

Exhibit 9

Lab Notebook Pages of
Dr. Susan L. Acton

Successive Rounds of screening to clone the
murine hSR-BI from a 3T3-LT Adipocyte pcDNA1
Library

Probe: 500-600 bp BamH1 fragment (5') of hSR-BI in pcDNA1

ZT3-L1 Adipocyte Library

pCDNAI in MC1061/P3

6. Balclutha electroporated + plated bugs, then scraped plates + froze. This is what she gave me (3 vials)

Use vial 2

Scrape a little & then dilute 1:100, then 1:50 and plate 300 µl on a 10 cm plate

She did 20 plates of 30,000 colonies (must have been very small colonies!)

Note that the library is non-directional & is in the ~~Bst~~X¹ sites in pCDNAI

X158 Screen 3T3-L1 Adipocyte Library for murine SR-BI

Purpose: Clone the murine SR-BI for further analysis

Plate Library

Pour 100 mm LB Amp/Tet ($15/8 \mu\text{g/ml}$) Plates
let dry 48 hrs r.t.

Scrape some bugs from frozen tube 2 (from
G. Baldini (Dolph lab) of 3T3-L1, many in
MC10K1/P3 pgDNA1 expression)
Thaw scraped bugs, dilute 1:100, then 1:17
and plate 50 μl

2 μl undil bugs/tube #2
198 μl LB

300 μl of 1:100

\hookrightarrow 118 μl of 1:100
1.88 μl of LB

2 ml of 1:17

\hookrightarrow plate 50 μl /100mm plate

Incubate plates 14 hrs (6pm-8am) 37°C

Transfer plates to 4°C 1 hr

Make Lifts

- ① Carefully lay down sterile Nitrocellulose
Millipore HATF prenumbered, numberside down
onto bugs
- ② When wet, poke 3 holes thru membrane and
plate
- ③ Lift filter off plate with blunt end forceps

- ~~Step~~
- ④ Lay bug side up onto fresh LB A/T plate
 - ⑤ Lay another filter (one numbered) rubber-side down onto bugs on filter to make sandwich
 - ⑥ Poke holes thru duplicate filter to match holes in original filter
 - ⑦ Let bugs grow 3 hrs 37°C between filters
 - ⑧ Let bugs regrow on original filter ^{plate} 3 hrs. Then store wrapped in parafilm 4°C.
 - ⑨ As in Manatis, (1.98) lyse colonies
Set up 4 trays with whatman 3MM Paper
soaked with (in order)
⑩ 10% SDS
⑪ Denaturing soln (0.5M NaOH, 1.5M NaCl)
⑫ Neutralizing soln (1.5M NaCl, 0.5M Tris Cl pH 7.4)
⑬ 2X SSC
 - a) Peel nitrocellulose sandwich from gel & place on SDS impregnated 3MM paper 3 min
 - b) Wipe off excess with edge of tray & transfer to denat. tray 5 min
 - c) Transfer to Neutral tray 5 min
 - d) Transfer to 2X SSC tray ~~sandwich~~ but separate sandwich first - 5 min
 - e) Transfer to dry 3MM paper colony side up
Dry at least 30 min r.t.
 - ⑭ Sandwich filters between 2 sheets of dry 3MM paper Fix by baking in 80°C in vacuum oven
 - ⑮ Store filters under vacuum no heat

X158 cont'd

Make SR-BI probe

Digest #		10X Ac/BSA	H2O	10X NEB Buffer	enzymes
① phaSRIII (1.03 μg/ml)	10μl	5μl	28μl	5μl #2	PstI, HindIII 1μl/μl
② pcDNA1 (1μg/ml)	10μl	5μl	28μl	5μl #2	↓
③ phaSRIII	10μl	5μl	28μl	5μl { BamHI	BamHI ↓
④ pcDNA1	10μl	5μl	28μl	5μl } buffer	↓

Incubate 37°C 2 hr 2:10-4:10 freeze digest
 Ran mini-gel; all digests looked good.
 Clean up digests ① + ③

Phenol extract (50μl)
 Back extract w/ 50μl TE
 Precip DNA in 100μl
 with 10μl 3M NaOAc
 260μl 100% EtOH
 -80°C 20 min
 Spin 20 min 4°C
 Wash w/ 70% EtOH (cold)
 Speed Vac Dry
 Resuspend in 18μl TE
 Add 2μl 10X blue juice
 Heat 68°C 10 min

