Problem 17.6

(a) Suppose that $A \subset B$. Then we must have that any closed set C containing B must also contain A because $A \subset B \subset C$. Hence, $A \subset \overline{B}$. So \overline{B} is a closed set containing A and so by definition $\overline{A} \subseteq \overline{B}$ because \overline{A} is the smallest closed set containing A.

(b) The set $\overline{A \cup B}$ is the smallest closed set containing both A and B. With this in mind we see that $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$ because $A \subset \overline{A} \cup \overline{B}$ and $B \subset \overline{A} \cup \overline{B}$ and $\overline{A} \cup \overline{B}$ is closed because it is the union of closed sets. to see the reverse containment, choose any $x \in \overline{A} \cup \overline{B}$. Theorem 17.5 for any open set U containing x we have that either $U \cap (A) \neq \emptyset$ or $U \cap B \neq \emptyset$ because $x \in A$ or $x \in B$. So

$$(U \cap A) \cup (U \cap B) = U \cap (A \cup B) \neq \emptyset$$

But $U \cap (A \cup B) \neq \emptyset$ implies that $x \in \overline{A \cup B}$. This proves the reverse equality and we are done.

(c) We can follow the outline of the last proof to see that for any $x \in \bigcup_{\alpha} A_{\alpha}$ and any open set U which contains x that there is some α such that $U \cap A_{\alpha} \neq \emptyset$. So this means that

$$\bigcup_{\alpha} (U \cap A_{\alpha}) = U \cap \bigcup_{\alpha} A_{\alpha} \neq \emptyset$$

Note that $U \cap (\bigcup_{\alpha} A_{\alpha}) \neq \emptyset$ implies that $x \in \overline{\bigcup_{\alpha} A_{\alpha}}$. To see why the other inclusion fails in this case, note that in **(b)** we had a finite union. So you can take $A_n = \{1/n\}$ and set $A = \bigcup_{n=1}^{\infty} A_n$ then we have that

$$A = \bigcup_{n=1}^{\infty} \overline{A}_n \subset \bigcup_{n=1}^{\infty} \overline{A}_n \cup \{0\} = \overline{A}$$

Problem 17.14

Let $x_n = 1/n$ be a sequence lying in \mathbb{R} with the finite complement topology. If we take any $x \in \mathbb{R}$ and any open set U containing x, we can see that this means that $|U^c| < \infty$. that means that there are only finitely many points in \mathbb{R} that are not contained in U. since each $x_n \in \mathbb{R}$ this means that only finitely many of the points of the sequence are not contained in U. This means that $x_n \to x$ for each $x \in \mathbb{R}$.

Problem 17.16

(a) We want to find the closure of the set $K = \{1/n \mid n \in \mathbb{Z}_+\}$. We have

1. In the standard topology it is well known that the closure of this set is $\overline{K} = K \cup \{0\}$. To see this take any convergent sequence in K, and it will be a subsequence of $x_n = 1/n$. So we only need to find the limit of x_n as $n \to \infty$. We can see that 0 works because for any $\epsilon > 0$ there is an n such that $1/n < \epsilon$ and $x_n \to 0$. This gives that $\{0\}$ is the set of limit points of K.

- 2. In the topology \mathbb{R}_K the sequence the closure $\overline{K} = \emptyset$. We can see this because if we take any open set in \mathbb{R}_K , then it can be written as a union of sets of the form (a,b)-K, but then no open set contains any points of K. Hence, there are no sequences in K that converge and so the closure of K is empty.
- 3. We showed above that in the finite complement topology the set $\overline{K} = \mathbb{R}$ because if we take any open set in \mathbb{R} with this topology we must have that only finitely many of the points are not in the open set. Hence, any point in \mathbb{R} is a limit point of a sequence in K.
- 4. In the upper limit topology we have that a sequence converges if it "approaches from the left". More precisely if we have $x_n \in K$ then for any $\epsilon > 0$ there is an N such that n > N implies that $L - \epsilon < x_n \le L$ then $x_n \to L$. Then the set of limit points for the sequence $x_n = 1/n$ is empty because x_n does not approach 0 from the left.
- 5. We now endow \mathbb{R} with the topology generated by the basis

$$\mathcal{B} = \{(-\infty, a) \mid a \in \mathbb{R}\}\$$

Here we will see that the set of limit points is \mathbb{R}_+ . To see this, choose any x>0. Observe that $x\in(-\infty,y)$ for each $y\geq x$. If $x\geq 0$ then we can choose any $\epsilon > 0$ and eventually $1/n < \epsilon$ and so there can only be finitely many terms in K that are not in $(-\infty, y)$ for y > x.

