TODO: сделать выжимку из всех pdf'ок снизу

§ 2. УРАВНЕНИЯ С РАЗДЕЛЯЮЩИМИСЯ ПЕРЕМЕННЫМИ

1. Уравнения с разделяющимися переменными могут быть записаны в виде

$$y' = f(x)g(y), \tag{1}$$

а также в виде

$$M(x)N(y) dx + P(x)Q(y) dy = 0.$$
(2)

Для решения такого уравнения надо обе его части умножить или разделить на такое выражение, чтобы в одну часть уравнения входило только x, в другую — только y, и затем проинтегрировать обе части.

При делении обеих частей уравнения на выражение, содержащее неизвестные x и y, могут быть потеряны решения, обращающие это выражение в нуль.

Пример. Решить уравнение

$$x^2y^2y' + 1 = y. (3)$$

Приводим уравнение к виду (2):

$$x^{2}y^{2}\frac{dy}{dx} = y - 1;$$
 $x^{2}y^{2}dy = (y - 1)dx.$

Делим обе части уравнения на $x^2(y-1)$:

$$\frac{y^2}{y-1} \, \mathrm{d}y = \frac{\mathrm{d}x}{x^2}.$$

Переменные разделены. Интегрируем обе части уравнения:

$$\int \frac{y^2}{y-1} \, dy = \int \frac{dx}{x^2}; \qquad \frac{y^2}{2} + y + \ln|y-1| = -\frac{1}{x} + C.$$

При делении на $x^2(y-1)$ могли быть потеряны решения x=0 и y-1=0, т. е. y=1. Очевидно, y=1 — решение уравнения (3), а x=0 — нет.

2. Уравнения вида y' = f(ax + by) приводятся к уравнениям с разделяющимися переменными заменой z = ax + by (или z = ax + by + c, где c любое).

В задачах **51—65** решить данные уравнения и для каждого из них построить несколько интегральных кривых. Найти

- **97.** Найти атмосферное давление на высоте h, если на поверхности земли давление равно $1 \ \kappa \Gamma/c m^2$ и плотность воздуха $0{,}0012 \ s/c m^3$. Использовать закон Бойля—Мариотта, в силу которого плотность пропорциональна давлению (т. е. пренебречь изменением температуры воздуха с высотой).
- 98. Для остановки речных судов у пристани с них бросают канат, который наматывают на столб, стоящий на пристани. Какая сила будет тормозить судно, если канат делает три витка вокруг столба, коэффициент трения каната о столб равен 1/3, и рабочий на пристани тянет за свободный конец каната с силой $10~\kappa\Gamma$?
- **99.** В закрытом помещении объемом v m^3 находится открытый сосуд с водой. Скорость испарения воды пропорциональна разности между количеством q_1 водяного пара, насыщающего 1 m^3 воздуха при данной температуре, и количеством q водяного пара, имеющемся в 1 m^3 воздуха в рассматриваемый момент (считаем, что температура воздуха и воды, а также величина площади, с которой происходит испарение, остаются неизменными). В начальный момент в сосуде было m_0 грамм воды, а в 1 m^3 воздуха q_0 грамм пара. Сколько воды останется в сосуде через промежуток времени t?
- **100.** Масса ракеты с полным запасом топлива равна M, без топлива m, скорость истечения продуктов горения из ракеты равна c, начальная скорость ракеты равна нулю. Найти скорость ракеты после сгорания топлива, пренебрегая силой тяжести и сопротивлением воздуха (формула Циолковского).

§ 4. ОДНОРОДНЫЕ УРАВНЕНИЯ

1. Однородные уравнения могут быть записаны в виде $y'=f\left(\frac{y}{x}\right)$, а также в виде $M(x,\ y)\,\mathrm{d} x+N(x,\ y)\,\mathrm{d} y=0$, где $M(x,\ y)$ и $N(x,\ y)$ — однородные функции одной и той же степени¹. Чтобы решить однородное уравнение, можно сделать замену y=tx, после чего получается уравнение с разделяющимися переменными.

 Π р и м е р. Решить уравнение $x \, \mathrm{d} y = (x+y) \, \mathrm{d} x$.

 $^{^1\}Phi$ ункция $M(x,\ y)$ называется однородной функцией степени n, если для всех k>0 имеем $M(kx,\ ky)\equiv k^nM(x,\ y).$

Это уравнение — однородное. Полагаем y=tx. Тогда $\mathrm{d}y=x\,\mathrm{d}t+t\,\mathrm{d}x$. Подставляя в уравнение, получим

$$x(x dt + t dx) = (x + tx) dx; \quad x dt = dx.$$

Решаем полученное уравнение с разделяющимися переменными

$$\mathrm{d}t = \frac{\mathrm{d}x}{x}; \quad t = \ln|x| + C.$$

Возвращаясь к старому переменному y, получим $y=x(\ln |x|+C)$. Кроме того, имеется решение x=0, которое было потеряно при делении на x.

