Задание III

Текст задания Определить для заданной подгруппы $H \in S_4$:

- а) элементы из H;
- б) левые смежные классы группы S_4 по H
- в) правые смежные классы группы S_4 по H
- Γ) является ли H нормальной подгруппой?

$$H = \langle (132), (12) \rangle$$

Решение
$$(132)(132) = (231)$$

 $(132)(12) = (23)$
 $(12)(132) = (13)$
 $(12)(12) = \Pi_0$

Таблица Кэли

H	Π_0	(132)	(12)	(231)	(23)	(13)
Π_0	Π_0	(132)	(12)	(231)	(23)	(13)
(132)	(132)	(231)	(23)	Π_0	(13)	(12)
(12)	(12)	(13)	Π_0	(23)	(231)	(132)
(231)	(231)	Π_0	(13)	(132)	(12)	(23)
(23)	(23)	(12)	(132)	(13)	Π_0	(231)
(13)	(13)	(23)	(132)	(12)	(132)	Π_0

 $H = \{\Pi_0, (132), (12), (13), (23)\}$ - 6 элементов. Количество смежных классов: $\frac{|S_4|}{|H|} = \frac{4!}{6} = \frac{24}{6} = 4$

ЛСК

- 1. $\Pi_0 H = \{\Pi_0, (132), (12), (231), (13), (23)\}\$
- 2. $(14)H = \{(14), (1324), (124), (1234), (134), (14)(23)\}$
- 3. $(24)H = \{(24), (1342), (142), (1423), (24)(13), (234)\}$
- 4. $(34)H = \{(34, (1432), (34)(12), (1243), (143), (243)\}$

ПСК

- 1. $H\Pi_0 = {\Pi_0, (132), (12), (231), (13), (23)}$
- 2. $H(14) = \{(14), (1432), (142), (1423), (143), (23)(14)\}$
- 3. $H(24) = \{(24), (2413), (241), (2431), (13)(24), (243)\}$
- 4. $H(34) = \{(34, (3421), (12)(34), (3412), (341), (342)\}$

 $\Pi \text{CK} \neq \Pi \text{CK} \Longrightarrow H$ не является нормальным делителем