# Spectral Schur complement techniques for eigenvalue problems

Vassilis Kalantzis joint work with Ruipeng Li and Yousef Saad

Computer Science and Engineering Department University of Minnesota - Twin Cities, USA

SIAM CSE 2015, 03-14-2015

### Contents

- Introduction
- 2 The Domain-Decomposition framework
- Solving the spectral Schur complement eigenvalue problem
- 4 Numerical experiments
- Conclusion

#### Introduction

### The symmetric eigenvalue problem

$$Ax = \lambda x$$

where  $A \in \mathbb{R}^{n \times n}$ ,  $x \in \mathbb{R}^n$  and  $\lambda \in \mathbb{R}$ . A pair  $(\lambda, x)$  is an *eigenpair* of A.

#### Focus

- Find all  $(\lambda, x)$  pairs inside the interval  $[\alpha, \beta]$  where  $\alpha, \beta \in \mathbb{R}$  and  $\lambda_1 \leq \alpha, \beta \leq \lambda_n$ .
- ② Given a shift  $\zeta \in \mathbb{R}$ , find the  $k(\lambda, x)$  pairs closest to  $\zeta$ .

## Roadmap

#### In this talk

- Propose a Domain Decomposition-type approach.
- Focus on solving the problem along the interface.
- Quadratically convergent Newton scheme.
- No estimation of # eigenvalues inside the interval.
- Parallel implementation.

### Contents

- Introduction
- 2 The Domain-Decomposition framework
- 3 Solving the spectral Schur complement eigenvalue problem
- 4 Numerical experiments
- Conclusion

# Partitioning of the domain (Metis, Scotch,...)



Figure: An edge-separator (vertex-based partitioning)

## The local viewpoint – assume p partitions



Stack interior variables  $u_1, u_2, \dots, u_p$  into u, then interface variables y,

$$\begin{pmatrix} B_1 & & & & E_1 \\ & B_2 & & & E_2 \\ & & \ddots & & \vdots \\ & & B_p & E_p \\ E_1^\top & E_2^\top & \cdots & E_p^\top & C \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_p \\ y \end{pmatrix} = \lambda \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_p \\ y \end{pmatrix}$$

#### Notation:



Write as

$$A = \begin{pmatrix} B & E \\ E^{\top} & C \end{pmatrix}$$



## The spectral Schur complement

• Eliminating the *u<sub>i</sub>*'s we get

$$\begin{pmatrix} S_1(\lambda) & E_{12} & \cdots & E_{1p} \\ E_{21} & S_2(\lambda) & \cdots & E_{2p} \\ \vdots & & \ddots & \vdots \\ E_{p1} & E_{p2} & \cdots & S_p(\lambda) \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{pmatrix} = 0$$

with 
$$S_i(\lambda) = C_i - \lambda I - E_i^{\top} (B_i - \lambda I)^{-1} E_i$$
.

Interface problem (non-linear):

$$S(\lambda)y(\lambda)=0.$$

• Top parts can be recovered as  $u_i = -(B_i - \lambda I)^{-1} E_i y(\lambda)$ .



#### Contents

- Introduction
- 2 The Domain-Decomposition framework
- 3 Solving the spectral Schur complement eigenvalue problem
- 4 Numerical experiments
- Conclusion

## Spectral Schur complement revisited

#### The problem

• Find  $\sigma \in \mathbb{R}$  such that

$$\mu(\sigma) = 0,$$

where  $\mu(\sigma)$  denotes the smallest (|.|) eig of  $S(\sigma)$ .

#### Reformulating

- We can treat  $\mu(\sigma)$  as a function  $\to$  root-finding problem.
- The function  $\mu(\sigma)$  is analytic for any  $\sigma \notin \Lambda(B)$  with

$$\frac{d\mu(\sigma)}{d\sigma} = \frac{(S'(\sigma)y(\sigma), y(\sigma))}{(y(\sigma), y(\sigma))} = -1 - \frac{\|(B - \sigma I)^{-1}Ey(\sigma)\|_2^2}{\|y(\sigma)\|_2^2}.$$

## Basic algorithm - Newton's scheme

## "Chasing" a single eigenvalue

We can formulate a Newton-based algorithm.

## Algorithm 3.1

- 1: Select  $\sigma$
- 2: repeat
- 3: Compute  $\mu(\sigma) =$  Smallest eigenvalue in modulus of  $S(\sigma)$
- 4: along with associated unit eigenvector  $y(\sigma)$
- 5: Set  $\eta := \|(B \sigma I)^{-1} E y(\sigma)\|_2$
- 6: Set  $\sigma := \sigma + \mu(\sigma)/(1+\eta^2)$
- 7: **until**  $|\mu(\sigma)| \leq \text{tol}$

# Short illustration - eigenvalue branches of $S(\sigma)$ between two poles



### Quadratic convergence

The Newton scheme is quadratically convergent. The second derivative is

$$\mu'' = y^{\top} S'' y + 2y'^{\top} (S - \mu I) y'$$

and

$$S'' = 2E^{\top}(B - \sigma I)^{-3}E.$$

### Residual of the approximation

It can be shown that

$$\|(A - \sigma I)\hat{x}(\sigma)\| = |\mu(\sigma)|$$

where  $\hat{x}(\sigma) = [-(B - \sigma I)^{-1} Ey(\sigma); y(\sigma)]$  is the approximate eigenvector.

