ГКП5◊**5.** Рассмотрим объём Vol многогранника как функцию от положения вершины *v*. Докажите, что

$$\nabla_{v} \text{Vol} = \frac{1}{3} \sum_{i} A_{i} N_{i},$$

где A_i и N_i — соответственно площади и нормали граней, содержащих v.

ГКП5 \diamond **6.** Рассмотрим площадь *S* симплициальной поверхности как функцию от положения вершины *v*. Докажите, что

$$abla_{\scriptscriptstyle \mathcal{V}} S = rac{1}{2} \sum_i (\operatorname{ctg} lpha_i + \operatorname{ctg} eta_i) (v_i - v),$$

где v_i — вершины, смежные с данной, а α_i , β_i — углы, противолежащие ребру vv_i .

Кривизны-2

02.04.2018

Здесь и ниже M — гладкая поверхность, заданная радиус-вектором $r\colon U \to \mathbb{R}^3$.

- n вектор нормали,
- K и H гауссова и средняя кривизны,
- $N_V = \int_M n dA$ вектор площади,
- $dA = |r_u \times r_v| \cdot du \wedge dv$ элемент площади,

где вектора из дифференциальных форм перемножаются с помощью векторного произведения.

ГКП6 \diamond **1.** Докажите формулу $\frac{1}{2}dr \wedge dr = n \, dA$.

ГКП6 \diamond **2.** Докажите формулу $dr \wedge dn = Hn \, dA$.

ГКП6 \diamond **3.** Докажите формулу $\frac{1}{2}dn \wedge dn = Kn dA$.

ГКП6 \diamond **4.** Докажите, что $N_V = \int_{\partial M} r \wedge dr$.

ГКП6 \diamond **5.** Докажите, что $\Delta r = Hn$.