

COMMERCIAL CAR JOURNAL

with which is combined Operation & Maintenance
Reg. U. S. Pat. Off.
Entered as second-class matter at the Post Office at
Philadelphia, Pa., under Act of March 3, 1879

Vol. XLVII Philadelphia, April, 1934 No. 2

EDITORIAL DEPARTMENT

JULIAN CHASE, Directing Editor
GEORGE T. HOOK, Editor
ATHEL F. DENHAM, Detroit Editor
GEOFFREY GRIER, Art Editor

EDITORIAL CONTENTS

Copyright 1934, by Chilton Company

FEATURE ARTICLES

Is the New Deal Being Messed Up?.....	9
The Trucking Code Rolls Down the Home-Stretch..	10
L.C.L. Traffic Report Aims to Put 150-Mile Limit on Trucks	12
What's Back of the Come-Back of Camel-Backs?....	16
Truck No. One-O-One-Six-Eight.....	19
Can Business Groups Jointly Own Trucks and Avoid For-Hire Laws?.....	21
"We Cut Idle Truck Time 75% and Saved \$2,000 a Year Per Truck".....	24
Viscosity Affects Oil Use But Engine Speed is the Real Hog.....	27
Look to the Carburetor If You are Looking for Economy.....	29
Maintenance Men: Know Thy Spark Plugs!	30

NEW PRODUCT DESCRIPTIONS

Federal's New 2-Ton Lists at \$845.....	32
IHC Builds New Half-Ton in Own Plants.....	33
Buda Breaks Out With Full Diesel in Two Sizes...	34
Ford Bolsters Its Bid for Truck Volume With Full- Floating Rear	36
Hercules Develops Two Small Fours for Commercial Use	50
Diamond T Has a DeLuxe Cab to Match V-Type Radiator	51

DEPARTMENTS

The Ear-to-the-Ground Department	23
\$alvage—From a Shop Man's Mail	35
News of the Industry	38
Commercial Car Journal Truck Specifications.....	39
Advertisers' Index	72

Published Monthly by

CHILTON COMPANY

Chestnut and 56th Streets, Philadelphia, U. S. A.

C. A. MUSSelman, President and General Manager
J. S. HILDRETH, Vice-Pres. and Director of Sales
W. I. RALPH, Vice-Pres. G. C. BUZBY, Vice-Pres.
JOHN A. CLEMENTS A. H. VAUX
Assistant Treasurer Secretary and Treasurer
GEORGE D. ROBERTS, Advertising Manager
Telephone..... Sherwood 1424, Philadelphia

OFFICES

New York—239 W. 39th St., Phone Pennsylvania 6-1100
Chicago-Room 1116 London Guarantee & Accident Bldg., Phone
Franklin 9404
Detroit—814 Stephenson Bldg., Phone Madison 2090
Cleveland—1140 Guardian Bldg., Phone Main 6860
Boston—301 United Shoe Bldg., Phone Liberty 4460
San Francisco—1045 Sansome St., Phone Douglas 4306
Los Angeles—Room 458, Chamber of Commerce Bldg., Phone Pros-
pect 9137
Portland, Ore.—72 Fifth St.

SUBSCRIPTION RATES: United States and United States Possessions and all countries in the Postal Union—\$1.00 per year. Canada and Foreign—\$2.00 per year. Single copies 25 cents.

Make Checks, Money Orders, etc., payable to Chilton Company
MEMBER OF THE AUDIT BUREAU OF CIRCULATIONS

THE COMMERCIAL CAR JOURNAL

Spicer

FOR BETTER PERFORMANCE
... LONGER LIFE

EXCLUSIVE
LICENSEES UNDER
GOETZ U. S. PATENT
RE 18080

NEW SPICER NEEDLE BEARING UNIVERSAL JOINTS

"Chosen by leading car, bus and truck makers because of many exclusive advantages resulting in less friction and greater efficiency. Write for complete details."

Spicer

MANUFACTURING CORPORATION
TOLEDO, OHIO

BROWN-LIPE
CLUTCHES and
TRANSMISSIONS

SALISBURY
FRONT and REAR
AXLES

SPICER
UNIVERSAL
JOINTS

PARISH
FRAMES
READING, PA.

APRIL, 1934

Use ALL THREE for 100% SPARK PLUG SERVICE

AC LONG LIFE SPARK PLUG

Built for heavy service... with many exclusive, patented features. Original factory equipment on 7 out of 10 buses and trucks built today. Now offered at the lowest price of any factory-approved spark plug.

AC HEAT RANGE CHART

The type of plug used as equipment and recommended for replacement is for *normal* operating conditions. If engines operate under *abnormal* conditions (too hot or too cool), AC's Heat Range Chart will indicate the proper spark plug.

AC SPARK PLUG CLEANER

Even before they are worn out, spark plugs may waste 10% of the fuel because of oxide coating, carbon fouling or improper spark gap. Keep spark plugs clean with the AC Cleaner—fast, economical, and thorough.

CUT COSTS . . . ADD MILES IMPROVE PERFORMANCE!

Operators' experience proves conclusively that you need *all three* —AC Long Life Spark Plugs, AC Heat Range Chart, and AC Spark Plug Cleaner—for perfect spark plug service. Take a few minutes to check into your own spark plug situation. It is possible, in a very short time, for worn and dirty plugs to injure engine efficiency... interrupt service... waste 1 gallon of gas in 10. So, although spark plugs are small items, they merit your attention. Adopt this AC plan—use all three... AC Long Life Plugs... the AC Heat Range Chart... the AC Spark Plug Cleaner—make sure of 100% spark plug service.

AC SPARK PLUG COMPANY
Flint, Michigan St. Catharines, Ont.

APRIL, 1934

**The BIGGEST
60c WORTH
in Spark Plug History**

THE COMMERCIAL CAR JOURNAL

Is the New Deal Being Messed Up?

SINCE about the beginning of this year it has been increasingly apparent that the general public was getting uncertain about restoring prosperity by promoting scarcity. Experienced and thoughtful business men had had misgivings about this paradoxical program from its beginning. But, afflicted by their own depression troubles, and in the face of the ballyhoo support of NRA, they had got little hearing even when occasionally they had the temerity to voice their misgivings. Unthinking people had been swept along on the tide of booster propaganda. They were delighted with the idea of a national leadership daringly doing things, even if they were in doubt just what things it was doing. So for a time small attention was given to the experimental character of measures or to the failure to set up any definite goal at which these measures were aimed.

More recently searching questions have been demanding answers. Have the recovery activities produced results proportionate to either their cost or to the hopefulness with which their initiation was greeted? Two inquiries as to the recovery program are lately being pressed:

First, will it work?

Second, do its authors conceive it as an end in itself, or merely as the beginning of a sweeping project of social reconstruction?

THE first question is being answered with less and less confidence even by those who most wish the answer to be affirmative. The second is asked with more and more misgiving by a constantly increasing number of people.

Not since 1896 has there been such interest in economic problems as there is today. People are reading more, thinking more, trying harder to put together the results of their reading, thinking and experience. And there is another possible parallel to 1896. A polling in August of that year would probably have swept the country for the program that in November was overwhelmingly beaten. Will the November of 1934 bring another testimony

to the moderating influence of second thought?

THREE has been much discussion of whether the blue prints of our recovery plan were borrowed more from Italy or from Russia; and the answer has commonly been hesitant, because of doubt what the plan aims at. Being pretty sure that neither Britain nor Canada has tried anything savoring of either Fascism or Communism, people are comparing their recovery accomplishments with our own—rather to the disparagement of our program. Britain and Canada have clung to the old ideals—tightening the belt, balancing the budget, insisting that economic law has not yet been repealed, keeping the Government out of business, and pay-as-you-go. On the face of returns to date, they have apparently done quite well. Canada seems to have rather bettered our record in overcoming unemployment, while the British exchequer the other day reported a comfortable surplus in contrast to our vast deficit.

SMALL wonder, then, that the American community is beginning to inquire a little about the efficacy of our more spectacular proceedings. We have poured out billions to prime the pump, and yet there are Thomases who doubt whether anything is coming out of the spout except a small portion of the priming water. Still more wonder whether the supply of priming water will hold out.

Out of these doubts some things seem to be crystallizing in the public thought. There is less ready acceptance of Government in the role of a benevolent Providence able to ladle out magically accumulated funds for the deficits of business.

THREE is increasing reluctance to assume that politicians and political appointees are more competent to direct business than are the men who have given their lives to building it.

Price-fixing is being examined in the light of a hundred generations of experience, with the resultant conclusion that it works no better now than under the Roman emperors or the early Chinese dynasties.

Question marks are being written opposite proposals to feed people with wheat that other people are paid not to raise, or to clothe them with cotton that the planters are hired to plow under.

It begins to be recognized that instead of restricting production our need is to encourage it and then get its fruits consumed through wider distribution of buying power in better wages and more employment.

There has been a healthy protest against spreading employment by reducing working hours. The argument that consuming power has never yet had a chance to prove what it can do for a truly prosperous community, is getting a serious hearing.

THE original idea of the industrial codes was to provide more employment and better wages, and do away with child labor. These things would have brought higher prices, and then profits would take care of themselves. Unfortunately some people got the idea that the N.I.R.A. had repealed anti-trust laws, and undertook to chisel out monopolies for themselves. Some of them seriously believed that was what the recovery program wanted them to do; more of them simply saw the opportunity, and reached for it. Both groups were wrong. The anti-trust laws have not been repealed, and, plainly, are not going to be. Monopolies, whether established through the machinations of private business or under grants of Government privilege, are altogether bad; and the worst of them are those erected under color of governmental approval. It makes no difference whether that approval is given through a royal charter or an NRA code.

THE sooner we get back to accepting the simple fundamentals to which the codes were originally dedicated—more employment, better wages, better distribution of buying and consuming power—the sooner will we be back in the way of prosperity. And there are encouraging signs that with sober second thought the country is getting its feet into the safer paths.

Temporary National Code Authority for the Trucking Industry

Left to right: Front Row—James E. Murphy (Contract Carrier), St. Paul Park, Minn.; J. Rowland Bibbins (National Recovery Administration); Ted V. Rodgers (Contract Carrier), Scranton, Pa., Chairman; Roy B. Thompson (Manager, Federated Truck Associations of California), San Francisco, Vice-Chairman; W. A. Gordon (Furniture Warehouseman), Omaha, Neb. Back row—Edward F. Loomis (Staff Secretary); Edward S. Brashears (Staff General Council); Fred O. Nelson (City Drayman), New York City; Percy F. Arnold (Contract and Common Carrier and City Drayman), Providence, R. I.; William E. Humphreys (Staff Treasurer); J. H. McAlpin (Not-for-Hire), Eldorado, Ark.; H. D. Horton (Common and Contract Carrier), Charlotte, N. C.; Frank C. Schmidt (Common Carrier), Toledo, Ohio. Charles P. Clarke (National Recovery Administration), is not in the picture. Neither are staff men C. F. Jackson and J. V. Lawrence.

The Trucking Code is Rolling Down the Home-Stretch

THE Trucking Code—the trucking industry's experiment in self-regulation which will cost millions upon millions of dollars—is, at last, coming down the home-stretch. All that remains is for NRA to approve the industry's plans for registering the 1,600,000 motor vehicles which will come under the code.

Approval will depend upon the outcome of the hearing into the reasonableness of assessments proposed by the National Code Authority for the trucking industry. This hearing was ordered by General Johnson, after the National Code Authority had approved an assessment of \$3.00 per vehicle against all vehicles in the "for-hire" classification of the code, and 90 cents per vehicle against vehicles in the "not for hire" class. These assessments would furnish a budget somewhere around three million of dollars for administration of the code.

IT is difficult to see how the hearing into assessments can be anything but a formality. The writer has seen the stack of work-sheets containing an analysis of every conceivable item of expense which would be caused by the code. This assessment budget has been in preparation since last December. Budgets submitted by more than 20

states were taken into consideration in arriving at final results. Then different revisions were made of the budget to make certain that the work caused by the code would be done at the lowest possible cost.

IT isn't possible to list here all the items of expense figured into the 90-cent assessment. The cost of registration and of handling reports was analyzed from every angle. Some of the items covered by the assessment are:

Cost of registration insignia. (Insignia sample is reproduced in these pages.)

Freight and expressage on insignia to the distributing point in each state.

Printing and distributing the registration and report forms to the various states. (There is really only one large form which combines registration and operating data. And when the writer says large, he means a huge headache. He recalls that the tentative form he saw a few weeks ago consisted of six pages, each about half again as large as the page you are now reading, and much more closely printed. The original form was a simple one. Then came demands from NRA to procure operat-

ing data which would give the government its first accurate picture of the trucking industry. There is no doubt about the value and the necessity for these operating facts, but neither is there any doubt that a lot of operators will do considerable head-scratching, fuming, fussing and cussing before they come up with the answers.)

Cost of editing registration and report forms for tabulation.

Coding and tabulating of registration and report forms.

Filing and storage of registration and report forms.

Cost of maintaining registration offices located at points convenient to those who must register.

Postage on registration insignia from the state headquarters to the registrant.

Addressing registration insignia; their inventory, storage, insurance, etc.

Printing and shipping to state headquarters of registration certificates.

The filling in of registration certificates.

Addressing and mailing of registration certificates to each registrant.

THE assessment of \$3.00 covers all of the items above and additional costs of code administration which would be applicable only to "for-hire"

How the Trucking Code Stands

1. National Code Authority approved.
2. Effective date of code extended to March 30, 1934.
3. Break-down of nation into 12 regional areas approved.
4. Many State Code Authorities approved.
5. By-laws and regulations for State Code Authorities approved.
6. Hearing ordered on assessment fees of 90 cents per vehicle for not-for-hire vehicles and \$3 per vehicle for for-hire vehicles.
7. Registration insignia approved.
8. Registration and report form approved.

vehicles. Among these additional items are:

Securing compliance with the general administration of the Industrial Relations provisions of the code.

Providing facilities for the filing of rates and tariffs, and the administration of this article of the code.

Development of a cost formula on which rates and tariffs will be founded. Studies to determine the feasibility and desirability of a shorter working day in the industry.

Studies to develop standards of safety and health among employees of the industry.

Studies on which to base a report to the Administration as to the advisability of evidence of responsibility or insurance for public liability, property damage or cargo, which report is required in the code.

Development of trade agreements tending to liberalize labor conditions and to develop trade practices within natural or territorial groups of the industry.

Development of a system of uniform accounting and reporting to be recommended to the Administrator as required in the code.

IT can safely be said that the representatives of the trucking industry who worked up the assessments arrived at their figures only after the most painstaking effort. They had many conferences with various governmental departments, with other Code Authorities that have had experience in code administrative work, with private institutions and recognized experts who have had years of experience in gathering,

These are reproductions of the code registration plates that well-dressed trucks will wear

tabulating and handling data of the sort that will be required under the trucking code. Every effort was made to get the assessments down to the lowest possible point.

It is this very fact that makes it reasonable to suppose that the assessment hearing is not likely to develop objections which would cause the budget to be thrown overboard at this stage of code work. An objection to be valid would have to represent almost as much analytical and research work as has gone into the making of the budget.

SO code effectiveness actually is now in the home-stretch. Last month at this time it was still in the back-stretch but during the last 30 days Washington has seen a great deal of expert jockeying. As a result decisions have been made which were looked for months ago.

The signing of the trucking code by President Roosevelt last Feb. 10, was just the beginning of further troubles for those faithful representatives of the industry who have been making personal sacrifices to promote its welfare. Weeks went by and so did Feb. 25, the effective date of the code. But there was nothing that could be made effective because the machinery for setting the code in motion was dismantled, assembled, and dismantled time and again in undergoing the inspection of the various boards of NRA.

MEMBERS of the temporary National Code Authority were given official approval. These men shouldered the responsibility of trying to get the decisions by NRA which would give the industry what it had been looking for since December. Their patience was singularly rewarded when one of General Johnson's right-hand men raised the very original question of why the trucking code should include private carriers. Raising this question after the code had been approved by everybody from President Roosevelt down was a rather weighty straw but it didn't succeed in breaking the spirit of the National Code Authority.

Its members went to the mat and victory eventually was theirs. The NRA mogul who had raised the question had also (at least so the story goes) raised Cain with the various NRA "menials" who had worked on the trucking code. He wanted the code amended to stress the fact that if private carriers didn't want to register under the trucking code they could protest to NRA and it would be subject to hearing.

THE matter was settled just about the time the National Code Authority prevailed upon NRA to extend the effective date of the code 30 days —to March 25, that is. Both matters were covered in an executive order issued by General Johnson.

(TURN TO PAGE 15, PLEASE)

L.C.L. Traffic Report Aims To Put 150-Mile Limit on Trucks

FOR the first time in transportation history a searching analysis of the whole field of freight transported in lots of less-than-railroad-carload lots was minutely examined by a corps of transportation specialists under the guidance and direction of John R. Turney, an outstanding and forward-looking traffic executive, formerly vice-president of the St. Louis-Southwestern Railway, and, since the organization of the Federal Coordinator of Transportation Staff, the director of the Transportation Service Section.

The work of this organization has resulted in a proposed plan for the transportation of merchandise freight which is of primary importance to every motor truck operator because it proposes changes, which if adopted by the railroads and other carriers, would revolutionize the transportation of freight throughout the United States.

The merchandise report of the Section of Transportation Service has vital bearing upon the status and future development of the motor transportation industry. The nationwide study is based upon complete answers to detailed inquiries received from over 35,000 ship-

pers and consignees of merchandise freight; all principal railroads, express companies, freight forwarders and water carriers engaged in domestic freight transportation, all truck operators operating fleets of 10 or more vehicles in intercity transportation as common carriers, contract carriers or private vehicle operators.

The studies indicate that a startling amount of intercity merchandise freight is being transported by motor vehicles. The total tonnage of merchandise freight, that is, freight in less-than-railroad-carload lots, transported by all domestic land transportation carriers amounted, in 1932, the year studied, to about 52,000,000 tons, distributed among transport agencies as follows:

Railroad L.C.L. Service	15,234,000
Freight forwarders	1,902,000
Express companies	2,826,000
Highway common carriers ...	3,549,000
Highway contract carriers ...	2,459,000
Highway private haulers	26,252,000
Total (Tons)	52,222,000

These figures are, of necessity, to be considered as approximations, for returns were not made by all transportation agencies, but they are significant

in indicating the importance of highway transportation in the intercity movement of freight traffic. Highway vehicles transported over 32,000,000 tons of merchandise in 1932, as compared to less than 20,000,000 tons transported by railroad L.C.L., forwarder and railway express services.

The popularity of motor transportation is attested to by the fact that in 1932 the tonnage of merchandise freight transported by highway was more than twice the tonnage transported by rail L.C.L. service and that over half of the highway traffic moved for distances over 50 miles. This estimate, arrived at by dividing the total tonnage reported by shippers and receivers by two to allow for complete duplication, shows 14,763,000 tons transported by trucks for distances under 50 miles, 12,434,000 tons transported for distances of 50 to 250 miles, and 3,085,000 tons transported by highway over 250 miles.

The responses of 35,468 shippers, representing 112,142,038 tons of merchandise freight shipped or received, stated their reasons for using motor trucks as compared with other carriers'

service as shown below. In most cases several reasons were assigned.

	% of Shippers	% of Tonnage
Simpler classification or rates	16	25
Cheaper packing	21	27
Store door collection	51	54
Store door delivery	65	67
Cheaper total service	53	67
Faster service	65	73
More flexible or convenient service	43	61
Late acceptance of shipments	21	26
Less damage to or loss of freight	11	14
Personal friendship or interest	3	3

With respect to speed, studies indicated the average door-to-door speeds to be over 20 miles per hour, while present rail L.C.L. schedules were found rarely to exceed 20 miles per hour, with door-to-door services still slower owing to terminal detention. The motor vehicle was found to be "generally superior in speed to rail express service for distances under 150 miles, but generally inferior for distances in excess of 350 miles."

The almost universal demand of modern industry for complete merchandise service, including store-door collection and delivery service, was found to be responsible in large measure for the growth of highway transportation. As shown, about 65 per cent of the shippers representing 67 per cent of the freight shipped, use motor transportation because of delivery service, while 51 per cent of the shippers speaking for 54 per cent of the freight transported stated that they use motor freight service because of the availability of store-door collection service.

The cheaper total cost of motor freight transportation is a drawing card of great importance. Over 18,000 shippers, 53 per cent of all who responded, representing 67 per cent of the merchandise freight, reported that they used motor freight transportation partly because of the lower total cost of motor transportation. The unfavorable position of railroad merchandise rates as compared with motor freight transportation charges was found to be due partly to:

1. Complex classifications of railroad freight.
2. Complicated tariffs of rates and charges.
3. Rigorous packing requirements.
4. Incomplete transportation service.
5. Lack of rate parity.
6. The rigidity and structure of the railroad system.

IN this article are summarized those portions of the Federal Coordinator of Transportation's report on less-than-carload lot freight traffic which are of vital interest to the motor truck industry.

The analysis presented here is entirely impartial and, in this respect, resembles the voluminous report of the Coordinator's Section of Transportation Service.

Printed copies of the report will be available shortly. You can make arrangements to get a copy by communicating with the Federal Coordinator of Transportation, Washington, D. C.

As a result of these factors, the level of railroad L.C.L. charges is higher than the highway transportation charges alternatively available to shippers and consignees of merchandise freight, with the result that the level of rail L.C.L. charges, as indicated by the third-class railroad freight rates, is higher than the highway freight rates for all hauls in the East under 280 miles, in the South for all hauls under 700 miles, in western trunk-line territory (the northwestern part of the United States) for all hauls under 500 miles, and in the Southwest for all hauls under 950 miles. Motor freight rates were found to be lower than the railway express rates for all distances.

Coupled with this fact is the further finding that "the present box car is inferior either to the motor vehicle or to rail express equipment in its ability to protect the lading against shocks, oscillation or vibration."

The effect of competition has been unfavorable financially to all forms of inland transportation, although not so damaging to motor carriers as a rule as to others, the studies revealed. The motor freight carrier has a simpler operating problem due to the smaller unit of equipment and the smaller number of routes covered.

Motor truck common carriers operating 10 or more vehicles were found to have earned in 1932 a return of slightly less than 2 per cent upon the capital investment after paying operating expenses and taxes, an operating ratio including taxes of about 99 per cent. Highway contract carriers were found to have an operating ratio including taxes of about 88 per cent. The average cost of operation of all high-

JOHN R. TURNEY, Director of Section of Transportation Service

way freight transportation vehicles included in the survey, operated by common and contract and by private haulers, was found to be 21 cents per mile. The operating ratio including taxes of freight forwarders was found to be about 92 per cent. The average operation ratio of railroad less-than-carload merchandise freight transportation was found to be about 125 per cent, and the railway express ratio was found to be about 113 per cent.

In other words, railroad and express merchandise traffic failed to bear the full proportion of the total operating expenses and taxes in 1932 by \$6.04 per ton handled by express and \$4.13 per ton handled by rail L.C.L. service. The handling of rail merchandise traffic resulted in an out-of-pocket cost of about \$11.70 per ton, and the express service had an out-of-pocket cost of \$35.89 per ton. The services failed to bear their full share of total operating expenses by about \$80,000,000. This was found to be due largely to "the expense incurred in maintaining redundant rail organization, facilities and services, resulting in unnecessary duplications of station facilities, billing, platform handling, concentration and distribution, transfer enroute, and in a multiplicity of services and schedules."

The report recommends the integration of railroad express and forwarding merchandise traffic to eliminate preventable wastes in line and terminal costs in order to reduce the potential cost of rail merchandise transportation below the 1932 costs of motor truck transportation and to make the utilization of the proposed integrated rail L.C.L. service more economical than highway transportation for merchan-

dise traffic moving more than 100 miles.

"Assuming that the practices causing preventable wastes in the handling of merchandise transportation are eliminated, then highway transportation for distances over 150 miles would not be economically justified with motor vehicles operated at the average cost of their 1932 operations, and likewise concentration or distribution of merchandise in rail L.C.L. service for distances under 75 miles" would not be economically justified, even after the potential economies pointed out have been realized. Motor truck transportation for distances between 100 and 150 miles generally would be justified under these conditions only when the superiority in speed or flexibility of the vehicle is worth the additional cost of providing the service.

• Comparative Costs

The comparative costs of performing common carrier and private hauler motor truck service and potential railroad L.C.L. service costs per 100 pounds of freight for representative distances between 50 and 300 miles used in arriving at this conclusion are shown below:

Distance	Common Carrier	Private Truck	Potential Rail L.C.L.
	Truck	Hauler	Service
50 miles	21c.	11c.	27c.
75 miles	26c.	16c.	28c.
100 miles	30c.	21c.	30c.
200 miles	47c.	42c.	36c.
300 miles	63c.	63c.	42c.

The effect of this would be to establish three mileage or distance zones of "comparative utility," one within 75 miles, within which the motor carrier possesses a clear comparative advantage; another beyond 150 miles, in which the proposed rail L.C.L. service would have the comparative advantage, and a twilight zone between 75 and 150 miles, in which the type of service selected would depend upon the exigencies of particular cases, a sort of truck-rail twilight zone.

The changes in the organization and methods of the railroad, railway express and freight forwarding carriers proposed to bring about this economic balance and the elimination of wasteful and often destructive competition of rail and highway trucking services are radical, in that they go, as the word "radical" implies, to the root of the evil. The plan proposes:

1. The consolidation of the railroad L.C.L., the railway express and the freight forwarding merchandise services into two competing merchandise agencies or pools, each operating on a national scale throughout the United States, and each of comparable traffic and financial strength. These agencies are proposed to be owned by the rail-

roads over which they operate, and managed by independent managements in which the public is represented. The contracts under which the agencies operate should encourage direct and economical routing of the railroad lines, but should protect the revenues of each participating railroad carrier.

2. That these proposed merchandise agencies collect and deliver the freight at the patrons' doors, and transport it in "shock-proof" rail equipment at over-all or door-to-door speeds of at least 20 miles per hour. No recommendation is made in the report with respect to the ownership and operation of the cartage vehicles, except to the extent to be discussed later. The speeds suggested for merchandise rail service generally may be summarized as follows:

Service between points separated by:	Time of Delivery
350 miles or less.....	Over-night
900 miles or less.....	Second morning
1500 miles or less.....	Third morning
2100 miles or less.....	Fourth morning
2700 miles or less.....	Fifth morning
3300 miles or less.....	Sixth morning

Faster merchandise service at speeds of 35 miles per hour or over is recommended to be afforded on limited passenger trains between points between which these fast trains are operated so as to provide second-morning delivery within 1500 miles, third-morning delivery within 2500 miles, and fourth-morning delivery within 3400 miles.

3. That the present railroad L.C.L. merchandise classification, rate and packing regulations be completely abandoned and in their places substituted a simplified classification system, a simplified rate structure based upon the geographical location of the points of origin and destination, and simplified packing requirements. The report proposes that all articles of merchandise be placed in a first or standard class, with certain specifically named *heavy articles* grouped in a lower second class; and certain other enumerated *very heavy articles* grouped in a still-lower third class. This would replace with one standard and two exceptional classes, the present multitudinous classes and exceptions used in connection with railroad L.C.L. freight, the express classification and the forwarding companies' classification arrangements which are based upon the railroad classification system.

The rate structure proposed is a standard scale adjusted to meet the requirements of transportation conditions in different sections of the country, based upon full operating costs plus taxes plus a fair profit, designed so as to make unprofitable the handling of merchandise by highway for dis-

tances in excess of 150 miles, and the handling of merchandise by rail for distances under 75 miles. The distance between the points is recommended to be determined for rate-making purposes by measuring in degrees of latitude and longitude instead of in miles. The rates between two points are determined by locating the points of origin and destination and computing the difference of their latitudes and longitudes.

4. That rail and highway transportation be coordinated by contract, joint rate or lease arrangements or by ownership of motor trucks by the rail merchandise agencies, so that merchandise traffic may be concentrated at and delivered from a limited number of key concentration stations by motor truck and moved between these concentration stations by rail in car lots. This would tend to place the railroad and the motor truck in a supplemental rather than a competitive relationship.

• The Exchange Proposal

The Section of Transportation Service of the F.C.O.T. estimates that there are over 3,000,000 tons of merchandise moving by highway for distances over 250 miles, and over 12,000,000 tons for distances between 50 and 250 miles. Approximately 10,000,000 tons of less-than-carload freight are being transported by rail for distances under 50 miles, most of which could be hauled more efficiently by highway. "Coordination as a supplement to modernized service and tariffs (rates) would result in the exchange of this tonnage so that there should be returned to the rails at least 10,000,000 tons of long-haul traffic now moving by highway, and there should be diverted to the highway an equivalent amount of short-haul tonnage now moving by rail."

In short, the report proposes that the railroads, express carriers and forwarders on the one hand, and motor carriers on the other, arrange to swap approximately equivalent quantities of merchandise tonnage, so that each can operate with greater efficiency and profit in the distance zones in which the rail and the motor carriers have the greater comparative advantage in efficiency, so that the shipping public is given the advantage of a system of transportation which utilizes to the full extent the economies of each type of transportation—rail and road.

The report of the Section of Transportation Service has been forwarded by the Federal Coordinator of Transportation to the regional coordinating committees of the rail carriers and to the regional labor committees. The matter is now up to the railroads. They may adopt the plan in whole or in part, or they may offer a better plan, if one can be devised.

THE TRUCKING CODE IS ROLLING DOWN THE HOME-STRETCH

(CONTINUED FROM PAGE 11)

The extension part was logical because the code, as approved, provided for the registration of all members of the industry within 30 days after the effective date, and the election of state code authorities within 60 days after the effective date by members "who have registered as required."

In granting the application for extension of the time limit, Administrator Johnson stated that it appeared such modification should be granted "because of the complexity and size of the industry." So he ordered that "all periods specified in said code within which compliance shall be required and all periods within which elections shall be held and the period within which members of the industry shall register and report are hereby extended so that the commencement of the time with reference thereto shall be computed from the date of March 30, 1934."

And even so—assuming that the assessment hearing will be perfunctory and will be followed by NRA approval of the established fees—it is doubtful if the registrations can be handled in the few remaining days of April.

THE private carrier matter was handled in the form of an amendment to Article II, Section 1-B-(1) which specifies that the code shall apply to vehicles not for hire except to the extent that such transportation is subject to any other approved code of fair competition. The following amendment was ordered added to this:

"Such vehicles when also subject to any other code shall be registered under this code, by the person or other form of enterprise controlling the operation thereof, who shall furnish reports and pay equitable assessments under the code based on the code incident to registration and reports, all as may be approved by the administrator.

"The above amendment and the approval thereof shall take effect on April 5, 1934, unless good cause to the contrary is shown to the Administrator in Room 4217, Commerce Building, before that time and the Administrator issues a subsequent order to that effect."

In a sense this amendment threw the code wide open for further wrangling and dispute. It permitted private carriers to come forward and assert their rights to exemption. Fortunately for the code there was a decided limit to the time (score this point for the National Code Authority) when such exemptions could be claimed—April 5—and the matter, moreover, did not re-

No Action on Truck Retailing Code

UP to the time of going to press no action had yet been taken on the petition filed with the National Recovery Administration to include trucks above three-quarter-ton capacity under the marketing provisions of the Code of Fair Competition for the Motor Vehicle Retailing Trade.

It is understood that the representative character of the sponsors of the petition will be investigated before a hearing date is set to act on the request.

ceive widespread publicity. To the best of the writer's knowledge no exemptions were claimed.

WITH the coming of April, code affairs began dancing to a faster tempo. Moestro Johnson started beating the time with an order simplifying the course of matters requiring decisions down the red-taped corridors of NRA. The solo adagio dances turned into waltzes and finally lively fox-trots.

Many temporary state code authorities were recommended and approved. The list is too lengthy for this space.

Then NRA approved regional breakdown of the United States made by the National Code Authority for the purpose of setting up Regional Code Authorities in the administration of the code. The regions and the state areas included in their boundaries are:

Region 1. Maine, New Hampshire, Massachusetts, Connecticut and Rhode Island.

Region 2. New York (Except New York City), New York City, New Jersey and Vermont.

Region 3. Pennsylvania, Delaware, District of Columbia, Maryland and West Virginia.

Region 4. Virginia, North Carolina, South Carolina, Georgia and Florida.

Region 5. Alabama, Kentucky, Tennessee and Mississippi.

Region 6. Ohio, Indiana, Michigan and Illinois.

Region 7. Oklahoma, Texas, Arkansas and Louisiana.

Region 8. Iowa, Nebraska, Missouri and Kansas.

Region 9. North Dakota, South Dakota, Minnesota and Wisconsin.

Region 10. Colorado, Wyoming and New Mexico.

Region 11. Montana, Idaho, Oregon, Washington and Utah.

Region 12. Arizona, Nevada and California.

AFTER this came a reassuring announcement from NRA headquarters stating that "plans for registration of 1,600,000 vehicles under the code are nearing completion," with the General quoted as saying that "The NRA code for this industry is an important step toward stabilization of the trucking industry" and that "this Administration will exert every effort to effect this code and to enforce compliance."

The next progressive step was the calling of the hearing on assessments which was discussed earlier in this article.

The latest is the approval given to the by-laws and administrative regulations for State Code Authorities.

THE by-laws define the State Code Authorities as agencies of the National Code Authority and distinctly states that the Code Authority and the American Trucking Associations, Inc., and affiliated constituents are separate entities, but that the Code Authorities may employ associations as agencies. Where the Code Authority makes use of any trade association facilities in carrying out its administrative function, it is specifically cautioned to avoid discrimination against non-members of such association.

State Code Authorities, according to the regulations, have no power to interpret the code, grant exceptions under it or exceptions from it. All interpretations of the code must be made by the National Code Authority with the approval of the Administrator.

It will be the duty of the State Code Authority to collect from members of the industry the information and statistics required under the code.

The records and accounts of the State Code Authorities shall be open to inspection by the National Code Authority or its agents.

AS the code and all its administrative trappings now stand, it is probable that they represent the nearest approach to the ideal that NRA officials have evolved from their experience. It is a pattern they will very likely follow in revising many approved codes to eliminate their bad features. The trucking code, for this reason, should, once it becomes operative, rapidly realize the goal of the industry; self-regulation, employment of 300,000 additional wage earners and stabilization of a mighty industry which is certain to contribute even more to the future economic welfare of the nation than it has in the past.

What's Back of the Come-Back of the Camel-Back?

At top—The Autocar cab is entered by means of one step in the front

Center—Two front steps lead to the cab of the camel-back

Above—Mack has two steps located on the back of the front fender

APRIL, 1934

BORN of seemingly unrestrained and certainly unstandardized legislative restrictions on heavy duty road transport the country over, a new type of vehicle has made its appearance in trucking circles. I use the term "new" advisedly since to those who are of the trucking industry this vehicle resurrects the shade of a construction which was rather common many years ago, save for profound improvements in mechanical design and incomparable refinement in appearance.

