	Lecture 1-1
	General System of differential egas, GERI
	The difference of the second
	Suppose x(t) a real function of I variable xi for MIN
	v
	an nth order ODE FOR X is an equation
	of the for Alt, Little
	*
	$F(t, x, x^{(i)}, \dots, x^{(n)}) = 0 \qquad x^{(k)} = \frac{d^k x}{dt^k}$
	į.
Nerv	Put into standard for m x(n) = f(t, x, x(1),, x(n-1))
	Special cases: Linear $\chi^{(n)} = Rollth+R_1(t) \dot{\chi}$ $\sum_{k=0}^{n-1} a_k^{(t)} \chi^{(k)} + b(t)$ Autonomous: $\chi^{(n)} = f(x, \chi^{(i)},, \chi^{(n-1)})$
	K=0 or a notrix for $\vec{Y} = A(\vec{y}\vec{x} + B)$
	Autonomous: $x^{(n)} = f(x, x^{(i)}, \dots, x^{(n-1)})$
	(u. \
	Systems: let $\vec{u} = \begin{pmatrix} u_1 \\ u_n \end{pmatrix}$, $\frac{du_i}{dt} = f_i(t, u_1, \dots, u_n)$ or in vector form $\frac{d\vec{u}}{dt} = \vec{f}(t, \vec{u})$ Nonautonomous system $X \in \mathbb{R}^N$ equiv autonomous system in \mathbb{R}^{N+1}
-	or in vector form
-	$\frac{d\vec{u}}{dt} = \vec{f}(t, \vec{u})$
-	Nonautonomous system XERM equir autonomous system in RM+1
and the same of	4th order linear egn can be get rewritten ar a system of size u
-	let $u_1 = x$, $u_2 = \chi^{(1)}$,, $u_n = \chi^{(n-1)}$ i.e. $u_i = \chi^{(i-1)}$
-	$i \in \mathcal{F}_{i-1}$
-	
	then $4 \frac{du_1}{dt} = u_2$
-	$\frac{du_2}{dt} = u_3$
-	· ·
-	$\frac{du_n}{dt} = f(t_1 u_1, \dots, u_n)$
-	
-	I've been writing $\frac{d\hat{x}}{dt} = f(\hat{x},t)$ could write more geometric
-	11:11 + +: dy 11= >

Think of t as time

 $\frac{d\hat{y}}{dx} = f(\hat{y}, x)$

1	
1.1	1 2
Lectu	10 1-C

What is our goal here? Understand how solutions to DE behave.

Undergraduate (Intro approach) Only look at systems for which one can find x(t) in closed for m

Why is this inadequate? (1) Usually can't be done

(2) Even if you could, sometimes doesn't give insight

$$\frac{dx}{dt} = \sin x \qquad SEPARAPLE$$

$$\frac{dx}{\sin x} = dt$$

Algebraic solution gives little insight into what solutions look like

Geometric approach - Qualitative Theory

need 1-add'l piece of information
$$y(x_0) = y_0$$

Q: CAN

in 2D Add vector field What would solving this mean? for some time interval [a, b], to ∈[a, b] xo da to b typer - There exists a curve x(t) satisfying (1) &C - I deally, this curve should be unique i.e. is there only one such curve? tyle'd hope so, since this ope probably came from a model + we'd want - Slightly hander question: what's the largest interval [a, b] on which we can find as a solution? Can we go to (-00,00) & All of these questions would be boring if the answer were always "yes"? Some examples show this is not the case A problem An example with a unique sol'n for all time (sol'n by quadrature $\frac{dx}{dt} = a(t) \times + b(t)$, a, b defined and continuous, $t \in \mathbb{R}$ $x(t_0) = x_0$ $\frac{dx}{dt} - a(t)x = b(t)$ $\frac{1}{dt} \left[e^{-\int_{a}^{a}(s)ds} \chi(t) \right] = e^{-\int_{a}^{t} a(s)ds} \left(\frac{dx}{dt} - a(t)\chi \right) = e^{-\int_{t_0}^{t} a(s)ds} b(t)$ $e^{-\int_{t_0}^{t}a(s)ds}\chi = \int_{t_0}^{t} \left[e^{-\int_{t_0}^{s}a(r)dr}b(s)\right]ds + \chi_0$ x = p stass x x + st e-sta (r) d r b(s) ds

 $\dot{x}^2 + \dot{x}^2 = -1$ (a little silly) EXAMPLE WITH NO SOLUTION 11-9 EXAMPLE Nonumique solution $\begin{cases} \frac{dx}{dt} = \sqrt{x} \\ \frac{dx}{dt} = 0 \end{cases}$ $(i) \quad \chi(t) = 0$ 2 SOLUTIONS (ii) $\frac{dx}{dx} = dt$ $\int \frac{dx}{dx} = t + c$ $2x^{1/2} = t + c *$ $\chi^{1/2} = \frac{1}{2}(t+c)$ $X = \frac{1}{4}(t+c)^2$ $\chi(0) = \frac{c^2}{4} = 0 \Rightarrow \chi = \left(\frac{t}{2}\right)^2$ Sixy Further note dx = Jx EXAMPLE FINITE BOMAIN OF EXISTENCE X= tun t only defined for - = < t < = 2 So questions: - Under what conditions can flt, x) does de dx = f(t,x) (1) have a continuous solution? & local tence ess (x(to)=xo (2) when is it unique?

existence of this sol'n?

What is the maximum interval of existence of this sol'n?

How does the solution change if we change xo > xo = xo+ E? - Suppose $\dot{x} = f(x,t,\alpha)$ \times a parameter $\dot{x} = 2x$ \times = 2.1x Continues dependence on TC's or parameters

Lecture 1-5

Questions we'll ask later

- What is the behavior of solutions cer t → 4?

 How does qualitative behavior of solutions change
 or we change parameters? X+bx+x=0

 When does ega have time-periodic solutions?