UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET

Seminarski rad iz Statističkog softvera 3

Asistent: Student:

Marija Radičević Jelena Cicvarić 158/2012

Beograd, septembar 2016. godine

Sadržaj:

1.	Opis baze i cilj istraživanja	3
	Učitavanje baze u SPSS	
3.	Analiza podataka	7
4.	Zavisnost visine plate od ostalih promenljivih	. 13
5.	Ispitujemo da li su srednje vrednosti visine plate iste i za muškarce i za	
	žene	. 20
6.	Linearni model	. 27
7.	Literatura	. 34

1. Opis baze i cilj istraživanja

Koristimo bazu *Salaries for Professors,* baza se sastoji od 397 opservacija i 6 promenljivih. Promenljive su:

- rank kategorička promenljiva koja uzima vrednosti:
 - 1 = docent
 - 2 = vandredni professor
 - 3 = professor
- discipline kategorička promenljiva koja uzima vrednosti:
 - 1 = teoretska odeljenja
 - 2 = primenjena odeljenja
- yrs.since.phd numerička promenjljiva koja predstavlja godine od doktorata
- yrs.service numerička promenjliva koja predstavlja godine radnog staža
- sex kategorička promenljiva, pol ispitanika, uzima vrednosti:
 - 0 = muški
 - 1 = ženski
- salary numerička promenljiva koja predstavlja devetomesečnu platu (u dolarima)

Cilj istraživanja: želimo da proverimo koji faktori utiču na visinu plate, a medju najosnovnijim proveravamo da li visina plate zavisi od pola ispitanika.

2. Učitavanje baze u SPSS

 $File \rightarrow Open \rightarrow Data$ (Files of type promenimo na All files), čekiramo našu bazu I kliknemo Open

Primećujemo da imamo promenljive koje su tipa *String*, da bismo odradili potrebne statističke analize ove promenljive ćemo promeniti u numeričke. To radimo na sledeći način:

$Transform \rightarrow Recorde\ Into\ Same\ Variables$

Sada klikom na Old and New Variables prekodiracemo naše vrednosti:

Potpuno isto radimo i za ostale promenljive koje su tipa *String*. Naša baza izgleda ovako:

Sada možemo da počnemo sa analizom podataka.

3. Analiza podataka

Za početak ćemo izračunati srednju vrednost, maksimum, minimimum, standardnu devijaciju za svaku promenljivu. To radimo na sledeći način:

Analyze \rightarrow Descriptive Statistics \rightarrow Frequencies

Statistics

yrs.since.phd

N	Valid	397
	Missing	0
Mean		22,31
Std. Error	of Mean	,647
Median		21,00
Mode		4
Std. Devia	tion	12,887
Variance		166,075
Range		55
Minimum		1
Maximum		56
Sum		8859
Percentile	s 25	12,00
	50	21,00
	75	32,00

Odavde vidimo da je prosečan broj godina otkako su zavrsili doktorske studije 22,31. Takodje možemo napraviti histogram pritiskom na dugme Charts čekiramo Histogram I možemo čekirati da nam pokaže krivu normalne raspodele preko histograma.

Isto radimo I sa ostalim promenljivim. Sada ispitujemo statistike za godine radnog staža:

Statistics

yrs.service

N	Valid	397
	Missing	0
Mean		17,61
Std. Error of	Mean	,653
Median		16,00
Mode		3
Std. Deviatio	n	13,006
Variance		169,157
Range		60
Minimum		0
Maximum		60
Percentiles	25	7,00
	50	16,00
	75	27,00

Vidimo da je prosečan broj godina radnog staža 17,61, da postoje neke osobe koje imaju 0 godina radnog staža tj. tek su počeli da rade I maksimum radnog staža je 60 godina.

Proveravamo statistike za devetomesečnu platu:

Statistics

sa	ı۷

N	Valid	397
	Missing	0
Mean		113706,46
Std. Error of I	Mean	1520,163
Median		107300,00
Mode		92000
Std. Deviatio	n	30289,039
Variance		917425865,1
Range		173745
Minimum		57800
Maximum		231545
Percentiles	25	91000,00
	50	107300,00
	75	134367,50

Prosečna plata iznosi 113.706,46 dolara, minimalna je 57.800, a maksimalna 231.545 dolara.

Sada cemo proveravati za kategoričke promenljive, pa ćemo umesto histograma korititi *Pie Charts*. Prvo proveravamo promenljivu rank:

rank

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	AssocProf	64	16,1	16,1	16,1
	AsstProf	67	16,9	16,9	33,0
	Prof	266	67,0	67,0	100,0
	Total	397	100,0	100,0	

Vidimo da najvise ima profesora dok vandrednih profesora I docenata ima isto i dosta manje, a to mozemo videti I sa grafika.

