(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-17574

(43)公開日 平成9年(1997)1月17日

(51) Int.Cl.⁶

識別記号 庁内整理番号 FΙ

技術表示箇所

H05B 33/14

H 0 5 B 33/14

審査請求 未請求 請求項の数8 FD (全 8 頁)

(21)出願番号

特願平8-85743

(22)出顧日

平成8年(1996)3月14日

(31) 優先権主張番号 特願平7-127181

(32)優先日

平7 (1995) 4 月27日

(33)優先権主張国

日本 (JP)

(71)出願人 000005016

パイオニア株式会社

東京都目黒区目黒1丁目4番1号

(72)発明者 脇本 健夫

埼玉県鶴ヶ島市富士見6丁目1番1号 パ

イオニア株式会社総合研究所内

(54) 【発明の名称】 有機エレクトロルミネッセンス案子

(57)【要約】

【課題】 発光効率が高く、低印加電圧にて高輝度で連 続発光させることができる、安定した有機EL素子を提 供する。

【解決手段】 陽極、有機化合物の正孔輸送層、有機化 合物の発光層、有機物の電子輸送層、電子注入層及び陰 極が順に積層される有機エレクトロルミネッセンス素子 の電子注入層にアルカリ金属化合物を含む構成にした。

1

【特許請求の範囲】

1

【請求項1】 導電材料からなる陽極、有機化合物からなる正孔輸送層、有機化合物からなる発光層、有機化合物からなる発光層、有機化合物からなる電子輸送層、電子注入層、及び導電材料からなる陰極が順に積層されてなる有機エレクトロルミネッセンス素子であって、前記電子注入層にアルカリ金属化合物を含むことを特徴とする有機エレクトロルミネッセンス素子。

【請求項2】 前記電子注入層に含まれるアルカリ金属 化合物は、アルカリ金属の酸化物、過酸化物、複合酸化 10 物、ハロゲン化物、窒化物、アルカリ金属塩のうちの少 なくともいずれか一つから選択されることを特徴とする 請求項1に記載の有機エレクトロルミネッセンス素子。

【請求項3】 前記電子注入層に含まれるアルカリ金属 化合物は、リチウム化合物であることを特徴とする請求 項1に記載の有機エレクトロルミネッセンス素子。

【請求項4】 前記電子注入層に含まれるアルカリ金属 化合物は、ナトリウム化合物であることを特徴とする請 求項1に記載の有機エレクトロルミネッセンス素子。

【請求項5】 前記電子注入層に含まれるアルカリ金属 20 化合物は、カリウム化合物であることを特徴とする請求 項1に記載の有機エレクトロルミネッセンス素子。

【請求項6】 前記電子注入層に含まれるアルカリ金属 化合物は、ルビジウム化合物であることを特徴とする請 求項1に記載の有機エレクトロルミネッセンス素子。

【請求項7】 前記電子注入層に含まれるアルカリ金属 化合物は、セシウム化合物であることを特徴とする請求 項1に記載の有機エレクトロルミネッセンス素子。

【請求項8】 前記電子注入層は、平均膜厚が1~20 0オングストロームであることを特徴とする請求項1に 記載の有機エレクトロルミネッセンス素子。

【発明の詳細な説明】

[0001]

[0001]

[0002]

【産業上の利用分野】本発明は、電流の注入によって発光する、物質のエレクトロルミネッセンスを利用してかかる物質を層状に形成した発光層を備えた発光素子に関し、どくに発光層が有機化合物を発光体として構成される有機エレクトロルミネッセンス素子(以下、有機EL素子と呼ぶ)に関する。

[0003]

[0002]

[0004]

【従来の技術】図3に、従来のEL素子の構造を示す。 図中、1は金属陰極、2は透明陽極、3は有機発光層、 4は正孔輸送層、5は有機質電子輸送層、6aは電子注 入層、7はガラス基板をそれぞれ表している。

