

Leerdoelen

- De cursist snapt het verschil tussen ruwe data en input data
- De cursist kan van ruwe data, input data maken in Python
- De cursist kan omgaan met feature scaling, uitschieters en andere data cleaning technieken

- De cursist snapt wat overfitting is en hoe dit tegengegaan moet worden
- De cursist kan met ruwe data een geschikt model maken om specifieke analyses te doen
- De cursist weet hoe een model geëvalueerd moet worden en kan op basis daarvan de volgende stappen voor het model bepalen

Wat is overfitting?

Wat kunnen we er tegen doen?

Het namaken van intelligentie

Het namaken van leren

Het namaken van hersens

Makkelijk/Simpel

Bij welke methode hoort dit voordeel?

Kan meerdere variabelen in 1x vergelijken

Bij welke methode hoort dit voordeel?

Lastig om hyperparameters te bepalen

Bij welke methode hoort dit nadeel?

Gevoelig voor ruis

Bij welke methode hoort dit nadeel?

Werkt goed met weinig data

Bij welke methode hoort dit voordeel?

Wat is het voordeel van SVM regressie t.o.v. lineaire regressie?

Wat voegt Ridge regressie toe aan lineaire regressie?

Vandaag

SURVIVAL ANALYSIS

Survival analysis

Het analyseren van "time to event" data. Oftewel: voorspellen wanneer iets

gebeurd.

Survival Analysis

Dataset – Broken machinery

Hoelang is elk element gebruikt tot nu toe of totdat het kapot ging (in weken)

~40% is kapot

	, ,		¬					
	lifetime	broken	pressureInd	moistureInd	temperatureInd	team	provider	censored
0	56	0	92.178854	104.230204	96.517159	TeamA	Provider4	1
1	81	1	72.075938	103.065701	87.271062	TeamC	Provider4	0
2	60	0	96.272254	77.801376	112.196170	TeamA	Provider1	1
3	86	1	94.406461	108.493608	72.025374	TeamC	Provider2	0
4	34	0	97.752899	99.413492	103.756271	TeamB	Provider1	1

Machine is 34 weken oud en is nog niet kapot

Machine is op week 86 kapot gegaan

Waarom niet regressie?

Waarom kunnen we niet zeggen dat we met regressie de *Remaining Usefull Lifetime (RUL)* gaan voorspellen?

lifetime =
$$\beta_0 + \beta_1 \cdot \text{pressureInd} + \beta_2 \cdot \text{moistureInd} + \beta_3 \cdot \text{temperatureInd}$$

Waarom niet regressie?

Waarom kunnen we niet zeggen dat we met regressie de *Remaining Usefull Lifetime (RUL)* gaan voorspellen?

lifetime = $\beta_0 + \beta_1 \cdot \text{pressureInd} + \beta_2 \cdot \text{moistureInd} + \beta_3 \cdot \text{temperatureInd}$

Kaplan Meier Estimator

1000 datapunten (n)

Data:

Broken: Hoeveel zijn er kapot gegaan op dag X? Censored: Van de machines die niet kapot zijn

gegaan, hoe oud zijn die?

- Aantal Samples = n - Broken - Censored

- HF = Broken/Aantal Samples

- $cHF_{new} = cHF_{old} + HF$

- $Survival_{new} = (1-HF) \times Survival_{old}$

Gegeven

Berekend

Lifetime	Broken	Censored	Aantal Samples	HF (Hazard function)	CHF (cumulative hazard function)	Survival
1	0	5	1000	0	0	1
2	0	11	995	0	0	1

Aantal Samples = n - Broken - Censored - $CHF_{new} = CHF_{old} + HF$ - $CHF_{old} = CHF_{$

- HF = Broken/Aantal Samples

Lifetime	Broken	Censored	Aantal Samples	HF (Hazard function)	CHF (cumulative hazard function)	Survival
1	0	5	1000	0	1/	1
2	0	11	995		Kans dat een machine kapo	
		· ·			gaat op week 6	<i>,</i> .
59	0	5	536	0.00	0	1
60	32	7	531	0.060	0.060	0.940
61	1	10	492	0.002	0.062	0.938
62	0	9	481	0.00	Kans dat eer machine week	0.938
63	0	11	472	0.00	overleeft	0.938
64	0	3	461	0.000	0.062	0.938
65	75	7	458	0.160	0.222	0.778

