Modelování a simulace

Petr Peringer
peringer AT fit.vutbr.cz
Martin Hrubý
hrubym AT fit.vutbr.cz

Vysoké učení technické v Brně, Fakulta informačních technologií, Božetěchova 2, 612 66 Brno

(Verze: 24. října 2019)

Úvod

Text je určen pro studenty FIT. Obsahuje základní přehled problematiky modelování a simulace vhodný pro studenty bakalářského studia. Předpokládají se základní znalosti programování (C, C++, ...) a matematiky (relace, derivace, integrály, dif. rovnice).

Obsah slajdů je velmi stručný, podrobnější informace jsou součástí výkladu.

Na slajdech spolupracovali:

Martin Hrubý – Petriho sítě, náhodné procesy

Pravidla

- Přednášky
- Minimálně 2 demo-cvičení
- Samostatná práce: projekt
- Konzultace

Hodnocení celkem 100b:

- 10b půlsemestrální test
- 20b projekt
- Zápočet: alespoň 10 z výše uvedených bodů
- 70b zkouška (požadováno min. 30 bodů)

Zdroje informací

- Literatura
- WWW odkazy
- Oficiální stránka:

```
http://www.fit.vutbr.cz/study/courses/IMS/
```

• Aktuální informace pro studenty:

```
..../IMS/public/
```

- Vlastní uvažování a (simulační) experimenty

Literatura

- Fishwick P.: Simulation Model Design and Execution: Building Digital Worlds. Prentice-Hall. 1995
- Law A., Kelton D.: Simulation Modelling & Analysis, second edition, McGraw-Hill, 1991
- Rábová a kol.: Modelování a simulace, skriptum VUT, Brno. 1992
- Ross S.: Simulation. 3rd edition. Academic Press. 2002
- (Zeigler B., Praehofer H., Kim T.: *Theory of Modelling and* Simulation, 2nd edition, Academic Press, 2000)

...

Poznámka: Studijní opora

(Informace k zadání Bc práce — témata.) Poznámka:

Modelování systémů na počítačích

Přehled

- Základní pojmy a princip
- Souvislosti a použití
- Výhody a nevýhody simulace
- Alternativy
- Úvod do teorie systémů
- Typy simulace
- Velmi stručný přehled simulačních nástrojů

Základní pojmy (systém, model)

Systém =

soubor elementárních částí (prvků systému), které mají mezi sebou určité vazby.

Rozlišujeme (mimo jiné)

- reálné systémy
- nereálné systémy (fiktivní, ještě neexistující)

Model =

napodobenina systému jiným systémem.

- Model = reprezentace znalostí.
- Klasifikace: fyzikální modely, matematické modely, ...
- Přírodní zákony jsou matematické modely (Příklad: Ohmův zákon U = Ri).

Základní pojmy (modelování, simulace)

Modelování =

vytváření modelů systémů.

- Modelování je velmi používaná metoda
- Modelovat lze jen to, co známe a umíme popsat

Simulace =

získávání nových znalostí o systému experimentováním s jeho modelem.

Budeme se zabývat pouze simulací na číslicových počítačích.

Princip modelování a simulace

Realita → Znalosti → Abstraktní model → Simulační model

Cílem je získat nové znalosti o modelovaném systému.

- Vytvoření abstraktního modelu: formování zjednodušeného popisu zkoumaného systému.
- Vytvoření simulačního modelu: zápis abstraktního modelu formou programu.
- Verifikace a validace: ověřování správnosti modelu.
- Simulace: experimentování se simulačním modelem.
- Analýza a interpretace výsledků: získání nových znalostí o zkoumaném systému.

Souvislosti

- pozorování a reálné experimenty
- Computational Science
- učení, hry "co se stane když"
- programování (simulační model je program)
- algoritmy, datové struktury
- počítačová grafika (vizualizace výsledků)
- technické vybavení: superpočítače, ...
- teorie systémů (stabilita, citlivost, chaos, ...)
- numerická matematika (integrační metody, ...)
- pravděpodobnost a statistika
- + obory související s modelovaným systémem

Příklady použití simulace v praxi

- Věda: biologie, lékařství, ekologie, chemie, jaderná fyzika, astronomie, sociologie, ... (Předpověď počasí, zemětřesení, šíření epidemií, ...)
- Technika: strojírenství, stavebnictví, doprava, elektro, ... (Dvnamika konstrukcí, simulace mikroprocesorů, optimalizace parametrů systému, ...)
- Ekonomika (vývoi cen na burze, ...)
- Výuka (různé demonstrační modely)
- Film (vizuální efekty všeho druhu)
- Hrv (simulátor letadla, ...)

Výhody simulačních metod

- Cena (např. "crash" testy automobilů)
- Rychlost (růst rostlin, vznik krystalů, pohyb planet)
- Bezpečnost (jaderné reakce, šíření epidemií)
- Někdy jediný způsob (srážky galaxií)
- Možnost modelovat velmi složité systémy (mikroprocesory, různé biologické systémy, počasí)

Je výhodnější, rychlejší a často jedině možné experimentovat s modely, než s originálními systémy.

Problémy simulačních metod

- Problém validity (platnosti) modelu
- Někdy velmi vysoká náročnost vytváření modelů
- Náročnost na výkon počítačů
- Získáváme konkrétní numerické výsledky (například změna parametru vyžaduje celou simulaci opakovat).
- Nepřesnost numerického řešení
- Problém stability numerických metod

Alternativní přístup

Analytické řešení modelů

- Popis chování systému matematickými vztahy a jeho matematické řešení.
- Vhodné pro jednoduché systémy nebo zjednodušené popisy složitých systémů.
- Výsledky jsou ve formě funkčních vztahů, ve kterých se jako proměnné vyskytují parametry modelu.
- Dosazením konkrétních hodnot získáme řešení.

Shrnutí: Hlavní předností analytického řešení je přesnost a menší časová náročnost výpočtu řešení matematického modelu. Řešit ale umíme jen modely jednoduché nebo podstatně zjednodušené.

Příklad: Model volného pádu ve vakuu

Kdy použít simulační metody

Simulaci je vhodné použít kdvž:

- neexistuie úplná matematická formulace problému nebo neisou známé analytické metody řešení matematického modelu;
- analytické metody vyžadují tak zjednodušující předpoklady, že je nelze pro daný model přijmout;
- analytické metody jsou dostupné pouze teoreticky, jejich použití by bylo obtížné a simulační řešení je jednodušší;
- modelování na počítači je jedinou možností získání výsledků v důsledku obtížnosti provádění experimentů ve skutečném prostředí:
- potřebujeme měnit časové měřítko (simulace umožňuje urychlování nebo zpomalování příslušných dějů v modelu systému).

Úvod do teorie systémů

(Systems Theory, Systems Science)

Přehled:

- Definice základních pojmů:
 - Systém
 - Prvek systému
 - Časová množina
 - Chování systému
 - Okolí systému
- Homomorfní a izomorfní systémy
- Klasifikace prvků systému a systémů

Formální definice systému

Systém S je dvojice

$$S = (U, R)$$

kde:

• Univerzum *U* je konečná množina prvků systému:

$$U = \{u_1, u_2, ..., u_N\}$$

- Prvek systému: u = (X, Y) kde
 - X je množina všech vstupních proměnných
 - Y je množina všech výstupních proměnných
- Charakteristika systému R je množina všech propojení:

$$R = \bigcup_{i,j=1}^{N} R_{ij}$$

• Propojení prvku u_i s prvkem u_i : $R_{ii} \subseteq Y_i \times X_i$

Příklad definice systému

$$U = \{u_1, u_2, u_3\}$$

$$R = \{(y_{11}, x_{21}), (y_{12}, x_{31}), (y_{31}, x_{22}), (y_{21}, x_{32})\}$$

Vazby mezi prvky systému

วิลร

Budeme rozlišovat tři základní pojmy:

Reálný čas ve kterém probíhá skutečný děj v reálném systému (viz fyzikální definice času).

Modelový čas je časová osa modelu (modeluje reálný čas ze vzorového systému — např. proměnná t v diferenciální rovnici v'' = -a). Při simulaci nemusí být synchronní s reálným časem.

Strojový čas je čas CPU spotřebovaný na výpočet programu (závisí na složitosti simulačního modelu, počtu procesorů a nesouvisí přímo s modelovým časem).

Poznámka: Příkaz time (POSIX)

Časová množina

T je množina všech časových okamžiků, ve kterých jsou definovány hodnoty vstupních, stavových a výstupních proměnných prvku systému.

Příklady

- diskrétní: $T_d = \{1, 2, 3, 4, 5\}$
- spojitá: $T_s = \langle 1.0, 5.0 \rangle$

Poznámka:

Na číslicovém počítači se spojitá časová množina vždy diskretizuje.

Časová množina — příklady

Signály s diskrétní (T_d) a spojitou (T_s) časovou množinou:

Chování systému

- Každému časovému průběhu vstupních proměnných přiřazuje časový průběh výstupních proměnných.
- Je dáno vzájemnými interakcemi mezi prvky systému.

Chování systému S můžeme definovat jako zobrazení χ :

$$\chi: [\sigma_i(\mathcal{S})]^T \to [\sigma_o(\mathcal{S})]^T$$

kde:

- [A]^T je množina všech zobrazení T do množiny A,
- $\sigma_i(S)$ je vstupním prostorem systému S.
- $\sigma_o(S)$ je výstupním prostorem systému S.

Chování systému — příklad

Spojitý systém S, odezva na jednotkový skok:

Ekvivalence chování systémů

Systémy S_1 a S_2 považujeme za systémy se stejným chováním, vyvolají-li stejné podněty u obou systémů stejné reakce.

Stejnými podněty/reakcemi rozumíme ty dvojice podnětů/reakcí, které isou spolu vzájemně přiřazeny definovaným vstupním/výstupním zobrazením

Izomorfní systémy

Systémy $S_1 = (U_1, R_1)$ a $S_2 = (U_2, R_2)$ jsou izomorfní, když a jen kdvž:

- Prvky univerza U_1 lze vzájemně jednoznačně (1:1) přiřadit prvkům univerza U₂.
- 2 Prvky charakteristiky R₁ lze vzájemně jednoznačně přiřadit prvkům charakteristiky R_2 , a to tak, že prvku charakteristiky R_1 , vyjadřujícímu orientovaný vztah mezi dvěma prvky univerza U_1 , je vždy přiřazen právě ten prvek charakteristiky R_2 , který vyjadřuje stejně orientovaný vztah mezi odpovídající dvojicí prvků univerza U_2 a naopak.

Zjednodušeno (nezahrnuje chování).

Homomorfní systémy

Systém $S_1 = (U_1, R_1)$ je homomorfní se systémem $S_2 = (U_2, R_2)$ právě když:

- Prvkům univerza U_1 je možno přiřadit jednoznačně prvky univerza U_2 (opačně tomu tak být nemusí, N:1).
- 2 Prvkům charakteristiky R₁ je možno jednoznačně přiřadit prvky charakteristiky R_2 , a to tak, že prvku charakteristiky R_1 vyjadřujícímu orientovaný vztah mezi dvěma prvky univerza U_1 je vždy přiřazen právě ten prvek charakteristiky R_2 , který vyjadřuje stejně orientovaný vztah mezi odpovídající dvojicí prvků univerza U_2 ve smyslu bodu 1.

Vytváření homomorfních systémů je základním principem modelování.

Jednoduché příklady izomorfismu a homomorfismu

Okolí systému

Podstatné okolí systému zahrnuje vše co má vliv na chování systému a není jeho součástí.

- Uzavřený systém nekomunikuje s okolím (často jen zanedbáváme vliv okolí)
- Otevřený systém komunikuje s okolím (typicky má definován vstup a výstup)

Klasifikace prvků systémů

Klasifikace1:

- Prvky se spojitým chováním
- Prvky s diskrétním chováním

Klasifikace2:

- Prvky s deterministickým chováním
- Prvky s nedeterministickým chováním

Příklady:

Šumová dioda = spojitý prvek, stochastické chování FIFO Fronta = diskrétní prvek, deterministické chování

Klasifikace systémů

Typ systému závisí na typu jeho prvků.

Systémy:

spojité — všechny prvky mají spojité chování diskrétní — všechny prvky mají diskrétní chování kombinované — obsahuje spojité i diskrétní prvky

Systémy:

deterministické — všechny prvky deterministické nedeterministické — alespoň jeden prvek s nedeterministickým chováním

Úvod Modely ... Diskrétní CA Spojité Kombi. ... Literatura Základní pojmy

Simulace

= experimentování s reprezentací simulačního modelu.

Cíl simulace:

získání nových informací o chování systému v závislosti na vstupních veličinách a na hodnotách parametrů.

Postup:

opakované řešení modelu (provádění simulačních běhů).

- Nastavení hodnot parametrů a počátečního stavu modelu,
- zadávání vstupních podnětů z okolí při simulaci,
- vyhodnocení výstupních dat (informací o chování systému)

Simulační běhy opakujeme tak dlouho, dokud nezískáme dostatek informací o chování systému nebo pokud nenalezneme takové hodnoty parametrů, pro něž má systém žádané chování.

Úvod Modely ... Diskrétní CA Spojité Kombi. ... Literatura Základní pojmy

Typy simulace

Podle použitého popisu modelu:

- Spojitá / diskrétní / kombinovaná
- Kvalitativní / kvantitativní
- ...

Podle simulátoru:

- Na analogovém / číslicovém počítači, fyzikální
- "Real-Time" simulace
- Paralelní a distribuovaná simulace

Další možnosti:

- Vnořená simulace (simulace v simulaci)
- "Reality in the loop"
- Interaktivní simulace, virtuální realita

Zpracování výsledků simulace

Postup:

- Záznam průběhu simulace
- Vizualizace výsledků, animace

Analýza získaných výsledků:

- Intuitivní vyhodnocení, heuristiky, ...
- Statistické zpracování
- Automatické vyhodnocení (např. pro optimalizaci)
- Porovnávání s naměřenými daty

Verifikace modelu

Verifikací ověřujeme korespondenci abstraktního a simulačního modelu, ti, izomorfní vztah mezi AM a SM.

- Předchází vlastní etapě simulace.
- Analogicky s programy v běžných programovacích jazvcích představuje verifikace simulačního modelu jeho ladění.

Poznámka: Abstraktní model je formální specifikací pro program (simulační model).

Validace modelu

Ověřování validity (platnosti) simulačního modelu je proces, v němž se snažíme dokázat, že skutečně pracujeme s modelem adekvátním modelovanému systému.

- Jeden z nejobtížnějších problémů modelování.
- Vyžaduje neustálou konfrontaci informací, které o modelovaném systému máme a které simulací získáváme.
- Nelze absolutně dokázat přesnost modelu. (Validitu modelu chápeme jako míru použitelnosti/správnosti získaných výsledků.)
- Pokud chování modelu neodpovídá předpokládanému chování originálu, musíme model modifikovat.

Simulační nástroje

Simulační systémy usnadňují vytváření modelů, provádění experimentů a analýzu výsledků.

Tyto nástroje jsou použitelné pro:

- práci s abstraktními modely (báze znalostí, ...).
- programování simulačních modelů (simulační jazyky a knihovny modelů).
- experimentování se simulačními modely (simulátory).
- vizualizaci a vyhodnocování výsledků.

Poznámka: V rámci předmětu IMS použijeme SIMLIB/C++, systém Dymola/Modelica a SciLab nebo Octave (nebo Matlab) viz odkazy na WWW IMS

Shrnutí úvodní části

- Metoda simulace
- Použití simulace v různých oborech
- Výhody a problémy
- Základní teoretické souvislosti
- Problém verifikace a validace modelů
- Stručná charakteristika simulačních nástrojů

Modely a modelování

Přehled:

- Modelování proces vytváření modelů
 - abstraktní model
 - simulační model
- Klasifikace modelů
- Popis modelů
- Příklady jednoduchých modelů

Příklady abstraktních modelů

Způsoby matematického popisu modelů:

- Konečný automat
- Petriho síť
- Turingův stroj
- Algebraické rovnice
- Diferenciální rovnice (obyč. i parciální)
- Diferenční rovnice
- Markovské procesy
- ...

