МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

КЛАССИФИКАЦИЯ БИНАРНЫХ ОТНОШЕНИЙ И СИСТЕМЫ ЗАМЫКАНИЙ

ЛАБОРАТОРНАЯ РАБОТА

студента 3 курса 331 группы	
специальности 100501 — Компьютерная безопасность	
факультета КНиИТ	
Окунькова Сергея Викторовича	
Проверил	
аспирант	В. Н. Кутин

СОДЕРЖАНИЕ

1	Постановка задачи					
2	Теоретические сведения по рассмотренным темам с их обоснованием 4					
3	Резу	льтаты работы	6			
	3.1	Алгоритм 1 - Построение подполугруппы по заданному порож-				
		дающему множеству	6			
	3.2	Алгоритм 2 - Построение полугруппы бинарных отношений по				
		заданному порождающему множеству	6			
	3.3	Алгоритм 3 - Построение полугруппы по порождающему множе-				
		ству и определяющим соотношениям	7			
	3.4	Коды программ, реализующей рассмотренные алгоритмы	7			
	3.5	Результаты тестирования программ	. 1			
	3.6	Ответы на задачи	2			
3A	КЛЮ	ОЧЕНИЕ1	6			

1 Постановка задачи

Цель работы:

Изучение основных свойств бинарных отношений и операций замыкания бинарных отношений.

Порядок выполнения работы:

- 1. Рассмотреть понятия полугруппы, подполугруппы и порождающего множества. Разработать алгоритм построения подполугрупп по по таблице Кэли.
- 2. Разработать алгоритм построения полугруппы бинарных отношений по заданному порождающему множеству.
- 3. Рассмотреть понятия подгруппы, порождающего множества и определяющих соотношений. Разработать алгоритм построения полугруппы по порождающему множеству и определяющим соотношениям.

2 Теоретические сведения по рассмотренным темам с их обоснованием

Полугруппа — это алгебра $S = (S, \cdot)$ с однойассоциативной бинарной операцией \cdot , т.е. выполняется $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ для любых $x, y, z \in S$.

Если полугрупповая операция называется умножением (соответственно, сложением), то полугруппу называют мультипликативной (соответственно, аддитивной).

Подмножество X полугруппы S называется **подполугруппой**, если X устойчиво относительно операции умножения, т.е. для любых $x,y\in X$ выполняется свойство: $x\cdot y\in X$.

В этом случае множество X с ограничением на нем операции умножения исходной полугруппы S образует полугруппу.

В силу общего свойства подалгебр пересечение любого семейства X_i $(i \in I)$ подполугрупп полугруппы S является подполугруппой S и, значит, множество Sub(S) всех подполугрупп полугруппы S является системой замыканий. множество X. Такая полугруппа обозначается символом $\langle X \rangle$ и называется подполугруппой S, порождённой множеством X. При этом множество X называется также **порождающим множеством** подполугруппы X. В частности, если X называется порождающим множеством полугруппы X и говорят, что множество X порождает полугруппу X.

Для любой конечной полугруппы S найдется такой конечный алфавит A, что для некоторого отображения $\phi:A\to S$ выполняется равенство $<\phi(A)>=S$ и, значит, $S\cong A^+/ker\phi$ этом случае множество A называется множеством порождающих символов полугруппы S (относительно отображения $\phi:A\to S$). Если при этом для слов $w_1,w_2\in A$ выполняется равенство $\phi(w_1)=\phi(w_2)$, т.е. $w_1\equiv w_2(ker\phi)$, то говорят, что на S выполняется соотношение $w_1=w_2$ (относительно отображения $\phi:A\to S$).

Очевидно, что в общем случае множество таких соотношений $w_1=w_2$ для всех пар $(w_1,w_2)\in ker\phi$ будет бесконечным и не представляется возможности эффективно описать полугруппу S в виде полугруппы классов конгруэнции $ker\phi$. Однако в некоторых случаях можно выбрать такое сравнительно простое подмножество $\rho\subset ker\phi$, которое однозначно определяет конгруэнцию $ker\phi$ как наименьшую конгруэнцию полугруппы A^+ , содержащую отношение ρ , т.е. $ker\phi=f_{con}(\rho)=f_{eq}(f_{req}(\rho))$.

