ĐẠI HỌC ĐÀ NẮNG TRƯỜNG ĐẠI HỌC BÁCH KHOA

DUONG THO

HINH HOC HOA HINH

ĐẠI HỌC ĐÀ NẪNG - 2004

LÒI NÓI ĐẦU

Giáo trình hình học họa hình này soạn theo chương trình cải cách của Bộ Giáo Dục Và Đào Tạo . Giáo trình nhằm phục vụ sinh viên các hệ đào tạo của các ngành kỹ thuật trong các năm học cơ bản . Sách có chọn lọc các ví dụ minh họa và viết tương đối tỷ mỷ nhằm phục vụ cho sinh viên tự đọc có thể hiểu dễ dàng.

Kèm theo cuốn bài giảng sinh viên có thêm sách bài tập định kỳ để phục vụ việc nắm lại lý thuyết và mở rộng tư duy. Do đó mỗi sinh viên cần phải thực hiện đầy đủ các bài tập đã cho trong cuốn bài tập và làm thắng vào sách .

Trong qúa trình soạn thảo chúng tôi chắc chắn không tránh khỏi thiếu sót về các mặt . Rất mong bạn đọc, các đồng nghiệp đóng góp ý .

Đà nẵng , tháng 10 năm 2004 Tác giả

Phần I: NHỮNG KHÁI NIỆM TỔNG QUÁT

Chương một:

MỞ ĐẦU

1.1-MỤC ĐÍCH VÀ YÊU CẦU:

-Mục đích: Bản vẽ là văn kiện kỹ thuật cơ bản để chỉ đạo sản xuất .Bản vẽ được xây dựng nhờ những phương pháp biểu diễn và các hệ thông qui ước. Nghiên cứu các phương pháp biểu diễn làm cơ sở lý luận cho việc xây dựng các bản vẽ là nguồn gốc lịch sử và là một trong những nội dung của Hình học họa hình.

Để biểu diễn các đối tượng cụ thể như một bộ phận máy móc, một công trình xây dựng, trước hết phải biết cách biểu diễn các không gian hình học chứa những đối tương cụ thể ấy.

Nói rõ hơn , Hình học họa hình là một môn học nghiên cứu cách biểu diễn các không gian bằng những yếu tố hình học của một không gian có chiều thấp hơn ,phổ biến nhất là mặt phẳng, rồi dùng các hình biểu diễn ấy để nghiên cứu các không gian ban đầu.

Hình học họa hình nhờ bảo đãm được tính trực quan và chính xác nên đã được dùng nhiều trong thực tế để xây dựng các bản vẽ kỹ thuật và nó là một trong những môn học cơ sở của chương trình đào tạo kỹ sư.

- -Yêu cầu của hình biểu diễn: Muốn đạt được mục đích trên, các hình biểu diễn phải đạt được các yêu cầu sau;
 - + Đơn giản, rõ ràng, chính xác.
- + Thỏa mãn tính tương đương hình học hay tính phản chuyển của bản vẽ.

 * Để học tốt môn hình học họa hình, người học cần nắm vững các kiến thức của hình học sơ cấp nhất là hình học không gian.

 S

1.2-CÁC PHÉP CHIẾU:

1.2.1-Phép chiếu xuyên tâm:

Một phép chiếu xuyên tâm được xác định bởi một điểm S gọi là tâm chiếu và một phẳng P gọi là mặt phẳng hình chiếu.Phép chiếu được thực hiện bởi hai bước.(H-1.1)

-Nối đường thẳng SA.

Hình-1.1

-Tìm giao điểm $\acute{A} = SA \times P$

Á : gọi là hình chiếu xuyên tâm của A từ tâm S lên mặt phẳng hình chiếu P.

Tính chất 1: Hình chiếu của một đường thẳng không qua tâm chiếu là một đường thẳng.(H-1.2)

Tính chất 2: Hình chiếu của của hai đường thẳng song song là hai đường thẳng đồng qui (điểm đồng qui là hình chiếu điểm vô tận của hai đường thẳng song song).(H-1.3)

1.2.2-Phép chiếu song song:

Một phép chiếu song song được xác định bởi một hướng s và một mặt phẳng hình chiếu P, không song song với s. (H-1.4)

A = A' B = B' A = A' B = B'

Hình -1.2

Thực hiện phép chiếu gồm hai bước:

- Qua A kể t song song s.
- Tìm giao điểm $\hat{A} = t \times P$.

Á : gọi là hình chiếu song song của A theo hướng s lên mặt phẳng hình chiếu P.

*Tính chất 1:*Phép chiếu song song bảo tồn tính chất song song của hai đường thẳng. (H-1.5)

Tính chất 2: Phép chiếu song song bảo tồn tỷ số đơn của ba điểm thẳng hàng. (H-1.6)

Hình-1.3

Hình -1.4

1.2.3- Phép chiếu vuông góc:

Phép chiếu vuông góc là trường hợp đặc biệt của phép chiếu song song khi hướng chiếu s vuông góc với mặt phẳng hình chiếu P. (H- 1.7)

Tính chất : Điều kiện cần và đủ một góc vuông chiếu thành một góc vuông là một trong hai cạnh góc vuông song song với mặt phẳng hình chiếu và cạnh kia không vuông góc với mặt phẳng hình chiếu. (H-1.8)

Chương hai:

ĐIỂM

2.1- ĐỒ THỨC CỦA MỘT ĐIỂM:

2.1.1-Hệ thống các mặt phẳng hình chiếu:

Trong không gian, chọn hai mặt phẳng vuông góc nhau. P1 nằm ngang và P2 thẳng đứng như hình vẽ. (H-2.1)

P1 : gọi là mặt phẳng hình chiếu bằng.

P2 : gọi là mặt phẳng hình chiếu đứng.

Hai mặt phẳng P1, P2 chia không gian ra làm bốn phần tư theo thứ tự như hình vẽ.

Hình-2.1

2.1.2- Biểu diễn điểm -Độ cao -Độ xa:

Chiếu vuông góc điểm A lần lược lên P1 và P2 rồi gập P1 đến trùng với P2 theo chiều như hình vẽ .Sau đó đặt P2 trùng với mặt phẳng bản vẽ ta sẽ có một hệ các hình chiếu của điểm A, thường được gọi là đồ thức của

Hình-2.2a

Hình-2.2b

Ta có một số định nghĩa như sau:

- A1: Hình chiếu bằng của điểm A.
- A2: Hình chiếu đứng của điểm A.
- $x = P1 \times P2 : Trục chiếu$.
- Đường nối hai điểm A1,A2: Đường dóng
- AlAx : Độ xa (éloignement) ,được qui ước là dương khi Al nằm phía dưới trục x.
- A2Ax : Độ cao (cote) ,được qui ước là dương khi A2 nằm phía trên trục x.

2.1.3- Đồ thức của một điểm trong bốn phần tư không gian. Các mặt phẳng phân giác.

Theo qui ước ở 2.1.2, vị trí của một điểm trong bốn phần tư tương ứng với độ xa, độ cao như sau: Phần tư Độ cao Độ xa

nan tu	Độ cao	Độ Xã
1	+	+
2	+	-
3	-	-
4	-	+

Người ta gọi:

- -Mặt phẳng phân giác 1 là mặt phẳng phân giác đi qua phần tư thứ 1 và thứ 3.
- -Mặt phẳng phân giác 2 là mặt phẳng phân giác đi qua phần tư thứ 2 và thứ 4.

Hình vẽ dưới đây cho ví dụ minh họa đồ thức của một số điểm của không gian. (H-2.3)

 $(A \!\in\! pttt'\,1)\,(B \!\in\! phttt'\,2)\,(C \!\in\! phttt'\,3)\,(D \!\in\! phttt'\,4)\,(E \!\in\! pgi\acute{a}c\,\,1)\,(F \!\in\! pgi\acute{a}c\,\,2)$

Hình - 2.3

2.2-HỆ BA MẶT PHẨNG HÌNH CHIẾU:

Sử dụng thêm một mặt phẳng hình chiếu thứ ba, ký hiệu là P3 vuông góc với cả hai mặt phẳng hình chiếu P1 và P2 nói trên, ta có hệ ba mặt phẳng hình chiếu vuông góc.(H-2.4)

Chiếu vuông góc một điểm A lần lượt lên P1,P2,P3,rồi gập P1,P3 theo chiều như hình vẽ đến trùng với P2 ,ta có đồ thức tương ứng của nó.(H-2.5)

A3: là hình chiếu cạnh của điểm A.

 $\overline{AA3} = \overline{AxO}$: là độ xa cạnh của A , với qui ước là dương khi A1,A2 ở bên trái trục z.

Chương 3: ĐƯỜNG THẮNG

3.1-ĐỔ THỰC CỦA ĐƯỞNG THẮNG:

Một đường thẳng được biểu diễn bởi hai điểm hay bởi hai hình chiếu của nó. (H-3.1) (H-3.2)

Hình-3.1 Hình-3.2

3.2-CÁC ĐƯỜNG THẮNG ĐẶC BIỆT.

3.2.1-Đường bằng: Là đường thẳng song song với mặt phẳng hình chiếu bằng P1. Đồ thức được vẽ trên hình-3.3.

Nhận xét: -Hình chiếu đứng của đường bằng thì song song trục x.

-Hình chiếu bằng của một đoạn thắng thuộc đường bằng thì bằng chính nó.

3.2.2-Đường mặt: Là đường thẳng song song với mặt phẳng hình chiếu đứng P2. Đồ thức được vẽ trên hình-3.4.

Nhận xét: -Hình chiếu bằng của đường mặt thì song song trục x

. -Hình chiếu đứng của một đoạn thẳng thuộc đường mặt thì bằng chính nó.

3.2.3-Đường cạnh: Là đường thẳng song song với mặt phẳng hình chiếu cạnhP3. Đồ thức được vẽ trên hình-3.5.

Nhận xét: -Hình chiếu bằng và hình chiếu đứng của đường cạnh thì trùng nhau và vuông góc với trực x.

-Hình chiếu bằng của một đoạn thắng thuộc đường bằng thì bằng chính nó.

* Để thỏa mãn tính phản chuyển của đồ thức ,một đường cạnh phải được biểu diễn bởi hai điểm thuộc nó.

3.2.4-Đường thẳng chiếu bằng: Là đường thẳng vuông góc với mặt phẳng hình chiếu bằng P1. Đồ thức được vẽ trên hình -3.6.

Nhận xét: -Hình chiếu bằng của đường thắng chiếu bằng suy biến thành một điểm.

-Hình chiếu đứng của đường thắng chiếu bằng là đường thắng vuông góc với trục x.

* Đường thẳng chiếu bằng vừa là đường mặt vừa là dường cạnh, nên có mọi tính chất của hai loại đường nói trên.

3.2.5-Đường thẳng chiếu đứng: Là đường thẳng vuông góc với mặt phẳng hình chiếu đứng P2. Đồ thức được vẽ trên hình -3.7.

Nhận xét: -Hình chiếu đứng của đường thẳng chiếu đứng suy biến thành một điểm.

-Hình chiếu bằng của đường thắng chiếu đứng là đường thắng vuông góc với trục x.

* Đường thắng chiếu đứng vừa là đường bằng vừa là dường cạnh, nên có mọi tính chất của hai loại đường nói trên.

3.2.6-Đường thẳng chiếu cạnh: Là đường thẳng vuông góc với mặt phẳng hình chiếu cạnh P3. Đồ thức được vẽ trên hình -3.8.

Nhận xét: -Hình chiếu bằng và hình chiếu đứng của đường thẳng chiếu cạnh song song với trục x;

-Hình chiếu cạnh của đường thẳng chiếu cạnh suy biến thành một điểm.

* Đường thắng chiếu cạnh vừa là đường bằng vừa là đường mặt, nên có mọi tính chất của hai loại đường nói trên.

3.3-ĐIỀU KIỆN LIÊN THUỘC CỦA ĐIỂM VÀ ĐƯỜNG THẮNG:

Điều kiện 1: Điều kiện cần và đủ để một điểm thuộc một đường thắng thường là các hình chiếu cùng tên thuộc nhau. (H-3.10)

Điều kiện 2: Điều kiện cần và đú để một điểm C thuộc một đường cạnh AB là tỷ số đơn của ba điểm A,B,C trên hai hình chiếu bằng nhau .(H-3.11)

Hình-3.10

Hình-3.11

3.4-VẾT ĐƯỜNG THẮNG:

3.4.1-Vết bằng: Vết bằng đường thẳng là giao điểm của đường thẳng với mặt phẳng hình chiếu bằng P1. (H-3.12)

Nhận xét:- Hình chiếu đứng cuả vết bằng thuộc trục x.

- Hình chiếu bằng cuả vết bằng trùng với chính nó.

3.4.1-Vết đứng: Vết đứng đường thẳng là giao điểm của đường thẳng với mặt phẳng hình chiếu đứng P2. (H-3.12)

Nhận xét:- Hình chiếu bằng cuả vết đứng thuộc trục x.

- Hình chiếu đứng cuả vết đứng trùng với chính nó.

Hình vẽ -3.12 a,b biểu diễn vết bằng M và vết đứng N.

3.5- ĐƯỜNG THẮNG CẮT NHAU:

Điều kiện 1: Điều kiện cần và đủ để hai đường thẳng thường cắt nhau là các hình chiếu cùng tên của chúng cắt nhau trên một đường dóng. (H-3.13)

Điều kiện 2: Điều kiện cần và đủ để một đường thắng thường và một đường cạnh cắt nhau là các hình chiếu cùng tên của chúng cắt nhau tại các điểm thóa mãn đồ thức một điểm thuộc đường cạnh. (H-3.14)

3.6- ĐƯỜNG THẮNG SONG SONG:

Điều kiện 1: Điều kiện cần và đủ để hai đường thẳng thường song song là các hình chiếu cùng tên song song nhau. (H-3.15)

Điều kiện 2: Điều kiện cần và đủ để hai đường thắng cạnh song song là có hai đường thắng tựa trên chúng cắt nhau hoặt song song. (H-3.16)

3.7- ĐƯỞNG THẮNG CẮT NHAU:

*Hai đường thắng không thỏa mãn điều kiện cắt nhau và song song thì chéo nhau. (H-3.18)

3.8-HÌNH CHIẾU GÓC VUÔNG:

Điều kiện cần và đủ để một góc vuông chiếu thành một góc vuông là một cạnh góc vuông song song với mặt phẳng hình chiếu và cạnh kia không vuông góc với mặt phẳng hình chiếu. (Dùng định lý ba đường vuông góc để chứng minh mệnh đề trên).

Trên hình-3.17, góc vuông aOb có cạnh a song song với P1 nên hình chiếu bằng a1O1b1 là góc vuông. Mệnh đề cũng đúng cho hai đường thẳng chéo nhau và vuông góc nhau. (H-3.18)

Chương 4:

MẶT PHẨNG

4.1- ĐỒ THỰC CỦA MỘT MẶT PHẨNG:

Giống như trong hình học không gian, một mặt phẳng có thể được biểu diễn bởi ba điểm không thẳng hàng, bởi một điểm và một đường thẳng không thuộc nhau, bởi hai đường thẳng cắt nhau hay song song như các đồ thức được cho dưới đây: (H-4.1)

Hình-4.1

4.2-VẾT MẶT PHẨNG:

4.2.1-Vết bằng: Vết bằng mặt phẳng là giao tuyến của mặt phẳng với mặt phẳng hình chiếu bằng P1. Vết bằng của một mặt phẳng α thường được ký hiệu là m_{α} . (H-4.2)

Nhận xét: -Hình chiếu đứng cuả vết bằng trùng với trục chiếu $m_{2\alpha} \equiv x$.

- Hình chiếu bằng cuả vết bằng trùng với chính nó $m_{1\alpha} \equiv m_{\alpha}$.

4.2.2-Vết đứng: Vết đứng mặt phẳng là giao tuyến của mặt phẳng với mặt phẳng hình chiếu đứng P2. (H-4.2)

Nhận xét:- Hình chiếu bằng cuả vết đứng trùng với trực chiếu $n_{1\alpha} \equiv x$.

- Hình chiếu đứng cuả vết đứng trùng với chính nó $n_{2\alpha} \equiv n_{\alpha}$.

*Lưu ý: -Đường thắng thuộc mặt phẳng thì vết của đường thắng thuộc các vết tương ứng của mặt phẳng.

-Hai vết cuả mặt phẳng phải giao nhau trên trục x hoặc song song với trục x (do vị trí tương đối của 3 mặt phẳng trong không gian)

Hình vẽ 4.2 a,b biểu diễn vết bằng m α và vết đứng n α của mặt phẳng α .

4.3-CÁC VỊ TRÍ ĐẶC BIỆT CỦA MẶT PHẨNG:

4.3.1-Mặt phẳng chiếu bằng: Là mặt phẳng vuông góc với mặt phẳng hình chiếu bằng P1.

Nhận xét: -Hình chiếu bằng của mặt phẳng chiếu bằng suy biến thành một đường thẳng.

Hình-4.3: Hình chiếu bằng của mọi điểm thuộc mặt phẳng chiếu bằng α đều thuộc đường thẳng α_1 . Dễ dàng thấy rằng vết bằng α là $m_{\alpha} \equiv \alpha_1$ và vết đứng $n_{\alpha} \perp x$.

4.3.2-Mặt phẳng chiếu đứng: Là mặt phẳng vuông góc với mặt phẳng hình chiếu đứng P2.

Nhận xét: Hình chiếu đứng của mặt phẳng chiếu đứng suy biến thành một đường thẳng.

Hình-4.4: Hình chiếu đứng của mọi điểm thuộc mặt phẳng chiếu đứng β đều thuộc đường thẳng β_2 . Dễ dàng thấy rằng vết bằng α là $n_\beta \equiv \beta_2$ và vết bằng $m_\beta \perp x$.

3.3.3-Mặt phẳng chiếu cạnh: Là mặt phẳng vuông góc với mặt phẳng hình chiếu cạnh P3.

Nhận xét: -Vết bằng và vết đứng của mặt phẳng chiếu cạnh thì song song trục x.

-Hình chiếu cạnh của mặt phẳng chiếu cạnh suy biến thành một đường thẳng.

Hình-4.5: Hình chiếu cạnh của mặt phẳng chiếu cạnh γ là đường thẳng cạnh γ_3 . Vết đứng n_{γ} và vết bằng m_{γ} cùng song song với trục x.

4.3.4-Mặt phẳng bằng: Là mặt phẳng song song với mặt phẳng hình chiếu bằng P_1 .

Nhận xét:-Hình chiếu đứng của mặt phẳng bằng suy biến thành một đường thẳng song song với trực x.

-Hình chiếu bằng của một miếng phẳng thuộc mặt phẳng bằng thì bằng chính nó.

Hình-4.6: Mặt phẳng bằng α được biểu diễn bằng tam giác ABC.

$$\alpha_2 // x$$
 ; $\widehat{A_1 B_1 C_1} = \widehat{ABC}$

4.3.5-Mặt phẳng mặt: Là mặt phẳng song song với mặt phẳng hình chiếu đứng P_2 .

Nhận xét:-Hình chiếu bằng của mặt phẳng mặt suy biến thành một đường thẳng song song với truc x.

-Hình chiếu đứng của một miếng phẳng thuộc mặt phẳng mặt thì bằng chính nó.

Hình-4.7: Mặt phẳng mặt β được biểu diễn bằng tam giác DEF.

$$\beta_1 // x$$
 ; $\widehat{D_2 E_2 F_2} = \widehat{DEF}$

4.3.5-Mặt phẳng cạnh: Là mặt phẳng song song với mặt phẳng hình chiếu cạnh P_3 .

Nhận xét: - Hình chiếu đứng và hình chiếu bằng của mặt phẳng cạnh suy biến thành một đường thẳng vuông góc với trục x .

-Hình chiếu cạnh của một miếng phẳng thuộc mặt phẳng cạnh thì bằng chính nó.

Hình-4.8 : Mặt phẳng cạnh γ được biểu diễn bằng tam giác IJK.

$$\gamma_1 \equiv \gamma_2 \perp x$$
 ; $I_3 J_3 K_3 = IJK$

Hình-4.6

Hình-4.7

Hình-4.8

4.3.6-Mặt phẳng vuông góc với mặt phẳng phân giác 1 và 2:

Hình-4.9 biểu diễn đồ thức của một mặt phẳng α (m_{α} , n_{α}), chứa đường cạnh AB vuông góc với mặt phẳng phân giác 1 .Do đó α vuông góc với mặt phẳng phân giác 1.

