Анализ панельных данных

Грабовой Андрей

Московский физико-технический институт

Москва, 2019г

Литература

• Я. Р. Магнус, П. К. Катышев, А. А. Пересецкий Эконометрика. 2004. 591 с.

Panel Data

Что анализируется?:

- Есть набор объектов (например разные люди/фирмы/акции), которые описываются набором признаков, и по этим данным что либо прогнозируем.
- Также известно изменения прогноза во времени.

Пример:

Panel Data

Обозначения:

$$\mathbf{y}_{i} = \begin{bmatrix} y_{i1} \\ y_{i2} \\ \dots \\ y_{iT} \end{bmatrix}, \quad \mathbf{X}_{i} = \begin{bmatrix} \mathbf{x}_{i1} \\ \mathbf{x}_{i2} \\ \dots \\ \mathbf{x}_{iT} \end{bmatrix}, \quad \boldsymbol{\varepsilon}_{i} = \begin{bmatrix} \varepsilon_{i1} \\ \varepsilon_{i2} \\ \dots \\ \varepsilon_{iT} \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \dots \\ \mathbf{y}_N \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \dots \\ \mathbf{X}_N \end{bmatrix}, \quad \boldsymbol{\varepsilon} = \begin{bmatrix} \boldsymbol{\varepsilon}_1 \\ \boldsymbol{\varepsilon}_2 \\ \dots \\ \boldsymbol{\varepsilon}_N \end{bmatrix},$$

где \mathbf{y}, ε — вектора размерности $(N \cdot T) \times 1$, \mathbf{X} — матрица размерности $(N \cdot T) \times n$.

Простейшая модель

Модель регрессии:

$$y_{it} = \mathbf{x}_{it}^\mathsf{T} \mathbf{w} + \varepsilon_{it}.$$

Модель регрессии в матричном виде:

$$y = Xw + \varepsilon$$
,

данная модель не учитывает панельность данных.

Модификация:

$$y_{it} = \alpha_i + \mathbf{x}_{it}^\mathsf{T} \mathbf{w} + \varepsilon_{it},$$

где α_i выражает индивидуальный эффект объекта i, не зависящий от времени t.

Класификация моделей:

- Модель с фиксированным эффектом: предполагает, что α_i это неизвестный параметр.
- Модель со случайным эффектом: предполагает, что $\alpha_i = \mu + u_i$, где μ некоторый постоянный параметр, а u_i ошибки.

Модель с фиксированным эффектом

Модель:

$$y_{it} = \alpha_i + \mathbf{x}_{it}^\mathsf{T} \mathbf{w} + \varepsilon_{it} = \sum_{j=1}^N \alpha_j d_{ij} + \mathbf{x}_{it}^\mathsf{T} \mathbf{w} + \varepsilon_{it},$$

где $d_{ij} = \delta_{ij}$.

Модель в матричном виде:

$$y = D\alpha + Xw + \varepsilon$$
.

Данная модель уже рассматривается как стандартная модель регрессии и при помощи МНК находятся α и **w**. Оценка параметров будет несмещеной и эффективной.

В случае, когда $N\gg T$ оценки α не являются состоятельными. В случае $T\gg N$ оценки являются состоятельными.

Модель с фиксированным эффектом

Переход:

$$\overline{\mathbf{y}}_{i} = \alpha_{i} + \overline{\mathbf{x}}_{i}^{\mathsf{T}} \mathbf{w} + \overline{\varepsilon}_{i},$$

где $\overline{y}_i, \overline{x}_i, \overline{\varepsilon}_i$ — усредненные по времени величины.

$$y_{it} - \overline{y}_i = (\mathbf{x}_i - \overline{\mathbf{x}}_i)^\mathsf{T} \mathbf{w} + \varepsilon_{it} - \overline{\varepsilon}_i.$$

Матричная форма:

$$My = MXw + M\varepsilon$$
, $M = I - D(D^TD)^{-1}D^T$.

Решение:

$$\hat{\mathbf{w}} = (\mathbf{X}^\mathsf{T} \mathbf{M} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{M} \mathbf{y}, \quad \hat{\alpha}_i = \overline{y}_i - \overline{\mathbf{x}}_i^\mathsf{T} \hat{\mathbf{w}},$$

данные оценки состоятельны для N=const и при $T\gg N$.

Модель со случайным эффектом

Модель:

$$y_{it} = \alpha_i + \mathbf{x}_{it}^\mathsf{T} \mathbf{w} + \varepsilon_{it} = \mu + \mathbf{x}_{it}^\mathsf{T} \mathbf{w} + u_i + \varepsilon_{it},$$

где μ — константа, а u_i — случайная ошибка не зависящая от времени для всех объектов.

Модель в матричном виде:

$$y = \mu + Xw + v$$

где $\mu=\mu {f i},$ а ошибки $v_{it}=u_i+arepsilon_{it}.$ Данная модель не удовлетворяет условиям Гауса-Маркова, поэтому не являются эффективными, но являются несмещеными и состоятельными.

Какую модель использовать

Модель с фиксированным эффектом:

Если *T* ≫ *N*

Модель со случайным эффектом:

- Объекты могут рассматриваться как сэмплы и $\mathsf{E}\left(\varepsilon_{i}\mathsf{x}_{i}\right)=0$
- Если T ≫ N
- Если Т ≫ N