

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská

Robustní strojové učení a adversariální vzorky Robust machine learning and adversarial examples

Bakalářská práce

Autor: Pavel Jakš

Vedoucí práce: Mgr. Lukáš Adam, Ph.D.

Akademický rok: 2021/2022

Poděkování: Chtěl bych zde poděkovat především svému školiteli - panu doktoru Adamovi - za pečlivo vstřícnost a odborné i lidské zázemí při vedení mé bakalářské práce.	ost, ochotu,			
<i>Čestné prohlášení:</i> Prohlašuji, že jsem tuto práci vypracoval samostatně a uvedl jsem všechnu použitou literaturu.				
V Praze dne 7. července 2022	Pavel Jakš			

Název práce:

Robustní strojové učení a adversariální vzorky

Autor: Pavel Jakš

Obor: Matematická informatika

Druh práce: Bakalářská práce

Vedoucí práce: Mgr. Lukáš Adam, Ph.D., Katedra počítačů, Fakulta elektrotechnická, České vysoké

učení technické v Praze, Karlovo náměstí 13, 121 35, Praha 2

Abstrakt: Abstrakt max. na 10 řádků. Abstrakt max. na 10 řádků.

Klíčová slova: klíčová slova (nebo výrazy) seřazená podle abecedy a oddělená čárkou

Title:

Robust machine learning and adversarial examples

Author: Pavel Jakš

Abstract: Max. 10 lines of English abstract text. Max. 10 lines of English abstract text.

Key words: keywords in alphabetical order separated by commas

Obsah

Úv	vod		11
1	Neu	ronové sítě	13
	1.1	Vrstva neuronů	13
		1.1.1 Hustá vrstva	13
		1.1.2 Konvoluční vrstva	13
		1.1.3 Pooling vrstva	14
		1.1.4 Aktivační vrstva	15
	1.2	Hluboká dopředná neuronová síť	15
	1.3	Konvoluční neuronová síť	16
2	Učei	ní neuronové sítě	17
	2.1	Účelové funkce	17
		2.1.1 Střední kvadratická chyba	17
		2.1.2 Ztráta křížové entropie	18
	2.2	Algoritmus zpětného šíření chyby	18
	2.3	Algoritmy učení	19
		2.3.1 Gradientní sestup	19
		2.3.2 Metoda hybnosti	19
		2.3.3 Metoda Něstěrovy hybnosti	20
		2.3.4 AdaGrad	20
		2.3.5 RMSProp	20
		2.3.6 Adam	21
	2.4	Stochastické algoritmy učení	21
3	Adv	versariální vzorky	23
	3.1	Metody generování adversariálních vzorků	23
		3.1.1 FGSM	23
		3.1.2 Iterativní FGSM	24
		3.1.3 Cílená optimalizační úloha	24
		3.1.4 PGD	24
		3.1.5 CW	24
4	Dak	watni wxani nawanawi citx	25

5	Srov	ovnání algoritmů učení		
	5.1	Kritérium srovnávání	27	
	5.2	Inicializace parametrů sítě a stochasticita algoritmu učení	27	
	5.3	Datová sada MNIST	27	
	5.4	Výsledky	28	
Záv	věr		33	

Úvod

Pojem neuronové sítě představuje výpočetní jednotku, která svou univerzálností nachází uplatnění v mnoha disciplínách.

Neuronové sítě

Neuronová síť je svým charakterem velmi přizpůsobivý výpočetní stroj vhodný pro řešení mnoha problémů. Mezi nejčestější problémy, jejichž řešením může být vhodná neuronová síť, patří regrese, čili předpovídání jedné skalární hodnoty na základě vstupu, či klasifikace, která má za cíl předpovědět třídu v němž se daný vstup nachází. Obecně tak neuronové síti odpovídá libovolně komplikované zobrazení $F: \mathbb{R}^{n_1,\dots,n_k} \to \mathbb{R}^{m_1,\dots,m_l}$. Pro případ regrese potom l=1, m=1 a výstup F hraje roli predikované hodnoty, pro případ klasifikace je též l=1, ale m je rovno počtu tříd a výstup F je predikovanou pravděpodobnostní distribucí, která určuje s jakou pravděpodobností patří daný vstup příslušné třídě.

Samotná síť sestává z mnoha dílčích navzájem propojených částí, o nichž pojednávají následující pasáže této kapitoly.

1.1 Vrstva neuronŭ

Prvním základním konceptem, který stojí za pojmem neuronové sítě, je rozdělení výpočtu do vrstev. Takové vrstvy potom charakterizuje zobrazení $\phi: \mathbb{R}^{p_1,\dots,p_r} \to \mathbb{R}^{q_1,\dots,q_s}$, jehož předpis již lze snadno vyjádřit. Obrazy vstupů při zobrazení ϕ se potom nazývají *aktivace*.

1.1.1 Hustá vrstva

Prvním příkladem vrstev neuronů je tzv. hustá vrstva (angl. dense layer nebo fully-connected layer). Pro zobrazení ϕ platí, že zobrazuje vektory na vektory, tedy r = s = 1, a má předpis

$$\phi(u) = Wu + b,\tag{1.1}$$

kde $W \in \mathbb{R}^{q_1,p_1}$ je matice vah (z angl. weight) a $b \in \mathbb{R}^{q_1}$ je vektor prahů (z angl. bias).

Motivací za pojmenováním této vrstvy jako husté nebo též plně propojené je fakt, že každá složka vstupujícího vektoru ovlivňuje každou z výsledných aktivací, pokud tedy příslušný prvek matice vah není nulový.

1.1.2 Konvoluční vrstva

Pro představení dalšího typu vrstvy uvěď me základní přehled o operaci konvoluce. Operace *konvoluce* je ve vší obecnosti operace mezi dvěma číselnými funkcemi g a h se stejným definičním oborem, jejíž výstupem je nová číselná funkce standardně označovaná jako g*h. Uveď me zde definici konvoluce pro reálné funkce definované na \mathbb{R}^d , tedy $g,h:\mathbb{R}^d\to\mathbb{R}$:

$$(g * h)(t) = \int_{\mathbb{R}^d} g(\tau)h(t - \tau)d\tau.$$

Důležitým předpokladem pro možnost konvoluce je samozřejmě existence integrálu na pravé straně.

