Research Project on Quantum Entanglement

CMSC 643

12/22/2010 Sandipan Dey UMBC CSEE

Executive Summary

We are given the following set of entangled states:

$$\begin{cases} |EPR\rangle_{ij} &= \frac{|0_i 1_j\rangle - |1_i 0_j\rangle}{\sqrt{2}} \\ |GHZ\rangle_{ijk} &= \frac{|0_i 0_j 0_k\rangle + |1_i 1_j 1_k\rangle}{\sqrt{2}} \\ |Werner\rangle_{ijk} &= \frac{|0_i 0_j 1_k\rangle + |0_i 1_j 0_k\rangle + |1_i 0_j 0_k\rangle}{\sqrt{3}} \end{cases}$$

We have to find the results of Bell Measurements, where the Bell Basis vectors (for the Hilbert space for 2-qubit systems) are as follows:

$$\begin{cases} |\Psi^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \\ |\Psi^+\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \\ |\Phi^-\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \end{cases}$$

The results of (selective) Bell Measurements on the Entangled pairs will be interesting in the sense that they will result in Entanglement Swapping that can have applications in quantum repeaters.

Learnt from the Project

The following represents the crux of Quantum Measurement, as taken from Dr. Lomonaco's slides:

Projector: Matrices with properties P.P = P

Ortho-normal Projectors: Satisfies Kronecker Delta: $\delta_{ij} = P_i.P_j$, $\delta_{ij} = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$

Projectors Span the Eigen Space: $\sum_{i} P_{i} = I$

Measurement:

- 1) Normalize the quantum state $| \varphi \rangle$ to be measured.
- 2) Compute the orthonormal basis vectors $\{V_i\}_{i=1}^n$ spanning the eigenspace of the observable Ω . (find the eignvalues and orthonormal eigenvectors of Hermitian Ω).
- 3) Compute the projectors $P_i = V_i^+$. V_i .
- 4) After measurement, the state of the quantum system will "collapse" to any of the n states (corresponding to its n ortho-normal eigenspace) with certain probabilities. Probability that the quantum system with initial state $|\varphi\rangle$ will be in state $|\varphi\rangle$ after the Measurement is, $p_i = \langle \varphi | P_i | \varphi \rangle$,

with
$$\sum_{i} p_{i} = \sum_{i} \langle \varphi \mid P_{i} \mid \varphi \rangle = 1$$
 (must be in one of the states).

5) The
$$i^{th}$$
 probable state after measurement can be computed as, $\varphi_i = \frac{P_i . \mid \varphi \rangle}{\sqrt{\langle \varphi \mid P_i \mid \varphi \rangle}}$.

For this project, we already had basis vectors as 4 Orthonormal Bell Basis vectors, from which we computed 4 Orthonormal Bell Projectors (as shown in the output).

Normalization:

The quantum states must be normalized (since probability amplitudes).

Permutation Matrices:

We can easily go from one permutation of the qubits to another by multiplying a suitable permutation matrix to the first one.

The example shown below shows how to obtain such a permutation matrix for Entanglement Swapping:

Hence, Permutation operator: (0) (15) (1 248) (3 6129) (5 10) (7 141311) with the following permutation matrix (performs just a left circular shift):

	0 1	2	3	4	5 6	7	8	9	10	1	1 1	2	13	1	4	15
0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
8	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1/

Entanglement Swapping

Before measurement: EPR pairs (0 1) & (2 3) were entangled.

After measurement: EPR pairs (0 3) & (1 2) will be entangled, as will be shown in the output, since the state will be same as the one obtained applying the permutation matrix for swapping (entangled) bits.

Selective Measurement

- 1) In order to obtain a Bell Measurement of the qubits 1 and 2 of the (4-qubit) state $\varphi = |EPR\rangle_{01} \otimes |EPR\rangle_{23}$, we compute $I_2 \otimes P_{Bell} \otimes I_2$, where P_{Bell} is one of the 4 projectors for the Bell Measurement.
- 2) In order to obtain a Bell Measurement of the qubits 0 and 5 of the (6-qubit) state $\varphi = |GHZ\rangle_{012} \otimes |GHZ\rangle_{345}$, we need a trick. First compute the unitary permutation matrix Π that performs the permutation $(012345) \rightarrow (345012)$, which can be done by a 3-bit left circular shift.

