LAB # 7

Name:	D 00#0
Name:	Reg#:

Aim:

Fixed point implementation and RMS error computation.

Introduction:

Let a fixed point format be Qn.m. In case of unsigned number n=max(number) whereas in case of signed number n=max(number)+1. Maximum and minimum can be find as (2^{N-1} - 1) and (-2^{N-1}) respectively.

In order to read and write a file following commands are used in Verilog.

- Reading a file in Verilog
 reg [<memory_width>] <reg_name> [<memory_depth>];
 initial \$readmemb ("<file_name>", <reg_name>, <start_address>, <end_address>);
- Writing a file in verilog always@(posedge clk) \$fwrite(<file_desc>, "%d", out); initial
 File_desc =\$fopen("filename.txt",w);

Tasks:

• TASK 1:

- 1. Write a MATLAB code for the above diagram using any audio file as input 'x' and compute y.
- 2. Find out the required format Q n.m for intermediate variables, inputs, outputs and coefficients.
- 3. Save input signal in a text file to be read in VERILOG for answer computation
- 4. Write a Verilog code for the above RTL diagram also identify and apply corrections for overflow, underflow and corner case.
- 5. Compare both matlab and Verilog results.