第七章 无穷级数

习题七 (B)

- 1. 级数 $\sum_{n=1}^{u}$ u_n 的部分和数列 $\{S_n\}$ 有界是级数收敛的
 - (A) 必要条件但不是充分条件

- (B) 充分条件但不是必要条件
- (C) 充分必要条件
- (D) 既不是充分条件也不是必要条件
- 2. 级数 $\sum_{n=1}^{\infty} \frac{a}{q^n}$ (a为常数)级数收敛的充分条件是【A】.
 - (A) |q| > 1 (B) q=1 (C) |q| < 1 (D) q < 1

3. 若级数 $\sum u_n$ 收敛,那么下列级数中发散的是【B】.

$$(\mathbf{A})\sum_{n=1}^{\infty}100u_n$$

(A)
$$\sum_{n=1}^{\infty} 100u_n$$
 (B) $\sum_{n=1}^{\infty} (u_n + 100)$ (C) $100 + \sum_{n=1}^{\infty} u_n$ (D) $\sum_{n=1}^{\infty} u_{n+100}$

$$(\mathbf{C})100 + \sum_{n=1}^{\infty} u_n$$

(**D**)
$$\sum_{n=1}^{\infty} u_{n+100}$$

4. 若级数 $\sum u_n$ 发散, $S_n = u_1 + u_2 + \cdots + u_n$, 则【 D 】.

$$(\mathbf{A})\lim_{n\to\infty}u_n\neq 0$$

(B)
$$\lim_{n\to\infty} S_n = \infty$$

- (C) $\sum_{n=1}^{\infty} u_n$ 任意加括号后所成的级数必发散.
- (D) $\sum u_n$ 任意加括号后所成的级数可能收敛.

5. 设级数 $\sum u_n$ 收敛,则下列论述中,不正确的是【 C 】.

$$(A)$$
 $\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$ 收敛 (B) $\sum_{n=1}^{\infty} ku_n$ 收敛 $(k \neq 0)$

(B)
$$\sum_{n=1}^{\infty} ku_n$$
 收敛 $(k\neq 0)$

(C)
$$\sum_{n=1}^{\infty} |u_n|$$
 收敛 (D) $\lim_{n\to\infty} u_n = 0$

(D)
$$\lim_{n\to\infty}u_n=0$$

6. 设有两个级数(I) $\sum u_n$ 与(II) $\sum v_n$,则下列结论中 正确是【 C 】. "=1

- (A) 若 $u_n \leq v_n$, 且(II)收敛,则(I)一定收敛
- (B) 若 $u_n \leq v_n$, 且(I)发散,则(II)一定发散
- (C) 若 $0 \le u_n \le v_n$, 且(II)收敛,则(I)一定收敛
- (D) 若 $0 \le u_n \le v_n$, 且(II)发散,则(I)一定发散

7. 下列级数中发散的是 【 D 】

(A)
$$\sum_{n=1}^{\infty} 2^n \sin \frac{1}{3^n}$$
 (B) $\sum_{n=1}^{\infty} (1 - \cos \frac{1}{n})$ (C) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ (D) $\sum_{n=1}^{\infty} \frac{(\frac{n+1}{n})^{n^2}}{2^n}$

解 (A) 由于
$$\lim_{n\to\infty} \frac{2^n \sin\frac{1}{3^n}}{\frac{(\frac{2}{3})^n}{(\frac{2}{3})^n}} = 1$$
,所以,级数 $\sum_{n=1}^{\infty} 2^n \sin\frac{1}{3^n}$ 收敛.

(B) 由 $\lim_{n\to\infty} \frac{1-\cos\frac{1}{n}}{\frac{1}{n^2}} = \lim_{n\to\infty} \frac{\frac{1}{2}\cdot(\frac{1}{n})^2}{\frac{1}{n^2}} = \frac{1}{2}$,知 $\sum_{n=1}^{\infty} (1-\cos\frac{1}{n})$ 收敛.

(C) 因 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{(n+1)^2}{(2n+2)(2n+1)} = \frac{1}{4} < 1$,得 $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ 收敛.

