

[KU-BIG '21 Spring Project]

Spotify Music Track
Preference Classification and Recommendation System

INDEX

- 1) 주제 선정 배경 및 목표 1) 데이터 셋 소개
- 2) 진행 과정

- 2) 실험 모델 소개 및 결과
- 3) 결론

- 1) 데이터 셋 소개
- 1) Conclusion
- 2) 추천시스템 알고리즘 및 2) Follow up Actions 모델 종류
- 3) Surprise 패키지 소개
- 4) 실험 모델 소개 및 결과
- 5) 결론

Listen on

1. 프로젝트 소개

1) 주제 선정 배경 및 목표

Spotify

1) 주제 선정 배경 및 목표

19 예측 애널리틱스 팀 프로젝트 과제

1) 주제 선정 배경 및 목표

• 다양한 분류 모델 및 머신 러닝 주요 개념 학습, 실습 경험

• 추천 시스템 이론 학습, 실습 경험

• Python 스킬 향상

1) 주제 선정 배경 및 목표

Listen on

2. Classification

1) 데이터 셋 소개

	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	
1	acousticness	danceability	duration_ms	energy	instrumentalness	key	liveness	loudness	mode	speechiness	tempo	time_signature	valence	target	song_title
2	0.0198	0.571	199640	0.87	6.60E-06	8	0.0564	-3.877	(0.0641	172.716	4	0.815		0 Bye Bye B
3	0.3	0.55	266293	0.563	0	2	0.122	-7.019		0.0313	166.004	4	0.462		0 This I Pron
4	0.0479	0.647	191280	0.87	0	0	0.0485	-4.702	(0.0798	165.103	4	0.906		0 It's Gonna
5	0.44	0.468	243493	0.535	0	10	0.101	-8.264		1 0.0436	168.001	4	0.298		0 God Must
6	0.0743	0.754	199787	0.946	0.000391	8	0.401	-2.149	(0.0403	112.042	4	0.865		0 I Want You
7	0.0412	0.841	175520	0.866	0	11	0.212	-6.342		0.118	119.941	4	0.875		0 Pop - Radi
8	0.00799	0.685	209560	0.872	0	7	0.323	-6.939		1 0.0321	110.046	4	0.806		0 Tearin' up I
9	0.127	0.698	200105	0.882	0	4	0.15	-3.078	(0.0863	106.083	4	0.462		0 Ciao Adios
10	0.905	0.42	257693	0.0802	0.857	7	0.135	-21.795		1 0.04	122.041	3	0.0513		0 Gary's Th€
11	0.0534	0.605	199904	0.873	0.837	1	0.314	-5.938	(0.0344	126.026	4	0.47		0 Levels - Ra
12	0.396	0.635	329907	0.53	0	8	0.118	-8.1		1 0.0328	116.631	4	0.204		0 On Bender
13	0.074	0.642	348893	0.421	0	5	0.0676	-9.32	(0.0237	74.849	3	0.453		0 End Of The
14	0.105	0.563	235853	0.487	0	2	0.0884	-7.775		1 0.0234	142.53	3	0.248		0 I'll Make Lo
15	0.468	0.578	201280	0.375	0	0	0.156	-12.951		1 0.0272	89.605	4	0.561		0 Water Run
16	0.499	0.571	301587	0.447	0	7	0.125	-8.757		1 0.0338	75.019	4	0.162		0 A Song Fo
17	0.16	0.773	211907	0.801	0	0	0.111	-5.562		1 0.0281	98.205	4	0.8		0 As Long as
18	0.066	0.798	232027	0.862	1.65E-06	11	0.168	-4.95	(0.0336	100.031	4	0.893		0 Quit Playin

1) 데이터 셋 소개

Acousticness	float	음원이 악기 소리로 이루어져 있는지
Danceability	float	춤추기에 얼마나 적절한지 (템포, 리듬의 일정성, 비트의 강도)
Duration_ms	int	음원의 길이
Energy	float	빠르고, 강하고, 시끄러운 정도
Instrumentalness	float	가사가 아닌 음가가 있는 소리
Key	int	음원의 조성
Liveness	float	공연 현장의 녹음으로 이루어져있는 정도

*https://developer.spotify.com/documentation/web-api/reference/tracks/get-several-tracks/ *https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/

