Research Teaser Course on IoT, 2021

Unit-2-Exercise - 3

Overview:

In this tutorial we will be using actuator function of the OM2M server to control the actions performed in microcontroller. Here we will be using the GUI computer provided by the OM2M in our computer for implementing the actuator functionality.

Prerequisites:

- 1. Micro Controller
- 2. Arduino IDE
- 3. Servo Motor
- 4. LDR sensor
- 5. Working OM2M server

Part-1: Switching ON the Web Interface plugin in OM2M.

• After starting the server 'go to the mn-cse folder and start the ms-cse.

Now press "ss" to get the list of services which are enabled and can be started.

Press "start 41".

```
C:\Windows\system32\cmd.exe
                                                                                                                     RESOLVED
                    org.eclipse.om2m.commons_1.1.0.20200929-1352
        RESOLVED
                    org.eclipse.om2m.commons.logging_1.1.0.20200929-1352
       ACTIVE
                    org.eclipse.om2m.core_1.1.0.20200929-1352
                    org.eclipse.om2m.core.service_1.1.0.20200929-1352
                    org.eclipse.om2m.dal_1.1.0.20200929-1352
       RESOLVED
       RESOLVED
                    org.eclipse.om2m.dal.driver.sample_1.1.0.20200929-1352
                    org.eclipse.om2m.datamapping.jaxb_1.1.0.20200929-1352
       RESOLVED
                    org.eclipse.om2m.datamapping.service_1.1.0.20200929-1352
                    org.eclipse.om2m.flexcontainer.service_1.1.0.20200929-1352
       ACTIVE
                    org.eclipse.om2m.hue.impl_1.1.0.20200929-1352
org.eclipse.om2m.interworking.service_1.1.0.20200929-1352
       ACTIVE
40
41
                    org.eclipse.om2m.ipe.dal_1.1.0.20200929-1352
                    org.eclipse.om2m.ipe.sample_1.1.0.20200929-1352
        STARTING
                    org.eclipse.om2m.ipe.sample.sdt_1.1.0.20200929-1352
42
43
44
45
46
       RESOLVED
                    org.eclipse.om2m.ipe.sdt_1.1.0.20200929-1352
                    org.eclipse.om2m.persistence.eclipselink_1.1.0.20200929-1352
       ACTIVE
                    org.eclipse.om2m.persistence.mongodb_1.1.0.20200929-1352
       RESOLVED
                    org.eclipse.om2m.persistence.service_1.1.0.20200929-1352
47
48
49
50
                    org.eclipse.om2m.sdt.api_1.1.0.20200929-1352
                    org.eclipse.om2m.sdt.home_1.1.0.20200929-1352
       RESOLVED
       RESOLVED
                    org.eclipse.om2m.sdt.home.driver_1.1.0.20200929-1352
                    org.eclipse.om2m.sdt.home.hue_1.1.0.20200929-1352
       ACTIVE
        RESOLVED
                    org.eclipse.om2m.sdt.home.mocked.devices 1.1.0.20200929-1352
                    org.eclipse.om2m.testsuite.flexcontainer_1.1.0.20200929-1352
                    org.eclipse.om2m.webapp.resourcesbrowser.json_1.1.0.20200929-1352
       ACTIVE
                    org.eclipse.osgi.services_3.4.0.v20140312-2051
                    org.ops4j.pax.configmanager_0.2.3
```

A pop-up window showing the 2 light blub will be displayed as shown in below image.

• It can be observed that every on-off action is being recorded as content instances in the corresponding data containers of the AEs in mn-cse.

Logout

OM2M CSE Resource Tree

http://127.0.0.1:8080/~/in-cse/csr-427531233

- acp admin
- SDT_Home_Monitoring_Application_ACP
- ACP_Device_Admin_1617619573899
- SDT_Home_Monitoring_Application
- SDT_IPE
- mn-name

Attribute	Value
m	mn-name
ty	16
ri	/in-cse/csr-427531233
pi	/in-cse
ct	20210405T162245
lt	20210405T162245
acpi	AccessControlPolicyIDs /in-cse/acp-730458245
poa	Point Of Access http://127.0.0.1:8282/
cb	//om2m.org/mn-cse
csi	/mn-cse

Logout

OM2M CSE Resource Tree

http://127.0.0.1:8080/~/mn-cse/cin-937993554

Attribute	Value	e
rn	cin_937993554	
ty	4	
ri	/mn-cse/cin-937993554	
pi	/mn-cse/cnt-357220117	
ct	20210412T144637	
lt	20210412T144637	
st	0	
cnf	application/obix:0	
cs	215	
	Attribute	Value
	type	LAMP
con	location	Home
	lampId	LAMP_0
	state	true

Part-2: Implementing the Basic Circuit

Part-3: Understanding the esp8266 code flow.

```
Step-1: Including the required header files
             #include<ESP8266HTTPClient.h>
             #include <ESP8266WiFi.h>
Step-2: Defining the required constant variables
             #define MAIN_SSID "your_ssid"
             #define MAIN_PASS "your_password"
             #define CSE IP "your server ip"
             #define CSE_PORT 8080
             #define HTTPS false
             #define OM2M ORGIN "admin:admin"
             #define OM2M MN "/~/mn-cse/mn-name/"
             #define OM2M AE 0 "LAMP 0"
             #define OM2M AE 1 "LAMP 1"
             #define OM2M DATA CONT "DATA"
             #define LISTENER PORT 8000
             WiFiServer listener(LISTENER PORT);
             HTTPClient http;
Step-3: defining the sensor pins(here we are using 2 leds)
             #define LED1 4
             #define LED2 14
```

Step-4: Defining the void function which executes only one time.

