

planetmath.org

Math for the people, by the people.

orthogonal group

Canonical name Orthogonal Group
Date of creation 2013-03-22 12:25:54
Last modified on 2013-03-22 12:25:54

Owner djao (24) Last modified by djao (24)

Numerical id 6

Author djao (24) Entry type Definition Classification msc 20G20

Defines orthogonal transformation

Let Q be a non-degenerate symmetric bilinear form over the real vector space \mathbb{R}^n . A linear transformation $T\colon V\to V$ is said to preserve Q if Q(Tx,Ty)=Q(x,y) for all vectors $x,y\in V$. The subgroup of the general linear group $\mathrm{GL}(V)$ consisting of all linear transformations that preserve Q is called the $\operatorname{orthogonal} \operatorname{group}$ with respect to Q, and denoted $\mathrm{O}(n,Q)$.

If Q is also positive definite (i.e., Q is an inner product), then O(n, Q) is equivalent to the group of invertible linear transformations that preserve the standard inner product on \mathbb{R}^n , and in this case the group O(n, Q) is usually denoted O(n).

Elements of O(n) are called *orthogonal transformations*. One can show that a linear transformation T is an orthogonal transformation if and only if $T^{-1} = T^{T}$ (i.e., the inverse of T equals the transpose of T).