Chương 1: ĐỘNG HỌC CHẤT ĐIỂM

1.1 Các khái niệm cơ bản

- Chất điểm là 1 vật có khối lượng, có kích thước rất nhỏ so với khoảng cách và kích thước của vật khác.
- Hệ chất điểm: là tập hợp nhiều chất điểm rời rạc.
- Vật rắn: là tập hợp nhiều chất điểm phân bố liên tục và có mối liên kết rắn (khoảng cách giữa các chất điểm là không thay đổi).

Vd: Đống cát không phải là vật rắn do khoảng cách thay đổi.

Cục gạch: vật rắn.

- Chuyển động: là sự thay đổi vị trí của chất điểm trong suốt quá trình chuyển động.
- Hệ quy chiếu: là hệ vật quy ước đứng yên để khảo sát các vật khác chuyển động đối với nó. Thường người ta gắn hệ trục tọa độ vào hệ quy chiếu.

1.2 Phương trình chuyển động của chất điểm

- Vectơ vi trí của chất điểm:

$$O\vec{M} = x\vec{i} + y\vec{j} + z\vec{k} = \vec{r}$$

x, y, z là hàm theo thời gian

Tọa độ điểm M: $\begin{cases} x \\ y \\ z \end{cases}$

- Phương trình chuyển động của chất điểm M:
 - o Vecto vi trí
 - o Tọa độ điểm M
- Quỹ đạo của chất điểm M: f(x,y,z) = 0: là tập hợp các vị trí của chất điểm trong suốt quá trình chuyển động.
- Muốn tìm phương trình quỹ đạo của chất điểm, ta khử tham số t ở phương trình chuyển động chất điểm. Có 2 dạng:
 - O Dạng 1: phương trình có chứa tham số t, dùng phương pháp thế để khử t
 - O Dạng 2: phương trình có chứa sin & cos theo t: áp dụng $\sin^2 t + \cos^2 t = 1$

Giới hạn quỹ đạo: $t \ge 0 \to 2x \ge 0 \to x \ge 0$

CuuDuongThanCong.com

VD2:

$$\vec{r} = (A \cos \omega t)\vec{i} + (A \sin \omega t)\vec{j}$$

$$\Rightarrow M \begin{cases} x = A \cos \omega t \\ y = A \sin \omega t \end{cases} \Leftrightarrow \begin{cases} \cos \omega t = \frac{x}{A} \\ \sin \omega t = \frac{y}{A} \end{cases}$$

$$\sin^{2} \omega t + \cos^{2} \omega t = 1 \Leftrightarrow \frac{y^{2}}{A^{2}} + \frac{x^{2}}{A^{2}} = 1$$

Quỹ đạo là đường tròn tâm O, bán kính A Trường hợp này không còn giới hạn quỹ đạo

- 1.3.1 Vecto vận tốc trung bình: $\frac{\vec{9}}{\vec{9}}$ $t_1 \to M_1 \to \vec{r}_1$ $t_2 \to M_2 \to \vec{r}_2$ $\vec{\mathcal{B}} = \frac{\vec{r}_2 \vec{r}_1}{t_1 t_2} = \frac{\vec{\Delta}r}{\Delta t}$
- 1.3.2 Vectơ vận tốc tức thời: $\vec{9}$

$$\vec{\mathcal{G}} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t}$$

$$\vec{\sigma} = d\vec{r}$$

$$\vec{\mathcal{G}} = \frac{d\vec{r}}{dt}$$

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$\vec{\mathcal{G}} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$

$$\left| \vec{\mathcal{G}} \right| = \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2}$$

Vd:

$$\vec{r} = (t+1)\vec{i} + t^2 \vec{j}$$

$$\vec{\mathcal{G}} = \vec{i} + 2t\vec{j}$$

$$\Rightarrow |\vec{\mathcal{G}}| = \sqrt{1 + 4t^2}$$

1.4 Vecto gia tốc:

1.4.1 Vector gia tốc trung bình: \vec{a} $\vec{a} = \frac{\vec{g}_2 - \vec{g}_1}{t_2 - t_1} = \frac{\Delta \vec{g}}{\Delta t}$

$$t_2 - t_1 \qquad t_1 \to M_1 \to \vec{v}_1$$

$$t_1 \rightarrow M_1 \rightarrow v_1$$

$$t_2 \to M_2 \to \vec{v}_2$$

$$\vec{a} = \frac{\vec{v}_2 - \vec{v}_1}{t_2 - t_1} = \frac{\Delta \vec{v}}{\Delta t}$$

