Introduction to Random Matrix Theory: Theory and Applications Part II

Boaz Nadler

Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science

May 2013

Part II: Modern Random Matrix Theory

Part II: Modern Random Matrix Theory

Starting point:

[Eugene Wigner, 1955, 1958] [Mehta and Gaudin, 1960]

random matrix models to study quantum phenomena.

Example: Energy levels of atom = eigenvalues of Hermitian operator

$$H\psi_j=E_j\psi_j$$

Low energy states can be tackled analytically. For higher energy levels, analysis becomes intractable.

Part II: Modern Random Matrix Theory

Starting point:

[Eugene Wigner, 1955, 1958] [Mehta and Gaudin, 1960]

random matrix models to study quantum phenomena.

Example: Energy levels of atom = eigenvalues of Hermitian operator

$$H\psi_j=E_j\psi_j$$

Low energy states can be tackled analytically. For higher energy levels, analysis becomes intractable.

Wigner replaced operator H by finite large random $m \times m$ Hermitian matrix H_m .

Wigner Matrix

Wigner Matrix [Hermite/Gaussian ensemble]:

- $m \times m$ Hermitian matrix W,

Wigner Matrix

Wigner Matrix [Hermite/Gaussian ensemble]:

- $m \times m$ Hermitian matrix W,
- $W_{i,j}$ independent (except symmetry constraint)

$$\mathbb{E}[W_{i,j}] = 0 \quad \mathbb{E}[W_{i,j}^2] = \begin{cases} \sigma^2 & i \neq j \\ 2\sigma^2 & i = j \text{ (but } \sigma^2 \text{ also ok)} \end{cases}$$

Assume $\mathbb{E}[W_{i,j}^k] < \infty$ (weaking possible)

Wigner Matrix

Wigner Matrix [Hermite/Gaussian ensemble]:

- $m \times m$ Hermitian matrix W,
- $W_{i,j}$ independent (except symmetry constraint)

$$\mathbb{E}[W_{i,j}] = 0 \quad \mathbb{E}[W_{i,j}^2] = \begin{cases} \sigma^2 & i \neq j \\ 2\sigma^2 & i = j \text{ (but } \sigma^2 \text{ also ok)} \end{cases}$$

Assume $\mathbb{E}[W_{i,j}^k] < \infty$ (weaking possible)

If $\sigma^2 = 1/m$, then this is a *standard Wigner Matrix*.

Empirical Spectral Measure

Empirical Spectral Distribution (ESD):

$$F_m(t) = \frac{1}{m} \#\{i \mid \ell_i(W) \leq t\}$$

Empirical Spectral Measure

Empirical Spectral Distribution (ESD):

$$F_m(t) = \frac{1}{m} \#\{i \mid \ell_i(W) \leq t\}$$

Question: Does F_m converge to limiting F as $m \to \infty$?

Theorem: As $m \to \infty$, for standard Wigner matrix,

$$dF_m(x) \to \frac{1}{4\pi} \sqrt{4 - x^2} dx \qquad x \in [-2, 2]$$

Theorem: As $m \to \infty$, for standard Wigner matrix,

$$dF_m(x) \to \frac{1}{4\pi} \sqrt{4 - x^2} dx$$
 $x \in [-2, 2]$

$$X = randn(m,m);$$

Theorem: As $m \to \infty$, for standard Wigner matrix,

$$dF_m(x) \to \frac{1}{4\pi} \sqrt{4 - x^2} dx$$
 $x \in [-2, 2]$

Theorem: As $m \to \infty$, for standard Wigner matrix,

$$dF_m(x) \to \frac{1}{4\pi} \sqrt{4 - x^2} dx$$
 $x \in [-2, 2]$

```
X = randn(m,m);
W = 1/sqrt(2*m) (X + X');
L = eig(W);
```

Theorem: As $m \to \infty$, for standard Wigner matrix,

$$dF_m(x) \to \frac{1}{4\pi} \sqrt{4 - x^2} dx$$
 $x \in [-2, 2]$

```
X = randn(m,m);
W = 1/sqrt(2*m) (X + X');
L = eig(W);
histL = hist(L,x);
```


Wigner's original proof = method of moments.

Instead of studying empirical spectral distribution F_m , study its *moments*.

$$\int x^k dF_m(x)$$

Wigner's original proof = method of moments.

Instead of studying empirical spectral distribution F_m , study its *moments*.

$$\int x^k dF_m(x)$$

Prove that moments converge to some limits.

Wigner's original proof = method of moments.

Instead of studying empirical spectral distribution F_m , study its *moments*.

$$\int x^k dF_m(x)$$

Prove that moments converge to some limits.

Find distribution corresponding to these limiting moments.

Simple Observation:

$$\beta_{m,k} = \int x^k dF_m(x) = \frac{1}{m} \sum \ell_i^k = \frac{1}{m} Tr[W^k].$$

Simple Observation:

$$\beta_{m,k} = \int x^k dF_m(x) = \frac{1}{m} \sum \ell_i^k = \frac{1}{m} Tr[W^k].$$

Since W_{ij} are independent zero mean, many entries in W^k have zero mean as well !

