Evaluating the Impact of Employee Performance Metrics Across Multiple Variables Using MANOVA

Shinjon Ghosh

Department of Mathematics, Illinois State University

Abstract:

Employee training and development programs are vital for organizations aiming to improve performance, productivity, and engagement across departments. This study aims to provide a comprehensive view of how several variables influences various performance metrics (Productivity, Satisfaction Rate, Programs Completed, Feedback Score) allowing for targeted improvements. The hypothesis testing involves Multivariate Analysis of Variance (MANOVA) – whether employee performance matrices with demographic and organizational variables are significant or not. By examining a range of features, the aim to uncover patterns and relationships that influence gender, job positions and departments. The results highlight the employee performance metrics are significant and there is influential relationship between demographic (Gender) and organizational variables (Job Position, Department).

Keywords: Multivariate Analysis of Variance, employee performance metrics, outlier test, Boxplot, normality checking, Box-Cox transformation.

Introduction:

The impact of training and development programs play vital role in company's improvement. Three types of job training (on-the-job training, off-the-job training, and job rotation) have a positive relationship with organizational performance. Among the variables, job rotation showed the strongest correlation with organizational performance (0.829), followed by on-the-job training (0.771) and off-the-job training (0.703) [3]. Soft skills training is essential for organizations to enhance employee performance and achieve long-term success. The authors illustrate that prioritizing soft skills training should be an integral part of any organization's employee development policy. By developing a workforce proficient in both technical and interpersonal skills, organizations can foster a positive and productive work environment, leading to increased profitability, improved customer relations, and higher employee retention [1]. The employee development programs are increases day by day and includes several diversity tasks on the training program. The MANOVA provides insights into factors that related to employee performance metrics.

Background & Literature Review:

The importance of training and development programs to the specific needs of both the organization and its employees and evaluating the effectiveness of these programs to measure their impact on organizational performance. A high percentage of respondents agreed that training and development initiatives can boost job performance (82%), improve motivation and engagement (85%), influence retention rates (88%), keep employees updated with industry trends (90%), and enhance productivity (87%) [4]. The training programs at Brakes India significantly improve employee development, engagement, and organizational success. The study highlights key trends, including a predominantly male demographic, varying perceptions across age groups, and positive correlations between training participation and improved attendance, commitment to organizational goals, and employee satisfaction. The authors emphasize the need to adapt training programs continuously to meet evolving employee needs and align with organizational goals [8]. The proposed matrix variate p-value framework can be extended to various other multivariate hypothesis testing scenarios beyond MANOVA, including testing the equality of covariance matrices. The authors conclude by emphasizing the potential of this new matrix p-value approach to offer a more robust and accurate method for analyzing multivariate data across various statistical applications [5]. The Box-Cox transformation is a valuable technique in linear regression, particularly when the assumptions of the regression model are not met. It involves applying a power transformation to the response variable, aiming to stabilize variances and improve the fit to the normality assumption. They emphasize that by focusing on efficient computation of summary statistics, like the Box-Cox information array, statisticians can develop more effective and scalable methods for handling massive datasets [6].

Objectives:

- Set a hypothesis test on MANOVA based on independent variables (Gender, Position, Department) and employee performance metrics.
- Identify key factors influencing employee performance metrics (Programs Completed, Productivity, Satisfaction Rate, Feedback Score).

Methods & Materials:

Data Source & Overview

The Employee Performance Metrics dataset collects from Kaggle (secondary data resources) which provides demographics, organizational and performance of employees. The dataset contains 200 observations and 11 features. Among 11 variables position (Analyst, Intern, Junior Developer, Senior Developer, Manager, Team lead), department (Finance, HR, IT, Marketing, Sales), gender (Male & Female) are categorical features and age, salary, productivity, projects completed,

satisfaction rate, feedback score are numerical variables. Moreover, the dataset has employee join date and name columns. Each row corresponds to a specific user, identifiable by their unique name. This dataset allows us to explore and analyze employee performance metrics based on demographic and organizational variables. It is a useful resource for hypothesis testing on MANOVA and find out impact on performance matrices.

Data Preparation

The aim of our project is to set a hypothesis on MANOVA and find out effect of demographic and organizational variables with employee performance metrics. The categorical variables are factorized by labels where gender (Male = 1 & Female = 2), position (Analyst = 1, Manager = 2, Team lead = 3, Junior Developer = 4, Senior Developer = 5, & Intern = 6), department (Marketing = 1, IT = 2, Sales = 3, HR = 4, & Finance = 5). Later, I define gender, position and department as independent variable. On the other hand, I set performance metrics variables are dependent variables.

