Refine Search

Search Results -

Term	Documents
SAMPLER	10754
SAMPLERS	2623
REJECTION	44841
REJECTIONS	2100
(81 AND SAMPLER AND REJECTION).USPT.	0
(L81 AND SAMPLER AND REJECTION).USPT.	0

US Pre-Grant Publication Full-Text Database US Patents Full-Text Database

Database:

US OCR Full-Text Database EPO Abstracts Database JPO Abstracts Database Derwent World Patents Index IBM Technical Disclosure Bulletins

Search:

89	
	entra se
	Towns and the second se

Refine Search

Search History

DATE: Monday, August 16, 2004 Printable Copy Create Case

Set Nam side by sid		Hit Count S	Set Name result set
DB = U	SPT; PLUR=YES; OP=ADJ		
<u>L89</u>	L81 and sampler and rejection	0	<u>L89</u>
<u>L88</u>	L87 and rejection adj filter	0	<u>L88</u>
<u>L87</u>	data adj recovery and subbands and filter	22	<u>L87</u>
<u>L86</u>	L81 and rejection adj filter	0	<u>L86</u>
<u>L85</u>	L84 and isolate adj filter	0	<u>L85</u>
<u>L84</u>	L81 and filter	16	<u>L84</u>
<u>L83</u>	L81 and pre-filter	0	<u>L83</u>
<u>L82</u>	L81 and prefilter	0	<u>L82</u>
<u>L81</u>	data adj recovery and sub-bands	23	<u>L81</u>

<u>L80</u>	L77 and data-part	0	<u>L80</u>
<u>L79</u>	L77 and data adj part	0	<u>L79</u>
<u>L78</u>	L77 and data adj part	0	<u>L78</u>
<u>L77</u>	L76 and prefilter	3	<u>L77</u>
<u>L76</u>	L75 and parts	3	<u>L76</u>
<u>L75</u>	L74 and portions	3	<u>L75</u>
<u>L74</u>	L73 and shifting	3	<u>L74</u>
<u>L73</u>	L72 and frequency	4	<u>L73</u>
<u>L72</u>	L71 and overlapping	4	<u>L72</u>
<u>L71</u>	L70 and filter	27	<u>L71</u>
<u>L70</u>	prefilter and sub-bands	27	<u>L70</u>
<u>L69</u>	L66 and subbands	3	<u>L69</u>
<u>L68</u>	L66 and sub-bands	0	<u>L68</u>
<u>L67</u>	L66 and sub-bands	0	<u>L67</u>
<u>L66</u>	L38 and filter and recovery	22	<u>L66</u>
<u>L65</u>	L63 and FIR	0	<u>L65</u>
<u>L64</u>	L63 and rejection adj filter	0	<u>L64</u>
<u>L63</u>	feedback adj sampler	8	<u>L63</u>
<u>L62</u>	L59 and isolate adj filter	0	<u>L62</u>
<u>L61</u>	L60 and isolate adj filter	0	<u>L61</u>
<u>L60</u>	L59 and FDM	7	<u>L60</u>
<u>L59</u>	feedback and FIR and subband	116	L59
L58	sub-band casual adj FIR	0	<u>L58</u>
<u>L57</u>	frequency adj shifting and casual adj FIR	0	<u>L57</u>
<u>L56</u>	L55 and anti-casual adj FIR	0	<u>L56</u>
<u>L55</u>	casual adj FIR	1	<u>L55</u>
<u>L54</u>	casual adj FIR and FDM	0	<u>L54</u>
<u>L53</u>	L52 and FDM	1	<u>L53</u>
<u>L52</u>	L51 and parts	8	<u>L52</u>
<u>L51</u>	L49 and portions	8	<u>L51</u>
<u>L50</u>	L49 and data adj parts	0	<u>L50</u>
<u>L49</u>	L47 and time-varying	8	<u>L49</u>
<u>L48</u>	L47 and time-vary	0	<u>L48</u>
<u>L47</u>	L46 and recovery	75	<u>L47</u>
<u>L46</u>	sub-bands and overlap and frequency	599	<u>L46</u>
<u>L45</u>	L43 and overlap	0	<u>L45</u>
<u>L44</u>	L42 and subbands	0	<u>L44</u>
<u>L43</u>	L42 and sub-bands	3	<u>L43</u>
<u>L42</u>	L41 and frequency	7	<u>L42</u>
<u>L41</u>	FDM and time-variant	7	<u>L41</u>
<u>L40</u>	L38 and time adj varying	1	<u>L40</u>

<u>L39</u>	L38 and time-varying	0	<u>L39</u>
<u>L38</u>	370/497.ccls.	227	<u>L38</u>
<u>L37</u>	L33 and recovery	3	<u>L37</u>
<u>L36</u>	L33 and FDM	0	<u>L36</u>
<u>L35</u>	L33 and OFDM	0	<u>L35</u>
<u>L34</u>	L33 and frequency adj shifting	0	<u>L34</u>
<u>L33</u>	L32 and portions	7	<u>L33</u>
<u>L32</u>	L31 and parts	7	<u>L32</u>
<u>L31</u>	L29 and subbands	7	<u>L31</u>
<u>L30</u>	L29 and sub-bands	2	<u>L30</u>
<u>L29</u>	L26 and frequency	43	<u>L29</u>
<u>L28</u>	L26 and pre-filter	0	<u>L28</u>
<u>L27</u>	L26 and prefilter	0	<u>L27</u>
<u>L26</u>	sampler and rejection adj filter	45	<u>L26</u>
<u>L25</u>	L23 and pre-filter	0	<u>L25</u>
<u>L24</u>	L23 and prefilter	. 0	<u>L24</u>
<u>L23</u>	L22 and rejection adj filter	3	<u>L23</u>
<u>L22</u>	frequency and data adj parts and filter	1153	<u>L22</u>
<u>L21</u>	119 and rejection and filter	0	<u>L21</u>
<u>L20</u>	L19 and rejection adj filter	0	<u>L20</u>
<u>L19</u>	frequency and data-parts	6	<u>L19</u>
<u>L18</u>	L17 and sampler	0	<u>L18</u>
<u>L17</u>	L16 and pre-filter	7	<u>L17</u>
<u>L16</u>	rejection adj filter	1539	<u>L16</u>
<u>L15</u>	L14 and rejection adj filter	0	<u>L15</u>
<u>L14</u>	pre-filter adj sampler	1	<u>L14</u>
<u>L13</u>	prefilter adj sampler	0	<u>L13</u>
<u>L12</u>	18 and prefilter	1	<u>L12</u>
<u>L11</u>	L8 and pre-filter	0	<u>L11</u>
<u>L10</u>	L8 and data adj part	0	<u>L10</u>
<u>L9</u>	L8 and data adj parts	0	<u>L9</u>
<u>L8</u>	recovery and FDM and frequency and sub-bands	28	<u>L8</u>
<u>L7</u>	L5 and frequency adj ranges	1	<u>L7</u>
<u>L6</u>	L5 and sampler	0	<u>L6</u>
<u>L5</u>	pre-filter adj sample	5	<u>L5</u>
<u>L4</u>	12 and filter	6	<u>L4</u>
<u>L3</u>	L2 and isolating adj filter	0	<u>L3</u>
<u>L2</u>	L1 and data adj part	6	<u>L2</u>
<u>L1</u>	recovery and sub-bands	284	<u>L1</u>

END OF SEARCH HISTORY