

718QTS

10/552178

JC09 Rec'd PCT/PTO 05 OCT 2005

DESCRIPTION

METHOD OF DEFINING THE DIFFERENTIATION GRADE OF TUMOR

5 Technical Field

The present invention relates to a method of defining the differentiation grade of tumor. More particularly, the present invention relates to a method of defining the differentiation grade of tumor by selecting genes and/or proteins whose expression level correlates with each differentiation grade of hepatocellular carcinoma (HCC), measuring the expression of the genes and/or proteins of human tumor tissues in each differentiation grade. The present invention also relates to the use of these genes and/or proteins for diagnosing the differentiation grade of HCC and for screening anti-cancer agents for HCC treatment.

The present invention also relates to a kit for performing the method of the present invention comprising DNA chips, oligonucleotide chips, protein chips, peptides, antibodies, probes and primers that are necessary for DNA microarrays, oligonucleotide microarrays, protein arrays, northern blotting, *in situ* hybridization, RNase protection assays, western blotting, ELISA assays, reverse transcription polymerase-chain reaction (hereinafter referred to as RT-PCR) to examine the expression of the genes and/or proteins whose expression level correlates with the differentiation grade of tumor.

30 Background Art

Cancer is the major causative of death in the world. Particularly, hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, which represents a major international health problem because of its increasing incidence in many countries (Schafer, D.F. and Sorrell, M.F. Hepatocellular carcinoma, *Lancet* 353, 1253-1257 (1999),

Colombo, M. Hepatitis C virus and hepatocellular carcinoma, *Semin. Liver Dis.* **19**, 263-269 (1999), and Okuda, K. Hepatocellular carcinoma, *J. Hepatol.* **32**, 225-237 (2000)). Chronic hepatitis C virus (HCV) infection is one of the major risk factors for HCC as well as hepatitis B virus (HBV) infection, alcohol consumption, and several carcinogens such as aflatoxin B1 (Okuda, K. Hepatocellular carcinoma, *J. Hepatol.* **32**, 225-237 (2000)). Several therapies have been adopted for the treatment of HCC. Those include surgical resection, radiotherapy, chemotherapy, and biological therapy including hormonal and gene therapy. However, none of these therapies could cure the disease. One of the major problems of HCC treatment is that characteristics of cancer cells change during the development and progression of the disease. Particularly, changes in the differentiation grade of tumor cells are apparent and frequent. Such changes alter the ability of tumor cells to invade and metastasize and also the sensitivity of cancer cells to different therapies, causing resistance to anti-cancer agents. If the changes in the characteristics of cancer cells are precisely diagnosed and managed, cancer therapy will be more effective.

Previous studies suggested the involvement of tumor suppressor genes and oncogenes such as *p53*, β -catenin, and *AXIN1* genes in hepatocarcinogenesis (Okabe, H., Satoh, S., Kato, T., Kitahara, O., Yanagawa, R., Yamaoka, Y., Tsunoda, T., Furukawa, Y., and Nakamura, Y. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression, *Cancer Res.* **61**, 2129-2137 (2001)). It has also been suggested that the development of HCV-associated HCC can be characterized by the pathological evolution from early to advanced tumor, which correlates with dedifferentiation of cancer cells (Kojiro, M. Pathological evolution of early hepatocellular carcinoma, *Oncology* **62**, 43-47 (2002)). Particularly after introduction of DNA microarray technologies into medical science (Schena,

M., Shalon, D., Davis, R.W., and Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray, *Science* **270**, 467-470 (1995), DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M., Chen, Y., Su, Y.A., and Trent, J.M. Use of a cDNA microarray to analyse gene expression patterns in human cancer, *Nat. Genet.* **14**, 457-460 (1996)), many studies showed gene-expression patterns relating to some aspects of HCC (Lau, W.Y., Lai, P.B., Leung, M.F., Leung, B.C., Wong, N., Chen, G., Leung, T.W., and Liew, C.T. Differential gene expression of hepatocellular carcinoma using cDNA microarray analysis, *Oncol. Res.* **12**, 59-69 (2000), Tackels-Horne, D., Goodman, M.D., Williams, A.J., Wilson, D.J., Eskandari, T., Vogt, L.M., Boland, J.F., Scherf, U., and Vockley, J.G. Identification of differentially expressed genes in hepatocellular carcinoma and metastatic liver tumors by oligonucleotide expression profiling, *Cancer* **92**, 395-405 (2001), Xu, L., Hui, L., Wang, S., Gong, J., Jin, Y., Wang, Y., Ji, Y., Wu, X., Han, Z., and Hu, G. Expression profiling suggested a regulatory role of liver-enriched transcription factors in human hepatocellular carcinoma, *Cancer Res.* **61**, 3176-3681 (2001), Xu, X.R., Huang, J., Xu, Z.G., Qian, B.Z., Zhu, Z.D., Yan, Q., Cai, T., Zhang, X., Xiao, H.S., Qu, J., Liu, F., Huang, Q.H., Cheng, Z.H., Li, N.G., Du, J.J., Hu, W., Shen, K.T., Lu, G., Fu, G., Zhong, M., Xu, S.H., Gu, W.Y., Huang, W., Zhao, X.T., Hu, G.X., Gu, J.R., Chen, Z., and Han, Z.G. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding non-cancerous liver, *Proc. Natl. Acad. Sci. U.S.A.* **98**, 15089-15094 (2001), Okabe, H., Satoh, S., Kato, T., Kitahara, O., Yanagawa, R., Yamaoka, Y., Tsunoda, T., Furukawa, Y., and Nakamura, Y. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression, *Cancer Res.* **61**, 2129-2137 (2001), Shiota, Y., Kaneko, S., Honda, M., Kawai, H.F., and Kobayashi, K. Identification of differentially

expressed genes in hepatocellular carcinoma with cDNA microarrays, *Hepatology* 33, 832-840 (2001), Delpuech, O., Trabut, J.B., Carnot, F., Feuillard, J., Brechot, C., and Kremsdorff, D. Identification, using cDNA macroarray analysis, 5 of distinct gene expression profiles associated with pathological and virological features of hepatocellular carcinoma, *Oncogene* 21, 2926-2937 (2002), Iizuka, N., Oka, M., Yamada-Okabe, H., Mori, N., Tamesa, T., Okada, T., Takemoto, T., Tangoku, A., Hamada, K., Nakayama, H., Miyamoto, T., 10 Uchimura, S., and Hamamoto, Y. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data based on a supervised learning method, *Cancer Res.* 62, 3939-3944 (2002), and Midorikawa, Y., Tsutsumi, S., 15 Taniguchi, H., Ishii, M., Kobune, Y., Kodama, T., Makuuchi, M., and Aburatani, H. Identification of genes associated with dedifferentiation of hepatocellular carcinoma with expression profiling analysis, *Jpn. J. Cancer Res.* 93, 636-643 (2002)). Among them, two studies profiled gene expression of HCC in 20 relation to its development (Okabe, H., Satoh, S., Kato, T., Kitahara, O., Yanagawa, R., Yamaoka, Y., Tsunoda, T., Furukawa, Y., and Nakamura, Y. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and 25 tumor progression, *Cancer Res.* 61, 2129-2137 (2001) and Midorikawa, Y., Tsutsumi, S., Taniguchi, H., Ishii, M., Kobune, Y., Kodama, T., Makuuchi, M., and Aburatani, H. Identification of genes associated with dedifferentiation of hepatocellular carcinoma with expression profiling analysis, *Jpn. J. Cancer Res.* 93, 636-643 (2002)). However, nothing is known about genes 30 and/or proteins that characterize and/or regulate each differentiation grade of HCC during the course of oncogenesis and development of HCV-associated HCC. Genes and/or proteins that regulate the differentiation grade of HCC can be used for 35 diagnosing the differentiation grade of HCC and for screening anti-cancer agents for the treatment of HCC arising from

chronic HCV infection.

In the present invention, the inventors describe a method of diagnosing the differentiation grade of tumor and screening anti-cancer agents for the treatment thereof.

5 Particularly, the inventors describe a method of identifying 40 or more genes and/or proteins whose expression correlates with the differentiation grade of HCC, and use of these genes and/or proteins for diagnosing the differentiation grade of HCC and for screening anti-cancer agents for the treatment of HCC
10 in different grades. More particularly, the inventors describe a method of predicting non-cancerous liver, pre-cancerous liver, and each differentiation grade of HCC with 40 genes and/or proteins.

15 Disclosure of the Invention

Summary of the Invention

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. However, there is no therapy that can cure the disease. This is presumably due to sequential changes in 20 characteristics of cancer cells during the development and progression of the disease. Particularly, progression of cancer is often associated with the changes of differentiation grade of tumor cells. Diagnosis and management of such changes of cancer cells will make cancer therapy more effective. In 25 the present invention, genes whose expression correlates with oncogenesis and development of HCC are identified by oligonucleotide microarray representing approximately 11,000 genes from 50 hepatitis C virus (HCV)-associated HCC tissues and 11 non-tumorous (non-cancerous and pre-cancerous) liver 30 tissues.

Differentiation states are divided into 5 grades.

Non-cancerous liver (L0) is the liver that is histologically normal and is seronegative for both hepatitis B virus surface antigen and HCV antibody. Pre-cancerous liver (L1) is the liver 35 that is HCV-infected and is histopathologically diagnosed as chronic hepatitis or liver cirrhosis. Well differentiated HCC

(G1) is the HCC consisting of cancer cells that are characterized by an increase in cell density with elevated nuclear/cytoplasm ratios compared to normal hepatocytes but show the morphologies similar to normal hepatocytes.

5 Moderately differentiated HCC (G2) is the HCC consisting of cancer cells that are large and hyperchromatic. There are trabecular- or gland-like structures in cancer cell nest in G2 grade. Poorly differentiated HCC (G3) is the HCC consisting of the cancer cells that are pleomorphic or multinucleate. The

10 tumor grows in solid masses or cell nest devoid of architectural arrangement in G3 grade. G1, G2, and G3 tumors correspond to types I, II, and III of Edmondson & Steiner classification, respectively (Edmondson, H.A. and Steiner, P.E. Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies, *Cancer* 7, 462-504 (1954)).

15

A supervised learning method followed by a random permutation test of oligonucleotide microarray data is used to select genes whose expression significantly changes during the

20 transition from non-cancerous liver without HCV infection (L0) to pre-cancerous liver with HCV infection (L1), from L1 to well differentiated HCC (G1), from G1 to moderately differentiated HCC (G2), and from G2 to poorly differentiated HCC (G3). Self-organizing map with all the selected 40 genes whose

25 expression is significantly altered in each transition stage can correctly predict the differentiation grade of tumor tissues. Thus, these genes can be used for diagnosing the differentiation grade of HCC and for screening anti-cancer agents for the treatment of HCC in each differentiation grade.

