

Team 84: Ultrasonic Radio Bi-Weekly Update 5

Nathan Cinocca and Jacob Ralls
TA: Omar Mahmood

Project Summary

Problem statement:

 Communicating information is very important in almost every military operation. However, sometimes sending information through traditional methods is not feasible.

Solution proposal:

- A solution to this issue is to develop an acoustic ultrasonic radio.
 - Acoustic waves and lower frequencies will limit electromagnetic radiation
- This radio will allow for communications over relatively short distances.
- Communication will be slower than devices using electromagnetic waves

Project/Subsystem Overview

- •Input microphone covers human voice frequencies (100 Hz to 3 kHz)
- Voice is translated into an electrical signal
- •Signal is amplified and filtered to enhance quality and eliminate unwanted noise
- •Modulated to ultrasonic frequencies for transmission, with optional additional filtering
- •Modulated signal goes through a power amplifier to achieve required gain
- •Signal travels to receiving microphone for filtering and amplification for demodulation
- •After demodulation, signal is filtered and output through a speaker within the human hearing range

Project Timeline

Subsyste Designs a Testing (To comp by 2/9)	nd transmitter subsystems ete (to complete	Integration of receiver subsystems (to complete by 2/26)	Final Integration (to complete by 3/4)	System Test (to complete by 3/25)	Validation (to complete by 4/8)	Demo and Report (to complete by 4/15)
---	--	--	---	---	---------------------------------------	--

Jacob Ralls

Accomplishments since last update 25 hrs of effort

- Tested integrated receiver components with transmitted components (Transducer was making high pitched sound on transmitter end)
- Aided in resolving issue with the demodulator (Was only showing DC voltage gain)
- Tested and Validated compatibility between the speaker and microphone
- Tested FM with the power amplifier (showed increase in voltage but did not show faster frequency)

Ongoing progress/problems and plans until the next presentation

- ONGOING working compatibility of modulator and demodulator
- Once received, solder and test new demodulated circuit utilizing the potentiometer to control voltage in the VCO (Likely current issue with the communication between systems)
- Validate other tasks once compatibility works.

Nathan Cinocca

Accomplishments since last update 25 hrs of effort	Ongoing progress/problems and plans until the next presentation
 Fixed issue with frequency modulator Tested and validated the transmitter side of the radio (microphone picked up voice input, was amplified, modulated, and sent through the 50k Hz speaker) Tested and validated the functionality of the speakers and microphones 	 Finish validating the communication issue between the modulator and demodulator Test slightly new frequency modulator if necessary Order, solder, and test final PCB once modulation/demodulation issue is resolved

Execution Plan

	January	February	February	February	February	March	March	March	April	April	April
	29th	5th	12th	19th	26th	4th	18th	25th	1st	8th	15th
Finish Validating and Testing all Subsystems											
(ALL)											
Order New PCB if Needed (ALL)											
Order Ultrasonic Microphones and											
Speakers (ALL)											
(Transmitter End) Connect/Validate Signal											
Amplifier and Filter (NC)											
(Transmitter End) Connect/Validate Power											
Amplifier With Other Transmission											
Subsystems (NC)											
(Transmitter End) Connect/Validate											
Frequency Modulator With Other											
Transmission Subsystems (NC)											
(Receiver End) Connect/Validate Signal											
Amplifier and Filter (JR)											
Connect/Validate Both Transmitter and											
Receiver Parts of Radio (ALL)											
Final Validation and Testing of Radio (ALL)											

■ Completed ■ Pending ■ Not Started ■ Behind Schedule

Validation Plan

Paragraph #	Test Name	Success Criteria	Methodology	Status	Responsible
					Engineer(s)
3.2.1.1	Signal to	The transmission signal from the transmitter to the	Test gain with an oscilloscope at the output node of the	UNTESTED	Full Team
	Noise Ratio	receiver should have >= 60 dB signal to noise ratio	receiver		
3.2.1.2	Transmission	The signal should be able to transmit and be	Send the signal and measure the maximum distance with	UNTESTED	Full Team
	Distance	received at 15 meters or more	a tape measure		
3.2.1.3	Total	The output signal should have a total harmonic	Test the output total harmonic distortion at the output	UNTESTED	Jacob Ralls
	Harmonic	distortion less than or equal to 5%	node of the radio with an oscilloscope		
	Distortion				
3.2.2.1	Mass	Have the entire ultrasonic radio be less than or	Weigh all PCBs that make up the radio on a scale	TESTED	Full Team
		equal to 10 kilograms			
3.2.3.1.1	Power	The maximum peak power of the system shall not	Use multimeter to check power consumption of	TESTED	Full Team
	Consumption	exceed 4.5 watts	ultrasonic radio		
3.2.3.1.2	Input Voltage	The input voltage level for the ultrasonic radio shall	Use multimeter to check voltage levels of ultrasonic radio	TESTED	Full Team
	Level	be +5 VDC			
3.2.3.1.3	Input Current	The input current for the ultrasonic radio shall not	Use multimeter to check current levels of ultrasonic radio	UNTESTED	Full Team
	Level	exceed 900 mA			
3.2.3.1.4	Voice Input	The ultrasonic radio shall take user voice input that	Test input microphone with different voice frequency	UNTESTED	Nathan
		operates from 100 Hz to 3 kHz	recording within the 100 – 3kHz range		Cinocca
3.2.3.2.1	Voice Output	The ultrasonic radio shall output the voice input up	Test output speaker with different voice frequency	UNTESTED	Jacob Ralls
		to 15 meters away at frequencies 100 Hz to 3 kHz	recording within the 100 – 3kHz range		
3.2.4.1	Pressure	The ultrasonic radio may be able to operate up to	Use ultrasonic radio in a container with higher pressure	UNTESTED	Full Team
	(Altitude)	2.5 atm of pressure			
3.2.4.2	Thermal	The ultrasonic radio may be able to operate at	Use ultrasonic radio outside or in a temperature-	UNTESTED	Full Team
		thermal temperatures ranging from 55 degrees	controlled area such as oven		
		Fahrenheit to 95 degrees Fahrenheit			
3.2.4.3	Humidity	The ultrasonic radio should be able to function in 0-	Use a container with controlled humidity to test	UNTESTED	Full Team
		95% relative humidity	ultrasonic radio		
3.2.5.1	Recovery	The Ultrasonic radio should provide a way to reset	Test reset button to see if it turns off and resets the	UNTESTED	Full Team
		the entire system	ultrasonic radio		

Thank you for your attention. Any questions?