冲刺重点高中数学选择题精选

- 1. 在矩形 ABCD 中,有一个菱形 BFDE (点 E, F 分别在线段 AB, CD 上),记它们的面积分别为 S_{ABCD} 和 S_{RFDE} . 现给出下列命题:
- 则:
 - A. ①是真命题, ②是真命题
- B. ①是真命题, ②是假命题
- C. ①是假命题, ②是真命题
- D. ①是假命题, ②是假命题
- 2. 如图,已知 $A \times B$ 是反比例函数 $y = \frac{k}{x}$ (k>0, x>0) 图象上的两点,BC//x 轴,交 y 轴于点 C. 动点 P从坐标原点 O 出发,沿 $O \rightarrow A \rightarrow B \rightarrow C$ (图中" \rightarrow "所示路线) 匀速运动,终点为 C. 过 P 作 $PM \perp x$ 轴, $PN \perp y$ 轴,垂足分别为 M、N. 设四边形 OMPN 的面积为 S, P 点运动时间为 t,则 S 关于 t 的函数图象大 致为(

- 3. 如图,四条直线 y=-x-6,y=-x+6,y=x-6,y=x+6 围成一个正方形,掷一个均匀且各面上标有 1, 2, 3, 4, 5, 6 的立方体,每个面朝上的机会是均等的。连掷两次,以面朝上的数为点P 的坐标(第一 次得到的数为横坐标,第二次得到的数为纵坐标),则点 P 落在该正方形上(含边界)的概率为(
 - A. $\frac{1}{2}$

- B. $\frac{3}{4}$ C. $\frac{4}{9}$ D. $\frac{5}{12}$

4. 在平面直角坐标系中,已知点 A(0,a),抛物线 $y=-a(x-a)^2+b$ 与 x 轴交于 $B \cdot C$ 两点 (|OB|<|OC|), 顶点为 D,且 AD//BC, $\tan \angle ABO = \frac{3}{2}$,则满足条件的抛物线有().

- A. 1条
- B. 2条
- C. 3条 D. 4条

5. 已知关于x的不等式 $\frac{x}{a}$ <7的解也是不等式 $\frac{2x-7a}{5}$ > $\frac{a}{2}$ -1的解,则a的取值范围是(

- A. $a \ge -\frac{10}{9}$ B. $a > -\frac{10}{9}$ C. $-\frac{10}{9} \le a < 0$ D. $-\frac{10}{9} < a < 0$

6. 已知实数 x 满足 $x^2 + \frac{1}{x^2} + x - \frac{1}{x} = 4$,则 $x - \frac{1}{x}$ 的值是 ().

- A. -2 B. 1 C. -1 或 2 D. -2 或 1

7. 已知 A(a, b), $B(\frac{1}{a}, c)$ 两点均在反比例函数 $y = \frac{1}{x}$ 图象上,且-1 < a < 0,则 b - c 的值为 ().

- A. 正数
- B. 负数
- C. 零 D. 非负数

8. 已知 a 是方程 $x^3 + 3x - 1 = 0$ 的一个实数根,则直线 y = ax + 1 - a 不经过 ().

- A. 第一象限
- B. 第二象限 C. 第三象限
- D. 第四象限

9. 如图,AB 是半圆的直径,点 C 是 \widehat{AB} 的中点,点 D 是 \widehat{AC} 的中点,连接 AC、BD 交于点 E,则 $\frac{DE}{BE}$ = ().

- A. $\frac{1}{5}$ B. $\frac{3}{16}$ C. $1 \frac{\sqrt{2}}{2}$ D. $\frac{\sqrt{2} 1}{2}$

10. 如图, $\triangle ABC$ 中,AB=AC, $\angle A=40^\circ$,延长AC到 D,使CD=BC,点 I 是 $\triangle ABD$ 的内心,则 $\angle BIC$ = () .

- A. 145°
- B. 135°
- C. 120°
- D. 105°

11. 已知关于 x 的不等式组 $\begin{cases} x-a>0 \\ 2-2x>0 \end{cases}$ 的整数解共有 6 个,则 a 的取值范围是().

- A. -6 < a < -5 B. $-6 \le a < -5$ C. $-6 < a \le -5$ D. $-6 \le a \le -5$

12. 已知实数 a、b、c 满足 a+b+c=0, abc=4, 则 $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ 的值 ().

- A. 是正数
- B. 是负数
- C. 是零 D. 是非负数

13. 已知实数 x, y, z 满足 x+y+z=5, xy+yz+zx=3, 则 z 的最大值是 ().

A. 3

B. 4

C. $\frac{19}{6}$ D. $\frac{13}{3}$

14. 把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为 m cm, 宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周 长和是().

A. 4*m* cm

B. 4*n* cm

C. 2(m+n) cm

D. 4(m-n) cm

图(1) 图②

15. 如图, $\odot O_1$ 的半径为 1, 正方形 ABCD 的边长为 6, 点 O_2 为正方形 ABCD 的中心, O_1O_2 垂直 AB 于 P点, $O_1O_2=8$. 若将 $\odot O_1$ 绕点 P 按顺时针方向旋转 360° ,在旋转过程中, $\odot O_1$ 与正方形 ABCD 的边只有 一个公共点的情况一共出现(

A. 3 次

B. 5次

C. 6次

D. 7次

16. 如图, ①②③④⑤五个平行四边形拼成一个含 30°内角的菱形 EFGH (不重叠无缝隙). 若①②③④四 个平行四边形面积的和为 14cm², 四边形 ABCD 面积是 11cm², 则①②③④四个平行四边形周长的总和为 ().

A. 48cm

B. 36cm

C. 24cm

D. 18cm

17. 如图,在五边形 ABCDE 中, $\angle BAE=120^{\circ}$, $\angle B=\angle E=90^{\circ}$, AB=BC, AE=DE, 在 BC, DE 上分别 找一点 M, N, 使得 $\triangle AMN$ 周长最小,则 $\angle AMN+\angle ANM$ 的度数为(

A. 100°

B. 110°

C. 120°

D. 130°

18. 如图,在平面直角坐标系中,过格点 A, B, C 作一圆弧,点 B 与下列格点的连线中,能够与该圆弧 相切的是().

3

A. 点 (0, 3)

B. 点 (2, 3)

C. 点(5, 1)

D. 点 (6, 1)

19.	已知 x_1 ,	x_2 是方程 x^2 -(k	$(-2)x + (k^2 + 3k + 5)$	=0的两个实数根,	则 $x_1^2 + x_2^2$ 的最大值为().

- A. 19

- B. 18 C. $\frac{50}{9}$ D. 不存在

20. 如图,在平行四边形 ABCD 中,过 $A \times B \times D$ 三点的圆交 BC 于点 E,且与 CD 相切,若 AB=4,AE=5,则 CE 的长为(

- A. 3

- B. 4 C. $\frac{15}{4}$ D. $\frac{16}{5}$

21. 若函数 y=kx 与函数 $y=\frac{1}{x}$ 的图象相交于 A , C 两点,AB 垂直 x 轴于 B , 则 $\triangle ABC$ 的面积为(

- B. 2 C. k D. k^2

22. 己知 $x^2 - \frac{\sqrt{19}}{2}x + 1 = 0$,则 $x^4 + \frac{1}{x^4}$ 等于 ().

- A. $\frac{11}{4}$ B. $\frac{121}{16}$ C. $\frac{89}{16}$ D. $\frac{27}{4}$

23. 已知抛物线 $y=x^2+mx-\frac{3}{4}m^2$ (m>0) 与 x 轴交于 A, B 两点,且 $\frac{1}{OB}-\frac{1}{OA}=\frac{2}{3}$,则 m 的值等于 (

- A. $\frac{1}{2}$ B. $\frac{3}{4}$ C. 1 D. 2

24. 已知 m, n 是关于 x 的方程 $x^2 - 2ax + a + 6 = 0$ 的两根,则 $(m-1)^2 + (n-1)^2$ 的最小值为(

- A. 6
- B. 7
- C. 8

25. 如图,在直角梯形 ABCD 中, AD//BC, $\angle B=90^{\circ}$, AD=2, BC=3, $DC=5\sqrt{2}$, 点 P 在线段 AB 上, 则使得以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似的点P有().

- B. 2个
- C. 3 个

26. 我们将能完全覆盖平面图形的最小圆称为该平面图形的最小覆盖圆,如图, $\odot O_1$ 的半径为8, $\odot O_2$ 、

- $\odot O_3$ 的半径为 5,则其最小覆盖圆的半径为
 - A. 12
- B. 13
- C. $\frac{40}{3}$ D. $8\sqrt{3}$

27. 如图,在 Rt $\triangle ABC$ 中, $\angle ACB$ =90°, $\angle BAC$ =30°,AB=2,D 是 AB 边上的一个动点(不与点 A、B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数 关系的图象大致是(

28. 如图,正方形 ABCD 中,AB=6,点 E 在边 CD 上,且 CD=3DE. 将 $\triangle ADE$ 沿 AE 对折至 $\triangle AFE$,延 长 EF 交边 BC 于点 G, 连结 AG、CF. 下列结论: ① $\triangle ABG \cong \triangle AFG$; ②BG = GC; ③AG // CF; ④ $S_{\triangle FGC}$ =3. 其中正确结论的个数是().

- A. 1
- B. 2
- C. 3
- D. 4

29. 如图所示,P 是菱形 ABCD 的对角线 AC 上一动点,过 P 垂直于 AC 的直线交菱形 ABCD 的边于 M、 N 两点,设 AC=2,BD=1,AP=x,则 $\triangle AMN$ 的面积为 y,则 y 关于 x 的函数图象的大致形状是(

30. 如图, $\odot O$ 的两条弦 AB、CD 互相垂直,垂足为 E,且 AB=CD,已知 CE=1,ED=3,则 $\odot O$ 的半 径为(

- A. $\sqrt{5}$ B. $\sqrt{6}$ C. $\frac{5}{2}$ D. $\frac{9}{4}$

31. 若直角三角形的两条直角边长为 a, b, 斜边长为 c, 斜边上的高为 h, 则以下列各组中三条线段为边 $\mathbb{K}: \ (1)\frac{1}{a}, \ \frac{1}{b}, \ \frac{1}{h}; \ (2)\sqrt{a}, \ \sqrt{b}, \ \sqrt{c}; \ (3)a, \ b, \ \sqrt{2}h; \ (4)\frac{1}{\sqrt{a}}, \ \frac{1}{\sqrt{b}}, \ \frac{1}{\sqrt{h}}$ 其中一定能组成直角三角形的是(

- B. ①③ C. ②③
- D. 1234

- A. (13, 44)
- B. (44, 44)
- C. (44, 13)
- D. (13, 13)

33. 已知 a、b、c 是 $\triangle ABC$ 中 $\angle A$ 、 $\angle B$ 、 $\angle C$ 的对边,抛物线 $y=x^2-2ax+b^2$ 与 x 轴的一个交点为 M (a+c, 0), 则 $\triangle ABC$ 是().

- A. 等腰三角形
- B. 等边三角形
- C. 直角三角形
- D. 不确定

34. 如图, 在 $\triangle ABC$ 中, BC=a, AC=b, AB=c, O 是 $\triangle ABC$ 的外心, $OD \bot BC$ 于 D, $OE \bot AC$ 于 E, $OF \bot AB$ 于F,则OD:OE:OF=(

A. a:b:c

- B. $\frac{1}{a} : \frac{1}{b} : \frac{1}{c}$
- C. $\sin A : \sin B : \sin C$
- D. $\cos A : \cos B : \cos C$

35. 如图,点 C、D 是以线段 AB 为公共弦的两条圆弧的中点,AB=4,点 E、F 分别是线段 CD、AB 上的 动点,设AF=x, $AE^2-FE^2=y$,则能表示y与x的函数关系的图象是(

36. 如图,以 $Rt\triangle ABC$ 的斜边 AB 为一边在 $\triangle ABC$ 的同侧作正方形 ABDE, 设正方形的中心为 O,连接 AO. 若 AC=2, $CO=3\sqrt{2}$,则正方形 ABDE 的边长为(

- A. $\frac{15\sqrt{5}}{4}$
- B. 8
- C. $2\sqrt{17}$
- D. $\frac{25}{3}$

37. 已知锐角三角形的两条边长为 2、3,那么第三边 x 的取值范围是(

- A. $1 < x < \sqrt{5}$
- B. $\sqrt{5} < x < \sqrt{13}$ C. $\sqrt{13} < x < 5$
- D. $\sqrt{5} < x < \sqrt{15}$

38. 如图,在 $Rt\triangle ABC$ ($\angle C=90°$)内放置边长分别为 3,4,x 的三个正方形,则 x 的值为(

- A. 5
- B. 6
- C. 7
- D. 8

6

- 39. 四边形 ABCD 的对角线 AC 与 BD 相交于 O,且 $S_{\triangle AOB}$ = 4, $\overline{S_{\triangle COD}}$ = 9,则四边形 \overline{ABCD} 的面积(
 - A. 有最小值 12
- B. 有最大值 12
- C. 有最小值 25 D. 有最大值 25

- 40. 已知拋物线 $y=ax^2+bx+c$ 与 x 轴交于 A、B 两点,与 y 轴交于点 C,且拋物线的顶点在直线 y=-1上. 若 $\triangle ABC$ 是直角三角形,则 $\triangle ABC$ 面积的最大值是().
- B. $\sqrt{2}$ C. $\sqrt{3}$
- 41. 如图,在直角梯形 ABCD中, AD//BC, $\angle ABC = 90^{\circ}$,以 AB 为直径的半圆与 CD 相切于 E, OC 交半 圆于F, AF 的延长线交BC于G, 连接AE.
- 以下结论: ①AE//OC; ②AD+BC=CD; ③CG=FG; ④ $AB^2=4AD\cdot BC$. 其中正确的是(
 - A. 112
- B. 34 C. 124
- D. (1)(2)(3)(4)

- 42. 过点 P(2, 1) 且与 x 轴正半轴、y 轴正半轴围成的三角形面积为 5 的直线共有()条.
 - A. 1
- B. 2
- C. 3
- D. 4
- 43. 如图, AB 是半圆 O 的直径, D 是 \widehat{BC} 的中点, OD 交弦 BC 于点 E. 若 BC=8, DE=2, 则 $tan \angle BAE$ 的值为().

- A. $\frac{6}{17}$ B. $\frac{4}{11}$ C. $\frac{1}{3}$ D. $\frac{9}{25}$

- 44. 如图,二次函数 $y=ax^2+bx+c$ ($a\neq 0$) 的图象经过点 (1, 2),且与 x 轴交点的横坐标分别为 x_1, x_2 , 其中 $-1 < x_1 < 0$, $1 < x_2 < 2$.
- 下列结论: ①abc<0; ②-a<b<-2a; ③b²+8a>4ac; ④a<-1. 其中正确的结论有(). A. 1个 B. 2个 C. 3个 D. 4个

- 45. 如图,直角梯形 ABCD 中, $\angle A=90^\circ$, $AC\bot BD$,已知 $\frac{BC}{AD}=k$,则 $\frac{AC}{BD}=($

- A. k B. \sqrt{k} C. k^2 D. $\frac{k}{k+1}$

46. 如图, C为⊙O 直径 AB 上一动点, 过点 C 的直线交⊙O 于 D、E 两点, 且 $\angle ACD$ =45°, DF $\bot AB$ 于 点 F, $EG \perp AB$ 于点 G. 当点 C 在 AB 上运动时,设 AF = x, DE = y, 下列图象中,能表示 $y \in x$ 的函数关 系式的图象大致是().

47. 如图, $\bigcirc O_1$ 与 $\bigcirc O_2$ 相交于 $A \setminus B$,过 A 作 $\bigcirc O_1$ 的切线交 $\bigcirc O_2$ 于 C,连接 CB 并延长交 $\bigcirc O_1$ 于 D,连接 *AD*, 已知 *AB*=2, *BD*=3, *BC*=5, 则 *AD* 的长为().

- A. $\frac{2\sqrt{5}}{5}$ B. $\frac{4\sqrt{5}}{5}$ C. $\frac{3\sqrt{10}}{5}$
- D. $\frac{4\sqrt{10}}{5}$

48. 已知 $\triangle ABC$ 的三边分别为 a, b, c, 下列四个结论:

- ①以 \sqrt{a} , \sqrt{b} , \sqrt{c} 为三边的三角形一定存在;
- ②以 a^2 , b^2 , c^2 为三边的三角形一定存在;

③以 $\frac{1}{2}(a+b)$, $\frac{1}{2}(b+c)$, $\frac{1}{2}(c+a)$ 为三边的三角形一定存在;

④以|a-b|+1, |b-c|+1, |c-a|+1 为三边的三角形一定存在.

正确结论的个数为().

- A. 1个
- B. 2个
- C. 3 个
- D. 4个

49. 如图,分别以 Rt $\triangle ABC$ 的斜边 AB、直角边 AC 为边向外作等边 $\triangle ABD$ 和等边 $\triangle ACE$,F 为 AB 的中点, DE、AB 相交于点 G,若 $\angle BAC=30$ °,下列结论: ① $EF\bot AC$; ②四边形 ADFE 是菱形; ③AD=4AG; ④ 记 $\triangle ABC$ 的面积为 S_1 ,四边形 FBCE 的面积为 S_2 ,则 $S_1:S_2=2:3$. 其中正确的结论的序号是(

- A. 13
- B. 24
- C. (1)(3)(4)
- D. 1234

50. 如图,平行四边形 ABCD 的面积为 4, $E \setminus F \setminus G \setminus H$ 分别是边 $AB \setminus BC \setminus CD \setminus DA$ 的中点,则四边形 MNPQ 的面积为

- A. 1

- C. $\frac{5}{6}$ D. $\frac{4}{5}$

- A. 2条
- B. 4条
- C. 6条
- D. 8条

52. 如图, AB 是半径为 1 的半圆 O 的直径, $\triangle AOC$ 为等边三角形,D 是 \widehat{BC} 上的一动点,则四边形 AODC的面积 S 的取值范围是(

- A. $\frac{\sqrt{3}}{4} < S \le \frac{2+\sqrt{3}}{4}$ B. $\frac{\sqrt{3}}{4} \le S < \frac{2+\sqrt{3}}{4}$ C. $\frac{\sqrt{3}}{4} < S \le \frac{1+\sqrt{3}}{2}$ D. $\frac{\sqrt{3}}{4} \le S < \frac{1+\sqrt{3}}{2}$

53. 如图, 两个同心圆, 半径分别为 $2\sqrt{6}$ 和 $4\sqrt{3}$, 矩形 ABCD 的边 AB、CD 分别为两圆的弦, 当矩形 ABCD的面积为最大时,它的周长等于().

- A. $22+6\sqrt{2}$ B. $20+8\sqrt{2}$ C. $18+10\sqrt{2}$ D. $16+12\sqrt{2}$

54. 己知二次函数 $y=x^2+bx+c$ 的图象与 x 轴两交点的坐标分别为 (m,0), (-3m,0) $(m\neq 0)$, 图象的对 称轴为直线 x=1,则该二次函数的最小值为 ().

- A. 2
- B. -2 C. 4

55. 如图,已知 Rt $\triangle ABC$ 中, $\angle ACB$ =90°,AC=BC,D为 BC边上一点,E为 AC的中点,AD与 BE相 交于点 F,若 $CF \perp AD$,则 $\frac{DC}{BC}$ 的值为 ().

