PLANÁRNÍ MIKROVLNNÉ OBVODY

Prof. Ing. Karel Hoffmann, CSc.

Učební text "Planární mikrovlnné obvody" je určen posluchačům inženýrské etapy studia na Elektrotechnické fakultě ČVUT Praha, kteří si zvolili předmět stejného názvu. Jako doplňkový text jej lze doporučit i v předmětu "Aktivní mikrovlnné obvody".

Problematika mikrovlnných planárních obvodů je značně rozsáhlá. Předmět "Planární mikrovlnné obvody" je koncipován tak, aby poskytl základní teoretické i praktické informace o nejdůležitějších pasivních prvcích používaných v technice mikrovlnných integrovaných a monolitických obvodů. Jsou objasňovány základní principy činnosti, vždy doplněné odkazy na zdrojovu literaturu a prakticky použitelnými vzorci.

Tento učební text vznikl z potřeby omezit mechanické opisování matematických vztahů a obkreslování obrázků během přednášek a vytvořit větší prostor pro objasňování principů činnosti, technologické poznámky a praktické zkušenosti. Jedná se tedy pouze o pracovní pomůcku k přednáškám, nikoli o souvisle psaný text věnovaný dané problematice. Výběr prvků a odpovídajících vzorců je proveden s ohledem na jejich maximální využitelnost v inženýrské praxi.

V úvodní kapitole je uveden přehled nejdůležitějších vztahů týkajících se teorie vedení. Následuje kapitola věnovaná základním typům planárních vedení jako je symetrické páskové, mikropáskové, šterbinové a koplanární vedení. Následují vázaná vedení, různé typy směrových vazebních členů a děličů výkonu. Samostatné kapitoly jsou také věnovány mikrovlnným součástkám se soustředěnými parametry, mikrovlnným planárním rezonančním obvodům a mikrovlnným planárním filtrům. Učební text je zakončen přehledem použité literatury. V přílohách jsou uvedeny ukázky některých komerčně dostupných substrátů a dielektrických rezonátorů spolu se semestrálními projekty.

Autor se při vytváření koncepce předmětu inspiroval poznámkami k přednáškám z oblasti mikrovlnné integrované techniky, které vytvořil Prof. Ing. Jiří Svačina, CSc. z VÚT v Brně. Za jejich darování vyslovuje tímto vřelé poděkování.

Autor

Obsah

1. Vedení - základní vztahy	3
1.1. Telegrafní rovnice	3
1.2. Bezeztrátové vedení	4
1.3. Vedení s malými ztrátami	5
1.4. Koeficient odrazu a impedance na vedení	6
2. Planární vedení	8
2.1. Základní typy vedení	8
2.2. Konektory používané pro MIO	9
2.3. Substráty	10
2.4. Technologie výroby MIO	12
2.5. Metody výpočtu Z_{ν} , λ_g , ε_{ef} , β , disperze	14
2.6. Symetrické páskové vedení	19
2.7. Mikropáskové vedení	21
2.8. Štěrbinové vedení	26
2.9. Třívodičové koplanární vedení	20
2.10. Dvouvodičové koplanární vedení	34
2.11. Vázané symetrické páskové vedení	37
2.12. Mikropáskové vázané vedení	40
3. Směrové vazební členy	44
3.1. Ideální směrová odbočnice	44
3.2. Reálná odbočnice	45
3.3. Směrová odbočnice z vázaných vedení	47
a) Princip činnosti směrové odbočnice a odvození S-parametrů	47
b) Interdigitální (Langeho) odbočnice	54
3.4. Příčkové vazební členy	56
a) Dvoupříčkový vazební člen	56
b) Vícepříčkové vazební členy	59 50
3.5. Kruhový vazební člen3.6. Kombinovaný hybridní člen (de Ronde)	59 63
4. Děliče výkonu	68
4.1. Wilkinsonův dělič výkonu	68
4.2. Děliče výkonu 3 dB	69
4.3. Děliče výkonu s nestejným dělicím poměrem	70
4.4. Mnohavýstupové děliče výkonu	71
5. Mikrovlnné součástky se soustředěnými parametry	72
5.1. Induktory	72
a) Plochý pásek ve volném prostoru	72
b) Vodič kruhového průřezu ve volném prostoru	73
c) Plochá smyčka	74
d) Kruhová spirála	74
e) Čtvercová spirála	77
f) Meandrový induktor	78
g) Sériový induktor z krátkého úseku vedení	78
h) Paralelní induktor z krátkého úseku vedení	79

5.2. Kapacitory	80
a) Mezera v mikropásku	80
b) Interdigitální kapacitor	81
c) Jednovrstvé kondenzátory MIM	82
d) Jednovrstvé kondenzátory MIS	83
e) Tenkovrstvý kapacitor	83
f) SMD kapacitor	84
g) Kapacitor z krátkého úseku vedení	84
h) Kapacitní pahýl	85
5.3. Rezistory	86
a) Krátký úsek odporového vedení	86
b) SMD odpor	87
c) Přizpůsobená zátěž	88
6. Rezonanční obvody v mikrovlnné integrované technice	89
6.1. Mikropáskové rezonátory	89
a) Rezonátor z úseku vedení	89
b) Obdélníkový rezonátor	92
c) Kruhový diskový rezonátor	96
d) Prstencový rezonátor	98
6.2. Dielektrické rezonátory	100
6.3. Rezonátory se soustředěnými parametry	105
7. Mikrovlnné planární filtry	106
7.1. Používané principy	106
7.2. Dolnofrekvenční propust	110
7.3. Hornofrekvenční propust	111
7.4. Pásmová propust	111
7.5. Pásmová zádrž	112
7.6. Směrové filtry	114
8. Literatura	115
9. Přílohy	123
9.1. Substráty	124
9.2. Dielektrické rezonátory	126
9.3. Semestrální projekty	132