Uncertainty in Procurement Contracting with Time Incentives

Wenzheng Gao Nankai University Daiqiang Zhang University at Albany Naibao Zhao RIEM, SWUFE

School of Economics Sichuan University May 31, 2019

Motivation

Public procurement: a government agency purchases of goods and services

- with 10-20% of a country's GDP (World Bank Procurement Statistics, 2018)
- In US, 19% of GDP in FY 2017 (USspending.gov)

Auctions plays a critical role in public procurement

- Standard: first-price low-bid auction
- Innovative contracting practices: multiple attributes mechanism

Post-auction uncertainty is an inherent component in many auctions

 e.g: construction, oil tracts, timber auctions (Eso and White, 2004; Luo, Perrigne, and Vuong, 2018a)

Motivation

a highway construction example

- A+B auction in a California highway procurement

	A (costs: \$M)	B (length: days)	score (\$M = A+ $$13,800 \times B$)
Harzard Construction Company	10.250	200	13.010
Hanson SJH Construction	11.162	185	13.715
F C I Constructions Inc	10.295	124	12.006

- Unexpected shocks in construction stage
 - technical and logistical shocks (Perry and Hayes, 1985)

Research Questions

To evaluate the efficiency of multi-attribute mechanisms in the presence of uncertainty:

1 Ex-post efficient Regardless of which contractor wins the contract, whether or not the winner

can always maximizes social welfare?

2 Ex-ante efficient
If the contract is always awarded to the bidder who generates the highest social welfare in equilibrium for all uncertainties?

This Paper

- 1. Develops a structural model of A+B procurement contract with time incentives and post-auction construction uncertainty.
- Presents a semi-parametric identification of model primitives including contractor's cost function, distribution of the private type, distribution of postauction uncertainty.
- 3. Proposes a constructive multi-step semi-parametric estimation procedure.
- 4. Compares welfare between A+B and lane rental contracts in California through a counterfactual analysis.

Related Literature

- 1. Ex post uncertainty (Eso and White, 2004; Hendricks and Porter, 1988; Haile, 2001; Bajari, Houghton, and Tadelis, 2014; Luo, Perrigne, and Vuong, 2018a).
- Multidimensional mechanisms in procurement situations (Che, 1993; Branco, 1997; Fang and Morris, 2006; Asker and Cantillon, 2008)
- Identification of auctions/contracts (Guerre, Perrigne, and Vuong, 2000; Jofre-Bonet and Pesendorfer, 2003; Krasnokutskaya, 2011; Hu, McAdams, and Shum, 2013; Gentry and Li, 2014; Li, Lu, and Zhao, 2015; Luo, Perrigne, and Vuong, 2018a,b; An and Tang, 2019)
- 4. Empirical literature on auctions with multidimensional contract attributes (e.g., Levin and Athey, 2001; Lewis and Bajari, 2011; Bajari, Houghton, and Tadelis, 2014; Koning and Van De Meerendonk, 2014; Krasnokutskaya, Song, and Tang, 2018).

Setup timing and decisions

S-I: Pre-contractual: A risk-neutral buyer seeks to procurer a highway project

- (p^E, x^E) : engineer's estimates of project cost and working days
- $s = p^B + x^B c_u$: a continuous preference of the procurer over (p^B, x^B)
- (r,d): daily cash bonus for early completion and penalty for late completion

Setup timing and decisions

S-II: Bidding : $N \ge 2$ potential risk-neutral bidders compete

- private type $\theta_i \overset{i.i.d}{\sim} F_{\Theta}(\cdot)$ with $\mathcal{S}_{\Theta} \subset \mathbb{R}_+$ for bidder $i \in \mathcal{N} = \{1, \cdots, N\}$
- submit bid pair (p^B, x^B)

Setup timing and decisions

S-III: Construction:

- ε : post-auction uncertainty
- x^A : actual working days

Setup

contractor's realized costs

$$\underbrace{TC(x^{A}, x^{B}, r, d, \theta, \varepsilon)}_{\text{total costs}} = \underbrace{\varepsilon c(x^{A}, \theta)}_{\text{construction costs}} + \underbrace{K(x^{A}, x^{B}, r, d)}_{\text{incentive costs}}$$

- Mutiplicative structure
 - construction uncertainty $\varepsilon \sim F(\cdot)$, and ε is independent of θ .
 - deterministic cost $c(x, \theta)$
- A1. The deterministic cost function $c(x^A, \theta)$ satisfies:
 - $c(x^A, \theta)$ is strictly decreasing convex in working days x^A .
 - $c(x^A, \theta)$ is strictly increasing in private type θ .
 - $c_1(x^A, \theta)$ is strictly decreasing in type θ .

