Вариант В

1. Функция f задана формулой

$$f(x) = \begin{cases} x^2 \sin(1/x), & \text{если } x \neq 0 \\ 0, & \text{если } x = 0 \end{cases}$$

(a) (8%) Найдите правую, $f'_{+}(0)$, и левую, $f'_{-}(0)$, производные функции f в точке x=0

Правая:

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^+} \frac{x^2 \sin(1/x) - 0}{x} = \lim_{t \to +\infty} \frac{\sin t - 0}{t} = 0$$

Левая:

$$\lim_{x \to 0^-} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^-} \frac{x^2 \sin(1/x) - 0}{x} = \lim_{t \to -\infty} \frac{\sin t - 0}{t} = 0$$

(b) (2%) Существует ли производная функции f в точке x = 0?

Левая производная равняется правой производной — производная в точке x=0 равна 0.

2. (10%) Вычислите интеграл

$$\int \sin(\ln x) \, dx$$

Интегрируем два раза по частям:

$$\int \sin(\ln x) \, dx = x \sin(\ln x) - \int \cos(\ln x) \, dx = x \sin(\ln x) - x \cos(\ln x) - \int \sin(\ln x) \, dx$$

Выражаем искомый интеграл:

$$\int \sin(\ln x) \, dx = \frac{1}{2} \left(x \sin(\ln x) - x \cos(\ln x) \right)$$

3. Рассмотрим систему уравнений Ax=b, где

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \ A = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 1 & -1 \\ -1 & 7 & \alpha \end{pmatrix}, \ b = \begin{pmatrix} 1 \\ \beta \\ 2 \end{pmatrix}.$$

(a) (6%) Найдите ранг и определитель матрицы A как функции от параметра α

Находим определитель (например, разложением по столбцу содержащему α):

$$\det A = 5\alpha + 5$$

Определитель обращается в ноль только при $\alpha = -1$. Отсюда делаем вывод и про ранг матрицы. При $\alpha = -1$ ранг матрицы равен двум, а при $\alpha \neq -1$ он равен трём.

(b) (4%) Определите количество решений системы в зависимости от значений параметров α и β

Если $\alpha \neq -1$, то решение системы единственно вне зависимости от β . При $\alpha = -1$ строки матрицы A линейно зависимы. Матрица A необратима и система либо не имеет решений, либо имеет бесконечное множество решений. Выясним зависимость между строками матрицы A, выразим третью строку матрицы через первые две:

$$(-1;7;-1) = y_1(1;-2;0) + y_2(2;1;-1)$$

Решая эту систему находим, что $y_1 = -3$, а $y_2 = 1$. Если это же соотношение выполняется для столбца b, то система имеет бесконечное количество решений, иначе — ни одного.

$$2 = -3 \cdot 1 + 1 \cdot \beta$$

Следовательно, при $\alpha = -1$ и $\beta = 5$ система имеет бесконечное количество решений, а при $\alpha = -1$ и $\beta \neq 5$ — ни одного.

- 4. Вектор-строка b состоит из последовательных чисел от 4 до 1, b=(4,3,2,1). Матрица B задана соотношением $B=b^Tb$.
 - (a) (5%) Найдите собственные числа матрицы B

Ранг матрицы равен количеству ненулевых собственных чисел. Ранг произведения матриц не превосходит ранга сомножителей, поэтому ранг матрицы B равен одному. Матрица B ненулевая, поэтому у неё три нулевых собственных числа и одно ненулевое.

Заметим, что $B \cdot b^T = (b^T b) b^T = b^T (b b^T) = b^T \cdot (16 + 9 + 4 + 1) = 30 b^T$. Следовательно, четвёртое собственное число — 30.

(b) (3%) Для максимального собственного числа укажите хотя бы один собственный вектор

Попутно в прошлом пункте мы нашли, что у числа 30 есть собственный вектор $b^T=(4,3,2,1)^T.$

(с) (2%) Является ли матрица В положительно определённой? Положительно полуопределённой?

У матрицы B нулевые и положительные собственные числа. Она является положительно полуопределённой, а положительно определённой не является.

5. Задано дифференциальное уравнение

$$x\frac{dy}{dx} - y = (x+y)\ln\left(\frac{x+y}{x}\right)$$

(а) (8%) Решите дифференциальное уравнение

Уравнение однородно (сохраняет вид при одновременном умножении x и y(x) на постоянный множитель), поэтому можно использовать замену y(x) = z(x)x.