#### Connection with RQ

The Newton update also is the Rayleigh Quotient,

$$\sigma = \rho(A, \hat{x}(\sigma)).$$

## Eigenvalue branches of $S(\sigma)$ across the poles



15 / 27

## A branch-hopping scheme

## Algorithm 3.2 – "Chasing" more than one eigenvalues

- 1: Given a, b. Select  $\sigma = a$
- 2: while  $\sigma < b \text{ do}$
- 3: Compute  $S(\sigma)\mu(\sigma) = \mu(\sigma)y(\sigma)$
- 4: if  $|\mu(\sigma)| \leq \text{tol then}$
- 5: Obtain  $\mu(\sigma) = \text{smallest positive eigenvalue of } S(\sigma)$
- 6: end if
- 7: Compute derivative and update  $\sigma$  as in Algorithm 3.1
- 8: end while

## An example of the Branch-hopping scheme



17 / 27

## Effects of p in convergence



Figure: Eigenvalue branches  $\mu_1(\sigma), \ldots, \mu_9(\sigma)$  in [0.133, 0.241] with  $n_x = 33$ ,  $n_y = 23$  and  $n_z = 1$ . Left subfigure p = 4, right subfigure p = 16.

## Implementation aspects

## Evaluation of $S(\sigma)\mu(\sigma) = \mu(\sigma)y(\sigma)$

- For any  $\sigma$  we just need one or two eigenvalues of  $S(\sigma)$ .
- We can use "Inverse-Iteration" type approaches.
- In this talk we use the Lanczos algorithm with partial re/tion.
- Lanczos has the ability to compute inertia of  $S(\sigma)$ .

### Parallel implemenation

- The initial interval can be broken in multiple parts.
- ullet In each subinterval we can compute  $\mu(\sigma)$  by using the DD framework.
- Single-level partitioning One node per sub-domain.
- Implemented in C++ using the PETSc framework.

## Contents

- Introduction
- 2 The Domain-Decomposition framework
- Solving the spectral Schur complement eigenvalue problem
- Mumerical experiments
- Conclusion

## Numerical experiments

#### Some details

- Tests performed on Itasca Linux cluster @ MSI.
- Each node is a two-socket, quad-core 2.8 GHz Intel Xeon X5560 "Nehalem EP" with 24 GB of system memory.
- Interconnection: 40-gigabit QDR InfiniBand (IB).

## The model problem

- Tests on 3-D dicretized Laplacians (7pt. st. FD).
- We use  $n_x$ ,  $n_y$ ,  $n_z$  to denote the three dimensions.
- tol set to  $1 \times e^{-12}$ .

## Convergence of the proposed scheme





Figure: Rel. res. for a few consecutive eigenvalues. Left subfigure  $n_x = 20$ ,  $n_y = 20$  and  $n_z = 20$ , right subfigure  $n_x = 40$ ,  $n_y = 20$  and  $n_z = 20$ .

# Computing eigenvalues inside an interval

|                            |    | $[\alpha, \beta] := [0, 0.5]$ |     | $[\alpha, \beta] := [2, 2.2]$ |         |     | $[\alpha, \beta] := [4.1, 4.2]$ |         |     |          |
|----------------------------|----|-------------------------------|-----|-------------------------------|---------|-----|---------------------------------|---------|-----|----------|
|                            |    | #Eigvls                       | lt  | Avg. Lan                      | #Eigvls | lt  | Avg. Lan                        | #Eigvls | lt  | Avg. Lan |
| n = 4000                   |    |                               |     |                               |         |     |                                 |         |     |          |
|                            | 2  |                               | 41  | 169                           |         | 85  | 210                             |         | 124 | 338      |
| # of subdomains (p)        | 4  | 15                            | 26  | 197                           | 39      | 74  | 367                             | 46      | 80  | 652      |
|                            | 8  |                               | 32  | 284                           |         | 60  | 551                             |         | 70  | 1020     |
|                            | 16 |                               | 32  | 255                           |         | 55  | 721                             |         | 70  | 1480     |
| n = 8000                   |    |                               |     |                               |         |     |                                 |         |     |          |
|                            | 2  |                               | 60  | 176                           |         | 76  | 337                             |         | 90  | 517      |
| // - C   -   -   -   -   - | 4  | 35                            | 43  | 194                           | 81      | 65  | 573                             | 117     | 43  | 967      |
| # of subdomains (p)        | 8  |                               | 35  | 279                           |         | 58  | 778                             |         | 38  | 1388     |
|                            | 16 |                               | 39  | 281                           |         | 48  | 1037                            |         | 37  | 1900     |
| n = 16000                  |    |                               |     |                               |         |     |                                 |         |     |          |
|                            | 2  |                               | 210 | 166                           |         | 342 | 406                             |         | 424 | 735      |
| # of subdomains (p)        | 4  | 73                            | 170 | 199                           | 156     | 292 | 746                             | 217     | 314 | 1502     |
|                            | 8  |                               | 154 | 294                           |         | 273 | 1194                            |         | 310 | 2526     |
|                            | 16 |                               | 138 | 360                           |         | 241 | 1694                            |         | 300 | 3548     |

