Extreme values: Convexity.

Discrete Mathematics and Optimization Bioinformatics

1. Convex sets

When local extrema can be ensured to be global? Convexity is an important notion

Definition

A subset $C \subset \mathbb{R}^n$ is convex if, for every $\mathbf{x}, \mathbf{y} \in C$, C contains all points in the segment joining \mathbf{x} and \mathbf{y} .

For every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ the segment joining \mathbf{x} and \mathbf{y} consists of the points

$$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}, \ 0 \ \textit{le}\lambda \leq 1.$$

1. Convex sets

When local extrema can be ensured to be global?

Convexity is an important notion

Definition

A subset $C \subset \mathbb{R}^n$ is convex if, for every $\mathbf{x}, \mathbf{y} \in C$, C contains all points in the segment joining \mathbf{x} and \mathbf{y} .

Examples of convex sets

- Balls $B(\mathbf{x}, r) = {\mathbf{y} \in \mathbb{R}^n : ||\mathbf{x} \mathbf{y}|| \le r}$ are convex.
- Translates of vector subspaces of \mathbb{R}^n are convex (lines, planes,...)
- If $C_1, C_2 \subset \mathbb{R}^n$ are convex then $C_1 \cap C_2$ is convex.
- Polytopes (constraints in Linear Programming) are convex.
- If $S = \{x_1, \dots, x_k\} \subset \mathbb{R}^n$, the convex hull of S

$$Conv(S) = \{\lambda_1 x_1 + \dots + \lambda_k x_k : \lambda_i \ge 0, \lambda_1 + \dots + \lambda_k = 1\},\$$

is convex.

2/1

ESCI) Convexity

Definition

A function $f: C \subset \mathbb{R}^n \to \mathbb{R}$ is convex on the convex set C if, for every $\mathbf{x}, \mathbf{y} \in C$ and all $0 < \lambda < 1$,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}).$$

Definition

A function $f: C \subset \mathbb{R}^n \to \mathbb{R}$ is convex on the convex set C if, for every $\mathbf{x}, \mathbf{y} \in C$ and all $0 \le \lambda \le 1$,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}).$$

- Strict convex if the inequality is strict.
- Concave if the opposite inequality holds.
- $f(\mathbf{x})$ is convex if and only if $-f(\mathbf{x})$ is concave.
- If f is convex on C and $\lambda_1 + \cdots + \lambda_k = 1$, $\lambda_i \ge 0$ then, for every $\mathbf{x}_1, \dots, \mathbf{x}_k \in C$,

$$f(\lambda_1 \mathbf{x}_1 + \cdots + \lambda_k \mathbf{x}_k) \leq \lambda_1 f(\mathbf{x}_1) + \cdots + \lambda_k f(\mathbf{x}_k).$$

Definition

A function $f: C \subset \mathbb{R}^n \to \mathbb{R}$ is convex on the convex set C if, for every $\mathbf{x}, \mathbf{y} \in C$ and all $0 \le \lambda \le 1$,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \leq \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}).$$

Why convexity is important in optimization?

Theorem

Let $f: C \subset \mathbb{R}^n \to \mathbb{R}$ be a convex function on the convex set C. Then a (strict) local minimum of f is a (strict) global one.

- Let \mathbf{x}_0 be a local minimum, $f(\mathbf{x}_0) \leq f(\mathbf{y})$ for all \mathbf{y} close to \mathbf{x}_0 .
- Let $\mathbf{x} \in C$. Choose $0 < \lambda < 1$ such that $(1 \lambda)\mathbf{x}_0 + \lambda \mathbf{x}$ is close to \mathbf{x}_0 .
- By convexity, $f(\mathbf{x}_0) \leq f((1-\lambda)\mathbf{x}_0 + \lambda \mathbf{x}) \leq (1-\lambda)f(\mathbf{x}_0) + \lambda f(\mathbf{x})$.
- It follows that $f(\mathbf{x}_0) \leq f(\mathbf{x})$.

Definition

A function $f: C \subset \mathbb{R}^n \to \mathbb{R}$ is convex on the convex set C if, for every $\mathbf{x}, \mathbf{y} \in C$ and all $0 \le \lambda \le 1$,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}).$$

Why convexity is important in optimization?

Theorem

Let $f: C \subset \mathbb{R}^n \to \mathbb{R}$ be a convex function on the convex set C. Then a (strict) local minimum of f is a (strict) global one.

A word of caution

If f is convex its global minimum is contained in the critical points $(\nabla f(\mathbf{x}) = 0)$ or on the boundary of C.

Definition

A function $f: C \subset \mathbb{R}^n \to \mathbb{R}$ is convex on the convex set C if, for every $\mathbf{x}, \mathbf{y} \in C$ and all $0 \le \lambda \le 1$,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}).$$

Examples of convex functions:

- Linear functions $f(x_1, ..., x_n) = a_1x_1 + \cdots + a_nx_n$ are convex (and concave).
 - x^2, x^4, \cdots are convex.
 - Odd powers x^3, x^5, \ldots are not convex in \mathbb{R} .
 - Exponential e^x is convex.
 - Logarithm log(x) is concave.

