MATH50001 Analysis 2 Term 2 $$_{\rm also\ known\ as}$$ MATH50018 Complex Analysis for JMC

Notes by Robert Weingart

Contents

1	Hol	omorphic functions 2	
	1.1	Basic properties	
	1.2	Sets in the complex plane	
	1.3	Complex functions	
	1.4	Complex derivative	
	1.5	Cauchy-Riemann equations	
	1.6	Cauchy-Riemann equations in polar coordinates	
	1.7	Power series	
	1.8	Elementary functions	
2	Cauchy's integral formulae		
	2.1	Parametrised curves	
	2.2	Integration along curves	
	2.3	Primitive functions	
	2.4	Properties of holomorphic functions	
	2.5	Local existence of primitives and Cauchy-Goursat theorem in a disc 6	
	2.6	Homotopies and simply connected domains	
	2.7	Cauchy's integral formulae	
3	Applications of Cauchy's integral formulae		
	3.1	Applications of Cauchy's integral formulae	
	3.2	Taylor and Maclaurin series	
	3.3	Sequences of holomorphic functions	
	3.4	Holomorphic functions defined in terms of integrals	
	3.5	Schwarz reflection principle	
	3.6	The complex logarithm	
4	Mei	comorphic Functions 8	
	4.1	Zeros of holomorphic functions	
	4.2	Laurent series	
	4.3	Poles of holomorphic functions	
	4.4	Residue theory	
	4.5	The argument principle	
5	Har	monic Functions 10	
	5.1	Open mapping theorem and maximum modulus principle	
	5.2	Evaluation of definite integrals	
	5.3	Harmonic functions	
	5.4	Properties of real and imaginary parts of holomorphic functions 11	
6	Cor	aformal Mappings	
	6.1	Preservation of angles	
	6.2	Möbius transformations	
	6.3	Cross-ratios Möbius transformation	
	6.4	Conformal mapping of a half-plane to the unit disc	
	6.5	Riemann mapping theorem	

1 Holomorphic functions

1.1 Basic properties

A complex number has the form z = x + iy with $x, y \in \mathbb{R}$ and $i^2 = -1$.

$$Re (x + iy) := x$$

$$Im (x + iy) := y$$

$$\overline{x + iy} := x - iy$$

They can also be written in polar form:

$$z = r(\cos \theta + i \sin \theta) =: r \operatorname{cis} \theta$$
$$|z| := r = \sqrt{x^2 + y^2}$$
$$\operatorname{arg} z := \theta$$

Note that the argument is not unique; it can be increased or decreased by any integer multiple of 2π with no effect.

Definition 1.1. The principal argument of $z = r \operatorname{cis} \theta$ is $\operatorname{Arg} z := \theta, \theta \in (-\pi, \pi]$

Theorem 1.1. $r_1 \operatorname{cis} \theta_1 r_2 \operatorname{cis} \theta_2 = r_1 r_2 \operatorname{cis} (\theta_1 + \theta_2)$

Corollary 1.2. (De Moivre's formula) $(r \operatorname{cis} \theta)^n = r^n \operatorname{cis} (n\theta)$

Note that $\arg z_1 + \arg z_2 = \arg z_1 z_2$ but $\operatorname{Arg} z_1 + \operatorname{Arg} z_2 \neq \operatorname{Arg} z_1 z_2$

1.2 Sets in the complex plane

Definition 1.2. For $z_0 \in \mathbb{C}$, r > 0, we have the **open disc** $D_r(z_0) := \{z \in \mathbb{C} : |z - z_0| < r\}$ and the **circle** $C_r(z_0) := \{z \in \mathbb{C} : |z - z_0| = r\}$.

Definition 1.3. The unit disc is $\mathbb{D} := D_1(0)$.

Definition 1.4. For $\Omega \subset \mathbb{C}$, $z \in \Omega$ is an **interior point** of $\Omega \iff \exists r > 0 : D_r(z) \subset \Omega$. The **interior** of Ω is the set of its interior points.

Definition 1.5. Ω is open \iff all points in Ω are interior.

Definition 1.6. Ω is closed $\iff \Omega^c = \mathbb{C} \setminus \Omega$ is open.

Definition 1.7. The closure of Ω is $\overline{\Omega} = \Omega \cup \text{limit points of } \Omega$.

