第一章 基本概念

§1-1 本性

(1)原子的結構

	帶電量 (庫侖/個)	質量 (千克/個)
質子	+1.602×10 ⁻¹⁹	1.672×10 ⁻²⁷
中子	0	1.675×10 ⁻²⁷
電子	-1.602×10 ⁻¹⁹	9.11×10 ⁻³¹

質子的質量為電子的 1840 倍

(2)各能層名稱與電子數

K:第一層,n=1

L: 第二層, n=2

M: 第三層,n=3

N: 第四層, n=4

O:第五層,n=5

P: 第六層,n=6

Q:第七層,n=7

每層中電子數最多為 2n2 個

主層	K	L	М	N	0 · P · Q
最大電子數	2×1²=2	2×2 ² =8	2×3 ² =18	2×4 ² =32	依次類推

(3)依導電能力可把物質區分為

- a. 導體(最外層電子數少於 4 個) 易失去電子者。
- b. 絕緣體(最外層電子數多於 4 個) 不易失去電子而呈現穩定狀態者。
- c. 半導體(最外層電子數等於 4 個)不易失去電子,也不易獲得電子者。

(4)各種電子的名稱

a. 價電子:原子最外層軌道上的電子。

b. 自由電子:脫離軌道而自由活動的電子。

c. 正離子:原子失去電子,成為帶正電荷的原子稱之。

d. 負離子:原子獲得電子,成為帶負電荷的原子稱之。

e. 游離:原子變成離子的過程。

§1-2 單位

(1)常用基本單位如下表所示

制別	長度 (1)	質量 (m)	時間 (t)
MKS制	公尺 (m)	公斤 (kg)	秒 (s)
C GS 制	公分 (cm)	公克(g)	秒 (s)
FPS制	呎 (ft)	磅 (1b)	秒 (s)

(2)常用的電學實用單位

名稱	符號	單位	符號
電荷	Q	庫侖	С
電能	W	焦耳	J
電功率	P	瓦特	W
電壓	$E \cdot V$	伏特	V
電流	I	安培	A
電阻	R	歐姆	Ω
電容	C	法拉	F
電感	L	享利	Н
頻率	f	赫芝	Hz
週期	T	秒	S

(3)次方數字首代表之符號及數值大小

10 的次方	10-12	10-9	10⁻6	10⁻³	10^{3}	106	109	1012
符號	R	Đ,	μ	m.	k	M	G	Т
中文	披或微微	奈或毫微	微	毫	仟	百萬	十億	兆

§1-3 電荷

- 1、電荷(電量、電荷量)(Q)(electric charge)
 - (1) 單位:庫侖(C)
 - (2) 1 庫侖(C) = 6.25×10¹⁸ 個電子所帶的電量。
 - (3) 一個電子的電量為 1/6.25×10¹⁸ = 1.602×10⁻¹⁹ 庫侖。
- 2、庫侖定律:求相距 r的兩電荷間之作用力;

$$F = K \frac{Q_1 Q_2}{r^2}$$

02	F	K(係數)	$Q_1 \times Q_2$	7
	(作用力)	真空、空氣中	其他介質	〔電荷〕	(距離)
MKS制	牛頓	$\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9$	$\frac{1}{4\pi\varepsilon_0\varepsilon_r}$	庫侖	公尺
C GS 制	達因	1	$\frac{1}{\varepsilon}$	靜庫	公分

EX:設有兩帶電小球體在空氣中相隔 3 公分,如兩球間之斥力為 10 - 10 牛頓,而其中一小

◆詳解:
$$F = K \frac{Q_1 Q_2}{r^2}$$
 , $10^{-10} = 9 \times 10^9 \frac{3 \times 10^{-9} \times Q_2}{(3 \times 10^{-2})^2} = \frac{3Q_2}{10^{-4}}$
∴ $Q_2 = \frac{1}{3} \times 10^{-14}$ 庫侖

§1-4 電流

(1) 單位:安培(A)。

(2) 定義:單位時間(秒)通過導體之電量即為電流大小(/)。

(3) 1 安培電流即為每秒有 1 庫侖(6.25×1018 個電子)通過導體截面積。

公式:/=
$$\frac{Q}{t}$$

(4) 方向:

(1) 傳統電流:電源正端出發,經由負載回至電源負端。

(2) 電子流:由電源負端出發,回至電源正端。

(3) 電流與電子流兩者的大小相同,方向相反。

(5) 電流的另一種算法

依據定義電流是單位時間流過導體某一截面的電量

n:導體內自由電子濃度(電子數/m3)。

 $I = \frac{Q}{t}$ A: 導體截面積 (m^2) ℓ : 導體長度 (m) ℓ

 $=\frac{nA\ell e}{t}$ v: 自由電子在導體內移動的速率 m/s。

= nAve e: 一個電子的帶電量($e = 1.602 \times 10^{-19} C$)

I:電流(A)。

Q: 電量 C (1C = 6.25×10^{18} 個電子)。

EX:若流過某電阻的電流為6安培,則每分鐘通過該電阻截面積之電量為多少庫侖?