Setup

contractor's realized costs

$$\underbrace{TC(x^{A}, x^{B}, r, d, \theta, \varepsilon)}_{\text{total costs}} = \underbrace{\varepsilon c(x^{A}, \theta)}_{\text{construction costs}} + \underbrace{K(x^{A}, x^{B}, r, d)}_{\text{incentive costs}}$$

Incentive costs are given by:

$$K(x^A, x^B, r, d) = \left[r \cdot \mathbb{1}_{x^A < x^B} + d \cdot \mathbb{1}_{x^A > x^B}\right] \left(x^A - x^B\right)$$

- x^A are actual working days, x^B are bidding days.
- r is the daily incentive rate, d is the daily disincentive rate, r < d.

Equilibrium backward induction

2nd In the construction stage, for any given (p^B, x^B) , (r, d), θ and ε ,

$$\widetilde{x}^{A^*}(x^B, r, d, \theta, \varepsilon) = \arg\min_{x^A} \left\{ TC(x^A, x^B, r, d, \theta, \varepsilon) \right\}$$

Equilibrium backward induction

2nd In the construction stage, for any given (p^B, x^B) , (r, d), θ and ε ,

$$\widetilde{\boldsymbol{x}}^{A^*}(\boldsymbol{x}^B, r, d, \theta, \varepsilon) = \arg\!\min_{\boldsymbol{x}^A}\!\left\{\mathit{TC}(\boldsymbol{x}^A, \boldsymbol{x}^B, r, d, \theta, \varepsilon)\right\}$$

1st In the bidding stage,

$$\left(p^{B^*}(r, d, c_u, \theta), x^{B^*}(r, d, c_u, \theta)\right) = \underset{p^B, x^B}{\operatorname{argmax}} \left\{ \left(p^B - \mathbb{E}_{\varepsilon} \left[TC(\widetilde{x}^{A^*}, x^B, r, d, \theta, \varepsilon)\right]\right) \right. \\
\times \left. \mathsf{Pr}\left(\mathsf{win} \mid s = p^B + x^B c_u\right) \right\}$$

Equilibrium in the bidding (1st) stage

$$\begin{split} \left(p^{B^*}(r,d,c_u,\theta), x^{B^*}(r,d,c_u,\theta) \right) &= \underset{p^B,x^B}{\mathsf{argmax}} \left\{ \left(p^B - \mathbb{E}_{\varepsilon} \Big[\mathit{TC}(\widetilde{x}^{A^*}, x^B, r, d, \theta, \varepsilon) \Big] \right) \right. \\ & \times \mathsf{Pr} \Big(\mathsf{win} \ \Big| \ s = p^B + x^B c_u \Big) \right\} \end{split}$$

Equilibrium in the bidding (1st) stage

$$\left(p^{B^*}(r,d,c_u,\theta),x^{B^*}(r,d,c_u,\theta)\right) = \operatorname*{argmax}_{p^B,x^B} \left\{ \left(p^B - \mathbb{E}_{\varepsilon} \left[TC(\widetilde{x}^{A^*},x^B,r,d,\theta,\varepsilon)\right]\right) \right. \\ \left. \times \Pr\left(\min \mid s = p^B + x^B c_u\right) \right\}$$

which is equivalent to

$$s(v(r,d,c_u,\theta)) = \underset{b}{\operatorname{argmax}} \left\{ \left(b - v(r,d,c_u,\theta) \right) \Pr(\min \mid b) \right\}$$
 (1)

where

$$v(r,d,c_u,\theta) = \min_{x^B} \left\{ c_u x^B + \mathbb{E}_{\varepsilon} \left[TC(\widetilde{x}^{A^*}, x^B, r, d, \theta, \varepsilon) \right] \right\}$$
 (2)

Equilibrium

Proposition 1

Under A1, there exists a unique symmetric psBNE $(p^{B^*}, x^{B^*}, x^{A^*})$ for the A+B contract such that for any θ :