- 2. Уравнение вида $y'=f\left(\frac{a_1x+b_1y+c_1}{ax+by+c}\right)$ приводится к однородному с помощью переноса начала координат в точку пересечения прямых ax+by+c=0 и $a_1x+b_1y+c_1=0$. Если же эти прямые не пересекаются, то $a_1x+b_1y=k(ax+by)$; следовательно, уравнение имеет вид y'=F(ax+by) и приводится к уравнению с разделяющимися переменными заменой z=ax+by (или z=ax+by+c), см. \S 2, п. 2.
- 3. Некоторые уравнения можно привести к однородным заменой $y=z^m$. Число m обычно заранее не известно. Чтобы его найти, надо в уравнении сделать замену $y=z^m$. Требуя, чтобы уравнение было однородным, найдем число m, если это возможно. Если же этого сделать нельзя, то уравнение не приводится к однородному этим способом.

Пример. Дано уравнение $2x^4yy'+y^4=4x^6$. После замены $y=z^m$ уравнение примет вид $2mx^4z^{2m-1}z'+z^{4m}=4x^6$. Это уравнение будет однородным в том случае, когда степени всех его членов равны между собой, т. е. 4+(2m-1)=4m=6. Эти равенства удовлетворяются одновременно, если m=3/2. Следовательно, уравнение можно привести к однородному заменой $y=z^{3/2}$.

Решить уравнения **101—129**.

101.
$$(x+2y) dx - x dy = 0.$$

102.
$$(x-y) dx + (x+y) dy = 0$$
.

103.
$$(y^2 - 2xy) dx + x^2 dy = 0.$$

104.
$$2x^3y' = y(2x^2 - y^2)$$
.

105.
$$y^2 + x^2y' = xyy'$$
.

106.
$$(x^2 + y^2)y' = 2xy$$
.

к кривой до касательной к траектории отсчитывается в отрицательном направлении.

a)
$$y = x \ln Cx$$
; 6) $(x - 3y)^4 = Cxy^6$.

- **131.** Найти кривую, у которой точка пересечения любой касательной с осью абсцисс одинаково удалена от точки касания и от начала координат.
- **132.** Найти кривую, у которой расстояние любой касательной от начала координат равно абсциссе точки касания.
- **133.** При каких α и β уравнение $y' = ax^{\alpha} + by^{\beta}$ приводится к однородному с помощью замены $y = z^m$?
- **134*.** Пусть k_0 корень уравнения f(k) = k. Показать, что:
- 1) если $f'(k_0) < 1$, то ни одно решение уравнения y' = f(y/x) не касается прямой $y = k_0 x$ в начале координат;
- 2) если $f'(k_0)>1,$ то этой прямой касается бесконечно много решений.
- **135.** Начертить приближенно интегральные кривые следующих уравнений (не решая уравнений):

Указание. Тангенс угла между лучом y=kx и пересекающей его интегральной кривой уравнения y'=f(y/x) равен (f(k)-k)/(1+kf(k)) (почему?). Для приближенного построения интегральных кривых надо исследовать знак этой дроби в зависимости от k.

§ 5. ЛИНЕЙНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

1. Уравнение

$$y' + a(x)y = b(x) \tag{1}$$

называется линейным. Чтобы его решить, надо сначала решить уравнение

$$y' + a(x)y = 0 (2)$$

(это делается путем разделения переменных, см. § 2) и в общем решении последнего заменить произвольную постоянную C на неизвестную функцию C(x). Затем выражение, полученное для y, подставить в уравнение (1) и найти функцию C(x).

2. Некоторые уравнения становятся линейными, если поменять местами искомую функцию и независимое переменное. Например, уравнение $y=(2x+y^3)y'$, в котором y является функцией от x, — нелинейное. Запишем его в дифференциалах: $y\,\mathrm{d}x-(2x+y^3)\,\mathrm{d}y=0$. Так как в это уравнение x и $\mathrm{d}x$ входят линейно, то уравнение будет линейным, если x считать искомой функцией, а y — независимым переменным. Это уравнение может быть записано в виде

$$\frac{\mathrm{d}x}{\mathrm{d}y} - \frac{2}{y}x = y^2$$

и решается аналогично уравнению (1).

3. Чтобы решить уравнение Бернулли, т. е. уравнение

$$y' + a(x)y = b(x)y^n, \quad (n \neq 1),$$

надо обе его части разделить на y^n и сделать замену $1/y^{n-1}=z$. После замены получается линейное уравнение, которое можно решить изложенным выше способом. (Пример см. в [1], гл. I, § 4, п. 2, пример 10.)

4. Уравнение Риккати, т. е. уравнение

$$y' + a(x)y + b(x)y^2 = c(x),$$

в общем случае не решается в квадратурах. Если же известно одно частное решение $y_1(x)$, то заменой $y=y_1(x)+z$ уравнение Риккати сводится к уравнению Бернулли и таким образом может быть решено в квадратурах.

Иногда частное решение удается подобрать, исходя из вида свободного члена уравнения (члена, не содержащего y). Например, для уравнения $y'+y^2=x^2-2x$ в левой части будут члены, подобные членам правой части, если взять y=ax+b. Подставляя в уравнение и приравнивая коэффициенты при подобных членах, найдем a и b (если частное решение указанного вида существует, что вовсе не всегда бывает). Другой пример: для уравнения $y'+2y^2=6/x^2$ те же рассуждения побуждают нас искать частное решение в виде y=a/x. Подставляя y=a/x в уравнение, найдем постоянную a.

Решить уравнения 136—160.