Ačkoliv je konvoluce komutativní operací, nejen v kontextu strojového učení se mezi oběma funkcemi vstupujícími do konvoluce rozlišuje. Funkce vstupující jako první se nazývá vstup a druhá funkce se nazývá jádrem. Dále se v kontextu konvolučních sítí standardně objevují diskrétní funkce, které nabývají nenulových hodnot pouze v konečně mnoha bodech. Potom integrál přes \mathbb{R}^d přechází v konečnou sumu:

$$(g * h)(i_1, ..., i_d) = \sum_{j_1} ... \sum_{j_d} g(j_1, ..., j_d) h(i_1 - j_1, ..., i_d - j_d).$$
(1.2)

Díky komutativitě konvoluce lze též psát:

$$(g * h)(i_1, ..., i_d) = \sum_{j_1} ... \sum_{j_d} g(i_1 - j_1, ..., i_d - j_d) h(j_1, ..., j_d).$$
(1.3)

Při aplikaci komutativity došlo k tzv. překlopení jádra (termín pochází z anglického kernel flipping). Za vynechání překlopení jádra lze dojít ke křížové korelaci:

$$(g * h)(i_1, ..., i_d) = \sum_{i_1} ... \sum_{i_d} g(i_1 + j_1, ..., i_d + j_d) h(j_1, ..., j_d).$$
(1.4)

Mnoho knihoven zabývajících se neuronovými sítěmi dle [1] implementují křížovou korelaci namísto konvoluce, ačkoliv tuto svou implementaci nazývají konvolucí.

Nečastější užití konvoluce v neuronových sítích je při zpracování obrázků, které lze reprezentovat pomocí $C \times W \times H$ tenzorů, kde C značí počet kanálů obrázku (nejčastěji tři pro červenou, zelenou a modrou), W je šířka, H je výška obrázku. Uvěď me předpis pro zobrazení ϕ , které odpovídá konvoluční vrstvě:

$$\forall j \in \{1, 2, ..., C_{out}\} \qquad \phi(u)_j = b_j + \sum_{i=1}^{C_{in}} u_i * K_{j,i}$$
 (1.5)

kde $\phi: \mathbb{R}^{C_{in}, W_{in}, H_{in}} \to \mathbb{R}^{C_{out}, W_{out}, H_{out}}$ (C_{in} je počet vstupních kanálů, C_{out} počet výstupních kanálů, W_{in} , H_{in} jsou vstupní šířka a výška, W_{out} , H_{out} jsou výstupní šířka a výška), $b \in \mathbb{R}^{C_{out}, W_{out}, H_{out}}$ je práh, $K \in \mathbb{R}^{C_{out}, C_{in}, k_1, k_2}$ je tenzor konvolučních jader (k_1 a k_2 jsou rozměry konvolučního jádra).

Za povšimnutí stojí, že standardně $W_{out} \neq W_{in}$ a $H_{out} \neq H_{in}$, konkrétně při takto prosté implementaci konvoluční vrstvy platí:

$$W_{out} = W_{in} - k_1 + 1, (1.6)$$

$$H_{out} = H_{in} - k_2 + 1. (1.7)$$

Pooling vrstva 1.1.3

Pojem pooling vrstvy (bez překladu) se skrývá funkce, která reportuje souhrné statistiky vstupu. Například nejčastěji používanou pooling vrstvou je tzv. max pooling s parametry k_1 , k_2 (angl kernelsize) která při aplikaci na obrázek o rozměrech $C \times W \times H$ (počet kanálů, šířka, výška) v každém kanálu reportuje maximální hodnotu v blocích o rozměrech $k_1 \times k_2$. Potom zobrazení ϕ je zobrazení $\phi: \mathbb{R}^{C,W,H} \to \mathbb{R}^{C,W_{out},H_{out}}$, kde platí:

$$W_{out} = \left[\frac{W}{k_1}\right],\tag{1.8}$$

$$H_{out} = \left[\frac{H}{k_2}\right],\tag{1.9}$$

a má předpis $\forall i \in \{1, ..., C\}, \forall j \in \{1, ..., W_{out}\}, \forall k \in \{1, ..., H_{out}\}$:

$$\phi(u) = \max\{u_{i,\mu,\nu}|(j-1)k_1 < \mu \le jk_1, (k-1)k_2 < \nu \le kk_2\}.$$
(1.10)

1.1.4 Aktivační vrstva

Aktivační vrstva označuje vrstvu, která slouží k omezení aktivací jiné vrstvy, aby byly v rozumných mezích. Např. jedná-li se o poslední vrstvu klasifikační neuronové sítě, pak aktivační vrstva zajišťuje, aby výsledné aktivace byly pravděpodobnostní distribucí.

Mezi často používané aktivační vrstvy patří funkce, jež vzniknou aplikací skalární funkce jedné proměnné $\sigma: \mathbb{R} \to \mathbb{R}$ na každý prvek vstupu zvlášť. Pro takové skalární funkce pak máme pojem aktivační funkce. Nejčastější aktivační funkce jsou následující:

• Sigmoid: $\sigma(z) = \frac{1}{1+e^{-z}}$,

• ReLU: $\sigma(z) = \max(0, z)$,

• LeakyReLU: $\sigma(z) = \max(0, z) + \alpha * \min(z, 0)$, kde $\alpha > 0$,

• Tanh: $\sigma(z) = tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$.