◆詳解: *Q*= /*t*= 6×60 = 360 庫侖 (89)

EX:有一銅線,其截面積為 0.05 平方公分,電子密度為 10²⁹ 個/立方公尺,線路電流 為 8 安培,求電子在銅線的平均速率為多少公尺/秒? (86)

◆詳解:根據 I=Avne

$$v = \frac{I}{neA} = \frac{8}{10^{29} \times 1.6 \times 10^{-19} \times 0.05 \times 10^{-4}}$$

= 1×10 - 4 公尺/秒

EX: 有一導線, 每秒流過 6.25×10¹⁸ 個電子, 其電流為多少安培? (87)

◆詳解:1庫侖=6.25×1018個電子

$$I = \frac{Q}{t} = \frac{1}{1} = 1$$
 安培

§1-6 電壓

- 1、電壓(電位差)(E、V)
 - (1) 單位:伏特(V)
 - (2) 定義:移動單位正電荷(1C)自a點至b點,所做(吸收或釋放)之功, 即稱此兩點之電位差。

$$V = \frac{W}{Q}$$
 $\vec{\mathbf{g}}$ $V_{ab} = \frac{W_{ab}}{Q}$

 $V_{ab} = V_{a} \cdot V_{b} \Rightarrow$ 表示 a 和 b 兩點間的電位差

(3) 電動勢:

電源在開路狀態時兩端之電位差。

電流沒流通,電阻沒有壓降故 V_{ab} = E= 10V。

- (4)電壓升、電壓降
 - a、電壓降(V):電流由元件+端流入,—端流出。
 - b、電壓升 (V): 電流由元件—端流入,+端流出。

EX:將 3 庫侖之電荷由 A 點移至 B 點,須作功 18 焦耳,則 A 與 B 點間之電位差為幾伏特?

◆詳解:
$$V_{BA} = \frac{W_{BA}}{Q} = \frac{18}{3} = 6(\text{V})$$
 (87)

§1-8 電功率

1、定義:單位時間所作的功,稱為電功率(P)

公式:
$$P=\frac{W}{t}=\frac{V\times I\times t}{t}=VI=PR=\frac{V^2}{R}$$

公制單位:瓦特= $\frac{$ 焦耳

2、英制單位:馬力(HP) 1HP=746W=0.746kW 1kW=1.34HP (88)

EX:將額定 100 瓦、200 伏特的電熱絲接於 100 伏特之電源,則其產生之功率為?(87)

EX:設有兩個電阻 R_1 與 R_2 串聯接於 100V 之電源,其中 R_1 消耗功率為 20W, R_2 消耗功率為 80W,則 R_1 及 R_2 之值分別為?(88)

◆ 詳解:
$$I = \frac{P_1 + P_2}{V} = \frac{20 + 80}{100} = 1$$

$$R_1 = \frac{P_1}{I^2} = \frac{20}{1^2} = 20(\Omega)$$

$$R_2 = \frac{P_2}{I} = \frac{80}{1^2} = 80(\Omega)$$

§1-9 能量

1、能量(功)(₩)

(1) 單位:焦耳(J)

2、電能(一):
$$W = Pt = VIt = I^2Rt = \frac{V^2}{R}t$$

符號	W	P	T	E	I	R
名稱	功	電功率	時間	電壓	電流	電阻
單位	焦耳或 瓦特、秒	瓦特 (W)	秒 (s)	伏特〔Ⅴ〕	安培 (A)	歐姆 (Ω)

3、電能(二): W= VQ

符號	W	v	Q
名稱	功、能量	電位差	電荷〔量〕
單位	焦耳或瓦特、秒	伏特 (V)	庫侖 (C)

4、電能的另外兩個單位:

1 電子伏特(eV) =
$$1.602 \times 10^{-19} \times 1 = 1.602 \times 10^{-19} (J)$$
 (88) (由 $W=QV$, 1 個電子的電量 $Q=1.602 \times 10^{-19} C$)

EX: 某電阻值為 10 歐姆之加熱器上通有 2 安培電流, 則於一分鐘內轉換為熱之能量為

◆詳解: W= P×t= PR×t= 22×10×60= 2400(J)

EX:以一台 800 瓦特的電鍋煮飯 1.5 小時, 電費每度為 3.5 元, 則須付之電費為多少元?

◆詳解:
$$W = P \times t = \frac{800}{1000} \times 1.5 = 1.2 \text{kw.hr} = 1.2$$
 度 (89)

電費= 1.2×3.5= 4.2(元)

5、效率

$$\eta = \frac{P_o}{P_i} = \frac{P_i - P_l}{P_i} = \frac{P_o}{P_o + P_l}$$

多個轉換器串接

$$p_{i} \rightarrow \boxed{\eta_1} \rightarrow \boxed{\eta_2} \rightarrow \boxed{\eta_3} \rightarrow p_o$$

總效率 $\eta_T = \eta_1 \times \eta_2 \times \eta_3$

EX:某一系統的能量轉換效率為 80%, 若損失功率是 400 瓦特, 則該系統的輸出功率是 多少瓦特?

(90)

◆詳解:
$$:: \eta = \frac{P_o}{P_o + P_{Loss}}$$

 $:: P_o = \frac{\eta P_{Loss}}{1 - n} = \frac{80\% \times 400}{1 - 80\%} = 1600(W)$

EX:某家電用品,其使用電壓 110V,若流入之電流為 10 安培,它能提供 550 瓦特的功率以供使用,試問此電器之效率為何? (88)

◆詳解:
$$\eta = \frac{P_o}{P_I} \times 100\%$$
 (P_I : 輸入功率, P_o : 輸出功率)
$$P_I = k V = 10 \times 110 = 1100(W)$$

$$\eta = \frac{P_o}{P_I} \times 100\% = \frac{550}{1100} \times 100\% = 50\%$$

第二章 電阻

§2-1 電阻與電導

1、電阻(R)

