Chapter 4: Numerical Integration

FuSen Lin

Department of Computer Science and Engineering National Taiwan Ocean University

Scientific Computing, Fall 2010

4 Numerical Integration

- 4.0 Introduction to Numerical Integration
- 4.1 The Newton-Cotes Rules
- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics
- 4.5* Shared Memory Adaptive Quadrature

Introduction to Numerical Integration

An m-point Quadrature rule Q for the definite integral

$$I=\int_a^b f(x)\,dx$$

is an approximation of the form

$$Q = (b-a)\sum_{k=1}^m \widetilde{w}_k f(x_k) = \sum_{k=1}^m w_k f(x_k).$$

- The x_k are the **abscissas** and the w_k are the **weights**. The abscissas and weights define the rule, called as **quadrature rule**, and are chosen so that $Q \approx I$.
- Efficiency essentially depends upon the number of function evaluations.

- 4.1 The Newton-Cotes Rules
- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- Introduction to Numerical Integration (2)

- Because the time needed to evaluate f at the x_i is typically much greater than the time needed to form the required linear combination of function values.
- For instance, a six-point quadrature rule is twice as expensive as a three-point rule.
- The quadrature rule can basically be classified into two families: the Newton-Cotes rules and Gauss quadrature rules.

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

The Newton-Cotes Rules

• The Newton-Cotes family of quadrature rules are derived by integrating *uniformly spaced polynomial interpolants* of the integrand. This means that to find a polynomial approximation p(x) of the integrand f(x) and integrate p(x) so that

$$\int_a^b f(x)\,dx \approx \int_a^b p(x)\,dx$$

• The *m*-point Newton-Cotes rule is defined by

$$Q_{NC(m)} = \int_{a}^{b} p_{m-1}(x) dx = h \sum_{k=1}^{m} c_{k} f(x_{k})$$

where $p_{m-1}(x)$ interpolates f(x) at

$$x_k = a + (k-1)h$$
, $h = \frac{b-a}{m-1}$, $k = 1 : m$.

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

The Trapezoidal Rule

• If m = 2, then

$$f(x) \approx p_1(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a),$$

and thus we obtain the trapezoidal rule:

$$Q_{NC}(2) = \int_{a}^{b} p_{1}(x) dx = \int_{a}^{b} \left(f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right) dx$$
$$= (b - a) \left(\frac{1}{2} f(a) + \frac{1}{2} f(b) \right).$$

• In this rule the weights are $\widetilde{w}_1 = \widetilde{w}_2 = 1/2$.

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

The Simpson Rule

• If m = 3 and c = (a + b)/2, then

$$f(x) \approx \rho_2(x) = \alpha x^2 + \beta x + \gamma$$
 or

$$p_2(x) = f(a) + \frac{f(c) - f(a)}{c - a}(x - a) + \frac{\frac{f(b) - f(c)}{b - c} - \frac{f(c) - f(a)}{c - a}}{b - a}(x - a)(x - c)$$

and thus we obtain the Simpson rule:

$$\mathsf{Q}_{NC}(3) := \frac{b-a}{3} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right).$$

• In this rule the weights are $\widetilde{w}_1 = 1/3$, $\widetilde{w}_2 = 4/3$, and $\widetilde{w}_3 = 1/3$.

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

General Newton-Cotes Rule (1)

 For general m, we apply the Newton form of interpolating polynomial

$$p_{m-1}(x) = \sum_{k=1}^{m} \left(c_k \prod_{i=1}^{k-1} (x - x_i) \right)$$

to approximate f(x) and obtain the m-point Newton-Cotes Rule

$$Q_{NC}(m) := \int_a^b p_{m-1}(x) dx = \sum_{k=1}^m c_k \int_a^b \left(\prod_{i=1}^{k-1} (x - x_i) \right) dx.$$

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

General Newton-Cotes Rule (2)

