Programming in shell 1

Text processing. Regular expressions. Filter grep.

Jan Trdlička

Czech Technical University in Prague, Faculty of Information Technology Department of Computer Systems

Content

Text processing

- Pattern specification
 - Fixed-character strings: grep -F / fgrep
 - Extended regular expressions: grep -E / egrep
 - Basic regular expressions: grep

Text processing

 The discipline of mechanising the creation or manipulation of electronic text.

Electronic text

- Character encoding
 - It defines how to interpret sequence of bits into real characters.
 - ASCI (using the bottom 7 bits of byte).
 - ANSI (using 8 bits with several different code pages for the symbols 128 to 255).
 - Unicode-based encodings: UTF8 (1 byte), UTF16 (2 bytes), UTF32 (4 bytes).
 - In different character codings, the characters can be in different order (abc...zABC...Z vs. aAbBcC...zZ).
- Text
 - The sequence of abstract characters.
- The most common text operations
 - Find text containing pattern.
 - Find text containing pattern and replace it by a new text.

Pattern specification

The pattern can be specified in several different ways.

Fixed-character string

 All characters are interpreted literally (no character has special meaning).

Regular expression

- The pattern may contain meta-characters that have special meaning to the application that interprets the regular expression.
- · According to the set of supported meta-characters we define
 - Basic regular expressions (BRE),
 - Extended regular expressions (ERE),
 - Perl Compatible Regular Expressions (PCRE).
- Regular expressions can be interpreted by
 - library functions (match, split, gsub, ...) of different programming languages (Java, C#, Python, ...),
 - applications (less, vi, grep, sed, awk, ...).

Fixed-character pattern: grep -F / fgrep

grep -F [options] patter [files] (GNU implementation)
fgrep [options] patter [files]

- The pattern is is interpreted literally (fixed-character string).
- The filter fgrep (fast grep) searches standard input/text files for a character string and prints all lines that contain that string.
- Useful options
 - -i ... ignores upper/lower case.
 - \bullet –v \dots prints all lines except those that contain the pattern.
 - -c ... prints only a count of the lines that contain the pattern.
 - -1 ... prints only the names of files with matching lines.
 - -n ... precedes each line by its line number in the file (first line is 1).

Fixed-character pattern: grep -F / fgrep

Examples

• Print all lines from file /etc/passwd, that contain string "root".

```
grep -F 'root' /etc/passwd
```

• Print all lines from file /etc/passwd, that don't contain string "root".

```
grep -F -v 'root' /etc/passwd
```

How many lines from the file /etc/passwd contain string "root".

```
grep -F -c 'root' /etc/passwd
```

 How many lines from the file /etc/passwd don't contain string "root".

```
grep -F -vc 'root' /etc/passwd
```

Fixed-character pattern: grep -F / fgrep

Examples

 Print only names of files from the directory /etc that contain the string "root".

```
grep -F -l 'root' /etc/* 2>/dev/null
```

 Print only name of file from the directory /etc that contains the string "root" and the string is located on the line with the highest number.

```
grep -F -n 'root' /etc/* 2>/dev/null | \
    sort -t':' -k2,2n | tail -1 | cut -d':' -f1
```

How many students have an account on the server fray3.fit.cvut.cz?

```
ssh $USER@fray3.fit.cvut.cz 'getent passwd' | \
grep -Fc ' student:'
```

Is it correct solution?

```
grep -E [options] patter [files] (GNU implementation)
egrep [options] patter [files]
```

- The filter searches standard input/text files for a pattern and prints all lines that contain that pattern.
- Pattern is defined as basic regular expression (ERE) in which the following meta characters are interpreted.

```
    System V supports (in Solaris /usr/bin/egrep)
    Meta-character disabling: \.
```

```
• Anchoring : ^, $.
```

```
• Single character: ., [ ], [^ ].
```

```
• Repetition: ?, +, *.
```

- Subexpressions: ().
- Alternation: |.
- In addition, GNU supports (in Solaris /usr/bin/ggrep -E)
 - The backslash character: \<, \>.
 - Repetition: { }.
 - Back references: (), $\setminus n$.

Anchoring

^	The caret matches the the begin of a line.
\$	The dollar sign matches the end of a line.

Examples

• Print entries of the directory /etc that represent symbolic links.

```
ls -la /etc | grep -E '^1'
```

• How many users who have an account on this system are named Jiri?

```
getent passwd | cut -d':' -f5 | grep -E '^Jiri'
```

Print login names of users that have bash set up as their login shell on this system?

```
getent passwd | grep -E '/bash$' | cut -d':' -f1
```

The backslash character

\<	The symbol matches the begin of a word (only GNU).
\>	The symbol matches the end of a word (only GNU).

