Reality-Competition Shows: Are You In Or Are You Out?

Rebecca Kurtz

Ball State University rpkurtz@bsu.edu

April 17, 2018

Overview

Title

- Is it possible to predict the winner of a reality-competition program?
- ▶ At what point in the competition can a winner be determined?
- ▶ What are the primary factors used to determine the winner?

Reality-Competition Programs

Definition by the Academy of Television Arts & Sciences:

- ▶ A reality series with a minimum of 6 episodes.
- ▶ A reality series with a competition component

Additional requirements to be considered in this study:

- ► For each elimination, the judges sort the contestants into five mutually exclusive categories: WIN, HIGH, IN, LOW, OUT.
- ► The series must average one elimination per episode/week.
- ▶ The season must be produced in the United States.
- ▶ All contestants must be 18 years old or older.

Timepoints Considered

- ▶ *t*₀: Before First Episode
- $ightharpoonup t_{Ep1}$: After First Episode
- \triangleright t_{25} : 25th Quantile
- \triangleright t_{50} : 50th Quantile
- \triangleright t_{75} : 75th Quantile
- $ightharpoonup t_{Ep2ndLast}$: After Second to Last Episode

Competition Results

Skin Wars Season 2

	EPISODES									
CONTESTANTS	1	2	3	4	5	6	7	8	9	10
Lana	WIN	IN	HIGH	LOW	LOW	HIGH	WIN	HIGH	LOW	WIN
Avi	IN	WIN	HIGH	HIGH	HIGH	WIN	LOW	WIN	WIN	OUT
Aryn	IN	HIGH	IN	WIN	HIGH	HIGH	LOW	LOW	HIGH	OUT
Cheryl Ann	HIGH	HIGH	LOW	LOW	LOW	IN	LOW	LOW	OUT	
Rio	IN	IN	WIN	LOW	HIGH	LOW	HIGH	OUT		
Kyle	HIGH	IN	HIGH	IN	WIN	LOW	OUT			
Dawn Marie	IN	LOW	LOW	HIGH	LOW	OUT				
Sammie	IN	IN	LOW	IN	OUT					
Fernello	LOW	IN	IN	OUT						
Rachel	LOW	LOW	OUT							
Rudy	IN	OUT								
Macio	OUT									

Variables Considered

- ► TOP_Ep1
- ► BOTTOM_Ep1
- ► LeastBOTTOM
- ► AnyBOTTOM
- MostBOTTOM

- LeastHIGH
- AnyHIGH
- MostHIGH
- ► LeastWIN
- AnyWIN
- MostWIN

Variables Considered

- Age
- Gender
- Residence
 - ► Top Metropolitan Area
 - ► Federally Defined Regions

Federal Regions

Overview

Methods:

- Multinomial Logistic Regression
- Modified Random Forest

Logistic Regression

$$\widehat{\pi}(\mathbf{x_i}) = \exp(\alpha + \boldsymbol{\beta^T} \mathbf{x_i})$$

- $ightharpoonup \widehat{\pi}(\mathbf{x_i})$ probability that contestant i wins a competition
- $\mathbf{x}_i = (x_{i,1}, x_{i,2}, ..., x_{i,P})$ contestant i's values for each of the variables
- P total number of variables being considered
- $\beta = (\beta_1, \beta_2, ..., \beta_P)$ vector of coefficients

MNL Regression Overview

$$\widehat{\pi}_{j}(\mathbf{x}_{i,j}) = \frac{\exp(\alpha + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_{i,j})}{\sum_{i \in N_{j}} \exp(\alpha + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_{i,j})}$$

- $ightharpoonup \widehat{\pi}_i(\mathbf{x}_{i,j})$ probability of contestant i winning competition j
- $ightharpoonup x_{i,j} = (x_{i,j,1}, x_{i,j,2}, ..., x_{i,j,P})$ values for contestant i in competition j
- $ightharpoonup N_j$ set of contestants in competition j

MNL Regression Predictions

- Forward Stepwise Selection using AIC
- Cross Validation
- ▶ The contestant with the highest probability is the winner for competition *j*
 - $\widehat{\pi}_j(\mathbf{x}_{i,j}) > \widehat{\pi}_j(\mathbf{x}_{k,j}) \text{ for all } k \neq i$ $\widehat{Y}_{i,j} = 1$

MNL Probability vs Age

Simple Decision Tree Example

Random Forest Overview

- Gini Index:
 - $G_p = m_{p,0} m_{p,0}^2 + m_{p,1} m_{p,1}^2$
 - $ightharpoonup m_{p,k}$ proportion of training observations in the response category k when splitting variable p
- Modified Bootstrap Sample of Observations
- ▶ Random Subset of \sqrt{P} Variables

Random Forest Predicted Values

$$\widehat{\pi}_{j}(\mathbf{x}_{i,j}) = \frac{1}{|B_{j}|} \sum_{b \in B_{j}} \widehat{Y}_{i,j,b}$$

- $ightharpoonup \widehat{\pi}_j(\mathbf{x_{i,j}})$ probability of contestant i winning competition j
- $ightharpoonup \widehat{Y}_{i,j,b}$ predicted value of contestant i in competition j for tree b
- ▶ B_j set of all trees that do not include competition j in the training set
- ► The contestant with the highest probability is categorized as the winner for competition *j*
 - $lackbox{}\widehat{\pi_j}(\pmb{x_{i,j}}) > \widehat{\pi_j}(\pmb{x_{k,j}}) ext{ for all } k
 eq i$
 - $\hat{Y}_{i,i} = 1$

Random Forest Tree Example

Random Forest Variable Importance

Classification Evaluation

		Observed Values		
		Win(Y = 1)	Lose $(Y = 0)$	
Predicted Values	$Win(\hat{Y}=1)$	а	b	
	Lose $(\hat{Y} = 1)$	С	d	

- ► Accuracy Rate: Percent of contestants correctly identified
- ► **Sensitivity**: Percent of contestants who won correctly identified
- ► **Specificity**: Percent of contestants who lost correctly identified
- ► Cohen's Kappa: Measure of model's performance compared to random guessing

Results

Summary

- Is it possible to predict the winner of a reality-competition program?
- ▶ How early in the competition can a winner be determined?
- What are the primary factors used to determine the winner?