(i) The equilibrium bid for working days is

$$x^{B^*}(r,d,c_u,\theta) = \arg\min_{x^B} \left\{ c_u x^B + \mathbb{E}_{\varepsilon} \left[TC(\widetilde{x}^{A^*},x^B,r,d,\theta,\varepsilon) \right] \right\}.$$

Moreover,

$$dx^{B^*}(\theta)/d\theta > 0.$$

Equilibrium

Proposition 1

Under A1, there exists a unique symmetric psBNE $(p^{B^*}, x^{B^*}, x^{A^*})$ for the A+B contract such that for any θ :

(ii) The equilibrium actual number of working days is

$$x^{A^*}(r,d,c_u,\theta,\varepsilon) = \widetilde{x}^{A^*}(x^{B^*},r,d,\theta,\varepsilon) = \begin{cases} x^r(r,d,\theta,\varepsilon), & \text{if } \varepsilon \leq e^r \\ x^{B^*}(r,d,c_u,\theta), & \text{if } \varepsilon \in [e^r,e^d] \\ x^d(r,d,\theta,\varepsilon), & \text{if } \varepsilon \geq e^d \end{cases}$$

where,

$$\varepsilon^{r}(\theta, x^{B^{*}}(r, d, c_{u}, \theta)) = e^{r} < \varepsilon^{d}(\theta, x^{B^{*}}(r, d, c_{u}, \theta)) = e^{d}$$

Equilibrium

Proposition 1

Under A1, there exists a unique symmetric psBNE $(p^{B^*}, x^{B^*}, x^{A^*})$ for the A+B contract such that for any θ :

(iii) The equilibrium bid for cost is

$$\begin{split} p^{B^*}(r,d,c_u,\theta) = & \mathbb{E}_{\varepsilon} \Big[TC(x^{A^*}(r,d,c_u,\theta,\varepsilon),x^{B^*},r,d,\theta,\varepsilon) \Big] \\ & + \int_{\theta}^{\overline{\theta}} \mathbb{E}_{\varepsilon} [\varepsilon \cdot c_2(x^{A^*}(r,d,c_u,\theta,\varepsilon),\theta)] \Big[\frac{1 - F_{\Theta}(t)}{1 - F_{\Theta}(\theta)} \Big]^{N-1} dt \end{split}$$

Efficiency definitions

In a similar spirit to Lewis and Bajari (2011), social welfare is defined as:

$$\underbrace{W(x^A, c_s, \theta, \varepsilon)}_{\text{social welfare}} = \underbrace{V_c}_{\text{social value}} - \left[\underbrace{\varepsilon \cdot c(x^A, \theta)}_{\text{construction cost}} + \underbrace{c_s x^A}_{\text{commuter cost}} \right]$$

Efficiency definitions

In a similar spirit to Lewis and Bajari (2011), social welfare is defined as:

$$\underbrace{W(x^A, c_s, \theta, \varepsilon)}_{\text{social welfare}} = \underbrace{V_c}_{\text{social value}} - \left[\underbrace{\varepsilon \cdot c(x^A, \theta)}_{\text{construction cost}} + \underbrace{c_s x^A}_{\text{commuter cost}}\right]$$

– Ex-post efficiency: for all θ and ε ,

$$x_o^A(c_s, \theta, \varepsilon) = \arg\min_{x^A} \left\{ \varepsilon \cdot c(x^A, \theta) + c_s x^A \right\}$$

In a similar spirit to Lewis and Bajari (2011), social welfare is defined as:

$$\underbrace{W(x^A, c_s, \theta, \varepsilon)}_{\text{social welfare}} = \underbrace{V_c}_{\text{social value}} - \left[\underbrace{\varepsilon \cdot c(x^A, \theta)}_{\text{construction cost}} + \underbrace{c_s x^A}_{\text{commuter cost}}\right]$$

– Ex-post efficiency: for all θ and ε ,

$$x_o^A(c_s, \theta, \varepsilon) = \arg\min_{x^A} \left\{ \varepsilon \cdot c(x^A, \theta) + c_s x^A \right\}$$

– Ex-ante efficiency: for all ε ,

$$\partial W^*(r,d,c_u,c_s,\theta,\varepsilon)/\partial \theta = \partial W(x^{A^*}(r,d,c_u,\theta,\varepsilon),c_s,\theta,\varepsilon)/\partial \theta < 0$$

an illustration of ex-ante inefficiency under a "negative" shock

an illustration of ex-ante inefficiency under a "negative" shock

an illustration of ex-ante inefficiency under a "negative" shock

Proposition 2

Under A1, the A+B contract in the presence of uncertainty is ex ante efficient if $r < d \le c_S$, but it cannot be ex post efficient.

