# Estructuras de Datos

Dr. Martin Gonzalez-Rodriguez

ISBN 978-1-365-00694-4

© 2012 – 2016 Martín González Rodríguez

## Diseño y Algoritmia

**Dr. Martin Gonzalez-Rodriguez** 

## Resolución de Problemas en Ingeniería

#### Estrategia

- Conocer y acotar el problema (análisis).
- Encontrar un modelo que represente el problema (abstracción).
- Formular el algoritmo sobre el modelo.



## **Programas**

#### La Frase

Programas = Estructuras de Datos + Algoritmos

Identificar medios para almacenar datos y diseñar algoritmos que resuelvan la tarea asignada a los procesos.

- Acuñada por Niclaus Wirth en 1976
  - Premio Turing 1984.
    - Diseñador de los lenguajes de programación Euler, Algol, Pascal, Modula,
       Modula-2 y Oberon.

## Tipo de Dato

#### Definición

- Conjunto de valores que puede asumir una propiedad de una clase.
  - **TDP** (Tipos de Datos Predefinidos) son los Tipos de Datos **por defecto** de un lenguaje de programación.
    - Número Entero.
    - Número Real.
    - Carácter.
    - Booleano.
    - Referencia.

### Estructura de Datos

#### Definición

- Conjunto de datos relacionados de una forma determinada¹.
  - Los **TDE** (Tipos de Datos Estructurados) de un lenguaje de programación son colecciones de Tipos de datos almacenados de forma secuencial.
    - Arrays.
    - Cadenas de caracteres.
    - Clases y objetos.
  - Existen otras estructuras de datos básicas *por defecto* implementadas por medio de clases.
    - ArrayList.
    - List.
    - HashMap.
    - Stack.
    - ...



## Estructura de Datos

#### Clasificación

- Principales familias de estructuras de datos
  - Lineales (listas, pilas y colas).
  - En red (grafos).
  - Jerárquicas (árboles).
  - Diccionario (tablas hash).



Se pueden realizar combinaciones infinitas de estructuras.

## Estructura de Datos

#### ¿Qué estructura elegir?

- La selección de la estructura adecuada para un problema determinado depende de...
  - 1. Adecuación de la estructura a la representación del modelo.
  - 2. Eficiencia de la estructura.
    - − Temporal (velocidad de los algoritmos asociados)  $\rightarrow$  O<sub>T</sub>(n).
    - Espacial (ocupación en memoria de la estructura)  $\rightarrow O_M(n)$ .

#### ¿Cuántas veces se ejecuta test()?

```
Algoritmo B T_B = 2

{
  test();
  test();
  if (5%2 == 0) {
   test();
   return (test()%2);
  }
  return (0);
}
```

#### ¿Cuántas veces se ejecuta test()?

```
Algoritmo C
                  T_{c}(n) = 4n + 6
 test();
 test();
 test();
 for (int i=0; i<n; i++) {
  test();
  test();
  test();
  test();
 test();
 test();
 test();
```

¿Qué algoritmo es más rápido?



$$T_{A}(n) = 3$$
  
 $T_{B}(n) = 2$   
 $T_{C}(n) = 4n + 6$   
 $T_{D}(n) = 5n + 1$ 

#### ¿Cuántas veces se ejecuta test()?

```
Algoritmo E T_E(n) = 2n^2 + 1

{
  for (int i=0; i<n; i++)
  for (int j=0; j<n; j++) {
    test();
    test();
  }
  test();
}
```

```
Algoritmo F T<sub>F</sub> (n) = 2([log<sub>2</sub>n] + 1) + 1

{
  while (n>0) {
   test();
   test();
   n = n/2;
  }

  test();
}
```



#### Importancia de la Eficiencia Temporal

| N  | $T_A(n) = 2^n$ | $T_B(n) = n^3$ |
|----|----------------|----------------|
| 10 | 0,1 segundos   | 10 segundos    |
| 15 | 3,27 segundos  | 33,7 segundos  |
| 20 | 1,75 minutos   | 1,3 minutos    |
| 25 | 0,93 horas     | 2,5 minutos    |
| 30 | 29,8 horas     | 4,5 minutos    |
| 35 | 39,7 días      | 7,14 minutos   |
| 40 | 3,4 años       | 10,66 minutos  |
| 45 | 1,08 siglos    | 15,18 minutos  |

## Grafos

**Dr. Martin Gonzalez-Rodriguez** 

## Estructuras de Datos en Red

#### Objetivo

- Modelar relaciones conceptuales complejas entre objetos.
  - Redes de transporte (carreteras, ferrocarril, metro, electricidad, gas, petróleo, etc.).
  - Redes de comunicaciones (Internet, telefonía, correos, etc.)
  - Redes Sociales (Facebook, Google+, préstamo, deuda, etc.).
  - Estructuras (moleculares, neuronales, genéticas, etc.).