136.
$$xy' - 2y = 2x^4$$
.

185*. Пусть в уравнении предыдущей задачи имеем $a(t) \geqslant c > 0$ и пусть $x_0(t)$ — решение с начальным условием $x_0(0) = b$. Показать, что для любого $\varepsilon > 0$ существует такое $\delta > 0$, что если изменить функцию f(t) и число b меньше, чем на δ (т. е. заменить их на такую функцию $f_1(t)$ и число b_1 , что $|f_1(t) - f(t)| < \delta, |b_1 - b| < \delta$), то решение $x_0(t)$ изменится при $t \geqslant 0$ меньше, чем на ε . Это свойство решения называется устойчивостью по постоянно действующим возмущениям.

§ 6. УРАВНЕНИЯ В ПОЛНЫХ ДИФФЕРЕНЦИАЛАХ. ИНТЕГРИРУЮЩИЙ МНОЖИТЕЛЬ

1. Уравнение

$$M(x, y) dx + N(x, y) dy = 0$$

$$\tag{1}$$

называется уравнением в полных дифференциалах, если его левая часть является полным дифференциалом некоторой функции $F(x,\ y)$. Это имеет место, если $\frac{\partial M}{\partial y}\equiv \frac{\partial N}{\partial x}$. Чтобы решить уравнение (1), надо найти функцию $F(x,\ y)$, от которой полный дифференциал $\mathrm{d}F(x,\ y)=F_x'\,\mathrm{d}x+F_y'\,\mathrm{d}y$ равен левой части уравнения (1). Тогда общее решение уравнения (1) можно написать в виде $F(x,\ y)=C$, где C— произвольная постоянная.

Пример. Решить уравнение

$$(2x + 3x^{2}y) dx + (x^{3} - 3y^{2}) dy = 0.$$
 (2)

Так как $\frac{\partial}{\partial y}(2x+3x^2y)=3x^2,\, \frac{\partial}{\partial x}(x^3-3y^2)=3x^2,$ то уравнение (2) является уравнением в полных дифференциалах. Найдем функцию $F(x,\,y),$ полный дифференциал которой $\mathrm{d}F=F_x'\,\mathrm{d}x+F_y'\,\mathrm{d}y$ был бы равен левой части уравнения (2), т. е. такую функцию F, что

$$F'_x = 2x + 3x^2y, \quad F'_y = x^3 - 3y^2.$$
 (3)

Интегрируем по x первое из уравнений (3), считая y постоянным; при этом вместо постоянной интегрирования надо поставить $\varphi(y)$ — неизвестную функцию от y:

$$F = \int (2x + 3x^2y) \, dx = x^2 + x^3y + \varphi(y).$$

Подставляя это выражение для F во второе из уравнений (3), найдем $\varphi(y)$:

$$(x^2 + x^3y + \varphi(y))'_y = x^3 - 3y^2; \ \varphi'(y) = -3y^2; \ \varphi(y) = -y^3 + \text{const.}$$

Следовательно, можно взять $F(x, y) = x^2 + x^3y - y^3$, и общее решение уравнения (2) будет иметь вид

$$x^2 + x^3y - y^3 = C.$$

2. Интегрирующим множителем для уравнения

$$M(x, y) dx + N(x, y) dy = 0$$

$$(4)$$

называется такая функция $m(x, y) \not\equiv 0$, после умножения на которую уравнение (4) превращается в уравнение в полных дифференциалах. Если функции M и N в уравнении (4) имеют непрерывные частные производные и не обращаются в нуль одновременно, то интегрирующий множитель существует. Однако нет общего метода для его отыскания (когда общее решение уравнения (4) неизвестно).

В некоторых случаях интегрирующий множитель можно найти с помощью приемов, изложенных в [1], гл. II, \S 3, п. 3 или в [4], гл. 1, \S 5. Для решения некоторых уравнений можно применять метод выделения полных дифференциалов, используя известные формулы:

$$\mathrm{d}(xy)=y\,\mathrm{d}x+x\,\mathrm{d}y, \qquad \mathrm{d}(y^2)=2y\,\mathrm{d}y,$$
 $\mathrm{d}\left(\frac{x}{y}\right)=\frac{y\,\mathrm{d}x-x\,\mathrm{d}y}{y^2}, \quad \mathrm{d}(\ln y)=\frac{\mathrm{d}y}{y}$ и т. п.

Пример. Решить уравнение

$$y \, dx - (4x^2y + x) \, dy = 0. \tag{5}$$

Сначала выделяем группу членов, представляющую собой полный дифференциал. Так как $y\,\mathrm{d}x-x\,\mathrm{d}y=-x^2\,\mathrm{d}(y/x),$ то, деля уравнение (5) на $-x^2$, имеем

$$d\left(\frac{y}{x}\right) + 4y dy = 0,$$
 $d\left(\frac{y}{x}\right) + d(2y^2) = 0.$

Это — уравнение в полных дифференциалах. Интегрируя непосредственно (приводить к виду (1) не нужно), получаем решение

$$\frac{y}{x} + 2y^2 = C.$$

Кроме того, при делении на $-x^2$ было потеряно решение x=0.

Замечание. Так как после деления уравнения (5) на $-x^2$, т. е. умножения на $-1/x^2$, получилось уравнение в полных дифференциалах, то интегрирующий множитель для уравнения (5) равен $-1/x^2$.