Recap Research Questions

To quantify the difference in efficiency between alternative mechanisms.

The equilibrium social welfare is defined as

$$W^*(x^{A^*}, c_s, \underline{\theta, \varepsilon; c(\cdot, \cdot)})$$

Need to get estimates of unknown parameters.

Bridge Between Theory and Data identification problem

If the data report (P^B, X^B, X^A) , can the model primitives be identified?

$$p^{B^*}(x^{B^*}, r, d, \theta; F(\cdot), c(\cdot, \cdot)) = p^B$$

$$x^{B^*}(r, d, c_u, \theta; F(\cdot), c(\cdot, \cdot)) = x^B$$

$$\widetilde{x}^{A^*}(x^{B^*}, r, d, \theta, \varepsilon; c(\cdot, \cdot)) = x^A$$

Goal: to recover the model primitives $\mathcal{M} = [F_{\Theta}(\cdot), F(\cdot), c(\cdot, \cdot)]$

What we have?

- · Data: P^B, X^B, X^A, r, d, c_u
- · Equilibrium conditions

Idea: Use s^{B^*} , rather than p^{B^*} , in identification.

$$s^{B^*}(\underbrace{v^*}_{\text{unknown}}(x^{B^*},r,d,c_u,\theta;F(\cdot),c(\cdot,\cdot)))=s^B$$

Idea: Use s^{B^*} , rather than p^{B^*} , in identification.

$$s^{B^*}(\underbrace{\mathbf{v}^*}_{\text{unknown}}(x^{B^*},r,d,c_u,\theta;\mathbf{F}(\cdot),c(\cdot,\cdot)))=s^B$$

S-I: Recover v^* .

F.O.C of (1)

$$s'(v) = (N-1)(s(v)-v)\frac{f_V(v)}{1-F_V(v)} > 0$$

with boundary condition $s(\overline{v}) = \overline{v}$, v^* is identified as

$$v^* = s^{B^*} - \frac{1}{N-1} \frac{1 - F_S(s^{B^*})}{f_S(s^{B^*})}$$

Idea: Assume multiplicative in type, i.e. $c(x, \theta) = \theta \underbrace{c_o(x)}_{\text{base cos}}$

Idea: Assume multiplicative in type, i.e. $c(x, \theta) = \theta \underbrace{c_o(x)}_{\text{base cost}}$

Issue: Observational Equivalence (Lemma 2)

$$\widetilde{\mathcal{M}} = [\widetilde{F}_{\Theta}(\cdot), F(\cdot), \widetilde{c}_{o}(\cdot)] \sim \mathcal{M} = [F_{\Theta}(\cdot), F(\cdot), c_{o}(\cdot)]$$

with
$$\widetilde{F}_{\Theta}(\cdot) = F_{\Theta}(\cdot/\delta)$$
, $\widetilde{c}_{o}(\cdot) = c_{o}(\cdot)/\delta$ for some $\delta > 0$.

Conclusion

Idea: Assume multiplicative in type, i.e. $c(x, \theta) = \theta \underbrace{c_o(x)}_{\text{base cos}}$

Issue: Observational Equivalence (Lemma 2)

$$\widetilde{\mathcal{M}} = [\widetilde{F}_{\Theta}(\cdot), F(\cdot), \widetilde{c}_{o}(\cdot)] \sim \mathcal{M} = [F_{\Theta}(\cdot), F(\cdot), c_{o}(\cdot)]$$

with
$$\widetilde{F}_{\widetilde{\Theta}}(\cdot) = F_{\Theta}(\cdot/\delta), \widetilde{c}_o(\cdot) = c_o(\cdot)/\delta$$
 for some $\delta > 0$.

