Package 'r4fish'

February 2, 2024

Type Package **Title** r4fish analysis

Index

Version 1.1.0
Author Elmer O. Quispe Salazar
Maintainer The package maintainer <qselmer@gmail.com></qselmer@gmail.com>
Description Assessment for Marine Resources Toolkit.
License What license is it under?
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
R topics documented:
assignerPeruvianGrid
calculateJuv
curve.sel
distCoast
estimateMode
g2plotSurvey
getModeSpecies
getStockInfo
getSurveyLmax
MapPeruGrid
plot.matrixFreq
plot2CompSizeTime
PlotSimpleFrec2
plot envir

 read_freq_F1
 9

 renderBiometric
 9

 script_wd
 10

 SimpleFrecSp
 10

13

2 calculateJuv

```
{\it assigner Peruvian Grid} \quad \textit{Title} \quad
```

Description

Title

Usage

```
assignerPeruvianGrid(
  data,
  xlon = "lon",
  ylat = "lat",
  by = "onedegree",
  metadata = F,
  save = T,
  cout = "."
)
```

Arguments

cout

calculateJuv

Title

Description

Title

Usage

```
calculateJuv(vec, marks, mjuv, abs = T)
```

Arguments

abs

curve.sel 3

curve.sel

Title

Description

Title

Usage

```
curve.sel(
    sp = NA,
    stock = NA,
    marks = NA,
    par = c(NA, NA),
    method = "log3",
    add.plot = T,
    add.inv = T
)
```

Arguments

add.inv

 ${\tt distCoast}$

Title

Description

Title

Usage

```
distCoast(lon, lat)
```

Arguments

lat

4 g2plotSurvey

estimateMode

Estima moda de una frecuencia de tallas

Description

Estima moda de una frecuencia de tallas

Usage

```
estimateMode(len, freq, tol.n = 150, nmodes = 2, tol.freq = 10)
```

Arguments

len vector completo de tallas

freq vector completo de frecuencias

tol.n valor de tolerancia del numero de la muestra

nmodes numero de modas a estimar

tol.freq valor de tolerancia para ser considerada moda

g2plotSurvey

Title

Description

Title

Usage

```
g2plotSurvey(
  dat = dat,
  col.var = "biomasa",
  col.factor = 2,
  factor = NA,
  cols.factor = c("red", "blue"),
  box = "boxplot",
  model = "lm",
  lambda = 1e-04,
  IC.model = TRUE,
  info = TRUE,
  marf = c(0.5, 0.5, 0, 0.5),
  omaf = c(3, 4.5, 2, 2),
  hline = TRUE,
  cline = "white",
  bgf = "white",
  lwdf = 1,
  ltyf = 1,
  pchf = 16,
  cexf = 1.5,
```

getModeSpecies 5

```
unitf = 1,
saveplot = T,
outf = "./",
widthf = 1800,
heightf = 1200,
resf = 250,
labels.f = c("\nverano", "\ninvierno-\nprimavera"),
labels.y = "Biomasa ton",
...
)
```

Arguments

labels.y

getModeSpecies

Title

Description

Title

Usage

```
getModeSpecies(
  Length = Length,
  sp = "anchoveta",
  src = "fsh",
  nmodes = 2,
  tol = 0,
  savePlot = TRUE,
  dirout = "Outputs/")
```

Arguments

dirout

 ${\tt getStockInfo}$

Title

Description

Title

Usage

```
getStockInfo(sp, data = NULL, ...)
```

Arguments

. . .

6 MapPeruGrid

getSurveyLmax

Title

Description

Title

Usage

```
getSurveyLmax(dat = dat, sp = "anchoveta", src = "pope", col.var = 4:78)
```

Arguments

col.var

MapPeruGrid

Title

Description

Title

Usage

```
MapPeruGrid(
  data,
  colcode = "code",
  colval = "freq",
  typeval = "#",
  xxlim = c(-86, -70),
  yylim = c(-21, -3),
  by = "onedegree",
  gradient = c("yellow", "red"),
  border = NA,
  all.grid = F,
  land.col = "gray90",
  land.border = "gray90",
  legend = T,
  txtleg = "(n)",
  xaxis = 1,
  yaxis = 4,
  portImport = 2,
  save = T,
  cout = "."
)
```

Arguments

cout

plot.matrixFreq 7

plot.matrixFreq

Title

Description

Title

Usage

```
## S3 method for class 'matrixFreq'
plot(
    x,
    relative = T,
    clean = T,
    ylim = c(0, 20),
    yinter = 5,
    juvMarks = 51,
    plotCol = "blue",
    juvCol = "red",
    textx = "Longitud total (cm)",
    type = "barplot"
)
```