Definition 1.8. The boundary of Ω is $\partial \Omega = \overline{\Omega} \setminus \text{interior of } \Omega$.

Definition 1.9. Ω is bounded $\iff \exists M > 0 : \forall z \in \Omega, |z| < M$.

Definition 1.10. The **diameter** of Ω bounded is diam $\Omega = \sup_{z,w \in \Omega} |z - w|$.

Definition 1.11. Ω is **compact** $\iff \Omega$ is closed and bounded.

Theorem 1.3. Ω is compact \iff all sequences in Ω have a subsequence converging in Ω .

Definition 1.12. An **open covering** of Ω is a family of open sets whose union contains Ω .

Theorem 1.4. Ω is compact \iff every open covering of Ω has a finite subcovering.

Theorem 1.5. For $\Omega_1 \supset \Omega_2 \supset \dots$ all non-empty with diam $\Omega_n \to 0$, $\exists! w \in \mathbb{C} : \forall n, w \in \Omega_n$.

Definition 1.13. Ω open is **connected** \iff all pairs of points in Ω are joined by a curve contained in Ω .

1.3 Complex functions

A function $f: \Omega_1 \to \Omega_2$ can be written as f(x+iy) = u(x,y) + iv(x,y) with $u,v: \mathbb{R}^2 \to \mathbb{R}$.

Definition 1.14. $f: \Omega \to \mathbb{C}$ is **continuous at** $z_0 \in \Omega \iff \forall \epsilon > 0 \exists \delta > 0 : \forall z \in \Omega, |z - z_0| < \delta \implies |f(z) - f(z_0)| < \epsilon.$

Definition 1.15. f is **continuous** \iff it is continuous at all points.

1.4 Complex derivative

Definition 1.16. f is differentiable or holomorphic at $z \in \Omega \iff$ the derivative

$$f'(z) := \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

exists. Note that $h \in \mathbb{C}$ so it can approach 0 from any direction.

Definition 1.17. f is holomorphic on Ω open \iff f is holomorphic at all $z \in \Omega$.

Definition 1.18. f is holomorphic on C closed \iff f is holomorphic on an open superset of C.

Definition 1.19. f is entire \iff f is holomorphic on \mathbb{C} .

Proposition 1.6. f is holomorphic at $z \iff \exists \alpha \in \mathbb{C} : f(z+h) - f(z) - ah = h\psi(h)$ with $\lim_{h\to 0} \psi(h) = 0$. In this case $\alpha = f'(z)$.

Corollary 1.7. f holomorphic \implies f continuous.

Proposition 1.8. The sum, product, quotient and chain rules for differentiation of real functions hold for complex derivatives as well.

1.5 Cauchy-Riemann equations

Definition 1.20. For f(x,y)=u(x,y)+iv(x,y), the Cauchy-Riemann Equations are $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$

Proposition 1.9. f is holomorphic \implies the CREs hold.

Definition 1.21. The partial derivative with respect to a complex number z = x + iy is $\frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right)$.

Theorem 1.10. If f is holomorphic at z_0 then $\frac{\partial f}{\partial \overline{z}}(z_0) = 0$ and $f'(z_0) = \frac{\partial f}{\partial z}(z_0) = 2\frac{\partial u}{\partial z}(z_0)$

Theorem 1.11. If u and v are continuously differentiable and the CREs hold on Ω then f is holomorphic on Ω with $f'(z) = \frac{\partial f(z)}{\partial z}$

1.6 Cauchy-Riemann equations in polar coordinates

Proposition 1.12. In polar coordinates, the CREs become $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

1.7 Power series

Definition 1.22. A power series has the form $S(z) := \sum_{n=0}^{\infty} a_n z^n$ with $a_n \in \mathbb{C}$. It exists at some z iff the sum converges there. It is **absolutely convergent** at z iff $\sum_{n=0}^{\infty} |a_n| |z^n|$ converges.

Definition 1.23. The radius of convergence of a series is $R \in [0, \infty]$ defined by

$$\frac{1}{R} = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}}$$

The disc of convergence is $D_R(0)$.

Theorem 1.13. If the power series S(z) has a radius of convergence R then the series converges absolutely if |z| < R and diverges if |z| > R.

Theorem 1.14. $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is holomorphic in its disc of convergence with $f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$. f' has the same radius of convergence as f.

Corollary 1.15. Power series are infinitely differentiable.

