CS503T: Statistical Pattern Recognition Programming Assignment I

Group 04

Ashish Pawade (CS25MT002) Chinmay Rajesh Manusmare (CS25MT014)

Under the guidance of Prof. Dilip A D

September 18, 2025

Contents

1	Intr	oducti	on	7
2	Dat	aset 1:	Linearly Separable Data	8
	2.1	Trainin	ng Data	8
	2.2	Consta	ant Density Contour Plot	9
	2.3	Classif	Her: Shared $\sigma^2 I$	10
		2.3.1	Decision Region Plots Between Class Pairs (LS Dataset, Shared $\sigma^2 I)$	11
	2.4	Classif	fier: Shared Full Covariance Σ	12
		2.4.1	Decision Region Plots Between Class Pairs (LS Dataset, Shared Full Covariance)	13
	2.5	Classif	fier: Diagonal Covariance (Per-Class)	14
		2.5.1	Decision Region Plots Between Class Pairs (LS Dataset, Diagonal Covariance (Per-Class))	15
	2.6	Classif	fier: Full Covariance (Per-Class)	16
		2.6.1	Decision Region Plots Between Class Pairs (LS Dataset, Full Covariance (Per-Class)	17
3	Dat	aset 2:	Nonlinearly Separable Data	18
	3.1	Trainin	ng Data	18
	3.2	Consta	ant Density Contour Plot	19
	3.3	Classif	Her: Shared $\sigma^2 I$	20
		3.3.1	Decision Region Plots Between Class Pairs (NLS Dataset, Shared $\sigma^2 I$)	21
	3.4	Classif	her: Shared Full Covariance Σ	22
		3.4.1	Decision Region Plots Between Class Pairs (NLS Dataset, Shared Full Covariance)	23
	3.5	Classif	ier: Diagonal Covariance (Per-Class)	24

		3.5.1	Decision Region Plots Between Class Pairs (NLS Dataset, Diagonal Covariance (Per-Class))	25
	3.6	Classi	fier: Full Covariance (Per-Class)	26
		3.6.1	Decision Region Plots Between Class Pairs (NLS Dataset, Full Covariance (Per-Class)	27
4	Dat	aset 3	: Real-world Vowel Data	28
	4.1	Traini	ng Data	28
	4.2	Const	ant Density Contour Plot	29
	4.3	Classi	fier: Shared $\sigma^2 I$	30
		4.3.1	Decision Region Plots Between Class Pairs (RD Dataset, Shared $\sigma^2 I$)	31
	4.4	Classi	fier: Shared Full Covariance Σ	32
		4.4.1	Decision Region Plots Between Class Pairs (RD Dataset, Shared Full Covariance)	33
	4.5	Classi	fier: Diagonal Covariance (Per-Class)	34
		4.5.1	Decision Region Plots Between Class Pairs (RD Dataset, Diagonal Covariance (Per-Class)	35
	4.6	Classi	fier: Full Covariance (Per-Class)	36
		4.6.1	Decision Region Plots Between Class Pairs (RD Dataset, Full Covariance (Per-Class)	37
5	Cor	nparis	on Across Datasets	38
	5.1	Perfor	mance Metrics Summary	38
	5.2	Obser	vations and Inferences	38
	5.3	Covar	iance Comparison	39
6	Cor	nclusio	\mathbf{n}	39

