Thursday, 19

Rochester Institute of Technology

Computational Analysis of Gender Perception in the UK Before and After Women's Suffrage

PRESENTED BY

Shaista Syeda

FACULTY ADVISOR

Ashiqur R. KhudaBukhsh

Objective

In the UK, It was not until the Equal Franchise Act of 1928 that women over 21 were able to vote and women finally achieved the same voting rights as men

Goal

Gain an understanding of how women's representation has evolved over time

- Performed Data Segmentation and have a total of 6 files
- Have tokenized the files
- Performed Basic Statistical Analysis
- Performed Keyword Analysis
- Analysis of Male and Female Pronoun Count

- Generated male and female pronoun counts for each year
- Trained the data on Word2Vec
- Generated Word Analogies
- Generated similar words to Woman and Man
- Tried training the data on FastText Model

Github Link - https://github.com/xssti/Analysis-of-gender-perception/tree/main/ADS-2

WORK DONE

WORK HALF DONE

WORK TO BE DONE

Words similar to WOMAN

```
# Find words similar to the word woman similar_words = model.wv.most_similar('woman', topn=5) print(f"Similar words to 'woman': {similar_words}")

Similar words to 'woman': [('men', 0.5933540463447571), ('female', 0.58524489402771), ('sex', 0.5548138618469238), ('wife', 0.5384922623634338), ('girl', 0.5375543236732483)]
```

Words similar to MAN

```
# Find words similar to the word man

similar_words = model.wv.most_similar('man', topn=5)

print(f"Similar words to 'man': {similar_words}")

Similar words to 'man': [('men', 0.6600674986839294), ('someone', 0.5912762880325317), ('husband', 0.50090098381042

48), ('person', 0.4972824454307556), ('wife', 0.49441832304000854)]
```

Word Analogies

```
#word analogy
analogy_result_1850 = model_1850.wv.most_similar(positive=['men', 'man'], negative=['woman'], topn=1)
print(f"Word analogy result for the year 1800-1850: {analogy_result_1850}")
#word analogy
analogy_result_1900 = model_1900.wv.most_similar(positive=['men', 'man'], negative=['woman'], topn=1)
print(f"Word analogy result for the year 1851-1900: {analogy_result_1900}")
#word analogy
analogy_result_1950 = model_1950.wv.most_similar(positive=['men', 'man'], negative=['woman'], topn=1)
print(f"Word analogy result for the year 1901-1950: {analogy_result_1950}")
#word analogy
analogy_result_1970 = model_1970.wv.most_similar(positive=['men', 'man'], negative=['woman'], topn=1)
print(f"Word analogy result for the year 1951-1970: {analogy_result_1970}")
#word analogy
analogy_result_1990 = model_1990.wv.most_similar(positive=['men', 'man'], negative=['woman'], topn=1)
print(f"Word analogy result for the year 1971-1990: {analogy result 1990}")
#word analogy
analogy_result_2006 = model_2006.wv.most_similar(positive=['men', 'man'], negative=['woman'], topn=1)
print(f"Word analogy result for the year 1991-2006: {analogy result 2006}")
Word analogy result for the year 1800-1850: [('statesman', 0.35491928458213806)]
Word analogy result for the year 1851-1900: [('comrade', 0.38791826367378235)]
Word analogy result for the year 1901-1950: [('lad', 0.49189355969429016)]
Word analogy result for the year 1951-1970: [('lad', 0.46681398153305054)]
Word analogy result for the year 1971-1990: [('soldier', 0.5077458620071411)]
Word analogy result for the year 1991-2006: [('someone', 0.41598090529441833)]
```

```
# Find words similar to the word woman similar_words = model.wv.most_similar('woman', topn=5) print(f"Similar words to 'woman': {similar_words}")

Similar words to 'woman': [('wife', 0.6032223105430603), ('female', 0.5838871002197266), ('girl', 0.5633318424224854), ('husband', 0.552932858467102), ('seducer', 0.5423462986946106)]
```

Word Analogies

```
#word analogy
analogy_result_1850 = model_1850.wv.most_similar(positive=['seducer', 'man'], negative=['woman'], topn=1)
print(f"Word analogy result for the year 1800-1850: {analogy_result_1850}")
#word analogy
analogy_result_1900 = model_1900.wv.most_similar(positive=['seducer', 'man'], negative=['woman'], topn=1)
print(f"Word analogy result for the year 1851-1900: {analogy_result_1900}")
#word analogy
analogy_result_1950 = model_1950.wv.most_similar(positive=['seducer', 'man'], negative=['woman'], topn=1)
print(f"Word analogy result for the year 1901-1950: {analogy_result_1950}")
#word analogy
analogy_result_1970 = model_1970.wv.most_similar(positive=['seducer', 'man'], negative=['woman'], topn=1)
print(f"Word analogy result for the year 1951-1970: {analogy_result_1970}")
#word analogy
analogy_result_2006 = model_2006.wv.most_similar(positive=['seducer', 'man'], negative=['woman'], topn=1)
print(f"Word analogy result for the year 1991-2006: {analogy_result_2006}")
Word analogy result for the year 1800-1850: [('men', 0.3185313045978546)]
Word analogy result for the year 1851-1900: [('shilling', 0.32045993208885193)]
Word analogy result for the year 1901-1950: [('impunity', 0.316707968711853)]
Word analogy result for the year 1951-1970: [('someone', 0.3898908197879791)]
```

```
analogy_result = model_1850.wv.most_similar(positive=['childbirth', 'man'], negative=['woman'], topn=1)
  print(f"Word analogy result: {analogy result}")
Word analogy result: [('men', 0.36237356066703796)]
  analogy_result = model_1900.wv.most_similar(positive=['childbirth', 'man'], negative=['woman'], topn=1)
  print(f"Word analogy result: {analogy_result}")
Word analogy result: [('administrator', 0.29424118995666504)]
  analogy_result = model_1950.wv.most_similar(positive=['childbirth', 'man'], negative=['woman'], topn=1)
  print(f"Word analogy result: {analogy result}")
Word analogy result: [('illness', 0.38594549894332886)]
  analogy_result = model_1970.wv.most_similar(positive=['childbirth', 'man'], negative=['woman'], topn=1)
  print(f"Word analogy result: {analogy_result}")
Word analogy result: [('someone', 0.3920690715312958)]
  analogy_result = model_1990.wv.most_similar(positive=['childbirth', 'man'], negative=['woman'], topn=1)
  print(f"Word analogy result: {analogy result}")
Word analogy result: [('unpublishable', 0.3387390971183777)]
  analogy_result = model_2006.wv.most_similar(positive=['childbirth', 'man'], negative=['woman'], topn=1)
  print(f"Word analogy result: {analogy_result}")
Word analogy result: [('daughter', 0.3618466258049011)]
```


- Get Access to HPC Servers
- Generate Word Embeddings using FastText
- A Machine Translation-based analysis between 1850 1900 and 1950 2000 data
- Fine-tune BERT and GPT2 on the 1850 1900 and 1950 2000 data and analyze the differences

Thank you

