Codebook

Contents

Metadata	. 9
Description	. 9
$subject_id \ldots \ldots \ldots \ldots \ldots$. 9
Distribution	. 9
Summary statistics	. 11
activity_name	. 12
Distribution	. 12
Summary statistics	. 12
$time of_body_accel_mean_x \ \dots $. 12
Distribution	. 12
Summary statistics	. 13
$time of_body_accel_mean_y \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 13
Distribution	. 13
Summary statistics	. 13
$time of_body_accel_mean_z \ \dots $. 13
Distribution	. 13
Summary statistics	. 13
$time of_body_accel_std_x $. 14
Distribution	. 14
Summary statistics	. 14
timeof_body_accel_std_y	. 14
Distribution	. 14
Summary statistics	. 14
$time of_body_accel_std_z $. 15
Distribution	. 15
Summary statistics	. 15
timeof_gravity_accel_mean_x	. 15
Distribution	. 15
Summary statistics	. 15

timeof	_gravity_accel_mean_y	16
	Distribution	16
	Summary statistics	16
timeof	_gravity_accel_mean_z	16
	Distribution	16
	Summary statistics	16
timeof	_gravity_accel_std_x	17
	Distribution	17
	Summary statistics	17
timeof	_gravity_accel_std_y	17
	Distribution	17
	Summary statistics	17
timeof	_gravity_accel_std_z	18
	Distribution	18
	Summary statistics	18
timeof	_body_accel_jerk_mean_x	18
	Distribution	18
	Summary statistics	18
timeof	_body_accel_jerk_mean_y	19
	Distribution	19
	Summary statistics	19
timeof	_body_accel_jerk_mean_z	19
	Distribution	19
	Summary statistics	19
timeof	_body_accel_jerk_std_x	20
	Distribution	20
	Summary statistics	20
timeof	_body_accel_jerk_std_y	20
	Distribution	20
	Summary statistics	20
timeof	_body_accel_jerk_std_z	21
	Distribution	21
	Summary statistics	21
timeof	_body_gyro_mean_x	21
	Distribution	21
	Summary statistics	21

timeof	_body_gyro_mean_y	22
	Distribution	22
	Summary statistics	22
$timeof_{\underline{}}$	_body_gyro_mean_z	22
	Distribution	22
	Summary statistics	22
$timeof_{}$	_body_gyro_std_x	23
	Distribution	23
	Summary statistics	23
$timeof_{}$	_body_gyro_std_y	23
	Distribution	23
	Summary statistics	23
$timeof_{\underline{}}$	_body_gyro_std_z	24
	Distribution	24
	Summary statistics	24
$timeof_{\underline{}}$	_body_gyro_jerk_mean_x	24
	Distribution	24
	Summary statistics	24
$timeof_{\underline{}}$	_body_gyro_jerk_mean_y	25
	Distribution	25
	Summary statistics	25
$timeof_{\underline{}}$	_body_gyro_jerk_mean_z	25
	Distribution	25
	Summary statistics	25
$timeof_{\underline{}}$	_body_gyro_jerk_std_x	26
	Distribution	26
	Summary statistics	26
$timeof_{\underline{}}$	_body_gyro_jerk_std_y	26
	Distribution	26
	Summary statistics	26
timeof	_body_gyro_jerk_std_z	27
	Distribution	27
	Summary statistics	27
$timeof_{\underline{}}$	_body_accel_magn_mean	27
	Distribution	27
	Summary statistics	27

$time of_body_accel_magn_std\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	28
Distribution	28
Summary statistics	28
$time of_gravity_accel_magn_mean$	28
Distribution	28
Summary statistics	28
$time of_gravity_accel_magn_std\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	29
Distribution	29
Summary statistics	29
$time of_body_accel_jerk_magn_mean\dots$	29
Distribution	29
Summary statistics	29
$time of_body_accel_jerk_magn_std\ .\ .\ .\ .\ .\ .\ .\ .\ .$	30
Distribution	30
Summary statistics	30
$time of_body_gyro_magn_mean \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	30
Distribution	30
Summary statistics	30
$time of_body_gyro_magn_std \dots \dots$	31
Distribution	31
Summary statistics	31
$time of _body_gyro_jerk_magn_mean \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	31
Distribution	31
Summary statistics	31
$time of_body_gyro_jerk_magn_std \ \dots $	32
Distribution	32
Summary statistics	32
$frequ_body_accel_mean_x \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	32
Distribution	32
Summary statistics	32
$frequ_body_accel_mean_y \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	33
Distribution	33
Summary statistics	33
frequ_body_accel_mean_z	33
Distribution	33
Summary statistics	33

$frequ_body_accel_std_x \ \dots \dots \dots \dots \dots \dots$. 34
Distribution	 . 34
Summary statistics	 . 34
$frequ_body_accel_std_y \ \dots \ \dots \ \dots \ \dots \ \dots$. 34
Distribution	 . 34
Summary statistics	 . 34
$frequ_body_accel_std_z \ \dots \dots \dots \dots \dots$. 35
Distribution	 . 35
Summary statistics	 . 35
$frequ_body_accel_mean_freq_x \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 35
Distribution	 . 35
Summary statistics	 . 35
$frequ_body_accel_mean_freq_y \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 36
Distribution	 . 36
Summary statistics	 . 36
$frequ_body_accel_mean_freq_z\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$. 36
Distribution	 . 36
Summary statistics	 . 36
$frequ_body_accel_jerk_mean_x \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 37
Distribution	 . 37
Summary statistics	 . 37
$frequ_body_accel_jerk_mean_y \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 37
Distribution	 . 37
Summary statistics	 . 37
$frequ_body_accel_jerk_mean_z\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$. 38
Distribution	 . 38
Summary statistics	 . 38
$frequ_body_accel_jerk_std_x \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 38
Distribution	 . 38
Summary statistics	 . 38
$frequ_body_accel_jerk_std_y\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$. 39
Distribution	 . 39
Summary statistics	 . 39
$frequ_body_accel_jerk_std_z \ \dots \ \dots \ \dots \ \dots$. 39
Distribution	 . 39
Summary statistics	 . 39

$frequ_bo$	dy_accel_jerk_mean_freq_x	1(
D	stribution	1(
Sı	ummary statistics	1(
frequ_bo	dy_accel_jerk_mean_freq_y	1(
D	stribution	1(
St	mmary statistics	1(
frequ_bo	dy_accel_jerk_mean_freq_z4	11
D	stribution	11
Su	mmary statistics	11
frequ_bo	dy_gyro_mean_x	11
D:	stribution	11
Sı	mmary statistics	11
frequ_bo	dy_gyro_mean_y	12
D:	stribution	12
Sı	mmary statistics	12
frequ_bo	dy_gyro_mean_z	12
D	stribution	12
Su	mmary statistics	12
frequ_bo	dy_gyro_std_x	1:
D	stribution	1:
Su	mmary statistics	1:
frequ_bo	dy_gyro_std_y	1:
D	stribution	1:
Sı	ummary statistics	1:
frequ_bo	dy_gyro_std_z	14
D	stribution	14
Sı	ımmary statistics	14
frequ_bo	dy_gyro_mean_freq_x	14
D	stribution	14
Sı	ummary statistics	14
frequ_bo	dy_gyro_mean_freq_y	15
D	stribution	15
Su	mmary statistics	15
frequ_bo	dy_gyro_mean_freq_z	15
D	stribution	15
Sı	ımmary statistics	1.F

${\rm frequ}_{-}$	body_accel_magn_mean	46
	Distribution	46
	Summary statistics	46
${\rm frequ}_{_}$	body_accel_magn_std	46
	Distribution	46
	Summary statistics	46
${\rm frequ}_{_}$	_body_accel_magn_mean_freq	47
	Distribution	47
	Summary statistics	47
${\rm frequ}_{_}$	_body_body_accel_jerk_magn_mean	47
	Distribution	47
	Summary statistics	47
${\rm frequ}_{_}$	_body_body_accel_jerk_magn_std	48
	Distribution	48
	Summary statistics	48
${\rm frequ}_{_}$	body_body_accel_jerk_magn_mean_freq	48
	Distribution	48
	Summary statistics	48
${\rm frequ}_{_}$	_body_body_gyro_magn_mean	49
	Distribution	49
	Summary statistics	49
${\rm frequ}_{_}$	body_body_gyro_magn_std	49
	Distribution	49
	Summary statistics	49
${\rm frequ}_{_}$	_bodybodygyromagnmeanfreq	50
	Distribution	50
	Summary statistics	50
${\rm frequ}_{_}$	body_body_gyro_jerk_magn_mean	50
	Distribution	50
	Summary statistics	50
${\rm frequ}_{_}$	body_body_gyro_jerk_magn_std	5
	Distribution	5
	Summary statistics	5
${\rm frequ}_{_}$	body_body_gyro_jerk_magn_mean_freq	51
	Distribution	51
	Summary statistics	51

```
52
  52
 52
  52
  53
  53
  53
  53
  53
 54
  54
               54
 54
  55
  55
55
Set up Code book options
knitr::opts chunk$set(
warning = TRUE, # show warnings during codebook generation
message = TRUE, # show messages during codebook generation
error = TRUE, # do not interrupt codebook generation in case of errors,
  # usually better for debugging
echo = TRUE # show R code
ggplot2::theme_set(ggplot2::theme_bw())
```

Code book preparation

```
library(codebook)

codebook_data <- rio::import("codebook_source/accellerometer.rds")

# omit the following lines, if your missing values are already properly labelled
codebook_data <- detect_missing(codebook_data,</pre>
```

Create codebook

```
codebook(codebook_data)
```

No missing values.