Tịnh tiến $\vec{\mathcal{G}}_2$ về $\vec{\mathcal{G}}_1 => \Delta \vec{a} \to \Delta \vec{a}$

Điểm đặt: điểm đang xét

Phương: tiếp tuyến với quỹ đạo tại M

Chiều: cùng chiều chuyển động

Độ lớn:
$$|\vec{\vartheta}| = \vartheta = \sqrt{\vartheta_x^2 + \vartheta_y^2 + \vartheta_z^2}$$

1.4.2 Vecto gia tốc tức thời: \vec{a}

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t}$$

$$\vec{\mathcal{G}} = \frac{d\vec{r}}{dt}$$

$$\vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt} \vec{i} + \frac{dv_y}{dt} \vec{j} + \frac{dv_z}{dt} \vec{k}$$

$$|\vec{a}| = \sqrt{\left(\frac{dv_x}{dt}\right)^2 + \left(\frac{dv_y}{dt}\right)^2 + \left(\frac{dv_z}{dt}\right)^2}$$

Điểm điểm: điểm đang xét Phương: đường thẳng đi qua M Chiều: hướng về bề lõm của quỹ đạo Đô lớn:

$$|\vec{a}| = a = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

$$= \sqrt{\left(\frac{d\vartheta_x}{dt}\right)^2 + \left(\frac{d\vartheta_y}{dt}\right)^2 + \left(\frac{d\vartheta_z}{dt}\right)^2}$$

Vd:

$$\vec{\mathcal{G}} = \vec{i} + 2t\vec{j}$$

$$\vec{a} = \frac{d\vec{\mathcal{G}}}{dt} = 0\vec{i} + 2\vec{j}$$

$$|\vec{a}| = \sqrt{0^2 + 2^2} = 2$$

Vectơ gia tốc tức thời được chiếu lên phương tiếp tuyến và pháp tuyến, ta có vectơ gia tốc tiếp tuyến \vec{a}_i , và vectơ gia tốc pháp tuyến \vec{a}_n .

$$\vec{a}_t = \frac{d\vec{\mathcal{G}}}{dt} \begin{cases} &\text{Diểm đặt: điểm đang xét} \\ &\text{Phương: tiếp tuyến với quỹ đạo tại M (cùng phương } \vec{\mathcal{G}} \text{)} \\ &\text{Chiều: dv} > 0 \text{ , } \mathcal{G}_2 > \mathcal{G}_1 \text{: chuyển động nhanh dần} => \vec{a}_t \uparrow \uparrow \vec{\mathcal{G}} \\ &\text{dv} < 0 \text{ , } \mathcal{G}_2 < \mathcal{G}_1 \text{: chuyển động chậm dần} => \vec{a}_t \uparrow \downarrow \vec{\mathcal{G}} \end{cases}$$

$$\text{Độ lớn: } |\vec{a}_t| = a_t = \frac{d\mathcal{G}}{dt}$$

Vectơ gia tốc tiếp tuyến đặc trưng cho sự thay đổi về độ lớn của vectơ vận tốc. Đặc trưng cho sự chuyểm động chậm dần, nhanh dần.

$$\vec{a}_n = \begin{cases} &\text{Diểm đặt: điểm đang xét} \\ &\text{Phương: vuông góc với tiếp tuyến với quỹ đạo tại M} \\ &\text{Chiều: hướng vào tâm của vòng tròn quỹ đạo tại M} \\ &\text{Độ lớn: } a_n = \frac{g^2}{R} \quad (\text{R: bán kính quỹ đạo tại M}) \end{cases}$$

Vectơ gia tốc pháp tuyến đặc trưng cho sự thay đổi về phương của vectơ vận tốc. Do đó để tìm bán kính cong: phải có độ lớn $\vec{9}$ và \vec{a}_n .

$$\begin{vmatrix} \vec{a}_n \end{vmatrix}$$
 nhỏ => R lớn $\begin{vmatrix} \vec{a}_n \end{vmatrix}$ lớn => R nhỏ

ā

Vecto gia tốc tức thời:

$$\begin{cases} \vec{a} = \vec{a}_t + \vec{a}_n \\ |\vec{a}| = \sqrt{a_t^2 + a_n^2} \end{cases}$$

a đặc trưng cho sự thay đổi về độ lớn và phương của vectơ vận tốc.