Run on 1% low melt (Seaplaque) TAE gel
 λ HindIII φX174 Digest ① Digest ③

HaeIII 4 lanes

4 lanes

4°C overnight
 6V turned up to
 30V at noon
 Cut out band
 at 6 pm

JX58 cont'd

Thiazide
OX/TX Thiazide
phase BT
PT/T/Hindite
phase BT
Bam HE

Probes

For screening lifts, use probe B

Label Probe

- ① Melt probe B, take 10ul + add to 10ul H₂O. Label as probe B diluted 1:1
- ② Combine 5ul diluted probe B
5ul miners (from Amersham Kit + 9mers)
Boil 15' spin down liquid
- ③ Add 10ul labeling buffer (Kit)
 - $23 \mu\text{l}$ H₂O
 - $2 \mu\text{l}$ enzyme
 - $5 \mu\text{l}$ $\alpha^{32}\text{P}$ dCTP
 Mix by pipetting gently
Spin
Rkt in 37°C warm room ~45 min 2 hr 3pm - 4pm

X158 cont'd

Check incorporation

Combine

20 µl salmon sperm DNA
20 µl label rxn
180 µl 5% cold TCA

Spin 10' 4°C
Remove 100 µl & count as top.
Count remainder as bottom.

$$\% \text{ incorp} = \frac{\text{bottom} - \text{top}}{\text{bottom} + \text{top}} \times 100\% = 22\%$$

$$\% \text{ incorp} = 22\%$$

Clean up probe:

Add 5 µg LPA to rxn
25 µl 2.5M NH₄Acetate
125 µl 70% EtOH (cold)

Put at -80°C 20 min
Spin 20 min 4°C
Rinse w/cold 70% EtOH
Speed vac dry
Resuspend in 30 µl TE

Add to prehyb soln containing filters
Hybridize 50°C overnight

X158 cont'd

Prehyb - 50°C

500 mM PB, 1mM EDTA, 7% SDS, 1% BSA, 100 µg/ml
salmon sperm DNA (boiled prior to adding)

For 60 ml: 30 ml 1M PB
120 µl 500 mM EDTA ✓
21 ml 7% SDS ✓
0.6 g BSA ✓
0.6 ml salmon sperm DNA ✓
8.28 ml H₂O ✓

Hyb - 50°C in prehyb soln + probe

Washes:

Wash blot 2x fast w/ 300 mM PB r.t.
wash " 1x 10' soln A (300 mM) 54°C
wash " 2x " soln B (300 mM) 54°C

Put down on film - 48 hrs r.t.

- a) let filters air dry on whatman
- b) Arrange on old piece film covered with saran wrap
- c) ~~Scotch~~ or Tape down filters & cover w/ saran wrap
- d) Put marks (from Stratagene ruler) down to orient film w/ filters

Results:

> 100 small dots, which are on duplicate lifts.
Background is low. Looks good!

[X158] cont'd

Secondary lifts

- A. Picked 19 positive dots, 1 negative control from primary lifts
- B. Used pasteur pipets, large end to pick plugs from plates, into 0.5 ml CB + Amp / test One night at 37°C
- C. Make dilutions

- D. Plate bugs
First time plated way too many so replated ~13 hrs 37°C
- E. Transfer plates to cold room 1 hr 4°C

Lifts

- ① Carefully lay down sterile HATF nitrocellulose filter paper prenumbered, number side down onto bugs
- ② When wet, poke 3 holes thru membrane and plate
- ③ Lift filter off plate with blunt end forceps
- ④ Lay bug side up onto fresh LB + T plate (LB Kan for 54-60)
- ⑤ Lay another filter (labeled B) number side down onto bugs on filter to make a sandwich
- ⑥ Poke holes thru duplicate filter to match holes in original filter

- ⑦ Let bugs grow 3 hrs 37°C between filters
 ⑧ Let bugs grow on original plate 3 hrs
 then store wrapped in parafilm 4°C
 ⑨ As in Maniatis (1.98) lyse colonies
 Set up 4 trays with Whatman 3MM paper
 soaked with

3 min
 5 min
 5 min
 5 min

- ① 16% SDS
 ② Denaturing soln (0.5M NaOH, 1.5M NaCl)
 ③ Neutralizing soln (1.5M NaCl, 0.5M Tris Cl, pH 7.4)
 ④ 2X SSC

- a) Peel w/frac. sandwich from gel & place
 b) on SDS-lining 3MM paper
 c) wipe off excess with edge of tray & transfer
 to denat. tray 5 min
 d) transfer to neutral tray 5 min
 e) transfer to 2X SSC tray after separation,
 f) 1 hr
 g) transfer to dry 3MM paper colony side
 up. Dry at least 30 min r.t.

