Introduction

The purpose of these notes is to describe the relationship between function spaces on the circle and on the line by the Cayley transform.

Notation

 $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ is the upper half plane, and $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ is the unit disc. \boldsymbol{m} denotes the normalised Haar measure on \mathbb{T} , and λ is the Lebesgue measure on \mathbb{R} . \boldsymbol{m}_2 denotes the area measure on \mathbb{C} .

E denotes a Banach space. By $L^p(X; E)$, we mean

$$||f||_{L^p(X;E)}^p = \int_X ||f||_E^p d\mu$$

for $0 , and we say <math>f \in L^{\infty}(X; E)$ when $||f||_{E} \in L^{\infty}(X)$.

The Cayley Transform

The Cayley transform is a conformal mapping of the complex plane to itself, given by

$$\omega: z \mapsto \frac{z-i}{z+i}.$$

Defined for $z \neq -i$. In particular, ω maps the upper half plane to the unit disc, and the real line to the unit circle with 1 removed. Note that

$$\omega^{-1}: z \mapsto -i\frac{z+1}{z-1}.$$

Since this is not a bijection, we must make careful note of the following technical point:

Remark 1. Throughout these notes, as is typical in analysis, functions on \mathbb{R} or \mathbb{T} are defined only up to almost everywhere equivalence. The spaces of almost-everywhere equivalence classes of measurable E-valued functions on a measure space X is denoted $L^0(X; E)$.

If X is a topological space, we consider $C(X; E) \subseteq L^0(X; E)$ by identifying a continuous function with an equivalence class of functions that agree with it almost everywhere.

Given $f \in L^0(\mathbb{R}; E)$, we define

$$\mathcal{U}f := f \circ \omega^{-1} \in L^0(\mathbb{T}; E).$$

and for $g \in L^0(\mathbb{T}; E)$

$$\mathcal{U}^{-1}q = q \circ \omega.$$

It is evident that \mathcal{U} is a well defined linear isomorphism of $L^0(\mathbb{R}; E)$ to $L^0(\mathbb{T}; E)$.

Integrability and the Cayley transform

The first result of use is,

Lemma 1. For 0 , <math>U maps continuously from $L^p(\mathbb{R})$ to $L^p(\mathbb{T})$.

Proof. Let $f \in L^p(\mathbb{R})$. Then we simply compute,

$$\begin{aligned} \|\mathcal{U}f\|_p^p &= \int_{\mathbb{T}} \left| f\left(-i\frac{z+1}{z-1} \right) \right|^p d\boldsymbol{m}(z) \\ &= \frac{1}{2\pi} \int_0^{2\pi} \end{aligned}$$

blah blah.

A natural question is to ask for which p is $\mathcal{U}L^p(\mathbb{R}) = L^p(\mathbb{T})$? It is obvious that this is true for $p = \infty$, less obvious is that this works for p = 2.

Hardy spaces

Hardy spaces on \mathbb{D} as defined as spaces of holomorphic functions as follows,

Definition 1. Let $0 . Given a holomorphic <math>f : \mathbb{D} \to E$, we define

$$\|f\|_{H^p(\mathbb{D};E)}^p = \sup_{0 < r < 1} \left(\int_{\mathbb{T}} \|f(rz)\|_E^p \ d\boldsymbol{m}(z) \right).$$

Similarly, define

$$||f||_{H^{\infty}(\mathbb{D};E)} = \sup_{z \in \mathbb{D}} ||f(z)||_{E}.$$

We say that $f \in H^p(\mathbb{D}; E)$ if $||f||_{H^p(\mathbb{D}; E)} < \infty$ where 0 .

There are analogous Hardy spaces on the upper half plane,

Definition 2. Let $0 . Given a holomorphic <math>f : \mathbb{H} \to E$, we define

$$||f||_{H^p(\mathbb{H};E)}^p = \sup_{y>0} \left(\int_{\mathbb{R}} ||f(x+iy)||_E^p \ d\lambda(x) \right).$$

Similarly, define

$$||f||_{H^p(\mathbb{H};E)}^p = \sup_{z \in \mathbb{H}} ||f(z)||_E$$

We say that $f \in H^p(\mathbb{R}; E)$ if and only if $||f||_{H^p(\mathbb{D}; E)} < \infty$ for 0

References

- [1] Connes A., Noncommutative Geometry Academic Press, San Diego, CA, 1994
- [2] Peller V.V., Hankel Operators and their Applications Springer-Verlag, New York, NY, 2003
- [3] Garnett J.B. Bounded analytic functions Springer-Verlag, New York, NY, 2007