From now on the truck buyer will have to select his heavy duty equipment from a group of vehicles described as "cab-over-engine," "engine-under-seat," "camel-back," "traffic," and other terms yet to be coined. The thing to bear in mind is that, essentially, all these terms are intended to describe a vehicle of a specific design, hereinafter called "close-coupled," featuring a weight distribution of one-third of the gross weight on the front axle and two-thirds on the rear.

It seems to be a commonly accepted fact that we have been rapidly approaching the point where the highly developed conventional type of motor truck was becoming hampered by legislative restrictions in many localities to the point where it was in imminent danger of being outlawed. The new "close-coupled" vehicle meets the legis-

lative requirements, at least as they are written at the present, so admirably as to make that fact sufficient economic justification for its wide acceptance.

So far as can be learned, the following three legal requirements wrote the specifications for the new construction:

1. Limitation on rear axle loading.
2. Limitation of gross weight.
3. Limitation on the overall length of single units and combinations.

From a purely engineering point of view, the matter of getting a weight distribution of 1/3-2/3 can be handled in a number of ways, each one involving some serious compromise, as will be evident from the following analysis. The various arrangements that have been investigated are:

1. Moving the rear axle back. This is objectionable because it leads to excessive wheelbase length.
2. Moving the front axle back, commonly termed the "set-back front axle construction." This has been done in existing chassis as for example on General Motors and Mack trucks with a distribution of 30-70. However, this does not reduce the wheelbase to any great extent since the rear axle must be moved back at the same time. And, to obtain a 1/3-2/3 distribution with this arrangement would entail a still further sacrifice in wheelbase and maneuverability.

The Sterling cab is entered by means of a single step in front

Mechanics may stand upright in handling Autocar major overhauls

By JOSEPH GESCHELIN

THIS article analyzes the reasons which have guided certain truck makers in bringing out the so-called camel-back design. The reasons, briefly, are to place trucks within reach of users which will enable them to overcome legal restrictions.

The article is based on a paper written by the author, who is a member of the Chilton editorial staff, and read at the April meeting of the Metropolitan Section of the S.A.E.

3. By combining a partly set-back front axle and a close-coupled cab; also by moving the cab forward so that a portion of the engine protrudes into the cab. Either construction meets the requirements of the desired weight distribution but does not produce the maximum economy in loading space and overall length.

4. Moving the cab completely forward over the front axle and at the same time moving the rear axle forward, thus reducing materially the wheelbase for a given body length. This construction is the one that has been widely adopted.

To visualize how these alternate constructions actually compare in practice, I am using the example given by B. B. Bachman in a paper read before the Philadelphia Section, SAE, in December, 1933, and published in COMMERCIAL CAR JOURNAL for January, 1934. Referring to Fig. 1, the comparisons are made with reference to a conventional vehicle on 184 in. wheelbase with $\frac{1}{4} \text{ to } \frac{3}{4}$

distribution. Please refer to sketch A.

"If the attempt is made to attain $\frac{1}{3} \text{ to } \frac{2}{3}$ on the same construction it will be necessary to increase the wheelbase 23 inches, making a total of 207 inches, as shown in sketch B. In the second case, sketch C, by moving the front axle back 13 inches and moving the rear axle back 17 inches, a $\frac{1}{3} \text{ to } \frac{2}{3}$ distribution can be obtained with a wheelbase of 188 inches. In the under-the-seat model, sketch D, due to the great shortening of the overall length and the relocation of weights resulting in a change in the center of gravity, the wheelbase is reduced to 128 inches, an actual reduction of over 30 per cent.

"It is also to be noted that although moving the rear axle back does not change the overall length of the vehicle, it does result in a definite increase in the turning circle. In Case 2, there is a saving of about $10\frac{1}{2}$ inches in overall length and a very slight increase in turning circle, while with the under-seat

At top—The Hendrickson camel-back cab is entered by one rear step

Center—The low-hung Curtis Bill has cab moved forward over engine

Above—The White K series has the cab moved forward over the engine

The GMC powerplant may be slid out for major overhauls. The mechanic is shown working on a minor job inside the cab compartment

The cab of the Sterling tilts to permit major overhaul accessibility

Accessibility in the White K model is conventional

In the Mack the mechanic may stand in space between engine and frame

model there is a reduction of nearly 51 inches in overall length and a reduction of 25 feet in the turning circle diameter."

Mr. Bachman did not cover the construction which is typified by the White K Series. The White construction permits the use of a longer body with the same wheelbase or the same length bodies with shorter wheelbase with a somewhat shorter overall length for the same body lengths, although the economy in overall length and turning radius does not approach the gain in "camel-back" construction.

Because the limitations are imposed on both length and weight, the "camel-back" construction has been widely adopted because it is the only one that answers both requirements.

• Unique Advantages

Taking the current "close-coupled" designs at their face value and assuming that the vehicles have been designed according to prevailing high standards we find that the new construction offers a great number of advantages apart from meeting the legislative requirements.

1. Ideal distribution of weight on rear axles resulting in a uniform distribution of load on tire equipment. This should result in considerable economy since the rear tires no longer will be overloaded.

2. Liberal gain in gross weight with the same axle loading.

3. Better maneuverability due to the short wheelbase.

4. Better ride for the driver due to location over the springs.

5. Ideal visibility unapproached by any other type of construction.

6. Increased loading space of 3 to 6 ft. depending upon make.

7. Increased loading space permits the operator to use his present body and trailer equipment and yet, in most cases, to come within the length limitations.

8. On tractor semi-trailer applications the king pin can be so located as to

Fig. 1. Showing how different axle arrangements affect chassis design

throw a greater proportion of the load on the front axle of the tractor. This is particularly marked in inter-state vehicles involving the use of sleepercabs which add about two feet to the length of the tractor. With a short wheelbase job it is perfectly possible to accommodate a long cab and yet permit the mounting of the fifth wheel well in front of the rear axle.

9. Special vocational applications, as for example, milk delivery, dump trucks, coal trucks, store-door delivery involving a combination unit, inter-city hauling, etc.

It seems obvious from an analysis of designs now in production that the various truck organizations have been able to produce a vehicle which is safe, comfortable, and as easy to operate as the conventional job; also one which is not particularly difficult to service. Of course the degree in which these elements are present varies with makes.

• Analysis of Specific Designs

The element which seems to be getting the greatest emphasis is that of engine accessibility. This doubtless because of the fallacy accepted by many operators that if the engine isn't placed out in front of the cab under a hood of its own, its inaccessibility is a thing to be reckoned with.

Nevertheless, manufacturers, accepting this emphasis as evidence of buyer resistance have recognized its importance by devising a variety of arrangements, each claiming that his affords the greatest degree of accessibility. Since each designer has approached the problem conscientiously the choice of design, so far as the individual operator is concerned, is a matter of personal preference.

Thus in the Autocar design, for minor repairs and adjustments the engine is readily accessible from within the cab simply by removing the seat cushions and folding back the hinged seat back. For major overhauls requiring removal of the cylinder head, by removing the right fender splash guard, which is attached by means of five wing nuts, there is provided sufficient space to enable the mechanic to get directly at the engine without jacking up the wheels or removing the engine from the chassis.

In the General Motors Truck job the engine is exposed by the removal of a hood within the cab which is secured by latches. For major overhauls the engine is arranged to slide out either partly or completely. For this purpose the engine is mounted on a sub-frame rolling easily on rollers mounted inside of the side rails.

(TURN TO PAGE 20, PLEASE)

**Mr. George T. Hook, Editor
Commercial Car Journal**

Dear George: I am sending herewith an outline of a request for repair work which was made by one of our dealer service operators. It appears to be a little too good to be thrown in the waste basket. If you can make any use of it, you are welcome.
F. L. Faulkner, Automotive Department, Armour & Co.

Truck No. One-O-One-Six-Eight

I. BODY

The dents are few—in fact just one—it's in the right front fender,
Please ding it out to look like new, and I'll applaud the mender.
And if you have some time to spare,
A dab of paint just here and there
Will make the butchers glad to see
This car from Armour's family,
And all the grocers near and far
Will hail it as a brand new car.
For Wilson has a new Ford Eight and Swift a Chevy Six,
So Armour needs a snappy car to show those boys some tricks.

II. RADIATOR

The radiator leaks a bit, please fix it up—and say,
Don't spill the liquid cause it's filled with Armour's G.P.A.
And don't leave grease or dirt or flux within the cooling cells,
For if you do the G.P.A. will boil and foam and smell,
And when it hits some spot that's hot
You'll swear, by gad, it's what it's not!

III. BATTERY & GENERATOR

The battery's only two months old—it cost nine and a quarter—
But check the specific gravity, and feed it distilled water.
The generator is quite new so don't disturb the stator,
Just take a piece of emery cloth and clean the commutator.

IV. CARBON & VALVES

The carbon was scraped at 23 "thou," the valves were ground then, too;
It's needed bad after 23 more, so see what you can do.

V. IGNITION

Ignition's bad, it makes me mad.
Under the hood and 'neath the dash
The sparks jump to and fro;
I look for them—just miss a crash!
What's wrong I do not know.
Why it makes the wagon jerk and buck
Till you're sure as hell of getting stuck.

VI. TIRES

The tires are new on all four wheels,
It's only a good spare we're needing;
But the rims are so pitted
When the new tires are fitted
They fail very soon at the beading.

VII. CARBURETOR

The carburetor's full of muck; it needs a good de-griming
To get more miles from gasoline and do away with priming.

VIII. PISTON RINGS

The piston rings are all worn out; the cylinder walls need honing
Before you snap new rings in place. Then Armour will do less groaning
For oil this engine eats in gobs—
Enough to run two diesel jobs.
And that will make less trouble—see?
Cause big oil bills are blamed on me!

IX. BRAKES

From the container 'neath the hood (it's in the braking system)
The oil leaks out—please make it tight, and fix the master piston.
Emergency needs tightening (though only used for parking),
A turn or two will do the trick to keep the truck from "larking."

X. TRANSMISSION & REAR END

The transmission grease is just like soap—that goes for rear end, too,
Please fill them both with "winter grease," so the gears will slide right through.

XI. REMARKS

It really is not as bad as it sounds,
(The truck, I mean, not the verse);
But those are the things that are wrong with my truck—
It could be a whole lot worse.
And whether the notes are on knicks or on knocks,
I hope they're not too galling.
What's really needed—to get to brass tacks—
IS THOROUGH OVERHAULING

Signed

W. H. Kissler

WHAT'S BACK OF THE COME-BACK OF THE CAMEL-BACK?

(CONTINUED FROM PAGE 18)

Hendrickson has a hood inside the cab large enough to permit working on valves and ignition. For further accessibility, there are hinged hood sides between the top of the frame and the bottom of the cab which in combination with the wide track axles permit adjustments on tappets and the carburetor. For major overhauls, the engine can be reached by removing the integral bumper and front cross member. The radiator guard, radiator and cross member are designed for ready removal.

In the Mack the engine enclosure is in two parts. The main housing may be raised by removing the seat and back cushions of the middle seat for access to spark plugs, distributor, generator, oil filter and valve tappets. The two side seats fold up out of the way and the floor boards lift out affording access to the rest of the engine. For major overhauls the entire power plant may be removed through the front after removing the radiator.

In the Sterling for more repairs and adjustments the engine is made accessible simply by the removal of the inside aluminum hood which is located directly between the two bucket seats. For major overhauls which require removal of the engine, the cab has been so arranged as to tilt back on hinge pins, as in the case of a tractor unit; or the cab can be entirely removed by taking out the hinge pins in the case of a truck unit with a body in place.

In the White K series, engine accessibility is entirely conventional, the unique feature being the fact that even the overhead valve engines have all accessories located on the right hand side where they are readily accessible in a group.

The Curtis-Bill powerplant, while not as accessible for minor repairs and adjustments as the other "close-coupled" jobs, for major overhaul accessibility has been worked out in excellent fashion. The entire front-drive unit is mounted in a sub-frame whose backbone consists of two tubular members which telescope over the tubular main frame and are fastened in place by means of large nuts over the ends. This permits the removal of the entire powerplant in a very simple operation.

• Control Functions

From the point of view of the operator, as well as that of the designing engineer, questions have been raised at various times concerning the simplest way of working out the remote control of the functions of steering, gearshift and clutch operation. Behind these questions is the fact that with the new

The entire powerplant of the Curtis Bill slides out. Tubular side-members telescope over tubular frame

construction the driver and consequently his controls are quite unconventionally located and the linkage between the controls and the corresponding units are inclined to become quite complicated.

While this complication undoubtedly exists, none of the organizations participating in this movement seems to have had any particular difficulty in finding a practical solution. So far as I can learn, all of the jobs now in production have continued the use of manually operated steering gear, clutch, and gear shift. Sterling seems to be the only one using an air-controlled clutch among the production jobs.

So far as gear shifting is concerned, on the Mack job this has been accomplished by building the complete shifter mechanism into the transmission in the conventional manner on the unit power plant transmission but extending it to the left instead of up through the top; then by means of a simple sliding and rocking rod connection to the conventional ball-jointed gearshift lever, it is possible to secure a very effective layout.

Camel-back Conclusions

IN concluding this study, I should like to make the following points:

1. The new design is definitely born of legislative restrictions particularly (a) limitation on axle loading; (b) limitation on gross weight; (c) limitation on the overall length of single vehicles and combinations.

2. The special advantages of the new construction are (a) ideal weight distribution for tires; (b) shorter turning circle and, consequently, better maneuverability; (c) an increase in gross load with the same body length; (d) increased loading space within prescribed length limitations.

On the General Motors job, the shifting operation requires an up and down motion instead of the usual forward and back motion. They effect a direct gearshift control without rods or intermediate connections by using a long lever and placing the fulcrum of the gearshift lever in a higher position over the transmission gear case. It is claimed that the function of shifting is as simple as on the conventional job.

At the present writing, none of the organizations with which I have been in contact contemplates power steering. A number of prominent engineers tell me that with 1/3-2/3 gross weight distribution, manual steering seems to present no problems and, in fact, is comparable with the steering of modern buses due to the refinements incorporated in the steering gears now available. I am told further that the experimental work of several organizations indicates that manual steering, at least on motor trucks, is perfectly feasible up to a limit of about 9000 lb. weight on the front axle, and inasmuch as this represents the maximum gross weight permitted by law, these organizations feel that it is unnecessary for them to consider power steering.

However, the steering problem is of such vital importance that engineers cannot overlook the possibilities offered by some practical form of servo mechanism. In recent correspondence, S. Johnson, Jr., of the Bendix-Westinghouse Automotive Air Brake Co., says that he does not question the ability to steer manually with 9000 lb. load on the front wheels if the steering gear ratios are stepped up high enough. However, when about 10,000 lb. load on the front axle is exceeded he believes that power steering is positively required. He also feels that the time is not far off when vehicles with loads around 8000 lb. on the front wheels will use power steering because of the obvious advantage of lower steering gear ratios. Another feature of the power steering mechanism which is stressed by Mr. Johnson, is the reduction of load on the steering gear mechanism. With the Bendix-Westinghouse design it is claimed that this can be reduced to approximately one-fourth of what it normally is with manual operation.

• Unconventional Engines

It seems quite pertinent to make at least passing reference to the possibility of applying some hitherto unconventional types of engines to the new construction in order to promote greater accessibility. One of the possibilities of

(TURN TO PAGE 28, PLEASE)

Can Business Groups Jointly Own Trucks and Avoid For-Hire Laws?

SOME merchants in a Montana city desiring to economize in their transport costs have adopted a novel truck purchase and share-expense operation system, the legality of which was recently sustained by the highest court in that State.

The essentials of the plan are as follows: Through a Merchants' Mutual Service organization the participating merchants agreed to purchase a truck upon installments. The truck (other trucks are to be added as needed) is to be used exclusively for transporting merchandise sold or purchased by the members for delivery to each other and to their respective customers. The purchase price and the expense of upkeep, repair, replacement, operation, including wages for necessary help employed in the operation, management and use of the truck, are to be paid for monthly upon the basis and ratio of the weight of merchandise carried for each mile for each member.

The seller of the truck was made transportation manager upon a salary, plus a bonus basis when a majority of the members vote such for good service.

Neither the Merchants' Mutual Service nor the seller (the transportation-manager-operator) of the truck were held to be within the motor carrier regulatory law which includes those "motor carriers operating for hire."

By **FRED. A. ELDEAN**
Counsellor-at-Law

If one man can own and operate his own truck, why can't two or more join together in truck ownership and operation, may be asked, without being subject to any greater regulation than that of the singly-owned trucks?

Should regulation of for-hire motor transport cause the rate-level to reach a point where private industry could more economically and with a fair degree of convenience operate private vehicles, it undoubtedly would do so. This might easily be done by a large industry. But what about the small fellow?

Suppose he follows the lead of the Montana case and together with another or others purchases a motor truck to be used by them jointly. Is "joint ownership and operation" a possible solution?

This unanswered question is raised without any attempt to pass on its practical feasibility or desirability but to stimulate thinking on its possibilities and its legal implications.

be noted that this is an exceptional case. Many cases in which somewhat similar arrangements have been put into effect have resulted in totally different decisions.

But it is perhaps the modified features of this particular arrangement which distinguish this case from the others.

Consequently it will be well to examine the other arrangements to see wherein they failed to come within the pale of legal sanction.

In a Florida case where some merchants organized a cooperative association not for profit, known as the Merchants' Mutual Association, for the express purpose of conducting the business of hauling by motor trucks for compensation the goods, wares and merchandise of its stockholders only, the court held that while it was not a common carrier, as "by limiting its patronage to its stockholders, it successfully eliminates itself from that classification," it nevertheless is by virtue of the contracts of carriage between the corporation and the members subject to the law governing contract carriers.

The contract carrier provision embraces those not operating as common carriers who haul for compensation under contract where the service consists of continuous or recurring carriage under the same contracts.

The Florida arrangement comes the

nearest of any perhaps to the Montana case. Admittedly it is difficult to distinguish the two. In so far as there appears to be a difference at all in the arrangement, it relates to the express incorporation to carry (even though not for a profit) still for a compensation. In the Montana case, there is no carriage for compensation but a direct contribution to expenses.

If one man can own and operate his own truck, why can't two or more join together in truck ownership and operation, may be asked, without being subject to any greater regulation than that of the singly-owned truck?

• What About Small Fellows?

Should regulation of for-hire motor transport cause the rate-level to reach a point where private industry could more economically and with a fair degree of convenience operate private vehicles, it undoubtedly would do so. This might easily be done by a large industry. But what about the small fellow?

Suppose he follows the lead of the Montana case and together with another or others purchases a motor truck to be used by them jointly. Is "joint ownership and operation" a possible solution?

This unanswered question is raised without any attempt to pass on its practical feasibility or desirability but to stimulate thinking on its possibilities and its legal implications.

A Texas case which, while it does not involve a business association, is of interest as indicating how an apparently simple business arrangement may be sufficient to throw one into a "for-hire" class.

Armour & Co., to supplement its own trucks, engaged a truck under the following conditions: The owner of the truck was to supply it for Armour & Co.'s exclusive use for a certain period upon a stated weekly compensation. The truck owner was to keep the truck in good condition and to substitute another if the first became unserviceable. He was to pay all expenses of operation including the driver's salary. The driver, however, was to be under Armour & Co.'s exclusive control. He was also to hold Armour & Co. harmless against any claim of the driver under the Workmen's Compensation law. He was also responsible for the prompt remittance of any collections made by the driver.

The truck owner was held to be a contract carrier upon the view that he was operating the truck upon the highway for compensation.

This result seems subject to considerable question. However, it indicates the necessity of not injecting elements into the arrangement which might result in its being construed to be a "for-hire" carrier operation.

Suppose, instead of paying a stated sum as a "cover-all expense," the driver's wages and compensation insurance (*and other necessary insurance*—see COMMERCIAL CAR JOURNAL, February, 1934, "Who is Liable—Shipper or Trucker" article page 17) had been provided by Armour & Co. and he had in fact become their employee; and further that the truck owner was to be paid on a mileage basis for the use of his truck. The truck owner in that situation, getting a compensation for the use of his truck, is after all in effect in the same position as the conditional seller of the truck. Surely it would require a considerable strain on the imagination to conclude such an arrangement would make the truck-owner a "for-hire" operator.

Recently the Pennsylvania Public Service Commission had before it the perplexing problem of the status of the truckmen who hauled for a dairymen farmers' cooperative organization.

This association had approximately 17,000 members. Its stated purposes were the improvement of marketing conditions by securing advantages in the sale of milk and the provision of trucking facilities for transportation of milk. Any person could become a member by buying one share of stock for \$2.50 and one share at the same price for each ten cows in excess of the first ten.

Three-party agreements were executed between the farmer, the association and the trucker. The trucker agrees to collect the milk daily and each farmer agrees to consign his milk by the named trucker. The milk receiving depot remits its check for the milk to the farmers less transportation charges. The check to cover transportation is sent to the association office. After deducting six-tenths of one per cent for its services the association remits the balance to the truckers.

• Heed Common Carriers

The Commission held that the truckers were common carriers. As reasons for this conclusion the Commission points to these arguments: There was evidence that one trucker actually solicited business of some non-members; that the association itself solicited new business; that the truckers had acquired many new shippers' business and "if they had not actively solicited new business, have at least held themselves out as willing to accept hauling for new producers."

Further, it pointed out that the transportation of milk was a substantial business of itself and not incidental to some other line of activity engaged in by them and this makes rendering of this service a public calling.

The Commission complains that if service to such a large group were ex-

empted, its regulation might be impaired. The courts have frequently stated they cannot legislate. Assuming the operations were not within the regulatory law and if the predicted unhappy condition resulted, the remedy would be with the legislature. However, the Commission may have anticipated that the farmers' political strength would prevent any legislative enactment. It will be interesting to see what happens upon appeal in this case or what may result in the legislature should the farm group present a bill taking their trucking operations of this character out of the common carrier category entirely.

• Farmers Tried This

A plan whereby a Farmers' Exchange received a bill of sale for livestock at the time the truckman employed by the Exchange loaded the stock on the truck and under which the price to be paid the farmer was computed upon the basis of the price received at the stockyards less 60 cents per 100 pounds for transportation which was divided 50 cents to the truckman and 10 cents to the association was held by the Ohio appellate court a mere device to evade the law and the trucker was a common carrier.

An early Colorado case held a trucker hauling for an association which included 90 per cent of all shippers in the territory a common carrier on the ground that the public served is so large as to be the public.

In a farmers' cooperative case in Maryland, the court reached the result that the cooperative organization, while not a common carrier, was nevertheless subject to its statutory provisions governing the operation of public carriers.

There have been at least two cases in which associations of theatre operators have been organized to transport their films, one an Ohio case and the other an Iowa case, in each of which membership in the association was open to any film exhibitor who would purchase stock. It was pointed out in the Iowa case that there were no offices, no meetings, no dues; in fact, there were lacking, in that case at least, any of the elements which might possibly bring an association out of the category of being a mere device for the evasion of common carrier regulations.

From the foregoing it will be seen that it is exceedingly difficult for a business association to conduct trucking operations without becoming subject to "for-hire" regulations. Undoubtedly, there will arise cases involving associations having a somewhat different set-up from that involved in the cases here described. It will be interesting to note these developments and also the possible expansion of the "joint truck ownership and operation" idea.

This wheel alignment set-up in a West Coast service establishment is typical of the installations which Bear Mfg. Co. is promoting to take care of heavy-duty trucks and buses.

• THE EAR-TO-THE-GROUND DEPARTMENT •

To Spare Tire Changers

SOMETHING decidedly new in the way of spare tire carriers for trucks will soon make its appearance. This carrier moves rearward on rollers, tilts downward and the spare tire slides to the ground after its anchorage is removed. The sliding carrier is locked in place under normal conditions. Every idea connected with it aims to make the changing of flat tires an almost effortless matter so far as the spare is concerned. If you are interested we'll tell the maker.

A New 1½-Ton FWD

FWD is coming out with a new 1½-ton, four-wheel-drive model with an 84-hp. engine. It will be capable of 50 m.p.h. fully loaded. The list price of \$2,400 will be the lowest in the company's history. In appearance it will be a distinctive addition to the FWD line.

A Revolutionary Jack

The Vickers Mfg. Co. promises an early announcement of a new hydraulic jack which, Mr. Vickers informs us, represents a departure from all the old traditions of jack manufacture. It may be termed "revolutionary," he says. It is of the hand or tool-box type and will come in 3, 5, 8, 12, 16 and 20-ton capacities.

Names May Be Mentioned

Back in October we told you a large oil company was planning to market a new break-in oil within 30 days. Marketing plans, however, were not completed until last month. It's called Essolube Break-in Oil, and the large oil company is the Standard Oil Co. of N. J. It will be marketed exclusively through motor car dealers and repair shops.

Corbitt Plans New Types

The Corbitt Co. expects to bring out shortly some new types of vehicles. Chief Engineer Rawlins has promised to keep us posted.

You Can Save on Oil—

An oil reclaimer, designed for the smaller operator of trucks, has been made available by The Hilliard Corp. It will refine 360 gal. of dirty oil per month and, if run to capacity, will save more than \$1,000 per year. The total cost of reclaiming ranges from 6 cents to 12 cents per gallon. If you'll tell us the number of vehicles you operate, the number of gallons drained per month, the number of gallons of new oil bought, the cost of new oil per gallon, and the cost of power per kilowatt hour in your city, the company will tell you just how much you can save.

Front-Drive Job Coming

A new front-drive truck is on its way. The manufacturer recently obtained a patent on a front-drive axle, and has promised us full technical details.

Reclaim as You Ride

Are you interested in an engine accessory which, the manufacturer claims, is not a mere oil filter, but "a real oil reclaimer, embodying the same principles" as a large commercial reclaimer put out by the same maker? Oil pressure is the driving force, and the exhaust heat is used to evaporate water and gasoline dilution. The dilution is fed right back into the manifold. The device is designed to do away with oil changing. If you want details, we'll get them for you.

What the well-dressed tank trailer of the future may look like is suggested in this design developed by Fruehauf. Major tank companies have approved it

Pancakes and Camel-Backs

Wherever fleet operators congregate the conversation eventually gets around to camel-back truck models. And then someone always begins speculating about the advantages of the pancake-type of engine in such a design. We expect to have a look at a truck chassis equipped with a pancake engine before the May issue goes to press. We hope to have something to report.

Bu-Gas vs. Butane

E. J. McClanahan, manager of the sales development department of the Standard Oil Co. of California, wishes us to make it clear that the word Bu-Gas, used in the January articles on butane, is a trademark adopted and registered by his company to distinguish its liquefied petroleum gases from those of the same nature marketed by others.

Still Just a Plan

Last month we intimated that a large passenger-car maker was planning to bring out a truck line. Our latest feed-back dope is that the plans apparently have been shelved. There remains, however, a possibility that the plans will be revived and the low-priced truck line marketed through an existing truck set-up.

Can 2 Frenchmen Be Wrong?

How long will it be before American manufacturers take a leaf out of the French book and make available to truck operators warning signals with distinct safety advantages? One of these French devices has a photoelectric cell on the rear of the truck body. When the lights of the car behind are turned on they operate the cell and sound a warning signal in the driver's cab. Another device, brought out by a radio maker, works by means of a microphone system. In both cases the truck driver can sit snugly in a modern enclosed, insulated cab and yet know instantly when asking for the "courtesy of the road."—G. T. H.

"We Cut Idle Truck Time 75% and Saved \$2,000 a Year Per Truck"

FIG. 1
Map of Truck Routes

FIG. 2
Delivery Tonnage and Cost Record

FIG. 3
Pick-up Tonnage and Cost Record

By WALTER S. McEWAN, JR., FLEET SUPERVISOR
Oppenheim & McEwan Co., Inc., Wholesale Grocer, Albany, N. Y.

Who figures that if his trucks lose an hour a day
his company loses the profit on \$500 business

I AM ashamed to admit it, but our three trucks are now saving us \$6000 a year. By reducing our fleet and at the same time extending our delivery territory, we have actually cut our unit costs in half. In the course of saving \$2000 a truck, we reduced our idle time 75 per cent, cutting it from 29 per cent to 8 per cent.

Oppenheim & McEwan Co., Inc., wholesale grocer of Albany, N. Y., serves a territory about 150 miles in diameter, in which it "normally" does about a million dollars' business. Twelve salesmen cover this territory on schedules which call for coverage each week or every other week. The firm employs about 30 more people in the administration and operation of the business. Besides the general wholesale business, the firm operates a separate coffee roasting plant and also holds the local franchise for the Arrowhead Stores, a voluntary chain organization.

In 1931 we were operating four truck units, one team and three practically identical automotive units of about 6 tons' capacity. Besides doing all our incoming hauling, these trucks handled

all our deliveries in the original territory, as shown on the Map, Fig. 1. These deliveries accounted for 60 per cent of our outgoing tonnage. Outside truckers carried 35 per cent more, while customer calls and rail shipments took the remaining 5 per cent.

In late 1930 we moved from very inadequate quarters to our present plant and then worked out a record system to cover our entire operation. Our records were compiled from drivers' cards, shippers' reports, etc., to give us a complete picture of our entire operation.

The basis of our truck records is the hour. As originally 75 per cent of our truck overhead was fixed, we favored time rather than mileage. Furthermore, with wide differences in mileage per hour on our different types of work, and our need of exact costs for each individual type, a system based upon distance would have been very complicated. We determined the exact amount it cost us to operate a truck one hour. This is known as the Hourly Truck Cost and varies with the service and type of equipment, oats or gas (team or auto). This hourly cost is not constant

FIG. 4
Showing the Improvement in Profitable Use of Truck Time

ALTHOUGH Mr. McEwan operates a small fleet of trucks, the principles which caused him to increase the value of his truck equipment apply alike to all fleets. And since he expounds them very well, and proves their soundness with practical results, we think his article merits careful study.

If it stimulates thought and action in the direction of increasing truck working hours and thereby reducing idle truck time, it will have served its very constructive purpose.

but is revised as needed. Knowing the hourly truck cost, the number of hours taken by each tonnage movement, the tonnage, and the ratio of the productive and unproductive time, it is relatively simple to determine the unit cost for each type of work.

July, 1931, found us with six months' data on hand and improvements under way. We were working under a fixed program as we had found conditions so bad that very definite and major changes would have to be made in our operations if we were to accomplish anything. This program called for the reduction of our idle time by the cutting of our fleet and the extension of our delivery territory. The team was indicated as the unit which could best be spared; but sentiment stood in the way, and it was not until 1932 that we finally eliminated this unit. Our excess truck capacity was carried over from our old building where we had been forced to overcome our plant shortcomings by rolling equipment. As a result we were over-equipped and found ourselves with three full truck days a week for which we had no work. Our records showed us that our trucks were actually working only 50 per cent of the time.

Our only real solution was to extend our delivery territory, thus putting some of the idle time to work. Accordingly we worked out a program of delivery

route extension, securing our tonnage from the 35 per cent carried by outside truckers. This program was based upon the fact that we could handle the extra tonnage without adding to our equipment. We planned to spread our fixed charges over a greater tonnage and thereby reduce the fixed costs per unit handled. As we already owned and maintained our equipment, whatever we secured over and above our bare operating expenses would apply against the fixed charges. Of course we were using the existing truck rates as a measuring stick.

The estimating of one of our first extensions will be outlined to show how we actually worked this out. This is the run, east of Troy, that is designated as Rural Route No. 1. Our Volume Record showed that we were sending about 1000 pounds into the towns in this section on alternate weeks, at a rate of 30 cents a hundred. We estimated that it would take a truck three hours to cover this territory and we used the current hourly truck cost of \$2 to determine that the route cost would be \$6 or 60 cents a hundred. However, with a 25 per cent operating cost ratio our actual added cost would be 15 cents a unit, which would leave the other 15 cents of the 30-cent rate to apply against the fixed overhead. We fully realized that our operating percentage was low for this work since the mileage per hour would be higher than it was in the city work upon which all our costs were based at that time. However, we had the assurance of the sales department that the tonnage would increase under our own delivery and we permitted this expected increase to balance the higher operating cost item. That we were safe in doing so proved to be the case. In fact, we began immediately to handle heavier orders and eventually carried enough tonnage to bring our own costs below the outside rates.

This increased tonnage came from several sources and accompanied all changes from outside truckers. For one thing, we frequently ran into towns to which we had been unable to secure

satisfactory service. Also, with our trucks running into a town, we could carry items formerly prohibited by freight charges. We ourselves could carry these for the extra gas, etc. Then, naturally, our salesmen would work to sell a full load because they were paying for the trip whether the truck carried 5 tons or 500 pounds. The tonnage increase ran from 50 per cent to 150 per cent in the different territories under our own deliveries. Eventually we carried practically everything on these routes.

By July, 1931, we were operating on three rural routes, R. 1, R. 2, and R. 3A, as shown on the Map, Fig. 1. The first two were extension runs, the truck proceeding from the last city stop into the country; but Route 3A was entirely country work. It was on this latter run that we got our first really reliable costs on the new work and found that these figures were checked by those on the other two. With the introduction of these three runs we had taken up all the useable work and were then forced to wait for the sales department to make more available.

Some very definite progress had been made. Reference to our records showed that in the second half of the year our trucks had actually worked 140 hours on these runs. When this actual time was increased to include the platform and other unproductive time, it became 228 hours switched from waste to earning time. We were justified in charging these routes with their fair burden of unproductive time as our unit costs were approaching our former rates. There was no question but that this new work would eventually pay its way and was even now in a position to stand its full share of our fixed overhead. These 228 hours at the current hourly cost represented a service or route cost of \$570. As the delivered tonnage was 70 tons, we were carrying these goods for about 40 cents a hundred. This compared very favorably with our former rates, especially since we knew our costs would drop with our rising efficiency.

Although we had started only three

small runs, we felt that very satisfactory results had been obtained. A type of work that had been undertaken to lower costs by spreading our fixed charges and which we expected to do little more than pay its bare added cost was paying its full cost, fixed as well as variable. As soon as we saw that this was the case, we changed our original plans and proceeded to actually compete with the outside truckers.

The year 1932 was the cost eventful of the three since we started work on our high costs. During 1931 we had worked out and proved our plans and we were now ready to go ahead on solid ground. The first event in 1932 was the starting of the Hudson run, Rural Route No. 3. This territory was covered by the Chatham (Route 3A) truck, which delivered that town on the return run. This Hudson route was especially important in that it used enough idle time to drop our city costs more than one cent a hundred.

The Hudson run filled our week with the exception of Wednesday, some of the formerly idle time having already been used in other changes to make the extension schedule possible. In April a day's work was made available on alternate Wednesdays, and we started Rural Route No. 4 as shown on the map. Because of unsatisfactory delivery we had not been obtaining profitable business in this territory and, at the request of the sales department, we had studied our covering of this section. In this particular case we reversed the procedure. We told the office what tonnage was needed to produce a given delivery cost. The tonnage necessary to give a reasonable figure was about twice normal. Our experience told us that we could expect this increase, and we started the run. The tonnage rapidly rose to a satisfactory figure, and, although higher than on any other route, the costs have always been within reason. As we are doing a very profitable business in this section, this run has always paid its way.

