Confidence Intervals and Hypothesis Testing

Confidence Intervals:

Confidence interval, Normal

distribution

If parameter θ has an unbiased, Normally distributed estimator $\hat{\theta}$, then

$$\hat{\theta} \pm z_{\alpha/2} \cdot \sigma(\hat{\theta}) \ = \ \left[\hat{\theta} - z_{\alpha/2} \cdot \sigma(\hat{\theta}), \ \hat{\theta} + z_{\alpha/2} \cdot \sigma(\hat{\theta}) \right]$$

is a $(1 - \alpha)100\%$ confidence interval for θ .

If the distribution of $\hat{\theta}$ is approximately Normal, we get an approximately $(1-\alpha)100\%$ confidence interval.

If we do not know the population std. dev. but we know the n is large, then $\sigma(\theta)$ can be replaced by $s(\theta)$

Confidence interval for the difference of means; known standard deviations

$$\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}$$

Confidence interval for a population proportion

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Confidence interval for the difference of proportions

$$\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

If n is small,

Confidence interval for the mean; σ is unknown

$$\bar{X} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$

where $t_{\alpha/2}$ is a critical value from T-distribution with n-1 degrees of freedom

Confidence interval for the difference of means; equal, unknown standard deviations

$$\bar{X} - \bar{Y} \pm t_{\alpha/2} \, s_p \sqrt{\frac{1}{n} + \frac{1}{m}}$$

where s_p is the pooled standard deviation, a root of the pooled variance in (9.11)

and $t_{\alpha/2}$ is a critical value from T-distribution with (n+m-2) degrees of freedom

Pooled Std. Deviation:

$$s_p^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{i=1}^m (Y_i - \bar{Y})^2}{n+m-2} = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}.$$
 (9.11)

Confidence interval for the difference of means; unequal, unknown standard deviations

$$\bar{X} - \bar{Y} \pm t_{\alpha/2} \sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}$$

where $t_{\alpha/2}$ is a critical value from T-distribution with ν degrees of freedom given by formula (9.12)

Statterthwaite approximation of degrees of freedom (9.12):

$$\nu = \frac{\left(\frac{s_X^2}{n} + \frac{s_Y^2}{m}\right)^2}{\frac{s_X^4}{n^2(n-1)} + \frac{s_Y^4}{m^2(m-1)}}$$

Hypothesis Testing (Z-tests):

$$\begin{array}{lll} \text{Right Tailed Test (H_A: $\theta > \theta_0$):} \left\{ \begin{array}{ll} \text{reject H_0} & \text{if} & Z \geq z_\alpha \\ \text{accept H_0} & \text{if} & Z < z_\alpha \end{array} \right. \\ \text{Left Tailed Test (H_A: $\theta < \theta_0$):} \left\{ \begin{array}{ll} \text{reject H_0} & \text{if} & Z \leq -z_\alpha \\ \text{accept H_0} & \text{if} & Z > -z_\alpha \end{array} \right. \\ \end{array} \right.$$

Left Tailed Test (H_A:
$$\theta < \theta_0$$
):
$$\begin{cases} \text{reject } H_0 & \text{if } Z \leq -z_{\alpha} \\ \text{accept } H_0 & \text{if } Z > -z_{\alpha} \end{cases}$$

Two Tailed Test (H_A:
$$\theta \neq \theta_0$$
):
$$\left\{ \begin{array}{ll} \text{reject } H_0 & \text{if} \quad |Z| \geq z_{\alpha/2} \\ \text{accept } H_0 & \text{if} \quad |Z| < z_{\alpha/2} \end{array} \right.$$

Hypothesis Testing (t-tests):

For a right-tail alternative,

$$\begin{cases} \text{ reject } H_0 & \text{if } t \ge t_\alpha \\ \text{accept } H_0 & \text{if } t < t_\alpha \end{cases}$$

For a left-tail alternative,

$$\left\{ \begin{array}{ll} \text{reject } H_0 & \text{ if } \quad t \leq -t_\alpha \\ \text{accept } H_0 & \text{ if } \quad t > -t_\alpha \end{array} \right.$$

For a two-sided alternative,

$$\begin{cases} \text{ reject } H_0 & \text{if } |t| \ge t_{\alpha/2} \\ \text{accept } H_0 & \text{if } |t| < t_{\alpha/2} \end{cases}$$

Note: 2 sided tests using Confidence Intervals

A level α Z-test of $H_0: \theta = \theta_0$ vs $H_A: \theta \neq \theta_0$ accepts the null hypothesis

if and only if

a symmetric $(1-\alpha)100\%$ confidence Z-interval for θ contains θ_0 .

Summary of Z - Tests

Null hypothesis	Parameter, estimator	If H_0 is true:		Test statistic
H_0	$ heta,\hat{ heta}$	$\mathbf{E}(\hat{ heta})$	$\mathrm{Var}(\hat{ heta})$	$Z = \frac{\hat{\theta} - \theta_0}{\sqrt{\operatorname{Var}(\hat{\theta})}}$
One-sa	mple Z-tests for	r means	and proportions, based or	a sample of size n
$\mu = \mu_0$	μ, \bar{X}	μ_0	$\frac{\sigma^2}{n}$	$\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$
$p = p_0$	p,\hat{p}	p_0	$\frac{p_0(1-p_0)}{n}$	$\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$
Two-sa	Two-sample Z-tests comparing means and proportions of two populations, based on independent samples of size n and m			
$\mu_X - \mu_Y = D$	$\mu_X - \mu_Y,$ $\bar{X} - \bar{Y}$	D	$\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}$	$\frac{\bar{X} - \bar{Y} - D}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$
$p_1 - p_2 = D$	$p_1 - p_2,$ $\hat{p}_1 - \hat{p}_2$	D	$\frac{p_1(1-p_1)}{n} + \frac{p_2(1-p_2)}{m}$	$\frac{\hat{p}_1 - \hat{p}_2 - D}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n} + \frac{\hat{p}_2(1-\hat{p}_2)}{m}}}$
$p_1 = p_2$	$p_1 - p_2,$ $\hat{p}_1 - \hat{p}_2$	0	$p(1-p)\left(\frac{1}{n} + \frac{1}{m}\right),$ where $p = p_1 = p_2$	$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n} + \frac{1}{m}\right)}}$ where $\hat{p} = \frac{n\hat{p}_1 + m\hat{p}_2}{n+m}$

