

DSC 204A: Scalable Data Systems Winter 2024

Machine Learning Systems

Big Data

Cloud

Foundations of Data Systems

Where We Are

Machine Learning Systems

Big Data

Cloud

2000 - 2016

Foundations of Data Systems

1980 - 2000

Today's topic

- Collective communication
 - Connection between distributed SGD and collective comm
 - Communication Model: $\alpha + n\beta$, $\beta = \frac{1}{B}$
 - Small Message size $(n \to 0)$: α dominates, emphasize latency
 - Large Message Size $(n \to +\infty)$: $n\beta$ dominate, emphasize bandwidth utilization

Recap: Minimum Spanning Tree Algorithm Reduce(-to-one)

$$log(p)(\alpha + n\beta + n\gamma)$$

Scatter
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Broadcast

$$log(p)(\alpha + n\beta)$$

$$2\log(p)\alpha + \log(p)n(\beta + \gamma) + \frac{p-1}{p}n\beta$$

Allreduce

$$2\log(p)\alpha + \log(p)n(2\beta + \gamma)$$

Allgather
$$2log(p)\alpha + log(p)n\beta + \frac{p-1}{p}n\beta$$

Pros and Cons of MST algorithms

- Emphasize low latency
 - MST-based algorithm is latency-optimal
 - How to prove? (Taking broadcast as an example)

- Problem of Minimum Spanning Tree Algorithm?
 - Some links are idle

Broadcast

Large Message

Communication Model:
$$\alpha + n\beta$$
, $\beta = \frac{1}{B}$

- The second term dominates we want to minimize the second term
 - We want to utilize the bandwidth as much as possible

Long vector building blocks

- We will show how the following building blocks:
 - collect/distributed combine
 - scatter/gather

can be implemented using "bucket" algorithms while attaining

- minimal cost due to length of vectors
- implementation for arbitrary numbers of nodes
- no network conflicts
- NOTICE: scatter and gather already satisfy these conditions

General principles

- Use all the links between every two nodes
- A logical ring can be embedded in a physical linear array with worm-hole routing, since the "wrap-around" message doesn't conflict

 A logical ring can be embedded in a physical linear array with wormhole routing, since the "wrap-around" message doesn't conflict

General principles

Ring algorithm has the following advantages

- Fully utilize the bandwidth (bandwidth optimal)
- implementation for arbitrary numbers of node

Allgather

Cost of bucket Allgather

$$(p-1) \left(\alpha + \frac{n}{p}\beta\right)$$
 number of steps
$$= \cos p \operatorname{cost} p \operatorname{er} \operatorname{steps}$$

$$(p-1)\alpha + \frac{p-1}{p}n\beta$$

Reduce-scatter

Cost of bucket distributed combine

number of steps
$$= \frac{(p-1)\left(\alpha + \frac{n}{p}\beta + \frac{n}{p}\gamma\right)}{(p-1)\alpha + \frac{p-1}{p}n\beta + \frac{p-1}{p}n\gamma}$$
 cost per steps

Scatter: Can Ring Be Better?

Notice: Scatter as implemented before using MST was optimal in Bandwidth as well (How to Prove?)

Gather

Notice: Gather as implemented before using MST was optimal in bandwidth as well (how to prove?)

Using the building blocks

Broadcast (Large Message)

Broadcast (long vector)

Broadcast (long vector)

Cost of scatter/allgather broadcast

Assumption: power of two number of nodes

scatter
$$\log(p)\alpha + \frac{p-1}{p}n\beta$$
 allgather
$$(p-1)\alpha + \frac{p-1}{p}n\beta$$

$$(\log(p)+p-1)\alpha + 2\frac{p-1}{p}n\beta$$

Cost of scatter/allgather broadcast

Assumption: power of two number of nodes

scatter
$$\log(p)\alpha + \frac{p-1}{p}n\beta$$
 allgather
$$(p-1)\alpha + \frac{p-1}{p}n\beta$$

$$(\log(p) + p-1)\alpha + 2\frac{p-1}{p}n\beta$$

Vs. MST broadcast: $\lceil log(p) \rceil (\alpha + n\beta)$

Reduce(-to-one) (long vector)

Reduce (long vector)

Combine-to-one (long vector)

Cost of Reduce-scatter/Gather Reduce(-to-one)

Assumption: power of two number of nodes

Reduce-scatter
$$(p-1)\alpha + \frac{p-1}{p}n\beta + \frac{p-1}{p}n\gamma$$

$$gather \qquad log(p)\alpha + \frac{p-1}{p}n\beta$$

$$(log(p)+p-1)\alpha + 2\frac{p-1}{p}n\beta + \frac{p-1}{p}n\gamma$$

Cost of Reduce-scatter/Gather Reduce(-to-one)