Result & Discussion:

I find out outliers and extreme observations from employee performance metrics variables using summary statistics. From the SAS output, I get 0,1, 24 & 25 values are extreme observation in Projects Completed variables and 0 & greater than 95 values are outliers in Productivity variables. Moreover, I observe in Satisfaction Rate variables those values are less than 2 and larger than 96, these are extreme observations. Furthermore, in Feedback Score variables values which are smaller than 1.2 and larger than 4.7, these are high leverage points. After finding extreme observations, I remove those values from the dataset because those values deviate the results.

	The	SAS	Syste	m			The	SAS	Syste	m	
Va	The UNIVariable: Projects_C)	١	The UNIV /ariable: Satisfact)
	Extre	me Ol	oservati	ons			Extren	ne Ob	servatio	ons	
	Lowest			Highest			Lowest			Highest	
Value	Name	Obs	Value	Name	Obs	Value	Name	Obs	Value	Name	Obs
0	Susan Foley	93	24	Mary Barber	100	(Joseph Friedman	191	97	Donald Davis	13
0	Allison Smith	77	24	Patrick Green	108	(Manuel Sanchez	188	98	Ryan Avila	161
1	Mrs. Heidi Villa	147	24	Timothy Johnson	143	(Susan Foley	93	99	Kim Larson	32
1	John Elliott	132	25	Daniel Mata	79	(Jerry Mccoy	88	100	Emily Palmer	33
1	Nicholas Johnson	123	25	Michael Oneal	164	1	Daniel Mata	79	100	Drew Rojas	194
	The	SAS	Syste	m			The	SAS	Syste	m	
	The The UNIV Variable: Pr	VARIA		cedure			The The UNIV Variable: Feedbad	ARIAT	E Proc	edure	
	The UNIV Variable: Pr	VARIA oduct	TE Prod	cedure oductivity)			The UNIV Variable: Feedba	ARIAT	E Proc	edure edback_Score)	
	The UNIV Variable: Pr	VARIA oduct	TE Procivity (Pr	cedure oductivity)			The UNIV Variable: Feedbad Extren Lowest	ARIAT	E Proc ore (Fe	edure edback_Score) ons Highest	
Value	The UNIV Variable: Pr Extre Lowest	VARIA oduct me O	TE Procivity (Pr	cedure oductivity) ons Highest	Obs	Value	The UNIV Variable: Feedbac Extren Lowest	ARIAT ck_Sco	E Proc ore (Fed servation	edure edback_Score) ons Highest Name	Obs
	The UNIV Variable: Pr Extre Lowest	VARIA oduct me O	TE Procivity (Processervati	cedure oductivity) ons Highest		Value	The UNIV Variable: Feedbad Extren Lowest Name Autumn Taylor	ARIAT ck_Sco	E Procore (February)	edure edback_Score) ons Highest Name Alyssa Montoya	Obs 136
0	The UNIV Variable: Pr Extre Lowest Name	VARIA oduct me Ol	TE Procivity (Proservation Value 96	cedure oductivity) ons Highest		Value 1.0	The UNIV Variable: Feedbac Extren Lowest Name Autumn Taylor Brian Delgado	Obs V	FE Proce ore (Fee servation /alue 4.8	edure edback_Score) ons Highest Name Alyssa Montoya Michelle Perez	Obs 136 31
0	The UNIV Variable: Pr Extre Lowest Name Tyrone Underwood	Obs	TE Procivity (Proservation Value 96 97	cedure oductivity) ons Highest Name Michael Hernandez	199	Value 1.0 1.1	The UNIV Variable: Feedbar Extrem Lowest Name Autumn Taylor Brian Delgado Brett Butler	Obs V	E Proceder (February 1997) Servation 4.8 4.9 4.9	edure edback_Score) ons Highest Name Alyssa Montoya Michelle Perez Amy Carr	Obs 136 31 97
0 0	The UNIT Variable: Pr Extre Lowest Name Tyrone Underwood Susan Hill	Obs 186	TE Procivity (Proservation Value 96 97 97	cedure oductivity) ons Highest Name Michael Hernandez Shannon Gray	199 174	Value 1.0 1.1 1.1	The UNIV Variable: Feedbar Extrer Lowest Name Autumn Taylor Brian Delgado Brett Butler Patricia Collins	Obs V	ZE Procore (February Value 4.8 4.9 4.9 4.9 4.9	edure edback_Score) ons Highest Name Alyssa Montoya Michelle Perez	Obs 136 31

After removing extreme observations from the dataset, I find the total observation size is 156. Then I draw boxplot to check out more outliers in the dataset. I use performance metrics variables against gender. From the box plot, we can say there is not any outliers in performance metrics variables.

