PODSTAWY SIECI NEURONOWYCH

Tobiasz Rolla Piotr Ges

ZDEFINIOWANIE PROBLEMU

- Klasyfikacja kart do gry na podstawie obrazów przy użyciu sieci konwolucyjnej(CNN)
- Klasyfikacja odbywa się w obrębie 53 klas (13 kart z każdego koloru + Jocker)

OPIS DZIAŁANIA SIECI KONWOLUCYJNEJ

- Sieć CNN składa się z warstw
- konwolucyjnej
- poolingowej
- Warstwa w pełni połączona

Convolution Neural Network (CNN)

WARSTWA KONWOLUCYJNA

Celem tej warstwy jest wyodrębnienie szczegółów obrazu poprzez operacji konwolucji(splotu) operacje te wykonuje się poprzez przesuwanie jądra(kernela).

Padding pading jest techniką pozwalającą zachować rozmiar obrazy

WARSTWA POOLINGOWA

Warstwa ta redukuje rozmiar obrazu przy zachowaniu interesujących szczegłów jej rodzaje to.

- MaxPool największa wartość z kernela zostaje zachowana
- MinPool najmniejsza wartość z kernela zostaje zachowana
- AvragePool liczy średnią wartość dla kernela

WARSTWA W PEŁNI POŁĄCZONA

Warstwa w której każdy z neuronów warstwy jest połączony z każdym neuronem warstwy następnej w sieci.

- Bezpośrednio odpowiada za identyfikacje
- Popularne funkcje aktywacji to ReLU i SoftMax(na wyjściu)

ZESTWA DANYCH

Zestaw danych składa się z 8154 kart zestaw został podzielony na 3 zestawy

- zestaw uczący 7624 kart odpowiadając 93.5%
- walidacyjny zawierał 265 kart odpowiadając 3.25%.
- testowy zawierał również 265 kart odpowiadając 3.25%
- Przeprowadzono również testy innych rozkładów zestawu

PRZYGOTOWANIE OBRAZÓW

- Obrazy przekonwertowane do datasetów
- Załadowane za pomocą dataloderów
- Przyjęty dla większości testów bach_size = 32

UCZENIE MODELU

- Funkcja ucząca dostosowywuje parametry modelu.
- Aktualizacja wag za pomocą wstecznej propagacji gradientów.
- Dla każdej pozycji train_loder obliczna jest strata.

```
epoch = 0
done = False
while epoch < num_epochs and not done:
    epoch += 1
    model.train()
    running_loss, running_corrects = 0.0, 0
    for images, labels in tqdm(train_loader, desc='Training loop'):
        # Move inputs and labels to the device
        images, labels = images.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item() * labels.size(0)
        _, preds = torch.max(outputs, 1) # Pobieranie prognoz
        running_corrects += (preds == labels).sum().item()
    train_loss = running_loss / len(train_loader.dataset)
    train_accuracy = running_corrects / len(train_loader.dataset)
    train_losses.append(train_loss)
    train_accuracies.append(train_accuracy)
```

FUNKCJA EWAULUJĄCA

Jej celem jest sprawdzenie działania sieci na zbiorze walidacyjnym

 Liczy stratę dla zbioru walidacyjnego

WCZESNE ZATRZYMANIE

W celu zapobiegnięciu przeuczeniu zastosowano wsteczne zatrzymanie.

- Jeśli dokładność nie wzrośnie przez n epok
- Model wróci do epoki gdzie nie zauważono spadku strat dokładności

```
class EarlyStopping:
    def __init__(self, patience=5, min_delta=0, restore_best_weights=True):
        self.patience = patience
        self.min_delta = min_delta
        self.restore_best_weights = restore_best_weights
        self.best_model = None
        self.best_loss = float('inf')
        self.counter = 0
        self.status = ""
    def __call__(self, model, val_loss):
        if val_loss < self.best_loss - self.min_delta:</pre>
            self.best_loss = val_loss
            self.counter = 0
            self.best_model = copy.deepcopy(model.state_dict())
        else:
            self.counter += 1
            if self.counter >= self.patience:
                self.status = "Stopping training"
                if self.restore_best_weights:
                    model.load_state_dict(self.best_model)
                return True
        self.status = f"{self.counter}/{self.patience}"
        return False
```

