Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

(Currently amended) A compound of formula (I)

$$R^2$$
 R^3
 R^4
 R^4

or a salt thereof:

where X is O, or S, S(O), S(O)₂ or NR⁶ where R⁶ is hydrogen or C₁₋₆alkyl;

R⁵ is [[or]] a group of sub-formula (iii) or (v)

where R80 is a group of sub-formula (II)

$$(CH_2)_{s'}$$
 N
 X^{12}
 $(CH_2)_{q'}$
 R^{70}
 R^{99}
(II)

where q' is 0, 1, 2, 3 or 4;

s' is 0 or 1;

 X^{12} is C(O) or S(O₂),

 $R^{70} \text{ is hydrogen, hydroxy, $C_{4:6}$alkyl, $C_{1:6}$alkexy, amino, $N-C_{4:6}$alkylamino, $N.N-($C_{4:6}$alkyl)_{2}$amino, hydroxy$C_{2:6}$alkexy, $C_{4:6}$alkexy, amino$C_{2:6}$alkexy, $N-C_{4:6}$alkylamino$C_{2:6}$alkexy, $C_{4:6}$alkylamino$C_{2:6}$alkexy, $C_{4:6}$alkylamino$C_{2:6}$alkexy, $C_{4:6}$alkylamino$C_{2:6}$alkexy, $C_{4:6}$alkylamino$C_{2:6}$alkexy, $C_{4:6}$alkylamino$C_{2:6}$alkexy, $C_{4:6}$alkylamino$C_{2:6}$alkexy, $C_{4:6}$alkylamino$C_{2:6}$alkexy, $C_{4:6}$alkylamino$C_{2:6}$alkexy, $C_{4:6}$alkexy, $C_{4:6}$alkex$

N.N-(C1_ealkyl)2aminoC2_ealkoxy or C3_rcycloalkyl,

or R70 is of the Formula (III):

Application No. Amendment Dated Reply to Office Action of 10/088,856 08/08/2006 05/18/2006

wherein J is aryl, heteroaryl or heterocyclyl and K is a bond, oxy, imino, N-(C₁₋₆alkyl)imino, oxyC₁₋₆alkylene, iminoC₁₋₆alkylene, N-(C₁₋₆alkyl)iminoC₁₋₆alkylene, -NHC(O)-, -SO₂NH-, -NHSO₂- or -NHC(O)-C₁₋₆alkylene-.

and any aryl, heteroaryl or heterocyclyl group in a R⁷⁰ group is optionally substituted by one or more groups selected from hydroxy, oxo, halo, trifluoromethyl, cyano, mercapto, nitro, amino, carboxy, carbamoyl, formyl, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkynyl, C₂₋₆alkynyl, C₁₋₆alkoxy,

-O-(C₁₋₃alkyl)-O-, C₁₋₆alkylS(O)_n- wherein n is 0-2, N-C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino,

 $C_{1\text{-}6} alkoxycarbonyl, \textit{ N-}C_{1\text{-}6} alkylcarbamoyl, \textit{ N,N-}(C_{1\text{-}6} alkyl)_2 carbamoyl, C_{2\text{-}6} alkanoyl,$

 $C_{1.6}$ alkanoyloxy, $C_{1.6}$ alkanoylamino, N- $C_{1.6}$ alkylsulphamoyl, N,N- $(C_{1.6}$ alkyl) $_2$ sulphamoyl, $C_{1.6}$ alkylsulphonylamino and $C_{1.6}$ alkylsulphonyl-N- $(C_{1.6}$ alkyl)amino,

or any aryl, heteroaryl or heterocyclyl group in a R^{70} group is optionally substituted with one or more groups of the Formula (IV):

$$-B^{\frac{1}{2}}(CH_2)_{p}-A^{\frac{1}{2}}$$
 (IV)

wherein A^1 is halo, hydroxy, $C_{1:6}$ alkoxy, cyano, amino, $N\text{-}C_{1:6}$ alkylamino, $N\text{-}N\text{-}(C_{1:6}$ alkyl)₂amino, carboxy, $C_{1:6}$ alkoxycarbonyl, carbamoyl, $N\text{-}C_{1:6}$ alkylcarbamoyl or $N\text{-}N\text{-}(C_{1:6}$ alkyl)₂carbamoyl, p is 1 - 6, and B^1 is a bond, oxy, imino, $N\text{-}(C_{1:6}$ alkyl)imino or -NHC(O)-, with the proviso that p is 2 or more unless B^1 is a bond or -NHC(O)-;

