TrashCan Dataset

Dataset:

Link: https://public.roboflow.com/object-detection/hard-hat-workers

Data Distribution:

Train dataset : 100 Images Validation dataset : 500 Images

Classes:

animal_crab	animal_eel	animal_etc	animal_fish	animal_shells	animal_starfish
plant	rov	trash_bag	trash_bottle	trash_branch	trash_can
trash_clothing	trash_container	trash_cup	trash_net	trash_pipe	trash_rope
trash_snack _wrapper	trash_tarp	trash_unknown_ instance	trash_wreckage		

Annotation Format : MS-COCO

Model:

Name Mask RCNN with a backbone of ResNet50 with a single GPU support.

Model Training:

The repository mm-openlab/mm detection has been used to train the dataset.

Model environment:

Google Colab notebook with 1x GPU support.

Method: In this experiment, the few-shot learning is adopted. So, the training set has opted as the validation /test and vice versa.

Colab Link:

https://colab.research.google.com/drive/1ct5P62ocoeRocN8usNLbdJ7qrw1dgWgB?usp=sharing

Scheduler in the like: in the x1 (12 epochs)

Results:

Test Results and explanation :

Tested Images

As we can see that in the images of the prediction, some of the objects are predicted quite nicely and some are not.

We can write the points like, this phenomenonthis -

- 1. Objects are classified quite nicely.
- 2. But the bounding boxes are overlapping, thus the bbox predictions are less accurate.
- 3. Some of the objects are left untouched.
- 4. Similar objects are classified as a partial (one classified, one left)

Conclusion:

The massiveness of the dataset certainly devastated the prediction accuracy. Also, some extra objects similar to the trashes are identified and decrease the accuracy, rather than that, the model is quite expressive towards the segmentation part, but the object detection.

THE END