[0005]

【0003】有機EL素子としては、図3に示すよう

に、金属陰極1と透明陽極2の間に、電子注入層6a、 有機電子輸送層5、有機発光層3、有機正孔輸送層4が 積層されているものが知られている。

[0006]

【0004】正孔輸送層4は、陽極2から正孔を発光層3へ輸送する機能と、陽極2へ流れ込もうとする電子をブロックする機能とを有する。電子注入層6aは、電子輸送層5へ電子を注入する機能を有する。電子輸送層5は、電子注入層6aから注入された電子を発光層3へ輸送する機能を有している。これらのEL素子においては、金属陰極1から電子注入層6a、電子輸送層5を通して発光層3へ注入された電子と、陽極2から正孔輸送層4を通して発光層3へ注入された正孔との再結合によって励起子が生じる。この励起子は放射失活を起こして消滅するが、失活する際に、失活で失うエネルギーと同等の波長を持つ光を放射する。この放射された光が、透明陽極2、及び陽極2の外側に配されたガラス基板7を介して外部に放出される。

[0007]

3 【0005】図4に、従来のEL素子の別の構造を示す。図中、1は金属陰極、2は透明陽極、3は有機発光層、4aは第1正孔輸送層、4bは第2正孔輸送層、6aは電子注入層、7はガラス基板をそれぞれ表している。

[0008]

【0006】図4に示すように、正孔輸送層が第1正孔輸送層と第2正孔輸送層との積層構造されている場合がある。このようにすることにより、イオン化ポテンシャルの配置を階段状にして、正孔を発光層に注入しやすくする。これはすなわち正孔輸送層が1層の場合よりも電流を流して発光させるときの電圧を低くする場合などに使われる手段である。

[0009]

40

50

【0007】これらEL素子の、陽極2には、インジウム錫酸化物(以下ITOと呼ぶ)、錫酸化物など、仕事関数が大きい透明導電性材料が使われる。陰極1には、アルミニウム(A1)、マグネシウム(Mg)、インジウム(In)、銀(Ag)などの単体金属、あるいはA1-Mg、Ag-Mgなどこれらの金属の合金で、仕事関数の小さな材料が用いられる。電子注入層6aは、陰極2の材料が仕事関数が小さく、かつ抵抗の小さい導電体薄膜を使用する場合には、省略されることもある。しかし、陰極の材料の選択の幅を広げるために、SrO、CaO、BaOなど仕事関数の小さなアルカリ土類金属酸化物を含む材料を使用した電子注入層6aの挿入が検討されている。

[0010]

[8000]

[0011]

3

【発明が解決しようとする課題】しかしながら、これまでの電子注入層の材料を使用した素子では、十分な発光 特性を得られておらず、また、連続発光による輝度の減衰も大きい、という問題があった。

[0012]

[0009]

[0013]

【課題を解決するための手段】本発明は、陽極、有機化合物の正孔輸送層、有機化合物の発光層、有機物の電子輸送層、電子注入層及び陰極が順に積層されてなる有機 10 エレクトロルミネッセンス素子であって、前記電子注入層にアルカリ金属化合物を含むことを特徴とする。

[0014]

[0010]

[0015]

【作用】本発明によれば発光層と陰極層の間に挿入された電子注入層の材料に、Li、Rb、Cs、Na、Kなどのアルカリ金属を含む化合物のうち、少なくともいずれか1つを含む材料を使用することにより、前記アルカリ金属化合物の仕事関数が小さいため、膜厚を最適化することにより、素子を高い輝度で発光させることができる。また、前記アルカリ金属の化合物は、単体のアルカリ金属に比して化学的に安定であるので、特性の再現性が高く、低印加電圧にて高輝度で連続発光させることができる有機EL素子を安定的に得ることができる。

[0016]

[0011]

[0017]

