# International TOR Rectifier

### IR2183(4)(S)&(PbF)

### HALF-BRIDGE DRIVER

#### **Features**

- Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for both channels
- 3.3V and 5V input logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5V offset.
- Lower di/dt gate driver for better noise immunity
- Output source/sink current capability 1.4A/1.8A
- Also available LEAD-FREE (PbF)

### **Packages**



### Description

The IR2183(4)(S) are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V

#### IR2181/IR2183/IR2184 Feature Comparison

| Part  | Input<br>logic | Cross-<br>conduction<br>prevention<br>logic | Dead-Time          | Ground Pins | Ton/Toff   |  |
|-------|----------------|---------------------------------------------|--------------------|-------------|------------|--|
| 2181  | HIN/LIN        | no                                          | none               | COM         | 180/220 ns |  |
| 21814 | HIIN/LIIN      | 110                                         | none               | VSS/COM     | 100/220115 |  |
| 2183  | HIN/LIN        | VOC                                         | Internal 500ns     | COM         | 180/220 ns |  |
| 21834 | HIN/LIN yes    |                                             | Program 0.4 ~ 5 us | VSS/COM     | 100/220115 |  |
| 2184  | IN/SD          | VOC                                         | Internal 500ns     | COM         | 680/270 ns |  |
| 21844 | IIV/SD         | yes                                         | Program 0.4 ~ 5 us | VSS/COM     | 000/270118 |  |

logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.



International IOR Rectifier

### **Absolute Maximum Ratings**

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

| Symbol              | Definition                                         |                     | Min.                  | Max.                  | Units |
|---------------------|----------------------------------------------------|---------------------|-----------------------|-----------------------|-------|
| V <sub>B</sub>      | High side floating absolute voltage                | -0.3                | 625                   |                       |       |
| Vs                  | High side floating supply offset voltage           | V <sub>B</sub> - 25 | V <sub>B</sub> + 0.3  |                       |       |
| V <sub>HO</sub>     | High side floating output voltage                  |                     | V <sub>S</sub> - 0.3  | V <sub>B</sub> + 0.3  |       |
| V <sub>CC</sub>     | Low side and logic fixed supply voltage            |                     | -0.3                  | 25                    |       |
| V <sub>LO</sub>     | Low side output voltage                            |                     | -0.3                  | V <sub>CC</sub> + 0.3 | V     |
| DT                  | Programmable dead-time pin voltage (IR21           | 834 only)           | V <sub>SS</sub> - 0.3 | V <sub>CC</sub> + 0.3 |       |
| V <sub>IN</sub>     | Logic input voltage (HIN & LIN)                    |                     | V <sub>SS</sub> - 0.3 | V <sub>SS</sub> + 5   |       |
| V <sub>SS</sub>     | Logic ground (IR21834 only)                        |                     | V <sub>CC</sub> - 25  | V <sub>CC</sub> + 0.3 |       |
| dV <sub>S</sub> /dt | Allowable offset supply voltage transient          |                     | _                     | 50                    | V/ns  |
| PD                  | Package power dissipation @ T <sub>A</sub> ≤ +25°C | (8-lead PDIP)       | _                     | 1.0                   |       |
|                     |                                                    | (8-lead SOIC)       | _                     | 0.625                 |       |
|                     |                                                    | (14-lead PDIP)      | _                     | 1.6                   | W     |
|                     |                                                    | (14-lead SOIC)      | _                     | 1.0                   |       |
| Rth <sub>JA</sub>   | Thermal resistance, junction to ambient            | (8-lead PDIP)       | _                     | 125                   |       |
|                     |                                                    | (8-lead SOIC)       | _                     | 200                   |       |
|                     |                                                    | (14-lead PDIP)      | _                     | 75                    | °C/W  |
|                     |                                                    | (14-lead SOIC)      | _                     | 120                   |       |
| TJ                  | Junction temperature                               |                     | _                     | 150                   |       |
| T <sub>S</sub>      | Storage temperature                                |                     | -50                   | 150                   | °C    |
| TL                  | Lead temperature (soldering, 10 seconds)           |                     | _                     | 300                   |       |

Recommended Operating Conditions
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The  $V_S$  and  $V_{SS}$  offset rating are tested with all supplies biased at 15V differential.

