Imperial College London

Successive Refinement of Images with Deep Joint Source-Channel Coding

David Burth Kurka and Deniz Gündüz

Information Processing and Communications Laboratory

Department of Electrical and Electronic Engineering, Imperial College London

Image Transmission Under Challenge

How to transmit images under **extremely low latency**, **bandwidth** and **energy constraints**?

■ Traditional approach - Shannon Separation Theorem:

- Optimality holds only for infinite blocklength and complexity
- Design assumes a specific channel quality, being vulnerable to variations and non-ergodic channels

Can We Learn To Do Better?

- Autoencoder: unsupervised deep neural network for code design
- **Direct mapping** from pixel values to channel inputs
- Low-delay: bandwidth compression; Low-energy: power constraint

Sucessive Refinement with Deep Joint Source-Channel Coding

- Optimality of separation proven for hierarchical joint source-channel coding
- Ideal source distributions known to be **successively refinable** (e.g., Gaussian sources over Gaussian channels)

Multiple Decoders

- + Best performance
- Computational complexity

Residual Transmission

- + Expandable design
- Inferior performance

Single Decoder

- + Simplified structure
- Performance loss

Competitive Performance

Encoder

Excel at low SNR and high compression rates!

Base Layer

Deep JSCC

Decoder

Deep JSCC

Decoder

Refinement Layer

Analog Behaviour

Graceful degradation and no cliff effect!

✓ Performance Independence

Negligible performance loss due to layering!

References

- E. Bourtsoulatze, D. Burth Kurka and D. Gunduz, **Deep joint source-channel coding for wireless image transmission**, *IEEE Trans. on Cognitive Comm. and Networking*, 2018.
- Y. Steinberg and N. Merhav, **On hierarchical joint source-channel coding**, International Symposium on Information Theory (ISIT), 2004.