Sobolev maps between manifolds

F. Bethuel

Let M, N be riemannians manifolds, $m = \dim M$, consider N embedded in \mathbf{R}^{ℓ} (by Nash-Moser theorem); for

$$u:M\to N\subset\mathbf{R}^\ell$$

we consider the functional of p-energy

$$E_p(u) := \int\limits_M |Du|^p \qquad p \ge 1.$$

In order to study such functional, let's introduce the Sobolev space

$$W^{1,p}(M,N) := \left\{ u: M \to \mathbf{R}^\ell \ | \ u \in W^{1,p}(M,\mathbf{R}^\ell), \ u(x) \in N \ \text{a.e.} \right\}.$$

We will consider the following problems, treated in [1], [2]:

- 1^{st}) is $C^{\infty}(M,N)$ dense in $W^{1,p}(M,N)$ w.r.t. the strong topology of $W^{1,p}$?
- 2nd) if not, what is a "good" dense set?
- 3^{rd}) what are the properties of $\overline{C^{\infty}(M,N)}^{W^{1,p}(M,N)}$?
- 4th) what about the weak topology?
- $\mathfrak{Z}^{ ext{th}}$) assume $\partial M \neq \emptyset$ and let $g: \partial M \to N$ belong to the trace space

$$W^{1-1/p,p}(\partial M,N) = \left\{g \in W^{1-1/p,p}(\partial M,\mathbf{R}^\ell) \ | \ g(x) \in N \text{ a.e.} \right\},$$

and try to minimize $\int_M |Du|^p$ on

$$W_g^{1,p}(M,N) = \{ u \in W^{1,p}(M,N) \mid u = g \text{ on } \partial M \};$$

when do we have $W_g^{1,p}(M,N) \neq \emptyset$ for any $g \in W^{1-1/p,p}(\partial M,N)$?

Remark 1 The last question is almost completely open, whether the 3rd one is partially open.

Let's now consider the problem of density

1st case: $p > \dim M = n$.

Theorem 1 If p > m, then $C^{\infty}(M, N)$ is dense in $W^{1,p}(M, N)$ w.r.t. the strong topology.

Proof. Assume that $M = B^m$. Let $\varphi : \mathbf{R}^m \to [0,1]$ be a mollifier:

$$\varphi \in C_c^{\infty}(\mathbf{R}^m), \qquad \int_{\mathbf{R}^m} \varphi(x) \, dx = 1.$$

Let

$$\varphi_n(x) = \frac{1}{n^m} \varphi\left(\frac{x}{n}\right), \qquad x \in \mathbf{R}^m.$$

For $u \in W^{1,p}(M,N)$, consider the convolution $u_h := u * \varphi_h$; by standard theory we have $u_h \in C^{\infty}(M,\mathbf{R}^{\ell})$, moreover $u_h \to u$ in $W^{1,p}(M,\mathbf{R}^{\ell})$.

Thus, by Sobolev embedding theorem (p > n)

$$u_n \to u$$
 in $C^0(M, \mathbf{R}^{\ell})$,

and so

$$\forall \ \varepsilon_0 > 0 \,, \quad \mathrm{dist} \, (u_h(x), N) \leq |u_h(x) - u(x)| \leq \varepsilon_0 \quad \mathrm{if} \ h \leq \overline{h}, \ \forall \ x \in M \,.$$

Consider the tubular nbd. of N

$$\theta_{\varepsilon} = \{ y : \operatorname{dist}(y, N) \leq \varepsilon \}$$

and the nearest point projection $\pi:\theta_{\varepsilon}\to N$, which is well defined and smooth for sufficiently small ε if N is smooth.

Denote by $\widetilde{u}_h := \pi \circ u_h$; then we have

$$\tilde{u}_h \in C^{\infty}(M, N)$$
 and $\tilde{u}_h \to u$ in $W^{1,p}(M, N)$.

For a general manifold M, use local charts and a partition of unity argument.

 2^{nd} case: p=m

Theorem 2 ([4]) If p = m, then $C^{\infty}(M, N)$ is dense in $W^{1,p}(M, N)$.