- A. $\frac{2}{3}$ B. $\frac{\sqrt{5}-1}{2}$ C. $\frac{5}{8}$ D. $\frac{5+\sqrt{5}}{10}$

56. 如图,已知矩形纸片 ABCD, $E \in AB$ 的中点, $F \in BC$ 上的一点, $\angle BEF > 60^{\circ}$,将纸片沿 EF 折叠, 使点 B 落在纸片上的点 G 处,连接 AG,则与 $\angle BEF$ 相等的角的个数为(

- A. 4
- B. 3
- C. 2
- D. 1

57. 己知函数 $y=ax^2+bx+c$ 图象的一部分如图所示,则 a+b+c 取值范围是(

- A. -2 < a+b+c < 0
- B. -2 < a+b+c < 2
- C. 0 < a+b+c < 2
- D. 2 < a+b+c < 4

58. 如图, $\triangle ABC$ 中, $\angle ACB=90^{\circ}$,AC=BC,D 是 $\triangle ABC$ 内一点,且 AD=AC,BD=CD,则 $\angle ADB$ 的 度数为(

- A. 135
- B. 120
- C. 150
- D. 140

59. 如图,矩形 OABC 中,OA=2OC,D 是对角线 OB 上的一点, $OD=\frac{2}{3}$ OB,E 是边 AB 上的一点,AE $=\frac{4}{9}AB$,反比例函数 $y=\frac{k}{x}$ (x>0) 的图象经过 D、E 两点,交 BC 于点 F,且四边形 BFDE 的面积为 $\frac{5}{6}$. 下列结论: ①EF//AC; ②k=2; ③矩形 OABC 的面积为 $\frac{9}{2}$; ④点 F 的坐标为 $(\frac{4}{3}, \frac{3}{2})$.

- 正确结论的个数为(
 - A. 1个
- B. 2个
- C. 3 个
- D. 4个

60. 如图,矩形 ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形 ABCD的周长 为().

- A. $12\sqrt{2}$

- B. $10\sqrt{3}$ C. $8\sqrt{5}$ D. $8+4\sqrt{5}$

61. 已知二次函数 $y=ax^2+c$,当 x=1 时, $-4 \le y \le -1$,当 x=2 时, $-1 \le y \le 5$,则当 x=3 时,y 的取值 范围是(

- A. $-1 \le y \le 20$ B. $-4 \le y \le 15$ C. $-7 \le y \le 26$ D. $-\frac{28}{3} \le y \le \frac{35}{3}$

62. 如图,在 Rt△ABC中,∠C=90°, AC=4, BC=3, BD 平分∠ABC, E 是 AB 中点,连接 DE,则 DE 的长为(

- A. $\frac{\sqrt{10}}{2}$
- B. 2
- C. $\frac{\sqrt{5}+1}{2}$ D. $\frac{3}{2}$

63.	已知 m ,	n 是方程 $ax^2 + bx + c = 0$ 的两个实数根,	$\mathcal{C}_{s_1}=m+n$,	$s_2 = m^2 + n^2$	$s_3=m^3+n^3, \cdots,$	$s_{100} = m^{100}$
+n	100,,	则 $as_{2011}+bs_{2010}+cs_{2009}$ 的值为 ().				

B. 1 C. -1 D. 2011

64. 在平面直角坐标系中,已知直线 $y=-\frac{3}{4}x+3$ 与 x 轴、y 轴分别交于 A、B 两点,点 C 是 y 轴上一点.将 坐标平面沿直线 AC 折叠,使点 B 刚好落在 x 轴上,则点 C 的坐标为 ().

- A. $(0, \frac{6}{5})$
- B. $(0, \frac{5}{4})$ C. $(0, \frac{4}{3})$ D. $(0, \frac{5}{3})$

65. 已知 $\triangle ABC$ 中,AB=3, $\angle BAC=120^\circ$,AC=1,D为 AB 延长线上一点,BD=1,点 E 在 $\angle BAC$ 的平 分线上,且 $\triangle ADE$ 是等边三角形,则点 C 到 BE 的距离等于(

- A. 3 B. $2\sqrt{3}$ C. $\frac{10}{3}$ D. $\frac{\sqrt{39}}{2}$

66. 若关于 x 的不等式组 $\begin{cases} x \ge a + 2 \\ x < 3a - 2 \end{cases}$ 有解,则函数 $y = (a - 3)x^2 - x - \frac{1}{4}$ 图象与 x 轴的交点个数为(

- B. 1 C. 2 D. 1或2

67. 在 Rt $\triangle ABC$ 中, $\angle C$ =90°, $\cos \angle ABC$ = $\frac{3}{5}$, $\angle ABC$ 的平分线 BD 交 AC 于点 D, $DE \bot BD$ 交 AB 于点

- E, 过 B、D、E 三点的圆交 BC 于点 F,连接 EF,则 $\frac{EF}{AC}$ = ().
- A. $\frac{3}{4}$ B. $\frac{5}{8}$ C. $\frac{\sqrt{2}}{2}$ D. $\frac{5}{6}$

68. 已知抛物线的对称轴为直线 x=1,抛物线与 x 轴交于 E、F 两点,与 y 轴交于 C 点,过 C 作 CG//x轴,交抛物线的对称轴于 G 点,D 为抛物线的顶点. 若四边形 DEGF 是有一个内角为 60° 的菱形,则满足 条件的抛物线有()条.

- B. 2 C. 3
- D. 4

69. 如图, 四边形 *EFGH* 是矩形 *ABCD* 的内接矩形,且 *EF*: *FG*=3:1, *AB*: *BC*=2:1,则 tan ∠*AHE* 的 值为(

11

- A. $\frac{1}{4}$ B. $\frac{1}{5}$ C. $\frac{3}{10}$ D. $\frac{2}{7}$

- A. 7
- B. $7\sqrt{2}$
- C. 8
- D. $8\sqrt{2}$

71. 直线 y=-2x+6 与 x 轴、y 轴分别交于 P、Q 两点,把 $\triangle POQ$ 沿 PQ 翻折,点 O 落在 R 处,则点 R 的 坐标是()

- A. $(8\sqrt{5}, 4\sqrt{5})$ B. $(4\sqrt{5}, 2\sqrt{5})$
- C. $(\frac{14}{3}, \frac{7}{3})$ D. $(\frac{24}{5}, \frac{12}{5})$

72. 已知方程|x|=ax+1有一个负根且没有正根,则 a 的取值范围是(

- A. a > -1
- B. *a*<1
- C. -1 < a < 1
- D. $a \ge 1$

73. 如图,等腰直角三角形 ABC 位于第一象限,AB=AC=2,直角顶点 A 在直线 y=x 上,且 A 点的横坐 标为 1,两条直角边 AB、AC 分别平行于 x 轴、y 轴,若双曲线 $y = \frac{k}{x} \; (k \neq 0) \;$ 与 $\triangle ABC$ 有交点,则 k 的取 值范围是(

- A. 1 < k < 2
- B. 1≤*k*≤3
- C. 1≤*k*≤4
- D. 1≤*k*<4

74. 如图,点 $E \times F$ 分别是正方形 ABCD 的边 $AB \times BC$ 的中点, $BD \times DF$ 分别交 CE 于点 $G \times H$,若正方形 ABCD 的面积为 1,则四边形 BFHG 的面积等于(

- A. $\frac{1}{10}$ B. $\frac{1}{9}$ C. $\frac{3}{25}$ D. $\frac{7}{60}$

75. 如图,在平面直角坐标系中,点 A 的坐标为 $(-\sqrt{3}, 1)$,点 B 是 x 轴上的一动点,以 AB 为边作等边 三角形 ABC. 当点 C(x, y) 在第一象限内时,下列图象中,可以表示 y 与 x 的函数关系的是(

76. 如图,正方形 ABCD 内接于 $\odot O$,直径 MN//AD,则阴影面积占圆面积的(

- A. $\frac{1}{3}$ B. $\frac{1}{4}$ C. $\frac{1}{5}$ D. $\frac{1}{6}$

77. 如图, $\odot O$ 的半径为 2,AB、CD 是互相垂直的两条直径,点 P 是 $\odot O$ 任意一点,过点 P 作 $PM \perp AB$ 于 M, $PN \perp CD$ 于 N,点 Q 是 MN 的中点,当点 P 沿着圆圈走过 45° 弧长时,点 Q 走过的路径长为

- A. $\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{\pi}{6}$ D. $\frac{\pi}{3}$

78. 如图,等边三角形 ABC 的三个顶点分别在三条平行线 l_1 、 l_2 、 l_3 上,且 l_1 、 l_2 之间的距离为 1, l_2 、 l_3 之间的距离为 2,则 $\triangle ABC$ 的边长为(

- A. $2\sqrt{3}$
- B. $\frac{4\sqrt{6}}{3}$
- C. $\frac{3\sqrt{17}}{4}$ D. $\frac{2\sqrt{21}}{3}$

79. 如图,在直角梯形 ABCD 中,AD//BC, ∠ABC=90°, BD ⊥DC, BD=DC, CE 平分 ∠BCD, 交 AB 于点 E, 交 BD 于点 F, EG//DC 交 BD 于点 G. 下列结论:

① BG=DF; ② $CF=(\sqrt{2}+1)EF$; ③ $\frac{S_{\triangle EFG}}{S_{\triangle FBF}}=\frac{EF}{EC}$.

其中正确的是(

- A. 123
- B. 只有②③
- C. 只有②
- D. 只有③

80. 二次函数 $y=ax^2+bx+c$ 图象如图所示,则一次函数 $y=-bx-4ac+b^2$ 与反比例函数 $y=\frac{a+b+c}{r}$ 在同一 坐标系内的图象大致为(

81. 已知关于 x 的方程 $3kx^2+(3-7k)x+4=0$ 的两实根 α , β 满足 $0<\alpha<1<\beta<2$,则实数 k 的取值范围是

- A. $\frac{7}{4} < k < 5$ B. $\frac{7}{4} \le k < 5$ C. $\frac{7}{4} < k \le 5$ D. $\frac{7}{4} \le k \le 5$

82. 若对于任意实数 m, 抛物线 $y=x^2-3mx+m+n$ 与 x 轴都有交点,则 n 必须满足 ()

- A. $n \le -\frac{1}{81}$ B. $n \ge \frac{1}{81}$ C. $n \le -\frac{1}{9}$ D. $n \le -1$

83. 若二次函数 $y=-x^2+2(m-1)x+2m-m^2$ 的图象关于 y 轴对称,则此图象的顶点和图象与 x 轴的两个 交点所构成的三角形的面积为(

- B. 1 C. $\frac{3}{2}$ D. 2

84. 如图,矩形 ABCD 中, BC=2AB, $CE \perp BD$ 于 E, F 为 BC 中点,连接 AF 交 BD 于 G, 交 EC 的延长 线于 H. 下列 5 个结论: ①EF=AB; ②∠ABG=∠FEC; ③△ABG≌△FCE; ④S△ADG=S 四边形 GFCE; ⑤CH =BD. 正确的有() 个.

- A. 2
- B. 3
- C. 4
- D. 5

85. 如图, 已知在直角梯形 AOBC 中, AC//OB, CB \(\text{OB}, AC=9, BC=12, OB=18, 对角线 OC、AB 交于点 D, 点 E、F、G 分别是 CD、BD、BC 的中点, 以 O 为原点, 直线 OB 为 x 轴建立平面直角坐标系, 则 $E \times D \times F \times G$ 四个点中与点 A 在同一反比例函数图象上的是(

- A. 点 D
- B. 点 *E*
- C. 点 F
- D. 点 *G*

86. 如图,在等边三角形 ABC 中, D 为 AC 上一点, E 为 AB 上一点, BD、CE 交于 F,若四边形 ADFE与 $\triangle BFC$ 的面积相等,则 $\angle BFE$ 的度数为(

- A. 45°
- B. 50°
- C. 60°
- D. 75°

87. 如图,已知 BE 是 $\triangle ABC$ 的外接圆的直径, $CD \perp AB$ 于 D. 若 AD=3, BD=8, CD=6,则 BE 的长为 ()

- A. 12 B. $5\sqrt{5}$ C. $8\sqrt{2}$ D. $\frac{45}{4}$

·,则S的整数部分为() $\overline{1980} + \overline{1981} + \cdots + \overline{1991}$

- A. 163 B. 164
- C. 165
- D. 166

89. 如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径 AE、CF 交于点 G,半径 BE、CD交于点 H,且点 C 是弧 AB 的中点,若扇形的半径为 2,则图中阴影部分的面积等于(

- A. $\pi+4$
- B. $2\pi-2$ C. $2\pi-4$
- D. $\pi 1$

90. 如图,以线段 AB 为直径作半圆 O,E 为半圆上任意一点 (异于 A、B),过点 E 作半圆 O 的切线分别 交过 $A \times B$ 两点的切线于 $D \times C$, $AC \times BD$ 相交于点 F, 连接 $OF \times EF$. 下列结论: ①四边形 AFED 是梯形; ②OF=EF; ③DE·EC 为定值; ④AE 平分 ∠DEF.

- 一定成立的是(
 - A. 12
- B. 24 C. 134
- D. 234

 $=\frac{1}{2}DC$. 连接 EH、FG,则图中阴影部分面积为

A. 6.5

B. 7

C. 7.5

D. 8

92. 直线 l_1 与直线 l_2 相交,其夹角为 45° ,直线外有一点 P,先以 l_1 为对称轴作点 P 的对称点 P_1 ,再以 l_2 为对称轴作点 P_1 的对称点 P_2 ,然后以 l_1 为对称轴作点 P_2 的对称点 P_3 ,…,如此继续,得到点 P_1 , P_2 , P_3 ,…, P_n . 若 P_n 与 P 重合,则 P_n 的最小值是(

A. 6

B. 7

C. 8

D. 9

93. 如图,在矩形纸片 ABCD 中,AB=3,BC=5. 现将纸片折叠,使点 A 落在 BC 边上的点 P 处,得折痕 EF (点 E、F 分别在 AB、BC 边上),则 BP 长的取值范围是()

- A. 0<*BP*≤3
- B. 0<*BP*≤4
- C. 1≤*BP*≤3
- D. 1≤*BP*≤4

94. 一组互不相等的数据,它的中位数为 80,小于中位数的数的平均数为 70,大于中位数的数的平均数 为 96,设这组数据的平均数为 \bar{x} ,则(

- A. $\bar{x} = 82$
- B. $\bar{x} = 83$
- C. $80 \le \bar{x} \le 82$
- D. $82 \le \bar{x} \le 83$

95. 如图,点 A_1 , A_2 , A_3 , A_4 , …, A_n 在射线 OA 上,点 B_1 , B_2 , B_3 , …, B_{n-1} 在射线 OB 上,且 A_1B_1 // A_2B_2 // A_3B_3 // … // $A_{n-1}B_{n-1}$, A_2B_1 // A_3B_2 // A_4B_3 // … // A_nB_{n-1} , $\triangle A_1A_2B_1$, $\triangle A_2A_3B_2$, …, $\triangle A_{n-1}A_nB_{n-1}$ 为阴影三角形,若 $\triangle A_2B_1B_2$, $\triangle A_3B_2B_3$ 的面积分别为 1、4,则面积小于 2011 的阴影三角形共有(

- A. 6个
- B. 7个
- C. 11 个
- D. 12 个

96. 如图,将半径为 8 的 \odot O 沿 AB 折叠,弧 AB 恰好经过与 AB 垂直的半径 OC 的中点 D,则折痕 AB 长为(

- A. $8\sqrt{3}$
- B. $4\sqrt{15}$
- C. 12
- D. 15

- A. $\frac{1}{4}$ B. $\frac{1}{6}$ C. $\frac{1}{8}$ D. $\frac{1}{9}$

98. 为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取 18 瓶进行检测,检 测结果分成"优秀"、"合格"和"不合格"三个等级,数据处理后制成以下条形统计图和扇形统计图.那 么,在该超市购买一瓶乙品牌食用油,估计能买到"优秀"等级的概率是(

- A. $\frac{1}{2}$ B. $\frac{1}{3}$ C. $\frac{3}{5}$ D. $\frac{8}{9}$

合格 30% 甲种品牌食用油检测结果

优秀 60%

- 扇形分布图
- 图 (1) 图 (2)

99. 如图为某机械装置的截面图,相切的两圆 $\odot O_1$ 、 $\odot O_2$ 均与 $\odot O$ 的弧 AB 相切,且 $O_1O_2//l_1$ (l_1 为水平 线), $\bigcirc O_1$ 、 $\bigcirc O_2$ 的半径均为 30mm,弧 AB 的最低点到 I_1 的距离为 30mm,公切线 I_2 与 I_1 间的距离为 100mm, 则 $\odot O$ 的半径为(

- A. 70mm
- B. 80mm
- C. 85mm
- D. 100mm

100. 如图, 在等腰梯形 ABCD中, AB//DC, AB=1004, DC=1007, AD=2011, 点 P 在腰 AD 上, 则使 $\angle BPC = 90^{\circ}$ 的点 P 的个数为(

17

- A. 0
- B. 1
- C. 2
- D. 3

101. 有一张矩形纸片 ABCD, AD=4cm, 以 AD 为直径的半圆恰好与 BC 边相切, 如图 1. $E \in AB$ 上 将纸片沿DE折叠,使点A落在BC上,如图2,这时半圆还露在外面的部分(阴影部分)的面积是(

- A. $(2\pi 2\sqrt{3}) \text{ cm}^2$
- B. $(\frac{1}{2}\pi + \sqrt{3}) \text{ cm}^2$ C. $(\frac{4}{3}\pi \sqrt{3}) \text{ cm}^2$
- D. $(\frac{2}{3}\pi + \sqrt{3}) \text{ cm}^2$

102. 铁板甲形状是等腰三角形, 其顶角为 45°, 腰长为 20cm, 铁板乙的形状是直角梯形, 两底分别为 7cm、 16cm, 且有一个角为 60°, 现将这两块铁板任意翻转, 分别试图从一个直径为 14cm 的圆洞中穿过, 若不) (参考数据: $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$) 考虑铁板厚度,则结果是(

- A. 甲、乙都能穿过
- B. 甲、乙都不能穿过
- C. 甲能穿过, 乙不能穿过
- D. 甲不能穿过, 乙能穿过

103. 如图, 在 $\Box ABCD$ 中, AB=5, BC=8, $\angle ABC$ 、 $\angle BCD$ 的角平分线分别交 AD 于点 E、F, BE 与 CF

- 交于点 G,则 $\frac{S_{\triangle EFG}}{S_{\triangle BCG}}$ = (

- A. $\frac{5}{8}$ B. $\frac{9}{64}$ C. $\frac{1}{8}$ D. $\frac{1}{16}$

104. 矩形纸片 ABCD 中,AB=10cm,BC=8cm,将其按图 (1)、图 (2) 的方法剪开拼成一个扇形,要 使扇形面积尽可能大,需按图(3)、图(4)的方法将宽2等分、3等分,…,n等分,再把每个小矩形按 图 (1)、图 (2) 的方法剪开拼成一个大扇形. 当 n 越来越大时,最后拼成的大扇形的圆心角(

- A. 小于90°
- B. 等于90°
- C. 大于90°
- D. 无法确定

105. 如图,长方体的底面边长分别为 1 cm 和 3 cm,高为 6 cm. 如果从点 A 开始经过 4 个侧面缠绕 n 圈到 达点 B, 那么所用细线最短需要() cm.

- A. 10n
- B. $2\sqrt{9+16n^2}$
- C. $2\sqrt{9n^2+16}$ D. $2\sqrt{10n^2+16}$

106. 如图, Rt $\triangle ABC$ 中, $AC \perp BC$, AD 平分 $\angle BAC$ 交 BC 于点 D, $DE \perp AD$ 交 AB 于点 E, M 为 AE 的中 点, $BF \perp BC$ 交 CM 的延长线于点 F,BD=4,CD=3.下列结论: ① $\angle AED=\angle ADC$; ② $\frac{DE}{DA}=\frac{1}{2}$; ③ $AC \cdot BE$

- =12; ④3BF=4AC. 其中正确结论的个数有(
 - A. 1个
- B. 2 个 C. 3 个
- D. 4个

107. 在正方形 ABCD 中,将 $\angle ADC$ 绕点 D 顺时针旋转一定角度,使角的一边与 BC 边交于点 F,且 CF $=\frac{1}{2}BF$,另一边与 BA 的延长线交于点 E,连接 EF,与 BD 交于点 M, $\angle BEF$ 的角平分线交 BD 于点 G,

过点 G 作 $GH \perp AB$ 于 H. 下列结论: ① $\frac{S_{\triangle BME}}{S_{\triangle BFD}} = \frac{7}{9}$; ②DG = DF; ③ $\angle BME = 90^{\circ}$; ④ $HG + \frac{1}{2}EF = AD$. 正确的有() 个.

