目录

第九章——热力学	1
9.1 热学的研究对象	1
9.2 平衡态 理想气体状态方程	1
9.2.1 气体的状态参量	1
9.2.2 平衡态	2
热力学第零定律	2
9.2.3 理想气体状态方程	2
9.3 功 热量 内能 热力学第一定律	3
9.3.1 功 热量 内能	3
9.3.2 热力学第一定律	3
9.4 准静态过程中功和热量的计算	4
9.4.1 准静态过程	4
9.4.2 准静态过程中功的计算	
9.4.3 准静态过程中热量的计算 热容	
9.5 理想气体的内能和 <i>CV、CP</i>	5
9.5.1 理想气体的内能	5
9.5.2 关于 <i>CV、CP</i> 的进一步研究	
9.6 热力学第一定律对理想气体在典型准静态过程中的应用	6
9.6.1 等体过程	6
9.6.2 等压过程	7
9.6.3 等温过程	
9.7 绝热过程	8
9.7.1 绝热过程	8
*9.7.2 多方过程	
应用热力学第一定律求解热学问题的一般思路	
多过程组合的联合过程问题	9
理想气体在各种过程中的重要公式	10
9.8 循环过程	10
9.8.1 循环过程	10
9.8.2 循环效率	10
热力学第三定律	11
9.9 热力学第二定律	11
9.9.1 开尔文表述	11
9.9.2 克劳修斯表述	
9.10 可逆与不可逆过程	11

9.11 卡诺循环 卡诺定理	12
9.11.1 卡诺循环	12
9.11.2 卡诺定理	13
章末小结	13
第十章 气体动理论	15
10.1 分子运动的基本概念	15
10.1.1 宏观物体由大量粒子(分子原子等)组成	15
10.1.2 物体的分子在永不停息地作无序热运动	15
10.1.3 分子间存在相互作用力	15
10.2 气体分子的热运动	16
10.3 统计规律的特征	17
10.4 理想气体的压强公式与温度的微观本质	17
10.4.1 理想气体的微观模型	17
10.4.2 理想气体的压强公式	17
10.4.3 理想气体温度与分子平均动能的关系	18
10.4.4 理想气体定律的推证	19
10.5 麦克斯韦速率分布定律	19
10.5.1 分布的概念	19
10.5.2 速率分布函数f(v)	19
10.5.3 气体速率分布的实验测定	21
10.5.4 三种典型的分子速率统计平均值	21
10.5.5 气体分子按平动动能的分布规律	22
10.6 能量按自由度均分原理	23
10.6.1 气体分子自由度	23
10.6.2 能量按自由度均分定理	23
10.6.3 理想气体的内能(系统中与热现象有关的能量)	24
10.6.4 理想气体的热容量	24
10.7 玻尔兹曼分布律	25
10.7.1 重力场中粒子按高度的分布	25
10.7.2 玻尔兹曼分布律	
10.7.3 麦克斯韦-玻尔兹曼分布律	
10.8 气体分子的平均自由程	26
10.8.1 碰撞频率	
10.8.2 平均自由程	
10.9 热力学第二定律的统计意义和熵的概念	
10.9.1 分子在容器中的分布	
10.9.2 第二定律的微观意义	
> - > - > - > > > >	

10.9.3 熵与熵增原理	28
章末小结	29
第十一章 振动	30
11.1 简谐振动	30
11.1.1 简谐振动 (以谐振子为例)	30
11.1.2 描述简谐振动的特征量	
11.1.3 由初始条件确定振幅和初相位	31
11.1.4 旋转矢量法	31
11.1.5 简谐振动的能量(水平弹簧振子)	
11.1.6 常见的简谐振动	32
11.2 简谐振动的合成	33
11.2.1 同方向同频率的简谐振动的合成	33
11.2.2 同方向不同频率的简谐振动的合成	33
特别地,当振幅相同时进行不同频率简谐振动的合成:	34
拍的现象	
11.2.3 垂直方向同频率的简谐振动的合成	
11.2.4 垂直方向不同频率简谐振动的合成	35
11.3 阻尼振动和受迫振动	36
11.3.1 阻尼振动	36
11.3.2 受迫振动	
周期性策动力	37
共振	38
第十二章 机械波	38
12.1 机械波的产生和传播	39
12.1.1 机械波的产生	
· · · · · · · · · · · · · · · · · · ·	
12.2 平面简谐波	
12.2.1 平面行波	
12.2.2 平面简谐波	40
12.3 波的能量和强度	42
12.3.1 平面简谐波的能量、能量密度	42
12.3.2 能流密度和强度	43
12.3.3 波的吸收	44
12.4 惠更斯原理与波的衍射	44
12.5 波的干涉	44
12.5.1 波的叠加原理	
12.5.2 波的干涉	
14-2-4 4大HJ 1ツ ··································	-

12.6 驻波	45
12.6.1 弦线上的驻波演示实验	46
12.6.2 驻波的定量分析	46
12.7 多普勒效应	47
12.7.1 波源静止,观察者运动	47
12.7.2 观察者静止,波源运动	47
12.7.3 波源与观察者同时运动	47
第十三章 波动光学	48
13.1 光是电磁波	48
13.1.1 电磁波是空间矢量波	
13.2 光源与光波的叠加	
13.2.1 光源	
13.2.2 光波的叠加	
条纹衬比度(对比度)	
13.2.3 普通光源获得相干光的途径	
13.3 杨氏双缝干涉实验	52
13.3.1 杨氏双缝实验	52
13.4 光程与光程差	
13.5 薄膜干涉	
13.5.1 等倾干涉	
13.6 迈克耳孙干涉仪	
13.7 惠更斯-菲涅尔原理	58
13.7.1 光的衍射现象	
13.7.2 惠更斯菲涅尔原理	
13.7.3 光的衍射分类	
13.8 夫琅禾费衍射	
13.8.1 单缝的夫琅禾费衍射	
13.8.2 圆孔的夫琅禾费衍射	
13.8.3 光学仪器的分辨本领	
13.9 衍射光栅及光栅光谱	63
13.9.1 衍射光栅	
13.9.2 光栅衍射条纹	
13.9.3 光栅衍射的强度分布	
13.9.5 斜入射的光栅方程	
*13.9.6 X 射线在晶体上的衍射	

13.10 线偏振光与自然光	67
13.10.1 光的偏振态	
13.10.2 起偏和检偏	
13.10.3 马吕斯定律	68
13.11 反射和折射产生的偏振 布儒斯特定律	68
13.12 双折射现象	69
13.12.1 双折射现象	69
13.12.2 单轴晶体中的波面	69
第十五章——量子物理基础	70
15.1 普朗克量子假设	70
15.2 光电效应&爱因斯坦光子理论	70
15.3 康普顿效应及光子理论的解释	71
15.4 氢原子光谱&玻尔氢原子理论	72
15.5 微观粒子的波粒二象性	72
15.6 波函数&一维定态薛定谔方程	73
15.7 氢原子的量子力学描述&电子自旋	73