Computer Organization and Architecture

Lecture – 26

Nov 16th, 2022

Chapter 6

Parallel Processors from Client to Cloud

Performance

Inst. 1 Inst. 2 Inst. 3 Inst. ...

Program 2
Inst. 1
Inst. 2
Inst. 3
Inst

Program 3	
Inst. 1	
Inst. 2	
Inst. 3	
Inst	

Processor

Performance

Program 1

Inst. 1

Inst. 2

Inst. 3

Inst. ...

UNIVERSITY of HOUSTON

Inst. 3

Inst. ...

Multiple Processors

Program 1

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Program 2

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Program 3

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Introduction

Goal: connecting multiple computers to get higher performance

Program 1

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Program 2

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Processor

Sequential

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Program 2

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Execution order

Program 1. Inst. 1

Program 1. Inst. 2

Program 1. Inst. 3

Program 1. Inst. ..

time

Program 2. Inst. 1

Program 2. Inst. 2

Program 2. Inst. 3

Program 2. Inst. ..

Processor

Sequential

Program 1

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Program 2

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Execution order

Program 1. Inst. 1

Program 1. Inst. 2

Program 1. Inst. 3

Program 1. Inst. ..

time

Program 2. Inst. 1

Program 2. Inst. 2

Program 2. Inst. 3

Program 2. Inst. ..

Processor

Only one program can be executed at a time

Sequential

Program 1

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Program 2

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Processor

Concurrent

Program 1

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Program 2

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Execution order

Program 1. Inst. 1

Program 1. Inst. 2

Program 2. Inst. 1

Program 2. Inst. 2

Program 1. Inst. 3

Program 2. Inst. 3

Program 1. Inst. ..

Program 2. Inst. ..

Processor

Concurrent

time

Program 1

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Program 2

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Execution order

Program 1. Inst. 1

Program 1. Inst. 2

Program 2. Inst. 1

Program 2. Inst. 2

Program 1. Inst. 3

Program 2. Inst. 3

Program 1. Inst. ..

Program 2. Inst. ..

Processor

- Instructions from two programs are executed concurrently
- 2. Creates an illusion that the two programs are running in parallel, event though only one program is executed at a given instance of time.
- 3. Allows us to execute multiple programs simultaneously.

Concurrent

time

Program 1

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Program 2

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Execution order

Program 1. Inst. 1

Program 1. Inst. 2

Program 2. Inst. 1

Program 2. Inst. 2

Program 1. Inst. 3

Program 2. Inst. 3

Program 1. Inst. ..

Program 2. Inst. ..

2.

Processor

- Instructions from two programs are executed concurrently
- 2. Creates an illusion that the two programs are running in parallel, event though only one program is executed at a given instance of time.
- 3. Allows us to execute multiple programs simultaneously.
- 4. Can improve performance, if program 1 stalls execute program 2

Concurrent

time

P	ro	gr	aı	m	1
-	_	Ο.			_

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Program 2

Inst. 1

Inst. 2

Inst. 3

Inst. ...

Processor 1

1. Multiple processors or mulit-core processors are available.

Processor 2

- 1. Multiple processors or mulit-core processors are available.
- 2. Program 1 is executed by processor 1 and program 2 is executed by processor 2.
- 3. Two tasks executed in parallel, referred to as task-level parallelism.

Processor

Processor

- 1. Multiple processors or mulit-core processors are available.
- Program 1 is executed by processor 1 and program 2 is executed by processor 2.
- 3. Two tasks executed in parallel, referred to as task-level parallelism.
- 4. Segment program into multiple chunks

- 1. Multiple processors or mulit-core processors are available.
- Program 1 is executed by processor 1 and program 2 is executed by processor 2.
- 3. Two tasks executed in parallel, referred to as task-level parallelism.
- 4. Segment program into multiple chunks, and execute each chunk on different processor
- One task executed on multiple processors simultaneously, referred to as a parallel processing program

• Concurrency:

