

THE SCIENCE

HOW GAMMA RAY TELESCOPES WORK

A gamma ray enters the telescope, passing through the Anti-coincidence Detector

▶ The gamma ray interacts in one of 16 thin tungsten sheets. This interaction converts the gamma ray into an electron and a positron via pair production > The Tracker uses silicon strips to measure the paths of the electron and positron, allowing the telescope to determine the arrival direction of the gamma ray

> The electron and positron enter the Calorimeter, which measures the energies of the particles, and therefore the energy of the original gamma ray

 Unwanted cosmic-ray particles produce a signal in the Anti-coincidence Detector, which tells the Data Acquisition System to reject the signal. The Anti-coincidence Detector rejects 99.97% of unwanted signals produced by cosmic rays that enter the telescope

THE SCIENCE

▶ The gamma ray interacts in one of 16 thin tungsten sheets. This interaction

converts the gamma ray into an electron and a positron via pair production

> The Tracker uses silicon strips to measure the paths of the electron and positron,

allowing the telescope to determine the arrival direction of the gamma ray

> The electron and positron enter the Calorimeter, which measures the energies of

the particles, and therefore the energy of the original gamma ray

which tells the Data Acquisition System to reject the signal. The Anti-coincidence

the telescope

Unwanted cosmic-ray particles produce a signal in the Anti-coincidence Detector,

Detector rejects 99.97% of unwanted signals produced by cosmic rays that enter

GAMMA RAY

AND NOW THE