- ⑩ Sandwich filters between sheets of dry
 3MM paper fix by baking 1 hr 80°C in
 vacuum oven
 ⑪ Store filters under vacuum no heat

Label probe (5' BamHI fragment of hASR-BI) as
 for p₀ mts

CYCLE: 3 ID: CERENKOV PRESET TIME: 1.00 TUR: 4.00
 SHIFT: REPEAT: 1 CYCLE REPEAT: 1 BKG:N R5232P:4
 DIL: 1 UNKNOWN AMP: 1
 CHANNEL 1: 1.00 1.000 1.000 0.00 LDR: 0.00 BKG 2016: 0.00 LDR:
 CHANNEL 2: 1.00 1.000 1.000 0.00 LDR: 0.00 BKG 2016: 0.00 LDR:
 DATA CYCLE: 1/PIN, UNKNOWN REPLICATES: 1 INSTR PATTERN: 01.00000
 HALF CYCLE(DAYS): N

	BAM	CERN	CFH2	LME
t	102436.54		757.00	1.00
c	507840.87		324.00	1.00

36% incorporation

Dn I...L... II ... 1.5m... ~~ALZ~~ ~~not done yet~~ 6 ok

Wash blots - Note: May have accidentally used 600mM PB final rather than 300mM

- ① Wash blot 1X fast w/ 300 mM PB r.t.
 - ② Wash blot 1X 10' r.t. 300 mM PB
 - ③ Wash 2X 54°C soln A 300 mM 10' each
- Wash A: 300 mM PB, 5% SDS, 0.5% BSA, 1mM EDTA

For 500 ml: 300 ml 0.5M PB

25 g SDS
2.5 g BSA
1 mg EDTA
H₂O to 500 ml

- ④ Wash 2X 54°C soln B (300 mM PB) 10' each
- Wash B: 300 mM PB, 1% SDS, 1mM EDTA

300 ml 0.5M PB
15 ml 10% SDS
1 ml 500 mM EDTA
H₂O to 500 ml

Dry & expose to film

- ① Let filters dry on whatman paper
- ② Use old piece of film as support
wrap it in Saran wrap
put filters on it & tape down
put stratagene mylar pieces on it to
line up filters
- ③ Cover with Saran wrap

Results: 2° lifts don't look as good as 1° - should not have amplified plasmid pick from 1°. I think high background may be due to accidental use of 600 mM PB rather than 300 mM PB.

Still, there seem to be some definite positives so picked them for 3°.

X158 cont'd

3° Lifts

- A. Picked 9 positive dots, (#61-69)
negative control (#70)
from secondary lifts
- B. Used sterile Pasteur pipets (large end to
pick plugs into 0.5 mL LB. vortexed well.

LB
plug + 500 µl

10 µl + 990 µl → plate 50 µl

10 µl + 990 µl → plate 50 µl

100 µl + 900 µl → plate 50 µl

results
way too many
way too many
just about right
~200/plate

Grow ~14 hrs 37°C

- C. Transferred ^{highest} dilution plate to 4°C for lifts
- D. Performed lifts as before

Made mistake of re-incubating master plates
for 48 hrs rather than 6-8 hrs. Plates
dried somewhat and colonies grew big

E. Label probe as before

AMPLIF 6 ID: CERUNKOV PRECIP TIME: 1.00 TUE 5/14
SAMPLE REPEAT: 1 CYCLE REPEAT: 1 BORIN

100% DILUTION REF. N

100% DILUTION REF. N
100% DILUTION REF. N
100% DILUTION REF. N
100% DILUTION REF. N
100% DILUTION REF. N

	TIME	TIME	TIME
1	437661.47	322.00	1.00
2	175057.48	244.00	1.00

37.5% incorporated

Prehyb { as before 50°C, 300mM PB
Hyb }

Wash 3° as before - 54°C, 300mM
Put down on film - γ screen

X160

Plasmid midiprep

preps: 6 single isolates from 3° screen #71-76

Day 1

1. Pick a single colony into 25 mls LB Amp/Tet and grow overnight shaking 37°C.

Day 2

2. Take 400 µl ~~left~~ put into freezer vial, add 100 µl glycerol and freeze at -150C.
3. Transfer ~~remainder~~ to Falcon 2059 15 ml tube on ice.
4. Spin ~~rest~~ in SS-34, 9000 rpm, 2 min 4C. Add remaining half.
5. Dry pellet as much as possible.
6. Resuspend pellet in 500 µl ice cold solution I by vigorous vortexing.
7. Add 1 ml fresh solution II (0.2 N NaOH, 1% SDS)
for 100 ml:
1 ml 2 N NaOH
0.5 ml 20% SDS
8.5 mls ddH₂O
- Swirl gently until clear. Do not vortex. Leave on ice 10 min.
8. Add 750 µl solution III (ice-cold). Close tube and mix contents by shaking vigorously several times.
Store on ice 5'. A flocculent white precipitate should form.
9. Centrifuge 15', 4°C, 9000 rpm.
10. Recover supe and add equal volume of phenol:chloroform. Mix by vortexing.
11. Spin 9000 rpm, 5'.
12. Add 2 volumes, ethanol r.t., vortex, let stand 5'.
Spin in SS-34 rotor for 15' 9,000 rpm.
13. Carefully aspirate off all liquid (want it dry) and rinse once in cold 70% EtOH. Aspirate again getting any extraneous drops. Airdry 10' minutes.
14. Redissolve in 100 µl TE plus DNase-free RNase (20 µg/ml). Vortex briefly. Incubate 37°C, 0.5 - 2 hr.
Transfer to sterile eppendorf. Refrig 4°C o.N.
15. Quantitate by dilutions onto EtBr plate.
Add DNase-free RNase to final 10 µg/ml

