PCT/US2003/023981 DT12 Rec'd PCT/PTO 0 1 FEB 2005

SEQUENCE LISTING

		Lih-Ling oni, Yvonne										
<120>	MK2 Interacting Proteins											
<130>	08702.0097-00304											
<150> <151>	USSN 60/400,044 2002-08-02											
<160>	6											
<170>	Pate	entIn versio	on 3.1									
<210> <211> <212> <213>	1 3312 DNA Homo	2 sapiens				·	·					
<400>	1											
cccacge	cgtc	cgggggacgg	ttgctgagcg	ggcctgggac	agcgggtcgc	ggcacctccc	60					
gcctgc	gcgt	gtctaatccg	tctgtcgggt	cccgaaagag	ctaagccgag	cctgcgccgg	120					
acgggt	gggc	tggactgaga	gaattctctg	agctggtgac	aggtgccaca	ggcactgggg	180					
atctca	ccag	aaaggaaccg	acggagctag	gggccagcga	gatggcggac	gaggccttag	240					
ctgggc	tgga	tgagggagcc	cttcggaagc	tgctggaggt	cacagcagat	ctggcagagc	300					
ggcggc	gcat	ccgctcagcc	atccgggaac	tgcagcggca	ggagctggag	cgcgaggagg	360					
aggccc	tggc	atccaagcgt	ttccgtgccg	agcggcagga	caacaaggag	aactggctgc	420					
actctc	agca	gcgggaagct	gagcagcggg	ctgccctggc	acggctggca	gggcagctgg	480					
agtcca	tgaa	cgatgtggag	gaattgactg	cactgttgcg	aagcgctggt	gagtatgagg	540					
agcgca	agct	gatccgagct	gccatccgcc	gtgtacgggc	tcaggagatt	gaggctgcca	600					
ccttgg	ctgg	gaggttgtac	agcgggcgtc	ccaacagtgg	ctcaagagag	gacagcaagg	660					
ggctag	cggc	acacaggctg	gaacagtgtg	aggtgccaga	gcgagaggaa	caggaacagc	720					
aggcag	aggt	ttcaaagcca	acccccaccc	ctgaaggcac	cagecaggat	gtgaccacag	780					
tgacac	tcct	gctgcgagcc	ccacctggga	gcacatccag	ctcacctgcc	tcacccagca	840					
gttcac	ccac	ccctgcctct	cctgagcctc	cattggagcc	tgccgaggcc	cagtgcctta	900					
cagctg	aggt	tccaggcagc	ccagagccac	ccccagccc	acccaagacc	accagccctg	960					
agcctc	agga	gtctccaacg	ctccccagca	ctgagggcca	ggtggtcaac	aagcttctgt	1020					
ctggcc	ccaa	agagacccct	gctgcccaga	gccccaccag	aggcccctct	gacaccaaga	1080					
gagcag	acgt	ggctggaccc	egaccetgee	aacgctccct	gtcggtgctc	agcccccgcc	1140					
220020	cccs	usscoususu	tecacecee	ttaccaacaa	accttcotco	++0020000	1200					