• If we set x = a + sh (s be integer) then

$$Q_{NC}(m) := \int_a^b p_{m-1}(x) dx = h \int_0^{m-1} p_{m-1}(a+sh) ds = \sum_{k=1}^m c_k h^k S_{mk},$$

where

$$S_{mk} = \int_0^{m-1} \left(\prod_{i=1}^{k-1} (s-i+1) \right) ds.$$

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

General Newton-Cotes Rule (3)

• The c_k are **divided differences**. Because of the equal spacing, the divided differences c_k have a simple form in terms of $f_i = f(x_i)$, as was shown in Sec.2.4.1 (p.95). For example,

$$c_1 = f_1$$

 $c_2 = (f_2 - f_1)/h$
 $c_3 = (f_3 - 2f_2 + f_1)/(2h^2)$
 $c_4 = (f_4 - 3f_3 + 3f_2 - f_1)/(3!h^3)$

General Newton-Cotes Rule (4)

• Recipes for the S_{mk} can also be derived. Here are a few examples:

$$S_{m1} = \int_0^{m-1} 1 \, ds = (m-1)$$

$$S_{m2} = \int_0^{m-1} s \, ds = (m-1)^2/2$$

$$S_{m3} = \int_0^{m-1} s(s-1) \, ds = (m-1)^2(m-5/2)/3$$

$$S_{m4} = \int_0^{m-1} s(s-1)(s-2) \, ds = (m-1)^2(m-3)^2/4$$

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

General Newton-Cotes Rule(5)

• Using these tabulations we can readily derive the weights for any particular m-point Rule. For example, if m = 4 then $S_{41} = 3$, $S_{42} = 9/2$, $S_{43} = 9/2$, and $S_{44} = 9/4$. Thus,

$$Q_{NC}(4) = S_{41}c_1h + S_{42}c_2h^2 + S_{43}c_3h^3 + S_{44}c_4h^4$$

$$= \frac{3h}{8}(f_1 + 3f_2 + 3f_3 + f_4)$$

$$= (b - a)(f_1 + 3f_2 + 3f_3 + f_4)/8$$

• The weight vector for $Q_{NC}(4)$ is [1,3,3,1]/8.

Implementation of Newton-Cotes Rule

- For convenience in subsequent computations, we package the weight vectors of the Newton-Cotes Rules in the function NCWeights.m.
- Notice that the weight vectors are symmetric about their middle in that w(1:m) = w(m:-1:1).
- The evaluation of $Q_{NC(m)}$ is a scaled inner product of the weight vector w and the vector of function values:

$$Q_{NC(m)} = (b-a)\sum_{k=1}^{m} w_k f_k = (b-a)[w_1 \cdots w_m] \begin{bmatrix} f(x_1) \\ \vdots \\ f(x_m) \end{bmatrix}$$

• We have the *function* **QNC.m** for $2 \le m \le 11$.

Error of Newton-Cotes Rules

- The errors of Newton-Cotes rules depend on the quality of polynomial interpolant. Here is an error bound of Simpson's rule:
- Theorem 4: If f(x) and its first four derivatives are continuous on [a, b], then

$$\left| \int_a^b f(x) dx - Q_{NC(3)} \right| \leq \frac{(b-a)^5}{2880} M_4$$

where M_4 is an upper bound of $|f^{(4)}(x)|$ on [a, b].

PROOF: Suppose

$$p(x) = c_1 + c_2(x-a) + c_3(x-a)(x-b) + c_4(x-a)(x-b)(x-c)$$

is the Newton form of the cubic interpolant to f(x) at the points a, b, c, and d.

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

Proof of Theorem 4 (1)

• If c is the midpoint of the interval [a, b], then

$$\int_a^b (c_1 + c_2(x-a) + c_3(x-a)(x-b)) dx = Q_{NC(3)},$$

because the first three terms in the expression for p(x) specify the quadratic interpolant of (a, f(a)), (c, f(c)), (b, f(b)), on which the three-point Newton-Cotes rule is based.