3. Если в уравнении (4) можно выделить полный дифференциал некоторой функции $\varphi(x,\ y),$ то иногда уравнение упрощается, если от переменных $(x,\ y)$ перейти к переменным $(x,\ z)$ или $(y,\ z),$ где $z=\varphi(x,\ y).$

 Π римеры. 1) Решить уравнение $y dx - (x^3y + x) dy = 0$.

Выделив полный дифференциал как в предыдущем примере, получим

$$d\left(\frac{y}{x}\right) + xy\,dy = 0.$$

Перейдя к переменным z=y/x и y, получим уравнение

$$\mathrm{d}z + \frac{y^2}{z}\,\mathrm{d}y = 0,$$

которое легко решается.

2) Решить уравнение $(xy + y^4) dx + (x^2 - xy^3) dy = 0$.

Сгруппируем члены так, чтобы выделить полные дифференциалы

$$x(y dx + x dy) + y^{3}(y dx - x dy) = 0, \quad x d(xy) + y^{5} d\left(\frac{x}{y}\right) = 0.$$

Разделив на x и сделав замену $xy=u,\,x/y=v,\,$ получим уравнение $\mathrm{d}u+rac{u^2}{v^3}\,\mathrm{d}v=0,\,$ которое легко решается.

В задачах **186—194** проверить, что данные уравнения являются уравнениями в полных дифференциалах, и решить их.

186.
$$2xy \, dx + (x^2 - y^2) \, dy = 0.$$

187.
$$(2 - 9xy^2)x dx + (4y^2 - 6x^3)y dy = 0.$$

188.
$$e^{-y} dx - (2y + xe^{-y}) dy = 0.$$

189.
$$\frac{y}{x} dx + (y^3 + \ln x) dy = 0.$$

190.
$$\frac{3x^2 + y^2}{y^2} dx - \frac{2x^3 + 5y}{y^3} dy = 0.$$

213.
$$y(x+y^2) dx + x^2(y-1) dy = 0$$
.

214.
$$(x^2 - \sin^2 y) dx + x \sin 2y dy = 0.$$

215.
$$x(\ln y + 2 \ln x - 1) dy = 2y dx$$
.

216.
$$(x^2 + 1)(2x dx + \cos y dy) = 2x \sin y dx$$
.

217.
$$(2x^3y^2 - y) dx + (2x^2y^3 - x) dy = 0.$$

218.
$$x^2y^3 + y + (x^3y^2 - x)y' = 0$$
.

219.
$$(x^2 - y) dx + x(y + 1) dy = 0.$$

220.
$$y^2(y dx - 2x dy) = x^3(x dy - 2y dx).$$

§ 7. СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ РЕШЕНИЯ

1. Теорема существования и единственности решения уравнения

$$y' = f(x, y) \tag{1}$$

с начальным условием $y(x_0) = y_0$.

Пусть в замкнутой области R $(|x-x_0| \leqslant a, |y-y_0| \leqslant b)$ функции f и f'_y непрерывны¹. Тогда на некотором отрезке $x_0-d \leqslant x \leqslant x_0+d$ существует единственное решение уравнения (1), удовлетворяющее начальному условию $y(x_0)=y_0$.

При этом можно взять $d=\min\big\{a;\,\frac{b}{m}\big\},$ где a и b указаны выше, а m — любое такое, что $|f|\leqslant m$ в R.

Последовательные приближения, определяемые формулами

$$y_0(x) = y_0, \ \ y_k(x) = y_0 + \int_{x_0}^x f(s, \ y_{k-1}(s)) \, \mathrm{d}s, \ \ k = 1, 2, \ldots,$$

равномерно сходятся к решению на указанном отрезке.

Замечание. Для существования решения достаточно только непрерывности $f(x,\ y)$ в области R, но при этом решение может не быть единственным.

¹Требование непрерывности f'(y) можно заменить требованием ее ограниченности или условием Липшица: $|f(x,y_1)-f(x,y_2)|\leqslant k|y_1-y_2|,$ $k=\mathrm{const.}$

2. Система уравнений

$$\begin{cases} y_1' = f_1(x, y_1, \dots, y_n), \\ \dots \\ y_n' = f_n(x, y_1, \dots, y_n) \end{cases}$$
 (2)

в векторных обозначениях записывается так:

$$y' = f(x, y), \tag{3}$$

где $y=(y_1,\ \dots,\ y_n)$ и $f=(f_1,\ \dots,\ f_n)$ — векторы. Непрерывность вектор-функции f означает непрерывность всех функций $f_1,\ \dots,\ f_n$, а вместо $\frac{\partial f}{\partial y}$ рассматривается матрица из частных производных $\frac{\partial f_i}{\partial y_k},\ i,\ k=1,\ \dots,n.$ Теорема существования и единственности решения и все

Теорема существования и единственности решения и все утверждения п. 1 остаются справедливыми и для системы, записанной в виде (3). При этом |y| означает длину вектора y: $|y| = \sqrt{y_1^2 + \ldots + y_n^2}$.