Nhận xét: Mặt phẳng vuông góc với mặt phẳng phân giác 1 có hai vết đối xứng nhau qua trục x.

Hình-4.10 biểu diễn đồ thức của một mặt phẳng β (m_{β} , n_{β}), chứa đường cạnh CD vuông góc với mặt phẳng phân giác 2 .Do đó β vuông góc với mặt phẳng phân giác 2.

Nhận xét: Mặt phẳng vuông góc với mặt phẳng phân giác 2 có hai vết trùng nhau qua trục x.

4.4-BÀI TOÁN CƠ BẨN CỦA MẶT PHẨNG:

Để biểu diễn một đường thẳng hoặc một điểm thuộc một mặt phẳng , ta dưa vào hai mênh đề dưới đây:

- 1. Một đường thắng thuộc một mặt phẳng nếu nó có hai điểm thuộc mặt phẳng.
- 2. Một điểm thuộc một mặt phẳng nếu nó thuộc một đường thẳng của mặt phẳng.

Các bài toán về biểu diễn điểm và đường thẳng trên mặt phẳng có mối liên quan hỗ trợ nhau mà chủ yếu là sự liên thuộc của điểm và đường thẳng.

Ví dụ 1: Cho mặt phẳng xác định bởi hai đường thẳng a,b . Hãy vẽ một đường thẳng bất kỳ của nó.

Hình-4.11 : Ta lấy hai điểm bất kỳ , $A \in a$ và $B \in b$. A và B thuộc mặt phẳng (a,b) (theo 1) và chính chúng xác định xác định đường thẳng B thuộc mặt phẳng. (theo 2)

Ví dụ 2: Cho mặt phẳng xác định bởi hai đường thẳng c,d. Hãy vẽ điểm K thuộc mặt phẳng đó, biết K_2 .

Hình-4.12 : Ta vẽ đường thẳng g bất kỳ trên mặt phẳng đã cho và thuộc K (theo 2): Hình chiếu g_2 thuộc K_2 . Từ đó vẽ được g_1 như ví dụ 1 và suy ra $K_1 \in g_1$.

4.5-CÁC ĐƯỜNG THẮNG ĐẶC BIỆT CỦA MẶT PHẮNG:

4.5.1-Đường bằng: Là đường thẳng thuộc mặt phẳng đồng thời song song với mặt phẳng hình chiếu bằng P_1 .

Hình-4.13a,b biểu diễn một đường bằng h của mặt phẳng (a,b) và mặt phẳng α . Ta vẽ h_2 song song x, suy ra h_1 nhờ bài toán cơ bản đường thẳng thuộc mặt phẳng.

4.5.2-Đường mặt: Là đường thẳng thuộc mặt phẳng đồng thời song song với mặt phẳng hình chiếu đứng P_2 .

Hình-4.14a,b biểu diễn một đường mặt f của mặt phẳng (c,d) và mặt phẳng β . Ta vẽ f_1 song song x ,suy ra f_2 nhờ bài toán cơ bản đường thẳng thuộc mặt phẳng.

4.5.3-Đường dốc nhất đối với mặt phẳng hình chiếu bằng: Là đường thẳng thuộc mặt phẳng và có góc lớn nhất so với góc của các đường thẳng khác thuộc mặt phẳng đối với mặt phẳng hình chiếu bằng.

Đường dốc nhất nầy vuông góc với đường bằng của mặt phẳng nên góc vuông của chúng được bảo tồn ở hình chiếu bằng.

Hình-4.15a,b biểu diễn đường dốc nhất d của mặt phẳng (a,b) và mặt phẳng α (m_{α},n_{α}) .

4.5.4-Đường dốc nhất đối với mặt phẳng hình chiếu đứng: Là đường thẳng thuộc mặt phẳng và có góc lớn nhất so với góc của các đường thẳng khác thuộc mặt phẳng đối với mặt phẳng hình chiếu đứng.

Đường dốc nhất nầy vuông góc với đường mặt của mặt phẳng nên góc vuông của chúng được bảo tồn ở hình chiếu đứng.

Hình-4.16a,b biểu diễn đường dốc nhất d' của mặt phẳng (c,d) và mặt phẳng β (m_{β},n_{β}) .

*Chú ý: Một đường dốc nhất hoàn toàn xác định được một mặt phẳng.

4.6- MĂT PHẨNG SONG SONG:

Trong hình học không gian ta có định lý sau:

Định lý: Điều kiện cần và đủ để hai mặt phẳng song song nhau là trong mặt phẳng nầy có hai đường thẳng giao nhau tương ứng song song với hai đường thẳng giao nhau trong mặt phẳng kia.

Từ đó ta có thể biểu diễn hai mặt phẳng song song nhau.

Hình-4.17a biểu diễn hai mặt phẳng song (a,b) và (c,d), vì có c//a và d//b.

Hình-4.17b trình bày bài toán : Qua điểm A vẽ mặt phẳng β song song với mặt phẳng α đã cho. Dễ dàng thấy các vết $m_{\alpha}//m_{\alpha}$ và $n_{\beta}//n_{\alpha}$, đồng thời m β phải đi qua vết bằng của đường mặt f của mặt phẳng β .

Hình-4.17a

Hình-4.17b

4.7- ĐƯỞNG THẮNG VÀ MẶT PHẮNG SONG SONG:

-Trong hình học không gian ta có định lý sau:

Định lý: Điều kiện cần và đủ để một đường thắng song song với một mặt phẳng là đường thẳng đó song song với một đường thẳng của mặt phẳng.

Ví dụ: Qua điểm A vẽ đường thẳng d song song với mặt phẳng (a,b), đã biết d_2 . (H-4.18)

Giải: Trong mặt phẳng (a,b) vẽ một đường thẳng c sao cho c_2 song song d_2 . Ap dụng bài tóan cơ bản đường thẳng c thuộc mặt phẳng (a,b), có c_1 . Từ đó vẽ $d_1 \in A_1$ và song song c_1 .

Hình-4.18

PhầnII: CÁC PHƯƠNG PHÁP CƠ BẨN

Chương năm GIAO CỦA CÁC KHÔNG GIAN CON

5.1-GIAO CỦA HAI ĐƯỜNG THẮNG

Xem mục 3.5, chương 3, phần I.

5.2-GIAO CỦA HAI MẶT PHẮNG

5.2.1-Giao của một mặt phẳng và một mặt phẳng chiếu:

Nếu một trong hai mặt phẳng là mặt phẳng chiếu thì một hình chiếu của giao tuyến trùng với hình chiếu suy biến của mặt phẳng chiếu. Để xác định hình chiếu thứ hai của giao tuyến, áp dụng bài toán đường thẳng thuộc mặt phẳng còn lại.

Ví dụ: Vẽ giao tuyến của mặt phẳng chiếu đứng α và mặt phẳng (a,b). (H-1.1)

Giải: Gọi g là giao tuyến của hai mặt phẳng α và (a,b). Vì α vuông góc P_2 nên hình chiếu đứng của nó là đường thẳng α_2 . Do đó biết $g_2 \equiv \alpha_2$.

Đường thẳng g cũng là đường thẳng x của mặt phẳng (a,b), hình chiếu đứng g_2 đã biết ,nên dễ dàng suy ra g_1 theo bài toán cơ bản 1 trên mặt phẳng (a,b).

5.2.2-Giao của hai mặt phẳng bất kỳ:

Trong trường hợp tổng quát ,để tìm giao tuyến g của hai mặt phẳng α và β ta phải xác định hai điểm chung nào đó của giao tuyến bằng phương pháp phụ trợ. Nội dung của phương pháp nầy gồm ba bước như sau: (H-5.2)

-Dùng mặt phẳng phụ trợ ϕ là mặt phẳng chiếu cắt cả hai mặt phẳng α và β .

-Vẽ các giao tuyến phụ trợ

$$m = \varphi \times \alpha \text{ và } n = \varphi \times \beta.$$

-Vẽ giao điểm I của các giao tuyến phụ trợ m và n. Dễ dàng thấy rằng I là một điểm thuộc giao tuyến g của các mặt phẳng α và β cần tìm.

Tương tự , dùng một mặt phẳng phụ trợ thứ hai ϕ' ta sẽ tìm thêm một điểm J nào đó thuộc giao tuyến g.

I và J xác định giao tuyến g của α và β.

Ví dụ: Vẽ giao tuyến g của mặt phẳng (a,b) và mặt phẳng (c,d). (H-5.3) Giải:

-Dùng mặt phẳng phụ trợ là mặt phẳng chiếu đứng ϕ .Hình chiếu đứng của ϕ là đường thẳng ϕ_2 .

-Vẽ các giao tuyến phụ trợ (áp dụng trường hợp đặc biệt ở trên).

-
$$m = \varphi x (a,b)$$
; $m_2 \equiv \varphi_2$, suy ra m_1

$$-n = \varphi x (c,d)$$
 ; $n_2 \equiv \varphi_2$, suy ra n_1

-Vẽ giao điểm của hai giao tuyến phụ trợ:

$$I = m \times n$$
; $I_1 = m_1 \times n_1$, suy ra I_2 .

Tương tự ta dùng mặt phẳng phụ trợ thứ hai ϕ '. Để thuận lợi ta có thể dùng ϕ ' song song ϕ vì lúc đó các giao tuyến phụ trợ mới sẽ tương ứng song song với m và n. Ta được điểm thứ hai J của giao tuyến.

I và J xác định giao tuyến g cần tìm.

Hình-5.3

Nếu hai mặt phẳng α và β đều biểu diễn bằng vết thì việc vẽ giao tuyến của chúng rất đơn giản . Giao điểm của hai cặp vết trùng tên m_{α} , m_{β} và n_{α} , n_{β} cho ta hai điểm I, J của giao tuyến g cần tìm. (H-5.4)

Hình-5.4

5.3-GIAO CỦA ĐƯỜNG THẮNG VÀ MẶT PHẮNG

5.3.1-Giao của một đường thẳng và một mặt phẳng chiếu:

Trường hợp nầy một hình chiếu của giao điểm xem như đã biết, nó chính là giao giữa hình chiếu suy biến của mặt phẳng chiếu và hình chiếu cùng tên của đường thẳng. Để tìm hình chiếu còn lại, áp dụng bài toán điểm thuộc đường thẳng.

Ví dụ: Vẽ giao điểm A của đường thẳng d với mặt phẳng chiếu đứng $\alpha.(H-5.5)$

Giải: Vì α vuông góc P_2 nên biết $A_2 = d_2 \times \alpha_2$, dễ dàng suy ra $A_1 \in d_1$.

5.3.2-Giao của một đường thẳng chiếu và một mặt phẳng:

Trường hợp nầy một hình chiếu của giao điểm cũng xem như đã biết, nó trùng với hình chiếu suy biến của đường thẳng chiếu. Để tìm hình chiếu còn lại, áp dụng bài toán điểm thuộc mặt phẳng.

Ví dụ: Vẽ giao điểm I của đường thẳng chiếu bằng d và mặt phẳng (a,b). (H-5.6)

Giải: Vì d vuông góc P_1 nên biết $I_1 \equiv d_1$. Áp dụng bài toán điểm thuộc mặt phẳng (a,b) vẽ được I_2 .

5.3.3-Giao của một đường thẳng và một mặt phẳng bất kỳ - Qui ước thấy khuất trên hình chiếu:

Trường hợp cả đường thẳng và mặt phẳng đều cho ở vị trí bất kỳ, ta sử dụng phương pháp mặt phẳng phụ trợ để đi tìm giao điểm gồm ba bước như sau: (H-5.7)

- -Dùng mặt phẳng phụ trợ ϕ là mặt phẳng chiếu và chứa đường thẳng d.
- -Vẽ giao tuyến phụ trợ g của ϕ và $\alpha.$
- -Vẽ giao điểm I của giao tuyến phụ g và đường thẳng d.

Hình-5.7

Ví dụ: Vẽ giao điểm I của đường thẳng d và mặt phẳng A B C. (H-5.8)

Giải:

-Chọn mặt phẳng chiếu đứng ϕ thuộc đường thẳng d làm mặt phụ trợ: Vì ϕ vuông góc P_2 nên $\phi_2\equiv d_2.$

-Vẽ giao tuyến g của φ và mặt phẳng A B C theo trường hợp biết một giao tuyến : $g_2 \equiv \varphi_2$.

-Vẽ giao điểm I của g và d: Lấy $I_1 = g_1 \times d_1$, suy ra I_2 .

Qui ước về thấy khuất trên hình chiếu:

Sau khi vẽ giao điểm của đường thẳng và mặt phẳng (cũng như giao các yếu tố khác), để gây ấn tượng nổi, ta qui ước về thấy khuất như sau:

Mắt người quan sát đặt ở phía trước và phía trên các hình được quan sát, nhìn theo hướng chiếu của từng mặt phẳng hình chiếu. Do đó:

-Hai điểm cùng tia chiếu bằng , điểm nào cao hơn sẽ được thấy trên hình chiếu bằng.

-Hai điểm cùng tia chiếu đứng , điểm nào xa hơn sẽ được thấy trên hình chiếu đừng.

Mặt phẳng được xem như không trong suốt.

Ap dụng qui ước thấy khuất: Trên hình-5.9, J cao hơn K nên J_1 thấy . L xa hơn M nên L_2 thấy . Phần đường thẳng bị che khuất được vẽ bằng nét đứt.

5.4-GIAO CỦA BA MẶT PHẮNG :

Cho ba mặt phẳng α , β , γ . Giao tuyến của hai mặt phẳng α và β là một đường thẳng d; đường thẳng này cắt mặt phẳng thứ ba γ tại một điểm O gọi là điểm chung của ba mặt phẳng. Những giao tuyến của ba mặt phẳng ,từng đôi một sẽ đi qua điểm O. Việc xét thấy khuất sẽ tuân theo hai dấu hiệu như sau:

-Thấy khuất của một giao tuyến của hai mặt phẳng nào đó phải được so sánh thêm với mặt phẳng thứ ba.

-Thấy khuất của một đường thẳng thuộc một mặt phẳng nào đó phải

được so sánh với hai mặt phẳng còn lại.

ÚNG DỤNG: Qua điểm M vẽ một đường thẳng cắt cả hai đường thẳng đã cho a,b.

Giải: Đường thẳng đã cho xác định bởi giao tuyến của hai mặt phẳng (M,a) và (M,b). (H-5.10) Để tìm điểm thứ hai thuộc giao tuyến, ta có thể tìm giao điểm của đường thẳng a với mặt phẳng (M,b).

Hình-5.10

Trên hình vẽ mặt phẳng (M,b) đã chuyển thành (b,b') ,sử dụng mặt phẳng phụ trợ chiếu đứng $\phi \equiv a \;\; ta$ để dàng tìm được tìm điểm N. Đường thẳng cần dựng xác định bởi hai điểm M,N sẽ cắt b tại một điểm L

Chương sáu : CÁC BÀI TOÁN VỀ LƯỢNG

6.1-KHOẢNG CÁCH GIỮA HAI ĐIỂM

Giả sử có đoạn thẳng AB được biểu diễn bằng các hình chiếu bằng A1B1 . Xác định độ dài của AB theo các hình chiếu ấy.(H-6.1)

Vẽ AC // A_1B_1 . Ta có AC= A_1B_1 ; BC bằng hiệu độ cao của A và B; AB là cạnh huyền của tam giác vuông ABC với các cạnh góc vuông như trên. Góc của AB và AC là góc của AB với A_1B_1 , tức là góc của AB với P_1 .

Vậy trên đồ thức , muốn vẽ độ lớn của AB và góc α của AB với P_1 , ta vẽ như hình học phẳng một tam giác vuông với một cạnh góc vuông bằng A_1B_1 , và cạnh kia bằng hiệu độ cao của AB. Cạnh huyền của tam giác vừa vẽ là độ lớn của AB. Góc nhọn ứng với A_1B_1 là góc của AB đối với P_1 . Phương pháp trên còn gọi là *phương pháp tam giác*. (H-5.2) Với phương pháp tam giác ta dễ dàng xác định hai yếu tố khi biết hai yếu tố còn lại.

Tương tự, ta cũng có một tam giác vuông trên hình chiếu đứng và có thể vẽ được độ lớn AB là cạnh huyền của một tam giác vuông có cạnh góc vuông là hình chiếu đứng A_2B_2 , cạnh kia bằng hiệu độ xa của AB. Với tam giác nầy ta có góc nghiêng β của AB với P_2 .

Ví dụ: Xác định độ dài của đoạn thẳng cạnh AB. (H-6.3)

Hiệu độ xa của AB là A_1B_1 . Cạnh huyền của một tam giác vuông mà một cạnh là A_2B_2 , cạnh thứ hai là A_2A_0 dài bằng A_1B_1 cho ta độ dài của AB.(Dĩ nhiên có thể xác định độ dài của AB bằng cách vẽ tam giác vuông $B_1A_1A_{00}$ trên hình chiếu bằng, ở đấy $B_1A_{00}=A_2B_2$.)

*Biết cách xác định độ dài của một đoạn thẳng ta có thể xác định diện tích của một tam giác, một đa giác và do đó của một hình phẳng nói chung.

6.2-ĐƯỜNG THẮNG VUÔNG GÓC VỚI MẶT PHẮNG:

Dựa vào định lý về hình chiếu góc vuông và định lý về đường thẳng vuông góc mặt phẳng trong hình chiếu vuông góc, ta có định lý trên đồ thức:

Điều kiện cần và đủ để một đường ^x thẳng vuông góc với một mặt phẳng là hình chiếu bằng đường thẳng vuông góc với hình chiếu bằng đường bằng mặt phẳng và hình chiếu đứng đường thẳng vuông góc với hình chiếu đứng đường thẳng vuông mặt của mặt phẳng.

Hình-6.4

Thật vậy, nêú đường thẳng d vuông góc với mặt phẳng α thì d vuông góc với tất cả các đường thẳng của mặt phẳng α trong đó có đường bằng h và đường mặt f của nó.

Theo điều kiện về hình chiếu góc vuông thành góc vuông : $d_1 \perp h_1$ và $d_2 \perp f_2$. Ngược lại nếu $d_1 \perp h_1$ và $d_2 \perp f_2$ thì $d \perp h$ và $d \perp f$ là hai đường thẳng cắt nhau nên $d \perp \alpha$. Trên hình-6.4 : Đường thẳng d vuông góc với mặt phẳng α .

6.3-KHOẢNG CÁCH TỪ MỘT ĐIỂM ĐẾN MỘT ĐƯỜNG THẮNG:

Giả sử cần xác định khoảng cách từ điểm A đến đường thẳng d, ta có các phương án như sau:

-Qua A vẽ một mặt phẳng α (h,f) vuông góc với đường thẳng d. (H-6.5) Sử dụng điều kiện vuông góc ở 6.2, ta có $h_1 \perp d_1$ và $f_2 \perp d_2$. Tìm giao điểm I của mặt phẳng α với đường thẳng d nhờ phương pháp mặt phẳng phụ trợ đã được khảo sát. Cuối cùng dùng phương pháp tam giác xác định độ lớn thật của đoạn thẳng AI.

-Cũng có thể sử dụng các phương pháp biến đổi hình chiếu để đưa mặt phẳng (A,d) trở thành song song hay trùng với các mặt phẳng hình chiếu. Trên hình 2.16 đã sử dụng phép quay quanh đường bằng để tìm khoảng cách từ A đến d.

6.4-KHOẢNG CÁCH TỪ MỘT ĐIỂM ĐẾN MỘT MẶT PHẨNG:

Phương pháp tổng quát để tìm khoảng cách từ một điiểm đến một mặt phẳng là: Qua điểm vẽ một đường thẳng vuông góc với mặt phẳng ; Tìm giao điểm của đường thẳng vừa vẽ với mặt phẳng ; Dùng phương pháp tam giác xác định độ lớn thật của đoạn vuông góc.(H-6.6)

-Trường hợp mặt phẳng là mặt phẳng chiếu thì đoạn vuông góc sẽ là đọan thẳng song song với mặt phẳng hình chiếu, nên độ lớn thật thể hiện ngay

trên hình chiếu. Trên hình 6.7, Mặt phẳng đã cho là chiếu đứng và khoảng cách cần tìm thể hiện ngay trên hình chiếu đứng.

