声明

本 PDF 为个人翻译, 准确行不能保证, 建议参照原版进行学习

本人博文地址: https://me.csdn.net/weixin_44048162

Github 地址: https://github.com/843862803

使用的翻译软件为 巽 二博主所写

博主博文地址: https://me.csdn.net/m0_37868504

在不收取其他人费用的前提下,可以自由传播!

本文最后几页无法翻译, 请见谅

因使用拆分后的文件进行翻译, 文章索引可能无法使用。

MSP432P401R, MSP432P401M

SLAS826F - MARCH 2015-REVISED MARCH 2017

MSP432P401R, MSP432P401M SimpleLink™混合信号微控制器

1设备概述

1.1特点

•核心 - 带浮动的ARM®32位Cortex®-M4F

Point Unit and Memory Protection Unit

- 频率高达48 MHz

ULPBench™基准测试: - 192.3 ULPMark™-CP

- 绩效基准:
- 3.41 CoreMark/MHz
- 1.22 DMIPS/MHz (Dhrystone 2.1)
- Advanced Low-Power Analog Features
 - 14-Bit 1-MSPS SAR ADC With 13.2 ENOB

具有过采样, 差分和单端输入的原生和能力 达到16 ENOB

- Internal Voltage Reference With 10-ppm/°C Typical Stability
- Two Analog Comparators
- Memories
 - Up to 256KB of Flash Main Memory (Organized Into Two Banks Enabling Simultaneous Read/Execute During Erase)
 - 16KB of Flash Information Memory (Used for BSL, TLV, and Flash Mailbox)
 - Up to 64KB of SRAM (Including 6KB of Backup) Memory)
 - 32KB of ROM With MSP432™ Peripheral Driver Libraries
- Ultra-Low-Power Operating Modes
 - Active: 80 μA/MHz
 - Low-Frequency Active: 83 µA at 128 kHz
 - LPM3 (With RTC): 660 nA
 - LPM3.5 (With RTC): 630 nA
 - LPM4: 500 nA
 - LPM4.5: 25 nA
- Development Kits and Software (See Tools and Software)
 - MSP-EXP432P401R LaunchPad™ Development Kit
 - MSP-TS432PZ100 100-Pin Target Board
 - SimpleLink™ MSP432 Software Development Kit (SDK)
- Operating Characteristics
 - Wide Supply Voltage Range: 1.62 V to 3.7 V
 - Temperature Range (Ambient): –40°C to 85°C

- Flexible Clocking Features
 - Tunable Internal DCO (up to 48 MHz)
 - 32.768 kHz Low-Frequency Crystal Support (LFXT)
 - High-Frequency Crystal Support (HFXT) up to 48 MHz
 - Low-Frequency Internal Reference Oscillator (REFO)
 - Very Low-Power Low-Frequency Internal Oscillator (VLO)
 - Module Oscillator (MODOSC)
 - System Oscillator (SYSOSC)
- •代码安全功能 -JTAG和SWD锁定 -IP保护(最多四个安全Flash区域,

每个具有可配置的起始地址和大小)

- Enhanced System Features
 - Programmable Supervision and Monitoring of Supply Voltage
 - Multiple-Class Resets for Better Control of Application and Debug
 - 8-Channel DMA
 - RTC With Calendar and Alarm Functions
- · Timing and Control
 - Up to Four 16-Bit Timers, Each With up to Five Capture, Compare, PWM Capability
 - Two 32-Bit Timers, Each With Interrupt **Generation Capability**
- Serial Communication
 - Up to Four eUSCI_A Modules
 - UART With Automatic Baud-Rate Detection
 - IrDA Encode and Decode
 - SPI (up to 16 Mbps)
 - Up to Four eUSCI_B Modules
 - I²C (With Multiple-Slave Addressing)
 - SPI (up to 16 Mbps)
- Flexible I/O Features
 - Ultra-Low-Leakage I/Os (±20 nA Maximum)
 - All I/Os With Capacitive-Touch Capability
 - Up to 48 I/Os With Interrupt and Wake-up Capability
 - Up to 24 I/Os With Port Mapping Capability
 - Eight I/Os With Glitch Filtering Capability

- Encryption and Data Integrity Accelerators
 - 128-, 192-, or 256-Bit AES Encryption and Decryption Accelerator
 - 32-Bit Hardware CRC Engine

1.2申请

- Industrial and Automation
 - Glass Breakage Detectors
 - Smart Thermostats
 - Access Panels
 - Gas Monitors
 - Field Transmitters
 - Process Automation
 - Home Automation
- Metering
 - Flow Meters
 - Electric Meters
 - Communication Modules

- JTAG and Debug Support
 - 4-Pin JTAG and 2-Pin SWD Debug Interfaces
 - Serial Wire Trace
 - Power Debug and Profiling of Applications
- Test and Measurement
 - Digital Multimeters
 - Wireless Digital Multimeters
 - Contactless and Hand-Held Digital Meters
- Health and Fitness
 - Watches
 - Activity Monitors
 - Fitness Accessories
 - Blood Glucose Meters
- Consumer Electronics
 - Mobile Devices
 - Sensor Hubs

1.3说明

SimpleLink

MSP432P401x微控制器 (MCU) 是经过优化的无线主机MCU, 集成了14位模数转换器 (ADC) , 最高可达16 ENOB, 可提供超低功耗性能,包括80μA/

MHz有功功率和660具有FPU和DSP扩展的待机电源nA。作为优化的无线主机MCU, MSP432P401 x允许开发人员为基于SimpleLink无线连接解决方 案的应用添加高精度模拟和存储器扩展。

MSP432P401x器件是SimpleLink微控制器(MCU)平台的一部分,该平台由Wi-Fi®,Bluetooth®低功耗,Sub-1 GHz和主机MCU组成。所有这些都与一个核心软件开发工具包(SDK)和丰富的工具集共享一个易于使用的通用开发环境。通过SimpleLink平台的一次性集成,您可以将产品组合中的任意设备组合添加到设计中。SimpleLink平台的最终目标是在您的设计要求发生变化时实现100%的代码重用。有关更多信息,请访问www.ti.com/simplelink。

MSP432P401x器件由全面的工具,软件,文档,培训和支持生态系统提供支持,可帮助您快速开始开发。 MSP-EXP432P401R

LaunchPad开发套件或MSP-TS432PZ100目标插座板(带有额外的MCU样本)以及免费的SimpleLink MSP432 SDK是您入门所需的全部内容。

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (2)
MSP432P401RIPZ MSP432P401MIPZ	LQFP (100)	14 mm × 14 mm
MSP432P401RIZXH MSP432P401MIZXH	NFBGA (80)	5 mm × 5 mm
MSP432P401RIRGC MSP432P401MIRGC	VQFN (64)	9 mm × 9 mm

- (1) 有关所有可用器件的最新部件,封装和订购信息,请参见第9节中的封装选项附录,或参见TI网站。
- (2) 此处显示的尺寸为近似值。有关公差的封装尺寸,请参见第9节中的机械数据。

1.4功能框图

图1-1显示了MSP432P401R和MSP432P401M器件的功能框图。

版权所有©2016,德州仪器公司

图1-1。 MSP432P401R,MSP432P401M功能框图

CPU和设备中的所有外围设备通过公共AHB矩阵相互交互。

在某些情况下,AHB端口和外围设备之间存在桥接。从存储器映射的角度来看,这些桥对应用是透明的,因此未在框图中示出。

Table of Contents

1	Devi	ce Overview	. <u>1</u>		5.19		
	1.1	Features	. <u>1</u>			Modes	. 38
	1.2	Applications	. 2		5.20	Current Consumption in Low-Frequency LPM0 Modes	. 38
	1.3	Description	. 2		5.21	Current Consumption in LPM3, LPM4 Modes	_
	1.4	Functional Block Diagram	. <u>3</u>			· · · · · · · · · · · · · · · · · · ·	
2	Revi	sion History	<u>5</u>		5.22	Current Consumption in LPM3.5, LPM4.5 Modes .	
3	Devi	ce Comparison	6		5.23	Current Consumption of Digital Peripherals	
	3.1	Related Products	. 7		5.24	Thermal Resistance Characteristics	
4	Term	ninal Configuration and Functions	_ 8	•	5.25	Timing and Switching Characteristics	
	4.1	Pin Diagrams	. 8	6		iled Description	
	4.2	Pin Attributes	11		6.1	Overview	_
	4.3	Signal Descriptions	17		6.2	Processor and Execution Features	
	4.4	Pin Multiplexing	 27		6.3	Memory Map	
	4.5	Buffer Types	 27		6.4	Memories on the MSP432P401x	
	4.6	Connection for Unused Pins			6.5	DMA	
5	Spec	cifications	 28		6.6	Memory Map Access Details	
	5.1	Absolute Maximum Ratings			6.7	Interrupts	
	5.2	ESD Ratings	_		6.8	System Control	
	5.3	Recommended Operating Conditions	_		6.9	Peripherals	
	5.4	Recommended External Components			6.10	Code Development and Debug	134
	5.5	Operating Mode V _{CC} Ranges			6.11	Performance Benchmarks	
	5.6	Operating Mode CPU Frequency Ranges	30		6.12	Input/Output Diagrams	<u>138</u>
	5.7	Operating Mode Peripheral Frequency Ranges	_		6.13	Device Descriptors (TLV)	176
	5.8	Operating Mode Execution Frequency vs Flash	<u>30</u>		6.14	Identification	178
	0.0	Wait-State Requirements	31	7	Appl	lications, Implementation, and Layout	180
	5.9	Current Consumption During Device Reset	31		7.1	Device Connection and Layout Fundamentals	180
	5.10	Current Consumption in LDO-Based Active	_		7.2	Peripheral and Interface-Specific Design	
		Modes – Dhrystone 2.1 Program	<u>31</u>	_		Information	_
	5.11	Current Consumption in DC-DC-Based Active		8		ce and Documentation Support	
		Modes – Dhrystone 2.1 Program	<u>32</u>		8.1	Getting Started and Next Steps	
	5.12		22		8.2	Device and Development Tool Nomenclature	
	5.13	Modes – Dhrystone 2.1 Program	32		8.3	Tools and Software	184
	5.15	CoreMark Program	33		8.4	Documentation Support	
	5.14	Typical Characteristics of Active Mode Currents for			8.5	Related Links	
		Prime Number Program	<u>34</u>		8.6	Community Resources	188
	5.15	Typical Characteristics of Active Mode Currents for			8.7	Trademarks	188
		Fibonacci Program	<u>35</u>		8.8	Electrostatic Discharge Caution	
	5.16	Typical Characteristics of Active Mode Currents for	20		8.9	Export Control Notice	188
	E 17	While(1) Program	<u>36</u>		8.10	Glossary	188
	5.17	Typical Characteristics of Low-Frequency Active Mode Currents for CoreMark Program	37	9	Mecl	hanical, Packaging, and Orderable	
	5.18	Current Consumption in LDO-Based LPM0 Modes.			Infor	mation	188

2修订历中 注意:以前版本的页码可能与当前版本中的页码不同。

2016年7月26日至2017年3月7日期间的变更

•	Added "SimpleLink" branding, including updates to the titles of referenced documents
•	Reorganized contents of Section 1.1, Features
•	Updated Section 1.2, Applications
	Updated Section 1.3, Description
	Updated lists of software and tools in Section 8.3, Tools and Software

www.ti.com

3器件比较

表3-1总结了MSP432P401x微控制器的功能。

Table 3-1. Device Comparison⁽¹⁾

							eU	SCI			
DEVICE	FLASH (KB)	SRAM (KB)	ADC14 (Channels)	COMP_E0 (Channels)	COMP_E1 (Channels)	Timer_A ⁽²⁾	CHANNEL A: UART, IrDA, SPI	CHANNEL B: SPI, I ² C	20-mA DRIVE I/O	TOTAL I/Os	PACKAGE
MSP432P401RIPZ	256 64 2	4 ext, 2	2 int 8 8 5,	5, 5, 4 4 4 4 8	4 100 PZ						
MSP432P401MIPZ	128 32 2	4分机, 2	2 int 8 8 5,	5, 5, 4 4 4 4 8	4 100 PZ						
MSP432P401RIZXH	256 64	16分机,	2分6 8 5, 5, 5	3 4 4 64 80	ZXH						
MSP432P401MIZXH	128 32	16分机,	2 int 6 8 5,	5, 5 3 4 4 64	80 ZXH						
MSP432P401RIRGC	256 64	l2 ext,	2 int 2 4 5,	5 5 3 3 4 48	64 RGC			.			
MSP432P401MIRGC	128 32 1	l2 ext,	2 int 2 4 5,	5 5 3 3 4 48	64 RGC						

⁽¹⁾ 有关所有可田哭性的最新部件。封装和订购信息、请参见策Q节中的封装选项附录。或访问TI网站www ti com

⁽²⁾ 序列中的每个数字代表Timer_A的实例化,其中包含相关数量的捕获/比较寄存器和PWM输出发生器。例如,数字序列3,5表示Timer_A的两个实例,第一实例具有3,第二实例分 别具有5个捕获/比较寄存器和PWM输出发生器。

3.1相关产品

有关此系列产品或相关产品中其他设备的信息,请参阅以下链接。

Products for TI Microcontrollers Low-power and high-performance MCUs, with wired and wireless 连接选项。

Products for SimpleLink MSP432 MCUs SimpleLink MSP432 MCUs with an ultra-low-power ARM

Cortex-M4内核针对物联网传感器节点应用进行了优化。该系列采用集成的14位ADC,可在不牺牲功率的情况下采集和处理高精度信号,是TI SimpleLink无线连接解决方 案的最佳主机MCU。

Companion Products for MSP432P401R Review products that are frequently purchased or used with 这个产品。

Reference Designs for MSP432P401R The TI Designs Reference Design Library is a robust reference 跨越模拟,嵌入式处理器和连接的设计库。

TI专家创建的TI设计包括原理图或方框图,BOM和设计文件,可帮助您快速启动系统设计,从而加快产品上市速度。在ti.com/tidesigns上搜索和下载设计。

www.ti.com

4终端配置和功能

4.1引脚图

图4-1显示了100引脚PZ封装的引脚排列。

A. 端口P2, P3和P7上的辅助数字功能是完全可映射的。此引脚分布仅显示默认映射。有关详细信息,请参见第6.9.2节。

- B. 在这些数字I / 0上实现毛刺滤波器: P1.0, P1.4, P1.5, P3.0, P3.4, P3.5, P6.6, P6.7。
- C. UART BSL引脚: P1.2 BSLRXD, P1.3 BSLTXD
- D. SPI BSL引脚: P1.4 BSLSTE, P1.5 BSLCLK, P1.6 BSLSIMO, P1.7 BSLSOMI
- I²C BSL pins: P3.6 BSLSDA, P3.7 BSLSCL

图4-1。 100针PZ封装(俯视图)

图4-2显示了80引脚ZXH封装的引脚排列。

P1.0 SWCLKTCK PJ.		PJ.3	PJ.2	P6.5	P6.4	P6.2
P1.1 SWDIOTMS PJ		P7.0	RSTn/NM		P6.6	P6.3
P1.5 VCORE (C1) (C2)	P1.2	P7.1 (C5)	DVCC2	DVSS3	P5.5	P5.7
P1.6 DVCC1 P1.4		AVCC2	AVSS2	P5.3	P5.4	P5.6
P1.7 VSW P2.2	P2.0	AVSS3	DVSS2	P5.0	P5.1	P5.2
P2.1 DVSS1 P2.4	P2.3	AVSS1	AVCC1	P4.5	P4.6	P4.7
P2.5 P2.6 P7.	P8.1	P3.2 (G5)	P3.5	P4.2	P4.3	P4.4 (G9)
P2.7 P7.5 P8.1	P3.1	P3.4 (H5)	P3.7	P6.1	P4.1	P4.0 (H9)
P7.4 P7.6 P3.0	P3.3	P3.6	PJ.0 (J6)	PJ.1	DCOR (J8)	P6.0

A. 在这些数字I / 0上实现毛刺滤波器: P1.0, P1.4, P1.5, P3.0, P3.4, P3.5, P6.6, P6.7。

图4-2。 80针ZXH封装 (俯视图)

B. UART BSL引脚: P1.2 - BSLRXD, P1.3 - BSLTXD

C. SPI BSL引脚: P1.4 - BSLSTE, P1.5 - BSLCLK, P1.6 - BSLSIMO, P1.7 - BSLSOMI

D. I²C BSL pins: P3.6 - BSLSDA, P3.7 - BSLSCL

图4-3显示了64引脚RGC封装的引脚排列。

A. 端口P2, P3和P7上的辅助数字功能是完全可映射的。此引脚分布仅显示默认映射。有关详细信息,请参见第6.9.2节。

- B. 在这些数字I / 0上实现毛刺滤波器: P1.0, P1.4, P1.5, P3.0, P3.4, P3.5, P6.6, P6.7。
- C. TI建议将QFN封装上的导热垫连接到DVSS。
- D. UART BSL引脚: P1.2 BSLRXD, P1.3 BSLTXD
- E. SPI BSL引脚: P1.4 BSLSTE, P1.5 BSLCLK, P1.6 BSLSIMO, P1.7 BSLSOMI
- F. I²C BSL pins: P3.6 BSLSDA, P3.7 BSLSCL

图4-3。 64引脚RGC封装(俯视图)

4.2引脚属性

表4-1描述了引脚的属性。

Table 4-1. Pin Attributes

	PIN NO. ⁽¹⁾		(0) (0)	SIGNAL	(5)	POWER	RESET
PZ	ZXH	RGC	SIGNAL NAME ^{(2) (3)}	TYPE ⁽⁴⁾	BUFFER TYPE ⁽⁵⁾	SOURCE ⁽⁶⁾	STATE AFTER POR ⁽⁷⁾
1 N	/ A NT / A		P10.1 (RD)	I/O	LVCMOS	DVCC	OFF
1 N ,	1 N / A N / A.		UCB3CLK	I/O	LVCMOS	DVCC	N/A
			P10.2 (RD)	I/O	LVCMOS	DVCC	OFF
2 N	/ A N / A.		UCB3SIMO	I/O	LVCMOS	DVCC	N/A
			UCB3SDA	I/O	LVCMOS	DVCC	N/A
			P10.3 (RD)	I/O	LVCMOS	DVCC	OFF
3 N	/ A N / A.		UCB3SOMI	I/O	LVCMOS	DVCC	N/A
			UCB3SCL	I/O	LVCMOS	DVCC	N/A
4 4 1			P1.0 (RD)	I/O	LVCMOS	DVCC	OFF
4 A1	1		UCA0STE	I/O	LVCMOS	DVCC	N/A
E D1	0		P1.1 (RD)	I/O	LVCMOS	DVCC	OFF
5 B1	2		UCA0CLK	I/O	LVCMOS	DVCC	N/A
			P1.2 (RD)	I/O	LVCMOS	DVCC	OFF
6 C4	3		UCA0RXD	I	LVCMOS	DVCC	N/A
			UCA0SOMI	I/O	LVCMOS	DVCC	N/A
			P1.3 (RD)	I/O	LVCMOS	DVCC	OFF
7 D4	4	4	UCA0TXD	0	LVCMOS	DVCC	N/A
			UCA0SIMO	I/O	LVCMOS	DVCC	N/A
0 D3			P1.4 (RD)	I/O	LVCMOS	DVCC	OFF
8 D3	Э 		UCB0STE	I/O	LVCMOS	DVCC	N/A
0. 61	C		P1.5 (RD)	I/O	LVCMOS	DVCC	OFF
9 C1	0		UCB0CLK	I/O	LVCMOS	DVCC	N/A
			P1.6 (RD)	I/O	LVCMOS	DVCC	OFF
10 D1	. 7		UCB0SIMO	I/O	LVCMOS	DVCC	N/A
			UCB0SDA	I/O	LVCMOS	DVCC	N/A
			P1.7 (RD)	I/O	LVCMOS	DVCC	OFF
11 E1	. 8		UCB0SOMI	I/O	LVCMOS	DVCC	N/A
			UCB0SCL	I/O	LVCMOS	DVCC	N/A
12 C2	9 VCORE	- 电源	DVCC N / A.		+		+
13 D2	2 10 DVCC1	- 电	原不适用N / A.				
14 E2	2 11 VSW	- 电源	不适用N / A.				
15 F2	2 12 DVSS1	- 电	原N / A N / A.	+			+
16 E4			P2.0 (RD)	I/O	LVCMOS	DVCC	OFF
10 E4	13		PM_UCA1STE	I/O	LVCMOS	DVCC	N/A

⁽¹⁾ N/A = not available on this package

^{(9) (}RD) 表示该引脚的复位默认信号名称。
(3) 要确定每个引脚的引脚复用编码,请参见第6.12节"输入/输出图"。
(4) Signal Types: I = Input, O = Output, I/O = Input or Output, P = power
(5) Buffer Types: See Table 4-3 for details

⁽⁶⁾ 此表中所示的由源县I / O由源。可能与模块由源不同

⁽⁷⁾ 复位状态: OFF

⁼施密特触发和上拉或下拉(如果可用)禁用的高阻抗PD

⁼启用下拉的高阻抗输入PU =启用上拉的高阻抗输入N / A =不适用

Table 4-1. Pin Attributes (continued)

	PIN NO. ⁽¹⁾		Table 4-1.1 III Au	`	,	2011/22	RESET		
PZ	ZXH	RGC	SIGNAL NAME ^{(2) (3)}	SIGNAL TYPE ⁽⁴⁾	BUFFER TYPE ⁽⁵⁾	POWER SOURCE ⁽⁶⁾	STATE AFTER POR ⁽⁷⁾		
17 D1	1.4		P2.1 (RD)	I/O	LVCMOS	DVCC	OFF		
17 F1	11 14		PM_UCA1CLK	I/O	LVCMOS	DVCC	N/A		
			P2.2 (RD)	I/O	LVCMOS	DVCC	OFF		
18 E3	15	ı	PM_UCA1RXD	I	LVCMOS	DVCC	N/A		
			PM_UCA1SOMI	I/O	LVCMOS	DVCC	N/A		
			P2.3 (RD)	I/O	LVCMOS	DVCC	OFF		
19 F4	1 16	ı	PM_UCA1TXD	0	LVCMOS	DVCC	N/A		
			PM_UCA1SIMO	I/O	LVCMOS	DVCC	N/A		
50 E3	不适用	l	P2.4 (RD)	I/O	LVCMOS	DVCC	OFF		
20 F3	小地用		PM_TA0.1	I/O	LVCMOS	DVCC	N/A		
91 C1	N / A.		P2.5 (RD)	I/O	LVCMOS	DVCC	OFF		
21 G1	N / A.		PM_TA0.2	I/O	LVCMOS	DVCC	N/A		
22 C2	2 N / A.		P2.6 (RD)	I/O	LVCMOS	DVCC	OFF		
22 G2	, N / A.		PM_TA0.3	I/O	LVCMOS	DVCC	N/A		
93 H1	N / A.	ļ	P2.7 (RD)	I/O	LVCMOS	DVCC	OFF		
23 111	. N / A.		PM_TA0.4	I/O	LVCMOS	DVCC	N/A		
	N / A N /		P10.4 (RD)	I/O	LVCMOS	DVCC	OFF		
24 N		/ A N /	Α.	TA3.0	I/O	LVCMOS	DVCC	N/A	
				C0.7	I	Analog	DVCC	N/A	
			P10.5 (RD)	I/O	LVCMOS	DVCC	OFF		
25 N	/ A N /	Α.	TA3.1	I/O	LVCMOS	DVCC	N/A		
			C0.6	I	Analog	DVCC	N/A		
			P7.4 (RD)	I/O	LVCMOS	DVCC	OFF		
26 J1	N / A.	ı	PM_TA1.4	I/O	LVCMOS	DVCC	N/A		
			C0.5	I	Analog	DVCC	N/A		
					P7.5 (RD)	I/O	LVCMOS	DVCC	OFF
27 H2	2 N / A.	ı	PM_TA1.3	I/O	LVCMOS	DVCC	N/A		
			C0.4	I	Analog	DVCC	N/A		
			P7.6 (RD)	I/O	LVCMOS	DVCC	OFF		
28 J2	2 N / A.	1	PM_TA1.2	I/O	LVCMOS	DVCC	N/A		
			C0.3	I	Analog	DVCC	N/A		
			P7.7 (RD)	I/O	LVCMOS	DVCC	OFF		
29 G3	8 N / A.	ı	PM_TA1.1	I/O	LVCMOS	DVCC	N/A		
			C0.2	1	Analog	DVCC	N/A		
			P8.0 (RD)	I/O	LVCMOS	DVCC	OFF		
5U 115	17	l	UCB3STE	I/O	LVCMOS	DVCC	N/A		
30 H3	17		TA1.0	I/O	LVCMOS	DVCC	N/A		
			C0.1	I	Analog	DVCC	N/A		
			P8.1 (RD)	I/O	LVCMOS	DVCC	OFF		
31 G4	 10	I	UCB3CLK	I/O	LVCMOS	DVCC	N/A		
31 64	10		TA2.0	I/O	LVCMOS	DVCC	N/A		
			C0.0	I	Analog	DVCC	N/A		
99 TO	10	I	P3.0 (RD)	I/O	LVCMOS	DVCC	OFF		
32 J3	19		PM_UCA2STE	I/O	LVCMOS	DVCC	N/A		
20 114	20	1	P3.1 (RD)	I/O	LVCMOS	DVCC	OFF		
33 H4	ZU		PM_UCA2CLK	I/O	LVCMOS	DVCC	N/A		

Table 4-1. Pin Attributes (continued)

	PIN NO. ⁽¹⁾		Table 4-1.1 III At			2011/22	RESET
PZ	ZXH	RGC	SIGNAL NAME ^{(2) (3)}	SIGNAL TYPE ⁽⁴⁾	BUFFER TYPE ⁽⁵⁾	POWER SOURCE ⁽⁶⁾	STATE AFTER POR ⁽⁷⁾
			P3.2 (RD)	I/O	LVCMOS	DVCC	OFF
34 G5	34 G5 21		PM_UCA2RXD	I	LVCMOS	DVCC	N/A
			PM_UCA2SOMI	I/O	LVCMOS	DVCC	N/A
			P3.3 (RD)	I/O	LVCMOS	DVCC	OFF
35 J4	22	Ĺ	PM_UCA2TXD	0	LVCMOS	DVCC	N/A
			PM_UCA2SIMO	I/O	LVCMOS	DVCC	N/A
36 H5	 		P3.4 (RD)	I/O	LVCMOS	DVCC	OFF
30 113	20		PM_UCB2STE	I/O	LVCMOS	DVCC	N/A
37 G6	· 3 24	ļ	P3.5 (RD)	I/O	LVCMOS	DVCC	OFF
01 00	21		PM_UCB2CLK	I/O	LVCMOS	DVCC	N/A
			P3.6 (RD)	I/O	LVCMOS	DVCC	OFF
38 J5	25	T	PM_UCB2SIMO	I/O	LVCMOS	DVCC	N/A
			PM_UCB2SDA	I/O	LVCMOS	DVCC	N/A
			P3.7 (RD)	I/O	LVCMOS	DVCC	OFF
39 H6	26	l.	PM_UCB2SOMI	I/O	LVCMOS	DVCC	N/A
			PM_UCB2SCL	I	LVCMOS	DVCC	N/A
40 E5	27 AVSS	3 - 电测	原不适用不适用	1			
41 J6	5 28	I	PJ.0 (RD)	I/O	LVCMOS	DVCC	OFF
11 30	20		LFXIN	1	Analog	DVCC	N/A
42 J7	29	I	PJ.1 (RD)	I/O	LVCMOS	DVCC	OFF
			LFXOUT	0	Analog	DVCC	N/A
	30 AVSS		京不适用不适用	-1	,		
	31 DCOR		<u>N / A N / A.</u>		,		
45 F6	32 AVCC	1 - 电测	N / A N / A.			51/00	0==
40.37	/ /		P8.2 (RD)	1/0	LVCMOS	DVCC	OFF
46 N	/ A N /	Α.	TA3.2	I/O	LVCMOS	DVCC	N/A
			A23	1	Analog	DVCC	N/A
4= 35	/ 4 37 /		P8.3 (RD)	I/O	LVCMOS	DVCC	OFF
47 N	/ A N /	Α.	TA3CLK	1	LVCMOS	DVCC	N/A
			A22	1	Analog	DVCC	N/A
48 N	/ A N /	Α.	P8.4 (RD)	I/O	LVCMOS	DVCC	OFF
			A21	I I/O	Analog	DVCC	N/A OFF
49 N	/ A N /	Α.	P8.5 (RD) A20		LVCMOS	DVCC	N/A
	/ A N /		P8.6 (RD)	I I/O	Analog LVCMOS	DVCC	OFF
50 N	/ A N /	Α.	A19	1/O	Analog	DVCC	N/A
			P8.7 (RD)	I/O	LVCMOS	DVCC	OFF
51 N	/ A N /	Α.	A18	I	Analog	DVCC	N/A
			P9.0 (RD)	I/O	LVCMOS	DVCC	OFF
52 N	/ A N /	Α.	A17	1/O	Analog	DVCC	N/A
			P9.1 (RD)	I/O	LVCMOS	DVCC	OFF
53 N	/ A N /	A.	A16	1/0	Analog	DVCC	N/A
	/ A N /		P6.0 (RD)	I/O	LVCMOS	DVCC	OFF
54 J9	N / A.	1	A15	1/O	Analog	DVCC	N/A
			P6.1 (RD)	I/O	LVCMOS	DVCC	OFF
55 H7	N / A.	i .	A14	I/O		DVCC	N/A
	1		A14	I	Analog	טאַכ	IN/A

Table 4-1. Pin Attributes (continued)

PIN NO. ⁽¹⁾				SIGNAL		POWER	RESET
PZ	ZXH	RGC	SIGNAL NAME ^{(2) (3)}	TYPE ⁽⁴⁾	BUFFER TYPE ⁽⁵⁾	SOURCE ⁽⁶⁾	STATE AFTER POR ⁽⁷⁾
56 HC) N / A.		P4.0 (RD)	I/O	LVCMOS	DVCC	OFF
50 115	/ N / A.		A13	I	Analog	DVCC	N/A
57 HS	B N / A.		P4.1 (RD)	I/O	LVCMOS	DVCC	OFF
51 HC) IV / A.		A12	I	Analog	DVCC	N/A
			P4.2 (RD)	I/O	LVCMOS	DVCC	OFF
58 G7	7 99		ACLK	0	LVCMOS	DVCC	N/A
90 G1	33		TA2CLK	I	LVCMOS	DVCC	N/A
			A11	I	Analog	DVCC	N/A
			P4.3 (RD)	I/O	LVCMOS	DVCC	OFF
59 G8) 94		MCLK	0	LVCMOS	DVCC	N/A
99 GC	34		RTCCLK	0	LVCMOS	DVCC	N/A
			A10	I	Analog	DVCC	N/A
			P4.4 (RD)	I/O	LVCMOS	DVCC	OFF
co cc	\ \ 25		HSMCLK	0	LVCMOS	DVCC	N/A
60 G9) 35 		SVMHOUT	0	LVCMOS	DVCC	N/A
			A9	I	Analog	DVCC	N/A
01 DE	 7-26		P4.5 (RD)	I/O	LVCMOS	DVCC	OFF
61 F7	36		A8	1	Analog	DVCC	N/A
60 D0	0.7		P4.6 (RD)	I/O	LVCMOS	DVCC	OFF
62 F8	8 37		A7	I	Analog	DVCC	N/A
22 72	1		P4.7 (RD)	I/O	LVCMOS	DVCC	OFF
63 F9	38	1	A6	I	Analog	DVCC	N/A
04.75	7 39		P5.0 (RD)	I/O	LVCMOS	DVCC	OFF
64 E7		1	A5	I	Analog	DVCC	N/A
05 DC	4.0		P5.1 (RD)	I/O	LVCMOS	DVCC	OFF
65 E8	3 40	1	A4	I	Analog	DVCC	N/A
			P5.2 (RD)	I/O	LVCMOS	DVCC	OFF
66 E9	41	1	A3	I	Analog	DVCC	N/A
			P5.3 (RD)	I/O	LVCMOS	DVCC	OFF
67 D7	42		A2	I	Analog	DVCC	N/A
			P5.4 (RD)	I/O	LVCMOS	DVCC	OFF
68 D8	3 43	ĺ	A1	I	Analog	DVCC	N/A
			P5.5 (RD)	I/O	LVCMOS	DVCC	OFF
69 C8	3 44	1	A0	ı	Analog	DVCC	N/A
			P5.6 (RD)	I/O	LVCMOS	DVCC	OFF
			TA2.1	I/O	LVCMOS	DVCC	N/A
70 D9	45	l	VREF+	0	Analog	DVCC	N/A
.0 20			VeREF+	I	Analog	DVCC	N/A
			C1.7	ı	Analog	DVCC	N/A
			P5.7 (RD)	I/O	LVCMOS	DVCC	OFF
			TA2.2	I/O	LVCMOS	DVCC	N/A
71 C9	46	1	VREF-	0	Analog	DVCC	N/A
11 03	7 10		VeREF-	ı	Analog	DVCC	N/A
			C1.6	i	Analog	DVCC	N/A
79 FG	17 DVCC	2 - 中3	「NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE		7		1
			<u> 原 / A N / A.</u> 原N / A N / A.		+	•	-
10 00	1 40 DICC	4 电(<u>жи / ли / л.</u>				

Table 4-1. Pin Attributes (continued)

PIN NO. ⁽¹⁾			SIGNAL		POWER	RESET					
PZ 2	ZXH	RGC	SIGNAL NAME ^{(2) (3)}	TYPE ⁽⁴⁾	BUFFER TYPE ⁽⁵⁾	SOURCE ⁽⁶⁾	STATE AFTER POR ⁽⁷⁾				
74 N / A	N /	Δ	P9.2 (RD)	I/O	LVCMOS	DVCC	OFF				
THIN / II	1 1 / 1	1.	TA3.3	I/O	LVCMOS	DVCC	N/A				
75 N / A	N /	Λ	P9.3 (RD)	I/O	LVCMOS	DVCC	OFF				
75 N / A	1 IN / I	1.	TA3.4	I/O	LVCMOS	DVCC	N/A				
	76 A9 N / A.		P6.2 (RD)	I/O	LVCMOS	DVCC	OFF				
76 A9 N			UCB1STE	I/O	LVCMOS	DVCC	N/A				
			C1.5	I	Analog	DVCC	N/A				
			P6.3 (RD)	I/O	LVCMOS	DVCC	OFF				
77 B9不适	适用		UCB1CLK	I/O	LVCMOS	DVCC	N/A				
			C1.4	I	Analog	DVCC	N/A				
			P6.4 (RD)	I/O	LVCMOS	DVCC	OFF				
78 A8 N	/ 1		UCB1SIMO	I/O	LVCMOS	DVCC	N/A				
10 A0 N	/ A.		UCB1SDA	I/O	LVCMOS	DVCC	N/A				
			C1.3	I	Analog	DVCC	N/A				
			P6.5 (RD)	I/O	LVCMOS	DVCC	OFF				
70 477	不适用		UCB1SOMI	I/O	LVCMOS	DVCC	N/A				
79 A7个拉			UCB1SCL	I/O	LVCMOS	DVCC	N/A				
			C1.2	1	Analog	DVCC	N/A				
			P6.6 (RD)	I/O	LVCMOS	DVCC	OFF				
			TA2.3	I/O	LVCMOS	DVCC	N/A				
80 B8 49	49		UCB3SIMO	I/O	LVCMOS	DVCC	N/A				
			UCB3SDA	I/O	LVCMOS	DVCC	N/A				
			C1.1	1	Analog	DVCC	N/A				
				P6.7 (RD)	I/O	LVCMOS	DVCC	OFF			
									TA2.4	I/O	LVCMOS
81 B7 50)		UCB3SOMI	I/O	LVCMOS	DVCC	N/A				
			UCB3SCL	I/O	LVCMOS	DVCC	N/A				
			C1.0	1	Analog	DVCC	N/A				
82 C7 51	DVSS	3 - 电源	京不适用不适用								
			RSTn (RD)	I	LVCMOS	DVCC	PU				
83 B6 52	;		NMI	I	LVCMOS	DVCC	N/A				
84 D6 53	AVSS	2 - 电源	京不适用不适用								
			PJ.2 (RD)	I/O	LVCMOS	DVCC	OFF				
85 A6 54	:		HFXOUT	0	Analog	DVCC	N/A				
00 45 55			PJ.3 (RD)	I/O	LVCMOS	DVCC	OFF				
86 A5 55)		HFXIN	I	Analog	DVCC	N/A				
87 D5 56	AVCC2	2 - 电源	ŔΝ / A N / A.				*				
		J 6/7.	P7.0 (RD)	I/O	LVCMOS	DVCC	OFF				
88 B5 57	, '		PM_SMCLK	0	LVCMOS	DVCC	N/A				
	01		PM_DMAE0	ı	LVCMOS	DVCC	N/A				
			P7.1 (RD)	I/O	LVCMOS	DVCC	OFF				
89 C5 58	, }		PM_C0OUT	0	LVCMOS	DVCC	N/A				
			PM_TA0CLK	ı	LVCMOS	DVCC	N/A				
			P7.2 (RD)	I/O	LVCMOS	DVCC	OFF				
90 B4 59	4 59	59		 4 59		PM_C1OUT	0	LVCMOS	DVCC	N/A	
			PM_TA1CLK	I	LVCMOS	DVCC	N/A				

Table 4-1. Pin Attributes (continued)

	PIN NO. ⁽¹⁾		(2) (2)	SIGNAL	(E)	POWER	RESET			
PZ	ZXH	RGC	SIGNAL NAME ^{(2) (3)}	TYPE ⁽⁴⁾	BUFFER TYPE ⁽⁵⁾	SOURCE ⁽⁶⁾	STATE AFTER POR ⁽⁷⁾			
01.44	20		P7.3 (RD)	I/O	LVCMOS	DVCC	OFF			
91 A4	60		PM_TA0.0	I/O	LVCMOS	DVCC	N/A			
00 00	C1		PJ.4	I/O	LVCMOS	DVCC	N/A			
92 B3	61		TDI (RD)	1	LVCMOS	DVCC	PU			
			PJ.5	I/O	LVCMOS	DVCC	N/A			
93 A3	62	62	62	62		TDO (RD)	0	LVCMOS	DVCC	N/A
				SWO	0	LVCMOS	DVCC	N/A		
94 B2	63 SWDI	OTMS I /	O LVCMOS DVCC PU							
95 A2	64 SWCL	KTCK I L'	VCMOS DVCC PD							
O.C. N	/ A N / A.	Λ	P9.4 (RD)	I/O	LVCMOS	DVCC	OFF			
96 N		Α.	UCA3STE	I/O	LVCMOS	DVCC	N/A			
07 N	/ A NT /	/ 4	P9.5 (RD)	I/O	LVCMOS	DVCC	OFF			
97 N	/ A N / .	Α.	UCA3CLK	I/O	LVCMOS	DVCC	N/A			
			P9.6 (RD)	I/O	LVCMOS	DVCC	OFF			
98 N	/ A N / .	Α.	UCA3RXD	1	LVCMOS	DVCC	N/A			
			UCA3SOMI	I/O	LVCMOS	DVCC	N/A			
			P9.7 (RD)	I/O	LVCMOS	DVCC	OFF			
99 N	/ A N / .	Α.	UCA3TXD	0	LVCMOS	DVCC	N/A			
			UCA3SIMO	I/O	LVCMOS	DVCC	N/A			
100 N	/ A NT /	^	P10.0 (RD)	I/O	LVCMOS	DVCC	OFF			
100 N	/ A N /	A.	UCB3STE	I/O	LVCMOS	DVCC	N/A			
N/A	N/A	Pad	QFN Pad	_	_	N/A	_			

4.3信号描述

表4-2描述了所有器件型号和封装选项的信号。

Table 4-2. Signal Descriptions

		SIC	GNAL NO	·(1)	SIGNAL	
FUNCTION	SIGNAL NAME	PZ	ZXH	RGC	TYPE (2)	DESCRIPTION
	A0	69	C8	44	I	ADC analog input A0
	A1	68	D8	43	I	ADC analog input A1
	A2	67	D7	42	I	ADC analog input A2
	A3	66	E9	41	I	ADC analog input A3
	A4	65	E8	40	I	ADC analog input A4
	A5	64	E7	39	I	ADC analog input A5
	A6	63	F9	38	I	ADC analog input A6
	A7	62	F8	37	I	ADC analog input A7
	A8	61	F7	36	I	ADC analog input A8
	A9	60	G9	35	I	ADC analog input A9
	A10	59	G8	34	I	ADC analog input A10
ADC	A11	58	G7	33	I	ADC analog input A11
ADC	A12	57	H8	N/A	I	ADC analog input A12
	A13	56	H9	N/A	I	ADC analog input A13
	A14	55	H7	N/A	I	ADC analog input A14
	A15	54	J9	N/A	I	ADC analog input A15
	A16	53	N/A	N/A	I	ADC analog input A16
	A17	52	N/A	N/A	I	ADC analog input A17
	A18	51	N/A	N/A	I	ADC analog input A18
	A19	50	N/A	N/A	I	ADC analog input A19
	A20	49	N/A	N/A	I	ADC analog input A20
	A21	48	N/A	N/A	I	ADC analog input A21
	A22	47	N/A	N/A	I	ADC analog input A22
	A23	46	N/A	N/A	I	ADC analog input A23
	ACLK	58	G7	33	0	ACLK clock output
	DCOR 44 J8 31	- DCO2	外部电图	且引脚		
	HFXIN 86 A5 55	I用于高	频晶体	振荡器I	IFXT的输入	
Clock	HFXOUT 85 A6 54	0高频	晶体振荡	あ器HFX7	「的输出	
Clock	HSMCLK	60	G9	35	0	HSMCLK clock output
	LFXIN 41 J6 28	I用于低	频晶体	振荡器I	FXT的输入	<u> </u>
	LFXOUT 42 J7 29			あ器LFX?		
	MCLK	59	G8	34	0	MCLK clock output

⁽¹⁾ N/A = not available

⁽²⁾ I = input, O = output

		SIC	GNAL NO	(1)	SIGNAL			
FUNCTION	SIGNAL NAME	PZ	ZXH	RGC	TYPE ⁽²⁾	DESCRIPTION		
	C0.0	31	G4	18	I	Comparator_E0 input 0		
	C0.1	30	Н3	17	I	Comparator_E0 input 1		
	C0.2	29	G3	N/A	I	Comparator_E0 input 2		
	C0.3	28	J2	N/A	I	Comparator_E0 input 3		
	C0.4	27	H2	N/A	I	Comparator_E0 input 4		
	C0.5	26	J1	N/A	I	Comparator_E0 input 5		
	C0.6	25	N/A	N/A	I	Comparator_E0 input 6		
Comparator	C0.7	24	N/A	N/A	I	Comparator_E0 input 7		
Comparator	C1.0	81	B7	50	I	Comparator_E1 input 0		
	C1.1	80	B8	49	I	Comparator_E1 input 1		
	C1.2	79	A7	N/A	I	Comparator_E1 input 2		
	C1.3	78	A8	N/A	I	Comparator_E1 input 3		
	C1.4	77	B9	N/A	I	Comparator_E1 input 4		
	C1.5	76	A9	N/A	I	Comparator_E1 input 5		
	C1.6	71	C9	46	I	Comparator_E1 input 6		
	C1.7	70	D9	45	I	Comparator_E1 input 7		
	SWCLKTCK	95	A2	64	I	Serial wire clock input (SWCLK)/JTAG clock input (TCK)		
Debug	SWDIOTMS	94	B2	63	I/O	Serial wire data input/output (SWDIO)/JTAG test mode select (TMS)		
Debug	SWO	93	А3	62	0	Serial wire trace output		
	TDI	92	В3	61	I	JTAG test data input		
	TDO	93	А3	62	0	JTAG test data output		
	P1.0	4	A1	1	I/O	General-purpose digital I/O with port interrupt, wake- up, and glitch filtering capability		
	P1.1	5	B1	2	I/O	General-purpose digital I/O with port interrupt and wake-up capability		
	P1.2	6	C4	3	I/O	General-purpose digital I/O with port interrupt and wake-up capability		
GPIO	P1.3	7	D4	4	I/O	General-purpose digital I/O with port interrupt and wake-up capability		
GFIU	P1.4	8	D3	5	I/O	General-purpose digital I/O with port interrupt, wake- up, and glitch filtering capability		
	P1.5	9	C1	6	I/O	General-purpose digital I/O with port interrupt, wake- up, and glitch filtering capability		
	P1.6	10	D1	7	I/O	General-purpose digital I/O with port interrupt and wake-up capability		
	P1.7	11	E1	8	I/O	General-purpose digital I/O with port interrupt and wake-up capability		

		_ SIGNAL NO. ⁽¹⁾			SIGNAL					
FUNCTION	SIGNAL NAME	PZ	ZXH	RGC	TYPE ⁽²⁾	DESCRIPTION				
	P2.0	16	E4	13	I/O	具有端口中断和唤醒功能的通用数字I / 0, 具有可重配置端口映射辅助功能。该I / 0可配置为高驱动器运行, 最高可达20 mA驱动器。				
	P2.1	17	F1	14	I/O	具有端口中断和唤醒功能的通用数字I / 0, 具有可重配置端口映射辅助功能。该I / 0可配置为高驱动器运行,最高可达20 mA驱动器。				
	P2.2	18	E3	15	I/O	具有端口中断和唤醒功能的通用数字I/0,具有可重配置端口映射辅助功能。该I/0可配置为高驱动器运行,最高可达20mA驱动器。				
	P2.3	19	F4	16	I/O	具有端口中断和唤醒功能的通用数字I/0,具有可重配置端口映射辅助功能。该I/0可配置为高驱动器运行,最高可达20mA驱动器。				
	P2.4	20	F3	N/A	I/O	具有端口中断和唤醒功能的通用数字I / 0,具有可重配置端口映射辅助功能				
	P2.5	21	G1	N/A	I/O	具有端口中断和唤醒功能的通用数字I / 0,具有可重配置端口映射辅助功能				
GPIO "	P2.6	22	G2	N/A	I/O	具有端口中断和唤醒功能的通用数字I / 0, 具有可重配置端口映射辅助功能				
(continued)	P2.7	23	H1	N/A	I/O	具有端口中断和唤醒功能的通用数字I / 0, 具有可重配置端口映射辅助功能				
	P3.0	32	J3	19	I/O	具有端口中断,唤醒和毛刺过滤功能的通用数字I/0,以及具有可重配置端口映射辅助功能的通用数字I/0.				
	P3.1	33	H4	20	I/O	具有端口中断和唤醒功能的通用数字I / 0,具有可重配置端口映射辅助功能				
	P3.2	34	G5	21	I/O	具有端口中断和唤醒功能的通用数字I / 0, 具有可重配置端口映射辅助功能				
	P3.3	35	J4	22	I/O	具有端口中断和唤醒功能的通用数字I / 0, 具有可重配置端口映射辅助功能				
	P3.4	36	H5	23	I/O	具有端口中断,唤醒和毛刺过滤功能的通用数字I/0,以及具有可重配置端口映射辅助功能的通用数字I/0.				
	P3.5	37	G6	24	I/O	具有端口中断,唤醒和毛刺过滤功能的通用数字I/0,以及具有可重配置端口映射辅助功能的通用数字I/0.				
	P3.6	38	J5	25	I/O	具有端口中断和唤醒功能的通用数字I / 0, 具有可重配置端口映射辅助功能				
	P3.7	39	H6	26	I/O	具有端口中断和唤醒功能的通用数字I / 0,具有可重配置端口映射辅助功能				

		SIGNAL NO. ⁽¹⁾					
FUNCTION	SIGNAL NAME	PZ	ZXH	RGC	SIGNAL TYPE ⁽²⁾	DESCRIPTION	
	P4.0	56	H9	N/A	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P4.1	57	H8	N/A	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P4.2	58	G7	33	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P4.3	59	G8	34	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P4.4	60	G9	35	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P4.5	61	F7	36	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P4.6	62	F8	37	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P4.7	63	F9	38	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P5.0	64	E7	39	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P5.1	65	E8	40	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P5.2	66	E9	41	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
GPIO	P5.3	67	D7	42	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
(continued)	P5.4	68	D8	43	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P5.5	69	C8	44	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P5.6	70	D9	45	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P5.7	71	C9	46	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P6.0	54	J9	N/A	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P6.1	55	H7	N/A	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P6.2	76	A9	N/A	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P6.3	77	В9	N/A	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P6.4	78	A8	N/A	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P6.5	79	A7	N/A	I/O	General-purpose digital I/O with port interrupt and wake-up capability	
	P6.6	80	В8	49	I/O	General-purpose digital I/O with port interrupt, wake- up, and glitch filtering capability	
	P6.7	81	В7	50	I/O	General-purpose digital I/O with port interrupt, wake- up, and glitch filtering capability	

		SIGNAL NO. ⁽¹⁾			SIGNAL			
FUNCTION	SIGNAL NAME	PZ	ZXH	RGC	TYPE ⁽²⁾	DESCRIPTION		
	P7.0	88	B5	57	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function (RD)		
	P7.1	89	C5	58	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function (RD)		
	P7.2	90	B4	59	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function (RD)		
	P7.3	91	A4	60	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function (RD)		
	P7.4	26	J1	N/A	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function (RD)		
	P7.5	27	H2	N/A	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function (RD)		
	P7.6	28	J2	N/A	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function (RD)		
	P7.7	29	G3	N/A	I/O	General-purpose digital I/O with reconfigurable port mapping secondary function (RD)		
	P8.0 30 H3 17 I	/ 0通	用数字I	/ 0.				
	P8. 1 31 G4 18 I	/ 0通	用数字I	/ 0.				
	P8.2 46 N / A N	/ A I	/ 0通月	用数字I	/ 0.			
	P8.3 47 N / A N	/ A I	/ 0通月	用数字I	/ 0.			
	P8. 4 48 N / A N	/ A I	/ 0通月	fl数字I	/ 0.			
	P8. 5 49 N / A N	/ A I	/ 0通月	月数字I	/ 0.			
OBIO	P8. 6 50 N / A N	/ A T		月数字I	/ 0.			
GPIO (continued)	P8. 7 51 N / A N	/ A T	+	日数字I	/ 0.	•		
(**************************************	P9. 0 52 N / A N	/ A I	/	 数字I	/ 0.			
	P9. 1 53 N / A N	• • • • • • • • • • • • • • • • • • • •		1数字I	/ 0.			
	P9. 2 74 N / A N	/ A T		日数字I	/ 0.	•		
	P9. 3 75 N / A N	/ A T		日数字I	/ 0.	•		
	P9. 4 96 N / A N	/ A T		1 <u>30 - 1</u> 1数字I	/ 0.	•		
	P9. 5 97 N / A N	/ A T	, , ,	 数字I	/ 0.	•		
	P9. 6 98 N / A N	/ A T		1 <u>30 </u>	/ 0.	•		
	P9. 7 99 N / A N	/ A T		1 <u>30] 1</u> 日数字I	/ 0.	+		
	P10. 0 100 N / A	N / A		1 <u>9</u> 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+/	*		
	P10. 1 1 N / A N	/	+	10000 11数字I	/ 0.			
	P10. 2 2 N / A N				/ 0.			
	P10. 3 3 N / A N	•		1 <u>0 </u>		•		
	P10. 4 24 N / A			,		•		
	P10. 5 25 N / A	•	•	用数字		*		
	P.J. 0 41 J6 28 I		<u>- / - 000</u> 用数字I		1 / 0.			
	PJ. 1 42 J7 29 I				+			
	PJ. 2 85 A6 54 I		□ 					
	P.J. 2 85 A6 54 I		用数子I 用数字I		+	·		
	P.J. 4 92 B3 61 I		用数于 Ⅰ 用数字Ⅰ	,	+	·		
	-		用数子I 用数字I			+		
	PJ. 5 93 A3 62 I	/U.週,	用剱子↓	/ 0.				