Lifetime	Survival
1	1
2	1
59	1
60	0.940
61	0.938
62	0.938
63	0.938
64	0.938
65	0.778

Oefening

- Programmeer zelf de Kaplan-Meier tabel
 - (stappenplan staat op de volgende slide)
 - Gebruik de notebook survival_opdracht.ipynb
- Plot de Kaplan Meier survival kans

~15 minuten

Stappen:

- Laad de data in en voeg de kolom "censored" toe aan de dataset
- Verwijder de onnodige kolommen (pressureInd, moistureInd, etc.)
- Sorteer de dataset op "lifetime"
- Groepeer de dataset zo dat alle machines met dezelfde "lifetime" samengevoegd worden.
- Maak de kolommen aantal samples, hazard function, cumulative hazard function en survival probability aan
- Vul deze kolommen in voor "lifetime" = 1
- Loop over alle lifetimes en vul de kolommen in met de correcte formules zoals gegeven op slide 36
- Print het resultaat. Deze zou er ongeveer uit moeten komen te zien als die op slide 37

Oefening

- Gebruik de package lifelines om een kaplan meier estimator te maken met KaplanMeierFitter
- Controller je eigen antwoorden met die van lifelines

~5 min

Meer variabelen?

	lifetime	broken	pressureInd	moistureInd	temperatureInd	team	provider	censored
0	56	0	92.178854	104.230204	96.517159	TeamA	Provider4	1
1	81	1	72.075938	103.065701	87.271062	TeamC	Provider4	0
2	60	0	96.272254	77.801376	112.196170	TeamA	Provider1	1
3	86	1	94.406461	108.493608	72.025374	TeamC	Provider2	0
4	34	0	97.752899	99.413492	103.756271	TeamB	Provider1	1

opleiden • ontmoeten • ondernemen

Cox proportional hazard model (Cox Regression)

Kaplan Meier

$$HF = \frac{Broken}{Aantal Samples}$$

Cox Proportional Hazard Model

$$HF = f(X) = \beta_2 x_2 + \beta_1 x_1 + \beta_0$$

Categorische variabelen

Cijfers

Letters

Categorische data

pd.get_dummies(df)

	temperatureInd	team
0	96.517159	TeamA
1	87.271062	TeamC
2	112.196170	TeamA
3	72.025374	TeamC
4	103.756271	TeamB
5	89.792105	TeamA
6	142.827001	TeamB
7	98.316190	TeamB
8	96.028822	TeamB
9	95.492965	TeamC

Oefening

- Maak een cox regression model
- Na het trainen: gebruik .print summary() functie
- Gebruik .predict_expectation() als voorspelling en evalueer het model
- Maak een visualisatie

~15 minuten

ANOMALY DETECTION

Anomaly detection/outlier detection

- Kan erg handig zijn (unsupervised)
- Heeft hele specifieke toepassingen (fraude detecte, maar ook predictive maintenance in sommige gevallen)
- Gaan we niet behandelen, maar hier wat leesmateriaal: **Novelty and Outlier Detection**

Anomaly Detection

Outlier detection

Data met uitschieters zijn gegeven. Kan je de uitschieters van de normale data onderscheiden?

Novelty Detection

Alleen de normale data is bekend. Kan je detecteren wanneer er iets afwijkt?

DATA PRE-PROCESSING

Wat gaan we behandelen?

