CORRECTION Partiel S1

Exercice 1

On considère l'équation (E) 203x - 84y = 14 d'inconnues $(x, y) \in \mathbb{Z}^2$.

1. À l'aide de l'algorithme d'Euclide, trouver une solution particulière de (E).

Par l'algorithme,

$$203 = 84 \times 2 + 35 \quad (3)$$

$$84 = 35 \times 2 + 14 \quad (2)$$

$$35 = 14 \times 2 + 7 \quad (1)$$

$$14 = 7 \times 2 + 0$$

On en déduit que :

Par conséquent, $14 = 7 \times 2 = 203 \times 10 - 84 \times 24$. Ainsi, (10, 24) est une solution particulière de (E).

2. En utilisant le lemme de Gauss, trouver l'ensemble des solutions de (E).

Soit $(x, y) \in \mathbb{Z}^2$ une solution quelconque de (E).

On a
$$203x - 84y = 14$$
 or $14 = 203 \times 10 - 84 \times 24$. D'où, $203x - 84y = 203 \times 10 - 84 \times 24$. Ainsi, $203(x - 10) = 84(y - 24)$.

En divisant par $203 \wedge 84 = 7$, on obtient $29(x - 10) \stackrel{(*)}{=} 12(y - 24)$. Ainsi, $12 \mid 29(x - 10)$. Or, $12 \wedge 29 = 1$, d'où, par Gauss, $12 \mid x - 10$ ce qui signifie qu'il existe $k \in \mathbb{Z}$ tel que x - 10 = 12k. Ainsi, x = 10 + 12k.

En reportant dans (*), on obtient $29 \times 12k = 12(y-24)$, c'est-à-dire 29k = y-24. Ainsi, y = 24 + 29k.

Réciproquement, supposons x=10+12k et y=24+29k avec $k\in\mathbb{Z}.$ On a

$$\begin{array}{rcl} 203x - 84y & = & 203(10 + 12k) - 84(24 + 29k) \\ & = & 203 \times 10 - 84 \times 24 + 203 \times 12k - 84 \times 29k \\ & = & 14 + 7 \times 29 \times 12k - 7 \times 12 \times 29k \\ & = & 14 + 0 = 14 \end{array}$$

En conclusion

$$S = \{ (10 + 12k, 24 + 29k); \ k \in \mathbb{Z} \}$$

Exercice 2

Soit $n \in \mathbb{N}^*$. Montrer, sans récurrence, que $11 \mid 15^{4n+2} - 5^{2n+11}$.

- $15 \equiv 4[11]$ d'où, $15^{4n+2} \equiv 4^{4n+2}[11]$. Or $4^2 = 16 \equiv 5[11]$. D'où $4^4 = \left(4^2\right)^2 \equiv 25[11] \equiv 3[11]$. Par conséquent, $4^{4n+2} = (4^4)^n \times 4^2 \equiv 3^n \times 5[11]$. Ainsi, $15^{4n+2} \equiv 3^n \times 5[11]$.
- $5^2 = 25 \equiv 3$ [11]. De plus, 11 est premier d'où, par Fermat, $5^{11} \equiv 5$ [11]. Ainsi, $5^{2n+11} = (5^2)^n \times 5^{11} \equiv 3^n \times 5$ [11].
- On en déduit que $4^{4n+2} 5^{2n+11} \equiv 3^n \times 5 3^n \times 5[11] \equiv 0[11]$. Donc, $11 \mid 4^{4n+2} 5^{2n+11}$.

Exercice 3

Soit $(a,b) \in (\mathbb{N}^*)^2$.

- 1. Énoncer avec soin le théorème de Bézout ainsi que son corollaire.
 - $a \wedge b = 1 \iff \exists (u, v) \in \mathbb{Z}^2 \ au + bv = 1.$
 - $\forall (a,b) \in (\mathbb{N}^*)^2$, $\exists (u,v) \in \mathbb{Z}^2 \ au + bv = a \land b$.
- 2. Soit $d \in \mathbb{N}^*$. Montrer que $d \mid a$ et $d \mid b \iff d \mid a \wedge b$.
 - \Leftarrow : Supposons $d \mid a \land b$. Comme $a \land b \mid a$, on a par transitivité $d \mid a$. De même, $d \mid b$.
 - \Longrightarrow : Supposons que $d \mid a$ et $d \mid b$. Alors, on sait que $\forall (u, v) \in \mathbb{Z}^2$, $d \mid au + bv$. Or, par Bézout, $\exists (u_0, v_0) \in \mathbb{Z}^2$ tel que $a \wedge b = au_0 + bv_0$. Ainsi, pour $(u, v) = (u_0, v_0)$, $d \mid a \wedge b$.

