COL352 Lecture 5

Contents

1 Recap 1

2 Content 1

1 Recap

Recall the informal definition of a run on NFA. We formalize this today.

2 Content

Definition 1. Let $N = (Q, \Sigma, \Delta, Q_0, A)$ be an NFA, and $x \in \Sigma^*$ be a string. A <u>run</u> of N on x is a sequence $q_0, x_1, q_1, \ldots, x_m, q_m$ such that

- 1. Each $q_i \in Q$
- 2. Each $x_i \in \Sigma \cup \{\epsilon\}$, such that $x = x_1 x_2 \dots x_m$.
- 3. $q_0 \in Q_0$
- 4. $\forall i : (q_{i-1}, x_i, q_i) \in \Delta$

Definition 2. $q_0, x_1, \ldots, q_{m-1}, x_m, q_m$ is an accepting run if $q_m \in A$, otherwise it is a rejecting run.

Definition 3. N accepts x if there exists an accepting run of N on x.

Definition 4. $\mathcal{L}(N) = \{x \in \Sigma^* \mid N \text{ accepts } x\}$

Question 1. Is it possible to create an NFA for any regular language?

Answer 1. Yes.

Claim 1. If L is recognized by a DFA, then L is recognized by some NFA.

Proof. Suppose $D=(Q,\Sigma,\delta,q_0,A)$ recognizes the language L. We construct $N=(Q,\Sigma,\Delta,\{q_0\},A)$, with $\Delta=\{(q,a,q')\in Q\times\Sigma\times Q\mid q'=\delta(q,a)\}$. Then N also recognizes D.

Question 2. Is it possible to create a DFA for any language that is accepted by an NFA?

Answer 2. Yes.

Theorem 2.1. Let N be any NFA. There exists a DFA D such that $\mathcal{L}(N) = \mathcal{L}(D)$.

Proof. We shall break this into two steps.

1. Step 1:

Theorem 2.2. Let N be any NFA. There exists an NFA N' without ϵ transitions such that $\mathcal{L}(N) = \mathcal{L}(D)$.

2. Step 2:

Theorem 2.3. Let N' be any NFA without ϵ transitions. There exists a DFA D such that $\mathcal{L}(N) = \mathcal{L}(D)$.

First we prove step 1.

 $x \in \mathcal{L}(N)$. Let $q_0 x_1 q_1 x_2 q_2 \dots x_m q_m$ be an accepting run.

 $x = x[1]x[2] \dots x[n]$, with $x[i] \in \Sigma$.

 $\langle x[i] \rangle$ is a subsequence of $\langle x_i \rangle$.

For any $j \notin \{i_1, i_2, \dots, i_n\}$, $x_j = \epsilon$, and $x_{i_k} = x[k]$. (basically compression). High-level idea - compress $x_{i_{k-1}+1} \dots x_{i_k}$ into a single step.

Now coming to the official proof.

Let $N = (Q, \Sigma, \Delta, Q_0, A)$. Define NFA N' as follows:

$$N' = (Q, \Sigma, \Delta', Q_0, A')$$

Here,

 $\Delta' = \{(q,a,q') \in Q \times \Sigma \times Q \mid \exists q'' \in Q \text{ such that } q'' \text{ is reachable from } q \text{ by } \epsilon \text{ transitions and } (q'',a,q') \in \Delta \}$

(note: this corresponds to the compression in the high-level idea)

 $A' = \{q \in Q \mid \exists q' \in A \text{ such that } q' \text{ is reachable from } q \text{ by } \epsilon \text{ transitions of } \Delta\}$

(note: this corresponds to compressing the last part of an accepting run)

Claim 2. $\mathcal{L}(N) \subseteq \mathcal{L}(N')$

Proof. Suppose $x \in \mathcal{L}(N)$. Then there exists an accepting run $q_0, x_1, q_1, \ldots, x_m, q_m$ of N on x.

Let $i_1 < i_2 < \dots < i_n$ be all the indices such that $x_i \in \Sigma$ (i.e., if $j \notin \{i_1, \dots, i_n\}$, then $x_j = \epsilon$).

Let's construct an accepting run of N' on x. Consider the sequence $q_0x[1]q_{i_1}x[2]\dots x[n]q_{i_n}$.

Now note that:

1. $(q_{i_{j-1}}, x[j], q_{i_j}) \in \Delta'$

Proof. This follows directly from the definition of Δ' ; indeed, in the original sequence, we have $q_{i_{j-1}} \epsilon q_{i_{j-1}+1} \epsilon \dots \epsilon q) i_j - 1$ so using $q = q_{i_{j-1}}, q'' = q_{i_j-1}, q' = q_{i_j}$ in the definition, we are done.

2. $q_{i_n} \in A'$

Proof. Note that all transitions after this are ϵ transitions, and hence the accepting state q_m is reachable from q_{i_n} using ϵ transitions, and hence $q_{i_n} \in A'$.

Hence we get an accepting run of N' on x, whence we are done.

Claim 3. $\mathcal{L}(N') \subseteq \mathcal{L}(N)$

Proof. Exercise.

Suppose $x \in \mathcal{L}(N')$. Then there exists an acepting run $q_0, x[1]', q_2, \ldots, x[n']', q_{n'}$ of N' on x. Note that since there are no ϵ transitions, we have x[i]' = x[i], and n = n'.

Now consider any $(q_{i-1}, x[i], q_i)$. Then since this is in D', we must have some q'' such that q'' is reachable from q_{i-1} by ϵ transitions and $(q'', x[i], q_i) \in D$.

Consider the corresponding path from q_{i-1} to q'', say $q_{i-1}\epsilon q'_{i-1,1}\epsilon \dots \epsilon q'' = q'_{i-1,l_{i-1}}$.

Also note that the last state q_n is an accepting state in N', hence there exists a path starting from q_n to some accepting state q'' in A consisting solely of ϵ transitions, say $q_n \epsilon q'_{n,1} \epsilon \dots \epsilon q'_{n,l_n} = q''$.

Consider the path

$$q_0\epsilon q'_{0,1}\epsilon \ldots \epsilon q_{0,l_0}x[1]q_1\epsilon q_{1,1}\epsilon \ldots \epsilon q_{1,l_1}x[2]q_2\ldots q_n\epsilon q'_{n,1}\epsilon \ldots \epsilon q'_{n,l_n}$$

Then the last state q'_{n,l_n} is accepting as discussed above, and all transitions are in Δ (by definition of Δ'), and the string corresponding to this run is $\epsilon^{l_0}x[1]\epsilon^{l_1}x[2]\dots\epsilon^{l_{n-1}}x[n]\epsilon^{l_n}=x$, as needed.

Hence we get an accepting run of N on x, whence we are done.

Now these two claims together show that $\mathcal{L}(N') = \mathcal{L}(N)$, whence we have completed the proof of theorem 2.2.