Proof. The proof is analogous to the previous one, except for the use of the Sobolev theorem; but in this case we use a Poincaré inequality to prove that $\operatorname{dist}(u_h(x), N) \stackrel{h \to 0}{\to} 0$ uniformly in x.

In fact,

(1)
$$\frac{1}{h^m} \int_{B(x,h)} |u(y) - u_h(x)|^m \, dy \le c \int_{B(x,h)} |Du|^m \, dy \quad \forall \ x \in M \,,$$

then

$$\operatorname{dist}(u_h(x), N)^m = \oint_{B(x,h)} \operatorname{dist}(u_h(x), N)^m dy \le$$

$$\le \oint_{B(x,h)} |u_h(x) - u(y)|^m dy \xrightarrow{h \to 0} 0$$

because of (1) and the absolute continuity of the integral.

 3^{rd} case: $p < m = \dim M$.

Theorem 3 If $p < m = \dim M$ then

$$C^{\infty}(M,N)$$
 is dense in $W^{1,p}(M,N) \Leftrightarrow \pi_{[p]}(N) = 0$,

where [p] = greatest integer less or equal to p.

Remark 2 $\pi_k(N) \neq 0$, $k \in \mathbb{N} \Leftrightarrow \exists g : S^k \to N \text{ continuous (or smooth)}$ such that g is *not* homotopic to a constant map.

 $Proof. \implies$

Suppose $\pi_{[p]}(N) \neq 0$, then $\exists g : S^{[p]} \to N$ g not homotopic to a constant map, and we can take $g \in C^1$.

Assume first that $m-1 and <math>M = B^m$. The function $f(x) = g\left(\frac{x}{|x|}\right)$ belongs to $W^{1,p}(M,N)$, but f cannot be approximated by smooth maps. Moreover, $f \in C^{\infty}(M \setminus \{0\}, N)$ (one point singularity).

Assume by contradiction that there exists $f_n \in C^{\infty}(M, N)$, such that $f_n \to f$ in $W^{1,p}(M, N)$; by Fubini's theorem, we may choose some $r_0 \in [0, 1]$, such that

$$f_{n|S_{r_0}^{m-1}} \longrightarrow f_{|S_{r_0}^{m-1}} \quad \text{in } W^{1,p},$$

where $S_{r_0}^{m-1} = \partial B_{r_0}^m(0)$.

Now, by Sobolev theorem we have

$$f_{n|S_{r_0}^{m-1}} \longrightarrow f_{|S_{r_0}^{m-1}} \quad \text{in } C^0.$$

By definition $f_{|S_{r_0}^{m-1}}(x) = g\left(\frac{x}{|x|}\right)$, thus $f_{|S_{r_0}^{m-1}}$ is not homotopic to a constant; on the other hand, $f_{n|S_{r_0}^{m-1}}$ is homotopic to a constant: actually f_n is defined on the whole ball $B^m = M$, so we have the homotopy

$$F: S_{r_0}^{m-1} \times [0,1] \longrightarrow N$$

$$F(x,r) = f_n\left(\frac{rx}{r_0}\right);$$

but homotopy-type is preserved under uniform convergence, and this leads to a contradiction.

In case p = m - 1 we use the same argument, thanks to B. White's theorem, (see [5]), which says that homotopy classes are preserved by $W^{1,p}$ convergence, when p = dimension of the domain (in our case, S^{m-1}).

Consider the case p < m-1. Assume for example, $m-2 \le p < m-1$. Suppose $M = B^{m-1} \times [0,1]$, and let $f: B^{m-1} \to N$ be constructed as in the previous case $(m-1 \le p < m)$; define

$$\widetilde{f}: B^{m-1} \times [0,1] \longrightarrow N$$
 by $\widetilde{f}(z,x) = f(z)$.

Note that the singular set of \tilde{f} is the 1-dimensional set $\{0\} \times [0,1]$, and $\tilde{f} \in W^{1,p}(B^{m-1} \times [0,1], N)$.