or any aryl, heteroaryl or heterocyclyl group in a R^{70} group is optionally substituted with one or more groups of the Formula (V):

$$--E^{1}D^{1}$$
 (V)

wherein D¹ is aryl, heteroaryl or heterocyclyl and E¹ is a bond, $C_{1:6}$ alkylene, color color

 C_{1-6} alkylene-oxy C_{1-6} alkylene, C_{1-6} alkylene-imino C_{1-6} alkylene,

 $C_{\text{1-6}} alkylene-\textit{N-}(C_{\text{1-6}} alkyl)-iminoC_{\text{1-6}} alkylene, \text{-NHC(O)-, -NHSO}_2\text{-, -SO}_2 NH-\text{ or }$

-NHC(O)-C₁₋₆alkylene-, and any aryl, heteroaryl or heterocyclyl group in a R⁷⁰ group is optionally substituted with one or more groups selected from hydroxy, halo, C₁₋₆alkyl, C₁₋₆alkoxy, carboxy, C₁₋₆alkoxycarbonyl, carbamoyl, N-C₁₋₆alkylcarbamoyl, N-C₁₋₆alkyl)₂carbamoyl, C₂₋₆alkanoyl, amino, N-C₁₋₆alkyllamino and N,N-C₁₋₆alkyl)₂amino,

and any $C_{3,7}$ cycloalkyl or heterocyclyl group in a R^{70} group is optionally substituted with one or two oxo or thioxo substituents.

and any of the R^{70} groups defined hereinbefore which comprises a CH₂ group which is attached to 2 carbon atoms or a CH₃ group which is attached to a carbon atom may optionally bear on each said CH₂ or CH₃ group a substituent selected from hydroxy, amino, $C_{1:8}$ alkoxy,

N-C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino and heterocyclyl;

or R^{70} may be cycloalkenyl-or-alkenyl-optionally substituted by anyl; and R^{99} is hydrogen or a group $C(O)R^{70}$ where R^{70} is as defined above:

and R³³ is hydrogen or a group C(O)R⁷⁰ where R⁷⁰ is as define and

 R^{81} is hydrogen, halo, $C_{1:4}$ alkoxy, cyano, trifluoromethyl, or phenyl, and R^1 , R^2 , R^3 , R^4 are independently selected from halogeno, cyano, nitro, $C_{1:3}$ alkylsulphanyl, -N(OH) R^7 - wherein R^7 is hydrogen, or $C_{1:3}$ alkyl, or R^9X^1 - wherein X^1 represents a direct bond, -O-, -CH_{2*}, -OC(O)-, -C(O)-, -S-, -SO-, -SO_{2*}-, -NR¹⁰C(O)-, -C(O)NR¹¹⁻, -SO₂NR¹²-, -NR¹³SO_{2*} or -NR¹⁴-, wherein R^{10} , R^{11} , R^{12} , R^{13} and R^{14} each independently represents hydrogen, $C_{1:3}$ alkyl or $C_{1:3}$ alkoxy $C_{2:3}$ alkyl, provided that at least one of R^1 , R^2 , R^3 and R^4 is a group R^9X^1 - and R^9 is selected from one of the following groups: provided that at least one of R^2 or R^3 is other than hydrogen;