(1) 定義:自由電子流過導體,所遭受到的阻力,使電能轉變成熱能之性質稱之。

(2) 公式:
$$R$$
= $\rho \frac{\ell}{A}$

R:物質的電阻,歐姆(Ω)。

 ρ :材料的電阻係數, Ω ·m。

1: 材料的長度(沿電流方向), 公尺(m)。

A: 截面積(與電流方向垂直), 平方公尺(m²)。

(3) 單位:歐姆(ohm),以Ω示之。

(4) 含義:導體的電阻(R)和截面積(A)成反比,

和導體長度 (I) 及導體的電阻係數 (ρ) 成正比。

2、電導(G)

(1) 定義:電導為電阻的倒數。

(2) 公式:
$$G = \frac{1}{R} = \frac{1}{\rho} = \frac{1}{\rho} \cdot \frac{A}{\ell} = \sigma \frac{A}{\ell}$$
 (姆歐或西門子 siemens,S)

 σ (小寫的希臘字母 Sigma)稱為電導係數。

3、電阻係數 ρ 與電導係數 σ

(1) 非良導體:電阻係數 ho 愈大,或電導係數 σ 愈小。

(2) 良導體:電阻係數 ρ 愈小,或電導係數 σ 愈大。

(3) 電導係數:軟銅為準,將其定為 100%,其他如銀為 106.4%、純銅為 103.1%。

EX: 大多數家庭所使用的實心銅電線直徑為 1.63mm, 求出此種直徑的實心銅電線 50 m

◆詳解:
$$R = \rho \frac{\ell}{A} = 1.723 \times 10^{-8} \times \frac{50}{\frac{\pi}{4} \times (1.63 \times 10^{-3})^2} = 0.412(Ω)$$

EX:有一長 10cm 之導體,其電阻值為 20Ω ,若將其拉長,使此導體之長度為 40cm,

則此導體之電阻可能為?

(90)

◆詳解:*R*'= *R*×(
$$\frac{\ell'}{\ell}$$
)²= 20×($\frac{40}{10}$)²= 320(Ω)

§2-2 色碼電阻

- 1、色碼(color code)電阻
 - (1) 常用的電阻器的阻值表示法有兩種:
 - a. 數值表示法:用於體積較大的電阻器上。
 - b. 色碼表示法:一般用於體積較小的電阻器。
 - (2) 色碼電阻所用顏色及代碼

33	0	1	2	3	4	5	6	7	8	9	±5%	±10%
	牆	棕	紅	橙	黄	綠	畊	紫	灰	巾	金	銀

- (3)一般色碼電阻依其色碼帶數,可分為
 - (a) 三環式色碼電阻
 - 三環式其誤差均為±20%,其餘前三環式和四環式一樣。
 - (b) 四環式色碼電阻

例如: 黃 紫 橙 金 ↓ (((

表示:47(103(5%=47k(5%

最大值:47k+(47k×5%)

最小值:47k-(47k×5%)

(c) 五環式色碼電阻

例如: 橙 紫 綠 棕 紅

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad (\qquad ($$
3 7 5 1 (2%)

表示: 375×10¹±2% = 3.75k±2%

§2-4 歐姆定律

1、歐姆定律(Ohm's Law)

(1) 公式 /=
$$\frac{V}{R}$$

(2) 電阻不變,電流與電壓成正比。 電壓不變,電流與電阻成反比。

EX: 將 15 伏特的電壓加在一色碼電阻上,若此色碼電阻上之色碼依序為紅、黑、橙、

金,則下列何者為此電阻中可能流過之最大電流? (92)

◆詳解: R=20kΩ±5%

$$R_{\text{max}} = 20k + 20k \times 0.05 = 21k(\Omega)$$

$$R_{\text{min}} = 20\text{k} - 20\text{k} \times 0.05 = 19\text{k}(\Omega)$$

$$I_{\text{max}} = \frac{15}{R_{\text{min}}} = \frac{15}{19\text{k}} = 789 \,\mu \,A$$

§2-5 電阻溫度係數

- 1、電阻的溫度係數 (α_t) 的定義
 - (1)定義:溫度每升高 1℃所增加之電阻值與原電阻值之比值,即稱為原溫度之電阻的 溫度係數。

(2)公式為:
$$R_2 = R_1(1 + \alpha_1(t_2 - t_1))$$

 $\alpha_1: t_1$ °C之溫度係數(不方便得知)

改寫為:
$$\alpha_1 = \frac{\frac{R_2 - R_1}{t_2 - t_1}}{R_1}$$

銅線 α_{o} = 0.00427 (最常用)

$$\frac{R_2}{R_1} = \frac{234.5 + t_2}{234.5 + t_1}$$

EX:有一電阻器在 20° C時為 2Ω ,在 120° C時為 3Ω ,求此電阻器在 20° C時之溫度係數為多少?

(88)

◆ 詳解:

$$\alpha_{t_1} = \frac{(R_2 - R_1)/(t_2 - t_1)}{R_1}$$

$$\alpha_{20} = \frac{\frac{(3 - 2)}{(120 - 20)}}{2} = \frac{\frac{1}{100}}{2} = 0.005$$

EX:某銅線在溫度 5.5℃時其電阻為 1.6 歐姆,當溫度上升至 35.5℃時,其電阻應為多

少歐姆?

(89)

◆詳解:
$$\frac{R_{t_2}}{R_{t_1}} = \frac{t_0 + t_2}{t_0 + t_1}$$
 $\frac{R_{t_2}}{1.6} = \frac{234.5 + 35.5}{234.5 + 5.5}$ $R_{t_2} = 1.8(\Omega)$

§2-6 焦耳定律

- 1、焦耳定律:電流流經導體時,所生的熱量(H)與電流的平方(P) 導體的電阻(R) 及經歷時間(t)成正比。
 - (1)公式: H=0.24 PRt=0.24 VIt=0.24Pt=0.24W(卡)
 - (2)單位:

1卡:使1克的水,升高溫度1°C所需的熱量,是一公制熱量單位。

1BTU: 使 1 磅的水,升高温度 1°F 所需的熱量,是一英制熱量單位。

(91)

單位互換:1BTU=252卡,

$$1 + (cal) = 3.968 \times 10^{-3} BTU$$

(3)W(能量)的單位為焦耳,焦耳和卡的單位轉換:

1卡=4.2 焦耳

1 焦耳 = 0.24 卡

EX:1仟瓦小時的能量,相當於多少 BTU 的熱量?

