

BAYESIAN CLASSIFICATION OF RESEARCH PAPERS

Huilin Chang(hc5hq), Yihnew Eshetu (yte9pc), Celeste Lemrow (ctl7t)

DS6014 Project

TABLE OF CONTENTS

- Introduction
- Data Extraction
- Exploratory Analysis
- Methods
- Results
- Conclusions

INTRODUCTION

- One of the Internet Archive's mission areas is "Universal Access to All Knowledge", which is an attempt to collect and provide access to the "scholarly web": the public record of research publications and datasets available on the world wide web.
- Our project aims to help this mission by implementing a fast PDF identification tool, which will score files on their likelihood of being a research publication.
- Given the volume of PDF documents in the Internet Archive's (IA) repository, a classifier is needed to determine which are legitimate research documents
- Our group constructed several Bayesian logistic models with different feature combinations and compared results on accuracy of identification of research papers

DATA EXTRACTION

Language: English, Romance, and other

Structure: Words that represent the structure of a paper

{abstract, introduction, conclusion, reference, table of content}

Content: Words that represent the content of a paper

{research, analyze, result, table, investigation, explain, theory, study, paper, data, perform}

Association: Words that represent association

{journal, association, organization, doi, university, school, board}

EXPLORATORY ANALYSIS

Correlation matrix: correlation between the research publication variable and selective features

EXPLORATORY ANALYSIS

Structure vs. Research Publication

Language vs. Research Publication

Width vs. Research Publication

Height vs. Research Publication

BAYESIAN STATISTICS

Algorithm: Bayesian logistical regression, using PYMC3

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Mathematical connection: the likelihood is the product of n Bernoulli trials,

$$\coprod_{i=1}^{n} p_i^{y} (1-p_i) (1-p_i)^{1-y_i}$$
, where $p_i = \frac{1}{1+e^{-z_i}}$

$$y_i = \beta_0 + \beta_1 (\text{numPages})_i + \beta_2 (\text{height})_{i+} \beta_3 (\text{width})_i + \beta_4 (\text{dim})_i + \beta_5 (\text{structure})_i + \beta_6 (\text{content})_i + \beta_7 (\text{association})_i + \beta_8 (\text{language})_i + \beta_9 (\text{numChar})_i$$

Where $y_i = 1$ if research Publication and $y_i = 0$ otherwise

• Priors : default $p(\theta) = N(0, 10^{12}I)$

METHODS

- Total set of features considered: number of pages, height, width, dimensions of page, structure, content, association, language, number of characters
- How likely is it a research publication based on the selective features?
- Model comparison approach compared different sets of features and accompanying accuracy. Given parameters for the
 capstone project, including speed, prioritizing a balance of the smallest number of features with acceptable accuracy is a
 key objective

RESULTS - Full Model (Sampling)

RESULTS - Full Model (ADVI)

Variational Inference: ADVI

RESULTS - Model I

RESULTS - Model 2

RESULTS - Model 3

RESULTS - BMA - Top Models

Model	Features	Likelihood
1	number of pages, width, structure, number of characters	1.03e-23
2	width, structure	6.20e-23
3	number of pages, structure, number of characters	5.71e-24

RESULTS - WAIC

Model	Features	WAIC
1 - Top model from BMA	number of pages, width, structure, number of characters	95.0114
2 - 2nd best model from BMA	width, structure	95.291
3 - Selected out of curiosity	structure, content, association	119.888
4 - Full model	number of pages, height, width, dimension, structure, content, association, language, number of characters	95.1717
5 - Simple model (also selected out of curiosity)	structure	95.1717

PREDICTION COMPARISON

Model	Features	Accuracy
1 - Top model from BMA	number of pages, width, structure, number of characters	78.3%
2 - 2nd best model from BMA	width, structure	75%
3 - Selected out of curiosity	structure, content, association	80%
4 - Full model	number of pages, height, width, dimension, structure, content, association, language, number of characters	77%
5 - Simple model (also selected out of curiosity)	structure	76.7%

CONCLUSIONS

Key findings:

- Top feature structure
- Additional key features number of pages, width
- Format matters, in addition to content
- Simple model may be reasonable, given comparable accuracy to others, to prioritize speed

• Future work:

- Cross-validation for further comparison
- Additional investigation into models focused on the language model (structure, content, association)
- Use LDA dimension reduction to assess whether it generates improved results
- Expand analysis to larger dataset
- Address non-English language factors in the model