Exercício 10 - INF 280

Werikson Alves - ES96708

18/02/2022

UNIVERSIDADE FEDERAL DE VIÇOSA INF 280 – PESQUISA OPERACIONAL I DEPARTAMENTO DE INFORMÁTICA PHT / 2021

Exercício #10

Considere o mesmo problema e sua solução ótima obtida no Exercício #9 letra b).

Parte 1: Para tentar melhorar um pouco a dieta, a nutricionista sugere ao Edmundo a ingestão de amendoim na refeição. Sabendo que cada porção de amendoim contém 20,3g de carboidratos, 27,2g de proteínas, 43,9g de gordura e 10,2 mg de

Problei Maximi			Problema de Minimização		
	≥ 0	\leftrightarrow	≥		
Variáveis	≤ 0	\leftrightarrow	≤	Restrições	
	Livre	\leftrightarrow	=		
	≤	\leftrightarrow	≥ 0		
Restrições	≥	\leftrightarrow	≤ 0	Variáveis	
	=	\leftrightarrow	Livre		

Niacina, determine o custo máximo dessa porção para que seu uso na dieta seja vantajoso.

Para resolver esta questão, transforma a nova coluna do modelo primal em sua correspondente restrição dual, e use os preços duais já conhecidos para resolver o problema. Obs.: Como o problema é de **minimização**, você deve ajustar os sinais dos Preços Duais conforme indicado no quadro acima.

x1 e x2 = número de porções de Bife e Batatas, respectivamente, a consumir na refeição.

Base	x1	x2	s1	s2	s3	s4	RHS
g	0	0	0	0	0,708	3,416	-25,839
x2	0	1	0	0	-0,665	-2,329	6,708
x1	1	0	0	0	0,155	0,311	3,106
s1	0	0	1	0	-9,193	-33,385	66,149
s2	0	0	0	1	-0,217	-5,435	55,652

Solução:

Acrescentando a nova variável ao problema, temos:

Minimizar:	Custo	=	4x1	+	2x2	+	c3x3
$sujeito\ a:$							
Carb)	5x1	+	15x2	+	20.3x3	>=	50
Prot)	20x1	+	5x2	+	27.2x3	>=	40
Gord)	15x1	+	2x2	+	43.9x3	<=	60
Niac)	4.28x1	+	1x2	+	10.2x3	>=	20

	Tableau 8: Solução ótima										
	Base	x1	x2	х3	s1	s2	s3	s4	р		
L1	-z	0,000	0,000	?	0,000	0,000	0,708	3,416	-25,839		
L2	x2	0,000	1,000	?	0,000	0,000	-0,665	-2,329	6,708		
L3	x1	1,000	0,000	?	0,000	0,000	0,155	0,311	3,106		
L4	s1	0,000	0,000	?	0,000	0,000	-9,193	-33,385	66,149		
L5	s2	0,000	0,000	?	1,000	1,000	-0,217	-5,435	55,652		

Figura 1: Solução ótima do exercício 9 com a adição da nova variável.

Para saber se o uso de amendoim na dieta será vantajoso, usamos a nova restrição do modelo dual correspondente:

$$20.3y1 + 27.2y2 + 43.9y3 + 10.2y4 \le c3$$

Pela solução original, obtida anteriormente, obtemos os preços duais: Y = (y1, y2, y3, y4) = (0, 0, -0.708, 3.416), e ao substituir os valores, temos que:

$$20.3\times0+27.2\times0+43.9\times-0.708+10.2\times3.416=3.762$$

Portanto, isto significa que o custo máximo do amendoim, de forma que seja vantajoso, é de R\$ 3.76.

