西安电子科技大学

考试时间 120 分钟

题 A

	_	11		总分				
題号	1-10	11-15	16	17	18	19	20	めガ (100 分)
L	(30分)	(20分)	(10分)	(10分)	(10分)	(10分)	(10分)	(100 77)
分数								

1. 考试形式: 闭卷■ 开卷口; 2. 本试卷共 20 题, 满分 100 分; 3. 答题内容请写在装订线外.

须知:解答题填写在本试卷后所留空白处,若不够可续写在背面,并注明题号。 说明: ε(t)为阶跃函数; LTI 表示线性时不变系统。

一、单项选择题; (共10小题,每小题3分,共30分,本题请将答案A或B 或 C 或 D 填写在下列表格中)

1	2	3	4	5	6	7	8	9	10

1. 正弦信号 $f(t) = 4\cos\left(\frac{3\pi}{7}t - \frac{\pi}{4}\right)$ 的周期 T为(

C. $\frac{14}{3}$ D. 3

2. 已知系统响应y(k)和激励f(k)的关系为y(k) + (k-1)y(k-1) = |f(k)|,则该系统为 () 系统。

A. 线性时不变

B. 线性时变

C. 非线性时不变

D. 非线性时变

3. 下列各式中,错误的是(

A. $\int_{-\infty}^{\infty} f(t)\delta'(t)dt = -f'(0)$

B. $\int_{-\infty}^{\infty} f'(t)\delta(t)dt = -f'(0)$

C. $\int_{-\infty}^{\infty} f(t)\delta'(t-t_0)dt = -f'(t_0)$

D. $\int_{-\infty}^{\infty} f(t-t_0)\delta'(t-t_0)dt = -f'(0)$

4. 己知某离散 LTI 系统的脉冲响应 $h(k) = \delta(k) + 2\delta(k-1) - 3\delta(k-2)$, 则该系统的 单位阶跃响应g(k)等于(

A $\delta(k) + \delta(k-1) - 5\delta(k-2) + 3\delta(k-3)$

B. $\delta(k)$

C. $\delta(k) + 3\delta(k-1)$

D. $\delta(k) + \delta(k-1) - 2\delta(k-2)$

5. 已知带限信号f(t)的占有频带为 $0\sim10kHz$,则均匀采样时,信号f(0.1t)的奈奎斯特 采样间隔 $T_s = ($

A. 500µs

B. 100µs

C. 5µs

D. 10µs

第1页共6页

6.	已知离散系统的单位 A. 稳定、因果				<i>)。</i> 稳定、非因果
	已知因果信号 $f(t)$ 的 A. $e^{-(s+2)}F(s-2)$ C. $e^{-(s-j2)}F(s-j2)$, ; 1	B. $e^{-(s+2)}F(s+1)$ D. $e^{-(s+j2)}F(s+1)$	- 2) - j2)).
8.	序列 $f(k) = (-1)^k k \epsilon$ A. $-\frac{z}{(z+1)^2}$	\mathbf{z} (k)的 \mathbf{z} 变换 $\mathbf{F}(\mathbf{z})$ 3. $-\frac{\mathbf{z}}{(\mathbf{z}-1)^2}$)为 ()。 C. $-\frac{z^2}{(z+1)^2}$	D. $\frac{z}{z+1}$	
	积分 $\int_{-\infty}^{\infty} \frac{\sin^2(2t)}{t^2} dt$ 等 A. $\pi/2$		С. п	D. 2π	
	设有一个因果的离散				使该系统稳定,
	常数 K 应该满足的第				
	A. $K < 1$ B.	K > 1	C. $0.5 < K <$	1.5 D.	K > 1.5
_	、填空题(共 5 小	题,每题4分,	共 20 分。本	题 谓将答案填	写横线上)
11.	. 周期信号 $f(t) = \frac{1}{2} +$	$\cos(2t) + 2\sin(2t)$	3t)的基波角频率	K Ω =	rad/s,
	平均功率P =	w.			
	. 已知因果序列 <i>f(k</i>)湖	7=0			
13	. 如题 13 图所示信号	f(t)的傅里叶变把	$ \lambda F(j\omega)$,则 $\int_{-\infty}^{\infty}$	$F(j\omega)d\omega =$;
	$F(j\omega) _{\omega=0} =$	·•			
	-1 0 -1 -1	f(t) 1 2 3	→ _t —	↓ jω ★ j2 0	
			n life 4 4 Del loc	44 H 1 CO 2 -	
14	I. 已知因果系统H(s)的				
	则 H(s) =		$_{}; h(t) = _{}$		
15	5. 某连续 LTI 系统输	$\lambda f(t)$ 与输出	y(t)关系为:	$y(t) = \int_{-\infty}^{\infty} e^{-t}$	$(t-\tau+1)f(\tau)d\tau$

则该系统的单位冲激响应h(t) =

第2页 共6页

- 三、计算题(共5小题,每小题10分,共50分)
- 16. 已知f(t)的波形如题 16 图所示,画出信号 $\frac{\mathrm{d}}{\mathrm{d}t}[f(2-t)]$ 的波形。

- 17. 如题 17 图所示电路系统,以电容电压 $U_{\mathcal{C}}(s)$ 为输出。
- (1) 计算系统函数 $H(s) = \frac{U_C(s)}{U_S(s)}$;
- (2) 计算该电路的单位冲激响应h(t), 并画出其波形;
- (3) 判断该电路属于哪种类型的滤波器? (低通/高通/带通/带阻/全通)

- 18. 已知 LTI 系统信号流图如题 18 图所示:
- (1) 求系统函数H(s);
- (2) 以x₁,x₂为状态变量,列出系统的状态方程和输出方程。

19. 已知因果 LTI 离散时间系统的框图如题 19 图所示,

- (1) 求系统函数H(z);
- (2) 求该系统的单位序列响应h(k);
- (3) 求频率响应 $H(e^{j\theta})$,并求输入为 $f(k) = 15cos(\pi k)$ 时的稳态响应 $y_{ss}(k)$ 。

20. 如题 20 图所示系统,通常用于从两个低通滤波器获得一个带通滤波器。若 $H_1(j\omega)$ 和 $H_2(j\omega)$ 是截止角频率分别为 $\omega_{c1}=3\pi$ 和 $\omega_{c2}=\pi$ 的理想低通滤波器,即

$$H_1(j\omega) = \begin{cases} 1, & |\omega| < \omega_{c1} \\ 0, & |\omega| > \omega_{c1} \end{cases}; \qquad H_2(j\omega) = \begin{cases} 1, & |\omega| < \omega_{c2} \\ 0, & |\omega| > \omega_{c2} \end{cases}$$

- (1) 画出该系统H(jω)幅频特性图,并证明该系统相当于一个理想带阻滤波器;
- (2) 计算该带阻滤波器的单位冲激响应h(t);
- (3) 若输入 $f(t) = 1 + 2\sin(2\pi t) + \cos(4\pi t)$, 求该系统的输出y(t)。