A Book of Abstract Algebra (2nd Edition)

	Chapter 33, Problem 6ED	Bookmark	Show all steps: ON
Problem			
	Let G be a group. The symbol $H \triangleleft G$ should be read, " H is a normal subgroup of G ." A		

maximal normal subgroup of G is an $H \triangleleft G$ such that, if $H \triangleleft J \triangleleft G$, then necessarily J = H or J = G. Prove the following:

If $H \triangleleft K \triangleleft G$, then G/K is a homomorphic image of G/H.

Step-by-step solution

Step 1 of 4

Here, objective is to prove that $\frac{G}{K}$ is homomarphic image of. $\frac{G}{H}$

Comment

Step 2 of 4

Consider G is a finite group. H is normal subgroup of G is denoted by $H \triangleleft G$

A maximal normal subgroup of G is given by

 $H \triangleleft G$, if $H \triangleleft J \triangleleft G$ then, necessarily J = H or J = G

Comment

Step 3 of 4

Consider $H \triangleleft K \triangleleft G$

Then, necessarily K = H or K = G

 ϕ : is the homomorphism

Comment

Step 4 of 4

Let $\phi: H \to K$ is a homomorpism. Then

$$\begin{split} \phi(H) &= K \\ \phi(gH) &= gK \quad \forall gH \in G \, / \, H \\ g_1H &= g_2H \\ \text{Consider } \phi(g_1Hg_2H) &= \phi(g_1g_2H) \qquad (\because H \lhd G) \\ &= g_1g_2K \\ &= g_1Kg_2K \qquad (\because K \lhd G) \\ &= \phi(g_1)\phi(g_2) \end{split}$$

We know that,

$$gK \in G / K$$

 $gH \in G / H$
So, $\phi : \frac{G}{H} \to \frac{G}{K}$

Therefore,

$$\frac{G}{K}$$
 is homomorphic image of. $\frac{G}{H}$

Hence, proved.

Comment