

Machine Learning

Water Prediction

Programs used to make projects

Orange data mining

- เป็น เครื่องมือวิเคราะห์ข้อมูล และ machine learning ที่มี ส่วนต่อประสานแบบกราฟิก (GUI) ทำให้ผู้ใช้สามารถสร้าง ขั้นตอนการ ทำงาน (workflow) เพื่อวิเคราะห์ข้อมูลได้ อย่างสะดวก
- จุดเด่นคือ ใช้งานง่าย เหมาะสำหรับผู้เริ่มต้น จนถึงผู้เชี่ยวชาญที่ต้องการ สำรวจและ วิเคราะห์ข้อมูลเชิงลึก โดยไม่ต้องเขียนโค้ดที่ซับ ซ้อน

Excel

- โปรแกรมสเปรดชีต ที่ใช้กันอย่าง แพร่หลายในการ จัดการข้อมูลเชิง ตาราง คำนวณ และวิเคราะห์ข้อมูล
- มีฟังก์ชันหลากหลายสำหรับการ สร้างสูตร คำนวณทางสถิติ สร้าง กราฟ และ สรุปผลข้อมูล เหมาะ สำหรับงานที่ต้องการ จัดการข้อมูล ในปริมาณมาก และ นำเสนอข้อมูล อย่างมีประสิทธิภาพ

R Studio

- สภาพแวดล้อมการพัฒนา (IDE)
 สำหรับภาษา R ซึ่งเป็นภาษาโปรแกรม
 ที่เน้นด้าน สถิติ และ การวิเคราะห์
 ข้อมูล
- มีเครื่องมือที่ช่วยในการ เขียนโค้ด การ แก้ไขจุดบกพร่อง (debug) และการ แสดงผลลัพธ์ ทำให้การทำงานกับ R มี ประสิทธิภาพสูง
- เหมาะสำหรับ นักสถิติ นักวิทยาศาสตร์
 ข้อมูล และผู้ที่ต้องการ วิเคราะห์ข้อมูล
 เชิงลึก ด้วยภาษา R

Orange Data Mining

EXAMPLE

5

Clean data Datetime
 Format to

YYYY-MM-DD,HH:MM:S

0.69

0.6

Α	В	С		
$station_id$	value	datetime		
6	0.69	1/1/2024 0:48		
6	0.69	1/1/2024 0:48		
6	0.7	1/1/2024 0:49		
6	0.7	1/1/2024 0:49		
6	0.7	1/1/2024 0:50		
6	0.7	1/1/2024 0:50		
6	0.71	1/1/2024 0:51		
6	0.71	1/1/2024 0:51		

Do Z-score with colum -> valu

- # Do Z-score with colum -> val
- # Group by columns Value
- > HIGH NORMAL LOW

File: TC4_tranform.csv and set value_normalized to target

Data Sample: tc4 tranfrom: 11073 instances, 6 variables

Features: 5 (1 categorical, 3 numeric, 1 time) (no missing values)

Target: numeric

	value_normalized	station_id	datetime	minute	second	water_level_category
1	-0.178169	6	2024-07-17	51	8	Normal
2	0.611823	6	2024-06-07	20	8	Normal
3	1.25818	6	2024-07-03	41	8	High
4	-1.61452	6	2024-03-13	10	8	Low
5	1.31204	6	2024-01-16	53	8	Hiah

Remaining Data: tc4 tranfrom: 2768 instances, 6 variables

Features: 5 (1 categorical, 3 numeric, 1 time) (no missing values)

Target: numeric

	value_normalized	station_id	datetime	minute	second	water_level_category
1	-0.824525	6	2024-11-03	2	8	Normal
2	-1.90179	6	2024-05-22	23	8	Low
3	0.378416	6	2024-05-01	32	8	Normal
4	1.1325	6	2024-05-07	10	8	High
5	1.33	6	2024-07-21	56	45	Hiah

D-4- T-61- (4)

