Phil 120, Finals

Ray Gong

June 25, 2021

 $\mathbf{Q}\mathbf{1}$

p	q	r	$(\neg p$	\wedge	$(q \vee$	$\neg r))$	\leftrightarrow	$(\neg q$	$\rightarrow p)$
F	_	_	_	_	_	Τ	_	-	_
\mathbf{F}						F			
F	_	_	_	_	_	Τ	_	_	${ m T}$
F	_	_	_	_	_	F	_	_	${ m T}$
_	_	_	_	_	_	Τ	_	_	${ m T}$
T	F	Τ	F	F	F	F	F	Τ	${ m T}$
T	Τ	F	F	F	T	Τ	T	F	${ m T}$
T	Τ	Τ	F	F	\mathbf{T}	F	T	F	${ m T}$

so, the formula is not a) a logical validity, b) is contingent, c) is not a falsehood.

$\mathbf{Q2}$

a)

let a be alfred, k be kurt, Lx if x proves a lemma, Tx if x proves a theorem, Px if x writes a paper.

$$(Tk \lor Lk) \to Pa$$

b)

let a be alfred, b be albert, Cx if x is cooking, Rx if it is raining where x is, Sx if x is shopping.

$$\neg Sa \wedge (\neg Rb \rightarrow Cb)$$

c)

let s be snow, let t be 2 + 2, f be 5, u be tuesday, Wx if x is white, Tx if today's weekday is x.

$$Ws \to (t = f \lor \neg Tu)$$

d)

let a be alfred, k be kurt, Hx if x is on a hike, Cxy if x is chatting with y. $Ha \to \neg Cka$

$\mathbf{Q3}$

since all branches closed with rule 1, the statement holds in CL, k3, LP, and fde.

$\mathbf{Q4}$

suppose there are 2 worlds in the universe, w1 and w2 such that C is true in w1, but false in w2.

since $\neg\Box C \iff \diamond \neg C$ (proof is trivial from tableaux), $\Box \neg\Box C \iff \Box \diamond \neg C$. Then since $\neg C$ is satisfied in at least world, $\diamond \neg C$ holds in every worlds, which means $\Box \diamond \neg$ holds too. However, $\neg C$ does not hold in every world, so $\Box \neg C$ is false, and so this is a counter example for the implication statement(\rightarrow).

$\mathbf{Q5}$

a)

Suppose $A \subseteq B$, then for any $(a_1, a_2, ... a_i) \in \mathcal{P}(A), a_1, a_2 ... a_i \in A \subseteq B$, then $a_1, a_2 ... a_i \in B \implies (a_1, a_2 ... a_i) \in \mathcal{P}(B)$ by definition of powerset, and so a) holds.

b)

 $|C \times C \times C| = |C|^3 = 27,25 < 27 < 30$, so yes, the statement holds.

All branches closes, the consequence relation holds in TV.

$\mathbf{Q7}$

a)

let Cx if x is car, Sx if x is small, Fx if x is fast. $\exists x (Cx \land Sx \land Fx)$

b)

let $\mathbb{N}, \mathbb{R} - \mathbb{Q}, \mathbb{R}$ be the set of natural, irrational, and real numbers. let $x \in A$ be the preicate that x is in the set A. x < y if x is less than y.

$$\forall n \in \mathbb{N}(((2n+1) \in \mathbb{R} - \mathbb{Q}) \lor (\exists x \ (x \in \mathbb{R} \land (2n+1) < x)))$$

c)

let Sx if x is student, Bx if x is bike, Oxy if x owns y, Rxy if x rides y daily. $\forall x(Sx \to (\exists y(By \land Oxy) \to Rxy))$

looks like i choses the wrong variable names, but i dont have time to redo this question. most likely the first 2 'forall' statements should take the same variable name as the name chosen for the conclusion.

$\mathbf{Q}9$

let D =
$$\{01, 02\}$$
, E = $\{01\}$, $\delta(a) = o1$, $\delta(b) = o2$
+(F) = $\{01\}$, -(F) = $\{02\}$, +(G) = $\{01, 02\}$, -(G) = \emptyset .

So, for all x, x = a since x can only be assigned o1, which denotes a. Fa is true so $Favee \neg Gb$ is true, $\forall x(Fx \rightarrow Gx)$ holds since x can only be o1, and o1 is in the extension set of both F and G. however the conclusion is false since on existing object to be assigned to y satisfy both $\neg Fy$ and $\neg Gy$

Q10

p	q	$(\neg p)$	\leftrightarrow	\neg	$(q \vee p)$	\rightarrow	$(p \wedge$	$\neg q$
\overline{F}	F	Τ	Τ	Τ	F	F	F	Τ
\mathbf{F}	Τ	T	\mathbf{F}	F	${ m T}$	T	f	\mathbf{F}
F	N	${ m T}$	N	N	N	N	F	N
Τ	F	F	Τ	F	${ m T}$	T	T	Τ
Τ	Τ	F	Τ	F	${ m T}$	\mathbf{F}	\mathbf{F}	F
Τ	N	F	Τ	F	${ m T}$	N	N	N
N	F	N	N	N	N	N	N	Τ
N	Τ	N	N	F	${ m T}$	N	\mathbf{F}	F
N	N	N	N	N	N	N	N	N

Q11

 $\mathfrak{t}\neg(A\wedge\neg C)\wedge B$ all branches closed under rule 1, relation holds in fde.

Q12

a) false. since there are no theorems in K3, its not possible to find a formula that is a theorem in both K3 and LP.

- b) true. the shared content is that if the premise is satisfied(true or both), then the conclusion be be satisfied also.
- c) true. truth table and tableaux both provide ways to determine truth value of a formula in all 4 logic theories.
 - d) true.

e)false. if a predicate is that 'at most five of some thing', then in particular, it could be 0 or fewer, so 'at least one...' is not implied here.