1) 데이터 셋 소개

loudness	float	음원의 크기 (단위 :dB)
mode	int	장조 =1 / 단조 = 0
speechiness	float	가사의 비율 / 0.66< : 내레이션 / (0.33,0.66) : 배경 음과 가사가 같이 공존 / 0.33> : 가사가 없음
tempo	float	음원의 빠르기 (BPM)
time_signiture	int	how many beats are in each bar / 4beat, 8beat, 1 6beat 등
valence	float	음원의 분위기 / 긍정적일수록 높음 / 어두울수록 낮음

*https://developer.spotify.com/documentation/web-api/reference/tracks/get-several-tracks/ *https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/

1) 데이터 셋 소개

1) 데이터 셋 소개

1) 데이터 셋 소개

VIF (Variance Inflation Factors, 분산팽창요인)

>=10 : 다중공선성 존재

VIE	_		1
VIF_i	_	1	$-R_i^2$

	VIF Factor	features
0	1.546169	instrumentalness
1	2.047553	speechiness
2	2.281422	acousticness
3	2.383877	mode
4	2.432860	liveness
5	2.965915	key
6	4.025178	valence
7	7.366587	loudness
8	8.267952	duration_ms

2) 코드 소개

3) 실험 모델 결과

<Bagging>

모델명	F1 score
RandomForest (Randomized CV)	72.98%
RandomForest (Grid Search CV)	71.09%
Random Forest	72.03%

<Boost>

< Voting & Regularization >

모델명	F1 score	모델명	F1 score
XGBoost (Grid Search CV)	75.00%	Voting(XGBoost + KNN + SVM +MLP)	72.12%
CatBoost	100.00%	Voting(XGBoost + XGBoost)	71.84%
ADABoost (Randomized CV)	71.69%	Voting(ADABoost + GDBoost)	72.30%
ADABoost (Grid Search CV)	70.75%	Lasso	63.41%
GDBoost (Randomized CV)	70.81%	Ridge	63.81%
GDBoost (Grid Search CV)	70.24%	Elastic Net	62.86%

4) 결론

- Ensemble, Deep Learning, Regularization Model 중
 소수의 Tabular Data에 가장 좋은 성능을 보인 모델은 Ensemble!
- Ensemble : Bagging(ex. Random Forest), Boost (ex. XG Boost, Ada Boost, CAT Boost, GD Boost) Voting 중 Boost 계열의 성능이 Best
- 한 사용자의 음악 트랙에 대한 선호 유무를 분류해주는 것 또한 추천 시스템 모델이라고 볼 수 있음

Listen on

3. Recommendation

1) 데이터셋 소개

⟨Track Features⟩

: acousticness, danceablity, duration_ms, energy, instrumentainess, key, liveness, loudness, mode, speechless, time_signature, tempo, vaience, song_title, artist

~ =	P 1	00% 🕶	\$ %	.00 1	23 ▼ Ar	ial	▼ 10	- B	I S	A	· 田 🗉	= =	→ → → → → → → → → →	P - W	→ G∋ [±	<u> </u>	- Σ	ш.
-	fx																	
А	В	С	D	E	F	G	Н	- 1	J	K	L	M	N	0	Р	Q	R	S
	acoustic ness	danceab ility	duration ms	energy	instrume ntalness	key	liveness	loudnes s	mode	speechi ness	tempo	time_sig nature	valence	song_titl e	artist			
1	0.0198	0.571	199640	0.87	6.60E-06	8	0.0564	-3.877	0	0.0641	172.716	4	0.815	Bye Bye Bye	NSYNC			
2		0.55		0.563					1		166.004		0.462	This I Promise You - Radio	NSYNC			
3	0.0479	0.647	191280	0.87	0	0	0.0485	-4.702	0	0.0798	165.103	4	0.906	It's Gonna Be Me	NSYNC			
4	0.44	0.468	243493	0.535	0	10	0.101	-8.264	1	0.0436	168.001	4	0.298	God Must Have Spent a Little More Time on You - Remix	NSYNC			
5	0.0743	0.754	199787	0.946	0.000391	8	0.401	-2.149	0	0.0403	112.042	4	0.865	I Want You Back - Radio Edit	NSYNC			
6	0.0412	0.841	175520	0.866	0	11	0.212	-6.342	1	0.118	119.941	4		Pop - Radio Version	NSYNC			

1) 데이터셋 소개

⟨Ratings⟩

: 긍정적(1), 모르는 노래(0), 부정적(-1)

