

Operator Präzedenz Sprachen

und ihre Automaten

- 1. Introduction
- 2. Definitionen und Namenskonventionen
- 3. Operator Precedence Languages
- 4. Automaten Beispiel
- 5. (Closure-)Properties

Introduction

1. Operator Precedence Languages (OPL) sind eine Subklasse der kontextfreien Sprachen

- 1. Operator Precedence Languages (OPL) sind eine Subklasse der kontextfreien Sprachen
- 2. Sie wurden 1963 von Robert W. Floyd vorgestellt

Introduction

- 1. Operator Precedence Languages (OPL) sind eine Subklasse der kontextfreien Sprachen
- 2. Sie wurden 1963 von Robert W. Floyd vorgestellt
- Größte bekannte Klasse von kontextfreien Sprache, die Abschlusseigenschaften von regulären Sprachen hat

- Operator Precedence Languages (OPL) sind eine Subklasse der kontextfreien Sprachen
- 2. Sie wurden 1963 von Robert W. Floyd vorgestellt
- 3. Größte bekannte Klasse von kontextfreien Sprache, die Abschlusseigenschaften von regulären Sprachen hat
- 4. Als Beispiel dient eine einfache Sprache für arithmetische Ausdrücke

zB.
$$n + n \times (n + n)$$

▶ Eine kontextfreie Grammatik ist ein 4-Tupel $G = (N, \Sigma, P, S)$

- ▶ Eine kontextfreie Grammatik ist ein 4-Tupel $G = (N, \Sigma, P, S)$
 - 1. N ist die Menge der Nichtterminale

- ▶ Eine kontextfreie Grammatik ist ein 4-Tupel $G = (N, \Sigma, P, S)$
 - 1. N ist die Menge der Nichtterminale
 - 2. Σ ist die Menge der Terminalsymbole

- ▶ Eine kontextfreie Grammatik ist ein 4-Tupel $G = (N, \Sigma, P, S)$
 - 1. N ist die Menge der Nichtterminale
 - 2. Σ ist die Menge der Terminalsymbole
 - 3. P sind die Produktionsregeln

- ▶ Eine kontextfreie Grammatik ist ein 4-Tupel $G = (N, \Sigma, P, S)$
 - 1. N ist die Menge der Nichtterminale
 - 2. Σ ist die Menge der Terminalsymbole
 - 3. P sind die Produktionsregeln
 - 4. $S \in N$ ist das Startsymbol

- ▶ Eine kontextfreie Grammatik ist ein 4-Tupel $G = (N, \Sigma, P, S)$
 - 1. N ist die Menge der Nichtterminale
 - 2. Σ ist die Menge der Terminalsymbole
 - 3. P sind die Produktionsregeln
 - 4. $S \in N$ ist das Startsymbol
- ▶ Produktionen haben die Form $A \to \beta$, wobei $\beta \in (\Sigma \cup N) \cup \epsilon$

- ▶ Eine kontextfreie Grammatik ist ein 4-Tupel $G = (N, \Sigma, P, S)$
 - 1. N ist die Menge der Nichtterminale
 - 2. Σ ist die Menge der Terminalsymbole
 - 3. P sind die Produktionsregeln
 - 4. $S \in N$ ist das Startsymbol
- ▶ Produktionen haben die Form A $\rightarrow \beta$, wobei $\beta \in (\Sigma \cup N) \cup \epsilon$
- ▶ Ableitungen werden mit \Rightarrow bzw. $\stackrel{*}{\Rightarrow}$ beschrieben

- 1. $a, b, \dots \in \Sigma$ sind einzelne Terminalsymbole
- 2. $u, v, \dots \in \Sigma^*$ sind beliebige Terminalstrings
- 3. $A, B, \dots \in N$ sind einzelne Nichtterminale
- **4.** $\alpha, \beta, \dots \in (\Sigma \cup N)^*$ sind beliebige Reststrings
- 5. $A \rightarrow \epsilon$ ist die leere Regel
- 6. Eine umbenennende Regel hat nur ein Nichtterminal als rechte Seite $(A \rightarrow B)$

 Eine Grammatik ist reduziert, wenn jede Regel benutzt werden kann um ein Wort aus Σ* zu erzeugen

- Eine Grammatik ist *reduziert*, wenn jede Regel benutzt werden kann um ein Wort aus Σ^* zu erzeugen
- ► Eine Grammatik ist *invertierbar*, wenn es keine identischen rechten Seiten von Produktionsregeln gibt

