Retail Sales and Customer Behavior Analytics

MSDS-632-M51: Big Data University of the Cumberlands June 15, 2025

- Sushila Sipai
- Satyanarayana Reddy Muttana
- Yanjie Liu

Introduction

Retailers today collect vast amounts of data from POS systems, online platforms, and customer interactions. This project focuses on using Apache Spark, Pandas, and Matplotlib to analyze a real-world retail dataset for insights into product performance and customer behavior.

Preview

Analyzed 500,000+ retail transactions (UCI Online Retail dataset)

Objectives and Goals: : Clean, transform, and analyze retail transaction data, understand customer behavior, sales trends, seasonal patterns

Technologies and Tools: Apache Spark, PySpark, Pandas, Matplotlib, SQLite, Google Colab

Big Data Characteristics – 5Vs

Volume: 500k records – simulates mid-size retail platform

Velocity: Mimics real-time transaction flow

Variety: Structured fields (e.g., InvoiceNo, Date, Price)

Veracity: Data cleaning needed (nulls, returns)

Value: Insight into customer segments and sales drivers

Business Goals & Drivers

Personalized marketing using customer segments

Seasonal sales optimization

Inventory management & demand forecasting

Country-wise revenue analysis

Technical Architecture

Foundation: Java 11, Spark 3.5.6, Winutils

Processing: Apache Spark (local mode), PySpark

Extension: Pandas, Matplotlib, Google Colab, SQLite

Seamless Spark-Python interoperability

Architecture Diagram

Big Data Lifecycle

2. Data Identification (UCI Retail CSV)

3. Acquisition & Filtering (cleaning nulls, malformed entries)

4. Data Transformation (revenue metrics)

5. Analysis (top products/customers, time series)

6. Visualization (line, bar, histograms)

7. Interpretation & Deployment (SQLite storage)

Key Analysis & Results

Top 10 Best-Selling Products

Top 10 Countries by Total Revenue

Sales Trend over Time

Customer Distribution by Revenue

Top 10 Best-Selling Products

Top 10 Countries by Revenue

Daily Quantity Sold

Distribution of Revenue per Customer

Challenges Faced in the Project

- **Data Quality**: Missing values and product returns required cleaning.
- **Infrastructure Setup**: Spark installation and JVM/winutils configuration were time-consuming.
- Visualization Accuracy: Ensuring proper time intervals and scale of the graphs to avoid clutter in Matplotlib.
- Learning Curve: Required skills in Spark, SQL, and Python.

Technologies Used

Apache Spark – Distributed data processing

PySpark – Python API for Spark

Pandas – Exploratory data analysis

SQLite – Lightweight relational storage

Matplotlib – Data visualization

Google Colab – Cloud collaboration

Key Takeaways

SPARK ENABLES SCALABLE DATA PROCESSING

REVENUE AND SALES INSIGHTS EASILY DERIVED

VISUALIZATIONS HELP COMMUNICATE DATA TRENDS

RETAIL ANALYTICS IS EFFECTIVE FOR CUSTOMER BEHAVIOR INSIGHTS

References

- Chen, D. (2012). UCI Machine Learning Repository.
- EMC Education Services. (2015).

 Data Science & Big Data

 Analytics.
- Hashem et al. (2015). Information Systems, 47, 98–115.
- Russom, P. (2011). TDWI Big Data Analytics Report.
- ChatGPT