If \widetilde{f}_h is a sequence of smooth maps which approximates \widetilde{f} in $W^{1,p}$, then by Fubini's theorem, for some $r_0 \in [0,1]$, $\widetilde{f}_{h|B^{m-1}\times\{r_0\}} \longrightarrow \widetilde{f}_{|B^{m-1}\times\{r_0\}}$ in $W^{1,p}$, then the contradiction follows as previously.

Similarly we treat the other cases, considering $M = B^{[p]+1} \times S^{m-[p]-1}$ anyway, notice that the singular set of the constructed function has dimension m - [p] - 1.

For a general manifold M, work locally as above, then extend the function f as follows:

Case $m-1 \le p < m, \ f:B^m \subset M \to N$: reflect f on a second ball $B_1^m \subset M,$ then the extension of

$$f: B^m \cup B_1^m \to N$$

comes from standard theory.

Case $m-2 \le p < m-1$, f can be extended in a natural way on a torus $T \subset M$ containing B^{m-1} , and the extension on the whole manifold comes again from standard arguments.

Similarly treat the other cases.

 \Leftarrow : the "if" part of the theorem will be proved in the case m-1 and will be a consequence of the following two statements.

Proposition 1 Consider the set

$$R_0 = \{v \in W^{1,p}(M,N) \mid v \in C^0 \text{ except at a finite number of points}\};$$

then R_0 is dense in $W^{1,p}(M,N)$ for m-1

Remark 3 Here we do not assume $\pi_{m-1}(N) = 0$ ([p] = m-1).

Proposition 2 Let $v \in R_0$, then v can be approximated by smooth maps $\Leftrightarrow \pi_{m-1}(N) = 0$.

Proof of Proposition 1. Assume $M = [0, 1]^m$; in the general case we will consider a triangulation of the manifold made by such cubes (... a "cube-ulation" ...).

Thanks to an argument of B. White (see [5]), we may assume that any $u \in W^{1,p}(M,N)$ is such that $u_{|\partial C_i^{(m)}}$ is continuous, with $C_i^{(m)}$ a cube of the cube-ulation we will consider.

In fact, if U is a tubular nbd. of M, and $\pi:U\to M$ is the nearest point projection, then $\widetilde{u}:U\to N, \ \widetilde{u}:=u\circ\pi$ is such that

$$\int\limits_{U}|D\widetilde{u}|^{p}\leq c\int\limits_{M}|Du|^{p}\,.$$

If $X = \bigcup_i \partial C_i^{(m)}$ is the (m-1)-skeleton of a cube-ulation of M, and $h_v : X \to U$, $x \mapsto x + v$, for $|v| \le r$ (r sufficiently small), we have

$$\int_{|v| \le r} dv \int_{X} |D\widetilde{u} \circ h_{V}|^{p} dx = \int_{X} dx \int_{|v| \le r} |D\widetilde{u} \circ h_{V}|^{p} dv \le \int_{X} dx \int_{U} |D\widetilde{u}(y)|^{p} dy \le$$

$$\le |X| \int_{U} |D\widetilde{u}|^{p} \le C \int_{M} |Du|^{p} < +\infty.$$

Hence, by Fubini's theorem we may choose v such that $\tilde{u} \circ h_V \in W^{1,p}(X, N)$; but dim X < p, and by Sobolev theorem we conclude $\tilde{u} \circ h_V \in C^0(X, N)$, and finally $\tilde{u} \in C^0(X + v, N)$.

By definition, $\tilde{u}|_{X+v} = u \circ \pi|_{X+v}$, π is smooth, so $u|_{\pi(X+v)}$ is continuous, $\pi(X+v)$ gives the (m-1)-skeleton of the desired cube-ulation.

As a consequence, we may suppose $u|_{\partial M} \in C^0$ where $M = [0,1]^m$.

Let $\{e_1, \ldots, e_m\}$ be the standard basis of \mathbf{R}^m ; denote by $P_{j,a}$ the hyperplane orthogonal to the vector e_j passing through $A \equiv ae_j$.