- Eine Grammatik ist reduziert, wenn jede Regel benutzt werden kann um ein Wort aus Σ* zu erzeugen
- ► Eine Grammatik ist *invertierbar*, wenn es keine identischen rechten Seiten von Produktionsregeln gibt
- ► Eine Regel ist in *Operatorform*, wenn die rechte Seite keine benachbarten Nichtterminale hat

- Eine Grammatik ist reduziert, wenn jede Regel benutzt werden kann um ein Wort aus Σ* zu erzeugen
- ► Eine Grammatik ist *invertierbar*, wenn es keine identischen rechten Seiten von Produktionsregeln gibt
- Eine Regel ist in Operatorform, wenn die rechte Seite keine benachbarten Nichtterminale hat
- ► Jede kontextfreie Grammatik kann in eine äquivalente Operatorgrammatik (OG) umgewandelt werden

▶ Definition: Linke und Rechte Terminalmenge

$$\mathcal{L}_{G}(A) = \{a \in \Sigma | A \stackrel{*}{\Rightarrow} Ba\alpha\}$$

$$\mathcal{R}_{G}(A) = \{a \in \Sigma | A \stackrel{*}{\Rightarrow} \alpha a B\}$$

▶ Definition: Linke und Rechte Terminalmenge $\mathcal{L}_G(A) = \{a \in \Sigma | A \stackrel{*}{\Rightarrow} Ba\alpha\}$

$$\mathcal{R}_{\mathsf{G}}(\mathsf{A}) = \{ \mathsf{a} \in \mathsf{\Sigma} | \mathsf{A} \stackrel{*}{\Rightarrow} \alpha \mathsf{a} \mathsf{B} \}$$

► Es werden drei binäre Operator Precedence Relationen definiert:

- ▶ Definition: Linke und Rechte Terminalmenge $\mathcal{L}_G(A) = \{a \in \Sigma | A \stackrel{*}{\Rightarrow} Ba\alpha\}$ $\mathcal{R}_G(A) = \{a \in \Sigma | A \stackrel{*}{\Rightarrow} \alpha a B\}$
- ► Es werden drei binäre Operator Precedence Relationen definiert:
- ▶ equal in precedence: $a \doteq b \Leftrightarrow \exists A \to \alpha aBb\beta$, $B \in N \cup \{\epsilon\}$ takes precedence: $a > b \Leftrightarrow \exists A \to \alpha Db\beta$, $D \in N$ and $a \in \mathcal{R}_G(D)$ yields precedence: $a < b \Leftrightarrow \exists A \to \alpha aD\beta$, $D \in N$ and $b \in \mathcal{L}_G(D)$

▶ Eine Operator Precedence Matrix (OPM) M ist eine $|\Sigma| \times |\Sigma|$ Matrix, die für jedes Paar (a,b) die Precedence Relation speichert

- ▶ Eine Operator Precedence Matrix (OPM) M ist eine $|\Sigma| \times |\Sigma|$ Matrix, die für jedes Paar (a,b) die Precedence Relation speichert
- ► Eine Operator Grammatik ist eine Operator Precedence Grammatik, wenn M=OPM(G) konfliktfrei ist

- ▶ Eine Operator Precedence Matrix (OPM) M ist eine $|\Sigma| \times |\Sigma|$ Matrix, die für jedes Paar (a,b) die Precedence Relation speichert
- Eine Operator Grammatik ist eine Operator Precedence Grammatik, wenn M=OPM(G) konfliktfrei ist
- ► Eine OPG ist in *Fischer Normalform*, wenn sie invertierbar ist und keine leeren (ausser Startsymbol) oder umbenennenden Regeln hat

- ▶ Eine Operator Precedence Matrix (OPM) M ist eine $|\Sigma| \times |\Sigma|$ Matrix, die für jedes Paar (a,b) die Precedence Relation speichert
- ▶ Eine Operator Grammatik ist eine Operator Precedence Grammatik, wenn M=OPM(G) konfliktfrei ist
- ▶ Eine OPG ist in Fischer Normalform, wenn sie invertierbar ist und keine leeren (ausser Startsymbol) oder umbenennenden Regeln hat
- ▶ Zusätzliches Symbol $\# \notin \Sigma$ um das Ende eines Strings zu markieren
 - Alle anderen Symbole übernehmen Precedence über #

