计算物理学作业 4

朱寅杰 1600017721

4.1 求解 Lotka-Volterra 方程的初值问题

对于微分方程组

$$(\dot{x}, \dot{y}) = (\alpha x - \beta x y, \delta x y - \gamma y) \tag{1}$$

作变量代换 $(X,Y,T) = (\delta x/\alpha, \beta y/\alpha, \alpha t)$, 得到

$$(\dot{X}, \dot{Y}) = (X(1-Y), Y(X-\gamma/\alpha)), \gamma/\alpha > 0 \tag{2}$$

对于这个方程组,我们首先考察其不含时的不动点解(即 $\dot{X}=\dot{Y}=0$ 的解):其一为 X(T)=Y(T)=0,其一为 $X(T)=\gamma/\alpha,Y(T)=1$ 。作一个微扰的话,

a) 对于前者,设 $X(T) = \epsilon_1(T)$, $Y(T) = \epsilon_2(T)$,其中 ϵ 均为小量。从而有 $(\dot{\epsilon_1}, \dot{\epsilon_2}) = (\epsilon_1(1 - \epsilon_2), (\epsilon_1 - \gamma/\alpha)\epsilon_2)$,再对 T 求导,并保留至最低阶小量,有

$$(\ddot{\epsilon_1}, \ddot{\epsilon_2}) = \left(\epsilon_1(1 - \epsilon_2)^2 - \epsilon_1\epsilon_2(1 - \gamma/\alpha), \epsilon_2(\epsilon_1 - \gamma/\alpha)^2 + \epsilon_1\epsilon_2(1 - \epsilon_2)\right) \approx (\epsilon_1, -(\gamma/\alpha)^2\epsilon_2)$$

也就是说对于 X 方向上的微扰这个不动点是不稳定的,而对于 Y 方向上的微扰这个不动点是稳定的。

b) 对于后者,取 $X(T) = \gamma/\alpha + \epsilon_1(T), Y(0) = 1 + \epsilon_2(T)$,则有

$$(\dot{\epsilon_1}, \dot{\epsilon_2}) = (-(\epsilon_1 + \gamma/\alpha)\epsilon_2, (1 + \epsilon_2)\epsilon_1)$$

再对 T 求导,保留至一阶小量,得到

$$(\ddot{\epsilon_1}, \ddot{\epsilon_2}) = \left(-(\epsilon_1 + \gamma/\alpha)(1 + \epsilon_2)\epsilon_1, \epsilon_1^2(1 + \epsilon_2) - (1 + \epsilon_2)(\epsilon_1 + \gamma/\alpha)\epsilon_2 \right) \approx \left(-\epsilon_1\gamma/\alpha, -\epsilon_2\gamma/\alpha \right)$$

故这是一个稳定不动点。

事实上,这个微分方程组是可积的。将两式相除得到

$$\frac{\mathrm{d}Y}{\mathrm{d}X} = \frac{Y(X - \gamma/\alpha)}{X(1 - Y)}$$

分离变量积分得到 $X + Y - \log(X^{\gamma/\alpha}Y) =$ 常数。写作变量代换之前的形式,就是 $\delta x + \beta y - \gamma \log x - \alpha \log y =$ 常数。

最后,我们使用 Runge-Kutta 法来数值求解这个问题中 $\alpha=2/3, \beta=4/3, \gamma=\delta=1$ 的特殊情况。求解的代码见RK.py。总共计算了 (x,y)=(0.8,0.8)、(1.0,1.0)、(1.2,1.2)、(1,4,1.4)、(1.6,1.6) 五组初值的解,将五个初值下 (x,y) 的演化轨迹一并画在下图中。从图中可见,这几个初值解出的都是围绕着不动点 (x,y)=(1.0,0.5)(对应于 $(X,Y)=(\gamma/\alpha,1)$)逆时针走行的闭合曲线,而这闭合曲线正是上面求出的这个微分方程组的初积分的等值线。

图 1: 图中由内至外分别是初值为 (x,y)=(0.8,0.8),(1.0,1.0),(1.2,1.2),(1,4,1.4),(1.6,1.6) 的解以参数方程的方式画出的曲线。为了标示 (x,y) 随 t 的演化规律,从 t=0 开始,每隔 0.5 在图线上的 (x(t),y(t)) 处打一个节点,直至图线转过一周。不同的 t 对应的点的颜色是由蓝到红到绿渐变的,所以如果你对色彩的敏感度足够高,就可以直接通过颜色(而不用从初始点开始一个一个数)来确定在 t 为某值时各个解都演化到什么地方了。图片是矢量图,因此如果想要观察细节可以尽情地 zoom in。

4.2 不同的稀疏矩阵迭代法求解泊松方程边值问题的速度比较

待解的方程是

$$-\nabla^2 u(x,y) = 2\pi^2 \sin(\pi x) \sin(\pi y), (x,y) \in (0,1) \times (0,1)$$

并且给出在边界上函数的值为零。将待解的区域分割成 $h = \frac{1}{N+1}$ 见方的方格,把算子 ∇^2 作分立化处理,求解在格点上的 $N \times N$ 个函数值。这实际上就变成了一个稀疏矩阵的线性方程组的求解问题,可以使用迭代进行求解。

我们分别使用了 Jacobi 法、Gauss-Seidel 法和经过 Chebyshef 加速的弛豫算法(感谢刘老师的讲义,弛豫算法与 Chebyshef 加速中需要计算的谱半径等参数都已经帮我们算好了,只需拿来使用即可)来进行求解,并统计其迭代次数。为便于比较,迭代停止的标准统一选作各格点处方程左右两边差的绝对值不超过 10^{-4} 。计算的源代码分别为Jacobi.py、Gauss-Seidel.py和SOR.py。分别计算了 N=10,20,...,60 的情况(虽然题目里只要求算了 10、20 和 50),结果列于下表中:

	Jacobi		Gauss-Seidel		SOR	
N	迭代步数	r_{max}	迭代步数	r_{max}	迭代步数	r_{max}
10	295	$9.745{\times}10^{-5}$	149	9.413×10^{-5}	33	$7.310{ imes}10^{-5}$
20	1086	$9.894{ imes}10^{-5}$	544	$9.912{ imes}10^{-5}$	63	$9.410{ imes}10^{-5}$
30	2370	$9.994{ imes}10^{-5}$	1187	9.900×10^{-5}	94	$8.362{\times}10^{-5}$
40	4149	$9.996{ imes}10^{-5}$	2076	$9.971{\times}10^{-5}$	124	$9.051{\times}10^{-5}$
50	6423	9.981×10^{-5}	3213	9.965×10^{-5}	154	9.487×10^{-5}
60	9190	$9.991{ imes}10^{-5}$	4596	$9.993{ imes}10^{-5}$	184	$9.793{ imes}10^{-5}$

可以看到,Gauss-Seidel 迭代所用次数几乎等于 Jacobi 迭代的一半,二者基本都以 N^2 的方式增长。而优化后的弛豫算法的迭代次数是随着 N 线性增长的(而且线性十分好)。如果进一步拟合的话可以发现,三者的增长规律分别是 $2.4714(N+0.99)^2-3$ 、 $1.235(N+1.01)^2-1$ 、3.023(N+1),与理论预期符合得相当好。