Metadata

Description Dataset name: Accelerometer Standard Deviation and Mean Data

This data set contains the standard deviation and mean of the original data. See the README.txt found in the original data, "sample_data/getdata_projectfiles_UCI_HAR_Dataset/UCI_HAR_Dataset/UCI_HAR_Dataset/README.txt", for more information.

Metadata for search engines

- Spatial Coverage: Online
- Citation: Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012
- URL: https://github.com/rodelor97/GettingCleaningDataWeek4Project
- Date published: 2021-01-23
- Creator:

name	value
1	Robert de Lorimier

#Variables

subject_id

Subject id

Distribution 0 missing values.

X
subject_id
activity_name
timeof_body_accel_mean_x
timeof_body_accel_mean_y
_timeof_body_accel_mean_z
_timeof_body_accel_std_x
timeof_body_accel_std_y
timeof_body_accel_std_z
timeof_gravity_accel_mean_x
timeof_gravity_accel_mean_y
timeof_gravity_accel_mean_z
timeof_gravity_accel_std_x
timeof gravity accel std y
timeof_gravity_accel_std_z
timeof_body_accel_jerk_mean_x
timeof body accel jerk mean y
timeof body accel jerk mean z
timeof_body_accel_jerk_std_x
timeof_body_accel_jerk_std_y
timeof_body_gyro_mean_x
timeof_body_gyro_mean_y
timeof_body_gyro_mean_z
timeof_body_gyro_std_x
timeof_body_gyro_std_y
timeof_body_gyro_std_z
timeof_body_gyro_jerk_mean_x
timeof_body_gyro_jerk_mean_y
timeof_body_gyro_jerk_mean_z
_timeof_body_gyro_jerk_std_x
timeof_body_gyro_jerk_std_y
$time of _body _gyro _jerk _std _z$
timeof_body_accel_magn_mean
timeof_body_accel_magn_std
timeof_gravity_accel_magn_mean
timeof_gravity_accel_magn_std
timeof_body_accel_jerk_magn_mean
timeof_body_accel_jerk_magn_std
timeof_body_gyro_magn_mean
timeof_body_gyro_magn_std
timeof_body_gyro_jerk_magn_mean
timeof_body_gyro_jerk_magn_std
frequ_body_accel_mean_x
frequ_body_accel_mean_y
frequ_body_accel_std_y
frequ_body_accel_std_z
frequ_body_accel_mean_freq_x
frequ_body_accel_mean_freq_y
frequ_body_accel_mean_freq_z
frequ_body_accel_jerk_mean_x
frequ_body_accel_jerk_mean_y
frequ_body_accel_jerk_mmean_z
frequ_body_accel_jerk_std_x
frequ_body_accel_jerk_std_y
frequ_body_accel_jerk_std_z
C 1 1 1 1 C

Figure 1: Distribution of values for subject_id

name	label data_type n_missir		n_missing	$complete_rate$	min	median	max	mean sc		hist
$\overline{\mathrm{subject_id}}$	Subject id	numeric	0	0 1		17	30	16.14642	8.679067	

${\bf activity_name}$

Activity name

Figure 2: Distribution of values for activity_name

Distribution 0 missing values.

Summary statistics

name	label	$data_type$	$n_{missing}$	$complete_rate$	n _unique	empty	\min	max	whitespace
activity_name	Activity name	character	0	1	6	0	6	18	0

$time of_body_accel_mean_x$

Time domains signal (50Hz const rate), body acceleration mean X axis,

Distribution 0 missing values.

timeof_body_accel_mean_x

Time domains signal (50Hz const rate), body acceleration mean X axis,

Figure 3: Distribution of values for timeof_body_accel_mean_x

Summary statistics

name	label	data_tynpemissin	ngnplet	e <u>m</u> ia	atemedi	ama	x mean	sd	hist
timeof_body_ Timed _domainsxsignal (50Hz const rate), body acceleration mean X axis,		numeric 0	1	-1	0.28	1	0.27434	(7.8 676	6278

timeof_body_accel_mean_y

Time domains signal (50Hz const rate), body acceleration mean Y axis,

Figure 4: Distribution of values for timeof_body_accel_mean_y

Distribution 0 missing values.

name	label	data_tmp	data_tupemissingnplete_miantemediamax mean							
timeof_b	ody <u>Tanceldomains</u> signal (50Hz const rate), body acceleration mean Y axis,	numeric	0	1	-1	0.01	1 17	0.01774	0.037 135	1282

timeof_body_accel_mean_z

Time domains signal (50Hz const rate), body acceleration mean Z axis,

Figure 5: Distribution of values for timeof_body_accel_mean_z

name	label	data_tmj	omiss ing	plet	e <u>m</u> ia	ntemedi	ia m a:	x mean	sd	hist
timeof_body	Timed domainsz signal (50Hz const rate), body acceleration mean Z axis,	numeric	0	1	-1	0.11	1	0.1089	0.053 025	0331

$timeof_body_accel_std_x$

Time domains signal (50Hz const rate), body acceleration standard deviation X axis,

timeof_body_accel_std_x Time domains signal (50Hz const

rate), body acceleration standard deviation X axis,

Figure 6: Distribution of values for timeof_body_accel_std_x

Distribution 0 missing values.

Summary statistics

name	label	data_twp	emis	stingnple	t e niı	natuned	iama	x mean	sd	hist
timeof	body <u>Tincedostain</u> xsignal (50Hz const rate), body acceleration standard deviation X axis,	numeric 14	0	1	-1	- 0.94	1	0.6077	0.4380 7838	6938

time of body appl and a

timeof_body_accel_std_y

Time domains signal (50Hz const rate), body acceleration standard deviation Y axis,

Figure 7: Distribution of values for timeof_body_accel_std_y

name label	${\rm data_ty\!$	hist
timeof_body <u>Timeedos</u> stainsysignal (50Hz constrate), body acceleration standard deviation Y axis,	numeric 0 1 -1 - 1 - 0.5002 0.84 0.5101914	2398

$timeof_body_accel_std_z$

Time domains signal (50Hz const rate), body acceleration standard deviation Z axis,

timeof_body_accel_std_z

Time domains signal (50Hz const rate), body acceleration standard deviation Z axis,

Figure 8: Distribution of values for timeof_body_accel_std_z

Distribution 0 missing values.

Summary statistics

name lab	el	data_tmp	emissing	nple	te <u>ni</u> r	a tæ edi	amax me	an	sd	hist
rate	ncedostalnsz signal (50Hz conste), body acceleration standard viation Z axis,	numeric 15	0	1	-1	- 0.85	_		0.403 0643	6566

time of amounts and many

timeof_gravity_accel_mean_x

Time domains signal (50Hz const rate), gravity acceleration mean X axis,

Figure 9: Distribution of values for timeof_gravity_accel_mean_x

name	label	data_tmj	omissing	pplet	e <u>m</u> ia	ntemedi	amaz	x mean	sd	hist
timeof_gravi	ty <u>Timeedommeins_sig</u> nal (50Hz const rate), gravity acceleration mean X axis,	numeric	0	1	-1	0.92	1	0.66922	062 154	1858

timeof_gravity_accel_mean_y

Time domains signal (50Hz const rate), gravity acceleration mean Y axis,

Figure 10: Distribution of values for timeof_gravity_accel_mean_y

Distribution 0 missing values.

Summary statistics

name	label	data_tyn	emiss	ing nple	te <u>m</u> ia	ntemed	iama	x mean	sd	hist
timeof_gravi	ty <u>Timeedommeins_sig</u> nal (50Hz const rate), gravity acceleration mean Y axis,	numeric 16	0	1	-1	0.14	1	0.0040	3&8 78	9092

time of marrity and many

timeof_gravity_accel_mean_z

Time domains signal (50Hz const rate), gravity acceleration mean Z axis,

Figure 11: Distribution of values for timeof_gravity_accel_mean_z

name	label	data_tmj	omiss ing	pplet	e <u>m</u> ia	ntemediama	x mean	sd	hist
timeof_gravi	ty <u>Timeedommeins_signal</u> (50Hz const rate), gravity acceleration mean Z axis,	numeric	0	1	-1	0.037 1	0.09215	@9 342	2702

$time of _gravity _accel _std _x$

Time domains signal (50Hz const rate), gravity acceleration standard deviation X axis,

-1.0

timeof_gravity_accel_std_x Time domains signal (50Hz const rate), gravity acceleration standard deviation X axis,

Figure 12: Distribution of values for timeof_gravity_accel_std_x

0.0

values

0.5

1.0

-0.5

Distribution 0 missing values.

Summary statistics

name	label	$data_ty\!_{\underline{p}\underline{e}missing} plet\underline{e}\underline{n}\underline{i}rate$ ediamax mean								hist
timeof	gravity ime or stins signal (50Hz const rate), gravity acceleration standard deviation X axis,	numeric 17	0	1	-1	- 0.98	1	- 0.9652	0.077′ 2071	7148

time of approising against de-

timeof_gravity_accel_std_y

Time domains signal (50Hz const rate), gravity acceleration standard deviation Y axis,

Figure 13: Distribution of values for timeof_gravity_accel_std_y

name	label	data_tyı	${\rm data_typemissing} pleteniratee {\rm diamax\ mean}$							
timeof_grav	vity in embedding vignal (50Hz const rate), gravity acceleration standard deviation Y axis,	numeric	0	1	-1	0.98		-).9544	0.085 108	2866

$time of_gravity_accel_std_z$

Time domains signal (50Hz const rate), gravity acceleration standard deviation Z axis,

Figure 14: Distribution of values for timeof_gravity_accel_std_z

Distribution 0 missing values.

