FORMULARIO DE PREDICADOS

Axiomas

- **A1.** $\vdash A \rightarrow (B \rightarrow A)$ Introd. del antecedente
- **A2.** \vdash (A \rightarrow B) \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C))
- **A3.** $\vdash A \rightarrow (B \rightarrow A \land B)$

Regla del producto

- **A4.** $\vdash A \land B \rightarrow A_{,,} \qquad A \land B \rightarrow B$
- Regla de simplificación
- **A5.** $\vdash A \rightarrow A \lor B$, $B \rightarrow A \lor B$
- Regla de la adición
- **A6.** \vdash (A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B \rightarrow C)) Prueba por casos
 - Reducción al absurdo
- **A7.** $\vdash (A \rightarrow B) \rightarrow ((A \rightarrow \sim B) \rightarrow \sim A)$ **A8.** $\vdash \sim \sim A \rightarrow A$
- Eliminación de la doble neg.

- **A9.** $\forall xB(x) \rightarrow B(t)$
- **A10.** \vdash B(t) \rightarrow 3xB(x)

Reglas de Inferencia

- $\vdash A, \vdash A \rightarrow B$ Modus $\vdash B$ Ponens
- $\vdash A \rightarrow B(y)$ Gen. Univ $\vdash A(y) \rightarrow B$ Gen. Exist $\vdash A \rightarrow \forall x B(x)$ Condicional $\exists x A(x) \rightarrow B$ Condicional

Reglas Derivadas

- _______ Gen. Existencial -∃xA(x)
- _<u></u>-A(y)_ ∀xA(x)
- Gen. Universal

Teoremas

- 1. Modificación de la variable cuantificada
 - $\vdash Axb(x) \leftrightarrow ABb(\lambda)$
 - $\vdash \exists x P(x) \leftrightarrow \exists y P(y)$
- 2. Descenso cuantificacional
 - $\vdash \forall x P(x) \rightarrow \exists y P(y)$
- 3. Cuantificación múltiple. Propiedades conmutativas
 - a. Cuantificador universal
 - $\vdash \forall x \forall y P(x,y) \leftrightarrow \forall y \forall x P(x,y)$
 - b. Cuantificador existencial
 - $\vdash \exists x \exists y P(x,y) \leftrightarrow \exists y \exists x P(x,y)$
 - c. Conmutatividad de distintos tipos

4. Negación de fórmulas cuantificadas

5. Cuantificación de las fórmulas con la conectiva conjunción

$$\vdash \forall x P(x) \land \forall x Q(x) \leftrightarrow \forall x (P(x) \land Q(x))$$

$$\vdash A \land \forall x P(x) \leftrightarrow \forall x (A \land P(x))$$

x no es libre en A (A es independiente de x)

$$\vdash \exists x (P(x) \land Q(x)) \rightarrow \exists x P(x) \land \exists x Q(x)$$

$$+\exists x(A \land P(x)) \leftrightarrow A \land \exists xP(x)$$

x no es libre en A (A es independiente de x)

6. Cuantificación de las fórmulas con la disyunción

$$\vdash \forall x P(x) \lor \forall x Q(x) \to \forall x (P(x) \lor Q(x))$$

$$\vdash \forall x (A \lor P(x)) \leftrightarrow A \lor \forall x P(x)$$

$$\vdash \exists x (P(x) \lor Q(x)) \leftrightarrow \exists x P(x) \lor \exists x Q(x)$$

$$\vdash \exists x (A \lor P(x)) \leftrightarrow A \lor \exists x P(x)$$

7. Cuantificación de las fórmulas con la conectiva implicación

$$\mid \forall x (P(x) \to Q(x)) \to (\forall x P(x) \to \forall x Q(x))$$

$$\vdash \forall x (A \rightarrow P(x)) \leftrightarrow (A \rightarrow \forall x P(x))$$

$$\vdash (\exists x P(x) \rightarrow \exists x Q(x)) \rightarrow \exists x (P(x) \rightarrow Q(x))$$

$$\vdash (\exists x P(x) \to A) \to \exists x (P(x) \to A)$$

$$\vdash \forall x (P(x) \to A) \leftrightarrow \exists x P(x) \to A$$

$$\vdash A \rightarrow \exists x P(x) \leftrightarrow \exists x (A \rightarrow P(x))$$

$$\vdash \exists x (A(x) \rightarrow B) \leftrightarrow (\forall x A(x) \rightarrow B)$$

8. Cuantificación de fórmulas con equivalencia material

$$\vdash \forall x (P(x) \leftrightarrow P(Q)) \rightarrow (\forall x P(x) \leftrightarrow \forall x Q(x))$$
$$\vdash \forall x (P(x) \leftrightarrow A) \rightarrow (\forall x P(x) \leftrightarrow A)$$

$$\vdash (\forall x P(x) \land \forall x Q(x)) \rightarrow \exists x (P(x) \land Q(x))$$

$$\vdash (A \land \forall x P(x)) \rightarrow \exists x (A \land P(x))$$

$$\vdash \forall x (P(x) \land Q(x)) \rightarrow (\exists x P(x) \land \exists x Q(x))$$

$$\vdash \forall x(P(x) \land A) \rightarrow \exists x(P(x) \land A)$$

$$\vdash (A \lor \forall x P(x)) \rightarrow \exists x (A \lor P(x))$$

$$\vdash (\forall x P(x) \lor \forall x Q(x)) \rightarrow \exists x (P(x) \lor Q(x))$$

$$\vdash \forall x (P(x) \lor Q(x)) \rightarrow (\exists x P(x) \lor \exists x Q(x))$$

$$\vdash \forall x (P(x) \lor A) \to (\exists x P(x) \lor A)$$

$$\vdash \forall x (P(x) \rightarrow Q(x)) \rightarrow (\exists x P(x) \rightarrow \exists x Q(x))$$

$$\vdash \forall x(P(x) \rightarrow A) \rightarrow (\forall xP(x) \rightarrow A)$$

$$\vdash (\forall x P(x) \rightarrow A) \rightarrow \exists x (P(x) \rightarrow A)$$