1 List of symbols

(1 indicates a dimensionless quantity and – indicates not applicable).

Symbol	Variable name	Units	Description
$\arctan 2(y, x)$	_	_	The four quadrant inverse tangent which returns values in
			the interval $[-\pi, \pi]$, inclusive.
c	c	ms^{-1}	Sound speed in water.
D(v)	filter_v[n]['D']	1	Integer filter decimation factor.
$DFT_{N}DFT(x)$	_	_	The discrete Fourier transform of length N_{DFT} of x .
f	f_m	${ m Hz}$	Frequency.
$f_{ m C}$	f_c	${ m Hz}$	Frequency at centre of linear upsweep chirp pulse. Equiv-
			alent to $f_{\text{start}} + \frac{ f_{\text{stop}} - f_{\text{start}} }{2}$.
$f_{ m n}$	f_n	$_{ m Hz}$	Nominal operating frequency of a transducer.
$f_{ m S}$	f_s	$_{ m Hz}$	Analogue to digital sampling frequency.
$f_{ m s,dec}$	f_s_dec	${ m Hz}$	Decimated sampling frequency.
$f_{ m start}$	f_1	Hz	Start frequency of linear upsweep chirp pulse.
$f_{ m stop}$	f_2	${ m Hz}$	Stop frequency of linear upsweep chirp pulse.
$g(\theta, \phi, f)$	g_theta_phi_m	1	Transducer gain as a function of echo arrival angle in the
			beam and frequency.
$g_0(f)$	g_0_m	1	Transducer gain along the main acoustic axis, i.e.
			$g(\theta, \phi, f)$ where $\theta = \phi = 0$.
$h_{ ext{bp}}(i, v)$	filter_v[n]['h_fl_i']1		Complex valued receiving filter coefficients.
i	i	1	Generic integer index.
$\Im(x)$	_	_	The imaginary part of x .
j	j		The square root of -1 .
m	m	1	Sample index in frequency domain.

$N_{ m u}$	N_u	1	Total number of transducer sectors/transceiver channels
			that are used to receive and process the acoustic signal.
$N_{ m V}$	N_v	1	Total number of filter stages.
N_w	N_w	1	Number of samples used in the sliding Hanning window.
n	n	1	Sample index in time domain.
$P_{\text{rx e.t}}(f)$	_	W	FT of the received electric power in a matched load for the
111,0,0 0			signal from a single target at frequency f .
$P_{\text{rx,e,t}}(f)$ $P_{\text{rx,e,t}}(m)$	P_rx_e_t_m	W	DFT of the received electric power in a matched load for
111,0,0			the signal from a single target.
$P_{\rm rx,e,v}(f)$	_	W	FT of the received electric power in a matched load for the
, , , , ,			signal from a volume at frequency f .
$P_{\mathrm{rx,e,v}}(m)$	P_rx_e_v_m	$ m Wm^2$	DFT of the received electric power in a matched load for
, , , ,			the signal from a volume.
$p_{\mathrm{rx,e}}(n)$	p_rx_e_n	W	Received electric power in a matched load.
$p_{ m tx,e}$	p_tx_e	W	Transmitted electric power.
$p_{ m tx,auto}(n)$	p_tx_auto	1	Square of the absolute value of the matched filter autocor-
- 011,000000	-		relation function.
$\Re(x)$	_	_	The real part of x .
r	svf_range	\mathbf{m}	Distance from transducer.
r_0	_	m	Reference distance.
r_c	_	m	Distance from the transducer to the centre of the range
			volume covered by t_w .
$r_c(n)$	r_c_n	\mathbf{m}	$range_c$ at sample number n .
r(n)	r_n	m	Distance from transducer.
$S_p(n)$	Sp_n	$dB re 1 m^2$	Point scattering strength at sample index n .
$S_{ m V}$	_	$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^{-1}$	Volume backscattering strength.
$S_{ m V}(f)$	_	$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^{-1}$	Volume backscattering strength at frequency f .
$S_{\mathbf{V}}(n)$	Sv_n	$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^{-1}$	Volume backscattering strength at sample index n .

$S_{ m V}(m)$	Sv_m	$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^{-1}$	Volume backscattering strength at frequency index m .
TS	_	$dB re 1 m^2$	Target strength.
TS(f)	_	$dB re 1 m^2$	Target strength at frequency f .
TS(m)	TS_m	$dB re 1 m^2$	Target strength at frequency index m .
t		S	Time.
t_w	$\mathrm{t_{-w}}$	\mathbf{S}	Duration of sliding window for calculating volume backscattering strength.
u	u	1	Receiver channel number and transducer sector number.
u(i)	_	1	The Heaviside step function.
V	_	m^3	Volume occupied by scattering targets.
v	_	1	Filter stage.
w	_	1	The Hann window function.
w(i)	w_i	1	The Hann window function for index i, defined by $w(i) = 0.5(1 + \cos(2\pi i/N_w)), -N_w/2 \le i \le N_w/2.$
$ ilde{w}(i)$	w_tilde_i	1	Normalised Hann window.
x^*	_	_	The complex conjugate of x .
$ x _{2}$	_	_	The l^2 -norm of x , also known as the Euclidean norm.
$Y_{ m mf,auto}(m)$	Y_mf_auto_m	1	Discrete Fourier transform (DFT) of the autocorrelation function for the matched filter.
$Y_{\rm mf,auto,red}(m)$	Y_mf_auto_m_red	1	DFT of the reduced autocorrelation function for the matched filter.
$Y_{\text{DC.t}}(m)$	$Y_pc_t_m$	V	DFT of the pulse compressed signal from a single target.
$Y_{\mathrm{pc,t}}(m)$ $\widetilde{Y}_{\mathrm{pc,t}}(m)$	Y_tilde_pc_t_m	Vm	DFT of the pulse compressed signal from a single target normalized by the DFT of the reduced autocorrelation function for the matched filter.
$Y_{\mathrm{pc,v}}(m)$	Y_pc_v_m	Vm	DFT of the pulse compressed signal from a volume. Compensated for spreading loss.