Заметим, что в области определения уравнения $x \neq 0$, поэтому решения при такой замене не теряются.

$$x(z'+z) - zx = (x+zx)\ln\frac{x+zx}{x}$$
$$z' = \frac{(1+z)\ln(1+z)}{x}$$

Переменные разделяются

$$\frac{dz}{(1+z)\ln(1+z)} = \frac{dx}{x}$$

$$\int \frac{dz}{(1+z)\ln(1+z)} = \int \frac{dx}{x}$$

$$\ln |\ln(1+z)| = \ln |x| + \ln C_0, C_0 > 0$$

постоянную интегрирования, которая может иметь любой знак, удобно в данном случае записать как логарифм положительной постоянной

$$|\ln(1+z)| = C_0|x|, C_0 > 0$$

Снимая модуль в левой части получаем постоянную любого знака

$$\ln(1+z) = C|x|$$

или

$$1 + z = e^{C|x|}$$

При x=0 уравнение не имеет смысла, и постоянные интегрирования при положительных и при отрицательных значениях x можно выбирать независимо. Иначе говоря, найденное множество интегральных кривых можно перечислить выражением

$$1 + z = e^{Cx}$$

Возвращая подстановку, получаем решение

$$y(x) = \left(e^{Cx} - 1\right)x$$

(b) (2%) Дайте схематический рисунок интегральных кривых

6. (10%) Исследуйте на экстремумы функцию $F(x,y)=16x^3+2y^3-24xy-15$

Найдем точки, подозрительные на экстремум, решая следующую систему уравнений:

$$\begin{cases} \frac{\partial F}{\partial x} = 48x^2 - 24y = 0\\ \frac{\partial F}{\partial y} = 6y^2 - 24x = 0 \end{cases}$$

Получим точки: (0;0), (1;2). Далее необходимо проверить выполнение условий второго порядка. Для этого найдем матрицу вторых производных исследуемой функции:

$$\begin{pmatrix} 96x & -24 \\ -24 & 12y \end{pmatrix}.$$

Проверим знакоопределенность этой матрицы в каждой из найденных подозрительных точек.

Для точки (0;0) имеем следующую матрицу: $\begin{pmatrix} 0 & -24 \\ -24 & 0 \end{pmatrix}$. Находим угловые миноры, $\Delta_1=0,\ \Delta_2=0-24^2<0$. Следовательно, точка (0;0) не является точкой экстремума.

Для точки (1;2) имеем следующую матрицу: $\begin{pmatrix} 96 & -24 \\ -24 & 24 \end{pmatrix}$. Находим угловые миноры, $\Delta_1=96>0$, $\Delta_2=96\cdot 24-24^2>0$. Следовательно, точка (1;2) является точкой минимума.

Значение функции в этой точке: F(x, y) = -31.

- 7. Рассмотрим функцию Q(x,y) = x 2y, аргументы которой удовлетворяют условию $b + ax^2 + y^2 = 0$. Найдите при каких значениях параметров a и b функция Q(x,y):
 - (а) (4%) будет иметь ровно одну условную стационарную точку, определите, является ли данная точка экстремумом;
 - (b) (4%) будет иметь более одной условной стационарной точки, определите, являются ли данные точки экстремумами;
 - (с) (2%) не будет иметь стационарных точек.

Указание. Для нахождения условных стационарных точек используйте метод множителей Лагранжа. Дополнительных исследований проводить не требуется.

- 1. Если $a=0, b\leq 0$, то ограничению удовлетворяют все значения аргумента х при $y=\sqrt{-b}$. В этом случае остается найти экстремум функции $x-2\sqrt{-b}$, которого, очевидно не существует. В данном случае стационарных точек нет.
- 2. Если $a \ge 0, b > 0$, то ограничению не удовлетворяет ни одна точка. В данном случае стационарных точек нет.
- 3. Остается рассмотреть два случая a>0, b<0 и a<0, b-любое. В этом случае используем метод множителей Лагранжа. Функция Лагранжа имеет вид $L\left(x,y,\lambda\right)=x-2y+\lambda\left(b+ax^2+y^2\right)$. Безусловные стационарные точки функции Лагранжа совпадают с условными стационарными точками в постановке задачи. Стационарная точка определяется из условий

$$\left\{ \begin{array}{l} \frac{\partial}{\partial x}L\left(x,y,\lambda\right) = 1 + 2\lambda ax = 0 \\ \frac{\partial}{\partial y}L\left(x,y,\lambda\right) = -2 + 2\lambda y = 0 \\ \frac{\partial}{\partial \lambda}L\left(x,y,\lambda\right) = b + ax^{2} + y^{2} = 0 \end{array} \right.$$

Решение данной системы уравнений существует не всегда.