Poznámka: Klasifikace abstraktních modelů

Vytvoření abstraktního modelu 1

Formulace zjednodušeného popisu systému abstrahujícího od všech nedůležitých skutečností vzhledem k *cíli a účelu* modelu.

- Nedovedeme postihnout reálný svět v celé komplikovanosti
- Zajímáme se jen o ohraničené části
- Identifikace vhodných složek systému
- Systém nemusí být definován pouze na reálném objektu potom vycházíme ze znalostí analogických systémů.

Z hlediska teorie systémů předpokládáme mezi modelovaným a abstraktním systémem homomorfní vztah.

Vytvoření abstraktního modelu 2

Specifické cíle a účely modelů:

- Studium chování systému pro určitá specifická kritéria, zkoumání povahy závislostí mezi parametry a odezvou systému.
- Predikce vyhodnocení chování systému za určitých podmínek.
- Analýza citlivosti určení faktorů (parametrů), které jsou pro činnost systému nejvýznamnější.
- Optimalizace nalezení takové kombinace parametrů, která vede k nejlepší odezvě systému.

Vymezení účelu modelu má významný dopad na celý proces budování abstraktního modelu i na vlastní experimentování se simulačním modelem.

Vytvoření simulačního modelu

simulační model = abstraktní model zapsaný formou programu

Vztahy mezi modely

homomorfní vztah: modelovaný systém — abstraktní model **izomorfní vztah:** abstraktní model — simulační model

Poznámky:

- Izomorfní vztah představuje silnější vztah ekvivalence mezi abstraktními systémy — shodnost struktur a chování prvků uvažovaných systémů.
- Konkrétní implementace simulačního modelu závisí na typu modelu a na použitém simulačním nástroji.

Klasifikace modelů 1

Tradiční rozdělení:

- spojité modely
- diskrétní modely
- kombinované modely

Poznámka: Odpovídající varianty DEVS formalismu: DEVS, DESS, DEVS&DESS

Klasifikace modelů 2

Klasifikace podle [Fishwick]:

- Konceptuální modely
- Deklarativní modely
- Funkcionální modely
- Modely popsané rovnicemi (constraint)
- Prostorové (spatial) modely
- Multimodely

Poznámka: Multimodel je složen z modelů různého typu.

Klasifikace modelů 2.1

Konceptuální modely

- Modely, jejichž komponenty (prozatím) nebyly přesně popsány ve smyslu teorie systémů.
- Obvykle se používají v počáteční fázi modelování pro ujasnění souvislostí a komunikaci v týmu.
- Mají formu textu nebo obrázků.

Deklarativní modely

- Popis přechodů mezi stavy systému.
- Model je definován stavy a událostmi, které způsobí přechod z jednoho stavu do druhého za jistých podmínek.
- Vhodné především pro diskrétní modely.
- Obvykle zapouzdřeny do objektů (hierarchická struktura).

Příklady:

- Konečné automaty (deterministické i nedeterministické-Markovovy modely)
- Petriho sítě
- Událostmi řízené systémy s kalendářem

Funkcionální modely

- Grafy zobrazující funkce a proměnné.
- Jsou možné 2 modifikace: uzel grafu je funkce nebo proměnná

Příklady:

- Systémy hromadné obsluhy se zařízeními a frontami ("Queuing systems")
- Bloková schemata (spojitá simulace, ...)
- kompartmentové systémy
- grafy signálových toků
- systémová dynamika

Modely popsané rovnicemi (constraint)

- Rovnice (algebraické, diferenciální, diferenční)
- Neorientované grafy (elektrická schemata, "Bond-Graphs")

Příklady:

• Diferenciální rovnice systému dravec-kořist:

$$\frac{dx_k}{dt} = k_1 x_k - k_2 x_k x_d$$
$$\frac{dx_d}{dt} = k_2 x_k x_d - k_3 x_d$$

- Balistika, kyvadlo, RC článek, ...
- Chaos (například "Lorenz equation")
- Logistická rovnice $x \leftarrow ax(1-x)$

Prostorové (spatial) modely

Rozdělují systém na prostorově menší ohraničené podsystémy.

Příklady:

- Parciální diferenciální rovnice (difůze, proudění, ...)
- Celulární automaty (hra "Life")
- L-systémy
- "N-body problem": mechanické modely těles (kolize, ...)

Multimodely

Modely složené z různých typů modelů, které jsou obvykle heterogenní (popsané různým způsobem).

Příklady:

- Kombinované modely (např. spojité + diskrétní)
- Modely s neurčitostí (např. spojité + fuzzy)
- Modely na různé úrovni abstrakce (kvalitativní + kvantitativní)
- Propojené simulační systémy (HLA)
- ...

Poznámka:

Většina netriviálních modelů spadá do této kategorie.

Příklad1: Závaží na pružině (spojitý)

Obrázek = konceptuální model

Příklad1 — pokračování

Diferenciální rovnice = abstraktní model (constraint)

$$y'' = -g - \frac{K}{m}y$$
počáteční podmínky:
 $y(0) = -1$
 $y'(0) = 0$

Poznámky:

- Počáteční podmínky
- Pozor na shodné jednotky (pozice: metry / stopy ?)

Příklad1 — pokračování

Příklad1 — pokračování

program = simulační model

```
// popis modelu v SIMLIB/C++
struct Model {
    Integrator y, v;
    Model(double m, double K, double y0):
       v(-g - K/m * v, 0),
       y(v, y0) {}
};
Model s(1, 1e3, -1); // instance modelu s parametry
// vynechán popis simulačního experimentu
```

Příklad1 — pokračování

Výsledky simulace (tabulka):

```
# čas
 0.000 - 1
 0.001 - 0.9995 0.99
 0.002 - 0.998 \quad 1.979
 0.003 - 0.9955 2.966
 0.004 - 0.9921 3.95
 0.005 - 0.9876 4.93
 0.006 - 0.9822 5.906
 0.007 - 0.9758 6.875
 0.008 - 0.9685 7.837
 0.009 - 0.9602 8.792
 0.010 - 0.9509 9.738
```

Příklad1 — pokračování

Výsledky simulace (graf):

Příklad2: Zákazníci v obchodě (diskrétní)

- Zákazníci přicházejí s určitým rozložením pravděpodobnosti,
- jsou obsluhováni zařízením po určitou dobu,
- vytváří se fronta zákazníků.

Příklad2 — pokračování

Blokové schema = abstraktní model (funkcionální)

Příklad2 — pokračování

Simulační model = program:

```
Facility Linka("Linka");
class Zakaznik : public Process { // třída zákazníků
  void Behavior() {
                                  // --- popis chování
    Seize(Linka):
                                  // obsazení zařízení
    Wait(10):
                                  // obsluha
    Release(Linka):
                                  // uvolnění zařízení
}:
class Generator : public Event { // generator zák.
  void Behavior() {
                             // --- popis chování
    (new Zakaznik)->Activate(); // nový zákazník
    Activate(Time+Exponential(1e3/80)); // interval
}; // ... vynechán popis experimentu a sběr statistik
```

Příklad2 — pokračování

Výsledky simulace:

```
FACILITY Linka
Time interval = 0 - 10000
Number of requests = 797
Average utilization = 0.796405
```

```
Input queue 'Linka.Q1'

Maximal length = 12

Average length = 1.37766

Minimal time = 0.00798347

Maximal time = 112.171

Average time = 22.1489

Standard deviation = 31.087
```

Příklad2 — pokračování

Shrnutí

- Modely různých typů a úrovní abstrakce
- Jsou možné různé popisy stejného systému
- Často nutné kombinovat = multimodely
- Je výhodné použít objekty (OOP)
- Použití hotových modelů jako komponent
- ...

Vše se odrazí v implementaci nástrojů pro simulaci.

Simulační nástroje — přehled

Možnosti:

- použití obecných jazvků (C, C++, Java)
- simulační knihovny pro obecné jazyky (SIMLIB/C++)
- simulační jazyky (Simula67, Modelica, ACSL, ...)
- simulační systémy (Dymola, ANSYS, ...)
- propojování různých nástrojů (HLA)

HLA = High Level Architecture, standard pro Poznámka: distribuovanou simulaci

bi. ... Nástroie Random MonteCarlo

Simulační jazyky

= speciální programovací jazyky

Poskytují prostředky usnadňující efektivní popis:

- struktury modelů (propojení komponent)
- chování modelů (rovnice, algoritmy)
- simulačních experimentů

Výhody:

- jednodušší popis modelu (snadnější verifikace)
- možnost automatické kontroly popisu modelu

Nevýhody:

- další jazyk = překladač, výuka, údržba
- relativně málo používáno = problémy (cena, chyby)

Typy simulačních jazyků

Klasifikace podle typu modelů:

- diskrétní
- spojité
- kombinované

Příklady:

- Simula67.
- Simscript.
- ACSL (Advanced Continuous Simulation Language),
- Modelica....

Dostupné simulační nástroje

V rámci výuky budeme používat:

- SIMLIB/C++: OO knihovna pro C++ (LGPL)
- DYMOLA/Modelica: komerční program
- (Octave nebo SciLab: integrované prostředí, jazyk pro numerické výpočty, knihovny, různé specializované nadstavby – "toolkity")

Podpůrné nástroje:

- Vizualizace: Gnuplot
- Statistika: GNU R. diehard

- Matlab/Simulink
- Sage
- Open Modelica
- GNU Octave (a OctaveForge)
- Simula67 (cim)
- SciPv. NumPv Pvthon
- SPICE elektrické obvody
- GSL = GNU Scientific Library knihovna, ISO C
- ... (další viz WWW)

Shrnutí

- Nástrojů pro podporu modelování a simulace existuje velmi mnoho.
- Některé nástroje vyžadují speciální vybavení (superpočítače).
- Většina nástrojů je zaměřena na konkrétní problém/oblast.
- Podrobněiší informace o používaných nástrojích budou uvedeny později.

Reklama: Předmět Simulační nástroje a techniky v magisterském studiu bude zahrnovat podrobnosti o efektivní implementaci simulačních systémů a pokročilých metodách modelování a simulace.

Modelování náhodných procesů

Obsah:

- Pravděpodobnost, náhodné proměnné, ...
- Rozložení náhodných čísel
- Generování pseudonáhodných čísel
- Transformace rozložení pseudonáhodných čísel
- Testování pseudonáhodných čísel
- Metoda Monte Carlo

Předpokládáme základní znalosti z předmětu Numerická matematika a pravděpodobnost

Pravděpodobnost a statistika

- Co je náhodnost? (nedeterminismus, pseudonáhodnost)
- Některé části reality neumíme popsat jinak ⇒ používáme náhodné jevy/procesy
- Každý proces má jiný charakter (a odpovídající rozložení)
- Jde o jeden ze způsobů popisu neurčitosti
- Příklady: příchody zákazníků, doba obsluhy, ...
- Postup:
 - Změříme vzorek procesu v realitě (získáme soubor dat).
 - 2 ten aproximujeme analytickým vyjádřením (typicky pomocí existujícího rozložení),
 - a nakonec náhodný proces modelujeme generátorem pseudonáhodných čísel (s odpovídajícím rozložením a parametry).

Terminologie (opakování)

- Jev
- Pravděpodobnost jevu
- Náhodná proměnná
- Rozložení pravděpodobnosti
- Distribuční funkce (CDF),
- Funkce hustoty pravděpodobnosti (PDF)
- Střední hodnota (Mean)
- Rozptyl (Variance)
- Zákon velkých čísel
- Centrální limitní věta
- ...

Náhodné proměnné

Náhodná proměnná je taková veličina, která jako výsledek pokusů může nabýt nějakou hodnotu, přičemž předem nevíme jakou konkrétně.

Náhodné proměnné rozdělujeme na:

diskrétní: nabývají jen konečně nebo spočetně mnoha různých

hodnot

(Příklad: co padne při hodu kostkou)

spojité: hodnoty spojitě vyplňují určitý interval (Příklad: čas mezi příchody zákazníků)

Poznámka: Náhodné proměnné označujeme velkými písmeny, např. X, a jejich možné hodnoty odpovídajícími malými písmeny, např. x_1 , x_2 .

Náhodné veličiny můžeme zadat:

- distribuční funkcí
- rozdělením pravděpodobnosti (např. funkce hustoty)

Existuje celá řada různých používaných rozložení, viz literatura. Například:

McLaughlin M.: A Compendium of Common Probability Distributions, 2016

https://www.causascientia.org/math_stat/Dists/Compendium.pdf

Diskrétní rozdělení pravděpodobnosti

určuje vztah mezi možnými hodnotami náhodné veličiny x_i a jim příslušejícími pravděpodobnostmi $p_i = P(X = x_i)$.

Obecně platí:
$$\sum_{i=1}^{\infty} p_i = 1$$

Lze definovat například tabulkou pravděpodobností pro všechny možné hodnoty náhodné proměnné:

Xi	<i>X</i> ₁	<i>X</i> ₂	 X _N
p_i	p_1	p_2	 p_N

Musí platit:
$$\sum_{i=1}^{N} p_i = 1$$

kde N je počet možných hodnot

Diskrétní distribuční funkce

Distribuční funkce náhodné veličiny X je funkce

$$F(x) = P(X \le x)$$

kde $P(X \le x)$ je pravděpodobnost toho, že náhodná veličina X nabude hodnoty menší nebo rovnu zvolenému reálnému číslu x.

Platí:
$$F(x) = \sum_{x_i \le x} p_i$$

Příklad: Hod kostkou

Xi	1	2	3	4	5	6
$F(x_i)$	1/6	2/6	3/6	4/6	5/6	1

Graf distribuční funkce diskrétní náhodné proměnné je po částech konstantní.

Spojité náhodné proměnné

- Distribuční funkce: $F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$
- Funkce hustoty pravděpodobnosti: $f(x) = \frac{dF(x)}{dx}$

Distribuční funkce F(x) má tyto základní vlastnosti:

- $P(a \le X \le b) = F(b) F(a)$
- $F(x_1) \le F(x_2)$ pro $x_1 < x_2$ (je neklesající)
- $\bullet \lim_{x\to\infty} F(x) = 1$
- $\bullet \lim_{x\to -\infty} F(x) = 0$

Spojité náhodné proměnné

Hustota pravděpodobnosti f(x) má tyto základní vlastnosti:

- f(x) > 0
- $f(x) = \frac{dF(x)}{dx}$
- $P(a \le X \le b) = \int_a^b f(x) dx$

Histogram

Mějme soubor N výsledků pokusů.

Histogram H roztřídí soubor do K tříd podle vhodně zvolených intervalů. Hodnota H(i) = počet výsledků v i-tém intervalu.

Příklad histogramu pro K = 20, N = 100

Problém stanovení optimálního počtu intervalů. Poznámky:

(Histogram se blíží funkci hustoty pravděpodobnosti.)

Charakteristiky náhodných proměnných

Charakteristiky polohy: posunutí vzhledem k počátku (střed, modus, medián, kvantily).

Charakteristiky variability: rozsah kolísání hodnot kolem středu (rozptvl a směrodatná odchvlka).

Charakteristiky šikmosti: udává nesymetričnost rozložení.

Charakteristiky špičatosti: porovnává variabilitu rozložení ve středu a na okrajích.

Charakteristiky lze stanovit podle tzv. momentů.

Obecné momenty

Je-li X náhodná veličina s frekvenční funkcí p; resp. hustotou pravděpodobnosti $f(x_i)$, pak

obecný moment k-tého řádu je:

$$m_k(X) = \sum_i x_i^k p_i$$

$$m_k(X) = \int_{-\infty}^{\infty} x^k f(x) dx$$

Příklad: Střední hodnota je moment prvního řádu:

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$E(X) = m_1(X) = \mu$$

Je-li X náhodná veličina s p_i resp. $f(x_i)$, pak

centrální moment k-tého řádu je:

$$M_k(X) = \sum_i [x_i - E(X)]^k p_i$$

$$M_k(X) = \int_{-\infty}^{\infty} [x - E(X)]^k f(x) dx$$

Příklad: Rozptyl je centrální moment 2. řádu:

$$D(X) = \sum_{i} [x_i - E(X)]^2 p_i$$

$$D(X) = M_2(X)$$

Koeficient šikmosti a špičatosti

Šikmost:

$$\beta_1 = \frac{M_3(X)}{\sigma(X)^3}$$

kde $\sigma(X) = \sqrt{D(X)}$ je směrodatná odchylka

Špičatost:

$$\beta_2 = \frac{M_4(X)}{\sigma(X)^4}$$

- Testování náhodných čísel
- Odhady parametrů rozložení

Konkrétní parametry konkrétního rozložení se projeví v jeho momentech. Z odhadu lze zpětně vyčíslit parametry.