Sada ćemo proveriti kako su rasporedjeni na teorijskoj I primenjenoj katedri.

discipline

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	theoretical	181	45,6	45,6	45,6
	applied	216	54,4	54,4	100,0
	Total	397	100,0	100,0	

Vidimo da se tu brojke vrlo malo razlikuju, na primenjenoj katedri ima 35 više zaposlenih nego na teorijskoj.

Proveravamo još odnos žena I muškaraca:

sex

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Male	358	90,2	90,2	90,2
	Female	39	9,8	9,8	100,0
	Total	397	100,0	100,0	

Vidimo da je broj muškaraca znatno veći od broja zena, 358 muškaraca I samo 39 žena.

4. Zavisnost visine plate od ostalih promenljivih

Da bismo odredili koji testove ćemo primenjivati prvo ćemo ispitati normalnost promenljive *salary,* kao i da li postoji autlejera.

Analyze \rightarrow Descriptive Statistics \rightarrow Explore

Dobijamo sledeće rezultate:

salary

Tests of Normality

	Kolmogorov-Smirnov ^a			(Shapiro-Wilk	
	Statistic	df	Sig.	Statistic	df	Sig.
salary	,091	397	,000	,960	397	,000

a. Lilliefors Significance Correction

Sa grafika vidimo da promenljiva salary nema normalnu raspodelu, a to isto mozemo primetiti i iz testova normalnosti i kod Kolmogorov-Smirnov i Shapiro-Wilk testa p-vrednost testa je 0,00 a to je manje od 0,05 pa odbacujemo nultu hipotezu, tj. promenljiva salary nema normalnu raspodelu.

Takodje primećujemo da postoje autlejeri. Sada možemo zaključiti da ne možemo primenjivati testove koji zahtevaju normalnost i nepostojanje autlejera. Moramo koristiti neki od neparametarskih testova. Upotrebićemo Mann-Whitney test, on se nalazi u sledećim karticama.

Kada kliknemo Ok, dobijamo sledeće rezultate testa.

Mann-Whitney Test

Ranks

	sex	N	Mean Rank	Sum of Ranks
salary	Male	358	204,02	73040,50
	Female	39	152,88	5962,50
	Total	397		

Test Statistics^a

	salary
Mann-Whitney U	5182,500
Wilcoxon W	5962,500
Z	-2,643
Asymp. Sig. (2-tailed)	,008

a. Grouping Variable: sex

Vidimo da je p-vrednost testa 0,008, što je manje od 0,05 pa odbacujemo nultu hipotezu, tj. visina plate ne zavisi od pola zaposlenih.

Sada ćemo proveriti da li visina plate zavisi od promenljive *discipline*, koja označava na kojoj katedri su zaposleni. Isto ćemo proveravati sa Mann-Whitney testom, jer koristimo promenljivu *salary* koja nema normalnu raspodelu i ima autlejera. Radimo na analogan način.

Mann-Whitney Test

Ranks

	discipline	N	Mean Rank	Sum of Ranks
salary	theoretical	181	177,80	32181,00
	applied	216	216,77	46822,00
	Total	397		

Test Statistics^a

	salary
Mann-Whitney ∪	15710,000
Wilcoxon W	32181,000
Z	-3,370
Asymp. Sig. (2-tailed)	,001

 a. Grouping Variable: discipline

Dobijamo jos manju p-vrednost (0,001) pa možemo zaključiti da visina plate ne zavisi ni od katedre na kojoj su zaposleni.

Proverićemo još da li visina plate zavisi od pozicije na kojoj su zaposleni. Za to ćemo koristiti test marginalne homogenosti, jer nam je promenljiva *rank* kategorijska sa 3 kategorije (docent, vandredni profesor i profesor).

Marginal Homogeneity Test

	salary & rank
Distinct Values	374
Off-Diagonal Cases	397
Observed MH Statistic	45141464,00
Mean MH Statistic	22571230,00
Std. Deviation of MH Statistic	1172171,132
Std. MH Statistic	19,255
Asymp. Sig. (2-tailed)	,000

Kao što vidimo p-vrednost testa je 0,000, pa odbacujemo nultu hipotezu, tj. visina plate ne zavisi od pozicije zaposlenih.

5. Ispitujemo da li su srednje vrednosti visine plate iste i za muškarce i za žene

Izračunaćemo koliko iznosi prosečna plata muškaraca, a kolika je ona kada su u pitanju žene. Prvo ćemo bazu podeliti u odnosu na pol.