: 총 29명의 users

	- 11	-	-	-	-	-	-			-		-			-	-	-		-		-			
1	users	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
2	도윤	1	0	1	1	0	1	1	0	1	0	1	1	1	0	1	1	0	0	1	0	1	0	1
3	도윤_He rng	1	0	1	0	0	0	0	-1	0	1	0	0	1	0	0	1	1	0	0	0	1	0	1
4	도윤M elanie	-1	-1	-1	-1	-1	-1	-1	1	1	1	-1	1	1	1	-1	1	-1	-1	-1	-1	1	-1	-1
5	도윤_JI nju	1	-1	1	-1	1	-1	1	1	-1	1	1	1	1	1	-1	1	1	0	1	1	1	1	0
6	도윤_Ma ya	1	1	0	1	1	0	1	1	1	1	1	1	1	1	1	-1	-1	1	1	1	1	0	0
7	도윤_MI	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	도윤_Ge raldine	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1
9	도윤_Tif fany	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	1	0	1
10	형록1	-1	-1	-1	-1	-1	-1	0	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	-1	-1	-1	-1
11	형록2	0	0	1	1	0	1	0	-1	-1	1	0	0	0	0	0	1	0	1	1	1	0	1	1
12	형록3	-1	-1	-1	-1	-1	-1	-1	-1	0	1	1	-1	-1	-1	1	0	-1	1	0	-1	1	1	1
13	형록4	1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	1	-1	1	0	-1	1	1	1	1	-1
14	창현_승 련	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	-1	0	-1	-1	-1	0
15	창현	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	-1	0	-1	-1	-1	0
16	창현_세약	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1
17	다연	0	0	0	0	0	0	0	1	0	0	0	0	0	0	-1	1	0	1	1	1	1	0	-1
18	광민	0	0	0	1	0	1	-1	1	0	1	-1	1	1	-1	0	0	1	-1	1	0	1	0	1
19	정인	1	-1	0	0	0	-1	1	1	1	1	-1	0	0	-1	1	1	0	1	-1	0	0	0	0

1) 데이터셋 소개

\(\subsection Users\): gender(M/W), age, nationality

	А	R	C	D
1	users	gender	age	nationality
2	도윤	m	_	korea
3	도윤_Herng	m	26	singapore
4	도윤Melanie	w		uk
5	도윤_JInju	w	22	uk
6	도윤_Maya	w	22	uk
7	도윤_MI	m	26	singapore
8	도윤_Geraldine	w	26	singapore
9	도윤_Tiffany	w	23	honkong
10	형록1	m	23	korea
11	형록2	m	24	hongkong
12	형록3	w	25	korea
13	형록4	w	22	singapore
14	창현_승련	m	27	korea
15	창현	m	27	uk
16	창현_세영	m	27	korea
17	다연	w	23	korea
18	다연2_광민	m	20	singapore
19	다연3_정인	w	24	singapore
20	나윤1	w	22	korea
21	나윤2	w	22	korea
22	나윤3	w	22	singapore
23	나윤4	w	22	korea
24	효진1	w	22	korea
25	효진2	w	23	uk

1) 데이터셋 소개

〈Main 데이터〉

	users	tracks	score
3631	효진1	No New Friends - SFTB Remix_DJ Khaled	-1.0
888	도윤_MI	Skepta Interlude_Drake	0.0
1720	형록3	Best I Ever Had_Drake	-1.0
1061	도윤_Geraldine	Lollipop_Lil Wayne	0.0
2266	창현	Don't Let Me Down - Zomboy Remix_The Chainsmo	1.0
4378	윤지현	I Want You Back - Radio Edit_NSYNC	0.0
3979	효진3	Live Your Life - feat. Rihanna_T.I.	1.0
3793	효진2	No New Friends - SFTB Remix_DJ Khaled	0.0
1934	형록4	SexyBackJustin Timberlake	1.0
2884	정인	Popular Song_MIKA	1.0

2) 추천시스템 알고리즘 및 모델 종류

1. 협업 필터링 (Collaborative Filtering)

- 구매, 소비한 제품에 대한 각 사용자의 평가 이용
- User-Based CF, Item-Based CF
- 대부분의 온라인 콘텐츠 제공 서비스 기업에서 활용 (ex. 아마존, 넷플릭스)

2. 내용 기반 필터링 (Content-Based Filtering)

- 제품의 내용을 분석 (ex.뉴스, 블로그 포스트 / 텍스트 정보)

