OPTIMISATION LINEAIRE

Support du cours de 1^{re} année G.M. par Marietta Manolessou EISTI - Département Mathématiques

Année 2020-2021

Table des matières

		Optimisation-Linéaire	i
1	Cor	nvexité et Optimisation	1
	1	Propriétés générales	1
2	SIN	APLEXE:	
		méthode des tableaux	
	- M	léthode Géometrique	3
	1	Problème $(P.O)$ (Problème initial d'optimisation)	3
		Forme standard	3
		Base réalisable -Base optimale	4
		3 Le tableau du simplexe	6
		4 L'algorithme du simplexe ⇔ la sequence des tableaux	6
		5 Intérêt des "tableaux du simplexe"	8
	2	Exemple d'application de la méthode de Dantzig par les tableaux suc-	
		cessifs du simplexe	9
	3	Méthode Géometrique-Cas à 2 dimensions	12
		1 Méthode Graphique	12
		2 Conclusions	13
	4	Références	14
3		gorithme du Simplexe- Techniques avancées et Applications	1.5
		Pénalités et Variables Artificielles	15
	1	Méthode des Pénalités et Variables Artificielles	15
		1 Construction d'une Base Réalisable	15
	2	2 Methode	16 16
	2	Exemple-Application	10
4	Alg	orithme du Simplexe.	
	Tec B	hniques avancées et Applications	
	_	Dualité	19
	1	La Dualité	19
	_	1 Importance	19
		2 Dual d'un programme linéaire sous forme standard	19
		3 La transposition	20
		4 Exemple de "transposition"	20
	2	Les Théorèmes	21
	3	Utilité de la Dualité- Etude de sensibilité	21

5	Algorithme du Simplexe.
	Techniques avancées et Applications
	C
	Programmation en nombres entiers. Méthode des coupes
	1 Programmation en nombres entiers
	La méthode des coupes
	1 Congruences
	2 Méthode des coupes
	1 Nouvelles contraintes -"coupes"
	2 Méthode des congruences décroissantes
	3 Exemple–Application
	1 étape 1
	2 étape 2

Liste des figures

2.1	Le point $P(2;1,5) \in HP_1$ a été déplacé par soustraction d'une "variable	
	d'écart positive" à la position N sur la ligne D . Par analogie, le point $K(0,5;0)$	Ξ
	HP_2 a été déplacé par addition d'"une variable d'écart positive" à la position	
	M sur la ligne D	4
2.2	Schéma d'un tableau du simplexe à une étape k de l'algorithme	6
2.3	La solution géometrique du simplexe: la "région blanche" S de toutes les	
	solutions possibles et la solution optimale le sommet $K(4;3)$	13
5.1	Les contraintes sont représentées par les droites D_1 et D_2 . Le domaine des	
	solutions (S) (sous-ensemble convexe blanc) est ainsi réduit par rapport au	
	domaine initial $OABO$ et la solution finale est représentée par le sommet $K=$	
	(1;4)	30
5.2	La ligne droite D_{cut} , qui correspond à la nouvelle contrainte $x \leq 3$, "coupe"	
	le domaine initial des solutions, donc la solution est: $\tilde{x}=3; \tilde{y}=3/2$ avec	
	solution optimale de la fonction objectif $\tilde{z}^* = 25.5 < z^* = 28.$	30

Chapitre 1

Convexité et Optimisation

1 Propriétés générales

Définition 1.1.

Soit f une fonction numérique convexe définie sur un ensemble $S \subset \mathbb{R}^n$ convexe et soient $g_{i=1, \ldots, n}$ des fonctions convexes. On appelle programme convexe le problème d'optimisation suivant :

$$(P) \left\{ \begin{array}{l} \text{Minimiser } f(x) \\ \text{avec} \quad g_i(x) \leq 0 \ \forall i=1, \ \dots, \ m \ x \in S \subset R^n \end{array} \right.$$

Théorème 1.1.

Pour un programme convexe : tout optimum local est un optimum global.

Théorème 1.2.

Soit U une partie convexe d'un espace vectoriel normé V. Une application $J:U\subset V\to\mathbb{R}$ strictement convexe admet au plus un minimum (unicité de minimum).