30

Detailed Description of the Invention

In the present invention, human hepatocellular carcinoma (HCC) tissues and non-tumorous (non-cancerous and pre-cancerous) liver tissues are used. HCCs with HCV infection

35 are used for analyzing HCCs. Presence of HCV and/or HBV infection can be determined either by immunoreactivity against

anti-HCV antibody and anti-HBV antibody or by amplifying HCV and/or HBV genome by PCR. The differentiation grade of HCC can be determined by histopathological examination, and HCCs are classified into well differentiated HCC (G1), moderately differentiated HCC (G2), and poorly differentiated HCC (G3).
5 Non-tumorous liver samples can be obtained from patients who underwent hepatic resection for benign or metastatic liver tumors. A liver sample without HCV infection is classified as non-cancerous liver (L0), and that with HCV infection is
10 classified as pre-cancerous liver (L1). After resecting liver tissues during surgery, it is preferable that tissues are immediately frozen in liquid nitrogen or acetone containing dry ice and stored at between -70 and -80°C until use. The tissues may or may not be embedded in O.C.T. compound (Sakura-Seiki,
15 Tokyo, Japan, Catalog No. 4583).

The expression of genes and/or proteins of HCC tissues and non-tumorous liver tissues can be analyzed by measuring the level of RNA and/or proteins. In most cases, the level of RNA and/or proteins is determined by measuring fluorescence from
20 substances including fluorescein and rhodamine, chemiluminescence from luminole, radioactivity of radioactive materials including ³H, ¹⁴C, ³⁵S, ³³P, ³²P, and ¹²⁵I, and optical density. For example, the expression level of RNA and/or proteins is determined by known methods including DNA
25 microarray (Schena, M. et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray, *Science* 270, 467-470 (1995) and Lipshutz, R.J. et al. High density synthetic oligonucleotide arrays, *Nat. Genet.* 21, 20-24 (1999)), RT-PCR (Weis, J.H. et al. Detection of rare mRNAs
30 via quantitative RT-PCR, *Trends Genet.* 8, 263-264 (1992) and Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays, *J. Mol. Endocrinol.* 25, 169-193 (2000)), northern blotting and *in situ* hybridization (Parker, R.M. and Barnes, N.M. mRNA: detection
35 *in situ* and northern hybridization, *Methods Mol. Biol.* 106, 247-283 (1999)), RNase protection assay (Hod, Y.A. Simplified

ribonuclease protection assay, *BioTechniques* 13, 852-854 (1992) and Saccomanno, C.F. et al. A faster ribonuclease protection assay, *BioTechniques* 13, 846-850 (1992)), western blotting (Towbin, H. et al. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets, *Proc. Natl. Acad. Sci. U.S.A.* 76, 4350-4354 (1979) and Burnette, W.N. Western blotting: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radioiodinated protein A, *Anal. Biochem.* 112, 195-203 (1981)), ELISA assay (Engvall, E. and Perlman, P. Enzyme-linked immunosorbent assay (ELISA): Quantitative assay of immunoglobulin G, *Immunochemistry* 8, 871-879 (1971)), and protein array (Merchant, M. and Weinberger, S.R. Review: Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry, *Electrophoresis* 21, 1164-1177 (2000) and Paweletz, C.P. et al. Rapid protein display profiling of cancer progression directly from human tissue using a protein biochip, *Drug Dev. Res.* 49, 34-42 (2000)).

Genes and/or proteins that are differently expressed in each differentiation grade of HCC and non-tumorous (non-cancerous and pre-cancerous) liver are selected by comparing the expression level of genes and/or proteins among HCC tissues in each differentiation grade and non-tumorous liver tissues. Genes and/or proteins that are differentially expressed between non-cancerous liver (L0) and pre-cancerous liver that have been infected with HCV (L1) are identified by comparing the expression level of each gene and/or protein between non-cancerous liver tissues and pre-cancerous liver tissues. Genes and/or proteins that are differentially expressed between pre-cancerous liver (L1) and well differentiated HCC (G1) are identified by comparing the expression level of each gene and/or protein between pre-cancerous liver tissues and well differentiated HCC tissues (HCC(G1)). Genes and/or proteins that are differentially expressed between well differentiated HCC (G1)

and moderately differentiated HCC (G2) are identified by comparing the expression level of each gene and/or protein between HCC(G1) and moderately differentiated HCC tissues (HCC(G2)). Similarly, genes and/or proteins that are
5 differentially expressed between moderately differentiated HCC (G2) and poorly differentiated HCC (G3) are identified by comparing the expression level of each gene and/or protein between HCC(G2) and poorly differentiated HCC tissues (HCC(G3)).

10

Differences in the expression level of genes and/or proteins of non-cancerous liver, pre-cancerous liver, well differentiated HCC, moderately differentiated HCC, and poorly differentiated HCC can be analyzed and detected by known
15 methods of statistical analyses. In all experiments for comparing the expression level of genes and/or proteins between two grades selected from L0, L1, G1, G2, and G3, the following procedures are taken.

In the first step, genes and/or proteins with certain
20 expression level (e.g. genes with expression level greater than 40 as judged by the arbitrary units by Affymetrix gene chip results) in all the HCC samples and in the non-cancerous and pre-cancerous liver samples are selected. This selection results in certain number of genes and/or proteins. Then, the
25 discriminatory ability of each gene and/or protein to discriminate L0 from L1, L1 from G1, G1 from G2, and G2 from G3 is determined by the Fisher ratio. The Fisher ratio for a gene j is given by

$$F(j) = \frac{(\hat{\mu}_j(A) - \hat{\mu}_j(B))^2}{\hat{\sigma}_j^2(A) + \hat{\sigma}_j^2(B)}$$

30 where $\hat{\mu}_j(i)$ is the sample mean of the expression level of gene j for the samples in Grade i , and $\hat{\sigma}_j^2(i)$ is the sample variance of the expression level of gene j for the samples in Grade i .

In the second step, the selected genes and/or proteins are ranked in the order of decreasing magnitude of the Fisher ratio. A random permutation test is also performed to determine 5 the number of genes and/or proteins to define the differentiation grade of HCC. In the permutation test, sample labels are randomly permuted between two grades to be compared, and the Fisher ratio for each gene and/or protein is again computed. This random permutation of sample labels is repeated 10 1,000 times. The Fisher ratios generated from the actual data are assigned *P*s based on the distribution of the Fisher ratios from randomized data. From the distribution of the Fisher ratios based on the randomized data, the genes and/or proteins 15 that are determined to be statistically significant in two grades by the random permutation test are selected. More particularly, the genes and/or proteins that have the *P* value less than 0.005 by the random permutation test between the two 20 grades are selected. Among these selected genes and/or proteins, 40 genes and/or proteins having the highest Fisher ratios in each comparison between non-cancerous liver (L0) and pre-cancerous liver (L1), pre-cancerous liver (L1) and well 25 differentiated HCC (G1), well differentiated HCC (G1) and moderately differentiated HCC (G2), moderately differentiated HCC (G2) and poorly differentiated HCC (G3) are further selected.

The ability of the selected 40 genes and/or proteins to distinguish non-cancerous liver (L0) from pre-cancerous liver (L1), pre-cancerous liver (L1) from well differentiated HCC 30 (G1), well differentiated HCC (G1) from moderately differentiated HCC (G2), moderately differentiated HCC (G2) from poorly differentiated HCC (G3) is verified by the minimum distance classifier and the self-organizing map (SOM).

The minimum distance classifier is designed using the 40 35 genes and/or proteins selected in each transition stage. The expression level of each gene and/or protein is normalized to

have zero mean and unit variance using all the training samples from two grades. After measuring the Euclidean distance between a sample and each mean vector, the sample is assigned to the grade of the nearest mean vector. The minimum distance classifier that is created with the selected 40 genes and/or proteins in each transition stage is also used to predict the differentiation grade of HCC samples whose differentiation grade is not determined. To diagnose the differentiation grade of HCCs, using $\hat{\mu}_j(A)$ and $\hat{\mu}_j(B)$ previously described, the
 5 sample mean $\hat{\mu}_j$ of the mixture consisting of Grades A and B on a gene j is obtained by
 10 where N_i is the number of samples from Grade i . Next, the sample variance $\hat{\sigma}_j^2$ of the mixture consisting of Grades A and B on the gene j is obtained by

$$\hat{\mu}_j = \frac{N_A}{N_A + N_B} \hat{\mu}_j(A) + \frac{N_B}{N_A + N_B} \hat{\mu}_j(B)$$

where N_i is the number of samples from Grade i . Next, the sample variance $\hat{\sigma}_j^2$ of the mixture consisting of Grades A and B on the gene j is obtained by

$$\hat{\sigma}_j^2 = \frac{1}{N_A + N_B - 1} \left[(N_A - 1)\hat{\sigma}_j^2(A) + (N_B - 1)\hat{\sigma}_j^2(B) + \frac{N_A N_B}{N_A + N_B} (\hat{\mu}_j(A) - \hat{\mu}_j(B))^2 \right]$$

Using $\hat{\mu}_j$ and $\hat{\sigma}_j^2$, $\hat{\mu}$ and \hat{V} are defined by

$$\hat{\mu} = [\hat{\mu}_1, \hat{\mu}_2, \dots, \hat{\mu}_{40}]^T$$

$$\hat{V} = \begin{bmatrix} \frac{1}{\hat{\sigma}_1} & & & & 0 \\ & \frac{1}{\hat{\sigma}_2} & & & \\ & & \ddots & & \\ 0 & & & & \frac{1}{\hat{\sigma}_{40}} \end{bmatrix}$$

20 Then, a sample x is normalized by

$$\tilde{x} = \hat{V}^T (x - \hat{\mu})$$

where \tilde{x} is the normalized sample. Using the normalized samples, the sample mean vector for each grade is obtained. In the minimum distance classifier, the score value is computed by

$$5 \quad T_1(\tilde{x}) = \| \tilde{x} - \mu_{L0} \|^2 - \| \tilde{x} - \tilde{\mu}_{L1} \|^2$$

$$T_2(\tilde{x}) = \| \tilde{x} - \mu_{L1} \|^2 - \| \tilde{x} - \tilde{\mu}_{G1} \|^2$$

$$T_3(\tilde{x}) = \| \tilde{x} - \mu_{G1} \|^2 - \| \tilde{x} - \tilde{\mu}_{G2} \|^2$$

$$T_4(\tilde{x}) = \| \tilde{x} - \mu_{G2} \|^2 - \| \tilde{x} - \tilde{\mu}_{G3} \|^2$$

Using four minimum distance classifiers, the differentiation

grade of HCCs can be diagnosed as follows:

(i) A normalized sample \tilde{x} is classified into Grade L0
if $T_1(\tilde{x}) < 0$, $T_2(\tilde{x}) < 0$, $T_3(\tilde{x}) < 0$ and $T_4(\tilde{x}) < 0$.

(ii) A normalized sample \tilde{x} is classified into Grade L1
if $T_1(\tilde{x}) > 0$, $T_2(\tilde{x}) < 0$, $T_3(\tilde{x}) < 0$ and $T_4(\tilde{x}) < 0$.

(iii) A normalized sample \tilde{x} is classified into Grade G1
if $T_1(\tilde{x}) > 0$, $T_2(\tilde{x}) > 0$, $T_3(\tilde{x}) < 0$ and $T_4(\tilde{x}) < 0$.

(iv) A normalized sample \tilde{x} is classified into Grade G2
if $T_1(\tilde{x}) > 0$, $T_2(\tilde{x}) > 0$, $T_3(\tilde{x}) > 0$ and $T_4(\tilde{x}) < 0$.

(v) A normalized sample \tilde{x} is classified into Grade G3
if $T_1(\tilde{x}) > 0$, $T_2(\tilde{x}) > 0$, $T_3(\tilde{x}) > 0$ and $T_4(\tilde{x}) > 0$.