- ▶ Eine Operator Precedence Matrix (OPM) M ist eine $|\Sigma| \times |\Sigma|$ Matrix, die für jedes Paar (a,b) die Precedence Relation speichert
- Eine Operator Grammatik ist eine Operator Precedence Grammatik, wenn M=OPM(G) konfliktfrei ist
- ► Eine OPG ist in *Fischer Normalform*, wenn sie invertierbar ist und keine leeren (ausser Startsymbol) oder umbenennenden Regeln hat
- ➤ Zusätzliches Symbol # ∉ Σ um das Ende eines Strings zu markieren Alle anderen Symbole übernehmen Precedence über #
- ► Ein Operator Precedence Alphabet ist ein Paar (Σ, M) mit der konfliktfreien OPM $M = |\Sigma \cup \{\#\}|^2$

► Ein nichtdetermistischer Operator Precedence Automat (OPA) ist ein 6-Tupel A = $(\Sigma, M, Q, I, F, \delta)$

- ► Ein nichtdetermistischer Operator Precedence Automat (OPA) ist ein 6-Tupel A = $(\Sigma, M, Q, I, F, \delta)$
 - 1. (Σ, M) ist ein OP Alphabet

- ► Ein nichtdetermistischer Operator Precedence Automat (OPA) ist ein 6-Tupel A = $(\Sigma, M, Q, I, F, \delta)$
 - 1. (Σ, M) ist ein OP Alphabet
 - 2. Q ist die Menge der Zustände

- ► Ein nichtdetermistischer Operator Precedence Automat (OPA) ist ein 6-Tupel A = $(\Sigma, M, Q, I, F, \delta)$
 - 1. (Σ, M) ist ein OP Alphabet
 - 2. Q ist die Menge der Zustände
 - 3. $I \subseteq Q$ ist die Menge der Startzustände

- ► Ein nichtdetermistischer Operator Precedence Automat (OPA) ist ein 6-Tupel A = $(\Sigma, M, Q, I, F, \delta)$
 - 1. (Σ, M) ist ein OP Alphabet
 - 2. Q ist die Menge der Zustände
 - 3. $I \subseteq Q$ ist die Menge der Startzustände
 - 4. $F \subseteq Q$ ist die Menge der finalen Zustände

- ► Ein nichtdetermistischer Operator Precedence Automat (OPA) ist ein 6-Tupel A = $(\Sigma, M, Q, I, F, \delta)$
 - 1. (Σ, M) ist ein OP Alphabet
 - 2. Q ist die Menge der Zustände
 - 3. $I \subseteq Q$ ist die Menge der Startzustände
 - 4. $F \subseteq Q$ ist die Menge der finalen Zustände
 - 5. δ ist die Übergangsfunktion, die aus drei Teilen besteht:

$$\delta_{\mathsf{shift}}: \mathsf{Q} \times \Sigma \to \mathcal{P}(\mathsf{Q}) \; \delta_{\mathsf{push}}: \mathsf{Q} \times \Sigma \to \mathcal{P}(\mathsf{Q}) \; \delta_{\mathsf{pop}}: \mathsf{Q} \times \mathsf{Q} \to \mathcal{P}(\mathsf{Q})$$

- ► Ein nichtdetermistischer Operator Precedence Automat (OPA) ist ein 6-Tupel A = $(\Sigma, M, Q, I, F, \delta)$
 - 1. (Σ, M) ist ein OP Alphabet
 - 2. Q ist die Menge der Zustände
 - 3. $I \subseteq Q$ ist die Menge der Startzustände
 - 4. $F \subseteq Q$ ist die Menge der finalen Zustände
 - 5. δ ist die Übergangsfunktion, die aus drei Teilen besteht:
 - $\delta_{\mathsf{shift}}: Q \times \Sigma o \mathcal{P}(Q) \; \delta_{\mathsf{push}}: Q \times \Sigma o \mathcal{P}(Q) \; \delta_{\mathsf{pop}}: Q \times Q o \mathcal{P}(Q)$
- ▶ Weiterhin wird das Stackalphabet definiert als $\Gamma = (\Sigma \times Q)$ mit $[a, q] \in \Gamma$ und dem Symbol für den leeren Stack \bot