-Hình 6.8, thể hiện các bước tìm khoảng cách từ điểm A đến mặt phẳng biểu diễn bằng vết $\alpha(m_\alpha,n_\alpha)$:

-Qua A vẽ d vuông góc $\alpha: d_1 \perp m_\alpha$; $d_2 \perp n_\alpha$.

- -Sử dụng mặt phẳng phụ trợ ϕ là chiếu đứng, chứa d: $\phi_2 \equiv d_2 \equiv g_2$, suy ra g_1 và tìm được $I_1 = d_1 \times g_1$, đưa lên hình chiếu đứng có d_2 .
- -Sử dụng phương pháp tam giác , có khoảng cách cân tìm $AI = A_{\scriptscriptstyle 1}I_{\scriptscriptstyle 0}.$

Thường người ta có thể sử dụng các phép biến đổi hình chiếu để đưa bài toán về trường hợp đặc biệt. Đưa mặt phẳng về vị trí mặt phẳng chiếu.(xem chương 7)

Chương bảy: CÁC PHÉP BIẾN ĐỔI HÌNH CHIẾU CƠ BẢN

Khi tìm độ lớn của một đoạn đường bằng ta thấy ngay độ lớn của nó ở hình chiếu bằng. Khi vẽ giao điểm của một đường thắng và một mặt phẳng chiếu, ta biết một hình chiếu của nó và vẽ hình chiếu thứ hai khá dễ dàng. Sở dĩ được như thế vì các yếu tố đã cho ở vị trí đặc biệt, phù hợp với yêu cầu bài toán.

Trong hình học họa hình ,người ta sử dụng các phép biến đổi hình chiếu để biến những hình chiếu đã cho thành những hình chiếu mới , giúp ta giải quyết bài toán dễ dàng hơn.

Muốn cho một hình Φ có vị trí bất kỳ trở thành có vị trí đặc biệt ta có thể làm theo hai cách sau:

-Giữ nguyên hình Φ , thay hệ thống mặt phẳng hình chiếu cũ bằng một hệ thống mặt phẳng hình chiếu mới sao cho đối với hệ thống mặt phẳng hình chiếu nầy hình Φ có vị trí đặc biệt.

-Giữ nguyên hệ thống mặt phẳng hình chiếu, thay đổi vị trí của Φ sao cho ở vị trí mới hình Φ có vị trí đặc biệt đối với hệ thống mặt phẳng hình chiếu.

7.1-PHUONG PHÁP THAY ĐỔI MẶT PHẮNG HÌNH CHIẾU

7.1.1-Thay đổi mặt phẳng hình chiếu đứng:

Thay đổi mặt phẳng hình chiếu đứng P_2 là dùng mặt phẳng P'_2 vuông góc với mặt phẳng hình chiếu bằng P_1 , làm mặt phẳng hình chiếu đứng mới.(H-7.1)

Nhận xét: Xét một điểm A với các hình chiếu A₁,A₂,A'₂: (H-7.1b)

-Hình chiếu bằng A_1 không thay đổi.

-Độ cao của A trong hệ thống mới và cũ bằng nhau $\overline{A_x A_2} = \overline{A_x' A'_2}$.

Qui ước: Trên hình -7.1b, ở trục x' ghi chữ P1 về phía độ xa dương, chữ P'₂ về phía có độ cao dương của điểm A.

Ví dụ 1: Thay đổi mặt phẳng hình chiếu đứng mới sao cho đường thẳng AB trở thành đường mặt trong hệ thống mới. (H-7.2)

Giải: Nếu AB là đường mặt thì hình chiếu bằng A_1B_1 phải song song với trục hình chiếu mới x'. Vậy ta dùng mặt phẳng hình chiếu đứng mới P' $_2$ sao cho A_1B_1 // x'. Độ cao của A và B không thay đổi nên ta dễ dàng vẽ được A' $_2$ và B' $_2$.

Có thể dùng phương pháp vừa vẽ để tìm độ lớn của AB vì dễ thấy A'2B'2

Ví dụ 2: Thay đổi mặt phẳng hình chiếu đứng sao cho mặt phẳng ABC trở thành mặt phẳng chiếu đứng trong hệ thống mặt phẳng hình chiếu mới. (H-7.3)

Giải: Mặt phẳng hình chiếu đứng mới P'_2 phải vuông góc đồng thời với cả hai mặt phẳng P_1 và ABC nên nó phải vuông góc với đường bằng của ABC. Vậy ta vẽ một đường bằng của mặt phẳng ABC, chẳng hạn AD. Muốn AD trở thành vuông góc với P'_2 (đường thẳng chiếu đứng) thì A_1D_1 phải vuông góc với trục x'.

Hình chiếu đứng mới của AD là $A'_2 \equiv D'_2$ và hình chiếu đứng mới của mặt phẳng ABC là đường thẳng $B'_2A'_2C'_2$.

Có thể dùng bài toán trên để tìm góc của một mặt phẳng đối với mặt phẳng hình chiếu bằng hoặc vẽ giao điểm của đường thẳng và mặt phẳng.

7.1.2-Thay đổi mặt phẳng hình chiếu bằng:

Thay đổi mặt phẳng hình chiếu bằng P_1 là dùng mặt phẳng P'_1 vuông góc với mặt phẳng hình chiếu bằng P_2 , làm mặt phẳng hình chiếu bằng mới.(H-7.4) Nhận xét: Xét một điểm A với các hình chiếu A_1, A_2, A'_1 : (H-7.4b)

-Hình chiếu đứng A_2 không thay đổi.

-Độ xa của A trong hệ thống mới và cũ bằng nhau $\overline{A_x A_I} = \overline{A_x' A'_I}$.

Qui ước: Trên hình -7.4b, ở trục x' ghi chữ P_2 về phía độ cao dương, chữ P'_1 về phía có đô xa dương của điểm A.

Ví dụ 3: Thay đổi mặt phẳng hình chiếu bằng để cho đường mặt AB trở thành đường thẳng chiếu bằng trong hệ thống mới.(H-7.5)

Giải : Nếu AB đã trở thành một đường thẳng vuông góc với mặt phẳng hình chiếu bằng mới P'_1 thì A_2B_2 vuông góc với x'. Vậy ta thay P_1 thành P'_1 sao cho $A_2B_2 \perp$ x' rồi suy ra $A'_1 \equiv B'_1$.

Từ ví dụ nầy cũng như ví dụ 2 (H-7.4) ở trên,ta có thể chuyển một đường mặt thành đường thẳng chiếu bằng và đường bằng thành đường thẳng chiếu đứng bởi một lần thay mặt phẳng hình chiếu.

Ví dụ 4: Cho mặt phẳng chiếu đứng ABC. Thay đổi mặt phẳng hình chiếu bằng để mặt phẳng ABC trở thành mặt phẳng bằng trong hệ thống mới. (H-7.6)

Giải : Muốn cho mặt phẳng ABC song song với mặt phẳng hình chiếu bằng mới P'_1 thì trục hình chiếu mới x' phải song song với $A_2B_2C_2$.

Từ đó vẽ được $A'_1B'_1C'_1$ và dễ thấy : $\widehat{A'_1B'_1C'_1} = \widehat{ABC}$

7.1.3-Thay đổi liên tiếp hai mặt phẳng hình chiếu:

Khi cần thiết ta thay đổi liên tiếp hai mặt phẳng hình chiếu để có một hệ hai mặt phẳng hình chiếu mới. Vì vậy vấn đề chỉ là thực hiện liên tiếp các phép thay đổi mặt phẳng hình chiếu đứng và mặt phẳng hình chiếu bằng đã trình bày ở trên. Chẳng hạn, ta thay P_2 , được hệ thống P_1 - P'_2 ; Tiếp đo lấy P_1 - P'_2 làm gốc, thay P_1 để có một hệ thống hoàn toàn mới P'_1 - P'_2 .

Hình 7-7 trình bày cách vẽ các hình chiếu của một điểm A khi thay đổi các mặt phẳng hình chiếu theo trình tự trên.

Chú ý : Khi vẽ A'_{1} , lấy độ xa A_{x} " $A'_{1} = A_{x}$ ' A_{1} chứ không phải $A_{x}A_{1}$.

Ví dụ :Tìm khoảng cách từ điểm A đến đường thẳng BC. (H-7.8)

Giải: Gọi AH là khoảng cách từ A đến BC. Muốn có được độ lớn của AH trên hình chiếu, ta biến đổi hình chiếu sao cho BC vuông góc với mặt phẳng hình chiếu. Lúc đó AH song song với mặt phẳng hình chiếu vừa nói và dễ dàng vẽ được hình chiếu mới của AH.

Hình-7.7 Hình-7.8

Vậy ta có các bước giải như sau:

- -Thay đổi P₂ thành P'₂ để đưa BC // P'₂.
- -Thay đổi P_1 thành P'_1 để đưa BC $\perp P'_1$.

(Cách vẽ như các ví dụ ở trên)

Trên hình chiếu bằng mới, ta có $A'_1H'_1 = AH$.

Để vẽ các hình chiếu cũ của H, ta vẽ $A'_2H'_2 \perp B'_2C'_2$ vì góc vuông đỉnh H có cạnh BC // P'_2 ; hoặc hiểu cách khác, trong hệ thống mới AH là đường bằng (hình chiếu bằng thể hiện độ lớn thật đoạn thẳng) nên vẽ $A'_2H'_2$ // x". Từ H'_2 , suy ra H_1 rồi H_2 .

7.2-PHÉP QUAY QUANH ĐƯỜNG THẮNG CHIẾU BẰNG:

Phép quay quanh đường thẳng chiếu bằng t là một phép dời hình, trong đó:

- -Mỗi điểm A ứng với một điểm A' trong một mặt phẳng vuông góc với t. (H-7.9)
 - -Khoảng cách từ A và A' đến t bằng nhau : OA = OA'.
 - $-G\'{o}c$ $(\overrightarrow{OA},\overrightarrow{OA}') = \alpha$ có hướng cho trước

Ta gọi t là trục quay và OA là bán kính quay.

Nhân xét :

- -Hình chiếu đứng các đường thắng nối các điểm tương ứng song song với truc hình chiếu x.
 - -Hình chiếu bằng của góc $(\overrightarrow{OA}, \overrightarrow{OA}')$ bằng chính nó.

*Dễ thấy trên hình chiếu bằng ,phép quay quanh đường thẳng chiếu bằng thể hiện như phép quay quanh một điểm trong hình học phẳng.

7.3-PHÉP QUAY QUANH ĐƯỜNG THẮNG CHIẾU ĐỨNG:

Ta có định nghĩa và tính chất của phép quay quanh đường thẳng chiếu đứng tương tự như mục 7.2 . Hình -7.10 thể hiện điểm B quay quanh trục t vuông góc P_2 đến vị trí mới M' góc quay α .

7.4-PHÉP QUAY QUANH ĐƯỜNG BẰNG:

Đây là phép quay quanh trục và trục xoay là một đường bằng.

Ta xét một điểm M quay quanh đường bằng h đến vị trí M' cùng độ cao với h (H-7.11).

 $+M_1M_1'$ vuông góc với h_1 vì mặt phẳng các bán kính quay OM.OM' vuông góc với h.

 $+O_1M_1=OM$ vì OM đã song song với P_1 . Từ đó muốn vẽ điểm M'_1 ta tiến hành như sau:

-Vẽ độ lớn của bán kính quay OM. Trên hình vẽ ta dùng phương pháp tam giác $O_1M_0 = OM$.

-Đặt trên đường thẳng O_1M_1 ($\perp h_1$) đoạn $O_1M'_1 = O_1M_0$ (ta có M'_1 hoặc M''_1).

Ví dụ ứng dụng: Tìm độ lớn của tam giác ABC bằng phép quay quanh đường bằng. (H-7.12)

Giải: Vẽ một đường bằng của tam giác ABC, chẳng hạn AD. Quay điểm B hoặc C quanh AD đến cùng độ cao với AD. Vị trí mới của C là C'. Từ đó suy ra vị trí mới B' của B. Chú ý rằng điểm D nằm trên trục quay nên không thay

đổi vị trí, $B_1B'_1$ vuông góc với h_1 . Trên hình-7.12 $A'_1B'_1C'_1=ABC$ vì ABC đã song song với P_1 .

Hình-7.11 Hình-7.12

7.5-PHÉP QUAY QUANH ĐƯỜNG MẶT:

Tương tự như mục 7.4 ta quay mặt phẳng đến song song với P_2 với trục quay là đường mặt của mặt phẳng.

7.6-PHÉP GẬP MẶT PHẨNG QUANH CÁC VẾT:

7.6.1-Phép gập mặt phẳng quanh vết bằng:

Phép gập mặt phẳng quanh vết bằng là phép quay mặt phẳng quanh vết bằng của nó đưa nó đến trùng với mặt phẳng hình chiếu bằng.

Ta xét một điểm N gập quanh vết bằng mα đến vị trí N' thuộc mặt phẳng P1 hay có độ cao bằng không: (H-7.13)

-N1N'1 vuông góc với mα vì mặt phẳng các bán kính quay ON, ON' vuông góc với mα.

- -Sau khi gập đoạn $X_{\alpha}N'$ bằng thực nên đặt $X_{\alpha}N' = X_{\alpha}N$.
- $-X_{\alpha}N'$ là vị trí gập của vết đứng n'_{α} .

Trên hình 7.13 có vẽ vị trí gập của điểm A thuộc mặt phẳng bằng cách gắn A vào đường thẳng MN của mặt phẳng.

Ví dụ: Vẽ trong mặt phẳng α (m_{α} , n_{α}) một tam giác đều ABC. Cạnh AB của tam giác đã cho. (H-7.14)

Giải: Để xác định đỉnh C ta gập mặt phẳng α chẳng hạn vào mặt phẳng P_1 . Việc gập được thực hiện bằng cách quay một điểm N thuộc vết đứng của α như vừa trình bày ở hình 7.13. Vết đứng n_{α} của mặt phẳng gập thành $n'_{1\alpha} \equiv X_{\alpha}N'$. Hình gập của AB là $A'_1B'_1$, vẽ được bằng cách gắn nó lên đường thẳng IK.Vì $I \in n_{\alpha}$

Nên I' thuộc n' α ; $K \in m\alpha$ nên $K \equiv K'$. Với $A'_1B'_1$ làm cạnh, vẽ tam giác đều $A'_1B'_1C'_1$. $A'_1B'_1C'_1$ chính là hình gập của tam giác ABC cần vẽ. Sau đó theo C'_1 xác định C_1 và C_2 .

7.6.2-Phép gập mặt phẳng quanh vết đứng:

Hoàn toàn tương tự như phép gập mặt phẳng quanh vết bằng.

PhầnIII: ĐƯỜNG VÀ MẶT- CÁC BÀI TOÁN VỀ GIAO

Chương tám: BIỂU DIỄN ĐƯỜNG VÀ MẶT

8.1-CÁC HÌNH PHẨNG CỔ ĐIỂN:

8.1.1-Tam giác :

Để biểu diễn đồ thức của một tam giác bất kỳ, ta cho đồ thức của ba điểm bất kỳ là ba đính của tam giác.

Để biểu diễn đồ thức của một tam giác đã được xác định kích thước , hình dạng thuộc một mặt phẳng nào đó, ta sử dụng phép gập quanh mặt phẳng đưa mặt phẳng đã cho về trùng với mặt phẳng hình chiếu. Trên hình-7.14, mục 7.6.1 , đã trình bày việc sử dụng phép gập quanh vết bằng để dựng một tam giác đều , cạnh a thuộc mặt phẳng α (m_{α} , n_{α}).

8.1.2-Hình bình hành, hình thơi:

Do phép chiếu vuông góc bảo tồn tính song song và tỷ số đơn của ba điểm thắng hàng, nên ta có các hình chiếu của một hình hành là các hình bình hành. Trên hình-8.1, biểu diễn một hình bình hành ABCD.

Trường hợp hai đường chéo của hình bình hành thỏa mãn vuông góc trong không gian, thì hình bình hành trở thành hình thoi. Hình-8.2, biểu diễn một hình thoi có đường chéo AC là đường bằng.

8.1.2-Hình chữ nhật, hình vuông:

Để biểu diễn một hình chữ nhật ,ta nên chọn một trong hai cặp cạnh song song với mặt phẳng hình chiếu . Khi đó góc vuông trên hình chiếu tương ứng được bảo tồn. Hình-8.3, biểu diễn một hình chữ nhật có cặp cạnh là đường bằng.

Trong trường hợp cần biểu diễn một hình chữ nhật có kích thước cho trước hay một hình vuông có cạnh cho trước, phương án tốt nhất là sử dụng phép gập đưa mặt phẳng đã cho về trùng với mặt phẳng hình chiếu. Hình-8.4, biểu diễn một hình vuông ABCD.

8.2-ĐƯỜNG CONG:

8.2.1-Khái niệm:

Đường cong hình học có thể xem như là quĩ tích của một điểm chuyển động theo một qui luật nào đó. Những đường cong phẳng hay gặp là những đường bậc 2 như đường tròn , elip , parabol , hyperbol. Có thể nói elip , parabol , hyperbol là những đường cong bậc 2 lần lượt không có điểm vô tận, có một điểm vô tận, có hai điểm vô tận. Đường tròn được xem như elip đặc biệt có hai trục bằng nhau.

8.2.1-Hình chiếu của một đường cong:

Các tính chất:

1/ Hình chiếu xuyên tâm hay song song của tiếp tuyến của đường cong tại một điểm nói chung là tiếp tuyến của hình chiếu đường cong tại hình chiếu điểm đó.

(H-8.5)

2/ Hình chiếu của đường cong đại số bậc n ,nói chung là một đường cong đại số bậc n.

3/Hình chiếu vuông góc của đường cong đại số bậc n lên mặt phẳng đối xứng của nó là một đường cong phẳng đại số có bậc n/2.

*Chú ý rằng hình chiếu của elip, parabol, hyperbol lần lượt là elip, parabol, hyperbol.

Hình-8.5

Khi vẽ chúng ta cần quan tâm đến các trục đối xứng hoặc hình chiếu trục đối xứng của chúng. Hình chiếu song song của cặp đường kính liên hợp của elip là cặp đường kính liên hợp của nó. Riêng đường tròn ta phải khảo sát thêm dưới đây.

8.2.2 Đường tròn:

Hình chiếu vuông góc của đường tròn nói chung là một elip. Với trục dài là hình chiếu của đường kính đường tròn song song với mặt phẳng hình chiếu tương ứng. Do đó trục dài của elip bằng đường kính của đường tròn được chiếu. Cặp đường kính liên hợp của đường tròn là cặp đường kính vuông góc nhau.

Ví dụ: Hãy vẽ hình chiếu của đường tròn tâm O, bán kính R thuộc mặt phẳng α vuông góc P_2 .

Giải: Hình chiếu đứng của đường tròn tâm O, bán kính R là đoạn thẳng $C_2D_2=2R$ và $C_2D_2\in\alpha_2$. Có thể xem đây là một elip với trục dài C_2D_2 và trục ngắn bằng 0.

Hình chiếu bằng đường tròn là elip, tâm O_1 , trục dài $A_1B_1=2R$, hình chiếu của đường kính AB song song mặt phẳng hình chiếu bằng P_1 . Trục ngắn là C_1D_1 vuông góc A_1B_1 .

Ví dụ: Hãy vẽ hình chiếu của đường tròn tâm O, bán kính R thuộc mặt phẳng α (h,f).

Giải: Trên hình-8.7 vẽ hình chiếu đứng và hình chiếu bằng của một

Đường tròn nằm trong mặt phẳng α (h,f). Tâm O và bán kính r là những yếu tố đã cho. Hình chiếu bằng và hình chiếu đứng của đường tròn được biểu diễn là các elip. Elip hình chiếu bằng có trục dài song song với h và bằng 2 r. Elip hình chiếu đứng có truc dài song song f và bằng 2 r . Để xác định các truc ngắn của các ellip đó ta gâp mặt phẳng đến trùng P₁. Hình chiếu bằng của đường tròn sau khi gập là đường v', và dưa vào đường tròn nầy ta suy ra trục ngắn của các ellip hình chiếu. Trên hình vẽ cũng chỉ rõ cách vẽ hình f, chiếu bằng một điểm M bất kỳ của đường tròn.

