Курсовая работа "Прогнозирование критических событий в моделях песчаной кучи БТВ и Манна"

Сапожников Денис Сергеевич БПМИ 192

Руководитель КР: Шаповал Александр Борисович

21 июня 2022 г.

- ullet Квадратная решетка L imes L
- В каждой клетке от 0 до 3 песчинок
- Каждую секунду добавляется одна песчинка в случайную клетку

Происходит обвал — перераспределение песка (энергии)

Происходит обвал — перераспределение песка

- Размер события это количество обвалов до стабилизации
- Долгое накопление энергии и её мгновенное перераспределение

• Появление модели песчаной кучи и теории самоорганизованных систем оказало вклад в развитие целых областей: стат. физика, экнономика, нейробиология и других

- Появление модели песчаной кучи и теории самоорганизованных систем оказало вклад в развитие целых областей: стат. физика, экнономика, нейробиология и других
- Наблюдение степенного закона

Плотность распределения размеров событий в модели БТВ для решётк размера L=64

- Появление модели песчаной кучи и теории самоорганизованных систем оказало вклад в развитие целых областей: стат. физика, экнономика, нейробиология и других
- Наблюдение степенного закона
- Существует множество разных моделей песчаной кучи, которые можно получить заменой правил обвала и геометрии решетки

- Появление модели песчаной кучи и теории самоорганизованных систем оказало вклад в развитие целых областей: стат. физика, экнономика, нейробиология и других
- Наблюдение степенного закона
- Существует множество разных моделей песчаной кучи, которые можно получить заменой правил обвала и геометрии решетки
- В классе симметричных правил обвала на квадратной решетке существует лишь одна альтернативная модель относительно модели БТВ модель Манна, или стохастическая модель

- Появление модели песчаной кучи и теории самоорганизованных систем оказало вклад в развитие целых областей: стат. физика, экнономика, нейробиология и других
- Наблюдение степенного закона
- Существует множество разных моделей песчаной кучи, которые можно получить заменой правил обвала и геометрии решетки
- В классе симметричных правил обвала на квадратной решетке существует лишь одна альтернативная модель относительно модели БТВ модель Манна, или стохастическая модель
- Наличие степенного закона индикатор отсутствия прогнозирования крупных событий

- Появление модели песчаной кучи и теории самоорганизованных систем оказало вклад в развитие целых областей: стат. физика, экнономика, нейробиология и других
- Наблюдение степенного закона
- Существует множество разных моделей песчаной кучи, которые можно получить заменой правил обвала и геометрии решетки
- В классе симметричных правил обвала на квадратной решетке существует лишь одна альтернативная модель относительно модели БТВ модель Манна, или стохастическая модель
- Наличие степенного закона индикатор отсутствия прогнозирования крупных событий
- Попытки прогнозирования представлены в работах Hallerberg (2009), Delucia (2015)

Постановка задачи

• Провести сравнительный анализ прогнозируемости крупных событий в моделях БТВ и Манна для конкретных конечных систем и термодинамического предела

Постановка задачи

- Провести сравнительный анализ прогнозируемости крупных событий в моделях БТВ и Манна для конкретных конечных систем и термодинамического предела
- Найти скейлинг эффективности прогноза относительно объёма системы

Постановка задачи

- Провести сравнительный анализ прогнозируемости крупных событий в моделях БТВ и Манна для конкретных конечных систем и термодинамического предела
- Найти скейлинг эффективности прогноза относительно объёма системы
- Соотнести скейлинг эффективности прогноза со скейлингом степенного распределения событий по размерам для конечной системы

Метрики

ullet Качество прогноза arepsilon измеряется с помощью ROC-кривых

Алгоритм прогноза

- lacktriangled Пусть $\{s_n\}_{i=1}^N$ выборка из размеров событий. Она разбивается пополам на тренировочную и тестовые части
- lacktriangle Предсказываем вероятность крупных события $X_i = I[s_i > \eta]$
- Вычисляется переменная принятия решения

$$y_i = \sum_{k=1}^i a^k \cdot s_{i-k}$$

- Вычисляется совместное распределение на тренировочной выборке P(X,y)
- По совместному распределению делаются прогнозы на тестовой выборке

Качество прогноза

Качество прогноза ε в зависимости от частоты встречаемости событий event rate

Качество прогноза

Качество прогноза ε в зависимости от нормированного размера крупного события η/L^γ

• В модели Манна качество прогноза не зависит от объёма системы

- В модели Манна качество прогноза не зависит от объёма системы
- В модели БТВ качество прогноза падает с ростом объёма системы

- В модели Манна качество прогноза не зависит от объёма системы
- В модели БТВ качество прогноза падает с ростом объёма системы
- Скейлинг эффективности прогноза в модели Манна совпадает со скейлингом плотности распределений событий, а в модели БТВ – со скейлингом крупнейшего события

- В модели Манна качество прогноза не зависит от объёма системы
- В модели БТВ качество прогноза падает с ростом объёма системы
- Скейлинг эффективности прогноза в модели Манна совпадает со скейлингом плотности распределений событий, а в модели БТВ – со скейлингом крупнейшего события
- Модель песчаной кучи обладает большой памятью

Шкалирование плотности распределения

Шкалирование плотности распределения в модели Манна, $\tau = 2.67$

Шкалирование плотности распределения

Шкалирование плотности распределения в модели БТВ, $\tau=2$

Шкалирование плотности распределения

Шкалирование плотности распределения в модели БТВ, $\tau = 2.93$

Влияние гиперпарматра а

Зависимость качества прогноза ε от гиперпараметра a, переведенного в логарифмическую шкалу: $a=\exp(-T)$

О скейлинге эффективности прогноза

Метрики качества шкалирования в модели БТВ в зависимости от параметра γ

О скейлинге эффективности прогноза

Метрики качества шкалирования в модели Манна в зависимости от параметра γ