List of Figures

1	Scatter plot of training data for linearly separable dataset	8
2	Constant density contours for all classes	9
3	Confusion Matrix for Shared $\sigma^2 I$ (Linearly Separable Data)	10
4	Decision Region Plot (All Classes) - Shared $\sigma^2 I$	11
5	Decision Region Plots (Training data points superimposed) between class pairs for Shared $\sigma^2 I$ on LS dataset	11
6	Confusion Matrix for Shared Full Covariance Σ (Linearly Separable Data)	12
7	Decision Region Plot (All Classes) - Shared Full Covariance	13
8	Decision Region Plots (Training data points superimposed) between class pairs for Shared Full Covariance on LS dataset	13
9	Confusion Matrix for Diagonal Covariance (Per-Class) (Linearly Separable Data)	14
10	Decision Region Plot (All Classes) - Diagonal Covariance (Per-Class)	15
11	Decision Region Plots (Training data points superimposed) between class pairs for Diagonal Covariance (Per-Class) on LS dataset	15
12	Confusion Matrix for Full Covariance (Per-Class) (Linearly Separable Data)	16
13	Decision Region Plot (All Classes) - Full Covariance (Per-Class)	17
14	Decision Region Plots (Training data points superimposed) between class pairs for Full Covariance (Per-Class) on LS dataset	17
15	Scatter plot of training data for nonlinear dataset	18
16	Constant density contours for all classes	19
17	Confusion Matrix for Shared $\sigma^2 I$ (Non-Linearly Separable Data)	20
18	Decision Region Plot (All Classes) - Shared $\sigma^2 I$	21
19	Decision Region Plots (Training data points superimposed) between class pairs for Shared $\sigma^2 I$ on NLS dataset	21
20	Confusion Matrix for Shared Full Covariance Σ (Non-Linearly Separable Data)	22
21	Decision Region Plot (All Classes) - Shared Full Covariance	23

22	pairs for Shared Full Covariance on NLS dataset	23
23	Confusion Matrix for Diagonal Covariance (Per-Class) (Non-Linearly Separable Data)	24
24	Decision Region Plot (All Classes) - Diagonal Covariance (Per-Class)	25
25	Decision Region Plots (Training data points superimposed) between class pairs for Diagonal Covariance (Per-Class) on NLS dataset	25
26	Confusion Matrix for Full Covariance (Per-Class) (Non-Linearly Separable Data)	26
27	Decision Region Plot (All Classes) - Full Covariance (Per-Class)	27
28	Decision Region Plots (Training data points superimposed) between class pairs for Full Covariance (Per-Class) on NLS dataset	27
29	Scatter plot of training data for vowel dataset	28
30	Constant density contours for vowel dataset	29
31	Confusion Matrix for Shared $\sigma^2 I$ (Vowel Data)	30
32	Decision Region Plot (All Classes) - Shared $\sigma^2 I$	31
33	Decision Region Plots (Training data points superimposed) between class pairs for Shared $\sigma^2 I$ on RD dataset	31
34	Confusion Matrix for Shared Full Covariance Σ (Vowel Data)	32
35	Decision Region Plot (All Classes) - Shared Full Covariance	33
36	Decision Region Plots (Training data points superimposed) between class pairs for Shared Full Covariance on RD dataset	33
37	Confusion Matrix for Diagonal Covariance (Per-Class) (Vowel Data)	34
38	Decision Region Plot (All Classes) - Diagonal Covariance (Per-Class)	35
39	Decision Region Plots (Training data points superimposed) between class pairs for Diagonal Covariance (Per-Class) on RD dataset	35
40	Confusion Matrix for Full Covariance (Per-Class) (Vowel Data)	36
41	Decision Region Plot (All Classes) - Full Covariance (Per-Class)	37
42	Decision Region Plots (Training data points superimposed) between class pairs for Full Covariance (Per-Class) on RD dataset	37

List of Tables

1	Performance Metrics - Shared $\sigma^2 I$	10
2	Performance Metrics - Shared Full Covariance	12
3	Performance Metrics - Diagonal Covariance (Per-Class)	14
4	Performance Metrics - Full Covariance (Per-Class)	16
5	Performance Metrics - Shared $\sigma^2 I$	20
6	Performance Metrics - Shared Full Covariance	22
7	Performance Metrics - Diagonal Covariance (Per-Class)	24
8	Performance Metrics - Full Covariance (Per-Class)	26
9	Performance Metrics - Shared $\sigma^2 I$	30
10	Performance Metrics - Shared Σ	32
11	Performance Metrics - Diagonal Covariance (Per-Class)	34
12	Performance Metrics - Full Covariance (Per-Class)	36
13	Performance Metrics (Precision, Recall, F1 Score, Accuracy) for each classifier across datasets	38
14	Comparison of Mean F1 Scores Across Covariance Types	39

1 Introduction

This report presents the implementation and evaluation of a Bayes classifier under different covariance assumptions for three datasets:

- Dataset 1: Linearly separable data (3 classes, 2D)
- Dataset 2: Nonlinearly separable data (3 classes, 2D)
- Dataset 3: Real-world vowel dataset (3 classes, 2D)

The class-conditional densities are assumed to be Gaussian. For each dataset, we evaluate the classifier under the following covariance models:

- 1. Shared spherical: $\sigma^2 I$
- 2. Shared full: Σ
- 3. Diagonal per-class
- 4. Full per-class

We analyze the classification performance through metrics and visualization.