8.3-CÁC ĐA DIỆN TRONG KHÔNG GIAN:

8.3.1-Các khái niệm và qui tắc biểu diễn:

Đa diện là một mặt kín tạo thành bởi các đa giác phẳng gắn liền với nhau bởi các cạnh (H-8.8). Các đa giác tạo thành đa diện gọi là các mặt của đa diện. Các cạnh và các đỉnh của đa giác gọi là các cạnh và các đỉnh của đa diện. Nhiều khi người ta cũng gọi vật thể giới hạn bởi các mặt của đa diện là đa diện. Để tránh nhầm lẫn ta thống nhất đa diện là một mặt. Như vậy các mặt hình tháp, hình lăng trụlà các đa diện đặc biệt.

Hình-8.8

Để biểu diễn một đa diện ta chỉ cần biểu diễn các cạnh hoặc các đỉnh của đa diện đó. Chú ý các cạnh nằm bên trong các đường bao trên hai hình chiếu phải được xét thấy khuất.

8.3.2-Biểu diễn tử diện:

Hình-8.9 biểu diễn một tứ diện SABC. Trên hình chiếu đứng đường gẫy khúc kín $S_2A_2B_2C_2$ là đường bao quanh hình chiếu đứng, trên hình chiếu bằng đường gẫy khúc kín $S_1B_1A_1C_1$ là đường bao quanh hình chiếu bằng .

Các cạnh S_1A_1 , B_1C_1 ở hình chiếu bằng và S_2B_2 , A_2C_2 ở hình chiếu đứng được xét thấy khuất nhờ các điểm cùng tia chiếu đứng và cùng tia chiếu bằng như đã biết.

Giả sử biết M_2 của điểm M thuộc tứ diện, hãy vẽ M_1 . Dễ thấy có hai điểm M mà các hình chiếu đứng của chúng trùng nhau , một mặt thuộc SAB, một mặt thuộc SAC. Áp dụng bài toán cơ bản thuộc các mặt phẳng trên, ta vẽ đường SM chẳng hạn. Ở hình chiếu bằng thấy rõ hai điểm M_1 và M'_1 .

8.3.3-Biểu diễn mặt tháp:

Biểu diễn một mặt tháp khi biết mặt phẳng đáy, chiều cao và các chân. Hình-1.8 cho ví dụ về việc biểu diễn một mặt tháp mà mặt đáy xác định bởi hình vuông có tâm là O và một cạnh nằm trên đường bằng h.

Để xây dựng hình vuông ta có thể sử dụng các phép biến đổi đã biết , như phép gập đã nói ở các phần trên. Ở đây sẽ sử dụng phương pháp thay đổi mặt phẳng hình chiếu đứng đưa mặt phẳng đáy trở thành chiếu đứng khi chọn trục x' vuông góc với hình chiếu bằng đường bằng h₁.Cách dựng các cạnh của hình vuông, đỉnh của mặt tháp và việc xác định các hình chiếu ban đầu của các điểm S,A,B,C,D được chỉ rõ trên hình-8.10. Hình vẽ cũng trình bày một điểm M thuộc mặt tháp.

8.3.4-Biểu diễn mặt lăng trụ:

Hình-8.10

n Hoàn toàn tương tự như đối với mặt tháp. Hình-8.11 trình bày cách dựng một mặt lăng trụ biết đáy ABC thuộc mặt phẳng P_1 và một cạnh CD , đồng thời lăng trụ này có mặt đáy thứ hai DEF vuông góc với các cạnh. Phương pháp sử dụng đơn giản là đưa các cạnh của lăng trụ thành đường mặt nhờ phép thay đổi mặt phẳng hình chiếu đứng mới. Hình vẽ cũng chỉ rõ các hình chiếu của một điểm M thuộc lăng tru đã cho.

8.4-BIỂU DIỄN MẶT CONG:

Hình-8.11

8.4.1-Các khái niệm và qui tắc biểu diễn:

Ta có thể xem mặt cong là quĩ tích của một đường chuyển động theo một qui luật hình học nhất định. Đường chuyển động gọi là đường sinh . Đường sinh có thể là đường thẳng hoặc đường cong và có thể biến dạng trong quá trình hình thành mặt.

Nếu đường sinh là đường thẳng thì mặt tạo thành gọi là mặt kẽ. Có loại mặt kẻ khai triển được và mặt kẽ không khai triển được.

Những mặt hình học thường gặp là: Mặt nón ,mặt trụ , mặt cầu, elipsoit, hypebolit, paraboloit , mặt xuyến , mặt xoắn

Biểu diễn một mặt là biểu diễn một số thành phần của mặt đủ xác định mặt đó. Để dễ hình dung ta thường biểu diễn mặt bằng đường bao hình chiếu và đường chuyển tiếp của mặt trên hình chiếu.

8.4.1-Mặt nón:

Mặt nón là mặt tạo thành bởi đường thẳng chuyển động đi qua một điểm cố định gọi là đính của mặt nón và tựa trên một đường cong gọi là đường chuẩn của nón.

Hình 8.12 biểu diễn một phần của mặt nón bậc 2 giới hạn từ đính S đến đường chuẩn bậc 2 (c). Cũng có thể xem (c) là hình phẳng làm thành đáy nón. Phần thấy khuất như hình vẽ. Trên hình chiếu đứng m_2 , n_2 là các đường sinh bao. Ở hình chiếu bằng ta không vẽ m_1 , n_1 vì chúng là đường sinh bình thường. Đường bao của hình chiếu bằng là p_1 và q_1 , hình chiếu của p, q khác m, n.

Trong tài liệu nây chỉ nghiên cứu nón bậc 2, cho nên khi nói mặt nón ta hiểu là nón bâc 2.

Giả sử biết M_2 của điểm M thuộc nón, hãy vẽ điểm M_1 .

Dễ thấy có hai điểm M mà $M_2\equiv M'_2$. Ta vẽ các đường sinh SM và SM' tức là $S_2M_2\equiv S_2M'_2$. Ở hình chiếu thấy rõ hai nghiệm M_1 và M'_1 . Theo hình đã cho M_1 khuất vì S_1A_1 khuất và M'_1 thấy vì S_1B_1 thấy; M_2 thấy vì S_2A_2 thấy và M'_2 khuất vì S_2B_2 khuất.

Hình-8.13 biểu diễn mặt nón tròn xoay, trục vuông góc với P_1 . Trường hợp này nón là nón là nón tròn xoay, vậy để vẽ một điểm thuộc nón ta có thể gắn điểm đó vào một đường sinh hoặc đường bậc 2 thuộc mặt phẳng song song với mặt phẳng của đường chuẩn đi qua điểm đó. S_2

8.4.2-Mặt trụ:

Mặt trụ là mặt kẽ khai triển được. Có thể xem mặt trụ là mặt nón với đính ở vô tận. Hình-8.14 biểu diễn một mặt trụ bậc 2 bằng các đường sinh bao của các

hình chiếu và đường chuỗn (c) là đường bậc 2 mà hình chiếu bằng là đường tròn , hình chiếu đứng là đoạn thẳng .Giả sử biết hình chiếu đứng M_2 của điểm M thuộc mặt trụ, hãy vẽ M_1 . Tương tự như trên mặt nón ta vẽ qua M đường sinh hoặc đường bậc 2, (c') thuộc mặt phẳng song song với mặt phẳng của (c) .Sau khi xác định tâm I của (c') , vẽ (c' $_1$) tâm I_1 tiếp xúc với các đường bao với hình chiếu bằng của mặt trụ.

8.4.3-Mặt cầu:

Mặt cầu là mặt bậc 2 và là mặt tròn xoay . Hình-8.15 biểu diễn mặt cầu tâm O bán kính R. Các hình chiếu của mặt cầu là các đường tròn tâm O_1 , O_2 bán kính R; đường tròn (a_2) là hình chiếu đứng của đường tròn lớn (a) thuộc mặt phẳng song song với P_2 , đường tròn (b_1) là hình chiếu đứng của đường tròn xích đạo (b). Những điểm thuộc nửa trên của mặt cầu được thấy ở hình chiếu bằng. Những điểm thuộc nửa trước của mặt cầu được thất ở hình chiếu đứng. Giả sử biết M_2 của điểm M thuộc mặt cầu , hãy vẽ M_1 .

Qua M, ta vẽ đường tròn thuộc mặt phẳng song song với P_1 (hoặc với P_2) để vẽ hình chiếu của nó là đường thẳng hoặc đường tròn ở hình chiếu còn lai.

8.4.4-Mặt xuyến:

Mặt xuyến là mặt tròn xoay bậc 4 ,tạo thành bởi một đường tròn quay quanh một trục thuộc mặt phẳng của đường tròn nhưng không qua tâm.

Nếu trục không cắt đường tròn ta có xuyến hở, nếu trục cắt đường tròn ta có xuyến kín. Mặt xuyến thường biểu diễn ở vị trí đặc biệt, trục tròn xoay thường chọn vuông góc với mặt phẳng hình chiếu, lúc đó các đường bao hình

chiếu vẽ được dễ dàng. Hình-8.16, biểu diễn một mặt xuyến với trục t là đường thẳng chiếu đứng. Hình chiếu đứng: a2 và b₂ là hình chiếu của các đường tròn vĩ tuyến sinh ra do điểm thuộc đương tròn sinh (c), cách xa truc T nhất. Hai vĩ tuyến a và b thuộc mặt phẳng đối xứng của mặt xuyến vuông góc với trục t. Hình chiếu bằng: c₁ và c'₁ là hình chiếu của đường tròn sinh (c) ở vị trí thuộc mặt phảng qua trục t và song song với P₁, d₁ là hình chiếu của đường tròn vĩ tuyến có đường bằng trung bình cong các đường kính của a và b , d_2 trùng với hình chiếu đứng của $_{c_1}$ đường tròn quĩ tích tâm của (c). Những điểm thuộc nửa trên và giới han từ hai đường tròn d được

thấy ở hình chiếu bằng.

Những điểm thuộc nửa trước của xuyến giới hạn bởi hai đường tròn a và b được thấy ở hình chiếu đứng. Giả sử, biết hình chiếu bằng M_1 của điểm M thuộc mặt xuyến, hãy vẽ điểm M_2 .

Qua M ta vẽ hai đường tròn vĩ tuyến e và g $(e_1 \equiv g_1)$. Trên hình chiếu đứng ta thấy rỗ bốn nghiệm: M_2 , M'_2 , M''_2 , M'''_2 .

Chương chín: MẶT PHẨNG TIẾP XÚC MẶT CONG

9.1-KHÁI NIỆM:

Tiếp tuyến tại một điểm của một đường cong thuộc mặt cong cũng gọi là tiếp tuyến của mặt cong tại điểm đó .

Nếu tại một điểm của mặt cong có vô số tiếp tuyến cũng thuộc một mặt phẳng thì mặt phẳng này gọi là mặt phẳng tiếp xúc của mặt cong tại điểm đó .Mặt phẳng tiếp xúc thường được dùng để vẽ tiếp tuyến của giao hai mặt , vẽ đường bao của bóng trên hai mặt ...

9.2- MẶT PHẮNG TIẾP XÚC VỚI MẶT KỂ:

Nếu một mặt phẳng tiếp xúc với một mặt kẻ tại một điểm thì nó thuộc các đường sinh thẳng của mặt kẻ qua điểm đó .Nếu mặt phẳng tiếp xúc với mặt kẻ dọc theo một đường sinh thì mặt kẻ này khai triển được , như mặt nón ,mặt trụ ... Sau đây , ta xét vài ví du : S_{20}

9.2.1- Mặt phẳng tiếp xúc với mặt nón:

Ví dụ 1: Qua điểm M của mặt nón ,hãy vẽ mặt phẳng tiếp xúc với nón (H-9.1).

Giải: Mặt phẳng tiếp xúc phải vẽ được xác định bởi đường sinh tiếp xúc SM và một tiếp tuyến của mặt nón tại một điểm nào đó thuộc SM .Vậy tại chân N của đường sinh SM trên đường chuẩn (c) ,ta vẽ tiếp tuyến t của (c) ,tiếp tuyến t thuộc mặt phẳng của đường chuẩn (c), theo mục 9.1,t cũng là tiếp tuyến của mặt nón .

Ví dụ 2: Qua điểm A ngoài mặt nón S. Hãy vẽ mặt phẳng tiếp xúc với nón (Hình -9.2).

Giải : Mặt phẳng tiếp xúc phải vẽ thuộc đường thẳng SA và tiếp xúc dọc theo đường sinh d của mặt nón . Mặt phẳng này cắt mặt phẳng của đường chuẩn theo tiếp tuyến t của (c) . Vậy ta vẽ giao điểm M' của SA với mặt phẳng dường chuẩn , rồi từ M vẽ tiếp tuyến với (c); SA và t xác định mặt phẳng cần vẽ . Bài toán có hai nghiệm hình .

9.2.2-Mặt phẳng tiếp xúc với mặt trụ:

Ví dụ: Hãy vẽ một mặt phẳng mặt phẳng song song với đường thẳng g và tiếp xúc với mặt trụ .(Hình- 9.3)

Giải: Mặt phẳng phải vẽ, thuộc đường sinh tiếp xúc của trụ và thuộc một đường thẳng song song với g. Vậy phương của mặt phẳng tiếp xúc đã biết. Qua một điểm K tùy ý, ta vẽ hai đường thẳng a và b lần lượt song song với g và đường sinh của trụ. Mặt phẳng (a,b) cắt mặt phẳng của đường (c) theo giao tuyến m, song song với tiếp tuyến t với (c) cần vẽ. (t là giao của mặt phẳng tiếp xúc với mặt phẳng đường chuẩn tru).

Hình-9.2

Do đó ,sau khi vẽ m, ta vẽ tiếp tuyến t của (c) song song với m và từ tiếp điểm, vẽ đường sinh tiếp xúc d của trụ .Mặt phẳng cần dựng là (t,d). Nói chung bài toán có hai nghiệm hình.

Hình-9.3

9.3-MẶT PHẨNG TIẾP XÚC MẶT TRÒN XOAY:

Nếu mặt phẳng tiếp xúc với mặt tròn xoay tại một điểm thì nó vuông góc với

mặt phẳng kinh tuyến đi qua điểm đó. Những mặt phẳng tiếp xúc mặt tròn xoay và cắt trục xoay tại điểm A thì tiếp xúc với mặt nón tròn xoay đỉnh A, cùng trục với mặt tròn xoay. Mặt nón này tiếp xúc với mặt tròn xoay theo vĩ tuyến v, quỹ tích các tiếp điểm của các mặt phẳng tiếp xúc nói trên với mặt tròn xoay. Những pháp tuyến (vuông góc với mặt phẳng tiếp xúc tại một điểm của mặt) của mặt tròn xoay có chân nằm trên một vĩ tuyến thì đồng quy trên trục của mặt tròn xoay. (Hình-0.4)

Hình-9.4

9.3.1-Mặt phẳng tiếp xúc với cầu:

Mặt phẳng tiếp xúc với cầu thì vuông góc với bán kính cầu tại điểm đó.

Ví dụ: Qua điểm M của mặt cầu tâm O, hãy vẽ mặt phẳng tiếp xúc với cầu (H-9.5).

Giải: Mặt phẳng tiếp xúc với mặt cầu vuông góc với bán kính OM . Do đó mặt phẳng tiếp xúc được vẽ bởi đường bằng h và đường mặt f qua M đều vuông góc với OM .(Áp dụng định lý về đường thẳng vuông góc với mặt phẳng). Cũng có thể hiểu cách khác : Qua M vẽ hai đường tròn của cầu lần lượt thuộc các mặt phẳng song song với P_1 và P_2 , vẽ các tiếp tuyến h và f với các đường tròn trên tại M .

9.3.2-Mặt phẳng tiếp xúc với mặt xuyến:

Ví dụ: Qua điểm A của mặt xuyến ,hãy vẽ mặt phẳng tiếp xúc với mặt xuyến (H-9.6).

Giải: Mặt phẳng tiếp xúc có thể được vẽ bằng t và u lần lượt là các tiếp tuyến của 4 vĩ tuyến và kinh tuyến qua điểm A của mặt xuyến . Như trên hình-9.4 mục 9.3), u là đường sinh của mặt nón tiếp xúc với mặt xuyến theo vĩ tuyến qua

A . Do đó ta vẽ đường sinh bao u' của mặt nón đó , được đỉnh nón S và tạo ra đường sinh u cần tìm .

9.4- VÀI VÍ DỤ ỨNG DỤNG:

Ví dụ 1 : Qua đường thẳng d , hãy vẽ mặt phẳng nghiêng với mặt phẳng P_1 một góc φ (H-9.7) . S_2

Giải: Mặt phẳng phải dựng là mặt phẳng tiếp xúc với một mặt nón tròn xoay trục thẳng đứng, đỉnh S thuộc đường thẳng d và góc của đường sinh với mặt phẳng P₁ là φ. Lấy điểm S tùy ý thuộc d, vẽ mặt nón tròn xoay đỉnh S, hình chiếu đứng đường sinh bao nghiêng với đường nằm ngang góc φ. Từ giao điểm M của d và P₁, vẽ tiếp tuyến d của đường tròn đáy (c). Mặt phẳng cần dựng là (d,t).

Biện luận : Gọi α là góc nghiêng của d với $P_{\scriptscriptstyle 1}$.

 $-\alpha < \varphi : 2$ nghiệm, $\alpha = \varphi : 1$ nghiệm,

 $\alpha > \varphi$: vô nghiệm.

Ví dụ 2: Hãy vẽ đường bao hình chiếu bằng của mặt nón tròn xoay , biết hình chiếu đứng của mặt nón và trục là đường mặt . S_2

Giải: Đường bao hình chiếu bằng của mặt nón là hình chiếu của những mặt phẳng tiếp xúc với mặt nón và vuông góc với P₁ . Chúng cũng tiếp xúc với mặt cầu nào đó nội tiếp với mặt nón . Bài toán chuyển thành : vẽ mặt phẳng thẳng đứng qua một điểm cho trước và tiếp xúc với mặt cầu .Vây ta vẽ một mặt cầu tâm O tùy ý thuộc trục t của nón và tiếp xúc với nón .Dễ dàng vẽ được hai mặt phẳng chiếu bằng thuộc đỉnh S và tiếp xúc với mặt cầu .Trên hình-9.8, các hình chiếu bằng của hai mặt phẳng trên cũng là hai tiếp tuyến của đường tròn xích đạo $\operatorname{di}\operatorname{qua}\operatorname{S}_{1}$.

Nhận xét: hai điểm T_1 và T_1 ' vừa thuộc đường bao hình chiếu bằng của nón , vừa thuộc đường bao hình chiếu bằng của cầu . Do đó , chúng là hình chiếu của các giao điểm của đường tròn xích đạo của mặt cầu và đường tròn tiếp xúc m của mặt cầu và mặt nón .Nhận xét trên cũng đúng với mặt tròn bất kỳ có trục là đường mặt .Do đó ta có thể vẽ đường bao hình chiếu bằng của mặt tròn xoay bất kỳ , bằng cách vẽ nhiều mặt cầu nội tiếp mặt tròn xoay đó . Mỗi mặt cầu cho ta cặp điểm T_1 , T_1 ' tương tự như trên . Tập hợp các cặp điểm T_1 , T_1 ' cho ta đường cần vẽ . Cũng có thể hiểu đường bao hình chiếu bằng của một mặt trụ chiếu bằng tiếp xúc với mặt tròn xoay vừa nói .

Ví dụ 3: Hãy vẽ đường bao hình chiếu bằng của mặt tròn xoay, biết hình chiếu đứng và trục là đường mặt.

Giải: Theo nhận xét trên , ta vẽ nhiều mặt cầu nội tiếp mặt tròn xoay .Các cặp điểm T_1 , T_1 ' ,... cho ta đường bao của hình chiếu bằng a_1 cần vẽ (H-9.9) .Trên hình chiếu đứng , đường nối liền các điểm T_2 , T_2 ' ... là hình chiếu đứng a_2 của đường tiếp xúc giữa mặt trụ chiếu bằng và mặt tròn xoay .