By symmetry we have

$$\int_a^b (x-a)(x-b)(x-c)dx = 0$$

and so

$$\int_a^b p(x)dx = Q_{NC(3)}$$

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

Proof of Theorem 4 (2)

• The error in p(x) is given by Theorem 2 (p.90),

$$f(x) - p(x) = \frac{f^{(4)}(\eta_x)}{24}(x-a)(x-b)(x-c)(x-d)$$

and thus,

$$\int_{a}^{b} f(x) dx - Q_{NC(3)} = \int_{a}^{b} \left(\frac{f^{(4)}(\eta_{x})}{24} (x - a)(x - b)(x - c)(x - d) \right) dx.$$

Taking absolute values, we obtain

$$\left| \int_{a}^{b} f(x) dx - Q_{NC(3)} \right| \leq \frac{M_4}{24} \int_{a}^{b} |(x-a)(x-b)(x-c)(x-d)| dx.$$

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

Proof of Theorem 4 (3)

• If we set d = c, then (x - a)(x - b)(x - c)(x - d) is always negative and it is easy to verify that

$$\int_{a}^{b} |(x-a)(x-b)(x-c)(x-d)| dx = \frac{(b-a)^{5}}{120}$$

and so

$$\left| \int_a^b f(x) dx - Q_{NC(3)} \right| \leq \frac{M_4}{24} \frac{(b-a)^5}{120} = \frac{M_4}{2880} (b-a)^5.$$

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

Error of Newton-Cotes Rules

- For another proof, please see Numerical Analysis.
- Note that if f(x) is a *cubic* polynomial then $f^{(4)}(x) = 0$ and so Simpson's rule is *exact*. This is somewhat surprising because the rule is based on the integration of a *quadratic* interpolant.

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature 4.4 Special Topics

Error Formula of Newton-Cotes Rule

In general, it can be shown that

$$\int_a^b f(x)dx = Q_{NC(m)} + c_m f^{(d+1)}(\eta) \left(\frac{b-a}{m-1}\right)^{d+2}$$

where c_m is a small constant, $\eta \in [a, b]$, and

$$d = \left\{ \begin{array}{ll} m-1, & \text{if } m \text{ is even,} \\ m, & \text{if } m \text{ is odd.} \end{array} \right.$$

- Notice that if m is odd, such as Simpson's rule, then an extra degree of accuracy results.
- If $|f^{(d+1)}(x)| \le M_{d+1}$ on [a, b], then

$$\left|\int_a^b f(x)dx - Q_{NC(m)}\right| \leq |c_m|M_{d+1}h^{d+2}, \quad h = \frac{b-a}{m-1}$$

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

Open Newton-Cotes Rules

- The Newton-Cotes rules presented previously are actually the closed Newton-Cotes rules because f(x) is evaluated at the left and right endpoints.
- The *m*-point open Newton-Cotes rule places the abscissas at a + ih where h = (b a)/(m + 1) and i = 1 : m.
- The one-point open Newton-Cotes rule is called the midpoint rule.
- Note that for m = 3,5,6,7,..., the open rules involve negative weights, a feature that can undermine the numerical stability of the rule.
- The closed rules do not *go negative* weights until m = 9, making them a more attractive family of quadrature rules from this point of view. However, the open rules can be useful when f has *endpoint singularities*.

Composite Rules (1)

- The Composite Newton-Cotes rules are to partition the interval [a, b] into n subintervals which are sufficiently small, and then apply Q_{NC(m)} to each subinterval.
- That means, if we have a partition

$$a = z_1 < z_2 < \cdots < z_{n+1} = b,$$

then

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} \int_{z_{i}}^{z_{i+1}} f(x) dx \approx \sum_{i=1}^{n} Q_{NC(m)}^{(i)}$$

which is the **composite quadrature rule** based on Newton-Cotes Results.

