Low-energy parameterizations of X_{max} statistics

Carmelo Evoli, on behalf of the Auger-L'Aquila group

Gran Sasso Science Institute, L'Aquila (Italy)
INFN/Laboratori Nazionali del Gran Sasso (LNGS), Assergi (Italy)

February 25, 2024

Based on GAP-2020-058

Motivations

- ho Our goal is to broaden the scope of the combined fit in order to cover lower energies down to E $\gtrsim 10^{15}$ eV ightarrow Galactic-ExtraGalactic transition
- \triangleright Existing parametrizations for calculating cosmic ray composition using X_{max} statistics are constrained to energies above E $\gtrsim 10^{17}$ eV (see GAP2020_058)
- It's crucial to assess whether these current models remain accurate for energies down to 10¹⁵ eV. Should discrepancies arise, we must consider refining our parametrization models to ensure reliable composition in the knee energy spectrum.

Conex simulations

From GAP2020_058:

- Conex version: version 4.37 for EPOS-LHC and QGSJet II-04, version 7.30 for Sibyll 2.3d
- ▶ Hadronic models used Sibyll 2.3d, EPOS-LHC and QGSJet II-04
- ightharpoonup The log energy range 17 ightharpoonup 20 in 13 fixed Ig E bins with $\Delta \log {
 m E} = 0.25$
- Number of showers 5.4k 7.7k / bin
- ▶ The Xmax used to build the distributions is taken from the XmxdEdX branch of the CONEX file
- Primary nuclei: H, He, N, Si, Ca and Fe

New simulations at CNAF:

- Conex version: version 7.60
- ▶ Hadronic models used Sibyll 2.3d, EPOS-LHC, QGSJet II-04, and DPM-JET III
- ightharpoonup The log energy range 15 ightharpoonup 20.5 in 23 fixed lg E bins with $\Delta \log {
 m E} = 0.25$
- \triangleright Number of showers 10k / bin \rightarrow 50k / bin
- ▶ The Xmax used to build the distributions is taken from the XmxdEdX branch of the CONEX file
- Primary nuclei: H, He, N, Si, and Fe

Definitions

Mean:

$$\langle X \rangle = \frac{1}{N} \sum_{i=0}^{N} X_i \tag{1}$$

Variance:

$$\sigma_{\chi}^{2} = \frac{1}{N} \sum_{i=0}^{N} |X_{i} - \langle X \rangle|^{2}$$
 (2)

Standard Deviation:

$$\sigma_{\rm X} = \sqrt{\sigma_{\rm X}^2}$$
 (3)

Error of the Mean:

$$\epsilon = \frac{\sigma_{\chi}}{\sqrt{N}}$$
 (4)

▶ Error of the Standard Deviation:

$$\rho = \frac{\sigma_{\rm X}}{\sqrt{2N}} \tag{5}$$

X_{max} parametrizations

- ightharpoonup We model X_{max} as a function of $x \equiv log(E/E_0)$ and $y \equiv ln A$
- GAP parametrization (4 free parameters):

$$p'_{0}(y) = p_{0} + \alpha y$$

 $p'_{1}(y) = p_{1} + \beta y$
 $f(x, y) = p'_{0}(y) + p'_{1}(y)x$

which can be re-written as

$$f(x,y) = (p_0 + p_1x) + (\alpha + \beta x)y \equiv f_p(x) + f_E(x)y$$

▶ EXT parametrization (6 free parameters):

$$p'_{0}(y) = p_{0} + \alpha y$$

 $p'_{1}(y) = p_{1} + \beta y$
 $p'_{2}(y) = p_{2} + \gamma y$
 $f(x, y) = p'_{0}(y) + p'_{1}(y)x + p'_{2}(y)x^{2}$

which can be re-written as

$$f(x,y) = (p_0 + p_1x + p_2x^2) + (\alpha + \beta x + \gamma x^2)y \equiv f_p(x) + f_E(x)y$$

