasting ability seem to be seasonal dependent

Summary

Combining physical knowledge and CDNN outperforms purely data-driven NN models

Proposed approach reaches comparable performance than numerical model

Generalizes to problems which follow advection-diffusion principles

Shortcomings and improvements

- Uncertainty prediction
- Validating motion field
- Incorporating additional terms not captured by advection-diffusion equation
- Other examples to show generalizability

Take home message

Read model papers before using a data-driven approach

- Incorporating known equations or principles from physics to a NN
 - Model architecture
 - Loss function

Numerical Model

Dynamics are based on the shallow water equations:

- Derived from depth-integrated Navier-Stokes equation (animation)
- conservation of mass and momentum
- Group all terms not related to advection into one Lagrangian variable
- Initial conditions derived from data assimilation

Convolutional LSTM

- Convolution operator in the state-tostate and input-to-state transitions
- Used for precipitation nowcasting

Figure 2: Inner structure of ConvLSTM

GAN video generation

- Autoregressive CDNN as a generative model
- Joined training of generative model and discriminative model

Algorithm 1: Training adversarial networks for next frame generation

Set the learning rates ρ_D and ρ_G , and weights $\lambda_{adv}, \lambda_{\ell_p}$.

while not converged do

Update the discriminator D:

Get M data samples $(X, Y) = (X^{(1)}, Y^{(1)}), \dots, (X^{(M)}, Y^{(M)})$

$$W_D = W_D - \rho_D \sum_{i=1}^{M} \frac{\partial \mathcal{L}_{adv}^D(X^{(i)}, Y^{(i)})}{\partial W_D}$$

Update the generator *G***:**

Get M new data samples $(X, Y) = (X^{(1)}, Y^{(1)}), \dots, (X^{(M)}, Y^{(M)})$

$$W_{G} = W_{G} - \rho_{G} \sum_{i=1}^{M} \left(\lambda_{adv} \frac{\partial \mathcal{L}_{adv}^{G}(X^{(i)}, Y^{(i)})}{\partial W_{G}} + \lambda_{\ell_{p}} \frac{\partial \mathcal{L}_{\ell_{p}}(X^{(i)}, Y^{(i)})}{\partial W_{G}} \right)$$