535514: Reinforcement Learning Lecture 26 — Inverse RL

Ping-Chun Hsieh

May 30, 2024

On-Policy vs Off-Policy Methods

	Policy Optimization	Value-Based	Model- Based	Imitation- Based
On- Policy	Exact PG REINFORCE (w/i baseline) A2C On-policy DAC TRPO Natural PG (NPG) PPO-KL & PPO-Clip RLHF by PPO-KL	Epsilon-Greedy MC Sarsa Expected Sarsa	Model- Predictive Control (MPC) PETS	IRL GAIL IQ-Learn
Off- Policy	Off-policy DPG & DDPG Twin Delayed DDPG (TD3)	Q-learning Double Q-learning DQN & DDQN Rainbow C51 / QR-DQN / IQN Soft Actor-Critic (SAC)		

_

Imitation Learning: 2 Major Paradigms

Suppose we are given expert demonstrations.
How to learn from them?

1. Direct imitation learning

- Copy the actions of the expert
- No reasoning about the outcomes of actions

2. Human imitation learning

- Copy the intent of the expert
- May take very different actions from the expert

Inverse RL!

Direct Imitation Learning

Example: Self-driving cars

Direct Imitation Learning: Out-of-Distribution Issue

Expert Trajectories (Training Distributions)

Direct Imitation Learning (Testing Distributions)

Makes mistakes, enter new states
Cannot recover from new states

Inverse RL

Example: Reward recovery in Gridworld

Inverse RL (Informal)

- Suppose the agent is in an MDP (S, A, P, γ)
- Suppose we are given expert demonstrations (under some unknown policy π_e)

• Goal: Infer the reward function R behind the expert actions solely from expert demonstrations (and thereafter learn a good policy)

First Attempt: Infer Rewards from Demonstrations

Example: Human driving

What's reward R(s, a)?

Typically, "reward inference" is an underspecified problem

(Multiple reward functions can explain the same behavior)

Reward identifiability issue!

Rethinking Imitation?

Recall: Occupancy measure (or discounted state visitation)

$$d_{\mu}^{\pi}(s) := (1 - \gamma) \mathbb{E}_{s_0 \sim \mu} \Big[\sum_{t=0}^{\infty} \gamma^t P(s_t = s \mid s_0, \pi) \Big]$$

$$d_{\mu}^{\pi}(s, a) := (1 - \gamma) \mathbb{E}_{s_0 \sim \mu} \Big[\sum_{t=0}^{\infty} \gamma^t P(s_t = s, a_t = a \mid s_0, \pi) \Big]$$

(Q1) If $\pi_{\theta}=\pi_{e}$, then do we have $d_{\mu}^{\pi_{\theta}}(s,a)=d_{\mu}^{\pi_{e}}(s,a)$?

(Q2) If $d_{\mu}^{\pi_{\theta}}(s, a) = d_{\mu}^{\pi_{e}}(s, a)$, then do we have $V^{\pi_{\theta}}(\mu) = V^{\pi_{e}}(\mu)$?

(Q3) If $d_{\mu}^{\pi_{\theta}}(s, a) = d_{\mu}^{\pi_{e}}(s, a)$, then do we have $\pi_{\theta} = \pi_{e}$?

About (Q3): A Bijection Theorem

Theorem [Syed et al., 2008]: For any valid discounted state visitation distribution $d^{\pi}(s, a)$, define a policy $\pi'(a \mid s) := d^{\pi}(s, a) / \sum_{a' \in A} d^{\pi}(s, a')$.

Then, we have $d^{\pi'}(s,a) = d^{\pi}(s,a)$, for all (s,a). (In other words, the mapping from $d^{\pi} \to \pi$ is a bijection)

- However, the above Bijection Theorem does NOT implies that (Q3).
- Regarding (Q3), Bijection Theorem only implies that $\pi_{\theta}(\cdot | s) = \pi_e(\cdot | s)$ at those states with $d^{\pi_e}(s) > 0$

Example:

Syed, Bowling, and Schapire, "Apprenticeship Learning Using Linear Programming," ICML 2008

Inverse RL: Occupancy Measure Matching

Brian Ziebart et al., Maximum entropy inverse reinforcement learning, AAAI 2008
Jonathan Ho and S. Ermon, Generative adversarial imitation learning, NIPS 2016
Xiao et al., Wasserstein Adversarial Imitation Learning, NeurIPS 2019
Garg et al., IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS 2021

