ADATBÁZISKEZELÉS

ADAT ÉS INFORMÁCIÓ

• Adat:

- észlelhető, felfogható, ábrázolható ismeret
- értelmezhető jelsorozat
- valakinek, vagy valaminek a jellemzője (attribútuma)
- tényszerű
- Az adat mindig tárolt, rögzített ismeret.

Információ:

- új ismeret, önmagában adatszerű
- újat közöl
- Az információ mindig új ismeretet közöl és új, még nem tárolt ismeret.
 Nem ábrázolható!

• Adathalmaz:

 rendszertelen, szervezetlen módon rögzített adatok összessége

Adatállomány:

 összefüggő adathalmaz, amelyben minden szükséges adat megtalálható

Adatbázis:

- rendezett tárolási elv szerint rögzített adatok, ami
- lehetővé teszi az adatok értelmes kezelését
- Adatok tárolására, szervezésére és kezelésére szolgáló adatállomány.

ALAPFOGALMAK II.

- Adatbázis-kezelő rendszerek (DBMS):
 - adatok kezelését, karbantartását segítő programok
 - főbb funkciói:
 - adatbázis létrehozása
 - adatok felvitele, módosítása, törlése
 - lekérdezés
 - keresés
 - adatok védelme, titkosítása
 - hozzáférési jogok kezelése
 - fizikai adatszerkezetek szervezése
- Oracle, Microsoft SQL Server, IBM DB2, MySQL, PostgreSQL, Microsoft Access, dBASE, SyBase, MongoDB, MariaDB

RELÁCIÓS ADATMODELL

- Az adatokat 2 dimenziós táblákban (reláció) ábrázolja
 - tábla = egyed leírás
 - sor = egyed-előfordulások
 - oszlop vagy mező = egyed tulajdonsága (attribútuma)
- A tulajdonság a hangsúlyos, a kapcsolat nem épül be, csak lehetőséget kap a modellben
- 1:1 és 1:N kapcsolatot kezel, az M:N kapcsolatot fel kell bontani több 1:N kapcsolatra
- tipikusan úgynevezett kapcsolótáblákat kell létrehozni

OBJECT-RELATION MAPPING

- tábla vs. osztály
 - tábla = egyed leírás
 - sor = egyed-előfordulás és aktuális attribútumok
 - osztály = entitás leírása, milyen adatai lehetségesek
 - objektum = egy konkrét entitás és annak attribútumai (adatai)
- kapcsolatok az osztályok között
 - tartalmazás, ismertség multiplicitással

Atomicitás (Atomicity)

 Az atomicitás megköveteli, hogy több műveletet atomi (oszthatatlan) műveletként lehessen végrehajtani, azaz vagy az összes művelet sikeresen végrehajtódik, vagy egyik sem.

Konzisztencia (Consistency)

 A konzisztencia biztosítja, hogy az adatok a tranzakció előtti érvényes állapotból ismét egy érvényes állapotba kerüljenek. Minden erre vonatkozó szabálynak (hivatkozási integritás, adatbázis triggerek stb.) érvényesülnie kell.

Izoláció (Isolation)

 A tranzakciók izolációja azt biztosítja, hogy az egy időben zajló tranzakciók olyan állapothoz vezetnek, mint amilyet sorban végrehajtott tranzakciók érnének el. Egy végrehajtás alatt álló tranzakció hatásai nem láthatóak a többi tranzakcióból.

Tartósság (Durability)

 A végrehajtott tranzakciók változtatásait egy tartós adattárolón kell tárolni, hogy a szoftver vagy a hardver meghibásodása, áramszünet, vagy egyéb hiba esetén is megmaradjon.

AZ ADATBÁZISOK FELÉPÍTÉSE -KAPCSOLATOK

Kapcsolat: Két egyedtípus előfordulásai között lévő viszony.