Summary of t-tests

Hypothesis H_0	Conditions	Test statistic t	Degrees of freedom
$\mu = \mu_0$	Sample size n ; unknown σ	$t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}$	n-1
$\mu_X - \mu_Y = D$	Sample sizes n, m ; unknown but equal standard deviations, $\sigma_X = \sigma_Y$	$t = \frac{\bar{X} - \bar{Y} - D}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$	n + m - 2
$\mu_X - \mu_Y = D$	Sample sizes n, m ; unknown, unequal standard deviations, $\sigma_X \neq \sigma_Y$	$t = \frac{\bar{X} - \bar{Y} - D}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}}$	Satterthwaite approximation, formula (9.12)

P Values (Reject H_0 if P < 0.01, Accept H_0 if P > 0.1, Not enough evidence otherwise):

P values for Z tests:

Hypothesis H_0	Alternative H_A	P-value	Computation
	$\begin{array}{c} \text{right-tail} \\ \theta > \theta_0 \end{array}$	$P\left\{Z \geq Z_{ m obs} ight\}$	$1 - \Phi(Z_{\rm obs})$
$\theta = \theta_0$	$\begin{array}{c} \text{left-tail} \\ \theta < \theta_0 \end{array}$	$P\{Z \le Z_{ m obs}\}$	$\Phi(Z_{ m obs})$
	two-sided $\theta \neq \theta_0$	$P\left\{ Z \ge Z_{ m obs} ight\}$	$2(1 - \Phi(Z_{\rm obs}))$

P values for t tests:

Hypothesis H_0	Alternative H_A	P-value	Computation
	$\begin{array}{c} \text{right-tail} \\ \theta > \theta_0 \end{array}$	$P\left\{t \geq t_{ m obs}\right\}$	$1 - F_{\nu}(t_{\rm obs})$
$\theta = \theta_0$	$\begin{array}{l} \text{left-tail} \\ \theta < \theta_0 \end{array}$	$P\left\{t \leq t_{ m obs}\right\}$	$F_{\nu}(t_{ m obs})$
	two-sided $\theta \neq \theta_0$	$P\{ t \ge t_{ m obs} \}$	$2(1 - F_{\nu}(t_{\rm obs}))$

Confidence Intervals (variance):

Confidence interval for the variance

$$\left[\frac{(n-1)s^2}{\chi_{\alpha/2}^2}, \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}\right]$$

Confidence interval for the standard deviation

$$\left[\sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}}, \sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}\right]$$

Hypothesis tests for variance (can also be used for Std Dev by conv question to variance):

Null Hypothesis	Alternative Hypothesis	Test statistic	Rejection region	P-value
	$\sigma^2 > \sigma_0^2$		$\chi^2_{ m obs} > \chi^2_{lpha}$	$m{P}\left\{\chi^2 \geq \chi^2_{ m obs} ight\}$
$\sigma^2 = \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$\frac{(n-1)s^2}{\sigma_0^2}$	$\chi^2_{ m obs} < \chi^2_{lpha}$	$P\left\{\chi^2 \le \chi^2_{ m obs}\right\}$
	$\sigma^2 \neq \sigma_0^2$		$\chi_{\text{obs}}^2 \ge \chi_{\alpha/2}^2 \text{ or }$ $\chi_{\text{obs}}^2 \le \chi_{1-\alpha/2}^2$	$2\min\left(\boldsymbol{P}\left\{\chi^{2} \geq \chi_{\mathrm{obs}}^{2}\right\},\right.$ $\boldsymbol{P}\left\{\chi^{2} \leq \chi_{\mathrm{obs}}^{2}\right\}\right)$

Testing ratio of Variances (can also be used for Std Dev by conv question to variance):

Null H	ypothesis H_0 : $\frac{\sigma_X^2}{\sigma_Y^2} = \theta_0$	Test statistic $F_{\text{obs}} = \frac{s_X^2}{s_Y^2}/\theta_0$
Alternative Hypothesis	Rejection region	P-value Use $F(n-1, m-1)$ distribution
$\frac{\sigma_X^2}{\sigma_Y^2} > \theta_0$	$F_{\text{obs}} \ge F_{\alpha}(n-1, m-1)$	$m{P}\left\{ F \geq F_{ m obs} ight\}$
$\frac{\sigma_X^2}{\sigma_Y^2} < \theta_0$	$F_{\text{obs}} \le F_{\alpha}(n-1, m-1)$	$m{P}\left\{ F \leq F_{ m obs} ight\}$
$\frac{\sigma_X^2}{\sigma_Y^2} \neq \theta_0$	$F_{\text{obs}} \ge F_{\alpha/2}(n-1, m-1) \text{ or } F_{\text{obs}} < 1/F_{\alpha/2}(m-1, n-1)$	$2 \min (P \{F \ge F_{\text{obs}}\}, P \{F \le F_{\text{obs}}\})$