2 Dataset 1: Linearly Separable Data

2.1 Training Data

Figure 1: Scatter plot of training data for linearly separable dataset

2.2 Constant Density Contour Plot

Figure 2: Constant density contours for all classes

2.3 Classifier: Shared $\sigma^2 I$

Figure 3: Confusion Matrix for Shared $\sigma^2 I$ (Linearly Separable Data)

Table 1: Performance Metrics - Shared $\sigma^2 I$

Class	Precision	Recall	F1-Score	Support	
Class 1	1.0000	1.0000	1.0000	125	
Class 2	1.0000	1.0000	1.0000	125	
Class 3	1.0000	1.0000	1.0000	125	
Accuracy		1.0	0000		
Mean Precision		1.0	0000		
Mean Recall	1.0000				
Mean F1 Score		1.0	0000		

Inferences: Because the data is linearly separable with clearly distinct clusters, this simple shared covariance model performs perfectly.

Figure 4: Decision Region Plot (All Classes) - Shared $\sigma^2 I$

2.3.1 Decision Region Plots Between Class Pairs (LS Dataset, Shared $\sigma^2 I$)

Figure 5: Decision Region Plots (Training data points superimposed) between class pairs for Shared $\sigma^2 I$ on LS dataset

2.4 Classifier: Shared Full Covariance Σ

Figure 6: Confusion Matrix for Shared Full Covariance Σ (Linearly Separable Data)

Table 2: Performance Metrics - Shared Full Covariance

Class	Precision	Recall	F1-Score	Support	
Class 1	1.0000	1.0000	1.0000	125	
Class 2	1.0000	1.0000	1.0000	125	
Class 3	1.0000	1.0000	1.0000	125	
Accuracy		1.0	0000		
Mean Precision		1.0	0000		
Mean Recall	1.0000				
Mean F1 Score		1.0	0000		

Inferences: Using a shared full covariance matrix captures class correlations perfectly, still yielding ideal classification on this simple dataset.

Figure 7: Decision Region Plot (All Classes) - Shared Full Covariance

2.4.1 Decision Region Plots Between Class Pairs (LS Dataset, Shared Full Covariance)

Figure 8: Decision Region Plots (Training data points superimposed) between class pairs for Shared Full Covariance on LS dataset

2.5 Classifier: Diagonal Covariance (Per-Class)

Figure 9: Confusion Matrix for Diagonal Covariance (Per-Class) (Linearly Separable Data)

Table 3: Performance Metrics - Diagonal Covariance (Per-Class)

Class	Precision	Recall	F1-Score	Support	
Class 1	1.0000	1.0000	1.0000	125	
Class 2	1.0000	1.0000	1.0000	125	
Class 3	1.0000	1.0000	1.0000	125	
Accuracy		1.0	0000		
Mean Precision		1.0	0000		
Mean Recall	1.0000				
Mean F1 Score		1.0	0000		

Inferences: Allowing per-class diagonal covariance still perfectly classifies this dataset, as features vary independently along axes with clear class separation.

Figure 10: Decision Region Plot (All Classes) - Diagonal Covariance (Per-Class)

2.5.1 Decision Region Plots Between Class Pairs (LS Dataset, Diagonal Covariance (Per-Class))

Figure 11: Decision Region Plots (Training data points superimposed) between class pairs for Diagonal Covariance (Per-Class) on LS dataset

2.6 Classifier: Full Covariance (Per-Class)

Figure 12: Confusion Matrix for Full Covariance (Per-Class) (Linearly Separable Data)

Table 4: Performance Metrics - Full Covariance (Per-Class)

Class	Precision	Recall	F1-Score	Support	
Class 1	1.0000	1.0000	1.0000	125	
Class 2	1.0000	1.0000	1.0000	125	
Class 3	1.0000	1.0000	1.0000	125	
Accuracy		1.0	0000		
Mean Precision		1.0	0000		
Mean Recall	1.0000				
Mean F1 Score		1.0	0000		

Inferences: Full covariance per class fully captures data spread and shape, leading to perfect classification.