◆詳解:1J = 0.24 cal = 0.24 ×(3.968×10⁻³)= 0.95 ×10⁻³ BTU

1kW-hr = 3.6×10^6 J = $3.6 \times 10^6 \times 0.95 \times 10^{-3}$ = 3428BTU

EX:如圖所示 ________,電阻器 1 分鐘產生多少卡熱量? (87)

◆詳解: $H = 0.24 p t = 0.24 \times \frac{E^2}{R} \times t = 0.24 \times \frac{(100)^2}{20} \times 60 = 7200$ (Cal)

第三章 串聯電路

§3-1 定義與特性

1、定義: 將兩個或兩個以上的電路元件, 依頭尾順序聯成串接的電路, 稱為串聯電路。

2、電阻串聯電路的特性

(1) 電流:流經各電阻的電流均相同,即:/= $I_1 = I_2 = ... = I_n$ 。

(2) 電壓:外加電壓等於各電阻電壓降之和;即

$$E = V_1 + V_2 + V_3 = + \dots + V_n$$

$$= I \cdot R_1 + I \cdot R_2 + I \cdot R_3 + \dots + I \cdot R_n$$

$$= I \cdot (R_1 + R_2 + R_3 + \dots + R_n) = I \cdot R_T$$

(3) 總電阻:總電阻為各電阻之和;即

$$R_{T} = R_1 + R_2 + R_3 + \dots + R_n$$

(4) 電流:流經各電阻的電流

$$I = \frac{E}{R_T} = \frac{E}{R_1 + R_2 + R_3 + \dots + R_n}$$

(5) 總功率:總功率為各電阻功率之和;即

$$P_{T} = P_{1} + P_{2} + P_{3} + \dots + P_{n}$$

$$= P \cdot (R_{1} + R_{2} + R_{3} + \dots + R_{n})$$

$$= P \cdot R_{T} = E \cdot I$$

3、電壓分配定則:

$$V_1 = E \times \frac{R_1}{R_T}$$

$$V_2 = E \times \frac{R_3}{R_T}$$

$$V_3 = E \times \frac{R_2}{R_T}$$

EX:右圖中,電壓 V₁ = _____ V (89 年)

◆ 詳解:依分壓定則,

$$V_1 = \frac{4}{2+3+4} \times 36 = 16V$$

EX:如圖所示,電路中可變電阻器 R_L 調整範圍是 $30k\Omega$ 到 $60k\Omega$, 當可變電阻調整到跨於 R_L 兩端的電壓為最大值 時 , 電 流 I 等 於 多 少 ? (89 年)

◆ 詳解: R_L = 60kΩ 時, 其端電壓為最大值

$$\therefore I = \frac{E}{R_S + R_L} = \frac{100}{40k + 60k} = 1 \text{ mA}$$

§3-2 克希荷夫電壓定律

1、克希荷夫電壓定律(簡稱 KVL)→於封閉迴路 在一封閉迴路中,電壓升的總和(ΣE)等於電壓降的總和(ΣV) 即: $\Sigma E = \Sigma V$

2、電壓升與電壓降

電壓升:電流由負端(低電位)流入,正端(高電位)流出者。通常指電源之電壓。 電壓降:電流由正端(高電位)流入,負端(低電位)流出者。通常指負載之電壓。

3、利用「KVL」分析電路的步驟

- (1)首先把迴路電流 / 之方向與各元件極性定好。
- (2)再循著電流方向,判斷出各元件是電壓升或電壓降,
- (3)依「KVL」列出方程式,如上圖即為:

$$E_1 + E_2 = V_{R_1} + V_{R_2} + V_{R_3} + E_3$$

(4)再依歐姆定律及配合題意求解。

EX:右圖的電路中,電壓值 V₁是多少?

◆ 詳解:根據克希荷夫電壓定律:

故電壓升=電壓降

 $V_1 = 1m \times 3k + 5 = 8V$

EX:如右圖所示,求 E₃ =?

◆詳解: 電壓升=電壓降

$$E_1 + E_2 = 5 \times I + E_3 + 10 \times I$$

$$/=10 = \frac{50 + 200 - E_3}{10 + 5} = \frac{250 - E_3}{15}$$

$$150 = 250 - E_3$$

$$E_3 = 250-150 = 100(V)$$

3-3 串聯應用實例

- 1、兩個燈泡串聯:
 - (1) 兩個規格相同(如 P₁ 瓦、V₁ 伏)之燈泡串聯,加上 V 伏特的端電壓,則兩者消耗相同的功率

$$P = \frac{V_1^2}{R_1} = \frac{V_2^2}{R_2} = \frac{\left(V_2\right)^2}{V_1^2/P_1}$$

