Vidyut: Exploiting Power Line Infrastructure for Enterprise Wireless Networks

Vivek Yenamandra and Kannan Srinivasan

Motivation

- Increasing demand for wireless capacity
 - Proliferation of BYOD in workplaces
 - Data Intensive applications: Video Streaming, Teleconferencing, Surveillance etc.
- Scare spectrum resources

Growing emphasis for spectrally efficient large capacity wireless networks

Enterprise WLAN

Enterprise WLAN

Enterprise WLAN

Alternative?

Why Network MIMO?

All four APs can serve their clients simultaneously without needing to share the medium.

Network MIMO Prerequisite

The coordinating APs *need* to be synchronized in frequency and time

Network MIMO Implementation¹

[1]. Hariharan et.al, JMB: Scaling Wireless Capacity with User Demands, SIGCOMM, 2012

Network MIMO Implementation

Network MIMO Implementation

How can we synchronize across clusters?

Vidyut

Vidyut

All APs are synchronized

own carrier clocks using a PLL.

transmitted on the Power Lines

Vidyut

How to select the reference frequency?

Selecting the Reference Frequency

- Determined by the Power Distribution Network
 - Elements like transformers/distribution panels

Measuring Characteristics

Same Phase

Same Phase

Three-Phase Power Supply

The three phases are physically isolated

Do we need a separate reference clock for each phase?

■Same Phase **★**Cross Phase

■Same Phase **★**Cross Phase

■Same Phase **★**Cross Phase

Evaluation: How effective is Vidyut's phase synchronization?

Evaluating Phase Mismatch

Both APs synchronized using Vidyut

Evaluating Phase Mismatch

Both APs synchronized using Vidyut

When both nodes are synchronized, $F_{received} = F_{pilot}$ making $\Phi_{mismatch}$ constant over time

$$\Phi_{\text{mismatch}} = (F_{\text{received}} - F_{\text{pilot}}) \times I + \Phi_{\text{initial}}$$

Phase Synchronization Over Time

Phase Synchronization Over Time

Phase Synchronization Over Time

Power Distribution Network

- Power lines are designed to carry power at 50/60 Hz
 - The higher frequency of the reference clock attenuates over distance.

Each AP regenerates the reference clock back on to the power lines

Clock Regeneration

Reference Clock

Each AP feeds back a Reference clock phase matched to Ref In back on to the power lines.

Clock Regeneration

Enables synchronization of spatially distant APs

Each AP feeds back a Reference clock phase matched to Ref In back on to the power lines.

Clock Regeneration

Each AP feeds back a Reference clock phase matched to Ref In back on to the power lines.

Regeneration Effect on Clock Synchronization

• Each clock regeneration adds a distinctive phase noise characteristics

 The phase mismatch between a pair of nodes does not correlate with the number of clock regenerating sources between them.

Details in the paper.

Achieving Distributed Time Synchronization

We adopt the principles proposed in [1].

Utilize the stable power frequency to achieve distributed time synchronization

Details in the paper.

[1]. Rowe et.al, Low-power clock synchronization using electromagnetic energy radiating from ac power lines, SENSYS, 2009

Implementation

- Eight NI based SDR nodes
 - NI-5791 RF Front End
 - Accepts Reference Input/ Drives PLL output
 - 10 MHz OFDM in the 2.4 GHz ISM Band
 - PXIe-7965R FPGA ..

• Agilent 8648C: 10 MHz Reference Clock

Testbed 32m **20m** RP58-25,27 A522 We interface the nodes to random power putlets across all three phases of power supply 45

Evaluation: Performance gains of Vidyut-enabled Network MIMO.

Setup

Divide the eight nodes into four APs and four clients.

Place the nodes at random locations as before such that the APs are divided into *two* clusters

Each cluster has clients to service

Compared schemes: MegaMIMO, NEMOx¹

[1]. Zhang et.al, Scalable Network MIMO for wireless networks, Mobicom, 2013

NEMOx

NEMOx

Throughput Gain

As the Number of Clusters Increases

MATLAB based simulation

Account for increase in noise at each client due to phase mismatch between APs as their number increases.

Provisions slackness for variance in time synchronization

MegaMIMO and NEMOx are implemented using a TDMA over CSMA type MAC

As the Number of Clusters Increase

Future Work

 Client selection in the clusters is an important design decision that has been left for future work.

 As the number of nodes participating in Network MIMO increases, the challenge of processing the resulting large volumes of data needs to be addressed.

• Distributed synchronization across multiple collision domains can enable scalable implementation of exciting theoretical and systems work.

Thanks!

Vidyut

Language of Origin: Sanskrit

Definition: Electricity

Alternate Pronunciations: Probably will not help.