ctggctctgt	gcgggatcgt	gtccacaagt	tcacatctga	ttctcctatg	gctgctaggc	1260
tccaggatgg	cacaccccag	gctgccctaa	gtcccctgac	ccccgcaagg	ctcctgggcc	1320
cctccctcac	cagcaccacc	cctgcctcct	cctccagcgg	ctcctcctct	cggggcccca	1380
gtgatacctc	ctcccggttc	agcaaggagc	aacgaggagt	agcccagccc	ctggcccagc	1440
ttcgaagctg	ccccaggag	gagggcccca	gggggcgggg	cttggctgct	aggccccttg	1500
aaaacagagc	aggggggcct	gtggcacgtt	cagaggagcc	tggtgccccg	ctgcccgtgg	1560
ccgtcggcac	tgccgagcca	gggggcagta	tgaagaccac	attcaccatc	gagatcaagg	1620
acggccgtgg	ccaggcctcc	acaggccggg	tgctgctgcc	cacaggcaac	cagagggcag	1680
aactgacact	ggggctgcgg	gegeeeega	ccctactcag	caccagtagt	gggggcaaga	1740
gcaccatcac	ccgtgtcaac	agccctggga	ccctggctcg	gctgggcagt	gtcactcatg	1800
tcaccagctt	cagccatgcc	cccccagta	gccgaggagg	ctgcagcatc	aagatggaac	1860
cagagccagc	agagcctctc	gctgcagcag	tggaagcggc	caatggggct	gagcagaccc	1920
gagtgaacaa	agcaccagaa	gggcggagcc	ctctgagcgc	tgaggagctg	atgactattg	1980
aggatgaagg	agtcttggac	aagatgctgg	atcagagcac	ggactttgaa	gagcggaagc	2040
tcatccgggc	tgcacttcgt	gagctccgac	aaaggaagag	agaccagcgg	gacaaggagc	2100
gggaacggcg	gctgcaggag	gcacggggcc	ggccagggga	ggggcgcggc	aacacagcca	2160
ctgagaccac	cacgaggcac	agccagcggg	cagctgatgg	ctctgctgtc	agcactgtta	2220
ccaagactga	gcggctcgtc	cactccaatg	atggcacacg	gacggcccgc	accaccacag	2280
tggagtcgag	tttcgtgagg	cgctcggaga	atggcagtgg	cagcaccatg	atgcaaacca	2340
agaccttctc	ctcttcctcc	tcatccaaga	agatgggcag	catcttcgac	cgcgaggacc	2400
aggccagccc	acgggccggc	agcctggcgg	cgctcgagaa	acggcaggcc	gagaagaaga	2460
aagagctgat	gaaggcgcag	agtctgccca	agacctcagc	ctcccaggcg	cgcaaggcca	2520
tgattgagaa	gctggagaag	gagggcgcgg	ccggcagccc	tggcggaccc	cgcgcagccg	2580
tgcagcgatc	caccagette	ggggtcccca	acgccaacag	catcaagcag	atgctgctgg	:2640
actggtgtcg	agccaagact	cgcggctacg	agcacgtcga	catccagaac	ttctcctcca	2700
gctggagtga	tgggatggcc	ttctgtgccc	tggtgcacaa	cttcttccct	gaggccttcg	2760
actatgggca	gcttagccct	cagaaccgac	gccagaactt	cġaggtggcc	ttctcatctg	2820
cggagaccca	tgcggactgc	ccgcagetee	tggatacaga	ggacatggtg	cggcttcgag	. 2880
agcctgactg	gaagtgcgtg	tacacgtaca	tccaggaatt	ctaccgctgt	ctggtccaga	2940
aggggctggt	aaaaaccaaa	aagtcctaac	ccctgctcgg	ggccccacgg	atgctggtgg	3000

actgtgtgcc	cctggtggag	gtggacgaca	tgatgatcat	gggcaagaag	cctgacccca	3060
agtgtgtctt	cacctatgtg	cagtcgctct	acaaccacct	gcgacgccac	gaactgcgcc	3120
tgcgcggcaa	gaatgtctag	cctgcccgcc	cgcatggcca	gccagtggca	agctgccgcc	3180
cccactctcc	gggcaccgtc	tcctgcctgt	gcgtccgccc	accgctgccc	tgtctgttgc	3240
gacaccctcc	ccccacata	cacacgcagc	gttttgataa	attattggtt	ttcaacgaaa	3300
aaaaaaaaa	aa .					3312

<210> 2 <211> 2555 <212> DNA <213> Homo sapiens

<400> 2 ggcgccgcat	gtgtctccgc	ggcggctgca	gccctcgagc	gcccgccgcc	gcgccccaac	60
cccggccgcc	gcccgccctc	ccgccccggc	ctcgcgcccc	cgtcccggcc	tegegeeeeg	120
gccgcccttt	gttgacgccg	gccaggccgt	gcggtcggat	gcgccgcggc	agccccgggc	180
cccggctcgg	aggctcccgg	ggcgagagga	ggcggcccgc	cggccgggac	cccgcgcgag	240
tcggccccgg	ccaggggctg	cgtaggcccg	cccggccagg	cccagccgcc	tggacagaga	300
cagggcaggg	cattgttcat	gcactgaccg	acctcagcat	ccccggcatg	acctcaggga	360
acggaaactc	tgcctccagc	atcgccggca	ctgccccca	gaatggtgag	aataaaccac	420
cacaggccat	tgtgaaaccc	caaatcctga	cgcatgttat	cgaagggttt	gtgatccagg	480
agggggcgga	cgtttcccgg	tgggacgctc	gtctgctggt.	ggggaatctc	aagaagaagt [.]	540
atgcacaggg	gtteetgeet	gagaaacttc	cacagcagga	tcacaccacc	accactgact	600
cggagatgga	ggagccctat	ctgcaagaat	ccaaagagga	gggtgctccc	ctcaaactca	660
agtgtgagct	ctgtggccgg	gtggactttg	cctataagtt	caagcgttcc	aagcgcttct	720
gttccatggc	ttgtgcaaag	aggtacaacg	tgggatgcac	caaacgggtg	ggacttttcc	780
actcagaccg	gagcaagctg	cagaaggcag	gagctgcgac	ccacaaccgc	cgtcggccag	840
caaagccagt	ctgccaccac	ttaccaagga	taccaagaag	cagccaacag	gcactgtgcc	900
cctttcggtt	actgctgctt	tgcgtaacac	acagccagga	agactccagc	cgttgctcag	960
ataactcaag	ctatgaggaa	cccttgtcac	ccatctcagc	cagctcatct	acttccgccg	1020
gcgacaaggc	cagcgggacc	tggagctccc	cgacatgcat	atgcgggacc	tggtgggcat	1080
gggacaccac	ttcctgccaa	gtgagccacc	aagtgaatgt	agaagacgtc	tacgaattca	1140
teegetetet	gccaggctgc	caggagatag	cagaggaatt	ccgtgcccag	gaaatcgacg	1200
ggcaagccct	gctgctgctc	aaggaggacc	acctgatgag	cgttatgaac	atcaagctgg	1260