- Features maken
 - Gemiddelde
 - Standaarddeviatie
 - Kurtosis/Skewness
 - Energy
 - Periodicity (Autoregression/Fourier)
 - Wavelet
 - Dummies

- Feature scaling
- Uitschieters/NaN
- Class imbalance
- Smoothing (moving average)
- Collineariteit

Features maken

- Werken met sensoren → time data
- Feature engineering → 80% van je werk
- Een feature zegt iets zinvols over het gene wat je wil voorspellen

	lifetime	broken	pressureInd	moistureInd	temperatureInd	team	provider	censored
0	56	0	92.178854	104.230204	96.517159	TeamA	Provider4	1
1	81	1	72.075938	103.065701	87.271062	TeamC	Provider4	0
2	60	0	96.272254	77.801376	112.196170	TeamA	Provider1	1
3	86	1	94.406461	108.493608	72.025374	TeamC	Provider2	0
4	34	0	97.752899	99.413492	103.756271	TeamB	Provider1	1

Engineered features

(deze zijn overigens ook genormaliseerd, dit komt later)

Timeseries data

Tijd domein

Frequentie domein

Tijdsdomein

Gemiddelde

opleiden • ontmoeten • ondernemen

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \text{x.mean()}$$

Kurtosis (tailedness)

Standaarddeviatie

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2} \quad \text{x.std()}$$

Skewness

scipy.stats.skew(x)

Autoregressie

- Grieks Auto- = zelf- --> zelf-regressie
- Verband zoeken tussen variabele en de variabele vertraagd

$$pd.plotting.lag_plot(x, lag = 1)$$

$$P_k = \frac{1}{n} \sum_{i=1}^n \frac{(x_i - \mu_{x_i})(x_{i+k} - \mu_{x_{i+k}})}{\sigma_{x_i} \sigma_{x_{i+k}}}$$


```
pk = lambda x, k: sum(
                     (x - x.mean())*(np.roll(x, k)-np.roll(x, k).mean())/
                     (x.std()*np.roll(x, k).std())
                    )/len(x)
def pk(x, k):
   return sum (
              (x - x.mean()) * (np.roll(x, k) - np.roll(x, k).mean())/
              (x.std() * np.roll(x, k).std())
              )/len(X)
```


□ 0
□
☐ □ Dagcasus
□
■ Survival analysis.ipynb
□
□ □ autocorrelation.py
☐ L signal_data.csv
□ □ survival_data.csv

Autoregressie

pd.plotting.autocorrelation_plot(x) Autocorrelation -0.2 -0.41500 2000 2500 1000 lambda x, k: sum ((x - x.mean())*(np.roll(x, k)-np.roll(x, k).mean())/(x.std()*np.roll(x, k).std()))/len(x)

Oefening (1/3)

- Bereken de volgende features van signal data.csv. Specifiek van 'V2':
 - Gemiddelde
 - Standaard deviatie
 - Kurtosis
 - Skewness
 - Autoregressie met een vertraging van 100
 - ~ 20 minuten

Wavelet transform

- Wavelet transformaties decompenseert het originele signaal
- Acceleratie data
- Detecteert veranderingen over verschillende frequenties

Wavelet transfer

Signaal met wavelet erin

cA, cD1, cD2, cD3 = pywt.wavedec(signal, wavelet, level = 3)

Approximation

Detail 1

Detail 2

Haar

Db1

Db2

Energy =
$$\sum_{i=1}^{n} |W_i|^2$$

Wavelet transform ("haar")

Oefening (2/3)

- Bereken de energy van de approximation en details wavelet met een niveau 4 decompositie en de "haar" wavelet
- Visualiseer de wavelet transformaties
- Gebruik de features die we hiervoor behandeld hebben op de getransformeerde wavelets

15 minuten

import pywt
pywt.wavedec

Frequentie domein

Fast Fourier Transform

$$F = np.fft.rfft(f)$$

$$\mathcal{F}(\omega) = FFT(f(x))$$

Spectral Flatness

Spectral Flatness

Arithmic mean

$$\mu_A = \frac{1}{n} \sum_{i=1}^n S(\omega)$$

Geometric mean
$$\mu_G = \exp\left(\frac{1}{n}\sum_{i=1}^n \ln(S(\omega))\right)$$

$$S(\omega) = |\mathcal{F}(\omega)|^2$$

$$F = \frac{\mu_G}{\mu_A}$$

$$\exp(x) = e^x$$

Oefening (3/3)

- Bereken de spectral flatness van het gegeven signaal
- Bereken voorgaande features over het frequentie domein (gemiddelde, standaard deviatie, skewness en kurtosis)

- Huiswerk:
 - Vind 3 nieuwe features in literatuur die gebruikt kan worden op signaaldata

Smoothing

x = signaalx' = smoothed signaal

M = window width

K = window position

Smoothing

- Niet altijd handig voor wavelet transformaties
- Handig voor autoregression

Waarom is dit niet altijd handig voor wavelet transformaties, maar wel voor autoregression?