## Definición

#### ¿Qué es un Grafo?

Un grafo es un modelo matemático que permite representar relaciones arbitrarias entre objetos.



## Definición

#### Definición Formal

- ❖ Un Grafo es un par (V, E) denotado por G(V, E) donde:
  - V es un conjunto finito de Vértices (también llamados Nodos).

$$V = \{V_1, V_2, ...\}$$
 $V_1$ 

- E es una familia de **pares de elementos** (v, w) pertenecientes a **V** llamados Aristas (*Edges*).
  - Representan relaciones entre el vértice v y el vértice w.



## Tipología

#### Tipos de Grafos

- Si los pares {v,w} son ordenados
  - Éstos se conocen como **Arcos** y se dice que el grafo es *dirigido* (AKA *Grafo Orientado* o *Digrafo*).



- Si los pares {v, w} **no son** ordenados
  - Éstos se conocen como Aristas y se dice que el grafo es no dirigido.



## Tipología

#### Tipos de Grafos

- Un Grafo Etiquetado es un trío (V, E, W) denotado por G(V, E, W) donde
  - W es un conjunto finito de etiquetas en el que cada arco u arista dispone de su propia etiqueta.

$$W = \{W_1, W_2,...\}$$

- Las etiquetas pueden ser:
  - Números. Las etiquetas de llaman pesos y pueden representar costes o beneficios.



Caracteres o cadenas de caracteres.



## Putting it all Together

#### Definición Formal Completa

$$V = \{V_1, V_2, V_3, V_4\}$$
 
$$E = \{(V_1, V_2), (V_1, V_3), (V_2, V_4), (V_3, V_2), (V_4, V_3)\}$$
 
$$W = \{3, 1, 6, -1, 2\}$$



## Conceptos Básicos

#### Bucle

Arco u arista con igual origen que destino.

#### Grado de un nodo

- Número de arcos u aristas conectados al nodo.
  - Grado de Entrada (gE) de un nodo:
    - » Número de arcos o aristas que tienen al nodo como destino.
  - Grado de Salida (gS) de un nodo:
    - » Número de arcos o aristas que tienen al nodo como origen.



## Conceptos Básicos

- Nodo Fuente
  - Si cumple que GradoSalida > 0 y GradoEntrada = 0.
- Nodo Sumidero
  - Si cumple que **GradoSalida = 0** y **GradoEntrada > 0**.
- Nodo Aislado
  - Si cumple que GradoSalida = 0 y GradoEntrada = 0.



## Capacidad de un Grafo

n = número de nodos de un grafo

n = Cardinalidad del conjunto V.

$$V = \{V_1, V_2, ..., V_{n-1}, V_n\}$$

El valor de n se utiliza como parámetro para medir la eficiencia de las operaciones sobre grafos.

## Capacidad de un Grafo

#### Cálculo del número de arcos en base a n

❖ A<sub>min</sub>(n): Número **mínimo** de arcos





$$\sqrt{V_4}$$

$$\left(V_{3}\right)$$

$$A_{min}(n) = 0$$

## Capacidad de un Grafo

Cálculo del número de arcos en base a n

♣ A<sub>max</sub>(n): Número máximo de arcos (Grafo Completo)





$$A_{max}(n) = n(n-1) = n^2 - n \text{ (sin bucles)}$$

$$A_{max}(n) = n^2 - n + n = n^2$$
 (con bucles)

## Representación en Memoria

#### Densidad de un grafo

- **Grafos densos**:  $A(n) \rightarrow n^2$ .
  - Número de arcos similar a la de un grafo completo.
  - Eficiencia máxima sobre memoria estática (matrices, arrays).
- **Grafos ligeros**:  $A(n) \rightarrow n$ .
  - Promedio de un arco por nodo.
  - Eficiencia máxima sobre memoria dinámica (listas) al requerir de pocos enlaces.