Další oblíbenou aktivační vrstvou je *softmax vrstva*. Ta má pro odpovídající funkci ϕ , která v tomto případě zobrazuje vektor na vektor stejných rozměrů (tedy $\phi : \mathbb{R}^{p_1} \to \mathbb{R}^{p_1}$) předpis:

$$\forall i \in \{1, 2, ..., p_1\} \quad \phi(u)_i = \frac{e^{u_i}}{\sum_{j=1}^{p_1} e^{u_j}}.$$
 (1.11)

Užití této aktivační vrstvy je na snadě. Jelikož prvky výsledné aktivace leží v intervalu [0, 1] a sečtou se na 1, lze výstup takovéto aktivační vrstvy interpretovat jako pravděpodobnostní distribuci.

1.2 Hluboká dopředná neuronová síť

Nejjednodušším modelem neuronové sítě je *hluboká dopředná neuronová sít*', která je složením hustých a aktivačních vrstev. Konkrétně je odpovídající zobrazení F složením sudého počtu vrstev, kde na liché pozici je vrstva hustá a na sudé pozici je vrstva aktivační. Tedy $F: \mathbb{R}^{n_1} \to \mathbb{R}^{m_1}$.

Motivace za pojmenováním takovéhoto zobrazení jako hluboké dopředné neuronové sítě je následující: Pojmem neuronová sít' se rozumí složení každé jednotlivé dvojvrstvy $\varphi = \phi_{activation} \circ \phi_{dense}$ (hustá vrstva ϕ_{dense} spojená s následující aktivační vrstvou $\phi_{activation}$) z mnoha tzv. umělých neuronů - dílčích výpočetních jednotek, které mají přepis

$$\varphi(u)_i = \sigma\left(b_i + \sum_{j=1}^n w_{i,j} u_j\right),\tag{1.12}$$

kde b_i je i-tá složka vektoru prahů husté vrstvy, $w_{i,j}$ je složka v i-tém řádku a j-tém sloupci matice vah husté vrstvy a σ je aktivační funkce příslušející aktivační vrstvě. Takto definovaný umělý neuron vzdáleně připomíná neuron v biologickém smyslu, neboť má mnoho vstupů a jeden výstup. Tímto způsobem zavedené umělé neurony jsou potom pospojovány v neuronovou síť.

Za pojmem *dopředná* v názvu hluboká dopředná neuronová síť stojí fakt, že informace plyne od vstupu první vrstvy až po aktivace poslední vrstvy v jediném směru, který je určen architekturou sítě.

Termín *hluboká* je potom zaveden pro sítě, které mají více než jednu dvojvrstvu.

1.3 Konvoluční neuronová síť

Pojmem konvoluční neuronová síť je myšleno složení vrstev neuronů, z nichž alespoň jedna je konvoluční. Standardně je konvoluční vrstva používána společně s aktivační vrstvou a pooling vrstvou, a tedy tvoří konvoluční trojvrstvu $\varphi = \phi_{pooling} \circ \phi_{activation} \circ \phi_{convolution}$, kde $\phi_{convolution}$ je konvoluční vrstva, $\phi_{activation}$ je aktivační vrstva a $\phi_{pooling}$ je pooling vrstva. Takovýchto trojvrstev může být v konvoluční síti několik za sebou a následovaat může několik vrstev hustých spolu s aktivačními. Takto zavedená konvoluční trojvrstva má velmi vítanou vlastnost, totiž že výsledná síť je do určité míry invariantní vůči translacím vstupu [1].

Učení neuronové sítě

Předchozí kapitola představila neuronové sítě jakožto složení vrstev neuronů. Jednotlivé vrstvy jsou ovšem parametrizovány parametry, o nichž není jasné, jak je nastavit. Například hustá vrstva má za parametry matici vah W a vektor prahů b. Označme tedy písmenem θ vektor všech parametrů neuronové sítě a poznamenejme závislost zobrazení neuronové sítě na parametrech θ dolním indexem v F_{θ} . Hledání vhodných parametrů θ je potom označováno pojmem *učení neuronové sítě*.

Standardní přístup k učení je paradigma učení s učitelem. Tento pohled na učení neuronové sítě předpokládá existenci tzv. $trénovací sady dat \mathbb{T}$ (angl. $training \ dataset$), což je uspořádaná dvojice obsahující množinu $vzorků \ \mathbb{X} = \left\{x^{(i)}|i\in\{1,...,N\}\right\}$ a k nim příslušné $značky \ \mathbb{Y} = \left\{y^{(i)}|i\in\{1,...,N\}\right\}$, kde pojem vzorek představuje vstup neuronové sítě a pojem značka představuje správný výstup neuronové sítě; N je potom velikost trénovací sady \mathbb{T} . Trénovací sada pak hraje roli učitele.

2.1 Účelové funkce

Je-li pojem trenovací sady objasněn, lze přistoupit k termínu *účelové funkce* nebo též *ztrátové funkce*. Jedná se o reálnou funkci, která měří, jak moc se trénovaná neuronová síť mýlí ve svých predikcích na vzorcích trénovací sady. Úloha učení je potom převedena na úlohu optimalizace tohoto vhodně zvoleného kritéria.

Standardní účelová funkce je sestavena jako průměr dílčích ztrát, které neuronová síť dosahuje na vzorcích trénovací sady:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} L(F_{\theta}(x^{(i)}), y^{(i)}), \tag{2.1}$$

kde L značí konkrétní ztrátu pro daný vzorek a J je celková účelová funkce.

2.1.1 Střední kvadratická chyba

Jedna z klasických účelových funkcí je funkce střední kvadratické chyby. Je dána přepisem:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \|F_{\theta}(x^{(i)}) - y^{(i)}\|_{2}^{2}, \tag{2.2}$$

kde $\|\cdot\|_2$ je L^2 norma.

Výhodou této účelové funkce je fakt, že ji lze aplikovat na tenzory libovoných rozměrů. Nahlédnemeli na výraz v (2.2), $J(\theta)$ nabývá vždy nezáporné hodnoty a globální minimum 0 právě tehdy, když $\forall i \in \{1,...,N\}$ $F_{\theta}(x^{(i)}) = y^{(i)}$.

