Homework-Solve ODE

PB18010496 杨乐园

2021年5月21日

1 Introduction

调用系统内置函数求解一节常微分方程组初值问题:

$$\begin{cases} x' = \sin x + \cos(ty) \\ y' = e^{-tx} + \frac{\sin(tx)}{t} \\ x(-1) = 2.37 \\ y(-1) = -3.48 \end{cases}$$

并输出如下相应结果与图像:

- 1.在区间[-1,4]求解如上常微分方程组初值问题,并在t轴上以0.1的间隔打印相应的解。
- 2.对区间[-1,4]在同一图像上绘制对应的函数图像x(t),y(t)。
- 3.绘制如下定义的参数曲线图像:

$$\{(x(t), y(t)) : t \in [-1, 4]\}$$

2 Method and Results

由于这只是调用系统内部函数,所以针对Mathematica只需调用NDSolve函数即可,对应代码如下:

solution =NDSolve[
$$\{x'[t] == Sin[x[t]] + Cos[t y[t]],y'[t] == E(-t x[t]) + Sin[t y[t]]/t, x[-1] == N[237/100, 10],y[-1] == N[-348/100, 10]\}, $\{x, y\}, \{t, -1, 4\}$]; $x = x /.$ solution[[1, 1]]; $y = y /.$ solution[[1, 2]]; 其次只需对应的调用指定函数求解与绘图即可。$$

2.1 任务1.绘制求解的表格

相关代码如下:

$$t = -1$$
; $h = 1/10$; $num = \{\}$;

 $While[t \ \text{$i=4$, AppendTo[num, $\{N[t,\,2],\,N[x[t],\,10],\,N[y[t],\,10]\}$}]; \ t=t+h];$

PrependTo[num, $\{"t", "x(t)", "y(t)"\}$];

GridBox[num, ColumnAlignments -; Left, GridBoxDividers -; {"Rows" -; {{True}}}, "Columns" -; {{True}}}] // DisplayForm

从而对应输出结果为:

t	x(t)	y (t)
-1.0	2.37	-3.48
-0.90	2.35016	-2.56785
-0.80	2.38852	-1.93007
-0.70	2.48385	-1.43524
-0.60	2.60933	-1.02134
-0.50	2.74329	-0.666097
-0.40	2.8731	-0.362292
-0.30	2.99329	-0.105572
-0.20	3.10254	0.109745
-0.10	3.20138	0.290967
0	3.29086	0.446041
0.10	3.37188	0.582586
0.20	3.44495	0.707282
0.30	3.51003	0.825591
0.40	3.56649	0.941647
0.50	3.613	1.05821
0.60	3.64751	1.17658
0.70	3.66728	1.29653
0.80	3.66924	1.41619
0.90	3.65058	1.53223
1.0	3.60967	1.64027
1.1	3.54706	1.73571
1.2	3.46583	1.81478
1.3	3.37132	1.87532
1.4	3.27002	1.91702

1.5	3.1683	1.94115
1.6	3.07147	1.94999
1.7	2.98337	1.94623
1.8	2.90632	1.93254
1.9	2.84144	1.9113
2.0	2.78893	1.88452
2.1	2.74841	1.85383
2.2	2.71912	1.8205
2.3	2.70012	1.78551
2.4	2.69035	1.74963
2.5	2.68877	1.71339
2.6	2.69434	1.67723
2.7	2.70608	1.64144
2.8	2.72306	1.60625
2.9	2.74444	1.5718
3.0	2.76946	1.5382
3.1	2.79742	1.50552
3.2	2.82769	1.47379
3.3	2.85975	1.44304
3.4	2.8931	1.41327
3.5	2.92733	1.38448
3.6	2.96209	1.35664
3.7	2.99708	1.32973
3.8	3.03205	1.30374
3.9	3.06678	1.27863
4.0	3.10111	1.25437

2.2 任务2.绘制解函数图像

相关代码如下:

$$\begin{split} & img1 = Plot[x[t], \, \{t, \, \text{-}1, \, 4\}, \, PlotStyle \, \text{-}; \, \, Red]; \\ & img2 = Plot[y[t], \, \{t, \, \text{-}1, \, 4\}, \, PlotStyle \, \text{-}; \, \, Yellow]; \\ & Show[img1, \, img2, \, PlotRange \, \text{-}; \, \, All] \end{split}$$

从而输出图像结果如下:

2.3 任务3.绘制参数函数(轨道)图像

相关代码如下:

ParametricPlot[{x[t], y[t]}, {t, -1, 4}, PlotRange -; Automatic] 从而输出图像结果如下:

3 COMPUTER CODE 4

3 Computer Code

代码部分请参见附件!(Homework13_0520.nb)。