Některá často používaná rozložení

- Diskrétní:
 - Poissonovo
 - Binomické
- Spojitá:
 - rovnoměrné (Uniform)
 - exponenciální (Exponential)
 - normální (Gaussovo)
 - Pearsonovo (χ^2)

Diskrétní rozložení

$$p_i = \frac{\lambda^i}{i!}e^{-\lambda}, \quad \lambda > 0, \quad i \in \{0, 1, 2, ...\}$$

$$E(x) = \lambda$$
, $D(x) = \lambda$, $\beta_1 = \frac{1}{\sqrt{\lambda}}$, $\beta_2 = \frac{1}{\lambda} + 3$

Příklady použití:

- Systémy hromadné obsluhy: počet příchodů zákazníků do obchodu za jednotku času. Souvisí s exponenciálním rozložením (časový interval mezi příchody – počet příchodů za jednotku času).
- Počet hovorů přes telefonní ústřednu za hodinu.
- Počet alfa částic, které vstoupí za daný časový interval do dané oblasti.
- Počet zmetků ve výrobě za 1 měsíc.

Rovnoměrné (Uniform) rozložení

Obvykle označujeme R(a, b).

$$F(x)=0$$
 pro $x \le a$, $\frac{x-a}{b-a}$ pro $a \le x \le b$, jinak 1 $f(x)=\frac{1}{b-a}$ pro $x \in \langle a,b \rangle$, jinak 0

V normované formě R(0,1) je základem pro generování dalších rozložení

Charakteristiky:

- Střední hodnota: $E(X) = \frac{a+b}{2}$
- Rozptyl: $D(X) = \frac{(b-a)^2}{12}$

Příklad: Rovnoměrné rozložení

$$f(x) = \frac{1}{A}e^{-\frac{1}{A}(x-x_0)} \text{ pro } x \ge x_0, \text{ jinak } 0$$

$$F(x) = \begin{cases} 1 - e^{-\frac{1}{A}(x - x_0)} & x \ge x_0 \\ 0 & x < x_0 \end{cases}$$

kde A a x_0 isou parametry.

Často se používá normované rozložení s $x_0 = 0$.

- Střední hodnota: $E(X) = x_0 + A$
- Rozptyl: $D(X) = A^2$

Poznámka:

V literature se často používá jako parametr $\lambda = \frac{1}{\Delta}$ ("rate").

Použití: rozložení dob obsluhy, časové intervaly mezi poruchami nebo mezi příchody požadavků.

Příklad: Exponenciální rozložení

Normální (Gaussovo) rozložení

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Parametry:

- Střední hodnota: μ
- Rozptyl: σ^2 (směrodatná odchylka: σ)

Pravidlo tří sigma:

$$P(X \in \langle \mu - 3\sigma, \mu + 3\sigma \rangle) \geq 0.99$$

Použití: Odpovídá jevům s vlivem většího počtu nezávislých faktorů.

Příklad: Normální rozložení

Pearsonovo rozložení χ^2

Založeno na normálním rozložení $\mu = 0, \sigma = 1$.

$$\chi^{2}(n) = \sum_{i=1}^{n} X_{i}^{2}, \quad X \text{ je z } N(0,1)$$

n - počet stupňů volnosti (nemělo by přesáhnout 50, protože pak výsledek konverguje k 1).

$$f(x) = (x)^{\frac{n}{2}-1} \exp(-\frac{x}{2}) 2^{-\frac{n}{2}} \frac{1}{\Gamma(\frac{n}{2})}$$

Charakteristiky: $E(\chi^2) = n$, $D(\chi^2) = 2n$

Použití: Testování statistických hypotéz.

Pearsonovo rozložení χ^2

Generování pseudonáhodných čísel

- základem je kvalitní generátor rovnoměrného rozložení
- transformací (rovnoměrného rozložení) získáme soubor čísel jiného rozložení

Problém:

Náhodná × Pseudonáhodná čísla

Generátory:

- Fyzikální zdroje náhodnosti: opravdu náhodné (nedeterministické), generují jen málo bitů za sekundu
- Algoritmické generátory: pseudonáhodné (deterministické), generují řádově miliardy bitů za sekundu

Kongruentní generátory

$$x_{n+1} = (ax_n + b) mod m$$

kde konstanty a, b a m (multiplikační, aditivní, modul) musí mít vhodné hodnoty

- generují rovnoměrné rozložení
- generují konečnou posloupnost perioda generátoru

Příklad: jednoduchý generátor v C (32bit)

```
static uint32_t ix = SEED; // počáteční hodnota, 32b
double Random(void) {
   ix = ix * 69069u + 1u; // mod 2^32 je implicitní
   return ix / ((double)UINT32_MAX + 1.0);
}
```

Úvod Modely ... Diskrétní CA Spojité Kombi. ...

Příklad: a = 69069, b = 1, $m = 2^{32}$

vod Modely ... Diskrétní CA Spojité Kombi. ... Nástroje Random MonteCarlo

Příklad: $a = 7, b = 1, m = 2^{32}$ (nevhodný)

- Mersenne twister (perioda 2¹⁹⁹³⁷ 1)
- Xorshift
- různé další varianty LCG (Linear Congruential Generator)
- bitové operace, carry LFSR (Linear Feedback Shift Register)

Požadavky na generátory:

- rovnoměrnost rozložení
- statistická nezávislost generované posloupnosti
- co neidelší perioda
- rvchlost

Metody:

- Inverzní transformace používá inverzní distribuční funkci cílového rozložení. Pro některá rozložení nelze použít (např. když distribuční funkci nelze vviádřit elementárními funkcemi).
- Vylučovací sérií pokusů hledáme číslo, které vyhovuje funkci hustoty cílového rozložení. Nevhodná pro neomezená rozložení.
- Kompoziční složitou funkci hustoty rozložíme na několik jednodušších (intervaly, na každý lze použít jinou metodu).
- Jiná, specificky vytvořená pro dané rozložení.

Metoda inverzní transformace

- 1 Inverze distribuční funkce: F^{-1}
- ② Generování x = Uniform(0, 1)
- Výsledek: $y = F^{-1}(x)$

Příklad: Exponenciální rozložení $F(x) = 1 - e^{-\frac{x-x_0}{A}}$ $y = x_0 - A * \ln(1-x)$ viz. obrázek pro $x_0 = 0$, A = 1

Vylučovací metoda

Náhodnou veličinu ξ s funkcí hustoty $f(x), x \in \langle x_1, x_2 \rangle, f(x) \in \langle 0, M \rangle$ (M je max. hodnota f(x)) generujeme takto:

- \bigcirc $x = Uniform(x_1, x_2)$
- v = Uniform(0, M)
- \bullet je-li y < f(x), pak x prohlásíme za hodnotu náhodné veličiny ε iinak goto 1

Efektivita generátoru souvisí s poměrem ploch $(x_1, x_2) \times (0, M)$ a

$$\int_{x}^{x_2} f(x) dx$$

Poznámka: Nehodí se na neomezená rozložení.

Vzorek z generátoru Exponential(0,1)

Vzorek z Normal(5,1)

Testování generátorů náhodných čísel

Máme soubor (pseudo)náhodných čísel a chceme:

- Potvrdit hypotézu jeho příslušnosti k danému rozložení.
- Nalézt jeho rozložení (případně nejvíce podobné).
- Nalézt takové parametry rozložení, aby vzorek odpovídal danému rozložení s těmito parametry.

Existuje mnoho statistických testů a nástrojů pro testování náhodných čísel (např. diehard, dieharder)

Poznámka: náročné, problém interpretace výsledků

Test dobré shody χ^2

Příklad testování generátoru náhodné veličiny:

- 10000). Vygenerujeme soubor n vzorků (např. n = 10000).
- 2 Vypočteme histogram souboru H (pro k-kategorií).
- Vypočteme teoretický (analytický) histogram rozložení h.

1 Výpočet:
$$\chi_{k-1}^2 = \sum_{j=1}^k \frac{(H_j - h_j)^2}{h_j}$$
,

- 5 Výsledek testu zhodnotíme na základě tabulky χ^2 :
 - zvolená hladina významnosti p (např. 0.05), x_p je kvantil rozložení pro počet stupňů volnosti k – 1
 - je-li $\chi^2_{k-1} > x_D$, pak generátor nevyhovuje

Přesnější popis viz literatura

- testy rovnoměrnosti rozložení (χ^2)
- rovnoměrnost dvojic/trojic
- rovnoměrnost maxima z n členů
- testv náhodnosti
- test na intervalv, test sběratele kuponů
- poker test (celočíselný, $0 < x_i < d$)
- Hammingův test

Poznámky:

- Testování transformovaných rozložení
- Programové vybavení (diehard, ...)

Metoda Monte Carlo

Experimentální numerická (simulační) metoda (metody):

- řeší danou úlohu experimentováním se stochastickým modelem:
- využívá vzájemného vztahu mezi hledanými veličinami a pravděpodobnostmi, se kterými nastanou určité jevy;
- vvžaduje generování (pseudo)náhodných čísel:
- není příliš přesná.

Postup:

- Vytvoříme stochastický model
- Provádíme náhodné experimenty
- Získanou pravděpodobnost nebo průměr použijeme pro výpočet výsledku

Aplikace metody Monte Carlo

- Historie: Buffonova úloha (π) , projekt "Manhattan"
- Výpočet určitých integrálů
 - molekulární simulace (3N-rozměrný integrál)
 - kontrola složení např. salámu
 - různé varianty (Metropolis, Quasi-MC)
- Řešení diferenciálních rovnic
- Finance
- Optimalizační metody (TSP, ...)

Souvislosti:

- Simulace el. obvodů citlivost na tolerance součástek
- Simulované žíhání optimalizační metoda

Přesnost metody Monte Carlo

Přesnost metody není velká — platí:

$$err = \frac{1}{\sqrt{N}}$$

kde N je počet provedených experimentů.

Příklad: Experiment — závislost chyby na počtu pokusů

Příklad1 — výpočet jednoduchého určitého integrálu

$$\int_{0}^{\pi} \sin(x) dx$$

- Generujeme N náhodných bodů (x_i, y_i) (rovnoměrně v rozsahu souřadnic: $rozsah_x = \langle 0, \pi \rangle$, $rozsah_y = \langle 0, 1 \rangle$)
- 2 Vypočteme pravděpodobnost P jevu $v_i < sin(x_i)$

Výsledek je přibližně roven $|rozsah_x| * |rozsah_y| * P$:

$$\int_{0}^{\pi} \sin(x) dx \approx \pi P$$

Příklad1 — efektivnější metoda

$$\int_{0}^{\pi} \sin(x) dx$$

Rychlejší a korektnější postup:

- **1** Generujeme *N* náhodných bodů $x_i \in (0, \pi)$
- 2 Vypočteme průměr $E = \frac{1}{N} \sum_{i=1}^{N} sin(x_i)$
- Výsledek: $\int_{0}^{\pi} \sin(x) dx \approx \pi E$

Lze dokázat, že pro
$$N \to \infty$$
 platí: $\int_{0}^{\pi} \sin(x) dx = \pi E$

Nemusíme znát obor hodnot funkce.

Výpočet objemu koule o poloměru r :

- Generujeme N náhodných bodů (x_i, y_i, z_i) . Pro ziednodušení použijeme pro všechny osv rozsah (0, r), který odpovídá ½ koule.
- Vypočteme pravděpodobnost *P* jevu $x_i^2 + y_i^2 + z_i^2 < r^2$
- Výsledek: obiem ≈ 8Pr³

Poznámka:

Metoda Monte Carlo je výhodná především pro vícerozměrné integrály, kdy běžné metody nejsou efektivní. Uvedené jednoduché příklady proto považujte pouze za ilustrační.

Příklad3 — Dirichletova úloha — princip

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

+ okrajové podmínky na hranici Γ : u(Q) = f(Q), $Q \in \Gamma$

Řešení:

- volba čtvercové sítě.
- provádíme náhodné procházky z výchozího bodu.
- střední hodnota koncových bodů udává výslednou hodnotu ve výchozím bodu.

- Velmi používaná metoda v případech, kdy běžné numerické metody jsou nepraktické/nepoužitelné (N-rozměrné integrály pro velké N).
- Jednoduchá implementace.
- Náročnost na kvalitu generátoru pseudonáhodných čísel.
- Relativně malá přesnost.
- Existují různé další varianty (Metropolis, Quasi-MC, ...).

Agenda:

- Popis diskrétních systémů
- Systémy hromadné obsluhy (Queuing Systems)
 - Aktivní entity: procesy, události
 - Pasivní entity: fronty, zařízení, sklady,
- Příklady: Petriho sítě
- Implementace: Algoritmus řízení simulace, kalendář
- "next-event"simulace
- Nástroje pro sběr statistik
- Základní popis SIMLIB/C++
- Příklady: SIMLIB/C++

Formy popisu diskrétních systémů

- Program v (simulačním) programovacím jazyce
- Petriho sítě (C. A. Petri, 1962, existují různé varianty)
- DEVS (Discrete Event System Specification)
- Automatv. sítě automatů
- Procesní algebry (CCS, CSP, ...)
- π-calculus
- CHAM, PRAM

Procesy

V diskrétním modelování používáme pojem proces:

- Process je posloupnost událostí
- Paralelní procesy současně prováděné procesy
- Kvaziparalelismus provádění "paralelních" procesů na jednoprocesorovém počítači

V modelovaných systémech často existuje mnoho paralelně probíhajících a vzájemně komunikujících procesů.

Poznámky:

- nepreemptivní implementace
- zapouzdření, objekty, agenti

Paralelismus

- Popis jednotlivých procesů sekvencí kroků (program).
- Popis komunikace procesů zprávy (synchronní, asynchronní).
- Synchronizace při používání sdílených prostředků.

Petriho sítě

Definice P/T Petriho sítě:

$$\Sigma = (P, T, F, W, C, M_0)$$

kde:

- P ie množina míst (stavy)
- T je množina přechodů, $P \cap T = \emptyset$
- Incidenční relace $F \subseteq (P \times T) \cup (T \times P)$
- Váhová funkce $W: F \rightarrow \{1, 2, ...\}$
- Kapacity míst C : P → N
- Počáteční značení M₀ : P → N (M se nazývá značení Petriho sítě)

Úvod Modely ... Diskrétní CA Spojité Kombi. ... Petriho sítě SHO SIMLIB Jazyky

Graf Petriho sítě

Obvykle zadáváme Petriho síť formou grafu:

- Místa kružnice
- Přechody obdélníky
- Incidenční relace šipky (orientované hrany)
- Váhová funkce ohodnocení hran

Příklad:

Chování Petriho sítě

Proveditelnost přechodu v Petriho síti:

Přechod je proveditelný při značení *M*, jestliže:

- ve vstupních místech čeká dostatek procesů
- a současně výstupní místa mají dostatečně volnou kapacitu.

Příklad:

Petriho sítě v modelování

Petriho sítě mohou modelovat:

- paralelismus procesů
- komunikaci a synchronizaci procesů
- nedeterminismus

Pro modelování diskrétních systémů zavádíme do klasických P/T Petriho sítí několik rozšíření: priority, pravděpodobnosti a doby přechodů.

Další typy Petriho sítí

- Hierarchické do sebe vnořené sítě
- Barvené značky mají datový typ ("barvu")
- Objektově orientované OOPN, PNtalk
- Stochastické P/T síť s prioritami, pravděpodobnostmi a časováním přechodů.

