# Novel Attack Detection in IoT Network Intrusion Detection

Chiao-Hsi Joshua Wang (Student No. 46965611)

Supervised by Dr. Dan Kim

# TABLE OF Contents

01

02

03

**Project Purpose** 

**Project Goals** 

**Project Background** 

04

05

06

Methodology

Results

Conclusions

#### DID YOU KNOW?

There was a 400% increase in malicious cyberattacks on Internet of Things (IoT) devices from 2022 to 2023

(Knowles, 2023)

#### Project Purpose

- Successful cyber-attacks can result in data breaches, privacy violations and service disruptions
- Network intrusion detection systems (NIDS) help to protect IoT ecosystems by identifying potential security threats
- This project addresses the limitations of current methods, specifically their inabilities to adapt to changing IoT environments and identifying specific attack types whilst recognising new attacks

#### Project Goals

- 1. Classify IoT network traffic as either attack or benign traffic (binary classification)
- 2. Identify the **type of traffic** IoT network traffic belongs to by classifying as **either benign traffic or the attack type** (multi-class classification)
- 3. Identify and classify novel attack types accurately upon initial exposure

## Project Background

- Most supervised-learning IoT network intrusion detection systems struggle to adapt to new types of attacks (Al Lail et al., 2023; Dong et al., 2016; Kim et al., 2017)
- State-of-the-art models such as the Kitsune model are trained in a semi-supervised manner and can be applied to all attacks, but only to decide whether the traffic is benign or attack (Mirsky et al., 2018)
- This project will create a model capable of identifying new attacks whilst also being able to identify the type of attack found (whether it is a known attack or new type of attack)

# Methodology: Data Preprocessing

- 1. Feature Extraction (Kitsune)
- 2. Sampling
  - a. 70-15-15 train/val/test for over sampling minority classes
  - b. 5-5-5 train/val/test for under sampling majority classes
- 3. Leave one attack out of training set to simulate "unknown" attack
- 4. Min/max scaling
- 5. Principal Component Analysis



Number of samples available in the UQ IoT IDS Dataset for each type of traffic.

## Methodology: Model

- Processed inputs used to train three submodels
- Final outcome determined through voting from the three sub-models
- Voting mechanism considers labels generated by each of the three submodels, as well as distance thresholds for k-Nearest Neighbours model



**Model Architecture** 

#### Methodology: Voting Algorithm

```
if ((multi_label == 0 and binary_label == 0 and knn_label == 0)
  or (multi_label == 0 and binary_label == 0 and knn_label > 0)
  or (multi_label > 0 and binary_label == 0 and knn_label == 0)
):
    final_labels.append(0) # Predict benign
else:
    # Determine what attack class to predict
    if data_mean_dist > class_avg_distances.get(knn_label) * threshold:
        final_labels.append(-1) # Predict novel
    else:
        final_labels.append(knn_label) # Predict known-class attack
```

- data\_mean\_dist: mean distance between point being evaluated and its closest 5 neighbours
- class\_avg\_distances: dictionary of average distances between training data points of the same class
- threshold: Decision threshold value

#### Methodology: Distance Threshold Hyperparameter



- Optimal threshold value found through evaluation on <u>validation set</u>
- 2.5 is optimal for all combinations of "unknown" attack

## Results - Easily Distinguishable Classes

- Performs well on most classes when classifying "known" attacks and identifying "unknown" attacks
- Average accuracy of 0.92, average F1 score of 0.8 for ACK Flooding as "unknown"

| Packet Type        | Precision | Recall | F1   |
|--------------------|-----------|--------|------|
| Benign             | 0.99      | 0.98   | 0.99 |
| ARP Spoofing       | 0.49      | 0.53   | 0.51 |
| Port Scanning      | 0.88      | 0.82   | 0.85 |
| Service Detection  | 0.91      | 0.78   | 0.84 |
| SYN Flooding       | 0.81      | 0.94   | 0.87 |
| UDP Flooding       | 1.00      | 0.95   | 0.98 |
| HTTP Flooding      | 1.00      | 0.94   | 0.97 |
| Telnet Brute Force | 0.83      | 0.77   | 0.80 |
| Host Discovery     | 0.71      | 0.42   | 0.53 |

| Packet Type  | Precision | Recall | F1   |
|--------------|-----------|--------|------|
| ACK Flooding | 0.88      | 0.85   | 0.87 |

Performance on Unknown Attack (ACK Flooding as Unknown)

Performance on Benign and Known Attacks (ACK Flooding as Unknown)

