

Estimating seal pup abundance with SPDE-INLA

What to do when you don't get the amazing results you were hoping for?

Martin Jullum

Background

- Thordis & Martin's original project: Write some paper on point processes using INLA (Dec 2015)
- ► Tor Arne contributed with the idea to use point processes in seal abundance modeling (Jan? 2016)
- Fabian Bachl (Uni. Edinburgh) joined the team (July? 2016)
- People
 - Thordis: Point process expert
 - Fabian: INLA expert
 - Tor Arne: Seal data expert
 - Martin: No experience with point processes, INLA, nor seals

Problem

- Ultimale goal: Monitor seal abundance in the North Atlantic
- Well established dynamic abundance model for seals
 - Key component is estimate + uncertainty of the number of seal <u>pups</u>
 - Typically based on oversimplified method
 - Do not trust the uncertainty
- Our task: Propose a method to estimate the total number of <u>pups</u> with uncertainty

Data

- From an aerial photo survey conducted east of Greenland in 2012
- Number of pups in 2792 photos in 27 transects sparsely covering the seal domain
- 2 seal types: Harps and hooded

Data

- From an aerial photo survey conducted east of Greenland in 2012
- Number of pups in 2792 photos in 27 transects sparsely covering the seal domain
- 2 seal types: Harps and hooded
- Additional info: Quantified satellite image to indicate ice thickness
- Seal domain Ω shown in pink

Solution idea

- Handle the seal types separately
- Model the spatial distribution of the pups with a Log-Gaussian Cox Process (LGCP)
 - Gaussian latent field Z
 - Point pattern $Y|Z \sim \text{PoissonProcess}(\lambda(s) = \exp(Z(s)))$
 - Log-likelihood: $|A| \int_A \exp(Z(s)) ds + \sum_i Z(s_i)$, s_i the location of photo i
 - LGCP property: Given Z, counts N(B) in disjoint Borel sets B indep. and distributed as $Poisson(\lambda = \int_{B} exp(Z(s)) ds)$
- The Bayesian solution to our problem is the ***posterior predictive distribution*** of pup counts in the seal domain $p(N(\Omega)|Y)$
 - Easy to compute with samples from p(Z|Y)
- We use
 - $Z(s) = \alpha + \beta^t x_s + f(s)$, x_s satellite information, f(s) zero-mean Gaussian field
 - Vague priors on all parameters
- Main challenges:
 - Observe only a small part of the seal area
 - Data are aggregated counts per photo
 - How can such a model be fitted in INLA?

3 approximation approaches

- 1: Poisson regression on a regular grid (Rue et al. 2009)
 - Grid the modeling area
 - Let f(s) be a GMRF on that grid
 - Per LGCP property: Given Z, the counts in each cell are indep. Poisson with $\lambda_i = \int_{A_i} \exp(Z(s)) ds$
 - $\lambda_i \approx \lambda_i^* = |A_i| \exp(Z(s_i^*))$ for s_i^* the mid-point in cell A_i
 - Model the counts in each cell as Poisson distributed with offset $|A_i|$

3 approximation approaches

- 1: Poisson regression on a regular grid (Rue et al. 2009)
 - Grid the observation area
 - Let f(s) be a GMRF on that grid
 - Per LGCP property: Given Z, the counts in each cell are indep. Poisson with $\lambda_i = \int_{A_i} \exp(Z(s)) ds$
 - $\lambda_i \approx \lambda_i^* = |A_i| \exp(Z(s_i^*))$ for s_i^* the mid-point in cell A_i
 - Model the counts in each cell as Poisson distributed with offset $|A_i|$
- 2: Direct likelihood approximation with SPDE field (Simpson et al. 2016)
 - Let let f(s) be a SPDE-based GMRF
 - Apply deterministic integration approximation + utilize FEM representation of Z
 - Gives approx likelihood equivalent to a Poisson likelihood for certain pseudo-observations
 - Can be fitted directly by contructing the pseudo-observations

3 approximation approaches

- 3: Poisson regression with SPDE field
 - Per LGCP property: Given Z, the counts per **photo** are indep. Poisson with $\lambda_i = \int_{A_i} \exp(Z(s)) ds$
 - $\lambda_i \approx \lambda_i^* = |A_i| \exp(Z(s_i^*))$ for s_i^* the mid-point in photo A_i
 - Construct a triangulated mesh in a special way
 - One mesh point in the center of each photo
 - Other mesh points distributed such that the extent of each photo $|A_i|$ corresponds to the Voronoi tesselation of the center mesh point
 - Fit the counts per photo as a Poisson regression with $|A_i|$ as offset, using INLAs SPDE approach

We chose the 3rd approach

▶ Since

- Allows us to use the aggregated photo counts directly
- Model defined also without the LGCP argument (data are not actually a point pattern)
- Regular grid is restrictive

Alternative model

- ► Arnt-Børre + Tor Arne + others (2009)
 - Let $Z_0(s) = f_{GAM}(s)$, with $f_{GAM}(s)$ a (spatial) smooth spline.
 - $\mu_i = |A_i| \exp(Z_0(s_i^*))$ for s_i^* the mid-point in cell A_i
 - Fit the counts per photo as a negative binomial regression with constant shape κ and $|A_i|$ as offset
 - Frequentist approach
 - Smoothness of $f_{GAM}(s)$ chosen through generalized CV
 - We test this formulation, also with satellite data and Poisson distributions
 - Use sampling to produce predictive distribution of total pup counts for comparison

Model comparison

- GAM slightly smaller point predictions and much smaller uncertainty
- 2 cross validation schemes
 - Leave out one full transect at a time
 - Predict photo and transect counts
 - Regular 10-fold CV
 - Predict left out individual photos and sum of photo counts
- Performance measures
 - CRPS = $\int (\hat{F}(n) \mathbf{1}_{\{n-n_{true}\}})^2 dn$
 - LogScore = $\log(\hat{f}(n_{true}))$
- Performance results
 - Our approach better at photo level
 - GAM better/as good on aggregated/transect level

Conclusion

- What have we learned
 - It can be hard to know exactly what you are doing in INLA
 - Doing non-standard things in INLA requires a lot of coding
 - It takes time to
 - learn something completely new
 - try out a lot of different approaches
- Further work
 - Joint model harps and hooded seals?
- Subprojects
 - Exact analytical formula for LGCP likelihood for SPDE fields

Discussion

- What to do when you don't get the results you want?
 - Can we get a decent paper out of this?
 - The only fundamentally new thing is using satellite images as covariates for this application
 - Bayes + SPDE + proper validation procedure are also new, but not fundamentally
 - What we care about is total pup abundance, our approach is only superior on a finer scale
 - Do we need to try out a joint model for harps and hooded seals?
 - Are we dependent on great results for such a model?
- What could we have done differently?