Další vlastností této účelové funkce je rozdíl v citlivosti na malé hodnoty výrazu $\|F_{\theta}(x^{(i)}) - y^{(i)}\|_2$ oproti jeho velkým hodnotám. Tj. pro $\|F_{\theta}(x^{(i)}) - y^{(i)}\|_2 < 1$ je výraz po umocnění na druhou ještě menší, kdežto pro $\|F_{\theta}(x^{(i)}) - y^{(i)}\|_2 > 1$ je výraz po umocnění ještě větší, což při aplikaci později popsaných algoritmů minimalizace ztráty, které využívají gradient účelové funkce, vede k větší toleranci malých odchylek, než kdyby byla použita L^1 norma.

2.1.2 Ztráta křížové entropie

Pro klasifikační problémy se ovšem standardně používá *ztráta křížové entropie*. Připomeňme, že u klasifikačního problému je výstup neuronové sítě pravděpodobnostní distribuce a značky jsou též pravděpodobnostní distribuce. Křížová entropie potom měří vzdálenost distribučních funkcí a má svůj původ v *Kullbackově-Leiblerově divergenci* D_{KL} . Máme-li dvě pravděpodobnostní distribuce f a g, pak křížová entropie H(f,g) je rovna

$$H(f,g) = H(f) + D_{KL}(f,g),$$
 (2.3)

kde H(f) je entropie f. Pro diskrétní pravděpodobnostní distribuce máme:

$$H(f,g) = -\sum_{i} f_{i} \ln(f_{i}) + \sum_{i} f_{i} \ln\left(\frac{f_{i}}{g_{i}}\right), \tag{2.4}$$

$$H(f,g) = -\sum_{i} f_i \ln(g_i). \tag{2.5}$$

Proto lze psát:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} H(y^{(i)}, F_{\theta}(x^{(i)})). \tag{2.6}$$

Onen výraz $H(y^{(i)}, F_{\theta}(x^{(i)}))$ v (2.6) lze tedy spočíst následovně:

$$H(y^{(i)}, F_{\theta}(x^{(i)})) = -\sum_{i=1}^{m} y_{j}^{(i)} \cdot \ln(F_{\theta}(x^{(i)})_{j}). \tag{2.7}$$

Zmiňme důležitost přechodu od Kullbackovy-Leiblerovy divergence ke křížové entropii. Standardně je značka y v tzv. *one-hot encoding* formě, tedy je nulová až na jednu komponentu, která je rovna 1. Potom by dle definice $D_{KL}(y, F_{\theta}(x))$ byla ona divergence nedefinovaná, neboť bychom měli sčítat výrazy $0 \cdot \ln(0)$.

2.2 Algoritmus zpětného šíření chyby

Nejčastější metody učení neuronové sítě ve svém chodu pracují s gradientem účelové funkce podle parametrů neuronové sítě $\nabla_{\theta}J(\theta)$, který lze spočíst pomocí *algoritmu zpětného šíření chyby* (angl. *bac-kpropagation*). Tento algoritmus však lze použít nejen v takto úzce specializovaném prostředí strojového učení, nýbrž i pro výpočet Jacobiho matice libovolné funkce (dle [1]).

Algoritmus stojí na opakované aplikaci *řetězového pravidla* pro výpočet derivace složené funkce. Proto zde řetězové pravidlo uveď me. Nechť $g: \mathbb{R}^n \to \mathbb{R}^m$ a $h: \mathbb{R}^m \to \mathbb{R}^p$, $a \in \mathbb{R}^n$, potom:

$$D(h \circ q)(a) = Dh(q(a))Dq(a), \tag{2.8}$$

kde D značí totální diferenciál. Zúžíme-li se na p = 1, dostáváme:

$$\nabla(h \circ g)(a) = \nabla h(g(a))Dg(a), \tag{2.9}$$

podíváme-li se na *i*-tou komponentu gradientu $h \circ g$:

$$\partial_i(h \circ g)(a) = \sum_{j=1}^m \partial_j h(g(a)) \cdot \partial_i g_j(a), \tag{2.10}$$

kde g_j značí j-tou komponentu vektorové funkce g. Tedy jak lze vidět v (2.9), pro algoritmus bude stěžejní násobení vektoru gradientu s maticí totálního diferenciálu.

Pro neuronové sítě algoritmus zpětného šíření chyby postupuje zpět celou neuronovou sítí a počítá dle řetězového pravidla parciální derivace účelové funkce dle parametrů neuronové sítě. V praxi je ovšem snadné natrefit na velmi složité neuronové sítě, které vedou k vyhodnocování mnoha podvýrazů v jednotlivých krocích algoritmu. Navíc mnoho takovýchto podvýrazů může být stejných. Proto je při implementaci namístě otázka, zda již vyhodnocené výrazy uložit do paměti, či je pokaždé vyhodnotit znovu. Je-li žádoucí co nejkratší doba běhu, pak je odpovědí vyhodnocené výrazy ukládat, neboť jejich získání z paměti počítače je mnohem rychlejší než opakované počítání. Ovšem při nedostatečné kapacitě paměti počítače není mnohdy možné ukládat všechny mezivýpočty, proto je implementováno jejich opakované počítání na úkor času běhu algoritmu.

2.3 Algoritmy učení

2.3.1 Gradientní sestup

Základním algoritmem pro učení neuronové sítě je gradientní sestup (angl. gradient descent). Opírá se o fakt, že gradient reálné funkce určuje směr největšího růstu dané funkce v daném bodě. Proto, mámeli účelovou funkci $J(\theta)$, kde θ jsou parametry neuronové sítě, má smysl tyto parametry aktualizovat proti směru gradientu funkce J následujícím způsobem:

$$\theta \leftarrow \theta - \epsilon \cdot \nabla_{\theta} J(\theta),$$
 (2.11)

kde ϵ je tzv. *řád učení* (angl. *learning rate*) - kladné číslo, které určuje velikost jednoho kroku; jedná se o tzv. *hyper-parametr* neuronové sítě. Takovouto aktualizaci parametrů neuronové sítě lze provést několikrát, a to například tolikrát, dokud účelová funkce nedosáhne přijatelné hodnoty. Ideální by bylo, kdybychom gradientním sestupem dosáhli globálního minima účelové funkce, to ovšem není v žádném případě zaručeno, že se stane, gradientní sestup totiž dokáže nalézt pouze lokální minimum - ale to je pro reálné aplikace mnohdy dostačující.