On étudiera les méthodes d'optimisation sans contraintes, et avec contraintes, reliées à la propriété de convexité.

On commence par la méthode du simplexe appelée aussi programmation linéaire qui représente la première application de la convexité en optimisation sous contraintes inégalités.

Rappel

Fonctions numériques $f:A\to\mathbb{R}$ convexes $(A\subset\mathbb{R}^n)$

Toute fonction linéaire ou affine, est une fonction convexe. (Son épigraphe A(f) est un convexe de \mathbb{R}^n . Par exemple pour n=2 c'est un demi-espace (v.figure 2.1).

Chapitre 2

SIMPLEXE:

La méthode des tableaux

- Méthode Géometrique

1 Problème (P.O) (Problème initial d'optimisation)

Minimiser (ou maximiser) f(x) sous les contraintes:

$$\begin{cases} g_i(x) &= 0 \quad i \in I^0 &\subset \mathbb{N} \\ g_j(x) &\leq 0 \quad j \in I^- &\subset \mathbb{N} \\ g_k(x) &\geq 0 \quad k \in I^+ &\subset \mathbb{N}, \ x = (x_1, \cdots, x_n)^T \in \mathbb{R}^n \text{ avec } x_i \geq 0 \end{cases}$$

et, où $f,\ g_{\ell(\ell\in I^0\cup I^-\cup I^+)}$ sont des fonctions linéaires des "variables" x_1,x_2,\cdots,x_n ou des formes linéaires définies sur l'espace vectoriel \mathbb{R}^n

1 Forme standard

Problème (P.1)

Minimiser
$$\left(z = c \cdot x = \sum_{j=1}^{n} c_j x_j\right)$$

avec:

$$Ax = b; \quad x = (x_1, \dots, x_n)^T \in \mathbb{R}^n \quad x_i \in \mathbb{R}^+$$

où

n = nombre de variables indépendantes

m =nombre de contraintes.

 $A \in \mathcal{M}(n,m)$, matrice des coefficients des contraintes;

 $c = (c_1, c_2, \ldots, c_n)$ vecteur ligne $(\in \mathbb{R}^n)$ des coûts.

 $b=(b_1,\cdots,b_m)^T\in\mathbb{R}^m$ vecteur colonne des 2^{mes} membres.

 $z = \sum_{j=1}^{n} c_j x_j \Leftrightarrow$ fonction à minimiser ou "fonction objectif".

FIG. 2.1: Le point $P(2;1,5) \in HP_1$ a été déplacé par soustraction d'une "variable d'écart positive" à la position N sur la ligne D. Par analogie, le point $K(0,5;0) \in HP_2$ a été déplacé par addition d' "une variable d'écart positive" à la position M sur la ligne D.

Proposition 2.1. Forme standard

Un problème (P.0) peut toujours se mettre sous **forme standard** (P.1) (contraintes égalités) par l'outil des "variables d'écart" (variables supplémentaires). (attention aux signes !!)

Sur la figure 2.1 on représente graphiquement le rôle des variables d'écart (dans le cas de deux inégalités aux sens opposés).

Exemple 2.1.

$$\max(f = \frac{(P.O)}{-5x_1} + 3x_2) \qquad \qquad \text{Forme standard } (P.1) \\ \max(f = -5x_1 + 3x_2) \qquad \qquad \iff \qquad \sup(z = 5x_1 - 3x_2) \\ avec \left\{ \begin{array}{l} x_1 - x_2 \geq 2 \\ 2x_1 + 3x_2 \leq 4 \\ -x_1 + 6x_2 = 10 \\ x_1 \geq 0, x_2 \geq 0 \end{array} \right. \Leftrightarrow \qquad avec \left\{ \begin{array}{l} x_1 - x_2 - x_3 = 2 \\ 2x_1 + 3x_2 + x_4 = 4 \\ -x_1 + 6x_2 = 10 \\ x_i \geq 0, \ \forall \ i = 1, 2, 3, 4 \\ avec: (x_3, x_4) \ variables \ d'écart \end{array} \right.$$

Remarque 2.1.

On suppose par la suite que rgA = m

2 Base réalisable -Base optimale

Définition 2.1.

