1 Mengen und Zahlen

Quantoren, Mengen (operationen), Äquivalenzrela- Fakultät/Binominalkoeffizient: $k, n \in \mathbb{N}_0$

 $\begin{array}{l} x_1 = x_2 \\ \text{surjektiv,w enn } f(X) = Y \iff \forall y \in Y \exists x \in x : \quad (x+y)^n = \sum_{k=1}^n \binom{n}{k} x^{n-k} y^k \end{array}$

bijektiv, wenn surjektiv und injektiv $\iff \exists ! \ g:$ Bernoulli-Ungleichung: Für $x \geq -1, n \in \mathbb{N}$ gilt $Y \to X, g \circ f = \mathrm{id}_x, f \circ g = \mathrm{id}_y$

 $f: X \to Y, g: Y \to Z$ injektiv/surjektiv $\Longrightarrow g \circ f$ injektiv/surjektiv.

 $g \circ f$ injektiv $\implies f$ injektiv

Natürliche Zahlen:

Peano-Axiome

vollständige Induktion

Körper \mathbb{Q}, \mathbb{R} , Ordnungsrelationen

Abzählbarkeit: $n \in \mathbb{N}, A_n := \{m \in \mathbb{N} \mid m < n\} =$ $\{1,\ldots,n\}$

Menge M heißt

endlich, wenn es ein $n \in \mathbb{N}$ und eine bijektive Abbildung $f: M \to A_n$ gibt.

abzählbar uneindlich, w enn es eine bijektive Abbildung $f: M \to \mathbb{N}$ gibt.

 $(\mathbb{N}, \mathbb{N}^2, \mathbb{Z}, \mathbb{O}, \text{ kartesiches Produkt abzählbarer Men$ gen, abzählbare Vereinigung abzählbarer Mengen) überabzählbar, wenn sie weder endlich noch abzählbar ist.

 $(\mathbb{R}, \text{ Menge der Folgen mit Werten in } \{0, 1\})$ höchstens abzählbar, wenn sie abzählbar oder endlich

Schranken: M Menge, $A \subseteq M$, dann heißt $S \in M$ obere Schranke, wenn $\forall x \in A : x < S$

untere Schranke, wenn $\forall x \in A : x \geq S$

Supremum von A, wenn für alle oberen Schranken S' von A gilt S < S'

Infimum von A, wenn für alle untere Schranken S'von A gilt $S' \leq S$

Axiome der reellen Zahlen: Körper, geordnet, Ein-

Vollständigkeit: Jede nach oben beschränkte Teilmenge hat ein Supremum.

Archimedisches Prinzip: $\forall x \in \mathbb{R} : \exists n \in \mathbb{N} : x \leq n$ $M \subseteq \mathbb{R}$ beschränkt:

S (obere Schranke) ist Supremum $\iff \forall \varepsilon > 0 \exists x \in$ $M: S - \varepsilon \leq x$

S (unter Schranke) ist Infimum $\iff \forall \varepsilon > 0 \exists x \in S$ $M: S + \varepsilon \leq x$

 $\emptyset \neq A, B \subseteq \mathbb{R}$ beschränkt, sodass $A \subseteq B$, dann $\sup A \leq \sup B$ Monotonie:

 $f: A \to B$ heißt (streng) monoton wachsend, wenn $x < y \implies f(x) < (<)f(y)$

 $f: A \to B$ heißt (streng) monoton fallend, wenn $x \le y \implies f(x) \ge (>)f(y)$

Betrag: $|\cdot|: \mathbb{R} \to \mathbb{R}_+, x \mapsto \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$ Signum: $\operatorname{sgn}: \mathbb{R} \to \{-1, 0, 1\}, x \mapsto \begin{cases} \frac{x}{|x|} & x \ne 0 \\ 0 & x = 0 \end{cases}$

 $|x \cdot y| = |x| \cdot |y|, |x + y| < |x| + |y|, ||x| - |y|| <$

 $|x-y|, |x-y| \le \varepsilon \iff x-e \le y \le x+\varepsilon$

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y$$

 $(1+x)^n > 1 + xn$

Intervalle: $D \subseteq \mathbb{R}$ heißt Intervall, wenn es für $x, y \in$ D mit $x \leq y$ für alle $z \in \mathbb{R}$ mit $x \leq z \leq y$ gilt $z \in D$ (beschränkt) offene Intervalle $(a, b), a, b \in \mathbb{R}$ (beschränkt) abgeschlossene Intervalle $[a, b], a, b \in$