This was not all for the year 1932. In October we eliminated the team, with the drop in truck overhead shown in Fig. 2. Considering the amount of effort, this was the biggest move in the whole program. In one step we reduced our overhead by \$3000 a year.

We were covering Route No. 4 every other Wednesday, but we were still short a day's work on the alternate week. This last gap was filled by our extension to Bennington, Vermont, in March, 1933.

With the institution of our Bennington run we completely filled out our schedule, finishing the extension program started two years before. While this particular work has been under way, we have been working to improve our trucking as a whole. While some

progress has been made in this line, we have only recently begun serious work, since up to now our equipment has been equal to demands. Due to business conditions we have been giving the best possible service to our trade, with the result that considerable work is being done without regard to the finer points of truck operation.

An indication of the improvement that we have made is found in Fig. 4 which shows the percentage division of truck time for three representative quarters. It will be noted that our idle time has shrunk from 29 per cent to 8 per cent. A further sign of improvement occurs in the ratio of loading time and delivery time. When it is realized that considerable of this delivery work is done in the country where the tonnage handled per hour is one-third that in the city, and that we have actually kept the average tonnage handled per hour constant, it will be seen that we have already made definite progress.

The actual figures of the extension routes and the resulting costs follow:

ROUTE NO.	1931		1932		1933		TOTAL		Route Cost In Cents	Former Rate 100 lb.
	Tons	Cost	Tons	Cost	Tons	Cost	Tons	Cost		
1	8	\$50	35	\$220	39	\$200	82	\$470	29	30
2	36	\$300	44	\$390	55	\$420	135	\$1,110	41	35
3	26	\$220	215	\$1,615	203	\$1,230	444	\$3,065	35	40
4			36	\$450	59	\$572	95	\$1,022	54	40
5					75	\$533	75	\$533	35	40
TOTAL	70	\$570	330	\$2,675	431	\$1,955	840	\$6,200	37	
COST in cents 100 lb.		40½		40½			34			37

The behavior of our delivery costs is shown in Fig. 2. On this chart the Delivery Service charge has been averaged in two periods, the first ending with 1932 when the team was sold. This has been done to eliminate the effect of the pick up work and to show the true trend of our delivery costs for the three years.

As previously mentioned, our trucks were doing all our incoming hauling. The only room for improvement here was the general raising of efficiency. Furthermore, we had known that the costs would drop as we improved our operation through our extension work. The pick up figures are shown in Fig. 3. Incidentally, our city delivery costs curve has paralleled this pick up costs curve, while the average delivery costs curve has not fallen so sharply because of the rural work.

In carrying out our extension program and cutting our costs we have necessarily spent more money than if we had not undertaken this work. However, we have secured a very handsome return on the investment. The \$6200 that we spent on our extension routes in the three years represents 2510 truck hours. This sum is made up of 2510 hours of fixed overhead at 50 cents per hour, or \$1,255; 2510 two-man truck

crew hours at \$1.00 per hour, or \$2,510; plus the operating costs which are the remainder, or \$2,435. In other words, by spending this \$2,435, we saved \$3,765 (fixed charges plus labor) which we were already spending and which would otherwise be lost. Each dollar we spent brought back \$1.55. When we deduct the dollar we actually spend, we have a net saving of 55 cents. Fifty-five per cent interest on our investment is high enough to be worth working for. On top of this we are getting dividends in the form of doing our own work for less than we formerly paid others to do it for us.

Idle equipment is costly. When a truck stands still it does not require gas, oil, repairs, et cetera, but that old fixed overhead goes right along. We figure that if our equipment loses an hour a day, we lose the profit on \$500 business. Yet, if we had merely kept our equipment moving over our original territory, we should have been just as badly off. In fact, we should have been actually wasting money, as we should

have been "making work" really to keep our trucks on the streets. Our only solution was to increase the tonnage, which we did by extending our delivery territory. When we come to figure our savings, we find that they are more than we realized was possible with only three pieces of equipment with which to work.

Because of the inherent nature of truck costs with their many variables, it is difficult to figure accurately our savings of the past period. However, we can readily estimate our savings for the year 1934. We shall assume that in 1934 we shall handle a tonnage equal to the average of 1931, 1932, and 1933. Reference to the charts, Fig. 2 and Fig. 4, shows a pick up cost drop of at least three cents a hundred and a delivery cost drop of eight cents. Our Volume Records give an incoming tonnage average of six and one-half million pounds and an outgoing tonnage average of five million pounds. With our pick up cost drop of three cents on that tonnage, we shall save \$1,950 there; and with our eight cent delivery cost drop on the outgoing tonnage, we shall save \$4,000. Now that we have learned the value of keeping our trucks moving, we will certainly pick up that extra \$50 to make our yearly savings an even \$6,000.

Viscosity Affects Oil Use But Engine Speed is the Real Hog

COLD weather starting and winter lubrication, those devilish twins that annually plague fleet operators, are having their tails cut off and their pitchforks dulled by scientific developments. The man who is responsible for abating this related pair of nuisances and thereby earning the gratitude of operators, is H. C. Mougey (pronounced Moo-zhay, just in case you should accost him sometime to pay your respects), chief chemist of General Motors Research Laboratories.

An inkling of his accomplishments in the field of winter lubrication was revealed by Mr. Mougey (get it right now) at a recent meeting of the Philadelphia Section of the S.A.E. His talk centered chiefly around the new standard engine oils for winter use—10 W and 20 W, for whose adoption he was largely responsible.

Mr. Mougey stated that a fleet of cars had been sent up to Regina, Saskatchewan, in order to study problems of lubrication under severe winter conditions. During the period of the tests the temperature averaged zero and varied roughly between plus 45 and minus 45 deg. At one time there was a drop of 66 deg. in 36 hours and at another, 60 deg. in 14 hours.

Graphic records of cranking speed vs. time under cold weather conditions showed that if the engine is cranked for a considerable period without firing, the cranking speed is likely to increase, which is due to the oil on the cylinder walls becoming diluted with unvaporized fuel. This increase in cranking speed usually is of little benefit, however, because during the cranking period the manifold becomes loaded, and the mixture then is so rich that it will not fire.

Mr. Mougey cited a number of authorities as to the minimum cranking capacity required to assure starting in cold weather. P. J. Kent, chief electrical engineer of the Chrysler Corporation, had said the starter must be capable of turning the engine over at 40 r.p.m. with crankcase oil showing a viscosity of 6000 seconds at 0 deg. F. According to C. M. Larson, supervising

THE following conclusions developed by Mr. Mougey deserve emphasis:

1. The increase in starting troubles in recent years is chiefly due to the fact that we did not use oils that were light enough.

2. Whereas in former years we could depend upon viscosity of the crankcase oil being rapidly reduced by unvaporized fuel, this is no longer the case, at least not to the same degree.

3. Oil consumption is influenced more by engine speed than viscosity, this applying to both light and heavy oils.

And, as a tip to operators, addition of lard oil to crankcase oil is beneficial in running in new engines.

H. C. MOUGEY

engineer of the Sinclair Refining Co., the starter should crank the engine at 35 r.p.m. with oil of 18,000 viscosity in the crankcase, which corresponds to a viscosity of 30,000 for new oil. According to another authority the cranking speeds should be between 20 and 40 r.p.m. with oil of between 12,000 and 26,000 viscosity. The main reason we have had increased starting trouble in recent years, Mr. Mougey said, is that we have not used as light oils as we should have. It was to remedy this situation that the new engine oils 10 W and 20 W were adopted.

A chart was thrown on the screen showing the variation in fuel characteristics during the period 1920-1934. The volatility (as represented by the 10 per cent point) gradually increased until a few years ago, since which time it has remained substantially constant. On the other hand, the potentiality for crankcase-oil dilution, as represented by the 90 per cent point, remained substantially constant until a few years ago, when it began to decrease. From this the conclusion was drawn that whereas in former years we could depend upon the viscosity of the crankcase oil being rapidly reduced by unvaporized fuel, this is no longer the case, at least not to the same degree.

The 10 W and 20 W oils replace the former S.A.E. 10 and S.A.E. 20 oils which had viscosity ranges of 90 to 120 and 120 to 185 Saybolt-Universal seconds at 130 deg. F. Mr. Mougey said there was an inconsistency in specifying the viscosity limits for these oils, which are to be used at low temperatures, at 130 deg. F., because, owing to the difference in temperature coefficient of oils of various provenience, an oil which is within the viscosity range of S.A.E. 10 at 130 deg. may be more viscous at zero degrees than another oil which comes within the S.A.E. 20 range at 130 deg. For this reason the viscosity limits for 10 W and 20 W oils, which are intended primarily for cold weather use, are specified as at zero deg. F.

Some anxiety had been expressed as to the ability of the new winter lubricants to provide efficient lubrication

under hard-driving conditions. Mr. Mougey set at rest any doubts on this score by mentioning that Ab. Jenkins, when making his record-breaking drive of 25 hours on the Salt Lakes of Utah, used S.A.E. 20 W oil in the engine of his car, the use of this oil having been decided upon after it had been found that it was possible to get 3 m.p.h. higher speed with it than with S.A.E. 30 oil. If the oil served satisfactorily in this engine, which was driven "all out" for long periods, it certainly should give adequate lubrication in engines that are driven under ordinary conditions.

The safe temperature and viscosity limits, Mr. Mougey pointed out, depend on the composition of the bearing metal and the oil, on design, and on operating conditions. Babbitt begins to crumble at 400 deg. Fahr. and the temperature of the bearing therefore must be kept below this point in order to prevent failure. Ordinarily there would be a difference of 100 deg. between the temperature of the bearing and the temperature of the crankcase oil, which would reduce the safe limit for the latter to 300 deg. A slight margin should be allowed even on this limit, and Mr. Mougey exhibited a chart on which the minimum safe viscosity of the crankcase oil was plotted as a function of the maximum oil temperature, according to which the minimum safe viscosity is about 35 seconds and the maximum permissible oil temperature, 280 deg. This would indicate that it is perfectly safe to use 10 W and 20 W oils in winter time. Confirmation of this result was furnished, moreover, by the findings of a Committee on Cylinder Wear of the Institution of Automobile Engineers which diluted crankcase oil with 90 per cent of kerosene without finding any appreciable increase in the rate of wear.

Numerous charts were exhibited showing the relation between oil viscosity, engine speed and oil consumption. In practically all cases the consumption increased very rapidly with the speed, this applying to both light and heavy oils. Also, the consumption was always greater with the lighter oils, but the difference in the rates of consumption of light and heavy oils respectively varied remarkably with different engines. In cars in poor repair the light oils were found to give very nearly the same mileage as the heavier oils, though the expectation of a greater mileage is usually the reason for preferring the heavier oils. Engine speed has a much greater effect on oil consumption than oil viscosity. In one series of tests, when the car speed was increased from 30 to 55 m.p.h. the oil mileage decreased from 4,000 to 580 miles per gallon. This ratio of 6.9 to 1 was the average from a considerable number of cars, the lowest being 2.3 and highest 19.8.

Another advantage of the lighter oils is that with them bearing lubrication starts sooner after the cold engine has been started. Charts of engine characteristics thrown on the screen, taken while using 10 W and S.A.E. 30 oils respectively, showed that the horsepower and torque were greater with the former, while the specific fuel consumption and the friction horsepower were lower.

An addition of 10 per cent of lard oil did not change this relationship between the characteristics obtained with 10 W and S.A.E. 30 oils respectively.

In the discussion following the talk Mr. Mougey explained that the initials S.A.E. were not applied to the new oils because it was desired to subject them to a period of trial first, and that the letter "W" stood for Winter.

In reply to another question, the author stated that additions of lard oil were beneficial in running in new engines. Such engines, if a little stiff, can be worn in more quickly and with less danger if a little lard oil is added to the mineral lubricant. Later on it is difficult to show any advantage in lard oil additions in the average engine.

What's Back of the Come-Back of the Camel Back

(CONTINUED FROM PAGE 20)

course is the horizontal-opposed piston type engine, either gasoline or diesel, which might be typified by the flat 12-cylinder gasoline engine introduced a year ago by The White Co.

Another rather novel design is the crankless diesel introduced at the last motor boat show by the Sterling Engine Co. At present this engine is built in the form of a marine power plant, but very soon it is expected to be built for installation in trucks.

One rather interesting construction is suggested by the Hall-Scott engine-on-side design which was first used on a 40-passenger A.C.F. bus last year. This engine, like the White horizontal opposed piston type, is mounted under the frame with all accessories on the under side where they can be readily accessible. It can be serviced completely over an inspection pit. The engine must be installed back of the front springs because of its width. This simplifies the cab construction as the cab can now be mounted directly on the rails in a normal low position requiring little, if any, insulation against engine heat.

As a practical matter the selection of the chassis, wheelbase, etc., should be viewed in the right light by the purchaser and engineer. All engineering is a compromise and the new construction is no exception. On the basis of preliminary calculations you may find that

a certain wheelbase, for example, is needed to produce the desired distribution of 1/3-2/3.

The reasonable thing to do is to select the nearest standard wheelbase that is available in production. This is not only reasonable and economical but amply justified by engineering considerations.

• Future Possibilities

What the future holds is justly a matter for conjecture being hedged about with many variables, not the least of which is a guess as to the probable trend of State legislation. But there is an interesting possibility. We find that all the activity pictured above is confined to a class of vehicles representing only 1.36 per cent of total truck production. Wouldn't the "close-coupled" construction be of benefit in some of the lighter truck classifications?

The White Co. seems to have made a big stride in that direction with the 701 and 702 series of 1 1/4 to 1 1/2-ton and 1 1/2 to 2-ton capacity respectively, introduced a few months ago. These jobs embody a modified construction with the cab moved forward so that the engine projects into the cab about 9 in. The C-A dimension, back of cab to center of rear axle, runs about 9 to 14 in. more than for conventional vehicles of the same wheelbase.

When this dimension is utilized correctly, you get a load distribution of approximately 1/3-2/3. This makes a more pleasing looking vehicle and results in better loading of the tires. In fact in some cases it makes possible a reduction in tire size for the same rating due to the reduction in load on the rear tires.

Look to the Carburetor

(CONTINUED FROM NEXT PAGE)

up to date, enabling them to be operated at a profit, by utilizing this new equipment. Vehicles operating under conditions which may have changed greatly from those for which the trucks were originally designed, can in many cases, be materially improved in performance by making use of the new model carburetor units.

In certain kinds of service, a large amount of dirt and foreign material is drawn into the carburetor, necessitating frequent carburetor overhauls and cleaning. In such cases, the sealed and balanced carburetors, ready for quick installation, are of obviously great advantage. The moderate added cost which this type of replacement entails, is soon more than made up by the lengthening of the periods between cleanings.

Serious consideration before deciding which of these two courses to follow, often results in a considerable saving to the fleet operator.

A FEW thoughts on a subject that is a mystery to many fleet operators and many in the trade, and which will help to determine when to rebuild and when to replace a carburetor.

BY A. H. WINKLER, CHIEF SERVICE TECHNICIAN, BENDIX STROMBERG

Look to the Carburetor If You Are Looking for Economy

THE subject of carburetion is still somewhat of a mystery to a great many commercial motor fleet operators. The lack of accurate information on this subject has often resulted in the cost of vehicle operation per ton-mile increasing after a carburetor unit has become worn and out of adjustment, despite the fact that there had been no change whatever in operating conditions.

There are two means of keeping operating costs down through routine attention to the carburetor unit. The first is, cleaning and rebuilding the original unit; the second is, replacing it with a carburetor of later and more efficient design. Which one the fleet operator should choose depends largely upon the type of service in which the vehicle is operated. The following is a brief outline of just what the two terms *Rebuilding* and *Replacing* mean.

When a carburetor has been in service over a period of months or years an accumulation of dirt, sand, grit and corrosion necessarily collects around the various metering holes and valves, caus-

ing an irregular and altered flow through the carburetor. This can result in only one thing—increased fuel cost per ton-mile.

The thought naturally arises in the fleet owner's mind that if the fuel is retarded by partly plugged holes, less fuel is passed through the carburetor and more economy should result. This is not true, however, because after a certain point is reached in "leaning-down" a carburetor, the throttle must be opened further to allow more fuel to enter the cylinders in order to produce the same amount of power. This fuel is not burned efficiently because of the great excess of air present.

Mechanical wear of carburetor parts also takes place. Throttle shafts, and valve faces and seats, are subject to severe punishment, because it is through the carburetor throttle that the truck driver changes the speed of his truck. The effects of this wear are shown by decreased mileage and difficulty in satisfactorily idling and starting the motor.

It should be the policy of the carburetor manufacturer to factory-rebuild

worn carburetor units in such a manner that they are practically as good as when they originally left the factory. During the rebuilding process the carburetor must be completely taken apart, even to the smallest plug, and each part inspected separately before being put through a cleaning process. After the parts are cleaned, the various valves, bushing and metering holes must be checked for wear or defect, and replaced with new parts where necessary. When the carburetor is reassembled it should be pressure-tested on a special apparatus, so that any chance leaks may be found, and final adjustments made, before the instrument is returned to the truck operator and again put into service.

As engineering skill has progressed from year to year, new designs have been developed to improve the performance and economy and lengthen the time interval between these cleaning and rebuilding periods on any carburetor installation. Old and apparently obsolete carburetors may sometimes be brought

(CONTINUED ON PAGE OPPOSITE)

Oxides deposited on the insulator are good conductors of electricity at high temperatures and, in effect, short circuit the plug

Maintenance Men: Know Thy Spark Plugs!

A Commandment for Those Who Want to Get the Most Out of Engines

"**S**OME day we hope you fellows in the maintenance field will understand that a spark plug has something else to do besides give you a lot of trouble, and it will give a lot less trouble if you try to understand what it is supposed to do."

We are quoting here from a talk by Alex Taub, chief of the engine section, Chevrolet engineering department, before a recent session of the Metropolitan Section Society of Automotive Engineers.

Mr. Taub did not elaborate on the statement at the time, but there is plenty of truth in it. A spark plug can and will give trouble if it isn't the right one, or if it isn't looked after. On the other hand the spark plug isn't always to blame for some of the troubles credited to it.

Among the things which sometimes may be traced to spark plugs, are the following:

1. Hard starting.
2. Loss of power at high speeds.
3. High fuel consumption.
4. Missing at low or idling speeds.

Obviously there can be many possible causes for any of these, but it does seem that since spark plugs are so easily ac-

cessible, are so simple to clean, adjust or replace that at least that one possible source of trouble could be guarded against. There are really only a few things that can be wrong with a spark plug.

One group of troubles arises from using the wrong type or length of plug, or a plug which is either too hot or too cold for the particular engine, and the other group comes from incorrect spark plug care.

Of the first group, the engine manufacturers, working together with the spark plug manufacturers, have scientifically determined everything except the matter of sensitivity to temperature for varying operating conditions. It is quite important in some engines just how far the gap is from the shoulder of the plug. Given two plugs of the same general type, a "long" plug may work better in one make of engines, a "short" plug in another make. By working better we mean the development of maximum power or torque, together with good idling characteristics and best fuel economy.

In many engines the position of the gap with respect to the inner surface of the combustion chamber is highly important. When fuel enters the chamber, particularly at low speeds, the density of the mixture is not even throughout the chamber—you will have layers of thin and heavy mixtures, called "stratification" by engineers. Engineers explore the chamber near the spark plug to find if, or how far, the plug should extend into the chamber so that the spark will occur in a layer of dense mixture—insuring more complete combustion by proper ignition of the charge.

To illustrate the point, Fig. 1 shows a chart of fuel consumption in miles per gallon for the same engine, used in a low-speed truck, at various road speeds from 20 to 55 miles per hour, the only difference between the operating conditions being in the matter of spark plug length. The solid line is for plugs which extended $\frac{3}{8}$ in. farther into the combustion chamber than the plugs which gave the dotted line. In another make of engine the condition might be reversed.

By ATHEL F. DENHAM

The reason for this difference in fuel economy of course is incomplete combustion—caused by either incomplete combustion (partial missing) or complete misfiring in some of the cylinders occasionally. This missing will not be noticeable necessarily to the driver; at the worst it might come to his notice only in the form of a very slight increase in engine roughness. If soft rubber mountings are used, even this symptom might not show up. At any rate the best way to avoid fuel and power losses from this source is to be sure the spark plugs used are those specified by the factory, where engineers have taken weeks to determine the best position.

Next there is the matter of whether the plug is too hot or too cold. Perhaps a word of explanation is in order. A spark plug at best is a compromise between best idling and maximum torque operation. As the throttle on an engine is opened the spark plug temperature increases. If the spark plug electrode does not cool rapidly enough the high temperature of the spark plug will cause pre-ignition.

On the other hand if the plug is designed for rapid cooling, it may cool too fast when the engine is idling or running under light load, causing fouling. Fouling due to carbon deposits not being burned off is due to a plug which runs too cold.

The difference between a hot and a cold plug is generally only a matter of the distance from the tip of the insulator to the seat of the insulator in the metal shell—the longer the distance other things being equal, the "hotter" the plug.

Spark plugs that come with new engines generally lean toward the "hot" side. All new engines pump oil to a

These curves show the variation in fuel consumption in an engine resulting merely from substituting a plug $\frac{1}{8}$ in. longer from shoulder to gap than standard. In another engine the same effect might be obtained by substituting a shorter plug. The graph reads m.p.g. along the side and m.p.h. along the bottom

greater or lesser degree before the rings are properly seated, pistons and cylinder walls worn in. Moreover many people use oil in gasoline for breaking-in purposes. To prevent fouling of the plugs during the break-in period, when engines are generally run at comparatively low speeds also, engineers provide a slightly hotter plug than would be desirable when the vehicle is later operated under considerable loads and at relatively high speeds.

For door-to-door delivery service on the other hand—and other services where the engine is seldom run at high speeds, or is idling a good portion of the time—an even hotter plug than is recommended by the factory may occasionally be necessary. Factory standard plugs are designed, as we have said, as an effective compromise for "average" service. Operating conditions change the requirements frequently. However, in changing from a hot to a cold plug or vice-versa, care should be taken that the plugs are of the same length—so that the position of the gap in the combustion chamber is not changed.

So much for plug selection. Far more

C. C. J. DETROIT EDITOR

Tips on Spark Plugs

- Re-gapping should be done with a feeler gage because it is a precision operation.
- Avoid breaking the insulator by making all re-gapping adjustments by bending the side electrode only.
- If plugs are fouled, don't be content with cleaning them—look for the source of the trouble.
- Spark plugs should be re-gapped every 3000 to 5000 miles. The gap gradually widens after several thousand miles normal service. If it widens quickly and unnaturally the wrong type of plug is being used.
- Gap position in combustion chamber should be according to manufacturer's recommendation for best performance. Use correct length of spark plug.
- The recommended gap setting is best for average service. In case of a bad idle, or hard starting, it might be necessary to use a wider gap—not more than ten thousandths wider. A wider gap requires more frequent cleaning for consistent service. Gaps should never be adjusted narrower than specified.
- Select hot or cold type of spark plug to give best operating temperature. The type should be such as not to cause pre-ignition or too rapid deposits of oxides when the engine and accessories are in good mechanical condition. For low speed service the plug should be hot enough to prevent accumulation of carbon and soot.
- Keep the plug in condition by periodic cleaning and re-gapping, then if troubles develop, you know you can look elsewhere for the cause.

Left—Pre-ignition may cause blowby between the insulator and shell. It can be eliminated by using a cooler plug

Right—Re-gapping is a precision operation. Don't guess—use feeler gage

important is the question of proper care of spark plugs. Here two factors mainly are important: the gap width, and the amount of coating on the insulator, forgetting such obvious items as cracked insulators, etc.

In one factory a group of engineers takes about three weeks to determine the correct gap width for its standard spark plugs every time a new model is brought out. This may seem rather ridiculous in view of the fact that spark plug gaps in the field are more often adjusted, if at all, entirely without the use of feeler gages, or reference to factory recommendations. Yet the width of that gap plays an important function in the operation of the engine.

Some engineers claim that a ten-thousandth of an inch error in gap width might in some cases produce a 5 to 8 per cent loss in fuel economy. Whether or not this is correct, both too wide or too narrow a gap will give trouble eventually in some form or other.

Ignition systems are merely a means of transferring energy from the battery into a spark at the correct instant. A given ignition system can supply just so much energy at the spark plug and no more. Remembering that, and considering that the wider the gap the more energy it requires to make a spark jump that gap, and the faster the engine operates the less effective the ignition system, it can be seen that if the gap is wide enough the spark won't jump at all or at least will be very weak—causing mis-firing at high speeds.

A better illustration perhaps is the fact that if instead of twenty-thousandths of an inch, the gap is forty-

thousandths wide, that would be equivalent to difference between one battery and two batteries in series. The wider gap would require the two batteries to give just as effective a spark.

Too narrow a gap on the other hand may cause bad idling and hard starting. In this case the spark itself may not be sufficiently hot or sufficiently long to produce proper ignition of the fuel and air mixture in the combustion chamber. Too narrow a gap might also cause mis-firing at high engine speeds in some engines by not properly igniting the mixture.

It is not likely that spark plug gaps will be found too narrow in service unless they have been set that way in adjusting the gap. They may frequently be too wide, however. There is a normal "wear" of electrodes at the gap, and in addition there may be burning of the electrodes due to high temperatures. It is highly recommended that for maximum economy and consistency of operation, spark plugs should be re-gapped whenever they are cleaned.

That brings us to the last but perhaps most important factor contributing to spark plug troubles—deposits on the center insulator. These deposits may be of various types: there may be oil from oil pumping, etc.; there may be carbon deposits which have not been burned off. The latter, if present, demonstrate that the plug used is too cool in operation.

Then there are the oxides which deposit from the fuel burned, and in some cases special fuels leave additional forms of chemical deposits on the plug. All of these are conductors of electricity and have the habit of increasing in

conductivity as their temperature is increased. Being conductors, they to some extent "short-circuit" the plug and rob it of some of the energy derived from the ignition system. At high engine speeds, when spark plug temperatures are high, this may cause mis-firing—again of a nature which cannot be readily detected by the operator of the vehicle. This type of mis-firing, which may cause a loss in fuel economy of 10 per cent or even more at times, is particularly hard to notice. What happens is the spark plug mis-fires a couple of times—during this period the temperature in the combustion chamber, and that of the plug, drops—the coating on the insulator cools off, loses its conductivity, and again there is sufficient energy for the spark to jump across the gap. The cycle then starts over again.

It will be seen incidentally that the wider the gap the smaller the amount of coating on the plug necessary to cause short-circuiting and mis-firing.

The best answer to this problem is frequent cleaning of the insulator. An insulator normally is white. If it has a reddish brown color, or if it is glassy, or blistered, it has a coating of oxide even though that coating isn't apparent in any other way. It is a good policy to clean spark plugs about every 3000 to 5000 miles of operation. If the rapid appearance of these coatings is a chronic condition of the engine, it is possible that the plug may be too hot, for the higher the temperature the more readily these coatings form. If the substitution of cooler plugs doesn't solve the problem, the trouble is probably in the ignition or intake system of the engine, including the carburetor.

Federal's New 2-Ton Lists at \$845

FEDERAL Motor Truck Co. has announced a new 2-ton truck at \$845. Known as Model 18X, it has a maximum gross rating of 11,000 lbs. In appearance, in the number of available wheelbases and in the matter of powerplant, it is similar to the 1½-ton 15X described on page 36 of the March issue.

Standard tires are 6.00/20 six-ply single front and dual rear. The standard 137-in. wheelbase chassis weighs 3800 lbs.

While the Hercules JXA is standard, a larger engine (JXB) of 263 cu. in. displacement is optional at extra cost.

The fish belly frame has a maximum depth of 8½ in. Flanges are 2⅜ in. wide and the thickness of the steel is 7/32 in. Front springs are 38 in. long by 2½ in. wide. Rear springs are 50 in. long by 2½ in. wide. Five leaf auxiliary

springs 41 in. long by 2½ in. wide are standard equipment. All spring eyes are rubber bushed and require no lubrication.

A 4-speed transmission is mounted in unit with the engine. There is an opening on the right side of the transmission providing for a standard power take-off. The transmission ratios are: First speed 6.40 to 1; second speed 3.09 to 1; third speed 1.69 to 1; fourth speed 1.00 to 1; and reverse 7.82 to 1.

The rear axle is full floating bevel drive type with a straddle mounted pin-

ion gear. Standard gear ratio of the rear axle is 6⅔ to 1 with 6⅔ to 1 optional. Universal joints are of the roller bearing type which require lubrication only at very infrequent intervals. A single propeller shaft is used on the standard 137 in. wheelbase chassis, while two shafts with a self-aligning center bearing are provided on the longer wheelbases. Large, powerful hydraulic brakes of the internal type have a braking area of 260 sq. in., 15 in. x 2¼ in. F., 16 in. x 2¼ in. R. fully weather proof. All brake drums are of cast alloy iron.

This shows IHC Model C-1 with roomy, attractive cab and all-steel pick-up body

Plan view of the C-1 chassis

IHC Builds New Half-Ton in Own Plants

A NEW half-ton truck, improved in appearance and completely built in its own plants is announced by the International Harvester Co. of America. It is a 113-in. wheelbase job which will be known as the C-1. The chassis will list at \$400 f.o.b. factory. With shock eliminators and bumper the list will be \$425. Body prices are not yet available.

In appearance the new model is distinctive and decidedly pleasing. A stream-lined hood and cowl, V-type radiator and valanced fenders all contribute to its attractiveness. The radiator shell is finished in the same color as the hood and cowl and trimmed with a polished stainless steel moulding and satin-finished aluminum grille.

The cowl is furnished as standard equipment, less the windshield. The latter is sloping and hinged at the top. The cab is roomy, comfortable and insulated against heat and sound. It is of composite wood and metal construction, with a one-piece, deeply-crowned steel roof.

The six-cylinder L-head engine, with 3 5/16-in. bore and 4 1/8-in. stroke, has a displacement of 213 cu. in. Brakehorsepower is 78 at 3600 r.p.m., and 148 lb. ft., of torque are developed at 800 to 1000 r.p.m. The precision-type main and connecting rod bearings are remov-

Chassis of 113-in. wheelbase Model C-1 lists at \$400 with shockeliminatorsand bumper \$25 extra. Front-end changes greatly improve appearances.

able and replaceable. Hardened exhaust-valve seat inserts are employed and the downdraft carburetor is fitted with an air cleaner.

The frame is sturdy and well reinforced by gusseted cross members. Frame dimensions are 5 3/4 x 2 1/4 x 9/64.

Other chassis features include cam-and-lever steering, roller bearing anti-friction type universal joints and internal-expanding brakes of the equal action cam type.

The all-steel pick-up body is 47 1/8 in. wide and 66 in. long inside. Side panels 13 in. high are provided with 6-in. flare boards. Stake pockets are provided so that a special canopy top may be mounted.

The panel body is 6 ft. long, 52 in. high inside and 55 in. wide inside at the belt.

The C-1 with a 6-ft. panel body mounted, on the 113-in. wheelbase

The V-type radiator has a satin-finished aluminum grille

Airplane type instruments and conveniently located controls feature the C-1 instrument panel

Buda Breaks Out With Full Diesel in Two Sizes

80 and 90 hp. jobs differ only in bore. Use Bosch fuel injection

THE Buda Co., of Harvey, Ill., has a line of heavy-duty, six-cylinder automotive diesel engines, built under license from the German M.A.N. company. Both sizes of engines have a $5\frac{1}{2}$ -in. stroke, with bores of $3\frac{13}{16}$ and 4 in., respectively, for piston displacements of 377 and 415 cu. in. Both engines are governed at 2000 r.p.m. at which speed the smaller develops better than 80, and the larger above 90 hp.

The engines are of the four-cycle, full-diesel, solid-injection type, using Bosch fuel injection systems. An air storage chamber is incorporated in the cylinder design. These chambers are closed off by a rotating plunger type valve for easy starting when the engine is cold. With the air chambers thus closed off—by means of a single lever operating all six valves—compression ratio is 17 to one.

The valves are opened again when the engine has reached its normal operating temperature—that is, a temperature of 130 deg. fahr. or better—under which conditions it will then be running on a ratio of roughly 13 to one.

These engines show an unusually low maximum rate of pressure rise, which accounts for their relative smoothness of operation and the fact that fairly light weight could be achieved without resort to light-metal engine castings. The only major aluminum alloy part is the cylinder head cover enclosing the overhead air intake and exhaust valves.

The object of operating on a relatively low compression ratio, according to Buda engineers, is to obtain the maximum air supply in the combustion chamber, achieving an increase in turbulence for more effective combustion, thereby increasing the horsepower output and combustion efficiency, as shown by a reduction in the amount of smoke in the exhaust gas.

Best fuel consumption is obtained apparently in these engines in the 1200 to 1600 r.p.m. range. The maximum

This cross-section of the Buda M.A.N. diesel engine shows the location of the injection pump and nozzles

B.M.E.P. values are obtained in the same engine speed range, although the maximum torque curve is relatively flat from 600 to 1800 r.p.m. The engines do not carry air compressors for super-charging.

Aside from the fuel mechanism the powerplants do not depart widely from accepted good heavy-duty automotive design practice. Blocks are fitted with replaceable dry type steel sleeves clamped in place by the cylinder head. There are seven main bearings of the steel-backed precision, interchangeable type replaceable individually without disturbing the crankshaft.

Connecting rods are rifle drilled for pressure lubrication to the full-floating piston pins. Pistons are of aluminum alloy with piston head design incorporating a transverse specially shaped trough to increase turbulence. There are six rings per piston.

Both intake and exhaust valves are of silchrome steel. Tappet adjustment can be made with the engine running. Valve seat inserts are provided for the exhaust valves. Valve springs can be replaced without removing cylinder heads. Pistons and connecting rods are removed through the top of the block.

Incorporated in the cooling system is

a Harrison oil temperature regulator. Lubrication is of the full pressure type throughout including the rocker arm shaft, and governor.

Impeller type pumps for water circulation are mounted on the timing gear cover, and are driven by the camshaft gear. From the pump water goes through the oil temperature regulator, where it divides, part going to a distribution gallery on the cylinder head, the remainder going into the block. Cooling fans are mounted on anti-friction bearings.

The Bosch fuel system is too well known to require description here. Fuel injection nozzles are of the closed pintle type and normally should not require adjustment. Control of the amount of fuel injected is through a variable cut-off on the injection plungers, the stroke remaining constant. The Pierce governor regulates the amount of fuel directly, the hand "throttle" being connected to the governor.

A variable timing device which regulates the start of injection is provided, but adjustment of this mechanism is not recommended subsequent to shipment from the factory. There is in the system also a Bosch fuel filter, while the air intake is provided with an intake silencer and air cleaner—combined.

\$ALVAGE—From a Shop Man's Mail

A Gassing Eliminator

HOW to eliminate obnoxious exhaust fumes has been a subject for discussion among fleet operators for a long time. To help solve this problem—generally referred to as "gassing"—there is the Doering Gassing Eliminator. It is simple in design and construction. The body is of cast iron and the cam and rollers of hardened steel. It works this way:

When the forced momentum of the engine causes a greater velocity or r.p.m. than idling speed when deceleration takes place, the valve of the Eliminator is automatically snapped open by the vacuum in the intake manifold, thus cutting off the fuel supply from the carburetor and permitting free air to be drawn into the engine. When the momentum or the r.p.m. of the engine diminishes to idling speed or until the throttle is again opened, the valve of the Eliminator automatically closes and the engine continues to operate normally.

