

Exercise 4D

Question 14:

Let ABC be a triangle and $\angle B > \angle A + \angle C$

Since, $\angle A + \angle B + \angle C = 180^{\circ}$

 $\Rightarrow \angle A + \angle C = 180^{\circ} - \angle B$

Therefore, we get

 $\angle B > 180^{\circ} - \angle B$

Adding ∠B on both sides of the inequality, we get,

- $\Rightarrow \angle B + \angle B > 180^{\circ} \angle B + \angle B$
- ⇒ 2∠B > 180°
- $\Rightarrow \angle B > 180/2 = 90^{\circ}$

i.e., $\angle B > 90^{\circ}$ which means $\angle B$ is an obtuse angle.

 Δ ABC is an obtuse angled triangle.

Question 15:

Since ∠ACB and ∠ACD form a linear pair.

So, $\angle ACB + \angle ACD = 180^{\circ}$

- $\Rightarrow \angle ACB + 128^{\circ} = 180^{\circ}$
- \Rightarrow \angle ACB = 180° 128 = 52°

Also, ∠ABC + ∠ACB + ∠BAC = 180°

- \Rightarrow 43° + 52° + \angle BAC = 180°
- \Rightarrow 95° + \angle BAC = 180°
- $\Rightarrow \angle BAC = 180^{\circ} 95^{\circ} = 85^{\circ}$
- \therefore \angle ACB = 52° and \angle BAC = 85°.

Question 16:

As $\angle DBA$ and $\angle ABC$ form a linear pair.

So, ∠DBA + ∠ABC = 180°

- \Rightarrow 106° + \angle ABC = 180°
- \Rightarrow \angle ABC = 180° 106° = 74°

Also, ∠ACB and ∠ACE form a linear pair.

So, $\angle ACB + \angle ACE = 180^{\circ}$

- \Rightarrow \angle ACB + 118 $^{\circ}$ = 180 $^{\circ}$
- \Rightarrow \angle ACB = 180° 118° = 62°

In ∠ABC, we have,

 $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$

 $74^{\circ} + 62^{\circ} + \angle BAC = 180^{\circ}$

- \Rightarrow 136° + \angle BAC = 180°
- $\Rightarrow \angle BAC = 180^{\circ} 136^{\circ} = 44^{\circ}$

 \therefore In triangle ABC, $\angle A = 44^{\circ}$, $\angle B = 74^{\circ}$ and $\angle C = 62^{\circ}$

********* END *******