PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-086827

(43)Date of publication of application: 20.03.2003

(51)Int.CI.

H01L 31/10 G01T 1/20 H01L 27/14 H01L 27/146 H01L 31/09

H04N 5/32

(21)Application number: 2001-277136

(71)Applicant: HAMAMATSU PHOTONICS KK

(22)Date of filing:

12.09.2001

(72)Inventor: OKAMOTO KOJI

SAKAMOTO AKIRA FUJII YOSHIMAROU

(54) PHOTODIODE ARRAY, SOLID IMAGE PICKUP UNIT AND RADIATION DETECTOR (57) Abstract:

PROBLEM TO BE SOLVED: To provide a photodiode array capable of satisfactorily reducing the generation of any cross-talk even at the time of collecting electrodes or wiring at one face side.

SOLUTION: In a photodiode array 1, a plurality of p type semiconductor layers 3 are arranged on a surface 2s of an n- type semiconductor substrate 2, and light to be detected is made incident from a back face 2u side of the semiconductor substrate 2. A plurality of n+ type channel stopper layers 2 are arranged at the surface 2s side of the semiconductor substrate 2 so as to be positioned in the neighborhood of each p type semiconductor layer 3. Also, a trench part 10 extended from the corresponding channel stopper layer 4 to the back face 2u is arranged at the surface 2s side of the semiconductor substrate 2 so that each p type semiconductor layer 3 and the periphery of the channel stopper layer 4 in the neighborhood can be completely surrounded.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-86827 (P2003-86827A)

(43)公開日 平成15年3月20日(2003.3.20)

			(20) 200 1		7120 [3 (2000: 0: 20)	
(51) Int.Cl. ⁷	微別記号	FΙ			テーマコート*(参考)	
H01L 31/10		G01T	1/20	E	2G088	
G01T 1/20				G	4M118	
		H04N	5/32		5 C O 2 4	
H01L 27/14		H01L 3	31/10	A	5F049	
27/14	3	3	31/00	A	5F088	
	審査請求	未請求 請求項	質の数 5 OI	. (全 9 頁	() 最終質に続く	
(21)出願番号	特顧2001-277136(P2001-277136)	(71) 出顧人	000236436			
			浜松ホトニタ	フス株式会社	<u>.</u>	
(22)出廣日	平成13年9月12日(2001.9.12)	静岡県浜松市市野町1126番地の1				
		(72)発明者	岡本 浩二			
			静岡県浜松市	市市野町1126	番地の1 浜松ホ	
			トニクス株式	t 会社内		
		(72)発明者	坂本 明			
		*	静岡県浜松市	 市野町1128	番地の1 英松ホ	
		r	トニクス株式	式会社内		
		(74)代理人	100088155			
			弁理士 長行	外 芳樹	(外2名)	
			•			
					最終頁に続く	

(54) 【発明の名称】 ホトダイオードアレイ、固体撮像装置、及び、放射線検出器

(57)【要約】

【課題】 電極や配線を一方の面側に集めてもクロストークの発生を良好に抑制することができるホトダイオードアレイの提供。

【解決手段】 ホトダイオードアレイ1は、n-型半導体基板2の表面2sにp型の半導体層3を複数有し、半導体基板2の表面2u側から被検出光を入射させるものである。半導体基板2の表面2s側には、各p型半導体層3それぞれの近傍に位置するように、n+型のチャンネルストッパ層4が複数配設されている。また、半導体基板2の表面2s側には、各p型半導体層3、及び、その近傍のチャンネルストッパ層4の周囲を完全に囲むように、対応するチャンネルストッパ層4よりも裏面2uに延びるトレンチ部10が設けられている。

【特許請求の範囲】

【請求項1】 第1導電型半導体基板の一面側に第2導電型半導体層を複数有し、前配半導体基板の他面側から被検出光を入射させるホトダイオードアレイにおいて、前配半導体基板の他面側に形成されており、前配半導体基板よりも高い不純物濃度を有する第1導電型のアキュムレーション層と、

前記半導体基板の前記一面側、かつ、前記各第2導電型 半導体層それぞれの近傍に位置するように複数配設され ており、前記半導体基板よりも高い不純物濃度を有する 第1導電型のチャンネルストッパ層と、

前記各第2導電型半導体層、及び、その近傍の前記チャンネルストッパ層の周囲を完全に囲むように前配半導体基板の前記一面側に設けられており、対応する前記チャンネルストッパ層よりも前記他面側に延びるトレンチ部とを備えることを特徴とするホトダイオードアレイ。