This device will be sold nationally. We'll put you in touch with the distributor.

A Locking Expander

An expander for curing piston slap in both cast-iron and aluminum-alloy pistons has been announced by Liberty Accessories Corp. It comes in three sizes to equip all cars and many trucks. Installation is made simply by means of a special pair of pliers. A soft steel locking pin prevents the expander from working out of position.

Hydraulic Cylinder Hone

Wagner Electric Corp. is marketing a home set adaptable to drill press operation for honing hydraulic brake cylinders. The set is contained in a steel box with complete instructions. It takes care of brake cylinders from 1 in. to 2 in. inclusive, and lists at \$15.50.

Rust-Proofed Clamp

Wittek Mfg. Co. is putting up its Star hose clamp in packages of 10 as well as 100. The clamp is a universal type and fits all hose from 1 in. to 3 in. The clamp is rust-proofed and the bolt and nut cadmium-plated. Catalog sheet and other literature will be supplied.

A Paint-Spray Help

A new, patented fluid cut-off valve, for use with its paint spray guns, has been developed by The DeVilbiss Co. The valve permits the operator to drain the gun of fluid or to blow out and obstruction without disconnecting the gun from the hose, thus increasing production speed.

Brake Lining Cleaner

Armitite Laboratories has a liquid cleaner which, applied to brake lining, causes it

Sent out by manufacturers of automotive products. The editor will gladly put readers in touch with makers mentioned

to lose its glaze. The maker claims this will cause brakes to equalize themselves and give better service. The cleaner comes in a squirt can and is sold on a guarantee basis.

For Hardened Valve Seats

With hardened valve seats coming into extensive use, Albertson & Co. has brought out a Sioux dual action grinder which will grind the hardest valve seats made to a perfect mirror finish. Accuracy is within .001 of an inch without any need for delicate adjustments. The complete grinder consists of a high-speed driver, a grinding wheel holder and a dressing tool.

Heat-Resisting Expander

American Hammered Piston Ring Co. has a piston expander made of Crovanite, which the maker refers to as a "new super-heat-resisting metal." Six sizes take care of all requirements. It can be installed with a screw driver. An exclusive feature is full length expansion of the piston skirt on the thrust side.

Water Pump Packing

Aluminum Industries, Inc., has a new Permite packing for all types of water pumps. It is made of long asbestos fibre filling, with reinforcing lead strands forming a core, which is covered with a tight-fitting case of whip braid. This is pressed to shape and impregnated with a water-resisting lubricant and natural graphite. It is claimed that it will not harden in service and is not affected by any anti-freeze.

Fuel Pump Analyzer

A fuel pump analyzer, developed by the AC Spark Plug Co., combines a flow and pressure test which gives an accurate analysis of a fuel pump under actual operating conditions without removing the pump from the engine. List price is \$7.

Atmosphere-Proof Hoist

With no change in prices, an improved spur-gear chain hoist has been brought out by the Wright Mfg. Division of American Chain Co., Inc. All exposed parts are now zinc-coated. Precision ball bearings with integral grease seals support all moving parts and increase efficiency 10 per cent.

Gauges for the Front End

Bear Mfg. Co. has a device for gaging turning radius correctly. It weighs about 10 lb. and is portable. A pair is necessary, one for each wheel.

Bear also has a combination gage which checks both toe-in and camber and which is adjustable to all wheels and fits any tire.

Dual-Type Wrenches

Wrenches which combine two types of openings—box and open end—have been introduced by The Herbrand Co. They are drop-forged from chrome vanadium steel. Both ends have the same size openings. The box end has a 12-point opening.

Oil-Spray Air Cleaner

Industrial Air Cleaner Company has an oil-spray type of air cleaner. The dirt settling compartment is furnished in various sizes to meet requirements.

For Sticky Valve Stems

Kapolene is a lubricating chemical compound furnished by Klemm Automotive Products Co. Added in the proportion of one to three parts to the crankcase oil it prevents congealing at low temperatures, dissolves gummy accumulations on valve stems and piston rings.

We Repeat an Offer

Last month a great many readers wrote in for the valuable publications listed below. We are repeating this free offer. Check any or all of the books and mail the order blank to the Salvage Department, Commercial Car Journal, Philadelphia, Pa.

Please send me the following

Free Books

- 13. Operators' Tire Handbook
- 14. Motor Mechanics' Handbook
- 15. Piston Ring Manual
- 16. Spark Plug Chart
- 17. Executive Thinking
- 18. Demountable Body Equipment
- 19. Counter & Recorder Catalog
- 20. Silent Gear Catalog
- 21. South Bend Lathe Catalog

Name

Title

Firm Name

Address

City and State

Views of the new Ford truck and full-floating axle

Ford Bolsters Its Bid for Truck Volume With Full-Floating Rear

THE principal features of the new Ford trucks for 1934 include a new full-floating rear axle and a number of changes made to make the V-8 engine especially suitable for truck work. The forward end of the truck has been re-styled with a new chrome-plated moulding around the radiator grille, chrome-plated hood hinge rod and ornament for the radiator filler cap.

The new rear axle is more heavily constructed throughout than formerly with ample torque capacity to handle the full output of the V-8 engine. The pinion shaft is larger with larger bearings and the teeth on pinion and ring gear are wider than in the former $\frac{3}{4}$ -floating axle. The straddle-mounted driving pinion and ring gear thrust plate, two Ford axle features for some years, are continued, the latter with an enlarged surface. The straight type rollers in the straddle-mounting for the driving pinion are now solid, giving them a higher

New axle is more heavily constructed with ample torque capacity to handle V-8 output

load-carrying capacity than the former spiral flat wire type.

Provision has been made for positive lubrication to the pinion bearings. The centrifugal action of the ring gear pushes lubricant through a passage leading between the two taper pinion bearings. A similar duct acts as a return canal for the circulating lubricant.

A new design feature is embodied in the differential bearing mounting. The taper roller bearings now are located equidistant from the centerline of the ring gear, thus providing equal distribution of stresses between the two bear-

ings and equalizing bearing wear. The new design also embodies a more rugged conically shaped differential case heavily ribbed inside to decrease deflection of the ring gear and a heavier housing for the differential assembly. To accommodate the full-floating axle shaft, the differential bearings are larger in diameter. The axle shaft tubes are of thicker material and the strength of the spring seat mountings has been increased.

The axle is especially designed for use with dual tire equipment. The taper roller bearings in the wheels are located directly under the load center when this equipment is mounted.

The driving flanges on the axle shafts are forged integral. Where the shafts slip into the differential side-gears 16 spline fittings are used with the shafts upset to eliminate localized stresses.

The V-8 truck engine is equipped with the new dual downdraft carburetion sys-

(TURN TO PAGE 68, PLEASE)

Left—The Ford “floating” connecting rod bearings are now surfaced with a high lead-bronze material

Right—Axle shafts may be readily removed without jacking up the wheels

CHOSSEN

by 35.7% of all car builders

by 74.4% of all truck builders

by more than a million
American motorists!

Lockheed Hydraulic brakes enter their eleventh year of service more firmly entrenched in the respect and approval of American car and truck owners than ever before.

Their principle of permanently, perfectly equalized pressure at all four wheels, their simplicity, their ease of adjustment and the infrequency of any need for it . . .

these things have won more than a million American motorists to Lockheed Hydraulic brakes.

Their easy factory installation, their excellent service record and their wide public approval, have gained for these fine brakes the endorsement and adoption by 35.7% of all car builders and 74.4% of all truck builders.

H Y D R A U L I C B R A K E C O M P A N Y
DETROIT, MICHIGAN

LOCKHEED HYDRAULIC *Four BRAKES Wheel*

OFFICIALLY SERVICED THROUGHOUT THE NATION BY WAGNER ELECTRIC CORPORATION
THE COMMERCIAL CAR JOURNAL

APRIL, 1934

COMMERCIAL CAR JOURNAL

NEWS

Truck Output Gains 140%

Truck production figures just released by the U. S. Bureau of Census show a gain of 140 per cent in the first two months of 1934 over 1933. U. S. and Canada output was 93,257 against 37,867. February production was 46,566 units, a gain of nearly 200 per cent over the 15,669 produced in February of last year.

The figures show a substantial improvement in production of trucks of more than two tons, which indicates that heavy-duty types are sharing in the recovery.

Mack May Sell Fords

At the annual meeting of stockholders of Mack Trucks, Inc., A. J. Brosseau, president, said considerable improvement had developed in the heavy-duty truck business. He added that negotiations were proceeding with the Ford Motor Company on an arrangement whereby Ford trucks would be sold and serviced through Mack Trucks branches, but no immediate decision was in prospect. E. R. Hewitt and W. D. Sargent were elected directors.

Groves Gets Autocar Control

Control of the Autocar Co., Ardmore, Pa., has passed into the hands of Wallace Groves of New York City, who, it is understood, acquired 60 per cent of the 200,000 outstanding shares of Autocar stock. Mr. Groves is described as an independent operator with no bank or brokerage connections. At the recent annual stockholders' meeting Mr. Groves spoke optimistically of the opportunities in the truck industry, of the future of the Autocar Co. and endorsed the management and policies of President Robert P. Page, Jr. He was elected to the board of directors.

Senate Gets Truck Bill

Senator Clarence C. Dill (D., Wash.) has introduced in the Senate the bills prepared by Joseph B. Eastman, Federal Coordinator of Transportation, proposing regulation of bus and motor freight transportation (S. 3171) and regulation of water transportation (S. 3172). They have been referred to the Committee on Interstate Commerce.

Dodge Sales Jump 705%

Dealers' retail deliveries of Dodge trucks during the first 11 weeks of 1934 totaled 7400 units, as against 919 units delivered during the corresponding eleven weeks of 1933—an increase of 705.2 per cent. Deliveries for the week ending March 17 alone were 952 Dodge commercial cars and trucks, according to J. D. Burke, director of truck sales.

March White's Biggest Since 1930

Orders received by The White Co. for the first three months show an increase of 150 per cent over the corresponding months of 1933. March was the biggest

Board of Fire Underwriters and is listed among accepted driving units for a pump capable of delivering 500 gal. of water a minute for an extended period. Ford is the first in its class to pass the tests.

Goodrich Has New Tire

A newly developed truck and bus tire is announced by The B. F. Goodrich Co. Known as the Goodrich Triple Protected Silvertown, it has three new protection features, which the maker designates as Plyflex, Ply-lock and 100 per cent Full-Floating Cords.

AC To Make Bearings

The AC Spark Plug Co. is installing equipment for the production of bronze-lined, steel-backed engine bearings, preparatory to entering the bearing business. Production is expected to start June 1.

Dodge Adds to Truck Staff

Dodge has made the following truck representative appointments: E. F. Drew in the North Jersey district, and W. C. Price in the Scranton district of the New York region; W. C. Pollard in the Evansville district, and J. E. Conley in the Huntington and Columbus districts of the Cincinnati region; M. J. Herold in the Baltimore district of the Philadelphia region; L. F. Turney in the Abilene, San Antonio and Amarillo districts of the Dallas region; E. A. Granroth in the Erie district of the Pittsburgh region.

Ed Lowe on S.A.E. Staff

Edward F. Lowe has been appointed assistant general manager and C. B. Whittlesey, Jr., assistant secretary of the Society of Automotive Engineers.

Ed Lowe, well known to fleet men and truck factory executives, was one of the organizers of the Monarch Governor Co. and pioneered development of the automatic type of governor in the truck field. Later he became interested in K. P. Products Co. as general manager. After K. P. Products merged with Handy Governor Corp., he became vice-president in charge of sales of Handy.

Balser and Jamison Named

Appointment of F. W. Balser and John T. Jamison to the field sales force of the Federal Motor Truck Co., is announced by J. F. Bowman, vice-president in charge of sales.

Herrick Resigns; Reed On

W. C. Herrick has resigned as Mack branch manager in the Cleveland district. Leonard F. B. Reed has been made his successor, with F. V. Fullem, assistant branch manager.

Gilbert Goes to Thornton

Frederick G. Gilbert, former Timken De-
(TURN TO PAGE 68, PLEASE)

COMMERCIAL CAR JOURNAL'S

TRUCK SPECIFICATIONS TABLE

The Commercial Car Journal's Truck Specifications Table is brought up to date in each issue from data supplied monthly by truck manufacturers

KEY TO ABBREVIATIONS AND REFERENCE MARKS

GENERAL

Chassis Price—Chassis price quoted applies to the standard wheelbase and specifications listed. All prices are F.O.B. factory.

***—List price not yet established. Ready next issue.

Tonnage Rating—Where a spread of ratings is given the maximum ratings are for ideal operating conditions and the minimum for extremely difficult conditions; the ranges between are for varying operating conditions.

Gross Vehicle Weight—Is chassis weight, plus body and cab, plus payload. Gross vehicle weight given for a model is based on maximum recommended tire size and not on tires listed as standard equipment.

Chassis Weight Stripped—Includes gas, oil and water and all things included in chassis price. Does not include the weight of cab.

Maximum Brake H. P. at Given R.P.M.—Is actual dynamometer reading without accessories.

Tractors—Unless given the designation N (meaning not available as tractor), all standard models may be assumed to be available as tractors.

(A) All Torque and Brake Horsepower values listed are based on engine outputs with all Standard Equipment Accessories running and are the same values obtaining with the truck on the road in actual operation.

(N) Not available as tractor.

(T) This designation accompanying a model number indicates vehicle is specifically designed for tractor use only. c. o. e.—Cab-over-engine design.

(3) Corbitt—Larger engines and corresponding auxiliary units provided on all models at extra cost.

(4) Day Elder—Model 75—1½ ton—same specifications except price—\$945, and larger tire size—B6.00/20 front and DB6.00/20 rear.

(5) Dodge—F-61 available as special tractor truck with 146-inch wheelbase with model designation of F-60, at \$2645. K-61 available as special tractor truck with 146-inch wheelbase with model designation of K-60, at ***.

(5a) Dodge—Model H20—1½ ton gross vehicle weight 6,000 lb., price \$502, has same specifications as H30 except tires which are 7.50/17 and lighter rear

springs.

(6) General Motors—Models T-18 to T-61 inclusive are also available for export only as coach chassis. Double reduction axles optional in Models T-43, T-43T, T-51, T-61, T-83 and T-95 at extra cost. Trailing type axles available on Model T-95 at price deduction. Optional T-size engines available on Models T-85, T-85H, T-95, T-110, and T-130 at varying cost.

Gramm—Larger engines and corresponding auxiliary units provided on all models at extra cost when type of service demands. Wheelbases and body mounting dimensions may change to suit special requirements. Double reduction axles available on all models except AX and BX.

Gramm weight indicated for each model. In table is the straight rating.

Series CXH is supplied with Hercules JXB engine in Model CXHB and Hercules JXC in Model CXHC.

(7) Grass Premier—Eight cylinder engines available on following models: 835 with Lyc. GU at \$1515 list; 865 with Lyc. HF at \$4230; 875 with Lyc. AE at \$5400.

(8) International Harvester—A-1, ½ ton, same as A-2 except less spring leaves and smaller tires.

(9) Le Moon—Model 600 available with Lyc. AEC at same cost. Models 701 and 801 available with Waukesha 6SR1 at same cost.

(10) Sterling—Rocker arm used in place of springs.

(*) Sterling—These models also available equipped with Cummins Model H Diesel engine.

†Reo—Model 1D is the longer wheelbase edition of Model 1B. The frame dimension is 7x2½x11. It is furnished at extra cost.

††Reo—2J2K same as 2H except 166 in. wheelbase and price of \$1695.

††Reo—3J same as 3H except wheelbase of 170 in. and price of \$2085; 3K same as 3H except 185 in. wheelbase and price of \$2155. 3M same as 3H except 205 in. wheelbase.

(11) Studebaker—S-2 in 141 in. and 165 in. wheelbases has 6½ in. frame depth.

(12) White—Each model shown is furnished with different specifications for different tonnage ratings.

*—Factory governed speed 2400 r.p.m.

(13) Marmon-Herrington—Available with Hercules Diesel engine. Price on application.

(14) Ford—Rear axle ratios 5.14 and 6.6 optional on 1½-ton trucks.

(15) Mack—Chassis price and weight include cab.

MAKES—ALL

AB—American Bosch.

A LaF—American La France.

AL—Auto Lite.

B—Bendix.

BB—Borg & Beck.

BL—Brown-Lipe.

BO—Bendix front, Own rear.

Blo—Blood.

Bu or Bud—Buda.

BW—Borg Warner.

BWs—Bendix front, Westinghouse rear.

C or Col—Columbia.

Car—Carter.

Ch—Chicago.

Cl—Ignition by compression.

Cl or Cla—Clark.

Cle—Cleveland.

Co—Covert (transmission).

Con—Continental.

Cot—Cotta Gear.

Cum—Cummins-Diesel.

Det—Detroit Lubricator.

DG—Detroit Gear and Machine.

DR—Delco Remy.

Eat—Eaton.

Ei—Eisemann.

En—Governor built in engine.

EV—Electro-Vac (gov.) Pierce.

Fe—Fedorra.

Fu—Fuller.

Ge—Gemmer.

GO—G. & O.

Ha—Handy (governor).

Ha—Hannum (steering gear).

HaS—American Car & Fdry.

Her—Hercules.

Hr—Harrison.

HS—Merchant & Evans (clutch).

HS—American Car & Fdry. (governor).

Jac—Saginaw.

Jo—Jones.

KP—Handy.

L—Lockheed.

Li—Lipe, W. C.

LN—Leece Neville.

Lo—Long.

LO—Lockheed front, Own rear.

LW—Lockheed front, Wisconsin rear.

Lyc—Lycoming.

Mc—McCord.

Ma—Marvel.

ME—Merchant & Evans.

MM—Mechanics Mach.

Mo—Modine (radiator).

Mo—Monarch (governor).

My—Mallory.

NE—North East.

No—Not supplied.

ns—No Standard.

O or Ow—Own.

Op or Opt—Optional.

P—Pierce (governor).

Pe—Perfex (radiator).

PS—Peters & Snead.

RB—Robt. Bosch.

Ro—Rockford.

Ros—Ros.

Sc—Scintilla.

Sch—Wheeler-Schebler.

Snu—Shuler.

SpB—Spicer and Blood.

SpI—Spicer.

St or St—Sterling.

St—Stromberg.

T or Tim—Timken.

TWH—Timken Wisconsin Herrington.

WG—Warner Gear.

Wa—Waukesha (governor).

Wau—Waukesha.

W or Wis—Wisconsin.

W—Westinghouse.

Yo—Young.

Zen—Zenith.

BRAKES—SERVICE

Location

2—Two Wheels, rear only.

2/4—Two-wheel brakes effective on all four wheels through driveshaft.

4/6—Brakes on four rear wheels effective on all wheels through driveshaft.

T/4—Brake on transmission effective on all four wheels through driveshaft.

4—Four Wheels, front and rear.

4r—Four Wheels, rear only.

6—Six Wheels, front and rear.

J—Jackshaft.

P—Propeller shaft.

FP—Pressure to main, connecting rod camshaft bearings and piston pins.

PC—Pressure to mains and connecting rod bearings.

PG—Pump, gravity and splash.

PS—Pressure with splash.

FRAME

Type

I—"I" Beam.

C—Channel.

T—Channel tapered front and rear.

L—Channel reinforced with liner.

B—Channel reinforced with both liner and fishplate.

P—Channel reinforced with plate.

TL—Channel tapered front and rear reinforced with liner.

DF—Drop Center

TF—Tapered front

X—x-Braced

X—Braced

X—Braced</p

Line Number	MAKE AND MODEL	GENERAL (See Keynote)					TIRE SIZE		MAJOR UNITS					FRAME		
		Tonnage Rating	Chassis Price	Standard Wheelbase	Max. W. B. Furnished	Gross Vehicle Weight	Chassis Wt. (Stripped)	Front	Rear	ENGINE	TRANSMISSION	REAR AXLE		Side Rail Dimensions	Type	
								Make and Model	No. of Cylinders Bore and Stroke	Make and Model	Location and Forward Speeds	Aux. Location and Speeds	Make and Model	Gear and Type	Drive and Torque	GEAR RATIOS
1.A.C.F.	160.6	6950	186 222	26000	10170	B9.75/22	B9.75/22	Hass 160	6-4½x5½	BL 1714	U 4 Op Tim 76730	2F	R 7.46 52 7 8x3x4		P	
2.	175B 6½	8300	186 222	26000	10750	B10.50/22	B10.50/22	Hass 175	6-5x6	BL 714	U 4 Op Tim 76730	2F	R 7.46 38 8 8x3x4		PP	
3.	175A 7½	8800	186 240	30000	11610	B10.50/24	B10.50/24	Hass 175	6-5x6	BL 714	U 4 Op Tim 79730	2F	R 7.48 38 7 8x3x4		PP	
4.Armeleder	11H 1½-2½	1295	156 195	11500	4850	B6.50/20	DB6.50/20	Con 16C	6-3½x4¾	BL 35	U 4 No Tim	BF	R 5.83 31 2 6x3x4		PP	
5.	21Ha 2½-4	2185	160 207	15300	5450	B8.25/20	DB8.25/20	Her WXC	6-4x4	Own	U 5 No Tim	BF	R 6.06 38 5 6x3x4		PP	
6.	31Ha 3-4½	2695	146 213	19500	5750	B9.00/20	DB9.00/20	Her WXC	6-4x4	Fu 5A38	U 5 No Tim	BF	R 6.02 39 2 7x3x4		PP	
7.	41Ha 4½-6	3050	146 227	23000	6600	B9.75/20	DB9.75/20	Her WXC	6-4x4	Fu 5A38	U 5 No Tim	BF	R 6.83 43 8 7x3x4		PP	
8.	61Ha 5-7	3725	146 227	24000	7400	B9.75/20	DB9.75/20	Her WXC2	6-4½x4½	Fu 5A38	U 5 No Tim	2F	R 7.07 49 7 8½x3x4		PP	
9.	71Ha 8-11	5895	152 247	35000	9820	B10.50/24	DB10.50/24	Her RXC	6-4½x4½	Fu 5A53	U 5 No Tim	2F	R 7.8 56 8 7x3x4		PP	
10.	(T) TRD 10	4150	148 174	35000	7100	B9.00/20	DB9.00/20	Her YXC	6-4½x4½	Fu 5A53	U 5 No Tim	2F	R 7.8 56 8 7x3x4		PP	
11.	(T) TRDA 12	4350	148 174	39000	7226	B9.75/20	DB9.75/20	Her YXC3	6-4½x4½	Fu 5A53	U 5 No Tim	2F	R 7.8 56 8 7x3x4		PP	
12.	(T) TRDB 15	4595	148 174	45000	7326	B9.75/20	DB9.75/20	Her RXC	6-4½x4½	Fu 5A53	U 5 No Tim	2F	R 7.8 56 8 7x3x4		PP	
13.Autocar.	RG 2½	3000	150 192	6100	P34x7	DP34x7	Own R	6-3½x4½	Own T	U 4 Op Tim	D	R 6.21 39 3 8x3x4		TT	
14.	D 3	3500	150 192	6140	P34x7	DP34x7	Own SD	6-4x4	Own T	U 4 Op Tim	D	R 6.43 40 7 8x3x4		TT	
15.	DF 3½	3950	150 192	7010	B9.00/20	DB9.00/20	Own SD	6-4x4	Own T	U 4 Op Tim	D	R 6.43 40 7 8x3x4		TT	
16.	DR 4	4150	150 174	7400	P36x8	DP36x8	Own SD	6-4x4	Own T	U 4 Op Tim	N	R 6.57 54 3 9x3x4		TT	
17.	N 4	4650	191 227	8275	B9.75/20	DB9.75/20	Own SCH	6-4½x4½	Own D	U 5 No Tim	TF	R 7.20 45 6 9x3x4		TT	
18.	NF 5	4750	151 227	8370	B9.75/22	DB9.75/22	Own SCH	6-4½x4½	Own D	U 5 No Tim	TF	R 7.20 42 1 10½x3x4		TT	
19.	S 5	5500	168 168	9675	B9.75/22	DB9.75/22	Own SCH	6-4½x4½	Own T	U 4 A 3 Wis	78720	2F	R 9.92 121 10½x3x4		TT
20.	C 7½	6650	158 176	11784	B10.50/24	DB10.50/24	Own SCM	6-4½x4½	BL 734	U 4 A 3 Wis	78720	2F	R 8.52 54.0 9x3x4		TT
21.	CE 7½	6000	172 203	10300	S36x7	DS40x8	Own SCM	6-4½x4½	Own T	U 4 A 4 Own	C	R 8.57 52.6 9x3x4		TT	
22.	CBS 7½	6200	203 203	9800	P42x9	DP42x9	Own SCM	6-4½x4½	Own B	U 4 A 4 Own	C	R 8.57 52.6 9x3x4		TT	
23.	TE 8½	5900	192 242	9680	B10.50/22	DB10.50/22	Own SCM	6-4½x4½	Own D	U 5 No Tim	Own TG	R 7.20 88.5 9x3x4		TT	
24.	TE 8½	6300	214 228	10020	B9.75/22	DB9.75/22	Own SCM	6-4½x4½	BL 7351	U 5 No Tim	Own CG	2F	R 7.20 87.6 10½x3x4		TT
25.	(Eng. und seat) U 1½	3500	97 145	6740	P34x7	DP34x7	Own SD	6-4x4	Own T	U 4 Op Tim	W	R 6.21 39 3 8x3x4		TT	
26.	UDF 3½	3950	150 192	7655	B9.00/20	DB9.00/20	Own SD	6-4x4	Own T	U 4 Op Tim	W	R 6.57 54.3 9x3x4		TT	
27.	UNF 3½	4050	96 163	8635	B9.75/20	DB9.75/20	Own SCH	6-4½x4½	Own D	U 5 No Tim	TF	R 7.20 45.6 9x3x4		TT	
28.	UNF 3½	4850	28 163	9075	B9.75/22	DB9.75/22	Own SCH	6-4½x4½	Own D	U 5 No Tim	TF	R 7.20 45.6 9x3x4		TT	
29.	UT 6	5300	109 109	9115	B9.75/22	DB9.75/22	Own SCH	6-4½x4½	Own T	U 5 No Tim	CG & TG	R 7.20 45.6 9x3x4		TT	
30.	UT 6	5900	128 163	9660	B10.50/22	DB10.50/22	Own SCM	6-4½x4½	Own D	U 5 No Tim	CG & TG	R 7.20 45.6 9x3x4		TT	
31.	U T 8½	6300	145 163	10525	B9.75/22	DB9.75/22	Own SCM	6-4½x4½	BL 7351	U 5 No Tim	CG	2F	R 7.20 87.6 10½x3x4		TT
32.Available.	W-120 1½	1245	Op	11200	4000	B6.50/20	DB6.50/20	Wau BL	3-3½x4½	Wau T9	U 4 Op Tim	W	R 6.21 39 3 8x3x4		TT	
33.	W-170 2½	1620	Op	13400	4700	B7.50/20	DB7.50/20	Wau BK	3-3½x4½	Wau T9	U 4 Op Tim	W	R 6.8 43 5 8x3x4		TT	
34.	W-210 2½	1720	Op	13400	4800	B7.50/20	DB7.50/20	Wau BK	3-3½x4½	Wau T9	U 4 Op Tim	W	R 6.8 43 5 8x3x4		TT	
35.	W-240 3	1975	Op	16300	5400	B8.25/20	DB8.25/20	Wau BK	3-3½x4½	Wau T9	U 4 Op Tim	W	R 6.8 43 5 8x3x4		TT	
36.	W-300 4	2750	Op	20700	7000	B9.00/20	DB9.00/20	Wau 6-110	6-4x4	Fu 5A380	U 5 No Tim	W	R 6.8 43 5 8x3x4		TT	
37.	W-400 5	3750	Op	25500	8200	B9.75/20	DB9.75/20	Wau 6-125	6-4½x4½	Fu 5A380	U 5 No Tim	W	R 6.8 43 5 8x3x4		TT	
38.Biederman.	10 1-1½	893	130 160	6000	2800	B6.50/18	DB6.50/18	Con 25A	6-3½x4½	Con 25A	U 4 Op Tim	Cla B7373	BF	R 7.10 31 6 7x3x4		TT
39.	20 1-1½	1108	145 175	10000	3200	B6.50/20	DB6.50/20	Con 25A	6-3½x4½	Con 25A	U 4 Op Tim	Cla B7373	BF	R 6.37 39 4 7x3x4		TT
40.	30 1½-2½	1495	163 178	12000	4100	B7.50/20	DB7.50/20	Con 25A	6-3½x4½	Con 25A	U 4 Op Tim	Cla B611	BF	R 6.37 39 4 7x3x4		TT
41.	45 1½-2½	1795	180 198	16000	4990	B8.25/20	DB8.25/20	Lyc ASE	6-3½x4½	Lyc ASE	U 5 No Tim	Cla B613	BF	R 6.37 45 0 7x3x4		TT
42.	35 2-2½	1850	146 188	12000	4680	B7.50/20	DB7.50/20	Her JXC	6-3½x4½	Her JXC	U 4 Op Tim	Cla R100	BF	R 6.37 45 0 7x3x4		TT
43.	40 2½-4	2100	158 188	16000	4840	B8.25/20	DB8.25/20	Her JXC	6-3½x4½	Her JXC	U 4 Op Tim	Cla R100	BF	R 6.37 45 0 7x3x4		TT
44.	50 2½-3	2400	176 188	20000	5600	B9.00/20	DB9.00/20	Her JXC	6-3½x4½	Her JXC	U 4 Op Tim	Cla R805	BF	R 6.42 41 6 8x3x4		TT
45.	55 3-3½	2750	180 200	20000	6450	B9.00/20	DB9.00/20	Con E602	6-4½x4½	Con E602	U 4 Op Tim	Cla R805	BF	R 7.17 52 1 8x3x4		TT
46.	60 3½-4	3150	170 200	24000	6820	B9.75/20	DB9.75/20	Con E602	6-4½x4½	Con E602	U 4 Op Tim	Wis 1237	2F	R 8.00 58 7 8x3x4		TT
47.	70 3½-5	3600	150 210	24000	7530	B9.75/20	DB9.75/20	Con E602	6-4½x4½	Con E602	U 4 Op Tim	Wis 1237	2F	R 8.05 60 7 8x3x4		TT
48.	80 5-7	3900	150 210	28000	7800	B10.50/20	DB10.50/20	Con E603	6-4½x4½	Con E603	U 4 Op Tim	Wis 1237	2F	R 8.94 65 1 8x3x4		TT
49.Brockway.	80 1½-2½	1185	149 168	10500	4035	B6.50/20	DB6.50/20	Con 26B	6-3½x4½	Con 26B	U 4 Op Tim	Tim 53200	SF	R 5.66 36 2 10½x3x4		TT
50.	90 2-2½	1455	148 186	12500	4480	B7.50/20	DB7.50/20	Con 28B	6-3½x4½	Con 28B	U 4 Op Tim	Tim 54300	SF	R 5.73 37 4 7x3x4		TT
51.	100 2-3	1800	168 200	15000	5125	B7.50/20	DB7.50/20	Con 28B	6-3½x4½	Con 28B	U 5 No Tim	Tim 54300	SF	R 5.83 46 7 8x3x4		TT
52.	120 2-3	2090	158 188	15000	5800	B7.50/20	DB7.50/20	Con 30B	6-4x4	Con 31B	U 4 Op Tim	Tim 54300	SF	R 5.83 38 5 7x3x4		TT
53.	140 2½-3½	2690	156 200	17500	6385	B8.25/20	DB8.25/20	Con 30B	6-4x4	Con 31B	U 4 Op Tim	Tim 54300	SF	R 5.83 38 5 7x3x4		TT
54.	150 2½-3½	2540	188 200	18500	6245	B8.25/20	DB8.25/20	Con 32B	6-4x4	Con 32B	U 4 Op Tim	Tim 54300	SF	R 5.83 38 5 7x3x4		TT
55.	141 3-4	3175	188 200	21000	7500	B9.00/20	DB9.00/20	Con 32B	6-4x4	Con 32B	U 4 Op Tim	Tim 54300	SF	R 5.83 38 5 7x3x4		TT
56.	160 3½-4	3175	188 200	21000	7500	B9.00/20	DB9.00/20	Con 32B	6-4x4	Con 32B	U 4 Op Tim	Tim 54300	SF	R 5.83 38 5 7x3x4		TT
57.	170 3-4	3450	170 212	19500	7700	B9.00/20	DB9.00/20	Con 33B	6-4x4	Con 33B	U 4 Op Tim	Tim 54300	SF	R 5.83 38 5 7x3x4		TT
58.	175 3-															

