- (2.5) Calculations are to be performed to a precision of 0.001%. How many bits does this require?
 - This precision requires 10 bits. 0.001 can be represented as $\frac{1}{1000}$. 2^{-9} is equal to $\frac{1}{512}$ and 2^{-10} is equal to $\frac{1}{1024}$. Since $\frac{1}{1000}$ is less than $\frac{1}{512}$, 9 bits is too few. However, since $\frac{1}{1000}$ is greater than $\frac{1}{1024}$, 10 bits is sufficient.
- (2.13) Perform the following calculations in the stated bases:
 - a) include picture later
 - b) include picture later
- (2.14) What is arithmetic overflow? When does it occur and how can it be detected?
 - Arithmetic overflow is when the number of bits necessary to represent a binary number exceed the number of bits available to represent the number. It can be detected by the overflow flag of the status register being set.
- (2.16) Convert 1234.125 into 32-bit IEEE floating-point format.
 - A
- (2.17) What is the decimal equivalent of the 32-bit IEEE floating point value CC4C0000?
 - A
- (2.22) What is the difference between a truncation error and a rounding error?
 - A truncation error is when bits are cut off of the end (which always results in a round-down). A rounding error is when a number is either rounded up or down based on whether the unwanted bits are greater than/equal to .5 or less than .5, respectively. Both errors happen due to significant figure requirements.
 - 2.40 Draw a truth table for the circuit below and explain what it does:
 - A
 - 2.45 It is possible to have n-input AND, OR, NAND, and NOR gates, where n ¿ 2. Can you have an n-input XOR gate for n ¿ 2? Explain your answer with a truth table.
 - No,