Típusai:

1:1 (egy-az-egyhez)

1:N (egy-a-többhöz, hierarchikus kapcsolat)

M:N (több-a-többhöz, hálós kapcsolat)

VARJÚLÁBAS ÁBRÁZOLÁS

https://vertabelo.com/blog/crow-s-foot-notation/

ADATBÁZIS SZERKEZET UML ALAPON

AZ ADATBÁZISOK FELÉPÍTÉSE

AZ ADATBÁZISOK FELÉPÍTÉSE - TÁBLÁK

- A táblák az adatbázisok fő szerkezeti elemei
- A táblákban rekordok és mezők vannak
- A táblák az adatbázis legfontosabb szerkezetei, minden tábla egyetlen, jól meghatározott tárgyat ír le.

Customers	FirstName	LastName	StreetAddress	City	State	ZipCode	
1010	Angel	Kennedy	667 Red River Road	Austin	TX	78710	
1011	A l aina	Ha ll mark	Route 2, Box 203B	Woodinvi∎e	WA	98072	
1012	Liz	Keyser	13920 S.E. 40th Street	Bellevue	WA	98006	➤ REKORDO
1013	Rachel	Patterson	2114 Longview Lane	San Diego	CA	92199	
1014	Sam	Abo l rous	611 Alpine Drive	Palm Springs	CA	92263	
1015	Darren	Gehring	2601 Seaview Lane	Chico	CA	95926	

- A mező az adatbázis legkisebb szerkezeti egysége, amely a hozzá tartozó tábla tárgyának egy jellemzőjét írja le.
- A mezők azok a szerkezetek, amelyek az adatokat ténylegesen tárolják.

 Egy megfelelően megtervezett adatbázisban minden mező kizárólag egyetlen értéket tartalmaz, és a neve azonosítja a

benne tárolt érték típusát.

Customers							
Customers	FirstName	LastName	StreetAddress	City	State	ZipCode	
1010	Angel	Kennedy	667 Red River Road	Austin	TX	78710	
1011	Alaina	Hallmark	Route 2, Box 203B	Woodinville	WA	98072	
1012	Liz	Keyser	13920 S.E. 40th Street	Bellevue	WA	98006	➤ REKORDOK
1013	Rachel	Patterson	2114 Longview Lane	San Diego	CA	92199	[
1014	Sam	Abolrous	611 Alpine Drive	Palm Springs	CA	92263	
1015	Darren	Gehring	2601 Seaview Lane	Chico	CA	95926	
			Mezők				

AZ ADATBÁZISOK FELÉPÍTÉSE -REKORDOK

- A rekord egy adott tábla tárgyának egy egyedi példányát jelképezi
- A tábla adott sorában található összes mezőt tartalmazza, függetlenül attól, hogy az egyes mezőkben szerepelnek-e értékek

Customers

Customers	FirstName	LastName	StreetAddress	City	State	ZipCode	
1010	Angel .	Kennedy	667 Red River Road	Austin	TX	78710	
1011	A l aina	Hallmark	Route 2, Box 203B	Woodinville	WA	98072	
1012	Liz	Keyser	13920 S.E. 40th Street	Bellevue	WA	98006	➤ REKORDOK
1013	Rachel	Patterson	2114 Longview Lane	San Diego	CA	92199] [
1014	Sam	Abo i rous	611 Alpine Drive	Palm Springs	CA	92263	
1015	Darren	Gehring	2601 Seaview Lane	Chico	CA	95926	
(J	

MEZŐK

AZ ADATBÁZISOK FELÉPÍTÉSE - KULCSOK

- A kulcsok különleges mezők, amelyek meghatározott szerepet töltenek be az egyes táblákban.
- Az elsődleges kulcs olyan mező vagy mezőcsoport, amely egyedileg azonosítja a táblában található rekordokat.
- Az adatbázisaink minden táblájának rendelkeznie kell elsődleges kulccsal.