FUNCTION	SIGNAL NAME	SIGNAL NO. ⁽¹⁾			SIGNAL	DESCRIPTION	
FUNCTION	SIGNAL NAME	PZ	ZXH	RGC	TYPE ⁽²⁾	DESCRIPTION	
	UCB0SCL	11	E1	8	I/O	I ² C clock – eUSCI_B0 I ² C mode	
	UCB0SDA	10	D1	7	I/O	I ² C data – eUSCI_B0 I ² C mode	
	UCB1SCL	79	A7	N/A	I/O	I ² C clock – eUSCI_B1 I ² C mode	
I ² C	UCB1SDA	78	A8	N/A	I/O	I ² C data – eUSCI_B1 I ² C mode	
1-0	UCB3SCL	3	N/A	N/A	I/O	I ² C clock – eUSCI_B3 I ² C mode	
	UCB3SCL	81	B7	50	I/O	I ² C clock – eUSCI_B3 I ² C mode	
	UCB3SDA	2	N/A	N/A	I/O	I ² C data – eUSCI_B3 I ² C mode	
	UCB3SDA	80	B8	49	I/O	I ² C data – eUSCI_B3 I ² C mode	

		1	X4 Z。 信与细处(续) SIGNAL NO. ⁽¹⁾ SIGNAL				
FUNCTION	SIGNAL NAME	PZ	ZXH	RGC	SIGNAL TYPE ⁽²⁾	DESCRIPTION	
	PM COOUT 89 C5				Lator FO絵	 	
	PM C10UT 90 B4				rator E1输	***************************************	
	PM DMAEO 88 B5					**	
	PM_SMCLK 88 B5	57 O默i	人映射:	SMCLK	付钟输出		
	PM_TA0.0	91	A4	60	I/O	Default mapping: TA0 CCR0 capture: CCI0A input, compare: Out0	
	PM_TA0.1	20	F3	N/A	I/O	Default mapping: TA0 CCR1 capture: CCI1A input, compare: Out1	
	PM_TA0.2	21	G1	N/A	I/O	Default mapping: TA0 CCR2 capture: CCI2A input, compare: Out2	
	PM_TA0.3	22	G2	N/A	I/O	Default mapping: TA0 CCR3 capture: CCI3A input, compare: Out3	
	PM_TA0.4	23	H1	N/A	I/O	Default mapping: TA0 CCR4 capture: CCI4A input, compare: Out4	
	PM TAOCLK 89 C5	58 I默	认映射	: TAO输	ì入时钟		
	PM_TA1.2	28	J2	N/A	I/O	Default mapping: TA1 CCR2 capture: CCI2A input, compare: Out2	
	PM_TA1.3	27	H2	N/A	I/O	Default mapping: TA1 CCR3 capture: CCI3A input, compare: Out3	
	PM_TA1.4	26	J1	N/A	I/O	Default mapping: TA1 CCR4 capture: CCI4A input, compare: Out4	
	PM_TA1CLK 90 B4	59 I默	认映射	: TA1输	ì入时钟		
Port Mapper	PM_UCA1CLK	17	F1	14	I/O	默认映射:时钟信号输入 - eUSCI_A1 SPI从机模式时钟信号输出 - eUSCI_A1 SPI主机模式	
	PM_UCA1RXD	18	E3	15	I	Default mapping: Receive data – eUSCI_A1 UART mode	
	PM_UCA1SIMO	19	F4	16	I/O	Default mapping: Slave in, master out – eUSCI_A1 SPI mode	
	PM_UCA1SOMI	18	E3	15	I/O	Default mapping: Slave out, master in – eUSCI_A1 SPI mode	
	PM_UCA1STE	16	E4	13	I/O	Default mapping: Slave transmit enable – eUSCI_A1 SPI mode	
	PM_UCA1TXD	19	F4	16	0	Default mapping: Transmit data – eUSCI_A1 UART mode	
	PM_UCA2CLK	33	H4	20	I/O	默认映射:时钟信号输入 - eUSCI_A2 SPI从机模式时钟信号输出 - eUSCI_A2 SPI主机模式	
	PM_UCA2RXD	34	G5	21	I	Default mapping: Receive data – eUSCI_A2 UART mode	
	PM_UCA2SIMO	35	J4	22	I/O	Default mapping: Slave in, master out – eUSCI_A2 SPI mode	
	PM_UCA2SOMI	34	G5	21	I/O	Default mapping: Slave out, master in – eUSCI_A2 SPI mode	
	PM_UCA2STE	32	J3	19	I/O	Default mapping: Slave transmit enable – eUSCI_A2 SPI mode	
	PM_UCA2TXD	35	J4	22	0	Default mapping: Transmit data – eUSCI_A2 UART mode	

FUNCTION	OLONIAL NAME	SIC	SNAL NO		SIGNAL	DESCRIPTION				
FUNCTION	SIGNAL NAME	PZ	ZXH	RGC	TYPE ⁽²⁾	DESCRIPTION				
	PM_UCB2CLK	37	G6	24	I/O	默认映射:时钟信号输入 - eUSCI_B2 SPI从模式时钟信号输出 - eUSCI_B2 SPI主模式				
	PM_UCB2SCL	39	H6	26	I	Default mapping: I ² C clock – eUSCI_B2 I ² C mode				
Port Mapper	PM_UCB2SDA	38	J5	25	I/O	Default mapping: I ² C data – eUSCI_B2 I ² C mode				
(continued)	PM_UCB2SIMO	38	J5	25	I/O	Default mapping: Slave in, master out – eUSCI_B2 SPI mode				
	PM_UCB2SOMI	39	H6	26	I/O	Default mapping: Slave out, master in – eUSCI_B2 SPI mode				
	PM_UCB2STE	36	H5	23	I/O	Default mapping: Slave transmit enable – eUSCI_B2 SPI mode				
	AVCC1	45	F6	32	-	Analog power supply				
	AVCC2	87	D5	56	-	Analog power supply				
	AVSS1	43	F5	30	-	Analog ground supply				
	AVSS2	84	D6	53	-	Analog ground supply				
	AVSS3	40	E5	27	-	Analog ground supply				
	DVCC1	13	D2	10	I	Digital power supply				
Power	DVCC2	73	C6	48	I	Digital power supply				
	DVSS1	15	F2	12	-	Digital ground supply				
	DVSS2	72	E6	47	I	Digital ground supply				
	DVSS3 82 C7 51	- 必须	接地							
	VCORE ⁽³⁾	12	C2	9	-	Regulated core power supply (internal use only, no external current loading)				
	VSW 14 E2 11 -	DC-DC	转换器	开关输出	<u>±</u>					
RTC RTCCLK	59 G8 34 O RTC_	C时钟校	准输出	,		,				
	VREF + 70 D9 45	0内部	共用参考	号电压正	极					
	VREF- 71 C9 46	0内部共	用参考	电压负	岩					
Reference	VeREF + 70 D9 4	5 I ADO	外部参	考电压的	的正极					
	VeREF-	71	C9	46	I	Negative terminal of external reference voltage to ADC (recommended to connect to onboard ground)				

(3) VCORE仅供内部使用。无需外部电流负载。 VCORE只应连接到推荐的电容值CVCORE。

			GNAL NO). ⁽¹⁾	SIGNAL						
FUNCTION	SIGNAL NAME	PZ	ZXH	RGC	TYPE ⁽²⁾	DESCRIPTION					
	UCA0CLK	5	B1	2	I/O	Clock signal input – eUSCI_A0 SPI slave mode Clock signal output – eUSCI_A0 SPI master mode					
	UCAOSIMO 7 D4 4	I / 0)	从机输	入,主机	【输出 - e	USCI AO SPI模式					
	UCAOSOMI 6 C4 3 I / O从机输出,主机输入 - eUSCI_AO SPI模式										
	UCAOSTE 4 A1 1	I / 0从	发送使	能 - 6	USCI_AO S						
	UCA3CLK	97	N/A	N/A	I/O	Clock signal input – eUSCI_A3 SPI slave mode Clock signal output – eUSCI_A3 SPI master mode					
	UCA3SIMO 99 N /	AN/	A I /	0从机箱	ì入,主机轴	俞出 - eUSCI A3 SPI模式					
	UCA3SOMI 98 N /	AN/	A I /	0从机箱	<u>ì出,主机轴</u>	俞入 - eUSCI A3 SPI模式					
	UCA3STE 96 N /	A N / A	1 / C	从发送	使能 − eU	ISCI_A3 SPI模式					
	UCB0CLK	9	C1	6	I/O	Clock signal input – eUSCI_B0 SPI slave mode Clock signal output – eUSCI_B0 SPI master mode					
	UCBOSIMO 10 D1 7 I / O从机输入, 主机输出 - eUSCI BO SPI模式										
	UCBOSOMI 11 E1 8 I / O从机输出,主机输入 - eUSCI BO SPI模式										
PI	UCBOSTE 8 D3 5	I / 0从	发送使	能 - 6	USCI BO S	PI模式					
r!	UCB1CLK	77	В9	N/A	I/O	Clock signal input – eUSCI_B1 SPI slave mode Clock signal output – eUSCI_B1 SPI master mode					
	UCB1SIMO 78 A8 N / A I / O从机输入, 主机输出 - eUSCI_B1 SPI模式										
	UCB1SOMI 79 A7 N / A I / O从机输出,主机输入 - eUSCI B1 SPI模式										
	UCB1STE 76 A9 N	/ A I	/ 0从5	支送使能	eUSCI	B1 SPI模式					
	UCB3CLK	1	N/A	N/A	I/O	Clock signal input – eUSCI_B3 SPI slave mode Clock signal output – eUSCI_B3 SPI master mode					
	UCB3CLK	31	G4	18	I/O	Clock signal input – eUSCI_B3 SPI slave mode Clock signal output – eUSCI_B3 SPI master mode					
	UCB3SIMO 2 N / A N / A I / O从机输入, 主机输出 - eUSCI B3 SPI模式										
	UCB3SIMO 80 B8 49 I / 0从机输入,主机输出 - eUSCI B3 SPI模式										
	UCB3SOMI 3 N /	A N / A	1 / C	从机输	出,主机输	入 - eUSCI B3 SPI模式					
	UCB3SOMI 81 B7	50 I /	0从机车	俞出,主	机输入 -	eUSCI B3 SPI模式					
	UCB3STE 30 H3 17 I / 0从机发送使能 - eUSCI B3 SPI模式										
	UCB3STE 100 N /	A N /	A I /	0从发送		USCI B3 SPI模式					
	NMI 83 B6 52 I夕		屏蔽中	断							
ystem	RSTn 83 B6 52 I			电平有效	()						
	SVMHOUT	60	G9	35	0	SVMH output					
	早盘N / A N /	A焊盘	<u>+</u> –	QFN封	装外露散	执焊盘。 TI建议连接到VSS。					

FUNCTION	OLONIAL NAME	SI	GNAL NO	·(1)	SIGNAL	DESCRIPTION
FUNCTION	SIGNAL NAME	PZ	ZXH	RGC	TYPE ⁽²⁾	DESCRIPTION
	PM_TA1.1	29	G3	N/A	I/O	Default mapping: TA1 CCR1 capture: CCI1A input, compare: Out1
	TA1.0 30 H3 17	I / O	TA1 CCR	0捕获:	CCIOA输入	,比较: OutO
	TA2. 0 31 G4 18	I / O	A2 CCR	0捕获:	CCIOA输入	,比较: OutO
	TA2.1 70 D9 45	I / O I	A2 CCR	1捕获:	CCI1A输入	,比较: Out1
	TA2. 2 71 C9 46	I / O I	A2 CCR	2捕获:	CCI2A输入	,比较: Out2
	TA2.3 80 B8 49	I / O I	A2 CCR	3捕获:	CCI3A输入	,比较: Out3
Timer	TA2. 4 81 B7 50	I / O I	A2 CCR	4捕获:	CCI4A输入	,比较: Out4
	TA2CLK	58	G7	33	I	TA2 input clock
	TA3.0 24 N / A	N / A]	T 0 \ T	A3 CCRO	捕获: CCI	OA输入, 比较: OutO
	TA3.1 25 N / A	N / A]	T 0 \ T	A3 CCR	捕获: CCI	1A输入, 比较: Out1
	TA3. 2 46 N / A	N / A]	T 0 \ T	A3 CCR2	2捕获: CCI	2A输入,比较: Out2
	TA3.3 74 N / A	N / A]	[/ O T	A3 CCR3	B捕获: CCI	[3A输入, 比较: Out3
	TA3. 4 75 N / A	N / A]	T 0 \ T	A3 CCR4	捕获: CCI	4A输入,比较: Out4
	TA3CLK	47	N/A	N/A	I	TA3 input clock
	UCAORXD 6 C4 3	I接收数	【据 -	eUSCI A	AO UART模式	
UART	UCAOTXD 7 D4 4	0发送数	【据 -	eUSCI A	AO UART模式	<u> </u>
OAKI	UCA3RXD 98 N /	A N / A	I接收	数据 -	eUSCI A3	UART模式
	UCA3TXD 99 N /	A N / A	0发送	数据 -	eUSCI A3	UART模式

4.4引脚复用

这些器件的引脚多路复用由寄存器设置和工作模式控制(例如,如果器件处于测试模式)。有关每个引脚的设置和多路复用端口的图表的详细信息,请参见第6.12节。

4.5缓冲类型

表4-3描述了表4-1中引用的缓冲区类型。

Table 4-3. Buffer Type

BUFFER TYPE (STANDARD)	NOMINAL VOLTAGE	HYSTERESIS	PU OR PD	NOMINAL PU OR PD STRENGTH (µA)	OUTPUT DRIVE STRENGTH (mA)	OTHER CHARACTERISTICS
Analog ⁽¹⁾	3.0 V	N	N/A	N/A	N/A	See analog modules in Specifications for details
HVCMOS	13.0 V	Υ	N/A	N/A	See Typical Characteristics	
LVCMOS	3.0 V	Y ⁽²⁾	Programmable	See General- Purpose I/Os	See Typical Characteristics	
Power (DVCC) ⁽³⁾	3.0 V	N	N/A	N/A	N/A	SVSMH enables hysteresis on DVCC
Power (AVCC) ⁽³⁾	3.0 V	N	N/A	N/A	N/A	
Power (DVSS and AVSS) ⁽³⁾	0 V	N	N/A	N/A	N/A	

⁽¹⁾ 这是一个开关,而不是一个缓冲区。

4.6未使用引脚的连接

表4-4列出了所有未使用引脚的正确终止。

Table 4-4. Connection for Unused Pins⁽¹⁾

PIN	POTENTIAL	COMMENT					
AVCC	DV _{CC}						
AVSS	DV _{SS}						
Px. 0至Px. 7打	开设置为端口功	7能,输出方向,并在PC板上保持未连接状态					
· ·		xΩ上拉, 1.1 nF下拉。					
	TAG TDI引脚与通序						
0功能 (PJ.4) 共	<u>用。如果不使用,</u>	该引脚应设置为端口功能,输出方向。当用作JTAG TDI引脚时,它应保持打开状态。					
PJ.5/TDO/SWO	JTAG TDO / SWO引脚与通用I /						
		脚应从外部上拉。 脚应从外部下拉。					

(1) 对于具有与通用I / 0共用的辅助功能的任何未使用引脚,请遵循Px. 0至Px. 7引脚的指导原则。

⁽²⁾ Only for input pins

⁽³⁾ 这是电源输入,而不是缓冲器。

www.ti.com

5规格

5.1 Absolute Maximum Ratings⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	MIN	MAX	UNIT
在DVCC和AVCC引脚上施加的电压为VSS-0.34.17 V. DVCC和AVCC引脚之间的电压差(2)±0.3 V.			-
Voltage applied to any pin ⁽³⁾	-0.3	$V_{CC} + 0.3 V$ (4.17 V MAX)	V
Diode current at any device pin		±2	mA
Storage temperature, T _{stg} ⁽⁴⁾	-40	125	°C
Maximum junction temperature, T _J		95	°C

- (1) 超出绝对最大额定值下列出的应力可能会对器件造成永久性损坏。这些仅是应力额定值,并不暗示器件在这些或任何其他条件 下的市能揭作超中了堆芳工作久姓下坞中的久姓 长时间星震左绳对县十频宁久姓下可能会影响界胜的可靠性
- (9) DVCC和AVCC之间的由压差超过规定的限值可能导致设备故障。
- (3) 所有电压均以VSS为参考。
- (4) 根据当前的JEDEC
- .J-STD-020规范,在板焊期间可能会施加更高的温度,峰值回流温度不高于运输箱或卷轴上设备标签上的分类。

5.2 ESD评级

		VALUE	UNIT
V	Electrostatio discharge		\/
V(ESD)	Electrostatic discharge	充电器件型号 (CDM), 符合 JEDEC规范 JESD22-C101 (3) ±250	V

- (1) JEDEC文件JEP 155规定,500 V HBM可通过标准ESD控制过程实现安全制造。列为±1000 V的引脚空际上可能且右面高的性能
- (2)除DVSS3外的所有引脚均通过HBM至±1000 V. DVSS3引脚用于TI内部测试。将DVSS3引脚连接到客户应用板上的电源地。
- (3) JEDEC文件JEP 157规定250V CDM允许使用标准ESD控制过程进行安全制造。列为±250 V的引脚实际上可能具有更高的性能。

5.3推荐的操作条件

典型数据基于VCC = 3.0 V, TA = 25°C(除非另有说明)

			MIN	NOM MAX	UNIT
V _{CC}		At power-up (with internal V _{CC} supervision)	1.71	3.7	
	Supply voltage range at all DVCC and AVCC pins (1) (2) (3) Normal operation with internal V _{CC} supervision 1.71			3.7	V
		Normal operation without internal V _{CC} supervision	1.62	3.7	
所有D	VSS和AVSS引脚上的VSS电源电	压为0 V.	,	,	
I _{INRUSH}	Inrush current into the V _{CC} pins (4)	,—, ,		100	mA
f _{MCLK}	Frequency of the CPU and AHB clock in	0	48	MHz	
TA运行	子的自由空气温度-40 85°C		•		

LTJ工作结温-40 85°C

- (1) TI建议从同一电源为AVCC和DVCC供电。在上电和运行期间,AVCC和DVCC之间的最大差值为±0.1
- V 右关土理由灾哭建议 请参见第5 4节 (2) 电源电压的变化不得超过1 V / ms。即使在推荐的电源电压范围内,更快的更改也可能导致VCCDET触发复位。
- (4) 不句 其T / O由流 (由应田 更 求 吸 动)
- (5) 工作频率可能要求以等待状态访问闪存。更多详细信息,请参见第5.8节。

Recommended External Components (1) (2) (3) 5.4

			MIN	TYP	MAX	UNIT
0	Conscitor on DVCC nin	For DC-DC operation (4)	3.3	4.7		
C _{DVCC}	Capacitor on DVCC pin	For LDO-only operation	3.3	4.7		μF
0	Conscitor on VCORE nin	For DC-DC operation, including capacitor tolerance	1.54	4.7	9	μF
C _{VCORE}	Capacitor on VCORE pin	For LDO-only operation, including capacitor tolerance	70	100	9000	nF
C _{AVCC}	Capacitor on AVCC pin		3.3	4.7		μF
	CORE引脚之间的LVSW电感 DCR允许用于LVSW 150350r					
I _{SAT-LVSW}	L _{VSW} saturation current	700			mA	

- (1) 为莽得最佳性能。 请选择组件值以用配表由绘电的曲刑值 (9) 有关量供选择。 故署以及相关PCR设计指菌的面名详细信息。 请参见标上指菌部分
- (3)选择元件时应考虑电容和电感值的容差,以确保不超过MIN和MAX限值。
- (4) CDVCC不应小于CVCORE。

5. 5运行模式VCC范围 over operating free-air temperature (unless otherwise noted)

ever operating nee	all temperature (unless otherwise no	.04)			
参数操作模式	、测试条件MIN MAX单位				
	AM_LDO_VCORE0	LDO active, SVSMH disabled	1.62	3.7	
V _{CC_LDO} ⁽¹⁾ ⁽²⁾	AM_LF_VCORE0 LPM0_LDO_VCORE0 LPM0_LF_VCORE0 LPM3_VCORE0 LPM4_VCORE0 LPM3.5 AM_LDO_VCORE1 AM_LF_VCORE1 LPM0_LDO_VCORE1 LPM0_LDO_VCORE1 LPM0_LF_VCORE1 LPM3_VCORE1 LPM4_VCORE1 LPM4_VCORE1	LDO active, SVSMH enabled	1.71	3.7	V
V _{CC_DCDC_DF0}	AM_DCDC_VCORE0 LPM0_DCDC_VCORE0 AM_DCDC_VCORE1 LPM0_DCDC_VCORE1	DC-DC active, DC-DC operation not forced (DCDC_FORCE = 0), SVSMH enabled or disabled ⁽³⁾	2.0	3.7	V
V _{CC_DCDC_DF1}	AM_DCDC_VCORE0 LPM0_DCDC_VCORE0 AM_DCDC_VCORE1 LPM0_DCDC_VCORE1	DC-DC active, DC-DC operation forced (DCDC_FORCE = 1), SVSMH enabled or disabled	1.8	3.7	V
V (4)	LPM4.5	LDO disabled, SVSMH disabled	1.62	3.7	V
V _{CC_VCORE_OFF} (4)	LFIVI4.3	LDO disabled, SVSMH enabled	1.71	3.7	V

- (1) 闪存仅在活动模式和LPMO模式下保持活动状态。
- (9) 任 新 右 酒 任 新 I PMO I PM3 I PM4 和 I PM3 5 档 式 仅 其 干 I DO
- (3) 当VCC低于规定的MIN值时,只要VCC下降速度低于可靠检测的速率,DC-DC操作就会自动切换到LDO。有关详细信息,请参阅表5-19。
- (4) LPM4. 5模式下的核心电压关闭。

5.6 Operating Mode CPU Frequency Ranges⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	OPERATING MODE	DESCRIPTION	f _{MCLK}		UNIT
PARAMETER	OPERATING MODE	DESCRIPTION	MIN	MAX	UNII
f _{AM_LDO_VCORE0}	AM_LDO_VCORE0	Normal performance mode with LDO as the active regulator	0	24	MHz
f _{AM_LDO_VCORE1}	AM_LDO_VCORE1	High performance mode with LDO as the active regulator	0	48	MHz
f _{AM_DCDC_VCORE0}	AM_DCDC_VCORE0	Normal performance mode with DC-DC as the active regulator	0	24	MHz
f _{AM_DCDC_VCORE1}	AM_DCDC_VCORE1	High performance mode with DC-DC as the active regulator	0	48	MHz
f _{AM_LF_VCORE0}	AM_LF_VCORE0	Low-frequency mode with LDO as the active regulator	0	128	kHz
f _{AM_LF_VCORE1}	AM_LF_VCORE1	Low-frequency mode with LDO as the active regulator	0	128	kHz

⁽¹⁾ DMA可以与CPU相同的频率运行。

5.7工作模式外围频率范围

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	描述MIN MAX单元	and operating need an temperature (unless early			.	
一	個					
			l.			
f _{AM_LPM0_VCORE0}	AM_DCDC_VCORE0	基于LDO或DC-DC的有源或LPMO模式的外设频率	范围,	适用于V	COREO O	12 MHz
AW_LFWO_VCORLO	LPM0_LDO_VCORE0		ı		ĺ	
	LPM0_DCDC_VCORE0					
	AM_LDO_VCORE1					
f	AM_DCDC_VCORE1	基于LDO或DC-DC的有源或LPMO模式的外设频率	范围,	适用于V	CORE1 0	24 MHz
AM_LPM0_VCORE1	LPM0_LDO_VCORE1		ı		ı	
	LPM0_DCDC_VCORE1					
	AM_LF_VCORE0					
f	AM_LF_VCORE1	VCODEO手NCODE164亿格大处式优格I DNO特		0	128	kHz
f _{AM_LPM0_LF}	LPM0_LF_VCORE0	VCOREO和VCORE1的低频有效或低频LPMO模 式下的外设频率范围		U	120	NI IZ
	LPM0_LF_VCORE1	ZATEONI SONI IGNI				
f _{LPM3} ⁽¹⁾	LPM3_VCORE0	Peripheral frequency in LPM3 mode for VCORE0		0	32.768	kHz
	LPM3_VCORE1	and VCORE1		U	32.700	NI 1Z
f _{LPM3.5} ⁽¹⁾	LPM3.5	Peripheral frequency in LPM3.5 mode		0	32.768	kHz

⁽¹⁾ 只有RTC和WDT可以激活。

5.8操作模式执行频率与闪存等待状态要求

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	NUMBER OF	EL A CILIDEAD	MAXIMUM SUPPORTED	MCLK FREQUENCY ⁽¹⁾ (2)	
PARAMETER	FLASH WAIT STATES	FLASH READ MODE	AM_LDO_VCORE0, AM_DCDC_VCORE0	AM_LDO_VCORE1, AM_DCDC_VCORE1	UNIT
f _{MAX_NRM_FLWAIT0}	0	Normal read mode	16	24	MHz
f _{MAX_NRM_FLWAIT1}	1	Normal read mode	24	48	MHz
f _{MAX_ORM_FLWAIT0}	0	Other read modes (3)	8	12	MHz
f _{MAX_ORM_FLWAIT1}	1	Other read modes (3)	16	24	MHz
f _{MAX_ORM_FLWAIT2} 2		Other read modes ⁽³⁾	24	36	MHz
f _{MAX_ORM_FLWAIT3}	3	Other read modes ⁽³⁾	24	48	MHz

- (1) 违反给定等待状态配置的最大频率限制会导致不确定数据或从闪存中取出指令。
- (2) 在低频有效模式下,始终可以在零等待状态下访问闪存,因为最大MCLK频率限制为128 kHz。
- (3) 其他读取模式是指读取裕度0,读取裕度1,程序验证和擦除验证。

5.9器件复位期间的电流消耗

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) (3)

	PARAMETER ESET Current during device reset		MIN	TYP	MAX	UNIT
l	Current during device reset	2.2 V 5	10			uА
IRESET	Current during device reset	3.0 V 6	00 850			μΛ

- (1) 器件通过RSTn / NMI引脚保持复位状态。
- (9) 由海测量到VCC
- (3) 所有其他输入引脚连接到0 V或VCC。输出不会提供或同步任何电流。

0.10 全丁LDU的有源模式卜的电流消耗 — Dhrystone 2.1程序 over recommended operating free-air temperature (unless otherwise noted)^{(1) (2) (3) (4) (5)}

PARAMETER	EXECUTION MEMORY	V _{cc}	MCLK =	1 MHz	MCLK =	8 MHz	MCLI 16 M		MCLK 24 MF		MCLK 32 MH		MCLI 40 M		MCLI 48 M		UNIT
	MEMORY		TYP	MAX T	YP MAX	TYP N	MAX TYP	MAX	TYP MAX	TYP	MAX TYP	MAX					
I _{AM_LDO_VCORE0,Flash} (6) (7) (8)	Flash	3.0 V	490	625	1500	1700	2650	2950	3580	3900							μΑ
I _{AM_LDO_VCORE1,Flash} (6) (7) (8)	Flash	3.0 V	510	685	1650	1900	2970	3300	4260	4700	5300	5800	6500	7100	7700	8400	μΑ
I _{AM_LDO_VCORE0,SRAM} ⁽⁹⁾	SRAM	3.0 V	435	565	1070	1240	1800	2010	2530	2800							μΑ
I _{AM_LDO_VCORE1,SRAM} (9)	SRAM	3.0 V	450	620	1160	1370	1980	2250	2800	3120	3650	4020	4470	4900	5280	5760	μΑ

- (1) 由DCO采购的MCLK。
- (9) 由流测导到VCC
- (3) 所有其他输入引脚连接到0 V或VCC。输出不会提供或同步任何电流。
- (4) 所有SRAM库保持活动状态。
- (5) 所有外围设备都处于非活动状态。
- (6) 执行Dhrystone 2 1程序的设备。从flash执行代码。 SRAM中的堆栈和数据。 (7) 闪左配置为支持在经完频率和核心由压由平下操作所需的最小等待状态。
- (8) 伸能Flash指今和数据经冲区 (RIIFI = RIIFD = 1)
- (9) 执行Dhrystone 2.1程序的设备。从SRAM执行代码。 SRAM中的堆栈和数据。

5.11基于DC-DC的有源模式下的电流消耗 -Dhrystone 2.1程序

over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3) (4) (5)

PARAMETER	EXECUTION MEMORY	V _{cc}	MCLK =	1 MHz	MCLK =	8 MHz	MCLI 16 M		MCLK 24 MF		MCLH 32 MI		MCLF 40 M		MCLF 48 Mi		UNIT
	MEMORY		TYP	MAX T	YP MAX	TYP N	MAX TYP	MAX	TYP MAX	TYP	MAX TYF	MAX					
I _{AM_DCDC_VCORE0,Flash} (6) (7) (8)	Flash	3.0 V	400	475	925	1050	1530	1720	2060	2300							μΑ
I _{AM_DCDC_VCORE1,Flash} (6) (7) (8)	Flash	3.0 V	430	550	1100	1280	1880	2140	2650	3000	3290	3700	4020	4500	4720	5300	μΑ
I _{AM_DCDC_VCORE0,SRAM} ⁽⁹⁾	SRAM	3.0 V	370	450	680	780	1040	1180	1410	1600							μΑ
I _{AM_DCDC_VCORE1,SRAM} (9)	SRAM	3.0 V	390	510	790	940	1250	1440	1720	1960	2200	2480	2670	3000	3050	3420	μA

- (1) 由DCO采购的MCLK。
- (9) 由流测昌到WCC
- (3) 所有其他输入引脚连接到0 V或VCC。输出不会提供或同步任何电流。
- (4) 所有SRAM组都有效。
- (5) 所有外围设备都处于非活动状态。
- (6) 执行Dhrystone 9 1程序的设备。从flash执行代码。 SRAM中的堆栈和数据
- (7) 闪左配置为支持在经空频率和核心由压由平下损作所需的最小等待状态。
- (8) 使能Flash指今和粉据缓冲区 (RIIFI = RIIFD = 1)
- (9) 执行Dhrystone 2.1程序的设备。从SRAM执行代码。 SRAM中的堆栈和数据。

5.12低频有源模式下的电流消耗 - Dhrystone 2.1程序

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) (3) (4) (5)

DADAMETER	EXECUTION	V	-40	°C	25	°C	60°	С	85°	C	UNIT
PARAMETER	MEMORY	V _{CC}	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNII
I _{AM_LF_VCORE0} , Flash (6) (7) (8)	Flash	2.2 V	75 80	95 11	5						μА
'AM_LF_VCORE0, Flash	Flasii	3.0 V	78 83	100 9	8 118	200					μΑ
(6) (7) (8)	Flash	2.2 V	78 85	105 1	25						μΑ
I _{AM_LF_VCORE1} , Flash (6) (7) (8)	Flasii	3.0 V	81 88	110 1	08 12	8 245					μΑ
(9)	SRAM	2.2 V	68 73	90 10	5						^
I _{AM_LF_VCORE0} , SRAM ⁽⁹⁾	SKAW	3.0 V	71 76	92 93	108	190					μΑ
(9)	SRAM	2.2 V	70 77	98 11	7						^
I _{AM_LF_VCORE1} , SRAM ⁽⁹⁾	SKAW	3.0 V	73 90	102 1	01 12	0 235		·			μΑ

- (1) 由海测昌到VCC
- (2) 所有其他输入引脚连接到0 V或VCC。输出不会提供或同步任何电流。
- (3) MCLK. HSMCLK. and SMCLK sourced by REFO at 128 kHz (4) 所有外围设备都处于非活动状态。
- (5) SRAM存储区0和1自用从闪存执行,SRAM存储区0到3启用从SRAM执行。
- (6) Flash配置为0等待状态。
- (7) 执行Dhrvstone 2 1程序的设备,从flash执行代码。 (8) 使能Flash指今和数据缓冲区(RIIFI = RIIFD = 1)。 SRAM中的堆栈和数据。
- (9) 执行Dhrystone 2.1程序的设备。从SRAM执行代码。 SRAM中的堆栈和数据。

5.13 CoreMark程序的有源模式电流的典型特性

5.14素数程序的有源模式电流的典型特性

5.15 Fibonacci程序的有源模式电流的典型特性

5.16 While (1) 程序的有源模式电流的典型特性

2.8

2.9

MCLK = 128 kHz

5.17 CoreMark程序的低频有源模式电流的典型特性

5.18基于LDO的LPMO模式下的电流消耗

over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3) (4) (5) (6)

			•		•				
PARAMETER	V _{cc}	MCLK = 1 MHz	MCLK = 8 MHz	MCLK = 16 MHz	MCLK = 24 MHz	MCLK = 32 MHz	MCLK = 40 MHz	MCLK = 48 MHz	UNIT
		TYP MAX 1	YP MAX TYP	MAX TYP M	AX TYP MAX	TYP MAX TY	P MAX		
1	2.2 V	355 485 46	5 605 590 7	735 710 860)				μA
ILPM0_LDO_VCORE0	3.0 V	355 485 46	5 605 590 7	735 710 860)				μΑ
I _{LPM0_LDO_VCORE1}	2.2 V	365 530 49	5 665 640 8	320 775 970	965 1160	1130 1330	1235 1450		
	3.0 V	365 530 49	5 665 640 8	820 775 970	965 1160	1130 1330	1230 1450		μA

- (1) 由DCO采购的MCLK。
- (9) 由海测导到VCC
- (3) 所有其他输入引脚连接到0 V或VCC。输出不会提供或同步任何电流。
- (4) CPII关闭。无法访问闪存和SRAM。
- (5) 所有SRAM组都有效。
- (6) 所有外围设备都处于非活动状态。

5.19基于DC-DC的LPMO模式下的电流消耗

over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3) (4) (5) (6)

		•	,		,					
PARAMETER	V _{cc}	MCLK = 1 MHz	MCLK = 8 MHz	MCLK = 16 MHz	MCLK = 24 MHz	MCLK = 32 MHz	MCLK = 40 MHz	MCLK = 48 MHz	UNIT	
		TYP MAX 7	TYP MAX TYP	MAX TYP MA	AX TYP MAX	TYP MAX TY	P MAX			
ILPM0_DCDC_VCORE0	2.2 V	330 425 400	510 485 6	00 570 690					μA	
	3.0 V	325 400 380	460 440 5	30 510 610					μА	
	2.2 V	350 485 445	590 555 7	10 660 820	810 970 93	5 1110 1020	1200		μA	
ILPM0_DCDC_VCORE1	3.0 V	345 450 420	530 500 6	20 585 720	700 830 80	0 940 870	1020		μА	

- (1) 由DCO采购的MCLK。
- (9) 由海测量到VCC
- (3) 所有其他输入引脚连接到(0 V或VCC。输出不会提供或同步任何电流。
- (4) CPII关闭。无法访问闪存和SRAM。
- (5) 所有SRAM组都有效。
- (6) 所有外围设备都处于非活动状态。

5.20低频LPMO模式下的电流消耗

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) (3) (4) (5) (6)

PARAMETER	V _{cc}	-40°C		25°C		60°C		85°C		UNIT
PARAMETER		TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	ONII
	2.2 V	58 63 78	94							μА
ILPM0_LF_VCORE0	3.0 V	61 66 82	81 9	7 180						
	2.2 V	60 66 84	104							μА
ILPM0_LF_VCORE1	3.0 V	63 69 90	87 1	07 220						

- (1) 由流测导到VCC
- (2) 所有其他输入引脚连接到() V或VCC。输出不会提供或同步任何电流。
- (3) 由RFFO以128 kHz提供的MCLK, HSMCLK和SMCLK。
- (4) 所有外围设备都处于非活动状态。
- (5) SRAM的Rank O保持活动状态。其全的银行都倒闭了。
- (6) CPU关闭。无法访问闪存和SRAM。

5.21 LPM3, LPM4模式下的电流消耗

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2) (3) (4) (5) (6)

DADAMETED	.,	−40°C		25°C	;	60°C	;	85°C	;	LINUT			
PARAMETER	V _{CC}	TYP M	IAX	TYP	MAX	TYP	MAX	TYP	MAX	UNIT			
(7) (8)	2.2 V	0.52		0.64		1.11		2.43		^			
I _{LPM3_VCORE0_RTCLF} (7) (8)	3.0 V 0	. 54 0. 66 0.	85	1.13 2.4	16 5					μΑ			
I _{LPM3_VCORE0_RTCREFO} (9) (8)	2.2 V	0.85		1.07		1.55		2.89		^			
	3.0 V 0	. 95 1. 16 1.	35	1.64 2.9	98 5.6					μА			
(7) (8)	2.2 V	0.72		0.93		1.47		2.95		μА			
I _{LPM3_VCORE1_RTCLF} (7) (8)	3. 0 V 0. 75 0. 95 1. 35 1. 5 2. 98 6								μΑ				
(9) (8)	2.2 V	1.04		1.3		1.87		3.34					
I _{LPM3_VCORE1_RTCREFO} (9) (8)	3. 0 V 1. 14 1. 4 1. 7 1. 96 3. 44 6. 5								μΑ				
(10)	2.2 V	0.37		0.48		0.92		2.19		^			
I _{LPM4_VCORE0} (10)	3.0 V 0	.4 0.5 0.65	0.	94 2.2 4	1.8					μА			
(10)	2.2 V	0.54		0.7		1.2		2.58		^			
I _{LPM4_VCORE1} (10)	3.0 V 0	. 56 0. 72 0.	98	1.23 2.6	5 5.6					μΑ			

- (1) 由海测导到VCC
- (2) 所有其他输入引脚连接到0 V或VCC。输出不会提供或同步任何电流。
- (3) CDII关闭。 闪光灯关机
- (4) SRAM的Rank A保留。所有其他hank都断由
- (5) 有关为保留自用的每个额外Bank的额外电流消耗的详细信息,请参阅表5-47。
- (6) SVSMH被禁用。
- (7) 中IFXT买购的RTC LF晶体的有效负载电容为3.7 pF。
- (8) WDT模块被埜田
- (9) 由REFO采购的RTC.
- (10)禁用RTC和WDT模块。

5.22 LPM3.5, LPM4.5模式下的电流消耗

PARAMETER	V _{CC}	−40°C	25°C	60°C	85°C	UNIT		
PARAMETER		TYP M	AX TYP MA	X TYP MAX	TYP MAX	UNII		
I _{LPM3.5_RTCLF} (3) (4) (5) (6) (7)	2.2 V	0.48	0.6	1.07	2.36	^		
	3.0 V 0	. 5 0. 63 0. 8	1 1.1 2.38 4.9			μА		
(3) (4) (8) (6) (7)	2.2 V	0.82	1.03	1.52	2.81	^		
I _{LPM3.5_RTCREFO} (3) (4) (8) (6) (7)	3.0 V 0	. 92 1. 12 1.	3 1.61 2.9 5.5			μΑ		
I _{LPM4.5} ⁽⁹⁾ (7)	2.2 V	10	20	45	125	nA		
	3. 0 V 1	5 25 35 50	150 300	· ·		IIA		

- (1) 由流测导到VCC
- (2) 所有其他输入引脚连接到0 V或VCC。输出不会提供或同步任何电流。
- (3) CDII和闪左斯由
- (4) SRAM的Bank O保留。所有其他hank斯由
- (5) 由IFXT采购的RTC LF晶体的有效负载电容为3.7 pF。
- (6) WDT模块被埜用。
- (7) SVSMH被禁用。
- (8) REFO采购的RTC。
- (9) 无核心电压。 CPU, 闪存和所有SRAM组都断电。

5.23数字外设的电流消耗

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)

PARAMETER	TEST CONDITIONS	TYP	MAX	UNIT
ITIMER A Tir	ner A配置为PWM定时器,占空比为50%,转换为50μA/ MHz			
I _{TIMER32}	Timer32 enabled	3.5		μΑ/MHz
IUART eUSCI	A配置为UART模式6.5μA/MHz			
	A配置为SPI主模式5μA/MHz			
I _{I2C}	eUSCI_B configured in I ² C master mode	5		μΑ/MHz
IWDT A WDT A	A配置为间隔定时器模式6μA/MHz			
IRTC C RTC (C使能并来自32-kHz LFXT 100 nA			
I _{AES256}	AES256 active	19		μΑ/MHz
I _{CRC32}	CRC32 active	2		µA/MHz

(1) Measured with VCORE = 1.2 V

5.24热阻特性

	THERMAL METRICS ⁽¹⁾	PACKAGE	VALUE ⁽²⁾	UNIT
$R\theta_{JA}$	Junction-to-ambient thermal resistance, still air (3)		50.9	°C/W
$R\theta_{JC(TOP)}$	Junction-to-case (top) thermal resistance (4)		9.7	°C/W
$R\theta_{JB}$	Junction-to-board thermal resistance (5)	LQFP-100 (PZ)	27.2	°C/W
Ψ_{JB}	Junction-to-board thermal characterization parameter	LQFF-100 (FZ)	26.9	°C/W
Ψ_{JT}	Junction-to-top thermal characterization parameter		0.2	°C/W
$R\theta_{JC(BOTTOM)}$	Junction-to-case (bottom) thermal resistance (6)		N/A	°C/W
$R\theta_{JA}$	Junction-to-ambient thermal resistance, still air (3)		58.1	°C/W
$R\theta_{JC(TOP)}$	Junction-to-case (top) thermal resistance (4)		26.1	°C/W
$R\theta_{JB}$	Junction-to-board thermal resistance (5)	NEDCA 90 (ZVII)	22.6	°C/W
Ψ_{JB}	Junction-to-board thermal characterization parameter	NFBGA-80 (ZXH)	22.0	°C/W
Ψ_{JT}	Junction-to-top thermal characterization parameter		0.5	°C/W
$R\theta_{JC(BOTTOM)}$	Junction-to-case (bottom) thermal resistance (6)		N/A	°C/W
$R\theta_{JA}$	Junction-to-ambient thermal resistance, still air (3)		29.4	°C/W
$R\theta_{JC(TOP)}$	Junction-to-case (top) thermal resistance (4)		14.8	°C/W
$R\theta_{JB}$	Junction-to-board thermal resistance (5)	\/OFN 64 (DCC)	8.3	°C/W
Ψ_{JB}	Junction-to-board thermal characterization parameter	VQFN-64 (RGC)	8.2	°C/W
Ψ_{JT}	Junction-to-top thermal characterization parameter		0.2	°C/W
Rθ _{JC(BOTTOM)}	Junction-to-case (bottom) thermal resistance (6)		1.0	°C/W

- (1) 有关传统和新热指标的更多信息,请参阅半导体和IC封装热指标。 (2) N/A = not applicable
- (3)在JESD51-2a中描述的环境中,在JESD51-7中规定的JEDEC标准High-K板的模拟中获得自然对流下的结至环境热阻。
- (4)通过在封装顶部模拟冷板测试获得结至壳体(顶部)热阻。没有特定的JEDEC标准测试,但可以在ANSI SEMT标准(20-88 由地到详细描述
- (5)如JESD51-8中所述,通过在具有环形冷板夹具的环境中模拟以控制PCB温度来获得结到板的热阻。
- (6)通过在暴露的(电源)焊盘上模拟冷板测试来获得结至壳体(底部)热阻。没有特定的JEDEC标准测试,但可以在ANSI SEMI标准G30-88中找到详细描述。

5.25定时和开关特性

5.25.1复位时序

表5-1列出了从不同类型的重置中恢复的延迟。

Table 5-1. Reset Recovery Latencies

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)

	PARAMETER	MIN	TYP	MAX	UNIT
t _{SOFT}	Latency from release of soft reset to first CPU instruction fetch		5		MCLK cycles
t _{HARD}	Latency from release of hard reset to release of soft reset		25		MCLK cycles
t _{POR}	Latency from release of device POR to release of hard reset		15	25	μs
t _{COLDPWR,100 nF}	Latency from a cold power-up condition to release of device POR, C _{VCORE} = 100 nF		300	400	μs
t _{COLDPWR,4.7} μF	Latency from a cold power-up condition to release of device POR, $C_{VCORE} = 4.7 \mu F$		400	500	μs

⁽¹⁾ See Section 6.8.1 for details on the various classes of resets on the device

表5-2列出了从RSTn引脚上施加的外部复位恢复的延迟。

表5-2。外部重置恢复延迟(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
t _{AM_RSTn}	External reset applied when device is in LDO or DC-DC based active modes, MCLK = 1 to 48 MHz	5	ms
t _{AMLF_RSTn} , 128 kHz	External reset applied when device is in low-frequency active modes, MCLK = 128 kHz	5.5	ms
t _{AMLF_RSTn} , 32 kHz	External reset applied when device is in low-frequency active modes, MCLK = 32.768 kHz	6.5	ms
t _{LPM0_RSTn}	External reset applied when device is in LDO or DC-DC based LPM0 modes, MCLK = 1 to 48 MHz	5	ms
t _{LPM0LF_RSTn} , 128 kHz	External reset applied when device is in low-frequency LPM0 modes, MCLK = 128 kHz	5.5	ms
t _{LPM0LF_RSTn} , 32 kHz	External reset applied when device is in low-frequency LPM0 modes, MCLK = 32.768 kHz	6.5	ms
t _{LPM3_LPM4_RSTn}	External reset applied when device is in LPM3 or LPM4 modes, MCLK = 24 or 48 MHz while entering LPM3 or LPM4 modes	5	ms
t _{LPMx.5_RSTn}	External reset applied when device is in LPM3.5 or LPM4.5 modes	5	ms

(1) 在RSTn引脚上施加外部复位,并且从外部复位的释放到用户应用代码的启动来测量延迟。

www.ti.com

5.25.2模式转换时序

表5-3列出了在不同活动模式之间切换所需的延迟。

表5-3。活动模式转换延迟

PARAMETER	ORIGINAL OPERATING MODE	FINAL OPERATING MODE	TEST CONDITIONS	TYP	MAX	UNIT
toff_AMLD00	Power Off	AM_LDO_VCORE0	From V _{CC} reaching 1.71 V to start of user application code		6	ms
tamldoo_amldo1	AM_LDO_VCORE0	AM_LDO_VCORE1	Transition from AM_LDO_VCORE0 to AM_LDO_VCORE1 MCLK frequency = 24 MHz	300	350	μs
t _{AMLDO1_AMLDO0}	AM_LDO_VCORE1	AM_LDO_VCORE0	Transition from AM_LDO_VCORE1 to AM_LDO_VCORE0 MCLK frequency = 24 MHz	4	5	μs
t _{AMLDO0_AMDCDC0}	AM_LDO_VCORE0	AM_DCDC_VCORE0	Transition from AM_LDO_VCORE0 to AM_DCDC_VCORE0 MCLK frequency = 24 MHz	20	30	μs
t _{AMDCDC0_AMLDO0}	AM_DCDC_VCORE0	AM_LDO_VCORE0	Transition from AM_DCDC_VCORE0 to AM_LDO_VCORE0 MCLK frequency = 24 MHz	10	15	μs
t _{AMLDO1_AMDCDC1}	AM_LDO_VCORE1	AM_DCDC_VCORE1	Transition from AM_LDO_VCORE1 to AM_DCDC_VCORE1 MCLK frequency = 48 MHz	20	30	μs
t _{AMDCDC1_AMLDO1}	AM_DCDC_VCORE1	AM_LDO_VCORE1	Transition from AM_DCDC_VCORE1 to AM_LDO_VCORE1 MCLK frequency = 48 MHz	10	15	μs
t _{AMLDO0_AMLF0}	AM_LDO_VCORE0	AM_LF_VCORE0	Transition from AM_LDO_VCORE0 to AM_LF_VCORE0 SELM = 2, REFO frequency = 128 kHz	90	100	µs
t _{AMLF0_AMLDO0}	AM_LF_VCORE0	AM_LDO_VCORE0	Transition from AM_LF_VCORE0 to AM_LDO_VCORE0 SELM = 2, REFO frequency = 128 kHz	50	60	μs
t _{AMLDO1_AMLF1}	AM_LDO_VCORE1	AM_LF_VCORE1	Transition from AM_LDO_VCORE1 to AM_LF_VCORE1 SELM = 2, REFO frequency = 128 kHz	90	100	μs
t _{AMLF1_AMLDO1}	AM_LF_VCORE1	AM_LDO_VCORE1	Transition from AM_LF_VCORE1 to AM_LDO_VCORE1 SELM = 2, REFO frequency = 128 kHz	50	60	μs