X160
cont'd Digests of Midi-preps

Digest #	DNA	✓ 10X AcPSSA μl	✓ NEB Buffer 10X	✓ H ₂ O	1 μl each enzymes	DNAse Free RFLP
1	#71 - 2 μl	2 μl	2	2 μl	14 μl	Hind III
2			2	2	13	Hind III / Not I
3			2	2	12	Pst I
4			2	2	13	Bam HI
5			2	2	13	
6	#72					
7						
8						
9						
10						
11	#73					
12						
13						
14						
15						
16	#74					
17						
18						
19						
20						
21	#75					
22						
23						
24						
25						
26	#76					
27						
28						
29						
30						

37°C 11:45 am - 2:45

Note that orientation B was found to be correct after sequencing of #74 + #76

X161

DEAE dextran transfections of COS M6 cells

materials:

1. 35 mm dishes
2. DMEM with 10% FBS
3. Chloroquine (40 mM in CMF PBS, sterile filtered)
4. DNA

5. CMF PBS
6. DEAE-dextran (10 mg/ml in CMF PBS (autoclaved))
7. DMSO
8. cPBS
9. sterile tips

method:
day 0 (set up cells)

Set COS M6 cells in 100 mm dishes

(Set 1 confluent T75 into 2.25 100 mm dishes; or 1.5×10^6 cells/dish in 10 ml DMEM with 10% FBS)

day 1 (transfect)

1. In sterile polypropylene tubes prepare for each dish add (in order):
 - a) add CMF PBS to 1.9 ml
 - b) DNA - ~~8~~¹⁰ µg/dish
 - c) 100 µl of 10 mg/ml DEAE-dextran, vortex well (7 seconds)

tube #	# plates	DNA	10 mg/ml	
			CMF PBS	DEAE-dextran
1	1	pheSR-BI (1)	1.03 mg/ml	9.7 µl
2	1	#74 (7/23/94)	1.94 mg/ml	5.2 µl
3	1	#76 (7/24/94)	0.85 mg/ml	11.8 µl
4				

2. Rinse cells with 10 mls CMF PBS (37C). Aspirate PBS.
3. Add transfection cocktail from step 1 and distribute evenly. Incubate 30 minutes, distributing liquid every 10 min.
4. Add 8 ml DMEM 10% FBS + 80 µM chloroquine and incubate 37C 2.5 hrs.
5. Aspirate off medium and replace with 5 ml 10% DMSO in DMEM 10% FBS for 2.5 min.
6. Aspirate off and wash once with 10 mls cPBS.
7. Refeed with 10 ml warm DMEM 10% FBS/dish. Incubate overnight.

X/lel cont'd

Lipoprotein 4°C Binding Assay

materials:

1. 6-well dishes
2. DMEM with 10% FBS
3. iodinated and unlabeled lipoprotein
4. Tris-HCl wash buffer
5. Tris-HCl BSA wash buffer
6. 0.1 N NaOH
7. 10 x 75 tubes

method:

day 0: Set up cells

Set transfected COS in 6-well dishes at 1×10^6 cells/well in 3 ml/well DMEM + 10% FBS + 1 mM Nabutyrate.

day 1: Binding assay

1. Cool cells down on ice for 30 minutes.
2. Refeed cells labeled ligand 1 ml/well (Hams + HEPES + 10% FBS).
2 Hot - ^{125}I -lipoprotein: $10 \mu\text{g}/\text{ml}$ AcLDL (#61) $1.0 \text{ mg}/\text{ml}$ LDL #161B ($39 \text{ mg}/\text{ml}$)
1 Hot + cold: $+ 4 \mu\text{l}$ unlabelled M-BSA #230 DR ($3.2 \text{ mg}/\text{ml}$)
Incubate 2 hrs 4°C (in cold room) on shaker.
3. Wash cells (1 ml each)
3X fast with BSA wash buffer
2X 5 min with BSA wash buffer
2X fast with Tris wash buffer
4. Add 1.0 ml 0.1 N NaOH. Leave 20 min r.t. on shaker
5. Remove 50 μl to 10 x 75 tube and freeze for Lowry.
6. Count 500 μl of rest of sample.
7. Count 10 μl of medium + label for specific activity.

