Amendments of the Claims

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

- 1. (currently amended) Light-storage self-luminescent glass, comprising from 0.01% to 40% by weight of a light-storage self-luminescent material activated by multiple ions and from 99.99% to 60% by weight of a matrix glass; wherein the light-storage self-luminescent material has a particle size from 0.55 0.8 mm to 20 mm, and the matrix glass is selected from the group consisting of common silicate sodium-calcium-silicon glass, borate glass, phosphate glass, halide glass, sulfide glass and aluminate glass.
- 2. (original) Light-storage self-luminescent glass according to claim 1, wherein the chemical formula of the light-storage self-luminescent material activated by multiple ions is:

 $\alpha MO ~\bullet ~\beta M'O ~\bullet ~\gamma SiO_2 ~\bullet ~\delta R: Eu_x Ln_y$ wherein M is one or more selected from the group consisting of Sr, Ca, Ba and Zn;

M' is one or more selected from the group consisting of Mg, Cd and Be;

R is B_2O_3 , P_2O_5 or mixture thereof;

Ln is one or more selected from the group consisting of Nd, Dy, Ho, Tm, La, Pr, Tb, Ce, Er, Mn, Bi, Sn and Sb; and

- α , β , γ , δ , x and y are molar coefficients meeting following requirement: $0.6 \le \alpha \le 6$; $0 \le \beta \le 5$; $1 \le \gamma \le 9$; $0 \le \delta \le 0.7$; $0.00001 \le x \le 0.2$; $0 \le y \le 0.3$.
- 3. (currently amended) Light-storage selfluminescent glass according to claim 2, wherein the main

chemical formula of the light-storage self-luminescent material activated by multiple ions is:

(Sr_{1-z}Ca_z)₂MgSi₂O₇:Eu_xLn_y

wherein Ln is one or more selected from the group consisting of La, Ce, Dy, Tm, Ho, Nd, Er, Sb and Bi;

z is a coefficient: $0 \le z \le 1;$ and x and y are molar coefficients: $0.0001 \le x \le 0.2;$ $0.0001 \le y \le 3.0.$

4. (original) Light-storage self-luminescent glass according to claim 1, wherein the chemical formula of the light-storage self-luminescent material activated by multiple ions is:

 $(Ca_{1-z}Sr_z)S:Eu_xLn_y$

wherein Ln is one or more selected from the group consisting of Er, Dy, La, Tm and Y;

z is a coefficient: $0 \le z \le 1$; and x and y are molar coefficients meeting following requirement: $0.00001 \le x \le 0.2$; $0.00001 \le y \le 0.15$.

5. (original) Light-storage self-luminescent glass according to claim 1, wherein the chemical formula of the light-storage self-luminescent material activated by multiple ions is:

 $R_2O_2S:Eu_xLn_y$

wherein R is one or more selected from the group consisting of Y, La and Gd;

Ln is one or more selected from the group consisting of Er, Cr, Bi, Dy, Tm, Ti, Mg, Sr, Ca, Ba and Mn; and

x and y are molar coefficients meeting

following requirement: $0.00001 \le x \le 0.2$; $0.00001 \le y \le 0.6$.

6. (original) Light-storage self-luminescent glass according to claim 1, wherein the chemical formula of the light-storage self-luminescent material activated by multiple ions is:

 $\alpha MO \bullet \beta A1_2O_3 \bullet \gamma B_2O_3 : Eu_xLn_y$

wherein M is one or more selected from the group consisting of Mg, Ca, Sr and Zn;

Ln is one or more selected from the group consisting of Nd, Dy, Ho, Tm, La, Ce, Er, Pr and Bi; and

 $\alpha,\ \beta,\ \gamma,\ x\ \text{and}\ y\ \text{are molar coefficients}$ meeting following requirement: $0.5\le\alpha\le6;\ 0.5\le\beta\le9;$ $0\le\gamma\le0.3;\ 0.00001\le x\le0.15;\ 0.00001\le y\le0.2.$

7. (original) Light-storage self-luminescent glass according to claim 6, the chemical formula of the light-storage self-luminescent material is:

 $MAl_2O_4:Eu_xLn_y$

wherein Ln is one or more selected from the group consisting of La, Ce, Dy, Ho, Nd and Er;

M is one or more selected from the group consisting of Sr, Ca, Mg and Zn; and

x and y are molar coefficients: 0.0001 \leq x \leq 0.15; 0.0001 \leq y \leq 0.2.

8. (original) Light-storage self-luminescent glass according to claim 6, wherein the chemical formula of the light-storage self-luminescent material activated by multiple ions is:

 $M_4A1_{14}O_{25}:Eu_xLn_v$

wherein Ln is one or more selected from

the group consisting of Pr, Ce, Dy, Ho, Nd and Er; M is one or more selected from the group consisting of Sr, Ca, Mg and Zn; and $\text{x and y are molar coefficients:} \quad 0.0001 \leq$

9. (canceled)

 $x \le 0.15$; $0.0001 \le y \le 0.2$.

10. (currently amended) Light-storage selfluminescent glass according claim 1, wherein the common silicate matrix glass consists of (by weight):

SiO₂: 30-81% CaO: 0.5-9%

 $A1_2O_3: 0-23\%$ MgO: 1-8%

B₂O₃: 0-15% SrO: 1-10%

Li₂O: 0-8% BaO: 0-16%

Na₂O: 0.6-18% ZnO: 0.6-55%

K₂O: 0.4-16% PbO: 0-33%

 $As_2O_3: 0-0.5%$.

11. (canceled)

12. (currently amended) A process for producing the light-storage self-luminescent glass according to claim 1, comprising:

heating and melting the matrix glass;
doping the light-storage self-luminescent
material into the melted matrix glass to produce a
mixture; and

forming the mixture at 900-1300°C.

13. (previously presented) A process for producing the light-storage self-luminescent glass according to claim 1, comprising:

re-heating and melting a glass which has been formed and cooled; and

doping the glass with the light-storage self-luminescent material before secondary forming.

14-15. (canceled)

16. (new) Light-storage self-luminescent glass according claim 1, wherein said light-storage self luminescent material activated by multiple ions is selected from the group consisting essentially of silicate, aluminate, sulfide, and any combination thereof.