Ví dụ 4: Cho mặt trụ xác định bởi đường chuẩn c , phương đường sinh s của

mặt trụ và mặt phẳng P . Hãy vẽ điểm gần nhất và xa nhất (đối với P_2) của giao tuyến của mặt trụ và mặt phẳng .(H-9.10)

Giải: Gọi các điểm vừa tìm là M và N .Tại M và N tiếp tuyến của giao tuyến phải là những đường mặt của mặt phẳng P đồng thời thuộc mặt phẳng tiếp xúc với mặt trụ . Vậy ta phải vẽ mặt phẳng tiếp xúc với mặt trụ và song song với đường mặt của P . Cách làm như ví dụ hình-9.3 . Sau khi vẽ được các đường sinh tiếp xúc , ta tìm các giao điểm của chúng với mặt phẳng P là các điểm M , N cần tìm .(sinh viên vẽ nốt điểm M trên hình-9.10, phần nét mờ) .

Hình-9.10

Chương 10: GIAO TUYẾN CỦA MẶT PHẮNG VÀ MỘT MẶT

I0.1-KHÁI NIỆM:

Giao tuyến của mặt phẳng với một mặt là tập hợp các điểm chung của mặt phẳng và mặt đó . Giao tuyến của mặt phẳng với một đa diện thường là một đa giác mà các đỉnh là giao điểm các cạnh đa diện với mặt phẳng .Giao tuyến của mặt phẳng với một mặt bậc n thường là một đường bậc n .Với mặt nón bậc 2 , giao tuyến là :

- + Elip, nếu mặt phẳng cắt tất cả các đường sinh của mặt nón. Elip suy biến thành một điểm nếu mặt phẳng đó đi qua đính nón.
- +Hyperbol, nếu mặt phẳng song song với hai đường sinh của nón. Hai đường sinh này chính là hai phương tiệm cận của Hyperbol. Hyperbol này suy biến thành hai đường thẳng nếu mặt phẳng đi qua đính nón.
- +Parabol ,nếu mặt phẳng song song với một đường sinh của nón . Đường sinh này cho phương trục của Parabol . Parabol suy biến thành đường sinh nếu mặt phẳng đó đi qua đỉnh nón , mặt phẳng trở thành mặt phẳng tiếp xúc với nón , có thể hiểu đường sinh tiếp xúc chính là giao tuyến của mặt phẳng với nón . Từ đó ta có thể đoán nhận dạng giao tuyến của mặt phẳng với nón bậc 2 có đường chuẩn là elip hay đường tròn bằng cách như sau : Ta vẽ một mặt phẳng đi qua đỉnh nón và song song với mặt phẳng đã cho , nếu mặt phẳng vừa vẽ không cắt , cắt tại một điểm , cắt tại hai điểm thì giao tuyến lần lượt là : Elip , Parabol ,Hyperbol .

Với mặt trụ bậc 2, đường chuẩn là elip hoặc đường tròn ,giao tuyến là :

- +Elip, nếu mặt phẳng cắt tất cả các đường sinh của tru.
- +Hai đường sinh nếu mặt phẳng cắt mặt trụ và song song với phương của trụ.

+Một đường sinh nếu mặt phẳng tiếp xúc với trụ . Có thể hiểu đường sinh trên là đường sinh kép của giao tuyến suy biến .

10.2-TRƯỞNG HỢP BIẾT MỘT HÌNH CHIẾU CỦA GIAO TUYẾN:

10.2.1-Nếu mặt đã cho là **mặt lăng trụ hoặc mặt trụ chiếu** (đường sinh là đường thẳng chiếu), mặt phẳng là bất kỳ thì một hình chiếu của giao tuyến

trùng với hình chiếu suy biến của lăng trụ hoặc trụ. Vẽ hình chiếu thứ hai của giao tuyến bằng cách áp dụng bài toán về điểm, đường thắng thuộc mặt phẳng.

Ví dụ 1 : Hãy vẽ giao tuyến mặt phẳng α và mặt lăng trụ chiếu bằng abc .

Giải: Giao tuyến là tam giác ABC mà $A_1 \equiv a_1$, $B_1 \equiv b_1$, $C_1 \equiv c_1$. Nhờ bài toán cơ bản điểm , đường thẳng thuộc mặt phẳng , dễ dàng vẽ được $A_2B_2C_2$. Phần thấy khuất thể hiện như hình vẽ (H-10.1) .

Ví dụ 2 : Hãy vẽ giao tuyến mặt phẳng α và mặt trụ tròn xoay ,Trục T vuông góc với P_1 (H-10.2) .

Giải: Nhìn hình chiếu bằng ,Ta biết giao tuyến là một elíp mà hình chiếu bằng của nó e₁ trùng với hình chiếu bằng của mặt trụ .Do tính đối xứng ,dễ thấy rằng trục dài AB của elíp thuộc giao mặt phẳng P và trục ngắn CD bằng đường kính x mặt tru .

Vì trục T vuông góc với P_1 nênmặt phẳng đối xứng Q là mặt phẳng chiếu bằng .

Vì Q \perp T nên Q₁ \perp m_p ,do đó AB là đường dốc nhất của P đối với P₁ và CD là đường

bằng của P. Trên hình chiếu bằng : $A_1B_1 \perp C_1D_1$. Hình chiếu đứng của elip là e_2 nhận A_2B_2 và C_2D_2 làm cặp đường kính liên hợp . AB là đường dốc nhất đối với P_1 nên A là điểm cao nhất , B là điểm thấp nhất của elip . T_2 , T_2 ' là hai tiếp điểm của e_2 với đường sinh bao mặt trụ và cũng là giới hạn thấy khuất của e_2 . Đường mặt f xác định T_2 , T_2 ' .

10.2.2-Nếu mặt phẳng đã cho là **mặt phẳng chiếu**, mặt kia là bất kỳ thì một hình chiếu của giao tuyến thuộc hình chiếu suy biến của mặt phẳng. Áp dụng bài toán về điểm thuộc mặt vẽ hình chiếu thứ hai của giao tuyến.

Ví dụ 1: Hãy vẽ giao tuyến mặt phẳng chiếu đứng P và mặt tháp SABC.

Giải : Nhờ hình chiếu đứng ta thấy rõ giao tuyến là tam giác DEF mà $D_2E_2F_2$ thuộc α_2 .Dễ dàng vẽ được $D_1E_1F_1$, thấy khuất của giao tuyến được thể hiện trên hình vẽ (H-10.3) .

Ví dụ 2: Hãy vẽ giao tuyến của mặt phẳng chiếu đứng α và mặt nón tròn xoay, truc thẳng đứng (H-10.4).

Giải: Vì mặt phẳng α có hình chiếu đứng suy biến thành đường thẳng α_2 nên ta biết α cắt tất cả các đường sinh của mặt nón S. Giao tuyến là elip mà hình chiếu đứng là A_2B_2 thuộc α_2 . AB là trục dài của elip, trục ngắn CD có

hình chiếu đứng $C_2 \equiv D_2 \equiv O_2$ hình chiếu tâm O của elip .ổ hình chiếu bằng $A_1B_1 \perp C_1D_1$ (vì $CD \perp P_2$) nên chúng là hai trục của elip hình chiếu bằng của giao tuyến .Ta vẽ C_1D_1 nhờ đường tròn thuộc mặt phẳng nằm ngang và qua CD

*Chú ý: Người ta đã chứng minh rằng : Hình chiếu của elip thuộc mặt nón tròn xoay lên mặt phẳng vuông góc với trục của nón luôn luôn là elip . Hình chiếu của đỉnh nón là một tiêu điểm của elip vừa nói .

Ví dụ 3: Hãy vẽ giao tuyến của mặt phẳng α chiếu đứng và mặt cầu tâm O (H-10.5).

Giải: Giao tuyến là đường tròn tâm I, hình chiếu đứng của nó là $A_2B_2 \in \alpha_2$ (vì $\alpha \perp P_2$), và đường kính của nó bằng A2B2 . Hình chiếu bằng đường tròn giao tuyến là elip mà trục dài là C₁D₁, hình chiếu đứng của đường kính CD vuông góc với P2 (tức song song với P_1), $C_1D_1 = A_2B_2$ và trục ngắn là $A_{\scriptscriptstyle 1}B_{\scriptscriptstyle 1}$. Nhìn hình chiếu đứng ta thấy α cắt đường tròn xích đạo ở hai điểm T , T' $(T_2 \equiv T'_2)$ nên ở hình chiếu bằng T₁ và T'₁ là hai tiếp điểm của elip và đường bao mặt cầu là hai giới hạn thấy khuất của elip

10.3-TRƯỜNG HỢP TỔNG QUÁT:

Giả sử cần tìm giao tuyến của mặt phẳng và mặt Φ.Ta có các bước giải như sau:

- a) Dùng mặt phẳng phụ trợ ϕ cắt mặt phẳng P và Φ , sao cho giao tuyến dễ vẽ các hình chiếu của chúng là đường thẳng và đường tròn .
 - b)Vẽ các giao tuyến phụ trợ m và n vừa nói.
 - c)Vẽ các giao điểm A,B của m và n ...
- A,B thuộc giao tuyến cần tìm của P và Φ .

Để vẽ tốt giao tuyến ,cần phải nhận xét dạng giao tuyến ,để ý các trục đối

xứng, các điểm đặc biệt như các điểm gần nhất , xa nhất , cao nhất , thấp nhất hoặc các điểm tại đó có hướng tiếp tuyến nhất định ... Ngoài ra có thể dùng biến đổi hình chiếu một cách linh hoạt để vẽ bài toán giao tuyến .

Ví dụ 1: Hãy vẽ giao tuyến của mặt phẳng (p,q) và mặt lăng trụ (abc).

Giải: Ta tìm giao tuyến của các cạnh a,b,c với mặt phẳng (p,q). giao tuyến là tam giác ABC tìm được nhờ các mặt phẳng phụ trợ R, R', R'' (H-10.6)

•

Ví dụ 2: Hãy vẽ giao tuyến của mặt phẳng $\alpha(h,f)$ với mặt nón tròn xoay trục thẳng đứng (H-10.7) .

Giải: Nếu qua đính nón ta vẽ mặt phẳng song song với mặt phẳng (h,f) thì dễ thấy mặt phẳng vừa vẽ không cắt đáy nón (c) .Qua S vẽ f' // f ,giao tuyến m của mặt phẳng α với mặt phẳng đáy nón sẽ song song với h vì mặt phẳng đáy nón là mặt phẳng bằng .Vậy từ giao tuyến M của f' và mặt phẳng đáy nón ,ta vẽ m // h , không cắt đường tròn đáy (c) nên giao tuyến phải là elip .Cũng có thể đoán nhận dạng giao tuyến bằng cách vẽ mặt phẳng đối xứng chung của mặt phẳng (h,f) và mặt nón .Nếu các điểm tìm được của giao tuyến nhờ mặt phẳng đối xứng chung ở về một phía của mặt nón so với đính nón thì giao tuyến là elip .Để vẽ các điểm của giao tuyến ta dùng các mặt phẳng phụ trợ là các mặt phẳng chiếu bằng thuộc truc nón để cắt nón theo các đường tròn mà hình chiếu bằng

của chúng cũng là các đường tròn .Dĩ nhiên các mặt phẳng phụ trợ trên cắt mặt phẳng (h,f) theo các đường thẳng cụ thể như sau:

+Mặt phẳng đối xứng Q cho hai điểm A,B của trục dài elip .A là điểm cao nhất, B là điểm thấp nhất .

+Mặt phẳng φ đi qua điểm giữa O của AB cho hai điểm CD trục ngắn elíp.

+Mặt phẳng ϕ' cho hai điểm T,T' mà các hình chiếu đứng T_2,T_2' là các tiếp điểm của hình chiếu giao tuyến vơi các đường sinh bao hình chiếu đứng của mặt nón và là các điểm giới hạn thấy khuất của hình chiếu đứng giao tuyến. Vậy hình chiếu bằng của giao tuyến là elip nhận A_1B_1 làm trục dài C_1D_1 làm trục ngắn .CD // P_1 nên góc vuông của AB và CD được bảo tồn ở hình chiếu bằng .Hình chiếu đứng của giao tuyến là elip nhận A_2B_2 và C_2D_2 làm cặp đường kính liên hợp .Các tiếp tuyến của elip tại A_2B_2 là những đường nằm ngang .

Vi du 3: Hãy vẽ giao tuyến của mặt phẳng $\alpha(m,n)$ với mặt trụ xiên.

Giải: a) Nếu dùng các mặt phẳng phụ trợ để vẽ giao tuyến thì ta có thể chọn như sau:

- +Mặt phẳng chiếu bằng song song với phương của trụ.
- +Mặt phẳng chiếu đứng song song với phương của trụ.
- +Mặt phẳng bằng song song với mặt phẳng đáy trụ.

b) Nếu dùng biến đổi hình chiếu thì có thể thay mặt phẳng hình chiếu đứng để mặt phẳng P trở thành mặt phẳng chiếu đứng (H-10.8) , hình chiếu đứng mới của mặt trụ có thể biểu diễn bằng hình chiếu đứng mới của đáy và trục xiên của mặt trụ rồi suy ra các đường sinh bao của mặt trụ .

Trong hệ thống mới , hình chiếu đứng của giao tuyến được biết : $A'_2B'_2$ thuộc P'_2 giao tuyến là elip .Từ đó ta đưa kết quả về các hình chiếu cũ . Cần chú ý các điểm đặc biệt của giao tuyến như các điểm thuộc các đường sinh bao hình chiếu mặt trụ, điểm cao nhất , thấp nhất là A,B .Hình-10.8 chỉ ra cách vẽ các điểm cao nhất ,thấp nhất A,B các tiếp điểm S_1,T_2 của giao tuyến .

Ví dụ 4: Hãy vẽ giao tuyến của mặt phẳng P(m,n) với mặt elipxoit tròn xoay , trục thẳng đứng (H-10.9) .

Giải: Giao tuyến nếu có là elip .Ta có thể dùng các mặt phẳng phụ trợ là các mặt phẳng bằng để các giao tuyến trên mặt elipxoit là các đường tròn có hình chiếu bằng nguyên hình và các mặt phẳng kinh tuyến .

-Mặt phẳng đối xứng chung Q cắt elipxoit theo elip kinh tuyến bằng elip hình bao của hình chiếu đứng elipxoit .Để vẽ chính xác , ta xoay mặt phẳng đối xứng quanh trục t đến song song với P_2 .Lúc bấy giờ , hình chiếu đứng của elip giao tuyến phụ trợ sẽ trùng với đường bao hình chiếu đứng elipxoit . Giao tuyến phụ trợ g-, giao tuyến của mặt phẳng sẽ đến vị trí mới g'-Tại vị trí mới này , ta tìm được các điểm của giao tuyến cần vẽ là A',B' .Từ đó xoay ngược lại ta được A, B . AB chính là trục dài của elip , giao tuyến của P và elipxoit ,A là điểm cao

nhất ,B là điểm thấp nhất .

-Mặt phẳng bằng φ qua giữa điểm O của AB cho ta hai điểm C,D trục ngắn của elip giao tuyến .

-Mặt phẳng kinh tuyến β song song với P_2 cho các tiếp điểm T_2,T_2' của hình chiếu đứng giao tuyến và hình bao elipxoit.

-Mặt phẳng bằng φ' qua đường tròn xích đạo của elipxoit cho các tiếp điểm U_1, U_1' của hình chiếu bằng giao tuyến với hình bao của elipxoit . Hình chiếu bằng giao tuyến là elip, với trục dài C_1D_1 , trục ngắn A_1B_1 . Hình chiếu đứng giao tuyến là elip với cặp đường kính liên hợp A_2B_2 và C_2D_2 .

Hình-10.9

Chương 11 GIAO ĐIỂM CỦA ĐƯỜNG THẮNG VÀ MẶT

11.1-KHÁI NIỆM:

Giao điểm của đường thẳng và một mặt nào đó là tập hợp các điểm chung của chúng . Số giao điểm tối đa của đường thẳng với một đa diện lồi là 2 . Số giao điểm tối đa của đường thẳng với một mặt đại số bậc n là n .

Ví dụ: Số giao điểm của đường thẳng với một mặt nón bậc hai thường là 2 . Số giao điểm tối đa của đường thẳng với một mặt xuyến là 4 .

11.2-TRƯỞNG HỢP BIẾT MỘT HÌNH CHIẾU CỦA GIAO TUYẾN:

11.2.1- Nếu mặt cho là lăng trụ chiếu hoặc trụ chiếu , đường thẳng là bất kỳ thì một hình chiếu các giao điểm là giao của hình chiếu suy biến của mặt và hình chiếu tương ứng của đường thẳng .Dùng bài toán về điểm thuộc đường thẳng , vẽ hình chiếu thứ hai các giao điểm .

Ví dụ 1: Vẽ giao điểm của đường thẳng d với mặt lăng trụ abc thẳng đứng (H-11.1).

Giải: Dễ thấy hình chiếu bằng của giao điểm là M_1, N_1 và suy ra M_2, N_2 .

Hình-11.1

11.2.1-Nếu đường thẳng là đường thẳng chiếu, mặt là bất kỳ thì một hình chiếu các giao điểm trùng với hình chiếu suy biến của đường thẳng. Áp dụng bài toán về điểm thuộc mặt ta vẽ hình chiếu thứ hai của giao điểm.

 \mathbf{Vi} dụ 2: Hãy vẽ giao điểm của đường thẳng chiếu đứng d với mặt nón S (H-11.2).

Giải: Hình chiếu đứng các giao điểm là $M_2 \equiv N_2 \equiv d_2$. Các đường sinh SM và SN cho ta hình chiếu bằng M_1 và N_1 của các giao điểm M và N . Đoạn M_1N_1 khuất .

11.3-TRƯỞNG HỢP TỔNG QUÁT :

Giả sử tìm giao điểm của đường thẳng d với mặt Φ bất kỳ . Ta có các bước giải như sau :(H-11.3)

- a) Dùng mặt phẳng phụ trợ ϕ thuộc đường thẳng d và cắt Φ sao cho giao tuyến phụ trợ vẽ được bằng thước và compa (mặt phẳng ϕ có thể không là mặt phẳng chiếu).
 - b) Vẽ giao tuyến phụ trợ g.
- c) Vẽ giao điểm của đường thẳng d và giao tuyến phụ trợ g .Đó là giao điểm cần tìm .

Ngoài ra, ta có thể dùng biến đổi hình chiếu hoặc phối hợp phương pháp mặt phẳng phụ trợ với biến đổi hình chiếu.

Hình-11.3

Ví dụ 1: Hãy vẽ giao điểm của đường thẳng d và mặt nón đỉnh S, mặt phẳng đáy nón là mặt phẳng chiếu đứng α .(H-11.4)

Giải: Dùng mặt phẳng phụ trợ φ thuộc đường thẳng d và thuộc đỉnh nón S để giao tuyến phụ trợ là các đường sinh .Để vẽ các đường sinh phụ trợ , ta phải biết các chân của chúng E,F .Các điểm này thuộc mặt phẳng phụ trợ (S,d) vừa thuộc đường chuẩn c nên chúng thuộc giao tuyến của hai mặt phẳng (S, d) và α của đường chuẩn (c). Vậy lấy điểm K bất kỳ của d , vẽ các giao điểm A, B của SK và d với P . Giao tuyến AB cắt tại chân E, F và ta có các đường sinh phụ trợ SE và SF .Vẽ các giao điểm M ,N của SE và SF với d .

-Ở hình chiếu bằng : $M_{\scriptscriptstyle 1}$ thấy , $N_{\scriptscriptstyle 1}$ khuất.

Ví dụ 2 : Vẽ giao điểm của đường thẳng và mặt trụ xiên với mặt phẳng đáy là mặt phẳng chiếu đứng α (H -11.5) .

Giải: Cách giải tương tự như trường hợp của mặt nón:

+ Dùng mặt phẳng phụ trợ φ thuộc đường thẳng và đường thẳng d' song song

với phương trụ để giao tuyến phụ trợ là các đường sinh.

- + Vẽ các đường sinh phụ trợ bằng cách vẽ giao tuyến của hai mặt phẳng (d,d') và α , ta có các chân đường sinh là E, F rồi các đường sinh phụ trợ EM, FN.
- + Vẽ các giao điểm M, N của EM ,FN của EM ,FN và d . Ở hình chiếu bằng : M_1 thấy , N_1 khuất . ể hình chiếu đứng : M_2 khuất , N_2 thấy .