- These meta-characters are not supported by egrep in Solaris.
- Examples
 - Print all lines of command man 1s, that contain the string "the".

```
man ls | grep -E 'the'
```

Print all lines of command man 1s, that contain the word "the".

```
man ls | grep -E '\<the\>'
```

- Copy the file /usr/share/lib/dict/words from the server fray1.fit.cvut.cz to your working directory.
- Print lines from the file words, that contain words starting with the character 'b'.

```
grep -E '\<b' words
grep -E '^b' words # file has one word per line
```

Single character

•	The period matches any single character.
[]	It matches any single character in the list/range expression.
[^]	It matches any single character not in the list/range expression.

Examples

Print all the words of length 4 from the file words.

```
grep -E '^....$' words
```

 Print all the words of length 3 from the file words, that have in the middle the vowel (a, e, i, o, u, y).

```
grep -E '^.[aeiouy].$' words
```

 Print all the words of length 3 from the file words, that have not in the middle the vowel (a, e, i, o, u, y).

```
grep -E '^.[^aeiouy].$' words
```

Print all words from the file words, that begin uppercase character.

```
export LC ALL=C
                     # dependent on character encoding
grep -E '^[A-Z]' words
```

Character classes

- The set of characters, that are defined by a range of characters, depends on the locales (character encoding).
- In order to avoid dependence on locales, character classes have been defined (not supported by egrep in Solaris).

[:digit:]	Digits: '0 1 2 3 4 5 6 7 8 9'.
[:lower:]	Lower-case letters: 'a b c x y z'.
[:upper:]	Upper-case letters: 'A B C X Y Z'.
[:alpha:]	Alphabetic characters.
[:alnum:]	Alphanumeric characters.
[:blank:]	Blank characters: space and tab.

Examples

Print all the words from the file words, that contain digit.

```
grep -E '[[:digit:]]' words
```

 Print all the words from the file words, that have the digit only as the first character.

```
grep -E '^[[:digit:]][^[:digit:]]*$' words
```

Repetition

?	The preceding item will be matched 0 or 1 times.
+	The preceding item will be matched one or more times.
*	The preceding item will be matched zero or more times.
{ <i>m</i> }	The preceding item is matched exactly <i>m</i> times.
{m,}	The preceding item is matched m or more times.
{,n},	The preceding item is matched at most n times.
{ <i>m</i> , <i>n</i> }	The preceding item is matched at least m times, but not more than
	n times.

- Meta-characters { } are not supported by egrep in Solaris.
- Examples
 - Print all the words from the file words, that begin and end with the character 'a'.

```
grep -E '^a.*a$' words
```

• Print all the words of length 3, 4 or 5 from the file words.

```
grep -E '^.{3,5}$' words
```

• Which substring is found by grep?

echo "xAxAxAxAAxAAxAxAxx" | grep -E 'A.*'

Alternation, subexpressions and back references

1	Two regular expressions may be joined by this infix operator.
	The resulting regular expression matches any string matching
	either alternate expression.
()	Defines a marked subexpression. The string matched within
	the parentheses can be recalled later.
$\setminus n$	Matches what the <i>n</i> -th marked subexpression matched.

- Meta-character $\setminus n$ is not supported by egrep in Solaris.
- Examples
 - Print all the words from the file words, that begin with string "work" or end with string "work".

```
grep -E '^work.*|.*work$' words
```

 Print all the words from the file words, that contain the following strings: "boy", "girl", "woman" or "man".

```
grep -E 'boy|girl|woman|man' words
```

 Print all the words from the file words, that end with one of the following strings: "boy", "girl", "woman" or "man".

grep -E '(boy|girl|woman|man)\$' words

Subexpressions and back references

Examples

 Print all the words from the file words, that begin and end with the same character.

```
grep -E '^(.).*\1$' words
```

 Print all the words from the file words, that begin and end with the different character.

```
grep -Ev ',^(.).*\1$' words
```

• Print all palindromes of the length 3 from the file words.

```
grep -E '^(.).\1$' words
```

Print all palindromes of the length 4 from the file words.

```
grep -E '^(.)(.)\2\1$' words
```

Basic regular expressions: grep

grep [options] patter [files]

- The filter grep searches standard input/text files for a pattern and prints all lines that contain that pattern.
- Pattern is defined as basic regular expression (BRE) in which the following meta characters are interpreted.

```
• System V supports (in Solaris /usr/bin/grep)
```

- Anchoring : ^, \$.
 - The backslash character: \<, \>.
 - Single character: ., [], [^].
 - Repetition: *, \{ \}.
 - Subexpressions and back references: \(\), \n.
- In addition, GNU supports (in Solaris /usr/xpg4/bin/grep)
 - Repetition: \?, \+.
 - Alternation: \|.

Note

- Originally, the characters ?, +, |, <, >, { } and () were not meta-characters. Special meaning was added later.
- Therefore, the character \ allows the special meaning of these characters in BRE (backward compatibility).