3. Теорема существования и единственности решения для уравнения *n*-го порядка

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)}).$$
 (4)

Пусть в области D функция f u ее частные производные первого порядка по $y,\ y',\ \dots,\ y^{(n-1)}$ непрерывны, u точка $(x_0,\ y_0,\ y_0',\ \dots,\ y_0^{(n-1)})$ лежит внутри D. Тогда при начальных условиях

$$y(x_0) = y_0, \ y'(x_0) = y'_0, \ \dots, \ y^{(n-1)}(x_0) = y_0^{(n-1)}$$

уравнение (4) имеет единственное решение.

Уравнение (4) можно свести к системе вида (2), если ввести новые неизвестные функции по формулам $y=y_1,\ y'=y_2,\ y''=y_3,\ \ldots,\ y^{(n-1)}=y_n.$ Тогда уравнение (4) сводится к системе

$$y_1' = y_2, \ y_2' = y_3, \ \ldots, \ y_{n-1}' = y_n, \ y_n' = f(x, y_1, \ldots, y_n),$$

которая является частным случаем системы (2) и к которой применимы все утверждения п. 2.

4. Продолжение решений. Во многих случаях решение уравнения (1) или системы (2) существует не только на отрезке, указанном в п. 1, но и на большем отрезке.

Если уравнение (1) или система (2) удовлетворяет условиям теоремы существования в замкнутой ограниченной области, то

всякое решение можно продолжить до выхода на границу этой области.

Если правая часть уравнения (1) или системы (3) в области $\alpha < x < \beta, |y| < \infty$ (α и β могут быть конечными или бесконечными) непрерывна и удовлетворяет неравенству

$$|f(x, y)| \leqslant a(x)|y| + b(x),$$

и функции a(x) и b(x) непрерывны, то всякое решение можно продолжить на весь интервал $\alpha < x < \beta$.

- **221.** Построить последовательные приближения y_0, y_1, y_2 к решению данного уравнения с данными начальными условиями:
 - a) $y' = x y^2$, y(0) = 0.
 - 6) $y' = y^2 + 3x^2 1$, y(1) = 1.
 - B) $y' = y + e^{y-1}, y(0) = 1.$
 - $y' = 1 + x \sin y, \ y(\pi) = 2\pi.$
- **222.** Построить по два последовательных приближения (не считая исходного) к решениям следующих уравнений и систем:
 - a) y' = 2x + z, z' = y; y(1) = 1, z(1) = 0.
 - 6) $\frac{\mathrm{d}x}{\mathrm{d}t} = y$, $\frac{\mathrm{d}y}{\mathrm{d}t} = x^2$; x(0) = 1, y(0) = 2.
 - B) $y'' + {y'}^2 2y = 0;$ y(0) = 1, y'(0) = 0.
 - r) $\frac{d^2x}{dt^2} = 3tx;$ x(1) = 2, $\frac{dx}{dt}\Big|_{t=1} = -1.$
- **223.** Указать какой-нибудь отрезок, на котором существует решение с данными начальными условиями:
 - a) $y' = x + y^3$, y(0) = 0.
 - $6) y' = 2y^2 x, y(1) = 1.$
 - B) $\frac{dx}{dt} = t + e^x$, x(1) = 0.
 - $\Gamma \left(\frac{\mathrm{d}x}{\mathrm{d}t} = y^2, \ \frac{\mathrm{d}y}{\mathrm{d}t} = x^2, \ x(0) = 1, \ y(0) = 2. \right)$

3. Нахождение интегрирующего множителя. Из определения интегрирующего множителя имеем:

$$\frac{\partial (\mu M)}{\partial y} = \frac{\partial (\mu N)}{\partial x},$$

или

$$N\frac{\partial u}{\partial x} - M\frac{\partial u}{\partial y} = \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right)\mu,\tag{40}$$

или ж≓, деля обе части равенства (40) на и,

$$N \frac{\partial \ln u}{\partial x} - M \frac{\partial \ln u}{\partial y} = \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}.$$
 (40')

Мы получили в виде (40) или (40') уравнение в частных производных для определения неизвестной функции р. Задача интегрирования такого уравнения в общем случае не проще, чем задача решения уравнения (33). Конечно, нам достаточно знать только одно частное решение уравнения (40); иногда, по каким-нибудь особенностям уравнения (40), удаётся найти такое частное решение, и тогда интеграция уравнения (33) сводится к квадратурам.

Рассмотрим, например, случай, когда существует интегрирующий множитель, являющийся функцией одного только x. В этом случае $\frac{\partial y}{\partial y} = 0$, и уравнение (40') обращается в такое:

$$\frac{d \ln \mu}{dx} = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}.$$
 (41)

Ясно, что для существования интегрирующего множителя, не зависящего от y, необходимо и достаточно, чтобы правая часть была функцией одного x; в таком случае $\ln \mu$ найдётся квадратурой.