Example:

$$\frac{1}{m}Tr[W] = \frac{1}{m}\sum_{i=1}^{m}W_{ii}$$

Hence

$$\mathbb{E} Tr[W] = 0.$$

Example:

$$\frac{1}{m}Tr[W] = \frac{1}{m}\sum_{i=1}^{m}W_{ii}$$

Hence

$$\mathbb{E} \mathit{Tr}[W] = 0.$$

Next,
$$(Tr[W])^2 = \sum_{i,j} W_{ii} W_{jj}$$
.

Example:

$$\frac{1}{m}Tr[W] = \frac{1}{m}\sum_{i=1}^{m}W_{ii}$$

Hence

$$\mathbb{E} Tr[W] = 0.$$

Next, $(Tr[W])^2 = \sum_{i,j} W_{ii} W_{jj}$. Hence,

$$\mathbb{E}[(\frac{1}{m}Tr[W])^2] = 1/m^2 \sum_i W_{ii}^2 = \frac{1}{m^2} \cdot m \cdot \frac{2}{m} = \frac{1}{m^2}$$

Conclusion: First moment $\beta_{m,1}$ has zero mean, and variance tends to zero as $m \to \infty$. Thus

$$\beta_{m,1} \to 0$$
 as $m \to \infty$

Second Moment:

$$Tr[W^2] = \sum_i (W^2)_{ii} = \sum_i \sum_j W_{ij}^2$$

Hence,

$$\mathbb{E}\left[\frac{1}{m}Tr[W^2]\right] = \frac{1}{m} \cdot m^2 \frac{1}{m} = 1.$$

Second Moment:

$$Tr[W^2] = \sum_i (W^2)_{ii} = \sum_i \sum_j W_{ij}^2$$

Hence,

$$\mathbb{E}\left[\frac{1}{m}Tr[W^2]\right] = \frac{1}{m} \cdot m^2 \frac{1}{m} = 1.$$

More complicated calculation,

$$Var[\frac{1}{m}Tr[W^2]] \rightarrow 0$$
 as $m \rightarrow \infty$

Conclusion:

$$\beta_{m,2} \rightarrow 1$$

General Moments:

$$(W^k)_{11} = \sum_{i_1,\dots,i_{k-1}} W_{1,i_1} W_{i_1 i_2} \cdots W_{i_{k-1} 1}$$

General Moments:

$$(W^k)_{11} = \sum_{i_1,\dots,i_{k-1}} W_{1,i_1} W_{i_1 i_2} \cdots W_{i_{k-1} 1}$$

For odd k = 2r + 1, at least one term appears only once,

$$\mathbb{E}[Tr(W^{2r+1})]=0.$$

General Moments:

$$(W^k)_{11} = \sum_{i_1,\dots,i_{k-1}} W_{1,i_1} W_{i_1 i_2} \cdots W_{i_{k-1} 1}$$

For odd k = 2r + 1, at least one term appears only once,

$$\mathbb{E}[Tr(W^{2r+1})]=0.$$

For even k = 2r, each term must appear even number of times for non-zero mean.

If each term appears exactly twice, mean is $(1/m)^{k/2}$ Exact number of such terms is a combinatorial graph enumeration problem.

Summary:

$$\frac{1}{m}\mathbb{E}tr[W^{2k+1}]=0$$

 $\frac{1}{m}tr[W^{2k}] \rightarrow \textit{Catalan Numbers}$

Summary:

$$\frac{1}{m}\mathbb{E}tr[W^{2k+1}]=0$$

 $\frac{1}{m}tr[W^{2k}] \rightarrow Catalan Numbers$

Distribution with these moments is semi-circle law.

Universality

Limiting Distribution depends only on underlying moments

Let W be a standardized Wigner matrix whose entries come from any distribution with finite moments,

Then as $m \to \infty$ eigenvalues of W converge to semi-circle law.

Example: Matrix with entries ± 1

```
X = randn(m,m);
W = sign(X+X');
W = W / sqrt(m);
L = eig(W);
```

Universality / Semi-Circle Law

Applicable to other more complicated random matrix models.

Mathematical Foundations:

Applicable to other more complicated random matrix models.

Mathematical Foundations:

Lemma 1: Moments uniquely determine a distribution.

Applicable to other more complicated random matrix models.

Mathematical Foundations:

Lemma 1: Moments uniquely determine a distribution.

Precisely, F - a distribution, with finite moments $\beta_k = \int x^k dF(x)$

If Carleman condition holds

$$\sum_{k} \beta_{2k}^{-1/2k} = \infty$$

then F is uniquely determined by $\{\beta_k\}$

Method of Moments

Lemma 2: under some technical conditions, Convergence of moments → convergence of distributions.

Very useful tool in RMT.

Definition: f(x) probability density function.

$$S_f(z) = \int_{-\infty}^{\infty} \frac{1}{x - z} f(x) dx \qquad z \in \mathbb{C}^+$$

where
$$\mathbb{C}^{+} = \{z = x + \mathbf{i}y \,|\, y > 0\}$$

Very useful tool in RMT.