Halbgeraden

 $(a, \infty), (-\infty, b), [a, \infty), (-\infty, b], a, b \in \mathbb{R}$ reelle Gerade $(-\infty, \infty) = \mathbb{R}$

Komplexe Zahlen: definiere auf $\mathbb{R} \times \mathbb{R}$

 $+: (x_1, y_1), (x_2, y_2) \mapsto (x_1 + x_2, y_1 + y_2)$ $: (x_1, y_1), (x_2, y_2) \mapsto (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2)$ $\mathbb{C} := (\mathbb{R} \times \mathbb{R}, +, \cdot)$ ist Körper mit Lösungen der Gle-

 $(x,y)\cdot(x,y)+(1,0)=(0,0)$ der Form $\pm i:=(0,\pm 1)$ Schreibweise: $z \in \mathbb{C}, z = x + iy$

 $x =: \Re(z), y =: \Im(z), \mathbb{R}$ ist eingebetteter Unterkörp-

$$\mathbb{R} = \{ z \in \mathbb{C} \mid \Im(z) = 0 \}$$

$$|\cdot| : \mathbb{C} \to \mathbb{R}_+, z \mapsto \sqrt{\Re(z)^2 + \Im(z)^2}$$

$$\overline{\cdot} : \mathbb{C} \to \mathbb{C}, z \mapsto \overline{z} := \Re(z) - i\Im(z)$$

Ex existiert keine Ordungsrelation auf C, die die Körperstruktor respektiert. $(0 < i^2 < i^2 + 1 = 0)$ Fundamentalsatz der Algebra:

Jedes Polynom $z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$ mit Koeffizienten in $\mathbb C$ hat eine Nullstelle in $\mathbb C$

2 Folgen und Reihen

(reelle) Folge ist Abbildung $a: \mathbb{N} \to \mathbb{R}$

 $a(n) =: a_n, a =: (a_n)_{n \in \mathbb{N}}$

 $(a_n)_{n\in\mathbb{N}}$ konvergiert gegenDen Grenzewrt $a\in\mathbb{R}$, wenn für alle $\varepsilon > 0$ ein $N_{\varepsilon} \in \mathbb{N}$ existiert, sodass $|a_n - a| < \varepsilon | \forall n > N_{\varepsilon}$

 $(a_n)_{n\in\mathbb{N}}$ heißt Cauchy-Folge, wenn für alle $\varepsilon>0$ ein $N_{\varepsilon} \in \mathbb{N}$ existiert, sodass

 $|a_n - a_m| \le \varepsilon \forall m \ge n \ge N_{\varepsilon}$

 $(a_n)_{n\in\mathbb{N}}$ konvergiert \iff $(a_n)_{n\in\mathbb{N}}$ Cauchy-Folge. a heißt Häufungswert der Folge $(a_n)_{n\in\mathbb{N}}$, wenn für alle $\varepsilon > 0$ unendlich viele Folgenglieder im Intervall $(a-\varepsilon,a+\varepsilon)$ liegen.

jeder Grenzwert ist auch ein Häufungswert (aber nicht notwendig umgekehrt)

Grenzwerte sind eindeutig (Häufungswerte aber nicht notwendig).

 $M \subseteq \mathbb{R}$, a Häufungspunkt von M, wenn für alle $\varepsilon >$ 0 unendlich viele $x \in M$ im Intervall $(a - \varepsilon, a + \varepsilon)$. $(a_n)_{n\in\mathbb{N}}$ Folge, $M:=\{a_n\mid n\in\mathbb{N}\}$, dann a Häufungswert der Folge \iff a Häufungspunkt der Menge, **aber** nicht notwendig umgekehrt, $(a_n :=$ $1 \forall n \in \mathbb{N}$

Eigenschaften des Grenzwerts

Eindeutigkeit: sind a, a' Grenzwert der Folge

 $(a_n)_{n\in\mathbb{N}}$, dann gilt a=a'

Ist $(a_n)_{n\in\mathbb{N}}$ eine beschränkte, monoton wachsende Folge $M := \{a_n \mid n \in \mathbb{N}\}, \text{ dann } a_n \xrightarrow{n \to \infty} \sup M$ Ist $(a_n)_{n\in\mathbb{N}}$ eine beschränkte, monoton fallende Folge $M := \{a_n \mid n \in \mathbb{N}\}, \text{ dann } a_n \xrightarrow{n \to \infty} \inf M$ Stabilität: Sind $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}$ konvergente Folgen mit Grenzwert a, b, dann

