

■ Product introduction

XC6219 series is a high precision, low noise and fast response low dropout linear voltage regulator manufactured by CMOS process. This series of voltage regulators has built - in fixed reference voltage, error correction circu it, current limiting circuit, phase compensation circuit and MOSFET with low internal resistance, which achieves high ripple suppression, low output noise and quick response to low dropout.

XC6219 series is compatible with ceramic capacitors with smaller volume than tantalum capacitors, and does not need to use 0.1 $\,\mu F$ By-pass capacitors, which can save space and reduce cost. Because of its high $\,$ -precision output stability and fast transient response, it can cope with the fluctuation of load current, so it is especially suitable for handheld devices and RF products.

By controlling the CE pin on the chip, the output can be turned off, and the static current after turning off the output is only 0.1uA(Typ value), thus greatly reducing the power consumption.

■ Product features

- High precision output voltage: 2.0%;
- Selectable output voltage: 1.8V~5.0V;
- Very low static current (Typ.=15µ A);
- Very low turn off current (Typ.=0.1 µ A);
- Good input stability: Typ.=0.2%/V;

- Strong carrying capacity: when Vin=4.3V and Vout=3.3V, lout=300mA
- Built in overcurrent protection and load short circuit protection;
- Compatible ceramic capacitor;
- Package form: SOT89-5, SOT23-5

product usage

- Smart phone/mobile phone
- Bluetooth and other RF products
- Portable consumer equipment
- Digital camera/video camera
- Battery powered equipment

Package form and pin definition function

Pin s	serial		
numbe	er	Pin	function
MR	PR	definition	declaration
package	package	delinition	declaration
S0T23-3	S0T89-3		
1	4	VIN	Input
2	2	VSS	Grounding terminal
3	3	CE	Enable side
4	1	NC	empty
5	5	VOUT	Output

functional block diagram

Limit parameter

project	symbol	•	explain	limit value	unit
tta	Vin		input voltage	9	V
voltage	Vout		Output voltage	Vss-0.3~Vin+0.3	V
electric current	lout		output current	500	mA
		SOT23-5	Maximum allowable	200	mW
Power Consumption	PD	SOT89-5	power consumption	300	
	T_{OPR}	Working temperature		- 20~ +60	$^{\circ}$ C
Temperature	T_{stg}		Storage nperature	- 40~ +125	$^{\circ}$
	T _{solder}		velding nperature	260°C, 10s	

Note: The limit parameter refers to the limit value that can't be exceeded under any conditions. If it exceeds this limit value, it may cause physical damage such as product deterioration; At the same time, when the parameters are close to the limit, the chip can't work normally.

■ Typical application

Electrical characteristics

XC6219 Vouт(T):	=3.3V ((Ci=Co=10uF,	Ta=25°C	unless	otherwise	specified)

trait	symbol	test condition	minimum value	typical value	maximum	unit
Output voltage	Vouт(E)	$I_{OUT}=1$ mA, $V_{IN}=5$ V, $V_{CE}=1.6$ V	3. 24	3.300	3. 360	V
Maximum output current	I _{оит} (max)	V _{IN} =4.3V	300			mA
Load stability	ΔV_{OUT}	$V_{IN}=V_{CE}=4.3V,$ $1mA \le I_{OUT} \le 100mA$		12		mV
Input stability	ΔV _{OUT} /(Δ V _{IN} •V _{OUT})	$I_{OUT} = 10 \text{mA}, 4.3 \text{V} \leq \text{V}_{IN} \leq 7 \text{V}$		0.2		%/V
Drop pressure	V_{drop1}	V _{IN} =4.3V, I _{OUT} =10mA		35		mV
difference	V_{drop2}	V _{IN} =4.3V, I _{OUT} =100mA		280		mV
quiescent	I_{SS1}	V _{IN} =V _{CE} =5V	_	15	_	μА
current	I_{SS2}	V _{IN} =5V, V _{CE} =V _{SS}			0.5	μА
CE input	V_{CEH}		1.6		$V_{\scriptscriptstyle \rm IN}$	V
voltage	V_{CEL}		0		0.5	V
CE input current	I_{CE}	V _{CE} =0V to V _{IN}			0.5	μА
Ripple suppression ratio	PSRR	$V_{IN}=V_{CE}=4.3V+1V_{p-pAC}$ $I_{OUT}=10mA$, $f=1kHz$		40		dB
Output voltage temperature coefficie nt	ΔV _{OUT} /(Δ Ta •V _{OUT})	$V_{IN}=V_{CE}=4.3V$, $I_{OUT}=3.3\text{mA}$ $0^{\circ}\text{C} \leq \text{Ta} \leq 60^{\circ}\text{C}$		±290		ppm/℃
input voltage	V_{IN}		1.8		7	V

Note:

- 1. $V_{OUT}(T)$: the specified output voltage.
- 2. V OUT (E): effective output voltage.
- 3. I OUT (max): slowly increase the output current, and the current value when the output voltage is
- ≤ VOUT(E)*95%.
- 4? $V_{drop} = V_{IN1} V_{OUT} (E)s$

 V_{INI} = gradually reduce the input voltage, and the input voltage when the output voltage drops to 98% of V $_{\text{OU}}$ (E)1.

 V_{OUT} (E)s = V_{OUT} (E)1*98%

 $V_{ou}E$)1= the output voltage value when $V_{IN}=V_{ou}T$)+1V and $I_{out}=$ a certain value.

Characteristic curve (3.3V output)

1. Output voltage and output current

2. Output voltage and input voltage

3. Dropout voltage and output current

4. Input voltage and static current

5. Ripple suppression

6. Output voltage and temperature

■ Package Information

S0T23-5

Sb a I	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

S0T89-5

CVAIDOI	MILLIN	IETERS	INCHES	
SYMBOL	MIN	MAX	MIN	MAX
A	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.360	0.560	0.014	0.022
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.400.	1.800	0.055	0.071
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
e	1.500 TYP.		0.060	TYP.
e1	2.900	3.100	0.114	0.122
L	0.900	1.100	0.035	0.043