Příklad: čtenáři a písaři

Prioritní přechody

- je-li více přechodů proveditelných z jednoho značení, můžeme jim dát priority
- $p_t \in \{0, 1, 2, 3, 4, ...\}$
- vyšší číslo ⇒ vyšší priorita
- implicitně je priorita $p_t = 0$

Příklad:

Poznámka: Inhibiční hrany

```
while (N > 0) {
    akce1();
   N = N - 1;
akce2();
```


Pravděpodobnost provedení přechodu

Pravidla používání rozšířených přechodů

- Přechod má pouze JEDEN parametr (priorita, pravděpodobnost, časování).
- Pozor: tento parametr NENÍ parametrem HRANY.

Příklad – CHYBNĚ

Nejednoznačnost – přechod se provede s pravděpodobností 70%, ale prioritně = NESMYSL!

Časované Petriho sítě

Přidání modelového času:

Časovaný přechod má parametr – dobu provádění:

- Konstantní čas čekání
- Náhodně generovaná doba čekání

Úvod Modely ... Diskrétní CA Spojité Kombi. ... Petriho sítě SHO SIMLIB Jazyky

Sémantika časovaného přechodu

- Pokud je přechod je v čase t proveditelný, spustí se odpočet času
- Po celou dobu odpočítávání se nemění stav značek
- Na konci doby se provede přemístění značek

Sémantika časovaného přechodu 2

Běžný časovaný přechod neomezuje počet současně čekajících.

Někdy ale zavádíme kapacitu časovaného přechodu:

Kapacita přechodu udává kolik procesů může na přechodu čekat současně:

- jeden (implicitně), vzniká fronta
- více (nutno specifikovat poznámkou u přechodu)

Poznámka:

Poznámka k sémantice časového přechodu: lze řešit i dočasným odstraněním značek na dobu odpočítávání času, ale to komplikuje další případy, jako je například přerušení čekání.

Úvod Modely ... Diskrétní CA Spojité Kombi. ... Petriho sítě SHO SIMLIB Jazyky

Přechody ve Stochastické PN (SPN)

V SPN platí:

- Máme dva druhy přechodů: časované a okamžité
- Jediným povoleným parametrem časovaného přechodu je údaj o čase (náhodný nebo konstantní)
- Parametry okamžitého přechodu: priorita, pravděpodobnost
- Okamžitý přechod má vždy vyšší prioritu než časovaný

Úvod Modely ... Diskrétní CA Spojité Kombi. ... Petriho sítě SHO SIMLIB Jazyky

Systémy hromadné obsluhy (SHO)

SHO (*Queueing Systems*) jsou systémy obsahující zařízení (s frontami), která poskytují obsluhu transakcím.

Typický SHO obsahuje:

- transakce (=procesy) a popis jejich příchodů
- obslužné linky (více typů) a popis obsluhy
- fronty různých typů ve kterých transakce čekají

Co sledujeme při simulaci:

- informace o čase stráveném transakcí v systému
- doby čekání ve frontách
- vytížení obslužných linek

Cíl: odhalit různá zdržení, optimalizovat výkon, ...

Vstupní tok požadavků

Obvykle jde o stochastický proces příchodů do systému

- Při modelování příchodů zadáváme:
 - Střední dobu mezi příchody (obvykle používáme exponenciální rozložení)
 - Počet příchodů za jednotku času (obvykle Poissonovo rozložení) Pojem: Intenzita příchodů požadavků

Fronty čekajících požadavků

Vytvoří se vždy, když požadavek chce být obsloužen již obsazeným zařízením. Pro fronty je charakteristické:

- řazení požadavků ve frontě (např. FIFO)
- způsob výběru požadavků z fronty
- neivětší možná délka frontv

Frontové řády: FIFO, LIFO, SIRO (Service in Random Order)

Nulová fronta: požadavek nemůže vstoupit do fronty, ide o systém se ztrátami

Fronta konečná: omezení kapacity fronty

Fronta s netrpělivými požadavky : netrpělivý požadavek opouští systém, překročí-li doba čekání určitou mez (time-out)

Prioritní fronty, priorita obsluhy

- Přicházející požadavky nejsou rovnocenné požadavek na obsluhu může mít zvláštní prioritu.
- Prioritních úrovní může být více.
- U jedné obslužné linky lze vytvářet i několik front s různými prioritami.
- Vstupem požadavku s vyšší prioritou nastane jedna ze čtyř možností pro právě probíhající obsluhu požadavku s nižší prioritou - viz dále.

- Započatá obsluha se normálně ukončí (slabá priorita).
- Obsluha se přeruší a začne obsluha požadavku s vyšší prioritou obsluhy (silná priorita). Požadavek, jehož obsluha byla přerušena:
 - odchází ze systému neobsloužen
 - nebo se vrací znovu do fronty a když je později znovu obsluhován, tak:
 - obsluha pokračuje od přerušeného místa,
 - nebo začíná znovu od začátku.
- Jsou-li všechny linky obsazeny a u každé je fronta, požadavek se sám rozhodne, do které fronty se zařadí.
- Vytvářejí-li požadavky jednu společnou frontu, požadavek vstupuje do té obslužné linky, která se nejdříve uvolní.

Vznikne spojením několika obslužných linek.

Otevřená obslužná sít – výměna požadavků mezi sítí a okolím.

Uzavřená obslužná sít – nedochází k výměně požadavků mezi sítí a okolím.

Smíšená obslužná síť – pro některé typy požadavků je síť otevřená. pro iiné uzavřená.

Obslužná síť 2

Statické vlastnosti sítě jsou definovány:

- počtem a charakteristikou obslužných linek,
- topologií obslužné sítě.

Dynamické vlastnosti obslužné sítě jsou definovány:

- charakteristikou procesu příchodu požadavků
- charakteristikou procesu obsluhy požadavků
- charakteristikou procesu přechodu požadavků mezi obslužnými linkami
- strategií obsluhy požadavků v obslužných linkách sítě.

Kendallova klasifikace SHO

Standard stručného a přehledného vyjádření typu SHO (zavedl ji D. G. Kendall) – používá tři hlavní hlediska:

- X typ stochastického procesu popisujícího příchod požadavků k obsluze
- Y zákon rozložení délky obsluhy
- c počet dostupných obslužných linek

Specifikace má tvar X/Y/c, kde:

- X, Y ... velká písmena M, D, G, E_k, K_n, GI viz dále
- c ... přirozené číslo, včetně ∞

Příklad:

systém M/M/1

Kendallova klasifikace SHO

Symbol	X	Y
М	Poissonův proces příchodů	exponenciální rozložení
	tj. exponenciální rozložení	doby obsluhy
	vzájemně nezávislých intervalů	
	mezi příchody	
E_k	Erlangovo rozložení intervalů	Erlangovo rozložení doby
	mezi příchody s parametry λ a k	obsluhy s parametry λ a k
K _n	rozložení χ^2 intervalů mezi	rozložení χ^2 doby obsluhy
	příchody, <i>n</i> stupňů volnosti	
D	pravidelné deterministické	konstantní doba obsluhy
	příchody	
G	žádné předpoklady o procesu	jakékoliv rozložení doby
	příchodu	obsluhy
GI	rekurentní proces příchodů	

Při modelování SHO popisujeme:

- Procesy (transakce) v systému (příchod procesu do systému, jeho činnost, odchod)
- Stav obslužných linek a front u zařízení
- Průběh obsluhy transakcí v zařízeních

Poznámka

Aproximace trvání doby obsluhy exponenciálním rozložením pravděpodobnosti přináší podstatné zjednodušení. Předpokládáme, že pravděpodobnost ukončení obsluhy v průběhu krátkého časového intervalu je konstantní a nezávisí na tom, jak dlouho již obsluha probíhala.

Typy obslužných linek

Podle kapacity rozlišujeme:

```
kapacita = 1 Zařízení (Facility)
```

```
kapacita > 1 Sklad (Store)
```

Modelujeme-li více zařízení stejného typu, pak:

- každé zařízení má vlastní frontu → pole zařízení
- k zařízením vede jediná fronta → sklad nebo pole zařízení se sdílenou frontou

Příklad: Samoobsluha

- vozíky sklad x vozíků (jedna fronta)
- dva prodavači např. dvě zařízení se sdílenou frontou
- pět pokladen pět samostatných zařízení (ke každé je zvláštní fronta)

Příchod a odchod transakce

Generování příchodu transakcí (procesů) do systému:

Transakce opouští systém:

Obsazení zařízení

Obslužná linka s kapacitou 1 (Zařízení, Facility) je volná nebo obsazená.

Obslužná linka s kapacitou N > 1 (Sklad, Store) má obsazeno 0 až N míst.

Příklad: Obsazení zařízení (Seize) a skladu (Enter)

Neblokující obsazení zařízení

Transakce přistupuje k zařízení, ale nechce čekat ve frontě:

Příklad: Přehled základních operací

Obsazení linky, vykonání obsluhy a uvolnění linky

Náhodný výběr zařízení

Transakce náhodně vybírá jedno ze zařízení

Výběr s prioritou zařízení

Transakce přistupuje prioritně k jednomu ze zařízení

Příklad I – Zadání

Do opravářské dílny přicházejí zákazníci v intervalech daných exponenciálním rozložením pravděpodobnosti se střední hodnotou 20 minut

V dílně isou dva opraváři: jeden zpracovává normální zakázky a druhý náročné zakázky. Každá třetí zakázka je náročná. Vyřízení normální zakázky trvá 15 minut s exp. rozložením pravděpodobnosti, vyřízení náročné zakázky zabere 45 minut exp. Zákazník čeká na vyřízení své zakázky a pak systém opouští.

Modeluite systém pomocí stochastické Petriho sítě.

Příklad I – pokračování

Příklad I – pokračování

Příklad I – pokračování

Příklad I – pokračování

Příklad I – pokračování

Příklad I – pokračování

Příklad I – pokračování

Model zadaného systému ve formě stochastické Petriho sítě:

Příklad I – model v SIMLIB

```
Facility narocne("Narocne"):
Facility normalni("Normalni");
class Zakaznik : public Process {
  void Behavior() {
     if (Uniform(0.100) \le 33) {
       Seize(narocne): // obsazení zařízení
       Wait(Exponential(45));
       Release(narocne): // uvolnění
     } else {
```

```
class Generator : public Event {
   void Behavior() {
      (new Zakaznik)->Activate();
      Activate(Time + Exponential(20));
};
int main()
                   // popis experimentu
   Init(0, 1000): // doba simulace
   (new Generator)->Activate();
   Run();
                   // start simulace
```

Přehled: diskrétní část SIMLIB

Prostředky pro diskrétní modelování:

Process – báze pro modelování procesů

Event – báze pro modely událostí

Facility – obslužná linka – výlučný přístup

Store – obslužná linka s kapacitou

Queue – fronta

Statistiky – sada tříd pro sběr a uchování statistik

Poznámka: Podrobnosti viz WWW dokumentace

```
#include "simlib.h"
<deklarace zařízení>
<deklarace tříd - procesy, události>
<popis simulačního experimentu>
```

Simulační model v SIMLIB/C++ je program v jazyce C++. Všechny konstrukce/knihovny jazyka C++ jsou tedy použitelné.

Popis simulačního experimentu

```
int main() {
  <příkazy1> // základní inicializace
              // například SetOutput("soubor");
  Init(<počáteční čas>, <koncový čas>);
               // inicializace simulátoru a m. času
  <příkazy2> // inicializace modelu
               // například vytvoření objektů
  Run(): // bĕh simulace
  <příkazy3> // zpracování výsledků
               // například tisk statistik
Sekvenci Init(t0,t1); ...; Run(); ...; Ize libovolně opakovat.
```

Modelový čas je reprezentován proměnnou:

double Time;

Do proměnné Time nelze zapisovat přiřazovacím příkazem. Zápis:

Time = 10:

vyvolá chybu při překladu.

Posun času řídí výhradně jádro simulátoru.

Init(t0,t1); nastaví počáteční čas na t0.

Generátory pseudonáhodných čísel

```
double Random();
-- rovnoměrné rozložení, R(0,1)
double Uniform(double L. double H);
-- rovnoměrné rozložení, R(L,H)
double Exponential (double E);
-- exponenciální rozložení se středem E
double Normal(double M. double S):
-- normální rozložení se středem M a rozptylem S
```

. . .

Použití objektů

OOP – třídy a instance (objekty)

- OOP vzniklo pro účelv modelování a simulace (Simula 67)
- Abstrakce, hierarchie, zapouzdření, modularita; paralelnost, typování, perzistence a souvislosti (více v přednášce o simulačních jazvcích)

Popis události

Událost je jednorázová (nepřerušitelná) akce provedená v určitém modelovém čase. V SIMLIB je vždy odvozena od abstraktní třídy Event (musíme definovat metodu Behavior()).

Často isou nutné periodické události — událost naplánuje sama sebe:

```
class Udalost : public Event {
   void Behavior() {
      // ... příkazy události
      Activate(Time + e): // periodicky aktivovat
}:
// Plánování události:
(new Udalost) -> Activate(); // plánuje na čas Time
(new Udalost)->Activate(t); // čas t (pozor na t<Time)</pre>
```

Příchod a odchod transakce

```
Generování transakcí (procesů):
                           class Gener : public Event {
                              void Behavior() {
                                  (new Proc)->Activate();
                                  Activate(Time+Exponential(2));
       Exp(2)
                           };
                           int main() {
                             Init(t0, t1);
            Exp(2)
                             (new Gener)->Activate();
    Transakce opouští systém:
                           class Proc : public Process {
                              void Behavior() {
                              } // implicitně opouští systém
IMS — Modelování a simulace
```

Procesy (transakce) jsou odvozeny z abstraktní třídy Process.

```
class Transakce : public Process {
  public:
    Transakce( parametry ) { // konstruktor
       // nepovinný popis inicializace procesu
    void Behavior() {
       // popis chování procesu
};
```

Po aktivaci procesu se volá metoda Behavior (chování). Provádění metody je přerušeno při čekání:

- ve frontě u zařízení (v rámci Seize, Enter)
- při explicitním Wait (dt); (abstrakce nějaké činnosti trvající dt)

Plánování procesu

Proces se provádí jako posloupnost událostí – např.:

```
void Behavior() {
  Wait(3):
  ... // pokračování
```

Proces čeká 3 časové jednotky.

Při simulaci to znamená, že se naplánuje další jeho pokračování na čas Time + 3 (příkazem Activate (Time+3)).

Aktivační záznam této události je uložen do kalendáře a proces je přerušen (a spustí se první plánovaná akce v kalendáři).

Poznámka: Passivate() — pozastaví na neurčito.

Kalendář událostí a algoritmus řízení simulace

Kalendář je uspořádaná datová struktura uchovávající aktivační záznamy budoucích událostí.

- Každá naplánovaná budoucí událost ("next event") má v kalendáři záznam [(acttimei, priorityi, eventi), ...]
- Kalendář umožňuje výběr prvního záznamu s nejmenším aktivačním časem a vkládání/rušení aktivačních záznamů.

Algoritmus řízení diskrétní simulace typu "next-event"

```
Inicializace času, kalendáře, modelu, ...
while (Kalendář je neprázdný) {
   Vyjmi první záznam z kalendáře
   if ( Aktivační čas události > T_END )
       Konec simulace
   Nastav čas na aktivační čas události
   Proved' popis chování události
```

Kvaziparalelismus a diskrétní simulace

Při simulaci v jednom okamžiku běží jen jeden proces (Process::Behavior()). Ostatní jsou pozastaveny — čekají ve frontách nebo jsou registrovány v kalendáři (Pending Event Set. PES).

Proto nemůže být aktivní proces nedobrovolně přerušen a v době svého běhu má teoreticky neomezený přístup ke všem zdrojům (proměnným programu).

Provádění procesu je přerušeno až na jeho vlastní žádost (viz tzv. kooperativní multitasking).

Poznámka:

Implementace přepínání procesů v SIMLIB/C++.

```
Vvtvoření instance třídy:
```

```
Transakce *t = new Transakce:
```

Plánování (re)aktivace procesu do kalendáře:

```
t->Activate(tm):
```

Aktivuje se v čase tm (implicitně je to tm = Time, tj. okamžitě).