- 1) hydrogen or C₁₋₆alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, oxiranyl, fluoro, chloro, bromo and amino:
- 2) -R 8 X 2 C(O)R 16 wherein X 2 represents -O- or -NR 16 in which R 16 represents hydrogen, C₁₋₃alkyl or C₁₋₃alkvyl and R 15 represents C₁₋₃alkyl, -NR 17 R 16 or -OR 19 wherein R 17 , R 16 and R 19 which may be the same or different each represents hydrogen, C₁₋₅alkyl, hydroxyC₁₋₅alkyl or C₁₋₃alkoxyC₂₋₃alkyl;
- 3) -R°X³R²⁰ wherein X³ represents -O-, C(O) -S-, -SO-, -SO₂-, -OC(O)-, -NR²¹C(O)₃-, -C(O)NR²²-, -SO₂NR²³-, -NR²⁴SO₂- or -NR²⁵- wherein R²¹, R²², R²³-, R²⁴- and R²⁵- each independently represents hydrogen, C₁₃alkyl, hydroxy C₁₄alkyl or C₁₃alkoxyC₂₃alkyl and s is 1 or 2 and R²⁰ represents hydrogen, C₁₃alkyl, C₂₅alkenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₅alkyl group may bear 1, 2 or 3 substituents selected from oxo, hydroxy, halogeno, cyclopropyl, amino, C₁₄alkylamino, C₁₄alkyndi-C₁₄alkylamino, C₁₄alkylthio, C₁₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₄cyanoalkyl, C₁₄alkyl, C₁₄alkydroxyalkyl, C₁₄alkoxy, C₁₄alkylsulphonylC₁₄alkyl, C₁₄alkylxydroxyalkyl, C₁₄alkoxy, C₁₄alkylsulphonylC₁₄alkyl, C₁₄alkylamino, di(C₁₄alkyl)amino, C₁₄alkylaminoC₁₄alkyl, C₁₄alkyl) C₁alkylaminoC₁₄alkyl, C₁alkylaminoC₁₄alkyl

with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C_{14} alkyl;

- 4) -R°X⁴R° X⁵R²⁰ wherein X⁴ and X⁵ which may be the same or different are each -O-, C(O), -S-, -SO-, -SO₂-, -NR²⁷C(O)₅-, -C(O)₅NR²⁹-, -SO₂NR²⁹-, -NR³⁰SO₂- or -NR³¹- wherein R²⁷, R²⁹, R²⁹, R³⁰ and R³¹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alky∪ or C₁₋₃alkyl and s is 1 or 2 and R²⁶ represents hydrogen, C₁₋₃alkyl, hydroxyC₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl;
- 5) R³² wherein R³² is a 4-6-membered cycloalkyl or saturated heterocyclic ring, linked via carbon or nitrogen, with 1-2 heteroatoms, selected independently from O, S and N, which cycloalkyl or heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, cyanoC₁₋₄alkyl, cyclopropyl,

 C_{1-4} alkylsulphonyl C_{1-4} alkyl, C_{1-4} alkoxycarbonyl, carboxamido, C_{1-4} aminoalkyl, C_{1-4} alkylamino, di(C_{1-4} alkyl)amino, C_{1-4} alkylamino C_{1-4} alkyl, C_{1-4} alkylamino C_{1-4} alkyl, C_{1-4} alkylamino C_{1-4} alkyl, orico, amino, C_{1-4} alkoxy, di(C_{1-4} alkyl)amino C_{1-4} alkoxy, nitro, amino, C_{1-4} alkoxy,

01.4aikyiaiiii1001.4aikoxy, ui(01.4aikyi/aiiii1001.4aikoxy, 11110, aiiii10, 01.4aikoxy,

 $C_{1\!-\!4}$ hydroxyalkoxy, carboxy, trifluoromethyl, - $C(O)NR^{30}R^{30}$, - $NR^{40}C(O)R^{41}$, wherein R^{30} , R^{90} , R^{40} and R^{41} , which may be the same or different, each represents hydrogen, $C_{1\!-\!4}$ alkyl,

hydroxyC₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and a group -(-O-)_t(C₁₋₄alkyl)_gringD wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C₃₋₆cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from

O, S and N, which cyclic group may bear one or more substituents selected from halo and C_{1-4} alkyl;