- A. 4
- B. 3 C. 2
- D. 1

108. 如图,在 Rt $\triangle ABC$ 中, $\angle C=90^{\circ}$,AC=6,BC=8.在 $\triangle ABC$ 内从左往右摆放直径为 1 的圆形小纸 片,首尾两个圆形小纸片分别与AC、BC相切,且所有圆形小纸片都与AB相切,圆形小纸片之间无重叠, 那么最多可以摆放这样的圆形小纸片()个.

- A. 7
- B. 8
- C. 9
- D. 10

109. 如图, $E \setminus F$ 分别是矩形纸片 ABCD 的边 $BC \setminus AD$ 上的点 (不与顶点重合), 且 EF 平分矩形纸片 ABCD的面积. 将纸片沿直线 EF 剪开, 再将纸片 ABEF 沿 AB 对称翻折, 然后平移拼接在梯形 ECDF 的下方, 使 EA 与 EC 重合,拼接后,下方的梯形记作 EE'B'C,连接 BE'.若直线 EE'恰好经过矩形的顶点 A,且 BE'

- $\perp EF$,则 $\frac{AB}{BC}$ 的值为 ().

- A. $\frac{1}{2}$ B. $\frac{3}{8}$ C. $\frac{\sqrt{2}}{3}$ D. $\frac{\sqrt{5}}{5}$

110. 正五边形 ABCDE 内有一个正三角形 PQR, QR 与 AB 重合,将 $\triangle PQR$ 在正五边形 ABCDE 内沿它的 边 $AB \times BC \times CD \times DE \times EA \times AB \times \cdots$ 连续翻转 n 次,使点 $P \times Q \times R$ 同时回到原来的起始位置,那么 n 的最 小值为(

A. 5

B. 9

C. 10

D. 15

111. 如图,二次函数 $y=-x^2+1$ 的图象与 x 轴的正半轴交于点 A,将线段 OA 分成 n 等份,设分点分别为 P_1 , P_2 , … P_{n-1} , 过每个分点作 x 轴的垂线,分别与函数图象交于点 Q_1 , Q_2 , …, Q_{n-1} , 记 $\triangle OP_1Q_1$, \triangle $P_1P_2Q_2$, …, $\triangle P_{n-2}P_{n-1}Q_{n-1}$ 的面积分别为 S_1 , S_2 , …, S_{n-1} , 则当 n 越来越大时, $S_1+S_2+S_3+\dots+S_{n-1}$ 的 值越来越接近(

A. $\frac{1}{4}$ B. $\frac{1}{3}$ C. $\frac{1}{2}$ D. $\frac{2}{3}$

112. 如图,点 $E \setminus F$ 分别是正方形 ABCD 的边 $AD \setminus CD$ 上的点,连接 $BE \setminus BF$ 分别交 $AC \in M \setminus N$. 若 AB=10, *EF*=9, ∠*EBF*=45°, 则四边形 *EFNM* 的面积为(

A. 22

B. 22.5

C. 23

D. 23.5

113. 如图,点 C 是半径为 1 的半圆弧 AB 的一个三等分点,分别以弦 AC、BC 为直径向外侧作两个半圆, 点 $D \setminus E$ 也分别是两个半圆弧的三等分点,再分别以弦 $AD \setminus DC \setminus CE \setminus BE$ 为直径向外侧作四个半圆,则 图中阴影部分(四个新月牙形)的面积和是(

C. $\frac{3\sqrt{3}}{4}$

114. 如图,在梯形 ABCD 中, AD//BC, $AD\bot CD$, BC=CD=2AD, E 是 CD 上一点,且 $\angle ABE=45^{\circ}$,则 tan ZAEB 的值等于(

A. 3

B. 2 C. $\frac{5}{2}$ D. $\frac{3}{2}$

115. 如图, P 为线段 AB 上一点, AB=4, 以 AP 为边向上作正方形 APMN, 以 BP 为底向下作等腰 $\triangle BPQ$, 连接 MQ,则 $\triangle MPQ$ 的最大面积为(

- A. 0.5
- B. 0.75
- C. 1
- D. 1.5

116. 如图,以 Rt \triangle ABC 的斜边 BC 为一边在 \triangle ABC 的同侧作正方形 BCDE,设正方形的中心为 O,连结 AO, 如果 AB=4, $AO=2\sqrt{2}$, 那么 AC 的长等于(

- A. 12
- B. 8
- C. $5\sqrt{3}$
- D. $6\sqrt{2}$

117. 如图,在 Rt $\triangle ABC$ 中, $\angle ABC$ =90°,AB=3,BC=4,过 B 作 $BA_1 \bot AC$,过 A_1 作 $A_1B_1 \bot BC$,得阴 影 $Rt\triangle A_1BB_1$; 再过 B_1 作 $B_1A_2\bot AC$, 过 A_2 作 $A_2B_2\bot BC$, 得阴影 $Rt\triangle A_2B_1B_2$; ……如此下去,则得到的所 有阴影三角形的面积之和为().

- A. $\frac{48}{25}$ B. $\frac{96}{25}$ C. $\frac{80}{41}$ D. $\frac{96}{41}$

118. 如图, $\triangle ABC$ 内接于 $\bigcirc O$, $\angle BAC = 60^{\circ}$,AD、BE 是高,且交于 H,延长 AD 交 $\bigcirc O$ 于 F,直线 OH分别交 AB、AC 于 M、N,下列结论:

 $\textcircled{1}DH=DF; \ \textcircled{2}AO=AH; \ \textcircled{3}AM=AN; \ \textcircled{4}MO=OH=HN.$

其中正确的是(

- A. (1)(2)(3)
- B. (1)(2)(4)
- C. 134
- D. 234

119. 如图,点 A 是函数 $y=\frac{1}{x}$ 图象上的一点,点 B、C 的坐标分别为 B $(-\sqrt{2}, -\sqrt{2})$,C $(\sqrt{2}, \sqrt{2})$. 试 利用性质: " $y=\frac{1}{x}$ 图象上的任意一点 P 都满足 $|PA-PB|=2\sqrt{2}$ " 求解下面问题: 作 $\angle BAC$ 的内角平分线 AE, 过 B 作 AE 的垂线交 AE 于 F. 当点 A 在函数 $y=\frac{1}{x}$ 图象上运动时,点 F 总在一函数图象上运动,该

- A. 直线
- B. 圆
- C. 抛物线
- D. 双曲线

120. 如图,直线 y=3x+6 交 x 轴、y 轴于 B、A 两点,点 C 在 x 轴上,点 D 的坐标为(6,6),四边形 ABCD 是等腰梯形.若点 P 是坐标平面内一点,且使得 $\triangle PAB$ 、 $\triangle PBC$ 、 $\triangle PCD$ 、 $\triangle PAD$ 都是等腰三角形,则满足条件的点 P 有(

- A. 2个
- B. 3个
- C. 4个
- D. 5个

121. 在直角坐标系中,横纵坐标都是整数的点称为整点,当直线 y=x-3 与 y=kx+k 的交点为整点时,满足条件的整数 k 有().

- A. 2个
- B. 4个
- C. 6个
- D. 8个

122. 如图,一种电子游戏,电子屏幕上有一正六边形 ABCDEF,点 P 沿直线 AB 从右向左移动,当出现点 P 与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线 AB 上会发出警报的点 P 有().

- A. 6个
- B. 5个
- C. 4个
- D. 3个

123. 一张等腰三角形纸片,底边长为 15cm,底边上的高为 22.5cm. 现沿底边依次从下往上裁剪宽度均为 3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是().

- A. 第4张
- B. 第5张
- C. 第6张
- D. 第7张

124. 已知二次函数 $y=a(a+1)x^2-(2a+1)x+1$ (a>0) 的图像顶点为 C,与 x 轴的交点为 A、B,则 tan $\angle BAC$ 的值为(

- A. $\frac{1}{2}$ B. $\frac{1}{3}$ C. $\frac{\sqrt{2}}{2}$ D. $\frac{\sqrt{3}}{2}$

125. 已知二次函数 $y=ax^2+bx+c$ 的图象与 x 轴交于 A、B 两点,与 y 轴交于 C 点,若 $\triangle ABC$ 是直角三角 形,则 ac 的值为().

- A. 1
- B. -1
- C. 2
- D. -2

126. 如图,梯形 ABCD 中,AD//BC,对角线 AC 和 BD 交于点 O,延长 BA 和 CD 交于点 P,已知 $\triangle PAD$ 和 $\triangle ODC$ 的面积分别为 20 和 6,则 $\triangle PBC$ 的面积为().

- A. 48
- B. 45
- C. 42
- D. 40

127. 如图,一个半径为r的圆形纸片在边长为a($a \ge 2\sqrt{3}r$)的等边三角形内任意运动,则在该等边三角 形内,这个圆形纸片"不能接触到的部分"的面积是().

- A. $\frac{\pi}{3}r^2$ B. $\frac{(3\sqrt{3}-\pi)}{3}r^2$
- C. $(3\sqrt{3}-\pi)r^2$ D. πr^2

128. 如图, 在矩形 ABCD 中, AD < 2AB, E 为 AD 的中点, $EF \perp EC$ 交 AB 于 F, 连接 FC. 若 $\triangle AEF \hookrightarrow \triangle BCF$,

则 $\frac{AB}{BC} = ($).

- A. $\frac{1}{2}$ B. $\frac{\sqrt{2}}{2}$ C. $\frac{\sqrt{3}}{2}$ D. $\frac{1}{3}$

129. 如图,矩形 ABCD 中, $AB=4\sqrt{3}$,BC=6,若 P 是矩形 ABCD 边上一动点,且使得 $\angle APB=60^{\circ}$,则 这样的点P有(

- A. 1个

- B. 2 个 C. 3 个 D. 4 个

130. 如图, $\overline{\text{已知 }A\ (4,\ 0)}$,点 $\overline{A_1}$ 、 $\overline{A_2}$ 、 \cdots 、 $\overline{A_{n-1}}$ 将线段 \overline{OA} 分成 \overline{n} 等份,点 $\overline{B_1}$ 、 $\overline{B_2}$ 、 $\overline{\cdots}$ 、 $\overline{B_{n-1}}$ 、 \overline{B} 在直 线 $y = \frac{1}{2}x$ 上,且 $A_1B_1//A_2B_2//\cdots//A_{n-1}B_{n-1}//AB//y$ 轴.记 $\triangle OA_1B_1$ 、 $\triangle A_1A_2B_2$ 、 \cdots 、 $\triangle A_{n-2}A_{n-1}B_{n-1}$ 、 $\triangle A_n$ $_{-1}AB$ 的面积分别为 S_1 、 S_2 、 $\cdots S_{n-1}$ 、 S_n . 当 n 越来越大时,猜想 $S_1+S_2+\cdots+S_n$ 最近的常数是(

B. 2 C. 3

D. 4

131. 已知二次函数 $y=ax^2+bx+c$ (a>0) 经过点 M (-1, 2) 和点 N (1, -2),交 x 轴于 A、B 两点 (A在 B 的左侧), 交 y 轴于点 C. 以下结论:

- 1b = -2;
- ②该二次函数图象与 y 轴交于负半轴;
- ③存在这样一个实数 a,使得 M、A、C 三点在同一条直线上;
- ④若 a=1,则 $OA \cdot OB = OC^2$.

其中正确的有(

A. 1234

B. 1)23 C. 1)24 D. 234

132. 如图所示, $\triangle ABC$ 的三个顶点的坐标分别为A(-1,3)、B(-2,-2)、C(4,-2),则 $\triangle ABC$ 外 接圆半径的长为().

A. $3\sqrt{2}$

B. $2\sqrt{3}$

C. $\sqrt{10}$ D. $\sqrt{13}$

133. 如图,将一张半径为2的半圆形纸片沿它的一条弦折叠,使得弧与直径相切,如果切点分直径为3: 1两部分,则折痕长为(

A. $\sqrt{10}$

B. $\sqrt{11}$

C. $2\sqrt{3}$ D. $\sqrt{13}$

134. 己知 $\triangle ABC$ 中, $\angle A=60^{\circ}$,BE、CF 分别是 $\triangle ABC$ 的边 AC、AB 上的高,连接 EF,若 $AB \cdot AC=2\sqrt{3}$, 则 $\triangle AEF$ 的面积为().

A. $\frac{1}{2}$ B. $\frac{\sqrt{3}}{2}$ C. $\frac{3}{8}$ D. $\frac{\sqrt{3}}{4}$

135. 已知锐角三角形 ABC 的三边长分别为 a、b、c,且 a>b>c,正方形 DEFG 是 $\triangle ABC$ 的内接正方形, 则正方形 DEFG 的两个顶点在哪条边上可使正方形的面积最大(

- A. 最小边 c 上
- B. 中间边 *b* 上
- C. 最大边 a 上
- D. 哪条边上都一样

136. 如图, P 是半圆 O 的直径 BC 延长线上一点, PA 切半圆于点 A, $AH \perp BC$ 于 H. 若 PA=1, PB+PC $=a (a>2), \ \ MPH=().$

- A. $\frac{a}{2}$ B. $\frac{a}{3}$ C. $\frac{1}{a}$ D. $\frac{2}{a}$

137. 如图, 把等边三角形 ABC 沿着高 AD 分成两个全等的直角三角形 ABD、ACD, 将 $\triangle ACD$ 绕点 D 逆时 针旋转 15°得到 $\triangle A'C'D$, A'D 交 AB 于 E, 则 $\frac{AD}{DE}$ = ().

- A. $\frac{3}{2}$ B. $\sqrt{3}$ C. $\sqrt{2}$ D. $\frac{4}{3}$

138. 如图,直线 y=-x+1 与 x 轴交于点 A,与 y 轴交于点 B,P 是函数 $y=\frac{1}{2x}$ (x>0) 图象上一点,PM $\bot x$ 轴于 M, 交 AB 于 E, $PN \bot y$ 轴于 N, 交 AB 于 F, 则 $AF \cdot BE$ 的值为 (

- A. 2 B. $\sqrt{2}$ C. $\frac{1}{2}$
- D. 1

139. 如图,已知四边形 OABC 是菱形, $CD \perp x$ 轴,垂足为 D,函数 $y = \frac{4}{x}$ 的图象经过点 C,且与 AB 交于 点 E. 若 OD=2,则 $\triangle OCE$ 的面积为().

- A. 2 B. $2\sqrt{2}$ C. 4 D. $4\sqrt{2}$

140. 如图,分别过反比例函数 $y=\frac{3}{x}$ 图象上的点 P_1 (1, y_1), P_2 (2, y_2),…, P_n (n, y_n) 作 x 轴的垂线,垂足分别为 A_1 , A_2 ,…, A_n ,连接 A_1P_2 , A_2P_3 ,…, A_nP_{n+1} ,…,以 A_1P_1 , A_1P_2 为一组邻边作平行四边形 $A_1P_1B_1P_2$,其面积为 S_1 ,以 A_2P_2 , A_2P_3 为一组邻边作平行四边形 $A_2P_2B_2P_3$,其面积为 S_2 ,…,以 A_nP_n , A_nP_{n+1} 为一组邻边作平行四边形 $A_nP_nB_nP_{n+1}$,其面积为 S_n ,若 $S_1+S_2+\dots+S_n>8$,则 n 的最小值为(

A. 6

B 7

C. 8

D. 9

141. 已知: 抛物线 $y=a(x-2)^2+b$ ($a\neq 0$, $b\neq 0$) 的顶点为 A, 与 x 轴的交点为 B、C (B 在 C 的左侧),D 为抛物线对称轴上一点,若以 A、B、C、D 为顶点的四边形是正方形,则 ab 的值为 ().

A. -1

B. 1

C. -2

D. -2

142. 如图,点 A 是 5×5 网格图形中的一个格点(小正方形的顶点),图中每个小正方形的边长为 1,以 A 为其中的一个顶点,面积等于 $\frac{5}{2}$ 的格点等腰直角三角形(三角形的三个顶点都是格点)的个数是()

A. 10 个

B. 12 个

C. 14 个

D. 16 个

143. 已知 $\triangle ABC$ 中, $\angle A$ 为锐角,AB=AC,CD 为 AB 边上的高,I 为 $\triangle ACD$ 的内切圆圆心,则 $\angle AIB$ 的度数是 ().

A. 120°

B. 125°

C. 135°

D. 150°

144. 如图,AB 为半圆所在 $\odot O$ 的直径,弦 CD 为定长且小于 $\odot O$ 的半径(点 C 与点 A 不重合), $CF \bot CD$ 交 AB 于 F, $DE \bot CD$ 交 AB 于 E,G 为半圆中点,当点 C 在 \widehat{AG} 上运动时,设 \widehat{AC} 的长为 x,CF+DE=y,则下列图象中,能表示 y 与 x 的函数关系的图象大致是(

145. 如图,已知 $\odot O_1$ 与 $\odot O_2$ 都过点 A, AO_1 是 $\odot O_2$ 的切线, $\odot O_1$ 交 O_1O_2 于点 B,连结 AB 并延长交 $\odot O_2$ 于点 C, 连结 O_2C . 如果 $AB \cdot BC = 16$, $O_2C = 5$, 则 $\tan \angle AO_1O_2$ 的值为(

- A. $\frac{15}{8}$ B. $\frac{5}{3}$ C. $\frac{5}{4}$ D. $\frac{15}{13}$

146. 如图,AD、BE、CF 是 $\triangle ABC$ 的三条中线,如果 $\triangle ABC$ 的面积为 S,那么以 AD、BE、CF 为三边长 的三角形的面积为(

- A. $\frac{1}{2}S$ B. $\frac{2}{3}S$ C. $\frac{3}{4}S$ D. S

147. 如图, $E \setminus F \setminus G$ 分别是正方形 ABCD 的三边中点, 连接 ED 交 AF + M, GC 交 DE + N, 下列结论: ① $GM \perp CM$; ②CD = CM; ③四边形 MFCG 为等腰梯形; ④ $\angle CMD = \angle AGM$. 其中正确的有().

- A. 123
- B. 124
- C. 134
- D. 1234

148. 正方形 ABCD、正方形 BEFG 和正方形 DMNK 的位置如图所示,点 A 在线段 NF 上, AE=8,则 \triangle NFP 的面积为()

- A. 30
- B. 32
- C. 34
- D. 36

149. 在锐角 \triangle ABC中, $\angle A$ =60°,BD、CE 为高,F 是 BC 的中点,连接 DE、DF、EF. 则以下结论中 一定正确的个数有()

- ①*EF=DF*; ②*AD*: *AB=AE*: *AC*; ③△*DEF* 是等边三角形;
- ④BE+CD=BC; ⑤当 $\angle ABC=45$ °时, $BE=\sqrt{2}DE$
- A. 2个 B. 3个 C. 4个 D. 5个

150. 己知梯形 ABCD 中,AD//BC,AD=2,BC=5, $\triangle ABE$ 和 $\triangle CDF$ 是等腰直角三角形, $\angle BAE=\angle CDF$ =90°,则四边形 AEDF 的面积为().

- B. 3
- C. 4
- D. 5

151. 如图, 四边形 ABCD 内接于⊙O, 对角线 AC、BD 相交于点 E, 且 BC=CD=4, AE=6, 线段 BE 和 DE 的长都为正整数,则 BD 的长等于().

