Recall that is k is a positive integer we define the relationship equiv_k on \mathbb{Z} by $m \equiv_k n$ provided that k|(m-n). Prove that for any integers m_1, m_2, n_1, n_2 if $m_1 \equiv_k m_2$ and n_1 equiv_k n_2 then (1) $m_1 + n_1 \equiv_k m_2 + n_2$ and (2) $m_1n_1 \equiv_k m_2n_2$

- 1. Proof: Suppose $m_1, m_2, n_1, n_2 \in \mathbb{Z}$ and $m_1 \equiv_k m_2, n_1 \equiv_k n_2$. We must show that $m_1 + n_1 \equiv_k m_2 + n_2$. By definition of congruence mod k we must show $k \mid (m_1 + n_1 (m_2 + n_2))$. By definition of congruence mod k we have $k \mid (m_1 m_2)$ and $k \mid (n_1 n_2)$. By the definition of divisibility we have $a, b \in \mathbb{Z}$ such that $ka = m_1 m_2, kb = n_1 n_2$. Adding both equations together yields $k(a + b) = m_1 + n_1 m_2 n_2$. Let c = a + b, due to the closure of \mathbb{Z} under addition, $c \in \mathbb{Z}$. Therefore $kc = m_1 + n_1 (m_2 + n_2)$. Therefore by the definition of divisibility $k \mid (m_1 + n_1 (m_2 + n_2))$.
- 2. Proof: Suppose $m_1, m_2, n_1, n_2 \in \mathbb{Z}$ and $m_1 \equiv_k m_2, n_1 \equiv_k n_2$. We must show that $m_1 n_1 \equiv_k m_2 n_2$. By the definition of modular arithmetic, $0 \equiv_k m_1 m_2, 0 \equiv_k n_1 n_2$. Multiplying the two expressions together yields $0 \equiv_k (m_1 m_2)(n_1 n_2)$. Therefore,

$$0 \equiv_k (m_1 - m_2)(n_1 - n_2)$$

$$0 \equiv_k m_1(n_1 - n_2) - m_2(n_1 - n_2)$$

$$m_2(n_1 - n_2) \equiv_k m_1(n_1 - n_2)$$

$$m_2n_1 - m_2n_2 \equiv_k m_1n_1 - m_1n_2$$

$$m_2n_2 - m_1n_2 \equiv_k m_1n_1 - m_1n_2$$

$$m_2n_2 \equiv_k m_1n_1$$

$$m_1n_1 \equiv_k m_2n_2.$$