Intern1의 논문 리뷰 1 Nov. 2020.

PlaNet

Learning Latent Dynamics for Planning from Pixels

PlaNet Deep Planning Network

- Scalable Model-based RL
- Efficint planning in latent space with large batch size
- Reaches top performance using 200X fewer episodes

PlaNet Deep Planning Network

■ Recurrent State Space Model (RSSM)

Deterministic & Stochastic Components

Latent Overshooting

Latent Space Result로 Latent Sequence Model을 굴리는게 장기예측에 적합

Recurrent State Space Model

보이는게 State의 전부가 아닐 수 있다. (Non-Marcov)

Partially Observable Markov Decision Process를 Marcov Decision Process로 바꾸는 기법

DQN에서는 비슷하게 **이미지 네 장을 묶어 하나의 State**로 취급하는 것과 유사하게 (Non-Marcov를 Marcov하게 바꾸는 기법으로 제시하는 것이다.

Learned Latent Dynamics Model

Learned Latent Dynamics Model

Learned Latent Dynamics Model

RSSM에서 State는 Deterministic & Stochastic Components 으로 이루어져 있다.

 r_{t}

Determ	inistic
Compo	nents

Discrete Time step
Hidden states
Image observations
Continuous action vectors
Scalar rewards

Stochastic Components

Transition function: $s_t \sim p(s_t \mid s_{t-1}, a_{t-1})$ Observation function: $o_t \sim p(o_t \mid s_t)$ Reward function: $r_t \sim p(r_t \mid s_t)$ Policy: $a_t \sim p(a_t \mid o_{\leq t}, a_{< t}),$

Motivation

Deterministic

Stochastic transitions make it difficult for the transition model to reliably remember information for multiple time steps.

Stochastic

Split the state into stochastic and deterministic parts, allowing the model to robustly learn to predict multiple futures.

Detail

All information about the observations must pass through the sampling step of the encoder to avoid a deterministic shortcut from inputs to reconstructions.

■ Recurrent State Space Model (RSSM)

(b) Stochastic model (SSM)

(c) Recurrent state-space model (RSSM)

Reward function:

Policy:

$$s_t \sim p(s_t \mid s_{t-1}, a_{t-1})$$

$$o_t \sim p(o_t \mid s_t)$$

)

$$r_t \sim p(r_t \mid s_t)$$

$$a_t \sim p(a_t \mid o_{\leq t}, a_{< t}),$$

Deterministic state model:

Stochastic state model:

Observation model:

Reward model:

$$h_t = f(h_{t-1}, s_{t-1}, a_{t-1})$$

(4)

$$s_t \sim p(s_t \mid h_t)$$

$$o_t \sim p(o_t \mid h_t, s_t)$$

$$r_t \sim p(r_t \mid h_t, s_t),$$

Planning in Latent Space Past Experience searches for the best sequence of future actions.

Algorithm 1: Deep Planning Network (PlaNet)

 $p(s_t \mid s_{t-1}, a_{t-1})$ Transition model

Input:

R Action repeat

```
Observation model
   S Seed episodes
                               p(o_t \mid s_t)
                               p(r_t \mid s_t)
   C Collect interval
                                                       Reward model
   B Batch size
                               q(s_t \mid o_{\leq t}, a_{\leq t})
                                                       Encoder
   L Chunk length
                               p(\epsilon)
                                                        Exploration noise
   \alpha Learning rate
1 Initialize dataset \mathcal{D} with S random seed episodes.
2 Initialize model parameters \theta randomly.
3 while not converged do
         // Model fitting
        for update step s = 1..C do
              Draw sequence chunks \{(o_t, a_t, r_t)_{t=k}^{L+k}\}_{i=1}^B \sim \mathcal{D}
               uniformly at random from the dataset.
              Compute loss \mathcal{L}(\theta) from Equation 8.
              Update model parameters \theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta).
         // Data collection
        o_1 \leftarrow \text{env.reset}()
        for time step t = 1.. \left\lceil \frac{T}{B} \right\rceil do
              Infer belief over current state q(s_t \mid o_{\leq t}, a_{\leq t}) from
               the history.
              a_t \leftarrow \text{planner}(q(s_t \mid o_{\leq t}, a_{\leq t}), p), \text{ see}
11
               Algorithm 2 in the appendix for details.
              Add exploration noise \epsilon \sim p(\epsilon) to the action.
12
              for action repeat k = 1..R do
13
                  r_t^k, o_{t+1}^k \leftarrow \text{env.step}(a_t)
14
            r_t, o_{t+1} \leftarrow \sum_{k=1}^{R} r_t^k, o_{t+1}^R
        \mathcal{D} \leftarrow \mathcal{D} \cup \{(o_t, a_t, r_t)_{t=1}^T\}
```

```
PlaNet은 Planning을 위해
Cross Entropy Method (CEM) 을 사용했다.
```

```
Algorithm 2: Latent planning with CEM
   Input: H Planning horizon distance
                                                                q(s_t \mid o_{\leq t}, a_{\leq t})
                                                                                         Current state belief
                                                                p(s_t \mid s_{t-1}, a_{t-1}) Transition model
                I Optimization iterations
                                                                p(r_t \mid s_t)
                J Candidates per iteration
                                                                                         Reward model
                K Number of top candidates to fit
 1 Initialize factorized belief over action sequences q(a_{t:t+H}) \leftarrow \text{Normal}(0,\mathbb{I}).
2 for optimization iteration i = 1...I do
        // Evaluate J action sequences from the current belief.
       for candidate action sequence j = 1..J do
3
            a_{t:t+H}^{(j)} \sim q(a_{t:t+H})
4
            s_{t:t+H+1}^{(j)} \sim q(s_t \mid o_{1:t}, a_{1:t-1}) \prod_{\tau=t+1}^{t+H+1} p(s_\tau \mid s_{\tau-1}, a_{\tau-1}^{(j)})
            R^{(j)} = \sum_{\tau=t+1}^{t+H+1} E[p(r_{\tau} \mid s_{\tau}^{(j)})]
       // Re-fit belief to the K best action sequences.
       \mathcal{K} \leftarrow \operatorname{argsort}(\{R^{(j)}\}_{j=1}^{J})_{1:K}
7
      \mu_{t:t+H} = \frac{1}{K} \sum_{k \in \mathcal{K}} a_{t:t+H}^{(k)}, \quad \sigma_{t:t+H} = \frac{1}{K-1} \sum_{k \in \mathcal{K}} |a_{t:t+H}^{(k)} - \mu_{t:t+H}|.
       q(a_{t:t+H}) \leftarrow \text{Normal}(\mu_{t:t+H}, \sigma_{t:t+H}^2 \mathbb{I})
10 return first action mean \mu_t.
```