## **Graph Class – Matrix**

#### **Adjacency Matrix**

```
private T [] nodes;
private boolean[][] edges;
private double[][] weight;
int size; // real number of nodes stored in the structure
```

- nodes: Almacena los objetos de las clases que representan a cada nodo.
- El elemento edges[i,j] será true si y solo si existe un arco que tiene su origen en i y su destino en j.
- El elemento weight[i, j] almacena el peso (coste) del arco con origen en i y destino en j.
  - El peso *puede* ser cero (0,0).
  - Si ese arco no existe, el valor *será* cero (0,0).

## **Graph Class – Matrix**



## Análisis de Eficiencia

#### Rendimiento de las Matrices de Adyacencia

- Ventajas
  - Acceso instantáneo a la información de cualquier elemento de las matrices.
    - Acceso O(1).

#### Desventajas

- Dificultad para determinar el tamaño inicial de la matriz.
  - Debería ser lo más cercano posible a n.
- Desaprovechamiento de memoria en grafos ligeros (matrices casi vacías).
  - Memoria consumida: O<sub>M</sub>(n²).

#### Escenario de uso

Grafos densos.

## Graph Class – List

#### Adjacency List

```
class Edge{
        private double weight;
        private Node target;
}

class Node <T>{
        private T node;
        private LinkedList<Edge> edges;
}

private LinkedList<Node> nodes;
```

#### Lista de listas

- La lista principal (nodes) contiene la colección V de nodos.
- Cada nodo de esta lista contiene a su vez una lista con información sobre sus nodos adyacentes (colección edges).

## Graph Class – List





## Análisis de Eficiencia

#### Rendimiento de las Listas de Adyacencia

#### Ventajas

- Memoria consumida en función del número de nodos y del número de aristas reales.
  - Memoria consumida:  $O_M(K_1n + K_2a)$ , donde  $K_1$  = #bytes por nodo y  $K_2$  = #bytes por arco.

#### Desventajas

- Es necesario realizar complejas búsquedas secuenciales en las listas.
  - Acceso O(n).
- Si el grafo es denso se desaprovecha gran cantidad de memoria en las referencias necesarias para mantener las listas.
  - El grado máximo de desaprovechamiento de memoria se alcanza con el grafo completo.

#### Escenario de Uso

Grafos ligeros.

## **Graph Class – Métodos Básicos**

#### Adjacency Matrix

| Método              | Complejidad        |
|---------------------|--------------------|
| graph (constructor) | O(1)               |
| getNode             | O(n)               |
| addNode             | O(n)               |
| removeNode          | O(n)               |
| existEdge?          | O(n)               |
| addEdge             | O(n)               |
| removeEdge          | O(n)               |
| print               | O(n <sup>2</sup> ) |

## **Graph Class – Métodos Básicos**

graph (fragment)
size = 0;

nodes



size = 0

```
getNode (Pseudocode)

public int getNode (T node)
{
  for (int i=0; i<size; i++)
    if (nodes[i].equals(node))
    return (i); // returns the node's position

return (-1); // search fails, node does not exist
}</pre>
```



#### addNode (Pseudocode)

O(n)

```
public void addNode (T node)
 // precondition: node does not exits and there is
 // available space for the node.
 if (getNode(node) == -1 && size < nodes.length)
  nodes[size] = node;
  //inserts void edges
  for (int i=0; i<=size; i++)
   edges[size][i]=false;
   edges[i][size]=false;
   weight[size][i]=0;
   weight[i][size]=0;
  ++size;
```







#### removeNode (Pseudocode)

O(n)

```
public void removeNode (T node) {
   int i = getNode(node);
   if (i>=0) {
    --size;
    if (i != size+1) { // it is not the last node
     nodes[i] = nodes[size]; //replaces by the last node
     //replace elements in the vectors edges and weights
     for (int j=0; j<=size; j++) {
      edges[j][i]=edges[j][size];
      edges[i][j]=edges[size][j];
      weight[i][j]=weight[size][j];
      weight[j][i]=weight[j][size];
      // loop (diagonal)
      edges[i][i] = edges[size][size];
      weight[i][i] = weight[size][size];
```

## existsEdge (Pseudocode) O(n)public boolean existsEdge (T origin, T destination) int i=getNode(origin); int j=getNode(destination); // precondition: both nodes must exist. // if don't... should we throw an exception? if $(i \ge 0 \&\& j \ge 0)$ return(edges[i][j]); else return (false);

# addEdge (Pseudocode)

O(n)

```
public void addEdge (T origin, T destination, double
edgeWeight)
 // precondition: the edge must not already exist.
 if (!existEdge(origin, destination))
  int i=getNode(origin);
  int j=getNode(destination);
  edges[i][j]=true;
  weight[i][j]=edgeWeight;
 else
  ; // what about throwing an exception here?
```