Geen smoothing

Smoothing

Geen smoothing

Smoothing

Categorische variabelen

Cijfers

Letters

pa.	get	dummies	(ai)
	_	_	

	temperatureInd	team
0	96.517159	TeamA
1	87.271062	TeamC
2	112.196170	TeamA
3	72.025374	TeamC
4	103.756271	TeamB
5	89.792105	TeamA
6	142.827001	TeamB
7	98.316190	TeamB
8	96.028822	TeamB
9	95.492965	TeamC

	temperatureInd	TeamA	TeamB	TeamC
0	96.517159	1	0	0
1	87.271062	0	0	1
2	112.196170	1	0	0
3	72.025374	0	0	1
4	103.756271	0	1	0
5	89.792105	1	0	0
6	142.827001	0	1	0
7	98.316190	0	1	0
8	96.028822	0	1	0
9	95.492965	0	0	1

Curse of dimensionality

Hoe meer features je gaat gebruiken, hoe meer data je nodig hebt

DATA CLEANING

Uitschieters/NaN

Uitschieters

- Wat zijn uitschieters?
- Vervangen
 - Door wat? Kan ik het goed schatten?
- Verwijderen
 - Hoeveel datapunten houd ik over?
- Behouden
 - Bevat het informatie?

NaN/Missing values

- Vervangen (gemiddelde? Schatten met regressie?)
 - Doet het meer kwaad dan goed?
- Verwijder het datapunt

Wat zeggen domein experts?

Feature scaling

Wat is feature scaling? Waarom?

$${\rm Energy} = \sum_{i=1}^n |W_i|^2 \qquad \qquad {\rm Onbegrenst\ van\ 0\ tot\ \infty}$$

$${\rm Spectral\ Flatness} = \frac{\mu_G}{\mu_A} \qquad \qquad {\rm Begrenst\ tussen\ 0\ en\ 1}$$

$$\hat{y} = \beta_2 x_2 + \beta_1 x_1 + \beta_0$$

$$\beta_2 = 0.000001, \quad \beta_1 = 0.1$$

Feature scaling

Op welk percentiel zit x?

Normaliseren

- Min max $\rightarrow x = \frac{x_i - \min(x)}{\max(x) - \min(x)}$ normalize = lambda x: $(x-x.\min())/(x.\max()-x.\min())$

normalize = lambda x: (x-x.mean())/(x.max()-x.min())

Mean

Op hoeveel procent zit x van het gemiddelde?

Hoeveel standaarddeviaties zit x van het gemiddelde?

Standaardisatie

normalize = lambda x: (x-x.mean())/x.std()

Oefening

- Zoek naar uitschieters in je featureset
- Zijn er features die je moet normaliseren? Welke features moet je absoluut niet normaliseren?

10 minuten

Class imbalance

- Geen goede verdeling tussen classes (vooral probleem bij classificatie)
 - Biased model
 - Slechte evaluatie
- Oplossing
 - Over/down sampeling

from sklearn.utils import resample

- Kies de juiste evaluatie manier
- Wees kritisch (duh...)