- A2: (a) The cost function is $c(x,\theta) = \theta(\alpha_2 x^2 + \alpha_1 x + \alpha_0)$, $\alpha_2 > 0$, $\alpha_1 < 0$, $\alpha_0 \neq 0$.
 - (b) The lower bound of type support is $\underline{\theta} = 1$.

Model primitives is reduced to $\mathcal{M} = [F_{\Theta}(\cdot), F(\cdot), \alpha_2, \alpha_1, \alpha_0]$, and we have

$$v^*(x^{B^*}, \widetilde{x}^{A^*}, r, d, c_u, \theta; F(\cdot), \alpha_2, \alpha_1, \alpha_0) = V^*$$

$$x^{B^*}(r, d, c_u, \theta; F(\cdot), \alpha_2, \alpha_1) = X^B$$

$$\widetilde{x}^{A^*}(r, \theta, \varepsilon; \alpha_2, \alpha_1) = x^r, \quad \widetilde{x}^{A^*}(d, \theta, \varepsilon; \alpha_2, \alpha_1) = x^d$$

Model primitives is reduced to $\mathcal{M} = [F_{\Theta}(\cdot), F(\cdot), \alpha_2, \alpha_1, \alpha_0]$, and we have

$$v^*(x^{B^*}, \widetilde{x}^{A^*}, r, d, c_u, \theta; F(\cdot), \alpha_2, \alpha_1, \alpha_0) = V^*$$

$$x^{B^*}(r, d, c_u, \theta; F(\cdot), \alpha_2, \alpha_1) = X^B$$

$$\widetilde{x}^{A^*}(r, \theta, \varepsilon; \alpha_2, \alpha_1) = x^r, \quad \widetilde{x}^{A^*}(d, \theta, \varepsilon; \alpha_2, \alpha_1) = x^d$$

Idea: Exploit the quantile relationship between X^B and V^* by the correlation between X^B and X^A , as well as two one-to-one mappings between V and θ and between X^B and θ .

$$v^*(X^B, r, d, c_u; F(\cdot), \alpha_2, \alpha_1, \alpha_0) = V^*$$

S-II: Construct the key reduced-form relationship between $Q_V(\tau)$ and $Q_{X^B}(\tau)$ as

$$0 = \beta_0 + \beta_1 Q_V(\tau) + \beta_2 Q_V(\tau) Q_{X^B}(\tau) + \beta_3 Q_{X^B}(\tau) + \beta_4 (Q_{X^B}(\tau))^2$$

where $\beta = (\beta_0, \beta_1, \beta_2, \beta_3, \beta_4)$ is a system of equations of

$$(\alpha_0, \alpha_1, \alpha_2, \mathbb{E}(\varepsilon), \mathbb{E}(X^r), \mathbb{E}(X^d), \mathbb{E}(X^B)).$$

▶ $\beta = (\beta_0, \beta_1, \beta_2, \beta_3, \beta_4)$ can be identified by choosing any five different values of $\tau \in (0, 1)$ to construct five linearly independent equations.

S-III: Recover (α_1, α_2) .

$$\alpha_1 = f(\beta_1, \beta_2, mc), \alpha_2 = g(\beta_1, \beta_2, \alpha_1)$$

Combining F.O.C of (2) with A2 (b)

$$\underline{X}^{B} = \frac{\textit{mc}}{2\alpha_{2}\underline{\theta}} - \frac{\alpha_{1}}{2\alpha_{2}}$$

- (α_1, α_2, mc) can be recovered by $(\beta_1, \beta_2, \underline{\theta}, \underline{X}^B)$. Then,
- ▶ θ can be identified and thus $F_{\Theta}(\cdot)$ on its support S_{Θ} is identified.

Strategy

S-IV Recover α_0 and uncertainty distribution.

$$\alpha_0 = h(\beta_0, \beta_1, \beta_2, \mathbb{E}(\varepsilon), r, d, c_u, \mathbb{E}(X^r), \mathbb{E}(X^d), \mathbb{E}(X^B), F(e^r), F(e^d))$$

 $F(e^r), F(e^d)$ can be identified by the early and delay completion contracts:

$$F(e^r) = \Pr(\varepsilon < e^r) = \Pr(X^A < X^B)$$

 $1 - F(e^d) = \Pr(\varepsilon > e^d) = \Pr(X^A > X^B)$

- ▶ Thus, as long as $\mathbb{E}(\varepsilon)$ is known, α_0 can be identified.
- ightharpoonup Corresponding uncertainty and the truncated CDF of ε can be identified.