Assumption: power of two number of nodes

$$\begin{array}{ll} \text{Reduce-scatter } (p-1)\alpha + \frac{p-1}{p}n\beta + \frac{p-1}{p}n\gamma \\ \\ \text{gather} & log(p)\alpha + \frac{p-1}{p}n\beta \\ \hline & \\ \hline (log(p)+p-1)\alpha + 2\frac{p-1}{p}n\beta + \frac{p-1}{p}n\gamma \end{array}$$

Vs. MST reduce: $\lceil log(p) \rceil (\alpha + n\beta + n\gamma)$

Allreduce (Large Message)

Allreduce (Large Message)

Allreduce (long vector)

Cost of Reduce-scatter/Allgather Allreduce

Assumption: power of two number of nodes

Reduce-scatter(
$$p-1$$
) $\alpha+\frac{p-1}{p}n\beta+\frac{p-1}{p}n\gamma$
Allgather
$$(p-1)\alpha+\frac{p-1}{p}n\beta$$

$$\frac{2(p-1)\alpha+2\frac{p-1}{p}n\beta+\frac{p-1}{p}n\gamma}{p}$$

Cost of Reduce-scatter/Allgather Allreduce

Assumption: power of two number of nodes

Reduce-scatter
$$(p-1)\alpha + \frac{p-1}{p}n\beta + \frac{p-1}{p}n\gamma$$
Allgather $(p-1)\alpha + \frac{p-1}{p}n\beta$

$$\frac{p-1}{p}n\beta + \frac{p-1}{p}n\beta$$

$$\frac{2(p-1)\alpha + 2\frac{p-1}{p}n\beta + \frac{p-1}{p}n\gamma}{p}$$

Vs. Reduce-broadcast allreduce

$$2log(p)\alpha + 2log(p)n\beta + log(p)n\gamma$$

Reduce-scatter

$$(p-1)\alpha + \frac{p-1}{p}n(\beta + \gamma)$$

Scatter
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Allgather
$$(p-1)\alpha + \frac{p-1}{p}n\beta$$

Reduce(-to-one)

Allreduce

Reduce-scatter

$$(p-1)\alpha + \frac{p-1}{p}n(\beta + \gamma)$$

Scatter
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Allgather $(p-1)\alpha + \frac{p-1}{n}n\beta$

Reduce(-to-one)
$$(p-1+\log(p))\alpha + \frac{p-1}{p}n(2\beta + \gamma)$$

Allreduce

Reduce-scatter

$$(p-1)\alpha + \frac{p-1}{p}n(\beta + \gamma)$$

Scatter

$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather

$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Allgather

$$(p-1)\alpha + \frac{p-1}{p}n\beta$$

Reduce(-to-one)
$$(p-1+\log(p))\alpha + \frac{p-1}{p}n(2\beta + \gamma)$$

Allreduce

$$2(p-1)\alpha + \frac{p-1}{p}n(2\beta + \gamma)$$

$$(\log(p) + p - 1)\alpha + 2\frac{p - 1}{p}n\beta$$

Reduce-scatter

$$(p-1)\alpha + \frac{p-1}{p}n(\beta + \gamma)$$

Scatter
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Allgather

$$(p-1)\alpha + \frac{p-1}{p}n\beta$$

Reduce(-to-one) $(p-1+\log(p))\alpha + \frac{p-1}{p}n(2\beta + \gamma)$

$$(p-1+\log(p))\alpha + \frac{p-1}{p}n(2\beta + \gamma)$$

Allreduce

$$2(p-1)\alpha + \frac{p-1}{p}n(2\beta + \gamma)$$

Reduce-scatter

$$(p-1)\alpha + \frac{p-1}{p}n(\beta + \gamma)$$

Scatter
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Gather
$$log(p)\alpha + \frac{p-1}{p}n\beta$$

Allgather
$$(p-1)\alpha + \frac{p-1}{p}n\beta$$

Reduce(-to-one)
$$(p-1+\log(p))\alpha + \frac{p-1}{p}n(2\beta + \gamma)$$

Allreduce

$$2(p-1)\alpha + \frac{p-1}{p}n(2\beta + \gamma)$$

Broadcast
$$(log(p) + p - 1)\alpha + 2\frac{p-1}{p}n\beta$$

A More Complicate Case

- Real Cluster to train ChatGPT:
 - If using GPU: 2D Mesh
 - If using TPU: 3D Mesh, see figure below

