

2017—2018 学年第一学期 《高等数学 (2-1)》期中考试卷 答案及评分标准

(工科类)

专业班级	
姓 名	
学 号	
开课系室	基础数学系
考试日期	2017年11月11日

题 号		=	=	四	五	六	七	八	总 分
本题满分	12	18	10	18	8	12	10	12	
本题得分									
阅卷人									

注意事项:

- 1. 请在试卷正面答题,反面及附页可作草稿纸;
- 2. 答题时请注意书写清楚,保持卷面清洁;
- 3. 本试卷共八道大题,满分100分;试卷本请勿撕开,否则作废;
- 4. 本试卷正文共8页。

一. 简答与选择题(共4小题,每小题3	5分,共计12分)	本题满分12分
		本
1. 试说明数列 $\{x_n\}$ 收敛与数列 $\{x_n\}$	} 有	题
		得
		分
答:数列 $\{x_n\}$ 收敛必有界,		
但数列 $\{x_n\}$ 有界,不一定收敛,	例如: {(-1)"}, 有界,	
但{(-1)"}发散.(不举反例也算	[对)	(3分)
2. 试说明函数 $f(x)$ 在 x_0 点可导与	连续的关系.	
答: 若函数 $f(x)$ 在 x_0 点可导,则 f	$f(x)$ 在 x_0 点必连续,若函数 f	(x) 在 x_0 点连续,
则 $f(x)$ 在 x_0 点不一定可导,例如: f		
点不可导($f'_{+}(0) = 1 \neq -1 = f'_{-}(0)$).	1 1	
		(3分)
3. 选择题: 设函数 $f(x)$ 具有任意的	ト导数、日 f'(r)=[f(r)] ² 、M	当n 为大干 2 的正
整数时, $f^{(n)}(x) = (A$	(a) - [J(a)]	
(A) $n![f(x)]^{n+1}$;	(B) $n![f(x)]^{2n}$;	
$(A) \ n \in [j(\lambda)]$	$(\boldsymbol{b}) \; \boldsymbol{h} \cdot [\boldsymbol{J}(\boldsymbol{x})] ,$	
(C) $n[f(x)]^{n+1}$;	$(D) [f(x)]^{2n}$.	
		(3分)
	須拉供 Mi / P 、	
4. 选择题: 若函数 $f(x)$ 在 x_0 点取		
(A) $f'(x_0) = 0$;	(B) $f'(x_0) = 0$ or $f'(x_0)$	
(C) $f''(x_0) > 0$;	(D) $f'(x_0) = 0, f''(x) < 0.$	
		(3分)

1. 求极限:
$$\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{1}{n^2+2} + \dots + \frac{1}{n^2+n}\right)$$
.

而
$$\lim_{n\to\infty}\frac{n}{n^2+n}=0=\lim_{n\to\infty}\frac{n}{n^2+1}$$
),由夹逼定理,

2. 求极限:
$$\lim_{x\to 0} \frac{\ln(1+\sin^2 x)}{a^{x^2}-1}$$
.

解 当
$$x \to 0$$
时, $\ln(1+\sin^2 x) \sim \sin^2 x \sim x^2$; $e^{x^2} - 1 \sim x^2$, ---------- (2分)

$$\therefore \lim_{x \to 0} \frac{\ln(1 + \sin^2 x)}{e^{x^2} - 1} = \lim_{x \to 0} \frac{\sin^2 x}{x^2} = \lim_{x \to 0} \frac{x^2}{x^2} = 1.$$
 (4 \(\frac{1}{2}\))

3. 求极限:
$$\lim_{x\to 1} (\frac{1}{\ln x} - \frac{1}{x-1})$$
.

$$\mathbf{M} \lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) (\infty - \infty) (通分)$$

$$= \lim_{x \to 1} \frac{x - 1 - \ln x}{(x - 1) \ln x} \, \left(\frac{0}{0} \right)$$
 (3 \(\frac{\partial}{0}\))

$$= \lim_{x \to 1} \frac{1 - \frac{1}{x}}{\ln x + \frac{x - 1}{1 - \frac{1}{x}}} = \lim_{x \to 1} \frac{x - 1}{x \ln x + x - 1} \quad (\frac{0}{0})$$

$$= \lim_{x \to 1} \frac{1}{\ln x + 2} = \frac{1}{2} \cdot \dots$$
 (3 \(\frac{\partial}{2}\))

三. $(10 \, \text{分})$ 设函数 $f(x) = \frac{x|x-2|}{(x^2-4)\sin x}$,指出函数的间断点,并判断其类型.

