ALAN A. KAPTANOGLU

Post-doctoral Researcher, Landreman Group Affiliate Assistant Professor, University of Washington

Institute for Research in Electronics and Applied Physics (IREAP) <u>akaptano@umd.edu</u>
University of Maryland <u>Google scholar, ResearchGate, Linkedin, Github</u>

RESEARCH INTERESTS

- Plasma physics and nuclear fusion, including stellarators, optimization, and control.
- Computational physics and high performance computing, with emphasis on high-dimensional, nonconvex, and constrained optimization.
- Reduced-order models and machine-learning.
- Control theory, dynamical systems, and nonlinear stability theory.

EDUCATION

University of Washington, Seattle WA

Doctor of Philosophy in Physics, 2021

PhD Thesis: An Exploration of Data-Driven System Identification and Machine Learning for

Plasma Physics

PhD advisor: <u>Professor Steven Brunton</u>

Stanford University, Stanford CA

Bachelor of Science in Physics, Theoretical Concentration, 2016

AWARDS & HONORS

- Next-Generation follow-on grant awardee, 2021-2022
- Next-Generation Fellowship, Physicists Coalition for Nuclear Threat Reduction, 2020-2021
- APS Five Sigma Physicist Award, 2021
- Best student presentation award, Sherwood Fusion Theory Conference, 2021
- Outstanding graduate student TA, with Distinction, 2019
- NSF GRFP Honorable Mention, 2018

PROFESSIONAL EXPERIENCE

Postdoctoral Researcher, University of Maryland, College Park, Mar. 2022 - current Research in high-dimensional, constrained optimization, greedy algorithms, and other techniques

for stellarators with Dr. Matt Landreman. Research in machine learning, including supervision of a graduate student project on physics-informed neural networks.

Affiliate Assistant Professor, University of Washington, Mar. 2022 - current

Research in sparse system identification techniques and nonlinear stability theory, including supervision of an undergraduate senior thesis project and masters thesis project.

Postdoctoral Researcher, Brunton Lab, University of Washington, Jan. 2022 - Mar. 2022 Research in sparse system identification techniques and nonlinear stability theory.

Plasma Physics Internship, PPPL, Princeton, Jan. 2017 - May 2017

Performed 2D scrape-off-layer simulations of the PFRC fusion device with the UEDGE code. Performed full 3D particle-in-cell calculations of the PRFC device with the LSP code.

Particle Physics Internship, DOE-INFN Program, Bologna, Italy, Sep. 2016 - Nov. 2016

Optimized supervised clustering algorithms for top quark jets at CERN.

Plasma Physics Internship, LLNL, Livermore, June 2015 - Sep. 2015

Performed 2D fluid simulations of inertial confinement fusion (ICF) implosions. Co-Authored "Evaluating the suitability of BLAST, a High Order Finite Element Hydro Code, for running ICF implosions", which was accepted at the classified 2015 NEDPC Conference.

JOURNAL PUBLICATIONS

131 Google scholar citations; h-index 5; i10-index 4

Published Articles:

- 1. **A. Kaptanoglu**, T. Qian, F. Wechsung, and M. Landreman Permanent magnet optimization for stellarators as sparse regression *Physical Review Applied*, 2022.
- A. Kaptanoglu, B. de Silva, U. Fasel, K. Kaheman, A. Goldschmidt, J. Callaham, C. Delahunt, Z. Nicolaou, K. Champion, J.C. Loiseau, and J.N. Kutz
 <u>PySINDy: A comprehensive Python package for robust sparse system identification</u>
 Journal of Open Source Software, 2022
- 3. **A. Kaptanoglu,** A. Jalalvand, A. Garcia, M. Austin, G. Verdoolaege, J. Schneider,, C. Hansen, S. Brunton, W. Heidbrink, E. Kolemen Exploring data-driven models for spatiotemporally local classification of Alfvén eigenmodes.
 Nuclear Fusion (2022).
- 4. M. Fenstermacher, J. Abbate, S. Abe, T. Abrams, ..., A. Kaptanoglu, et al. <u>DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy</u> Nuclear Fusion (2022).
- 5. **A. Kaptanoglu**, J. Callaham, A. Aravkin, C. Hansen, and S. Brunton Promoting global stability in data-driven models of quadratic nonlinear dynamics *Phys. Rev. Fluids* (2021) *Selected as an Editor's Suggestion paper*
- 6. **A. Kaptanoglu**, K. Morgan, C. Hansen, and S. Brunton <u>Physics-constrained, low-dimensional models for magnetohydrodynamics:</u> <u>First-principles and data-driven approaches</u> <u>Physical Review E</u> (2021)
- A. Jalalvand, A. Kaptanoglu, A. Garcia, A. Nelson, J. Abbate, M. Austin, G. Verdoolaege, S. Brunton, W. Heidbrink, E. Kolemen.
 Alfvén eigenmode classification based on ECE diagnostics at DIII-D using deep recurrent neural networks
 Nuclear Fusion (2021)
- 8. **A. Kaptanoglu,** K. Morgan, C. Hansen, and S. Brunton Characterizing magnetized plasmas with dynamic mode decomposition *Physics of Plasmas* (2020)
- 9. **A. Kaptanoglu**, T. Benedett, K. Morgan, C. Hansen, and T. Jarboe Two-temperature effects in Hall-MHD simulations of the HIT-SI experiment *Physics of Plasmas* (2020)

