axi lite uart.v

AUTHORS

JAY CONVERTINO

DATES

2024/02/29

INFORMATION

Brief

AXI Lite UART is a core for interfacing with UART devices.

License MIT

Copyright 2024 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

axi_lite_uart

```
module axi_lite_uart #(
parameter
ADDRESS_WIDTH
=
32,
parameter
CLOCK_SPEED
=
100000000,
parameter
BAUD_RATE
=
115200,
parameter
```

```
PARITY_ENA
 parameter
PARITY_TYPE
 parameter
 STOP_BITS
parameter
DATA_BITS
 8,
 parameter
 RX_DELAY
 parameter
 RX_BAUD_DELAY
 Θ.
parameter
 TX_DELAY
 parameter
 TX_BAUD_DELAY
Θ
) ( input aclk, input arstn, input s_axi_aclk, input s_axi_aresetn, input s_
```

AXI Lite based uart device.

Parameters

ADDRESS_WIDTH Width of the axi address bus

parameter

This is the aclk frequency in Hz CLOCK_SPEED

parameter

Serial Baud, this can be any value including non-standard. BAUD RATE

parameter

PARITY_ENA Enable Parity for the data in and out.

parameter

PARITY_TYPE Set the parity type, 0 = even, 1 = odd, 2 = mark, 3 = space.

parameter

STOP_BITS Number of stop bits, 0 to crazy non-standard amounts.

parameter

Number of data bits, 1 to crazy non-standard amounts.

DATA_BITS parameter

RX_DELAY Delay in rx data input.

parameter

RX_BAUD_DELAY parameter

Delay in rx baud enable. This will delay when we sample a bit (default is midpoint

when rx delay is 0).

TX_DELAY Delay in tx data output. Delays the time to output of the data.

parameter

TX_BAUD_DELAY Delay in tx baud enable. This will delay the time the bit output starts.

parameter

Ports

aclk Clock for all devices in the core Negative reset arstn Axi Lite aw valid s_axi_awvalid s_axi_awaddr Axi Lite aw addr s_axi_awprot Axi Lite aw prot s_axi_awready Axi Lite aw ready s_axi_wvalid Axi Lite w valid s_axi_wdata Axi Lite w data s_axi_wstrb Axi Lite w strb s_axi_wready Axi Lite w ready Axi Lite b valid s_axi_bvalid s_axi_bresp Axi Lite b resp s_axi_bready Axi Lite b ready s_axi_arvalid Axi Lite ar valid s_axi_araddr Axi Lite ar addr s_axi_arprot Axi Lite ar prot s_axi_arready Axi Lite ar ready s_axi_rvalid Axi Lite r valid s_axi_rdata Axi Lite r data s_axi_rresp Axi Lite r resp s_axi_rready Axi Lite r ready irq Interrupt when data is received transmit for UART (output to RX) tx receive for UART (input from TX) rx request to send is a loop with CTS rts

clear to send is a loop with RTS

up_rreq

cts

wire up_rreq

uP read bus request

up_rack

wire up_rack

uP read bus acknowledge

up_raddr

```
wire [ADDRESS_WIDTH-(
BUS_WIDTH
```

/

```
)-1:0] up_raddr
```

uP read bus address

up_rdata

```
wire [31:0] up_rdata
```

uP read bus request

up_wreq

```
wire up_wreq
```

uP write bus request

up_wack

```
wire up_wack
```

uP write bus acknowledge

up_waddr

```
wire [ADDRESS_WIDTH-(
BUS_WIDTH

2
)-1:0] up_waddr
```

uP write bus address

up_wdata

```
wire [31:0] up_wdata
```

uP write bus data

INSTANTIANTED MODULES

inst_up_axi

```
up_axi #(

AXI_ADDRESS_WIDTH(ADDRESS_WIDTH)
) inst_up_axi ( .up_rstn (arstn), .up_clk (aclk), .up_axi_awvalid(s_axi_awv
```

Module instance of up_axi for the AXI Lite bus to the uP bus.

inst_up_uart

```
up_uart #(
ADDRESS_WIDTH(ADDRESS_WIDTH),
CLOCK_SPEED(CLOCK_SPEED),
BAUD_RATE(BAUD_RATE),
PARITY_ENA(PARITY_ENA),
PARITY_TYPE(PARITY_TYPE),
STOP_BITS(STOP_BITS),
DATA_BITS(DATA_BITS),
RX_DELAY(RX_DELAY),
RX_BAUD_DELAY(RX_BAUD_DELAY),
TX_DELAY(TX_DELAY),
TX_BAUD_DELAY(TX_BAUD_DELAY)
) inst_up_uart ( .clk(aclk), .rstn(arstn), .up_rreq(up_rreq), .up_rack(up_rate)
```

Module instance of up_uart creating a Logic wrapper for uart axis bus cores to interface with uP bus.