ggcccgccct	gaagatctac	gcccgcatca	gcatgctcaa	ggactcctag	ggctggtggc	1 320
accaggattc	tggcccaggg	cgcctcctcc	cgactgagca	gagccagaca	gacattcctg	1380
aggggcccag	aaatggcggc	gttggagggc	aggggctctc	cctaggggca	tagctggtga	1440
ggaggtctgg	gcacctcctc	catggctctc	aggggccttt	catttctgtg	ggaggggcag	1500
agaggtaggt	ggcacagaag	atggggcttt	atgcttgtaa	atattgatag	cactggcttc	1560
ctccaaagtc	ccaatactct	agccccgctc	tcttcccctc	tttctgtccc	ccattttcca	1620
gggggtatat	ggtcagggct	ccccaacctg	agttggttac	ttcaagggca	gccagcaggc	1680
ctggatggag	gcctagaaag	cccttgcctt	ccttcctccc	acttctttct	ccaggcctgg	1740
ttaactcttc	cgttgtcagc	ttctcccct	tcagcctgtt	tctgcagcag	ccagggttct	1800
ccccctaca	ccctctgcag	gtggagagag	agaagctggg	cccagccgcg	gtgcctgctg	1860
gccaagacgc	cttaacgctg	tgtgtatgac	tgtgtgactg	tgtgggagcc	tggactgaca	1920
gataggccaa	gggctactct	ctggcatctc	caggtgtttt	gtagcaaaca	gccacttagt	1980
gctttgtcct	ggactccact	cagcctcagg	atggggaata	gccaagaatg	gcagcctcag	2040
cgcagaggca	aggtcagaaa	gagacggcgc	ttcagagttt	cctttccaga	cacccctccc	2100
cgcactgtga	agttcccctg	accgccctcc	tggttcacaa	agagcattaa	gaaagctgcg	2160
gtggtctgag	caacatagcc	cagacgtgga	gcctcctggc	ctgcctgccc	gcccaccctg	2220
ggagtccagt	ggtgaggctc	agagaacttc	taaggggaaa	gaacagctgg	agtttctgtt	2280
gatgtgaaga	aggcagctct	tggcctccca.	ctcccacact	tctttgccta	taaatcttcc	2340
tagcagcaat	ttgagctacc	tgaggaggag	gcagggcaga	agggcaaggg	cctgcctctg	2400
acctgccgtg	tcctttgcag	gaaggaggta	ggcacctttc	tgagcttatt	ctattcccca	2460
cccacacccc	caggcagggt	tggaaatgaa	ggacttttt	aacctttgtt	ttgtttttta	2520
aaaataaatc	tgtaaaatct	gaaaaaaaaa	aaaaa		•	2555

<210> 3

<211> 3664

<212> DNA

<213> Homo sapiens

<400> 3
atggggcctg aaactgtctg ggtctgagct ggggagcgga agccacttgt ccctctcct 60
ccccaggact tctgtgactc ctgggccaca gaggtccaac cagggtaagg gcctggggat 120
acccctgcc tggcccctt gcccaaactg gcagggggc caggctgggc agcagccct 180
cttcacctc aactatggat ctcctgccc ccaagcccaa gtacaatcca ctccggaatg 240
agtctctgtc atcgctggag gaaggggctt ctgggtccac cccccggag gagctgcctt 300