Line Number	ENGINE DETAILS										FUEL SYST.	ELECTRICAL	FRONT AXLE	BRAKES			BODY MOUNTING DATA		SPRINGS								
	Piston Displacement	Compression Ratio	Torque lb. ft.	N.A.C.C. Rated H.P.	Max. Brake H.P. at R.P.M. Given	Valve Arrangement	Camshaft Drive	Piston Material	Main Bearings	Length				Clutch Type and Make	Radiator Make	Universals Make	Steering Gear Make	Make and Model	Service	Hand Location, Type	Lining Area	Brake Material	Front	Rear			
1468	4.4	322	43.3	120-2200	H	C	A	7-2-24	10%	CC	Ha	Zen	M	D.R.	P.B.L.	Lo	Spi	Tim 27451	Ros	O4IA	720A	CD	172	102	33 1/2	42x3	56x4
1500	4.5	1500	60.0	175-2200	H	C	A	7-2-24	14%	CC	Ha	No	M	D.R.	P.D.L.	Lo	Spi	Tim 27451	Ros	O4IA	720A	CD	172	102	33 1/2	42x3	56x4
3074	4.5	50.0	150	27.3	C	C	C	7-2-24	14%	CC	Mo	Mo	M	D.R.	P.D.L.	Lo	Spi	Tim 27451	Ros	I4IH	880G	TX	129	102	40x2 1/2	40x2 1/2	50x3
4248	5.0	150	5.0	27.3	C	C	C	7-2-24	14%	CC	Mo	Mo	M	D.R.	P.D.B.	Y	Spi	Tim 27451	Ros	I4IH	580G	TX	106	102	34 1/2	40x2 1/2	50x3
5339	4.7	225	38.4	7-3-2200	C	C	C	7-2-24	14%	CC	Mo	Mo	M	D.R.	P.D.B.	Y	Spi	Tim 27451	Ros	I4IH	578G	TX	106	102	34 1/2	40x2 1/2	50x3
6339	4.7	225	38.4	7-3-2200	C	C	C	7-2-24	14%	CC	Mo	Mo	M	D.R.	P.D.B.	Y	Spi	Tim 27451	Ros	I4IH	678H	TX	106	102	34 1/2	40x2 1/2	50x3
8360	4.7	238	40.3	80-2200	C	C	C	7-2-24	14%	CC	Mo	Mo	M	D.R.	P.D.B.	Y	Spi	Tim 27451	Ros	I4IH	780H	TX	106	102	34 1/2	40x2 1/2	50x3
9529	4.4	355	51.1	115-2200	C	C	C	7-2-24	14%	CC	Mo	Mo	M	D.R.	P.D.B.	Y	Spi	Tim 27451	Ros	W4IA	893H	TD	118	102	34 1/2	41x2 1/2	52 1/2x4
10422	4.4	280	45.9	93-2200	C	C	C	7-2-24	14%	CC	Mo	Mo	M	D.R.	P.D.B.	Y	Spi	Tim 27451	Ros	I4IH	893H	TD	93 1/2	102	34 1/2	41x2 1/2	52 1/2x4
11478	4.4	318	51.2	103-2200	C	C	C	7-2-24	14%	CC	Mo	Mo	M	D.R.	P.D.B.	Y	Spi	Tim 27451	Ros	I4IH	893H	TD	93 1/2	102	34 1/2	41x2 1/2	52 1/2x4
12529	4.4	355	51.2	115-2200	C	C	C	7-2-24	14%	CC	Mo	Mo	M	D.R.	P.D.B.	Y	Spi	Tim 27451	Ros	I4IH	893H	TD	93 1/2	102	34 1/2	41x2 1/2	52 1/2x4
1314	5.2	213	33.7	75-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 31000	Ros	LO4IDV	450	21	60	60	34 1/2	40x2 1/2	54x3
14585	5.2	240	38.4	84-2500	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 31000	Ros	LO4IDV	519	21	88	60	34 1/2	40x2 1/2	54x3
1558	5.2	240	38.4	84-2500	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 31000	Ros	LO4IDV	519	21	88	60	34 1/2	40x2 1/2	54x3
17405	1.2	271	43.4	94-2500	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 31000	Ros	LO4IDV	519	21	88	60	34 1/2	40x2 1/2	54x3
18405	1.2	271	43.4	94-2500	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 31000	Ros	LO4IDV	519	21	88	60	34 1/2	40x2 1/2	54x3
19405	1.2	271	43.4	94-2500	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 31000	Ros	LO4IDV	519	21	88	60	34 1/2	40x2 1/2	54x3
20453	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
21455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
22455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
23455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
24455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
25455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
26455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
27455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
28455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
29455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
30455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
31455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
32455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
33455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
34455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
35455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
36455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
37455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
38455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
39455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
40455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
41455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
42455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
43455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
44455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
45455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
46455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
47455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
48455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
49455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
50455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
51455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
52455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	54x3
53455	1.2	309	6.6	101-2400	L	L	L	7-2-24	14%	FP	Ow	Str	M	D.R.	P.D.L.	Y	Spi	Tim 27451	Ros	LO4IDV	660	21	115	71	34 1/2	41x2 1/2	

Line Number	MAKE AND MODEL	GENERAL (See Keynote)				TIRE SIZE		MAJOR UNITS				FRAME								
		Tonnage Rating	Chassis Price	Standard Wheelbase	Max. W. B. Furnished	Front	Rear	ENGINE	TRANSMISSION	REAR AXLE										
					Gross Vehicle Weight	Chassis Wt. (Stripped)		Make and Model	No. of Cylinders Bore and Stroke	Make and Model	Location and Forward Speeds	Drive and Torque	GEAR RATIOS							
1	Dodge Bros. (Concluded) KCL	Com ¹	395	119	119	1815	B5.25/17	B5.25/17	Own	6-3 1/2 x 4 1/2	Own	U 3	No Own	S 1/2	H 4.11	I 11.5	x 2 1/2 x 1/2 x 1/2	X		
2	K20	3/4-1	502	131	157	6075	2667	B7.00/20	B7.00/20	Own	6-3 1/2 x 4 1/2	Own	U 4	No Own	S F	H 5.85	I 37.4	x 2 1/2 x 1/2 x 1/2	C	
3	K20	2 1/2	525	131	—	5500	2559	B6.00/20	P32x6	Own	6-3 1/2 x 4 1/2	Own	U 4	No Own	S F	H 4.87	I 31.2	x 2 1/2 x 1/2 x 1/2	C	
4	K-20X ¹	525	131	—	6075	2612	B6.00/20	P32x6	Own	6-3 1/2 x 4 1/2	Own	U 4	No Own	S F	H 4.87	I 31.2	x 2 1/2 x 1/2 x 1/2	C		
5	K-22 ¹	***140	490	131	157	7500	2710	B7.00/20	B7.00/20	Own	6-3 1/2 x 4 1/2	Own	U 5	No Own	S F	H 5.60	I 40.0	x 8 1/2 x 1/2 x 1/2	C	
6	H-30 ¹	1 1/2-2	525	131	—	8400	2667	B6.00/20	P32x6	Own	6-3 1/2 x 4 1/2	Own	U 4	No Own	S F	H 5.85	I 37.4	x 2 1/2 x 1/2 x 1/2	C	
7	K-30 ¹	525	131	—	8400	2612	B6.00/20	P32x6	Own	6-3 1/2 x 4 1/2	Own	U 4	No Own	S F	H 4.87	I 31.2	x 2 1/2 x 1/2 x 1/2	C		
8	KD-30 ¹	525	136	161	8400	2612	B6.00/20	P32x6	Own	6-3 1/2 x 4 1/2	Own	U 4	No Own	S F	H 5.60	I 36.2	x 7 1/2 x 1/2 x 1/2	C		
9	K-32 ¹	525	136	161	10500	2884	B6.00/20	P32x6	Own	6-3 1/2 x 4 1/2	Own	U 4	No Own	S F	H 5.66	I 36.2	x 7 1/2 x 1/2 x 1/2	C		
10	KD-32 ¹	***136	136	161	10500	2858	B6.00/20	P32x6	Own	6-3 1/2 x 4 1/2	Own	U 4	No Own	S F	H 5.66	I 36.2	x 7 1/2 x 1/2 x 1/2	C		
11	K-33 ¹	***136	136	161	10500	2866	B6.00/20	P32x6	Own	6-3 1/2 x 4 1/2	Own	U 4	No Own	S F	H 5.66	I 36.2	x 7 1/2 x 1/2 x 1/2	C		
12	K-33 ¹	795	136	165	11000	3350	B7.00/20	DB7.00/20	Own	6-3 1/2 x 4 1/2	Own	U 4	No Own	S F	H 6.27	I 40.8	x 8 1/2 x 1/2 x 1/2	C		
13	K-35 ¹	1 1/2-4	845	140	169	12500	3580	B6.50/20	DB6.50/20	Own	6-3 1/2 x 4 1/2	Own	U 5	No Own	S F	H 6.35	I 34.4	x 7 1/2 x 1/2 x 1/2	C	
14	K-35 ¹	525	136	169	12500	3780	B7.00/20	DB7.00/20	Own	6-3 1/2 x 4 1/2	Own	U 5	No Own	S F	H 6.35	I 34.4	x 7 1/2 x 1/2 x 1/2	C		
15	H-43 ¹	3-3	795	136	165	11000	3550	B7.00/20	DB7.00/20	Own	6-3 1/2 x 4 1/2	Own	U 5	No Own	S F	H 6.37	I 46.0	x 8 1/2 x 1/2 x 1/2	C	
16	H-43 ¹	845	140	169	12500	3675	B7.00/20	DB7.00/20	Own	6-3 1/2 x 4 1/2	Own	U 5	No Own	S F	H 6.37	I 46.0	x 8 1/2 x 1/2 x 1/2	C		
17	KZ-45 ¹	***140	69	136	12500	3780	B7.00/20	DB7.00/20	Own	6-3 1/2 x 4 1/2	Own	U 5	No Own	S F	H 6.37	I 46.0	x 8 1/2 x 1/2 x 1/2	C		
18	F-40 ¹	1995	150	190	16000	5173	B6.50/20	DB6.50/20	Own	6-3 1/2 x 4 1/2	Own	U 4	No Own	S F	H 6.37	I 47.3	x 8 1/2 x 1/2 x 1/2	C		
19	K-40 ¹	***150	150	190	19000	8344	P22x6	DP22x6	Own	6-3 1/2 x 4 1/2	Own	U 4	No Own	S F	H 6.37	I 47.3	x 8 1/2 x 1/2 x 1/2	C		
20	(F)-6J-3 1/2-4	2575	170	195	20000	5789	P22x6	DP22x6	Own	6-3 1/2 x 4 1/2	Own	U 4	No Own	S F	H 7.12	I 48.8	x 16 1/2 x 1/2 x 1/2	C		
21	(K)-6J-3-6	***170	195	2200	5789	P22x6	DP22x6	Own	6-3 1/2 x 4 1/2	Own	U 4	No Own	S F	H 7.12	I 48.8	x 16 1/2 x 1/2 x 1/2	C			
22	G-S0 ¹	8-3	525	146	220	25000	7640	B9.75/20	DB9.75/20	Own	6-3 1/2 x 4 1/2	Own	U 5	No Own	S F	H 7.12	I 51.7	x 10 1/2 x 1/2 x 1/2	C	
23	Duplex.	SAC 4	***160	Op	15000	6000	B8.25/20	DB8.25/20	Bud K325	6-3 1/2 x 4 1/2	BL 2352	U 5	No Tlm	WF	H 6.75	I 36.2	x 6 1/2 x 1/2 x 1/2	C		
24	K 5	***172	Op	18000	7400	B9.75/20	DB9.75/20	Bud K428	6-4 1/2 x 4 1/2	BL 3353	U 5	No Tlm	WF	H 8.50	I 50.0	x 7 1/2 x 1/2 x 1/2	C			
25	M 5-7	***172	Op	21000	8000	B10.50/20	DB10.50/20	Bud L525	6-4 1/2 x 5 1/2	BL 5351	U 5	No Tlm	wF	Opt	Opt	Opt	Opt	x 8 1/2 x 1/2 x 1/2	C	
26	Eso.	234	2-2 1/2	2860	165	25000	10000	P24x7	DS36x7	Bud GL6	6-4 1/2 x 6	BL 70	A 7	No Tim	WF	H 9.1	I 54.0	x 9 1/2 x 1/2 x 1/2	H	
27	Fageol	102	1 1/2-2 1/2	1350	148	172	11200	4000	B6.00/20	DB6.00/20	Wau ZK	6-3 1/2 x 4 1/2	Cl 105R	U 4	No Tim	BF	H 5.75	I 40.7	x 6 1/2 x 1/2 x 1/2	C
28	106B ¹	102	1 1/2-2 1/2	1350	148	172	11200	4800	B6.50/20	DB6.50/20	Wau 6BK	6-3 1/2 x 4 1/2	WG T9	U 4	No Tim	BF	H 5.66	I 36.2	x 6 1/2 x 1/2 x 1/2	C
29	234	2-2 1/2	2860	165	25000	5900	B7.50/20	DB7.50/20	Con E603	6-4 1/2 x 4 1/2	Cl 105R	U 4	No Tim	BF	H 5.75	I 40.7	x 6 1/2 x 1/2 x 1/2	C		
30	106RA	102	1 1/2-2 1/2	1825	161	195	12700	4900	B6.50/20	DB6.50/20	Wau 6BK	6-3 1/2 x 4 1/2	WG T9	U 4	No Tim	BF	H 5.83	I 37.3	x 6 1/2 x 1/2 x 1/2	C
31	135HP ¹	225	161	195	13400	5400	B7.50/20	DB7.50/20	Wau 6-90	6-3 1/2 x 4 1/2	BL 234	U 4	No Tim	BF	H 6.8	I 43.6	x 6 1/2 x 1/2 x 1/2	C		
32	135RA ¹	240	161	195	15000	5600	B7.50/20	DB7.50/20	Wau 6-90	6-3 1/2 x 4 1/2	BL 234	U 4	No Tim	BF	H 7.4	I 47.4	x 6 1/2 x 1/2 x 1/2	C		
33	135SC ¹	215	161	210	14700	5100	B7.50/20	DB7.50/20	Wau 6-90	6-3 1/2 x 4 1/2	BL 234	U 4	No Tim	BF	H 6.8	I 43.6	x 6 1/2 x 1/2 x 1/2	C		
34	135BK ¹	205	161	195	13400	5250	B7.50/20	DB7.50/20	Wau 6-90	6-3 1/2 x 4 1/2	WG T9	U 4	No Tim	BF	H 5.83	I 37.3	x 6 1/2 x 1/2 x 1/2	C		
35	250HP ¹	3000	178	196	16300	6500	B8.25/20	DB8.25/20	Wau 6-110	6-4 1/2 x 4 1/2	BL 524	U 4	No Tim	BF	H 7.4	I 53.0	x 8 1/2 x 1/2 x 1/2	C		
36	250MS ¹	2700	178	196	16300	6175	B8.25/20	DB8.25/20	Wau 6MS	6-3 1/2 x 4 1/2	BL 334	U 4	No Tim	BF	H 7.4	I 45.4	x 8 1/2 x 1/2 x 1/2	C		
37	250MT ¹	2700	178	196	16300	6200	B8.25/20	DB8.25/20	Wau 6MKM	6-4 1/2 x 4 1/2	BL 334	U 4	No Tim	BF	H 7.4	I 45.4	x 8 1/2 x 1/2 x 1/2	C		
38	250RA ¹	3150	178	196	19500	6700	B8.25/20	DB8.25/20	Wau 6-110	6-4 1/2 x 4 1/2	BL 524	U 4	No Tim	BF	H 7.8	I 56.8	x 8 1/2 x 1/2 x 1/2	C		
39	250SC ¹	2925	178	196	17500	6200	B8.25/20	DB8.25/20	Wau 6-110	6-4 1/2 x 4 1/2	BL 524	U 4	No Tim	BF	H 7.8	I 56.8	x 8 1/2 x 1/2 x 1/2	C		
40	300HP ¹	3500	178	196	20700	7200	B9.00/20	DB9.00/20	Wau 6-110	6-4 1/2 x 4 1/2	BL 524	U 4	No Tim	BF	H 7.8	I 56.8	x 8 1/2 x 1/2 x 1/2	C		
41	300RA ¹	3775	178	196	25300	7700	B9.00/20	DB9.00/20	Wau 6-110	6-4 1/2 x 4 1/2	BL 524	U 4	No Tim	BF	H 7.8	I 56.8	x 8 1/2 x 1/2 x 1/2	C		
42	370HP ¹	5600	182	200	25300	9700	B9.75/20	DB9.75/20	Wau 6SRK	6-4 1/2 x 5 1/2	BL 734	A 3	No Tim	WF	H 5.7	I 120.7	x 7 1/2 x 1/2 x 1/2	C		
43	370RS ¹	4850	182	200	25300	9500	B9.75/20	DB9.75/20	Wau 6-125	6-4 1/2 x 5 1/2	BL 734	A 3	No Tim	WF	H 5.7	I 120.7	x 7 1/2 x 1/2 x 1/2	C		
44	370RA ¹	5250	182	200	31000	10100	B9.75/20	DB9.75/20	Wau 6-125	6-4 1/2 x 5 1/2	BL 734	A 3	No Tim	WF	H 5.5	I 116.0	x 7 1/2 x 1/2 x 1/2	C		
45	470HP ¹	67	5500	182	33500	10100	B9.75/20	DB9.75/20	Wau 6-125	6-4 1/2 x 5 1/2	BL 734	A 3	No Tim	WF	H 5.5	I 116.0	x 7 1/2 x 1/2 x 1/2	C		
46	Federal.	DM	975	120	8000	3050	B5.50/17	DB5.50/17	Con W10	6-3 1/2 x 4 1/2	WG T9	U 4	No Own	S F	H 5.67	I 37.3	x 6 1/2 x 1/2 x 1/2	D		
47	15	745	137	174	10000	3500	B6.00/20	P32x6	Own	6-3 1/2 x 4 1/2	WG T9	U 4	No Own	S F	H 6.38	I 48.8	x 8 1/2 x 1/2 x 1/2	C		
48	15X ¹	845	137	174	10000	3520	P32x6	Own	6-3 1/2 x 4 1/2	WG T9	U 4	No Own	S F	H 6.38	I 48.8	x 8 1/2 x 1/2 x 1/2	C			
49	183	845	137	174	11000	3800	P6.00/20	DB6.00/20	Her JXA	6-3 1/2 x 4 1/2	WG T9	U 4	No Own	S F	H 6.44	I 50.0	x 8 1/2 x 1/2 x 1/2	C		
50	20	1095	137	182	12700	3900	B6.50/20	DB6.50/20	Her JXB	6-3 1/2 x 4 1/2	WG T9	U 4	No Own	S F	H 6.44	I 50.0	x 8 1/2 x 1/2 x 1/2	C		
51	T-3W ¹	1395	137	177	201	14000	4500	B7.00/20	DB7.00/20	Her JXC	6-3 1/2 x 4 1/2	Wau V	U 4	No Own	S F	H 6.44	I 50.0	x 8 1/2 x 1/2 x 1/2	C	
52	T-3W ¹	1595	148	185	14000	6805	P34x7	DP34x7	Wau V	6-3 1/2 x 4 1/2	Wau V	U 4	No Own	S F	H 6.45	I 50.0	x 10 1/2 x 1/2 x 1/2	C		
53	T-3W ¹	1595	148	184	16000	4935	P32x6	DP32x6	Own 221	6-3 1/2 x 4 1/2	Wau V	U 3	No Own	S F	H 6.45	I 35.7	x 7 1/2 x 1/2 x 1/2	105		
54	T-43 ¹	1995	145	169	23000	7255	P32x6	DP32x6	Own 221	6-3 1/2 x 4 1/2	Wau V	U 4	No Own	S F	H 6.45	I 37.3	x 7 1/2 x 1/2 x 1/2	C		
55	T-43 ¹	2480	155	200	19000	6094	P34x7	DP34x7	Own 331	6-3 1/2 x 4 1/2	Wau V	U 4	No Own	S F	H 6.45	I 37.3	x 7 1/2 x 1/2 x 1/2	C		
56	40DR ¹	2480	155	200	30000	6161	P34x7	DP34x7	Own 331	6-3 1/2 x 4 1/2	Wau V	U 4	No Own	S F	H 6.45	I 40.0	x 9 1/2 x 1/2 x 1/2	C		
57	T10B ¹	325	145	169	23000	6960	P34x7	DP34x7	Own 331	6-3 1/2 x 4 1/2	Wau V	U 4	No Own	S F	H 6.45	I 40.0	x 9 1/2 x 1/2 x 1/2	C		
58	T10C ¹	325	145	169	23000	7110	P34x7	DP34x7	Own 331	6-3 1/2 x 4 1/2	Wau V	U 4	No Own	S F	H 6.45	I 40.0	x 9 1/2 x 1/2 x 1/2	C		
59	A600T ¹	2045	145	169	23000	7110	P34x7	DP34x7	Own 331	6-3 1/2 x 4 1/2	Wau V	U 4	No Own	S F	H 6.45	I 40.0	x 9 1/2 x 1/2 x 1/2	C		

Line Number	MAKE AND MODEL	GENERAL (See Keynote)					TIRE SIZE		MAJOR UNITS					FRAME		
		Tonnage Rating	Chassis Price	Standard Wheelbase	Max. W. B. Furnished	Gross Vehicle Weight	Chassis Wt. (Stripped)	Front	Rear	ENGINE	TRANSMISSION	REAR AXLE	Side Rail Dimensions	Type		
1	Gramm (Con.)	GW 5-7 1/2	5175 157 240	28000	9500	B9.00/20	DB9.00/20	Con 21R	6-4 1/2 x 5	BL 554	U 4 No	Wis 1627 KW	2F	H 6.3 41.0	7 1/2 x 3 x 4	
2		GW 5-7 1/2	6495 157 240	30000	10000	B10.50/20	DB10.50/20	Cum H Dle.	6-4 1/2 x 6	BL 735	U 5 No	Wis 1737 KW	2F	H 5.75 21.2	10 2/3 x 3 x 4	
3		HY 5	6595 210 236	22000	10100	B9.00/20	D-9.00/20	Cum 16H	6-4 1/2 x 5	Fu HU16	U 4 No	Wis 12527 KW	2F	H 4.0 25.2	8 1/2 x 3 x 4	
4	G.-P.	(7) 635 2-3	1445 154 160	15000	3650	B7.00/20	DB7.00/20	Lye SB	6-3 1/2 x 5	Fu MKU	U 4 No	Tim 53200H	SF	H 6.3 42.9	9 1/2 x 3 x 4	
5		645 2 1/2-3 1/2	2445 154 175	8000	5775	B8.25/20	DB8.25/20	Wa 6-90-255	6-3 1/2 x 5	Fu M380	U 5 No	Tim 58200H	SF	H 6.5 47.8	10 3/4 x 3 x 4	
6		(7) 665 3 1/2-5	4700 162 179	20000	7600	B9.00/20	DB9.00/20	Wat 110-358	6-4 1/2 x 5	Fu M380	U 5 No	Wls 70000L	2F	H 8.0 56.0	12 2/3 x 3 x 4	
7		6445 162 179	5445 162 179	25000	9450	B9.75/20	DB9.75/20	Wat 125-462	6-4 1/2 x 5	Fu M530	U 5 No	Wls 1337H	2F	H 8.6 61.0	14 3/4 x 3 x 4	
8	Hendrickson	155 2 1/2	2000	6000	2500	B10.25/20	DB10.25/20	Wat 6-90	6-3 1/2 x 5	Fu 538	U 5 No	Tim 54200H	SF	H Opt 38.5x4	8 1/2 x 3 x 4	
9		155 2 1/2	3100 Op	Op	19000	5000	B9.00/20	DB9.00/20	Wat 6-110	6-4 1/2 x 6	Fu 538	U 5 No	Tim 58200H	SF	H Opt 38.5x4	8 1/2 x 3 x 4
10		242S	3600 Op	Op	20000	5200	B9.00/20	DB9.00/20	Wat 6-110	6-4 1/2 x 6	Fu 538	U 5 No	Tim 57533H	W/2	H Opt 38.5x4	8 1/2 x 3 x 4
11		325S	4200 Op	Op	32000	10500	B7.50/20	DB9.75/20	Wat 125	6-4 1/2 x 5	Fu 538	U 5 No	Tim 57533H	W/2	H Opt 38.5x4	8 1/2 x 3 x 4
12	Hug.	19 2	1500 118 118	12310	5510	B7.00/20	DB7.00/20	Wat 6-50	6-3 1/2 x 5	Fu 6125	U 4 No	Tim 57533H	W/2	H Opt 38.5x4	8 1/2 x 3 x 4	
13		23S 2 1/2	1785 146 191	24200	7600	B9.75/20	DB9.75/20	Wat 6D	6-3 1/2 x 5	Fu H298	U 4 No	Tim 58200H	SF	H 16.47 0	8 1/2 x 3 x 4	
14		23S 2 1/2	2175 146 201	15350	5660	B8.25/20	DB8.25/20	Wat 6D	6-3 1/2 x 5	Fu H298	U 4 No	Tim 58200H	SF	H 6.66 36.0	8 1/2 x 3 x 4	
15		41S 2 1/2	1570 158 158	18165	8500	B9.75/20	DB9.75/20	Wat 6D	6-3 1/2 x 5	Fu H298	U 4 No	Tim 58200H	SF	H 6.42 40.8	8 1/2 x 3 x 4	
16		41S 2 1/2	5070 158 158	18165	8500	B9.75/20	DB9.75/20	Wat 6D	6-3 1/2 x 5	Fu M805	U 4 No	Tim 58200H	SF	H 6.37 40.5	8 1/2 x 3 x 4	
17		42K 3	2393 146 201	16500	7300	B9.00/20	DB9.00/20	Wat 6D	6-3 1/2 x 5	Fu K428	U 4 No	Tim 58200H	SF	H 9.95 11.0	8 1/2 x 3 x 4	
18		70 3	3435 122 122	19500	7535	B9.00/20	DB9.00/20	Wat 6D	6-3 1/2 x 5	Fu K428	U 4 No	Tim 58200H	SF	H 9.14 64.0	8 1/2 x 3 x 4	
19		87K 3 1/2	4300 128 128	22400	7600	B9.75/20	DB9.75/20	Wat 6D	6-3 1/2 x 5	Fu MHOH	U 8 No	Wls 1237Q	2F	H 8.95 79.0	7 3/4 x 3 x 4	
20		43S 3 1/2	3380 146 201	22500	7300	B9.75/20	DB9.75/20	Wat 6D	6-3 1/2 x 5	Fu MUOG	U 8 No	Wls 1237H	2F	H 8.95 62.0	8 1/2 x 3 x 4	
21		87Q 5	4875 144 144	27000	9805	B10.50/20	DB10.50/20	Wat 6D	6-3 1/2 x 5	Fu MHOH	U 8 No	Wls 1737K	2F	H 9.16 99.0	8 1/2 x 3 x 4	
22		43L 5	3850 146 201	28105	8905	B9.75/20	DB9.75/20	Wat 6D	6-3 1/2 x 5	Fu MUOG	U 8 No	Wls 1737K	2F	H 9.16 64.0	8 1/2 x 3 x 4	
23		97L 5	5815 144 144	35820	10810	B10.50/20	DB10.50/20	Wat 6D	6-3 1/2 x 5	Fu MUOG	U 8 No	Wls 1737K	2F	H 9.16 11.0	8 1/2 x 3 x 4	
24	Indiana	85 1 1/2	1025 141 186	10000	3950	B6.50/20	DB6.50/20	Her JXB	6-3 1/2 x 5	BL 124	U 4 No	Tim 19027	2F	H 5.66 35.1	7 1/2 x 3 x 4	
25		95 2 1/2	1195 141 186	12000	4400	P23x6	DP32x6	Her JXC	6-3 1/2 x 4	BL 224	U 4 No	Tim 53200H	SF	H 5.85 36.2	7 1/2 x 3 x 4	
26		95DR 2 1/2	1275 141 186	15000	4650	B7.50/20	DB7.50/20	Her JXC	6-3 1/2 x 4	BL 224	U 4 No	Tim 49161	2F	H 6.66 41.2	7 1/2 x 3 x 4	
27		17A 3	2300 156 212	17000	6300	B8.25/20	DB8.25/20	Her WXC	6-4 1/2 x 4	BL 3341	U 4 A 3	Tim 58205H	SF	H 6.83 43.0	8 1/2 x 3 x 4	
28		17ADR 3	2475 156 212	18000	6350	B8.25/20	DB8.25/20	Her WXC	6-4 1/2 x 4	BL 3341	U 4 A 3	Tim 58205H	SF	H 7.06 44.5	8 1/2 x 3 x 4	
29		17J 3	2450 170 224	18000	6600	B8.25/20	DB8.25/20	Her YXC	6-4 1/2 x 4	BL 3341	U 4 A 3	Tim 58205H	SF	H 6.14 38.7	8 1/2 x 3 x 4	
30		17DR 3	2675 170 224	19000	6700	B8.25/20	DB8.25/20	Her YXC	6-4 1/2 x 4	BL 3341	U 4 A 3	Tim 58205H	SF	H 6.28 38.6	8 1/2 x 3 x 4	
31		19DR 3	3400 170 224	22000	7600	B9.00/20	DB9.00/20	Her YXC	6-4 1/2 x 4	BL 524	U 4 A 3	Tim 58205H	SF	H 7.2 52.3	8 1/2 x 3 x 4	
32		43DR 4	4300 170 224	25000	8000	B9.75/20	DB9.75/20	Her RXB	6-4 1/2 x 5	BL 524	U 4 A 3	Tim 1627KH	2F	H 6.96 50.7	8 1/2 x 3 x 4	
33		45DR 5	4800 170 224	25000	8700	B9.75/20	DB9.75/20	Her RXC	6-4 1/2 x 5	BL 534	U 4 A 3	Tim 1737H	2F	H 7.14 45.4	8 1/2 x 3 x 4	
34		47DR 5-7	7500 188 234	28000	10500	B10.50/20	DB10.50/20	Cum 6HDle.	6-4 1/2 x 6	BL 7351	U 5 A 5	Wls 1910W	2F	H 7.16 45.0	8 1/2 x 3 x 4	
35	International (8) D1 1/2	360 113 113	4200	2180	B5.25/18	DB5.25/18	Ow D	6-3 1/2 x 4	Own D	U 3 No	Own D-55	SX	H 4.12 7.5	5 1/2 x 3 x 4		
36		M2 1	850 118 118	7000	3180	B6.50/20	DB6.50/20	Wau XAH	6-3 1/2 x 4	Own H-A	U 4 No	Own 713	SF	H 6.16 39.5	11 1/2 x 3 x 4	
37		A2 1 1/2	615 136 160	8000	2945	B6.00/20	DB6.00/20	Wau XAH	6-3 1/2 x 4	Own H-A	U 4 No	Own 708	SF	H 6.16 39.5	5 1/2 x 3 x 4	
38		D2 1 1/2	615 136 136	8000	2945	B6.00/20	DB6.00/20	Wau XAH	6-3 1/2 x 4	MM 'O'	U 3 No	Own 704	SF	H 6.16 47.3	5 1/2 x 3 x 4	
39		A3 1 1/2	695 136 160	10100	30572	P20x5	P32x6	Lyc SAH	6-3 1/2 x 4	MM 'O'	U 4 No	Own 710	SF	H 5.28 33.8	7 1/2 x 3 x 4	
40		11A 1 1/2	895 138 164	10000	4032	B6.00/20	DB6.00/20	Lyc SAH	6-3 1/2 x 4	WG T7	U 4 No	Own 710	SF	H 5.28 33.8	7 1/2 x 3 x 4	
41		B-3 1 1/2	695 139 160	10000	3385	P30x5	P32x6	Own FAB	6-3 1/2 x 4	WG T7	U 4 No	Own 800	SX	H 6.50 32.9	7 1/2 x 3 x 4	
42		B4 2 1 1/2	1045 145 185	12750	4055	B6.50/20	DB6.50/20	Own FAB-3	6-3 1/2 x 4	Own H-A	U 4 No	Own 720	SF	H 5.29 33.8	7 1/2 x 3 x 4	
43		A4 2 1 1/2	1650 156 185	5225	2326	DP32x6	DP32x6	Own FBB	6-3 1/2 x 4	Own H-5	U 5 No	Own 902	SF	H 5.41 36.0	7 1/2 x 3 x 4	
44		A5 3 1/2	2100 156 210	18750	5815	P34x7	DP34x7	Own FBB	6-3 1/2 x 4	Own H-5	U 5 No	Own 102	SF	H 5.41 36.0	7 1/2 x 3 x 4	
45		A5 3 1/2	2450 156 210	20000	6120	P34x7	DP34x7	Own FBB	6-3 1/2 x 4	Own H-6	U 5 No	Own 120	SF	H 5.41 36.0	7 1/2 x 3 x 4	
46		W2 3 1/2	3300 148 200	24000	8450	P36x8	DP36x8	Has 151	6-4 1/2 x 5	Own H-6	U 5 No	Own 120	SF	H 5.41 36.0	7 1/2 x 3 x 4	
47		W3 3 1/2	4500 160 225	28000	10125	S36x10°	S40x12°	Has 152	6-4 1/2 x 5	Own H-7	U 5 No	Own 1300	SF	H 5.41 36.0	7 1/2 x 3 x 4	
48		7 1/2-7 1/2	6200 160 225	37000	11590	B9.75/20	DB9.75/20	Own FDB	6-3 1/2 x 5	Own H-7	U 5 No	Own 1301	SF	H 5.41 36.0	7 1/2 x 3 x 4	
49		A8 7 1/2	6300 160 225	37000	11590	B9.75/20	DB9.75/20	Own FEB	6-3 1/2 x 5	Own H-7	U 5 No	Own 1301	SF	H 5.41 36.0	7 1/2 x 3 x 4	
50		A8 7 1/2	1245 145 170	11200	3900	B6.50/20	DB6.50/20	Her JXB	6-3 1/2 x 4	BL 224	U 4 No	Tim 53200H	SF	H 5.29 33.8	7 1/2 x 3 x 4	
51		Kenworth	87 1 1/2-2	2045 146 200	13400	4400	P22x6	DP32x6	Her JXC	6-3 1/2 x 4	BL 224	U 4 No	Tim 54300H	SF	H 5.83 37.4	8 1/2 x 3 x 4
52		88 2	1480 146 200	13400	4700	B7.00/20	DB7.00/20	Wat MK	6-3 1/2 x 4	BL 224	U 4 No	Tim 54300H	SF	H 5.83 37.4	8 1/2 x 3 x 4	
53		101B 2-2 1/2	2050 146 200	13400	4700	B7.00/20	DB7.00/20	Wat MK	6-3 1/2 x 4	BL 224	U 4 No	Tim 54300H	SF	H 5.83 37.4	8 1/2 x 3 x 4	
54		90 2 1/2-3	1670 146 200	15000	4600	B7.50/20	DB7.50/20	Wat MK	6-3 1/2 x 4	BL 224	U 4 No	Tim 54300H	SF	H 5.83 37.4	8 1/2 x 3 x 4	
55		127 2 1/2-3	2600 154 202	16300												