Arguments

type

plot2CompSizeTime

Title

Description

Title

Usage

```
plot2CompSizeTime(
  dat = dat_marks,
  sp = "anchoveta",
  stock = "nc",
  type = "B",
  ab = NA,
  factor = NA,
  cexf = 3,
  col.in = "gray90",
  col.bd = "black",
  marp = c(3, 3, 2, 2),
  omap = c(1, 2, 1, 1),
  mgpp = c(1, 0.5, 0),
```

plot_envir

```
widthFig = 2600,
heightFig = 3200,
resFig = 380,
SavePlot = T,
dirout = "Outputs/"
)
```

Arguments

dirout

PlotSimpleFrec2

Title

Description

Title

Usage

```
PlotSimpleFrec2(
  data,
  sp = sp,
  stock = stock,
  col.sp = "red",
  colset = "navajowhite",
  cout = ".",
  save = T,
  format = ".png",
  ylim = c(0, 0.5),
  width = 2625,
  height = 1750
)
```

Arguments

colset

plot_envir

Title

Description

Title

read_freq_F1 9

Usage

```
plot_envir(
  what = NA,
  year.limit = c(1990, 2022),
  ylim = c(-2, 3.5),
  magnitude = F,
  axis.x = T
)
```

Arguments

axis.x

read_freq_F1

Title

Description

Title

Usage

```
read_freq_F1(file)
```

Arguments

file

renderBiometric

Crea, unifica archivo biometrico

Description

Crea, unifica archivo biometrico

Usage

```
renderBiometric(
  cin = "inputs",
  cout = ".",
  file = "data.xlsx",
  encoding = "latin",
  save = T,
  ...
)
```

10 SimpleFrecSp

Arguments

cin vector de caracteres que contienen la ruta de entrada
cout vector de caracteres que contienen la ruta de salida
file vector de caracteres que contienen el nombre del archivo

encoding vector de caracteres para tipo de codificacion

save logico; ¿Se deben guardar el archivo?

Value

base de datos biométrico

Examples

```
\code{renderBiometric(cin = "input",
cout = NA,
file = "Biometria por especies 03032023.xlsx",
save = T)}
```

script_wd

Title

Description

Title

Usage

```
script_wd()
```

SimpleFrecSp

Plot: Estructura de tallas para "anchoveta "spTarget" lances

Description

Plot: Estructura de tallas para "anchoveta "spTarget" lances

Usage

```
SimpleFrecSp(data = x, sp = "anchoveta", stock = "nc", save = T)
```

Arguments

data datos del crucero en formato MF sp especie objetivo de la evaluación stock stock objetivo de la evaluación

save valor logico; ¿Se deben guardar la matriz de lances en "csv"?

subsetSurvey 11

subsetSurvey

Title

Description

Title

Usage

```
subsetSurvey(
  dat = dat,
  col.var = c("biomasa", "abundancia"),
  year.lim = c(1996, 2022),
  col.set = "filter",
  set = "ok",
  col.factor = "season",
  col.label = 2,
  col.date = NA,
  col.month = NA,
  col.sems = "semester",
  col.year = "year"
)
```

Arguments

col.year

validateSp

Identifica errores y valida la base de datos

Description

Identifica errores y valida la base de datos

Usage

```
validateSp(
  data = data,
  sp = "anchoveta",
  stock = NA,
  cout = "outputs",
  file = "validateSp"
)
```

Arguments

data	datos del crucero en formato MF
sp	especie objetivo de la evaluación
stock	stock objetivo de la evaluación
cout	vector de caracteres que contienen la ruta de salida
file	ector de caracteres que contienen el nombre del archivo

12 validateSp

Examples

```
\code{validateSp(data = data, sp = "jurel", stock = NA, cout = "outputs",
file = "document.docx")}
```

Index

```
{\it assignerPeruvianGrid}, 2
calculateJuv, 2
curve.sel, 3
distCoast, 3
estimateMode, 4
g2plotSurvey, 4
getModeSpecies, 5
getStockInfo, 5
{\tt getSurveyLmax}, {\color{red} 6}
MapPeruGrid, 6
plot.matrixFreq, 7
plot2CompSizeTime, 7
\verb"plot_envir,8"
{\tt PlotSimpleFrec2, 8}
read_freq_F1, 9
renderBiometric, 9
script_wd, 10
SimpleFrecSp, 10
subsetSurvey, 11
validateSp, 11
```