In [1]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
d1=pd.read_csv("India Air Quality Data.csv")
d2=pd.read_csv("heart (2).csv")

C:\Users\RUTIKA\anaconda3\lib\site-packages\IPython\core\interactiveshell.py:
3146: DtypeWarning: Columns (0) have mixed types.Specify dtype option on impo
rt or set low_memory=False.

has_raised = await self.run_ast_nodes(code_ast.body, cell_name,

In [2]: d1

Out[2]:

	stn_code	sampling_date	state	location	agency	type	so2	no2	rsp
0	150	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	4.8	17.4	Nε
1	151	February - M021990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	3.1	7.0	Nε
2	152	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.2	28.5	Nε
3	150	March - M031990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.3	14.7	Nε
4	151	March - M031990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	4.7	7.5	Nŧ
435737	SAMP	24-12-15	West Bengal	ULUBERIA	West Bengal State Pollution Control Board	RIRUO	22.0	50.0	143
435738	SAMP	29-12-15	West Bengal	ULUBERIA	West Bengal State Pollution Control Board	RIRUO	20.0	46.0	17 1
435739	NaN	NaN	andaman- and-nicobar- islands	NaN	NaN	NaN	NaN	NaN	Nε
435740	NaN	NaN	Lakshadweep	NaN	NaN	NaN	NaN	NaN	Nŧ
435741	NaN	NaN	Tripura	NaN	NaN	NaN	NaN	NaN	Nŧ
435742	rows × 13	columns							

435742 rows × 13 columns

In [3]: d2

Out[3]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targ
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2	
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3	
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2	
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2	
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3	

1025 rows × 14 columns

In [4]: d1.isnull().sum()

dtype: int64

Out[4]: stn_code 144077 sampling_date 3 0 state location 3 agency 149481 5393 type so2 34646 16233 no2 40222 rspm spm 237387 location_monitoring_station 27491 pm2_5 426428 date

In [5]: d1.dropna(thresh=0.3*len(d1),axis=1,inplace=True)
d1

Out[5]:

	stn_code	sampling_date	state	location	agency	type	so2	no2	rsp
0	150	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	4.8	17.4	Nί
1	151	February - M021990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	3.1	7.0	Nε
2	152	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.2	28.5	Nŧ
3	150	March - M031990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.3	14.7	Na
4	151	March - M031990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	4.7	7.5	Nŧ
			•••						
435737	SAMP	24-12-15	West Bengal	ULUBERIA	West Bengal State Pollution Control Board	RIRUO	22.0	50.0	143
435738	SAMP	29-12-15	West Bengal	ULUBERIA	West Bengal State Pollution Control Board	RIRUO	20.0	46.0	17 1
435739	NaN	NaN	andaman- and-nicobar- islands	NaN	NaN	NaN	NaN	NaN	Na
435740	NaN	NaN	Lakshadweep	NaN	NaN	NaN	NaN	NaN	Na
435741	NaN	NaN	Tripura	NaN	NaN	NaN	NaN	NaN	Nε

435742 rows × 12 columns

4

```
In [6]: d1.isnull().sum()
 Out[6]: stn code
                                                144077
           sampling date
                                                      3
                                                      0
           state
           location
                                                      3
                                                 149481
           agency
           type
                                                   5393
           so2
                                                  34646
           no2
                                                  16233
                                                  40222
           rspm
                                                 237387
           spm
           location_monitoring_station
                                                  27491
                                                      7
           date
           dtype: int64
 In [7]: | d2.duplicated().sum()
 Out[7]: 723
 In [8]: | d2.drop_duplicates(inplace=True)
 In [9]:
           d2
 Out[9]:
                               trestbps chol fbs restecg thalach exang oldpeak slope ca thal targe
                 age
                      sex
              0
                  52
                        1
                            0
                                    125
                                         212
                                                0
                                                        1
                                                               168
                                                                        0
                                                                                1.0
                                                                                        2
                                                                                            2
                                                                                                 3
              1
                  53
                        1
                            0
                                    140
                                         203
                                                1
                                                        0
                                                               155
                                                                        1
                                                                                        0
                                                                                            0
                                                                                                 3
                                                                                3.1
              2
                  70
                        1
                            0
                                    145
                                         174
                                                0
                                                        1
                                                               125
                                                                        1
                                                                                2.6
                                                                                        0
                                                                                            0
                                                                                                 3
              3
                                         203
                                                                                        2
                  61
                            0
                                    148
                                                0
                                                        1
                                                               161
                                                                        0
                                                                                0.0
                                                                                                 3
                        1
                                                                                            1
              4
                  62
                        0
                            0
                                    138
                                         294
                                                1
                                                        1
                                                               106
                                                                        0
                                                                                1.9
                                                                                        1
                                                                                            3
                                                                                                 2
                  ...
                                     ...
                                          ...
                                                                                 ...
            723
                            2
                                    120
                                                0
                                                        0
                                                               115
                                                                        0
                  68
                        0
                                         211
                                                                                1.5
                                                                                            0
            733
                  44
                            2
                                    108
                                         141
                                                0
                                                         1
                                                               175
                                                                        0
                                                                                0.6
                                                                                                 2
                        0
                                                                                        1
                                                                                            0
            739
                  52
                            0
                                    128
                                         255
                                                0
                                                        1
                                                               161
                                                                        1
                                                                                0.0
                                                                                        2
                                                                                                 3
                        1
                                                                                            1
            843
                  59
                        1
                            3
                                    160
                                         273
                                                0
                                                        0
                                                               125
                                                                        0
                                                                                0.0
                                                                                            0
                                                                                                 2
            878
                  54
                        1
                            0
                                    120
                                         188
                                                0
                                                         1
                                                               113
                                                                        0
                                                                                1.4
                                                                                        1
                                                                                            1
                                                                                                 3
           302 rows × 14 columns
In [10]: d2.duplicated().sum()
```