Summary statistics

name	label	${\rm data_ty\!.pemissing}{\rm nplete}\underline{{\rm mirate}{\rm rediamax}\ {\rm mean}$							sd	hist	
timeof_grav	rit <u>Finaccoonstins</u> signal (50Hz constrate), gravity acceleration standard deviation Z axis,	numeric 18	0	1		-1	- 0.97		- .9389	0.101 901	5548

time of body and ink many

timeof_body_accel_jerk_mean_x

Time domains signal (50Hz const rate), body acceleration jerk mean X axis,

Figure 15: Distribution of values for timeof_body_accel_jerk_mean_x

name	label	data_tyn	omissing	pplet	e <u>m</u> ia	ntemediama	x mean	sd	hist
timeof_body_	aftime jeoknaimsasignal (50Hz const rate), body acceleration jerk mean X axis,	numeric	0	1	-1	0.076 1	0.07893	381 761	1125

timeof_body_accel_jerk_mean_y

Time domains signal (50Hz const rate), body acceleration jerk mean Y axis,

timeof_body_accel_jerk_mean_y Time domains signal (50Hz const rate), body acceleration jerk mean Y axis,

Figure 16: Distribution of values for timeof_body_accel_jerk_mean_y

Distribution 0 missing values.

Summary statistics

name	label	data_twpen	nissingnp	let	e <u>m</u> nian	temediama	x mean	sd	hist
timeof_body_	a Triele jeoknaims asignal (50Hz const rate), body acceleration jerk mean Y axis,	numeric 0 19)	1	-1	0.011 1	0.00794	181 645	5184

time of body and inly many

timeof_body_accel_jerk_mean_z

Time domains signal (50Hz const rate), body acceleration jerk mean Z axis,

Figure 17: Distribution of values for timeof_body_accel_jerk_mean_z

name	label	${\rm data_typ_emissing}{\rm plete_mintemediamax\ mean}$								hist
timeof_body_	addiele jeoknaimsasignal (50Hz const rate), body acceleration jerk mean Z axis,	numeric	0	1	-1	0.00	1 012	0.0046	0.155 6747	979

$timeof_body_accel_jerk_std_x$

Time domains signal (50Hz const rate), body acceleration jerk standard deviation X axis,

Figure 18: Distribution of values for timeof_body_accel_jerk_std_x

Distribution 0 missing values.

Summary statistics

name	label	data_tyn	omiss in	gnple	et e n:	i ran edi	amax	mean	sd	hist
timeof_body	Timel denkaintsdeignal (50Hz constrate), body acceleration jerk standard deviation X axis,	numeric 20	0	1	- 1	- 0.95	1	- 0.6397	0.408 '81	7118

time of body applicated a

timeof_body_accel_jerk_std_y

Time domains signal (50Hz const rate), body acceleration jerk standard deviation Y axis,

Figure 19: Distribution of values for timeof_body_accel_jerk_std_y

name	label	data_tyn	omissin	gnple	et e ni	i ran edi	amax	mean	sd	hist
timeof_body	Timed donkaintdsignal (50Hz const rate), body acceleration jerk standard deviation Y axis,	numeric	0	1	1	0.93	_	- 0.6079	0.432 716	8845

$timeof_body_accel_jerk_std_z$

Time domains signal (50Hz const rate), body acceleration jerk standard deviation Z axis,

timeof_body_accel_jerk_std_z Time domains signal (50Hz const rate), body acceleration jerk standard deviation Z axis,

Figure 20: Distribution of values for timeof_body_accel_jerk_std_z

Distribution 0 missing values.

Summary statistics

name	label	data_tyn	omissinį	nple	et e ni	i ran edi	ama	xmean	sd	hist
timeof_body	Timel denkainsdsignal (50Hz constrate), body acceleration jerk standard deviation Z axis,	numeric 21	0	1	- 1	- 0.95	1	0.7628	0.277 3202	9014

times of body arms mann .

timeof_body_gyro_mean_x

Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal mean X axis,

Figure 21: Distribution of values for timeof_body_gyro_mean_x

name	label	${\rm data_typemissing} pleten \underline{{\rm irate}} {\rm ediamax} \ {\rm mean}$								hist
timeof_bo	ody <u>Tigyerolomeins signal (50Hz constate)</u> , body gyroscope 3-axial raw signal mean X axis,	numeric	0	1	-1	0.02	1 28	0.0309	0.183 9825	1861

$time of_body_gyro_mean_y$

Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal mean Y axis,

Figure 22: Distribution of values for timeof_body_gyro_mean_y

Distribution 0 missing values.

Summary statistics

name	label	data_tynp	omis	stingnple	et e niı	natue	diama	x mean	sd	hist
timeof_bo	dy <u>Tigyerolo</u> meims_signal (50Hz const rate), body gyroscope 3-axial raw signal mean Y axis,	numeric 22	0	1	-1	0.0	1 75	0.0747	0.134 7195	3171

time of body grown mann

timeof_body_gyro_mean_z

Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal mean Z axis,

Figure 23: Distribution of values for timeof_body_gyro_mean_z

name	label	data_tmj	<u>ə</u> miss	cing nple	te <u>ni</u> ı	rat re ediama	ax mean	sd	hist
timeof_b	ody <u>Tigyerolomeims signal</u> (50Hz const rate), body gyroscope 3-axial raw signal mean Z axis,	numeric	0	1	-1	0.086 1	0.08835	67.3 348	8753

$timeof_body_gyro_std_x$

Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal standard deviation X axis,

Figure 24: Distribution of values for timeof_body_gyro_std_x

Distribution 0 missing values.

Summary statistics

name	label	data_tynp	emiss	ing nple	et e n:	inanted	iama	xmean	sd	hist
timeof_bo	od <u>Fingyrlonsadhs</u> xsignal (50Hz const rate), body gyroscope 3-axial raw signal standard deviation X axis,	numeric 23	0	1	- 1	- 0.9	1	0.7211	0.301 1926	0271

times of body same and re

timeof_body_gyro_std_y

Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal standard deviation Y axis,

Figure 25: Distribution of values for timeof_body_gyro_std_y

name	label	data_tyn	<u>p</u> emiss	ċng nple	et e n:	i nane di	iama	xmean	sd	hist
timeof_b	od <u>yingyrlonstidnsy</u> signal (50Hz const rate), body gyroscope 3-axial raw signal standard deviation Y axis,	numeric	0	1		- 0.91	1	0.6826	0.356 6535	8845

$timeof_body_gyro_std_z$

Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal standard deviation Z axis,

timeof_body_gyro_std_z

Figure 26: Distribution of values for timeof_body_gyro_std_z

Distribution 0 missing values.

Summary statistics

name	label	data_twp	mis	s ing nple	et e n	i rane di	ama	axmean	sd	hist
timeof	_bod <u>Fingyrbonstihs</u> zignal (50Hz const rate), body gyroscope 3-axial raw signal standard deviation Z axis,	numeric 24	0	1	1	0.88	1	0.6536	0.3726 6657	6061

time of body myne ionly mann w

timeof_body_gyro_jerk_mean_x

Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk mean X axis,

Figure 27: Distribution of values for timeof_body_gyro_jerk_mean_x

name	label	data_tmj	omissin	gnple	et e ni	inanted	iama	xmean	sd	hist
timeof_body	Fymce denkaimsesignal (50Hz const rate), body gyroscope 3-axial raw signal jerk mean X axis,	numeric	0	1	1	- 0.09	8	0.0967	0.128 7093	8135

$time of_body_gyro_jerk_mean_y$

Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk mean Y axis,

Figure 28: Distribution of values for timeof_body_gyro_jerk_mean_y

Distribution 0 missing values.

Summary statistics

name	label	data_tyn	omiss in	gnple	et e ni	inanced	iamaz	xmean	sd	hist
timeof_body	Tyme denkaime signal (50Hz constrate), body gyroscope 3-axial raw signal jerk mean Y axis,	numeric 25	0	1	- 1	0.04		0.0423	0.114 3181	4092

time of body grown lank mann s

timeof_body_gyro_jerk_mean_z

Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk mean Z axis,

Figure 29: Distribution of values for timeof_body_gyro_jerk_mean_z

name	label	data_tyn	<u>e</u> miss	ing nple	et e ni	naned	iama	xmean	sd	hist
timeof_body	y Zýme denkaimes ign a l (50Hz constrate), body gyroscope 3-axial raw signal jerk mean Z axis,	numeric	0	1	- 1	0.05	_	0.0548	0.128 3303	8956

$timeof_body_gyro_jerk_std_x$

Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk standard deviation X axis,

timeof_body_gyro_jerk_std_x

Time domains signal (50Hz const rate), body gyroscope 3–axial raw signal jerk standard deviation X axis.

Figure 30: Distribution of values for timeof_body_gyro_jerk_std_x

Distribution 0 missing values.

