Exame de Qualificação de Mestrado – Análise no \mathbb{R}^n 07/07/2014 Aluno/RA:

Cada questão vale 2,0 pontos.

1. Sejam I um intervalo da reta e $f: I \to \mathbb{R}^n$ uma aplicação (um caminho) diferenciável, com $f'(t) \neq 0$ para todo $t \in I$. Defina $\varphi: I \to \mathbb{R}^n$ pondo

$$\varphi(t) = \frac{f(t)}{|f(t)|}.$$

- a) (0,8 pontos) Calcule $\varphi'(t)$.
- **b)** (0,7) Considere o caso f(t) = u + tv, com $u, v \in \mathbb{R}^n$ linearmente independentes, |u| = 1, e determine $\varphi'(0)$.
- c) (0,5) Conclua que se v é perpendicular ao vetor unitário u então v pertence ao espaço tangente T_uS^{n-1} .
- 2. a) (0,5) Enuncie o Teorema da Aplicação Inversa.
 - b) (0,5) Enuncie a Forma Local das Submersões.
- c) (1,0) Demonstre a Forma Local das Submersões usando o Teorema da Aplicação Inversa.
- 3. a) (0,5) Defina variedade com bordo (em \mathbb{R}^n) orientada.
- b) (1,5) Mostre que a imagem inversa de um valor regular de uma aplicação $f: \mathbb{R}^n \to \mathbb{R}^{n-m}$ de classe C^1 é uma m-variedade (de classe C^1 em \mathbb{R}^n) e que é orientável. (Mais precisamente, $M = f^{-1}(c) \neq \emptyset$, onde $c \in \mathbb{R}^{n-m}$ é tal que f é uma submersão em todo ponto de M (f'(x) é sobrejetiva para todo x em M), é uma m-variedade orientável.)
- **4.** Sejam M uma (n-1)-variedade compacta e orientada (em \mathbb{R}^n) e N o campo vetorial unitário normal a M (correspondente à orientação). Sejam $F=(f_1,\cdots,f_n)$ um campo vetorial definido em um aberto (do \mathbb{R}^n) contendo M e ω a (n-1)-forma associada a F, i.e. $\omega=\sum_{j=1}^n (-1)^{j-1} f_j dx_1 \wedge \cdots \wedge \widehat{dx_j} \wedge \cdots \wedge dx_n$. Mostre que $\int_M \omega = \int_M \langle F,N \rangle.$

Mostre que $\int_M \omega = \int_M \langle F, N \rangle$. Obs.: se f é uma função escalar então $\int_M f = \int_M f dV$, onde dV é a forma de volume em M (se $\alpha: A \to M$ é uma parametrização, $\int_{\alpha(A)} f dV = \int_{\mathrm{int}A} (f \circ \alpha) V(D\alpha)$, onde V é a função de volume (n-1) dimensional em \mathbb{R}^n).

- **5.** Sejam G o campo $\frac{x}{|x|^n}$ em $\mathbb{R}^n \{0\}$ e η a (n-1)-forma associada, i.e. $\eta = \sum_{j=1}^n (-1)^{j-1} \frac{x_j}{|x|^n} dx_1 \wedge \cdots \wedge \widehat{dx_j} \wedge \cdots \wedge dx_n$ (a forma elemento de ângulo sólido em \mathbb{R}^n).
- a) Use o resultado da questão 4 para mostrar que se S^{n-1} é orientada com vetor normal $N_x=x$ (o vetor normal no ponto $x\in S^{n-1}$ é x) então $\int_{S^{n-1}}\eta=\mathrm{vol}(S^{n-1}).$
- **b)** Use o resultado do item **a)** para mostrar que η não é uma forma exata (em $\mathbb{R}^n \{0\}$), i.e. não existe uma forma diferencial ω tal que $\eta = d\omega$.
 - c) Mostre que η é uma forma fechada, i.e. $d\eta = 0$.

Exame Qualificação - Álgebra Linear - 10/07/2014

Nesta prova \mathbb{Q}, \mathbb{R} e \mathbb{C} denotarão respectivamente os números racionais, reais e complexos. Também denotaremos por $\mathbb{M}_n(K)$ o conjunto das matrizes $n \times n$ com entradas no corpo K. Todas as respostas devem ser justificadas.

- 1. Responda cada uma das questões abaixo justificando suas respostas com detalhes.
- a) (5pts) Sejam V um K-espaço vetorial de dimensão finita e $v_1, v_2, u \in V \setminus \{0\}$. A afirmação

