

CLAIMS

What is claimed is:

1 1. A method for de-screening a halftone image, comprising:
2 performing a screen conversion filter upon a scanned
3 representation of said halftone image to produce an
4 intermediate image; and
5 performing a line smoothing filter upon said intermediate image
6 to produce an output image.

1 2. The method of claim 1, wherein said screen conversion
2 filter utilizes a 3 by 3 coefficient matrix.

1 3. The method of claim 2, wherein said coefficient matrix is
2 diagonal along the lower right to upper left direction.

1 4. The method of claim 3, wherein coefficients $c_{(-1, 1)} = c_{(1, -1)} =$
2 1, and coefficient $c_{(0, 0)} = 2$.

1 5. The method of claim 2, wherein said coefficient matrix is
2 diagonal along the lower left to upper right direction.

1 6. The method of claim 3, wherein coefficients $c_{(-1, -1)} = c_{(1, 1)} =$
2 1, and coefficient $c_{(0, 0)} = 2.$

1 7. The method of claim 1, wherein said line smoothing filter
2 utilizes a 3 by 3 coefficient matrix.

1 8. The method of claim 7, wherein said coefficient matrix is
2 diagonal along the lower right to upper left direction.

1 9. The method of claim 8, wherein coefficients $c_{(-1, 1)} = c_{(1, -1)} =$
2 1, and coefficient $c_{(0, 0)} = 2.$

1 10. The method of claim 9, wherein said coefficient matrix is
2 diagonal along the lower left to upper right direction.

1 11. The method of claim 10, wherein coefficients $c_{(-1, -1)} = c_{(1, 1)} =$
2 1, and coefficient $c_{(0, 0)} = 2.$

1 12. The method of claim 1, wherein said screen conversion
2 filter passes low-frequencies, passes high-frequencies along a diagonal
3 line from lower left to upper right, and attenuates high-frequencies
4 away from said diagonal line.

1 13. The method of claim 1, wherein said screen conversion
2 filter passes low-frequencies, passes high-frequencies along a diagonal
3 line from lower right to upper left, and attenuates high-frequencies
4 away from said diagonal line.

1 14. The method of claim 1, wherein said line smoothing filter
2 passes low-frequencies, passes high-frequencies along a diagonal line
3 from lower left to upper right, and attenuates high-frequencies away
4 from said diagonal line.

1 15. The method of claim 1, wherein said line smoothing filter
2 passes low-frequencies, passes high-frequencies along a diagonal line
3 from lower right to upper left, and attenuates high-frequencies away
4 from said diagonal line.

1 16. A method for de-screening a halftone image, comprising:
2 performing a single convolution filter upon a scanned
3 representation of said halftone image to produce an
4 output image, wherein said single convolution filter equals
5 the resulting convolution of a screen conversion filter and a
6 line smoothing filter.

1 17. The method of claim 16, wherein said single convolution
2 filter passes low-frequencies, passes high-frequencies at a central area,
3 and attenuates high-frequencies along a horizontal axis and a vertical
4 axis.

1 18. A computer-readable medium having stored thereon
2 sequences of instructions, the sequences of instructions including
3 instructions which, when executed by a processor, causes the processor
4 to perform various processing, the sequences of instructions
5 comprising:
6 a first sequence to perform a screen conversion filter upon a
7 scanned representation of a halftone image to produce an intermediate
8 image; and
9 a second sequence to perform a line smoothing filter upon said
10 intermediate image to produce an output image.

1 19. A computer-readable medium having stored thereon
2 sequences of instructions, the sequences of instructions including
3 instructions which, when executed by a processor, causes the processor
4 to perform various processing, the sequences of instructions
5 comprising:

6 a first sequence to perform a single convolution filter upon a
7 scanned representation of a halftone image to produce an output image,
8 wherein said single convolution filter equals the resulting convolution of
9 a screen conversion filter and a line smoothing filter.

1 20. A system for de-screening a halftone image, comprising:
2 a memory to store an input image from a halftone print; and
3 a processor to perform a screen conversion filter upon said input
4 image and create an intermediate image, and to perform a
5 line smoothing filter upon said intermediate image and
6 create an output image.

1 21. A method for de-screening a halftone image, comprising:
2 converting dots of said halftone image into parallel lines of an
3 intermediate image; and
4 smoothing said parallel lines of said intermediate image into a
5 final image.

1 22. The method of claim 21, wherein said parallel lines are at
2 an approximately 45 degree angle with respect to a side of said
3 intermediate image.