Definition: f(x) probability density function.

$$S_f(z) = \int_{-\infty}^{\infty} \frac{1}{x - z} f(x) dx$$
 $z \in \mathbb{C}^+$

where
$$\mathbb{C}^{+} = \{z = x + \mathbf{i}y \,|\, y > 0\}$$

Inversion Formula:

$$F(a,b) = \frac{1}{\pi} \lim_{v \to 0^+} \int_a^b Im(S(u+iv)) du$$

Lemma: convergence of Stieltjes transforms \rightarrow convergence of distributions

Lemma: convergence of Stieltjes transforms \rightarrow convergence of distributions

Precisely:

- F_n sequence of probability distributions,
- $s_n(z)$ their Stieltjes transforms.

If $s_n(z) \to s(z)$ for all $z \in \mathbb{C}^+$ and $\lim_{v \to \infty} vs(v) = -1$, then $F_n \to F$.

Matrix Inversion Lemma:

$$Tr(A^{-1}) = \sum_{k=1}^{n} \frac{1}{a_{kk} - \alpha_k^T A_k^{-1} \alpha_k}$$

where α_k is k-th row of A with k-th element removed A_k is k-th minor of A (remove k-th row and column).

Matrix Inversion Lemma:

$$Tr(A^{-1}) = \sum_{k=1}^{n} \frac{1}{a_{kk} - \alpha_k^T A_k^{-1} \alpha_k}$$

where α_k is k-th row of A with k-th element removed A_k is k-th minor of A (remove k-th row and column).

Take
$$A = W_m - zI_m$$
. Then

$$\frac{1}{m}Tr(A^{-1}) = \frac{1}{m}\sum_{j=1}^{m}\frac{1}{\ell_j - z} = s_m(z).$$

 α_k = vector of size (m-1) with i.i.d. zero mean entries, unit variance.

 α_k independent of A_k and hence of A_k^{-1} .

 $\alpha_k = \text{vector of size } (m-1) \text{ with i.i.d. zero mean entries, unit variance.}$

 α_k independent of A_k and hence of A_k^{-1} .

Quadratic form $\alpha_k^T A_k^{-1} \alpha_k$ concentrates around mean value, which is $\frac{1}{m} Tr(W_m^{(k)} - z I_m^{(k)}) \approx s_m(z)$.

 $a_{kk} \approx -z$.

 $\alpha_k = \text{vector of size } (m-1) \text{ with i.i.d. zero mean entries, unit variance.}$

 α_k independent of A_k and hence of A_k^{-1} .

Quadratic form $\alpha_k^T A_k^{-1} \alpha_k$ concentrates around mean value, which is $\frac{1}{m} Tr(W_m^{(k)} - z I_m^{(k)}) \approx s_m(z)$.

 $a_{kk} \approx -z$.

Overall:

$$s_m(z) \approx \frac{-1}{z + s_m(z)}$$

 $\alpha_k = \text{vector of size } (m-1) \text{ with i.i.d. zero mean entries, unit variance.}$

 α_k independent of A_k and hence of A_k^{-1} .

Quadratic form $\alpha_k^T A_k^{-1} \alpha_k$ concentrates around mean value, which is $\frac{1}{m} Tr(W_m^{(k)} - z I_m^{(k)}) \approx s_m(z)$.

 $a_{kk} \approx -z$.

Overall:

$$s_m(z) \approx \frac{-1}{z + s_m(z)}$$

Now invert - precisely the semi-circle law.

The Quarter Circle Law

[Marchenko and Pastur, 1965]

- Let X be $m \times n$ random matrix.
- X_{ij} zero mean, unit variance.
- Look at sample covariance matrix

$$S_n = \frac{1}{n} X X^T$$

- its eigenvalues ℓ_1, \ldots, ℓ_m .

The Quarter Circle Law

[Marchenko and Pastur, 1965]

- Let X be $m \times n$ random matrix.
- X_{ij} zero mean, unit variance.
- Look at sample covariance matrix

$$S_n = \frac{1}{n} X X^T$$

- its eigenvalues ℓ_1, \ldots, ℓ_m .

For fixed dimension m, as $n \to \infty$,

$$S_n \to \Sigma = I_m \quad \to \quad \ell_i \to 1$$

The Quarter Circle Law

[Marchenko and Pastur, 1965]

- Let X be $m \times n$ random matrix.
- X_{ij} zero mean, unit variance.
- Look at sample covariance matrix

$$S_n = \frac{1}{n} X X^T$$

- its eigenvalues ℓ_1, \ldots, ℓ_m .

For fixed dimension m, as $n \to \infty$,

$$S_n o \Sigma = I_m \quad o \quad \ell_i o 1$$

Question: Eigenvalue spread as $m, n \to \infty$?

Example:

```
X = randn(m,n);
S = 1/n X X';
L = eig(S);
```


Spread of Sample Eigenvalues

Let $\{\ell_i\}_{i=1}^m$ be the eigenvalues of a random symmetric matrix H.