X_{max} parametrizations

- Dots: CONEX simulations using Sibyll-23d. Error bars are the std error of the mean over N simulations
- $\,\,{}^{}_{\textstyle{}^{}}\,$ In the y-axis we show X_{max}/y to emphasize the deviation from the linear evolution
- ho Dashed lines: best fit of GAP parametrization assuming ${
 m E}_{
 m min}=10^{15}~{
 m eV}$
- \triangleright Dotted lines: best fit of GAP parametrization assuming $\mathsf{E}_{\mathsf{min}} = 10^{17}\,\mathsf{eV}$

X_{max} parametrizations

- Dots: CONEX simulations using Sibyll-23d. Error bars are the std error of the mean over N simulations
- $\,\,{}^{}_{\textstyle{}^{}}\,$ In the y-axis we show X_{max}/y to emphasize the deviation from the linear evolution
- ho Dashed lines: best fit of GAP parametrization assuming ${
 m E}_{
 m min}=10^{15}~{
 m eV}$
- ho Dotted lines: best fit of EXT parametrization assuming $E_{\text{min}}=10^{15}~\text{eV}$

$X_{\mbox{max}}$ parametrizations

Fit parameters based on Sibyll-2.3D.

	D ₀	D_1	D_2	α	β	γ
GAP-full	815.69 ± 0.11	58.76 ± 0.06	-	-26.37 ± 0.03	1.57 ± 0.02	-
GAP-hi	815.83 ± 0.11	58.09 ± 0.11	-	-26.19 ± 0.03	0.67 ± 0.03	-
EXT	816.21 ± 0.12	58.01 ± 0.11	-0.37 ± 0.04	-25.67 ± 0.04	0.56 ± 0.03	-0.46 ± 0.01

X_{max} residuals

- ho Positive plane: residuals of the GAP parametrization assuming E $_{
 m min}=10^{15}$ eV
- \triangleright Negative plane: residuals of the GAP parametrization assuming $\mathsf{E}_{\mathsf{min}} = 10^{17}\,\mathsf{eV}$
- ▶ Mean residuals in g/cm². Si was not included in the fit:

	Н	He	N	Si	Fe
GAP-full	2.15	2.45	3.64	4.39	4.94
GAP-hi	3.07	2.95	4.56	5.71	7.11

X_{max} residuals

- ho Positive plane: residuals of the GAP parametrization assuming $E_{ ext{min}}=10^{15}~ ext{eV}$
- ightharpoonup Negative plane: residuals of the EXT parametrization assuming ${\sf E}_{\sf min}=10^{15}~{\sf eV}$
- ▶ Mean residuals in g/cm². Si was not included in the fit:

	Н	He	N	Si	Fe
GAP	2.15	2.45	3.64	4.39	4.94
EXT	1.96	0.98	1.21	1.35	1.37

$\sigma(X_{max})$ parametrizations

- ▶ We model $\sigma(X_{max})$ as a function of $x \equiv log(E/E_0)$ and $y \equiv ln A$
- ▶ GAP parametrization (6 free parameters):

$$\begin{array}{lcl} a_0'(x) & = & a_0 + a_1 x \\ p(x) & = & p_0 + p_1 x + p_2 x^2 \\ f(x,y) & = & p(x) \left[1 + a_0'(x)y + b_0 y^2 \right] \end{array}$$

$\sigma({\rm X}_{\rm max})$ parametrizations

- Dots: CONEX simulations using Sibyll-23d. Error bars are the error of the variance over N simulations
- \triangleright Dashed lines: best fit of GAP parametrization assuming $\mathsf{E}_{\mathsf{min}} = 10^{15} \; \mathsf{eV}$
- ho Dotted lines: best fit of GAP parametrization assuming $E_{ ext{min}}=10^{17}~ ext{eV}$

February 25, 2024

C. Evoli (GSSI) SimProp

$\sigma^2({\rm X}_{\rm max})$ parametrizations

		Po Po	p ₁	p ₂	a ₀	a ₁	b
Г	full	61.0 ± 0.1	-4.5 ± 0.1	0.67 ± 0.02	-0.223 ± 0.001	0.0008 ± 0.0001	0.0161 ± 0.0002
L	hi	61.3 ± 0.1	-4.3 ± 0.1	0.53 ± 0.07	-0.228 ± 0.001	-0.0002 ± 0.0002	0.0173 ± 0.0003

Fit parameters based on Sibyll-2.3D.