Ví dụ 3: Hãy vẽ giao điểm của đường thẳng d và mặt cầu (H-11.6).

Giải: Vì đường thẳng ở vị trí bất kỳ, nên dù mặt phẳng phụ trợ như thế nào, hình chiếu của đường tròn phụ trợ là elip. Cho nên ta dùng mặt phẳng phụ trợ là mặt phẳng chiếu bằng (hoặc chiếu đứng), tiếp đó dùng biến đổi hình chiếu đứng (hoặc hình chiếu bằng) để hình chiếu đứng mới (hoặc hình chiếu bằng mới) của đường tròn phụ trợ là đường tròn. Trên hình chiếu mới này, ta vẽ được các giao điểm của đường thẳng và mặt cầu rồi dóng về các hình chiếu cũ. Tâm I của đường tròn phụ trợ g có cùng độ cao với tâm O của mặt cầu.

Chú thích: Có thể dùng mặt phẳng phụ trợ qua tâm cầu O. Đường tròn phụ trợ sẽ bằng đường tròn lớn của mặt cầu .Nếu xoay quanh đường bằng qua tâm O của mặt phẳng phụ trợ, đường tròn phụ trợ sẽ trùng với dường tròn xich đạo của mặt cầu .

Hình-11.6

GIAO HAI MĂT

Chương 12

12.1- KHÁI NIỆM:

Giao của hai mặt là tập hợp những điểm chung của hai mặt .Người ta chia bài toán giao tuyến ra làm ba dạng.

-Giao của hai mặt đa diện thường là một hay nhiều đường gấp khúc kín trong không gian, nó là tập hợp của nhiều đoạn thẳng là giao tuyến giữa các mặt của hai đa diện. Các đỉnh chính là giao điểm giữa các cạnh của đa diện này với các mặt của đa diện kia.

-Giao của một đa diện và một mặt cong bậc n là một hoặc nhiều đường gấp khúc kín trong không gian , nó là tập hợp các cung phẳng bậc n.Các đính chính là giao điểm giữa các cạnh của đa diện với mặt cong.

-Giao của một mặt cong bậc m và một mặt cong bậc n là một đường cong ghềnh bậc m \times n .

Nếu tất cả đường sinh thuộc một họ của một mặt đều giao với mặt kia thì giao gồm nhiều thành phần riêng biệt, người ta còn gọi *là hai mặt giao nhau hoàn toàn*. Nếu chỉ có một đường sinh thuộc một họ của một mặt giao với mặt kia thì giao chỉ là một đường, người ta còn gọi *là hai mặt giao nhau không hoàn toàn*.

Với quy ước hai mặt được đóng kín, giao của hai mặt cũng được đóng kín. Giao của hai mặt rất đa dạng. Sau đây ta chỉ xét một số trường hợp chung và trường hợp đặc biệt.

12.2-TRƯỞNG HỢP BIẾT MỘT HÌNH CHIẾU CỦA GIAO:

Nếu một mặt là lăng trụ chiếu hoặc trụ chiếu thì một hình chiếu của giao thuộc hình chiếu suy biến của lăng trụ hoặc trụ chiếu . *Áp dụng bài toán về điểm thuộc mặt thứ hai ta vẽ được hình chiếu thứ hai của giao* . Cần phải nhận xét về dạng của giao , xác định những điểm đặc trưng của giao như các điểm gãy , các điểm thuộc đường bao của mặt, các điểm cao nhất , thấp nhất ,gần nhất ,xa nhất , các ranh giới thấy khuất và các điểm kép ...

Ví dụ 1: Hãy vẽ giao của lăng trụ chiếu bằng abc và lăng trụ chiếu xiên def. (Hình-12.1)

Giải: Hình chiếu bằng của lăng trụ abc suy biến thành tam giác $a_1b_1c_1$. Do đó hình chiếu bằng của giao hai lăng trụ là $1_16_12_1$ ($\equiv 5_1$) 4_13_1 thuộc $a_1b_1c_1$, đây là

hai mặt giao nhau không hoàn toàn .Dễ thấy rằng các cạnh của lăng trụ này giao với lăng trụ kia tại hai điểm, các điểm này là các điểm gãy của giao.

Để vẽ hình chiếu đứng của giao ta áp dụng bài toán cơ bản trên từng mặt de, ef và fd của lăng trụ xiên . Ta có các điểm 1_2 , 3_2 trên d_2 ; 6_2 , 4_2 trên e_2 ; 2_2 , 5_2 trên b_2 . Rỗ ràng 1 6 , 3 4 thuộc mặt de , 6 5 4 thuộc mặt ef và 1 2 3 thuộc mặt fd . Hình chiếu đứng của giao là đường gãy khúc kín $1_22_23_24_25_26_21_2$.

Thấy khuất của giao : Đoạn nào thuộc phần thấy của cả hai mặt sẽ được thấy , còn lại là khuất , vậy $1_22_23_2$ và $4_25_26_2$ thấy , 1_26_2 và 3_24_2 khuất .

Để nối các điểm gãy của giao ,ta có thể áp dụng phương pháp sau :

Vẽ sơ đồ khai triển của hai mặt .Nên cắt dọc theo cạnh không có giao điểm của giao (H-12.2) .Ghi các vị trí của các điểm gãy đã tìm được vào sơ đồ khai triển . Nối hai điểm cùng ô ,ta được đường khép kín của giao, có thể dùng sơ đồ trên để xét thấy khuất của giao .

Hình-12.1

Ví dụ 2 : Vẽ giao của mặt trụ chiếu bằng và mặt tứ diện SABC (ABC là tam giác đều).

Giải: Vì mặt trụ vuông góc với mặt phẳng hình chiếu bằng nên ta thấy rõ hình chiếu bằng của giao trùng với hình chiếu bằng suy biến của mặt trụ.

Hai mặt giao nhau hoàn toàn.

Giao gồm hai phần : đường tròn t thuộc mặt ABC và ba cung elip nối liên nhau thuộc các mặt SAB, SBC, SCA là 1351 .

Hai hình chiếu của đường tròn t đã biết.

Để vẽ các cung elip ta áp dụng bài toán cơ bản trên mặt SAB rồi suy ra các cung kia nhờ tính đối xứng của SABC và mặt trụ. Điểm 1 thuộc SA, suy ra các điểm 3, 5 cùng độ cao.

Điểm 2 thấp nhất của cung 123, suy ra các điểm 4, 6 cùng độ cao .

Điểm T cho T_2 là tiếp điểm của cung $1_2 2_2 3_2$ và đường sinh biên của mặt trụ, suy ra T'_2 cùng độ cao. Trên hình chiếu đứng đoạn $T_2 2_2 3_2 4_2 T'_2$ thấy, phần còn lại khuất .

Ví dụ 3: Hãy vẽ giao của mặt trụ tròn xoay chiếu đứng và mặt nón tròn xoay đỉnh S.(H-12.4)

Giải : Vì mặt trụ vuông góc với mặt phẳng hình chiếu đứng nên hình chiếu đứng của giao thuộc hình chiếu suy biến của mặt trụ : cung $1_22_2 (\equiv 6_2) \ 3_2 (\equiv 5_2) \ 4_2$.

Hai mặt giao nhau không hoàn toàn, giao là đường bậc 4 trong đó :1là điểm cao nhất, 2 và 6 là hai điểm thuộc đường ^x sinh biên mặt trụ, 3 và 5 là hai điểm thấp nhất, 4 là điểm tới hạn bên phải .

Nhờ các đường tròn vĩ tuyến,ta vẽ được hình chiếu bằng các điểm 2, 6, 3, 5.

Đường sinh biên bên phải hình chiếu đứng cho các điểm 1, 4 .Hình chiếu bằng của giao là đường bậc 4 nhận S_14_1 làm trục đối xứng $.2_16_1$ là hai tiếp điểm của đường bậc 4 với đường sinh.

12.3-TRƯỞNG HỢP ĐẶC BIỆT VỀ GIAO HAI MẶT BẬC 2:

Thông thường hai mặt bậc 2 giao nhau theo đường bậc 4. Trường hợp đặc biệt đường bậc 4 đó có thể suy biến thành:

- Hai đường bậc 2.
- Một đường bậc 3 và một đường thẳng.
- Bốn đường thẳng.

Định lý 1: Nếu hai mặt bậc 2 đã giao theo một đường bậc 2, thì chúng còn giao theo một đường bậc 2 nữa.

Ví dụ: Vẽ giao tuyến của mặt nón và mặt trụ có chung đường tròn c (chỉ vẽ hình chiếu đứng). S_2

Giải: Theo định lý 1,mặt nón và mặt trụ đã giao nhau theo đường tròn c nên chúng còn giao nhau theo một đường bậc 2 nữa. Đó là elip, vì đường bậc 2 thuộc mặt trụ, hai mặt có mặt phẳng đối xứng chung song song P₂ nên hình chiếu đứng của elip là đoạn thẳng .Trên hình chiếu đứng, giao các đường biên hai mặt cho ta hình chiếu đứng e₂ của elip đó (H-12.5).

Hình-12.5

Định lý 2: Nếu hai mặt bậc 2 có hai điểm tiếp xúc và các mặt phẳng tiếp xúc chung của chúng tại hai điểm đó không trùng nhau thì chúng giao nhau theo hai đường bậc 2 đi qua hai điểm tiếp xúc đó.

Ví dụ 1: Hãy vẽ giao của mặt trụ tròn xoay thẳng đứng và mặt trụ xiên (H-12.6).

Giải: Nhìn hình chiếu bằng, ta thấy hai mặt trụ có hai tiếp điểm A, B và các mặt phẳng tiếp xúc chung tại A, B không trùng nhau. Theo định lý 2, giao của hai mặt là hai elip đi qua A, B. Do tính đối xứng của hai mặt, hình chiếu đứng hai elip là hai đoạn thẳng.

Ví dụ 2: Cho mặt elipxoit có mặt phẳng đối xứng chung song song P₂. Hãy vẽ hướng các mặt phẳng cắt elipxoit theo elip có hình chiếu bằng là đường tròn . Giải: Theo định lý 2 và ví dụ 1 vừa trình bày, cho một mặt trụ tròn xoay thẳng đứng tiếp xúc với mặt elipxoit tại hai đầu mút A, B của một trục của nó (H-12.7). Hai mặt giao nhau theo hai elip e, e' mà hình chiếu bằng của chúng trùng với hình chiếu bằng của mặt trụ tròn xoay, tức là đư8ờng tròn .

Mặt phẳng R của e và mặt phẳng Q của e' là hai hướng các mặt cắt của elipxoit có hình chiếu bằng là đường tròn. Nếu ta cắt mặt elipxoit bằng các mặt phẳng song song với R hoặc song song với Q thì giao tuyến là các elip đồng

dạng nhau và hình chiếu bằng của chung là các đường tròn tiếp xúc với đường bao hình chiếu bằng của elipxoit. Hướng mặt cắt như thế đối với mặt bậc 2 nói

chung còn gọi là hướng mặt cắt Monge.

 \mathbf{Vi} \mathbf{du} 3: Cho mặt nón bậc 2 , đường chuẩn là elip. Vẽ hướng các mặt phẳng cắt mặt nón theo đường tròn.

Giải: Đường bậc 2 trên mặt cầu chỉ là đường tròn, nên ta dùng mặt cầu tâm O

thuộc trục của mặt nón và tiếp xúc với mặt nón tại hai điểm A, B như trên hình-12.8. Mặt nón S và mặt cầu O thỏa mãn định lý 2 nên chúng giao nhau theo hai đường bậc hai đi qua hai tiếp điểm A, B. Hai đường bậc 2 này là hai đường tròn mà hình chiếu cạnh là hai đoạn thẳng c_3 và c'_3 đi qua $A_3 \equiv B_3$. Mặt phẳng R của c và mặt phẳng Q của c' là hướng các mặt phẳng cắt mặt nón S theo các đường tròn.

 $Ch\dot{u}\,\dot{y}$: Hướng mặt cắt Monge và hướng mặt cắt tròn được ứng dụng nhiều trong các bài toán dựng hình cũng như các bài toán vẽ giao các mặt bậc 2.

Định lý 3: Nếu hai mặt bậc 2 cùng nội tiếp hay ngoại tiếp với một mặt bậc 2 thứ ba thì chúng giao nhau theo hai đường bậc 2 đi qua hai giao điểm của hai đường bậc 2 tiếp xúc của chúng.

 \mathbf{Vi} dụ: Hãy vẽ giao của mặt nón và mặt trụ cùng ngoại tiếp một mặt cầu . Hai trục giao nhau và song song với P_2 (chỉ vẽ hình chiếu đứng).(Hình-12.9)

Hình-12.9

Giải: Mặt cầu tâm O nội tiếp mặt nón S theo đường tròn c và nội tiếp mặt trụ theo c'. Hai đường tròn tiếp xúc này cắt nhau tại hai điểm A, B. Vậy mặt nón và mặt trụ giao nhau theo hai elip e và e' đi qua hai điểm A, B. Vì mặt phẳng đối xứng chung song song với P_2 nên hình chiếu đứng của hai elip là hai đoạn thẳng e_2 , e'_2 đi qua hai điểm $A_2 \equiv B_2$.

TÀI LIỆU THAM KHẢO

1. C. ROUBAUDI.

Traité de géométrie descriptive. " Masson et Cie " Paris -1976

2. M. DESMARQUEST.

A.B.C de la géométrie descriptive." IPD Montréal " Montréal-1992

3. NGUYỄN ĐÌNH ĐIỆN.

Hình học họa hình.

" NXB Giáo dục " Hà Nội-1997

4. DƯƠNG THỌ.

Bài giảng Hình học họa hình.

" ĐHKTĐN " Đà Nẵng-1997

5. NGUYỄN TƯ ĐÔŅ.

Bài giảng Hình học họa hình.

" ĐHBKĐN " Đà Nẵng-1978

MỤC LỤC

Lời nói đầu	01
<i>Phần I :</i> NHỮNG KHÁI NIỆM TỔNG QUÁT	
Chương một MỞ ĐẦU	
1.1-Mục đích và yêu cầu	03
1.2-Các phép chiếu	03
Chương hai ĐIỂM	
2.1-Đồ thức của điểm	06
2.2-Hệ ba mặt phẳng hình chiếu	08
Chương ba ĐƯỜNG THẮNG	
3.1-Đồ thức của một đường thẳng	09
3.2-Các đường thẳng đặc biệt	09
3.3-Điều kiện liên thuộc của điểm và đường thẳng	11
3.4-Vết đường thẳng	11
3.5-Đường thẳng cắt nhau	12
3.6-Đường thẳng song song	12
3.7-Đường thẳng cắt nhau	13
3.8-hình chiếu của một góc vuông	13
Chương bốn MẶT PHẮNG	
4.1-Đồ thức của một mặt phẳng	14
4.2-Vết mặt phẳng	14
4.3-Các vị trí đặc biệt của mặt phẳng	15
4.4-Bài toán cơ bản của mặt phẳng	18
4.5-Các đường thẳng đặc biệt của mặt phẳng	19
4.6-Mặt phẳng song song	21
4.7-Đường thẳng và mặt phẳng song song	22
<i>Phần II :</i> CÁC PHƯƠNG PHÁP CƠ BẢN	
Chương năm GIAO CỦA CÁC KHÔNG GIAN CON	
5.1-Giao của hai đường thẳng	23
5.2-Giao của hai mặt phẳng	23
5.3-Giao của đường thẳng và mặt phẳng	25
5.4-Giao của ba mặt phẳng	27
Chương sáu CÁC BÀI TOÁN VỀ LƯỢNG	
6.1-Khoảng cách giữa hai điểm	29

6.2-Đường thẳng vuông góc với mặt phẳng	30
6.3-Khoảng cách từ một điểm đến một đường thẳng	30
6.4- Khoảng cách từ một điểm đến một mặt phẳng	31
Chương bảy CÁC PHÉP BIẾN ĐỔI HÌNH CHIẾU CƠ BẢN	
7.1-Phương pháp thay đổi mặt phẳng hình chiếu	33
7.2-Phép quay quanh đường thẳng chiếu bằng	37
7.3-Phép quay quanh đường thẳng chiếu đứng	38
7.4-Phép quay quanh đường bằng	38
7.5- Phép quay quanh đường mặt	39
7.6-Phép gập mặt phẳng quanh vết đứng	
<i>Phần III :</i> ĐƯỜNG VÀ MẶT - CÁC BÀI TOÁN VỀ VỊ TRÍ	
Chương tám BIẾU DIỄN ĐƯỜNG VÀ MẶT	
8.1-Các hình phẳng cổ điển	41
8.2-Đường cong	42
8.3-Các đa diện trong không gian	44
8.4-Biểu diễn mặt cong	46
Chương chín MẶT PHẮNG TIẾP XÚC MẶT CONG	
9.1-Khái niệm	50
9.2-Mặt phẳng tiếp xúc mặt kẻ	50
9.3- Mặt phẳng tiếp xúc mặt tròn xoay	51
9.4-Vài ví dụ ứng dụng	53
Chương mười GIAO TUYẾN CỦA MẶT PHẨNG VÀ MẶT	
10.1-Khái niệm	56
10.2-Trường hợp biết một hình chiếu của giao tuyến	56
10.3-Trường hợp tổng quát	59
Chương mười một GIAO ĐIỂM CỦA ĐƯỜNG THẮNG VÀ MẶT	
11.1-Khái niệm	64
11.2-Trường hợp biết một hình chiếu của giao tuyến	64
11.3- Trường hợp tổng quát	65
Chương mười hai GIAO HAI MẶT	
12.1-Khái niệm	
12.2-Trường hợp biết một hình chiếu của giao	69
12.3-Trường hợp đặc biệt về giao hai mặt bậc hai	72
Tài liệu tham khảo	76

PHẦN III: Phần hướng dẫn.

- 1-(H-1) Lưu ý mối quan hê giữa ba hình chiếu:
 - *Hình chiếu đứng và hình chiếu bằng liên quan độ xa cạnh.
 - *Hình chiếu đứng và hình chiếu cạnh liên quan độ cao.
 - *Hình chiếu canh và hình chiếu bằng liên quan đô xa.
- 2-(H-2) Giống bài 1.
- 3-(H-3) Điểm A thuộc phần tư thứ nhất.
 - (H-4) Điểm B thuộc phần tư thứ hai.
 - (H-5) Điểm C thuộc phần tư thứ nhất.
 - (H-6) Điểm D thuộc mặt phẳng hình chiếu đứng.
 - (H-7) Điểm E thuộc mặt phẳng hình chiếu bằng.
 - (H-8) Điểm F thuộc mặt phẳng phân giác 1.
 - (H-9) Điểm G thuộc mặt phẳng phân giác 2.
 - (H-10) Điểm H thuộc trục chiếu x.
- $4-(H-11) A'_2 = A_2$, A'_1 đối xứng A_1 qua trục x.
 - (H-12) $B'_1=B_1$, B'_2 đối xứng B_2 qua truc x.
 - (H-13) C'_1 đối xứng C_1 qua trục x, C'_2 đối xứng C_2 qua trục x.
- $5-(H-14) A_1$ thuốc truc x (đô xa bằng o).
 - (H-15) B_1 đối xứng B_2 qua trục x (độ cao bằng độ xa).
 - (H-16) C_2 thuộc trục x (độ cao bằng o).
 - $(H-17) D_1$ trùng D_2 (độ cao ngược độ xa).
- 5-(H-18) B_1 là giao điểm của đường dóng hạ từ B_2 và đường tròn tâm O bán kính I. Bài toán có hai nghiệm.
- 6-(H-19) Trục x là đường thẳng đi qua trung điểm của đoạn thẳng A_2B_1 và vuông góc với đường dóng A_2A_1 .
- 7-(H-20) Tự cho đơn vị trên các trục, lưu ý các độ đo là số đại số và lưu ý mối quan hệ giữa ba hình chiếu:
 - *Hình chiếu đứng và hình chiếu bằng liên quan độ xa cạnh.
 - *Hình chiếu đứng và hình chiếu cạnh liên quan độ cao.
 - *Hình chiếu canh và hình chiếu bằng liên quan độ xa.

