3

CLAIMS

What is claimed is:

A method comprising the steps of: 1 1. 2 sampling at least one of a tip and a ring signal to determine a line voltage and a line current of a line feed component of a subscriber loop; b) estimating an instantaneous power dissipation of the linefeed component; c) filtering the estimated instantaneous power dissipation to generate an estimated junction temperature. 2. 1 The method of claim 1 further comprising the step of: 2 d) generating a thermal alarm, if the estimated junction temperature exceeds an 3 alarm threshold. 1 3. The method of claim 2, further comprising the step of: 2 e) timesharing a same monitoring circuitry to perform steps a)-d) for each 3 linefeed driver component being monitored. 1 4. The method ϕ f claim 1 further comprising the step of: 2 d) programming a filter with filtering parameters corresponding to thermal 3 characteristics of the linefeed component. A method comprising the steps of: 1 5. 2 selecting a selected linefeed component of a plurality of linefeed a)

components coupled to a subscriber loop having a tip signal and ring signal;

2

3

4	b) sampling at least one of the tip and the ring signals to determine a voltage
5	and a current associated with the selected linefeed component;
6	c) estimating an instantaneous power dissipation of the selected linefeed
7	component; and
8	d) filtering the estimated instantaneous power dissipation to generate an
9	estimated junction temperature of the selected linefeed component.
1	6. The method of claim 5 further comprising the step of
2	e) providing a thermal alarm indicator, if the estimated junction temperature
3	exceeds an alarm threshold.
1	7. A subscriber loop signal processor apparatus, comprising:
2	an analog-to-digital converter (ADC) for sampling at least one of a tip and a ring
3	signal;
4	a power calculator coupled to calculate an instantaneous power dissipation of a
5	selected linefeed driver component from the sampled signal and control currents provided
6	to a plurality of linefeed driver components; and
7	a filter providing an estimated junction temperature of the selected linefeed driver
8	component from the instantaneous power dissipation.
1	8. The apparatus of claim 7 further comprising:

exceeds an alarm threshold.

a comparator providing an alarm indicator if the estimated junction temperature

M. W.

3

2

3

1 9. The apparatus of claim 7 further comprising:

a multiplexer coupling the at least one tip and ring signal to the analog-to-digital

3 converter to enable providing an estimated junction temperature of any of the linefeed

4 components using a same ADC, power calculator, and filter.

1 10. The apparatus of claim 9 wherein a multiplexer control is time based to enable

time-sharing the same ADC, power calculator, and filter for each linefeed component.

1 11. The apparatus of claim wherein the ADC, the power calculator, and the filter

2 reside within a same integrated circuit package.

1 12. The apparatus of claim 7 further comprising:

a re-writable nonvolatile memory coupled to provide filter parameters

corresponding to thermal characteristics of the linefeed components to the filter.

1 (13.) A subscriber loop interface circuit apparatus comprising:

a signal processor having sense inputs for sensing a tip line and a ring line of a

subscriber loop, the signal processor generating subscriber loop control signals; and

a linefeed driver for driving the subscriber loop in accordance with the subscriber

5 loop control signals, the linefeed driver including a tip fuse series-coupled to the tip line

6 and a ring fuse series-coupled to the ring line, wherein the sensed tip signal includes first

and second sampled tip voltages sampled from opposing sides of the tip fuse, wherein the

8 sensed ring signal includes first and second sampled ring voltages sampled from opposing

9 ends of the ring fuse.

- 1 14. The subscriber loop linefeed driver of claim 13 wherein a difference between the
- 2 first and second sampled tip voltages is proportional to the tip current, wherein a
- 3 difference between the first and second sampled ring voltages is proportional to the ring
- 4 current.

15.

)¹

4

5

A method comprising the steps of:

generating subscriber loop control signals in response to a sensed tip signal and a sensed ring signal of a subscriber loop, wherein the tip signal is sensed before and after a tip fuse, wherein the ring signal is sensed before and after a ring fuse; and

driving the subscriber loop in accordance with the subscriber loop control signals.

1

A subscriber loop interface circuit apparatus comprising:

2

a signal processor having sense inputs for sensing a tip line and a ring line of a

3

subscriber loop, the signal processor generating subscriber loop control signals; and

4

a linefeed driver for driving the subscriber loop in accordance with the subscriber

5

loop control signals, the linefeed driver including a tip fuse series-coupled to the tip line

6

and a ring fuse series coupled to the ring line, wherein the tip line and ring line are each

7

sensed at two locations to determine both a status of each fuse and a power dissipation of

8 each linefeed driver component.