 $(a_n + b_n)_{n \in \mathbb{N}} \xrightarrow{n \to \infty} a + b$ $(a_n \cdot b_n)_{n \in \mathbb{N}} \xrightarrow{n \to \infty} a \cdot b$ $|a_n| \xrightarrow{n \to \infty} |a|$

 $b_n \neq 0 \forall n \in \mathbb{N}, b \neq 0 : a_n/b_n \xrightarrow{n \to \infty} a/b$

Ist $a = b, (c_n)_{n \in \mathbb{N}}$ Folge mit $a_n \leq c_n \leq b_n \forall n \in \mathbb{N}, 0, a_k \xrightarrow{k \to \infty} 0$, dann gilt

 $\exists \gamma \in (0,1) : |b_{n+1}| \le \gamma |b_n| \forall n \in \mathbb{N} \implies b_n \xrightarrow{n \to \infty}$ $1/n, 1/n^2, 1/n^3, \dots \xrightarrow{n \to \infty} 0$

geometrische Folge, |q| < 1

 $a_n = cq^n \xrightarrow{n \to \infty} 0$

 $\left(1+\frac{1}{n}\right)^n \xrightarrow{n\to\infty} e \quad \left(1-\frac{1}{n}\right)^n \xrightarrow{n\to\infty} \frac{1}{e}$ $|x| > 1: \frac{x^n}{n \to \infty} \xrightarrow{n \to \infty} 0 \qquad \frac{n!}{n} \xrightarrow{n \to \infty} 0$

Bolzano-Weierstraß: Sei $A \subseteq \mathbb{R}$, dann sind folgende Aussagen äquivalent:

A ist beschränkt und abgeschlosen.

jede Folge in A hat einen Häufungswert in A. jede Fogle in A hat eine konvergente Teilfolge mit Grenzwert A.

Jede Folge hat eine monotone Teilfolge.

$$(a_n)_{n\in\mathbb{N}} \to \text{Reihe } \sum_{n=1}^{\infty} a_n$$

Folge der Partialsummen $S_n = \sum_{k=0}^{n} a_k$

Konvergenzkriterien:

Notwendig: $(a_n)_{n\in\mathbb{N}}$ Nullfolge

Cauchy: $\forall \varepsilon > 0 \exists N_{\varepsilon} \in \mathbb{N} : \forall n > m > N_{\varepsilon}$:

$$\sum_{k=m+1}^{n} a_n | < \varepsilon$$

Leibnitz: $(a_n)_{n\in\mathbb{N}}$ alternierend und $|a_n|$ ist monoton fallend und $a_n \xrightarrow{n \to \infty} 0$. Außerdem

$$|\sum_{k=m}^{\infty} a_n| \le |a_m| \forall m \in \mathbb{N}$$

k=mAbsolute Konvergenz: $\sum_{k=1}^{\infty} |a_n| \implies \sum_{k=1}^{\infty} a_k$ konvergent

Majorante: Ist $\sum_{n=1}^{\infty} b_n$ (absolut) konvergent und gilt

 $|a_k| \leq b_k$ für fast alle $k \implies \sum_{k=1}^{\infty} a_k$ absolut kon-

für fast alle $k \implies \sum_{k=0}^{\infty} a_k$ divergent.

Wurzelkriterum: wenn es $q \in (0,1)$ mit $\sqrt[k]{|a_k|} \le$ $q < 1 \forall k \implies \text{absolute Konvergenz } \sum_{k=1}^{\infty} a_k$ (alternativ: $\limsup_{k \to \infty} \sqrt{|a_k|} < 1$ Konvergenz, $\limsup_{k \to \infty} \sqrt[k]{|a_k|} > 1 \implies \text{Divergenz}$

Quotientenkriterium: wenn es $q \in (0,1)$ gibt mit $|a_{n+1}/a_k| < q < 1 \implies$ absolute Konvergenz $\sum a_k$ (alternativ: $\limsup |a_{k-1}/a_k| < 1$)

Cauchy'scher Verdichtungssatz: Reihe $\sum a_k, a_k \geq$

$$\sum a_k \iff \sum 2^k a_{2^k}$$

 $\overline{\text{Teleskopreihe}} (a_n)_{n \in \mathbb{N}} \text{ Nullfolge} \implies$

$$\sum_{k=1}^{\infty} (a_k - a_{k+1}) = a_1$$

$$a_n \xrightarrow{n \to \infty} a_1 - S \iff \sum_{k=1}^{\infty} (a_k - a_{k-1}) = S$$

Umordnungsatz: Ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent, dann gilt $\forall \tau : \mathbb{N} \to \mathbb{N}$ (bijektiv) ist auch $\sum_{n=1}^{\infty} a_{\tau(n)}$ absolut konvergent mit dem gleichen Grenzwert.

