Notes

30/05/2021

R Type Instruction

32 bits instruction

opcode	rs	rt	rd	shamt	funct
					5:0 3 bits

Example:

add \$t1, \$t2, \$t3

Each of registers t2 and t3 contains value 5. After add operation register t1 holds the value 10.

Consider the following register file

How is this instruction stored in the Instruction Memory?

000000

Opcode for R type is 0

Highlights:

In this class we learned the operation of datapath for implementing an R-type instruction as shown in Figure 4.19.

We talked about 3 components of the datapath in details: PC, Instruction Memory, Register file Reference: Section 4.1 - 4.4

Notes

31/05/2021

Memory Reference Instructions: Iw and sw

lw or sw

opcode	rs	rt	offset	
	•	•	•	
31: 26	25:21	20:16	15:0	
6 bits	5 bits	5 bits	16 bits	

Opcode for lw is 35 and for sw is 43

Example:

lw \$11, 8 (\$12) // Register t2 holds the memory's base address and 8 is an offset value. 32 bit Data from the Memory location specified by the address (\$12 + 8) is loaded to register t1.

100011	00010	00001	00000000001000

add \$t1, \$t3, \$t1 // Value of register t1 is added to the value of register t3 and the output is stored in register t1.

000000	000000	00011	00001	00001	00000	100000
--------	--------	-------	-------	-------	-------	--------

sw \$t1, 6 (\$t2) // // Register t2 holds the memory's base address and 8 is an offset value. 32 bit Data from register t1 is stored to the Memory location specified by the address(\$t2 + 8).

|--|

Highlights:

In this class we learned the operation of datapath for implementing an memory reference (I-type) instruction as shown in Figure 4.20.

Also we looked at the control unit and discussed the clock cycle requirement of the execution.

Reference: Section 4.1 - 4.4