- Concurrency:
 - OS can perform scheduling
 - Hardware Multi-threading
- Parallel execution
 - Task level parallelism

- Concurrency:
 - OS can perform scheduling
 - Hardware Multi-threading
- Parallel execution
 - Task level parallelism
 - Task scheduling (assign task to individual processes)
 - Parallel process programming

Example

```
Sum of numbers
```

```
1
2
3
int sum = 0
for (i = 0, i <= 10, i++)
{
    sum += a[i]
}

1
1
2
3
4
5
6
7
8
9
10
```

Processor

Example

Example

UNIVERSITY of **HOUSTON**

- Concurrency:
 - OS can perform scheduling
 - Hardware Multi-threading
- Parallel execution
 - Task level parallelism
 - Task scheduling (assign task to individual processes)
 - Parallel process programming
 - Needs to be implemented by programmer
 - Challenge to create software and hardware that will make it easy to write correct parallel processing programs

Difficulty of Creating Parallel Programs

- Difficult to write program that can be executed on multiple processors
 - Complexity increases as the number of processors increase
- Parallel programs should produce better performance or better energy efficiency
- Difficulty in writing parallel programs
 - Breaking a task into independent segments
 - Communicating between segments
 - Balance load approximately across processors

Will using n processors produce a speed up of n?

- Will using n processors produce a speed up of n?
- Program A executes in time t on 1 processor
- We use 100 processors and want a speed up of 90 times.
- Assume x% of the program can be parallelised
- Execution time of parallel program

- Will using n processors produce a speed up of n?
- Program A executes in time t on 1 processor
- We use 100 processors and want a speed up of 90 times.
- Assume x% of the program can be parallelised
- Execution time of parallel program

$$t_1 = \frac{parallel\ program}{100} + nonparallel\ program$$

- Will using n processors produce a speed up of n?
- Program A executes in time t on 1 processor
- We use 100 processors and want a speed up of 90 times.
- Assume x% of the program can be parallelised
- Execution time of parallel program

$$t_1 = \frac{(x)}{100} + (1 - x)$$

- Will using n processors produce a speed up of n?
- Program A executes in time t on 1 processor
- We use 100 processors and want a speed up of 90 times.
- Assume x% of the program can be parallelised
- Execution time of parallel program

$$t_1 = \frac{(x)}{100} + (1 - x)$$

$$speed up(90) = \frac{t}{t_1} = \frac{1}{\frac{(x)}{100} + (1 - x)}$$

- Will using n processors produce a speed up of n?
- Program A executes in time t on 1 processor
- We use 100 processors and want a speed up of 90 times.
- Assume x% of the program can be parallelised
- Execution time of parallel program

$$90 = \frac{1}{\frac{(x)}{100} + (1 - x)}$$
$$x = 0.999$$

- Will using n processors produce a speed up of n?
- Program A executes in time t on 1 processor
- We use 100 processors and want a speed up of 90 times.
- Assume x% of the program can be parallelised
- Execution time of parallel program

$$t_1 = \frac{(1-x)}{100} + x$$
$$x = 0.001$$

Speed up of 90 times is possible if 99.9% of code can be parallized.

- Speed up depends on problem size
 - More speed up for larger problems
- Assuming that even load balancing is possible across all the processors

Classification of Parallel Architectures

Flynn's Taxonomy

- A classification of computer architectures
- Based upon the number of concurrent instruction (or control) streams and data streams available in the architecture.

Classification of Parallel Architectures

Flynn's Taxonomy

- A classification of computer architectures
 - (instructions)
- Based upon the number of concurrent instruction (or control) streams and data streams available in the architecture.
 (processors)

Classification of Parallel Architectures

Flynn's Taxonomy

- SISD: Single instruction single data
 - Classical von Neumann architecture
 Execution order

Program 1. Inst. 1
Program 1. Inst. 2
Program 2. Inst. 1
Program 2. Inst. 2
Program 1. Inst. 3
Program 2. Inst. 3
Program 1. Inst. ..
Program 2. Inst. ..