 $Data \rightarrow Split File$

Sada kada smo podelili bazu možemo izračunati statistike.

Analyze \rightarrow Descriptive Statistics \rightarrow Frequencies

U prozor Variables prebacićemo promenljivu salary.

Statistics

s	al	la	r۷

Janany			
Male	N	Valid	358
		Missing	0
 	Mean		115090,42
 	Media	n	108043,00
 	Mode		74000ª
	Std. D	eviation	30436,927
	Minim	um	57800
	Maxim	um	231545
	Sum		41202370
Female	N	Valid	39
		Missing	0
 	Mean		101002,41
 	Media	n	103750,00
 	Mode		72500 ^a
	Std. D	eviation	25952,127
	Minim	um	62884
	Maxim	um	161101
	Sum	·	3939094

a. Multiple modes exist. The smallest value is shown

Vidimo da prosečna plata kod muškaraca iznosi 115.090,42, minimalna je 57.800 a maksimalna 231.545. Dok je kod žena prosečna 101.002,41, minimalna 62.884 a maksimalna 161.101 . Primećujemo da su im prosečne plate slične, da je minimalna plata malo veća kada su u pitanju žene, dok je maksimalna plata kod muškaraca daleko veća nego kod žena.

Sada ćemo bazu podeliti po pozicijama na kojima su zaposleni, tj po promenljivoj rank. Bazu delimo kao u prethodnom slučaju, samo sada prebacujemo promenljivu rank. Želimo da ispitamo zavisnost visine plate u odnosu na pol na ovako podeljenoj bazi. Opet ćemo koristiti Mann-Whitney test iz istih razloga kao I ranije.

wann-wnitney rest

Ranks

rank		sex	Ν	Mean Rank	Sum of Ranks
AssocProf	salary	Male	54	33,50	1809,00
		Female	10	27,10	271,00
		Total	64		
AsstProf	salary	Male	56	35,29	1976,00
		Female	11	27,45	302,00
		Total	67		
Prof	salary	Male	248	134,15	33268,50
		Female	18	124,58	2242,50
		Total	266		

Test Statistics^a

rank		salary
AssocProf	Mann-Whitney ∪	216,000
	Wilcoxon W	271,000
	Z	-,998
	Asymp. Sig. (2-tailed)	,318
AsstProf	Mann-Whitney ∪	236,000
	Wilcoxon W	302,000
	Z	-1,219
	Asymp. Sig. (2-tailed)	,223
Prof	Mann-Whitney ∪	2071,500
	Wilcoxon W	2242,500
	Z	-,509
	Asymp. Sig. (2-tailed)	,611

a. Grouping Variable: sex

Možemo primetiti da su u sva tri slučaja p-vrednosti veće od 0,05, što znači da prihvatamo nultu hipotezu, odnosno visina plate zavisi od pola zaposlenih.

Želimo da proverimo vezu izmedju visine plate I godina radnog staža, kako su u pitanju numeričke promenljive ne možemo koristiti Hi-kvadrat test, pa ćemo primeniti korelacionu analizu. Prvo ćemo nacrtati dijagram raspršenosti.

Kada kliknemo na Scatter/Dot za ispitivanje proste korelacije izaberemo Simple Scatter I kliknemo define, tada dobijamo sledeći prozor.

Odavde vidimo da postoji veza imedju ovih promenljivih. Sada ćemo izračunati koeficijente korelacije. Kako prmenljiva salary nema normalnu raspodelu, ne moramo ni da proveravamo za drugu promenljivu, ne možemo koristiti Pirsonov koeficijent korelacije, pa ćemo koristiti Spirmanov koeficijent.

 $Analyze \rightarrow Correlate \rightarrow Bivariate$

Correlations

			salary	yrs.service
Spearman's rho	salary	Correlation Coefficient	1,000	,425**
		Sig. (2-tailed)		,000
		N	397	397
	yrs.service	Correlation Coefficient	,425**	1,000
		Sig. (2-tailed)	,000	
		N	397	397

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Vidimo da je stepen korelacije 0,425. Možemo proveriti I Kendalov tau-b koeficijent, koji se koristi u slučaju kada postoje vrednosti koje se ponavljaju, trebalo bi da bude manji od Spirmanovog, jer u godinama radnog staža sigurno postoje vrednosti koje se ponavljaju. Sada ćemo osim Spirmanovog čekirati I Kendalov tau-b koeficijent.

