

Marine Data Science

Data Analysis with R

8 - Intro2Visualization - Part 1

Saskia A. Otto Postdoctoral Researcher

Recap ...

Visualization is one of the corner stones of data science

source: R for Data Science by Wickam & Grolemund, 2017 (licensed under CC-BY-NC-ND 3.0 US)

A system for creating graphics

- Based on "The Grammar of Graphics"
- The fundament for plotting in R nowadays
- Well documented
 - http://ggplot2.tidyverse.org
 - http://ggplot2.org
 - complete book (online version)
- Getting help: ggplot2 mailing list
- An increasing number of ggplot2 extensions developed by R users in the community

35 registered extensions available to explore

Showing 30 of 35

Use ggQC to plot single, faceted and

author: Kenith Grey

■ tags: QC, XmR, XbarR, SixSigma, Visualization

multi-layered quality control charts .

is libraries:

ggstance star

ggstance implements horizontal versions of common ggplot2 geoms.

- author: lionel-
- tags: visualization, general
- is libraries:

ggedit ® Star

ggedit is aimed to interactively edit ggplot layers, scales and themes aesthetics

- author: yonicd
- tags: visualization, interactive, shiny,

general

ie librarios

ggrepel ® Star

Repel overlapping text labels away from each other.

- author: slowkow
- tags: visualization, general
- is libraries:

ggforce ® Star

ggforce is aimed at providing missing functionality to ggplot2 through the extension system introduced with ggplot2 v2.0.0.

- author: thomasp85
- tags: visualization, general
- ie libraries

ggraph is tailored at plotting graph-like data structures (graphs, networks, trees, hierarchies...).

js libraries:

ggalt ® Star

A compendium of 'geoms', 'coords' and 'stats' for 'ggplot2'.

- author: hrbrmstr
- tags: visualization, general
- js libraries:

ggiraph ® Star

htmlwidget to make 'ggplot' graphics interactive.

- author: davidgohel
- tags: visualization, general
- is libraries:

ggmuller ® Star

Creates Muller plots for visualizing evolutionary dynamics.

- author: robjohnnoble
- tags: visualization, evolution,
- dynamics
- is libraries:

ggraph ® Star

- author: thomasp85
- tags: visualization, general

ggpmisc ® Star

Miscellaneous Extensions to 'ggplot2'.

- author:
- tags: visualization, general
- is libraries:

geomnet ® Star

geomnet implements network visualizations in ggplot2 via geom_net.

- author: sctyner
- tags: visualization, general
- is libraries:

ggExtra ® Star

ggExtra lets you add marginal density plots or histograms to ggplot2 scatterplots.

- author: daattali
- tags: histogram, marginal, density
- is libraries:

- Start with ggplot(data, mapping = aes()) where you supply a dataset and (default) aesthetic mapping
- Add a layer by calling a geom_function
- Then add on (not required as defaults supplied)
 - scales like xlim()
 - faceting like facet_wrap()
 - coordinate systems like coord_flip()
 - o themes like theme_bw()
- Save a plot to disk with ggsave()

- Start with **ggplot(data, mapping = aes())** where you supply a *dataset* and (default) **aesthetic mapping**
- Add a layer by calling a geom_function
- Then add on (not required as defaults supplied)
 - scales like xlim()
 - faceting like facet_wrap()
 - coordinate systems like coord_flip()
 - o themes like theme_bw()
- Save a plot to disk with ggsave()

aesthetic mapping:

to display values, variables in the data need to be mapped to **visual properties** of the geom (aesthetics) like size, color, and x and y locations. **aes()** mappings within **ggplot()** represent default settings for all layers (typically x and y), otherwise map variables within geom-functions.

- Start with ggplot(data, mapping = aes()) where you supply a dataset and (default) aesthetic mapping
- Add a layer by calling a geom_function
- Then add on (not required as defaults supplied)
 - scales like xlim()
 - faceting like facet_wrap()
 - coordinate systems like coord_flip()
 - themes like theme_bw()
- Save a plot to disk with ggsave()

geom_function:

combines a geometric object representing the observations with aesthetic mapping, a stat, and a position adjustment, e.g., geom_point() or geom_histogram()

