DATABASE DESIGN DOCUMENT – GoCareer

1.Introduction

1.1 Purpose

This document provides the database design for the Job Search Website Managament System, including the schema, relationships, indexing strategies, and data integrity constraints.

1.2 Scope

The database will store and manage, job categories, jobs posting, , company name , job seeker detail , messages, and job application. It will ensure data integrity, security, and efficient retrieval to provide a seamless job search and recruitment experience.

1.3 Target Audience

- Job Seekers → recent graduates, professionals who want to change jobs, freelancers and students looking for an internship.
- Company & HR Professionals → Companies, human resources managers and recruitment specialists.
- Freelancers & Remote Workers → Individuals looking for flexible or project-based jobs.
- Career Consultants & Educational Institutions → Career coaches and course providers who support job seekers.

2.Database Architecture

2.1 Database Management System

- a) Type: Relational Database Management System (RDBMS
- b) Preferred DBMS: MySQL
- c) Normalization: Third Normal Form (3NF) to optimize storage and eliminate redundancy.

ER DİAGRAM

3.Database Schema

3.1 Company Table

COLUMN	TYPE	CONSTRAINTS	DESCRIPTION
compnay_id	INT(PK)	AUTO_INCREMENT	EMPLOYERS ID
User_name	VARCHAR(255)	UNIQUE, NOT NULL	SYSTEM ACCOUNT
			NAME
company_name	VARCHAR(100)		EMPOYERS
			COMPANY NAME
industry	VARCHAR(100)		COMPANY'S
			INDUSTY
password	VARCHAR	NOT NULL	PERSONEL ACCES
			THE SYSTEM
Tax_number	VARCHAR(20)	UNIQUE, NOT NULL	ALL COMPANY HAVE
			TAX NUMBER

Address	VARCHAR(100)	UNIQUE, NOT NULL	COMPANY'S
			ADDRESS
Email	VARCHAR(50)	UNIQUE, NOT NULL	COMPANY CONTACT EMAIL
Phone	VARCHAR(20)	UNIQUE ,NOT NULL	COMPANY CONTACT PHONE

3.2 Job_seekers Table

COLUMN	TYPE	CONSTRAINTS	DESCRPITION
job_seeker_id	INT(PK)	AUTO_INCREMENT	JOB_SEEKER ID
user_name	INT(FOREIGN)	UNIQUE,	SYSTEM ACCOUNT
			NAME
first_name	VARCHAR(255)	NOT NULL	JOB SEEKER NAME
Last_name	VARCHAR(255)	NOT NULL	JOB SEEKER
			SURNAME
password	VARCHAR(255)	NOT NULL	USER PASSWORD
			FOR THE ACCESS
			SYSTEM
gender	ENUM	("MALE","FEMALE")	JOB_SEEKER
			GENDER
Address	VARCHAR(100)	UNIQUE , NOT NULL	JOB_SEEKER
			ADDRESS
Email	VARCHAR(50)	UNIQUE, NOT NULL	JOB_SEEKER
			CONTACT EMAIL
Phone	VARCHAR(20)	UNIQUE ,NOT NULL	JOB_SEEKER
			CONTACT PHONE
cv	TEXT	NOT NULL	JOB SEEKER
			EXPERIENCE

3.3 Job Posting

COLUMN	TYPE	CONSTRAINTS	DESCRPITION
Job_posting_id	INT(PK)	AUTO_INCREMENT	JOB POSTING ID
Title	VARCHAR(100)	NOT NULL	POST'S TİTLE
Desccription	TEXT	NOT NULL	POST'S
			EXPLANATION
			ABOUT THE JOB
Country	VARCHAR(50)	NOT NULL	POST SHARED
			WHICH COUNTYR
City	VARCHAR(50)	NOT NULL	POST SHARED
			WHICH CITY

3.4 Post Table

COLUMN	TYPE	CONSTRAINTS	DESCRPITION

Post_id	INT(PK)	AUTO_INCREMENT	POST SHARED
			NUMBER
Company_id	INT(FOREIGN)	NOT NULL	WHICH COMPANY
			BELONG
title	VARCHAR(255)	NOT NULL	TITLE OF THE POST
date	DATE DEFAULT	NOT NULL	SHARED DATE TIME
	CURRENT DATE		
is_active	ENUM	('active','not active')	POST STATUS

3.5 Applies Table

COLUMN	TYPE	CONSTRAINTS	DESCRPITION
applies_id	INT(PK)	AUTO_INCREMENT	APPLICATION ID
job_posting_id	INT(FOREIGN)	NOT NULL	SHARED POST ID
job_seeker_id	INT(FOREIGN)	NOT NULL	JOB SEEKER ID
applies_date	DATE DEFAULT	NOT NULL	APLLICANT DATE
	CURRENT DATE		TİME
status	ENUM	('accepted',	APPLICANT STATUS
		'rejected', 'hold')	
motivation_letter	TEXT		INTDORUCE THE
			JOB SEEKER
			HIMSELF/HERSELF