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

Composite Rules (2)

• For example, let $\Delta_i = z_{i+1} - z_i$ and $z_{i+1/2} = (z_i + z_{i+1})/2$ for i = 1 : n, if we apply the Simpson rule to each subinterval $[z_i, z_{i+1}]$ then we have a **composite Simpson rule**

$$Q_{\mathsf{Simp}} = \sum_{i=1}^{n} \frac{\Delta_{i}}{6} (f(z_{i}) + 4f(z_{i+1/2}) + f(z_{i+1})).$$

 In general, if z houses a partition [a, b] and fname is a string that names a function, then

$$\begin{aligned} &\text{numl} = 0;\\ &\text{for } i = 1: \text{length}(z) - 1,\\ &\text{numl} = \text{numl} + \text{QNC}('\text{fname}', z(i), z(i+1), m);\\ &\text{end} \end{aligned}$$

assigns to **numl** the the composite m-point Newton-Cotes estimate of the integral based on the partition housed in z.

Composite Rules (3)

 We next focus on composite rules that are based on uniformly partitions. In these rules, we have

$$z_i=a+(i-1)\Delta, \quad \Delta=rac{b-a}{n}, \quad i=1:n+1.$$

Thus the composite rule evaluation has the form:

$$\begin{aligned} &\text{numI} = 0;\\ &\text{Delta} = (b-a)/n;\\ &z = a + [0:n] * \text{Delta};\\ &\text{for } i = 1:n,\\ &\text{numI} = \text{numI} + \text{QNC}('\text{fname}', z(i), z(i+1), m);\\ &\text{end} \end{aligned}$$

 This is the composite m-point Newton-Cotes rule with an n-subinterval partition, denoted as Q⁽ⁿ⁾_{NC(m)}.

- 4.1 The Newton-Cotes Rules
- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

Composite Rules (4)

- However, the computation is a little *inefficient* since it involves n 1 *extra function evaluations* and a **for-loop**. The rightmost f-evaluation in the ith call to **QNC** is the same as the leftmost f-evaluation in the (i+1)st call.
- To avoid redundant f-evaluation and a for-loop with repeated function calls, it is better not to apply QNC to each n subintervals.
- Instead, we pre-compute all the required function evaluations and store them in a single vector fval(1:n*(m-1)+1). The linear combination that defines the composite rule is then calculated.

- 4.1 The Newton-Cotes Rules
- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

Composite Rules (5)

• In the preceding $Q_{NC(5)}^{(4)}$ example, the 17 required function evaluations are assembled in fval(1 : 17) If w is the weight vector for $Q_{NC(5)}$, then

$$Q_{NC(5)}^{(4)} = \Delta(w^T \text{fval}(1:5) + w^T \text{fval}(5:9) + w^T \text{fval}(9:13) + w^T \text{fval}(13:17)).$$

This concludes that Q⁽ⁿ⁾_{NC(m)} is a summation of n inner products, each of which involves the weight vector w of the underlying rule and a portion of the fval-vector (see compQNC.m).

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature 4.4 Special Topics

Error of the Composite Newton-Cotes Rules (1)

 Suppose Q_i is the m-point Newton-Cotes estimate of the ith subinterval. If this rule is exact for polynomial of degree d, then using Eq.(4.2) we obtain

$$\int_a^b f(x) \, dx = \sum_{i=1}^n \int_{z_i}^{z_{i+1}} f(x) \, dx = \sum_{i=1}^n \left(Q_i + c_m f^{(d+1)}(\eta_i) \left(\frac{z_{i+1} - z_i}{m-1} \right)^{d+2} \right).$$

By definition

$$Q_{NC(m)}^{(n)} = \sum_{i=1}^n Q_i$$
 and $z_{i+1} - z_i = \Delta = \frac{b-a}{n}$.