$ ilde{Y}_{ ext{pc,v}}(m)$	Y_tilde_pc_v_m	V	DFT of the pulse compressed signal from a single volume normalized by the DFT of the reduced autocorrelation function for the matched filter. Compensated for spreading loss.
$y_{ m mf}(n)$	y_mf_n	1	Matched filter. Signal used for pulse compression.
$y_{\mathrm{mf,auto}}(n)$	y_mf_auto_n	1	Autocorrelation function for the matched filter.
$y_{\mathrm{mf,auto,red}}(n)$	<pre>y_mf_auto_red_n</pre>	1	Reduced autocorrelation function for the matched filter.
$y_{\mathrm{pc}}(n)$	y_pc_n	V	Pulse compressed signal averaged over all transducer sectors.
$y_{\mathrm{PC}}(n,u)$	y_pc_nu	V	Pulse compressed signal from channel u .
$y_{\text{pc,aft}}(n)$	y_pc_aft_n	V	Pulse compressed signal from the aft transducer half.
$y_{\text{pc,fore}}(n)$	y_pc_fore_n	V	Pulse compressed signal from the forward transducer half.
$y_{\text{pc,port}}(n)$	y_pc_port_n	V	Pulse compressed signal from the port transducer half.
$y_{\mathrm{pc,s}}(n)$	y_pc_s_n	Vm	Pulse compressed signal compensated for spherical spreading.
$y_{\mathrm{pc,star}}(n)$	y_pc_star_n	V	Pulse compressed signal from the starboard transducer half.
$y_{ m pc,t}(n)$	y_pc_t_n	V	Pulse compressed signal from a single target.
$y_{\text{TX}}(n,u)$	y_rx_nu	V	Received digitised, bandpass filtered, decimated complex signal after the final filter stage, $y_{\text{TX}}(n, u) = y_{\text{TX}}(n, u, N_{\text{V}})$.
$y_{\mathrm{TX}}(n,u,v)$	_	V	Received digitised, bandpass filtered, decimated complex signal.
$y_{\rm rx,a}(t)$	_	Pa	Analogue acoustic signal received by the transducer.
$y_{\text{rx,e}}(t,u)$		V	Analogue electric signal received by each transceiver channel u .
$y_{\text{rx,org}}(n,u)$	y_rx_org	V	Received digitised signal before the bandpass filtering and decimation stages, $y_{\text{TX,OTg}}(n, u) = y_{\text{TX}}(n, u, 0)$.

$y_{\mathrm{tx}}(n)$	y_tx_n	V	Ideal transmitted signal generated from transmit signal
			properties.
$\tilde{y}_{\mathrm{tx}}(n)$	y_tilde_tx_n	1	Ideal normalized transmitted signal generated from trans-
			mit signal properties.
$\tilde{y}_{\mathrm{tx}}(n,v)$	<pre>y_tilde_tx_nv</pre>	1	Ideal normalized transmitted signal generated from trans-
(.)		D	mit signal properties after application of filter stage v .
$y_{\mathrm{tx,a}}(t)$	_	Pa	Analogue acoustic transmit signal.
$y_{\mathrm{tx,e}}(t)$	_	V	Analogue electric transmit signal.
$y_{ heta}(n)$	${ t y_theta_n}$	rad	Electrical angle along the minor axis of the transducer
			(alongship when ship-mounted).
$y_\phi(n)$	y_phi_n	rad	Electrical angle along the major axis of the transducer
			(athwartship when ship-mounted).
$z_{ m rx,e}$	z_rx_e	Ω	Receiver electric impedance.
$z_{\rm td,e}$	z_td_e	Ω	Transducer sector electric impedance.
$\alpha(f)$	alpha_m	$\mathrm{dB}~\mathrm{m}^{-1}$	Absorption coefficient at frequency f .
$\gamma_{ heta}$	${\tt gamma_theta}$	1	Conversion factor between phase difference in signals from
			the fore and aft transducer halves and the physical arrival
			angle of an echo.
γ_{ϕ}	gamma_phi	1	Conversion factor between phase difference in signals from
,			the port and starboard transducer halves and the physical
			arrival angle of an echo.
θ	theta_n	rad	Angle coordinates along the minor axis of the transducer
			(alongship when ship-mounted).
λ		m	Acoustic wavelength.
λ_m	lambda_m	m	Acoustic wavelength at frequency index m
$\sigma_{ m bs}$		m^2	Backscattering cross-section.
au	tau	\mathbf{S}	Nominal transmit pulse duration.
$ au_{ ext{eff}}$	tau_eff	\mathbf{S}	Effective transmit pulse duration.
O11			_

ϕ	phi	rad	Angle coordinates along the major axis of the transducer
			(athwartship when ship-mounted).
$\psi(f)$	psi_m	sr	Two-way equivalent beam angle at frequency f .