Summary statistics

name	label	data_ n yp e issin y plet e niran e di a naxmean						sd	hist
timeof_boo	y <u>Täyne djenkinst dig</u> val (50Hz const rate), body gyroscope 3-axial raw 26 signal jerk standard deviation X axis,	numeric0	1	- 1	0.9	_	- 0.7313	0.00.	38159

time of body grown independent

timeof_body_gyro_jerk_std_y

Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk standard deviation Y axis,

Figure 31: Distribution of values for timeof_body_gyro_jerk_std_y

name	label	$data_{\textbf{n}}\underline{\textbf{ype}}issin\textbf{y}plet\textbf{e}\underline{\textbf{n}}i\textbf{rate}di\textbf{a}\textbf{n}axmean$							hist
timeof_bod	y <u>Tiyne djankinst digu</u> al (50Hz const rate), body gyroscope 3-axial raw signal jerk standard deviation Y axis,	numeric0	1	- 1	0.9	_	0.7860	0	 27157

$timeof_body_gyro_jerk_std_z$

Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk standard deviation Z axis,

timeof_body_gyro_jerk_std_z Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk standard deviation Z axis,

Figure 32: Distribution of values for timeof_body_gyro_jerk_std_z

0.0

values

0.5

1.0

-0.5

-1.0

Distribution 0 missing values.

Summary statistics

name	label	data_ntypneissi	ngple	et e ni	rate	dianna	axmean	sd	hist
timeof_bod;	y <u>Time djenkinstdig</u> nal (50Hz const rate), body gyroscope 3-axial raw 27 signal jerk standard deviation Z axis,	numeric0	1	1	0.9	_	- 0.7399	0.00.	19942

time of body and many many

timeof_body_accel_magn_mean

Time domains signal (50Hz const rate), body acceleration euclidean norm magnitude mean

Figure 33: Distribution of values for timeof_body_accel_magn_mean

name	label	data_tm	omissin	gnple	et e ni	man edi	ama	xmean	sd	hist
timeof_bod	y <u>Tänoeldomagins</u> signal (50Hz const rate), body acceleration euclidean norm magnitude mean	numeric	0	1	- 1	0.87	1	0.5482	0.4670 2217	 0937

$timeof_body_accel_magn_std$

Time domains signal (50Hz const rate), body acceleration euclidean norm magnitude standard deviation

Figure 34: Distribution of values for timeof_body_accel_magn_std

Distribution 0 missing values.

Summary statistics

name labe	el	data_tmp	emiss ing	nple	t e ni	rabe	dianna	xmean	sd	hist
rate	wedomaigs signal (50Hz conste), body acceleration euclidean m magnitude standard deviation	numeric 28	0	1	- 1	0.84		0.5912	0.429 2253	4313

time of marrity and many many

timeof_gravity_accel_magn_mean

Time domains signal (50Hz const rate), gravity acceleration euclidean norm magnitude mean

Figure 35: Distribution of values for timeof_gravity_accel_magn_mean

name	label	${\rm data_typ\underline{e}missing}{\rm nplet}{\rm \underline{e}\underline{n}iran}{\rm \underline{e}diamax}{\rm mean}$								hist
timeof_gravi	ty <u>Timeedommaigs signah</u> (50Hz const rate), gravity acceleration euclidean norm magnitude mean	numeric	0	1	- 1	- 0.87	1	0.5482	0.467 2217	 0937

$timeof_gravity_accel_magn_std$

Time domains signal (50Hz const rate), gravity acceleration euclidean norm magnitude standard deviation

timeof_gravity_accel_magn_std

Time domains signal (50Hz const rate), gravity acceleration euclidean norm magnitude standard deviation

Figure 36: Distribution of values for timeof_gravity_accel_magn_std

Distribution 0 missing values.

Summary statistics

name	label	data_ntypnissingpleteniranedianaxmean							hist
timeof_	gravit Fine and managements [student constrate], gravity acceleration euclidean 29 norm magnitude standard deviation	numeric0	1	1	0.8	-	- 0.5912	0	94313

time of body and into many many

timeof_body_accel_jerk_magn_mea

Time domains signal (50Hz const rate), body acceleration jerk euclidean norm magnitude mean

Figure 37: Distribution of values for timeof_body_accel_jerk_magn_mean

name	label	$data_t \underline{\textbf{y}}\underline{\textbf{p}}\underline{\textbf{e}} miss \underline{\textbf{c}}\underline{\textbf{n}}\underline{\textbf{p}}\underline{\textbf{e}} let \underline{\textbf{e}}\underline{\textbf{n}}\underline{\textbf{i}}\underline{\textbf{r}}\underline{\textbf{a}}\underline{\textbf{b}}\underline{\textbf{e}} diamax mean$								hist
timeof_body_	_a &inle_jdoknaims grignale \ñ 0Hz const rate), body acceleration jerk euclidean norm magnitude mean	numeric	0	1	- 1	- 0.95	1	0.6494	0.389 18	4942

$timeof_body_accel_jerk_magn_std$

Time domains signal (50Hz const rate), body acceleration jerk euclidean norm magnitude standard deviation

$time of_body_accel_jerk_magn_std$

Time domains signal (50Hz const rate), body acceleration jerk euclidean norm magnitude standard deviation

Figure 38: Distribution of values for timeof_body_accel_jerk_magn_std

Distribution 0 missing values.

name	label	data_ hype issong	plet	t e ni	rabec	lianne	axmean	sd	hist
timeof_body_	Time denkainsaggnal (150Hz constrate), body acceleration jerk 30 euclidean norm magnitude standard deviation	numeric0	1	1	- 0.93	1	0.6277	0	72213

timeof_body_gyro_magn_mean

Time domains signal (50Hz const rate), body gyroscope 3–axial raw signal euclidean norm magnitude mean

Figure 39: Distribution of values for timeof_body_gyro_magn_mean

name	label	data_ n ypmais	si n gple	et e ni	inabe	lianne	axmean	sd	hist
timeof_b	oody <u>Tigyerolo</u> maigns_sigeranl (50Hz const rate), body gyroscope 3-axial raw signal euclidean norm magnitude mean	numeric0	1	1	0.82	1	0.6052		97096

timeof_body_gyro_magn_std

Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal euclidean norm magnitude standard deviation

timeof_body_gyro_magn_std

Time domains signal (50Hz const rate), body gyroscope 3–axial raw signal euclidean norm magnitude standard deviation

Figure 40: Distribution of values for timeof_body_gyro_magn_std

Distribution 0 missing values.

name	label	data_ntypneis	sd	hist					
timeof	bod <u>Vinggyrhomaingsnsig</u> trål (50Hz const rate),	numeric0	1	-	-	1	-	0.34	92246
	body gyroscope 3-axial raw signal			1	0.8	3	0.6625	331	
	euclidean norm magnitude standard								
	1								

timeof_body_gyro_jerk_magn_mear

Time domains signal (50Hz const rate), body gyroscope 3–axial raw signal jerk euclidean norm magnitude mean

Figure 41: Distribution of values for timeof_body_gyro_jerk_magn_mean

name	label	data_ntypneiss	data_ nypaissing plete <u>ni</u> rahedianaxmean						
timeof_body	Tymoe denkaimagignale(510Hz const rate), body gyroscope 3-axial raw signal jerk euclidean norm magnitude mean	numeric0	1	1	0.96	1 3	0.7621	• •	—— 65145

timeof_body_gyro_jerk_magn_std

Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk euclidean norm magnitude standard deviation

timeof_body_gyro_jerk_magn_std Time domains signal (50Hz const

rate), body gyroscope 3–axial raw signal jerk euclidean norm magnitude standard deviation

Figure 42: Distribution of values for timeof body gyro jerk magn std

Distribution 0 missing values.

name	label	30	data_ n ypoai	ssingp	letn	in rat e	eliann	axmeai	n sd	hist
timeof_	body <u>Tgyme d</u> jenkainsa i	gnast(50Hz const rate),	numeric0	1	-	-	1	_	0.27	15902
		3-axial raw signal jerk			1	0.9	4	0.777	79932	
	euclidean norm i	nagnitude standard								

frequ_body_accel_mean_x Fast fourier tranform frequecy signal, body acceleration mean X axis,

Figure 43: Distribution of values for frequ_body_accel_mean_x

0.0

values

0.5

1.0

-0.5

_i.0

name	label	data_tyn	sd	hist						
frequ_body_	Fastlformian tranform frequecy signal, body acceleration mean X axis,	numeric	0	1	-1	- 0.95	1	0.62276	0.420 617	7946

$frequ_body_accel_mean_y$

Fast fourier tranform frequecy signal, body acceleration mean Y axis,

Figure 44: Distribution of values for frequ_body_accel_mean_y

Distribution 0 missing values.

Summary statistics

name	label	data_twp_emissingnplete_miatemediamax mean								hist
frequ_bo	dy_Faselfonmentranform frequecy signal, body acceleration mean Y axis,	numeric 33	0	1	-1	0.86	1	0.5374	0.481 933	6819

form body and man a

frequ_body_accel_mean_z

Fast fourier tranform frequecy signal, body acceleration mean Z axis,

Figure 45: Distribution of values for frequ_body_accel_mean_z

name	label	${\rm data_ty\!\!\:\underline{p}\underline{m}issin\underline{m}plete\underline{m}i\!\!\:\underline{m}temediamax\ mean}$								hist
frequ_body	Fasel formeien tranform frequecy signal, body acceleration mean Z axis,	numeric	0	1	-1	0.9	1	0.66503	0.3588 335	8531

$frequ_body_accel_std_x$

Fast fourier tranform frequecy signal, body acceleration standard deviation X axis,

frequ_body_accel_std_x Fast fourier tranform frequecy signal, body acceleration standard deviation X axis,

Figure 46: Distribution of values for frequ_body_accel_std_x

Distribution 0 missing values.

