2018春高数下期钟试题 2 (回忆版)

- 1. Determine which of the following series converges absolutely, converges or diverges. Use any method, and give reasons for your answers.

 (1) $\frac{2^{n}+4^{n}}{3^{n}+4^{n}}$;

 (2) $\frac{2^{n}+4^{n}}{n(\ln n)^{2}}$;

 - (3) $\frac{2}{n!} \frac{1}{n!}$; $\frac{1}{n!}$ $\frac{1}{n!}$
- 2.(1) Find the radius and interval of convergence of the series $\frac{2}{n}$ (-1) $\frac{2}{\sqrt{n^2+3}}$
- (2) For what values of x does the series converge absolutely, or conditionally? 3. Find the Maclaurin series of the function $f(x) = (x+1)e^{x}.$
- 4. Use series to evaluate the limit $\lim_{x\to 0} \frac{\ln(1+x^2)}{1-\cos x}$
 - 5. Find the length of astroid

 $\chi = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le 2\pi$.

- 6. Find the earea of the region bounded by the circle $r = 2 \sin\theta$ for $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$.

 7. Find the first four terms of the binomial series for the function.

 - 8. Does the following sequence converge? If so, to what value? $x_1=1$, $x_{n+1}=\frac{x_n}{2}+\frac{1}{x_n}$.