Definition

A function $f: C \subset \mathbb{R}^n \to \mathbb{R}$ is convex on the convex set C if, for every $\mathbf{x}, \mathbf{y} \in C$ and all $0 \le \lambda \le 1$,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}).$$

How to check if f is convex?

Theorem

Let $f \in C^2(C)$. Then f is f is convex on C if and only if the Hessian matrix of f is positive semidefinite at every point $x \in C$.

Example: $f(x, y) = x^2 - xy + y^2$

•
$$\nabla f(x,y) = (2x - y, 2y - x)$$

•
$$Hf(x,y) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

◆□▶◆□▶◆■▶◆■▶ ■ 夕♀◎

3/1

Convexity

Definition

A function $f: C \subset \mathbb{R}^n \to \mathbb{R}$ is convex on the convex set C if, for every $\mathbf{x}, \mathbf{y} \in C$ and all $0 \le \lambda \le 1$,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}).$$

How to check if f is convex?

Theorem

Let $f \in C^2(C)$. Then f is f is convex on f if and only if the Hessian matrix of f is positive semidefinite at every point $\mathbf{x} \in C$.

An idea of the proof.

- f is convex if and only if $f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} \mathbf{x})$.
- Use quadratic approximation $f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} \mathbf{x}) + (\mathbf{y} \mathbf{x})^T H f(\mathbf{x}) (\mathbf{y} \mathbf{x}) + o(\|\mathbf{y} \mathbf{x}\|^2).$

Definition

A function $f: C \subset \mathbb{R}^n \to \mathbb{R}$ is convex on the convex set C if, for every $\mathbf{x}, \mathbf{y} \in C$ and all $0 \le \lambda \le 1$,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \leq \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}).$$

How to check if f is convex?

- If $f_1(\mathbf{x}), f_2(\mathbf{x})$ are convex on C then $f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x})$ is convex on C.
- If $f(\mathbf{x})$ is convex on C and $\alpha \in \mathbb{R}$, $\alpha > 0$, then $(\alpha f)(\mathbf{x})$ is convex on C.
- If f is convex on C and $g: f(C) \subset \mathbb{R} \to \mathbb{R}$ is increasing then $g(f(\mathbf{x}))$ is convex on C.

Example: $f(x, y) = e^{(x^2+y^2)} - \log(xy)$ is convex.

Summary

- Convex functions on convex sets have a global minimum if they have a local one.
- Convexity of a function can be discovered either by analyzing its components or by positivity of the Hessian.
- Convex optimization is a large area including topics as:
 - Least squares
 - Linear programming
 - Convex quadratic minimization with linear constraints
 - Quadratic minimization with convex quadratic constraints
 - Geometric programming
 - Semidefinite programming
 - Entropy maximization with appropriate constraints
 - **....**

A reference

Undergraduate Texts in Mathematics A. L. Peressini F. E. Sullivan J. J. Uhl, Jr. **The Mathematics** of Nonlinear **Programming** $f(x) \ge f(x_0) + \nabla f(x_0) \cdot (x - x_0)$ Springer

Table of Contents

CHAPTER : Unconstrained Opt	mization via Calculus						
	e Variable						
	veral Variublex						
	gative Definite Matrices as						
	ons and Global Minimize						
	Positive Definite Matrice						
CHAPTER 2							
	nvex Functions						
2.2. Some Illustrati	es of Convex Sets in Econ	omics-					
*2.2. Some Illustrati Linear Product	es of Convex Sets in Econ on Models	omics-					
 Some Illustration Linear Product Convex Function 	es of Convex Sets in Econ on Modets	omics					
 Some Illustratis Linear Product Convex Functi Convexity and 	es of Convex Sets in Econ on Models us he Arithmetic-Geometric	omics Mean I	equ	dity			
 Some Illustratis Linear Product Convex Functi Convexity and An Introduction 	es of Convex Sets in Econ on Modets dis he Arithmetic-Geometric s to Geometric Programm	Mean I	ecja	dity			
 Some Illustration are Product Convex Function Convexity and An Introduction Unconstrained 	es of Convex Sets in Econ on Motets es he Arithmetic-Geometric is to Geometric Programm Geometric Programming	Mean I	ecja	dity			
*2.2. Some Illustrati Linear Product 2.3. Convex Functi 2.4. Convexity and An Introductio 2.5. Unconstrained *2.6. Convexity and	es of Convex Sets in Econ on Models es he Arithmetic-Geometric is to Geometric Programm Geometric Programming Dither Inequalities	Mean I	ecta	dity			
*2.2. Some Illustrati Linear Product 2.3. Convex Functi 2.4. Convexity and An Introductio 2.5. Unconstrained *2.6. Convexity and	es of Convex Sets in Econ on Motets es he Arithmetic-Geometric is to Geometric Programm Geometric Programming	Mean I	ecta	dity			
*2.2. Some Illustrati Linear Product 2.3. Convex Functi 2.4. Convexity and An Introductio 2.5. Unconstrained *2.6. Convexity and	es of Convex Sets in Econ on Models es he Arithmetic-Geometric is to Geometric Programm Geometric Programming Dither Inequalities	Mean I	ecta	dity			