Zrušení procesu i jeho registrace ve všech strukturách (fronty. kalendář):

```
t->Cancel(): // nebo delete t:
```

Suspendování běžícího procesu:

```
Passivate();
```

Pro události lze použít pouze Activate a Cancel.

Příklad: Timeout – přerušení čekání ve frontě

```
class Timeout : public Event {
    Process *Id;
  public:
    Timeout(Process *p, double dt): Id(p) {
        Activate(Time+dt); // kdy bude
    void Behavior() {
      Id->Cancel(); // zrušení procesu ...
      Cancel(): // a zrušení této události
};
class MProc : public Process {
    void Behavior() {
      Timeout *t = new Timeout(this, 10);
      Seize(F); // možné čekání ve frontě
      delete t; // jen když nebyl timeout
```

Proces je dočasně pozastaven příkazem Wait (expr)

Do kalendáře je naplánovaná událost reaktivace procesu na čas Time + expr.

Proces přistupuje k zařízením typu Facility a Store:

```
Facility F("F");
Store S("S");
 Seize(F); // ... + další operace
  Wait(5): // ...
 Release(F):
 Enter(S, X); // ...
 Wait(50); // ...
  Leave(S, X);
```

Priorita procesu

Proces má atribut Priority, který ovlivňuje jeho řazení do front.

```
class MProc : public Process {
  // ...
public:
  MProc() : Process( PRIORITA1 ) { }:
  void Behavior() {
    Priority = 3; // změna priority
    Seize(F):
    Priority = 0; // = implicitní priorita
};
```

Poznámka:

Neplést s prioritou obsluhy při obsazování zařízení!

Fronty – třída Queue

```
Queue q;
 . . .
  void Behavior() { // popis chování procesu
    q.Insert(this); // vloží se do fronty
    Passivate(); // suspenduje se
    . . .
Jiný proces (nebo událost) může z fronty vybírat:
  . . .
  if (!q.Empty()) {
    Process *tmp = q.GetFirst();
    tmp->Activate(); // aktivace
  }
```

Zařízení (Facility)

Zařízení je obsaditelné procesem (výlučný přístup).

Zařízení obsahuje dvě fronty požadavků:

- (vnější) fronta čekajících požadavků
- (vnitřní) fronta přerušených požadavků

```
Seize(Proces, PrioritaObsluhy = 0);
```

Je třeba rozlišovat dva typy priority v SIMLIB:

priorita procesu (řazení do front, Priority) priorita obsluhy v zařízení (2. parametr metody Seize)

Zařízení – inicializace

```
Facility Fac2("Jmeno");
Facility Fac4("Jmeno", Queue *q);
Facility Fac5[10];
```

- Jméno se tiskne ve statistikách
- Možnost vnucení jiné fronty (např. společné s jiným řízením)
- Pole nemůže mít parametry, ale je možné kdykoli (a nejen u polí) nastavit/změnit:
 - jméno Fac5[i].SetName("Jmeno")
 - frontu Fac5[i].SetQueue(fronta)

Příklad – obsazení zařízení

Obsazení linky, vykonání obsluhy a uvolnění linky

```
Facility F("Fac");
                        class P : Process {
Exponential(10)
                           void Behavior() {
                              Seize(F);
Exponential(10)
            Release
                              Wait(Exponential(10));
                              Release(F):
Exponential(10)
                              . . .
Exponential(10)
```

Zařízení – priorita obsluhy

Používá se pro modelování poruch.

Jde o jiný typ priority, než je priorita procesu.

Zařízení má druhou, vnitřní frontu přerušených procesů.

```
Seize(Fac):
```

V obsluze je proces A se standardní prioritou obsluhy (0).

```
Seize(Fac. 1):
```

Jiný proces B žádá o obsluhu s vyšší prioritou obsluhy. Proces A je odstaven do vnitřní fronty a do obsluhy se dostává B.

Při uvolnění zařízení procesem B se vrátí k rozpracované obsluze proces z vnitřní fronty s nejvyšší prioritou obsluhy a dokončí se jeho obsluha.

Sklad - Store

Sklad umožňuje simultánní přístup ke zdroji s určitou kapacitou (parkoviště, paměť počítače, místa v autobuse).

```
Store Voziky("Voziky", 50);
```

Proces přistupuje ke skladu s požadavkem na obsazení kapacity c. Je-li dostupná kapacita volná, přidělí se (zmenší se množství dostupné kapacity). Není-li, proces čeká ve frontě.

(Sklad nemá prioritu obsluhy.)

Proces typicky provádí operace:

```
Enter(Voziky, 1);
Leave(Voziky, 1);
```

Obdržená kapacita nesouvisí s procesem – vrátit ji může libovolný jiný proces. Při vracení se uvolní kapacita a prochází se fronta čekajících. První čekající s uspokojitelným požadavkem je obsloužen (nemusí být první ve frontě).

Zařízení – neblokující obsazení linky

Transakce přistupuje k zařízení, ale nechce čekat ve frontě

```
Facility
                         Facility F("Fac");
          Seize
                          class Proc : Process {
                             void Behavior() {
transaction
                                 if (!F.Busy())
           p=1
                                     Seize(F);
                                 else
```

Náhodný výběr z N zařízení

Transakce přistupuje (se staví do fronty) k jednomu ze tří zařízení (náhodně vybírá)

Náhodný výběr z N zařízení

Nedeterminismus je třeba modelovat rovnoměrným rozložením.

```
const int N = 3;
Facility F[N];
class Proc : Process {
    void Behavior() {
      int idx = int( N * Random() ):
      Seize(F[idx]):
      Release(F[idx]):
      . . .
}:
```

Výběr s prioritou

Transakce přistupuje (staví se do fronty) k jednomu ze tří zařízení (vybírá podle priorit):

```
const int N = 3;
Facility F[N];
. . .
    int idx:
    for(idx=0: idx < N-1: idx++)
        if(!F[idx].Busy())
             break; // první neobsazené
    Seize(F[idx]):
    . . .
```

Výběr s prioritou - PN

Transakce přistupuje (staví se do fronty) k zařízení s nejkratší frontou.

```
const int N = 30;
Facility F[N]:
    int idx=0:
    for (int a=0: a < N: a++)
      if (F[a].QueueLen() < F[idx].QueueLen())</pre>
           idx=a:
    Seize(F[idx]):
    . . .
```

Příklad – Samoobsluha

Do samoobsluhy přicházejí zákazníci v intervalech daných exponenciálním rozložením se středem 8 minut.

Každý zákazník si nejprve opatří vozík. Vozíky se koncentrují na seřadišti a je jich celkem 50. Zákazník vstoupí do prodejny a 30% jde okamžitě k pultíku s lahůdkami, kde obsluhují dvě prodavačky. Obsloužení zákazníka zde trvá 2 minuty (exponenciálně) a pak zákazník pokračuje běžným nákupem. Běžný nákup trvá 10-15 minut rovnoměrně. Nakonec přistupuje k jedné z pěti pokladen. Vybírá si pokladnu podle nejkratší fronty. Doba obsluhy u pokladny se řídí exponenciálním rozložením se středem 3 minuty. Při odchodu ze systému zákazník vrací vozík.

Zadání: analýza problému, model ve formě SPN, model ve formě SIMLIB

Příklad – Samoobsluha, analýza

Konceptuální model:

- příchody řídí se exponenciálním rozložením, střední hodnota je 8 minut
- proces provádí: (1) zabrat vozík, (2) 30% k lahůdkám, (3) nákup, (4) placení, (5) vrácení vozíků
- seřadiště vozíků 50 kusů, jedna fronta, sklad
- lahůdky jedna fronta ke dvěma prodavačkám, sklad
- pokladny 5 pokladen, ke každé stojí zvláštní fronta

PN – první část

PN - druhá část

IMS — Modelování a simulace 194/332

Modelování SHO: Statistiky

Statistiky sbíráme pro zjištění:

- vytížení zařízení (procenta doby)
- délky front, doby čekání ve frontách
- využití kapacity skladů
- celková doba, kterou transakce existuje v systému (a poměr doby užitečné činnosti/čekání ve frontě)

Statistiky:

- minimum
- maximum
- střední hodnota
- rozptyl a směrodatná odchylka

Statistiky v SIMLIB/C++

Třídy:

- Stat
- TStat
- Histogram

Společné operace:

- s.Clear() inicializace
- s.Output() tisk
- s(x) záznam hodnoty x

Třída Stat

Objekty třídy Stat uchovávají tyto hodnoty:

- součet vstupních hodnot s_x
- součet čtverců vstupních hodnot s_x^2
- minimální vstupní hodnotu
- maximální vstupní hodnotu
- počet zaznamenaných hodnot n

Metoda Output tiskne některé tyto hodnoty a navíc průměrnou hodnotu a směrodatnou odchvlku:

$$\sqrt{\frac{1}{n-1}(s_x^2-n\mu^2)}$$

Třída Stat – příklad

```
int main() {
    Stat p:
    for (int a=0; a<1000; a++)
        p(Uniform(0, 100));
   p.Output();
 STAT
  Min = 0.403416
                                  Max = 99.9598
  Number of records = 1000
  Average value = 49.8424
  Standard deviation = 28.8042
```

Třída TStat

Objekty třídy TStat sledují časový průběh vstupní veličiny. Používají se k výpočtu průměrné hodnoty vstupu (např. délky fronty) za určitý časový interval.

Objekty třídy TStat uchovávají tyto hodnoty:

- sumu součinu vstupní hodnoty a časového intervalu
- sumu součinu čtverce vstupní hodnoty a časového intervalu
- minimální vstupní hodnotu
- maximální vstupní hodnotu
- počet vstupních hodnot
- počáteční čas

Metoda Output tiskne kromě vybraných uložených hodnot také průměrnou hodnotu vstupu za čas od inicializace statistiky (Clear) do okamžiku volání metody Output.

Histogram - ukázka

```
//Histogram("Jméno pro tisk", OdHodnoty, Krok, PocetTrid);
Histogram expo("Expo", 0, 1, 15);
 for (int a=0; a<1000; a++)
    expo(Exponential(3));
 HISTOGRAM Expo
  -----
 STATISTIC Expo
  Min = 0.00037629
                             Max = 24.8161
  Number of records = 10000
  Average value = 2.94477
  Standard deviation = 2.91307
```

Ukázka histogramu

+		. + .		-+-		-+-		. + .		-+
i	from	İ	to	İ	n	i	rel	İ	sum	İ
+										-+
-	0.000		1.000	-	2856	1	0.285600	1	0.285600	١
- 1	1.000		2.000	-	2042	1	0.204200		0.489800	١
- 1	2.000		3.000	-	1480	1	0.148000		0.637800	1
- 1	3.000	1	4.000	-	1022	1	0.102200	1	0.740000	١
- 1	4.000	1	5.000	-	771	1	0.077100	1	0.817100	١
- 1	5.000		6.000	-	527	1	0.052700	1	0.869800	١
- 1	6.000		7.000	-	386	1	0.038600		0.908400	١
-	7.000	1	8.000	1	273	1	0.027300	1	0.935700	١
- 1	8.000		9.000	1	184	1	0.018400		0.954100	1
- 1	9.000		10.000		129	1	0.012900		0.967000	1
- 1	10.000		11.000		105	1	0.010500		0.977500	1
- 1	11.000	1	12.000	-	55	1	0.005500	1	0.983000	١
- 1	12.000	1	13.000	-	47	1	0.004700	1	0.987700	1
-	13.000	1	14.000	-	47	1	0.004700	1	0.992400	١
-	14.000	1	15.000	-	17	1	0.001700	1	0.994100	1

```
#include "simlib.h"
const int POC_POKLADEN = 5;
// zařízení:
Facility Pokladny[POC_POKLADEN];
       Lahudky("Oddeleni lahudek", 2);
Store
Store Vozikv("Seradiste voziku", 50):
Histogram celk("Celkova doba v systemu", 0, 5, 20);
```

Příklad: Samoobsluha – pokračování

```
class Zakaznik : public Process {
  void Behavior() {
    double prichod = Time; // záznam času příchodu
    Enter(Vozikv, 1);
    if ( Random() \le 0.30 ) {
       Enter(Lahudky, 1);
       Wait(Exponential(2));
       Leave(Lahudky, 1);
    Wait(Uniform(10, 15)); // nákup
    // výběr podle délky fronty:
    int i = 0:
    for (int a=1; a < POC_POKLADEN; a++)</pre>
       if (Pokladny[a].QueueLen() < Pokladny[i].QueueLen())</pre>
           i=a:
    // pokračování...
```

Příklad: Samoobsluha – pokračování

```
// ...pokračování
    Seize(Pokladny[i]);
                                 // u pokladny
    Wait( Exponential(3) );
    Release(Pokladny[i]);
    Leave(Voziky, 1);
    celk(Time-prichod);
                                 // záznam času
  } // Behavior
}: // Zakaznik
class Prichody : public Event {
  void Behavior() {
    (new Zakaznik)->Activate():
    Activate( Time + Exponential(8) );
```

Příklad: Samoobsluha – dokončení

```
int main() // popis experimentu
{
   SetOutput("Samoo.dat");
   Init(0, 1000);
   (new Prichody)->Activate(); // start generátoru
   Run(): // bĕh simulace
   // tisk statistik:
   celk.Output();
   Lahudky.Output():
   Voziky.Output();
   for (int a=0: a < POC POKLADEN: a++)
       Pokladny[a].Output();
```

Diskrétní simulační jazyky

Základní přehled:

- Simula67 procesy
- Simscript popis událostmi, ...
- SIMAN/Cinema, Arena kombinované, bloky
- GPSS procesy, bloky

Příklady: viz WWW

Poznámky:

SIMLIB/C++, SimPack, SimPy, ... ns-3. OMNeT++

Shrnutí

- použití diskrétní simulace
- popis modelu (události, procesy)
- generování pseudonáhodných čísel
- systémy hromadné obsluhy
- diskrétní simulační jazyky
- implementace: fronty, kalendář událostí algoritmus řízení simulace "next-event"

Poznámky:

Paralelní a distribuovaná simulace Speciální typy diskrétní simulace (číslicové systémy, ...)

Celulární automaty (CA) - úvod

- Historie: J. von Neumann, J. Conway, S. Wolfram, ...
- Princip CA
- Varianty CA: diskrétní, spojité, stochastické
- Použití:
 - Simulace prostorových dynamických sytémů v oblastech: doprava, šíření epidemie/požáru, chemie, růst krystalů, koroze, šíření vln/trhlin, sypání písku/sněhu, proudění tekutin, ...
 - Modely umělého života, evoluce
 - Grafika: generování textur, fraktálů
 - Výpočty: některé CA jsou Turing-complete
- Souvislosti: teorie chaosu, složitost, fraktály, přírodní CA, kryptografie, ...

CA je typicky diskrétní systém:

- Buňka (Cell): základní element, může být v jednom z konečného počtu stavů (například {0, 1}).
- Pole buněk (Lattice): n-rozměrné, obvykle 1D nebo 2D,
 - rovnoměrné rozdělení prostoru,
 - může být konečné nebo nekonečné.
- Okolí (Neighbourhood): Různé typy liší se počtem a pozicí okolních buněk se kterými se pracuje.
- Pravidla (Rules): Funkce stavu buňky a jejího okolí definující nový stav buňky v čase:

$$s(t+1) = f(s(t), N_s(t))$$

Typy okolí

Závisí na rozměru prostoru a tvaru buněk. Příklady pro 2D a čtvercové buňky:

- Von-Neumann
- Moore, Extended Moore
- Margolus

Poznámka: Existuje celá řada jiných typů okolí

Typy okolí – pokračování

Šestiúhelníkové okolí

Poznámka:

Implementace: převod šestiůhelníková → čtvercová struktura

Použití: např. růst krystalů, šíření vln (FHP,...)

Okrajové podmínky

- Periodické
- Pevné (Fixed): konstantní hodnota
- Adiabatic: hodnota vedlejší buňky (= nulový gradient)
- Reflection: hodnota předposlední buňky

Implementace CA

Implementace uložení buněk a pravidel

- Přímá: každá buňka uložena zvlášť v poli
- Vyhledávací tabulka: jen "nenulové" buňky
- SIMD styl: více buněk v jednom int + bitové operace
- Hash life: cache, quad-tree, (memoized algorithm)

...

