Практическая работа № 9

Тема: «Определение потока заданной величины минимальной стоимости. Алгоритм Басакера-Гоуэна»

Цель: Изучить алгоритм Басакера-Гоуэна

Порядок выполнения работы:

- 1. Изучить теоретические сведения
- 2. Выполнить задания по вариантам.
- 3. Ответить на контрольные вопросы.
- 4. Оформить отчет.

Теоретические сведения

Необходимо рассмотреть сеть G = (V, E), каждой дуге (x, y) которой соответствовала пропускная способность дуги $c(x, y) \ge 0$, указывающая максимальное количество потока, которое по ней можно пропустить.

Для данной задачи нахождения потока заданной величины минимальной стоимости необходимо, каждой дуге (x,y)было поставлено в соответствие неотрицательное действительное число d(x,y), называемое стоимостью доставки единицы потока по дуге (x,y). Если в сети пропущен поток f, то стоимостью потока называется число

$$S(f) = \sum_{(x,y)\in E} d(x,y) * f(x,y)$$

Постановка задачи. Пусть G=(V,E) — сеть с заданными пропускными способностями $c(x,y) \ge 0$, $(x,y) \in E$ и стоимостями $d(x,y) \ge 0$, $(x,y) \in E$ дуг. Среди допустимых потоков (т.е. потоков, удовлетворяющих условиям $0 \le f(x,y \le c(x,y))$ заданной мощности M(f) = v , найти поток минимальной стоимости S(f) .

При этом подразумевается, что величина V не превышает максимальной мощности допустимого потока из s в t, иначе задача не имеет решения.

В излагаемых далее алгоритмах построения потока минимальной стоимости существенную роль играет так называемый граф модифицированных стоимостей G_f .

Пусть дан граф G=(V,E), в котором пропущен допустимый поток f. Граф $G_f=(V_f,E_f)$ строится следующим образом: множество вершин совпадает с множеством вершин графа G, т.е. $V_f=V$; множество E_f определяется правилами:

- а) Если $(x,y) \in E$ и f(x,y) = 0, то в графе G_f рисуется одна дуга $(x,y) \in E_f$, имеющая длину (модифицированную стоимость) $d_f(x,y) = d(x,y)$.
- b) Если $(x,y) \in E_{\mathsf{H}} f(x,y) = c(x,y)$, то в графе G_f рисуется одна дуга $(y,x) \in E_f$, имеющая длину (модифицированную стоимость) $d_f(y,x) = -d(x,y)$.

Пример. Пусть задан граф G = (V, E), в котором пропущен допустимый поток f (см. Рис.1).

В данном графе над каждой дугой $(x,y) \in E$ числа d(x,y) показывают соответственно пропускную способность, пропущенный по дуге поток и стоимость единицы потока. Тогда граф $G_f = (V_f, E_f)$ имеет вид (см. Рис. 2)

Рис. 1

Рис. 2

Алгоритм Басакера-Гоуэна (Basaker R.G., Gowen P.J)

Шаг 0. Решение начинаем с нулевого потока M(f)=0 . Полагаем $\nu'=0$.

Шаг 1. Строим граф модифицированных стоимостей G_f нет ни одной цепи из s в t, то задача нахождения потока минимальной стоимости, имеющего заданную мощность, v не имеет решения. В исходной сети V'(v' < v) минимальной стоимости. В противном случае находим кратчайшую цепь P^* из s в t (роль длин дуг играют их модифицированные стоимости).

Шаг 3. В исходном графе определяем (s,t) - путь P, соответствующий цепи P*. На прямых дугах пути P вычисляем:

$$\varepsilon_1 = \min\{c(x, y) - f(x, y)\},\$$

на обратных:

$$\varepsilon_2 = \min\{f(x, y)\}.$$

 $\text{Находим } \varepsilon = \min\{\varepsilon_1, \varepsilon_2, \nu - \nu'\}.$

На прямых дугах пути P величину потока увеличиваем, а на обратных уменьшаем на ${\cal E}$. Шаг 4 Полагаем ${\cal V}={\cal V}'+{\cal E}$.

Если V' < V, то переходим к шагу 1, если V' = V, то алгоритм свою работу закончил, в сети построен оптимальный поток

Замечание. Для решения задачи о нахождении максимального потока максимальной стоимости достаточно в алгоритме Басакера-Гоуэна заменить V на $^\infty$.

Пример. Построить поток заданной мощности V =3 минимальной стоимости в сети G (см. Рис. 3). **Итерация 1**

Полагаем v'=0 . Строим граф модифицированных стоимостей $G_{f=0}$ (см. Рис.4).