#### Results - Similar Classes

- Model struggles on attacks that follow similar patterns (e.g. Port Scanning and Service Detection)
- Average accuracy of 0.89, macro F1 score of 0.71 for Port Scanning as "unknown"

| Packet Type        | Precision | Recall | F1   |
|--------------------|-----------|--------|------|
| Benign             | 0.99      | 0.98   | 0.99 |
| ACK Flooding       | 0.98      | 0.93   | 0.96 |
| ARP Spoofing       | 0.52      | 0.45   | 0.48 |
| Service Detection  | 0.70      | 0.83   | 0.76 |
| SYN Flooding       | 0.98      | 0.92   | 0.95 |
| UDP Flooding       | 1.00      | 0.96   | 0.98 |
| HTTP Flooding      | 1.00      | 0.94   | 0.97 |
| Telnet Brute Force | 0.83      | 0.77   | 0.80 |
| Host Discovery     | 0.71      | 0.44   | 0.55 |

| Packet Type   | Precision | Recall | F1   |
|---------------|-----------|--------|------|
| Port Scanning | 0.01      | 0.12   | 0.02 |

Performance on Unknown Attack (Port Scanning as Unknown)

Performance on Benign and Known Attacks (Port Scanning as Unknown)

# Overall Results and Comparisons

#### Comparison of Models for Multi-Class Classification

| Model                        | Accuracy | Macro F1 |
|------------------------------|----------|----------|
| Proposed Model               | 95.01%   | 79.65%   |
| Random Forest                | 98.86%   | 88.30%   |
| Convolutional Neural Network | 89.25%   | 64.87%   |

#### Comparison of Models for Attack Detection

| Model          | Accuracy | Macro F1 |
|----------------|----------|----------|
| Proposed Model | 98.83%   | 98.79%   |
| Kitsune        | 94.99%   | 92.21%   |

#### Conclusions and Future Work

- Developed a model capable of strong results compared to existing solutions
- Future work:
  - Improving performance on classes which tend to be similar to each other feature engineering
  - Testing on different datasets
  - Giving model ability to learn from detected novel classes

#### References

- Al Lail, M., Garcia, A., & Olivo, S. (2023). Machine learning for network intrusion detection—a comparative study. Future Internet, 15(7), 243. https://doi.org/10.3390/fi15070243
- Dong, B., & Wang, X. (2016). Comparison deep learning method to traditional methods using for network intrusion detection. 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN). https://doi.org/10.1109/iccsn.2016.7586590
- He, K., Kim, D., Zhang, Z., Ge, M., Lam, U. & Yu, J. (2022). UQ IoT IDS dataset 2021. The University of Queensland. (Dataset) doi: 10.48610/17b44bb http://dx.doi.org/10.48610/17b44bb
- Kim, J., Shin, N., Jo, S. Y., & Kim, S. H. (2017). Method of intrusion detection using Deep Neural Network. 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). https://doi.org/10.1109/bigcomp.2017.7881684
- Knowles, C. (2023, October 26). Manufacturing sector hit hardest by 400% rise in IOT malware attacks. SecurityBrief Australia. https://securitybrief.com.au/story/manufacturing-sector-hit-hardest-by-400-rise-in-iot-malware-attacks
- Mirsky, Y., Doitshman, T., Elovici, Y., & Shabtai, A. (2018). Kitsune: An ensemble of autoencoders for online network intrusion detection. Proceedings 2018 Network and Distributed System Security Symposium. https://doi.org/10.14722/ndss.2018.23204

## Appendix A: Model Architecture/Parameters

- Multi-class and Binary Classification Models:
  - Input: Tensor of size 12
  - Layers: [512, 128, 64, 16]
  - Outputs: 9 (multi-class); 1 (binary)
  - Criterion: CrossEntropyLoss (multi-class); BCEWithLogitsLoss (binary)
  - Optimizer: Adam, default learning rate of 0.001
- k-Nearest Neighbours:
  - $\circ$  k = 5

#### Appendix B: Distance Threshold Precision and Recall





F1 Scores for Different Distance Thresholds with ACK Flooding as Novel Attack

F1 Scores for Different Distance Thresholds with Port Scanning as Novel Attack

# Appendix C: Model Training/Validation Loss



Total Model Loss Train Total Loss 0.10 Val Total Loss 0.09 0.08 Total Loss 0.06 0.05 0.04 0.03 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 Epoch

Multi-Class Model Training/Validation Loss with ARP Spoofing as Unknown Attack

Binary Class Model Training/Validation Loss with ARP Spoofing as Unknown Attack