Potenzreihen: $\sum a_k(x-x_0)^k$ Koeffizienten $a_k \in$

 \mathbb{C} . Entwicklungspunkt x_0 .

Potenzreiehn konvergieren absolut $\forall x \in \mathbb{C}$ mit

$$|x - x_0| < \rho := \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|a_k|}}$$

(mit der Konvention $1/\infty = 0, \frac{1}{0} = \infty$)

 ρ heißt Konvergenzradius.

3 Stetige Funktionen

 $f:D\to\mathbb{R}$ heißt stetig in $x_0\in D$ wenn für alle Folgen in Dmit $x_n\xrightarrow{x\to\infty}x_0$ gilt $f(x_n) \xrightarrow{n \to \infty} f(x_0)$

f heißt stetig auf D, wenn f in allen Punkten von D stetig ist.

 $f: D \to \mathbb{R}$ hat in $x_0 \in \overline{D}$ einen Grenzwert, wenn für alle Folgen in D mit $x_n \xrightarrow{x \to \infty} x_0$ gilt $f(x_n) \xrightarrow{n \to \infty} a$, schreibe $\lim_{n \to \infty} f(x) = a$

einseitiger Grenzwert:

$$\lim_{x \to x^{+}} f(x) := \lim_{x \to x_{0}} f \mid_{\{x > x_{0}\}} (x)$$

$$\lim_{x \uparrow x^{-}} f(x) := \lim_{x \to x_{0}} f \mid_{\{x < x_{0}\}} (x)$$

Asymptotik: $f: D \to \mathbb{R}, D$ unbeschränkt.

f hat Grenzwert a in ∞ , wenn

 $\forall \varepsilon > 0 \exists c \in \mathbb{R} : |f(x) - a| < \varepsilon \forall x > c$ $f(x) \xrightarrow{x \to x_0} \pm \infty, \text{ wenn } \forall c \in \mathbb{R}_+ \exists \delta > 0 : f(x) > 0$

 $c, < -c \forall x \in (x_0 - \delta, x_0 + \delta) \cap (D \setminus \{x_0\})$

Stetigkeit ist stabil gegenüber punktweisen Summen, Produkt, Quotient $(\neq 0)$ und Komposition,

 $f, g \text{ stetig} \implies f + g, f \cdot g, (f/g)(g \neq 0), g \circ f \text{ stetig.}$ Minorante: Ist $\sum b_n$ divergent und gilt $b_k \leq |a_k|$ $(f+g)(x) = f(x) + g(x), (f \cdot g)(x) = f(x) \cdot g(x).$ $\varepsilon - \delta$ -Kriterium: $f: D \to \mathbb{R}$ ist stetig in $x_0 \in S$ $\begin{array}{l} \varepsilon\text{-}\delta\text{-}\text{Kriterium:}\ f:D\to\mathbb{R}\ \text{ist stetig in}\ x_0\in D,\\ \Longleftrightarrow \forall \varepsilon>0\exists \delta_{\varepsilon,x_0}>0:\forall x\in D: \end{array}$

 $|x-x_0|<\delta \implies |f(x)-f(x_0)|<\varepsilon$ gleichmäßige Stetigkeit: Eine stetige Funktion f heißt gleichmäßig stetig, wenn $\forall \varepsilon > 0 \exists \delta_{\varepsilon} > 0$: $\forall x, y \in D$:

 $|x-y| < \delta \implies |f(x)-f(y)| < \varepsilon$

Lipschitz-Stetigkeit: $f:D\to\mathbb{R}$ heißt Lipschitzstetig, wenn es L>0, sodass $\forall x,y\in D$ gilt $|f(x) - f(y)| \le L|x - y|$

Lipschitz-stetig ⇒ gleichmäßig stetig ⇒ stetig. Satz von der gleichmäßigen Stetigkeit:

 $f:[a,b]\to\mathbb{R}$ stetig \Longrightarrow f ist gleichmäßig stetig auf [a,b] Abbildungseigenschaften stetiger Funktionen:

Satz vom Extremum: Sei $f:D \to \mathbb{R}$ stetig, D beschränkt und abgeschlossen. Dann existeren $x_{\min}, x_{\max}, \text{ sodass}$

 $\sup_{x \in D} f(x) = f(x_{\text{max}}) \quad \inf_{x \in D} f(x) = f(x_{\text{min}})$

Zwischenwertsatz: Sei $f:[a,b] \to \mathbb{R}$ stetig, dann gibt es zu $y \in [f(a), f(b)]$ ein $\xi \in (a, b)$, sodass $f(\xi) = y$ (stärker: $\forall y \in [\min f, \max f]$)

Monotonie: $f:(a,b)\to\mathbb{R}$ stetig ist genau dann injektiv, wenn sie streng monoton ist.

Funktionsfolgen: $n \in \mathbb{N}, f_n : D \to \mathbb{N}$

 $(f_n)_{n\in\mathbb{N}}$ konvergiert punktweise, wenn für alle $x\in$ D die Zahlenfolge $(f_n(x))_n \in \mathbb{N}$ konvergiert gegen Grenzfunktion $f: f_n(x) \xrightarrow{n \to \infty} f(x)$. (sprich: $\forall \varepsilon > 0 \exists N_{\varepsilon,x} \in \mathbb{N} : |f_n(x) - f(x)| < \varepsilon \forall n \ge N_{eps,x}$ gleichmäßige Konvergenz: $(f_n)_{n\in\mathbb{N}}$ heißt gleichmäßig konvergent auf D gegen die Grenzfunktion f, wenn $\forall \varepsilon > 0$

 $\exists N_{\varepsilon} \in \mathbb{N} : |f_n(x) - f(x)| < \varepsilon \forall n \geq N_{\varepsilon} \forall x \in D$ $f_n:D\to\mathbb{R}$ stetig und $(f_n)_{n\in\mathbb{N}}$ konvergiert gleichmäßig gegen f, dann ist auch f stetig.

Funktionenräume: $\mathcal{C}([a,b]) := \{f : [a,b] \rightarrow \mathbb{R} \mid a,b \in \mathbb{R} \}$ f stetig}

R-Vektorraum (in der Regel unendlich dimensional) $\|\cdot\|_{\infty}: \mathcal{C}([a,b]) \to \mathbb{R}_+, f \mapsto \max_{x \in [a,b]} |f(x)|$

Norm, normierer Raum $(\mathcal{C}([a,b]), \|\cdot\|_{\infty})$

 $\forall x, y \in V, \lambda \in \mathbb{R}$:

 $||x|| \ge 0, ||x|| = 0 \iff x = 0, ||\lambda x|| = |\lambda| ||x||, ||x + 1||$ $|y| \le ||x|| + ||y||$

Konvergenzbegriff in Norm: $f_n \to f$ bezüglich $\|\cdot\|_{\infty} \iff \forall \varepsilon > 0 \exists N \in \mathbb{N} : \|f_n - f\|_{\infty} < \varepsilon \forall n \geq 0$ N Satz von Arzela-Ascoli: $(f_n)_{n\in\mathbb{N}}\subseteq\mathcal{C}([a,b])$ Folge von gleichmäßig beschränkten (das heißt $\sup_{n\in\mathbb{N}} ||f_n||_{\infty} < \infty$) und gleichgradig stetig (das heißt $\forall \varepsilon > 0, \exists \delta > 0 \forall n \in \mathbb{N} : \sup_{|x-y| < \delta} |f_n(x)| |f_n(y)| < \varepsilon$) dann gibt es eine konvergente Teilfolge mit Grenzwert in $\mathcal{C}([a,b])$ bezüglich $\|\cdot\|_{\infty}$

4 Differential rechnung

 $f: D \to \mathbb{R}, x_0 \in D$, definiere $D_h f(x_0) = \frac{f(x_0 + h) - f(x_0)}{h}$

$$D_h f(x_0) = \frac{f(x_0 + h) - f(x_0)}{h}$$

f heißt differenzierbar in x_0 , wenn für jede Nullfolge $(h_n)_{n\in\mathbb{N}}$ die Folge der Differenzenquotienten $(D_{h_n}f(x_0))_{n\in\mathbb{N}}$ konvergiert. Der Grenzwert lim $D_{h_n} f(x_0)$ heißt Ableitung von f im Punkt

Alternativ: $\exists L : \mathbb{R} \to \mathbb{R} : f(x) = f(x_0) + L(x - x_0)$ $(x_0) + r(x - x_0)$ mit $r(x - x_0)/(x - x_0) \xrightarrow{x \to x_0}$ $0, f'(x_0) = L$

f differenzierbar in $x_0 \implies f$ stetig in x_0 . f ist differenzierbar auf D, wenn f in jedem Punkt differenzierbar ist.

