Spring 2024

Hongchang Gao

Background

Background

- Feature extractor: Learn useful features from images for prediction
 - 1. Sobel Filter Weights to Detect Horizontal Edges

Background

- Feature extractor: Learn useful features from images for prediction
 - 1. Sobel Filter Weights to Detect Vertical Edges

Matrix Inner Product

•
$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 5 & 7 \\ 6 & 8 \end{bmatrix}$.

• Inner product:

$$\langle \mathbf{A}, \mathbf{B} \rangle = \sum_{i} \sum_{j} a_{ij} b_{ij} = 70.$$

• Property: $\langle \mathbf{A}, \mathbf{B} \rangle = \langle \operatorname{vec}(\mathbf{A}), \operatorname{vec}(\mathbf{B}) \rangle$.

The value 4 is the inner product of the patch

1	1	1
0	1	1
0	0	1

Result

3×3

and the filter

1	0	1	
0	1	0	
1	0	1	

The value 3 is the inner product of the patch

1	1	0
1	1	1
0	1	1

and the filter

1	0	1	
0	1	0	
1	0	1	

The value 4 is the inner product of the patch

1	1	1
1	1	0
1	0	0

and the filter

1	0	1
0	1	0
1	0	1

• Question: How many 3x3 patches in following two images?

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	1	1	0
0	1	1	1
0	1	1	0
1	1	0	0

Dimensions:

• Input: $d_1 \times d_2$

• Filter: $k_1 \times k_2$

• Output: $(d_1 - k_1 + 1) \times (d_2 - k_2 + 1)$

Zero Padding

Problem: the output is smaller than the input

1	1	1	0	0	_			
0	1	1	1	0		4	3	4
0	0	1	1	1		2	4	3
0	0	1	1	0		2	3	4
0	1	1	0	0				

- Zero padding
 - Keep the next layer's width and height consistent with the previous
 - Keep the information around the border of the image

Zero Padding

- Add a "boarder" of all-zeros.
- Increase the input shape:
 - From $d_1 \times d_2$ to $(d_1 + 2) \times (d_2 + 2)$.
- If the filter is 3×3 , the output is $d_1\times d_2$

Stride

- Stride
 - The filter moves K step each time, K >=1

Stride

- Stride
 - The filter moves K step each time, K >=1

Dimensions:

- Input: $d_1 \times d_2$
- Filter: $k_1 \times k_2$
- Stride: s
- Output: $\left(\left\lfloor \frac{d_1-k_1}{s} \right\rfloor + 1\right) \times \left(\left\lfloor \frac{d_2-k_2}{s} \right\rfloor + 1\right)$

• Convolution:

- Feature map, filter/kernel
- Zero padding
- Stride

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Feature map

1	0	1
0	1	0
1	0	1

Filter/kernel

4	3	4
2	4	3
2	3	4

Feature map

- Traditional Feature extractor:
 - hand-crafted filters
 - a lot of expertise
 - Limited filters

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$\left[egin{array}{cccc} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \ \end{array}
ight]$$

$$rac{1}{16}egin{bmatrix}1 & 2 & 1 \ 2 & 4 & 2 \ 1 & 2 & 1\end{bmatrix}$$

- Traditional Feature extractor:
 - hand-crafted filters
 - a lot of expertise
 - Limited filters

Can we learn filters automatically?

Convolutional layer

$$x_j^{\ell} = f(\sum_i conv(x_i^{\ell-1}, k_{ij}^{\ell}) + b_j^{\ell})$$

 x_j^ℓ is the j-th feature map in the ℓ -th layer, k_{ij}^ℓ is the convolutional kernel in the ℓ -th layer

3 input feature maps 1 output feature maps 3x1 filters

Feature map/channel

filters

Feature map/channel

Convolutional layer

$$x_j^{\ell} = f(\sum_i conv(x_i^{\ell-1}, k_{ij}^{\ell}) + b_j^{\ell})$$

 x_j^ℓ is the j-th feature map in the ℓ -th layer, k_{ij}^ℓ is the convolutional kernel in the ℓ -th layer

3 input feature maps2 output feature maps3x2 filters

• Question:

Input features: $5 \times 32 \times 32$

Convolution kernel: $8 \times 5 \times 3 \times 3$

 $x_j^\ell = f(\sum_i conv(x_i^{\ell-1}, k_{ij}^\ell) + b_j^\ell)$

- ► How many input channels are there?
- ► How many output channels are there?
- How many trainable weights are there?

- Pooling layer
 - Reduce the dimensionality of each feature map
 - Max pooling, mean pooling

29	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6

- Pool size = 2×2 .
- No overlap (stride = 2×2).

- Pooling layer
 - Reduce the dimensionality of each feature map
 - Max pooling, mean pooling

29	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6

36	80	
12	15	

- Pool size = 2×2 .
- No overlap (stride = 2×2).

- CNN
 - Convolutional layer

$$x_j^\ell = f(\sum_i conv(x_i^{\ell-1}, k_{ij}^\ell) + b_j^\ell)$$

- Pooling layer
 - Reduce dimensionality

Convolution + pooling 1

Convolution + pooling 2

• Flatten the 20 feature maps (4x4)

Add one fully-connected layer

Question

• How many model parameters?