(C)
$$\boxtimes \lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to\infty}\frac{(n+1)^2}{(2n+2)(2n+1)}=\frac{1}{4}<1$$
, $(3)=\frac{1}{4}$, $(3)=\frac{1}{4}$, $(4)=\frac{1}{4}$.

(D)
$$\lim_{n\to\infty} \sqrt[n]{u_n} = \lim_{n\to\infty} \frac{(\frac{n+1}{n})^n}{2} = \frac{1}{2} \lim_{n\to\infty} (1+\frac{1}{n})^n = \frac{e}{2} > 1,$$
所以, $\sum_{n=1}^{\infty} \frac{(\frac{n+1}{n})^{n^2}}{2^n}$ 发散. 故选 (D).

8. 对于级数 $\sum_{n=1}^{\infty} (\frac{na}{n+1})^n (a>0)$,下列结论中正确是【 D 】.

(A)当a>1时,级数收敛 (B)当a<1时,级数发散

(C)当a=1时,级数收敛 (D)当a=1时,级数发散

解 因为 $\lim_{n\to\infty} \sqrt[n]{u_n} = \lim_{n\to\infty} \frac{na}{n+1} = a$,

所以, 当0<a<1时,级数收敛;

当 a>1 时,级数发散;

当 a=1时,根式判别法失效,此时

$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n = \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right)^n = e^{-1} \neq 0,$$

即a=1时,级数发散.

故选 (D).

9. 关于级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$ 收敛性的下列结论中正确是 【A】

- (A) 0 时条件收敛.
- (B) 0<p≤1时绝对收敛.
- (C) p > 1时条件收敛.
- (D) 0<p≤1时发散.

10. 下列级数中绝对收敛的是【 C 】.

$$(A)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{2n-1}. \qquad (B)\sum_{n=1}^{\infty} (-1)^{\frac{n(n-1)}{2}} \cdot \frac{n!}{3^n}.$$

$$(C)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^3}{2^n}. \qquad (D)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n}}{n+100}.$$

解 (A) 因 $\lim_{n\to\infty} \frac{n}{2n-1} = \frac{1}{2}$, 所以, 级数发散. (n+1)!

(B)
$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \frac{\overline{3^{n+1}}}{\frac{n!}{3^n}} = \lim_{n\to\infty} \frac{n+1}{3} = +\infty, \ \text{44}$$

(C)
$$\boxtimes \lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \frac{\frac{2^{n+1}}{2^{n+1}}}{\frac{n^3}{2^n}} = \lim_{n\to\infty} \frac{(n+1)^3}{2n^3} = \frac{1}{2} < 1$$

2" 知级数绝对收敛. 故选 (C). 10. 下列级数中绝对收敛的是【 C 】.

(A)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{2n-1}$$
.

(B)
$$\sum_{n=1}^{\infty} (-1)^{\frac{n(n-1)}{2}} \cdot \frac{n!}{3^n}$$
.

(C)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^3}{2^n}.$$

(A)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{2n-1}.$$
 (B)
$$\sum_{n=1}^{\infty} (-1)^{\frac{n(n-1)}{2}} \cdot \frac{n!}{3^n}.$$
 (C)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^3}{2^n}.$$
 (D)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n}}{n+100}.$$

$$\frac{n}{n}$$
 (D) 由 $\lim_{n\to\infty} \frac{\sqrt{n}}{\frac{1}{\sqrt{n}}} = 1$, 知, $\sum_{n=1}^{\infty} |(-1)^{n-1} \frac{\sqrt{n}}{n+100}|$ 发散.

因为
$$\lim_{n\to\infty} \frac{\sqrt{n}}{\sqrt{n}} \sqrt{n}$$
 = 0, $\Rightarrow f(x) = \frac{\sqrt{x}}{x+100}$, 则

$$f'(x) = \frac{100 - x}{2\sqrt{x}(x+100)^2}, \quad \stackrel{\text{def}}{=} x > 100 \text{ ind}, \quad f'(x) < 0,$$

知f(x)单调下降,于是,当n > 100时, $u_n > u_{n+1}$, 由莱布尼茨定理知,原级数条件收敛. 故选(C).

