$\mathbf{R5.A.11}\ \mathbf{QCM}\ \mathbf{1}$

0 0	Aucun document autorisé. Les mauvaises réponses entraîneront des pertes de points. ← codez votre numéro de login ci-contre, et écrivez votre nom et prénom ci-dessous. Nom et prénom :
Question [Q0] Identifier le problème d'optimisation linéaire p	parmi les problèmes suivants :
Maximiser $c(x,y) = 2x + y$ sous les contraintes $\begin{cases} x & +6y \ge 8 \\ x & +y \le 5 \\ 9x & +4y \le \sin \pi \end{cases}$ Maximiser $c(x,y) = \sin x + y$ sous les contraintes $\begin{cases} x & +2y \le 8 \\ x & +y \le 5 \\ 9x & +4y \le 36 \end{cases}$	
70 étudiant es à Nantes. Un minibus transpo	on de la data. Pour cela ils doivent emmener orte 10 personnes et <mark>coûte 200€</mark> à la location oûte 800€. Quel est le problème d'optimisation de l'IUT est serré.
Minimiser $c(M,B) = 200M + 800B$ sous les contraintes $\{10M + 50B \ge 70\}$	Maximiser $c(M,B) = M + B$ sous les contraintes $\begin{cases} 10M + 50B \ge 70 \\ 200M + 800B \le 1000 \end{cases}$
Minimiser $c(M,B) = 10M + 50B$ sous les contraintes $\begin{cases} 10M + 50B \ge 70 \\ 200M + 800B \le 1000 \end{cases}$	Minimiser $c(x,y) = x + y$ sous les contraintes $\begin{cases} 10x & +50y \ge 70 \\ 200x & +800y \le 1000 \end{cases}$
on cherche à minimi	her la somme la somme tota
Our very charales re	FRAM DO CINTER 3

CATALOGUE

C3 C3 C4	Question [Q3] On considère le problème : sous les contraintes $\begin{cases} x & +5y & \geq 10 \\ x & -2y & \leq 6 \\ 2x & +y & \leq 10 \\ & x,y & \geq 0 \end{cases}$ Quel point fait parti de la région admissible ?	
	(1,4) (-1,3) pb/m C4 ***********************************	(4,0) pldm C1 4.1+0.5 (1) (5,1) pldm C3 5.2 11.1 > 10
	Question [QA1]	orrespondant à la figure (a) parmi les problèmes
	Optimiser sous les contraintes $\begin{cases} x_1 & +x_2 \geq 3 \\ 6x_1 & -3x_2 \leq 13, 5 \\ 3x_1 + & 6x_2 \leq 9 \end{cases}$	Optimiser sous les contraintes $\begin{cases} x_1 & +x_2 \leq 3 \\ 6x_1 & -3x_2 \leq 13, 5 \\ 3x_1 + & 6x_2 & \leq 9 \end{cases}$
	Optimiser sous les contraintes $\begin{cases} x_1 & +x_2 \geq 3\\ 6x_1 & -3x_2 \leq 13, 5\\ 3x_1 + & 6x_2 \geq 9 \end{cases}$	Optimiser sous les contraintes $\begin{cases} x_1 & +x_2 \geq 3 \\ 6x_1 & -3x_2 \geq 13, 5 \\ 3x_1 + & 6x_2 \geq 9 \end{cases}$
	d'une fonction linéaire objectif $c(x_1, x_2) = c$ pourrait théoriquement avoir lieu, sous les con	
ser E		
	Le maximum admissible vaut	
		□ 3 □ 3 max. rur un sommet
	Question [QA4] On veut minimiser la fonction $c(x_1, x_2) = x_1$ - Le minimum admissible vaut	$-4x_2$ sous les contraintes dessinées figure (a).
	-10 -7	$\begin{bmatrix} \Box & 0 \\ \Box & \frac{11}{2} \end{bmatrix}$

Question [QB1]

Identifier la représentation graphique correspondant au problème B parmi les images suivante

Question [QB2] On veut maximiser la fonction $c(x_1,x_2)=x_1-x_2$ sous les contraintes du problème B. Le maximum admissible vaut

2	
\Box -4	

CATALOGUE

Problème B

Optimiser $c(x_1, x_2)$ sous les contraintes

$$\begin{cases} x_1 + x_2 & \ge 9 \\ x_1 - x_2 & \le 2 \\ x_1 & \le 3 \\ x_1, x_2 & \ge 0 \end{cases}$$