2.3.2 Metoda hybnosti

Modifikací gradientního sestupu je tzv. *metoda hybnosti* [2]. Ta uvádí na scénu novou proměnnou - *rychlost v* (z angl. *velocity*), která je stejných rozměrů jako gradient účelové funkce a nese v sobě informaci o předchozích odhadech gradientu účelové funkce. Její role v algoritmu učení je následující:

$$v \leftarrow \alpha \cdot v - \epsilon \cdot \nabla_{\theta} J(\theta),$$
 (2.12)

$$\theta \leftarrow \theta + v.$$
 (2.13)

Užití hybnosti vede tedy k představení dalšího hyper-parametru, a to parametru $\alpha \in [0, 1)$, který určuje míru ovlivnění dalšího kroku předchozími odhady gradientu. Dle [1] jsou za hodnoty tohoto parametru nejčastěji volena čísla 0.5, 0.9 a 0.99.

2.3.3 Metoda Něstěrovy hybnosti

Jinou modifikací gradientního sestupu, která je obdobou hybnosti, je *metoda Něstěrovovy hybnosti*. Ta má následující předpis iterace [3]:

$$v \leftarrow \alpha \cdot v - \epsilon \cdot \nabla_{\theta} J(\theta + \alpha \cdot v), \tag{2.14}$$

$$\theta \leftarrow \theta + v. \tag{2.15}$$

Existují další algoritmy, které pracují s proměnným řádem učení. Jedná se o *algoritmy s přizpůsobivým řádem učení*: *AdaGrad*, *RMSProp* a *Adam*. Tyto algoritmy přizpůsobují řád učení jednotlivým parametrům zvlášť.

2.3.4 AdaGrad

Algoritmus *AdaGrad* dle [4] přizpůsobuje řád učení každému parametru jednotlivě, a to jeho škálováním nepřímo úměrně druhé odmocnině součtu všech hodnot gradientu, jež danému parametru v průběhu učení příslušel. To vede k tomu, že parametry, kterým přísluší velké hodnoty parciálních derivací účelové funkce, mají úměrně tomu rychlý úbytek v řádu učení, zatímco parametry, kterým přísluší malé hodnoty parciálních derivací učelové funkce, mají úměrně tomu pomalý úbytek v řádu učení. Celkový efekt tedy je, že se síť pohybuje rychleji ve směrech menšího spádu. Jedna iterace potom vypadá následovně:

$$g \leftarrow \nabla_{\theta} J(\theta),$$
 (2.16)

$$r \leftarrow r + g \odot q,\tag{2.17}$$

$$\theta \leftarrow \theta - \frac{\epsilon}{\delta + \sqrt{r}} \odot g, \tag{2.18}$$

kde δ je malé číslo (např. 10^{-7}) pro numerickou stabilitu, \odot značí Hadamardův součin a výraz zlomku a odmocniny na třetím řádku je myšlen po složkách. Poznamenejme, že dle [6] algoritmus AdaGrad funguje dobře s řídkými gradienty.

2.3.5 RMSProp

Nevýhoda tohoto algoritmu ovšem je jeho paměť - v proměnné *r* si pamatuje velmi vzdálené hodnoty gradientu, což dle [1] mnohdy vede k předčasnému poklesu řádu učení. Proto je namístě uvést další algoritmus - *RMSProp*. Tento algoritmus nahrazuje součet přes všechny hodnoty gradientu exponenciálně tlumeným váženým průměrem, a to způsobem, kde jedna iterace vypadá následovně [5]:

$$g \leftarrow \nabla_{\theta} J(\theta),$$
 (2.19)

$$r \leftarrow \rho \cdot r + (1 - \rho) \cdot g \odot g, \tag{2.20}$$

$$\theta \leftarrow \theta - \frac{\epsilon}{\delta + \sqrt{r}} \odot g,\tag{2.21}$$

kde δ je malé číslo (např. 10^{-7}) pro numerickou stabilitu, \odot značí Hadamardův součin a výraz zlomku a odmocniny na třetím řádku je myšlen po složkách. Objevil se tu však nový hyper-parametr $\rho \in [0,1)$ - decay rate (bez překladu).

2.3.6 Adam

Posledním představeným algoritmem je algoritmus *Adam*, který nese název z anglického *adaptive moments*, což přeloženo do češtiny zní jako přizpůsobivé momenty. V prvním přiblížení se jedná o kombinaci algoritmu RMSProp a metody hybnosti. Ve skutečnosti však je hybnost zakomponována již v následujícím, a to sice v odhadu prvního obecného momentu gradientu. Druhým aspektem, ve kterém se algoritmus liší od prostého RMSProp s hybností, jsou korekce pomocí prahu prováděné na odhadech prvního a druhého obecného momentu gradientu. Jedna iterace algoritmu vypadá [6]:

$$g \leftarrow \nabla_{\theta} J(\theta),$$
 (2.22)

$$s \leftarrow \rho_1 \cdot s + (1 - \rho_1) \cdot q,\tag{2.23}$$

$$r \leftarrow \rho_2 \cdot r + (1 - \rho_2) \cdot g \odot g, \tag{2.24}$$

$$\hat{s} \leftarrow \frac{s}{1 - \rho_1^t},\tag{2.25}$$

$$\hat{r} \leftarrow \frac{r}{1 - \rho_2^t},\tag{2.26}$$

$$\theta \leftarrow \theta - \frac{\epsilon}{\delta + \sqrt{\hat{r}}} \odot \hat{s},\tag{2.27}$$

kde δ je malé číslo (např. 10^{-7}) pro numerickou stabilitu, \odot značí Hadamardův součin, výraz zlomku a odmocniny na šestém řádku je myšlen po složkách, t je pořadí iterace a $\rho_1, \rho_2 \in [0, 1)$ jsou hyperparametry nazvané $decay\ rate$.