## removeEdge (Pseudocode) O(n)public void removeEdge (T origin, T destination) { // precondition: the edge must exist. if (existsEdge(origin, destination)) { int i=getNode(origin); int j=getNode(destination); edges[i][j]=false; weight[i][j]=0.0; else ; // what about throwing an exception?

```
print (Pseudocode)

public void print() {

for (int k=0; k<size; k++)
  nodes[k].print();

for (int i=0; i<size; i++) {
  for (int j=0; j<size; j++) {
    System.out.print(edges[i][j] + "(");
    System.out.print(weight[i][j] + ") ");
  }
  System.out.println();
}</pre>
```

# **Graph Class – Métodos Avanzados**

## Adjacency Matrix

| Método                   | Complejidad        |
|--------------------------|--------------------|
| Dijkstra                 | O(n <sup>2</sup> ) |
| Floyd                    | $O(n^3)$           |
| Recorrido en Profundidad | O(n <sup>2</sup> ) |
| Prim / Warshall          | O(n <sup>2</sup> ) |

## Más Conceptos Básicos

- **Camino** entre dos nodos  $V_i$ ,  $V_i$  ( $V_i \neq V_i$ )
  - Secuencia de nodos (con sus respectivas aristas) que permiten acceder al nodo V<sub>i</sub> desde el nodo V<sub>i</sub>.
    - Caminos entre V<sub>1</sub> y V<sub>5</sub>

```
\sim C_A = V_1, V_5
```

$$\sim C_B = V_1, V_2, V_3, V_4, V_5$$

- »  $C_C = V_1, V_2, V_3, V_4, V_2, V_3, V_4, V_5$
- » ..
- **Longitud** de un camino entre dos nodos  $V_i$ ,  $V_j$  ( $V_i \neq V_j$ )
  - Número de aristas empleadas para llegar al nodo V<sub>i</sub>.
  - Equivale al número de nodos del camino menos uno.
    - Longitud de caminos entre V<sub>1</sub> y V<sub>5</sub>

$$\rightarrow$$
 L(C<sub>A</sub>) = 1.

$$\rightarrow$$
 L(C<sub>B</sub>) = 4.

$$L(C_C) = 7.$$



## Más Conceptos Básicos

- Camino Simple entre dos nodos V<sub>i</sub>, V<sub>j</sub> (V<sub>i</sub> ≠ V<sub>j</sub>)
  - Es aquel camino en el que no se repite ningún nodo.

#### Teorema del Camino Simple

Si existe algún camino entre un par de nodos  $V_i$  (origen) y  $V_j$  (destino), entonces existe al menos un camino simple entre  $V_i$  y  $V_j$ .



Es posible eliminar los ciclos de un camino para convertirlo en un camino simple.

# Más Conceptos Básicos

- **Camino de Longitud Mínima** entre dos nodos  $V_i$ ,  $V_j$  ( $V_i \neq V_j$ )
  - Es aquel camino que implique pasar por el menor número de arcos.
    - El Camino de Longitud Mínima es simple.
    - Camino de Longitud Mínima entre V<sub>1</sub> y V<sub>4</sub>

$$\sim$$
 C<sub>A</sub> = V<sub>1</sub>, V<sub>4</sub> (Longitud 1).



- Camino de Coste Mínimo entre dos nodos V<sub>i</sub>, V<sub>i</sub> (V<sub>i</sub> ≠ V<sub>i</sub>)
  - Aquel que implica pasar por arcos cuya suma de pesos es mínima.
    - Camino de Coste mínimo entre V<sub>1</sub> y V<sub>4</sub>
      - »  $C_A = V_1, V_2, V_3, V_4$  (Coste 9).

#### Problema a Resolver

- ¿Cuál es el camino de coste mínimo para acceder a cada uno de los nodos de un grafo desde un nodo **v** dado?
  - ¿Cuál es la ruta más barata para llegar a Barcelona desde Oviedo?
  - ¿Cuál es la ruta más corta para llegar a Madrid partiendo de Oviedo?
    - ¿Y la ruta a Valencia? ¿Y el camino a Sevilla? ¿Y a Bilbao?... desde Oviedo.

- Desarrollado por el holandés Edger Dijkstra en 1956
  - Premio Turing 1972.