Occupancy Measure Matching: Formulation

Recall: Occupancy measure (or discounted state visitation)

$$d^{\pi}_{\mu}(s) := (1 - \gamma) \mathbb{E}_{s_0 \sim \mu} \Big[\sum_{t=0}^{\infty} \gamma^t P(s_t = s \mid s_0, \pi) \Big]$$

$$d^{\pi}_{\mu}(s, a) := (1 - \gamma) \mathbb{E}_{s_0 \sim \mu} \Big[\sum_{t=0}^{\infty} \gamma^t P(s_t = s, a_t = a \mid s_0, \pi) \Big]$$
 Claim: $V^{\pi}(\mu) = \sum_{(s, a)} d^{\pi}_{\mu}(s, a) R(s, a)$ (Why?)

Occupancy measure matching:

Find a policy π such that $d^{\pi}_{\mu}(s,a) = d^{\pi_e}(s,a), \quad \forall (s,a)$

Occupancy measure matching implies $V^{\pi}(\mu) = V^{\pi_e}(\mu)$

• Question: Is $d_{\mu}^{\pi}(s, a)$ easy to parameterize?

(Direct) Occupancy Measure Matching (OMM)

$$\min_{\pi \in \Pi} \quad L(\pi) := D(d_{\mu}^{\pi}, d_{\mu}^{\pi_e})$$

Dual of each other!

$$\max_{R \in \mathcal{R}} \min_{\pi \in \Pi} \left[\underbrace{\left(E_{d_{\mu}^{\pi_e}}[R(s, a)] - E_{d_{\mu}^{\pi}}[R(s, a)] \right)}_{:=L(\pi, R)} \right]$$

OR

$$\min_{\pi \in \Pi} \max_{R \in \mathcal{R}} \left[\underbrace{\left(E_{d_{\mu}^{\pi_e}}[R(s, a)] - E_{d_{\mu}^{\pi}}[R(s, a)] \right)}_{:=L(\pi, R)} \right]$$

Apprenticeship Learning (APPLE)

 $(D(\cdot,\cdot))$ is some distance) $(d_{\mu}^{\pi} \text{ could be hard to express!})$

(Easier for training!)

A Motivating Example: Connecting OMM & APPLE

$$\min_{\pi \in \Pi} L(\pi) := D(d_{\mu}^{\pi}, d_{\mu}^{\pi_{e}}) \qquad \longrightarrow \min_{\pi \in \Pi} \max_{R \in \mathcal{R}} \left[\underbrace{\left(E_{d_{\mu}^{\pi_{e}}}[R(s, a)] - E_{d_{\mu}^{\pi}}[R(s, a)] \right)}_{:=L(\pi, R)} \right]$$

Consider a simple 1-state, 2-action MDP

Suppose
$$\mathcal{R} = \mathbb{R}^2$$
 terminal state
$$\pi_e(a|s) = \pi_e(b|s) = 0.5$$

Let's write down $R \in \mathcal{R}$ that maximizes $L(\pi, R)$ under a fixed π

For
$$(s, a)$$
 with $d^{\pi}_{\mu}(s, a) > d^{\pi_e}_{\mu}(s, a)$:

For
$$(s, a)$$
 with $d^{\pi}_{\mu}(s, a) < d^{\pi}_{\mu}(s, a)$:

For
$$(s, a)$$
 with $d_{\mu}^{\pi}(s, a) = d_{\mu}^{\pi_e}(s, a)$:

A Motivating Example: Connecting OMM & APPLE

$$\min_{\pi \in \Pi} L(\pi) := D(d_{\mu}^{\pi}, d_{\mu}^{\pi_{e}}) \longrightarrow \min_{\pi \in \Pi} \max_{R \in \mathcal{R}} \left[\underbrace{\left(E_{d_{\mu}^{\pi_{e}}}[R(s, a)] - E_{d_{\mu}^{\pi}}[R(s, a)] \right)}_{:=L(\pi, R)} \right]$$

Consider a simple 1-state, 2-action MDP

Suppose
$$\Re = \mathbb{R}^2$$
 terminal state
$$\pi_e(a|s) = \pi_e(b|s) = 0.5$$

Nice Property: Under $\mathcal{R} = \mathbb{R}^2$, the corresponding metric D is

$$D(d_{\mu}^{\pi}, d_{\mu}^{\pi_e}) = \begin{cases} 0, & \text{if } d_{\mu}^{\pi}(s, a) = d_{\mu}^{\pi_e}(s, a), \forall (s, a) \\ \infty, & \text{otherwise} \end{cases}$$

A Motivating Example: Connecting OMM & APPLE (Cont.)

$$\min_{\pi \in \Pi} L(\pi) := D(d_{\mu}^{\pi}, d_{\mu}^{\pi_{e}}) \qquad \qquad \min_{\pi \in \Pi} \max_{R \in \mathcal{R}} \left[\underbrace{\left(E_{d_{\mu}^{\pi_{e}}}[R(s, a)] - E_{d_{\mu}^{\pi}}[R(s, a)] \right)}_{:=L(\pi, R)} \right]$$

Consider a simple 1-state, 2-action MDP

terminal state Suppose
$$\mathcal{R} = \left\{ R \in \mathbb{R}^2 \, || R ||_{\infty} \le 1 \right\}$$

$$\pi_e(a|s) = \pi_e(b|s) = 0.5$$

Let's write down $R \in \mathcal{R}$ that maximizes $L(\pi, R)$ under a fixed π

For
$$(s, a)$$
 with $d^{\pi}_{\mu}(s, a) > d^{\pi_e}_{\mu}(s, a)$:

For
$$(s, a)$$
 with $d^{\pi}_{\mu}(s, a) < d^{\pi}_{\mu}(s, a)$:

For
$$(s, a)$$
 with $d^{\pi}_{\mu}(s, a) = d^{\pi_e}_{\mu}(s, a)$:

A Motivating Example: Connecting OMM & APPLE (Cont.)

$$\min_{\pi \in \Pi} L(\pi) := D(d_{\mu}^{\pi}, d_{\mu}^{\pi_{e}}) \qquad \qquad \min_{\pi \in \Pi} \max_{R \in \mathcal{R}} \left[\underbrace{\left(E_{d_{\mu}^{\pi_{e}}}[R(s, a)] - E_{d_{\mu}^{\pi}}[R(s, a)] \right)}_{:=L(\pi, R)} \right]$$

Consider a simple 1-state, 2-action MDP

Suppose
$$\mathcal{R} = \left\{ R \in \mathbb{R}^2 \middle| \|R\|_{\infty} \le 1 \right\}$$
 terminal state
$$\pi_e(a|s) = \pi_e(b|s) = 0.5$$

Nice Property: Under
$$\mathscr{R}=\left\{R\in\mathbb{R}^2\;\middle|\, \|R\|_\infty\leq 1\right\}$$
, the metric D is

$$D(d_{\mu}^{\pi}, d_{\mu}^{\pi_e}) = \sum_{(s,a)} \left| d_{\mu}^{\pi}(s,a) - d_{\mu}^{\pi_e}(s,a) \right|$$

(usually called "total variation distance")

How to choose ${\mathscr R}$ to get some widely-used D?

Example #1: Wasserstein Metric and APPLE

$$\min_{\pi \in \Pi} \ L(\pi) := W(d^\pi_\mu, d^{\pi_e}_\mu) \qquad \qquad \min_{\pi \in \Pi} \max_{R \in \mathcal{R}} \left[\underbrace{\left(E_{d^{\pi_e}_\mu}[R(s,a)] - E_{d^\pi_\mu}[R(s,a)] \right)}_{:=L(\pi,R)} \right]$$
 (Wasserstein)
$$\text{where } \mathcal{R} = \left\{ R \in \mathbb{R}^{\mathcal{S} \times \mathcal{A}} \middle| \operatorname{Lip}(R) \leq 1 \right\}$$

This is also known as the *Kantorovich-Rubenstein duality*

Wasserstein Metric

Metric for random vectors

• $U:\Omega o \mathbb{R}^d$: a random vector from the sample space Ω to \mathbb{R}^d

For
$$1 \le p < \infty$$
: $||U||_p := \left(\mathbb{E}\left[||U(\omega)||_p^p\right]\right)^{\frac{1}{p}}$

• Wasserstein Metric: For two CDFs F, G over the reals, the Wasserstein metric is defined as

$$d_p(F, G) := \inf_{(U,V): U \sim F, V \sim G} ||U - V||_p$$

Infimum is taken over all joint distributions of random variables (U,V), whose marginal distributions are F,G

Intuition Behind Wasserstein Metric

- Also known as: optimal transport problem or earth mover's distance
- Given two density f(x), g(x) and a cost function c(x, y) of moving mass from x to y, what is minimum cost of transforming from f(x) to g(y)?

Minimum cost

$$C^* := \int_{\alpha} c(x, y) \alpha(x, y) dx dy$$

 $\alpha(x, y)$:amount of mass to move from x to y $\alpha(x, y)$ describes a feasible transport plan if

$$\int \alpha(x, y) dy = f(x), \quad \int \alpha(x, y) dx = g(y)$$

Summary: Optimal Transport & Wasserstein Metric

Wasserstein
$$d_p(F,G) := \inf_{(U,V): U \sim F, V \sim G} ||U - V||_p$$

c(x, y) = cost function of moving one unit of mass from <math>x to y

OT can be written as an optimization problem:

$$\min_{\alpha} \sum_{x,y} c(x,y) \alpha(x,y)$$
 subject to (1)
$$\sum_{y} \alpha(x,y) = f(x), \forall x$$
 (2)
$$\sum_{x} \alpha(x,y) = g(y), \forall y$$
 (3)
$$\alpha(x,y) \geq 0, \forall x,y$$

Duality of Optimal Transport: Economic Interpretation

Primal Form of OT (Mario moving the earth by himself)

Question: Under what condition would Mario ask for Luigi's help?

Duality of Optimal Transport (Formally)

Primal Form of Optimal Transport

$$\min_{\alpha} \sum_{x,y} c(x,y) \alpha(x,y)$$
 subject to (1)
$$\sum_{y} \alpha(x,y) = f(x), \forall x$$
 (2)
$$\sum_{x} \alpha(x,y) = g(y), \forall y$$
 (3)
$$\alpha(x,y) \geq 0, \forall x,y$$

Dual Form of Optimal Transport

$$\max_{u,v} \mathbb{E}_{x \sim f(x)}[u(x)] + \mathbb{E}_{y \sim g(y)}[v(y)]$$
The

subject to $u(x) + v(y) \le c(x, y), \forall x, y$

The dual form looks exactly like APPLE!

Both forms lead to the same optimal values (called "strong duality")

Example #2: Generative Adversarial Imitation Learning (GAIL)

Recall: Dual Form of Optimal Transport

$$\max_{u,v} \mathbb{E}_{x \sim f(x)}[u(x)] + \mathbb{E}_{y \sim g(y)}[v(y)]$$

subject to
$$u(x) + v(y) \le c(x, y), \forall x, y$$

 $D_{\phi}(s,a)$: A binary classifier that predicts the probability of the event that "the observed (s,a) is drawn from π "

Let's choose the following:

$$(1) f(x) \equiv d_{\mu}^{\pi}(s, a)$$

(2)
$$g(y) \equiv d_{\mu}^{\pi_e}(s, a)$$

(3)
$$u(x) \equiv \log(D_{\phi}(s, a))$$

$$(4) v(y) \equiv \log(1 - D_{\phi}(s, a))$$

GAIL: Discriminator and Generator

2. Generator: Use any RL algorithm with reward function $\log(D_{\phi}(s,a))$

Jonathan Ho and S. Ermon, Generative adversarial imitation learning, NIPS 2016

A Comparison Between Wasserstein AIL and GAIL

Expert state-action pairs (projected onto a 2D board via PCA)

Figure 2: Reward surfaces of WAIL and GAIL on *Humanoid* with respect to different expert data sizes.

Summary: Occupancy Measure Matching via Apprenticeship Learning (With Regularization)

$$\min_{\pi \in \Pi} \max_{R \in \mathcal{R}} \left[\underbrace{\left(E_{(s,a) \sim d_{\mu}^{\pi_{e}}}[R(s,a)] - E_{(s,a) \sim d_{\mu}^{\pi}}[R(s,a)] \right) - H(\pi) + \psi(R)}_{:=L(\pi,R)} \right]$$

where
$$H(\pi) := E\Big[\sum_t - \gamma^t \log \pi_t(a_t|s_t)\Big]$$
 is the discounted causal entropy

 $\psi(R)$ is a regularizer for the reward function

Key Idea: By choosing different "reward function classes \mathcal{R} ", we obtain various OMM approaches!