ADATTÍPUSOK

ADATTÍPUSOK - MARIADB

- Az egyes adatbázisoknál eltérések lehetségesek
- MariaDB alaptípusok:
 - int, float
 - varchar()
 - date, timestamp
 - boolean
 - blob, clob

- Az SQL a relációsadatbázis-kezelők lekérdezési nyelve
- Az SQL alapjait az IBM-nél fektették le, még az 1970-es években
- Tananyag: MariaDB
 - SQL-alapú adatbázis
 - MySQL fork
- Tananyag: HeidiSQL
 - Nyílt forráskódú adatbáziskezelő eszköz (kliens program)

AZ SQL UTASÍTÁSOK CSOPORTOSÍTÁSA

Adat manipulációs nyelv

Data Manipulation Language – DML

(Alternatív elnevezések: Data Query Language – DQL vagy QL)

Adat definíciós utasítások Data Definition Language - DDL

Adat kontroll nyelv

Data Control Language – DCL

Tranzakció kontroll nyelv Transaction Control Language - TCL

Gyakorlatilag mindent!

- SQL le tud kérdezni adatokat DML
- SQL be tud vinni új adatokat DML
- SQL módosítani tud meglévő adatokat DML
- SQL törölni tud adatokat DML
- SQL új adatbázist (sémát) tud létrehozni DDL
- SQL új táblákat tud létrehozni DDL
- SQL tárolt eljárásokat tud létrehozni DDL
- SQL nézeteket (ideiglenes táblákat) tud létrehozni DDL
- SQL engedélyeket tud adni és megvonni DCL

CREATE DATABASE/SCHEMA

Adatbázis illetve séma létrehozása,

feltétellel,

karakterkészlet és sorbarendezés megadásával

CREATE DATABASE/SCHEMA

IF NOT EXISTS

`db`

DEFAULT CHARACTER SET 'utf8'

COLLATE 'utf8_hungarian_ci';

Egy tábla létrehozása adott adatbázisban, az egyes mezők neve és típusa meghatározásával

```
CREATE TABLE 'szemely' (
id INT NOT NULL auto_increment,
name VARCHAR(50),
email VARCHAR (30),
dob DATE,
PRIMARY KEY (id)
);
```


INSERT INTO 'szemely'

('id', 'name', 'dob') //kiválasztott mezők

VALUES

(56, 'John Smith', '2000-12-12');

ha minden mezőt fel akarunk tölteni:

INSERT INTO 'szemely' // id, name, dob, city, streetAddress

VALUES

(56, 'John Smith', '2000-12-12', 'London', '23 High St');

SELECT * FROM 'table_name';

SELECT 'field1', 'field2', 'field3' FROM 'table_name';

SELECT * FROM 'table_name' LIMIT 100;

Egy SELECT parancs visszaadhat **egyetlen sort**, egy (tipikusan a függvények) vagy több mezővel,

és visszadhat **akárhány sort**, szintén egy vagy több mezővel

SELECT 'field1' AS '1_mezo', 'field2' AS '2_mezo', 'field3' FROM 'table_name';

Alternatív névvel hivatkozunk az egyes mezőkre, praktikus, ha kombinációkról van szó:

SELECT CONCAT(firstName, ' ', lastName) AS teljes_nev FROM szemely;

SELECT DISTINCT pob FROM szemely;

SELECT *

FROM 'table_name'

WHERE

összekapcsolunk több feltételt: AND, OR, NOT

relációs jelekkel: <>, <=, >=, =

tartomány megadásával: BETWEEN x AND y

elfogadható értékek felsorolásával: IN (x, y, z)

Az értékek lehetnek számszerűek, vagy szövegek is és szabadon kombinálhatóak a feltételek!

