Online Algorithms

Generalized BALANCE

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Worst case for BALANCE

- N advertisers: A₁, A₂, ... A_N
 - Each with budget B > N
- Queries:
 - N·B queries appear in N rounds of B queries each
- Bidding:
 - Round 1 queries: bidders A₁, A₂, ..., A_N
 - Round 2 queries: bidders $A_2, A_3, ..., A_N$
 - Round i queries: bidders A_i , ..., A_N
- Optimum allocation:
 - Allocate round i queries to A_i
 - Optimum revenue N·B

BALANCE Allocation

After k rounds, the allocation to advertiser k is: $S_{i} = \sum_{i} R/(N_{i}+1)$

 $S_k = \sum_{1 \le i \le k} B/(N-i+1)$

If we find the smallest k such that $S_k \ge B$, then after k rounds we cannot allocate any queries to any advertiser

BALANCE: Analysis

B/1 B/2 B/3 ... B/(N-(k-1)) ... B/(N-1) B/N

$$S_{k} = B$$

1/1 1/2 1/3 ... 1/(N-(k-1)) ... 1/(N-1) 1/N

 $S_{k} = C$
 $S_{k} = C$

BALANCE: Analysis

- Fact: for large n
 - Result due to Euler

1/1 1/2 1/3 ... 1/(N-(k-1)) ... 1/(N-1) 1/N

$$ln(N)$$
 $S_k = 1$

$$ln(N-k) = ln(N) - 1$$

 $ln(N/(N-k)) = 1$
 $N/(N-k) = e$
 $k = N(1-1/e)$

BALANCE: Analysis

- So after the first k=N(1-1/e) rounds, we cannot allocate a query to any advertiser
- Revenue = B·N (1-1/e)
- Competitive ratio = 1-1/e

General Version of the Problem

- So far: all bids = 1, all budgets equal (=B)
- In a general setting BALANCE can be terrible
 - Consider query \mathbf{q} , two advertisers \mathbf{A}_1 and \mathbf{A}_2
 - A_1 : bid = 1, budget = 110
 - A_2 : bid = 10, budget = 100
 - Suppose we see 10 instances of q
 - BALANCE always selects A₁ and earns 10
 - Optimal earns 100

Generalized BALANCE

- Consider query q, bidder i
 - Bid = x_i
 - Budget = b_i
 - Amount spent so far = m_i
 - Fraction of budget left over f_i = 1-m_i/b_i
 - Define $\psi_i(q) = x_i(1-e^{-f_i})$
- Allocate query ${m q}$ to bidder ${m i}$ with largest value of $\psi_i({m q})$
- Same competitive ratio (1-1/e)