The SOM is a neural network algorithm widely used for clustering and is well known as an efficient tool for the visualization of multidimensional data (Tamayo, P. et al.

Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation, *Proc. Natl. Acad. Sci. U.S.A.* 96, 2907-2912 (1999) and Sultan, M. et al. Binary tree-structured vector quantization approach to clustering and visualizing microarray data, *Bioinformatics* Suppl 1, S111-S119 (2002)). The SOM with all the selected 40 genes and/or proteins is carried out according to the method of MATLAB R13 with the SOM toolbox available in the web site,

<http://www.cis.hut.fi/projects/somtoolbox/> (Kohonen, 2001).

Each set of forty genes and/or proteins whose expression is significantly altered during the transition from non-cancerous liver (L0) to pre-cancerous liver (L1), from pre-cancerous liver (L1) to well differentiated HCC (G1), from well differentiated HCC (G1) to moderately differentiated HCC (G2), from moderately differentiated HCC (G2) to poorly differentiated HCC (G3) is used for diagnosing the grade of hepatocarcinogenesis of HCC, and also for screening anti-cancer agents that are used for the treatment of HCC in each grade.

Each set of forty genes and/or proteins whose expression is significantly altered during the transition from non-cancerous liver (L0) to pre-cancerous liver (L1), from pre-cancerous liver (L1) to well differentiated HCC (G1), from well differentiated HCC (G1) to moderately differentiated HCC (G2), from moderately differentiated HCC (G2) to poorly differentiated HCC (G3) is expressed in bacteria, eukaryotic cells, and cell-free systems. Agents that affect the expression and/or function of the genes and/or proteins are screened by monitoring the expression and/or function. Monoclonal antibodies against the proteins are also raised and used for treating HCC in different grades. As monoclonal antibodies, whole mouse monoclonal antibodies, humanized antibodies, chimeric antibodies, single chain antibodies, divalent single chain antibodies, and/or bi-specific antibodies can be raised against the purified proteins, and they are used for diagnosing the grade of HCC and the treatment thereof.

A kit to examine the expression of the genes and/or proteins is also created. The kit consists of the components including reagents for an RNA extraction, enzymes for synthesis of cDNA and cRNA, DNA chips, oligonucleotide chips, protein chips, probes and primers for the genes, DNA fragments of

control genes, and antibodies to the proteins. The components of the kit are easily available from the market.

Brief Description of the Drawings

5 Fig. 1 illustrates color displays of the expression of 152 genes whose expression was significantly altered during the transition from L0 to L1 (a), 191 genes whose expression was significantly altered during the transition from L1 to G1 (b), 54 genes whose expression was significantly altered during the 10 transition from G1 to G2 (c), and 40 genes whose expression was significantly altered during the transition from G2 to G3 (d). Panels e, f, g, and h illustrate expression of the selected 40 genes in each transition stage in all the samples. Expression of the selected 40 genes whose expression was significantly 15 altered during the transition from L0 to L1 (e), from L1 to G1 (f), from G1 to G2 (g), and from G2 to G3 (h) is shown. The selected 40 genes in each transition stage discriminate samples before and after the transition. Genes are shown in decreasing order of the Fisher ratio and are indicated by GenBank accession 20 numbers.

The name of each sample is indicated on top of each photo (e-h); NL-64, NL-65, NL-66, NL-67, NL-68, NL-69, IL-49, IL-58, IL-59, IL-60, IL-62, G1-26T, G1-42T, G1-85T, G1-86T, G1-87T, G1-147T, G1-165T, G2-1T, G2-2T, G2-6T, G2-8T, G2-10T, G2-12T, G2-16T, 25 G2-18T, G2-20T, G2-22T, G2-23T, G2-27T, G2-28T, G2-29T, G2-31T, G2-34T, G2-37T, G2-43T, G2-45T, G2-46T, G2-49T, G2-58T, G2-59T, G2-60T, G2-62T, G2-89T, G2-90T, G2-105T, G2-151T, G2-155T, G2-161T, G2-162T, G2-163T, G2-171T, G2-182T, G3-19T, G3-21T, 30 G3-25T, G3-35T, G3-80T, G3-81T, G3-107T, G3-174T, from the left.

The name of each gene is indicated on the right of the photo. In the case of panel e, M18533, AF035316, AL049942, L27479, "Fibronectin, Alt. Splice 1", U19765, X55503, AL046394, AB007886, AL050139, AF012086, AI539439, M19828, U92315, D76444, 35 X02761, AF001891, AI400326, AI362017, L13977, D32053, AF038962, AL008726, J03909, Z69043, AL080080, M63138, L09159, AF017115,

M13560, M36035, U47101, U81554, M21186, D32129, AL022723,
M83664, U50523, M81757, AF102803, from the top. In the case
of panel f, M93221, AF079221, V01512, D88587, U12022, AF055376,
R93527, R92331, U83460, AF052113, H68340, M10943, M13485,
5 U75744, X02544, M93311, Z24725, U22961, M62403, M35878, U84011,
AF055030, L13977, D13891, M63175, AB023157, U20982, M14058,
AL049650, U61232, AI991040, U64444, D63997, X55503, AL080181,
X76228, AB018330, D76444, U70660, U10323, from the top. In the
case of panel g, M87434, M12963, AI625844, M97936, Z99129,
10 L07633, D50312, U07364, AA883502, M97935, AF061258, AB007447,
M97935, W28281, M97935, Y00281, D28118, AF104913, AA675900,
L27706, D32050, M63573, AF014398, X70944, U70671, AA447263,
AB014569, M23115, D38521, X00351, L11672, X82834, AB007963,
15 U76247, X68560, AB015344, AB018327, AF004430, D14697, AB028449,
from the top. In the case of panel h, AA976838, Z11793, AB002311,
Y18004, AL031230, AF002697, AB014596, U49897, AF070570, M80482,
AI263099, U22961, Z24725, U77594, L34081, M88458, U68723,
X92098, D10040, AB023194, AF001903, X96752, AB006202, M75106,
Y12711, D14662, S87759, Z48199, AF088219, AA453183, D31767,
20 AB000095, AB006782, M21186, AB002312, U44772, AI541308, Z49107,
U77735, M38449, from the top.

Fig. 2 illustrates the validation of the selected 40 genes in
each transition stage to distinguish the differentiation grade
25 of HCC.

In each transition, from L0 to L1 (a), from L1 to G1 (b), From
G1 to G2 (c), and from G2 to G3 (d), the minimum distance
classifier was constructed with the samples in consecutive two
differentiation grades as indicated by the red bar (training
30 samples), and was applied to the samples in the remaining
differentiation grades as indicated by the black bar (test
samples). The resulting classifier classified the test samples
with the accuracy of 92% (a), 98% (b), 84% (c), and 100% (d).

35 Fig. 3 illustrates the result of analysis by the
self-organizing map (SOM) algorithm of the genes whose

expression changed during the transition from non-cancerous liver (L0) to pre-cancerous liver (L1), from pre-cancerous liver (L1) to well differentiated HCC (G1), from well differentiated HCC (G1) to moderately differentiated HCC (G2),
5 and from moderately differentiated HCC (G2) to poorly differentiated HCC (G3).

Fig. 3a illustrates clusters of the samples (Table 1). Each cell in the SOM grid corresponds to one cluster. The vectors of neighboring cells are usually located close to each
10 other.

(m, n), index of the cell located at m-th row and n-th column.
NL-XX, samples from non-cancerous liver without HCV infection (L0); IL-XX, samples from HCV-infected pre-cancerous liver (L1); G1-XXT, samples from well differentiated HCC (G1); G2-XXT,
15 samples from moderately differentiated HCC (G2); G3-XXT, samples from poorly differentiated HCC (G3).

The map shows that the samples clearly formed a sigmoid curve in the order of L0, L1, G1, G2, and G3. G2 samples without vessel involvement (blue letters) are located close to G1 samples and
20 G2 samples with vessel involvement (red letters) are located close to G3 samples.

Fig. 3b illustrates the distance between the neighboring clusters.

(m, n), index of the cell located at m-th row and n-th column.
25 The color of the cells indicates the distance between the neighboring clusters; a red color means a long distance. The red cells in the upper area clearly show that the non-tumorous (non-cancerous and pre-cancerous) liver samples and HCC samples are relatively far apart in all the selected 40 genes.

30 Table 1 illustrates clusters of samples profiled to L0, L1, G1, G2, and G3 as shown in Fig. 3a.

Table 2 illustrates clinicopathologic factors of the HCC used in the present invention.

35 Table 3 illustrates top-40 discriminatory genes in L0 and L1. Table 4 illustrates top-40 discriminatory genes in L1 and G1.

Table 5 illustrates top-40 discriminatory genes in G1 and G2. Table 6 illustrates top-40 discriminatory genes in G2 and G3.

Best Mode for Carrying out the Invention

5 The following examples merely illustrate the preferred method for identification and use of genes and/or proteins that are differently expressed in non-cancerous liver, pre-cancerous liver, well differentiated HCC, moderately differentiated HCC, and poorly differentiated HCC.

10 Herein below, the present invention will be specifically described using examples, however, it is not to be construed as being limited thereto.

Example 1. Preparation of human tissues

15 Fifty patients underwent surgical treatment for HCC at Yamaguchi University Hospital between May 1997 and August 2000. Written informed consent was obtained from all patients before surgery. The study protocol was approved by the Institutional Review Board for the Use of Human Subjects at the Yamaguchi University School of Medicine. All of the 50 patients were seropositive for HCV antibody (HCVAb) and seronegative for hepatitis B virus surface antigen (HBsAg). A histopathological diagnosis of HCC was made in all cases after surgery. This histopathological examination showed that seven patients had well differentiated HCC (G1), 35 had moderately differentiated HCC (G2), and the remaining eight had poorly differentiated HCC (G3). Clinicopathologic factors were determined according to the International Union against Cancer TNM classification. Fisher's exact test, Student's t test, and Mann-Whitney's U test were used to elucidate the differences in clinicopathologic characteristics among the 3 grades, G1, G2 and G3 HCC. P<0.05 was considered significant.

30 Six non-cancerous liver samples were obtained from six patients who underwent hepatic resection for benign or metastatic liver tumors, and confirmed to have histologically normal livers. They were all seronegative for both HBsAg and

HCVAb. Five HCV-infected liver samples were also prepared from the non-tumorous areas of five patients with HCC. All five liver samples were histopathologically diagnosed as chronic hepatitis or liver cirrhosis. Informed consent in writing was 5 obtained from all patients before surgery.

Example 2. Clinicopathologic characteristics of HCCs

Histological examinations showed that, among the 50 HCV-associated HCCs enrolled in this study, seven were well 10 differentiated HCC (G1), 35 were moderately differentiated HCC (G2), and the remaining eight were poorly differentiated HCC (G3) (Table 2). The tumor size of G2 and G3 HCCs was significantly larger than that of G1 HCC ($p=0.0007$ and $p=0.028$, respectively, by Mann-Whitney's U test). The incidence of 15 vessel involvement in G2 and G3 HCCs was significantly higher than that in G1 HCC ($p=0.038$ by Fisher's exact test). In parallel to dedifferentiation from G1 to G3, tumor stage was more advanced ($p=0.066$ by Fisher's exact test). Thus, each type 20 of G1, G2, and G3 HCCs enrolled in this study showed characteristics corresponding to dedifferentiation, i.e., tumor size, metastatic potential, and tumor stage, as proposed by Kojiro (Kojiro, M. Pathological evolution of early hepatocellular carcinoma, *Oncology* 62, 43-47 (2002)).