表5-4列出了在不同的活动模式和LPMO模式之间切换所需的延迟。

表5-4。 LPMO模式转换延迟

PARAMETER	ORIGINAL OPERATING MODE	FINAL OPERATING MODE	TEST CONDITIONS	TYP	MAX	UNIT
tamldox_lpmoldox ⁽¹⁾	AM_LDO_VCOREx	LPM0_LDO_VCOREx	Transition from AM_LDO_VCORE0 or AM_LDO_VCORE1 to LPM0_LDO_VCORE0 or LPM0_LDO_VCORE1	1		MCLK cycles
tlpmoldox_amldox ⁽²⁾	LPM0_LDO_VCOREx	AM_LDO_VCOREx	Transition from LPM0_LDO_VCORE0 or LPM0_LDO_VCORE1 to AM_LDO_VCORE0 or AM_LDO_VCORE1 through I/O interrupt	3	4	MCLK cycles
tamdcdcx_lpmodcdcx ⁽¹⁾	AM_DCDC_VCOREx	LPM0_DCDC_VCOREx	Transition from AM_DCDC_VCORE0 or AM_DCDC_VCORE1 to LPM0_DCDC_VCORE0 or LPM0_DCDC_VCORE1	1		MCLK cycles
tlpmodcdcx_amdcdcx ⁽²⁾	LPM0_DCDC_VCOREx	AM_DCDC_VCOREx	Transition from LPM0_DCDC_VCORE0 or LPM0_DCDC_VCORE1 to AM_DCDC_VCORE0 or AM_DCDC_VCORE1 through I/O interrupt	3	4	MCLK cycles
t _{AMLFx_LPM0LFx} ⁽¹⁾	AM_LF_VCOREx	LPM0_LF_VCOREx	Transition from AM_LF_VCORE0 or AM_LF_VCORE1 to LPM0_LF_VCORE0 or LPM0_LF_VCORE1	1		MCLK cycles
tLPMOLFx_AMLFx ⁽²⁾	LPM0_LF_VCOREx	AM_LF_VCOREx	Transition from LPM0_LF_VCORE0 or LPM0_LF_VCORE1 to AM_LF_VCORE0 or AM_LF_VCORE1 through I/O interrupt	3	4	MCLK cycles

⁽¹⁾ 这是CPII执行WFT指今到CPII输出从断言SIFFPINC信号之间的延迟

⁽²⁾ 这是I / 0中断事件与CPU输出时SLEEPING信号无效之间的延迟。

www.ti.com

表5-5列出了在不同的活动模式和LPM3或LPM4模式之间切换所需的延迟。

表5-5。 LPM3, LPM4模式转换延迟

PARAMETER	ORIGINAL OPERATING MODE	FINAL OPERATING MODE	TEST CONDIT	TIONS	TYP	MAX	UNIT
t _{AMLDO0_LPMx0} (1)	AM_LDO_VCORE0	LPM3_LPM4_VCORE0	Transition from AM_LDO_VCORE0 to LPM3 or LPM4 at VCORE0	SELM = 3. DCO frequency = 24 MHz	22	24	μs
t _{LPMx0_AMLDO0_NORIO} (2)	LPM3_LPM4_VCORE0	AM_LDO_VCORE0	Transition from LPM3 or LPM4 at VCORE0 to AM_LDO_VCORE0 through wake-up event from nonglitch filter type I/O	SELM = 3. DCO frequency = 24 MHz	8	9	μs
$t_{\text{LPMx0_AMLDO0_GFLTIO}}^{(2)}$	LPM3_LPM4_VCORE0	AM_LDO_VCORE0	Transition from LPM3 or LPM4 at VCORE0 to AM_LDO_VCORE0 through wake-up event from glitch filter type I/O, GLTFLT_EN = 1	SELM = 3. DCO frequency = 24 MHz	9	10	μs
t _{AMLDO1_LPMx1} (1)	AM_LDO_VCORE1	LPM3_LPM4_VCORE1	Transition from AM_LDO_VCORE1 to LPM3 or LPM4 at VCORE1	SELM = 3. DCO frequency = 48 MHz	21	23	μs
t _{LPMx1_AMLDO1_NORIO} (2)	LPM3_LPM4_VCORE1	AM_LDO_VCORE1	Transition from LPM3 or LPM4 at VCORE1 to AM_LDO_VCORE1 through wake-up event from nonglitch filter type I/O	SELM = 3. DCO frequency = 48 MHz	7.5	8	μs
t _{LPMx1_AMLDO1_GFLTIO} (2)	LPM3_LPM4_VCORE1	AM_LDO_VCORE1	Transition from LPM3 or LPM4 at VCORE1 to AM_LDO_VCORE1 through wake-up event from glitch filter type I/O, GLTFLT_EN = 1	SELM = 3. DCO frequency = 48 MHz	8	9	μs
tamlex_lpmx_128k (1)	AM_LF_VCOREx	LPM3_LPM4_VCOREx	Transition from AM_LF_VCORE0 or AM_LF_VCORE1 to LPM3 or LPM4 at VCORE0/1	SELM = 2. REFO frequency = 128 kHz	240	260	μs
t _{AMLFx_LPMx_32k} (1)	AM_LF_VCOREx	LPM3_LPM4_VCOREx	Transition from AM_LF_VCORE0 or AM_LF_VCORE1 to LPM3 or LPM4 at VCORE0/1	SELM = 0. LFXT frequency = 32.768 kHz	880	900	μs
t _{LPMx_AMLFx_NORIO_128k} (2)	LPM3_LPM4_VCOREx	AM_LF_VCOREx	Transition from LPM3 or LPM4 at VCORE0/1 to AM_LF_VCORE0 or AM_LF_VCORE1 through wake-up event from nonglitch filter type I/O	SELM = 2. REFO frequency = 128 kHz	45	50	μs
t _{LPMx_AMLFx_NORIO_32k} ⁽²⁾	LPM3_LPM4_VCOREx	AM_LF_VCOREx	Transition from LPM3 or LPM4 at VCORE0/1 to AM_LF_VCORE0 or AM_LF_VCORE1 through wake-up event from nonglitch filter type I/O	SELM = 0. LFXT frequency = 32.768 kHz	150	170	μs

⁽²⁾ 这是从I / 0唤醒事件到器件引脚MCLK时钟启动的延迟。

表5-6列出了更改为LPM3.5和LPM4.5模式所需的延迟。

表5-6。 LPM3.5, LPM4.5模式转换延迟

PARAMETER	ORIGINAL OPERATING MODE	FINAL OPERATING MODE	TEST CONDITIONS	TYP	MAX	UNIT
t _{AMLDOx_LPM3.5} ⁽¹⁾	AM_LDO_VCOREx	LPM3.5	Transition from AM_LDO_VCORE0 or AM_LDO_VCORE1 to LPM3.5	25	30	μs
t _{AMDCDCx_LPM3.5} ⁽¹⁾	AM_DCDC_VCOREx	LPM3.5	Transition from AM_DCDC_VCORE0 or AM_DCDC_VCORE1 to LPM3.5	35	50	μs
t _{AMLFx_LPM3.5} ⁽¹⁾	AM_LF_VCOREx	LPM3.5	Transition from AM_LF_VCORE0 or AM_LF_VCORE1 to LPM3.5	225	250	μs
t _{AMLDOx_LPM4.5} (2)	AM_LDO_VCOREx	LPM4.5	Transition from AM_LDO_VCORE0 or AM_LDO_VCORE1 to LPM4.5	25	30	μs
t _{AMDCDCx_LPM4.5} ⁽²⁾	AM_DCDC_VCOREx	LPM4.5	Transition from AM_DCDC_VCORE0 or AM_DCDC_VCORE1 to LPM4.5	35	50	μs
t _{AMLFx_LPM4.5} ⁽²⁾	AM_LF_VCOREx	LPM4.5	Transition from AM_LF_VCORE0 or AM_LF_VCORE1 to LPM4.5	250	270	μs
t _{LPM3.5_AMLDO0} (3)	LPM3.5	AM_LDO_VCORE0	Transition from LPM3.5 to AM_LDO_VCORE0	0.7	8.0	ms
tLPM4.5_AMLDO0_SVSMON, 100 nF (3)	LPM4.5	AM_LDO_VCORE0	Transition from LPM4.5 to AM_LDO_VCORE0, SVSMH enabled while in LPM4.5, C _{VCORE} = 100 nF	0.8	0.9	ms
t _{LPM4.5_AMLDO0_SVSMON} , 4.7 μF ⁽³⁾	LPM4.5	AM_LDO_VCORE0	Transition from LPM4.5 to AM_LDO_VCORE0, SVSMH enabled while in LPM4.5, $C_{VCORE} = 4.7 \ \mu F$	0.9	1	ms
tLPM4.5_AMLDO0_SVSMOFF, 100 nF (3)	LPM4.5	AM_LDO_VCORE0	Transition from LPM4.5 to AM_LDO_VCORE0, SVSMH disabled while in LPM4.5, C _{VCORE} = 100 nF	1	1.1	ms
tlpm4.5_amldoo_svsmoff, 4.7 µF (3)	LPM4.5	AM_LDO_VCORE0	Transition from LPM4.5 to		1.2	ms

⁽¹⁾ 这县从CDII到I PM2 5档式进入的WET指会址行的延迟(9) 这县从CDII址行WET指会到I PM4 5档式进入的延迟

⁽³⁾ 这是从I / 0唤醒事件到用户应用程序代码启动的延迟。

5.25.3时钟规范

表5-7列出了低频晶体振荡器LFXT的输入要求。

表5-7。低频晶体振荡器,LFXT,推荐工作条件

over operating free-air temperature range (unless otherwise noted)

参数测试条件MIN TYP MAX UNIT	•			
ESR晶体等效串联电阻fOSC = 32.768 kHz 16 4065kΩ				
Capacitance from LFXT input to ground and from LFXT output to ground ⁽¹⁾	7.4	12	24	pF
CSHUNT晶体分流电容0.6 0.8 1.6 pF Cm晶体运动电容1 2 10 fF				

(1) 不包括板寄生虫。封装和电路板为CLFXT增加了额外的电容。

表5-8列出了低频晶体振荡器LFXT的特性。

表5-8。 LFXT低频晶体振荡器

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	参数测试条件VCC MI	N TYP MAX UNIT	,		•	,		
		$ \begin{cases} f_{OSC} = 32.768 \text{ kHz,} \\ \text{LFXTBYPASS} = 0, \text{LFXTDRIVE} = \{0\}, \\ C_{\text{L,eff}} = 3.7 \text{ pF, Typical ESR and } C_{\text{SHUNT}} \end{cases} $		100				
lvcc,lfxt	Current consumption ⁽¹⁾	$ \begin{aligned} f_{OSC} &= 32.768 \text{ kHz}, \\ \text{LFXTBYPASS} &= 0, \text{LFXTDRIVE} = \{1\}, \\ C_{\text{L,eff}} &= 6 \text{ pF, Typical ESR and } C_{\text{SHUNT}} \end{aligned} $	3.0 V		120		nA	
		$ \begin{aligned} &f_{OSC} = 32.768 \text{ kHz,} \\ &\text{LFXTBYPASS} = 0, \text{LFXTDRIVE} = \{2\}, \\ &C_{L,\text{eff}} = 9 \text{ pF, Typical ESR and } C_{\text{SHUNT}} \end{aligned} $	3. 0 V		150			
		$ \begin{aligned} &f_{OSC} = 32.768 \text{ kHz,} \\ &\text{LFXTBYPASS} = 0, \text{LFXTDRIVE} = \{3\}, \\ &C_{L,\text{eff}} = 12 \text{ pF, Typical ESR and } C_{\text{SHUNT}} \end{aligned} $			170			
f _{LFXT}	LFXT oscillator crystal frequency	LFXTBYPASS = 0 ⁽²⁾			32.768		kHz	
DC_{LFXT}	LFXT oscillator duty cycle	$f_{LFXT} = 32.768 \text{ kHz}^{(2)}$		30%		70%		
f _{LFXT,SW}	LFXT oscillator logic-level square-wave input frequency	LFXTBYPASS = 1 ⁽³⁾ (4)		10	32.768	50	kHz	
DCLFXT,	LFXT oscillator logic-level square-wave input duty cycle	LFXTBYPASS = 1		30%		70%		
OA _{LFXT}	Oscillation allowance for	LFXTBYPASS = 0, LFXTDRIVE = $\{1\}$, f_{LFXT} = 32.768 kHz, $C_{L,eff}$ = 6 pF		200	240		kΩ	
	LF crystals ⁽⁵⁾	LFXTBYPASS = 0, LFXTDRIVE = $\{3\}$, f_{LFXT} = 32.768 kHz, $C_{L,eff}$ = 12 pF		300	340		K12	

(4) 不能超过整个设备的最大工作频率

- (5) 振荡余量基于推荐晶体的安全系数5。振荡容限是LFXTDRIVE设置和有效负载的函数。通常,可以根据以下指南实现可比较的振荡器容差,但应根据为应用选择的实际晶体进行评估: •对于LFXTDRIVE = {0},CL, eff = 3.7 pF。
 - •对于LFXTDRIVE = $\{1\}$, $6pF \leqslant CL$, eff $\leqslant 9pF$ 。
 - •对于LFXTDRIVE = {2}, 6pF≤CL, eff≤10pF。
 •对于LFXTDRIVE = {3}, 6pF≤CL, eff≤12pF。

Specifications

⁽¹⁾ AVCC和DVCC由源的总电流测量值。

⁽²⁾以ACLK引脚测量。

⁽³⁾ 当LFXTBYPASS置位时,LFXT电路自动断电。输入信号是数字方波,参数在本数据手册的施密特触发器输入部分中定义。占空比要求由DCLFXT, SW定义。

表5-8。低频晶体振荡器, LFXT (续)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	参数测试条件VCC MI	N TYP MAX UNIT					
C _{LFXIN}	Integrated load capacitance at LFXIN terminal (6) (7)			2		pF	
C _{LFXOUT}	Integrated load capacitance at LFXOUT terminal (6) (7)			2		pF	
t _{START,LFXT} Start-up time ⁽⁸⁾	Start up time (8)	$ \begin{aligned} &f_{OSC} = 32.768 \text{ kHz,} \\ &\text{LFXTBYPASS} = 0, \text{LFXTDRIVE} = \{0\}, \\ &C_{\text{Leff}} = 3.7 \text{ pF,} \\ &\text{Typical ESR and } &C_{\text{SHUNT,}} \\ &\text{FCNTLF_EN} = 0^{(2)} \end{aligned} $	3.0 V	1.1			
	Start-up time	$ \begin{cases} f_{OSC} = 32.768 \text{ kHz,} \\ \text{LFXTBYPASS} = 0, \text{LFXTDRIVE} = \{3\}, \\ C_{\text{Leff}} = 12 \text{ pF,} \\ \text{Typical ESR and } C_{\text{SHUNT}}, \\ \text{FCNTLF_EN} = 0^{(2)} \\ \end{cases} $	3.0 V	1.3		S	
f _{Fault,LFXT}	Oscillator fault frequency (9) (10)			1	3	kHz	

- (6) 这表示分别存在于LFXIN和LFXOUT端子的所有寄生电容,包括寄生键和封装电容。有效负载电容CL, eff可以计算为CIN x COUT / (CIN + COUT), 其中CIN和COUT分别是LFXIN和LFXOUT端子的总电容。
- (7) 两个端子都需要外部电容,以满足晶体制造商规定的有效负载电容。支持的推荐有效负载电容值为3.7 pF,6 pF,9 pF和12 pF。最大分流电容为1.6 pF。由于PCB增加了额外的电容,因此还必须考虑整体电容。TT建议验证是否满足所洗品振的推荐有效负载电容。
- (8) 不句括可编程自动计数哭
- (9) 高于MAX规范的频率不设置故障标志。
- MIN和MAY和茄之间的痴索可以设置标志。静太冬件或卡在场陪垛太下返设置场陪标志。
- (10) 用逻辑电平输入频率测量,但也适用于晶体操作。

表5-9列出了高频晶体振荡器HFXT的输入要求。

表5-9。高频晶体振荡器,HFXT,推荐工作条件

over operating free-air temperature range (unless otherwise noted)

	参数测试条件MIN TYP MAX	UNIT				
		f _{OSC} = 1 MHz to ≤4 MHz		75	150	
FCD		f _{OSC} = >4 MHz to ≤8 MHz		75	150	Ω
	Crystal equivalent series resistance	f _{OSC} = >8 MHz to ≤16 MHz		40	80	
ESR		f _{OSC} = >16 MHz to ≤24 MHz		30	60	
		f _{OSC} = >24 MHz to ≤32 MHz		20	40	
		f _{OSC} = >32 MHz to ≤48 MHz		15	30	
C _{HFXT}	Capacitance from HFXT input to ground and from HFXT output to ground	f _{OSC} = 1 MHz to 48 MHz	28	32	36	pF

_CSHUNT晶体并联电容fOSC = 1 MHz至48 MHz 1 3 7 pF

|Cm晶体运动电容fOSC = 1 MHz至48 MHz 3 7 30 fF

表5-10列出了高频晶体振荡器HFXT的特性。

表5-10。高频晶体振荡器, HFXT

		ge and operating free-all temperature (un			<u>/</u>			
	_参数测试条件VCC MII		I	ſ		1		
		$f_{OSC} = 1$ MHz, HFXTBYPASS = 0, HFXTDRIVE = 0, HFFREQ = 0, $C_{L,eff} = 16$ pF, Typical ESR and C_{SHUNT}			40			
		$ \begin{aligned} &f_{OSC} = 4 \text{ MHz,} \\ &\text{HFXTBYPASS} = 0, \text{HFXTDRIVE} = 1, \\ &\text{HFFREQ} = 0, C_{L,eff} = 16 \text{ pF,} \\ &\text{Typical ESR and } C_{SHUNT} \end{aligned} $			60			
I _{DVCC,HFXT}		$ \begin{aligned} &f_{OSC} = 8 \text{ MHz,} \\ &\text{HFXTBYPASS} = 0, \text{HFXTDRIVE} = 1, \\ &\text{HFFREQ} = 1, C_{L,eff} = 16 \text{ pF,} \\ &\text{Typical ESR and } C_{SHUNT} \end{aligned} $			100			
	HFXT oscillator crystal current	$ \begin{cases} f_{OSC} = 16 \text{ MHz,} \\ \text{HFXTBYPASS} = 0, \text{HFXTDRIVE} = 1, \\ \text{HFFREQ} = 2, C_{L,eff} = 16 \text{ pF,} \\ \text{Typical ESR and } C_{\text{SHUNT}} \end{cases} $	3.0 V		180			
	HF mode at typical ESR	$ \begin{aligned} &f_{OSC} = 24 \text{ MHz,} \\ &\text{HFXTBYPASS} = 0, \text{HFXTDRIVE} = 1, \\ &\text{HFFREQ} = 3, C_{L,eff} = 16 \text{ pF,} \\ &\text{Typical ESR and } C_{SHUNT} \end{aligned} $	3.0 V =		260			
		$ \begin{aligned} &f_{OSC} = 32 \text{ MHz,} \\ &\text{HFXTBYPASS} = 0, \text{HFXTDRIVE} = 1, \\ &\text{HFFREQ} = 4, C_{L,eff} = 16 \text{ pF,} \\ &\text{Typical ESR and } C_{SHUNT} \end{aligned} $			320			
		$ \begin{aligned} &f_{OSC} = 40 \text{ MHz}, \\ &\text{HFXTBYPASS} = 0, \text{HFXTDRIVE} = 1, \\ &\text{HFFREQ} = 5, C_{L,eff} = 16 \text{ pF}, \\ &\text{Typical ESR and } C_{SHUNT} \end{aligned} $			480			
		$ \begin{aligned} &f_{OSC} = 48 \text{ MHz,} \\ &\text{HFXTBYPASS} = 0, \text{HFXTDRIVE} = 1, \\ &\text{HFFREQ} = 6, C_{L,eff} = 16 \text{ pF,} \\ &\text{Typical ESR and } C_{SHUNT} \end{aligned} $			550			
		HFXTBYPASS = 0, HFFREQ = 0 (1)		1		4		
		HFXTBYPASS = 0, HFFREQ = 1 (1)		4.01		8		
		HFXTBYPASS = 0, HFFREQ = 2 (1)		8.01		16		
f _{HFXT}	HFXT oscillator crystal frequency, crystal mode	HFXTBYPASS = 0, HFFREQ = 3 (1)		16.01		24	MHz	
i	ricquericy, crystal mode	HFXTBYPASS = 0, HFFREQ = 4 (1)		24.01		32		
		HFXTBYPASS = 0, HFFREQ = 5 (1)		32.01		40		
		HFXTBYPASS = 0, HFFREQ = 6 (1)		40.01		48		
DC _{HFXT}	HFXT oscillator duty cycle	Measured at MCLK or HSMCLK, f _{HFXT} = 1 MHz to 48 MHz		40%	50%	60%		
f _{HFXT,SW}	HFXT oscillator logic-level square-wave input frequency, bypass mode	HFXTBYPASS = 1 ⁽¹⁾⁽²⁾		0.8		48	MHz	
DC _{HFXT, SW}	HFXT oscillator logic-level square-wave input duty cycle	HFXTBYPASS = 1, 外部时钟用作MCLK或HSMCLK的直接源 , 没有分频器 (DIVM = 0或DIVHS = 0)。		45%		55%		
		HFXTBYPASS = 1,外部时钟用作MCLK或HSMCLK的直接源,带有分频器(DIVM>0或DIVHS> 0)或不用作MCLK或HSMCLK的直接源。		40%		60%		

⁽¹⁾ 不能認计整个设象的 最大工作 输家 (2)当设置HFXTBYPASS时,HFXT电路自动断电。输入信号是数字方波,参数在本数据手册的施密特触发器输入部分中定义。占空比要求由DCHFXT,SW定义。

表5-10。高频晶体振荡器,HFXT(续)

	0 117	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	参数测试条件VCC M	IIN TYP MAX UNIT		
		$ \begin{array}{lll} \text{HFXTBYPASS} &=& 0, \text{HFXTDRIVE} = 0, \\ \text{HFFREQ} &=& 0, \\ \text{f}_{\text{HFXT,HF}} &=& 1 \text{MHz}, \text{C}_{\text{L,eff}} = 16 \text{pF} \end{array} $	1225 5000	
	HFXTBYPASS = 0, HFXTDRIVE = 1, HFFREQ = 0, $f_{\text{HFXT,HF}}$ = 4 MHz, $C_{\text{L,eff}}$ = 16 pF	640 1250		
	HFXTBYPASS = 0, HFXTDRIVE = 1, HFFREQ = 1, f _{HFXT,HF} = 8 MHz, C _{L,eff} = 16 pF	360 750		
04	OA _{HFXT} Oscillation allowance for HFXT crystals ⁽³⁾	$\begin{aligned} & \text{HFXTBYPASS} &= 0, \text{HFXTDRIVE} &= 1, \\ & \text{HFFREQ} &= 2, \\ & \text{f}_{\text{HFXT,HF}} &= 16 \text{MHz}, \text{C}_{\text{L,eff}} &= 16 \text{pF} \end{aligned}$	200 425	0
OA _{HFXT}		$ \begin{array}{llllllllllllllllllllllllllllllllllll$	135 275	Ω
		HFXTBYPASS = 0, HFXTDRIVE = 1, HFFREQ = 4, $f_{HFXT,HF}$ = 32 MHz, $C_{L,eff}$ = 16 pF	110 225	
		$ \begin{array}{llllllllllllllllllllllllllllllllllll$	105 160	
	HFXTBYPASS = 0, HFX HFFREQ = 6,	HFXTBYPASS = 0, HFXTDRIVE = 1, HFFREQ = 6, f _{HFXT,HF} = 48 MHz, C _{L,eff} = 16 pF	80 140	

表5-10。高频晶体振荡器,HFXT(续)

	参数测试条件VCC MIN	je and operating free-air temperature (un N TYP MAX UNIT	,	,	•		
		$\begin{split} f_{OSC} &= 1 \text{ MHz}, \\ \text{HFXTBYPASS} &= 0, \text{HFXTDRIVE} = 0, \\ \text{HFFREQ} &= 0, \text{C}_{L,eff} = 16 \text{ pF}, \\ \text{Typical ESR and C}_{SHUNT}, \\ \text{FCNTHF}_\text{EN} &= 0 \end{split}$		4	4		
		$\begin{split} f_{OSC} &= 4 \text{ MHz}, \\ \text{HFXTBYPASS} &= 0, \text{HFXTDRIVE} = 1, \\ \text{HFFREQ} &= 0, \text{C}_{L,eff} = 16 \text{ pF}, \\ \text{Typical ESR and C}_{SHUNT}, \\ \text{FCNTHF_EN} &= 0 \end{split}$		1.8			
t _{START,HFXT} Start-up time ⁽⁴⁾	$\begin{split} &f_{OSC} = 8 \text{ MHz,} \\ &\text{HFXTBYPASS} = 0, \text{HFXTDRIVE} = 1, \\ &\text{HFFREQ} = 1, \text{C}_{L,eff} = 16 \text{ pF,} \\ &\text{Typical ESR and C}_{SHUNT,} \\ &\text{FCNTHF_EN} = 0 \end{split}$		0.7		ms		
	Start up time (4)	$\begin{split} f_{OSC} &= 16 \text{ MHz}, \\ \text{HFXTBYPASS} &= 0, \text{HFXTDRIVE} = 1, \\ \text{HFFREQ} &= 2, C_{L,eff} = 16 \text{ pF}, \\ \text{Typical ESR and } C_{SHUNT}, \\ \text{FCNTHF_EN} &= 0 \end{split}$	- 3.0 V	0.6			
	Start-up time	$\begin{split} f_{OSC} &= 24 \text{ MHz}, \\ \text{HFXTBYPASS} &= 0, \text{HFXTDRIVE} = 1, \\ \text{HFFREQ} &= 3, \text{C}_{L,eff} = 16 \text{ pF}, \\ \text{Typical ESR and C}_{SHUNT}, \\ \text{FCNTHF_EN} &= 0 \end{split}$		450		μs	
		$\begin{split} f_{OSC} &= 32 \text{ MHz}, \\ \text{HFXTBYPASS} &= 0, \text{HFXTDRIVE} = 1, \\ \text{HFFREQ} &= 4, \text{C}_{L,\text{eff}} = 16 \text{ pF}, \\ \text{Typical ESR and C}_{SHUNT}, \\ \text{FCNTHF_EN} &= 0 \end{split}$		300			
		$\begin{split} &f_{OSC} = 40 \text{ MHz}, \\ &\text{HFXTBYPASS} = 0, \text{HFXTDRIVE} = 1, \\ &\text{HFFREQ} = 5, \text{C}_{\text{Leff}} = 16 \text{ pF}, \\ &\text{Typical ESR and C}_{\text{SHUNT}}, \\ &\text{FCNTHF_EN} = 0 \end{split}$		250			
		$\begin{split} &f_{OSC} = 48 \text{ MHz}, \\ &\text{HFXTBYPASS} = 0, \text{HFXTDRIVE} = 1, \\ &\text{HFFREQ} = 6, \text{C}_{L,eff} = 16 \text{ pF}, \\ &\text{Typical ESR and } C_{SHUNT}, \\ &\text{FCNTHF_EN} = 0 \end{split}$		250			
C _{HFXIN}	Integrated load capacitance at HFXIN terminal (5) (6)			2		pF	
C _{HFXOUT}	Integrated load capacitance at HFXOUT terminal (6)			2		pF	
f _{Fault,HFXT}	Oscillator fault frequency (7) (8)			400	700	kHz	

- (4) 不句括可编程自动计数哭
- (5) 这代表分别存在于HFXIN和HFXOUT端子的所有寄生电容,包括寄生键和封装电容。有效负载电容CL, eff可以计算为CIN x COUT / (CIN + COUT), 其中CIN和COUT分别是HFXIN和HFXOUT端子的总电容。
- (6) 两个端子都需要外部电容,以满足晶体制造商规定的有效负载电容。支持的推荐有效负载电容值为14 pF, 16 pF和18 pF。最大分流电容为7 pF。由于PCB增加了额外的电容,因此还必须考虑整体电容。 TT建议验证是否满足所选品振的推荐有效负载电容。
- (7) 高于MAX规范的频率不设置故障标志。 MIN和MAX之间的频率可能会设置标志。静态条件或卡在故障条件下将设置标志。
- (8) 用逻辑电平输入频率测量,但也适用于晶体操作。

表5-11列出了DCO的特性。

Table 5-11. DCO

over recomme	0 117	ge and operating free-air tempera	ture (unless other	erwise not	ted)		
	_参数测试条件VCC,TA			1			_
f _{RSEL0_CTR}	DCO center frequency accuracy for range 0	Internal resistor mode, DCORSEL = 0, DCOTUNE = 0		1.443	1.5	1.557	MHz
NOLLO_OTK	with calibrated factory settings	External resistor mode, DCORSEL = 0, DCOTUNE = 0		1.482	1.5	1.518	
f	DCO center frequency accuracy for range 1	Internal resistor mode, DCORSEL = 1, DCOTUNE = 0		2.885	3	3.115	MHz
[†] RSEL1_CTR	with calibrated factory settings	External resistor mode, DCORSEL = 1, DCOTUNE = 0		2.964	3	3.036	IVITIZ
,	DCO center frequency accuracy for range 2	Internal resistor mode, DCORSEL = 2, DCOTUNE = 0		5.77	6	6.23	
[†] RSEL2_CTR	with calibrated factory settings	External resistor mode, DCORSEL = 2, DCOTUNE = 0		5.928	6	6.072	MHz
	DCO center frequency accuracy for range 3	Internal resistor mode, DCORSEL = 3, DCOTUNE = 0		11.541	12	12.459	
f _{RSEL3_CTR}	with calibrated factory settings	External resistor mode, DCORSEL = 3, DCOTUNE = 0		11.856	12	12.144	MHz
,	DCO center frequency accuracy for range 4	Internal resistor mode, DCORSEL = 4, DCOTUNE = 0		23.082	24	24.918	NAL I
[†] RSEL4_CTR	with calibrated factory settings	External resistor mode, DCORSEL = 4, DCOTUNE = 0		23.712	24	24.288	MHz
f _{RSEL5_CTR} a	DCO center frequency accuracy for range 5	Internal resistor mode, DCORSEL = 5, DCOTUNE = 0		46.164	48	49.836	NAL I—
	with calibrated factory settings	External resistor mode, DCORSEL = 5, DCOTUNE = 0		47.424	48	48.576	MHz
	DCO frequency drift with	Internal resistor mode, At fixed voltage	1.62 V to 3.7 V			250	
df _{DCO} /dT	temperature (1)	External resistor mode ⁽²⁾ At fixed voltage	1.62 V to 3.7 V			40	ppm/°C
df _{DCO} /dV _{CC}	DCO frequency voltage drift with voltage (3)	At fixed temperature, applicable for both DCO Internal and External resistor modes	-40°C to 85 °C			0.1	%/V
f _{RSEL0}	DCO frequency range 0	DCORSEL = 0 DCO internal or external resistor mode	3.0 V, 25°	C0.98 2	2.26 M	Hz	
f _{RSEL1}	DCO frequency range 1	DCORSEL = 1 DCO internal or external resistor mode	3.0 V, 25°	C1.96 4	.51 M	Hz	
f _{RSEL2}	DCO frequency range 2	DCORSEL = 2 DCO internal or external resistor mode	3.0 V, 25°	C3. 92 9	0.02 M	Hz	
f _{RSEL3}	DCO frequency range 3	DCORSEL = 3 DCO internal or external resistor mode	3.0 V, 25°	C7.84 1	8.04	MHz	
f _{RSEL4}	DCO frequency range 4	DCORSEL = 4 DCO internal or external resistor mode	3.0 V, 25°	C15.68	36. 07	MHz	
f _{RSEL5}	DCO frequency range 5	DCORSEL = 5 DCO internal or external resistor mode	3.0 V, 25°	C31.36	52 MH	Z	
f _{DCO_DC}	Duty cycle			47%	50%	53%	

⁽¹⁾ Calculated using the box method: (MAX(-40°C to 85°C) - MIN(-40°C to 85°C)) / MIN(-40°C to 85°C) / (85°C - (-40°C))

⁽²⁾ 不包括外部电阻的温度系数。

DCOR引脚的外部电阻推荐值: $91 \text{k}\,\Omega$, 0.1% , ± 25 ppm / $\mathbb C$. (3) Calculated using the box method: (MAX(1.62 V to 3.7 V) – MIN(1.62 V to 3.7 V)) / MIN(1.62 V to 3.7 V) / (3.7 V – 1.62 V)

Table 5-11. DCO (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			•			
参	数测试条件VCC, T.	A MIN TYP MAX UNIT				
		DCORSEL = 5, DCOTUNE = 0		50	90	
		DCORSEL = 4, DCOTUNE = 0		80	120	
t _{DCO_JITTER}	DCO paried litter	DCORSEL = 3, DCOTUNE = 0		115	170	
	DCO period jitter	DCORSEL = 2, DCOTUNE = 0		160	240	ps
		DCORSEL = 1, DCOTUNE = 0		225	340	
		DCORSEL = 0, DCOTUNE = 0		450	550	
TDCO STEP步士	KDCO的步长。 0.2	%				
t _{DCO_SETTLE_RANGE}	DCO settling from worst case DCORSELn to DCORSELm	DCO settled to within 1.5% of steady state frequency			10	μs
t _{DCO_SETTLE_TUNE}	DCO settling worst case DCOTUNEn to DCOTUNEm within any DCORSEL setting	DCO settled to within 1.5% of steady state frequency			10	μs
t _{START}	DCO start-up time ⁽⁴⁾	DCO settled to within 0.5% of steady state frequency		5		μs

⁽⁴⁾ DCO外部电阻引脚(DCOR)的最大寄生电容不应超过5 pF,以确保指定的DCO启动时间。

表5-12列出了DCO的总体容差。

Table 5-12. DCO Overall Tolerance

over operating free-air temperature range (unless otherwise noted)

RESISTOR OPTION	TEMPERATURE CHANGE	TEMPERATURE DRIFT (%)	VOLTAGE CHANGE	VOLTAGE DRIFT (%)	OVERALL DRIFT (%)	OVERALL ACCURACY (%)
	–40°C to 85 °C	±3.125	1.62 V to 3.7 V	±0.2	±3.325	±3.825
Internal resistor	0°C	0	1.62 V to 3.7 V	±0.2	±0.2	±0.7
	–40°C to 85 °C	±3.125	0 V	0	±3.125	±3.625
	–40°C to 85 °C	±0.5	1.62 V to 3.7 V	±0.2	±0.7	±1.2
External resistor with 25-ppm TCR	0°C	0	1.62 V to 3.7 V	±0.2	±0.2	±0.7
20 рр тогс	–40°C to 85 °C	±0.5	0 V	0	±0.5	±1

表5-13列出了内部超低功耗低频振荡器(VL0)的特性。

表5-13。内部超低功耗低频振荡器(VL0)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	参数测试条件MIN TYP MAX UNIT				
I_{VLO}	Current consumption ⁽¹⁾		50		nA
f_{VLO}	VLO frequency	6	9.4	14	kHz
df_{VLO}/d_{T}	VLO frequency temperature drift ⁽²⁾		0.1		%/°C
df _{VLO} /dV _{CC}	VLO frequency supply voltage drift ⁽³⁾		0.2		%/V
DC_{VLO}	Duty cycle	40%	50%	60%	

Current measured on DVCC supply

Calculated using the box method: (MAX(-40°C to 85°C) - MIN(-40°C to 85°C)) / MIN(-40°C to 85°C) / (85°C - (-40°C))

Calculated using the box method: (MAX(1.62 V to 3.7 V) – MIN(1.62 V to 3.7 V)) / MIN(1.62 V to 3.7 V) / (3.7 V – 1.62 V)

表5-14列出了32.768 kHz模式下内部参考低频振荡器(REFO)的特性。

表5-14。 32.768 kHz模式下的内部参考低频振荡器(REFO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	0 117 0 1	· · · · · · · · · · · · · · · · · · ·				
	参数测试条件VCC MIN TYP	MAX UNIT				
I _{REFO}	REFO current consumption (2)			0.6		μΑ
f _{REFO}	REFO frequency calibrated			32.768		kHz
	REFO absolute tolerance calibrated	$T_A = -40$ °C to 85°C			±3%	
		T _A = 25°C	3 V		±1.5%	
df_{REFO}/d_{T}	REFO frequency temperature drift ⁽³⁾			0.012		%/°C
df_{REFO}/dV_{CC}	REFO frequency supply voltage drift ⁽⁴⁾			0.2		%/V
DC_{REFO}	REFO duty cycle			40% 50%	60%	

(1) RFFO配置为32 768-kHz模式. $RFF \cap FSFI = 0$

(2) AVCC和DVCC电源的总电流测量值。 3) Calculated using the box method: (MAX(–40°C to 85°C)) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C)) 4) Calculated using the box method: (MAX(1.62 V to 3.7 V) – MIN(1.62 V to 3.7 V)) / MIN(1.62 V to 3.7 V) / (3.7 V – 1.62 V)

表5-15列出了128 kHz模式下内部参考低频振荡器(REFO)的特性。

表5-15。 128 kHz模式下的内部参考低频振荡器 (REFO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	参数测试条件VCC MIN TYP	MAX UNIT					
REFO	REFO current consumption (2)				1		μΑ
f _{REFO}	REFO frequency calibrated				128		kHz
	REFO absolute tolerance calibrated	$T_A = -40$ °C to 85°C				±6%	
		T _A = 25°C	3 V		±	£1.5%	
df _{REFO} /d _T	REFO frequency temperature drift ⁽³⁾			C	0.018		%/°C
df_{REFO}/dV_{CC}	REFO frequency supply voltage drift ⁽⁴⁾				0.4		%/V
DC _{REFO}	REFO duty cycle			40%	50%	60%	

(1) RFF()配署为198-kHo 模式 RFF()FSFI = 1

(2) AVCC和DVCC电源的总电流测量值。
(3) Calculated using the box method: (MAX(~40°C to 85°C) – MIN(~40°C to 85°C)) / MIN(~40°C to 85°C) / (85°C – (~40°C))
(4) Calculated using the box method: (MAX(1.62 V to 3.7 V) – MIN(1.62 V to 3.7 V)) / MIN(1.62 V to 3.7 V) / (3.7 V – 1.62 V)

表5-16列出了模块振荡器(MODOSC)的特性。

Table 5-16. Module Oscillator (MODOSC)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	参数测试条件VCC MIN	TYP MAX UNIT				
I _{MODOSC}	Current consumption (1)			50		μΑ
f _{MODOSC}	MODOSC frequency		23	25	27	MHz
df _{MODOSC} /dT	MODOSC frequency temperature drift ⁽²⁾			0.02		%/°C
df _{MODOSC} /dV CC	MODOSC frequency supply voltage drift (3)			0.3		%/V
DC _{MODOSC}	Duty cycle		40%	50%	60%	

- (1)AVCC和DVCC电源的总电流测量值。 2)Calculated using the box method: (MAX(–40°C to 85°C) MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C (–40°C)) 3)Calculated using the box method: (MAX(1.62 V to 3.7 V) MIN(1.62 V to 3.7 V)) / MIN(1.62 V to 3.7 V) / (3.7 V 1.62 V)

表5-17列出了系统振荡器(SYSOSC)的特性。

Table 5-17. System Oscillator (SYSOSC)

	参数测试条件VCC MIN Current consumption (1)	TYP MAX U	UNIT					
I _{SYSOSC}	Current consumption (1)					30		μΑ
f _{SYSOSC}	SYSOSC frequency				4.25	5.0	5.75	MHz
df _{SYSOSC} / dT	SYSOSC frequency temperature drift ⁽²⁾					0.03		%/°C
df _{SYSOSC} / dVCC	SYSOSC frequency supply voltage drift ⁽³⁾					0.5		%/V
DC _{SYSOSC}	Duty cycle				40%	50%	60%	

- (1)AVCC电源测量的电流。 2)Calculated using the box method: (MAX(–40°C to 85°C) MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C (–40°C)) 3)Calculated using the box method: (MAX(1.62 V to 3.7 V) MIN(1.62 V to 3.7 V)) / MIN(1.62 V to 3.7 V) / (3.7 V 1.62 V)

5.25.4供电系统

表5-18列出了LDO VCORE稳压器的特性。

表5-18。 VCORE稳压器 (LDO) 特性

大り 10。 VCORE/E/LE (LDU) 1寸 LT								
参数测试条件MIN TYP M	AAX UNIT	<u> </u>						
Static VCORE voltage Level 0 in active and LPM0 modes	Device power modes AM_LDO_VCORE0, LPM0_LDO_VCORE0	1.12	1.2	1.28	V			
Static VCORE voltage Level 1 in active and LPM0 modes	Device power modes AM_LDO_VCORE1, LPM0_LDO_VCORE1	1.31	1.4	1.49	V			
Static VCORE voltage Level 0 in low-frequency active and low frequency LPM0 modes	器件功耗模式AM_LF_VCOREO 1.12 1	. 2 1. 28 V.						
Static VCORE voltage Level 1 in low-frequency active and low frequency LPM0 modes	器件功耗模式AM_LF_VCORE1 1.31 1	4 1.49 V.						
Static VCORE voltage Level 0 in LPM3 and LPM4 modes	Device power modes LPM3, LPM4	1.08	1.2	1.32	V			
Static VCORE voltage Level 1 in LPM3 and LPM4 modes	Device power modes LPM3, LPM4	1.27	1.4	1.53	V			
Static VCORE voltage Level 0 in LPM3.5 mode	Device power mode LPM3.5	1.08	1.2	1.32	V			
T启动时的浪涌电流设备	4上电200 mA							
Peak current drawn by LDO from DV _{CC}				350	mA			
Short circuit current limit for core LDO	Measured when output is shorted to ground			300	mA			
	Static VCORE voltage Level 0 in active and LPM0 modes Static VCORE voltage Level 1 in active and LPM0 modes Static VCORE voltage Level 1 in active and LPM0 modes Static VCORE voltage Level 0 in low-frequency active and low frequency LPM0 modes Static VCORE voltage Level 1 in low-frequency active and low frequency LPM0 modes Static VCORE voltage Level 0 in LPM3 and LPM4 modes Static VCORE voltage Level 1 in LPM3 and LPM4 modes Static VCORE voltage Level 0 in LPM3.5 mode T启动时的浪涌电流设备Peak current drawn by LDO from DV _{CC} Short circuit current limit for	Static VCORE voltage Level 0 in active and LPM0 modes Static VCORE voltage Level 1 in active and LPM0 modes Static VCORE voltage Level 1 in active and LPM0 modes Static VCORE voltage Level 0 in low-frequency active and low frequency LPM0 modes Static VCORE voltage Level 1 in low-frequency active and low frequency LPM0 modes Static VCORE voltage Level 1 in low-frequency active and low frequency LPM0 modes Static VCORE voltage Level 0 in LPM3 and LPM4 modes Static VCORE voltage Level 0 in LPM3 and LPM4 modes Static VCORE voltage Level 1 in LPM3 and LPM4 modes Static VCORE voltage Level 1 in LPM3 and LPM4 modes Static VCORE voltage Level 0 in LPM3.5 mode T启动时的浪涌电流设备上电200 mA Peak current drawn by LDO from DV _{CC} Short circuit current limit for Measured when output is shorted to ground	Static VCORE voltage Level 0 in active and LPM0 modes Static VCORE voltage Level 1 in active and LPM0 modes Static VCORE voltage Level 1 in active and LPM0 modes Static VCORE voltage Level 0 in low-frequency active and low frequency LPM0 modes Static VCORE voltage Level 0 in low-frequency active and low frequency LPM0 modes Static VCORE voltage Level 1 in low-frequency active and low frequency LPM0 modes Static VCORE voltage Level 1 in low-frequency LPM0 modes Static VCORE voltage Level 0 in LPM3 and LPM4 modes Static VCORE voltage Level 1 in LPM3 and LPM4 modes Static VCORE voltage Level 1 in LPM3 and LPM4 modes Static VCORE voltage Level 1 in LPM3 and LPM4 modes Static VCORE voltage Level 0 in LPM3.5 mode T启动时的浪涌电流设备上电200 mA Measured when output is shorted to ground	S数測试条件MIN TYP MAX UNIT Static VCORE voltage Level 0 in active and LPM0 modes Static VCORE voltage Level 1 in active and LPM0 modes Static VCORE voltage Level 1 in active and LPM0 modes Static VCORE voltage Level 0 in low-frequency active and low frequency LPM0 modes Static VCORE voltage Level 1 in low-frequency active and low frequency LPM0 modes Static VCORE voltage Level 1 in low-frequency active and low frequency LPM0 modes Static VCORE voltage Level 1 in low-frequency LPM0 modes Static VCORE voltage Level 0 in LPM3 and LPM4 modes Static VCORE voltage Level 1 in LPM3 and LPM4 modes Static VCORE voltage Level 1 in LPM3 and LPM4 modes Static VCORE voltage Level 0 in LPM3 and LPM4 modes Device power modes LPM3, LPM4 Static VCORE voltage Level 0 in LPM3.5 mode T启动时的浪涌电流设备上电200 mA Peak current drawn by LDO from DV _{CC} Short circuit current limit for Measured when output is shorted to ground	S数测试条件MIN TYP MAX UNIT Static VCORE voltage Level 0 in active and LPM0 modes Static VCORE voltage Level 1 in active and LPM0 modes Static VCORE voltage Level 1 in active and LPM0 modes Static VCORE voltage Level 0 in low-frequency active and low frequency LPM0 modes Static VCORE voltage Level 0 in low-frequency active and low frequency LPM0 modes Static VCORE voltage Level 1 in low-frequency active and low frequency LPM0 modes Static VCORE voltage Level 1 in low-frequency LPM0 modes Static VCORE voltage Level 0 in LPM3 and LPM4 modes Static VCORE voltage Level 0 in LPM3 and LPM4 modes Static VCORE voltage Level 1 in LPM3 and LPM4 modes Static VCORE voltage Level 0 in LPM3 nod LPM4 modes Static VCORE voltage Level 0 in LPM3.5 mode Device power modes LPM3, LPM4 1.08 1.2 1.32 1.32 1.32 1.32 1.33 1.34 1.4 1.49 V. Static VCORE voltage Level 0 in LPM3 and LPM4 modes Device power modes LPM3, LPM4 1.08 1.27 1.4 1.53 Static VCORE voltage Level 0 in LPM3.5 mode T启动时的浪涌电流设备上电200 mA Peak current drawn by LDO from DV _{CC} Short circuit current limit for Measured when output is shorted to ground			

表5-19列出了DC-DC VCORE稳压器的特性。

表5-19。 VCORE稳压器 (DC-DC) 特性

	参数测试条件MIN TYP MA	X UNIT			•	
DV _{CC-DCDC}	Allowed DV _{CC} range for DC-DC operation	DCDC_FORCE = 1	1.8		3.7	V
V _{DCDC_SO} (1)	DC-DC to LDO switch over voltage	dDV _{CC} /dt = 1 V/ms, DCDC_FORCE = 0	1.8		2.0	V
V _{CORE0-DCDC}	Static VCORE voltage Level 0 in DC-DC high-performance modes	Device power modes AM_DCDC_VCORE0, LPM0_DCDC_VCORE0	1.12	1.2	1.28	V
V _{CORE1-DCDC}	Static VCORE voltage Level 1 in DC-DC high-performance modes	Device power modes AM_DCDC_VCORE1, LPM0_DCDC_VCORE1	1.31	1.4	1.49	V
I _{PEAK-DCDC}	Peak current drawn by DC-DC from DVCC				300	mA
I _{SC-DCDC}	Short circuit current limit for DC-DC	Measured when output is shorted to ground			500	mA

(1) 当DVCC低于此电压时,稳压器内部从DC-DC切换到LDO。

表5-20列出了VCCDET特性。

Table 5-20. PSS, VCCDET

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	参数测试条件MIN TYP						
V _{VCC_VCCDET} -	VCCDET power-down level - trip point with falling V _{CC}	$dDV_{CC}/d_t < 3 V/s^{(1)}$	0.64	1.12	1.55	V	
V _{VCC_VCCDET+}	VCCDET power-up level - trip point with rising V _{CC}	$dDV_{CC}/d_t < 3 V/s^{(1)}$	0.70	1.18	1.59	V	
WICC VCC 1 VCCDET2D#20 CF 100 V							

LVVCC_VCC_hys VCCDET迟滞30 65 100 mV

(1) 用缓慢变化的电源测量VCCDET电平。更快的斜坡可能导致不同的水平。

表5-21列出了SVSMH特性。

Table 5-21. PSS, SVSMH

	参数测试条件MIN TYP	MAX UNIT				
	SVSM _H current consumption, low-power mode	SVSMHOFF = 0, SVSMHLP = 1		200	400	nA
IsvsmH	SVSM _H current consumption, high-performance mode	SVSMHOFF = 0, SVSMHLP = 0		7	10	μΑ
			1.59	1.64	1.71	
		$SVSMHOFF = 0$, $SVSMHLP = 0$, $SVSMHTH = 1$, $DC (dDV_{CC}/dt < 1V/s)$	1.59	1.64	1.71	
		$SVSMHOFF = 0$, $SVSMHLP = 0$, $SVSMHTH = 2$, DC $(dDV_{CC}/dt < 1V/s)$	1.59	1.64	1.71	
M	SVSM _H threshold level during		2.0	2.06	2.12	.,
V _{SVSMH-,HP}	high-performance mode (falling DV _{CC})	$SVSMHOFF = 0$, $SVSMHLP = 0$, $SVSMHTH = 4$, $DC (dDV_{CC}/dt < 1V/s)$	2.2	2.26	2.32	V
			2.4	2.47	2.54	
			2.7	2.79	2.88	
		$SVSMHOFF = 0$, $SVSMHLP = 0$, $SVSMHTH = 7$, DC $(dDV_{CC}/dt < 1V/s)$	2.9	3.0	3.1	
			1.6	1.66	1.71	
			1.6	1.66	1.71	
			1.6	1.66	1.71	
\ /	SVSM _H threshold level; High		2.02	2.07	2.14	V
V _{SVSMH+,HP}	Performance Mode [rising DV _{CC}]		2.22	2.27	2.34	V
			2.42	2.48	2.56	
			2.72	2.8	2.9	
			2.92	3.01	3.12	

Table 5-21. PSS, SVSMH (continued)

	参数测试条件MIN TYP	MAX UNIT				
		$\begin{aligned} & \text{SVSMHOFF} = 0, \text{SVSMHLP} = 1, \text{SVSMHTH} = 0, \\ & \text{DC} \left(\text{dDV}_{\text{CC}} / \text{dt} < 1 \text{V/s} \right) \end{aligned}$	1.55	1.62	1.71	
V _{SVSMH-,LP}		$\begin{aligned} & \text{SVSMHOFF} = 0, \text{SVSMHLP} = 1, \text{SVSMHTH} = 1, \\ & \text{DC} \left(\text{dDV}_{\text{CC}} / \text{dt} < 1 \text{V/s} \right) \end{aligned}$	1.55	1.62	1.71	
		$\label{eq:SVSMHOFF} \begin{split} \text{SVSMHOFF} &= 0, \text{SVSMHLP} = 1, \text{SVSMHTH} = 2, \\ \text{DC} \left(\text{dDV}_{\text{CC}} / \text{dt} < 1 \text{V/s} \right) \end{split}$	1.55	1.62	1.71	V
	SVSM _H threshold level; Low	$\begin{aligned} & \text{SVSMHOFF} = 0, \text{SVSMHLP} = 1, \text{SVSMHTH} = 3, \\ & \text{DC} \left(\text{dDV}_{\text{CC}} / \text{dt} < 1 \text{V/s} \right) \end{aligned}$	2.0	2.09	2.18	
	Power Mode [falling DV _{CC}]	$\begin{aligned} & \text{SVSMHOFF} = 0, \text{SVSMHLP} = 1, \text{SVSMHTH} = 4, \\ & \text{DC} \left(\text{dDV}_{\text{CC}} / \text{dt} < 1 \text{V/s} \right) \end{aligned}$	2.2	2.3	2.4	
		$\begin{aligned} & \text{SVSMHOFF} = 0, \text{SVSMHLP} = 1, \text{SVSMHTH} = 5, \\ & \text{DC} \left(\text{dDV}_{\text{CC}} / \text{dt} < 1 \text{V/s} \right) \end{aligned}$	2.4	2.51	2.62	
		$\begin{aligned} & \text{SVSMHOFF} = 0, \text{SVSMHLP} = 1, \text{SVSMHTH} = 6, \\ & \text{DC} \left(\text{dDV}_{\text{CC}} / \text{dt} < 1 \text{V/s} \right) \end{aligned}$	2.7	2.83	2.94	
		$\begin{aligned} & \text{SVSMHOFF} = 0, \text{SVSMHLP} = 1, \text{SVSMHTH} = 7, \\ & \text{DC} \left(\text{dDV}_{\text{CC}} / \text{dt} < 1 \text{V/s} \right) \end{aligned}$	2.87	3.0	3.13	
V_{SVSMH_hys}	SVSM _H hysteresis			15	30	mV
t _{PD,SVSMH}	SVS _H propagation delay, high-performance mode	SVSMHOFF = 0, SVSMHLP = 0, very fast dV_{DVCC}/dt		3	10	0
	SVS _H propagation delay, low- power mode	SVSMHOFF = 0, SVSMHLP = 1, very fast dV_{DVCC}/dt		25	100	μS
t _(SVSMH)	SVSM _H on or off delay time	SVSMHOFF = 1 \rightarrow 0, SVSMHLP = 0 ⁽¹⁾		17	40	μS

⁽¹⁾如果SVSMH在激活模式下保持禁用并在进入设备的低功耗模式(LPM3, LPM4, LPM3.5或LPM4.5)之前启用,则应注意自启用后已经过了足够的时间在进入器件低功耗模式之前模块的功能,以允许按SVSMH开启或关闭延迟时间规范成功唤醒SVSMH模块。否则,SVSMH可能会跳闸,导致器件复位并从低功耗模式唤醒。

www.ti.com

5.25.5数字I / 0.