Poznámka: Snadno paralelizovatelné

Příklad1: hra Life

Hra Life: CA, který nastavíme na počáteční stav a spustíme.

Definice automatu pro hru Life

- Buňka: stavy '0' nebo '1'
- Pole buněk: dvourozměrné (2D)
- Okolí (typu Moore): 8 okolních buněk
- Pravidla: závislost na počtu '1' v okolí:
 - buňka '1' zůstane ve stavu '1', když má 2–3 sousedy '1'
 - buňka '0' se změní na '1', když má právě 3 sousedy '1'
 - jinak bude nový stav buňky '0'

I takto jednoduchý CA vykazuje velmi zajímavé chování – viz příklady na WWW

Příklad2: sypání písku

Sypání písku (sand rule, sandpile model)

- Okolí typu Margolus
- Pravidla:

Hypotetický mravenec (*Langton's ant*):

- Čtvercové pole buněk
- Buňky isou bílé nebo šedé
- Pravidla:
 - Při příchodu na bílou buňku změní směr o 90 stupňů doleva a obarví ji na šedou
 - Při příchodu na šedou buňku změní směr o 90 stupňů doprava a obarví ji na bílou
- Vvkazuje překvapivě zajímavé a složité chování

Poznámka: viz demo

Příklad4: FHP

Např. model pohybu tekutiny:

- Šestiúhelníkové okolí
- Buňky obsahují částice a jejich směr pohybu
- Pravidla viz obrázky + volný průlet v ostatních případech

Příklad5: doprava – model provozu na komunikacích

Nagel-Schreckenberg model

- Silnice je rozdělena na úseky (cca 7m)
- Úsek je buď prázdný nebo je v něm auto
- Stav auta j: rychlost $(v_i = 0, 1, ..., v_{max})$
- Pravidla provádíme v pevném pořadí:
 - R1: Akcelerace rychlost v_i zvýšíme o 1, max na v_{max}
 - R2: Brzdění podle vzdálenosti d_i buněk od předchozího auta $v_i = min(d_i, v_i)$
 - R3: Náhodná změna rychlosti na $max(v_i 1, 0)$ s pravděpodobností p
 - R4: Posun auta o $v_i(t+1)$ buněk

Poznámka: pouze minimální model, existují různé varianty.

Pravidla – obecně

Musí popisovat změnu stavu pro všechny možnosti.

$$s(t+1) = f(s(t), N_s(t))$$

Typy pravidel:

"legal" – z nulového vstupního stavu nesmí vzniknout nenulový stav

"totalistic" – rozhoduje součet vstupních stavů

 Počet možných pravidel závisí na počtu stavů a velikosti okolí. Například pro jednorozměrné okolí, na vstupu 3 prvky se stavy 0/1 (tzv. elementární automat) existuje celkem 2³ = 8 možností vstupu a tedy 2⁸ = 256 všech možných funkcí/pravidel. Reverzibilní automat je systém, který neztrácí informaci při svém vývoji v čase. Proto je v každém okamžiku možno otočit běh času nazpátek a vracet se k předchozím stavům.

Například pokud definujeme nový stav buňky takto:

$$s(t+1) = f(s(t), N_s(t)) - s(t-1)$$

ie možné pro libovolné f počítat předchozí stav:

$$s(t-1) = f(s(t), N_s(t)) - s(t+1)$$

Obecné vlastnosti CA

- Konfigurace CA je definována jako stav všech buněk
- Stav CA se vyvíjí v čase a prostoru podle zadaných pravidel
- Čas i prostor jsou diskretizovány
- Počet stavů buňky je konečný
- Buňky jsou identické
- Následující stav buňky závisí pouze na aktuálním stavu

Klasifikace CA

Celulární automaty můžeme rozdělit podle jejich dynamického chování do 4 kategorií:

Třídy CA

- třída 1: Po konečném počtu kroků dosáhnou jednoho konkrétního ustáleného stavu
- třída 2: Dosáhnou periodického opakování (s krátkou periodou) nebo zůstanou stabilní.
- třída 3: Chaotické chování (výsledné posloupnosti konfigurací tvoří speciální fraktální útvary).
- třída 4: Kombinace běžného a chaotického chování (například Life), nejsou reverzibilní.

Zdroj: Wolfram S.: New Kind of Science, Wolfram Media, 2002

Přehled implementací CA

- Možné problémy: nekonečné pole buněk, vizualizace, ...
- Existuje řada volně dostupných nástrojů.

Příklady simulátorů CA

- Golly (HashLife)
- různé Java applety viz WWW,
- SimCell (dynamické CA),
- Xtoys (jednoduché, C, xlib),
- cage (Python),
- ...

Spojitá simulace

Obsah:

- Typické aplikace spojité simulace
- Formy popisu spojitých modelů
- Převod rovnic na blokové schéma
- Numerické metody
- Spojité simulační jazyky
- Příklady

Aplikace spojité simulace

- Elektrické a elektronické obvody
- Řízení (automatizace)
- Fyzika
- Chemie
- Astronomie (pohyb planet)
- Biologie (model srdce)
- Ekologie (rozptyl znečištění)
- ...

Poznámka: Konkrétní příklady viz WWW

Popis spojitých systémů

- Soustavy obyč. diferenciálních rovnic (ODE)
- Soustavy algebraických rovnic
- Algebraicko-diferenciální rovnice (DAE)
- Bloková schémata
- Parciální diferenciální rovnice (PDE)
- Elektrická schémata
- ...
- Grafy signálových toků
- Kompartmentové systémy
- Systémová dynamika
- "Bond-graphs"

Soustavy dif. rovnic: maticový popis

$$\frac{d}{dt}\vec{w}(t) = \mathbf{A}(t)\vec{w}(t) + \mathbf{B}(t)\vec{x}(t)$$
$$\vec{y}(t) = \mathbf{C}(t)\vec{w}(t) + \mathbf{D}(t)\vec{x}(t)$$

kde \vec{x} je vektor m vstupů, \vec{w} vektor n stavových proměnných, \vec{y} vektor k výstupů a \mathbf{A} , \mathbf{B} , \mathbf{C} , \mathbf{D} matice koeficientů

Koeficienty (prvky matic A, B, C, D) mohou být:

- nezávislé na čase (stacionární systémy),
- časově proměnné,
- konstanty (lineární systémy),
- nelineární funkce (nelineární systémy).

Problémy při analytickém řešení Poznámka:

Grafový popis – bloky

Poznámka: Souvislost s analogovými počítači

Typy bloků

Funkční bloky (Bezpaměťové):

- konstanty
- T (modelový čas)
- Sin, Cos, Log, ...
- +, -, *, /
- Uživatelem definované funkce

Stavové bloky (Paměťové; mají počáteční podmínky):

- integrátory
- zpoždění
- ...

Poznámka: Hierarchie: složené bloky (i kombinované)

Převod rovnic vyššího řádu

Rovnice vyšších řádů musíme převést na soustavu rovnic prvního řádu, pro které máme vhodné numerické metody.

Metody převodu:

- Snižování řádu derivace
- Postupná integrace
- Jiné speciální metody

Poznámky:

Pozor na podmínky pro převod Existují i num. metody pro řešení rovnic vyššího řádu

Metoda snižování řádu derivace

- Osamostatnit nejvyšší řád derivace (viz příklad)
- Zapojit všechny integrátory za sebe a ke vstupu prvního připojit pravou stranu z (1)

Podmínka: nesmí být derivace vstupů (x', x'', ...)

Příklad: rovnice
$$y'' - 2y' + y = x$$

 $y'' = 2y' - y + x$
 $y' = \int y''$
 $y = \int y'$

Poznámky:

- Typický tvar blokového schématu
- Pozor na počáteční podmínky

Příklad: Blokové schéma

Metoda postupné integrace

Vhodná pro rovnice s derivacemi vstupů na pravé straně

- Osamostatnit nejvyšší řád derivace
- Postupná integrace rovnice a zavádění nových stavových proměnných
- Výpočet nových počátečních podmínek

Podmínka: konstantní koeficienty

Příklad: rovnice
$$p^2y + 2py + y = p^2x + 3px + 2x$$

 $p^2y = p^2x + p(3x - 2y) + (2x - y)$
 $py = px + (3x - 2y) + \frac{1}{p}(2x - y)$, proměnná $w_1 = \frac{1}{p}(2x - y)$
 $py = px + (3x - 2y) + w_1$
 $y = x + \frac{1}{p}(3x - 2y + w_1)$, proměnná $w_2 = \frac{1}{p}(3x - 2y + w_1)$
 $y = x + w_2$

Metoda postupné integrace – příklad

Výsledná soustava rovnic:

$$w_1 = \frac{1}{\rho}(2x - y),$$
 $w_1(0) = y'(0) - x'(0) - 3x(0) + 2y(0)$
 $w_2 = \frac{1}{\rho}(3x - 2y + w_1),$ $w_2(0) = y(0) - x(0)$
 $y = x + w_2$

Numerické metody

Při spojité simulaci potřebujeme metody pro:

- řešení ODR 1. řádu (Initial Value Problem)
- řešení algebraických rovnic (hledání kořenů řešení tzv. rychlých smyček)

Poznámky:

- Existuje celá řada metod (viz např Netlib)
- Je nutné znát vlastnosti metod

Metody pro řešení ODR 1.řádu

Hledáme řešení rovnice

$$y'=f(t,y)$$

které má tvar:

$$y(T) = y_0 + \int_0^T f(t, y) dt$$

Na počítači je řešení aproximováno v bodech $t_0, t_1, t_2, ... t_n$

Integrační krok: $h_i = t_{i+1} - t_i$

Poznámka: Integrační krok nemusí být konstantní

Princip, klasifikace

Obecný princip metody N-tého řádu:

- Aproximace y(T) polynomem N-tého stupně (Taylorův rozvoj)
- 2 Extrapolace výpočet y(t+h)

Klasifikace metod:

- Jednokrokové vychází jen z aktuálního stavu
- Vícekrokové používají historii stavů/vstupů

Další možné dělení:

- Explicitní výsledek získáme dosazením do vzorce
- Implicitní vyžadují řešení algebraických rovnic v každém kroku

Jednokrokové metody

Princip jednokrokových metod (RK4):

Eulerova metoda — princip

$$y(t+h) = y(t) + hf(t, y(t))$$

Eulerova metoda — implementace a příklad

```
double yin[2], y[2] = { 0.0, 1.0 }, time = 0, h = 0.001;
void Dynamic() { // f(t,y): výpočet vstupů integrátorů
   yin[0] = y[1]; // y'
   vin[1] = -v[0]; // v''
void Euler_step() {      // výpočet jednoho kroku integrace
   Dynamic();  // vyhodnocení vstupů integrátorů
   for (int i = 0; i < 2; i++) // pro každý integrátor
       y[i] += h * yin[i]; // vypočteme nový stav
   time += h; // posun modelového času
int main() { // Experiment: kruhový test, čas 0..20
   while (time < 20) {
       printf("%10f %10f\n", time, y[0]);
       Euler_step();
```

ité Kombi. ... Num. Metody Příklady Jazyky Nástroje SIMLIB Dymola

Příklad: Absolutní chyba Eulerovy metody

Num. Metody Příklady Jazyky Nástroje SIMLIB Dymola

Příklad: vliv velikosti kroku

Metody Runge-Kutta

Skupina metod: RK1=Euler, RK2, RK4, RK8, ...

RK2: 2. řád

$$k_1 = hf(t, y(t))$$

 $k_2 = hf(t + \frac{h}{2}, y(t) + \frac{k_1}{2})$
 $y(t+h) = y(t) + k_2$

RK4: 4, řád

$$k_{1} = hf(t, y(t))$$

$$k_{2} = hf(t + \frac{h}{2}, y(t) + \frac{k_{1}}{2})$$

$$k_{3} = hf(t + \frac{h}{2}, y(t) + \frac{k_{2}}{2})$$

$$k_{4} = hf(t + h, y(t) + k_{3})$$

$$y(t + h) = y(t) + \frac{k_{1}}{6} + \frac{k_{2}}{3} + \frac{k_{3}}{3} + \frac{k_{4}}{6}$$

Metody Runge-Kutta — pokračování

Často používané metody — každý spojitý simulační systém obsahuje alespoň jednu RK metodu

Poznámky:

- Implementace viz WWW
- Různé další varianty (např. Dormand-Prince 45)
- Specifikace metody tabulkou: Butcher tableau
- Odhad chyby
- Změna kroku na základě odhadu chyby
- Existují také implicitní metody RK viz WWW

Num. Metody Příklady Jazyky Nástroje SIMLIB Dymola

Přesnost metody Runge-Kutta — příklad

Vícekrokové metody – princip

Používají hodnoty zapamatované z předchozích kroků

Vícekrokové metody

Adams-Bashforth:

$$y_{n+1} = y_n + \frac{h}{24}(55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3})$$

Metody typu prediktor/korektor zpřesňují výsledek:

Adams-Bashforth-Moulton:

$$y_{n+1} = y_n + \frac{h}{24}(9f_{n+1} + 19f_n - 5f_{n-1} + f_{n-2})$$

Poznámky:

Problém startu metody (řešení: např. použití jednokrokové metody pro první krokv).

Existují i samostartující vícekrokové metody.

Vlastnosti integračních metod

Chyba metody:

- Lokální (v jednom kroku)
 - Chyba zaokrouhlovací (round-off error)
 - Chyba aproximace (truncation error)
- Akumulovaná

Stabilita metody:

- Stabilita numerického řešení
- Vliv velikosti integračního kroku na stabilitu

Poznámka: Příklady nestability/nepřesnosti

Lokální chyba numerické metody

Stabilita numerické metody — příklad

Rovnice: y' = -20y, počáteční podmínka: y(0) = 1

Tuhé systémy (stiff systems)

Problém: velmi rozdílné časové konstanty

Příklad tuhého systému/rovnice:

$$y'' + 101y' + 100y = 0$$

Řešení:

- Použití speciální integrační metody
- Zkrácení kroku často nelze (akumulace chyb, malá efektivita výpočtu)

Poznámky: Koeficient tuhosti, explicitní vs. implicitní metody, A-stabilita, ... Podrobnosti viz literatura.

Výběr integrační metody

Neexistuje univerzální (nejlepší) metoda.

- Obvykle vyhovuje některá varianta metody Runge-Kutta 4. řádu.
- Nespojitosti ve funkci f(t, y) snižují efektivitu vícekrokových metod (časté startování).
- Tuhé systémy vyžadují speciální metody.
- Pro ověření přesnosti výsledků je třeba vyzkoušet různé integrační metody a různé velikosti kroku.
- Existuje horní limit velikosti kroku (stabilita, efektivita).
- Některé metody umí tzv. "dense outpuť" (interpolaci výsledného průběhu uvnitř kroku).
- ...

Příklad: Systém dravec–kořist

Rovnice systému dravec-kořist (Lotka-Volterra):

$$\frac{dx}{dt} = k_1 x - k_2 xy$$
$$\frac{dy}{dt} = k_2 xy - k_3 y$$

$$\frac{dy}{dt} = k_2 x y - k_3 y$$

kde:

- x množství kořisti
- v množství dravců

Zobrazení výsledků:

- v čase
- ve fázové rovině (phase space)

Příklad: dravec-kořist, zobrazení v čase

Příklad: dravec-kořist, fázová rovina

Spojité simulační jazyky

Nástroje na popis modelu + popis experimentů

Algoritmus řízení spojité simulace:

- Inicializace nastavit počáteční stav
- Cyklus dokud není konec simulace:
 - pokud je vhodný čas výstup
 - vyhodnocení derivací a výpočet nového stavu
 - o posun modelového času
- Ukončení, výstup

Poznámka: Centralizovaná integrace

Problém uspořádání funkčních bloků

Výpočet závisí na pořadí vyhodnocování funkčních bloků

Příklad:

```
a = fa(1,b) # b ještě není vypočítáno
b = fb(a)
c = fc(a,b)
...
```

Řešení:

- Řazení funkčních bloků (topological sort)
- Vyhodnocování na žádost (viz SIMLIB)

Poznámka: Paměťové bloky (integrátory) mají oddělený vstup a jejich výstup se mění až po dokončení kroku, proto jsou nezávislé na pořadí vyhodnocování.

