Problem5

2022-11-14

Problem 5: Computational Finance - Modelling Stock prices

Following piece of code download the prices of TCS since 2007

```
library(quantmod)
```

```
## Warning: package 'quantmod' was built under R version 4.2.2
## Loading required package: xts
## Warning: package 'xts' was built under R version 4.2.2
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.2.2
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: TTR
## Warning: package 'TTR' was built under R version 4.2.2
## Registered S3 method overwritten by 'quantmod':
    method
     as.zoo.data.frame zoo
getSymbols('TCS.NS')
## Warning: TCS.NS contains missing values. Some functions will not work if objects
## contain missing values in the middle of the series. Consider using na.omit(),
## na.approx(), na.fill(), etc to remove or replace them.
## [1] "TCS.NS"
```

tail(TCS.NS)

##		TCS.NS.Open TC	S.NS.High	TCS.NS.Low	TCS.NS.Close	TCS.NS.Volume
##	2022-11-03	3228.05	3228.05	3195.00	3206.75	1422652
##	2022-11-04	3217.00	3220.05	3166.15	3217.40	1464013
##	2022-11-07	3229.00	3242.80	3195.10	3233.70	1474498
##	2022-11-09	3249.80	3249.80	3201.65	3216.05	1162267
##	2022-11-10	3170.00	3225.00	3170.00	3205.65	1573092
##	2022-11-11	3269.60	3341.60	3255.05	3315.95	3265394
##		TCS.NS.Adjuste	d			
##	2022-11-03	3206.7	5			
##	2022-11-04	3217.4	0			
##	2022-11-07	3233.7	0			
##	2022-11-09	3216.0	5			
##	2022-11-10	3205.6	5			
##	2022-11-11	3315.9	5			

Plot the adjusted close prices of TCS

plot(TCS.NS\$TCS.NS.Adjusted)

Download the data of market index Nifty50. The Nifty 50 index indicates how the over all market has done over the similar period.

getSymbols('^NSEI')

```
## Warning: ^NSEI contains missing values. Some functions will not work if objects
## contain missing values in the middle of the series. Consider using na.omit(),
## na.approx(), na.fill(), etc to remove or replace them.
```

[1] "^NSEI"

tail(NSEI)

##		NSEI.Open	NSEI.High	NSEI.Low	${\tt NSEI.Close}$	${\tt NSEI.Volume}$	NSEI.Adjusted
##	2022-11-03	17968.35	18106.3	17959.20	18052.70	213000	18052.70
##	2022-11-04	18053.40	18135.1	18017.15	18117.15	267900	18117.15
##	2022-11-07	18211.75	18255.5	18064.75	18202.80	314800	18202.80
##	2022-11-09	18288.25	18296.4	18117.50	18157.00	307200	18157.00
##	2022-11-10	18044.35	18103.1	17969.40	18028.20	256500	18028.20
##	2022-11-11	18272.35	18362.3	18259.35	18349.70	378500	18349.70

Plot the adjusted close value of Nifty50

plot(NSEI\$NSEI.Adjusted)

Log-Return

We calculate the daily log-return, where log-return is defined as

$$r_t = \log(P_t) - \log(P_{t-1}) = \Delta \log(P_t),$$

where P_t is the closing price of the stock on t^{th} day.

• Consider the following model:

$$r_t^{TCS} = \alpha + \beta r_t^{Nifty} + \varepsilon,$$

where $\mathbb{E}(\varepsilon) = 0$ and $\mathbb{V}ar(\varepsilon) = \sigma^2$.

1. Estimate the parameters of the models $\theta=(\alpha,\beta,\sigma)$ using the method of moments type plug-in estimator discussed in the class.

```
ExpY = mean(retrn[,1])
ExpX = mean(retrn[,2])
VarY = var(retrn[,1])
VarX = var(retrn[,2])
CovXY = cov(retrn[,1],retrn[,2])
beta_hat_moments = CovXY/VarX
alpha_hat_moments = ExpY - (beta_hat_moments*ExpX)
sigma_hat_moments = sqrt((sum((retrn[,1]-alpha_hat_moments-beta_hat_moments*retrn[,2])^2))/length(retrn
```

The optimal values of parameters are:

```
c(alpha_hat_moments,beta_hat_moments,sigma_hat_moments)
```

```
## [1] 0.0004611201 0.7436970360 0.0161843350
```

2. Estimate the parameters using the 1m built-in function of R. Note that 1m using the OLS method.

```
fit = summary(lm(retrn[,1]~retrn[,2], data=retrn))
beta_hat_OLS = fit$coef[2,1]
alpha_hat_OLS = fit$coef[1,1]
sigma_hat_OLS = fit$sigma
```

The optimal values of parameters are:

```
c(alpha_hat_OLS,beta_hat_OLS,sigma_hat_OLS)
```

```
## [1] 0.0004611201 0.7436970360 0.0161887335
```

3. Fill-up the following table

Parameters	Method of Moments	OLS
α	0.000461	0.000461
β	0.743697	0.743697
σ	0.016184	0.016188

4. If the current value of Nifty is 18000 and it goes up to 18200. The current value of TCS is Rs. 3200/-. How much you can expect TCS price to go up?

```
TCS_return = alpha_hat_moments + beta_hat_moments * log(18200/18000)
TCS_new = 3200*exp(TCS_return)
```

New TCS price would be expected to be Rs.

TCS_new

[1] 3227.893