Figure 13: Decision Region Plot (All Classes) - Full Covariance (Per-Class)

2.6.1 Decision Region Plots Between Class Pairs (LS Dataset, Full Covariance (Per-Class)

Figure 14: Decision Region Plots (Training data points superimposed) between class pairs for Full Covariance (Per-Class) on LS dataset

3 Dataset 2: Nonlinearly Separable Data

3.1 Training Data

Figure 15: Scatter plot of training data for nonlinear dataset

3.2 Constant Density Contour Plot

Figure 16: Constant density contours for all classes

3.3 Classifier: Shared $\sigma^2 I$

Figure 17: Confusion Matrix for Shared $\sigma^2 I$ (Non-Linearly Separable Data)

Table 5: Performance Metrics - Shared $\sigma^2 I$

Class	Precision	Recall	F1-Score	Support	
Class 1	0.82	0.79	0.81	125	
Class 2	0.75	0.70	0.72	125	
Class 3	0.74	0.80	0.77	125	
Accuracy		0	0.76		
Mean Precision	0.77				
Mean Recall	0.76				
Mean F1 Score		0	.77		

Inferences: The shared $\sigma^2 I$ covariance assumes spherical clusters with same variance. Since the dataset is non-linearly separable, this simple model struggles, showing moderate precision and recall. Decision boundaries are roughly circular and unable to fit complex shapes well.

Figure 18: Decision Region Plot (All Classes) - Shared $\sigma^2 I$

3.3.1 Decision Region Plots Between Class Pairs (NLS Dataset, Shared $\sigma^2 I$)

Figure 19: Decision Region Plots (Training data points superimposed) between class pairs for Shared $\sigma^2 I$ on NLS dataset

3.4 Classifier: Shared Full Covariance Σ

Figure 20: Confusion Matrix for Shared Full Covariance Σ (Non-Linearly Separable Data)

Table 6: Performance Metrics - Shared Full Covariance

Class	Precision	Recall	F1-Score	Support	
Class 1	0.84	0.82	0.83	125	
Class 2	0.78	0.75	0.76	125	
Class 3	0.79	0.83	0.81	125	
Accuracy		0	.80		
Mean Precision		0	.80		
Mean Recall	0.80				
Mean F1 Score		0	.80		

Inferences: Shared full covariance allows elliptical decision boundaries that better fit data spread, improving classification compared to $\sigma^2 I$. However, the shared nature limits flexibility, resulting in some misclassifications in complex regions.

Figure 21: Decision Region Plot (All Classes) - Shared Full Covariance

3.4.1 Decision Region Plots Between Class Pairs (NLS Dataset, Shared Full Covariance)

Figure 22: Decision Region Plots (Training data points superimposed) between class pairs for Shared Full Covariance on NLS dataset

3.5 Classifier: Diagonal Covariance (Per-Class)

Figure 23: Confusion Matrix for Diagonal Covariance (Per-Class) (Non-Linearly Separable Data)

Table 7: Performance Metrics - Diagonal Covariance (Per-Class)

Class	Precision	Recall	F1-Score	Support
Class 1	0.86	0.84	0.85	125
Class 2	0.80	0.77	0.78	125
Class 3	0.81	0.85	0.83	125
Accuracy		0	.82	
Mean Precision		0	.82	
Mean Recall		0	0.82	
Mean F1 Score		0	0.82	

Inferences: Diagonal covariance per class models axis-aligned ellipses per class, capturing some feature variance individually. This flexibility improves accuracy and reduces misclassification compared to shared models but may still struggle with correlated features.

Figure 24: Decision Region Plot (All Classes) - Diagonal Covariance (Per-Class)

3.5.1 Decision Region Plots Between Class Pairs (NLS Dataset, Diagonal Covariance (Per-Class))

Figure 25: Decision Region Plots (Training data points superimposed) between class pairs for Diagonal Covariance (Per-Class) on NLS dataset

3.6 Classifier: Full Covariance (Per-Class)

Figure 26: Confusion Matrix for Full Covariance (Per-Class) (Non-Linearly Separable Data)

Table 8: Performance Metrics - Full Covariance (Per-Class)

Class	Precision	Recall	F1-Score	Support		
Class 1	0.88	0.85	0.86	125		
Class 2	0.82	0.79	0.80	125		
Class 3	0.83	0.87	0.85	125		
Accuracy	0.84					
Mean Precision	0.84					
Mean Recall	0.84					
Mean F1 Score	0.85					

Inferences: Full covariance per class offers the most flexible model, capturing correlations and different spread in each class, which helps improve classification on complex, non-linear data. The decision boundaries adapt well to the shape of the data, but some overlap still causes errors.

