Αρχιτεκτονική Διάλεξη 3

Πολυπλέκτες:

Να υλοποιηθει με πολυπλέκτη MUX 4x1 $F=(A,B,C,D)=\Sigma(0,1,2,3,5,6,7,12,15)$ οπού τα σήματα A,B συνδέονται με τις γραμμές επιλογή και τα C,D με τις εισόδους

4x1:Ι0-Ι3, 2 γραμμές επιλογής S0,S1

	A	В	С	D	F
A=0 B=0 F=I0	0	0	0	0	1
	0	0	0	1	1
	0	0	1	0	1
	0	0	1	1	1
A=0	0	1	0	0	0
B=1 F=I1	0	1	0	1	1
	0	1	1	0	1
	0	1	1	1	1
A=1	1	0	0	0	0
B=0 F=I2	1	0	0	1	0
	1	0	1	0	0
	1	0	1	1	0
A=1 B=1 F=I3	1	1	0	0	1
	1	1	0	1	0
	1	1	1	0	0
	1	1	1	1	1

Είσοδοι Πολυπλέκτη:

MUX 4x1

S1 τροφοδοτειται απο το A Σ0 τροφοδετειται απο το B

S1	S0	F
0	0	F=I0
0	1	F=I1
1	0	F=I2
1	1	F=I3

εδω εχουμε 4 και στο προηγούμενο πίνακα 16 αρα Σπαει ο πίνακας αληθείας στα 4 (τελευταια σελιδα το κοκκινο)

Κανόνας: Γενικά πίνακας αληθείας χωρίζεται σε $\frac{M}{N}$ τμήματα όπου M είναι όλοι οι συνδυασμοί του πίνακα αληθείας και N είναι το πλήθος των εισόδων του πολυπλέκτη M=16 N=4

1)Α=Β=0 Ψάχνω τι θα συνδέσω το Ι0 εκφράζω το Ι0 ως συνάρτηση των C,D

Σχήμα πρώτη σελιδα →

https://github.com/IliasChatzi

Ilias Chatzichristidis Architecture Notes

2) A=0 και B=1 F=I1

C/D	0	1 D I1=C+I
0		1
1	1	1

4)I3 A=B=1

C/D	0	1
0	1	
1		1

Εστω οτι την χρονική στιγμή Ε

A=B=0

C=1

D=0

A=B=0 σημαίνει F=Ι0 κοίτα σχήμα

το αστεράκι

Μνήμη

RAM-Μεγεθος : Εξαρταται απο

- 1. Το πλήθος των Modules/τσιπ(Chip)
- 2. Πόσες λέξεις χωράει καθε τσιπ
- 3. Απο το μέγεθος της λέξης

Μια μνήμη με 8 Chip

1Μ λέξεις (2²⁰=1Μ)
$$\rightarrow$$
 32 Mbyte (8x1Mx4) 4 byte μέγεθος λέξεις

Θα μπορούσε ομως να ηταν και αλλος συνδυασμος π.χ.

16 Chip

1M λέξεις (2^{20} =1M)

2 byte μέγεθος λέξεις

32 Mbyte (16x1Mx2)

4 Chip

2M λέξεις (2^{20} =1M) \rightarrow 32 Mbyte (4x2Mx4)

4 byte μέγεθος λέξεις

Φτιάχνουμε μνήμη:

Έστω οτι έχουμε μία μνήμη με 4 chip

4x1x32=128 bytes

11

Θα δούμε

- 1. Εξωτερική οργάνωση/ Αποκωδικοποίηση μνήμης
- 2. Εσωτερική οργάνωση σε επίπεδο chip(Το chip απο μέσα)
- 3. Σύνδεση με CPU

Οι εξοδοι λειτουργούν ως επιτρεψει Το κάθε chip εχει ενα Wordselect

Αν το Chip εχει Υ λέξεις το WordSelect πρέπει να εχει Υ εξοδους και \log_2 Υ εισόδους

Στο παράδειγμα είχει Y=32 (λέξεις ανα Chip) $log_2(32)$ =5 Αρα WS=5x32

- 3. Η CPU ζητάει να γράψει στην διευθυνση 35. Να εξηγήσετε την διαδικασία
- 1. Μνήμη με 128 λέξεις (Να βρώ την δύναμη του 2 που δίνει 2^{χ} =128) $\log_2(128)=7$ bit