Moreover, it can be shown that

$$\frac{1}{n}\sum_{i=1}^{n}f^{(d+1)}(\eta_{i})=f^{(d+1)}(\eta)$$
 for some $\eta\in[a,b].$

- 4.2 Composite Rules
 4.3 Adaptive Quadrature
- 4.4 Special Topics

Error of the Composite Newton-Cotes Rules (2)

We hence have

$$\int_{a}^{b} f(x) dx = Q_{NC(m)}^{(n)} + c_m \left(\frac{b-a}{n(m-1)}\right)^{d+2} n f^{(d+1)}(\eta).$$

If $|f^{(d+1)}(x)| \le M_{d+1}$ for all $x \in [a, b]$, then

$$\left|Q_{NC(m)}^{(n)}-\int_a^b f(x)\,dx\right|\leq \left[|c_m|M_{d+1}\left(\frac{b-a}{m-1}\right)^{d+2}\right]\frac{1}{n^{d+1}}.$$

Comparing with (4.3), we see that the error in composite rule is the error in corresponding simple rule divided by n^{d+1}. Then, with m fixed it is possible to exercise error control by choosing n sufficiently large.

- 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

Error of the Composite Simpson Rule

 For example, suppose we want to approximate the integral with a uniformly spaced composite Simpson rule so that the error is less than a prescribed tolerance tol. If we know that $|f^{(4)}(x)| \leq M_4$, then we choose *n* so that

$$\frac{1}{90}M_4\left(\frac{b-a}{2}\right)^5\frac{1}{n^4}\leq tol.$$

• To keep the number of *f*-evaluations as small as possible, n should be the *smallest positive integer* that satisfies

$$n \geq (b-a)\sqrt[4]{\frac{M_4(b-a)}{2880 \cdot tol}}$$

 Exercising the script file ShowCompQNC.m, you will see the error properties of the composite Newton-Cotes rules.

- 4.1 The Newton-Cotes Rules
 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

Adaptive Quadrature Methods

- Uniformly spaced composite rules that are exactly for degree d polynomials are efficient if f^(d+1) is uniformly behaved across [a, b]. However, if the magnitude of f^(d+1) varies widely across the interval of integration, then the error control process discussed in Sec. 4.2 may result in an unnecessary number of function evaluations.
- This is because n is determined by an interval-wide derivative bound M_{d+1} . In regions where $f^{(d+1)}$ is small compared to this value, the subintervals are (possibly) much shorter than necessary.
- Adaptive quadrature methods can resolve this problem by 'discovering' where the integrand is ill-behaved and shortening the subintervals accordingly.

An Adaptive Newton-Cotes Procedure (1)

- The adaptive Newton-Cotes procedure is similar to the one we developed for adaptive piecewise linear interpolation. In order to obtain a good partition of [a, b], we need to be able to estimate error. If the error is not small enough, then the partition should be refined.
- We first fix m (the same point rule) and develop a method for estimating the error: Let $A_1 = Q_{NC(m)}^{(1)}$ and $A_2 = Q_{NC(m)}^{(2)}$, where A_1 is the simple m-point rule estimate and A_2 is the two-subinterval, m-point rule estimate.

An Adaptive Newton-Cotes Procedure (2)

 If these rules are exact for degree d polynomials, then it can be shown that

$$I = A_1 + \left[c_m f^{(d+1)}(\eta_1) \left(\frac{b-a}{m-1} \right)^{d+2} \right]$$

$$I = A_2 + \left[c_m f^{(d+1)}(\eta_2) \left(\frac{b-a}{m-1} \right)^{d+2} \right] \frac{1}{2^{d+1}}$$

where η_1 and η_2 are in the interval [a, b].

• We now assume that $f^{(d+1)}(\eta_1) = f^{(d+1)}(\eta_2)$, which is reasonable if $f^{(d+1)}$ does not vary much on [a,b]. Thus, it can be written as

$$I = A_1 + C$$
, and $I = A_2 + \frac{C}{2^{d+1}}$, $C = \left[c_m f^{(d+1)}(\eta_1) \left(\frac{b-a}{m-1} \right)^{d+2} \right]$.

An Adaptive Newton-Cotes Procedure (3)

 By subtracting these two equations for I from each other and solving for C, we obtain

$$C = \frac{A_2 - A_1}{1 - 1/2^{d+1}}$$
 and $|I - A_2| \approx \frac{|A_2 - A_1|}{2^{d+1} - 1}$.