25 **Example 3. Extraction of the RNA from tissues**

Pieces of the tissues (about 125 mm^3) were suspended in TRIZOL (Life Technologies, Gaithersburg, USA, Catalog No. 15596-018) or Sepasol-RNAI (Nacalai tesque, Kyoto, Japan, Catalog No. 306-55) and homogenized twice with a Polytron 30 (Kinematica, Littau, Switzerland) (5 sec at maximum speed). After addition of chloroform, the tissues homogenates were centrifuged at $15,000 \times g$ for 10 min, and aqueous phases, which contained RNA, were collected. Total cellular RNA was precipitated with isopropyl alcohol, washed once with 70% 35 ethanol, and suspended in DEPC-treated water (Life Technologies, Gaithersburg, USA, Catalog No. 10813-012).

After treated with 1.5 units of DNase I (Life Technologies, Gaithersburg, USA, Catalog No. 18068-015), the RNA was re-extracted with TRIZOL/chloroform, precipitated with ethanol, and dissolved in DEPC-treated water. Thereafter, 5 small molecular weight nucleotides were removed by using RNeasy Mini Kit (QIAGEN, Hilden, Germany, Catalog No. 74104) according to a manufacturer's instruction manual. Quality of the total RNA was judged from the ratio of 28S and 18S ribosomal RNA after agarose gel electrophoresis. The purified total RNA was stored 10 at -80 °C in 70% ethanol solution until use.

Example 4. Synthesis of cDNA and labeled cRNA probes

cDNA was synthesized by using reverse SuperScript Choice System (Life Technologies, Gaithersburg, USA, Catalog No. 18090-019) according to the manufacturer's instruction manual. Five micrograms of the purified total RNA were hybridized with oligo-dT primers (Sawady Technology, Tokyo, Japan) that contained sequences for the T7 promoter and 200 units of SuperScriptII reverse transcriptase and incubated at 20 42 °C for 1 hr. The resulting cDNA was extracted with phenol/chloroform and purified with Phase Lock Gel™ Light (Eppendorf, Hamburg, Germany, Catalog No. 0032 005.101).

cRNA was also synthesized by using MEGAscript T7 kit (Ambion, Austin, USA, Catalog No. 1334) and cDNA as templates according to the manufacturer's instruction. Approximately 5 µg of the cDNA was incubated with 2 µl of enzyme mix containing T7 polymerase, 7.5 mM each of adenosine triphosphate (ATP) and guanosine triphosphate (GTP), 5.625 mM each of cytidine triphosphate (CTP) and uridine triphosphate (UTP), and 1.875 mM each of Bio-11-CTP and Bio-16-UTP (ENZO Diagnostics, Farmingdale, USA, Catalog No. 42818 and 42814, respectively) at 37 °C for 6 hr. Mononucleotides and short oligonucleotides were removed by column chromatography on CHROMA SPIN +STE-100 column (CLONTECH, Palo Alto, USA, Catalog No. K1302-2), and the 35 cRNA in the eluates was sedimented by adding ethanol. Quality of the cRNA was judged from the length of the cRNA after agarose

gel electrophoresis. The purified cRNA was stored at -80 °C in 70% ethanol solution until use.

Example 5. Gene expression analysis of HCC in different
5 differentiation grade

Gene expression of human primary tumors from glioma patients was examined by high-density oligonucleotide microarrays (U95A array, Affymetrix, Santa Clara, USA, Catalog No. 510137) (Lipshutz, R.L. et al. High density synthetic oligonucleotide arrays, *Nat. Genet.* 21, 20-24 (1999)). For hybridization with oligonucleotides on the chips, the cRNA was fragmented at 95 °C for 35 min in a buffer containing 40 mM Tris (Sigma, St. Louis, USA, Catalog No. T1503)-acetic acid (Wako, Osaka, Japan, Catalog No. 017-00256) (pH 8.1), 100 mM potassium acetate (Wako, Osaka, Japan, Catalog No. 160-03175), and 30 mM magnesium acetate (Wako, Osaka, Japan, Catalog No. 130-00095). Hybridization was performed in 200 µl of a buffer containing 0.1 M 2-(N-Morpholino) ethanesulfonic acid (MES) (Sigma, St. Louis, USA, Catalog No. M-3885) (pH 6.7), 1 M NaCl (Nacalai tesque, Kyoto, Japan, Catalog No. 313-20), 0.01% polyoxylene(10) octylphenyl ether (Wako, Osaka, Japan, Catalog No. 168-11805), 20 µg herring sperm DNA (Promega, Madison, USA, Catalog No. D181B), 100 µg acetylated bovine serum albumin (Sigma, St. Louis, USA, Catalog No. B-8894), 10 µg of the fragmented cRNA, and biotinylated-control oligonucleotides, biotin-5'-CTGAACGGTAGCATCTTGAC-3' (Sawady technology, Tokyo, Japan), at 45 °C for 12 hr. After washing the chips with a buffer containing 0.01 M MES (pH 6.7), 0.1 M NaCl, and 0.001% polyoxylene(10) octylphenyl ether buffer, the chips were incubated with biotinylated anti-streptavidin antibody (Funakoshi, Tokyo, Japan, Catalog No. BA0500) and stained with streptavidin R-Phycoerythrin (Molecular Probes, Eugene, USA, Catalog No. S-866) to increase hybridization signals as described in the instruction manual (Affymetrix, Santa Clara, USA). Each pixel level was collected with laser scanner (Affymetrix, Santa Clara, USA) and levels of the expression of

each cDNA and reliability (Present/Absent call) were calculated with Affymetrix GeneChip ver. 3.3 and Affymetrix Microarray Suite ver. 4.0 softwares. From these experiments, expression of approximately 11,000 genes in the human primary tumors of glioma patients was determined.

Example 6. Statistical analysis of the oligonucleotide microarray data

Genes with average differences greater than 40 (arbitrary units by Affymetrix) in all the 50 HCC samples and the 11 non-tumorous (non-cancerous and pre-cancerous) liver samples were selected. This procedure yielded 3,559 genes out of approximately 11,000. Next, the Fisher ratio was determined (Iizuka, N., Oka, M., Yamada-Okabe, H., Mori, N., Tamesa, T., Okada, T., Takemoto, T., Tangoku, A., Hamada, K., Nakayama, H., Miyamoto, T., Uchimura, S., and Hamamoto, Y. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data based on a supervised learning method, *Cancer Res.* **62**, 3939-3944 (2002) and Luo, J., Duggan, D.J., Chen, Y., Sauvageot, J., Ewing, C.M., Bittner, M.L., Trent, J.M., and Isaacs, W.B. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling, *Cancer Res.* **61**, 4683-4688 (2001)) to evaluate these genes as discriminators of L0 from L1, L1 from G1, G1 from G2, and G2 from G3. The above 3,559 genes were ranked in the order of decreasing magnitude of the Fisher ratio. A random permutation test was also performed to determine the number of genes to define the differentiation grade of HCC. The random permutation test was carried out as described previously (Iizuka, N., Oka, M., Yamada-Okabe, H., Mori, N., Tamesa, T., Okada, T., Takemoto, T., Tangoku, A., Hamada, K., Nakayama, H., Miyamoto, T., Uchimura, S., and Hamamoto, Y. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data based on a supervised learning method, *Cancer*

Res. 62, 3939-3944 (2002) and Luo, J., Duggan, D.J., Chen, Y., Sauvageot, J., Ewing, C.M., Bittner, M.L., Trent, J.M., and Isaacs, W.B. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling, 5 Cancer Res. 61, 4683-4688 (2001)). In the test, sample labels were randomly permuted between two grades to be considered, and the Fisher ratio for each gene was again computed. This random permutation of sample labels was repeated 1,000 times. The Fisher ratios generated from the actual data were then assigned 10 P_s based on the distribution of the Fisher ratios from randomized data. From the distribution of the Fisher ratios based on the randomized data, all of the genes that could pass the random permutation test ($P < 0.005$) were selected. This procedure was performed in all experiments for the comparison 15 of two grades. As a result, 152 genes with the Fisher ratios higher than 4.90 were statistically significant discriminators between L0 and L1. Likewise, 191 genes with the Fisher ratios higher than 4.08 to discriminate L1 from G1, 54 genes with the Fisher ratios higher than 1.52 to discriminate G1 from G2, and 20 40 genes with the Fisher ratios higher than 1.34 to discriminate G2 from G3, were identified.

Example 7. Selection of genes whose expression correlates with differentiation grade of HCC

With oligonucleotide array data, changes in the gene expression during oncogenesis, i.e., from non-cancerous liver (L0) to HCV-infected pre-cancerous liver (L1) and from L1 to well differentiated HCC (G1), and during dedifferentiation of HCC (G1 to G2 and G2 to G3) were analyzed. The supervised 25 learning method followed by a random permutation test identified 152 genes whose expression level was significantly changed during the transition from L0 to L1. Among the 152 genes, 30 67 were upregulated and 85 were downregulated during this transition. In the same manner, 191 genes whose expression level was significantly changed during the transition from L1 to G1 HCC were identified. Among the 191 genes, 95 were 35

upregulated and 96 were downregulated during this transition. Fifty-four genes appeared to be differentially expressed between G1 and G2 HCCs, and among them the expression of 36 genes was increased and that of 18 genes was decreased during the 5 transition from G1 to G2. Forty genes turned out to be differentially expressed between G2 and G3 HCCs, and among them the expression of 10 genes was increased and that of 30 genes was decreased during the transition from G2 to G3.

To examine performance of the genes selected in each 10 grade in the oncogenesis and development of HCC, the inventors applied data of these genes to all samples. As a result, almost all of these genes selected in each transition stage were placed in L0-L1 transition, L1-G1 transition, G1-G2 transition, and G2-G3 transition. For example, the 191 genes that discriminate 15 L1 from G1 HCC could clearly distinguish non-tumorous livers (L0 and L1) from HCCs (G1, G2, and G3) (Fig. 1). These results indicate that altered level of the selected genes plays central roles in determining each grade of HCC pathogenesis.

20 **Example 8. Genes whose expression changed during the transition from non-cancerous liver (L0) to pre-cancerous liver (L1)**

Expression of most of immune response-related genes, metabolism-related genes, transport-related genes, proteolysis-related genes, and oncogenesis-related genes was 25 increased, and that of transcription-related genes was decreased during the transition from L0 to L1 (Table 3).

Immune response-related genes include MHC class I family (HLA-A, -C, -E, and -F), MHC class II family (HLA-DPB1 and HLA-DRA), CD74, NK4, LILRB1, FCGR3B, and IFI30. 30 Uptregulation of an interferon (IFN) inducible gene such as IFI30 may represent host defense against viral infection; however, it should be noted that several IFN-related genes were decreased during dedifferentiation of G1 to G2 as mentioned in the following section (see Example 10).

35 Metabolism-related genes include KARS, ALDOA, ASAHI, MPI, and GAPD. Increased levels of KARS and ALDOA enhance protein

biosynthesis and glycolysis, respectively. Upregulation of ASAHI, MPI, and GAPD augments biosynthesis of fatty acid, mannose, and glyceraldehyde, respectively.