【請求項2】 前記各チャンネルストッパ層は、対応する前記第2導電型半導体層の周囲を囲むように設けられていることを特徴とする請求項1に記載のホトダイオードアレイ。

【請求項3】 前配各チャンネルストッパ層は、対応する前配第2導電型半導体層の周囲の一部に近接するように設けられていることを特徴とする請求項1に配載のホトダイオードアレイ。

【請求項4】 請求項1~3の何れか一項に記載のホトダイオードアレイを複数備えた固体撮像装置であって、前記各ホトダイオードアレイが共通基板上に複数配設されていることを特徴とする固体撮像装置。

【請求項5】 請求項1~3の何れか一項に記載のホトダイオードアレイを備えた放射線検出器であって、

前記ホトダイオードアレイを固定する基板を有し、前記各第2導電型半導体層は、アノードを介して前記基板の所定の配線にパンプ接続され、前記各チャンネルストッパ層は、カソードを介して前記基板の所定の配線にパンプ接続され、前記ホトダイオードアレイの前記他面側には、シンチレータが取り付けられていることを特徴とする放射線検出器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ホトダイオードアレイと、これを備えた固体機像装置および放射線検出器に関する。

[0002]

【従来の技術】ホトダイオードを共通基板上に複数配設することにより、固体機像装置を構成できる。また、ホトダイオードアレイは、X線断層撮影装置(以下「CT装置」という)の放射線検出器としても利用可能である。ここで、CT装置用の放射線検出器としてホトダイオードアレイを利用する場合、良好な検出結果を得るためにホトダイオードアレイの光入射面にシンチレータを

装着するのが一般的である。このように、ホトダイオードアレイの光入射面にシンチレータを装着するに際しては、空間分解能(解像度)や組立効率を高める上で、ホトダイオードアレイの光入射面側をできるだけ平坦にすることが求められる。

[0003]

【発明が解決しようとする課題】ホトダイオードアレイの光入射面側を平坦にする手法としては、通常ホトダイオードは表面側に電極や配線が設けられているので、裏面を光入射面とするように構成することがある。

【0004】しかしながら、光入射面側から電極や配線を排した、いわゆる裏面入射型のホトダイオードアレイでは、n一型基板の厚さの分だけ、キャリアが移動することになる。また、この場合、パイアスを加えた際、空乏層が垂直方向に広がり難くなってしまうことから、ホトダイオード間においてクロストークが発生しやすくなってしまう。従って、n+型チャンネルストッパ層を介して、n-型基板に対して電圧を加える上では、なにより、クロストークの発生をできる限り抑制することが重要となる。

【0005】そこで、本発明は、電極や配線を一方の面側に集めてもクロストークの発生を良好に抑制することができるホトダイオードアレイ、高い撮像精度を有する固体撮像装置、及び、高い解像度を得ることができる放射線検出器の提供を目的とする。

[0006]

【課題を解決するための手段】本発明によるホトダイオードアレイは、第1導電型半導体基板の一面側に第2導電型半導体層を複数有し、半導体基板の他面側から被検出光を入射させるホトダイオードアレイにおいて、半導体基板の他面側に形成されており、半導体基板よりも三を指し、半導体基板の一面側、かつ、各第2導電型半導体層をれぞれの近傍に位置するように複数配設されて導動と、半導体基板よりも高い不純物濃度を有する第1を開それぞれの近傍に位置するように複数配設されて導動を発生を開きます。との近傍のチャンネルストッパ層と、各第2導電型半導体層、及び、その近傍のチャンネルストッパ層と、各第2導電型半導体層、及び、その近傍のチャンネルストッパ層と、大変である。

【0007】このホトダイオードアレイは、光入射面側から電極や配線を排した、いわゆる裏面入射型のホトダイオードアレイであり、第1導電型(n一型)の半導体基板を有する。半導体基板の一面側(表面側)には、第2導電型(p型)の半導体層(不純物拡散層)が複数配設されている。また、半導体基板の一面側には、各第2 導電型半導体層それぞれの近傍に位置するように、半導体基板よりも高い不純物濃度を有する第1導電型(n+型)のチャンネルストッパ層が複数配設されている。半導体基板に対しては、n+型チャンネルストッパ層を介 して、カソードから電圧が加えられる。

