Método de Diferencias Finitas

2.a). Determine una forma discreta en las variables espaciales, de la *ecuación de calor bidimensional*, $\frac{\partial u}{\partial t} = c^2 \nabla^2 u$, considerando $h_x \neq h_y$.

2.b). Indique la ecuación matricial que surge de plantear la ecuación anterior en los puntos de una placa cuadrada de lado a = 150 cm, considerando $h_x = h_y = 50$ cm, $c^2 = 0.8$, y las siguientes condiciones de frontera:

$$u(x, 0, t) = 0^{\circ}C$$
; $u(0, y, t) = 30^{\circ}C$; $u(x, a, t) = 50^{\circ}C$; $u(a, y, t) = 25^{\circ}C$

2.c). Sabiendo que en t = 0 la temperatura de la placa es 0°C, calcule la temperatura para t=40 seg, considerando un incremento de tiempo de 20 seg.

Método de Diferencias Finitas

a). Determine la forma discreta de la *Ecuación de Poisson* $\nabla^2 u = f(x, y)$, considerando aproximaciones centrales para las derivadas segundas y espaciamientos distintos h_x y h_y en las direcciones x e y respectivamente.

b). Dada la siguiente ecuación diferencial con sus condiciones de borde, indique el sistema a resolver usando el método de diferencias finitas:

$$\nabla^2 u = 5 x y + 3 y$$

 $u(x, 0) = 0$; $u(0, y) = 0$; $u(H, x) = 0.5 x$

Diferencias finitas

Dada la siguiente ecuación diferencial con sus condiciones de borde, indique el sistema a resolver usando el método de diferencias finitas:

$$\nabla^{2}u = 0.5 x^{2} y + 3 y$$

$$u(x, 0) = 0 \qquad u(0, y) = 0$$

$$u(L, y) = 0.2 y \qquad \frac{\partial u}{\partial n}\Big|_{y=H} = 5 x$$

$$con H = 2.4 \; ; \; L = 2.4 \; , \; h_{x} = h_{y} = 0.80$$

a) Determine una forma discreta en las variables espaciales, de la ecuación de onda bidimensional, $\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$, considerando $h_x = h_y$.

b) Indique la ecuación matricial que surge de plantear la ecuación anterior en los puntos de una membrana rectangular de longitud horizontal L=100 cm y altura H= 50 cm, considerando $h_x = h_y = 25$ cm, $c^2 = 3800$ cm²/seg², y las siguientes condiciones de frontera:

$$u(x, 0, t) = u(0, y, t) = u(x, H, t) = u(L, y, t) = 0$$