2.4 Stochastické algoritmy učení

Výše zmíněné metody, jak je patrné z jejich předpisů, počítají gradient účelové funkce $\nabla_{\theta}J(\theta)$. Tento krok je ovšem velmi časově náročný, protože standardní trénovací sady mívají velmi mnoho vzorků. Při připomenutí (2.1) se výpočet sestává z N výpočtů dílčích gradientů:

$$\nabla_{\theta} J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} L(F_{\theta}(x^{(i)}), y^{(i)}). \tag{2.28}$$

Proto je doporučenou praxí dle [1] aproximovat gradient účelové funkce $\nabla_{\theta}J(\theta)$ pomocí výpočtu na tzv. mini-dávce (z angl. mini-batch). Jedná se v každém kroku gradientního sestupu nebo jeho modifikací o to, že se z trénovací sady rovnoměrně vybere $M \ll N$ vzorků gradient se odhadne pomocí výpočtu na těchto M vzorcích:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\theta} L(F_{\theta}(x^{(i_j)}), y^{(i_j)}). \tag{2.29}$$

Číslo *M* lze vybírat dle [1] v řádu jednotek až stovek. Při aplikaci této aproximace během standardního gradientního sestupu se algoritmu říká *stochastický gradientní sestup* (angl. *stochastic gradient descent*), ovšem tento úkrok stranou lze provést i v případě ostatních představených algoritmů, ty však pro svou stochastickou variantu nemají speciální název.

Adversariální vzorky

Szegedy a spol. [7] objevili zvláštní chování klasifikační neuronové sítě, které spočívá v nesprávné klasifikaci mírně pozměněných vzorků trénovací sady neuronové sítě, kde ono mírné pozměnění nemění správnost příslušné značky. Zjištění lze formálně zapsat následovně:

$$(\exists x, y \in \mathbb{T})(\exists \Delta x \in \mathbb{R}^n, ||\Delta x|| < \kappa)(F_{\theta}(x) = y \land F_{\theta}(x + \Delta x) \neq y), \tag{3.1}$$

kde κ je malé číslo a $\|\cdot\|$ je L_p norma. Takovým vzorkům $\tilde{x} = x + \Delta x$ se říká *adversariální vzorky*. Pro konkrétní vzorek x a příslušnou značku y definujeme množinu adversariálních vzorků jako

$$\widetilde{\mathbb{X}}_{x} = \{ \widetilde{x} \in \mathbb{R}^{n} | F_{\theta}(\widetilde{x}) \neq y \land ||\widetilde{x} - x|| < \kappa \}. \tag{3.2}$$

Takto obecná definice adversariálních vzorků ovšem neposkytuje návod na jejich nalezení. Proto uveď me metody generování těchto adversariálních vzorků. Předtím ovšem pojmenujme neuronovou síť, která je terčem adversariálního útoku, jako oběť (angl. victim), dále pojmenujme strůjce takovéhoto adversariálního útoku jako útočníka (angl. adversary).

3.1 Metody generování adversariálních vzorků

Metody generování adversariálních vzorků se dělí na dvě kategorie dle míry znalosti útočníka o oběti. Nemá-li útočník znalost o oběti, hovoří se o tzv. black-box metodě. V opačném případě - má-li útočník kompletní znalost o oběti - se hovoří o tzv. white-box metodě. Tento text se zabývá pouze white-box metodami, neboť v black-box nastavení si může útočník natrénovat svou vlastní neuronovou síť a generovat adversariální vzorky proti ní - díky jevu přenositelnosti (angl. transferability) jsou tyto vzorky použitelné i proti původní síti [15].

Dále se metody generování adversariálních vzorků dělí na cílené (angl. targeted) a necílené (angl. untargeted). Cílené útoky generují vzorky $\tilde{x} = x + \Delta x$ tak, aby $F_{\theta}(\tilde{x}) = \tilde{y}$ pro pevně zvolenou značku \tilde{y} různou od původní značky $y = F_{\theta}(x)$. Necílené útoky předem nevybírají značku za cíl, nýbrž požadavkem je jen, aby $F_{\theta}(\tilde{x}) \neq F_{\theta}(x)$. Necílené útoky nebývají tolik účinné jako cílené [14].

3.1.1 FGSM

První metoda představená v [8] je známá pod zkratkou FGSM (z angl. fast gradient sign method). Jedná se o necílenou metodu, která využívá mnoho-dimenzionální lineární vztahy neuronové sítě [10] a má předpis:

$$\tilde{x} = x + \gamma \cdot sign(\nabla_x L(F_\theta(x), y))$$
23
(3.3)

při zachování značení z minulých kapitol textu, označení *sign* pro znaménkovou funkci a γ pro velikost složek perturbace Δx .

3.1.2 Iterativní FGSM

Druhá metoda jde o krok dál, vzorec (3.3) aplikuje iterativně několikrát a generuje posloupnost $(x_n)_{n=0}^K$, kde K je počet iterací metody. Jedná se o metodu I-FGSM (z angl. iterative fast gradient sign method) představenou v [12] s předpisem:

$$\tilde{x}_0 = x \tag{3.4}$$

$$\tilde{x}_{n+1} = Clip_x^{\kappa} \{ \tilde{x}_n + \gamma \cdot sign(\nabla_x L(F_{\theta}(x), y)) \}, \tag{3.5}$$

kde funkce Clip omezuje výsledný součet, aby byl v κ -okolí původního vzorku x a zároveň v definičním oboru neuronové sítě F_{θ} - například jsou-li vzorky obrázky, funkce Clip zajišť uje, aby hodnoty pixelů nebyly záporné či vyšší než 255. Počet iterací je ovšem dalším hyper-parametrem, který je nutno nastavit. Jedná se tedy o necílenou metodu.

3.1.3 Cílená optimalizační úloha

Třetí metoda (cílená) nahlíží na generování adversariálních vzorků jako na optimalizační úlohu [7], [14]:

$$\tilde{x} = \arg\min_{\hat{x} \in Dom_{F_{\theta}}} \lambda \cdot ||\hat{x} - x|| + L(F_{\theta}(\hat{x}), \tilde{y}), \tag{3.6}$$

kde $\lambda > 0$, $Dom_{F_{\theta}}$ je definičním oborem F_{θ} , \tilde{y} značí cílenou nesprávnou značku. Tento optimalizační problém lze řešit algoritmem L-BFGS [9], resp. jeho variantou s vazbami (angl. box-constrained L-BFGS).

3.1.4 PGD

Další metoda (necílená) nese název PGD (zkratka angl. projected gradient descent). Tato metoda je silnější variantou I-FGSM [10] a spočívá v náhodné inicializaci vzorku \tilde{x}_0 uvnitř κ -okolí původního vzorku a následných iteracích jako v I-FGSM [13].

3.1.5 CW

Následující metoda (necílená) má opět optimalizační charakter. Jmenuje se *CW* (*Carlini-Wagner*) a má předpis [14], [10]:

$$\tilde{x} = \arg\min_{\hat{x} \in Dom_{F_{\theta}}} ||\hat{x} - x|| - c \cdot L(F_{\theta}(\hat{x}), y), \tag{3.7}$$

kde c > 0.

Robustní učení neuronové sítě

Srovnání algoritmů učení

5.1 Kritérium srovnávání

Pro účely srovnávání algoritmů učení neuronové sítě lze zvolit mnoho kritérií. Jedním z nich by mohl být samotný průběh účelové funkce v závislosti na počtu provedených iterací vybraného algoritmu, když všechny představené algoritmy mají iterativní charakter.

Jiným přístupem je užití tzv. *testovací sady* $\mathbb S$ (angl. *test dataset*). Svou strukturou testovací sada kopíruje sadu trénovací, jedná se tedy o uspořádanou dvojici množin vzorků $\mathbb X = \{x^{(i)}|i\in \hat S\}$ a značek $\mathbb Y = \{y^{(i)}|i\in \hat S\}$, kde S je velikost testovací sady.

Je-li neuronová síť svým charakterem síť klasifikační, pak lze sledovat podíl správných predikcí na testovacím datasetu vůči celkovému počtu vzorků. Výhodou tohoto přístupu je fakt, že při svém učení neuronová síť na vzorky testovacího datasetu nenarazila, což má za důsledek to, že lze očekávat stejnou úspěšnost sítě při její aplikaci. Tento přístup je využit v tomto textu.

5.2 Inicializace parametrů sítě a stochasticita algoritmu učení

Nyní je namístě vyslovit poznámku o inicializaci parametrů neuronové sítě před samotným učením. Dle [1] je standardním postupem pro inicializaci vybírat hodnoty parametrů náhodně, a to z rovnoměrného rozdělení na rozumném intervalu. Konkrétní experimenty v tomto textu pracují s následujícím rozdělením vah a prahů:

$$(\mathbb{A})_{i,j}, b_i \sim U\left(-\frac{1}{\sqrt{n}}, +\frac{1}{\sqrt{n}}\right),\tag{5.1}$$

kde *n* je v případě vah počet sloupečků matice vah, v případě prahů velikost vektoru prahů. Závěrem této poznámky tedy je, že inicializace parametrů neuronové sítě je náhodný proces. To má za důsledek fakt, že na proces učení neuronové sítě lze nahlížet očima statistika. Tento text konkrétně nahlíží na úspěšnost neuronové sítě na testovací sadě jako na náhodnou veličinu. Potom lze totiž porovnávat jednotlivé algoritmy na základě distribuční funkce této specifické náhodné veličiny.

5.3 Datová sada MNIST

Nedílnou ingrediencí pro srovnání algoritmů učení je samotná sada dat a k nim příslušný úkol, zda se jedná o klasifikaci či o regresi. Tato část textu se věnuje úkolu klasifikace ručně psaných číslic z černobílého obrázku. Sada dat, která je zde použita je nazvána MNIST [16]. Její trénovací sada T obsahuje

Obrázek 5.1: Datová sada MNIST

60 000 vzorků (a k nim odpovídajících značek) a testovací sada S obsahuje 10 000 vzorků (a k nim odpovídajících značek). Vzorky jsou ve své podstatě matice o rozměrech 28 řádků a 28 sloupečků, jejichž prvky jsou nezáporná celá čísla o hodnotě nejvýše 255. Tyto matice lze interpretovat jako obrázky.

5.4 Výsledky

Přistupme nyní k samotnému srovnání algoritmů *stochastický gradientní sestup*, *metoda hybnosti* a *metoda Něstěrovovy hybnosti* (obě ve stochastické verzi). Pro srovnání těchto algoritmů byly provedeny následující dva experimenty: První se týká trénování jedné hluboké dopředné neuronové sítě těmito algoritmy pro úkol datové sady MNIST, jež je uvedena výše v textu, a to konkrétně aplikací 5 000 iterací algoritmu na nově inicializovanou síť. Pro stochastický gradientní sestup byl použit řád učení o hodnotě 10^{-2} , pro obě metody hybnosti byl použit řád učení 10^{-3} a koeficient $\alpha = 0.9$. Dále uveď me velikost mini-dávky M = 30 pro všechny tři algoritmy. V takovémto nastavení byly všechny tři algoritmy spuštěny stokrát. Na výsledné distribuční funkce lze nahlédnout v obrázku (5.2). Z grafu lze vyčíst takřka zanedbatelný rozdíl mezi metodou hybnosti a metodou Něstěrovovy hybnosti. Dále graf vyjadřuje nemalou větší úspěšnost obyčejného stochastického gradientního sestupu.