 Thus, this discrepancy provides a reasonable estimate of the error in A₂. If our goal is to proximate I that has absolute error tol or less, then the recursive procedure may be organized as AdaptQNC.m.

An Adaptive Newton-Cotes Procedure (4)

 If the heuristic estimate of the error is greater than tol, then two recursive call are initiated to obtain the approximations

$$Q_L pprox \int_a^{mid} f(x) dx = I_L$$
 and $Q_R pprox \int_{mid}^b f(x) dx = I_L$

that satisfy

$$|I_L - Q_L| \le \frac{tol}{2}$$
 and $|I_R - Q_R| \le \frac{tol}{2}$

• Setting $Q = Q_I + Q_R$, we see that

$$|I-Q| = |(I_L-Q_L)+(I_R-Q_R)| \le |I_L-Q_L|+|I_R-Q_R| \le \frac{tol}{2}+\frac{tol}{2}=tol.$$

 The script file ShowAdapts.m illustrates the behavior of **AdaptQNC.m** for various of tolerance and *m*.

An Adaptive Newton-Cotes Procedure (5)

- Notes: the script ShowAdapts uses MATLAB's global variable capability in order to report on the number of function evaluations that are required for each AdaptQNC call.
- The command

global FunEvals VecFunEvals

designates **FunEvals** and **VecFunEvals** as *global* variables. They 'sit' in the MATLAB workspace and are accessible by any function that also designates the two variables as *global*.

MATLAB's Numerical Integrators (1)

- MATLAB has two adaptive quadrature procedures, quad.m and **quad8.m**. The first is based on $Q_{NC(3)}$ (Simpson's rule) and the second on $Q_{NC(9)}$.
- We look at quad.m. As for quad8.m, the calling sequence is identical. A call of the form

$$Q = quad(f', a, b)$$

assigns to Q an estimate of the integral of f(x) from a to b. The default relative error tolerance is 10^{-6} (MATLAB 6).

 Otherwise, a fourth input parameter can be used to specify the required tolerance. For example,

$$Q = quad('f', a, b, tol)$$

4.3 Adaptive Quadrature 4.4 Special Topics

MATLAB's Numerical Integrators (2)

 A fifth nonzero parameter can be used to produce a plot of f that reveals where it is evaluated by quad:

$$Q = quad('f', a, b, tol, 1)$$

 The number of function evaluations can be obtained by specifying a second output parameter.

$$[Q, count] = quad('f', a, b, tol, 1)$$

 In the script file ShowQuads.m, these two procedures are applied to the integral of the built-in MATLAB function humps that implements

humps(x) =
$$\frac{1}{(x-0.3)^2+0.01} + \frac{1}{(x-0.9)^2+0.04} - 6$$

on [0, 1].

MATLAB's Numerical Integrators (3)

 It is sometimes the case that the integrand depends on one or more parameters. For example, suppose we want to compute

$$G(\alpha,\beta) = \int_0^1 e^{\alpha x} \sin(\beta \pi x) dx$$

for various α and β .

 In this case we would start by writing a function that includes the parameters as arguments, e.g.,

function
$$y = F4-3-2(x, \alpha, \beta)$$

$$y = \exp(\alpha * x). * \sin(\beta * \pi * x);$$

- 4.1 The Newton-Cotes Rules
- 4.2 Composite Rules
 4.3 Adaptive Quadrature
- 4.4 Special Topics

Special Quadratures

- We here discuss two other approaches to the quadrature problem. Gauss quadrature is useful in certain specialized settings, as when there are endpoint singularities.
- In situations where the functions evaluations are experimentally determined, spline quadrature has a certain appeal.

