7. Test The analysis of varaince between etest_p and mbs_p at significance level 5% (Make decisions using Hypothesis Testing).

data		read_	csv("Pr	replacemer	ıtdata.c	sv")								
	sl_no	ssc_p	hsc_p	degree_p	etest_p	mba_p	salary	gender	ssc_b	hsc_b	hsc_s	degree_t	workex	speci
0	1.0	67.00	91.00	58.00	55.0	58.80	270000.0	М	Others	Others	Commerce	Sci&Tech	No	
1	2.0	79.33	78.33	77.48	86.5	66.28	200000.0	М	Central	Others	Science	Sci&Tech	Yes	
2	3.0	65.00	68.00	64.00	75.0	57.80	250000.0	М	Central	Central	Arts	Comm&Mgmt	No	
3	4.0	56.00	52.00	52.00	66.0	59.43	265000.0	М	Central	Central	Science	Sci&Tech	No	
4	5.0	85.80	73.60	73.30	96.8	55.50	425000.0	М	Central	Central	Commerce	Comm&Mgmt	No	
210	211.0	80.60	82.00	77.60	91.0	74.49	400000.0	М	Others	Others	Commerce	Comm&Mgmt	No	
211	212.0	58.00	60.00	72.00	74.0	53.62	275000.0	М	Others	Others	Science	Sci&Tech	No	
212	213.0	67.00	67.00	73.00	59.0	69.72	295000.0	М	Others	Others	Commerce	Comm&Mgmt	Yes	
213	214.0	74.00	66.00	58.00	70.0	60.23	204000.0	F	Others	Others	Commerce	Comm&Mgmt	No	
214	215.0	62.00	58.00	53.00	89.0	60.22	265000.0	М	Central	Others	Science	Comm&Mgmt	No	
215 r	ows × 1	5 colum	ns											
1														
impo	rt sci	py.sta	ts as s	stats										

null hypothesis H0

There is no differnce between pass mark of etest and mba

Alternate hypothesis H1

There is differnce between pass mark of etest and mba

The calculated p_value is less than 0.05, we reject the null hypothesis, So the we conclude there is differences between pass marks of etest and mba.

8. Test the similarity between the degree_t(sci & tech) and specialization level of 5%.(make decisions using Hypothesis Testing).

```
from scipy.stats import ttest_ind
  degree_tST= dataset[dataset ['degree_t']=="Sci&Tech"]["salary"]
  specialisation= dataset[dataset['specialisation']=="MKt&HR"]["salary"]
  ttest_ind(degree_tST, specialisation)
```

Out[20]: TtestResult(statistic=nan, pvalue=nan, df=nan)

Null Hypothesis (H_0): P_value is less than 0.05

Ther is no significance the between the degree t(Sci&tech) and specialisation(Mkt&HR) with respect to salary

Alternate Hypothesis (H_a):

Ther is no significance between the degree t(Sci&tech) and specialisation (Mkt&HR) with respect to salary

9. Convert the normal distribution to standard normal distribution for the salary column.

```
In [28]: def stdNBgraph(dataset):
             import seaborn as sns
             mean=dataset.mean()
             std=dataset.std()
             values=[i for i in dataset]
             z score=[((j-mean)/std) for j in values]
             sns.distplot(z score,kde=True)
             sum(z score)/len(z score)
In [29]: stdNBgraph(dataset["salary"])
        C:\Users\SowmiGanesh\AppData\Local\Temp\ipykernel 10228\1411587287.py:7: UserWarning:
        `distplot` is a deprecated function and will be removed in seaborn v0.14.0.
        Please adapt your code to use either `displot` (a figure-level function with
        similar flexibility) or `histplot` (an axes-level function for histograms).
        For a guide to updating your code to use the new functions, please see
        https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
          sns.distplot(z score,kde=True)
```


10. What is the probability Density Function of the salary range from 700000 to 900000?

```
In [30]: def get_pdf_probability(dataset,startrange,endrange):
             from matplotlib import pyplot
             from scipy.stats import norm
             import seaborn as sns
             ax = sns.distplot(dataset,kde=True,kde kws={'color':'blue'},color='Green')
             pyplot.axvline(startrange,color='Red')
             pyplot.axvline(endrange,color='Red')
             # generate a sample
             sample = dataset
             # calculate parameters
             sample mean =sample.mean()
             sample_std = sample.std()
             print('Mean=%.3f, Standard Deviation=%.3f' % (sample mean, sample std))
             # define the distribution inbulit function
             dist = norm(sample mean, sample std)
             # sample probabilities for a range of outcomes ( for loop to list single line it convert to a list)
             values = [value for value in range(startrange, endrange)]
```

```
probabilities = [dist.pdf(value) for value in values]
prob=sum(probabilities)
print("The area between range({},{}):{}".format(startrange,endrange,sum(probabilities)))
return prob

In [31]: get_pdf_probability(dataset["salary"], 700000, 900000)

C:\Users\SowmiGanesh\AppData\Local\Temp\ipykernel_10228\3298601999.py:5: UserWarning:
```

```
C:\Users\SowmiGanesh\AppData\Local\Temp\ipykernel_10228\3298601999.py:5: UserWarning:

'distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either 'displot` (a figure-level function with similar flexibility) or 'histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

ax = sns.distplot(dataset,kde=True,kde_kws={'color':'blue'},color='Green')

Mean=288655.405, Standard Deviation=93457.452
```

Out[31]: 5.377578376230696e-06

The area between range(700000,900000):5.377578376230696e-06

11. Test the similarity between the degree_t(sci& tech) with respect to etest_p and mba_p at significance level of 5%. (make decisions using Hypothesis testing).

Null hypothesis(H0):

there is no significance difference between the degree_t(Sci&tech) with respect to etest_p and mba_p.

Alternative hypothesis(Ha):

there is a significant difference between the degree_t(Sci&tech) with respect to etest_p and mba_p.

Test statistics:

```
In [36]: from scipy.stats import ttest_rel
  degree_tet=dataset[ dataset['degree_t']=="Sci&tech"]["etest_p"]
  degree_tmt=dataset[ dataset['degree_t']=="Sci&tech"]["mba_p"]
  ttest_rel(degree_tet,degree_tmt)
```

Out[36]: TtestResult(statistic=nan, pvalue=nan, df=nan)

```
In [ ]:
```

In []:
In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js