```
In [1]: import warnings
warnings.filterwarnings("ignore")
```

In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [3]: from statsmodels.tsa.statespace.sarimax import SARIMAX
from pmdarima import auto_arima
from statsmodels.tsa.seasonal import seasonal_decompose

In [7]: from sklearn.metrics import mean_absolute_percentage_error,mean_sq

In [8]: import scipy.stats as stats

In [9]: df=pd.read_csv('RestaurantVisitors.csv',index_col='date',parse_date

In [10]: df

Out [10]:

	weekday	holiday	holiday_name	rest1	rest2	rest3	rest4	total
date								
2016-01-01	Friday	1	New Year's Day	65.0	25.0	67.0	139.0	296.0
2016-01-02	Saturday	0	na	24.0	39.0	43.0	85.0	191.0
2016-01-03	Sunday	0	na	24.0	31.0	66.0	81.0	202.0
2016-01-04	Monday	0	na	23.0	18.0	32.0	32.0	105.0
2016-01-05	Tuesday	0	na	2.0	15.0	38.0	43.0	98.0
2017-05-27	Saturday	0	na	NaN	NaN	NaN	NaN	NaN
2017-05-28	Sunday	0	na	NaN	NaN	NaN	NaN	NaN
2017-05-29	Monday	1	Memorial Day	NaN	NaN	NaN	NaN	NaN
2017-05-30	Tuesday	0	na	NaN	NaN	NaN	NaN	NaN
2017-05-31	Wednesday	0	na	NaN	NaN	NaN	NaN	NaN

517 rows × 8 columns

```
In [11]:
    df.index.freq='D'
```

In [12]: df.tail()

Out[12]:

	weekday	holiday	holiday_name	rest1	rest2	rest3	rest4	total
date								
2017-05-27	Saturday	0	na	NaN	NaN	NaN	NaN	NaN
2017-05-28	Sunday	0	na	NaN	NaN	NaN	NaN	NaN
2017-05-29	Monday	1	Memorial Day	NaN	NaN	NaN	NaN	NaN
2017-05-30	Tuesday	0	na	NaN	NaN	NaN	NaN	NaN
2017-05-31	Wednesday	0	na	NaN	NaN	NaN	NaN	NaN

In [13]: df1=df.dropna()
df1.tail()

Out[13]:

		weekday	holiday	holiday_name	rest1	rest2	rest3	rest4	total
_	date								
-	2017-04-18	Tuesday	0	na	30.0	30.0	13.0	18.0	91.0
	2017-04-19	Wednesday	0	na	20.0	11.0	30.0	18.0	79.0
	2017-04-20	Thursday	0	na	22.0	3.0	19.0	46.0	90.0
	2017-04-21	Friday	0	na	38.0	53.0	36.0	38.0	165.0
	2017-04-22	Saturday	0	na	97.0	20.0	50.0	59.0	226.0

```
In [14]: df1.info()
```

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 478 entries, 2016-01-01 to 2017-04-22

Freq: D

Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	weekday	478 non-null	object
1	holiday	478 non-null	int64
2	holiday_name	478 non-null	object
3	rest1	478 non-null	float64
4	rest2	478 non-null	float64
5	rest3	478 non-null	float64
6	rest4	478 non-null	float64
7	total	478 non-null	float64
dtvr	pes: float64(5)	. int64(1). obie	ct(2)

dtypes: float64(5), int64(1), object(2)

memory usage: 33.6+ KB

```
In [17]: cols=['rest1','rest2','rest3','rest4','total']
         for col in cols:
             df1[col]=df1[col].astype(int)
```

In [18]: df1.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 478 entries, 2016-01-01 to 2017-04-22

Freq: D

Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	weekday	478 non-null	object
1	holiday	478 non-null	int64
2	holiday_name	478 non-null	object
3	rest1	478 non-null	int64
4	rest2	478 non-null	int64
5	rest3	478 non-null	int64
6	rest4	478 non-null	int64
7	total	478 non-null	int64

dtypes: int64(6), object(2)

