

IN3171 - Modelamiento y Optimización

Tarea 2

Profesores: Fernando Ordoñez, Gonzalo Muñoz

1 Pregunta 1

Un productor de almendras debe seleccionar a qué clientes atender, para lo cual cuenta con un único vehículo de capacidad V. Cada cliente $i=1,\ldots,n$ requiere un volumen V_i que desea recibir antes del instante T_i . El beneficio por atender al cliente i es de $B_i>0$ pesos, menos un descuento de d>0 pesos por cada minuto de atraso. En caso de no atender el cliente i se incurre en una multa de $M_i>0$ pesos por no satisfacer el pedido. Se desea determinar qué clientes atender y en qué orden, sabiendo que el vehículo sale de la fábrica y debe regresar a la fábrica (el punto i=0) al final de la jornada T. El tiempo de traslado desde i hasta j es t_{ij} y el costo en bencina de este traslado es de $c_{ij}>0$ pesos.

Escriba un problema lineal, que incluya variables enteras, para decidir qué clientes atender y en qué orden, de forma que se maximize el beneficio neto. Su formulación debe asegurar que el vehículo visita a todos los clientes atendidos, que el vehículo parte de la fábrica y vuelve a la fábrica despues de visitar los clientes atendidos. La carga de los clientes atendidos debe caber en el camión. Su modelo debe determinar el tiempo en que se llega a cada cliente y el atraso si existe.

No olvide justificar su modelo (variables y restricciones).

2 Pregunta 2

- 1. Invente 2 poliedros $P_1, P_2 \subseteq \mathbb{R}^2$ distintos tales que:
 - Cada uno tenga al menos 3 vértices.
 - (-2,-1) sea el único óptimo para cada uno de los siguientes problemas de optimización

min
$$x_2$$
 min x_2 s.a $(x_1, x_2) \in P_1$ s.a $(x_1, x_2) \in P_2$

• (1,4) sea el único óptimo para cada uno de los siguientes problemas de optimización

min
$$-x_1 - x_2$$
 min $-x_1 - x_2$
s.a $(x_1, x_2) \in P_1$ s.a $(x_1, x_2) \in P_2$

Debe describir ambos poliedros con desigualdades y graficarlos.

2. Considere el siguiente PL

min
$$c_1x_1 + c_2x_2$$

s.a. $6x_1 + 4x_2 \le 24$
 $3x_1 - 4x_2 \le 6$
 $x_1 \le 2$
 $x_1 \ge 0$

- (a) Encuentre 2 vectores distintos (c_1, c_2) tales que el problema de optimización tenga infinitas soluciones óptimas.
- (b) Construya un PL equivalente al problema original que esté en forma estándar.

3 Pregunta 3

Considere los polítopos

$$P_{1} = \left\{ x \in \mathbb{R}^{2} \mid 2x_{1} - x_{2} \leq 0, \ x_{1} + x_{2} \leq 0, \ -\frac{1}{2}x_{1} + x_{2} \leq 3, \ x_{2} \geq -2 \right\}$$

$$P_{2} = \operatorname{conv}\left(\left\{ \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\} \right)$$

- 1. Dibuje los conjuntos P_1 y P_2 .
- 2. Defina $A = \operatorname{conv}(P_1 \cup P_2)$. Dibuje A y deduzca una descripción de desigualdades de éste.
- 3. Muestre para este ejemplo que si x es punto extremo de A, entonces x es punto extremo o de P_1 , o de P_2 . Muestre también que la inversa no es cierta, es decir, encuentre x punto extremo de P_1 o P_2 que no es punto extremo de A.
- 4. Generalice y formalice el resultado anterior. Es decir, considere P_1, \ldots, P_K politopos en \mathbb{R}^n y A la envoltura convexa de $P_1 \cup P_2 \cup \cdots \cup P_K$. Equivalentemente,

$$A = \left\{ \sum_{k=1}^{K} \lambda_k x^k \mid x^k \in P_k, \sum_{k=1}^{K} \lambda_k = 1, \ \lambda \ge 0 \right\} .$$

Muestre que si x es punto extremo de A, entonces es punto extremo de P_k para algún $k=1,\ldots K$.

Indicación. Si lo desea, puede suponer conocido el siguiente resultado: un politopo es la envoltura convexa de sus puntos extremos.

4 Reglas de la Tarea

- Debe presentar un informe con sus respuestas de no más de 10 páginas.
- Se corregirá ortografía, redacción y contenido del informe.
- La tarea se puede desarrollar individualmente o en grupos de 2 estudiantes.
- Fecha de entrega: Lunes, 15 de abril 2024, 23.59 horas a través de U-Cursos.
- Se descontará 1.5 puntos por día de atraso si se entrega la tarea después del plazo. El plazo máximo para entregar la tarea con atraso es el 17 de abril 2024 a las 23.59 horas.