3. Системы случайных величин

<u>1.</u> Задан закон распределения двумерной случайной величины $(\xi; \eta)$:

ξ\η	- 1	0	1	2
- 1	0,05	0,3	0	0,05
1	0	p	0,2	0

Требуется:

- **а)** определить значение параметра p;
- **б)** найти $P(\xi \ge \eta)$;
- в) найти законы распределения случайных величин ξ и η;
- Γ) вычислить математические ожидания $M\xi$ и $M\eta$;
- д) вычислить дисперсии $D\xi$ и $D\eta$;
- е) найти коэффициент корреляции между ξ и η;
- ж) выяснить, зависимы ли случайные величины ξ и η .
- <u>2.</u> Задан закон распределения двумерной случайной величины $(\xi; \eta)$:

ξ\η	20	40	60
10	3λ	λ	0
20	2λ	4λ	2λ
30	λ	2λ	5λ

Требуется:

- a) определить значение параметра λ ;
- **б)** найти законы распределения компонент двумерной случайной величины;
- **в)** выяснить, зависимы ли компоненты двумерной случайной величины $(\xi; \eta);$
 - г) вычислить математические ожидания $M\xi$ и $M\eta;$
 - д) вычислить дисперсии $D\xi$ и $D\eta$;
 - e) найти коэффициент корреляции между ξ и η ;
 - ж) найти $P(\xi \ge \eta)$.
- **3.** Найти ковариацию между ξ и η , если задан закон распределения двумерной случайной величины $(\xi; \eta)$:

ξ\η	3	10	12
4	0,17	0,13	0,25
5	0,1	0,3	0,05

4. Пусть

$$P(\xi = -1; \eta = 0) = P(\xi = 1; \eta = 0) = P(\xi = 0; \eta = -1) = P(\xi = 0; \eta = 1) = 0.25.$$

- **a)** Записать закон распределения двумерной случайной величины $(\xi; \eta)$ в виде таблицы.
 - б) Являются ли случайные величины ξ и η независимыми?
 - в) Являются ли случайные величины ξ и η некоррелированными?

<u>5.</u> Задана плотность распределения двумерной случайной величины $(\xi; \eta)$:

$$p(x;y) = \begin{cases} a(x+y), & \text{если } 0 \le x \le y \le 1, \\ 0 & \text{во всех остальных случаях.} \end{cases}$$

Требуется найти:

- a) коэффициент a;
- **б)** математические ожидания $M\xi$ и $M\eta$;
- **в)** дисперсии $D\xi$ и $D\eta$;
- г) коэффициент корреляции между ξ и η ;
- д) выяснить, зависимы ли компоненты двумерной случайной величины $(\xi;\eta);$
 - e) найти плотности распределения случайных величин ξ и η ;
 - ж) вероятность $P(\xi + \eta < 0.5)$.
 - **6.** Найти $P\left(0 < \xi < \frac{\pi}{2}; 0 < \eta < \frac{\pi}{4}\right)$, если двумерная случайная величина

 $(\xi;\eta)$ задана плотностью распределения

$$p(x; y) = \begin{cases} a \sin(x + y), & \text{если } 0 < x < \frac{\pi}{2} \text{ и } 0 < y < \frac{\pi}{2}, \\ 0 & \text{в остальных случаях.} \end{cases}$$

 $\underline{7}$. Найти коэффициент корреляции между ξ и η , если двумерная случайная величина (ξ ; η) задана плотностью распределения

$$p(x; y) = \begin{cases} x + y, & \text{если } 0 < x < 1 \text{ и } 0 < y < 1, \\ 0 & \text{в остальных случаях.} \end{cases}$$

<u>8.</u> Задана функция распределения двумерной случайной величины $(\xi; \eta)$:

$$F(x; y) = \begin{cases} (1 - e^{-3x})(1 - e^{-5y}), & \text{если } x > 0, y > 0, \\ 0 & \text{в остальных случаях.} \end{cases}$$

Требуется найти:

- a) плотность распределения двумерной случайной величины $(\xi; \eta);$
- **б)** вероятность $P(0 < \xi < 1; 0 < \eta < 1)$.
- **9.** Задана функция распределения двумерной случайной величины $(\xi; \eta)$:

$$F(x; y) = \begin{cases} (1-x^{-7})(1-y^{-5}), & \text{если } x > 1, y > 1, \\ 0 & \text{в остальных случаях.} \end{cases}$$

Требуется:

- **a)** найти плотность распределения двумерной случайной величины $(\xi;\eta);$
 - **б)** найти вероятность $P(0 < \xi < 2; 2 < \eta < 4);$
 - в) определить, зависимы ли случайные величины ξ и η.
- **10.** Случайная величина $(\xi; \eta)$ распределена равномерно в треугольнике, ограниченном осью Ox и прямыми y = 2x, x = 1. Требуется найти:
 - **а)** плотность распределения двумерной случайной величины $(\xi; \eta)$;
 - **б)** вероятность $P(\xi + \eta < 1)$;
 - в) плотности распределения случайных величин ξ и η;
 - Γ) математические ожидания $M\xi$ и $M\eta$;
 - д) дисперсии $D\xi$ и $D\eta$;
 - е) коэффициент корреляции между ξ и η;
- **ж)** выяснить, зависимы ли компоненты двумерной случайной величины $(\xi;\eta)$.
- **11.** Найти коэффициент корреляции между ξ и η , если двумерная случайная величина (ξ ; η) задана функцией распределения

$$F(x; y) = \begin{cases} 0 & \text{при } x \le 0 \text{ или } y \le 0, \\ \sin x \sin y & \text{при } 0 < x < \frac{\pi}{2} \text{ и } 0 < y < \frac{\pi}{2}, \\ \sin x & \text{при } 0 < x < \frac{\pi}{2} \text{ и } y \ge \frac{\pi}{2}, \\ \sin y & \text{при } x \ge \frac{\pi}{2} \text{ и } 0 < y < \frac{\pi}{2}; \\ 1 & \text{при } x \ge \frac{\pi}{2} \text{ и } y \ge \frac{\pi}{2}. \end{cases}$$

- <u>12.</u> Записать плотность распределения двумерной случайной величины $(\xi; \eta)$, если ее компоненты ξ и η независимы и распределены по следующим законам:
 - **а)** равномерно на отрезках [-1; 1] и [0; 2] соответственно;
 - **б)** нормально с параметрами $M\xi = 3$, $M\eta = -2$; $D\xi = 4$, $D\eta = 16$.
 - <u>13.</u> Найти коэффициент корреляции случайных величин ξ и $\eta = 1 2\xi$.
- <u>14.</u> Чему равен коэффициент корреляции случайных величин $\eta = 2\xi + 3$ и $\zeta = 1 3\xi$?
- 15. Производятся два независимых выстрела по мишени в неизменных условиях. Вероятность попадания в мишень при одном выстреле равна 0,7. Рассматривается двумерная случайная величина (ξ ; η), где ξ число выстрелов до первого попадания (ξ = 2, если попаданий не было); η число промахов. Требуется найти:
 - **а)** распределение двумерной случайной величины $(\xi; \eta)$;

- **6)** $P(\xi = \eta)$;
- в) выяснить, зависимы ли компоненты двумерной случайной величины $(\xi; \eta);$
 - г) найти коэффициент корреляции между ξ и η .

16. Бросаются две игральные кости. Введем случайные величины: ξ – число выпавших шестерок; η – число выпавших нечетных цифр. Требуется:

- **а)** найти распределение двумерной случайной величины $(\xi; \eta)$;
- б) построить условный закон распределения случайной величины ξ при условии, что $\eta = 0$;
- в) построить условный закон распределения случайной величины ξ при условии, что $\eta = 1$;
- г) выяснить, зависимы ли компоненты двумерной случайной величины $(\xi; \eta)$.