(2) 兩個規格不同之燈泡串聯

以
$$R = \frac{V^2}{P}$$
 求各電阻值 R_1 、 R_2 及總電阻 R_T 。 以 $I = \frac{V}{R_T}$ 求電流。

以
$$P_1 = I^2 R_1$$
、 $P_2 = I^2 R_2$ 求各燈泡消耗功率。

如果 P₁ 或 P₂ 超過原額定功率則表示該燈泡會燒毀。

- EX: 一個規格為 100 Ω、100W 的電熱器,與另一個規格為 100 Ω、400W 的電熱器串聯之後,再接上電源,若不使此兩電熱器中之任何一個之消耗功率超過其規格,則電源之最高電壓為何? (92 年)
- ◆詳解:二個額定電流不同的元件串聯,其串聯之後的最大電流,取額定值較小者。

$$P = I^2 R$$
 \Rightarrow $I = \sqrt{\frac{P}{R}}$

100Ω、100W 電熱器的額定電流 I₁,則

$$I_1 = \sqrt{\frac{100}{100}} = 1$$

100 Ω 、400W 電熱器的額定電流 I_2 ,則

$$I_2 = \sqrt{\frac{400}{100}} = 2$$

$$E=1\times(100+100)=200(V)$$

(A) A、B 兩燈泡一樣亮 (B) A、B 兩燈泡各有 110 伏特之電壓降 (C) B 燈泡一可能因過載而過熱燒毀 (D) A 燈泡兩端電壓降為 157 伏

◆詳解:
$$R_1 = \frac{V_1^2}{P_1} = \frac{100^2}{100} = 100\Omega$$
 $R_2 = \frac{V_2^2}{P_2} = \frac{100^2}{40} = 250\Omega$

由分壓定理得知電阻較大(瓦特數小)分得較大電壓

串連接 200 伏特電壓

$$V_A = I \times R_1 = \frac{200}{100 + 250} \times 100 = 57V$$

 $V_B = I \times R_2 = \frac{200}{100 + 250} \times 250 = 142V$

→燈泡 B 電壓會超過 100 伏特→燒毀

第四章 並聯電路

§4-1 定義與特性

- 1、定義:將電路中所有元件,頭接頭,尾接尾即稱為串聯電路。
 - 一般用平行符號「//」,表示並聯,如 R_1 // R_2 // R_3 。
- 2、電阻串聯電路的特性
 - (1) 電壓:並聯中各電阻的端電壓均相同,且等於電源電壓;

即:
$$E = V_1 = V_2 = \dots = V_n$$

(2) 電流分配:電阻愈大,流經該電阻的電流愈小。

$$I_1 = \frac{E}{R_1} = G_1 E$$
 $I_2 = \frac{E}{R_2} = G_2 E$

(3) 電流:總電流等於各支路電流之和:即

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

(4) 總電阻:總電阻的倒數為各支路電阻倒數之和。

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

(6) 總功率:總功率為各電阻功率之和;即

$$P_{T} = P_{1} + P_{2} + P_{3} + \dots + P_{n}$$

= $\frac{E^{2}}{R_{1}} + \frac{E^{2}}{R_{2}} + \dots + \frac{E^{2}}{R_{n}} = \frac{E^{2}}{R_{T}}$

3、電流分配定則

$$I_1 = \frac{R_2}{R_1 + R_2} \times I$$

$$I_2 = \frac{R_1}{R_1 + R_2} \times I$$

EX:有 4 個電阻並聯,此 4 個電阻之值分別為 $24k\Omega$, $24k\Omega$, $12k\Omega$, $6k\Omega$,已知流入 4 個並聯電阻之總電流為 240mA,則 $6k\Omega$ 電阻上之電流為多少安培? (90年)

◆ 詳解:四個電阻並聯總電阻R_T = 24K // 24K // 12K // 6K = 3K

該四個電阻並聯兩端端電壓 E 為:

E =
$$I_T \times R_T = 240mA \times 3K = 720V$$

 $I_{6\Omega} = \frac{E}{6k} = \frac{720V}{6K} = 120mA$

EX:兩電阻器 R1 與 R2 並聯,已知流過兩電阻器之電流分別為 $I_{R_1} = 2A$,且 R1 $= 2\Omega$,則 R2 的電阻值為多少? (90 年)

◆ 詳解:
$$I = I_{R_1} + I_{R_2} = 2 + 1 = 3$$

$$I_{R_2} = / \times \frac{R_1}{R_1 + R_2}$$

$$1 = 3 \times \frac{2}{2 + R_2}$$

$$R_2 = 6-2 = 4(\Omega)$$

4-2 克希荷夫電流定律

1、克希荷夫電流定律(Kirchhoff's Current Law,KCL) 流入任一節點的電流和必等於流出該節點之電流和。
即 $\Sigma I_{in} = \Sigma I_{out}$

2、利用「KCL」分析電路的步驟

- (1) 找出電路中的節點(單純的並聯電路一定只有二個節點)。
- (2) 標示出各支路電流的方向,並附予符號。

(3) 利用「KCL」,列出方程式,再配合歐姆定律及題意求解。

EX: 如圖所示

 $, I_1 及 I_2 之值分別為 (88 年)$

◆詳解:利用 K.C.L 可得

$$6+2+10+3 = I_2+9+2+8$$

$$I_2 = 2$$

$$6+3+I_1=I_2$$

$$I_1 = -7$$

EX:

$$\oplus$$
 KCL $\Rightarrow I_1=4+3=7$

$$I_2 = I_1 - 2 = 5$$

$$I+I_2=9+1$$

EX: 如圖 所示電路中,各電阻均為 $2k\Omega$,則 I_1+I_2 等於多少?