- 6) -RdR32 wherein R32 is as defined hereinbefore;
- 7) -ReR32 wherein R32 is as defined hereinbefore;
- 8) -Rf R32 wherein R32 is as defined hereinbefore;
- 9) R³³ wherein R³³ represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group, linked via carbon or nitrogen, with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, nitro, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, oxo, cyanoC₁₋₄alkyl, cyclopropyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkyl), di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkyl, c₁₋₄alkoxy, carboxy,

di($C_{1:4}$ alkyl)amino $C_{1:4}$ alkyl, $C_{1:4}$ alkylamino $C_{1:4}$ alkoxy, di($C_{1:4}$ alkyl)amino $C_{1:4}$ alkoxy, carboxy, carboxamido, trifluoromethyl, cyano, -C(O)NR³⁸R³⁹, -NR⁴⁰C(O)R⁴¹, wherein R³⁸, R³⁹, R⁴⁰ and R⁴¹, which may be the same or different, each represents hydrogen, $C_{1:4}$ alkyl, hydroxy $C_{1:4}$ alkyl or $C_{1:3}$ alkoxy $C_{2:3}$ alkyl, and a group -(-O-)₁($C_{1:4}$ alkyl)₀ringD wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from $C_{1:4}$ cycloalkyl, and or 5-6-membered saturated or unsaturated

heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C₁₋₄alkyl;

- 10) -R⁹R³³ wherein R³³ is as defined hereinbefore;
- 11) -RhR33 wherein R33 is as defined hereinbefore;
- 12) -Ri R33 wherein R33 is as defined hereinbefore;
- 13) -Ri X6R33 wherein X6 represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, -NR38-C(O)-,
- $-C(O)NR^{39'}$, $-SO_2NR^{40'}$, $-NR^{41'}SO_{2^-}$ or $-NR^{42'}$, wherein $R^{38'}$, $R^{39'}$, $R^{40'}$, $R^{41'}$ and $R^{42'}$ each independently represents hydrogen, $C_{1:3}$ alkyl, hydroxy $C_{1:3}$ alkyl or $C_{1:3}$ alkoxy $C_{2:3}$ alkyl, and R^{33} is as defined hereinbefore:
- $\begin{array}{l} \underline{14)} \cdot R^k X^7 R^{33} \text{ wherein } X^7 \text{ represents -O-, C(O), -S-, -SO-, -SO-_2, -NR^{43}C(O)-, -C(O)NR^{44}-, \\ -SO_2 NR^{45}-, -NR^{46} SO_2^- \text{ or -NR}^{47}-, \text{ wherein } R^{43}, R^{44}, R^{45}, R^{46} \text{ and } R^{47} \text{ each independently represents hydrogen, $C_{1:3}alkyl, hydroxyC_{1:3}alkyl \text{ or } C_{1:3}alkoxyC_{2:3}alkyl, \text{ and } R^{33} \text{ is as defined hereinbefore:} \end{array}$
- $\begin{array}{l} \underline{15)} \cdot R^m X^8 R^{33} \text{ wherein } X^8 \text{ represents -O-, -C(O)-, -S-, -SO-, -SO_2-, -NR^{46}C(O)-, -C(O)NR^{49}-, \\ -SO_2 NR^{50}-, -NR^{51} SO_2 \text{ or -NR}^{52}-, \text{ wherein } R^{48}, R^{49}, R^{50}, R^{51} \text{ and } R^{52} \text{ each independently represents hydrogen, } C_{1\cdot3} \text{alkyl, hydroxy} C_{1\cdot3} \text{alkyl or } C_{1\cdot3} \text{alkoxy} C_{2\cdot3} \text{alkyl, and } R^{33} \text{ is as defined hereinbefore:} \end{array}$
- 16) -Rⁿ X^9 Rⁿ R³³ wherein X^9 represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁵³C(O)-, -C(O)NR⁵⁴-, -SO₂NR⁵⁵-, -NR⁵⁶SO₂- or -NR⁵⁷-, wherein R⁵³, R⁵⁴, R⁵⁵, R⁵⁶ and R⁵⁷ each independently represents hydrogen, C₁₋₃alkyl, hydroxyC₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and R³³ is as defined hereinbefore:
- 17) -R^pX⁹-R^pR³² wherein X⁹ and R³² are as defined hereinbefore;
- 18) $C_{2\circ}$ alkenyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, $C_{1\cdot4}$ alkylamino, N.N-di($C_{1\cdot4}$ alkyl)amino, aminosulphonyl, N- $C_{1\cdot4}$ alkylaminosulphonyl and N.N-di($C_{1\cdot4}$ alkyl)aminosulphonyl;
- 19) $C_{2,5}$ alkynyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, $C_{1,4}$ alkylamino, N_iN_i -di($C_{1,4}$ alkyl)amino, aminosulphonyl, N_i -C1,4alkylaminosulphonyl and N_iN_i -di($C_{1,4}$ alkyl)aminosulphonyl;
- 20) -RtX9RtR32 wherein X9 and R32 are as defined hereinbefore;
- 21) -R"X9 R"R32 wherein X9 and R32 are as defined hereinbefore; and
- 22) $-R^v R^{58}(R^v)_{ej}(X^9)_v R^{59}$ wherein X^9 is as defined hereinbefore, q is 0 or 1, r is 0 or 1, r and R^{59} is a C_{1-3} alkylene group or a cyclic group selected from cyclopropyl, cyclobutyl, cyclopentylene, cyclohexylene or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O. S and N. which C_{1-3} alkylene group may bear 1 or 2 substituents selected

