

IN THE CLAIMS

The following listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

1-9. (Canceled).

10. (Currently amended) ~~The apparatus of claim 8, further~~ An apparatus comprising:
a switch fabric to connect different ones of a first plurality of ports of said switch fabric with different ones of a second plurality of ports of said switch fabric;
a plurality of photonic detectors to detect the presence or absence of an optical signal,
said plurality of photonic detectors having a plurality of input ports;
a variable optical attenuator having a plurality of input ports and a plurality of output ports;
a tap including a plurality of input ports coupled to said second plurality of ports of the switch fabric, a first plurality of output ports coupled to said plurality of input ports of the variable optical attenuator, and a second plurality of output ports coupled to said plurality of input ports of said plurality of photonic detectors such that each of said plurality of photonic detectors is optically coupled to a different one of said second plurality of ports; and
a plurality of wavelength demultiplexers each having an input to receive an incoming optical signal from an optical fiber, wherein each of said optical signals is capable of

including one or more wavelengths, wherein each of said plurality of wavelength demultiplexers includes a plurality of outputs to carry a different one of said plurality of wavelengths, and wherein the ones of said plurality of outputs of said plurality of wavelength demultiplexers to carry the same one of said plurality of wavelengths are optically coupled to different ports of said first plurality of ports.

11. (Currently amended) The apparatus of claim [[8]] 10, wherein said switch fabric, plurality of photonic detectors, tap, and variable optical attenuator are all on the same die.

12. (Currently amended) The apparatus of claim [[8]] 10, further comprising a plurality of wavelength multiplexers each having an output to provide an outgoing optical signal to an optical fiber, wherein each of said optical signals is capable of including one or more wavelengths, wherein each of said plurality of wavelength multiplexers includes a plurality of inputs to carry a different one of said plurality of wavelengths, and wherein the ones of said plurality of inputs of said plurality of wavelength multiplexers to carry the same one of said plurality of wavelengths are optically coupled to different ports of said second plurality of ports.

13. (Currently amended) An optical network node comprising:
a plurality of wavelength switch modules each for a different one of a plurality of wavelengths and each including,

a switch fabric to configurally switch to connect different ones of a first plurality of ports of said switch fabric with different ones of a second plurality of ports of said switch fabric,

a plurality of photonic detectors having a plurality of input ports to detect the presence or absence of an optical signal,

a variable optical attenuator having a plurality of input ports and a plurality of output ports, and

a tap including a plurality of input ports coupled to said second plurality of ports of the switch fabric, a first plurality of output ports coupled to said plurality of input ports of the variable optical attenuator, and a second plurality of output ports coupled to said plurality of input ports of said plurality of photonic detectors such that each of said plurality of photonic detectors is optically coupled to a different one of said second plurality of ports; and

a plurality of wavelength demultiplexers each having an input to receive an incoming optical signal from an optical fiber and each having a plurality of outputs optically coupled to provide the corresponding wavelengths to the corresponding wavelength switch modules.

14. Canceled.

15. (Previously presented) The optical network node of claim 13, further comprising a plurality of wavelength multiplexers each having an output to provide an outgoing optical signal to an optical fiber and each having a plurality of inputs optically coupled to one of said second plurality of ports of each of said plurality of wavelength switch modules.

16. (Currently amended) A system comprising:

an optical network including a plurality of optical fibers; and

a first optical network node, coupled to the optical network, the first optical network node comprising:

a plurality of wavelength switch modules each for a different one of a plurality of wavelengths and each including,

a switch fabric to configurally switch to connect different ones of a first plurality of ports of said switch fabric with different ones of a second plurality of ports of said switch fabric;

a plurality of photonic detectors having a plurality of input ports to detect the presence or absence of an optical signal;

a variable optical attenuator having a plurality of input ports and a plurality of output ports; and

a tap including a plurality of input ports coupled to said second plurality of ports of the switch fabric, a first plurality of output ports coupled to said plurality of input ports of the variable optical attenuator, and a second plurality of output ports coupled to said plurality of input ports of said plurality of photonic detectors such that each of said plurality of photonic detectors is optically coupled to a different one of said second plurality of ports; and

a plurality of wavelength demultiplexers each having an input to receive an incoming optical signal from an optical fiber and each having a plurality of outputs optically coupled to provide the corresponding wavelengths to the corresponding wavelength switch modules.

17. Canceled.

18. (Previously presented) The system of claim 16, wherein the first optical network node further comprises a plurality of wavelength multiplexers each having an output to provide an outgoing optical signal to an optical fiber and each having a plurality of inputs optically coupled to one of said second plurality of ports of each of said plurality of wavelength switch modules.

19. (Original) The system of claim 16, further comprising a second optical network node, coupled to the first optical network node via the optical network, to send the incoming optical signal to the first optical network node.

20. (New) An apparatus comprising:

a switch fabric to connect different ones of a first plurality of ports of said switch fabric with different ones of a second plurality of ports of said switch fabric;
a plurality of photonic detectors to detect the presence or absence of an optical signal, said plurality of photonic detectors having a plurality of input ports;
a variable optical attenuator having a plurality of input ports and a plurality of output ports;

a tap including a plurality of input ports coupled to said second plurality of ports of the switch fabric, a first plurality of output ports coupled to said plurality of input ports of the variable optical attenuator, and a second plurality of output ports coupled to said plurality of

input ports of said plurality of photonic detectors such that each of said plurality of photonic detectors is optically coupled to a different one of said second plurality of ports; and

a plurality of wavelength multiplexers each having an output to provide an outgoing optical signal to an optical fiber, wherein each of said optical signals is capable of including one or more wavelengths, wherein each of said plurality of wavelength multiplexers includes a plurality of inputs to carry a different one of said plurality of wavelengths, and wherein the ones of said plurality of inputs of said plurality of wavelength multiplexers to carry the same one of said plurality of wavelengths are optically coupled to different ports of said second plurality of ports.

21. (New) The apparatus of claim 20, wherein said switch fabric, plurality of photonic detectors, tap, and variable optical attenuator are all on the same die.

22. (New) The apparatus of claim 12, wherein said switch fabric, plurality of photonic detectors, tap, and variable optical attenuator are all on the same die.