1.8 Elementary functions

Definition 1.24. The exponential function is $e^{x+iy} := e^x \operatorname{cis} y$.

Proposition 1.16. e^z is entire.

Definition 1.25. The sine and cosine of a complex number are

$$\sin z := \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$$
$$\cos z := \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$

Proposition 1.17. $\sin z$ and $\cos z$ are entire and obey the usual identities for their real-valued counterparts.

Definition 1.26. A complex logarithm of z is $\log z := \ln |z| + i \arg z = \log r + i(\theta + 2\pi k)$. Note that $e^{\log z} = z$, and that $\log z$ is multi-valued.

Definition 1.27. The **principal value** of the complex logarithm is Log $z = \ln |z| + i \operatorname{Arg} z$.

Proposition 1.18. $\log z_1 z_2 = \log z_1 \log z_2$ but $\log z_1 z_2 \neq \log z_1 + \log z_2$.

Proposition 1.19. Log z is holomorphic on $\mathbb{C} \setminus (-\infty, 0]$

Definition 1.28. For $\alpha \in \mathbb{C}$ we have the multi-valued function $z^{\alpha} = e^{\alpha \log z}$ and its principal value $e^{\alpha \log z}$.

Proposition 1.20. $z^{\alpha}z^{\beta}=z^{\alpha+\beta}$

2 Cauchy's integral formulae

2.1 Parametrised curves

Definition 2.1. A parametrised curve is a function $\gamma : [a, b] \to \mathbb{C}$. We use the symbol γ also to refer to the set of values of γ .

Definition 2.2. γ is **smooth** \iff it is continuously differentiable with $\gamma' \neq 0$ anywhere, where $\gamma'(a)$ and $\gamma'(b)$ are defined using one-sided limits.

Definition 2.3. γ is **piecewise-smooth** \iff it is continuous and there are finitely many points in [a, b] such that γ is smooth on the intervals between them.

Definition 2.4. $\gamma:[a,b]\to\mathbb{C}$ and $\tilde{\gamma}:[c,d]\to\mathbb{C}$ are **equivalent** \iff there exists $t:[c,d]\to[a,b]$ bijective and continuously differentiable such that t'(s)>0 and $\tilde{\gamma}=\gamma\circ t$. This is an equivalence relation.

In all the definitions in this module, if two curves are equivalent then they are interchangeable.

Definition 2.5. For $\gamma:[a,b]\to\mathbb{C}$ smooth and f continuous on γ , the **integral of** f along γ is $\int_{\gamma} f(z)dz:=\int_a^b f(\gamma(t))\gamma'(t)dt$.

Definition 2.6. The **integral along** a piecewise-smooth curve is the sum of the integrals along the smooth intervals.

Definition 2.7. For any $\gamma:[a,b]\to\mathbb{C}$ we have $\gamma^-(t):=\gamma(b+a-t)$.

Definition 2.8. γ smooth or piecewise-smooth is **closed** $\iff \gamma(a) = \gamma(b)$.

Notation. We write the integral along a closed curve using \oint instead of \int .

Definition 2.9. γ smooth or piecewise-smooth is **simple** $\iff \forall s, t \in (a, b), s \neq t \implies \gamma(s) \neq \gamma(t)$.

2.2 Integration along curves

Definition 2.10. The **length** of γ smooth is length $\gamma := \int_a^b |\gamma'(t)| dt$.

Theorem 2.1. Integration along curves is linear. $\int_{\gamma} f(z)dz = -\int_{\gamma^{-}} f(z)dz$. ML-inequality: $|\int_{\gamma} f(z)dz| \leq \sup_{z \in \gamma} |f(z)| \operatorname{length} \gamma$.

2.3 Primitive functions

Definition 2.11. A primitive for f on Ω is F holomorphic on Ω with F' = f.

Theorem 2.2. If f continuous has a primitive F in an open set Ω containing $\gamma:[a,b] \to \mathbb{C}$ then $\int_{\gamma} f(z)dz = F(b) - F(a)$.

Corollary 2.3. If γ is closed and f has a primitive then $\oint_{\gamma} f(z)dz = 0$.

Corollary 2.4. If f is holomorphic in an open connected set with f' = 0 then f is constant.

2.4 Properties of holomorphic functions

Theorem 2.5. For Ω open, T a triangle contained (along with its interior) in Ω , and f holomorphic in Ω , $\oint_T f(z)dz = 0$.