Exercice 4

On considère la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par :

$$u_n = \sum_{k=1}^{n} \frac{(-1)^k}{k^2}$$

1. Rappeler la définition de : « Les suites (v_n) et (w_n) sont adjacentes »

On dit que (v_n) et (w_n) sont adjacentes si (v_n) est croissante, (w_n) est décroissante (ou l'inverse) et si $v_n - w_n \longrightarrow 0$.

2. Montrer que les deux suites extraites $(v_n) = (u_{2n})$ et $(w_n) = (u_{2n+1})$ sont adjacentes.

•
$$v_{n+1} - v_n = u_{2n+2} - u_{2n} = \frac{(-1)^{2n+1}}{(2n+1)^2} + \frac{(-1)^{2n+2}}{(2n+2)^2} = -\frac{1}{(2n+1)^2} + \frac{1}{(2n+2)^2} = \frac{-4n-3}{(2n+1)^2(2n+2)^2}.$$

On en déduit que $v_{n+1} - v_n \leq 0$. Ainsi, (v_n) est décroissante.

•
$$w_{n+1} - w_n = u_{2n+3} - u_{2n+1} = \frac{(-1)^{2n+2}}{(2n+2)^2} + \frac{(-1)^{2n+3}}{(2n+3)^2} = \frac{1}{(2n+2)^2} - \frac{1}{(2n+3)^2} = \frac{4n+5}{(2n+2)^2(2n+3)^2}.$$

On en déduit que $w_{n+1} - w_n \ge 0$. Ainsi, (w_n) est croissante.

- $v_n w_n = u_{2n} u_{2n+1} = -\frac{(-1)^{2n+1}}{(2n+1)^2} = \frac{1}{(2n+1)^2} \longrightarrow 0$ quand $n \to +\infty$.
- En conclusion, les suites (u_{2n}) et (u_{2n+1}) sont adjacentes.
- 3. La suite (u_n) est-elle convergente? Justifiez votre réponse.

Étant adjacentes, les suites (u_{2n}) et (u_{2n+1}) convergent vers une même limite $l \in \mathbb{R}$. Nous pouvons donc conclure que (u_n) converge (vers l).

Exercice 5

Considérons la fonction $f: x \longmapsto \frac{-x^2 - x - 4}{4}$. On définit alors la suite (u_n) par $\begin{cases} u_{n+1} = f(u_n) \\ u_0 \in \mathbb{R} & donné \end{cases}$

1. Pour quelle(s) valeur(s) de u_0 cette suite est-elle constante?

$$(u_n)$$
 constante $\iff \forall n \in \mathbb{N}, u_{n+1} = u_n.$

Or
$$u_{n+1} = u_n \iff \frac{-u_n^2 - u_n - 4}{4} = u_n \iff u_n^2 + 5u_n + 4 \iff (u_n + 1)(u_n + 4) = 0.$$

Ainsi, pour $u_0 = -1$ ou $u_0 = -4$, la suite (u_n) est constante.

2. Faire le tableau (complet) des variations de f sur $]-\infty,0]$.

Pour $x \in \mathbb{R}^-$, $f'(x) = \frac{-2x-1}{4}$. On en déduit le tableau de variations suivant :

x	$-\infty$	-4	-1	$-\frac{1}{2}$	0
f'(x)	+	+	+	0	_
f(x)	$-\infty$	4	1	$-\frac{15}{16}$	-1

3. Pour la suite de l'exercice, nous prendrons $u_0 = -2$. Montrer que $\forall n \in \mathbb{N}, u_n \in]-4, -1[$.

On fait une récurrence sur $n \in \mathbb{N}$.

- $u_0 = -2 \in]-4, -1[$. La propriété est donc vraie au rang 0.
- Supposons la propriété vraie pour un $n \in \mathbb{N}$. On a alors, $-4 < u_n < -1$. Or par le tableau de variations, f est strictement croissante entre -4 et -1. D'où, $f(-4) < f(u_n) < f(-1)$ ce qui donne $-4 < u_{n+1} < -1$. La propriété est vraie au rang n+1.
- Conclusion : $\forall n \in \mathbb{N}, u_n \in]-4,-1[$
- 4. Étudier la monotonie de (u_n) .