Polytope convexe:
$$X = \{x | Ax = b, x \ge 0\}$$

 \Leftrightarrow Simplexe
Polytope borné \Leftrightarrow Polyèdre convexe

Définition 2.2.

x Point extrême de X

5

 \Leftrightarrow

x ne peut pas être exprimé comme combinaison linéaire d'autres points de X.

Définition 2.3.

Base : toute sous matrice $B \in \mathcal{M}_m(\mathbb{R})$ de A qui a le même rang que la matrice A:

$$rgA = rgB = m$$

donc:

$$A = [B, N]$$
 et $BX_B + NX_N = b$

où $X_B \Leftrightarrow l$ 'ensemble des "variables (vecteurs) de base" et $X_N \Leftrightarrow l$ 'ensemble des variables (vecteurs) "hors base"

Définition 2.4.

Solution de base : Elle est obtenue en posant $X_N = 0$

$$\Rightarrow BX_B = b \Rightarrow X_B = B^{-1}b$$

Définition 2.5.

Soit B, base de (P.1)

Base réalisable: $si X_B \ge 0$ ou $si B^{-1}b \ge 0$

Théorème 2.1.

(i) L'ensemble des points extrêmes d'un polytope convexe X

 \Leftrightarrow

L'ensemble de solutions de bases réalisables.

(ii) L'optimum de z est atteint en au moins 1 point extrême de X.

Théorème 2.2.

(i) Une Base de (P.1) est une base réalisable optimale

<u>ssi</u>

$$\bar{C}_N = C_N - C_B B^{-1} \ge 0$$

 $(\bar{C}_N \equiv \textit{vecteur ligne des coûts réduits des variables hors base}).$

(ii) Si B est une base réalisable quelconque, soit x_0 la solution correspondante.

Si $\exists x_h \in X_N$ hors base t.q. $\bar{c}_h < 0$ alors <u>ou bien</u> optimum = $-\infty$ ou bien on met en évidence une autre base \hat{B} (changement de base (v. aussi Th.correspondant cours 1^{re} année Algèbre Ch.1) réalisable ayant comme solution correspondante \hat{x} t.q

$$z(\hat{x}) < z(x_0)$$

Remarque 2.2. Voir plus loin fig. 2.2 la représentation sous forme de "tableau" de tous ces vecteurs et matrices du simplexe.

$x_1 x_2 \dots x_m$	$x_{m+1} \ldots x_n$	w	second membre	
0 0 0	$\bar{C}_N = C_N - C_B B^{-1} N$	-1	$-w_B$	(L_c)
1 0 0		0		(L_1)
0 1 0 0	$\bar{N} = B^{-1}N$:	$X_B = B^{-1}b = \bar{b}$	÷
: : : : :		0		(L_{m-1})
$ \begin{array}{c cccc} 0 & 0 & \dots & 1 \\ \hline BaseB \end{array} $		0		(L_m)

Variables de Base Variables hors Base

FIG. 2.2: Schéma d'un tableau du simplexe à une étape k de l'algorithme

3 Le tableau du simplexe

La méthode des tableaux du simplexe permet d'appliquer toutes les étapes de l'algorithme du simplexe sous forme d'une sequence de tableaux représentés par la figure 2.2.

Cette sequence converge vers la solution optimale lue sur le **dernier tableau** d'après le critère (i) du Théorème 2.2.

4 L'algorithme du simplexe ⇔ la sequence des tableaux

On présente l'algorithme du simplexe (tel qu'on le retrouve dans toutes les références récentes (v. listes des références de la section 4)). Nous mettons parallèlement en évidence (entre parenthèse) son application directe sur la construction des **tableaux successifs**, du type de la figure 2.2.

Avant d'appliquer l'algorithme on doit mettre le problème d'optimisation sous forme standard avec tous les seconds membres $b_i \geq 0 \ \forall \ i=1,2\ldots,m$ et parallèlement avoir établi le premier tableau du simplexe sous la forme décrite par la figure précédente (v. fig. 2.2).

Soit B_0 une base réalisable de départ.