#### **Productos Obtenidos**

- Vector D (unidimensional) o de Costes Mínimos
  - Guarda el coste mínimo desde v a cada uno de los nodos del grafo.
- Vector P (unidimensional) o de Rutas de Coste Mínimo
  - Almacena la ruta de coste mínimo desde v a cada uno de los nodos del grafo.



## Ejemplo

 $S = \{A\}$ 







#### Inicialización

#### Iniciar Conjunto S

- Elementos para los cuales ya se conoce el coste mínimo de ir desde v.
- Se inicializa con el propio **v** ya que al principio solo se conoce el coste mínimo de ir desde **v** a **v** (es decir, cero).
  - S = {v}.

#### Iniciar Vector D de Coste Mínimo

- Copia la fila correspondiente al elemento v de una matriz weight modificada...
  - sustituyendo los valores de coste 0 por ∞.
  - El coste de moverse desde un nodo a otro a través de un camino (directo) que no existe es infinito.
  - En la primera iteración solo se conocen los costes de moverse de v a todos los demás nodos a través de un camino directo (longitud uno).

## Ejemplo

 $S = \{A\}$ 









## Ejemplo

 $S = \{A, D\}$ 







## Ejemplo

 $S = \{A, D, B\}$ 









## Ejemplo

 $S = \{A, D, B, C\}$ 









## El Algoritmo

# En cada Iteración... 1. Evaluar el coste de todos los arcos {k, w} en donde k pertenece al conjunto S y w al conjunto V-S. 2. Seleccionar aquel de coste mínimo, añadiendo w al conjunto S. a. w es el nodo con el menor coste en D! 3. Para todo nodo m de V-S hacer: if (D[w] + weight[w][m] < D[m]) { D[m] = D[w] + weight[w][m]; P[m] = w; } }</pre>

#### Condición de Parada

- Conjunto S = Conjunto V (se han explorado todos los nodos del grafo).
  - Realizadas n 1 iteraciones.













#### Conclusiones

- Dijkstra supone el coste de ir de un nodo a si mismo como 0
  - Por ello no calcula D[v].
- El algoritmo no funciona con costes negativos (bonificaciones)
  - ¡El camino de coste mínimo no tiene porqué ser simple!



Coste mínimo entre V<sub>1</sub> y V<sub>4</sub> implicaría viajes infinitos entre V<sub>2</sub> y V<sub>3</sub>

- Puede calcular el Camino de Longitud Mínima
  - Basta con sustituir costes por 1 en weight.

## Complejidad Temporal

# En cada Iteración... 1. Evaluar el coste de todos los arcos {k, w} en donde k pertenece al conjunto S y w al conjunto V-S. 2. Seleccionar aquel de coste mínimo, añadiendo w al conjunto S. a. w es el nodo con el menor coste en D! 3. Para todo nodo m de V-S hacer: if (D[w] + weight[w][m] < D[m]) { D[m] = D[w] + weight[w][m]; P[m] = w; } }</pre> O(n)

 $O(n^2)$ 

## **HOMEWORK**

#### **PLAYGROUND**

- Consulte la entrada para el Algoritmo de Dijkstra en la Wikipedia
  - Estudie cuidadosamente todo el contenido de la entrada.
    - Ponga especial atención a como el uso de Colas de Prioridad puede afectar a la complejidad temporal del algoritmo.
    - La estructura de datos Colas de Prioridad será tratada cuando se analicen las Estructuras de Datos Jerárquicas.

Los conocimientos adquiridos en esta tarea serán evaluados en el examen

#### Problema a Resolver

- Obtener caminos de coste mínimo entre cualquier par de nodos del grafo
  - ¿Cuál es la ruta más barata para llegar a Barcelona desde Oviedo, Sevilla o Burgos?
    - ¿Aplicar Dijkstra n veces? (una por cada nodo de partida).

Desarrollado por los estadounidenses Robert Floyd y Stephen Warshall en 1962.

## Productos Obtenidos (1/2)

- Matriz A (AKA matriz de Costes Mínimos)
  - Guarda el coste mínimo de ir desde cualquier nodo a cada uno de los restantes nodos del grafo.



## Productos Obtenidos (2/2)

- Matriz P o de Rutas de Coste Mínimo
  - Almacena la secuencia de nodos que forman todos los caminos de coste mínimo.

```
printPath (fragmento)
private void printPath(int i, int j)
int k = P[i][j];
 if (k>0) {
 printPath (i, k);
  System.out.print ('-' + k);
 printPath (k, j);
System.out.print (departure);
printPath (departure, arrival);
System.out.println ('-' + arrival);
```



#### Inicialización

- Iniciar Matriz A de Coste Mínimo
  - Copia de todos los valores de una matriz weight modificada de forma idéntica al algoritmo de Dijkstra
    - Sustituyendo los valores de coste 0 por ∞.
    - Pero... utilizando valores 0 en la diagonal principal (el coste de ir de un nodo a si mismo se considera nulo).