Line Number	ENGINE DETAILS										FUEL SYST.	ELEC-TRICAL	FRONT AXLE	BRAKES			BODY MOUNTING DATA		SPRINGS		Auxiliary Type			
	Piston Displacement	Compression Ratio	Torque lb. ft.	Max. Brake H.P. at R.P.M. Given	Value Arrangement	Camshaft Drive	Piston Material	Main Bearings	Number and Diameter	Length				Clutch Type and Make	Steering Gear Make	Make and Model	Service	Hand Location, Type	Drum Material	Cab to Rear of Frame	Cab to Rear Axle	Width of Frame	Front	Rear
1428 4.1 268 45.9 100-2200 H C G N F L	7-2 1/2	13 1/2	PC	Mo	Zen	M	AL	D.B.L	Fe	Blo	Tim	27450	Ros	W541A	576 1/2	FD	128 1/2	73 1/2	36	46x3	58x3			
1472 1.7 440 57.0 125-1800 H C G N F L	7-3 1/2	16 1/2	PC	En	No	M	CL	D.B.L	Pe	Bio	Tim	27450	Ros	W541A	576 1/2	FD	128 1/2	73 1/2	36	46x3	58x3			
3611 4.1 130 55.0 127-2300 H C G N F L	7-3 1/2	13 1/2	PC	Pe	Zen	M	AL	D.Fu	Pe	Bio	Tim	27450	Ros	W541A	576 1/2	TD	108 1/2	41 1/2	44x3	60x4				
4555 4.1 7160 3.7 65-2800 H C G N F L	4-2 1/2	8 1/2	PC	No	Zen	M	MY	D.B.L	Ow	Spi	Tim	30000H	Ros	L41H	268 1/2	TD	Opt	71	31	40x2 1/2	54x3			
5555 5.4 182 27.3 90-3200 H C G N F L	4-2 1/2	7 1/2	PC	Wa	Zen	M	MY	D.B.L	Ow	Spi	Tim	31000H	Ros	L41H	242 1/2	TD	Opt	74 1/2	34	40x3	54x3			
6358 5.2 254 38.4 110-2800 H C G N F L	7-2 1/2	10 1/2	PC	Wa	Zen	M	MY	D.B.L	Ow	Spi	Tim	35000H	Ros	L41H	394 1/2	TD	Opt	147	36	44x3	58x3			
7462 5.1 324 45.4 125-2600 H C G N F L	7-2 1/2	13 1/2	PC	Wa	Zen	M	MY	D.B.L	Ch	Spi	Tim	35000H	Ros	L41H	574 1/2	TD	Opt	86	34	40x3	58x3			
8255 4.6 182 27.3 90-3200 H C G N F L	4-2 1/2	6 1/2	PC	Wa	Zen	M	DR	D.Fu	Ch	Spi	Tim	31000H	Ros	L41H	306 1/2	TD	Opt	34	40x3	50x4				
9358 4.6 254 38.4 110-2800 H C G N F L	4-2 1/2	12 1/2	PC	Wa	Zen	M	DR	D.Fu	Ch	Spi	Tim	35000H	Ros	L41H	500 1/2	TD	Opt	34	40x3	53x3				
10358 4.6 132 45.4 90-2600 H C G N F L	7-2 1/2	10 1/2	PC	Wa	Zen	M	DR	D.Fu	Ch	Spi	Tim	27450	Ros	L41H	717 1/2	TD	Opt	34	40x3	53x3				
1245 1.6 162 29.4 72-2800 H C G N F L	7-2 1/2	10 1/2	PC	No	Zen	M	AL	D.B.L	Pe	Bio	Tim	27450	Ros	L41H	282 1/2	TD	Opt	51	31	35x2 1/2	48x3			
1329 5.3 200 33.7 80-2800 H C G N F L	7-2 1/2	9 1/2	PC	Pe	Zen	M	AL	D.B.L	Pe	Bio	Tim	27450	Ros	L41H	318 1/2	TD	Opt	61	31	41x2 1/2	54x3			
1429 5.3 200 33.7 80-2800 H C G N F L	7-2 1/2	9 1/2	PC	Pe	Zen	M	AL	D.B.L	Pe	Bio	Tim	27450	Ros	L41H	318 1/2	TD	Opt	61	31	41x2 1/2	54x3			
1529 5.3 200 33.7 80-2800 H C G N F L	7-2 1/2	9 1/2	PC	Pe	Zen	M	AL	D.B.L	Pe	Bio	Tim	27450	Ros	L41H	380 1/2	TD	Opt	61	31	41x2 1/2	54x3			
1642 4.8 234 45.9 90-3200 H C G N F L	4-2 1/2	6 1/2	PC	Pe	Zen	M	AL	D.B.L	Pe	Bio	Tim	632-5	Ros	L41H	620 1/2	TD	Opt	34	40x3	54x3				
17369 4.8 234 39.6 99-2800 H C G N F L	7-2 1/2	12 1/2	PC	Pe	Zen	M	DR	D.Fu	Yo	Blo	Cla	F212	Ros	L41H	352 1/2	TD	Opt	65	31	31x2 1/2	54x3			
18369 4.8 234 39.6 99-2800 H C G N F L	7-2 1/2	12 1/2	PC	Pe	Zen	M	DR	D.Fu	Yo	Blo	Cla	F318	Ros	L41H	318 1/2	TD	Opt	65	31	31x2 1/2	54x3			
19428 4.8 280 45.9 107-2600 H C G N F L	7-2 1/2	10 1/2	PC	No	Zen	M	AL	D.B.L	Pe	Bio	Tim	610-103	Ros	L41H	645 1/2	TD	Opt	70 1/2	31 1/2	41x2 1/2	54x3			
20428 4.8 280 45.9 107-2600 H C G N F L	7-2 1/2	10 1/2	PC	No	Zen	M	AL	D.B.L	Pe	Bio	Tim	610-103	Ros	L41H	660 1/2	TD	Opt	66	31	41x2 1/2	54x3			
22525 4.8 336 45.6 111-2200 H C G N F L	7-2 1/2	10 1/2	PC	No	Zen	M	AL	D.B.L	Pe	Bio	Tim	610-103	Ros	L41H	558 1/2	TD	Opt	64	31	41x2 1/2	54x3			
23252 4.8 336 45.6 111-2200 H C G N F L	7-2 1/2	10 1/2	PC	No	Zen	M	AL	D.B.L	Pe	Bio	Tim	30020H	Ros	L41H	249 1/2	TD	Opt	56	34	37x2 1/2	54x3			
24228 4.7 142 27.3 59-2800 H C G N F L	7-2 1/2	10 1/2	PC	Op	Str	M	AL	D.B.L	Pe	Bio	Tim	3020H	Ros	L41H	310 1/2	TD	Opt	56	34	37x2 1/2	54x3			
25282 5.1 176 33.7 73-2800 H C G N F L	7-2 1/2	10 1/2	PC	Op	Str	M	AL	D.B.L	Pe	Bio	Tim	3020H	Ros	L41H	356 1/2	TD	Opt	56	34	37x2 1/2	54x3			
26282 5.1 176 33.7 73-2800 H C G N F L	7-2 1/2	10 1/2	PC	Op	Str	M	AL	D.B.L	Pe	Bio	Tim	3020H	Ros	L41H	356 1/2	TD	Opt	56	34	37x2 1/2	54x3			
27339 4.7 210 38.4 76-2400 H C G N F L	7-2 1/2	13 1/2	PC	Op	Str	M	AL	D.B.L	Pe	Bio	Tim	5572	Ros	L41H	380 1/2	TD	Opt	69 1/2	34	39x2 1/2	54x3			
28339 4.7 210 38.4 76-2400 H C G N F L	7-2 1/2	13 1/2	PC	Op	Str	M	AL	D.B.L	Pe	Bio	Tim	5572	Ros	L41H	380 1/2	TD	Opt	69 1/2	34	39x2 1/2	54x3			
29428 4.8 280 45.9 94-2200 H C G N F L	7-2 1/2	14	PC	Op	Str	M	AL	D.B.L	Pe	Bio	Tim	15582B	Ros	L41H	388 1/2	TD	Opt	42 1/2	34	40x2 1/2	54x3			
30428 4.8 280 45.9 94-2200 H C G N F L	7-2 1/2	14	PC	Op	Str	M	AL	D.B.L	Pe	Bio	Tim	15582B	Ros	L41H	388 1/2	TD	Opt	42 1/2	34	40x2 1/2	54x3			
31428 4.8 280 45.9 94-2200 H C G N F L	7-2 1/2	14	PC	Op	Str	M	AL	D.B.L	Pe	Bio	Tim	15582B	Ros	L41H	388 1/2	TD	Opt	42 1/2	34	40x2 1/2	54x3			
32528 4.9 350 51.3 111-2200 H C G N F L	7-2 1/2	12 1/2	PC	No	Zen	M	AL	D.B.L	Pe	Bio	Tim	15582B	Ros	L41H	388 1/2	TD	Opt	42 1/2	34	40x2 1/2	54x3			
34762 1.7 420 33.7 65-1800 H C G N F L	7-3	12 1/2	PC	No	Zen	M	CL	D.B.L	Mo	Sp	Shu	15582B	Ros	L41H	546 1/2	TD	Opt	142	83	34	40x2 1/2	54x3		
35215 5.0 125 33.7 65-1800 H C G N F L	7-3	12 1/2	CC	No	Zen	M	CL	D.B.L	Mo	Sp	Shu	1633W	Ros	W541A	560 1/2	TD	Opt	90	34	Var	36 1/2	51x1		
36207 5.1 137 33.7 59-2400 H C G N F L	7-3	12 1/2	CC	No	Zen	M	CL	D.B.L	Mo	Sp	Shu	1633W	Ros	W541A	156 1/2	TD	Opt	21	21	32 1/2	40x2 1/2	54x3		
4223 5.4 154 28.3 63-3200 H C G N F L	6 1/2	6 1/2	PC	No	Zen	V	DR	D.B.L	Mo	MM	Own	104	Ros	L41H	216 1/2	TD	Opt	66	31	31x2 1/2	54x3			
43274 4.6 176 31.5 67-2600 H C G N F L	6 1/2	6 1/2	PC	No	Zen	V	DR	D.B.L	Mo	MM	Own	101	Ros	L41H	212 1/2	TD	Opt	61	31	31x2 1/2	54x3			
45274 4.6 176 31.5 67-2600 H C G N F L	6 1/2	6 1/2	PC	No	Zen	V	DR	D.B.L	Mo	MM	Own	101	Ros	L41H	212 1/2	TD	Opt	61	31	31x2 1/2	54x3			
47312 4.6 200 28.9 59-1800 H C G N F L	7-2 1/2	13 1/2	PC	No	Zen	V	DR	D.B.L	Mo	MM	Own	200	Ros	L41H	302 1/2	TD	Opt	40 1/2	34	40x2 1/2	54x3			
47224 4.7 138 25.3 54-2700 H C G N F L	7-2 1/2	13 1/2	PC	No	Zen	V	DR	D.B.L	Mo	MM	Own	200	Ros	L41H	295 1/2	TD	Opt	106 1/2	34	41 1/2	54x3			
48396 3.8 240 34.6 69-1800 H G G N F L	7-2 1/2	13 1/2	FP	Ha	Zen	V	DR	D.B.L	Mo	MM	Own	503	Ros	W841MV	729 1/2	TD	Opt	106	32	48x3	56x3			
50468 4.9 398 60.0 114-1900 H G G N F L	7-2 1/2	13 1/2	FP	Ha	Zen	V	DR	D.B.L	Mo	MM	Own	503	Ros	W841MV	729 1/2	TD	Opt	106	32	48x3	56x3			
51613 4.9 264 38.4 93-2000 H G G N F L	7-2 1/2	13 1/2	FP	Ha	Zen	V	DR	D.B.L	Mo	MM	Own	503	Ros	W841MV	729 1/2	TD	Opt	106	32	48x3	56x3			
51777 4.9 258 33.8 44-2300 H G G N F L	7-2 1/2	13 1/2	FP	No	Zen	V	DR	D.B.L	Mo	MM	Own	104	Ros	W841MV	729 1/2	TD	Opt	106	32	48x3	56x3			
61453 4.8 300 48.6 98-2200 H G G N F L	7-2 1/2	14	CC	Ha	Zen	M	DR	D.B.L	Mo	MM	Own	101	Ros	W841MV	729 1/2	TD	Opt	106	32	48x3	56x3			
64468 4.7 322 43.3 125-2400 H G G N F L	7-2 1/2	14	CC	Ha	Zen	M	DR	D.B.L	Mo	MM	Own	101	Ros	W841MV	729 1/2	TD	Opt	106	32	48x3	56x3			
64572 4.8 358 43.6 114-1900 H G G N F L	7-2 1/2	14	CC	Ha	Zen	M	DR	D.B.L	Mo	MM	Own	503	Ros	W841MV	729 1/2	TD	Opt	106	32	48x3	56x3			
65																								

Line Number	MAKE AND MODEL	GENERAL (See Keynote)				TIRE SIZE		MAJOR UNITS						FRAME			
		Tonnage Rating	Chassis Price	Standard Wheelbase	Max. W. B. Furnished	Front	Rear	ENGINE	TRANSMISSION	REAR AXLE		Side Rail Dimensions	Type				
						Gross Vehicle Weight	Chassis Wt. (Stripped)			Make and Model	No. of Cylinders Bore and Stroke	Make and Model	Location and Forward Speeds	Gear and Type	Drive and Torque	Gear Ratios	
										Aux. Location and Speeds							
1	Moreland (Con.)	E22	6	3405	184	Op	22000	7150	B9.75/20	DB9.75/20	Her W XC3	6-4½x4½	BL 524	U 4 No Tim 65720H	WF R 7.25 44.59 x 3½ x 4½	T	
2		H26	6	4815	196	Op	26000	8900	B9.75/20	DB9.75/20	Her RXB	6-4½x5½	BL 524	U 4 No Tim 66720W	WF R 8.20 59.89 x 3½ x 4½	T	
3	Omort	202	1095	131	210	10000	3725	DB6.00/20	DB6.00/20	Her JXA	6-3½x4½	WG T9	U 4 No Tim 5320H	WF R 6.20 39.6 x 2½ x 4½	L		
4		25 2½	2650	130	130	16000	6100	DP32x6	DP32x6	Her WXB	6-3½x4½	Fu MGU	U 4 No Wls 6787L	WF R 6.41 41.6 x 3½ x 4½	I		
5		30 3	3250	134	148	18000	6600	DP34x7	DP34x7	Her WXB	6-3½x4½	Fu MGOG	U 4 A 2 Wls 8817L	WF R 7.93 65.0 x 3½ x 4½	I		
6		35 3½	3850	150	150	21000	7600	DP36x8	DP36x8	Her WXB	6-4½x5½	Fu MGOG	U 4 A 2 Wls 1567H	WF R 9.11 74.7 x 3½ x 4½	I		
7	Pierce-Arrow	13S385	2500	160	200	13000	5750	DB8.25/20	DB8.25/20	Own 8	8-3½x5½	Co RU4SL	U 4 No Tim 56200	WF R 5.28 32.6 x 3½ x 4½	C		
8		15T298	3-3½x5½	1950	150	200	15000	5725	DB8.25/20	DB8.25/20	Her WXB	6-3½x4½	Cia 108B	U 4 Op Tim 56200	WF R 6.16 40.2 x 3½ x 4½	C	
9		17T361	3-4	2350	150	200	17000	5725	DB9.00/20	DB9.00/20	Her WXC2	6-4½x4½	Co RU4SL	U 4 Op Tim 58200	WF R 6.83 42.2 x 3½ x 4½	C	
10		18W361	3½-4	3000	150	220	18000	6660	DB9.00/20	DB9.00/20	Her WXC2	6-4½x4½	Co RU4SL	U 4 Op Tim 65720	WF R 6.8 42.8 x 3½ x 4½	C	
11		19R479	3-5	3600	150	220	19000	7550	DB9.00/20	DB9.00/20	Her YXC3	6-4½x4½	Co TNU	U 4 Op Tim 65720	WF R 5.4 286.0 x 3½ x 4½	C	
12		24X479	5-6	4150	150	200	24000	9250	DB10.50/20	DB10.50/20	Her YXC3	6-4½x4½	Co TNU	U 4 Op Tim 66720	WF R 7.6 402.0 x 3½ x 4½	C	
13		28M611	6-7	5400	160	200	28000	11000	DB10.50/24	DB10.50/24	Her GXA	6-4½x5½	Own 8	U 4 Op Own	WF R 10.152.7 x 3½ x 4½	C	
14	Reo (A)	BN 1500 lb.	530	130	130	15000	2805	B6.00/18	B6.00/18	Own 8	8-3½x5½	Own 8	U 4 Op Own	WF R 16.17.16 x 3½ x 4½	C		
15		IB, (ID)	595	140	164	10500	3260	DB6.00/20	DB6.00/20	Own 8	8-3½x5½	Own 8	U 4 Op Own	WF R 14.34.34 x 3½ x 4½	C		
16		2B, (2J, 2K)	845	142	166	12500	3865	B6.00/20	B6.00/20	Own 8	8-3½x5½	Own 8	U 4 Op Own	WF R 14.34.34 x 3½ x 4½	C		
17		2H (3J, 3K, 3M)	1245	142	184	15000	4475	B7.00/20	B7.00/20	Own 8	8-3½x5½	Own 8	U 4 Op Own	WF R 14.34.34 x 3½ x 4½	C		
18		4H, 4J, 4K, 4M	1795	170	205	17500	5125	B7.50/20	B7.50/20	Own 8	8-3½x5½	Own 8	U 4 Op Own	WF R 14.34.34 x 3½ x 4½	C		
19	Schacht	101	1½-2	1295	166	199	11500	4850	B6.50/20	DB6.50/20	Con 20C	6-3½x4½	BL 35	U 4 Op BL 35	WF R 14.34.34 x 3½ x 4½	C	
20		15H	22½-2½	1735	160	199	13000	5200	DB8.25/20	DB8.25/20	Con 20C	6-3½x4½	BL 35	U 4 Op BL 35	WF R 14.34.34 x 3½ x 4½	C	
21		20H	2185	160	199	15300	5450	B8.25/20	B8.25/20	Her WXC	6-4½x4½	Fu 5A-38	U 5 No Tim	WF R 14.34.34 x 3½ x 4½	C		
22		25H	23½-2½	2695	146	213	19500	5750	DB9.00/20	DB9.00/20	Her WXC	6-4½x4½	Fu 5A-38	U 5 No Tim	WF R 14.34.34 x 3½ x 4½	C	
23		23H	4-5½-6	3050	146	227	23000	6600	B9.75/20	DB9.75/20	Her WXC	6-4½x4½	Fu 5A-38	U 5 No Wis	WF R 14.34.34 x 3½ x 4½	C	
24		30H	4½-6	3295	146	227	23000	6800	B9.75/20	DB9.75/20	Her WXC	6-4½x4½	Fu 5A-38	U 5 No Wis	WF R 14.34.34 x 3½ x 4½	C	
25		35H	3725	146	227	24000	7400	B9.75/20	DB9.75/20	Her WXC2	6-4½x4½	Fu 5A-38	U 5 No Own	WF R 14.34.34 x 3½ x 4½	C		
26		40H	4-7	4295	156	239	25500	7600	B9.75/20	DB9.75/20	Her YXC	6-4½x4½	Fu 5A-53	U 5 No Wis	WF R 14.34.34 x 3½ x 4½	C	
27		40HB	7-9	4695	156	239	29500	7750	DB10.50/20	DB10.50/20	Her RXC	6-4½x4½	Fu 5A-53	U 5 No Wis	WF R 14.34.34 x 3½ x 4½	C	
28		66H	8-11	5895	154	251	35000	9820	DB10.50/24	DB10.50/24	Her RXC	6-4½x4½	Fu 5A-53	U 5 No Own	WF R 14.34.34 x 3½ x 4½	C	
29	(T) TRD 10	4150	150	174	174	35000	7100	B9.00/20	DB9.00/20	Her YXC3	6-4½x4½	Fu 5A-53	U 5 No Own	WF R 14.34.34 x 3½ x 4½	C		
30	(T) TRD 12	4350	150	174	174	39000	7226	B9.75/20	DB9.75/20	Her YXC3	6-4½x4½	Fu 5A-53	U 5 No Own	WF R 14.34.34 x 3½ x 4½	C		
31	(T) TRD 15	4595	150	174	174	45000	7326	B9.75/20	DB9.75/20	Her RXC	6-4½x4½	Fu 5A-53	U 5 No Wis	WF R 14.34.34 x 3½ x 4½	C		
32	Sterling	FB40	1½-2	1135	142	162	11000	3450	B6.50/20	DB6.50/20	Con 25A	6-3½x4½	WG T9	U 4 No Tim	WF R 14.34.34 x 3½ x 4½	C	
33		FB50	2-2½	1240	142	162	11500	3650	B7.00/20	DB7.00/20	Con 25A	6-3½x4½	WG T9	U 4 No Own	WF R 14.34.34 x 3½ x 4½	C	
34		FB60	2½-3	1590	142	162	14000	4150	B7.00/20	DB7.00/20	Wau TL	6-3½x4½	Wau TL	U 4 No Own	WF R 14.34.34 x 3½ x 4½	C	
35		FB70	2½-3	2635	174	204	17000	5755	B7.50/20	B7.50/20	Wau ML	6-4½x4½	Wau ML	U 5 No Own	WF R 14.34.34 x 3½ x 4½	C	
36		FD80	3-4	3065	174	204	21000	6680	B8.25/20	DB8.25/20	Wau 6ML	6-4½x4½	Wau 6ML	U 5 No Own	WF R 14.34.34 x 3½ x 4½	C	
37		FB80 Spec	3½-4	3010	174	204	21000	6680	B8.25/20	DB8.25/20	Wau 6ML	6-4½x4½	Wau 6ML	U 5 No Own	WF R 14.34.34 x 3½ x 4½	C	
38		FC145	8-8½	4105	174	204	22000	7430	B9.00/20	DB9.00/20	Wau 6MK	6-4½x4½	Wau 6MK	U 5 No Own	WF R 14.34.34 x 3½ x 4½	C	
39		FD90	4	3315	174	204	22000	7480	B9.00/20	DB9.00/20	Wau 6MK	6-4½x4½	Wau 6MK	U 5 No Own	WF R 14.34.34 x 3½ x 4½	C	
40		FD97	4-5	3450	192	222	26000	8200	B36x8	DP36x8	Wau 6SR	6-4½x5½	Own UC2	U 4 Op Own	WF R 14.34.34 x 3½ x 4½	C	
41		FC100	5-5½	4185	192	222	26000	7750	B36x8	DP36x8	Wau 6MK	6-4½x5½	Own UC2	U 4 Op Own	WF R 14.34.34 x 3½ x 4½	C	
42		FD115	5-6	4240	192	222	32000	8750	B40x8	DP40x8	Wau 6SR	6-4½x5½	Own UC2	U 4 Op Own	WF R 14.34.34 x 3½ x 4½	C	
43		FC107	5-6	4700	192	222	27000	8200	B36x8	DP36x8	Wau 6SR	6-4½x5½	Own UC2	U 4 Op Own	WF R 14.34.34 x 3½ x 4½	C	
44		FD141	7-8	6285	192	222	32200	10050	B40x8	DP40x8	Wau 6SR	6-4½x5½	Own UC2	U 4 Op Own	WF R 14.34.34 x 3½ x 4½	C	
45		FC135	7-8	4800	192	222	35000	8900	B40x8	DP40x8	Wau 6SR	6-4½x5½	Own UC2	U 4 Op Own	WF R 14.34.34 x 3½ x 4½	C	
46		FC148	8-8½	5245	200	230	36000	9350	B40x8	DP40x8	Wau AB	6-4½x5½	Own UC8	U 4 Op Own	WF R 14.34.34 x 3½ x 4½	C	
47		FC145	8-8½	6180	200	230	37000	10100	B40x8	DP40x8	Wau AB	6-4½x5½	Own UC8	U 4 Op Own	WF R 14.34.34 x 3½ x 4½	C	
48		• FW170	FD170	91-10	6900	200	230	35000	10550	P40x8	DP40x8	Wau AB	6-4½x5½	Own UC8	U 4 Op Own	WF R 14.34.34 x 3½ x 4½	C
49		FD170	91-10	6900	200	230	40000	10550	P40x8	DP40x8	Wau RB	6-4½x5½	Wau RB	U 4 Op Own	WF R 14.34.34 x 3½ x 4½	C	
50		FD195	12-12½	8925	200	230	39000	10750	B10.50/20	DB10.50/20	Cum H Die.	6-4½x5½	BL 734	U 4 Op Wau 1910W	WF R 14.34.34 x 3½ x 4½	C	
51	Stewart	41X	4	695	124	124	2875	B6.50/18	B6.50/18	Ly	6-3½x4½	WG	U 4 No Clia	WF R 14.34.34 x 3½ x 4½	C		
52		41X1	4	730	134	145	2925	B6.50/18	B6.50/18	Ly	6-3½x4½	WG	U 4 No Clia	WF R 14.34.34 x 3½ x 4½	C		
53		44X	1½	760	134	176	8500	3250	B6.50/20	B6.50/20	Ly	6-3½x4½	WG	U 4 No Clia	WF R 14.34.34 x 3½ x 4½	C	
54		42X	¾	830	145	176	9000	3525	B6.50/20	B6.50/20	Ly	6-3½x4½	WG	U 4 No Clia	WF R 14.34.34 x 3½ x 4½	C	
55		43X	2½	1075	145	176	10800	4005	B6.50/20	B6.50/20	Ly	6-3½x4½	WG	U 4 No Clia	WF R 14.34.34 x 3½ x 4½	C	
56		45X	2½	1275	145	220	15000	5190	B7.00/20	B7.00/20	Ly	6-3½x4½	WG	U 4 No Clia	WF R 14.34.34 x 3½ x 4½	C	

ENGINE DETAILS												BODY MOUNTING DATA												SPRINGS	
Line Number	Piston Displacement			Main Bearings			Fuel Syst.	Electrical			Front Axle			Brakes			Body Mounting Data			Springs					
	Max. Brake H.P. at R.P.M. Given	Compression Ratio	Torque lb. ft.	Valve Arrangement	Piston Material	Camshaft Drive		Number and Diameter	Length	Oiling System Type	Governor Make	Carburetors Make	Fuel Feed	Ignition System Make	Generator, Starter Make	Clutch Type and Make	Radiator Make	Universals Make	Steering Gear Make	Make, Location & Type Operation	Hand Location, Type	Cab to Rear Frame	Cab to Rear Axle	Front	Rear
1383 4.4 262 43.3 92-2400 L G G C C 7-2% 13 1/4 PC No Zen M AL AL AL P BL Lo Cle Tim 35120H Ros L41H 555a TD 156 101 34 41 1/2 x 2 1/2 54x3																									
2501 4.9 330 48.6 110-2200 L G G C C 7-2% 13 1/4 PC No Zen M AL AL AL P BL Lo Cle Tim 26450TW Ros W41A 620a TD 168 111 1/2 34 42 1/2 56x3																									
3228 4.4 143 27.6 60-2400 L G G C C 7-2% 13 1/4 PC No Zen M AL AL AL P BL Lo Cle Tim 30000H Ros L41H 249a TD 84 51 1/2 34 36x2 54x3																									
4298 4.7 190 33.7 66-2400 L G G C C 7-2% 13 1/4 PC No Zen M AL AL AL P BL Lo Cle Shu 5429 Ros L41H 406G TD 88 53 1/2 31 40x2 54x3																									
5298 4.7 190 33.7 66-2400 L G G C C 7-2% 13 1/4 PC No Zen M AL AL AL P BL Lo Cle Shu 5532 Ros L41H 406G TD 88 53 1/2 31 40x2 54x3																									
6339 4.7 225 38.4 73-2000 L G G C C 7-2% 13 1/4 PC No Zen M AL AL AL P BL Lo Cle Shu 5532 Ros L41H 498G TD 108 74 31 40x2 54x3																									
7385 5.0 274 39.3 125-2800 L G G C C 7-2% 13 1/4 PC No Zen M DR DR DR P BL Lo Cle Tim 14706 Ros L41H 210G TD 116 62 1/2 34 38x2 56x3																									
8298 4.7 190 33.7 70-2600 L G G C C 7-2% 13 1/4 PC No Zen M DR DR DR P BL Lo Cle Tim 14706 Ros L41H 210G TD 113 54 34 38x2 56x3																									
9361 4.7 230 40.3 77-2400 L G G C C 7-2% 13 1/4 PC No Zen M DR DR DR P BL Lo Cle Tim 14706 Ros L41H 210G TD 113 54 34 38x2 56x3																									
10361 4.7 230 40.3 77-2400 L G G C C 7-2% 13 1/4 PC No Zen M DR DR DR P BL Lo Cle Tim 15735 Ros L41H 210G TD 119 65 34 41x2 56x3																									
11479 4.7 318 51.3 104-2200 L G G C C 7-3 14 PC No Zen M DR DR DR P BL Lo Cle Tim 15733 Ros L41H 210G TD 118 34 41x2 56x3																									
12479 4.6 318 51.3 104-2200 L G G C C 7-3 14 PC No Zen M DR DR DR P BL Lo Cle Tim 26050 Ros L41H 210G TD 168 33 34 41x2 56x3																									
13611 4.5 410 54.1 130-2000 L G G C C 7-3 1/2 16 PC No Zen M DR DR DR P BL Lo Cle Tim 26050 Ros B041A 720 TD TX 127 72 24 41x3 56x4																									
14230 5.3 152 23.6 68-2800 L G G C C 7-2 12 CC No Zen M DR DR DR P BL Lo Cle Own Ros L41H 280 TD P 102 60 34 40x2 50x2																									
15230 5.3 152 23.6 68-2800 L G G C C 7-2 12 CC No Zen M DR DR DR P BL Lo Cle Own Ros L41H 246 TD 21 116 60 34 40x2 50x2																									
16268 4.9 175 27.3 75-2800 L G G C C 7-2 12 CC No Zen M DR DR DR P BL Lo Cle Own Ros L41H 289 TD 21 116 60 34 40x2 50x2																									
17268 4.9 175 27.3 75-2800 L G G C C 7-2 12 CC No Zen M DR DR DR P BL Lo Cle Own Ros L41H 344 TD 124 68 34 44x3 54x3																									
18309 4.9 200 31.5 85-2800 L G G C C 7-2 12 CC No Zen M DR DR DR P BL Lo Cle Own Ros L41H 390 TD 143 65 34 44x3 54x3																									
19358 4.9 230 36.1 110-2800 L G G C C 7-2 12 CC No Zen M DR DR DR P BL Lo Cle Own Ros L41H 390 TD 129 1/2 Opt 31 1/2 40x2 50x3																									
20248 5.1 1150 27.3 65-2600 L G G C C 7-2 10 FF No Sch M DR DR DR P BL Lo Cle DBB Yos Tim Ros L41H 390 TD 129 1/2 Opt 31 1/2 40x2 50x3																									
21248 5.1 1150 27.3 65-2600 L G G C C 7-2 10 FF No Sch M DR DR DR P BL Lo Cle DBB Yos Tim Ros L41H 452 TD 129 1/2 Opt 31 1/2 40x2 50x3																									
22339 4.7 225 38.4 73-2200 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 452 TD 129 1/2 Opt 31 1/2 40x2 50x3																									
23339 4.7 225 38.4 73-2200 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 578 TD 106 Opt 31 1/2 40x2 50x3																									
24339 4.7 225 38.4 73-2200 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 658 TD 106 Opt 31 1/2 40x2 50x3																									
25339 4.7 225 38.4 73-2200 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 658 TD 106 Opt 31 1/2 40x2 50x3																									
26360 4.7 238 40.9 80-2200 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 768 TD 106 Opt 31 1/2 40x2 50x3																									
27425 4.8 280 45.9 93-2200 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 768 TD 106 Opt 31 1/2 40x2 50x3																									
28529 4.9 355 51.2 115-2200 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 893 TD 118 Opt 31 1/2 40x2 50x3																									
30328 4.9 320 45.9 93-2200 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros W41A 893 TD 92 Opt 31 1/2 40x2 50x3																									
31471 4.4 318 51.2 103-2200 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 893 TD 92 Opt 31 1/2 40x2 50x3																									
32529 4.5 355 51.2 115-2200 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 893 TD 92 Opt 31 1/2 40x2 50x3																									
33529 4.5 355 51.2 115-2200 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 893 TD 92 Opt 31 1/2 40x2 50x3																									
34529 4.5 355 51.2 115-2300 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 893 TD 92 Opt 31 1/2 40x2 50x3																									
35429 4.5 355 51.2 115-2300 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 893 TD 92 Opt 31 1/2 40x2 50x3																									
36429 4.5 355 51.2 115-2300 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 893 TD 92 Opt 31 1/2 40x2 50x3																									
37429 4.5 355 51.2 115-2300 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 893 TD 92 Opt 31 1/2 40x2 50x3																									
38529 4.5 355 51.2 115-2300 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 893 TD 92 Opt 31 1/2 40x2 50x3																									
39381 4.4 240 40.8 85-2500 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 893 TD 92 Opt 31 1/2 40x2 50x3																									
40381 4.4 240 40.8 85-2500 L G G C C 7-2 13 PC Mo Str M AL AL AL D FU Yos Tim Ros L41H 893 TD 92 Opt 31 1/2 40x2 50x3																									
41462 4.5 300 9.9 910-2400 L G G C C 7-3 13 PC No Zen M DR DR DR DOW Mo Spi Tim 30000H Ros L41H 269 TD X 96 57 34 38x2 50x2																									
42381 4.4 207 29.0 68-2300 L G G C C 7-3 13 PC No Zen M DR DR DR DOW Mo Spi Tim 30000H Ros L41H 269 TD X 96 57 34 38x2 50x2																									
43462 4.5 300 9.9 910-2400 L G G C C 7-3 13 PC No Zen M DR DR DR DOW Mo Spi Tim 31000H Ros L41H 282 TD X 96 57 34 38x2 50x2																									
44462 4.5 300 9.9 910-2400 L G G C C 7-3 13 PC No Zen M DR DR DR DOW Mo Spi Tim 31000H Ros L41H 330 TD CX 144 91 34 42x2 54x3																									
45462 4.5 300 9.9 910-2400 L G G C C 7-3 13 PC No Zen M DR DR DR DOW Mo Spi Tim 33000H Ros L41H 392 TD CX 144 91 34 42x2 54x3																									
46462 4.5 300 9.9 910-2400 L G G C C 7-3 13 PC No Zen M DR DR DR DOW Mo Spi Tim 33000H Ros O21MV 466 TD JX 144 91 34 42x2 54x3																									
47489 4.5 295 4.9 412-2400 L G G C C 4-3 1/2 11 PC Mo Str M AL AL AL D FU Yos Tim 35000H Ros L41H 664 TD CX 144 108 34 48x3 54x3																									
48549 4.5 330 40.9 69-2900 L G G C C 4-3 1/2 11 PC Mo Str M AL AL AL D FU Yos Tim 35000H Ros L41H 664 TD CX 144 108 34 48x3 54x3																									
49549 4.5 330 40.9 69-2900 L G G C C 4-3 1/2 11 PC Mo Str M AL AL AL D FU Yos Tim 37050TW Ros W41A 718 TD CX 163 107 34 48x3 60x4																									
50577 4.4 440 60.0 125-2000 L G G A 4-3 1/2 11 PC Mo Str M AL AL AL D FU Yos Tim 27450NTW Ros W41A 718 TD CX 163 107 34 48x3 54x3																									
51672 4.7 147 20.7 50.7 125-1800 H G G C C 7-3 16 CC No Zen M CI LN PBL Mo Spi Tim 27450TW Ros L41H 269 TD X 96 57 34 38x2 50x2																									
52224 4.8 142 25.3 62-2800 L G G C C 7-2 13 CC No Zen M DR DR DR P BL Fe Spi Tim 30000H Ros L41H 282 TD X 96 57 34 38x2 50x2																									
53224 4.8 142 25.3 62-2800 L G G C C 7-2 13 CC No Zen M DR DR DR P BL Fe Spi Tim 31000H Ros L41H 330 TD CX 144 91 34 42x2 54x3																									
54224 4.8 142 25.3 62-2800 L G G C C 7-2 13 CC No Zen M DR DR DR P BL Fe Spi Tim 33000H Ros L41H 392 TD CX 144 91 34 42x2 54x3																									
55224 4.8 142 25.3 62-2800 L G G C C 7-2 13 CC No Zen M DR DR DR P BL Fe Spi Tim 33000H Ros O21MV 466 TD JX 144 91 34 42x2 54x3																									
56242 4.5 162 27.3 65-2800 L G G C C 7-2 13 CC No Zen M DR DR DR P BL Fe Spi Tim 35000H Ros L41H 664 TD CX 144 108 34 48x3 54x3																									
57242 4.7 162 27.3 65-2800 L G G C C 7-2 13 CC No Zen M DR DR DR P BL Fe Spi Tim 35000H Ros L41H 664 TD CX 144 108 34 48x3 54x3																									
58299 5.0 193 33.8 85-2750 L G G C C 7-2 13 CC No Zen M DR DR DR P BL Fe Spi Tim 35000H Ros L41H 664 TD CX 144 108 34 48x3 54x3																									
59299 5.0 193 33.8 85-2750 L G G C C 7-2 13 CC No Zen M DR DR DR P BL Fe Spi Tim 35000H Ros L41H 664 TD CX 144 108 34 48x3 54x3																									
60322 4.6 224 36.2 90-2750 L G G C C 7-2 13 CC No Zen M DR DR DR P BL Fe Spi Tim 35000H Ros L41H 664 TD CX 144 108 34 48x3 54x3																									
61354 5.2 225 33.9 90-2750 L G G C C 7-2 13 CC No Zen M DR DR DR P BL Fe Spi Tim 26450TN Ros W41A 690 TD CX 172 108 34 48x3 60x4																									
62420 5.2 300 44.1 130-2800 L G G C C 5-2 13 CC No Zen M DR DR DR P BL Fe Spi Tim 26450TN Ros O21MV 500 TD JX 172 108 34 48x3 54x3																									
63354 5.2 624 23.3 90-2750 L G G C C 7-2 13 CC No Zen M DR DR DR P BL Fe Spi Tim 26450TN Ros O21MV 666 TD JX 168 107 34 48x3 54x3																									
64462 4.6 300 45.9 100-2000 L G G C C 7-3 13 CC No Zen M DR DR DR P BL Fe Spi Tim 26450TN Ros O21MV 666 TD JX 168 107 34 48x3 54x3																									
65420 5.2 300 44.1 130-2800 L G G C C 5-2 13 CC No Zen M DR DR DR P BL Fe Spi Tim 27050TW Ros W41A 690 TD CX 163 107 34 48x3 60x4																									
66516 4.5 330 51.2 110-2000 L G G C C 7-3 13 CC No Zen M DR DR DR P BL Fe Spi Tim 27450TW Ros W41A 718 TD CX 163 107 34 48x3 54x3																									
67516 4.5 330 51.2 110-2000 L G G C C 7-3 13 CC No Zen M DR DR DR P BL Fe Spi Tim 27450TW Ros W41A 718 TD CX 163 107 34 48x3 54x3																									
68230 4.6 154 25.4 75-3200 L G G C C 4-2 1/2 8 CC No Zen M DR DR DR P BL Fe Spi Tim 30000H Ros L41H 282 TD X 96 57 34 38x2 50x2																									
69230 4.6 154 25.4 75-3200 L G G C C 4-2 1/2 8 CC No Zen M DR DR DR P BL Fe Spi Tim 31000H Ros L41H 282 TD X 96 57 34 38x2 50x2																									
70230 4.6 154 25.4 75-3200 L G G C C 4-2 1/2 8 CC No Zen M DR DR DR P BL Fe Spi Tim 31000H Ros L41H 330 TD CX 144 91 34 42x2 54x3																									
71238 4.6 154 25.4 75-3200 L G G C C 4-2 1/2 8 CC No Zen M DR DR DR P BL Fe Spi Tim 33000H Ros L41H 392 TD CX 144 91 34 42x2 54x3																									
72238 4.6 154 25.4 75-3200 L G G C C 4-2 1/2 8 CC No Zen M DR DR DR P BL Fe Spi Tim 33000H Ros L41H 452 TD CX 144 91 34 42x2 54x3																									
73358 4.6 228 38.8 80-2400 L G G C C 7-2 13 FF No Zen PDR DR PBB Fe Spi Tim 33000H Ros L41H 452 TD CX 144 108 34 48x3 54x3																									
74358 4.6 228 38.8 80-2400 L G G C C 7-2 13 FF No Zen PDR DR PBB Fe Spi Tim 33000H Ros L41H 452 TD CX 144 108 34 48x3 54x3																									
75358 4.6 228 38.8 80-2400 L G G C C 7-2 13 FF No Zen PDR DR PBB Fe Spi Tim 33000H Ros L41H 452 TD CX 144 108 34 48x3 54x3																									
76358 4.6 228 38.8 80-2400 L G G C C 7-2 13 FF No Zen PDR DR PBB Fe Spi Tim 33000H Ros L41H 452 TD CX 144 108 34 48x3 54x3																									
77462 4.6 1000 45.9 910-2400 L G G C C 7-3 10 FF No Zen PDR DR PBL Fe Spi Tim 35000H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
78462 4.6 1000 45.9 910-2400 L G G C C 7-3 10 FF No Zen PDR DR PBL Fe Spi Tim 35000H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
79381 4.6 1000 45.9 910-2400 L G G C C 7-3 10 FF No Zen PDR DR PBL Fe Spi Tim 35000H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
80462 4.6 1000 45.9 910-2400 L G G C C 7-3 10 FF No Zen PDR DR PBL Fe Spi Tim 35000H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
81462 4.6 300 45.9 102-2200 L G G C C 7-3 10 FF No Zen PDR DR PBL Fe Spi Tim 35000H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
82462 4.6 300 45.9 102-2200 L G G C C 7-3 10 FF No Zen PDR DR PBL Fe Spi Tim 35000H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
83462 4.6 300 45.9 102-2200 L G G C C 7-3 10 FF No Zen PDR DR PBL Fe Spi Tim 35000H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
84462 4.6 300 45.9 102-2200 L G G C C 7-3 10 FF No Zen PDR DR PBL Fe Spi Tim 35000H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
85462 4.6 300 45.9 102-2200 L G G C C 7-3 10 FF No Zen PDR DR PBL Fe Spi Tim 35000H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
86677 4.5 465 60.5 145-2000 L G G C C 4-3 1/2 10 FF No Zen PDR DR PBL Fe Spi Tim 35100H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
87677 4.5 465 60.5 145-2000 L G G C C 4-3 1/2 10 FF No Zen PDR DR PBL Fe Spi Tim 35100H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
88260 4.6 150 29.4 45-1800 L G G C C 7-2 13 FF No Zen PDR DR PBL Fe Spi Tim 35100H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
89240 4.6 150 29.4 45-1800 L G G C C 7-2 13 FF No Zen PDR DR PBL Fe Spi Tim 35100H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
90240 4.6 150 29.4 45-1800 L G G C C 7-2 13 FF No Zen PDR DR PBL Fe Spi Tim 35100H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
91289 4.7 170 25.6 45-1800 L G G C C 7-2 13 FF No Zen PDR DR PBL Fe Spi Tim 35100H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
92240 4.6 150 29.4 45-1800 L G G C C 7-2 13 FF No Zen PDR DR PBL Fe Spi Tim 35100H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
93240 4.6 150 29.4 45-1800 L G G C C 7-2 13 FF No Zen PDR DR PBL Fe Spi Tim 35100H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
94289 4.7 310 28.9 54-1800 L G G C C 7-2 13 FF No Zen PDR DR PBL Fe Spi Tim 35100H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
95299 5.5 203 33.7 77-2400 L G G C C 7-2 13 FF No Zen PDR DR PBL Fe Spi Tim 35100H Ros L41H 392 TD CX 144 108 34 48x3 54x3																									
96289 4.7 310 28.9 54-1800 L G G C C																									

