Functional and logic programming written exam -

Important:

- 1. Subjects are graded as follows: By default 1p; A − 2p; B 4p; C 3p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- **A.** Let L be a list of numbers and given the following PROLOG predicate definition **f(list, integer)**, with the flow model (i, o):

```
f([], -1).

f([H|T],S):-H>0, \underline{f(T,S1)}, S1<H,!,S is H.

f([\_|T],S):-\underline{f(T,S1)}, S is S1.
```

Rewrite the definition in order to avoid the recursive call **f(T,S)** in both clauses. Do NOT redefine the predicate. Justify your answer.

B. Write a PROLOG program that generates the list of permutations of the set 1..N, having the property that the absolute value of the difference between 2 consecutive values from the permutation is >=2. Write the mathematical models and flow models for the predicates used. For example, for N=4 \Rightarrow [[3,1,4,2], [2,4,1,3]] (not necessarily in this order).

C. Given a nonlinear list, write a Lisp function to return the list with all atoms on even levels replaced by zero. The superficial level is assumed 1. **A MAP function shall be used.** $\underline{\textit{Example}}$ for the list (a (1 (2 b)) (c (d))) the result is (a (0 (2 b)) (0 (d))).