## El Algoritmo

- En cada iteración se considera un nodo k por el que hay que pasar obligatoriamente
  - Se ejecutan n iteraciones
    - Equivalente de ir añadiendo uno a uno todos los nodos al conjunto S utilizado por Dijkstra.
  - En cada iteración se evalúa el coste de ir de cualquier nodo i a cualquier nodo j pasando por k.
    - Si el coste es menor que el registrado hasta entonces en A, se actualiza el valor de A[i,j] y de P[i,j] indicando que el camino de coste mínimo pasa por k.



¿Ir de  $V_2$  a  $V_3$  vía  $V_1$  (coste ∞ + 4 = ∞) es más barato que ir directamente (coste ∞)?



¿Ir de  $V_1$  a  $V_5$  vía  $V_2$  (coste 3 + 5 = 8) es más barato que ir con coste  $A_0$  (8)?



¿Ir de  $V_1$  a  $V_5$  vía  $V_3$  (coste 4 + 3 = 7) es más barato que ir con coste  $A_1$  (8)?



¿Ir de  $V_5$  a  $V_6$  vía  $V_4$  (coste 7 + ∞ = ∞) es más barato que ir con coste  $A_2$  (3)?



¿Ir de  $V_1$  a  $V_4$  vía  $V_5$  (coste 7 + 7 = 14) es más barato que ir con coste  $A_3$  ( $\infty$ )?



¿Ir de  $V_1$  a  $V_4$  vía  $V_6$  (coste 10 + 2 = 10) es más barato que ir con coste  $A_4$  (14)?



¿Ir de  $V_4$  a  $V_5$  vía  $V_1$  (coste  $\infty$  + 10 =  $\infty$ ) es más barato que ir directamente (6)?



¿Ir de  $V_1$  a  $V_3$  vía  $V_2$  (coste 1 + 5 = 6) es más barato que ir con coste  $A_0$  ( $\infty$ )?



¿Ir de  $V_1$  a  $V_5$  vía  $V_3$  (coste 6 + 1 = 7) es más barato que ir con coste  $A_1$  (10)?



¿Ir de  $V_1$  a  $V_3$  vía  $V_4$  (coste 3 + 3 = 5) es más barato que ir con coste  $A_2$  (6)?



¿Ir de  $V_1$  a  $V_2$  vía  $V_5$  (coste 6 + ∞ = ∞) es más barato que ir con coste  $A_3$  (1)?

#### Floyd para rutas especiales

Es posible mejorar el algoritmo para calcular caminos de coste mínimo que pasen por un conjunto L de nodos.

# Floyd (fragmento) for (int k=0; k<size; k++) if (k in L) for (int i=0; i<size; i++) for (int j=0; j<size; j++) if (A[i][k] + A[k][j] < A[i][j]) { A[i][j] = A[i][k] + A[k][j]; P[i][j] := k; } }</pre>

#### Centro de un Grafo Dirigido

- Es centro de un grafo es aquel nodo v más cercano al nodo más distante.
  - ¿Dónde ubicar un centro de distribución en una región?
  - ¿Dónde colocar el hospital o la estación central en una ciudad?

#### Excentricidad

- La excentricidad de un nodo v es el máximo de los costes de todos los caminos de coste mínimo con destino v.
- El centro de un grafo se encuentra en aquel nodo de mínima excentricidad.

#### Algoritmo de búsqueda del centro de un grafo

- 1. Aplicar Floyd para obtener matriz de costes mínimos.
- 2. Buscar el coste mayor en cada columna (excentricidad de cada nodo destino).
- 3. Elegir aquel nodo con la menor excentricidad como centro del grafo.



#### **Matriz A Original**



#### **Matriz A Final**



Buscar máximo en cada columna

#### **HOMEWORK**

#### **PLAYGROUND**

- Consulte la entrada para el Algoritmo de Floyd-Warshall en la Wikipedia
  - Estudie cuidadosamente todo el contenido de la entrada.
    - Averigüe que quiere decir que el algoritmo utilice Memoria Cuadrática.
    - Preste atención al tratamiento que reciben los Ciclos Negativos y como pueden ser detectados por el algoritmo.

