Package 'aridec'

February 9, 2022
Title Arid decomposition database
Version 0.0.0.1
Description This package provides functions to load and analyse the arid decomposition database
Depends R (>= $3.4.3$)
License GPL-3
Encoding UTF-8
LazyData true
Imports yaml, FME, SoilR
RoxygenNote 7.1.1.9000
NeedsCompilation no
Author Carlos Sierra [aut, cre]
Maintainer Carlos Sierra <csierra@bgc-jena.mpg.de></csierra@bgc-jena.mpg.de>

R topics documented:

biome	2
carbon	2
coordinates	3
countries	3
elevation	4
lignin	4
loadEntries	5
MAP	6
MAT	6
material	7
nitrogen	7
onepFit	8
plotEntry	9
readEntry	9
soilorder	10
species	10
threeppFit	11
threepsFit	11
twopfFit	12
twoppFit	13
twopsFit	13

2 carbon

Index 15

biome

Creates a data frame with the ecosystem type of the sites

Description

Creates a data frame with the ecosystem type of the sites

Usage

```
biome(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the ecosystem types from the database

Examples

```
## Not run:
#' aridec=loadEntries(path='/aridec/data/')
biome=biome(database=aridec)
## End(Not run)
```

carbon

Creates a data frame with the carbon content in litter samples

Description

Creates a data frame with the carbon content in litter samples

Usage

```
carbon(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the carbon content (

coordinates 3

Examples

```
## Not run:
aridec=loadEntries(path='/aridec/data/')
C=carbon(database=aridec)
## End(Not run)
```

coordinates

Creates a data frame with the coordinates of the sites

Description

Creates a data frame with the coordinates of the sites

Usage

```
coordinates(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the longitude and latitude of sites from the database

Examples

```
## Not run:
aridec=loadEntries(path='/aridec/data/')
coor=coordinates(database=aridec)
## End(Not run)
```

countries

Creates a data frame with the countries of the sites

Description

Creates a data frame with the countries of the sites

Usage

```
countries(database)
```

Arguments

database

A list with the aridec structure

4 lignin

Value

A data frame with the countries from the database

Examples

```
## Not run:
aridec=loadEntries(path='/aridec/data/')
countries=countries(database=aridec)
## End(Not run)
```

elevation

Creates a data frame with elevation values of the sites

Description

Creates a data frame with elevation values of the sites

Usage

```
elevation(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the elevation values (mm) from the database

Examples

```
## Not run:
aridec=loadEntries(path='/aridec/data/')
elevation=elevation(database=aridec)
## End(Not run)
```

lignin

Creates a data frame with the lignin content in litter samples

Description

Creates a data frame with the lignin content in litter samples

Usage

```
lignin(database)
```

loadEntries 5

Arguments

database A list with the aridec structure

Value

A data frame with the lignin content (

Examples

```
## Not run:
aridec=loadEntries(path='/aridec/data/')
lignin=lignin(database=aridec)
## End(Not run)
```

loadEntries

Load all entries of the aridec dataset

Description

Load all entries of the aridec dataset

Usage

```
loadEntries(path = "~/aridec/data/")
```

Arguments

path

character string with the path where aridec data is stored

Value

R list with all entries

```
## Not run:
aridec=loadEntries()
## End(Not run)
```

6 MAT

MAP

Creates a data frame with mean annual precipitation values of the

Description

Creates a data frame with mean annual precipitation values of the sites

Usage

```
MAP(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the mean annual precipitation values (mm) from the database

Examples

```
## Not run:
aridec=loadEntries(path='~/aridec/data/')
MAP=MAP(database=aridec)
## End(Not run)
```

MAT

Creates a data frame with mean annual temperature values of the sites

Description

Creates a data frame with mean annual temperature values of the sites

Usage

```
MAT(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the mean annual temperature values (Celsius degrees) from the database

material 7

Examples

```
## Not run:
aridec=loadEntries(path='/aridec/data/')
MAT=MAT(database)
## End(Not run)
```

material

Creates a data frame with the list of litter samples' plant parts

Description

Creates a data frame with the list of litter samples' plant parts

Usage

```
material(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the list of the litter samples' plant parts from the database

Examples

```
## Not run:
aridec=loadEntries(path='/aridec/data/')
material=material(database=aridec)
## End(Not run)
```

nitrogen

Creates a data frame with the nitrogen content of litter samples

Description

Creates a data frame with the nitrogen content of litter samples

Usage

```
nitrogen(database)
```

Arguments

 ${\tt database}$

A list with the aridec structure

8 onepFit

Value

A data frame with the nitrogen content (

Examples

```
## Not run:
aridec=loadEntries(path='/aridec/data/')
N=nitrogen(database=aridec)
## End(Not run)
```

onepFit

Fits a one pool model to a time-series

Description

Fits a one pool model to a time-series

Usage

```
onepFit(timeSeries, initialCarbon)
```

Arguments

timeSeries A time series of decomposition values over time

initialCarbon The initial amount of carbon in units that correspond to the time series data

Value

R list with an FME model object, a aridec model object, and the AIC value

```
## Not run:
aridec=loadEntries()
entry=aridec[[20]]
a=onepFit(timeSeries = entry$timeSeries[,1:2],
initialCarbon=100)
## End(Not run)
```

plotEntry 9

plotEntry

Plot individual entries of the aridec dataset

Description

Plot individual entries of the aridec dataset

Usage

```
plotEntry(entry)
```

Arguments

entry

character string with the name of the entry to be plotted

Value

A plot

Examples