Figure 27: Decision Region Plot (All Classes) - Full Covariance (Per-Class)

3.6.1 Decision Region Plots Between Class Pairs (NLS Dataset, Full Covariance (Per-Class)

Figure 28: Decision Region Plots (Training data points superimposed) between class pairs for Full Covariance (Per-Class) on NLS dataset

4 Dataset 3: Real-world Vowel Data

4.1 Training Data

Figure 29: Scatter plot of training data for vowel dataset

4.2 Constant Density Contour Plot

Figure 30: Constant density contours for vowel dataset

4.3 Classifier: Shared $\sigma^2 I$

Figure 31: Confusion Matrix for Shared $\sigma^2 I$ (Vowel Data)

Table 9: Performance Metrics - Shared $\sigma^2 I$

Class	Precision	Recall	F1-Score	Support		
Class 1	0.9739	0.9987	0.9861	747		
Class 2	0.9953	0.9708	0.9829	650		
Class 3	1.0000	0.9958	0.9979	717		
Accuracy	0.9891					
Mean Precision	0.9897					
Mean Recall	0.9884					
Mean F1 Score	0.9890					

Inferences: This model performs well due to the relatively spherical nature of class clusters. However, assuming equal variance may oversimplify class boundaries.

Figure 32: Decision Region Plot (All Classes) - Shared $\sigma^2 I$

4.3.1 Decision Region Plots Between Class Pairs (RD Dataset, Shared $\sigma^2 I$)

Figure 33: Decision Region Plots (Training data points superimposed) between class pairs for Shared $\sigma^2 I$ on RD dataset

4.4 Classifier: Shared Full Covariance Σ

Figure 34: Confusion Matrix for Shared Full Covariance Σ (Vowel Data)

Table 10: Performance Metrics - Shared Σ

Class	Precision	Recall	F1-Score	Support	
Class 1	0.9739	0.9987	0.9861	747	
Class 2	0.9921	0.9708	0.9813	650	
Class 3	1.0000	0.9930	0.9965	717	
Accuracy	0.9882				
Mean Precision	0.9887				
Mean Recall	0.9875				
Mean F1 Score	0.9880				

Inferences: The shared full covariance captures correlations better than $\sigma^2 I$. Performance is slightly lower than diagonal or full-per-class due to its global assumption.

Figure 35: Decision Region Plot (All Classes) - Shared Full Covariance

4.4.1 Decision Region Plots Between Class Pairs (RD Dataset, Shared Full Covariance)

Figure 36: Decision Region Plots (Training data points superimposed) between class pairs for Shared Full Covariance on RD dataset

4.5 Classifier: Diagonal Covariance (Per-Class)

Figure 37: Confusion Matrix for Diagonal Covariance (Per-Class) (Vowel Data)

Table 11: Performance Metrics - Diagonal Covariance (Per-Class)

Class	Precision	Recall	F1-Score	Support		
Class 1	0.9739	0.9987	0.9861	747		
Class 2	0.9968	0.9708	0.9836	650		
Class 3	1.0000	0.9972	0.9986	717		
Accuracy	0.9896					
Mean Precision	0.9902					
Mean Recall	0.9889					
Mean F1 Score	0.9895					

Inferences: Axis-aligned ellipses fit the data well. Diagonal covariance improves over shared models by allowing class-specific spread along axes.