ntroduction Model **Identification** Empirical Counterfactual Conclusion

Summary of Identification

Proposition 3

Suppose that A1-2 hold and the mean uncertainty is known. Then, the cost parameters $(\alpha_2, \alpha_1, \alpha_0)$ are identified, and the type distribution $F_{\Theta}(\cdot)$ and the uncertainty distribution $F(\cdot)$ are identified on the supports \mathcal{S}_{Θ} and $\widetilde{\mathcal{S}}_{\varepsilon}$, respectively.

Corollary 1

Suppose that A1-2 hold and the uncertainty distribution is parameterized. Then, the cost parameters $\alpha=(\alpha_2,\alpha_1,\alpha_0)$ and parameters of the uncertainty distribution are identified, and the type distribution $F_{\Theta}(\cdot)$ is identified on the support \mathcal{S}_{Θ} .

troduction Model Identification Empirical Counterfactual Conclusion

A+B Contracts in California background and data

Introduced in the 1990s as an experiment for emergency-type projects.

Following the criticism that highway construction took too much time, and it was extended to non-emergency-type projects in 2000.

troduction Model Identification Empirical Counterfactual Conclusion

A+B Contracts in California background and data

Introduced in the 1990s as an experiment for emergency-type projects.

Following the criticism that highway construction took too much time, and it was extended to non-emergency-type projects in 2000.

Data: 2003–2008 procurement contracts by Caltrans.

- 424 bids submitted by contractors in 80 A+B contracts
- (P^E, X^E) , (P^B, X^B, X^A) , (r, d, c_u, c_s) , bidders/contracts characteristics.
- Summary statistics
- Motivating evidence

Estimation strategy overview

Goal: Evaluate social welfare $W(X^A, c_s, \underbrace{\theta, \varepsilon; \alpha_0, \alpha_1, \alpha_2}_{\text{need to estimate}})$. Recap identification

$$\begin{split} (\textit{N}, \textit{S}) &\rightarrow \textit{V} \\ \xrightarrow{+\textit{X}^B} \left(\beta_0, \beta_1, \beta_2, \beta_3, \beta_4\right) \\ \xrightarrow{+(\mathbb{E}(\varepsilon), \mathbb{E}(\textit{X}'), \mathbb{E}(\textit{X}^d), \mathbb{E}(\textit{X}^B), \textit{F}(e^r), \textit{F}(e^d))} \left(\alpha_0, \alpha_1, \alpha_2, \right) \\ \xrightarrow{+\text{equilibirum condition for bid days}} \theta \\ \xrightarrow{+\text{equilibirum condition for actural workdays}} \text{corresponding } \varepsilon \end{split}$$

Estimation procedures

S-I: Estimating $\mathbb{E}(X^r), \mathbb{E}(X^d), \mathbb{E}(X^B)$.

$$\mathbb{E}(X^r|Z=z) = z'\chi^r , \ \mathbb{E}(X^d|Z=z) = z'\chi^d$$

$$\mathbb{E}(X^B|Z=z) = g(z)$$

Early and late working days regression

Estimation procedures

S-I: Estimating $\mathbb{E}(X^r), \mathbb{E}(X^d), \mathbb{E}(X^B)$.

$$\mathbb{E}(X^r|Z=z) = z'\chi^r , \ \mathbb{E}(X^d|Z=z) = z'\chi^d$$

$$\mathbb{E}(X^B|Z=z) = g(z)$$

► Early and late working days regression

S-II: Estimating v.

$$\widehat{v}_{ji} = s_{ji} - \frac{1}{n_j - 1} \frac{1 - \widehat{F}_{S|Z}(s_{ji}|z_{ji})}{\widehat{f}_{S|Z}(s_{ji}|z_{ji})}$$

Estimation procedures

S-III: Estimating $\mathbb{E}(\varepsilon)$, $F(e^r)$, $F(e^d)$.

