Minimum Spanning Tree

Time Limit: 1 Second Memory Limit: 2048 MB

Let G = (V, E) be an undirected graph. Find the minimum spanning tree of G.

Input

The first line of input contains two integers n, m $(2 \le n, m \le 10^6)$ - the number of vertices and edges in the graph.

The following m lines describe the edges in the graph. The i-th line contains three integers u_i, v_i, w_i ($1 \le u_i, v_i \le n, 1 \le w \le 10^5$), denoting there is an undirected edge (u_i, v_i) with weight w_i . It is guaranteed that the graph is connected and doesn't contain self-loops.

Output

In the first line, output a single integer denoting the sum of weights on the minimum spanning tree.

In the next n-1 lines, describe an MST for the given graph. Each line should contain two integers u and v, denoting that (u, v) is in the MST. If there are multiple MSTs, you can output any of them.

Sample Inputs	Sample Outputs
4 5	6
1 2 2	1 2
1 3 3	1 3
2 3 5	2 4
2 4 1	
3 4 4	