Đường thẳng

- 1-(H-21) Hình chiếu đứng b_2 (tính chất đường bằng) phải song song trục x và đi qua A_2 , dóng từ A_2 sẽ có A_1 thuộc b_1 .
- 2-(H-22) m_2 xác định bởi hai điểm A_2 , B_2 , m_1 đi qua A_1 đồng thời song

song trục x. Dóng từ B_2 sẽ có B_1 thuộc m_1 .

3-(H-23) Dóng từ N_2 sẽ có N_1 thuộc x, dóng từ M_1 sẽ có M_2 thuộc x, a_2 xác định bởi M_2N_2 , a_1 xác định bởi M_1N_1

4-(H-24) a/a_2 xác định bởi A_2D_2 , a_1 xác định bởi B_1C_1 ,áp dụng điểm thuộc đường thẳng tìm các hình chiếu còn lại. $b/-M_2=a_2$ giao trục x, - $N_1=a_1$ giao trục x, -Vẽ đường thẳng đối xứng với đường thẳng B_1C_1 qua trục x, giao của đường thẳng này với đường thẳng A_2B_2 là hình chiếu đứng P_2 của điểm P_2 .

5-(H-25) a/M_1 thuộc A_1B_1 sao cho tỷ số đơn $(A_1B_1C_1)=(A_2B_2C_2).b/N_1$ thuộc x, dùng tỷ số đơn như câu a tìm được N_2 . c/P_2 thuộc x dễ dàng suy ra P_1 .

6-(H-26) $a/D\tilde{e}$ thấy a và b chéo nhau. $b/a_1 = m_1 \times n_1$, $b_2 = m_2 \times n_2$.

7-(H-27): cắt nhau, -(H-28): cắt nhau, -(H-29): song song, -(H-30): song song, -(H-31): song song, -(H-32): chéo nhau.

8-(H-33) Kiểm tra tỷ số đơn trên hai hình chiếu : chéo nhau.

9-(H-34) Xác định vị trí tương đối của hai đường thẳng AD và BC rồi suy ra vị trí tương đối của AB và CD.

10-(H-35) a/Vết bằng M có $M_2=m_2$ x trục x, $\Rightarrow M_1 \in m_1$, vết đứng N có $N_1=n_1$ x trục $x \Rightarrow N_2 \in n_2$. b/ (H-36) Xem bài 5 (H-25).

11-(H-37) Sử dụng phương pháp tam giác để giải quyết. Theo đề đã cho thì đã biết hình chiếu bằng A_1B_1 và Δ cao của A và B, như vậy đã biết hai cạnh góc vuông. Cạnh huyền là độ lớn thật cần tìm và góc nghiêng α chính là góc đối diện Δ cao. (H-38) Do đoạn thẳng AB thuộc đường bằng dễ thấy A_1B_1 =AB cần tìm.

12-(H-39) Chọn một điểm C bất kỳ thuộc m, sử dụng phương pháp tam giác suy ra góc nghiêng α , từ đóđủ điều kiện để dựng $_{\rm X}$ $_{\rm X}$

13-(H-40) Đây là bài toán dựng tam giác vuông đã biết cạnh huyền $A_0B_0=30$ và cạnh góc vuông A_1B_1 . Khi đã có \triangle caoAB sẽ dựng được B_2 , lưu ý bài toán có 2 nghiệm.

 A_2 A_2 A_1 A_1 A_1 A_2 A_3 A_4 A_4 A_5 A_5 A_6 A_7 A_8 A_8

 B_2

14-(H-41) Tự chọn một đoạn KH nào đó . Tìm quan hệ giữa KH với các hình chiếu của nó theo đầu bài (dùng phương pháp tam giác trên cả hai hình chiếu) .Lưu ý biện luận nghiệm.

- 15- (H-42) Gọi m là đường mặt đi qua M,N và cắt AB tại K thì m_1 đi qua M_1 và song song với trục X; $K_1=m_1$ X A_1B_1 ; K_2 thuộc A_2B_2 đồng thời $(A_2 K_2 B_2)=(A_1 K_1 B_1)$ m_2 đi qua N_2 và K_2 .
- 16- (H-43) A_1 thuộc a_1 . Dựng trung tuyến A_1D_1 của tam giác $A_1B_1C_1$ (A_1D_1 : A_1 G_1 =3:2). Dựng B_1 thuộc C_1 sao cho C_1 và B_1 đối xứng nhau qua D_1 .

Biểu diễn mặt phẳng.

- 1- (H-44) Nối AC và BD rồi kiểm tra điều kiện cắt nhau của hai đường thẳng nầy. Kết quả không đồng phẳng.
- 2- (H-45) Cho A,B,C,D,E đồng phẳng do đó đường nối các cặp điểm tương ứng sẽ cắt nhau. Ứng dụng điều kiện cắt nhau sẽ xác định D_2 , E_2 .
- 3- (H-46) Ứng dụng các bài toán cơ bản về điểm đường thẳng thuộc mặt phẳng sẽ xác định được các hình chiếu còn lại của A,B,C. Lưu ý BC song song với m,n.
- 4- (H-47) a/Đây là một đường bằng h của mặt phẳng. Dễ thấy h_2 song song và cách x 20mm, gắn h vào một điểm của cạnh AC rồi tìm được h_1 song song A_1B_1 . b/Điểm K_1 cần tìm sẽ thuộc h_1 và cách trục x 25mm, suy ra K_2 thuộc h_2 .
- 5- (H-48) a/Để vẽ đường thẳng p thuộc mặt phẳng P và có hai hình chiếu trùng nhau ta tìm hai điểm A,B thuộc P: $A_1 = A_2 = m_1 \times m_2$; $B_1 = B_2 = n_1 \times n_2$. b/Đường thẳng q với $q_2//p_1 = p_2$ và $q_1//p_1 = p_2$ với q_2 qua l_2 , q_1 qua l_1 là đường thẳng thuộc P và có hai hình chiếu song song.
- 6- (H-49) Nếu AB thuộc P thì dễ thấy m,n phải cắt AB. Kiểm tra điều kiện để một đường thẳng thường cắt một đường cạnh sẽ thấy hình vẽ đã cho không thỏa mãn cắt nhau nên AB không thuộc P.
- 7- (H-50) P là mặt phẳng chiếu đứng (do m là đường thẳng chiếu đứng), vết đứng nP đi qua hai điểm K_2 và m_2 , vết bằng vuông góc x.
- (H-51) P là mặt phẳng chiếu cạnh, vết đứng đi qua K_2 và song song trục x. Vẽ thêm một đường thẳng d bất kỳ của mặt phẳng, tìm vết bằng M của đường thẳng nầy rồi vẽ mP đi qua M_1 và song song trục x.
- (H-52) Tìm vết đứng N của đường bằng b và vết bằng M của đường mặt m, mP đi qua M_1 và song song b_1 ,nP đi qua N_2 và song song m_2 . Dễ thấy mP=nP.
- 8- (H-53) Ưng dụng các bài toán cơ bản điểm ,đường thẳng thuộc mặt

phẳng để tìm hình chiếu còn lại của các đỉnh, lưu ý các điểm thuộc vết $(A_1 \in X, C_1 \in mP)$.

- -(H-54) Tương tự bài 8(H-53) lưu ý AC song song x.
- 9 (H-55) Vẽ một đường mặt đi qua A (m_2 // nP, m_1 //x), tìm vết bằng M cuả nó. Vết bằng mP đi qua M_1 và giao điểm của nP với x.
- 10- (H-56) Lấy một điểm K trên vết đứng ($K_2 \in nP, K_1 \in x$), vẽ qua K một đường thẳng k song song m. Tìm vết bằng M của k, MP đi qua M_1 và giao điểm của nP với x.
- 11- (H-57) Vẽ một đường mặt đi qua A (m_2 // nP, m_1 //x), tìm vết bằng M cuả nó. Vết bằng mQ đi qua M_1 và song song mP, nQ đi qua giao điểm của mQ với x đồng thời song song nP.
- -(H-58) Qua A vẽ một đường thẳng k song song với một đường thẳng bất kỳ của P. Tìm hai vết tương ứng M và N của k. Sẽ có $mQ \in M_1$ và 1/x, $nQ \in N_2$ và 1/x.
- -(H-59) Vẽ một đường mặt đi qua A (m_2 // nP, m_1 //x), tìm vết bằng M cuả nó. Vết bằng mQ đi qua M_1 và song song mP=nP, nQ đi qua giao điểm của mQ với x đồng thời song song nP=mp.Dễ thấy mQ=nQ.

Giao của hai mặt phẳng - giao của đường thẳng và mặt phẳng.

- 1- (H-60) Hai vết bằng của hai mặt phẳng cùng nằm trong mặt phẳng hình chiếu bằng P_1 nên cắt nhau tại $I: I_1=mP \times mQ, I_2 \in x$. Tương tự hai vết đứng của hai mặt phẳng cùng nằm trong mặt phẳng hình chiếu đứng P_2 nên cắt nhau tại $J: J_2=nP \times nQ, J_1 \in x$. Giao tuyến g xác định bởi I,J.
 - (H-61) Hoàn toàn tương tư bài 1 (H-60).
- (H-62) Hai mặt phẳng chiếu bằng P và Q giao nhau theo đường thẳng chiếu bằng g: Hình chiếu suy biến g_1 =mPxmQ, $g_2 \perp x$.
- (H-63) Giao tuyến g là đường mặt đi qua I (I_1 =mP x mQ, $I_2 \in x$): $g_1 \in I_1$ và //x, $g_2 \in I_2$ và //nP, nQ.
- 2 (H-64) Q(a,K) xác định mặt phẳng chiếu bằng có mQ xác định bởi hai điểm K_1 và a_1 . Áp dụng trường hợp đặc biệt của giao hai mặt phẳng sẽ xác định giao tuyến g ($g_1 = mQ$).
- 3 (H-65) Vẽ qua A một đường bằng b thuộc P; vẽ vết bằng mP // b . Tìm giao điểm I=mP x mQ; g =P x Q xác định bởi A,I.
- 4 (H-66) Giao điểm của I=mP x nP là một điểm chung với phân giác 1 . Vẽ trong P một đường bằng b . Tìm trên b một điểm mà J_1 và J_2 là

hai điểm nằm đối xứng nhau qua trục x (J_2 là giao điểm của b_2 với đường thẳng b_0 đối xứng b_1 qua trục x): g(I,J)=P x phân giác I.

- 5 (H-67) Tìm giao điểm của $I=m \times Pgiác2$ ($I_1=I_2=m_1 \times m_2$) và giao điểm $J=n \times Pgiác2$ ($J_1=J_2=n_1 \times n_2$) : $g(I,J)=P(m \times n) \times phân giác2$.
- 6 (H-68) Ứng dụng phương pháp mặt phẳng phụ trợ là các mặt phẳng chiếu để giải quyết, bài toán gồm 3 bước sẽ tìm được một điểm chung. Giao tuyến xác định bởi hai điểm chung (xem trang 24 sách lý thuyết)
- 7 (H-69) Tương tự cũng sử dụng mặt phẳng phụ trợ là các mặt phẳng bằng (mặt), sau đó theo trình tự các bước của phương pháp sẽ xác định được giao tuyến bởi hai điểm chung.
- 8 (H-70) Dễ thấy P là mặt phẳng chiếu đứng , vì vậy một hình chiếu của giao điểm I đã biết: $I_2=A_2B_2$ x nP , $I_1\in A_1B_1$ (được dựng từ biểu thức tỷ số đơn $(A_1B_1I_1)=(A_2B_2I_2)$
- 9 (H-71) Do a là đường thẳng chiếu bằng nên bài toán gặp trường hợp đặc biệt , giao điểm I=axQ(A,B,C) có $I_1=a_1$, áp dụng bài toán cơ bản điểm thuộc mặt phẳng Q sẽ tìm ra I_2 .
 - (H-72) Hoàn toàn tương tự (H-71) có $I_1 = a_1$ và suy ra $I_2 \in Q(K,x)$.

10- (H-73) a/ Bài toán ở vị trí tổng quát, phải sử dụng phương pháp phụ trợ để giải quyết. $\begin{array}{c} a_2 \\ b_2 \end{array}$

+Chọn mặt phẳng phụ trợ chiếu đứng $\varphi_2 = d_2$

+Vẽ giao tuyến phụ trợ $g = \varphi x P$:

 $g_2=\varphi_2=d_2$, gắn g vào hai x điểm của mặt phẳng Q sẽ tìm được g_1 .

+Tìm giao điểm I=g x d :

 $I_1=g_1 \times d_1$, suy ra $I_2 \in d_2$ I (I_1, I_2) là nghiệm của bài toán.

- -(H-74) b/Hoàn toàn tương tự (H-73), ở đây lưu ý hình chiếu của các điểm tương ứng thuộc vết.
- -(H-75) c/ P là mặt phẳng chiếu cạnh, do đó bài toán sẽ đơn giản khi sử dung hình chiếu canh để giải quyết.

Các bài toán tổng hợp

1 - (H-76) a/ Bài toán có ba bược chính :

- +Ap dụng điều kiện đường thẳng vuông góc với mặt phẳng $(d_1 \perp h_1, d_2 \perp f_2)$ sẽ vẽ được đường thẳng d đi qua và vuông góc P(A,B,C).
- +Tìm giao điểm I của d và mặt phẳng P bằng phương pháp phụ trợ.
- +Sử dụng phương pháp tam giác tìm độ lớn thật của KI, chính là khoảng cách cần tìm.
- -(H-77)b/ Bài toán ở trường hợp đặc biệt, khoảng cách cần tìm có ngay trên hình chiếu bằng vì I_1 chính là chân đường vuông góc hạ từ K_1 đến mP, $KI = K_1I_1$.
 - -(H-78)c/ Xem trang 32 sách lý thuyết.
- 2 -(H-79) a/ P là mặt phẳng chiếu đứng, vậy Q cũng là mặt phẳng chiếu đứng. Dễ thấy trên đồ thức nQ song song và cách nP một đoạn đúng bằng 20mm.
 - (H-80) b/ Bài toán có thể chia thành ba bước như sau :
- +Lấy một điểm I thuộc P (thuộc vết đứng chẳng hạn), vẽ d vuông góc P $(d_1 \perp mP, d_2 \perp nP)$.
- +Dựng trên d một điểm J sao cho IJ =20mm(xem bài 12, H-39).
- +Qua J dựng mặt phẳng Q song song P (xem bài 11,H-57,58,59).
- (H-81) c/ Hoàn toàn tương tự câu b/ ,ở đây lưu ý phải vẽ thêm một đường bằng và một đường mặt của mặt phẳng Q(a,b).
- 3 (H-82) Gọi J là chân đường vuông góc hạ từ K lên I. Do I là đường thẳng chiếu bằng ta có $J_1 \equiv I_1$ và KJ là đoạn đường bằng. K_1J_1 là khoảng cách cần tìm.
 - (H-83) Bài toán có thể chia làm ba bước :
- +Qua K vẽ mặt phẳng Q(h,f) vuông góc $I(I_1 \perp h_1, I_2 \perp f_2)$.
- +Tìm giao điểm J của l và mặt phẳng Q (phương pháp phụ trợ).
- +Dùng phương pháp tam giác xác định khoảng cách KJ.
- 4 (H-84) Gọi J,K là chân đường vuông góc chung trên a và b.Dễ dàng thấy JK là đoạn đường bằng, có $J_1 \equiv a_1$ và $K_1J_1 \perp b_1$. K_1J_1 là khoảng cách cần tìm.
- 5 (H-85) Vẽ các đường dốc nhất của mặt phẳng P đối với các mặt phẳng hình chiếu P_1 và P_2 . Ứng dụng phương pháp tam giác tìm góc nghiêng của các đường nầy với P_1 và P_2 . Đây cũng chính là các góc cần tìm.
- 6 (H-86) Đây là bài toán ngược của bài ở hình-85.
- 7- (H-88) Dựng mặt phẳng P (h,f) qua A vuông góc AB ,C phải thuộc P.

Đã biết hình chiếu đứng A_2C_2 nên dễ dàng tìm được hình chiếu bằng A_1C_1 .(Lưu ý $A_1B_1 \perp h_1$, $A_2B_2 \perp f_2$).

8- (H-89) Giao tuyến g của hai mặt phẳng có thể xác định bởi hai giao điểm của hai cạnh của mặt phẳng nầy với mặt phẳng kia. Ví dụ dùng phương pháp phụ trợ tìm giao của DE và DF với mặt phẳng ABC ta có hai điểm I, J nào đó xác định giao tuyến cần tìm.

Các phép biến đổi hình chiếu

- 1 (H-90) a/Thay đổi mặt phẳng hình chiếu đứng mới đưa AB trở thành đường mặt (lưu ý trục x'// A_1B_1). $A'_2B'_2$ là độ dài cần tìm, góc $\alpha = (x'/ A'_2B'_2)$ là góc cần tìm. (H-91) b/ Thay đổi mặt phẳng hình chiếu đứng mới đưa mặt phẳng P trở thành chiếu đứng, góc $\alpha = n'P/x'$ là nghiêm. (lưu ý $x' \perp mP$)
- 2 (H-92) Đây là bài toán ngược của bài toán ở H- 91.
- 3 (H-93) Sử dụng mặt phẳng hình chiếu cạnh .
- 4 (H-94) a/ Sử dụng mặt phẳng hình chiếu cạnh.
 - -(H-95) b/ Sử dụng mặt phẳng hình chiếu cạnh .
- 5 -(H-96) Sử dụng mặt phẳng hình chiếu cạnh, mặt phẳng cần dựng là mặt phẳng chiếu cạnh có hình chiếu suy biến vuông góc A_3B_3 . Dễ dàng trả về hai vết mP và nP song song trục x.
- 6 (H-97) Thay đổi mặt phẳng hình chiếu đứng mới đưa mặt phẳng P trở thành chiếu đứng (lưu ý x' \perp mP). Bài toán trở thành đặc biệt. $J'_2=J'_2$ x n'P, suy ra J_1 và J_2 .
- 7 (H-98) a/ Thay đổi hai lần các mặt phẳng hình chiếu đưa l trở thành đường thẳng chiếu, bài toán trở thành đặc biệt. (H-99) b/ Thay đổi hai lần các mặt phẳng hình chiếu đưa AB trở thành đường thẳng chiếu, bài toán trở thành đặc biệt.
- 8 (H-100) a, Lần lượt thay P_2 (để AB trở thành đường mặt) rồi P_1 (để AB trở thành đường thẳng chiếu bằng). bài toán trở thành đặc biệt (xem lại bài 4, H-84)
- 9 (H-101) Đây là bài toán ngược của (H-100). Thực hiện lần lượt các phép thay P_2 (để AB và CD trở thành đường mặt) và thay P_1 (để AB, CD trở thành đường thẳng chiếu bằng, lúc này $A'_1 \equiv B'_1$; $C'_1 \equiv D'_1$ và khoảng cách giữa A'_1 và C'_1 bằng 25mm). Lưu ý bài toán có hai nghiệm và C_2D_2 // A_2B_2 .

10- (H-102) Vị trí mới A' phải thuộc một đường bằng h của P có độ cao bằng độ cao của A ($h_2 \in A_2$). Suy ra A'₁ là giao của hai quĩ tích : đường tròn tâm t₁ đi qua A₁ và h₁. Chú ý biện luận nghiệm.

11- (H-103) Tìm giao điểm J của d với mặt phẳng P, chọn trục quay t là đường thẳng chiếu bằng đi qua J ($J_1 \equiv t_1$). Chọn một điểm A bất kỳ thuộc d rồi quay A quanh t vào thuộc mặt phẳng (xem bài 10, H-102). 12- (H-104) Qua A vẽ một đường bằng h của mặt phẳng Q(A,B,C) ứng dụng phép quay quanh đường bằng đưa Q(A,B,C) trở thành mặt phẳng bằng có hình chiếu bằng mới là tam giác $A'_1B'_1C'_1$. Vẽ trực tâm G'_1 của tam giác của tam giác nầy rồi trả về hai hình chiếu ban đầu sẽ có G_1,G_2 cần tìm.

13- (H-105) Lấy điểm D thuộc m .Vẽ qua O đường thẳng p // n .Xác định độ lớn thực của góc O bằng cách quay mặt phẳng (p x m) quanh một đường bằng thuộc nó .