Summary statistics

name	label	data_tyng	emis	ssingnple	et e ni	natueed	iama	x mean	sd	hist
frequ_	body Fastesountidr tranform frequecy signal, body acceleration standard deviation X axis,	numeric 34	0	1	-1	- 0.94	1	0.6033	0.446° 3563	 7928

forces body appl and r

frequ_body_accel_std_y

Fast fourier tranform frequecy signal, body acceleration standard deviation Y axis,

Figure 47: Distribution of values for frequ_body_accel_std_y

name	label	${\rm data_typ_emissing}. plete_{\rm \underline{m}iast} {\rm emediam} {\rm ax} \ {\rm mean}$							sd	hist
frequ_bod	y Fastelloustidr tranform frequecy signal, body acceleration standard deviation Y axis,	numeric	0	1	-1	- 0.83	1	0.5284	0.4799	925

$frequ_body_accel_std_z$

Fast fourier tranform frequecy signal, body acceleration standard deviation Z axis,

-1.0

frequ_body_accel_std_z Fast fourier tranform frequecy signal, body acceleration standard deviation Z axis, 4000 1000 1000

Figure 48: Distribution of values for frequ_body_accel_std_z

0.0

values

0.5

1.0

-0.5

Distribution 0 missing values.

Summary statistics

name label	data_twpen	niss ing nple	te <u>ni</u> n	a tra edi	amax mean	sd	hist
frequ_body_Fastefountidr_tranform frequecy signal, body acceleration standard deviation Z axis,	numeric 0 35) 1	-1	0.84	1 - 0.617	0.398 8748	9732

from body and man from

frequ_body_accel_mean_freq_x

Fast fourier tranform frequecy signal, body acceleration mean freq X axis,

Figure 49: Distribution of values for frequ_body_accel_mean_freq_x

name	label	${\rm data_ty\!\underline{n}\underline{p}\underline{e}miss\underline{ing}\underline{n}plete\underline{m}\underline{in}\underline{t}\underline{e}\underline{m}\underline{e}\underline{d}\underline{i}\underline{a}\underline{m}\underline{a}\underline{x}\underline{\ mean}}$							sd	hist
frequ_	body_acFalst framierftranførm frequecy signal, body acceleration mean freq X axis,	numeric	0	1	-1	0.24	1	0.2214	0.264 1691	5858

$frequ_body_accel_mean_freq_y$

Fast fourier tranform frequecy signal, body acceleration mean freq Y axis,

Figure 50: Distribution of values for frequ_body_accel_mean_freq_y

Distribution 0 missing values.

Summary statistics

name	label	data_twpemis	sd	hist				
frequ_body	acEast for an ierft equipment frequecy signal, body acceleration mean freq Y axis,	numeric 0 36	1	-1	0.00471	0.01540	006 408	846

from body and moon from

frequ_body_accel_mean_freq_z

Fast fourier tranform frequecy signal, body acceleration mean freq Z axis,

Figure 51: Distribution of values for frequ_body_accel_mean_freq_z

name	label	data_tmj	omissir	ngnplet	e <u>m</u> ia	ntemediama	x mean	sd	hist
frequ_bo	ody_acFalst manierfteqnform frequecy signal, body acceleration mean freq Z axis,	numeric	0	1	-1	0.061 1	0.04730	19.2 83'	7848

$frequ_body_accel_jerk_mean_x$

Fast fourier tranform frequecy signal, body acceleration jerk mean X axis,

frequ_body_accel_jerk_mean_x Fast fourier tranform frequecy signal, body acceleration jerk mean X axis, 4000 2000 -1.0 -0.5 0.0 0.5 1.0 values

Figure 52: Distribution of values for frequ_body_accel_jerk_mean_x

Distribution 0 missing values.

Summary statistics

name	label	data_twpe	nissi	i ng nplet	e <u>m</u> ia	ntemedi	iama	x mean	sd	hist
frequ_	body_acFast jforkrienearanførm frequecy signal, body acceleration jerk mean X axis,	numeric (0	1	-1	- 0.95	1	0.6567	0.3899 7135	9946

frager body agail took mann y

frequ_body_accel_jerk_mean_y

Fast fourier tranform frequecy signal, body acceleration jerk mean Y axis,

Figure 53: Distribution of values for frequ_body_accel_jerk_mean_y

name	label	data_tmj	<u>ə</u> mis	ssingnple	te <u>m</u> ia	ntemedi	iamaz	k mean	sd	hist
frequ_b	oody_ac Falst jforkriendara nførm frequecy signal, body acceleration jerk mean Y axis,	numeric	0	1	-1	- 0.93	1	0.6289	0.407 0612	3001

$frequ_body_accel_jerk_mean_z$

Fast fourier tranform frequecy signal, body acceleration jerk mean Z axis,

Figure 54: Distribution of values for frequ_body_accel_jerk_mean_z

Distribution 0 missing values.

Summary statistics

name	label	data_twpemissi	ngnplet	e <u>m</u> ia	ntemedi	iama	x mean	sd	hist
frequ_	_body_ac Falstjforkriendara nførm frequecy signal, body acceleration jerk mean Z axis,	numeric 0 38	1	-1	- 0.95	1	- 0.7436	0.297' 6082	7082

from body and integrated w

frequ_body_accel_jerk_std_x

Fast fourier tranform frequecy signal, body acceleration jerk standard deviation X axis,

Figure 55: Distribution of values for frequ_body_accel_jerk_std_x

name	label	$data_t \underline{\textit{y}}\underline{\textit{p}}\underline{\textit{e}}missin\underline{\textit{g}}\underline{\textit{n}}plet\underline{\textit{e}}\underline{\textit{n}}\underline{\textit{i}}\underline{\textit{r}}\underline{\textit{a}}\underline{\textit{h}}\underline{\textit{e}}diamaxmean$								hist
frequ_body	Festlfojerler stdnførm frequecy signal, body acceleration jerk standard deviation X axis,	numeric	0	1	1	- 0.96	1	- 0.6549	0.393 798	2918

$frequ_body_accel_jerk_std_y$

Fast fourier tranform frequecy signal, body acceleration jerk standard deviation Y axis,

Figure 56: Distribution of values for frequ_body_accel_jerk_std_y

Distribution 0 missing values.

Summary statistics

name	label	data_typemiss	ing nple	et e n	i rane di	ama	xmean	sd	hist
frequ_body	Fastlfojerler stranform frequecy signal, body acceleration jerk standard deviation Y axis,	numeric 0 39	1	- 1	- 0.93	1	0.6122	0.433 2436	5249

from body applicated a

frequ_body_accel_jerk_std_z

Fast fourier tranform frequecy signal, body acceleration jerk standard deviation Z axis,

Figure 57: Distribution of values for frequ_body_accel_jerk_std_z

name	label	${\rm data_typ\underline{e}missing}{\rm nplet}{\rm e\underline{mirathe}{\rm diam}{\rm axmean}}$								hist
frequ_body	Fasel fojerler strdnførm frequecy signal, body acceleration jerk standard deviation Z axis,	numeric	0	1	1	- 0.96	1	0.7809	0.259 284	5436

$frequ_body_accel_jerk_mean_freq_x$

Fast fourier tranform frequecy signal, body acceleration jerk mean freq X axis,

Figure 58: Distribution of values for frequ_body_accel_jerk_mean_freq_x

Distribution 0 missing values.

Summary statistics

name label	data_twpemissingnpletenirateediamax mean sd	hist
frequ_body_acc lastefdurinestmarfforq signal, body acceleration mean freq X axis,	- v	5416

from body and larly many from y

Fast fourier tranform frequecy signal, body acceleration jerk mean freq Y axis,

Figure 59: Distribution of values for frequ_body_accel_jerk_mean_freq_y

name	label	data_tyı	emiss	ċng nple	et e nir	natun edi	iamax	mean	sd	hist
frequ_be	ody_acc Fasjefdurinean ar fform frequecy signal, body acceleration jerk mean freq Y axis,	numeric	0	1	-1	0.24	1	- 0.2133	0.272 8929	1863

$frequ_body_accel_jerk_mean_freq_z$

Fast fourier tranform frequecy signal, body acceleration jerk mean freq Z axis,

Figure 60: Distribution of values for frequ_body_accel_jerk_mean_freq_z

Distribution 0 missing values.

name	label	data_twn	omissin	gnple	et e nir	atmed	iamax	k mean	sd	hist
frequ_body_ac	cclastefdurineanarfform frequecy signal, body acceleration jerk mean freq Z axis,	numeric 41	0	1	-1	- 0.1	1	0.1238	0.273 328	3538

frequ_body_gyro_mean_x

Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal mean X axis,

Figure 61: Distribution of values for frequ_body_gyro_mean_x

name	label	data_tyı	omiss	ċng nple	et e niı	natumed:	iamaz	x mean	sd	hist
frequ_bod	y <u>Fayt doumient ranform</u> frequecy signal, body gyroscope 3-axial raw signal mean X axis,	numeric	0	1	-1	- 0.89	1	0.6720	0.351 943	4984

frequ_body_gyro_mean_y

Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal mean Y axis,

Figure 62: Distribution of values for frequ_body_gyro_mean_y

Distribution 0 missing values.