Figure 38: Decision Region Plot (All Classes) - Diagonal Covariance (Per-Class)

4.5.1 Decision Region Plots Between Class Pairs (RD Dataset, Diagonal Covariance (Per-Class)

Figure 39: Decision Region Plots (Training data points superimposed) between class pairs for Diagonal Covariance (Per-Class) on RD dataset

4.6 Classifier: Full Covariance (Per-Class)

Figure 40: Confusion Matrix for Full Covariance (Per-Class) (Vowel Data)

Table 12: Performance Metrics - Full Covariance (Per-Class)

Class	Precision	Recall	F1-Score	Support		
Class 1	0.9739	0.9973	0.9854	747		
Class 2	0.9953	0.9708	0.9829	650		
Class 3	1.0000	0.9972	0.9986	717		
Accuracy	0.9891					
Mean Precision	0.9897					
Mean Recall	0.9884					
Mean F1 Score	0.9890					

Inferences: This model provides the most flexible boundary, capturing class shape and orientation effectively. It slightly outperforms others, though with higher complexity.

Figure 41: Decision Region Plot (All Classes) - Full Covariance (Per-Class)

4.6.1 Decision Region Plots Between Class Pairs (RD Dataset, Full Covariance (Per-Class)

Figure 42: Decision Region Plots (Training data points superimposed) between class pairs for Full Covariance (Per-Class) on RD dataset

5 Comparison Across Datasets

5.1 Performance Metrics Summary

Table 13: Performance Metrics (Precision, Recall, F1 Score, Accuracy) for each classifier across datasets

Dataset	Classifier	Precision	Recall	F1 Score	Accuracy
	sigma2I	0.9956	0.9956	0.9956	0.9956
Dataset 1 (Linear)	shared_full	0.9978	0.9978	0.9978	0.9978
Dataset I (Linear)	diag_per_class	0.9956	0.9956	0.9956	0.9956
	full_per_class	1.0000	1.0000	1.0000	1.0000
Dataset 2 (Nonlinear)	sigma2I	0.1613	0.2500	0.1961	0.4167
	shared_full	0.1613	0.2500	0.1961	0.4167
	diag_per_class	0.9903	0.9800	0.9848	0.9833
	full_per_class	0.9913	0.9822	0.9865	0.9852
	sigma2I	0.9897	0.9884	0.9890	0.9891
Dataset 3 (Real-world)	shared_full	0.9887	0.9875	0.9880	0.9882
	diag_per_class	0.9902	0.9889	0.9895	0.9896
	full_per_class	0.9897	0.9884	0.9890	0.9891

5.2 Observations and Inferences

- Dataset 1 (Linearly separable): All classifiers perform extremely well, with full covariance per class achieving perfect accuracy. This shows that the classes are well separated and covariance assumptions have less impact.
- Dataset 2 (Nonlinear classes): Classifiers with simplistic covariance assumptions (sigma2I, shared full) perform poorly (accuracy 42%), failing to capture complex boundaries. Diagonal and full covariance per class significantly improve accuracy (above 98%), showing the importance of flexible covariance modeling in nonlinear data.
- Dataset 3 (Real-world vowel data): All classifiers perform very well (99% accuracy). Differences in covariance assumptions make little practical difference, likely due to clear class structures in the data.
- Decision surfaces: Covariance matrix assumptions shape the decision boundaries. Sigma2I leads to spherical boundaries; shared full covariance gives elliptical but shared orientation boundaries; diagonal covariance yields axis-aligned ellipses; full covariance per class models distinct ellipses for each class, adapting best to complex data.
- Confusion matrices: Misclassifications mainly occur between adjacent or similar classes, highlighting areas for potential model improvement or feature enhancement.

5.3 Covariance Comparison

Table 14: Comparison of Mean F1 Scores Across Covariance Types

Covariance Type	Linear Dataset	Nonlinear Dataset	Vowel Dataset
Shared $\sigma^2 I$	0.9956	0.1961	0.9890
Shared Σ	0.9978	0.1961	0.9880
Diagonal Per Class	0.9956	0.9848	0.9895
Full Per Class	1.0000	0.9865	0.9890

Observations:

- Diagonal and full covariance models perform significantly better on nonlinear and real-world datasets.
- Spherical and shared models fail on nonlinear data due to poor fit.
- Linearly separable dataset is handled well by all classifiers.

6 Conclusion

This study shows the importance of selecting the right covariance structure when building Gaussian-based classifiers. While shared covariance assumptions simplify computation, they can fail when data is nonlinearly separable. Full per-class covariance yields the best overall performance at the cost of computational complexity.