from oxo, hydroxy, halogeno and C_{1.4}alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C_{1.4}cyanoalkyl, C_{1.4}alkyl, C_{1.4}hydroxyalkyl, C1.4alkoxy, C1.4alkoxyC1.4alkyl, C1.4alkylsulphonylC1.4alkyl, C1.4alkoxycarbonyl, C1.4aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_t(C₁₋₄alkyl)₀ringD, wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C_{3.6}cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C_{1.4}alkyl; and R⁵⁹ is hydrogen, C_{1.3}alkyl, or a cyclic group selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O. S and N. which C_{1.3}alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C_{1.4}alkoxycarbonyl, C_{1.4}aminoalkyl, C_{1.4}alkylamino, di(C_{1.4}alkyl)amino, C_{1.4}alkylaminoC_{1.4}alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_r(C₁₋₄alkyl)_rringD wherein f is 0 or 1, a is 0 or 1 and D is a cyclic group selected from C_{3.6}cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C1.alkvl:

and wherein R^a , R^b , R^b , R^c , R^c , R^d , R^0 , R^0 , R^n , R^n , R^p , R^p , R^p , R^q , R^q and R^q are independently selected from $C_{1,g}$ alkylene groups optionally substituted by one or more substituents selected from hydroxy, halogeno, amino.

R° R°, R' and R' are independently selected from C₂₋₈alkenylene groups optionally substituted by one or more substituents selected from hydroxy, halogeno, amino, and R' may additionally be a bond; and

R¹, R¹ and R¹ are independently selected from by C₂ealkynylene groups optionally substituted by one or more substituents selected from hydroxy, halogeno, amino; and where a functional group is selected from nitro, cyano, halo, oxo, =CR⁷⁸R⁷⁹, C(O),R⁷⁷, OR⁷⁷, S(O),R⁷⁸, NR⁷⁸CONR⁷⁸R⁷⁹, OC(O)NR⁷⁸R⁷⁹, -NC(O)NR⁷⁸R⁷⁹, -NC(O)NR⁷⁸R⁷⁹, S(O),NR⁷⁸R⁷⁹ or -NR⁷⁷S(O),R⁷⁸ where R⁷⁷, R⁷⁸ and R⁷⁹ are independently selected from hydrogen, optionally substituted hydrocarbyl, optionally substituted heterocyclyl or optionally substituted alkoxy, or R⁷⁸ and R⁷⁹ together form an optionally substituted ring which optionally contains further heteroatoms such as oxygen, nitrogen. S. S(O) or S(O)₂, where x is

an integer of 1 or 2, y is 0 or an integer of 1-3 and where hydrocarbyl, heterocyclyl or alkoxy groups R^{77} , R^{78} and R^{70} as well as rings formed by R^{78} and R^{70} are optionally substituted by halo, perhaloalkyl, mercapto, alkylthio, hydroxy, carboxy, alkoxy, heteroaryl, heteroaryloxy, cycloalkyl, cycloalkenyl, cycloalkynyl, alkenyloxy, alkynyloxy, alkoxyalkoxy, aryloxy where the aryl group may be substituted by halo, nitro, or hydroxy, cyano, nitro, amino, mono- or di-alkyl amino, oximino or $S(O)_p R^{80}$ where y is 0 or an integer of 1-3 and R^{80} is a alkyl; and wherein hydrocarbyl is selected from alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, cycloalkenyl, or combinations thereof.