- 4.1 The Newton-Cotes Rules
- 4.2 Composite Rules
 4.3 Adaptive Quadrature
- 4.4 Special Topics

Gauss Quadrature

- In the Newton-Cotes framework, the integrand is sampled at regular intervals across [a, b]. For m-point rule, the Newton-Cotes method is exact for the degree m (or m + 1) polynomials.
- In the Gauss quadrature, the abscissas are positioned in such a way so that the rule is correct (exact) for polynomials of maximal degree (up to 2m - 1).
- This means, Gauss quadrature chooses the *optimal points* for *f*-evaluation, rather than *equally spaced* way.

- 4.1 The Newton-Cotes Rules
- 4.2 Composite Rules
 4.3 Adaptive Quadrature
- 4.4 Special Topics

Gauss Quadrature (Continuing)

• The nodes $x_1, x_2, \ldots, x_m \in [a, b]$, and weights w_1, w_2, \ldots, w_m are chosen to *minimize the expected error* in performing the approximation

$$\int_a^b f(x) dx \approx \sum_{k=1}^m w_k f(x_k)$$

for an arbitrary integrable function f.

• The simplest Gaussian rule is the **two-point rule**: Let us to determine the abscissas x_1, x_2 and weights w_1, w_2 so that

$$w_1f(x_1) + w_2f(x_1) = \int_{-1}^1 f(x) dx$$

for polynomials of degree 3 (= 2(2) - 1) or less.

- 4.2 Composite Rules
 4.3 Adaptive Quadrature
- 4.4 Special Topics

Gauss Quadrature (Continuing)

• This means that the rule must be exact for the functions $1, x, x^2$, and x^3 and we obtain the equations

$$w_1 + w_2 = 2$$

$$w_1x_1 + w_2x_2 = 0$$

$$w_1x_1^2 + w_2x_2^2 = 2/3$$

$$w_1x_1^3 + w_2x_2^3 = 0$$

• By solving the system of 4 equations, we get $x_2 = -x_1 = 1/\sqrt{3}$ and $w_1 = w_2 = 1$. Thus, for any function f(x) we have

$$\int_{-1}^{1} f(x) dx = f(-1/\sqrt{3}) + f(1/\sqrt{3}).$$

This is the two-point Gauss-Legendre rule.

- 4.1 The Newton-Cotes Rules
 4.2 Composite Rules
- 4.3 Adaptive Quadrature
- 4.4 Special Topics

Gauss-Legendre Quadrature

• The *m*-point **Gauss-Legendre** rule has the form

$$Q_{\mathsf{GL}(m)} = w_1 f(x_1) + \cdots + w_m f(x_m),$$

where the x_i and w_i are chosen to make the rule exact for polynomials of degree 2m - 1.

• One way to determine the m nodes (x_i) and m weights (w_i) is by solving the 2m nonlinear equations

$$w_1 x_1^k + \cdots + w_m x_m^k = \frac{1 - (-1)^{k+1}}{k+1}, \quad k = 0 : 2m-1.$$

The *k*th equation is obtained by the requirement that the rule

$$w_1f(x_1) + \cdots + w_mf(x_m) = \int_{-1}^1 f(x) dx$$

be exact for $f(x) = x^k$. It has a unique solution.

- 4.1 The Newton-Cotes Rules
- 4.2 Composite Rules
 4.3 Adaptive Quadrature
- 4.4 Special Topics

Gauss-Legendre Quadrature (Continuing)

- This technique could be used to determine the nodes and weights for any m-point formula that give exact results for polynomials of degree 2m - 1 or less. However, an alternative method can be used to obtain the nodes and weights more easily by applying the roots of orthogonal polynomials.
- A family of orthogonal polynomials $\{p_0(x), p_1(x), ..., p_n(x), ...\}$, defined on [a, b], has the property (inner product) that

$$< p_i(x), p_j(x) >= \int_a^b p_i(x) p_j(x) dx = \left\{ egin{array}{ll} 0, & ext{if } i
eq j, \\ C_i, & ext{if } i = j, ext{ where } C_i ext{ constant.} \end{array}
ight.$$

Gauss-Legendre Quadrature (Continuing)

 For example, one of the most famous orthogonal polynomial families is the Legendre polynomials defined on [-1, 1], the first few Legendre polynomials are

$$p_0(x) = 1$$
, $p_1(x) = x$, $p_2(x) = x^2 - \frac{1}{3}$,

$$p_3(x)=x^3-rac{3}{5}x, \quad p_4(x)=x^4-rac{6}{7}x^2+rac{3}{35},\cdots, ext{etc.}$$

 The rule using the roots of Legendre polynomials as notes and their corresponding weights is called
 Gauss-Legendre quadrature, which is defined as the following theorem.