◆詳解: (89年) 3A

EX: 如圖 之直流電路,求其中電流 $I_1+I_2=?$ (92 年)

◆詳解:因為 I_1 及 I_2 之路徑是只有電源,所以應利用相關的節點,由 KCL 得其電流

$$I_1 = I_3 + I_4 = \frac{9-12}{1+2} + \frac{9-6}{1+2} = 0$$

$$I_2 = I_5 + I_6 = \frac{15 - 12}{1 + 2} + \frac{15 - 6}{1 + 2} = 1 + 3 = 4$$

$$\therefore I_1 + I_2 = 4A$$

EX: 如圖

◆詳解:

某元件的電功率=此元件的端電壓×元件內電流

$$I_1 = \frac{12}{3} = 4$$

$$I_2 = \frac{12 - (-6)}{6} = 3$$

$$I_3 = \frac{12 - (-6)}{6} = 3$$

$$I_4 = \frac{12}{3} = 4$$

$$I_5 = I_3 + I_4 = 7$$

流經 12 電源的電流 $I=I_1+I_2+I_5=4+3+7=14$

$$P_{12V} = 12 \times 14 = 168(W)$$

4-4 基本串並聯電路

◆詳解: R_{ab} = 5+(8//56)+(16//16)= 20(Ω)

$$36V_-^+$$
 12Ω 12Ω

原圖=
$$36V^{+}$$
 $\frac{I_{5}}{I_{3}}$ $\frac{I_{2}}{I_{2}}$ $\frac{I_{2}}{I_{4}}$ $\frac{I_{2}}{I_{4}}$ $\frac{I_{4}}{I_{2}}$ $\frac{I_{4}}{I_{4}}$ $\frac{I_{4}}$ $\frac{I_{4}}{I_{4}}$ $\frac{I_{4}}{I_{4}}$ $\frac{I_{4}}{I_{4}}$ $\frac{$

$$= + \begin{bmatrix} 2\Omega \\ + \\ 4\Omega \end{bmatrix} + C$$

$$6//3 = \frac{6 \times 3}{6+3} = 2(\Omega)$$

$$6//3 = \frac{6 \times 3}{6+3} = 2(\Omega)$$
$$12//6 = \frac{12 \times 6}{12+6} = 4(\Omega)$$

$$V = 36 \times \frac{4}{4+2} = 24(V)$$

$$I_5 = \frac{36}{2+4} = 6(A)$$
 $I_3 = \frac{24}{12} = 2(A)$

$$I_3 = \frac{24}{12} = 2(A)$$

$$I_1 = \frac{36 - 24}{3} = 4(A)$$
 $I_4 = \frac{24}{6} = 4(A)$

$$I_4 = \frac{24}{6} = 4(A)$$

◆詳解:
$$I_2 = \frac{36-24}{6} = 2(A)$$

$$I = I_1 - I_3 = 4 - 2 = 2(A)$$

EX:

◆詳解: $R_{ab} = 8+2 = 10(Ω)$

◆詳解:
$$I = \frac{18}{4 + (6//3)} \times \frac{3}{6+3} = 1$$

EX: 如圖 所示之電路,電壓源所供給之功率為多少瓦特? (89 年)

◆詳解:
$$R_T = [(3//9)+9]//9 = (\frac{9}{4}+9)//9 = \frac{\frac{45}{4}\times 9}{\frac{45}{4}+9} = \frac{45}{4}\times 9\times \frac{4}{81} = 5(Ω)$$

$$\therefore P = \frac{E^2}{R_T} = \frac{10^2}{5} = 20(W)$$

第五章 直流迴路(一)

5-1 Y-∆ 互換法則

(1)
$$Y \to \Delta$$

 $R_1 = R_a + R_c + \frac{R_b R_c}{R_a} = \frac{R_a R_b + R_b R_c + R_c R_a}{R_a}$
 $R_2 = R_c + R_a + \frac{R_c R_a}{R_b} = \frac{R_a R_b + R_b R_c + R_c R_a}{R_b}$
 $R_3 = R_a + R_b + \frac{R_a R_b}{R_c} = \frac{R_a R_b + R_b R_c + R_c R_a}{R_c}$

(2)
$$\Delta \rightarrow Y$$

$$R_a = \frac{R_2 R_3}{R_1 + R_2 + R_3}$$

$$R_b = \frac{R_1 R_3}{R_1 + R_2 + R_3}$$

$$R_c = \frac{R_1 R_2}{R_1 + R_2 + R_3}$$

EX:如右圖所示,試求流經 A, B兩點間的電流 / 為多少安培?(90年)

◆詳解:上面的Δ化成 Y
$$r_1 = \frac{20 \times 30}{20 + 30 + 50} = 6\Omega$$

$$r_2 = \frac{20 \times 50}{20 + 30 + 50} = 10\Omega$$

$$r_3 = \frac{30 \times 50}{20 + 30 + 50} = 15\Omega$$

$$R_7 = 24 + 6 + [(10 + 20) / / (15 + 45)] = 50\Omega$$

$$I_7 = \frac{450}{50} = 9A \cdot i = 9 \times \frac{30}{30 + 60} = 3A$$

5-2 節點電壓法

一、節點電壓法分析電路步驟

Step1:仔細觀察電路,找出電路中所有的節點。

Step2:擇其中一個適當的節點為整個電路電位的參考點,並在此點劃上「 👤 」

Step3:其餘各節點(餘 1 個節點)與參考點間的相對電位為未知數,並標註各節點電位的符號如 V_a 、 V_b ...等。

Step4:設各節點支路電流方向,並標示於電路圖上。

Step5:利用「KCL」與「歐姆定律」列出節點方程式。

$$\frac{V_a - E_1}{R_1} + \frac{V_a}{R_2} + \frac{V_a - (-E_2)}{R_3} = 0$$

$$\therefore \frac{V_a - E_1}{R_1} + \frac{V_a}{R_2} + \frac{V_a + E_2}{R_3} = 0$$