D'après cette hypothèse le tableau ci-dessus donne au départ $\bar{N}=N,$ et $\bar{b}=b.$

Etapes de l'algorithme "primal" du simplexe

- (a) B_0 base réalisable de départ. Itération k = 0.
 - $(\Leftrightarrow 1^{er}$ tableau du simplexe et lecture de la solution de base réalisable $B_0)$
- (b) $k \leftarrow k+1$
 - (⇔ Nouveau tableau après changement de base)
- (c) à l'itération k soit B la base et $x = [x_B, x_N]$ la solution correspondante. Calculer: (v. fig. 2.2)

 $(\Leftrightarrow$ Lecture sur le nouveau tableau de la solution de base et du vecteur de coûts réduits \bar{C}_N)

- (d) (1) Si $\bar{C}_N \geq 0$, STOP: l'optimum est atteint.
 - $(\Leftrightarrow$ **Application du critère (i)** Th.2.2 du vec. de coûts réduits \bar{C}_N)
 - (2) $Si \exists x_e \in X_N \text{ t.q. } \bar{c}_e < 0 \text{ alors}$
 - (⇔ Application du critère (ii) Th.2.2)
- (e) Soit A_e la colonne |e| de A. Calculer $\bar{A}_e = B^{-1}A_e$; $si \ \bar{a}_{ie} \leq 0 \ \forall \ i=1,\cdots,m$ STOP: optimum non borné $(-\infty)$ sinon calculer : $\hat{\vartheta} = \hat{b}_s/\hat{a}_{se} = \min_{\bar{a}_{ie}>0} \left\{ \bar{b}_i/\bar{a}_{ie} \right\}$

 \Leftrightarrow

Changement de base (sous-étape A):

Variable entrante x_e t.q. $\bar{c}_e \leq \bar{c}_j \ \forall \ j = 1, 2 \dots, n$

Variable sortante:

-Sur la colonne de x_e écrire le système d'équations de toutes les (contraintes)-lignes du tableau t.q. $\bar{a}_{ie}>0$

ATTENTION!!! seulement les variables de base, doivent contribuer à ce système d'équations.

-Evaluer le minimum des rapports des seconds membres avec les coefficients correspondants:

$$\hat{\vartheta} = \frac{\hat{b}_s}{\hat{a}_{se}} = \min_{\bar{a}_{ie} > 0} \left\{ \frac{\bar{b}_i}{\bar{a}_{ie}} \right\}$$

La variable de base qui correspond à ce **minimum** $\frac{\hat{b}_s}{\hat{a}_{se}}$ sera la variable sortante.

- -Si ce minimum n'existe pas (car $\bar{a}_{ie} \leq 0 \ \forall i = 1, 2 \dots, m$ alors le tableau sera le dernier et la solution n'existe pas (minimum $-\infty$).)
- (f) Soit x_s la variable de base correspondant à la $s^{\mbox{ième}}$ ligne de la base (et qui a fournit le minimum $\hat{\vartheta}$ de l'étape précédente), alors :

$$B^{-1}A_e = \hat{e}_s = s^{\text{i\`eme}} \text{ ligne } \rightarrow \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \left\{ \begin{array}{c} x_s \\ x_e \\ \end{array} \right.$$

avec: x_s variable sortante de la base

et: x_e variable entrante dans la base

Calcul de l'inverse de la nouvelle base et retour en (b).

- (Changement de base sous étape B):
- -On détermine le **pivot** pour le changement de base:

C'est l'élément du tableau qui correspond à la colonne de la variable entrante et la ligne de la variable sortante: \hat{a}_{se}

- On applique l'échelonnage: (V. cours Ch.1 Algèbre) sur les lignes du dernier tableau,

$$L_s' = \frac{L_s}{\bar{a}_{se}}$$
 et
$$\forall i = 1, 2 \dots m+1 \quad \text{avec } m \neq s$$

$$L_s' = -\bar{a}_{ie}L_s' + L_i$$

et on obtient le nouveau tableau qui correspond à la nouvelle base, et qui est le retour à l'étape b) de l'algorithme.)

