Error-correcting codes are used to reduce errors when data is transmitted in noisy communication channels, like a telephone line, a satellite communication link, etc. The objective of error-correcting codes is to add a certain amount of redundancy to the message, so that even if some errors occur during transmission, we have high probability to recover the original message.

Definition 0.1. A *q-ary code* is a given set of sequences of symbols where each symbol is chosen from a set $F_q = \{\lambda_1, \lambda_2, \dots, \lambda_q\}$ of q distinct elements. The set F_q is called the *alphabet*.

In particular, the 2-ary codes are called binary codes.

Definition 0.2. A code in which every codeword is of fixed length n is called **block code of length** n.

We will deal with such codes only, so from now on, 'code' will mean 'block code'. A code C with M codewords of length n is often written as $M \times n$ array. For example, the binary repitition code of length 3 is $\begin{bmatrix} 000 \\ 111 \end{bmatrix}$.

The elements of the set $(F_q)^n$ are called *words* or *vectors* and if C is a q-ary code of length n then $C \subseteq (F_q)^n$.

$$(F_a)^n = \{ \mathbf{a} \mid \mathbf{a} = a_1 a_2 \cdots a_n, \ a_i \in F_a \}$$

Definition 0.3 (Hamming distance). The *distance* between two vectors \mathbf{x} and \mathbf{y} of $(F_q)^n$, denoted by $d(\mathbf{x}, \mathbf{y})$, is the number of places in which they differ.

Theorem 0.4. The Hamming distance satisfies:

- (i) $d(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$.
- (ii) $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x}) \ \forall \ \mathbf{x}, \mathbf{y} \in (F_q)^n$.
- (iii) $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z}) + d(\mathbf{y}, \mathbf{z}) \ \forall \ \mathbf{x}, \mathbf{y}, \mathbf{z} \in (F_q)^n$. (Triangle inequality)

Proof. First two statements are trivial. In third, we note that $d(\mathbf{x}, \mathbf{y})$ is the minimum number of changes required to change \mathbf{x} to \mathbf{y} , but we can also do this change by first changing \mathbf{x} to \mathbf{z} in $d(\mathbf{x}, \mathbf{z})$ changes and then from \mathbf{z} to \mathbf{y} in $d(\mathbf{z}, \mathbf{y})$ changes. Thus, $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z}) + d(\mathbf{y}, \mathbf{z})$.

Suppose a codeword \mathbf{x} is being transmitted, and we receive a distorted vector \mathbf{y} . If we decode it as \mathbf{x}' such that $d(\mathbf{y}, \mathbf{x}')$ is minimum, then this decoding scheme is called **nearest neighbour decoding**.

Definition 0.5. A transmitting channel is said to be *q-ary symmetric channel* if

- 1. Each symbol transmitted has the same probability $p(<\frac{1}{2})$ of being received in error.
- 2. If a symbol is received with error, then all q-1 errors are equally likely.

Theorem 0.6. For a binary symmetric channel, nearest neighbour decoding is the maximum likelihood decoding, i.e. nearest neighbour decoding gives the highest probability of error detection in these types of channels.

Proof. The probability that codeword has errors at given i positions is $p^i(1-p)^{n-i}$, which decreases as i increases (as $p < \frac{1}{2}$), hence the least distant word is the most probable of being the original word. \square

Definition 0.7. For a code C, we define **minimum distance**, denoted by d(C), as the smallest of all the distances between different codewords of C, i.e.

$$d(C) = \min \{ d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in C, \ \mathbf{x} \neq \mathbf{y} \}$$

Theorem 0.8.

- (i) A code C can detect upto s errors if $d(C) \ge s + 1$.
- (ii) A code C can correct upto t errors if $d(C) \ge 2t + 1$.

Proof.

(i) Suppose $d(C) \ge s + 1$. Now if the recieved codeword has less than or equal to s errors, it will be a different codeword than any present in C. Hence, the error will be detected.

(ii) Suppose $d(C) \ge 2t + 1$. Let the original codeword be **x** and received one be **y** with $d(\mathbf{x}, \mathbf{y}) \le t$. Let **x**' be any codeword in C other than **x**, then by triangle inequality,

$$d(\mathbf{x}, \mathbf{x}') \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{x}', \mathbf{y}) \ge 2t + 1$$
$$d(\mathbf{x}', \mathbf{y}) \ge t + 1$$

Therefore, \mathbf{x} is the nearest neighbour to \mathbf{y} , and nearest neighbour decoding corrects the error.

Corollary 0.8.1. If code C has minimum distance d then it can be used either:

- (i) to detect upto d-1 errors; or
- (ii) to correct upto $\left\lfloor \frac{d-1}{2} \right\rfloor$ errors in any coedword. (|x| denotes the greatest integer leass than or equal to x)

Proof. Simple rearrangment of terms in the Theorem 0.8 will give the result.

Notation: A (n, M, d)-code is a code with M words of length n, having minimum distance d.