单元一 原子结构

【1.1.1】原子和原子核的构成

◇ 说出原子和原子核的构成

【练习1】下列微粒: ①质子; ②中子; ③电子, 在所有原子中均含有的微粒是()

A.(1)(2)(3)

B.仅① C.①和③

D.①和②

【练习2】 科学家发现了质子数为118,中子数为175的元素,该元素原子核内中子与核外 电子数之差为()

A.57

B.47

C.61

D.293

【1.1.2】原子结构模型

- ◇ 列举古代哲学家有关物质构成的观点
- ◇ 列举道尔顿、汤姆孙、卢瑟福在探索原子结构的过程中形成的主要观点

古代哲学家	观点
惠施	物质无限可分
墨子	物质被分割是有条件的;不能再被分割的部分称之为"端"
德谟克利特	原子论:物质由原子构成,原子不可再分
道尔顿	原子论: 化学元素均由不可再分的微粒构成,这种微粒称为原子;原子在一切化学变化中均保持其不可再分性;同一元素的原子在质量和性质上都相同,不同元素的原子在质量和性质上都不相同;不同元素化合时,这些元素的原子按简单整数比结合成化合物。
汤姆孙	模型
卢瑟福	模型

【练习3】 根据α粒子的散射实验,下列结论错误的是()

A.原子中存在质量较大而体积较小的核

B.核带正电

C.原子是中空的

D.核做高速运动

【1.1.3】同位素

- ◇ 复述同位素的概念
- ◇ 比较属于同位素的不同原子

具有和_	的同一种元素的不同_	互称为同位素。
同一元素的各种同位素,	虽然质量数不同,但它们的	几乎完全相同。

【练习4】铯有两种质	又射性微粒 ⅓Cs、⅓	gCs,卜列说法	让确的是()	
A. ¹³⁴ Cs、 ¹³⁷ Cs 甘	的性质都相同	B.134C	s、 ¹³³ Cs 互为同	位素	
B. ¹¾Cs 的电子数	75 79	D. ¹³⁴ C	es、133Cs 互为同]素异形体	
【练习5】下列各组物	7质中,互为同位素	的是(),	互为同素异形	体的是()
A.金刚石和 C ₆₀	B. ³⁷ Cl 和 ³⁵ Cl	C.D ₂ 和 T ₂	D.H ₂ ¹⁸ O 和	H ₂ ¹⁶ O E	.O ₂ 和 O ₃
【练习6】原子种类由	1	决定;元	素种类由	决定;	元素的化
学性质主要由					
【1.1.4】质量数					
◇说出质量数、质子	数和中子数三者之间	可的关系			
质量数(A) =					
【练习7】下列对于右	5方元素符号角标的	说法中不正确	的是()		
A.X 原子的中子数		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H47C	±a	
B.该元素的原子原	序数为 Z			${}^{A}_{7}X^{h\pm}$	
	2+,则表示该元素的	的离子带两个单	位正电荷		
D.X 原子的核外E					
【练习8】元素 X 的标	亥电荷数是 n,X ³⁺ 和	Y ²⁻ 的电子层结	吉构相同,则 Y	的核电荷数	为()
A. n-5	B. n+5		C. n+1	D	.n-3
【1.1.5】元素的相对原 ◇ 说出元素的相对原 相对原子质量是以				 ·个原子的真	实质量跟
一个碳-12原子质量	的 1/12 的比值, 称	为该原子的相对	付原子质量。		
Ar=]质量_				
碳-12原子质	4				
元素的相对原子原	质量是它的各种同位	立素的相对原子	² 质量,根据其	所占的原子	百分率计
已知: $A=A_1\cdot a_1\%+A_2$	$+a_2\%+\dots+A_n\cdot a_n$	%, <i>A</i> 是该元素	的相对原子质量	里	
则 A ₁ , A ₂ 是		,a ₁ %,a ₂ %是			_,
【练习9】 一个氧原	子的质量为 m 克,	一个碳-12 原	子的质量为 n 克	,则此氧原	子的相对
原子质量可表示为()				
A. <u>m</u>	B. 12m	<u>1</u>	C. m	D.	<u>m</u> 12 n
【练习10】 下列关于	-元素的说法正确的	J是()			
	了 118 种元素,所		育 118 种原子		
B.在天然存在的	元素中,各种同位	素所占的原子百	百分率是不断变	化的	
	子质量是它的各种	同位素的相对原	原子质量根据其	所占原子百	T分率计算
而得的平均值					