5 Intérêt des "tableaux du simplexe"

L'algorithme devient plus commode avec l'usage des

"Tableaux du simplexe" 2.2 car:

- (1) La solution de base s'obtient par lecture directe : sur chaque ligne i du tableau (correspondant à la variable de base x_i^B) on lit $\underline{x_i^B = \bar{b}_i}$ (v.fig.2.2).
- (2) La valeur $\underline{z_B}$ de la fonction objectif est contenue dans la case en haut et à droite du tableau (avec le signe -) (v.fig. 2.2)
- (3) Les composantes du vecteur des coûts réduits des variables hors-base \bar{C}_N sont obtenues par lecture directe de la première ligne du tableau de simplexe. Elles permettent en particulier de voir immédiatement si la solution de base courante est optimale. (rappel: il faut $\bar{C}_j \geq 0 \ \forall x_j$ hors base d'après le théorème 2.2)

2 Exemple d'application de la méthode de Dantzig par les tableaux successifs du simplexe

Soit le problème d'optimisation

$$\max(z = 8x_1 + 5x_2)$$

$$\operatorname{avec}: \left\{ \begin{array}{rcl} 3x_1 + 6x_2 & \leq & 30 \\ 3x_1 + x_2 & \leq & 15 \\ 5x_1 + 6x_2 & \leq & 42 \\ x_1 \geq 0 & ; & x_2 \geq 0 \end{array} \right\} (P.0)$$

Etape ((O)): Forme standard

$$\min(w = -z = -8x_1 - 5x_2)$$

$$\operatorname{avec}: \left\{ \begin{array}{rcl} 3x_1 + 6x_2 + x_3 & = & 30 \\ 3x_1 + x_2 + x_4 & = & 15 \\ 5x_1 + 6x_2 + x_5 & = & 42 \\ \operatorname{où} x_i \geq 0 \; ; & i & = & 1, 2, \cdots 5 \end{array} \right\} (P.1)$$

$$\boxed{x_3, x_4, x_5} \quad \text{variables d'écart.}$$

 $\frac{\text{Etape }((1))}{\text{V. hors Base}} : 1^{er} \text{ tableau du simplexe}$

V. hors	Base	Var. d	le Base						
$\overline{x_1}$	x_2	x_3	x_4	x_5	w	Second			
						Membre			
-8	-5	0	0	0	-1	0	(L_1)		
3	6	1	0	0	0	30	(L_2)		
3	1	0	1	0	0	15	(L_3)		
5	6	0	0	1	0	42	(L_4)		
	Base B_0								

Base initiale réalisable :

$$B_0 = \{x_3; x_4; x_5\}$$

Solution de Base B_0

$$\begin{array}{lll} \tilde{x}_3 & = & 30 \\ \tilde{x}_4 & = & 15 \\ \tilde{x}_5 & = & 42 \\ \tilde{x}_1 & = & 0 \text{ car hors base} \\ \tilde{x}_2 & = & 0 \text{ car hors base} \end{array} \right\} \text{ et } \underline{w=0}$$

Mais! cette solution n'est pas optimale car:

$$\begin{array}{ccc} \bar{C}_1 < 0 & \text{ et } & \bar{C}_2 < 0 \\ -8 & -5 \end{array}$$

Il faut changer la base:

- a) variable "entrante" x_1
- b) variable "sortante"?

(trouver $\hat{\vartheta}$ qui minimise les contraintes de x_1)

Attention $x_2 = 0$ toujours car il est hors base

$$\left\{ \begin{array}{rcll} 3\vartheta + 6\times 0 + x_3 &=& 30 \\ 3\vartheta + 0 + x_4 &=& 15 \\ 5\vartheta + 0 + x_5 &=& 42 \end{array} \right| \begin{array}{rcl} \Leftrightarrow & \hat{\vartheta} &=& \min\limits_{r\geq 0}\{\frac{30}{3};\frac{15}{3};\frac{42}{5}\}\\ \Rightarrow & \hat{\vartheta} &=& 5 \end{array}$$

$$3\times 5 + x_4 = 15 \iff \underline{x_4 = 0}\\ \Rightarrow x_4 \text{ variable "sortante"}$$

- * Nouvelle base : $B_1 = \{x_1; x_3; x_5\}$
- * Ecrire le tableau du simplexe explicité par rapport à B_1 .