- A. 10
- B. 9
- C. 8

152. 已知 $\triangle ABC$ 中, $\angle ABC = 90^{\circ}$, $\odot O$ 是 $\triangle ABC$ 的内切圆,D、E、F 为切点,直线 EF、CB 相交于 G点,连接 AO、DE、DF. 下列结论:

① $\angle DEF = 45^{\circ}$; ② $\angle DFE = 45^{\circ} + \angle OAE$; ③AE = BG; ④ $DG^{2} = OA \cdot EG$. 其中正确结论的个数为(

- A. 1 个 B. 2 个
- C. 3个 D. 4个

153. 正方形 ABCD、正方形 BEFG 和正方形 RKPF 的位置如图所示,点 G 在线段 DK 上,且 CG:GB=3: 7,正方形 RKPF 的边长为 3,则 $\triangle DEK$ 的面积为 ().

- A. 50
- B. 49
- C. 48
- D. 45

154. 如图, A 为双曲线 $y=\frac{4}{r}$ (x>0) 上一点, B 为 x 轴正半轴上一点, 线段 AB 的中点 C 恰好在双曲线

- 上,则 $\triangle OBC$ 的面积为(
 - A. 1
- B. 2
- C. 3
- D. 4

155. 相传古印度一座梵塔圣殿中,铸有一片巨大的黄铜板,之上树立了三米高的宝石柱,其中一根宝石 柱上插有中心有孔的 64 枚大小两两相异的一寸厚的金盘,小盘压着较大的盘子,如图,把这些金盘全部 一个一个地从1柱移到3柱上去,移动过程不许以大盘压小盘,不得把盘子放到柱子之外.移动之日,喜 马拉雅山将变成一座金山.

设 h(n) 是把 n 个盘子从 1 柱移到 3 柱过程中移动盘子之最少次数.

n=1 时, h(1)=1;

n=2 时, 小盘 \longrightarrow 2 柱, 大盘 \longrightarrow 3 柱, 小盘从 2 柱 \longrightarrow 3 柱, 完成. 即 h(2)=3;

n=3 时,小盘 $\longrightarrow 3$ 柱,中盘 $\longrightarrow 2$ 柱,小盘从 3 柱 $\longrightarrow 2$ 柱,即用 h(2) 种方法把中、小两盘移到 2柱,大盘移到3柱;再用 h(2)种方法把中、小两盘从2柱移到3柱,完成.

我们没有时间去移 64 个盘子,但你可由以上移动过程的规律,计算 n=6 时,h(6)=(

- B. 31 C. 63
- D. 127

156. 已知二次函数 $y=ax^2+bx+c$ $(a\neq 0)$ 的图象如图所示,下列结论中: ①abc>0; ②2a+b<0; ③a+b<0bm < m(am+b) $(m \ne 1)$; ④ $(a+c)^2 < b^2$; ⑤a > 1. 其中正确的是 ()

- A. ①⑤
- B. 125
- C. 25
- D. 134

157. 如图, 在 \Box ABCD中, 点 E 为 AB 的中点, 点 F 为 AD 上一点, EF 交 AC 于 G, AF=2cm, DF=4cm, AG=3cm,则AC的长为().

- A. 10cm
- B. 12cm
- C. 15cm
- D. 16cm

158. 如图,在梯形 ABCD中,AB // CD,AB=3CD,对角线 AC、BD 交于点 O,中位线 EF 与 AC、BD 分 别交于 M、N 两点,则图中阴影。部分。的面积是梯形 ABCD 面积的 ().

- A. $\frac{1}{4}$ B. $\frac{1}{5}$ C. $\frac{2}{7}$ D. $\frac{2}{9}$

- A. 365
- B. 245
- C. 210
- D. 175
- 160. 如图,在 $\triangle ABC$ 中,D、E分别是 BC、AB上的点,且 $\angle ADE = \angle DAC = \angle B$,若 $\triangle ABC$ 、 $\triangle \triangle ADC$ 、

BDE 的周长依次为 m、 m_1 、 m_2 ,则 $\frac{m_1+m_2}{m}$ 的最大值为 ().

- A. 1 B. $\frac{3}{2}$ C. $\frac{4}{3}$ D. $\frac{5}{4}$

161. 从小明家到学校,是一段长度为 a 的上坡路接着一段长度为 b 的下坡路(两段路的长度不等但坡度 相同). 已知小明骑自行车走上坡路时的速度比走平路的速度慢 20%, 走下坡路时的速度比走平路时的速 度快 20%,又知小明上学途中用了 10 分钟,放学途中用了 12 分钟,则 $\frac{a}{h}$ 的值为(

- A. 1 B. $\frac{1}{4}$ C. $\frac{3}{8}$ D. $\frac{1}{2}$

162. 如图,正方形 ABCD 和 CEFG 的边长分别为 a、b (b>2a),将正方形 ABCD 绕点 C 旋转,在旋转的 过程中, $\triangle AEG$ 的面积 S 的取值范围是 ().

A. $a^2 \leq S \leq b^2$

- B. $\frac{1}{2}a^2 \le S \le \frac{1}{2}b^2$
- C. $\frac{1}{2}b^2 ab \le S \le \frac{1}{2}b^2 + ab$ D. $b^2 ab \le S \le b^2 + ab$

163. 如图, 在 $\triangle ABC$ 中, AB=AC>BC, 点 P为 $\triangle ABC$ 所在平面内一点, 且点 P与 $\triangle ABC$ 的任意两个顶 点构成的三角形均是等腰三角形,则满足条件的点P有().

- A. 3 个 B. 4 个 C. 6 个

164. 点 P 为等边三角形 ABC 所在平面内一点,且点 P 与 $\triangle ABC$ 的任意两个项点构成的三角形均是等腰三 角形,则满足条件的点P有(

- A. 6个 B. 8个 C. 10个 D. 12个

165. 点 P 为正方形 ABCD 所在平面内一点,且点 P 与正方形 ABCD 的任意两个项点构成的三角形均是等 腰三角形,则满足条件的点P有(

- A. 6 个 B. 8 个 C. 9 个 D. 12 个

166. 已知 $\triangle ABC$ 的面积为 1, $E \neq AC$ 的中点, $O \neq BE$ 的中点, 连接 AO 并延长交 $BC \neq D$, 连接 CO 并 延长交 AB 于 F,则四边形 BDOF 的面积是(

- A. $\frac{1}{4}$ B. $\frac{1}{5}$ C. $\frac{1}{6}$ D. $\frac{1}{8}$

30

167. 在矩形 ABCD 中,AB=1, $BC=\sqrt{3}$,对角线 AC、BD 交于点 O, $CE \perp BD$ 于 E,AF 平分 $\angle BAD$ 交 BC 于 F,延长 AF、EC 交于点 G. 下列结论: ①AC=CG; ②BO=BF; ③BE=3DE; ④ $\frac{AF}{FG}=\frac{\sqrt{3}}{3}$. 正确的是 (

- A. 1123
- B. 134
- C. 234
- D. 1234

168. 已知函数 $y = \begin{cases} (x-1)^2 - 1 & (x < 3) \\ (x-5)^2 - 1 & (x \ge 3) \end{cases}$, 若使 y = k 成立的 x 值恰好有三个,则 k 的值为 ().

- A. 0
- B. 1
- C. 2
- D. 3

169. 如图,在菱形 ABCD 中,AB=BD,点 E、F 分别在 AB、AD 上,且 AE=DF,连接 BF 与 DE 相交于点 G,连接 CG 与 BD 相交于点 H. 下列结论:

① $\triangle AED \cong \triangle DFB$; ②S 四边形 $BCDG = \frac{\sqrt{3}}{4}CG^2$; ③若 AF = 2DF,则 BG = 6GF.

其中正确的结论(

- A. 只有①②
- B. 只有①③
- C. 只有②③
- D. 123

170. 如图,直线 $y = -\frac{1}{2}x + 3$ 与双曲线 $y = \frac{k}{x}$ (x > 0) 相交于 $A \setminus B$ 点,与 x 轴交于点 C,若点 B 是 AC 的中点,则 k = ().

- A. 1
- B. 2
- C. 3
- D. 4

171. 如图,在直角梯形 ABCD 中, AD//BC, $\angle ABC = 90^{\circ}$, $BD \perp DC$, BD = DC, CE 平分 $\angle BCD$, 交 AB 于点 E, 交 BD 于点 F, EG//DC 交 BD 于点 G. 下列结论:

 $\text{(1)} \tan \angle FEG = \sqrt{2} - 1; \text{ (2)} CF = (\sqrt{2} + 1) EF; \text{ (3)} \frac{S_{\triangle EFG}}{S_{\triangle BEF}} = \frac{EF}{EC}.$

其中正确的是()

- A. 1123
- B. 只有②③
- C. 只有②
- D. 只有③

172. 已知梯形 ABCD 的四个顶点的坐标分别为 A(-1,0), B(5,0), C(2,2), D(0,2), 直线 y=kx+3 将梯形分成面积相等的两部分,则 k 的值为(

- A. $-\frac{3}{2}$ B. $-\frac{4}{3}$ C. $-\frac{6}{5}$ D. $-\frac{9}{7}$

173. 如图,在 $\triangle ABC$ 中, $\angle BAC$ =80°,AB=AC,点 P 是 $\triangle ABC$ 内一点,且 $\angle PBC$ =10°, $\angle PCB$ =30°, 则 $\angle PAB$ 的度数为().

- A. 50°
- B. 60°
- C. 65°
- D. 70°

174. 如图,在 $\triangle ABC$ 中, $\angle BAC$ =80°,AB=AC,点 P 是 $\triangle ABC$ 内一点,且 $\angle PBC$ =10°, $\angle PCB$ =20°, 则 $\angle PAB$ 的度数为().

- A. 50°
- B. 60°
- C. 65°
- D. 70°

175. 若关于 x 的二次函数 $y=x^2-2mx+1$ 的图象与端点在 (-1,1) 和 (3,4) 的线段只有一个交点,则 *m* 的值可能是 ().

- A. $\frac{5}{2}$ B. $-\frac{1}{3}$ C. $\frac{1}{2}$ D. $\frac{1}{3}$

176. 如图,点A、B、P在 $\odot O$ 上,且 $\angle APB=50^{\circ}$.若点M是 $\odot O$ 上的动点,要使 $\triangle ABM$ 为等腰三角形, 则所有符合条件的点 *M* 有(

- A. 1个
- B. 2个
- C. 3 个
- D. 4个

177. 如图, $E \setminus F$ 分别是 $\square ABCD$ 的边 $AB \setminus CD$ 上的点, $AF \cup DE$ 相交于点 P, $BF \cup CE$ 相交于点 Q, 若 $\triangle APE$ 、 $\triangle DPF$ 、 $\triangle BQE$ 、 $\triangle CQF$ 的面积分别为 S_1 、 S_2 、 S_3 、 S_4 ,则 $\square ABCD$ 的面积为(

- A. $\sqrt{2}(S_1+S_2+S_3+S_4)$
- B. $2(S_1+S_2+S_3+S_4)$
- C. $(\sqrt{S_1} + \sqrt{S_2})^2 + (\sqrt{S_3} + \sqrt{S_4})^2$ D. $(\sqrt{S_1} + \sqrt{S_2} + \sqrt{S_3} + \sqrt{S_4})^2$

178. 如图,过正方形 ABCD 的顶点 A 作对角线 BD 的平行线,在这条线上取一点 E,使 BE=BD,连接 *DE*,则∠*AED* 等于 ().

- A. 100°
- B. 105°
- C. 110°
- D. 115°

179. 如图,正方形 DEFG 内接于 $\triangle ABC$,D、E 在边 BC 上,F、G 分别在边 AC、AB 上.若 $S_{\triangle CFE} = S_{\triangle AGF}$ =1, $S_{\triangle BDG}=3$, 则 $S_{\triangle ABC}=$ (

- A. 6 B. 7
- D. 9

180. 已知 $\triangle ABC$ 中, $\angle C=30^\circ$,BC=6,D是BC的中点,且 $\angle ADB=45^\circ$,则AB=(

- A. $2\sqrt{6}$
- B. $2\sqrt{3}$
- C. $3\sqrt{2}$
- D. 4

181. 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为(

- A. $\sqrt{2}$ B. $\frac{\sqrt{5}}{2}$
- C. $\frac{5\sqrt{13}}{12}$ D. $\frac{5\sqrt{17}}{16}$

182. 在Rt $\triangle ABC$ 中, $\angle ABC$ =90°,AB=6,以AB为直径画半圆,若阴影部分的面积 S_1 - S_2 = $\frac{\pi}{2}$,则BC

- = ().
 - A. $\frac{4\pi}{3}$ B. π
 - C. $\frac{2\pi}{3}$ D. $\frac{3\pi}{2}$

183. 如图,已知 $Rt\triangle ABC$ 的周长为 $2+\sqrt{5}$,斜边上的中线 CD=1,则 $\triangle ABC$ 的面积为(

- A. $\frac{1}{3}$ B. $\frac{1}{4}$
- C. $\frac{1}{2}$ D. 1

184. 如图,在 $\triangle ABC$ 中,AB=5,AC=13,BC 边上的中线 AD=6,则 BC=(

- A. 14
- B. 13
- C. $2\sqrt{61}$
- D. $6\sqrt{5}$

185. 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2, 4, 6, 8, …, 顶点依次用 A_1 , A_2 , A_3 , A_4 , …表示,则顶点 A_{55} 的坐标是(

- A. (13, 13)
- B. (-13, -13)
- C. (14, 14)
- D. (-14, -14)

186. 如图,已知 A_1 (1, 0), A_2 (1, -1), A_3 (-1, -1), A_4 (-1, 1), A_5 (2, 1),…,则点 A_{2011} 的 坐标是().

- A. (502, 502)
- B. (-502, -502)
- C. (503, 503)
- D. (-503, -503)

187. 已知点 A 在反比例函数 $y=\frac{1}{2x}$ 图象上,点 B 在一次函数 y=x+3 图象上,且 A、B 两点关于 y 轴对 称,若点 A 的坐标为 (a, b),则二次函数 $y=-abx^2+(a+b)x$ (

- A. 有最小值,且最小值是 $\frac{9}{2}$ B. 有最大值,且最大值是 $-\frac{9}{2}$
- C. 有最大值,且最大值是 $\frac{9}{2}$ D. 有最小值,且最小值是 $-\frac{9}{2}$

188. 二次函数 $y=ax^2+bx+c$ 的图象如图所示,OA=OC,则下列关系式中正确的是(

- A. ac+1=b
- B. ab+1=c
- C. bc+1=a
- D. ab+c=0

189. 已知半圆 O 的直径 AB=4,弦 CD=3,连接 AD、BC 交于点 E,则 $tan \angle BED$ 的值为(

190. 已知二次函数 $y=x^2-x+\frac{1}{8}$, 当自变量 x 取 m 时对应的函数值小于 0, 当自变量 x 分别取 m-1、m+11 时对应的函数值为 y_1 、 y_2 ,则 y_1 、 y_2 必满足(

- A. $y_1>0$, $y_2>0$ B. $y_1<0$, $y_2>0$ C. $y_1<0$, $y_2<0$ D. $y_1>0$, $y_2<0$

191. 如图,梯形 ABCD 中,AD//BC,点 E 在 BC 上,AE=BE,点 F 是 CD 的中点,且 $AF \perp AB$. 若 AD=2.7, AF=4, AB=6, 则 CE 的长为(

- A. $2\sqrt{2}$
- B. $2\sqrt{3}-1$
- C. 2.5
- D. 2.3

192. 如图, 凸四边形 ABCD 的两条对角线 $AC \setminus BD$ 将其分成四个部分, 每个部分的面积分别为 $S_1 \setminus S_2 \setminus$ S_3 、 S_4 . 已知 $S_1 > 1$, $S_2 > 1$,则 $S_3 + S_4$ 的值(

- A. 等于2
- B. 大于 2
- C. 小于 2
- D. 不确定

193. 如图, 点 P 为线段 AB 的黄金分割点 (PB > PA), 四边形 AMNB、四边形 PBFE 都为正方形, 且面积 分别为 S_1 、 S_2 . 四边形 AMHP、四边形 APEQ 都为矩形,且面积分别为 S_3 、 S_4 . 下列结论正确的是(

- A. $S_2 = \frac{\sqrt{5}-1}{2}S_1$
- C. $S_3 = \frac{\sqrt{5} 1}{2} S_4$ D. $S_4 = \frac{\sqrt{5} 1}{2} S_1$

194. 如图,在四边形 ABCD 中, AD//EF//BC, ED//BF,四个三角形的面积分别为 S_1 , S_2 , S_3 , S_4 , 若 $S_2=1$, $S_4=4$, 则 S_1+S_3 等于(

- A. 2
- B. 2.5
- C. 3
- D. 3.5

195. 如图,已知P是线段AB上的任意一点(不含端点A、B),分别以AP、BP为斜边在AB的同侧作等 腰直角 $\triangle APC$ 和 $\triangle BPD$, 连接 AD 交 PC 于点 E, 连接 BC 交 PD 于点 F. 给出以下三个结论:

①EF//AB; ② $\frac{1}{EF} = \frac{1}{AP} + \frac{1}{BP}$; ③ $EF \le \frac{1}{4}AB$. 其中正确结论的个数是(

- A. 0
- B. 1 C. 2
- D. 3

196. 在平面直角坐标系中,正方形 ABCD 的顶点坐标分别为 A(1, 1), B(1, -1), C(-1, -1), D(-1, -1)(-1, 1), y 轴上有一点 P(0, 2). 作点 P 关于点 A 的对称点 P_1 , 作点 P_1 关于点 B 的对称点 P_2 , 作点 P_2 关于点 C 的对称点 P_3 , 作点 P_3 关于点 D 的对称点 P_4 , 作点 P_4 关于点 A 的对称点 P_5 , 作点 P_5 关于点 B的对称点 P_6 , …, 按此操作下去,则点 P_{2011} 的坐标为(

- A. (0, 2)
- B. (2, 0)
- C. (0, -2)
- D. (-2, 0)

197. 如图,在正方形 ABCD中,点 E、F 分别是 BC、DC 边上的点,且∠EAF=45°, AE、AF 分别交 BD 于 M、N. 下列结论: ① $AB^2 = BN \cdot DM$; ②AF 平分 $\angle DFE$; ③ $AM \cdot AE = AN \cdot AF$; ④ $BE + DF = \sqrt{2}MN$. 其 中正确的结论是(

- A. 12
- B. ①③
- C. (1)(2)(3)
- D. (1)(2)(3)(4)

198. 如图,在正方形 ABCD中,点 E是 BC 边的中点,连接 DE,过 C作 $CF \bot DE$ 于 F,交 BD 于 G,交 AB于H,连接BF. 下列结论: ① $\angle BFH=45^\circ$;②CF:FG:GH=6:4:5;③ $\triangle BCF \hookrightarrow \triangle DBF$;④ $\frac{S_{\triangle BEF}}{S_{\triangle BCF}}=$

- $\frac{3}{4}$; ⑤ $HF + EF = \sqrt{2}BF$. 其中正确的结论是(
 - A. 只有①②③
- B. 只有①③⑤
- C. 只有②④⑤
- D. (1)(2)(3)(4)(5)

199. 一枚质地均匀的正方体骰子的六个面上的数字分别是 1, 2, 3, 4, 5, 6. 掷两次骰子,设其朝上的 面上的两个数字之和除以 4 的余数分别是 0, 1, 2, 3 的概率为 P_0 , P_1 , P_2 , P_3 , 则 P_0 , P_1 , P_2 , P_3 中最 大的是().

