Sprawozdanie z laboratorium Stos i Kolejka

Adam Dąbrowski 184208

May 6, 2014

0.1 Wprowadzenie

Celem ćwiczenia było zapoznanie się z klasmi pojemnikowymi - stosem i kolejką. Stos jest to pojemnik typu LIFO(last in first out) ostatni element jaki kładziemy na stos zdejmujemy z niego jako pierwszy. Kolejka jest to pojemnik typu FIFO(first in first out) wyjmujemy z niej elementy w takiej samej kolejności w jakiej wczytywaliśmy.

0.2 Realizacjia

Oba te pojemniki napisałem w oparciu o tablicę dynamiczną. Ważną kwestią jest tutaj zarządzanie pamięcią tak, żeby bez potrzeby jej nie marnować. Zarówno w stosie jak i w kolejce przetestowałem dwa sobosoby alokowania pamięci: dwukrotne powiększanie rozmiaru tablicy i mozolne rozszerzanie o jeden element. W przypadku kolejki zanim zwiększę jej rozmiar sprawdzam czy mogę przesunąć wszystkie elementy do przodu, robiąc w ten sposób miejsce na kolejne. W obu przypadkach pojemniki zmniejszam o połowę wtedy kiedy dane wypełniają pojemnik w jednej czwartej. Program sprawdzam wkładając, a następnie wyjmując kolejno 1, 10, 100, 1000,10 000, 100 000 liczb typu całkowitego. Operacje te przeprowadzam 300 razy, przy tej liczbie przy prawie każdym uruchomieniu dostaję podobne wyniki, a następnie liczę z tego średni czas.

0.3 STOS

powiększanie o jeden		
ilosc elementow	czas - nano sekundy	
1	437	
10	3809	
100	62617	
1000	2330166	
10000	11008400	

powiększanie dwa razy	
ilosc elementow	czas - nano sekundy
1	445
10	2366
100	14249
1000	26683
10000	272685
100000	2648233

0.4 KOLEJKA

powiększanie o jeden	
ilosc elementow	czas - nano sekundy
1	481
10	964
100	73007
1000	2341611
10000	1424870

powiększanie dwa razy	
ilosc elementow	czas - nano sekundy
1	119
10	669
100	4030
1000	32699
10000	294486
100000	2992501

0.5 Wnioski

Powiększanie tablicy o jeden w obu wypadkach jest najgorszym rozwiązaniem z możliwych. W wariancie z powiększaniem o jeden element musiałem zmniejszyć liczbę danych o rząd ponieważ komputer nie mógł ukończyć tego programu - po dwudziestu minutach na siłę wyłączyłem program. Oba typy pojemników mają zbliżoną wydajność, jednak kolejka zdaje się działać szy-

bciej. Jest to dla mnie dość dziwne ponieważ oba pojemniki są oparte o działającą w podobny sposób tablicę dynamiczną.