Lecture

Numerical differentiation

Till last lecture we were concerned with the interpolating polynomials. In that case, given values of x and y we have found polynomials to fit the data.

In this lecture, we shall be concerned with their derivatives i.e. to find $\frac{dy}{dx}$, $\frac{d^2y}{d^2x}$, etc. for a given value of x in an interval (x_0, x_n) .

In order to find a general method for finding derivatives, we differentiate the interpolating polynomials.

Let us consider the Newton's forward difference formula.

$$y = y_0 + p\Delta y_0 + p(p-1)\frac{\Delta^2 y_0}{2!} + \dots + p(p-1)(p-2)\dots + (p-n+1)\frac{\Delta^n y_0}{n!}$$

where, $x = x_0 + ph$

Now,
$$\frac{dy}{dx} = \frac{dy}{dp} \cdot \frac{dp}{dx}$$

Since,
$$p = (x-x_0)/h$$
 so $\frac{dp}{dx} = \frac{1}{h}$

Thus,
$$\frac{dy}{dx} = \frac{1}{h} \left[\Delta y_0 + \frac{2p-1}{2} \Delta^2 y_0 + \frac{3p^2 - 6p + 2}{6} \Delta^3 y_0 + \dots \right]$$

The above formula is for non tabular points of x.

For tabular values, this formula takes simpler form.

Let
$$x = x_0$$

$$\left[\frac{dy}{dx}\right]_{x=x_0} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 + \dots \dots \dots \right]$$

Further differentiation of above formula gives,

$$\left[\frac{d^2y}{d^2x}\right] = \frac{1}{h^2} \left[\Delta^2 y_0 + \frac{6p-6}{6} \Delta^3 y_0 + \frac{12p^2 - 36p + 22}{24} \Delta^4 y_0 + \dots \dots \dots \right]$$

For p = 0 ($x = x_0$),

$$\left[\frac{d^2y}{d^2x}\right]_{x=x_0} = \frac{1}{h^2} \left[\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 + \dots \dots \right]$$

This way higher order derivatives could be obtained.

Using Newton's backward difference formula, we get

$$\left[\frac{dy}{dx}\right]_{x=x_n} = \frac{1}{h} \left[\nabla y_n + \frac{1}{2} \nabla^2 y_n + \frac{1}{3} \nabla^2 y_n + \cdots \dots \dots \right]$$

$$\left[\frac{d^2 y}{d^2 x} \right]_{x = x_n} = \frac{1}{h^2} \left[\nabla^2 y_n + \nabla^3 y_n + \frac{11}{12} \nabla^4 y_n + \dots \dots \right]$$

Stirling's formula gives:

$$\left[\frac{dy}{dx}\right]_{x=x} = \frac{1}{h} \left[\frac{\Delta y_{-1} + \Delta y_0}{2} - \frac{1}{6} \frac{\Delta^3 y_{-2} + \Delta^3 y_{-1}}{2} + \dots \dots \dots \right]$$

$$\left[\frac{d^2y}{d^2x}\right]_{x=x_0} = \frac{1}{h^2} \left[\Delta^2 y_{-1} - \frac{1}{12} \Delta^4 y_{-2} + \frac{1}{90} \Delta^6 y_{-3} + \cdots \dots \right]$$

In summary,

$$\left[\frac{dy}{dx}\right]_{x=x_0} = \frac{1}{h} \left[\Delta - \frac{1}{2}\Delta^2 + \frac{1}{3}\Delta^3 + \dots \right] y_0$$

$$\left[\frac{dy}{dx}\right]_{x=x_0} = \frac{1}{h} \left[\Delta + \frac{1}{2}\Delta^2 - \frac{1}{6}\Delta^3 + \dots \right] y_{-1}$$

$$\left[\frac{d^2 y}{d^2 x} \right]_{x=x_0} = \frac{1}{h^2} \left[\Delta^2 - \Delta^3 + \frac{11}{12} \Delta^4 + \dots \right] y_0$$

$$\left[\frac{d^2 y}{d^2 x} \right]_{x=x_0} = \frac{1}{h^2} \left[\Delta^2 - \frac{1}{12} \Delta^4 + \frac{1}{12} \Delta^5 + \dots \right] y_{-1}$$

$$\left[\frac{dy}{dx}\right]_{x=x_n} = \frac{1}{h} \left[\nabla + \frac{1}{2} \nabla^2 + \frac{1}{3} \nabla^2 + \dots \dots \dots \right] y_n$$

$$\left[\frac{dy}{dx}\right]_{x=x_n} = \frac{1}{h} \left[\nabla - \frac{1}{2} \nabla^2 - \frac{1}{6} \nabla^3 + \cdots \dots \dots \right] y_{n+1}$$

$$\left[\frac{d^2y}{d^2x}\right]_{x=x} = \frac{1}{h^2} \left[\nabla^2 + \nabla^3 + \frac{11}{12} \nabla^4 + \dots \dots \right] y_n$$

$$\left[\frac{d^2y}{d^2x}\right]_{r-r} = \frac{1}{h^2} \left[\nabla^2 - \frac{1}{12} \nabla^4 - \frac{1}{12} \nabla^5 + \cdots \dots \dots \right] y_{n+1}$$

Example: Given with the data in table, find $\frac{dy}{dx}$ and $\frac{d^2y}{d^2x}$ at x = 1.1.

