How to Change the World with Donald Knuth

Abraham Xiao

Masdar Institute of Science and Technology

Information Security Project Presentation

- Discrete Logarithm
- 2 ElGamal Cryptosystem
- 3 Attack Techniques
- 4 Appendices

Discrete Logarithm in a Nutshell

The security of many cryptographic techniques depends on the intractability of discrete logarithm problem.

A partial list of these include:

- DiffieHellman key agreement and its derivatives.
- ElGamal encryption.
- ElGamal signature scheme and its variants.

General setting for algorithms in this section are:

- A (multiplicatively written) finite cyclic group G
- *n* is the order of group *G*
- ullet α is a generator of group G^1

¹For more math background, refer to [Ros12].

Relevant Definitions

Cyclic group and its generator.

Definition

A group is *cyclic* if there is an element $\alpha \in G$ such that for each $b \in G$ there is an integer i with $b = \alpha^i$. Such an element α is called a generator of G.

Discrete logarithm.

Definition

Let G be a finite cyclic group of order n. Let α be a generator of G, and let $\beta \in G$. The discrete logarithm of β to the base α , denoted $\log_{\alpha} \beta$, is the unique integer x, $0 \le x \le n-1$, such that $\beta = \alpha^x[\mathsf{MVO96}]$.

A Discrete Logarithm Example

Example

Let p=97. Then \mathbb{Z}_{97}^* is a cyclic group of order n=96. A generator of \mathbb{Z}_{97}^* is $\alpha=5$. Since $5^{32}\equiv35\mod 97$, $\log_535=32$ in \mathbb{Z}_{97}^* .

The DiffieHellman Problem

The DiffieHellman problem is closely related to the well-studied discrete logarithm problem.

Definition

The DiffieHellman problem is the following: given a prime p, a generator α of \mathbb{Z}_p^* , and elements $\alpha^a \mod p$ and $\alpha^b \mod p$, find $\alpha^{ab} \mod p$.

Wait! Could we just possibly do

$$\alpha^{a} \times \alpha^{b} \to \alpha^{ab} \tag{1}$$

Well, life is not as easy as it looks like...

$$\alpha^{a} \times \alpha^{b} = \alpha^{a+b} \tag{2}$$

Links between Discrete Logarithm and DiffieHellman Problem

Suppose that the discrete logarithm problem in \mathbb{Z}_p^* could be efficiently solved². Then given α , p, $\alpha^a \mod p$ and $\alpha^b \mod p$, one could first find a from α , p and $\alpha^a \mod p$ by what?!

Solving a discrete logarithm problem, and then compute $(\alpha^b)^a = \alpha^{ab} \mod p$.

ElGamal public-key encryption

The ElGamal public-key encryption scheme can be viewed as Diffie–Hellman key agreement³ in key transfer mode. Its security is based on the intractability of the discrete logarithm problem (Section 1) and the DiffieHellman problem (Section 2).

³Yet another fancy nickname for key exchange

Ensure: A public key and its corresponding private key is created for every entity.

Steps to generate key pairs are described as follows:

- Generate a prime p that is large enough and cannot be predicted, i.e. it should be generated randomly. Find a generator α of the multiplicative group \mathbb{Z}_p^* of integers modulo p.
- ② Randomly select an integer a satisfying $1 \le a \le p-2$. Then calculate $\alpha^a \mod p$.
- **3** The public key is returned as (p, α, α^a) ; The private key is returned as a.

Figure: Algorithm Key generation for ElGamal public-key encryption

Ensure: B uses A's public key to encrypt a message m. Then A uses decrypts using his private key.

- **1** *Encryption.* The steps for *B* to take are as follows:
 - Require or obtain A's authentic public key (p, α, α^a) .
 - **2** Express the plaintext message as an integer in the scale $0, 1, \dots, p-1$.
 - **3** Randomly select an integer k satisfying $1 \le k \le p-2$.
 - Calculate $\gamma = \alpha^k \mod p$ and $\delta = m \cdot (\alpha^a)^k \mod p$.
 - **5** Transmit the ciphertext $c = (\gamma, \delta)$ to A.
- Oecryption. The decrypt steps for A are described as follows:
 - Calculate $\gamma^{p-1-a} \mod p$ using A's private key. (note: due to the characteristic of modulus, $\gamma^{p-1-a} = \gamma^{-a} = \alpha^{-ak}$).
 - 2 Calculate plaintext m by evaluating $(\gamma^{-a} \cdot \delta \mod p)$.

