Maximum Product

DiPS CodeJam 22-

Prompt

You are given a list of integers $n_1
ldots n_k$ (not necessarily distinct) where each has a value between 1 and 9. Using each of $n_1
ldots n_k$ exactly once, you can form concatenations of digits, to achieve a new list of numbers. You then have to output the product of this new list. The goal is to maximize this product by choosing the best concatenations of digits.

Input Format

The first and only line of the input contains $n_1 \dots n_k$, space-separated.

Output Format

The first and only line of your output must contain the maximum product.

Constraints

- $1 \le n \le 9$
- 3 < *k* < 100

Sample Input/Output

Input	Output
3 5 5 2	2756

Solution

The optimal solution can be found applying a single multiplication. This gives:

$$(10x+d)y > (10y+d)x$$

where x and y are the two numbers and d is the next digit to insert. It follows that y > x and thus each new digit must be concatenated to the smallest number. Digits should be added in descending order. Applying this to the sample input **3 5 5 2**, we get the following steps:

5, 5

53, 5

53, 52

The answer is $53 \cdot 52$, or 2756.

Sample Program

```
l = sorted(map(int, input().split()), reverse=1)
m = [0,0]
for x in l:
    i = m[0] > m[1]
    m[i] = m[i]*10 + x
    # Uncomment the following line to see how it's concatenating the digits.
    # print(m)
print(m[0] * m[1])
```