Los conocimientos adquiridos en esta tarea serán evaluados en el examen

#### Problema a Resolver

- Recorrer todos los nodos de un grafo a partir de un nodo inicial, siguiendo el camino señalado por sus sus arcos.
  - Emplea la estrategia visitar primero a los hijos (depth-first) y luego a los hermanos.
  - Es necesario llevar un control de los nodos visitados.

```
resetVisited O(n)

public void resetVisited ()
{
  for (int i=0; i<size; i++)
    nodes[i].setVisited(false);
}</pre>
```

#### Problema a Resolver

- Recorrer todos los nodos de un grafo a partir de un nodo inicial, siguiendo el camino señalado por sus sus arcos.
  - Emplea la estrategia visitar primero a los hijos (depth-first) y luego a los hermanos.
  - Es necesario llevar un control de los nodos visitados.

#### Deep-first print (pseudocode)

```
public void DFPrint(int v) {
  nodes[v].setVisited(true);
  nodes[v].print();

  for each node w accessible from v do
    if (!nodes[w].getVisited())
        DFPrint(w);
}
```

#### Ejercicio *DFPrint* (V<sub>1</sub>)

♦ Antes de visitar V<sub>1</sub>







Ejercicio *DFPrint* (V<sub>1</sub>)

❖ Visitando V<sub>1</sub>







Ejercicio *DFPrint* (V<sub>1</sub>)

Visitando V<sub>2</sub>







#### Ejercicio *DFPrint* (V<sub>1</sub>)

Visitando V<sub>4</sub>







#### Ejercicio *DFPrint* (V<sub>1</sub>)

Visitando V<sub>3</sub>







#### Ejercicio *DFPrint* (V<sub>1</sub>)

Continuamos visita de V<sub>4</sub>







#### Ejercicio *DFPrint* (V<sub>1</sub>)

Continuamos visita de V<sub>1</sub>







 $O(n^2)$ 

Ejercicio DFPrint (V<sub>2</sub>)

Visitando V<sub>2</sub>







#### Ejercicio DFPrint (V<sub>2</sub>)

Visitando V<sub>4</sub>







#### Ejercicio DFPrint (V<sub>2</sub>)

Visitando V<sub>3</sub>







#### Ejercicio DFPrint (V<sub>2</sub>)

Continuamos visita de V<sub>4</sub>







#### Para garantizar el recorrido completo del grafo

#### Invocación especial a DFPrint

```
resetVisited();

For (int i=0; i<size; i++)
  if (!nodes[i].getVisited())
    DFPrint (i);</pre>
```

#### Búsqueda **primero** en profundidad

Modificación de DFPrint para detener el recorrido una vez cumplida una determinada condición sobre un nodo concreto.

#### DFSearch (pseudocode)

```
public boolean DFPrint(int v) {
  nodes[v].setVisited(true);
  nodes[v].print();

if (boolean_condition(v))
  return (true);

for each node w accessible from v do
  if (!nodes[w].getVisited())
   DFPrint(w);

return (false);
}
```

#### Nodo Fuertemente Conexo

 Si desde el nodo se puede acceder a todos los demás nodos del grafo Y viceversa.

#### Grafo Fuertemente Conexo

- Si todos los nodos del grafo son fuertemente conexos.
  - Si existe un nodo fuertemente conexo, todos los demás también lo serán y por ende, también el grafo.



Grafo fuertemente conexo



Grafo no conexo (ver V<sub>6</sub>)

#### Ciclo sobre un nodo

- Camino desde un nodo hasta si mismo.
  - Ciclo para V<sub>1</sub>

» 
$$C = V_1, V_2, V_3, V_4, V_5$$
 (longitud 4).



#### Árbol

- Grafo Conexo sin Ciclos
  - Todo árbol libre con n > 0 nodos, tiene n 1 aristas.
  - Si se agrega una arista, ésta formará parte de un ciclo (el grafo deja de ser árbol libre).
  - Para cualquier par de nodos, sólo hay un camino simple.



#### Árbol Abarcador

- Árbol que conecta todos los nodos del grafo.
  - El árbol forma una única componente conexa.



Las dos componentes conexas necesitan contactarse entre ellas para formar un árbol libre abarcador

#### Árbol Libre Abarcador de Coste Mínimo

- Aquel en el que la suma de los pesos de sus aristas es la mínima posible.
  - Permite conectar todos los componentes de una red al menor coste.