Transport-related genes include VDAC3, SSR4, BZRP, and ATOX1. SSR4 is responsible for the effective transport of newly synthesized polypeptides. ATOX1 is a copper transporter and an increase in its expression causes activation of various metabolic pathways, because many enzymes require copper ion as a cofactor of enzymatic activity.

Proteolysis-related genes include CST3 and CTSD. CST3 is involved in vascular formation. Increased serum level of CTSD protein was observed in cirrhotic patients who may develop pre-cancerous hepatic nodules (Leto, G., Tumminello, F.M., Pizzolanti, G., Montalto, G., Soresi, M., Ruggeri, I., and Gebbia, N. Cathepsin D serum mass concentrations in patients with hepatocellular carcinoma and/or liver cirrhosis, *Eur. J. Clin. Chem. Clin. Biochem.* 34, 555-560 (1996)).

Oncogenesis-related genes include MBD2, RPS19, RPS3, RPS15, and RPS12. DNA methylation is a common epigenetic change in many malignancies, thus, DNA methylation patterns are determined by the enzymatic processes of methylation and demethylation. Upregulation of MBD2, which inhibits transcription from methylated DNA, plays an important role in downregulation of tumor suppressor genes carrying methylated DNA at their promoter regions.

Downregulation of a transcription-related gene, RB1CC1, was observed during the transition from L0 to L1. The RB1CC1 protein is a major regulator of the tumor suppressor gene RB1, thereby decreased levels of RB1CC1 can promote oncogenesis via decreased activity of RB1 protein.

Thus, HCV-infected pre-cancerous liver is characterized by the altered expression of these genes, which suggests that initiation of hepatocarcinogenesis occurs during HCV infection. Among genes whose expression changes during the transition from L0 to L1, those involved in proteolysis and oncogenesis may serve as molecular targets for chemoprevention

of HCV-associated HCC.

Example 9. Genes whose expression changed during the transition from pre-cancerous liver (L1) to well differentiated HCC (G1)

5 Genes whose expression was altered during the transition from L1 to G1 include most oncogenesis-related genes, signal transduction-related genes, transcription-related genes, transport-related genes, detoxification-related genes, and immune response-related genes (Table 4).

10 Oncogenesis-related genes such as BNIP3L, FOS, MAF, and IGFBP3 that can induce apoptosis of some cancer cells and IGFBP4 that acts as an inhibitor of IGF-induced cell proliferation were downregulated during the transition, indicating downregulation of these genes is also important for the promotion of hepatocarcinogenesis. Previous report also showed the decreased expression of IGFBP3 and IGFBP4 in HCC compared with non-tumorous liver (Okabe, H., Satoh, S., Kato, T., Kitahara, O., Yanagawa, R., Yamaoka, Y., Tsunoda, T., Furukawa, Y., and Nakamura, Y. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression, *Cancer Res.* **61**, 2129-2137 (2001) and Delpuech, O., Trabut, J.B., Carnot, F., Feuillard, J., Brechot, C., and Kremsdorff, D. Identification, 15 using cDNA macroarray analysis, of distinct gene expression profiles associated with pathological and virological features of hepatocellular carcinoma, *Oncogene* **21**, 2926-2937 (2002)). The data of the present invention provide additional insights that downregulation of these two genes has already occurred in 20 well differentiated HCC. MAF functions as a regulator for cell differentiation. BNIP3L induces cell apoptosis via inhibiting activity of BCL2. In some cases, expression of FOS seems to be associated with apoptotic cell death. Thus, downregulation of these five genes is likely to trigger the transformation of 25 hepatocyte after chronic HCV infection.

30 Signal transduction-related genes such as CAMKK2, GMFB,

RALBP1, CDIPT, ZNF259, and RAC1, and transcription-related genes such as DRAP1, ILF2, BMI1, and PMF1 were upregulated during the transition from L1 to G1. Other signal transduction-related genes such as CALM1, RAB14, TYROBP, and MAP2K1 were downregulated during this transition.

5 Downregulation of TYROBP in G1 HCC may reflect decreased immune response. Alteration of the expression of genes involved in various signal transduction pathways may reflect a true portrait in well differentiated HCC arising from HCV-infected 10 pre-cancerous liver.

Transport-related genes such as TBCE, ATP6V1E, ATOX1, and SEC61G were upregulated, and those such as SLC31A1 and DDX19 were downregulated during the transition from L1 to G1. ATOX1 that is an intracellular copper transporter was upregulated 15 during the transition from L0 to L1, and it was further upregulated during the transition from L1 to G1. Since an excessive copper is toxic or even lethal to the hepatocytes, distinct expression of ATOX1 genes alters intracellular copper ion concentrations, thereby promotes DNA damage and cell injury. 20 In fact, a recent study showed the preventive effect of copper-chelating agents on tumor development in the murine HCC xenograft model (Yoshii, J., Yoshiji, H., Kuriyama, S., Ikenaka, Y., Noguchi, R., Okuda, H., Tsujinoue, H., Nakatani, T., Kishida, H., Nakae, D., Gomez, D.E., De Lorenzo, M.S., Tejera, 25 A.M., and Fukui, H. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells, *Int. J. Cancer.* 94, 768-773 (2001)).

DNA damage and cell injury can be augmented by the 30 downregulation of an antioxidant gene CAT and detoxification-related genes such as MT1H, MT1E, MT1F, MT1B, MT3, and UGT2B7, promoting the dedifferentiation of HCC.

Using anti-hyaluronan receptor-1 antibody, Carreira et al. showed that the number of lymphatic vessels was smaller in 35 HCC than in non-tumorous liver tissues such as liver cirrhosis (Mouta Carreira, C., Nasser, S.M., di Tomaso, E., Padera, T.P.,

Boucher, Y., Tomarev, S.I., and Jain, R.K. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis, *Cancer Res.* 61, 8079-8084 (2001)). In the present invention, expression of immune response-related genes such as ORM1, C1R, C6, IL4R, C8B, and C1S was decreased during the transition from L1 to G1, indicating that changes in microenvironment in HCC occur during the transition from L1 to G1. As reported previously, many genes encoding complement component were downregulated during this transition (Okabe, H., Satoh, S., Kato, T., Kitahara, O., Yanagawa, R., Yamaoka, Y., Tsunoda, T., Furukawa, Y., and Nakamura, Y. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression, *Cancer Res.* 61, 2129-2137 (2001) and Iizuka, N., Oka, M., Yamada-Okabe, H., Mori, N., Tamesa, T., Okada, T., Takemoto, T., Tangoku, A., Hamada, K., Nakayama, H., Miyamoto, T., Uchimura, S., and Hamamoto, Y. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data based on a supervised learning method, *Cancer Res.* 62, 3939-3944 (2002)).

Example 10. Genes whose expression changed during the transition from well differentiated HCC (G1) to moderately differentiated HCC (G2)

Genes whose expression was altered during the transition from G1 to G2 include IFN-related genes, cell structure and motility-related genes, transcription-related genes, and tumor suppressor genes (Table 5).

During transition from G1 to G2, the most prominent genetic changes appeared to be downregulation of IFN-related genes such as OAS2, STAT1, PSME1, ISGF3G, and PSMB9. Similar genetic changes were also observed in prostate cancer cells (Shou, J., Soriano, R., Hayward, S.W., Cunha, G.R., Williams,

P.M., and Gao, W.Q. Expression profiling of a human cell line model of prostatic cancer reveals a direct involvement of interferon signaling in prostate tumor progression, *Proc. Natl. Acad. Sci. U.S.A.* **99**, 2830-2835 (2002)). IFN acts not only as an antiviral agent but also as an anticancer agent; however, certain types of HCC do not respond to IFN. Downregulation of the IFN-related genes can attenuate response of tumor cells to IFN, suggesting that resistance of HCC to IFN is exploited during the transition from G1 to G2. Among the IFN-related genes, STAT1 appeared four times in our list of discriminators of G1 from G2 (Table 5). Unlike other genes of the same family, STAT1 functions as a tumor suppressor (Bromberg, J.F. Activation of STAT proteins and growth control, *Bioessays* **23**, 161-169 (2001)). Interestingly, IFN treatment increases STAT1 expression in hepatocyte as well as many IFN-related genes (Radaeva, S., Jaruga, B., Hong, F., Kim, W.H., Fan, S., Cai, H., Strom, S., Liu, Y., El-Assal, O., and Gao, B. Interferon-alpha activates multiple STAT signals and down-regulates c-Met in primary human hepatocytes, *Gastroenterology* **122**, 1020-1034 (2002)). Upregulation of STAT1 in HCC cell lines was observed during differentiation induced by sodium butyrate (Hung, W.C. and Chuang, L.Y. Sodium butyrate enhances STAT 1 expression in PLC/PRF/5 hepatoma cells and augments their responsiveness to interferon-alpha, *Br. J. Cancer* **80**, 705-710 (1999)). The facts that STAT1 is a transcriptional target of the IGF-independent apoptotic effect of IGFBP3 (Spagnoli, A., Torello, M., Nagalla, S.R., Horton, W.A., Pattee, P., Hwa, V., Chiarelli, F., Roberts, C.T. Jr., and Rosenfeld, R.G. Identification of STAT-1 as a molecular target of IGFBP-3 in the process of chondrogenesis, *J. Biol. Chem.* **277**, 18860-18867 (2002)) and that IGFBP3 is downregulated during the transition from L1 to G1 strongly suggest that decreased expression of STAT1 during the transition from G1 to G2 HCC facilitate the further dedifferentiation of HCC.

Transcription-related gene TRIM16 that is involved in a variety of biological processes including cell growth,

differentiation, and pathogenesis, and tumor suppressor gene TPD52L2 that promotes cell proliferation were also upregulated during the transition from G1 to G2. Upregulation of these genes in G2 HCC may promote growth and invasion of tumor cells.

5

Example 11. Genes whose expression changed during the transition from moderately differentiated HCC (G2) to poorly differentiated HCC (G3)

Genes whose expression was altered during the transition from G2 to G3 include proteolysis-related genes, BCL2-related gene, and metabolism- and energy generation-related genes (Table 6).

SPINT1 and LGALS9 turned out to be upregulated during the transition from G2 to G3. SPINT1 is involved in regulation of proteolytic activation of hepatocyte growth factor (HGF) in injured tissues. Previously, Nagata et al. showed that transduction of antisense SPINT1 (HAI-1) inhibited the growth of human hepatoma cells, suggesting that SPINT1 plays an important role in the progression of HCC (Nagata, K., Hirono, S., Ido, A., Kataoka, H., Moriuchi, A., Shimomura, T., Hori, T., Hayashi, K., Koono, M., Kitamura, N., and Tsubouchi, H. Expression of hepatocyte growth factor activator and hepatocyte growth factor activator inhibitor type 1 in human hepatocellular carcinoma, *Biochem. Biophys. Res. Commun.* 289, 205-211 (2001)). LGALS9 belongs to a lectin family that is involved in cell adhesion, cell growth regulation, inflammation, immunomodulation, apoptosis, and metastasis. Several galectins are thought to be related to cancer cell adhesion (Ohannessian, D.W., Lotan, D., Thomas, P., Jessup, J.M., Fukuda, M., Gabius, H.J., and Lotan, R. Carcinoembryonic antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells, *Cancer Res.* 55, 2191-2199 (1995)).