For $a \in [0, 1/n]^m$, consider the set

$$W_{j,a_j} = \bigcup_{k=1}^n P_{j,a_j+(k-1)/m}; \ a = (a_j)_{j=1,\dots,m}$$

then

$$\partial M \cup \bigcup_{j=1}^m W_{j,a_j} = \bigcup_{r=1}^m \partial C_r$$

with $\cup C_r$ a grid of mesh 1/n.

Let h = 1/n. By Fubini's theorem, we have

$$E(u) = \int_{M} |Du|^p = \int_{0}^{h} da_j \int_{W_{j,a_j}} |Du|^p$$

 $\forall j = 1, ..., m$; hence we may choose $a = (a_j)_{j=1...,m}$ such that

$$\int\limits_{W_{j,a_j}}|Du|^p\leq \frac{1}{h}E(u)=nE(u);$$

this gives

$$\sum_{r} \int_{\partial C_r} |Du|^p \le \overline{C} n E(u) + \widetilde{C} \int_{\partial M} |Du|^p \le C n E(u).$$

Denote by C a copy of $[0,1]^m$, then for every little cube C_r we define the scaled energy

$$\widetilde{E}(u, C_r) = E(\widetilde{u}_{n,r}, C) = \int_C |D\widetilde{u}_{n,r}|^p,$$

where $\tilde{u}_{n,r}: C \to N$ is given by $\tilde{u}_{n,r}(x) = u(\frac{x}{n} + x_r)$ (where x_r is the barycenter of C_r), for the cubes which are not in contact with the boundary, and in a similar way for the cubes which are in contact with the boundary ∂M .

We also set $\tilde{E}(u, \partial C_r) = E(\tilde{u}_{n,r}, \partial C)$. We have the following scaling equalities:

$$\tilde{E}(u, C_r) = n^{m-p} E(u, C_r)
\tilde{E}(u, \partial C_r) = n^{m-p-1} E(u, \partial C_r).$$

Applying Sobolev embedding theorem to the function $\tilde{u}_{n,r|_{\partial C}}$ we get the following result

Lemma 1 For any $x, y \in \partial C_r$

$$||u(x) - u(y)||^p \le c\tilde{E}(u, \partial C_r).$$

Next we are going to divide the cubes in "good" ones and "bad" ones. Fix $0 < \nu < p$, $\varepsilon > 0$, then C_r is a good cube if

(2)
$$\tilde{E}(u, \partial C_r) \leq \varepsilon$$

$$\tilde{E}(u, C_r) \leq n^{-\nu}.$$

As for the bad cubes (the remaining ones), the following fact holds:

Lemma 2 If $P_n = \bigcup$ bad cubes, then $|P_n| \to 0$ as $n \to +\infty$.

In fact by a counting argument, if $P_{1,n}$ are the cubes violating (2), and $P_{2,n}$ the cubes violating (3), then

$$CnE(u) \ge \sum_{C_r \in P_{1,n}} E(u, \partial C_r) \ge N_1 \varepsilon h^{m-p-1}$$

where N_1 is the number of cubes in $P_{1,n}$, hence

$$|P_{1,n}| \le N_1 h^m \le \frac{CE(u)}{\varepsilon} h^p \longrightarrow 0 \text{ as } n \to +\infty \ (h = 1/n).$$

Moreover, if N_2 is the number of cubes in $P_{2,n}$,

$$E(u) \geq \sum_{C_r \in P_{2,n}} E(u,C_r) = h^{m-p} \sum_{C_r \in P_{2,n}} \tilde{E}(u,C_r) > N_2 \varepsilon h^{m-p+\nu} \,,$$

hence

$$|P_{2,n}| \le N_2 h^m \le E(u) h^{p-\nu} \longrightarrow 0 \text{ per } n \to +\infty.$$

Let's construct the approximating sequence $\{u_n\} \subset R_0$ in the following way:

$$u_n = u$$
 on ∂C_r for any cube C_r .

