Binary Search Trees and AVL Trees

Tufts University

Binary Search Trees - warmup questions

Q1: Create a BST by inserting the following keys in order: 7, 10, 5, 0, 9, 12, 15, 1, 4, 8, 11

Q2: What's the maximum height of a BST containing n elements?

Q3: What's the minimum height of a BST containing n elements?

Binary Search Trees

Container DS for fast insertion/deletions/search operations.

- Main structure is a binary tree
- Each node stores an object with a unique key
- Main invariant: objects in the right subtree of node n have smaller key than the object in n.

Similarly, left subtree stores objects with larger keys

Binary Search Trees

Container DS for fast insertion/deletions/search operations.

- Main structure is a binary tree
- Each node stores an object with a unique key
 Main invariant: objects in the right subtree of node n have smaller key than the object in n.

Similarly, left subtree stores objects with larger keys

BST Operations

- Search
- Insert
- Predecessor/Successor
- ► Find minimum/maximum
- Delete
- (sorted) Print
- **.** . . .

Search/Insert


```
SEARCH(target)
c \leftarrow \text{root}
While (c \neq \text{NIL})
\text{If } c.\text{key} = \text{target} \Rightarrow \text{Return true}
\text{Else if } c.\text{key} < \text{target} \Rightarrow c \leftarrow c.\text{left}
\text{Else } c \leftarrow c.\text{right}
\text{Return false}
```

Exercise: modify code for an Insertion instead

Predecessor/Successor

Successor(x): smallest number in T that is $\geq x$

- Successor(1)=1
- ► Successor(2)=4
- ► Successor(16)=∞
- . . .

Strict Successor: smallest number in T that is > x

Further discussion

Let's find an algorithm for STRICTSUCCESSOR

- Prove that if y is the strict successor of x, then either y is an ancestor of x or x is an ancestor of y
- ▶ Give pseudocode for STRICTSUCCESSOR.
- Prove that your algorithm is correct. The above result may be helpful.

What would you change to compute SUCCESSOR? What about PREDECESSOR/STRICTPREDECESSOR?

Finding Smallest/Largest element

Maximum right \Rightarrow right \Rightarrow ... until no right child Minimum left \Rightarrow left \Rightarrow ... until no left child

Exercise: Prove that strategy works!

Deletions

Exercise! Things to look out for

Code depends on degree!

- Deleting a leaf is easy (just remove)
- ▶ Degree one \rightarrow do a bypass
- ▶ Degree two → replace and recursively delete

Sorted print

Just do an **In-Order Traversal** of T

Inorder(x)

- if $x \neq NIL$ then
 - ► INORDER(x.left)
 - Print(x)
 - ► INORDER(x.right)

Exercise: What happens if we do preorder/postorder traversal?

Runtime?

What is the runtime of each of these operations?

- ▶ Search $\Theta(h)$
- ▶ Insert $\Theta(h)$
- ▶ Predecessor/Successor $\Theta(h)$
- Find minimum/maximum $\Theta(h)$
- ▶ Delete $\Theta(h)$
- (sorted) Print $\Theta(n)$

Where h is height of the tree h = n in the worst case

Fun interlude: building a BST

- Remember heaps?

 Single insertion in $\Theta(\log n)$ Insert n bottom-up in $\Theta(n)$
- Can we do something similar with BSTs? Yes!

RANDOMIZED-BST-BUILD(A)

Step 1: Randomly shuffle input array A

Step 2: For i from 1 to n insert A[i] in BST

Runtime?

Example: Let's insert 6, 23, 12, 4, 20, 1, ...

Same as QUICKSORT!

First pivot = root of the BST Second pivots = children of root Etc . . .

Correspondence between comparisons of both algorithms **Corollary**: the expected height of the tree is $\Theta(\log n)$

 \Rightarrow *n* insertions will need $\Theta(n \log n)$ expected time

Balancing BSTs

Runtime of most operations in BSTs is $\Theta(h)$ If we insert all nodes at once we can have $h \approx \log n$ Can we maintain balance in other situations? Yes!

- ▶ 2–3 trees
- AA trees
- ► AVL trees ← this class
- B-tree
- Red-black tree
- and more!

Introducing AVL trees

Adelson-Velsky and Landis trees (AVL trees for short) are BST with one more invariant:

▶ For any node, the difference in heights of subtrees is ≤ 1 . Is this tree an AVL tree? No!

AVL trees - Height

Lemma: the height of an AVL tree is $\Theta(\log n)$.

Corollary: most operations need $\Theta(\log n)$ time.

Proof: next lecture.

Exercise: prove **Leaf Ratio Lemma**: If x and y are leaves then $\frac{d(y)}{d(x)} \le 2$

d(x) denotes the number of edges from the root to x.

What changes in AVL trees?

Compared to BST, what do we need to change in . . .

- Search
- ▶ Insert ←
- Predecessor/Successor
- Find minimum/maximum
- ▶ Delete ←
- (sorted) Print

Inserting in AVL tree

What changes in an insertion?

After insertion we may have to rebalance

Rotations

- ▶ Rotation preserves BST properties because $X \le A \le Y \le B \le Z$
- Let's use it to preserve balance invariant in AVL trees

Insertion in AVL trees

Back to Insert(3)

5 is unbalanced (left child too deep) \Rightarrow Right rotate 5

AVL trees - Insert

INSERT(3)

5 is unbalanced (left child too deep) ⇒ Right rotate 5

General rule

After inserting node N travel back to root checking balance.

- If all nodes balanced ⇒ done!
- Otherwise, stop at first (i.e. deepest) unbalanced ancestor N
- \blacktriangleright Wlog, assume N is in the left subtree of B. Two cases:

N in left subtree of A = B.left N in right subtree of A = B.left

AVL trees - Insert: Case 1

CASE 1

Done! No more height changes!

AVL trees - Insert: Case 2

CASE 2

Case 2 cannot be fixed with 1 rotation \odot

AVL trees - Insert: Case 2 FIXED

To fix Case 2 we "zoom into" C == A.right.

How can we rebalance this tree? Hint: use 2 rotations.

AVL trees - Insert: Case 2A

No more height changes after rotation

Exercise: what if Y_1 is empty?

What about deletions?

- ▶ Perform standard BST-Delete. Check upwards for unbalance
- As before, only need to check ancestors
- Rotations can be more complicated than Insert (up to Θ(log n) rotations)