BNIP3, a BCL2-related gene, was downregulated during the transition from G2 to G3. BNIP3 shares 56% amino acid sequence identity with BNIP3L. As mentioned above, expression

of BNIP3L was decreased during the transition from L1 to G1. Because BCL2 functions as an anti-apoptotic factor, downregulation of BNIP3L and BNIP3 promotes oncogenesis, facilitating the dedifferentiation of tumor cells.

5 Many metabolism- and energy generation- related genes were also downregulated during this transition. In addition, expression of PGRMC1 encoding a liver-rich protein that binds to progesterone and RARRES2 was also decreased during the transition from G2 to G3. Decreased expression of RARRES2 may
10 be the causative of poor response of G3 HCC to retinoic acids.

Example 12. Color display of the expression of the selected genes in each transition stage

15 Expression of 152 genes whose expression was significantly altered during the transition from L0 to L1 (Fig. 1a), 191 genes whose expression was significantly altered during the transition from L1 to G1 (Fig. 1b), 54 genes whose expression was significantly altered during the transition from G1 to G2 (Fig. 1c), and 40 genes whose expression was significantly altered during the transition from G2 to G3 (Fig. 20 1d) was shown by color display. These genes clearly distinguished the samples in the two consecutive differentiation grades. Fig. 1e-h indicate the expression of the selected 40 genes in each transition stage in all the samples. Expression of the selected 40 genes whose expression was significantly altered during the transition from L0 to L1 (Fig. 1e), from L1 to G1 (Fig. 1f), from G1 to G2 (Fig. 1g), and from G2 to G3 (Fig. 1h) was also shown by color display. The selected 40 genes in each transition stage discriminated
25 30 samples before and after the transition.

Example 13. Validation of the selected 40 genes in each transition stage to distinguish the differentiation grade of HCC

35 To validate discriminative performance of the selected 40 genes in each transition stage, the minimum distance

classifier with the selected 40 genes in each transition stage was created. In each transition, the minimum distance classifier was constructed with the samples in consecutive two differentiation grades as indicated by the red bar (training samples), and was applied to the samples in the remaining differentiation grades as indicated by the black bar (test samples) (Fig. 2). The resulting classifier classified the test samples with the accuracy of 92% (Fig. 2a), 98% (Fig. 2b), 84% (Fig. 2c), and 100% (Fig. 2d).

10

Example 14. Analysis by the self-organizing map (SOM) algorithm of the genes whose expression changed during the transition from non-cancerous liver (L0) to pre-cancerous liver (L1), from pre-cancerous liver (L1) to well differentiated HCC (G1), from well differentiated HCC (G1) to moderately differentiated HCC (G2), and from moderately differentiated HCC (G2) to poorly differentiated HCC (G3)

15

Expression of the genes whose expression was statistically significantly different between non-cancerous liver (L0) and pre-cancerous liver (L1), pre-cancerous liver (L1) and well differentiated HCC (G1), well differentiated HCC (G1) and moderately differentiated HCC (G2), moderately differentiated HCC (G2) and poorly differentiated HCC (G3) was analysed according to the method of MATLAB R13 with the SOM toolbox available in the web site,

20

<http://www.cis.hut.fi/projects/somtoolbox/> (Kohonen, 2001).

25

40 genes in each comparison between non-cancerous liver (L0) and pre-cancerous liver (L1), pre-cancerous liver (L1) and well differentiated HCC (G1), well differentiated HCC (G1) and moderately differentiated HCC (G2), moderately differentiated HCC (G2) and poorly differentiated HCC (G3) were used. The vectors of neighboring cells were located close to each other in the 155-dimentional gene space (Fig. 3a), where (m, n) indicated the cell located at m-th row and n-th column, NL-XX indicated samples from non-cancerous liver without HCV infection (L0), IL-XX indicated samples from HCV-infected

pre-cancerous liver (L1), G1-XXT indicated samples from well differentiated HCC (G1), G2-XXT indicated samples from moderately differentiated HCC (G2), G3-XXT indicated samples from moderately differentiated HCC (G3). The map showed that
5 the samples clearly formed a sigmoid curve in the order of L0, L1, G1, G2, and G3. G2 samples without vessel involvement (blue letters) were located close to G1 samples and G2 samples with vessel involvement (red letters) were located close to G3 samples (Fig. 3a). G2 samples without venous invasion were
10 located close to G1 samples and G2 samples with venous invasion were located close to G3 samples. Thus, the SOM classified G2 samples into two subtypes, i.e., tumor with venous invasion and that without venous invasion, in the stream of dedifferentiation grade. When the distance between the
15 neighboring clusters was shown by colors where red indicated long distance, the red cells in the upper area clearly demonstrated that the non-tumorous (non-cancerous and pre-cancerous) liver and HCC samples were relatively far apart in the 155-dimentional genes space (Fig. 3b).

20

Industrial Applicability

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. However, there is no therapy that can cure the disease. This is presumably due to sequential changes in
25 characteristics of cancer cells during the development and progression of the disease. Particularly, progression of cancer is often associated with the changes of differentiation grade of tumor cells. Diagnosis and management of such changes of cancer cells will make cancer therapy more effective. In
30 the present invention, genes whose expression correlates with oncogenesis and development of HCC are identified. A supervised learning method followed by a random permutation test is used to select genes whose expression significantly changes during the transition from non-cancerous liver without
35 HCV infection (L0) to pre-cancerous liver with HCV infection (L1), from L1 to well differentiated HCC (G1), from G1 to

moderately differentiated HCC (G2), and from G2 to poorly differentiated HCC (G3). The minimum distance classifier and the self-organizing map (SOM) with the selected 40 genes whose expression is significantly altered in each transition stage
5 can correctly predict the differentiation grade of tumor tissues. Thus, these genes can be used for diagnosing the differentiation grade of HCC and for screening anti-cancer agents for the treatment of HCCs in each differentiation grade.

Table 1. Clusters of samples profiled to L0, L1, G1, G2, and G3.

cell	sample
(1, 1)	IL-49, IL-58, IL-59, IL-60, IL-62
(1, 2)	
(1, 3)	NL-64, NL-65, NL-68, NL-69
(1, 4)	NL-66, NL-67
(1, 5)	
(2, 1)	
(2, 2)	G2-34T
(2, 3)	
(2, 4)	
(2, 5)	G2-16T, G2-29T, G2-45T G2-2T
(3, 1)	G1-85T, G1-87T
(3, 2)	
(3, 3)	G1-42T G2-22T
(3, 4)	
(3, 5)	
(4, 1)	G1-86T G2-105T
(4, 2)	G1-26T
(4, 3)	
(4, 4)	G2-8T, G2-27T
(4, 5)	G2-151T
(5, 1)	G1-147T, G1-165T
(5, 2)	
(5, 3)	G2-60T
(5, 4)	G2-18T
(5, 5)	G2-31T G2-20T, G2-59T
(6, 1)	G3-21T
(6, 2)	G3-80T
(6, 3)	G2-1T, G2-163T G2-161T
(6, 4)	G2-28T, G2-155T
(6, 5)	G2-90T
(7, 1)	G3-107T
(7, 2)	G3-25T
(7, 3)	G2-46T, G2-62T, G2-171T G2-162T
(7, 4)	
(7, 5)	G2-37T G2-6T, G2-58T

(8, 1)	G3-35T, G3-81T, G3-174T
(8, 2)	G2-49T
	G2-23T
(8, 3)	G2-12T
	G2-10T
	G3-19T
(8, 4)	G2-89T
(8, 5)	G2-43T, G2-182T

Table 2. Clinicopathologic characteristics per study group.

Factors	Well (G1)	Moderately (G2)	Poorly (G3)	P value
Sex				N.S.
Male	4	24	6	
Female	3	11	2	
Age (year)	65.3±2.6	65.4±1.2	67.2±3.3	N.S.
Primary lesion				N.S.
Single tumor	6	15	2	
Multiple tumors	1	20	6	
Tumor size (cm)	2.0±0.3	5.0±0.5	6.0±2.5	p=0.0007 (G1 vs G2) p=0.028 (G1 vs G3)
Stage*				p=0.066
I	6	10	2	
II	1	17	3	
IIIA/IV	0	8	3	
Venous invasion*				p=0.038
(-)	7	21	3	
(+)	0	14	5	
Non-tumorous liver				N.S.
Normal or chronic hepatitis	2	15	2	
Liver cirrhosis	5	20	6	

*, Tumor differentiation, stage, and venous invasion were determined on the basis of TNM classification of UICC. Fisher's exact test, Student's *t* test, and Mann-Whitney's *U* test were used to elucidate the differences in backgrounds between each differentiation grade.

N.S., not significant.

Table 3. Top-40 discriminatory genes in L0 and L1.

Eighteen genes downregulated in L1 in comparison with L0

Fisher ratio	GB number	Description	Symbol	Locus	Function
50.45	M18533	dystrophin	DMD	Xp21.2	cytoskeleton
23.02	AF035316	homolog to tubulin beta chain		6p24.3	unknown
20.65	AL049942	zinc finger protein 337	ZNF337	20p11.1	unknown
18.34	L27479	Friedreich ataxia region gene X123	X123	9q13-q21	unknown
16.63	' Alt. Splice 1	Fibronectin fibronectin (Alt. Splice 1)			extracellular matrix
16.13	U19765	zinc finger protein 9	ZNF9	3q21	transcription/retroviral nucleic acid binding protein
14.91	X55503	metallothionein IV	MTIV	16q13	detoxification
13.71	AL046394	poly(rC) binding protein 3	PCBP3	21q22.3	RNA-binding protein/post-transcriptional control
12.56	AB007886	KIAA0426 gene product	KIAA0426	6p22.2-p21.3	unknown
12.41	AL050139	hypothetical protein FLJ13910	FLJ13910	2p11.1	unknown
12.37	AF012086	RAN binding protein 2-like 1	RANBP2L1	2q12.3	signal transduction/small GTP-binding protein
11.66	AI539439	S100 calcium binding protein A2	S100A2	1q21	extracellular stimuli and cellular responses
11.24	M19828	apolipoprotein B	APOB	2p24-p23	lipid metabolism

Table 3. Top-40 discriminatory genes in L0 and L1. (cont'd)

Fisher ratio	GB number	Description	Symbol	Locus	Function
10.59	U92315	sulfotransferase family, cytosolic, 2B, member 1	SULT2B1	19q13.3	steroid metabolism
10.53	D76444	zinc finger protein 103 homolog (mouse)	ZFP103	2p11.2	central nervous system development
10.50	X02761	fibronectin 1	FN1	2q34	extracellular matrix/cell adhesion and motility
10.20	AF001891	zinc finger protein-like 1	ZFPL1	11q13	unknown
9.74	AI400326	EST		2	UniGene Cluster HS.356456

Twenty - two genes upregulated in L1 in comparison with L0

Fisher ratio	GB number	Description	Symbol	Locus	Function
40.49	AI362017	cystatin C	CST3	20p11.21	cysteine protease inhibitor
21.66	L13977	prolylcarboxypeptidase (angiotensinase C)	PRCP	11q14	cysteine protease inhibitor/metabolism/lysosome-related protein
20.59	D32053	lysyl-tRNA synthetase	KARS	16q23-q24	protein biosynthesis
13.70	AF038962	voltage-dependent anion channel 3	VDAC3	8p11.2	transport of adenine nucleotides
11.90	AL008726	protective protein for beta-galactosidase (cathepsin A)	PPGB	20q13.1	lysosomal protein/enzyme activator
11.71	J03909	interferon, gamma-inducible protein 30	IFI30	19p13.1	lysosomal thiol reductase/IFN-inducible

