Predicting Telecom Churn Rates

Presentation Outline

- Explain research / importance of research
- Dataset explanation
- Data analysis
- Final thoughts

Technology is Always Improving

Research Information

- Telecom Churn rates are described as the percentage of customers leaving a service provider over a period of time
- Telecommunication industry has many people relying on them for satisfactory services
- Aim to create a classification model that predicts if customers will churn or not

The Data

- The dataset was created by Zagarsuren Sukhbaatar and obtained from <u>kaggle</u>
- The information used in the dataset was obtained from IBM Watson Analytics

About the Data

- Data for 7043 total customers
 - o 5,174 did not churn
 - 1,869 did churn
- Dataset contained 21 features for each customer (including if customer churned)

Churn_Yes InternetService DSL 0.189591 Fiber optic 0.418928 No 0.074050

Churn Yes

	Ondin_ics
TechSupport	
No	0.416355
No internet service	0.074050
Yes	0.151663

OnlineBackup Churn_Yes No 0.399288 No internet service 0.074050 Yes 0.215315

	Churn_Yes
StreamingTV	
No	0.335231
No internet service	0.074050
Yes	0.300702
	0.07 1000

No 0.336804 No internet service 0.074050 Yes 0.299414

Churn_Yes

OnlineSecurity		
No	0.417667	
No internet service	0.074050	
Yes	0.146112	

Churn_Yes

OnlineBackup

No	0.399288
No internet service	0.074050
Yes	0.215315

Churn_Yes

DeviceProtection			
No	0.391276		
No internet service	0.074050		
Yes	0.225021		

KNN Model Comparison

K Nearest Neighbor Classifier

		Predicted	No Chur	n Predicte	d Churn
Actual N	o Chui	rn	89	0	145
Actual C	hurn		16	9	205
		precision	recall	f1-score	support
	0	0.84	0.86	0.85	1035
	1	0.59	0.55	0.57	374
accu	racy			0.78	1409
macro	avg	0.71	0.70	0.71	1409
weighted	avg	0.77	0.78	0.77	1409

K Nearest Neighbor Classifier with K = 10

	Predicted	No Chur	n Predicte	d Churn
Actual No Chur	n	92	1	114
Actual Churn		16	5	209
	precision	recall	f1-score	support
0	0.85	0.89	0.87	1035
1	0.65	0.56	0.60	374
accuracy			0.80	1409
macro avg	0.75	0.72	0.73	1409
weighted avg	0.79	0.80	0.80	1409

K Nearest Neighbor Classifier with PCA

	Predicted	No Chur	n Predicte	ed Churn
Actual No Chu	rn	92	5	110
Actual Churn		19	6	178
	precision	recall	f1-score	support
0	0.83	0.89	0.86	1035
1	0.62	0.48	0.54	374
accuracy			0.78	1409
macro avg	0.72	0.68	0.70	1409
weighted avg	0.77	0.78	0.77	1409

SVC Model Comparison

Support Vector Classifier

	Predicted	No Chur	n Predicte	d Churn
Actual No Chu	rn	96	4	71
Actual Churn		18	8	186
	precision	recall	f1-score	support
0	0.84	0.93	0.88	1035
1	0.72	0.50	0.59	374
accuracy macro avg weighted avg	0.78 0.81	0.71 0.82	0.82 0.74 0.80	1409 1409 1409

Support Vector Classifier with K = 10

	Dradicted	No Chun	n Predict	od Chunn
	Predicted	NO CHUI	ii Predict	ed Churn
Actual No Chur	n	94	.8	87
Actual Churn		18	7	187
	precision	recall	f1-score	support
0	0.84	0.92	0.87	1035
1	0.68	0.50	0.58	374
accuracy			0.81	1409
macro avg	0.76	0.71	0.73	1409
weighted avg	0.79	0.81	0.80	1409

Support Vector Classifier with PCA

	Predicted	No Chur	n Predicte	ed Churn
Actual No Chu	ırn	91	2	123
Actual Churn		16	0	214
	precision	recall	f1-score	support
0	0.85	0.88	0.87	1035
1	0.64	0.57	0.60	374
accuracy			0.80	1409
macro avg	0.74	0.73	0.73	1409
weighted avg	0.79	0.80	0.80	1409
0				

Random Forest Model Comparison

Random Forest Classifier

	Predicted	No Chur	n Predicte	d Churn
Actual No Chui	rn	93	5	100
Actual Churn		18	3	191
	precision	recall	f1-score	support
0	0.84	0.90	0.87	1035
1	0.66	0.51	0.57	374
accuracy			0.80	1409
macro avg	0.75	0.71	0.72	1409
weighted avg	0.79	0.80	0.79	1409

Random Forest Classifier with K = 10

	Predicted	No Chur	n Predicte	ed Churn
Actual No Chur	n	94	3	92
Actual Churn		180		
	precision	recall	f1-score	support
0	0.84	0.91	0.87	1035
1	0.68	0.52	0.59	374
accuracy			0.81	1409
macro avg	0.76	0.71	0.73	1409
weighted avg	0.80	0.81	0.80	1409

Random Forest Classifier with PCA

		Predicted	No Chur	n Predicte	ed Churn
Actual No Churn		94	8	87	
	Actual Churn		187		
		precision	recall	f1-score	support
	0	0.84	0.92	0.87	1035
	1	0.68	0.50	0.58	374
	accuracy			0.81	1409
	macro avg	0.76	0.71	0.73	1409
	weighted avg	0 79	0.81	0 80	1409

Gradient Boosted Model Comparison

Gradient Boosted Classifier

	Predicted	No Chur	n Predicte	d Churn
Actual No Chu	rn	92	3	112
Actual Churn		17	200	
	precision	recall	f1-score	support
0	0.84	0.89	0.87	1035
1	0.64	0.53	0.58	374
			0.00	1400
accuracy			0.80	1409
macro avg	0.74	0.71	0.72	1409
weighted avg	0.79	0.80	0.79	1409

Gradient Boosted Classifier with K = 10

		Predicted	No Chur	n Predicte	d Churn
Actual No	Churi	n	92	4	111
Actual Churn		186		188	
	1	precision	recall	f1-score	support
	0	0.83	0.89	0.86	1035
	1	0.63	0.50	0.56	374
accura	асу			0.79	1409
macro a	avg	0.73	0.70	0.71	1409
weighted a	avg	0.78	0.79	0.78	1409

Gradient Boosted Classifier with PCA

Churn
118
193
upport
1035
374
1409
1409
1409

Concluding Thoughts

- After conducting SelectKBest and PCA, majority of the models precision and recall scores improved
 - Some features contained redundant information
 - PCA and SelectKBest did not result with excessive loss of information
- Each model had its own pros and cons, but specifically focusing on determining true positives it appears the K Nearest Neighbor with SelectKBest had the most optimal outcome
 - Had more correctly predicted churned customers
 - Also still successfully predicting customers who didn't churn
- The Gradient Boosted Model performed better without PCA and SelectKBest
 - However, results were lackluster compared to other models
 - Execution time took longer for this model when compared to others

Concluding Thoughts

- Using the best model (KNN with SelectKBest)
 - Correctly predicted 209 out of 374 customers would churn
 - Correctly predicted 921 out of 1035 customers would not churn
- This model can be used to
 - Help telecommunications companies determine which customers will stay and which will leave their services
 - Determine what features play a bigger role in keeping customers satisfied

#