

N°2017241108

Mestrado Integrado em Engenharia Electrotecnica e de Computadores Mecatronica PL2
Projeto de integração Smartfeeder XL
Grupo 8
Fabian Pascual Dias
N° 2016107423
José Miguel Almeida da Mota Carvalho

24/03/2021

Objetivo:

Criar um Auto feeder inteligente para animais de médio e grande porte (Um cão grande).

Com uma carência de alimentadores automáticos no mercado que possam comportar uma grande quantidade de alimento e prover a múltiplos animais de grande porte, decidimos criar um produto que viabilizasse a alimentação de forma controlada remota e autônoma.

O alimentador é composto por 3 partes, o reservatório, o seletor planetário, e a estação de alimentação. Primeiramente a comida é colocada no reservatório. O reservatório através de um parafuso irá despejar o alimento no seletor planetário, que tem como objetivo medir a porção e distribuí-la para a estação de alimento correta. Esse disco roda, deixando assim a comida entrar em todos os compartimentos. Cada compartimento vai ter um valor médio de ração. Dependente do número de animais a alimentar, o número de compartimentos será o dobro. A decisão base foi de 3 cães, logo o disco irá precisar de 6 compartimentos. Em baixo de todos os compartimentos existe outra comporta q vai abrir para deixar a ração passar para outro tubo, este levará a comida para a tigela. Enquanto o disco planetário roda, um compartimento abrirá a comporta de cima para deixar comida entrar, ao mesmo tempo, o compartimento ao lado, irá abrir a comporta de baixo para deixar a comida cair no tubo, que direciona para a tigela. O cão ao aproximar da tigela, o feeder vai detectar o cão e vai saber qual a tigela que ele está, e consoante o seu perfil, saberá o quanto de comida pudera disponibilizar e se terá de disponibilizar a comida em "pulsos". Também através do perfil do animal, o feeder saberá o nível ideal de altura q a tigela vai estar, assim corrigindo para as dimensões mais ergonômicas de cada animal.

Materiais:

- 7 motores(1 girar o planetário, 1 subir e descer a tigela,1 esvaziar o reservatório, 3 para abrir a comporta,1 para deixar cair a comida do planetário). Dos quais 4 servos e 3 Stepper motors
- Sensor RFID (para detecção e identificação do animal)
- Tela de LCD (para mostrar informações9
- Arduino UNO
- Sensores de preção
- Modulo Bluetooth
- Sensor de umidade
- Tubos e conexões PVC + impressões 3d (Peças do mecanismo e estrutura)

Calendario:

Semana/ Fase	6° (22/03)	7° (29/03)	8° (05/04)	9º (12/04)	10° (19/04)	11° (26/04)	12° (03/05)	13° (10/05)
Elaboração do projecto	FJ							
Compra do material	F	F	F					
Desing	FJ	FJ	FJ					
Programação	FJ	FJ	FJ	J	J	J		
Montagem			F	F	F	F		
Implementação				FJ	FJ	FJ		
teste				FJ	FJ	FJ	F	_
Correção de problemas					F	FJ	FJ	FJ

Distribuição de tarefas:

Todas as tarefas vão ser executadas mutuamente pelos integrantes porém com enfase nas seguintes partes:

Fabian Dias:

Responsável por criar o design, adquirir os componentes eletrônicos, projetar, modelar e imprimir as peças 3d necessárias, auxiliar no código, implementar, montar e testar o produto

José Mota:

Auxiliar na criação do protótipo, criação do código, Implementar as comunicações wireless e a base de dados criar a GUI *graphical user interface*, testar e corrigir problemas finais

