LORAMAN Tecnología de Comunicación

Andrés Jiménez Mora Castalia Leiva Cordero

Componentes Físicos

Gateway

Radio compleja que escucha distintos nodos al mismo tiempo.

Dispositivo Final

Sensores o actuadores que envían información por medio de enlaces ascendentes al gateway.

Servidor

Recompila y analiza información de los dispositivos finales.

Características

Largo Alcance

Topología de estrella

Larga Batería

Hasta 10 años

Alta Capacidad

Millones de mensajes por gateway

(5)

Bajo Costo

Infraestructura mínima

Seguridad

Encriptado AES-128

Protocolo

MAC

PHY

Modulación LoRa

- Basada en la tecnología CSS (Chirp Spread Spectrum)
 - Modula símbolos utilizando "Chirps"

- Permite transmisión a largas distancias, potencia y tasa de envío de datos bajas
 - y tasa de envío de datos bajas
- Utiliza 2 anchos de banda
 - o 125kHz
 - 500kHz

Chirp Spread Spectrum (CSS)

Señales "Chirp":

- Amplitud constante
- Frecuencia varía de forma lineal/no lineal
- Recorren todo el BW
- Tipos de Chirp:
 - Up-Chirp
 - Down-Chirp

Chirp Spread Spectrum (CSS)

Ejemplo de señales Up-Chirp y Down-Chirp:

Modulación LoRa y factor SF

Se le conoce como SF o factor de dispersión

Varía entre valores de {7,8,9,10,11,12}

 La cantidad de símbolos que se pueden transmitir es 2^SF

 La información se almacena en las discontinuidades

Ortogonalidad

Modulación LoRa y factor SF

SF influye en la duración de transmisión de cada símbolo y en la distancia

Spreading Factor (For UL at 125 KHz)	Bit Rate	Range (Depends on Terrain)	Time on Air for an 11-byte payload
SF10	980 bps	8 km	371 ms
SF9	1760 bps	6 km	185 ms
SF8	3125 bps	4 km	103 ms
SF7	5470 bps	2 km	61 ms

Distancia de transmisión para diferentes SF

Modulación LoRa y factor SF

SF influye en la atenuación del ruido

Error de transmisión según el SNR de la señal

Modulación LoRa (transmisor)

1. Se envía el "preamble" (primeros 8 símbolos)

2. Símbolos para sincronización (2 símbolos siguientes)

3. Payload (resto de símbolos)

Espectro de frecuencia para una transmisión LoRa

Modulación LoRa (receptor)

 Se tiene una copia de cada símbolo

2. Correlación

3. Transformada Rápida de Fourier

Operación de correlación en el receptor

Modulación LoRa (receptor)

Transformada de Fourier de la señal demodulada

Modulación LoRa y tipos de enlaces

Arquitectura

Clases de Dispositivos Finales

A

Presente en todos los dispositivos. Cuando detecta un cambio en el entorno se inicia un enlace ascendente. Luego se abren dos ventanas con un tiempo dado para recepción

R

Mejora de la clase A, las ventanas de recepción se programan regularmente para poder recibir enlaces descendentes de la red.

C

Siempre se encuentran abiertas las ventanas escuchando los mensajes de enlace descendente. Se detiene cuando se envía un mensaje ascendente.

LoRaWAN

Versiones

Versión	Año	Características		2
1.0	2015	Versión Inicial		2
1.0.1	2016	Clarificaciones y correcciones	1)	
1.0.2	2017	Nuevas funciones de seguridad y roaming		
1.0.3	2018	Agrega la Clase B		
1.0.4	2020	Mejoras en seguridad, clase B y aclaracione	es	

LoRaWAN en la industria

MANUFACTURA

Monitoreo de flujos, contaminación, fugas, presión, etc

- Stratasys
- Boston Scientific

AGRICULTURA

Optimización de procesos de irrigación, control de humedad y mapeo de terrenos

- WaterBit
- SensoTerra
- itk

DISTRIBUCIÓN DE SERVICIOS

Detección rápida de fugas, ahorro de recursos

- Birdz
- Shenzhen Kaifa Technology
- Orion Systems LLC

Demostración de la tecnología

Se estudian aspectos de la modulación LoRa:

1. Proceso de modulación y demodulación, señales involucradas

2. Comportamiento del sistema ante el ruido para diferentes SF

El experimento se llevó a cabo mediante un script en MATLAB y utilizando las ecuaciones presentadas en [2].

Demostración de la tecnología: Modulación LoRa

Parámetros del experimento:

• SF = 8

Símbolo 33

Demostración de la tecnología: Modulación LoRa

Parámetros del experimento:

SF = 8Símbolo 123

- SF = 8
- Símbolo 189
- SNR = -10dB

- SF = 10
- Símbolo 189
- SNR = -10dB

- SF = 12
- Símbolo 189
- SNR = -10dB

- SF = 12
- Símbolo 189
- SNR = -20dB

Conclusiones

- LoRaWAN es un protocolo basado en la modulación de radio LoRa que permite establecer conexiones a largas distancias, con requisitos de energía bajos y pequeñas tasas de datos.
- La modulación Lora se basa en la tecnología de Chirp Spread Spectrum para obtener se ñales moduladas cuya frecuencia variía linealmente y almacena la información.
- La modulación LoRa es altamente robusta ante el ruido de transmisión y la atenuación del mismo aumenta con el factor de dispersión SF.
- LoRaWAN se ha utilizado ampliamente en la industria para realizar monitoreo remoto.

Referencias

[1] LoRa Modulation Basics. AN1200.22 Revision 2, Camarillo, CA, USA: Semtech, May 2015,

https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/

[2] V. Lorenzo "Frequency Shift Chirp Modulation: The LoRa Modulation". Available Online:

https://catalog.us-east-1.prod.workshops.aws/workshops/b95a6659-bd4f-4567-8307-bd db43a608c4/en-US/100-intro/lorawanversions

[3] F. Adelantado et al. "Understanding the Limits of LoRaWAN" IEEE Commun. Mag. vol. 55 no. 9 pp. 34-40 Sept. 2017. doi: 10.1109/MCOM.2017.1600613

LORAMAN Tecnología de Comunicación

iGRACIAS!