§1 Lecture 12-03

Lipschitz Continuous.

Example 1.1

Last class: \sqrt{x} is <u>not</u> lipschitz on $[0, \infty[$, however \sqrt{x} is lipschitz on $[a, \infty[$ for any

$$a>0.$$
 Proof. Let $x,\mu\in[a,\infty[$. Then
$$|\sqrt{x}-\sqrt{\mu}|=|\frac{(\sqrt{x}-\sqrt{\mu})(\sqrt{x}+\sqrt{\mu})}{\sqrt{x}+\sqrt{u}}|$$

$$\leq \frac{1}{2a}|x-\mu|$$
 i.e. \sqrt{x} is lipschitz continuous on $[a,\infty[$ with lipschitz constant $k=\frac{1}{2\sqrt{a}}$

Last class: x^2 is lipschitz on $]-a,a[,\ a>0.$ However, x^2 is <u>not</u> lipschitz on \mathbb{R} . Proof. x^2 isn't even uniformly continuous on \mathbb{R} and thus cannot be lipschitz.

Definition 1.3 (Geometric interpretation of lipschitz continuous). Geometric interpretation of lipschitz continuous:

 $f: A \to \mathbb{R}$ is lipschitz if

$$\begin{split} \exists k > 0 \ : \ \forall x, \mu \in A \ : \ |f(x) - f(\mu)| & \leq k \cdot |x - \mu| \\ & \text{if } x \neq \mu \Leftrightarrow \ |\underbrace{\frac{f(x) - f(\mu)}{x - \mu}|}_{\text{Difference Quotient}} \leq k \end{split}$$

i.e. f is lipschitz if and only if the average slope of f is bounded on A.

§1.1 Another method for proving that \sqrt{x} is uniformly continuous on $[0, \infty[$.

<u>Idea</u>: If $x \ge 1$, \sqrt{x} is lipschitz on $[1, \infty[$ and thus uniformly continuous. And: if $0 \le x \le 1$: \sqrt{x} is uniformly continuous since it is continuous and [0, 1] is compact.

Q: $if\sqrt{x}$ is uniformly continuous on [0, 1] and $[1, \infty]$, does it follow that f is uniformly continuous on $[0, \infty[$.

A: Yes; this requries proof!

Theorem 1.4

Let f be uniformly continuous on intervals I_1 , I_2 where I_1 is closed on the right with $\sup I_1 = \max I_1 = b$. And I_2 is closed on the left with $\inf I_2 = \min I_2 = b$, then f is uniformly continuous on $I = I_1 \cup I_2$.

Proof. Let $\epsilon > 0$, f uniformly continuous on I_1 , thus $\exists \delta_1 > 0$ such that $|x - \mu| < \delta_1 \Rightarrow |f(x) - f(\mu)| < \epsilon/2$.

f is uniformly continuous on I_2 . Thus $\exists \delta_2 > 0$ such that $|x - \mu| < \delta_2 \Rightarrow |f(x) - f(\mu)| < \epsilon/2$.

Let $\delta := \min\{\delta_1, \delta_2\}$.

1. Case $x, \mu \in I_1$

$$|x - \mu| < \delta \le \delta_1 \Rightarrow |f(x) - f(\mu)| < \epsilon/2 < \epsilon$$

2. Case $x, \mu \in I_2$

$$|x - \mu| < \delta \le \delta_2 \Rightarrow |f(x) - f(\mu)| < \epsilon/2 < \epsilon$$

3. Case $x \in I_1, \mu \in I_2$

$$\begin{split} |x-\mu| < \delta \Rightarrow |x-b|\delta \wedge |u-b| < \delta \\ \text{Thus } |f(x)-f(b)| < \frac{\epsilon}{2} \text{ and } |f(\mu)-f(b)| < \frac{\epsilon}{2} \\ \text{Now: } |f(x)-f(\mu)| = |[f(x)-f(b)]-[f(\mu)-f(b)]| \\ \leq |f(x)-f(b)|+f(\mu)-f(b)| < \frac{\epsilon}{2}+\frac{\epsilon}{2} = \epsilon \\ \text{i.e. } |x-\mu| < \delta \Rightarrow |f(x)-f(\mu)| < \epsilon \\ \Rightarrow f \text{ is uniformly continous on } I = I_1 \cup I_2 \end{split}$$

Application: \sqrt{x} is uniformly continuous on [0,1] and $[1,\infty[\Rightarrow \sqrt{x}$ is uniformly continuous on $[0,\infty[$.

§1.2 Differentiation

Definition 1.5 (Differentiable Definition). Let $f: I \to \mathbb{R}$, I be an interval, $x_0 \in I$.

We say that f is <u>differentiable</u> at x_0 , if

$$\lim_{x \to x_0} \underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{\text{Difference Quotient}} \text{ exists.}$$

If the limit exists, we call its value the <u>derivative</u> of f at x_0 , denoted by

$$f'(x_0) = \frac{df}{dx}(x_0)$$

If f is differentiable at all $x_0 \in I$, we say that f is differentiable on I.

