Often considered one of the best "out of the box" classifiers.

Flow

- Maximal Margin Classifier
 Separable data
- 2. Support Vector Classifiers
 Non-separable data
- 3. Support Vector Machines
 Non Linear class boundaries

Divides P dimensional space into two parts

1. One Dimensional space

2. Two Dimensional space

3. Three Dimensional space
Will be a 2 Dimensional plane

Hyperplane

Нν	m	er	'n	lar	10
	y P	CI		al	

X1	X2	Category
60	82	Pass
20	42	Fail
91	72	Pass

- Two predictor variables ->2D predictor space
- We want to find 1D (Line) hyperplane which separates this space into 2 parts

Infinite hyper planes

If data is perfectly separable

There are infinite hyper plane

Steps

- Calculate the perpendicular distance of observations from Hyperplane
- 2. Minimum value of distance is called margin
- 3. Choose the Hyperplane with maximum value of Margin

Support Vectors

- The observations which fall on margin are known as Support Vectors
- These classifiers depend on support vectors only
- That is why this technique is different from conventional ML techniques

Limitation 1

Maximal margin classifier cannot gabe used if the two classes are not separable by a hyperplane

Limitation 2

Maximal margin classifier is very sensitive to support vectors, an additional observation can lead to a dramatic shift in the maximal margin hyperplane

Why

- 1. To handle non perfectly separable scenario
- 2. Greater robustness to individual observations

What

Support vector classifier is a soft margin classifier

2. We will allow some observations to be incorrectly classify or to be on the wrong side of the margin

How

- We create a misclassification budget (B)
- We limit sum of distances of the points on the wrong side of the margin

$$(x1 + x2 + x3 + x4) < B$$

- We try to maximize margin while trying to stay within budget
- 4. Usually in our software packages we use C (Cost - multiplier of the error term) which is inversely related to B

Impact of C

- 1. When C is small, margins will be wide and there will be many support vectors and many misclassified observations
- 2. When C is large, margins will be narrow and there will be fewer support vectors and fewer misclassified values
- 3. However, low cost value prevents overfitting and may give better test set performance
- 4. We try to find optimal value of C at which we get best test performance
- 5. https://cs.stanford.edu/~karpathy/svmjs/demo/

non linear separable data

Support vector machine (SVM) is an extension of the support vector classifier which uses Kernels to create non linear boundaries

What

Kernels

Some functional relationship between two observations. Some popular kernels

- 1. Linear
- 2. Polynomial
- 3. Radial

Linear Kernel Linear kernel takes inner product of two observations

$$K(x_i, x_{i'}) = \sum_{j=1}^{p} x_{ij} x_{i'j}$$

This kernel effectively is a support vector classifier

Polynomial Kernel Polynomial kernel uses power function to create non linear boundaries

$$K(x_i, x_{i'}) = (1 + \sum_{j=1}^{p} x_{ij} x_{i'j})^d$$

Radial Kernel Radial kernel uses radial function to create radial boundaries

$$K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2)$$

γ is a positive constant

Gamma defines how much influence a single training example has. The larger gamma is, the closer other examples must be to be affected.

https://cs.stanford.edu/~karpathy/sv mjs/demo/