If C_r is a good cube, and \tilde{u}_n is a minimizer of

$$\int\limits_{C_r} |Dv|^p, \quad v = u \text{ on } \partial C_r, v : C_r \to \mathbf{R}^\ell,$$

 $\tilde{u}_n \in C^0(C_r, \mathbf{R}^{\ell})$. We have, for $x \in C_r, \ x_0 \in \partial C_r$

$$\begin{array}{ll} \operatorname{dist}\left(\tilde{u}_{n}(x),N\right) & \leq & \left|\tilde{u}_{n}(x)-u(x_{0})\right| \leq & \text{by maximum principle} \\ & \leq & \sup_{z,y\in\partial C_{r}}\left|u(z)-u(y)\right| \leq & \text{by lemma 1} \\ & \leq & C\tilde{E}(u,\partial C_{r})^{1/r} \leq C\varepsilon^{1/p} & \text{by (2)}. \end{array}$$

Hence $u_n = \pi \circ \tilde{u}_n : C_r \to N$ is well defined and continuous $(\pi : U \to N)$ is the nearest point projection from a tubular nbd. U of N).

Let's prove that, up to a subsequence,

$$\int\limits_{Q_n} |Du_n - Du|^p \longrightarrow 0 \qquad n \to +\infty$$

where $Q_n = \bigcup_{C_r \text{ good}} C_r$.

We have

(4) We have
$$\int\limits_{Q_n} |D\widetilde{u}_n|^p \le \int\limits_{Q_n} |Du|^p$$

because \tilde{u}_n is minimizer; moreover

$$\|\tilde{u}_n - u\|_{L^p(Q_m; \mathbf{R}^{\ell})} \longrightarrow 0 \quad \text{as } n \to +\infty,$$

by Poincaré inequality, in fact

$$\frac{1}{h^{m-p}}\int\limits_{C_r}|\widetilde{u}_n-u|^p\leq C\int\limits_{C_r}|D\widetilde{u}-Du|^p\leq C\int\limits_{C_r}|Du|^p\,,$$

hence

$$\sum_{\substack{\text{good } \\ \text{cubes } C_r}} \int_{\Gamma} |\tilde{u}_n - u|^p \le h^{m-p} E(u) \longrightarrow 0 \quad \text{as } n \to +\infty \ (h = 1/n);$$

then $\tilde{u}_n \to u$ weakly in $W^{1,p}(Q_m; \mathbf{R}^{\ell})$ and by (4) $\tilde{u}_n \to u$ strongly in $W^{1,p}(Q_m; \mathbf{R}^{\ell})$ (p > 1), and finally $u_n \to u$ in $W^{1,p}(Q_m; N)$.

If C_r is a bad cube, define u_n on C_r so that

(5)
$$\int\limits_{C_r} |Du_n|^p \le C \int\limits_{C_r} |Du|^p,$$

then by lemma 2 and Dominated Convergence Theorem,

$$\int\limits_{P_n} |Du|^p \longrightarrow 0 \quad \text{as } n \to +\infty,$$

hence $||u_n - u||_{W^{1,p}(P_n)} \to 0$.

Consider in fact $u_n = u$ in ∂C_r and $u_n|_{C_r} = u_{\partial C_r} \left(\frac{x - x_r}{\|x - x_r\| h} \right)$, being x_r the center of C_r , where

$$||x|| := \sup\{|x_i| \mid x = (x_1, \dots, x_m)\}.$$

Remark 4 $u_n|_{C_r}$ has one point singularity in the center x_r of any bad cube C_r , therefore $u_n \in R_0$.

Since u_n is "radial", we have

$$\int\limits_{C_r} |Du_n|^p \leq C h \int\limits_{\partial C_r} |Du|^p$$

and

$$\int_{P_n} |Du_n|^p \leq \sum_{\substack{\text{bad} \\ \text{cubes}}} \int_{C_r} |Du_n|^p \leq \sum_{\substack{\text{bad} \\ \text{cubes}}} Ch \int_{\partial C_r} |Du|^p \leq \\
\leq cE(u) \xrightarrow{n \to \infty} 0;$$