【実施例】以下に本発明を図面を参照しながら説明する。

【0018】図1に本発明の有機EL素子を示す。図中、1は金属陰極、2は陽極、3は発光層、4は正孔輸送層、5は電子輸送層、6bは本発明の電子注入層、7はガラス基板を示している。

[0019]

【0012】図1に示されるように、本発明の有機EL素子は、ガラス基板7上に陽極2、有機化合物からなる正孔輸送層4、有機化合物からなる発光層3、電子注入層6b。及び金属陰極1が順に積層された構造を有している。

[0020]

【0013】ここで電子注入層6bは、アルカリ金属(Li、Na、K、Rb、Cs)の化合物、特にアルカリ金属の酸化物、過酸化物、複合酸化物、ハロゲン化物、窒化物、アルカリ金属塩を含んでおり、例えば、Li2O、Li2O2、Rb2O、Cs2O、Rb2O2、Cs2O2、LiAlO2、LiBO2、LiCl、RbCl、NaCl、KAlO2、NaWO4、K2SiO3、Li2CO3などが用いられる。これらの材料は、仕事関数が非常に小さく、絶縁体として機能50

4

するが、その膜厚を最適化することにより、素子を高い 輝度で発光させることができる。また、これらの材料は 化学的に安定で、したがってハンドリングが容易であ り、ひいては素子の特性の再現性が高く、高い特性を持 つ素子を安定的に作り出すことができる。

[0021]

【0014】電子注入層6bの膜厚は、電子注入効果が得られる平均膜厚1オングストローム以上が必要である。また、有機EL素子は、前述したように、発光層で正孔と電子が再結合して発光する。すなわち電流が流れないと発光しない。電子注入層に使用される物質は基本的に絶縁体であるため、その膜厚は、電流が流れるのを大きく阻害しない200オングストローム以下とすることが望ましい。

[0022]

【0015】陽極1には、ITO、あるいは錫酸化物など、仕事関数が大きい透明電極材料が用いられる。陰極2には、A1、Mg、In、Agの単体金属、もしくはこれらの合金などが一般には使用されるが、原理的には、陰極材料の仕事関数よりも陽極の仕事関数のほうが大きいという条件を満たす材料ならば使用できる。ただし、その際には、陽極もしくは陰極のどちらか一方、もしくは両方が透明電極である必要がある。

[0023]

【0016】発光層3には蛍光を発する有する物質が用いられる。特に量子収率の高いものが望ましく、例えば、8-ヒドロキシキノリンのアルミニウム錯体(A1q3)などが使用される。

[0024]

【0017】また、発光層3には、キャリア輸送性を有 する有機ホスト剤と、キャリア再結合に応じて発光する 能力を持つ、もしくはホスト剤物質からのエネルギー移 動によって発光する能力を持つ有機ゲスト剤とから構成 された、いわゆるゲストホスト型の発光層でも良い。例 えばホスト物質のA1 q3 などに、ゲスト物質であるク マリン誘導体、ジシアノメチレンピラン誘導体、あるい はキナクリドン誘導体などを添加したものが使用でき る。その際、ホスト物質には、サイクリックボルタンメ トリ (CV) において、酸化側及び還元側共に電位の絶 40 対値が大きなものが使用される。ゲスト物質には、CV において酸化側、還元側共に電位の絶対値がホスト物質 のそれよりも小さいものが使用される。また、ゲスト物 質の励起波長スペクトル分布と、ホスト物質の蛍光波長 スペクトル分布との重なり部分が大きいほど発光効率が 良い。ゲスト物質は、蛍光量子収率の高い蛍光物質から 選ばれ、フォトルミネッセンスの濃度消光を考慮する と、発光層内において、ホスト物質の0.01~1.0 %の濃度で含有されていることが好ましい。

[0025]

