Designing Network Design Spaces

TL DR

- Задача: поиск оптимальной с точки зрения качества архитектуры нейронной сети
- Идея: вместо подгона архитектуры под конкретную задачу, искать пространство "хороших" архитектур сетей, из которого потом можно будет сэмплировать архитектуру под заданные вычислительные ограничения и обучать

TL DR

Понятный пайплайн поиска архитектур

- **1.** Сэмплируем n моделей из пространства
- 2. Обучаем
- 3. Строим EDF графики; зависимости качества от параметров
- 4. На основе инсайтов органичиваем пространство поиска
- **5.** Получаем упрощенное пространство поиска с большей концентрацией хороших моделей

TL DR

Понятный пайплайн поиска архитектур

Пайплайн поиска архитектур Сэмплирование моделей

Основное предположение: пространство моделей можно охарактеризовать сэмплом моделей из этого пространства

- **1.** Сэмплируем n=500 легких моделей (предлагается брать 400MF) моделей
- 2. Обучаем небольшое число эпох (10)

Пайплайн поиска архитектур

Анализ пространства

- **Анализ пространства** Эмпирическая функция распределения ошибки: $F(e) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}[e_i < e]$
- Зависимости ошибки от параметров
- Статистики для выявления наиболее вероятных ограничений (бутстрап)
- На левом графике в легенде записаны минимальная и средняя ошибки

Исходное пространство поиска

- Модель строится из кирпичиков под названием X block
- X block состоит из двух 1х1 сверток и одной grouped 3х3 свертки
- stem 3x3 свертка; head avg pooling + FC

Исходное пространство поиска. $AnyNetX_A$

- $d_i \le 16$, $w_i \le 1024$, кратные 8; сэмплируем из лог нормального распределения
- $b_i \in \{1, 2, 4\}, g_i \in \{1, 2, \dots, 32\}$
- получаем $(16 \cdot 128 \cdot 3 \cdot 6)^4 \approx 10^{18}$ моделей

Уменьшение пространства поиска

- $AnyNetX_B$: общие веса b_i для всех блоков
- $AnyNetX_{C}$: общие веса g_{i} для всех блоков; что интересно, получилось, что лучше брать g>1

Уменьшение пространства поиска

• $\mathit{AnyNetX}_D$: лучше брать модели с возрастающим числом каналов $w_{i+1} \geq w_i$

Уменьшение пространства поиска

Уменьшение пространства поиска

- $\mathit{AnyNetX}_E$: глубину стоит увеличивать в увеличением уровня, т.е. $d_{i+1} \geq d_i$
- В итоге перешли к пространству, у которого в $\,pprox 10^7\,$ меньше степеней свободы

RegNet

Параметризация числа каналов w_i

- Нарисовали график для $AnyNetX_E$ и заметили, что w_j очень хорошо аппроксимируется линейной функцией $w_j = 48 \cdot (j+1)$
- Параметризуем $u_j = w_0 + w_a \cdot j$, где $w_0, w_a > 0$
- Для квантизации добавим параметр $w_m > 0$, что $u_j = w_0 \cdot w_m^{s_j}$, где $1.5 \le w_m \le 3$
- Находим s_j , тогда $\hat{w}_j = w_0 \cdot w_m^{\lfloor s_j \rfloor}$

$$d_i = \sum_j \left[\lfloor s_j \rfloor = i \right]$$

RegNet Как проверяли?

- Брали конкретную модель
- Запускали гридсерч по w_0, w_a, w_m минимизируя среднюю log-ratio ошибку $\log \frac{\hat{w}_i}{w_i}$
- Предложенная параметризация, как оказалось, неплохо описывает w_i у хороших моделей

RegNet Как проверяли?

RegNet Как проверяли?