Так как в случае $(w_1,w_2)\in \rho$ по-прежнему выполняется равенство $\phi(w_1)=\phi(w_2)$, то будем писать $w_1=w_2$ и называть такие выражения **определяющими соотношениями**. Из таких соотношений конгруэнция $ker\phi$ строится с помощью применения следующих процедур к словам $u,v\in A^+$:

- (а) слово v непосредственно выводится из слова u, если v получается из u заменой некоторого подслова w_1 на слово w_2 , удовлетворяющее определяющему соотношению $w_1 = w_2$, т.е. $(u, v) = (xw_1y, xw_2y)$ для некоторых $x, y \in A^*$;
- (б) слово v выводится из слова u, если v получается из u с помощью конечного числа применения процедуры (а).

Если все выполняющиеся на S соотношения выводятся из определяющих соотношений совокупности ρ , то конгруэнция $ker\phi$ полностью определяется отношением ρ и выражение $< A : w_1 = w_2 : (w_1, w_2) \in \rho >$ называется копредставлением полугруппы S.

3 Результаты работы

3.1 Алгоритм 1 - Построение подполугруппы по заданному порождающему множеству

 Bxod : Полугруппа S с таблицей Кэли $A=(a_{ij})$ размерности $n\times n$ и подмножество $X\subset S$.

Выход: Подполугруппа $\langle X \rangle \subset S$.

Шаг 1. Положим $i = 0, X_0 = X$.

<u>Шаг 2.</u> Для X_i вычислим $\overline{X}_l = \{x \cdot y : x \in X_i \land y \in X\}$ и положим $X_{i+1} = X_i \cup \overline{X}_l$ (выражение $x \cdot y$ означает a_{xy} в таблице Кэли A).

 $\underline{\text{Шаг 3.}}$ Если $X_{i+1}=X_i$ вернем X_i , которое будет являться подполугруппой $\langle X \rangle \subset S$, иначе положим i=i+1 и вернемся ко 2-му шагу.

Трудоемкость алгоритма $O(n^3)$.

3.2 Алгоритм 2 - Построение полугруппы бинарных отношений по заданному порождающему множеству

 Bxod : Конечное множество X бинарных отношений, заданное булевыми матрицами размерности $n \times n$.

Выход: Полугруппа $\langle X \rangle$.

Шаг 1. Необходимо инициализировать список matrices = []. Известно, что каждому элементу $x_i \in X$ $(0 \le i < n)$ соответствует матрица $A_i \in M$, где M – множество матриц A_i $(0 \le i < n)$, тогда элементы списка matrices будут заданы следующим образом: $matrices[i] = A_i$ $(0 \le i < n)$. Стоит отметить, что список matrices есть полугруппа $\langle X \rangle$.

 $\underline{\text{Шаг 2.}}$ Необходимо создать список combinations, элементы которого будут $c_k \in combinations$, где $0 \le k < (n^1 + n^2 + ... + n^n)$. Т.е. этот список является суммой размещений с повторениями.

<u>Шаг 3.</u> Далее возьмем матрицу A_i ($0 \le i < n$) и умножим ее на матрицы $B_0,...,B_l$ согласно текущей комбинации c_k ($0 \le k < (n^1 + n^2 + ... + n^n)$), где матрицы $B_1,...,B_l \in M$ составляют текущую комбинацию c_k (l – количество элементов в c_k). Таким образом получаем матрицу $C = A_i \odot B_1 \odot \cdots \odot B_l$, где \odot – операция поэлементного умножения. Добавляем C в список matrices в качестве нового элемента полугруппы $\langle X \rangle$.

<u>Шаг 4.</u> Повторять шаг 3 k раз $(0 \le k < (n^1 + n^2 + ... + n^n)).$

3.3 Алгоритм 3 - Построение полугруппы по порождающему множеству и определяющим соотношениям

 Bxod : Конечное множество символов A размерности n и конечное множество R определяющих соотношений размерности $m \times n$.

Выход: Полугруппа $\langle A|R\rangle$.

<u>Шаг 1.</u> Необходимо инициализировать пустой список gl и добавить в него все элементы генератора R. Инициализировать массив alph=gl

<u>Шаг 2.</u> К каждому элемента gl добавить каждый элемент alph и посчитать новое определяющее соотношение. Оно будет рассчитываться как массив, размерности n, где k элемент $(0 \le k < n)$ будет равен R[i][j], где i - это добавленный элемент из alph, а j - позиция k-го элемента в A.

