

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет" РТУ МИРЭА

Отчет по выполнению практического задания №7 По дисциплине «Структуры и алгоритмы обработки данных»

Тема:

Кодирование и сжатие данных методами без потерь

Выполнил студент Сидоров С.Д.

группа ИКБО-20-21

Отчёт

<u>Цель:</u> получение практических навыков и знаний по выполнению сжатия данных рассматриваемыми методами

Задание 1. Применение алгоритма группового сжатия текста.

<u>Постановка задачи</u>: сжать текст, используя метод RLE.

Выполнение:

- 1) Сжатие методом RLE происходит за счёт выделения цепочек символов в тексте. Каждая серия символов записывается, в виде «i, "s"», где i число повторений символа, а "s" сам символ. Число повторений в одной группе может быть разбито на подгруппы по 127 повторений в одной, в случае если используется «signed char». Также для работы с последовательностями, где встречаются длинные наборы неповторяющихся символов были введены отрицательные маркеры количества повторений. В случае, если в записи «i, "s"» і отрицательное, то это означает, что следующие |i| символов представляют собой набор неповторяющихся символов.
- 2) Для первого примера возьмём строку "AABBBCCCDDDDEFFFFFGGGHHHHH".

Данная строка подразбивается на группы: 2A, 3B, 3C, 4D, 1E, 6F, 3G, 5H. Конечный результат сжатия будет представлять собой строку: "2A3B3C4D1E6F3G5H".

Рассчитаем коэфицент сжатия:

Длина исходного текста: 27 символов.

Длина сжатого текста: 16 символов.

Коэфицент сжатия в данном случае равен: 16/27 ≈ 0.6

3) Для второго примера возьмём похожую строку, но разбавим её последовательностями из неповторяющихся подряд символов. Строк - DEFFHTYRUFFGGGHHH".

Произведём сжатие без применения разделения текста. Данная строка подразбивается на группы: 1D, 1E, 2F, 1H, 1T, 1Y, 1R, 1U, 2F, 3G, 3H . Конечный результат сжатия будет представлять собой строку: "1D1E2F1H1T1Y1R1U2F3G3H".

Рассчитаем коэфицент сжатия:

Длина исходного текста: 17 символов.

Длина сжатого текста: 22 символа.

Коэфицент сжатия в данном случае равен: 22/17≈ 1.294117647. Коэфицент сжатия больше единицы следовательно сжатый текст занимает больше места, чем оригинальный.

Теперь применим метод разделения текста для RLE. В таком случае последовательности неповторяющихся подряд символов будут закодированного с помощью отрицательных чисел.

Данная строка подразбивается на группы: -2DE, 2F, -5HTYRU, 2F, 3G, 3H. Конечный результат сжатия будет представлять собой строку: "-2DE2F-5HTYRU2F3G3H".

Рассчитаем коэфицент сжатия:

Длина исходного текста: 17 символов.

Длина сжатого текста: 19 символа.

Коэфицент сжатия в данном случае равен: 19/17≈ 1.117647059. Коэфицент сжатия больше единицы следовательно сжатый текст занимает больше места, чем оригинальный, однако если сравнить коэфиценты, заметно получается при применении данного метода сжатия следовательно, данный метод улучшает сжатие в больших текстах содержащих, как длинные последовательности одинаковых символов, так последовательности символов неповторяющихся подряд.

Задание 2.

Для метода Лемпеля - Зива LZ77 для сжатия двоичного кода.

Вариант 1: 0001010010101001101

Исходный текст	000101001010101						
LZ-код	0.00.10.110.111.001.0110.0111						
R	2 3 4						
Вводимые коды	- 10 11 100 101 110 111 1000						

LZ- сжатый текст, в данном случае из-за небольшого размера исходного текста, в следствие сжатия размер текста не уменьшился.

Для метода Лемпеля –Зива LZ78 для сжатия текста.