| Symbol          | Definition                                        | Min.                | Max.                | Units |
|-----------------|---------------------------------------------------|---------------------|---------------------|-------|
| VB              | High side floating supply absolute voltage        | V <sub>S</sub> + 10 | V <sub>S</sub> + 20 |       |
| Vs              | High side floating supply offset voltage          | Note 1              | 600                 |       |
| V <sub>HO</sub> | High side floating output voltage                 | Vs                  | V <sub>B</sub>      |       |
| Vcc             | Low side and logic fixed supply voltage           | 10                  | 20                  |       |
| V <sub>LO</sub> | Low side output voltage                           | 0                   | Vcc                 | V     |
| V <sub>IN</sub> | Logic input voltage (HIN & LIN)                   | V <sub>SS</sub>     | V <sub>SS</sub> + 4 |       |
| DT              | Programmable dead-time pin voltage (IR21834 only) | V <sub>SS</sub>     | V <sub>CC</sub>     |       |
| V <sub>SS</sub> | Logic ground (IR21834 only)                       | -5                  | 5                   |       |
| T <sub>A</sub>  | Ambient temperature                               | -40                 | 125                 | °C    |

Note 1: Logic operational for Vs of -5 to +600V. Logic state held for Vs of -5V to -VBs. (Please refer to the Design Tip DT97-3 for more details).

Note 2: HIN and LIN pins are internally clamped with a 5.2V zener diode.

### **Dynamic Electrical Characteristics**

V<sub>BIAS</sub> (V<sub>CC</sub>, V<sub>BS</sub>) = 15V, V<sub>SS</sub> = COM, C<sub>L</sub> = 1000 pF, T<sub>A</sub> = 25°C, DT = VSS unless otherwise specified.

| Symbol         | Definition                                     | Min. | Тур. | Max. | Units | <b>Test Conditions</b>      |  |
|----------------|------------------------------------------------|------|------|------|-------|-----------------------------|--|
| ton            | Turn-on propagation delay                      |      | 180  | 270  |       | V <sub>S</sub> = 0V         |  |
| toff           | Turn-off propagation delay                     | _    | 220  | 330  |       | V <sub>S</sub> = 0V or 600V |  |
| MT             | Delay matching   ton - toff                    | _    | 0    | 35   |       |                             |  |
| t <sub>r</sub> | Turn-on rise time                              | _    | 40   | 60   | nsec  | V <sub>S</sub> = 0V         |  |
| tf             | Turn-off fall time                             | _    | 20   | 35   |       | V <sub>S</sub> = 0V         |  |
| DT             | Deadtime: LO turn-off to HO turn-on(DTLO-HO) & | 280  | 400  | 520  |       | RDT= 0                      |  |
|                | HO turn-off to LO turn-on (DTHO-LO)            | 4    | 5    | 6    | μsec  | RDT = 200k (IR21834)        |  |
| MDT            | Deadtime matching = DTLO-HO - DTHO-LO          | _    | 0    | 50   | nsec  | RDT=0                       |  |
|                | ·                                              | -    | 0    | 600  | HISEC | RDT = 200k (IR21834)        |  |

### **Static Electrical Characteristics**

 $V_{BIAS}$  ( $V_{CC}$ ,  $V_{BS}$ ) = 15V,  $V_{SS}$  = COM, DT=  $V_{SS}$  and  $T_A$  = 25°C unless otherwise specified. The  $V_{IL}$ ,  $V_{IH}$  and  $I_{IN}$  parameters are referenced to  $V_{SS}$ /COM and are applicable to the respective input leads: HIN and LIN. The  $V_O$ ,  $I_O$  and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