For 14.5 ml ^{hot} need: 14.5 ml Hams + HEPES + 5% AC LPDS
+ 145 μl ^{125}I -AcLDL (#61)

#74

	-	+ LDL	+ M-BSA
1	3	5	
2	4		

5 ml
+ 51.3 μl
LDL #161B

3 ml
+ 375 μl M-BSA
#230

#76

	6	8	10
7	9		
	11		

W.S.R. BI

	11	12	13
	14		

X163

Prepare blunt-cut pcDNAI for reversing orientation
of clone #76 mSR-BI

Purpose: Reverse orientation of clone #76 which
appears to be full-length mSR-BI

Approach: Cut mSR-BI out of clone #76 with
Hind III/Not I, chop ends to blunt
it, ligate into blunt + CIPed pcDNAI

Cut pcDNAI with EcoRV which is
a blunt cutter

DNA	H ₂ O	10X ACBSA	10X NEB	Eco RV
#361 (20 μl) 15.5 μl (1.2 g μl) 14.5 μl 4 μl 4 μl 2 μl pcDNAI (1.2 g μl) 10/29/92				20,000 U/ml

Incubate 37 °C 12:50 pm - 12:50 pm (Thun:

← after 3 hrs

Add 60 μl ddH₂O, extract w/ 100 μl phenol:chloroform:isoamyl/alcohol 25:24:1
Add 10 μl 3M NaOAc pH 5, add 25 μl 100% EtOH, Frac -20 °C 1 hr
Spin 10 min 4 °C

[X163] conf'd

4 blunt-cut pcDNA1 (control) - CIP

redissolve in 90 μ l 10 mM Tris Cl (pH 8)
remove 2 μ l & save as unCIPed

To remainder add 10 μ l 10X CIPdephosph. buffer
and 8 Units of CIP:

for blunt 14/2 pmoles, estimate 20 μ g = 16 pmoles
so 8 Units CIP

Incubate 15 min at 37°C 3:35-3:50

Then ~~add 8 units~~ + incubate 45 min at 55°C.
3:50-4:35

Kill the CIP

Add SDS & EDTA (pH 8.0) to final 0.5% & 5mM, respect.
^{Mix well}
Add proteinase K to final 100 μ g/ml. (10 μ l of 10 mg/ml)
Incubate 30 min 56°C. (4:50-5:20pm)

Cool the rxn to r.t.

Extract once w/phenol, once w/phenol:chloroform
Add 1/10 vol 3M NaOAc pH ~~7.0~~ 5.0 (10 μ l)
Mix well add 25% EtOH (250 μ l)
Mix & store @ -20°C ~~2 hrs~~ 2/2 hrs
Centrifuge w/70% EtOH
Redissolve in TE

Ran over night on 1% Nusieve (should have been Seapage)
Agarose gel. Band was wary, but cut it out anyway

X164 Prepare #76 m8R-BI cDNA for reinserting
into pcDNA1 in correct orientation

Purpose: Cut out #76 insert, to be reinserted
in sense orientation. #76 plasmid
appears to be full-length m8R-BI but
is in the incorrect orientation in pcDNA1.

Digest #76 plasmid:

	DNA	H ₂ O	10X AcBSA	10X NEB buffer	HindIII	NotI
①	#76 (0.85 μg/μl) 24 μl (= 20 μg)	46 μl	10	10 μl (NEBD)	5	5
②	#76 24 μl		46 μl	10	10 μl (NEBD)	5

5:45pm 8:15pm 37°C

Remove 2 μl from each and analyze on 1% Seakem GTG
Agarose TAE gel

To the remainder add 10 μl 3M NaAc + 250 μl 100% EtOH
Store at -20°C for 15 min
Spin 10 min 4°C
Wash w/ 70% EtOH
Resuspend in TE (30 μl)
Add 1 μl 10X blue juice

To blunt ends, add 5 μ l 10X T4 DNA Polymerase Buffer
+ 2 μ l of dNTP mix (25mM) for final 1mM
+ 7 μ l H₂O = 50 μ l ~~101 37° 30 min~~
+ 1 μ l T4 DNA Polymerase 3U/ μ l 37° 30 min (11:30am - 12 noon)

Add 6 μ l 0.25M EDTA
Add 55 μ l Phenol/Chloroform/Isoamyl Alcohol (25:24:1)
Shake, spin, save aq. layer

To aq. phase

Add 30

1/10 V 5M NaCl (= 5 μ l)
Shake add 5 μ l of 1X linear polyacryl.
add 50 μ l 100% EtOH
Chill at -80°C 10'
Spin 10' 4°C
Wash pellet w/ 70% EtOH
Speed vac dry

Resuspend pellet in 36 μ l TE
Run 2 μ l on mini-gel

Add 6 μ l: 1μl φ run on 1% TAE Seaplaque agarose gel
in cold room at 20 V (cold strip app)

5:45pm - 11:00 am

Cut out insert (~2.3KB) & ligate into vector (see following page.)

1X16.5Ligation Rxns.

- 1) Run blunt vector + blunt insert on 1% GTC Seakem gel
to quantitate relative amounts.