- A. P_0
- B. P_1
- $C. P_2$
- D. P_3

200. 在边长为 2 的等边 $\triangle ABC$ 中,P 是 AB 边上一动点 (P 不与 A、B 重合),以 PC 为边作等边 $\triangle PDC$, 点 D 与点 A 在 BC 同侧,E 为 AC 中点,连接 AD、PE、DE,则 $\triangle PDE$ 面积的最小值为(

- C. $\frac{\sqrt{3}}{3}$ D. $\frac{\sqrt{3}}{4}$

201. 如图,将边长为a的正方形纸片ABCD沿EF折叠(点 $E \setminus F$ 分别在边 $AB \setminus CD$ 上),使点B落在AD边上的点 M 处,点 C 落在点 N 处,MN 与 CD 交于点 P,则 $\triangle DMP$ 的周长(

- A. 等于 2a
- B. 等于 1.5a
- C. 等于 $\sqrt{3}a$
- D. 随 $E \times F$ 位置的变化而变化

202. 已知 m 是方程 $2x^2+bx+5=0$ 的根,n 是方程 $5x^2+bx+2=0$ 的根,且 $mn\neq 1$,则 $\frac{n}{m}=$ _____.

- A. $\frac{2}{5}$ B. $\frac{5}{2}$ C. $\frac{4}{25}$ D. $\frac{25}{4}$

203. 如图,梯形 ABCD 中,AD//BC,对角线 AC、BD 交于点 O,过 O 作两底的平行线分别交两腰于 E、 F. 若 AD=1, BC=4, 则 EF 的长为 ().

- A. 1.2
- B. 1.4
- C. 1.6
- D. 1.8

204. 如图是反比例函数 $y=\frac{2}{x}$, $x \le -2$ 和 $x \ge 1$ 时的部分图象,若二次函数 $y=ax^2$ 的图象与上述图象有公 共点,则 a 的取值范围是(

- A. $-2 \le a \le 1 \perp a \ne 0$
- B. *a* ≤ −2 或 *a* ≥ 1

205. 如图,大圆恰好盖住了小圆一半的面积,设小圆的直径为d,则大圆在小圆内的弧长AmB与d相比, 正确的是()

- A. AmB > d
- B. $\widehat{AmB} < d$
- C. $\widehat{AmB} = d$
- D. $\widehat{AmB} \geqslant d$

206. 如图, $\triangle ABC$ 中,AD、BE 相交于点 O, BD:CD=3:2, AE:CE=2:1, 那么 $S_{\triangle BOC}:S_{\triangle AOC}:S_{\triangle AOC}$ = (

- A. 2:3:4 B. 2:3:5 C. 3:4:5
- D. 3:4:6

207. 已知 $\triangle ABC$ 为锐角三角形, $\bigcirc O$ 经过点 B、C,且与边 AB、AC 分别相交于点 D、E. 若 $\bigcirc O$ 的半径 与 $\triangle ADE$ 的外接圆的半径相等,则 $\bigcirc O$ 一定经过 $\triangle ABC$ 的().

- A. 内心
- B. 外心
- C. 重心
- D. 垂心

208. 如图,矩形纸片 ABCD 中,M、N分别为 AB、CD 的中点,将纸片折叠,使 A 点落在 MN 上,得到 \triangle ABE, 再过 A 点折叠纸片, 使 C 点落在直线 BC 上, 折痕为 PQ. 下列结论: ① \triangle PAE \hookrightarrow \triangle ABE; ② \angle ABE $=30^{\circ}$; ③ $S_{\triangle PAE}: S_{\triangle OBA}: S_{\triangle ABE}=1:3:4$; ④若沿直线 EA 折叠纸片,则点 B 一定与点 D 重合,其中正确结 论的个数是()

- A. 1个
- B. 2个
- C. 3个
- D. 4个

209. 如图, B 是线段 AC 的中点, 过点 C 的直线 l 与 AC 成 50°的角, 在直线 l 上取一点 P, 使得 $\angle APB$ = 30° ,则满足条件的点P的个数是(

- A. 1个
- B. 2 个
- C. 3 个
- D. 无数个

210. 将二次函数 $y=-2(x-1)^2-1$ 的图象先向右平移一个单位,再沿 x 轴翻折到第一象限,然后向右平移 一个单位,再沿 y 轴翻折到第二象限…以此类推,如果把向右平移一个单位再沿坐标轴翻折一次记作 1 次 B. y=2(x+3)+1D. $y=-2(x-1)^2-1$ 变换,那么二次函数 $y=-2(x-1)^2-1$ 的图象经过 2011 次变换后,得到的图象的函数关系式为(

211. 如图, Rt $\triangle ABC$ 中, $\angle C=90^{\circ}$, AB=5, AC=3, 点 E 在中线 AD 上, 以 E 为圆心的 $\odot E$ 分别与 AB、 BC 相切,则⊙E 的半径为().

- A. $\frac{6}{7}$ B. $\frac{7}{8}$
- C. $\frac{5}{6}$ D. 1

212. 如图, $\angle MON=60^{\circ}$,A,B 是 OM 上的点,OA=4, $AB=2\sqrt{3}$,P 是 ON 上的动点,则 $\angle APB$ 的最大 值为

- A. 15°
- $B.~30^{\circ}$
- C. 45°
- D. 60°

213. 已知三个边长分别为 2, 3, 5 的三个菱形如图排列,菱形的较小锐角为 60°,则图中阴影部分的面积 为()

- A. $\frac{15}{8}$ B. $2\sqrt{3}$
- C. $\frac{15\sqrt{3}}{8}$ D. $\frac{15}{4}$

214. 如图, 正方形 ABCD 边长为 2, 将长为 2 的线段 EF 的两端放在正方形的相邻两边上同时滑动. 如果 点 E 从点 A 出发,沿箭头所示方向按 $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$ 滑动到点 A 为止,同时点 F 从点 B 出发,沿箭头所 示方向按 $B \to C \to D \to A \to B$ 滑动到点 B 为止. 在这个过程中,线段 EF 的中点 M 所经过的路径围成的图形 的面积为().

- A. 2
- B. $4-\pi$
- C. π
- D. $\pi 1$

215. 当 x 满足 $-3 \le x \le -2$ 时,不等式 $\frac{3x^2 + 4x - a}{x + 1} > 3x - 1$ 恒成立,则 a 的取值范围为()

- A. a > -3 B. $a \ge -3$ C. a < -5

- D. *a*≤−5

216. 如图, 矩形 ABCD 位于二次函数 $y=-2x^2+4x$ 的图象与 x 轴所围成的区域内, 顶点 A、D 在二次函数 图象上,BC 边在x 轴上,则矩形 ABCD 周长的最大值为(

- B. 3
- C. 4

217. 已知抛物线 $y=ax^2+2ax+4$ (0<a<3), $A(x_1, y_1)$, $B(x_2, y_2)$ 是抛物线上两点,若 x_1 < x_2 ,且 x_1 $+x_2=1-a$, 则 (

- A. $y_1 < y_2$
- B. $y_1 = y_2$
- C. $y_1 > y_2$ D. $y_1 = y_2$ 的大小不能确定

218. 一空间几何体的三视图如图所示,则x等于()

- A. $\sqrt{13}$
- B. $\sqrt{14}$
- C. $\sqrt{15}$
- D. 4

主视图

219. 如图,矩形 ABCD 的四个顶点位于双曲线 $y=\frac{k}{x}$ 上,且点 A 的横坐标为 $\frac{\sqrt{5}-1}{2}$, $S_{\text{矩<math>R}ABCD}$ = $2\sqrt{5}$,则 k = (

- A. $\frac{1}{2}$ B. $\frac{\sqrt{5}}{2}$
- C. 1

220. 如图, AB 是 $\odot O$ 的直径, 点 C 在 AB 上, $CD \perp AB$ 交 $\odot O$ 于 D, 过 D 点作 $\odot O$ 的切线 l, $CE \perp l$ 于 E. 若 AC=a, BC=b, 则 CE 的长为 (

- A. $\frac{1}{3}$ B. $-\frac{1}{3}$ C. $\frac{2}{3}$ D. $-\frac{2}{3}$

222. 如图,半圆 O 的半径 OA=4,P 是 OA 延长线上一点,线段 OP 的垂直平分线分别交 OP、半圆 O 于 B、C 两点,射线 PC 交半圆 O 于点 D. 设 PA=x,CD=y,则能表示 y 与 x 的函数关系的图象是(

223. 如图,四边形 ABCD 中,AC,BD 是对角线, $\triangle ABC$ 是等边三角形, $\angle ADC=30^{\circ}$,AD=3,BD=5, 则 CD 的长为(

- A. $3\sqrt{2}$
- B. 4
- C. $2\sqrt{5}$ D. 4.5

224. 如图, $\Box ABCD$ 中, $\angle DBC=45^{\circ}$,高线 DE、BF 交于点 H,BF、AD 的延长线交于点 G,连接 AH.

下列结论: ①AB=BH; ② $AH=\sqrt{2}CD$; ③ $AB^2=AG\cdot HE$; ④ $\frac{S_{\triangle ADH}}{S_{\triangle BDF}}=\frac{BC\cdot BH}{BE\cdot BF}$.

其中正确的结论有(

- A. 1个
- B. 2个
- C. 3 个
- D. 4个

225. 如图, 在五边形 *ABCDE* 中, ∠*BAE*=120°, ∠*B*=∠*E*=90°, *AB*=*BC*=1, *AE*=*DE*=2, 在 *BC*、*DE* 上分别找一点 M、N,使 $\triangle AMN$ 的周长最小,则 $\triangle AMN$ 的最小周长为(

- A. $2\sqrt{6}$
- B. $2\sqrt{7}$
- C. $4\sqrt{2}$
- D. 5

- A. 4
- B. $2\sqrt{5}$
- C. $4\sqrt{2}$
- D. 5

227. 在一个箱子中有三个分别标有数字 1, 2, 3 的材质、大小都相同的小球,从中任意摸出一个小球, 记下小球的数字 a 后,放回箱中并摇匀,再摸出一个小球,又记下小球的数字 b. 以先后记下的两个数字 (a, b) 作为点 P 的坐标,那么点 P 落在以坐标原点为圆心、半径为 $\sqrt{10}$ 的圆的内部的概率为(

- A. $\frac{1}{2}$ B. $\frac{2}{3}$ C. $\frac{2}{5}$ D. $\frac{4}{9}$

228. 如图, 四边形 ABCD 是矩形, $\triangle ACE$ 是以 AC 为底的等腰直角三角形, 连接 BE 分别交 AD、AC 于 F、 N, CM 平分 $\angle ACB$ 交 BN 于 M, 连接 DE. 下列结论:

- ① $BE \perp ED$; ②AB = AF; ③EM = EA; ④ $AM \oplus \triangle \angle BAC$. 其中正确的结论有()
 - A. 1个
- B. 2个
- C. 3 个 D. 4 个

229. 已知正方形 *ABCD* 的边长为 486,点 P_0 在 *AD* 上,点 P_1 在 P_0 B 上,且 $P_0P_1 = \frac{1}{2}P_1B$,点 P_2 在 P_1 C 上,

且 $P_1P_2 = \frac{1}{2}P_2C$; 点 P_3 在 P_2B 上,且 $P_2P_3 = \frac{1}{2}P_3B$; …; 点 P_6 在 P_5C 上,且 $P_5P_6 = \frac{1}{2}P_6C$,则 $\triangle P_6BC$ 的 面积为____

- A. 81 B. $\frac{81}{2}$
- C. $\frac{64}{3}$ D. $\frac{128}{3}$

Α

230. 已知 O 为圆锥顶点,OA、OB 为圆锥的母线,C 为 OB 中点. 点 C 处有两只蚂蚁,一只沿圆锥侧面 爬行到点 A,另一只绕着圆锥侧面爬行到点 B,它们所爬行的最短路线的痕迹如图所示. 若沿 OA 剪开, 则得到的圆锥侧面展开图为(

В

C

D

231. 如图,在平面直角坐标系中, $\bigcirc P$ 的圆心是(2,a)(a>2),半径为 2,函数 y=x 的图象被 $\bigcirc P$ 截得的弦 AB 的长为 $2\sqrt{3}$,则 a 的值是(

- A. $2\sqrt{2}$
- B. $2+\sqrt{2}$
- C. $2\sqrt{3}$
- D. $2+\sqrt{3}$

232. 如图,在斜坡的顶部有一铁塔 AB,B 是 CD 的中点,CD 是水平的,在阳光的照射下,塔影 DE 留在坡面上. 已知铁塔底座宽 CD=12m,塔影长 DE=18m,小明和小华的身高都是 1.6m. 同一时刻,小明站在点 E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为 2m 和 1m,那么塔高 AB 为(

- A. 24m
- B. 22m
- C. 20m
- D. 18m

233. 如图,抛物线 L_1 : $y_1 = a_1 x^2 + b_1 x + c_1$ 的顶点为 B,抛物线 L_2 : $y_2 = a_2 x^2 + b_2 x + c_2$ 的顶点为 C,分别过点 B、C 作 x 轴的平行线,交抛物线 L_2 、 L_1 于点 A、D,连接 BD. 若 AB = BD,则 $b_1 + b_2$ 的值为(

- A. $\sqrt{3}$
- B. 2
- C. $2\sqrt{3}$
- D. 4

234. 如图,已知圆心为 A、B、C 的三个圆彼此相切,且均与直线 l 相切. 若 $\odot A$ 、 $\odot B$ 、 $\odot C$ 的半径分别为 a、b、c (0< c < a < b),则 a、b、c 一定满足的关系式为(

- A. 2b = a + c
- B. $\sqrt{b} = \sqrt{a} + \sqrt{c}$
- $C. \frac{1}{c} = \frac{1}{a} + \frac{1}{b}$
- D. $\frac{1}{\sqrt{c}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}}$

235. 如图, ABCD、CEFG 是正方形, E 在 CD 上, 直线 BE、DG 交于 H, 且 $BH \cdot EH = 4 - 2\sqrt{2}$, BD、AF交于 M. 当 E 在线段 CD (不与 C、D 重合)上运动时,下列四个结论:

① $BE \perp DG$; ②AF、DG 所夹的锐角为 45° ; ③ $DG = \sqrt{2}AM$; ④若 BE 平分 $\angle DBC$,则正方形 ABCD 的面积 为4.

其中正确的结论个数有(

- A. 1个
- B. 2个
- C. 3个
- D. 4个

236. 下列图案给出了折叠一个直角边长为2的等腰直角三角形纸片(图1)的全过程: 首先对折,如图2, 折痕 CD 交 AB 于点 D; 打开后,过点 D 任意折叠,使折痕 DE 交 BC 于点 E,如图 3;打开后,如图 4; 再沿 AE 折叠,如图 5;打开后,折痕如图 6.则折痕 DE 和 AE 长度的和的最小值是(

- A. $\sqrt{10}$
- B. $1+\sqrt{5}$
- C. $2\sqrt{2}$

D. $3\sqrt{2}$

237. 己知三个关于 x 的一元二次方程 $ax^2 + bx + c = 0$, $bx^2 + cx + a = 0$, $cx^2 + ax + b = 0$ 恰有一个公共实数根, 则 $\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}$ 的值为(

- A. 0
- B. 1
- C. 2
- D. 3

238. 在平面直角坐标系中,点 P 在由直线 y=-x+3,直线 y=4 和直线 x=1 所围成的区域内或其边界上, 点 Q 在 x 轴上,若点 R 的坐标为(2, 2),则 QP+QR 的最小值为(

- A. $\sqrt{17}$
- B. $\sqrt{5}+2$ C. $3\sqrt{5}$
- D. 4

239. 如图,扇形 OAB 的半径 OA=6,圆心角 $\angle AOB=90^\circ$,C 是 \widehat{AB} 上不同于 A、B 的动点, $CD\bot OA$ 于 D,作 $CE \perp OB$ 于 E,连接 DE,点 F 在线段 DE 上,且 $EF = \frac{2}{3}DE$. 设 EC 的长为 x, $\triangle CEF$ 的面积为 y, 则能表示y与x的函数关系式的图象可能是(

240. 如图, D、E、F 分别为 $\triangle ABC$ 的边 BC、CA、AB 的中点, BE 与 DF、AD 分别交于 M、N,若 $\triangle ABC$ 的面积为S,则 $\triangle DMN$ 的面积为(

- A. $\frac{1}{12}S$ B. $\frac{1}{18}S$
- C. $\frac{1}{24}S$ D. $\frac{1}{30}S$

241. 若方程组 $\begin{cases} a_1x+b_1y=c_1\\ a_2x+b_2y=c_2 \end{cases}$ 的解是 $\begin{cases} x=3\\ y=4 \end{cases}$,则方程组 $\begin{cases} 3a_1x+2b_1y=5c_1\\ 3a_2x+2b_2y=5c_2 \end{cases}$ 的解是 (

- A. $\begin{cases} x=6 \\ y=8 \end{cases}$ B. $\begin{cases} x=5 \\ y=10 \end{cases}$ C. $\begin{cases} x=1 \\ y=\frac{4}{3} \end{cases}$ D. $\begin{cases} x=\frac{3}{2} \\ y=2 \end{cases}$

242. 如图,在 $\triangle ABC$ 中,D、E 在边 BC上,F、G分别在边 AC、AB上,且四边形 DEFG 为正方形,若 $S_{\triangle AGF} = S_{\triangle CFE} = 1$, $S_{\triangle BGD} = 3$,则正方形 DEFG 的边长是(

- A. $\sqrt{2}$ B. $\sqrt{3}$
- C. 2

243. 如图, $\triangle ABC$ 中,D、E 是 BC 边上的点,F 是 AC 边上的点,BD:DE:EC=3:2:1,CF:FA=1:2, BF 交 AD、AE 于 G、H,则 BG: GH: HF 等于 (

- A. 3:2:1
- B. 5:3:1
- C. 25:12:5
- D. 51:24:10

244. 用 $\min\{a, b\}$ 表示 a, b 两数中的最小数,若函数 $y = \min\{x^2 - 1, 1 - x^2\}$,则 y 的图象为(

245. 用 $\min\{a, b\}$ 表示 a, b 两数中的最小值,若函数 $y = \min\{|x|, |x+t|\}$ 的图象关于直线 $x = -\frac{1}{2}$ 对称, 则 t 的值为(

- A. -2
- B. 2
- C. -1
- D. 1

246. 对于每个x, 函数y是 $y_1=2x$, $y_2=x+2$, $y_3=-\frac{3}{2}x+12$ 这三个函数的最小值,则函数y的最大值是

- A. 4

- B. 6 C. 8 D. $\frac{48}{7}$

247. 如图,正方形 ABCD 被直线 OE 分成面积相等的两部分,已知线段 OD、AD 的长都是正整数, $\frac{CE}{RF}$ =

- 20,则满足条件的正方形 ABCD 面积的最小值是(
 - A. 324
- B. 331
- C. 354
- D. 361

248. 如图,在 $\Box ABCD$ 中,E、F分别为边 AB、AD 上的点. EF 与对角线 AC 交于 P,若 $\frac{AE}{EB} = \frac{a}{b}$, $\frac{AF}{FD} =$

 $\frac{m}{n}$,则 $\frac{AP}{PC}$ 的值为(

B. $\frac{bn}{an+bm}$

C.
$$\frac{am}{am+an+bm}$$

D. $\frac{bn}{an+bm+bn}$

249. 已知一组正数 x_1 , x_2 , x_3 , x_4 , x_5 的方差为: $S^2 = \frac{1}{5}(x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 - 20)$, 则关于数据 $x_1 + 2$, x_2+2 , x_3+2 , x_4+2 , x_5+2 的说法: ①方差为 S^2 ;②平均数为 2;③平均数为 4;④方差为 $4S^2$,其中正确 的说法是(

- A. 112
- B. ①③
- C. (2)(4)
- D. (3)(4)

250. 如图,一次函数 $y=\frac{1}{4}x$ 与反比例函数 $y=\frac{k}{x}$ 图象相交于 A、B 两点,点 M 是第一象限反比例函数 y $=\frac{k}{r}$ 图象上的动点 (点 M 在点 A 左侧),直线 AM、BM 分别与 y 轴相交于 P、Q 两点,且 MA=pMP,MB=qMQ,则 p-q 的值等于 ().