Line Number	MAKE AND MODEL	Wheels Driven—6-Wheelers			GENERAL (See Keynote)			TIRE SIZE		MAJOR UNITS			FRAME			
		Tonnage Rating	Chassis Price	Standard Wheelbase	Max. W. B. Furnished	Gross Vehicle Weight	Chassis Wt. (Stripped)	Front	Rear	Engine	Transmission	Rear Axle	Gear Ratios	Side Rail Dimensions		
										Make and Model	Make and Model	Location and Forward Speeds	Aux. Location and Speeds	Type		
Four-Wheel-Drive																
1 Coleman	E52 2½-4	3800	120	144	12800	7200	B9.00/24	B9.00/24	Bud K303	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR15	2F	H	
2	E53 2½-4	5300	130	180	18900	8000	B9.75/24	B9.75/24	Bud K428	6-4½x4½	Fu MRU 16	U 4 A 2	Wis CR26	2F	H	
3	E54 2½-4	5600	130	180	20400	8800	B10.50/24	B10.50/24	Bud L408	6-4½x4½	Fu MRU 16	U 4 A 2	Wis CR30	2F	H	
4	E55 2½-4	6150	130	180	23000	9600	B11.25/24	B11.25/24	Bud L525	6-4½x4½	Fu MRU 16	U 4 A 2	Wis CR30	2F	H	
5	E55S 5-6	7200	144	180	24500	10600	B11.25/24	B11.25/24	Bud L525	6-4½x4½	Fu MHU 16	U 4 A 2	Wis CR122	2F	H	
6	E56 5-6	7800	144	180	29800	11600	B10.50/24	B10.50/24	Bud G176	6-4½x4½	Fu MHU 16	U 4 A 2	Wis CR122	2F	H	
7	E57 6-7½-10	9700	144	180	32000	12400	B11.25/24	B11.25/24	Site LT6	6-4½x4½	Fu MHU 16	U 4 A 2	Wis CR122	2F	H	
8 Corbitt (3)	10FB6 2½-4	2300	Op	Op	Op	4420	B6.50/20	B6.50/20	Con 22R	6-3½x4½	Fu RU 16	U 4 A 2	Wis CR15	2F	H	
9	9FB6 2½-4	3200	Op	Op	Op	5060	B7.00/20	B7.00/20	Con 20C	6-3½x4½	Fu RU 16	U 4 A 2	Wis CR26	2F	H	
10	12FB6 2½-4	4000	Op	Op	Op	5630	B7.50/20	B7.50/20	Con E602	6-3½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
11	12FD6 2½-4	4300	Op	Op	Op	5730	B7.50/20	B7.50/20	Con E602	6-3½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
12	15FD6 3-4	5700	Op	Op	Op	8100	B8.25/20	B8.25/20	Con 21R	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
13	18FD6 3½-5	6300	Op	Op	Op	9200	B9.00/20	B9.00/20	Con 22R	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
14 FWD...	H4 2½-4	3235	120	160	11000	5300	P34x7	P34x7	Wis SU	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR15	2F	H	
15	H6 2½-4	3385	133	180	13000	5900	P9.00/20	P9.00/20	Wau MS	6-3½x4½	Fu RU 16	U 4 A 2	Wis CR26	2F	H	
16	BB-6 2½-4	4135	138	170	16000	6900	P9.75/20	P9.75/20	Wau MK	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
17	B 3	4200	124	156	15500	6460	S36x6	S36x6	Own A	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
18	CU-6 3½-4	4985	147	179	19500	8000	B10.50/20	B10.50/20	Wau SRS	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
19	CU6A 3½-4	4685	147	179	19000	7800	B10.50/20	B10.50/20	Wau SRS	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
20	SSU 4-5	5135	147	179	22000	8300	B11.25/20	B11.25/20	Wau SRL	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
21	SSUA 4-5	4835	147	179	21500	8100	B11.25/20	B11.25/20	Wau SRL	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
22	M 5-7½-14	7400	165	195	29500	11200	B12.75/20	B12.75/20	Wau SRK	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
23	MF6 5-6	5785	147	179	24500	9100	B10.50/20	B10.50/20	Wau SRK	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
24 (Frt.-Wh.-Dr.)	LBU 6-6	4800	171	Op	Op	9000	B9.00/20	B9.00/20	Wau SRS	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
25	M 7½-10	8500	165	195	37000	12400	P40x10	P40x10	Wau RB	6-5½x6	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
26	(T) 60-T 20-25	6300	134	Op	Op	60000	B10.50/20	B10.50/20	Wau 125	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
27	(T) 72-25-30	7000	134	Op	Op	72000	B9.75/20	B9.75/20	Wau 125	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
28 Indians	12X4 1½	2650	141	...	10000	4350	B6.50/20	B6.50/20	Her JXC	6-3½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
29	14X4 2½	3950	141	...	14000	5900	B7.50/20	B7.50/20	Her JXC	6-3½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
30	16X4 3	4850	156	...	16000	7500	B8.25/20	B8.25/20	Her WXC2	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
31	18X4 3½	5850	160	...	21000	9000	B9.00/20	B9.00/20	Her YXC2	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
32	18x4A 3½	5400	160	224	21000	8700	B9.00/20	B9.00/20	Her YXC3	6-4½x4½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
33	20X4 4½	7200	188	...	24000	10600	B9.75/20	B9.75/20	Her HXB	6-5½x6	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
34	22X4 5	10000	200	...	31000	14000	B10.50/20	B10.50/20	Wau 6RB	6-5½x5½	Fu RU 16	U 4 A 2	Wis CR30	2F	H	
35 Le Moon (c.o.e.)	1100	94	145	...	9300	B9.75/20	B9.75/20	Bud 724	6-5½x5½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H		
36 Mar.-Herr.	A-10 1½-2	2350	135	155	...	4650	B6.50/20	B6.50/20	Her JXA	6-3½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H	
37	A20 2½-4	3250	135	155	...	5150	B7.50/20	B7.50/20	Her JXC	6-3½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H	
38	A30 3½-4	4300	155	167	...	7000	B8.25/20	B8.25/20	Her WXC	6-4½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H	
39	A40 4-4½	4800	155	167	...	7500	B9.00/20	B9.00/20	Her B9.00/20	6-4½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H	
40	A50 4-4½	5700	155	167	...	8150	B9.00/20	B9.00/20	Her WXC3	6-4½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H	
41	TH300 4½-6	6150	165	193	...	8985	B7.50/20	B7.50/20	Her YXC	6-5x6	Fu RU 16	U 4 A 2	Tim 53200H	2F	H	
42	TH310 5-5½	7150	165	193	...	9620	B8.75/20	B8.75/20	Her YXC3	6-5x6	Fu RU 16	U 4 A 2	Tim 53200H	2F	H	
43	TH310A 5-5½	8050	165	193	...	10120	B8.75/22	B8.75/22	Her HXB	6-5x6	Fu RU 16	U 4 A 2	Tim 53200H	2F	H	
44	(12) TH315 7	9350	198	216	...	10950	B10.50/20	B10.50/20	Her HXB	6-5x6	Fu RU 16	U 4 A 2	Tim 53200H	2F	H	
45	(12) TH320 8-9	11500	198	228	...	14200	B10.50/24	B10.50/24	Her HXC	6-5½x6	Fu RU 16	U 4 A 2	Tim 53200H	2F	H	
46 Oshkosh	JSW 1½-2	2650	123	Op	Op	10600	4880	B7.00/20	B7.00/20	Her WXC	6-4½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H
47	JSB 2½-4	3490	149	Op	Op	10750	4760	B7.00/20	B7.00/20	Her JXC	6-3½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H
48	LP 2½-4	4000	146	165	...	13500	6700	B9.00/20	B9.00/20	Her JXC	6-3½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H
49	LP 2½-4	4575	146	165	...	16000	8400	B9.00/20	B9.00/20	Her WXC	6-4½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H
50	B3S 3½-4	4960	146	165	...	16275	8175	B10.50/20	B10.50/20	Her WXC3	6-4½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H
51	B3D 3½-4	5390	146	165	...	17000	8400	B10.50/20	B10.50/20	Her WXB3	6-4½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H
52	C3S 4-5	5150	146	165	...	21850	8350	B11.25/20	B11.25/20	Her YXC2	6-4½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H
53	CD 4-5	5795	146	165	...	22000	8700	B11.25/20	B11.25/20	Her YXC2	6-4½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H
54	FC 6-6	5990	146	165	...	22725	9225	B11.25/20	B11.25/20	Her RXC	6-4½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H
55	FB 6-6	6350	146	165	...	25000	9500	B11.25/20	B11.25/20	Her RXC	6-4½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H
56	FD 6-7½-10	7350	146	165	...	30000	11500	B10.50/20	B10.50/20	Her RXC	6-4½x4½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H
57	BG3 7½-10	8500	165	175	...	37000	13200	P40x10	P40x10	Her GXB	6-5x5½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H
58	GD 10	9800	165	175	...	38000	14200	B13.50/20	B13.50/20	Her HXD	6-5x5½	Fu RU 16	U 4 A 2	Tim 53200H	2F	H
59 Waiter	FN 2½-3½-3½	4500	120	144	...	6500	B9.00/20	B9.00/20	Own 6MK	6-4½x4½	Own FN	U 5 No	Own FN	2D	H	
60	FM 3-4½-5	5500	120	144	...	20000	7500	B9.00/20	B9.00/20	Own 6SRK	6-4½x5½	Own FK	U 5 No	Own FK	2D	H
61	FKCD 4-6	6600	124	136	...	25000	9000	B9.75/24	B9.75/24	Own 6RK						

Line Number	ENGINE DETAILS										FUEL SYST.	ELEC-TRICAL	FRONT AXLE	BRAKES	BODY MOUNTING DATA	SPRINGS																																																																																
	Piston Displacement	Compression Ratio	Torque lb. ft.	N.A.C.C. Rated H.P.	Max. Brake H.P. at R.P.M. Given	Valve Arrangement	Camshaft Drive	Piston Material	Main Bearings	Number and Diameter						Make, Location, Operation	Service	Hand Location, Type	Front	Rear																																																																												
																Drum Material	Lining Area	Cab to Rear Axle	Width of Frame	Auxiliary Type																																																																												
1393 4.9 260 42.0 103-2600 L G C 7-3 11 1/2 FP Ha Zen P DR D Fu Pe Spi Wls CF15 Ros W2/4IM 476 TD 108 78 30 48x3 48x3	2428 4.7 280 45.9 107-2600 L G C 7-3 11 1/2 FP Ha Zen P DR D Fu Pe Spi Wls CF25 Ros W2/4IM 476 TD 144 89 30 48x3 48x3	3468 4.8 295 43.4 108-2200 L G C 7-3 11 1/2 FP Ha Zen P DR D Fu Pe Spi Wls CF30 Ros W2/4IM 476 TD 144 89 30 48x3 48x3	4452 4.9 336 48.2 114-2200 L G C 7-3 11 1/2 FP Ha Zen P DR D Fu Pe Spi Wls CF30 Ros W2/4IM 476 TD 144 89 30 48x3 48x3	5525 4.9 336 48.2 114-2200 L G C 7-3 11 1/2 FP Ha Zen P DR D Fu Pe Spi Wls CF122 Ros W2/4IM 530 TD 168 105 30 48x3 52x3 1/2	6638 4.3 310 54.1 126-1850 L G C 4-3 10 1/2 FP Bu Str P DR D Fu Pe Spi Wls CF122 Ros W2/4IM 530 TD 168 105 30 48x3 52x3 1/2	7779 4.3 475 66.1 170-1800 L G C 4-3 10 1/2 FP St Opt Zen M DR D PBL Pe Spi Wls F30B-1 Ros O2/4IA 530 TX Opt 105 30 48x3 52x3 1/2	8214 4.9 142 27.3 72-3200 L G C 7-2 1/2 6 1/2 FP Opt Zen M DR D PBL Pe Spi Wls F54B Ros L41H 327 TX Opt 105 30 48x3 50x2 1/2	9248 5.0 160 27.3 78-3200 L G C 7-2 1/2 6 1/2 FP Opt Zen M DR D PBL Pe Spi Wls F56B Ros L41H 327 TX Opt 105 30 48x3 50x2 1/2	10360 4.4 240 40.8 90-2500 L G C 7-2 1/2 6 1/2 FP Opt Zen M DR D PBL Pe Spi Wls F56B Ros L41H 345 TX Opt 105 30 48x3 54x3	11360 4.4 240 40.8 90-2500 L G C 7-2 1/2 6 1/2 FP Opt Zen M DR D PBL Pe Spi Wls F-75AB Ros L41H 345 TX Opt 105 30 48x3 54x3	12428 4.6 309 45.9 118-2600 H C A 7-2 1/2 6 1/2 FP Opt Zen M DR D PBL Pe Spi Wls F211 Ros L41HV 660 TD Opt 105 30 48x3 54x3	13500 4.5 340 45.6 138-2500 H C A 7-2 1/2 6 1/2 FP Opt Zen M DR D PBL Pe Spi Wls F311 Ros L41HV 768 TD Opt 105 30 48x3 54x3	14251 4.5 160 6.6 50-2000 H C 3-2 1/2 6 1/2 FP PC Ha Zen V AL AL D DG Pe Blo Own H Ros OT/4X 238 G 21 112 81 36 42x3 2x1/2 52x3 1/2	15315 4.5 200 33.7 72-2500 I G C 7-2 1/2 6 1/2 FP PC Ha Zen V NE NE D BL Pe Blo Own H Ros OT/4X 252 G 21 115 81 36 42x3 2x1/2 52x3 1/2	16381 4.5 240 40.8 85-2400 I G C 7-2 1/2 6 1/2 FP PC Ha Zen M NE NE D BL Pe Blo Own H Ros OT/4X 238 G 21 126 86 36 42x3 2x1/2 52x3 1/2	17398 4.0 210 36.1 56-1350 T G C 3-2 6 1/2 FP PC Pe Str G NE O ME Pe Blo Own B Ros OT/4X 238 G 21 130 93 36 42x3 2x1/2 52x3 1/2	18411 4.6 265 40.8 92-2300 L G C 7-3 13 1/2 PC Wa Zen M NE NE O HS Pe Blo Own U Ros OT/4X 238 G 21 132 93 36 42x3 2x1/2 52x3 1/2	19411 4.6 265 40.8 91-2300 L G C 7-3 13 1/2 PC Wa Zen M NE NE O HS Pe Blo Own U Ros OT/4X 238 G 4X 122 93 36 42x3 2x1/2 52x3 1/2	20462 4.6 309 45.9 102-2400 L G C 7-3 13 1/2 PC Wa Zen M NE NE O HS Pe Blo Own M Ros OT/4X 238 G 21 132 93 36 42x3 2x1/2 52x3 1/2	21462 4.6 309 45.9 102-2400 L G C 7-3 13 1/2 PC Wa Zen M NE NE O HS Pe Blo Own M Ros OT/4X 238 G 21 132 93 36 42x3 2x1/2 52x3 1/2	22517 4.6 320 33.7 110-2300 H C 7-3 13 1/2 PC Wa Zen M NE NE D BL Pe Blo Own M Ros B14IM 324 G 21 132 93 36 42x3 2x1/2 52x3 1/2	23517 4.6 320 33.7 110-2300 H C 7-3 13 1/2 PC Wa Zen M NE NE D BL Pe Blo Own M Ros O4TB 722 G 4X 132 93 36 42x3 2x1/2 52x3 1/2	24474 4.6 265 40.8 91-2300 H C 7-3 13 1/2 PC Wa Zen M NE NE D BL Pe Blo Own M Ros B14IM 324 G 150 105 34 42x3 2x1/2 52x3 1/2	25477 4.6 460 60.0 145-2000 H C 4-3 1/2 13 1/2 PC Wa Zen M NE NE O HE Pe Blo Own U Ros B14IM 324 G 150 107 80 34 42x3 2x1/2 52x3 1/2	26402 4.6 330 45.9 125-2500 F G G 7-3 13 1/2 PC Wa Zen M NE NE O HE Pe Blo Own U Ros B1237 4A 610 GGG 107 80 34 42x3 2x1/2 52x3 1/2	27402 4.6 330 45.9 125-2500 F G G 7-3 13 1/2 PC Wa Zen M NE NE O HE Pe Blo Own U Ros 4A 610 GGG 107 80 34 42x3 2x1/2 52x3 1/2	28282 4.6 176 33.8 72-2800 L G A 7-2 1/2 6 1/2 FP Opt Str M AL AL PBL Yo Spi Wls 41H 918 G CD 120 72 34 44x3 50x4	29295 4.6 190 33.7 70-2600 L G A 7-2 1/2 6 1/2 FP Opt Str M AL AL PBL Yo Spi Wls 41H 918 G CD 120 72 34 44x3 50x4	30361 4.7 235 38.4 82-2400 L G A 7-2 1/2 6 1/2 FP Opt Str M AL AL PBL Yo Spi Wls 41H 918 G CD 120 72 34 44x3 50x4	31428 4.6 283 45.3 104-2200 L G A 7-3 13 1/2 PC Ha Str M AL AL PBL Yo Spi Wls 41H 918 G CD 120 72 34 44x3 50x4	33707 4.6 455 60.0 148-2000 L G A 7-3 13 1/2 PC Ha Str M AL AL PBL Yo Spi Wls 41H 918 G CD 120 72 34 44x3 50x4	34779 4.6 505 66.2 163-2000 L G A 7-3 13 1/2 PC Ha Str M AL AL PBL Yo Spi Wls 41H 918 G CD 120 72 34 44x3 50x4	35777 4.6 646 60.0 127-2000 L G A 7-3 13 1/2 PC Ha Str M AL AL PBL Yo Spi Wls 41H 918 G CD 120 72 34 44x3 50x4	36228 7.1 156 27.3 63-2800 L G A 7-2 1/2 6 1/2 FP Opt Str M AL AL PBL Yo Spi Wls 41H 918 G CD 120 72 34 44x3 50x4	37328 5.0 193 13.8 72-2800 L G A 7-2 1/2 6 1/2 FP Opt Str M AL AL PBL Yo Spi Wls 41H 918 G CD 120 72 34 44x3 50x4	38339 5.0 235 33.4 94-2800 L G A 7-2 1/2 6 1/2 FP Opt Str M AL AL PBL Yo Spi Wls 41H 918 G CD 120 72 34 44x3 50x4	39383 5.0 265 43.3 106-2800 L G A 7-2 1/2 6 1/2 FP Opt Str M AL AL PBL Yo Spi Wls 41H 918 G CD 120 72 34 44x3 50x4	40383 5.0 265 43.3 106-2800 L G A 7-2 1/2 6 1/2 FP Opt Str M AL AL PBL Yo Spi Wls 41H 918 G CD 120 72 34 44x3 50x4	41428 4.6 245 40.8 94-2200 L G A 7-3 13 1/2 PC Ha Str M AL AL D FU Yo Blo Own-Wis Ros W2/4IA 328 G 119 88 34 44x3 50x4	42478 4.6 320 51.3 104-2200 L G A 7-3 13 1/2 PC Ha Str M AL AL D FU Yo Blo Own-Wis Ros W2/4IA 328 G 109 72 34 44x3 50x4	43529 4.9 350 51.3 114-2200 L G A 7-3 13 1/2 PC Ha Str M AL AL D FU Yo Blo Own-Wis Ros W2/4IA 380 G 109 72 34 44x3 50x4	44707 4.6 460 60.0 148-2000 L G A 7-3 13 1/2 PC Ha Str M AL AL d BL Yo Blo Own-Wis Ros W2/4IA 380 G 168 102 34 52x4 54x4	45779 4.5 508 60.2 164-2000 L G A 7-3 13 1/2 PC Ha Str M AL AL d BL Yo Blo Own-Wis Ros W2/4IA 380 G 168 102 34 52x4 54x4	46339 4.7 225 33.8 75-2200 L G C 7-2 1/2 13 1/2 PC No Zen M DR DR PBB Yo Spi TWH Ros L41H 287 a TD 81 49 1/2 34 48x3 1/2 50x2 1/2	47282 5.3 176 33.7 72-2800 L G C 7-2 1/2 13 1/2 PC No Zen M DR DR PBB Yo Spi TWH Ros L41H 287 a TD 88 52 34 42x2 1/2 50x2 1/2	48282 5.3 176 33.7 72-2500 L G C 7-2 1/2 13 1/2 PC No Zen M DR DR PBB Yo Spi TWH Ros L41H 342 a FD 119 72 34 44x3 52x3	49330 4.7 210 33.8 70-2000 L G C 7-2 1/2 13 1/2 PC No Zen M DR DR PBB Yo Spi TWH Ros L41H 342 a FD 119 72 34 44x3 52x3	50383 4.7 265 43.3 91-2000 L G C 7-2 1/2 13 1/2 PC Ha Str M LN RB PBB Ch Blo Own B3S Ros B4IMV 518 G TX 112 82 34 44x2 1/2 50x3	51383 4.7 265 43.3 91-2000 L G C 7-2 1/2 13 1/2 PC Ha Str M LN RB PBB Ch Blo Own B3D Ros B4IMV 518 G TX 112 82 34 44x2 1/2 50x3	52453 4.9 297 48.6 95-2000 L G C 7-3 15 PC Ha Zen M LN RB PBB Ch Blo Own C3D Ros B4IMV 518 G TX 112 82 34 44x2 1/2 50x3	53453 4.9 297 48.6 95-2000 L G C 7-3 15 PC Ha Zen M LN RB PBB Ch Blo Own FC Ros B4IMV 666 G TX 112 82 34 44x2 1/2 50x3	54500 4.9 93 330 4.6 106-2000 L G A 7-3 12 1/2 PC Ha Zen M LN RB PBB Ch Blo Own FB Ros B4IMV 666 G TX 112 82 34 44x2 1/2 50x3	55529 4.9 350 51.3 112-2000 L G A 7-3 12 1/2 PC Ha Zen M LN RB PBB Ch Blo Own FD Ros B4IMV 666 G TX 112 82 34 44x2 1/2 50x3	56774 4.5 440 60.0 142-2000 L G A 7-3 12 1/2 PC Ha Zen M LN RB d BL Ch Blo Own BG3 Ros B4IMV 666 G FD 119 85 36 48x3 1/2 52x4	58855 4.5 555 72.8 180-2200 L G A 7-3 12 1/2 PC Ha Zen M LN RB d BL Ch Blo Own GD Ros B4IMV 666 G FD 119 85 36 48x3 1/2 52x4	59381 4.5 240 40.8 85-2200 L G C 7-2 1/2 12 1/2 FP Ow Zen M DR DR P.Ow Yo Own FN Ros O4FXM 450 D FM 126 84 34 48x3 48x3	604624 4.5 300 46.0 10-1900 L G C 7-3 13 1/2 PC Ha Zen M DR DR P.Ow Yo Own FM Ros O4FXM 450 D FM 126 84 34 48x3 48x4	61517 4.5 330 51.0 110-1900 L G C 7-3 13 1/2 PC Ha Zen M DR DR P.Ow Yo Own F Ros O4FXM 600 D FX 114 84 36 52x4 52x4	62517 4.5 330 51.0 110-1900 A L G C 7-3 13 1/2 PC Ha Zen M DR DR P.Ow Yo Own F Ros O4FXM 600 D FX 126 96 36 52x4 52x4	63677 4.5 440 60.0 130-1900 L G C 7-3 13 1/2 PC Ha Zen M DR DR P.Ow Yo Own F Ros O4FXM 600 D FX 126 96 36 52x4 52x4	64677 4.5 440 60.0 130-1900 L G C 7-3 13 1/2 PC Ha Zen M DR DR P.Ow Yo Own F Ros O4FXM 600 D FX 126 96 36 52x4 52x4	65360 4.5 240 40.8 90-2500 H G N 7-2 1/2 13 CC KP Zen M AL AL P.LI GO Spi Shu 15692B12 Ros L6IHV 708 G CD 210 125 34 1/2 40x2 1/2 52x4	66420 4.4 240 40.8 90-2500 L G C 7-2 1/2 11 1/2 FP Op Zen M DR DR P.LI Pe Spi Shu 15692B12 Ros L6IHV 708 G CD 210 125 34 1/2 40x2 1/2 46x3	67420 5.2 300 44.0 130-2800 H G C 7-2 1/2 12 1/2 FP No Zen M DR DR P.BL Pe Spi Shu 15692B12 Ros L6IHV 708 G CD 210 125 34 1/2 40x2 1/2 46x3	68381 4.6 276 40.0 106-2000 H G C 7-2 1/2 13 FP No Zen M DR DR P.BL Pe Spi Tim 33000W Ros W661A 459 a TD Opt 34 40x2 1/2 56x4	69428 4.6 276 40.0 118-2600 H G C 7-2 1/2 13 FP Op Zen M DR DR P.BL Pe Spi Tim 33000W Ros W661A 459 a TD Opt 34 40x2 1/2 56x4	70700 4.6 265 40.8 138-2500 H G C 7-2 1/2 13 FP Op Zen M DR DR P.BL Pe Spi Tim 33000W Ros W661A 525 TD Opt 34 46x3 66x4	71728 4.6 265 40.8 91-1850 H G C 7-2 1/2 13 FP Op Zen M DR DR P.BL Pe Spi Tim 27450W Ros W661A 525 TD Opt 34 46x3 66x4	72728 4.6 265 40.8 100-2000 H G C 7-2 1/2 13 FP Op Zen M DR DR P.BL Pe Spi Tim 27450W Ros W661A 526 TD Opt 34 46x3 66x4	73611 4.6 384 54.0 122-2300 L G A 7-2 1/2 13 1/2 FP Str M DR DR P.BL Pe Spi Tim 27450W Ros W661A 526 TD Opt 34 46x3 66x4	74779 4.6 508 60.2 164-2000 L G A 7-2 1/2 13 1/2 FP Str M DR DR P.BL Pe Spi Tim 30000W Ros W661A 526 TD Opt 34 46x3 66x4	75263 4.6 320 51.3 164-2100 L G A 7-2 1/2 13 1/2 FP Str M DR DR P.BL Pe Spi Tim 30000W Ros W661A 526 TD Opt 34 46x3 66x4	76529 4.6 350 51.3 114-2200 L G A 7-3 13 1/2 PC No Zen M DR DR P.BL Pe Spi Tim 26450W Ros W661A 526 TD Opt 34 46x3 66x4	77529 4.6 350 51.3 114-2200 L G A 7-3 13 1/2 PC No Zen M DR DR P.BL Pe Spi Tim 26450W Ros W661A 526 TD Opt 34 46x3 66x4	78529 4.6 350 51.3 114-2200 L G A 7-3 13 1/2 PC No Zen M DR DR P.BL Pe Spi Tim 26450W Ros W661A 526 TD Opt 34 46x3 66x4	79728 4.6 284 50.9 93-2200 L G C 7-3 12 1/2 PC Ha Zen M AL AL D Co Go Spb Shu 5582B Ros W641A 720 G TD 162 103 34 45 1/2 2 58x4	80501 4.4 330 48.6 111-2200 L G C 7-3 12 1/2 PC Ha Zen M AL AL D Co Go Spb Shu 678 Ros W641A 720 G TD 162 103 34 45 1/2 2 58x4	81529 4.5 350 51.3 114-2200 L G C 7-3 12 1/2 PC Ha Zen M AL AL D Co Go Spb Shu 678 Ros W641A 720 G TD 162 103 34 45 1/2 2 58x4	82707 4.5 455 60.0 148-2000 L G C 7-3 13 1/2 PC Ha Zen M AL AL D Co Go Spb Shu 678 Ros W641A 720 G TD 162 103 34 45 1/2 2 58x4	83211 5.3 130 25.3 60-3100 L G C 7-3 13 1/2 PC Ha Zen M AL AL D Co Go Spb Shu 678 Ros W641A 720 G TD 162 103 34 45 1/2 2 58x4	84309 4.7 198 21.0 96-3000 L G C 7-3 13 1/2 PC Ha Zen M AL AL D Co Go Spb Shu 678 Ros W641A 720 G TD 162 103 34 45 1/2 2 58x4	85462 5.2 324 46.0 125-2600 L G A 7-3 13 1/2 PC Ha Zen M AL AL D Co Go Spb Shu 678 Ros W641A 720 G TD 162 103 34 45 1/2 2 58x4	86462 5.2 324 46.0 125-2600 L G A 7-3 13 1/2 PC Ha Zen M AL AL D Co Go Spb Shu 678 Ros W641A 720 G TD 162 103 34 45 1/2 2 58x4	87677 4.7 440 60.0 125-1800 L G A 7-3 13 1/2 PC Ha Zen M AL AL D Co Go Spb Shu 678 Ros W641A 720 G TD 162 103 34 45 1/2 2 58x4	88677 4.4 440 60.0 125-1800 L G A 7-3 13 1/2 PC Ha Zen M AL AL D Co Go Spb Shu 678 Ros W641A 720 G TD 162 103 34 45 1/2 2 58x4	89263 5.4 164 31.9 67-2600 L G A 7-2 1/2 13 1/2 FP No Zen M DR DR P.BB Pe Blo Tim 26450N Ros W64r1A 630 H FD 214 144 32 33 1/2 42 1/2 x3 46x3 1/2	90263 5.4 164 31.9 67-2600 L G A 7-2 1/2 13 1/2 FP No Zen M DR DR P.BB Pe Blo Tim 26450N Ros W64r1A 630 H FD 214 144 32 33 1/2 42 1/2 x3 46x3 1/2	91381 4.8 240 40.8 85-2400 L G A 7-2 1/2 13 1/2 FP Wa Zen M DR DR P.BB Pe Blo Tim 27050N Ros W64r1A 630 H FD 214 144 32 33 1/2 42 1/2 x3 46x3 1/2	92381 4.8 240 40.8 85-2400 L G A 7-2 1/2 13 1/2 FP Wa Zen M DR DR P.BB Pe Blo Tim 27050N Ros W64r1A 630 H FD 214 144 32 33 1/2 42 1/2 x3 46x3 1/2	93381 4.8 240 40.8 85-2200 L G C 7-2 1/2 13 1/2 CC Mo Zen M DR DR P.BB Pe Blo Tim 27450 Ros W64r1A 630 H FD 214 144 32 33 1/2 42 1/2 x3 46x3 1/2	94677 4.5 240 60.0 125-2000 L G H A 4-3 1/2 13 1/2 PC Wa Zen M NE NE D BL Pe Blo Tim 131F Ros B61MV 504 G T4 220 145 34 48x3 1/2 40x2 1/2	95517 4.5 330 51.3 110-2400 L G C 7-3 13 1/2 PC Wa Zen M NE NE D BL Pe Blo Tim 131F Ros B61MV 504 G T4 220 145 34 48x3 1/2 40x2 1/2	96525 4.5 380 48.6 128-2100 L G C 4-3 10 1/2 PC Pe Zen M DR DR d BL Yo Blo Shu 715-11 Ros W64r1A 720 G TD 139 88 34 38 1/2 41 1/2 x3 53x4	97616 4.5 455 57.0 149-3100 L G C 7-2 1/2 10 1/2 PC No Zen M DR DR P.BL Yo Spi Tim 31020 Ros L61HV 559 G TX 140 83 34 37 1/2 42 1/2 x3 46x3	98255 4.6 182 27.3 90-3200 L G C 4-2 1/2 6 1/2 PC Wa Zen M DR DR D FU Yo Spi Tim 31020 Ros L61HV 459 G TX 140 83 34 37 1/2 42 1/2 x3 46x3	99358 4.6 254 38.4 110-2800 L G C 7-2 1/2 12 1