Estimate that 3 μl vector = 3 μl cDNA

Want ~ twice as much insert as vector
in 10 μl rxn so use
4 μl vector and 6 μl insert

- 2) Heat tubes to 70°C. for 10-15 min to melt agarose.
3) Combine aliquots of melted gel slices in tube
prewarmed to 70°C.

tube	<u>vector</u> <u>CIP'd. not CIP'd</u>	<u>blunt</u> <u>cDNA</u> <u>insert</u>	<u>H.C.</u>	<u>rxn mix (a. cold)</u>
1	4 μl	-	-	4 μl
2	-	-	4 μl	4 μl
3	4 μl	4 μl	4 μl	4 μl
4	-	4 μl	4 μl	4 μl

2X Lig. Rxn mix : 10 μl 1M Tris, pH 7.5
1 μl 1M MgCl₂
1 μl 1M DTT
1.2 μl 86 μM ATP
86.3 μl H₂O
100 μl

Take 38 μl & add 4 μl T4 DNA Ligase
Incubate 48 hr 12-16°C. (2pm Sat - 1pm Mon.)

X145 cont'd

Transformation of Ligation into MC1061/P3 E. coli

1. Melt the agarose/ligation mixtures at 70°C for 10-15 min.
2. Meanwhile thaw competent MC1061/P3 (from J. Asklund)

<u>transform</u>			<u>results</u>	<u># colonies</u>
1	Lig #1	CIPed vector	5μl	56
2	Lig #2	insert (cDNA) only	5μl	28
3	Lig #3	CIPed vector + insert	5μl	30
4	Lig #4	uncIPed vector	5μl	>500
5	TE only		5μl	47
6	pCDNA1 - 100ng/μl		1μl	>500

3. Add 5μl of pre-felt agarose ligation mixture or control algen. Mix by gentle shaking. Store on ice 30 min 12:45-1:15
4. Transfer to circulation water bath at 42°C. Incubate exactly 90 sec. DO NOT SHAKE TUBES.
5. Rapidly transfer to ice bath. Allow cells to chill 1-2 min.
6. Add 40μl LB medium with alarm to 37°C & transfer to shaking incubator at 37°C. Incubate this 1:25-2:25
7. Plate onto LB Amp/Tet (15μl/100μl) plates, 100μl/1.2mm plate. Incubate 37°C overnight

Result: Insert did not ligate into CIPed vector. Vector is CIPed well. Try blunting cDNA again and gene clean both it and vector.

VII.

GeneClean = vector + cDNA insert (#76)

	<u>wt volume</u>	<u>2.5V</u>	<u>glassmilk</u>
insert	150µl	375µl	10µl
vector	150µl	375µl	10µl

Since ligation did not work between vector + cDNA,
need to make sure ends of cDNA are blunt

Remove protruding 3' termini from cDNA insert

Combine:

- 15µl of gene-cleaned mSR-BI cDNA insert
- 1µl of 1:1:1:1 mix of dNTPs (25mM of each) \Rightarrow final 1.25mM
- 2µl of NEB Buffer 2 10X (final 10mM Tris, 10mM MgCl₂, 50mM NaCl, 1mM DTT pH 7.9)
- 20 µl T4 DNA Polymerase (3 U/µl)
- Incubate 15 min 37°C

Inactivate polymerase by heating to 75°C for 10 min (11-11:10 am)

Run vector + cDNA insert on mini-gel to quantitate amounts

1µl + 2µl TE	+ 2µl TE
(1)	(2)
run 2µl + 2µl 2x blue juice	run 2µl + 2µl 2x blue juice
= 0.67	= 0.22

For a 1:vector : 2:insert molar ratio
use equal mg of vector & insert

Looks like vector stock = 1.5x cDNA

Ligate cDNA into vector

<u>Ligation</u>	<u>blunt pcDNA1 cPep</u>	<u>mSR-B1 blunt cDNA</u>	<u>H₂O</u>	<u>BRL 5X T4 DNA Ligase (4μl)</u>
1	3μl	-	4.5μl	2μl 0.5μl
2	3μl	4.5μl	-	2μl 0.5μl
3	1 μl uncIPed vector	-	6.5μl	2μl 0.5μl
#				

Mix well, spin & incubate 12-16°C (~18°C) 12:15pm ~ 10:30 Fri (~48 hrs)

Transform MC1061/P3

<u>transf</u>	<u>amt</u>	<u>result of colonies</u>
1 Lig #1	5μl	123
2 Lig #2	5μl	32
3 Lig #3	5μl	33
4 TE only	5μl	
5 pcDNA1-300B1μl 4μl	4μl	>1000

] transformation worked best lig #3 but other results don't make sense

- 1) Add 5μl of above DNA to cleaned competent MC1061/T3. Mix by gentle shaking. Store on ice 30' (10:40-11:10)
- 2) Transfer to circulating water bath at 42°C. Incubate exactly 90 sec.
- 3) Rapidly transfer to ice bath. Allow cells to chill 1-2 min. Add sterilized E. coli lawn to 37°C & transfer to shaking incubator at 37°C.
- 4) Plate onto LB Amp/Tet (15μl/ml) / 8μg/ml) 100μl/100mm dish. Incubate 37°C O/N.

