Kittipong Tapyou 65070501003

Homework 07 : Morphological Operation

Key characteristics on the given image

จากรูปตัวอย่างที่ได้ เป็นรูปภาพ binary ซึ่ง black pixel คือ cell และ background คือ white pixel ภาย ในภาพมีวงกลมหลายขนาด โดยที่สิ่งที่เป็น challenge สำหรับ โจทย์นี้คือวงกลมบริเวณขอบของรูปมีความไม่สมบูรณ์ แต่วงกลมแต่ละวง ในภาพนั้น ไม่ติดกัน

Proposed Methodology

- ทำการสลับ black กับ white pixel เพื่อ ให้จุดที่เราสน ใจซึ่งคือวงกลม กลายเป็น white pixel
- หากพิจารณที่วงกลมหลายขนาดนั้น สามารถนับได้โดยการทำ hit or miss transformation โดยเพิ่มขนาดของวงกลมที่เป็น structure component ให้มีขนาดเพิ่มขึ้นเรื่อยๆจากนั้น วงกลมที่มีขนาดเท่ากันจะมี pixel ขนาด 1 และใช้ conv ที่มีค่าเป็น 1 ขนาด 3*3 และ นับเฉพาะ ส่วนที่มีค่าเป็น 1 เพื่อนับ single pixel ได้ แต่เนื่องจาก structure component นั้นอาจจะไม่ได้มีรูปร่างเทียบเท่ากับวงกลม บางครั้ง อาจจะทำให้ได้ pixel ที่ไม่ได้มีขนาดเป็น 1 และการที่ภาพวงกลมขาดหายในขอบของรูปนั้นเมื่อทำ hit or miss แล้ว จะได้เป็น ข้อมูลที่เป็นเส้น ไม่ใช้ pixel ขนาด 1
- ดังนั้นสิ่งที่เป็นไปได้คือการใช้ 4-8 neighbors connected-component ซึ่งเป็นหลักการของการทำ sliding window ดังนั้น สิ่งที่สามารถทดแทนได้คือการทำ connected-component โดยใช้ geodesic dilation

Morphological connected-component

ในการใช้ morphological operation ในการหา connected-component ทำได้โดยการ

- 1) หา pixel ที่มีค่าเป็น 1 (บริเวณของ cell)
- 2) ทำการเลือก 1 pixel ที่มีค่าเป็น 1(white pixel) จากนั้น สร้าง empty image ขนาดเท่ากับภาพจริง จากนั้นเติม pixel นั้นเข้าไป
- 3) เมื่อได้ภาพที่มีแค่ 1 pixel แล้ว ก็ทำการใช้ geodesic dilation กับ ภาพต้นฉบับ(mask) ทำให้ภาพที่ได้นั้น ถูก dilate ด้วย pixel ในบริเวณนั้น
- 4) เมื่อทราบบริเวณที่ถูก dilate จาก single pixel ก็ทำการ label บริเวณนั้น ให้เป็น pixel ที่ถูก detect แล้ว (ในการ label นั้น หากใช้เป็นจำนวนเต็มที่เพิ่มขึ้นแต่ละ iteration จะทำให้ได้เกิดการนับ component และ labeled region)
- 5) ทำการเลือก pixel ที่ไม่ถูก label และเป็น white pixel และทำซ้ำ ในข้อ 2-5 ไปเรื่อย จนกว่าจะไม่พบ pixel ที่ไม่ถูก label และเป็น white pixel เหลืออยู่

Advantage and drawback

- ภาพที่เป็น input image นั้นต้องเป็น object ที่ไม่ซ้อนทับกัน เนื่องจากเป็นการทำ dilation จึงไม่สามรถแยกส่วนซ้อนทับได้
- ข้อดีของวิธีการนี้คือการมีวัตถุหลายๆรูปร่าง ก็สามารถทำงานได้ ขอเพียงไม่มีการซ้อนทับกันของวัตถุ

Provided Code


```
ConnectedComponentsManualGeodesic[img_] := Module[
In[4]:=
          {mask, dim, unlabeled, seed, label, pos, marker, compImg, compArr, curr = 0, count
          dim = ImageDimensions[img];
          mask = ImageData[img];
          label = ConstantArray[0, dim];
          While[True,
              unlabeled = MapThread[ Boole[#1 == 1 && #2 == 0] &,{mask, label}, 2];
              pos = FirstCase[Position[unlabeled, 1], {_Integer, _Integer}, None];
              If[pos === None, Break[]];
              marker = ConstantArray[0, dim];
              marker[[pos[1]], pos[2]]] = 1;
              marker = Image[marker];
              compImg = FixedPoint[
                  GeodesicDilation[#, Image[unlabeled]] &,
                  marker
              ];
              compArr = ImageData[compImg];
              curr = curr + 1;
              label = label + curr * compArr;
          ];
          count = Max[Flatten[label]];
          Return[{count, label}];
      ]
      {count, countImg} = ConnectedComponentsManualGeodesic[binImg];
In[5]:=
```

The number of circles is 61.

Colorize[Round[countImg]] In[7]:=

In[6]:=

Print["The number of circles is ", count]

Result:

ภาพที่ได้นั้น เมื่อผ่านการนับวงกลม โดยใช้ connected component แล้ว พบว่ามีวงกลมทั้งหมด 61 วง โดยที่ผลลัพธ์ที่ได้นั้นผ่านกระบวนการ labeling ซึ่งเป็นการ label ส่วนของ region ทำให้ทราบบริเวณของแต่ละวง โดยได้แสดงตัวอย่างจากภพาด้านบน จะเห็นว่าวัตถุที่อยู่คนละ region กันจะมีสีที่ต่างกัน

โดย connected component นั้นสามารถเรียกจาก build-in function ได้ (ตัวอย่างด้านล่าง) แต่ code ที่เขียนทำเพื่อเป็นการลงรายละเอียดกระบวนการทำงานของวิธีการนี้