【0008】そして、各第2導電型半導体層、及び、その近傍のチャンネルストッパ層の周囲は、対応するチャンネルストッパ層よりも他面側に延びるトレンチ部によって完全に囲まれている。これにより、このホトダイオードアレイでは、各第2導電型半導体層、及び、その近傍のチャンネルストッパ層の周囲を完全に囲むトレンチ部によって、半導体基板の他面側(裏面側)から入射した光によって発生したキャリアが互いに隣り合う第2導電型半導体層間における移動が規制される。従って、このホトダイオードアレイでは、電極や配線を一面側に集めても、クロストークの発生を良好に抑制することが可能となる。

【0009】この場合、各チャンネルストッパ層は、対応する第2導電型半導体層の周囲を囲むように設けられていることが好ましい。

【0010】また、各チャンネルストッパ層は、対応する第2導電型半導体層の周囲の一部に近接するように設けられていてもよい。

【0011】そして、上述したような各ホトダイオード を共通基板上に複数配設することにより、高い撮像精度 を有する固体撮像装置の実現が容易に可能となる。

【0012】更に、上述したような各ホトダイオードを固定する基板を用意し、各第2導電型半導体層を、アノードを介して基板の所定の配線にバンプ接続すると共に、各チャンネルストッパ層を、カソードを介して基板の所定の配線にバンプ接続し、ホトダイオードアレイの他面側に、シンチレータを取り付ければ、高い解像度を得ることができる放射線検出器の実現が容易に可能となる。

[0013]

【発明の実施の形態】以下、図面と共に本発明によるホトダイオードアレイ、固体撮像装置、及び、放射線検出 器の好適な実施形態について詳細に説明する。

【0014】図1は、本発明によるホトダイオードアレ イの第1実施形態を示す断面図である。図2は、図1の ホトダイオードアレイを光入射側から見た平面図であ り、電極及び表面絶縁膜を省略している。これらの図面 に示すホトダイオードアレイ1は、光入射面側から電極 や配線を排した、いわゆる裏面入射型のホトダイオード アレイであり、n-型(第1導電型)Si等からなる半 導体基板2を有する。半導体基板2は、例えば、1.0 ×10¹²/cm³程度の不純物濃度を有し、その厚さ は、例えば、約270μmとされる。半導体基板2の一 面側、すなわち、半導体基板2の表面2sには、p型 (第2導電型) Si等からなる第2導電型半導体層(p 型不純物拡散層)3がマトリックス状に複数(本実施形 態では2×2=4個) 配設されることで、ホトダイオー ドアレイが構成される。各第2導體型半導体層3は、 1. 0×10¹⁹/cm³程度の不純物濃度を有し、表面

2sからの深さ(厚さ)は、例えば、約0. 5 μ mとされる。

【0015】また、半導体基板2の表面2s側(一面側)には、各第2導電型半導体層3それぞれの近傍に位置するように、半導体基板2よりも高い不純物濃度を有するn+2(第1導電型)Si等からなるチャンネルストッパ層4が複数配設されている。図2に示すように、本実施形態では、各チャンネルストッパ層4は、対応する第2導電型半導体層3の周囲を取り囲むように、格子状に形成されている。各チャンネルストッパ層4は、1.0×10 18 /c 10

【0016】更に、半導体基板2の表面2sには、絶縁層5が積層され、ポリシリコン、Au、AI等を含むパターン配線が施されている。そして、各第2導電型半導体層3は、パターン配線のうち、アノードとなる電極Eaと接続され、各チャンネルストッパ層4は、パターン配線のうち、カソードとなる電極Ecと接続される。これにより、半導体基板2に対しては、図示しない電極パッドおよび電極Ec(カソード)から、n+型のチャンネルストッパ層4を介して電圧が加えられることになる。なお、絶縁層5を形成する素材としては、SiO2やSiNxを用いることができる。

【0017】一方、光入射面となる半導体基板2の裏面2 uには、半導体基板2内で発生するキャリアが裏面2 uで再結合することを防止するためのアキュムレーション層6が形成されている。アキュムレーション層6が形成されている。アキュムレーション層6の原さは、例えば、5.0×10¹⁸/cm³ 程度の不純物濃度を有する。また、アキュムレーション層6の原さは、約0.2 μ m とされる。アキュムレーション層6上には、更に、保護層7上には、P D 接合領域に対応する開口部8 a a と投数備えた遮光膜8が積層されている。これにより、P D間におけるクロストークを改善することができる。のは、ホトレジストークを改善することができる。とができる。の料を混入させた黒色の染料や絶縁処理したカーボンブラック等を用いることができる。

【0018】上述したように、ホトダイオードアレイ1は、いわゆる裏面入射型として構成されるが、この場合、何ら対策を施さなければ、ホトダイオード間においてクロストークが発生しやすくなってしまう。この点に鑑みて、ホトダイオードアレイ1の半導体基板2の表面2s側(一面側)には、図1および図2に示すように、トレンチ部10が形成されている。

【0019】トレンチ部10は、図1および図2に示すように、格子状に形成されたチャンネルストッパ層4の中央部を貫通するように形成された格子状の溝(凹部) 11、溝11の表面に積層された絶縁層12、および、 清11内に埋設された絶縁体14とからなる。これにより、各第2導電型半導体層3、及び、各第2導電型半導体層3を取り囲む各チャンネルストッパ層4の周囲は、トレンチ部10によって完全に囲まれることになる。そして、図1に示すように、トレンチ部10は、対応するチャンネルストッパ層4よりも裏面2u側に延びている。すなわち、トレンチ部10の表面2sからの深さは、各チャンネルストッパ層4の表面2sからの深さよりも大きい。

【0020】なお、絶縁層12を形成する素材としては、SiO2やSiNxを用いることができる。また、絶縁体14としては、遮光膜8と同様に、例えば、ホトレジスト内に、黒色の染料や絶縁処理したカーボンブラック等の顔料を混入させた黒色ホトレジストを用いることができる。更に、絶縁体14としては、ポリイミド等の樹脂やノンドープの絶縁性シリカ溶液等を用いることも可能である。この場合、ポリイミド等の樹脂やノンドープの絶縁性シリカ溶液をスピンコートにより溝11内に絶縁体14を埋設することによって、溝11内に絶縁体14を埋設することによって、溝11内に絶縁体14を埋設することによって、溝11内に絶縁体14を埋設することによって、溝11内に絶縁を14を埋設することによって、溝11内に絶縁を14を埋設することにようように配置しても(違わせても)よい。

【0021】このように構成されたホトダイオードアレイ1において、半導体基板2の裏面2 u側から光が入射すると、入射光に感応して光吸収層でキャリア(電子・正孔)が発生する。そして、発生したキャリアは、半導体基板2内の電界に従って移動し、その一方は、n+型のチャンネルストッパ層4を介してカソードとなる電極Ecから、他方は、第2導電型半導体層3と接続されたアノードとなる電極Eaから取り出され、電極パッドを介して外部に出力される。

【0022】ここで、上述したように、このホトダイオードアレイ1では、トレンチ部10が、対応するチャンネルストッパ層4よりも他面側に延びており、各第2導電型半導体層3、及び、その周囲のチャンネルストッパ層4の周囲を完全に取り囲んでいる。従って、トレンチ部10によって、半導体基板2の裏面2uから入射した光によって発生したキャリアの互いに隣り合うホトダイオード間における移動が規制される。この結果、ホトダイオードアレイ1では、アノードとなる電極Eaやカソードとなる電極Ecを含むパターン配線を表面2s側に集めても、クロストークの発生を良好に抑制することが可能となる。

【0023】さて、上述したホトダイオードアレイ1を用いることにより、高い撮像精度を有する固体撮像装置や、高い解像度を得ることができる放射線検出器を容易に構成することができる。例えば、放射線検出器を構成する場合には、図3に示すように配線基板15を用意する。配線基板15は、ガラスエポキシ基板や可撓性基板上に配線パターンを施したものである。この配線基板1

5上に、図4に示すように、複数(この場合、4体)のホトダイオードアレイ1を配置する。すなわち、ホトダイオードアレイ1の表面2s側に設けられている配線パターンをパンプ16(図5参照)を介して配線基板15の配線パターンに対して電気的に接続する。更に、配線基板15と各ホトダイオードアレイ1との間の隙間に絶縁性樹脂等を充填すれば、放射線検出器全体の機械的強度を向上させることができる。

【0024】各ホトダイオードアレイ1を配線基板15 に装着したならば、図5に示すように、各ホトダイオー ドアレイ1の裏面2u側にシンチレータ17を固定し、 これにより、放射線検出器20が完成する。上述したよ うに、ホトダイオードアレイ1では、配線パターン(電 極)が表面2s側に集められていることから、ホトダイ オードアレイ1の裏面2 u側は、電極等の出っ張りの存 在しない平坦な状態となっている。従って、ホトダイオ ードアレイ1の裏面2u側にシンチレータ17を極めて 容易かつ確実に取り付けることが可能となる。また、ホ トダイオードアレイ1とシンチレータ17とを極めて接 近させた状態に維持可能となるので、放射線検出器20 は、高い空間分解能(解像度)を有することになる。な お、シンチレータ17としては、図5に示すように、す べてのホトダイオードアレイ1全体を覆うものを用いて もよく、また、1体のホトダイオードアレイ1のみを覆 うものを複数用いてもよい。

【0025】図6および図7に本発明によるホトダイオードアレイの第2実施形態を示す。なお、上述した第1 実施形態に関して説明した要素と同一の要素については同一の符号を付し、重複する説明は省略する。

【0026】これらの図面に示すホトダイオードアレイ1Aは、トレンチ部10がチャンネルストッパ層4を貫通していない点で、上述した第1実施形態に係るホトダイオードアレイ1と異なる。すなわち、ホトダイオードアレイ1Aでは、複数のチャンネルストッパ層4が、半導体基板2に対し、各第2導電型半導体層3ごとに独立して形成されている。そして、トレンチ部10は、各第2導電型半導体層3と、それに対応するチャンネルストッパ層4とを完全に取り囲むと共に、チャンネルストッパ層4よりも裏面2u側に延びるように(深くなるように)、半導体基板2に対して形成されている。

【0027】このように構成されたホトダイオードアレイ1Aにおいても、トレンチ部10によって、半導体基板2の裏面2uから入射した光によって発生したキャリアの互いに隣り合うホトダイオード間における移動が規制される。従って、このホトダイオードアレイ1Aでは、アノードとなる電極Eaやカソードとなる電極Ecを含むパターン配線を表面2s側に集めても、クロストークの発生を良好に抑制することが可能となる。また、図7に示すように、ホトダイオードアレイ1Aにおいても、各チャンネルストッパ層4は、対応する第2導電型

半導体層3の周囲を取り囲むように形成されている。

【0028】図8および図9に本発明によるホトダイオードアレイの第3実施形態を示す。なお、上述した第1 実施形態等に関して説明した要素と同一の要素については同一の符号を付し、重複する説明は省略する。

【0029】これらの図面に示すホトダイオードアレイ 1Bでは、半導体基板2の表面2s側、かつ、中央部付 近の一箇所に、チャンネルストッパ層が設けられる。そ して、当該チャンネルストッパ層よりも裏面2u側に延 びる(深い)トレンチ部10が、チャンネルストッパ層 を貫通すると共に、各第2導電型半導体層3を囲うよう に形成される。これにより、ホトダイオードアレイ1B では、チャンネルストッパ層4が、図9に示すように、 各第2導電型半導体層3毎に分割され、対応する第2導 電型半導体層3の周囲の一部(一のコーナ部)に近接す ることになる。

【0030】このように構成されたホトダイオードアレイ1日においても、トレンチ部10によって、半導体基板2の裏面2uから入射した光によって発生したキャリアの互いに隣り合うホトダイオード間における移動が規制される。従って、このホトダイオードアレイ1では、アノードとなる電極Eaやカソードとなる電極Ecを含むパターン配線を表面2s側に集めても、クロストークの発生を良好に抑制することが可能となる。また、この場合、半導体基板2の表面2s側の中央部付近に、チャンネルストッパ層を設けると共に、チャンネルストッパ層を設けると共に、チャンネルストッパ層を貫通するようにトレンチ部10を形成すればよいので、このホトダイオードアレイ1日は、容易に製造可能である。

【0031】図10および図11に本発明によるホトダイオードアレイの第4実施形態を示す。なお、上述した第1実施形態等に関して説明した要素と同一の要素については同一の符号を付し、重複する説明は省略する。

【0032】これらの図面に示すホトダイオードアレイ 1 Cは、基本的には、上述した第3 実施形態に係るホト ダイオードアレイ1Bと同様の構成を有するが、トレン チ部10がチャンネルストッパ層4を貫通していない点 で、上述した第3実施形態に係るホトダイオードアレイ 1Bと異なる。すなわち、ホトダイオードアレイ1Cで は、複数のチャンネルストッパ層4が、半導体基板2に 対し、各第2導電型半導体層3ごとに独立した状態で、 対応する第2導電型半導体層3の周囲の一部(一のコー ナ部)に近接するように形成されている。そして、各チ ヤンネルストッパ層4は、半導体基板2の中央部付近に 互いに接近し合った状態で配置されている。また、トレ ンチ部10は、各第2導電型半導体層3と、それに対応 するチャンネルストッパ層4とを取り囲むと共に、チャ ンネルストッパ層 4 よりも裏面 2 u 側に延びるように (深くなるように)、半導体基板2に対して形成されて いる。

【0033】このように構成されたホトダイオードアレイ1日においても、トレンチ部10によって、半導体基板2の裏面2uから入射した光によって発生したキャリアの互いに隣り合うホトダイオード間における移動が規制される。従って、このホトダイオードアレイ1では、アノードとなる電極Eaやカソードとなる電極Ecを含むパターン配線を表面2s側に集めても、クロストークの発生を良好に抑制することが可能となる。

[0034]

【発明の効果】本発明によるホトダイオードアレイは、 以上説明したように構成されているため、次のような効 果を得る。すなわち、本発明によるホトダイオードアレ イは、第1導電型半導体基板の一面側に第2導電型半導 体層を複数有し、半導体基板の他面側から被検出光を入 射させるものであり、半導体基板の一面側、かつ、各第 2 導電型半導体層それぞれの近傍に位置するように複数 配設されており、半導体基板よりも高い不純物濃度を有 する第1導電型のチャンネルストッパ層と、各第2導電 型半導体層、及び、その近傍のチャンネルストッパ層の 周囲を完全に囲むように半導体基板の一面側に設けられ ており、対応するチャンネルストッパ層よりも他面側に 延びるトレンチ部とを備える。従って、このホトダイオ ードでは、電極や配線を一方の面側に集めてもクロスト 一クの発生を良好に抑制することができる。そして、こ のような本発明によるホトダイオードアレイを用いれ ば、髙い撮像精度を有する固体撮像装置、及び、髙い解 像度を得ることができる放射線検出器の実現が可能とな

【図面の簡単な説明】

【図1】本発明によるホトダイオードアレイを示す断面 図である。

【図2】図1のホトダイオードアレイを光入射側から見た平面図である。

【図3】本発明によるホトダイオードアレイを装着可能 な配線基板の一例を示す平面図である。

【図4】本発明によるホトダイオードアレイを基板上に 装着した状態を示す平面図である。

【図5】本発明によるホトダイオードアレイの使用例を 説明する断面図である。

【図6】本発明によるホトダイオードアレイの第2実施 形態を示す断面図である。

【図7】図6のホトダイオードアレイを光入射側から見た平面図である。

【図8】本発明によるホトダイオードアレイの第3実施 形態を示す断面図である。

【図9】図8のホトダイオードアレイを光入射側から見た平面図である。

【図10】本発明によるホトダイオードアレイの第4実施形態を示す断面図である。

【図11】図10のホトダイオードアレイを光入射側か

ら見た平面図である。 【符号の説明】

1, 1 A, 1 B, 1 C…ホトダイオードアレイ、2…半 導体基板、2s…表面、2u…裏面、3…第2導電型半 導体層、4…チャンネルストッパ層、5…絶縁層、6…

【図1】

アキュムレーション層、7…保護層、8…遮光膜、10 …トレンチ部、11…溝、12…絶縁層、14…絶縁 体、15…配線基板、16…パンプ、17…シンチレー タ、20…放射線検出器、Ea, Ec…電極。

【図2】

フロントページの続き

(51) Int. CI. 7 識別配号 FΙ テーマコード(参考) HO1L 31/09 HO1L 27/14 Z HO4N 5/32 D

(72) 発明者 藤井 義磨郎

静岡県浜松市市野町1126番地の1 浜松ホ

トニクス株式会社内

Fターム(参考) 2G088 EE01 EE02 GG13 GG19 GG20

JJ05 JJ09 JJ31 JJ33 JJ37

LL12

4M118 AA05 AA08 AA10 AB01 CA03

CA32 CB11 GA02 GA09 GA10

GB11 GB13 HA31

5C024 AX11 AX16 CX11 CY47 EX21

GX03

5F049 MA01 MB02 NB05 PA09 QA04

RA02 SS02 SZ11 SZ20

5F088 AA01 AB02 BA03 BB03 BB07

CB09 DA01 EA04 GA04 HA11

LA08