

Applied Metrics Papers

Author: Wenxiao Yang

Institute: Haas School of Business, University of California Berkeley

Date: 2024

Contents

Chapter 1 Identification of Prediction Errors			1
1.1	[Rambachan(2024)]: Identifying Prediction Mistakes in Observational Data		1
	111	Expected Utility Maximization at Accurate Beliefs	1

Chapter 1 Identification of Prediction Errors

1.1 [Rambachan(2024)]: Identifying Prediction Mistakes in Observational Data

Uncovering systematic prediction mistakes in empirical settings is challenging because

- 1. the decision maker's preferences and
- 2. the information set

are unknown to us.

1.1.1 Expected Utility Maximization at Accurate Beliefs

A decision maker (DM) makes a binary choice $c \in \{0, 1\}$ for each individual, which is summarized by characteristics $x \in \mathcal{X}$ and an unknown outcome $y^* \in \mathcal{Y}$ (observable when c = 1).

Example 1.1 (Pretrial Release)

A judge decides whether to detain ore release defendants $C \in \{0,1\}$. The outcome $Y^* \in \{0,1\}$ is whether a defendant would fail to appear in court if released. X is the recorded information of the defendant.

Example 1.2 (Medical Testing and Diagnosis)

 $C \in \{0,1\}$ is whether to conduct a test. $Y^* \in \{0,1\}$ is whether the patient had a heart attack. X is the recorded information of the patient.

Example 1.3 (Hiring)

 $C \in \{0,1\}$ is whether to hire a candidate. Y^* is a vector of on-the-job productivity measures. X is the recorded information of the candidate.

These three variables are summarized by a joint distribution, $(X, C, Y^*) \sim P(\cdot)$. We assume finite full support of x, i.e. there is a $\delta > 0$ such that $P(x) := P(X = x) \geq \delta, \forall x \in \mathcal{X}$. As the Y^* is only observable when C = 1. We define

$$Y := C \cdot Y^*$$

The observable data is the joint distribution $(X, C, Y) \sim P(\cdot)$. The DM's conditional choice probabilities are

$$\pi_c(x) := P(C = c | X = x), c \in \{0, 1\}, x \in \mathcal{X}$$

The observable conditional outcome probabilities are

$$P_1(y^* \mid x) := P(Y^* = y^* \mid C = 1, X = x), y^* \in \mathcal{Y}, x \in \mathcal{X}$$

The $P_0(y^* \mid x)$ and the true outcome probabilities $P(y^* \mid x)$ are not identified due to the missing-data problem.

Assumptions

Note In the main context of paper: (i). The decision maker makes a binary choice $c \in \{0, 1\}$ for each individual; (ii). The decision maker's choice does not have a direct causal effect on the outcome.

Assumption 1.1 (Bounds on the Unobserved Conditional Outcome Probabilities)

For each $x \in \mathcal{X}$, there exists a known subset $\mathcal{B} \subseteq \Delta \mathcal{Y}$ such that $P_0(\cdot \mid x) \in \mathcal{B}_x$.

Given this assumption, the identified set for the true outcome probabilities given $x \in \mathcal{X}$, denoted by

$$\mathcal{H}(P(\cdot \mid x); \mathcal{B}_x) := \left\{ \tilde{P}(\cdot \mid x) \in \Delta \mathcal{Y} : \tilde{P}(y^* \mid x) = \tilde{P}_0(y^* \mid x) \pi_0(x) + P_1(y^* \mid x) \pi_1(x), \right.$$

$$\forall y^* \in \mathcal{Y} \text{ and for some } \tilde{P}_0(\cdot \mid x) \in \mathcal{B}_x \right\}$$

Bibliography

[Rambachan(2024)] Rambachan, A. (2024). Identifying prediction mistakes in observational data. *The Quarterly Journal of Economics*, page qjae013.