2) 추천시스템 알고리즘 및 모델 종류

- 3. 지식 기반 필터링 (Knowledge-Based Filtering)
- CF, CBF에서 확인할 수 없는 'Why'에 대한 전문 지식을 활용
- 4. 딥러닝 (Deep Learning)
- 사용자, 아이템의 특징 값 활용 후 예상 선호도 출력
- 5. 하이브리드 (Hybrid)

2) 추천시스템 알고리즘 및 모델 종류

<Memory Based>

<Model Based>

KNN

Slope One (Item CF)

Co-Clustering(Item&User CF)

Matrix Factorization

Neural Network

2) 추천시스템 알고리즘 및 모델 종류: Memory Based

<Collaborative Filtering원리>

	사용자 기반 협업 필터링	아이템 기반 협업 필터링
특징	사용자 간의 유사도 계산하여 추천	아이템 간의 유사도를 측정하여 추천
장점	아이템 정보 없이 추천 가능. 알고리즘 구현이 간 단함	아이템 정보 없이 추천 가능. 신규 사용자에 대한 추천이 가능함
단점	사용자, 아이템 증가에 따라 연산 급증. 신규 가입 자는 유사도 부여가 어려움	사용자, 아이템 증가에 따라 연산 급증. 초기 데이 터 양이 적으면 정확도 낮음

	러브라이브	아	이돌마스	스터	어벤져스	아이언맨	워썬더
User A	5		-		1	2	-
User B	5		5		1	3	-
User C	4		5		2	-	3
User D	5		4	2	1	1	2
User E	1		2		5	5	4

(유사도)				
	-			
	4.2			
	4.5			
	4.1	1		
2.3				

2) 추천시스템 알고리즘 및 모델 종류: Memory Based

Slope One: 간단하면서도, 정확도가 높은 것이 특징인 Item-based CF algorithm

A simple yet accurate collaborative filtering algorithm.

This is a straightforward implementation of the SlopeOne algorithm [lemire2007a].

The prediction \hat{r}_{ui} is set as:

$$\hat{r}_{ui} = \mu_u + rac{1}{|R_i(u)|} \sum_{j \in R_i(u)} \operatorname{dev}(i,j),$$

where $R_i(u)$ is the set of relevant items, i.e. the set of items j rated by u that also have at least one common user with i. $dev_i(i,j)$ is defined as the average difference between the ratings of i and those of j:

$$\operatorname{dev}(i,j) = rac{1}{|U_{ij}|} \sum_{u \in U_{ij}} r_{ui} - r_{uj}$$

2) 추천시스템 알고리즘 및 모델 종류: Memory Based

Co-Clustering : 사용자와 아이템을 동시에 클러스터링하는 기법을 적용한 CF algorithm

The prediction \hat{r}_{ui} is set as:

$$\hat{r}_{ui} = \overline{C_{ui}} + (\mu_u - \overline{C_u}) + (\mu_i - \overline{C_i}),$$

where $\overline{C_{ui}}$ is the average rating of co-cluster C_{ui} , $\overline{C_u}$ is the average rating of u's cluster, and $\overline{C_i}$ is the average rating of i's cluster. If the user is unknown, the prediction is $\hat{r}_{ui} = \mu_i$. If the item is unknown, the prediction is $\hat{r}_{ui} = \mu_u$. If both the user and the item are unknown, the prediction is $\hat{r}_{ui} = \mu$.

 C_u , C_i , C_{u_i} : cluster of users, items, co — clusters

$$\hat{r}_{ui} = \mu_i$$
 (user unknown)

$$\hat{r}_{ui} = \mu_u$$
 (item unknown)

$$\hat{r}_{ui} = \mu$$
 (user&item unknown)

2) 추천시스템 알고리즘 및 모델 종류: Model Based

<Matrix Factorization 원리>

2) 추천시스템 알고리즘 및 모델 종류: Model Based

2) 추천시스템 알고리즘 및 모델 종류: Hybrid Recommender System

CF (Collaborative Filtering)+MF (Matrix Factorization)

