

Examen d'entrée 2002-2003

Durée: 2 heures

Physique

Premier exercice: [7 pts] Energie mécanique

On se propose de déterminer la variation de l'énergie mécanique d'un système entre deux instants donnés. On se dispose, dans ce but, d'une table à coussin d'air, incliné de 25° sur l'horizontale et de ses accessoires. Durant son mouvement le mobile autoporteur subit l'action de forces résistantes dues au frottement dont la résultante $\vec{f} = -f \vec{i}$ est constante et opposé au vecteur vitesse $\vec{V} = V \vec{i}$ (V>0).

Un ordinateur, muni d'un système d'enregistrement, enregistre, à des intervalles de temps τ égaux à 40 ms, l'abscisse x et de la vitesse V du centre d'inertie G de l'autoporteur par rapport par rapport à un axe (O, \vec{i}) parallèle à la ligne de plus grande pente. Les mesures sont reportées dans le tableau ci-dessous.

Date	t_0	t_1	t_2	t ₃	t ₄	t 5	t ₆	t ₇	t ₈	t ₉	t ₁₀	t ₁₁	t ₁₂
Position	\mathbf{M}_0	\mathbf{M}_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8	M 9	M_{10}	M_{11}	M_{12}
Abscisse x(m)	0,0000	0,0116	0,0271	0,0465	0,0697	0,0968	0,1278	0,1626	0,2013	0,2439	0,2904	0,3407	0,3949
Vitesse V(m/s)	0,2420	0,3388	0,4356	0,5324	0,6292	0,7260	0,8228	0,9196	1,0164	1,1132	1,.2100	1,3068	1,4036

- 1- Calculer la mesure algébrique de la quantité de mouvement de G aux dates t₀, t₂, t₅, t₇, t₁₀, et t₁₂.
- 2- Calculer la mesure algébrique de la variation instantanée ΔP de la quantité de mouvement aux dates t₁, t₆ et t₁₁. Comparer les différents résultats.
- 3- Faire l'inventaire des forces s'exerçant sur le mobile autoporteur.
- 4- a. Trouver la mesure algébrique F de la somme \vec{F} de ces forces.
 - b. Déterminer, en appliquant la deuxième loi de Newton, la valeur de f.
- 5- Calculer le travail $W(\vec{f})$ effectué par \vec{f} entre les points M_1 et M_{11} .
- 6- Calculer la hauteur séparant les plans horizontaux passant par M_1 et M_{11} .
- 7- a. Calculer l'énergie mécanique du sys<mark>tème</mark> (autoporteur Terre) aux dates t₁ et t₁₁ sach<mark>ant que le niv</mark>eau horizontal passant par M₁₁ est choisi comme niveau de référence de l'énergie potentielle de pesanteur.
 - b. En déduire la variation ΔE_m de l'énergie mécanique entre les dates t_1 et t_{11} .
 - A quoi est due cette variation ΔE_m ?
 - c. Comparer ΔE_m à $W(\vec{f})$.

Deuxième exercice: [6 pts]: Atome d'hydrogène

A- Niveaux d'énergie

La figure ci-contre montre le diagramme énergétique de quelques niveaux d'énergie E_n d'un atome d'hydrogène.

L'expression qui donne les valeurs respectives de ces énergies est $E_n = -\frac{13,6}{n^2}$, où

b. L'électron de cet atome est-il lié ou libre?

b. Montrer que l'absorption d'une radiation de longueur d'onde $\lambda = 91,20$ nm fait passer l'atome du niveau fondamental à l'état ionisé.

-3,40

- 3- a. Montrer que la longueur d'onde λ' de la radiation émise lors de la transition du deuxième état excité au niveau fondamental a pour valeur $\lambda' = 102,6$ nm.
 - b. La désexcitation du deuxième niveau excité au niveau fondamental se fait par différentes transitions. Calculer les valeurs des énergies des radiations associées à ces transitions.

B- Absorption de radiations

On dispose de deux sources de radiations S_1 et S_2 émettant respectivement les radiations monochromatiques de longueurs d'onde $\lambda_1 = 80$ nm et $\lambda_2 = 102,6$ nm, d'une ampoule en verre, transparente aux radiations considérées, équipée de deux électrodes M et N et contenant de l'hydrogène sous faible pression, d'un ampèremètre (A) sensible aux très faibles intensités et d'un générateur de f.é.m. E.

L'ampoule est successivement irradiée par les radiations de longueurs d'onde λ_1 et λ_2 .

- 1- Montrer qu'une de ces deux radiations permet à l'ampèremètre de déceler le passage d'un courant. Préciser le phénomène mis en évidence.
- 2- L'autre radiation ne provoque le passage d'aucun courant, par contre, elle permet d'obtenir plusieurs radiations dont une est visible. En vous inspirant, du diagramme énergétique:
 - a. préciser la cause de l'obtention de ces radiations,
 - b. justifier la présence de cette radiation visible.