ORDER BY (DESC, ASC)

SELECT 'field1', 'field2', 'field3'

FROM 'table_name'

ORDER BY field1, field2;

SELECT * FROM szemely

ORDER BY dob;

SELECT * FROM szemely

ORDER BY dob DESC;

Általános formátuma:

SELECT FGV(mező vagy mezők) FROM 'table_name';

CONCAT() felsoroljuk benne az összefűzendő mezőket és stringeket

MIN() kikeresi a legkisebb értéket

MAX() kikeresi a legnagyobb értéket

COUNT() megszámolja az előfordulásokat (csillag is lehet a paraméter)

AVG() kiszámolja az adott mező átlagértékét

SUM() összegzi adott mező összes értékét

SELECT 'field1', 'field2', 'field3'

FROM 'table_name'

GROUP BY field1;

field1 szerint csoportosítva, csak az egyedi előfordulások jelennek meg

távoli analógia a DISTINCT kulcsszóval!

végrehajtási sorrend rögzített!

SELECT 'field1', 'field2', 'field3'

FROM 'table_name'

WHERE field2 LIKE '%string%'; // string pattern

a% 'a' karakterrel kezdődik

%a 'a' karakterrel végződik

_a% egyetlen karakter, 'a' karakter, akárhány karakter

EGYMÁSBA ÁGYAZOTT SELECT

Keressünk ki rekordokat egy áruházi készletből, ahol az egyes termékek ára kisebb, mint a termékek átlagára!

Megoldás: először előállítjuk az átlagár értékét (belső SELECT), és ezt adjuk feltételül a termékek lekérdezésekor (külső SELECT).

SELECT * FROM termékek

WHERE ár < (SELECT AVG(ár) FROM termékek);

UPDATE tábla

SET mező1 = 'új érték'

WHERE mező1 = 'régi érték'

// vagy más, a sort azonosító értéket adunk meg, pl. id-t

UPDATE product

SET price = price * 1.2; // áremelés minden termékre

DELETE FROM tábla //csak sorok törlése lehetséges!

WHERE id = 125;

DELETE FROM tábla; // minden sor törlődik!

Adattörlés mezőszinten:

UPDATE tábla

SET mező1 = NULL

WHERE id = 125;

Alapértelmezett az INNER JOIN

LEFT JOIN a táblák leírásának sorrendjében, bal oldali táblából minden (fontos lehet, ha a kapcsolásnál NULL érték van)

RIGHT JOIN az előző fordítottja

FULL OUTER JOIN van, de nincs kiválasztás, mindent magába foglal

ALTER TABLE táblanév

ADD oszlopnév adattípus;

ALTER TABLE táblanév

DROP oszlopnév;

ALTER TABLE táblanév

MODIFY COLUMN oszlopnév adattípus;

Egyes esetekben nem felel meg a gyári számformátum a lekérdezés eredményében.

ROUND(AVG(ertek), 2) // az átlagfüggvény által visszaadott értéket 2 tizedesre kerekíti

CAST(AVG(ertek) AS DECIMAL(5, 1)) // az átlagfüggvény által visszadott értéket 5 helyiértékes tizedestörtre alakítja, ahol egy tizedesjegy van csak

BELSŐ SELECT MINT LISTA

A WHERE feltételeként az IN listája is előállítható belső SELECT segítségével, illetve ez tagadható is:

SELECT termek.id, termek.nev

FROM termek

WHERE termek.id NOT IN

(SELECT UNIQUE termek_id FROM tetel);

standard string formátum a dátumra:

'2001-01-07'

CURDATE() - aznapi dátum felvitele, tipikus DEFAULT érték lehet

NOW() - aktuális időbélyeg felvitele, tipikus DEFAULT érték, amikor fontos az INSERT időpontja

CURRENT_TIMESTAMP() - általános megoldás

Hogyan biztosítsuk a gyors keresést?

Bináris keresés a megoldás!

Bármely mező indexelhető, azaz sorbarendezhető

Táblához tartozik

A GROUP BY feltétele lehet WHERE helyett

- SELECT COUNT(country), foldrajzi_hely, country
- FROM orszagok
- GROUP BY foldrajzi_hely
- HAVING COUNT(country) = 1;