3.4 Messages Table

COLUMN	TYPE	CONSTRAINTS	DESCRPITION
message_id	INT(PK)	AUTO_INCREMENT	MESSAGE ID
sender_id	INT	UNIQUE	WHO SEND A
			MESSAGE ID
receiver_id	INT	UNIQUE	WHO GİVE A
			MESSAGE ID
message_content	TEXT		WHAT IS MESSAGE
			INCLUDE?
Date_time	DATE	NOT NULL	WHEN MESSAGE
			SENT

4. Indexing Strategy

a. Primary Keys

Primary keys are automatically indexed, ensuring fast lookups and enforcing uniqueness for each row. Every table has a primary key, which serves as its unique identifier. For example:

COMPANY(company_id), JOB_SEEKER(job_seeker_id),
JOB_POSTING(job_posting_id), POST(post_id), APPLIES(applies_id), and
MESSAGE(message_id) all have automatically created primary key indexes.

b. Foreign Key Indexing (Referential Integrity)

Foreign keys establish relationships between tables and should be indexed to speed up JOIN operations. Since foreign keys are frequently used in queries that retrieve related data, indexing them improves query performance. For instance:

- POST(company_id) is indexed to enable quick lookups of all posts by a particular company.
- POST(job_posting_id) is indexed to speed up job posting queries.
- APPLIES(job_seeker_id) is indexed to allow efficient retrieval of job applications made by a job seeker.
- APPLIES(job_posting_id) is indexed to enable quick lookups of applicants for a particular job posting.
- MESSAGE(sender_id) and MESSAGE(receiver_id) are indexed to improve message retrieval performance.

c. Frequently Queried Columns

Some columns are often used in search and filtering operations, so indexing them significantly improves performance. Examples include:

- email column in COMPANY and JOB_SEEKER tables, which is used for authentication and needs fast lookups.
- status column in APPLIES, which allows for efficient filtering of applications based on their current status.
- is_active column in POST, which helps retrieve active job postings quickly.

d. Full-Text Indexing (Optimized Search)

For text-heavy fields, FULLTEXT indexing is used to enhance search functionality, allowing efficient keyword-based searches instead of slower LIKE '%text%' queries. This is particularly useful for fields such as:

- description in JOB POSTING, enabling fast job searches by description.
- motivation_letter in APPLIES, allowing employers to search applications based on motivation letters.
- content in MESSAGE, making it easier to search within chat histories.

5. Security Measures

a. Data Encryption

- Password Hashing: User passwords are stored securely using bcrypt hashing to prevent unauthorized access.
- Sensitive Data Encryption: Critical user data (e.g., phone numbers, emails) can be encrypted using AES-256 encryption to protect it from breaches.

b. Access Control & Authentication

 Role-Based Access Control (RBAC): Users are assigned roles (company, job_seeker), and permissions are strictly enforced to prevent unauthorized access.

c. Audit Logging & Monitoring

 Action Logging: User actions (e.g., logins, job applications, message exchanges) are logged to detect suspicious activities.

6. Scalability and Performance Optimizations

- a. Read Replication (Scaling Read Queries)
 - Tables: JOB_POSTING, COMPANY, JOB_SEEKER
 - Reason: These tables are frequently queried but not updated as often, making them ideal for read replicas.

b. Caching (Reducing Query Load)

- Tables: JOB_POSTING, COMPANY, MESSAGE
- Reason: Frequently accessed data, such as job listings, company profiles, and unread messages, can be cached for faster retrieval.

c. Indexing Optimization (Faster Lookups)

Tables: COMPANY, JOB SEEKER, APPLIES, MESSAGE, POST

• Reason:

- Indexing email and phone_number in COMPANY and JOB_SEEKER speeds up authentication.
- o Indexing status in APPLIES helps track job application progress.
- o Indexing sender_id and receiver_id in MESSAGE speeds up chat queries.
- o Indexing is active in POST allows quick retrieval of active job postings.

7.Backup and Diaster Recovery Plan

- Database Backup: Daily full backups, hourly incremental backups, and encrypted offsite storage ensure data safety.
- Disaster Recovery: Multi-region deployment and automated failover minimize downtime.
- Recovery Objectives: RTO < 15 min, RPO < 5 min to quickly restore system functionality.
- File Storage Backup: Version-controlled and automatic snapshots prevent data loss

8.Conculusion

The database design for the Job Search Website Management System is structured to ensure efficiency, security, and scalability. By implementing a relational database model (MySQL) and following Third Normal Form (3NF) principles, the design optimizes data storage while minimizing redundancy.

- Well-defined schema covering users, employers, job seekers, job postings, applications, messages, notifications, and experience records.
- Efficient indexing strategies, including primary keys, foreign keys, and frequently queried columns, to enhance query performance.
- Security measures, such as password hashing, data encryption, and role-based access control (RBAC), to protect user data.