- C. 2
- D. 1

251. 一艘轮船在河流中逆流而上,下午 5 时,船长发现轮船上的一橡皮艇失落水中,船长马上命令掉转 船头寻找,经过了一个小时追上了顺流而下的橡皮艇。如果轮船在整个过程中的动力不变,那么据此判断, 轮船失落橡皮艇的时间为().

- A. 下午1点 B. 下午2点

- C. 下午 3 点 D. 下午 4 点

252. 某瓜果基地市场部为指导某地某种蔬菜的生产和销售,在对历年市场行情和生产情况进行了调查的 基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两个方面的信息,如图(1)、 (2) 所示.(注:图(1)的图象是线段,图(2)的图象是抛物线,生产成本6月份最低.) 根据图象信息可以计算出: 出售这种蔬菜,每千克收益最大的月份是().

- A. 3月份
- B. 4月份
- C. 5月份
- D. 6月份

253. 抛物线 $y=x^2$ 上有三点 P_1 、 P_2 、 P_3 ,其横坐标分别为 t,t+1,t+3,则 $\triangle P_1P_2P_3$ 的面积为().

- B. 2
- C. 3
- D. 4

254. 如图,正方形 ABCD 的边长为 1, \widehat{AC} 和 \widehat{BD} 都是以 1 为半径的圆弧,则无阴影两部分的面积之差是 ().

- A. $\frac{\pi}{2} 1$ B. $1 \frac{\pi}{4}$ C. $\frac{\pi}{3} 1$ D. $1 \frac{\pi}{6}$

255. 一个正方体的表面涂满了颜色,将它切成 $n(n \ge 27)$ 个大小相等的小立方块,设其中有 i 个面 (i=1, 2, 3) 涂有颜色的小立方块的个数为 x_i ,则 x_1 , x_2 , x_3 之间的关系为().

- A. $x_1^2 = 3x_2x_3$ B. $x_2^2 = 3x_1x_3$ C. $x_3^2 = 3x_1x_2$ D. 以上都不对

256. 己知 b > 0,二次函数 $y = ax^2 + bx + a^2 - 1$ 的图象为下列之一,则 a 的值为 ().

- A. 1
- B. -1
- C. $\frac{-1-\sqrt{5}}{2}$ D. $\frac{-1+\sqrt{5}}{2}$

257. 已知点 A (-2, -3), B (-3, -2), 直线 y=kx+b 过点 P (1, 1) 且与线段 AB 相交,则 k 的取值 范围是(

- A. $k \leqslant \frac{3}{4} \vec{\otimes} k \geqslant \frac{4}{3}$ B. $k \leqslant -\frac{4}{3} \vec{\otimes} k \geqslant -\frac{3}{4}$ C. $\frac{3}{4} \leqslant k \leqslant \frac{4}{3}$ D. $-\frac{4}{3} \leqslant k \leqslant -\frac{3}{4}$

258. 如图,矩形 ABCD中,AB=1,BC=2,M是 CD的中点,点D在矩形的边上沿 $A \rightarrow B \rightarrow C \rightarrow M$ 运动, 则 $\triangle APM$ 的面积 y 与点 P 经过的路程 x 之间的函数关系用图象表示大致是下图中的 ().

259. 向高为H的容器中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么容器 的形状是(

260. 如图,⊙O 与 Rt△ABC 的斜边 AB 相切于点 D,与直角边 AC 相交于点 E,且 DE //BC. 已知 AE= $2\sqrt{2}$, $AC=3\sqrt{2}$,BC=6,则 $\odot O$ 的半径为(

- A. 3 B. 4 C. $4\sqrt{3}$
- D. $2\sqrt{3}$

261. 已知关于 x 的不等式组 $\begin{cases} x^2 - x + a - a^2 < 0 \\ x + 2a > 1 \end{cases}$ 只有两个整数解,则 a 的取值范围是(

- A. $1 \le a \le 2$ B. $1 \le a < 2$ C. $1 < a \le 2$ D. 1 < a < 2

- A. $-5 \le a \le -\frac{14}{3}$ B. $-5 \le a < -\frac{14}{3}$ C. $-5 < a \le -\frac{14}{3}$ D. $-5 < a < -\frac{14}{3}$

- 的正整数解只有 4,则 a 的取值范围是() 263. 若关于 x 的不等式组
 - A. $1 \le a \le 3$
- B. $1 \le a < 3$
- C. $1 < a \le 3$ D. 1 < a < 3
- 264. 如图,点 A 在半径为 3 的 $\odot O$ 内, $OA = \sqrt{3}$,P 为 $\odot O$ 上一点,当 $\angle OPA$ 取最大值时,PA 的长等于
- A. $\frac{3}{2}$ B. $\sqrt{6}$ C. $\frac{\sqrt{3}}{2}$ D. $2\sqrt{3}$

- 265. 如图,半圆的直径 AB=10cm,弦 AC=6cm,将半圆沿弦 AD 对折后,AC 恰好与 AB 重合,则 AD 的 长为()
 - A. $4\sqrt{5}$ cm
- B. $3\sqrt{5}$ cm C. $5\sqrt{3}$ cm
 - D. 8cm

- 266. 若实数 a, b 满足 $\frac{1}{a} \frac{1}{b} \frac{1}{a+b} = 0$, 则 $(\frac{b}{a})^2 + (\frac{a}{b})^2$ 的值等于(

- A. 1 B. 2 C. 3 D. 4
- 267. 如图,圆内两条弦互相垂直,其中一条被分成长为4和3两段,另一条被分成长为2和6两段,则 该圆的直径为() B. $\sqrt{65}$ C. 9 D. 10
 - A. $4\sqrt{6}$

- 268. 如图, 在直角梯形 *ABCD* 中, *AD*//*BC*, *AB*=*BC*, ∠*B*=90°, *DE*=3, *EC*=4, *DC*=5, 则梯形 *ABCD* 的面积为()
 - A. $\frac{152}{17}$ B. $\frac{39}{4}$ C. 12 D. 13

- 269. 己知 x_1 , x_2 是方程 $x^2 (a-2)x + (a^2 + 3a + 5) = 0$ 的两个实数根,则 $x_1^2 + x_2^2$ 的最大值为 (
 - A. 18 B. 19 C. 20
- D. 不存在

- A. -2
- B. -1
- C. 0

271. 己知抛物线 $y=ax^2+bx+c$ 与 $y=x^2-5x+2$ 关于点(3, 2)对称,则 a+b+c 的值为(

- C. 2

272. 己知二次函数 y=(x-a)(x-b)-2(a < b),并且 p, q 是方程 (x-a)(x-b)-2=0 的两根,则实数 a, y=(x-a)(x-b)b, p, q 的大小关系可能是 ().

- A. p < a < b < q

- B. a C. <math>a D. <math>p < a < q < b

273. 过点 P(-1, 3) 且与 x 轴、y 轴围成的三角形面积为 5. 8 的直线有 () 条.

- B. 2
- C. 3
- D. 4

274. 如图,已知矩形 OABC 的一边 OA 在 x 轴上,OC 在 y 轴上,O 为坐标原点,连接 OB;双曲线 $y=\frac{k}{r}$ 交 $BC \pm D$, 交 $OB \pm E$, 连接 OD, 若 $E \pm OB$ 的中点,且 $\triangle OBD$ 的面积等于 3,则 k 的值为 (

- B. 4
- C. 3
- D. 2

275. 若 $P_1(x_1, y_1)$, $P_2(x_2, y_2)$ 是二次函数 $y=ax^2+bx+c$ ($abc\neq 0$) 图象上的两点,且 $y_1=y_2$,则当 x $=x_1+x_2$ 时,y 的值为().

- A. 0

- C. $-\frac{b}{a}$ D. $\frac{4ac-b^2}{4a}$

276. 如图,已知梯形 OABC 的底边 O 在 x 轴上,CB//OA, $BA\botOA$,过点 C 的双曲线 $y=\frac{k}{x}$ 交 OB 于 D,

- 且 OD:DB=1:2,若 $S_{\triangle BOC}=3$,则 k 的值(
 - A. 等于2
- B. 等于 $\frac{3}{4}$
- C. 等于 $\frac{24}{5}$
- D. 无法确定

277. 如图,点 A、B 在直线 $y=-\frac{1}{2}x+2$ 上,点 A 的横坐标为 2,点 B 的横坐标为 a (0<a<4 且 $a\neq 2$), $AC \perp x$ 轴于 C, $BD \perp x$ 轴于 D,设 $\triangle AOC$ 、 $\triangle BOD$ 的面积分别为 S_1 、 S_2 ,则 S_1 、 S_2 的大小关系是(

- A. $S_1 > S_2$
- B. $S_1 = S_2$
- C. $S_1 < S_2$
- D. 无法确定

278. 如图,一次函数 y=kx-4k 的图象分别交 x 轴、y 轴于点 M、N,点 A、B 在线段 MN 上, $AC \perp x$ 轴于 C, $BD \perp x$ 轴于 D, 若 OC + OD > 4, 则 $\triangle AOC$ 的面积 S_1 与 $\triangle BOD$ 的面积 S_2 的大小关系是(

- B. $S_1 = S_2$
- C. $S_1 < S_2$
- D. 无法确定

279. 如图,菱形 ABCD 的边长为 a,点 O 是对角线 AC 上的一点,且 OA=a,OB=OC=OD=1,则 a 等

- A. $\frac{\sqrt{5}+1}{2}$ B. $\frac{\sqrt{5}-1}{2}$ C. 1 D. 2

280. 已知 $P = \frac{7}{15}m - 1$, $Q = m^2 - \frac{8}{15}m$ (m 为任意实数),则 P、Q 的大小关系为(

- A. *P>Q* B. *P=Q* C. *P<Q* D. 不能确定

281. 如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是(

- A. 格点 *M*
- B. 格点 N
- C. 格点 P
- D. 格点 Q

282. 在如图的方格纸中,每个小方格都是边长为 1 的正方形,点 $A \times B$ 是方格纸中的两个格点(即正方形 的顶点),在这个 5×5 的方格纸中,找出格点C使 $\triangle ABC$ 的面积为2个平方单位,则满足条件的格点C的 个数是(

- A. 5
- B. 4
- C. 3
- D. 2

283. 如图, $\triangle ABC$ 是等腰直角三角形,AC=BC=a,以斜边 AB 上的点 O 为圆心的圆分别与 AC、BC 相 切于点 $E \setminus F$,与 AB 分别相交于点 $G \setminus H$,且 EH 的延长线与 CB 的延长线交于点 D,则 CD 的长为 (

- A. $\frac{2\sqrt{2}-1}{2}a$
- B. $\frac{\sqrt{2}+1}{2}a$
- C. $\sqrt{2}a$
- D. $(\sqrt{2} \frac{1}{4}) a$

284. 如图,点 E 在正方形 ABCD 外,连接 AE、BE、DE,过点 A 作 AE 的垂线交 DE 于点 F.若 AE=AF=1, $BF = \sqrt{5}$. 则正方形 ABCD 的面积为下列结论: ①△AFD ≌ △AEB; ②点 B 到直线 AE 的距离为 $\sqrt{2}$; ③ $EB \perp ED$; ④ $S_{\triangle AFD} + S_{\triangle AFB} = 1 + \sqrt{6}$; ⑤ $S_{E \pi E} ABCD = 4 + \sqrt{6}$.

- 其中正确结论的序号是(
 - A. 134
- B. 125
- C. 345
- D. (1)(3)(5)

285. 平面直角坐标系中,若平移二次函数 y = (x-2010)(x-2011) + 4 的图象,使其与 x 轴交于两点,且 此两点间的距离为1个单位,则平移方式为().

- A. 向上平移 4 个单位
- B. 向下平移 4 个单位
- C. 向左平移 4 个单位
- D. 向右平移 4 个单位

286. 如图,在直角梯形 ABCD中,AD//BC, $\angle A=90^{\circ}$, $\angle ADC$ 的平分线与 $\angle BCD$ 的平分线的交点 E 落 在 AB 上. 下列结论: ①AD+BC=DC; ② $DE^2=DA\cdot DC$; ③ $AB^2=2AD\cdot BC$; ④若设 AD=a, AB=b, BC=c,则关于 x 的方程 $ax^2+bx+c=0$ 有两个相等的实数根,其中正确的结论有(

- A. (1)(2)(3)(4)
- B. 1)23 C. 1)24
- D. 234

287. 如图, 半径为 1 的 \bigcirc M 和半径为 2 的 \bigcirc N 内切于点 A, AB 是 \bigcirc N 的直径, CD \bot AB 分别交两圆于点 C、D,且 C、D 两点在 AB 的同侧,则 $\triangle ACD$ 的外接圆的面积是(

- A. 3π
- B. 2π
- C. $\sqrt{2}\pi$ D. $\frac{\pi}{2}$

288. 如图, $\triangle ABC$ 内接于 $\bigcirc O$, $\angle BAC = 60^{\circ}$, 高线 AD、BE 交于 H, BE 交 $\bigcirc O$ 于 F, M、N 分别在边 AB、 AC上,且AM=AO,AN=AH,下列结论:

- ① $\angle BAO = \angle CAD$; ② $AB \cdot AC = 2AD \cdot AH$; ③AM = AF; ④ $\triangle AMN$ 是等边三角形. 其中正确的是()
 - A. (1)(2)
- B. 124 C. 134
- D. (1)(2)(3)(4)

289. 若关于 x 的不等式组 $\begin{cases} x \ge a + 2 \\ x < 3a - 2 \end{cases}$ 有解,则函数 $y = (a - 3)x^2 - x - \frac{1}{4}$ 图象与坐标轴的交点个数为 (

- A. 1
- B. 2 C. 3
- D. 2或3

290. 如图, 已知 AA'=BB'=CC'=2, $\angle AOB'=\angle BOC'=\angle COA'=60^\circ$, 则 $S_{\triangle AOB'}+S_{\triangle BOC'}+S_{\triangle COA'}$ 的值(

- A. 小于 $\sqrt{3}$
- B. 等于√3
- C. 大于 $\sqrt{3}$
- D. 小于或等于√3

291. 如图,双曲线 $y=\frac{k}{x}$ (k>0) 经过 Rt $\triangle AOB$ 的斜边 AB 的中点 C, $AF\perp AO$, $BF\perp BO$, AF、BF 与双 曲线分别交于点 D、E. 若四边形 ODFE 的面积为 36,则 k 的值为(

- B. 10
- C. 12
- D. 16

292. 如图,等边 $\triangle ABC$ 中,D 是 AB 边的中点,E 是 AC 边的中点,F 是线段 DE 上一点,BF 延长线交 AC于N, CF延长线交AB于M, 若 $\frac{1}{BM} + \frac{1}{CN} = 1$, 则AB的长为(

- A. 1
- B. 2
- C. 3 D. 4

293. 如图, $\triangle ABC$ 中, $\angle BAC \neq 90^{\circ}$, $\angle BAC = 2\angle BCA$,点 D 是 $\triangle ABC$ 内的一点,且 BD = BA,DC = DA,

- 设 $\angle CBD = \alpha$, $\angle ABC = \beta$, 则 $\frac{\alpha}{\beta}$ 的值等于(
 - A. $\frac{1}{3}$ B. $\frac{3}{5}$ C. $\frac{2}{5}$ D. $\frac{3}{8}$

294. 如图是一个切去了一个角的正方体纸盒,切面与棱的交点 $A \times B \times C$ 均是棱的中点,现将纸盒剪开展 成平面,则展开图不可能是(

295. 如图,在正方形 ABCD 中, M 是 AD 上异于 D 的点, N 是 CD 的中点,且 $\angle AMB = \angle NMB$,则 AM: AB = ()

- A. $\frac{1}{3}$ B. $\frac{2}{5}$ C. $\frac{\sqrt{3}}{6}$ D. $\frac{\sqrt{6}}{8}$

296. 如图, $\triangle ABC$ 是锐角三角形,正方形 DEFG 一边在 BC 上,其余两个顶点分别在 AB 、AC 上,记 $\triangle ABC$ 的面积为 S_1 ,正方形的面积为 S_2 ,则(

- A. $S_1 \ge 2S_2$
- B. $S_1 \leq 2S_2$
- C. $S_1 > 2S_2$
- D. $S_1 < 2S_2$

297. 如图,等腰梯形 ABCD 中,AD//BC,AB=DC. 将 $\triangle ABD$ 沿对角线 AD 对折后,点 A 恰好落在底边 BC 的中点 E 处. 下列结论:

①四边形 ABED 是菱形; ②点 D 在以 BC 为直径的圆上; ③ $\angle A=120^\circ$; ④若 AB=2,则梯形 ABCD 的面积是 $3\sqrt{3}$.

其中正确的是()

- A. 123
- B. 234
- C. 134
- D. 1234

298. 如图,线段 AB 长为 10,顶点 A 在 y 轴正半轴上滑动,顶点 B 随着线段 AB 在 x 轴正半轴上滑动,(A、B 与原点 O 不重合), $\triangle AOB$ 的内切圆 $\odot C$ 分别与 OA、OB、AB 相切于点 D、E、F. 设 AD=x, $\triangle AOB$ 的面积为 S,则 S 关于 x 的函数图象大致为(

299. 已知抛物线 $y=-\frac{1}{2}x^2+6$ 与 x 轴交于 A、B 两点(A 在 B 的左侧),点 P、Q 是抛物线 $y=-\frac{1}{2}x^2+6$ 在 x 轴上方的两个动点,若 $\triangle AQP\cong\triangle ABP$,则满足条件的点 P 有(

- A. 0 个
- B. 1个
- C. 2个
- D. 3个

300. 已知关于 x 的方程 $ax^2 + (a+2)x + 9a = 0$ 有两个不相等的实数根 x_1, x_2 ,且 $x_1 < 1 < x_2$,则实数 a 的取 值范围是(

- A. $a < -\frac{2}{11}$ B. $-\frac{2}{7} < a < \frac{2}{5}$ C. $a > \frac{2}{5}$ D. $-\frac{2}{11} < a < 0$

301. 如图,正方形 ABCD 的边长为 4, $\angle DAC$ 的平分线交 DC 于点 E, 若点 P、Q 分别是 AD、AE 上的动 点,则 PQ+DQ 的最小值为(

- A. 2

- B. 4 C. $2\sqrt{2}$ D. $\frac{5}{2}$

302. 如图,在 $\triangle ABC$ 中, $\angle C=90^\circ$,AD 平分 $\angle CAB$,BE 平分 $\angle CBA$,AD、BE 相交于点 O,若 $\triangle AOB$ 的面积为 S,则四边形 ABDE 的面积为 ()

- A. 2S
- B. 1.5*S*
- C. 1.2*S*
- D. 1.8S

303. 如图,在 Rt $\triangle ABC$ 中, $\angle C=90^{\circ}$,AC=6,BC=8.在 Rt $\triangle ABC$ 内并排(不重叠)放入边长为 1 的 小正方形纸片,第一层小纸片的一条边都在AB上,首尾两个正方形各有一个顶点分别在AC、BC上,依 次这样摆放上去,则最多能摆放()个小正方形纸片.

