# MAT246: Concepts in Abstract Mathematics: $_{\rm Lecture~0101~Notes}$

## Tianyu Du

## September 10, 2018

## Contents

| 1        | Lecture 1 Sep. 7 2018  | 2 |
|----------|------------------------|---|
| <b>2</b> | Lecture 2 Sep. 10 2018 | 2 |

#### 1 Lecture 1 Sep. 7 2018

**Definition 1.1.** Let  $\mathbb{N} := \{1, 2, 3, \dots\}$  be the set of **natural numbers**.

**Theorem 1.1** (Principle of Mathematical Induction). Suppose S is a set of natural numbers,  $S \subseteq \mathbb{N}$ . If

- 1.  $1 \in S$
- $2. \ k \in S \implies k+1 \in S, \ \forall k \in \mathbb{N}$

then,  $S = \mathbb{N}$ 

Example 1.1. Show that

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6} \ \forall n \in \mathbb{N}$$

Proof.

## 2 Lecture 2 Sep. 10 2018

**Theorem 2.1** (Extended Principle of Mathematical Induction). Suppose set  $S \subseteq \mathbb{N}$  and let  $n_0 \in \mathbb{N}$  fixed, if

- 1.  $n_0 \in S$
- 2.  $\forall k \geq n_0, k \in S \implies k+1 \in S$

then  $\{n_0, n_0 + 1, n_0 + 2, \dots\} \subseteq S$ 

Example 2.1. Show that

$$n! > 3^n \ \forall n > 7$$

Proof.

**Theorem 2.2** (Well-Ordering Principle). Every non-empty subset of natural number has a smallest element.

*Proof.* (Principle of Mathematical Induction)

Let  $S \subseteq \mathbb{N}$ 

Suppose  $1 \in S \land (k \in S \implies k+1 \in S, \forall k \in \mathbb{N})$ 

Show:  $S = \mathbb{N}$ 

Let  $T = \mathbb{N} \backslash S$ 

Suppose  $T \neq \emptyset$ 

By Well-Ordering Principle, there exists a smallest element of T, denoted as  $t_0 \in \mathbb{N}$ .

Since  $1 \in S$ , therefore  $t_0 \neq 1$ .

Therefore  $t_0 > 2$ .

Thus  $t_0 - 1 \in \mathbb{N}$  and since  $t_0 = \min T$ ,  $t_0 - 1 \notin T$ 

Therefore  $t_0 - 1 \in S$ , then,  $t_0 - 1 + 1 = t_0 \in S$ ,

Contradict the assumption that  $t_0 \in T$ .

Thus  $T = \emptyset$  and  $S = \mathbb{N}$ .

**Remark 2.1.** We can use principle of Mathematical Induction to prove Well-Ordering Principle as well.