Later, I checked outliers of performance metrics variables against position variables by box plot. From the output of box plot, I do not find any extreme observations.

Moreover, I draw box plot of performance metrics variables against independent variables department. From the box plot analysis, I do not find any outliers.

I check normality assumptions of performance metrics variables by Shapiro-wilk test, Kolmogorov test, and Q-Q plot.

To	Tests for Normality						
Test	St	atistic	p Val	ue			
Shapiro-Wilk	W	0.95915	Pr < W	0.0001			
Kolmogorov-Smirnov	D	0.07496	Pr > D	0.0310			
Cramer-von Mises	W-Sq	0.184245	Pr > W-Sq	0.0085			
Anderson-Darling	A-Sq	1.484241	Pr > A-Sq	<0.0050			

From the output of Shapiro-wilk test, Kolmogorov test, and Q-Q plot, I observe the performance metrics variables productivity is not normal because the p-value is less than 0.05 and points are not perfectly align on the line in Q-Q plot.

Tests for Normality								
Test	Statistic p Value							
Shapiro-Wilk	W	0.95427	Pr < W	<0.0001				
Kolmogorov-Smirnov	D	0.093364	Pr > D	<0.0100				
Cramer-von Mises	W-Sq	0.334698	Pr > W-Sq	<0.0050				
Anderson-Darling	A-Sq	2.100585	Pr > A-Sq	<0.0050				

From the output of Shapiro-wilk test, Kolmogorov test, and Q-Q plot, I find out the performance metrics variables projects completed is not normal because the p-value is less than 0.05 and points are not perfectly align on the line in Q-Q plot.

Tests for Normality							
Test Statistic p Value							
Shapiro-Wilk	W	0.956675	Pr < W	<0.0001			
Kolmogorov-Smirnov	D	0.070626	Pr > D	0.0558			
Cramer-von Mises	W-Sq	0.192139	Pr > W-Sq	0.0068			
Anderson-Darling	A-Sq	1.526684	Pr > A-Sq	<0.0050			

From the output of Shapiro-wilk test, Kolmogorov test and q-q plot, we can say that the satisfaction rate variable is not normal. because the p-value is less than 0.05 and points are curving on the line in Q-Q plot.

Tests for Normality							
Test	St	ue					
Shapiro-Wilk	W	0.94436	Pr < W	<0.0001			
Kolmogorov-Smirnov	D	0.105031	Pr > D	<0.0100			
Cramer-von Mises	W-Sq	0.368774	Pr > W-Sq	<0.0050			
Anderson-Darling	A-Sq	2.420685	Pr > A-Sq	<0.0050			

From the output of Shapiro-wilk test, Kolmogorov test and q-q plot, we can say that the feedback score variable is not normal the p-value is less than 0.05 and points are curving on the line in Q-Q plot.

Then I use log transformation, square root transformation and box-cox transformation on employee performance metrics variables to meet normality assumptions. For log and square root transformation, I find the results is similar as without transformation output. But in Box – Cox transformation I get different output from performance metrics variables.

Tests for Normality							
Test	St	atistic	p Value				
Shapiro-Wilk	W	0.944307	Pr < W	<0.0001			
Kolmogorov-Smirnov	D	0.111373	Pr > D	<0.0100			
Cramer-von Mises	W-Sq	0.361262	Pr > W-Sq	<0.0050			
Anderson-Darling	A-Sq	2.401498	Pr > A-Sq	<0.0050			

After Box - Cox transformation, I observe the projects completed variables is not normal according to Kolmogorov test because p-value is less than 0.05.

Tests for Normality							
Test Statistic p Value							
Shapiro-Wilk	W	0.96894	Pr < W	0.0014			
Kolmogorov-Smirnov	D	0.069448	Pr > D	0.0655			
Cramer-von Mises	W-Sq	0.102389	Pr > W-Sq	0.1049			
Anderson-Darling	A-Sq	0.949665	Pr > A-Sq	0.0175			

After the Box - Cox transformation, I find the productivity variables is normal according to Kolmogorov test because p-value is 0.06 which is larger than 0.05.