Summary statistics

name	label	data_tyı	omis	singnple	tenir	nateed	iama	ax mean	sd	hist
frequ_	body Fayt founiem tranform frequecy signal, body gyroscope 3-axial raw signal mean Y axis,	numeric 42	0	1	-1	0.92	1	0.7062	0.3356 2166	6653

forces body grown mann a

frequ_body_gyro_mean_z

Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal mean Z axis,

Figure 63: Distribution of values for frequ_body_gyro_mean_z

name label	data_tyı	emis	s ing nple	et e niı	natura ed	iamax	x mean	sd	hist
frequ_body Fgyrdoumientrznform frequecy signal, body gyroscope 3-axial raw signal mean Z axis,	numeric	0	1	-1	- 0.89	1	0.6441	0.3820 .928	0194

frequ_body_gyro_std_x

Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal standard deviation X axis,

Figure 64: Distribution of values for frequ_body_gyro_std_x

Distribution 0 missing values.

Summary statistics

name label		data_tyı	emissi	n g nple	et e ni	i rane di	ama	axmean	sd	hist
body gyrosc	txanform frequecy signal, ope 3-axial raw signal viation X axis,	numeric 43	0	1	1	- 0.91	1	0.7385	0.28 5948	 5773

from body gros and re

frequ_body_gyro_std_y

Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal standard deviation Y axis,

Figure 65: Distribution of values for frequ_body_gyro_std_y

name	label	$data_t{\tt ype} missing plet {\tt enirate} diamax mean$								hist
frequ_boo	dyFagynfousied_tyanform frequecy signal, body gyroscope 3-axial raw signal standard deviation Y axis,	numeric	0	1	1	- 0.91	1	0.6742	0.369 2269	6647

$frequ_body_gyro_std_z$

Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal standard deviation Z axis,

Figure 66: Distribution of values for frequ_body_gyro_std_z

Distribution 0 missing values.

Summary statistics

name	label	data_tmp	emis	singnple	et e n	i rane di	iama	axmean	sd	hist
frequ_	bodyFagyrfousitel_tzanform frequecy signal, body gyroscope 3-axial raw signal standard deviation Z axis,	numeric 44	0	1	1	0.89	1	0.6904	0.3373 1463	3102

fuere body grown many from the

frequ_body_gyro_mean_freq_x

Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal mean freq X axis,

Figure 67: Distribution of values for frequ_body_gyro_mean_freq_x

name	label	data_tyn	sd	hist						
frequ_body	Exist fonciar threaform frequecy signal, body gyroscope 3-axial raw signal mean freq X axis,	numeric	0	1	1	- 0.09	1 9	0.1010	0.2558 0427	8889

frequ_body_gyro_mean_freq_y

Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal mean freq Y axis,

Figure 68: Distribution of values for frequ_body_gyro_mean_freq_y

Distribution 0 missing values.

Summary statistics

name	label	data_tynp	emissing	pple	et e ni	imanhedi	ama	xmean	sd	hist
frequ_body	Exist fonciar thatform frequecy signal, body gyroscope 3-axial raw signal mean freq Y axis,	numeric 45	0	1	- 1	- 0.17	1	- 0.1742	0.273 2776	3333

from body gross moon from

frequ_body_gyro_mean_freq_z

Fast fourier tranform frequecy signal, body gyroscope 3–axial raw signal mean freq Z axis,

Figure 69: Distribution of values for frequ_body_gyro_mean_freq_z

name	label	$data_ty\!$								hist
frequ_body	Exist foncier threaform frequecy signal, body gyroscope 3-axial raw signal mean freq Z axis,	numeric	0	1	1	- 0.05	1 4	0.0513	0.266 8929	1928

$frequ_body_accel_magn_mean$

Fast fourier tranform frequecy signal, body acceleration euclidean norm magnitude mean

Figure 70: Distribution of values for frequ_body_accel_magn_mean

Distribution 0 missing values.

Summary statistics

name	label	data_tmg	emis	singnple	t e niı	na tune di	ama	x mean	sd	hist
frequ_body_	Fast formign transform frequecy signal, body acceleration euclidean norm magnitude mean	numeric 46	0	1	-1	- 0.88	1	- 0.5859	0.445; 0627	3266

from body soci mom at

frequ_body_accel_magn_std

Fast fourier tranform frequecy signal, body acceleration euclidean norm magnitude standard deviation

Figure 71: Distribution of values for frequ_body_accel_magn_std

name	label	data_tyn	omiss in	gnple	et e ni	irabe	di ann a	axmean	sd	hist
frequ_bod	y Fastelouriagntrestfbrm frequecy signal, body acceleration euclidean norm magnitude standard deviation	numeric	0	1	1	0.8	_	- 0.6595	0.3554 6312	4288

frequ_body_accel_magn_mean_freq

Fast fourier tranform frequecy signal, body acceleration euclidean norm magnitude mean freq

Figure 72: Distribution of values for frequ_body_accel_magn_mean_freq

Distribution 0 missing values.

Summary statistics

name	label	data_tyn	omissing	pple	et e ni	ran edi	ama	axmean	sd	hist
frequ_body_	acFalst fraguier means for frequecy signal, body acceleration euclidean 4 norm magnitude mean freq	numeric 7	0	1	1	0.07	1	0.0768	7.02 629	9581

from hadr hadr agail toul many many

frequ_body_body_accel_jerk_magn_

Fast fourier tranform frequecy signal, body to body acceleration jerk euclidean norm magnitude mean

Figure 73: Distribution of values for frequ_body_body_accel_jerk_magn_mean

name	label	data_ n yp n is	soin aple	et e n:	irabe	diamo	axmean	sd	hist
frequ_body_	bokhst doorlejdran forugufrequeny signal, body to body acceleration jerk euclidean norm magnitude mean	numeric0	1	1	0.93	1 3	0.6207	0	 50641

frequ_body_body_accel_jerk_magn_std

Fast fourier tranform frequecy signal, body to body acceleration jerk euclidean norm magnitude standard deviation

Figure 74: Distribution of values for frequ body body accel jerk magn std

Distribution 0 missing values.

name	label 48	data_	<u>hypre</u> is	ssoingp	letm	in ra t	elianna	axmear	n sd	hist
frequ_bo	ody_b Eals t_f acceer_jenh_forms gfre que cy signal,	nume	eric0	1	-	-	1	-	0.406	6022
	body to body acceleration jerk				1	0.9	3	0.640	00768	
	euclidean norm magnitude standard									

frequ_body_body_accel_jerk_magn_

Fast fourier tranform frequecy signal, body to body acceleration jerk euclidean norm magnitude mean freq

Figure 75: Distribution of values for frequ_body_body_accel_jerk_magn_mean_freq

name	label	data_ hype iss	ingple	et e n:	irabediam	axmean	sd	hist
frequ_body_bo	ody <u>Fastceelurjerktrankemm fmequect</u> req signal, body to body acceleration jerk euclidean norm magnitude mean freq	numeric0	1	1	0.16 1	0.1732	01.975	 2537

frequ_body_body_gyro_magn_mean

Fast fourier tranform frequecy signal, body to body gyroscope 3-axial raw signal euclidean norm magnitude mean

Figure 76: Distribution of values for frequ_body_body_gyro_magn_mean

 $\begin{tabular}{ll} \textbf{Distribution} & 0 \ missing \ values. \end{tabular}$

name	label 49	data_ntypnaissingpleteniranedianaxmean						sd	hist
frequ_body_	<u>Fastyfogyier_tmaagformofæ</u> quecy signal,	numeric0	1	-	-	1	-	0.323	37012
	body to body gyroscope 3-axial raw signal euclidean norm magnitude			1	0.88	8	0.6974	1111	

frequ_body_body_gyro_magn_std

Fast fourier tranform frequecy signal, body to body gyroscope 3– axial raw signal euclidean norm magnitude standard deviation

Figure 77: Distribution of values for frequ_body_body_gyro_magn_std

name	label	data_ n ypeais	ssingp	letm	in rat ed	ianne	axmean	sd	hist
frequ_bod	y Fastlfougienotranafgnmsfædquecy signal, body to body gyroscope 3-axial raw signal euclidean norm magnitude standard deviation	numeric0	1	- 1	0.83	1	0.699	0.0-	<u> </u>

frequ_body_body_gyro_magn_mean_freq

Fast fourier tranform frequecy signal, body to body gyroscope 3-axial raw signal euclidean norm magnitude mean freq

Figure 78: Distribution of values for frequ_body_body_gyro_magn_mean_freq

 $\begin{tabular}{ll} \textbf{Distribution} & 0 \ missing \ values. \end{tabular}$

name	label 50	data_ n yp e i	issoingp	letne	inrat	ediam	axmear	ı sd	hist
frequ_body	v_bEndst_fgyrier_ntrægnformme£nnequiræcy signal,	numeric0	1	-	-	1	-	0.28	01418
	body to body gyroscope 3-axial raw			1	0.0	52	0.041	5636	
	signal euclidean norm magnitude								
	moon from								

frequ_body_body_gyro_jerk_magn_

Fast fourier tranform frequecy signal, body to body gyroscope 3– axial raw signal jerk euclidean norm magnitude mean

Figure 79: Distribution of values for frequ_body_body_gyro_jerk_magn_mean

name	label	data_ hypre is	esingp	letm	in rat e	elianna	axmean	sd	hist
frequ_body_	body to body gyroscope 3-axial raw signal jerk euclidean norm magnitude mean	numeric0	1	1	0.9	1 5	- 0.779	00	 75916

frequ_body_body_gyro_jerk_magn_std

Fast fourier tranform frequecy signal, body to body gyroscope 3-axial raw signal jerk euclidean norm magnitude standard deviation

Figure 80: Distribution of values for frequ body body gyro jerk magn std

Distribution 0 missing values.