SPRAWDZENIE MODELU

W celu sprawdzenia modelu po zakończonym procesie nauki liczy się dokładność na zbiorze testowym.

```
model.eval()
true_labels = []
predicted_labels = []

with torch.no_grad():
    for images, labels in test_loader:
        images, labels = images.to(device), labels.to(device)

        outputs = model(images)
        _, predictions = torch.max(outputs, 1) # Get the class index with the highest probability true_labels.extend(labels.cpu().numpy())
        predicted_labels.extend(predictions.cpu().numpy())

# Calculate accuracy
accuracy = accuracy_score(true_labels, predicted_labels)
print(f"Test Accuracy: {accuracy * 100:.2f}%")
```

Badanie na sieci składającej się z 6 warstw 2 warstwy kowolucyjen 2 poolingowe 2 w pełni połączone

```
class CardClassifier(nn.Module):
   def __init__(self, num_classes=53):
        super(CardClassifier,self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.relu1 = nn.ReLU()
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
        self.relu2 = nn.ReLU()
       self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.fc1 = nn.Linear(128 * 32 * 32, 512)
        self.fc2 = nn.Linear(512, num_classes)
   def forward(self, x):
        x = self.pool1(self.relu1((self.conv1(x))))
       x = self.pool2(self.relu2((self.conv2(x))))
       x = x.view(-1, 128*32*32)
       x = F.relu(self.fc1(x))
       output = self.fc2(x)
        return output
```


Sieć uczyła się bardzo szybko nie będąc odporną na przeuczenie.

- Dokładność 66.04%
- Po 4 epoce nastąpiło przeuczanie

W badaniu drugim dodano 3 warstwy

- 1 warstwa konolucyjna
- 1 warstwa poolingowa
- 1 warstwa jednolicie połączona

```
class CardClassifier(nn.Module):
    def __init__(self, num_classes=53):
        super(CardClassifier,self).__init__()
       self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
       self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
       self.fc1 = nn.Linear(128 * 16 * 16, 512)
       self.fc2 = nn.Linear(512, 128)
       self.fc3 = nn.Linear(128, num_classes)
    def forward(self, x):
       x = self.pool(F.relu((self.conv1(x))))
       x = self.pool(F.relu((self.conv2(x))))
       x = self.pool(F.relu((self.conv3(x))))
       x = x.view(x.size(0), -1)
       x = F.relu(self.fc1(x))
       x = F.relu(self.fc2(x))
       output = self.fc3(x)
       return output
```


Dodatkowe warstwy poprawiły dokładność nie zapobiegły przeuczaniu

- Dokładność 80.75%
- Ilość epok przed przeuczeniem 4

W 3 modelu dodano:

- Bach Normalisation po każdej warstwie konwolucyjnej
- Zmodyfikowano funkcje Adam o weight-decade

```
class CardClassifier(nn.Module):
   def __init__(self, num_classes=53):
        super(CardClassifier,self).__init__()
       self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
       self.bn1 = nn.BatchNorm2d(32)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
       self.bn2 = nn.BatchNorm2d(64)
       self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
        self.bn3 = nn.BatchNorm2d(128)
       self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
       self.fc1 = nn.Linear(128 * 16 * 16, 512)
        self.fc2 = nn.Linear(512, 128)
       self.fc3 = nn.Linear(128, num_classes)
   def forward(self, x):
       x = self.pool(F.relu(self.bn1(self.conv1(x))))
       x = self.pool(F.relu(self.bn2(self.conv2(x))))
       x = self.pool(F.relu(self.bn3(self.conv3(x))))
       x = x.view(x.size(0), -1)
       x = F.relu(self.fc1(x))
       x = F.relu(self.fc2(x))
       output = self.fc3(x)
        return output
```


Po wprowadzeniu poprawek sieć jest nadal podatna na przeuczenie jednak w mniejszym stopniu