С.1) При условии, что $a \neq -16$ решением являются точки

 $\begin{cases} x_k = -\frac{1}{2\lambda a} \\ y_k = \frac{1}{\lambda} \end{cases}, \ \lambda = \pm \sqrt{-\frac{1+4a}{ab}}. \ \text{Далее решение при положительном значении } \lambda \ \text{ назовем } (x_1,y_1), \ \text{а при отрицательном } \lambda - (x_2,y_2). \ \text{Определим их тип. Достаточным условием существования условного экстремума в условной стационарной точке является постоянство знака второго дифференциала функции Лагранжа при учете условия. Второй дифференциал имеет вид: } d^2L\left(x,y,\lambda\right) = \frac{\partial^2}{\partial x^2}L\left(x,y,\lambda\right) dx^2 + 2\frac{\partial^2}{\partial x\partial y}L\left(x,y,\lambda\right) dxdy + \frac{\partial^2}{\partial y^2}L\left(x,y,\lambda\right) dy^2 \ \text{Из ограничения следует, что} \end{cases}$

$$dy = -\left(\frac{\partial}{\partial x}F\left(x,y\right) \middle/ \frac{\partial}{\partial y}F\left(x,y\right)\right)dx$$

Таким образом, тип стационарной точки определяется знаком выражения

$$A = \frac{\partial^{2}}{\partial x^{2}} L\left(x_{k}, y_{k}, \lambda_{k}\right) + 2 \frac{\partial^{2}}{\partial x \partial y} L\left(x_{k}, y_{k}, \lambda_{k}\right) \left(\frac{\partial}{\partial x} F\left(x_{k}, y_{k}\right) \middle/ \frac{\partial}{\partial y} F\left(x_{k}, y_{k}\right)\right) + \frac{\partial^{2}}{\partial y^{2}} L\left(x, y, \lambda\right) \left(\frac{\partial}{\partial x} F\left(x_{k}, y_{k}\right) \middle/ \frac{\partial}{\partial y} F\left(x_{k}, y_{k}\right)\right)^{2}$$

В случае a>0, b<0 или $a\in\left(-\frac{1}{4},0\right), b>0$ $A=2\lambda(\frac{1}{4}+a)$. Тогда (x_1,y_1) является точкой минимума, а (x_2,y_2) является точкой максимума.

В случае $a<-\frac{1}{4},b<0$ $A=2\lambda(\frac{1}{4}+a)$. Тогда (x_1,y_1) является точкой максимума, а (x_2,y_2) является точкой минимума.

В случае $a \in \left(-\frac{1}{4},0\right), b < 0$ или a < -16, b > 0 выражение под корнем оказывается отрицательным и стационарных точек нет.

С.2) Если $a=-\frac{1}{4}$, то $\lambda=0$ и в силу линейности функции Q(x,y) стационарных точек нет.

Таким образом:

- 1. Единственной стационарной точки не существует.
- 2. Две стационарные точки существуют в случае: a>0, b<0 или $a\in (-16,0)$, b>0. Тогда (x_1,y_1) является точкой минимума, а (x_2,y_2) является точкой максимума.
 - a < -16, b < 0. Тогда (x_1, y_1) является точкой максимума, а (x_2, y_2) является точкой минимума.
- 3. Во всех остальных случаях стационарные точки отсутствуют.
- 8. В лотерее каждый десятый билет выигрывает, причём цена билета равна десяти рублям, а выигрыш составляет семьдесят рублей. Билетов очень-очень много, поэтому выигрыши по ним можно считать независимыми.
 - (а) (5%) Каковы математическое ожидание и дисперсия выигрыша при покупке восьми билетов? Имеется в виду выигрыш с учётом затрат на приобретение, так что он может быть отрицательным.

Имеем дело с восемью испытаниями по схеме Бернулли с вероятностью успеха 0.1. Пусть X — число успехов (выигрышей). Тогда $\mathbb{E}(X)=8\cdot 0.1=0.8,\ \mathbb{V}\mathrm{ar}(X)=8\cdot 0.1\cdot 0.9=0.72.$ Сумма выигрыша с учётом стоимости билетов Y=70X-80 (здесь 80 — стоимость восьми билетов). Получаем ответ:

$$\mathbb{E}(Y) = 70\,\mathbb{E}(X) - 80 = 70\cdot 0.8 - 80 = -24,$$

$$\mathbb{V}\mathrm{ar}(Y) = 70^2\,\mathbb{V}\mathrm{ar}(X) = 3528.$$

Разбалловка: 5 баллов за пункт (a), по одному баллу за $\mathbb{E}(X)$, $\mathbb{E}(Y)$, связь Y и X, \mathbb{V} ar(X), \mathbb{V} ar(Y).