- Assume $\varepsilon | Z = z \sim \log N(\mu, \sigma^2(z))$ with $\sigma(z) = z' \psi_{\sigma}$
- Assume $e^d(z) = exp(z'\psi_d)$ to construct a tractable likelihood function

$$\mathcal{L}(\mu, \psi_{\sigma}, \psi_{d}) = \prod_{j=1}^{J} \left[F(e^{r}(z_{j})|z_{j}) \right]^{l_{j}^{R}} \left[1 - F(e^{d}(z_{j})|z_{j}) \right]^{l_{j}^{D}} \left[F(e^{d}(z_{j})|z_{j}) - F(e^{r}(z_{j})|z_{j}) \right]^{l_{j}^{B}}$$

Estimation procedures

S-III: Estimating $\mathbb{E}(\varepsilon)$, $F(e^r)$, $F(e^d)$.

- ▶ Assume $\varepsilon | Z = z \sim \log N(\mu, \sigma^2(z))$ with $\sigma(z) = z' \psi_{\sigma}$
- Assume $e^d(z) = exp(z'\psi_d)$ to construct a tractable likelihood function

$$\mathcal{L}(\mu, \psi_{\sigma}, \psi_{d}) = \prod_{j=1}^{J} \left[F(e^{r}(z_{j})|z_{j}) \right]^{l_{j}^{R}} \left[1 - F(e^{d}(z_{j})|z_{j}) \right]^{l_{j}^{D}} \left[F(e^{d}(z_{j})|z_{j}) - F(e^{r}(z_{j})|z_{j}) \right]^{l_{j}^{B}}$$

S-IV: Estimating $\alpha_0, \alpha_1, \alpha_2$.

Normalize $\alpha_0 = 1$ for the identification of α_1, α_2 with heterogeneity

$$\min_{(\alpha_1,\alpha_2)} \frac{1}{J} \sum_{j=1}^{J} \left\{ \frac{1}{n_j} \sum_{i=1}^{n_j} \left[\beta_0(z_{ji}) + \beta_1(z_{ji}) \widehat{v}_{ji} + \beta_2(z_{ji}) \widehat{v}_{ji} x_{ji}^B + \beta_3(z_{ji}) x_{ji}^B + \beta_4(z_{ji}) (x_{ji}^B)^2 \right]^2 \right\}$$

Results estimates of model primitives

	Parameters/Variables	Estimates
	Mean of log(Uncertainty)	-0.089*
Distribution of Uncertainty		(0.049)
	SD of log(Uncertainty)	10.073***
		(2.048)
Cutoff Uncertainty	Log (Capacity)/Engineer Days	2.958**
		(1.287)
	Working Days	$-3.599 \times 10^{-4***}$
Cost Parameters		(6.994×10^{-7})
	Working Days ²	3.246×10^{-8} ***
		(1.752×10^{-10})

 ${\it Notes}$: Bootstrap standard errors in parentheses are calculated using 500 bootstrap samples.

^{*}p < 0.1, **p < 0.05, ***p < 0.01.

roduction Model Identification Empirical Counterfactual Conclusion

Lane Rental Contracts

Introduced in the United Kingdom, designed to reduce construction time. There has been heated disputes over which contract mechanism should be preferred?

troduction Model Identification Empirical Counterfactual Conclusion

Lane Rental Contracts

Introduced in the United Kingdom, designed to reduce construction time. There has been heated disputes over which contract mechanism should be preferred?

- Under lane rental contracts
 - first-price-low bid: bid cost p^B
 - no required completion date, but need to pay d_L for each working day.

$$p^{B^*}(d_L, \theta) = \operatorname*{argmax}_{p^B} \left\{ \left(p^B - \min_{x^A} \mathbb{E}_{\varepsilon} \left[\varepsilon c(x^A, \theta) + d_L x^A \right] \right) \times \Pr \left(\min \mid p^B \right) \right\}$$

Efficiency: If $d_L = c_s$, the lane rental contract is both ex-ante and ex-post efficient.

Counterfactuals welfare comparison between A+B and lane rental contracts

	Construction Cost	Commuter Cost	Social Cost
A+B (\$M)	31.92	70.52	102.44
Lane Rental (\$M)	47.46	10.25	57.71
Absolute Change (\$M)	15.54	60.27	44.73
Percentage Change	32.74%	85.47%	43.66%

Notes: Counterfactual welfare results under A+B and lane rental contracts. The counterfactual results are averaged across 1000 simulations and 77 A+B contracts. Construction Cost equals realized uncertainty ε times deterministic cost $c(x^A,\theta)$. Commuter Cost equals to daily cost c_s times actual working days x^A . Social Cost is the sum of construction cost and commuter cost.

