# ACTL3142 Week 10 - Unsupervised Learning

Tadhg Xu-Glassop 2025T2

## **Unsupervised Learning**

Unsupervised learning differentiates itself from supervised learning by not having a target variable Y; instead of finding relationships between X and Y, we just try to find meaningful relationships and  $simplify\ X$ .

1

## Clustering

### Clustering

Clustering aims to group the observations into "clusters" - geometric groups where observations belonging to the same class have some meaningful similarities.



2

## K-means Clustering

#### K-means clustering

For some predetermined number of clusters K, sort the data into K clusters.

The resulting clusters should minimise the Within-Cluster Variation,

$$W(C_k) = 2 \sum_{i \in C_k} \sum_{j=1}^{p} (x_{ij} - \overline{x}_{kj})^2.$$

- Found by repeatedly running the *K*-means algorithm, where we randomly assign centroids and recompute the centroid until convergence (see website).
- *K* can be chosen by considering many reasons, both practical and statistical.
  - Select K where improvement in WCV plateaus;
  - Want to specifically segment data into K groups.

## **Hierarchical Clustering**

### Heirarchical Clustering Method (see website for demo!)

For some distance metrics;

- 1. Start with all observations as their own clusters.
- 2. Find the pairwise distance between all clusters, and join the two clusters with the least distance.
- 3. Repeat 2 until everything is clustered together.

Useful when you don't have a value of K in mind and want to see the implications of a different number of clusters. The above can be visualised with a **dendogram**.



### **Notes on Heirarchical Clustering**

There are two choices to be made before:

#### Choice of distance metric

 We could pick any distance metric to calculate the dissimilarity between observations, and there is no best one!

### **Linkage** (how to find distance between clusters)

- How do we measure the distance between two groups of observations? We could;
  - Complete take the largest difference;
  - Single take the smallest difference;
  - Average take the mean of all distances;
  - Centroid take the distance between centroids.

Ideally, a good clustering should be robust to these choices.

#### **Dimension Reduction**

Suppose p is large. Then training models could be very slow!

If only there was a way to reduce p, perhaps projecting our predictor space onto a lesser dimensional subspace could be beneficial...

#### Principal Component Analysis

Let  $X_1, X_2, \dots, X_p$  be the columns of our data matrix. Then, the *i*th principal component for  $1 \le i \le p$  is

$$Z_i = \phi_{i1}X_1 + \phi_{i2}X_2 + \dots + \phi_{ip}X_p, \qquad \sum_{j=1}^p \phi_{ij}^2 = 1.$$

Each  $Z_i$  aims to capture the maximum possible variance.

Geometrically, begin with an empty basis  $B = \{\}.$ 

- 1. What vector can we add to B that minimises the distance between  $\operatorname{span}(B)$  and our observations? We find it, then add it to B.
- 2. We repeat this *p* times. the *i*th vector we added is the *i*th principal component.

7

#### **Notes on PCA**

After we find our PC's, we can perform dimension reduction by projecting our data onto  $B_k = \operatorname{span}\{Z_1, Z_2, \dots Z_k\}$ .

The choice of k can be found by choosing when additional PCA's don't explain much more variance, or by assessing the performance of an ML model using  $B_k$  with cross-validation for different values of k.