Prendre: $e = 1,602 \times 10^{-19} \text{ C}$; $c = 2,998 \times 10^8 \text{ m/s}$; $h = 6,626 \times 10^{-34} \text{ J.s}$; spectre visible: $400 \text{ nm} \le \lambda \le 750 \text{ nm}$.

Troisième exercice: [7 pts] Détermination de la fréquence propre fo d'un circuit (L,C)

On désire déterminer la fréquence propre f_o dans un circuit (R,L,C) par deux méthodes. On dispose, dans ce but, d'un conducteur ohmique (R) de résistance $R=120~\Omega$, d'un condensateur (C) de capacité $C=1~\mu F$, d'une bobine (B) d'inductance L=0.06~H et de résistance négligeable, d'un générateur G_1 pouvant délivrer à ses bornes une tension constante de valeur $U_1=6~V$, d'un générateur G_2 pouvant délivrer à ses bornes une tension alternative sinusoïdale u de fréquence f réglable, de deux interrupteurs (K_1) et (K_2) et de fils de connexion. Prendre $0.32\pi=1$.

A- Oscillations libres non amorties

I- Charge du condensateur (C)

On réalise le circuit de la figure ci-contre.

On ferme l'interrupteur (K₁). Calculer, en régime permanent, la charge portée par l'armature A et l'énergie emmagasinée dans (C).

II- Circuit oscillant (L,C)

Le condensateur, initialement chargé sous la tension U_1 , est relié à la bobine (B) selon le schéma de la figure ci-contre.

On ferme l'interrupteur (K_2) à la date t = 0. A la date t, l'armature A porte la charge q et le circuit est parcouru par un courant d'intensité i.

- a. l'expression de l'énergie électrique E_e emmagasinée dans (C),
- b. l'expression de l'énergie magnétique E_m emmagasinée dans (B).
- 2- En tenant compte de la conservation de l'expression $(E_e + E_m)$:
 - a. établir, en dérivant l'expression (E_e + E_m) par rapport au temps, l'équation différentielle qui régit l'évolution, au cours du temps, de la charge q,
 - b. en déduire la fréquence propre f_o des oscillations dans ce circuit (L,C).

B- Oscillations forcées.

(C) est initialement déchargé. (G2), (R), (C) et (B) sont montés en série comme l'indique la figure ci-dessous.

En régime permanent, G_2 délivrant la tension $u = V_A - V_E = U_m \sin(2\pi ft)$, le circuit est parcouru par un courant alternatif sinusoïdal d'intensité instantanée i dont l'expression instantanée s'écrit: $i = I_m \sin(2\pi ft - \phi)$. (u en V; i en A; f en Hz; t en s).

 $(C) \xrightarrow{A \xrightarrow{q}} (G_2) \xrightarrow{E} (R)$

1- Etablir, en fonction de I_m , f, t et ϕ , les expressions instantanées des tensions alternatives sinusoïdales $(V_{A-}V_D)$, $(V_{D-}V_F)$, $(V_{F-}V_E)$.

2- a. Donner l'expression instantanée qui résulte de l'additivité des tensions en donnant à t les valeurs

particulières:i)
$$t = 0$$
 s

et ii)
$$t = \frac{1}{4f}$$

b. Etablir, en fonction de f et U_m , l'expression donnant I_m^2 .

3- Déterminer, à partir de l'expression de I_m^2 , la valeur numérique f_o de f pour laquelle I_m^2 prend une valeur maximale.

4- Quel phénomène est-il mis en évidence?

C Comparaison de fo et de fo

Les deux méthodes sont-elles valables?

Examen d'entrée 2002-2003

Durée: 2 heures

Solution de Physique

Premier Exercice

- 1. P = mV; $P_0 = 0.05324 \text{ kg m/s}$; $P_2 = 0.09583 \text{ kg m/s}$; $P_5 = 0.1597 \text{ kg m/s}$; $P_7 = 0.2023 \text{ kg m/s}$; $P_{10} = 0.2662 \text{ kg m/s}$; $P_{12} = 0.3088 \text{ kg m/s}$.
- 2. $\Delta P_1 = m \ (V_2 V_0) = 0.04259 \ kg \ m/s;$ $\Delta P_6 = m \ (V_7 V_5) = 0.04260 \ kg \ m/s;$ $\Delta P_{11} = m (V_{12} V_{11}) = 0.04260 \ kg \ m/s.$
- 3. Forces: poids $m\vec{g}$; \vec{N} réaction normale du support; \vec{f} force due au frottement.
- 4. a) $\vec{F} = m\vec{g} + \vec{N} + \vec{f}$.