On a

$$u_{n+1} - u_n = \frac{-u_n^2 - u_n - 4}{4} - u_n = \frac{-u_n^2 - 5u_n - 4}{4} = -\frac{(u_n + 1)(u_n + 4)}{4}$$

Via 3., $u_n + 1 < 0$ et $u_n + 4 > 0$ car $-4 < u_n < -1$. Par conséquent, $u_{n+1} - u_n \ge 0$. Ainsi, (u_n) est croissante.

5. La suite (u_n) est-elle convergente? Si oui, donner sa limite.

La suite (u_n) est croissante et majorée par -1 ainsi elle converge. Notons $l \in \mathbb{R}$ sa limite. l vérifie l = f(l). Ainsi, l = -4 ou l = -1. Or comme (u_n) est croissante, on a $\forall n \in \mathbb{N}$, $u_n \ge u_0 = -2$. Pour $n \to +\infty$, on obtien $l \ge -2$. Donc l = -1.

Exercice 6

1. Comparer en $+\infty$ les suites (u_n) et (v_n) suivantes à l'aide des comparateurs de Landau \sim , $= o(\cdot)$, $= O(\cdot)$ en citant toutes les comparaison possibles et en justifiant vos réponses.

(a)
$$u_n = -2n^3 + n + 3$$
 et $v_n = 1 - n^2$.

On a

$$\frac{u_n}{v_n} = \frac{n^3 \left(-2 + \frac{1}{n^2} + \frac{3}{n^3}\right)}{n^2 \left(\frac{1}{n^2} - 1\right)} = n \times \frac{-2 + \frac{1}{n^2} + \frac{3}{n^3}}{\frac{1}{n^2} - 1}$$

or $\lim_{n \to +\infty} \frac{-2 + \frac{1}{n^2} + \frac{3}{n^3}}{\frac{1}{n^2} - 1} = \frac{-2}{-1} = 2$. Ainsi, $\lim_{n \to +\infty} \frac{u_n}{v_n} = +\infty$. Donc, $\lim_{n \to +\infty} \frac{v_n}{u_n} = 0$. On en déduit que $v_n = o(u_n)$.

De plus comme la suite $\left(\frac{v_n}{u_n}\right)$ converge, elle est bornée. On a donc aussi, $v_n = O(u_n)$.

(b) $u_n = e^{-n} - \ln(n) + n$ et $v_n = n + 1$

On a

$$\frac{u_n}{v_n} = \frac{n\left(\frac{e^{-n}}{n} - \frac{\ln(n)}{n} + 1\right)}{n\left(1 + \frac{1}{n}\right)} = \frac{\frac{e^{-n}}{n} - \frac{\ln(n)}{n} + 1}{1 + \frac{1}{n}}$$

Or $\lim_{n\to +\infty}\frac{e^{-n}}{n}=0$ et, par croissance comparée, $\lim_{n\to +\infty}\frac{\ln(n)}{n}=0$. D'où, $\lim_{n\to +\infty}\frac{u_n}{v_n}=1$. On en déduit que $u_n\sim v_n$. Comme la suite $\left(\frac{u_n}{v_n}\right)$ est bornée car convergente, on a aussi, $u_n=O(v_n)$.

- 2. On considère une suite (u_n) telle qu'au voisinage $de + \infty$, $u_n = \frac{1}{n} \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$
 - (a) Comment peut-on réécrire o $\left(\frac{1}{n^2}\right)$?

$$o\left(\frac{1}{n^2}\right) = \frac{1}{n^2}\varepsilon_n \text{ avec } \lim_{n \to +\infty} \varepsilon_n = 0$$

(b) Montrer que $u_n \sim \frac{1}{n} en + \infty$.

$$\frac{u_n}{\underline{1}} = 1 - \frac{1}{2n} + \frac{1}{n}\varepsilon_n$$

Ainsi,
$$\lim_{n \to +\infty} \frac{u_n}{\frac{1}{n}} = 1$$
. Donc, $u_n \sim \frac{1}{n}$.

(c) Donner un équivalent en $+\infty$ de $v_n = u_n - \frac{1}{n}$.

$$v_n = -\frac{1}{2n^2} \left(1 - 2\varepsilon_n \right)$$

Donc,
$$v_n \sim -\frac{1}{2n^2}$$

Exercice 7

N.B.: Les questions de cet exercice sont interdépendantes. Si vous n'avez pas répondu à certaines d'entre elles, n'hésitez pas à admettre leurs résultats et à les réutiliser, si besoin, dans des questions ultérieures.