(b) (5%) Некто покупает лотерейные билеты до третьего выигрыша. С какой вероятностью ему придётся купить ровно двенадцать билетов?

На этот раз число испытаний не ограничено. Чтобы двенадцатый билет был третьим выигрышным, он должен сам быть выигрышным (вероятность этого - 0.1), а одиннадцать предыдущих должны содержать ровно два выигрыша, вероятность чего равна $C_11^2 \cdot 0.1^2 \cdot 0.9^9$. Искомая вероятность: $C_11^2 \cdot 0.1^2 \cdot 0.9^9 \cdot 0.1 \approx 0.02$.

Разбалловка: 5 баллов за пункт (б), из них два за формулу Бернулли.

9. Случайные величины X_i независимы, а их распределение известно с точностью до параметра p:

Значения	-3	0	1
Вероятности	0.1	0.9 - p	p

(a) (5%) Пусть p = 0.3. С какой вероятностью среднее в выборке X_1, \ldots, X_{480} превысит значение 0.05?

Найдём математическое ожидание и дисперсию X_i :

$$\mathbb{E}(X_i) = -3 \cdot 0.1 + 1 \cdot p = p - 0.3$$

$$\mathbb{E}(X_i^2) = (-3)^2 \cdot 0.1 + 1^2 \cdot p = 0.9 + p,$$

$$\mathbb{V}\operatorname{ar}(X_i) = 0.9 + p - (p - 0.3)^2 = 0.81 + 1.6p - p^2$$

При p=0.3 получаем $\mathbb{E}(X_i)=0$, $\mathbb{V}\mathrm{ar}(X_i)=1.2$. Объём выборки велик, так что выборочное среднее будет иметь приблизительно нормальное распределение: $\bar{X}\sim\mathcal{N}(0,1.2/480=0.0025)$. Рассчитываем нужную нам вероятность, нормировав выборочное среднее:

$$\mathbb{P}(\bar{X} > 0.05) = \mathbb{P}\left(\bar{X}/\sqrt{0.0025} > 0.05/\sqrt{0.0025}\right) = \mathbb{P}(\bar{X}/0.05 > 1) = 0.159.$$

Разбалловка: 5 баллов за пункт (a), по одному баллу за математическое ожидание, дисперсию, применение теоремы о распределении выборочного среднего (центральной предельной теоремы), нормирование, нахождение вероятности по таблицам;

(b) (5%) Докажите состоятельность оценки $\hat{p} = 0.3 + \frac{1}{n} \sum_{i=1}^{n} X_i$ для параметра p, где n — объём выборки.

Для доказательства состоятельности оценки достаточно показать, что она несмещённая, а её дисперсия стремится к нулю. Проверяем несмещённость:

$$\mathbb{E}(\hat{p}) = 0.3 + \mathbb{E}(\bar{X}) = 0.3 + (p - 0.3) = p.$$

Ищем дисперсию:

$$Var(\hat{p}) = Var(\bar{X}) = (0.81 + 1.6p - p^2)/n.$$

Ясно, что $\lim_{n\to\infty} \mathbb{V}\mathrm{ar}(\hat{p}) = 0$, так что оценка состоятельная.

Можно и не искать дисперсию X_i . Достаточно знать, что она конечна, а это следует из того, что множество значений X_i конечно.

Разбалловка: 5 баллов за пункт (б), из них два – за достаточное условие состоятельности.

