

Transformation ML Framework

on basis of the XBox2 Data Set

Lorenz Fischl

Introduction

Table of Contents

XBox2 File Structure
Event-& TrendData

Choosing a Data Format

Requirements reading tdms files pandas + compressed pickle .hdf5

XBox2 Data

Every 20*ms* a pulse is sent into the RF cavity for particle acceleration. Sometimes an arc forms. Those events are called breakdown. vspace1cm

XBox2 EventData

A log group of one pulse is stored every minute.

When a breakdown happens the corresponding $\log \operatorname{group} + \operatorname{the} \operatorname{two}$ prior $\log \operatorname{groups}$ are stored.

XBox2 TrendData

35 values about the environmental conditions (that don't change rapidly) are stored roughly every 1,5 sec.

All TrendData of one day is stored in 1-2 groups.

environmental data

Requirements

We need a data format that

Choosing a Data Format/ Requirements

- is compatible between systems (SWAN, htcondor, locally)
- can read data column wise fast
- can be Transformed and handled (sorted/filtered/processed) relatively easy
- can be transformed into pandas DataFrame
- outputs numpy arrays for machine learning

nptdms

- package nptdms can read and handle .tdms files
- very slow (ex.: read of a 100MB file can take >30sec)
- very space inefficient (ex. TrendData: 20,5 GB in .tdms \rightarrow 2.8 GB of data)

Transformation

 $. \mathtt{tdms} \longrightarrow \mathtt{pd} \ \mathtt{df/} \ \mathtt{dictionary} \longrightarrow \mathtt{pickle} \longrightarrow .\mathtt{gzip}$

Transformation: read.tdms

Transformation: read.tdms

Transformation: read.tdms

Choosing a Data Format/ pandas + compressed pickle

Transformation: Clean and Process data with classes

Summary

- pandas DataFrame are easy to use in notebooks
- pickle speeds up reading time
- with compression takes up less space

- version issues with pickle protocol
- part of the process should not be in the Datahanlder instead of the Transformation
- EventData and TrenadData are stored differently
- channel properties are lost

Choosing a Data Format/ pandas + compressed pickle

data was changed in place in notebooks in retrospect

.hdf5

- Hierarchical Data Format with a Unix file system like tree structure
- build for data management and storage
- keys work like pointers to the memory, channel wise reading possible
- in nptdms the function to_hdf() exists
- no data is lost in the Transformation, also properties are stored

Conclusion

- I implemented a generic class for converting .tdms files into pd.df+cpickle
- is there a better data format, maybe .hdf5?

	nptdms	pd.df+cpickle		.hdf5	
		w/o zip	w zip	w/o zip	w/ zip
space (GByte)	20.5GB	2.8GB	1GB	2.8GB	1GB
read (TD 1 channel)	\sim 60min	4sec	12sec	0.5 sec	
read (TD 3 channels)	\sim 60min	4sec	12sec	1 sec	
read (TD 15 channels)	\sim 60min	4sec	12sec	4 sec	
feature calc. (ED)	> 15min		7sec	8 sec	

home.cern