- Start with ggplot(data, mapping = aes()) where you supply a dataset and (default) aesthetic mapping
- Add a layer by calling a geom_function
- Then add on (not required as defaults supplied)
 - scales like xlim()
 - faceting like facet_wrap()
 - coordinate systems like coord_flip()
 - o themes like theme_bw()
- Save a plot to disk with ggsave()

scales:

control the details of how data values are translated to visual properties (override the default scales)

- Start with ggplot(data, mapping = aes()) where you supply a dataset and (default) aesthetic mapping
- Add a layer by calling a geom_function
- Then add on (not required as defaults supplied)
 - scales like xlim()
 - faceting like facet_wrap()
 - coordinate systems like coord_flip()
 - o themes like theme_bw()
- Save a plot to disk with ggsave()

facetting:

smaller plots that display different subsets of the data; also useful for exploring conditional relationships.

- Start with ggplot(data, mapping = aes()) where you supply a dataset and (default) aesthetic mapping
- Add a layer by calling a geom_function
- Then add on (not required as defaults supplied)
 - scales like xlim()
 - faceting like facet_wrap()
 - coordinate systems like coord_flip()
 - o themes like theme_bw()
- Save a plot to disk with ggsave()

coordinate system:

determines how the x and y aesthetics combine to position elements in the plot

- Start with ggplot(data, mapping = aes()) where you supply a dataset and (default) aesthetic mapping
- Add a layer by calling a geom_function
- Then add on (not required as defaults supplied)
 - scales like xlim()
 - faceting like facet_wrap()
 - coordinate systems like coord_flip()
 - themes like theme_bw()
- Save a plot to disk with ggsave()

themes:

control the display of all non-data elements of the plot. You can override all settings with a complete theme like theme_bw(), or choose to tweak individual settings

- Start with **ggplot(data, mapping = aes())** where you supply a *dataset* and (default) **aesthetic mapping**
- Add a layer by calling a geom_function
- Then add on (not required as defaults supplied)
 - scales like xlim()
 - faceting like facet_wrap()
 - coordinate systems like coord_flip()
 - themes like theme_bw()
- Save a plot to disk with ggsave()

ggsave("plot.png", width = 5, height = 5):

Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to file extension.

A demonstration with the internal iris data

Photos taken by Radomil Binek, Danielle Langlois, and Frank Mayfield (from left to right); accessed via Wikipedia (all photos under CC-BY-SA 3.0 license)

Step 1 - start a plot with ggplot()

Step 2 - add layers: geom_point()

```
ggplot(iris, aes(x = Sepal.Length,
    y = Petal.Length)) +
    geom_point()
```


Step 2 - add layers: geom_point()

```
ggplot(iris, aes(x = Sepal.Length,
    y = Petal.Length)) +
    geom_point(aes(col = Species))
```

aes(col = Species)
Show points in species-specific colours.

Step 2 - add layers: geom_smooth()

```
ggplot(iris, aes(x = Sepal.Length,
    y = Petal.Length)) +
    geom_point(aes(col = Species)) +
    geom_smooth()
```


Step 2 - add layers: geom_smooth()

```
ggplot(iris, aes(x = Sepal.Length,
    y = Petal.Length)) +
    geom_point(aes(col = Species)) +
    geom_smooth(aes(col = Species),
    method = "lm")
```

aes(col = Species), method = "lm"

Make smoother species-specific and linear.

Step 2 - add layers

```
ggplot(iris, aes(x = Sepal.Length,
    y = Petal.Length, col = Species)) +
    geom_point() +
    geom_smooth(method = "lm")
```

Move species-specific colour aesthetics to ggplot() (so it becomes the default setting for all added layers).

Step 3 - add scales: scale_colour_brewer()

```
ggplot(iris, aes(x = Sepal.Length,
    y = Petal.Length, col = Species)) +
    geom_point() +
    geom_smooth(method = "lm") +
    scale_colour_brewer()
```


Step 4 - add facets: facet_wrap()

```
ggplot(iris, aes(x = Sepal.Length,
    y = Petal.Length, col = Species)) +
    geom_point() +
    geom_smooth(method = "lm") +
    scale_colour_brewer() +
    facet_wrap(~Species, nrow=3)
```

facet_wrap(~Species, nrow=3)

Divide the species-specific observations into different panels.

Step 5 - modify coordinate system: coord_polar()

```
ggplot(iris, aes(x = Sepal.Length,
    y = Petal.Length, col = Species)) +
    geom_point() +
    geom_smooth(method = "lm") +
    scale_colour_brewer() +
    facet_wrap(~Species, nrow=3) +
    coord_polar()
```


Step 6 - change the look of non-data elements: theme_dark()

```
ggplot(iris, aes(x = Sepal.Length,
    y = Petal.Length, col = Species)) +
    geom_point() +
    geom_smooth(method = "lm") +
    scale_colour_brewer() +
    facet_wrap(~Species, nrow=3) +
    coord_polar() +
    theme_dark()
```


Step 7 - save the plot: ggsave()

```
ggplot(iris, aes(x = Sepal.Length,
    y = Petal.Length, col = Species)) +
    geom_point() +
    geom_smooth(method = "lm") +
    scale_colour_brewer() +
    facet_wrap(~Species, nrow=3) +
    coord_polar()

ggsave("Iris_length_relationships.pdf", width = 4, height = 4)
```

The last plot displayed is saved (as default).

ggplot - geom_functions

When to use which function?

That depends on

- what you want to display (your question)
- and the type of data

Common plots are ...

Visualize frequency distributions

BARPLOTS -

are used for **categorical** or **discrete** variables. Bars do not touch each other; there are no 'in-between' values.

HISTOGRAMS and DENSITY PLOTS (can be combined) are used for **continuous** variables and are often used to check whether variables are normally distributed. Bars touch each other in histograms.

Compare groups

BOXPLOTS - are used to compare two or more groups in terms of their *distributional center and spread*. They transport a lot of information and should be computed in every data exploration! You can check,

- differences in average y
 values between groups and
 whether these might be
 significant,
- if group variances differ,
- whether individual groups are normally distributed
- identify **outlier**

Click here to read how

Show relationship between 2 variables

SCATTERPLOTS -

are the most basic plots for **continuous** variables. They are also the least interpreting plots as they show every observation in the 2-dimensional space.

Another useful feature is that they can be **combined** with other plotting elements: defining *aesthetics* for a 3rd variable (e.g. colours of points) or adding regression or smoothing lines to help visualise the relationship:

An overview of core *geom_functions* depending on the type of data:

 $e \leftarrow ggplot(hydro, aes(x = yday, y = temp))$

continuous x, continuous y

f + geom_boxplot(), x, y, lower, middle,

upper, ymax, ymin, alpha, color, fill, group,

f <- ggplot(hydro, aes(x = month, y = temp))

linetype, shape, size, weight

discrete*

discrete* x.

continuous y

TWO VARIABLES

*or categorical

e + geom_point(), x, y, alpha, color, fill, shape, size, stroke e + geom_smooth(method = lm), x, y, alpha, color, fill, group, linetype, size, weight e + geom_quantile(), x, y, alpha, color, group, linetype, size, weight e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE)), x, y, label, alpha, angle, color, family, fontface, hjust, AB lineheight, size, vjust $h \leftarrow ggplot(hydro, aes(x = psal, y = temp))$ $h + geom_bin2d(binwidth = c(0.25, 500))$ x, y, alpha, color, fill, linetype, size, weight h + geom_density2d() x, y, alpha, colour, group, linetype, size

Some examples with the ICES hydro data

A barplot to see the frequency of monthly samplings

```
hydro_sub <- hydro %>%
  select(fmonth, station, date_time) %>%
  # (fmonth = month as factor)
  distinct()

ggplot(hydro_sub,aes(x=fmonth)) +
  geom_bar()
```

Note

For barplots (or boxplots) x must be categorical, hence, we use here month as a factor!

A scatterplot to see all stations, coloured by month

Note

To get a discrete scale we use again fmonth.

```
hydro_sub <- hydro %>%
  select(fmonth,station,lat,long) %>%
  distinct()

ggplot(hydro_sub, aes(x = long,
    y = lat, col = fmonth)) +
  geom_point()
```


A histogram to see the distribution of (all) temperature values

Note:

You can use the **pipe operator** also when plotting and saving ggplot as an object!

```
p <- hydro %>% ggplot(aes(x = temp)) +
  geom_histogram()
p
```


A boxplot to compare the surface temp between months

```
hydro %>% filter(pres < 5) %>%
  group_by(fmonth, station, date_time, cruise) %>%
  summarise(mean_sst = mean(temp)) %>% ungroup() %>%
  ggplot(aes(x = fmonth, y = mean_sst)) +
  geom_boxplot(outlier.colour = "red", outlier.alpha = 0.2)
```