Fasse f' als Funktion $f': D \to \mathbb{R}, x \mapsto f'(x)$ f heißt stetig differenzierbar, wenn f' stetig ist. *n*-te Ableitung: $f^{(n)}(x_0) = (f^{(n-1)})'(x_0), f^{(0)} = f$. f heißt glatt, wenn $f^{(n)}$ für alle $n \in \mathbb{N}$ existiert.

Stabilität: $f, g: D \to \mathbb{R}, x_0 \in D$ Linearität: $(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) +$ $\beta a'(x_0) \forall \alpha, \beta \in \mathbb{R}$

Produktregel: $(f \cdot g)'(x_0) = f'(x_0)g(x_0) +$ $f(x_0)q'(x_0)$

hat g keine Nullstelle, so gilt:

Quotientenregel: $(f/g)'(x_0) = (f'(x_0)g(x_0)$ $f(x_0)q'(x_0)/q^2(x_0)$

Kettenregel: $f:D\to D',g:D'\to\mathbb{R}$ beide differenzierbar in $x_0\in D, f(x_0)\in D'$. dann ist $(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$ Satz von der inversen Funktion: $f: D \to \mathbb{R}$ stetig, injektiv, D abgeschlossen, f differenzierbar in $x_0 \in D, f : D \rightarrow$ f(D) bijektiv $\Longrightarrow \exists f^{-1}: f(D) \to D$ und es gilt $(f^{-1})'(f(x_0)) = 1/f'(x_0)$

Extremwertheorie: $f: D \to \mathbb{R}$ hat in $x_0 \in D$ ein globales Extremum wenn gilt:

 $f(x_0) \ge f(x) \forall x \in D \text{ (Maximum)}$

 $f(x_0) \le f(x) \forall x \in D$ (Minimum)

f hat ein lokales Extremum, wenn obige Bedingungen auf einer δ -Umgebung von x_0 zutreffen.

Satz von Extremum: (notwendige Bedingung) $f:(a,b)\to\mathbb{R}$ differenzierbar hat lokales Extremum in $x_0 \in (a,b)$, dann gilt $f'(x_0) = 0$

1. Mittelwertsatz: Ist $f: D \to \mathbb{R}$ stetig und differenzierbar in (a, b), dann gibt es $x \in (a, b)$, sodass

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Hinreichende Bedingung: Sei $f:(a,b)\to\mathbb{R}$ zweimal differenzierbar mit $f'(x_0) = 0$ und $f''(x_0) \neq 0$, dann folgt f hat in x_0 ein lokales Extremum. (Maximum für <, Minimum für >)

Taylorentwicklung: $f:(a,b)\to\mathbb{R}$ n-mal stetig differenzierbar

$$t_n(x_0, x) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

n-te Taylorpolynom mit Entwicklungsstelle x_0 . f(n+1)-mal stetig differenzierbar, dann gibt es zu jedem $x \in (a, b)$ ein ξ zwischen x_0 und x, sodass

$$f(x) - t_n(x_0, x) = R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

$$t_{\infty}(x_0, x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

f ist analytisch in x_0 , wenn es in $(x_0 - \rho, x_0 + \rho)$ eine Umgebung gibt, sodass $f(x) = t_{\infty}(x_0, x)$ Regel von L'Hospital: $f, g: (a, b) \to \mathbb{R}$ sodass $g'(x) \neq 0$

 $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) \in \{-\infty, 0, \infty\} \implies \lim_{x \to a}$ Differentiation und Limes: $(f_n)_{n\in\mathbb{N}}$ Folge stetig

differenzierbarer Funktionen auf beschränkten Intervallen mit punktweisen Grenzwert $f_n(x) \xrightarrow{n \to \infty} f(x)$ und gilt $f'_n \xrightarrow{n \to \infty} f^*$ gleichmäßig, dann gilt f ist differenzierbar mit $f'(x) = f^*(x)$