表5-22列出了数字输入的特性。

表5-22。数字输入(适用于普通和高驱动I/0)

	参数测试条件VCC MIN T	YP MAX UNIT		•			
VIT +I	E向输入阈值电压		•	0. 99 1. 35 2. 25			V
VIT-负	输入阈值电压		2. 2 V 0. 55 1. 21 3 V 0, 75 1. 65			V	
Vhys输入	电压滞后 (VIT + - VIT-)		2.2 V	0. 32 0. 4 1. 0			V
R _{Pull} I	Pullup or pulldown resistor	For pullup: $V_{IN} = V_{SS}$, For pulldown: $V_{IN} = V_{CC}$		20	30	40	kΩ
C. I	g输入电容,仅数字端口引脚V Input capacitance, port pins shared with analog functions	IN = VSS或VCC 3 pF V _{IN} = V _{SS} or V _{CC}			5		pF
In a	Normal I/O high-impedance input leakage current	See (1)(2)	2.2 V, 3 V			±20	nA
I In a c	High-drive I/O high-impedance input leakage current	See (1)(2)	2.2 V, 3 V			±20	nA
		Ports with interrupt capability and without glitch filter ⁽³⁾	2.2 V, 3 V	20			
	External interrupt timing (external trigger pulse duration to set interrupt flag)	Ports with interrupt capability and with glitch filter but glitch filter disabled (GLTFLT_EN = 0) (3)	2.2 V, 3 V	20			ns
		Ports with interrupt capability and with glitch filter, glitch filter enabled (GLTFTL_EN = 1) (4)	2.2 V, 3 V	0.25		1	μs
t _{RST} I	External reset pulse duration on RSTn pin ⁽⁵⁾		2.2 V, 3 V	1			μs

- (1) 除非早有说明 否则输入漏由流具在VSS或VCC施加到相应引期的情况下测量的
- (2) 数字端口引脚的输入泄漏是单独测量的。选择端口引脚用于输入,并禁用上拉/下拉电阻。
- (3) 每次满足最小中断脉冲持续时间色调时,外部信号设置中断标志。它可以由短于色调的触发信号设置。
- (4) 总是过滤小于MIN值的触发脉冲持续时间,并且总是通过大于MAX值的触发脉冲持续时间。如果持续时间在MIN和MAX值之间,则可以过滤或不过滤触发脉冲。
- (5) 如果RSTn / NMI引脚配置为NMI,则不适用。

表5-23列出了正常驱动数字输出的特性。典型特征图见图5-19至图5-22。

Table 5-23. Digital Outputs, Normal I/Os

	参数测试条件VCC MI	N MAX单元		<u>, </u>	•	
		$I_{\text{(OHmax)}} = -1 \text{ mA}^{(1)}$	2.2 V	$V_{CC} - 0.25$	V_{CC}	_
	LPale Level autout valle ve	$I_{(OHmax)} = -3 \text{ mA}^{(2)}$	2. Z V	V _{CC} - 0.60	V _{CC}	
V _{OH}	High-level output voltage	$I_{(OHmax)} = -2 \text{ mA}^{(1)}$	3.0 V	V _{CC} – 0.25	V _{CC}	V
		$I_{\text{(OHmax)}} = -6 \text{ mA}^{(2)}$	3.0 V	V _{CC} - 0.60	V _{CC}	
		$I_{(OLmax)} = 1 \text{ mA}^{(1)}$	2.2 V	V _{SS}	V _{SS} + 0.25	
	I am laval ambant make as	$I_{(OLmax)} = 3 \text{ mA}^{(2)}$	2.2 1	V _{SS}	V _{SS} + 0.60	V
V _{OL}	Low-level output voltage	$I_{(OLmax)} = 2 \text{ mA}^{(1)}$	3.0 V	V _{SS}	V _{SS} + 0.25	V
		I _(OLmax) = 6 mA ⁽²⁾	3.0 V	V_{SS}	V _{SS} + 0.60	
			1.62 V	24		
$f_{Px.y}$	Port output frequency (with RC load) (3)	VCORE = 1.4 V, $C_L = 20 \text{ pF}$, $R_L^{(4)}$ (5)	2.2 V	24		MHz
			3.0 V 2	24		
	B		1.62 V	40%60%		
$d_{Px.y}$	Port output duty cycle (with RC Load)	VCORE = 1.4 V, $C_L = 20 \text{ pF}$, $R_L^{(4)}$ (5)	2.2 V	40%60%		
			3.0 V			
			1.62 V	24		
f _{Port_CLK}	Clock output frequency (3)	VCORE = 1.4 V, $C_L = 20 \text{ pF}^{(5)}$	2.2 V	24		MHz
			3.0 V	24		
			1.62 V	40%60%		
d_{Port_CLK}	Clock output duty cycle	VCORE = 1.4 V, $C_L = 20 \text{ pF}^{(5)}$	2.2 V			
			3.0 V	45%55%		
	Don't autous via a time a distinct and a		1.62 V	8		
t _{rise,dig}	Port output rise time, digital only port pins	$C_L = 20 pF^{(6)}$	2.2 V		5	ns
			3.0 V			
	Port output fall time digital only		1.62 V	8		
t _{fall,dig}	Port output fall time, digital only port pins	$C_L = 20 pF^{(7)}$	2.2 V		5	ns
			3.0 V	3		
	Port output rise time, port pins		1.62 V	8		
t _{rise,ana}	with shared analog functions	$C_L = 20 pF^{(6)}$	2.2 V		5	ns
			3.0 V	3		
	Port output fall time, nort nine		1.62 V	8		
t _{fall,ana}	Port output fall time, port pins with shared analog functions	$C_L = 20 pF^{(7)}$	2.2 V		5	ns
	<u> </u>		3.0 V	3		

- (1) 所有输出组合的最大总电流I(OHmax)和I(OLmax)不应超过±48 mA,以保持规定的最大电压降。
- (2) 所有输出组合的最大总电流I(OHmax)和I(OLmax)不应超过±100 mA,以保持规定的最大电压降。
- (3) 端口可以输出至小计到押完阻值的输索 它可能支持面高的输索
- (4) 在VCC和VSS之间使用2×R1和R1 =3.2kΩ的电阻分压器作为负载。输出连接到分频器的中心抽头。 CL = 20 - ウオセタリルのかわかり
- (5) 绘山中压在地宁的扫描频索下达到至少20%和80%VCC。
- (6) 在VCC的20%至VCC的80%之间测量。
- (7) 在VCC的80%至VCC的20%之间测量。

www.ti.com

表5-24列出了高驱动数字输出的特性。典型特征图见图5-23至图5-26。

表5-24。数字输出, 高驱动I / 0.

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	参数测试条件VCC MI	N MAX单元			<u>.</u>	
	2 2200 00 0000	$I_{(OHmax)} = -5 \text{ mA}^{(1)}$	2.2 V	V _{CC} - 0.25	V_{CC}	
V	High-level output voltage	$I_{(OHmax)} = -15 \text{ mA}^{(2)}$	2.2 1	$V_{CC} - 0.60$	V_{CC}	V
V_{OH}	riigh-level output voltage	$I_{(OHmax)} = -10 \text{ mA}^{(1)}$	3.0 V	V _{CC} - 0.25	V_{CC}	V
		$I_{(OHmax)} = -20 \text{ mA}^{(2)}$	0.01	V _{CC} - 0.50		
		$I_{(OLmax)} = 5 \text{ mA}^{(1)}$	2.2 V	V_{SS}	$V_{SS} + 0.25$	
V_{OL}	Low-level output voltage	$I_{(OLmax)} = 15 \text{ mA}^{(2)}$	2.2	V _{SS}	$V_{SS} + 0.60$	V
VOL	Low-level output voltage	$I_{(OLmax)} = 10 \text{ mA}^{(1)}$	3.0 V	V _{SS}	$V_{SS} + 0.25$	V
		$I_{(OLmax)} = 20 \text{ mA}^{(2)}$	0.01	V_{SS}	$V_{SS} + 0.50$	
	D		1.62 V	24		
$f_{Px.y}$	Port output frequency (with RC load) (3)	VCORE = 1.4 V, $C_L = 80 \text{ pF}$, $R_L^{(4)}$ (5)	2.2 V	24		MHz
	,		3.0 V 3			
D			1.62 V			
$d_{Px.y}$	Port output duty cycle (with RC Load)	VCORE = 1.4 V, $C_L = 80 \text{ pF}$, $R_L^{(4)}$ (5)	2.2 V	45%55%		
			3.0 V	45%55%		
			1.62 V	24		
f _{Port_CLK}	Clock output frequency (3)	VCORE = 1.4 V, $C_L = 80 \text{ pF}^{(5)}$	2.2 V	24		MHz
			3.0 V 3			
			1.62 V	45%55%		
d_{Port_CLK}	Clock output duty cycle	VCORE = 1.4 V, $C_L = 80 \text{ pF}^{(5)}$	2.2 V	45%55%		
			3.0 V	45%55%		
			1.62 V	8		
t_{rise}	Port output rise time	$C_L = 80 \text{ pF}^{(6)}$	2.2 V		5	ns
			3.0 V	3		
			1.62 V	8		
t_{fall}	Port output fall time	$C_L = 80 pF^{(7)}$	2.2 V		5	ns
			3.0 V	3		

- (1) 所有输出组合的最大总电流I(OHmax)和I(OLmax)不应超过±48 mA,以保持规定的最大电压降。
- (2) 所有输出组合的最大总电流I(OHmax)和I(OLmax)不应超过±100 mA,以保持规定的最大电压降。
- (3) 端口可以输出至小达到抑定限值的频率。 并且可能支持再真的频率
- (4)在VCC和VSS之间使用2×R1和R1 =3.2kΩ的电阻分压器作为负载。输出连接到分频器的中心抽头。 CL = 80
- 75) 绘山中区在北京的扫描频索下达到至少20%和80%VCC。
- (6) 在VCC的20%至VCC的80%之间测量。 (7) 在VCC的80%至VCC的20%之间测量。

表5-25列出了引脚振荡器端口的频率。典型特征图见图5-27和图5-28。

表5-25。引脚振荡器频率,端口Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	0 117			<u> </u>	•	
	参数测试条件VCC	MIN TYP	MAX UNIT			_
4-	Din appillator fraguency		$Px.y, C_L = 10 pF^{(1)}$	3.0 V	1900	kHz
to _{Px.y}	Pin-oscillator frequency		Px.y, $C_L = 20 pF^{(1)}$	3.0 V	1150	kHz

(1) CL是从输出端连接到VSS的外部负载电容,包括所有寄生效应,如PCB走线。

5.25.5.1典型特性,正常驱动I / 0输出,3.0 V和2.2 V

5.25.5.2典型特性, 3.0 V和2.2 V的高驱动I / O输出

5.25.5.3典型特性,引脚振荡器频率

5.25.6 14-Bit ADC

表5-26列出了ADC的电源和输入范围条件。

表5-26。 14位ADC, 电源和输入范围条件

	_参数测试条件VCC M	IIN NOM MAX UNIT				
AV _{CC}	Analog supply voltage	AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V, ADC14PWRMD = 2		1.62	3.7	V
AV _{CC}	Analog supply voltage	AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V, ADC14PWRMD = 0		1.8	3.7	V
V(Ax)	Analog input voltage range (1)	All ADC analog input pins Ax		0	AVCC	V
VCM输力	人共模范围所有AI	DC模拟输入引脚Ax(ADC14D	if = 1	O VREF	VREF	V
I _(ADC14)		f _{ADC14CLK} = 25 MHz, 1 Msps (ADC14PWRMD = 0),	3.0 V	490 640		
	Operating supply current into AVCC and DVCC	ADC14ON = 1, ADC14DIF = 0, ADC14VRSEL = 0xE, REFON = 0, ADC14SHT0x = 0x0, ADC14SHT1x = 0x0	2.2 V	450 580		μA
single-ended mode	terminals (2)	f _{ADC14CLK} = 5 MHz, 200 ksps (ADC14PWRMD = 2),	3.0 V	215 270		μΑ
		ADC14ON = 1, ADC14DIF = 0, ADC14VRSEL = 0xE, REFON = 0, ADC14SHT0x = 0x0, ADC14SHT1x = 0x0	2.2 V	 210 260 		
		f _{ADC14CLK} = 25 MHz, 1 Msps (ADC14PWRMD = 0),	3.0 V	690 875		
I _(ADC14)	Operating supply current into AVCC and DVCC	ADC14ON = 1, ADC14DIF = 1, ADC14VRSEL = 0xE, REFON = 0, ADC14SHT0x = 0x0, ADC14SHT1x = 0x0	2.2 V	 620 785 		
differential mode	terminals (2)	f _{ADC14CLK} = 5 MHz, 200 ksps (ADC14PWRMD = 2),	3.0 V	275 335		μΑ
		ADC14ON = 1, ADC14DIF = 1, ADC14VRSEL = 0xE, REFON = 0, ADC14SHT0x = 0x0, ADC14SHT1x = 0x0	2.2 V	260 320		
C _I	Input capacitance into a single terminal (3)			12	15	pF
			1.8 V至 3.7 V	0.135	1	1.0
RI输入M	JX导通电阻OV≤V(A:	x) ≤AVCC	1.62 V至 <1.8 V	0.15	1.5	kΩ

⁽¹⁾ 植拟输入由压范围必须在所选参考由压范围VR + 至VR-内 才能恭得有效的转换结果。

表5-27列出了ADC的时序参数。

表5-27。 14位ADC, 时序参数

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	9 117		`	,			
参数测试条件VCC MIN TYP MAX UNIT							
f _{ADC14CLK}	ADC clock frequency ⁽¹⁾	ADC14PWRMD = 0	1.8 V to 3.7 V	0.128	25	MHz	
	ADC clock frequency	ADC14PWRMD = 2 1.62 V至3.	7 V 0.128 5.	75		IVITIZ	
		ADC14RES = 11			16		
	Clark avalor for conversion	ADC14RES = 10			14	ovele o	
N _{CONVERT}	Clock cycles for conversion	ADC14RES = 01		,	11	cycles	
		ADC14RES = 00			9		
t _{ADC14ON}	Turnon settling time of ADC	See (2)			1.5	μs	
t _{Sample}	Sampling time (3) (4)	$R_S = 200 \ \Omega, \ C_{pext} = 10 \ pF, \ R_I = 1 \ k\Omega, \ C_I = 15 \ pF, \ C_{pint} = 5 \ pF$		0.215		μs	

- (1) MODOSC可用于1 Mone. SVSOSC可用于ADC的200 kone采样率操作
- (2)条件是在tADC140N小于±1 LSB之后转换中的错误开始。参考和输入信号已经确定。
- (3) 采样时间应至少为4× (1 / fADC14CLK)。 (4) tsample≥ (n + 1) ×ln (2) ×[(RS + RI) ×CI + RS× (Cpext + Cpint)], 其中n = ADC分辨率= 14, RS =外部源电阻, Cpext =外部寄生电容。

表5-28列出了ADC的线性度参数。

表5-28。 14位ADC, 线性度参数(1)(2)

	参数测试条件MIN TY	YP_MAX_UNIT			
Resoluti	ion		14		bits
EI积分	分线性误差 (INL) ±2.3	3 LSB			
E _D	Differential linearity error (DNL)		-0.99	1	LSB
_	Offset error	ADC14VRSEL = 0xE, 0xF	±0.2	±1	\/
Eo	Offset error	ADC14VRSEL = 0x1	±1.2	±2	mV
		ADC14VRSEL = 0xE	±2	±4	
E _G	Gain error	ADC14VRSEL = 0xF	±20	±60	LSB
		ADC14VRSEL = 0x1	±50	±180	
		ADC14VRSEL = 0xE	±4	±15	
E _T	Total unadjusted error	ADC14VRSEL = 0xF	±22	±62	LSB
		ADC14VRSEL = 0x1	±55	±185	

⁽¹⁾ 为满足规定的精度,必须使用1.45 V的最小参考电压。低至1.2 V的参考电压可用于1 Mene 平 样 索 同 时 降 任 結 庄 亜 ポ

⁽²⁾ 对于ADC14VRSEL = 0xE, 应将VeREF-引脚连接到板载地。

表5-29列出了ADC的动态参数。

表5-29。 14位ADC, 动态参数(1)

	参数测试条件MIN TYP	MAX UNIT				
		1 Msps, ADC14DIF = 0, ADC14VRSEL = 0xE, 2.5-V reference, 20-kHz input sine, LDO based operation	71	73		
SINAD ⁽²⁾	Signal-to-noise and distortion	1 Msps, ADC14DIF = 0, ADC14VRSEL = 0xE, 2.5-V reference, 20-kHz input sine, DC-DC based operation	62	70		dB
		1 Msps, ADC14DIF = 1, ADC14VRSEL = 0xE, 2.5-V reference, 20-kHz input sine	79	81		
		1 Msps, ADC14DIF = 0, ADC14VRSEL = 0xE, 2.5-V reference, 20-kHz input sine, LDO based operation	,			
ENOB ⁽²⁾	Effective number of bits	1 Msps, ADC14DIF = 0, ADC14VRSEL = 0xE, 2.5-V reference, 20-kHz input sine, DC-DC based operation	10	11.3		bit
		1 Msps, ADC14DIF = 1, ADC14VRSEL = 0xE, 2.5-V reference, 20-kHz input sine	12.8	13.2		
CMRR_DC	Common-mode rejection ratio, DC	共模输入信号在DC时为0至VREF pp,	ADC14DI	F = 1	70 8	5 dB
CMRR_AC	Common-mode rejection ratio, AC	共模输入信号= 0至VREF pp, 1 MHz,	ADC14DI	F = 1	55 6	5 dB
PSRR DC	Power supply rejection ratio,	$AV_{CC} = AV_{CC \text{ (min)}} \text{ to } AV_{CC \text{(max)}},$ ADC14DIF = 0, ADC14VRSEL = 0xE		1	2.5	mV/V
PSRR_DC	DC	$AV_{CC} = AV_{CC \text{ (min)}} \text{ to } AV_{CC \text{(max)}},$ ADC14DIF = 1, ADC14VRSEL = 0xE		50	150	μV/V
PSRR AC	Power supply rejection ratio,	$dAV_{CC} = 0.1 \text{ V at 1 kHz},$ ADC14DIF = 0, $ADC14VRSEL = 0xE$		1		mV/V
FORK_AC	AC	dAV _{CC} = 0.1 V at 1 kHz, ADC14DIF = 1, ADC14VRSEL = 0xE		50		μV/V

⁽¹⁾ 对于ADC14VRSFI = OvF. 应坞VeREF-引脚连接到板载地。 (2) 来自HFXT振荡器的ADC时钟。

表5-30列出了温度传感器和内置V1 / 2的特性。

表5-30。 14位ADC, 温度传感器和内置V1 / 2

	3 11 7 3					
	参数测试条件VCC MIN					
V _{SENSOR}	See ⁽¹⁾ ⁽²⁾	ADC14ON = 1, ADC14TCMAP = 1, $T_A = 0$ °C		685		mV
TC _{SENSOR}	See (2)	ADC14ON = 1, ADC14TCMAP = 1		1.9		mV/°C
t _{SENSOR} (sample)	Sample time required if ADCTCMAP = 1 and channel (MAX – 1) is selected (3)	ADC14ON = 1, ADC14TCMAP = 1, Error of conversion result ≤ 1 LSB	5			μs
V _{1/2}	AVCC voltage divider for ADC14BATMAP = 1 on MAX input channel	ADC14ON = 1, ADC14BATMAP = 1	48%	50%	52%	
t _{V 1/2} (sample)	Sample time required if ADC14BATMAP = 1 and channel MAX is selected (4)	ADC14ON = 1, ADC14BMAP = 1	1			μs

- (1)温度传感器偏移可高达±35°C。 TI建议采用单点校准,以最大限度地减少内置温度传感器的失调误差。
- (2) 对于每个可用的参考电压电平,TLV结构包含30°C±3°C和85°C±3°C的校准值。传感器电压可以计算为VSENSE = TCSENSOR×(温度,°C) + VSENSOR, 其中可以根据校准值计算TCSENSOR和VSENSOR以获得更高的精度。
- (3) 桂咸哭的曲刑竿効阳拉为250kO 所需的平样时间句坛佳咸哭开户时间tSENSOR (on)。
- (4) 导通时间tV1 / 2 (on) 包含在采样时间tV 1/2 (样本) 中。不需要按时额外。

图5-29。典型温度传感器电压

表5-31列出了ADC内部参考缓冲器的特性。

表5-31。 14位ADC, 内部参考缓冲器

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	参数测试条件VCC M	IN TYP MAX UNIT				
		ADC ON, REFOUT = 0, ADC14PWRMD = 0, REFVSEL = {0, 1, 3}		600	800	
I _{REF+}	Operating supply current into AVCC terminal (1)	ADC ON, REFOUT = 0, ADC14PWRMD = 2, REFVSEL = {0, 1, 3}	3 V	200	300	μΑ
		ADC ON, REFOUT = 1, ADC14PWRMD = 2, REFVSEL = {0, 1, 3}		650	850	
t _{on}	Turnon time		3 V		5	μs

(1) 内部参考电流通过端子AVCC提供。

表5-32列出了ADC外部参考的特性。

表5-32。 14位ADC, 外部参考

	参数测试条件MIN TYP MA	X UNIT			
V_{eREF+}	Positive external reference voltage input ⁽¹⁾		1.45	AV _{CC}	V
V_{eREF}	Negative external reference voltage input			0	V
(V _{eREF+} - V _{eREF-})	Differential external reference voltage input ⁽¹⁾		1.45	AV _{CC}	V
IVeREF + IVeREF-	Static input current in single-ended	$1.45 \text{ V} \le \text{V}_{\text{eREF+}} \le \text{V}_{\text{AVCC}}, \text{V}_{\text{eREF-}} = 0 \text{ V}, \\ \text{f}_{\text{ADC14CLK}} = 25 \text{ MHz}, \text{ADC14SHT0x} = 0x1, \\ \text{ADC14SHT1x} = 0x1, \text{ADC14DIF} = 0$		±75	
	input mode	$1.45 \text{ V} \le \text{V}_{\text{eREF+}} \le \text{V}_{\text{AVCC}}, \text{V}_{\text{eREF-}} = 0 \text{ V}, \\ \text{f}_{\text{ADC14CLK}} = 5 \text{ MHz}, \text{ADC14SHT0x} = 0x1, \\ \text{ADC14SHT1x} = 0x1, \text{ADC14DIF} = 0$		±15	μΑ
IVeREF + IVeREF-	差分输入模式下的静态输入电流	1.45 V ≤ V _{eREF+} ≤ V _{AVCC} , V _{eREF-} = 0 V, f _{ADC14CLK} = 25 MHz, ADC14SHT0x = 0x1, ADC14SHT1x = 0x1, ADC14DIF = 1		±150	
		1.45 V ≤ V _{eREF+} ≤ V _{AVCC} , V _{eREF-} = 0 V f _{ADC14CLK} = 5 MHz, ADC14SHT0x = 0x1, ADC14SHT1x = 0x1, ADC14DIF = 1		±30	μА
C _{VeREF+}	Capacitance at VeREF+ terminal	See (2)	5		μF

- (1) 对于1 Msps采样率,可以应用低至1.2 V的较低参考电压,同时降低线性度参数的精度要求。
- (2) 如果用于ADC14,则应将两个去耦电容(5μF和50 nF)连接到VeREF
- +端子,以去耦外部参考源所需的动态电流。另请参阅MSP432P4xx SimpleLink™微控制器技术参考手册。

5.25.6.1 ADC的典型特性

typical characteristics at 3 V, 25°C, and 1-Msps sampling rate of ADC (unless otherwise specified)

5. 25. 7 REF_A

表5-33列出了REF A内置参考的特性。

表5-33。 REF_A, 内置参考(LDO操作)

	_参数测试条件VCC M	IN TYP MAX UNIT		- ,				
		REFVSEL = {0}表示1.2 V, REFON = 1	1.62 V	$1.2 \pm 1\%$			-	
V_{REF+}	Positive built-in reference voltage output	V REFVSEL = {1}表示1.45 V, REFON						
	voltage output		REFVSEL = {3}表示2.5 V, REFON = 1 2.8 V 2.5±1%					
	AVCC minimum voltage,	REFVSEL = {0} for 1.2 V		1.62				
AV _{CC(min)}	Positive built-in reference	REFVSEL = {1} for 1.45 V		1.75			V	
, ,	active	REFVSEL = {3} for 2.5 V		2.8				
I _{REF+}	Operating supply current into AVCC terminal (1)	REFON = 1	3 V		15	20	μΑ	
I _{O(VREF+)}	VREF maximum load current, VREF+ terminal	REFVSEL = $\{0, 1, 3\}$, AV _{CC} = AV _{CC} (min) for each reference level, REFON = REFOUT = 1		-1000		+10	μA	
I _{L(VREF+)}	Load-current regulation, VREF+ terminal	REFVSEL = {0, 1, 3}, I(VREF+) = +10 μ A or -1000 μ A, AV _{CC} = AV _{CC} (min) for each reference level, REFON = REFOUT = 1				2500	μV/mA	
C _{VREF±}	Capacitance at VREF+, VREF- terminals	REFON = REFOUT = 1		0		100	pF	
PSRR_DC REFOUT0	Power supply rejection ratio (DC) after ADC buffer	每个参考电平AVCC = AVCC (min), REFVSEL = {0,1,3}, REFON = 1, REFOUT = 0			50	350	μV/V	
PSRR_DC REFOUT1	Power supply rejection ratio (DC) after ADC buffer	每个参考电平AVCC = AVCC (min), REFVSEL = {0,1,3}, REFON = 1, REFOUT = 1			50	250	μV/V	
PSRR_AC REFOUT0	Power supply rejection ratio (AC) after ADC buffer	每个参考电平AVCC = AVCC (min), 1 kHz时dAVCC = 0.1 V, REFVSEL = {0,1,3}, REFON = 1, REFOUT = 0			2	10	mV/V	
PSRR_AC REFOUT1	Power supply rejection ratio (AC) after ADC buffer	每个参考电平AVCC = AVCC (min), 1 kHz时dAVCC = 0.1 V, REFVSEL = {0,1,3}, REFON = 1, REFOUT = 1			2	5	mV/V	
TC _{REF+} (2)	Temperature coefficient of built-in reference	REFVSEL = {0, 1, 3}, REFON = 1, T _A = -40°C to 85°C			10	25	ppm/°	
t _{SETTLE}	Settling time of reference voltage (3)	$ \begin{array}{l} AV_{CC} = AV_{CC} \ (min) \ to \ AV_{CC(max)} \\ REFVSEL = \{0, \ 1, \ 3\}, \ REFON = 0 \to 1 \end{array} $			70	80	μs	

⁽¹⁾ 内部参考由流由端子AVCC提供 (2) 使用盒法计算: (MAX (-40° C至85° C) - MIN (-40° C至85° C) / MIN (-40° C至85° C) / (85° C - (- 40° C))。 (3) 条件是在tSETTLE小于±0.5 LSB后ADC转换中的错误开始。

5.25.8 Comparator_E

表5-34列出了比较器的特性。

Table 5-34. Comparator_E

	多数测试条件VCC』 Supply voltage	MIN TYP MAX UNIT		1.62		3.7	V	
	1177	CEPWRMD = 00, CEON = 1, CERSx = 00 (fast)	2.2 V, 3 V		10	15	<u> </u>	
ı	Comparator operating supply current into AVCC, Excludes	CEPWRMD = 01, CEON = 1, CERSx = 00 (medium)	2.2 V, 3 V		8	10		
I _{AVCC_COMP}	reference resistor ladder	CEPWRMD = 10, CEON = 1, CERSx = 00 (slow), T _A = 30°C	2.2 V, 3 V			0.5	μΑ	
		CEPWRMD = 10, CEON = 1, CERSx = 00 (slow), T _A = 85°C	2.2 V, 3 V			0.5		
	Quiescent current of resistor ladder into	CEREFACC = 0, CEREFLx = 01, CERSx = 10, REFON = 0, CEON = 0	2.2 V, 3 V		25	35		
I _{AVCC_REF}	AVCC, Includes REF_A module current	CEREFACC = 1, CEREFLx = 01, CERSx = 10, REFON = 0, CEON = 0	2.2 V, 3 V		10	15	μA	
		CERSx = 11, CEREFLx = 01, CEREFACC = 0	1.62 V	1.17	1.2	1.23		
		CERSx = 11, CEREFLx = 10, CEREFACC = 0	2.2 V	1.95	2.0	2.05		
V	Reference voltage level	CERSx = 11, CEREFLx = 11, CEREFACC = 0	2.7 V	2.40	2.5	2.60	V	
V_{REF}		CERSx = 11, CEREFLx = 01, CEREFACC = 1	1.62 V	1.15	1.2	1.23		
		CERSx = 11, CEREFLx = 10, CEREFACC = 1	2.2 V	1.92	2.0	2.05		
		CERSx = 11, CEREFLx = 11, CEREFACC = 1	2.7 V	2.4	2.5	2.6		
V _{IC}	Common mode input range			0		VCC-1	V	
		CEPWRMD = 00		-10		+10		
V _{OFFSET}	Input offset voltage	CEPWRMD = 01		-20		+20	mV	
V _{OFFSET}		CEPWRMD = 10		-20		+20		
<u></u>	Innut conscitones	CEPWRMD = 00 or CEPWRMD = 01			8		nE.	
C _{IN}	Input capacitance	CEPWRMD = 10			8		pF	
D	Series input	On (switch closed)			2	4	kΩ	
R _{SIN}	resistance	Off (switch open)		50			МΩ	
		CEPWRMD = 00, CEF = 0, Overdrive ≥ 20 mV			330	550	ne	
t _{PD}	Propagation delay, response time	CEPWRMD = 01, CEF = 0, Overdrive ≥ 20 mV			410	650	ns	
		CEPWRMD = 10, CEF = 0, Overdrive ≥ 20 mV				30	μs	
		CEPWRMD = 00 or 01, CEF = 1, Overdrive ≥ 20 mV, CEFDLY = 00			0.6	0.9		
•	Propagation delay	CEPWRMD = 00 or 01, CEF = 1, Overdrive ≥ 20 mV, CEFDLY = 01			1.1	1.6	1.0	
^t PD,filter	with filter active	CEPWRMD = 00 or 01, CEF = 1, Overdrive ≥ 20 mV, CEFDLY = 10			2	3	μs	
		CEPWRMD = 00 or 01, CEF = 1, Overdrive ≥ 20 mV, CEFDLY = 11			4	6		

Table 5-34. Comparator_E (continued)

参	\$数测试条件VCC	MIN TYP MAX UNIT			
		CEON = 0 to 1, CEPWRMD = 00, VIN+, VIN- from pins, Overdrive ≥ 20 mV	0.8	1	
t _{EN_CMP}	Comparator enable time	CEON = 0 to 1, CEPWRMD = 01, VIN+, VIN- from pins, Overdrive ≥ 20 mV	0.9	1.2	μs
		CEON = 0 to 1, CEPWRMD = 10, VIN+, VIN- from pins, Overdrive ≥ 20 mV	15	25	
		CEON = 0 to 1, CEPWRMD = 00, CEREFLx = 10, CERSx = 11, REFON = 0, Overdrive ≥ 20 mV	90	120	
^t en_CMP_VREF		CEON = 0 to 1, CEPWRMD = 01, CEREFLx = 10, CERSx = 11, REFON = 0, Overdrive ≥ 20 mV	90	120	
	Comparator and reference ladder and reference voltage enable time	CEON = 0 to 1, CEPWRMD = 10, CEREFLx = 10, CERSx = 11, REFON = 0, Overdrive ≥ 20 mV	90	120	
		CEON = 0 to 1, CEPWRMD = 00, CEREFLx = 10, CERSx = 10, REFON = 0, CEREF0/1 = 0x0F, Overdrive ≥ 20 mV	90	180	μs
		CEON = 0 to 1, CEPWRMD = 01, CEREFLx = 10, CERSx = 10, REFON = 0, CEREF0/1 = 0x0F, Overdrive ≥ 20 mV	90	180	
		CEON = 0 to 1, CEPWRMD = 10, CEREFLx = 10, CERSx = 10, REFON = 0, CEREF0/1 = 0x0F, Overdrive ≥ 20 mV	90	180	
		CEON = 0 to 1, CEPWRMD = 00, CEREFLx = 10, CERSx = 10, REFON = 1, CEREF0/1 = 0x0F, Overdrive ≥ 20 mV	1.5	2	
t _{EN_CMP_RL}	Comparator and reference ladder enable time	CEON = 0 to 1, CEPWRMD = 01, CEREFLx = 10, CERSx = 10, REFON = 1, CEREF0/1 = 0x0F, Overdrive ≥ 20 mV	1.5	2	μs
		CEON = 0 to 1, CEPWRMD = 10, CEREFLx = 10, CERSx = 10, REFON = 1, CEREF0/1 = 0x0F, Overdrive ≥ 20 mV	15	25	
V _{CMP_REF}	Reference voltage for a given tap	VIN = reference into resistor ladder, n = 0 to 31	VIN x VIN x (n + 0.9) (n + 1) / 32 / 32	VIN × (n + 1.1) / 32	V

www.ti.com

5.25.9 eUSCI

表5-35列出了UART模式下eUSCI支持的时钟频率。

表5-35。 eUSCI (UART模式) 时钟频率

	/ • • • • • • • • • • • • • • • • • • •	() ()	.4 (1/2/1		
	参数测试条件VCORE VCC	MIN MAX单元			
f _{eUSCI}	eUSCI input clock frequency	Internal: SMCLK, External: UCLK, Duty cycle = 50% ±10%	1.2 V 12 1.4 V 24	1	MHz
f _{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud)		1.2 V 5 1.4 V 7	•	MHz

表5-36列出了UART模式下eUSCI的特性。

表5-36。 eUSCI (UART模式) 开关特性

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	3 11 7		9	•	`	,		
	参数测试条件VC	C MIN TYP M	IAX UNIT					
t _t U/	2 1711 1 11111	UCGLI ⁻				5	20	
	UART receive deglitch time ⁽¹⁾	UCGLI ⁻	Γx = 1			20	60	
		UCGLI ⁻	Tx = 2			30	100	ns
		UCGLI ⁻	Tx = 3			50	150	

(1)抑制短于UART接收去毛刺时间的UART接收输入(UCxRX)上的脉冲。因此,选定的抗尖峰脉冲时间可以限制最大可用波特率。为确保正确识别脉冲,其持续时间应超过抗尖峰脉冲时间的最大规格。

表5-37列出了SPI主模式下eUSCI支持的时钟频率。

表5-37。 eUSCI (SPI主模式) 时钟频率

参数条件VCC MIN TYP MAX UNIT							
			VCORE = 1.2 V		12	MHz	
T _{eUSCI}	eUSCI input clock frequency	Duty cycle = 50% ±10%	VCORE = 1.4 V		24	IVI⊓∠	

表5-38列出了SPI主模式下eUSCI的特性。

Table 5-38. eUSCI (SPI Master Mode)

	interface ranges of supply voltage and	- operating need an temperat	(
	参数测试条件VCORE VCC	MIN MAX单元	1	1		_
t _{STE,LEAD}	STE lead time, STE active to clock	UCSTEM = 1, UCMODEx = 01 or 10			1	UCxCLK
t _{STE,LAG}	STE lag time, Last clock to STE inactive	UCSTEM = 1, UCMODEx = 01 or 10			1	cycles
t _{STE,ACC}	STE access time, STE active to SIMO data out	UCSTEM = 0, UCMODEx = 01 or 10		1.62 V 3.7 V		ns
	OTE disable than OTE in action to OIMO				1	
t _{STE,DIS}	STE disable time, STE inactive to SIMO high impedance	UCSTEM = 0, UCMODEx = 01 or 10		1.62 V 3.7 V	20 15	ns
	COM instant data action time		1.2 V	1.62 V 4	5	
t _{SU,MI}	SOMI input data setup time		1.4 V	3.7 V 30	•	ns
t	SOMI input data hold time			1.62 V	0	ns
t _{HD,MI}	SOM input data noid time			3.7 V	0	113
	SIMO output data valid time ⁽²⁾	UCLK edge to SIMO valid,		1.62 V	14	
t _{VALID,MO}	SIMO output data valid time	C _L = 20 pF	3.7 V 7			ns
	SIMO autant data hald time (3)	C 20 pF		1.62 V	0	
t _{HD,MO}	SIMO output data hold time ⁽³⁾	$C_L = 20 \text{ pF}$		3.7 V	0	ns

⁽¹⁾ fUCxCLK = 1 / (2tL0 / HI) , tL0 / HI = MAX (tVALID, MO (eUSCI) + tSU, SI (从机) , tSU, MI (eUSCI) + tVALID, SO (从机)) 对于从机参数tSU, SI (从站) 和tVALID, SO (从站) , 请参见所连接从站的SPI参数。

⁽²⁾指定在输出改变UCLK时钟沿之后将下一个有效数据驱动到SIMO输出的时间。请参见图5-69和图5-70中的时序图。

⁽³⁾指定输出改变UCLK时钟沿后SIMO输出上的数据有效的时间。负值表示在UCLK上观察到输出更改时钟沿之前,SIMO输出上的数据可能无效。请参见图569和图5-70中的时序图。

Figure 5-69. SPI Master Mode, CKPH = 0

Figure 5-70. SPI Master Mode, CKPH = 1

表5-39列出了SPI从模式下eUSCI的特性。

Table 5-39. eUSCI (SPI Slave Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)

	to the part to the test of the	· · · · · · · · · · · · · · · · · · ·		
	参数测试条件VCC MIN MAX	単元	1	
t _{STE,LEAD}	STE lead time, STE active to clock		1. 62 V 45 3. 7 V 20	ns
t _{STE,LAG}	STE lag time, Last clock to STE inactive		1.62 V 1 3.7 V 1	ns
t _{STE,ACC}	STE access time, STE active to SOMI data out		1.62 V 25 3.7 V 15	ns
t _{STE,DIS}	STE disable time, STE inactive to SOMI high impedance		1.62 V 18 3.7 V 14	ns
t _{SU,SI}	SIMO input data setup time		1.62 V 3 3.7 V 2	ns
t _{HD,SI}	SIMO input data hold time		1.62 V 0 3.7 V 0	ns
t _{VALID,SO}	SOMI output data valid time ⁽²⁾	UCLK edge to SOMI valid, C _L = 20 pF	1.62 V 35 3.7 V 18	ns
t _{HD,SO}	SOMI output data hold time ⁽³⁾	C _L = 20 pF	1.62 V 10 3.7 V 6	ns

⁽¹⁾ fUCxCLK = 1 / (2tLO / HI) , tLO /HI≥MAX (tVALID, MO (主站) + tSU, SI (eUSCI) , tSU, MI (主站) + tVALID, SO (eUSCI)) 用于主站参数tSU, MI (主站) 和tVALID, MO (主站) , 请参见附加主站的SPI参数。

(3) 指定输出改变UCLK时钟沿后SOMI输出上的数据有效的时间。请参见图5-71和图5-72中的时序图。

Figure 5-71. SPI Slave Mode, CKPH = 0

⁽²⁾ 指定输出更改UCLK时钟沿后,将下一个有效数据驱动到SOMI输出的时间。请参见图5-71和图5-72中的时序图。

Figure 5-72. SPI Slave Mode, CKPH = 1

表5-40列出了I2C模式下eUSCI支持的时钟频率。

表5-40。 eUSCI(I2C模式)时钟频率

	参数测试条件VCORE VCC MIN MAX单元								
f _{eUSCI}	eUSCI input clock frequency	Internal: SMCLK, External: UCLK, Duty cycle = 50% ±10%	1. 2 V 2	24		MHz			
f _{SCL}	SCL clock frequency				1	MHz			

表5-41列出了I2C模式下eUSCI的特性。

Table 5-41. eUSCI (I²C Mode)

	参数测试条件MIN TYP MAX UN	NIT				
		f _{SCL} = 100 kHz	5.5			
t _{HD,STA}	Hold time (repeated) START	$f_{SCL} = 400 \text{ kHz}$	1.5		μs	
		f _{SCL} = 1 MHz	0.6			
		$f_{SCL} = 100 \text{ kHz}$	5.5			
t _{SU,STA}	Setup time for a repeated START	$f_{SCL} = 400 \text{ kHz}$	1.5		μs	
		f _{SCL} = 1 MHz	0.6			
		$f_{SCL} = 100 \text{ kHz}$	80			
t _{HD,DAT}	Data hold time	$f_{SCL} = 400 \text{ kHz}$	80		ns	
		f _{SCL} = 1 MHz	80			
		$f_{SCL} = 100 \text{ kHz}$	5.5			
t _{SU,DAT}	Data setup time	$f_{SCL} = 400 \text{ kHz}$	1.5		μs	
		f _{SCL} = 1 MHz	0.6			
		$f_{SCL} = 100 \text{ kHz}$	5.5			
t _{SU,STO}	Setup time for STOP	$f_{SCL} = 400 \text{ kHz}$	1.5		μs	
		f _{SCL} = 1 MHz	0.6			
		UCGLITx = 0	50	120		
+	Pulse duration of spikes suppressed by input filter	UCGLITx = 1	25	60	ns	
t _{SP}	ruise duration of spikes suppressed by input litter	UCGLITx = 2	10	35	115	
		UCGLITx = 3	5	20		
		UCCLTOx = 1	27	•		
t _{TIMEOUT}	Clock low time-out	UCCLTOx = 2	30	1	ms	
		UCCLTOx = 3	33	33		

Figure 5-73. I²C Mode Timing

5.25.10定时器

表5-42列出了Timer A的特性。

Table 5-42. Timer_A

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	参数测试条件VCORE V	CC MIN MAX单元				
f _{TA} Timer_A	The same A format all all for any and	Internal: SMCLK	1.2 V 1	2		N 41 1
	Timer_A input clock frequency	External: TACLK Duty cycle = 50% ±10%	1.4 V 2	4	T:	MHz
t _{TA,cap}	Timer_A capture timing	All capture inputs, Minimum pulse duration required for capture			20	ns

表5-43列出了Timer32的特性。

Table 5-43. Timer32

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	参数测试条件VCORE VC	CC MIN	MAX单元				
f _{T32} Timer32 operating clock frequency ⁽¹⁾		, , _	1.2 V		24	NAL 1	
	Timer32 operating clock frequency			1.4 V 4	8		MHz

(1) Timer32与Cortex-M4 CPU在同一时钟运行。

5.25.11记忆

表5-44列出了闪存的一般特性。

Table 5-44. Flash Memory

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

over recommended ranges or eappry vertage and operating new air temperature (armose entermed news)				
PARAMETER	MIN	MAX	UNIT	
DVCCPGM / ERS用于编程或擦除的电源电压1.62 3.7 V.	•			
IPGM / ERS, PEAK编程期间来自DVCC的峰值电源电流或擦除10 mA				
N _{Endurance} Program or erase endurance ⁽¹⁾	20000		cycles	
t _{Retention} Data retention duration	20		years	

(1) 位的编程或擦除周期定义为位从1变为0到1的位。

表5-45列出了使用MSP432外设驱动程序库的闪存操作的特性。

表5-45。使用MSP432外设驱动程序库的闪存操作(1)

	参数测试条件MIN TYP	MAX UNIT	<u> </u>		
t _{PGM_API, Word}	Program time for 32-bit data using ROM_FlashCtl_programMemory() API	VCORE = 1.4 V, MCLK = 48 MHz	40	275	μs
t _{PGM_API} , Sector	使用ROM_F1ashCt1_programMemory()A PI编程4KB数据(一个扇区)的时间	VCORE = 1.4 V, MCLK = 48 MHz	4.5	71	ms
	Contra conse timo cusino	VCORE = 1.4 V, MCLK = 48 MHz, Number of erase or program cycles <1k	9	309 ⁽²⁾	
ters_API, Sector Sector erase time using ROM_FlashCtl_eraseSector() API	VCORE = 1.4 V, MCLK = 48 MHz, Number of erase or program cycles >1k and <20k	9	3035 ⁽²⁾	ms	
	Mass erase time using	VCORE = 1.4 V, MCLK = 48 MHz, Number of erase or program cycles <1k, MSP432P401R devices with 256KB of flash memory	12	19800 ⁽³⁾	ms
[†] ERS_API, Mass-Erase	ROM_FlashCtl_performMassErase() API	VCORE = 1.4 V, MCLK = 48 MHz, Number of erase or program cycles <1k, MSP432P401M devices with 128KB of flash memory	12	9900 ⁽³⁾	ms
I _{AVGPGM_} API	Average supply current from DVCC during program using ROM_FlashCtl_programMemory() API	VCORE = 1.2 V, MCLK = 3 MHz	5	7	mA
I _{AVGERS_API}	Average supply current from DVCC during erase using ROM_FlashCtl_eraseSector() API	VCORE = 1.2 V, MCLK = 3 MHz	2	3	mA

⁽¹⁾从ROM执行的MSP439从设驱动程序库

⁽⁹⁾ 细次上通过物曲刑估乘门MMAV CDC本计管柱空熔胶式程序耐力性的是土估

⁽³⁾ 理论上,通过将特定擦除或程序耐久性的典型值乘以NMAX ERS和闪存主存储器中的扇区总数来计算最大值。

表5-46列出了闪存独立操作的特性。

Table 5-46. Flash Stand-Alone Operations

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	参数测试条件MIN TYP	MAX UNIT		
	1 Togram time for one 32 bit data daing	VER_PRE = 0, VER_PST = 1	40	
t _{PGM} , Immediate		VER_PRE = 1, VER_PST = 1	60	μs
, Program time for one 128-bit word using full		VER_PRE = 0, VER_PST = 1	40	
t _{PGM, Full-word} word write mode	word write mode	VER_PRE = 1, VER_PST = 1	60	μs
t _{PGM, Burst} Program time for 4×128-bit burst us write mode	Program time for 4×128-bit burst using burst	AUTO_PRE = 0, AUTO_PST = 1	65	
	write mode	AUTO_PRE = 1, AUTO_PST = 1	85	μs
t _{ERS}	Time for sector erase or mass erase		9	ms
N _{MAX_PGM}	Maximum number of pulses to complete program operation		5	
N	Maximum number of pulses to complete erase operation	Number of erase or program cycles <1k	34	
INMAX_ERS		Number of erase or program cycles >1k and <20k	334	

表5-47列出了SRAM的特性。

Table 5-47. SRAM

ever recommended ranges of supply veriage and operating need	an temperature (unicee etirei	mee netea,		
参数测试条件MIN TYP MAI	X UNIT			
TODAY PURTILL A CRAY 1 1 44 4 75 W FC	VCORE = 1.2 V	100	3500	nΛ
ISRAM_EN启用时,一个SRAM bank的电流消耗	VCORE = 1.4 V	300	5500	nA
TODAY DDW/D STHILL A CDAY 1 1444 VZ WYY	VCORE = 1.2 V	30	1250	~ ^
ISRAM_RET保留时的一个SRAM bank的电流消耗	VCORE = 1.4 V	35	1200	nA
t _{SRAM_EN, one} Time taken to enable one SRAM bank		4	5	μs
t _{SRAM_DIS, one} Time taken to disable one SRAM bank		4	5	μs
t _{SRAM_EN, all} Time taken to enable all SRAM banks except Bank 0		7	8	μs
t _{SRAM_DIS, all} Time taken to disable all SRAM banks except Bank 0		4	5	μs