Opérations sur les lignes d $\overline{\mathbf{u}}$ $\mathbf{1}^{er}$ tableau;

(il faut retrouver la matrice
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 qui correspond à B_1)

- \Rightarrow Echelonnage
- * Pivot : l'élément de la colonne (x_1) qui correspond à la ligne (L_3) (car x_4 sort !) donc :

$$\begin{array}{rcl} L_3' & = & L_3/3 & (\text{pour avoir 1 à }(x_1)) \\ L_1' & = & 8L_3/3 + L_1 & (\text{pour avoir 0 à }(x_1)) \\ L_2' & = & -L_3 + L_2 & (\text{pour avoir 0 à }(x_1)) \\ L_4' & = & -\frac{5}{3}L_3 + L_4 & (\text{pour avoir 0 à }(x_1)) \end{array}$$

 2^{me} tableau du simplexe

x_1	x_2	x_3	x_4	x_5	w	Second	
						Membre	
0	-7/3	0	8/3	0	-1	40	(L_1')
0	5	1	-1	0	0	15	(L_2')
1	1/3	0	1/3	0	0	5	(L_3')
0	13/3	0	-5/3	1	0	17	(L_4')

 $Base B_1 = \{x_3; x_1; x_5\}$

Solution de Base B_1

$$\left. \begin{array}{lll} \tilde{x}_3 & = & 15 \\ \tilde{x}_1 & = & 5 \\ \tilde{x}_5 & = & 17 \\ \tilde{x}_4 & = & 0 \text{ car hors base} \\ \tilde{x}_2 & = & 0 \text{ car hors base} \end{array} \right\} \text{ et } \underline{w = -40}$$

Mais! cette solution n'est pas optimale car le coût réduit:

$$\bar{C}_2 = -\frac{7}{3} < 0$$

Il faut changer la base:

- a) variable "entrante" x_2
- b) variable "sortante"?

(trouver $\hat{\vartheta}$ qui minimise les contraintes de x_2)

$$\begin{cases} 5\vartheta + x_3 + 0x_4 &= 15 \\ x_1 + \vartheta/3 + 0x_3 + 0x_4 &= 5 \\ 0x_1 + 13/3 \,\vartheta + 0x_4 + x_5 &= 17 \end{cases}$$

$$|\Leftrightarrow \hat{\vartheta} = \min_{r \geq 0} \{ \frac{15}{5}; 5 \times 3; \frac{17 \times 3}{13} \} = \frac{15}{5} = 3$$

$$3 \times 5 + x_3 = 15 \iff \underline{x_3} = 0$$

$$\Rightarrow x_3 \text{ variable "sortante"}$$

- * Nouvelle base : $B_2 = (x_1; x_2; x_5)$
- * Ecrire le tableau du simplexe explicité par rapport à B_2 .
- ⇒ Echelonnage
- * Pivot : l'élément de la colonne (x_2) qui correspond à la ligne (L_2) (car x_3 sort !)

$$\begin{array}{rcl} L_2' &=& L_2/5 & (\text{pour avoir 1 à } (x_2)) \\ L_1' &=& 7L_2/15 + L_1 & (\text{pour avoir 0 à } (x_2)) \\ L_3' &=& -L_2/15 + L_3 & (\text{pour avoir 0 à } (x_2)) \\ L_4' &=& -\frac{13}{15}L_2 + L_4 & (\text{pour avoir 0 à } (x_2)) \end{array}$$

3ème tableau du simplexe

x_1	x_2	x_3	x_4	x_5	w	Second
						Membre
0	0	7/15	11/5	0	-1	47
0	1	1/5	-1/5	0	0	3
1	0	-1/15	2/5	0	0	4
0	0	-13/5	-4/5	1	0	4

Solution de Base

$$\left. \begin{array}{lll} x_1^* & = & 4 \\ x_2^* & = & 3 \\ x_5 & = & 4 \\ \tilde{x}_4 & = & 0 \text{ car hors base} \\ \tilde{x}_3 & = & 0 \text{ car hors base} \end{array} \right\} \Rightarrow -w^* = z^* = 47$$

Solution optimale car : $ar{C}_i \geq 0 \ \ \forall i$ Fin de l'algorithme.