【0018】正孔輸送層4には、Carrier Transporting

5

Materials (CTM) として知られる、正孔を輸送する能力を有する化合物を、単独、または混合物、積層物として用いる。例えばN, N^- - ジフェニルーN, N^- - ピス (3 メチルフェニル) - 1, 1^- - ピフェニルー4, 4^- - ジアミン (TPD)、銅フタロシアニン、4 - 4^- - 4^+ - トリス {N- (3- メチルフェニル) - N- フェニルアミノ} トリフェニルアミン (MTDATA) などを使用することができる。

[0026]

【0019】電子輸送層 5 には、電子を輸送する能力を 10 持つ化合物を単独、または混合物、積層物として使用することができる。例えば、 $Bu-PBD[2-(4^-$ ターシャリープチルフェニル) -5-(ピフェニル)-1、3、4-オキサジアゾール]、 Alq_3 、ペリレン誘導体が使用される。

[0027]

【0020】図2に本発明の別の実施例の有機EL素子を示す。図中、1は金属陰極、2は陽極、3は発光層、4aは第1正孔輸送層、4bは第2正孔輸送層、6bは本発明の電子注入層、7はガラス基板を示している。

[0028]

【0021】具体的に、表1に示す蒸着速度、作成方法*

*により図2の構造のEL素子を作成した。このEL素子 は、ガラス基板7上にストライプ状に形成されたITO 陽極2の上に、MTDATAからなる第1正孔輸送層4 aを膜厚300オングストロームで、TPDからなる第 2正孔輸送層4bを膜厚300オングストロームで、A 1q3 からなる発光層3を膜厚550オングストローム で、Li2 〇からなる電子注入層6 bを膜厚を各種変更 して、A1からなる陰極2を膜厚1500オングストロ ームで、それぞれ順に積層したもので、電子注入層 6 b のLi₂ O平均膜厚をそれぞれ1、4、8、12、22 オングストロームに設定した5種類のEL素子を作成し た。比較例として、Li2 O電子注入層を発光層と陰極 の間に設けないEL素子、図3の構造のEL素子におけ る電子注入層6aとして、アルカリ土類金属であるSr 〇を使用し、SrO膜厚をそれぞれ1、5、10オング ストロームに設定した4種類のEL素子を同条件にて作 成した。

[0029]

[0022]

[0030]

【表1】

20

機能屬	蒸着速度(A/秒)	作成方法
MTDADA	2~4	抵抗加熱蒸發
TPD	2~4	抵抗加熱蒸着
Alq3	2~4	抵抗加熱蒸着
Lizo	1 ~ 2	BB森着又は抵抗加熱蒸着
Al	7~14	抵抗加熱蒸着

[0031]

【0023】MTDATAの第1正孔輸送層は、融点、 ガラス転移点が高く、すなわち耐熱性が高い。また結晶 化が長期間起きないため薄膜形成性に優れており、導電 性も良いので、電流印加時の発熱を抑制することができ る。また、ELの量子効率を向上させることができる。

[0032]

【0024】表2に電子注入層がLi2 Oである5種の EL素子の輝度-発光特性を、表3に、電子注入層にS rOを使用したときのEL素子の輝度-発光特性を示 す。

[0033]

[0025]

[0034]

【表2】

Lit O膜厚 (A)	発光効率 (1 m / W)				
0	0.49				
1	0. 91				
4	1.86				
8	2. 95				
1 2	2.88				
2 2	2.32				

※発光効率は、300cd/m2時のもの

[0035]

[0026]

[0036]

【表3】

SrO膜厚 (A)	発光 効率 (1m/W)
0	0.49
1	0. 94
5	1. 90
1 0	1. 40

[0037]

【0027】図5に、それらのEL素子の連続発光試験による、輝度減衰特性を示す。ここで、グラフの縦軸は経過時輝度L/初期輝度L0の輝度比[L/L0]を、横軸は対数軸で経過時間をそれぞれ表している。ここで、この連続発光試験の際の初期輝度L0は300cd/m²である。

8

[0038]

