Pushdown Automata

CENG 280

Course outline

- Preliminaries: Alphabets and languages
- Regular languages

 Que plors FSA (NFA M L(M)
- Context-free languages
 - Context-free grammars generators
 - Parse trees
 - Push-down automaton acceptos
 - Push-down automaton context-free languages
 - Languages that are and that are not context-free, Pumping lemma
- Turing-machines

Pushdown Automata

- What feature do we need to add to FSA so that it can recognize a CFL?
- Consider $a^n b^n$, ww^R .

read/write stack

Pushdown Automata

- What feature do we need to add to FSA so that it can recognize a CFL?
- Consider $a^n b^n$, ww^R .
- MEMORY!

Input tape, reading head, internal state, STACK (or pushdown store)

- → Read at most one symbol at a time
- Read/write only the top of the stack
- Remove from top check against the current input
- The word is accepted, if when it is read, the automaton is in accepting state and the stack is empty.

Definition

Pushdown automaton is a sextuple $M = (K, \Sigma, \Gamma, \Delta, s, F)$ where PDA

- \rightarrow K is a finite set of states,
- \rightarrow Σ is an alphabet (input symbols)
- \rightarrow \circ Γ is an alphabet (stack symbols)
- $\rightarrow \circ$ $s \in K$ is the initial state
- \Rightarrow $F \in K$ is the set of final states, and,
- $\rightarrow \bullet \ \Delta \subset (\underline{K} \times (\underline{\Sigma} \cup \{\underline{e}\}) \times \underline{\Gamma}^*) \times (\underline{K} \times \Gamma^*)$ is a finite transition relation.

$$((\underline{q},\underline{a},\underline{d}),(\underline{p},\underline{B}))$$

Definition

Pushdown automaton is a sextuple $M = (K, \Sigma, \Gamma, \Delta, s, F)$ where

- K is a finite set of states.
- Σ is an alphabet (input symbols)
- Γ is an alphabet (stack symbols)
- \bullet $s \in K$ is the initial state
- $F \in K$ is the set of final states, and.
- $\Delta \subset (K \times (\Sigma \cup \{e\}) \times \Gamma^*) \times (K \times \Gamma^*)$ is a finite transition relation.
- If $((p, a, \delta), (q, \gamma)) \in \underline{\Delta}$, then when M is in state p, if it reads $\underline{a} \in \Sigma$ (or if a is e without reading a symbol) and if the top of the stack is δ , it enters state \underline{q} and replaces $\underline{\delta}$ with γ . (push) • $((p, a, \delta), (q, \gamma))$ is called a transition of M.
- Since Δ is a relation, several transitions can be applicable at a point. The machine chooses non-deterministically from the applicable transitions

Push/Pop transitions

• $((p, \underline{a}, e), (\underline{q}, \underline{b}))$: **push** transition, read a push b to the top of the stack. do not read/ pop

$$((p,a,e),(q,e)):$$
 do not pop (push)
 $((p,a,a),(q,a)):$ the content of the stack
 $((p,a,b),(q,e)):$ pop transition, read a pop b from the top of the stack. For b from the top of the stack

- The **configuration** of a pushdown automaton is a member of $K \times \Sigma^* \times \Gamma^*$: the current state, unread part of the input type, the contents of the stack (read top-down).
- A configuration $(\underline{p}, \underline{x}, \underline{\alpha})$ of M **yields** $(\underline{q}, \underline{y}, \zeta)$ (shown as $(\underline{p}, \underline{x}, \underline{\alpha}) \vdash_M (q, \underline{y}, \zeta)$) if there is a transition $((\underline{p}, \underline{a}, \beta), (q, \gamma))$ such that

$$(\rho, \chi, d) \vdash_{M} (q, \chi, d)$$

$$\alpha = \beta \nu,$$

$$\zeta = \gamma \nu \text{ for some } \nu \in \Gamma^{*}. \quad (\rho, \alpha y, \beta \gamma) \vdash_{M} (q, \chi, \gamma)$$

$$\alpha \in I \cup \{e\}, \beta \in \Gamma^{*}$$

$$\Rightarrow ((\rho, \alpha, \beta), (q, \gamma))$$

- The reflexive transitive closure of $\vdash_{\underline{M}}$ is denoted by $\vdash_{\underline{M}}^{\star}$.
- M accepts a word $w \in \Sigma^*$ if and only if for some $f \in F$

$$(s, w, e) \vdash_{M} (f, e, e) \qquad \omega \in \mathcal{L}(M)$$

$$(s, w, e) \vdash_{M} (f, e, e) \qquad \omega \in \mathcal{L}(M)$$

- Any sequence C_0, \ldots, C_n with $C_i \vdash_M C_{i+1}$ is called a **computation** of M. It has length n (or n steps).
- The language accepted by M, L(M) is the set of strings accepted by M.

Transition diagram

Show $((p, a, \alpha), (q, \beta))$ using an arrow from p to q with label " $\underline{\underline{a}} \quad \alpha/\beta$ "

Example PDA for $L = \{w \in R \mid w \in \{a, b\}^*\}$. Accepting computation over abcba $M = (K, \Sigma, \Gamma, \Delta, s, F)$ 1. ((s,a,e),(s,a)) "pwsh" K = { s, f } 11 push b 2. ((s, b,e), (s,b)) I= {a,b,c} = (3. ((s, c, e), (f, e)) € P- {a,b} 4. ((f, a, a), (f, e)) // compore F= { f } 5. ((f, b, b), (f,e)) 11 compose 1 transition used State unred port abcba bcba cba ba

Example

PDA for $L = \{wcw^R \mid w \in \{a, b\}^*\}$. Accepting computation over abcba

Example

Write a PDA for $L = \{\underline{ww}^R \mid w \in \{a, b\}^*\}$, and computations over abba

$$K = \{s, f\}$$
 $L = \{a, b\}$
 $L = \{a, b\}$

Example

Example

Write a PDA M such that
$$L(M) = \{w \in \{0,1\}^* / \sum_{i=0}^{|w|} w_i \leq \frac{|w|}{2}\}$$
.

number of 03 is more than or equal to the # of 13

$$9.((f,e,0),(f,e))$$
 $10.((f,e,c),(f,e))$

Example

Given $G = (V, \Sigma, R, S)$ with $V = \{S, (,), [,]\}$, $\Sigma = \{(,), [,]\}$, and R:

Construct a PDA M such that L(M) = L(G).