Пример 7.

$$\left(2xy + x^2y + \frac{y^3}{3}\right)dx + (x^2 + y^2)dy = 0.$$

Здесь

$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} = \frac{2x + x^2 + y^2 - 2x}{x^2 + y^2} = 1.$$

Следовательно,

$$\frac{d \ln \mu}{d x} = 1, \quad \mu = e^x.$$

Уравнение

$$e^{x}\left(2xy + x^{2}y + \frac{y^{3}}{3}\right)dx + e^{x}\left(x^{2} + y^{2}\right)dy = 0$$

есть уравнение в точных дифференциалах. Интегрируем его:

$$U = \int e^{x} \left(2xy + x^{2}y + \frac{y^{3}}{3} \right) dx + \varphi(y) =$$

$$= y \int e^{x} \left(2x + x^{2} \right) dx + \frac{y^{3}}{3} e^{x} + \varphi(y) = y e^{x} \left(x^{2} + \frac{y^{2}}{3} \right) + \varphi(y).$$

Для нахождения $\varphi(y)$ вычисляем $\frac{\partial U}{\partial y}$ и приравниваем его μN :

$$e^{x}(x^{2}+y^{2})+\varphi'(y)=e^{x}(x^{2}+y^{2}),$$

откуда

$$\varphi'(y) = 0,$$

и общий интеграл нашего уравнения есть

$$ye^x\left(x^2+\frac{y^2}{3}\right)=C.$$

Рассмотрим частный случай интегрирующего множителя, зависящего только от x, когда N=1; в этом случае уравнение имеет вид:

$$dy - f(x, y) dx = 0.$$
 (42)

Уравнение (41) примет вид: $\frac{d \ln \mu}{dx} = -\frac{\partial f(x, y)}{\partial y}$, с условием, что $\frac{\partial f}{\partial y}$ есть функция одного x,

$$\frac{\partial f(x, y)}{\partial y} = \varphi(x);$$

в таком случае f(x, y) имеет вид:

$$f(x, y) = \varphi(x) y + \psi(x),$$

т. е. уравнение, написанное в виде (42) и допускающее интегрирующий множитель, зависящий только от x, есть уравнение линейное.

Из уравнения (41) имеем:

$$\frac{d \ln \mu}{dx} = -\varphi(x), \quad \mu = e^{-\int \varphi(x) \, dx}.$$

Переходя к обозначениям главы I для линейного уравнения, приходим к заключению:

Линейное уравнение $\frac{dy}{dx} + Py = Q$ имеет интегрирующий множитель $\psi = e^{\int P dx}$.

Здесь мы имеем ещё один способ интегрирования линейного уравпения. Аналогично получим условие того, что дифференциальное уравнение допускает интегрирующий множитель, зависящий только от у, и самое выражение этого множителя.

- ${f 237}^*.$ При каких a каждое решение продолжается на бесконечный интервал $-\infty < x < +\infty$
 - а) для уравнения $y' = |y|^a$?
 - б) для уравнения $y' = (y^2 + e^x)^a$?
 - в) для уравнения $y' = |y|^{a-1} + |x\sqrt[3]{y}|^{2a}$?
 - г) для системы $y' = (y^2 + z^2 + 2)^{-a}, z' = y(1+z^2)^a$?
- 238^* . Для следующих уравнений доказать, что решение с произвольным начальным условием $y(x_0)=y_0$ существует при $x_0\leqslant x<+\infty$:

- **239*.** Пусть на всей плоскости x, y функции f(x, y) и $f_y'(x, y)$ непрерывны и $f_y'(x, y) \leqslant k(x)$, функция k(x) непрерывна. Доказать, что решение уравнения y' = f(x, y) с любым начальным условием $y(x_0) = y_0$ существует при $x_0 \leqslant x < +\infty$.
- **240***. Дана система в векторной записи y' = f(x, y), удовлетворяющая условиям теоремы существования в окрестности каждой точки (x, y). Пусть в области |y| > b при всех x

$$y \cdot f(x, y) \leqslant k(x)|y|^2,$$

где $y \cdot f$ — скалярное произведение, а функция k(x) непрерывна. Доказать, что решение с любым начальным условием $y(x_0) = y_0$ существует при $x_0 \leqslant x < +\infty$.

§ 8. УРАВНЕНИЯ, НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ

- 1. Уравнения вида $F(x,\,y,\,y')=0$ можно решать следующими методами.
- а) Разрешить уравнение относительно y', т. е. из уравнения F(x, y, y') = 0 выразить y' через x и y. Получится одно или несколько уравнений вида y' = f(x, y). Каждое из них надо решить.
 - б) Метод введения параметра 1.

 $^{^1}$ Здесь излагается простейший вариант этого метода. Более общий вариант см. [1], гл. III, \S 3, п. 1.

Пусть уравнение F(x, y, y') = 0 можно разрешить относительно y, т. е. записать в виде $y=f(x,\,y')$. Введя параметр

$$p = \frac{\mathrm{d}y}{\mathrm{d}x} = y',\tag{1}$$

получим

$$y = f(x, p). (2)$$

Взяв полный дифференциал от обеих частей равенства (2) и заменив dy через p dx (в силу (1)), получим уравнение вида

$$M(x, p) dx + N(x, p) dp = 0.$$

Если решение этого уравнения найдено в виде x=arphi(p), то, воспользовавшись равенством (2), получим решение исходного уравнения в параметрической записи: $x = \varphi(p), y = f(\varphi(p), p)$.

Уравнения вида x = f(y, y') решаются тем же методом.