Next compute $I_2 \otimes P_{\textit{Bell}} \otimes I_2$, where $P_{\textit{Bell}}$ is one of the 4 projectors for the Bell Measurement. Again apply the inverse permutation $\Pi^{-1} = \Pi^T$ (since unitary) to obtain the final states. Hence the entire operation can be described as the composition $\Pi^T..I_2 \otimes P_{\textit{Bell}} \otimes I_2.\Pi$.

This can be shown from the output of the question 3.

Source Code

```
(*----*)
(*----*)
(*----- Major Functions -----
               1. ComputeBellBasis
               ComputeEPRPairs
               3. ComputeBellProjectors
                4. ComputeBellProbStates
                5. ShowEntangledOutputTables
BeginPackage["QuantumBell`"]
Begin["`Private`"]
       Bra[k, b] := \{b[[k+1]]\};
       Ket[k, b] := Bra[k, b]^{\dagger};
       BraVec[coeff , b ] := KetVec[coeff , b]*;
       KetVec[coeff , b ] := Module[{n, v, i, j},
           n = Dimensions[b][[1]]; v = Table[0, \{i, n\}, \{j, 1\}]; Do[v = v + coeff[[i]] * Ket[i - 1, b], \{i, n\}]; v
       1;
       InnerProduct[\underline{\Psi}1 , \underline{\Psi}2] := \underline{\Psi}1^{\dagger}.\underline{\Psi}2;
       InnerProductReal[\Psi 1, \Psi 2] := \Psi 1^{\dagger}. \Psi 2;
       {\tt TensorProduct[\varPsi1\ ,\ \varPsi2\ ]\ :=\ KroneckerProduct[\varPsi1,\ \varPsi2];}
       {\tt TensorProduct}[\varPsi1\ ,\ \varPsi2\ ,\ \varPsi3\ ]\ :=\ {\tt KroneckerProduct}[{\tt KroneckerProduct}[\varPsi1,\varPsi2]\ ,\ \varPsi3]\ ;
       Basis[n] := IdentityMatrix[n];
(* Computes the Bell Basis *)
ComputeBellBasis[] := Module[{b, p00, p01, p10, p11, b1, b2, b3, b4},
        b = Basis[2];
        p00 = TensorProduct[Ket[0, b], Ket[0, b]];
        p11 = TensorProduct[Ket[1, b], Ket[1, b]];
        p01 = TensorProduct[Ket[0, b], Ket[1, b]];
        p10 = TensorProduct[Ket[1, b], Ket[0, b]];
        b1 = (p00 + p11) / Sqrt[2];
        b2 = (p01 + p10) / Sqrt[2];
        b3 = (p01 - p10) / Sqrt[2];
        b4 = (p00 - p11) / Sqrt[2];
         {b1<sup>T</sup>, b2<sup>T</sup>, b3<sup>T</sup>, b4<sup>T</sup>}
];
```

```
(* Computes EPR Pairs *)
ComputeEPRPairs[] := Module[{b},
   b = Basis[2]; (TensorProduct[Ket[0, b], Ket[1, b]] - TensorProduct[Ket[1, b], Ket[0, b]]) / Sqrt[2]];
 (* Computes GHZ Pairs *)
ComputeGHZPairs[] := Module[{b},
    b = Basis[2]; (TensorProduct[Ket[0, b], Ket[0, b], Ket[0, b]] + TensorProduct[Ket[1, b], Ket[1, b], Ket[1, b]]) / Sqrt[2]];
 (* Computes Werner Pairs *)
ComputeWernerPairs[] := Module[{b},
    b = Basis[2];
    (TensorProduct[Ket[0, b], Ket[0, b], Ket[1, b]] + TensorProduct[Ket[0, b], Ket[1, b],
                                                    + TensorProduct[Ket[1, b], Ket[0, b], Ket[0, b]]) / Sqrt[3]];
 (* Computes EPR Pairs (0,1) and (2,3) entangled*)
ComputeEPRPairs0123Entangled[] := Module[{BIT01, BIT23, BIT0123},
    BIT01 = BIT23 = ComputeEPRPairs[];
    BIT0123 = TensorProduct[BIT01, BIT23]; (* (0, 1), (2, 3) Entangled *)
    {BIT01, BIT23, BIT0123}
1;
 (* Computes GHZ Pairs (0,1,2) and (3,4,5) entangled*)
ComputeGHZPairs012345Entangled[] := Module[{BIT012, BIT345, BIT012345},
    BIT012 = BIT345 = ComputeGHZPairs[];
    BIT012345 = TensorProduct[BIT012, BIT345]; (* (0, 1, 2), (3, 4, 5) Entangled *)
   {BIT012, BIT345, BIT012345}
1;
(* Computes Werner Pair (0,1,2) and GHZ Pair (3,4,5) entangled*)
ComputeWernerGHZPairs012345Entangled[] := Module[{BIT012, BIT345, BIT012345},
   BIT012 = ComputeWernerPairs[];
   BIT345 = ComputeGHZPairs[];
