Enseignant · e·s : Blanche Buet, Dominique Hulin et Thomas Letendre.

Feuille 4 – Convergence au sens des distributions, support

Exercice 1 (Lemme de Riemann–Lebesgue). Le but de cet exercice est de prouver le lemme de Riemann–Lebesgue : pour tout $f \in L^1(\mathbb{R})$,

$$\int_{\mathbb{R}} f(t)e^{ixt} dt \xrightarrow{|x| \to +\infty} 0. \tag{1}$$

- 1. Prouver (1) pour tout $f \in \mathcal{D}(\mathbb{R})$. En déduire que $e_x \xrightarrow[|x| \to +\infty]{} 0$, où on a noté $e_x : t \mapsto e^{ixt}$.
- 2. En déduire que (1) est valable pour tout $f \in L^1(\mathbb{R})$.

Exercice 2 (Convergence dans $\mathcal{D}'(\mathbb{R})$). Pour tout $n \in \mathbb{N}$, on note $e_n : x \mapsto e^{inx}$. Montrer que les suites de distributions suivantes convergent dans $\mathcal{D}'(\mathbb{R})$ quand $n \to +\infty$ et déterminer leur limite.

- 1. $A_n = n^{100}e_n$.
- 2. $B_n: x \mapsto \cos^2(nx)$.
- 3. $C_n: x \mapsto n\sin(nx)H(x)$, où H est la fonction de Heaviside.
- 4. $D_n = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{\frac{k}{n}}$.
- $5. E_n = n \left(\delta_{\frac{1}{n}} \delta_{-\frac{1}{n}} \right).$
- 6. (facultatif) $F_n = e_n \operatorname{vp}\left(\frac{1}{r}\right)$.

Indication. On pourra utiliser sans démonstration que $\int_0^R \frac{\sin x}{x} dx \xrightarrow[R \to +\infty]{} \frac{\pi}{2}$.

Définition (Translations et dilatations). Soient $a \in \mathbb{R}^d$ et $\lambda \in \mathbb{R}^*$.

- Soit $\varphi : \mathbb{R}^d \to \mathbb{C}$, on définit $\tau_a \varphi : x \mapsto \varphi(x-a)$ et $\varphi_\lambda : x \mapsto \varphi(\lambda x)$.
- Soit $T \in \mathcal{D}'(\mathbb{R}^d)$, on définit $\tau_a T$ et $\operatorname{dil}_{\lambda} T \in \mathcal{D}'(\mathbb{R}^d)$ par les relations suivantes :

$$\forall \varphi \in \mathcal{D}'(\mathbb{R}^d), \qquad \langle \tau_a T, \varphi \rangle = \langle T, \tau_{-a} \varphi \rangle \qquad \text{ et } \qquad \langle \operatorname{dil}_{\lambda} T, \varphi \rangle = \frac{1}{|\lambda|^d} \left\langle T, \varphi_{\frac{1}{\lambda}} \right\rangle.$$

Exercice 3 (Translations et dilatations). Soit $a \in \mathbb{R}^d$, $\lambda \in \mathbb{R}^*$ et $T \in \mathcal{D}'(\mathbb{R}^d)$.

- 1. Vérifier que $\tau_a T$ et $\operatorname{dil}_{\lambda} T$ définissent bien des distributions sur \mathbb{R}^d .
- 2. Soit $f \in L^1_{loc}(\mathbb{R}^d)$, identifier les distributions $\tau_a T_f$ et $dil_{\lambda} T_f$.
- 3. Dans cette question on suppose d=1. Montrer dans ce cas que $\frac{1}{a}(T-\tau_a T) \xrightarrow[a\to 0]{\mathcal{D}'(\mathbb{R})} T'$.
- 4. Soit $h \in \mathbb{R}^d \setminus \{0\}$ et $a \in \mathbb{R}^*$. Montrer que $\frac{1}{a}(T \tau_{ah}T)$ converge dans $\mathcal{D}'(\mathbb{R}^d)$ quand $a \to 0$ et identifier la limite.
- 5. Soit $T \in \mathcal{D}'(\mathbb{R})$ et $\lambda \in]0, +\infty[\setminus\{1\}]$. Montrer que $\frac{1}{\lambda-1}\left(T \frac{1}{\lambda}\operatorname{dil}_{\frac{1}{\lambda}}T\right)$ converge dans $\mathcal{D}'(\mathbb{R})$ quand $\lambda \to 1$ et identifier la limite.