STEP 3

SPLIT DATA 80:20

Tran: 11073 instance

6 varibles

Test: 2768 instance

6 varibles

Example datable and info

value_normalized	station_id	datetime	minute	second	water_level_category
-0.178169	6	2024-07-17 00:	51	8	Normal
0.611823	6	2024-06-07 00:	20	8	Normal
1.25818	6	2024-07-03 00:	41	8	High
-1.61452	6	2024-03-13 00:	10	8	Low
1.31204	6	2024-01-16 00:	53	8	High
1.47363	6	2024-07-03 00:	48	8	High
0.755458	6	2024-01-17 00:	36	8	Normal
-1.9377	6	2024-03-14 00:	10	8	Low
1.20432	6	2024-07-03 00:	46	8	High
0.522051	6	2024-06-05 00:	56	8	Normal
0.180919	6	2024-01-30 00:	18	8	Normal
-1.88383	6	2024-01-05 00:	48	8	Low
1.04273	6	2024-01-13 00:	4	8	High
0.827275	6	2024-03-18 00:	18	8	Normal
-1.5427	6	2024-11-07 00:	14	8	Low
1.33	6	2024-07-21 00:	26	19	High
0.342508	6	2024-07-19 00:	23	8	Normal
-0.96816	6	2024-05-19 00:	25	8	Normal
-1.72224	6	2024-07-13 00:	11	8	Low
0.0552381	6	2024-03-28 00:	53	8	Normal
0.988865	6	2024-01-27 00:	5	8	Normal
0.952956	6	2024-05-13 00:	25	8	Normal
1.36591	6	2024-07-03 00:	32	8	High
-0.375666	6	2024-10-03 00:	11	8	Normal
1.18636	6	2024-05-07 00:	13	8	High
1.07864	6	2024-06-03 00:	47	8	High

Basic statistics

Plot for scatter

Plots for Scatter all model

Linear Theory

Linear

ทฤษฎีเชิงเส้น (Linear Theory) ทฤษฎีเชิงเส้น เป็นแนวคิดทางคณิตศาสตร์ที่ใช้ศึกษาความสัมพันธ์ระหว่างตัวแปรต่างๆ โดยอาศัย สมการเชิงเส้น

ประเภทของทฤษฎีเชิงเส้น สมการเชิงเส้น: เป็นสมการที่มีรูปแบบ y = mx + b โดยที่:

y คือ ตัวแปรตาม

x คือ ตัวแปรอิสระ

m คือ ความชั้น

b คือ ระยะตัดแกน y

ตัวอย่างการประยุกต์ใช้ทฤษฎีเชิงเส้น

- การวิเคราะห์ความสัมพันธ์: ใช้หาความสัมพันธ์ระหว่างตัวแปรต่างๆ เช่น ความสัมพันธ์ระหว่างยอดขายกับค่า โฆษณา
- การสร้างแบบจำลอง: ใช้สร้างแบบจำลองทางคณิตศาสตร์เพื่อจำลองระบบต่างๆ เช่น แบบจำลองการเติบโตของ ประชากร
- การแก้ปัญหาทางเรขาคณิต: ใช้แก้ปัญหาทางเรขาคณิต เช่น การหาจุดตัดของเส้นตรง

Tree Theory

Tree

ทฤษฎีต้นไม้ (Tree Theory) สำหรับการสร้างแบรนด์ เปรียบเสมือนแนวคิดในการสร้าง รากฐานที่มั่นคงให้กับแบรนด์ เปรียบเสมือนต้นไม้ที่แข็งแรง

หลักการทำงาน

การสร้างต้นไม้: อัลกอริทึมจะเริ่มต้นด้วยชุดข้อมูลทั้งหมดและค้นหาตัวแปรที่จะแบ่งข้อมูลออกเป็นสองกลุ่มย่อยที่มี ความบริสุทธิ์ของคลาสสูงสุด

การแบ่งข้อมูล: ข้อมูลจะถูกแบ่งออกเป็นสองกลุ่มย่อยตามค่าของตัวแปรที่เลือก การวนซ้ำ: ขั้นตอนการแบ่งข้อมูลจะถูกทำซ้ำกับกลุ่มย่อยแต่ละกลุ่มจนกว่าจะได้กลุ่มย่อยที่มีความบริสุทธิ์ของคลาส สูงสุด หรือจนกว่าจะถึงเกณฑ์การหยุด

ผลลัพธ์: โมเดล Tree จะแสดงผลในรูปแบบของต้นไม้ที่มีกิ่งก้านสาขา แต่ละกิ่งก้านแสดงถึงตัวแปรที่ใช้ในการตัดสินใจ แต่ละใบแสดงถึงกลุ่มย่อยของข้อมูล

ประเภทของ Tree

Decision Tree: ใช้สำหรับงานการจำแนกประเภท

Regression Tree: ใช้สำหรับงานการถดถอย

ตัวอย่างการใช้งาน

การวิเคราะห์ข้อมูลลูกค้า: คาดการณ์ว่าลูกค้าแต่ละรายจะซื้อสินค้าหรือไม่ การวิเคราะห์ความเสี่ยง: คาดการณ์ว่าผู้กู้แต่ละรายจะผิดนัดชำระหนี้หรือไม่ การคาดการณ์ราคาอสังหาริมทรัพย์: คาดการณ์ราคาขายของอสังหาริมทรัพย์แต่ละแห่ง