Figure: Algorithm ElGamal public-key encryption [Elg85]

ElGamal Encryption with artificially small parameters

Key generation. Entity A selects the prime p = 2357 and a generator $\alpha = 2$ of \mathbb{Z}_{2357}^* . A chooses the private key a = 1751 and computes

$$\alpha^a \mod p = 2^{1751} \mod 2357 = 1185$$
 (3)

A's public key is $(p = 2357, \alpha = 2, \alpha^a = 1185)$.

Encryption. To encrypt a message m = 2035, B selects a random integer k = 1520 and computes

$$\gamma = 2^{1520} \mod 2537 = 1430 \tag{4}$$

and

$$\delta = 2035 \cdot 1185^{1520} \mod 2357 = 697 \tag{5}$$

ElGamal Encryption cont.

B sends $\gamma=$ 1430 and $\delta=$ 697 to A. Decryption. To decrypt, A computes

$$\gamma^{p-1-a} = 1430^{605} \mod 2357 = 872 \tag{6}$$

and recovers m by computing

$$m = 872 \cdot 697 \mod 2357 = 2305$$
 (7)

A clear disadvantage of ElGamal encryption is that there is a *message* expansion by a factor of 2. That is, the ciphertext is twice as long as the corresponding plaintext.

$$m = 2035 \Rightarrow (\gamma = 1430, \delta = 697) \tag{8}$$

Exhaustive Search

The most obvious algorithm for discrete logarithm problem is to successively compute $\alpha^0, \alpha^1, \alpha^2, \dots$ until β is obtained.

This method takes O(n) multiplications, where n is the order of α , and is therefore inefficient if n is large (i.e. in cases of cryptographic interest).

Say we use 1024 bits, then the number should be maximum 2^{1024} as large.

2 ⁶⁴	=	18,446,744,073,709,551,616	2 ⁸⁰	=	1,208,925,819,614,629,174,706,176
2 ⁶⁵	=	36,893,488,147,419,103,232	281	=	2,417,851,639,229,258,349,412,352
2 ⁶⁶	=	73,786,976,294,838,206,464	282	=	4,835,703,278,458,516,698,824,704
2 ⁶⁷	=	147,573,952,589,676,412,928	283	=	9,671,406,556,917,033,397,649,408
2 ⁶⁸	=	295,147,905,179,352,825,856	284	-	19,342,813,113,834,066,795,298,816
2 ⁶⁹	=	590,295,810,358,705,651,712	285	=	38,685,626,227,668,133,590,597,632
2 ⁷⁰	=	1,180,591,620,717,411,303,424	286	=	77,371,252,455,336,267,181,195,264
271	=	2,361,183,241,434,822,606,848	287	=	154,742,504,910,672,534,362,390,528
2 ⁷²	=	4,722,366,482,869,645,213,696	288	-	309,485,009,821,345,068,724,781,056
2 ⁷³	=	9,444,732,965,739,290,427,392	289	=	618,970,019,642,690,137,449,562,112
274	=	18,889,465,931,478,580,854,784	2 ⁹⁰	=	1,237,940,039,285,380,274,899,124,224
2 ⁷⁵	=	37,778,931,862,957,161,709,568	2 ⁹¹	=	2,475,880,078,570,760,549,798,248,448
2 ⁷⁶	=	75,557,863,725,914,323,419,136	2 ⁹²	-	4,951,760,157,141,521,099,596,496,896
2 ⁷⁷	=	151,115,727,451,828,646,838,272	2 ⁹³	=	9,903,520,314,283,042,199,192,993,792
2 ⁷⁸	=	302,231,454,903,657,293,676,544	2 ⁹⁴	=	19,807,040,628,566,084,398,385,987,584
2 ⁷⁹	=	604,462,909,807,314,587,353,088	2 ⁹⁵	=	39,614,081,257,132,168,796,771,975,168

Figure: Power of Two

Index Calculus

References I

- T. Elgamal, A public key cryptosystem and a signature scheme based on discrete logarithms, Information Theory, IEEE Transactions on **31** (1985), no. 4, 469–472.
- Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot, Handbook of applied cryptography, 1st ed., CRC Press, Inc., Boca Raton, FL, USA, 1996.
- Kenneth H. Rosen, *Discrete mathematics and its applications*, 7th ed., McGraw-Hill Higher Education, 2012.