   BIT012345 = TensorProduct[BIT012, BIT345]; (* (0, 1, 2), (3, 4, 5) Entangled *)
   {BIT012, BIT345, BIT012345}
1;
(* Computes Werner Pair (0,1,2) and EPR Pair (3,4) entangled*)
ComputeWernerEPRPairs01234Entangled[] := Module[{BIT012, BIT34, BIT01234},
   BIT012 = ComputeWernerPairs[];
   BIT34 = ComputeEPRPairs[];
   BIT01234 = TensorProduct[BIT012, BIT34]; (* (0, 1, 2), (3, 4) Entangled *)
   {BIT012, BIT34, BIT01234}
];
```

```
(* ComputeBellProjectors: Computes the Projectors *)
 (* Inputs ⇒ V: Bell Basis containing orthonormal eignevectors, n: Dimension of the EigenSpace *)
(* Output ⇒ n Projectors *)
ComputeBellProjectors[V , n ] := Module[{P, pVerify, oVerify, i, j, ZeroMatrix, ket, braw},
   pVerify = oVerify = True;
   P = Table[0, \{i, n\}, \{j, 1\}];
   Do[ket = V[[i]]<sup>T</sup>; braw = ket<sup>†</sup>; P[[i]] = ket.braw, {i, n}];
   \label{eq:ZeroMatrix} $$ ZeroMatrix = Table[0, \{i, n\}, \{j, n\}]; $$
   Do[Do[If[P[[i]].P[[j]] != ZeroMatrix and i != j, oVerify = False,], {i, n}], {j, n}]; (*Verify Kronecker*)
   {P, pVerify}
1;
(* ComputeBellProbStates: Computes the Probabilities and the States *)
(* Inputs ⇒ P: n Projectors, Ψ: Quantum System, n: Dimension of the EigenSpace *)
(* Output ⇒ n Probabilities and the States *)
Proj = Table[TensorProduct[I1, P[[i]], I2], {i, n}];
    prob = Table [Expand [\varPsi^{\dagger}.Proj[[i]].\varPsi][[1]][[1]], {i, n}]; (*Probabilities*)
    \texttt{state} = \texttt{Table}[\texttt{Map}[\texttt{Simplify}, \texttt{Transpose}[\{\texttt{Normalize}[\texttt{Transpose}[\texttt{Proj}[[i]]. \textit{$\varPsi$}][[1]]]\}]], \{i, n\}]; (*\texttt{States*})
    {prob, state}
1;
(* ComputeBellProbStatesWithUnitaryTransform: Computes the Probabilities and the States after Unitary Transformation *)
(* Inputs ⇒ P: n Projectors, Y: Quantum System, n: Dimension of the EigenSpace, U: the Unitary Matrix *)
(* Output ⇒ n Probabilities and the States *)
ComputeBellProbStatesWithUnitaryTransform[P , \Phi , n , I1 , I2 , U ] := Module[{prob, state, Proj, i},
   Proj = Table[TensorProduct[I1, P[[i]], I2], {i, n}];
   \texttt{prob} = \texttt{Table}[\texttt{Expand}[\varPsi^{\dagger}.\texttt{Proj}[[\texttt{i}]].\varPsi][[\texttt{1}]][[\texttt{1}]], \{\texttt{i}, \texttt{n}\}]; \ (*\texttt{Probabilities}*)
   \texttt{state} = \texttt{Table}[\texttt{Map}[\texttt{Simplify}, \texttt{Transpose}[\{\texttt{Normalize}[\ U^\intercal. \texttt{Transpose}[\texttt{Proj}[[i]]. U.\ \varPsi\ ]\ [[1]]]\}]], \ \{\texttt{i},\ n\}]; \ (*\texttt{States}*)
    {prob, state}
1;
(* GetPermutationMatrix: Computes the Permutation Matrix given the permutations *)
(* Inputs \Rightarrow p: the permutation \Pi, n: number of elements in the permutation *)
(* e.g., for the II = (0) (1 2 4 8) (5 10) (6 12 9 3) (7 14 13 11) (15), input {0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15} *)
(* Output ⇒ the Permutation Matrix *)
GetPermutationMatrix[p , n ] := Module[{permMat, i, j},
   permMat = Table[0, {i, n}, {j, n}];
   Do[permMat[[i]][[p[[i]]]] = 1, \{i, n\}];
   permMat
1;
(* GetPermutationMatrix: Computes the Permutation Matrix given the permutations *)
(* Inputs ⇒ n: number of elements in the permutation, r: number of bits to shit *)
(* Output ⇒ the Permutation Matrix *)
GetPermutationMatrixByLeftRotation[n_, r_] := Module[\{permMat, i, j, f, s, max\},
   \max = 2^n - 1;
   permMat = Table[0, {i, max + 1}, {j, max + 1}];