We are therefore led to divide C_r into smaller cubes $c_{r'}$ of mesh $h' \ll h$ and define u_n on $c_{r'}$ as

$$\begin{aligned} u_n &= u \quad \text{on } \cup \partial c_{r'}, \\ u_n|_{\mathring{c}_{r'}} &= u|_{\partial c_{r'}} \left(\frac{x - x_{r'}}{\parallel x - x_{r'} \parallel h'} \right) \quad (x_{r'} \text{ center of } c_{r'}). \end{aligned}$$

By the previous argument

(6)
$$\int\limits_{C_r} |Du_n|^p \le ch' \sum_{c_{r'} \in C_r} \int\limits_{\partial c_{r'}} |Du_n|^p ;$$

from an argument as before (slicing method and Fubini's theorem) we then choose the refined grid of mesh h' so that

$$h' \sum \int\limits_{\partial c_{r'} \backslash \partial C_r} |Du|^p \leq \int\limits_{C_r} |Du|^p \,.$$

Then follows by (6)

$$\int_{C_r} |Du_n|^p \leq h'C \sum_{\partial c_{r'} \setminus \partial C_r} \int_{|Du_n|^p + h'C} \int_{\partial C_r} |Du_n|^p \leq \\
\leq C \int_{C_r} |Du|^p + h'C \int_{\partial C_r} |Du|^p,$$

and for h' sufficiently small we get (5), and the proof of Proposition 1 is complete.

Proof of Proposition 2. Let $m-1 , let <math>u \in R_0$ (constructed as in Proposition 1, with radial behaviour around each singularity), and $\pi_{m-1}(N) = 0$.

Construct the approximate sequence as follows: if a is a singular point of u (assume a=0) and $u(x)=g\left(\frac{x}{\|x\|}\right)$ on $[-h,h]^m$, with $g:\partial([-1,1]^m)\to N$ and $g\in C^0$, by the hypothesis $\pi_{m-1}(N)=0$ we can extend g to a function $\widetilde{g}\in C^0\cap W^{1,p}([-1,1]^m;N)$.

Define $u_n\in C^0\cap W^{1,p}(M,N)$ such that $u_n\to u$ in $W^{1,p}(M,N)$ as

Define $u_n \in C^0 \cap W^{1,p}(M,N)$ such that $u_n \to u$ in $W^{1,p}(M,N)$ as follows: for $h = \frac{1}{n} \le h_0$

$$u_h(x) = \begin{cases} u(x) & \text{outside } [-h, h]^m \\ \tilde{g}\left(\frac{x}{h}\right) & \text{in } [-h, h]^m; \end{cases}$$

and repeat for each singular point; then

$$\int_{M} |Du_{n} - Du|^{p} = (\# \text{ singular points of } u) \int_{[-h,h]^{m}} |Du_{n} - Du|^{p} \le Ch^{m-p} \longrightarrow 0 \quad \text{as } n \to +\infty.$$

Remark 5 In the proof of Proposition 2 it is sufficient to assume that the homotopy class of g is trivial; notice that we define the homotopy class of u at a singular point a (if isolated) as the homotopy class of $u|_{\partial B_r(a)}$, r small.

Now we give an alternative proof of Proposition 1, which makes use of regularity theory: for $u \in W^{1,p}(M,N)$ define the functional

$$F_h(v) = \int |Dv|^p + \frac{|u-v|}{h}, \quad h \text{ small parameter},$$

and let v_h be the minimizer of F_h on $W^{1,p}(M,N)$. Then by regularity theory, $v_h \in R_0$ (see Schoen-Uhlenbeck (p=2) [4], Hardt-Lin (p>2) [3], Luckhaus, Fuchs-Hutchinson, Dusaar, ...).

Let's prove that $v_h \to u$ in $W^{1,p}(M,N)$. We have

$$F_h(v_h) \le F_h(u) = \int |Du|^p;$$

(7)
$$\int |Dv_n|^p \le \int |Du|^p$$
 and
$$\int |u - v_n|^p \le h \int |Du|^p \longrightarrow 0 \quad \text{as } h \to 0$$

then, passing to a subsequence,

$$v_h \rightarrow u$$
 weakly in $W^{1,p}$

and by (7)

$$v_h \rightarrow u$$
 strongly in $W^{1,p}$ $(p > 1)$.

