Machine Learning W11 Tutorial

COMP30027 | Sandy Luo

Overview

Neural Networks

Concept, code

Q1:

This two layers deep network is composed of three perceptrons. The two perceptrons of the first layer implement the AND and OR functions, respectively.

Determine the weights w_1 , w_2 and bias (w_0) for the layer 2 perceptron such that the network implements the XOR function.

Q1:

Determine the weights w_1 , w_2 and bias (w_0) for the layer 2 perceptron such that the network implements the XOR function.

- The input function for the perceptron on layer 2 = weighted sum of its input.
- The activation function f for the perceptron on layer 2 is a step function.
- Assume the weights for the layer 1 perceptrons are given.

Q1:

• Input: P = <1, p1, p2>, W = <w0, w1, w2>

x_1	x_2	p_1	p_2	у
		$f_{AND}(x)$	$f_{OR}(x)$	$x_1 XOR x_2$
1	0	0	1	1
0	1	0	1	1
1	1	1	1	0
0	0	0	0	0

ер	Р	z = w . P	ŷ	у	Δw_{1i}
	$< p_0, p_1, p_2 >$	$w_0 \times p_0 + w_1 \times p_1 + w_2 \times p_2$	f(z)		$\lambda (y - \hat{y}) p_i$

Q2(a):

Neural networks are used for <u>representation learning</u>; the representations (or "embeddings") learned by neural networks trained on one task are often useful for a variety of other tasks.

• What are the features of neural networks that make them particularly suitable for representation learning?

Q2(a):

What are the features of neural networks that make them particularly suitable for representation learning?

- Hierarchical Representation Learning
- Non-Linearity: Non-linear activation functions
- Automatic Feature Extraction
- End-to-End Learning: Can directly map input data to output predictions without relying on explicit intermediate steps.
- Scalability

Q2(b):

Neural networks are used for <u>representation learning</u>; the representations (or "embeddings") learned by neural networks trained on one task are often useful for a variety of other tasks.

• What is a "neural network embedding" and how is it useful in machine learning?

Q2(b):

What is a "neural network embedding" and how is it useful in machine learning?

- Learned, dense, low(er) dimensional, representation of data created by NNs
 - Makes features high-level patterns! → Dimensionality reduction
 - Captures similarity
- Input for downstream tasks
 - Allows for transfer learning

Q3:

Calculate the number of trainable parameters in a multilayer perceptron with one hidden layer. Assume:

- the input size is 1000
- the hidden layer size is 100
- the output layer size is 20

Q3:

Calculate the number of trainable parameters in a multilayer perceptron with one hidden layer. Assume:

- the input size is 1000
- the hidden layer size is 100
- the output layer size is 20

Q3:

Calculate the number of trainable parameters in a multilayer perceptron with one hidden layer. Assume:

- the input size is 1000
- the hidden layer size is 100
- the output layer size is 20

```
(1000 weights + 1 bias) * 100 layers + (100 weights + 1 bias) * 20 layers = 100100 + 2020 = 102120
```


Q4:

What is an autoencoder and how is it trained?

Q4:

What is an autoencoder and how is it trained?

- NN for unsupervised learning
- Ouput in the same form as the input
 → e.g. image
- Hidden layer → lower-dimensional (latent) representation of input
- Training Objective:
 - Minimise the difference between the input and its reconstruction

Q5:

How does the training process of a **Generative Adversarial Network** (GAN) differ from traditional supervised learning?

Q5:

How does the training process of a **Generative Adversarial Network** (GAN) differ from traditional supervised learning?

- Consists of two neural networks:
 - Generator
 - Discriminator
- Training → competition b/w the two networks

 \bigcirc

Q5:

How does the training process of a **Generative Adversarial Network** (GAN) differ from traditional supervised learning?

Generator's goal:

• Fool the discriminator

• Maximise D(G(z)) → better fakes

Real (1)

or
Fake (0)

Discriminator's goal:

Real input

Can treat as a zero-sum game w/ goal of finding equilibrium b/w G & D

Maximise D(x) and minimise

Correctly classify real vs fake

 $D(G(z)) \rightarrow distance b/w real/fake$