   Do[f = BitAnd[BitShiftLeft[i, r], max]; s = BitShiftRight[i, n - r]; permMat[[i + 1]][[f + s + 1]] = 1, \{i, 0, max\}];
   permMat
1;
```

```
(* ShowEntangledOutputTables: Shows the Output Tables *)
(* Inputs ⇒ V: Bell basis orthonormal eignevectors, P: Projectors, Ψ: The EPR pairs,
              prob: Probabilities, state: States, n: Dimension of the EigenSpace *)
(* Output ⇒ None *)
ShowEntangledDutputTables[question , #1 , #2 , # , V , P , prob , state , n , I1 , I2 , pVerify , col1 , col2 , col3 , col4 , col5 , si , st , sv , so , sp ] :=
  Module[{inputTable, verifyTable, outputTable, projTable, permTable, permMat, i, j, k, statestring1, statestring2, statestring2,
   {statestring1, statestring2, statestring} = Switch[question, 1, {"|EPR\rangle_{01}", "|EPR\rangle_{23}", "|EPR\rangle_{01}@|EPR\rangle_{23}"},
                                                                         2, {"|GHZ⟩<sub>012</sub>", "|GHZ⟩<sub>345</sub>", "|GHZ⟩<sub>012</sub>⊗|GHZ⟩<sub>345</sub>"},
                                                                         3, {"|GHZ⟩<sub>012</sub>", "|GHZ⟩<sub>345</sub>", "|GHZ⟩<sub>012</sub>⊗|GHZ⟩<sub>345</sub>"},
                                                                         4, {"|Werner⟩<sub>012</sub>", "|GHZ⟩<sub>345</sub>", "|Werner⟩<sub>01</sub>⊗|GHZ⟩<sub>345</sub>"},
                                                                          5, {"|Werner⟩<sub>012</sub>", "|EPR⟩<sub>34</sub>", "|Werner⟩<sub>012</sub>⊗|EPR⟩<sub>34</sub>"}
                                                       1;
    inputTable = Table[If[i == 0, Switch[j, 1, statestring1 <> ToString[Dimensions[#1]],
                                    2, statestring2 <> ToString[Dimensions [₱2]],

 statestring <> ToString[Dimensions[♥]]],

                                  Switch[j, 1, MatrixForm[\Psi1], 2, MatrixForm[\Psi2], 3, MatrixForm[\Psi1]],
              {i, 0, 1}, {j, 3}];
   projTable = Table[If[i == 0, Switch[j, 1, "", 2, "Projectors"],
                              Switch[j, 1, i, 2, MatrixForm[TensorProduct[I1, P[[i]], I2]]]],
              \{i, 0, n\}, \{j, 2\}\};
    \text{verifyTable = Table}[If[k == 1, Switch[j, 1, "\sum P = I", 2, "P_i.P_i = P_i", 3, "\sum P = I", 4, "P_i.P_i = 0, i \neq j"], 
                                       Switch[j, 1, Sum[P[[i]], \{i, n\}] == IdentityMatrix[Dimensions[P][[2]]],
                                                  2, pVerify,
                                                  3, If[Sum[prob[[i]], {i, n}] == 1, True, False],
                                                  4, True]],
              \{k, 2\}, \{j, 4\}\};
   outputTable = Table[If[i == 0, Switch[j, 1, "Bell Basis", 2, "Bell Projectors", 3, "I(x) Projector(x) I", 4, "Probability", 5, "State"],
                                       Switch[j, 1, MatrixForm[V[[i]]],
                                          MatrixForm[P[[i]]],

 MatrixForm [TensorProduct[I1, P[[i]], I2]],

    prob[[i]],

                                          5, MatrixForm[state[[i]]]],
              \{i, 0, n\}, \{j, 5\}\};
```

```
(* Check by swapping the entangled bits by permutation matrix *)
    (* Entanglement swapping permutation: i.e., (0) (1 2 4 8) (5 10) (6 12 9 3) (7 14 13 11) (15) *)
    permMat = Switch [question,

    GetPermutationMatrixByLeftRotation[4, 1],

                  (* permMat = GetPermutationMatrix[{1,3, 5, 7, 9, 11, 13, 15, 2, 4, 6, 8, 10, 12, 14, 16 },16]; *)
                  3, GetPermutationMatrixByLeftRotation[6, 3]