5 Integration

Zerlegung: $[a, b], Z := \{x_0, \dots, x_n\}, x_0 = a, x_n = a\}$ $b, x_0 < x_1 < \dots < x_n.$

Feinheit: $h := \max_{k=1,...,n} |x_k - x_{k-1}|$

Zerlegung äquidistant : $\iff h$ konstant in k. $f:[a,b]\to\mathbb{R},Z$ Zerlegung, $I_k=[x_{k-1},x_k]$

Obersumme: $\bar{S}_z f(x) := \sum_{x=1}^{\infty} \sup_{x \in I_k} f(x)(x_k - x_{k-1})$

Untersumme: $\underline{S}_z f(x) := \sum_{x \in I_k}^{\infty} \inf_{x \in I_k} f(x)(x_k - x_{k-1})$

Oberintegral: $\int^b f(x) \mathrm{d} x := \inf_{Z \in \mathcal{Z}(a,b)} \bar{S}_Z f(x)$

 $\int_{a}^{b} f(x) dx := \sup_{Z \in \mathcal{Z}(a,b)} \underline{S}_{Z} f(x)$ Unterintegral:

$$\int_{a}^{b} f(x) dx \le \overline{\int_{a}^{b}} f(x) dx$$

Fheißt Riemann-integrierbar, wenn

$$\begin{array}{l} \int_{\underline{a}}^{b} f(x) \mathrm{d}x = \int_{a}^{\overline{b}} f(x) \mathrm{d}x \\ \Longleftrightarrow \quad \forall \varepsilon > 0 \exists Z \in \mathcal{Z}(a,b) | \bar{S}_{z} f(x) - \underline{S}_{z}| < \varepsilon \\ \mathrm{Riemannsche\ Summe:} \quad f: [a,b] \rightarrow \mathbb{R}, Z \ \mathrm{Zerlegung.} \end{array}$$

$$RS_Z(f) = \sum_{k=1}^n f(\xi_k)(x_k - x_{k-1})$$

Sei f beschränkt. f ist Riemann-integrierbar \iff $\forall (Z_n)_{n\in\mathbb{N}}\in\mathcal{Z}(a,b) \text{ mit } h_n\to 0 \text{ die zugehörigen}$ Riemannschen Summen konvergieren und den gleichen Grenzwert haben.

stetige Funktionen sind integrierbar. monotone Funktionen sind integrierbar.

 $f:[a,b]\to\mathbb{R}$ integrierbar, dann auch für jedes $[c,d] \subseteq [a,b]$ und es gilt für $c \in [a,b]$:

$$\int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx = \int_{a}^{b} f(x)dx$$

$$\int_{a}^{b} (\alpha f + \beta g) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$
Monoton: $g(x) \ge f(x) \forall x \in [a, b] \implies$:
$$\int_{a}^{b} g(x) dx \ge \int_{a}^{b} f(x) dx$$

Standardabschätzung: $m < f(x) < M \forall x \in$

$$m(ba) \le \int_a^b f(x) dx \le M(b-a)$$

und der Grenzwert $f'(x)/g'(x) \xrightarrow{x \to a} c \in \mathbb{R}$, dann Definitheit: $f(x) \ge 0 \forall x \in [a,b], \int_a^b f(x) dx = 0 \Longrightarrow$

_Mittelwertsatz: $f:[a,b] \to \mathbb{R}$ stetig, $g:[a,b] \to \mathbb{R}$ integrierbar ohne Vorraussetzungen, dann gibt es

 $F, f: [a, b] \to \mathbb{R}, F$ differenzierbar heißt Stammfunktion vin f, wenn gilt: F' = f. Fundamentalsatz der Analysis: $f:[a,b] \to \mathbb{R}$ stetig

 $F(x) = \int f(x) dx$ ist eine Stammfunktion von f.

Ist F Stammfunktion von f, dann gilt:

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Partielle Integration: $f,g:[a,b]\to\mathbb{R}$ stetig differenzierbar, dann gilt:

$$\int_a^b f(x)g'(x)\mathrm{d}x = [f(x)g(x)]_a^b - \int_a^b f'(x)g(x)\mathrm{d}x$$
 Substitution: $\varphi: [c,d] \to [a,b]$ stetig differenzierbar,

$$\int_{a}^{b} f(\varphi(x))\varphi'(x)dx = \int_{\varphi(a)}^{\varphi(b)} f(x)dx$$