17-18-2 概率统计参考答案 (A卷)

一、(12分)每空1分

1. 事件 *A* 和 *B* 都不发生 2. <u>0.6</u> 3. <u>9/64</u> 4. <u>e⁻⁴</u> 5. <u>9</u> 6. <u>1/9</u> 7. <u>0.0228</u>

8. $\underline{n+m}$, $\underline{2(n+m)}$ 9. $\underline{[39.51, 40.49]}$ 10. $\underline{0.05}$, $\underline{0.5845}$

二、(12分)

解: (1) 设 A、B、C 分别表示甲、乙、丙 3 台机床加工出的零件是一等品。

易知:
$$P(A\overline{B}) = \frac{1}{4}$$
, $P(B\overline{C}) = \frac{1}{12}$, $P(AB) = \frac{3}{20}$

有独立性可得 $P(A)P(\overline{B}) = \frac{1}{4}$, $P(B)P(\overline{C}) = \frac{1}{12}$, $P(A)P(B) = \frac{3}{20}$

解方程组得:
$$P(A) = \frac{2}{5}, P(B) = \frac{3}{8}, P(C) = \frac{7}{9}$$

(2)
$$P(A \cup B \cup C) = 1 - P(\overline{A})P(\overline{B})P(\overline{C}) = 1 - \frac{3}{5} \times \frac{5}{8} \times \frac{2}{9} = \frac{11}{12}$$

三、(16分)

1. **M**: (1)
$$\pm \frac{1}{6} + \frac{1}{5} + \frac{1}{15} + c = 1$$
, $\pm \frac{17}{30} = 1$

(2)
$$Y = X^2$$
 的分布律为

Y	1	4	9
P_k	4/15	1/6	17/30

(3) Y的分布函数为

$$F(y) = \begin{cases} 0, & y < 1 \\ \frac{4}{15}, & 1 \le y < 4 \\ \frac{13}{30}, & 4 \le y < 9 \\ 1, & y \ge 9 \end{cases}$$

2 解 (1)
$$\exists \begin{cases}
\lim_{x \to +\infty} F(x) = 1 \\
\lim_{x \to 0^{+}} F(x) = \lim_{x \to 0^{-}} F(x)
\end{cases}$$
 $\exists \begin{cases}
A = 1 \\
B = -1
\end{cases}$

(2)
$$P(X \le 2) = F(2) = 1 - e^{-2}$$

$$P(X > 3) = 1 - F(3) = 1 - (1 - e^{-3}) = e^{-3}$$

(3)
$$f(x) = F'(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

解: (1) (X,Y)的概率密度函数为

$$f(x,y) = \begin{cases} 1, & x > 0, y > 0, 2x + y \le 2, \\ 0, & 其他. \end{cases}$$

(2)

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_0^{2-2x} 1 dy = 2 - 2x, 0 < x < 1, \\ 0, & \text{ #.w.} \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{0}^{\frac{2-y}{2}} 1 dx = \frac{2-y}{2}, 0 < y < 2, \\ 0, & \text{ 其他.} \end{cases}$$

在区域 D= $\{(x,y) | x > 0, y > 0, 2x + y \le 2\}$ 上, $f(x,y) \ne f_X(x) f_Y(y)$, X和 Y不相互独立.

(3) Z = X + Y 的概率密度函数为

$$f_{z}(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx = \begin{cases} \int_{0}^{z} 1 dx, & 0 < z < 1, \\ \int_{0}^{2-z} 1 dx, & 1 \le z < 2, \\ 0, & \text{#.e.} \end{cases} \begin{cases} z, & 0 < z < 1, \\ 2 - z, & 1 \le z < 2, \\ 0, & \text{#.e.} \end{cases}$$

五、(14分)

解: (1)
$$E(Z) = E(2X - 3Y) = 2E(X) - 3E(Y) = 2$$

 $D(Z) = D(2X - 3Y) = D(2X) + D(3Y) - 2Cov(2X,3Y)$
 $= 4D(X) + 9D(Y) - 12Cov(X,Y)$
 $= 16 + 9 - 12\sqrt{D(X) \cdot D(Y)} \cdot \rho_{XY} = 9$