Ran ligation rxns on gel to check

1 min after ligation

① ② ③ ④

Lig

- #1 one piece but 6 Kb? Should be 4 Kb.
Must have cut the wrong vector. Redo preparation of blunt-cut cDNA pcDNA1
- #2 - some ligations appear to have worked possibly cDNA - cDNA worked best. Next time cut way back on amt of cDNA: vector.
- #3 can't see any DNA

see below

Ran with 1 kb standards

Results:

blunt cut pcDNA1 is 4 Kb as it should be
~~X Hind III~~ stds are junk

X(67)

Redo ligations

Ligation	blunt pcDNA1 CI/Ped	m8R-B1 blunt cDNA	H ₂ O	BRL 5X T4 DNA lig buffer	BRL T4 DNA ligase (1μl)
1	1μl	-	14	4μl	1μl
2	1μl	1μl	13	4	1
3	1μl	1μl of 1:5	13	4	1
4	1μl of 1:5	1μl of 1:5	13	4	1
5	1μl of 1:5	-	14	4	1

Mix well, spin & incubate 12-16°C (submerged) O.N. (5pm - 2pm)

Transform

K's S. H.
(ml)

1	Lig #1	- 5μl	1/80μl (0.8μg) MC1MC1/T5 C6E	68
2	2	- 5μl		136
3	3	- 5μl		136
4	4	- 5μl		625
5	5	- 5μl		19 + ~30 (in case getting)
6	TE	- 5μl		5
7	pcDNA1	- 1μl		>2000

On ice 37°C 2:30 - 3pm
Shock 42°C 90 sec

On ice 1-2 min
Add 40μl LB & shake (#1-4 my plates, #5-7 Xeno's plates)
100μl

PCR colonies

Purpose: Determine if colonies from transformation plate #2 contain mER-BI in correct orientation.

Set A (determination): T7 + 5T6 primers

Set B (orientation): T7 + 05A4.4B

For .55 x .55 of 37µl each

110 µl 10X PCR buffer (AG)
 27.5 µl T7 primer (1 pmol/µl) (A)
 42.5 µl H₂O
 2.2 µl dATP
 2.2 µl dCTP
 2.2 µl dGTP
 2.2 µl dTTP
 5.5 µl Tag polymerase

(A) 412.5 µl
 ↓
 + 137.5 µl 5T6
 (0.1 pmol/µl)

(B)
 ↓
 + 2nd stock 05A4.4B ("unknown")
 + 135.5 µl H₂O

Pick 20 colonies

#21 neg control colony from transformation plate #1
 #22 control: #76 pmol plasmid in S1 B1 in pDNA1 background

From 20 random colonies

10 will probably be vector only (no insert): background,
 10 will " contain cDNA
 of which 5 will be backwards
 and 5 will be correct orientation

Run gel on Pcf² products

Kun 1% GTG-Agarose. IX TAE

Results: Only the positive control pure plasmid #76 (pCR2.1TM) worked with the T7 & KPlc primers

However, a band of ~1.3 Kb was present in #10, #14, & #17. The expected size is ~1.35 Kb for mSR II in pGEM orientation. Hopefully these are real.

Plasmid midprep

preps:

2, # 10, # 14, # 17 colonies from ligation/transfer
split: 2

Day 1

- Pick a single colony into 25 mls LB Amp/Tet and grow overnight shaking 37°C.

Day 2

- Take 400 µl, put into freezer vial, add 100 µl glycerol and freeze at -150C.
- Transfer half to Falcon 2059 15 ml tube on ice.
- Spin in SS-34, 9000 rpm, 2 min 4C. Discard supe, add remaining bacteria and respin.
- Dry pellet as much as possible.
- Resuspend pellet in 500 µl ice cold solution I by vigorous vortexing.
- Add 1 ml fresh solution II (0.2 N NaOH, 1% SDS)
for 100 ml: 1 ml 2 N NaOH
0.5 ml 20% SDS
8.5 mls ddH₂O
- Swirl gently until clear. Do not vortex. Leave on ice 10 min.
- Add 750 µl solution III (ice-cold). Close tube and mix contents by shaking vigorously several times. Store on ice 5'. A flocculent white precipitate should form.
- Centrifuge 15', 4°C, 9000 rpm.
- Recover supe and add equal volume of phenol:chloroform. Mix by vortexing.
- Spin 9000 rpm, 5'. Recover aq. phase.
- Add 2 volumes, ethanol r.t., vortex, let stand 5'. Spin in SS-34 rotor for 15' 9,000 rpm.
- Carefully aspirate off all liquid (want it dry) and rinse once in cold 70% EtOH. Aspirate again getting any extraneous drops. Airdry 10' minutes.
- Redissolve in 100 µl TE plus DNase-free RNase (20 µg/ml). Vortex briefly. Incubate 37C 0.5 - 2 hr. Transfer to sterile eppendorf.
- Quantitate by dilutions onto EtBr plate.

