

SRM Institute of Science and Technology College of Engineering and Technology

Mode of Exam

OFFLINE

Common to EEE, ECE, Mechanical, Mechatronics and CSE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-22 (EVEN)

Test: CLAT-2
Course Code & Title: 18EES101J – Basic Electrical and Electronics Engineering

Date: 03/06/2022 Duration: 100 Mins **Max. Marks:** 50

SET-C

Course Articulation Matrix:

Year & Sem: I & II

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Н	M	L	L	M	-	M	M	M	M	-	M	-	-	-
CO2	Н	M	L	L	M	-	M	M	M	M	-	M	-	-	-
CO3	Н	-	L	L	M	-	M	M	M	M	-	M	-	-	-
CO4	Н	-	L	M	M	-	M	M	M	M	-	M	-	-	-
CO5	Н	M	M	M	M	-	M	M	M	M	-	M	-	-	-
CO6	-	-	L	2	M	-	M	M	M	M	-	M	-	-	-

	Part - A (10 x 1 Marks = 10 Marks)								
Q. No	Answer all the questions	Marks	BL	СО	PO	PI Code			
1	Emf is induced in a conductor when it cuts the magnetic flux	1	1	2	1,2				
2	Transformer is used to step down or up the AC voltages and currents	1	1	2	1,2				
3	Not self-starting	1	1	2	1,2				
4	It restricts the armature current as there is no back emf at starting	1	1	2	1,2				
5	<u>ØPNZ</u> 60*A	1	1	2	1,2				
6	Rectifier	1	1	3	1,2				
7	81.2%	1	1	3	1,2				
8	coal-salt mixture	1	1	3	1,2				
9	High voltage and current gain	1	1	3	1,2				
10	Base	1	1	3	1,2				
	Part - B (4 x 4 Marks)								

11	$P = (V_m \ \text{sin} \ \omega t) (I_m \ \text{sin} \ (\omega t + \frac{\pi}{2})$ $= \frac{d}{dt} \ C \ V_m \ \text{Sin} \ \omega t = C \ V_m \ \frac{d}{dt} \ \text{sin} \ \omega t = \frac{v_m}{1/\omega C} \ \text{sin} (\omega t + \frac{\pi}{2}) \ \text{or}$ $= \frac{V_m}{X_C} \sin(\omega t + \frac{\pi}{2}) \dots \dots$	4	1	2	1,2	
12	A D Time(t) + Vi R Voltage of the properties of	4	2	2	1,2	
13	 The transformer works on the principle of Faraday's law of electromagnetic induction and mutual induction. There are usually two coils primary coil and secondary coil on the transformer core. The core laminations are joined in the form of strips. (2 marks) Used in high-voltage level applications such as distribution transformers, auto, and power transformers. (2 marks) 	4	I	3	1,2	
14	diagram -2 marks, explantion -2 marks	4	2	3	1,2	
	Part – B					
	(2 x 12 Marks = 24 Marks)					
15(a	The working of the three-phase induction motor is based on the principle of electromagnetic induction . When three-phase stator winding of an	12	2	2	1,2	

	induction motor is energized from a 3 phase supply, a rotating magnetic field is set up which rotates around the stator at synchronous speed (N _s) 4 M.					
	Rotor types- 1. Squirrel cage 2. Slip ring – 8M					
	Share (5224) Star connected rotor winding Slip Ring Three Phase Induction Motor					
	(or)					
15(b	$I_{rms} = \sqrt{\frac{1}{\pi}} \int_0^x i^2 d\theta$					
	$I_{rms}^{2} = \frac{1}{\pi} \int_{0}^{\pi} I_{r}^{2} \sin^{2}\theta d\theta - \frac{I_{rm}^{2}}{\pi} \int_{0}^{\pi} \sin^{2}\theta d\theta$ $= \frac{I_{rm}^{2}}{\pi} \int_{0}^{\pi} \left(\frac{1 - \cos 2\theta}{2} \right) d\theta - \frac{I_{rm}^{2}}{2\pi} \int_{0}^{\pi} (1 - \cos 2\theta) d\theta$ $+ \frac{I_{rm}^{2}}{2\pi} \left \theta - \frac{1}{2} \sin 2\theta \right _{0}^{\pi}$ $= \frac{I_{rm}^{2}}{2\pi} \left \left(\pi - \frac{1}{2} \sin 2\theta \right) - \left(\theta - \frac{1}{2} \sin 2 \times 0 \right) \right $ $= \frac{I_{rm}^{2}}{2\pi} \left \pi - 0 - 0 + 0 \right = \frac{\pi}{2\pi} I_{rm}^{2} = \frac{I_{rm}^{2}}{2}$ $I_{rms} - \sqrt{\frac{I_{rm}^{2}}{2}} = \frac{I_{rm}}{\sqrt{2}} = 0.707 I_{rm}$ $- 4 M$ $Average Output Current$ $= \left(\frac{1}{2\pi} \right) \left[\int_{0}^{\pi} ImSin\omega t d(wt) + \int_{\pi}^{2\pi} 0 d(\omega t) \right]$ $= \left(\frac{1}{2\pi} \right) \int_{0}^{\pi} ImSin\omega t d(wt)$ $= \left(\frac{Im}{2\pi} \right) \int_{0}^{\pi} Sin\omega t d(wt)$ $= \left(\frac{Im}{2\pi} \right) \left[cos\pi - cos0 \right]$ $= \left(\frac{Im}{\pi} \right)$	12	2	2	1,2	
	$Peak Factor = \frac{Peak \ value}{RMS \ Value} = \frac{V_m}{0.707 \ V_m} = 1.414$ $-2M$					

	$Form Factor = \frac{RMS \ value}{Average \ Value} = \frac{0.707 \ V_m}{0.637 \ V_m} = 1.11 - 2M$					
16(a)	TC Reliable Section 1 Sec	12	2	3	1,2	
	(61)					

16(b) Colored Winding Balance Wright Canital Weight (ii) Repuls	in damping (i) Attraction type. ion type.						
(a) Radial vane type.	(b) Co-axial vane type						
Movable Fixed vane vane	Mouther sole - 10 I	M_	12	2	3	1,2	
Moving coil instruments 1. It works on the principle of DC motor	Moving Iron instruments 1. It works on the principles of magnetism.	1					
Deflection torque is proportion to square of current	al 2. Deflection torque is proportional to curr	ent					
 Damping is provided by eddy . current damping 							
 Spring controlled instrument Controlling torque is proportion 	Gravity controlled instruments. Controlling torque is	11					
to angle of defection	proportional to $\sin \theta$						
6. Scale is uniform	6. Non uniform scale.						
7. Delicate, sensitive and accurate.	7. Robust, reliable accurate.	-2M					

Question Paper Setter

Approved by Audit Professor/ Course Coordinator