Analisi 3

Appunti di Analisi 3 del corso di Giovanni Alberti e Maria Stella Gelli

Arianna Carelli e Antonio De Lucreziis

I Semestre 2021/2021

Indice

1	Teoria della misura	2
	1.1 Misure astratte	2
	1.2 Esempi di misure	3
2	Spazi L^p e convoluzione	4
3	Spazi di Hilbert	5
4	Serie di Fourier	6
5	Applicazioni della serie di Fourier	7
6	Trasformata di Fourier	8
7	Funzioni armoniche	9
8	Integrazione di superfici	10

Teoria della misura

MISURE ASTRATTE

Siano

- X un insieme qualunque;
- \mathcal{A} una σ -algebra di sottoinsiemi di X. Ovvero una famiglia di sottinsiemi di X che rispetta le seguenti proprietà.
 - $-\emptyset, X \in \mathcal{A};$
 - ${\mathcal A}$ è chiusa per complementare, unione e intersezione numerabile.
- μ una misura su X, cioè una funzione $\mu \colon A \to [0, +\infty]$ σ -addittiva, cioè tale che data una famiglia numerabile $\{E_k\} \subset A$ disgiunta e posto $E := \bigcup E_n$, allora

$$\mu(E) = \sum_{n} \mu(E_n).$$

Seguono le proprietà.

- $\mu(\emptyset) = 0$;
- monotonia: dati $E, E' \in \mathcal{A}$ e $E \subset E'$, allora $\mu(E) \leq \mu(E')$;
- data una successione crescente di insiemi, $E_n \uparrow E$, allora $\mu(E) = \lim_{n \to \infty} \mu(E_n) = \sup_n \mu(E_n)$;
- se $E_n \uparrow E$ e $\mu(E_{\overline{n}}) < +\infty$ per qualche \overline{n} , allora $\mu(E) = \lim_{n \to +\infty} \mu(E_n) = \inf_n \mu(E_n)$;
- subadditività se $\bigcup E_n \supset E$, allora $\mu(E) \leq \sum_n \mu(E_n)$.

Dove una successione crescente di insiemi $E_n \uparrow E$ è tale che $E_1 \subset E_2 \subset \dots E_n \subset \dots$ e $\bigcup E_n = E$.

Osservazione 1. Dato $X' \in \mathcal{A}$ si possono restringere \mathcal{A} e μ a X'.

Terminologia.

- Sia P(X) un'affermazione che dipende da $x \in X$. Si dice che P(X) vale per quasi μ -quasi ogni $x \in X$ se l'insieme $\{x \colon P(x) \text{ non vale }\}$ è (contenuto in) un insieme di misura μ nulla.
- μ si dice completa se $F \subset E, E \in \mathcal{A}$ e $\mu(E) = 0$, allora $F \in \mathcal{A}$ (e di conseguenza $\mu(F) = 0$).
- μ si dice finita se $\mu(X) < +\infty$.

D'ora in poi consideriamo solo misure complete.

Esempi di misure

Misura che conta i punti. Siano

- \bullet X qualunque
- $\mathcal{A} := \mathcal{P}(X) = \{\text{sottoinsiemi di } X\};$
- $\mu(E) := \#E \in \mathbb{N} \cup \{+\infty\}.$

Delta di Dirac in x_0 . Siano

- \bullet X qualunque
- $\mathcal{A} := \mathcal{P}(X)$;
- $x_0 \in X$ fissato, allora $\mu(E) := \delta_{x_0}(E) = \mathbb{1}_E(x_0)$.
- 2. Misura di Lebesgue Siano
 - $X = \mathbb{R}^n$;
 - \mathcal{M}^n la σ -algebra dei misurabili secondo Lebesgue;
 - \mathcal{L}^n la misura di Lebesgue.

Definiamo la misura di Lebesgue \mathcal{L}^n .

Dato R parallelepipedo in \mathbb{R}^n , cioè $R = \prod_{k=1}^n I_k$ con I_k intervalli in \mathbb{R} . Si pone

$$\operatorname{vol}_n(R) \coloneqq \prod_{k=1}^n \operatorname{lungh}(I_k)$$

per ogni $E \subset \mathbb{R}^n$. Si pone

$$\mathcal{L}^n(E) := \inf \left\{ \sum_i \operatorname{vol}_n(R_i) \mid \{R_i\} \text{ tale che } \cup_i R_i \supset E \right\}.$$

Osservazione 2. Seguono le seguenti osservazioni.

- $\mathcal{L}^n(R) = \text{vol}_n(R)$ (fatto non del tutto ovvio);
- \mathcal{L}^n è così definita se $\mathcal{P}(\mathbb{R}^n)$ ma non è σ -addittiva;
- \mathcal{L}^n è σ -addittiva su \mathcal{M}^n (è per questo che bisogna introdurre \mathcal{M}^n).

Definizione di \mathcal{M}^n .

Dato $E \subset \mathbb{R}^n$, si dice che E è misurabile (secondo Lebesgue) se per ogni $\varepsilon > 0$ eiste A aperto, C chiuso tale che

- $C \subset E \subset A$,
- $\mathcal{L}^n(A \setminus C) < \varepsilon$.

Osservazione 3. Seguono le seguenti osservazioni.

 \bullet Per ogni E misurabile vale

$$\mathcal{L}^n = \inf \{ \mathcal{L}^n : A \text{ aperto}, A \supset E \} = \sup \{ \mathcal{L}^n : K \text{ compatto}, K \subset E \}.$$

• $F \subset E$ con $E \subset \mathcal{M}^n$ e $\mathcal{L}^n(E) = 0$, allora $F \in \mathcal{M}^n$. Ovvero la misura di Lebesgue è completa!

Useremo spesso la notazione

$$|E| := \mathcal{L}^n(E)$$
.

Spazi L^p e convoluzione

Spazi di Hilbert

Serie di Fourier

Applicazioni della serie di Fourier

Trasformata di Fourier

Funzioni armoniche

Integrazione di superfici

prova test prova