565 mid-term

 $y_{ij} = \mu + \tau_i + \varepsilon_{ij}$, for $\varepsilon_{ij} \sim iidN(0, \sigma^2)$, i = 1, 2, a, j = 1, 2, n, $\sum_{i=1}^{a} \tau_i = 0$ Random effects: $\tau_i \sim iidN(0, \sigma_{\tau}^2), \tau_i$ and ε_{ij} indep $y_{ij} = (\mu + \tau_i + \beta_j) + \varepsilon_{ij}$, for $\varepsilon_{ij} \sim iidN(0, \sigma^2)$, i = 1, 2, a, j = 1, 2, bFixed effects: $\sum_{i=1}^a \tau_i = 0$, $\sum_{j=1}^b \beta_j = 0$ Random effects: $\beta_j \sim iidN(0, \sigma_\beta^2)$

least square and normal equation

CRD:
$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \mu - \tau_i)^2$$

 $\frac{\partial SSE}{\partial \mu}\Big|_{\hat{\mu}, \hat{\tau}_i} = 2 \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \hat{\mu} - \hat{\tau}_i)(-1) = 0 \ y_{..} = an\hat{\mu} + n \sum_{i=1}^{a} \hat{\tau}_i$
 $\frac{\partial SSE}{\partial \tau_i}\Big|_{\hat{\mu}, \hat{\tau}_i} = 2 \sum_{j=1}^{n} (y_{ij} - \hat{\mu} - \hat{\tau}_i)(-1) = 0 \ y_{i.} = n\hat{\mu} + n\hat{\tau}_i$

RCBD:
$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \mu - \tau_i - \beta_j)^2$$

$$\begin{array}{ll}
\sigma \tau_{i} \mid_{\hat{\mu},\hat{\tau}_{i}} & \sum_{j=1}^{a} (s_{j}) \\
\text{RCBD: } SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \mu - \tau_{i} - \beta_{j})^{2} \\
\frac{\partial SSE}{\partial \mu} \mid_{\hat{\mu},\hat{\tau}_{i},\hat{\beta}_{j}} = 2 \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j})(-1) = 0
\end{array}$$

$$\frac{\partial SSE}{\partial \tau_i}\Big|_{\hat{\mu},\hat{\tau}_i,\hat{\beta}_j} = 2\sum_{j=1}^b (y_{ij} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j)(-1) = 0$$

$$\frac{\partial SSE}{\partial \beta_j} \Big|_{\hat{\mu}, \hat{\tau}_i, \hat{\beta}_j} = 2 \sum_{i=1}^a (y_{ij} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j)(-1) = 0$$

$$y_{..} = ab\hat{\mu} + b\sum_{i=1}^{a} \hat{\tau}_{i} + a\sum_{j=1}^{b} \hat{\beta}_{j}$$

$$y_{i.} = b\hat{\mu} + b\hat{\tau}_{i} + \sum_{j=1}^{b} \hat{\beta}_{j}$$

$$y_{i.} = b\hat{\mu} + b\hat{\tau}_{i} + \sum_{i=1}^{b} \hat{\beta}_{i}$$

$$y_{.j} = a\hat{\mu} + \sum_{i=1}^{a} \hat{\tau}_i + a\hat{\beta}_j$$

hypothesis test

~ -		
model	H0	H1
FT-CRD	$\mu_1 = \mu_2 = = \mu_i$	at least two of μ_i are different
RT-CRD	$\sigma_{\tau}^2 = 0$	$\sigma_{\tau}^2 > 0$
FB-RCBD	$\mu_1 = \mu_2 = = \mu_i$	at least two of μ_i are different
-Block	$\beta_1 = \beta_2 = \dots = \beta_j = 0$	at least one of $\beta_j \neq 0$
RB-RCBD	$\sigma_{\beta}^2 = 0$	$\sigma_{\beta}^2 > 0$
Contrast	$\Gamma = \sum_{i=1}^{a} c_i \mu_i = 0$	$\Gamma = \sum_{i=1}^{a} c_i \mu_i \neq 0$