Line Number	MAKE AND MODEL	Wheels Driven—6-Wheelers			GENERAL See Keynoter			TIRE SIZE		MAJOR UNITS						FRAME	
					Chassis Price	Standard Wheelbase	Max. W. B. Furnished	Gross Vehicle Weight	Front	ENGINE	TRANSMISSION	REAR AXLE	Make and Model	Location and Forward Speeds	Gear and Type	GEAR RATIOS	Side Rail Dimensions
		Tonnage Rating							Rear	No. of Cylinders Bore and Stroke	Aux. Location and Speeds	Drive and Torque	Make and Model	In High	In Low	Type	
1	Ken. .895BT 2C7	2380	188	224	25500	7350	P32x6	DP32x6	Her JXC	6-3½ x 4½	BL 234	U 4 Op Tim SBT151	SF	A 7-4 45.5	8x3x14	TL	
2	1275BT 2C8	3450	188	224	26000	8000	B8.25/20	DB8.25/20	Her WXC2	6-4½ x 4½	BL 334	U 4 Op Tim SBT151	SF	A 7-4 45.5	8x3x14	TL	
3	1468BT 2C9	4250	188	224	33000	9000	B9.00/20	DB9.00/20	Bud K393	6-4½ x 4½	BL 334	U 4 Op Tim SBT251	SF	A 7-8 48.	8x3x14	TL	
4	186SDT 2C10	6450	205	235	38000	10500	B9.00/20	DB9.00/20	Her YXC2	6-4½ x 4½	BL 1554	U 4 A 3 Tim Sdt310w	2F	H 7.33 104.	9x3x14	T	
5	241SDT 2C10	6850	205	235	40500	11000	B9.00/20	DB9.00/20	Her RXB	6-4½ x 4½	BL 714	U 4 A 3 Tim Sdt310w	2F	H 7.33 85.5	9x3x14	T	
6	D-346 4R 10	10250	210	240	40500	14300	B9.75/20	DB9.75/20	Cum. HA6	6-4½ x 6	BL 714	U 4 A 3 Tim SW320W	WF	H 6.8 92	8x3x14	C	
7	346A 4R 10	8800	210	240	40500	13000	B9.75/20	DB9.75/20	Bud GF-6	6-4½ x 4½	BL 714	U 4 A 3 Tim SW310W	WF	H 7.25 84.5	8x3x14	C	
8	346B 4R 10	8550	210	240	40500	13000	B9.75/20	DB9.75/20	Bud GF-6	6-4½ x 4½	BL 714	U 4 A 3 Tim SW310W	WF	H 7.25 98.4	8x3x14	C	
9	346C 4R 10	9500	210	240	40500	14000	B9.75/20	DB9.75/20	Bud GF-6	6-5x6	BL 714	U 4 A 3 Tim SW310W	WF	H 7.25 88.4	8x3x14	C	
10	386C 4R 10	10200	210	240	50100	14500	B9.75/20	DB9.75/20	Bud GF-6	6-5x6	BL 714	U 4 A 3 Tim SW410W	WF	H 7.60 103.	8x3x14	C	
11	Kleiber. .81	1900	180	190	20000	6500	P32x6	DP32x6	Her JXB	6-3½ x 4½	BL 2241	U 4 Op Tim SBT75	WF	R 5.14 32	7½x3x14	C	
12	121	2800	190	200	26000	8500	B8.25/20	DB8.25/20	Con 18R	6-4x4	BL 3241	U 4 Op Tim SBT151	WF	R 6.17 33.4	7½x3x14	C	
13	141	3950	200	210	33000	9500	B9.00/20	DB9.00/20	Con 21R	6-3½ x 4½	BL 5241	U 4 Op Tim SBT251	WF	R 6.84 41	7½x3x14	C	
14	La Fran.-R. Q6 4R 9-12	1165	216	220	40000	14900	B10.50/20	DB10.50/20	Own 312B	12-4x5	BL 114	U 4 Op Tim SW410W	WF	Op. Opt. 125.5	8x3x14	L	
15	Le Moon (9) 701 4R 5-6	4475	187	199	...	8500	B8.25/20	DB8.25/20	Lyc AEC	6-3½ x 4½	BL 114	U 5 No T' 63703-07H	WF	H 6.20 45.8	7x3x14	B	
16	(9) 801 4R 6-7	5100	187	199	...	9720	B9.00/20	DB9.00/20	Lyc AEC	6-3½ x 4½	BL 114	U 5 No T' 63703-07H	WF	H 6.75 47.7	7x3x14	B	
17	802	6000	187	199	...	9800	B9.00/20	DB9.00/20	Wau 68RL	6-4½ x 5½	BL 607	U 5 No T' 65703-07H	WF	H 6.75 47.7	7x3x14	B	
18	900	4R 7-8	5775	191	203	12600	B9.75/24	DB9.75/24	Wau 6AB	6-4½ x 5½	BL 714	U 4 A 3 Tim SW310W	WF	H 9.25 86.0	9x4x4	B	
19	1000	4R 8-10	7950	196	208	14000	B9.75/24	DB9.75/24	Wau 6RB	6-5x5	BL 714	U 4 A 3 Tim SW310W	WF	H 9.25 128.	9x4x4	B	
20	1000	4R 10-12	9750	196	208	14000	B9.75/24	DB9.75/24	Wau 6RB	6-5x5	BL 714	U 4 A 3 Tim SW410W	WF	H 9.25 128.	9x4x4	B	
21	1200D 4R 12-14	12500	196	208	14000	B9.75/24	DB9.75/24	Wau 6RB	6-5x5	BL 714	U 4 A 3 Tim SW410W	WF	H 9.25 128.	9x4x4	B		
22	Mack. BX 4R 8-15	7950	178	207	12000	B8.25/22	DB8.25/22	Own CF	6-4½ x 5½	BL 735	U 4 A 3 Tim SW410W	WF	H 7.6 47.6	9x4x4	B		
23	BQ 4R 8-15	9350	224	248	15000	B9.75/22	DB9.75/22	Own BQ	6-4½ x 5½	BL 724	U 4 A 3 Tim SW410W	WF	H 7.6 47.6	9x4x4	B		
24	AC 4R 8-15	8500	217	257	14550	P40x8	DP40x8	Own BQ	6-4½ x 5½	BL 724	U 4 A 3 Tim SW410W	WF	H 7.6 47.6	9x4x4	B		
25	AK 4R 8-15	9000	217	257	15900	B9.75/22	DB9.75/22	Own BQ	6-4½ x 5½	BL 724	U 4 A 3 Tim SW410W	WF	H 7.6 47.6	9x4x4	B		
26	AP 4R 8-15	10500	217	257	14850	P40x8	DP40x8	Own AP	6-5x6	BL 724	U 4 A 3 Tim SW410W	WF	H 7.6 47.6	9x4x4	B		
27	AP 4R 8-15	11000	217	257	16400	B9.75/22	DB9.75/22	Own AP	6-5x6	BL 724	U 4 A 3 Tim SW410W	WF	H 7.6 47.6	9x4x4	B		
28	Mar.-Her. TH310A-6 10	10000	193	229	14070	B9.75/22	DB9.75/22	Her RXC	6-4½ x 5½	BL 724	U 5 A 2 Tim 5A530	WF	R 9.11 163.	8½x3x14	P		
29	(13) TH 315 6-12 13	12500	198	234	15420	B9.75/22	DB9.75/22	Her HXB	6-5x6	BL 724	U 4 A 3 Own-Wis	2F	R 9.11 163.	8½x3x14	P		
30	(13) TH 320 6-15 18	14500	225	255	18450	B10.50/24	DB10.50/24	Her HXC	6-5½ x 6	BL 724	U 4 A 3 Own-Wis	2F	R 9.11 52.7	10x3x3	P		
31	Moreland R.A.15 2C3	1550	153	159	15000	5300	B6.50/20	DB6.50/20	Her JXC	6-3½ x 4½	BL 224	U 4 A 3 Tim SBT75	WF	R 5.66 35.0	7½x2½x14	T	
32	RA20 2C5	1981	149	Op	20000	6100	P32x6	DP32x6	Her JXC	6-3½ x 4½	BL 224	U 4 A 3 Tim SBT151	WF	R 6.17 38.2	8½x3x14	T	
33	BD21M 4C5	3534	184	Op	21000	8300	B7.50/20	DB7.50/20	Her WXC3	6-4½ x 4½	BL 334	U 4 A 3 Tim 64500	WF	R 6.40 39.6	9½x3x14	T	
34	ED25M 4C7	4067	184	Op	25000	8900	B8.25/20	DB8.25/20	Her WXC3	6-4½ x 5½	BL 334	U 4 A 3 Tim 65000	WF	R 7.50 46.0	9½x3x14	T	
35	HD34M 4C10	5869	220	34000	11000	B9.00/20	DB9.00/20	Her RXB	6-4½ x 5½	BL 524	U 4 A 3 Tim 65720	WF	R 8.50 60.0	9½x3x14	T		
36	TD34 4C10	7607	174	204	34000	13250	B9.75/20	DB9.75/20	Con 16H	6-4½ x 5½	BL 724	U 4 A 3 Tim 68720W	WF	R 8.75 62.0	11x3x14	T	
37	Sterling FBT152 2R 8½	4580	174	204	30400	9500	B9.00/20	DB9.00/20	Wau 6-110	6-4x4	BL 724	U 4 A 3 Tim 68720W	WF	R 7.8 55.5	10x3x14	T	
38	FDT152 2R 8½	4705	174	204	30400	9700	B9.00/20	DB9.00/20	Wau 6-110	6-4x4	BL 724	U 4 A 3 Tim 68720W	WF	R 9.0 52.7	10x3x14	T	
39	FDS180 4R 8-10	8605	158	Op	36000	12850	P40x8	DP40x8	Wau AB	6-4½ x 5½	BL 224	U 4 A 3 Tim 410	2F	R 9.1 113.	15x3x14	T	
40	FDS200 4R 10-12	9130	159	Op	40000	13550	P40x8	DP40x8	Wau RB	6-5x5	BL 224	U 4 A 3 Tim 410	2F	R 9.1 113.	15x3x14	T	
41	FCS210 4R 15-18	10175	Op	42000	14750	P40x8	DP40x8	Wau RB	6-5x5	BL 224	U 4 A 3 Tim 410	2F	R 9.5 113.	15x3x14	T		
42	FDT120 2R 12-12½	7670	178	208	40000	12050	P40x8	DP40x8	Wau 6-125	6-4½ x 5½	BL 724	U 4 A 3 Tim 410	2F	R 8.85 58.5	12x3x14	L	
43	FDT250 2R 16-16½	8555	186	216	50000	13550	P42x9	DP42x9	Wau RB	6-5x5	BL 724	U 4 A 3 Tim 410	2F	R 8.85 55.5	13x3x14	L	
44	FCT180 2R 10-10½	2265	178	208	36000	11200	P36x8	DP36x8	Wau SRL	6-4½ x 5½	BL 724	U 4 A 3 Tim 410	2F	R 8.85 55.5	13x3x14	L	
45	FCT200 2R 12-12½	7685	178	208	40000	11800	P40x8	DP40x8	Wau 6-125	6-4½ x 5½	BL 724	U 4 A 3 Tim 410	2F	R 8.85 55.5	13x3x14	L	
46	Ward. 440TC	11000	240	246	44000	11200	B7.50/22	DB7.50/22	Con D-11 HA	6-4½ x 5½	BL 735	U 4 A 3 Tim SBT420w	WF	R 6.42 40.4	14x3x14	T	
47	La Fr. 440TC	9350	240	246	44000	13700	B7.50/22	DB7.50/22	Wau RB	6-5x5	BL 735	U 4 A 3 Tim SBT420w	WF	R 6.42 40.4	14x3x14	T	
48	340TM 7½	4700	204	230	25000	9200	B8.25/20	DB8.25/20	Wau MK	6-4½ x 5½	BL 5352	U 5 A 3 Tim SBT251H	WF	T Opt. Opt.	12x3x14	T	
49	40005	7100	203	241	40000	13000	B9.75/20	DB9.75/20	Wau 6-125	6-4½ x 5½	BL 5352	U 4 A 3 Tim SW251	WF	R 8.5 65.5	14x3x14	T	
50	Wh. 6208W55 4R 5-6	123 205	10000	B8.25/20	DB8.25/20	Own A7	6-4½ x 5½	Own 4B	6-4½ x 5½	Own 4B	6-4½ x 5½	U 4 A 3 Tim SW251	WF	R 8.5 44.8	8½x3x14	C	
51	642SW320 4R 7-9	198 210	12670	B9.00/20	DB9.00/20	Own 1AB	6-4½ x 5½	Own 7B	6-4½ x 5½	Own 7B	6-4½ x 5½	U 4 A 3 Tim SW310W	WF	R 8.5 55.5	8½x3x14	C	
52	643SW420 4R 9-11	198 215	14400	P40x8	DP40x8	Own 1AB	6-4½ x 5½	Own 7B	6-4½ x 5½	Own 7B	6-4½ x 5½	U 4 A 3 Tim SW410W	WF	R 10.2 69.1	8½x3x14	C	

Hercules Develops Two Small

Fours for Commercial Use

HERCULES Motors Corp. of Canton, Ohio, has added the following fours to its present line of heavy duty four- and six-cylinder engines:

Model ZX-A, 2½ in. bore, 3 in. stroke, 58.8 displacement; Model ZX-B, 2½ in. bore, 3 in. stroke, 64.9 displacement.

These two L-head models are identical in

Line Number	ENGINE DETAILS										Governor Make	Fuel Feed	Ignition System Make	Generator, Starter Make	Clutch Type and Make	Radiator Make	Universals Make	Make and Model	Steering Gear Make	BODY MOUNTING DATA			Springs		
	Piston Displacement	Compression Ratio	Torque lb. ft.	N.A.C.C. Rated H.P.	Max. Brake H.P. at R.P.M. Given	Valve Arrangement	Camshaft Drive	Piston Material	Main Bearings	Number and Diameter															
1-282	4.7	176	33.7	73-2700	L G A	7-2½	10½	FP	No	Zen	M DR	P BL	Pe	Spi	Tim 31000H	Ros L61HV	536a	TX FD	168	102	31 1/2	38x2 1/4	52x4	N	
2-361	4.4	235	40.8	83-2400	L G A	7-2½	13 1/2	FP	No	Zen	M DR	P BL	Pe	Spi	Tim 33000H	Ros L61HV	536a	FD	168	102	31 1/2	38x2 1/4	52x4	N	
3-393	4.9	260	42.1	103-2600	L G C	7-3	11 1/2	FP	No	Zen	M DR	P BL	Pe	Spi	Tim 35000N	Ros Ws4RA	815a	FD	192	120	33 1/2	38x2 1/4	52x4	N	
4-453	4.7	300	48.6	98-2200	L G A	7-3	14	CC	Ha	Zen	M DR	P BL	Pe	Spi	Tim 36020N	Ros Ws4RA	815a	FD	192	120	33 1/2	42x3	56x4	N	
5-501	4.9	330	5.6	110-2200	L G A	7-3	12 1/2	CC	Ha	Zen	M DR	P BL	Pe	Spi	Tim 36020N	Ros Ws4RA	815a	FD	192	120	33 1/2	42x3	56x4	N	
6-672	4.4	420	57.1	125-1800	H G C	7-3 1/4	13 1/2	FP	Cu	No	Zen	M DR	P BL	Pe	Spi	Tim 36020N	Ros Ws4RA	815a	FD	192	120	33 1/2	42x3	56x4	N
7-448	4.4	322	3.3	125-2400	H G C	4-2 1/4	10 1/2	FP	Cu	No	Zen	M DR	P BL	Pe	Spi	Tim 36020N	Ros Ws4RA	815a	FD	192	120	33 1/2	42x3	56x4	N
8-638	4.3	310	54.1	126-1850	L G C	4-2 1/4	10 1/2	CC	Bu	Zen	M DR	P BL	Pe	Spi	Tim 36020N	Ros Ws4RA	815a	FD	192	120	33 1/2	42x3	56x4	N	
9-707	4.4	506	60.8	170-2000	H G C	7-3 1/4	11 1/2	FP	HS	Zen	M DR	P BL	Pe	Spi	Tim 36020N	Ros Ws4RA	815a	FD	192	120	33 1/2	42x3	56x4	N	
10-707	4.4	506	60.8	170-2000	H G C	7-3 1/4	11 1/2	FP	HS	Zen	M DR	P BL	Pe	Spi	Tim 36020N	Ros Ws4RA	815a	FD	192	120	33 1/2	42x3	56x4	N	
11-263	5.4	164	31.5	70-3000	L G C	7-2 1/2	10 1/2	PC	No	Str	M DR	P BL	Ow	Spi	Tim 30000H	Ros L61HV	412G	TD	168	104	34	38x2 1/4	47x3	N	
12-339	4.2	212	33.4	90-2700	H G C	7-2 1/2	13 1/2	PC	No	Str	M DR	D BL	Ow	Spi	Tim 33020H	Ros L61HV	559G	TD	170	108	34	38x2 1/4	56x4	N	
13-427	4.2	270	45.9	118-2500	H G C	7-2 1/2	13 1/2	PC	No	Str	M DR	D BL	Ow	Spi	Tim 33020H	Ros L61HV	654G	TD	180	118	34	38x2 1/4	56x4	N	
14-754	5.1	510	76.7	7240-2900	H G C	4-3 1/2	10 1/2	PC	No	Zen	M DR	D BL	Ow	Spi	Tim 27450tw	Ros Ws6LA	782d	DA	111 1/2	24	44x3	None	N		
15-420	5.2	300	44.4	130-2800	L G C	5-2 1/2	12 1/2	FP	Ha	Str	M DR	D BL	Ch	Spi	Tim 35000H	Ros L61HV	525a	CD	162	108	34	39x2 1/2	46x3	N	
16-420	5.2	300	44.4	130-2800	L G C	5-2 1/2	12 1/2	FP	Ha	Str	M DR	D BL	Ch	Spi	Tim 35000H	Ros Ws6LA	633a	CD	162	108	34	39x2 1/2	46x3	N	
17-468	4.5	300	45.9	98-2000	L G G A	7-3	13 1/2	PC	Wa	Str	M My	D FU	Ch	Spi	Tim 35000tw	Ros Ws6LA	711a	CD	162	108	34	39x2 1/2	46x3	N	
18-468	4.5	300	45.9	98-2000	L G G A	7-3	13 1/2	PC	Wa	Str	M My	D FU	Ch	Spi	Tim 26045tw	Ros Ws6LA	966a	CD	162	108	34	48x3 1/2	53x4	N	
19-549	4.5	332	48.6	61-1000	L G G A	4-3 1/2	11 1/2	PC	Wa	Str	M My	D FU	Ch	Spi	Tim 26045tw	Ros Ws6LA	966a	CD	162	108	34	48x3 1/2	53x4	N	
20-677	4.6	420	60.0	61-127	2000	L G G A	4-3 1/2	11 1/2	PC	No	No	P No	D BL	Ow	Spi	Tim 27045tw	Ros Ws6LA	966a	CD	162	108	34	48x3 1/2	53x4	N
21-672	4.7	420	60.0	114-1800	L G G C	7-3 1/2	16 1/2	FP	Pe	Str	M RB	NE	P Ow	Ow	Spi	Own BX	Own O61A	974a	FX	192	109	34	54 1/2 x 4	48x3	N
22-688	5.0	310	51.3	117-2400	L G G C	7-3 1/2	16 1/2	FP	Pe	Str	M RB	NE	P Ow	Ow	Spi	Own EQ	Own O61A	902a	FX	192	111	34	50 1/2 x 4	48x3 1/2	N
23-688	5.0	310	51.3	117-2400	L G G C	7-3 1/2	16 1/2	FP	Pe	Str	M RB	NE	P Ow	Ow	Spi	Own AC	Own O61A	930a	FX	180	109	34	48x3 1/2	53x4	N
24-611	5.7	398	64.2	128-2300	L G G C	4-3 1/2	10 1/2	FP	Pe	Str	M RB	NE	P Ow	Ow	Spi	Own AK	Own O61A	104a	FX	180	109	34	48x3 1/2	52x4	N
25-611	5.7	398	64.2	128-2300	L G G C	4-3 1/2	10 1/2	FP	Pe	Str	M RB	NE	P Ow	Ow	Spi	Own AK	Own O61A	930a	FX	180	109	34	48x3 1/2	52x4	N
26-706	4.4	427	43.0	60-138-1900	L G C	4-3 1/2	11 1/2	PS	Ow	Str	M RB	NE	P Ow	Ow	Spi	Own AK	Own O61A	760a	FD	152	102	34	52x4	46x4	N
27-706	4.4	427	60.0	138-1900	L G C	4-3 1/2	11 1/2	PS	Ow	Str	M RB	NE	P Ow	Ow	Spi	Own AK	Own O61A	760a	FD	174	102	34	44x3	46x4	N
28-529	4.5	311	51.3	114-2200	L G A	7-3	14	PC	Ha	Zen	M DR	D FU	Yo	Blo	Spi	Own Ws-Wis	Ros Ws4/61A	760a	FD	223	127	34	52x4	46x4	N
29-707	4.5	460	60.0	148-2000	L G A	7-3 1/2	17	PC	Ha	Zen	M DR	D BL	Yo	Blo	Spi	Own Ws-Wis	Ros Ws4/61A	760a	FD	223	127	34	52x4	46x4	N
30-779	4.5	508	66.2	164-2000	L G A	7-3 1/2	17	PC	Ha	Zen	M DR	D BL	Yo	Blo	Spi	Own Ws-Wis	Ros Ws4/61A	760a	FD	223	127	34	52x4	46x4	N
31-282	5.0	176	33.8	73-2800	L G C	7-2 1/2	10 1/2	PC	No	Zen	M DR	D BL	Yo	Blo	Spi	Own Ws-Wis	Ros Ws4/61A	760a	FD	223	127	34	52x4	46x4	N
32-282	5.0	176	33.8	73-2800	L G C	7-2 1/2	10 1/2	PC	No	Zen	M DR	D BL	Yo	Blo	Spi	Own Ws-Wis	Ros Ws4/61A	760a	FD	223	127	34	52x4	46x4	N
33-383	4.4	262	43.3	92-2400	L G C	7-2 1/2	13 1/2	PC	No	Zen	M AL	P BL	Lo	Cle	Tim 30000H	Ros L61HV	412a	TD	168	71	34	40x2 1/2	44x3	N	
34-383	4.4	262	43.3	92-2400	L G C	7-2 1/2	13 1/2	PC	No	Zen	M AL	P BL	Lo	Cle	Tim 31000H	Ros L61HV	570a	TD	168	67	34	40x2 1/2	44x3	N	
35-501	4.9	330	48.6	61-2200	L G C	7-3	13 1/2	PC	No	Zen	M AL	P BL	Lo	Cle	Tim 32020H	Ros L61HV	578a	TD	192	101	34	41 1/2 x 2 1/2	43 1/2 x 3 1/2	N	
36-611	4.5	384	54.1	127-2300	L G A	7-3	13 1/2	PC	No	Zen	M AL	D BL	Lo	Cle	Tim 26450tw	Ros Ws6LA	898a	TD	216	113	34	42x3	43 1/2 x 4	N	
37-358	5.0	254	38.5	110-2800	L G A	7-2 1/2	12 1/2	CC	Ha	Zen	M DR	D BL	Mo	Spi	Tim 35000H	Ros L41HV	596a	CX	192	91	34	42x2 1/2	57x4	N	
38-358	5.0	254	38.5	110-2800	L G A	7-2 1/2	12 1/2	CC	Ha	Zen	M DR	D BL	Mo	Spi	Tim 35000H	Ros L41HV	596a	CX	192	91	34	42x2 1/2	57x4	N	
39-549	4.5	330	48.6	99-2000	L G C	4-3 1/2	11 1/2	CC	Ha	Zen	M DR	D BL	Mo	Spi	Tim 26450N	Ros Ws4IA	576a	CX	Opt	88	34	48x3	58x4	N	
40-677	4.4	440	60.0	125-2000	L G C	4-3 1/2	11 1/2	CC	Ha	Zen	M DR	D BL	Mo	Spi	Tim 27450N	Ros Ws4IA	792a	CX	Opt	89	34	48x3	58x4	N	
41-677	4.4	440	60.0	125-2000	L G C	4-3 1/2	11 1/2	CC	Ha	Zen	M DR	D BL	Mo	Spi	Tim 27450N	Ros Ws4IA	792a	CX	Opt	89	34	48x3	60x3 1/2	N	
42-622	5.5	324	45.9	125-2400	H G C	7-3	13 1/2	CC	Ha	Zen	M DR	D BL	Mo	Spi	Tim 26450N	Ros O4IA	792a	CX	192	94	34	48x3	(10)	N	
43-677	4.4	440	60.0	125-2000	H G C	4-3 1/2	13 1/2	CC	Ha	Zen	M DR	D BL	Mo	Spi	Tim 27450N	Ros O4IA	792a	CX	192	94	34	48x3	(10)	N	
44-462	5.5	300	45.9	102-2400	H G C	7-3	13 1/2	CC	Ha	Zen	M DR	D BL	Mo	Spi	Tim 26450N	Ros O4IA	1012a	JX	192	94	34	48x3	(10)	N	
45-462	5.5	324	45.9	125-2400	H G C	7-3	13 1/2	CC	Ha	Zen	M DR	D BL	Mo	Spi	Tim 26450N	Ros O4									

Thermoid BRAKE LINING

**HEAVY DUTY
BRAKE BLOCKS**

**HEAVY DUTY
FAN BELTS**

**HEAVY DUTY
CLUTCH FACINGS**

**HEAVY DUTY
RADIATOR HOSE**

Factories and Main Offices: **TRENTON, NEW JERSEY**

Department C

THERMOID RUBBER COMPANY

STAMPEDES spell danger. Milling herds of wild-eyed steers in frantic flight are a menace to life and property. Think of the powerful force, the speed, and the weight that each of your drivers must control by pressure on the brake pedal. And remember that one stampeding truck or delivery car can do as much damage as many stampeding steers.

When you translate the stopping of a car into terms of what such an accomplishment actually represents, you'll appreciate why Thermoid F-M-L Brake Lining is specified by the responsible heads of so many leading companies operating commercial cars and trucks.

Thermoid gives immediate soft-pedal action and maintains it throughout life. Thermoid won't fade out . . . won't grab in damp weather . . . won't score brake drums. One lining for all motor vehicles . . . road conditioned in the factory. When you visualize you realize that Thermoid is the lining for your drivers to use . . . the lining for *you* to specify!

A RADIATOR FOR EVERY AUTOMOTIVE NEED

FOR over 30 years we have assisted a number of leading truck, bus and passenger car manufacturers in the development of new radiator designs, made necessary by radical changes in body styling. With the continuous fin and tube type radiator, we have been able to design a unit of equal, if not greater cooling capacity in a given maximum frontal area.

Long engineers determine cooling efficiency by every manner of engineering and service test to get the most effective heat transfer—and meet the demands for greater cooling efficiency.

LONG MANUFACTURING COMPANY, DETROIT, MICHIGAN

AUTOMOTIVE CLUTCHES . . . RADIATORS . . . GRILLES

FWD Trucks

are available in sizes ranging in capacities from $2\frac{1}{2}$ to 10 tons.

Write for bulletin.

The Four Wheel Drive Auto Co.

Clintonville, Wis.

Kitchener, Ontario, Canada

A Tight Connection All the Time

NOC-OUT
THE
HOSE CLAMP
WITH THE THUMSCREW

Standard equipment hose clamp of the automotive and airplane industry. Your jobber has them.

4307 W. 24TH PL. WITTEK
CHICAGO, ILL. MFG. CO.

Ford Bolsters Bid

(CONTINUED FROM PAGE 36)

tem which has proven so highly successful in giving improved fuel economy for the passenger car.

The truck engine also utilizes new cast-iron cylinder heads with which horsepower output is obtained equal to that of the former powerplant equipped with aluminum heads and single carburetor. The engine develops in excess of 80 hp., approximately 5 hp. more than formerly. A new combustion chamber shape for the cylinder heads gives a greater power output from a lower compression pressure. The compression ratio of the new iron heads is 5.32 to 1.

To assure long bearing life the connecting rod insert bearings are of a new high-load bronze, capable of withstanding high oil temperatures. The crank-shaft is of the new cast alloy-steel.

Among other changes in the truck for 1934 are a new seat cushion with "mattress" type springs.

The front bumper has been lengthened and will be chrome-plated.

News

(CONTINUED FROM PAGE 38)

trot Axle Co. executive, has been named vice-president of the Thornton Tandem Co., President Richard F. Barnum reports. Mr. Gilbert joins Thornton in connection with the expansion of production and marketing of its dual-ratio positive four-wheel drive unit for trucks.

Raymond Selling Fruehaufs

G. W. Chamberlin, vice-president in charge of sales for the Fruehauf Trailer Co., announces appointment of Henry W. Raymond to the sales staff, with headquarter at the factory. Mr. Raymond formerly was general sales manager of the Lapeer Trailer Corp.

Evans and Strawbridge Join

Boyd V. Evans former chief engineer of Detroit Motor Bus Co., and W. L. Strawbridge, have organized the Transportation Materials Co., with offices at 1916 Fairmount Ave., Philadelphia, Pa., and specialize in a complete line of cleaners and equipment for the transportation field, including trucks.

Fisker and Timper Advance

E. W. Timper has been made manager of sales promotion for Chevrolet Motor Co., succeeding C. P. Fisker, now advertising manager.

Furlong Directs Sales

Donald G. Furlong has been appointed director of sales for the Thornton Tandem Co. Formerly Furlong was with the Ford Motor Co. in charge of commercial car and truck sales for the Dearborn branch. He is now inaugurating a distribution policy.

Henry With Gulf Fleet

James S. Henry, automotive engineer, is now with the Gulf Refining Co., in the Houston, Tex., office studying fleet operation. He was formerly with the Humble Oil & Refining Co., Houston.

Drive it

Only a few minutes at the wheel will convince anyone that Marmon-Herrington all-wheel-drive trucks are first in performance—first in dollar-for-dollar value.

Write today for fully illustrated 16-page magazine—just off the press—giving you the detailed story of why Marmon-Herrington is first in the all-wheel-drive field.

MARMON - HERRINGTON
Indianapolis, Indiana, U. S. A.

LUCE
MASTERCRAFT
TRUCK BODIES

Production
and
Custom Built
Body Equipment
Vocationally Designed

LUCE MANUFACTURING CO.
Lansing, Michigan

Julian Deane Resigns

Julian (Larry) Deane, sales promotion manager of United American Bosch Corp., has resigned to become associated with McCann-Erickson, Inc., New York advertising agency.

Franklin F. Chandler

Franklin F. Chandler, 57, vice-president of the Ross Gear & Tool Company, died at his home in Lafayette, Ind., following a brief illness.

Henry Bert Edwards

Henry Bert Edwards, 75, died of pneumonia in Detroit. After serving as branch manager of the Studebaker truck division in Chicago and New York he returned to Detroit as wholesale manager.

John E. Peters

John E. Peters, 60, died in Detroit after a year's illness. For 20 years he had been salesman and then sales manager for Federal Motor Truck Co.

PEAK PERFORMANCE

FRUEHAUF TRAILERS
"Engineered Transportation"

Year in and
Year out...

ONLY peak performance, constantly maintained, can give peak profits. Fruehauf Trailers are built to give ten years or more of profit-producing service. Ask for new booklet "Executive Thinking," sent free upon request.

FRUEHAUF TRAILER COMPANY
10957 Harper Ave. - - - Detroit, Mich.