- A. 13 个
- B. 14 个
- C. 15 个
- D. 16 个

304. 已知二次函数 $y=ax^2+2x+c$ 图象与 x 轴交于不同的两点,且都在原点右侧,则点 (a,c) 在(

- A. 第一象限 B. 第二象限
- C. 第三象限
- D. 第四象限

305. 如图, 边长为 1 的正方形 EFGH 在边长为 3 的正方形 ABCD 所在平面内移动, 且始终保持 EF//AB. 线 段 CF 的中点为 M, DH 的中点为 N, 则线段 MN 的长为 (

- A. $\frac{\sqrt{10}}{2}$ B. $\frac{\sqrt{17}}{2}$ C. $\frac{\sqrt{17}}{3}$ D. $\frac{2}{3}\sqrt{10}$

306. 在平面直角坐标系中,以点(3,-5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离 等于 1,则圆的半径 r 的取值范围是 ()

- A. *r*>4 B. 0<*r*<6 C. 4≤*r*<6 D. 4<*r*<6

307. 如图,在Rt $\triangle ABC$ 中, $\angle ACB=90^{\circ}$,点D是AC边上的一个动点,过D作 $DE \bot AB$ 于E,F是BD中点, 过 F 作 $FG \perp AB$ 于 G, 点 P 是 AB 边上的一个动点, DP 与 EF 相交于点 O. 当 DP+FP 的值最小时, DO 与 PO 之间的数量关系是(

- A. DO=3PO
- B. $DO = \frac{5}{2}PO$ C. $DO = \frac{8}{3}PO$
- D. *DO*=4*PO*

308. 如图,在 $\triangle ABC$ 中,AB=AC=5,BC=7, $\triangle ABC$ 的内切圆 $\bigcirc O$ 与边 BC相切于点 D,过点 D作 DE//AC 交 $\odot O$ 于点 E,过点 E 作 $\odot O$ 的切线交 BC 于点 F,则 DE-EF 的值等于(

- A. $\frac{1}{2}$ B. $\frac{2}{3}$ C. $\frac{3}{5}$ D. $\frac{3}{4}$

309. 已知四边形 ABCD 中, $\angle ABC+\angle DCB=90^{\circ}$,E、F 分别是 AD、BC 的中点,且 EF=4,分别以 AB、 CD 为直径作半圆,则这两个半圆面积的和等于()

- A. 4π
- Β. 6π
- C. 8π
- D. 10π

310. 如图,△ABC 中,AD 是高,外接圆 $\odot O$ 的半径为 R, $\angle BAC$ 的平分线交 $\odot O$ 于 F,交 BC 于 M,EF切 $\odot O$ 交AB的延长线于E. 下列结论: $\bigcirc AB \cdot AC = 2R \cdot AD$; $\bigcirc EF //BC$; $\bigcirc AB \cdot BE = BM \cdot EF$; $\bigcirc BM = BM \cdot EF$;

 $\frac{\sin C}{\sin E}$. 其中正确的是(

- A. 1234
- B. 123

C. 23

D. (1)(2)(4)

311. 如图, $\triangle ABC$ 与 $\triangle DEF$ 均为等边三角形,O 为 BC、EF 的中点,则 AD:BE 的值为(

56

- A. $\sqrt{3}:1$
- B. $\sqrt{2}:1$

C. 5:3

D. 不确定

312. 已知二次函数 $y=ax^2-3ax-2$,当 x 分别取 x_1 、 x_2 两个不同的值时,函数值相等,则当 x 取 x_1+x_2 时, 函数值为(

- **A.** 1
- B. -1
- C. 2
- D. -2

313. 如图,在菱形 ABCD 中, $\angle A=110^\circ$,E、F 分别是边 AB 和 BC 的中点, $EP\bot CD$ 于点 P,则 $\angle FPC$ = (

- A. 50°
- B. 55°
- C. 60°
- D. 65°

314. 已知等腰梯形 ABCD 中,AD//BC, $\angle B=45^{\circ}$, $AD=2\sqrt{3}-2$. 动点 P 在折线 BA-AD-DC 上移动, 若存在 $\angle BPC$ =120°,且这样的P点恰好出现3次,则梯形ABCD的面积是(

- A. $2\sqrt{3}-2$
- B. $2\sqrt{3}-1$
- C. $2\sqrt{3}$
- D. $2\sqrt{3}+1$

315. 如图,直线 y=kx+b 与 x 轴、y 轴分别交于 A、B 两点,点 A 在 x 轴的负半轴上,与双曲线 $y=\frac{m}{r}$ 交

于 C、D 两点,且点 D 的坐标为 (a, 6a) (a>0),若 $AB=\frac{1}{2}CD$,则 $\tan \angle OAB$ 的值是(

- A. $\frac{5}{3}$ B. $\frac{3}{2}$ C. 1 D. 2

316. 如图,点 E 在正方形 ABCD 的边 BC 上,将 $\triangle ABE$ 沿直线 AE 折叠,使点 B 落在正方形内点 P 处, 延长 EP 交 CD 于点 F,连接 AF. 若点 E 在 BC 上移动,则下列结论正确的是(

- A. $\triangle AEF$ 的周长不变
- B. $\triangle AEF$ 的面积不变
- C. $\triangle CEF$ 的周长不变
- D. $\triangle CEF$ 的面积不变

317. 如图,在直角梯形 ABCD 中,AD//BC, $\angle A=90^\circ$,AB=BC=2AD,点 E 是 AB 中点,过点 E 作 EG

- $\bot CD$ 于点 G, 延长 EG、AD 相交于点 F, 连接 BG. 下列结论:
- ①EF = CD; ② $\angle F = \angle BGE$; ③BC = GC; ④ $S_{\triangle BGC} = 8S_{\triangle DGF}$.
- 其中正确的结论是()
 - A. 1234
- B. (1)(2)(3)

C. 23

D. 124

318. 如图,已知过 A、C、D 三点的圆的圆心为 E,过 B、E、F 三点的圆的圆心为 D,如果 $\angle A$ = 63°,那 么 $\angle B$ = (

- A. 16°
- B. 18°
- $C.~20^{\circ}$
- D. 21°

319. 已知 $\triangle ABC$ 中, $\angle A=90^\circ$,AB < AC,M 是 BC 边中点, $MN \bot BC$ 交 AC 于点 N. 动点 P 从点 B 出发 沿 BA 向点 A 运动. 同时,动点 Q 从点 N 出发沿 NC 向点 C 运动,且始终保持 $MQ \bot MP$. 下列结论: ① $\triangle PBM \hookrightarrow \triangle QNM$; ②若 AC=nAB,则点 P 的运动速度是点 Q 运动速度的 n 倍;③若 $AC=\sqrt{3}AB$,则 $\triangle APO$ 的面积先增大后减小;④ $BP^2 + CO^2 = PO^2$.

- 其中正确的是()
 - A. 1)2(3)
- B. 234
- C. 124
- D. 1234

320. 如图,在 $\triangle ABC$ 中, $\angle B$ 、 $\angle C$ 的角平分线交于点 F,分别过 B、C 作 BF、CF 的垂线,交 CF、BF 的延长线于点 D、E,且 BD、EC 交于点 G. 则下列结论: ① $\angle D+\angle E=\angle A$; ② $\angle BFC-\angle G=\angle A$; ③ $\angle BCA+\angle A=2\angle ABD$; ④ $AB \cdot BC=BD \cdot BG$. 正确的有(

- A. 124
- B. 134
- C. 123
- D. 1234

321. 如图,在边长为 2 的正方形 ABCD 中,P 是 BC 边上的动点,过点 P 作 $PE \perp AC$ 于点 E,连接 DE 并延长,交 BC 边于点 F,连接 AP. 则下列结论: ① $\angle PAC = \angle CDF$; ②PE 与 BP 成反比; ③PF 长的最大值为 $6-4\sqrt{2}$; ④当 $\triangle CEF$ 为等腰三角形时,BP 的长为 0 或 $2\sqrt{2}-2$. 正确的是(

- A. 124
- B. 134
- C. 123
- D. (1)(2)(3)(4)

322. 如图,已知 AB=12,点 C、D 在线段 AB 上,且 AC=DB=2,点 P 从点 C 出发沿线段 CD 向点 D 移 动(移动到点 D 停止),分别以 AP、BP 为斜边在线段 AB 同侧作等腰 $Rt \triangle AEP$ 和等腰 $Rt \triangle PFB$,连接 EF,设EF的中点为G,则下列结论中正确的有()

①线段 EF 长的最小值是 6; ② $\triangle EPF$ 的外接圆始终与 AB 相切; ③四边形 AEFB 的面积为定值; ④点 G移动的路径长为4.

- A. 1个
- B. 2个
- C. 3个
- D. 4个

- 323. 如图, 四边形 ABCD 的顶点都在坐标轴上, AB//CD, $\triangle ABD$ 与 $\triangle ACD$ 的面积分别为 10 和 20, 若 双曲线 $y = \frac{k}{r}$ 恰好经过 BC 的中点 E,则 k 的值为(

- A. 4 B. 3 C. $\frac{8}{3}$ D. $\frac{10}{3}$

- 324. 如图,以O为圆心,半径为2的圆与反比例函数 $y=\frac{\sqrt{3}}{x}$ (x>0) 的图象交于A、B 两点,则劣弧 AB的长为(
 - A. $\frac{4}{3}\pi$ B. π
 - C. $\frac{2}{3}\pi$ D. $\frac{1}{3}\pi$

- 325. 直线 y=2x-3 关于直线 y=x 对称的直线的解析式为 ()
 - A. $y = \frac{1}{2}x + \frac{3}{2}$ B. x = 3 C. $y = \frac{1}{3}x + \frac{2}{3}$ D. $y = \frac{1}{2}x + 1$

- A. $30^{\circ} < \alpha \le 45^{\circ}$
- B. 0°<α≤30°
- C. 0°<α≤60°
- D. $30^{\circ} < \alpha \le 60^{\circ}$

327. 如图,在 $\Box ABCD$ 中, $\angle B=60^{\circ}$, $AE \bot BC$ 于 E, $AF \bot CD$ 于 F.若 $\Box ABCD$ 的面积为 S,则 $\triangle AEF$ 的面积为(

- A. $\frac{2}{5}S$
- B. $\frac{1}{3}S$
- C. $\frac{3}{8}S$

328. 如图,以 BC 为直径的 $\odot O$ 与 $\triangle ABC$ 的另两边分别相交于点 D、E. 若 $\angle A$ =70°,BC=2,则图中阴 影部分的面积为

- A. $\frac{3}{10}\pi$

- C. $\frac{1}{3}\pi$ D. $\frac{7}{18}\pi$

329. 如图,已知 $\triangle ABC$ 的面积是 2, $\triangle BCD$ 的面积是 3, $\triangle CDE$ 的面积是 3, $\triangle DEF$ 的面积是 4, $\triangle EFG$ 的面积是 3, $\triangle FGH$ 的面积是 5,则 $\triangle EFH$ 的面积是 (

- A. 4
- B. 3
- C. $\frac{10}{3}$
- D. $\frac{7}{2}$

330. Rt $\triangle ADE$ 和 Rt $\triangle ABC$ 按照如图所示放置在一起, $\angle DEA = \angle ACB = 90^{\circ}$,AE = 3,DE = 4,AC = 12, BC=9,且 E、A、C 三点在同一直线上,连接 BD,取 BD 的中点 M,连接 ME、MC,则下列结论中正确 的有(

① $DA \perp EM$; ② $\triangle EMC$ 是等腰直角三角形; ③ $\frac{S_{\triangle EMC}}{S_{DAB}} = \frac{13}{10}$; ④ $\angle DBA = \frac{1}{2} \angle BAC$.

- A. 1个

- B. 2 个 C. 3 个 D. 4 个

331. 如图, $\triangle ABC$ 和 $\triangle CDE$ 均为等腰直角三角形,点 $B \setminus C \setminus D$ 在一条直线上,点 $M \in AE$ 的中点,下 列结论: ① $\tan \angle AEC = \frac{BC}{CD}$; ② $S_{\triangle ABC} + S_{\triangle CDE} \ge S_{\triangle ACE}$; ③ $BM \bot DM$; ④BM = DM. 正确结论的个数是(

- A. 1个 B. 2个 C. 3个 D. 4个

332. 已知线段 AB 的长是定值,半圆的圆心 O 是 AB 的中点,AD、BC、CD 都是半圆的切线,切点分别 是 $E \setminus F \setminus G$. 当点 G 运动时,设 AD = x, BC = y,则 y = x 的函数关系式为(

- A. 正比例函数 y=kx
- B. 一次函数 y=kx+b ($b\neq 0$)
- C. 反比例函数 $y = \frac{k}{r}$
- D. 二次函数 $y=ax^2+bx+c$

333. 已知 AB 是 $\odot O$ 的直径,D、E 是 AB 同侧圆周上的两点,且 AD=DE,AE 与 BD 交于点 C,则图中与 $\angle BCE$ 相等的角有 () 个

- A. 2个
- B. 3 个
- C. 4个
- D. 5

334. 如图是某条公共汽车线路收支差额y与乘客量x的图象(收支差额=乘车收入一支出费用),由于目 前本条线路亏损,公司有关人员提出两条建议:建议(1)是不改变乘车价格,减少支出费用;建议(2) 是不改变支出费用,提高乘车价格 333. 关于下面四个图象,正确的说法是()

- A. ①反映了建议(2), ③反映了建议(1)
- C. ②反映了建议(1), ④反映了建议(2)
- B. ①反映了建议(1), ③反映了建议(2)
- D. ④反映了建议(1), ②反映了建议(2)

335. 设一元二次方程 (x-1)(x-2) = m (m>0) 的两实根分别为 α , β , 且 $\alpha < \beta$, 则 α , β 满足 (x-1)(x-2) = m (m>0)

- A. $1 < \alpha < \beta < 2$ B. $1 < \alpha < 2 < \beta$ C. $\alpha < 1 < \beta < 2$ D. $\alpha < 1 \perp \beta > 2$

336. 已知 f(x) = 1 - (x - a)(x - b),且 m,n 是方程 f(x) = 0 的两根,则实数 a,b,m,n 的大小关系可能 是()

- A. m < a < b < n
- B. $a \le m \le n \le b$ C. $a \le m \le b \le n$
- D. m < a < n < b

337. 已知函数 y=3-(x-m)(x-n),并且 a,b 是方程 3-(x-m)(x-n)=0 的两个根,则实数 m,n,a, b的大小关系可能是(

- A. m < a < b < n

- B. m < a < n < b C. a < m < b < n D. a < m < n < b

)

- A. $x_1 < x_2 < a < b$ B. $x_1 < a < x_2 < b$ C. $x_1 < a < b < x_2$
- D. $a < x_1 < b < x_2$

339. 如图,将一圆形纸片沿着弦 BC 折叠后,圆弧恰好经过直径 AB 上一点 D,且 AD=5,BD=7,则折 痕 BC 的长为()

- A. 10
- B. $2\sqrt{30}$
- C. $\sqrt{114}$
- D. 11

340. 如图,以半圆的一条弦 BC 为对称轴将弧 BC 折叠后与直径 AB 交于点 D,若 AB=10, $\frac{AD}{DB}=\frac{2}{3}$,则

- BC 的长为(A. $4\sqrt{5}$
- B. $4\sqrt{3}$ C. $4\sqrt{2}$
- D. 4

341. 如图,矩形 ABCD 被分成 8 块,图中的数字是其中 5 块的面积数,则图中阴影部分的面积为()

- A. 80
- B. 85
- C. 90
- D. 95

342. 下图是某汽车维修公司的维修点环形分布图. 公司在年初分配给 $A \times B \times C \times D$ 四个维修点某种配件 各 50 件,在使用前发现需将 A、B、C、D 四个维修点的这批配件分别调整为 40、45、54、61 件,但调整 只能在相邻维修点之间进行. 那么要完成上述调整, 最少的调动件次(n 件配件从一个维修点调整到相邻 维修点的调动件次为n)为(

- A. 15
- B. 16
- C. 17
- D. 18

343. 如图,将 Rt \triangle ABC 依次绕直角顶点 C 沿水平线翻转两次,若 $AC = \sqrt{3}$, BC = 1,那么 AC 边从开始到 结束所扫过的图形的面积为(

- C. $\frac{9}{4}\pi$
- D. $\frac{25}{12}\pi$

344. 如图,将矩形 ABCD 绕它的对称中心 O 旋转 90° ,若 AB=1cm, $AD=\sqrt{3}$ cm,则矩形 ABCD 扫过的 面积是(

- A. $\frac{5}{6}\pi + \frac{\sqrt{3}-1}{2}$
- B. $\frac{\sqrt{3}+2}{4}\pi$
- C. $\pi + \frac{\sqrt{3}}{2} 1$

D. π

345. 如图,在 $\square ABCD$ 中,AB:BC=2:3, $\angle BAC=60^{\circ}$,则 $\cos B$ 的值等于(

- A. $\frac{3-\sqrt{6}}{6}$
- B. $\frac{2\sqrt{2}+\sqrt{3}}{6}$
- C. $\frac{3+\sqrt{6}}{6}$
- D. $\frac{2\sqrt{2}-\sqrt{3}}{6}$

346. 如图,两个全等的边长为正整数的正 $\triangle A_1B_1C_1$ 和正 $\triangle A_2B_2C_2$ 的中心重合, 且满足 $A_1B_1\perp A_2C_2$,若六 边形 ABCDEF 的面积为 $S = \frac{1}{m} - \frac{\sqrt{3}}{n}$, 其中, m、n 为有理数, 则 $\frac{m}{n}$ 的值为 (

- A. $\frac{1}{2}$ B. $\frac{2}{3}$ C. $\frac{1}{4}$ D. $\frac{1}{3}$

347. 如图,点A、B 是直线y=x 上的两点,过A、B 两点分别作y 轴的平行线交双曲线 $y=\frac{1}{x}$ (x>0) 于

- C、D 两点. 若 BD=2AC,则 $4OC^2-OD^2$ 的值为(
 - B. 4
- C. 6
- D. 8

348. 对于实数 $c \times d$,我们可用 $\min\{c, d\}$ 表示 $c \times d$ 两数中较小的数,如 $\min\{3, -1\} = -1$. 若关于 x 的 函数 $y=\min\{2x^2, a(x-t)^2\}$ 的图象关于直线 x=3 对称,则 a、t 的值可能是(

- B. 2, -6
- C. 2, 6

349. 如图,在菱形 ABCD 中, $\angle DAB=120^{\circ}$,点 E 平分 DC,点 P 在 BD 上,且 PE+PC=1,那么,边 AB 长的最大值是(

- A. 1
- B. $\frac{2\sqrt{3}}{3}$
- C. $\frac{\sqrt{3}}{2}$
- D. $\sqrt{3}$

350. 如图,直线 $PA: y=x+n \ (n>0)$,直线 $PB: y=-2x+m \ (m>n)$,直线 PA 与 y 轴交于点 Q,且四边 形 PQOB 的面积是 $\frac{5}{6}$, AB=2, 则点 P 的坐标为(

- A. $(\frac{1}{3}, \frac{4}{3})$ B. $(\frac{1}{3}, \frac{3}{2})$
- C. $(\frac{1}{2}, \frac{4}{3})$ D. $(\frac{1}{2}, \frac{3}{2})$

351. 铁链是由铁环相扣组成的,某铁链的铁环尺寸如图所示,那么,一段由这种相同的铁环环环相扣组 成的长14.5米的铁链,共有() 个铁环

- A. 224
- B. 225
- C. 226
- D. 227

352. 如图,正方形 ABCD 的边长为 1,M、N 为 BD 所在直线上的两点,且 $AM = \sqrt{5}$, $\angle MAN = 135^{\circ}$,则 四边形 AMCN 的面积为 ()

- A. $\frac{3}{2}$
- B. 2
- C. $\frac{5}{2}$
- D. $\frac{12}{5}$

353. 已知函数 $f(x) = x^2 + \lambda x$, p、q、r为 $\triangle ABC$ 的三边,且 p < q < r,若对所有的正整数 p、q、r 都满足 f(p) < f(q) < f(r),则 λ 的取值范围是()

