1. (2,5 puntos) Sobre rendimiento

La empresa "3D Computer Vision processors" está diseñando el microprocesador 3D-RGBD-P especializado en visión, y software especializado para integrarlo en pequeñas cámaras RGB-D. El microprocesador está especializado en funcionalidades como filtros 3D y compresión/descompresión. Estas funcionalidades pueden ser ejecutadas siguiendo el modelo SIMD mediante GPUs integradas en el 3D-RGBD-P. Se han diseñado diferentes modelos del sistema 3D-RGBD-P que integran diferentes modelos de GPU (GPU 1,2,3,4) con diferentes prestaciones. Se ha realizado un estudio del software del sistema sobre el modelo 3D-RGBD-P-0 (que no integra GPU) utilizando benchmarks estándar y se ha determinado que el 90% del tiempo de ejecución del software se realiza tarea paralelizable mediante modelo SIMD. Tras analizar los cuatro modelos de GPU y sus posibilidades de paralelización, se concluye que las aceleraciones mejoradas de cada modelo de GPU respecto a la CPU integrada en el 3D-RGBD-P-0 son las siguientes (estas aceleraciones mejoradas se refieren a la parte paralelizable):

Modelo de 3D-RGBD-P	Tipo de GPU	Aceleración mejorada (solo lo paralelizable)	
2D DCDD D 0	CDII (sin CDII)	(solo lo paraiciizable)	
3D-RGBD-P-0	CPU (sin GPU)	1	
3D-RGBD-P-1	GPU 1	100	
3D-RGBD-P-2	GPU 2	500	
3D-RGBD-P-3	GPU 3	1000	
3D-RGBD-P-4	GPU 4	5000	

Tras realizar varias pruebas del software con benchmarks estándar sobre el microprocesador más simple 3D-RGBD-P-0 que no integra ningún modelo de GPU se observa que el tiempo de ejecución (no paralelizable + paralelizable) es de 60s, lo que no resulta aceptable para los requerimientos de rendimiento esperados para este tipo de sistemas.

 a) (1 punto) Calcula los tiempos de ejecución del software (no paralelizable + paralelizable) en cada uno de los modelos del 3D-RGBD-P desde el 1 al 4.

		aceleración mejorada	aceleración global	no mejorable	Mejorable/ mejorado	no mejorable + mejorado
3D-RGBD-P-0	CPU (sin GPU)	1	1	6	54	60s
3D-RGBD-P-1	GPU 1	100	9,17	6	0,54	6,54s
3D-RGBD-P-2	GPU 2	500	9,82	6	0,108	6,108s
3D-RGBD-P-3	GPU 3	1000	9,91	6	0,054	6,054s
3D-RGBD-P-4	GPU 4	5000	9,98	6	0,0108	6,0108s

- b) (1,5 punto) Una empresa de instrumentación médica está valorando integrar estos microprocesadores en sus sistemas. Para ello demanda que los benchmarks estándar se ejecuten en 5s o menos.
 - a) ¿Alguna de las versiones del 3D-RGBD-P cumple los requerimientos? Justifica la respuesta (0,5 puntos)

Ninguna. El modelo más rápido (3D-RGBD-P-4) tarda 6,0108s, muy por encima de los 5s requeridos.

b) ¿Sería posible alcanzar el requerimiento de 5s manteniendo el 90% del software paralelizable, mejorando la aceleración mejorada de la GPU? Justifica la respuesta (0,5 puntos)

Imposible. Cuando la aceleración mejorada tiende a infinito el tiempo de la parte paralelizable (mejorable) tiende a cero, pero la parte no paralelizable (no mejorable) se mantiene en 6s, muy por encima de los 5s requeridos.

c) ¿Cuánto habría que aumentar el porcentaje de paralelización sobre el 90% con la GPU4 para cumplir el requerimiento de 5s? (0,5 puntos)

La aceleración global necesaria para alcanzar el requerimiento de 5s es:

$$A_g = \frac{60}{5} = 12$$

Para conseguir la aceleración global 12 con una aceleración mejorada 5000 (correspondiente al modelo de la GPU4) la fracción mejorada necesaria sería:

$$A_g = 12 = \frac{1}{\left(1 - f_{m \, requerida}\right) + \frac{f_{m \, software}}{5000}} \rightarrow f_{m \, software} = 0,91685$$

El incremento en el porcentaje de paralelización (fracción mejorada) sería

$$\Delta_{f_m} = |f_{m \, requerida} - f_{m \, inicial}| = |0.91685 - 0.9| = 0.01685 = 1.69\%$$