5.25.12仿真和调试

表5-48列出了JTAG接口的特性。

Table 5-48. JTAG

	PARAMETER	MIN	TYP	MAX	UNIT
f _{TCK}	TCK clock frequency	0		10	MHz
t _{TCK}	TCK clock period	100			ns
t _{TCK_LOW}	TCK clock low time		t _{TCK} /2		ns
t _{TCK_HIGH}	TCK clock high time		t _{TCK} /2		ns
t _{TCK_RISE}	TCK rise time	0		10	ns
t _{TCK_FALL}	TCK fall time	0		10	ns
t _{TMS_SU}	TMS setup time to TCK rise	30			ns
t _{TMS_HLD}	TMS hold time from TCK rise	9			ns
t _{TDI_SU}	TDI setup time to TCK rise	20			ns
t _{TDI_HLD}	TDI hold time from TCK rise	7			ns
t _{TDO_ZDV}	TCK fall to data valid from high impedance		9	44	ns
t _{TDO_DV}	TCK fall to data valid from data valid		9	44	ns
t _{TDO_DVZ}	TCK fall to high impedance from data valid		8	38	ns

www.ti.com

6详细说明

6.1概述

MSP432P401x微控制器是TI MSP430低功耗DNA, 高级混合信号功能以及ARM 32位Cortex-M4 RISC引擎处理能力的理想组合。微控制器附带了捆绑的驱动程序库,并与ARM生态系统的标准组件兼容。

6.2处理器和执行功能

Cortex-M4处理器提供高性能低成本平台,可满足最小内存实现,减少引脚数和低功耗的系统要求,同时提供出色的计算性能和对中断的出色系统响应。

Thumb®-2混合16位和32位处理器指令集可提供32位ARM内核所需的高性能,其内存尺寸通常与8位和16位器件相关(通常在微控制器级应用程序所需的几千字节内存范围。

在MSP432P401x MCU中, Cortex-M4处理器可以运行高达48 MHz, 为目标应用类别提供高性能,同时保持超低有源功耗。

6.2.1浮点单元

MSP432P401x MCU上的Cortex-M4处理器包括一个紧耦合浮点单元(FPU)。

FPU是符合IEEE

754标准的单精度浮点模块,支持加,减,乘,除,累加和平方根运算。它还提供定点和浮点数据格式与浮点常量指令之间的转换。

6.2.2记忆保护单元

MSP432P401x

MCU上的Cortex-M4处理器包括一个紧耦合的存储器保护单元(MPU),最多可支持八个保护区域。应用程序可以使用MPU来强制执行内存权限规则,这些规则可以将进程彼此隔离或强制执行内存访问规则。这些功能通常是操作系统处理目的所必需的。

6.2.3嵌套向量中断控制器(NVIC)

NVIC支持多达64个中断,具有8级中断优先级。 Cortex-M4 NVIC架构允许低延迟,高效的中断和事件处理,以及与设备级功率控制策略的无缝集成。

6.2.4 SysTick

Cortex-M4包括一个集成系统定时器SysTick,它提供一个简单的24位,清除写入,递减,零包装计数器和灵活的控制机制。计数器可以以多种不同的方式使用,并且通常用于操作系统相关目的或作为通用警报机制。

6.2.5调试和跟踪功能

Cortex-M4处理器实现了完整的硬件调试解决方案,通过传统的4引脚JTAG端口或2引脚串行线调试(SWD)端口提供处理器和存储器的高系统可视性,这是微控制器和其他产品的理想选择。小包装设备。SWJ-DP接口将SWD和JTAG调试端口组合到一个模块中,可根据应用需求在2引脚和4引脚工作模式之间进行无缝切换。

对于系统跟踪,处理器集成了仪表跟踪宏单元(ITM)以及数据监视点和分析单元。为了实现简单且经济高效的系统跟踪事件分析,串行线查看器(SWV)可以通过单个引脚导出软件生成的消息流,数据跟踪和分析信息。

NOTE

有关Cortex-M4

CPU的程序员模型以及第6.2节中提到的相关外设的详细规范和信息,请参阅www.arm.com上的相应参考手册。

6.3存储器映射

该设备支持4GB地址空间,分为8个512MB区域(见图6-1)。

Figure 6-1. Device Memory Zones

6.3.1码区存储器映射

从0x0000_0000到0x1FFF_FFFF的区域被定义为Code区域,可通过Cortex-M4处理器的ICODE和DCODE 总线以及系统DMA访问。该区域映射闪存,ROM和内部SRAM(允许从SRAM进行最佳的单周期执行)。

图6-2显示了Code区域的MSP432P401x特定存储器映射,对用户代码可见。

www.ti.com

Figure 6-2. Code Zone Memory Map

6.3.1.1闪存区域

从0x0000_0000到0x003F_FFFF的4MB区域被定义为闪存区域。该区域进一步划分为不同类型的闪存区域,详见6.4.1节。

6.3.1.2 SRAM区域

从0x0100_0000到0x010F_FFFF的1MB区域被定义为SRAM区域。该区域也在器件的SRAM区域中别名,从而允许有效访问SRAM,用于指令读取和数据读取。更多详细信息,请参见第6.4.2节。

6.3.1.3 ROM区域

从0x0200 0000到0x020F FFFF的1MB区域被定义为ROM区域。有关ROM的详细信息,请参见第6.4.3节。

6.3.2 SRAM区域存储器映射

器件的SRAM区位于0x2000_0000到0x3FFF_FFFF的地址范围内。图6-3显示了该区域的划分方式。

Figure 6-3. SRAM Zone Memory Map

6.3.2.1 SRAM区域

从0x2000_0000到0x200F_FFFF的1MB区域被定义为SRAM区域。在该区域中可访问的SRAM也在器件的代码区 中别名,从而允许有效访问SRAM,用于指令提取和数据读取。有关SRAM的详细信息,请参见第6.4.2节。

6.3.2.2 SRAM位带别名区域

从0x2200 0000到0x23FF FFFF的32MB区域形成1-MB SRAM区域的位带别名区域。位带是Cortex-M4处理器的一项功能,允许应用程序在整个SRAM空 间中设置或清除各个位,而无需使用处理器的流水线带宽来执行独占的读 - 修改 - 写序列。

6.3.3外围区域存储器映射

器件的外围区域位于0x4000 0000到0x5FFF FFFF的地址范围内。图6-4显示了该范围如何进一步划分。

Figure 6-4. Peripheral Zone Memory Map

6.3.3.1周边区域

从0x4000_0000到0x400F_FFFF的1MB区域专用于系统和应用程序控制设备的外围设备。在MSP432P401x MCU上,该区域共有128KB专用于外设,其余则保留。表6-1列出了此128 KB空间内的外设分配。

请注意,所有外围设备可能并非在该系列的所有设备中都可用(详情请参阅REMARKS列)。如果某个外设被列为特定设备的N / A,则将相应的地址空间视为保留。

Table 6-1. Peripheral Address Offsets

ADDRESS RANGE	PERIPHERAL	TABLE	REMARKS
0x4000_0000-0x4000_03FF	Timer_A0	Table 6-2	16-bit peripheral
0x4000_0400-0x4000_07FF	Timer_A1	Table 6-3	16-bit peripheral
0x4000_0800-0x4000_0BFF	Timer_A2	Table 6-4	16-bit peripheral
0x4000_0C00-0x4000_0FFF	Timer_A3	Table 6-5	16-bit peripheral
0x4000_1000-0x4000_13FF	eUSCI_A0	Table 6-6	16-bit peripheral
0x4000_1400-0x4000_17FF	eUSCI_A1	Table 6-7	16-bit peripheral
0x4000_1800-0x4000_1BFF	eUSCI_A2	Table 6-8	16-bit peripheral
0x4000_1C00-0x4000_1FFF	eUSCI_A3	Table 6-9	16-bit peripheral
0x4000_2000-0x4000_23FF	eUSCI_B0	Table 6-10	16-bit peripheral
0x4000_2400-0x4000_27FF	eUSCI_B1	Table 6-11	16-bit peripheral

表6-1。外设地址偏移(续)

ADDRESS RANGE	PERIPHERAL	TABLE	REMARKS
0x4000_2800-0x4000_2BFF	eUSCI_B2	Table 6-12	16-bit peripheral
0x4000_2C00-0x4000_2FFF	eUSCI_B3	Table 6-13	16-bit peripheral
0x4000_3000-0x4000_33FF	REF_A	Table 6-14	16-bit peripheral
0x4000_3400-0x4000_37FF	COMP_E0	Table 6-15	16-bit peripheral
0x4000_3800-0x4000_3BFF	COMP_E1	Table 6-16	16-bit peripheral
0x4000_3C00-0x4000_3FFF	AES256	Table 6-17	16-bit peripheral
0x4000_4000-0x4000_43FF	CRC32	Table 6-18	16-bit peripheral
0x4000_4400-0x4000_47FF	RTC_C	Table 6-19	16-bit peripheral
0x4000_4800-0x4000_4BFF	WDT_A	Table 6-20	16-bit peripheral
0x4000_4C00-0x4000_4FFF	Port Module	Table 6-21	16-bit peripheral
0x4000_5000-0x4000_53FF	Port Mapping Controller	Table 6-22	16-bit peripheral
0x4000_5400-0x4000_57FF	Capacitive Touch I/O 0	Table 6-23	16-bit peripheral
0x4000_5800-0x4000_5BFF	Capacitive Touch I/O 1	Table 6-24	16-bit peripheral
0x4000_5C00-0x4000_8FFF	Reserved		Read only, always reads 0h
0x4000_9000-0x4000_BFFF	Reserved		Read only, always reads 0h
0x4000_C000-0x4000_CFFF	Timer32	Table 6-25	
0x4000_D000-0x4000_DFFF	Reserved		Read only, always reads 0h
0x4000_E000-0x4000_FFFF	DMA	Table 6-26	
0x4001_0000-0x4001_03FF	PCM	Table 6-27	
0x4001_0400-0x4001_07FF	CS	Table 6-28	
0x4001_0800-0x4001_0FFF	PSS	Table 6-29	
0x4001_1000-0x4001_17FF	FLCTL	Table 6-30	
0x4001_1800-0x4001_1BFF	Reserved	·	Read only, always reads 0h
0x4001_1C00-0x4001_1FFF	Reserved		Read only, always reads 0h
0x4001_2000-0x4001_23FF	ADC14	Table 6-31	
0x4001_2400-0x4001_FFFF	Reserved		Read only, always reads 0h

表6-2。 Timer_A0寄存器(基址: 0x4000_0000)

REGISTER NAME	ACRONYM	OFFSET
Timer_A0 Control	TA0CTL	00h
Timer A0捕捉/比较控制0 TAOCCTLO 02h		
Timer A0捕捉/比较控制1 TAOCCTL1 04h		
Timer AO捕捉/比较控制2 TAOCCTL2 06h	_	
Timer AO捕捉/比较控制3 TAOCCTL3 08h		
Timer AO捕捉/比较控制4 TAOCCTL4 OAh		
Timer_A0 Counter	TAOR	10h
Timer_A0 Capture/Compare 0	TA0CCR0	12h
Timer_A0 Capture/Compare 1	TA0CCR1	14h
Timer_A0 Capture/Compare 2	TA0CCR2	16h
Timer_A0 Capture/Compare 3	TA0CCR3	18h
Timer_A0 Capture/Compare 4	TA0CCR4	1Ah
Timer_A0 Interrupt Vector	TAOIV	2Eh
Timer_A0 Expansion 0	TA0EX0	20h

表6-3。 Timer_A1寄存器(基址: 0x4000_0400)

REGISTER NAME	ACRONYM	OFFSET
Timer_A1 Control	TA1CTL	00h
Timer A1捕捉/比较控制0 TA1CCTLO 02h		
Timer A1捕捉/比较控制1 TA1CCTL1 04h		·
Timer_A1捕捉/比较控制2 TA1CCTL2 06h		
Timer_A1捕捉/比较控制3 TA1CCTL3 08h		
Timer A1捕捉/比较控制4 TA1CCTL4 OAh		
Timer_A1 Counter	TA1R	10h
Timer_A1 Capture/Compare 0	TA1CCR0	12h
Timer_A1 Capture/Compare 1	TA1CCR1	14h
Timer_A1 Capture/Compare 2	TA1CCR2	16h
Timer_A1 Capture/Compare 3	TA1CCR3	18h
Timer_A1 Capture/Compare 4	TA1CCR4	1Ah
Timer_A1 Interrupt Vector	TA1IV	2Eh
Timer_A1 Expansion 0	TA1EX0	20h

表6-4。 Timer_A2寄存器(基址: 0x4000_0800)

REGISTER NAME	ACRONYM	OFFSET
Timer_A2 Control	TA2CTL	00h
Timer A2捕捉/比较控制O TA2CCTLO O2h		
Timer A2捕捉/比较控制1 TA2CCTL1 04h		
Timer_A2捕捉/比较控制2 TA2CCTL2 06h		
Timer_A2捕捉/比较控制3 TA2CCTL3 08h		
Timer A2捕捉/比较控制4 TA2CCTL4 OAh		
Timer_A2 Counter	TA2R	10h
Timer_A2 Capture/Compare 0	TA2CCR0	12h
Timer_A2 Capture/Compare 1	TA2CCR1	14h
Timer_A2 Capture/Compare 2	TA2CCR2	16h
Timer_A2 Capture/Compare 3	TA2CCR3	18h
Timer_A2 Capture/Compare 4	TA2CCR4	1Ah
Timer_A2 Interrupt Vector	TA2IV	2Eh
Timer_A2 Expansion 0	TA2EX0	20h

表6-5。 Timer_A3寄存器(基址: 0x4000_0C00)

REGISTER NAME	ACRONYM	OFFSET
Timer_A3 Control	TA3CTL	00h
Timer A3捕捉/比较控制O TA3CCTLO O2h		
Timer_A3捕捉/比较控制1 TA3CCTL1 04h		
Timer_A3捕捉/比较控制2 TA3CCTL2 06h	,	
Timer_A3捕捉/比较控制3 TA3CCTL3 08h		
Timer A3捕捉/比较控制4 TA3CCTL4 OAh		
Timer_A3 Counter	TA3R	10h
Timer_A3 Capture/Compare 0	TA3CCR0	12h
Timer_A3 Capture/Compare 1	TA3CCR1	14h
Timer_A3 Capture/Compare 2	TA3CCR2	16h
Timer_A3 Capture/Compare 3	TA3CCR3	18h
Timer_A3 Capture/Compare 4	TA3CCR4	1Ah
Timer_A3 Interrupt Vector	TA3IV	2Eh

表6-5。 Timer_A3寄存器(基址: 0x4000_0C00) (续)

REGISTER NAME	ACRONYM	OFFSET
Timer_A3 Expansion 0	TA3EX0	20h

表6-6。 eUSCI_AO寄存器(基址: 0x4000_1000)

REGISTER NAME	ACRONYM	OFFSET
eUSCI_A0 Control Word 0	UCA0CTLW0	00h
eUSCI_A0 Control Word 1	UCA0CTLW1	02h
eUSCI_A0 Baud Rate Control	UCA0BRW	06h
eUSCI_A0 Modulation Control	UCA0MCTLW	08h
eUSCI_A0 Status	UCA0STATW	0Ah
eUSCI_A0 Receive Buffer	UCA0RXBUF	0Ch
eUSCI_A0 Transmit Buffer	UCA0TXBUF	0Eh
eUSCI_A0 Auto Baud Rate Control	UCA0ABCTL	10h
eUSCI_A0 IrDA Control	UCA0IRCTL	12h
eUSCI_A0 Interrupt Enable	UCA0IE	1Ah
eUSCI_A0 Interrupt Flag	UCA0IFG	1Ch
eUSCI_A0 Interrupt Vector	UCA0IV	1Eh

表6-7。 eUSCI_A1寄存器(基地址: 0x4000_1400)

REGISTER NAME	ACRONYM	OFFSET
eUSCI_A1 Control Word 0	UCA1CTLW0	00h
eUSCI_A1 Control Word 1	UCA1CTLW1	02h
eUSCI_A1 Baud Rate Control	UCA1BRW	06h
eUSCI_A1 Modulation Control	UCA1MCTLW	08h
eUSCI_A1 Status	UCA1STATW	0Ah
eUSCI_A1 Receive Buffer	UCA1RXBUF	0Ch
eUSCI_A1 Transmit Buffer	UCA1TXBUF	0Eh
eUSCI_A1 Auto Baud Rate Control	UCA1ABCTL	10h
eUSCI_A1 IrDA Control	UCA1IRCTL	12h
eUSCI_A1 Interrupt Enable	UCA1IE	1Ah
eUSCI_A1 Interrupt Flag	UCA1IFG	1Ch
eUSCI_A1 Interrupt Vector	UCA1IV	1Eh

表6-8。 eUSCI A2寄存器(基地址: 0x4000 1800)

REGISTER NAME	ACRONYM	OFFSET
eUSCI_A2 Control Word 0	UCA2CTLW0	00h
eUSCI_A2 Control Word 1	UCA2CTLW1	02h
eUSCI_A2 Baud Rate Control	UCA2BRW	06h
eUSCI_A2 Modulation Control	UCA2MCTLW	08h
eUSCI_A2 Status	UCA2STATW	0Ah
eUSCI_A2 Receive Buffer	UCA2RXBUF	0Ch
eUSCI_A2 Transmit Buffer	UCA2TXBUF	0Eh
eUSCI_A2 Auto Baud Rate Control	UCA2ABCTL	10h
eUSCI_A2 IrDA Control	UCA2IRCTL	12h
eUSCI_A2 Interrupt Enable	UCA2IE	1Ah
eUSCI_A2 Interrupt Flag	UCA2IFG	1Ch
eUSCI_A2 Interrupt Vector	UCA2IV	1Eh

表6-9。 eUSCI_A3寄存器(基址: 0x4000_1C00)

REGISTER NAME	ACRONYM	OFFSET
eUSCI_A3 Control Word 0	UCA3CTLW0	00h
eUSCI_A3 Control Word 1	UCA3CTLW1	02h
eUSCI_A3 Baud Rate Control	UCA3BRW	06h
eUSCI_A3 Modulation Control	UCA3MCTLW	08h
eUSCI_A3 Status	UCA3STATW	0Ah
eUSCI_A3 Receive Buffer	UCA3RXBUF	0Ch
eUSCI_A3 Transmit Buffer	UCA3TXBUF	0Eh
eUSCI_A3 Auto Baud Rate Control	UCA3ABCTL	10h
eUSCI_A3 IrDA Control	UCA3IRCTL	12h
eUSCI_A3 Interrupt Enable	UCA3IE	1Ah
eUSCI_A3 Interrupt Flag	UCA3IFG	1Ch
eUSCI_A3 Interrupt Vector	UCA3IV	1Eh

表6-10。 eUSCI_BO寄存器(基地址: 0x4000_2000)

REGISTER NAME	ACRONYM	OFFSET
eUSCI_B0 Control Word 0	UCB0CTLW0	00h
eUSCI_B0 Control Word 1	UCB0CTLW1	02h
eUSCI_B0 Bit Rate Control Word	UCB0BRW	06h
eUSCI_B0 Status Word	UCB0STATW	08h
eUSCI_B0 Byte Counter Threshold	UCB0TBCNT	0Ah
eUSCI_B0 Receive Buffer	UCB0RXBUF	0Ch
eUSCI_B0 Transmit Buffer	UCB0TXBUF	0Eh
eUSCI_B0 I2C Own Address 0	UCB0I2COA0	14h
eUSCI_B0 I2C Own Address 1	UCB0I2COA1	16h
eUSCI_B0 I2C Own Address 2	UCB0I2COA2	18h
eUSCI_B0 I2C Own Address 3	UCB0I2COA3	1Ah
eUSCI_B0 Received Address	UCB0ADDRX	1Ch
eUSCI_B0 Address Mask	UCB0ADDMASK	1Eh
eUSCI_B0 I2C Slave Address	UCB0I2CSA	20h
eUSCI_B0 Interrupt Enable	UCB0IE	2Ah
eUSCI_B0 Interrupt Flag	UCB0IFG	2Ch
eUSCI_B0 Interrupt Vector	UCB0IV	2Eh

表6-11。 eUSCI_B1寄存器(基地址: 0x4000_2400)

REGISTER NAME	ACRONYM	OFFSET
eUSCI_B1 Control Word 0	UCB1CTLW0	00h
eUSCI_B1 Control Word 1	UCB1CTLW1	02h
eUSCI_B1 Bit Rate Control Word	UCB1BRW	06h
eUSCI_B1 Status Word	UCB1STATW	08h
eUSCI_B1 Byte Counter Threshold	UCB1TBCNT	0Ah
eUSCI_B1 Receive Buffer	UCB1RXBUF	0Ch
eUSCI_B1 Transmit Buffer	UCB1TXBUF	0Eh
eUSCI_B1 I2C Own Address 0	UCB1I2COA0	14h
eUSCI_B1 I2C Own Address 1	UCB1I2COA1	16h
eUSCI_B1 I2C Own Address 2	UCB1I2COA2	18h
eUSCI_B1 I2C Own Address 3	UCB1I2COA3	1Ah
eUSCI_B1 Received Address	UCB1ADDRX	1Ch

表6-11。 eUSCI_B1寄存器(基地址: 0x4000_2400) (续)

REGISTER NAME	ACRONYM	OFFSET
eUSCI_B1 Address Mask	UCB1ADDMASK	1Eh
eUSCI_B1 I2C Slave Address	UCB1I2CSA	20h
eUSCI_B1 Interrupt Enable	UCB1IE	2Ah
eUSCI_B1 Interrupt Flag	UCB1IFG	2Ch
eUSCI_B1 Interrupt Vector	UCB1IV	2Eh

表6-12。 eUSCI_B2寄存器(基地址: 0x4000_2800)

REGISTER NAME	ACRONYM	OFFSET
eUSCI_B2 Control Word 0	UCB2CTLW0	00h
eUSCI_B2 Control Word 1	UCB2CTLW1	02h
eUSCI_B2 Bit Rate Control Word	UCB2BRW	06h
eUSCI_B2 Status Word	UCB2STATW	08h
eUSCI_B2 Byte Counter Threshold	UCB2TBCNT	0Ah
eUSCI_B2 Receive Buffer	UCB2RXBUF	0Ch
eUSCI_B2 Transmit Buffer	UCB2TXBUF	0Eh
eUSCI_B2 I2C Own Address 0	UCB2I2COA0	14h
eUSCI_B2 I2C Own Address 1	UCB2I2COA1	16h
eUSCI_B2 I2C Own Address 2	UCB2I2COA2	18h
eUSCI_B2 I2C Own Address 3	UCB2I2COA3	1Ah
eUSCI_B2 Received Address	UCB2ADDRX	1Ch
eUSCI_B2 Address Mask	UCB2ADDMASK	1Eh
eUSCI_B2 I2C Slave Address	UCB2I2CSA	20h
eUSCI_B2 Interrupt Enable	UCB2IE	2Ah
eUSCI_B2 Interrupt Flag	UCB2IFG	2Ch
eUSCI_B2 Interrupt Vector	UCB2IV	2Eh

表6-13。 eUSCI_B3寄存器(基地址: 0x4000_2C00)

REGISTER NAME	ACRONYM	OFFSET
eUSCI_B3 Control Word 0	UCB3CTLW0	00h
eUSCI_B3 Control Word 1	UCB3CTLW1	02h
eUSCI_B3 Bit Rate Control Word	UCB3BRW	06h
eUSCI_B3 Status Word	UCB3STATW	08h
eUSCI_B3 Byte Counter Threshold	UCB3TBCNT	0Ah
eUSCI_B3 Receive Buffer	UCB3RXBUF	0Ch
eUSCI_B3 Transmit Buffer	UCB3TXBUF	0Eh
eUSCI_B3 I2C Own Address 0	UCB3I2COA0	14h
eUSCI_B3 I2C Own Address 1	UCB3I2COA1	16h
eUSCI_B3 I2C Own Address 2	UCB3I2COA2	18h
eUSCI_B3 I2C Own Address 3	UCB3I2COA3	1Ah
eUSCI_B3 Received Address	UCB3ADDRX	1Ch
eUSCI_B3 Address Mask	UCB3ADDMASK	1Eh
eUSCI_B3 I2C Slave Address	UCB3I2CSA	20h
eUSCI_B3 Interrupt Enable	UCB3IE	2Ah
eUSCI_B3 Interrupt Flag	UCB3IFG	2Ch
eUSCI_B3 Interrupt Vector	UCB3IV	2Eh

表6-14。 REF_A寄存器(基址: 0x4000_3000)

REGISTER NAME	ACRONYM	OFFSET
REF_A Control 0	REFCTL0	00h

表6-15。 COMP EO寄存器(基址: 0x4000 3400)

REGISTER NAME	ACRONYM	OFFSET
Comparator_E0 Control 0	CE0CTL0	00h
Comparator_E0 Control 1	CE0CTL1	02h
Comparator_E0 Control 2	CE0CTL2	04h
Comparator_E0 Control 3	CE0CTL3	06h
Comparator_E0 Interrupt	CE0INT	0Ch
Comparator EO中断向量字CEOIV OEh		

表6-16。 COMP_E1寄存器(基址: 0x4000_3800)

REGISTER NAME	ACRONYM	OFFSET
Comparator_E1 Control 0	CE1CTL0	00h
Comparator_E1 Control 1	CE1CTL1	02h
Comparator_E1 Control 2	CE1CTL2	04h
Comparator_E1 Control 3	CE1CTL3	06h
Comparator_E1 Interrupt	CE1INT	0Ch
Comparator E1中断向量字CE1IV OEh		

表6-17。 AES256寄存器(基址: 0x4000_3C00)

REGISTER NAME	ACRONYM	OFFSET
AES Accelerator Control 0	AESACTL0	00h
AES Accelerator Control 1	AESACTL1	02h
AES Accelerator Status	AESASTAT	04h
AES Accelerator Key	AESAKEY	06h
AES Accelerator Data In	AESADIN	08h
AES Accelerator Data Out	AESADOUT	0Ah
AES加速器在AESAXDIN OCh中进行异或数据		
AES加速器异或数据输入(无触发) AESAXIN OEh		

表6-18。 CRC32寄存器 (基址: 0x4000_4000)

REGISTER NAME	ACRONYM	OFFSET
CRC32 Data Input Low	CRC32DI	000h
CRC32 Data In Reverse Low	CRC32DIRB	004h
CRC32初始化和结果低CRC32INIRES_LO 008h		
CRC32初始化和结果高CRC32INIRES_HI 00Ah		
CRC32结果反向低CRC32RESR LO 00Ch		
CRC32结果反转高CRC32RESR HI 00Eh		
CRC16 Data Input Low	CRC16DI	010h
CRC16 Data In Reverse Low	CRC16DIRB	014h
CRC16初始化和结果CRC16INIRES 018h		
CRC16 Result Reverse	CRC16RESR	01Eh

表6-19。 RTC_C寄存器(基址: 0x4000_4400)

REGISTER NAME	ACRONYM	OFFSET
Real-Time Clock Control 0	RTCCTL0	00h
实时时钟控制1,3 RTCCTL13 02h		
实时时钟偏移校准RTCOCAL 04h		
实时时钟温度补偿RTCTCMP 06h		
实时预分频定时器0控制RTCPS0CTL 08h		
实时预分频定时器1控制RTCPS1CTL OAh	-	
实时预分频定时器0,1计数器RTCPS 0Ch		
实时时钟中断向量RTCIV OEh		
实时时钟秒,分钟RTCTIMO 10h		
实时时钟小时,星期几RTCTIM1 12h		
Real-Time Clock Date	RTCDATE	14h
Real-Time Clock Year	RTCYEAR	16h
实时时钟分钟,小时报警RTCAMINHR 18h	-	
实时时钟星期几,月份报警RTCADOWDAY 1Ah	_	
Binary-to-BCD Conversion	RTCBIN2BCD	1Ch
BCD-to-Binary Conversion	RTCBCD2BIN	1Eh

表6-20。 WDT_A寄存器(基址: 0x4000_4800)

REGISTER NAME	ACRONYM	OFFSET
Watchdog Timer Control	WDTCTL	0Ch

表6-21。端口寄存器(基址: 0x4000_4C00)

REGISTER NAME	ACRONYM	OFFSET
Port 1 Input	P1IN	000h
Port 2 Input	P2IN	001h
Port 1 Output	P1OUT	002h
Port 2 Output	P2OUT	003h
Port 1 Direction	P1DIR	004h
Port 2 Direction	P2DIR	005h
Port 1 Resistor Enable	P1REN	006h
Port 2 Resistor Enable	P2REN	007h
Port 2 Drive Strength	P2DS	009h
Port 1 Select 0	P1SEL0	00Ah
Port 2 Select 0	P2SEL0	00Bh
Port 1 Select 1	P1SEL1	00Ch
Port 2 Select 1	P2SEL1	00Dh
Port 1 Interrupt Vector	P1IV	00Eh
Port 1 Complement Selection	P1SELC	016h
Port 2 Complement Selection	P2SELC	017h
Port 1 Interrupt Edge Select	P1IES	018h
Port 2 Interrupt Edge Select	P2IES	019h
Port 1 Interrupt Enable	P1IE	01Ah
Port 2 Interrupt Enable	P2IE	01Bh
Port 1 Interrupt Flag	P1IFG	01Ch
Port 2 Interrupt Flag	P2IFG	01Dh
Port 2 Interrupt Vector	P2IV	01Eh
Port 3 Input	P3IN	020h

表6-21。端口寄存器(基址: 0x4000_4C00) (续)

REGISTER NAME	ACRONYM	OFFSET
Port 4 Input	P4IN	021h
Port 3 Output	P3OUT	022h
Port 4 Output	P4OUT	023h
Port 3 Direction	P3DIR	024h
Port 4 Direction	P4DIR	025h
Port 3 Resistor Enable	P3REN	026h
Port 4 Resistor Enable	P4REN	027h
Port 3 Select 0	P3SEL0	02Ah
Port 4 Select 0	P4SEL0	02Bh
Port 3 Select 1	P3SEL1	02Ch
Port 4 Select 1	P4SEL1	02Dh
Port 3 Interrupt Vector	P3IV	02Eh
Port 3 Complement Selection	P3SELC	036h
Port 4 Complement Selection	P4SELC	037h
Port 3 Interrupt Edge Select	P3IES	038h
Port 4 Interrupt Edge Select	P4IES	039h
Port 3 Interrupt Enable	P3IE	03Ah
Port 4 Interrupt Enable	P4IE	03Bh
Port 3 Interrupt Flag	P3IFG	03Ch
Port 4 Interrupt Flag	P4IFG	03Dh
Port 4 Interrupt Vector	P4IV	03Eh
Port 5 Input	P5IN	040h
Port 6 Input	P6IN	041h
Port 5 Output	P5OUT	042h
Port 6 Output	P6OUT	043h
Port 5 Direction	P5DIR	044h
Port 6 Direction	P6DIR	045h
Port 5 Resistor Enable	P5REN	046h
Port 6 Resistor Enable	P6REN	047h
Port 5 Select 0	P5SEL0	04Ah
Port 6 Select 0	P6SEL0	04Bh
Port 5 Select 1	P5SEL1	04Ch
Port 6 Select 1	P6SEL1	04Dh
Port 5 Interrupt Vector	P5IV	04Eh
Port 5 Complement Selection	P5SELC	056h
Port 6 Complement Selection	P6SELC	057h
Port 5 Interrupt Edge Select	P5IES	058h
Port 6 Interrupt Edge Select	P6IES	059h
Port 5 Interrupt Enable	P5IE	05Ah
Port 6 Interrupt Enable	P6IE	05Bh
Port 5 Interrupt Flag	P5IFG	05Ch
Port 6 Interrupt Flag	P6IFG	05Dh
Port 6 Interrupt Vector	P6IV	05Eh
Port 7 Input	P7IN	060h
Port 8 Input	P8IN	061h
Port 7 Output	P7OUT	062h
Port 8 Output	P8OUT	063h

表6-21。端口寄存器(基址: 0x4000_4C00) (续)

REGISTER NAME	ACRONYM	OFFSET
Port 7 Direction	P7DIR	064h
Port 8 Direction	P8DIR	065h
Port 7 Resistor Enable	P7REN	066h
Port 8 Resistor Enable	P8REN	067h
Port 7 Select 0	P7SEL0	06Ah
Port 8 Select 0	P8SEL0	06Bh
Port 7 Select 1	P7SEL1	06Ch
Port 8 Select 1	P8SEL1	06Dh
Port 7 Interrupt Vector	P7IV	06Eh
Port 7 Complement Selection	P7SELC	076h
Port 8 Complement Selection	P8SELC	077h
Port 7 Interrupt Edge Select	P7IES	078h
Port 8 Interrupt Edge Select	P8IES	079h
Port 7 Interrupt Enable	P7IE	07Ah
Port 8 Interrupt Enable	P8IE	07Bh
Port 7 Interrupt Flag	P7IFG	07Ch
Port 8 Interrupt Flag	P8IFG	07Dh
Port 8 Interrupt Vector	P8IV	07Eh
Port 9 Input	P9IN	080h
Port 10 Input	P10IN	081h
Port 9 Output	P9OUT	082h
Port 10 Output	P10OUT	083h
Port 9 Direction	P9DIR	084h
Port 10 Direction	P10DIR	085h
Port 9 Resistor Enable	P9REN	086h
Port 10 Resistor Enable	P10REN	087h
Port 9 Select 0	P9SEL0	08Ah
Port 10 Select 0	P10SEL0	08Bh
Port 9 Select 1	P9SEL1	08Ch
Port 10 Select 1	P10SEL1	08Dh
Port 9 Interrupt Vector	P9IV	08Eh
Port 9 Complement Selection	P9SELC	096h
端口10补码选择P10SELC 097h		
Port 9 Interrupt Edge Select	P9IES	098h
端口10中断边沿选择P10IES 099h		
Port 9 Interrupt Enable	P9IE	09Ah
Port 10 Interrupt Enable	P10IE	09Bh
Port 9 Interrupt Flag	P9IFG	09Ch
Port 10 Interrupt Flag	P10IFG	09Dh
Port 10 Interrupt Vector	P10IV	09Eh
Port J Input	PJIN	120h
Port J Output	PJOUT	122h
Port J Direction	PJDIR	124h
Port J Resistor Enable	PJREN	126h
Port J Select 0	PJSEL0	12Ah
Port J Select 1	PJSEL1	12Ch
Port J Complement Select	PJSELC	136h

表6-22。 PMAP寄存器(基址: 0x4000_5000)

	\ <u></u>	
REGISTER NAME	ACRONYM	OFFSET
Port Mapping Key	PMAPKEYID	00h
Port Mapping Control	PMAPCTL	02h
Port Mapping P2.0	P2MAP0	10h
Port Mapping P2.1	P2MAP1	11h
Port Mapping P2.2	P2MAP2	12h
Port Mapping P2.3	P2MAP3	13h
Port Mapping P2.4	P2MAP4	14h
Port Mapping P2.5	P2MAP5	15h
Port Mapping P2.6	P2MAP6	16h
Port Mapping P2.7	P2MAP7	17h
Port Mapping P3.0	РЗМАРО	18h
Port Mapping P3.1	P3MAP1	19h
Port Mapping P3.2	P3MAP2	1Ah
Port Mapping P3.3	РЗМАРЗ	1Bh
Port Mapping P3.4	P3MAP4	1Ch
Port Mapping P3.5	P3MAP5	1Dh
Port Mapping P3.6	РЗМАР6	1Eh
Port Mapping P3.7	РЗМАР7	1Fh
Port Mapping P7.0	P7MAP0	38h
Port Mapping P7.1	P7MAP1	39h
Port Mapping P7.2	P7MAP2	3Ah
Port Mapping P7.3	P7MAP3	3Bh
Port Mapping P7.4	P7MAP4	3Ch
Port Mapping P7.5	P7MAP5	3Dh
Port Mapping P7.6	P7MAP6	3Eh
Port Mapping P7.7	P7MAP7	3Fh

表6-23。电容触摸I / 0 0寄存器(基址: 0x4000_5400)

REGISTER NAME	ACRONYM	OFFSET
电容触摸I / O O控制CAPTIOOCTL OEh		•

表6-24。电容触摸I / 0 1寄存器(基址: 0x4000 5800)

REGISTER NAME	ACRONYM	OFFSET
电容触摸I / O 1控制CAPTIO1CTL OEh	•	•

表6-25。 Timer32寄存器(基址: 0x4000 C000)

REGISTER NAME	ACRONYM	OFFSET
Timer 1 Load	T32LOAD1	00h
Timer 1 Current Value	T32VALUE1	04h
Timer 1 Timer Control	T32CONTROL1	08h
Timer 1 Interrupt Clear	T32INTCLR1	0Ch
Timer 1 Raw Interrupt Status	T32RIS1	10h
Timer 1 Interrupt Status	T32MIS1	14h
Timer 1 Background Load	T32BGLOAD1	18h
Timer 2 Load	T32LOAD2	20h
Timer 2 Current Value	T32VALUE2	24h

表6-25。 Timer32寄存器(基址: 0x4000_C000) (续)

REGISTER NAME	ACRONYM	OFFSET
Timer 2 Timer Control	T32CONTROL2	28h
Timer 2 Interrupt Clear	T32INTCLR2	2Ch
Timer 2 Raw Interrupt Status	T32RIS2	30h
Timer 2 Interrupt Status	T32MIS2	34h
Timer 2 Background Load	T32BGLOAD2	38h

表6-26。 DMA寄存器 (基址: 0x4000 E000)

	(全址: 0x1000_E000/		
REGISTER NAME	ACRONYM	OFFSET	
设备配置状态DMA DEVICE CFG 000h		,	
软件通道触发DMA SW CHTRIG 004h		,	
通道O源配置DMA_CHO_SRCCFG_010h			
通道1源配置DMA_CH1_SRCCFG_014h			
通道2源配置DMA CH2 SRCCFG 018h			
通道3源配置DMA CH3 SRCCFG 01Ch			
通道4源配置DMA CH4 SRCCFG 020h			
通道5源配置DMA_CH5_SRCCFG 024h			
通道6源配置DMA_CH6_SRCCFG_028h			
通道7源配置DMA CH7 SRCCFG 02Ch			
中断1源通道配置DMA INT1 SRCCFG 100h			
中断2源通道配置DMA INT2 SRCCFG 104h			
中断3源通道配置DMA INT3 SRCCFG 108h			
中断O源通道标志DMA INTO SRCFLG 110h			
中断O源通道清除标志DMA INTO CLRFLG 114h			
Status	DMA_STAT	1000h	
Configuration	DMA_CFG	1004h	
通道控制数据库指针DMA_CTLBASE 1008h			
通道备用控制数据库指针DMA_ALTBASE 100Ch	,		
通道等待请求状态DMA WAITSTAT 1010h			
Channel Software Request	DMA_SWREQ	1014h	
Channel Useburst设置DMA USEBURSTSET 1018h			
Channel Useburst清除DMA_USEBURSTCLR 101Ch	,		
通道请求掩码设置DMA_REQMASKSET 1020h	,		
通道请求掩码清除DMA REQMASKCLR 1024h		,	
Channel Enable Set	DMA_ENASET	1028h	
Channel Enable Clear	DMA_ENACLR	102Ch	
通道主备用集DMA ALTSET 1030h			
Channel Primary-Alternate Clear DMA_ALTCLR 1034h			
Channel Priority Set	DMA_PRIOSET	1038h	
Channel Priority Clear	DMA_PRIOCLR	103Ch	
Bus Error Clear	DMA_ERRCLR	104Ch	

表6-27。 PCM寄存器 (基址: 0x4001_0000)

REGISTER NAME	ACRONYM	OFFSET
Control 0	PCMCTL0	00h
Control 1	PCMCTL1	04h
Interrupt Enable	PCMIE	08h
Interrupt Flag	PCMIFG	0Ch

表6-27。 PCM寄存器(基址: 0x4001_0000) (续)

REGISTER NAME	ACRONYM	OFFSET
Clear Interrupt Flag	PCMCLRIFG	10h

表6-28。 CS寄存器(基址: 0x4001_0400)

REGISTER NAME	ACRONYM	OFFSET
Key	CSKEY	00h
Control 0	CSCTL0	04h
Control 1	CSCTL1	08h
Control 2	CSCTL2	0Ch
Control 3	CSCTL3	10h
Clock Enable	CSCLKEN	30h
Status	CSSTAT	34h
Interrupt Enable	CSIE	40h
Interrupt Flag	CSIFG	48h
Clear Interrupt Flag	CSCLRIFG	50h
Set Interrupt Flag	CSSETIFG	58h
DCO外部电阻校准0 CSDCOERCALO 60h	· · · · · · · · · · · · · · · · · · ·	
DCO外部电阻校准1 CSDCOERCAL1 64h		

表6-29。 PSS寄存器(基地址: 0x4001_0800)

REGISTER NAME	ACRONYM	OFFSET
Key	PSSKEY	00h
Control 0	PSSCTL0	04h
Interrupt Enable	PSSIE	34h
Interrupt Flag	PSSIFG	38h
Clear Interrupt Flag	PSSCLRIFG	3Ch

表6-30。 FLCTL寄存器 (基址: 0x4001_1000)

REGISTER NAME	ACRONYM	OFFSET	
Power Status	FLCTL_POWER_STAT	000h	
Bank O读取控制FLCTL BANKO RDCTL 010h			
Bank 1读取控制FLCTL BANK1 RDCTL 014h			
读取突发/比较控制和状态FLCTL RDBRST CTLSTAT 02	20h		
读取突发/比较起始地址FLCTL RDBRST STARTADDR 02	读取突发/比较起始地址FLCTL RDBRST STARTADDR 024h		
读取突发/比较长度FLCTL_RDBRST_LEN_028h	读取突发/比较长度FLCTL RDBRST LEN 028h		
读取突发/比较失败地址FLCTL_RDBRST_FAILADDR_030	Çh		
读取突发/比较失败计数FLCTL RDBRST FAILCNT 040h			
程序控制和状态FLCTL PRG CTLSTAT 050h			
程序突发控制和状态FLCTL PRGBRST CTLSTAT 054h			
程序突发起始地址FLCTL PRGBRST STARTADDR 058h			
程序突发数据0 0 FLCTL PRGBRST DATAO 0 060h			
程序突发数据0 1 FLCTL PRGBRST DATAO 1 064h			
程序突发数据0 2 FLCTL PRGBRST DATAO 2 068h			
程序突发数据0 3 FLCTL PRGBRST DATAO 3 06Ch			
程序突发数据1 0 FLCTL_PRGBRST_DATA1_0 070h			
程序突发数据1 1 FLCTL_PRGBRST_DATA1_1 074h	,		
程序突发数据1 2 FLCTL PRGBRST DATA1 2 078h			

表6-30。 FLCTL寄存器(基址: 0x4001_1000) (续)

REGISTER NAME	ACRONYM	OFFSET
程序突发数据1 3 FLCTL PRGBRST DATA1 3 07Ch		
程序突发数据2 0 FLCTL PRGBRST DATA2 0 080h		•
程序突发数据2 1 FLCTL PRGBRST DATA2 1 084h	•	•
程序突发数据2 2 FLCTL PRGBRST DATA2 2 088h		•
程序突发数据2 3 FLCTL PRGBRST DATA2 3 08Ch		
程序突发数据3 0 FLCTL PRGBRST DATA3 0 090h		
程序突发数据3 1 FLCTL PRGBRST DATA3 1 094h		
程序突发数据3 2 FLCTL PRGBRST DATA3 2 098h		
程序突发数据3 3 FLCTL PRGBRST DATA3 3 09Ch		
擦除控制和状态FLCTL_ERASE_CTLSTAT_OAOh		
擦除扇区地址FLCTL ERASE SECTADDR OA4h		
信息存储区0写/擦除保护FLCTL BANKO INFO WEPROT	0B0h	
主存储器组0写/擦除保护FLCTL BANKO MAIN WEPROT	0B4h	
信息存储区1写/擦除保护FLCTL_BANK1_INFO_WEPROT	,0C0h	
主存储器组1写/擦除保护FLCTL_BANK1_MAIN_WEPROT	0C4h	
基准控制和状态FLCTL BMRK CTLSTAT ODOh		
基准指令获取计数FLCTL BMRK IFETCH OD4h		+
基准数据读取计数FLCTL BMRK DREAD OD8h		
基准计数比较FLCTL_BMRK_CMP_ODCh	1	
Interrupt Flag	FLCTL_IFG	0F0h
Interrupt Enable	FLCTL_IE	0F4h
Clear Interrupt Flag	FLCTL_CLRIFG	0F8h
Set Interrupt Flag	FLCTL_SETIFG	0FCh
读取时序控制FLCTL_READ_TIMCTL 100h		
读保证金计时控制FLCTL_READMARGIN_TIMCTL 104h		
程序验证时序控制FLCTL PRGVER TIMCTL 108h		
擦除验证时序控制FLCTL ERSVER TIMCTL 10Ch		
程序时序控制FLCTL PROGRAM TIMCTL 114h	+	
擦除时序控制FLCTL_ERASE_TIMCTL 118h	+	
质量擦除定时控制FLCTL_MASSERASE_TIMCTL_11Ch		+
突发程序时序控制FLCTL BURSTPRG TIMCTL 120h		

表6-31。 ADC14寄存器 (基址: 0x4001_2000)

REGISTER NAME	ACRONYM	OFFSET
Control 0	ADC14CTL0	00h
Control 1	ADC14CTL1	04h
窗口比较器低阈值0 ADC14L00 08h		
窗口比较器高阈值0 ADC14HI0 0Ch		
窗口比较器低阈值1 ADC14L01 10h		
窗口比较器高阈值1 ADC14HI1 14h		
Memory Control 0	ADC14MCTL0	18h
Memory Control 1	ADC14MCTL1	1Ch
Memory Control 2	ADC14MCTL2	20h
Memory Control 3	ADC14MCTL3	24h
Memory Control 4	ADC14MCTL4	28h
Memory Control 5	ADC14MCTL5	2Ch
Memory Control 6	ADC14MCTL6	30h

表6-31。 ADC14寄存器(基址: 0x4001_2000) (续)

REGISTER NAME	ACRONYM	OFFSET
Memory Control 7	ADC14MCTL7	34h
Memory Control 8	ADC14MCTL8	38h
Memory Control 9	ADC14MCTL9	3Ch
Memory Control 10	ADC14MCTL10	40h
Memory Control 11	ADC14MCTL11	44h
Memory Control 12	ADC14MCTL12	48h
Memory Control 13	ADC14MCTL13	4Ch
Memory Control 14	ADC14MCTL14	50h
Memory Control 15	ADC14MCTL15	54h
Memory Control 16	ADC14MCTL16	58h
Memory Control 17	ADC14MCTL17	5Ch
Memory Control 18	ADC14MCTL18	60h
Memory Control 19	ADC14MCTL19	64h
Memory Control 20	ADC14MCTL20	68h
Memory Control 21	ADC14MCTL21	6Ch
Memory Control 22	ADC14MCTL22	70h
Memory Control 23	ADC14MCTL23	74h
Memory Control 24	ADC14MCTL24	78h
Memory Control 25	ADC14MCTL25	7Ch
Memory Control 26	ADC14MCTL26	80h
Memory Control 27	ADC14MCTL27	84h
Memory Control 28	ADC14MCTL28	88h
Memory Control 29	ADC14MCTL29	8Ch
Memory Control 30	ADC14MCTL30	90h
Memory Control 31	ADC14MCTL31	94h
Memory 0	ADC14MEM0	98h
Memory 1	ADC14MEM1	9Ch
Memory 2	ADC14MEM2	A0h
Memory 3	ADC14MEM3	A4h
Memory 4	ADC14MEM4	A8h
Memory 5	ADC14MEM5	ACh
Memory 6	ADC14MEM6	B0h
Memory 7	ADC14MEM7	B4h
Memory 8	ADC14MEM8	B8h
Memory 9	ADC14MEM9	BCh
Memory 10	ADC14MEM10	C0h
Memory 11	ADC14MEM11	C4h
Memory 12	ADC14MEM12	C8h
Memory 13	ADC14MEM13	CCh
Memory 14	ADC14MEM14	D0h
Memory 15	ADC14MEM15	D4h
Memory 16	ADC14MEM16	D8h
Memory 17	ADC14MEM17	DCh
Memory 18	ADC14MEM18	E0h
Memory 19	ADC14MEM19	E4h
Memory 20	ADC14MEM20	E8h
Memory 21	ADC14MEM21	ECh

表6-31。 ADC14寄存器(基址: 0x4001 2000) (续)

REGISTER NAME	ACRONYM	OFFSET
Memory 22	ADC14MEM22	F0h
Memory 23	ADC14MEM23	F4h
Memory 24	ADC14MEM24	F8h
Memory 25	ADC14MEM25	FCh
Memory 26	ADC14MEM26	100
Memory 27	ADC14MEM27	104
Memory 28	ADC14MEM28	108
Memory 29	ADC14MEM29	10C
Memory 30	ADC14MEM30	110h
Memory 31	ADC14MEM31	114h
Interrupt Enable 0	ADC14IER0	13Ch
Interrupt Enable 1	ADC14IER1	140h
Interrupt Flag 0	ADC14IFGR0	144h
Interrupt Flag 1	ADC14IFGR1	148h
清除中断标志0 ADC14CLRIFGRO 14Ch		
清除中断标志1 ADC14CLRIFGR1 150h		
Interrupt Vector	ADC14IV	154h

6.3.3.2外围位带别名区域

从0x4200_0000到0x43FF_FFFF的32MB区域形成1MB外围区域的位带别名区域。位带是Cortex-M4处理器的一项功能,允许应用程序在整个外设存储空间中设置或清除各个位,而无需使用处理器的流水线带宽来执行独占的读 - 修改 - 写序列。

NOTE

仅通过字节或半字访问来访问16位外设的限制也适用于这些外设的相应位带区域。 换句话说,对这些外设的位带别名区域的写入必须仅以字节或半字访问的形式。

6.3.4调试和跟踪外围区域

该区域映射Cortex-M4的内部和外部PPB区域(见表6-32)。以下外围设备映射到此区域:

- Core and System debug control registers (internal PPB)
- NVIC and other registers in the System Control space of the Cortex-M4 (internal PPB)
- FPB, DWT, ITM (internal PPB)
- TPIU, Debug ROM table (external PPB)
- Reset Controller (external PPB)
- System Controller (external PPB)

Table 6-32. Debug Zone Memory Map

地址范围模块或外围备注	•	
0xE000_0000-0xE000_0FFF	ITM	Internal PPB
0xE000_1000-0xE000_1FFF	DWT	Internal PPB
0xE000_2000-0xE000_2FFF	FPB	Internal PPB
0xE000_3000-0xE000_DFFF	Reserved	Internal PPB
0xE000_E000-0xE000_EFFF	Cortex-M4 System Control Space	Internal PPB
0xE000_F000-0xE003_FFFF	Reserved	Internal PPB
0xE004_0000-0xE004_0FFF	TPIU	External PPB
0xE004_1000-0xE004_1FFF	Reserved	External PPB
0xE004_2000-0xE004_23FF	Reset Controller (see Table 6-33)	External PPB
0xE004_2400-0xE004_2FFF	Reserved	External PPB
0xE004_3000-0xE004_33FF	System Controller (see Table 6-34)	External PPB
0xE004_3400-0xE004_3FFF	Reserved	External PPB
0xE004_4000-0xE004_43FF	System Controller	External PPB
0xE004_4400-0xE00F_EFFF	Reserved	External PPB
0xE00F_F000-0xE00F_FFFF	ROM Table (External PPB)	External PPB
0xE010_0000-0xFFFF_FFF	Reserved	Vendor Space