10. Исследователь решил выяснить, есть ли связь между гендерной принадлежностью и доходами индивида. В его распоряжении есть данные о заработных платах (переменная wage — средняя почасовая заработная плата в долларах), опыте (переменная exper — годы опыта) и поле (дамми-переменная gender принимает значение 1 для женщин). По 300-м наблюдениям он оценил следующее уравнение регрессии (предпосылки классической линейной регрессионной модели выполнены):

$$\ln(waqe_i) = \alpha + \beta_1 exper_i + \beta_2 exper_i^2 + \beta_3 qender_i + \varepsilon_i$$

Результаты оценки уравнения представлены в таблице:

Переменная Коэффициент		Стандартная ошибка		
exper	0.0400	0.0134		
$exper^2$	-0.0008	0.0004		
gender	-0.0534	0.0847		
константа	-0.4860	0.2136		

(а) (1%) Выпишите оценённое уравнение регрессии.

$$\widehat{\ln(wage_i)} = -0.4860 + 0.0400 \exp(i - 0.0008 \exp(i - 0.0534)) \exp(i - 0.0534 \exp(i - 0.0534))$$

(b) (6%) На уровне значимости 5%-ов проверьте гипотезу о значимости связи гендерной принадлежности и заработной платы против альтернативной об отсутствии связи. Выпишите нулевую и альтернативную гипотезы, укажите используемые формулы, рассчитайте необходимую статистику, укажите точный и асимптотический вид её распределения и сделайте вывод на её основе.

 H_0 : $\beta_3=0,\ H_a$: $\beta_3\neq 0.\ Z_{obs}=\frac{\hat{eta}_3}{se(\hat{eta}_3)}=-0.0534/0.0847\approx -0.6305,\ Z_{cr}\approx 1.95.$ Расчетное значение тестовой статистики по модулю меньше критического, что не дает оснований отвергнуть нулевую гипотезу о незначимости коэффициента при переменной kid6. На уровне значимости 5%-ов нет оснований утверждать, что существует связь между образованием и заработной платой. Точное распределение статистики — t_{296} , асимптотическое — N(0;1).

(с) (3%) Перечислите модельные предпосылки, которые были использованы при решении задачи

Детерминистическая версия:

1. Линейность зависимости y от объясняющих переменных.

$$\ln(wage_i) = \alpha + \beta_1 exper_i + \beta_2 exper_i^2 + \beta_3 gender_i + \varepsilon_i$$

- 2. Нет линейной зависимости между регрессорами. Матрица X имеет полный ранг.
- 3. Нет систематической ошибки, $\mathbb{E}(\varepsilon_i) = 0$
- 4. Гомоскедастичность $Var(\varepsilon_i) = \sigma^2$
- 5. Некоррелированность ошибок $\mathbb{C}ov(\varepsilon_i, \varepsilon_j) = 0$
- 6. Нормальность ошибок, $\varepsilon_i \sim N(0; \sigma^2)$

Стохастическая версия:

1. Линейность зависимости y от объясняющих переменных.

$$\ln(wage_i) = \alpha + \beta_1 exper_i + \beta_2 exper_i^2 + \beta_3 gender_i + \varepsilon_i$$

- 2. С вероятностью один нет линейной зависимости между регрессорами. Матрица X имеет полный ранг с вероятностью один.
- 3. Эндогенность, $\mathbb{E}(\varepsilon_i|X)=0$
- 4. Условная гомоскадастичность $\mathbb{V}\mathrm{ar}(\varepsilon_i|X) = \sigma^2$
- 5. Условная некоррелированность ошибок $\mathbb{C}\text{ov}(\varepsilon_i, \varepsilon_j | X) = 0$
- 6. Нормальность ошибок, $\varepsilon_i \sim N(0; \sigma^2)$

Удачи!

F(x)
r

x	F(x)	x	F(x)	x	F(x)	x	F(x)
0.050	0.520	0.750	0.773	1.450	0.926	2.150	0.984
0.100	0.540	0.800	0.788	1.500	0.933	2.200	0.986
0.150	0.560	0.850	0.802	1.550	0.939	2.250	0.988
0.200	0.579	0.900	0.816	1.600	0.945	2.300	0.989
0.250	0.599	0.950	0.829	1.650	0.951	2.350	0.991
0.300	0.618	1.000	0.841	1.700	0.955	2.400	0.992
0.350	0.637	1.050	0.853	1.750	0.960	2.450	0.993
0.400	0.655	1.100	0.864	1.800	0.964	2.500	0.994
0.450	0.674	1.150	0.875	1.850	0.968	2.550	0.995
0.500	0.691	1.200	0.885	1.900	0.971	2.600	0.995
0.550	0.709	1.250	0.894	1.950	0.974	2.650	0.996
0.600	0.726	1.300	0.903	2.000	0.977	2.700	0.997
0.650	0.742	1.350	0.911	2.050	0.980	2.750	0.997
0.700	0.758	1.400	0.919	2.100	0.982	2.800	0.997

Рис. 1: Таблица значений функции распределения для стандартной нормальной величины.