Находим кратчайшую (наиболее дешевую) цепь Р* из s в t:

$$P^*: s \rightarrow b \rightarrow a \rightarrow t$$

Длина цепи (модифицированная стоимость) равна 3.

Соответствующий ей (s, t) – путь

P:
$$s \rightarrow b \rightarrow a \rightarrow t$$
,

$$\varepsilon = \min\{2,3,2\} = 2$$

Т.к. все дуги пути — прямые, то увеличивая пути Р величину потока на 2, то получаем (см. Рис. 5)

Рис. 3

Рис. 4

Рис. 5

Пересчитываем
$$v' = v' + \varepsilon = 0 + 2 = 2$$
.

Поскольку V' < V', то переходим к шагу 1.

Итерация 2

Стром граф модифицированных стоимостей G_f (см. Рис. 6).

Рис. 6

Находим в графе модифицированных стоимостей кратчайшую цепь

 $P^*: s \rightarrow a \rightarrow b \rightarrow t$,

Соответствующий ей (s, t) – путь

P: $s \rightarrow a \leftarrow b \rightarrow t$.

На прямых дугах пути Р вычисляем:

$$\varepsilon_1 = \min\{4 - 0.3 - 0\} = 3$$

на обратных:

$$\varepsilon_2 = \min\{2\} = 2$$

 $\text{Находим } \varepsilon = \min\{3,2,3-2\} = 1.$

Величину потока на прямых дугах (s, a), (b, t) увеличиваем, а на обратной (a, b) уменьшаем на 1. Получаем (см. Рис. 7)

Рис. 7

Считаем
$$v' = v' + \varepsilon = 2 + 1 = 3$$
.

Т.к. v' = v, то алгоритм свою работу закончил, в сети построен оптимальный поток.

Вычислим суммарную стоимость пропущенного потока:

$$S(f)=1*5+1*2+1*1+1*2+6*1=16.$$

Очевидно, что при достаточно больших значениях $^{\it V}$ использование алгоритма Басакера-Гоуэна приводит к длительным вычислениям.

Практическая часть

Для сети построить поток заданной мощности в соответствии с вариантом минимальной стоимости. На каждой дуге сети указаны два числа. Первое число означает пропускную способность ребра, а второе число указывает на поток по ребру. Стоимость доставки единицы потока по дуге указана в соответствии с вариантом.

Вариант №1

Вариант №2

Вариант №3

Вариант №4

Вариант №13

Вариант №14

Вариант №15

Вариант №16

Вариант №17

Вариант №18

Вариант №19

Вариант №20

Вариант №22

Вариант №23

Вариант №24

Вариант №26

Вариант №27

Вариант №28

Вариант № 29

Вариант №1	Вариант №2	Вариант №3
SA — 7	SA — 6	SA — 7
SC — 8	SC — 8	SC — 9
SD — 9	SD-3	SD-2
AB — 4	AB — 4	AB — 4
AC — 5 BC — 2	AC — 4 BC — 2	AC — 5 BC — 4
BC — 2 BT — 8	BC — 2 BT — 7	BT — 8
CD-3	CD-3	CD-7
CE — 7	CE — 6	CE — 7
DE — 6	DE — 6	DE — 6
ET — 4	ET — 4	ET — 2
CT — 5	CT — 5	CT — 4
Вариант №4	Вариант №5	Вариант №6
SA — 2	SA — 6	SA — 4
SC — 6	SC-3	SC — 8
SD — 9	SD — 4	SD — 2
AB — 5	AB — 4	AB — 4
AC — 6	AC — 5	AC — 5
BC — 7	BC — 2	BC — 9
BT — 8 CD — 3	BT — 5 CD — 3	BT — 8 CD — 7
CD — 3 CE — 7	CD — 3 CE — 7	CD = 7 CE = 7
DE — 4	DE — 6	DE — 2
ET — 4	ET — 7	ET — 4
CT — 3	CT — 9	CT — 5
Вариант №7	Вариант №8	Вариант №9
SA — 3	SA — 8	SA — 6
SC — 4	SC — 9	SC-3
SD — 9	SD-6	SD-5
AB — 6 AC — 8	AB — 8 AC — 2	AB — 4 AC — 5
BC — 6	AC = 2 BC = 5	BC-2
BT — 4	BC — 5 BT — 5	BT — 5
CD-3	CD-4	CD — 9
CE — 7	CE — 7	CE — 7
DE — 3	DE — 6	DE — 5