```
## Not run:
aridec=loadEntries(path='/aridec/data/')
plotEntry(entry=aridec[["Adair2017"]])
## End(Not run)
```

readEntry

Read single entry of the aridec database

Description

Read single entry of the aridec database

Usage

```
readEntry(path, entryName)
```

Arguments

path character string with the path where aridec is stored entryName character string with the name of the entry in the database

Value

R list with the entry

```
## Not run:
Adair2017=readEntry(path = '~/aridec/data/', entryName="Adair2017")
## End(Not run)
```

10 species

soilorder

Creates a data frame with soil orders of the sites

Description

Creates a data frame with soil orders of the sites

Usage

```
soilorder(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the soil orders from the database

Examples

```
## Not run:
aridec=loadEntries(path='/aridec/data/')
soilorder=soilorder(database=aridec)
## End(Not run)
```

species

Creates a data frame with the species list of litter samples

Description

Creates a data frame with the species list of litter samples

Usage

```
species(database)
```

Arguments

database

A list with the aridec structure

Value

A data frame with the list of species of the litter samples from the database

```
## Not run:
aridec=loadEntries(path='/aridec/data/')
species=species(database=aridec)
## End(Not run)
```

threeppFit 11

threeppFit	Fits a three pool model with parallel structure to a time series
ин ееррі т	T its a titree poor moder with paratter structure to a time series

Description

Fits a three pool model with parallel structure to a time series

Usage

```
threeppFit(timeSeries, initialCarbon, inipars = c(1, 0.5, 0.5, 0.5, 0.5))
```

Arguments

timeSeries A time series of respiration values

initialCarbon The initial amount of carbon in units that correspond to the time series data inipars vector of parameter values for the initial search of the optimization algorithm

Value

R list with an FME model object, a SoilR model object, and the AIC value

Examples

```
aridec=loadEntries()
entry=aridec[[20]]
a=threeppFit(timeSeries = entry$timeSeries[,c(1,2)],
initialCarbon=100,
inipars = c(0.05, 0.01, 0.001, 0.1, 0.1))
```

threepsFit

Fits a three pool model with series structure to a time series

Description

Fits a three pool model with series structure to a time series

Usage

```
threepsFit(
   timeSeries,
   initialCarbon,
   inipars = c(1, 0.5, 0.5, 0.5, 0.5, 0.5))
```

Arguments

timeSeries A time series of respiration values

initialCarbon The initial amount of carbon in units that correspond to the time series data inipars vector of parameter values for the initial search of the optimization algorithm

12 twopfFit

Value

R list with an FME model object, a SoilR model object, and the AIC value

Examples

```
aridec=loadEntries()
entry=aridec[["20"]]
a=threepsFit(timeSeries = entry$timeSeries[,c(1,2)],
initialCarbon=100,
inipars=c(0.9,0.01, 0.000001, 0.01, 0.01, 0.01, 0.1))
```

twopfFit

Fits a two pool model with feedback structure to a time series

Description

Fits a two pool model with feedback structure to a time series

Usage

```
twopfFit(timeSeries, initialCarbon, inipars = c(1, 0.5, 0.5, 0.5, 0.3))
```

Arguments

timeSeries A time series of respiration values

initialCarbon The initial amount of carbon in units that correspond to the time series data

inipars vector of parameter values for the initial search of the optimization algorithm

Value

R list with an FME model object, a SoilR model object, and the AIC value

```
aridec=loadEntries()
entry=aridec[["20"]]
b=twopfFit(timeSeries = entry$timeSeries[,c(1,2)],
initialCarbon=100,
inipars=c(0.005, 0.00001, 0.1, 0.01, 0.01))
```

twoppFit 13

twoppFit	Fits a two pool model with parallel structure to a time series	

Description

Fits a two pool model with parallel structure to a time series

Usage

```
twoppFit(timeSeries, initialCarbon, inipars = c(1, 0.5, 0.5))
```

Arguments

timeSeries A time series of entry values

initialCarbon The initial amount of carbon in units that correspond to the time series data inipars vector of parameter values for the initial search of the optimization algorithm

Value

R list with an FME model object, a SoilR model object, and the AIC value

Examples

```
aridec=loadEntries()
entry=aridec[["20"]]
a=twoppFit(timeSeries = entry$timeSeries[,c(1,2)],
initialCarbon=100,
inipars=c(0.01, 0.001, 0.1))
```

twopsFit

Fits a two pool model with series structure to a time series

Description

Fits a two pool model with series structure to a time series

Usage

```
twopsFit(timeSeries, initialCarbon, inipars = c(1, 0.5, 0.5, 0.3))
```

Arguments

timeSeries A time series of entry values

initialCarbon The initial amount of carbon in units that correspond to the time series data inipars vector of parameter values for the initial search of the optimization algorithm

14 twopsFit

Value

R list with an FME model object, a SoilR model object, and the AIC value

```
aridec=loadEntries()
entry=aridec[["20"]]
b=twopsFit(timeSeries = entry$timeSeries[,c(1,2)],
initialCarbon=100,
inipars=c(0.005, 0.00001, 0.1, 0.01))
```

Index

```
biome, 2
carbon, 2
coordinates, 3
countries, 3
elevation, 4
lignin, 4
loadEntries, 5
MAP, 6
MAT, 6
material, 7
{\tt nitrogen}, \color{red} 7
\verb"onepFit,8"
plotEntry, 9
readEntry, 9
soilorder, 10
species, 10
{\tt threeppFit}, {\tt 11}
threepsFit, 11
twopfFit, 12
{\tt twoppFit}, {\color{red} 13}
twopsFit, 13
```