X	у	Δ	Δ^2	Δ^3	Δ^4	Δ^5	Δ^6
1.0	7.989						
		0.414					
1.1	8.403		-0.036				
		0.378		0.006			
1.2	8.781		-0.030		-0.002		
		0.348		0.004		0.002	
1.3	9.129		-0.026		0.000		-0.001
		0.322		0.004		0.001	
1.4	9.451		-0.022		0.001		
		0.300		0.005			
1.5	9.751		-0.017				
		0.283					
1.6	10.034						

$$\left[\frac{dy}{dx}\right]_{x=x_0} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \frac{1}{4} \Delta^4 y_0 + \frac{1}{5} \Delta^5 y_0 - \frac{1}{6} \Delta^6 y_0 \right]$$

h = 0.1, x_0 = 1.1, Δy_0 = 0.378, $\Delta^2 y_0$ = -0.030, $\Delta^3 y_0$ = 0.004, $\Delta^4 y_0$ = 0.000, $\Delta^5 y_0$ = 0.001, $\Delta^6 y_0$ = -0.001

$$\left[\frac{dy}{dx} \right]_{x=1.1} = \frac{1}{0.1} \left[0.378 - \frac{1}{2} (-0.030) + \frac{1}{3} (.0.004) - \frac{1}{4} (.0.000) + \frac{1}{5} (0.001) - \frac{1}{6} (-0.001) \right]$$

$$= 3.9452$$

$$\left[\frac{d^2 y}{d^2 x} \right]_{x=1.1} = \frac{1}{h^2} \left[\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 - \frac{5}{6} \Delta^5 y_0 + \frac{137}{180} \Delta^6 y_0 \right]
\left[\frac{d^2 y}{d^2 x} \right]_{x=1.1} = \frac{1}{(0.1)^2} \left[(-0.30) - (0.004) + \frac{11}{12} (0.000) - \frac{5}{6} (0.001) + \frac{137}{180} (-0.001) \right]
= -3.556$$

If we wish to find out $\frac{dy}{dx}$ and $\frac{d^2y}{d^2x}$ at x = 1.6, we can use

$$\left[\frac{dy}{dx}\right]_{x=x_n} = \frac{1}{h} \left[\nabla y_n + \frac{1}{2} \nabla^2 y_n + \frac{1}{3} \nabla^2 y_n + \cdots \dots \dots \right]$$

$$\left[\frac{d^2 y}{d^2 x} \right]_{x = x_n} = \frac{1}{h^2} \left[\nabla^2 y_n + \nabla^3 y_n + \frac{11}{12} \nabla^4 y_n + \cdots \dots \right]$$

With h =0.1, $x_n = 1.6$, $\nabla y_n = 0.283$, etc.

Maxima and minima of a tabulated function

Differentiating Newton's forward difference formula w.r.t. p, we get

$$\frac{dy}{dp} = \left[\Delta y_0 + \frac{2p-1}{2} \Delta^2 y_0 + \frac{3p^2 - 6p + 2}{6} \Delta^3 y_0 + \dots \dots \dots \right]$$

Setting

 $\frac{dy}{dp} = 0$ and keeping RHS to third term for simplicity,

$$\Delta y_0 + \frac{2p-1}{2}\Delta^2 y_0 + \frac{3p^2 - 6p + 2}{6}\Delta^3 y_0 = 0$$
 Rewriting, $\left(\frac{1}{2}\Delta^3 y_0\right)p^2 + (\Delta^2 y_0 - \Delta^3 y_0)p + \left(\Delta y_0 - \frac{1}{2}\Delta^2 y_0 + \frac{1}{3}\Delta^3 y_0\right) = 0$

Which can simply be written as $ap^2 + bp + c = 0$, where a,b and c have corresponding meanings.

Solving for p gives maxima or minima of x using $x = x_0 + ph$.

Example: Find for which value of x, y will be maximum?

X	y	Δ	Δ^2	Δ^3
3	0.205			
		0.035		
4	0.240		-0.016	
		0.019		0.000
5	0.259		-0.016	
		0.003		0.001
6	0.262		-0.015	
		-0.012		0.001
7	0.250		-0.014	
		-0.026		
8	0.224			

$$\frac{dy}{dp} = \left[0.035 + \frac{2p-1}{2}(-0.016) + \frac{3p^2 - 6p + 2}{6}(0)\right] = 0$$

$$h = 1$$

$$p = 2.6875$$

so
$$x = 3+2.6875x1=5.6875$$
.