ET — 7	ET — 7	ET — 7
CT — 9	CT — 6	CT — 9
Вариант №10	Вариант №11	Вариант №12
SA — 7	SA — 3	SA — 2
SC — 5	SC — 6	SC — 7
SD — 9	SD — 9	SD — 7
AB — 5	AB — 6	AB — 9
AC — 3	AC — 6	AC — 3
BC — 7	BC — 8	BC — 5
BT — 8	BT — 8	BT — 7
CD — 9	CD — 6	CD — 3
CE — 7	CE — 7	CE — 4
DE — 8	DE — 2	DE — 4
ET — 4	ET — 4	ET — 7
CT — 3	CT — 5	CT — 8
Вариант №13	Вариант №14	Вариант №15
SA — 4	SA — 5	SA — 2
SC — 3	SC — 5	SC — 4
SD — 6	SD — 6	SD — 8
AB — 8	AB — 5	AB — 2
AC — 3	AC — 7	AC — 9
BC — 7	BC — 7	BC — 4
BT — 6	BT — 8	BT — 8
CD — 9	CD — 8	CD — 9
CE — 5	CE — 7	CE — 7
DE — 8	DE — 8	DE — 2
ET — 7	ET — 4	ET — 7
Вариант №16	Вариант №17	Вариант №18
SA — 7	SA — 6	SA — 5
SC — 4	SC — 3	SC — 5
SD — 8	SD — 9	SD — 7
AB — 5	AB — 4	AB — 6
AC — 3	AC — 8	AC — 7
BC — 7	BC — 6	BC — 7
BT — 2	BT — 8	BT — 9
CD — 9	CD — 9	CD — 5
CE — 7	CE — 7	CE — 9
DE — 8	DE — 7	DE — 8
ET — 4	ET — 6	ET — 4
CT — 6	CT — 3	CT — 2
Вариант №19	Вариант №20	Вариант №21
SA — 2	SA — 8	SA — 6
SC — 6	SC — 5	SC — 6
SD — 7	SD — 9	SD — 5
AB — 5	AB — 4	AB — 5
AC — 6	AC — 4	AC — 6
BC — 7	BC — 9	BC — 7
BT — 5	BT — 8	BT — 8

CD — 3	CD — 4	CD — 9
CE — 7	CE — 7	CE — 7
DE — 6	DE — 4	DE — 8
ET — 4	ET — 8	ET — 4
CT — 3	CT — 7	CT — 6
Вариант №22	Вариант №23	Вариант №24
SA — 4	SA — 2	SA — 6
SC — 4	SC — 8	SC — 2
SD — 7	SD — 8	SD — 7
AB — 2	AB — 2	AB — 2
AC — 9	AC — 4	AC — 9
BC — 8	BC — 4	BC — 4
BT — 8	BT — 6	BT — 8
CD — 9	CD — 9	CD — 7
CE — 7	CE — 7	CE — 7
DE — 7	DE — 2	DE — 2
ET — 7	ET — 9	ET — 7
Вариант №25	Вариант №26	Вариант №27
SA — 5	SA — 8	SA — 2
SC — 5	SC — 6	SC — 6
SD — 7	SD — 8	SD — 7
AB — 5	AB — 5	AB — 7
AC — 6	AC — 6	AC — 6
BC — 7	BC — 8	BC — 7
BT — 5	BT — 5	BT — 5
CD — 5	CD — 3	CD — 3
CE — 7	CE — 7	CE — 7
DE — 6	DE — 8	DE — 6
ET — 4	ET — 4	ET — 7
CT — 3	CT — 8	CT — 3
Вариант №28	Вариант №29	Bариант №30
SA — 4	SA — 9	SA — 3
SC — 5	SC — 5	SC — 5
SD — 4	SD — 7	SD — 7
AB — 5	AB — 9	AB — 5
AC — 6	AC — 6	AC — 3
BC — 4	BC — 7	BC — 7
BT — 5	BT — 9	BT — 5
CD — 4	CD — 5	CD — 3
CE — 7	CE — 7	CE — 7
DE — 9	DE — 9	DE — 8
ET — 4	ET — 4	ET — 4
CT — 3	CT — 3	CT — 9

Контрольные вопросы:

- 1. Что называется сетью?
- 2. Дайте определение «сток» и «исток» на сети.
- 3. Охарактеризуйте понятие «поток на сети»
- 4. Охарактеризуйте понятие «мощность потока на сети».
- 5. Охарактеризуйте понятие «пропускная способность дуг»