                 1;
    permTable = Switch [question,
                         1, Table[If[i == 0,
                            Switch[j, 1, "|EPR\\01|EPR\\23",
                                       2, "(0) (1 2 4 8) (5 10) (6 12 9 3) (7 14 13 11) (15)",
                                       3, "|EPR\rangle_{12}|EPR\rangle_{30}"],
                            Switch[j, 1, MatrixForm[₱], 2, MatrixForm[permMat], 3, MatrixForm[permMat.₱]]],
                            \{i, 0, 1\}, \{j, 3\}\},\
                         3, Table[If[i == 0,
                            Switch[j, 1, "|GHZ⟩<sub>012</sub>⊗|GHZ⟩<sub>345</sub>",
                                      2, "(0 1 2 3 4 5) -> (3 4 5 0 1 2)",
                                      3, "P<sub>(012345) -> (345012)</sub>.|GHZ⟩<sub>012</sub>⊗|GHZ⟩<sub>345</sub>"],
                           Switch[j, 1, MatrixForm[\Partix], 2, MatrixForm[permMat], 3, MatrixForm[permMat.\Partix]]],
                           {i, 0, 1}, {j, 3}]
                  ];
    (* Show Outputs *)
    Grid[inputTable, Alignment -> Center, Spacings -> {si, 1}, Frame -> All, ItemStyle -> "Text", Background -> {{None, None}, {col1, None}}}
    Grid[projTable, Alignment -> Center, Spacings -> {st, 1}, Frame -> All, ItemStyle -> "Text", Background -> {{None, None}, {col2, None}}]
    Grid[verifyTable, Alignment -> Center, Spacings -> {sv, 1}, Frame -> All, ItemStyle -> "Text", Background -> {{None}, None}, {col3, None}}]
    Grid[outputTable, Alignment -> Center, Spacings -> {so, 1}, Frame -> All, ItemStyle -> "Text", Background -> {{None, None}, {col4, None}}]
    If [question == 1 || question == 3, Grid[permTable, Alignment -> Center, Spacings -> {sp, 1}, Frame -> All, ItemStyle -> "Text", Background -> {{None}, {col5, None}}],]
];
```

```
(* Measure the Entangled System *)
     MeasureEntangledSystemWithBellBasis[question_, si_:12, st_:10, sv_:10, so_:6, sp_:6] :=
            Module[{pair1, pair2, pairs, Ildim, I2dim, V, P, prob, state, pVerify},
         (* Compute Pairs *)
         {pair1, pair2, pairs} = Switch[question, 1, ComputeEPRPairs0123Entangled[],
                                                  ComputeGHZPairs012345Entangled[],
                                                  ComputeGHZPairs012345Entangled[],

    ComputeWernerGHZPairs012345Entangled[],

                                                  5, ComputeWernerEPRPairs01234Entangled[]];
         {Ildim, I2dim} = Switch[question, 1, {2, 2}, 2, {4, 4}, 3, {4, 4}, 4, {4, 4}, 5, {4, 2}];
         (* Compute Bell Basis *)
         V = ComputeBellBasis[];
         (* Compute Projectors *)
         {P, pVerify} = ComputeBellProjectors[V, 4];
         (* Compute Probabilities and States *)
         {prob, state} = ComputeBellProbStates[P, pairs, 4, IdentityMatrix[Iddim], IdentityMatrix[I2dim]];
        (* Shows Output Tables *)
        ShowEntangledOutputTables[question, pair1, pair2, pairs, V, P, prob, state, 4,
         IdentityMatrix[Ildim], IdentityMatrix[I2dim], pVerify, Red, Blue, Green, Yellow, Pink, si, st, sv, so, sp]
    ];
     (* Question 1 *)
     MeasureEntangledSystemWithBellBasis[1]
     (* Question 2 *)
     MeasureEntangledSystemWithBellBasis[2]
     (* Question 3 *)
    MeasureEntangledSystemWithBellBasis[3]
    (* Question 4 *)
    MeasureEntangledSystemWithBellBasis[4]
    (* Question 5 *)
    MeasureEntangledSystemWithBellBasis[5]
     (**)
End[]
EndPackage[]
```