Вариант 1: кукуркукурекурекун

Содержимое словаря	Содержимое строки	Код
К	К	«0,к» (1)
к, у	у	«0,y» (2)
к, у, ку	ку	«1,y» (3)
к, у, ку, р	p	«0,p» (4)
к, у, ку, р, кук	кук	«3, к» (5)
к, у, ку, р, кук, ур	ур	«2, p» (6)
к, у, ку, р, кук, ур, е	e	«0,e» (7)
к, у, ку, р, кук, ур, е, кур	кур	«3, p» (8)
к, у, ку, р, кук, ур, е, кур, ек	ек	«7,к»(9)
к, у, ку, р, кук, ур, е, кур, ек, ун	ун	«2, н» (10)

Сжатый текст: 0к0у1у0р3к2р0е3р7к2н

Для преобразования данного текста в изначальный необходимо пройтись последовательно с начала сжатой строки, записывая символы и их сочетания в словарь, что бы в дальнейшем использовать их при подстановке.

Задание 3.

Метод Шенона - Фано

Вариант 1: Ана, дэус, рики, паки, Дормы кормы констунтаки, Дэус дэус канадэус – бац! (Длина - 73)

1. Таблица:

Симво л	Кол -во	1-я цифр	2-я цифр	3-я цифр	4-я цифр	5-я цифр	6-я цифр	7-я циф	Код	Кол -во
		a	a	a	a	a	a	pa		бит
_	11	0	0	0					000	33
a	7	0	0	1					001	21
К	6	0	1	0	0				0100	24
Д	5	0	1	0	1				0101	20
у	5	0	1	1	0				0110	20
С	5	0	1	1	1				0111	20
,	5	1	0	0	0				1000	20
Н	4	1	0	0	1				1001	16

Э	4	1	0	1	0				1010	16
И	4	1	0	1	1				1011	16
p	3	1	1	0	0	0			11000	15
О	3	1	1	0	0	1			11001	15
M	2	1	1	0	1	0			11010	10
Ы	2	1	1	1	0	0			11100	10
Т	2	1	1	1	0	1			11101	10
п	1	1	1	1	1	0	0		111100	6
б	1	1	1	1	1	0	1		111101	6
Ц	1	1	1	1	1	1	0	0	1111100	7
!	1	1	1	1	1	1	0	1	1111101	7
-	1	1	1	1	1	1	1	1	1111111	7

Объем незакодированной фразы -73*8 бит =584 бит.

Объем закодированной фразы –289 бит.

Коэффициент сжатия: 289/584 =0.5

Метод Хаффмана:

Строка: "sidorovstanislavdmitrievich"

Алфавит	i	S	v	d	О	r	t	a
Кол-во	5	3	3	2	2	2	2	2
Веряотн.	0.18	0.11	0.11	0.07	0.07	0.07	0.07	0.07
Алфавит	n	1	m	e	С	h		
Кол-во	1	1	1	1	1	1		
Веряотн.	0.04	0.04	0.04	0.04	0.04	0.04		

Символ	i	S	V	d	О	r	t
Код	00	010	011	1000	1001	1010	1011
Символ	a	n	1	m	r	С	h
Код	1100	11010	11011	11100	11101	11110	11111

Объем незакодированной фразы – 27*8 бит = 216 бит.

Объем закодированной фразы -110 бит.

Коэффициент сжатия: 110/216=0.5

Средняя длина: 4,074

Задание 4:

Код программы представлен в файлах:

Node.pdf, frequencies.pdf, tree.pdf, source.pdf.

Исходный текстовый файл занимает 53*8 = 424 байта.

После сжатия методом Хаффмана 211 байт.

После программного сжатия стало 53*8 = 424 байта.

Выводы:

В результате выполнения данной работы были освоены навыки работы с алгоритмами сжатия Лемпеля-Зива LZ77 и LZ78, Шеннона-Фано и Хаффмана. Также мной был получен практический опыт использования и реализации различных алгоритмов сжатия текста и других данных.

Список литературы:

- Лекции по структурам и алгоритмам обработки данных Рысин М.Л.
- Методическое пособие по выполнению задания 1(битовые операции)