Correlations

			salary	yrs.service
Kendall's tau_b	salary	Correlation Coefficient	1,000	,305**
		Sig. (2-tailed)		,000
		N	397	397
	yrs.service	Correlation Coefficient	,305**	1,000
		Sig. (2-tailed)	,000	
		N	397	397
Spearman's rho	salary	Correlation Coefficient	1,000	,425**
		Sig. (2-tailed)		,000
		N	397	397
	yrs.service	Correlation Coefficient	,425**	1,000
		Sig. (2-tailed)	,000	
		N	397	397

^{**.} Correlation is significant at the 0.01 level (2-tailed).

I vidimo da je Kendalov tau-b koeficijent korelacije 0,305 što je manje od Spirmanovog koji je 0,425. Takodje primećujemo da je p-vrednost testa 0,000 u oba slučaja, pa odbacujemo nultu hipotezu, odnosno možemo zaključiti da postoji linearna pozitivna veza izmedju visine plate I godina radnog staža.

6. Linearni model

Napravićemo model, koristićemo višestruku linearnu regresiju jer na visinu plate utiče vise promenljivih.

 $\textit{Analyze} \rightarrow \textit{Regresion} \rightarrow \textit{Linear}$

Kada kliknemo Ok, dobijamo sledeće rezultate:

Variables Entered/Removeda

Model	Variables Entered	Variables Removed	Method
1	sex, discipline, rank, yrs. service, yrs. since.phd ^b		Enter

- a. Dependent Variable: salary
- b. All requested variables entered.

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,611ª	,373	,365	24131,122

- a. Predictors: (Constant), sex, discipline, rank, yrs.service, yrs.since.phd
- b. Dependent Variable: salary

ANOVA^a

	Model		Sum of Squares	df	Mean Square	F	Sig.
ſ	1	Regression	1,356E+11	5	27123404633	46,579	,000b
I		Residual	2,277E+11	391	582311047,0		
l		Total	3,633E+11	396			

- a. Dependent Variable: salary
- b. Predictors: (Constant), sex, discipline, rank, yrs.service, yrs.since.phd

Iz druge tabele vidimo da nezavisne promenljive objašnjavaju 37,3% disperzije zavisne promenljive *salary,* iz toga mozemo zaključiti da je veza jaka.

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			Correlations			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	35505,288	6073,871		5,846	,000					
	rank	15691,030	1894,623	,392	8,282	,000	,522	,386	,332	,714	1,401
	discipline	15508,158	2503,739	,255	6,194	,000	,156	,299	,248	,943	1,060
	yrs.since.phd	1161,293	242,594	,494	4,787	,000	,419	,235	,192	,150	6,647
	yrs.service	-596,667	226,413	-,256	-2,635	,009	,335	-,132	-,106	,170	5,897
	sex	-5238,623	4130,810	-,052	-1,268	,205	-,139	-,064	-,051	,970	1,031

a. Dependent Variable: salary

Posmatramo koeficijente promenljivih, za naš model značajne promenljive su one čija je p-vrednost manja od 0,05 pa možemo zaključiti da promenljive sex I vrs. service nisu značajne za naš model. Proverićemo I normalnost reziduala:

Normal P-P Plot of Regression Standardized Residual

Sa grafika možemo videti da nema značajnih odstupanja, pa možemo zakljuciti da reziduali imaju normalnu raspodelu. Sada možemo napraviti model koji izgleda ovako:

 $Y=35505,288+15691,03X_1+15508,158X_2+1161,293X_3$

Nismo uključili pol I radni staž jer nam oni nisu značajni za model. Možemo koristiti I neki drugi metod osim *Enter*, ako promenimo metod u npr *Stepwise* dobijamo:

Variables Entered/Removeda

	Variables	Variables	
Model	Entered	Removed	Method
1	rank		Stepwise (Criteria: Probability-of- F-to-enter <= , 050, Probability-of- F-to-remove >= ,100).
2	discipline		Stepwise (Criteria: Probability-of- F-to-enter <= , 050, Probability-of- F-to-remove >= ,100).
3	yrs.since.phd		Stepwise (Criteria: Probability-of- F-to-enter <= , 050, Probability-of- F-to-remove >= ,100).
4	yrs.service		Stepwise (Criteria: Probability-of- F-to-enter <= , 050, Probability-of- F-to-remove >= ,100).

a. Dependent Variable: salary

Dobijamo iste rezultate, mada nam ovaj metod izbacuje samo pol kao promenljivu koja nije značajna, ali je model bolji bez pola I radnog staža.

Literatura

- https://vincentarelbundock.github.io/Rdatasets/datasets.html
- http://www.math.rs/p/marijaradicevic/kurs/324/%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81% D1%82%D0%B8%D1%87%D0%BA%D0%B8-%D1%81%D0%BE%D1%84%D1%82%D0%B2%D0%B5%D1%80-3/