$$v_1 \otimes u = u \otimes v_2$$
, em $V \otimes V \Longrightarrow v_1 = v_2$

- é falsa ou verdadeira?
- **b)(5pts)** Sejam V um K-espaço vetorial e $W \subset V$ um subespaço **não nulo**. A afirmação $\frac{V}{W} \otimes W \simeq V$ é falsa ou verdadeira?
- c)(7pts) Seja V um \mathbb{R} espaço vetorial com produto interno <-,->, Mostre que: se $V_S=V\otimes_S V$ é o produto tensorial simétrico de V por V então existe $\varphi\in V_S^*$ que satisfaz: para quaisquer $u,v\in V, \varphi(u\otimes_S v)=< u,v>$
- d)(6pts) Dadas duas matrizes $A, B \in \mathbb{M}_6(\mathbb{R})$, sabe-se que ambas têm como polinômio caraterístico
- $f(X) = (X-2)^3(X-1)^3$ e como polinômio mínimo $p(X) = (X-2)^2(X-1)^2$. Pergunta -se: elas são semelhantes?
- e)(10pts) Seja $T: \mathbb{R}^4 \to \mathbb{R}^4$ um operador linear. Sabendo que T é simétrico, tem polinômio característico $f(X) = (X-1)^3(X-2)$ e que u = (1,1,1,1) é vetor característico associado ao auto-valor 2, encontre uma base ortonormal de auto-vetores de T e encontre a matriz de T na base canônica.
- **f)(7pts)** Seja o espaço vetorial $V = \mathbb{C}^2$ com o produto Hermitiano canônico. Dado o operador linear $T: V \to V$ cuja matriz em relação a base $\alpha = \{v_1 = (1,i), v_2 = (1,2i)\}$ é $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. Pergunta-se: T é operador normal?
- **g)**(5pts)Seja $V = \mathbb{C}^n$ com produto Hermitiano canônico < -, -> .Mostre que o único operador autoadjunto $T: V \to V$ que satisfaz < T(v), v>=0 para todo $v \in V$ é o operador nulo.
- **2.** Dados K um corpo, V um K-espaço vetorial e $T:V\to V$ um operador linear, vamos usar a seguinte notação: $\mathcal{Z}_T=\{f(X)\in K[X]; f(T)=0\}$
- a)**7pts** Mostre que: se V é um K-espaço vetorial com base enumerável $\alpha = \{e_1, e_2, \cdots, e_n, \cdots\}$ e $T: V \to V$ é o operador linear definido por $T(e_i) = e_{i+1}, \ i = 1, 2, \cdots$ então $\mathcal{Z}_T = \{0\}.$
- **b)8pts** Mostre que: Se V é um K-espaço vetorial e $S:V\to V$ é um operador linear de posto finito (ie, $dim(S(V))<\infty$) então $\mathcal{Z}_S\neq\{0\}$.
- c)5pts Mostre que: Um K-espaço vetorial V tem dimensão finita se e somente se $\mathcal{Z}_T \neq \{0\}$ para todo operador linear $T: V \to V$.
- **3(15pts)** Seja $T: \mathbb{R}^4 \to \mathbb{R}^4$ definido por T(x, y, z, w) = (x + 2z + 2w, 2y + z, -y, y z w). Encontre a forma de Jordan de T e uma base de Jordan.
- **4.** a)(10pts) Sejam K um corpo , V um K-espaço vetorial de dimensão finita n e $f,g \in V^*$. Mostre que: $H:V\times V\to K$ definida por H(u,v)=f(u)g(v) é bilinear. Mais ainda mostre que H é simétrica não nula se e somente se f é não nula e existe $a\in K\setminus\{0\}$ tal que g=af (Sugestão: Dada uma base $\alpha=\{e_1,\cdots,e_n\}$ trabalhe com as igualdades $H(e_i,e_j)=H(e_j,e_i)$ $i,j=1,\cdots,n$)
- **b)(10pts)** Dada a forma quadrática $q: V = \mathbb{R}^3 \to \mathbb{R}$ definida por: $q(x, y, z) = x^2 y^2 + z^2 + zx$. Encontre uma matriz ortogonal U de forma que a troca de variáveis

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = U \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

resulte em $ax_1^2 + bx_2^2 + cx_3^2$, para convenientes $a, b, c \in \mathbb{R}$.

Boa Prova

Exame Qualificação Julho 2014 - Topologia Geral.

ATENÇÃO: Não é permitido destacar as folhas

NOME:	RA:

Escolha 5 questoes. Incluir na prova todas as contas feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Bom Trabalho!

- (1) a) Sejam G um grupo topológico simplesmente conexo e H um subgrupo normal e discreto. Prove que $\pi_1(G/H, e) = H$.
 - b) Calcular o grupo fundamental de uma garrafa de Klein.
- (2) a) Sejam $p: \tilde{X} \to X$ um espaço de recobrimento e α e $\beta: [0,1] \to X$ caminhos tais que $\alpha \simeq \beta \ rel\{0,1\}$. Provar que se $\tilde{\alpha}$ e $\tilde{\beta}$ são levantamentos de α e β respectivamente tais que $\tilde{\alpha}(0) = \tilde{\beta}(0)$ então $\tilde{\alpha} \simeq \tilde{\beta} \ rel\{0,1\}$.
 - b) Sejam $p: \tilde{X} \to X$ um espaço de recobrimento e $p(\tilde{x}_0) = x_0$. Provar que $p_{\sharp}: \pi_1(\tilde{X}, \tilde{x}_0) \to \pi_1(X, x_0)$ é injetora.
- (3) Sejam X e Y espaços topológicos e $f: X \to Y$ uma aplicação contínua sobrejetiva e fechada tal que para cada $y \in Y$, $f^{-1}(y)$ é compacto. Provar que se Y é compacto então X é compacto.
- (4) Sejam X e Y espaçõs topológicos, Hausdorff e localmente compactos e $f: X \to Y$ contínua. Então f é propria se e somente se f estende-se a uma função contínua $f^*: X^* \to Y^*$ tal que $f^*(\infty_X) = \infty_Y$. Onde X^* e Y^* são as compactificações de Alexandroff de X e Y respectivamente.
- (5) Sejam $\{X_i : i \in I\}$ uma família não vazia de espaços topológicos não vazios. Então $X = \prod_{i \in I} X_i$ é conexo se e somente se cada X_i é conexo.
- (6) Seja \mathbb{R} com a topologia τ definida pela base $\mathcal{B} = \{[a, b) : a < b\}$. Provar que:
 - a) (\mathbb{R}, τ) verifica o primeiro axioma de enumerabilidade porém não verifica o segundo axioma de enumerabilidade.
 - b) (\mathbb{R}, τ) é Lindelöff.
 - c) Todo compacto de (\mathbb{R}, τ) é enumerável e nunca denso na topologia euclideana.