Exercice 4 (Banach–Steinhaus). 1. Rappeler l'énoncé du théorème de Banach–Steinhaus dans le cadre des espaces vectoriels normés.

2. On considère l'espace $\mathcal{C}^1([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$. Pour $n\in\mathbb{N}^*$, on définit

$$L_n: f \in \mathcal{C}^1([0,1], \mathbb{R}) \mapsto n\left(f\left(\frac{1}{n}\right) - f(0)\right).$$

Vérifier que $L_n: (\mathcal{C}^1([0,1],\mathbb{R}), \|\cdot\|_{\infty}) \to \mathbb{R}$ est une forme linéaire continue et que la suite $(L_n)_n$ converge simplement vers une forme linéaire L à identifier. La limite L est-elle continue?

Exercice 5 (Banach–Steinhaus dans \mathcal{D}'). Soit $\Omega \subset \mathbb{R}^d$ ouvert.

- 1. Soit $(T_n)_{n\in\mathbb{N}}$ une suite de $\mathcal{D}'(\Omega)$, on suppose que $(\langle T_n, \varphi \rangle)_{n\in\mathbb{N}}$ converge pour tout $\varphi \in \mathcal{D}(\Omega)$. Rappeler l'énoncé du théorème de Banach–Steinhaus dans ce cadre.
- 2. Soit $I: x \in \mathbb{R}^* \mapsto \frac{1}{x}$. Pour $\varepsilon > 0$, on considère la distribution T_{ε} associée à la fonction $\mathbf{1}_{\mathbb{R}\setminus [-\varepsilon,\varepsilon]}I$. Rappeler pourquoi $(T_{\varepsilon})_{\varepsilon}$ converge simplement quand $\varepsilon \to 0_+$, que dire de la limite?

Définition (Dual topologique). Pour tout $p \in [1, +\infty]$, on note $L^p(\mathbb{R})'$ l'espace des formes linéaires continues sur $(L^p(\mathbb{R}), \|\cdot\|_p)$. Cet espace est muni de la norme d'opérateur associée à $\|\cdot\|_p$.

Définition (Convergence faible dans L^p). On dit qu'une suite $(f_n)_{n\in\mathbb{N}}$ à valeurs dans $L^p(\mathbb{R})$ converge faiblement vers $f\in L^p(\mathbb{R})$ si : $\forall \Phi\in L^p(\mathbb{R})', \ \Phi(f_n)\xrightarrow[n\to+\infty]{}\Phi(f)$. On note alors $f_n\rightharpoonup f$.

Théorème 1 (Théorème de représentation). Soient $p, q \in [1, +\infty]$ tels que $\frac{1}{p} + \frac{1}{q} = 1$. Pour tout $f \in L^p(\mathbb{R})$, on note $I_f \in L^q(\mathbb{R})'$ la forme linéaire $I_f : g \mapsto \int_{\mathbb{R}} f(x)g(x) dx$.

- L'application $I: f \mapsto I_f$ de $L^p(\mathbb{R})$ dans $L^q(\mathbb{R})'$ est isométrique, en particulier injective.
- $Si \ q < +\infty \ alors \ I \ est \ surjective.$

Exercice 6 (Convergence faible et convergence dans $\mathcal{D}'(\mathbb{R})$). Soit $p \in [1, +\infty]$ et soit $(f_n)_{n \in \mathbb{N}}$ une suite dans $L^p(\mathbb{R})$. Le but de l'exercice est de comparer les notions de convergence forte (i.e. pour la norme $\|\cdot\|_p$), de convergence faible et de convergence au sens des distributions pour la suite $(f_n)_{n \in \mathbb{N}}$.