3 Méthode Géometrique-Cas à 2 dimensions.

1 Méthode Graphique

On présente maintenanant la **méthode Géométrique** (ou **Graphique**) (à 2 dimensions) de la **Programmation linéaire** et comparaison avec la <u>méthode algébrique</u> dite des tableaux du simplexe étudiée précédemment.

Problème (P.O)

$$\max(z = 8x_1 + 5x_2)$$

$$\operatorname{avec}: \left\{ \begin{array}{ll} 3x_1 + 6x_2 & \leq & 30\\ 3x_1 + x_2 & \leq & 15\\ 5x_1 + 6x_2 & \leq & 42\\ x_1 \geq 0 \ ; x_2 & \geq & 0 \end{array} \right\}$$

• a) Sur le plan $(0x_1x_2)$, on trace les droites qui correspondent aux contraintes du problème:

$$\begin{array}{ll} D_1: 3x_1+6x_2=30 & (A_1(0;5); B_1(10;0)) \\ D_2: 3x_1+x_2=15 & (A_2(0;15); B_2(5;0)) \\ D_3: 5x_1+6x_2=42 & (A_3(0;7); B_3(6;2)) \end{array}$$

• b) La région de l'ensemble des solutions (S) v.fig. 2.3 est obtenue en vérifiant si l'origine O=(0,0) satisfait ou pas, les contraintes du problème.

CONSEIL: Hachurer les régions interdites!!!!

Pour l'exemple présent le "simplexe" de la solution est défini par les sommets $\{O,\ A,\ K,\ B_2\}$ autrement dit: les "points extrêmes " du simplexe qui sont d'après le théorème 2.1 les solutions de bases réalisables.

• c) Famille des droites parallèles à la fonction objectif :

$$8x_1 + 5x_2 - z = 0$$

On choisit le représentant pour z = 0

$$8x_1 + 5x_2 = 0 : \underline{D_0} \left\{ \begin{array}{c} 0(0;0) \\ C(5;-8) \end{array} \right\}$$

La droite $D_{zmax} \parallel D_0$ passant par \underline{K} fig.(2.3) (obtenue par translation parallèlement en elle même), maximise la fonction objectif z car elle a la plus grande ordonnée à l'origine parmi les droites parallèles à D_0 et

$$K=D_1\cap D_2$$
 donc : $K(\vec{x}_1,\vec{x}_2)$ solution du système :

 $\Rightarrow K(4;3)$ sommet du "simplexe" OA_1KB_2 (v.fig. 2.3) solution des contraintes de (P.O).

FIG. 2.3: La solution géometrique du simplexe: la "région blanche" S de toutes les solutions possibles et la solution optimale le sommet K(4;3).

2 Conclusions

a)
$$z_{max}=8\times4+5\times3=32+15=47$$
 $z_{max}=47$ et $D_{zmax}:8x_1+5x_2=47$ et ordonnée à l'origine de $D_{zmax}:x_2^0=\frac{47}{5}=9,4$ point $D(0;9,4)$ sur la figure 2.3

- b) La solution est évidemment la même obtenue par la méthode des tableaux du simplexe (v.section 2)
- c) Le déplacement de la droite représentative D_0 (parallèlement en elle-même) d'un sommet du "simplexe" à l'autre représente géométriquement le changement de bases réalisables par la méthode des tableaux du simplexe (v.section 2).

4 Références

a) G.DANTZIG

"Linear programming and Extensions" Princeton, N.J.Princeton, University Press, 1963

b) R.FAURE

"Précis de Recherche Opérationnelle", Dunod (Paris 1979)

c) S.GASS

"Linear Programming: Méthods and Applications", 5^{th} edition New York : Mc Graw-Hill $1985\,$

d) M. MINOUX (1975)

Programmation Mathématique (Dunod)

e) M. MINOUX (1975)

Programmation Linéaire (Cours de l'Ecole Nationale Supérieure des Télécommunications, Paris)

f) C. PAPADIMITRIOU and K.STEIGLITZ

"Combinatorial Optimization: Algorithms and Complexity" Englewood Cliffs , N.J. Prentice-Hall $1982\,$

g) A. W. TUCKER

Recent advances in Mathematical Programming (Mc GRAW-HILL, New York)

g) W.L.WINSTON

[&]quot;Operations Research: Applications and Algorithmes" PWS-KENT 1991