Corollary 2.6. The above theorem also holds for rectangles.

2.5 Local existence of primitives and Cauchy-Goursat theorem in a disc

Theorem 2.7. A function which is holomorphic in an open disc has a primitive in that disc.

Corollary 2.8. (Cauchy-Goursat Theorem for a disc) If f is holomorphic in a disc and γ is a closed curve in that disc then $\oint_{\gamma} f(z)dz = 0$

Corollary 2.9. For Ω open, C a circle contained (along with its interior) in Ω , and f holomorphic in Ω , $\oint_C f(z)dz = 0$.

2.6 Homotopies and simply connected domains

Definition 2.12. $\gamma_0 : [a, b] \to \Omega$ and $\gamma_1 : [a, b] \to \Omega$ are **homotopic** in $\Omega \iff \forall s \in (a, b), \exists \gamma_s : [a, b] \to \Omega$ such that all the $\gamma_s(t)$ are jointly continuous in $s \in [a, b]$ and $t \in [a, b]$ (including the two original curves!)

Theorem 2.10. If γ_0 and γ_1 are homotopic and f is holomorphic in Ω then $\int_{\gamma_0} f(z)dz = \int_{\gamma_1} f(z)dz$.

Definition 2.13. An open set Ω is **simply connected** if all pairs of curves in Ω with the same endpoints are homotopic.

Theorem 2.11. Any holomorphic function in a simply connected domain has a primitive.

Corollary 2.12. (Cauchy-Goursat Theorem) For Ω simply connected, $\gamma \subset \Omega$ closed and piecewise-smooth, and f holomorphic in Ω , $\oint_{\gamma} f(z)dz = 0$.

Theorem 2.13. (Deformation Theorem) For γ_1 and γ_2 simple, closed and piecewise-smooth with γ_2 wholly inside γ_1 and f holomorphic in the region between γ_1 and γ_2 , $\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz$

2.7 Cauchy's integral formulae

Theorem 2.14. For γ simple, closed and piecewise-smooth, f holomorphic inside and on γ and z_0 inside γ

$$f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - z_0} dz$$

Theorem 2.15. (Generalised Cauchy's integral formula) For Ω open and f holomorphic in Ω , f has infinitely many complex derivatives in Ω . Furthermore, for $\gamma \subset \Omega$ simple, closed and piecewise-smooth, and z inside γ

$$\frac{d^n f(z)}{dz^n} = \frac{n!}{2\pi i} \oint_{\gamma} \frac{f(\eta)}{(\eta - z)^{n+1}} d\eta$$

Corollary 2.16. If f is holomorphic then so are all its derivatives.

3 Applications of Cauchy's integral formulae

3.1 Applications of Cauchy's integral formulae

Corollary 3.1. (Liouville's Theorem) A bounded entire function is constant.

Theorem 3.2. (Fundamental Theorem of Algebra) Any polynomial of degree greater than 0 with complex coefficients has at least one zero.

Corollary 3.3. Every polynomial P(z) of degree n > 0 with complex coefficients has precisely n roots $w_1, w_2, \ldots, w_n \in \mathbb{C}$. Furthermore, $P(z) = a_n \prod_{k=1}^n (z - w_k)$ where a_n is the leading coefficient of P(z).

Theorem 3.4. (Morera's Theorem) If D is an open disc and f is continuous in D such that for any triangle $T \subset D$ we have $\oint_T f(z)dz = 0$ then f is holomorphic.

3.2 Taylor and Maclaurin series

Theorem 3.5. (Taylor Expansion Theorem) For Ω open, f holomorphic in Ω , $z_0 \in \Omega$, and $z \in D_r(z_0) \subset \Omega$ for some r

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k$$

Definition 3.1. The sum above is the **Taylor series** of f about z_0 . If $z_0 = 0$ it is the **Maclaurin series** of f.

3.3 Sequences of holomorphic functions

Theorem 3.6. If a sequence of holomorphic functions converges uniformly to f in every compact subset of Ω then f is holomorphic in Ω .

Theorem 3.7. If a sequence of holomorphic functions converges uniformly to f in every compact subset of Ω then the sequence of their derivatives converges uniformly to f'.

Corollary 3.8. If f_n is a sequence of holomorphic functions and $F(z) := \sum_{n=1}^{\infty} f_n(z)$ converges uniformly in all compact subsets of Ω then f is holomorphic in Ω .