11. 无穷级数 $\sum (-1)^{n-1} u_n (u_n > 0)$ 收敛的充分条件是【 C 】

(A)
$$u_{n+1}^{n=1} \le u_n$$
, $(n=1, 2, \cdots)$

(B)
$$\lim_{n\to\infty}u_n=0$$

(B)
$$\lim_{\substack{n\to\infty\\ 0}} u_n = 0$$

(C) $u_{n+1} \le u_n$, $(n=1, 2, \cdots)$, $\lim_{n\to\infty} u_n = 0$

(D)
$$\sum_{n=1}^{\infty} (-1)^n (u_n - u_{n+1})$$
 收敛

12. 下列级数中发散的是【 B 】.

(A)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\ln(n+1)}$$
 (B) $\sum_{n=1}^{\infty} \frac{n}{3n-1}$

$$\text{(B) } \sum_{n=1}^{\infty} \frac{n}{3n-1}$$

$$\ln(n+1) \qquad = \frac{1}{n=1} 3n - 1$$
(C)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{3^n} \qquad (D) \sum_{n=1}^{\infty} \frac{n}{3^{\frac{n}{2}}}$$

$$\mathbf{(D)} \sum_{n=1}^{\infty} \frac{n}{3^{\frac{n}{2}}}$$

13. 设 $0 \le u_n < \frac{1}{n}$ ($n = 1, 2, \cdots$),则下列级数中必定收敛是【 D 】

$$(A)\sum_{n=1}^{\infty} u_n$$
 $(B)\sum_{n=1}^{\infty} (-1)^n u_n$ $(C)\sum_{n=1}^{\infty} \sqrt{u_n}$ $(D)\sum_{n=1}^{\infty} (-1)^n u_n^2$ 解由设 $0 \le u_n < \frac{1}{n}$,和两边夹定理,可得 $\lim_{n \to \infty} u_n = 0$,

这是级数收敛的必要条件而非充分条件.

(D) 由
$$0 \le u_n < \frac{1}{n}$$
, 知 $0 \le u_n^2 \le \frac{1}{n^2}$, 所以 $\sum_{n=1}^{\infty} (-1)^n u_n^2$ 绝对收敛.

故选 (D).

13. 设 $0 \le u_n \le \frac{1}{n} (n=1,2,\dots)$,则下列级数中必定收敛是【 D 】

(A)
$$\sum_{n=1}^{\infty} u_n$$
 (B) $\sum_{n=1}^{\infty} (-1)^n u_n$ (C) $\sum_{n=1}^{\infty} \sqrt{u_n}$ (D) $\sum_{n=1}^{\infty} (-1)^n u_n^2$ 解 由设 $0 \le u_n < \frac{1}{n}$,和两边夹定理,可得 $\lim_{n \to \infty} u_n = 0$,

这是级数收敛的必要条件而非充分条件.

(A) 令
$$0 \le u_n = \frac{1}{2n} < \frac{1}{n}$$
, 而级数 $\sum_{n=1}^{\infty} \frac{1}{2n}$ 发散.

(C)
$$\Leftrightarrow u_n = \frac{1}{n^2}$$
, 级数 $\sum_{n=1}^{\infty} \sqrt{u_n}$ 发散. 故选 (D).

14. 幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的收敛域是【 B 】

(A) [-1, 1] (B) [-1, 1) (C) (-1, 1) (D) (-1, 1]

15. 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 $R(0 < R < +\infty)$,则 $\sum_{n=0}^{\infty} a_n (\frac{x}{2})^n$ 的收敛半径为【 A 】.

(A) 2R (B) $\frac{R}{2}$ (C) R (D) $\frac{2}{R}$

16. 设级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-a)^n}{n}$ 在x>0时发散, 在x=0处收敛,则常数a=[B].

(A) 1 (B) -1 (C) 2 (D) -2