# Computing k=1 and k=5 eigenvalues closest to $\zeta$

|            |        |          | ζ =     | $\zeta = 0.0$ |     |         | $\zeta=0.05$ |     |  |  |
|------------|--------|----------|---------|---------------|-----|---------|--------------|-----|--|--|
|            | (p, k) | s        | Time(s) | lt            | Lan | Time(s) | lt           | Lan |  |  |
| $n = 60^3$ |        |          |         |               |     |         |              |     |  |  |
|            | (8,1)  | 22078    | 19.1    | 4             | 65  | 31.2    | 3            | 312 |  |  |
|            | (8,5)  | <b>≫</b> | 105.6   | 14            | 180 | 139.2   | 12           | 372 |  |  |
|            | (16,1) | 35702    | 3.9     | 4             | 65  | 12.0    | 4            | 474 |  |  |
|            | (16,5) | <b>≫</b> | 29.3    | 14            | 228 | 56.1    | 12           | 510 |  |  |
|            | (32,1) | 47200    | 1.0     | 4             | 80  | 5.5     | 3            | 534 |  |  |
|            | (32,5) | >>       | 10.7    | 12            | 480 | 25.7    | 11           | 610 |  |  |
| $n = 70^3$ |        |          |         |               |     |         |              |     |  |  |
|            | (8,1)  | 30077    | 38.1    | 4             | 88  | 73.2    | 3            | 350 |  |  |
|            | (8,5)  | <b>≫</b> | 223.0   | 14            | 157 | 352.1   | 15           | 374 |  |  |
|            | (16,1) | 49596    | 12.6    | 4             | 115 | 46.9    | 4            | 600 |  |  |
|            | (16,5) | >>       | 87.3    | 15            | 223 | 153.8   | 11           | 702 |  |  |
|            | (32,1) | 65647    | 2.7     | 4             | 135 | 21.7    | 3            | 750 |  |  |
|            | (32,5) | >>       | 23      | 13            | 282 | 58.7    | 10           | 864 |  |  |

03-14-2015

# Computing k=1 and k=5 eigenvalues closest to $\zeta$

|                     |                                                    |                                                 | $\zeta=1.0$                                                   |                               |                                                        | ζ                                                               | $\zeta=1.5$                   |                                                            |  |  |
|---------------------|----------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|-------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|-------------------------------|------------------------------------------------------------|--|--|
|                     | (p, k)                                             | s                                               | Time(s)                                                       | lt                            | Lan                                                    | Time(s)                                                         | lt                            | Lan                                                        |  |  |
| $n=40^3$            |                                                    |                                                 |                                                               |                               |                                                        |                                                                 |                               |                                                            |  |  |
|                     | (2,1)<br>(2,5)<br>(4,1)<br>(4,5)<br>(8,1)<br>(8,5) | 3280<br>>><br>6466<br>>><br>9579<br>>>          | 23.3<br>117.1<br>33.2<br>150.1<br>45.3<br>220.5               | 3<br>15<br>3<br>15<br>3<br>15 | 478<br>486<br>850<br>855<br>1100<br>1112               | 29.4<br>147.5<br>65.4<br>331.9<br>167.7<br>724.2                | 2<br>10<br>2<br>11<br>2<br>10 | <b>758 781</b> 1200 1242 1700 1731                         |  |  |
| n = 50 <sup>3</sup> | (2,1)<br>(2,5)<br>(4,1)<br>(4,5)<br>(8,1)<br>(8,5) | 5100<br>  ≫<br>  10148<br>  ≫<br>  14795<br>  ≫ | 75.1<br>348.2<br><b>50.7</b><br><b>235.3</b><br>81.1<br>402.8 | 3<br>15<br>3<br>13<br>3<br>14 | 680<br>691<br><b>950</b><br><b>978</b><br>1200<br>1226 | 150.2<br>720.1<br><b>78.4</b><br><b>342.2</b><br>163.1<br>723.3 | 3<br>14<br>3<br>14<br>3<br>13 | 1014<br>1025<br><b>1200</b><br><b>1257</b><br>1600<br>1654 |  |  |

### Contents

- Introduction
- 2 The Domain-Decomposition framework
- Solving the spectral Schur complement eigenvalue problem
- Mumerical experiments
- Conclusion

#### Conclusion

#### In this talk

- The DD scheme presented focuses solely on the interface problem.
- ullet Eigenvalue branches of the SSC o Newton's method.
- Parallelism can be exploited in two different levels.
- Ultimately, *k* eigenpairs are computed at the cost of one.

#### Considerations

- Exploit previous information in the form of a subspace.
- Use other than Lanczos method for computing interior eigenvalues.
- Comparisons against state-of-the-art methods.