	ort Questions. Each correct answer gives the number of points indicated ification is required. In the following subtasks, let $A = \{\emptyset, \{\emptyset\}\}$.	iii tiic brackets. Tve
1.)	List all subsets of A which are elements of A .	(1 Point
2.)	List all elements of $(A \cap \{\emptyset\}) \times \{A\}$.	(2 Points
3.)	Compute the number of subsets of the set $\mathcal{P}(\mathcal{P}(A) \setminus A)$.	(2 Points
4.)	Consider the relation $\rho = \{(\varnothing, \{\varnothing\}), (\{\varnothing\}, A), (A, \{\{\varnothing\}\})\} \text{ on } \mathcal{P}(A)$. Wrisentation of the transitive closure ρ^* of ρ .	ite the matrix repre
5.)	Find a non-empty set S and a relation ρ on S which is both an equival partial order relation.	lence relation and a
	partial order relation.	(2 1 0 11 11 2
6.)	Give an explicit expression for an injective function $f: \mathbb{Z} \to \mathbb{N}$ such that f	f(0) = 11. (2 Points
7.)	Draw the Hasse Diagram of the poset $(\{1, 2, 3, 4, 6, 8, 12, 24\};)$.	(2 Points
,		,

 $\mathbf{c})$

(*) Consider the set $A = \mathbb{N}^{\mathbb{N}}$ of functions from natural numbers to natural numbers. On the set consider the relation ρ defined as

 $f \rho g \iff f(n) \mid g(n) \text{ for all but finitely many } n \in \mathbb{N}.$

Prove or disprove that ρ is a partial order relation.	(3 Points)
	(5.1.011115)
(*) Let X be a non-empty set and let ρ and τ be relations on X.	Prove the following statement:
$(\tau \circ \rho) \circ \tau \subseteq \tau \Longrightarrow \rho \circ \tau \text{ is transitive}$	
Explicitly justify each step in your solution.	(6 Points)

 $(\star \star)$ Consider the following relation \leq on the set of integers \mathbb{Z} :

$a \preccurlyeq b \iff$	a	< b	or	a =	b	and	a	<	b.
-------------------------	---	-----	----	------	---	-----	---	---	----

Prove that (\mathbb{Z}, \preceq) is a poset and that it is well-ordered.	(8 Points)

$$A = \left\{ f \in \mathbb{N}^{\mathbb{N}} \mid \text{ for all } i, j \in \mathbb{N} \text{ if } i \mid j \text{ then } f(i) \mid f(j) \right\}.$$

Prove or disprove that the set A is countable.	(10 Points)

Short Question	ous. Each corre	et answer give	1		
1.) Compute <i>I</i>	$R_{13} (7^{2024}).$				
2.) Compute <i>I</i>	$R_{77}(100000^{60}).$				
3.) Compute φ	$\phi(\gcd(126,72)\cdot 3)$	3^2).			
4.) Compute <i>I</i>	$R_{100}(99^{99} + 99^{98})$	$+99^{97}\cdots+99^{97}\cdots$	9^{0}).		
spective RSA- ronalddump@pc Dump's passwo	encrypted pastus.com is 2. Frd. Show your	sswords are le Knowing that	aked online. '	The encrypted pa	usernames and rassword of a certain 151), recover Ronal (6 Point
<i>Hint:</i> $1 = 151 \cdot$	$7 - 4 \cdot 264$.				(6 Point

 (\star) Find all solutions in $\mathbb Z$ of the following system of equations:

 $x \equiv_3 2$,

x	$\equiv_{10} 4$,
x	$\equiv_7 6.$

Snow you	ır work.			(4 Points)
(* *) Let only if gcc	$a, b, c \in \mathbb{Z} \setminus \{0\}.$ $\exists (a, b) \mid c.$	Prove that the equat	ax + by = c has	solutions $(x, y) \in \mathbb{Z}^2$ if and $(6 \ Points)$
(* *) Let only if ged	$a, b, c \in \mathbb{Z} \setminus \{0\}.$ $\exists (a, b) \mid c.$	Prove that the equat	ax + by = c has	solutions $(x, y) \in \mathbb{Z}^2$ if and (6 Points)
(* *) Let only if geo	$a, b, c \in \mathbb{Z} \setminus \{0\}.$ $ a, b, c \in \mathbb{Z} \setminus \{0\}.$	Prove that the equat	ion ax + by = c has	solutions $(x, y) \in \mathbb{Z}^2$ if and (6 Points)
(* *) Let only if gcc	$a, b, c \in \mathbb{Z} \setminus \{0\}.$ $ (a, b) c.$	Prove that the equat	ion ax + by = c has	solutions $(x,y) \in \mathbb{Z}^2$ if and $(6 \ Points)$
(* *) Let only if gcd	$a,b,c \in \mathbb{Z} \setminus \{0\}.$ $ a,b \mid c.$	Prove that the equat	$ion \ ax + by = c \ has$	solutions $(x,y) \in \mathbb{Z}^2$ if and $(6 \ Points)$
(* *) Let only if ged	$a,b,c \in \mathbb{Z} \setminus \{0\}.$ $\exists (a,b) \mid c.$	Prove that the equat	$ion \ ax + by = c \ has$	solutions $(x,y) \in \mathbb{Z}^2$ if and $(6 \ Points)$
(* *) Let only if ged	$a,b,c \in \mathbb{Z} \setminus \{0\}.$ $\exists (a,b) \mid c.$	Prove that the equat	$ion \ ax + by = c \ has$	solutions $(x,y) \in \mathbb{Z}^2$ if and $(6 \ Points)$
(* *) Let only if ged	$a,b,c \in \mathbb{Z} \setminus \{0\}.$ $\exists (a,b) \mid c.$	Prove that the equat	$ion \ ax + by = c \ has$	solutions $(x,y) \in \mathbb{Z}^2$ if and $(6 \ Points)$
(* *) Let only if ged	$a,b,c \in \mathbb{Z} \setminus \{0\}.$ $\exists (a,b) \mid c.$	Prove that the equat	ax + by = c has	solutions $(x,y) \in \mathbb{Z}^2$ if and $(6 \ Points)$
(* *) Let only if geo	$a,b,c \in \mathbb{Z} \setminus \{0\}.$ $\exists (a,b) \mid c.$	Prove that the equat	ax + by = c has	solutions $(x,y) \in \mathbb{Z}^2$ if and $(6 \ Points)$
(* *) Let only if geo	$a,b,c \in \mathbb{Z} \setminus \{0\}.$ $\exists (a,b) \mid c.$	Prove that the equat	ax + by = c has	solutions $(x,y) \in \mathbb{Z}^2$ if and $(6 \ Points)$
(* *) Let only if geo	$a,b,c \in \mathbb{Z} \setminus \{0\}.$ $\exists (a,b) \mid c.$	Prove that the equat	$ion \ ax + by = c \ has$	solutions $(x,y) \in \mathbb{Z}^2$ if and $(6 \ Points)$
(* *) Let only if geo	$a,b,c \in \mathbb{Z} \setminus \{0\}.$ $ a (a,b) \mid c.$	Prove that the equat	ax + by = c has	solutions $(x,y) \in \mathbb{Z}^2$ if and $(6 \ Points)$
(* *) Let only if geo	$a,b,c \in \mathbb{Z} \setminus \{0\}.$ $ a,b c.$	Prove that the equat	ax + by = c has	solutions $(x,y) \in \mathbb{Z}^2$ if and $(6 \ Points)$

