LIXYS

preliminary

600 V

30 A

40 ns

Sonic Fast Recovery Diode

High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode

Part number

DHG 30 I 600 PA

1

Backside: cathode

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
 - Power dissipation within the diode
 - Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package:

 $V_{RRM} =$

 $I_{F\Delta V}$

- Housing: TO-220
- Industry standard outline
- Epoxy meets UL 94V-0
- RoHS compliant

Ratings

Symbol	Definition	Conditions		min.	typ.	max.	Unit
$\overline{V_{RRM}}$	max. repetitive reverse voltage		T _{VJ} = 25°C			600	V
I _R	reverse current	V _R = 600 V	T _{VJ} = 25°C			50	μA
		$V_{R} = 600 V$	T _{vJ} = 125°C			2	mΑ
V _F	forward voltage	I _F = 30 A	T _{VJ} = 25°C			2.27	V
		I _F = 60 A				3.14	V
		I _F = 30 A	T _{VJ} = 125°C			2.24	V
		$I_F = 60 A$				3.23	V
I _{FAV}	average forward current	rectangular d = 0.5	$T_{c} = 85^{\circ}C$			30	Α
$\overline{V_{F0}}$	threshold voltage	1. 1.11	T _{vJ} = 150°C			1.17	V
r _F	slope resistance } for power loss	calculation only				32	mΩ
R _{thJC}	thermal resistance junction to case					0.70	K/W
T _{VJ}	virtual junction temperature			-55		150	°C
P _{tot}	total power dissipation		$T_{c} = 25^{\circ}C$			180	W
I _{FSM}	max. forward surge current	t = 10 ms (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			200	Α
I _{RM}	max. reverse recovery current		T _{VJ} = 25 °C		13		Α
		$I_F = 30 \text{ A}; V_R = 300 \text{ V}$	$T_{VJ} = 125 ^{\circ}C$		17		Α
t _m	reverse recovery time	$-di_F/dt = 600 A/\mu s$	$T_{VJ} = 25 ^{\circ}C$		40		ns
			$T_{VJ} = 125 ^{\circ}C$		60		ns
CJ	junction capacitance	V _R = 400 V; f = 1 MHz	T _{VJ} = 25°C		16		pF

preliminary

			1			
Symbol	Definition	Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal			35	Α
R thCH	thermal resistance case to heats	ink		0.50		K/W
T _{stg}	storage temperature		-55		150	°C
Weight				2		g
M _D	mounting torque		0.4		0.6	Nm
F _c	mounting force with clip		20		60	N

Part number

D = Diode

H = Sonic Fast Recovery Diode

G = extreme fast

30 = Current Rating [A]

I = Single Diode

600 = Reverse Voltage [V]

PA = TO-220AC (2)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DHG 30 I 600 PA	DHG30I600PA	Tube	50	504019

Similar Part	Package	Voltage Class
DHG30I600HA	TO-247AD (2)	600
DHG30IM600PC	TO-263AB (D2Pak)	600

preliminary

Outlines TO-220

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
Α	4.32	4.82	0.170	0.190
A1	1.14	1.39	0.045	0.055
A2	2.29	2.79	0.090	0.110
b	0.64	1.01	0.025	0.040
b2	1.15	1.65	0.045	0.065
С	0.35	0.56	0.014	0.022
D	14.73	16.00	0.580	0.630
Е	9.91	10.66	0.390	0.420
е	5.08	BSC	0.200	BSC
H1	5.85	6.85	0.230	0.270
L	12.70	13.97	0.500	0.550
L1	2.79	5.84	0.110	0.230
ØP	3.54	4.08	0.139	0.161
Q	2.54	3.18	0.100	0.125

preliminary

Fig. 1 Typ. Forward current versus V_F

Fig. 3 Typ. peak reverse current $I_{\rm RM}$ vs. di/dt

Fig. 5 Transient thermal impedance

Fig. 2 Typ. reverse recov.charge Q_{rr} vs. di/dt

Fig. 4 Typ. recovery time t_{rr} versus di/dt