解 f(x) 的间断点为: $2,-2,0,k\pi$ $(k=\pm 1,\pm 2,\cdots)$. ----- (2分)

因为
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{x |x-2|}{(x^2-4)\sin x} = -\frac{1}{2}$$
,所以 $x = 0$ 为可去间断点;

-----(2分)

因为
$$\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} \frac{x \mid x-2\mid}{(x^2-4)\sin x} = \frac{1}{2\sin 2} \lim_{x\to 2^+} \frac{\mid x-2\mid}{x-2} = \frac{1}{2\sin 2},$$

$$\lim_{x\to 2^{-}} f(x) = \lim_{x\to 2^{-}} \frac{x \mid x-2\mid}{(x^{2}-4)\sin x} = \frac{1}{2\sin 2} \lim_{x\to 2^{-}} \frac{\mid x-2\mid}{x-2} = -\frac{1}{2\sin 2},$$

所以x=2是跳跃间断点; ------ (2分)

因为
$$\lim_{x\to -2} f(x) = \lim_{x\to -2} \frac{x|x-2|}{(x^2-4)\sin x} = -\frac{2}{\sin 2} \lim_{x\to -2} \frac{1}{x+2} = \infty$$
,

所以 x = -2 是无穷间断点; ------ (2 分)

因为
$$\lim_{\substack{x \to k\pi \\ (k \neq 0, k \in Z)}} f(x) = \lim_{x \to k\pi} \frac{x |x-2|}{(x^2-4)\sin x} = \infty$$
,

所以
$$x = k\pi(k = \pm 1, \pm 2, \cdots)$$
 是无穷间断点. ------ (2分)

$$= \lim_{x \to 0} \frac{x(x+1)(x+2)\cdots(x+2017)}{x}$$
$$= \lim_{x \to 0} (x+1)(x+2)\cdots(x+2017)$$

2. 设
$$y = \ln \frac{x+1}{\sqrt{x^2+4}} + \frac{1}{2} \arctan \frac{x}{2}$$
, 求 dy .

$$y' = \frac{1}{x+1} - \frac{1}{2} \frac{2x}{x^2+4} + \frac{1}{2} \frac{\frac{1}{2}}{1+\left(\frac{x}{2}\right)^2} = \frac{1}{x+1} + \frac{1-x}{x^2+4},$$

3. 设方程
$$\sqrt[x]{y} = \sqrt[y]{x}$$
 $(x > 0, y > 0)$ 确定二阶可导函数 $y = y(x)$,求 $\frac{d^2y}{dx^2}$.

即 $y \ln y = x \ln x$, 两边关于 x 求导,

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{\frac{1}{x} (1 + \ln y) - (1 + \ln x) \cdot \frac{1}{y} \cdot \frac{dy}{dx}}{(1 + \ln y)^2}$$

$$=\frac{y(1+\ln y)^2 - x(1+\ln x)^2}{xy(1+\ln y)^3}.$$
 (3 \(\frac{\partial}{2}{2}\))

五. (8 分) 设函数 $f(x) = \begin{cases} a+2+b(1+\sin x), & x<0 \\ e^{ax}-1, & x\geq 0 \end{cases}$, 试确定常数 a,b,使 f(x) 在 x=0 点可导,并求 f'(0).

本题满分8分			
本			
题			
得			
分			

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{a + 2 + b(1 + \sin x)}{x}$$
$$= \lim_{x \to 0^{-}} \left(\frac{a + b + 2}{x} + \frac{b \sin x}{x}\right), \quad (2 \%)$$

又
$$f(x)$$
 在 $x = 0$ 点可导, $\therefore f'_{+}(0) = f'_{-}(0) = f'(0)$,

$$\therefore \begin{cases} a+b+2=0, \\ a=b. \end{cases} \qquad \therefore a=b=-1, \qquad (2 \%)$$

六.应用题(共2小题,每小题6分,共计12分)

1. 求摆线
$$\begin{cases} x = a \ (t - \sin t) \\ y = a \ (1 - \cos t) \end{cases}$$
 在 $t = \frac{\pi}{2}$ 处的切线方程.