- (b) Now we will see which of the sets is Hausdorff.
 - 1. \mathbb{R} with the standard topology is a Hausdorff space. To see this choose any distinct $x, y \in \mathbb{R}$. We can then set $\ell = d(x, y)/2$. If $x \neq y$ then this quantity will be positive. We then choose the open ball centered at x and y respectively of radius ℓ and note that these are two disjoint neighborhoods. Then choose any neighborhood of x with diameter r. Then there is a neighborhood of x with diameter r/2. Finally, take $y \in U$, an open neighborhood of x. Then if U has diameter r and $d(x,y) = \ell$ then we can see that the open ball of radius $(r-\ell)/2$ will lie in U and contains y. So \mathbb{R} is Hausdorff.
 - 2. The topological space R_K is also Hausdorff. This follows from the fact that the K-topology is strictly finer than the standard topology. Thus, the open sets mentioned above will also work in \mathbb{R}_k because they are still open and disjoint.
 - 3. The finite complement topology is not Hausdorff. To see this choose to points $x, y \in \mathbb{R}$. Then any neighborhood of these points say U_x and U_y , respectively, must contain all but finitely many points. However, $U_x \cap U_y \neq \emptyset$ because they could only possibly differ in a finite number of points, and they are both infinite, meaning that they share at least one point.

- 4. We will proceed as above, first showing that the upper limit topology is strictly finer than the standard topology, and hence \mathbb{R}_u is Hausdorff. Let \mathcal{T} be the standard topology on \mathbb{R} and \mathcal{T}' the upper limit topology. Given a basis element $(a,b) \in \mathcal{T}$ and a point $x \in (a,b)$ the basis element $(x,b] \in \mathcal{T}'$ is contained in (a,b). However, given an element [x,b) in \mathcal{T}' there is no open interval containing x that lies in [x,b). Hence \mathcal{T}' is strictly finer than \mathcal{T} .
- 5. The topology generated by the basis

$$\mathcal{B} = \{(-\infty, a) \mid a \in \mathbb{R}\}\$$

is Hausdorff. We can verify this fact by choosing two points $x,y \in \mathbb{R}$ with this topology and without loss of generality suppose that x < y. Then any open set containing x must also contain an element $(-\infty,a)$ with x < a. But then x < (x+y)/2 < y and if we set a = (x+y)/2 then $x \in (-\infty,a)$ but $y \notin (-\infty,a)$ and the two sets are disjoint. Hence, \mathbb{R} is not Hausdorff in this topology.

Now we will see which of these spaces satisfy the T_1 axiom.

- 1. In the standard topology we have that \mathbb{R} is T_1 . This follows from the third axiom of being a Hausdorff space.
- 2. Similarly, \mathbb{R}_K is Hausdorff and, consequently, T_1 .
- 3. In this case we have that \mathbb{R} is not Hausdorff, but is T_1 . To do this, take the open set $X \setminus \{y\}$, an open set containing x but not y, and $X \setminus \{x\}$, an open set containing y but not x. This verifies that \mathbb{R} is T_1 in the finite complement topology.
- 4. Again, \mathbb{R} is a Hausdorff space in the upper limit topology and hence it must also be T_1 .
- 5. In this case we have that \mathbb{R} is T_1 because it is Hausdorff.

Problem 17.19

- (a) First we will see that $\operatorname{Int} A \cap \operatorname{Bd} A = \emptyset$. Suppose that $x \in \operatorname{Bd} A$. Then we must have that $x \in \overline{A}$ and $x \in (\overline{X} A)$. This means that any neighborhood U of x intersects both A and X A. However, for any $y \in \operatorname{Int} A$ there is an open neighborhood of y that is wholly contained in A, and therefore cannot intersect X A. Thus, we have that $\operatorname{Int} A \cap \operatorname{Bd} A = \emptyset$. Now we will show that $\overline{A} = \operatorname{Int} A \cup \operatorname{Bd} A$. First observe that $\operatorname{Int} A \subset \overline{A}$ because $\operatorname{Int} A \subset A \subset \overline{A}$. Furthermore, $\operatorname{Bd} A \subset \overline{A}$ by the definition, and so $\operatorname{Int} A \cup \operatorname{Bd} A \subseteq \overline{A}$. In the reverse direction take any $x \in \overline{A}$. If $x \in \operatorname{Int} A$ then we are done. If not, then we must have that $x \in \operatorname{Bd} A$ because $x \notin \operatorname{Int} A$ means that there is no open set in A which contains x. Then $x \in (\overline{X} \operatorname{Int} A) \supset (\overline{X} A)$. this means that $x \in \operatorname{Bd} A$ and we are done.
- (b) Now we need to show that Bd $A = \emptyset$ if and only if A is both open and closed. We proceed as follows, Bd $A = \emptyset$ means by definition that $\overline{A} \cap \overline{(X A)} = \emptyset$.

