Discussion Session 7

Review on Fourier Series

$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jw_n t} = \sum_{n=-\infty}^{\infty} F_n e^{jnw_n t}$$

$$W_n = \frac{2\pi}{T} : \text{ fundamental frequency}$$

$$F_n = \frac{1}{T} \int f(t) e^{-jw_n t} dt \qquad F_n : \text{ Fourier Coefficient}$$

$$F_n = \frac{1}{T} \int f(t) e^{-jw_n t} dt$$
 $F_n: F_{ourier}$ coefficient

Example:
$$T = 2\pi$$
, $f(t) = 1 + \sin^2(t)$ for $t \in (-\pi, \pi)$

Fourier Gefficient and signal transformation

$f(+) \stackrel{FS}{\longleftrightarrow} F_{\Lambda}$	period = T
f(t-t.) = Fs, Fne-j	um.t.
f(-+) (Fs) Fn	
$f(a+) \longleftrightarrow F_n$	period = I
d f(+) (jkw.	
<u></u>	/ Fn
$f(\bar{t}) \longleftarrow F_{-n}^*$	

$$f_1(H) \stackrel{FS}{\longleftarrow} a_n$$
 $f_2(H) \stackrel{FS}{\longleftarrow} b_k$

$$Af_1(H) * B f_2(H) \stackrel{FS}{\longleftarrow} Aa_k * Bb_k$$

$$f_1(H) f_2(H) \stackrel{FS}{\longleftarrow} a_k * b_k$$

$$f(a+) \longleftrightarrow F_n \quad period = \frac{T}{a}$$

$$\frac{d}{dt} f(t) \longleftrightarrow (jkw_n) F_n$$

$$f(t) \longleftrightarrow F_n^*$$

Famous fourier series pairs:

pulse train =
$$\sum_{k=-\infty}^{\infty} rect\left(\frac{1-kT}{2T_i}\right)$$
 $\sum_{k=-\infty}^{FS} a_k = \frac{2T_i}{T} sinC\left(\frac{2T_i}{T}k\right)$

Delta train =
$$\sum_{k=-\infty}^{\infty} \delta(f_-kT)$$
 $\stackrel{FS}{\longleftarrow}$ $\alpha_k = \frac{1}{T}$

$$Cos(lw.t) = cos(l \frac{2\pi}{T}t) \xrightarrow{FS} a_{k} = \begin{cases} 0 & k \neq l \\ \frac{1}{2} & k = \pm l \end{cases}$$

$$Sin (lw_{*}+) = Sin (l \frac{2\eta}{T}+) \stackrel{FS}{\longleftarrow} \begin{cases} 0 & k \neq l \\ \frac{1}{2j} & k = l \\ \frac{-1}{2j} & k = -l \end{cases}$$

Example: What is X(t) if its coefficients are $a_k = e^{jk \frac{\pi}{4}} \frac{\sin(k \frac{\pi}{4})}{2k}$								
VV /W1	D ALTI		11)	OFF HUENT	3 we	ak = e +	2k	WITM =