Theorem 1.6 (Caratheodory Alternative Description of Differentiability)

Let $f: I \to \mathbb{R}$, $x_0 \in I$, then f is differentiable at x_0 if and only if there exists a function $\phi: I \to \mathbb{R}$ continuous at x_0 such that

$$\forall x \in I \quad f(x) = f(x_0) + \phi(x)(x - x_0)$$

If ϕ exists, it holds that $\phi(x_0) = f'(x_0)$.

Proof. " \Rightarrow " Let f be differentiable at x_0 . Let

$$\phi(x) := \begin{cases} \frac{f(x) - f(x_0)}{x - x_0}, & x \neq x_0 \\ f'(x_0), & x = x_0 \end{cases}$$

Then

$$\lim_{x \to x_0} \phi(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) = \phi(x_0)$$

$$\Rightarrow \phi \text{ is continuous at } x_0$$

"\(= " \) Let $\phi: I \to \mathbb{R}$, continuous at x_0 such that

$$f(x) = f(x_0) + \phi(x)(x - x_0)$$

Let
$$x \neq x_0$$
. $\Rightarrow \phi(x) = \frac{f(x) - f(x_0)}{x - x_0}$

 ϕ continuous at $x_0 \Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists and equals $\phi(x_0) \Rightarrow f$ is differentiable at x_0 and $f'(x_0) = \phi(x_0)$

Applications: Differentiable implies continuous. i.e. if $f: I \to \mathbb{R}$ is differentiable at $x_0 \in I$, then f is continuous at x_0 .

Proof. f differentiable at $x_0 \Rightarrow \exists \phi : I \to \mathbb{R}$, continuous at x_0 such that $\forall x \in I$, $f(x) = \underbrace{f(x_0) + \phi(x) \cdot (x - x_0)}_{\text{continuous at } x_0}$

Theorem 1.7 (Product Rule)

Let $f, g: I \to \mathbb{R}$ be differentiable at x_0 . Then $f \cdot g$ is differentiable at x_0 and $(f \cdot g)'(x_0) = f'(x_0)g(x_0) - f(x_0) \cdot g'(x_0)$.

Proof. f, g differentiable at $x_0 \Rightarrow \exists \phi : I \to \mathbb{R}$ continuous at x_0 such that

$$f(x) = f(x_0) + \phi(x)(x - x_0)$$

$$g(x) = g(x_0) + \psi(x)(x - x_0)$$

$$\Rightarrow (f \cdot g)(x) = f(x) \cdot g(x)$$

$$= f(x_0)g(x_0) + f(x_0)(x)(x - x_0) + g(x_0)(x)(x - x_0) + \phi(x)\psi(x)(x - x_0)^2$$

$$\Rightarrow (f \cdot g)(x) = f(x_0)g(x_0) + [f(x)g(x_0) + f(x_0)\psi(x) + \phi(x)\psi(x)(x - x_0)] \cdot (x - x_0)$$

§1.3 Relationship Between Lipschitz Continuity and Differentiability

Recall 1.9 (Mean Value Theorem). The mean value theorem. Let $I = [a, b], f : I \to \mathbb{R}$ differentiable on]a, b[and continuous on the entire interval. Then there exists $c \in]a, b[$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Theorem 1.10

Let $f: I \to \mathbb{R}$ be differentiable. Then f is lipschitz on I if and only if f' is bounded on I.

Proof. " \Rightarrow " Let f be lipschitz with lipchitz constant k.

$$x, \mu \in I_{\mu} \ (x \neq \mu) \ \text{then } |f(x) - f(\mu)| \leq k|x - \mu|$$

$$\Rightarrow \left| \frac{f(x) - f(\mu)}{x - \mu} \right| \leq k$$

$$\Rightarrow -k \leq \frac{f(x) - f(\mu)}{x - \mu} \leq k$$

$$\Rightarrow -k \le \lim_{x \to \mu} \frac{f(x) - f(\mu)}{x - \mu} \le k$$
$$\Rightarrow -k \le f'(\mu) \le k$$
$$\Rightarrow |f'(\mu)| \le k \ \forall \ \mu \in I$$
$$\Rightarrow f' \text{ is bounded on } I$$

" \Leftarrow " Assume that f' is bounded on I.

Let k > 0 such that $|f'(x)| \le k$ for all $x \in I$.

Let $x < \mu$, $x, \mu \in I$. Apply mean value theorem to f on $[x, \mu]$ then $\exists c \in]x, \mu[$ such that

$$\frac{f(x) - f(\mu)}{x - \mu} = f'(c) \Rightarrow \frac{|f(x) - f(\mu)|}{|x - \mu|} = |f'(c)| \le k$$
$$\Rightarrow |f(x) - f(\mu)| \le k|x - \mu|$$
$$\Rightarrow f \text{ is lipschitz on } I$$