D.某种元素的相对原子质量取整数,就是其质量数

[4 2 4]	核外由子排布的规律
[131]	<i>炒</i> 外 田 十 北 田 田 地 田 田

- ◇ 归纳常见元素原子的核外电子排布规律
- ◇应用原子核外电子排布的规律来解释它与元素的化学性质、元素周期律等之间的关系

各电子层最多容纳的电子数为______(n 表示电子层序数)
最外层电子数不超过______个(K 层为最外层时则不超过 2 个);
次外层电子数不超过_____个,倒数第三层电子数不超过_____

【1.3.2】原子结构示意图

◇ 说出原子结构示意图的含义

原子结构示意图是表示原子(离子)_____和核外电子分层排布情况的示意图。

- ◇ 书写 1~18 号元素原子的原子结构示意图
- ◇ 使用原子结构示意图解释原子达到稳定结构的倾向

【1.3.3】电子式

◇ 说出电子式的含义

在元素符号周围用小黑点,(或×)表示原子 电子数的式子叫电子式

- ◇ 书写 1~18 号元素原子的电子式
- ◇ 使用电子式解释原子在形成化学键时得失或共用电子的倾向

【1.4.1】常见的离子符号

◇ 复述离子的概念

原子或原子团_____后形成的_____称为离子,离子也是构成物质的一种微粒

◇ 书写常见的离子符号

【1.4.2】离子结构示意图

- ◇ 书写 1~18 号元素的简单离子的结构示意图
- ◇比较离子结构示意图、电子式等不同表示方法的异同

【1.4.3】离子的电子式

◇ 书写 H⁺、O²⁻、F⁻、Na⁺、Mg²⁺、Al³⁺、S²⁻、Cl⁻、K⁺、Ca²⁺、OH⁻的电子式

【练习11】下列化学用语正确的是()

A. 氯分子的电子式: Cl:Cl

B. 氯离子的电子式: Cl-

C. 氯离子的结构示意图: (+17)2

D. 质量数为 37 的氯原子: 37 Cl

百乙	一丰	一手	百乙结物		若存在单核离	5子,则填写
原子序数	元素 符号	元素 名称	原子结构 示意图	离子	离子	离子结构
				符号	电子式	示意图
1						
2						
3						
4						
5						
6						
7						
8						
0						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						