ANOVA

	SS	df	MS	F
SS_{Trt}	$n \sum_{i=1}^{a} (\bar{y}_{i.} - \bar{y}_{})^2$	a-1	$\frac{SS_{Trt}}{a-1}$	$\frac{MS_{Trt}}{MS_{E}}$
SS_E	$\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^2$	a(n-1)	$\frac{SS_E}{N-a}$	
SS_T	$\sum_{i=1}^{a} \sum_{j=1}^{f-1} (y_{ij} - \bar{y}_{})^2$	an-1		
SS_{Trt}	$b \sum_{i=1}^{a} (\bar{y}_{i.} - \bar{y}_{})^2$	a-1	$\frac{SS_{Trt}}{a-1}$	$\frac{MS_{Trt}}{MS_{E}}$
SS_{Blk}	$a \sum_{j=1}^{b} (\bar{y}_{.j} - \bar{y}_{})^2$	b-1	$\frac{SS_{Blk}}{b-1}$	$\frac{MS_{Blk}}{MS_E}$
SS_E	$SS_T - SS_{Trt} - SS_{Blk}$	(a-1)(b-1)	$\frac{SS_E}{df_E}$	
SS_T	$\sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{})^2$	ab-1		

[f.]
$$SS_{Trt} = \frac{1}{n} \sum_{i=1}^{a} y_{i.}^{2} - \frac{y_{i.}^{2}}{N_{i.}^{2}}$$

$$\begin{aligned} &[\text{f.}]SS_{Trt} = \frac{1}{n} \sum_{i=1}^{a} y_{i.}^{2} - \frac{y_{..}^{2}}{N} \\ &[\text{r.}]SS_{Trt} = \frac{1}{b} \sum_{i=1}^{a} y_{i.}^{2} - \frac{y_{..}^{2}}{N} SS_{Blk} = \frac{1}{a} \sum_{j=1}^{b} y_{.j}^{2} - \frac{y_{..}^{2}}{N} \\ &SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^{2} \end{aligned}$$

$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^2$$

$$SS_T = \sum_{i=1}^a \sum_{j=1}^b y_{ij}^2 - \frac{y_{ij}^2}{N}, S_i^2 = \frac{\sum_{j=1}^n (y_{ij} - \bar{y}_{i,})^2}{n-1}$$

distribution

y_{ij} $(\mu + au_i, \sigma^2)$	\bar{y}_i . $(\mu + au_i, rac{\sigma^2}{n})$	$ \begin{array}{c c} \frac{y_{i.} - \mu_{i}}{\frac{\sigma}{\sqrt{n}}} \\ (0, 1) \end{array} $	$\bar{y}_{i.} - \bar{y}_{j.}$ $(\mu_i - \mu_j, \frac{2\sigma^2}{n})$	$\begin{array}{c c} \frac{\bar{y}_{i.} - \bar{y}_{j.} - (\mu_i - \mu_j)}{\frac{2\sigma}{\sqrt{n}}} \\ (0, 1) \end{array}$
$t_{df_E} = rac{rac{y_{i.} - \mu_i}{\sigma_N}}{\sqrt{rac{SS_E}{\sigma^2(N-a}}}$	$\frac{1}{\sqrt{\frac{SS_E}{n(df_E)}}}$	$= \frac{y_{i.} - \mu_{i}}{\sqrt{\frac{MS_{E}}{n}}}$	$\frac{\bar{y}_{i}\bar{y}_{j}(\mu_{i}-\mu_{i})}{\sqrt{\frac{2MS_{E}}{n}}}$	u_j C $\sqrt{\widehat{Var(C)}}$
$\begin{array}{c cccc} \chi^2 & \frac{SS_E}{\sigma^2} & \frac{SS_T}{\sigma^2} \\ \text{df} & E & Trt \end{array}$	$\frac{rt}{Blk}$	SS_C 1		
	$ \frac{MS_{Blk}}{MS_E} \qquad \qquad \frac{(\sum_{MS_B}}{n} \\ Blk, E) \qquad \qquad (C = \sum_{MS_B} \frac{MS_B}{n} \\ \qquad (C = \sum_{MS_B} \frac{MS_B}{n}) \\ \qquad (C =$			