Step6:解方程式,求出節點電位 V_a 、 V_b ...等。

EX:如右圖,求電壓 V₀=?(91年)

$$V_0 = 36 \times \frac{4}{4+6} = 14.4V$$

EX: 如右圖所示電路節點 V_1 及 V_2 的電壓值,各為多少伏

特?(91年)

◆詳解:利用節點的電壓法:

$$\begin{cases} \frac{V_1 - 6}{3} + \frac{V_1}{6} + \frac{V_1 - V_2}{2} = 0\\ \frac{V_2 - V_1}{2} + \frac{V_2}{8} + \frac{V_2 - 32}{8} = 0 \end{cases}$$

$$\Rightarrow \begin{cases} 6V_1 - 3V_2 = 12 \\ -4V_1 + 6V_2 = 32 \end{cases}$$
$$V_1 = 7V \cdot V_2 = 10V$$

5-3 迴路分析法

一、迴路電流法分析電路步驟

Step1:找出電路中所有「獨立的」迴路。

Step2:定出迴路電流方向(一般定為順時鐘方向)。

Step3:以迴路為單位,利用「KVL」與「歐姆定律」列出方程式。

迴路 $A: R_1 \cdot I_A + R_2 (I_A - I_B) = E_1$

迴路 B: R₂(I_B-I_A)+R₃·I_B= E₂

Step4:聯立方程組,求出各迴路電流。

$$\begin{cases} R_{1} \cdot I_{A} + R_{2} \cdot (I_{A} - I_{B}) = E_{1} \\ R_{2} \cdot (I_{A} - I_{B}) + R_{3} \cdot I_{B} = E_{2} \end{cases}$$

$$\begin{cases} (R_{1} + R_{2}) \cdot I_{A} - R_{2} \cdot I_{B} = E_{1} \cdot \dots \cdot 1 \\ -R_{2} \cdot I_{A} + (R_{2} + R_{3}) \cdot I_{B} = E_{2} \cdot \dots \cdot 2 \end{cases}$$

EX:如右圖所示,以迴路分析法,求 I_1 , I_2 ?(90年)

◆ 詳解:以 KVL 寫出二迴路之電壓方程式如下

$$\begin{cases} (3+6)I_1 - 6I_2 = 90 \\ -6I_1 + (6+12)I_2 = -60 \end{cases} \rightarrow$$

$$\begin{cases}
9I_1 - 6I_2 = 90 \\
-6I_1 + 18I_2 = -60
\end{cases}$$

解聯立方程式得: I_1 =10, I_2 =0

EX:圖之直流電路,以迴路分析法所列出之方程式如下:(92年)

$$\begin{aligned} a_{11}I_1 + a_{12}I_2 + a_{13}I_3 &= 15 \\ a_{21}I_1 + a_{22}I_2 + a_{23}I_3 &= 10 \\ a_{31}I_1 + a_{32}I_2 + a_{33}I_3 &= -10 \end{aligned}$$

則
$$a_{11} + a_{22} + a_{33} = ?$$

迴路 1.
$$\Rightarrow$$
 $I_1+10(I_1-I_2)+10(I_1-I_3)=15$

迴路 2.
$$\Rightarrow 9I_2+(I_2-I_3)+10(I_2-I_1)=10$$

迴路 3.
$$\Rightarrow$$
 9 I_3 +10(I_3 - I_1)+(I_3 - I_2)+10=0

$$\Rightarrow \begin{cases} 2II_1 - 10I_2 - 10I_3 = 15 \\ -10I_1 + 20I_2 - I_3 = 10 \\ -10I_1 - I_2 + 20I_3 = -10 \end{cases}$$

知
$$a_{11} = 21$$
, $a_{22} = 20$, $a_{33} = 20$

$$\therefore a_{11} + a_{22} + a_{33} = 61$$

5-4 重疊定理

一、重疊定理分析電路步驟

Step1:將電流源暫時斷路,重劃電路圖,並分析電路。

$$E = \frac{I_{R_1}' \quad R_1 \quad I_{R_3}' \quad R_3}{I_{R_2}'}$$

$$R_2 = \frac{E}{R_1 + R_2}$$

$$I_{R_3}' = 0$$

Step2:將電壓源暫時短路,重劃電路圖,並分析電路。

Step3:把上列步驟 1、2 得到的「電流」,「重疊」起來,即為該元件之正確電流。

 EX :某信號傳輸電路如圖所示,其輸入電壓 (V_1 $\not \subset V_2$)

與輸出電壓(V_o)關係表示為 $V_o = aV_1 + bV_2$,則 $a+b=? \ (92\ \mbox{年}\)$

◆詳解:利用重疊定理

EX:如圖所示之電路,電流源所供給之功率為多少瓦特? (89年)

◆詳解:電流源供應功率 = (4A)×(3Ω兩端之電壓)

以重疊定律求 3Ω兩端之電壓:

1、4A 動作,12V 短路:
$$I_{3\Omega} = 4 \times \frac{6}{3+6} = \frac{8}{3}$$
,故 $V_{3\Omega} = \frac{8}{3} \times 3 = 8V$

2、12V 動作,4A 斷路:
$$V_{3\Omega} = 12 \times \frac{3}{3+6} = 4V$$

$$3\Omega$$
兩端總電壓 $V_{3\Omega}=8+4=12V$

故電流源供應功率 = 4A×12V = 48W

第六章 直流迴路(一)