$\sigma(X_{max})$ residuals

- ho Positive plane: residuals of the GAP parametrization assuming $E_{min}=10^{15}~{\rm eV}$
- ho Negative plane: residuals of the GAP parametrization assuming $E_{ ext{min}}=10^{17}~ ext{eV}$
- ▶ Mean residuals in g/cm². Si was not included in the fit:

	Н		He N		Fe
GAP full	0.97	1.08	0.68	0.29	0.26
GAP hi	1.34	0.93	0.92	0.25	0.45

Based on Sibyll-2.3D. P.Auger Coll., ICRC 2019, internal use only

Based on Sibyll-2.3D. P.Auger Coll., ICRC 2019, internal use only

Based on Sibyll-2.3D.
P.Auger Coll., ICRC 2019, internal use only

 ${\rm E} = 10^{18} \ {\rm eV} \label{eq:evalue}$ P.Auger Coll., ICRC 2019, internal use only

 ${\rm E} = 10^{19} \, {\rm eV} \label{eq:evalue}$ P.Auger Coll., ICRC 2019, internal use only

 ${\rm E} = 10^{20}~{\rm eV} \label{eq:energy}$ P.Auger Coll., ICRC 2019, internal use only

In A moments in Auger data

P.Auger Coll., ICRC 2019, internal use only

Variance of InA in Auger data

There are two independent sources of fluctuations: the intrinsic shower-to-shower fluctuations and the InA dispersion arising from the mass distribution:

$$\sigma^2(\mathrm{X}_{\mathrm{max}}) = \langle \sigma_{\mathrm{sh}}^2 \rangle + \left(\frac{\mathrm{d} \langle \mathrm{X}_{\mathrm{max}} \rangle}{\mathrm{d} \ln \mathrm{A}} \right)^2 \sigma_{\ln \mathrm{A}}^2 = \langle \sigma_{\mathrm{sh}}^2 \rangle + \mathrm{f_E^2} \sigma_{\ln \mathrm{A}}^2 \tag{6}$$

 $\,\,{\,\trianglerighteq}\,\,$ We assume a parameterization for $\sigma_{\rm sh}^2$ as follows

$$\sigma_{\rm sh}^2(\ln A) = \sigma_{\rm p}^2 \left[1 + a \ln A + b(\ln A)^2 \right] \tag{7}$$

therefore

$$\langle \sigma_{\rm Sh}^2 \rangle = \sigma_{\rm p}^2 \left[1 + {\rm a} \langle \ln {\rm A} \rangle + {\rm b} \langle (\ln {\rm A})^2 \rangle \right] \eqno(8)$$

After substitution

$$\sigma^2(\mathrm{X}_{\mathrm{max}}) = \sigma_\mathrm{p}^2 \left[1 + \mathrm{a} \langle \ln \mathrm{A} \rangle + \mathrm{b} \langle (\ln \mathrm{A})^2 \rangle \right] + \mathrm{f}_\mathrm{E}^2 \sigma_{\ln \mathrm{A}}^2 \tag{9}$$

We apply the definition

$$\langle (\ln A)^2 \rangle = \sigma_{\ln A}^2 + \langle \ln A \rangle^2 \tag{10}$$

As a result we arrive at

$$\sigma_{\ln A}^{2} = \frac{\sigma^{2}(X_{\text{max}}) - \sigma_{\text{sh}}^{2}(\langle \ln A \rangle)}{b\sigma_{\text{n}}^{2} + f_{\text{E}}^{2}}$$
(11)