(1)

EFR) ₀₁ {4, 1}		
$\begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\ \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}}\\ 0 \end{pmatrix}$	

EPR\01 EPR\23	(0) (1 2 4 8) (5 10) (6 12 9 3) (7 14 13 11) (15)	$ \text{EPR} \rangle_{03} \text{EPR} \rangle_{12}$
0 0 0 0 0 0 1 \frac{1}{2} - \frac{1}{2} 0 0 0 - \frac{1}{2} \frac{1}{2} 0 0 0	(1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{pmatrix} 0 \\ 0 \\ 0 \\ -\frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ -\frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $

$\sum P = I$	$P_i \cdot P_i = P_i$	∑p = 1	$P_i \cdot P_j = 0$, $i \neq j$
True	True	True	True

1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$
3	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$
4	$ \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$

Bell Basis	Bell Projectors	I(x)Projector(x)I	Probability	State
$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$	$ \begin{pmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix} $	$ \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	$\frac{1}{4}$	$\begin{pmatrix} -\frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -\frac{1}{2} \\ 0 \\ 0 \\ -\frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ -\frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
$\begin{pmatrix} 0\\ \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	1 4	0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	1/4	0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0
$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$	$ \begin{pmatrix} \frac{1}{2} & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix} $	$ \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	1/4	$ \begin{pmatrix} \frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -\frac{1}{2} \\ 0 \\ 0 \\ -\frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{2} \\ \end{pmatrix} $

(2)

$\begin{bmatrix} \frac{1}{7} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $			GHZ (Guz GHZ (gas (69, 1)
$ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	(arra) 672 Jan 17)	[GUM] 242 [QV T]	
$ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			(1)
$ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0
$\begin{pmatrix} \frac{1}{\sqrt{3}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0
$ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \sqrt[3]{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $			
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \sqrt[3]{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $			0
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			1
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			2
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0
$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			
$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0
$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0
$\begin{bmatrix} \frac{3}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			٥
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			٥
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			
$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			0
$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			٥
$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			ا ا
$ \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$			ا ا
$\begin{array}{c} \sqrt{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $			ا ا
$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	(, =)	(, =)	ا ا
$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	ا ا
$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0	0	ا ا
$\begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0	0	ا ا
$\begin{bmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0	0	
$\begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ $\begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0	0	ا ا
	0	0	
	1	1	
	\	\	
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
			0
0 0 1 2 0 0 0 0			0
0 1 2 0 0 0 0			0
			0
			1
			2
			0
			0
			0
			0
			0
			0
12 7			1
			12 /