- Dokładność 84.53%
- Ilość epok przed przeuczeniem 6

W 4 modelu zastosowano technikę drop-out w celu zapobiegnięciu przeuczeniu.

```
class CardClassifier(nn.Module):
   def __init__(self, num_classes=53):
       super(CardClassifier, self).__init__()
        self.bn1 = nn.BatchNorm2d(32)
       self.bn2 = nn.BatchNorm2d(64)
       self.bn3 = nn.BatchNorm2d(128)
       self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
       self.fc2 = nn.Linear(512, 128)
       self.fc3 = nn.Linear(128, 64)
       self.fc4 = nn.Linear(64, num_classes)
       self.dropout1 = nn.Dropout(p=0.1)
       self.dropout2 = nn.Dropout(p=0.2)
       self.dropout3 = nn.Dropout(p=0.3)
   def forward(self, x):
       x = self.pool(F.relu(self.bn1(self.conv1(x))))
       x = self.pool(F.relu(self.bn2(self.conv2(x))))
       x = self.pool(F.relu(self.bn3(self.conv3(x))))
       x = self.dropout1(x)
       x = F.relu(self.fc2(x))
       x = self.dropout2(x)
       x = self.dropout3(x)
        return output
```


Udało się ograniczyć przeuczenie ponadto wzrosła doładność

- Dokładność 89.91%
- Liczba epok przed przeuczeniem 16

W piątym badaniu dodano augumentacje danych.

- Losowe obracanie obrazów pionowe poziome
- Losowe obracanie obrazów o 30 stopni
- Losowa zmian kolorów obrazu

Predykcja bez augementacji Predykcja z augementacją

Wprowadzenie augumentacji w znaczny sposób zredukowało przeuczenie sieci Ponadto wzrosła dokładność w testach obrazów o niestandardowej strukturze np. obrazy obrócone.

- Dokładność 92.45%
- 27 epok do przeuczenia

Ostatnim usprawnieniem było dodanie dodatkowej warstwy konwolucyjnej

```
lass CardClassifier(nn.Module):
 def __init__(self, num_classes=53):
      self.bn1 = nn.BatchNorm2d(32)
     self.bn2 = nn.BatchNorm2d(64)
      self.bn3 = nn.BatchNorm2d(128)
      self.bn4 = nn.BatchNorm2d(256)
      self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
     self.fc1 = nn.Linear(256 * 8 * 8, 512)
     self.fc2 = nn.Linear(512, 128)
     self.fc3 = nn.Linear(128, 64)
     self.fc4 = nn.Linear(64, num_classes)
     self.dropout1 = nn.Dropout(p=0.1)
     self.dropout2 = nn.Dropout(p=0.2)
      self.dropout3 = nn.Dropout(p=0.3)
     x = self.dropout1(x)
     x = self.dropout2(x)
     x = self.dropout3(x)
      return output
```


Class Predictions

Sieć ta miała najlepsze wyniki.

- Dokładność 95.07%
- 43 epoki do przeuczenia

W siódmym badaniu postanowiono zmienić funkcje optymalizacyjne

Optimizer	Adam	AdamW	RMSprop	SGD
Accuracy	95.07%	93.7%	92.83%	85.66%

Zmiana algorytmu optymalizacyjnego nie powoduje większych zmian w dokładności wyjątkiem jest SVD.

Adam charakteryzuje się najlepszą dokładnością.

W siódmy badaniu postanowiono zmienić proporcje zbioru uczącego zmniejszając zbiór testowy.

Proporcje	60-20-20	70-15-15	80-10-10	bazowy
Accuracy	78.19%	79.47%	85.73%	95.07%

Zmniejszanie zbioru uczącego powoduje spadek dokładności sieciu

PODSUMOWANIE

- Drop-Out i Agumentacja w pozytywny sposób wpływają na czas uczenia i dokładność
- Dodatkowe warstwy wpływają w niewielki sposób na czas uczenia jednak zwiększają dokładność
- Bach-Normalisation i Weight-Decade w niewielkim stopniu wpływa na czas uczenia jednak zwiększają dokładność
- Zmniejszanie zbioru uczącego negatywnie wpływa na dokładność modelu.
- Algorytm optymalizacyjny Adam najlepiej wpływa na dokładność modelu