Tests for Normality								
Test	St	atistic	p Value					
Shapiro-Wilk	W	0.953109	Pr < W	<0.0001				
Kolmogorov-Smirnov	D	0.068054	Pr > D	0.0770				
Cramer-von Mises	W-Sq	0.250495	Pr > W-Sq	<0.0050				
Anderson-Darling	A-Sq	1.80751	Pr > A-Sq	<0.0050				

I notice the satisfaction rate variable is normal according to Kolmogorov test because p-value is 0.07 which is greater than 0.05.

Tests for Normality							
Test Statistic p Value							
Shapiro-Wilk	W	0.959672	Pr < W	0.0002			
Kolmogorov-Smirnov	D	0.10616	Pr > D	<0.0100			
Cramer-von Mises	W-Sq	0.288312	Pr > W-Sq	<0.0050			
Anderson-Darling	A-Sq	1.853401	Pr > A-Sq	<0.0050			

After Box - Cox transformation, I observe the feedback score variable is not normal according to Kolmogorov test because p-value is less than 0.05.

Now, I get productivity and satisfaction rate variables follow normality assumption. Then I set null hypothesis and alternative hypothesis for analyze relationship between gender, position, department with employee performance metrics using MANOVA.

Null Hypothesis:

$$H_0: \mu_i = \mu_j = \mu_k = 0$$
; $i \in Gender \ levels, j \in Position \ levels, k \in Department \ levels$

It means there is no significant effect of gender, position & department with employee performance metrics variables.

Alternative Hypothesis:

$$H_a: \mu_{iik} \neq 0$$

It illustrates that at least one independent variable (Gender, Position, Department) has significant effect on the employee metrics variables (productivity, satisfaction rate).

MANOVA Test Criteria and F Approx H = Type	imations for the Hy III SSCP Matrix for E = Error SSC S=2 M=26.5	Gender*Posi P Matrix		er*Positi*Dep	art Effect
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.32662787	1.31	112	196	0.0493
Pillai's Trace	0.85638113	1.32	112	198	0.0437
Hotelling-Lawley Trace	1.50128991	1.30	112	183.9	0.0573
Roy's Greatest Root	0.80694488	1.43	56	99	0.0617
NOTE: F Stati	stic for Roy's Greate	est Root is an	upper bound.	<u> </u>	
NOTE	F Statistic for Wilk	s' Lambda is	exact.		

From the MANOVA results, we can say that there is significant effect of gender, department, and position with employee performance matrices (productivity, satisfaction Rate).

Limitations:

The Employee Performance Metrics datasets have only 200 observation and the dependent variables are not normal. Moreover, after removing extreme values the analyzable observation was 156.

Conclusion:

This project aims to leverage MANOVA test to detect impact factor on employee performance metrics and provide actionable insights. Specifically, constructing MANOVA testing with the help

of SAS software to find out significant factor on employee performance metrics. According to the MANOVA output, I found gender, position, department variables have significant effect on employee performance metrics variables (productivity, Satisfaction Rate). In addition, after the Box-Cox transformation, the employee performance metrices variables follow normality assumption. Overall, these results offer a guideline of company to take effective decision for improving employee performance metrics.

Reference:

- [1] Srinath, R., & Bawatharini, A. (2023, June). The impact of soft skills training on employee performance and its implications on organisational success [Conference paper]
- [2] https://www.kaggle.com/datasets/adityaab1407/employee-productivity-and-satisfaction-hr-data.
- [3] Said, N. S. M., Halim, N. W. A., Manaf, S. M. A., & Adenan, N. D. (2022). The impact of training and development on organisational performance. *Jurnal Intelek*, *17*(2), Article 18177. https://doi.org/10.24191/ji.v17i2.18177
- [4] Upadhyay, R. (2023). The relationship between employee training and development and organisational performance: an Empirical study. *PSYCHOLOGY AND EDUCATION (2018) 55(1): 74-82 ISSN:* 1553-6939, 55(1). https://doi.org/10.48047/pne.2018.55.1.04
- [5] Díaz-García, J. A., & Caro-Lopera, F. J. (2024). Matrix variate p-value in MANOVA. *arXiv*. https://doi.org/10.48550/arXiv.2409.17309
- [6] Tonglin Zhang & Baijian Yang (2017) Box-Cox Transformation in Big Data,

Technometrics, 59:2, 189-201, DOI: 10.1080/00401706.2016.1156025

- [7] Anderson, T. W. 1982. An introduction to multivariate statistical Analysis. 2nd edition, John Wiley & Sons, New York.
- [8] Shalini, P., & Suvalakshmi, B. (2024). A study on investigating the impact of training programs on employee performance and organizational success. *International Scientific Journal of Engineering and Management*, *3*(5). https://doi.org/10.55041/ISJEM01779