第四讲-习题

姜帆

2019年7月8日

目录

1	推导		4
	1.1	绘制信息矩阵 Λ	
		1.1.1 Λ_1	4
		1.1.2 Λ_2	4
		1.1.3 Λ_3	4
		1.1.4 Λ_4	;
		1.1.5 Λ_5	;
		1.1.6 Λ_6	;
		1.1.7 Λ_7	;
		1.1.8 Λ_8	;
		1.1.9 Λ_9	;
		1.1.10 信息矩阵 Λ	4
	1.2	绘制相机位姿 ξ_1 被 marg 后的信息矩阵 Λ'	4
2	代码	补充	•

1 推导

1.1 绘制信息矩阵 Λ

某时刻相机位姿 ξ_i 与路标点 L_k 如下图所示, 重投影误差为 $r(\xi_i, L_k)$ 。

图 1: 相机位姿与路标点

此处残差总共有 9 维;状态变量有 3 个相机 pose, 3 个路标点坐标共六维;所以雅克比矩阵为 6×9 维,信息矩阵为 6×6 维。

1.1.1 Λ_1

记 $r_1 = r(\xi_1, \xi_2)$

$$J_{1} = \begin{bmatrix} \frac{\partial r_{1}}{\partial \xi_{1}} & \frac{\partial r_{1}}{\partial \xi_{2}} & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\Lambda_{1} = J_{1}^{T} \Sigma_{1}^{-1} J_{1}$$

$$(1)$$

1.1.2 Λ_2

记 $r_2 = r(\xi_2, \xi_3)$

$$J_2 = \begin{bmatrix} 0 & \frac{\partial r_2}{\partial \xi_2} & \frac{\partial r_2}{\partial \xi_3} & 0 & 0 & 0 \end{bmatrix}$$

$$\Lambda_2 = J_2^T \Sigma_2^{-1} J_2$$
(2)

1.1.3 Λ_3

记 $r_3 = r(\xi_1, L_1)$

$$J_3 = \begin{bmatrix} \frac{\partial r_3}{\partial \xi_1} & 0 & 0 & \frac{\partial r_3}{\partial L_1} & 0 & 0 \end{bmatrix}$$

$$\Lambda_3 = J_3^T \Sigma_3^{-1} J_3$$
(3)

1.1.4 Λ_4

记
$$r_4 = r(\xi_1, L_2)$$

$$J_4 = \begin{bmatrix} \frac{\partial r_4}{\partial \xi_1} & 0 & 0 & 0 & \frac{\partial r_4}{\partial L_2} & 0 \end{bmatrix}$$

$$\Lambda_4 = J_4^T \Sigma_4^{-1} J_4$$
(4)

1.1.5 Λ_5

记
$$r_5 = r(\xi_2, L_1)$$

$$J_5 = \begin{bmatrix} 0 & \frac{\partial r_5}{\partial \xi_2} & 0 & \frac{\partial r_5}{\partial L_1} & 0 & 0 \end{bmatrix}$$

$$\Lambda_5 = J_5^T \Sigma_5^{-1} J_5$$
(5)

1.1.6 Λ_6

记
$$r_6 = r(\xi_2, L_2)$$

$$J_6 = \begin{bmatrix} 0 & \frac{\partial r_6}{\partial \xi_2} & 0 & 0 & \frac{\partial r_6}{\partial L_2} & 0 \end{bmatrix}$$

$$\Lambda_6 = J_6^T \Sigma_6^{-1} J_6$$
(6)

1.1.7 Λ_7

记
$$r_7 = r(\xi_2, L_3)$$

$$J_7 = \begin{bmatrix} 0 & \frac{\partial r_7}{\partial \xi_2} & 0 & 0 & 0 & \frac{\partial r_7}{\partial L_3} \end{bmatrix}$$

$$\Lambda_7 = J_7^T \Sigma_7^{-1} J_7$$
(7)

1.1.8 Λ_8

记
$$r_8 = r(\xi_3, L_2)$$

$$J_8 = \begin{bmatrix} 0 & 0 & \frac{\partial r_8}{\partial \xi_2} & 0 & \frac{\partial r_8}{\partial L_2} & 0 \end{bmatrix}$$

$$\Lambda_8 = J_8^T \Sigma_8^{-1} J_8$$
(8)

1.1.9 Λ_9

记
$$r_9 = r(\xi_3, L_3)$$

$$J_9 = \begin{bmatrix} 0 & \frac{\partial r_9}{\partial \xi_2} & 0 & 0 & 0 & \frac{\partial r_9}{\partial L_3} \end{bmatrix}$$

$$\Lambda_9 = J_9^T \Sigma_9^{-1} J_9$$

$$(9)$$

1.1.10 信息矩阵 Λ

			1am	al							1am	da2							1amd	la3							1an	ıda4							1amd	la5		
	ξ1	ξ2	ξ3	L1	L2	L3			ξ1	ξ2	ξ3	L1	L2	L3			ξ1	ξ2	<i>ξ</i> 3	L1	L2	L3			ξ1	ξ 2	ξ a	L1	L2	L3			ξ 1	ξ2	<i>ξ</i> 3	L1	L2	L3
÷ 1								<i>ξ</i> 1								ξ 1								ξ	1							<i>\$</i> 1						
2								ξ2								ξ 2								ξ	2							ξ 2						
3							+	<i>ξ</i> 3							+	<i>\$</i> 3							+	ξ	3						+	<i>ξ</i> 3						
.1								L1								L1								L1								L1						
2								L2								L2								L2								L2						
.3								L3								L3								L3								L3						
			1am	la6							1am	da7							1amd	a8							1an	ıda9							1amd	la_		
	<i>ξ</i> 1	ξ2	<i>ξ</i> 3	L1	L2	L3			<i>ξ</i> 1	<i>\$</i> 2	ξ3	L1	L2	L3			<i>ξ</i> 1	<i>\$</i> 2	<i>‡</i> 3	L1	L2	L3			<i>\$</i> 1	ξ 2	<i>ξ</i> 3	L1	L2	L3			ξ1	<i>ệ</i> 2	<i>ệ</i> 3	L1	L2	L3
£ 1								ξ1								ξ1								ξ	1							ξ1						
£ 2								ξ2								ξ 2								ξ	2							ξ 2						
<i>ệ</i> 3							+	<i>ξ</i> 3				\top			+	<i>ξ</i> 3							+	ξ							=	<i>ξ</i> 3						
.1								L1								L1								L1								L1						
.2								L2								L2								L2								L2						
.3								L3								L3								L3		+						L3						

图 2: 信息矩阵

1.2 绘制相机位姿 ξ_1 被 marg 后的信息矩阵 Λ'

图 3: marg 后相机位姿与路标点

图 4: marg 后的信息矩阵

2 代码补充 6

2 代码补充

补充代码中单目 bundle adjustment 信息矩阵计算部分。

图 5: 信息矩阵计算补充

信息矩阵 SVD 分解后结果:

2 代码补充 7

图 6: 信息矩阵 SVD 分解

奇异值分解后从图上可以看出后七维接近于 0,说明单目 slam 的 BA 求解零空间维度 为 7。