The Demand of Bulk Transfers over WAN

More demanding

- 1. Transfer large size
- 2. Minimize completion time

More willing to

- 1. Provide demand information
- 2. Control its transfers

Software-Defined Networking (SDN) in WAN

Global traffic engineering with centralized control, e.g., Google B4, Microsoft SWAN

Network Layer over Optical Layer

Technology Trends

- Bulk-transfer applications with demand information
- Fast centralized control with SDN
- Fast reconfigurable optics

Reconfigure Optical Layer to Change Network-Layer Topology

Configuration A

Network Layer

Optical Layer

Reconfigure Optical Layer to Change Network-Layer Topology

Configuration A

Router Optical Switch

Configuration B

 R_2 R_3

Network Layer

6

Reduce Average Transfer Completion Time

$$Avg. = \frac{0.5 + 0.5}{2} = 0.5$$

Joint Optimization and Challenges

Joint Optimization

Constraints

of Router Ports

Optical Reach

of Regenerators

of Wavelengths

Link Capacity

Challenges

- Efficient joint optimization
 - Routing
 - Rate allocation
 - Topology
- Transition gracefully
 - Minimize disruption during update

Finding Good Configuration with Small Change

Simulated Annealing Algorithm

Owan's Solution Overview

Choose Random Neighbor Joint optimization efficiently

Avoids disruption

Evaluate Neighbor

Consistent Update

Owan Algorithm

Random Neighbor Topology

Random Neighbor Topo.

- 1. Make random local change
- 2. Select optical circuits

Optimize
Network Layer

Evaluate Neighbor

Consistent Update

Random Neighbor Topology

- Make random local change
 - Minimize changes to the network
 - Satisfy the port number constraints

Optimize Network Layer

Random Neighbor Topo.

Optimize
Network Layer

- 1. Routing
- 2. Rate allocation

Evaluate Neighbor

Consistent Update

Schedule Transfers on the New Topology

Order transfers with classic scheduling disciplines

Prioritize short paths in rate allocation

Evaluate Neighbor Topology

Random Neighbor Topo.

Optimize
Network Layer

Evaluate Neighbor

Throughput: sum of rates

Consistent Update

Consistent Update

Random Neighbor Topo.

Optimize
Network Layer

Evaluate Neighbor

Consistent Update

Dependencies of operations

Implementation and Evaluation

Testbed Implementation

- 9 Sites
- Emulating Internet2 network
- 135 servers
 - Two 6-core Intel E5-2620v2
 - 10GE

Evaluation

- Workload
 - Generate transfers for 2 hours
 - Draw transfer size from exponential distribution
 - Mean 500GB/5TB for testbed/simulation
- Evaluation
 - Testbed experiments, with 9 sites
 - Large-scale simulations, with about 40 sites
- Results
 - Average transfer completion time: 3.5-4.4x
 - Number of transfers that meet deadlines: 1.1-1.3x

Deadline-Unconstrained Traffic

- Performance metric
 - Transfer completion time
- Other approaches
 - MaxFlow
 - MaxMinFract
 - SWAN[1]

Better Average Completion Time

Deadline-Constrained Traffic

- Performance metric
 - Percentage of transfers that meet deadlines
 - Amount of bytes that finish before deadlines
- Other approaches
 - Deadline-unconstrained approaches
 - Amoeba[1]

More Transfers Meet Deadlines

Consistent Update Avoids Disruptions

Conclusions

Optical control improves WAN performance

Efficient algorithms for joint optimization

Transition gracefully

Thanks! Q&A

Build Optical Circuits for Each Link

- Build regenerator graph
- Balance regenerator consumption

Goal: Find path with min total node weight

Shortest path problem on directed graph

Cross-Layer Optimization at Each Time Slot