Projection: $F = mg \sin \alpha - f = 0.22 \cdot 9.8 \cdot 0.2538 - f$.

b)
$$F = \frac{\Delta P}{\Delta t} = \frac{\Delta P}{2\tau}$$
:

 $0.5580 - f = 0.04260/0.08 \Rightarrow f = 0.02550 \text{ N}$

- 5. W(\vec{f}) = $\vec{f} \cdot \vec{d}$ = -fd = -0.02550 \cdot (0.3407 0.0116) = -0.00839 J \approx -0.0084 J.
- 6. $h = d \sin \alpha = (0.3407 0.0116) \sin 15^{\circ} = 0.08517 \text{ m}$
- 7. a) $E_m = E_C + E_p = \frac{1}{2} \text{mV}^2 + \text{m g z}$; $E_{m1} = \frac{1}{2} \text{m V}_1^2 + \text{mg h} = 0,1963 \text{ J}$; $E_{m2} = \frac{1}{2} \text{m V}_{11}^2 + 0 = 0,1878 \text{ J}$;
 - b) $\Delta E_m = E_{m2} E_{m1} = -0,0085 \ J$. Variation due au frottement.
 - c) $1\Delta E_m = W(\vec{f})$ aux erreurs de l'expérience près.

Deuxième exercice

- A. 1. a) Etat ionisé
 - b) libre
 - 2. a) $Ei = E_{\infty} E_1 = 13.6 \text{ eV}.$
 - 2. b) $\Delta E = hc/\lambda$. = 6,626·10⁻³⁴ 2, 998 10⁸/(91,2·10⁻⁹·1,602·10⁻¹⁹) = 13.596 \approx 13.6 eV = E $_{\infty}$ E₁ ou λ = hc/ ΔE
 - 3. a) $\lambda' = hc/\Delta E = hc/(E_3 E_1) = 102.56 \approx 102.6 \text{ nm}.$
 - 3. b) $\Delta E_{31} = -1.51 + 13.6 = 12.09 \text{ eV}$; $\Delta E_{32} = -1.51 + 3.4 = 1.89 \text{ eV}$; $\Delta E_{21} = -3.4 + 13.6 = 10.2 \text{ eV}$.
- B- Puisque $\lambda_1 = 80 \text{ nm} < \lambda = 91.2 \text{ nm} \Rightarrow (E_1) > E_i \Rightarrow \text{ionisation de l'atome et émission d'un électron.}$ L'électron en présence d'une d.d.p. $E \Rightarrow \text{passage d'un courant.}$ Phénomène d'ionisation.

Troisième exercice

A- I- Q = C U₁ =
$$6 \cdot 10^{-6}$$
 C: W = $\frac{1}{2}$ C U₁² = $1.8 \cdot 10^{-5}$ J

- II- 1. a) $E_e = \frac{1}{2}Cu^2 = \frac{1}{2}q^2/C$.
 - 1. b) $E_m = \frac{1}{2}Li^2$.
 - 2. a) $\frac{1}{2}q^{2}/C + \frac{1}{2}Li^{2} = constante et i = \frac{dq}{dt} \neq 0 : \frac{1}{C}q\frac{dq}{dt} + Li\frac{di}{dt} = 0$
 - $\Rightarrow \quad \ddot{q} \ + \frac{1}{LC} \ q = 0 \ \text{de la forme} \ . \ \ddot{q} \ + \omega_0^2 \ q = 0 \Rightarrow \omega_0^2 = \frac{1}{LC} \, .$

$$\Rightarrow f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi\sqrt{LC}} \approx 635 \ Hz.$$

$$B\text{--}1.\ V_A - V_D = q/C = \frac{\int idt}{C} = -\frac{I_m}{2\pi f C} \cos(2\pi f t - \phi) \ ; \ V_F - V_E = Ri = RI_m sin(2\pi f t - \phi) \ ; \ V_D - V_F = L \ \frac{di}{dt} = L2\pi f I_m cos(2\pi f t - \phi).$$

$$2.~a)~U_m~sin(2\pi ft) = RI_m sin(2\pi ft - \phi) + L2\pi fI_m cos(2\pi ft - \phi) - \frac{I_m}{2\pi fC} cos(2\pi ft - \phi).$$

b) Pour
$$t=0, \Rightarrow 0=RI_m sin(\phi)+[L2\pi f-\frac{1}{2\pi fC}]~I_m~cos(\phi);$$

Pour
$$t = 1/4f$$
, $\Rightarrow U_m = RI_m cos(\phi) + [L2\pi f - \frac{1}{2\pi fC}] I_m sin(\phi)$;

$$\Rightarrow \text{Calcul: } \frac{I_m^2}{R^2 + [L2\pi f - 1/(2\pi f C)]^2}$$

3.
$$I_m^2$$
 est max... si.. [L2 π f - $\frac{1}{2\pi fC}$] = 0 \Rightarrow f_0^2 = $\frac{1}{2\pi \sqrt{LC}} \approx 653$ Hz.

4. Phénomène de résonance d'intensité.

C- Oui. Car
$$f_0 = f_0' \approx 653$$
 Hz.