Hence, the set of x that satisfy such a constraint are those for which $x \in U$ open in X such that $U \cap A = \emptyset$ and $U \cap X - A = \emptyset$ meaning that U is an open neighborhood of x fully contained in both A and X - A. This implies that $A, X - A \in \mathcal{T}$. That is, A is both closed and open. (c) Recall that if U is open then $U = \operatorname{Int} U$. Furthermore, by part (a) we have that $\overline{U} = \operatorname{Int} U \cup \operatorname{Bd} U$. But then

$$\overline{U} = U \cup \operatorname{Bd} U$$

The union is disjoint and so $\overline{U} - U = \operatorname{Bd} U$ as desired.

(d) This is not true. Consider $U = \mathbb{R} - \{x\}$ for any $x \in \mathbb{R}$. Then we have that U is open and $U \subset \operatorname{Int} (\mathbb{R} - \{x\}) = \mathbb{R}$. This containment is clearly strict so $U \subset \operatorname{Int} \overline{U}$.

Problem 18.2

Suppose that we have the constant function defined by $x \mapsto y$ for some given y and every x. Then y = f(x) for each x, but y is not a limit point of f(A) because it contains no points besides itself. Therefore, every neighborhood of y contains just one point of f(A), and as a result is not a limit point.

Problem 18.7

(a) Let $U \subset \mathbb{R}$ be open and choose any $x \in f^{-1}(V)$. Then we can find some $y \in U$ such that y = f(x). U is open and so we can find some $\epsilon > 0$ such that $B_{\epsilon}(y) \subseteq U$. And then by the continuity of f we can therefore find a $\delta > 0$ such that $f([x, x + \delta)) \subseteq B_{\epsilon}(y) \subset U$. But for sufficiently small δ , $[x, x + \delta) \subset f^{-1}(U)$ and is basis element for the topology of \mathbb{R}_{ℓ} and so $f^{-1}(U)$ is open in \mathbb{R}_{ℓ} . Hence, f is continuous.

Problem 18.8

(a) Suppose that $f, g: X \to Y$ are continuous and let $U\{x \mid f(x) \leq g(x)\}$. To show that U is closed we will show that its complement X - U is open. By definition $X - U = \{x \mid f(x > g(x))\}$. Then we can write,

$$X-U=\bigcup_{y\in Y}\{f(x)>y>g(x)\}$$

Then if y' > y and $(y, y') = \emptyset$ then

$$\bigcup_{y,y'} \{ f(x) > y \text{ and } g(x) < y' \}$$

which is open in X. Hence, X - U is open and as a result U is closed.

(b) We define $h: X \to Y$ via

$$h(x) = \min\{f(x), g(x)\}\$$

We can decompose X into two pieces, $U = \{x \mid f(x) \leq g(x)\}$ and $\overline{X - U} = \{x \mid f(x) \geq g(x)\}$. These two sets intersect on $\{x \mid f(x) = g(x)\}$. Furthermore, f, g are continuous when restricted to either U or X - U by definition. Hence, we can apply the pasting lemma to see that h is continuous.

Problem 18.9

(a) We are given a finite collection A_{α} such that A_{α} is closed for each α and $X = \bigcup_{\alpha} A_{\alpha}$. Choose any closed $V \subset Y$ and note that

$$f^{-1}(V) = f^{-1}(f(X) \cap V)$$

But because $X = \bigcup_{\alpha} A_{\alpha}$,

$$f(X) = f\left(\bigcup_{\alpha} A_{\alpha}\right) = \bigcup_{\alpha} f(A_{\alpha})$$

So

$$f^{-1}(V) = f^{-1}\left(\bigcup_{\alpha} f(A_{\alpha}) \cap V\right) = \bigcup_{\alpha} f^{-1}\left(f(A_{\alpha}) \cap V\right)$$

Each of the terms $f(A_{\alpha}) \cap V = f|_{A_{\alpha}}(V)$ is a finite intersection of closed sets and hence, is closed. We then use the fact that f is continuous to see that their inverse image under f is also closed. This means that the last union is a finite union of closed sets, and therefore closed. This means that f is continuous.