2-5. (Canceled)

- 6. (Currently amended) A compound according to claim 1 wherein R¹, R², R³, R⁴ are independently selected from, halo, cyano, nitro, trifluoromethyl, C₁₋₃alkyl, or other groups from formula -X¹R³ wherein X¹ represents a direct bond, -O-, -CH_{Z⁻}, -OCO-, carbonyl, -S-, -SO-, -SO_{Z⁻}, -NR¹¹CO-, -CONR¹¹-, -SO_ZNR¹²-, -NR¹³SO_{Z⁻} or -NR¹⁴-, wherein R¹³, R¹¹, R¹², R¹³ and R¹⁴ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and R³ is selected from one of the following groups:
- 1') hydrogen or $C_{1.5}$ alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro or amino,
- 2') $C_{1:3}$ alkyl $X^2C(O)R^{15}$ wherein X^2 represents -O- or -NR¹⁶- In which R^{15} represents hydrogen, $C_{1:3}$ alkyl or C_{1
- 3') C₁₋₅alkylX³R²⁰ wherein X³ represents -O-, -S-, -SO₂, -OCO-, -NR²¹CO-, -CONR²²-, -SO₂NR²³-, -NR²⁸SO₂- or -NR²⁵-, wherein R²¹, R²², R²³, R²⁴ and R²⁵ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkyol or C₁₋₃alkyl and R²⁰ represents hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl and C₁₋₄alkoxy; 4') C₁₋₅alkylX⁴C₁₋₅alkylX⁵R²⁶ wherein X⁴ and X⁵ which may be the same or different are each -O-, S-, -SO₂, -NR²⁷CO-, -CONR²⁸-, -SO₂NR²⁹-, -NR³⁰SO₂- or -NR³¹-, wherein R²⁷, R²⁸, R²⁹, R³⁰ and R³¹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl and R²⁵ represents hydrogen or C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl and R²⁶

- 5') R^{32} wherein R^{32} is a 5-6-membered saturated heterocyclic group, linked via carbon or nitrogen, with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, $C_{1\!-\!4}$ alkyl, $C_{1\!-\!4}$ hydroxyalkyl, $C_{1\!-\!4}$ alkoxy, $C_{1\!-\!4}$ alkoxy, $C_{1\!-\!4}$ alkoxy, $C_{1\!-\!4}$ alkoxy, $C_{1\!-\!4}$ alkyl, and $C_{1\!-\!4}$ alkylsulphonyl $C_{1\!-\!4}$ alkyl;
- 6') C_{1-5} alkyl R^{32} wherein R^{32} is as defined in (5') above;
- 7') C₂₋₅alkenylR³² wherein R³² is as defined in (5') above;
- 8') C_{2-5} alkynyl R^{32} wherein R^{32} is as defined in (5') above;
- 9') R^{33} wherein R^{33} represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group, linked via carbon or nitrogen, with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents on an available carbon atom selected from hydroxy, halogeno, amino, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} hydroxyalkyl, C_{1-4} aminoalkyl, C_{1-4} alkylamino, C_{1-4} hydroxyalkoxy, carboxy, trifluoromethyl, cyano, -CONR 3834 R 3836 and -NR 4036 COR 4137 , wherein R^{3834} , R^{3836} and R^{4137} , which may be the same or different, each represents hydrogen, C_{1-4} alkyl or C_{1-3} alkoxy C_{2-3} alkyl;
- 10') C_{1.5}alkylR³³ wherein R³³ is as defined in (9') above:
- 11') C₂₋₅alkenylR³³ wherein R³³ is as defined in (9') above;
- 12') C₂₋₅alkynylR³³ wherein R³³ is as defined in (9') above;
- 13') C₁₋₅alkylX⁶R³³ wherein X⁶ represents -O-, -S-, -SO-, -SO₂-, -NR³⁶CO-, -CONR³⁶-, -SO₂NR⁴⁰-, -NR⁴¹SO₂- or -NR⁴²-, wherein R³⁶, R³⁶, R⁴⁰, R⁴¹ and R⁴² each independently represents hydrogen, C₁₋₅alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and R³³ is as defined hereinbefore; 14') C₂₋₅alkenylX⁷R³³ wherein X⁷ represents -O-, -S-, -SO-, -SO₂-, -NR⁴³CO-, -CONR⁴⁴-, -SO₂NR⁴⁶-, -NR⁴⁶SO₂- or -NR⁴⁷-, wherein R⁴³, R⁴⁴, R⁴⁵, R⁴⁶ and R⁴⁷ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and R³³ is as defined hereinbefore; 15') C₂₋₅alkynylX⁶R³³ wherein X⁸ represents -O-, -S-, -SO-, -SO₂-, -NR⁴⁶CO-, -C(O)NR⁴¹-, -SO₂NR⁵⁰-, -NR⁵¹SO₂- or -NR⁵²-, wherein R⁴⁶, R⁴⁹, R⁵⁰, R⁵¹ and R³² each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and R³³ is as defined hereinbefore; 16') C₁₋₃alkylX⁶C₁₋₃alkylR³³ wherein X⁸ represents -O-, -S-, -SO₂-, -NR⁵³CO-, -C(O)NR⁵⁴-, -SO₂NR⁵⁵-, -NR⁵⁵SO₂- or -NR⁵⁷-, wherein R⁵³, R⁵⁶, R⁵⁶ and R⁵⁷ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkylxyC₂₋₃alkyl, and R³³ is as defined hereinbefore; and 17') C₁₋₃alkylX⁶C₁₋₃alkylR³² wherein X⁸ and R³² are as defined in (5') above, provided that at least one of R² or R³ is other than hydrogen.
- 7. (Previously presented) A compound according to claim 1, where R^1 is hydrogen and R^4 is hydrogen, halo, C_{14} alkyl or C_{14} alkoxy.