• Idea: Use 1D to compose 2

- Idea: Use 1D to compose 2
- Option 1:
 - MST broadcast in column

- Option 1:
 - MST broadcast in column
 - MST broadcast in rows

- Option 2:
 - Scatter in column

- Option 2:
 - Scatter in column
 - MST broadcast in rows

- Option 2:
 - Scatter in column
 - MST broadcast in rows
 - Allgather in columns

- Option 3:Scatter in column
 - Scatter in rows

 - Allgather in rowsAllgather in columns

- Option 3:Scatter in column
 - Scatter in rows

- Option 3:Scatter in column
 - Scatter in rows
 - Allgather in rows

- Option 3:Scatter in column
 - Scatter in rows

 - Allgather in rowsAllgather in columns

- Option 1:
 - MST broadcast in column
 - MST broadcast in rows
- Option 2:
 - Scatter in column
 - MST broadcast in rows
 - Allgather in columns
- Option 3:
 - Scatter in column
 - Scatter in rows
 - Allgather in rows
 - Allgather in columns

$$\frac{\log(c)\alpha + \log(c)n\beta}{\log(r)\alpha + \log(r)n\beta}$$
$$\frac{\log(r)\alpha + \log(r)n\beta}{\log(p)\alpha + \log(p)n\beta}$$

- Option 1:
 - MST broadcast in column
 - MST broadcast in rows
- Option 2:
 - Scatter in column
 - MST broadcast in rows
 - Allgather in columns
- Option 3:
 - Scatter in column
 - Scatter in rows
 - Allgather in rows
 - Allgather in columns

$$log(c)\alpha + \frac{c-1}{c}n\beta$$

$$log(r)\alpha + log(r)\frac{n}{c}\beta$$

$$(c-1)\alpha + \frac{c-1}{c}n\beta$$

$$(log(p) + c-1)\alpha + \left(2\frac{c-1+log(r)}{c}\right)n\beta$$

- Option 1:
 - MST broadcast in column
 - MST broadcast in rows
- Option 2:
 - Scatter in column
 - MST broadcast in rows
 - Allgather in columns
- Option 3:
 - Scatter in column
 - Scatter in rows
 - Allgather in rows
 - Allgather in columns

$$log(c)\alpha + \frac{c-1}{c}n\beta$$

$$log(r)\alpha + \frac{r-1}{r}\frac{n}{c}\beta$$

$$(r-1)\alpha + \frac{r-1}{r}\frac{n}{c}\beta$$

$$(c-1)\alpha + \frac{c-1}{c}n\beta$$

$$(log(p)+r+c-2)\alpha + 2\frac{p-1}{p}n\beta$$

- Option 1:
 - MST broadcast in column
 - MST broadcast in rows
- Option 2:
 - Scatter in column
 - MST broadcast in rows
 - Allgather in columns
- Option 3:
 - Scatter in column
 - Scatter in rows
 - Allgather in rows
 - Allgather in columns

$$log(p)\alpha + log(p)n\beta$$

$$(log(p)+c-1)\alpha + \left(2\frac{c-1+log(r)}{c}\right)n\beta$$

$$(\log(p) + r + c - 2)\alpha + 2\frac{p-1}{p}n\beta$$

Summary and Question

- MST -> when alpha dominates
- Ring -> when n*beta dominates
- 2D can be composed using 1D, 3D can be composed using 2D,

• • •

Latency / Bandwidth trade-offs

- Q1: Which collective primitive maps to the distributed SGD gradient synchronization step?
- Q2: How many messages do we need to transfer over the network for a single iteration of GPT-3 SGD update assuming 8-gpu parallelism?
- Q3: For Q2, assuming 1D mesh, should we use MST or Ring?

Collective Pros

- A set of structured / well-defined communication primitives
- Extremely well-optimized
- Beautiful math, easy to analyze, and easy to understand its performance

Collective Cons

- Lack of Fault Tolerance
 - What if one node (in the ring) is dead?
- Requires Homogeneity
 - What if one node computes slower than all other nodes?
 - What if one link has lower bandwidth than the other node?

Real Cluster:

- Need Fault tolerance
- Heterogeneous hardware setup

Next Topics

- This week 2 classes: Data base + Cloud Storage
 - Delta from previous year offering:
 - we skip a substantial part of relational database
 - spend more time one networking, HPC, and ML

- Next week: Parallelism and Big Data processing
 - We will come back to study how we address the problem of Collectives