UNIVERSITE MOHAMED I

FACULTÉ DES SCIENCES
DÉPARTEMENT DE MATHÉMATIQUES
ET INFORMATIQUE, OUJDA

Année Universitaire 2008/09 Algèbre, SMPC, S_1

Feuille 2 d'exercices d'algèbre. Polynômes, Fractions rationnelles et espaces vectoriels

EXERCICE I.

- 1. Donner la division euclidienne de $X^3 X^2 + 1$ par $X^2 + X + 1$, et de X^5 par $X^2 + X + 1$.
- 2. Soient les polynômes $Q(X) = X^3 6X^2 + 3X + 10$ et $P(X) = X^4 2X^3 + 2X^2 2X + 1$.
 - (a) Factoriser les polynômes Q(X) et P(X) sur \mathbb{R} et sur \mathbb{C} . (Ind: vérifier que Q(2) = 0 et que P(i) = 0.
 - (b) Donner l'ordre de multiplicité de chaque zéro de P(X) et de chaque zéro de Q(X).

EXERCICE II.

- 1. Donner le PGCD des polynômes $A(X) = X^7 X 1$ et $B(X) = X^5 + 1$.
- 2. Trouver un couple de polynômes (U, V) tels que UA + VB = PGCD(A, B).
- 3. Refaire les mêmes questions pour $A(X) = X^3 2X^2 + 2X 1$ et $B(X) = X^3 + X^2 X + 2$.

EXERCICE III.

- 1. Donner la division euclidienne de X^4 par $X^2 + X + 1$. et déduire la décomposition en éléments simples dans $\mathbb{R}(X)$ de la fraction rationnelle $F = \frac{X^4}{(X^2 + X + 1)^3}$.
- 2. Décomposer en éléments simples dans $\mathbb{R}(X)$ les fractions

$$\frac{X^2}{(X-1)(X+2)}$$
, $\frac{1}{(X-1)(X^2-X+1)}$ et $\frac{1}{(X+2)(X^2-X+1)}$.

Déduire la Décomposer en éléments simples dans $\mathbb{R}(X)$ et dans $\mathbb{C}(X)$ de

$$\frac{X^2}{(X-1)(X+2)(X^2-X+1)}.$$

- 3. Soit la fraction $H = \frac{X^2 + 1}{X^4 + X^2 + 1}$.
 - (a) Montrer que $X^4 + X^2 + 1 = (X^2 + X + 1)(X^2 X + 1)$.
 - (b) Justifier l'écriture de F sous la forme $H = \frac{aX+b}{X^2+X+1} + \frac{cX+d}{X^2-X+1}$. Montrer que a=-c et b=d (H est paire). Calculer a,b,c et d.

EXERCICE IV.

- 1. Soit $F = \{(x, y, z) \in \mathbb{R}^3; \ xz = 0\}$. F est il un sous-espace vectoriel de \mathbb{R}^3 ? Si oui donner-en une base.
- 2. Montrer que l'ensemble $E = \{(x, y, z) \in \mathbb{R}^3; \ x + y + z = 0\}$. est un sous-espace vectoriel de \mathbb{R}^3 . Et donner sa dimension.

exosup.com

3. Montrer que $vect\{(1,2,1), (2,1,2)\} = vect\{(2,7,2), (3,9,3)\}.$

EXERCICE V. Soient U = (1, 2, 3) et V = (3, 2, 1) deux vecteurs de \mathbb{R}^3 .

- 1. Pour quelle condition un élément (x, y, z) de \mathbb{R}^3 est dans $vect\{U, V\}$?
- 2. Existe-il une base de \mathbb{R}^3 contenant $\{U, V\}$? Si oui completer $\{U, V\}$ en une base de \mathbb{R}^3 .

EXERCICE VI. Soient F, F' deux espaces vectoriels d'un même espace vectoriel E.

- 1. Montrer que l'intersection $F \cap F'$ et la somme F + F' sont des sous espaces vectoriels de E.
- 2. Donner un exemple tel que que la réunion $F \cup F'$ n'est pas un sous espace vectoriel de E.
- 3. Dans \mathbb{R}^3 , soient $F = vect\{(1, 2, -1), (2, -3, 2)\}$ et $F' = vect\{(4, 1, 3), (-3, 1, 2)\}$
 - (a) Calculer dim(F) et dim(F'). F et F' sont-ils identiques?
 - (b) Déterminer une base de $F \cap F'$.
 - (c) Déterminer une base de F + F'.
 - (d) Est ce que la somme F + F' est une somme directe?

EXERCICE VII.

- 1. Décomposer sur \mathbb{C} la fraction rationnelle $F = \frac{1}{(X^4 1)^2}$ (indication on remarquera que F est paire et réelle, en déduire des relations sur les coefficients)
- 2. Même question pour $G = \frac{X^2 + 2X + 5}{(X^2 3X + 2)}$.
- 3. Donner la décomposition en éléments simples, dans $\mathbb{R}(X)$, de $F = \frac{X^2 3}{X(X^2 1)(X^2 + 1)}$, $G = \frac{X^4 5X^3 + 10X^2 8X 1}{(X 1)^3(X 2)}, \ H = \frac{X^5 + X^4 14X^3 + 31X^2 5X 50}{(X + 1)(X + 3)(X 2)}$ et $K = \frac{X}{(X 2)^5(X 1)}$.