<u>Řazení funkčních bloků</u>

Princip algoritmu (hledání silných komponent grafu):

Rychlé smyčky

Problém: cyklus v grafu závislostí funkčních bloků (způsobeno například příliš vysokou úrovní abstrakce)

Řešení:

- Rozpojení cyklu speciálním blokem, který (například iteračně) řeší algebraické rovnice.
 - Metody: půlení intervalu, Regula-falsi, Newtonova
- Přepracování modelu na model bez smyček (například zpřesnění modelu vložením integrátoru)

Rychlé smyčky — obrázek 1

Rychlé smyčky — obrázek 2

Rychlé smyčky — možné řešení

Parciální diferenciální rovnice (PDR, PDE)

Obsahují derivace podle více proměnných (např. prostorových souřadnic)

Řešení: diskretizace v prostoru = nahrazení prostorových derivací diferencemi (metoda přímek)

Příklad: kmitající struna — řešení wiz WWW

$$\frac{\partial^2 y}{\partial t^2} = a \frac{\partial^2 y}{\partial x^2}$$

Počáteční podmínky: $y(x,0) = -\frac{4}{\ell^2}x^2 + \frac{4}{7}x$ a y'(x,0) = 0

Okrajové podmínky: v(0,t) = v(l,t) = 0

Diskretizace:

$$\frac{\partial^2 y}{\partial x^2}\bigg|_{x_i} = \frac{y_{i+1} - 2y_i + y_{i-1}}{\Delta x^2}$$

Shrnutí

- Použití spojité simulace
- Popis modelu
- Numerické metody a jejich základní vlastnosti
- Jazyky, implementace, problémy
- Nároky na výkon počítače

Poznámky: Paralelní simulace, vektorové počítače, clustery

Spojité simulační nástroje – přehled

- Matlab/Simulink (R)
- SciLab
- GNU Octave
- ...
- Dymola (R), Modelica
- OpenModelica
- ...
- SIMLIB/C++
- ...
- více viz WWW

Poznámka: GNU Scientific Library, Netlib, ...

C++ knihovna pro spojitou i diskrétní simulaci

Přehled prostředků pro spojitou simulaci:

- Globální proměnné (typicky jsou pouze pro čtení):
 StepSize, MinStep, MaxStep, ...
- Bloky: Integrator, Constant, ...
- Blok reprezentující modelový čas: T
- Odkaz na blokový výraz: Input (a blok Expression)

Doplňky: kombinovaná simulace, 2D, 3D, fuzzy, optimalizace

Blokové výrazy v SIMLIB/C++

- Automatická konstrukce výrazových stromů (používá přetěžování operátorů v C++)
- Metoda bloku double Value() vyhodnotí vstupy voláním jejich metody Value a vrátí výsledek

$$P\check{r}$$
íklad: Expression e = (a + b) * c

Poznámka: Pozor: Blok T reprezentuje modelový čas, protože proměnnou Time nelze použít.

SIMLIB – typy bloků

Třídy definované v SIMLIB/C++:

- Konstanty, parametry, proměnné: Constant, Parameter, Variable
- Funkční bloky:

```
Function, Sin, Exp, Max, Sgrt, Abs, ...
Lim. DeadZone. Frict....
pro blokové výrazy: _Add, _Mul, ...
```

- Stavové bloky:
 - Integrator
 - Nelinearity se stavem: Hysteresis. Relay. Blash

Poznámka: Relay přesně detekuje okamžik přepnutí

SIMLIB – popis experimentu

Sledování stavu modelu:

- třída Sampler periodické volání funkce
- funkce SetOutput(filename) přesměrování výstupu
- funkce Print(fmt,...) − tisk typu printf

Nastavení parametrů simulace:

- krok SetStep(minstep, maxstep)
- požadovaná přesnost SetAccuracy(abs,rel)
- integrační metoda SetMethod(name)
 (Metody: "abm4", "euler", "rke"(default), "rkf3", "rkf5", "rkf8")

Řízení simulace:

- Init(t0,t1), Run()
- Stop() ukončení aktuálního experimentu (běhu)
- Abort() ukončení programu

SIMLIB – příklad

```
// kmitání kola (verze 2 - několik experimentů)
// popis systému: y'' = (F - D * y' - k * y) / M
                 nulové počáteční podmínky
#include "simlib.h"
struct Kolo {
                               // popis systému
   Parameter M. D. k:
   Integrator v, v;
   Kolo(Input F, double _M, double _D, double _k):
      M(M). D(D), k(k), // parametry systému
     v((F - D*v - k*v) / M), // rychlost
      v(v) {}
                                 // výchvlka
      void PrintParameters() {
        Print("# hmotnost = %g kg \n", M. Value());
```

SIMLIB – příklad

```
// Parametry:
double _m=5, _d=500, _k=5e4; // implicitní hodnoty
// Objekty modelu:
Constant F(100):
                             // síla působící na kolo
Kolo k(F, _m, _d, _k):
                            // instance modelu kola
// Sledování stavu modelu:
void Sample() {
  Print("%f %g %g\n", T.Value(),k.v.Value(),k.v.Value());
Sampler S(Sample, 0.001);
```

SIMLIB – příklad

```
int main() {
                           // Popis experimentů ...
SetOutput("kolo2.dat");
Print("# KOLO2 - model kola (více experimentů)\n");
for(double m=_m/2; m<=_m*5; m*=1.2) {
  k.M = m; // parametr M
  k.D = _d; // parametr D
  k.k = _k; // parametr k
  k.PrintParameters():
  Print("# Time v v \n");
  Init(0, 0.3); // inicializace experimentu
  SetAccuracy(1e-6, 0.001); // max. chyba integrace
  Run():
                           // simulace
  Print("\n"); // oddělí výstupy experimentů (GnuPlot)
```

Dymola

- Integrované prostředí
 Dymola = Modelica + GUI + knihovny
- Modelica simulační jazyk
- Modelica library std. knihovna
- Nástroj pro modelování fyzikálních systémů
- Dymola je komerční program (Demo verze pro Windows je volně k dispozici)

Poznámka: Existují volně dostupné (OpenModelica, JModelica.org) i komerční alternativy (MathModelica).

Grafické rozhraní

Přehled vlastností Dymoly

- Překlad Modelica → C, závislost na překladači C
- Výstupní formát kompatibilní s MatLab
- Snadné skládání modelů z komponent (knihovny)
- Snadno rozšiřitelné
- Symbolické řešení některých rovnic (algebraické smyčky, soustavy algebraických rovnic, ...) redukuje náročnost numerického řešení modelu
- Efektivní (umožňuje real-time hardware-in-the-loop simulaci)

Modelica

- Simulační jazyk vyvíjený od roku 1996
- Vznikla oddělením od Dymoly
- Nezisková organizace: Modelica Association
- Objektově orientovaný jazyk
- Popis rovnicemi: diferenciální, algebraické, diskrétní
- Může kontrolovat fyzikální jednotky
- Multimodely pro různé fyzikální systémy
- Existuje standardní knihovna komponent
- Použití: průmysl, výzkum, ...

Modely v Modelice

- Různé knihovny komponent (modelů):
 - Mechanické: např. převodovky, motory, roboty
 - Elektrické a elektronické obvody: RLC, diody
 - Hydraulické: čerpadla, potrubí
 - Tepelné: chladiče, vedení tepla
 - ...
- Vytváření nových komponent/knihoven
- Modely řídicích systémů, ...

Příklad: elektrický obvod – RC článek

```
model rc "Model obvodu RC"
  Resistor R(R=1000):
 Capacitor C(C=0.001);
 SineVoltage U(offset=5, V=0.5, freqHz=1);
  Ground
              ground;
equation
  connect(U.n, C.n); // propojovací rovnice
  connect(U.p, R.p);
  connect(R.n, C.p);
  connect(U.n, ground.p);
end rc:
```

Definice základních komponent obvodu

```
connector Pin
 Voltage v;
  flow Current i; // flow => součet=0
end;
partial model OnePort "abstraktní bázová třída"
 Pin p, n;
  Voltage v; // napětí
  Current i; // proud
equation
 v = p.v - n.v;
 0 = p.i + n.i;
  i = p.i;
end OnePort:
```

Ideální rezistor a kondenzátor

```
model Resistor "ideální rezistor"
  extends OnePort;
  parameter Real R(unit="Ohm") "odpor";
equation
 R*i = v; // Ohmův zákon
end Resistor:
model Capacitor "ideální kondenzátor"
  extends OnePort:
  parameter Real C(unit="F") "kapacita";
equation
 C * der(v) = i; // diferenciální rovnice
end Capacitor;
```

Závěr

- Prakticky používaný komerční systém Dymola
- Otevřený jazyk Modelica a std. knihovna
- Numerické metody
- Výhody
- Nevýhody
- Instalováno na učebně (verze pro OS Linux, financováno z grantu FRVŠ)

Kombinovaná (hybridní) simulace

= spojitá simulace + diskrétní simulace + jejich propojení

- Problém kombinace událostí a numerické integrace
- Stavové podmínky a detekce jejich změn
- Změna stavové podmínky způsobí stavovou událost
- Problém zkracování kroku ("dokročení"na stavovou událost)
- Skokové změny spojitého stavu a jejich vliv na použitou numerickou metodu
- ...

Stavové podmínky (State Conditions)

Problém:

Stavová událost nastane po dosažení zadané hodnoty spojité veličiny (tj. při změně stavové podmínky) – nelze ji naplánovat.

Příklad: Detekce dopadu míčku na zem Hledáme řešení algebraické rovnice y(t) = 0

Metody: půlení intervalu, Regula-falsi, Newtonova, ...

Problémy detekce změn stavových podmínek

Problém: nedetekování stavové události způsobené

- nepřesností výpočtu
- příliš dlouhým krokem (překročení dvou změn)

Příklady:

Stavové podmínky v SIMLIB/C++

Speciální bloky – abstraktní třídy:

Condition (detekce jakékoli změny), ConditionUp (změna false \rightarrow true), ConditionDown (změna true \rightarrow false)

Odvozené třídy musí definovat metodu void Action() s popisem stavové události.

Podmínka je vždy ve tvaru (vstup >= 0)

Poznámka: SIMLIB používá metodu půlení intervalu při které zkracuje krok až k MinStep

Algoritmus řízení simulace – pseudokód

```
Inicializace stavu a podmínek
while ( čas < koncový_čas) {</pre>
    Uložení stavu a času
    Krok numerické integrace a posun času
    Vyhodnocení podmínek
    if ( podmínka změněna )
        if ( krok <= minimální_krok)
            Potvrzení změn podmínek
            Stavová událost
                                          ___
            krok = běžná_velikost_kroku
        else
            Obnova stavu a času
            krok = krok/2
            if (krok < minimální_krok)</pre>
                krok = minimální krok
```

Algoritmus řízení simulace – poznámky

- Jde pouze o část algoritmu řízení kombinované simulace
- Pseudokód patří do algoritmu next-event místo:
 Time = čas příští události
- koncový_čas je čas příští události nebo čas konce simulace
- Stavová událost může plánovat událost (a tím změnit koncový_čas).
- Krok numerické integrace délka posledního kroku před koncovým časem musí být vhodně upravena (koncový_čas - Time) – tzv "dokročení", ale může nastat problém s minimální délkou kroku.

Příklad: skákající míček (SIMLIB)

```
struct Micek : ConditionDown { // skákající míček
  Integrator v, v;
                               // stavové proměnné
 unsigned count;
 void Action() {
     v = -0.8 * v.Value(); // ztráta energie...
     y = 0:
                               // eliminace nepřesnosti
     if(count>=20)
                             // max 20 dopadů
       Stop();
                               // konec experimentu
 Micek(double initialposition) :
   ConditionDown(y), // (y>=0) změna TRUE --> FALSE
   v(-g).
                               // v' = INTG(-g)
   y(v, initial position), // y = INTG(v')
   count(0) {} // inicializace počtu dopadů/odrazů
};
Micek m1(1.0):
                               // instance modelu
```

Příklad: skákající míček – výsledek

Příklad: míček – chyba detekce (Minstep= 10⁻⁹)

Simulace číslicových systémů – přehled

Úrovně popisu:

- Elektrická tranzistory, rezistory, kondenzátory (spojité modely)
- Logická hradla, klopné obvody (diskrétní modely)
- Meziregistrové přenosy čítače, řadiče, ALU (diskrétní modely)
- Systémová procesory, paměti, periferie (diskrétní modely, hromadná obsluha, výkonnost)

Používají se specializované nástroje a techniky:

- SPICE: elektrická úroveň
- VHDL: logická, RTL
- ...

Modely signálů

Modely signálu

- Dvojhodnotové: jen 0 a 1 (málo používané, rychlé)
- Trojhodnotové: + neurčitá úroveň X
- 5-hodnotové: 0, 1, X, R (Rise=růst) a F (Fall=sestup) výhoda: přesnější popis, odhalí více hazardů nevýhoda: pomalé

Další možné hodnoty:

- Stav Z (vysoká impedance)
- Různá "síla"signálu (u CMOS)
- Statický (_/_) a dynamický (_/\/~) hazard
- •

Modely zpoždění

Zpoždění logických členů:

- 0 nulové (jen pro ověření log. funkce)
- 1 jednotkové (většinou nevhodné)
- t_d přiřaditelné (zvlášť pro $0\rightarrow 1$ a $1\rightarrow 0$)
- $\langle t_1, t_2 \rangle$ přesné (rozsah od–do)

Poznámky:

Zpoždění na spojích

Kontrola časování (např. dodržení předstihu a přesahu u klopných obvodů)

Řízení událostmi ⇒ problém velkého množství událostí v kalendáři (existují i další metody – např. s pevným krokem)

Selektivní sledování: vyhodnocování jen u prvků které jsou ovlivněny změnou na vstupu.

Implementace popisu modelu:

- řízení tabulkami (interpretace)
- kompilovaný model (provádění kódu)

Poznámky:

problém zpětných vazeb u sekvenčních obvodů (možné je např. iterační řešení),

problém inicializace (počáteční hodnoty signálů)

Dvoufázový algoritmus (selektivní sledování):

```
inicializace, plánování události pro nový vstup
while (je plánována událost) {
   nastavit hodnotu modelového času na T
   for (u in všechny plánované události na čas T) {
      výběr záznamu události u z kalendáře
      aktualizace hodnoty signálu
      přidat všechny připojené prvky do množiny M
   }
   for (p in množina prvků M) {
      vyhodnocení prvku p
      if (změna jeho výstupu)
         plánování nové události
   }
```

Simulace poruch

Typy poruch:

- trvalá 0
- trvalá 1
- zkrat mezi funkčními vodiči

Činnost:

- Specifikace poruch které poruchy budou modelovány
- Injekce poruch převod modelu na model s poruchou
- Šíření poruch modelem
- Detekce poruch projeví se porucha?
- Zpracování výsledků vytvoření podkladů pro testy

Poznámka: Ověřování úplnosti diagnostického systému (vše opakovat pro každou poruchu) je časově náročné

VHDL: vhodné pro složité systémy

Úrovně popisu (lze kombinovat):

- Popis struktury propojení hradel
- Popis chování
 - algoritmem proces
 - data flow RTL (Register Transfer Level) např. o <= transport i1 + i2 after 10 ns;</pre>

Knihovny prvků

Poznámka: Příklady viz WWW — Například http://www.cs.ucr.edu/content/esd/labs/tutorial/

```
-- AND hradlo (ESD book figure 2.3)
-- převzato z
-- http://www.cs.ucr.edu/content/esd/labs/tutorial/
library ieee;
use ieee.std_logic_1164.all;
entity AND_ent is
    port(
        x: in std_logic;
        v: in std_logic;
       F: out std_logic
    );
end AND_ent;
```

VHDL – příklad

```
architecture behav1 of AND_ent is
begin
    process(x, y)
    begin -- popis chování
        if ((x='1')) and (y='1')) then
             F <= '1':
        else
             F <= '0':
        end if:
    end process;
end behav1:
-- varianta 2
architecture behav2 of AND ent is
begin
    F \le x \text{ and } y;
end behav2:
```

Heterogenní modely

= Použití více různých forem popisu pro různé části modelu

Příklad heterogenního modelu řídicího systému:

- spojitá část (spojitý popis)
- A/D převod (vzorkování spojitého stavu)
- číslicový řídicí systém (např. Petriho síť)
- nebo použití fuzzy logiky (popis neurčitosti)
- případně použití neuronových sítí (učení)
- D/A převod (kombinace spojitý/diskrétní)

Jsou nutné odpovídající nástroje Poznámka:

SIMLIB - některá rozšíření

- Vektorové bloky a blokové výrazy
 - 2D vektorové diferenciální rovnice
 - 3D vektorové diferenciální rovnice
- Fuzzy popis modelů s neurčitostí
 - fuzzy množiny
 - fuzzy bloky fuzzification, inference, defuzzification
 - editor fuzzy množin (Java)
- Optimalizační metody
- + další doplňky...