单元一 巩固练习

A. 6	B. 7		D. 14
2. O ₃ 可用于自来水消毒, A. 同位素	它和 O₂ 互为(B.同分异构体		D. 同系物
3. 十九世纪初, 英国的边	道尔顿提出了近代原	子学说,认为原子不	可再分。后来, 卢瑟福根
据X射线的发现、α粒子	的衍射实验等提出了	原子结构的行星模型	型。以上科学历程表明:①
道尔顿的学说是原子结构	」理论发展的基础 ②	假设经过探究和验	证可建立起模型 ③人类对
科学的认识总是不断发展			
	B. 12		D. 123
4. 跟甲烷分子具有相同杉 A. K ⁺	亥外电子总数的微粒点 B.Mg ²⁺		D. C.II
	Č		D. C ₂ f ₁₂ F元素的相对原子质量,得
			为 63,质量数为 153,那么
该元素原子的中子数为(11/41 4 H4/21 4 2907	, (c) // <u></u>
A. 63	B. 153	C. 216	D. 90
6. 下列结构代表的微粒量	最易失去电子达到稳定	定结构的是()),最难发生得失电子的是
()			
		XX	
Na x		x N x	(10) $\frac{1}{2}$ $\frac{1}{7}$
Na x A.	B. $\left(\begin{array}{c} +2 \\ \end{array}\right)^{\frac{1}{2}}$	C. X	D. $(+9)$ $\begin{pmatrix} 1 & 7 \\ 7 & 7 \end{pmatrix}$
A. 7. 某微粒的结构示意图如(1)若该微粒不带电,则	B.), 口图所示,回答下列问 则 x =,该微粒]题: 的名称是	D.
A. 7. 某微粒的结构示意图如	B.), 口图所示,回答下列问 则 x =,该微粒]题: 的名称是	D.
A. 7. 某微粒的结构示意图如 (1) 若该微粒不带电,则 (2) 当 x < 10 时,所能形	B.), 口图所示,回答下列问 则 x =,该微粒 形成的常见阴离子为_]题: 的名称是。(用离 ⁻	D. ・
A. 7. 某微粒的结构示意图如 (1) 若该微粒不带电,则 (2) 当 x < 10 时,所能形	B.), 口图所示,回答下列问 则 x =,该微粒 形成的常见阴离子为_ 力金属阳离子有、]题: 的名称是。(用离 ⁻	D. ・
A. 7. 某微粒的结构示意图如 (1) 若该微粒不带电,则 (2) 当 x < 10 时,所能形下同) (3) 具有如图所示结构的 (选填"小于","等于"或	B.), 「图所示,回答下列问则 x =,该微粒 形成的常见阴离子为_ 一 一 一 一 一 一 一 一 一 一 一 一 一]题: 的名称是。(用离 ⁻ 、,此时,x	D. ・
A. 7. 某微粒的结构示意图如 (1) 若该微粒不带电,则 (2) 当 x < 10 时,所能形下同) (3) 具有如图所示结构的 (选填"小于","等于"或	B.), 「图所示,回答下列问则 x =,该微粒 形成的常见阴离子为_ 一 一 一 一 一 一 一 一 一 一 一 一 一]题: 的名称是。(用离 ⁻ 、,此时,x	D.
A. 7. 某微粒的结构示意图如 (1) 若该微粒不带电,则 (2) 当 x < 10 时,所能形下同) (3) 具有如图所示结构的 (选填"小于","等于"或 (4) 某微粒,其核外电	B.), 「图所示,回答下列问则 x =,该微粒 形成的常见阴离子为_ 一 一 一 一 一 一 一 一 一 一 一 一 一]题: 的名称是。(用离 ⁻ 、,此时,x	D.
A. 7. 某微粒的结构示意图如 (1) 若该微粒不带电,则 (2) 当 x < 10 时,所能形下同) (3) 具有如图所示结构的 (选填"小于","等于"或 (4) 某微粒,其核外电力	四图所示,回答下列问则 x =,该微粒则 x =,该微粒形成的常见阴离子为、 可金属阳离子有、 "大于") 子总数与氩原子相同。 共有6个电子,B元]题: 的名称是。(用离 ⁻ 、用离 ⁻ 、,此时, x ,核内质子数比核タ	D.
A. 7. 某微粒的结构示意图如 (1) 若该微粒不带电,则 (2) 当 x < 10 时,所能形下同) (3) 具有如图所示结构的 (选填"小于","等于"或 (4) 某微粒,其核外电力 为。 8. 已知 A 元素原子核外类 层电子数的 3 倍,C 元素	四图所示,回答下列问则 x =,该微粒则 x =,该微粒形成的常见阴离子为、 可金属阳离子有、 可金属阳离子有、 "大于") 子总数与氩原子相同。 共有6个电子,B元。 的原子核内有11个原]题: 的名称是。(用离子	D.
A. 7. 某微粒的结构示意图如 (1) 若该微粒不带电,则 (2) 当 x < 10 时,所能形下同) (3) 具有如图所示结构的 (选填"小于","等于"或 (4) 某微粒,其核外电力 为。 8. 已知 A 元素原子核外类 层电子数的 3 倍,C 元素	四图所示,回答下列问则 x =,该微粒则 x =,该微粒形成的常见阴离子为、 可金属阳离子有、 "大于") 子总数与氩原子相同。 共有6个电子,B元]题: 的名称是。(用离子	D.
A. 7. 某微粒的结构示意图如 (1) 若该微粒不带电,则 (2) 当 x < 10 时,所能形下同) (3) 具有如图所示结构的 (选填"小于","等于"或 (4) 某微粒,其核外电子为。 8. 已知 A 元素原子核外共 层电子数的 3 倍,C 元素 (1) B 元素的原子结	四图所示,回答下列问则 x =,该微粒则 x =,该微粒形成的常见阴离子为、 可金属阳离子有、 可金属阳离子有、 "大于") 子总数与氩原子相同。 共有6个电子,B元。 的原子核内有11个原]题: 的名称是。(用离子。(用离子,此时, x , 核内质子数比核タ	D.
A. 7. 某微粒的结构示意图如 (1) 若该微粒不带电,则 (2) 当 x < 10 时,所能形下同) (3) 具有如图所示结构的 (选填"小于","等于"或 (4) 某微粒,其核外电子为。 8. 已知 A 元素原子核外, 层电子数的 3 倍,C 元素 (1) B 元素的原子结 (2) C 元素的离子符	四图所示,回答下列问则 x =,该微粒则 x =,该微粒形成的常见阴离子为。 可金属阳离子有、 可金属阳离子有、 "大于") 子总数与氩原子相同。 共有6个电子,B元章 的原子核内有11个原构示意图是:]题: 的名称是。(用离。(用离。)、,此时, x , 核内质子数比核 素原子核外有两个电	D.