ccccatcagc	ttcatccctg	gggcccatcc	tgcctcctct	gcctggggac	gatagtccca	. 360
ctaccctgtg	ctccttcttc	ccccggatga	gcaacctgag	gctggccaac	ccggctgggg	420
ggcgcccagg	gtctaagggg	gagccaggaa	gggcagctga	tgatggggag	gggatcgatg	480
gggcagccat	gccagagtca	ggccccctac	ccctcctcca	ggacatgaac	aagctgagtg	540
gaggcggcgg	gcgcaggact	cgggtggaag	ggggccagct	tgggggcgag	gagtggaccc	600
gccacgggag	ctttgtcaat	aagcccacgc	ggggctggct	gcatcccaac	gacaaagtca	660
tgggacccgg	ggtttcctac	ttggttcggt	acatgggttg	tgtggaggtc	ctccagtcaa	720
tgcgtgccct	ggacttcaac	acccggactc	aggtcaccag	ggaggccatc	agtctggtgt	780
gtgaggctgt	gccgggtgct	aagggggcga	caaggaggag	aaagccctgt	agccgcccgc	840
tcagctctat	cctggggagg	agtaacctga	aatttgctgg	aatgccaatc	actctcaccg	900
tctccaccag	cagcctcaac	ctcatggccg	cagactgcaa	acagatcatc	gccaaccacc	960
acatgcaatc	tatctcattt	gcatccggcg	gggatccgga	cacageegag	tatgtcgcct	1020
atgttgccaa	agaccctgtg	aatcagagag	cctgccacat	tctggagtgt	cccgaagggc	1080
ttgcccagga	tgtcatcagc	accattggcc	aggccttcga	gttgcgcttc	aaacaatacc	1140
tcaggaaccc	acccaaactg	gtcacccctc	atgacaggat	ggctggcttt	gatggctcag	1200
catgggatga	ggaggaggaa	gagccacctg	accatcagta	ctataatgac	ttcccgggga	1260
aggaaccccc	cttggggggg	gtggtagaca	tgaggcttcg	ggaaggagcc	gctccagggg	1320
ctgctcgacc	cactgcaccc	aatgcccaga	ccccageca	cttgggagct	acattgcctg	1380
taggacagcc	tgttggggga	gatccagaag	tccgcaaaca	gatgccacct	ccaccaccct	1440
gtccaggcag	agagcttttt	gatgatccct	cctatgtcaa	cgtccagaac	ctagacaagg	1500
cccggcaagc	agtgggtggt	gctgggcccc	ccaatcctgc	tatcaatggc	agtgcacccc	1560
gggacctgtt	tgacatgaag	cccttcgaag	atgctcttcg	ggtgcctcca	cctccccagt	1620
cggtgtccat	ggctgagcag	ctccgagggg	agccctggtt	ccatgggaag	ctgageegge	1680
gggaggctga	ggcactgctg	cagctcaatg	gggacttctt	ggtacgggag	agcacgacca	1740
cacctggcca	gtatgtgctc	actggcttgc	agagtgggca	gcctaagcat	ttgctactgg	1800
tggaccctga	gggtgtggtt	cggactaagg	atcaccgctt	tgaaagtgtc	agtcacctta	1860
tcagctacca	catggacaat	cacttgccca	tcatctctgc	gggcagcgaa	ctgtgtctac`	1920
agcaacctgt	ggagcggaaa	ctgtgatctg	ccctagcgct	ctcttccaga	agatgccctc	1980
caatcctttc	caccctattc	cctaactctc	gggacctcgt	ttgggagtgt	tctgtgggct	2040
tggccttgtg	tcagagctgg	gagtagcatg	gactctgggt	ttcatatcca	gctgagtgag	2100
agggtttgag	tcaaaagcct	gggtgagaat	cctgcctctc	cccaaacatt	aatcaccaaa	2160