Processor

Classification of Parallel Architectures

Flynn's Taxonomy

- SISD: Single instruction single data
 - Classical von Neumann architecture
- SIMD: Single instruction multiple data

Processor 1

Processor 2

- 1. All the processors are working to execute instruction 1.
- 2. Need to work synchronously.

Inst. 1

Processor 3

Vector Architecture

- Support vector operations
- Components
 - Vector registers: Hold 64 elements (vector)
 - Load and Store Vectors
 - Perform actions on Vectors

Vector Architecture

- Support vector operations
- Example

$$V1 = [a_0, a_1, ..., a_{63}]$$

 $V2 = [b_0, b_1, ..., b_{63}]$

Vector LEGv8 code:

FADDDV V3, V1, V2

Vector Architecture

- Support vector operations
- Example

Classification of Parallel Architectures

Flynn's Taxonomy

- SISD: Single instruction single data
 - Classical von Neumann architecture
- SIMD: Single instruction multiple data
- MISD: Multiple instructions single data
 - Non existent, just listed for completeness

Classification of Parallel Architectures

Flynn's Taxonomy

- SISD: Single instruction single data
 - Classical von Neumann architecture
- SIMD: Single instruction multiple data
- MISD: Multiple instructions single data
 - Non existent, just listed for completeness
- MIMD: Multiple instructions multiple data
 - Most common and general parallel machine

- 1. Multiple processors or mulit-core processors are available.
- 2. Multiple processors executing various instructions asynchronously.

Parallelism in Single Processor Architectures

Parallelism in Single Processor Architectures

- Pipelining
 - Overlap the execution of multiple instructions
 - N stages → N instructions executed

Instruction-Level Parallelism (ILP)

- Pipelining: executing multiple instructions in parallel
- To increase ILP
 - Deeper pipeline
 - Less work per stage ⇒ shorter clock cycle

Instruction-Level Parallelism (ILP)

- Pipelining: executing multiple instructions in parallel
- To increase ILP
 - Deeper pipeline
 - Less work per stage ⇒ shorter clock cycle
 - Multiple issue
 - Replicate pipeline stages ⇒ multiple pipelines
 - Start multiple instructions per clock cycle
 - CPI < 1

Multiple Issue

- Static multiple issue
 - Compiler groups independent instructions to be issued together
 - Packages them into "issue slots"
 - Compiler detects and avoids hazards
- Dynamic multiple issue
 - CPU examines instruction stream and chooses instructions to issue each cycle
 - Compiler can help by reordering instructions
 - CPU resolves hazards using advanced techniques at runtime

Limitations of ILP

- Problem: within a single instruction stream we do not find enough independent instructions to execute simultaneously due to
 - data dependencies
 - difficulties to detect memory dependencies among instruction
- Consequence: significant number of functional units are idling at any given time
- Question: Can we maybe execute instructions from another instructions stream concurrently
 - Another thread?
 - Another process?

Hardware Multithreading

Performing multiple threads of execution in parallel

Hardware Multithreading

- Performing multiple threads of execution in parallel
- Problems for executing instructions from multiple threads at the same time
 - The instructions in each thread might use the same register names
 - Each thread has its own program counter

Hardware Multithreading

- Performing multiple threads of execution in parallel
- Problems for executing instructions from multiple threads at the same time
 - The instructions in each thread might use the same register names
 - Each thread has its own program counter
- When to switch between different threads?