Measurements of the mean of the Xmax distribution

id	Experiment	Mode	Ref.	Table	comment
54	PAO	FD	ICRC 2019	8	PAO public data
180	PAO	RD	UHECR 2023	×	
193	PAO	SD	ICRC 2019	₩	PAO internal data(?)
75	TA	FD	ApJ 2018	₩	Tab. 4 but data corrected as done in Ref. 2(?)
143	TALE	Č	ApJ 2021	- ₩	Tab. 5 is bias-corrected(?)
178	Tunka	Č	ICRC 2021	×	
182	Tunka	RD	PRD 2018	₩	Tab. 3
179	Yakutsk	Č	ASR 2019	- ₩	Tab. 2+3
183	Yakutsk	RD	ICRC 2019	×	
181	LOFAR	radio	PRD 2021	×	
832	Hi-Res/Mia		ApJ 2001	×	

Datasets cited in the Snowmass paper.

Mean InA in other datasets

Work in progress...

Based on Sibyll-2.3D.

$$G(z) = \frac{1}{\beta} \frac{\lambda^{\lambda}}{\Gamma(\lambda)} e^{-\lambda(z+e^{-z})}$$

Mass: H, Energy: 10^{16} eV

Mass: H, Energy: 10^{20} eV

Parametrizations

 $\triangleright \mu$ as a function of $x \equiv \log(E/E_0)$ and $y \equiv \ln A$

$$\begin{array}{rcl} p_0^{\mu}(y) & = & a_0^{\mu} + a_1^{\mu}y + a_2^{\mu}y^2 \\ p_1^{\mu}(y) & = & b_0^{\mu} + b_1^{\mu}y + b_2^{\mu}y^2 \\ p_2^{\mu}(y) & = & c_0^{\mu} + c_1^{\mu}y + c_2^{\mu}y^2 \\ \mu(x,y) & = & p_0^{\mu}(y) + p_1^{\mu}(y)x + p_2^{\mu}(y)x^2 \end{array}$$

 σ as a function of $x \equiv \log(E/E_0)$ and $y \equiv \ln A$

$$p_0^{\sigma}(y) = a_0^{\sigma} + a_1^{\sigma}y + a_2^{\sigma}y^2$$

$$p_1^{\sigma}(y) = b_0^{\sigma} + b_1^{\sigma}y + b_2^{\sigma}y^2$$

$$\sigma(x, y) = p_0^{\sigma}(y) + p_1^{\sigma}(y)x + p_2^{\sigma}(y)x^2$$

ho λ as a function of x \equiv $\log(E/E_0)$ and y \equiv $\ln A$

$$\begin{array}{rcl} p_0^{\lambda}(y) & = & a_0^{\lambda} + a_1^{\lambda}y + a_2^{\lambda}y^2 \\ p_1^{\lambda}(y) & = & b_0^{\lambda} + b_1^{\lambda}y + b_2^{\lambda}y^2 \\ \lambda(x,y) & = & p_0^{\lambda}(y) + p_1^{\lambda}(y)x + p_2^{\lambda}(y)x^2 \end{array}$$

▶ 21 free parameters. Cross fingers...

- Exponentially Modified Gaussian distribution:
- Generalized Gumbel distribution:
- ▶ Log-normal distribution:

From Luan B. Arbeletche, Vitor de Souza, Astroparticle Physics 116 (2020) 102389

Next Steps

- Calculating the parametrization parameters for 4 distinct HIMs → assessing the variations among these models.
- We plan to augment our dataset of CONEX simulations by 10x. This increase in data volume aims to minimize the scatter in Gumbel parametrizations.
- ▶ We are actively testing additional parametrization methods rather than Gumbel functions.
- ▶ Analysis codes and simulated X_{max} databases will be public online on GitHub