- ► Ein nichtdetermistischer Operator Precedence Automat (OPA) ist ein 6-Tupel A = $(\Sigma, M, Q, I, F, \delta)$
 - 1. (Σ, M) ist ein OP Alphabet
 - 2. Q ist die Menge der Zustände
 - 3. $I \subseteq Q$ ist die Menge der Startzustände
 - **4.** $F \subseteq Q$ ist die Menge der finalen Zustände
 - 5. δ ist die Übergangsfunktion, die aus drei Teilen besteht: $\delta_{\text{shift}}: Q \times \Sigma \to \mathcal{P}(Q) \ \delta_{\text{push}}: Q \times \Sigma \to \mathcal{P}(Q) \ \delta_{\text{pop}}: Q \times Q \to \mathcal{P}(Q)$
- ▶ Weiterhin wird das Stackalphabet definiert als $\Gamma = (\Sigma \times Q)$ mit $[a,q] \in \Gamma$ und dem Symbol für den leeren Stack \bot
- ▶ Der Stack Π ist ein String $\bot \Gamma^*$ Bsp: $\bot [+, q_1][n, q_0]$

- 1 Eine Konfiguration eines OPA ist ein Tripel C = (Π, q, w) mit dem Stack Π, dem aktuellen Zustand q und der Eingabe w
- ► Eine Berechnung des Automaten ist eine endliche Folge von Transitionen (Moves) $C_1 \vdash C_2$
- ▶ Die Sprache die ein OPA A akzeptiert wird definiert als: $L(A) = \{x | (\bot, q_1, x\#) \vdash {}^*(\bot, q_F, \#), q_1 \in I, q_F \in F\}$

OPA Transitionen

- ▶ push move: (Normaler Pfeil) if $sym(\Pi) < a$ then $(\Pi, p, ax) \vdash (\Pi[a, p], q, x)$ mit $q \in \delta_{push}(p, a)$
- ▶ shift move: (Gestrichelter Pfeil) if $a \doteq b$ then $(\Pi[a, p], q, bx) \vdash (\Pi[b, p], r, x)$ mit $r \in \delta_{\text{shift}}(q, b)$
- ▶ pop move: (Doppelter Pfeil) if a > b then $(\Pi[a, p], q, bx) \vdash (\Pi, r, bx)$ mit $r \in \delta_{pop}(q, p)$

		71010711010
Stack	Zustand	Eingabe
1	qo	$n + n \times (n + n) \#$
\perp [n, q_{\circ}]	q_1	$+n \times (n+n)\#$
	q ₁	$+n \times (n+n)\#$
\perp [+, q_1]	qo	$n \times (n+n)\#$
\perp [+, q_1] [n , q_0]	<i>q</i> ₁	$\times (n+n)\#$
\perp [+, q_1]	q ₁	$\times (n+n)\#$
\perp [+, q_1] [×, q_0]	q ₁	(n+n)#
\perp [+, q_1] [×, q_1] [(, q_0]	q ₂	n + n)#
\perp [+, q_1] [×, q_1] [(, q_0] [n , q_2]	q_3	+n)#
\perp [+, q_1] [×, q_1] [(, q_0]	q_3	+n)#
\perp [+, q_1] [×, q_1] [(, q_0] [+, q_3]	q_2	n)#
\perp [+, q ₁] [×, q ₁] [(, q ₀] [+, q ₃] [n, q ₂]	q_3)#
\perp [+, q_1] [×, q_1] [(, q_0] [+, q_3]	q_3)#
\perp [+, q_1] [×, q_1] [(, q_0]	q_3)#
\perp [+, q_1] [×, q_1] [), q_0]	q_3	#
\perp [+, q_1] [×, q_1]	q_3	#
\perp [+, q ₁]	q_3	#
	q_3	#

► OPLs sind eine große Subklasse der kontextfreien Sprachen, die Abgeschlossenheitseigenschaften von regulären Sprachen genießt

- OPLs sind eine große Subklasse der kontextfreien Sprachen, die Abgeschlossenheitseigenschaften von regulären Sprachen genießt
- ► Abgeschlossen unter Vereinigung, Schnitt, Komplement, Konkatenation und Kleene-*

- OPLs sind eine große Subklasse der kontextfreien Sprachen, die Abgeschlossenheitseigenschaften von regulären Sprachen genießt
- Abgeschlossen unter Vereinigung, Schnitt, Komplement, Konkatenation und Kleene-*
- Das Leereproblem ist in PTIME lösbar, da OPLs Subklasse von kfG

- OPLs sind eine große Subklasse der kontextfreien Sprachen, die Abgeschlossenheitseigenschaften von regulären Sprachen genießt
- Abgeschlossen unter Vereinigung, Schnitt, Komplement, Konkatenation und Kleene-*
- Das Leereproblem ist in PTIME lösbar, da OPLs Subklasse von kfG
- Visibly Pushdown Sprachen sind in der Klasse der OPLs enthalten

Quellen