Graphs

Adjacency List

List of neighbors stored in each vertex

Adjacency Matrix

Matrix of neighbors stored centrally in Graph object

Adjacency List

A: B, C, E

B: A, C

C: A, B, D, E

D: C

E: A, C

Adjacency List

A: B, C, E

Stored in Node A

B: A, C

C: A, B, D, E

D: C

E: A, C

Adjacency List

A: B, C, E

B: A, C

Stored in Node B

C: A, B, D, E

D: C

E: A, C

Adjacency Matrix

to

Stored in Graph

Weighted Edges?

Much easier to implement with Adjacency Matrix

Adjacency Matrix

	A	В	O	D	Е
A	0	8	9	0	6
В	8	0	5	0	0
C	9	5	0	3	1
D	0	0	3	0	0
Ε	6	0	1	0	0

Directed Graph

Adjacency List

A: C

B: A

C: B, D, E

D:

E: A

Directed Graph

Adjacency Matrix

to

	A	В	С	D	Ε
A	0	0	1	0	0
В	1	0	0	0	0
С	0	1	0	1	1
D	0	0	0	0	0
Е	1	0	0	0	0

Which is Better?

Dense Graph – graph where $|E| = |V|^2$

Sparse Graph – graph where |E| = |V|

Which is Better?

	Α	В	С	D	Ε
Α	0	0	1	0	0
В	1	0	0	0	0
С	0	1	0	1	1
D	0	0	0	0	0
Е	1	0	0	0	0

Adjacency Matrix takes up |V|² space, regardless how dense the graph

Matrix for a graph with 10,000 vertices will take up at least 100,000,000 Bytes

Which is Better?

Adjacency List

- Pro: Faster and uses less space for Sparse graphs
- Con: Slower for Dense graphs

Adjacency Matrix

- Pro: Faster for Dense graphs
- Pro: Simpler for Weighted edges
- Con: uses more space