Introduction to Data Mining

Lab 3 - Simple Classifiers

Name: Phạm Đức Đạt ID Student: ITITIU20184

3.1. Simplicity first!

In the third class, we are going to learn how to examine some data mining algorithms on datasets using Weka. (See the lecture of class 3 by Ian H. Witten, [1]¹)

In this section, we learn how **OneR** (one attribute does all the work) works. Open weather.nominal.arff, run OneR, look at the classifier model, how is it?

Getting a rule that is: branch on "outlook"; if it's "sunny" then choose "no", "overcast" choose "yes", and "rainy" choose "yes". It gets 10 out of 14 instances correct on the training set.

The success rate is 43%, worse then ZeroR (as using cross-validation for a small dataset).

- Remarks:

Use OneR to build decision tree for some datasets. Compared with ZeroR, how does OneR perform?

Dataset	OneR - accuracy	ZeroR - accuracy
weather.nominal	0.43	0.64
Supermarket	0.67	0.64
iris	0.92	0.33
glass	0.58	0.36
diabetes	0.71	0.65

Excepting weather.nominal, OneR works better for the other datasets to build decision trees.

3.2. Overfitting

What is "overfitting"? - **overfitting** occurs when a statistical model describes **random error** or **noise** instead of the underlying relationship, b/c of complex model, noise/error in the data, or unsuitable applied criterion, \rightarrow poor prediction. To avoid this, use cross-validation, or pruning... [ref: http://en.wikipedia.org/wiki/Overfitting]

Follow the instructions in [1], run OneR on the weather.numeric and diabetes dataset...

Write down the results in the following table: (cross-validation used)

¹ http://www.cs.waikato.ac.nz/ml/weka/mooc/dataminingwithweka/

Dataset	OneR	ZeroR	
weather.numeric	Classifier model: outlook sunny -> no overcast -> yes rainy -> yes	Classifier model: class value "yes"	
	Accuracy: 0.43	Accuracy: 0.64	
weather.numeric w/o outlook att.	Classifier model: humidity < 82.5 -> yes >= 82.5 -> no Accuracy: 0.5	Classifier model: class value "yes"	
		Accuracy: 0.64	
diabetes	Classifier model: plas: < 114.5 -> tested_negative < 115.5 -> tested_positive < 127.5 -> tested_negative < 128.5 -> tested_positive < 133.5 -> tested_negative < 135.5 -> tested_negative < 143.5 -> tested_positive < 143.5 -> tested_positive < 152.5 -> tested_positive < 154.5 -> tested_positive < 154.5 -> tested_positive < 154.5 -> tested_positive >= 154.5 -> tested_positive	Classifier model: class value: tested_negative Accuracy: 0.65	
Diabetes w/ minBucketSize 1	Classifier model: pedi, branching on every single one Accuracy: 0.57		

MinBucketSize? – it affects to how the model branching.

Remark? -

3.3. Using probabilities

Lecture of Naïve Bayes: [1]

→ All attributes contribute equally and independently → no identical attributes

Follow the instructions in [1] to exame NaiveBayes on weather.nominal

Classifier model	Performance
Oldosinoi model	(how many percent of
Naive Bayes Classifier	total instances are
Traire Bayes Glassinoi	classified correctly?)
Class	oldomod correctly.)
Attribute yes no	57.14%
(0.63) (0.38)	0,0
=======================================	
outlook	
sunny 3.0 4.0	
overcast 5.0 1.0	
rainy 4.0 3.0	
[total] 12.0 8.0	
temperature	
hot 3.0 3.0	
mild 5.0 3.0	
cool 4.0 2.0	
[total] 12.0 8.0	
humidity	
high 4.0 5.0	
normal 7.0 2.0	
[total] 11.0 7.0	
windy	
TRUE 4.0 4.0	
FALSE 7.0 3.0	
[total] 11.0 7.0	

3.4. Decision Trees

Lecture of decision trees: [1]

How to calculate entropy and information gain?

Entropy measures the impurity of a collection.

$$Entropy(S) = -\sum_{i=1}^{c} p_i \log_2 p_i$$

Information Gain measures the Expected Reduction in Entropy.

Info. Gain = (Entropy of distribution before the split) – (Entropy of distribution after the split)

$$Gain(S,A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Values(A) is the set of all possible values for attribute A and S_{ν} is the subset of S for which attribute A has value.

Build a decision tree for the weather data step by step:

Compute Entropy and Info. Gain	Selected attribute
Entropy(S) = 0.94	outlook
Entropy(sunny) = 0.97	
Entropy(overcast) = 0	
Entropy(rainy) = 0.97	
Gain(S,A) = 0.94 - (5/14*0.97 + 5/14*0.97) = 0.247	
Entropy(S) = 0.94	windy
Entropy(false) = 0.81	
Entropy(true) = 1	
Gain(S,A) = 0.94 - (8/14*0.81 + 6/14*1) = 0.048	
Entropy(S) = 0.94	humidity
Entropy(high) = 0.98	
Entropy(normal) = 0.59	
Gain(S,A) = 0.94 - (7/14*0.98 + 7/14*0.59) = 0.155	
Entropy(S) = 0.94	temperature
Entropy(hot) = 1	
Entropy(mild) = 0.92	
Entropy(cool) = 0.81	
Gain(S,A) = $0.94 - (4/14*1 + 6/14*0.92 + 4/14*0.81) =$	
0.029	
outlook = sunny	Final decision tree
humidity = high: no (3.0)	
humidity = normal: yes (2.0)	
outlook = overcast: yes (4.0)	
outlook = rainy	
windy = TRUE: no (2.0)	
windy = FALSE: yes (3.0)	

Use Weka to examine J48 on the weather data.

3.5. Pruning decision trees

Follow the lecture of pruning decision tree in [1] ...

Why pruning? - Prevent overfitting to noise in the data.

In Weka, look at the J48 leaner. What are parameters: minNunObj, confidenceFactor?

- minNumObj is the minimum number of instances per leaf
- confidenceFactor is the confidence factor used for pruning

Follow the instructions in [1] to run J48 on the two dataset, then fill in the following table:

Dataset	J48 (default, pruned)	J48 (unpruned)	
	73.8% accuracy, tree has 20	72.7% accuracy, tree has 22	
diabetes.arff	leaves, 39 nodes	leaves, 43 nodes	
	75.5% accuracy, tree has 4	69.6% accuracy, tree has 152	
breast-cancer.arff	leaves and 6 nodes	leaves and 179 nodes	

3.6. Nearest neighbor

Follow the lecture in [1]

What is k-nearest-neighbors (K-NN)? – is a method to classify unknown data point, by using its nearest neighbors, then choose the majority class among those.

Follow the instructions in [1] to run lazy>IBk on the *glass* dataset with k = 1, 5, 20, and then fill its accuracy in the following table:

Dataset	IBk, k =1	IBk, k =5	IBk, k =20
	70.6%	67.8%	65.4
Glass			

[&]quot;Instance-based" learning = "nearest-neighbor" learning