

```
from sklearn.preprocessing import StandardScaler
import tensorflow as tf
from tensorflow.keras import layers, models
# 1) Create synthetic binary classification data
X, y = make_classification(n_samples=2000, n_features=10, n_informative=6,
             n_redundant=2, n_clusters_per_class=2, random_state=42)
# 2) Train-test split and scaling
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
#3) Build simple perceptron model
model = models.Sequential([
  layers.Input(shape=(X_train.shape[1],)),
  layers.Dense(1, activation='sigmoid') # single neuron -> perceptron (logistic)
])
model.compile(optimizer='adam',
      loss='binary_crossentropy',
      metrics=['accuracy'])
# 4) Train
```

```
history = model.fit(X_train, y_train, epochs=30, batch_size=32, validation_split=0.1,
verbose=2)
#5) Evaluate
loss, acc = model.evaluate(X_test, y_test, verbose=0)
print(f"Test loss: {loss:.4f}, Test accuracy: {acc:.4f}")
Explanation: A perceptron with sigmoid outputs probability for class 1; trained with binary
cross-entropy.
Task 3 — Multi-Layer Perceptron (MLP) for MNIST
Simple MLP that classifies MNIST handwritten digits using tf.keras.datasets.
# mlp_mnist.py
import tensorflow as tf
from tensorflow.keras import layers, models
import matplotlib.pyplot as plt
import numpy as np
#1) Load data
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
# 2) Preprocess: normalize and flatten
```

```
x_{train} = x_{train.astype}(float32) / 255.0
x_{test} = x_{test.astype}(float32) / 255.0
x_{train} = x_{train.reshape((-1, 28*28))}
x_{test} = x_{test.reshape((-1, 28*28))}
#3) Build MLP
model = models.Sequential([
  layers.Input(shape=(28*28,)),
  layers.Dense(128, activation='relu'),
  layers.Dense(64, activation='relu'),
  layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
       loss='sparse_categorical_crossentropy',
       metrics=['accuracy'])
#4) Train
history = model.fit(x_train, y_train, epochs=10, batch_size=128, validation_split=0.1,
verbose=2)
#5) Evaluate
test_loss, test_acc = model.evaluate(x_test, y_test, verbose=0)
print(f"MNIST test acc: {test_acc:.4f}")
```

Tip: You can increase epochs or use dropout/regularization to improve generalization.

```
___
```

```
Task 4 — Visualize model accuracy and loss graphs using Matplotlib
Use the history object returned by model.fit() to plot.
# visualize_history.py (use after training to plot the history returned by fit)
import matplotlib.pyplot as plt
def plot_history(history):
  # loss
  plt.figure(figsize=(10,4))
  plt.subplot(1,2,1)
  plt.plot(history.history['loss'], label='train_loss')
  plt.plot(history.history.get('val_loss', []), label='val_loss')
  plt.xlabel('Epoch')
  plt.ylabel('Loss')
  plt.legend()
  plt.title('Loss vs Epoch')
  # accuracy
  plt.subplot(1,2,2)
  plt.plot(history.history.get('accuracy', history.history.get('acc')), label='train_acc')
  plt.plot(history.history.get('val_accuracy', history.history.get('val_acc', [])), label='val_acc')
```

```
plt.xlabel('Epoch')
 plt.ylabel('Accuracy')
 plt.legend()
 plt.title('Accuracy vs Epoch')
 plt.tight_layout()
 plt.show()
# Example usage (after training): plot_history(history)
If using this in a notebook, plt.show() will render plots inline.
Task 5 — Perform hyperparameter tuning (change epochs, batch size, activation functions)
Simple manual grid search example (train small model multiple times and compare). For
quick experiments, use a small subset or fewer epochs. For production-scale tuning, use
keras-tuner.
# simple_hyperparam_search.py
import itertools
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
import numpy as np
```

```
# use a small subset to speed up grid search in examples
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_{train} = x_{train.astype}('float32') / 255.0
x_{test} = x_{test.astype}(float32) / 255.0
x_{train} = x_{train.reshape((-1, 28*28))}
x_{test} = x_{test.reshape((-1, 28*28))}
# Use a small subset for quick experiments
x_{train\_small} = x_{train}[:20000]
y_train_small = y_train[:20000]
x_val = x_train[20000:25000]
y_val = y_train[20000:25000]
def build_model(activation='relu'):
  model = models.Sequential([
    layers.Input(shape=(28*28,)),
    layers.Dense(128, activation=activation),
   layers. Dense(64, activation=activation),
    layers.Dense(10, activation='softmax')
  ])
  model.compile(optimizer='adam',
         loss='sparse_categorical_crossentropy',
         metrics=['accuracy'])
  return model
```

```
# hyperparameters to try
param_grid = {
  'epochs': [5, 10],
  'batch size': [64, 128],
  'activation': ['relu', 'tanh']
}
results = []
for epochs, batch_size, activation in itertools.product(param_grid['epochs'],
                          param_grid['batch_size'],
                          param_grid['activation']):
  print(f"Training: epochs={epochs}, batch_size={batch_size}, activation={activation}")
  model = build_model(activation=activation)
  hist = model.fit(x_train_small, y_train_small, epochs=epochs, batch_size=batch_size,
          validation_data=(x_val, y_val), verbose=0)
  val_acc = hist.history['val_accuracy'][-1]
  results.append({
    'epochs': epochs, 'batch_size': batch_size, 'activation': activation,
    'val_acc': val_acc
  })
  print(f" -> val_acc={val_acc:.4f}")
# show best
best = max(results, key=lambda r: r['val_acc'])
print("Best config:", best)
```

Alternative: Use keras-tuner for a more principled search (random search / Bayesian optimization).
Task 6 — Short blog/note explaining how neural networks learn
English (short):
Neural networks learn by adjusting weights to reduce the difference between predicted outputs and target outputs. During training:
1. A forward pass computes predictions from inputs through layers (matrices multiply and nonlinear activations).
2. A loss (error) function quantifies how far predictions are from true labels (e.g., cross-entropy).
3. Backpropagation computes gradients of the loss w.r.t. each weight using the chain rule.
4. An optimizer (e.g., SGD, Adam) updates weights in the direction that reduces loss using those gradients.

5. Repeat over many examples (epochs) until the network generalizes well.
Key concepts:
Activation functions (ReLU, sigmoid, tanh) add nonlinearity so networks can learn complex mappings.
Learning rate controls step size of updates; too large → divergence; too small → slow training.
Overfitting vs generalization: networks can memorize training data — regularization (dropout, weight decay), early stopping, and more data help generalize.
Batch size affects gradient estimate quality: small batches are noisy but can generalize well; large batches give stable gradients.