3.4 Holomorphic functions defined in terms of integrals

Theorem 3.9. Given Ω open and $F: \Omega \times [0,1] \to \mathbb{C}$ where F is continuous on $\Omega \times [0,1]$ and $z \mapsto F(z,s)$ is holomorphic in Ω for any $s \in [0,1]$, the function

$$f(z) = \int_0^1 F(z, s) ds$$

is holomorphic in Ω .

3.5 Schwarz reflection principle

Notation. In this section, let Ω be open with $z \in \Omega \iff \overline{z} \in \Omega$. Then define:

$$\Omega^+ := \{ z \in \Omega : \operatorname{Im} z > 0 \}$$
$$I := \{ z \in \Omega : \operatorname{Im} z = 0 \}$$
$$\Omega^- := \{ z \in \Omega : \operatorname{Im} z < 0 \}$$

Theorem 3.10. (Symmetry principle) Suppose f^+ is holomorphic in Ω^+ , f^- is holomorphic in Ω^- , and they extend continuously to I such that $\forall x \in I f^+(x) = f^-(x)$. Then

$$f(z) := \begin{cases} f^+(z) & z \in \Omega^+ \\ f^+(z) & z \in I \\ f^-(z) & z \in \Omega^- \end{cases}$$

Theorem 3.11. For f holomorphic on Ω^+ and extended continuously to I such that $f(I) \subset \mathbb{R}$, there exists F holomorphic on Ω such that $\forall z \in \Omega^+$, F(z) = f(z).

3.6 The complex logarithm

Theorem 3.12. For Ω simply connected with $1 \in \Omega$ and $0 \notin \Omega$, there exists a branch of the logarithm $F(z) = \log_{\Omega}(z)$ which is holomorphic in Ω with $e^{F(z)} = z \ \forall z \in \Omega$ and $F(x) = \log x$ for $x \in \mathbb{R}$ close to 1.

4 Meromorphic Functions

4.1 Zeros of holomorphic functions

Definition 4.1. f has a **zero of order** m at $z_0 \in \mathbb{C} \iff f(z_0) = f'(z_0) = f''(z_0) = \ldots = f^{(m-1)}(z_0) = 0$ and $f^{(m)}(z_0) \neq 0$.

Theorem 4.1. f holomorphic has a zero of order m at $z_0 \iff f(z) = (z - z_0)^m g(z)$ for some g holomorphic at z_0 with $g(z_0) \neq 0$.

Corollary 4.2. For every zero of a non-constant holomorphic function, there is a neighbourhood inside of which it is the only zero.

4.2 Laurent series

Definition 4.2. The Laurent series for f at z_0 is

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

(if it converges)

Theorem 4.3. (Laurent Expansion Theorem) If f is holomorphic in $D = \{z : r < |z - z_0| < R\}$ then

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

where

$$a_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\eta)}{(\eta - z_0)^{n+1}} d\eta$$

For any simple, closed and piecewise $\gamma \subset D$ whose interior contains z_0 .

4.3 Poles of holomorphic functions

Definition 4.3. A singularity of f is z_0 such that f is not holomorphic at z_0 but every neighbourhood of z_0 contains at least one point at which f is holomorphic.

Definition 4.4. A singularity is **isolated** if there is a neighbourhood in which it is the only singularity.

Definition 4.5. For f holomorphic with an isolated singularity at z_0 and

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

for $z \in \{z : 0 < |z - z_0| < R\},\$

- z_0 is a removable singularity $\iff \forall n < 0, \ a_n = 0$
- z_0 is a **pole of order** $m \iff \forall n < -m, \ a_n = 0 \text{ and } a_{-m} \neq 0$
- z_0 is an **essential singularity** $\iff a_n \neq 0$ for infinitely many n < 0.

Definition 4.6. A simple pole is a pole of order 1.

Definition 4.7. f is meromorphic \iff f is holomorphic except at a set of isolated poles. This definition isn't in the lectures, but it's the section title according to Blackboard so I thought it should be included.

Theorem 4.4. f has a pole of order m at $z_0 \iff f(z) = \frac{g(z)}{(z-z_0)^m}$ with g holomorphic at z_0 with $g(z_0) \neq 0$.