$$\Gamma = \sum_{i=1}^{a} c_{i} \mu_{i}, C = \sum_{i=1}^{a} c_{i} \bar{y}_{i}; \sum_{i=1}^{a} c_{i} = 0; \text{Orthogonal } \sum_{i=1}^{a} c_{i} d_{i} = 0$$

$$SS_{C} = \frac{(\sum_{i=1}^{a} c_{i} \bar{y}_{i})^{2}}{\frac{1}{n} \sum_{i=1}^{a} c_{i}^{2}}, \sum SS_{C} = SS_{Trt}$$

$$Cov[\varepsilon_{ij}, \varepsilon_{ij}] = Cov[\sum_{i=1}^{a} \varepsilon_{ij}, \sum_{i=1}^{b} \varepsilon_{ij}] = \sigma^{2}, Cov[\tau_{i}, \tau_{i}] = \frac{2}{\tau}, Cov[\beta_{j}, \beta_{j}] = \frac{2}{\tau}$$

$$Cov[\varepsilon_{ij}, \sum_{i=1}^{n} \varepsilon_{ij}] = Cov[\varepsilon_{ij}, (\varepsilon_{i1} + ... + \varepsilon_{ij}... + \varepsilon_{in})] = Cov[\varepsilon_{ij}, \varepsilon_{i1}] + ... + Cov[\varepsilon_{ij}, \varepsilon_{ij}]... + Cov[\varepsilon_{ij}, \varepsilon_{in}] = cov[\varepsilon_{ij}, \varepsilon_{in}]$$

 $\begin{aligned} &Cov[\varepsilon_{ij},\varepsilon_{ij}] = Cov[\sum_{i1}^{a}\varepsilon_{ij},\sum_{j=1}^{b}\varepsilon_{ij}] = \sigma^{2}, \\ &Cov[\tau_{i},\tau_{i}] = \sum_{\tau}^{2}, \\ &Cov[\varepsilon_{ij},\tau_{i}] = Cov[\varepsilon_{ij},\beta_{j}] = Cov[\tau_{i},\beta_{j}] = \\ &Cov[\varepsilon_{ij},\varepsilon_{ii}] = Cov[\varepsilon_{ij},\varepsilon_{ii}] = Cov[\varepsilon_{ij},\varepsilon_{ii}] = 0, \\ &E(s_{ij},\sum_{j=1}^{n}\varepsilon_{ij}) = Cov[\varepsilon_{ij},(\varepsilon_{i1}+..+\varepsilon_{ij}..+\varepsilon_{in})] = Cov[\varepsilon_{ij},\varepsilon_{i1}] + ... + \\ &Cov[\sum_{j=1}^{n}\varepsilon_{ij},\sum_{i=1}^{a}\sum_{j=1}^{n}\varepsilon_{ij}] = Cov[(\varepsilon_{i1}+\varepsilon_{i2}..+\varepsilon_{in}),(\varepsilon_{i1}+\varepsilon_{i2}..+\varepsilon_{in})] = Cov[\varepsilon_{i1},\varepsilon_{i1}] + Cov[\varepsilon_{i2},\varepsilon_{i2}].. + \\ &Cov[\sum_{j=1}^{n}\varepsilon_{ij},\sum_{i=1}^{a}\sum_{j=1}^{n}\varepsilon_{ij}] = Cov[(\varepsilon_{i1}+\varepsilon_{i2}..+\varepsilon_{in}),(\varepsilon_{i1}+\varepsilon_{i2}..+\varepsilon_{in})] = Cov[\varepsilon_{i1},\varepsilon_{i1}] + Cov[\varepsilon_{i2},\varepsilon_{i2}].. + \\ &Cov[\varepsilon_{i1},\varepsilon_{i1}] = Cov[\varepsilon_{i1},\varepsilon_{i2}] = Cov[\varepsilon_{i1},\varepsilon_{i2}] + Cov[\varepsilon_{i2},\varepsilon_{i2}].. + \\ &Cov[\varepsilon_{i1},\varepsilon_{i2}] = Cov[\varepsilon_{i1},\varepsilon_{i2}] = Cov[\varepsilon_{i1},\varepsilon_{i2}] + Cov[\varepsilon_{i2},\varepsilon_{i2}].. + \\ &Cov[\varepsilon_{i1},\varepsilon_{i2}] = Cov[\varepsilon_{i2},\varepsilon_{i2}] = Cov[\varepsilon_{i1},\varepsilon_{i2}] + Cov[\varepsilon_{i2},\varepsilon_{i2}].. + \\ &Cov[\varepsilon_{i2},\varepsilon_{i2}] = Cov[\varepsilon_{i1},\varepsilon_{i2}] = Cov[\varepsilon_{i2},\varepsilon_{i2}] + Cov[\varepsilon_{i2},\varepsilon_{i2}].. + \\ &Cov[\varepsilon_{i1},\varepsilon_{i2}] = Cov[\varepsilon_{i2},\varepsilon_{i2}] + Cov[\varepsilon_{i2},\varepsilon_{i2}] + Cov[\varepsilon_{i2},\varepsilon_{i2}] + Cov[\varepsilon_{i2},\varepsilon_{i2}] + \\ &Cov[\varepsilon_{i2},\varepsilon_{i2}] = Cov[\varepsilon_{i1},\varepsilon_{i2}] + Cov[\varepsilon_{i2},\varepsilon_{i2}] + Cov[\varepsilon_{i2},\varepsilon_{i2}]$

