

PROJECT 1: LIFE EXPECTANCY (WHO)

SADAF SHAHBAZ

AGNESA PERCUKU GERXHALIU

1. Introduction to Data Set

- 2. Exploratory Data analysis
 - 2.1. Has life expectancy improved over the years?
 - 2.2. Does population have an impact on long life?
 - 2.3. Are Wealthy countries being more likely to live longer?
- 2.4. Should countries with lower life expectancy increase their percentage expenditure on Health?
 - 2.5. What is main reason of very low LE in Africa?
 - 2.6. Do education helps make people improving LE?
- 3. Predicting life expectancy
- 4. Logistic Regression to predict status
- 5. Conclusions and Recommendations

Life Expectancy dataset

- ⊕ Country
- Abc Status
- # Year
- Abc Measure Names
- # Adult Mortality
- # Alcohol
- # Bmi
- # Diphtheria
- # GDP
- # Hepatitis B
- # Hiv/Aids
- # Income composition of resources
- # Infant Deaths
- # Life expectancy
- # Measles
- # Percentage Expenditure
- # Polio
- # Population
- # Schooling
- # Thinness 1-19 Years
- # Thinness 5-9 Years
- # Total expenditure
- # Under-Five Deaths

Average Life Expectancy

Avg. Life expectancy

82.54

Countrie with lowest and highest life avg. life expectancies

San Marino	
Tuvalu	
Sierra Leone	46.11
Central African Republic	48.51
Lesotho	48.78
Angola	49.02
Malawi	49.89
Chad	50.39
Côte d'Ivoire	50.39
Zimbabwe	50.49
Swaziland	51.33

Germany	81.18
Greece	81.22
Israel	81.30
New Zealand	81.34
Singapore	81.48
Austria	81.48
Canada	81.69
Norway	81.79
Australia	81.81
Spain	82.07

Data Preprocessing

Standardize columns: lowercase, remove spaces

Remove duplicates

Removing Null– using KNN imputer

Handle outliers using quartiles

Transform categorical values using dummification

Correlation Coefficient

Except Diphtheria, polio, alcohol and hepatitis B are coefficients are explainable.

life_expectancy =		
schooling-		
income_composition_of_resources-		
diphtheria -		
polio-		
bmi-		
gdp-		
alcohol-		
percentage_expenditure-		
total_expenditure-		
hepatitis_b-		
year-		
population -		
measles -		
infant_deaths =		
under-five_deaths -		
thinness_1-19_years -		
thinness_5-9_years-		
hiv/aids-		
adult_mortality -		
corr	ela	tion

1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6

Has life expectancy improved over the years?

- Developing countrieshigher adult and infant deaths and lower life expectancy compared to developed countries.
- But we see that with time, the deaths are going down and life expectancy slowly going up.

Country Wise life Expectancy over the years

Does population have an impact on long life?

Are Wealthy countries being more likely to live longer?

Should countries with lower life expectancy increase their percentage expenditure on Health?

Regression plot (developing countries)

- Narrow confidence interval
- Most of obs. are around fitted line.

What is main reason of very low LE in Africa?

Correlation coefficients (Africa)

Correlation Coefficients (Europe)

Do education helps make people improving LE?

Linear Regression

- The linear regression model seems to be
- a good model for predicting Life Expectancy.
- R2 score in training is 0.96 while in testing 0.95


```
[26]: #R2(R-Squared)

from sklearn.metrics import r2_score
display(r2_score(y_train,predictions_train))
r2_score(y_test,predictions_test)

0.9607634275057055
```

[26]: 0.9515972486821616

Feature Importance

Logistic Regression

Target Variable = Status (Developed = 0, Developing = 1)

Explanatory variables = life_expectancy adult_mortality, infant_deaths, alcohol, percentage_expenditure, hepatitis_b, diphtheria, hiv/aids, gdp,population, thinness-1-9 years, thinness 5-9 years, income composition of resources, schooling, measles, under_five_deaths, polio, total_expenditure

Classification Report

	precision	recall	f1-score	support
0	0.18	0.39	0.24	357
1	0.81	0.59	0.68	1600
accuracy macro avg	0.49	0.49	0.55 0.46	1957 1957
weighted avg	0.70	0.55	0.60	1957
	precision	recall	f1-score	support
0	precision 0.14	recall 0.35	f1-score 0.20	support 155
0 1				
	0.14	0.35	0.20	155

accuracy on train set:

0.5528870720490546

accuracy on test set:

0.5575129533678757

Precision – What percent of your predictions were correct?

Precision = TP/(TP + FP)

Recall – What percent of the positive cases did you catch?

Recall = TP/(TP+FN)

F1 score – What percent of positive predictions were correct?

Problem in Model Imbalanced Data

No. of observation for developed class = 512

No. of observations for developing class = 2410

Need to balance data

Resampling the data

- 1.Downsampling
- 2. Upsampling

Classification Report after Down sampling

0= developed = 512

1= developing = 512

support	†1-score	recall	precision	
343	0.68	0.65	0.71	0
343	0.71	0.74	0.68	1
686	0.70			accuracy
686	0.69	0.70	0.70	. macro avg
686	0.69	0.70	0.70	weighted avg
	.	11	nnocicion	
support	f1-score	recall	precision	
support 169	11-score 0.66	0.64	0.69	0
				0 1
169 169	0.66 0.69	0.64	0.69	1
169	0.66	0.64	0.69	1 accuracy
169 169 338	0.66 0.69 0.68	0.64 0.72	0.69 0.66	1

Classification Report after Up sampling

developed = 2410 developing = 2410

	precision	recall	f1-score	support
0	0.71	0.79	0.74	1635
1	0.75	0.66	0.70	1594
accuracy			0.73	3229
macro avg	0.73	0.73	0.72	3229
weighted avg	0.73	0.73	0.73	3229
	precision	recall	f1-score	support
0	precision 0.69	recall 0.82	f1-score 0.75	support 775
0 1				
1	0.69	0.82	0.75	775
	0.69	0.82	0.75 0.71	775 816

Feature Importance

- 1. Alcohol
- 2. Life expectancy
- 3. Income composition of resources
- 4. Thinness 1-9 years
- 5 Adult Mortality
- 6. gdp
- 7.bmi
- 8. percentage expenditures
- 9. polio
- 10. total expenditures
- 11. diphtheria
- 12. HIV/Aids
- 13. Hepatitis b
- 14. under five deaths
- 15. infant deaths
- 16. Measles
- 17. population

Conclusion

- EDA shows:
- LE is getting better over the years in both developing and developed countries.
- In order to improve LE govts needs to spend more money to increase percentage expenditures on health, education and controlling diseases.
- Analysis also reveals some abnormal positive relationships e.g. +ive relationship of alcohol, dipherthia, etc. needs further investigation.
- Even with abnormalities in dataset model predicted very well life expectancy. Needs further investigation, what are the most important features.
- Model with oversampling technique performed best. Next step could be to select features by using ANOVA and rerun the model.