NOTE

有关表6-32中列出的ARM模块的地址映射,请参阅www.arm.com上的Cortex-M4技术参考手册。

Table 6-33. RSTCTL Registers

REGISTER NAME	ACRONYM	OFFSET
Reset Request	RSTCTL_RESET_REQ	000h
硬复位状态RSTCTL HARDRESET STAT 004h		
硬复位状态清除RSTCTL HARDRESET CLR 008h		
硬复位状态设置RSTCTL_HARDRESET_SET_00Ch		
软复位状态RSTCTL SOFTRESET STAT 010h		
软复位状态清除RSTCTL SOFTRESET CLR 014h		
软复位状态设置RSTCTL SOFTRESET SET 018h		
PSS复位状态RSTCTL_PSSRESET_STAT 100h		
PSS复位状态清除RSTCTL_PSSRESET_CLR 104h		
PCM复位状态RSTCTL PCMRESET STAT 108h		
PCM复位状态清除RSTCTL PCMRESET CLR 10Ch		
引脚复位状态RSTCTL PINRESET STAT 110h		

Table 6-33. RSTCTL Registers (continued)

REGISTER NAME	ACRONYM	OFFSET
引脚复位状态清除RSTCTL PINRESET CLR 114h		,
重新启动重置状态RSTCTL REBOOTRESET STAT 118h		
重新启动重置状态清除RSTCTL REBOOTRESET CLR 110	Ch Ch	
CS Reset Status	RSTCTL_CSRESET_STAT	120h
CS复位状态清除RSTCTL CSRESET CLR 124h	•	,

Table 6-34. SYSCTL Registers

REGISTER NAME	ACRONYM	OFFSET		
Reboot Control	SYS_REBOOT_CTL	0000h		
NMI控制和状态SYS NMI CTLSTAT 0004h				
看门狗复位控制SYS_WDTRESET_CTL 0008h				
外围停止控制SYS_PERIHALT_CTL 000Ch				
SRAM Size	SYS_SRAM_SIZE	0010h		
SRAM Bank Enable	SYS_SRAM_BANKEN	0014h		
SRAM存储区保留控制SYS SRAM BANKRET 0018h				
Flash Size	SYS_FLASH_SIZE	0020h		
数字I / 0毛刺滤波器控制SYS_DIO_GLTFLT_CTL 0036	Qh			
IP保护的安全区数据访问解锁SYS SECDATA UNLOCK	0040h			
Master Unlock	SYS_MASTER_UNLOCK	1000h		
引导覆盖请求0 SYS BOOTOVER REQO 1004h				
引导覆盖请求1 SYS_BOOTOVER_REQ1 1008h				
Boot Override Acknowledge SYS_BOOTOVER_ACK_100Ch				
Reset Request	SYS_RESET_REQ	1010h		
复位状态并覆盖SYS RESET STATOVER 1014h				
System Status	SYS_SYSTEM_STAT	1020h		

6.4 MSP432P401x的存储器

MSP432P401x

MCU包括用于一般应用目的的闪存和SRAM。此外,这些器件还包括一个备用存储器(总可用SRAM的一部分),它以低功耗模式保留。

6.4.1闪存

MSP432P401x

MCU包括一个高耐用性低功耗闪存,支持最多20000次写入或擦除周期。闪存是128位宽,从而通过每次提取返回最多4个32位指令(或最多8个16位指令)来实现高代码执行性能。闪存进一步分为两种类型的子区域:主存储器和信息存储器。

从物理角度来看,闪存包括两个存储体,主存储区和信息存储区在两个存储体之间平均分配。这允许应用程序从一个存储体执行同时读取或执行操作,而另一个存储体可能正在进行编程或擦除操作

图6-5显示了MSP432P401x MCU上闪存的存储器映射。

Figure 6-5. Flash Memory Map

6.4.1.1闪存主存储器 (0x0000 0000至0x0003 FFFF)

MSP432P401x

MCU上的闪存主存储器最高可达256KB。闪存主存储器由最多64个扇区组成,每个扇区4KB,最小擦除 粒度为4KB(1扇区)。主存储器可以被视为两个独立的相同存储体,每个存储体最多128KB,允许从 一个存储体同时读取或执行,而另一个存储体正在进行编程或擦除操作。

6.4.1.2闪存信息存储器(0x0020 0000至0x0020 3FFF)

闪存信息存储区域为16KB。闪存信息存储器由四个扇区组成,每个扇区4KB,最小擦除 粒度为4KB(1扇区)。表6-35描述了闪存信息存储器的不同区域和每个区域的内容。 包含设备描述符(TLV)的闪存信息存储区域在工厂配置用于防止写入和擦除操作。

表6-35。闪存信息存储区域

REGION	ADDRESS RANGE	CONTENTS	WRITE AND ERASE PROTECTED?
Bank O, Sector O	0x0020 0000-0x0020 0FFF	Flash Boot-override Ma	ilbox No.
Bank O, Sector 1	0x0020 1000-0x0020 1FFF	设备描述符(TLV)是	
Bank 1, Sector 0	0x0020 2000-0x0020 2FFF	TI BSL No	
Bank 1, Sector 1	0x0020 3000-0x0020 3FFF	TI BSL No	

6.4.1.3闪存操作

闪存提供应用程序可以部署的多种读取和编程操作模式。 在单个编程操作中,最多可以编程128位(存储器字宽)(从1设置为0)。

虽然CPU数据总线是32位宽,但闪存可以在启动闪存编程之前缓冲128位写入数据,从而使软件一次编程大块数据更加无缝和高效。此外,闪存还支持突发写入模式,与单独编程字相比,该模式花费的时间更少。有关时序参数的信息,请参阅。

闪存主区和信息存储区以扇区粒度提供写/擦保护控制,以使软件能够优化诸如大块擦除之类的操作 ,同时保护闪存的某些区域。在低功耗工作模式下,闪存被禁用并进入断电状态以最大限度地减少 泄漏。

有关闪存及其各种操作和配置模式的详细信息,请参阅"MSP432P4xx SimpleLink™微控制器技术参考手册"中的闪存控制器(FLCTL)章节。

NOTE

根据CPU(MCLK)频率和使用的活动模式,可能需要使用单个/多个等待状态访问 闪存。只要工作频率需要更改,应用程序就有责任确保在频率变化生效之前正确 配置闪存访问等待状态。有关闪存等待状态要求的详细信息,请参阅电气规范。

6. 4. 2 SRAM

MSP432P401x MCU支持高达64KB的SRAM, 其余的1MB SRAM区域保留。

SRAM在代码区和SRAM区都有别名。这使得能够从SRAM快速单周期执行代码,因为Cortex-M4处理器将指令提取管道传输到代码空间以外的存储区。与闪存一样,SRAM可以在低功耗工作模式下断电或置于低泄漏保持状态。

图6-6显示了MSP432P401x MCU上SRAM的存储器映射。

Figure 6-6. SRAM Map

6.4.2.1 SRAM Bank使能配置

该应用程序可以优化SRAM的功耗。为此,SRAM分为8

KB存储区,可单独关断。断电的组在有功和低功率工作模式下都保持断电状态,从而在器件在有源和基于保持的低功耗模式之间转换时限制任何不必要的浪涌电流。应用程序还可以在处理中的某个阶段禁用一个(或多个)存储体,并将其启用到另一个阶段。

www.ti.com

禁用特定存储区时,对其地址空间的读取将返回0h,并且将丢弃写入。为了防止存储器映射中的"漏洞",如果启用了特定存储区,则所有较低存储区也被强制为启用状态。这确保了通过一组启用的存储体的连续存储器映射,而不是允许禁用的存储体出现在启用的存储体之间。例如:

- •如果设备中有8个库,则可以接受00111111和00000111的值。
- •00010111之类的值无效,结果库配置自动设置为00011111。
- •例如,对于4存储区SRAM,唯一允许的值为0001,0011,0111和1111。

SRAM的Bank

0始终处于使能状态,无法禁用。对于所有其他存储区,任何启用或禁用更改都会导致SYS_S RAM_BANKEN寄存器的SRAM_RDY位设置为0,直到配置更改生效。在此期间,对SRAM的任何访问都会停止,只有在SRAM存储区准备好进行读或写操作后才能恢复访问。这是透明处理的,不需要任何代码干预。有关SRAM bank启用或禁用延迟,请参阅电气规范中的SRAM特性。

6.4.2.2 SRAM Bank保留配置和备份存储器

该应用可以优化LPM3和LPM4工作模式下SRAM的漏电功耗。要启用此功能,可以单独配置每个SRAM bank以进行保留。启用保留的银行将通过LPM3和LPM4模式保留其数据。应用程序还可以保留已启用的银行的子集。

例如,应用程序可能需要32KB的SRAM来满足其处理需求(四个存储区保持启用状态)。但是,在这四个存储体中,只有一个存储体可能包含必须保留在LPM3或LPM4中的关键数据,而其余存储体完全断电以最小化功耗。

SRAM的Bank

0始终保留,无法关闭。因此,它还可以作为LPM3,LPM4和LPM3.5操作模式中的可能备份存储器运行。在LPM3和LPM4模式的情况下,保留了完整的8KB SRAM bank

- 0, 但在LPM3.5模式的情况下, 仅保留6KB的SRAM bank
- 0。在LPM3.5模式下, 地址范围0x2000 0000到0x2000 007FF之间的2KB SRAM bank 0不会保留。

6.4.3 ROM

MSP432P401x MCU支持32KB ROM, 其余1MB区域保留(供将来升级)。 ROM的低2KB保留用于TI内部用途,对此空间的访问会返回错误响应。 ROM的其余部分用于驱动程序库。

NOTE

整个ROM区域返回写访问的错误响应。 ROM的低2KB总是返回任何访问的错误响应。

6.5 DMA

MSP432P401x

MCU采用8通道ARM μ DMA。这允许8个同时有效的通道用于存储器和外围设备之间的数据传输,而无需使用CPU的带宽(从而在不需要数据处理时通过空闲CPU来降低功率)。此外,DMA在多种低功耗工作模式下保持有效,允许极低功耗状态,其中数据可以低速传输。

为了获得最大的灵活性,最多八个DMA事件源可以映射到八个通道中的任何一个。这是通过DMA中的配置寄存器控制的。此外,DMA最多可以产生四个中断请求(如第6.5.2节所述)。有关DMA配置的详细信息,请参阅MSP432P4xx SimpleLink™微控制器技术参考手册中的DMA章节。

6.5.1 DMA源映射

八个可用通道中的每个通道都有一个控制寄存器,可以选择任何器件级DMA源作为相应通道的最终源 。表6-36列出了可用于映射到每个通道的源,具体取决于源配置(SRCCFG)寄存器的值。 DMA传输在所选DMA源的上升沿启动。

Table 6-36. DMA Sources

SRCCFG = 0 SRCCFG = 1 SRCCFG = 2 SRCCFG = 3 SRCCFG = 4 SRCCFG = 5 SRCCFG = 6 SRCCFG = 7	
通道O保留eUSCI_AO TX eUSCI_BO TXO eUSCI_B3 TX1 eUSCI_B2 TX2 eUSCI_B1 TX3 TAOCCRO AES256_TriggerO	
通道1保留eUSCI_AO RX eUSCI_BO RXO eUSCI_B3 RX1 eUSCI_B2 RX2 eUSCI_B1 RX3 TAOCCR2 AES256_Trigger1	
通道2保留eUSCI_A1 TX eUSCI_B1 TXO eUSCI_B0 TX1 eUSCI_B3 TX2 eUSCI_B2 TX3 TA1CCR0 AES256_Trigger2	
通道3保留eUSCI_A1 RX eUSCI_B1 RXO eUSCI_B0 RX1 eUSCI_B3 RX2 eUSCI_B2 RX3 TA1CCR2保留	
通道4保留eUSCI_A2 TX eUSCI_B2 TXO eUSCI_B1 TX1 eUSCI_B0 TX2 eUSCI_B3 TX3 TA2CCRO保留	
通道5保留eUSCI_A2 RX eUSCI_B2 RXO eUSCI_B1 RX1 eUSCI_B0 RX2 eUSCI_B3 RX3 TA2CCR2保留	
通道6保留eUSCI_A3 TX eUSCI_B3 TXO eUSCI_B2 TX1 eUSCI_B1 TX2 eUSCI_B0 TX3 TA3CCRO DMAEO	
通道7保留eUSCI_A3 RX eUSCI_B3 RXO eUSCI_B2 RX1 eUSCI_B1 RX2 eUSCI_B0 RX3 TA3CCR2 ADC14	

NOTE

任何标记为保留的源都未使用。它可用于软件控制的DMA任务,但通常在未来的设备上保留用于增强目的。

6.5.2 DMA完成中断

对于ARM μ DMA控制器,软件通常负责维护已完成其操作的通道列表。为了提供进一步的灵活性,MS P432P401x DMA支持四个DMA完成中断,这些中断按以下方式映射:

•DMA INTO: 除己映射到DMA INT1, DMA INT2或DMA INT3的所有完成事件外的所有完成事件的逻辑或。

•DMA INT1, DMA INT2, DMA INT3: 可以映射到八个通道中任何一个的DMA完成事件。

NOTE

软件必须确保将DMA INT1, DMA INT2和DMA INT3映射到不同的通道, 以便相同的通 道不会在NVIC上产生多个中断。

6.5.3 DMA访问权限

DMA可以访问设备的所有存储器和外设配置接口。如果设备配置为IP保护,则对闪存 的DMA访问仅限于闪存主区和信息存储区的下半部分(第二组)。这可以防止DMA被用 作闪存的上半部分(第一存储体)中的未授权访问源,其中安装了安全数据区域。

6.6内存映射访问详细信息

MSP432P401x MCU上的总线系统包含四个主机,可以启动各种类型的事务:

- ICODE: Cortex-M4 instruction fetch bus. Accesses the Code zone only
- •DCODE: Cortex-M4数据和文字加载/存储总线。仅访问代码区域。调试器访问Code区域也出现在此总线上。

115

www.ti.com

•SBUS: Cortex-M4数据读写总线。仅访问代码区和PPB内存空间以外的所有区域。调试器访问此空间也会出现在此总线上。

DMA: Access to all zones except the PPB memory space

NOTE

PPB空间仅专用于Cortex-M4专用外设总线。

6.6.1主从访问优先级设置

表6-37列出了所有可用的主服务器(行)及其对从服务器(列)的访问权限。如果多个主设备可以访问一个从设 备,则表格会列出访问优先级(如果需要仲裁)。表中较小的数字表示较高的仲裁优先级(优先级始终固定)。

表6-37。主和从属访问优先级

	FLASH MEMORY	ROM	SRAM	PERIPHERALS
ICODE	3	2	4	N/A
DCODE	2 (1)	1	2	N/A
SBUS	N/A	N/A	3	2
DMA	1 ⁽²⁾	N/A	1 (3)	1

- (1) 如果设备在安全模式下运行,则可能会限制从DCODE到闪存的访问。
- (2) 如果设备在启用IP保护的安全模式下运行,则从DMA到闪存的访问仅限于Bank

6.6.2存储器映射访问响应

表6-38总结了对MSP432P401x MCU整个存储器映射的访问响应。

Table 6-38. Memory Map Access Response

ADDRESS RANGE	DESCRIPTION	READ (1)	WRITE (1)	INSTRUCTION FETCH (1)
0x0000_0000-0x0003_FFFF	Flash Main Memory	OK	OK (2)(3)	OK
0x0004_0000-0x001F_FFFF	Reserved	Error	Error	Error
0x0020_0000-0x0020_3FFF	Flash Information Memory	OK	OK ⁽³⁾	OK
0x0020_4000-0x00FF_FFFF	Reserved	Error	Error	Error
0x0100_0000-0x0100_FFFF	SRAM	OK	OK	OK
0x0101_0000-0x01FF_FFFF	Reserved	Error	Error	Error
0x0200_0000-0x0200_03FF	ROM (Reserved)	Error	Error	Error
0x0200_0400-0x0200_7FFF	ROM	OK	Error	OK
0x0200_8000-0x1FFF_FFFF	Reserved	Error	Error	Error
0x2000_0000-0x2000_FFFF	SRAM	OK	OK	OK
0x2001_0000-0x21FF_FFFF	Reserved	Error	Error	Error
0x2200_0000-0x23FF_FFFF	SRAM bit-band alias	OK ⁽⁴⁾	OK	Error
0x2400_0000-0x3FFF_FFFF	Reserved	Error	Error	Error
0x4000_0000-0x4001_FFFF	Peripheral	OK	OK	Error
0x4002_0000-0x41FF_FFFF	Reserved	Error	Error	Error

- (3) 加里岛区自田了写保护。 刚勿略对该抽扯的写墁作
- (4) 如果该位清零,则从位带区域读取返回00h,如果该位置位则返回01h。

表6-38。	内存映射访问响应	(4去)
衣ひしるの。	29.4十帙别 切 19.9929	し纵し

ADDRESS RANGE	DESCRIPTION	READ (1)	WRITE (1)	INSTRUCTION FETCH ⁽¹⁾
0x4200_0000-0x43FF_FFFF	Peripheral bit-band alias	OK ⁽⁴⁾	OK	Error
0x4400_0000-0xDFFF_FFFF	Reserved	Error	Error	Error
0xE000_0000-0xE003_FFFF	Internal PPB (5)	OK	OK	Error
0xE004_0000-0xE004_0FFF	TPIU (External PPB)	OK	OK	Error
0xE004_1000-0xE004_1FFF	Reserved	Reserved	Reserved	Error
0xE004_2000-0xE004_23FF	Reset Controller (External PPB)	ОК	ОК	Error
0xE004_2400-0xE004_2FFF	Reserved	Reserved	Reserved	Error
0xE004_3000-0xE004_33FF	SYSCTL (External PPB)	OK	OK	Error
0xE004_3400-0xE004_3FFF	Reserved	Reserved	Reserved	Error
0xE004_4000-0xE004_43FF	SYSCTL (External PPB)	OK	OK	Error
0xE004_4400-0xE00F_EFFF	Reserved	Reserved	Reserved	Error
0xE00F_F000-0xE00F_FFFF	ROM Table (External PPB)	OK	OK	Error
0xE010_0000-0xFFFF_FFF	Reserved	Error	Error	Error

⁽⁵⁾ 有关内部PPB存储器映射的详细信息,请参阅www.arm.com上的Cortex-M4技术参考手册。

6.7中断

MSP432P401x

MCU上的Cortex-M4处理器实现了具有64个外部中断线和8个优先级的NVIC。从应用程序的角度来看,设备级的中断源分为两类,即NMI和用户中断。在内部,CPU异常模型以固定且可配置的优先级顺序处理各种异常(内部和外部事件,包括CPU指令,存储器和总线故障条件)。有关处理各种异常优先级(包括CPU重置和故障模型)的详细信息,请参阅www.arm.com上的ARM-V7M体系结构参考手册。

6.7.1 NMI

NVIC的NMI输入具有以下可能的来源:

- External NMI pin (if configured in NMI mode)
- · Oscillator fault condition
- Power Supply System (PSS) generated interrupts
- Power Control Manager (PCM) generated interrupts

6.7.2设备级用户中断

表6-39列出了各种中断源及其与NVIC输入的连接

NOTE

某些源可能具有多个中断条件,在这种情况下,必须检查源的相应中断状态/标志寄存器以区分生成条件。

Table 6-39. NVIC Interrupts

NVIC中断输入源源		
INTISR[0]	PSS (1)	
INTISR[1]	CS ⁽¹⁾	

(1) 此源也可以映射到系统NMI。更多详细信息,请参见"MSP432P4xx SimpleLink™微控制器技术参考手册"。

Table 6-39. NVIC Interrupts (continued)

	Table 0-3	3. NVIC interrupts (continued)
NVIC中断输入源源		
INTISR[2]	PCM (1)	
INTISR[3]	WDT_A	
INTISR[4]	FPU_INT (2)	Combined interrupt from flags in the FPSCR (part of Cortex-M4 FPU)
INTISR [5] FI	CTL闪存控制器中断标	示志
	OMP EO Comparator E	
· ·	OMP El Comparator E	
INTISR[8]	Timer_A0	TA0CCTL0.CCIFG
INTISR [9] Ti	imer AO TAOCCTLx.CC	IFG(x = 1到4),TAOCTL.TAIFG
INTISR[10]	Timer_A1	TA1CCTL0.CCIFG
INTISR [11] T	imer_A1 TA1CCTLx.Co	CIFG(x = 1到4),TA1CTL.TAIFG
INTISR[12]	Timer_A2	TA2CCTL0.CCIFG
		CIFG(x = 1到4),TA2CTL.TAIFG
INTISR[14]	Timer_A3	TA3CCTL0.CCIFG
	_	CIFG(x = 1到4),TA3CTL.TAIFG
	_	京式TX,RX和状态标志
		其式TX,RX和状态标志
		艺式TX, RX和状态标志
		艺式TX,RX和状态标志
INTISR[20]	eUSCI_B0	SPI or I ² C mode TX, RX, and Status Flags (I ² C in multiple-slave mode)
INTISR[21]	eUSCI_B1	SPI or I ² C mode TX, RX, and Status Flags (I ² C in multiple-slave mode)
INTISR[22]	eUSCI_B2	SPI or I ² C mode TX, RX, and Status Flags (I ² C in multiple-slave mode)
INTISR[23]	eUSCI_B3	SPI or I ² C mode TX, RX, and Status Flags (I ² C in multiple-slave mode)
		/ IN / HI-IFG, RDYIFG, OVIFG, TOVIFG
	imer32_INT1_Timer32	
· ·	imer32_INT2_Timer32	
INTISR [27] T	imer32 INTC Timer32 AES256	Z组合中断 AESRDYIFG
INTISR [29] R INTISR[30]	DMA_ERR	TEVIFG, AIFG, RTOPSIFG, RT1PSIFG DMA error interrupt
	MA INT3 DMA完成中断	
	MA INT2 DMA完成中断	
	MA INT1 DMA完成中断	
INTISR [34]	DMA_INTO ⁽³⁾	DMA completion interrupt0
INTISR [35] I	/ O端口P1 P1IFG.x	
INTISR [36] I	/ 0端口P2 P2IFG. x	
INTISR [37] I	/ 0端口P3 P3IFG.x	
INTISR [38] I	/ 0端口P4 P4IFG.x	
INTISR [39] I	/ O端口P5 P5IFG.x	
INTISR [40] I	/ 0端口P6 P6IFG.x	
INTISR[41]	Reserved	
INTISR[42]	Reserved	
INTISR[43]	Reserved	
INTISR[44]	Reserved	
INTISR[45]	Reserved	
INTISR[46]	Reserved	

- (2)由于多个浮点异常,Cortex-M4的FPU可能会产生中断。软件负责处理和清除FPSCR中的中断标志。
- (3) DMA_INTO具有与DMA_INT1, DMA_INT2或DMA_INT3不同的功能。更多详细信息,请参见第6.5.2节。

Table 6-39. NVIC Interrupts (continued)

NVIC中断输入源源		
INTISR[47]	Reserved	
INTISR[48]	Reserved	
INTISR[49]	Reserved	
INTISR[50]	Reserved	
INTISR[51]	Reserved	
INTISR[52]	Reserved	
INTISR[53]	Reserved	
INTISR[54]	Reserved	
INTISR[55]	Reserved	
INTISR[56]	Reserved	
INTISR[57]	Reserved	
INTISR[58]	Reserved	
INTISR[59]	Reserved	
INTISR[60]	Reserved	
INTISR[61]	Reserved	
INTISR[62]	Reserved	
INTISR[63]	Reserved	

NOTE

中断服务程序(ISR)必须确保在从ISR返回之前清除源外设中的相关中断标志。如果不这样做,即使事件已由ISR处理,相同的中断也可能被错误地再次触发为新事件。由于在外设的中断标志寄存器中执行写命令和实际写反映之间可能存在几个延迟周期,因此建议在退出ISR之前执行写操作并等待几个周期。或者,应用程序可以执行显式读取以确保在退出ISR之前清除该标志。

6.8系统控制

系统控制包括管理设备整体行为的模块,包括电源管理,操作模式,时钟,重置处理和用户配置设置。

6.8.1设备重置

MSP432P401x

MCU支持多种复位。每个类导致设备逻辑的不同启动级别,从而允许应用程序开发人员在 代码开发和调试期间基于重置要求启动不同的重置。以下小节介绍了设备中的重置类别

6.8.1.1电源开/关复位 (POR)

POR启动应用程序设置和设备配置信息的完整初始化。

这类复位可以由PSS, PCM, RSTn引脚, DCO外部电阻器短路故障时的时钟系统或器件仿真逻辑(通过调试器)启动。从应用程序的角度来看,所有POR源都会将设备返回到相同的初始化状态。

NOTE

根据复位源,器件可能会出现与POR不同的唤醒延迟。该实现使得能够优化重置恢复时间。

www.ti.com

6.8.1.2重启重置

重启复位与POR相同,允许应用模拟POR类复位,无需重启器件或激活RSTn引脚。它也可以通过调试器启动,因此不会影响与设备的调试连接。另一方面,POR导致调试断开。

6.8.1.3硬复位

硬重置会重置应用程序设置或修改的所有模块。这包括Cortex-M4的所有外设和非调试逻辑。MSP432P401x

MCU支持多达16个硬复位源。表6-40列出了重置源分配。复位控制器寄存器可用于识别器件中的复位源。有关详细信息,请参阅"MSP432P4xx

SimpleLink™微控制器技术参考手册"中的"复位控制器"一章。

	衣0-40。 MSP432P401x 使复位源		
RESET SOURCE NUMBER	SOURCE		
0 SYSRES	SETREQ(Cortex-M4的系统复位输出)		
1	WDT_A Time-out (1)		
2	WDT_A Password Violation (1)		
3	FLCTL (2)		
4	Reserved (3)		
5	Reserved (3)		
6	Reserved (3)		
7	Reserved (3)		
8	Reserved (3)		
9	Reserved (3)		
10	Reserved (3)		
11	Reserved (3)		
12	Reserved (3)		
13	Reserved ⁽³⁾		
14	CS ⁽⁴⁾		
15	PCM (5)		

表6-40。 MSP432P401x硬复位源

- (1) WDT A生成的复位可以映射为硒复位或软复位
- (2) 如果检测到电压异常只能破坏闪存读取而不破坏系统的其余部分,则FLCTL可以产生复位。
- (3) 保留表示此種复位源当前未使用。 留待将来扩展
- (4) CS在技术上不是硬复位源,但如果在时钟源或频率变化期间发生硬复位,CS可以延长复位以允许时铀在释放系统之前趋空下来。 这减小了不确定行为的可能性
- (5) PCM在技术上不是硬复位的来源,但如果硬复位导致电源模式改变,PCM可以延长复位以允许系统在释放复位之前稳定。这减少了不确定行为的可能性。

6.8.1.4软复位

软复位仅复位系统的执行组件,即Cortex-M4和WDT_A中的非调试逻辑。此重置对所有其他外围设备和系统组件仍然是非侵入性的。 MSP432P401x

MCU支持多达16个软复位源。表6-41列出了重置源分配。复位控制器寄存器可用于识别设计中的复位源

有关详细信息,请参阅"MSP432P4xx SimpleLink™微控制器技术参考手册"中的"复位控制器"一章。

	衣0-41。 MSP432P4U1x
RESET SOURCE NUMBER	SOURCE
O CPU LO	OCKUP条件 (Cortex-M4的LOCKUP输出)
1	WDT_A Time-out (1)
2	WDT_A Password Violation (1)
3	Reserved ⁽²⁾
4	Reserved ⁽²⁾
5	Reserved (2)
6	Reserved ⁽²⁾
7	Reserved ⁽²⁾
8	Reserved ⁽²⁾
9	Reserved ⁽²⁾
10	Reserved ⁽²⁾
11	Reserved ⁽²⁾
12	Reserved ⁽²⁾
13	Reserved ⁽²⁾
14	Reserved ⁽²⁾
15	Reserved ⁽²⁾

表6-41。 MSP432P401x软复位源

NOTE

为了支持和增强复位条件的调试,复位控制器位于器件的PPB上。这样,即使器件处于硬复位状态或软复位状态,复位控制器也可以保持可访问状态。复位控制器允许覆盖硬复位和软复位,从而允许应用重新获得对器件的控制并隔离卡住复位的原因。

6.8.2电源系统 (PSS)

PSS控制设备的所有电源相关功能。它由以下组件组成。

6. 8. 2. 1 VCCDET

VCCDET监视器件的DVCC和AVCC引脚上施加的输入电压。当发现VCC低于VCCDET跳变点的工作范围时,它会产生掉电条件,从而启动器件复位(POR类复位)。

⁽¹⁾ WDT A生成的复合可以映射为确复给或软复合

⁽²⁾ 保留表示此软复位源当前未使用,留待将来扩展。

6. 8. 2. 2高端供电监控器和监控器 (SVSMH)

SVSMH监督和监控VCC。

SVSMH具有可编程阈值设置,如果VCC低于所需阈值,则应用程序可以使用该设置生成复位或中断。在管理员模式下,SVSMH生成器件复位(POR类复位)。在监控模式下,SVSMH会产生中断。如果不需要监控和监控电源电压,也可以禁用SVSMH(进一步节省功耗)。

6.8.2.3核心电压调节器

MSP432P401x MCU可以编程为使用LDO或DC-DC作为器件核心域中数字逻辑的稳压器。DC-DC为高电流高性能应用提供了显着的功率效率提升。

LDO是一款高效稳压器,可在较低的VCC范围和超低功耗工作模式下提供功率优势。

核心工作电压(LDO或DC-DC的输出)由器件自动设置,具体取决于所选的器件工作模式(更多详细信息,请参见表6-42)。该器件可在LDO和DC-DC工作模式之间实现无缝切换,并实现无缝DC-DC故障安全机制。

6.8.3 电源控制管理器 (PCM)

PCM控制设备的操作模式和模式之间的切换。这由应用程序控制,应用程序可以选择满足其功率和性能要求的模式。 表6-42列出了器件的工作模式。

Table 6-42. MSP432P401x Operating Modes

OPERATING MODE	DESCRIPTION
AM LDO VCOREO基	于LDO的有源模式,正常性能,核心电压等级0
LPMO LDO VCOREO E	5上面相同,但CPU为OFF(无代码执行)
AM_LDO_VCORE1基:	于LDO的有源模式,最高性能,核心电压等级1
LPMO_LDO_VCORE1 =	5上面相同,但CPU为OFF(无代码执行)
AM_DCDC_VCOREO基	于DC-DC的主动模式,正常性能,核心电压等级0
	5上面相同,但CPU为OFF(无代码执行)
AM DCDC VCORE1基	于DC-DC的主动模式,最大性能,核心电压等级1
LPMO_DCDC_VCORE1-	5上面相同,但CPU为OFF(无代码执行)
AM_LF_VCOREO基-	FLDO的低频有源模式,核心电压等级为0
LPMO_LF_VCOREO =	上面相同,但CPU为OFF(无代码执行)
AM LF VCORE1基-	FLDO的低频有源模式,核心电压等级为1
LPMO LF VCORE1与	上面相同,但CPU为OFF(无代码执行)
LPM3_VCOREO基于	-LDO的低功耗模式,具有完全状态保持,核心电压等级0,RTC和WDT可以激活
LPM3_VCORE1基于	-LDO的低功耗模式,具有完全状态保持,核心电压等级1,RTC和WDT可以激活
LPM4_VCOREO基于I	DO的低功耗模式,具有完全状态保持,核心电压等级为0,所有外设均被禁用。
LPM4 VCORE1基于	LDO的低功耗模式,具有完全状态保持,核心电压等级1,所有外设均禁用
LPM3.5	LDO based low-power mode, core voltage level 0, no retention of peripheral registers, RTC and WDT can be active
LPM4.5内核申	压关闭,仅通过引脚复位或唤醒功能I / 0唤醒

6.8.4时钟系统(CS)

CS包含设备中各种时钟的来源。它还控制源与设备中不同时钟之间的映射。

6.8.4.1 LFXT

LFXT支持32.768 kHz低频晶体。

6.8.4.2 HFXT

HFXT支持高达48 MHz的高频晶体。

6, 8, 4, 3 DCO

DCO是一款高功效的可调谐内部振荡器,可产生高达48 MHz的频率。使用外部精密电阻时,DCO还支持高精度模式。

6.8.4.4超低功耗低频振荡器 (VLO)

VLO是一款超低功耗内部振荡器,可在9.4 kHz的典型频率下生成低精度时钟。

6.8.4.5低频参考振荡器(REFO)

REFO可用作32.768 kHz时钟的备用低功耗低精度源,而不是LFXT。 REFO也可以编程为产生128 kHz时钟。

6.8.4.6模块振荡器 (MODOSC)

MODOSC是一个内部时钟源,具有非常低的延迟唤醒时间。它的出厂校准频率为25 MHz。 MODOSC通常用于向不同模块提供"请求时钟"。它可以用作1 Msps采样率的ADC操作的时钟源。

6.8.4.7系统振荡器 (SYSOSC)

SYSOSC是一个内部时钟源,出厂校准频率为5 MHz。它可以200 ksps采样率用作ADC操作的时钟源。此外,SYSOSC还用于各种系统级控制和管理操作的定时。

6.8.4.8故障安全机制

所有使用外部组件运行的时钟源都具有内置的故障安全机制,可自动切换到相关的备份源,从而确保虚假或不稳定的时钟不会影响设备操作。表6-43显示了不同类型的时钟源故障和相应的故障安全时钟。

Table 6-43. Fail-Safe Clocks

Fault Type	Fail-Safe Clock	
LFXT oscillator fault	REFO clock	
HFXT oscillator fault	SYSOSC clock	
内部电阻模式下DCO外部电阻开路故障DC		

www.ti.com

6.8.5系统控制器(SYSCTL)

SYSCTL是一组设备的各种其他功能,包括SRAM组配置,RSTn / NMI功能选择和外设暂停控制。此外,SYSCTL还支持JTAG和SWD锁定以及IP保护等设备安全功能,可用于保护对整个设备存储器映射或闪存的某些选定区域的未授权访问。有关详细信息,请参阅"MSP432P4xx

SimpleLink™微控制器技术参考手册"中的"系统控制器"一章。

NOTE

与Cortex-M4系统控制寄存器(在内部PPB空间中)的情况一样,系统控制器模块寄存器映射到Cortex-M4外部PPB。这样即使硬重置或软重置处于活动状态,也可以访问系统控制器模块。

6.9外围设备

6.9.1数字I / 0.

最多可实现10个8位I / 0端口:

- •所有单独的I/0位均可独立编程。
- •可以实现输入,输出和中断条件的任意组合。
- 所有端口均可编程上拉或下拉。
- •端口P1至P6提供边沿可选中断功能。
- •端口P1至P6上的LPM3, LPM4, LPM3.5和LPM4.5模式的唤醒功能。
- •所有指令均支持对端口控制寄存器的读写访问。
- •端口可以按字节或成对访问(16位宽度)。
- •端口P1至P10和PI的所有引脚均支持电容触摸功能。
- •引脚P2.0至P2.3上的四个20 mA高驱动I / 0.
- •所选数字I / 0上的毛刺过滤功能。

6.9.1.1数字I / 0上的毛刺滤波

一些具有中断和唤醒功能的数字1 /

0可以通过使用模拟毛刺滤波器来抑制毛刺,以防止在器件工作期间意外中断或唤醒。模拟滤波器可抑制最小250 ns的宽毛刺。默认情况下,这些所选数字I /

0上的毛刺滤波器已启用。如果应用程序中不需要毛刺过滤功能,则可以使用SYS_DIO_GLTF LT_CTL寄存器绕过该毛刺过滤功能。当该寄存器中的GLTFLT_EN位清零时,所有数字I/0上的毛刺滤波器都被旁路。当通过对相应的PySEL0.x和PySEL1.x寄存器进行编程将毛刺滤波器配置为外设或模拟功能时,可以在数字I/0上自动旁路。

NOTE

毛刺滤波器在MSP432P401x MCU上的以下数字I / 0上实现: P1.0, P1.4, P1.5, P3.0, P3.4, P3.5, P6.6和P6.7。

6.9.2端口映射控制器 (PMAPCTL)

端口映射控制器允许灵活和可重新配置的数字功能映射。

6.9.2.1端口映射定义

MSP432P401x

MCU上的端口映射控制器允许在端口P2, P3和P7上重新配置数字功能映射。表6-44列出了可用的映射。表6-45列出了支持端口映射的所有引脚的默认设置。

表6-44。端口映射助记符和函数

	720 110	
VALUE PxM	APy MNEMONIC输入引肽	J功能输出引脚功能
O PM NO	NE无DVSS	
1 PM UC	AOCLK eUSCI AO时钟输	入/输出(由eUSCI控制的方向)
2	PM UCAORXD eUSC	I AO UART RXD(由eUSCI控制的方向 - 输入)
2	PM_UCAOSOMI eUS	CI_AO SPI从机输出主机(由eUSCI控制的方向)
3	PM_UCAOTXD eUSC	I_AO UART TXD(由eUSCI控制的方向 - 输出)
3	PM UCAOSIMO eUS	CI AO主站输出的SPI从站(由eUSCI控制的方向)
4 PM UC	BOCLK eUSCI BO时钟输	i入/输出(由eUSCI控制的方向)
5	PM_UCB0SDA	eUSCI_B0 I ² C data (open drain and direction controlled by eUSCI)
3	PM_UCBOSIMO eUS	CI_BO主站输出的SPI从站(由eUSCI控制的方向)
6	PM_UCB0SCL	eUSCI_B0 I ² C clock (open drain and direction controlled by eUSCI)
O	PM UCBOSOMI eUS	CI BO SPI从机输出主机(由eUSCI控制的方向)
7 PM UC	A1STE eUSCI A1 SPI从	发送使能(由eUSCI控制的方向)
8 PM UC	A1CLK eUSCI A1时钟输	;入/输出(由eUSCI控制的方向)
9	PM_UCA1RXD_eUSC	I_A1 UART RXD(由eUSCI控制的方向 - 输入)
9	PM UCA1SOMI eUS	CI A1 SPI从机输出主机(由eUSCI控制的方向)
10	PM UCA1TXD eUSC	I A1 UART TXD(由eUSCI控制的方向 - 输出)
10	PM UCA1SIMO eUS	CI A1主站输出的SPI从站(由eUSCI控制的方向)
11 PM UC	CA2STE eUSCI A2 SPIル	人发送使能(由eUSCI控制的方向)
12 PM_U(CA2CLK eUSCI_A2时钟箱	入/输出(由eUSCI控制的方向)
13	PM_UCA2RXD eUSC	I_A2 UART RXD(由eUSCI控制的方向 - 输入)
13	PM UCA2SOMI eUS	CI A2 SPI从机输出主机(由eUSCI控制的方向)
14	PM UCA2TXD eUSC	I A2 UART TXD(由eUSCI控制的方向 - 输出)
14	PM UCA2SIMO eUS	SCI A2主机输出中的SPI从机(由eUSCI控制的方向)
15 PM UC	CB2STE eUSCI B2 SPIん	人发送使能(由eUSCI控制的方向)
16 PM U	CB2CLK eUSCI B2时钟轴	入/输出(由eUSCI控制的方向)
17	PM_UCB2SDA	eUSCI_B2 I ² C data (open drain and direction controlled by eUSCI)
17	PM UCB2SIMO eUS	CI B2主机输出中的SPI从机(由eUSCI控制的方向)
18	PM_UCB2SCL	eUSCI_B2 I ² C clock (open drain and direction controlled by eUSCI)
10	PM UCB2SOMI eUS	CI B2 SPI从机输出主机(由eUSCI控制的方向)
19 PM TA	AO.O TAO CCRO捕获输)	CCIOA TAO CCRO比较输出OutO
20 PM TA	AO.1 TAO CCR1捕获输)	CCI1A TAO CCR1比较输出Out1
	-	CCI2A TAO CCR2比较输出Out2
		CCI3A TAO CCR3比较输出Out3
		CCI4A TAO CCR4比较输出Out4
		CCIIA TAI CCR1比较输出Out1
		CCI2A TA1 CCR2比较输出Out2
	-	CCI3A TA1 CCR3比较输出Out3
	•	CCI4A TA1 CCR4比较输出Out4

表6-44。端口映射助记符和函数(续)

VALUE PxM	IAPv MNEMONTC输入引肽		
		r AO外部时钟输入无	
28	PM_C0OUT	None	Comparator-E0 output
29	PM TA1CLK Time	r A1外部时钟输入无	
29	PM_C1OUT	None	Comparator-E1 output
30	PM_DMAE0	DMAE0 input	None
30	PM_SMCLK	None	SMCLK
31 (0FFh)	(1) PM_ANALOG禁用输出	驱动器和输入施密特触发器,以防止	施加模拟信号时的寄生交叉电流。

(1) PM_ANALOG助记符的值为31. 端口映射寄存器为5位宽,高位被忽略,导致读取值为31。

Table 6-45. Default Mapping

DIN A TABLIAD	ANDMONTORA) THEFT AR	+A 11 71 Blaz + AE			
	MNEMONIC输入引脚功能		2.4.		
		I从发送使能(由eUSCI控制的			
		中输入/输出(由eUSCI控制的力			
P2.2/PM_UCA1RXD/ PM_UCA1SOMI	PM_UCA1RXD/ PM_UCA1SOMI	eUSCI_A1 UART RXD (direction eUSCI_A1 SPI slave out master	on controlled by eUSCI – Input) in (direction controlled by eUSCI)		
P2.3/PM_UCA1TXD/ PM_UCA1SIMO	PM_UCA1TXD/ PM_UCA1SIMO		n controlled by eUSCI – output)/ ut (direction controlled by eUSCI)		
P2.4/PM_TA0.1 ⁽¹⁾	PM_TA0.1	TA0 CCR1 capture input CCI1A	TA0 CCR1 compare output Out1		
P2.5/PM_TA0.2 ⁽¹⁾	PM_TA0.2	TA0 CCR2 capture input CCI2A	TA0 CCR2 compare output Out2		
P2.6/PM_TA0.3 ⁽¹⁾	PM_TA0.3	TA0 CCR3 capture input CCI3A	TA0 CCR3 compare output Out3		
P2.7/PM_TA0.4 ⁽¹⁾	PM_TA0.4	TA0 CCR4 capture input CCI4A	TA0 CCR4 compare output Out4		
P3.0 / PM UCA2STE PM	UCA2STE eUSCI A2 SP	I从发送使能(由eUSCI控制的	方向)		
P3.1 / PM_UCA2CLK PM	I UCA2CLK eUSCI A2时包	中输入/输出(由eUSCI控制的7	方向)		
P3.2/PM_UCA2RXD/ PM_UCA2SOMI	PM_UCA2RXD/ PM_UCA2SOMI	eUSCI_A2 UART RXD (direction eUSCI_A2 SPI slave out master	on controlled by eUSCI – input)/ in (direction controlled by eUSCI)		
P3.3/PM_UCA2TXD/ PM_UCA2SIMO	PM_UCA2TXD/ PM_UCA2SIMO				
P3.4 / PM UCB2STE PM	P3.4 / PM UCB2STE PM UCB2STE eUSCI B2 SPI从发送使能(由eUSCI控制的方向)				
P3.5 / PM_UCB2CLK PM	UCB2CLK eUSCI B2时包	中输入/输出(由eUSCI控制的7	方向)		
P3.6/PM_UCB2SIMO/ PM_UCB2SDA	PM_UCB2SIMO/ PM_UCB2SDA	eUSCI_B2 SPI slave in master of eUSCI_B2 I ² C data (open drain a	ut (direction controlled by eUSCI)/ and direction controlled by eUSCI)		
P3.7/PM_UCB2SOMI/ PM_UCB2SCL	PM_UCB2SOMI/ PM_UCB2SCL		in (direction controlled by eUSCI)/ and direction controlled by eUSCI)		
P7.0/PM_SMCLK/ PM_DMAE0	PM_SMCLK/ PM_DMAE0	DMAE0 input	SMCLK		
P7.1/PM_C0OUT/ PM_TA0CLK	PM_C0OUT/ PM_TA0CLK	Timer_A0 external clock input Comparator-E0 output			
P7.2/PM_C1OUT/ PM_TA1CLK	PM_C1OUT/ PM_TA1CLK	Timer_A1 external clock input Comparator-E1 output			
P7.3 / PM TAO.0 PM TAO.0 TAO CCRO捕获输入CCIOA TAO CCRO比较输出OutO					
P7.4/PM_TA1.4/C0.5 ⁽¹⁾	PM_TA1.4	TA1 CCR4 capture input CCI4A	TA1 CCR4 compare output Out4		
P7.5/PM_TA1.3/C0.4 ⁽¹⁾	PM_TA1.3	TA1 CCR3 capture input CCI3A	TA1 CCR3 compare output Out3		
P7.6/PM_TA1.2/C0.3 ⁽¹⁾	PM_TA1.2	TA1 CCR2 capture input CCI2A	TA1 CCR2 compare output Out2		
P7.7/PM_TA1.1/C0.2 ⁽¹⁾	PM_TA1.1	TA1 CCR1 capture input CCI1A	TA1 CCR1 compare output Out1		

(1) 64引脚RGC封装不可用。

6.9.3 Timer A

定时器TAO, TA1, TA2和TA3是16位定时器/计数器(Timer_A类型),每个定时器/计数器有5个捕获/比较寄存器。每个定时器支持多个捕获/比较,PWM输出和间隔定时。每个都有广泛的中断功能。可以在溢出条件下从计数器产生中断,并从每个捕获/比较寄存器产生中断。

6.9.3.1 Timer A信号连接表

表6-46至表6-49列出了器件上Timer_A模块的接口信号以及接口信号与相应引脚或内部信号的连接。以下规则适用于使用的命名约定。

- •第一列列出了将时钟和/或触发器输入定时器的器件级引脚或内部信号。默认假设是这些是引脚,除非特别标记为(内部)。用于内部信号的命名法如下:
 - CxOUT: 比较器x的输出。
 - TAx Cy: 定时器x, 捕捉/比较模块y的输出。
- •第二列列出了定时器模块的输入信号。
- •第三列列出了定时器的子模块,还包含功能(定时器,捕捉(输入或触发)或比较(输出或PWM))。
- 第四列列出了定时器模块的输出信号。
- •第五列列出了由Timer输出驱动的器件级引脚或内部信号。

默认假设是这些是引脚,除非特别标记为(内部)。

NOTE

表中列出的引脚名称是完整的名称。软件负责确保将引脚用于目标定时器功能的预期模式。

NOTE

由定时器输出提供的内部信号可以连接到器件中的其他模块(例如,其他定时器或ADC)(作为触发源)。

Table 6-46. TA0 Signal Connections

DEVICE INPUT PIN OR INTERNAL SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT PIN OR INTERNAL SIGNAL
P7.1/PM_C0OUT/PM_TA0CLK	TACLK	Timer		N/A
ACLK (internal)	ACLK		N/A	
SMCLK (internal)	SMCLK	rimer		
C0OUT (internal)	INCLK			
P7.3/PM_TA0.0	CCI0A			
DV _{SS}	CCI0B	CCR0	TAO	P7.3/PM_TA0.0
DV _{SS}	GND	CCRU	TAU	TA0_C0 (internal)
DV _{CC}	V _{cc}			
P2.4/PM_TA0.1	CCI1A	CCR1		P2.4/PM_TA0.1
ACLK (internal)	CCI1B		TA1	TA0_C1 (internal)
DV _{SS}	GND			ADC14 (internal)
DV _{CC}	V _{CC}			$ADC14SHSx = \{1\}$
P2.5/PM_TA0.2	CCI2A			P2.5/PM_TA0.2
C0OUT (internal)	CCI2B	CCR2	TA2	TA0_C2 (internal)
DV _{SS}	GND	CCR2 TA2	IAZ	ADC14 (internal)
DV _{CC}	V_{CC}			$ADC14SHSx = \{2\}$
P2.6/PM_TA0.3	CCI3A			
C1OUT (internal)	CCI3B	CCR3	TA3	P2.6/PM_TA0.3
DV_SS	GND	CCR3	IAS	TA0_C3 (internal)
DV _{CC}	V _{cc}			
P2.7/PM_TA0.4	CCI4A			
TA1_C4 (Internal)	CCI4B	CCR4	T	P2.7/PM_TA0.4 TA0_C4 (internal)
DV _{SS}	GND		TA4	
DV _{CC}	V _{cc}			

Table 6-47. TA1 Signal Connections

DEVICE INPUT PIN OR INTERNAL SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT PIN OR INTERNAL SIGNAL	
P7.2/PM_C1OUT/PM_TA1CLK	TACLK	T	mer N/A	N/A	
ACLK (internal)	ACLK				
SMCLK (internal)	SMCLK	riner			
C1OUT (internal)	INCLK				
P8.0/UCB3STE/TA1.0/C0.1	CCI0A				
DV_SS	CCI0B	CCR0	TA0	P8.0/UCB3STE/TA1.0/C0.1	
DV_SS	GND	CCRO	TAU	TA1_C0 (internal)	
DV _{CC}	V_{CC}				
P7.7/PM_TA1.1/C0.2	CCI1A	CCR1		P7.7/PM_TA1.1/C0.2 TA1_C1 (internal) ADC14 (internal) ADC14SHSx = {3}	
ACLK (internal)	CCI1B		TA1		
DV _{SS}	GND	CCRT			
DV _{CC}	V_{CC}				
P7.6/PM_TA1.2/C0.3	CCI2A		TA2	P7.6/PM_TA1.2/C0.3 TA1_C2 (internal) ADC14 (internal) ADC14SHSx = {4}	
C0OUT (internal)	CCI2B	CCR2			
DV_SS	GND	CCR2			
DV _{CC}	V_{CC}				
P7.5/PM_TA1.3/C0.4	CCI3A			P7.5/PM_TA1.3/C0.4	
C1OUT (internal)	CCI3B	CCD2	TA3		
DV _{SS}	GND	CCR3	CCR3 IA3	IAS	TA1_C3 (internal)
DV _{CC}	V _{CC}				
P7.4/PM_TA1.4/C0.5	CCI4A			P7.4/PM_TA1.4/C0.5 TA1_C4 (internal)	
TA0_C4 (internal)	CCI4B	CCR4	TA4		
DV _{SS}	GND		1 A4		
DV _{CC}	V _{CC}				