gtattaatgt acagagtggc	ccctcacctg	ggcctttcct	gtgccaacct	gatgcccctt	2220
ccccaagaag gtgagtgctt	gtcatggaaa	atgtcctgtg	gtgacaggcc	cagtggaaca	2280
gtcaccette tgggcaaggg	ggaacaaatc	acacctctgg	gcttcagggt	atcccagacc	2340
cctctcaaca cccgccccc	ccatgtttaa	actttgtgcc	tttgaccatc	tcttaggtct	2400
aatgatattt tatgcaaaca	gttcttggac	ccctgaattc	ttcaatgaca	gggatgccaa	2460
caccttcttg gcttctggga	cctgtgttct	tgctgagcac	cctctccggt	ttgggttggg .	2520
ataacagagg caggagtggc	agctgtcccc	tctccctggg	gatatgcaac	ccttagagat	2580
tgccccagag ccccactccc	ggccaggcgg	gagatggacc	cctcccttgc	tcagtgcctc	2640
ctggccgggg cccctcaccc	caaggggtct	gtatatacat	ttcataaggc	ctgccctccc	2700
atgttgcatg cctatgtact	ctgcgccaaa	gtgcagccct	tcctcctgaa	gcctctgccc	2760
tgcctccctt tctgggaggg	cggggtgggg	gtgactgaat	ttgggcctct	tgtacagtta	2820
actctcccag gtggattttg	tggaggtgag	aaaaggggca	ttgagactat	aaagcagtag	2880
acaatcccca cataccatct	gtagagttgg	aactgcattc	ttttaaagtt	ttatatgcat	2940
atattttagg gctgctagac	ttactttcct	attttcttt	ccattgctta	ttcttgagca	3000
caaaatgata atcaattatt	acatttatac	atcacctttt	tgacttttcc	aagccctttt	3060
acagetettg geatttteet	cgcctaggcc	tgtgaggtaa	ctgggatcgc	accttttata	3120
ccagagacct gaggcagato	aaatttattt	ccatctagga	ctagaaaaac	ttgggtctct	3180
taccgcgaga ctgagaggca	gaagtcagcc	cgaatgcctg	tcagtttcat	ggaggggaaa	3240
cgcaaaacct gcagttccto	agtaccttct	acaggcccgg	cccagcctag	geceggggtg	3300
gccacaccac agcaagccgg	cccccctct	tttggccttg	tggataaggg	agagttgacc	3360
gttttcatcc tggcctcctt	ttgctgtttg	gatgtttcca	cgggtctcac	ttataccaaa	3420
gggaaaactc ttcattaaac	tccgtatttc	ttctaaaaaa	aaaaaaaaa	aaatacattt	3480
atacatcacc tttttgactt	ttecaageee	ttttacagct	cttggcattt	tectegeeta	3540
ggcctgtgag gtaactggga	tcgcaccttt	tataccagag	acctgaggca	gatgaaattt	:3600
atttccatct aggactagas	a aaacttgggt	ctcttaccgc	: gagactgaga	ggcagaagtc	3660
agcc		·. ·			3664