Empirical Spectral Distribution Function:

$$F_m(t) = \frac{1}{m} \# \{\ell_i \le t\}$$

The Quarter-Circle Law

[Marchenko & Pastur, 1967]

Let $H \sim W_m(n, \Sigma)$.

Theorem: For $\Sigma = I$, as $m, n \to \infty$ with $m/n \to c$, (c < 1) let ℓ_i be sample eigenvalues of H/m, then

$$f_{MP}(t) = rac{1}{2\pi ct} \sqrt{(b-t)(t-a)} \quad t \in [a,b]$$

where
$$a = (1 - \sqrt{c})^2$$
, $b = (1 + \sqrt{c})^2$

The Quarter-Circle Law

[Marchenko & Pastur, 1967]

Let $H \sim W_m(n, \Sigma)$.

Theorem: For $\Sigma = I$, as $m, n \to \infty$ with $m/n \to c$, (c < 1) let ℓ_i be sample eigenvalues of H/m, then

$$f_{MP}(t) = rac{1}{2\pi ct} \sqrt{(b-t)(t-a)} \quad t \in [a,b]$$

where
$$a = (1 - \sqrt{c})^2$$
, $b = (1 + \sqrt{c})^2$

If c > 1, then a = 0, and there are m - n sample eigenvalues exactly at zero.

Extensions

Non-identity Covariance Matrices: $X \sim W_m(n, \Sigma_m)$ where Σ_m eigenvalue density converges to limiting distribution.

Extensions

Non-identity Covariance Matrices: $X \sim W_m(n, \Sigma_m)$ where Σ_m eigenvalue density converges to limiting distribution.

Then, as $n, m \to \infty$, empirical density of 1/nXX' converges to limit. Can describe its Stieltjes transform in terms of that of limiting Σ .

Extensions

Non-identity Covariance Matrices: $X \sim W_m(n, \Sigma_m)$ where Σ_m eigenvalue density converges to limiting distribution.

Then, as $n, m \to \infty$, empirical density of 1/nXX' converges to limit. Can describe its Stieltjes transform in terms of that of limiting Σ .

Double Wishart Matrices:

Let $A \sim W_m(n_1, \Sigma)$ and let $B \sim W_m(n_2, \Sigma)$.

As $m, n_1, n_2 \to \infty$, eigenvalue distribution of $A^{-1}B$ converges to limiting Marchenko-Pastur type distribution.

Remark: Eigenvalues of $A^{-1}B$ same as those of $(\Sigma^{-1}A)^{-1}(\Sigma^{-1}B)$, so result independent of Σ . Can choose $\Sigma = I$.

Let $X_{m \times n}$ be random $X_{ij} \sim \mathcal{N}(0,1)$.

Marchenko-Pastur law: limiting spectral density of eigenvalues of 1/nXX'.

Let $X_{m \times n}$ be random $X_{ij} \sim \mathcal{N}(0,1)$.

Marchenko-Pastur law: limiting spectral density of eigenvalues of 1/nXX'.

However, how large can the largest eigenvalue be ?

Let $X_{m \times n}$ be random $X_{ij} \sim \mathcal{N}(0,1)$.

Marchenko-Pastur law: limiting spectral density of eigenvalues of 1/nXX'.

However, how large can the largest eigenvalue be ?

Question: Bound on $\ell_1 = ||1/mXX^T||_2$?

Let $X_{m \times n}$ be random $X_{ij} \sim \mathcal{N}(0,1)$.

Marchenko-Pastur law: limiting spectral density of eigenvalues of 1/nXX'.

However, how large can the largest eigenvalue be ?

Question: Bound on $\ell_1 = \|1/mXX^T\|_2$? Is it true that $\ell_1 \to (1 + \sqrt{m/n})^2$?

[Wachter, 1978]

$$\ell_1 o (1+\sqrt{m/n})^2$$
 with probability 1

[Wachter, 1978]

$$\ell_1 o (1+\sqrt{m/n})^2$$
 with probability 1

[Gordon 1985]

non-asymptotic concentration of measure bounds for largest eigenvalue of random matrices.

many follow-up works on this topic ...

Distribution of Largest Eigenvalue

[complex case, Johansson, 00'] [real case, Johnstone, 01']

Single Wishart Case:

$$\Pr\left[\ell_1 < \mu_{nm} + \sigma_{nm}s\right] \rightarrow F_{\beta}(s)$$

where F_{β} is the Tracy-Widom distribution of order β .

Universality

under mild moment conditions, largest eigenvalue converges to TW distribution

[Soshnikov, Tao & Vu, etc]

Tracy-Widom Distribution

[Tracy & Widom, 1994, 1996]

$$F_2(s) = \exp\left(-\int_s^{\infty} (x-s)^2 q(x) dx\right)$$

$$F_1(s)^2 = F_2(s) \exp\left(-\int_s^{\infty} q(x) dx\right)$$

where q(x) is the solution to Painleve-II non-linear 2nd order differential equation

$$q'' = sq + 2q^3$$
, $q(s) \sim Ai(s)$ as $s \to \infty$

q and F_{β} are somewhat tricky to compute. Several packages. Folkmar Bornemann (by request) - matlab code.

