Title

D. Zack Garza

November 26, 2019

Contents

1	Wednesday November 20	1
	1.1 Wevl's Character Formula (24.2-3)	1

1 Wednesday November 20

Last time:

$$\mathbb{Z}\Lambda \iff \{\mathfrak{h}^* \to \mathbb{Z}_{\geq 0} \mid \sim \}$$

$$e(\mu) \mapsto e_{\mu}$$

$$e(\lambda)e(\mu) = e(\lambda + \mu) \mapsto f \star g(\lambda) = \sum_{a+b=\lambda} f(a)g(b)$$

and $\operatorname{ch} L(\lambda) = \sum_{\mu \in \Lambda} \dim L(\lambda)_{\mu} e(\mu)$.

We have the Kostant function $p(\lambda) = \#\{(k_{\alpha})_{\alpha} \mid -\lambda = \sum_{\alpha \in \Phi^{+}} k_{\alpha}\alpha\}$ and the Weyl function $q = e_{\rho} \star \prod_{\alpha \in \Phi^{+}} (1 - e_{-\alpha}) = \prod_{\alpha \in \Phi^{+}} (e_{\alpha/2} - e_{-\alpha/2})$.

Lemma: $p \star e_{\lambda} = \operatorname{ch} M(\lambda)$, so $q \star \operatorname{ch} M(\lambda) = e_{\lambda+\rho}$ and $q \star p = e_{\rho}$.

1.1 Weyl's Character Formula (24.2-3)

Definition: The dot action of W is given by $w \cdot \lambda = w(\lambda + \rho) - \rho$, i.e. a reflection for hyperplanes passing through $-\rho$.

E.g. for type A2, where W(0) = 0, we have:

Type A2

And for the dot action, we have

Image

where $W \cdot 0 = 0$ and $s(\alpha_1) = -\alpha_1$.

Theorem (Harish-Chandra): If $L(\mu)$ is a composition factor of $M(\lambda)$, then $\mu \in W \cdot \lambda$ for $\mu \leq \lambda$.

Proof: Postponed.

ch are characters, $L(\lambda)$ is a Verma module.

Remark: if we sum over $\mu \leq \lambda$, we obtain

$$\operatorname{ch} M(\lambda) = \sum_{\mu \in W \cdot \lambda} a_{\lambda \mu} \operatorname{ch} L(\mu)$$

$$\operatorname{ch} L(\lambda) = \sum_{\mu \in W \cdot \lambda} b_{\lambda \mu} \operatorname{ch} M(\mu)$$

$$= \sum_{W \cdot \lambda \in \Lambda} c_{\lambda W} \operatorname{ch} M(w \cdot \lambda).$$

Theorem (Weyl's Character Formula): If $\lambda \in \Lambda^+$, then

$$\operatorname{ch}L(\lambda) = \frac{\sum_{w \in W} (-1)^{\ell(w)} e(w \cdot \lambda)}{\sum_{w \in W} (-1)^{\ell(w)} e(w \cdot 0)}$$

Proof:

We have $\operatorname{ch} L(\lambda) = \sum_{w} c_{\lambda w} \operatorname{ch} M(w \cdot \lambda)$, and so by the lemma,

$$q * \operatorname{ch} L(\lambda) = \sum c_{\lambda w} q * \operatorname{ch} M(W(\lambda + \rho) - \rho) = \sum_{w} c_{\lambda w} e_{W(\lambda + p)}$$

Thus for all $\alpha \in \Phi^+$, we have

$$s_{\alpha}(q \star \operatorname{ch}L(\lambda)) = \sum_{w} c_{\lambda,s_{\alpha}w} e_{w(\lambda+\rho)}$$

On the other hand, by part (c) of the lemma, we have

which implies that $c_{\lambda,s_{\alpha}w}=-c_{\lambda,w}$ by comparing term-by-term, and thus $c_{\lambda,w}=(-1)^{\ell(w)}$ because $c_{\lambda e}=1$.

In particular, $q = q \star e(0) = q \star \text{ch} L(0) = \sum_{w \in W} (-1)^{\ell(w)} e_{w(\rho)}$, and thus

$$\operatorname{ch}L(\lambda) = \frac{\sum_{w} (-1)^{\ell(w)} e_{w(\lambda+p)}}{\sum_{w} (-1)^{\ell(w)} e_{w(p)}}$$
$$= \frac{\sum_{w} (-1)^{\ell(w)} e(w \cdot \lambda)}{\sum_{w} (-1)^{\ell(w)} e(w \cdot 0)}.$$

Example: For type A1, we have $W = \Sigma_2 = \{1, s\}$. Take $\lambda = 3$ under

$$\Lambda \equiv \mathbb{Z}$$

$$\alpha_1 \to 2$$

$$w_1 = \rho \to 1,$$

from which we obtain

$$\operatorname{ch} L(3) = \frac{e(\mathbf{1} \cdot 3) - e(s \cdot 3)}{e(\mathbf{1} \cdot 0) - e(s \cdot 0)}$$

$$= \frac{e(3) - e(-5)}{e(0) - e(-2)}$$
 = $e(3) + e(1) + e(-1) + e(-3)$ by long division.

Corollary (Kostant's Dimension Formula):

If $\mu \leq \lambda \in \Lambda^+$, then

$$\dim L(\lambda)_{\mu} = \sum_{w \in W} (-1)^{\ell(w)} P(w \cdot \lambda - \mu).$$

Proof: $p \star e_{\mu}(w \cdot \lambda) = \sum_{a+b=w \cdot \lambda} p(a)e_{\mu}(h) = p(w \cdot \lambda - \mu)$, since this is the only term that survives.

Then $p(w \cdot \lambda - \mu)$ is the coefficient for $e(\mu)$ in $\operatorname{ch} M(w \cdot \lambda) = \dim M(\lambda)_{\mu}$. Thus $\dim L(\lambda)_{\mu} = \sum_{w \in W} (-1)^{\ell(w)} \dim M(w \cdot \lambda)_{\mu}$.

Corollary (Weyl's Dimension Formula):

If $\lambda \in \Lambda^+$, then

$$\dim L(\lambda) = \frac{\prod_{\alpha \in \Phi^+} (\lambda + \rho, \alpha^{\vee})}{\prod_{\alpha \in \Phi^+} (\rho, \alpha^{\vee})}$$

Proof (sketch):

Define an operator $\partial = \prod_{\alpha \in \Phi^+} \partial_a$, where $\partial_a : e(\mu) \mapsto (u, \alpha^{\vee}) e(\mu)$. Then ∂ is well-defined since $\partial_{\alpha} \partial_{\beta} = \partial_{\beta} \partial_{\alpha}$ for all α, β , and (exercise) ∂ is a derivation.

Define an evaluation homomorphism $\nu: \sum_{\mu} c_{\mu} e(\mu) \mapsto \prod_{\mu} c_{\mu}$. Note that $\nu(\operatorname{ch} L(\lambda)) = \dim L(\lambda)$, and $\nu(q) = 0$ because $\nu(e_{\alpha_{i-1}}) = 0$.

Claim:

$$\nu(\partial(q\star \mathrm{ch}L(\mu-\rho))) = |w| \prod_{\alpha\in\Phi^+} (\mu,\alpha^\vee)$$

This is relatively straightforward once you know that you have a derivation and a homomorphism.

With this claim, we have

$$\nu(\partial(q\star \mathrm{ch}L(\lambda))) = \nu(\partial q)\nu(\mathrm{ch}L(\lambda)) + \nu(q)\nu(\partial \mathrm{ch}L(\lambda))$$

where we can identify a number of terms, and then taking ratios yields Weyl's dimension formula.