<210> 4 <211> 915 <212> PRT <213> Homo sapiens

<400>

WO 2004/012660 PCT/US2003/023981

Met Ala Asp Glu Ala Leu Ala Gly Leu Asp Glu Gly Ala Leu Arg Lys

1 10 15

Leu Leu Glu Val Thr Ala Asp Leu Ala Glu Arg Arg Arg Ile Arg Ser 20 25 30

Ala Ile Arg Glu Leu Gln Arg Gln Glu Leu Glu Arg Glu Glu Glu Ala 35 40 45

Leu Ala Ser Lys Arg Phe Arg Ala Glu Arg Gln Asp Asn Lys Glu Asn 50 60

Trp Leu His Ser Gln Gln Arg Glu Ala Glu Gln Arg Ala Ala Leu Ala 65 70 75 80

Arg Leu Ala Gly Gln Leu Glu Ser Met Asn Asp Val Glu Glu Leu Thr 85 90 95

Ala Leu Leu Arg Ser Ala Gly Glu Tyr Glu Glu Arg Lys Leu Ile Arg 100 · 105 110

Ala Ala Ile Arg Arg Val Arg Ala Gln Glu Ile Glu Ala Ala Thr Leu 115 120 125

Ala Gly Arg Leu Tyr Ser Gly Arg Pro Asn Ser Gly Ser Arg Glu Asp 130 135 140

Ser Lys Gly Leu Ala Ala His Arg Leu Glu Gln Cys Glu Val Pro Glu 145 150 155 160

Arg Glu Glu Glu Gln Gln Ala Glu Val Ser Lys Pro Thr Pro Thr 165 170 175

Pro Glu Gly Thr Ser Gln Asp Val Thr Thr Val Thr Leu Leu Leu Arg 180 185 190

Ala Pro Pro Gly Ser Thr Ser Ser Ser Pro Ala Ser Pro Ser Ser Ser 195 200 205

Pro Thr Pro Ala Ser Pro Glu Pro Pro Leu Glu Pro Ala Glu Ala Gln 210 215 220

Cys Leu Thr Ala Glu Val Pro Gly Ser Pro Glu Pro Pro Pro Ser Pro 225 230 235 240

Pro Lys Thr Thr Ser Pro Glu Pro Glu Ser Pro Thr Leu Pro Ser

245 250 255

Thr Glu Gly Gln Val Val Asn Lys Leu Leu Ser Gly Pro Lys Glu Thr 260 265 270

Pro Ala Ala Gln Ser Pro Thr Arg Gly Pro Ser Asp Thr Lys Arg Ala 275 280 285

Asp Val Ala Gly Pro Arg Pro Cys Gln Arg Ser Leu Ser Val Leu Ser 290 295 300

Pro Arg Gln Pro Ala Gln Asn Arg Glu Ser Thr Pro Leu Ala Ser Gly 315 320

Pro Ser Ser Phe Gln Arg Ala Gly Ser Val Arg Asp Arg Val His Lys 325 330 335

Phe Thr Ser Asp Ser Pro Met Ala Ala Arg Leu Gln Asp Gly Thr Pro 340 345 350

Gln Ala Ala Leu Ser Pro Leu Thr Pro Ala Arg Leu Leu Gly Pro Ser 355 360 365

Leu Thr Ser Thr Thr Pro Ala Ser Ser Ser Ser Gly Ser Ser Ser Arg 370 375 380

Gly Pro Ser Asp Thr Ser Ser Arg Phe Ser Lys Glu Gln Arg Gly Val 385 390 395 400

Ala Gln Pro Leu Ala Gln Leu Arg Ser Cys Pro Gln Glu Glu Gly Pro 405 410 415

Arg Gly Arg Gly Leu Ala Ala Arg Pro Leu Glu Asn Arg Ala Gly Gly
420 425 430

Pro Val Ala Arg Ser Glu Glu Pro Gly Ala Pro Leu Pro Val Ala Val 435 440 445

Gly Thr Ala Glu Pro Gly Gly Ser Met Lys Thr Thr Phe Thr Ile Glu 450 455 460

Ile Lys Asp Gly Arg Gly Gln Ala Ser Thr Gly Arg Val Leu Leu Pro 465 470 475 480

Thr Gly Asn Gln Arg Ala Glu Leu Thr Leu Gly Leu Arg Ala Pro Pro 485 490 495

Thr	Leu	Leu	Ser 500	Thr	Ser	Ser	Gly	Gly 505	Lys	Ser	Thr	Ile	Thr 510	Arg	Val
Asn	Ser	Pro 515	Gly	Thr	Leu	Ala	Arg 520	Leu	Gly	Ser	Val	Thr 525	His	Val	Thr
Ser	Phe 530	Ser	His	Ala	Pro	Pro 535	Ser	Ser	Arg	Gly	Gly 540	Cys	Ser	Ile	Lys
Met 545	Glu	Pro	Glu	Pro	Ala 550	Glu	Pro	Leu	Ala	Ala 555	Ala	Val	Glu	Ala	Ala 560
Asn	Gly	Ala	Glu	Gln 565	Thr	Arg	Val	Asn	Lys 570	Ala	Pro	Glu	Gly	Arg 575	Ser
Pro	Leu	Ser	Ala 580	Glu	Glu	Leu	Met	Thr 585	İle	Glu	Asp	Glu	Gly 590	Val	Leu
Asp	Lys	Met 595	Leu	Asp	Gln	Ser	Thr 600	Asp	Phe	Glu	Glu	Arg 605	Lys	Leu	Ile
Arg	Ala 610	Ala	Leu	Arg	Glu	Leu 615	Arg	Gln	Arg	Lys	Arg 620	Asp	Gln	Arg	Asp
Lys 625	Glu	Arg	Glu	Arg	Arg 630	Leu	Gln	Glu	Ala	Arg 635	Gly	Arg	Pro	Gly	Glu 640
Gly	Arg	Gly	Asn	Thr 645	Ala	Thr	Glu	Thr	Thr 650	Thr	Arg	His	Ser	Gln 655	Arg
Ala	Ala	Asp	Gly 660	Ser	Ala	Val	Ser	Thr 665		Thr	Lys	Thr	Glu 670		Leu
Val	His		Asn	Asp	Gly	Thr	Arg 680	Thr	Ala	Arg	Thr	Thr 685	Thr	Val	Glu
Ser	Ser 690	Phe	Val	Arg	Arg	Ser 695	Glu	Asn	Gly	Ser	Gly 700	Ser	Thr	Met	Met
Gln 705	Thr	Lys	Thr	Phe	Ser 710	Ser	Ser	Ser	Ser	Ser 715	Lys	Lys	Met	Gly	Ser 720
Ile	Phe	Asp	Arg	Glu 725	Asp	Gln	Ala	Ser	Pro 730	Arg	Ala	Gly	Ser	Leu 735	Ala