∑P = I	$P_a \cdot P_a = P_a$	∑p = 1	P _i .P _j =0, i≠j
True	True	True	True

mell masis	mell projectors	= (n) resplaces (n) r	probability	State
$\left(\begin{array}{c c} A & \\\hline C & 0 & 0 & A \\\hline \end{array}\right)$			1 4	
$\frac{\operatorname{o}_{-\left \left\langle r_{+}\right\rangle \left \left\langle r_{+}\right\rangle \right\rangle }}{\left \left\langle r_{+}\right\rangle \left \left\langle r_{+}\right\rangle \right\rangle }}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

$\left(\begin{array}{c} 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{array}\right)$	•	**************************************
$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$	<u>.</u>	

(3) (Applying the permutation matrix to measure bits 0 & 5)

	GHZ⟩ ₀₁₂ 0 GHZ⟩ ₃₄₅	(0 1 2 3 4 5) -> (3 4 5 0 1 2)	P ₍₀₁₂₃₄₅₎ → (345012). GHZ) ₀₁₂ Θ GHZ) ₃₄₅
	(1)		
			'
	-	000000000000000000000000000000000000000	1
			'
	-		
	-		
	-		
	-		
	-		0
	-		-
	-		"
	-		
			"
			"
	-		'
	-		0
	-		
	0	0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	0
	-		
	-		
	-		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-		
0			
0	-		'
0	•	000000000000000000000000000000000000000	0
0			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-		
0	-		'
0	•		
0	-		'
0	0		0
2			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			•
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000000000000000000000000000000000000000	
	0		0
			-
(2)			

As we can see, the state does not change even after applying the unitary matrix. The other outputs are similar to that of (2).

(4) (Output sampled)

∑P = I	$P_i \cdot P_i = P_i$	∑p = 1	$P_i \cdot P_j = 0$, $i \neq j$
True	True	True	True

Bell Basis	Bell Projectors	I(x)Projector(x)I	Probability	State
$\left(\begin{array}{c} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{array}\right)$	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix}$	(<<1>>)	$rac{1}{4}$	

$\begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$		(«1»)	$\frac{1}{4}$	
--	--	-------	---------------	--

$\begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	(«1»)	$rac{1}{4}$	$ \begin{pmatrix} 0 & 0 & 0 & 1 & & & & & & & & & & & & & & & & &$
---	--	-------	--------------	--

$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \qquad \begin{pmatrix} \frac{1}{2} & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix}$	(«1»)	$\frac{1}{4}$	$ \begin{array}{c} 0 & 0 & \frac{1}{\sqrt{6}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 \\ -\sqrt{2} & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 \\ -\sqrt{2}$
---	-------	---------------	---

(5) (Output Sampled)

Wexnex (8, 1)	(EFR) ₂₄ (9, 1)	Wennex CPR
$\begin{pmatrix} 0 \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ 0 \\ \frac{1}{\sqrt{3}} \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $

∑P = I	$P_{\underline{x}}:P_{\underline{x}} \; \equiv \; P_{\underline{x}}$	∑p = 1	P _i .P _j =0, i#j
True	True	True	True

Bell Basis	Bell Projectors	I(x)Projector(x)I	Probability	State
$\begin{pmatrix} \frac{1}{\sqrt{ x }} \\ 0 \\ 0 \\ \frac{1}{\sqrt{ x }} \end{pmatrix}$	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix}$	$ \begin{pmatrix} \frac{1}{x} & 0 & 0 & 0 & 0 & \frac{1}{x} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	16	
$\begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	$ \begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	14 · 4	$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$

$ \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} $	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
$ \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ -\frac{1}{\sqrt{3}} \end{pmatrix} $ $ \begin{pmatrix} \frac{1}{2} & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix} $	$ \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	$ \begin{bmatrix} \frac{1}{\sqrt{6}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$

References

- Noson S. Yanofsky and Micro A. Mannucci, Quantum Computing for Computer Scientists.
 Nielsen, Chuang, Quantum Computation and Quantum Information.
- 3. Samuel J. Lomonaco, Jr., Quantum Computation, A Grand Mathematical Challenge for the Twenty-First Century and the Millennium.
- 4. Samuel J. Lomonaco, Quantum Computation and Quantum Information, A Millennium Volume.
- 5. QuantWiki.