 $Var[y_{ij} - \bar{y}_{i.}] =$ FT-CRD;RT-CRD

CI

CIbalanced $\bar{y}_{i.} \pm t_{\frac{\alpha}{2}} \sqrt{\frac{MS_E}{n_i}}$ $\bar{y}_{i.} - \bar{y}_{j.} \pm t_{\frac{\alpha}{2}} \sqrt{MS_E(\frac{1}{n_i} + \frac{1}{n_j})}$ $\bar{y}_{i.} \pm t_{\frac{\alpha}{2}} \sqrt{\frac{MS_E}{n}}$ $\mu_i - \mu_j \quad \bar{y}_{i.} - \bar{y}_{j.} \pm t_{\frac{\alpha}{2}} \sqrt{\frac{2MS_E}{n}}$ $\sum_{i=1}^{a} c_{i} \bar{y}_{i} \pm t_{\frac{\alpha}{2}} \sqrt{\frac{MS_{E}}{n} \sum_{i=1}^{a} c_{i}^{2}}$

expectation and variance

$$\begin{aligned} y_{\cdot\cdot\cdot} &= \sum_{i=1}^{a} (y_{i\cdot\cdot} = \sum_{j=1}^{n} y_{ij}), \mu = \frac{\sum_{i=1}^{a} \mu_{i}}{a} \\ \bar{y}_{\cdot\cdot\cdot} &= \frac{1}{N} \left[y_{\cdot\cdot\cdot} = \sum_{i=1}^{a} (y_{i\cdot\cdot} = \sum_{j=1}^{n} y_{ij}) \right] = \frac{1}{a} \sum_{i=1}^{a} \left[\bar{y}_{i\cdot\cdot} = \frac{1}{n} (y_{i\cdot\cdot} = \sum_{j=1}^{n} y_{ij}) \right] \\ & \left[\begin{array}{c|c} y_{ij} & \bar{y}_{\cdot\cdot\cdot} & \bar{y}_{i-1} \\ \sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij} & \bar{y}_{i\cdot\cdot} & \bar{y}_{\cdot\cdot} \\ \sum_{j=1}^{a} y_{ij} & \sum_{i=1}^{a} y_{ij} \\ \mu + \tau_{i} & \mu + \beta_{j} & \sum_{i=1}^{a} c_{i} \bar{y}_{i\cdot\cdot} \\ \hline V[f.] & \sigma^{2} & \frac{\sigma^{2}}{na} & \frac{\sigma^{2}}{n} & \frac{\sigma^{2}}{a} & \frac{\sigma^{2}}{n} \sum_{i=1}^{a} c_{i} \\ \hline E[r.] & \mu & \mu & \mu \\ V[r.] & \sigma^{2} + \sigma^{2}_{\tau} & \frac{\sigma^{2}}{a} + \frac{\sigma^{2}}{na} & \frac{\sigma^{2}}{n} + \sigma^{2}_{\tau} & \frac{\sigma^{2}}{a} + \sigma^{2}_{\beta} \\ \hline E[f.] & \sigma^{2} & \frac{MSTrt}{a} & \frac{MSTrt}{a} & \frac{MSTrt}{a} & \frac{MSTrt}{a} & \frac{\sigma^{2}}{n} + \frac{\sigma^{2}}{a} & \frac{\sigma^{2}}{n} & \frac{\sigma^{2}}{n} + \frac{\sigma^{2}}{n} & \frac{\sigma^{2$$

