Table of Contents

Embarrassing Parallel GPU Greens Function Linear Super Position	.]
Simulate disjoint material/tissue types	. 1
Query the device	
Setup Material Parameters	
initialize data arrays	
Compile and setup thread grid	
Run on GPU	
transfer device to host	
plot temperature	
global search and plot exhaustive search	

Embarrassing Parallel GPU Greens Function Linear Super Position

```
clear all
close all
format shortg
```

Simulate disjoint material/tissue types

```
create npixel^3 image

npixel = 100;
materialID = int32(10*phantom3d('Modified Shepp-Logan',npixel));
materialID(materialID == 3 ) = 1;
materialID(materialID == 10 ) = 3;
handle1 = figure(1)
imagesc(materialID(:,:,npixel/2),[0 3])
colorbar

handle1 =

1
```


Query the device

GPU must be reset on out of bounds errors reset(gpuDevice(1))

```
deviceInfo = gpuDevice(1);
numSMs = deviceInfo.MultiprocessorCount;

spacingX = 1.0e-3;
spacingY = 1.0e-3;
spacingZ = 1.0e-3;
```

Setup Material Parameters

```
ntissue = 4;
perfusion = [5.e01 , 4.e01 , 3.e01, 6.e01];
conduction = [5.e-1 , 4.e-1 , 3.e-1, 6.e-1];
           = [5.e02 , 4.e02 , 3.e02, 6.e02];
mueff
nsource
          = 10;
           = npixel/2*spacingX+spacingX*linspace(1,nsource ,nsource )+1.e-4;
xloc
yloc
           = npixel/2*spacingY+spacingY*linspace(1,nsource ,nsource )+1.e-4;
zloc
           = npixel/2*spacingZ+spacingZ*linspace(1,nsource ,nsource )+1.e-4;
           = 37.i
u_artery
c_blood
           = 3480.;
           = 10.;
power
R1 = .001 ; % 1mm
```

```
R2 = .1 ; % 100mm
```

initialize data arrays

initialize on host and perform ONE transfer from host to device

```
h_temperature = zeros(npixel,npixel,npixel);
d_temperature = gpuArray( h_temperature );
```

Compile and setup thread grid

grid stride loop design pattern, 1-d grid http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-write-flex-ible-kernels-grid-stride-loops/

```
ssptx = parallel.gpu.CUDAKernel('steadyStatePennesLaser.ptx', 'steadyStatePennesLa
threadsPerBlock = 256;
ssptx.ThreadBlockSize=[threadsPerBlock 1];
ssptx.GridSize=[numSMs*32 1];
```

Run on GPU

```
[d_temperature ] = feval(ssptx,ntissue,materialID,perfusion,conduction, mueff, R1,
```

transfer device to host

```
h_temperature = gather( d_temperature );
```

plot temperature

```
handle2 = figure(2)
imagesc(h_temperature(:,:,50), [37 100]);
colormap default
colorbar

handle2 =
2
```


global search and plot exhaustive search

```
tic
sizesearch = 500;
objective =zeros(sizesearch,1);
for iii = 1:sizesearch
 if mod(iii,100 )==0
   disp(sprintf('iter %d',iii));
 end
 mueff(2) = 1. *iii;
 [p_temperature ] = feval(ssptx,ntissue,materialID,perfusion,conduction, mueff, R1
 objective(iii) = gather(sum((p_temperature(:) - d_temperature(:)).^2));
end
toc
handle3 = figure(3)
plot(objective)
saveas(handle1, 'material', 'png')
saveas(handle2,'temperature','png')
saveas(handle3,'exhaustivesearch','png')
        iter 100
        iter 200
        iter 300
        iter 400
        iter 500
```

Elapsed time is 204.271104 seconds.

handle3 =

3

