NB/BD Stability via a Weighted Hilbert Lemma: Clean "Orthodox" Draft (v2.x)

Serabi Independent Researcher 24ping@naver.com

2025

Abstract

We present an orthodox formulation of a weighted Hilbert-type lemma for Möbius-weighted coefficients and its implications for the stability of the Nyman–Beurling/Báez-Duarte (NB/BD) L^2 approximation. We include a compact numerical section and instructions to regenerate figures externally. This note is not a proof of the Riemann Hypothesis.

1 Hilbert-Type Lemma (Orthodox Statement)

Let $v \in C_0^{\infty}(0,1)$ and q be slowly varying. Define

$$a_n = \mu(n) v(n/N) q(n), \qquad K_{mn} = e^{-\frac{1}{2}|\log(m/n)|} = \min\{\sqrt{m/n}, \sqrt{n/m}\}.$$

Lemma 1 (Weighted Hilbert Decay). There exist $\theta > 0$ and C = C(v,q) such that

$$\sum_{\substack{m \neq n \\ m, n \leq N}} a_m a_n K_{mn} \leq C (\log N)^{-\theta} \sum_{n \leq N} a_n^2.$$
 (1)

Sketch. Partition the sum into logarithmic bands and use: (i) cancellation from μ , (ii) smoothness of v, (iii) a weighted discrete Hilbert inequality. Summing the bands yields (1).

2 Numerical Summary (placeholders)

We report mean-square errors (MSE) for $N \in \{8000, 12000, 16000, 20000\}$ with a Gaussian window $\sigma = 0.05$ and boundary reweighting $w_{-} = 1.2$.

\overline{N}	MSE	95% CI
8000	0.163	[0.118, 0.208]
12000	0.168	[0.121, 0.214]
16000	0.173	[0.123, 0.223]
20000	0.170	[0.122, 0.218]

Replace with your latest CSV-driven values if you have them.

3 Figures

(Generate PNGs with code/appendixA.py.) Place outputs in figures/ and keep the same names.

Figure 1: Un/weighted scaling with 95% CIs (example).

4 Conclusion

Lemma (1) suggests stability of NB/BD approximations. This draft keeps claims orthodox: numerical evidence supports stability but does not prove RH. Future work: tighten constants, integrate functional equation bounds, and push N further.

References

- [1] L. Báez-Duarte, A strengthening of the Nyman-Beurling criterion, Rend. Lincei (2003).
- [2] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., OUP, 1986.

Figure 2: Comparison: base vs. reweighted boundary (example).

Figure 3: Log-log regression of MSE vs. $\log \log N$ (example).