3D printer dataset. Histogram van Print speed

$$y = \beta_2 x_2 + \beta_1 x_1 + \beta_0$$

Dan $x_2 \neq \alpha_1 x_1 + \alpha_0$

$$y = \beta_2 x_2 + \beta_1 x_1 + \beta_0$$

	Cross correlatie matrix					
	У	x1	x2			
У	1.000000	0.554169	0.637916			
x1	0.554169	1.000000	0.992601			
x2	0.637916	0.992601	1.000000			

	lifetime	broken	pressureInd	moistureInd	temperatureInd	team	provider	censored
0	56	0	92.178854	104.230204	96.517159	TeamA	Provider4	1
1	81	1	72.075938	103.065701	87.271062	TeamC	Provider4	0
2	60	0	96.272254	77.801376	112.196170	TeamA	Provider1	1
3	86	1	94.406461	108.493608	72.025374	TeamC	Provider2	0
4	34	0	97.752899	99.413492	103.756271	TeamB	Provider1	1

$$y = \beta_2 x_2 + \beta_1 x_1 + \beta_0$$

$$x_2 \neq \alpha_1 x_1 + \alpha_0$$

df.corr()

	pressureInd	moistureInd	temperatureInd	TeamA	TeamB	TeamC	Provider1	Provider2	Provider3	Provider4
pressureInd	1.000000	0.002836	-0.020603	0.097637	-0.063948	-0.033603	0.039749	0.049319	-0.072836	-0.018493
moistureInd	0.002836	1.000000	0.002280	-0.025368	0.013754	0.011686	-0.019676	-0.004281	-0.037703	0.063316
temperatureInd	-0.020603	0.002280	1.000000	-0.001231	0.006713	-0.005678	-0.008319	0.018860	0.001831	-0.012931
TeamA	0.097637	-0.025368	-0.001231	1.000000	-0.525821	-0.477549	0.005260	0.003023	0.007715	-0.016478
TeamB	-0.063948	0.013754	0.006713	-0.525821	1.000000	-0.496232	0.034737	-0.012403	0.012879	-0.036213
TeamC	-0.033603	0.011686	-0.005678	-0.477549	-0.496232	1.000000	-0.041250	0.009726	-0.021177	0.054224
Provider1	0.039749	-0.019676	-0.008319	0.005260	0.034737	-0.041250	1.000000	-0.353774	-0.336794	-0.324659
Provider2	0.049319	-0.004281	0.018860	0.003023	-0.012403	0.009726	-0.353774	1.000000	-0.341479	-0.329175
Provider3	-0.072836	-0.037703	0.001831	0.007715	0.012879	-0.021177	-0.336794	-0.341479	1.000000	-0.313375
Provider4	-0.018493	0.063316	-0.012931	-0.016478	-0.036213	0.054224	-0.324659	-0.329175	-0.313375	1.000000
TeamC Provider1 Provider2 Provider3	-0.033603 0.039749 0.049319 -0.072836	0.011686 -0.019676 -0.004281 -0.037703	-0.005678 -0.008319 0.018860 0.001831	-0.477549 0.005260 0.003023 0.007715	-0.496232 0.034737 -0.012403 0.012879	1.000000 -0.041250 0.009726 -0.021177	-0.041250 1.000000 -0.353774 -0.336794	0.009726 -0.353774 1.000000 -0.341479	-0.021177 -0.336794 -0.341479 1.000000	-0.32 -0.32 -0.31

Collineariteit (vif-test) Variance Inflation Factor

pressureInd
$$x_1=\alpha_2x_2+\alpha_3x_3+\ldots+\alpha_{11}x_{11}$$
 $x_2=\alpha_1x_1+\alpha_3x_3+\ldots+\alpha_{11}x_{11}$ $x_2=\alpha_1x_1+\alpha_3x_3+\ldots+\alpha_{11}x_{11}$ $x_3=\alpha_1x_1+\alpha_3x_3+\ldots+\alpha_{11}x_{11}$ $x_4=\alpha_1x_1+\alpha_2x_2+\ldots+\alpha_{10}x_{10}$ $x_5=\alpha_1x_1+\alpha_2x_2+\ldots+\alpha_{10}x_{10}$ $x_5=\alpha_1x_1+\alpha_2x_2+\ldots+\alpha_{10}x_{10}$

$$VIF_i = \frac{1}{1 - R_i^2}$$

Collineariteit (vif-test) Variance Inflation Factor

	variable	VIF
1		1.014712
2	pressureInd	1.016746
3	moistureInd	1.007758
4	temperatureInd	1.006792
5	TeamA	inf
6	TeamB	inf
7	TeamC	inf
8	Provider1	inf
9	Provider2	inf
10	Provider3	inf
11	Provider4	inf

