#### Best Fit Line

Jonathan Auerbach

9/28/2018

#### Scientists often want to summarize one variable as a simple function of another variable

- ▶ Suppose you observed *n* pairs of random variables: *X* and *Y*.
- ► For example, you observe the heights of 10 child/parent pairs, and you want to communicate to a new parent how tall their child will likely be.
- You could list all 10 observed pairs you observed:

$$(X_1, Y_1), (X_2, Y_2), (X_3, Y_3), (X_4, Y_4), (X_5, Y_5),$$
  
 $(X_6, Y_6), (X_7, Y_7), (X_8, Y_8), (X_9, Y_9), (X_{10}, Y_{10})$ 

▶ A simple summary of Y as a function of X is the straight line:  $Y_i = \alpha + \beta X_i$ 

Which line is the best fit line? i.e. from which line would you make predictions,  $\hat{Y}$ , closest to the observed values Y?



# Consider two measures of discrepancy: Sum of Absolute Errors (SAE) and Sum of Squared Errors (SSE)



## The red line is the slope that results in the best SAE, and the blue line is the slope that results in the best SSE



### Squared error is often used as an approximation to an arbitrary "smooth" measure of error

- Suppose we only had one observation: Y. How good is the prediction  $\hat{Y}$ ?
- Let  $f(\hat{Y})$  be any "smooth" measure of error. f takes a prediction as its argument, compares it to the actual outcome: Y, and returns a measure of discrepancy  $\geq 0$ .
- We assume the discrepancy is 0 only if the prediction is the same as the outcome. f(Y) = 0 and f'(Y) = 0
- A taylor expansion of  $f(\hat{Y})$  around Y gives the following approximation:

$$f(\hat{Y}) \approx f(Y) + f'(Y)(Y - \hat{Y}) + \frac{1}{2}f''(Y)(Y - \hat{Y})^{2}$$

$$= 0 + 0 * (Y - \hat{Y}) + \frac{1}{2}f''(Y) \cdot (Y - \hat{Y})^{2}$$

$$\propto_{\hat{Y}} (Y - \hat{Y})^{2}$$

# The slope that minimizes the Sum of Squared Error (SSE) can be solved for directly

• Choose 
$$\hat{\beta} = \underset{\alpha}{\operatorname{argmin}} \sum_{i=1}^{n} (Y_i - \beta X_i)^2$$

$$0 \stackrel{\text{set}}{=} \frac{d}{d\beta} \sum_{i=1}^{n} (Y_i - \beta X_i)^2$$

$$= \sum_{i=1}^{n} \frac{d}{d\beta} (Y_i - \beta X_i)^2$$

$$= \sum_{i=1}^{n} 2(Y_i - \beta X_i)(-X_i)$$

$$= -2 \sum_{i=1}^{n} Y_i X_i + 2\beta \sum_{i=1}^{n} X_i^2$$

$$\Rightarrow \hat{\beta} = \frac{\sum_{i=1}^{n} Y_i X_i}{\sum_{i=1}^{n} X_i^2}$$

• Minimum since second derivative:  $2\sum_{i=1}^{n} X_i^2 \geq 0$ 

#### References