得分

第四题(20分)

分析32位的Y86 ISA中新加入的条件内存传送指令: crmmovqXX和cmrmovqXX。crmmovqXX和cmrmovqXX指令在条件码满足所需要的约束时,分别执行和rmmovq以及mrmovq同样的语义。其格式如下:

rmmovq	4	0	rA	rB	D (8字节)
crmmovqXX	4	fn	rA	rB	D (8字节)
mrmovq	5	0	rA	rB	D (8字节)
cmrmovqXX	5	fn	rA	rB	D (8字节)

1. 请按下表补全每个阶段的操作。需说明的信号可能会包括:icode, ifun, rA, rB, valA, valB, valC, valE, valP, Cnd; 寄存器堆R[],存储器M[],程序计数器PC,条件码CC。其中对存储器的引用必须标明字节数。

阶段	rmmovq rA,D(rB)	cmrmovqXX D(rB),rA		
取指				
译码	valA 🗲	R[rA]		
	valB 🗲	R[rB]		
执行				
\\\- 				
访存				
写回	none			
更新PC	PC ←	valP		

信号	HCL代码	
F_stall	(E_icode in {IMRMOVQ, IPOPQ} ()) &&
E_bubble	()) &&
M_bubble	m_stat in	

附HCL描述中的常数值编码表如下:

IHALT	halt指令的代码	INOP	nop指令的代码
IRRMOVQ	rrmovq指令的代码	IIRMOVQ	irmovq指令的代码
IRMMOVQ	rmmovq指令的代码	IMRMOVQ	mrmovq指令的代码
ICRMMOVQ	crmmovqXX指令的代码	ICMRMOVQ	cmrmovqXX指令的代码
IOPL	整数运算指令的代码	IJXX	跳转指令的代码
ICALL	call指令的代码	IRET	ret指令的代码
IPUSHQ	pushq指令的代码	IPOPQ	popg指令的代码
FNONE	默认功能码	RNONE	表示没有寄存器文件访问
ALUADD	表示加法运算	RRSP	表示%rsp寄存器ID
SAOK	正常地址操作状态码	SADR	地址异常状态码
SINS	非法指令异常状态码	SHLT	halt状态码

3.对于下面的Y86汇编代码,请使用上述条件内存传送指令将其修改为不带跳转的 汇编代码序列。假设下面的代码片段在教材所描述的PIPE处理器上运行,不考虑 该片段前后代码的影响以及高速缓存(cache)失效的情况,假设%rsi初值为0, 处理器设计使用总是选择(always taken)的预测策略。原始代码片段预计运 行 周期,改进代码片段预计执行

原始代码	改进代码
andq %rsi %rsi	
jne L1	
mrmovq 8(%rdx), %rax	
j L2	
L1:	
mrmovq 8(%rdx), %rbx	
L2:	
addq %rax, %rbx	

7日	1	1
1寸	I.	J

第五题(20分)

现有一个能够存储 4 个 Block 的 Cache,每一个 Cache Block 的大小为 2 Byte (即 B = 2)。内存空间的大小是 32 Byte,即内存空间地址范围如下:

$$0_{10}$$
 (00000₂) -- 31_{10} (11111₂)

现有一程序,访问内存地址序列如下所示,单位是 Byte。

 $0_{10} \quad 3_{10} \quad 4_{10} \quad 7_{10} \quad 16_{10} \quad 19_{10} \quad 21_{10} \quad 22_{10} \quad 8_{10} \quad 10_{10} \quad 13_{10} \quad 14_{10} \quad 24_{10} \quad 26_{10} \quad 29_{10} \quad 30_{10}$

1. Cache 的结构如下图所示(S=2, E=2),初始状态为空,替换策略 LRU(Least Recently Used,最近最少使用)。请在下图空白处填入上述数据访问后 Cache 的状态。(TAG 使用二进制格式; Data Block 使用十进制格式,例: M[6-7]表示地址 610-710 对应的数据)

	V	TAG	Data Block	V	TAG	Data Block
set0						
set1						

上述数据访问一共产生了多少次 Hit:

- 2. 在第 1 小题的基础上,现增加一条数据预取规则:每当 cache 访问出现 miss 时,被访问地址及其后续的一个 cache block 都会被放入缓存,即当 M[0-1] 访问发生 miss,则把 M[0-1] 和 M[2-3] 都放入缓存中。那么,这 16 次数据访问一共产生了多少次 Hit:
- 3. 在第 1 小题的基础上,如果每一个 Cache Block 的大小扩大为 4 Byte (即 B = 4, cache 大小变为原来的 2 倍),这 16 次数据访问一共产生了多少次 Hit:
- 4. 在第 3 小题的基础上,考虑增加 2 中的数据预取规则,这 16 次数据访问一共产生了多少次 $\rm Hit$: