Linguagens Formais e Autômatos

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- **6 Linguagens Livres do Contexto**
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes e Linguagens e Conclusões

2 – Linguagens e Gramáticas

- 2.1 Alfabeto
- 2.2 Palavra
- 2.3 Linguagem Formal
- 2.4 Gramática

2 Linguagens e Gramáticas

◆ Linguagem: Dicionário Aurélio

o uso da palavra articulada ou escrita como meio de expressão e comunicação entre pessoas

- ◆ Não é suficientemente precisa para
 - desenvolvimento matemático de uma teoria baseada em linguagens

◆ Linguagem

• conceito fundamental em Computação e Informática

Para definir linguagem

- alfabeto
- palavra ou cadeia de caracteres

2 – Linguagens e Gramáticas

- 2.1 Alfabeto
- 2.2 Palavra
- 2.3 Linguagem Formal
- 2.4 Gramática

2.1 Alfabeto

Símbolo ou Caractere

- entidade abstrata básica, não definida formalmente
- base para definições
- exemplos: letras e dígitos

Def: Alfabeto

Conjunto finito de símbolos ou caracteres

♦ Portanto

- conjunto infinito não é alfabeto
- Ø é um alfabeto

Exp: Alfabeto

São alfabetos

- { a, b, c }
- Ø (conjunto vazio)

Não são alfabetos (por quê?)

- N (conjunto dos números naturais)
- { a, b, aa, ab, ba, bb, aaa,... }

Exp: Alfabeto: Linguagem de Programação

Alfabeto de uma linguagem de programação como Pascal

- o conjunto de todos os símbolos usados nos programas
 - * letras
 - * dígitos
 - * caracteres especiais como ">", "/", etc
 - * espaço ou "branco"

◆ Alfabeto binário { a, b }

- domínio de valores de um bit
- analogia com a representação interna dos computadores reais
- poucos símbolos: simplifica as diversas abordagens desenvolvidas.

2 – Linguagens e Gramáticas

- 2.1 Alfabeto
- 2.2 Palavra
- 2.3 Linguagem Formal
- 2.4 Gramática

2.2 Palavra

Def: Palavra, Cadeia de Caracteres, Sentença

Sobre um alfabeto

seqüência finita de símbolos justapostos

◆ Cadeia sem símbolos

ε - cadeia vazia ou palavra vazia

Def: Prefixo, Sufixo, Subpalavra

Prefixo (Sufixo)

qualquer seqüência inicial (final) de símbolos da palavra

Subpalavra

qualquer seqüência de símbolos contíguos da palavra

Exp: Palavra, Prefixo, Sufixo, Subpalavra

abcb palavra sobre o alfabeto { a, b, c }

- ε, a, ab, abc, abcb são todos os prefixos
- ε, b, cb, bcb, abcb são todos os sufixos
- qualquer prefixo ou sufixo é uma subpalavra

Exp: Palavra: Linguagem de Programação

Em uma linguagem de programação como Pascal

uma palavra é um programa

Def: Concatenação de Palavras

Concatenação de Palavras ou simplesmente Concatenação

- operação binária sobre um conjunto de palavras
- associa a cada par de palavras
 - palavra formada pela justaposição da primeira com a segunda

Notação

 justaposição dos símbolos que representam as palavras componentes

Propriedades

- Elemento Neutro: ε w = w = w ε
- Associativa: v(w t) = (v w)t

Associatividade - parênteses podem ser omitidos: vwt

Exp: Concatenação de Palavras

 $\Sigma = \{a, b\}$ um alfabeto. Para v = baaaa e w = bb

- v w = baaaabb
- $V \varepsilon = V = baaaa$

Def: Concatenação Sucessiva de uma Palavra

Concatenação Sucessiva de uma Palavra (com ela mesma) ou simplesmente Concatenação Sucessiva

wⁿ onde n é o número de concatenações sucessivas

indutivamente a partir da operação de concatenação

- $\mathbf{w}^0 = \mathbf{\varepsilon}$
- $w^n = w w^{n-1}$, para n > 0

Exp: Concatenação Sucessiva

w palavra e a símbolo

- $w^3 = www$
- $w^1 = w$
- $a^5 = aaaaa$
- aⁿ = aaa...a (o símbolo a repetido n vezes)

◆ Se ∑ é um alfabeto

- Σ* conjunto de todas as palavras possíveis sobre Σ
- $\Sigma^+ = \Sigma^* \{ \varepsilon \}$

Def: Conjunto de Todas as Palavras

 Σ alfabeto. Σ^* é indutivamente definido

Base de Indução

- $\varepsilon \in \Sigma^*$
- para qualquer $x \in \Sigma$, vale $x \in \Sigma^*$

Passo de Indução

- Se u e v são palavras de Σ*,
- então a concatenação u v é uma palavra de Σ*

◆ Definição alternativa para palavra sobre um alfabeto ∑

• qualquer elemento $w de \Sigma^*$

$$w \in \Sigma^*$$

Exp: Conjunto de Todas as Palavras

Se $\Sigma = \{a, b\}$, então:

- $\Sigma^{+} = \{ a, b, aa, ab, ba, bb, aaa, ... \}$
- $\Sigma^* = \{ \varepsilon, a, b, aa, ab, ba, bb, aaa, \dots \}$

Def: Comprimento, Tamanho de uma Palavra

De uma palavra w, representado por |w|

- número de símbolos que compõem a palavra
- função com domínio em Σ* e codomínio em N

Exp: Palavra, Prefixo, Sufixo, Comprimento

$$\begin{vmatrix} abcb \end{vmatrix} = 4$$

 $\begin{vmatrix} \varepsilon \end{vmatrix} = 0$

2 – Linguagens e Gramáticas

- 2.1 Alfabeto
- 2.2 Palavra
- 2.3 Linguagem Formal
- 2.4 Gramática

2.3 Linguagem Formal

Def: Linguagem Formal

Linguagem Formal ou simplesmente Linguagem L sobre um alfabeto ∑

$$L\subseteq \Sigma^*$$

Exp: Linguagem Formal

Ø e {ε} são linguagens sobre qualquer alfabeto

$$\emptyset \neq \{\epsilon\}$$

 Σ^* e Σ^+ são linguagens sobre um Σ qualquer

$$\Sigma^* \neq \Sigma^+$$

Conjunto de palíndromos sobre $\Sigma = \{a, b\}$

ε, a, b, aa, bb, aaa, aba, bab, bbb, aaaa,...

Exp: Conjunto de Todas as Linguagens Sobre um Alfabeto

Conjunto das partes de Σ^*

 2^{Σ^*}

Exp: Linguagem Formal: Linguagem de Programação

Linguagem de programação como Pascal

conjunto de todos os programas (palavras) da linguagem

2 – Linguagens e Gramáticas

- 2.1 Alfabeto
- 2.2 Palavra
- 2.3 Linguagem Formal
- 2.4 Gramática

2.4 Gramática

- ◆ Linguagem de programação
 - definida pelo conjunto de todos os programas (palavras)
- Linguagem de propósitos gerais como Pascal
 - conjunto de todos os programas é infinito
 - não é definição adequada para implementação em computador
- Formalismo Gramática
 - uma maneira de especificar de forma finita linguagens (eventualmente) infinitas

Gramática é, basicamente

- conjunto finito de regras
- quando aplicadas sucessivamente, geram palavras
- conjunto de todas as palavras geradas por uma gramática
 - * define a linguagem

◆ Gramáticas para linguagens naturais como Português

- as mesmas que as usadas para linguagens artificiais como Pascal
- Gramáticas também são usadas para definir semântica
 - entretanto, em geral, são usados outros formalismos

Def: Gramática

Gramática de Chomsky, Gramática Irrestrita ou Gramática

$$G = (V, T, P, S)$$

- V, conjunto *finito* de símbolos variáveis ou não-terminais
- T, conjunto finito de símbolos terminais disjunto de V
- P:(V∪T)⁺→(V∪T)*, relação finita: Produções
 - par da relação: regra de produção ou produção
- S, elemento distinguido de V: símbolo inicial ou variável inicial

Representação de uma regra de produção (α, β)

$$\alpha \rightarrow \beta$$

Representação abreviada para $\alpha \rightarrow \beta_1$, $\alpha \rightarrow \beta_2$, ..., $\alpha \rightarrow \beta_n$ $\alpha \rightarrow \beta_1 \mid \beta_2 \mid ... \mid \beta_n$

◆ Derivação

- aplicação de uma regra de produção é denominada derivação
- aplicação sucessiva de regras de produção
 - * fecho transitivo da relação de derivação
 - * permite derivar palavras da linguagem

