Отчет по предмету: «Анализ данных»

Тема: «Непрерывные случайные величины»

Выполнил: Цирулик Иван

Задание 1:

Постановка задачи:

1. Случайная величина задана интегральной функцией распределения

$$F(x) = \begin{cases} 0 & npu & x \le 1 \\ \frac{x^2}{8} - \frac{1}{8} & npu & 1 < x \le 3 \\ 1 & npu & x > 3 \end{cases}$$

Найти:

- а) дифференциальную функцию случайной величины Х;
- 6) математическое ожидание, дисперсию, среднее квадратичное отклонение случайной величины X;
- в) вероятность попадания случайной величины в интервал (1;2)

Мат.Модель:

$$M(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$P(a < X < b) = F(b) - F(a)$$

$$D(X) = \int_{-\infty}^{+\infty} (x - M(X))^2 f(x) dx = \int_{-\infty}^{+\infty} x^2 f(x) dx - (M(X))^2$$

Результат работы:

Интервал	Интеграл.Функция	Дифф. Функция
<=1	0	0
от 1 до 3	(x*x/8) - 1/8	x/4
>3	1	0
M	2	
D	2,5	
СКО	1,58113883	
Р	0,375	

Задание 2:

Постановка задачи:

 ${f 2.}$ Дана интегральная функция случайной величины ${f X}$

$$F(x) = \begin{cases} 0 & npu & x \le 0 \\ \frac{x^6}{4} & npu & 0 < x \le \sqrt[3]{2} \\ 1 & npu & x > \sqrt[3]{2} \end{cases}$$

Найти вероятность того, что в результате шести испытаний случайная величина X два раза примет значение, принадлежащее интервалу (0;1)

Мат.Модель:

$$P(a \le X \le b) = F(b) - F(a)$$

$$P_n(m) = C_n^m p^m (1-p)^{n-m}$$

Результат работы:

Интервал	Интеграл.Функция	Дифф. Функция
<= 0	0	0
0 <x<=2^(1 3)<="" th=""><th>x^6/4</th><th>3*x^5/2</th></x<=2^(1>	x^6/4	3*x^5/2
> 2^(1/3)	1	0
P	0,296630859	

Задание 3:

Постановка задачи:

4. Плотность распределения вероятностей задана следующим образом

$$p(x) = \begin{cases} 0 & npu & x < -1 \\ 1+x & npu & -1 \le x \le 0 \\ 1-x & npu & 0 < x \le 1 \\ 0 & npu & x > -1 \end{cases}$$

Подсчитайте вероятность того, что соответствующая случайная величина примет значение от -0.5 до 1.

Мат.Модель:

$$F(x) = \int_{-\infty}^{x} f(x) dx$$

$$P(a < X < b) = F(b) - F(a)$$

Результат работы:

Интервал	Интеграл.Функция	Дифф. Функция
<-1	0	0
`-1 < x <= 0	x^2/2+x	1+x
0 < x <= 1	x - x^2/2	1 - x
>1	0	0
P	0,875	