2. Addres 2 : A6-A0 Επειδη έχω 4 chip θέλω 2 bit για είσοδο στο CS. Αρα το (A6 και το A5) Α6 και A5 τα πιο σημαντικά Εχω 32 λέξεις/chip τα 5 τελευταία bit θα χρησιμοποιηθουν ως WS(A4,A3,A2,A1,A0). Τα A4-A0 θα μπουν κοινές ως είσοδοι για ολα τα 4 WordSelect

MAR : Memory Address Register Αποθηκεύει τη διεύθυνση μιας μνήμης που θα χρειαστεί η CPU για ανάγνωση η εγγραφή

MDR:Memory Data Register Φέρνει δεδομένα από/προς την μνήμη

Και επίσης στέλνεται ενα σήμα R/W: 0→ R

Η αποκωδικοποίηση γίνεται από τον ΜΑΚ

Απάντηση στο 3(Η CPU ζητάει να γράψει στην διευθυνση 35. Να εξηγήσετε την διαδικασία)
35:γράφεται με 7 bit γιατι το μήκος της διευθυνσης της λέξης ειναι 7 bit 01|00011 επειδη το 35=0100011 στην δυαδική μορφη
CS | Ws Για πολλές διευθύνσεις δεν χρειαζεται να κάνω το σχήμα το λύνω οπως το ελυσα εδω.

Τώρα δειχνουμε την σύνδεση αποκωδικοποιητή με CPU και μνήμη
1) Ο MAR=35
2) Ο MAR περνάει την διευθυνση 35 στο Adress Bus
7 γραμμές bit Οι 2 πάνε στο ChipSelect:01
Οι 5 πάνε σε ολα τα WordSelect: 00011
Αρα 0100011

 $1 \rightarrow W$

3) Η μνήμη στέλνει τα περιεχόμενα της λέξης 35 στο δίαυλο δεδομένων για να το διαβάσει ο MDR

Μικρολειτουργία -> MDR<- Μ[MAR] -- Μεταφράση->

Ο MDR θα πάρει απο την μνήμη τα περιεχόμενα που εχει ο MAR

SOS: Γενικά ο MDR λαμβάνει απο την μνήμη τα περιεχόμενα θέσης που υποδεικνύει ο MAR

Μόνο ο MDR μιλάει με μνήμη, όταν το 13 περάσει θα μπει από το MDR στον καταχωρητή Άρα ο καταχωρητής δεν μιλάει μνήμη του ο MDR

Με τον ιδιο τρόπο φέρνουμε στο MDR την τιμη 12 (θέση 36)

13

A=0 B=0

* MDR,R1 θα πάνε στον αθροιστη, θα προστεθούν θα πάρει το αποτέλεσμα 25 και το αποτέλεσμα θα αποθηκευτεί σε έναν άλλον καταχωρητή, εστω Z

MAR=01|00100-> Διαυλος δεδομένων

CS|WS

MAR $Z \leftarrow MDR + R1$ 25 \leftarrow 12+13 $Z \leftarrow MDR + R1$ μετά το 12 $Z \leftarrow MDR + R1$ μετά το 12
Ilias Chatzichristidis Architecture Notes

Τώρα εξήγηση της εγγραφής στην θέση 37

1)MAR=37

01|00101 Adress Bus μαζι με ενσα σήμα

CS| WS R/W=1

Ο Z δεν επικοινωνει με το data bus, δίνει τα δεδομεναα στον MDR και το data

Bus

00011001 -> 25

Συνολικά

M[MAR]<-- MDR. Η θέση μνήμης που Υποδεικνύει ο MAR(37) θα πάρει τα

περιεχόμενα του MDR(25)

ΠΑΡΑΔΕΙΓΜΑ 2

Δίνεται για RAM 32MB οργανωμένοι σε 8 chips τον 4mb. να δείξετε την καποκωδικοποίηση της λέξης M-1, αν κάθε λέξη έχει μέγεθος 2 bytes

η μνήμη έχει μέγεθος 32 mb για 8 chip

32/8= 4 MB μεγεθος καθε chip

Κάθε λέξη 2 byte αρα καθε chip 4mb/2byte= 2M λέξεις σε καθε τσιπ

Συνολικα εχω $8x2m=16m = 2^{24}$

Aρα 24 Bit

3 bit για cs (8 chip) 8 chip αφου 3 bit ειναι 000-111 το 111=8

 $WS \rightarrow 21x2^{21}$

εισόδοι x εξόδοι

11

13

A=0 B=0