Parte 2:

Suponha que o custo da porção de amendoim está sendo vendida no supermercado Amantino por R\$ 1,99. Use as equações do Simplex p/ problemas de Maximização ao lado para determinar toda a coluna da variável x3 (amendoim) no quadro ótimo atual. Ou seja, use a equação a seguir para calcular o custo reduzido para x3:

	X _B	x _N	
f	0	$-c_j + c_B B^{-1} a_j$	c _B B ⁻¹ b
$\mathbf{x}_{\mathbf{B}}$	I	B-1N	B-1b

 B^{-1}

$$c.r. = 1.99 + c_B B^{-1} a_3$$

onde:
$$c_B = \begin{bmatrix} -2 & -4 & 0 & 0 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} 0 & 0 & -0.665 & -2.329 \\ 0 & 0 & 0.155 & 0.311 \\ 1 & 0 & -9.193 & -33.385 \\ 0 & 1 & -0.217 & -5.435 \end{bmatrix}$$

$$a_3 = \begin{bmatrix} -20.3 \\ -27.2 \\ 43.9 \\ -10.2 \end{bmatrix}$$

Obs.: o valor de $c_B B^{-1} a_3$ é justamente o valor limite de c3 que você deve ter calculado na primeira parte do exercício, mas com sinal trocado. Ou seja, c.r. = 1.99 - (valor máximo de c3 calculado anteriormente).

A coluna abaixo do custo reduzido pode ser calculada usando a equação: $B^{-1}a_3$

Base	x1	x2	х3	s1	s2	s3	s4	RHS
g	0	0	c.r.	0	0	0,708	3,416	-25,839
x2	0	1		0	0	-0,665	-2,329	6,708
x1	1	0	$B^{-1}a_{3}$	0	0	0,155	0,311	3,106
s1	0	0		1	0	-9,193	-33,385	66,149
s2	0	0		0	1	-0,217	-5,435	55,652
	·				•	·		

Depois de montar esse quadro, continue o Simplex até obter a nova solução ótima.

Solução

$$C_B B^{-1} = \begin{pmatrix} -2 & -4 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -0.665 & -2.329 \\ 0 & 0 & 0.155 & 0.311 \\ 1 & 0 & -9.193 & -33.385 \\ 0 & 1 & -0.217 & -5.435 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0.71 & 3.414 \end{pmatrix}$$

$$C_B B^{-1} a_3 = \begin{pmatrix} 0 & 0 & 0.71 & 3.414 \end{pmatrix} \begin{pmatrix} -20.3 \\ -27.2 \\ 43.9 \\ -10.2 \end{pmatrix} = -3.6538$$

Tendo determinado $C_B B^{-1} a_3$, temos que $c.r. = 1.99 + C_B B^{-1} a_3 = 1.99 - 3.654 = -1.664$. Agora, para o resto

da coluna multiplicamos $B^{-1}a_3$:

$$B^{-1}a_3 = \begin{pmatrix} 0 & 0 & -0.665 & -2.329 \\ 0 & 0 & 0.155 & 0.311 \\ 1 & 0 & -9.193 & -33.385 \\ 0 & 1 & -0.217 & -5.435 \end{pmatrix} \begin{pmatrix} -20.3 \\ -27.2 \\ 43.9 \\ -10.2 \end{pmatrix} = \begin{pmatrix} -5.438 \\ 3.632 \\ -83.346 \\ 18.711 \end{pmatrix}$$

Tableau 9									
Base	x1	x2	х3	s 1	s2	s3	s4	b	
-z	0,000	0,000	-3,654	0,000	0,000	0,708	3,416	-25,839	
x2	0,000	1,000	-5,434	0,000	0,000	-0,665	-2,329	6,708	
x1	1,000	0,000	3,633	0,000	0,000	0,155	0,311	3,106	
s1	0,000	0,000	-83,946	1,000	0,000	-9,193	-33,385	66,149	
s2	0,000	0,000	18,711	0,000	1,000	-0,217	-5,435	55,652	

Variavel que saí: x1									
Divisão:	: -1,234 <mark> 0,855</mark> -0,788 2,974								
Variavel que entra: x3									

	Tableau 10: Solução ótima									
Base	x1	x2	х3	s 1	s2	s3	s4	b		
-z	1,006	0,000	0,000	0,000	0,000	0,864	3,729	-22,715		
x2	1,496	1,000	0,000	0,000	0,000	-0,432	-1,865	11,353		
х3	0,275	0,000	1,000	0,000	0,000	0,043	0,085	0,855		
s 1	23,107	0,000	0,000	1,000	0,000	-5,605	-26,209	137,908		
s2	-5,150	0,000	0,000	0,000	1,000	-1,017	-7,034	39,657		