Preprints:

10. A. Kaptanoglu, Rory Conlin, and Matt Landreman

Greedy permanent magnet optimization

arXiv:2208.10620 (2022)

11. J. Brooks, M. McDonald, and A. Kaptanoglu

A comparison of Fourier and POD mode decomposition methods for high-speed Hall thruster video

arXiv:2205.14207 (2022)

12. A. Kaptanoglu, K. Morgan, C. Hansen, and S. Brunton.

The structure of global conservation laws in Galerkin plasma models

arXiv:2101.03436 (2021)

General Audience Articles:

13. A. Kaptanoglu, S. Prager

US defense to its workforce: Nuclear war can be won

Bulletin of the Atomic Scientists, 2022

14. S. Prager, A. Kaptanoglu

Rebuttal: Current nuclear weapons policy not safe or sane

Bulletin of the Atomic Scientists, 2022

PRESENTATIONS & INVITED TALKS

Invited Talks:

- 1. **A. Kaptanoglu**, C. Hansen, S. Brunton, and M. Landreman Bringing advanced sparse system identification to plasma physics Bulletin of the American Physical Society, APS Division of Plasma Physics (2022)
- 2. **A. Kaptanoglu**, J. Callaham, C. Hansen, S. Brunton, UW data-driven dynamics lab Machine Learning for discovering sparse models of fluids, plasmas, and much more. 2nd Machine Learning in Heliophysics Conference (2022)
- 3. **A. Kaptanoglu**, J Callaham, A. Aravkin, C. Hansen, and S. Brunton Promoting global stability in data-driven models of quadratic nonlinear dynamics *Physical Review Fluids Journal Club* (2021)

Contributed Talks:

- 4. **A. Kaptanoglu**, J. Callaham, C. Hansen, and S. Brunton Machine Learning to Discover Interpretable Models in Fluids and Plasmas *Bulletin of the American Physical Society, APS March Meeting* (2022)
- 5. **A. Kaptanoglu**, J. Callaham, K. Morgan, C. Hansen, A. Aravkin, and S. Brunton. Data-driven, interpretable plasma models *Sherwood Fusion Theory Conference* (2021). *Award for best student presentation*.
- A. Kaptanoglu, K. Morgan, C. Hansen, and S. Brunton. Physics-constrained data-driven methods in MHD
 Bulletin of the American Physical Society (2020). Presented at APS DFD, 2020 and APS DPP, 2020.

Academic Posters:

7. **A. Kaptanoglu**, A. Jalalvand, A. Garcia, A. Nelson, J. Abbate, G. Verdoolaege, S. Brunton, W. Heidbrink, and E. Kolemen Spatially-localized Alfvén eigenmode classification using convolutional neural networks.

