Vecka 14 Lektion 1 Bac 2008 Uppgift A1

Reaktioner

a) i. $CH_3 - NH_2(aq) + H_2O \implies CH_3 - NH_3^+(aq) + OH^ CO_3^{2-}(aq) + H_3O^+(aq) \implies HCO_3^-(aq) + H_2O$ $HCO_3^-(aq) + CH_3 - NH_2(aq) \implies CO_3^{2-} + CH_3 - NH_3^+(aq)$

$Syra \ / \ bas$
$CH_3 - NH_3^+(aq) / CH_3 - NH_2(aq), H_2O / OH^-$
$HCO_3^-(aq) / CO_3^{2-}(aq), \ H_3O^+(aq) / H_2O$
$HCO_3^-(aq) / CO_3^{2-}(aq), CH_3 - NH_3^+(aq) / CH_3 - NH_2(aq)$

Syra	Konjugerande Bas	pK_a	pK_b
$H_3O^+(aq)$	$H_2O(l)$	-1.74	15.74
$HCO_3^-(aq)$	$CO_3^{2-}(aq)$	10.3	3.7
$CH_3 - NH_3^+(aq)$	$CH_3 - NH_2(aq)$	10.6	3.4
$H_2O(l)$	$OH^-(aq)$	15.7	-1.7

- i. 1. OH^-
 - 2. $CH_3 NH_2(aq)$
 - 3. CO_3^{2-}
 - $4.~H_2O$

iii.
$$H_2O (\to OH^-), (\to H_3O^+)$$

 $HCO_3^- (\to CO_3^{2-}), (\to H_2O_3)$

b) i. $pH(CH_3 - NH_2(aq)): 11.2$

	$CH_3 - NH_2(aq) + H_2O \implies CH_3 - NH_3^+ + OH^-$							
I	$1.00*10^{-2} \ mol/dm^3$	_						
С	-x	+x	+x					
Е	$1.00*10^{-2} - x$	\overline{x}	x					

$$x = \frac{10^{-14}}{10^{-pH}} = 10^{-14 - (-pH)} = [OH^{-}]$$

 $x = 0.0015848932 \approx 1.5 * 10^{-3} \ mol/dm^3$

$$K_b = \frac{[CH_3 - NH_3^+] * [OH^-]}{[CH_3 - NH_2]}$$

$$K_b = \frac{x^2}{1.00 * 10^{-2} - x}$$

$$K_b = \frac{(1.5*10^{-3})^2}{1.00*10^{-2} - 1.5*10^{-3}} = 2.9*10^{-4}$$

 $pH(NH_3(aq)): 10.6$

	$NH_3(aq) + H_2O \implies NH_4^+ + OH^-$								
1	$1.00*10^{-2}\ mol/dm^3$	_	ı						
С	-x	+x	+x						
Е	$1.00 * 10^{-2} - x$	x	x						

$$x = \frac{10^{-14}}{10^{-pH}} = 10^{-14 - (-pH)} = [OH^-]$$

$$x = 3.9810717 * 10^{-4} \approx 4.0 * 10^{-4} \ mol/dm^3$$

$$K_b = \frac{[NH_4^+] * [OH^-]}{[NH_3]}$$

$$K_b = \frac{x^2}{1.00 * 10^{-2} - x}$$

$$K_b = \frac{(4.0 * 10^{-4})^2}{1.00 * 10^{-2} - 4.0 * 10^{-4}} = 1.65060496 * 10^{-5}$$

ii, iii.
$$(K_b(NH_3(aq)) = 1.65 * 10^{-5}) < (K_b(CH_3 - NH_2(aq)) = 2.98 * 10^{-4})$$

^{c) i.}
$$NH_3(aq) + HCl(aq) \rightarrow NH_4^+ + Cl^-$$

ii.
$$V(NH_3) = 150 \text{ cm}^3 = 0.150 \text{ dm}^3$$

$$V(HCl) = 50.0 \text{ cm}^3 = 0.050 \text{ dm}^3$$

$$C(NH_3) = 1.00 * 10^{-2} \ mol/dm^3$$

$$C(HCl) = 1.50 * 10^{-2} \ mol/dm^3$$

$$C = \frac{n}{V} \rightarrow n = C * V$$

$$n(NH_3) = 0.010 * 0.150 = 0.0015 \ mol = 1.5 * 10^{-3} \ mol$$

$$n(HCl) = 0.0150 * 0.050 = 0.00075 \ mol = 7.5 * 10^{-4} \ mol$$

iii. ICF tabell i mol:

	$NH_3 + HCl \rightarrow NH_4^+ +$							
I	$1.50*10^{-3}$	$7.5*10^{-4}$	_	_				
С	-x	-x	+x	+x				
F	$1.50 * 10^{-3} - x$	$7.5 * 10^{-4} - x$	x	x				

x är lika med antal mol av den molekylen med minst partiklar

$$NH_3$$
 är A^- och NH_4^+ är HA

$$x = 7.5 * 10^{-4} \ mol$$

$$pH = pK_a + log\Big(\frac{[A^-]}{[HA]}\Big) \ \to \ pK_a = pH - log\Big(\frac{[A^-]}{[HA]}\Big) \quad \begin{array}{l} [A^-] = 1.50*10^{-3} \ mol \\ [HA] = 7.5*10^{-4} \ mol \\ pH = 9.24 \end{array}$$

$$pK_a = 9.24 - log\left(\frac{1.50 * 10^{-3}}{7.5 * 10^{-4}}\right)$$

$$pK_a = 8.93897$$

d)

$$CH_3 - NH_2 + HCl \rightarrow CH_3 - NH_3^+ + Cl^-$$

Molekyl	V_{init}	C_{init}	n_{init}	$V_{\frac{1}{2}eq}$	$C_{\frac{1}{2}eq}$	$n_{\frac{1}{2}eq}$	C_{eq}	V_{eq}	n_{eq}
$CH_3 - NH_2$		x		?					
HCl			0.1	0.0125				0.025	
$CH_3 - NH_3^+$									
H_3O^+									

$$C(HCl) = 1.00 * 10^{-1} \ mol/dm^3$$

 $V(CH_3 - NH_2)_{init} = 50 \ cm^3 = 0.050 \ dm^3$
 $pH(eq) = 6$
 $V(HCl)_{eq} = 25 \ cm^3$

Haltitrerpunkten Titrerpunkten

ii.
$$pH = pK_a + log(\frac{[A^-]}{[HA]}) \quad A^- = CH_3 - NH_2$$

 $HA = CH_3 - NH_3^+$
 $CH_3 - NH_3^+ + H_2O \rightarrow CH_3 - NH_2 + H_3O^+$

iii.
$$C(CH_3 - NH_2) = x$$

Molekyl	C_{init}	n_{init}	$C_{\frac{1}{2}eq}$	$n_{\frac{1}{2}eq}$	C_{eq}	n_{eq}
$CH_3 - NH_2$	0.0025	0.05	0.4	0.025	_	_
HCl	_	_	_	_	_	_
$CH_3 - NH_3^+$	_	_	0.4	0.025	$3.3 * 10^{-2}$	0.0025
OH^-	$6.3*10^{-3}$	0.126	$5.0 * 10^{-4}$	$8.0*10^{-3}$	$1.0 * 10^{-8}$	$1.3 * 10^{-7}$
Total volym	$V_{init} = 0.050$		$V_{\frac{1}{2}eq} = 0.0$	5 + 0.0125	$V_{eq} = 0.05$	50 + 0.025

$$C = \tfrac{n}{V} \ \to \ V = \tfrac{n}{C} \ \to \ n = C * V$$

$$pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right)$$

$$K_b = \frac{[CH_3 - NH_3^+] * [OH^-]}{[CH_3 - NH_2]} \qquad C_{init}(OH^-) = 10^{-(14-pH)} = 6.3 * 10^{-3} \ mol/dm^3$$

$$log(K_b) = log\left(\frac{[CH_3 - NH_3^+] * [OH^-]}{[CH_3 - NH_2]}\right) \qquad C_{\frac{1}{2}eq}(OH^-) = 10^{-(14-pH)} = 5.0 * 10^{-4} \ mol/dm^3$$

$$-pK_b = log\left(\frac{[CH_3 - NH_3^+]}{[CH_3 - NH_2]}\right) + log([OH^-]) \qquad C_{eq}(OH^-) = 10^{-(14-pH)} = 1.0 * 10^{-8} \ mol/dm^3$$

$$pK_b = log\left(\frac{[CH_3 - NH_3^+]}{[CH_3 - NH_2]}\right) + pOH$$

$$pOH = pK_b + log\left(\frac{[CH_3 - NH_3^+]}{[CH_3 - NH_2]}\right)$$

$$pOH_{\frac{1}{2}eq} = pK_b + log(1)$$

$$pK_b = 3.4$$

Vid ekvivalenspunkten har vi ingen $CH_3 - NH_2$ kvar, allt har förbrukats av HCl. Vi hällde i $0.025 \ dm^3 \ 0.1 \ molarig lösning <math>HCl$

$$n_{tillsatt}(HCl) = n_{eq}(CH_3 - NH_3^+) = n_{init}(CH_3 - NH_2)$$

$$n_{tillsatt}(HCl) = V(HCl) * C(HCl)$$

$$n_{tillsatt}(HCl) = 0.025 * 0.1 = 0.0025 mol$$