

Week 12b - Privacy Preservation

Yu Han

han.yu@ntu.edu.sg

Nanyang Assistant Professor
School of Computer Science and Engineering
Nanyang Technological University

Wide Industry Adoption of FL

Federated Learning Limitations

Limitations:

- Single Server FedAvg:
 - Single point of failure
 - Cannot deal with non-i.i.d. situations
 - Vulnerable to "free-riders"

- Exchange of model parameters:
 - Plaintext model parameters vulnerable to privacy attacks
 - Inefficient for large AI models due to high communication cost

Threats to Federated Learning

Mostly Against HFL

Attackers and Threat Models

TABLE I: Taxonomy for horizontal federated learning (HFL).

HFL	Number of Par- ticipants	Training Partici- pation	Technical Capa- bility
H2B	small	frequent	high
H2C	large	not frequent	low

Attackers

Outsiders:

- Eavesdroppers on the communication channel.
- Users of the final FL model when it is deployed.

Insiders: FL server and the participants.

- <u>Byzantine</u>: no need to obey the protocol and can send arbitrary messages to the server.
- <u>Sybil</u>: can simulate multiple dummy participant accounts or select previously compromised participants to mount more powerful attacks on the global model.

Threat Models

Semi-honest: Adversaries are passive or honest-but-curious. They try to learn the private states of other participants without deviating from the FL protocol. The adversaries can only observe the received information.

Malicious: Active, tries to learn the private states of honest participants, and deviates arbitrarily from the FL protocol by modifying, re-playing, or removing messages. This setting allows the adversary to conduct particularly devastating attacks.

Threats to FL – Inference Attacks

Why gradients cause privacy leakage?

Gradients are derived from the participants' private training data, and a learning model can be considered as a representation of the high-level statistics of the dataset it was trained on.

7

Threats to FL – Poisoning Attacks

Objective:

- 1) Targeted (Backdoor, Sybil attacks).
- 2) Untargeted (Byzantine attacks).

Model poisoning attacks are much more effective than data poisoning attacks!

Threats to FL – Poisoning Attacks

- Label-flipping attacks the labels of honest training samples of one class are flipped to another class while the features of the data are kept unchanged.
- Backdoor attacks
- Single features or small regions of the original training dataset are augmented with a secret pattern and relabelled.
- The pattern acts as a trigger for the target class.
- Note: Backdoor attacks should not significantly change the prediction outcomes of other classes. Otherwise, the attack will be detected.

Threats to FL – Sybil Attacks

(b) Federated learning with sybil-based label-flipping poisoning

Sybil attacks

Multiple dummy participant accounts or previously compromised participants launch attacks towards a specific malicious objective.

Source: https://arxiv.org/abs/2012.06337

Defending Federated Learning

Key FL Vulnerability

Malicious FL client or server has WHITE-BOX access to model updates

Server has white-box access to each client's model updates

Participants has whitebox access to the aggregated model updates

Major Defence Approaches

 Keep malicious FL client or server away from raw model updates

Protecting Model Updates

- Secure Multi-Party Calculation (SMPC)
 - Server aggregates clients' updates,
 - but cannot inspect the individual updates

Protecting Model Updates

Protecting Model Updates

Each client's model update is protected from a malicious server

The aggregated update is NOT protected from malicious clients

Adding Noise to Model Updates

- Differential privacy:
 - the statistical science of trying to learn as much as possible about a group while learning as little as possible about any individual in it.

Adding Noise to Model Updates

Local differential privacy (LDP)

Adding Noise to Model Updates

Each client's model update is protected from a malicious server

The aggregated update is also protected from malicious clients

 Protection vs. model performance trade-off must be considered

Federated Knowledge Distillation

Each client's model update is protected from a malicious server

The aggregated update is also protected from malicious clients

Slight performance degradation

Personalized Federated Learning

Personalized Federated Learning

Source: https://arxiv.org/abs/2103.00710

Data Heterogeneity

Source: https://arxiv.org/abs/2005.01026

Multi-Center FL

Algorithm 1: FeSEM – Federated Stochastic EM

```
1 Initialize K, \{W_i\}_{i=1}^m, \{\tilde{W}^{(k)}\}_{k=1}^K
 2 while stop condition is not satisfied do
         E-Step:
         Calculate distance d_{ik} \leftarrow \text{Dist}(W_i, \tilde{W}^{(k)}) \ \forall i, k
 4
         Update r_i^{(k)} using d_{ik} (Eq. 7)
 5
         M-Step:
         Group devices into C_k using r_k^{(k)}
 7
         Update \tilde{W}^{(k)} using r_i^{(k)} and W_i (Eq. 8)
 8
         for each cluster k = 1, ... K do
              for i \in C_k do
10
                    Send \tilde{W}^{(k)} to device i
11
                    W_i \leftarrow \textbf{Local\_update}(i, \tilde{W}^{(k)})
12
              end
13
         end
14
15 end
```

Model Heterogeneity

Source: https://ieeexplore.ieee.org/document/9098045

Trust-based Open Collaborative FL

Trust-based Open Collaborative Federated Learning

Further Reading

Week 12b - Privacy Preservation

Yu Han

han.yu@ntu.edu.sg

Nanyang Assistant Professor
School of Computer Science and Engineering
Nanyang Technological University