Correlation plot between temperature and salinity

```
ggplot(hydro, aes(x = psal, y = temp, col = day)) +
  geom_point()
```


.. now separated by month

```
ggplot(hydro,
  aes(x = psal,
    y = temp,
    col = day)) +
  geom_point() +
  facet_wrap(
    ~fmonth,
    nrow = 3)
```


Depth profile at one station in July

```
hydro_sub <- hydro %>%
  filter(station=="0403",fmonth==7,day==1
p_temp <- ggplot(hydro_sub, aes(y=pres))</pre>
  geom_point(aes(x = temp), col="red") +
  ylim(70, 0)
p_sal <- ggplot(hydro_sub, aes(y=pres)) +</pre>
  geom_point(aes(x = psal)) +
  ylim(70, 0)
p_oxy <- ggplot(hydro_sub, aes(y=pres)) +</pre>
  geom_point(aes(x = doxy), col="blue") +
  ylim(70, 0)
gridExtra::grid.arrange(grobs = list(
  p_temp, p_sal, p_oxy), nrow=1)
```

Note

The colour specification is **outside** the **aesthetic mapping**: because we want the same colour for all observations.

Some extension examples: ggridges

```
library(ggridges)
hydro %>% filter(pres < 10) %>%
  group_by(station, fmonth, day) %>%
  summarise(
    sst = mean(temp, na.rm = TRUE)) %>%
  group_by(station, fmonth) %>%
  summarise(
    sst = mean(sst, na.rm = TRUE)) %>%
  ungroup() %>%
  ggplot(aes(x = sst, y = fmonth,
    fill = fmonth)) +
  geom_density_ridges(scale = 12,
    rel_min_height = 0.005) +
  scale_fill_cyclical(
    values = c("blue", "green")) +
  theme_ridges()
```


Some extension examples: ggmap

```
library(ggmap)
b <- matrix(c(</pre>
  min(hydro$long),
  max(hydro$long),
  min(hydro$lat),
  max(hydro$lat) ), byrow=T,nrow=2)
colnames(b) <- c("min", "max")</pre>
rownames(b) <- c("x","y")</pre>
map_bs <- ggmap(get_map(location = b,</pre>
  zoom = 5))
map_bs + geom_point(data=hydro,
  aes(long,lat), size=0.5,
  color="red")
```


Some extension examples: ggmap

Your turn...

Quiz 1: Syntax

Complete the following code snippet (fill in the ... gaps) to create the plot you need for answering the question below.

```
library(ggplot2)

p <- ...(... = mtcars, ...(wt, mpg, label = rownames(mtcars)))
... + geom_point(...(size = gear)) ...
geom_text(...(colour = factor(cyl)), hjust = 0, nudge_... = 0.05)</pre>
```

1. Find the car model with the lowest mpg (=Miles per(US) gallon) value in its 4 cyl(inder) class that also has the lowest number of (forward) gears. Which position in the alphabet has the first letter of this model?

Submit Show Hint Show Answer Clear

Quiz 2: Get to know geom_functions

Which of these function is NOT a **geom_function**? geom_hex o geom_linerange geom_label o geom_ribbon o geom_trend o geom_sf o geom_crossbar Show Hint Show Answer Clear Submit

Small exercises with the ICES hydro dataset

- 1. What happens if you make a scatterplot of station (x) vs temp (y)? Why is the plot not useful? What would be a better plot?
- 2. What happens if you make a boxplot of cruise (x) vs psal (y)? Why is this plot less suitable? What could be an alternative?

How do you feel now....?

Totally confused?

Try to reproduce some of the plots in this presentation and the quiz and read chapter 3 on data visualization in 'R for Data Science'.

Totally bored?

Then figure out how to get a CTD profile in ONE panel!

Totally content?

Then go grab a coffee, lean back and enjoy the rest of the day...!

Thank You

For more information contact me: saskia.otto@uni-hamburg.de

http://www.researchgate.net/profile/Saskia_Otto http://www.github.com/saskiaotto

(cc)) BY-SA

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License except for the borrowed and mentioned with proper *source*: statements.

Image on title and end slide: Section of an infrared satallite image showing the Larsen C ice shelf on the Antarctic Peninsula - USGS/NASA Landsat: A Crack of Light in the Polar Dark, Landsat 8 - TIRS, June 17, 2017 (under CC0 license)