<u>Шаг 3.</u> Если все полученные значения соотношений уже есть в R, вернуть R, иначе ql = все уникальные соотношения и вернуться к шагу 2.

Трудоемкость алгоритма $O(m^n)$.

3.4 Коды программ, реализующей рассмотренные алгоритмы

```
def get_res(matrixes):
    res = []
    for subset in subsets(len(matrixes)):
        podres = matrixes[subset[0]]
        for index in subset[1:]:
            podres *= matrixes[index]
        for relation in get_set(podres):
            res.append(relation)
    return set(res)
def add_correlation(cur_word, alph, dct, semigroup_elems):
    new_words = []
    for letter in alph:
        new_word = cur_word + letter
        m = \Gamma 
        for i in dct[cur_word]:
            if i != '*':
                m.append(dct[letter][semigroup_elems.index(i)])
            else:
                m.append('*')
        flag = True
        for key in dct:
            if m == dct[key]:
                print(new_word, '->', key)
                flag = False
        if flag:
            dct[new_word] = m
            new_words.append(new_word)
    return new_words
def find correlation(ans):
    result = {}
    correlations = {}
    for key, value in ans.items():
        if not any(np.array_equal(value, i) for i in result.values()):
            result[key] = value
        else:
            for k, v in result.items():
```

```
if np.array_equal(v, value):
                    correlations[key] = k
    print("Coopresentation: ")
    for key, value in result.items():
        print(key, ":\n", value)
    print("The resulting ratios: ")
    for key, value in correlations.items():
        print(key, "->", value)
def task1():
    print("Enter your set")
    st = list(input().split())
    print('Enter Cayley table')
    print(" ", *st)
    matrix = []
    for i in range(len(st)):
        print(st[i], end=" ")
        s = list(input().split())
        matrix.append(s)
    print("Enter your subset")
    subst = list(input().split())
    x_i = subst.copy()
    while True:
        x 1 = \Gamma
        for x in x_i:
            for y in subst:
                x_l.append(matrix[x_i.index(x)][st.index(y)])
        x_0 = x_i.copy()
        x_0.sort()
        x_i = list(set(x_i).union(set(x_l)))
        x i.sort()
        if x_0 == x_i:
            print('Subsemigroup is', *x_i)
            break
def task2():
    print("Enter the elements of the set: ")
    input_list = input().replace(",", "").split()
```

```
n = len(input_list)
    print("Enter the number of binary relations")
    bin_relation_amount = int(input())
    bin_relation_matrices = {}
    for i in range(1, bin_relation_amount + 1):
        print(f"Enter boolean matrix Values {i} binary relation: ")
        print(" ", *input_list)
        matrix = [list(map(int, input(f"{input_list[i]} ").split())) for i in range(n
        matrix = np.array(matrix).reshape(n, n)
        bin_relation_matrices[str(i)] = matrix
    combinations_list = []
    for i in range(1, bin_relation_amount + 1):
        combinations = list(product(''.join([str(elem) for elem in range(1, bin_relat
        combinations_list += combinations
    for comb in combinations_list:
        cur_matrix = bin_relation_matrices[comb[0]].copy()
        word = comb[0]
        for comb_i in range(1, len(comb)):
            cur_matrix *= bin_relation_matrices[comb[comb_i]]
            word += comb[comb i]
        bin_relation_matrices[word] = cur_matrix
    find_correlation(bin_relation_matrices)
def task3():
    print("Enter semigroup elements: ")
    semigroup_elems = [elem for elem in input().replace(",", "").split()]
    print("Enter the elements of the transformation set: ")
    generators_list = input().replace(",", "").split()
    translation_dict = {}
    for i in range(len(generators_list)):
        print(f"Enter transformation values '{generators_list[i]}' elements of the sen
        print((str(semigroup_elems)[1:-1]).replace(", ", " ").replace("'", ""))
        translation = input().split()
        translation_dict[generators_list[i]] = translation
    print("Coopresentation: ")
    gl = generators_list.copy()
    while gl:
```

```
gl1 = []
        for s in gl:
            gl1.extend(add_correlation(s, generators_list, translation_dict, semigroup)
        gl = gl1
    print("The resulting ratios: ")
    print(translation_dict)
if __name__ == "__main__":
    print("What are you want? (1 - Build subsemigroup by Cayley table, 2 - Build semi
    f = int(input())
    if f == 1:
        task1()
    elif f == 2:
       task2()
    elif f == 3:
        task3()
    else:
        print("Something going wrong! Enter a number from 1 to 3")
```