4.4 Residue theory

Definition 4.8. The **residue** of f at z_0 is Res $[f, z_0] = a_{-1}$ where

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

for $z \in \{z : 0 < |z - z_0| < R\},\$

Theorem 4.5. Suppose

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

for $z \in \{z : 0 < |z - z_0| < R\}$. For $\gamma \subset \{z : 0 < |z - z_0| < R\}$ simple, closed, piecewise-smooth and containing z_0 in its interior,

Res
$$[f, z_0] = \frac{1}{2\pi i} \oint_{\gamma} f(z) dz$$

Theorem 4.6. For γ simple, closed and piecewise-smooth and f holomorphic inside and on γ except for singularities $z_1, \ldots z_n$ in the interior of γ ,

$$\oint_{\gamma} f(z)dz = 2\pi i \sum_{j=1}^{n} \operatorname{Res}\left[f, z_{j}\right]$$

4.5 The argument principle

Theorem 4.7. (Principle of the Argument) For

- Ω open
- f holomorphic in Ω except for a finite number of poles
- $\gamma \subset \Omega$ simple, closed, piecewise-smooth and not passing through any zeroes or poles of f
- $N = the sum of the orders of the zeroes of f inside \gamma$
- $P = the sum of the orders of the poles of f inside \gamma$

we have

$$\oint_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i (N - P)$$

Notation. Let $N_{\gamma}(f)$ be the sum of the orders of the zeroes of f inside γ .

Theorem 4.8. (Rouche's Theorem) For Ω open, $\gamma \subset \Omega$ simple, closed and piecewise-smooth with interior $\subset \Omega$ and f and g holomorphic in Ω with |f(z)| > |g(z)| for $z \in \gamma$, we have $N_{\gamma}(f+g) = N_{\gamma}(f)$.

5 Harmonic Functions

5.1 Open mapping theorem and maximum modulus principle

Definition 5.1. f is **open** \iff $(\Omega \text{ open} \implies f(\Omega) \text{ open}).$

Theorem 5.1. (Open Mapping Theorem) If Ω is open and f is holomorphic and non-constant in Ω then f is open.

Theorem 5.2. (Maximum Modulus Principle) If Ω is open and f is holomorphic and non-constant in Ω then |f| does not attain a maximum in Ω .

Corollary 5.3. For Ω open with $\overline{\Omega}$ compact and f holomorphic on Ω and continuous on $\overline{\Omega}$,

$$\sup_{z\in\Omega}\lvert f(z)\rvert\leq \sup_{z\in\overline{\Omega}\backslash\Omega}\lvert f(z)\rvert$$

5.2 Evaluation of definite integrals

This section has no new content.

5.3 Harmonic functions

Definition 5.2. The Laplace operator Δ transforms a function $\varphi: \mathbb{R}^2 \to \mathbb{R}$ into

$$\Delta \varphi(x,y) := \frac{\partial^2 \varphi}{\partial x^2}(x,y) + \frac{\partial^2 \varphi}{\partial y^2}(x,y)$$

Definition 5.3. For $\Omega \subset \mathbb{R}^2$ open, $\varphi : \mathbb{R}^2 \to \mathbb{R}$ is **harmonic** in $\Omega \iff \forall (x,y) \in \Omega, \ \Delta \phi(x,y) = 0.$

Theorem 5.4. If u(x,y) + iv(x,y) is holomorphic then u and v are harmonic.

Theorem 5.5. (Harmonic Conjugate) For an open disc $D \subset \mathbb{C}$, u and harmonic in D, there exists v harmonic such that u + iv is holomorphic in D.

Definition 5.4. In the situation above, v is the harmonic conjugate of u.

Proposition 5.6. In a simply connected Ω , the harmonic conjugate of any harmonic u is

$$v(x,y) = \int_{\gamma} \left(-\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy \right)$$

where γ is any curve starting at a fixed point (x_0, y_0) and ending at (x, y). The proof of this statement, in particular the fact that v(x, y) is independent of γ , is out of the scope of the course.

5.4 Properties of real and imaginary parts of holomorphic functions

Theorem 5.7. For:

- Ω open and connected
- f = u + iv holomorphic in Ω
- $C, K \in \mathbb{R}$
- $\gamma_1 := \{x + iy : u(x, y) = C\}$
- $\gamma_2 := \{x + iy : v(x, y) = K\}$
- $x_0 + iy_0 \in \Omega$ where $u(x_0, y_0) = C$ and $v(x_0, y_0) = K$ (i.e $x_0 + iy_0 \in \gamma_1 \cap \gamma_2$) and $f'(x + iy_0) \neq 0$

 γ_1 and γ_2 are orthogonal at $x_0 + iy_0$.