Digests

	DNA	ActA	ActB	H.C.	+ H.yeast
1	empty				
2					
3					
4					
5	empty 10				
6					
7					
8					
9					
10	empty 14				
11					
12					
13	empty 17				
14					
15					
16					
17	#76 msL.B1 (backwards)				
18					
19					
20					

25°C, 1 hr 45' 518
12:45 - 3:45

Run on 1% Seakem GTG TAE gel

Results: Neg control #2 looks like pcDNA1 only. #10 #14 #17 all look same with insert size ~ 2.5 Kb. Not identical to #76 msL.B1 (backwards)! Everything looks good! I think all three #10 #14 #17 are all in correct direction.
~~see next page~~

X168

DEAE dextran transfections of COS M6 cells

materials:

- | | |
|---|---|
| 1. 35 mm dishes | 5. CMF PBS |
| 2. DMEM with 10% FBS | 6. DEAE-dextran (10 mg/ml in CMF PBS
(autoclaved)) |
| 3. Chloroquine (40 mM in CMF PBS, sterile filtered) | 7. DMSO |
| 4. DNA | 8. cPBS |
| | 9. sterile tips |

method:

day 0 (set up cells)

Set COS M6 cells in 100 mm dishes

(Set 1 confluent T75 into 2.25 100 mm dishes; or 1.5×10^6 cells/dish in 10 ml DMEM with 10% FBS)

day 1 (transfect)

1. In sterile polypropylene tubes prepare for each dish add (in order):
 - a) add CMF PBS to 1.9 ml
 - b) DNA - 5 µg/dish
 - c) 100 µl of 10 mg/ml DEAE-dextran, vortex well (7 seconds)

tube	# plates	DNA	CMF PBS	DEAE-dextran	10 mg/ml
1	1	1 µCDNA/1 (1.25 "3ml")	1.5 ml	3.7 ml	100 µl
2	3	1 µmSP-BI (1.25 "10")	30 µl	5.7 ml	300 µl
3					
4					

2. Rinse cells with 10 mls CMF PBS (37C). Aspirate PBS.
3. Add transfection cocktail from step 1 and distribute evenly. Incubate 30 minutes, distributing liquid every 10 min. 1:30 - 2:00
4. Add 8 ml DMEM 10% FBS + 80 µM chloroquine and incubate 37C 2.5 hrs. 4:30
5. Aspirate off medium and replace with 5 ml 10% DMSO in DMEM 10% FBS for 2.5 min.
6. Aspirate off and wash once with 10 mls cPBS.
7. Refeed with 10 ml warm DMEM 10% FBS/dish. Incubate overnight.

Lipoprotein 4°C Binding Assay

materials:

1. 6-well dishes
2. DMEM with 10% FBS
3. iodinated and unlabeled lipoprotein
4. Tris-HCl wash buffer
5. Tris-HCl BSA wash buffer
6. 0.1 N NaOH
7. 10 x 75 tubes

method:

day 0: Set up cells

Set transfected COS in 6-well dishes at 1×10^6 cells/well in 3 ml/well DMEM + 10% FBS + 1 mM Nabutyrate.

day 1: Binding assay

1. Cool cells down on ice for 30 minutes.
2. Refeed cells labeled ligand 1 ml/well (Hams + HEPES + ^{5%} NCLPDS + ^{10%} FBS) -
2 Hot - 125 I-lipoprotein: 10 μ g/ml 125 I-AcLDL #55 (0.55μ g/ml)
~~1 Hot + cold: 20 μ g/ml AcLDL #55 (400 μ g/ml)~~
Incubate 2 hrs 4°C (in cold room) on shaker.
3. Wash cells (1 ml each)
3X fast with BSA wash buffer
~~2X 5 min with BSA wash buffer~~
2X fast with Tris wash buffer
4. Add 1.0 ml 0.1 N NaOH. Leave 20 min r.t. on shaker
5. Remove 50 μ l to 10 x 75 tube and freeze for Lowry.
6. Count 500 μ l of rest of sample.
7. Count 10 μ l of medium + label for specific activity.

AcLDL #55 4.6 mg/ml
 LDL #161B 39
 HDL #3 31.2
 VLDL #5 20.7

30 μ l 125 I-AcLDL #62 + 17 μ l Hams + 5% NCLPDS + 10% HEPES

4 mlbs + 34.8 μ l AcLDL #55
 2 mlbs + 30.5 μ l LDL #161B
 2 mlbs + 25.6 μ l HDL #3
 2 mlbs + 38.6 μ l VLDL #5

mSR-BI in correct orientation:

mSR-BI (#76) in incorrect orientation:

