

Série C - session 2000 : problème - corrigé

Soit f la fonction définie sur l'intervalle [0 ; + ∞ [par :

$$\begin{cases} f(0) = 0 \\ f(x) = x \ln x + (1 - x) \ln (1 - x) & \text{si } x \in]0;1[\\ f(x) = \frac{x - 1}{e^{x} - x - 1} & \text{si } x \in [1; + \infty[$$

De courbe (C) dans un repère orthonormé (O; \vec{i} , \vec{j}), d'unité 5 cm.

Partie A

- 1. Soit g la fonction définie sur] 0 ; 1 [par : g(x) = ln x ln (1 x).
 - a. Résolution de l'équation g(x) = 0.

$$\ln x - \ln (1 - x) = 0 \text{ si } x = 1 - x \text{ , c'est à dire } x = \frac{1}{2}$$

b. Déduction , suivant les valeurs de x, du signe de g(x).

$$g(x) > 0 \text{ si } x > \frac{1}{2} \text{ et } g(x) < 0 \text{ si } x < \frac{1}{2}$$

c. Montrons que pour tout $x \in (0, 1)$ 0; 1 [, f'(x) = g(x)

Pour tout
$$x \in \]\ 0\ ;\ 1\ [\ ,\ on\ a\ f\ '\ (x) = ln\ x + 1 + ln\ (\ 1-x\)\ -\frac{1-x}{1-x}$$

D'où f'(x)=
$$\ln x - \ln (1 - x) = g(x)$$

- 2. h la fonction définie sur [1 ; + ∞ [par : h(x) = (2 x) e^x 2.
 - a. Montrons que h est strictement décroissante sur [1 ; + ∞ [.

$$h'(x) = -e^{x} + (2 - x)e^{x} = (1 - x)e^{x}$$
.

Or, pour tout $x \in \]\ 0$; 1 [, (1-x) est négatif donc, h'(x) l'est aussi. Par conséquent, h est strictement décroissante.

b. Solution unique $\alpha \in \left[\right]^{\frac{3}{2}}$; 2 [de l'équation h (x) = 0

h est une fonction continue strictement décroissante sur l'intervalle [1; + ∞ [; en

particulier, elle l'est sur]
$$\frac{3}{2}$$
; 2 [. De plus, h (2) = - 2 < 0 et h ($\frac{3}{2}$) = $\frac{e\sqrt{e}}{2}$ - 2 > \square 0. Il s'ensuit

que l'équation h (x) = 0 admet une solution unique $\alpha \in \left] \frac{3}{2} \right]$; 2 [.

c. Déduction , suivant les valeurs de x, du signe de h (x).

$$h(x) > 0 \text{ si } x \in [1; \alpha[, \text{ et } h(x) < 0 \text{ si } x \in]\alpha; + \infty[.$$

d. Montons que pour tout x > 1, $f'(x) = \frac{h(x)}{(e^x - x - 1)^2}$.

$$f'(x) = \frac{(e^{X} - x - 1) - (e^{X} - 1) - (x - 1)}{(e^{X} - x - 1)^{2}} = \frac{(2 - x)e^{x} - 2}{(e^{x} - x - 1)^{2}}$$

Ainsi,
$$f'(x) = \frac{h(x)}{(e^{x} - x - 1)^{2}}$$
.

3. a. Montrons que f est continue en 0

On a f (0) = 0 et
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (x \ln x + (1 \ x) \ln (1 \ x)) = 0$$

Montrons que f est continue en 1.

On a f (1) = 0 et
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x \ln x + (1 \ x) \ln (1 \ x)) = 0$$

b. Montrons que,
$$\lim_{x \to 0^+} \frac{f(x)}{x} = -\infty$$

$$\lim_{0^+} \frac{f(x)}{x} = \lim_{0^+} \frac{x \ln x + (1-x) \ln (1-x)}{x} = \lim_{0^+} \left[\ln x + \frac{(1-x) \ln (1-x)}{x} \right] = -\infty$$

Montrons que,
$$\lim_{x \to 1^{-}} \frac{f(x)}{x-1} = +\infty$$

 $\lim_{1^{-}} \frac{f(x)}{x-1} = \lim_{1^{-}} \frac{x \ln x + (1-x) \ln(1-x)}{x-1} = \lim_{1^{-}} \left[\frac{x \ln x}{x-1} - (1-x) \ln(1-x) \right] = +\infty$

Montrons que
$$\lim_{x \to 1^+} \frac{f(x)}{x-1} = \frac{1}{e-2}$$
.

$$\lim_{1^{+}} \frac{f(x)}{x-1} = \lim_{1^{+}} \frac{x-1}{(x-1)(e^{x}-x-1)} = \frac{1}{e-2}$$

Interprétation graphique de ces résultats.

- f n'est pas dérivable à droite au point d'abscisse 0 et sa courbe y admet une demitangente verticale.
- f n'est pas dérivable à gauche au point d'abscisse 1 et sa courbe y admet une demitangente verticale.
- f est pas dérivable à droite au point d'abscisse 1 et sa courbe y admet une demitangente de pente égale à $\frac{1}{e-2}$.

b. Montrons que (C) admet une asymptote horizontale

 $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{x-1}{e^{x}-x-1} = 0. \text{ Donc l'axe x'Ox est une asymptote horizontale à (C) au}$ voisinage de $+ \infty$.

4. a. Montrons que $f(\alpha) = -1 + \frac{2}{\alpha}$

On a h (
$$\alpha$$
) = 0, donc, (2 - α) e^{α} - 2 = 0; c'est à dire $e^{\alpha} = \frac{2}{2-\alpha}$

Par conséquent,
$$f(\alpha) = \frac{\alpha - 1}{\frac{2}{2 - \alpha} - \alpha - 1} = \frac{2 - \alpha}{\alpha} = -1 + \frac{2}{\alpha}$$

Tableau de variation de f sur $[0; +\infty[$:

x	0	1/2		1		α		+ 00
f '(x)	-	0	+		+	0	-	
f(x)	0	ا -ln2	/	7 ⁰	л ⁻¹	$1 + \frac{2}{\alpha}$	\	0 •

b. Traçage de (C) sur l'intervalle [0;3]

Partie B

 $\alpha \in \left[\right] \frac{3}{2}$; 2 [, le réel déterminé dans la question 2.b. de la partie A

1. Pour tout $n \in IN^*$, on pose $I_n\left(\alpha\right) = \int_1^{\alpha} \frac{\left(t-1\right)^n}{e^t-t-1} dt$.

a. Montrons que : $0 \le I_1(\alpha) \le \frac{(2-\alpha)(\alpha-1)}{\alpha}$.

On a $I_n(\alpha) = \int_1^{\alpha} \frac{(t-1)^n}{e^t - t - 1} dt = \int_1^{\alpha} f(t) dt$. Or $t \in [1; \alpha]$ et f est croissante sur l'intervalle [

1; α], par conséquent, $1 < t < \alpha$.

Il s'ensuit que, $0 < \int_1^{\alpha} f(t) \, dt. < \int_1^{\alpha} (-1 + \frac{2}{\alpha}) \, dt.$

On en conclut que $0 \le I_1(\alpha) \le \frac{(2-\alpha)(\alpha-1)}{\alpha}$.

a. Etude du sens de variation de : t $\mapsto e^t - t - 1$ sur [1 ; + ∞ [

Sa fonction dérivée est : t \mapsto e^t - 1. Or si t \geq 1, e^t - 1 > 0.Ainsi, cette fonction est strictement croissante sur l'intervalle [1 ; + ∞ [

Déduction de : pour tout $t \ge 1$, $e^t - t - 1 \ge e - 2$.

Puisque tout $t \ge 1$, la fonction : $t \to e^t - t - 1$ est croissante donc pour tout $t \ge 1$, $e^t - t - 1 \ge e - 2$

b. Montrons alors que
$$0 \le I_n(\alpha) \le \frac{(\alpha-1)^{n+1}}{(n+1)-(e-2)}$$
.

Pour tout $t \ge 1$, $(t-1) \ge 0$ donc $(t-1)^n \ge 0$. Du plus, $e^t - t - 1 \ge 0$.

$$\mbox{Ainsi, } \frac{\left(t-1\right)^n}{e^t-t-1} \geq \mbox{0. Or } \alpha \geq \mbox{1, donc } \mbox{I}_{\mbox{\tiny n}}\left(\alpha\right) \mbox{c} \ \geq \mbox{0.}$$

Et , d'après la question précédente, pour $t \ge 1$, $e^t - t - 1 \ge e - 2$ par conséquent, $\frac{1}{e^t - t - 1}$

$$\leq \frac{1}{e-2}$$
. Ainsi, $\frac{(t-1)^n}{e^t-t-1} \leq \frac{(t-1)^n}{e-2}$.

Il s'ensuit que
$$\int_{1}^{\alpha} \frac{\left(t-1\right)^{n}}{e^{t}-t-1} \leq \int_{1}^{\alpha} \frac{\left(t-1\right)^{n}}{e-2} \, dt = \frac{\left(\alpha-1\right)^{n+1}}{(n+1)-(e-2)} \, .$$

On en conclut que
$$0 \le I_n(\alpha) \le \frac{(\alpha-1)^{n+1}}{(n+1)-(e-2)}$$
.

c . Montrons que la suite $(I_n(\alpha))$ est convergente.

La suite $(I_n(\alpha))$ est minorée. Ainsi, pour montrer qu'elle est convergente, il reste à montrer qu'elle est décroissante.

$$\begin{aligned} \text{Or } I_{n+1}\left(\alpha\right) - I_{n}\left(\alpha\right) &= \int_{1}^{\alpha} \frac{\left(t-1\right)^{n+1}}{e^{t}-t-1} \, dt - \int_{1}^{\alpha} \frac{\left(t-1\right)^{n}}{e^{t}-t-1} \, dt \\ &= \int_{1}^{\alpha} \frac{\left(t-1\right)^{n+1} - \left(t-1\right)^{n}}{e^{t}-t-1} \, dt \\ &= \int_{1}^{\alpha} \frac{\left(t-1\right)^{n} \left(t-2\right)}{e^{t}-t-1} \, dt \end{aligned}$$

Or, t > 1 donc $(t-1)^n > 0$. Et, $t < \alpha$ avec $\alpha < 2$, donc (t-2) < 0

De plus, $e^t - t - 1 \ge 0$.

Il s'ensuit que
$$\int_{1}^{\alpha} \frac{(t-1)^{n}(t-2)}{e^{t}-t-1} dt < 0$$

Précision de la limite de la suite $(I_n(\alpha))$:

D'après la question c. précédente, $0 \le I_n(\alpha) \le \frac{(\alpha-1)^{n+1}}{(n+1)-(e-2)}$,

ainsi,
$$0 \le \lim_{n \to \infty} I_n(\alpha) \le \lim_{n \to \infty} \frac{(\alpha - 1)^{n+1}}{(n+1) - (e-2)} = 0$$

Il s'ensuit que la limite de la suite $(I_n(\alpha))$ est égale à 0.

- 2. Soient a et b deux réels strictement positifs tels que a + b = 1.
 - a. Montrons que pour tout $x \in \]0$; 1 [, a $\ln \frac{1}{a} + b \ln \frac{1}{b} \le \ln 2$

Pour $x \in]0$; 1 [, $x \ln x + (1-x) \ln (1-x) \ge - \ln 2$ car f(x) est supérieure ou égale à - ln 2. Or, a + b = 1, donc b = 1 - a.

Ainsi, a ln a + b ln b \geq - ln 2. Par conséquent, - a ln a - b ln b \leq ln 2

Il s'ensuit que a $\ln \frac{1}{a} + b \ln \frac{1}{b} \le \ln 2$

b. Valeurs de a et b, telle quela dernière inégalité soit une égalité

$$a \ln \frac{1}{a} + b \ln \frac{1}{b} = -\ln 2 si \ a \ln a + (1 - a) \ln (1 - a) = -\ln 2 c'est à dire si f (a) = -\ln 2 donc si a = -\ln 2 c'est à dire si f (a) = -\ln 2 donc si a = -\ln 2 c'est à dire si f (a) = -\ln 2 donc si a = -\ln 2 c'est à dire si f (a) = -\ln 2 donc si a = -\ln 2 c'est à dire si f (a) = -\ln 2 donc si a = -\ln 2 c'est à dire si f (a) = -\ln 2 donc si a = -\ln 2 c'est à dire si f (a) = -\ln 2 donc si a = -\ln 2 c'est à dire si f (a) = -\ln 2 donc si a = -\ln 2 c'est à dire si f (a) = -\ln 2 donc si a = -\ln 2 c'est à dire si f (a) = -\ln 2 donc si a = -\ln 2 c'est à dire si f (a) = -\ln 2 donc si a = -\ln 2 c'est à dire si f (a) = -\ln 2 c'est à dire si f$$

$$\frac{1}{2}$$
; par conséquent, les valeurs de a et de b pour que la dernière inégalité soit une égalité sont a

$$= b = \frac{1}{2}$$
.