Out[10]: 0

(

(

(

(

(

(

(

(

In [11]: df1=d2[['age','sex','cp','thal']].loc[0:15]
df1

Out[11]:

	age	sex	ср	thal
0	52	1	0	3
1	53	1	0	3
2	70	1	0	3
3	61	1	0	3
4	62	0	0	2
5	58	0	0	2
6	58	1	0	1
7	55	1	0	3
8	46	1	0	3
9	54	1	0	2
10	71	0	0	2
11	43	0	0	3
12	34	0	1	2
13	51	1	0	3
14	52	1	0	0

```
In [12]: df2=d2[['age','sex','cp','thal']].loc[16:30]
df2
```

Out[12]:

	age	sex	ср	thal
16	51	0	2	2
17	54	1	0	3
18	50	0	1	2
19	58	1	2	2
20	60	1	2	2
21	67	0	0	2
22	45	1	0	2
23	63	0	2	2
24	42	0	2	2
25	61	0	0	3
26	44	1	2	2
27	58	0	1	2
28	56	1	2	1
29	55	0	0	2
30	44	1	0	1

```
In [13]: merge=pd.merge(df1,df2,on='age',how='inner')
merge
```

Out[13]:

	age	sex_x	ср_х	thal_x	sex_y	ср_у	thal_y
0	61	1	0	3	0	0	3
1	58	0	0	2	1	2	2
2	58	0	0	2	0	1	2
3	58	1	0	1	1	2	2
4	58	1	0	1	0	1	2
5	55	1	0	3	0	0	2
6	54	1	0	2	1	0	3
7	51	1	0	3	0	2	2

```
In [14]: d2['target']=d2['target'].apply(lambda x :1 if x>0 else 0)
```

In [15]: d2

Out[15]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targe
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	(
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	(
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	(
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	(
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	(
723	68	0	2	120	211	0	0	115	0	1.5	1	0	2	
733	44	0	2	108	141	0	1	175	0	0.6	1	0	2	
739	52	1	0	128	255	0	1	161	1	0.0	2	1	3	(
843	59	1	3	160	273	0	0	125	0	0.0	2	0	2	(
878	54	1	0	120	188	0	1	113	0	1.4	1	1	3	(

302 rows × 14 columns

•

In [16]: del d1['rspm']
d1

Out[16]:

	stn_code	sampling_date	state	location	agency	type	so2	no2	spr
0	150	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	4.8	17.4	Na
1	151	February - M021990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	3.1	7.0	Na
2	152	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.2	28.5	Na
3	150	March - M031990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.3	14.7	Na
4	151	March - M031990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	4.7	7.5	Na
		•••	•••						
435737	SAMP	24-12-15	West Bengal	ULUBERIA	West Bengal State Pollution Control Board	RIRUO	22.0	50.0	Na
435738	SAMP	29-12-15	West Bengal	ULUBERIA	West Bengal State Pollution Control Board	RIRUO	20.0	46.0	Na
435739	NaN	NaN	andaman- and-nicobar- islands	NaN	NaN	NaN	NaN	NaN	Na
435740	NaN	NaN	Lakshadweep	NaN	NaN	NaN	NaN	NaN	Na
435741	NaN	NaN	Tripura	NaN	NaN	NaN	NaN	NaN	Na
435742 rows × 11 columns									
4									•

localhost:8888/notebooks/DSBDA ASST 5 .ipynb

```
In [17]: from sklearn.model_selection import train_test_split
x = merge.drop(['age'],axis=1)
x
```

Out[17]:

	sex_x	ср_х	thal_x	sex_y	ср_у	thal_y
0	1	0	3	0	0	3
1	0	0	2	1	2	2
2	0	0	2	0	1	2
3	1	0	1	1	2	2
4	1	0	1	0	1	2
5	1	0	3	0	0	2
6	1	0	2	1	0	3
7	1	0	3	0	2	2

```
In [19]: y=merge['thal_y']
y
```

Out[19]: 0 3
1 2
2 2
3 2
4 2
5 2
6 3
7 2

Name: thal_y, dtype: int64

```
In [21]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=
```

In [22]: from sklearn.linear_model import LogisticRegression
 logreg=LogisticRegression()

```
In [23]: logreg.fit(x_train,y_train)
```

Out[23]: LogisticRegression()

In [24]: from sklearn.metrics import classification_report,confusion_matrix
y_pred=logreg.predict(x_test)

```
In [26]: print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
```

```
[[2 0]
 [1 0]]
              precision
                            recall f1-score
                                                support
           2
                    0.67
                              1.00
                                         0.80
                                                      2
           3
                    0.00
                              0.00
                                         0.00
                                                      1
                                         0.67
                                                      3
    accuracy
                    0.33
                                         0.40
                                                      3
   macro avg
                              0.50
                                                      3
weighted avg
                    0.44
                              0.67
                                         0.53
```

C:\Users\RUTIKA\anaconda3\lib\site-packages\sklearn\metrics_classification.p y:1221: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

In []: