Reinforcement Learning

Niccolò Consigli n.consigli@studenti.unipi.it Luca Seggiani 1.seggiani@studenti.unipi.it

Università di Pisa

November 23, 2024

A new kind of learning

► Supervised learning: matching features to labels

A new kind of learning

- ► Supervised learning: matching features to labels
- ▶ Unsupervised learning: clustering data

A new kind of learning

- Supervised learning: matching features to labels
- Unsupervised learning: clustering data
- ▶ Reinforcement learning: learning from rewards

What is reinforcement learning (RL)?

▶ We give the agent **rewards** based on its performance

What is reinforcement learning (RL)?

- ▶ We give the agent **rewards** based on its performance
- Markov property: we can view problems as Markov decision processes (MDPs)

A framework: Markov decision processes

- ► Actions map states to states with a probability distribution
- ▶ Transition reward: R(s, a, s')
- ▶ Transition probability: P(s' | s, a)

(b)

A framework: Markov decision processes

- ► Actions map states to states with a probability distribution
- ▶ Transition reward: R(s, a, s')
- ▶ Transition probability: P(s' | s, a)

Bellman's equation

Given a discount factor $\gamma \in [0,1]$, the utility is given by:

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \left[R(s, a, s') + \gamma U(s') \right]$$

Model-based reinforcement learning

We maintain a transition model (an MDP):

- Reward function: R(s, a, s')
- ▶ Probability function: P(s' | s, a)
- Utility function: U(s), maps states to utility

Model-based reinforcement learning

We maintain a transition model (an MDP):

ightharpoonup Reward function: R(s, a, s')

Probability function: P(s'|s,a)

▶ Utility function: U(s), maps states to **utility**

Once the model is learned, we can maximize utility

3	0.812	0.868	0.918	+1
2	0.762		0.660	-1
1	0.705	0.655	0.611	0.388
	1	2	3	4

Model-free reinforcement learning

- Action-utility function: Q(s, a) maps actions to utility
- Policy search: maps states to actions, essentialy a reflex agent

Passive reinforcement learning

We can't modify the policy, but we can figure out the utilities U(s)

► We use **policy iteration**:

$$U^{\pi}(s) = E\left[\sum_{t=0}^{+\infty} \gamma^t R(s_t, \pi(s_t), s_{t+1})\right]$$

Passive reinforcement learning

We can't modify the policy, but we can figure out the utilities U(s)

► We use **policy iteration**:

$$U^{\pi}(s) = E\left[\sum_{t=0}^{+\infty} \gamma^t R(s_t, \pi(s_t), s_{t+1})\right]$$

Three approaches for approximation:

- Direct estimation
- Adaptive dynamic programming (ADP)
- Temporal difference learning (TD)

The goal is to approximate state utility under the given policy

► Make **trials** and take the **reward-to-go** for each state

The goal is to approximate state utility under the given policy

▶ Make trials and take the reward-to-go for each state

Example

We calculate utilities for (1,2) given the trial:

$$(1,1) \xrightarrow{-0.4} (1,2) \xrightarrow{-0.4} (1,3) \xrightarrow{-0.4} (1,3) \xrightarrow{-0.4} (1,2) \xrightarrow{-0.4} (1,3) \xrightarrow{-0.4} (2,3) \xrightarrow{-0.4} (2,3) \xrightarrow{-0.4} (3,3) \xrightarrow{Right} (4,3)$$

The goal is to approximate state utility under the given policy

► Make trials and take the reward-to-go for each state

Example

We calculate utilities for (1,2) given the trial:

$$(1,1) \xrightarrow[\text{Up}]{-0.4} (1,2) \xrightarrow[\text{Right}]{-0.4} (1,3) \xrightarrow[\text{Right}]{-0.4} (1,2) \xrightarrow[\text{Right}]{-0.4} (1,3) \xrightarrow[\text{Right}]{-0.4} (2,3) \xrightarrow[\text{Right}]{-0.4} (3,3) \xrightarrow[\text{Right}]{-0.4} (4,3)$$

$$U(1,2) = -0.04 - 0.04 - 0.04 - 0.04 - 0.04 + 1 = 0.8$$

The goal is to approximate state utility under the given policy

► Make trials and take the reward-to-go for each state

Example

We calculate utilities for (1,2) given the trial:

$$(1,1) \xrightarrow{-0.4} (1,2) \xrightarrow{-0.4} (1,3) \xrightarrow{-0.4} (1,3) \xrightarrow{-0.4} (1,2) \xrightarrow{-0.4} (1,3) \xrightarrow{-0.4} (1,3) \xrightarrow{-0.4} (2,3) \xrightarrow{-0.4} (3,3) \xrightarrow{Right} (4,3)$$

$$U(1,2) = -0.04 - 0.04 - 0.04 - 0.04 - 0.04 + 1 = 0.8$$

$$U(1,2)' = -0.04 - 0.04 - 0.04 + 1 = 0.88$$

The goal is to approximate state utility under the given policy

► Make trials and take the reward-to-go for each state

Example

We calculate utilities for (1,2) given the trial:

$$(1,1) \xrightarrow{-0.4} (1,2) \xrightarrow{-0.4} (1,3) \xrightarrow{-0.4} (1,3) \xrightarrow{-0.4} (1,2) \xrightarrow{-0.4} (1,3) \xrightarrow{-0.4} (1,3) \xrightarrow{-0.4} (2,3) \xrightarrow{-0.4} (3,3) \xrightarrow{Right} (4,3)$$

$$U(1,2) = -0.04 - 0.04 - 0.04 - 0.04 - 0.04 + 1 = 0.8$$

$$U(1,2)' = -0.04 - 0.04 - 0.04 + 1 = 0.88$$

► This is inefficient! We can **exploit** the Markov property

Adaptive dynamic programming

We can approximate the transition reward and probability functions (P and R) and apply **simplified Bellman's equation**:

$$U(s) = \sum_{s'} P(s' \mid s, \pi(s)) \left[R(s, \pi(s), s') + \gamma U(s') \right]$$

When the policy is fixed, this gives a linear equation

Adaptive dynamic programming

We can approximate the transition reward and probability functions (P and R) and apply **simplified Bellman's equation**:

$$U(s) = \sum_{s'} P(s' \mid s, \pi(s)) \left[R(s, \pi(s), s') + \gamma U(s') \right]$$

When the policy is fixed, this gives a linear equation

Calculating P and R is easy when the environment is fully observable

Temporal difference learning

Still taking trials, but we **update** the utility to match frequently observed transitions

▶ We don't need a model!

Temporal difference learning

Still taking trials, but we **update** the utility to match frequently observed transitions

▶ We don't need a model!

Example

We calculate utilities for transiton $(1,3) \rightarrow (2,3)$ given the trial:

$$(1,1) \xrightarrow[-\text{Up}]{-0.4} (1,2) \xrightarrow[-\text{Up}]{-0.4} (1,3) \xrightarrow[-\text{Right}]{-0.4} (2,3) \xrightarrow[-\text{Right}]{-0.04} (3,3) \xrightarrow[-\text{Right}]{-0.04} (3,2) \xrightarrow[-\text{Right}]{-0.04} (3,3) (3,3) \xrightarrow[-\text{Right}]{-0.04} (3,3) (3,$$

and the previous utility estimates:

$$U^{\pi}(1,3) = 0.88, \ U^{\pi}(2,3) = 0.96$$

Temporal difference learning

Still taking trials, but we **update** the utility to match frequently observed transitions

▶ We don't need a model!

Example

We calculate utilities for transiton $(1,3) \rightarrow (2,3)$ given the trial:

$$(1,1) \xrightarrow[\text{Up}]{-0.4} (1,2) \xrightarrow[\text{Up}]{-0.4} (1,3) \xrightarrow[\text{Right}]{-0.4} (2,3) \xrightarrow[\text{Right}]{-0.04} (3,3) \xrightarrow[\text{Right}]{-0.04} (3,2) \xrightarrow[\text{Right}]{-0.04} (3,3) \xrightarrow[\text{Right}]{-0.04} (3,$$

and the previous utility estimates:

$$U^{\pi}(1,3) = 0.88, \ U^{\pi}(2,3) = 0.96$$

$$U^{\pi}(1,3)' = -0.04 + U^{\pi}(2,3)$$

► This gives $U^{\pi}(1,3)' = 0.92$, which means 0.88 might be a low estimate

Temporal difference learning (continued)

We want to match U^{π} to $U^{\pi\prime}$ with learning rate α :

$$U^{\pi}(1,3) \leftarrow U^{\pi}(1,3) + \alpha \left[U^{\pi}(1,3)' - U^{\pi}(1,3) \right]$$

Which generalizes to:

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma U^{\pi}(s') - U^{\pi}(s) \right]$$

From TD's point of view, ADP is TD with simulated experiences

Active reinforcement learning

Utility functions give the best (expected) policy We can decide to improve utility (explore) or keep maximizing utility (exploit)

► This is a **bandit problem** (set of Markov reward processes)

Active reinforcement learning

Utility functions give the best (expected) policy We can decide to improve utility (explore) or keep maximizing utility (exploit)

► This is a **bandit problem** (set of Markov reward processes)

Example

Duolingo's recurring notifications use a bandit problem solver:

Template	Eligibility Criteria
You're on fire Continue your 109 day Spanish streak on Duolingo.	Must have a 3+ day streak. ¹
Streak wager reminder You're on day 2 of your 7-day streak wager! Now get to day 3!	Must have a streak wager. ²
Ready for your trip? Take 5 minutes to practice Italian now	User's profile must indicate travel motivation.

Greedy in the limit of infinite exploration (GLIE)

A greedy algorithm could ignore higher utility actions. We need a GLIE algorithm:

- Each eaction in a each state is tried an unbounded amount of times
- In the limit $(\to \infty)$ the algorithm becomes truly greedy

Greedy in the limit of infinite exploration (GLIE)

A greedy algorithm could ignore higher utility actions. We need a GLIE algorithm:

- Each eaction in a each state is tried an unbounded amount of times
- lacktriangle In the limit $(o\infty)$ the algorithm becomes truly greedy

We can try different approaches:

- Random sampling
- Minimum trials

Random sampling

At step *t*, do the following:

- ► Choose a random action with probability $\frac{1}{t}$
- ► Otherwise, follow the greedy policy

This **does** eventually converge, but can be slow: a better approach would use some heuristic on state utility

Minimum trials

Have an **optimistic estimate** of utility $(U^+(s))$:

$$U^{+}(s) \leftarrow \max_{a} f\left(\sum_{s'} P(s' \mid s, a) \left[R(s, a, s') + \gamma U^{+}(s')\right], N(s, a)\right)$$

- \triangleright N(s, a) is the number of times action a was tried from state s
- f is defined as:

$$f(u,n) = \begin{cases} R^+, & n < N_e \\ u, & n \ge N_e \end{cases}$$

Here, R^+ is an optimistic utility for actions tried less than N_e times

Basically, we are estabilishing an optimistic **prior** that assigns higher utilities to actions tried less than N_e times

Safe exploration

In the real world, we have to look out for:

- ► Large negative rewards
- Absorbing states
- Permanent damage (e.g. long-term utility losses)

Neither the greedy nor the exploratory approach are optimal!

Safe exploration

In the real world, we have to look out for:

- ► Large negative rewards
- Absorbing states
- Permanent damage (e.g. long-term utility losses)

Neither the greedy nor the exploratory approach are optimal! Two ways to solve the problem:

- ► Bayesian reinforcement learning
- Robust control theory approaches

Bayesian reinforcement learning

We take a probabilistic approach, starting with a **prior** probability P(h) on h hypotheses about what the model **is**: the policy is then given by the posterior $P(h \mid e)$:

$$\pi^* = \operatorname*{argmax}_{\pi} \sum_{h} P(h \mid e) U_h^{\pi}$$

Bayesian reinforcement learning

We take a probabilistic approach, starting with a **prior** probability P(h) on h hypotheses about what the model **is**: the policy is then given by the posterior $P(h \mid e)$:

$$\pi^* = \operatorname*{argmax}_{\pi} \sum_{h} P(h \mid e) U_h^{\pi}$$

- We turned the problem into an exploration partially observable Markov decision process (POMDP)
- Note that this approach assumes that the prior contains good estimates of reality

The robust control theory approach

We define a set of models \mathcal{H} , and always take the policy that maximizes utility in the **worst case** over \mathcal{H} :

$$\pi^* = \operatorname*{argmax}_{\pi} \min_{h} U_h^{\pi}$$

The robust control theory approach

We define a set of models \mathcal{H} , and always take the policy that maximizes utility in the **worst case** over \mathcal{H} :

$$\pi^* = \operatorname*{argmax}_{\pi} \min_{h} U_h^{\pi}$$

- ▶ This is closely tied to bayesian reinforcement learning: the set \mathcal{H} is the set of models that exceed some likelihood threshold on $P(h \mid e)$
- Again, we assume the models to be good estimates of reality

Temporal difference Q-learning

► With TD learning, we estimated the utility under a given policy

Temporal difference Q-learning

- With TD learning, we estimated the utility under a given policy
- Now we can estimate the action-utility functions in order to improve the policy

Temporal difference Q-learning

- With TD learning, we estimated the utility under a given policy
- ► Now we can estimate the action-utility functions in order to improve the policy

We substitute Q(s, a) into Bellman's equation:

$$Q(s,a) = \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma \max_{a'} Q(s',a') \right]$$

Now we can derive an update:

$$Q(s, a) = Q(s, a) + \alpha \left[R(s, a, s') + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

SARSA learning

SARSA is a variation of TD Q-learning: instead of assuming the best possible action under known action-utility functions to be taken (off-policy), we wait for the model to actually execute actions (on-policy)

• We act after s, a, r, s', a' quintuplets

The update is given by:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[R(s,a,s') + \gamma Q(s',a') - Q(s,a) \right]$$

SARSA learning

SARSA is a variation of TD Q-learning: instead of assuming the best possible action under known action-utility functions to be taken (off-policy), we wait for the model to actually execute actions (on-policy)

• We act after s, a, r, s', a' quintuplets

The update is given by:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[R(s,a,s') + \gamma Q(s',a') - Q(s,a) \right]$$

TD and SARSA are subtly different:

- ► TD learning asks: "What does this action give if i stop using my policy, and take the best action (according to my estimates) from there onwards?"
- ➤ SARSA asks: "What did I get when i followed my policy and took this action?"

