Lecture 09

Actuating Simulated Characters

Libin Liu

School of Intelligence Science and Technology Peking University

VCL @ PKU

Outline

- Simulating & Actuating Characters
 - Joint torques
- PD (Proportional-Derivative) control

Recap: Dynamics of a Point Mass

$$\chi$$
, v

$$p = mv$$

Recap: Dynamics of a Point Mass

$$p = mv$$

Newton's Second Law:

$$\frac{dp}{dt} = f$$
 \Rightarrow $m\dot{v} = \int_{-\infty}^{\infty} m\dot{v} = \int_$

Linear

x, v

p = mv

Newton's Second Law:

$$\frac{dp}{dt} = f$$
 \Rightarrow $m\dot{v} =$

Linear

 χ, ν

p = mv

Angular

R

Newton's Second Law: $\frac{ap}{dt} = f$ \Rightarrow $m\dot{v} = f$

Linear

 χ, ν

p = mv

Angular

 R, ω

Newton's Second Law:

$$\frac{dp}{dt} = f$$
 \Rightarrow $m\dot{v}$

Linear

 χ, ν

p = mv

Angular

 R, ω

$$L = I\omega$$

Newton's Second Law:

$$\frac{dp}{dt} = f$$
 \Rightarrow mi

Recap: Moment of Inertia

Same mass, different shapes

Different Moments of Inertia

Linear

 χ , v

$$p = mv$$

Angular

$$R, \omega$$

$$L = I\omega$$

Newton's Second Law:

$$\frac{dp}{dt} = f$$

$$\Rightarrow m\dot{v} =$$

$$\frac{dL}{dt} = \tau$$

$$I\dot{\omega} + \omega \times I\omega = \tau$$

Linear

 χ, ν

$$p = mv$$

Angular

$$R, \omega$$

$$L = I\omega$$

Newton's Second Law:

Euler's laws of motion:

$$\begin{bmatrix} m\mathbf{I}_3 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \times I\omega \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix}$$

Defining a Rigid Body

Masses: m, I

Kinematics: x, v, R, ω

Geometry:

- Box, Sphere, Capsule, Mesh, ...
- Collision detection
- Compute *m*, *I*

Recap: Dynamics of Articulated Rigid Bodies

$$Jv = 0$$

$$\begin{bmatrix} I_3 & -[r_1]_{\times} & -I_3 & [r_2]_{\times} \end{bmatrix} \begin{bmatrix} v_1 \\ w_1 \\ v_2 \\ w_2 \end{bmatrix} = 0$$

Recap: Dynamics of Articulated Rigid Bodies

$$\begin{bmatrix} m_1 \mathbf{I}_3 & & \\ & I_1 & \\ & & m_2 \mathbf{I}_3 \end{bmatrix} \begin{bmatrix} \dot{v}_1 \\ \dot{\omega}_1 \\ \dot{v}_2 \\ \dot{\omega}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_1 \times I_1 \omega_1 \\ 0 \\ \omega_2 \times I_2 \omega_2 \end{bmatrix} = \begin{bmatrix} f_1 \\ \tau_1 \\ f_2 \\ \tau_2 \end{bmatrix} + \begin{bmatrix} I_3 \\ [r_1]_{\times} \\ -I_3 \\ -[r_2]_{\times} \end{bmatrix} \lambda$$

$$Jv = 0$$

Recap: Dynamics of Articulated Rigid Bodies

$$M\dot{v} + C(x, v) = f + J^T \lambda$$

$$Jv = 0$$

Recap: Simulation of a Rigid Body System

$$I_n = R_n I_0 R_n^T$$

$$M_n(v_{n+1} - v_n)/h + C_n(v_n) = f_c + J_n^T \lambda$$

 $J_n v_{n+1} = c_n$

$$x_{n+1} = x_n + hv_{n+1}$$
$$q_{n+1} = q_n + \frac{h}{2}\overline{\omega}_{n+1}q$$

Defining a Simulated Character

[Liu et al 2018]

