```
The same example continue with different parameters:
     Testing against the alternate hypothesis:
     H1: p= 0.1
    n=500, Th=40 (critical value) (sag torafo dahil)
                                                 hypothesis
    \beta = \sum_{x=0}^{39} (500) (0.1)^{x} (0.9)^{500-x}
testing design
                                              ...finalde 🏂
                                         onlar yanlış oken
                                          bizim onlare do pru
 Visual Interpretation
  Z ν (np, np (1-p))
                                         = P[Z > 1.64]
                           N(25, 23.75)
   Y= 0. X +6
                                          = 1- P[2 < 1.64]
  E[Y] = a E[X] +6
                                          = 1- 0.9495
  Var [Y] = a2 Var [X]
                                         = 0.0505
```


Camscanner ne tarano

[unbiased, check Sample mean = \overline{X} imple mean = x $x = \frac{1}{n} \sum_{i=1}^{n} x_i$ where x_i 's are i.i.d. with M, σ^2 . X is Gaussianly distributed with mean M. and Nariance $\frac{\sigma^2}{n} = \left(\frac{1}{n}\right)^2 \quad n \quad \sigma^2 \quad \text{from the Central Limit Theorem}.$ * & and B are related; decreasing one generally increases the other one. *** & can be set to a desired value by adjusting the critical value. Increasing n decreases both a ond B. One tailed Vs Two Tailed Test H_0 $\theta = \theta_0$ H_1 $\theta > \theta_0$ Two Tail test (Sample mean ornek verilebilir) Ho: O = Oo reject Ho H1: 0 + 00

(X)	Consider a production line of resistors that are supposed
to 1	se 100 ohms with standard division 8.
	Ho: M = 100 s.
· ·	4: h = 100, v
Le	t X be the sample mean for a sample size n=100.
	\overline{X} N $\left(100, \left(\frac{8}{\sqrt{100}}\right)^2\right) = \overline{X} N ((00, 0.64))$
2	.5 x 05 accept the
	reject to union
∝ :	Type I error = P[X < 98 when $\mu = 100$] + P[X > 102 when $\mu = 100$]
	$ = P \left[\frac{7}{2} \times \frac{98 - 100}{0.8} \right] + P \left[\frac{2}{2} > \frac{102 - 100}{0.8} \right] $ aussian
	$= P\left[\frac{7}{2} \left(-2.5\right] + P\left[\frac{7}{2} \right) 2.5\right]$
	$\frac{\alpha'}{2}$

= $2.F_{z}(-2.5)$ = 2.(0.0062) = 0.0124

1.98.76 oranında, firmanın iddiasi dopru iken, dopruluzunu kabul etmek.

1, 12 olasilitia dapro alani reddediyaram. BORDERERERERERERERERERERERERERE

9

5

りり

9

999

999

3

2

N N N

Camscanner ne tarant