Remark 6 The proof of Proposition 1 in the case $p \leq m-1$ considers the d-skeleton of a grid (d=[p] if $p \notin \mathbb{Z}$, d=p-1 if $p \in \mathbb{Z}$) and the dipole method (see Brézis, Coron, Lieb: Harmonic maps with defects, Comm. Math. Phys., 107 649-705, 1986) to remove singularities.

Applications

Define

$$\begin{array}{lcl} W^{1,p}_{\mathrm{strong}}(M,N) & = & \overline{C^{\infty}(M,N)}^{W^{1,p}-\mathrm{strong}} \; , \\ W^{1,p}_{\mathrm{weak}}(M,N) & = & \overline{C^{\infty}(M,N)}^{W^{1,p}-\mathrm{weak}} \; , \end{array}$$

then we have

$$W_{\text{strong}}^{1,p} \subset W_{\text{weak}}^{1,p} \subset W^{1,p}$$
.

If $\pi_{[p]}(N) \neq 0$ the second inclusion is strict.

We now prove that if $p \notin \mathbb{Z}$, $W_{\text{strong}}^{1,p}$ is stable under sequentially weak convergence, and therefore $W_{\text{strong}}^{1,p} = W_{\text{weak}}^{1,p}$, (even in the case $\pi_{[p]}(N) \neq 0$).

Proof. Let $u_h \in C^{\infty}(M, N)$, $u_h \rightharpoonup u$ in $W^{1,p}$ weak, m-1 .

We only have to check that u can be strongly approximated by smooth maps. Making use of the decomposition into cubes as in Proposition 1, we can approximate u strongly in $W^{1,p}$ by $v_h \in R_0$; since u is a weak limit of smooth maps, the homotopy class of v_h at any singular point is trivial (p is not integer); then by the remark of page 11, Proposition 2 holds for v_h , then by a diagonal argument we're done.

As another application of the main theorem, we have:

Theorem 4 If $\pi_{[p]}(N) \neq 0$, $p \notin \mathbb{N}$, then there are infinitely many p-harmonic maps in $W^{1,p}(M,N)$.

Proof. Consider $\{a_1, \ldots, a_k\} \subset M$, and the set of the maps in R_0 having $\{a_1, \ldots, a_k\}$ as singular set, with prescribed homotopy-type around the singularities. Take the strong closure in $W^{1,p}$, and then minimize the p-Energy. For each choice of the singular set and of the homotopic behaviour around the singularities you will get a different minimizer (see remark on page 11)

The extension problem for Sobolev mappings [2]

Let M,N be riemannian manifolds, $n=\dim M,\ N\subset \mathbf{R}^\ell$ isometrically embedded by the Nash theorem.

Assume $\partial M \neq \emptyset$, and consider the map

$$g : \partial M \to N$$
.

Our aim is to extend g to a map $u: M \to N$, with $u \in W^{1,p}(M,N)$ for some fixed p.

Then a natural assumption for g is

$$q \in W^{1-1/p,p}(\partial M, N) := \left\{ h \in W^{1-1/p,p}(\partial M, \mathbf{R}^{\ell}), \ h(x) \in N \ \text{a.e.} \right\},$$

where $W^{1-1/p,p}(M, \mathbf{R}^{\ell})$ is the space of traces of functions in $W^{1,p}(M, \mathbf{R}^{\ell})$. For $g \in W^{1-1/p,p}(\partial M; \mathbf{R}^{\ell})$ we have

Theorem 5 (Trace theorem) Given $g \in W^{1-1/p,p}(\partial M; \mathbf{R}^{\ell})$ there exists $u \in W^{1,p}(M; \mathbf{R}^{\ell})$ such that u = g on ∂M , and

$$\|u\|_{W^{1,p}(M;\mathbf{R}^{\ell})} \le C \|g\|_{W^{1-1/p,p}(\partial M;\mathbf{R}^{\ell})},$$

where

$$\|g\|_{W^{1-1/p,p}(\partial M;\mathbf{R}^{\ell})}^{p} := \|g\|_{L^{p}(\partial M,\mathbf{R}^{\ell})}$$

$$+ \int_{\partial M} \int_{\partial M} \frac{|g(x) - g(y)|^{p}}{|x - y|^{p+m-2}} d\mathcal{H}^{m-1}(x) d\mathcal{H}^{n-1}(y).$$