Fine-grain multithreading

- Switch threads after each cycle
- Interleave instruction execution
- If one thread stalls, others are executed

Execution order

Program 1. Inst. 1
Program 2. Inst. 1
Program 1. Inst. 2
Program 2. Inst. 2
Program 1. Inst. 3
Program 2. Inst. 3
Program 1. Inst
Program 2. Inst

Coarse-grain multithreading

- Only switch on long stall (e.g., L2-cache miss)
- Simplifies hardware, but doesn't hide short stalls (eg, data hazards)

Simultaneous Multithreading

- In multiple-issue dynamically scheduled processor
 - Schedule instructions from multiple threads
 - Instructions from independent threads execute when function units are available
 - Within threads, dependencies handled by scheduling and register renaming
- Example: Intel Pentium-4 HT
 - Two threads: duplicated registers, shared function units and caches

Multithreading Example

Multithreading Example

Parallelism in Multi Processor/Core Architectures

- Difficult to write parallel programs
- Simplify
 - Single physical address space, shared by all processors
 - Programs do not have worry about where the data is stored
 - All variable available to all processors
- Shared Memory Multi-Processors

Shared Memory

- SMP: shared memory multiprocessor
 - Hardware provides single physical address space for all processors

Two processors sharing an area of memory

Two processors sharing an area of memory

If a is read while the previous instruction is executed

- Two processors sharing an area of memory
 - P1 writes, then P2 reads
 - Data race if P1 and P2 don't synchronize
 - Result depends on order of accesses

UNIVERSITY of HOUSTON

- Two processors sharing an area of memory
 - P1 writes, then P2 reads
 - Data race if P1 and P2 don't synchronize
 - Result depends on order of accesses

When processor 1 accesses variable a put a lock on it

UNIVERSITY of HOUSTON

- Two processors sharing an area of memory
 - P1 writes, then P2 reads
 - Data race if P1 and P2 don't synchronize
 - Result depends on order of accesses

When processor 1 accesses variable a put a lock on it

- Two processors sharing an area of memory
 - P1 writes, then P2 reads
 - Data race if P1 and P2 don't synchronize
 - Result depends on order of accesses

- Two processors sharing an area of memory
 - P1 writes, then P2 reads
 - Data race if P1 and P2 don't synchronize
 - Result depends of order of accesses
- Hardware support required
 - Atomic read/write memory operation
 - No other access to the location allowed between the read and write

Multi-Core processors

- Compute cores on a multi-core processor share the same main memory -> Shared memory architecture
- Difference to previous multi-processor systems:
 - compute cores are on the same chip
 - Multi-core processors typically connected over a cache, while previous SMP systems were typically connected over the main memory

Shared memory systems (I)

- All processes have access to the same address space
 - E.g. PC with more than one processor
- Data exchange between processes by writing/reading shared variables
 - Shared memory systems are (relatively) easy to program
 - Current standard in scientific programming: OpenMP
- Two versions of shared memory systems available today
 - Centralized Shared Memory Architectures
 - Distributed Shared Memory architectures

Centralized Shared Memory Architecture

- Also referred to as Symmetric Multi-Processors (SMP)
- All processors share the same physical main memory

- Memory bandwidth per processor is limiting factor for this type of architecture
- Typical size: 2-32 processors

Distributed Shared Memory Architectures

- Also referred to as Non-Uniform Memory Architectures (NUMA)
 - Some memory is closer to a certain processor than other memory
 - The entire memory is still addressable from all processors
 - Depending on what data item a processor retrieves, the access time might vary strongly

NUMA architectures (II)

- Reduces the memory bottleneck compared to SMPs
- More difficult to program efficiently
 - First touch policy: data item will be located in the memory of the processor which uses a data item first
- To reduce effects of non-uniform memory access, caches are often used

Cache Coherence

- Real-world shared memory systems have caches between memory and CPU
- Copies of a single data item can exist in multiple caches
- Modification of a shared data item by one CPU leads to outdated copies in the cache of another CPU

Cache coherence (II)

- Typical solution:
 - Caches keep track on whether a data item is shared between multiple processes
 - Upon modification of a shared data item, 'notification' of other caches has to occur
 - Other caches will have to reload the shared data item on the next access into their cache
- Cache coherence <u>only</u> an issue in case multiple tasks access the same item
 - Multiple threads
 - Multiple processes have a joint shared memory segment
 - Process is being migrated from one CPU to another