COMPUTATION AND VISUALIZATION OF CONCEPT LATTICES

SURYAPALLY VAMSHI KRISHNA

OUTLINE

- Introduction
 - Formal concept analysis
- Terminology
 - Partial order and pre-order
 - Formal context
 - Formal concept and Principal formal concept
 - Intent and extent
 - Concept lattice
- Proposed approach
- Applications
- Conclusion
- Bibliography

FORMAL CONCEPT ANALYSIS

- Formal concept analysis (FCA) arose around 1980 in Darmstadt as a mathematical theory and it has found many uses in informatics, e.g. for
 - Data Analysis
 - Knowledge Discovery
 - Software Engineering
- FCA is a framework for data analysis based on a notion of a "concept" i.e. the arrangement of data into encapsulating units.
- FCA helps to understand unknown, hidden and meaningful connections between group of objects and group of attributes.
- Formal concept analysis has its roots in lattice theory.
- There are two ways to describe a concept (Extension and Intension).
- Concept hierarchies can be created and visualized based on the given data sets.

PARTIAL ORDER AND PRE-ORDER

- On a set *X*, a relation *R* is said to be a partial order on *X* if *R* is:
 - Reflexive, i.e., $(x,x) \in R$, for all $x \in X$,
 - Antisymmetric, i.e., if $(x,y) \in R$ and $(y,x) \in R$ then x = y, for all $x,y \in X$,
 - Transitive, i.e., if $(x,y) \in R$ and $(y,z) \in R$ then $(x,z) \in R$, for all $x,y,z \in X$.
- If *R* is only reflexive and transitive, then *R* is called a pre-order. Any pre-order induces a partial-order on the set of equivalence classes induced by *R*.

FORMAL CONTEXT

- A formal context K = (G, M, I) consists of
 - A set G of Objects
 - A set *M* of Attributes and
 - a binary relation between $I \subset G \times M$
- The relation *I* is called as the incidence relation of the context.
- To express that an object g is in a relation I with an attribute m, we use $gIm\ or\ (g\ , m) \in I$ and is read as object g has attribute m.

Attributes

Objects

	Student	Immigrant	Rich	Married	Employee
John		X		X	
Smith		X			X
Nick			X		
Mike	X	X	X		
Jack				X	
Paul		X	X		
Ben					X

INTENT AND EXTENT

- Given a set A of objects, i.e., $A \subseteq G$ we define its intent $A' \subseteq M$ as
 - $A' = \{ m \mid oIm \text{ for all } o \in A \}$.
- Analogously, the extent B' of a set of attribute is defined as
 - $B' = \{ o \mid oIm \text{ for all } m \in B \}.$
- Intent is a set of attributes that objects have in common.
- Extent is a set of objects that attributes have in common.

INTENT AND EXTENT - CONT'D

- Example of an extent:
 - {Immigrant}'= {John, Smith, Mike, Paul}

Attributes

Objects

	Student	Immigrant	Rich	Married	Employee
John		X		X	
Smith		X			X
Nick			X		
Mike	X	X	X		
Jack				X	
Paul		X	X		
Ben					X

INTENT AND EXTENT – CONT'D

- Example of an intent:
 - {Mike}'= {Student, Immigrant, Rich}
- Intersection of arbitrarily many extents is an extent.
- Intersection of arbitrarily many intents is an intent.

Attributes

	Student	Immigrant	Rich	Married	Employee
John		X		X	
Smith		X			X
Nick			X		
Mike	X	X	X		
Jack				X	
Paul		X	X		
Ben					X

Objects

CALCULATING EXTENTS FOR THE GIVEN FORMAL CONTEXT

Objects

• Extents:

- $E_1 = \{\text{Student}\}' = \{\text{Mike}\}$
- $E_2 = \{\text{Immigrant}\}' = \{\text{John, Smith, Mike, Paul}\}$
- $E_3 = \{Rich\}' = \{Nick, Mike, Paul\}$
- $E_4 = \{Married\}' = \{John, Jack\}$
- $E_5 = \{Student\}' = \{Smith, Ben\}$
- $E_6 = E_1 \cap E_4 = \{\phi\}$
- $E_7 = E_2 \cap E_3 = \{Mike, Paul\}$
- $E_8 = E_2 \cap E_4 = \{John\}$
- $E_9 = E_2 \cap E_5 = \{Smith\}$
- $E_{10} = G = \{ John, Smith, Nick, Mike, Jack, Paul, Ben \}$

Attributes

	Student	Immigrant	Rich	Married	Employee	
John		X		X		
Smith		X			X	
Nick			X			
Mike	X	X	X			
Jack				X		
Paul		X	X			
Ben					X	

CALCULATING INTENTS FOR THE GIVEN FORMAL CONTEXT

Objects

• Intents:

- $I_1 = \{ \text{Student, Immigrant, Rich} \}$
- $I_2 = \{Immigrant\}$
- $I_3 = \{Rich\}$
- $I_4 = \{Married\}$
- $I_5 = \{\text{Employee}\}$
- $I_6 = M = \{ \text{Student, Immigrant, Rich, Married, Employee} \}$
- $I_7 = \{Immigrant, Rich\}$
- $I_8 = \{Immigrant, Married\}$
- $I_9 = \{Immigrant, Employee\}$
- $I_{10} = \{\phi\}$