【0028】以上の結果より、Li2 O電子注入層を10~22オングストロームの厚さで挿入した本実施例は、電子注入層を挿入しない、もしくは電子注入層にSrOを使用した比較例に比べ、発光特性、寿命の向上が見られ、Li2 O電子注入層膜厚が8オングストロームのときに、特に顕著な効果が得られる。また、表2より、電子注入層の膜厚は輝度300cd/m²時の発光効率が約1.0(lm/w)以上の値が得られる1~30オングストロームで有効である。

[0039]

【0029】また、さらに別の実施例として、図2の構20 造のEL素子で電子注入層6をそれぞれLi2O2、LiAlO2、LiBO2、LiCl、Cs2O、NaCl、Na2WO4、KAlO2、K2SiO3、RbCl、Li2CO3とし、その膜厚をそれぞれ1O、2O、3O、4O、5O、6O、8O、1OOオングストロームに設定したものをそれぞれ作成した。表4、表5にはそれぞれのEL素子の輝度-発光特性を示す。

[0040]

[0030]

[0041]

30 【表4】

			(6)				
							10
発光効率							
(1 m/W)							
(300cd/m2時)							
					Γ	Γ	1
Li 202	LiAl02	L i 802	Lici	C:20	NaCl	N 1 2 W 0 4	RAI02
1. 15	1. 45	1. 14	2. 70	1. 28	2. 00	2. 11	2. 85
1. 48	1.89	1. 95	2, 86	1.88	2. 14	2. 84	2. 87
1.88	1. 83	2 62	2. 51	2. 34	2. 30	2 87	3, 06
1. 90	2. 44	2. 53	3. 00	2. 70	2. 52	2. 68	2. 98
1. 9 ā	2. 39	2. 43	-	2. 92	2. 53	-	-
1.52	2. 58	2. 47	-	2. 82	2. 50	-	2. 82
1, 79	2, 29	2. 60	2, 86	1, 00	2. 53	-	2. 56
		4 88					
1. 33	2, 60	2. 17	-	3, 90	2. 32	-	2, 03
	1. 15 1. 48 1. 88 1. 90 1. 93 1. 52 1. 79	(3 0 0 c d) Li202 LiA102 1. 15	発光効率 (1 m/W) (3 0 0 c d/m2 時) Li202 Li4102 Li802 1. 15 1. 45 1. 84 1. 48 1. 89 1. 95 1. 88 1. 83 2. 62 1. 90 2. 44 2. 53 1. 93 2. 39 2. 43 1. 52 2. 58 2. 47 1. 79 2. 29 2. 60 1. 33 2. 60 2. 77	発光効率 (1 m/W) (3 0 0 c d/m2 時) Li202 LiA102 Li802 liC1 1. 15 1. 45 1. 84 2. 70 1. 48 1. 89 1. 95 2. 86 1. 88 1. 83 2. 62 2. 51 1. 90 2. 44 2. 53 3. 00 1. 93 2. 39 2. 43 - 1. 52 2. 58 2. 47 - 1. 79 2. 29 2. 60 2. 86 1. 33 2. 60 2. 77 -	発光効率 (1 m/W) (3 0 0 c d/m2 時) Li 202 Li A102 Li 802 li C1 C 20 1. 15 1. 45 1. 84 2. 70 1. 28 1. 48 1. 89 1. 95 2. 86 1. 88 1. 88 1. 83 2. 52 2. 51 2. 34 1. 90 2. 44 2. 53 3. 00 2. 70 1. 92 2. 29 2. 43 - 2. 92 1. 52 2. 58 2. 47 - 2. 82 1. 79 2. 29 2. 50 2. 86 3. 00 1. 33 2. 60 2. 77 - 3. 90	発光効率 (1 m/W) (3 0 0 c d/m 2 時) Li 202 Li A 1 02 Li B 02 li C1 C 20 NaCt 1. 15 1. 45 1. 84 2. 70 1. 28 2. 00 1. 48 1. 89 1. 95 2. 86 1. 88 2. 14 1. 88 1. 83 2. 62 2. 51 2. 34 2. 30 1. 90 2. 44 2. 53 3. 00 2. 70 2. 52 1. 92 2. 58 2. 47 - 2. 82 2. 50 1. 79 2. 29 2. 50 2. 86 3. 00 2. 53 1. 33 2. 60 2. 77 - 3. 00 2. 52	発光効率 (1 m/W) (3 0 0 c d/m 2 時) Li 202 Li A 1 02 Li B 02 li C 1 C 20 NaCt Na 2 404 1. 15 1. 45 1. 84 2. 70 1. 28 2. 00 2. 77 1. 48 1. 89 1. 95 2. 86 1. 88 2. 14 2. 84 1. 88 1. 83 2. 62 2. 51 2. 34 2. 30 2. 87 1. 90 2. 44 2. 53 3. 00 2. 70 2. 52 2. 68 1. 92 2. 29 2. 43 - 2. 92 2. 53 - 1. 52 2. 68 1. 92 2. 29 2. 50 2. 86 3. 00 2. 53 - 1. 79 2. 29 2. 50 - 1. 33 2. 60 2. 77 - 3. 00 2. 52 - 1. 33 2. 60 2. 77 - 3. 00 2. 52 - 1. 33 2. 60 2. 77 - 3. 00 2. 52 - 1. 33 2. 60 2. 77 - 3. 00 2. 52 - 1. 34 2. 30 2. 52 - 1. 35 2. 60 2. 77 - 3. 00 2. 52 - 1. 35 2. 77 - 3. 00 2. 52 - 1. 35 2. 30 2. 30 2. 30 2. 30 2. 30 2. 30 2. 30 2. 30 2. 30 2. 30 2. 30