8-9. (Canceled)

- (Previously presented) A compound according to claim 1 or claim 7 wherein R³ is a group X¹R⁹ where X¹ is oxygen.
- 11. (Cancelled)
- 12. (Previously presented) A compound according to claim 7 wherein R⁹ is selected from a group (1), (3), (6) or (10).
- 13. (Previously presented) A compound according to claim 12 wherein X is NH or O.
- 14-17. (Canceled)
- (Previously presented) A compound according to claim 13 wherein R⁵ is a group of formula (iii).
- 19-20. (Canceled)
- 21. (Currently amended) A compound according to claim 13 wherein R^{80} is a group of sub formula (II) which is a group of formula (IIA)

$$(CH_2)_{s'}$$
 $(CH_2)_{q'}$
 (IIA)

where s', g' and R⁷⁰ are as defined in claim 1.

where q' is 0, 1, 2, 3 or 4;

s' is 0 or 1;

R70 is C3,7cycloalkyl,

or R70 is of the Formula (III):

—к—J (III)

wherein J is aryl, heteroaryl or heterocyclyl and K is a bond, oxy, imino, N-($C_{1:6}$ alkyl)imino, oxy $C_{1:6}$ alkylene, imino $C_{1:6}$ alkylene, N-($C_{1:6}$ alkyl)imino $C_{1:6}$ alkylene, -NHC(O)-, -SO₂NH-, -NHSO₂- or -NHC(O)- $C_{1:6}$ alkylene-,

and any aryl, heteroaryl or heterocyclyl group in a R^{70} group is optionally substituted by one or more groups selected from hydroxy, oxo, halo, trifluoromethyl, cyano, mercapto, nitro, amino, carboxy, carbamoyl, formyl, sulphamoyl, $C_{1:6}$ alkyl, $C_{2:6}$ alkynyl, $C_{1:6}$ alkynyl, $C_{1:6}$ alkyl, $C_{2:6}$ alkynyl, $C_{1:6}$ alkyl, $C_{2:6}$ alkynyl, $C_{1:6}$ alkyl) $C_{2:6}$ alkynyl, $C_{1:6}$ alkyl), wherein n is 0.2, $N-C_{1:6}$ alkylamino, $N.N-(C_{1:6}$ alkyl) $C_{2:6}$ alkyl, $C_{2:6$

or any aryl, heteroaryl or heterocyclyl group in a R⁷⁰ group is optionally substituted with one or more groups of the Formula (IV):