memory usage: 33.6+ KB

```
In [19]: | ax=df1['total'].plot(figsize=(16,5))
          for x in df1.query('holiday==1').index:
              ax.axvline(x=x,color='r')
           300
           250
           200
           150
            Jan
2016
In [20]:
          result=seasonal_decompose(df1['total'])
          result.plot();
                                       total
             300
                    2016-03 2016-05 2016-07 2016-09 2016-11 2017-01 2017-03
             150
             100
                                       2016-09 2016-11 2017-01 2017-03
             2016-01 2016-03 2016-05 2016-07
           Seasonal
              2016-01 2016-03 2016-05 2016-07 2016-09 2016-11 2017-01 2017-03
              2016-01 2016-03 2016-05 2016-07 2016-09 2016-11 2017-01 2017-03
In [21]:
          auto_arima(df1['total'], seasonal=True, m=7, trace=True).summary()
          Performing stepwise search to minimize aic
           ARIMA(2,0,2)(1,0,1)[7] intercept
                                                   : AIC=inf, Time=1.03 sec
                                                   : AIC=5269.484, Time=0.01 sec
           ARIMA(0,0,0)(0,0,0)[7] intercept
           ARIMA(1,0,0)(1,0,0)[7] intercept
                                                   : AIC=4916.749, Time=0.34 sec
                                                    AIC=5049.644, Time=0.20 sec
           ARIMA(0,0,1)(0,0,1)[7] intercept
           ARIMA(0,0,0)(0,0,0)[7]
                                                    AIC=6126.084, Time=0.01 sec
                                                    AIC=5200.790, Time=0.06 sec
           ARIMA(1,0,0)(0,0,0)[7] intercept
           ARIMA(1,0,0)(2,0,0)[7] intercept
                                                   : AIC=4845.442, Time=0.89 sec
                                                   : AIC=inf, Time=1.14 sec
           ARIMA(1,0,0)(2,0,1)[7] intercept
           ARIMA(1,0,0)(1,0,1)[7] intercept
                                                    AIC=4816.600, Time=0.53 sec
           ARIMA(1,0,0)(0,0,1)[7]
                                                   : AIC=5058.642, Time=0.25 sec
                                     intercept
```

ARIMA(1,0,0)(1,0,2)[7] intercept ARIMA(1,0,0)(0,0,2)[7] intercept

: AIC=4951.803, Time=0.97 sec

AIC=4982.776, Time=0.45 sec

```
ARIMA(1,0,0)(2,0,2)[7] intercept
                                   : AIC=inf, Time=1.24 sec
ARIMA(0,0,0)(1,0,1)[7] intercept
                                   : AIC=4770.490, Time=0.49 sec
ARIMA(0,0,0)(0,0,1)[7] intercept
                                   : AIC=5093.130, Time=0.09 sec
                                   : AIC=4926.360, Time=0.23 sec
ARIMA(0,0,0)(1,0,0)[7] intercept
ARIMA(0,0,0)(2,0,1)[7] intercept
                                   : AIC=4975.347, Time=1.11 sec
                                   : AIC=4968.926, Time=0.74 sec
ARIMA(0,0,0)(1,0,2)[7] intercept
ARIMA(0,0,0)(0,0,2)[7] intercept
                                   : AIC=5010.582, Time=0.29 sec
                                   : AIC=4859.638, Time=1.22 sec
ARIMA(0,0,0)(2,0,0)[7] intercept
ARIMA(0,0,0)(2,0,2)[7] intercept
                                   : AIC=inf, Time=1.07 sec
ARIMA(0,0,1)(1,0,1)[7] intercept
                                   : AIC=inf, Time=0.62 sec
                                   : AIC=inf, Time=0.73 sec
ARIMA(1,0,1)(1,0,1)[7] intercept
                                   : AIC=inf, Time=0.14 sec
ARIMA(0,0,0)(1,0,1)[7]
```

Best model: ARIMA(0,0,0)(1,0,1)[7] intercept

Total fit time: 13.897 seconds

Out [21]:

SARIMAX Results

Dep. Variable:	У	,	No. Obs	servations:	478
Model:	SARIMAX(1, 0, [1], 7)	1	Log	Likelihood	-2381.245
Date:	Tue, 26 Apr 2022			AIC	4770.490
Time:	06:55:33	,		BIC	4787.169
Sample:	O)		HQIC	4777.048
	- 478	,			
Covariance Type:	opg				
C	oef std err z	<u>.</u>	P> z	[0.025	0.975]

	coef	std err	Z	P> z	[0.025	0.975]
intercept	4.0723	1.600	2.545	0.011	0.936	7.209
ar.S.L7	0.9680	0.012	81.909	0.000	0.945	0.991
ma.S.L7	-0.7313	0.051	-14.451	0.000	-0.830	-0.632
sigma2	1248.4033	75.522	16.530	0.000	1100.384	1396.423