- This has the Wi-Fi connection part, after a connection is established the esp posts an http request which creates a subscriber object.
- The subscriber content instance constantly sends notification to the esp Ip at port 8000 whenever a new content instance is created in LAMP_0 and LAMP_1 AEs

```
Serial.begin(115200);
   Serial.println("Connecting to "+String()+MAIN_SSID);
  status = WiFi.begin(ssid, pass);
 if ( status != WL CONNECTED) {
  Serial.println("Couldn't get a wifi connection");
 // don't do anything else:
  while(true);
 }
   Serial.println("COnnection Successful");
   listener.begin(LISTENER PORT);
   Serial.println("ESP listener started");
   Serial.println("Ip Address is"+WiFi.localIP());
   delay(500);
  ///Lamp-0 Object
  String server="http://" + String() + CSE IP + ":" + String() + CSE PORT +
String()+OM2M_MN;
  http.begin(server + String() +OM2M_AE_0 + "/" + OM2M_DATA_CONT + "/");
  http.addHeader("X-M2M-Origin", OM2M ORGIN);
  http.addHeader("Content-Type", "application/json;ty=23");
  http.addHeader("Content-Length", "100");
  String req data = String() + "{\"m2m:sub\": {"
  + "\"rn\": \"led sub test\""+","
  + "\"nu\": \"" + "http://"+WiFi.localIP().toString()+":"+LISTENER PORT + "\","
  + "\"nct\": \"2\""
  + "}}";
 int x=http.POST(req data);
 http.end();
```

Step-4: Creating the loop function

- The loop function constantly listens for incoming data at esp_ip:8000
- Whenever data is received in this port, the esp check for status of LAMP_0 &1 and performs the actuation necessary.

```
listener.begin(LISTENER_PORT);
WiFiClient client = listener.available();
String w=client.readString();
Serial.println(w);
int a=w.indexOf("false");
int b=w.indexOf("true");
int c=w.indexOf("LAMP_0");
int d=w.indexOf("LAMP_1");

if(b>0)
{
    if(c>0)
    {
        digitalWrite(LED1,HIGH);
    }
}
```

```
Serial.println("Light-1 ON");
 else if(d>0)
 { digitalWrite(LED2,HIGH);
  Serial.println("Light-2 ON");
else if(a>0)
 if(c>0)
 digitalWrite(LED1,LOW);
 Serial.println("Light-1 OFF");
 else if(d>0)
 { digitalWrite(LED2,LOW);
  Serial.println("Light-2 OFF");
client.flush();
// Send HTTP response to the client
String s = "HTTP/1.1 200 OK\r\n";
client.print(s);
delay(100);
```

Part-4: Implementing a case study on ambient light variations based on servo action.

- Studying the ambient light intensity variations is a very important factor for proper implementation of ventilation within a room.
- For implementing such a study at a very basic level we can use the LDR sensor coupled with a servo motor to generate a light map of a given room
- Along with the data logging feature we can also implement an actuation mechanism to avoid generating data which might lead to improper conclusions.
- The basic functionality of this system is a LDR sensor which sits on a servo motor and captures the light intensity variation with a constant rotation.
- The following diagram captures the essence of this system.

Part-4: References

- Data Request formats:
 - 1. GET Request:

Field	Value
URL	http://127.0.0.1:8080/~/in-cse
Method	GET
Header	X-M2M-Origin: admin:admin Accept: application/xml
Body	(empty)

2. Subscriber request:

Field	Value
URL	http://127.0.0.1:8080/~/in-cse/in-name/LAMP_0/DATA
Method	POST
Header	X-M2M-Origin: admin:admin Content-Type: application/xml;ty=23
Body	<pre><m2m:sub rn="SUB_MY_SENSOR" xmlns:m2m="http://www.onem2m.org/xml/protocols"></m2m:sub></pre>

- Header Files:
 - 1. Servo.h
 - 2. Wifi-header files (As per exercise-2)
- Data Sheets:
 - 1. http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
 - 2. https://components101.com/asset/sites/default/files/component datasheet/
 https://components101.com/asset/sites/default/files/component datasheet/
 https://component datasheet/
 https://component datasheet/
 https://component datasheet/
 https://components101.com/asset/sites/default/files/component
 <a href="https://components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/components101.com/asset/sites/default/files/com/asset/sites/default/files/com/asset/sites/default/files/com/asset/sites/default/files/com/asset/sites/default/files/com/asset/sites/default/files/com/asset/sites/default/files/com/asset/sites/default/files/com/asset/sites/default/files/com/asset/sites/default/files/com/asset/sites/default/files/com/asset/sites/default/files/com/asset/sites/default/files/com/asset/sites/default/files/com/asset/sites/default/files/com/asset/sites/default/files/com/asset/s