Collineariteit (vif-test) Variance Inflation Factor

	variable	VIF
0	Intercept	0.000000
1	broken	1.014712
2	pressureInd	1.016746
3	moistureInd	1.007758
4	temperatureInd	1.006792
5	TeamA	inf
6	TeamB	inf
7	TeamC	inf
8	Provider1	inf
9	Provider2	inf
10	Provider3	inf
11	Provider4	inf

	variable	VIF
0	Intercept	150.813964
1	broken	1.014712
2	pressureInd	1.016746
3	moistureInd	1.007758
4	temperatureInd	1.006792
5	TeamB	1.324964
6	TeamC	1.316672
7	Provider2	1.496661
8	Provider3	1.472065
9	Provider4	1.491600

VIF-test uitvoeren

Oefening

Van de 3d printer dataset. Welke variabelen verwacht je dat collineair zijn?

```
In [1]: import pandas as pd
         import matplotlib.pyplot as plt
In [2]: filename = '../3dprinter/data.csv'
         df = pd.read csv(filename)
In [3]: df.head()
Out[3]:
             layer_height wall_thickness infill_density infill_pattern nozzle_temperature bed_temperature print_speed material fan_speed roughness tension_strenght
          0
                   0.02
                                   8
                                              90
                                                         grid
                                                                           220
                                                                                           60
                                                                                                       40
                                                                                                                          0
                                                                                                                                   25
                                                                                                                                                   18
                                                                                                              abs
                   0.02
                                                   honeycomb
                                                                           225
                                                                                           65
                                                                                                       40
                                                                                                                         25
                                                                                                                                   32
                                                                                                                                                   16
                                                                                                              abs
                   0.02
                                              80
                                                                           230
          2
                                                         grid
                                                                                            70
                                                                                                                                                    8
                                                                                                              abs
                   0.02
                                                   honeycomb
                                                                           240
                                                                                                                         75
                                                                                                                                   68
                                                                                            75
                                                                                                              abs
                                                                                                                                                   10
                   0.02
                                   6
                                              90
                                                         grid
                                                                           250
                                                                                           80
                                                                                                                        100
                                                                                                                                   92
                                                                                                                                                    5
                                                                                                              abs
```


Extra leesmateriaal

- Make a pipeline:

 https://scikit learn.org/stable/modules/generated/
 sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
- Lifelines talk: https://www.youtube.com/watch?v=
 XQfxndJH4UA
- Anomaly detection:
 <u>https://scikit-learn.org/stable/modules/outlier_detection.html</u>

 Dealing with imbalance: <u>https://www.youtube.com/watch?v=</u> <u>6M2d2n-QXCc</u>

Dagcasus

- In de map Dagcasus staan 2 notebooks: "regressie_opdracht" en "feature_opdracht". Dit is huiswerk voor de volgende keer.
- regressie_opdracht: maak een regressie model om de kwaliteit van een product te voorspellen aan de hand van onbekende features
- "feature_opdracht": maak features op basis van de time_series.csv dataset.
 Deze dataset heeft meer dan 200 cycles gedraaid met elke cycle tussen de ~250 datapunten. Maak van elke cycle een set features op de kolom "sensor".

Dagcasus

- In de map Dagcasus staan 2 notebooks: "regressie_opdracht" en "feature_opdracht". Dit is huiswerk voor de volgende keer.
- regressie_opdracht: maak een regressie model om de kwaliteit van een product te voorspellen aan de hand van onbekende features
- "feature_opdracht": maak features op basis van de time_series.csv dataset.
 Deze dataset heeft meer dan 200 cycles gedraaid met elke cycle tussen de ~250 datapunten. Maak van elke cycle een set features op de kolom "sensor".
 - Zoek naar uitschieters in je featureset
 - Zijn er features die je moet normaliseren? Welke features moet je absoluut niet normaliseren?

