Denoising of UHF Signals based on RBPF and the **Localization** of PD Sources using FDTD Method in Power Transformer

Denoising of UHF Signals based on RBPF and the Localization of PD Sources using FDTD Method in Power Transformer

Still no idea?

Well, I can help you with that...

Do you know what is Partial Discharge?

It's within solid insulation system and therefore not visible!

Self accelerating process (it just goes worse).

Discharge ⇒ material deterioration ⇒ more intense discharge... :-(

But, how to find it in the internal structure of the Power Transformer?

Time-difference look-up table method FTW*!

#1
FDTD simulation
UHF signals

Modeling

Simulation

The result is time-difference look-up table

Experiments

Problem?

Extraction of arrival time

Solution?

Denoising - particle filter

Ok, let's RECAP

Step #1
We already have look-up table

Step #2 We already have **measurement data**

•

Final step? Compare all the things!

CONCLUSION

You need simulation and measurement

Sensors location may be crucial

But, it's fast (just comparison)

And relatively accurate (371 mm vs. 617 mm - 40 %)

Thank you for listening

I WILL NOW ANSWER ANY QUESTIONS YOU MAY HAVE