• У хороших моделей низкая log-ratio ошибка

RegNet

• Улучшили и упростили пространство, но при этом сохранили разнообразие моделей

	restriction	dim.	combinations	total
$\overline{\mathtt{AnyNetX}_\mathtt{A}}$	none	16	$(16 \cdot 128 \cdot 3 \cdot 6)^4$	$\sim 1.8 \cdot 10^{18}$
$\mathtt{AnyNetX}_\mathtt{B}$	$+b_{i+1} = b_i$	13	$(16 \cdot 128 \cdot 6)^4 \cdot 3$	$\sim 6.8 \cdot 10^{16}$
$\mathtt{AnyNetX}_\mathtt{C}$	$+g_{i+1}=g_i$	10	$(16.128)^4 \cdot 3.6$	$\sim 3.2 \cdot 10^{14}$
$\mathtt{AnyNetX}_\mathtt{D}$	$+ w_{i+1} \geq w_i$	10	$(16\cdot128)^4\cdot3\cdot6/(4!)$	$\sim 1.3 \cdot 10^{13}$
$\mathtt{AnyNetX}_\mathtt{E}$	$+d_{i+1} \geq d_i$	10	$(16\cdot128)^4\cdot3\cdot6/(4!)^2$	$\sim 5.5 \cdot 10^{11}$
RegNet	quantized linear	6	$\sim 64^4 \cdot 6 \cdot 3$	$\sim 3.0 \cdot 10^8$

RegNet RegNetY

- Добавим Squeeze-and-Excitation блок
- Получим лучшие результаты

RegNet Анализ пространства

- Оптимальная глубина статична на уровне 20
- Оптимальный bottle-neck ration b=1

RegNet Анализ пространства

• Число активаций в общем смысле лучше коррелирует со временем на инференс модели

Эксперименты Mobile regime

- Mobile regime легковесные модели по 600MF
- Без специальных усилий удалось получить сравнимую с SOTA модель (меньше лучше)

	flops (B)	params (M)	top-1 error
MOBILENET [9]	0.57	4.2	29.4
MOBILENET-V2 [25]	0.59	6.9	25.3
SHUFFLENET [33]	0.52	-	26.3
SHUFFLENET-V2 [19]	0.59	-	25.1
NASNET-A [35]	0.56	5.3	26.0
AMOEBANET-C [23]	0.57	6.4	24.3
PNASNET-5 [17]	0.59	5.1	25.8
DARTS [18]	0.57	4.7	26.7
REGNETX-600MF	0.60	6.2	25.9±0.03
REGNETY-600MF	0.60	6.1	24.5 ± 0.07

Эксперименты

- Для каждого режима брали самую лучшую модель из 25 случайных
- Учили лучшую модель 5 раз по 100 эпох

	flops	params	acts	batch	infer	train	error
	(B)	(M)	(M)	size	(ms)	(hr)	(top-1)
REGNETX-200MF	0.2	2.7	2.2	1024	10	2.8	31.1±0.09
REGNETX-400MF	0.4	5.2	3.1	1024	15	3.9	27.3±0.15
REGNETX-600MF	0.6	6.2	4.0	1024	17	4.4	25.9±0.03
REGNETX-800MF	0.8	7.3	5.1	1024	21	5.7	24.8±0.09
REGNETX-1.6GF	1.6	9.2	7.9	1024	33	8.7	23.0±0.13
REGNETX-3.2GF	3.2	15.3	11.4	512	57	14.3	21.7±0.08
REGNETX-4.0GF	4.0	22.1	12.2	512	69	17.1	21.4±0.19
REGNETX-6.4GF	6.5	26.2	16.4	512	92	23.5	20.8±0.07
REGNETX-8.0GF	8.0	39.6	14.1	512	94	22.6	20.7±0.07
REGNETX-12GF	12.1	46.1	21.4	512	137	32.9	20.3±0.04
REGNETX-16GF	15.9	54.3	25.5	512	168	39.7	20.0±0.11
REGNETX-32GF	31.7	107.8	36.3	256	318	76.9	19.5±0.12

Эксперименты

 Получились интересные результаты, что с утяжелением модели, число блоков на последнем уровне падает

Эксперименты Mobile regime

- Mobile regime легковесные модели по 600MF
- Без специальных усилий удалось получить сравнимую с SOTA модель (меньше лучше)

	flops (B)	params (M)	top-1 error
MOBILENET [9]	0.57	4.2	29.4
MOBILENET-V2 [25]	0.59	6.9	25.3
SHUFFLENET [33]	0.52	-	26.3
SHUFFLENET-V2 [19]	0.59	-	25.1
NASNET-A [35]	0.56	5.3	26.0
AMOEBANET-C [23]	0.57	6.4	24.3
PNASNET-5 [17]	0.59	5.1	25.8
DARTS [18]	0.57	4.7	26.7
REGNETX-600MF	0.60	6.2	25.9±0.03
REGNETY-600MF	0.60	6.1	24.5 ± 0.07

ЭКСПЕРИМЕНТЫStandard Baselines: ResNe(X)t

- Учились с одними и теми же настройками
- Тоже получили сравнительно лучшие результаты

	flops	params	acts	infer	train	top-1 error
	(B)	(M)	(M)	(ms)	(hr)	ours±std [orig]
RESNET-50	4.1	22.6	11.1	53	12.2	23.2±0.09 [23.9]
REGNETX-3.2GF	3.2	15.3	11.4	57	14.3	21.7 ±0.08
RESNEXT-50	4.2	25.0	14.4	78	18.0	21.9±0.10 [22.2]
RESNET-101	7.8	44.6	16.2	90	20.4	21.4±0.11 [22.0]
REGNETX-6.4GF	6.5	26.2	16.4	92	23.5	20.8 ±0.07
RESNEXT-101	8.0	44.2	21.2	137	31.8	20.7±0.08 [21.2]
RESNET-152	11.5	60.2	22.6	130	29.2	20.9 ±0.12 [21.6]
REGNETX-12GF	12.1	46.1	21.4	137	32.9	20.3 ±0.04

(a) Comparisons grouped by activations.

RESNET-50	4.1	22.6	11.1	53	12.2	23.2±0.09 [23.9]
RESNEXT-50	4.2	25.0	14.4	78	18.0	21.9±0.10 [22.2]
REGNETX-4.0GF	4.0	22.1	12.2	69	17.1	21.4 ±0.19
RESNET-101	7.8	44.6	16.2	90	20.4	21.4±0.11 [22.0]
RESNEXT-101	8.0	44.2	21.2	137	31.8	20.7 ±0.08 [21.2]
REGNETX-8.0GF	8.0	39.6	14.1	94	22.6	20.7 ±0.07
RESNET-152	11.5	60.2	22.6	130	29.2	20.9±0.12 [21.6]
RESNEXT-152	11.7	60.0	29.7	197	45.7	20.4 ±0.06 [21.1]
REGNETX-12GF	12.1	46.1	21.4	137	32.9	20.3 ±0.04

(b) Comparisons grouped by flops.

Эксперименты Standard Baselines: ResNe(X)t

• Хорошие модели доступны на всем спектре режимов

Эксперименты Сравнение с SOTA: EfficientNet

- Учили в одних и тех же настройках: 100 эпох; с weight decay и адаптивным lr
- На маленьких моделях хуже; на больших лучше

Эксперименты Сравнение с SOTA: EfficientNet

• В моделях сильно меньше активаций, что приводит к почти в 5 раз меньшему времени на инференс и обучение

	flops	params	acts	batch	infer	train	top-1 error
	(B)	(M)	(M)	size	(ms)	(hr)	ours±std [orig]
EFFICIENTNET-B0	0.4	5.3	6.7	256	34	11.7	24.9 ±0.03 [23.7]
REGNETY-400MF	0.4	4.3	3.9	1024	19	5.1	25.9 ± 0.16
EFFICIENTNET-B1	0.7	7.8	10.9	256	52	15.6	24.1 ±0.16 [21.2]
REGNETY-600MF	0.6	6.1	4.3	1024	19	5.2	24.5 ± 0.07
EFFICIENTNET-B2	1.0	9.2	13.8	256	68	18.4	23.4 ±0.06 [20.2]
REGNETY-800MF	0.8	6.3	5.2	1024	22	6.0	23.7 ± 0.03
EFFICIENTNET-B3	1.8	12.0	23.8	256	114	32.1	22.5±0.05 [18.9]
REGNETY-1.6GF	1.6	11.2	8.0	1024	39	10.1	22.0 ±0.08
EFFICIENTNET-B4	4.2	19.0	48.5	128	240	65.1	21.2±0.06 [17.4]
REGNETY-4.0GF	4.0	20.6	12.3	512	68	16.8	20.6 ±0.08
EFFICIENTNET-B5	9.9	30.0	98.9	64	504	135.1	21.5±0.11 [16.7]
REGNETY-8.0GF	8.0	39.2	18.0	512	113	28.1	20.1 ±0.09

Рецензия Publication & Authors

- Работа опубликована в 2020 году на конференции IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), это главное ежегодное мероприятие по компьютерному зрению.
- Авторы статьи команда Facebook Al Research (FAIR)

Рецензия Competitors

• On Network Design Spaces for Visual Recognition вышедшая в 2020 году на конференции ICCV

РецензияStrengths and weaknesses

- Сильные стороны: Проектирование пространств сетевого дизайна является перспективным направлением для будущих исследований
- Слабые стороны: необходимо соблюдений многих условий, которые, на практике выполнить практически невозможно

.