## Algoritmo de Prim

#### Problema a Resolver

- Dado un árbol libre abarcador, devolver el equivalente de coste mínimo
  - ¿Qué carreteras se deben construir para conectar todas las ciudades de Europa de la forma más barata?
  - ¿Cómo se pueden conectar todos los ordenadores de una red con la menor longitud de cable?

Desarrollado por el estadounidense Robert C. Prim en 1957

#### Algoritmo de Prim

#### Inicialización

- Conjunto T (vacío)
  - En donde se irán almacenando las aristas que formarán parte del Árbol Libre Abarcador de coste mínimo.
- Conjunto U (se inicia con un nodo cualquiera del grafo)
  - Similar al conjunto S del algoritmo de Dijkstra, almacena los nodos que se van evaluando en cada iteración.

#### En cada iteracción (mientras que U != V)

```
    Evaluar todas las aristas {u, v} en las que u pertenezca a U y v pertenezca a V - U y quedarse con la de menor coste
    T = T + {u, v}
    U = U + {v}
```

#### Condición de Parada

- Conjunto U != Conjunto V (se han explorado todos los nodos del grafo).
  - Realizadas n 1 iteraciones.

## Ejercicio 1

Empezando con V<sub>1</sub>.



















## Ejercicio 1

También se podría escoger V<sub>3</sub>



















## Ejercicio 2

Empezando con V<sub>3</sub>.







## Ejercicio 2

❖ También se podría escoger V<sub>4</sub>













## Ejercicio 2

También se podría escoger V<sub>2</sub>







## Ejercicio 2

❖ Alternativa: {V₂, V₃}







#### Conclusiones

- El árbol resultante depende de...
  - Nodo de partida.
  - Selección de la arista de coste mínimo en cada iteración.
    - Puede existir más de una con el coste más pequeño.

#### En cada iteracción (hasta que U == V)

n

```
1. Evaluar todas las aristas {u, v} en las que u
  pertenezca a U y v pertenezca a V - U y quedarse con la
  de menor coste
```

n<sup>2</sup>

```
2. T = T + \{u, v\}
```

3. 
$$U = U + \{v\}$$

 $O(n^3)$ 

#### Optimización

- Utilizar vectores auxiliares **ordenados** para elegir la arista de menor coste, reduciendo la complejidad a O(n).
  - Mayor velocidad a costa de mayor consumo de memoria.

#### En cada iteracción (hasta que U == V)

n

Evaluar todas las aristas {u, v} en las que u
pertenezca a U y v pertenezca a V - U y quedarse con la
de menor coste

n

```
2. T = T + \{u, v\}
```

3. 
$$U = U + \{v\}$$

## **HOMEWORK**

#### **PLAYGROUND**

- Consulte la entrada para el Algoritmo de Prim en la Wikipedia
  - Estudie cuidadosamente todo el contenido de la entrada.
    - Ponga especial atención a la demostración de por qué el algoritmo realmente funciona.

Los conocimientos adquiridos en esta tarea serán evaluados en el examen

## **HOMEWORK**

#### **PLAYGROUND**

- El problema del Árbol Libre Abarcador de coste mínimo también fue resuelto por el estadounidense Joseph Kruskal.
- Consulte la entrada para el Algoritmo de Kruskal en la Wikipedia
  - Estudie cuidadosamente todo el contenido de la entrada.
    - Preste especial atención a las diferencias entre el Algoritmo de Kruskal y el Algoritmo de Prim.

Los conocimientos adquiridos en esta tarea serán evaluados en el examen

## **Apéndices**

# Referencias

## Referencias

- AHO, A; HOPCROFT, J; ULLMAN, D; (1988) *Estructuras de Datos y Algoritmos*. Addison-Wesley Iberoamericana. México [Cap 9].
- JOYANES AGUILAR, Luis; ZAHONERO MARTÍNEZ, Ignacio; (1998) Estructura de Datos: Algoritmos, Abstracción y Objetos. Mc Graw Hill. ISBN: 84-481-2042-6. [Cap 14.]
- ORTEGA F., Maruja; (1988) *Grafos y Algoritmos*. Universidad Metropolitana, Oficina Metrópolis.
- WEISS, Mark Allen; (2000) Estructuras de Datos En Java 2. Addison-Wesley Iberoamericana. ISBN 84-7829-035-4. [Cap 14.].
- WEISS, Mark Allen; (1995) Estructuras de Datos y Algoritmos Addison-Wesley Iberoamericana. ISBN 0-201-62571-7. [Cap 9.].