Ljung-Box (L1) (Q): 14.32 Jarque-Bera (JB): 59.98

Prob(Q): 0.00 **Prob(JB):** 0.00

Heteroskedasticity (H): 0.87 Skew: 0.71

Prob(H) (two-sided): 0.38 Kurtosis: 4.01

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [22]: train=df1.iloc[:436]
  test=df1.iloc[436:]
  len(test)
Out[22]: 42
```

In [23]: model=SARIMAX(train['total'],order=(0,0,0),seasonal_order=(1,0,1,7)
model.summary()

RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16N = 3 M = 10

At X0 0 variables are exactly at the bounds

At iterate 0 f= 5.01719D+00 |proj g|= 8.65114D-02

At iterate 5 f= 4.98913D+00 |proj g|= 3.10711D-02

At iterate 10 f = 4.97484D + 00 |proj g| = 1.66063D - 02

At iterate 15 f = 4.96669D + 00 | proj g|= 5.66525D-04

At iterate 20 f = 4.96644D + 00 |proj g| = 2.66764D - 06

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F 3 20 24 1 0 0 2.668D-06 4.966D+00 5 = 4.9664421023955105

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL

This problem is unconstrained.

Out [23]: SARIMAX Results

Dep. Variable: total No. Observations: 436

Model: SARIMAX(1, 0, [1], 7) **Log Likelihood** -2165.369

	Date:	Tue, 26 A	pr 2022	AIC	4336.738	
Time: 0			06:55:45		BIC	4348.970
	Sample:	01-0	01-2016		HQIC	4341.565
		- 03-	11-2017			
Covarian	се Туре:		opg			
	coef	std err	z	P> z	[0.025	0.975]
ar.S.L7	0.9999	9.58e-05	1.04e+04	0.000	1.000	1.000
ma.S.L7	-0.9383	0.024	-39.198	0.000	-0.985	-0.891
sigma2	1111.8065	58.739	18.928	0.000	996.680	1226.932
Ljung-Box (L1) (Q):)): 15.40	Jarque-Bera (JB):		83.56	
	Prob(C	0.00	Pr	rob(JB):	0.00	
Heteroskedasticity (H):		I): 0.96	Skew:		0.72	
Prob(F	l) (two-sided	i): 0.81	K	urtosis:	4.59	

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In [24]: model.plot_diagnostics(figsize=(15,12));

In [25]: start=len(train)
 end=start+len(test)-1
 predictions=model.predict(start=start,end=end,dynamic=False).rename

In [26]: ax=test['total'].plot(figsize=(16,5))
 predictions.plot(legend=True)
 for x in test.query('holiday==1').index:
 ax.axvline(x=x,color='r')


```
In [28]: | mean_absolute_percentage_error(test['total'], predictions)
Out [28]: 0.20157016526303326
In [29]:
         modelExog=SARIMAX(train['total'],exog=train['holiday'],order=(0,0,0
         modelExog.summary()
          This problem is unconstrained.
         RUNNING THE L-BFGS-B CODE
                    * * *
         Machine precision = 2.220D-16
                                              10
          N =
                         4
                               M =
         At X0
                       0 variables are exactly at the bounds
         At iterate
                       0
                            f= 5.24304D+00
                                                |proj q| = 7.49269D-02
         At iterate
                       5
                            f= 5.09816D+00
                                                |proj g| = 9.66459D-03
         At iterate
                      10
                            f= 4.81986D+00
                                                |proj g| = 1.11454D-02
         At iterate
                      15
                            f= 4.81298D+00
                                                |proj g| = 2.51383D-04
         At iterate
                            f= 4.81287D+00
                                                |proj q| = 8.62111D-05
                      20
               = total number of iterations
               = total number of function evaluations
         Tnf
         Tnint = total number of segments explored during Cauchy searches
         Skip = number of BFGS updates skipped
         Nact = number of active bounds at final generalized Cauchy point
         Projg = norm of the final projected gradient
               = final function value
                    * * *
                                      Skip Nact
            N
                 Tit
                         Tnf
                               Tnint
                                                     Projg
                          27
                                               0
                                                   4.105D-06
                                                               4.813D+00
                 4.8128709766911708
           F =
         CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL
Out [29]:
         SARIMAX Results
```

Dep. Variable: total No. Observations: 436 **Model:** SARIMAX(1, 0, [1], 7) Log Likelihood -2098.412 Tue, 26 Apr 2022 AIC 4204.823 Date:

Time: 06:56:42 BIC 4221.134

Sample: 01-01-2016 **HQIC** 4211.260

- 03-11-2017

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	0.975]
holiday	69.6423	3.968	17.550	0.000	61.865	77.420
ar.S.L7	0.9999	7.57e-05	1.32e+04	0.000	1.000	1.000
ma.S.L7	-0.9429	0.023	-40.396	0.000	-0.989	-0.897
sigma2	813.5453	47.380	17.171	0.000	720.681	906.409

Ljung-Box (L1) (Q): 15.58 Jarque-Bera (JB): 20.71

Prob(Q): 0.00 **Prob(JB):** 0.00

Heteroskedasticity (H): 1.00 Skew: 0.23

Prob(H) (two-sided): 1.00 Kurtosis: 3.96

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In [30]: predictionsExog=modelExog.predict(start=start,end=end,exog=test['ho

In [32]:
 mean_absolute_percentage_error(test['total'],predictionsExog)

Out[32]: 0.16142983735081276

In [33]: modelExog.plot_diagnostics(figsize=(15,8));

In []: