Homework #3: Proof

Dario A Lencina-Talarico

Due: 12 September 2016

INSTRUCTIONS: before completing your homework, make sure you have considered the following:

- You are allowed to use only primitive inference rules.
- Remember to include vertical lines to represent the scope any assumptions.
- Remember that all assumptions in your proofs must be discharged.
- Double-check that your line references are correct when applying inference rules.

I. Proof: Propositional Logic

In this section use only the primitive inference rules of propositional calculus.

- 1. Provide derivations for each of the following, using natural deduction:
 - a. $(p \wedge q) \wedge r \vdash p \wedge (q \wedge r)$
 - b. $p \land q, p \Rightarrow s, q \Rightarrow t \vdash s \land t$
 - $p \wedge q$ premise
 - premise $p \Rightarrow s$
 - 3. premise
 - 4. \land -elim, 1
 - 5. modus ponens, 2,4
 - 6. \land -elim, 1
 - 7. modus ponens, 3,6
 - $s \wedge r$ \land -intro, 5,7
 - c. $q \Rightarrow \neg p, p \land q \vdash r$
 - premise 1. $q \Rightarrow \neg p$
- premise $\wedge -elim, 2$
- 3.
- 4. $\neg p$
- modus ponens, 1 $\wedge -elim, 2$
- 5. 6.
- assumption
- 7.
- Copy from 4
- 8.
- Copy from 5
- 4.
- $\neg elim, 6-8$
- d. $p \land q \vdash p \Rightarrow q$
 - premise
 - 2. $\wedge -elim, 1$
 - $\wedge -elim, 1$
 - $\Rightarrow -intro, 2, 3$

1

1

- e. $\neg \neg q \vdash q \lor r$
 - 1. $\neg \neg q$ premise

 - $2. \quad \neg q \qquad \neg elim, 1 \\ 3. \quad q \qquad \neg elim, 2$
 - $4. \quad q \vee r \quad \vee -intro, 3$

f.
$$p \Rightarrow (q \land r), \neg p \Rightarrow r, p \lor \neg p \vdash r$$

II. Proof: Predicate Logic

In this section use only the primitive inference rules of predicate calculus.

2. Show using natural deduction:

a.
$$\forall x: T \bullet P(x) \land Q(x) \dashv \vdash (\forall x: T \bullet P(x)) \land (\forall y: T \bullet Q(y))$$

b.
$$\exists x : T \bullet P(x) \lor Q(x) \dashv \vdash (\exists x : T \bullet P(x)) \lor (\exists x : T \bullet Q(x))$$

(NOTE: $p \dashv \vdash q$ is a shorthand for " $p \vdash q$ and $q \vdash p$." That is, for $p \dashv \vdash q$ you need to show two separate derivations: one for $p \vdash q$ and another for $q \vdash p$.)