1.5 Chuyển động thẳng

Quỹ đạo là đường thẳng: $\Rightarrow R = \infty \Rightarrow a_n = 0$ (vì $a_n = \frac{g^2}{D}$; $R = \infty \rightarrow a_n = 0$)

Nên đưa chuyển động thẳng về 1 trục -> chỉ cần 1 thành phần để biểu diễn.

$$\vec{r} = \vec{x}_i \to x$$

$$\vec{\mathcal{G}} = \mathcal{G}_x \vec{i} \to \mathcal{G} \sim \mathcal{G}_x = \frac{dx}{dt}$$

$$\vec{a} = a_x \vec{i} \to a \sim a_x = \frac{d\mathcal{G}_x}{dt} = \frac{d^2x}{dt^2}$$

1.5.1 Chuyển động thẳng đều: $(\vec{\mathcal{G}} = const)$

$$\mathcal{G} = \frac{dx}{dt} = const \Rightarrow dx = \mathcal{G}dt \Leftrightarrow \int_{x_0}^x dx = \mathcal{G}\int_0^t dt \Leftrightarrow \mathbf{x} = \mathcal{G}t + \mathbf{x}_0$$

1.5.2 Chuyển động thẳng thay đổi đều: $(\vec{a} = const)$

$$\vec{a} = 0 \Rightarrow \vec{a} \text{ là } \vec{a}_t$$

$$a = \frac{d\mathcal{G}}{dt} \rightarrow \int_{\mathcal{G}}^{\mathcal{G}} d\mathcal{G} = a \int_{0}^{t} dt \Rightarrow \mathcal{G} = at + \mathcal{G}_{0} = \frac{dx}{dt}$$

$$\Rightarrow \int_{x_0}^{x} dx = \int_{0}^{t} (at + \theta_0) dt \Leftrightarrow x - x_0 = \frac{1}{2}at^2 + \theta_0 t$$

$$\theta = at + \theta_0$$
Hay:
$$x - x_0 = \frac{1}{2}at^2 + \theta_0 t$$

$$x - x_0 = \frac{1}{2}at^2 + \theta_0 t$$

$$x^2 - x_0^2 = 2a(x - x)$$

$$3^{2} - 3_{0}^{2} = 2a(x - x_{0})$$

$$3^{2} - 3_{0}^{2} = 2a(x - x_{0})$$

 \vec{a} cùng chiều $\vec{\mathcal{G}} \rightarrow$ chuyển động nhanh dần đều \vec{a} ngược chiều $\vec{\mathcal{G}} \rightarrow$ chuyển động chậm dần đều

1.6 Chuyển động tròn: quỹ đạo là đường tròn -> R = const

1.6.1 Vectơ vận tốc góc $\vec{\omega}$:

Điểm đặt: ∀ điểm ∈ truc vòng tròn quỹ đạo (vectơ truc)

Phương: trục của vòng tròn quỹ đạo

Chiều: theo quy tắc vặn nút chai

Độ lớn: $|\vec{\omega}| = \omega = \frac{d}{dt} = \frac{d\left(\frac{S}{R}\right)}{dt} = \frac{1}{R} \cdot \frac{dS}{dt} = \frac{9}{R}$

Liên hệ giữa $\vec{\mathcal{G}}, \vec{\omega}, \vec{R}$:

1.6.2 Vectơ gia tốc góc: $\vec{\beta}$

 $\vec{\beta} = \begin{cases} \vec{\text{Diểm đặt: điểm đang xét}} \\ \vec{\text{Phương: tiếp tuyến với quỹ đạo tại M (cùng phương } \vec{\mathcal{G}} \text{)} \\ \vec{\text{Chiều: }} d_{\omega} > 0 \rightarrow \vec{\beta} \text{ cùng chiều } \vec{\omega} \text{ (chuyển động nhanh dần)} \\ d_{\omega} < 0 \rightarrow \vec{\beta} \text{ ngược chiều } \vec{\omega} \text{ (chuyển động chậm dần)} \\ \vec{\text{Dộ lớn: }} |\vec{\beta}| = \beta = \frac{d\omega}{dt} = \frac{d\left(\frac{\mathcal{G}}{R}\right)}{dt} = \frac{1}{R} \cdot \frac{d\mathcal{G}}{dt} = \frac{a_t}{R} \end{cases}$

Liên hệ giữa \vec{a}_t , $\vec{\beta}$, \vec{R} : $\vec{a}_t = \vec{\beta} x \vec{R}$ (\vec{a}_t cùng chiều $\vec{\beta}$: nhanh dần)

$$a_t = \beta.R$$

$$a_n = \frac{\theta^2}{R} = \frac{\omega^2.R^2}{R} = \omega^2.R^2$$

$$a = \sqrt{a_t^2 + a_n^2} = R\sqrt{\omega^4 + \beta^2}$$

1.6.3 Chuyển động tròn đều:

$$\begin{aligned} \left| \vec{\beta} \right| &= const \\ R &= const \end{aligned} \Rightarrow a_n = const \\ \vec{a}_t &= 0 \to \vec{a} = \vec{a}_n \\ \vec{\omega} &= const \\ \omega &= \frac{d\theta}{dt} \Rightarrow \int_{\theta_0}^{\theta} d\theta = \omega \int_{0}^{t} dt \Rightarrow \theta = \omega t + \theta_0 \end{aligned}$$

1.6.4 Chuyển động tròn thay đổi đều:

$$\begin{vmatrix} \vec{\beta} = const \\ R = const \end{vmatrix}, a_t = \beta.R \Rightarrow a_t = const$$

$$\beta = \frac{d\omega}{dt} \Rightarrow \int_0^{\omega} d\omega = \beta \int_0^t dt \Rightarrow \omega = \beta t + \omega_0$$

Mà:

$$\omega = \frac{d\theta}{dt} \Rightarrow \int_{\theta_0}^{\theta} d\theta = \int_{0}^{t} (\beta t + \omega_0) dt \Rightarrow \theta = \frac{1}{2} \beta t^2 + \omega_0 t + \theta_0$$

$$\omega^2 - \omega_0^2 = 2\beta(\theta - \theta_0)$$

1.7 Chuyển động trong gia tốc \vec{g} : (chuyển động parabol)

$$\vec{a} = \vec{g} = -g\vec{j}$$

$$\vec{a} = \frac{d\vec{\mathcal{G}}}{dt} \Rightarrow d\mathcal{G} = -g\vec{j}.dt$$

$$\Leftrightarrow \int_{\bar{\mathcal{G}}_0}^{\bar{\mathcal{G}}} d\mathcal{G} = \int_0^t - g\vec{j}.dt$$

$$\Leftrightarrow \vec{\mathcal{G}} \Big|_{\bar{\mathcal{G}}_0}^{\bar{\mathcal{G}}} = -g\vec{j}\Big|_0^t \Rightarrow \vec{\mathcal{G}} - \vec{\mathcal{G}}_0 = -g\vec{j}.dt$$

Mà:

mà:
$$|\vec{\mathcal{G}}| = \sqrt{\mathcal{G}_x^2 + \mathcal{G}_y^2}$$

Mà:

$$\vec{r}_0 = h\vec{j}$$

$$\Rightarrow \vec{r} = \theta_0 (\cos \alpha) t \vec{i} + \left[-\frac{1}{2} g t^2 + \theta_0 (\sin \alpha) t + h \right] \vec{j}$$

=> phương trình quỹ đạo:

In the proof of this quy disc.
$$\begin{cases}
x = \theta_0 \cos \alpha t \\
y = -\frac{1}{2}gt^2 + \theta_0 \sin \alpha t + h
\end{cases} \to t = \frac{x}{\theta_0 \cos \alpha} \tag{1}$$

$$\Rightarrow y = -\frac{g}{2g_0^2 \cos \alpha} x^2 + tg \alpha x + h \tag{2}$$

Các vấn đề thường gặp:

• $\mathring{\mathbf{O}}$ độ cao cực đại: (B): tiếp tuyến nằm ngang $\rightarrow \mathcal{G}_{\mathbf{y}} = \mathbf{0}$

$$\mathcal{G}_{By} = 0 \Rightarrow \mathcal{G}_{Bx} = \mathcal{G}_0 \cos \alpha = \mathcal{G}_B \implies t_B = \frac{\mathcal{G}_0 \sin \alpha}{g}$$

Ta có:
$$a_n = \frac{g^2}{R} \implies R_B = \frac{g_B^2}{a_n} = \frac{g_0^2 \cos^2 \alpha}{g}$$
 (Vì $\vec{a} \downarrow \downarrow \vec{g} \Rightarrow a_{t_B} = 0, a_n = g$)

Độ cao max: thế t_B vào (1)

$$\Rightarrow y = -\frac{1}{2}gt^{2} + \theta_{0}\sin\alpha t + h$$

$$\Rightarrow y_{B} = -\frac{1}{2}g \cdot \frac{\theta_{0}^{2}\sin^{2}\alpha}{g} + \theta_{0}\sin\alpha t \cdot \frac{\theta_{0}\sin\alpha}{g} + h$$

$$\Rightarrow y_{B} = \frac{1}{2}g \cdot \frac{\theta_{0}^{2}\sin^{2}\alpha}{g} + h$$

Tâm xa (C):
$$t_C = \frac{2\theta_0 \sin \alpha}{g}$$
$$\Rightarrow x_C = \theta_0 \cos \alpha \cdot \frac{2\theta_0 \sin \alpha}{g} = \frac{\theta_0^2 \sin 2\alpha}{g}$$

Hỏi góc α ?

$$\begin{cases}
\text{ De$}^2 x_C \max \alpha = 45^\circ \\
\theta_0, x_C \text{ cho tru\'oc}
\end{cases}$$

$$\text{Vd: } x_C = 3h_B$$

$$\sin \beta = \frac{x_C \cdot g}{\theta_o^2} = \sin 2\alpha$$

$$\Rightarrow \begin{cases} 2\alpha = \beta \\ 2\alpha = \pi - \beta \end{cases} \Rightarrow \begin{cases} \alpha_1 = \frac{\beta}{2} \\ \beta_2 = \frac{\pi}{2} - \frac{\beta}{2} \end{cases}$$

Bán kính cong của quỹ đạo tại C:

$$R_C = \frac{g_C^2}{a_n} = \frac{g_o^2}{g \cdot \cos \alpha}$$

1.8 Phép biến đổi vận tốc – gia tốc:

Xét 2 hệ O, O' và O' chuyển động tịnh tiến so với O. Khi đó điểm M:

• Quan niệm cơ học cổ điển:

Thời gian có tính tuyệt đối, không phụ thuộc vào hệ quy chiếu. Trong khi vị trí không gian có tính tương đối, phụ thuộc vào hệ quy chiếu.

$$O: \vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$O': \vec{r}' = x'\vec{i} + y'\vec{j} + z'\vec{k}$$

$$\Rightarrow O\vec{M} = O\vec{O}' + O'\vec{M}$$

hay:

$$\left\{ \begin{array}{l} \vec{r} = \vec{r}\, ' + \vec{r}_o \\ \vec{\mathcal{G}} = \vec{\mathcal{G}}\, ' + \vec{\mathcal{G}}_o \\ \vec{a} = \vec{a}\, ' + \vec{a}_o \end{array} \right.$$

 $[\vec{\mathcal{G}}: V$ ận tốc điểm M so với O

 $\vec{\mathcal{G}}$ ': Vận tốc điểm M so với O'

 $\vec{\mathcal{G}}_o$: Vận tốc của O' so với O

(a : Gia tốc điểm M so với O

 \vec{a} ': Gia tốc điểm M so với O'

 $|\vec{a}_o|$: Gia tốc của O' so với O

https://fb.com/tailieudientucntt