## Example 17

Triangle ABC is an isosceles triangle. D is on AB. Extend AC to E and connect DE so that BD = CE. Prove: DF = FE.

Proof: Draw  $DG \perp BC$ , extend BC, and then draw EH to meet the extension of BC at H such that  $EH \perp BC$ .



We see that  $DB = BE, \angle B = \angle ACB = \angle ECH, \angle DGB = \angle EHC = 90^{\circ}.$ 



In  $\triangle DGF$  and  $\triangle EHF$ ,  $\angle GDF = \angle HEF$  (alternate interior angles of parallel lines of DG and EH),  $\angle DGF = \angle EHF = 90^{\circ}$ , DG = EH. Thus  $\triangle DGF \cong \triangle EHF$  and DF = EF.