Tracy-Widom Distributions

Tracy-Widom Distributions

Large x asymptotics:

$$F_2(x) = 1 - \frac{e^{-\frac{4}{3}x^{3/2}}}{16\pi x^{3/2}} \left(1 + O(x^{-3/2})\right)$$

$$F_1(x) = 1 - \frac{e^{-\frac{2}{3}x^{3/2}}}{4\sqrt{\pi}x^{3/2}} \left(1 + O(x^{-3/2})\right)$$

Second Order Accuracy

[complex case, El-Karoui, 07] [real case, Ma, Johnstone and Ma]

For Wishart matrices,

with careful choice of centering and scaling parameters, as $n,m\to\infty$ with $n/m\to\gamma$,

$$|\Pr[\ell_1 < \mu_{nm} + \sigma_{nm}s] - F_{\beta}(s)| \le Ce^{-cs}m^{-2/3}$$

Second Order Accuracy

[complex case, El-Karoui, 07] [real case, Ma, Johnstone and Ma]

For Wishart matrices,

with careful choice of centering and scaling parameters, as $n,m\to\infty$ with $n/m\to\gamma$,

$$|\Pr[\ell_1 < \mu_{nm} + \sigma_{nm}s] - F_{\beta}(s)| \le Ce^{-cs}m^{-2/3}$$

For real valued data

$$\mu_{nm} = \left(\sqrt{n - \frac{1}{2}} + \sqrt{m - \frac{1}{2}}\right)^2$$

$$\sigma_{nm} = \sqrt{\mu_{nm}} \left(\frac{1}{\sqrt{n - \frac{1}{2}}} + \frac{1}{\sqrt{m - \frac{1}{2}}} \right)^{1/3}$$

Largest Eigenvalue Fluctuations

for ℓ_1/m fluctuations are $O(1/m^{2/3})$, much smaller than standard $1/\sqrt{m}$ fluctuations for averages of many random variables.

TW is a new "universal" distribution - attractor in terms of largest eigenvalue due to universality.

Distribution of the Largest Eigenvalue Divided By Trace

In various settings, interest is in following ratio

$$U = rac{\ell_1}{rac{1}{p}\sum_{j=1}^p \ell_j} > threshold$$

Distribution of the Largest Eigenvalue Divided By Trace

In various settings, interest is in following ratio

$$U = rac{\ell_1}{rac{1}{p}\sum_{j=1}^p \ell_j} > ext{threshold}$$

This random variable plays a role in several different applications:

- Signal Detection [Besson & Scharf 06', Kritchman & N. 08, Bianchi et al. 09']
- ► Two-way models of interaction [Johnson & Graybill, 72']
- Models for Quantum Information Channels.

Ratio of Largest Eigenvalue to Trace

In principle, as $p, n \to \infty$, [Nechita 08', Bianchi et al. 09']

$$\Pr\left[rac{U-\mu_{n,p}}{\sigma_{n,p}} < s
ight] o TW_{eta}(s)$$

Ratio Distribution

Ratio Distribution

Ratio of Largest Eigenvalue to Trace

Theorem: As, $p, n \to \infty$,

$$\Pr\left[\frac{U - \mu_{n,p}}{\sigma_{n,p}} < s\right] \approx F_{\beta}(s) - \frac{1}{\beta np} \left(\frac{\mu_{n,p}}{\sigma_{n,p}}\right)^2 F_{\beta}''(s)$$

[N., J. Mult. Anal., 2011]

Ratio of Largest Eigenvalue to Trace

Theorem: As, $p, n \to \infty$,

$$\Pr\left[\frac{U-\mu_{n,p}}{\sigma_{n,p}} < s\right] \approx F_{\beta}(s) - \frac{1}{\beta n \rho} \left(\frac{\mu_{n,p}}{\sigma_{n,p}}\right)^2 F_{\beta}''(s)$$

[N., J. Mult. Anal., 2011]

This distribution also relevant to study performance of various detection methods

[N. IEEE Tran. Sig. Proc. 10']

[N. Penna and Garello Int. Conf. Comm. 11']

Part III:

Signal Bearning Matrices

Spiked Covariance Models

Consider model whereby

$$\Sigma = diag(\lambda_1, \lambda_2, \dots, \lambda_k, 0, \dots, 0) + \sigma^2 I_m$$

Spiked covariance with *k* spikes.

Observe n vectors $\mathbf{x}_i \in \{\mathbb{R}, \mathbb{C}\}^m$ from this model.

Question: What happens to largest sample eigenvalues and eigenvectors as $n, m \to \infty$, with k, λ_j fixed ?