Table 6-48. TA2 Signal Connections

DEVICE INPUT PIN OR INTERNAL SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT PIN OR INTERNAL SIGNAL
P4.2/ACLK/TA2CLK/A11	TACLK	Timer	N/A	N/A
ACLK (internal)	ACLK			
SMCLK (internal)	SMCLK			
From Capacitive Touch I/O 0 (internal)	INCLK			
P8.1/UCB3CLK/TA2.0/C0.0	CCI0A			
DV _{SS}	CCI0B	CCR0	TA0	P8.1/UCB3CLK/TA2.0/C0.0
DV _{SS}	GND	CCRU	TAU	TA2_C0 (internal)
DV _{CC}	V _{CC}			
P5.6/TA2.1/VREF+/VeREF+/C1.7	CCI1A	CCR1		DE 6/TA2 4A/DEE : A/6DEE : /C4 7
ACLK (internal)	CCI1B		TA1	P5.6/TA2.1/VREF+/VeREF+/C1.7 TA2_C1 (internal) ADC14 (internal) ADC14SHSx = {5}
DV _{SS}	GND			
DV _{CC}	V _{CC}			
P5.7/TA2.2/VREF-/VeREF-/C1.6	CCI2A	- CCR2	TA2	P5.7/TA2.2/VREF-/VeREF-/C1.6 TA2_C2 (internal) ADC14 (internal) ADC14SHSx = {6}
C0OUT (internal)	CCI2B			
DV _{SS}	GND			
DV _{CC}	V _{CC}			
P6.6/TA2.3/UCB3SIMO/UCB3SDA/C 1.1	CCI3A		TA3	P6.6/TA2.3/UCB3SIMO/ UCB3SDA/C1.1 TA2_C3 (internal) P6.7/TA2.4/UCB3SOMI/ UCB3SCL/C1.0 TA2_C4 (internal)
TA3_C3 (internal)	CCI3B	CCR3		
DV _{SS}	GND			
DV _{CC}	V _{CC}			
P6.7/TA2.4/UCB3SOMI/UCB3SCL/C 1.0	CCI4A	CCR4	TA4	
From Capacitive Touch I/O 0 (internal)	CCI4B			
DV _{SS}	GND			
DV _{CC}	V _{CC}			

Table 6-49. TA3 Signal Connections

DEVICE INPUT PIN OR INTERNAL SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT PIN OR INTERNAL SIGNAL
P8.3/TA3CLK/A22	TACLK		N/A	N/A
ACLK (internal)	ACLK			
SMCLK (internal)	SMCLK	Timer		
From Capacitive Touch I/O 1 (internal)	INCLK			
P10.4/TA3.0/C0.7	CCI0A			
DV _{SS}	CCI0B	CCR0	TAO	P10.4/TA3.0/C0.7
DV _{SS}	GND	CCRU	TAU	TA3_C0 (internal)
DV _{CC}	V _{cc}			
P10.5/TA3.1/C0.6	CCI1A	- CCR1		P10.5/TA3.1/C0.6 TA3_C1 (internal) ADC14 (internal) ADC14SHSx = {7}
ACLK (internal)	CCI1B		TA1	
DV _{SS}	GND			
DV _{CC}	V _{CC}			
P8.2/TA3.2/A23	CCI2A		TA2	P8.2/TA3.2/A23 TA3_C2 (internal)
C0OUT (internal)	CCI2B	CCDO		
DV _{SS}	GND	CCR2		
DV _{CC}	V _{CC}			
P9.2/TA3.3	CCI3A			P9.2/TA3.3 TA3_C3 (internal)
TA2_C3 (internal)	CCI3B	0000		
DV _{SS}	GND	CCR3	TA3	
DV _{CC}	V _{CC}			
P9.3/TA3.4	CCI4A			
From Capacitive Touch I/O 1 (internal)	CCI4B	CCR4	TA4	P9.3/TA3.4 TA3_C4 (internal)
DV _{SS}	GND			
DV _{CC}	V _{cc}			

6.9.4 Timer32

Timer32是ARM双32位定时器模块。它包含两个32位定时器,每个定时器可配置为两个独立的16位定时器。两个定时器可以生成独立事件或组合事件,可以根据应用要求进行处理。 Timer32用完与Cortex-M4 CPU相同的时钟。

6.9.5增强型通用串行通信接口(eUSCI)

eUSCI模块用于串行数据通信。

eUSCI模块支持同步通信协议,如SPI(3引脚或4引脚)和I2C,以及异步通信协议(如UART),具有自动波特率检测功能的增强型UART和IrDA。

eUSCI An模块支持SPI (3引脚或4引脚), UART, 增强型UART和IrDA。

eUSCI Bn模块支持SPI (3引脚或4引脚)和I2C。

MSP432P401x MCU提供多达四个eUSCI A和四个eUSCI B模块。

6.9.6实时时钟(RTC C)

RTC_C模块包含集成的实时时钟。它集成了一个内部日历,可以补偿少于31天的月份,包括闰年校正。RTC_C还支持灵活的报警功能,偏移校准和温度补偿。

RTC C操作在LPM3和LPM3.5模式下可用,以最大限度地降低功耗。

www.ti.com

6.9.7看门狗定时器 (WDT A)

WDT_A模块的主要功能是在出现软件问题时执行受控系统重启。如果所选时间间隔到期,则生成系统重置。如果应用程序中不需要看门狗功能,则可以将模块配置为间隔定时器,并可以选定的时间间隔生成中断。

CAUTION

在转换到LPM3或LPM3.5操作模式之前,必须将WDT设置为间隔模式。这允许WDT事件唤醒设备并将其返回到活动操作模式。在看门狗模式下使用WDT可能会因生成的复位而导致不确定的行为。

看门狗可以在超时或密码违规时生成重置。可以将此复位配置为在系统中生成硬复位或软复位。更多详细信息,请参见"MSP432P4xx

SimpleLink™微控制器技术参考手册"。通常应将WDT配置为在系统中生成硬重置。软复位会重置CPU,但不会影响系统和外设的其余部分。因此,如果WDT配置为生成软复位,则应用程序应承担软复位可能损坏从CPU进入系统的正在进行的事务的事实。

表6-50列出了可以选择作为WDT A模块源的时钟。

WDTSSEL	NORMAL OPERATION (WATCHDOG AND INTERVAL TIMER MODE)
00 SMCLK	
O1 ACLK	
10 VLOCLE	
11 BCLK	

Table 6-50. WDT A Clocks

6.9.8 ADC14

ADC14模块支持14位模数转换,采样速率高达1

Msps,具有差分和单端输入。该模块实现了14位SAR内核,采样和保持电路,参考发生器和转换结果缓冲器。具有下限和上限的窗口比较器允许通过不同的窗口比较器中断标志监视CPU独立的结果。

表6-51总结了可用的ADC14外部触发源。

110

111

ADC14SHSx **CONNECTED TRIGGER SOURCE BINARY DECIMAL** Software (ADC14SC) 000 0 001 1 TA0_C1 010 2 TA0_C2 3 TA1_C1 011 100 4 TA1_C2 101 5 TA2_C1

表6-51。 ADC14触发信号连接

6

7

表6-52,表6-53和表6-54列出了ADC14内部和外部模拟输入之间的可用复用。

TA2_C2

TA3_C1

表6-52。	100년	HID7駅か	上 的 ADC 1	4通道映射
120 040	エハハユ	加州 乙石矿 十二	丁 ロル以わらす	生地坦坎加

ADC14 CHANNEL	EXTERNAL CHANNEL SOURCE (CONTROL BIT = 0)	INTERNAL CHANNEL SOURCE (CONTROL BIT = 1) ⁽¹⁾	CONTROL BIT ⁽²⁾
通道23 A23电	池监视器ADC14BAT	MAP	
通道22 A22温	度传感器ADC14TCM	AP	
通道21 A21 N	/ A(保留)ADC1	4CHOMAP	
通道20 A20 N	/ A(保留)ADC1	4CH1MAP	
通道19 A19 N	/ A(保留)ADC1	4CH2MAP	
通道18 A18 N	/ A(保留)ADC1	4CH3MAP	

- (1) 如果内部源标记为N / A或保留,则表示只有外部源可用于该通道。
- (2)有关包含表中列出的控制位的寄存器的详细信息,请参见"MSP432P4xx SimpleLink™微控制器技术参考手册"中的ADC14章节。

表6-53。在80引脚ZXH器件上进行ADC14通道映射

ADC14 CHANNEL	EXTERNAL CHANNEL SOURCE (CONTROL BIT = 0)	INTERNAL CHANNEL SOURCE (CONTROL BIT = 1) ⁽¹⁾	CONTROL BIT ⁽²⁾
通道15 A15电	池监控器ADC14BAT	MAP	
通道14 A14温	度传感器ADC14TCM	AP	
通道13 A13 N	/ A(保留)ADC1	4CHOMAP	
通道12 A12 N	/ A(保留)ADC1	4CH1MAP	
通道11 A11 N	/ A(保留)ADC1	4CH2MAP	
通道10 A10 N	/ A(保留)ADC1	4CH3MAP	

- (1) 如果内部源标记为N / A或保留,则表示只有外部源可用于该通道。
- (2)有关包含表中列出的控制位的寄存器的详细信息,请参见"MSP432P4xx SimpleLink™微控制器技术参考手册"中的ADC14章节。

www.ti.com

表6-54。 64引脚RGC器件上的ADC14通道映射

ADC14 CHANNEL	EXTERNAL CHANNEL SOURCE (CONTROL BIT = 0)	INTERNAL CHANNEL SOURCE (CONTROL BIT = 1) ⁽¹⁾	CONTROL BIT ⁽²⁾
通道11 A11电	池监控器ADC14BAT	MAP	
通道10 A10温	度传感器ADC14TCM	AP	
Channel 9	A9	N/A (Reserved)	ADC14CH0MAP
Channel 8	A8	N/A (Reserved)	ADC14CH1MAP
Channel 7	A7	N/A (Reserved)	ADC14CH2MAP
Channel 6	A6	N/A (Reserved)	ADC14CH3MAP

- (1) 如果内部源标记为N / A或保留,则表示只有外部源可用于该通道。
- (2)有关包含表中列出的控制位的寄存器的详细信息,请参见"MSP432P4xx SimpleLink™微控制器技术参考手册"中的ADC14章节。

6.9.9 Comparator_E (COMP_E)

COMP_E模块的主要功能是支持精确斜率模数转换,电池电压监控和外部模拟信号监控。

MSP432P401x MCU上有两个COMP E模块。

6.9.10共享参考(REF A)

REF_A生成所有关键参考电压,可供设备中的各种模拟外设使用。 REF A的参考电压也可以切换到器件引脚上供外部使用。

6, 9, 11 CRC32

CRC32模块根据输入的数据值序列生成签名,并可用于数据检查。它支持CRC32和CRC16计算。

- •CRC16计算签名基于CRC16-CCITT标准。
- •CRC32计算签名基于CRC32-ISO3309标准。

6.9.12 AES256加速器

AES加速器模块根据硬件中的高级加密标准(AES)(FIPS PUB 197),使用128位,192位或256位密钥对128位数据进行加密和解密。

6.9.13真随机种子

设备描述符信息(TLV)部分包含128位真随机种子,可用于实现确定性随机数生成器。

6.10代码开发和调试

MSP432P401x MCU支持各种方法,用户可以通过这些方法在器件上进行代码开发和调试。

6.10.1基于JTAG和SWD的开发,调试和跟踪

该器件支持4引脚JTAG和2引脚SWD工作模式。该器件与当今市场上的所有标准Cortex-M4调试器兼容。设备中的调试逻辑旨在保持对应用程序状态的最小干扰。在低功耗模式下,用户可以使调试器覆盖PSS的状态,从而获得对调试和跟踪功能的访问。

在2引脚SWD模式下,TDO引脚可用于输出串行线跟踪输出(SWO)数据。此外,器件的TDI和TDO引脚可以重新分配为用户I/0.更多详细信息,请参见第6.12.22节和第6.12.23节。

NOTE

如果设备已激活调试安全性,则完全禁用对设备的调试器访问。但是,调试器仍然能够扫描CPU的运行/暂停状态。

只有在开始大量擦除设备闪存内容之后,才可能进一步控制和看到设备。

6.10.2外围停止控制

系统控制器模块中的外设暂停控制寄存器允许用户在代码开发和调试期间独立控制器件外设的功能。 当CPU停止时,该寄存器中的位可以控制相应的外设是否冻结其操作(例如递增,发送和接收)或继续 其操作(调试仍然是非侵入式的)。无论外设暂停控制寄存器中的值如何,外设寄存器都可以访问。

6.10.3 Bootloader (BSL)

BSL使用户能够使用UART或I2C或SPI串行接口对器件上的闪存或SRAM进行编程。通过BSL访问设备内存受用户定义的密码保护。表6-55列出了使用BSL所需的器件引脚。

DEVICE PIN	BSL FUNCTION
DEVICE FIN	DOL FUNCTION
P1.2	UART BSLRXD
P1.3	UART BSLTXD
P1.4	SPI BSLSTE
P1.5	SPI BSLCLK
P1.6	SPI BSLSIMO
P1.7	SPI BSLSOMI
P3.6	I ² C BSLSDA
P3.7	I ² C BSLSCL

Table 6-55. BSL Pins and Functions

在以下任何条件下调用BSL。

- · Flash main memory is erased
- Hardware invocation of BSL
- · Software based API calls to BSL functions

用户可以使用端口P1,P2或P3的任何引脚执行BSL的硬件调用。为此目的选择的引脚不应与用于BSL的引脚相同。用户可以通过闪存引导覆盖邮箱配置设备引脚及其极性。然后,可以在配置引脚的电源循环或P0R复位事件时调用BSL。

有关BSL功能及其实现的完整说明,请参阅MSP432P401R引导加载程序(BSL)用户指南。

6.10.4设备安全

MSP432P401xx MCU为在器件上编程的用户应用代码提供以下两种类型的器件安全性。

- JTAG and SWD Lock
- IP Protection

JTAG和SWD锁定,因为名称表示锁定设备的JTAG和SWD接口。

IP保护对于保护客户软件IP非常有用,例如,在多供应商开发方案中。最多支持四个具有可配置起始地址和大小的IP保护区域。设备的安全配置使用闪存引导覆盖邮箱完成。

此外,SYSCTL模块还为JTAG和SWD锁定或已定义IP保护区域的设备上的应用程序代码提供加密的现场更新基础结构。有关器件安全功能的完整详细信息,请参阅"MSP432P4xx SimpleLink™微控制器技术参考手册"中的系统控制器(SYSCTL)章节。

6.11性能基准

MSP432P401xx

MCU在给定的软件配置和配置文件配置下可实现以下性能基准测试。在环境温度为25°C时,系统电源电压为2.97 V,测量这些性能基准。

6.11.1 ULPBench性能: 192.3 ULPMark-CP

表6-56显示了此性能基准测试的软件配置。表6-57显示了配置文件配置。

ITEMS

ATTAILS

ATTAI

Table 6-56. Software Configuration

Table 6-57. Profile Configuration

CONFIGURATION	DETAILS	
Wakeup Timer Module	RTC	
唤醒定时器时钟源外部晶振		
Wakeup Timer Frequency [Hz]	32768 Hz	
Wakeup Timer Accuracy [ppm]	20 ppm	
Active Power Mode Name	Active Mode	
活动模式时钟配置CPU: 16 MHz	, RTC: 32 KHz	
Active Mode Voltage Integrity	1.62 V	
Inactive Power Mode Name	LPM3	
非活动时钟配置CPU: OFF, R	TC: 32 kHz	
Inactive Mode Voltage Integrity	1.62 V	

6.11.2 CoreMark / MHz性能: 3.41

表6-58显示了此性能基准测试的软件配置。表6-59显示了配置文件配置。

Table 6-58. Software Configuration

ITEMS	DETAILS
编译器名称和版本IAR EWARM	y6. 70. 3
编译器标志no_size_constraints	debugendian = littlecpu = Cortex-M4F -efpu = None -Ohs
CoreMark Profile and Version	v1.0

Table 6-59. Profile Configuration

CONFIGURATION	DETAILS
Active Power Mode Name	Active Mode
活动模式时钟配置CPU: 3 MHz	
Active Mode Voltage Integrity	1.62 V

6.11.3 DMIPS / MHz (Dhrystone 2.1) 性能: 1.22

表6-60显示了此性能基准测试的软件配置。表6-61显示了配置文件配置。

Table 6-60. Software Configuration

ITEMS	DETAILS
编译器名称和版本Keil uVi	sion ARM编译器v5.06 (版本20)
Compiler Flags	-ccpu Cortex-M4.fp -g -O3 -Otimeapcs=interworkasminterleaveasm_dir -no_inline -no_multifile
Dhrystone Profile and Version	v2.1

Table 6-61. Profile Configuration

CONFIGURATION	DETAILS
Active Power Mode Name	Active Mode
活动模式时钟配置CPU: 3 MHz	
Active Mode Voltage Integrity	1.62 V

6.12输入/输出图

6.12.1端口P1(P1.0至P1.7)输入/输出,带施密特触发器端口图如图6-7所示。表6-62总结了引脚功能的选择。

Figure 6-7. Py.x/USCI Pin Diagram

表6-62。端口P1(P1.0至P1.7)引脚功能

DINI MARIT (D.C.)		FUNCTION	CONTR	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P1.x)	X	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x		
P1.0/UCA0STE		P1.0 (I/O)	I: 0; O: 1	0	0		
		UCA0STE	X ⁽²⁾	0	1		
	0	N/A	0	1	0		
	0	DVSS	1	l	U		
		N/A	0	1	1		
		DVSS	1	I	ı		
		P1.1 (I/O)	I: 0; O: 1	0	0		
		UCA0CLK	X ⁽²⁾	0	1		
P1.1/UCA0CLK	1	N/A	0	1	0		
11.1/OCAOCLK	'	DVSS	1	·	<u> </u>		
		N/A	0	1	1		
		DVSS	1	'			
		P1.2 (I/O)	I: 0; O: 1	0	0		
		UCA0RXD/UCA0SOMI	X ⁽²⁾	0	1		
P1.2/UCA0RXD/UCA0SOMI	2	N/A	0	1	0		
1 1.2/00/A01(XD/00/A000)WII	_	DVSS	1	'			
		N/A	0	1			
		DVSS	1	'			
		P1.3 (I/O)	I: 0; O: 1	0	0		
		UCA0TXD/UCA0SIMO	X ⁽²⁾	0	1		
P1.3/UCA0TXD/UCA0SIMO	3	N/A	0	1	0		
11.0/00/101/10/100/100/100		DVSS	1	'			
		N/A	0	1	1		
		DVSS	1		'		
		P1.4 (I/O)	I: 0; O: 1	0	0		
		UCB0STE	X ⁽³⁾	0	1		
P1.4/UCB0STE	4	N/A	0	1	0		
11.470000012	-	DVSS	1	'	0		
		N/A	0	1	1		
		DVSS	1	•	· .		
		P1.5 (I/O)	I: 0; O: 1	0	0		
		UCB0CLK	X ⁽³⁾	0	1		
P1.5/UCB0CLK	5	N/A	0	1	0		
F1.5/UCBUCLK		DVSS	1	•	J		
		N/A	0	1	1		
		DVSS	1				
		P1.6 (I/O)	I: 0; O: 1	0	0		
		UCB0SIMO/UCB0SDA	X ⁽³⁾	0	1		
P1.6/UCB0SIMO/UCB0SDA	6	N/A	0	1	0		
1.3/00000110/00000DA		DVSS	1	'	<u> </u>		
		N/A	0	1	1		
		DVSS	1	'			

⁽¹⁾ X = don't care (2) 中。IISCT An 서世校制的方向

⁽³⁾ 方向由eUSCI_BO模块控制。

表6-62。端口P1 (P1.0至P1.7) 引脚功能(续)

PIN NAME (P1.x)	x	FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
			P1DIR.x	P1SEL1.x	P1SEL0.x	
P1.7/UCB0SOMI/UCB0SCL		P1.7 (I/O)	I: 0; O: 1	0	0	
		UCB0SOMI/UCB0SCL	X ⁽³⁾	0	1	
	7	N/A	0	1	0	
	/	DVSS	1			
		N/A	0	1	1	
		DVSS	1			

6.12.2端口P2(P2.0至P2.3)输入/输出,带施密特触发器端口图如图6-7所示。表6-63总结了引脚功能的选择。

表6-63。端口P2(P2.0至P2.3)引脚功能

PIN NAME (P2.x)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾				
	X		P2DIR.x	P2SEL1.x	P2SEL0.x	P2MAPx	
		P2.0 (I/O)	I: 0; O: 1	0	0	Х	
		UCA1STE	X ⁽²⁾	0	1	default	
DO O/DM LICAACTE	0	N/A	0	- 1	0	Х	
P2.0/PM_UCA1STE	U	DVSS	1				
		N/A	0	1	4	Х	
		DVSS	1	1	1	Χ	
		P2.1 (I/O)	I: 0; O: 1	0	0	Х	
		UCA1CLK	X ⁽²⁾	0	1	default	
DO 4/DM LICA4CLK		N/A	0	4	0	Х	
P2.1/PM_UCA1CLK	1	DVSS	1	1			
		N/A	0	1	1	Х	
		DVSS	1				
		P2.2 (I/O)	I: 0; O: 1	0	0	X	
		UCA1RXD/UCA1SOMI	X ⁽²⁾	0	1	default	
P2.2/PM_UCA1RXD/PM_U	2	N/A	0		0	Х	
CA1SOMI		DVSS	1	1		^	
		N/A	0	1	1	Х	
		DVSS	1			^	
		P2.3 (I/O)	I: 0; O: 1	0	0	Х	
P2.3/PM_UCA1TXD/PM_U CA1SIMO		UCA1TXD/UCA1SIMO	X ⁽²⁾	0	1	default	
	3	N/A	0		0	Х	
		DVSS	1	1			
		N/A	0	1	1	Х	
		DVSS	1				

⁽¹⁾ X = don't care

⁽²⁾ 方向由eUSCI A1模块控制。

www.ti.com

6.12.3端口P3(P3.0至P3.7)带施密特触发器的输入/输出端口图如图6-7所示。表6-64总结了引脚功能的选择。

表6-64。端口P3(P3.0至P3.7)引脚功能

PIN NAME (P3.x)		FUNCTION	С	CONTROL BITS OR SIGNALS ⁽¹⁾			
	x		P3DIR.x	P3SEL1.x	P3SEL0.x	P3MAPx	
		P3.0 (I/O)	I: 0; O: 1	0	0	Х	
		UCA2STE	X ⁽²⁾	0	1	default	
DO O/DM LICAGOTE	_	N/A	0	4	0	Х	
P3.0/PM_UCA2STE	0	DVSS	1	1	0		
		N/A	0	4	1	Х	
		DVSS	1	1			
		P3.1 (I/O)	I: 0; O: 1	0	0	Х	
		UCA2CLK	X ⁽²⁾	0	1	default	
	_	N/A	0	4	0	V	
P3.1/PM_UCA2CLK	1	DVSS	1	1	0	X	
		N/A	0	4	4	Х	
		DVSS	1	1	1		
		P3.2 (I/O)	I: 0; O: 1	0	0	Х	
		UCA2RXD/UCA2SOMI	X ⁽²⁾	0	1	default	
P3.2/PM_UCA2RXD/PM_U	2	N/A	0	1	0	Х	
CA2SOMI	2	DVSS	1				
		N/A	0	1	1	Х	
		DVSS	1				
		P3.3 (I/O)	I: 0; O: 1	0	0	Χ	
		UCA2TXD/UCA2SIMO	X ⁽²⁾	0	1	default	
P3.3/PM_UCA2TXD/PM_U	3	N/A	0	1	0	Х	
CA2SIMO	3	DVSS	1				
		N/A	0		1	Х	
		DVSS	1	1			
		P3.4 (I/O)	I: 0; O: 1	0	0	Х	
		UCB2STE	X ⁽³⁾	0	1	default	
P3.4/PM_UCB2STE	4	N/A	0	4	0	Х	
P3.4/PIVI_UCB251E	4	DVSS	1	1			
		N/A	0		1	Х	
		DVSS	1	1			
		P3.5 (I/O)	I: 0; O: 1	0	0	Х	
		UCB2CLK	X ⁽³⁾	0	1	default	
D2 E/DM LICESCLY	_	N/A	0	1	0	Х	
P3.5/PM_UCB2CLK	5	DVSS	1				
		N/A	0	4	1	V	
		DVSS	1	1	'	X	

⁽¹⁾ X = don't care

⁽⁹⁾ 由AIISCI A9構块挖制的方向

⁽³⁾ 方向由eUSCI B2模块控制。

表6-64。端口P3(P3.0至P3.7)引脚功能(续)

PIN NAME (P3.x)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
	X		P3DIR.x	P3SEL1.x	P3SEL0.x	P3MAPx
		P3.6 (I/O)	I: 0; O: 1	0	0	Х
		UCB2SIMO/UCB2SDA	X ₍₃₎	0	1	default
P3.6/PM_UCB2SIMO/PM_ UCB2SDA	6	N/A	0	1	0	Х
	ь	DVSS	1			
		N/A	0	1	1	Х
		DVSS	1			
P3.7/PM_UCB2SOMI/PM_ UCB2SCL		P3.7 (I/O)	I: 0; O: 1	0	0	Х
		UCB2SOMI/UCB2SCL	X ⁽³⁾	0	1	default
	7	N/A	0	1	0	Х
	/	DVSS	1			
		N/A	0	1	1	V
		DVSS	1			Х

6.12.4端口P9 (P9.4至P9.7) 带施密特触发器的输入/输出 端口图如图6-7所示。表6-65总结了引脚功能的选择。

表6-65。端口P9(P9.4至P9.7)引脚功能

DINI NIAME (DO -)		FUNCTION	CONTR	OL BITS OR SI	GNALS ⁽¹⁾
PIN NAME (P9.x)	Х	FUNCTION	P9DIR.x	P9SEL1.x	P9SEL0.x
		P9.4 (I/O)	I: 0; O: 1	0	0
		UCA3STE	X ⁽³⁾	0	1
P9.4/UCA3STE ⁽²⁾	4	N/A	0	1	0
F9.4/0CA331E V	4	DVSS	1	l	U
		N/A	0	1	1
		DVSS	1	l	1
		P9.5 (I/O)	I: 0; O: 1	0	0
		UCA3CLK	X ⁽³⁾	0	1
P9.5/UCA3CLK ⁽²⁾	5	N/A	0	1	0
P9.5/UCA3CLK V	э	DVSS	1	I	
		N/A	0	1	1
		DVSS	1		
		P9.6 (I/O)	I: 0; O: 1	0	0
		UCA3RXD/UCA3SOMI	X ⁽³⁾	0	1
P9.6/UCA3RXD/UCA3SOMI (2)	6	N/A	0	1	0
P9.6/UCA3RAD/UCA3SOMIN	О	DVSS	1	l	U
		N/A	0	1	4
		DVSS	1	l	1
		P9.7 (I/O)	I: 0; O: 1	0	0
		UCA3TXD/UCA3SIMO	X ⁽³⁾	0	1
DO 7/1 IO 4 OT VD // IO 4 OO (2)	7	N/A	0	4	0
P9.7/UCA3TXD/UCA3SIMO ⁽²⁾	/	DVSS	1	1	0
		N/A	0	4	4
		DVSS	1	1	1

⁽¹⁾ X = don't care (2) 不适田于807YH和64RCC封装

⁽³⁾ 方向由eUSCI A3模块控制。

6.12.5端口P10(P10.0至P10.3)带施密特触发器的输入/输出 端口图如图6-7所示。表6-66总结了引脚功能的选择。

表6-66。端口P10(P10.0至P10.3)引脚功能

DIN 11414 (D40)		FUNCTION	CONTR	OL BITS OR SI	GNALS ⁽¹⁾
PIN NAME (P10.x)	Х	FUNCTION	P10DIR.x	P10SEL1.x	P10SEL0.x
		P10.0 (I/O)	I: 0; O: 1	0	0
		UCB3STE	X ⁽³⁾	0	1
P10.0/UCB3STE ⁽²⁾	0	N/A	0	1	0
F10.0/0CB3S1E \	U	DVSS	1	'	U
		N/A	0	1	1
		DVSS	1	'	1
		P10.1 (I/O)	I: 0; O: 1	0	0
		UCB3CLK	X ⁽³⁾	0	1
P10.1/UCB3CLK ⁽²⁾	1	N/A	0	1	0
P10.1/UCB3CLK		DVSS	1		
		N/A	0	1	1
		DVSS	1		
		P10.2 (I/O)	I: 0; O: 1	0	0
		UCB3SIMO/UCB3SDA	X ⁽³⁾	0	1
P10.2/UCB3SIMO/UCB3SDA (2)	2	N/A	0		0
P10.2/0CB3SIMO/0CB3SDA	2	DVSS	1	1	0
		N/A	0	1	1
		DVSS	1	'	1
		P10.3 (I/O)	I: 0; O: 1	0	0
P10.3/UCB3SOMI/UCB3SCL ⁽²⁾		UCB3SOMI/UCB3SCL	X ⁽³⁾	0	1
	3	N/A	0		0
	3	DVSS	1	1	0
		N/A	0	1	1
		DVSS	1	'	ı

⁽¹⁾ X = don't care (2) 不适田于807YH和64RCC封装

⁽³⁾ 方向由eUSCI B3模块控制。

6.12.6端口P2(P2.4至P2.7)输入/输出,带施密特触发器端口图如图6-8所示。表6-67总结了引脚功能的选择。

Figure 6-8. Py.x/Mod1/Mod2 Pin Diagram

表6-67。端口P2(P2.4至P2.7)引脚功能

DINI NAME (D2)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾				
PIN NAME (P2.x)	X	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x	P2MAPx	
		P2.4 (I/O)	I: 0; O: 1	0	0	Х	
		TA0.CCI1A	0	0	4	-1 - 5 16	
		TA0.1	1	0	1	default	
P2.4/PM_TA0.1 ⁽²⁾	4	N/A	0	4	0	Х	
		DVSS	1	1	0	^	
		N/A	0	1	4	Х	
		DVSS	1	1	1	^	
		P2.5 (I/O)	I: 0; O: 1	0	0	X	
		TA0.CCI2A	0	0	1	default	
		TA0.2	1	0	'	deladit	
P2.5/PM_TA0.2 ⁽²⁾	5	N/A	0	1	0	Х	
		DVSS	1	'	U	^	
		N/A	0	1	1 X	~	
		DVSS	1	1		^	
		P2.6 (I/O)	I: 0; O: 1	0	0	X	
		TA0.CCI3A	0	0	1	default	
		TA0.3	1	U	ľ	ueiauit	
P2.6/PM_TA0.3 ⁽²⁾	6	N/A	0	1	0	Х	
		DVSS	1	•	O	^	
		N/A	0	1	1	Х	
		DVSS	1	•		^	
		P2.7 (I/O)	I: 0; O: 1	0	0	X	
		TA0.CCI4A	0	0	1	default	
		TA0.4	1	U	ľ	ueiauit	
P2.7/PM_TA0.4 ⁽²⁾	7	N/A	0	1	0	X	
		DVSS	1	,	V X		
		N/A	0	1	1	X	
		DVSS	1	1		^	

⁽¹⁾ X = don't care

⁽²⁾ 不适用于64引脚RGC封装。

6.12.7端口P7(P7.0至P7.3)输入/输出,带施密特触发器端口图如图6-8所示。表6-68总结了引脚功能的选择。

表6-68。端口P7(P7.0至P7.3)引脚功能

DINI NIAME (DZ)	.,	CON		NTROL BITS	OR SIGNALS	(1)		
PIN NAME (P7.x)	X	FUNCTION	P7DIR.x	P7SEL1.x	P7SEL0.x	Р7МАРх		
		P7.0 (I/O)	I: 0; O: 1	0	0	Х		
		DMAE0	0	0	1	default		
		SMCLK	1	0	1	derauit		
P7.0/PM_SMCLK/ PM_DMAE0	0	N/A	0	4	0	V		
T W_DW/LCO		DVSS	1	1	0	Χ		
		N/A	0	4	4	V		
		DVSS	1	1	1	Х		
		P7.1 (I/O)	I: 0; O: 1	0	0	X		
		TAOCLK	0	0	1	default		
		COOUT	1	U	I	derauit		
P7.1/PM_C0OUT/ PM_TA0CLK	1	N/A	0	1	0	Х		
· /		DVSS	1	l	U	^		
		N/A	0	1	1 X	~		
		DVSS	1	l l		^		
				P7.2 (I/O)	I: 0; O: 1	0	0	X
		TA1CLK	0	0	1	default		
		C1OUT	1		Į	derauit		
P7.2/PM_C1OUT/ PM_TA1CLK	2	N/A	0	1	0	X		
I M_I/(IOE)		DVSS	1	l l	U	^		
		N/A	0	1	1	Х		
		DVSS	1	l	I	^		
		P7.3 (I/O)	I: 0; O: 1	0	0	X		
		TA0.CCI0A	0	0	1	default		
		TA0.0	1	U	I	ueiauii		
P7.3/PM_TA0.0	3	N/A	0	1	0	Х		
		DVSS	1	l	U	^		
		N/A	0	1	1	Х		
		DVSS	1	l	I	^		

⁽¹⁾ X = don't care

6.12.8端口P9(P9.2和P9.3)带施密特触发器的输入/输出端口图如图6-8所示。表6-69总结了引脚功能的选择。

表6-69。端口P9(P9.2和P9.3)引脚功能

DIN NAME (DO)		FUNCTION	CONT	ROL BITS OR S	IGNALS
PIN NAME (P9.x)	Х	FUNCTION	P9DIR.x	P9SEL1.x	P9SEL0.x
		P9.2 (I/O)	I: 0; O: 1	0	0
		TA3.CCI3A	0	0	1
		TA3.3	1	U	1
P9.2/TA3.3 ⁽¹⁾	2	N/A	0	4	0
		DVSS	1	1	
		N/A	0		1
		DVSS	1]	1
		P9.3 (I/O)	I: 0; O: 1	0	0
		TA3.CCI4A	0	0	4
		TA3.4	1	0	1
P9.3/TA3.4 ⁽¹⁾	3	N/A	0		0
		DVSS	1	- 1 	0
		N/A	0		4
		DVSS	1]	1

⁽¹⁾ 不适用于80ZXH和64RGC封装。

6.12.9端口P4(P4.0至P4.7)输入/输出,带施密特触发器端口图如图6-9所示。表6-70总结了引脚功能的选择。

注意:如果模块1或模块2功能不可用,则输出为DVSS。请参见引脚功能表。 仅限功能表示。

图6-9。 Py.x / Mod1 / Mod2 / Az Pin图

表6-70。端口P4(P4.0至P4.7)引脚功能

		, , , , , , , , , , , , , , , , , , , ,					
PIN NAME (P4.x)		FUNCTION		CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P4.X)	X	FUNCTION	P4DIR.x	P4SEL1.x	P4SEL0.x		
		P4.0 (I/O)	I: 0; O: 1	0	0		
		N/A	0	0	4		
P4.0/A13 ⁽²⁾	0	DVSS	1	U	1		
P4.0/A13\-/	U	N/A	0	1	0		
		DVSS	1	1			
		A13 ⁽³⁾	X	1	1		
		P4.1 (I/O)	I: 0; O: 1	0	0		
		N/A	0	0	1		
P4.1/A12 ⁽²⁾	1	DVSS	1	U	ı		
F4.1/A12*/	'	N/A	0	1	0		
		DVSS	1		U		
		A12 ⁽³⁾	X	1	1		
		P4.2 (I/O)	I: 0; O: 1	0	0		
		N/A	0	0	4		
P4.2/ACLK/TA2CLK/A11	2	ACLK	1	U	1		
F4.2/ACLN TAZCLNATT		TA2CLK	0	1	0		
		DVSS	1	l	U		
		A11 ⁽³⁾	X	1	1		
	3	P4.3 (I/O)	I: 0; O: 1	0	0		
		N/A	0	0	1		
P4.3/MCLK/RTCCLK/A10		MCLK	1	0	'		
P4.3/MCLK/RTCCLK/ATU		N/A	0	1	0		
		RTCCLK	1		U		
		A10 ⁽³⁾	X	1	1		
		P4.4 (I/O)	I: 0; O: 1	0	0		
		N/A	0	0	4		
P4.4/HSMCLK/SVMHOUT/	4	HSMCLK	1	U	1		
A9	4	N/A	0	1	0		
		SVMHOUT	1	l	0		
		A9 ⁽³⁾	X	1	1		
		P4.5 (I/O)	I: 0; O: 1	0	0		
		N/A	0	0	4		
D4.5/40	_	DVSS	1	0	1		
P4.5/A8	5	N/A	0	4	0		
		DVSS	1	1	0		
		A8 ⁽³⁾	X	1	1		
		P4.6 (I/O)	I: 0; O: 1	0	0		
		N/A	0		4		
D4 6/A7	6	DVSS	1	0	1		
P4.6/A7	6	N/A	0				
		DVSS	1	1	0		
		A7 ⁽³⁾	X	1	1		

 ⁽¹⁾ X = don't care

 (2) 不适田干64引 脚RCC封基

 (3) 设置P4SEL1. x和P4SEL0. x会禁用输出驱动器和输入施密特触发器,以防止在施加模拟信号时出现寄生交叉电流。

表6-70。端口P4(P4.0至P4.7)引脚功能(续)

PIN NAME (P4.x)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
	X	FUNCTION	P4DIR.x	P4SEL1.x	P4SEL0.x	
		P4.7 (I/O)	I: 0; O: 1	0	0	
		N/A	0	0	1	
P4.7/A6	7	DVSS	1			
P4.7/A0	/	N/A	0		0	
		DVSS	1		0	
		A6 ⁽³⁾	Х	1	1	

6.12.10端口P5(P5.0至P5.5)带施密特触发器的输入/输出端口图如图6-9所示。表6-71总结了引脚功能的选择。

表6-71。端口P5(P5.0至P5.5)引脚功能

DIN NAME (DE)		FUNCTION	CONTRO	OL BITS OR SIG	SNALS ⁽¹⁾
PIN NAME (P5.x)	X		P5DIR.x	P5SEL1.x	P5SEL0.x
		P5.0 (I/O)	I: 0; O: 1	0	0
		N/A	0	0	1
DE 0/AE		DVSS	1	0	1
P5.0/A5	0	N/A	0	4	
		DVSS	1	1	0
		A5 ⁽²⁾	X	1	1
		P5.1 (I/O)	I: 0; O: 1	0	0
		N/A	0	- 0	4
DE 4/A 4		DVSS	1		1
P5.1/A4	1	N/A	0	_	
		DVSS	1	1	0
		A4 ⁽²⁾	Х	1	1
		P5.2 (I/O)	I: 0; O: 1	0	0
		N/A	0	0	_
DE 0/40		DVSS	1		1
P5.2/A3	2	N/A	0	1	
		DVSS	1	1	0
		A3 ⁽²⁾	Х	1	1
		P5.3 (I/O)	I: 0; O: 1	0	0
		N/A	0	0	4
DE 0/40	3	DVSS	1	0	1
P5.3/A2	3	N/A	0	1	0
		DVSS	1		0
		A2 ⁽²⁾	Х	1	1
		P5.4 (I/O)	I: 0; O: 1	0	0
		N/A	0	0	4
DE 4/44		DVSS	1	0	1
P5.4/A1	4	N/A	0	4	0
		DVSS	1	1	0
		A1 ⁽²⁾	Х	1	1
		P5.5 (I/O)	I: 0; O: 1	0	0
		N/A	0	0	4
DE 5/40	_	DVSS	1	0	1
P5.5/A0	5	N/A	0	1	0
		DVSS	1		
		A0 ⁽²⁾	Х	1	1

⁽¹⁾ X = don't care

⁽²⁾ 设置P5SEL1.x和P5SEL0.x禁用输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。

6.12.11端口P6(P6.0和P6.1)带施密特触发器的输入/输出 端口图如图6-9所示。表6-72总结了引脚功能的选择。

表6-72。端口P6(P6.0和P6.1)引脚功能

DIN NAME (DC v)		FUNCTION	CONTRO	DL BITS OR SIG	SNALS ⁽¹⁾
PIN NAME (P6.x)	Х	FUNCTION	P6DIR.x	P6SEL1.x	P6SEL0.x
		P6.0 (I/O)	I: 0; O: 1	0	0
		N/A	0	0	1
P6.0/A15 ⁽²⁾	0	DVSS	1	0	'
F0.0/A15	0	N/A	0	4	0
		DVSS	1		0
		A15 ⁽³⁾	X	1	1
		P6.1 (I/O)	I: 0; O: 1	0	0
		N/A	0	0 0 0	1
P6.1/A14 ⁽²⁾		DVSS	1		'
P6.1/A14\-/	1	N/A	0		0
		DVSS	1	l	0
		A14 ⁽³⁾	Х	1	1

⁽¹⁾ X = don't care

⁽⁹⁾ 不适田干64引 脚RCC 封生 (3) 设置P6SEL1. x和P6SEL0. x禁用输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。

6.12.12端口P8(P8.2至P8.7)带施密特触发器的输入/输出。 端口图如图6-9所示。表6-73总结了引脚功能的选择。

表6-73。端口P8(P8.2至P8.7)引脚功能

DIN MARKE (DO)		FUNCTION	CONTRO	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P8.x)	X	FUNCTION	P8DIR.x	P8SEL1.x	P8SEL0.x		
		P8.2 (I/O)	l: 0; O: 1	0	0		
		TA3.CCI2A	0	0			
D0 0/T40 0/400(2)		TA3.2	1	0	1		
P8.2/TA3.2/A23 ⁽²⁾	2	N/A	0	4			
		DVSS	1	1	0		
		A23 ⁽³⁾	X	1	1		
		P8.3 (I/O)	l: 0; O: 1	0	0		
		TA3CLK	0	0	,		
Do 0/T40014/400(2)		DVSS	1	0	1		
P8.3/TA3CLK/A22 ⁽²⁾	3	N/A	0				
		DVSS	1	1	0		
		A22 ⁽³⁾	X	1	1		
		P8.4 (I/O)	l: 0; O: 1	0	0		
		N/A	0	0	1		
Do 4/404(2)		DVSS	1	0	1		
P8.4/A21 ⁽²⁾	4	N/A	0	_			
		DVSS	1	1	0		
		A21 ⁽³⁾	X	1	1		
		P8.5 (I/O)	l: 0; O: 1	0	0		
		N/A	0				
Do = (100 (2))	_	DVSS	1	0	1		
P8.5/A20 ⁽²⁾	5	N/A	0	1			
		DVSS	1		0		
		A20 ⁽³⁾	X	1	1		
		P8.6 (I/O)	l: 0; O: 1	0	0		
		N/A	0		_		
D0 0 (A 4 0 (2)		DVSS	1	0	1		
P8.6/A19 ⁽²⁾	6	N/A	0	_			
		DVSS	1	1	0		
		A19 ⁽³⁾	X	1	1		
		P8.7 (I/O)	I: 0; O: 1	0	0		
7. - (1) (2)		N/A	0				
	_	DVSS	1	0	1		
P8.7/A18 ⁽²⁾	7	A18 ⁽²⁾ 7	N/A	0	_		
		DVSS	1	1	0		
		A18 ⁽³⁾	X	1	1		

⁽¹⁾ X = don't care

⁽⁹⁾ 不话田干807XH和64RCC封装。 (3)设置P8SEL1.x和P8SEL0.x禁用输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。

6.12.13端口P9(P9.0和P9.1)带施密特触发器的输入/输出 端口图如图6-9所示。表6-74总结了引脚功能的选择。

表6-74。端口P9(P9.0和P9.1)引脚功能

PIN NAME (P9.x)		FUNCTION	CONTRO	DL BITS OR SIG	SNALS ⁽¹⁾
PIN NAME (P9.X)	Х		P9DIR.x	P9SEL1.x	P9SEL0.x
		P9.0 (I/O)	I: 0; O: 1	0	0
		N/A	0	0	1
P9.0/A17 ⁽²⁾	0	DVSS	1	U	1
F9.0/A17 V	0	N/A	0	1	0
		DVSS	1		U
		A17 ⁽³⁾	X	1	1
		P9.1 (I/O)	I: 0; O: 1	0	0
		N/A	0	0 1	1
P9.1/A16 ⁽²⁾	4	DVSS	1		1
P9.1/A16 ~	'	N/A	0		0
		DVSS	1		U
		A16 ⁽³⁾	X	1	1

⁽¹⁾ X = don't care

⁽⁹⁾ 不适田于807YH和GARCC封生 (3)设置P9SEL1.x和P9SEL0.x禁用输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。

6.12.14端口P5(P5.6和P5.7)带施密特触发器的输入/输出端口图如图6-10所示。表6-75总结了引脚功能的选择。

图6-10。 Py.x / Mod / VREF / VeREF / Cp.q引脚图

表6-75。端口P5 (P5.6和P5.7) 引脚功能

PIN NAME (P5.x)	x	FUNCTION	CONTR	OL BITS OR SI	GNALS ⁽¹⁾
PIN NAME (P3.X)	X	FUNCTION	P5DIR.x	P5SEL1.x	P5SEL0.x
		P5.6 (I/O)	I: 0; O: 1	0	0
		TA2.CCI1A	0	0	4
P5.6/TA2.1/VREF+/VeREF+/	6	TA2.1	1	U	I
C1.7	О	N/A	0	1	0
		DVSS	1	ı	U
		VREF+, VeREF+, C1.7 ⁽²⁾⁽³⁾	Х	1	1
		P5.7 (I/O)	I: 0; O: 1	0	0
		TA2.CCI2A	0	0	4
P5.7/TA2.2/VREF-/VeREF- /C1.6	7	TA2.2	1	0	I
	1	N/A	0	4	0
		DVSS	1	7	0
		VREF-, VeREF-, C1.6 ⁽²⁾⁽³⁾	Х	1	1

⁽¹⁾ X = don't care

⁽²⁾ 设置P5SEL1. x和P5SEL0. x禁用输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。

⁽³⁾设置比较器的CEPD.q位会禁用输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。无论相关CEPD.q位的状态如何,选择具有CEIPSEL或CEIMSEL位的比较器多路复用器的C1.q输入引脚都会自动禁用该引脚的输出驱动器和输入缓冲器。

6.12.15端口P6(P6.2至P6.5)带施密特触发器的输入/输出端口图如图6-11所示。表6-76总结了引脚功能的选择。

Figure 6-11. Py.x/USCI/Cp.q Pin Diagram

表6-76。端口P6(P6.2至P6.5)引脚功能

DIN NAME (D6 v)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P6.x)	Х	FUNCTION	P6DIR.x	P6SEL1.x	P6SEL0.x	
		P6.2 (I/O)	I: 0; O: 1	0	0	
		UCB1STE	X ⁽³⁾	0	1	
P6.2/UCB1STE/C1.5 ⁽²⁾	2	N/A	0	1	0	
		DVSS	1		U	
		C1.5 ⁽⁴⁾⁽⁵⁾	X	1	1	
		P6.3 (I/O)	I: 0; O: 1	0	0	
		UCB1CLK	X ⁽³⁾	0	1	
P6.3/UCB1CLK/C1.4 ⁽²⁾	3	N/A	0	4	0	
		DVSS	1	1	U	
		C1.4 ⁽⁴⁾⁽⁵⁾	Х	1	1	
		P6.4 (I/O)	I: 0; O: 1	0	0	
		UCB1SIMO/UCB1SDA	X ⁽³⁾	0	1	
P6.4/UCB1SIMO/UCB1SDA/C1	4	N/A	0	1 (0	
.0		DVSS	1		U	
		C1.3 ⁽⁴⁾⁽⁵⁾	Х	1	1	
		P6.5 (I/O)	I: 0; O: 1	0	0	
		UCB1SOMI/UCB1SCL	X ⁽³⁾	0	1	
P6.5/UCB1SOMI/UCB1SCL/C1.	5	N/A	0	4	0	
		DVSS	1	1	0	
		C1.2 ⁽⁴⁾⁽⁵⁾	Х	1	1	

(1) X = don't care

- (9) 不活田干64引脚RCC封装
- (3) 方向由AIISCI R1構体控制
- (4)设置P6SEL1. x和P6SEL0. x禁用输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。
- (5)将比较器的CEPD.q位置1会禁止输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。无论相关CEPD.q位的状态如何,选择具有CEIPSEL或CEIMSEL位的比较器多路复用器的C1.q输入引脚都会自动禁用该引脚的输出驱动器和输入缓冲器。

6.12.16端口P6(P6.6和P6.7)带施密特触发器的输入/输出端口图如图6-12所示。表6-77总结了引脚功能的选择。

图6-12。 Py. x / Mod / USCI / Cp. q引脚图

表6-77。端口P6(P6.6和P6.7)引脚功能

DIN NAME (D6 v)	x FUNCTION		CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P6.x)	Х	FUNCTION	P6DIR.x	P6SEL1.x	P6SEL0.x	
		P6.6 (I/O)	I: 0; O: 1	0	0	
		TA2.CCI3A	0	0	4	
P6.6/TA2.3/UCB3SIMO/UCB 3SDA/C1.1	6	TA2.3	1	0	1	
000/101.1		UCB3SIMO/UCB3SDA	X ⁽²⁾	1	0	
		C1.1 ⁽³⁾⁽⁴⁾	X	1	1	
		P6.7 (I/O)	I: 0; O: 1	0	0	
		TA2.CCI4A	0	0	4	
P6.7/TA2.4/UCB3SOMI/UCB 3SCL/C1.0	7	TA2.4	1	0	1	
		UCB3SOMI/UCB3SCL	X ⁽²⁾	1	0	
		C1.0 ⁽³⁾⁽⁴⁾	Х	1	1	

(1) X = don't care

- (9) 方向由AIISCI R2構体控制
- (3)设置P6SEL1. x和P6SEL0. x禁用输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。
- (4) 将比较器的CEPD. q位置1会禁止输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。无论相关CEPD. q位 的状态如何,选择具有CEIPSEL或CEIMSEL位的比较器多路复用器的C1.q输入引脚都会自动禁用该引脚的输出驱动器和输入缓冲器。