Poznámka:

Jde o prototypy = ne zcela úplné, používat opatrně

Fuzzy logika – základy

- Jde o popis jednoho typu neurčitosti "vágnost" (co znamená, že něco je "malé" nebo "velké"?)
- Rozšíření Booleovské logiky (1965, Lofti Zadeh)
- Vyjádření míry určité vlastnosti pravdivostní hodnota, stupeň příslušnosti (Pozor – vůbec nesouvisí s pravděpodobností.)
- Pojmy: fuzzy množina, funkce příslušnosti
- Použití fuzzy logiky: řízení, expertní systémy, ...

Poznámka: Podrobnosti viz např. PDF na WWW: Navara M., Olšák P.: *Základy fuzzy množin*, ČVUT, Praha, 2002

Fuzzy množina, funkce příslušnosti

Př: teplota v místnosti, 3 fuzzy množiny a jejich funkce příslušnosti: malá – střední – velká ("cold"– "normal"– "hot")

Fuzzifikace: převod "ostré" hodnoty na míru příslušnosti (Příklad: $18 \,^{\circ}\text{C} \rightarrow \text{cold:} 0.5, \text{ normal:} 0.5, \text{ hot:} 0$)

Operace

Fuzzy

negace: $\neg_s \alpha = 1 - \alpha$

konjunkce: $\alpha \wedge_{s} \beta = min(\alpha, \beta)$

disjunkce: $\alpha \bigvee_{s} \beta = max(\alpha, \beta)$

Poznámka: Existují i jiné definice operací

Fuzzy blok

Postup vyhodnocování:

- převod vstupu na míru příslušnosti (fuzzification)
- aplikace pravidel (*if-then rules*)

Příklad pravidel:

```
IF teplota IS malá THEN topit=hodně
IF teplota IS střední THEN topit=málo
IF teplota IS velká THEN topit=chladit
```

- spojení výstupů pravidel (aggregation)
- převod na "ostré" hodnoty (defuzzification)

Fuzzy blok – obrázek

Příklad v SIMLIB – pouze pro ilustraci možností

```
// Fuzzy množiny:
FuzzySet itype("itype", 0, 40,
  FuzzyTrapez("small", 0,0,18,20),
  FuzzyTrapez("medium", 18,20,22,28),
  FuzzyTrapez("big", 22,28,40,40)
);
class MyBlock : public FuzzyBlock {
  FuzzyInput in;
  FuzzvOutput o, o2:
  void Behavior() { // Pravidla:
    if(in=="small") weight(0.9), o="big";
    if(in=="big" || in=="medium") o="small", o2="z";
    if(in=="big" || in=="medium") { o="small": o2="z": }
 } // ...
```

Optimalizace parametrů modelu

Cíl: nalezení optimálních hodnot parametrů modelu

Pojmy: operační výzkum, lineární/nelineární programování

Optimalizační metody:

- gradientní
- simulované žíhání (Simulated Annealing)
- genetické

Nástroje: Scilab, MATLAB+OptimizationToolbox, ...

Poznámka: Složitost optimalizačních úloh

Hledáme x pro minimum nebo maximum cenové funkce $F(\vec{x})$.

Minimalizace je algoritmus, který počítá:

$$\vec{x} : F(\vec{x}) = min \wedge C(\vec{x})$$

kde:

 \vec{x} je vektor hodnot parametrů

F je cenová (Objective) funkce

C reprezentuje různá omezení (Constraints) – například meze hodnot \vec{x} .

Poznámky:

Maximalizace \Rightarrow použijeme -F.

Problém: lokální minima \Rightarrow používáme *globální optimalizační metody*

Optimalizace - příklad

Ukázka hledání minima, 3 různé metody:

Vizualizace výsledků simulace

Vizualizace znamená použití interaktivních vizuálních reprezentací dat pro zlepšení našeho chápání problému.

- interaktivní diagramy
- animace
- 3D zobrazení
- video, ...
- virtuální realita

Nástroje:

- univerzální: Gnuplot, GNU plotutils, ...
- specializované: viz WWW

Poznámka: client-server, ...

Virtuální realita a simulace

3D interaktivní vizualizace a simulace

- prostředí, které je simulováno počítačem
- člověk je připojen na speciální rozhraní a vstupuje do simulovaného prostředí
- interakce člověk stroj

Poznámka: Souvislost s počítačovými hrami

Analytické řešení modelů

Čistě matematické řešení modelu.

- výhody: efektivní, výsledky jsou obecné a přesné
- nevýhody: analytické řešení pro většinu modelů neznáme/neexistuje

Postup:

- analýza problému
- formulace matematického modelu
- ziednodušení modelu (linearizace, ...)
- matematické řešení modelu

Poznámka: Porovnat se simulací

Markovovy procesy a řetězce

- Při zkoumání dějů v SHO se často předpokládá, že v nich obsažené náhodné procesy isou Markovské.
- Markovské procesy jsou náhodné procesy, které splňují Markovovu vlastnost: následující stav procesu závisí jen na aktuálním stavu (ne na minulosti).
- Náhodný proces X(t) s diskrétním časem a diskrétními stavy, který má Markovovu vlastnost, se nazývá *Markovův řetězec*. Je ekvivalentní konečnému automatu s pravděpodobnostmi přechodů
- Pravděpodobnost stavu s_i v čase $t \in N$ označíme symbolem $\pi_i(t) := p(X(t) = s_i).$

Markovovy řetězce

• Matice pravděpodobností přechodů: $P = \begin{bmatrix} p_{00} & p_{01} & p_{02} \\ p_{10} & p_{11} & p_{12} \\ p_{20} & p_{21} & p_{22} \end{bmatrix}$ (součet na řádku musí být 1)

Aplikace: SHO, náhodná procházka, hry – házení kostkou

Systémy M/M/1

M/M/1 – viz Kendallova klasifikace SHO

- máme jedno zařízení s neomezenou FIFO frontou
- příchody požadavků: exponenciální intervaly s konstantním parametrem $\lambda > 0$, nezávisí na stavu modelu a čase
- obsluha: exponenciální trvání s parametrem $\mu > 0$.

Počet požadavků v systému X(t) je Markovský proces.

Popis:

- Vektor pravděpodobností jednotlivých stavů
- Spojitý čas
- Používáme matici intenzit přechodů mezi stavy

Příklad 1

Jedno zařízení bez fronty – přijde-li požadavek a nemůže být obsloužen, opouští systém,

Parametry — příchody: 15 za hodinu, obsluha: 5 minut.

Jaká je pravděpodobnost, že požadavek odchází neobsloužen?

$$\lambda=$$
 15, $\mu=\frac{60}{5}=$ 12 za hodinu, (poznámka: stabilita).

$$\left[\begin{array}{cc} p_0 & p_1 \end{array}\right] \left[\begin{array}{cc} -\lambda & \lambda \\ \mu & -\mu \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \end{array}\right]$$
 a současně $p_0 + p_1 = 1$

Příklad 1 – ustálený stav

V ustáleném stavu se pravděpodobnosti již nemění, proto intenzita přechodů násobená pravděpodobností stavu musí být v rovnováze.

Pro *ustálený stav* platí:

$$-\lambda p_0 + \mu p_1 = 0$$
, a také $p_0 = 1 - p_1$

Dosadíme a úpravami získáme výsledek:

$$-\lambda(1-p_1) + \mu p_1 = 0$$

 $-\lambda + \lambda p_1 + \mu p_1 = 0$
 $p_1(\lambda + \mu) = \lambda$
 $p_1 = \frac{\lambda}{\lambda + \mu}$

Pro naše parametry je pravděpodobnost obsazeného zařízení:

$$p_1=\frac{5}{9}$$

Příklad 2

Systém M/M/1 – výdeina obědů. Přichází 3 požadavky za minutu, výdej 15 sekund.

Jaká je

- pravděpodobnost p_0 , že strávník nebude čekat,
- průměrná délka fronty L_w
- průměrná doba čekání ve frontě T_w a
- průměrná doba strávená v systému T_s ?

$$\lambda = \frac{pocet}{cas} = \frac{3}{1} = 3$$
 příchody za minutu

$$\mu=$$
 4 dokončené obsluhy za minutu (doba obsluhy $T_o=rac{1}{\mu}$)

Systém je stabilní ($\lambda < \mu$).

Příklad 2 – rovnice pro ustálený stav

Rovnice: $\vec{\pi}(\infty)A = \vec{0}$

$$-\lambda p_0 + \mu p_1 = 0$$

$$p_1 = \frac{\lambda}{\mu} p_0 = \rho p_0 \quad \text{kde jsme zavedli} \quad \rho = \frac{\lambda}{\mu}$$

$$\lambda p_0 - \lambda p_1 - \mu p_1 + \mu p_2 = 0$$

$$p_2 = -\frac{\lambda}{\mu} p_0 + \frac{\lambda}{\mu} \frac{\lambda}{\mu} p_0 + \frac{\lambda}{\mu} p_0 = \frac{\lambda^2}{\mu^2} p_0 \quad \Rightarrow \quad p_2 = \rho^2 p_0$$
 ...
$$p_k = \rho^k p_0$$

Příklad 2 – výpočet pravděpodobností

Součet pravděpodobností stavů musí být 1:

$$p_0 + p_1 + p_2 + \dots = 1$$

Potom použijeme vzorec pro součet geometrické řady ($S = \frac{a}{1-a}$):

$$p_0 + \rho p_0 + \rho^2 p_0 + \dots = \frac{p_0}{1 - \rho} = 1$$

a po úpravě dostaneme výsledek: $p_0 = 1 - \rho$

Výsledek

Pravděpodobnost, že nebude čekat: $p_0 = 1 - \rho = \frac{1}{4} = 0.25$

Poznámka: To znamená, že s pravděpodobností p_0 zařízení nepracuje (průměrné využití zařízení je: $1 - p_0 = \rho = \frac{3}{4}$).

Příklad 2 – délka fronty

Průměrná délka fronty v ustáleném stavu je suma součinů (délka fronty * pravděpodobnost stavu s touto délkou fronty) pro všechny možné délky fronty:

$$L_{w} = \sum_{k=1}^{\infty} k.\pi_{k+1}(\infty) = \sum_{k=1}^{\infty} k.\rho^{k+1}(1-\rho) =$$

$$= (1-\rho)\rho^{2} + 2(1-\rho)\rho^{3} + 3(1-\rho)\rho^{4} + \dots =$$

$$= \rho^{2} - \rho^{3} + 2\rho^{3} - 2\rho^{4} + 3\rho^{4} + \dots =$$

$$= \rho^{2} + \rho^{3} + \rho^{4} + \dots = \frac{\rho^{2}}{1-\rho}$$
 // součet řady

Výsledek

V našem příkladu je průměrná délka fronty:

$$L_{\rm W} = \frac{\rho^2}{1-\rho} = 2.25$$

Příklad 2 – doba čekání ve frontě

Doba čekání ve frontě T_w je úměrná počtu transakcí N v systému:

$$T_{w} = T_{o}.N = T_{o} \sum_{k=1}^{\infty} k.\pi_{k}(\infty) = \frac{1}{\mu} \sum_{k} k.\rho^{k}(1-\rho)$$

$$= \frac{1}{\mu} \frac{1}{\rho} (\sum_{k} k.\rho^{k+1}(1-\rho)) = \text{// obsah závorky již známe}$$

$$= \frac{1}{\mu} \frac{1}{\rho} \frac{\rho^{2}}{1-\rho} = \frac{1}{\mu} \frac{\rho}{1-\rho} =$$

$$= \frac{1}{\mu} \frac{\rho}{1-\frac{\lambda}{\mu}} = \frac{\rho}{\mu-\lambda} = 45s$$

$$T_{s} = T_{w} + T_{o} = \frac{\rho}{\mu-\lambda} + \frac{1}{\mu} = \frac{\lambda+\mu-\lambda}{\mu(\mu-\lambda)} = \frac{1}{\mu-\lambda} = 60s$$

Pro náš příklad je průměrná doba čekání ve frontě 45s a průměrná doba strávená v systému je 60s.

Příklad 2 – simulační řešení

Pro srovnání provedeme simulační experimenty v SIMLIB/C++:

Výsledky pro různou dobu simulace (od 1000 do 10⁷ sekund):

čas [s]	p ₀ (=nečeká)	Lw	T_w [s]	T_s [s]
1000	0.207	1.378	24.38	38.51
5000	0.226	1.646	30.32	44.31
10000	0.168	2.862	54.79	70.32
100000	0.248	2.153	42.35	57.05
1e+06	0.254	2.116	42.49	57.46
1e+07	0.250	2.255	45.16	60.16
analytické	0.25	2.25	45	60

Výsledky se blíží přesným hodnotám získaným analyticky.

Modely spolehlivosti

Spolehlivost = schopnost plnit požadované funkce podle stanovených podmínek

Pojem spolehlivost může zahrnovat:

- bezporuchovost
- životnost
- ...

Poznámky:

- Kvalita, ISO9000
- Modely spolehlivosti: kombinatorické, markovské, ...
- Fail-safe systémy

Ukazatele spolehlivosti

- Pravděpodobnost bezporuchové činnosti R(t) v intervalu $\langle 0, t \rangle$: $R(t) = e^{-\lambda t}$
- Pohotovost (availability) a(t) = pravděpodobnost, že v čase t bude systém v provozuschopném stavu. (Vlivy: četnost výpadků, rychlost oprav)
- Střední doba bezporuchové činnosti: $T_s = \int_0^\infty R(t) dt$ Anglicky: MTBF (Mean Time Between Failures)
- Intenzita poruch $\lambda(t) = \frac{1}{T_0}$

Poznámka:

Odolné systémy tolerují poruchy, pojem "high-availability".

Typický průběh intenzity poruch $\lambda(t)$ – vanová křivka

Poznámka: Rané poruchy — provoz — stáří.

Kombinatorické modely spolehlivosti

Sériové spolehlivostní zapojení:

$$R(t) = \prod_{i=1}^{n} R_i(t)$$

Paralelní spolehlivostní zapojení:

$$R(t) = 1 - \prod_{i=1}^{n} (1 - R_i(t))$$

Nevýhody: Komplikované sestavování schémat, ...

vod Modely ... Diskrétní CA Spojité Kombi. ... Analytické Spolehlivost

Markovské spolehlivostní modely

Příklad systému — tři prvky paralelně:

Stavový graf (1=funguje, 0=porucha, pořadí A1 A2 A3):

- Markovské procesy a řetězce
- Princip analytického řešení
- Výhody/nevýhody
- Aplikace

Poznámka:

Analyticky lze řešit i jiné typy modelů (nejen výše uvedené)

Úvod Modely ... Diskrétní CA Spojité Kombi, ... Analytické Spolehliv

Závěr

Shrnutí:

- Principy modelování a simulace
- Klasifikace systémů a modelů
- Používané metody a algoritmy
- Základy implementace simulačních nástrojů
- Aplikace simulace a souvislosti s různými obory

Poznámky:

- Co jsme vynechali
- Co se zkouší cílové znalosti