Phase Transition

[complex case, Ben-Arous, Baik, Peche] [real case, Baik and Silverstein]

Theorem: For spike model with k spikes, as $n, m \to \infty$ with $m/n \to c$, for $j = 1, \ldots, k$,

$$\ell_{j} \to \begin{cases} (\lambda_{j} + \sigma^{2}) \left(1 + \frac{m-k}{n} \frac{\sigma^{2}}{\lambda_{j}} \right) & \lambda_{j} > \sigma^{2} \sqrt{m/n} \\ \sigma^{2} (1 + \sqrt{m/n})^{2} & \lambda_{j} < \sigma^{2} \sqrt{m/n} \end{cases}$$

Phenomena known as retarded learning in statistical physics.

Phase Transition / Eigenvectors

[D. Paul 07', Nadler 08']

Theorem: As $m, n \to \infty$

$$R^2(\mathit{m/n}) = |\langle \mathbf{v}_{ exttt{PCA}}, \mathbf{v}
angle|^2 = \left\{ egin{array}{ll} 0 & ext{if } \lambda < \sigma^2 \sqrt{\mathit{m/n}} \ rac{\mathit{n}\lambda^2}{\mathit{p}\sigma^4} - 1 \ rac{\mathit{n}\lambda^2}{\mathit{p}\sigma^4} + rac{\lambda}{\sigma^2} & ext{if } \lambda > \sigma^2 \sqrt{\mathit{m/n}} \end{array}
ight.$$

In statistical physics:

[Hoyle and Rattray, Reimann & al, Biehl, Watson]

Phase Transition / Eigenvectors

[D. Paul 07', Nadler 08']

Theorem: As $m, n \to \infty$

$$R^{2}(m/n) = |\langle \mathbf{v}_{PCA}, \mathbf{v} \rangle|^{2} = \begin{cases} 0 & \text{if } \lambda < \sigma^{2} \sqrt{m/n} \\ \frac{n\lambda^{2}}{p\sigma^{4}} - 1 & \text{if } \lambda > \sigma^{2} \sqrt{m/n} \\ \frac{n\lambda^{2}}{p\sigma^{4}} + \frac{\lambda}{\sigma^{2}} & \text{if } \lambda > \sigma^{2} \sqrt{m/n} \end{cases}$$

In statistical physics:

[Hoyle and Rattray, Reimann & al, Biehl, Watson]

Asymptotic \sqrt{n} -Gaussian fluctuations [Paul, 07]

$$\sqrt{n}(\ell_1 - \mathbb{E}[\ell_1]) \sim \mathcal{N}(0, \sigma^2(\lambda_1))$$

Phase Transition for finite p as function of σ

First, a "thought experiment": Take training set $\{\mathbf{x}^{\nu}\}$ with finite m, n and start increasing σ . What should be the expected behavior of $R = \langle \mathbf{v}_{\text{PCA}}, \mathbf{v} \rangle$ and of ℓ_1 ?

$$\lambda \sim \kappa^2 + \sigma^2 (1 + m/n)$$
 $R \sim 1 - \sigma^2/\kappa^2 m/n$
 $n = 50, m = 200, \kappa^2 = 7.87$

Phase Transition as function of σ

Tools in Random Matrix Theory

Moment Methods

Stieltjes Transform

Concentration of Measure

Many others...

Part IV:

Signal Detection / Cognitive Radio Application

Signal Detection Model

 $\{\mathbf{x}_i\}_{i=1}^n$ are n i.i.d. observations from

$$\mathbf{x} = \sqrt{\lambda} s(t) \mathbf{h} + \sigma \boldsymbol{\xi}(t)$$

Signal Detection as Hypothesis Testing

Given $\{x_i\}$ determine between

 \mathcal{H}_0 : no signal, $\lambda=0$ $\textit{vs}.\mathcal{H}_1$: signal present $\lambda>0$

Signal Detection as Hypothesis Testing

Given $\{x_i\}$ determine between

 \mathcal{H}_0 : no signal, $\lambda=0$ vs. \mathcal{H}_1 : signal present $\lambda>0$

 $\mathcal{H}_0 = null \ hypothesis.$

 $\mathcal{H}_1 = \textit{alternative}$

Test Statistics

Test statistic: A function $f(\mathbf{x}_1,\ldots,\mathbf{x}_n) \to \mathbb{R}$ such that

$$f(\mathbf{x}_1, \dots, \mathbf{x}_n) \leq t \quad \rightarrow \quad \text{accept } \mathcal{H}_0$$

Test Statistics

Test statistic: A function $f(\mathbf{x}_1,\ldots,\mathbf{x}_n) \to \mathbb{R}$ such that

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n) \leq t \quad o \quad \text{accept } \mathcal{H}_0$$

$$f(\mathbf{x}_1, \dots, \mathbf{x}_n) > t \quad \rightarrow \quad \text{reject } \mathcal{H}_0$$

Two common quantities of interest:

Two common quantities of interest:

False Alarm Rate:

$$P_{FA} = \Pr[f(\mathbf{x}_1, \dots, \mathbf{x}_n) > t \,|\, \mathcal{H}_0 \,\, \mathsf{true}]$$

Two common quantities of interest:

False Alarm Rate:

$$P_{FA} = \Pr[f(\mathbf{x}_1, \dots, \mathbf{x}_n) > t \,|\, \mathcal{H}_0 \,\, \mathsf{true}]$$

Detection Power:

$$P_D = \Pr[f(\mathbf{x}_1, \dots, \mathbf{x}_n) > t \,|\, \mathcal{H}_1 \; \mathsf{true}]$$

Two common quantities of interest:

False Alarm Rate:

$$P_{FA} = \Pr[f(\mathbf{x}_1, \dots, \mathbf{x}_n) > t \,|\, \mathcal{H}_0 \text{ true}]$$

Detection Power:

$$P_D = \Pr[f(\mathbf{x}_1, \dots, \mathbf{x}_n) > t \,|\, \mathcal{H}_1 \; \mathsf{true}]$$

Typically, choose threshold $t=t(\alpha)$ such that $P_{FA}\approx \alpha$ for some $\alpha\ll 1$.

Optimal Tests

A test is optimal at level α , if

$$P_D[f] \ge P_D[any other test]$$

with same false alarm rate α .

Optimal Tests

A test is optimal at level α , if

$$P_D[f] \ge P_D[any other test]$$

with same false alarm rate α .

Neyman-Pearson Lemma: If both \mathcal{H}_0 and \mathcal{H}_1 are simple hypothesis, then optimal test statistic is *likelihood ratio test*

$$\frac{p(\mathbf{x}_1,\ldots,\mathbf{x}_n|\mathcal{H}_1)}{p(\mathbf{x}_1,\ldots,\mathbf{x}_n|\mathcal{H}_0)}$$

Test Statistics for Signal Detection / Cognitive Radio

If σ is known, then \mathcal{H}_0 is simple.

However, \mathcal{H}_1 is not simple.

Neyman Pearson Lemma not directly applicable

Test Statistics for Signal Detection / Cognitive Radio

If σ is known, then \mathcal{H}_0 is simple.

However, \mathcal{H}_1 is not simple.

Neyman Pearson Lemma not directly applicable

In practice: Many test statistics were proposed, all based on the eigenvalues of the sample covariance matrix S_n .

Energy Detection: $Tr(S_n)$ known σ Largest Eigenvalue: ℓ_1 known σ Max/Min Ratio: ℓ_1/ℓ_p unknown σ GLRT: $\ell_1/Tr(S_n)$ unknown σ etc. etc.

Given so many tests, which one to choose?

Mathematical Principle: Look at simplest possible setting.

Given so many tests, which one to choose?

Mathematical Principle: Look at simplest possible setting. σ - noise level known.

Given so many tests, which one to choose?

Mathematical Principle: Look at simplest possible setting.

 σ - noise level known.

 λ - signal strength, known.

Given so many tests, which one to choose?

Mathematical Principle: Look at simplest possible setting.

 σ - noise level known.

 λ - signal strength, known.

 \mathcal{H}_0 is simple \mathcal{H}_1 is still not simple

Given so many tests, which one to choose ?

Mathematical Principle: Look at simplest possible setting.

 σ - noise level known.

 λ - signal strength, known.

 \mathcal{H}_0 is simple \mathcal{H}_1 is still not simple but if we consider test statistics based only on sample eigenvalues then it is !

Which Test Statistic to use?

Consider the case of two (nearly) simple hypothesis

$$\mathcal{H}_0: \mathbf{\Sigma} = \mathbf{I}$$
 vs. $\mathcal{H}_1: \mathbf{W}'\mathbf{\Sigma}\mathbf{W} = \mathbf{I} + diag(\lambda, 0, \dots, 0)$

with λ - known. What is unknown is the basis which makes Σ diagonal in \mathcal{H}_1 .

Suppose we use only eigenvalues $\{\ell_j\}$ of H as a test statistic.

Which Test Statistic to use?

Consider the case of two (nearly) simple hypothesis

$$\mathcal{H}_0: \mathbf{\Sigma} = \mathbf{I}$$
 vs. $\mathcal{H}_1: \mathbf{W}'\mathbf{\Sigma}\mathbf{W} = \mathbf{I} + diag(\lambda, 0, \dots, 0)$

with λ - known. What is unknown is the basis which makes Σ diagonal in \mathcal{H}_1 .

Suppose we use only eigenvalues $\{\ell_j\}$ of H as a test statistic.

Neyman-Pearson: optimal method is likelihood ratio test

$$\frac{p(\ell_1,\ldots,\ell_m|\mathcal{H}_1)}{p(\ell_1,\ldots,\ell_m|\mathcal{H}_0)} \geqslant C(\alpha)$$

Which Test Statistic?

From multivariate analysis (Muirhead 78')

$$p(\ell_1,\ldots,\ell_m|\Sigma) = C_{n,m} \prod_{i} \ell_i^{(n-m-1)/2} \prod_{i < j} (\ell_i - \ell_j) \, _0F_0(-\frac{1}{2}nL,\Sigma^{-1})$$

 $_0F_0$ - hypergeometric function with matrix argument.

Key point: asymptotically in sample size n, for dimension m fixed,

$$\log\left(\frac{p(\ell_1,\ldots,\ell_m|\mathcal{H}_1)}{p(\ell_1,\ldots,\ell_m|\mathcal{H}_0)}\right) \approx n(\ell_1-h(\lambda)) + O(\sum c_{1j}/(\ell_1-\ell_j))$$

Asymptotically, as $n \to \infty$, should only look at *largest* eigenvalue!

Which Test Statistic?

From multivariate analysis (Muirhead 78')

$$p(\ell_1,\ldots,\ell_m|\Sigma) = C_{n,m} \prod_{i} \ell_i^{(n-m-1)/2} \prod_{i < j} (\ell_i - \ell_j) \, {}_{0}F_0(-\frac{1}{2}nL,\Sigma^{-1})$$

 $_0F_0$ - hypergeometric function with matrix argument.

Key point: asymptotically in sample size n, for dimension m fixed,

$$\log\left(\frac{p(\ell_1,\ldots,\ell_m|\mathcal{H}_1)}{p(\ell_1,\ldots,\ell_m|\mathcal{H}_0)}\right)\approx n(\ell_1-h(\lambda))+O(\sum c_{1j}/(\ell_1-\ell_j))$$

Asymptotically, as $n \to \infty$, should only look at *largest* eigenvalue!

Roy's Largest Root Test

[Kritchman & N., IEEE-TSP, 09']

Using Roy's Largest Root Test

Using Roy's Largest Root Test

Using Roy's Largest Root Test

Properties of Roy's Test

Detection Power of Roy's test

via Random Matrix Theory

Properties of Roy's Test

Detection Power of Roy's test

via Random Matrix Theory

Via largest root test, asymptotically for m,n large only $\lambda/\sigma^2>\sqrt{m/n}$ can be detected (with probability one) !

Via other tests, can detect (but not with probability one) weaker signals

[Onatsky et. al.]

Final word of caution: Roy's largest root test is asymptotically optimal when $n \to \infty$. Not so for very weak signals.

What we did not cover

A lot!

What we did not cover

A lot!

- Free Probability (Voiculescu)
- Determinantal Processes
- Kernel random matrices
- Random matrices with heavy tailed distributions
- Random matrices with dependent (correlated) entries
- Random Graphs
- Other transforms
- Concentration of Measure (non-asymptotic finite sample bounds)
- relation to statistical physics
- Rate of convergence
- Linear spectral statistics, Central Limit Theorems etc etc.

Some (Recent) References

much more material can be found in:

Multivariate Statistics:

- A. T. James, Distributions of matrix variates and latent roots derived from normal samples, *Ann. Math. Statist.*, vol. 35, 475-501, 1964.
- T.W. Anderson, *An introduction to multivariate statistical analysis*, Wiley, 2003.
- R.J. Muirhead, Aspects of Multivariate Statistical Theory, 2005.

Random Matrices / Recent Books:

- G. Anderson, A. Guionnet, O. Zeitouni, *An Introduction to Random Matrices*, Cambridge, 2009.
- A. Tulino, S. Verdu, Random Matrix Methods and Wireless Communications, 2011.
- Z. D. Bai, J. W. Silverstein, *Spectral Analysis of Large Dimensional Random Matrices*, Springer, 2009.

Some (Recent) References

Largest Eigenvalue Distribution:

- I.M. Johnstone, On the distribution of the largest eigenvalue in principal component analysis, *Ann. Stat.*, **29**:295–327, 2001.
- I.M. Johnstone, Approximate Null Distribution of the Largest Root in Multivariate Analysis, *Ann. Applied Stat*, 2009
- N. El Karoui. A rate of convergence result for the largest eigenvalue of complex white Wishart matrices. *Annals of Probability*, 2006.
- B. Nadler, On the distribution of the ratio of the largest eigenvalue to the trace of a Wishart matrix, *J. Mult. Anal.*, 2010.

Some (Recent) References

Largest Eigenvalue Signal + Noise:

- J. Baik, G. Ben-Arous, S. Peche, Phase transition of the largest eigenvalue for non-null complex sample covariance matrices, *Ann. Prob.*, 2005.
- J. Baik, J. W. Silverstein, Eigenvalues of large sample covariance matrices of spiked population models, *J. Mult. Anal.*, 2006.
- D. Paul, Asymptotics of sample eigenstructure for a large dimensional spiked covariance model, *Stat. Sinica*, 2007.
- B. Nadler, Finite sample approximation results for PCA, Ann. Stat., 2008.
- R.R. Nadakuditi and J. W. Silverstein. Fundamental Limit of Sample Generalized Eigenvalue Based Detection of Signals in Noise Using Relatively Few Signal-Bearing and Noise-Only Samples. IEEE Journal of Selected Topics in Signal Processing, 2010.
- I. M. Johnstone, B. Nadler, Tech. Report, Stanford University, 2011.

The End

Obrigado pela sua atencao!

 $\label{eq:more material} \mbox{more material at} \\ \mbox{www.wisdom.weizmann.ac.il}/\sim \mbox{nadler}$