$_{\rm E[r]}$	σ^2	$\sigma^2 + n\tau_i^2$				σ^2 +	$-aeta_j^2$
	$\hat{\sigma}^2$	$\hat{\sigma}_{Trt}^2$	$\hat{\sigma}_{Blk}^2$		$V\widehat{ar}(\overline{y}_{i.})$	$\widehat{Var(i)}_{MS_E}$	$(\bar{j}_{.j})$
f.	MSE	170			MS_E		
r.	MSE	$\frac{MS_{Trt}-MS}{n}$	$E \mid MS_{Blk}$	$\frac{-MS_E}{a}$	$\frac{MS_{Trt}}{n}$	$\frac{MS_{Tr}}{a}$	<u>t</u>
$\hat{\mu}$		$\hat{\parallel} \hat{\mu}_i$	$\hat{ au}_i$	\hat{eta}_j	\hat{y}_{ij}	-	$\hat{arepsilon}_{ij}$
$\bar{y}_{}$		\bar{y}_i .	$\begin{array}{c c} \bar{y}_{i.} - \bar{y}_{} \\ \frac{1}{a} y_{i.} - \hat{\mu} \end{array}$	$\bar{y}_{.j}$ –	$\bar{y}_{} \mid \bar{y}_{i.} + \bar{y}$	$.j-\bar{y}_{}$	$\begin{vmatrix} \hat{\varepsilon}_{ij} \\ \bar{y}_{ij} - \bar{y}_{} \end{vmatrix}$
$\frac{1}{an}$	$y_{\cdot \cdot \cdot} - \frac{1}{a} \sum$	$\sum_{i=1}^{a} \hat{\tau}_i$	$\frac{1}{a}y_{i.}-\hat{\mu}$				
FT		CRD		•		E	Var[]
11: :	$-\bar{\eta}$:	$\varepsilon_{i,i} - \frac{\sum_{j=1}^{n} \varepsilon_{i}}{\sum_{j=1}^{n} \varepsilon_{i}}$	<u>j</u>				$\frac{n-1}{\sigma^2}$

$y_{ij} - \bar{y}_{i}$.	$\varepsilon_{ij} - \frac{\sum_{j=1}^{j=1} \varepsilon_{ij}}{n}$	0	$\frac{n-1}{n}\sigma^2$ $\underline{(a-1)\sigma^2}$
$\bar{y}_{i.} - \bar{y}_{}$	$\tau_i + \frac{\sum_{j=1}^n \varepsilon_{ij}}{n} - \frac{\sum_{i=1}^a \sum_{j=1}^n \varepsilon_{ij}}{an}$	$ au_i$	$\frac{(a-1)\sigma^2}{an}$
RT-	CRD	E	Var[]
$y_{ij} - \bar{y}_{i}$.	$\varepsilon_{ij} - \frac{\sum_{j=1}^{n} \varepsilon_{ij}}{n}$	0	$\frac{n-1}{n}\sigma^2$
$\bar{y}_{i.} - \bar{y}_{}$	$\tau_i - \frac{\sum_{i=1}^a \tau_i}{a} + \frac{\sum_{j=1}^n \varepsilon_{ij}}{n} - \frac{\sum_{i=1}^a \sum_{j=1}^n \varepsilon_{ij}}{an}$	0	$\frac{(a-1)(n\sigma_{\tau}^2)}{an}$
F-	RCBD	\mathbf{E}	Var[]
$y_{ij} - \bar{y}_{i.}$	$\beta_j + \varepsilon_{ij} - \frac{\sum_{j=1}^b \varepsilon_{ij}}{\sum_{b=1}^a \varepsilon_{ij}}$	β_j	$\frac{(b-1)\sigma^2}{b}$
$ar{y}_{i.} - ar{y}_{}$	$\tau_i + \frac{\sum_{j=1}^b \varepsilon_{ij}}{\sum_{a}^b} - \frac{\sum_{i=1}^a \sum_{j=1}^b \varepsilon_{ij}}{ab}$	$ au_i $	$\frac{a-1)\sigma^2}{ab}$
$y_{ij} - \bar{y}_{.j}$	$\tau_i + \varepsilon_{ij} - \frac{\sum_{i=1}^a \varepsilon_{ij}}{\sum_{i=1}^a \varepsilon_{ij}}$	$ au_i $	$\frac{(a-1)\sigma^2}{a}$
	$\beta_j + \frac{\sum_{i=1}^a \varepsilon_{ij}}{a} - \frac{\sum_{i=1}^a \sum_{j=1}^b \varepsilon_{ij}}{ab}$	β_j	$\frac{a}{\frac{(b-1)\sigma^2}{ab}}$
R-	RCBD	E	Var[]
	$\sum b$	I	1

