HOCore en Coq : résumé

Aurèle Barrière

27 janvier 2016

Table des matières

1	Introduction à HOCore			
	1.1	Pi-calcul		
	1.2	Pi-calcul		
	1.3	HOCore		
2	Formalisation en Coq			
	2.1	axiomatisation		
	2.2	axiomatisation		
3	Équivalence décidable			
	3.1^{-}	alpha-conversion		
	3.2	alpha-conversion		
4	Biss	similarités		

1 Introduction à HOCore

1.1 Pi-calcul

Le π -calcul est un langage formel utilisé pour décrire, en particulier, les éxécutions distribuées de processus. Sa syntaxe, très simple, décrit simplement l'éxécution en parallèle.

En π -calcul , on manipule des processus, qui peuvent s'éxécuter séquentiellement ou parallèlement et terminer ou non. Des canaux sont également disponibles pour la réception et l'émission de messages ou de variables.

Le π -calcul utilise donc la grammaire suivante :

P = 0	fin du processus
!P	répéter le processus
P P	lancer les deux processus en parallèle
x(y).P	lire un message sur le canal x pour remplacer y , puis lancer P
$ \bar{x}(y).P $	envoyer le message y sur le canal x , puis lancer P
$ (\nu x)P $	réserver le nom x pour le processus P

Il s'agit d'un calcul Turing Complet.

1.2 Pi-calcul d'ordre supérieur : HOPi

Pour l'ordre supérieur, on se permet de communiquer par les canaux aussi bien des noms (variables) que des processus.

Dans la grammaire proposée plus haut, x et y peuvent donc désigner des processus.

1.3 HOCore

Il s'agit d'une restriction qui conserve le caractère Turing Complet du $\pi\text{-}$ calcul d'ordre supérieur.

La grammaire utilisée est la suivante :

$$P = 0$$

$$|x$$

$$|P||P$$

$$|x(y).P$$

$$|\bar{x}(P)$$

- 1.4 Réductions
- 2 Équivalence décidable
- 2.1 alpha-conversion
- 2.2 Indices de De Bruijn
- 3 Bissimilarités
- 4 Formalisation en Coq
- 4.1 axiomatisation
- 4.2 Correction de preuves