

## **Universidade do Minho** Escola de Ciências

## Mestrado Integrado em Engenharia Informática

| Departamento de Matemática | Teste 2 A :: 11 de janeiro de 202 |
|----------------------------|-----------------------------------|
|                            |                                   |
| Nome                       | Número                            |

I

As respostas às questões deste grupo devem ser convenientemente justificadas.

Questão 1. [3 valores] Considere a função 
$$f: \mathbb{R} \to \mathbb{R}$$
 tal que  $f(x) = \begin{cases} \cos(\pi x) + 1, & \text{se } x < 0 \\ \frac{\ln(x+1)}{x+1} + 2, & \text{se } x \geq 0 \end{cases}$ . Determine o conjunto dos pontos onde  $f$  é derivável, indicando o valor da derivada nesses pontos.

Questão 2. [2 valores] Considere função  $f(x) = x^2 - e^{x^2} + 1$ .

- a) Verifique que f(0) = 0.
- b) Mostre que a função f não tem mais zeros.

Questão 4. [4 valores] Calcule os seguintes integrais:

a) 
$$\int \frac{1 + \arctan x}{1 + x^2} \, dx;$$

b) 
$$\int_{1}^{e} x^{3} \ln x \, dx$$
.

Questão 5. [3,5 valores] Considere a função  $f:[-2,3]\to\mathbb{R}$  cujo gráfico se representa abaixo. O gráfico é constituído por um arco de circunferência centrada na origem e um segmento de reta que se unem no ponto  $(\sqrt{2},-\sqrt{2})$ , onde f é derivável.





- b) Indique os pontos onde a derivada de f se anula.
- c) Determine a equação da reta tangente ao gráfico de f no ponto  $(\sqrt{2},-\sqrt{2})$ .

d) Sabendo que o valor da área da região sombreada na figura é  $\frac{3\pi}{2}+1$ , determine o valor de  $\int_{-2}^{3}f(x)\,dx$ . (Caso necessite e não saiba calcular f(3), pode usar  $f(3)=\frac{1}{5}$ .)

Em cada uma das questões seguintes, assinale neste enunciado, a afirmação verdadeira. Não deve apresentar qualquer justificação.

Cada resposta certa vale 1 valor e cada resposta errada desconta 0,25 valores.

| Questão 1. | Seja $f$ : | $: [-1,1]  ightarrow \mathbb{R}$ uma | função derivável tal q | ue f(-1) = f(1) | $f(x) = -1 \text{ e } f(\frac{1}{2}) = 0.$ Então: |
|------------|------------|--------------------------------------|------------------------|-----------------|---------------------------------------------------|
|------------|------------|--------------------------------------|------------------------|-----------------|---------------------------------------------------|

- f' tem pelo menos um zero;
- $\bigcap$  f' nunca se anula;
- $\bigcirc$  f' tem um zero à esquerda de  $\frac{1}{2}$  e outro à sua direita;
- f é crescente em ]-1,0[ e decrescente em ]0,1[.

Questão 2. Seja  $f:[0,1]\to\mathbb{R}$  uma função derivável cuja derivada nunca se anula. Então:

- f não tem mínimo nem máximo;
- $\bigcirc$  f' é derivável;

 $f(x) \neq 0, \forall x \in [0, 1];$ 

f é monótona;

Questão 3. Seja  $f:[0,1] \to \mathbb{R}$  uma função contínua não negativa e seja F uma sua primitiva. Então:

- $\bigcap$  F é não negativa;
- $\bigcirc$  F é crescente;
- F admite pelo menos um ponto de descontinuidade;
- F verifica a designaldade  $F(x) \geq f(x)$ , para todo o  $x \in [0,1]$ .

Questão 4. O integral  $\int \frac{8}{x(x^2-4)} dx$  é igual a:

 $\bigcirc \int \frac{8}{x} dx \int \frac{1}{x^2 - 4} dx;$ 

- $\bigcirc \qquad \int \frac{1}{x+2} \, dx + \int \frac{1}{x-2} \, dx \int \frac{2}{x} \, dx; \qquad \qquad \bigcirc \qquad \text{nenhuma das anteriores.}$

Questão 5. Seja  $f:[0,2] \to \mathbb{R}$  tal que  $f(x) = \begin{cases} 0, & x \in [0,2] \setminus \{1\} \\ 1, & x=1 \end{cases}$ . Então:

- qualquer que seja a partição P do intervalo [0,2], s(f,P)=0;
- existe uma partição P do intervalo [0,2] tal que S(f,P)=0.