[0042]

[0031]

【0043】 【表5】

30

11				
電子	発光効率			
往入剤	(1 m/W)			
膜厚	(300cd/m2時)			
(A)				
	K28103	RbCI	Li2CO3	
10	2. 12	1. 42	2. 97	
20	2. 72	1. 82	1. 78	
80	2. 55	2. 03	1. 70	
40	2. 14	2. 16	1. 23	
50	-	-	-	
60	2. 82	2, 73	-	
80	2. 56	2. 75	-	
100	2, 03	2. 90		

[0044]

【0032】表4、表5から、これらのアルカリ金属化 30 合物を電子注入層に使用した場合にも効果があることが 認められ、表4、表5より、電子注入層の膜厚は、1~

【図1】

12

100オングストロームにおいて、高い発光効率が得られることがわかる。

[0045]

[0033]

[0046]

【発明の効果】本発明によれば、陽極、有機化合物からなる正孔輸送層、有機化合物からなる発光層、有機化合物からなる電子輸送層、電子注入層及び陰極が順に積層されてなる有機エレクトロルミネッセンス素子におい

10 て、電子注入層にアルカリ金属化合物を含む材料を使用したので、電極形成材料の幅を拡大し、素子作成時におけるハンドリングを容易にし、低印加電圧で高輝度発光させることができ、その寿命も長くし、素子の特性の再現性を高くすることができる。

【図面の簡単な説明】

【図1】本発明のEL素子の構造を示す構造図である。

【図2】本発明の別の実施例のEL素子の構造を示す構造図である。

【図3】従来のEL素子の構造を示す構造図である。

20 【図4】従来の別のEL素子の構造を示す構造図である。

【図5】本発明のEL素子の輝度減衰特性を示すグラフである。

【主要部分の符号の説明】

1・・・陰極

2 ・・・陽極

3・・・発光層

4・・・有機正孔輸送層

5・・・電子輸送層

30 6・・・電子注入層

7・・・ガラス基板

1 6b 5 3 4 2

...