1.)	List all elements of the group $\langle \mathbb{Z}_{26}; \oplus_{26} \rangle$ which are <i>not</i> generators.	(2 Points
2.)	Consider the ring $\mathbb{Z}_{11}[x]$. Write $x^2 + 5x + 8$ as a product of irreducible elements.	(2 Points
3.)	Find a polynomial $m(x) \in \mathbb{Z}_7[x]$ such that $\mathbb{Z}_7[x]_{m(x)}$ is a field with 49 elements.	(2 Point
4.)	What is the number of non-isomorphic groups of order 37?	(1 Poin
5.)	Consider the $(5,2)$ -code $\{(0,0,0,0,0), (1,1,1,0,0), (0,0,1,1,1), (1,1,0,1,1)\}$ over the $\{0,1\}$. What is its minimum distance?	he alphab
6.)	Let G be a group and let $x \in G$ be an element of order 8. What is the order of (the direct product $G \times G$?	(x^{10}, x^{12}) i
	Consider a group $\langle G; \star, \widehat{}, e_G \rangle$. Prove that $\widehat{(a)} = a$. Each step in your solution must licitly by one of the group axioms.	be justifie

		ν= /	(, (= / /	,
) C . 1 . C . 1	/	1	<i>C</i> D 41 4	
\star \star) Consider a <i>finite</i> group	$\langle G; \star, e_G \rangle$. Let H is	be a subgroup of	G. Prove that	

$$T = \{ g \in G \mid g \star h \star \widehat{g} \in H \}$$

is a subgroup of G.

Hint: use without proof that any injective function from a finite set to itself is also surjective. (8 Points)

	(
	Page 0 of 18

 $(\star \star)$ Let F be a field. **Prove** that the following two statements are equivalent.

1.) Every polynomial $a(x) \in F[x]$ with $\deg(a(x)) \ge 1$ has a root in F.

2.`	For all $a(x), b(x)$	$\in F[x]$, if $a(x)$	and $b(x)$	have no common ro	oot, then gcd(a(x), b(x)) = 1.
-----	----------------------	------------------------	------------	-------------------	----------------	------------------

(8 Points)

$(\star \star)$ Use the resolution calculus to **prove** the statement

 $\neg(A \land B) \land (\neg B \to \neg D) \land (A \to D) \models \neg(C \to A) \lor (\neg A \land \neg C)$

(10 Points)

(\star) Consider the proof systems

$$\Sigma_1 = (\mathcal{S}_1, \mathcal{P}_1, \tau_1, \phi_1),$$

$$\Sigma_2 = (\mathcal{S}_2, \mathcal{P}_2, \tau_2, \phi_2).$$

Consider the new proof system derived from Σ_1 and Σ_2 as follows:

$$\Sigma = (\mathcal{S}_1 \times \mathcal{S}_2, \mathcal{P}_1 \times \mathcal{P}_2, \tau, \phi)$$

where

$$\tau(s_1,s_2)=1 \iff \text{ at least one of } \tau_1(s_1) \text{ and } \tau_2(s_2) \text{ equals } 1.$$

and

$$\phi((s_1,s_2),(p_1,p_2))=1 \iff \text{ exactly one of } \phi_1(s_1,p_1) \text{ and } \phi_2(s_2,p_2) \text{ equals } 1.$$

Prove or disprove the following statement: if both Σ_1 and Σ_2 are sound, then Σ is sound. (4 Points)

Prove or disprove the following statement: if both Σ_1 and Σ_2 are complete, then Σ	is complete. (4 Points)

$(\star \star)$ **Prove** that for all formulas F and G

$$(\exists x \, F) \land \forall x (F \to G) \models \exists x (F \land G).$$

nantics of predic	neorems or lemma ate logic.	as from the lec	eture notes. Us	e the definition	of \models and the $(8 \ Points)$