Ala Leu Glu Lys Arg Gln Ala Glu Lys Lys Lys Glu Leu Met Lys Ala 740 745 750

Gln Ser Leu Pro Lys Thr Ser Ala Ser Gln Ala Arg Lys Ala Met Ile 755 760 765

Glu Lys Leu Glu Lys Glu Gly Ala Ala Gly Ser Pro Gly Gly Pro Arg 770 775 780

Ala Ala Val Gln Arg Ser Thr Ser Phe Gly Val Pro Asn Ala Asn Ser 785 790 795 800

Ile Lys Gln Met Leu Leu Asp Trp Cys Arg Ala Lys Thr Arg Gly Tyr 805 810 815

Glu His Val Asp Ile Gln Asn Phe Ser Ser Ser Trp Ser Asp Gly Met 820 825 830

Ala Phe Cys Ala Leu Val His Asn Phe Phe Pro Glu Ala Phe Asp Tyr 835 840 845

Gly Gln Leu Ser Pro Gln Asn Arg Arg Gln Asn Phe Glu Val Ala Phe 850 855 860

Ser Ser Ala Glu Thr His Ala Asp Cys Pro Gln Leu Leu Asp Thr Glu 865 870 875 880

Asp Met Val Arg Leu Arg Glu Pro Asp Trp Lys Cys Val Tyr Thr Tyr 885 890 895

Ile Gln Glu Phe Tyr Arg Cys Leu Val Gln Lys Gly Leu Val Lys Thr 900 905 910

Lys Lys Ser 915

<210> 5

<211> 433

<212> PRT

<213> Homo sapiens

<400> 5

Met Cys Leu Arg Gly Gly Cys Ser Pro Arg Ala Pro Ala Ala Pro 1 5 10 15

Gln Pro Arg Pro Pro Pro Ala Leu Pro Pro Arg Pro Arg Ala Pro Val

20

25

30

Pro Ala Ser Arg Pro Gly Arg Pro Leu Leu Thr Pro Ala Arg Pro Cys 35 40 45

Gly Arg Met Arg Arg Gly Ser Pro Gly Pro Arg Leu Gly Gly Ser Arg
50 55 60

Gly Glu Arg Arg Pro Ala Gly Arg Asp Pro Ala Arg Val Gly Pro 65 70 75 80

Gly Gln Gly Leu Arg Arg Pro Ala Arg Pro Gly Pro Ala Ala Trp Thr 85 90 95

Glu Thr Gly Gln Gly Ile Val His Ala Leu Thr Asp Leu Ser Ile Pro 100 105 110

Gly Met Thr Ser Gly Asn Gly Asn Ser Ala Ser Ser Ile Ala Gly Thr 115 120 125

Ala Pro Gln Asn Gly Glu Asn Lys Pro Pro Gln Ala Ile Val Lys Pro 130 135 140

Gln Ile Leu Thr His Val Ile Glu Gly Phe Val Ile Gln Glu Gly Ala 145 150 155 160

Asp Val Ser Arg Trp Asp Ala Arg Leu Leu Val Gly Asn Leu Lys Lys 165 170 175

Lys Tyr Ala Gln Gly Phe Leu Pro Glu Lys Leu Pro Gln Gln Asp His 180 185 190

Thr Thr Thr Asp Ser Glu Met Glu Glu Pro Tyr Leu Gln Glu Ser 195 200 205

Lys Glu Glu Gly Ala Pro Leu Lys Leu Lys Cys Glu Leu Cys Gly Arg 210 215 220

Val Asp Phe Ala Tyr Lys Phe Lys Arg Ser Lys Arg Phe Cys Ser Met 225 230 235 240

Ala Cys Ala Lys Arg Tyr Asn Val Gly Cys Thr Lys Arg Val Gly Leu 245 250 255

Phe His Ser Asp Arg Ser Lys Leu Gln Lys Ala Gly Ala Ala Thr His 260 265 270

Asn Arg Arg Pro Ala Lys Pro Val Cys His His Leu Pro Arg Ile 275 280 285

Pro Arg Ser Ser Gln Gln Ala Leu Cys Pro Phe Arg Leu Leu Leu 290 295 300

Cys Val Thr His Ser Gln Glu Asp Ser Ser Arg Cys Ser Asp Asn Ser 305 310 . 315 320