Def: Relação de Derivação

G = (V, T, P, S) gramática

Derivação é um par da Relação de Derivação denotada por ⇒

- domínio em (VUT)⁺ e codomínio em (VUT)*
- (α, β) é representado de forma infixada

$$\alpha \Rightarrow \beta$$

- ⇒ é indutivamente definida como segue:
 - para toda produção da forma S→β (S é o símbolo inicial de G)

$$S \Rightarrow \beta$$

- para todo par η⇒ρασ da relação de derivação
 - * se $\alpha \rightarrow \beta$ é regra de P, então

$$\eta \Rightarrow \rho \beta \sigma$$

◆ Portanto, derivação

- substituição de uma subpalavra
- de acordo com uma regra de produção

Sucessivos passos de derivação

- →* fecho transitivo e reflexivo da relação →
 - * zero ou mais passos de derivações sucessivos
- ⇒ + fecho transitivo da relação ⇒
 - * um ou mais passos de derivações sucessivos
- ⇒
 - * exatos i passos de derivações sucessivos (i natural)

Gramática é um formalismo

- aximático
- de geração
 - * permite derivar ("gerar") todas as palavras da linguagem

Def: Linguagem Gerada

G = (V, T, P, S) gramática

Linguagem Gerada por G: L(G) ou GERA(G)

palavras de símbolos terminais deriváveis a partir de S

$$L(G) = \{ w \in T^* \mid S \Rightarrow^+ w \}$$

Exp: Gramática, Derivação, Linguagem Gerada: Números Naturais

```
G = (V, T, P, N)

• V = \{ N, D \}

• T = \{ 0, 1, 2, ..., 9 \}

• P = \{ N \rightarrow D, N \rightarrow DN, D \rightarrow 0 \mid 1 \mid ... \mid 9 \}
```

Gera, sintaticamente, o conjunto dos números naturais

- se distinguem os zeros à esquerda
- exemplo: 123 de 0123

Exp: ...Gramática, Derivação, Linguagem Gerada: Números Naturais

G =
$$(V, T, P, N)$$

• $V = \{ N, D \}$
• $T = \{ 0, 1, 2, ..., 9 \}$
• $P = \{ N \rightarrow D, N \rightarrow DN, D \rightarrow 0 \mid 1 \mid ... \mid 9 \}$

Uma derivação do número 243

• N ⇒	$N \rightarrow DN$
• DN ⇒	$D \rightarrow 2$
• 2N ⇒	$N \rightarrow DN$
• 2DN ⇒	$D \rightarrow 4$
• 24N ⇒	$N \rightarrow D$
• 24D ⇒	$D \rightarrow 3$

• 243

Portanto

- S ⇒* 243
- $S \Rightarrow + 243$
- $S \Rightarrow 6243$

Interpretação indutiva da gramática

- Base de Indução: todo dígito é natural
- Passo de Indução: se n é natural, então a concatenação com qualquer dígito também é natural

Exp: Gramática, Derivação, Linguagem Gerada: Palavra Duplicada

$$G = (\{S, X, Y, A, B, F\}, \{a, b\}, P, S)$$

na qual:

- $P = \{ S \rightarrow XY,$
- X → XaA | XbB | F
- Aa → aA, Ab → bA, AY → Ya,
- Ba \rightarrow aB, Bb \rightarrow bB, BY \rightarrow Yb,
- Fa \rightarrow aF, Fb \rightarrow bF, FY $\rightarrow \varepsilon$ }

gera a linguagem

Derivação de baba

-	

- XbBaYa ⇒
- XbaBYa ⇒
- XbaYba ⇒
- FbaYba ⇒
- bFaYba ⇒
- baFYba ⇒
- baba

 $S \rightarrow XY$

X → XaA

AY → Ya

 $X \rightarrow XbB$

Ba → aB

BY → Yb

 $X \rightarrow F$

Fb → bF

 $Fa \rightarrow aF$

 $FY \rightarrow \epsilon$

Existe mais alguma derivação de baba?

Def: Gramáticas Equivalentes

G₁ e G₂ são Gramáticas Equivalentes se e somente se

$$GERA(G_1) = GERA(G_2)$$

◆ Convenções

- A, B, C,..., S, T para símbolos variáveis
- a, b, c,..., s, t para símbolos terminais
- u, v, w, x, y, z para palavras de símbolos terminais
- α, β,... para palavras de símbolos variáveis ou terminais

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- 6 Linguagens Livres do Contexto
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes e Linguagens e Conclusões