La question 1.(a) est une question bonus que vous pouvez admettre mais le résultat sera utile ensuite.

- 1. Soient a, b et c trois entiers naturels non nuls.
 - (a) **(Bonus)** Montrer que $(a \land b = 1, a \mid c \text{ et } b \mid c) \implies ab \mid c$.

Supposons que $a \wedge b = 1$, $a \mid c$ et $b \mid c$. Ainsi,par Bézout, $\exists (u, v) \in \mathbb{Z}^2$ tel que au + bv = 1. D'où c = auc + bvc. Or $a \mid c$ et $b \mid c$ d'où, il existe $k \in \mathbb{N}$ tel que c = ak. De même, il existe $k' \in \mathbb{N}$ tel que c = bk'. On obtient donc

$$c = aubk' + bvak = ab(uk' + vk)$$

Comme $uk' + vk \in \mathbb{Z}$, on a bien $ab \mid c$.

(b) Montrer que si a |b| ou a |c| alors a |bc|

Si $a \mid b$ alors $\exists k \in \mathbb{N}$ tel que b = ak. Ainsi, bc = akc et $kc \in \mathbb{N}$. Donc, $a \mid bc$.

De même, si $a \mid c$.

(c) Considérons trois entiers consécutifs d, d+1 et d+2 avec $d \in \mathbb{N}^*$ fixé. En discutant sur le reste de la division euclidienne de d par 3, montrer que 3 divise l'un d'entre eux c'est-à-dire :

$$3 \mid d \ ou \ 3 \mid d+1 \ ou \ 3 \mid d+2$$

En faisant la division euclidienne de d par 3 on a

$$\exists ! (q,r) \in \mathbb{Z}^2, \ d = 3q + r \text{ avec } 0 \le r < 3$$

Ainsi, r = 0, 1 ou 2.

Si
$$r = 0$$
, on a $3 \mid d$.

Si
$$r = 1$$
, alors $d = 3q + 1$ d'où $d + 2 = 3q + 3 = 3(q + 1)$. Donc, $3 \mid d + 2$.

Si
$$r = 2$$
, alors $d = 3q + 2$ d'où $d + 1 = 3q + 3 = 3(q + 1)$. Donc, $3 \mid d + 1$.

- 2. Soit p un nombre premier supérieur ou égal à 5.
 - (a) Expliquer pourquoi 2 | p 1 et 2 | p + 1.

p est premier et supérieur à 5 donc p est impair. Ainsi, p-1 et p+1 sont pairs. D'où le résultat.

(b) En déduire que $\exists k \in \mathbb{N}$ tel que p-1=2k et p+1=2(k+1) puis que $8 \mid p^2-1$.

Comme 2 | p - 1, il existe $k \in \mathbb{N}$ tel que p - 1 = 2k. Ainsi, p + 1 = p - 1 + 2 = 2k + 2 = 2(k + 1). Par conséquent, $p^2 - 1 = 4k(k + 1)$.

Or comme k et k+1 sont deux entiers consécutifs, l'un d'eux est pair. Ainsi, $2 \mid k$ ou $2 \mid k+1$. Par, 1b) on a $2 \mid k(k+1)$ c'est-à-dire : $\exists k' \in \mathbb{N}$ tel que k(k+1) = 2k'. Du coup, $p^2 - 1 = 4 \times 2k' = 8k'$. Donc, $8 \mid p^2 - 1$.

- (c) Expliquer pourquoi p est premier avec 3. Puis, en considérant les entiers p-1, p et p+1, montrer que $3 \mid p^2-1$.
 - p étant premier et supérieur à 5, on a $3 \land p = 1$.
 - p-1, p et p+1 sont trois entiers consécutifs donc l'un d'entre eux est un multiple de 3. Cela signifie que par 1c)

$$3 | p - 1$$
 ou $3 | p$ ou $3 | p + 1$

Comme $3 \land p = 1$, on sait que 3 ne divise pas p. D'où, $3 \mid p - 1$ ou $3 \mid p + 1$. Par 1b), on a alors $3 \mid (p - 1)(p + 1)$ c'est-à-dire $3 \mid p^2 - 1$.

(d) En déduire que $24 \mid p^2 - 1$.

On a
$$8 \mid p^2 - 1$$
, $3 \mid p^2 - 1$ et $8 \land 3 = 1$. Par 1a), $24 \mid p^2 - 1$.