 $y_{ij} - \bar{y}_{i.} \qquad \beta_{j} - \frac{\sum_{j=1}^{b} \beta_{j}}{b} + \varepsilon_{ij} - \frac{\sum_{j=1}^{b} \varepsilon_{ij}}{b}$ $\bar{y}_{i.} - \bar{y}_{..} \qquad \tau_{i} + \frac{\sum_{j=1}^{b} \varepsilon_{ij}}{b} - \sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}}{b}$ $y_{ij} - \bar{y}_{.j} \qquad \tau_{i} + \varepsilon_{ij} - \frac{\sum_{i=1}^{a} \varepsilon_{ij}}{ab}$ $\bar{y}_{.j} - \bar{y}_{..} \qquad \beta_{j} - \frac{\sum_{j=1}^{b} \beta_{j}}{b} + \frac{\sum_{i=1}^{a} \varepsilon_{ij}}{ab} - \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}}{ab}$ $y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..} = \varepsilon_{ij} - \frac{\sum_{i=1}^{a} \varepsilon_{ij}}{a} - \frac{\sum_{j=1}^{b} \varepsilon_{ij}}{b} + \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}}{ab}$ $E[] = 0, Var = \frac{(a-1)(b-1)\sigma^{2}}{ab}$

covariance

R-CRD: $Cov(y_{ij}, y_{kl}) = \{0, i \neq k; \sigma_{\tau}^2, i = k, j \neq l; \sigma^2 + \sigma_{\tau}^2, i = k, j = l\}$

$\begin{bmatrix} \varepsilon_{ij} & & & & \varepsilon_{ij} \\ \sum_{i=1}^{a} \varepsilon_{ij} & & & & \sigma^2 \\ \sum_{j=1}^{b} \varepsilon_{ij} & & & & \\ \sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij} & & & & \end{bmatrix}$	$\sum_{i=1}^{a} \varepsilon_{ij}$ σ^{2} $a\sigma^{2}$	$\begin{array}{c c} \sigma^2 \\ b\sigma^2 \end{array}$	$\begin{vmatrix} \sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij} \\ \sigma^{2} \\ a\sigma^{2} \\ b\sigma^{2} \\ ab\sigma^{2} \end{vmatrix}$
--	--	--	--

$$\begin{split} & \frac{Var(z_{ij} - \sum_{j=1}^{n} z_{ij}}{v_{i}} = _{ij} Var(z_{ij}) + \frac{\sum_{j=1}^{n} Var(z_{ij})}{v_{i}} - \frac{2Con(z_{ij} - \sum_{j=1}^{n} z_{ij})}{v_{i}} - \frac{1}{2} a^{2} = \frac{n-1}{n} a^{3} \\ & Var(z_{i}) + z_{ij} - \frac{1}{2} Var(z_{ij}) + Var(z_{ij}) + \frac{\sum_{j=1}^{n} Var(z_{ij})}{v_{i}} - \frac{2Con(z_{ij} - \sum_{k=1}^{n} z_{ij})}{v_{i}} - \frac{2Con(z_{ij} - \sum_{k=1}^{n} z_{ij})}{v_{i}} - \frac{1}{2} - \frac{$$