14-(H-106) Lấy một điểm O thuộc m .Vẽ qua O một đường thẳng n vuông góc với mặt phẳng P .Gọi α là góc nhọn giữa m và P thì góc nhọn giữa m và n là 90° - α . Quay mặt phẳng (n x m) quanh một đường bằng thuộc nó sẽ có góc 90° - α cần tìm.

15-(H-107) Lần lượt thay P_2 (để CD trở thành đường mặt) và P_1 (để CD trở thành đường thẳng chiếu bằng). Góc của hai mặt phẳng chính bằng góc của hai đường thẳng là hình chiếu suy biến của hai mặt phẳng.

16-(H-108) P là mặt phẳng chiếu đứng ,các điểm A2,B2,C2 thẳng hàng và thuộc nP. Gập mặt phẳng P quanh vết bằng mP đưa P đến trùng P₁ sẽ có độ lớn thật của x tam giác ABC là A'₁B'₁C'₁. Xem hình vẽ bên.

-(H-109) Ứng dụng bài toán điểm thuộc đường thẳng tìm hình chiếu đứng A2,B2,C2 rồi giải tương tự (H-108).

-(H-110) Tương tự (H-109).

Biểu diễn đường cong và mặt

1 - (H-111) a/ Hình chiếu bằng suy biến thành đoạn thẳng dài 30mm, xem trang 43 sách lý thuyết.

- (H-112) b/Gập quanh vết bằng mP đưa P đến trùng P_1 , vẽ đường tròn tâm O'_1 đường kính 30mm. Chọn cặp đường kính vuông góc (AB là đường bằng và CD là đường cạnh) trả về P_1 và P_2 sẽ có các cặp trục của hai elip là hai hình chiếu của đường tròn.

- (H-113) c/Xem H-8.7,trang 44 sách lý thuyết.

2 - (H-114) Chọn cặp đường kính AB và CD vuông góc ở hình chiếu đứng . Trên hình chiếu bằng sẽ trở thành cặp đường kính liên hiệp và đủ xác định elip. Xem hình vẽ bên.

3 -(H-115) Xem A là điểm đầu của một vòng xoắn .

4 -(H-116) Vẽ hình gập của đáy $(A_0B_0C_0)$ và tâm (H_0) của đáy .Xác định các hình chiếu của ABC và tâm H .

Qua H dựng đường thẳng d vuông góc với P,rồi đặt trên d đoạn SH=30mm.

5 -(H-117) Lưu ý cạnh AB là đường bằng và AC là đường mặt vì vậy nếu gọi a,b,c lần lượt là các cạnh của lăng trụ đi qua A,B,C ta sẽ có $a_1,b_1,c_1 \perp A_1B_1$ và $a_2,b_2,c_2 \perp A_2C_2$.

6 -(H-118) Gọi O là tâm đường tròn đáy (c), ta có S_2O_2 =30mm. Hình chiếu đứng của đường tròn đáy là đoạn thẳng dài 30mm, hình chiếu bằng là elip (xem H- 86,trang 43 sách lý thuyết).

7 -(H-119) Gọi chân đường vuông góc hạ từ A đến I là O, ta có $A_2O_2 \perp I_2$, $\Rightarrow O_1 \in I_1$. Dùng phương pháp tam giác xác định độ lớn AO .Vẽ cầu tâm O bán kính OA, các đường sinh bao của trụ sẽ tiếp xúc các đường tròn bao của cầu và song song I_1,I_2 .

8 -(H-120) Dùng phương pháp tam giác xác định độ lớn AO. Hai đường tròn có tâm O_1 và O_2 , có bán kính bằng OA là hai đường tròn bao của cầu.

- 9 -(H-121) Xem H-8.14 trang 48 sách lý thuyết.
 - -(H-122) Xem H-8.12 trang 47 sách lý thuyết.
 - -(H-123) Xem H-8.15 trang 48 sách lý thuyết.
 - -(H-124) Xem H-8.16 trang 49 sách lý thuyết.

Mặt phẳng tiếp xúc

- 1 -(H-125) **Mặt phẳng cần dựng là mặt phẳng đi qua A và tiếp xúc trụ tròn xoay trục h có bán kính r**. Thay đổi mặt phẳng hình chiếu đứng mới đưa trụ thành chiếu đứng, trụ suy biến thành đường tròn tâm h'₂ có bán kính r và mặt phẳng cần dựng suy biến thành đường thẳng đi qua A'₂ và tiếp xúc với đường tròn. Trả về hệ thống cũ, mặt phẳng xác định bởi A và đường sinh tiếp xúc.(Chú ý biện luận nghiệm) 2 -(H-126) **Mặt phẳng cần dựng là mặt phẳng đi qua d và tiếp xúc nón tròn xoay trục h** ⊥ **P ,có góc nghiêng tạo với P là** α. Thay đổi mặt phẳng hình chiếu bằng mới đưa nón thành chiếu bằng. Xem H-9.2 trang 51 sách lý thuyết.(Chú ý biện luận nghiệm)
- 3 -(H-127) Xác định hai mặt phẳng tiếp xúc nón đồng thời song song với đường bằng của mặt phẳng. Điểm cao nhất và thấp nhất là giao của mặt phẳng cắt với hai đường sinh tiếp xúc.
- 4 -(H-128) Xem H-9.10 trang 55 sách lý thuyết.

Giao của mặt phẳng với các mặt.

- 1 -(H-129) Dễ thấy P là mặt phẳng chiếu đứng do đó đã biết hình chiếu đứng của giao tuyến là một tứ giác trùng với hình chiếu suy biến của mặt phẳng.Vẽ hình chiếu còn lại của các đỉnh bằng bài toán điểm thuộc đường thẳng.
- 2 -(H-130) Đây cũng thuộc trường hợp đặc biệt : lăng trụ là chiếu đứng vì vậy hình chiếu đứng của giao tuyến đã biết, trùng với hình chiếu suy biến của lăng trụ. Ưng dụng bài toán cơ bản số 2- điểm thuộc mặt phẳng để dựng hình chiếu bằng các đỉnh của tứ giác giao tuyến.
- 3 -(H-131) Sử dụng phương pháp phụ trợ để tìm giao điểm của các cạnh tứ diện với mặt phẳng Q. Giao tuyến sẽ là một tam giác IJK, với I=SAxQ,J=SBxQ,K=SCxQ.
- 4 -(H-132) Vẽ một mặt phẳng Q vuông góc với các cạnh của lăng trụ abc(mặt phẳng Q có thể xác định bằng hai vết (mQ $\perp a_1$,nQ $\perp a_2$)). Sau đó sử dụng phương pháp phụ trợ để tìm giao điểm của các cạnh lăng

tru với mặt phẳng Q .Tiết diên vuông góc là một tam giác ,sử dụng

5 -(H-133a) Măt phẳng cắt xác định bởi vết bằng và đỉnh S. Để xác định vết đứng, qua S vẽ đường bằng của mặt phẳng .Vết đứng của mặt phẳng sẽ đi qua vết đứng của đường bằng.(Có thể dùng biến đổi hình chiếu để aiải auvết.

-(H-133b,c,d) Thay đối mặt phẳng hình chiếu đứng mới đưa mặt phẳng P trở thành chiếu đứna .Vết đứng mới sẽ thỏa mãn cắt theo từng dang

giao tuyến như hình vẽ bên. Trên hình có trả về vết đứng của dana parabol.

6 -(H-134) Sử dung mặt phẳng hình chiếu canh sẽ cho giao tuyến suy biến thành đoan thẳng và dang giao là elip .Trả về hai hình chiếu căp truc đủ xác định elip.

-(H-135) Xem H-10.7 trang 61 sách lý thuyết. Cũng có thể thay đổi mặt phẳng hình chiếu đứng mới (H-133) để giải quyết.

7 -(H-136) Do P là mặt phẳng chiếu đứng nên hình chiếu đứng của elip giao tuyến đã biết, trùng với hình chiếu suy biến của mặt phẳng.Đưa căp đường kính liên hợp xuống hình chiếu bằng.

-(H-137) Xem H-10.2 trang 57 sách lý thuyết.

8 -(H-138) Thay đổi mặt phẳng hình chiếu đứng mới đưa mặt phẳng cắt trở thành mặt phẳng chiếu đứng. Đường tròn giao tuyến sẽ trở thành đoan thẳng. Đưa cặp đường kính vuông góc trở về để xác định elip trên hai hình chiếu.

9 -(H-139) Thay đổi mặt phẳng hình chiếu đứng mới đưa mặt phẳng P trở thành mặt phẳng chiếu đứng. Vẽ mặt phẳng Q song song P và tiếp xúc với cầu có bán kính $r=\sqrt{R^2-15^2}$ (Lưu ý n'Q // n'P và tiếp xúc với đường tròn có bán kính $r=\sqrt{R^2-15^2}$).

Giao của đường thẳng với các mặt.

- 1 -(H-140) a là đường thẳng chiếu đứng nên đã biết một hình chiếu đứng của hai giao điểm. Áp dụng bài toán điểm thuộc mặt tìm hình chiếu còn lại. Để tìm giao điểm của c, phải sử dụng mặt phẳng phụ trợ là mặt phẳng chiếu đứng $\varphi_2 = c_2$.
- 2 -(H-141) Để tìm giao điểm của b, phải sử dụng mặt phẳng phụ trợ là mặt phẳng chiếu đứng $\varphi_2 = b_2$. Để tìm giao của MN ,sử dụng mặt phẳng phu trơ φ (SM,SN).
- 3 -(H-142) a/a là đường thẳng chiếu đứng nên đã biết một hình chiếu đứng của hai giao điểm. Áp dụng bài toán điểm thuộc mặt nón tìm hình chiếu còn lại. Để tìm giao của b, sử dụng mặt phẳng phụ trợ φ (S,b).
- -(H-143) b/ a là đường thẳng chiếu đứng nên đã biết một hình chiếu đứng của hai giao điểm. Áp dụng bài toán điểm thuộc mặt nón tìm hình chiếu còn lại. Để tìm giao của b, sử dụng mặt phẳng phụ trợ φ (s,b). Với s là một đường thẳng cắt b và song song đường sinh trụ. Xem hình-143 bên cạnh ta có hai giao điểm là l, J.

- -(H-144) c/Đường thẳng a là chiếu đúng nên đã biết một hình chiếu đứng của hai giao điểm. Áp dụng bài toán điểm thuộc mặt cầu tìm hình chiếu còn lại. Để tìm giao của b, sử dụng thay đỏi mặt phẳng hình chiếu, xem H-11.6 trang 68 sách lý thuyết.
- 4 -(H-145) Bài toán trở thành đi tìm giao điểm I,J của đường thắng a với mặt nón tròn xoay chiếu bằng đỉnh S, góc tạo với P_1 là 60° . SI và SJ là hai đường thẳng cần dựng. Chú ý biện luận nghiệm.
- 5 -(H-146) Bài toán trở thành đi tìm giao điểm I,J của đường thẳng a với mặt cầu tâm O đường kính AB. Bài toán có dạng đặc biệt vì d là

đường thẳng chiếu. (Dùng phương pháp tam giác để tìm độ lớn thật AB).

6 -(H-147) Bài toán trở thành đi tìm giao điểm I,J của đường thẳng l với mặt trụ tròn xoay chiếu đứng trục d, bán kính R. Bài toán có dạng đặc biệt vì tru là chiếu đứng.

Giao của hai mặt

1 -(H-148) Bài toán giao thuộc dạng 1-giao hai đa diện: giao tuyến là 2 đường gấp khúc kín(giao hoàn toàn) gồm các đoạn thẳng. Hình chiếu đứng của giao tuyến cũng đã biết trùng với hình chiếu suy biến của lăng trụ tam giác. Dựng hình chiếu bằng 8 đỉnh của đường 2 gấp khúc bằng bài toán điểm thuộc đường thẳng và bài toán điểm thuộc mặt phẳng. Chú ý đặt tên đầy đủ cho các cạnh của lăng trụ, các đỉnh của chóp và các đỉnh của giao tuyến. Để xét thấy khuất của giao tuyến phải xét lần lượt với cả hai mặt.

2 -(H-149) Bài toán giao thuộc dạng 1-giao hai đa diện : giao tuyến là đường gấp khúc kín gồm các đoạn thẳng. Hình chiếu bằng của giao tuyến cũng đã biết trùng với hình chiếu suy biến của lăng trụ tứ giác. Dựng hình chiếu đứng 10 đỉnh của đường gấp khúc bằng bài toán điểm thuộc đường thẳng và bài toán điểm thuộc mặt phẳng. Chú ý đặt tên đầy đủ cho các cạnh của 2 lăng trụ và các đỉnh của giao tuyến.

3 -(H-150) Bài toán giao thuộc dạng 1-giao hai đa diện: giao tuyến là đường gấp khúc kín gồm các đoạn thẳng. Hình chiếu đứng của giao tuyến cũng đã biết trùng với hình chiếu suy biến của lăng trụ tam giác. Dựng hình chiếu bằng 10 đỉnh của đường gấp khúc bằng bài toán điểm thuộc đường thẳng và bài toán điểm thuộc mặt phẳng. Chú ý đặt tên đầy đủ cho các cạnh của lăng trụ, các đỉnh của chóp và các đỉnh của giao tuyến.

4 -(H-151) Bài toán giao thuộc dạng 2-giao đa diện và mặt cong: giao tuyến là đường gấp khúc kín gồm các cung tròn . Hình chiếu bằng của giao tuyến cũng đã biết trùng với hình chiếu suy biến của lăng trụ tam giác. Dựng hình chiếu đứng 10 của đường gấp khúc bằng bài toán điểm thuộc cầu và bài toán đường tròn thuộc mặt cầu. Chú ý đặt tên đầy đủ cho các canh của lăng tru và các đỉnh của giao tuyến.

4 -(H-151) Bài toán giao thuộc dạng 2- giao đa diện và mặt cong: giao

tuyến là đường gấp khúc kín gồm các cung tròn và elip. Hình chiếu đứng của giao tuyến cũng đã biết, trùng với hình chiếu suy biến của lăng trụ tam giác. Dựng hình chiếu của đường gấp khúc bằng bài toán điểm thuộc nón và bài toán đường thuộc mặt nón. Chú ý đặt tên đầy đủ cho các cạnh của lăng trụ và các đỉnh của giao tuyến.

6 -(H-153) Bài toán giao thuộc dạng 2-giao đa diện và mặt cong: giao tuyến là 2 đường gấp khúc kín (giao hoàn toàn) gồm các cung nửa elip. Hình chiếu đứng của giao tuyến cũng đã biết, trùng với hình chiếu suy biến của trụ tròn xoay. Dựng hình chiếu bằng của đường gấp khúc bằng bài toán điểm thuộc mặt phẳng và bài toán đường thuộc mặt phẳng. Chú ý đặt tên đầy đủ cho các cạnh của lăng trụ và các đỉnh của giao tuyến.

7 -(H-154) Bài toán giao thuộc dạng 3- giao 2 mặt cong: giao tuyến là đường cong ghềnh bậc 2x2=4. Hình chiếu đứng của giao tuyến cũng đã biết, trùng với hình chiếu suy biến của trụ tròn xoay. Dựng hình chiếu bằng của đường cong bằng bài toán điểm thuộc mặt nón và bài toán đường thuộc mặt .Chú ý chọn các điểm cần thiết như thuộc đường bao của 2 mặt, ranh giới thấy khuất của trụ. Hình chiếu bằng giao tuyến có trục đối xứng nằm ngang.

8 -(H-155) Bài toán giao thuộc dạng 3- giao 2 mặt cong: giao tuyến là đường cong ghềnh bậc 2x2=4.Ở đây chỉ xét nửa bài toán. Hình chiếu bằng của giao tuyến cũng đã biết, trùng với hình chiếu suy biến của trụ tròn xoay. Dựng hình chiếu đứng của đường cong bằng bài toán điểm thuộc mặt cầu và bài toán đường thuộc mặt cầu .Chú ý chọn các điểm cần thiết như thuộc đường bao của 2 mặt, ranh giới thấy khuất của trụ.

9 -(H-156) Tương tự bài 8,H-155.

10 -(H-157) Ứng dụng định lý 2 của giao hai mặt bậc 2 có kết quả giao là hai đường elip. Hình chiếu đứng của giao tuyến cũng đã biết, trùng với hình chiếu suy biến của trụ tròn xoay. Dựng hình chiếu bằng của đường cong bằng bài toán điểm thuộc mặt nón và bài toán đường thuôc mặt.

Các bài từ 11 đến 15 hoàn toàn tương tự với các lưu ý: -Xếp dạng bài toán để có dạng giao tuyến (dạng 1,2,3,dạng các mặt bậc 2 thỏa mãn các định lý đặc biệt); -Nhận xét các yếu tố đối xứng; -Chọn các điểm

cần thiết phải vẽ (các điểm gãy, điểm thuộc đường bao, điểm thuộc ranh giới thấy khuất, điểm cao nhất, điểm thấp nhất...) ;-Nối theo trình tự hợp lý và xét thấy khuất.

PHẦN IV: Đề thi mẫu

Câu 1 : Tìm khoảng cách từ điểm A đến mặt phẳng $\alpha(h,f)$.(H-164)

Giải:

-Qua A vẽ d vuông góc α : $d_1 \perp h_1$; $d_2 \perp f_2.$

-Sử dụng mặt phẳng phụ trợ φ là chiếu đứng, chứa d: $\varphi_2 \equiv d_2 \equiv g_2$, suy ra g_1 và tìm được $I_1 = d_1 \times g_1$, đưa lên hình chiếu đứng co $I_2 \in d_2$.

-Sử dụng phương pháp tam giác , có khoảng cách cân tìm $AI = A_1I_0$.

Thường người ta có thể sử dụng các phép biến đổi hình chiếu để đưa bài toán về trường hợp đặc biệt. Đưa mặt phẳng về vị trí mặt phẳng chiếu.(xem chương 7)

Câu 2 : Vẽ hai hình chiếu của tam giác đều thuộc mặt phẳng α , đã biết hình chiếu bằng A_1B_1 của cạnh AB thuộc đường bằng.(H-165)

<u>Giải:</u>

Sử dụng phép quay quanh vết bằng đưa mặt phẳng α trùng P_1 .Có hình chiếu bằng mới của AB là $A'_1B'_1$, ta vẽ thêm đỉnh C'_1 của tam giác đều thật. Gắn các đỉnh như hình vẽ sẽ đưa về

được hai hình chiếu ban đầu.

Thường người ta sử dụng phép gập quanh các vết để giải các bài toán liên quan đến độ lớn thật như dựng hình vuông, đường tròn...).
Câu3: Vẽ giao tuyến của hai lăng tru. (H-166)

Giải:

Bài toán giao thuộc dang 1-giao hai đa diên : giao tuyến là đường gấp khúc kín (giao không hoàn toàn) gồm các đoan thắng. Hình chiếu bằng của giao tuyến cũng đã biết trùng với hình chiếu suy biến của lăng tru tứ giác.Dưng hình chiếu đứng 10 đỉnh của đường gấp khúc bằng bài toán điểm thuộc đường thắng và bài toán điểm thuộc mặt phẳng thuộc lặng tru còn lai. Chú ý đặt tên đầy đủ cho các canh của lăng tru và các đỉnh của giao tuyến. Để xét thấy khuất của giao tuyến phải xét $d_1 = 2_1 = 1$ lần lượt với cả hai mặt.

Đề thi tham khảo:

ĐỀ THI : HÌNH HỌC HỌA HÌNH ÂAÛI HOÜC KYÎ THUÁÛT ÂAÌ

THÔNG QUA:

ĐỂ SỐ : 01A/2001

1/ Không thay đối mặt phẳng hình chiếu ,xác định góc nghiêng của mặt phẳng $\alpha(m\alpha,n\alpha)$ với các mặt phẳng hình chiếu.

 $2/Ve\hat{\imath}$ hçnh chiãúu âæïng cuía âæåìng thàóng a âi qua A ,nghiãng våïi màût phàóng chiãúu bàòng Q1 mäüt goïc 30° (chuï yĩ caïc qué têch). $3/Ve\hat{\imath}$ giao hai màût.

MÚC TÝC

Phần I : Câu hỏi ôn tập Phần II : Đề bài tập	01 04
Phần IV : Bài thi mẫu	73