Ser Tyr Glu Glu Pro Leu Ser Pro Ile Ser Ala Ser Ser Ser Thr Ser 325 330 335

Ala Gly Asp Lys Ala Ser Gly Thr Trp Ser Ser Pro Thr Cys Ile Cys 340 345 350

Gly Thr Trp Trp Ala Trp Asp Thr Thr Ser Cys Gln Val Ser His Gln 355 360 365

Val Asn Val Glu Asp Val Tyr Glu Phe Ile Arg Ser Leu Pro Gly Cys 370 380

Gln Glu Ile Ala Glu Glu Phe Arg Ala Gln Glu Ile Asp Gly Gln Ala 385 390 395 400

Leu Leu Leu Lys Glu Asp His Leu Met Ser Val Met Asn Ile Lys 405 410 415

Leu Gly Pro Ala Leu Lys Ile Tyr Ala Arg Ile Ser Met Leu Lys Asp 420 425 430

Ser

<210> 6

<211> 578

<212> PRT

<213> Homo sapiens

<400> 6

Met Asp Leu Leu Pro Pro Lys Pro Lys Tyr Asn Pro Leu Arg Asn Glu
1 5 10 15

Ser Leu Ser Ser Leu Glu Glu Gly Ala Ser Gly Ser Thr Pro Pro Glu 20 25 30

WO 2004/012660 PCT/US2003/023981

Glu Leu Pro Ser Pro Ser Ala Ser Ser Leu Gly Pro Ile Leu Pro Pro 35 40 45

Leu Pro Gly Asp Asp Ser Pro Leu Pro Cys Val Pro Ser Phe Pro Arg 50 55 60

Met Ser Asn Leu Lys Leu Ala Asn Pro Ala Gly Gly Pro Trp Gly Leu 65 70 75 80

Lys Gly Ser Gln Glu Arg Leu Leu Lys Met Gly Lys Gly Val Gln Gly 85 90 95

Gln Pro Phe Gly Leu Arg Pro Leu Ala Pro Pro Pro Asp Met Asn Lys
100 105 110

Leu Ser Gly Gly Gly Gly Arg Arg Thr Arg Val Glu Gly Gly Gln Leu 115 120 125

Gly Gly Glu Glu Trp Thr Arg His Gly Ser Phe Val Asn Lys Pro Thr 130 135 140

Arg Gly Trp Leu His Pro Asn Asp Lys Val Met Gly Pro Gly Val Ser 145 150 155 160

Tyr Leu Val Arg Tyr Met Gly Cys Val Glu Val Leu Gln Ser Met Arg 165 170 175

Ala Leu Asp Phe Asn Thr Arg Thr Gln Val Thr Arg Glu Ala Ile Ser 180 185 190

Leu Val Cys Glu Ala Val Pro Gly Ala Lys Gly Ala Thr Arg Arg Arg 195 200 205

Lys Pro Cys Ser Arg Pro Leu Ser Ser Ile Leu Gly Arg Ser Asn Leu 210 215 220

Lys Phe Ala Gly Met Pro Ile Thr Leu Thr Val Ser Thr Ser Ser Leu 225 230 235 240

Asn Leu Met Ala Ala Asp Cys Lys Gln Ile Ile Ala Asn His His Met 245 250 255

Gln Ser Ile Ser Phe Ala Ser Gly Gly Asp Pro Asp Thr Ala Glu Tyr 260 265 270

Val Ala Tyr Val Ala Lys Asp Pro Val Asn Gln Arg Ala Cys His Ile

285

275 280

Leu Glu Cys Pro Glu Gly Leu Ala Gln Asp Val Ile Ser Thr Ile Gly 290 295 300

Gln Ala Phe Glu Leu Arg Phe Lys Gln Tyr Leu Arg Asn Pro Pro Lys 305 310 315 320

Leu Val Thr Pro His Asp Arg Met Ala Gly Phe Asp Gly Ser Ala Trp 325 330 335

Asp Glu Glu Glu Glu Pro Pro Asp His Gln Tyr Tyr Asn Asp Phe 340 345 350

Pro Gly Lys Glu Pro Pro Leu Gly Gly Val Val Asp Met Arg Leu Arg 355 360 365

Glu Gly Ala Ala Arg Pro Thr Leu Pro Ser Ala Gln Met Ser Ser His 370 375 380

Leu Gly Ala Thr Leu Pro Ile Gly Gln His Ala Ala Gly Asp His Glu 385 390 395 400

Val Arg Lys Gln Met Leu Pro Pro Pro Pro Cys Pro Gly Arg Glu Leu 405 410 415

Phe Asp Asp Pro Ser Tyr Val Asn Ile Gln Asn Leu Asp Lys Ala Arg 420 425 430

Gln Ala Gly Gly Gly Ala Gly Pro Pro Asn Pro Ser Leu Asn Gly Ser 435 440 445

Ala Pro Arg Asp Leu Phe Asp Met Lys Pro Phe Glu Asp Ala Leu Arg 450 455 460

Val Pro Pro Pro Gln Ser Met Ser Met Ala Glu Gln Leu Gln Gly 465 470 475 480

Glu Pro Trp Phe His Gly Lys Leu Ser Arg Arg Glu Ala Glu Ala Leu 485 490 495

Leu Gln Leu Asn Gly Asp Phe Leu Val Arg Glu Ser Thr Thr Thr Pro 500 505 510

Gly Gln Tyr Val Leu Thr Gly Leu Gln Ser Gly Gln Pro Lys His Leu 515 520 525 Leu Leu Val Asp Pro Glu Gly Val Val Arg Thr Lys Asp His Arg Phe 530 535 540

Glu Ser Val Ser His Leu Ile Ser Tyr His Met Asp Asn His Leu Pro 545 550 560

Ile Ile Ser Ala Gly Ser Glu Leu Cys Leu Gln Gln Pro Val Asp Arg 565 570 575

Lys Val