6-1 戴維寧定理

一、戴維寧定理:任意兩端點間之網路,都可以由一等效電壓(*E*_{Th})與等效電阻(*R*_{Th}) 「串聯」,而成的「戴維寧等效電路」來取代。

二、戴維寧定理分析電路步驟

Step1:把「 R_{L} 」移去,並將其留下之兩個端點分別標記為「 a_{J} 、「 b_{J}

Step2:求戴維寧等效電壓 (*E*_{Th}):

$$E_{TH} = V_{ab} = \frac{R_2}{R_1 + R_2} \times E$$

Step3: 求戴維寧等效電阻 (*R*_{Th}):

Step4:將 E_{Th} 與 R_{Th} 串聯組成戴維寧等效電路,再把負載也放回 a、b 兩點間,則將可輕易的求出負載的端電壓與流經負載的電流。

$$I_L = \frac{E_{TH}}{R_{TH} + R_L}$$

EX:將右圖電路簡化為戴維寧等效電路,

則
$$E_{th} = ? R_{th} = ? (89 \ \ \ \)$$

 $\begin{array}{c|c}
R_1 & 10\Omega & R_3 & 10\Omega \\
\hline
R_2 & & & & \\
8 & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & \\
8 & & & & \\
8 & & & & \\
8 & & & & \\
8 & & & & \\
8 & & &$

◆詳解: 先求 E_{th}

再求 R_{th} (電動勢短路,定電流源斷路)

EX: 如右圖所示電路中之戴維寧等效電阻 R_{TH}

與等效電壓 V_{TH} =? (90年)

$$V_{TH} = 5 \text{m} \times (3 \text{k} / / 6 \text{k}) = 10 \text{(V)}$$

$$R_{TH} = 2\mathbf{k} + (3\mathbf{k}//6\mathbf{k}) = 4\mathbf{k}(\Omega)$$

6-2 最大功率轉移

一、概述:在任一電路中,負載電阻要取得最大輸出功率,

條件是:

「負載電阻 R_L = 戴維寧等效電阻 R_{th} 」。

此時最大功率輸出 Pmax

$$P_{\text{max}} = I^2 R_L = \left(\frac{E_{th}}{R_{th} + R_L}\right)^2 \times R_L = \frac{{E_{th}}^2}{4R_{th}}$$

- (1) 將負載電阻移開。
- (2)求得戴維寧等效電阻 R_{th}。
- (3)當「 $R_L = R_{th}$ 」,可得最大功率輸出。

EX:如右圖所示,欲使負載電阻 R_L 獲得最大功率,則 R_L 的值應為? (88 年)

◆詳解:

 EX :如右圖所示,欲使負載 $\mathsf{R}_{\scriptscriptstyle L}$ 得到最大功率,則 $\mathsf{R}_{\scriptscriptstyle L}$ 及其得到

之最大功率分別為?(89年)

◆詳解:原圖 → 右圖

$$R_{TH} = 6//3 = 2(\Omega)$$

$$V_{TH} = 6 \times (6//3) + \frac{6}{6+3} \times 27 = 30(V)$$

$$P_{RL} = \frac{V_{th}}{4R_{th}} = \frac{30^2}{4 \times 2} = 112.5(W)$$

6-3 諾頓定理

一、諾頓定理:任意兩端點間之網路,都可以由一等效電流 (I_N) 與等效電阻 (R_N) ,「並聯」而成的「諾頓等效電路」來取代。

二、諾頓定理分析電路步驟

Step1:把「R」移去,並將其留下之兩個端點分別標記為「a」、「b」。

Step2: 求諾頓等效電流(ん):

/_N= /_{ab}

Step3: 求諾頓等效電阻 (R_N):

$$R_N = R_{ab}$$

註:同一電路,RN = RTh 是相同的,即 RN = RTh。

EX:如右圖所示,求 R_N(諾頓等效電阻)及 I_N

(諾頓等效電流)?(87年)

◆詳解:1.求 R_N:

$$R_N = R_{ab}$$

$$= (10/20) + (20/10)$$

$$= \frac{20 \times 10}{20 + 10} + \frac{20 \times 10}{20 + 10} = \frac{400}{30} (\Omega) = \frac{40}{3} (\Omega)$$

2.求 I_N:

$$E_{th} = V_{ab} = V_a - V_b$$

$$= 30 \times \frac{20}{10 + 20} - 30 \times \frac{10}{10 + 20} = 10(V)$$

$$I_N = \frac{E_{th}}{R_N} = \frac{10}{40/3} = \frac{3}{4}(A)$$

6-4 電橋網路

一、電橋網路(Bridge networks)

若 尺。電阻有電流通過者為「不平衡電橋」,

若R5電阻無電流通過,則為「平衡電橋」。

二、惠斯登電橋

若電橋平衡,則檢流計「G」沒有電流通過,此時 a、b 間短路或開路都不會影響電路性質,則 $R_I*R_3=R_2*R_4$

三、惠斯登平衡電橋的應用

1、應用(一)

如圖 R_x 為待測電阻,調整標準電阻 R_s ,使得檢流計 G 之電流指示值為零,則電 橋達平衡狀態,

故
$$R_1 \cdot R_x = R_2 \cdot R_s$$

即可利用惠斯登平衡電橋來測量未知電阻。

2、應用(二)—化簡電路

EX:如右圖所示,其為惠斯登(Wheat stone)電橋,欲使電

橋平衡,則 R_x 值應為?(89 年)

$$R_x = \frac{5k \times 2k}{1k} = 10k(\Omega)$$

EX:如右圖所示電路中 R_{ab} 為多少 Ω ? (92年)

◆詳解:利用惠斯登平衡電橋原理移去 cd 間 6Ω

:.
$$R_{ab} = (8+12)//(2+3)//3 = 4//3 = \frac{12}{7} (\Omega)$$

12V

75kΩ