MATH 100 2 - LECTURE 1-E

SCALAR MULTIPLICATION

Recall: In the lost lecture, we discussed vector oddition Take two vectors 2, 6 Produce a new vector a+b.

Today: Scalar multiplication

> Take a scalar cell and a vector à and produce a new vector ca.

Geometric definition: cà is the vector that we get by stretching or shrinking ("scaling") a until it has length Icl times its original length.

oif C>O, ca must point in the same direction as a of cxo, ca must point in the opposite direction as a.

Remark: if c=0, then ca=3 vector with all components 0

Example Recall the exercise from lecture 1-C:

$$\overrightarrow{AB} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}, \overrightarrow{BC} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \overrightarrow{OC} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

similar, but not equal, because they point in apposite directions.

Now we can make this precise:

$$\overrightarrow{BC} = (-1) \cdot \overrightarrow{OA} = -\overrightarrow{OA} = \overrightarrow{AO}$$
Notation Fact.

Alaebraic definition of scalar multiplication:

if
$$\vec{0} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
, then $\vec{ca} = \begin{bmatrix} ca_1 \\ ca_2 \end{bmatrix}$.

Example: if
$$c=0$$
, $c\vec{a} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \vec{0}$

Exercise: if
$$\vec{a} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
, what is $-3\vec{a}$?

(Answer geometrically and algebraically)

•
$$\sqrt{3}$$
 $\sqrt{3}$ $\sqrt{-3}$ $\sqrt{3}$ $\sqrt{-3}$ $\sqrt{3}$ $\sqrt{3$

Definitions: $-1 \cdot \vec{a} = -\vec{a}$ is called the negative of \vec{a} .

• Given vectors \vec{a} , \vec{b} , we define vector subtraction as follows:

Exercise: if
$$\vec{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$, what is $2\vec{a} - \vec{b}$?

Answer geometrically and algebraically.

Geometrically

Recau: if
$$A = (a_1, a_2)$$
, we have the position vector $\overrightarrow{OA} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$

$$\overline{AB} = \begin{bmatrix} b_1 - a_1 \\ b_2 - a_2 \end{bmatrix} \quad \text{we chr from A}$$

$$\overline{AB} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} - \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
Remark:
$$\overline{AB} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} - \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

Vector addition and scalar multiplication in 123

· geometrically and augebrauically, it works the same way.

(just namer to draw!)

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{bmatrix} \quad ; \quad c \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} ca_1 \\ ca_2 \\ ca_3 \end{bmatrix}$$

Examples: Let
$$\vec{a} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$
, $\vec{b} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\vec{c} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$

algebraically:
$$\vec{b} + \vec{c} = \begin{bmatrix} 1+2\\0+1\\-1+3 \end{bmatrix} = \begin{bmatrix} 3\\1\\2 \end{bmatrix}$$

geometricauy.

(nard to do conedty!)

Exercise: Use the algebraic definitions to find $\vec{a} + \vec{b} - a\vec{c}$.

Solution:
$$\vec{a} + \vec{b} - \vec{a}\vec{c} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} - 2 \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} - \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}$$

$$= \begin{bmatrix} 3+1-4 \\ 4+0-2 \\ 6-1-6 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$

Summary of the lecture

scalar multiplication stretches or shrinks the original vector a until its length is let times the original length.

· if c <0 the new vector points in the opposite direction.

$$C\begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} C\alpha_1 \\ C\alpha_L \end{bmatrix}$$

negative: $-\vec{a} = (-1)\vec{a}$ vector $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$.

· We also defined vector addition and scalar multiplication in \mathbb{R}^3 .