Rigid bodies:

- m_i , I_i , \boldsymbol{x}_i , R_i
- Geometries

Joints:

- Position
- Type
- Bodies

Simulating a Character

Simulating a Character

Ragdoll Simulation

Linear

 χ , v

$$p = mv$$

Angular

$$R, \omega$$

$$L = I\omega$$

Newton's Second Law:

Euler's laws of motion:

$$\begin{bmatrix} m\mathbf{I}_3 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \times I\omega \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{\tau} \end{bmatrix}$$

Linear

x, v

$$p = mv$$

Angular

 R, ω

$$L = I\omega$$

Newton's Second Law:

$$\begin{bmatrix} m\mathbf{I}_3 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \times I\omega \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{\tau} \end{bmatrix}$$

Linear

 χ , ν

$$p = mv$$

Angular

 R, ω

$$L = I\omega$$

Newton's Second Law:

Euler's laws of motion:

$$\begin{bmatrix} m\mathbf{I}_3 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \times I\omega \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{\tau} + \mathbf{r}_f \times \mathbf{f} \end{bmatrix}$$

Actuating Articulated Rigid Bodies

$$M\dot{v} + C(x, v) = f + J^T \lambda$$

$$Jv = 0$$

Actuating Articulated Rigid Bodies

 $m_i, I_i, x_i, R_i, v_i, \omega_i$

Actuating Articulated Rigid Bodies

$$M\dot{v} + C(x, v) = f + J^T \lambda$$

$$Jv = 0$$

What is a joint torque?

How is a joint torque applied?

$$M\dot{v} + C(x, v) = f + J^T \lambda$$

$$Jv = 0$$

What is a joint torque?

How is a joint torque applied?

$$\begin{bmatrix} m_1 \mathbf{I}_3 & & & \\ & I_1 & & \\ & & m_2 \mathbf{I}_3 & \\ & & & I_2 \end{bmatrix} \begin{bmatrix} \dot{v}_1 \\ \dot{\omega}_1 \\ \dot{v}_2 \\ \dot{\omega}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_1 \times I_1 \omega_1 \\ 0 \\ \omega_2 \times I_2 \omega_2 \end{bmatrix} = \begin{bmatrix} f_1 \\ \tau_1 \\ f_2 \\ \tau_2 \end{bmatrix} + J^T \lambda$$

$$Jv = 0$$

$$\tau_1 = \sum_i (r_1 + r_i) \times f_i = r_1 \times \sum_i f_i + \sum_i r_i \times f_i$$

$$\tau_1 = \sum_i r_i \times f_i$$

Joint Torques

Applying a joint torque τ :

- Add τ to one attached body
- Add $-\tau$ to the other attached body

Joint Torques

Applying a joint torque τ :

- Add τ to one attached body
- Add $-\tau$ to the other attached body

$$M\begin{bmatrix} \dot{v}_1 \\ \dot{\omega}_1 \\ \dot{v}_2 \\ \dot{\omega}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_1 \times I_1 \omega_1 \\ 0 \\ \omega_2 \times I_2 \omega_2 \end{bmatrix} = \begin{bmatrix} 0 \\ \tau \\ 0 \\ -\tau \end{bmatrix} + J^T \lambda$$

$$Jv = 0$$

Simulating a Character

Simulating + Controlling a Character

$$M\dot{\boldsymbol{v}} + C(\boldsymbol{x}, \boldsymbol{v}) = \boldsymbol{f} + J^T \lambda \qquad J \boldsymbol{v} = 0$$

Equations of motion of the system:

$$M\dot{\boldsymbol{v}} + C(\boldsymbol{x}, \boldsymbol{v}) = \boldsymbol{f} + J^T \lambda \qquad J \boldsymbol{v} = 0$$

Forward dynamics: $[x, v, f] \mapsto \dot{v}$

given a set of force/torques, compute the motion

Equations of motion of the system:

$$M\dot{\boldsymbol{v}} + C(\boldsymbol{x}, \boldsymbol{v}) = \boldsymbol{f} + J^T \lambda \qquad J\boldsymbol{v} = 0$$