6.12.17端口P8(P8.0和P8.1)带施密特触发器的输入/输出端口图如图6-13所示。表6-78总结了引脚功能的选择。

图6-13。 Py. x / USCI / Mod / Cp. q引脚图

表6-78。端口P8(P8.0和P8.1)引脚功能

DIN NAME (DO v)	v	x FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P8.x)	Х	FUNCTION	P8DIR.x	P8SEL1.x	P8SEL0.x	
		P8.0 (I/O)	I: 0; O: 1	0	0	
		UCB3STE	X ⁽²⁾	0	1	
P8.0/UCB3STE/TA1.0/C0.1	0	TA1.CCI0A	0	4	0	
		TA1.0	1	1	0	
		C0.1 ⁽³⁾⁽⁴⁾	Х	1	1	
		P8.1 (I/O)	I: 0; O: 1	0	0	
		UCB3CLK	X ⁽²⁾	0	1	
P8.1/UCB3CLK/TA2.0/C0.0	1	TA2.CCI0A	0	_	0	
		TA2.0	1	1	0	
		C0.0 ⁽³⁾⁽⁴⁾	Х	1	1	

(1) X = don't care

- (9) 方向由AIISCI R2構体控制
- (3)设置P8SEL1. x和P8SEL0. x禁用输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。
- (4)将比较器的CEPD. q位置1会禁止输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。无论相关CEPD. q位的状态如何,选择具有CEIPSEL或CEIMSEL位的比较器多路复用器的CO. q输入引脚都会自动禁用该引脚的输出驱动器和输入缓冲器。

6.12.18端口P10(P10.4和P10.5)带施密特触发器的输入/输出端口图如图6-14所示。表6-79总结了引脚功能的选择。

Figure 6-14. Py.x/Mod/Cp.q Pin Diagram

表6-79。端口P10(P10.4和P10.5)引脚功能

DINI NAME (D40 v)	х	FUNCTION	CONTROL BITS O		R SIGNALS ⁽¹⁾	
PIN NAME (P10.x)		FUNCTION	P10DIR.x	P10SEL1.x	P10SEL0.x	
		P10.4 (I/O)	I: 0; O: 1	0	0	
		TA3.CCI0A	0	0	4	
P10.4/TA3.0/C0.7 ⁽²⁾	4	TA3.0	1	0	1	
P10.4/1A3.0/C0.7 (=/	4	N/A	0	4	0	
		DVSS	1			
		C0.7 ⁽³⁾⁽⁴⁾	Х	1	1	
		P10.5 (I/O)	I: 0; O: 1	0	0	
		TA3.CCI1A	0	0	4	
P10.5/TA3.1/C0.6 ⁽²⁾	_	TA3.1	1	U	1	
	5	N/A	0	4	0	
		DVSS	1		U	
		C0.6 ⁽³⁾⁽⁴⁾	Х	1	1	

- (1) X = don't care (2) 不适用于807YH和64RCC封装
- (3)设置P10SEL1. x和P10SEL0. x禁用输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。
- (4) 将比较器的CEPD. q位置1会禁止输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。无论相关CEPD. q位 的状态如何,选择具有CEIPSEL或CEIMSEL位的比较器多路复用器的CO. q输入引脚都会自动禁用该引脚的输出驱动器和输入缓冲器。

6.12.19端口P7(P7.4至P7.7)带施密特触发器的输入/输出端口图如图6-15所示。表6-80总结了引脚功能的选择。

Figure 6-15. Py.x/Mod/Cp.q Pin Diagram

表6-80。端口P7(P7.4至P7.7)引脚功能

DIN NAME (DZ)		FUNCTION	(CONTROL BITS	OR SIGNALS ⁽¹⁾		
PIN NAME (P7.x)	х	FUNCTION	P7DIR.x	P7SEL1.x	P7SEL0.x	Р7МАРх	
		P7.4 (I/O)	I: 0; O: 1	0	0	Х	
		TA1.CCI4A	0	0	4	d a Carroll	
D7 4/DM TA4 4/C0 E(2)	4	TA1.4	1	0	1	default	
P7.4/PM_TA1.4/C0.5 ⁽²⁾	4	N/A	0	- - 1	0	Х	
		DVSS	1	'	0	^	
		C0.5 ⁽³⁾⁽⁴⁾	X	1	1	X	
		P7.5 (I/O)	I: 0; O: 1	0	0	X	
		TA1.CCI3A	0	0	1	default	
P7.5/PM_TA1.3/C0.4 ⁽²⁾	5	TA1.3	1	U	1	uerauit	
F7.5/FWI_TAT.5/C0.4*/	5	N/A	0	1	0	X	
		DVSS	1	'		Α	
		C0.4 ⁽³⁾⁽⁴⁾	X	1	1	X	
		P7.6 (I/O)	I: 0; O: 1	0	0	X	
		TA1.CCI2A	0	0	1	default	
P7.6/PM_TA1.2/C0.3 ⁽²⁾	6	TA1.2	1	U	•	deladit	
F7.0/FWI_TA1.2/C0.3	0	N/A	0	1	0	X	
		DVSS	1	ı	U	^	
		C0.3 ⁽³⁾⁽⁴⁾	X	1	1	X	
		P7.7 (I/O)	I: 0; O: 1	0	0	X	
		TA1.CCI1A	0	- 0	1	default	
P7.7/PM_TA1.1/C0.2 ⁽²⁾	7	TA1.1	1	U	ı	ueiauit	
F1.1/FWI_1A1.1/CU.2\\	'	N/A	0		0	~	
		DVSS	1	1	0	X	
		C0.2 ⁽³⁾⁽⁴⁾	X	1	1	X	

(1) X = don't care

- (9) 不活田干64引期RCC封装
- (3)设置P7SEL1. x和P7SEL0. x禁用输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。
- (4)将比较器的CEPD.q位置1会禁止输出驱动器和输入施密特触发器,以防止施加模拟信号时的寄生交叉电流。无论相关CEPD.q位的状态如何,选择具有CEIPSEL或CEIMSEL位的比较器多路复用器的CO.q输入引脚都会自动禁用该引脚的输出驱动器和输入缓冲器。

6.12.20端口PJ(PJ.0和PJ.1) 带施密特触发器的输入/输出

端口图如图6-16和图6-17所示。表6-81总结了引脚功能的选择。

Figure 6-16. Port PJ (PJ.0) Diagram

Figure 6-17. Port PJ (PJ.1) Diagram

表6-81。端口PJ(PJ.0和PJ.1)引脚功能

PIN NAME (PJ.x)			CONTROL BITS OR SIGNALS (1)						
		FUNCTION	PJDIR. x	PJSEL1.1	PJSELO. 1	PJSEL1.	0 PJSELO.	0 LFXT	
		PJ.0 (I/O)	I: 0; O: 1	Х	Х	0	0	Х	
		N/A	0	Х	Х	4	Х	V	
PJ.0/LFXIN	0	DVSS	1	Χ	Χ	1	X	X	
		LFXIN crystal mode (2)	Х	Х	Х	0	1	0	
		LFXIN bypass mode (2)	Х	Х	Х	0	1	1	
						0	0	0	
		PJ.1 (I/O)	PJ.1 (I/O)	I: 0; O: 1	0	0	1 X.		U
						Х	Х	1 ⁽³⁾	
						0	0	0	
PJ.1/LFXOUT	1	N/A	0	see ⁽⁴⁾	see ⁽⁴⁾	1 X.		U	
F3.1/LFX001	'					Х	Х	1 ⁽³⁾	
			1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0		
		DVSS			see ⁽⁴⁾	1 X.			
						Х	Х	1 ⁽³⁾	
		LFXOUT crystal mode (2)	X	X	X	0	1	0	

⁽¹⁾ X = don't care

⁽²⁾ 设置PJSEL1.0 = 0且PJSEL0.0 = 1会导致通用I / 0被禁用。当LFXTBYPASS =

⁰时, PJ. 0和PJ. 1配置为晶振操作, PJSEL1. 1和PJSEL0. 1无关紧要。当LFXTBYPASS = 1时, PJ. 0配置为旁路操作, PJ. 1配置为通用I /

⁽³⁾ 当PI O配置为亳路模式时,PI 1配置为通田I / O (4) 当PJSEL0.1 = 1或PJSEL1.1 = 1时,禁用通用I / O功能。没有输入功能。当配置为输出时,引脚被主动拉至零。

6.12.21端口PJ(PJ.2和PJ.3) 带施密特触发器的输入/输出

端口图如图6-18和图6-19所示。表6-82总结了引脚功能的选择。

Figure 6-18. Port PJ (PJ.2) Diagram

Figure 6-19. Port PJ (PJ.3) Diagram

表6-82。端口PJ(PJ. 2和PJ. 3) 引脚功能

			CONTROL BITS OR SIGNALS (1)					
PIN NAME (PJ.x)	x	FUNCTION	PJDIR. x	PJSEL1. 2	PJSELO. 2	2 PJSEL1.	3 PJSELO.	3 HFXT
		PJ.3 (I/O)	I: 0; O: 1	Х	Х	0	0	Х
		N/A	0	Х	X	1	Х	Х
PJ.3/HFXIN	3	DVSS	1	^	^	l	^	^
		HFXIN crystal mode (2)	X	Χ	Х	0	1	0
		HFXIN bypass mode (2)	Χ	Χ	Х	0	1	1
		PJ.2 (I/O)		O: 1 0		0	0	0
			I: 0; O: 1		0	1 X.		U
						Х	Х	1 ⁽³⁾
		N/A			see ⁽⁴⁾	0	0	0
PJ.2/HFXOUT	2		0	see (4)		1 X.		U
F3.2/11FXO01						X	X	1 ⁽³⁾
						0	0	0
		DVSS	1	see ⁽⁴⁾	see ⁽⁴⁾	1 X.		U
						Х	Х	1 ⁽³⁾
		HFXOUT crystal mode (2)	X	Χ	Х	0	1	0

⁽¹⁾ X = don't care

⁽²⁾ 设置PJSEL1.3 = 0和PJSEL0.3 = 1会导致通用I / 0被禁用。当HFXTBYPASS =

⁰时, PJ. 2和PJ. 3配置为晶振操作, PJSEL1. 2和PJSEL0. 2无关紧要。当HFXTBYPASS = 1时, PJ. 3配置为旁路操作, PJ. 2配置为通用I /

⁽³⁾ 当PI 3配置为亳路模式时,PI 9配置为通田I / Ω (4)当PJSEL0.2 = 1或PJSEL1.2 = 1时,禁用通用I / 0功能。没有输入功能。当配置为输出时,引脚被主动拉至零。

6.12.22端口PJ(PJ.4和PJ.5)输入/输出,带施密特触发器表6-83总结了引脚功能的选择。

表6-83。端口PJ(PJ.4至PJ.5)引脚功能

PIN NAME (PJ.x)		FUNCTION	CONTRO	SWJ MODE OF		
		FUNCTION	PJDIR.x	PJSEL1.x	PJSEL0.x	OPERATION (1)
		PJ.4 (I/O)	I: 0; O: 1	0	0	X
PJ.4/TDI ⁽²⁾	4	TDI	Х	0	4	JTAG (4 wire)
PJ.4/1DI (=)	4	DVcc	^		ı	SWD (2 wire)
		DVcc	Х	1	Х	X
		PJ.5 (I/O)	I: 0; O: 1	0	0	X
PJ.5/TDO/SWO (3)	5	TDO	Х	0	4	JTAG (4 wire)
	5	SWO	^	0		SWD (2 wire)
		Hi-Z	Х	1	Х	X

- (1) X表示控制信号或操作模式的值对功能没有影响。
- (2) 如果PTSELO. x为1,则该引脚在内部上拉。
- (3) 在调试配置中使用时,必须通过外部下拉电阻将此引脚接地。
- 6.12.23具有施密特触发器的端口SWCLKTCK和SWDIOTMS^{*}表6-84总结了引脚功能的选择。

表6-84。端口SWCLKTCK和SWDIOTMS引脚功能

PIN NAME	FUNCTION	SWJ MODE OF OPERATION	
SWCLKTCK (1)	TCK (input)	JTAG (4 wire)	
SWELKICK	SWCLK (input)	SWD (2 wire)	
SWDIOTMS (2)	TMS (input)	JTAG (4 wire)	
SWDIOTMS (=)	SWDIO (I/O)	SWD (2 wire)	

- (1) 该引脚内部均至NVCC
- (2) 该引脚内部拉至DVCC。

6.13设备描述符(TLV)

表6-85总结了MSP432P401xx MCU的器件ID。表6-86列出了MSP432P401xx MCU的器件描述符标签长度值(TLV)结构的内容。

Table 6-85. Device IDs

DEVICE	DEVICE ID
MSP432P401RIPZ	0000A000h
MSP432P401MIPZ	0000A001h
MSP432P401RIZXH	0000A002h
MSP432P401MIZXH	0000A003h
MSP432P401RIRGC	0000A004h
MSP432P401MIRGC	0000A005h

Table 6-86. Device Descriptor Table (1)

	DESCRIPTION	ADDRESS	VALUE				
	TLV checksum	00201000h	per unit				
	Device Info Tag	00201004h	0000000Bh				
	Device Info Length	00201008h	00000004h				
Info Block	Device ID	0020100Ch	See Table 6-85				
INIO BIOCK	Hardware Revision	00201010h	per unit				
	Boot-Code Revision	00201014h	per unit				
	ROM驱动程序库修订版00201018h每个单元						
	Die Record Tag	0020101Ch	0000000Ch				
	Die Record Length	00201020h	00000008h				
	Die X Position	00201024h	per unit				
	Die Y Position	00201028h	per unit				
Die Record	Wafer ID	0020102Ch	per unit				
Die Recolu	Lot ID	00201030h	per unit				
	Reserved	00201034h	per unit				
	Reserved	00201038h	per unit				
	Reserved	0020103Ch	per unit				
	Test Results	00201040h	per unit				
	时钟系统校准标签00201044h 00000003h						
	时钟系统校准长度00201048h 00000010h						
	DCO IR模式: DCORSEL的频率校准0至4 0020104Ch /单位						
	DCO IR模式:每单位DCORSEL 5 00201050h的频率校准						
	Reserved	00201054h	not defined				
	Reserved	00201058h	not defined				
	Reserved	0020105Ch	not defined				
	Reserved	00201060h	not defined				
Clock System	DCO IR模式: DCOR的DCO常数 (K) 0至4 00201064h每单位						
Calibration	DCO IR模式:每单位DCORSEL 5 00201068h的DCO常数(K)						
	DCO ER模式: DCORSEL的频率校准0至4 0020106Ch	/单位					
	DCO ER模式: 每单位DCORSEL 5 00201070h的频率	校准					
	Reserved	00201074h	not defined				
	Reserved	00201078h	not defined				
	Reserved	0020107Ch	not defined				
	Reserved	00201080h	not defined				
	DCO ER模式: DCOREL的DCO常数 (K) 0至4 002010	84h /单位					
	DCO ER模式:每单位DCORSEL 5 00201088h的DCO常	常数 (K)					

⁽¹⁾ per unit = content can differ from device to device

表6-86。设备描述符表(1)(续)

ADC14 Zeilbration Reserved (2020109Ch 000000005h ADC14 Zeilbration Tig Reserved (2020109Ch 000000018h Reserved (2020109Ch PEFFFFFFF (2020109Ch) (202		DESCRIPTION	ADDRESS	VALUE				
Reserved 0,0201096h FFFFFFFh Reserved 0,0201096h FFFFFFFh Reserved 0,0201044h FFFFFFFh Reserved 0,0201084h FFFFFFFh Reserved 0,0201064h FFFFFFFFh Reserved 0,0201064h FFFFFFFFh Reserved 0,0201064h FFFFFFFFh Reserved 0,0201064h FFFFFFFFh Reserved 0,0201064h FFFFFFFFFh Reserved 0,0201064h FFFFFFFFFh Reserved 0,0201064h FFFFFFFFFFFFFFF		ADC14校准标签0020108Ch 00000005h						
Reserved		ADC14校准长度00201090h 00000018h						
Reserved 002010Ath FFFFFFFh Reserved 002010Bth FFFFFFFh Reserved 002010Cth FFFFFFh Reserved 002010Cth FFFFFFF Reserved 002010Cth FFFFFFFF Reserved 002010Cth FFFFFFFF Reserved 002010Cth FFFFFFFFFF Reserved 002010Cth FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		Reserved	00201094h	not defined				
Reserved 002010A0h FFFFFFFh Reserved 002010B0h FFFFFFFh Reserved 002010C0h ADC 1.2V参考温度传感器每单位30° C 002010Bh ADC 1.45 *V参考温度传感器每单位30° C 002010Bh ADC 2.5V参考温度传感器每单位30° C 002010Bh ADC 2.5V参考温度传感器每单位30° C 002010Bh ADC 2.5V参考温度传感器每单位30° C 002010Bh ADC 2.5V参考温度传感器每单位30° C 002010Bh ADC 3.5V多考温度传感器每单位30° C 002010Bh ADC 3.5V多光温度传感器每单位30° C 002010Bh ADC 3.5V多光温度传感器每年0020° C 002010Bh ADC 3.5VSALEE ADC 3.5VSALEE ADC 3.5VSALEE ADC 3.5VSALEE ADC 3.5VSALEE ADC 3.5VSALE		Reserved	00201098h	FFFFFFFh				
Reserved 002010A8h FFFFFFFh Reserved 002010A8h FFFFFFFh Reserved 002010A8h FFFFFFFh Reserved 002010A8h FFFFFFFh Reserved 002010B0h FFFFFFFh Reserved 002010C0h FFFFFFFh Reserved 002010D0h ADC 1.45 - V参考温度使感器每单位30° C 002010B0h ADC 1.45 - V参考温度使感器每单位30° C 002010B0h ADC 2.5 V参考温度使感器每单位30° C 002010B0h ADC 3.5 V参考温度使感器每单位30° C 002010B0h ADC 2.5 V参考温度使感器每单位30° C		Reserved	0020109Ch	FFFFFFFh				
Reserved		Reserved	002010A0h	FFFFFFFh				
Reserved 002010ACh FFFFFFFh Reserved 002010Bah FFFFFFFh Reserved 002010Bah FFFFFFFh Reserved 002010Bah FFFFFFFh Reserved 002010Bah FFFFFFFh Reserved 002010Ch FFFFFFFFh Reserved 002010Ch FFFFFFFFh Reserved 002010Ch FFFFFFFh REF Calibration Tag 002010Ch O00000Ch FFFFFFFF FFFFFFH Reserved 002010Ch FFFFFFFH Reserved 002010Ch FFFFFFFH Reserved 002010Ch FFFFFFFH Reserved 002010Ch FFFFFFH Reserved 0020110Ch FFFFFFH Reserved 002		Reserved	002010A4h	FFFFFFFh				
Reserved 0,0020108h FFFFFFFh Reserved 0,0020106h FFFFFFFFh Reserved 0,0020106h FFFFFFFh Reserved 0,0020108h FFFFFFFh Reserved 0,0020108h FFFFFFFh Reserved 0,0020108h ADC 1,45-V参考温度传感器每单位30° C 0020108h ADC 1,45-V参考温度传感器每单位30° C 0020108h ADC 2,5V参考温度传感器每单位30° C 0020108h ADC 2,5V参考温度传感器每单位30° C 0020107h Reserved 0,0020108h 0,0000008h Reserved 0,0020108h 0,0000008h Reserved 0,0020108h 0,0000008h Reserved 0,0020108h 0,00000000h Reserved 0,0020108h 0,0000000h 0,0000000h 0,000000h 0,000000h 0,000000h 0,000000h 0,000000h 0,000000h 0,0000000h 0,00000000		Reserved	002010A8h	FFFFFFFh				
Reserved 002010B4h FFFFFFFh Reserved 002010B6h FFFFFFFh Reserved 002010B6h FFFFFFFh Reserved 002010C0h FFFFFFFh Reserved 002010D0h FFFFFFFFh Reserved 002010D0h ADC 1.2V多考温度性感器每单位85° C 002010E0h ADC 1.2V多考温度性感器每单位85° C 002010E0h ADC 2.5V多考温度性感器每单位85° C 002010E0h ADC 2.5V多有温度性感器每单位85° C 002010E0h ADC 2.5V基件温度性感器每单位85° C 002010E0h ADC 1.2VE参考温度性感度002010E0h ADC 1.2VE参考温度性感器每单位85° C 002010E0h ADC 1.2VE参考温度性感器每单位80000000h ADC 1.2VE参考温度性感器每单位80000000h ADC 1.2VE参考温度性感器每单位80000000h ADC 1.2VE参考温度性感器每单位80000000h ADC 1.2VE参考温度性感器每年60000000h ADC 1.2VE参考200000000h ADC 1.2VE参考200000000h ADC 1.2VE参		Reserved	002010ACh	FFFFFFFh				
Reserved 002010BCh FFFFFFFh Reserved 002010BCh FFFFFFFh Reserved 002010Ch FFFFFFFh Reserved 002010Ch FFFFFFFh Reserved 002010Cch FFFFFFFh Reserved 002010Dch Reserved 002010Ech Reserved 002010Ech Reserved 002010Ech Reserved 002010Ech Reserved 002010Ech Reserved 002010Ech Reserved Reserved 002010Ech Reserved 0020110ch Reserved 002		Reserved	002010B0h	FFFFFFFh				
Reserved Reserved		Reserved	002010B4h	FFFFFFFh				
Reserved Reserved		Reserved	002010B8h	FFFFFFFh				
Reserved	ADO44 O-lib	Reserved	002010BCh	FFFFFFFh				
Reserved Reserved	ADC14 Calibration	Reserved	002010C0h	FFFFFFFh				
Reserved		Reserved	002010C4h	FFFFFFFh				
Reserved 002010D0h FFFFFFFh Reserved 002010D4h FFFFFFFh Reserved 002010D4h FFFFFFFh Reserved 002010D4h FFFFFFFh Reserved 002010D8h not defined ADC 1. 2V参考温度任感器每单位30° C 002010E0h ADC 1. 45-V参考温度任感器每单位30° C 002010E8h ADC 2. 5V参考温度任感器每单位30° C 002010E8h ADC 2. 5V参考温度任感器每单位30° C 002010E0h ADC 2. 5V参考温度任感器每单位85° C 002010E0h ADC 2. 5V基准温度任感器每单位85° C 002010F0h REF Calibration Tag 002010F4h 0000008h REF Reserved 002010F6h not defined Reserved Reserved 00201100h not defined Re		Reserved	002010C8h	FFFFFFFh				
Reserved 002010D4h FFFFFFFh		Reserved	002010CCh	FFFFFFFh				
Reserved		Reserved	002010D0h	FFFFFFFh				
ADC 1. 2V参考温度传感器每单位30° C 002010PCh ADC 1. 45~V参考温度传感器每单位30° C 002010E4h ADC 1. 45~V参考温度传感器每单位30° C 002010E4h ADC 2. 5V参考温度传感器每单位30° C 002010E6h ADC 2. 5V参考温度传感器每单位30° C 002010E6h ADC 2. 5V基准温度传感器每单位30° C 002010E6h ADC 2. 5V基准温度传感器每单位30° C 002010FCh ADC 2. 5V基准是存成30° C 002010FCh ADC 2. 5V基准度存成30° C 002010Fh ADC 2. 5V基准度存成30° C		Reserved	002010D4h	FFFFFFFh				
ADC 1. 2V参考温度传感器每单位85° C 002010E0h		Reserved	002010D8h	not defined				
ADC 1. 2V参考温度传感器每单位85° C 002010E0h		ADC 1. 2V参考温度传感器每单位30°C 002010DCh						
ADC 1. 45-V参考温度传感器每单位30° C 002010E4h								
ADC 1. 45-V参考温度传感器每单位85° C 002010E8h			4h					
ADC 2.5V参考温度传感器每单位30°C 002010ECh ADC 2.5V基准温度传感器每单位85°C 002010F0h REF Calibration Tag								
ADC 2.5V基准温度传感器每单位85° C 002010F0h			-					
REF Calibration Tag								
REF Calibration Reserved 002010FCh not defined Reserved 00201100h not defined Reserved 00201104h 00000000h Flash Info Tag 0020110Ch 00000000h Pfash Info Length 0020110Ch 00000000h DAF By Kigk Info Length 00201118h 000000000h Random Number Tag 002011120h 00000000h Random Number Length 00201120h per unit 00201124h per unit 00201124h per unit 00201124h per unit 00201120h per unit 00201125h per unit 00201120h per unit 00201126h per unit 00201120h per unit 00201127h per unit 00201120h per unit 00201128h </td <td></td> <td></td> <td>002010F4h</td> <td>00000008h</td>			002010F4h	00000008h				
REF Calibration Reserved 002010FCh not defined Reserved 00201100h not defined Reserved 00201104h 00000000h Flash Info Tag 0020110Ch 00000000h Pfash Info Length 0020110Ch 00000000h DAF By Kigk Info Length 00201118h 000000000h Random Number Tag 002011120h 00000000h Random Number Length 00201120h per unit 00201124h per unit 00201124h per unit 00201124h per unit 00201120h per unit 00201125h per unit 00201120h per unit 00201126h per unit 00201120h per unit 00201127h per unit 00201120h per unit 00201128h </td <td></td> <td>REF校准长度002010F8h 00000003h</td> <td></td> <td></td>		REF校准长度002010F8h 00000003h						
Reserved 00201104h not defined	REF Calibration		002010FCh	not defined				
Flash Info Flash Info Tag 00201108h 00000004h		Reserved	00201100h	not defined				
Flash Info		Reserved	00201104h	not defined				
Flash Info		Flash Info Tag	00201108h	0000004h				
BSL Configuration BSL ME Random Number (2) BSL Configuration BSL ME Random Number (2) BSL Configuration BSL Configuration BSL ME Exp (00201130h 00000004h 00000000	-	Flash Info Length	0020110Ch	00000002h				
Page	Flash Info	闪存最大编程脉冲00201110h 00000005h						
Random Number 128-Bit Random Number Tag 00201118h 0000000Dh Random Number Random Number Length 002011120h 00201120h per unit 00201124h 00201124h per unit 00201128h per unit 00201125h 00201126h per unit 00201126h 8SL配置标签00201130h 00000000Fh BSL配置长度00201134h 00000004h 00201126h per unit BSL外设接口选择00201138h FFC2D0C0h UART 0020113Ch FCFFFDA0h的BSL端口接口配置 00201149h POPTON HOBSL端口接口配置 TLV End TLV End Word 00201148h 00201148h 00BD0E11Dh			 					
Random Number 128-Bit Random Number (2)			00201118h	0000000Dh				
Random Number 128-Bit Random Number (2) 00201124h per unit BSL配置标签00201130h 00000000Fh 0020112Ch per unit BSL配置长度00201134h 00000004h BSL配置长度00201134h 00000004h BSL外设接口选择00201138h FFC2D0C0h UART 0020113Ch FCFFFDA0h的BSL端口接口配置 SPI 00201140h F0FF9770h的BSL端口接口配置 I2C 00201144h FCFFF72h的BSL端口接口配置 TLV End TLV End Word 00201148h 0BD0E11Dh		Random Number Length	0020111Ch	0000004h				
128-Bit Random Number (2)			00201120h	per unit				
Mathematical Part Mat	Random Number	(2)	00201124h	per unit				
BSL配置标签00201130h 00000000Fh BSL配置标签00201134h 00000004h BSL处设接口选择00201138h FFC2D0C0h UART 0020113Ch FCFFFDA0h的BSL端口接口配置 SPI 00201140h F0FF9770h的BSL端口接口配置 I2C 00201144h FCFFFF72h的BSL端口接口配置 TLV End 00201148h 0BD0E11Dh		128-Bit Random Number ⁽²⁾	00201128h	per unit				
BSL配置长度00201134h 00000004h BSL外设接口选择00201138h FFC2D0C0h UART 0020113Ch FCFFFDA0h的BSL端口接口配置 SPI 00201140h F0FF9770h的BSL端口接口配置 I2C 00201144h FCFFFF72h的BSL端口接口配置 TLV End Word 00201148h 0BD0E11Dh			0020112Ch	per unit				
BSL配置长度00201134h 00000004h BSL外设接口选择00201138h FFC2D0C0h UART 0020113Ch FCFFFDA0h的BSL端口接口配置 SPI 00201140h F0FF9770h的BSL端口接口配置 I2C 00201144h FCFFFF72h的BSL端口接口配置 TLV End Word 00201148h 0BD0E11Dh		BSL配置标签00201130h 0000000Fh						
BSL Configuration								
UART 0020113Ch FCFFFDA0h的BSL端口接口配置 SPI 00201140h F0FF9770h的BSL端口接口配置 I2C 00201144h FCFFFF72h的BSL端口接口配置 TLV End Word 00201148h 0BD0E11Dh	BOL 6 # :		 					
SPI 00201140h F0FF9770h的BSL端口接口配置 I2C 00201144h FCFFFF72h的BSL端口接口配置 TLV End 00201148h OBD0E11Dh	BSL Configuration		+					
I2C 00201144h FCFFFF72h的BSL端口接口配置 TLV End TLV End Word 00201148h 0BD0E11Dh			 					
TLV End TLV End Word 00201148h 0BD0E11Dh		· · · · · · · · · · · · · · · · · · ·						
	TLV End		00201148h	0BD0E11Dh				

^{(2) 128}位随机数: 使用Microsoft®的CryptGenRandom()函数在生产测试期间生成随机数。

www.ti.com

6.14.1修订标识

6.14识别

设备修订信息显示为设备包上的顶部标记的一部分。特定于设备的勘误表描述了这些标记。有关本数据手册中器件的勘误表的链接,请参见第8.4节。

硬件版本也存储在"信息块"部分的"设备描述符"结构中。有关此值的详细信息,请参见器件描述符结构中的硬件版本条目(参见第6.13节)。

6.14.2设备识别

可以从设备包装上的顶侧标记识别设备类型。特定于设备的勘误表描述了这些标记。有关本数据手册中器件的勘误表的链接,请参见第8.4节。

设备标识值也存储在信息块部分的设备描述符结构中。有关此值的详细信息,请参阅器件描述符结构中的器件ID条目(参见第6.13节)。

6.14.3基于ARM Cortex-M4F ROM表的部件号。

除了器件描述符(TLV)中指定的器件ID之外,MSP432P4xx系列MCU还包含器件的部件号,供IDE识别器件。本节介绍如何在设备上组织此信息。

IEEE 1149.1定义了在JTAG链中使用IDCODE寄存器来提供表6-87中的字段

表6-87。设备识别码的结构

Bit Position	Field Description
31-28	Version
27-12	Part Number of the device
11-1	Manufacturer Identity
0保留(始终绑定到1)	

在MSP432P4xx MCU上,所有这些字段都在ARM Cortex-M4 ROM表上实现。可以通过IDE工具(TI内部或第三方)读取部件号以确定设备。图 6-20显示了ARM Cortex-M4规范中的外设ID寄存器位描述。有关ARM Cortex-M4外设ID寄存器的位级详细信息,请参阅ARM调试接口V5架构规范。

图6-20。 ARM Cortex-M4外设ID寄存器说明

图6-20显示了表6-87中的以下字段无法进行一对一映射

1. 版本: IEEE 1149.1定义了一个4位字段,其中Coresight兼容PID寄存器有4位 each for Revision (major revision) and RevAnd (minor revision)

2. 部件号· TEFE 1149 1 定 义 了一个16 位 立 休。 但 是. ROM 表中的PID 寄存器有仅为此目的保留12位(部件号 - PID1和PID0寄存器)。

对于MSP432P4xx

MCU, Revision和RevAnd字段用于跟踪主要和次要修订。客户修改(4位)字段也用于将部件号扩展到16位,以适应ROM表中IEEE 1149.1所需的所有字段。

例如, MSP432P401xx MCU的带有IEEE

1149.1投诉设备IDCODE的ROM表是0000-1011-1001-1010-1111-0000-0010-1111(见图6-21)。

图6-21。 MSP432P401xx MCU的ROM PID条目示例

7应用程序,实现和布局

NOTE

以下"应用"部分中的信息不是TI组件规范的一部分,TI不保证其准确性或完整性。TI的客户负责确定组件的适用性。客户应验证并测试其设计实现以确认系统功能。

7.1设备连接和布局基础知识

本节讨论使用MSP432微控制器进行设计时的建议指南。 这些指南旨在确保器件具有适当的连接,以便进行供电,编程,调试和最佳模拟性能。

7.1.1电源去耦和大容量电容器

TI建议将4.7 μ F和100

nF低ESR陶瓷去耦电容的组合连接到每个AVCC和DVCC引脚(见图7-1)。可以使用更高值的电容器,但会影响电源轨的上升时间。去耦电容必须尽可能靠近它们去耦的引脚(几毫米内)。此外,TI建议采用单点连接的分离式接地,以便更好地隔离电路板上的数字到模拟电路,并实现高模拟精度。

Figure 7-1. Power Supply Decoupling

7.1.2外部振荡器

该器件支持LFXT引脚上的低频晶振(32.768

kHz)和HFXT引脚上的高频晶振。需要外部旁路电容用于晶体振荡器引脚。

如果选择了适当的LFXTBYPASS或HFXTBYPASS模式,也可以将数字时钟信号应用于符合相应振荡器规格的LFXIN和HFXIN输入引脚。在这种情况下,相关的LFXOUT和HFXOUT引脚可用于其他目的。

图7-2显示了典型的连接图。

Figure 7-2. Typical Crystal Connection

有关使用MSP432器件选择,测试和设计晶体振荡器的更多信息,请参见MSP430 32 kHz晶体振荡器。

7.1.3一般布局建议

- •外部晶体的正确接地和短走线,以减少寄生电容。有关推荐的布局指南,请参见MSP430 32 kHz晶体振荡器。
- •DVCC, AVCC和参考引脚(如果使用)上的正确旁路电容。
- •避免在模拟信号线附近布设任何高频信号。例如,保持数字开关信号(例如PWM或JTAG信号)远离振荡器电路。
- •有关印刷电路板(PCB)布局注意事项的详细讨论,请参阅电路板布局技术。本文档主要是关于运算放大器编写的,但该指南通常适用于所有混合信号应用。
- •应考虑采用适当的ESD电平保护,以保护器件免受意外的高压静电放电。有关指南,请参阅MSP430系统级ESD注意事项。

7.1.4做与不做

TI建议从同一电源为AVCC和DVCC引脚供电。至少在上电,断电和设备运行期间,AVCC和DVCC之间的电压差不得超过绝对最大额定值中规定的限值。超过指定的限制可能会导致设备故障。

7.2外设和接口特定的设计信息

7.2.1 ADC14外设

7.2.1.1部分原理图

图7-3显示了ADC14外部连接的部分原理图。

图7-3。 ADC14接地和噪声考虑因素

7.2.1.2设计要求

与任何高分辨率ADC一样,应遵循适当的PCB布局和接地技术,以消除接地环路,不必要的寄生效应和噪声。

当来自ADC的返回电流流过与其他模拟或数字电路共用的路径时,形成接地回路。如果不小心,该电流可以产生较小的不需要的偏移电压,可以增加或减少ADC的参考电压或输入电压。第7.1.1节中的一般准则与第7.2.1.1节中所示的连接相结合可防止这种情况发生。

除了接地之外,由数字开关或开关电源引起的电源线上的纹波和噪声尖峰可能会破坏转换结果。建议使用单独模拟和数字接地层以及单点连接的无噪声设计,以实现高精度。

图7-3显示了使用外部参考电压时推荐的去耦电路。

参考电压必须是稳定的电压才能进行精确测量。在参考电压进入器件之前,通用指南中选择的电容值会滤除高频和低频纹波。在这种情况下,5μF电容用于缓冲参考引脚并滤除任何低频纹波。 50 nF旁路电容用于滤除任何高频噪声。

7.2.1.3 布局指南

部分原理图中显示的元件(见图7-3)应尽可能靠近相应的器件引脚放置。避免长迹线,因为它们会在信号上增加额外的寄生电容,电感和电阻。

避免将模拟输入信号布设在靠近高频引脚(例如,高频PWM)的位置,因为高频开关可以耦合到模拟信号中。

如果ADC14使用差分模式,则模拟差分输入信号必须靠近在一起,以最大限度地降低噪声对结果信号的影响。

8设备和文档支持

8.1入门和后续步骤

有关MSP432系列微控制器以及可用于开发的工具和库的更多信息,请访问MSP432P4x入门。

8.2设备和开发工具命名法

为了指定产品开发周期中的各个阶段,TI为所有MSP432

MCU器件和支持工具的器件编号分配了前缀。每个MSP432

MCU商用系列成员都有三个前缀之一: MSP, PMS或XMS(例如, MSP432P401R)。

TI为其支持工具推荐了三种可能的前缀指示符中的两种: MSP和MSPX。这些前缀代表了从工程原型(使用设备的XMS和工具的MSPX)到完全合格的生产设备和工具(MSP用于设备和MSP用于工具)的产品开发的演进阶段。

设备开发演化流程:

XMS - 不一定代表最终设备电气规格的实验设备

PMS - 最终硅片,符合器件的电气规范,但尚未完成质量和可靠性验证

MSP - Fully qualified production device

支持工具开发演化流程:

MSPX - 尚未完成德州仪器内部认证测试的开发支持产品。

MSP - 完全合格的开发支持产品

XMS和PMS设备以及MSPX开发支持工具是根据以下免责声明提供的:

"Developmental product is intended for internal evaluation purposes."

MSP设备和MSP开发支持工具已经完全表征,并且已经充分展示了设备的质量和可靠性。 TI的标准保修适用。

预测表明,原型设备(XMS和PMS)的故障率高于标准生产设备。德州仪器(TI)建议不要在任何生产系统中使用这些设备,因为它们的预期最终使用故障率仍未定义。只能使用合格的生产设备。

TI器件命名法还包括带有器件系列名称的后缀。该后缀表示封装类型(例如,PZP)和温度范围(例如,T)。图8-1提供了读取任何系列成员的完整设备名称的图例。

Processor Family	MSP = Mixed-Signal Processor XMS = Experimental Silicon							
Platform	432 = TI's 32-Bit Low-Power Microcontroller Platform							
Series	P = Performance and Low-Power Series							
Feature Set	First Digit 4 = Flash-based devices up to 48 MHz	Second Digit 0 = General purpose	Third Digit 1 = ADC14	Fourth Digit R = 256KB of flash 64KB of SRAM M = 128KB of flash 32KB of SRAM				
Optional: Temperature Range	S = 0°C to 50°C I = -40°C to 85°C T = -40°C to 105°C							
Packaging	http://www.ti.com/packaging							
Optional: Distribution Format	T = Small reel R = Large reel No markings = Tube or tray							
Optional: Additional Features	-EP = Enhanced Product (–40°C to 105°C) -HT = Extreme Temperature Parts (–55°C to 150°C) -Q1 = Automotive Q100 Qualified							

Figure 8-1. Device Nomenclature

8.3工具和软件

所有MSP432微控制器都支持各种软件和硬件开发工具。

TI和各种第三方提供工具。在TI 32位MSP432微控制器上查看所有这些内容。

表8-1列出了支持的调试功能。有关可用硬件功能的详细信息,请参阅Code Composer Studio™IDE 7.1+以获取SimpleLink™MSP432™微控制器用户指南。请参阅使用增强型仿真模块(EEM)进行高级调试,使用Code Composer Studio版本6和MSP高级功耗优化: ULP Advisor™和EnergyTrace™技术,以获取更多用途信息。

Table 8-1. Hardware Debug Features

FAMILY	JTAG	SWD	NUMBER OF BREAKPOINTS	ITM	DWT	FPB	
MSP432P4xx	Yes	Yes	6	Yes	Yes	Yes	

Code Composer Studio 6.0及更高版本支持EnergyTrace技术。它需要专门的调试器电路,MSP432 LaunchPad开发套件,XDS110独立调试探针和第二代独立MSP-FET

JTAG仿真器支持该电路。有关更多详细信息,请参阅MSP高级功耗优化: ULP

Advisor™和EnergyTrace™技术,用于SimpleLink™MSP432™微控制器的Code Composer Studio™IDE 7.1+用户指南和MSP432™SimpleLink™微控制器硬件工具用户指南。

Design Kits and Evaluation Modules

- MSP432P401P LaunchDad开告存他MSD429D401P LaunchDad开告存他古共 您需要开发受益于低功耗操作的高性能应用程序。该套件采用MSP432P401R MCU,包括48 MHz ARM Cortex M4F, 80-μA/ MHz有源功率,660-nA待机和RTC操作,14位1 MSPS差分SAR ADC,最高16位ENOB和AES256加速器。
- **100-Pin Target Development Board for MSP432P4x MCUs** The MSP-TS432P7100 is a stand-alone 7IF 套接字目标板,用于通过JTAG接口或串行线调试(SWD 2线JTAG)协议对系统内的MSP432进行编程和调试。该开发板支持采用100引脚LQFP封装(TI封装代码: PZ)的所有MSP432P4xx闪存器件。

Software

- SimpleLirb MCD429th 供工告存供(CDK)CimpleLipl MCD429 CDK是一个全面的软件包,使工程师能够在MSP432 MCU上快速开发功能强大的应用程序。SDK由多个兼容的软件组件组成,包括RTOS,驱动程序和中间件,以及如何将这些组件一起使用的示例。此外,还提供了一些示例来演示每个功能区域和每个支持的设备的使用,并作为您自己项目的起点。 SimpleLink MSP432 SDK是TI SimpleLink平台的一部分,可在SimpleLink MCU之间实现100%的代码重用。
- 用于MSP439為均型的DTOC MCD439 MCU提供与多个TI和第三方的兼容性实时操作系统(RTOS)。请访问此链接,了解每个主要功能以满足您的设计需求。

Development Tools

- ARM® Keil® MDK Free 32KB IDF The ARM Keil MDK is a complete debugger and C/C++ compiler 用于构建和调试嵌入式应用程序的工具链。 Keil MDK支持低功耗和高性能MSP432 MCU系列,并包含一个完全集成的调试器,用于源和反汇编级调试,支持复杂的代码和数据断点。有关更多信息,请参阅"用于SimpleLink™MSP432™微控制器的ARM®Keil®MDK第5版用户指南"。
- IAR Embedded Workhench[®] Kickstart IAR Fmhedded Workhench Kickstart for MSP is a complete 调试器和C / C ++编译器工具链,用于构建和调试基于MSP430和MSP432微控制器的嵌入式应用程序。对于MSP432器件,C / C ++编译器的代码大小限制设置为32KB。有关更多信息,请参阅用于ARM®7.x的IAREmbeddedWorkbench®for SimpleLink™MSP432™微控制器用户指南。
- Debuggers for MSP432 Microcontrollers MSP432 MCUs are designed to work with a variety of 德州仪器(TI)和第三方供应商的调试器。
- MSP Energy Traco 技术用于MSD420/微坛生间界的Energy Traco 技术具一种能源 _ 基于代码分析的工具,可测量和显示应用的能量曲线,并有助于优化它以实现超低功耗。
- MSP MCU编程器和调试器MCD_FFT具一种计能盘士的传育开发工具 _ 通常 称为调试探针 允许用户在MSP低功耗微控制器上快速开始应用程序开发。
- MSP-GANG生产编程學MSD Conge编程學具MSD430和MSD439學供 -编程器,可以同时编程多达8个相同的MSP430或MSP432闪存或FRAM器件。 MSP Gang Programmer使用标准RS-232或USB连接连接到主机PC,并提供灵活的编程选项,允 许用户完全自定义过程。

www.ti.com

引脚复用工具引脚MUX工具是一个软件工具,提供图形用户界面 specifying I/O cell TI

MPU的特性。结果输出为C头和代码文件,可以导入软件开发工具包或用于配置客户的自定义软件。 Pin Mux实用程序的第3版可以自动选择满足用户输入要求的mux配置。

ULP(超低功耗)晒高III D(超低功耗)晒高具地具开发人员稳定的工具

更高效的代码,充分利用MSP和MSP432微控制器独特的超低功耗特性。针对经验丰富的新型微控制器 开发人员,ULP

Advisor会根据完整的ULP检查表检查您的代码,以便从您的应用程序中挤出每一个纳米放大器。

8.4文档支持

以下文档描述了MSP430P401x MCU。这些文档的副本可在TI网站上获得。

接收文档更新通知

要接收文档更新通知(包括芯片勘误表),请访问ti.com上设备的产品文件夹(有关产品文件夹的链接,请参阅第8.5节)。在右上角,单击"提醒我"按钮。这会使您注册接收已更改的产品信息的每周摘要(如果有)。有关更改详细信息,请查看任何修订文档的修订历史记录。

Errata

MSP432P401P聚性说明书描述了功能规范的已知例外情况 该器件的每个芯片版本。

MSP432P401M器供證明基礎法了世齡规范的已知例外情况 该器件的每个芯片版本。

User's Guides

MSP432P4xv Simplatink™微均型異母未会去毛冊详细说明 该器件系列中提供的模块和外设。

适用于SimmlalinkMMSD429M微控制器的Code Composer StudiaMIDE 7 1+田户华蓝手册描述了TI Code Composer Studio

IDE (CCS) 7.1及更高版本与MSP432低功耗微控制器的使用。

用于SimpleLinkTMMSP429TM為控制異的TAR Embadded Workbanch for ARM 7 v田户指南本手册介绍了使用IAR Embedded Workbench for ARM (FWARM) 7 v版和MSP439任功耗微控制器

适用于SimpleLink™MSP432™微控制器的ARM®Keil®MDK第5版用户指南此用户指南指南描述了ARM Keil MDK版本5与MSP432低功耗微控制器的使用。

用于SimpleIink™MSP432™微控制器的GCCARM®嵌入式工具链用户指菌手册介绍了使用GCC ARM编译器和GDB调试器进行MSP432编程和调试的设置和基本操作。

MSP432MSimmlaLinkM微均组與引导加裁程定(RCI)用白地志MCD429 RCI 古基

用户在原型设计阶段,最终生产和使用中与MSP432微控制器中的嵌入式存储器进行通信。可编程存储器(闪存)和数据存储器(RAM)都可以根据需要进行修改。

MSP432电容式鲕墙站处底积它是比高MCD/29衡均割界具

配备执行电容测量所需的外围设备。电容式触摸软件库的目的是创建一个可与MSP432器件中的外设集成的单一接口。本文档介绍了电容式触摸库的配置以及与MSP432器件的配合使用。

Application Reports

- Platform Migration to SimpleLink™ MSP432™ Microcontrollers The goals for this migration guide are to help developers accurately assess the effort to port an existing application from one MSP platform to another, and ultimately to derive a porting strategy with complete hardware and software coverage that properly ports the existing application without introducing bugs due to platform differences yet that takes advantages of the unique features or performance improvements in the new platform.
- Designing an Ultra-Low-Power (ULP) Application With SimpleLinkTM MSP432TM Microcontrollers

 With the growing system complexity in ultra-low-power microcontroller applications, minimizing the overall energy consumption is one of the most difficult problems to solve. Multiple aspects including silicon, other onboard hardware components, and application software must be considered. There are some obvious generic techniques that can be used to reduce energy consumption such as reducing operating voltage or frequency. Many of these generic techniques may not greatly reduce energy consumption independently, but taken as a whole, the results can be significant, as there are many interdependencies across these components.
- Maximizing MSP432P4xx Voltage Regulator Efficiency This application report describes the relationship of the DC-DC and LDO voltage regulators on the MSP432P4xx MCU, provides guidelines on choosing which is most efficient for your application, and gives board layout considerations for the DC-DC.
- Leveraging Low-Frequency Power Modes on SimpleLink™ MSP432P4xx Microcontrollers

 power consumption is very important in all battery powered embedded applications. But the operating frequency of these embedded applications can be diverse based the needs of the application. Some applications might require operating at higher frequencies, in the order of several megahertz, while some other applications might require operating at lower frequencies, in the order of a few tens or a few hundreds of kilohertz. There are several microcontrollers in the market that offer good active mode power consumption when the operating frequency is in the order of several megahertz. But it is a challenge to get the power consumption low when the operating frequency is in the order of kilohertz. The low-frequency power modes available on the MSP432P4xx microcontrollers offer very low power consumption when low frequency of operation is used by the target application.
- Software IP Protection on MSP432P4xx Microcontrollers Differentiations in embedded software applications enable differentiated products. Companies invest significant money in building differentiated software application. Hence, protecting this investment (application or portions of the application) is extremely important. This application note describes how to protect software intellectual property (IP) running on the Texas Instruments MSP432P401x family of microcontrollers.
- Code Conversion Application for MSP432P401R This application note describes the use of the code conversion application delivered with version 2.0.0 (and above) of the MSP432P401R device header files. In these revisions of the MSP432P401R device header files, the coding style has been adapted to CMSIS. This may lead to compilation errors in user code if the code is not converted. MSP430 style register definitions have also been removed with exception of legacy 16-bit IPs (see msp432p401r classic.h).

8.5 Related Links

Table 8-2 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 8-2. Related Links

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
MSP432P401R	Click here	Click here	Click here	Click here	Click here	
MSP432P401M	Click here	Click here	Click here	Click here	Click here	

www.ti.com

8.6 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Community

TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

TI Embedded Processors Wiki

Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

8.7 Trademarks

MSP432, LaunchPad, SimpleLink, ULP Advisor, EnergyTrace, E2E are trademarks of Texas Instruments. ARM, Cortex, Thumb, Keil are registered trademarks of ARM Ltd.

Bluetooth is a registered trademark of Bluetooth SIG.

ULPBench, ULPMark are trademarks of EEMBC.

Wi-Fi is a registered trademark of Wi-Fi Alliance.

8.8 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.9 Export Control Notice

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

8.10 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PZ (S-PQFP-G100)

PLASTIC QUAD FLATPACK

1

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

PZ (S-PQFP-G100)

PLASTIC QUAD FLAT PACK

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- D. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis is for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This is a Pb-free solder ball design.

BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. See Texas Instruments Literature No. SBVA017 (www.ti.com/lit/sbva017).

BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5—1994.
 - B. This drawing is subject to change without notice.
 - C. Quad Flatpack, No-leads (QFN) package configuration.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

RGC (S-PVQFN-N64)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. <u>SLUA271</u>. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

9-Aug-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)				Qty	(2)	(6)	(3)		(4/5)	
MSP432P401MIPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	MSP432P401M	Samples
MSP432P401MIPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	MSP432P401M	Samples
MSP432P401MIRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	MSP432P401M	Samples
MSP432P401MIRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	MSP432P401M	Samples
MSP432P401MIZXHR	ACTIVE	NFBGA	ZXH	80	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	P401M	Samples
MSP432P401MIZXHT	ACTIVE	NFBGA	ZXH	80	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	P401M	Samples
MSP432P401RIPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	MSP432P401R	Samples
MSP432P401RIPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	MSP432P401R	Samples
MSP432P401RIRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	MSP432P401R	Samples
MSP432P401RIRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	MSP432P401R	Samples
MSP432P401RIZXHR	ACTIVE	NFBGA	ZXH	80	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	P401R	Samples
MSP432P401RIZXHT	ACTIVE	NFBGA	ZXH	80	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	P401R	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

PACKAGE OPTION ADDENDUM

9-Aug-2017

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.