name	label 51	data_ hype is	sóng p	letra	inmate	elianon	axmeai	n sd	hist
frequ_bod	y_ Bast y <u>fogyier_tjænkfornagreqstæby signal,</u>	numeric0	1	-	-	1	-	0.259	91601
	body to body gyroscope 3-axial raw			1	0.9^{-1}	4	0.792	21902	
	signal jerk euclidean norm magnitude								

frequ_body_body_gyro_jerk_magn_

Fast fourier tranform frequecy signal, body to body gyroscope 3– axial raw signal jerk euclidean norm magnitude mean freq

Figure 81: Distribution of values for frequ_body_body_gyro_jerk_magn_mean_freq

name	label	data_ntypneis	singp	letn	in rat edi a m	axmean	sd	hist
frequ_body_	boldast gywo <u>iejetkanforgn frequery</u> frignal, body to body gyroscope 3-axial raw signal jerk euclidean norm magnitude mean freq	numeric0	1	- 1	0.14 1	0.1267	(0.28 .5	5443

angle_timeof_body_accel_mean_gravity

Angle of time domains signal (50Hz const rate), body acceleration mean gravity

Figure 82: Distribution of values for angle_timeof_body_accel_mean_gravity

Distribution 0 missing values.

name	label	data_t y ıp	emis	singnple	et e nir	natue edia ma	ax mean	sd	hist
angle_tir	meof_bod <u>yng</u> lecel <u>timeadorgain</u> styignal (50Hz const rate), body acceleration mean gravity	5 2 umeric	0	1	-1	0.00811	0.0077	(05.8 3)	6591

angle_timeof_body_accel_jerk_mean

Angle of time domains signal (50Hz const rate), body acceleration jerk mean gravity mean

Figure 83: Distribution of values for angle_timeof_body_accel_jerk_mean_gravity_mean

name	label	di am axmean sd hist
angle_time	eof_body <u>Angtelofj¢itne</u> ndenm <u>in</u> gra	0.0026917473638
	(50Hz const rate), body	
	acceleration jerk mean	
	mean	

angle_timeof_body_gyro_mean_gravity_mean

Angle of time domains signal (50Hz const rate), body gyroscope 3-axial raw signal mean gravity mean

 $Figure~84:~Distribution~of~values~for~angle_timeof_body_gyro_mean_gravity_mean$

Distribution 0 missing values.

name	label	data_ntypnaissinnepleten_iranteedianaxmean s				axmean sd	hist
angle_timeof_	bod <u>Angly rof_timearlograinit_sigmda(50</u> } const_rate), body gyroscope 3-axial raw signal mean gravity mean	numeric0	1	- 1	0.0171	0.01768.51	161885

angle_timeof_body_gyro_jerk_mean_

Angle of time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk mean gravity mean

Figure 85: Distribution of values for angle_timeof_body_gyro_jerk_mean_gravity_mean

name	label		data_ntyp	meissoing	leta	in rat e	diama	axmear	n sd	hist
angle_timed	const rate), l	k domains giguitly (501Hzn oody gyroscope 3-axial rk mean gravity mean	numeric0	1	1		1 072	0.009	00	47698

$angle_x_gravity_mean$

Angle of X axis, gravity mean

Figure 86: Distribution of values for angle_x_gravity_mean

Distribution 0 missing values.

name	label	data_typm	_missingon	nplete_	_ratie	media	anmax	mean	sd	hist
angle_x_gravit Angle of X axis,		numeric	0	1	-1	-	1	-	0.51115	78
gravity mean			54			0.72		0.49652	22	

angle_y_gravity_mean Angle of Y axis, gravity mean 2500 2000 1500 1000 500 -1.0 -0.5 0.0 0.5 1.0 values

Figure 87: Distribution of values for angle_y_gravity_mean

$angle_z_gravity_mean$

Angle of Z axis, gravity mean

Figure 88: Distribution of values for angle_z_gravity_mean

Distribution 0 missing values.

Summary statistics

name	label	data_typ	ne_missing	omplete_	_ratien	medianmax	mean	sd	hist
angle_z	_gravit yA_ngle aoofZaxis,	numeric	0	1	-1	-		0.268898	32
	gravity mean				0.0039 0.054284		43		