本题满分 12 分 本 题 得

解 当
$$t = \frac{\pi}{2}$$
时, $x_0 = a (\frac{\pi}{2} - 1), y_0 = a$,------ (2分)

$$\frac{dy}{dx}\bigg|_{t=\frac{\pi}{2}} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}\bigg|_{t=\frac{\pi}{2}} = \frac{a\sin t}{a(1-\cos t)}\bigg|_{t=\frac{\pi}{2}} = 1.$$
 (2 \(\frac{\frac{\pi}{2}}{2}\)

所求切线的方程为: $y-a = x-a (\frac{\pi}{2}-1)$,

即
$$x-y-\frac{\pi a}{2}+2a=0$$
. (2分)

- 2. 如果将一个边长为 6 米的正方形铁皮的四角各剪去同样大小的小正方形后,制成一个无盖盒子,问剪去小正方形的边长为多少米时,可使盒子的容积最大?
 - 解 设每个小正方形的边长为x米,则所做盒子的容积为:

$$V'(x) = (6-2x)^2 + x \cdot 2(6-2x)(-2)$$

= (6-2x)(6-6x)

令
$$V'(x) = (6-2x)(6-6x) = 0$$
, 得 $x_1 = 1$, $x_2 = 3$ (不符合实际意义, 舍去)

从而得符合实际意义唯一的驻点 x=1, ------ (2 分)

故由实际问题的意义,可知当剪去小正方形的边长为1米时,可使盒子的容积最大.

----- (1分)

七.(10 分)已知 $f(x)=x-5\arctan x$,试讨论函数的单调区间、极值、凸性、拐点 .

本题满分 10 分 本 题 得 分

解 函数的定义域为 $(-\infty,+\infty)$. $f'(x) = 1 - \frac{5}{1+x^2} = \frac{x^2-4}{1+x^2}$,

令
$$f'(x) = 0$$
 得驻点: $x = \pm 2$,

$$f''(x) = \frac{10x}{(1+x^2)^2}, \Leftrightarrow f''(x) = 0 \Leftrightarrow x = 0.$$

当
$$x \in (-\infty, -2)$$
 ∪ $(2, +\infty)$ 时, $f'(x) = 1 - \frac{5}{1+x^2} = \frac{x^2-4}{1+x^2} > 0$,

 $\therefore f(x)$ 在 $(-\infty, -2]$ $\cup [2, +\infty)$ 单调递增,

当
$$x \in (-2,2)$$
 时, $f'(x) = 1 - \frac{5}{1+x^2} = \frac{x^2-4}{1+x^2} < 0$,

$$\therefore f(x)$$
在[$-2,2$]单调递减; ------ (2分)

从而 f(x) 在 x = -2 取得极大值: $f(-2) = -2 + 5 \arctan 2$,

在
$$x=2$$
 取得极小值: $f(2)=2-5\arctan 2$; ------ (2分)

 $\therefore f(x) = x - 5 \arctan x \, \text{在}(-\infty, 0)$ 内是上凸的,

当
$$x \in (0, +\infty)$$
时, $f''(x) = \frac{10x}{(1+x^2)^2} > 0$,

$$\therefore f(x) = x - 5 \arctan x$$
 在(0,+∞)内是下凸的; ------ (2分)

故曲线
$$f(x) = x - 5 \arctan x$$
 的拐点为: $(0,0)$.----- (1分)

八. 证明题(共2小题,每小题6分,共计12分)

1.	证明:	当 $x > 1$ 时,	有	$2\sqrt{x} > 3 -$	$\frac{1}{-}$.
					\boldsymbol{x}

本 题满分 12 分 本 题 得 分				
题 得	本题满分 12 分			
得	本			
, ,	题			
分	得			
	分			

则
$$f'(x) = \frac{1}{\sqrt{x}} - \frac{1}{x^2} = \frac{x\sqrt{x} - 1}{x^2} > 0$$
 $(x > 1)$,

f(x) 在f(x) 在f(x) 单调递增,从而,当f(x) 为 f(x) f(x) f(x)

2. 设函数 f(x) 在[0,1]上连续,在(0,1)内可导,且 f(0) = f(1) = 0,

证明: 至少存在一点 $\xi \in (0,1)$, 使得 $f(\xi) + f'(\xi) = 0$.

则由已知, $F(x) = e^x f(x)$ 在[0,1]上连续, 在(0,1)内可导, 且

$$F'(x) = [e^x f(x)]' = e^x f(x) + e^x f'(x)$$
, $\exists f(0) = f(1) = 0$, $\exists f(0) = f(1) = 0$

$$F(0) = e^{0} f(0) = f(0) = 0$$
, $F(1) = e f(1) = 0$, $\mathbb{P}[F(0)] = F(1)$, (2 $\frac{1}{2}$)

根据罗尔定理,至少存在一点 $\xi \in (0,1)$,使得 $F'(\xi) = 0$,

$$\mathbb{P} e^{\xi}[f(\xi) + f'(\xi)] = 0$$
,

各章分值分配: 第1章 25分; 第2章 38分; 第3章 37分.