Propiedades mecánicas de las discontinuidades

Fórmulas

Resistencia a la compresión (γ en kN/m³)

$$\log JCS = 0.00088 \gamma r + 1.01$$
 en MPa

Resistencia al corte usando el criterio de Mohr-Coulomb

$$\tau_p = c + \sigma \tan \phi_p$$
 cortante pico
$$\tau_r = \sigma \tan \phi_r$$
 cortante residual

Resistencia al corte usando el criterio de Patton

$$\tau = \begin{cases} \sigma \tan \phi_p = \sigma \tan(\phi_b + i) & \sigma \leqslant \text{esfuerzo de transición} \\ c + \sigma \tan \phi_r & \sigma > \text{esfuerzo de transición} \end{cases}$$

Resistencia al corte usando el criterio de Barton-Choubey para $\frac{\text{JCS}}{\sigma} \leqslant 50$

$$\tau_p = \sigma \tan \phi_p = \sigma \tan (\phi_r + i) = \sigma \tan \left[\phi_r + \text{JRC} \log \left(\frac{\text{JCS}}{\sigma} \right) \right]$$
 cortante pico
$$\tau_r = \sigma \tan \phi_r$$
 cortante residual

Para $\frac{JCS}{\sigma} > 50$

$$\tau_p = \sigma \tan \phi_p = \sigma \tan(\phi_r + i) = \sigma \tan(\phi_r + 1.7 \,\text{JRC})$$
 cortante pico $\tau_r = \sigma \tan \phi_r$ cortante residual

Ángulo de fricción residual

$$\phi_r = \left(\phi_b - 20\right) + 20\left(\frac{r}{R}\right)$$

Coeficiente de rugosidad de la junta mediante el ensayo de mesa inclinada

$$JRC = \frac{\alpha - \phi_r}{\log(\frac{JCS}{\sigma})}$$

Para este ensayo el esfuerzo normal es

$$\sigma = \gamma h \cos^2 \alpha$$

Efecto de escala en la resistencia al corte

$$L_0 = 100 \,\text{mm}$$

$$JRC_n = JRC_0 \left(\frac{L_n}{L_0}\right)^{-0.02 JRC_0}$$

$$JCS_n = JCS_0 \left(\frac{L_n}{L_0}\right)^{-0.03 JRC_0}$$

Resistencia al corte a escala real usando el criterio de Barton-Choubey

$$\tau = \sigma \tan \left[\phi_r + \text{JRC}_n \log \left(\frac{\text{JCS}_n}{\sigma} \right) + i \right]$$

Esfuerzo normal y cortante en un plano inclinado

$$\sigma = \sigma_1 \cos^2 \alpha + \sigma_3 \sin^2 \alpha$$

$$\tau = \sigma_1 \sin \alpha \cos \alpha + \sigma_3 \sin \alpha \cos \alpha$$

Figura 1: Practical Rock Engineering - Evert Hoek (2007)

Figura 2: Practical Rock Engineering - Evert Hoek (2007)

Ejercicios

1. Después de realizar un ensayo de corte directo combinado con un deformímetro de hilo, se obtuvieron los siguientes resultados:

δ (mm)	0.05	1.2	3.6	4.5	8.5	9.4	11.6	12.6	17	19.8	22.2	25
τ (kPa)	157	201	238	231	210	205	199	192	180	181	182	183

Obtener:

- a) Cortante pico
- b) Cortante residual
- 2. Después de realizar un ensayo de corte directo en una muestra en donde la junta estaba meteorizada, se obtuvieron los siguientes resultados:

(τ (MPa)	9.6	15.6	17.2	17.3	21.6	23.1	24.8	28.6	30
7	τ (MPa)	13.2	23.5	19.3	26.5	27	29.6	25.7	32.1	34.7

Obtener:

- a) Envolvente de falla aplicando el criterio de Mohr-Coulomb
- b) Ángulo de fricción
- c) Cohesión
- 3. Después de realizar un ensayo de corte directo en una muestra en donde la junta estaba ligeramente meteorizada, se obtuvieron los siguientes resultados:

σ (MPa)	6.5	10.5	10.7	14.3	15.6	16.4	20.7	21.3	21.5
$\tau (\mathrm{MPa})$	7.9	14.8	15	16	16.7	17.5	18.6	19.6	19.9

Obtener:

- a) Envolvente de falla aplicando el criterio de Patton
- b) Ángulo de fricción pico
- c) Ángulo de fricción residual
- d) Cohesión aparente debido a la rugosidad
- 4. Después de realizar ensayos se determino que la resistencia a compresión de la junta es 55 MPa, el coeficiente de rugosidad de la junta es 18.2, el ángulo de fricción residual es 18° y el esfuerzo normal en la junta será 30 MPa.

Obtener:

- a) Envolvente de falla aplicando el criterio de Barton-Choubey
- b) Ángulo instantáneo de fricción
- c) Cohesión instantáneo
- 5. Mediante ensayos se determino que el ángulo de fricción básico de la muestra es 17° , la resistencia a compresión sin confinar es $14.3\,\mathrm{MPa}$, su peso unitario es $27\,\mathrm{kN/m^3}$ y con una altura de $15\,\mathrm{cm}$.

Calcular:

a) Coeficiente de rugosidad de la junta

6. Mediante un ensayo de mesa inclinada se determino que el ángulo de fricción básico de la muestra es 23° , su peso unitario es $22\,\mathrm{kN/m^3}$, en la discontinuidad el número de rebote fue $25~\mathrm{y}$ en la roca intacta el número de rebote fue 32.

Calcular:

- a) Ángulo de fricción residual
- b) Resistencia a la compresión
- 7. Mediante ensayos realizados en una muestra de longitud 0.9 m y con amplitud de 4 mm en la discontinuidad, se determino que el ángulo de fricción residual de la muestra es 32°, la resistencia a la compresión de la discontinuidad es 8.2 MPa, después se realizaron mediciones en campo y se estima que el esfuerzo normal en la junta es 7.2 MPa.

Calcular:

- a) Resistencia cortante pico
- b) Resistencia cortante residual
- 8. Mediante un ensayo de corte directo se determina que la muestra falla con un esfuerzo vertical 4.2 MPa, esfuerzo horizontal 1.9 MPa y la junta contenida en la muestra tiene una inclinación de 22° medido respecto a la horizontal.

Calcular:

- a) Esfuerzo normal
- b) Cortante
- 9. Mediante un ensayo de corte directo a una muestra con longitud 0.1 m, esfuerzo vertical 2.3 MPa, esfuerzo horizontal 1.2 MPa, coeficiente de rugosidad de la junta igual a 5, resistencia a compresión de la discontinuidad 3.6 MPa, ángulo de fricción residual 22° y la junta contenida en la muestra tiene una inclinación de 15° medido respecto a la horizontal.

Calcular:

- a) Resistencia cortante pico
- b) Resistencia cortante residual
- 10. Usando los datos del anterior ejercicio estimar la resistencia a cortante pico de una discontinuidad con una longitud de 23 m.