Knn Theory

Knn

K-Nearest Neighbors (Knn Theory) เป็นอัลกอริ ทึมการเรียนรู้ของเครื่องแบบไม่ใช้โมเดล (Nonparametric) ที่ใช้สำหรับงานจำแนกประเภท (Classification) และการถดถอย (Regression) โดยใช้วิธีการเปรียบเทียบข้อมูลใหม่กับข้อมูลที่มีอยู่ แล้ว

Random forest Theory

random forest

ทฤษฎี Random Forest (Random Forest Theory) คือ เทคนิคการเรียนรู้ของเครื่องจักร ประเภท Ensemble Learning ที่นำเอา Decision Tree (ต้นไม้ตัดสินใจ) หลาย ๆ ต้นมาทำงานร่วมกัน

Standard score (z-scores)

Variance

$$\sigma^2 = \frac{\sum (X - \overline{X})^2}{N}$$

Standard deviation

$$\sigma = \sqrt{\frac{\sum (X - \bar{X})^2}{N}}$$

 σ = ค่าเบี่ยมเบนมาตรฐาน

 σ^2 = ค่าแปรปวน

X = ค่าตัวแปร

 \overline{X} = ค่าเฉลี่ย

N = จำนวนตัวแปรทั้งหมด

ช่วยให้เปรียบเทียบคะแนนจากชุดข้อมูลที่ต่างกันได้
 คะแนน Z มีค่าเฉลี่ย = O และค่าเบี่ยงเบนมาตรฐาน = 1
 ช่วยให้เข้าใจว่าคะแนนดิบอยู่ห่างจากค่าเฉลี่ยกี่หน่วยค่าเบี่ยงเบนมาตรฐาน

Predict Water Levels

ทางกลุ่มลองนำ WaterLevels ที่ได้จากการการทำ Z-SCORE มาเป็น Target ในการทำนาย เพื่อให้ทราบว่า ตัวเลขที่นำเข้ามาค่าจะอยู่ในช่วงไหน

Predict Water Levels (BasicStatistics)

จะเห็นว่า Levels ของน้ำจะอยู่ในช่วงระดับ Normal เป็นส่วนใหญ่

และทางกลุ่มพบว่า ในช่วงหลังจากเดือน 9 ให้หลังจะไม่พบค่าน้ำที่ สูงกว่าค่าเฉลี่ย

Test and score (WaterLevelS)

ใช้การ train model ด้วย Cross validation number of folds : 5 ครั้ง

เห็นได้ว่าการ tree และ random Forest จะได้ค่าที่แม่นยำ เทียบเท่ากัน

KNN และ Neural Network จะdiffกันค่อนข้าง บาก

Test and score (WaterLevelS)

ใช้การ train model ด้วย Cross validation number of folds : 10 ครั้ง

จากข้อมูลในภาพ มีโอกาสเกิด OverFitting กับ โมเดล Neural Network

 โมเดล Neural Network มีคะแนน AUC,
 CA, F1, Precision, Recall และ MCC บน ชุดข้อมูล Train สูงมาก (1.000)

Test and score(Values)

ใช้การ train model ด้วย Cross validation number of folds : 5 ครั้ง

เลือก Random Forest จะพบว่า การใช้ model Random Forest จะมี มีค่าที่ Diff กันไม่มากเมื่อเทียบกับค่า kNN Model Tree และ Linear Regression มีโอกาส ที่เกิด Over Fiting มากที่สุด

• โมเดล Linear Regression มีคะแนน R2 บนชุดข้อมูล Train สูงมาก (0.758)

Test and score(Values)

- ใช้การ train model ด้วย Cross validation number of folds : 10 ครั้ง เลือก Random Forest
- โมเดล Random Forest มีประสิทธิภาพการทำงานที่ดีกว่าโมเดลอื่น ๆ
- โมเดล Knn จะไม่ทนต่อค่า outlier และประสิทธิการทำงานปานกลางเมื่อ เทียบกับ Random Forest

• กลุ่มของเราเลือกใช้ Model Random Forest ด้วยเหตุผลคือมีคะแนน AUC, CA, F1, Precision, Recall, และ MCC สูงสุดสำหรับการทำนายระดับน้ำ และค่า MSE, RMSE, MAE, MAPE, และ R2 ดีที่สุดสำหรับการทำนายค่า ทั้งหมดถูกเทรนด้วยวิธี cross validation โดยใช้ Folds = 10 เพราะ Folds = 20 มีค่าที่แตกต่างน้อย