| Symbol              | Definition                                                              |     | Тур. | Max. | Units | Test Conditions                        |
|---------------------|-------------------------------------------------------------------------|-----|------|------|-------|----------------------------------------|
| V <sub>IH</sub>     | Logic "1" input voltage for HIN & logic "0" for $\overline{\text{LIN}}$ | 2.7 | _    | _    |       | V <sub>CC</sub> = 10V to 20V           |
| V <sub>IL</sub>     | Logic "0" input voltage for HIN & logic "1" for LIN                     | _   | _    | 0.8  | V     | V <sub>CC</sub> = 10V to 20V           |
| V <sub>OH</sub>     | High level output voltage, V <sub>BIAS</sub> - V <sub>O</sub>           | _   | _    | 1.2  |       | I <sub>O</sub> = 0A                    |
| V <sub>OL</sub>     | Low level output voltage, VO                                            | _   | _    | 0.1  |       | I <sub>O</sub> = 0A                    |
| I <sub>LK</sub>     | Offset supply leakage current                                           | _   | _    | 50   |       | V <sub>B</sub> = V <sub>S</sub> = 600V |
| I <sub>QBS</sub>    | Quiescent V <sub>BS</sub> supply current                                | 20  | 60   | 150  | μΑ    | V <sub>IN</sub> = 0V or 5V             |
| IQCC                | Quiescent V <sub>CC</sub> supply current                                | 0.4 | 1.0  | 1.6  | mA    | V <sub>IN</sub> = 0V or 5V             |
| I <sub>IN+</sub>    | Logic "1" input bias current                                            | _   | 25   | 60   | _     | $HIN = 5V, \overline{LIN} = 0V$        |
| I <sub>IN-</sub>    | Logic "0" input bias current                                            | _   | _    | 1.0  | μA    | HIN = 0V, LIN = 5V                     |
| V <sub>CCUV+</sub>  | V <sub>CC</sub> and V <sub>BS</sub> supply undervoltage positive going  | 8.0 | 8.9  | 9.8  |       |                                        |
| V <sub>BSUV+</sub>  | threshold                                                               |     |      |      |       |                                        |
| V <sub>CCUV</sub> - | V <sub>CC</sub> and V <sub>BS</sub> supply undervoltage negative going  | 7.4 | 8.2  | 9.0  | V     |                                        |
| V <sub>BSUV</sub> - | threshold                                                               |     |      |      | ľ     |                                        |
| V <sub>ССUVН</sub>  | Hysteresis                                                              | 0.3 | 0.7  | _    |       |                                        |
| V <sub>BSUVH</sub>  |                                                                         |     |      |      |       |                                        |
| I <sub>O+</sub>     | Output high short circuit pulsed current                                | 1.4 | 1.9  | _    |       | V <sub>O</sub> = 0V,                   |
|                     |                                                                         |     |      |      | Α     | PW ≤ 10 μs                             |
| I <sub>O</sub> -    | Output low short circuit pulsed current                                 |     | 2.3  | -    | , ,   | V <sub>O</sub> = 15V,                  |
|                     |                                                                         |     |      |      |       | PW ≤ 10 µs                             |

### **Functional Block Diagrams**





### **Lead Definitions**

| Symbol         | Description                                                                                   |
|----------------|-----------------------------------------------------------------------------------------------|
| HIN            | Logic input for high side gate driver output (HO), in phase (referenced to COM for IR2183 and |
|                | VSS for IR21834)                                                                              |
| LIN            | Logic input for low side gate driver output (LO), out of phase (referenced to COM for IR2183  |
|                | and VSS for IR21834)                                                                          |
| DT             | Programmable dead-time lead, referenced to VSS. (IR21834 only)                                |
| VSS            | Logic Ground (21834 only)                                                                     |
| V <sub>B</sub> | High side floating supply                                                                     |
| НО             | High side gate driver output                                                                  |
| Vs             | High side floating supply return                                                              |
| Vcc            | Low side and logic fixed supply                                                               |
| LO             | Low side gate driver output                                                                   |
| COM            | Low side return                                                                               |

### **Lead Assignments**





Figure 1. Input/Output Timing Diagram





Figure 2. Switching Time Waveform Definitions



Figure 3. Deadtime Waveform Definitions



Figure 4A. Turn-on Propagation Delay vs. Temperature



Figure 4B. Turn-on Propagation Delay vs. Supply Voltage



Figure 5A. Turn-off Propagation Delay vs. Temperature



Figure 5B. Turn-off Propagation Delay vs. Supply Voltage



Figure 6A. Turn-on Rise Time vs. Temperature



Figure 6B. Turn-on Rise Time vs. Supply Voltage



Figure 7A. Turn-off Fall Time vs. Temperature



Figure 7B. Turn-off Fall Time vs. Supply Voltage



Figure 8A. Deadtime vs. Temperature



Figure 8B. Deadtime vs. Supply Voltage



Figure 8C. Deadtime vs. R<sub>DT</sub>



Figure 9A. Logic "1" Input Voltage vs. Temperature



Figure 9B. Logic "1" Input Voltage vs. Supply Voltage



Figure 10A. Logic "0" Input Voltage vs. Temperature



Figure 10B. Logic "0" Input Voltage vs. Supply Voltage



Figure 11A. High Level Output vs. Temperature



Figure 11B. High Level Output vs. Supply Voltage



Figure 12A. Low Level Output vs. Temperature



Figure 12B. Low Level Output vs. Supply Voltage



Figure 13A. Offset Supply Leakage Current vs. Temperature



Figure 13B. Offset Supply Leakage Current vs.  $V_{\rm B}$  Boost Voltage



Figure 14A. V<sub>BS</sub> Supply Current vs. Temperature



Figure 14B.  $\rm V_{BS}$  Supply Current vs.  $\rm V_{BS}$  Floating Supply Voltage



Figure 15A.  $V_{\rm CC}$  Supply Current vs. Temperature



Figure 15B.  $V_{\rm CC}$  Supply Current vs.  $V_{\rm CC}$  Supply Voltage



Figure 16A. Logic "1" Input Bias Current vs. Temperature



Figure 16B. Logic "1" Input Bias Current vs. Supply Voltage



Figure 17A. Logic "0" Input Bias Current vs. Temperature



Figure 17B. Logic "0" Input Bias Current vs. Supply Voltage



Figure 18.  $V_{\rm CC}$  and  $V_{\rm BS}$  Undervoltage Threshold (+) vs. Temperature



Figure 19.  $\rm V_{CC}$  and  $\rm V_{BS}$  Undervoltage Threshold (-) vs. Temperature



Figure 20A. Output Source Current vs. Temperature



Figure 20B. Output Source Current vs. Supply Voltage



Figure 21A. Output Sink Current vs. Temperature



Figure 21B. Output Sink Current vs. Supply Voltage



Figure 22. IR2183 vs. Frequency (IRFBC20),  ${\rm R_{gate}}{=}33\Omega,\,{\rm V_{CC}}{=}15{\rm V}$ 



Figure 23. IR2183 vs. Frequency (IRFBC30),  ${\rm R_{\rm oate}}{=}22\Omega,\,{\rm V_{\rm CC}}{=}15{\rm V}$ 



Figure 24. IR2183 vs. Frequency (IRFBC40),  $\rm R_{\rm oate}$  =15 $\Omega,\,\rm V_{\rm CC}$  =15V



Figure 25. IR2183 vs. Frequency (IRFPE50),  $R_{\text{cate}} {=} 10 \Omega, \, V_{\text{CC}} {=} 15 \text{V}$ 



Figure 26. IR21834 vs. Frequency (IRFBC20),  $\rm R_{oate} = 33\Omega,\, V_{CC} = 15V$ 



Figure 27. IR21834 vs. Frequency (IRFBC30),  $\rm R_{\rm qate} {=} 22\Omega,\, \rm V_{\rm CC} {=} 15V$ 



Figure 28. IR21834 vs. Frequency (IRFBC40),  $\rm R_{gate} {=} 15 \Omega, \, \rm V_{CC} {=} 15 V$ 



Figure 29. IR21834 vs. Frequency (IRFPE50),  $\rm R_{\rm oate} {=} 10\Omega, \, \rm V_{\rm CC} {=} 15V$ 



Figure 30. IR2183s vs. Frequency (IRFBC20),  $$R_{\text{cate}}$=33\Omega,\,V_{\text{CC}}$=15V$ 



Figure 31. IR2183s vs. Frequency (IRFBC30),  $\rm R_{\rm oate} = 22\Omega,\, V_{\rm CC} = 15V$ 



Figure 32. IR2183s vs. Frequency (IRFBC40),  $$R_{\text{uate}}$=$15\Omega,\,V_{\text{CC}}$=$15V$ 



Figure 33. IR2183s vs. Frequency (IRFPE50),  $R_{\text{oate}} {=} 10 \Omega, \, V_{\text{CC}} {=} 15 V$ 



Figure 34. IR21834s vs. Frequency (IRFBC20),  $\rm R_{\rm gate}$  =33  $\Omega$  ,  $\rm V_{\rm CC}$  =15 V



Figure 35. IR21834s vs. Frequency (IRFBC30),  $\rm R_{\rm oate} = 22\Omega, \, \rm V_{\rm CC} = 15V$ 



Figure 36.  $\mathbb{R}$  21834s vs. Frequency (RFBC 40),  $R_{\text{gate}} = 15 \Omega \text{, V}_{\text{CC}} = 15 \text{V}$ 



Figure 37.  $\mathbb{R}$  21834s vs. Frequency ( $\mathbb{R}$  FPE50),  $\mathbf{R}_{\mathrm{gate}} = \mathbf{10}_{\Omega}, \mathbf{V}_{\mathrm{CC}} = \mathbf{15} \mathbf{V}$ 

### **Case outlines**









#### LEADFREE PART MARKING INFORMATION



### ORDER INFORMATION

#### **Basic Part (Non-Lead Free)**

8-Lead PDIP IR2183 order IR2183 8-Lead SOIC IR2183S order IR2183S 14-Lead PDIP IR21834 order IR21834 14-Lead SOIC IR21834 order IR21834S

#### Leadfree Part

8-Lead PDIP IR2183 order IR2183PbF 8-Lead SOIC IR2183S order IR2183SPbF 14-Lead PDIP IR21834 order IR21834PbF 14-Lead SOIC IR21834 order IR21834SPbF

## International TOR Rectifier

Thisproduct has been designed and qualified for the industrial market.

Qualification Standards can be found on IR's Web Site http://www.irf.com

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

4/4/2006