TD n°2 statistique

Exercice 1

On considère les modèles suivants :

- Modèle Binomial $\{\mathcal{B}(m,p): p \in [0,1]\}.$
- Modèle de Poisson $\{\mathcal{P}(\lambda), \lambda > 0\}$.
- Modèle gaussien à variance fixée $\{\mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}\}.$
- Modèle gaussien à paramètre bi-dimensionnel $\{\mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}, \ \sigma^2 > 0\}.$
- Modèle Gamma $\{G(\alpha,\beta): \alpha > 0, \beta > 0\} = \{f_{\alpha,\beta}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}, \forall x > 0, \alpha > 0, \beta > 0\}.$
- Modèle uniforme $\{\mathcal{U}[0,\theta]: \theta > 0\}$.
- Modèle de Cauchy $\{f_{\theta}(x) = \frac{1}{\pi(1+(x-\theta)^2)} : \theta \in \mathbb{R}\}.$

Pour tous ces modèles, répondre aux questions suivantes.

- 1. Quelle est l'expression de la densité $f_{\theta}(x)$
- 2. Le modèle constitue t'il une famille exponentielle
- 3. Quel est le paramètre canonique du modèle
- 4. Quelle est la vraisemblance d'un échantillon $X = (X_1, \dots, X_n)$

Exercice 2

Les éléments d'une population possèdent un caractère X qui suit une loi de densité

$$f_{\theta}(x) = \frac{2}{\sqrt{\pi}\theta^{3/2}} x^2 e^{-x^2/\theta} \text{ où } \theta > 0.$$

Une suite de n expériences indépendantes a donné les valeurs x_1, \dots, x_n .

1. Déterminez un estimateur $\widehat{\theta}$ du paramètre θ par la méthode du maximum de vraisemblance.

2. Examinez les qualités suivantes de $\widehat{\theta}$: efficacité, biais, convergence, exhaustivité.

Exercice 3

Dans les modèles suivants calculer l'information de Fisher (si elle est bien définie) associée aux n observations

- 1. (X_1, \dots, X_n) un n-échantillon issu de la loi $\mathcal{B}(\theta)$.
- 2. (X_1, \dots, X_n) un n-échantillon issu de la loi $\mathcal{N}(\mu, \sigma^2)$ avec $\theta = (\mu, \sigma^2)$.
- 3. (X_1, \dots, X_n) un n-échantillon issu de la loi $\mathcal{U}([0, \theta])$.

Exercice 4

Soit X une variable aléatoire dont la densité de probabilité f(.) est définie par

$$f(x) = \begin{cases} \frac{1}{\theta} e^{\frac{-x}{\theta}} & \text{si } x > 0\\ 0 & \text{si } x \le 0, \end{cases}$$

où θ est un paramètre réel strictement positif.

- 1. Déterminer l'estimateur du maximum de vraisemlance $\widehat{\theta}$ de θ d'un n-échantillon de variable parente X.
- 2. $\widehat{\theta}$ est-il exhaustif
- 3. Calculer l'espérance mathématique et la variance de $\widehat{\theta}$. Que peut-on conclure?
- 4. Calculer la quantité d'information de Fisher. En déduire que $\widehat{\theta}$ est efficace.