- A. $\lambda > -2$ B. $\lambda > -3$
- C. $\lambda > -4$
- D. $\lambda > -5$

354. 如图,在 $\triangle ABC$ 中, $\angle ABC$ =90°,AB=BC=5,P 是 $\triangle ABC$ 内一点,且 PA= $\sqrt{5}$,PC=5,则 PB=

- (
 - A. $\sqrt{10}$

B. 3

C. $\frac{3\sqrt{5}}{2}$

D. 4

355. 如图, $\triangle ABC$ 被 DE、FG 分成面积相等的三部分(即 $S_1=S_2=S_3$),且 DE//FG//BC, $BC=\sqrt{6}$,则 FG-DE= (

- A. $\sqrt{3}-1$ B. $\sqrt{6}-\sqrt{3}$ C. $\sqrt{6}-\sqrt{2}$ D. $2-\sqrt{2}$

356. 如图, *O* 是矩形 *ABCD* 内一点, 且 *OA*=1, *OB*=3, *OC*=4, 那么 *OD* 的长为(

- A. 2
- B. $2\sqrt{2}$
- C. $2\sqrt{3}$
- D. 3

357. 如图,"L"形纸片由五个边长为 1 的小正方形组成,过 A 点剪一刀,刀痕是线段 BC,若阴影部分面 积是纸片面积的一半,则 BC 的长为(

- A. $\frac{7}{2}$ B. 4 C. $\sqrt{15}$ D. $2\sqrt{3}$

358. 如图, 正方形 ABCD 中, $E \neq CD$ 边的中点, 点 $F \neq BC$ 边上, 且 $\angle AEF = 90^{\circ}$, $AF \neq BE$ 相交于点 G, 则 $\frac{BG}{GE}$ 的值为(

- A. $\frac{6}{5}$ B. $\frac{4}{3}$ C. $\frac{5}{4}$ D. $\frac{3}{2}$

359. 如图, 直角梯形 ABCD 中, $\angle A=90^{\circ}$, AD//BC, AB=AD, $DE \perp BC$ 于 E, 点 F 为 AB 上一点, 且 AF=EC,点 M为 FC的中点,连接 FD、DC、ME,设 FC与 DE 相交于点 N.下列结论:① $\angle FDB=\angle$ FCB; ② $\triangle DFN \hookrightarrow \triangle DBC$; ③ $FB = \sqrt{2}ME$; ④ME 垂直平分 BD. 其中正确结论的个数是(

- B. 2个
- C. 3个
- D. 4个

360. 如图, 等腰梯形 *ABCD* 中, *AD* // *BC*, *AB* = *CD*, *AC* = *BC*, *AE* ⊥ *BC* 于 *E*, *AD* : *AE* = 1 : 4, 若 *AB* = $4\sqrt{5}$,则梯形 *ABCD* 的面积等于 ()

- A. 44
- B. 46
- C. 48
- D. 50

361. 如图, $AD \setminus BE \setminus CF$ 是 $\triangle ABC$ 的三条高, 若 AB=6, BC=5, EF=3, 则线段 BE 的长为()

- A. $\frac{18}{5}$

- B. 4 C. $\frac{21}{5}$ D. $\frac{24}{5}$

362. 如图,在直角梯形 ABCD 中, AD//BC, $\angle ABC = 90^{\circ}$. 若沿对角线 AC 折叠梯形 ABCD,点 D 恰与 AB 边上的点 E 重合,且∠BCE=15°,连接 DE,交 AC 于 F,连接 BF.下列结论:①△CDE 为等边三角 形; ② $\triangle BEF \hookrightarrow \triangle ADC$; ③ $\angle BFC = \angle BCD$; ④EF = 2BE; ⑤四边形 BCFE 的面积 = $\triangle ADC$ 的面积. 其中 正确结论的个数是()

- A. 5 个
- B. 4 个 C. 3 个
- D. 2个

363. 已知函数 y=k|x|与 y=x+k 的图象恰有两个公共点,则实数 k 的取值范围是(

- A. k > 1 B. -1 < k < 1 C. k ≤ -1 和 k ≥ 1 D. k < -1 和 k > 1

364. 如图, 在 \Box ABCD中, 分别以 AB、AD 为边向外作等边 \triangle ABE、 \triangle ADF, 延长 CB 交 AE 于点 G, 点 G 在点 A, E 之间,连接 CE、 CF,则以下四个结论一定正确的是(① $\triangle CDF \cong \triangle EBC$; ② $\angle CDF = \angle EAF$; ③ $\triangle ECF$ 是等边 \triangle ; ④ $CG \perp AE$

365. 如图,圆锥的底面半径为 3dm, 母线长为 5dm, AB 为底面直径,C 为底面圆周上一点, $\angle COB = 150^\circ$, D 为 VB 上一点, $VD = \sqrt{7}$ dm. 现有一只蚂蚁,沿圆锥表面从点 C 爬到 D,则蚂蚁爬行的最短路程是(

- A. $3\sqrt{2}$ dm B. $4\sqrt{2}$ dm
- C. $\frac{15}{2}$ dm D. $2\sqrt{7}$ dm

366. 如图, 矩形 ABCD 中, $F \setminus G$ 分别为 $BC \setminus AD$ 的中点, H 为 FG 上一点, $D \setminus H$ 关于直线 AE 对称, AE 交 FG 于点 M, 连接 AF、EF、HE, 且 HE=HF. 下列结论:

① \triangle MEH 为等边三角形; ② \triangle AEF; ③ \triangle ADE \hookrightarrow \triangle AEF; ④ $\frac{AD}{AB} = \frac{2\sqrt{3}}{5}$.

其中正确的结论有(

- A. 123
- B. (1)(2)(4)
- C. (1)(3)(4)
- D. 24

367. 有五张正面分别标有数字-1,-5,0,1,2的不透明卡片,它们除数字不同外其余全部相同.现将 它们背面朝上,洗匀后从中任取一张,将卡片上的数字记为 a,将其代入不等式组

- 等式组的解集中至少有四个整数解的概率为(

- A. $\frac{1}{5}$ B. $\frac{2}{5}$ C. $\frac{3}{5}$ D. $\frac{4}{5}$

368. 如图, 在 $\triangle ABC$ 中, $\angle C=90^{\circ}$, M 是 AB 的中点, 动点 P 从点 A 出发, 沿 AC 方向匀速运动到终点 C, 动点Q从点C出发,沿CB方向匀速运动到终点B. 已知P、Q两点同时出发,并同时到达终点,连接 MP、MQ、PQ. 在整个运动过程中, $\triangle MPQ$ 的面积大小变化情况是(

A. 一直增大

- B. 一直减小
- C. 先减小后增大
- D. 先增大后减小

369. 如图,用邻边长分别为a,b(a < b)的矩形硬纸板裁出以a 为直径的两个半圆,再裁出与矩形的较 长边、两个半圆均相切的两个小圆. 把半圆作为圆锥形圣诞帽的侧面, 小圆恰好能作为底面, 从而做成两 个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是(

B.
$$b = \frac{\sqrt{5+1}}{2}a$$

C.
$$b = \frac{\sqrt{5}}{2}a$$

D.
$$b = \sqrt{2}a$$

370. 如图①,在正方形铁皮上剪下一个扇形和一个半径为的圆形,使之恰好围成图②所示的一个圆锥. 若 该圆锥的高为 $\sqrt{15}$ cm,则正方形铁皮的边长为 cm.

- A. $\frac{5\sqrt{2}+2}{2}$
- B. $5\sqrt{2}$
- C. $4\sqrt{2}-1$ D. $\frac{6\sqrt{2}+4}{3}$

371. 如图 1 是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理. 图 2 是由 图 1 放入矩形内得到的, $\angle BAC = 90^{\circ}$,AB = 3,AC = 4,点 D、E、F、G、H、I 都在矩形 KLMJ 的边上, 则矩形 KLMJ 的面积为()

- A. 90
- B. 100
- C. 110
- D. 121

图 1

372. 如图,已知抛物线 $y_1 = -2x^2 + 2$,直线 $y_2 = 2x + 2$,当 x 任取一值时,x 对应的函数值分别为 y_1 、 y_2 . 若 $y_1 \neq y_2$, 取 y_1 、 y_2 中的较小值记为 M; 若 $y_1 = y_2$, 记 $M = y_1 = y_2$. 例如: 当 x = 1 时, $y_1 = 0$, $y_2 = 4$, y_1 $< y_2$, 此时 M=0. 下列判断:

- ①当x>0时, $y_1>y_2$;
- ②当x < 0时, x 值越大, M 值越小:
- ③使得 M 大于 2 的 x 值不存在; ④使得 M=1 的 x 值是 $-\frac{1}{2}$ 或 $\frac{\sqrt{2}}{2}$.

其中正确的是(

- A. (1)(2) B. (1)(4) C. (2)(3)
- D. (3)(4)

373. 在一条笔直的公路边,有一些树和灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯之间 的距离都是 10m. 如图,一棵树左边 5m 处有一个路牌,则从此路牌起向右 510m~550m 之间树与灯的排 列顺序是(

374. 已知直角梯形 ABCD 中,AD//BC, $\angle C=90^{\circ}$, $\angle ABC=45^{\circ}$,E、F 分别是腰 AB、DC 上的点,且 EF//BC,AD=AE,BC=BE,则 $\angle AFB$ 的正切值为(

A. $2\sqrt{2}$

B. $\frac{4\sqrt{2}}{5}$

C. $\frac{4\sqrt{2}}{3}$ D. $\frac{2\sqrt{2}}{3}$

375. 已知 Rt $\triangle ABC$ 中, $\angle ACB$ =90°,AC=2BC, $\triangle ABC$ 的顶点在相互平行的三条直线 l_1 , l_2 , l_3 上,且 l_1 , l_2 之间的距离为 1, l_2 , l_3 之间的距离为 2, 则 AB 的长为(

A. $2\sqrt{15}$

B. $2\sqrt{10}$

C. $5\sqrt{2}$

D. 7

376. 如图,在四边形 ABCD中, E、F、G、H分别是边 AD、BC的三等分点,若四边形 ABGE、EGHF、 FHCD 的面积分别为 S_1 、 S_2 和 S_3 ,则下列结论一定成立的是(

A. $\sqrt{S_1} + \sqrt{S_3} = 2\sqrt{S_2}$ B. $S_1 + S_3 = 2S_2$ C. $S_2 = \sqrt{S_1S_3}$

D. $S_2 = \sqrt{S_1^2 + S_3^2}$

- A. 110°
- B. 115°
- C. 120°
- D. 125°

378. 己知二次函数 $y=2x^2+9x+34$, 当自变量 x 取两个不同的值 x_1 , x_2 时, 函数值相等, 那么当自变量 x取 x_1+x_2 时的函数值与(

- A. x=1 时的函数值相等
- B. x=0 时的函数值相等
- C. $x = \frac{1}{4}$ 时的函数值相等
- D. $x = \frac{9}{4}$ 时的函数值相等

379. 己知直角梯形 *ABCD* 中, *AD* // *BC*, *AB* \(*BC*, *AD* = 2, *BC* = *DC* = 5, 点 *P* 在 *BC* 上移动,则当 *PA* + PD 取最小值时, $\triangle APD$ 中边 AP 上的高为(

- A. $\frac{2}{17}\sqrt{17}$ B. $\frac{4}{17}\sqrt{17}$ C. $\frac{8}{17}\sqrt{17}$ D. 3

380. 如图,M 为 $\odot N$ 上一点, $\odot M$ 与 $\odot N$ 相交于 A、B 两点,P 为 $\odot N$ 上任意一点,直线 PA、PB 分别交 $\odot M$ 于 C、D 两点,直线 CD 交 $\odot N$ 于 E、F 两点,连接 PE、PF、BC. 下列结论:

①PE=PF; ② $PE^2=PA\cdot PC$; ③ $AE\cdot BE=CE\cdot DE$; ④ $\frac{PB}{BC}=\frac{R}{r}$ (其中 R、r 分别为①N、⊙M 的半径).

- 其中正确的有(
 - A. 123

)

- B. 124 C. 24 D. 1234

381. 已知 $\triangle ABC$ 中, $\angle A=36^{\circ}$,AB=AC=a, $\angle ABC$ 的平分线交 AC 于 D, $\angle BCD$ 的平分线交 BD 于 E,

- 设 $k = \frac{\sqrt{5} 1}{2}$,则 DE = ()

- A. $k^2 a$ B. $k^3 a$ C. $\frac{a}{k^2}$ D. $\frac{a}{k^3}$

382.	如图,	将 $⊙O_1$ 向右平移 6 个单位得 $⊙O_2$,	两圆相交于 A 、 B ,	$\perp \angle O_1 A O_2 = 120^\circ$,	则图中阴影部分的
面积	是 ()			

- A. $2\pi 3\sqrt{3}$ B. $\pi \sqrt{3}$ C. $2\pi 2\sqrt{3}$ D. $3\pi 3\sqrt{3}$

383. 如图, $\triangle ABC$ 和 $\triangle ADE$ 都是等腰直角三角形, $\angle BAC = \angle DAE = 90^{\circ}$,四边形 ACDE 是平行四边形, 连接 CE 交 AD 于点 F, 连接 BD 交 CE 于点 G, 连接 BE. 下列结论中:

- ①CE=BD; ② $\triangle ADC$ 是等腰直角三角形; ③ $\angle ADB=\angle AEB$; ④ $CD \cdot AE=EF \cdot CG$.
- 一定正确的结论有()
 - A. 1 个 B. 2 个
- C. 3 个 D. 4 个

384. 一块边缘呈抛物线型的铁片如图放置,测得 AB=20cm,抛物线的顶点到 AB 边的距离为 25cm. 现要 沿 AB 边向上依次截取宽度均为 4cm 的矩形铁片,若截得的铁片中有一块是正方形,则这块正方形铁片是

- ()

- A. 第七块 B. 第六块 C.第五块 D. 第四块

385. 如图,点 A 在半径为 3 的 $\odot O$ 内, $OA = \sqrt{3}$,P 为 $\odot O$ 上一点,当 $\angle OPA$ 最大时,PA 的长为 ().

- A. $\frac{3}{2}$ B. $\sqrt{6}$ C. 3 D. $2\sqrt{3}$

386. 如图,已知线段 OA 交 $\odot O$ 于点 B,且 OB=AB,点 P 是 $\odot O$ 上的一个动点,那么 $\angle OAP$ 的最大值是

- () $A.~30^{\circ}$
- B. 45° C. 60°
- D. 90°

387. 在一个足够大的平面上铺满了边长为 6cm 的正方形地砖(密铺),投掷一枚半径为 1cm 的硬币,则 硬币压在两块地砖之间缝隙的概率为(

388. 如图所示,梯子 AB 斜靠在墙面上, $AC \perp BC$,AC = BC. 当梯子的顶端 A 沿 AC 方向下滑 x 米时,梯 子的底端 B 沿 CB 方向滑动 y 米,则 x 与 y 的大小关系是 ()

- A. x=y
- B. x < y
- C. x>y
- D. 不确定

389. 如图,矩形 ABCD 的对角线 BD 经过坐标原点,矩形的边分别平行于坐标轴,点 C 在反比例函数 V

 $=-\frac{k^2+5k-6}{2x}$ 的图象上. 若点 A 的坐标为 (-3, -2),则 k 的值为 (-3, -2)

- A. -3 或-2
- B. -3

C. -2

D. -1 或-4

390. 己知二次函数 $y=ax^2+bx+c$ 的图象与 x 轴交于点 (-2,0), $(x_1,0)$, 且 $1 < x_1 < 2$, 与 y 轴的正半 轴交于点 (0, 2) 的下方. 下列结论: ①a < b < 0; ②2a + c > 0; ③4a + c < 0; ④2a - b + 1 > 0. 其中正确结 论的个数为()

- A. 1个
- B. 2 个 C. 3 个 D. 4 个

391. 已知二次函数 $y=ax^2+bx+c$ 的图象与 x 轴交于点 (-3,0), $(x_1,0)$, 且 $2 < x_1 < 3$, 与 y 轴的负半 轴交于点 (0, -3) 的上方. 下列结论: ①a>b>0; ②6a+c<0; ③9a+c>0; ④3a<b+1. 其中正确结 论的个数为()

- A. 1个
- B. 2个
- C. 3 个
- D. 4个

392. 已知二次函数 $y=ax^2+bx+c$ 的图象与 x 轴交于 $(x_1,\ 0)$ 、 $(x_2,\ 0)$ 两点,且 $0 < x_1 < 1$, $1 < x_2 < 2$,与 y 轴交于点 (0, -2). 下列结论: ①2a+b>1; ②3a+b>0; ③a-b<2; ④a<-1. 其中正确结论的个数 为()

- A. 1个 B. 2个 C. 3个 D. 4个

393. 如图, $\triangle ABD$ 是等边三角形,以 BD 为边向外作等边三角形 BDC,点 E、F 分别在 AB、AD 上,且 AE=DF,连接 BF、DE 相交于点 G,连接 CG. 下列结论: ① $\angle BGE=60^\circ$; ②CG 平分 $\angle BGD$; ③CG=BG+DG. 其中正确的是(

- A. 仅有①③
- B. 仅有①②
- C. 仅有②③
- D. 123

394. 定义 $\{a, b, c\}$ 为函数 $y=ax^2+bx+c$ 的特征数,下面给出特征数为为 $\{2m, 1-m, -1-m\}$ 的函数的一些结论:

- ①当 m=-3 时,函数图象的顶点坐标是 $(\frac{1}{3}, \frac{8}{3});$
- ②当 m>0 时,函数图象截 x 轴所得的线段长度大于 $\frac{3}{2}$;
- ③当 m < 0 时,函数在 $x > \frac{1}{4}$ 时,y 随 x 的增大而减小;

)

④当 $m \neq 0$ 时,函数图象经过同一个点.

其中正确的结论有(

- A. 1234
- B. 124
- C. 134
- D. 24

395. 如图,等边三角形 ABC 中,D、E 分别是 AB、AC 上的点,BD=8,CE=6,F、G 分别是 DE、BC 的中点,则 FG=().

- A. 6
- B. $\sqrt{37}$
- C. $3\sqrt{5}$
- D. $\frac{25}{4}$

396. 如图,正方形 ABCD 的边长为 1,E 为 AB 的中点,F 为 DE 的中点,G 为 CF 的中点,则 G 到 AC 的距离等于()

- A. $\frac{\sqrt{2}}{8}$
- B. $\frac{\sqrt{2}}{10}$
- C. $\frac{\sqrt{2}}{12}$
- D. $\frac{\sqrt{2}}{16}$

397. 如图, 在正方形 *ABCD* 中, 点 *E、F* 分别在 *BC、CD* 上, ∠*EAF*=45°, *BE*: *EC*=2:3, 则 *DF*: *FC* = ()

- A. 2:3
- B. 3:4
- C. 3:5
- D. 4:5

398. 如图, *AB* 为半圆 *O* 的直径, 点 *C*、*D* 在圆弧上, 若 *AB*=4, *AC*=*CD*=1, 则 *BD* 的长为 ()

- A. $\frac{7}{2}$
- B. $\sqrt{15}$
- C. $2\sqrt{3}$
- D. $\frac{10}{3}$

399. 己知 $\triangle ABC$ 中, $\angle BAC$ =40°, $\angle ABC$ =76°, $\angle ABC$ 的平分线与 $\angle ACB$ 的外角平分线交于点 D,连接 AD,则 $\angle ADB$ 的度数为(

- A. 30°
- B. 32°
- $C. 34^{\circ}$
- D. 36°

400. 如图, $\odot O$ 的直径 AB=8,P 是上半圆(A、B 除外)上任一点, $\angle APB$ 的平分线交 $\odot O$ 于 C,弦 EF 过 AC、BC 的中点 M、N,则 EF 的长是(

- A. $4\sqrt{3}$
- B. $2\sqrt{3}$
- C. 6
- D. $2\sqrt{6}$