- 1. Si $f_n \xrightarrow[n \to +\infty]{\|\cdot\|_p} f$, montrer que $f_n \rightharpoonup f$. L'implication réciproque est-elle vraie?
- 2. Si $f_n \to f \in L^p(\mathbb{R})$, montrer que $f_n \xrightarrow[n \to +\infty]{\mathcal{D}'} f$ et que $(f_n)_{n \in \mathbb{N}}$ est bornée dans $(L^p(\mathbb{R}), \|\cdot\|_p)$.
- 3. On suppose que $p \in]1, +\infty[$. Si la suite $(f_n)_{n \in \mathbb{N}}$ est bornée dans $L^p(\mathbb{R})$ et s'il existe $T \in \mathcal{D}'(\mathbb{R})$ tel que $f_n \xrightarrow[n \to +\infty]{\mathcal{D}'} T$, montrer qu'il existe $f \in L^p(\mathbb{R})$ telle que $T = T_f$ et que $f_n \rightharpoonup f$.
- 4. Toujours dans le cas $p \in]1, +\infty[$, donner un exemple de suite $(f_n)_{n \in \mathbb{N}}$ telle que $f_n \xrightarrow[n \to +\infty]{\mathcal{D}'} 0$ et qui ne converge pas faiblement dans $L^p(\mathbb{R})$.
- 5. Dans le cas p=1, donner un exemple de suite $(f_n)_{n\in\mathbb{N}}$ qui converge au sens des distributions mais pas faiblement dans $L^1(\mathbb{R})$ et telle que $||f_n||_1=1$ pour tout $n\in\mathbb{N}$.

Exercice 7 (Support d'une distribution). 1. Soient $\Omega \subset \mathbb{R}^d$ ouvert et $f \in \mathcal{C}^0(\Omega)$, montrer que $\operatorname{supp}(T_f) = \operatorname{supp}(f)$.

- 2. Soit $f \in \mathcal{C}^{\infty}(\Omega)$ et $T \in \mathcal{D}'(\Omega)$, montrer que $\operatorname{supp}(fT) \subset \operatorname{supp}(f) \cap \operatorname{supp}(T)$.
- 3. Déterminer le support de $\operatorname{vp}(\frac{1}{x})$.
- 4. Déterminer le support singulier de $vp(\frac{1}{x})$.

Exercice 8 (Support et produit — facultatif). Soient $f \in \mathcal{C}^{\infty}(\mathbb{R}^d)$, on note $Z = f^{-1}(0)$.

- 1. Soit $T \in \mathcal{D}'(\mathbb{R}^d)$ tel que fT = 0, montrer que $\operatorname{supp}(T) \subset Z$.
- 2. Soient $K \subset U \subset \mathbb{R}^d$ avec K compact et U ouvert, montrer qu'il existe $\chi \in \mathcal{D}(U)$ à valeurs dans [0,1] et constante à 1 sur un voisinage de K.

Dans la suite, on fixe $T \in \mathcal{D}'(\mathbb{R}^d)$ une distribution d'ordre 0 telle que $\operatorname{supp}(T) \subset Z$. L'objectif est de montrer que dans ce cas fT = 0. Soit $\varphi \in \mathcal{D}(\mathbb{R}^d)$, on note $K = \operatorname{supp}(\varphi) \cap \operatorname{supp}(T)$.

- 3. Pour tout $\varepsilon \in]0,1]$, montrer qu'il existe U_{ε} ouvert contenant K tel que $\sup_{x \in U_{\varepsilon}} |f(x)| \leq \varepsilon$.
- 4. Construire une famille de fonctions $(\chi_{\varepsilon})_{\varepsilon \in [0,1]}$ telle que :
 - $\forall \varepsilon \in]0,1], \chi_{\varepsilon} \in \mathcal{D}(U_{\varepsilon}) \text{ et } \langle T, (1-\chi_{\varepsilon})f\varphi \rangle = 0;$
 - $\langle T, \chi_{\varepsilon} f \varphi \rangle \xrightarrow[\varepsilon \to 0]{} 0.$
- 5. Conclure que fT = 0.
- 6. Le résultat est-il encore vrai si on ne suppose pas que T est d'ordre 0?