Hydrological modelling with R packages

Guillaume Thirel INRAE, HYCAR Research Unit, France

★ https://webgr.inrae.fr

У @G_Thirel

Context

Thousands of R packages exist.

Slater et al. (2019):

- an overview of interesting packages in the hydrological workflow
- but there was no space for going into much details

We focus here on hydrological modelling

It is a primordial step in the hydrological workflow

Guillaume Thirel, INRAE @G_Thirel

Rationale of this work

Hundreds of hydrological models exist, some are available in R

From the user point of view, there is a need for guidance in choosing a package:

- hydrological models fit different purposes
- packages present different functionalities
- uneven quality of documentation

In this work, we focused on:

- the differences between models
- the necessary model inputs
- the documentation
- the implementation

And we propose simple R codes to run these packages

Guillaume Thirel, INRAE @G_Thirel 3/16

Aims of this presentation

To give an overview of:

- 8 available hydrological modelling R packages
- available hydrological models in these R packages

What you will not get from this presentation but only from reading the paper

- how to run each package/model (see the supplementary material of the paper)
- an in-depth explanation of all hydrological models

Guillaume Thirel, INRAE @G_Thirel $4\,/\,16$

Collaborative international work led by Paul C. Astagneau

https://doi.org/10.5194/hess-2020-498
© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Abstract Assets Discussion Metrics

17 Oct 2020

Review status: a revised version of this preprint is currently under review for the journal HESS.

Hydrology modelling R packages: a unified analysis of models and practicalities from a user perspective

Paul C. Astagneau[©]^{1,2}, Guillaume Thirel[©]¹, Olivier Delaigue[©]¹, Joseph H. A. Guillaume³, Juraj Parajka[©]⁴, Claudia C. Brauer[©]⁵, Alberto Viglione[©]⁶, Wouter Buytaert[©]⁷, and Keith J. Beven[©]⁸

¹Université Paris-Saclay, INRAE, HYCAR Research Unit, Antony, France

²Sorbonne Université, Paris, France

³Institute for Water Futures and Fenner School of Environment & Society, Australian National University, Canberra, Australia

⁴Institute of Hydraulic and Water Resources Engineering, TU Vienna, Vienna, Austria

⁵Hydrology and Quantitative Water Management Group, Wageningen University and Research, Wageningen, The Netherlands

Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy

⁷Department of Civil and Environmental Engineering, Imperial College London, London, UK

⁸Lancaster Environment Centre, Lancaster University, Lancaster, UK

Received: 25 Sep 2020 - Accepted for review: 15 Oct 2020 - Discussion started: 17 Oct 2020

Abstract. Following the rise of R as a scientific programming language, the increasing requirement for more transferable research, and the growth of data availability in hydrology, R packages containing hydrological models are becoming more and more available to hydrologists. Corresponding to the core of the hydrological studies workflow, their value is increasingly meaningful regarding the reliability of methods and results. Despite package and model distinctiveness, no study has ever provided a comparison of R packages for conceptual rainfall-runoff modelling from a user perspective, contrasting their philosophy, model

Guillaume Thirel, INRAE @G Thirel 5/16

List of packages selected and the models they propose

Package	Repository	Hydrological models	Snow model
airGR	R	GR models	\checkmark
dynatopmodel	R	Dynamic TOPMODEL	
HBV.IANIGLA	R	HBV	\checkmark
hydromad		IHACRES AWBM GR4J Sacramento	✓
sacsmaR		Sacramento	\checkmark
topmodel	R	TOPMODEL 1995	
TUWmodel	R	Modified HBV	\checkmark
WALRUS	0	WALRUS	✓

Guillaume Thirel, INRAE @G_Thirel $6 \, / \, 16$

Hydrological modelling with R

Analysis from a modeller perspective

Guillaume Thirel, INRAE @G_Thirel 7/16

Differences in spatial resolution

The snow models

Guillaume Thirel, INRAE @G_Thirel 8 / 16

Differences in spatial resolution

The hydrological models

Package	Model	Lumped	HRUs	Sub- catchments	Routing between HRUs and/or subcatchments
airGR	GR4J	\checkmark		\checkmark	
dynatopmodel	TOPMODEL (dynamic)		√		\checkmark
HBV.IANIGLA	HBV	\checkmark			
hydromad	GR4J	\checkmark			
hydromad	IHACRES-CMD	\checkmark			
hydromad	Sacramento	\checkmark			
sacsmaR	Sacramento	\checkmark	\checkmark	\checkmark	\checkmark
topmodel	TOPMODEL (1995)	\sim	\sim		\checkmark
TUWmodel	Modified HBV	\checkmark	\sim	\sim	\checkmark
WALRUS	WALRUS	\checkmark			

Guillaume Thirel, INRAE @G_Thirel 9 / 16

Unified diagrams of models

Guillaume Thirel, INRAE @G_Thirel $10 \, / \, 16$

Hydrological modelling with R

Analysis from a package user perspective

Guillaume Thirel, INRAE @G_Thirel 11/16

Models inputs

Package	Model(s)	Time step(s)	Inputs (TS)	Inputs (static)	Nb. of param.
airGR	GR models	H D M A	P PET		[1;6]
dynatopmodel	Dynamic TOPMODEL	Flex.	P PET	DEM	8
HBV.IANIGLA	HBV	Flex.	P PET		[7;9]
hydromad	GR4J	D	P PET		4
	IHACRES-CMD	Flex.	P PET		6
	Sacramento	\geq H	P PET		13
sacsmaR	Sacramento	D	P PET	SA	13
topmodel	TOPMODEL 1995	Flex.	P PET	DEM	10
TUWmodel	Modified HBV	\leq D	P PET	SA	10
WALRUS	WALRUS	Flex.	P PET	soil type	3

Guillaume Thirel, INRAE @G_Thirel 12/16

Models outputs

Package	Model(s)	TS of AET and TS of RC	TS of internal fluxes	TS of store levels	Spatially distributed
airGR	GR models	\checkmark	\checkmark	\checkmark	
dynatopmodel	Dynamic TOPMODEL	\checkmark	\sim	\checkmark	\checkmark
HBV.IANIGLA	HBV	\checkmark	\sim	\checkmark	
hydromad	GR4J	\checkmark	\sim	\checkmark	
	IHACRES-CMD	\checkmark	\sim	\checkmark	
	Sacramento	\checkmark		\checkmark	
sacsmaR	Sacramento				
topmodel	TOPMODEL 1995	\checkmark	\sim		\checkmark
TUWmodel	Modified HBV	\checkmark	\sim	\checkmark	\checkmark
WALRUS	WALRUS	\checkmark	\checkmark	\checkmark	

Guillaume Thirel, INRAE @G_Thirel 13/16

Package functionalities

Package	Data preprocessing function	Criteria	Data transfo.	Automatic calibration	Plot function	Graphical user interface	Independent snow function
airGR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
dynatopmodel	\checkmark	\checkmark			\checkmark		
HBV.IANIGLA	\checkmark						\checkmark
hydromad	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
sacsmaR							\checkmark
topmodel	\checkmark	\checkmark					
TUWmodel		\sim		\sim		\checkmark	
WALRUS	\checkmark	\checkmark	\checkmark	\sim	\checkmark	\approx	✓

Guillaume Thirel, INRAE @G_Thirel $14 \, / \, 16$

CPU times

Guillaume Thirel, INRAE @G_Thirel 15/16

Running the hydrological models

Example codes are provided at https://doi.org/10.15454/3PPKCL

Guillaume Thirel, INRAE @G_Thirel $16 \, / \, 16$