Project Workflow

1. Data Ingestion

- Read accepted and rejected loan datasets from raw CSV files.
- Merge datasets into a single DataFrame for modeling.
- Ensure consistent feature names and data types.

2. Data Cleaning

- Handle missing values (drop or impute based on context).
- Drop irrelevant columns (e.g., unique IDs, URLs).
- Loan purpose categorization:
 - o Original dataset had 30k+ loan purposes.
 - o Applied **TF-IDF clustering** locally to group similar purposes.
 - Selected top 10 examples per cluster and used OpenAI API to assign meaningful labels.
 - o Reduced 30k+ categories to **50 relevant categories**.

3. Feature Encoding & Normalization

- Encode categorical features using **one-hot encoding**:
 - Loan grade
 - o Purpose
 - Home ownership
- Normalize numerical features using MinMaxScaler or StandardScaler:
 - o Loan amount
 - o Debt-to-income ratio (DTI)
 - o Income

4. Feature Engineering

• Create flags and interaction features:

```
o high_dti_flag = 1 if dti > 30 else 0
o long_term_employment = 1 if emp_length >= 10 else 0
o loan_dti_interaction = loan_amount * dti
```

Optional: Derived ratios like loan-to-income.

5. Modeling (Risk & Profit Tradeoff)

- Train models to predict loan default probability:
 - Logistic Regression
 - Random Forest
 - o XGBoost
- Tune hyperparameters using **GridSearchCV** or **RandomizedSearchCV**.
- Include expected profit modeling:

```
o profit = profit_per_good_loan if repaid
```

o loss = loss per default if defaulted

6. Cross-Validation & Evaluation

- K-Fold Stratified CV for robust performance.
- Evaluate metrics:
 - o ROC-AUC
 - o F1-score
 - o Expected Profit (custom business metric)
- Visualizations:
 - o **ROC Curves** for all models
 - o **Profit Curves** to show cumulative profit vs. number of loans issued