Notes on Analysis

Jonathan E. Fuzaro Alencar

Chapter 1

Preliminaries

1 Sums & Products

Sum Notation: $\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n;$ E.g.: $\sum_{i=1}^{3} \sum_{j=2}^{4} (i+j) = (\sum_{j=2}^{4} 1+j) + (\sum_{j=2}^{4} 2+j) + (\sum_{j=2}^{4} 3+j)$ Product Notation: $\prod_{i=1}^{n} a_i = a_1 \cdot a_2 \cdot \dots \cdot a_n;$ E.g.: $\prod_{i=1}^{n} i = n!$

2 Logic

Universal Quantifier: \forall "for all"

Existential Quantifier: ∃ "there exists"

Uniqueness Quantifier: ∃! "there exists one and only one"

Material Implication: \implies "implies"

Material Equivalence: \iff "if and only if (iff)"

Logical Complement: ¬ "not"

Logical Conjuction: \land "and"

Logical Disjunction: \vee "or"

Exclusive Disjucation: \oplus "exclusive or (xor)"

Greek Alphabet

alpha Abeta В Γ gamma delta Δ Eepsilon Zzeta Heta η Ι iota Kkappa lambda mu M μ Nnu ν ξ хi omicron Opi П Prho ρ \sum sigma Ttau Υ upsilon Φ phi Xchi χ Ψ psi Ω omega

3 Set Theory

3.1 Notation

Set Relations: $\{a,b\}$ "the set containing the elements a and b" $\{a \mid p(a)\}$ "the set of a such that p(a) is true" "is an element of"; e.g. $3 \in \{1, 2, 3\}$ \in "is not an element of"; e.g. $4 \notin \{1, 2, 3\}$ ∉ "equals"; $(A = B) \iff \forall x \mid (x \in A \iff x \in B)$ "does not equal"; $A \neq B \iff \neg(A = B)$ \neq "is a subset of"; $(A \subseteq B) \iff \forall x \mid (x \in A \implies x \in B)$ \subset \subset , \subsetneq "is a proper subset of"; $(A \subset B) \iff (A \subseteq B \land A \neq B)$ "is a superset of"; $A \supseteq B \iff B \subseteq A$ \supseteq "is a proper superset of"; $A \supset B \iff (B \supseteq A \land B \neq A)$ \supset , \supseteq \overline{A} "the complement of A"; $\overline{A} := \{x \mid x \notin A\}$ **Set Operations:** "intersect"; $A \cap B := \{x \mid x \in A \land x \in B\}$ \cap "union"; $A \cup B := \{x \mid x \in A \lor x \in B\}$ \bigcup "cross"; $A \times B := \{(x, y) \mid x \in A \land y \in B\}$ \times "complement, slash"; $A - B := \{x \mid x \in A \land x \notin B\}$ $-, \setminus$

3.2 Indexed Operations

If S_i is a collection of sets indexed by $i \in I$ then,

Indexed Intersetion: $\bigcap_{i \in I} S_i := S_{I_1} \cap S_{I_2} \cap ... = \{x \mid \forall i \in I; x \in S_i\}$

Indexed Union: $\bigcup_{i \in I} S_i := S_{I_1} \cup S_{I_2} \cup \ldots := \{x \mid \exists i \in I; x \in S_i\}$

3.3 Common Sets

 \varnothing the empty set $\{\}$

 \mathbb{N} the natural numbers $\{1, 2, 3, ...\}$

 \mathbb{Z} the integers $\{..., -1, 0, 1, ...\}$

 \mathbb{Q} the rational numbers $\{p/q \mid p, q \in \mathbb{Z} \land q \neq 0\}$

 \mathbb{R} the real numbers infinite decimals

 \mathbb{C} the complex numbers $\{i = \sqrt{-1}, a + ib \mid a, b \in \mathbb{R}\}$

4 Functions

Definition 1 (Function as a rule). A function consists of two sets, called the domain and the codomain, and a rule that associates to any element in the domain exactly one element in the codomain.

Definition 2 (Set theoretic function). A function $f: X \to Y$ is a subset $\Gamma_f \subseteq X \times Y$ having the property that for every $x \in X$, there exists a unique $y \in Y$ such that $(x, y) \in \Gamma_f$. That is, $\Gamma_f = \{(x, y) \mid (\forall x \in X)(\exists ! y \in Y)\}.$

Definition 3 (Image). The set of all values of f is called its *image*: y is an element of the image of a function $f: X \to Y$ if there exists an $x \in X$ such that f(x) = y. The image of $f: X \to Y$ is written f(X); it is a subset of Y. That is, the image of f is $\{f(x) \mid x \in X\} = f(X)$.