Table 3. Top-40 discriminatory genes in L0 and L1. (cont'd)

Fisher ratio	GB number	Description	Symbol	Locus	Function
11.32	Z69043	signal sequence receptor, delta	SSR4	Xq28	translocation of newly synthesized polypeptides
11.17	AL080080	thioredoxin-related transmembrane protein	TXNDC	14q21.3	redox reaction
11.15	M63138	cathepsin D	CTSD	11p15.5	lysosomal aspartyl protease/proteolysis
11.12	L09159	ras homolog gene family, member A	ARHA	3p21.3	oncogenesis/actin cytoskeleton reorganization
10.99	AF017115	cytochrome c oxidase subunit IV isoform 1	COX4II	16q22-qter	energy pathway
10.76	M13560	CD74 antigen	CD74	5q32	immune response
10.22	M36035	benzodiazapine receptor	BZRP	22q13.31	flow of cholesterol into mitochondria
10.08	U47101	nitrogen fixation cluster-like	NIFU	12q24.1	unknown
9.70	U81554	calcium/calmodulin-dependent protein kinase II gamma	CAMK2G	10q22	signal transduction
9.59	M21186	cytochrome b-245, alpha polypeptide	CYBA	16q24	energy generation
9.47	D32129	major histocompatibility complex, class I, A	HLA-A	6p21.3	immune response

Table 3 . Top-40 discriminatory genes in L0 and L1. (cont'd)

Fisher ratio	GB number	Description	Symbol	Locus	Function
9.44	AL022723	major histocompatibility complex, class I, F	HLA-F	6p21.3	immune response
9.41	M83664	major histocompatibility complex, class II, DP beta 1	HLA-DPB1	6p21.3	immune response
9.16	U50523	actin related protein 2/3 complex, subunit 2	ARPC2	13q12-q13	cell motility and cytoskeleton
9.02	M81757	ribosomal protein S19	RPS19	19q13.2	oncogenesis/RNA-binding protein
8.89	AF1102803	catenin (cadherin-associated protein), alpha 1	CTNNA1	5q31	cell adhesion

Table 4. Top-40 discriminatory genes in L1 and G1.

Twenty-eight genes downregulated in G1 in comparison with L1

Fisher ratio	GB number	Description	Symbol	Locus	Function
26.84	M93221	mannose receptor, C type 1	MRC1	10p13	phagocytosis and pinocytosis
26.08	AF079221	BCL2/adenovirus E1B 19kD interacting protein 3-like	BNIP3L	8p21	tumor suppressor/induction of apoptosis
21.46	V01512	v-fos FBJ murine osteosarcoma viral oncogene homolog	FOS	14q24.3	oncogenesis/transcription
21.45	D88587	ficolin 3 (Hakata antigen)	FCN3	1p35.3	extracellular space
20.15	U12022	calmodulin 1	CALM1	14q24-q31	signal transduction/calcium-binding protein
19.73	AF055376	v-maf musculoaponeurotic fibrosarcoma oncogene homolog	MAF	16q22-q23	oncogenesis/transcription
19.19	R93527	metallothionein 1H	MT1H	16q13	detoxification
18.19	R92331	metallothionein 1E	MT1E	16q13	detoxification
17.65	U83460	solute carrier family 31, member 1	SLC31A1	9q31-q32	copper ion transport
17.30	AF052113	RAB14, member RAS oncogene family	RAB14	9q32-q34.11	Ras superfamily member of GTP-binding proteins
15.26	H68340	RNA helicase-related protein	RNAHP	17q22	alteration of RNA secondary structure

Table 4 . Top-40 discriminatory genes in L1 and G1. (cont'd)

Fisher ratio	GB number	Description	Symbol	Locus	Function
14.96	M10943	metallothionein 1F	MT1F	16q13	detoxification
14.18	M13485	metallothionein 1B	MT1B	16q13	detoxification
13.34	U75744	deoxyribonuclease I-like 3	DNASE1L3	3p21.1-3p14.3	DNA metabolism
12.65	X02544	orosomucoid 1	ORM1	9q31-q32	immune response/acute-phase response
11.95	M93311	metallothionein 3	MT3	16q13	detoxification
11.58	Z24725	mitogen inducible 2	MIG2	14q22.1	cell cycle and cell proliferation
11.52	U22961	unknown			unknown
11.45	M62403	insulin-like growth factor binding protein 4	IGFBP4	17q12-q21.1	signal transduction/cell proliferation
11.01	M35878	insulin-like growth factor binding protein 3	IGFBP3	7p13-p12	signal transduction/cell proliferation
10.80	U84011	amylo-1, 6-glucosidase, 4-alpha-glucanotransferase	AGL	1p21	glycogen degradation
10.74	AF055030	PHD zinc finger protein XAP135, isoform b	XAP135	6q27	unknown
10.29	L13977	prolylcarboxypeptidase (angiotensinase C)	PRCP	11q14	metabolism/lysosome-related protein

Table 4. Top-40 discriminatory genes in L1 and G1. (cont'd)

Fisher ratio	GB number	Description	Symbol	Locus	Function
10.02	D13891	inhibitor of DNA binding 2	ID2	2p25	negative regulator of cell differentiation
9.95	M63175	autocrine motility factor receptor	AMFR	16q21	signal transduction/cell motility
9.94	AB023157	KIAA0940 protein	KIAA0940	10q23.33	unknown
9.76	U20982	insulin-like growth factor binding protein 4	IGFBP4	17q12-q21.1	signal transduction/cell proliferation
9.09	M14058	complement component 1, r subcomponent	C1R	12p13	immune response

Twelve genes upregulated in G1 in comparison with L1

Fisher ratio	GB number	Description	Symbol	Locus	Function
30.42	AL049650	small nuclear ribonucleoprotein polypeptides B and B1	SNRNP	20p13	RNA processing/modification/ RNA splicing
20.95	U61232	tubulin-specific chaperone e	TBCE	1q42.3	microtubule/cochaperonin
11.95	AI991040	DR1-associated protein 1	DRAP1	11q13.3	transcription
10.96	U64444	ubiquitin fusion degradation 1-like	UFD1L	22q11.21	proteolysis
10.71	D63997	golgi autoantigen, golgin subfamily a, 3	GOLGA3	12q24.33	stabilization of Golgi structure
10.60	X55503	metallothionein IV	MT4	16q13	detoxification

Table 4. Top-40 discriminatory genes in L1 and G1. (cont'd)

Fisher ratio	GB number	Description	Symbol	Locus	Function
10.23	AL080181	Immunoglobulin superfamily, member 4	IGSF4	11q23.2	It possess low similarity to viral receptor
10.01	X76228	ATPase, H ⁺ transporting, lysosomal 31kD, V1 subunit E	ATP6V1E	22q11.1	proton transport
9.77	AB018330	calcium/calmodulin-dependent protein kinase kinase 2, beta	CAMKK2	12q24.2	signal transduction/ calcium-binding protein
9.41	D76444	zinc finger protein 103 homolog (mouse)	ZFP103	2p11.2	central nervous system development
9.31	U70660	ATX1 antioxidant protein 1 homolog (yeast)	ATOX1	5q32	copper homeostasis and ion transport
9.10	U10323	interleukin enhancer binding factor 2, 45kD	ILF2	1q21.1	transcription

Table 5. Top-40 discriminatory genes in G1 and G2.

Fifteen genes downregulated in G2 in comparison with G1

Fisher ratio	GB number	Description	Symbol	Locus	Function
2.89	M87434	2'-5'-oligoadenylate synthetase 2	OAS2	12q24.2	antiviral response protein/IFN-inducible
2.63	M12963	class I alcohol dehydrogenase alpha subunit	ADH1A	4q21-q23	detoxification
2.51	AI625844	hypothetical protein FLJ20378			unknown
2.43	M97936	signal transducer and activator of transcription 1	STAT1	2q32.2	transcription/IFN-signaling pathway
2.12	Z99129	heat shock transcription factor 2	HSF2	6q22.33	transcription
2.08	I07633	proteasome activator subunit1	PSME1	14q11.2	proteolysis and peptidolysis/IFN-inducible
2.06	D50312	potassium inwardly-rectifying channel subfamily J, member8	KCNJ8	12p11.23	potassium transport
2.02	U07364	proteasome activator subunit1	PSME1	14q11.2	proteolysis and peptidolysis/IFN-inducible
2	AA883502	ubiquitin-conjugating enzyme E2L6	UBE2L6	11q12	proteolysis and peptidolysis

Table 5. Top-40 discriminatory genes in G1 and G2. (cont'd)

Fisher ratio	GB number	Description	Symbol	Locus	Function
1.85	M97935	signal transducer and activator of transcription 1	STAT1	2q32.2	transcription/IFN-signaling pathway
1.83	AF061258	LIM protein	LIM	4q22	signal transduction
1.74	AB007447	FLN 29 gene product	FLN29	12q	signal transduction
1.72	M97935	signal transducer and activator of transcription 1	STAT1	2q32.2	transcription/IFN-signaling pathway
1.7	W28281	GABA (A) receptor-associated protein like 1	GABARAPL1	12p13.1	microtubule associated protein
1.66	M97935	signal transducer and activator of transcription 1	STAT1	2q32.2	transcription/IFN-signaling pathway

Twenty-five genes upregulated in G2 in comparison with G1

Fisher ratio	GB number	Description	Symbol	Locus	Function
4.41	Y00281	ribophorin I	RPNI	3q21.3-q25.2	protein modification/RNA binding
3.25	D28118	zinc finger protein 161	ZNF161	17q23.3	transcription
2.83	AF104913	eukaryotic protein synthesis initiation factor 4 gamma	EIF4G1	3q27-qter	translation
2.27	AA675900	formin binding protein 3	FNBPF3	2q23.3	proteolysis and peptidolysis

Table 5. Top-40 discriminatory genes in G1 and G2. (cont'd)

Fisher ratio	GB number	Description	Symbol	Locus	Function
2.27	L27706	chaperonin containing TCP1, subunit 6A (zeta 1)	CCT6A	7p14.1	chaperone/protein folding
2.15	D32050	alanyl-tRNA synthetase	AARS	16q22	tRNA processing/protein synthesis
2.1	M63573	peptidylprolyl isomerase B	PPIB	15q21-q22	chaperone/immune response
2.09	AF014398	inositol (myo) -1 (or 4) -monophosphatase 2	IMPA2	18p11.2	signal transduction
2.08	X70944	splicing factor proline/glutamine rich ataxin 2 related protein	SFPQ	1p34.2	mRNA splicing/mRNA processing
2.03	U70671	ataxin 2 related protein	A2LP	7	unknown
1.89	AA447263	golgi reassembly stacking protein 2, 55kDa	GORASP2	2p24.3-q21.3	golgi stacking
1.87	AB014569	KIAA0669 gene product	KIAA0669	3	unknown
1.85	M23115	ATPase, Ca ⁺⁺ transporting, cardiac muscle, slow twitch 2	ATP2A2	12q23-q24.1	small molecule transport
1.83	D38521	proteasome activator 200 kDa	PA200	2p16.2	proteolysis and peptidolysis
1.82	X00351	actin, beta	ACTB	7p15-p12	cytoskeleton
1.75	L11672	zinc finger protein 91	ZNF91	19p13.1-p12	transcription
1.75	X82834	golgi autoantigen, golgin subfamily a, 4	GOLGA4	3p22-p21.3	vesicle transport

Table 5 . Top-40 discriminatory genes in G1 and G2 . (cont'd)

Fisher ratio	GB number	Description	Symbol	Locus	Function
1.74	AB007963	KIAA0494 gene product	KIAA0494	1pter-p22.1	unknown
1.74	U76247	seven in absentia homolog 1 (<i>Drosophila</i>)	SIAH1	16q12	proteolysis and peptidolysis/apoptosis
1.73	X68560	Sp3 transcription factor	SP3	2q31	transcription
1.73	AB015344	ubiquilin 2	UBQLN2	Xp11.23-p11.1	ubiquitination
1.73	AB018327	activity-dependent neuroprotector	ADNP	20q13.13-q13.2	unknown
1.7	AF004430	tumor protein D52-like 2	TPD52L2	20q13.2-q13.3	cell proliferation
1.67	D14697	farnesyl diphosphate farnesyl diphosphate synthase	FDPS	1q21.2	cholesterol biosynthesis
1.67	AB028449	Dicer1, Dcr-1 homolog (<i>Drosophila</i>)	DICER1	14q32.2	RNA helicase

Table 6. Top-40 discriminatory genes in G2 and G3.