6 Conformal Mappings

6.1 Preservation of angles

Theorem 6.1. (Angle Preservation Theorem) For Ω open, f holomorphic in Ω , γ_1 : $[0,1] \to \Omega$, γ_2 : $[0,1] \to \Omega$ and $z_0 \in \Omega$ with $z_0 = \gamma_1(0) = \gamma_2(0)$ where $\gamma_1'(0)$, $\gamma_2'(0)$ and $f'(z_0)$ are all non-zero,

$$\arg\gamma_2'(0)-\arg\gamma_1'(0)\equiv\arg f(\gamma_2'(0))-\arg f(\gamma_1'(0))\pmod{2\pi}$$

Definition 6.1. f is **conformal** in Ω open \iff f is holomorphic in Ω and $\forall z \in \Omega$, $f'(z) \neq 0$

Definition 6.2. f is a **local injection** on Ω open $\iff \exists D_r(z_0) \in \Omega$ such that the restriction of f to D is injective.

Definition 6.3. If f is a holomorphic local injection on Ω then it is conformal on Ω . In particular, $f^{-1}: f(\Omega) \to \Omega$ is holomorphic, and in general the inverse of a conformal mapping is holomorphic.

Definition 6.4. Two open sets are **conformally equivalent** \iff there is a bijective conformal mapping between them.

6.2 Möbius transformations

According to Blackboard this subsection and the next should be in section one, but in the lectures they're here.

Definition 6.5. A Möbius or bilinear transformation has the form

$$f(z) = \frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{C}$ and $ad - bc \neq 0$.

Proposition 6.2. A Möbius transformation is holomorphic and conformal everywhere except at the simple pole $-\frac{d}{c}$

Theorem 6.3. If f and g are Möbius transformations then so are f^{-1} and $f \circ g$.

Proposition 6.4. $f(z) = \frac{az+b}{cz+d}$ has a simple geometric interpretation in the following cases:

- 1. If $a = re^{i\theta}$, b = 0, c = 0 and d = 1 then f(z) = az is expansion by r followed by anticlockwise rotation by θ
- 2. If a = 1, c = 0 and d = 1 then f(z) = z + b is translation by b.
- 3. If $a=0,\ b=1,\ c=1$ and d=0 then $f(z)=\frac{1}{z}$ is inversion

Theorem 6.5. Every Möbius transformation is a composition of the transformations of the three forms above.

Corollary 6.6. A Möbius transformation transforms a circle into a circle and an interior point into an interior point (a line is a circle with infinite radius).

6.3 Cross-ratios Möbius transformation

Theorem 6.7. For a Möbius transformation f and $z_1, z_2, z_3 \in \mathbb{C}$ all distinct and $z \in \mathbb{C}$,

$$\left(\frac{z-z_1}{z-z_3}\right)\left(\frac{z_2-z_3}{z_2-z_1}\right) = \left(\frac{f(z)-f(z_1)}{f(z)-f(z_3)}\right)\left(\frac{f(z_2)-f(z_3)}{f(z_2)-f(z_1)}\right)$$

6.4 Conformal mapping of a half-plane to the unit disc

Theorem 6.8. Let $\mathbb{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}$ and recall $\mathbb{D} = D_1(0)$. Then \mathbb{H} is conformally equivalent to \mathbb{D} . In particular, $f : \mathbb{H} \to \mathbb{D}$ defined by

$$f(z) = \frac{i-z}{i+z}$$

is a conformal mapping with inverse $g: \mathbb{D} \to \mathbb{H}$ defined by

$$g(z) = i\frac{1-z}{1+z}$$

6.5 Riemann mapping theorem

Definition 6.6. $\Omega \subset \mathbb{C}$ is **proper** $\iff \Omega \neq \emptyset$ and $\Omega \neq \mathbb{C}$.

Theorem 6.9. For Ω proper and simply connected and $z_0 \in \Omega$, there is a unique conformal map $f: \Omega \to \mathbb{D}$ where $f(z_0) = 0$ and $f'(z_0) > 0$. The proof of this statement is out of the scope of the course.

Corollary 6.10. Any two proper simply connected open sets are conformally equivalent.