 Π ример. Решить уравнение $y = x + y' - \ln y'$. Вводим параметр p=y':

$$y = x + p - \ln p. \tag{3}$$

Берем полный дифференциал от обеих частей равенства и заменяем $\mathrm{d}y$ на $p\,\mathrm{d}x$ в силу (1): $\mathrm{d}y=\mathrm{d}x+\mathrm{d}p-\frac{\mathrm{d}p}{p},\quad p\,\mathrm{d}x=\mathrm{d}x+\mathrm{d}p-\frac{\mathrm{d}p}{p}.$ Решаем полученное уравнение. Переносим члены с $\mathrm{d}x$ влево, с $\mathrm{d}p$ — вправо:

$$(p-1) dx = \frac{p-1}{p} dp. \tag{4}$$

а) Если $p \neq 1$, то сокращаем на p-1:

$$\mathrm{d}x = \frac{\mathrm{d}p}{p}, \ x = \ln p + C.$$

Подставляя это в (3), получаем решение в параметрической записи:

$$x = \ln p + C, \ y = p + C. \tag{5}$$

В данном случае можно исключить параметр p и получить решение в явном виде. Для этого из первого из уравнений (5) выражаем p через x, т. е. $p = e^{x-C}$. Подставляя это во второе уравнение, получаем искомое решение:

$$y = e^{x - C} + C. (6)$$

б) Рассмотрим случай, когда в (4) имеем p=1. Подставляя p = 1 в (3), получаем еще решение

$$y = x + 1. (7)$$

(Было бы ошибкой в равенстве p=1 заменить p на y' и, проинтегрировав, получить y=x+C.)

2. Решение $y = \varphi(x)$ уравнения F(x, y, y') = 0 называется *особым*, если через каждую его точку, кроме этого решения, проходит и другое решение, имеющее в этой точке ту же касательную, что и решение $y = \varphi(x)$, но не совпадающее с ним в сколь угодно малой окрестности этой точки¹.

Если функция F(x,y,y') и производные $\frac{\partial F}{\partial y}$ и $\frac{\partial F}{\partial y'}$ непрерывны, то любое особое решение уравнения

$$F(x, y, y') = 0 \tag{8}$$

удовлетворяет также уравнению

$$\frac{\partial F(x, y, y')}{\partial y'} = 0. (9)$$

Поэтому, чтобы отыскать особые решения уравнения (3), надо исключить y' из уравнений (8) и (9). Полученное уравнение $\psi(x,y)=0$ называется уравнением дискриминантной кривой. Для каждой ветви дискриминантной кривой надо проверить, является ли эта ветвь решением уравнения (8), и если является, то будет ли это решение особым, т. е. касаются ли его в каждой точке другие решения.

Пример. Найти особое решение уравнения

$$y = x + y' - \ln y'. \tag{10}$$

Дифференцируем обе части равенства по y':

$$0 = 1 - \frac{1}{y'}. (11)$$

Исключаем y' из уравнений (10) и (11). Из (11) имеем y'=1; подставляя это в (10), получаем уравнение дискриминантной кривой

$$y = x + 1. (12)$$

Проверим, будет ли кривая особым решением. Для этого сначала проверяем, является ли она решением уравнения (10). Подставляя (12) в (10), получаем тождество x+1=x+1. Значит, кривая (12) — решение.

 $^{^{1}}$ Это определение взято из [1]. Есть и другие определения, не равносильные этому.

Теперь проверим, является ли это решение особым, т. е. касаются ли его в каждой точке другие решения. В п. 1 было найдено, что другие решения выражаются формулой (6). Пишем условия касания кривых $y = y_1(x)$ и $y = y_2(x)$ в точке с абсциссой x_0 :

$$y_1(x_0) = y_2(x_0), \ y_1'(x_0) = y_2'(x_0).$$
 (13)

Для решений (6) и (12) эти условия принимают вид $e^{x_0-C}+C=$ $=x_0+1, {
m e}^{x_0-C}=1.$ Из второго равенства имеем $C=x_0;$ подставляя это в первое равенство, получаем $1 + x_0 = x_0 + 1$. Это равенство справедливо при всех x_0 . Значит, при каждом x_0 решение (12) в точке с абсциссой x_0 касается одной из кривых семейства (6), а именно той кривой, для которой $C = x_0$.

Итак, в каждой точке решение (12) касается другого решения (6), не совпадающего с ним. Значит, решение (12) — особое.

Если семейство решений записано в параметрическом виде, как в (5), то выполнение условий касания проверяется аналогично. При этом надо учесть, что y' = p.

3. Если семейство кривых $\Phi(x,\,y,\,C)=0,$ являющихся решениями уравнения F(x, y, y') = 0, имеет огибающую $y = \varphi(x)$, то эта огибающая является особым решением того же уравнения. Если функция Φ имеет непрерывные первые производные, то для отыскания огибающей надо исключить C из уравнений

$$\Phi(x, y, C) = 0,$$
 $\frac{\partial \Phi(x, y, C)}{\partial C} = 0$

и проверить, будет ли полученная кривая огибающей, т. е. касаются ли ее в каждой точке кривые семейства. Эту проверку можно провести изложенным в конце п. 2 методом, используя условия касания (13).

В задачах 241—250 найти все решения данных уравнений; выделить особые решения (если они есть); дать чертеж.