Let's denote by

$$T^p(\partial M,N) := \left\{ \begin{array}{l} g \in W^{1-1/p,p}(\partial M;N) \ | \ g = u|_{\partial M}, \\ \text{for some } u \in W^{1,p}(M,N) \right\}. \end{array}$$

The question is: when do we have

$$T^{p}(\partial M, N) = W^{1-1/p,p}(\partial M, N)$$
 ?

Let's take a look on the cases in which this question has been answered. First consider the following topological property $\mathcal{P}(M, N)$:

Definition 1 We say $\mathcal{P}(M, N)$ holds if for any continuous map $g : \partial M \to N$ there exists a continuous map $u : M \to N$ such that $u|_{\partial M} = g$.

Remark 7 In general it is not easy to determine if $\mathcal{P}(M, N)$ holds, for given manifolds M, N; if $M \equiv B^m$, then we have that $\mathcal{P}(M, N)$ holds $\Leftrightarrow \pi_{m-1}(N) = 0$.

This topological property enter the question we deal in view of the following statement:

Theorem 6 Assume $p \ge m = \dim M$, then $T^p(\partial M, N) = W^{1-1/p,p}(\partial M, N)$ $\Leftrightarrow \mathcal{P}(M, N) \text{ holds.}$

Remark 8 In case p>m the proof is based on Sobolev theorem, and the extension of $g\in W^{1-1/p,p}(\partial M,N)$ is constructed via its p-harmonic extension $U\in W^{1,p}(M,\mathbf{R}^\ell)$ (U minimizes $\int_M |Dv|^p$ among all $v\in W^{1,p}(M,\mathbf{R}^\ell)$, $v|_{\partial M}=g$);

 $\underline{\text{in case } p = m}$ an argument due to Schoen-Uhlenbeck is adapted to the situation.

Remark 9 The problem is much more complex for p < m. The following problem due to Hardt and Lin gives a partial answer.

Theorem 7 Assume $1 \le p < m$. If $\pi_0(N) = \pi_1(N) = \cdots = \pi_{[p]-1}(N) = 0$ then $T^p(\partial M, N) = W^{1-1/p,p}(\partial M, N)$.

On the other hand, the following can be easily established

Theorem 8 If $\pi_{[p-1]}(N) \neq 0$ then $T^p(\partial M, N) \neq W^{1-1/p,p}(\partial M, N)$.

Remark 10 In other words, the condition $\pi_{[p]-1}(N) = 0$ is necessary in order to have

(8) $T^{p}(\partial M, N) = W^{1-1/p, p}(\partial M, N).$

Therefore we are led to the question: is this condition sufficient in order to have (8)? The answer is no, if we make no restriction on the topology of M, and the condition stated in last theorem 7 is necessary, in the sense that if there exists some $j \leq [p] - 1$, $j \in \mathbb{N}$, such that $\pi_j(N) \neq 0$, then there exists a manifold M of dimension m such that

$$T^p(\partial M, N) \neq W^{1-1/p,p}(\partial M, N)$$
.

References

- [1] F. Bethuel: The approximation problem for Sobolev mappings between manifolds, Acta Mathematica, 167 (1991), 167-201.
- [2] F. Bethuel, F. Demengel: Extensions for Sobolev mappings between manifolds. preprint CMLA nr. 9322
- [3] R. Hardt, F. H.Lin: Mappings minimizing the L^p norm of the gradient, Comm. Pure Appl. Math. **40** (1987) 555-558.
- [4] R. Schoen, K. Uhlenbeck: Boundary regularity and the Dirichlet problem for harmonic maps. J. Diff. Geom. 18 (1983) 253-268.
- [5] B. White: Infima of energy functionals in homotopy classes, J. Diff. Geom. 23 (1986) 127-142.