These basis vectors can be arranged as the rows of the following matrix:

Finally, we define the basis (e_1, \ldots, e_n) by listing each column of the above matrix from the bottom-up, starting with column one, then column two, *etc*. This means that we list the vectors e_i^i in the following order:

For
$$j = 1, ..., n_{r+1}$$
, list $e_j^1, ..., e_j^{r+1}$;

In general, for $i = r, \ldots, 1$,

for
$$j = n_{i+1} + 1, \dots, n_i$$
, list e_i^1, \dots, e_i^i .

Then because $f(e_i^1) = 0$ and $e_i^{i-1} = f(e_i^i)$ for $i \ge 2$, either

$$f(e_i) = 0$$
 or $f(e_i) = e_{i-1}$,

which proves the theorem.

As an application of Theorem 31.16, we obtain the *Jordan form* of a linear map.

Definition 31.7. A Jordan block is an $r \times r$ matrix $J_r(\lambda)$, of the form

$$J_r(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & 1 \\ 0 & 0 & 0 & \cdots & \lambda \end{pmatrix},$$

where $\lambda \in K$, with $J_1(\lambda) = (\lambda)$ if r = 1. A Jordan matrix, J, is an $n \times n$ block diagonal matrix of the form

$$J = \begin{pmatrix} J_{r_1}(\lambda_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & J_{r_m}(\lambda_m) \end{pmatrix},$$

where each $J_{r_k}(\lambda_k)$ is a Jordan block associated with some $\lambda_k \in K$, and with $r_1 + \cdots + r_m = n$.