Ответы. **1. а)** p = 0.4; **б)** 0.65;

в)	ξ	- 1	1	ĺ	η	-1	0	1	2
	P	0,6	0,4		P	0,05	0,7	0,2	0,05

- г) $M\xi = 0,3;$ $M\eta = 0,25;$ д) $D\xi = 0,91;$ $D\eta = 0,3875;$ е) 0,463; ж) зависимы.
- **2.** a) $\lambda = 0.05$;
- η 20 40 60 б) ξ | 10 |
- P = 0.2 = 0.4 = 0.4 P = 0.3 = 0.35 = 0.35 В) зависимы; г) $M\xi = 22$; $M\eta = 41$; д) $D\xi = 56$; $D\eta = 259$; е) 0,5646; ж) 0,15.
- **3.** −0,0195.
- 4. a) б) нет; в) да.
 -1
 0
 0,25
 0

 0
 0,25
 0
 0,25

 1
 0
 0,25
 0
- **5. a)** a = 2; **6)** $M\xi = \frac{3}{4}$; $M\eta = \frac{5}{12}$; **B)** $D\xi = \frac{3}{80}$; $D\eta = \frac{331}{4320}$; **r)** 0,3887;

д) зависимы; е)
$$p_{\xi}(x) = \begin{cases} 3x^2, & \text{если } x \in [0;1], \\ 0, & \text{если } x \notin [0;1]; \end{cases}$$

$$p_{\eta}(y) = \begin{cases} 1 + 2y - 3y^2, & \text{если } y \in [0; 1], \\ 0, & \text{если } y \notin [0; 1]; \end{cases}$$
 ж) $\frac{1}{24}$. **6.** 0,5. **7.** $-\frac{1}{11}$

$$p_{\eta}(y) = \begin{cases} 1 + 2y - 3y^2, & \text{если } y \in [0; 1], \\ 0, & \text{если } y \notin [0; 1]; \end{cases}$$
8. а) $p(x; y) = \begin{cases} 15e^{-3x - 5y}, & \text{если } x > 0, y > 0, \\ 0, & \text{в остальных случаях}; \end{cases}$
6. 0,5. 7. $-\frac{1}{11}$.

9. а)
$$p(x;y) = \begin{cases} 35x^{-8}y^{-6}, & \text{если } x > 1, y > 1, \\ 0 & \text{в остальных случаях}; \end{cases}$$
6) $(1-2^{-7})(2^{-5}-4^{-5}) \approx 0,03;$
8) независимы. **10. а)** $p(x;y) = \begin{cases} 1, & \text{если } (x;y) \in D, \\ 0, & \text{если } (x;y) \notin D, \end{cases}$ где D — треугольник,

в) независимы. **10. a)**
$$p(x;y) = \begin{cases} 1, & \text{если } (x;y) \in D, \\ 0, & \text{если } (x;y) \notin D, \end{cases}$$
 где D – треугольник,

Ox и прямыми y = 2x, x = 1; **б**) $\frac{1}{2}$; ограниченный осью

в)
$$p_{\xi}(x) = \begin{cases} 2x, & \text{если } x \in [0;1], \\ 0, & \text{если } x \notin [0;1]; \end{cases}$$
 $p_{\eta}(y) = \begin{cases} 1 - \frac{y}{2}, & \text{если } y \in [0;2], \\ 0, & \text{если } y \notin [0;2]; \end{cases}$

г)
$$M\xi = \frac{2}{3}$$
; $M\eta = \frac{2}{3}$; д) $D\xi = \frac{1}{18}$; $D\eta = \frac{2}{9}$; е) 0,5; ж) зависимы. 11.0.

12. а)
$$p(x; y) = \begin{cases} 0.25, & \text{если} -1 \le x \le 1 \text{ и } 0 \le y \le 2, \\ 0 & \text{в остальных случаях;} \end{cases}$$

6)
$$p(x; y) = \frac{1}{16\pi} \exp\left\{-\frac{1}{2}\left(\frac{(x-3)^2}{4} + \frac{(y+2)^2}{16}\right)\right\}$$
. **13.** -1. **14.** -1.

16. a) 1/4 1/9 1/3 1/9 1/6 1/36

ნ)	ξ	0	1	2	в)	ξ	0	1	
	P	4/9	4/9	1/9		P	2/3	1/3	

г) зависимы.

Минимум для аудиторной работы 1, 5, 9, 12.