A family of sets $\mathcal{R} \subset \mathcal{P}(X)$ is a called a **ring** if it is closed under finite unions and set differences. A ring that is closed under countable unions is called a σ -ring. Prove the following:

- a. Rings (resp. σ -rings) are closed under finite (resp. countable) intersections.
- **b.** If \mathcal{R} is a ring (resp. σ -ring), then \mathcal{R} is an algebra (resp. σ -algebra) if and only if $X \in \mathcal{R}$.
- **c.** If \mathcal{R} is a σ -ring, then $\{E \subset X : E \in \mathcal{R} \text{ or } E^c \in \mathcal{R}\}$ is a σ -algebra.
- **d.** If \mathcal{R} is a σ -ring, then $\{E \subset X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}$ is a σ -algebra.

Solution.

a. Let \mathcal{R} be a ring. Let $E_1, \ldots, E_n \in \mathcal{R}$ and let $E = \bigcup_{i=1}^n E_i$. Then $E \in \mathcal{R}$. Now,

$$E \setminus \left(\bigcap_{j=1}^{n} E_{j}\right) = \bigcup_{j=1}^{n} E \setminus E_{j} \in \mathcal{R}$$

$$\tag{1}$$

since each $E \setminus E_j \in \mathcal{R}$. Then

$$\bigcap_{j=1}^{n} E_j = E \setminus \left(E \setminus \left(\bigcap_{j=1}^{n} E_j \right) \right) \in \mathcal{R}.$$

Now let \mathcal{R} be a σ -ring, and let $\{E_j\}_1^{\infty} \subset \mathcal{R}$. The exact same argument as above works, since DeMorgan's laws work for arbitrary intersections and unions.

b. Let \mathcal{R} be a ring and suppose it is also an algebra. Then \mathcal{R} is closed under complements, so if $E \in \mathcal{R}$, then $E^c \in \mathcal{R}$. But then \mathcal{R} is closed under finite unions, so $X = E \cup E^c \in \mathcal{R}$. Conversely, suppose \mathcal{R} is a ring and $X \in \mathcal{R}$. Then if $E \in \mathcal{R}$, $E^c = X \setminus E \in \mathcal{R}$ as well since rings are closed under set differences. So \mathcal{R} is an algebra.

Again, an exactly analogous argument works since rings are to algebras as σ -rings are to σ -algebras. The only difference from the former to the latter is closedness under complements.

c. Let $\mathcal{A} = \{E \subset X : E \in \mathcal{R} \text{ or } E^c \in \mathcal{R}\}$. Then let $E \in \mathcal{A}$ and show $E^c \in \mathcal{A}$. There are two cases. If $E \in \mathcal{R}$, then $E^c \in \mathcal{A}$ since $(E^c)^c = E \in \mathcal{R}$. On the other hand, if $E^c \in \mathcal{R}$, then immediately $E^c \in \mathcal{A}$. First, let $E, F \in \mathcal{A}$. Then if both E and F are in \mathcal{R} , then $E \cup F \in \mathcal{A}$. If $E, F^c \in \mathcal{R}$, then by the above, $E = (F^c)^c \in \mathcal{R}$ and we are in the first case. A similar logic handles the other two possibilities. By induction, $E = \mathcal{A}$ is also closed under finite intersections. So, given a collection $E_f = \mathcal{A}$, we can define a new collection $E_f = \mathcal{A}$ by setting $E_f = \mathcal{A}$ by setting $E_f = \mathcal{A}$ is also for each $E_f = \mathcal{A}$. Then these $E_f = \mathcal{A}$ are disjoint and $E_f = \mathcal{A}$ and $E_f = \mathcal{A}$ and $E_f = \mathcal{A}$ are disjoint and $E_f = \mathcal{A}$. Also $E_f = \mathcal{A}$ and $E_f = \mathcal{A}$ and $E_f = \mathcal{A}$ and $E_f = \mathcal{A}$ are disjoint and $E_f = \mathcal{A}$. Also $E_f = \mathcal{A}$ and $E_f = \mathcal{A}$ are disjoint and the section of the each $E_f = \mathcal{A}$ and $E_f = \mathcal{A}$ and $E_f = \mathcal{A}$ and $E_f = \mathcal{A}$ and $E_f = \mathcal{A}$ are disjoint and the each $E_f = \mathcal{A}$ and $E_f = \mathcal{A}$ are the each $E_f = \mathcal{A}$ and $E_f = \mathcal{A}$

is closed under countable disjoint unions. So let $\{E_j\}_1^{\infty} \subset \mathcal{A}$ be a collection of disjoint sets in \mathcal{A} . Let $F \subset \mathbb{N}$ be the collection of indices j such that $E_j \in \mathcal{R}$. Then $F^c = \mathbb{N} \setminus F$ is the collection of indices so that $E_j^c \in \mathcal{R}$. Then define

$$E = \bigcup_{j \in F} E_j$$

which is in \mathcal{R} as a countable union. Then

$$E \setminus \left(\bigcup_{j=1}^{\infty} E_j\right)^c = E \cap \bigcup_{j=1}^{\infty} E_j = \bigcup_{j \in F} E_j \in \mathcal{R}$$

since the E_j are all disjoint. Then

$$E \setminus \left(E \setminus \left(\bigcup_{j=1}^{\infty} E_j \right)^c \right) = \left(\bigcup_{j=1}^{\infty} E_j \right)^c \in \mathcal{R},$$

meaning $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$.

d. Let $\mathcal{A} = \{E \subset X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}$. Then $X \in \mathcal{A} \text{ since } X \cap F = F \in \mathcal{R} \text{ for all } F \in \mathcal{R}$. Let $E_1, E_2 \in \mathcal{A} \text{ and } F \in \mathcal{R}$. Then show

$$(E_1 \setminus E_2) \cap F = (E_1 \cap F) \setminus (E_2 \cap F). \tag{1}$$

If x is an element in the LHS, then $x \in E_1$ and not in E_2 and $x \in F$. This means $x \notin E_2 \cap F$, so we have shown \subseteq . Now suppose x is an element in the RHS. Then $x \in E_1$ and in F, but x is not in the intersection $E_2 \cap F$. If $x \in F$ and $x \notin E_2 \cap F$, then x cannot be in E_2 . So we have shown \supseteq (note that this equality has nothing to do with the rings or σ -algebras, and is general to set theory). Now since $F \in \mathcal{R}$ and $E_1, E_2 \in \mathcal{A}$, $E_j \cap F \in \mathcal{R}$ for j = 1, 2. Since \mathcal{R} is closed under set differences, the RHS of (1) is in \mathcal{R} , meaning $E_1 \setminus E_2 \in \mathcal{A}$. Now suppose $\{E_j\}_1^{\infty} \subset \mathcal{A}$. Then for all $F \in \mathcal{R}$,

$$F \cap \bigcup E_j = \bigcup (F \cap E_j) \in \mathcal{R}$$

as a countable union. So \mathcal{A} is a σ -ring which contains X, meaning it is a σ -algebra by part **b**.