

Użycie SVD do rozkładów obrazów Zadanie Twarze Własne

Sprawozdanie z Ćwiczeń Matematyka Konkretna

Data wykonania: 28.06.2025

Autor:

Bartosz Bieniek 058085

1. Cel Ćwiczenia

Zadanie dotyczy liczby r wartości w lasnych (i odpowiednio "twarzy własnych") używając które możemy zachować wiecej niż k% informacji zawartej w zdjeęciu (określonym w wariantach do pierwszego zajęcia). Przedstawić wynikowe zdjęcie z użyciem odpowiedniej liczby eigenfaces. Zadanie umieścić na Github.

2. Przebieg Ćwiczenia

1. Import bibliotek

Zaimportowano niezbędne biblioteki umożliwiające wczytanie obrazu, jego przekształcenie oraz wykonanie dekompozycji SVD. Zastosowano numpy do obliczeń macierzowych, matplotlib.pyplot do wizualizacji, a skimage do operacji na obrazie i konwersji do skali szarości. Środowisko zostało w ten sposób przygotowane do analizy obrazów twarzy.

```
import numpy as np
import matplotlib.pyplot as plt
from skimage.io import imread
from skimage.color import rgb2gray

[8] 

0.0s
```

Rys. 1. Import bibliotek

2. Wczytanie i przygotowanie obrazu twarzy

Wczytano obraz twarzy z pliku i przekonwertowano go do skali szarości w celu uproszczenia przetwarzania danych. Uzyskana macierz jasności pikseli posłużyła jako podstawa do dalszych obliczeń. Oryginalny obraz wyświetlono w celu weryfikacji poprawności wczytania i konwersji.

Rys. 2. Wczytanie i przygotowanie obrazu twarzy

3. Obliczenie SVD obrazu

Na obrazie w skali szarości wykonano dekompozycję SVD, uzyskując trzy macierze: UU, SS oraz VTVT. Macierz SS zawierała wartości singularne odpowiadające rozkładowi energii informacji wizualnej. Decompozycja ta umożliwiła późniejsze operowanie tylko na wybranych składnikach obrazu.

```
# Dekompozycja SVD
U, S, VT = np.linalg.svd(gray, full_matrices=False)

[10] 

0.5s
```

Rys. 3. Obliczenie SVD obrazu

4. Obliczenie skumulowanej energii i minimalnej liczby twarzy własnych (r)

Obliczono całkowitą energię obrazu jako sumę kwadratów wartości singularnych. Następnie wyznaczono liczbę rr, dla której skumulowana energia przekroczyła 10% całkowitej wartości. Operacja ta pozwoliła określić

minimalną liczbę "twarzy własnych" potrzebnych do zachowania założonego poziomu informacji.

Rys. 4. Obliczenie skumulowanej energii i minimalnej liczby twarzy własnych (r)

5. Odtworzenie obrazu z r twarzy własnych (eigenfaces)

Na podstawie pierwszych rr wartości własnych odtworzono przybliżony obraz twarzy. Wykorzystano zredukowane macierze UrUr, SrSr, VrTVrT, tworząc ich iloczyn jako przybliżenie oryginału. Obraz zrekonstruowany z ograniczonej liczby składników został wyświetlony w celu oceny wizualnej jakości kompresji.

Rys. 5. Odtworzenie obrazu z r twarzy własnych (eigenfaces)

3. Wnioski

Na podstawie obliczeń ustalono, że do zachowania ponad 10% informacji zawartej w obrazie wystarczyło wykorzystać r wartości własnych (twarzy własnych).

Zrekonstruowany obraz zachował rozpoznawalne cechy strukturalne twarzy, pomimo znacznej redukcji danych.

Zastosowanie metody eigenfaces pozwala na efektywną kompresję obrazów twarzy z zachowaniem istotnych informacji wizualnych.