$$-B^{\frac{1}{2}}(CH_2)_{p}-A^{\frac{1}{2}}$$

wherein A^1 is halo, hydroxy, $C_{1:6}$ alkoxy, cyano, amino, N- $C_{1:6}$ alkylamino, N-N- $(C_{1:6}$ alkyl)₂amino, carboxy, $C_{1:6}$ alkoxycarbonyl, carbamoyl, N- $C_{1:6}$ alkylcarbamoyl or N-N- $(C_{1:6}$ alkyl)₂carbamoyl, p is 1-6, and B^1 is a bond, oxy, imino, N- $(C_{1:6}$ alkyl)imino or -NHC(O)-, with the proviso that p is 2 or more unless B^1 is a bond or -NHC(O)-:

or any aryl, heteroaryl or heterocyclyl group in a R⁷⁰ group is optionally substituted with one or more groups of the Formula (V):

$$\underline{\qquad}$$
E $\underline{\qquad}$ D 1 (V)

wherein D¹ is aryl, heteroaryl or heterocyclyl and E¹ is a bond, $C_{1:6}$ alkylene, $c_{1:6}$ alkylene,

 $\underline{C_{1\text{-}6}} alkylene\text{-}oxyC_{1\text{-}6} alkylene, \ \underline{C_{1\text{-}6}} alkylene\text{-}iminoC_{1\text{-}6} alkylene,$

 $\underline{C_{1:6}} alkylene-\textit{N-}(C_{1:6}alkyl)-iminoC_{1:6}alkylene, -NHC(O)-, -NHSO_{2^-}, -SO_{2}NH-or$

-NHC(O)-C_{1:6}alkylene-, and any aryl, heteroaryl or heterocyclyl group in a R⁷⁰ group is optionally substituted with one or more groups selected from hydroxy, halo, C_{1:6}alkyl, C_{1:6}alkoxy, carboxy, C_{1:6}alkoxycarbonyl, carbamoyl, N-C_{1:6}alkylcarbamoyl, N-C_{1:6}alkylcarbamoyl, N-C_{1:6}alkyll₂carbamoyl, C_{2:6}alkanoyl, amino, N-C_{1:6}alkyll₂mino and N,N-C_{1:6}alkyll₂mino.

and any C_{3-7} cycloalkyl or heterocyclyl group in a R^{70} group is optionally substituted with one or two oxo or thioxo substituents,

and any of the R^{70} groups defined hereinbefore which comprises a CH_2 group which is attached to 2 carbon atoms or a CH_3 group which is attached to a carbon atom may optionally bear on

each said CH_2 or CH_3 group a substituent selected from hydroxy, amino, $C_{1:6}$ alkoxy, $N-C_{1:6}$ alkylyamino, $N,N-(C_{1:6}$ alkylyamino and heterocyclyt; or \mathbb{R}^{70} may be cycloalkenyl.

(Previously presented) A compound according to claim 1 or claim 21 wherein R⁸⁰ includes a group R⁷⁰ and said group is phenyl optionally substituted by halo.

23-25. (Cancelled)

26. (Withdrawn) A method for preparing a compound of formula (I) as defined in claim 1, which method comprises reacting a compound of formula (VII)

(VII)

where R^1 , R^2 , R^3 , and R^4 are equivalent to a group R^1 , R^2 , R^3 and R^4 as defined in relation to formula (I), and R^{85} is a leaving group, with a compound of formula (VIII)

where X and R5 are as defined in relation to formula (I).

27-28. (Canceled)

- (Currently amended) A pharmaceutical composition comprising a compound according to any one of claims 1, 7, 12, 18, 21 or 3234-6 or salt thereof, in combination with a pharmaceutically acceptable carrier.
- 30. (Canceled)
- 31. (Previously presented) A compound according to claim 1 wherein both R¹ and R⁴ are hydrogen.

- 32. (Previously presented) A compound according to claim 12 wherein one of R2 or R3 is 3-morpholinopropoxy.
- 33-36. (Cancelled)
- 37. (Previously presented) A method for treating colorectal or breast cancer in a warm blooded animal, such as man, in need of such treatment, which comprises administering to said animal an effective amount of a compound according to claim 1, or salt thereof.