: 각각의 단점을 보완하고 장점을 부각시키기 위해 weight를 달리 하여 합쳐 사용

```
def recommenderO(recomm list, mf):
    recommendations = np.array([mf.get_one_prediction(user, movie) for (user, movie) in recomm_list])
    return recommendations
def recommender1(recomm_list, neighbor_size=0):
    recommendations = np.array([CF_knn_bias(user, movie, neighbor_size) for (user, movie) in recomm list])
    return recommendations
recomm list = np.array(ratings test.iloc[:, [0, 1]])
predictions0 = recommender0(recomm list, mf)
                                                 for i in np.arange(0, 1, 0.01):
RMSE2(ratings_test.iloc[:, 2], predictions0)
                                                    weight = [i, 1.0 - i]
                                                    predictions = predictions0 * weight[0] + predictions1 * weight[1]
predictions1 = recommender1(recomm list, 37)
                                                    print("Weights - %.2f : %.2f ; RMSE = %.7f" % (weight[0],
RMSE2(ratings_test.iloc[:, 2], predictions1)
                                                           weight[1], RMSE2(ratings_test.iloc[:, 2], predictions)))
```

3) Surprise 패키지 소개

: 파이썬 기반의 추천 시스템 구축을 위한 전용 패키지

(SVD, SVD++,SLOPE ONE, K-NN, K-NN Baseline etc)

4) 코드 소개

5) 실험 모델 결과

Memory Based

<KNN>

모델명	Base	RMSE
	User	0.7712
Basic	Item	0.7216
	User	0.7568
Means	Item	0.7254
	User	0.7545
Baseline	Item	0.7317
	User	0.7571
Z Score	Item	0.7339

<CF variation>

모델명	RMSE
Slope One	0.7591
Co Clustering	0.7479

Model Based

Matrix <Factorization>

모델명	RMSE
MF	0.7232

<Neural Net>

모델명	RMSE
Basic	0.7604
Layers	0.726
Layers, Nationality	0.725

5) 실험 모델 결과

```
RMSE: 0.7233

<윤지현 (a.k.a. 윤영롱) 님을 위한 추천곡>

Lucky__Britney Spears => 89.42 %의 확률로 좋아하실 거에요

Get Lucky__Daft Punk => 79.67 %의 확률로 좋아하실 거에요

So Sick__Ne-Yo => 71.57 %의 확률로 좋아하실 거에요

Billie Jean__Michael Jackson => 69.15 %의 확률로 좋아하실 거에요

When Will My Life Begin - From "Tangled"/Soundtrack Version__Mandy Moore => 57.84 %의 확률로 좋아하실 거에요
```

<도윤 님을 위한 추천곡> If I Were a Boy__Beyoncé => 100 %의 확률로 좋아하실 거에요 Shape of You (Major Lazer Remix) [feat. Nyla & Kranium]__Ed Sheeran => 100 %의 확률로 좋아하실 거에요 The Monster__Eminem => 100 %의 확률로 좋아하실 거에요 Counting Stars__OneRepublic => 100 %의 확률로 좋아하실 거에요 Live Your Life - feat. Rihanna__T.I. => 82.24 %의 확률로 좋아하실 거에요

```
<도윤 님을 위한 추천곡>
Counting Stars__OneRepublic => 65.27 %의 확률로 좋아하실 거에요
Shape of You (Major Lazer Remix) [feat. Nyla & Kranium]__Ed Sheeran => 50.03 %의 확률로 좋아하실 거에요
The Monster__Eminem => 50.01 %의 확률로 좋아하실 거에요
I Wish__Stevie Wonder => 48.4 %의 확률로 좋아하실 거에요
Sexy Love__Ne-Yo => 45.0 %의 확률로 좋아하실 거에요
```

4. Conclusion & Follow up Actions

4. Conclusion & Follow up Actions

- 각 음악 트랙에 대한 개인 선호 유무를 분류해주는 분류기를 생성 할 수 있고 이를 개인 맞춤 음악 추천 시스템으로 칭함.
- 추천시스템 모델의 경우, 사용자의 수와 음악 트랙의 수가 좀 더 많았더라면 더 좋은 성능을 얻었을 듯함.
- 절대적으로 성능이 좋은 모델은 없으며 데이터의 특성에 따라 모 델 선정 필요
- 사용자 / 음악 트랙의 특징 추가 활용 방안 필요 (ex. 사용자의 성별, 음악 트랙의 수치적 특성들)

4. Conclusion & Follow up Actions

멤버소개

• 조장:

김도윤(산업경영공학부 14)

• 구성원:

기다연 (통계학과 19) 김창현 (경영대학원) 임효진 (통계학과 19) 이나윤 (통계학과 19)

Thank you

[KU-BIG '21 Spring Project]

Spotify Music Track
Preference Classification and Recommendation System