Thirty genes downregulated in G3 in comparison with G2

Fisher ratio	GB number	Description	Symbol	Locus	Function
2.36	AA976838	apolipoprotein C-I	APOC1	19q13.2	lipid metabolism
2.20	Z11793	selenoprotein P, plasma, 1	SEPP1	5q31	antioxidant activity
1.86	AB002311	PDZ domain containing guanine nucleotide exchange factor 1	PDZ-GEF1	4q32.1	Ras/Rap1A-associating signal transduction
1.80	Y18004	sex comb on midleg-like 2 (<i>Drosophila</i>)	SCML2	Xp22	transcription/embryogenesis and morphogenesis
1.76	AL031230	aldehyde dehydrogenase 5 family, member A1	ALDH5A1	6p22	electron transporter/aminobutyrate catabolism
1.71	AF002697	BCL2/adenovirus E1B 19kD interacting protein 3	BNIP3	14q11.2-q12	apoptosis
1.65	AB014596	F-box and WD-40 domain protein 1B	FBXW1B	5q35.1	ubiquitination
1.64	U49897	phenylalanine hydroxylase	PAH	12q22-q24.2	amino acid biosynthesis
1.62	AF070570	Homo sapiens clone 24473 mRNA sequence		4	unknown
1.59	M80482	paired basic amino acid cleaving system 4	PACE4	15q26	cell-cell signalling/proteolysis

Table 6. Top-40 discriminatory genes in G2 and G3. (cont'd)

Fisher ratio	GB number	Description	Symbol	Locus	Function
1.59	A1263099	FLJ31305 fis or clone LIVER1000104		16	similar to <i>Rattus norvegicus</i> kidney-specific protein mRNA
1.57	U22961	unknown			unknown
1.57	Z24725	mitogen inducible 2	MIG2	14q22.1	cell cycle control
1.53	U77594	retinoic acid receptor responder (tazarotene induced) 2	RARRES2	7q35	retinoic acid receptor/retinoic acid-inducible
1.49	L34081	bile acid Coenzyme A: amino acid N-acyltransferase	BAAT	9q22.3	liver enzyme for glycine and bile acid metabolism
1.49	M88458	KDEL endoplasmic reticulum protein retention receptor 2	KDELR2	7p22.2	intracellular protein traffic
1.48	U68723	checkpoint suppressor 1	CHEST1	14q24.3-q31	transcription/cell cycle
1.48	X92098	coated vesicle membrane protein	RNP24	12q24.31	intracellular protein traffic
1.44	D10040	fatty-acid-Coenzyme A ligase, long-chain 2	FACL2	4q34-q35	fatty acid metabolism
1.43	AB023194	KIAA0977 protein	KIAA0977	2q24.3	unknown
1.42	AF001903	L-3-hydroxyacyl-Coenzyme A dehydrogenase, short chain	HADHSC	4q22-q26	mitochondrial enzyme/energy generation

Table 6. Top-40 discriminatory genes in G2 and G3. (cont'd)

Fisher ratio	GB number	Description	Symbol	Locus	Function
1.40	X96752	L-3-hydroxyacyl-Coenzyme A dehydrogenase, short chain	HADHSC	4q22-q26	mitochondrial enzyme/energy generation
1.40	AB006202	succinate dehydrogenase complex, subunit D	SDHD	11q23	mitochondrial protein/electron transporter
1.37	M75106	carboxypeptidase B2	CPB2	13q14.11	proteolysis and peptidolysis
1.37	Y12711	progesterone receptor membrane component 1	PGRMC1	Xq22-q24	liver-rich protein that binds to progesterone
1.36	D14662	anti-oxidant protein 2	AOP2	1q23.3	antioxidant activity/non-selenium glutathione peroxidase
1.36	S87759	protein phosphatase 1A	PPM1A	14q23.1	cellular stress responses
1.36	Z48199	syndecan 1	SDC1	2p24.1	cell adhesion and metastasis
1.35	AF088219	chemokine (C-C motif) ligand 14	CCL14	17q11.2	cell proliferation
1.35	AA453183	EST			unknown

Ten genes upregulated in G3 in comparison with G2

Fisher ratio	GB number	Description	Symbol	Locus	Function
2.80	D31767	DAZ associated protein 2	DAZAP2	2q33-q34	RNA-binding protein

Table 6. Top-40 discriminatory genes in G2 and G3. (cont'd)

Fisher ratio	GB number	Description	Symbol	Locus	Function
2.57	AB000095	serine protease inhibitor, Kunitz type 1	SPINT1	15q13.3	inhibitor specific for HGFactivator
2.40	AB006782	galectin 9	LGALS9	17q11.1	cell adhesion and metastasis
2.18	M21186	cytochrome b-245, alpha polypeptide	CYBA	16q24	energy generation
1.96	AB002312	bromodomain adjacent to zinc finger domain 2A	BAZZ2A	12q24.3-qter	DNA-binding protein
1.84	U44772	palmitoyl-protein thioesterase 1	PPT1	1p32	neuronal maturation
1.77	AI541308	S100 calcium binding protein A13	S100A13	1q21	extracellular stimuli and cellular responses
1.53	Z49107	galectin 9	LGALS9	17q11.1	cell adhesion and metastasis
1.36	U77735	pim-2 oncogene	PIM2	Xp11.23	cell proliferation
1.34	M38449	transforming growth factor, beta 1	TGFB1	19q13.2	cell growth and adhesion

CLAIMS

1. A method of defining the differentiation grade of tumor with genes and/or proteins selected by the statistical analyses based on the expression level or pattern of the genes and/or proteins of human tumor tissues obtainable from cancer patients.
5
2. A method according to claim 1, wherein the human tissues are human liver tissues.
10
3. A method according to claim 2, wherein the differentiation grade of tumor is selected from the group consisting of non-cancerous liver, pre-cancerous liver, well differentiated hepatocellular carcinoma (HCC), moderately differentiated HCC, and poorly differentiated HCC.
15
4. A method according to claim 3, wherein the genes and/or proteins are differentially expressed between non-cancerous liver and pre-cancerous liver, pre-cancerous liver and well differentiated hepatocellular carcinoma (HCC), well differentiated HCC and moderately differentiated HCC, or moderately differentiated HCC and poorly differentiated HCC.
20
25
5. A method according to any one of claims 1 to 4, wherein the expression level or pattern of genes and/or proteins is examined by means of DNA microarray, reverse transcription polymerase-chain reaction or protein array.
30
6. A method according to claim 5, wherein the genes and/or proteins are selected in descending order of the Fisher ratio.
35

7. A method according to claim 5 or 6, wherein the number of the genes and/or proteins is between 40 and 100.
8. A method according to claim 5 or 6, wherein the number of the genes and/or proteins is between 35 and 45.
5
9. A method according to claim 8, wherein the number of the genes and/or proteins is 40.
10. 10. A method of defining the differentiation grade of tumor, the method comprising steps of:
 - (a) selecting genes and/or proteins that have the highest Fisher ratios in comparison between non-cancerous liver and pre-cancerous liver, pre-cancerous liver and well differentiated hepatocellular carcinoma (HCC), well differentiated HCC and moderately differentiated HCC, or moderately differentiated HCC and poorly differentiated HCC; and
15
 - (b) defining the differentiation grade of tumor by using the genes and/or proteins.
20
11. A method of defining the differentiation grade of tumor, the method comprising steps of:
25
- (a) determining the number of genes and/or proteins to define the differentiation grade of tumor;
- (b) selecting a number of genes and/or proteins decided in step (a) that have the highest Fisher ratios in comparison between non-cancerous liver and pre-cancerous liver, pre-cancerous liver and well differentiated hepatocellular carcinoma (HCC), well differentiated HCC and moderately differentiated HCC, or moderately differentiated HCC and poorly differentiated HCC;
30
- (c) applying the data of genes and/or proteins selected in step (b) to all samples; and
35

(d) defining the differentiation grade of tumor.

12. A method of defining the differentiation grade of tumor, the method comprising steps of:

- 5 (a) determining the number of genes and/or proteins to define the differentiation grade of tumor;
- 10 (b) selecting a number of genes and/or proteins decided in step (a) that have the highest Fisher ratios in comparison between non-cancerous liver and pre-cancerous liver, pre-cancerous liver and well differentiated hepatocellular carcinoma (HCC), well differentiated HCC and moderately differentiated HCC, or moderately differentiated HCC and poorly differentiated HCC;
- 15 (c) applying the data of genes and/or proteins selected in step (b) to all samples;
- (d) designing a minimum distance classifier with the data of genes and/or proteins selected in step (b);
- 20 (e) applying the minimum distance classifier designed in step (d) to all samples;
- (f) generating self-organizing map with the data of all the genes and/or proteins selected in step (b);
- (g) applying the self organizing map generated in step (f) to all samples; and
- 25 (h) defining the differentiation grade of tumor.

13. A kit for carrying out the method according to any one of claims 1 to 12, the kit comprises DNA chips, oligonucleotide chips, protein chips, probes or primers that are necessary for effecting DNA microarrays, oligonucleotide microarrays, protein arrays, northern blotting, RNase protection assays, western blotting, and reverse transcription polymerase-chain reaction to examine the expression of the genes and/or proteins selected by the statistical analyses in claims 1 to 12.

14. Use of genes and/or proteins according to any one of claims 1 to 12 for screening anti-cancer agents.
15. Use of antibodies specific to genes and/or proteins according to any one of claims 1 to 12 for treating tumors in different grades.
5

ABSTRACT

The present invention relates to a method of defining the differentiation grade of tumor by selecting genes and/or proteins whose expression level correlates with each differentiation grade of tumor, measuring the expression of the genes and/or proteins of human tumor tissues in each differentiation grade. The present invention also relates to the use of these genes and/or proteins for diagnosing the differentiation grade of tumor and for screening anti-cancer agents for tumor treatment.