(b) First we let our collection of closed sets $\{A_n\} = \{[1/(n+1), 1/n] \mid n \in \mathbb{Z}_+\}$. In this case $\{A_n\}$ is not finite. Next, define the function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & x \in A_n \\ 1 & x \in (-\infty, 0) \end{cases}$$

Then f is continuous on A_n for each n and it is also continuous on $(-\infty, 0)$, but it is not continuous on $(-\infty, 1]$ (the discontinuity is at 0). The part of the proof that failed is the fact that $f^{-1}(V)$ is a union of closed sets, but the infinite union of closed sets need not be closed.

(c) We proceed as we did in (a). Let $V \subset Y$ be closed and suppose that $\{A_{\alpha}\}$ is a locally finite collection of closed sets in X with $X = \bigcup_{\alpha} A_{\alpha}$. As before we note that

$$f^{-1}(V) = f^{-1}\left(\bigcup_{\alpha} (f^{-1}(A_{\alpha}) \cap V)\right) = f^{-1}\left(\bigcup_{\alpha} f|_{A_{\alpha}}(V)\right)$$

If we set $A=f^{-1}(\bigcup_{\alpha}f|_{A_{\alpha}}(V))$, then we are left to show that A is closed. We will instead show that the set X-A is open. Choose any $x\in X-A$. Then there is a neighborhood U of x that only intersects finitely many of the A_{α} . Denote this subcollection by A_1,A_2,\ldots,A_n . We now use the continuity of f to see that the inverse image $f^{-1}|_{A_i}(V)$ is closed in A_i . Because $x\not\in f^{-1}(V)$ there exists some neighborhood U_i such that $U_i\cap A_i=\emptyset$. We then can see that the neighborhood $U\cap U_1\cap\cdots\cap U_n$ is a finite intersection of open sets, which does not intersect the A_{α} . Hence, X-A is open, and we are done.

Problem

We need to establish the following

Proposition. Let S_{Ω} denote the smallest well-ordered set as outlined in Munkres. Then for each $\alpha < \Omega$, S_{α} is order-isomorphic with a subset of the real numbers in the usual order.

Proof. We will construct an order isomorphism via the principle of recursive definition in S_{Ω} , which is possible because we know that S_{Ω} is well ordered. Choose any section S_{α} , and note that by definition such a set is countable. Let us denote is elements by s_1, s_2, \ldots The main observation in this proof is the following

Lemma. Any well ordered subset $X \subset \mathbb{R}$ is countable.

Proof. Suppose that X is both uncountable and well ordered. Let s(x) be the successor function on X. So s(x) is the smallest element > x, which exists because we assumed X was well-ordered. We now define a "distance" function d such that $x \mapsto s(x) - x$, which must be greater than 0. We then set $X_n = \{x \in X \mid d(x) > 1/n\}$. Then each X_n is countable because for distinct $x, y \in X \mid x - y| > 1/n$. Next, notice that $X \subset \bigcup_{n \in \mathbb{Z}_+} X_n$ because d(x) > 0 for every x. But then we must have that $X \subset \bigcup_{n \in \mathbb{Z}} X_n$, which is countable. So X must also be countable. this contradiction establishes the result.

This result would lead us to believe that we should look to a countable set in \mathbb{R} to contain the order preserving isomorphic image. Naturally, we look to subsets of \mathbb{Q} . Let q_1,q_2,\ldots be an enumeration of the rationals. We define our isomorphism recursively as follows, start with $f(s_1)=q_1$. If R is the relation in S_{Ω} , then we choose $f(s_n)$ such that it preserves the order relations in s_k for k < n. This is possible because at each step in the iteration of the definition, there are only finitely may constraints, and \mathbb{Q} is both unbounded and dense, so we can place $f(s_n)$ in between $f(s_i)$ and $f(s_j)$, when appropriate. Furthermore, if s_nRs_k for k < n then we can always choose $f(s_n) < f(s_k)$ for all k < n because \mathbb{Q} is unbounded. The same statement holds for $f(s_k) < f(s_n)$. Iterating this process (countably) infinitely many times yields an order preserving isomorphism from $S_{\alpha} \to Q \subset \mathbb{Q}$ which is at most countable, and we are done.