Object Detection을 이용한 잔여 좌석 수 Counting

목차

1. 주제 선정

Clicker (클리커)

전자도서관 전체 시설관리를 위한 열람좌석, 스터디룸, 멀티미디어실, 사물함 등의 시설을 이용자와 연결해주는 시스템

1. 주제 선정

사람이 직접 좌석을 배정 해야 하는 불편함 존재

-> 실제로 사용하지 않는 사람 다수

1. 주제 선정

잔여 좌석 수 확인을 위한 사람 수 세기 인공지능 제작

데이터 : 약 1시간 동안의 수학과 전산실 및 과학계산연구실 사진

예측: 7

CNN (합성곱 신경망)

CNN이란?

Convolutional Neural Network 이미지, 비디오, 텍스트 등을 분류하는 모델

CONV층: 특징 추출 단계

FC층: 이미지 분류 단계

CNN (합성곱 신경망)

CONV층 (합성곱층)

Convolutional Layer -> 이미지 특성을 추출하는 층

이미지

Feature Map

필터: 이미지 특징을 나타내기 위한 파라미터 -> 학습되는 대상

CNN (합성곱 신경망)

CONV층 (합성곱층)

Convolutional Layer -> 이미지 특성을 추출하는 층

이미지

1 x 1	1 x 0	1 x 1	0	0
0x0	1x1	1 x 0	1	0
0 x 1	0 x 0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

4	

Feature Map

필터: 이미지 특징을 나타내기 위한 파라미터 -> 학습되는 대상

CNN (합성곱 신경망)

CONV층 (합성곱층)

Pooling Layer -> 데이터 크기를 줄이는 층 (메모리 ↓ , 과적합 ↓)

CNN (합성곱 신경망)

FC층(완전 연결 계층)

Fully connected -> 최종 분류를 위한 층

CNN (합성곱 신경망)

CNN 모델구조

CNN 모델 학습

- 데이터 : 647개 수학과 열람실 사진
- Softmax 를 이용한 11개 다중분류

CNN (합성곱 신경망)

CNN 결과분석

장점

- 합성곱 연산으로 인한 빠른 연산속도
 - 결과 해석 용이

단점

• 낮은 정확도

Train accuracy: 0.27

Test accuracy: 0.21

- 사람수가 더 늘어나면 모델의
 구조를 수정해야함
- 각 좌석배정에 필요한 사람의 위치정보를 알 수 없음

CNN 결과분석

장점

단점

-> Object Detection!

차이점

Object Detection

O.D란?

Localization + Classification

0 : 배경 1 : 객체 보행자 자동차 오토바이

Object Detection

Yolo란?

Gird cell = 4
$$y = \begin{bmatrix} 1 \\ b_x \\ b_y \\ b_h \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

- You only look once
- · O.D를 효율적으로 수행하는 대표적인 방법

Yolo란?

IoU(Intersection Over Union)

: 객체의 위치 예측을 평가하는 지표

$$\mathsf{IoU} = \frac{A \cap B}{A \cup B}$$

A: 예측

B: 정답

Object Detection

O.D 결과분석


```
Class / Confidence / Box location
0 / 0.98 / 52 374 186 586
0 / 0.96 / 464 368 528 470
0 / 0.96 / 464 400 624 634
0 / 0.95 / 616 357 676 429
0 / 0.92 / 578 379 648 461
0 / 0.73 / 680 408 808 556
```

사람 수 : 6

Object Detection

O.D 결과분석

0 0.99 544 255 710 383 0 0.98 476 387 676 643 0 0.72 914 321 1084 569 0 0.58 1040 280 1162 496 사람수: 4

3. 결론

아쉬운 점

사람임에도 인식을 제대로 못하는 경우가 있다.

→ Train Data를 늘려 정확도를 올린다.

3. 결론

기대효과

Yolo-v3 결과분석

28 27 26 25 24 23

22 21 20 19 18 17

16 15 14 13 12 11

10 9 8 7 6 5

4 3 2 1

사용중 간여좌석

목표는 열람실 좌석 자동화인데, 사람 인식만 구현되었다.

- 1. 좌석의 초기값(0명인 경우)를 설정한다.
- 2. 좌석과 사람의 좌표의 차이가 거의 없다면 불이 들어오게 한다.

