Conditional Image Generation with PixelCNN Decoders

¹Google DeepMind

NIPS, 2016 Presenter: Beilun Wang

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- Proposed Methods
 - PixelCNN
 - Conditional PixelCNN
- Summary

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- 2 Proposed Methods
 - PixelCNN
 - Conditional PixelCNN
- Summary

Motivation

Motivation:

- Conditional image generator with image density model.
- This generator can also be conditioned on class labels, descriptions and a single human face.
- Fast and parallel training.

Problem Setting:

Problem Setting:

- Input: Image with missing pixels, OR image class labels, OR a vector in the embedded space, OR a single human face
- Target: joint distribution consisting of conditional distribution with CNN.
- Output: Image
- PixelCNN (Pixel RNN):

$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i|x_1, \dots, x_{i-1})$$
 (1)

Conditional Version:

$$p(\mathbf{x}|\mathbf{h}) = \prod_{i=1}^{n^2} p(x_i|x_1, \dots, x_{i-1}, \mathbf{h})$$
 (2)

• B conditioned on (R,G); G conditioned on R.

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- 2 Proposed Methods
 - PixelCNN
 - Conditional PixelCNN
- Summary

Previous Solutions

PixelRNN

Figure: PixelRNN

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- 2 Proposed Methods
 - PixelCNN
 - Conditional PixelCNN
- Summary

Contributions

- A fast and parallel trainable deep neural nets model for conditional image generator (?)
- Gated convolutional layers
- Conditional Gated convolutional layers

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- Proposed Methods
 - PixelCNN
 - Conditional PixelCNN
- Summary

Pixel CNN

• Input: $N \times N \times 3$

• Output: $N \times N \times 3 \times 256$

Figure: PixelCNN

Only above and left Pixels are considered.

Masked Filter

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0

Blind spot

Gated Convolutional Layers

- The gates in LSTM may help it to model more complex interactions.
- This is also studied by paper like Highway networks, grid LSTM, and Neural GPUs.

$$\mathbf{y} = \tanh(W_{k,f} * \mathbf{x}) \odot \sigma(W_{k,g} * \mathbf{x}) \tag{3}$$

Gated Convolutional Layers - figure

Figure: Gated Convolutional Layers

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- Proposed Methods
 - PixelCNN
 - Conditional PixelCNN
- Summary

Conditional PixelCNN

• replace $p(\mathbf{x}|\mathbf{h})$ from $p(\mathbf{x})$.

$$\mathbf{y} = \tanh(W_{k,f} * \mathbf{x} + V_{k,f}^T \mathbf{h}) \odot \sigma(W_{k,g} * \mathbf{x} + V_{k,g}^T \mathbf{h})$$
(4)

Conditional PixelCNN-Embedded

- Use a deconvolutional neural nets m()
- map h back to the image space as s

$$\mathbf{y} = \tanh(W_{k,f} * \mathbf{x} + V_{k,f}^T \mathbf{s}) \odot \sigma(W_{k,g} * \mathbf{x} + V_{k,g}^T \mathbf{s})$$
 (5)

Experiment Results-image generation based on labels

Experiment Results-image generation based on a single human face

Summary

- This paper improves the PixelCNN by the gated activation unit
- This paper extends the PixelCNN to a conditional version