Introduction Model Identification Empirical Counterfactual Conclusion

Summary and Discussion

- ► Structural model of A+B contracts:
 - Time incentives and post-auction uncertainty
 - Actual working days may deviate from biding days
 - May be ex-ante efficient but cannot be ex-post efficient
- Multi-step semiparametric identification arguments:
 - Key structural link: quantile relationship between bid days and pseudo type
- Empirical analysis of A+B contracts in California:
 - Multi-step semiparametric estimation procedure
 - Comparing welfare between lane rental and A+B contracts
 - · Commuter costs: lane rental < A+B
 - · Construction costs: A+B < lane rental
 - · Social costs: lane rental < A+B

Summary Statistics

contract level: 77 contracts

Variable	Mean	Std. Dev.	Min	10-th pctile	Median	90-th pctile	Max
Engineer Cost (\$M)	22.4	29.6	0.86	4.6	12.5	48.6	198
Engineer Days	322.29	201.72	45	130	250	600	1000
Usercost (\$K)	14.83	15.62	1.8	4.2	11.5	25.1	93.99
Incentive Payments (\$K)	8.9	9.37	1.08	2.52	6.9	15.06	56.39
Liquidated Damages (\$K)	16.11	18.43	1.8	4.1	11.6	27.3	111.5
Engineer Score (\$M)	28.1	38.2	1	6.1	15.4	56.8	26.6
Winning Bid (\$M)	20.4	28.6	0.7	4.23	10.6	43.9	178
Winning Bid/Engineer Cost	0.91	0.2	0.59	0.65	0.89	1.19	1.38
Number of Bidders	5.64	2.45	2	3	5	8	14
Federal Contract	0.81	0.4	0	0	1	1	1
Firm Capacity (\$M)	71.3	78	0	4.9	52.4	252	285
Distance (miles)	65.88	129.38	1.91	7.04	24.93	255.94	802.14
Commuter Cost (\$K)	50.54	46.83	0.25	5.31	37.16	129.35	185.15
Contract Days	249.96	209.63	25	70	167	515	950
Working Days	262.73	232.98	42	75	171	602	1120
Working-Contract Days	12.77	82.02	-281	-13	0	88	372
Working/Contract Days	1.10	0.42	0.28	0.92	1	1.38	3.67

Appendix

Summary Statistics contract level: 77 contracts

Variable	Mean	Std. Dev.	Min	10-th pctile	Median	90-th pctile	Max
Bid Cost (\$M)	19.1	21.8	0.93	4.47	10.8	44.5	106
Bid Cost/Engineer Cost	0.97	0.23	0.61	0.71	0.94	1.26	1.65
Bid Days	207.24	138.24	30	80	172.5	360	750
Bid Days/Engineer Days	0.66	0.19	0.27	0.41	0.66	0.92	1
Firm Capacity (\$M)	72.2	76.5	0	4.90	52.4	192	285
Distance (miles)	69.82	121.37	1.75	9.68	29.29	149.05	669.68
Bid Score (\$M)	22.2	25	1.02	5.43	12.6	49.8	121

▶ back

Motivating Evidence

comparison between working days and bid days

Appendix

Motivating Evidence

empirical distribution function of normalized deviation days

Estimates of Step 1 early and late working days regression

	Ear	ly Working [Days	Late Working Days			
Log(Capacity)/Engineer Days	-3610**	-3605.1**	-2702.3*	-2079.9***	-2208.9***	538.9	
	(1321.6)	(1387.0)	(1357.0)	(534.5)	(502.2)	(2322.6)	
Federal Contract		-5.999	-2.923		-164.3	-34.70	
		(46.17)	(48.75)		(160.6)	(137.8)	
Log(Distance)/Engineer Days			-6773.3			-9630.0	
			(4662.8)			(8404.0)	
Constant	454.8***	459.3***	472.5***			553.8***	
	(106.8)	(88.26)	(86.74)			(145.1)	
Observations	23	23	23	23	23	23	
Adjusted R ²	0.384	0.351	0.364	0.152	0.154	0.059	

▶ back