Chemie Aufschriebe

TornaxO7

5. Oktober 2020

Inhaltsverzeichnis

7	Kui	aststoffe
	7.1	Staudingers Theorie der Makromoleküle
	7.2	Thermoplaste
	7.3	Duroplaste
	7.4	Elastomere
	7.5	Polymerisation

7 Kunststoffe

7.1 Staudingers Theorie der Makromoleküle

Kunststoffe bestehen aus Makromolekülen (Polymeren), die aus Monomeren aufgebaut sind.

Eintelung der Polymere:

Naturstoffe	Umgewandelte Naturstoffe	Kunststoffe
Cullulose	Zelluloid	Silikone
Kautschuk	Schießbaumwolle	PVC (Polyvenuelchlorid)
Kautschuk		PET
Stärke		PE
Proteine		Styropor
Polysaccharide		PP
		PP
		PU
		Polyester
		Elastrat
		PTFE
		PS
		PVC

7.2 Thermoplaste

Eigenschaften:

- Werden beim erwärmen leicht oder schmelzen.
- Lösen sich teilweise in Aceton oder quellen (aufquellen).

Vorteile:

- Gute Verarbeitungsmöglichkeiten: Schmelzen, dann pressen, spritzen, gießen (und extruhieren: Form auspressen(?))
- Gute Wiederverwertbarkeit: Einschmelzen der sortenreinen Kunststoffe.

<u>izze:</u>			

Abbildung 1: Skizze von Thermoplaste

Erklärung:

Sie bestehen aus linearen oder wenig verzweigten Makromolekülen und beim erwärmen werden die Zwischenmolekularenkrüfte teilweise überwunden.

Die Ketten können aneinander vorbei gleiten.

Manche Lösungsmittel können sich zwischen den Ketten schieben \rightarrow Kunststoff quillt auf oder löst sich auf.

7.3 Duroplaste

Eigenschaften:

- Zersetzen sich beim erwärmen, ohne zu schmelzen.
- unlöslich in Lösungsmitteln.
- Formbeständiger und widerstandsfähiger Kunststoff, aber:
 - Schwer recyclebar

 schwer zu verarbeiten: Werkstücke müssen in der Form synthetisiert werden, anschließend nur mechanische Bearbeitung (Bohren, Sägen, Schleifen, Steckdosenabdeckung, etc.)

Skizze:

Abbildung 2: Dreidimensionales Netz

Erklärung:

- \bullet Duroplaste bestehen aus stark verzweigten Ketten, beim starkem erhitzen werden Atombindungen aufgebrochen \to Der Stoff zersetzt sich.
- Manche Lösungsmittel schieben sich in das Netz, sodass manche Duroplaste aufquellen können.

7.4 Elastomere

Eigenschaften:

- Biegbar/Elastisch und ist reversible (springt zurück in seine ursprüngliche Form)
- Beim erhitzen zersetzen ohne zu schmelzen.

Skizze:

Abbildung 3: Skizze Elastomere

Erklärung:

Elastomere bestehen aus weitmaschtigen Makromolekülen. (Rest ist gleich wie Duroplaste)

7.5 Polymerisation

Versuch: Herstellung von Polysterol

Skizze:

Abbildung 4: Skizze Polymerisation

Beobachtung:

- Sidet beim erhitzen (auch wenn die Flamme weggenommen wird)
- Viskosität nimmt zu
- Schäumt beim siden
- aufsteigende Dämpfe, Kondensierun im Steigrohr

<u>Definition</u>: Polymerisation

Verknüpfen kleiner Molekülen mit Doppelbindung zu einem Makromoleküle unter Verlust der Doppelbindung.

Gesamtreaktion:

Reaktionsmechanismus:

1. Bildung von Radikalen:

Es spaltet sich auf, weil die Peroxidgruppe sehr instabil ist.

2. Startreaktion

$3.\ Kettenreaktion/Kettenwachstum:$

4. Kettenabbruch:

Verschiedene Möglickeiten, z.B. Rekombination:

Dibenzoylperoxid ist hier Starter, beziehungsweise Radikalbildner und die Zugabe von vielen Startern führt zu kürzeren Kettenlängen, da viele Ketten gestartet werden. (Die Kette von der Gesamtreaktion)

Bemerkung / Beispiele zu Polymerisation

a) Bekannte Polymerisation

Name	Monomer	Polymermolekül	Einsatzbei- spiel
Polyethen (PE)	$\begin{array}{c c} H & H \\ \hline \\ H & H \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Plastiktüten
Polypropen (PP)	$ \begin{array}{ c c c } & H & H \\ & & \\ & & \\ H & & \\ & & $	$\begin{bmatrix} H & CH_3 \\ & & \\ & & \\ & & \end{bmatrix}_n$	Flaschende- ckel, Brotdosen
Polyvinyl- chlorid (PVC)	H C Cl	$\begin{bmatrix} & H & Cl \\ & & \\ & & \\ & C & C \end{bmatrix}_n$	Rohrleitungen, Vinylböden, Schallplatten
Polytetra-fluorethen (PTFE)	F C — C F	$\begin{bmatrix} & F & F \\ & & \\ & & \\ & & \end{bmatrix}_n$	Pfannenbe- schichtung (Teflon), Funktions- kleidung (Goretex)

b) Amorph Teilkristallin

- Amorphe Kunststoffe: Glasartig, transparent
- Teilkristalline Kunststoffe: Mechanisch Stabiler, nicht klar durchsichtig (milchig), wärmebeständig

Amorph Teilkristallin Kristalling
Zunahme der Erweichungstemperatur Meschanische Stabilität / Dichte

Zunahme der Lichtdurchläsigkeit und Quellbarkeit

Beispiele: Low - Density Polyethen, PPEPP High Density Polyethen

Abbildung 5: amorph-teilkristallin-kristallin-Eigenschaften-Pfeile

c) Weichmacher

Kleine Moleküle die sich zwischen die Ketten einlagern können \rightarrow Mehr Abstand zwischen den Ketten \rightarrow Geringere zwischenmolekulare Kräfte zwischen den Ketten \rightarrow Bessere Verschiebbarkeit der Ketten gegeneinander \rightarrow Kunststoff wird weicher Problem:

- Weichmachermoleküle können wieder leicht aus den Ketten rausgehen: Weichmachermoleküle können schädlich sein für Mensch und Umwelt
- Weichmacher wird spröder, weil der Weichmacher raus ist
- d) Monomere mit konjugierten Doppelbindungen Bespiel:

Man spricht von einer 1,4 — Verknüpfung. Es entsteht ein ungesättigtes Polymer \to Weitere Vernutzung möglich zum Elastomer oder Duroplast

06.10.2020

Das ganze ist ein Thermoplast, weil es keine Verzweigung hat.

z.B. mit Styrol (Buna):

Die Verknüpfungen könnten beliebig lang sein und dadurch ist dieser Kunststoff elastisch. Je nach vernetzungsgrad bildet sich ein Elastromer oder ein Duroplast. Naturkautschuk:

Polymer von Isopren

Durch Vulkanisieren (Vernetzung durch Schwefelketten) ensteht Gummi.

e) Legosteine bestehen aus ABS (Acrylnitril — Butadienstyrol)

Butadienstyrol

Polymere, die aus verschiedenen Monomeren aufgebaut sind, nennt man Copolymere. Sie ermöglichen vielfältige Beeinflussung der Kunststoffe.