Forward dynamics: $[x, v, f] \mapsto \dot{v}$

given a set of force/torques, compute the motion

Inverse dynamics: $[x, v, \dot{v}] \mapsto f$

given a motion, compute the forces/torques that give rise to it

$$M\dot{\boldsymbol{v}} + C(\boldsymbol{x}, \boldsymbol{v}) = \boldsymbol{f} + J^T \lambda \qquad J v = 0$$

Forward dynamics: $[x, v, f] \mapsto \dot{v}$

dynamic simulator

given a set of force/torques, compute the motion

Inverse dynamics: $[x, v, \dot{v}] \mapsto f$

controller

given a motion, compute the forces/torques that give rise to it

Simulating + Control

Fully-Actuated vs. Underactuated

Fully-Actuated

Underactuated

If #actuators $\geq \#$ dofs, the system is fully-actuated

If #actuators < #dofs, the system is **underactuated**

Fully-Actuated vs. Underactuated

Fully-Actuated

For any $[x, v, \dot{v}]$, there exists an f that produces the motion

Underactuated

For many $[x, v, \dot{v}]$, there is no such f that produces the motion

Simulating + Control

Feedforward vs. Feedback

Feedforward control:

$$f$$
, $\tau = \pi(t)$

- Apply predefined control signals without considering the current state of the system
- Assuming unchanging system.
 Perturbations may lead to unpredicted results

$$\pi: S_t, t \mapsto f, \tau$$

Feedforward vs. Feedback

Feedback control:

$$f$$
, $\tau = \pi(s_t, t)$

- Adjust control signals based on the current state of the system
- Certain perturbations are expected.
 The feedback signal will be used to improves the performance at the next state.

Compute force f to move the object to the target height

$$f = k_p(\bar{x} - x)$$

Compute force f to move the object to the target height

Compute force f to move the object to the target height

Compute force f to move the object to the target height

Compute force f to move the object to the target height

Compute force f to move the object to the target height

Compute force f to move the object to the target height

$$f = k_p e + k_d \dot{e}$$
proportional derivative
control

Compute force *f* to move the object to the target height

$$f = k_p e + k_d \dot{e}$$
proportional derivative
control

Compute force f to move the object to the target height

$$f = k_p e + k_d \dot{e}$$
proportional derivative
control

Compute force f to move the object to the target height

$$f = k_p e + k_d \dot{e}$$
proportional derivative
control

Proportional-Integral-Derivative controller

Compute force *f* to move the object to the target height

$$f = k_p e + k_d \dot{e} + k_i \int_t e dt$$

proportional derivative control control (rarely used in animation)

Normal stiffness k_p Small stiffness k_p Large stiffness k_p

Normal damping k_d

Small damping k_d

Large damping k_d

Tracking Controllers

Full-body Tracking Controllers

Tracking a Trajectory

[Hodgins and Wooten 1995, Animating Human Athletics]

Trajectory Creation

Tracking Mocap

Full-body Tracking Controllers

Is PD control a feedforward control?

a feedback control?

Tracking Mocap with Joint Torques

 τ_i : joint torques

Apply τ_i to "child" body

Apply $-\tau_i$ to "parent" body

All forces/torques sum up to zero

Tracking Mocap with Root Forces/Torques

τ_i : joint torques

Apply τ_i to "child" body

Apply $-\tau_j$ to "parent" body

All forces/torques sum up to zero

f_0 , τ_0 : root force / torque

Apply f_0 to the root body

Apply τ_0 to the root body

Non-zero net force/torque on the character!

Physically Plausible Animation

Party Animals

Totally Accurate Battle Simulator https://www.youtube.com/watch?v=WFKGWfdG3bU

Mixture Simulation and Mocap

Dynamic Response for Motion Capture **Animation**

Zordan et al. 2005 Dynamic response for motion capture animation

Questions?

