CS4102 Algorithms

Fall 2018

Warm up: Remember Residual Graphs

- Keep track of net available flow along each edge
- "Forward edges": weight is equal to available flow along that edge in the flow graph

$$- w(e) = c(e) - f(e)$$

• "Back edges": weight is equal to flow along that edge in the flow graph

- w(e) = f(e)

Residual Graph G_f

Flow Graph G

Today's Keywords

- Reductions
- Bipartite Matching
- Vertex Cover
- Independent Set

CLRS Readings

• Chapter 34

Homeworks

- HW8 due Friday 11/30 at 11pm
 - Written (use LaTeX)
 - Graphs

Divide and Conquer*

• Divide:

When is this a good strategy?

 Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

Combine:

Merge together solutions to subproblems

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

So far

- Divide and Conquer, Dynamic Programming, Greedy
 - Take an instance of Problem A, relate it to smaller instances of Problem A
- Next:
 - Take an instance of Problem A, relate it to an instance of Problem B

Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths Algorithm

Make s and t the source and sink, give each edge capacity 1, find the max flow.

Vertex-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance of edge-disjoint paths

Make two copies of each node, one connected to incoming edges, the other to outgoing edges

Given a graph G = (L, R, E)

a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges $M \subseteq E$ such that each node $u \in L$ or $v \in R$ is incident to at most one edge.

Maximum Bipartite Matching Using Max Flow

Make G = (L, R, E) a flow network G' = (V', E') by:

- Adding in a source and sink to the set of nodes:
 - $V' = L \cup R \cup \{s, t\}$
- Adding an edge from source to L and from R to sink:

Run Time

 $\Theta(E \cdot V)$

1. Make G into G'

 $\Theta(L+R)$

2. Compute Max Flow on G'

- $\Theta(E \cdot V) \qquad |f| \le L$
- 3. Return *M* as all "middle" edges with flow 1

 $\Theta(L+R)$

Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

Reductions

Shows how two different problems relate to each other

MacGyver's Reduction

Problem we don't know how to solve

Problem we do know how to solve

Opening a door

Solution for *A*Keg cannon battering ram

Bipartite Matching Reduction

Problem we don't know how to solve

Bipartite Matching

Problem we do know how to solve

In General: Reduction

Problem we don't know how to solve

Problem we do know how to solve

Worst-case lower-bound Proofs

The name "reduces" is confusing: it is in the *opposite* direction of the making

Proof of Lower Bound by Reduction

1. We know X is slow (e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction](Y = some way to light a fire)

3. Show how to use *Y* to perform *X* quickly

4. *X* is slow, but *Y* could be used to perform *X* quickly conclusion: *Y* must not actually be quick

Reduction Proof Notation

A is not a harder problem than B

$$A \leq B$$

If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time $A \leq_{f(n)} B$

Party Problem

Draw Edges between people who don't get along Find the maximum number of people who get along

Maximum Independent Set

- Independent set: $S \subseteq V$ is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph G=(V,E) find the maximum independent set S

Example

Generalized Baseball

Generalized Baseball

Minimum Vertex Cover

- Vertex Cover: $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph G = (V, E) find the minimum vertex cover C

Example

$MaxIndSet \leq_V MinVertCov$

If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time $A \leq_V B$

We need to build this Reduction

Reduction Idea

S is an independent set of G iff V-S is a vertex cover of G

Reduction Idea

S is an independent set of G iff V-S is a vertex cover of G

Proof: \Rightarrow

S is an independent set of G iff V-S is a vertex cover of G

Let S be an independent set

Consider any edge $(x, y) \in E$

If $x \in S$ then $y \notin S$, because o.w. S would not be an independent set

Therefore $y \in V - S$, so edge (x, y) is covered by V - S

Proof: ←

S is an independent set of G iff V-S is a vertex cover of G

Let V - S be a vertex cover

Consider any edge $(x, y) \in E$

At least one of x and y belong to V-S, because V-S is a vertex cover

Therefore x and y are not both in S, No edge has both end-nodes in S, thus S is an independent set

MaxVertCov V-Time Reducable to MinIndSet

MaxIndSet *V*-Time Reducable to MinVertCov

Corollary

If Solving A was always slow

Solution for MaxIndSet

Corollary

Conclusion

- MaxIndSet and MinVertCov are either both fast, or both slow
 - Spoiler alert: We don't know which!
 - (But we think they're both slow)
 - Both problems are NP-Complete
 - Next time!