Attributes

	Student	Immigrant	Rich	Married	Employee
John		X		X	
Smith		X			X
Nick			X		
Mike	X	X	X		
Jack				X	
Paul		X	X		
Ben					X

CONCEPTS FOR THE GIVEN FORMAL CONTEXT

Concepts	Extents	Intents		
1	{Mike}	{Student, Immigrant, Rich}		
2	{John, Smith, Mike, Paul}	{Immigrant}		
3	{Nick, Mike, Paul}	{Rich}		
4	{John, Jack}	{Married}		
5	{Smith, Ben}	{Employee}		
6	{φ}	{Student, Immigrant, Rich, Married, Employee}		
7	{Mike, Paul}	{Immigrant, Rich}		
8	{John}	{Immigrant, Married}		
9	{Smith}	{Immigrant, Employee}		
10	{John, Smith, Nick, Mike, Jack, Paul, Ben}	{φ}		

FORMAL CONCEPT AND PRINCIPAL FORMAL CONCEPT

- A formal concept is a pair (A,B) with $A \subseteq G$ and $B \subseteq M$ so that A' = B and B' = A
- The set A is called the extent (set of objects) and the set B is called the intent (set of attributes) of the formal concept (A,B).
- If $m \in M$, then $(\{m\}'', \{m\}')$ is a formal concept. It is called the principal concept generated by m and denoted by m > 0. Analogously, if $m \in G$, then $(\{g\}', \{g\}'')$ is a formal concept. It is called the principal concept generated by $m \in G$ and denoted by $m \in G$. A formal concept is called a principal formal concept if it is equal to principal formal context generated by an element from $m \in G$ or $m \in G$. The set of principal formal contexts form a partial order that is a suborder of the concept lattice

CONCEPT LATTICE

- The concept lattice of a formal context (G,M,I) is the set of all formal concepts together with the partial order $(A_1,B_1) \leq (A_2,B_2) : \Leftrightarrow A_1 \subseteq A_2 \ (\Leftrightarrow B_1 \supseteq B_2)$.
- Between two concepts (A_1, B_1) and (A_2, B_2) there is always a greatest common subconcept and a least common super-concept.
- Concept lattice diagram is a mathematical structure based on the generality of the concept over the other concepts present in the set of all the concepts in a formal context. It can be visualized by its Hasse diagram.

HASSE DIAGRAM

- Graphically we can visualize a partial ordered set using a Hasse diagram. The Hasse diagram is characterized by:
 - There is a line between x and y if x < y and there is no element z with x < z < y.
 - y is placed above x if x < y, i.e., smaller elements are placed lower than bigger elements.
 - Reflexivity and Transitivity edges are no shown.

CONCEPT LATTICE DIAGRAM

This program uses the <u>LatDraw library</u>, © 2002 Ralph Freese.

Concepts	Extents	Intents		
1	{Mike}	{Student, Immigrant, Rich}		
2	{John, Smith, Mike, Paul}	{Immigrant}		
3	{Nick, Mike, Paul}	{Rich}		
4	{John, Jack}	{Married}		
5	{Smith, Ben}	{Employee}		
6	{φ}	{Student, Immigrant, Rich, Married, Employee}		
7	{Mike, Paul}	{Immigrant, Rich}		
8	{John}	{Immigrant, Married}		
9	{Smith}	{Immigrant, Employee}		
10	{John, Smith, Nick, Mike,	{φ}		

PROPOSED APPROACH

- Computing a concept lattice is very time consuming as we need to check every set of objects (resp. every set of attributes) whether it leads to a concept or not.
- Instead of computing it completely we use the following approach which needs to only compute |G| + |M| elements and hence only takes polynomial time.
- We consider the G + M, i.e., the disjoint union of G and M. Now we define the relation on G+M by distinguishing the four cases i.e., by defining a relation on pairs of objects, a relation on pairs of attributes, a relation between objects and attributes, and a relation between attributes and objects.

PROPOSED APPROACH – CONT'D

- Let *I* be the incident relation of a formal context. Then we define:
 - Relation on pairs of objects
 - $o_1(I/I)$ $o_2 \Leftrightarrow \forall a : o_2Ia \rightarrow o_1Ia$
 - Relation on pairs of attributes
 - $a_1(I \setminus I) \ a_2 \Leftrightarrow \forall 0 : oI \ a_1 \rightarrow oI \ a_2$
 - Relation between attributes and objects
 - a bir(I) o $\Leftrightarrow \forall o'a'$ o'Ia \land o I $a' \rightarrow o'Ia'$
 - Relation between objects and attributes
 - Incidence relation I

PROPOSED APPROACH – CONT'D

• By taking the disjoint union of objects and attributes i.e. by merging *I* and the three relations above we obtain a new relation R as shown below:

$$R = \frac{G}{M} \begin{pmatrix} I/I & I \\ bir(I) & I \setminus I \end{pmatrix}$$

• R is defined in a matrix form and it is shown in [1] that R is a pre-order.