Druhý experiment je téměř totožný, jen je použit jiný model neuronové sítě, a to konkrétně se zakomponovanou konvolucí. Jinak je experiment totožný. Proto lze z Obr. (5.3) odezřít výsledky, a to konkrétně, že stochastický gradientní sestup má v tomto nastavení lepší výkonnost.

Pro srovnání algoritmů *stochastický gradientní sestup*, *AdaGrad*, *RMSProp* a *Adam* lze využít podkladů na obrázku (5.4), který zachycuje výsledky obdobných experimentů jako popsaných výše. Nastavení tohoto pokusu bylo následující: Pro stochastický gradientní sestup a algoritmus AdaGrad byl použit řád učení o hodnotě 10^{-2} , pro algoritmy RMSProp a Adam 10^{-3} . Pro AdaGrad bylo dále použito $\delta = 10^{-10}$, pro RMSProp $\delta = 10^{-8}$ a $\rho = 0.99$, pro Adam $\delta = 10^{-8}$, $\rho_1 = 0.9$ a $\rho_2 = 0.999$. Úkol byl stejný - natrénovat tentýž model dopředné neuronové sítě pro klasifikaci číslic datové sady MNIST za použití 5 000 iterací daného algoritmu. Učení sítě vždy proběhlo stokrát. Ze zmíněného obrázku vyplývá, že algoritmus AdaGrad je v tomto nastavení srovnatelný se stochastickým gradientním sestupem a že algoritmy RMSProp a Adam jsou minimálně pro toto specifické nastavení lepší.

Dále se pro srovnání algoritmů *stochastický gradientní sestup*, *AdaGrad*, *RMSProp* a *Adam* lze opřít o výsledky vyobrazené na obrázku (5.5). Ten zachycuje výsledky totožného nastavení jako obrázek (5.4) jen s rozdílem použitého modelu. V tomto případě byl použit model konvoluční neuronové sítě. Jak

Obrázek 5.2: Srovnání algoritmů učení I Simple - stochastický gradientní sestup; Momentum - metoda hybnosti; Nesterov - metoda Něstěrovovy hybnosti.

lze nahlédnout, algoritmus AdaGrad byl pro tuto úlohu nevhodný. Algoritmus Adam dosáhl přijatelné úrovně neuronové sítě (tedy úspěšnost na testovací datové sadě vyšší než 95 %) zhruba v 60 % případů, algoritmus RMSProp zhruba v 90 % případů a stochastický gradientní sestup v 95 % případů. Ovšem kvalita přijatelně natrénovaných neuronových sítí byla v případě RMSProp vyšší než u stochastického gradientního sestupu.

Obrázek 5.3: Srovnání algoritmů učení II Simple - stochastický gradientní sestup; Momentum - metoda hybnosti; Nesterov - metoda Něstěrovovy hybnosti.

Obrázek 5.4: Srovnání algoritmů učení III SGD - stochastický gradientní sestup; AdaGrad - algoritmus AdaGrad; RMSProp - algoritmus Adam - algoritmus Adam

Obrázek 5.5: Srovnání algoritmů učení IV SGD - stochastický gradientní sestup; AdaGrad - algoritmus AdaGrad; RMSProp - algoritmus Adam - algoritmus Adam

Závěr

Text závěru....

Literatura

- [1] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning. MIT Press, 2016.
- [2] B. T. Polyak, *Some methods of speeding up the convergence of iteration methods*. USSR Computational Mathematics and Mathematical Physics, 1964.
- [3] I. Sutskever, J. Martens, G. Dahl, G. Hinton, *On the importance of initialization and momentum in deep learning*. In ICML, 2013.
- [4] J. Duchi, E. Hazan, Y. Singer, *Adaptive subgradient methods for online learning and stochastic optimization*. Journal of Machine Learning Research, 2011.
- [5] G. Hinton, Neural networks for machine learning. Coursera, video lectures, 2012.
- [6] D. Kingma, J. Ba, *Adam: A method for stochastic optimization*. In 'International Conference on Learning Representations', ICLR 2015.
- [7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, *Intriguing properties of neural networks*. arXiv, 2014.
- [8] I. Goodfellow, J. Shlens, C. Szegedy, *Explaining and Harnessing Adversarial Examples*. In 'International Conference on Learning Representations', ICLR 2015.
- [9] J. Nocedal, S. Wright, *Numerical optimization*. Springer Science & Business Media, 2006.
- [10] J. Liu, Q. Zhang, K. Mo, X. Xiang, J. Li, D. Cheng, R. Gao, B. Liu, K. Chen, G. Wei, *An efficient adversarial example generation algorithm based on an accelerated gradient iterative fast gradient*. Computer Standards & Interfaces, Volume 82, 2022.
- [11] Y. Li, B. Wu, Y. Feng, Y. Fan, Y. Jiang, Z. Li, S. Xia, Semi-supervised robust training with generalized perturbed neighborhood. Pattern Recognition, Volume 124, 2022.
- [12] A. Kurakin, I. Goodfellow, S. Bengio, Adversarial examples in the physical world. arXiv 2016.
- [13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, *Towards deep learning models resistant to adversarial attacks*. Stat 1050 9, 2017.
- [14] N. Carlini, D. Wagner, *Towards evaluating the robustness of neural networks*. IEEE Symposium on Security and Privacy (SP), IEEE, 2017.
- [15] N. Papernot, P. McDaniel, I. Goodfellow, *Transferability in machine learning: from phenomena to black-box attacks using adversarial samples*. arXiv 2016
- [16] Y. Lecun, C. Cortes, C. J. Burges, The mnist database of handwritten digits. 1998.

[17] T. Weng, H. Zhang, P. Chen, J. Yi, D. Su, Y. Gao, C. Hsieh, L. Daniel, *Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach*. In 'International Conference on Learning Representations', ICLR 2018.