3.5 Результаты тестирования программ

```
What are you want? (1 - Build subsemigroup by Cayley table, 2 - Build semigroup binary relations, 3 - Build semigroup by generating set and transformation set)
1
Enter your set
1 2 3
Enter Cayley table
1 2 3 1
2 3 1
2 3 1
2 3 1 2
3 1 2
3 1 2 3
Enter your subset
2 3
Enter your subset
2 3
Subsemigroup is 1 2 3
```

Рисунок 1 – Тест алгоритма построения подполугрупп по по таблице Кэли

Рисунок 2 – Тест алгоритма построения полугруппы бинарных отношений по заданному порождающему множеству

Рисунок 3 — Тест алгоритма построения полугруппы по порождающему множеству и определяющим соотношениям

3.6 Ответы на задачи

Задание 1. Найдите полугруппу $S = \langle f, g \rangle$ преобразований множества X = 1, 2, 3, порожденную следующими преобразованиями f, g в симметрической полугруппе T(X) преобразований множества X:

$$f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \end{pmatrix}, g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$$

Известно, что множество преобразований f,g порождает полугруппу $\mathbf{S}=\langle f,g\rangle$ преобразований множества X, которая состоит из элементов f,g,f^2,fg,gf,g^2,\dots и является подполугруппой конечной полугруппы T(X).

Задание 2. Найдите индекс и период следующих элементов а полугруппы преобразований множества X=1,2,3,4,5:

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 1 & 2 & 2 \end{pmatrix}$$
$$aa = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 3 & 1 & 1 \end{pmatrix}$$

$$aaa = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 1 & 3 & 3 \end{pmatrix}$$

$$aaaa = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 3 & 1 & 1 \end{pmatrix}$$

Видно, что $aaaa \to aa$. Т. е. период будет равен 2. **Задание 3.** Найдите полугруппу S по ее копредставлению $\langle x,y:xy=yx,x^3=x^2,y^2=y\rangle$. Выделим полную систему представителей классов конгруэнции ε , которая определяется соотношениями данного копредставления. Для этого последовательно рассмотрим слова фиксированной длины и выделим те, которые не будут эквивалентны между собой относительно конгруэнции ε .

Сначала рассматриваем слова длины 1: x,y - эти слова не эквивалентны между собой относительно конгруэнции ε .

Затем рассматриваем слова длины 2, которые получаются из слов длины 1 путем последовательного умножения их справа на буквы x и y: $x^2=x$, xy, yx=xy, y^2 - из этих слов только слова y^2 , xy не эквивалентны относительно конгруэнции ε другим ранее выделенным словам.

Теперь рассматриваем слова длины 3, которые получаются из выделенных слов длины 2 путем последовательного умножения их справа на буквы x и y: $y^3 = y$, $xy^2 = y^2x$, $xyx = x^2y = xy$, xy^2 — из этих слов только слово xy^2 не эквивалентно относительно конгруэнции ε другим ранее выделенным словам.

Наконец рассматриваем слова длины 4, которые получаются из выделенного слова длины 3 путем последовательного умножения его справа на буквы x и y: $xy^2x=x^2y^2=xy^2$, $xy^3=xy$ - все эти слова эквивалентны относительно конгруэнции ε ранее выделенным словам.

Значит, $S=\{x,y,y^2,xy,xy^2\}$ — полная система представителей классов конгруэнции ε . Операция умножения \cdot таких слов определяется с точностью до конгруэнции ε по следующей таблице Кэли:

•	x	y	xy	y^2	xy^2
x	x	xy	xy	xy^2	xy^2
y	xy	y^2	xy^2	y	xy
xy	xy	xy^2	xy^2	xy	xy
y^2	xy^2	y	xy	y^2	xy^2
xy^2y	xy^2	xy	xy	xy^2	xy^2

ЗАКЛЮЧЕНИЕ

В рамках данной лабораторной работы были рассмотренны теоритические основы свойств бинарных подгруп и полугрупп, а также способы их построения. На основе этой теоретической части была смоделирована программа на языке Python с использованием средств библиотеки Numpy, которая способна построить подполугрупп по по таблице Кэли, построить полугруппу бинарных отношений по заданному порождающему множеству и построить полугруппу по порождающему множеству и определяющим соотношениям.