Gauss-Legendre Theorem

• Theorem: Suppose that x₁, x₂,..., x_m are the roots of the nth Legendre polynomials p_n(x) and that for each i = 1 : m, the weights w_i are defined by

$$w_i = \int_{-1}^{1} \prod_{\substack{j=1 \ j \neq i}}^{m} \frac{x - x_j}{x_i - x_j} dx.$$

If f(x) is any polynomial of degree less than 2m, then

$$\int_{-1}^1 f(x)dx = \sum_{i=1}^m w_i f(x_i)$$

• For example, the **two-point rule** is using the roots of $p_2(x) = x^2 - \frac{1}{3} \ (\pm 1/\sqrt{3})$ and their corresponding weights $w_1 = w_2 = 1$.

- 4.1 The Newton-Cotes Rules
- 4.2 Composite Rules
 4.3 Adaptive Quadrature
- 4.4 Special Topics

Gauss-Legendre Quadrature (Continuing)

• The **three-point rule** is using the roots of $p_3(x) = x^3 - \frac{3}{5}x$ (0 and $\pm \sqrt{3/5}$) and their corresponding weights $w_1 = w_3 = 5/9$ and $w_2 = 8/9$. That is,

$$\int_{-1}^{1} f(x) dx \approx \frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9} f(0) + \frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right).$$

• The rule, defined on [-1, 1],

$$Q_{\mathsf{GL}(m)} = w_1 f(x_1) + \cdots + w_m f(x_m) \approx \int_{-1}^1 f(x) \, dx$$

can easily be transformed into any definite integrals on [a, b], by a change of variable:

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} \int_{-1}^{1} g(x) dx, \quad g(x) = f\left(\frac{a+b}{2} + \frac{b-a}{2}x\right).$$

Error of Gauss-Legendre Quadrature

It can be shown that

$$\left| \int_a^b f(x) \, dx - Q_{GL(m)} \right| \leq \frac{(b-a)^{2m+1} (m!)^4}{(2m+1)[(2m)!]^3} M_{2m},$$

where M_{2m} is a constant that bounds $|f^{(2m)}|$ on [a, b].

• The script file **GLvsNC.m** compares the $Q_{GL(m)}$ and $Q_{NC(m)}$ rules when they are applied to the integral of $\sin(x)$ from 0 to $\pi/2$.

- 4.2 Composite Rules
 4.3 Adaptive Quadrature
- 4.4 Special Topics

Spline Quadrature

• Suppose S(x) is a **cubic spline interpolant** of (x_i, y_i) , i = 1 : n and that we wish to compute $I = \int_{x_1}^{x_n} S(x) dx$. If the *ith local cubic* is represented by

$$q_i(x) = \rho_{i,4} + \rho_{i,3}(x - x_i) + \rho_{i,2}(x - x_i)^2 + \rho_{i,1}(x - x_i)^3,$$

then

$$\int_{x_i}^{x_{i+1}} q_i(x) \, dx = \rho_{i,4} h_i + \frac{\rho_{i,3}}{2} h_i^2 + \frac{\rho_{i,2}}{3} h_i^3 + \frac{\rho_{i,1}}{4} h_i^4$$

where $h_i = x_{i+1} - x_i$.

- By summing these quantities from i = 1 : n 1, we obtain the sought after spline integral. The function **SplineQ.m** in MATLAB can be used for **spline quadrature**.
- The script file **ShowSplineQ.m** uses this function to produce the estimates for the integral of $\sin(x)$ from 0 to $\pi/2$.