241.
$$y'^2 - y^2 = 0$$
. **242.** $8y'^3 = 27y$. **243.** $(y' + 1)^3 = 27(x + y)^2$. **245.** $y^2(y'^2 + 1) = 1$. **246.** $y'^2 = 4y^3(1 - y)$. **247.** $xy'^2 = y$. **248.** $y'^3 + y^2 = yy'(y' + 1)$. **249.** $y'^3 + y^2 = yy'(y' + 1)$.

407.
$$yy' + x = \frac{1}{2} \left(\frac{x^2 + y^2}{x} \right)^2$$
.

408.
$$y' = \left(\frac{3x + y^3 - 1}{y}\right)^2$$
.

409.
$$\left(x\sqrt{y^2+1}+1\right)(y^2+1)\,\mathrm{d}x = xy\,\mathrm{d}y.$$

410.
$$(x^2 + y^2 + 1)yy' + (x^2 + y^2 - 1)x = 0.$$

411.
$$y^2(x-1) dx = x(xy+x-2y) dy$$
.

412.
$$(xy'-y)^2 = x^2y^2 - x^4$$
.

413.
$$xyy' - x^2\sqrt{y^2 + 1} = (x+1)(y^2 + 1)$$
.

414.
$$(x^2-1)y'+y^2-2xy+1=0$$
.

415.
$$y' \operatorname{tg} y + 4x^3 \cos y = 2x$$
.

416.
$$(xy'-y)^2 = {y'}^2 - \frac{2yy'}{x} + 1$$
.

417.
$$(x+y)(1-xy) dx + (x+2y) dy = 0.$$

418.
$$(3xy + x + y)y dx + (4xy + x + 2y)x dy = 0.$$

419.
$$(x^2 - 1) dx + (x^2y^2 + x^3 + x) dy = 0.$$

420.
$$x(y'^2 + e^{2y}) = -2y'$$
.

§ 10. УРАВНЕНИЯ, ДОПУСКАЮЩИЕ ПОНИЖЕНИЕ ПОРЯДКА

- 1. Если в уравнение не входит искомая функция y, т. е. оно имеет вид $F(x,y^{(k)},y^{(k+1)},\ldots,y^{(n)})=0$, то порядок уравнения можно понизить, взяв за новую неизвестную функцию низшую из производных, входящих в уравнение, т. е. сделав замену $y^{(k)}=z$.
- 2. Если в уравнение не входит независимое переменное x, т. е. уравнение имеет вид $F(y, y', y'', \dots, y^{(n)}) = 0$, то порядок уравнения можно понизить, взяв за новое независимое переменное y, а за неизвестную функцию y' = p(y).

 Π ример. Решить уравнение $2yy''={y'}^2+1$.

В уравнение не входит x. Полагаем y'=p(y). Тогда

$$y'' = \frac{\mathrm{d}(y')}{\mathrm{d}x} = \frac{\mathrm{d}p(y)}{\mathrm{d}x} = \frac{\mathrm{d}p}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = p'p.$$

Подставляя y'=p и y''=pp' в уравнение, получим $2ypp'=p^2+1$. Порядок уравнения понижен. Решив полученное уравнение, найдем $p=\pm\sqrt{Cy-1}$. Следовательно, $y'=\pm\sqrt{Cy-1}$. Из этого уравнения получим $4(Cy-1)=C^2(x+C_2)$.

- 3. Если уравнение однородно относительно y и его производных, т. е. не меняется при одновременной замене y, y', y'', \ldots на ky, ky', ky'', \ldots , то порядок уравнения понижается подстановкой y'=yz, где z— новая неизвестная функция.
- 4. Порядок уравнения понижается, если оно является однородным относительно x и y в обобщенном смысле, т. е. не меняется от замены x на kx, y на k^my (при этом y' заменяется на $k^{m-1}y'$, y'' на $k^{m-2}y''$ и т. д.). Чтобы узнать, будет ли уравнение однородным, и найти число m, надо приравнять друг другу показатели степеней, в которых число k будет входить в каждый член уравнения после указанной выше замены. Например, в первый член уравнения $2x^4y''-3y^2=x^4$ после этой замены число k будет входить в степени 4+(m-2), во второй в степени 2m, в третий в степени 4. Следовательно, m должно удовлетворять уравнениям

$$4 + (m-2) = 2m = 4.$$

Отсюда m=2. Если же полученные уравнения для m будут несовместными, то дифференциальное уравнение не является однородным в указанном смысле.

После того как число m найдено, надо сделать замену переменных $x=e^t,\ y=ze^{mt},\$ где z=z(t) — новая неизвестная функция, а t — новое независимое переменное. Получим уравнение, в которое не входит независимое переменное t. Порядок такого уравнения понижается одним из ранее рассмотренных способов.

5. Порядок уравнения легко понижается, если удается преобразовать уравнение к такому виду, чтобы обе его части являлись полными производными по x от каких-нибудь функций. Например, пусть дано уравнение $yy'' = {y'}^2$. Деля обе части на yy', получим $\frac{y''}{y'} = \frac{y'}{y}$; $(\ln y')' = (\ln y)'$; $\ln y' = \ln y + \ln C$; y' = yC. Порядок уравнения понижен.

Решить уравнения 421-450.

421.
$$x^2y'' = y'^2$$
. **422.** $2xy'y'' = y'^2 - 1$.