BE899

(5)

(8)

Total No. of Printed Pages:4

B.E (Computer) Semester-VIII (Revised Course 2007-08) EXAMINATION AUGUST 2020 Elective-III: Data Mining

[Duration : Two Hours] [Total Marks :60]

Instructions:-

- 1. Answer THREE FULL QUESTIONS with ONE QUESTION from ANY THREE MODULES.
- 2. Make suitable assumptions wherever necessary.

Module-I

- 1. a) Discuss whether or not each of the following activities is a data mining task. (4)
 - i. Sorting a student database based on student identification numbers.
 - ii. Monitoring the heart rate of a patient for abnormalities.
 - b) Explain binarization in the context of data preprocessing. (5)
 - c) For the following vectors, x and y, calculate the indicated similarity or distance measures. (6)

$$x = (1, 1, 1, 1), y = (2, 2, 2, 2)$$

- i) Cosine ii) Correlation iii) Euclidean
- d) Explain the difference and similarity between classification and regression.
- 2. a) Explain the effects of curse of dimensionality in a data mining system. Explain (6) Principle Component Analysis (PCA) in detail.
 - b) Define (6)
 - i) Data Mining
 - ii) Knowledge Discovery

State the difference between the two. Draw a complete labeled diagram of a typical data mining system.

- c) Suppose that the data for analysis include the attribute age. The age values for the data tuples are:
 - 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 40, 45, 46, 52, 70.
 - i) Use smoothing by bin means to smooth the above data, using the bin depth of 3.
 - ii) Use z-score normalization to transform the value 35 for age.
 - iii) How can you determine outliers in the data?

iv) Which methods of data reduction is efficient in your view and why?

Module-II

3. a) Suppose a hospital tested the *age* and *bodyfat* data for 18 randomly selected adults shown (8) in Table 1:

Table 1

Age	23	23	27	27	39	41,80	47	49	50	52	54
%Fat	9.5	26.5	7.8	17.8	31.4	25.9	27.4	27.2	31.2	34.6	42.5

54	56	57	58	58	60	61000
28.8	33.4	30.2	34.1	32.9	41.2	35.7

- i) Calculate the mean, median and standard deviation of age and %fat
- ii) Draw the boxplots for age and %fat.
- b) Write decision tree induction algorithm. Indicate why it is called supervised learning? (7)
- c) How does a snowflake scheme differs from a star schema. Name any two disadvantages of snowflake schema. (5)
- 4 a) Consider the training examples shown in <u>Table 2</u> for a binary classification problem. (9)
 Table 2

Instance	a_1	$\langle a_2 \rangle$	a ₃	Target Class
08175	OT?	CÎ.	1.0	THE WASTER
2	T	T	6.0	
3 00	T	F	5.0	
3 34	F	F	4.0	
5000	F	OT.	7.0	0,0,0,0
	F	T	3.0	
7.50	F	F	8.0	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
8 20 2		F	7.0	+
9	F	Ŧ	5.0	500 EF -
		300	2000	

- i) What is the entropy of this collection of training examples with respect to the positive class?
- ii) What are the information gains of a₁ and a₂ relative to these training examples?
- iii) For a₃, which is a continuous attribute, compute the information gain for every possible split.

BE899

- b) Draw data warehouse architecture; specifically describe 3-tier data warehouse architecture.
- (5)
- c) What are the ways in which overfitting is handled in decision tree induction?

(6)

Module-III

5 a) State the apriori principle. Write the apriori algorithm. State the advantages and disadvantages of apriori algorithm.

(8)

b) What is?

(2)

- i) Maximal Frequent Itemset.
- ii) Closed Frequent Itemset.
- c) Consider an example with the set of transactions given in Table 3:

(10)

Table 3

<u>1 autc 5</u>	
TID	Items Bought
001	B, M, T, Y
002	B, M
003	A, T, S, P
004	A, B, C, D
005	A, B
006	T, Y, E, M
007	A, B, M
008	B, C, D, T, P
009	D, T, S
010	A, B, M

Build an FP-tree for the transaction given in Table 3.

a) Why is the k-nearest neighbor called as a lazy classifier? Explain with the help of an example by comparing it with the decision tree classifier.

(6)

b) You are a data analyst hired by a firm to find the strong association between the items sold by the stationary. The dataset given in Table 4 is provided for the same. Use Apriori algorithm.

(8)

Table 4

Transaction ID	Items Purchased Together			
	Books, Bag, Pencil, Pen			
3000200	Books, Pencil, Eraser, Pen			
378	Pen, Pencil, Eraser			
4	Stickers, Beads, Glue			
5000	Glue, Scissors, Pen, Pencil			
56000	Books, Pen, Pencil			
5067457	Books, Pencil			

D	E	0	0	a
D	Ε	О	IJ	IJ

8	Ruler, Glue, Pencil, Eraser, Pen
9	Pen, Pencil, Eraser

Consider a minimum support count of 3 and a minimum Confidence of 60%

c) What do you understand by the following terms? Provide Suitable examples

(6)

Rule Based rule ordering i) Class Based rule ordering

Module-IV

7 a) Explain with example three types of outliers. (6)

b) Consider the task to cluster into 3 clusters, the points given in Table 5:

(10)

Table 5

8

ii)

Point	A1	A2	A3	A4	A5	A6	A7	A8
X	2	2	8	5	10 P	6		4
Y	10	5	4	8	5,70,00	4	2	9

The distance function is Euclidean Distance. The initial cluster centers are A1, A4 and A7 respectively. Use k-Means to perform clustering

c) Differentiate between the following wrt strengths and limitations:

(4)

- i) k-means and k-mediods clustering
- ii) supervised and unsupervised learning

Write the DBSCAN algorithm and use diagrams to define the following:

(8)

- Directly density reachable points i)
- Density reachable points ii)
- Core point iii)
- Density connected points iv)

b) Explain the three basic approaches to anomaly detection

(6)

c) Write and explain the bisecting k-means algorithm. (6)