

Data Driven Engineering II: Advaced Topics

Graph Neural Networks II

Institute of Thermal Turbomachinery Prof. Dr.-Ing. Hans-Jörg Bauer

Graph Neural Networks:

- 1) GNN Basics
- 2) How GNN works
- 3) Basic architectures
- 4) Coding: Graph Nets library
 "Py Torch Geometric,
 - 5) Graph Autoencoders; modelling transport phenomena

Understanding Graph Network:

- (i) Node level Tasks > Classforation
- (ii) Edges -> Connectivity

 --> Recommendation
 Systems

 --> Link Predictions
- (iii) Graph Level Tosks Closs.
 Regresson

Learning to Simulate Complex Physics with Graph Networks

Alvaro Sanchez-Gonzalez $^{*\,1}$ Jonathan Godwin $^{*\,1}$ Tobias Pfaff $^{*\,1}$ Rex Ying $^{*\,1\,2}$ Jure Leskovec 2 Peter W. Battaglia 1

Ground truth	Prediction	Ground truth	Prediction

Case Study:

* Closed system: No inlet /outlet

(y

Fixed Size Data for a guer

case

Data on Seq. length of events [1000] -> Fluid type & position of each elevent

Case Study:

15.06.2023

Interaction Network:

according to the info. passed from neighbours

$$h_{i}^{(k \uparrow l)} = \phi_{update} \left(h_{i}^{(k)}, \phi_{aggregate}^{(k)} \left(\{ h_{i}^{(k)}, \forall j \in \mathcal{N}(i) \} \right) \right)$$

- 3 Update
- V_i '← V_i + f (V_i, Agg_i)
- · e; = e; + f (Msg;
- · g = g + f (....)

@ Message Aggregation

$$Agg_i = f(Msg_{in})$$

1 Message Generation:

- · Node i features
- · Node j features
- . Edge features
- . Global features

Msg ; (v; , 4, e; , g)

Data for training

WaterDrop Water Sand

Goop MultiMaterial

RandomFloor

WaterRamps

SandRamps

FluidShake

FluidShakeBox

Continuous

WaterDrop-XL

Water-3D

Sand-3D

Goop-3D

Check

down load - dataset . sh

* water Drop ,

colab

Graph Neural Notworks