RELATION ON PAIRS OF OBJECTS

 $o_1(I/I) o_2 \Leftrightarrow \forall a : o_2 Ia \rightarrow o_1 Ia$

Objects

	John	Smith	Nick	Mike	Jack	Paul	Ben
John	X				X		
Smith		X					X
Nick			X				
Mike			X	X		X	
Jack					X		
Paul			X			X	
Ben							X

Objects

RELATION ON PAIRS OF ATTRIBUTES

 $a_1(I \setminus I) \ a_2 \iff \forall o : oIa_1 \rightarrow oIa_2$

Attributes

Attributes

	Student	Immigrant	Rich	Married	Employee
Student	X	X	X		
Immigrant		X			
Rich			X		
Married				X	
Employee					X

RELATION BETWEEN ATTRIBUTES AND OBJECTS

a bir(I) o \iff \forall o'a' o'Ia \land o I $a' \rightarrow$ o'Ia'

Objects

		John	Smith	Nick	Mike	Jack	Paul	Ben
	Student			X	X		X	
	Immigrant							
5	Rich			X				
	Married					X		
	Employee							X

Attributes

DISJOINT UNION OF OBJECTS AND ATTRIBUTES

G+M

		John	Smith	Nick	Mike	Jack	Paul	Ben	Student	Immigrant	Rich	Married	Employee
	John	X				X				X		X	
	Smith		X					X		X			X
	Nick			X							X		
	Mike			X	X		X		X	X	X		
	Jack					X						X	
1	Paul			X			X			X	X		
l	Ben							X					X
	Student			X	X		X		X	X	X		
	Immigrant									X			
	Rich			X							X		
	Married					X						X	
	Employee							X					X

G+M

EQUIVALENCE RELATION AND EQUIVALENCE CLASSES

- An equivalence_relation is a relation that is reflexive, symmetric, and transitive.
- If two elements are related by some equivalence relation, we will say that they are equivalent.
- Two elements x and y belong to equivalence class if and only if they are equivalent.
- In the given formal context of the previous slide we can observe that
 - Nick and Rich are equivalent.
 - Mike and Student are equivalent.
 - Jack and Married are equivalent.
 - Ben and Employee are equivalent.

DISJOINT UNION OF G+M RELATION AFTER SETTING EQUIVALENCE CLASSES

	[John]	[Smith]	[Nick, Rich]	[Mike, Student]	[Jack, Married]	[Paul]	[Ben, Employee]	[Immigrant]
[John]	X				X			X
[Smith]		X					X	X
[Nick, Rich]			X					
[Mike, Student]			X	X		X		X
[Jack, Married]					X			
[Paul]			X			X		
[Ben, Employee]							X	
[Immigrant]								X

PARTIAL ORDER OF PRIMITIVE CONCEPTS DIAGRAM

• The completion of this partial order is isomorphic to the concept lattice of *I*.

APPLICATIONS

- Formal Concept Analysis or Concept Lattice Diagrams have applications in
 - Knowledge Representation and Discovery
 - Data Mining
 - Information Retrieval
 - Ontology
 - Machine Learning
 - Program Analysis

CONCLUSION

• Computing a concept lattice is very time consuming, so the disjoint union of G + M when distinguished into four cases gives a pre-order relation which on completion is isomorphic to the concept lattice of I.

BIBLIOGRAPHY

- [1] Rudolf Berghammer and Michael Winter. Decomposition of relations and concept lattices. Fundamenta Informaticae, 126(1):37{82, 2013.
- [2] Bernhard Ganter, Gerd Stumme, and R Wille. Formal concept analysis: Methods and applications in computer science. TU Dresden, 2003.
- [3] Bernhard Ganter and Rudolf Wille. Formal concept analysis: mathematical foundations. Springer Science & Business Media, 2012.
- [4] Dmitry I Ignatov. Introduction to formal concept analysis and its applications in information retrieval and related fields. In Russian Summer School in Information Retrieval, pages 42–141. Springer, 2014.
- [5] Sergei O Kuznetsov. Machine learning on the basis of formal concept analysis. Automation and Remote Control, 62(10):1543–1564, 2001.

BIBLIOGRAPHY – CONT'D

- [6] Jirapond Muangprathub. A novel algorithm for building concept lattice. Applied Mathematical Sciences, 8:507–515, 01 2014.
- [7] Marek Obitko, Vaclav Snasel, Jan Smid, and V Snasel. Ontology design with formal concept analysis. In CLA, volume 128, pages 1377–90, 2004.
- [8] Jonas Poelmans, Paul Elzinga, Stijn Viaene, and Guido Dedene. Formal concept analysis in knowledge discovery: a survey. In International conference on conceptual structures, pages 139–153. Springer, 2010.
- [9] Gerd Stumme. Efficient data mining based on formal concept analysis. In International conference on database and expert systems applications, pages 534–546. Springer, 2002.
- [10] Uta Priss. Linguistic applications of formal concept analysis. In Formal Concept Analysis, pages 149–160. Springer, 2005.