8. **A. Kaptanoglu**, T. Benedett, C. Hansen, K. Morgan, T. Jarboe Two temperature effects in the HIT-SI experiment Bulletin of the American Physical Society, APS Division of Plasma Physics (2019)

FUNDING

\$600k NSF/DOE. Improving Interpretable Machine Learning for Plasmas: Towards Physical Insight, Data-Driven Models, and Optimal Sensing. (PI: Chris Hansen, co-PI: Steven Brunton) *Led the conception and execution of this successful NSF/DOE proposal.*

XSEDE Startup Allocation PHY180064. Computational Feedback Control for HITSI, 2019-2020, 100,000 SUs, 1,500 GB storage, PI Alan Kaptanoglu. *Wrote a successful proposal for a startup allocation through NSF's XSEDE program.*

XSEDE Startup Allocation PHY180064 (Renewal). Simulation and feedback control for liquid metal divertors, 2020-2021, 50,000 SUs, 1,000 GB storage, PI Alan Kaptanoglu. *Wrote a successful renewal proposal for a startup allocation through NSF's XSEDE program.*

MENTORING & ADVISING

Graduate student projects:

Byoungchan Jang, *Physics-informed neural networks for forward and inverse MHD equilibrium calculations*, 2022 - current.

Master thesis projects:

Mai Peng, Promoting local and global stability in data-driven fluid models, 2022 - current.

Undergraduate senior thesis projects:

Lanyue Zhang, Evaluation of sparse regression techniques on a large database of chaotic, polynomial dynamical systems, 2022 - current.

TEACHING

Instructor, University of Washington:

• ME564 - Mechanical Engineering Analysis I, Fall 2022, 145 students, co-taught with Professor Steven Brunton.

Teaching Assistant, University of Washington:

- PHYS228: Elementary Mathematical Physics, Winter 2017
- PHYS115: Heat, Fluids and Electricity and Magnetism, Fall 2017
- PHYS121: Mechanics (three sections), Fall 2017

Awarded outstanding graduate student TA, with Distinction, 2019

Teaching Assistant, Stanford University:

• PHYS 45: Light and Heat, Fall 2015

Video abstracts and Tutorials:

YouTube channel metrics: 600+ subscribers, 19000+ views, 800+ hours watched, 98%+ likes vs dislikes

1. <u>PySINDy Tutorial Videos - How to effectively use the SINDy method for system identification</u>

A. Kaptanoglu, B. de Silva, U. Fasel, K. Kaheman, A. Goldschmidt, J. Callaham, C. Delahunt, Z. Nicolaou, K. Champion, J.C. Loiseau, and J.N. Kutz *Journal of Open Source Software*, 2022

2. Permanent Magnet Optimization

A. Kaptanoglu, T. Qian, F. Wechsung, and M. Landreman *Physical Review Applied* (2022).
A. Kaptanoglu, Rory Conlin, and Matt Landreman *arXiv*:2208.10620 (2022).

- 3. Promoting global stability in data-driven models of quadratic nonlinear dynamics A. Kaptanoglu, J. Callaham, A. Aravkin, C. Hansen, and S. Brunton *Phys. Rev. Fluids* (2021)
- 4. <u>Physics-constrained, low-dimensional models for magnetohydrodynamics:</u> <u>First-principles and data-driven approaches</u>

A high level view of reduced order modeling for plasmas

A. Kaptanoglu, K. Morgan, C. Hansen, and S. Brunton *Physical Review E* (2021)

- 5. <u>Characterizing magnetized plasmas with dynamic mode decomposition</u> **A. Kaptanoglu,** K. Morgan, C. Hansen, and S. Brunton *Physics of Plasmas* (2020)
- 6. Two-temperature effects in Hall-MHD simulations of the HIT-SI experiment **A. Kaptanoglu**, T. Benedett, K. Morgan, C. Hansen, and T. Jarboe *Physics of Plasmas* (2020)

SOFTWARE

Software contributions below include only packages for which I have contributed roughly 10,000 lines of code or more.

PySINDy for sparse system identification. Developed by myself, Brian de Silva, Kathleen Champion, and many others. Annually has ~500 unique clones, ~65,000 views, and ~13,000 unique visitors.

SIMSOPT for stellarator optimization. Development led by Dr. Matt Landreman. Annually has ~1,040 unique clones, ~39,000 views, and ~1,300 unique visitors.

SERVICE

- Ally training and role during the APS DPP annual meeting, 2021, 2022
- President, Research Computing Club @ UW, 2020-2021
- Training Coordinator, Research Computing Club @ UW, 2019-2020
- XSEDE EMPOWER Program Application Reviewer, 2019-2021
- XSEDE EMPOWER Program Mentor, 2019-2020
- Volunteer, 350 Seattle, 2019-2021
- Volunteer, Washington Against Nuclear Weapons, 2019-2021
- Volunteer, Physicists for Diversity and Inclusion (PIE), 2018-2019