Objective Function

$$\ln p(o_{1:T} \mid a_{1:T}) \triangleq \ln \int \prod_{t} p(s_{t} \mid s_{t-1}, a_{t-1}) p(o_{t} \mid s_{t}) ds_{1:T}$$

$$\geqslant \sum_{t=1}^{T} \left(\underbrace{\text{E}_{q(s_{t} \mid o_{\leqslant t}, a_{< t})} [\ln p(o_{t} \mid s_{t})]}_{\text{reconstruction}} \leftarrow \underbrace{\text{E}\left[\text{KL}[q(s_{t} \mid o_{\leqslant t}, a_{< t}) \parallel p(s_{t} \mid s_{t-1}, a_{t-1})]\right]}_{\text{complexity}} \right). \tag{3}$$

Limitation

Gradient가 한 step만 흐르기 때문에, 1-step prediction만 보장한다

Motivation

multi-step prediction은 추가 image를 가하지 않았을 때 latent space에서의 손실로 개선할 수 있다.

Define Multi Step Prediction

$$p(s_t \mid s_{t-d}) \triangleq \int \prod_{\tau=t-d+1}^{t} p(s_\tau \mid s_{\tau-1}) \, ds_{t-d+1:t-1}$$

$$= \mathrm{E}_{p(s_{t-1} \mid s_{t-d})} [p(s_t \mid s_{t-1})].$$
(5)

d=1이면 1-step prediction

■ Objective Function (given distance d)

$$\ln p_{d}(o_{1:T}) \triangleq \ln \int \prod_{t=1}^{T} p(s_{t} \mid s_{t-d}) p(o_{t} \mid s_{t}) \, ds_{1:T}$$

$$\geqslant \sum_{t=1}^{T} \left(\underbrace{\mathbf{E}_{q(s_{t} \mid o_{\leqslant t})} [\ln p(o_{t} \mid s_{t})]}_{\text{reconstruction}} \leftarrow \mathbf{E} \left[\underbrace{\mathbf{KL}[q(s_{t} \mid o_{\leqslant t}) \parallel p(s_{t} \mid s_{t-1})]]}_{\text{multi-step prediction}} \right). \tag{6}$$

■ Objective Function (all distances up to the planning horizon.)

$$\frac{1}{D} \sum_{d=1}^{D} \ln p_d(o_{1:T}) \geqslant \sum_{t=1}^{T} \left(\underbrace{\mathbf{E}_{q(s_t|o_{\leqslant t})} [\ln p(o_t \mid s_t)]}_{\text{reconstruction}} \leftarrow \frac{1}{D} \sum_{d=1}^{D} \beta_d \underbrace{\mathbf{E} \left[KL[q(s_t \mid o_{\leqslant t}) \parallel p(s_t \mid s_{t-1})] \right]}_{p(s_{t-1}|s_{t-d})q(s_{t-d}|o_{\leqslant t-d})} \right). \tag{7}$$
latent overshooting

■ Objective Function (all distances up to the planning horizon.)

$$\frac{1}{D} \sum_{d=1}^{D} \ln p_d(o_{1:T}) \geqslant \sum_{t=1}^{T} \left(\underbrace{\mathbf{E}_{q(s_t|o_{\leqslant t})} [\ln p(o_t \mid s_t)]}_{\text{reconstruction}} \leftarrow \frac{1}{D} \sum_{d=1}^{D} \beta_d \underbrace{\mathbf{E} \left[KL[q(s_t \mid o_{\leqslant t}) \parallel p(s_t \mid s_{t-1})] \right]}_{p(s_{t-1}|s_{t-d})q(s_{t-d}|o_{\leqslant t-d})} \right). \tag{7}$$
latent overshooting

Experiments

Comparison (Model-Free Method)

Method	Modality	Episodes	Cartpole Balance	Cartpole Swingup	Finger Spin	Cheetah Run	Ball in cup Catch	Walker Walk
A3C	proprioceptive	100,000	952	558	129	214	105	311
D4PG	pixels	100,000	993	862	985	524	980	968
PlaNet (ours)	pixels	2,000	986	831	744	650	914	890
CEM + true simulator	simulator state	0	998	850	825	656	993	994
Data efficiency gain PlaNet over D4PG (factor)		100	180	16	50+	20	11	

Model

Agent

One agent all tasks

Episode

Prediction

Relative Works

Relative Works

- 1. Planning in state space
- 2. Hybrid agents
- 3. Multi-step predictions
- 4. Latent sequence models
- 5. Video prediction

End!