(2)
$$Cov(X,Z) = 2Cov(X,X) - 3Cov(X,Y) = 4$$

$$\rho_{XZ} = \frac{Cov(X,Z)}{\sqrt{D(X)}\sqrt{D(Z)}} = \frac{2}{3}$$

$$(3) : \rho_{XZ} = \frac{2}{3} \neq 0 :: 不独立$$

六、(8分)

解: 由于
$$\bar{X} \sim N(\mu, \sigma^2/10)$$
, 因此 $\frac{\bar{X} - \mu}{\sigma/\sqrt{10}} \sim N(0, 1)$, $\frac{(\bar{X} - \mu)^2}{\sigma^2/10} \sim \chi^2(1)$

又由性质可知, $\frac{9S_X^2}{\sigma^2} \sim \chi^2(9)$,且 \bar{X} 和 S_X^2 相互独立,

因此,
$$\frac{(\bar{X}-\mu)^2}{\sigma^2/10} + \frac{9S_\chi^2}{\sigma^2} \sim \chi^2(10)$$

由于 $\frac{Y_i - \mu}{\sigma}$ ~ N(0,1), $i = 1, \dots 5$ 且相互独立,因此,

$$\sum_{i=1}^{5} \left(\frac{Y_i - \mu}{\sigma} \right)^2 \sim \chi^2(5)$$

所以,

$$\frac{10(\bar{X}-\mu)^2+9S_X^2}{2\sum_{i=1}^5(Y_i-\mu)^2}\sim F(10,5)$$

七、(12分)

解: (1)由于
$$EX = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{\infty} \frac{x^2}{\theta^2} e^{-\frac{x^2}{2\theta^2}} dx = \frac{\sqrt{2\pi}}{2\theta} \theta$$

$$\diamondsuit EX = \overline{X}$$
, 即 $\frac{\sqrt{2\pi}}{2}\theta = \overline{X}$

解得 θ 的矩估计为 $\hat{\theta} = \sqrt{\frac{2}{\pi}} \bar{X}$

(2) 似然函数为
$$L(\theta) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} \frac{x_i}{\theta^2} e^{-\frac{x_i^2}{2\theta^2}} = \frac{1}{\theta^{2n}} \left(\prod_{i=1}^{n} x_i\right) e^{-\sum_{i=1}^{n} \frac{x_i^2}{2\theta^2}}$$

对数似然函数为
$$\ln L(\theta) = -2n \ln \theta + \sum_{i=1}^{n} \ln x_i - \sum_{i=1}^{n} \frac{x_i^2}{2\theta^2}$$

对
$$\theta$$
 求导并令其为零,得
$$\frac{d \ln L(\theta)}{d \theta} = -\frac{2n}{\theta} + \frac{1}{\theta^3} \sum_{i=1}^n x_i^2 = 0$$

解得
$$\theta$$
的最大似然估计为 $\hat{\theta} = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} x_i^2}$

八、(12分)

解: 提出假设 H_0 : $\sigma^2 = \sigma_0^2$, H_1 : $\sigma^2 \neq \sigma_0^2$.

选取检验统计量
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1)$$

拒绝域
$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \ge \chi_{\alpha/2}^2(n-1)$$
 or $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \le \chi_{1-\alpha/2}^2(n-1)$

已知
$$n=5$$
, $\sigma_0=0.048$, $\alpha=0.05$, $s^2=0.00778$

查表
$$\chi^2_{\alpha/2}(n-1) = \chi^2_{0.025}(4) = 11.143$$
, $\chi^2_{1-\alpha/2}(n-1) = \chi^2_{0.975}(4) = 0.484$

计算
$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = 13.51 > 11.143$$

拒绝 H_0 ,即在显著性水平 $\alpha = 0.05$ 下认为这天纤度的波动有显著变化。