Missingness report

Codebook table

{

JSON-LD metadata The following JSON-LD can be 5 found by search engines, if you share this codebook publicly on the web.

```
"name": "subject_id",
  "description": "Subject id",
  "@type": "propertyValue"
},
{
  "name": "activity_name",
  "description": "Activity name",
  "@type": "propertyValue"
},
  "name": "timeof_body_accel_mean_x",
  "description": "Time domains signal (50Hz const rate), body acceleration mean X axis,",
  "@type": "propertyValue"
},
  "name": "timeof_body_accel_mean_y",
  "description": "Time domains signal (50Hz const rate), body acceleration mean Y axis,",
  "@type": "propertyValue"
},
{
  "name": "timeof_body_accel_mean_z",
  "description": "Time domains signal (50Hz const rate), body acceleration mean Z axis,",
  "@type": "propertyValue"
},
{
  "name": "timeof_body_accel_std_x",
  "description": "Time domains signal (50Hz const rate), body acceleration standard deviation X axi
  "@type": "propertyValue"
},
{
  "name": "timeof_body_accel_std_y",
  "description": "Time domains signal (50Hz const rate), body acceleration standard deviation Y axi
  "@type": "propertyValue"
},
{
  "name": "timeof_body_accel_std_z",
  "description": "Time domains signal (50Hz const rate), body acceleration standard deviation Z axi
  "@type": "propertyValue"
},
  "name": "timeof_gravity_accel_mean_x",
  "description": "Time domains signal (50Hz const rate), gravity acceleration mean X axis,",
  "@type": "propertyValue"
},
  "name": "timeof_gravity_accel_mean_y",
  "description": "Time domains signal (50Hz const rate), gravity acceleration mean Y axis,",
  "@type": "propertyValue"
},
  "name": "timeof_gravity_accel_mean_z",
  "description": "Time domains signal (50Hz const rate), gravity acceleration mean Z axis,",
  "@type": "propertyValue"
```

```
},
  "name": "timeof_gravity_accel_std_x",
  "description": "Time domains signal (50Hz const rate), gravity acceleration standard deviation X
  "@type": "propertyValue"
},
{
  "name": "timeof_gravity_accel_std_y",
  "description": "Time domains signal (50Hz const rate), gravity acceleration standard deviation Y
  "@type": "propertyValue"
},
{
  "name": "timeof_gravity_accel_std_z",
  "description": "Time domains signal (50Hz const rate), gravity acceleration standard deviation Z
  "@type": "propertyValue"
},
  "name": "timeof_body_accel_jerk_mean_x",
  "description": "Time domains signal (50Hz const rate), body acceleration jerk mean X axis,",
  "@type": "propertyValue"
},
{
  "name": "timeof_body_accel_jerk_mean_y",
  "description": "Time domains signal (50Hz const rate), body acceleration jerk mean Y axis,",
  "@type": "propertyValue"
},
{
  "name": "timeof_body_accel_jerk_mean_z",
  "description": "Time domains signal (50Hz const rate), body acceleration jerk mean Z axis,",
  "@type": "propertyValue"
},
  "name": "timeof_body_accel_jerk_std_x",
  "description": "Time domains signal (50Hz const rate), body acceleration jerk standard deviation
  "@type": "propertyValue"
},
  "name": "timeof_body_accel_jerk_std_y",
  "description": "Time domains signal (50Hz const rate), body acceleration jerk standard deviation
  "@type": "propertyValue"
},
{
  "name": "timeof_body_accel_jerk_std_z",
  "description": "Time domains signal (50Hz const rate), body acceleration jerk standard deviation
  "@type": "propertyValue"
},
  "name": "timeof_body_gyro_mean_x",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal mean X a
  "@type": "propertyValue"
},
{
  "name": "timeof_body_gyro_mean_y",
```

```
"description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal mean Y a
  "@type": "propertyValue"
},
{
  "name": "timeof_body_gyro_mean_z",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal mean Z a
  "@type": "propertyValue"
},
{
  "name": "timeof_body_gyro_std_x",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal standard
  "@type": "propertyValue"
},
{
  "name": "timeof_body_gyro_std_y",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal standard
  "@type": "propertyValue"
},
{
  "name": "timeof_body_gyro_std_z",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal standard
  "@type": "propertyValue"
},
  "name": "timeof_body_gyro_jerk_mean_x",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk mea
  "@type": "propertyValue"
},
{
  "name": "timeof_body_gyro_jerk_mean_y",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk mea
  "@type": "propertyValue"
},
  "name": "timeof_body_gyro_jerk_mean_z",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk mea
  "@type": "propertyValue"
},
{
  "name": "timeof_body_gyro_jerk_std_x",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk sta
  "@type": "propertyValue"
},
{
  "name": "timeof_body_gyro_jerk_std_y",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk sta
  "@type": "propertyValue"
},
{
  "name": "timeof_body_gyro_jerk_std_z",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk sta
  "@type": "propertyValue"
},
```

```
"name": "timeof_body_accel_magn_mean",
  "description": "Time domains signal (50Hz const rate), body acceleration euclidean norm magnitude
  "@type": "propertyValue"
},
  "name": "timeof_body_accel_magn_std",
  "description": "Time domains signal (50Hz const rate), body acceleration euclidean norm magnitude
  "@type": "propertyValue"
},
{
  "name": "timeof_gravity_accel_magn_mean",
  "description": "Time domains signal (50Hz const rate), gravity acceleration euclidean norm magnit
  "@type": "propertyValue"
},
{
  "name": "timeof_gravity_accel_magn_std",
  "description": "Time domains signal (50Hz const rate), gravity acceleration euclidean norm magnit
  "@type": "propertyValue"
},
  "name": "timeof_body_accel_jerk_magn_mean",
  "description": "Time domains signal (50Hz const rate), body acceleration jerk euclidean norm magn
  "@type": "propertyValue"
},
  "name": "timeof_body_accel_jerk_magn_std",
  "description": "Time domains signal (50Hz const rate), body acceleration jerk euclidean norm magn
  "@type": "propertyValue"
},
{
  "name": "timeof_body_gyro_magn_mean",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal euclidea
  "@type": "propertyValue"
},
  "name": "timeof_body_gyro_magn_std",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal euclidea
  "@type": "propertyValue"
},
  "name": "timeof_body_gyro_jerk_magn_mean",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk euc
  "@type": "propertyValue"
},
{
  "name": "timeof_body_gyro_jerk_magn_std",
  "description": "Time domains signal (50Hz const rate), body gyroscope 3-axial raw signal jerk euc
  "@type": "propertyValue"
},
{
  "name": "frequ_body_accel_mean_x",
  "description": "Fast fourier tranform frequecy signal, body acceleration mean X axis,",
```

```
"@type": "propertyValue"
},
{
  "name": "frequ_body_accel_mean_y",
  "description": "Fast fourier tranform frequecy signal, body acceleration mean Y axis,",
  "@type": "propertyValue"
},
{
  "name": "frequ_body_accel_mean_z",
  "description": "Fast fourier tranform frequecy signal, body acceleration mean Z axis,",
  "@type": "propertyValue"
},
{
  "name": "frequ_body_accel_std_x",
  "description": "Fast fourier tranform frequecy signal, body acceleration standard deviation X axi
  "@type": "propertyValue"
},
  "name": "frequ_body_accel_std_y",
  "description": "Fast fourier tranform frequecy signal, body acceleration standard deviation Y axi
  "@type": "propertyValue"
},
{
  "name": "frequ_body_accel_std_z",
  "description": "Fast fourier tranform frequecy signal, body acceleration standard deviation Z axi
  "@type": "propertyValue"
},
{
  "name": "frequ_body_accel_mean_freq_x",
  "description": "Fast fourier tranform frequecy signal, body acceleration mean freq X axis,",
  "@type": "propertyValue"
},
  "name": "frequ_body_accel_mean_freq_y",
  "description": "Fast fourier tranform frequecy signal, body acceleration mean freq Y axis,",
  "@type": "propertyValue"
},
  "name": "frequ_body_accel_mean_freq_z",
  "description": "Fast fourier tranform frequecy signal, body acceleration mean freq Z axis,",
  "@type": "propertyValue"
},
{
  "name": "frequ_body_accel_jerk_mean_x",
  "description": "Fast fourier tranform frequecy signal, body acceleration jerk mean X axis,",
  "@type": "propertyValue"
},
  "name": "frequ_body_accel_jerk_mean_y",
  "description": "Fast fourier tranform frequecy signal, body acceleration jerk mean Y axis,",
  "@type": "propertyValue"
},
{
```

```
"name": "frequ_body_accel_jerk_mean_z",
  "description": "Fast fourier tranform frequecy signal, body acceleration jerk mean Z axis,",
  "@type": "propertyValue"
},
{
  "name": "frequ_body_accel_jerk_std_x",
  "description": "Fast fourier tranform frequecy signal, body acceleration jerk standard deviation
  "@type": "propertyValue"
},
  "name": "frequ_body_accel_jerk_std_y",
  "description": "Fast fourier tranform frequecy signal, body acceleration jerk standard deviation
  "@type": "propertyValue"
},
{
  "name": "frequ_body_accel_jerk_std_z",
  "description": "Fast fourier tranform frequecy signal, body acceleration jerk standard deviation
  "@type": "propertyValue"
},
{
  "name": "frequ_body_accel_jerk_mean_freq_x",
  "description": "Fast fourier tranform frequecy signal, body acceleration jerk mean freq X axis,",
  "@type": "propertyValue"
},
{
  "name": "frequ_body_accel_jerk_mean_freq_y",
  "description": "Fast fourier tranform frequecy signal, body acceleration jerk mean freq Y axis,",
  "@type": "propertyValue"
},
{
  "name": "frequ_body_accel_jerk_mean_freq_z",
  "description": "Fast fourier tranform frequecy signal, body acceleration jerk mean freq Z axis,",
  "@type": "propertyValue"
},
{
  "name": "frequ_body_gyro_mean_x",
  "description": "Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal mean X a
  "@type": "propertyValue"
},
  "name": "frequ_body_gyro_mean_y",
  "description": "Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal mean Y a
  "@type": "propertyValue"
},
{
  "name": "frequ_body_gyro_mean_z",
  "description": "Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal mean Z a
  "@type": "propertyValue"
},
  "name": "frequ_body_gyro_std_x",
  "description": "Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal standard
  "@type": "propertyValue"
```

```
},
  "name": "frequ_body_gyro_std_y",
  "description": "Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal standard
  "@type": "propertyValue"
},
{
  "name": "frequ_body_gyro_std_z",
  "description": "Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal standard
  "@type": "propertyValue"
},
{
  "name": "frequ_body_gyro_mean_freq_x",
  "description": "Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal mean fre
  "@type": "propertyValue"
},
  "name": "frequ_body_gyro_mean_freq_y",
  "description": "Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal mean fre-
  "@type": "propertyValue"
},
{
  "name": "frequ_body_gyro_mean_freq_z",
  "description": "Fast fourier tranform frequecy signal, body gyroscope 3-axial raw signal mean fre
  "@type": "propertyValue"
},
{
  "name": "frequ_body_accel_magn_mean",
  "description": "Fast fourier tranform frequecy signal, body acceleration euclidean norm magnitude
  "@type": "propertyValue"
},
  "name": "frequ_body_accel_magn_std",
  "description": "Fast fourier tranform frequecy signal, body acceleration euclidean norm magnitude
  "@type": "propertyValue"
},
  "name": "frequ_body_accel_magn_mean_freq",
  "description": "Fast fourier tranform frequecy signal, body acceleration euclidean norm magnitude
  "@type": "propertyValue"
},
{
  "name": "frequ_body_body_accel_jerk_magn_mean",
  "description": "Fast fourier tranform frequecy signal, body to body acceleration jerk euclidean n
  "@type": "propertyValue"
},
  "name": "frequ_body_body_accel_jerk_magn_std",
  "description": "Fast fourier tranform frequecy signal, body to body acceleration jerk euclidean n
  "@type": "propertyValue"
},
{
  "name": "frequ_body_body_accel_jerk_magn_mean_freq",
```

```
"description": "Fast fourier tranform frequecy signal, body to body acceleration jerk euclidean n
  "@type": "propertyValue"
},
  "name": "frequ_body_body_gyro_magn_mean",
  "description": "Fast fourier tranform frequecy signal, body to body gyroscope 3-axial raw signal
  "@type": "propertyValue"
},
{
  "name": "frequ_body_body_gyro_magn_std",
  "description": "Fast fourier tranform frequecy signal, body to body gyroscope 3-axial raw signal
  "@type": "propertyValue"
},
{
  "name": "frequ_body_body_gyro_magn_mean_freq",
  "description": "Fast fourier tranform frequecy signal, body to body gyroscope 3-axial raw signal
  "@type": "propertyValue"
},
  "name": "frequ_body_body_gyro_jerk_magn_mean",
  "description": "Fast fourier tranform frequecy signal, body to body gyroscope 3-axial raw signal
  "@type": "propertyValue"
},
{
  "name": "frequ_body_body_gyro_jerk_magn_std",
  "description": "Fast fourier tranform frequecy signal, body to body gyroscope 3-axial raw signal
  "@type": "propertyValue"
},
  "name": "frequ_body_body_gyro_jerk_magn_mean_freq",
  "description": "Fast fourier tranform frequecy signal, body to body gyroscope 3-axial raw signal
  "@type": "propertyValue"
},
  "name": "angle_timeof_body_accel_mean_gravity",
  "description": "Angle of time domains signal (50Hz const rate), body acceleration mean gravity",
  "@type": "propertyValue"
},
{
  "name": "angle_timeof_body_accel_jerk_mean_gravity_mean",
  "description": "Angle of time domains signal (50Hz const rate), body acceleration jerk mean gravi
  "@type": "propertyValue"
},
{
  "name": "angle_timeof_body_gyro_mean_gravity_mean",
  "description": "Angle of time domains signal (50Hz const rate), body gyroscope 3-axial raw signal
  "@type": "propertyValue"
},
  "name": "angle_timeof_body_gyro_jerk_mean_gravity_mean",
  "description": "Angle of time domains signal (50Hz const rate), body gyroscope 3-axial raw signal
  "@type": "propertyValue"
},
```

```
{
    "name": "angle_x_gravity_mean",
    "description": "Angle of X axis, gravity mean",
    "@type": "propertyValue"
},
{
    "name": "angle_y_gravity_mean",
    "description": "Angle of Y axis, gravity mean",
    "@type": "propertyValue"
},
{
    "name": "angle_z_gravity_mean",
    "description": "Angle of Z axis, gravity mean",
    "@type": "propertyValue"
}
}
```