Grundbegriffe der Informatik WS 2011/12 Tutorium in der Woche 2 Gehalten in den Tutorien Nr. 10. Nr. 14

Philipp Basler (philippbasler@googlemail.com)
Nils Braun (area51.nils@googlemail.com)

KIT - Karlsruher Institut für Technologie

31.10.2011

Inhaltsverzeichnis

Übungsblätter

- 1 Übungsblätter
- 2 Wörter
- 3 Vollständige Induktion
- 4 Schluss

- 1 Übungsblätter
- 2 Wörter

- 3 Vollständige Induktion
- 4 Schluss

Übungsblätter Nächstes Blatt

0000

Informationen zum nächsten Blatt

Blatt Nr. 2

Abgabetermin	4.11.2011 12:30 Uhr
Abgabeort	Briefkasten im UG von Gebäude 50.34
Themen	Wörter und Vollständige Induktion
Maximale Punkte	20

Häufige Fehler auf dem letzten Übungsblatt

Blatt Nr. 1

- 1. Aufgabe Keine
- 2. Aufgabe Zu ALLEN Eigenschaften etwas angeben. f₂ muss nicht surjektiv sein, kann allerdings
- 3. Aufgabe Nein, $f := x > e^x$ von \mathbb{R} nach \mathbb{R}
- 4. Aufgabe Ausschließlich NOR benutzen

0000 Letztes Blatt

Übungsblätter

Statistik

- 23 von 26 Abgaben
- Durchschnittlich bei den Abgegebenen 14.4 von 20 Punkten

0000

Wahr oder Falsch?

■ Eine Funktion muss linkseindeutig sein

0000

Wahr oder Falsch?

■ Eine Funktion muss *linkseindeutig* sein

0000

- Eine Funktion muss *linkseindeutig* sein
- Eine injektive Funktion ist rechtstotal

0000

- Eine Funktion muss *linkseindeutig* sein
- Eine injektive Funktion ist *rechtstotal*

0000

- Eine Funktion muss *linkseindeutig* sein
- Eine injektive Funktion ist *rechtstotal*
- Eine surjektive Funktion ist rechtstotal

0000

- Eine Funktion muss *linkseindeutig* sein
- Eine injektive Funktion ist *rechtstotal*
- Eine surjektive Funktion ist *rechtstotal*

0000

- Eine Funktion muss *linkseindeutig* sein
- Eine injektive Funktion ist *rechtstotal*
- Eine surjektive Funktion ist rechtstotal
- Jede Relation ist eine Funktion

0000

- Eine Funktion muss *linkseindeutig* sein
- Eine injektive Funktion ist *rechtstotal*
- Eine surjektive Funktion ist rechtstotal
- Jede Relation ist eine Funktion

Wahr oder Falsch?

- Eine Funktion muss *linkseindeutig* sein
- Eine injektive Funktion ist *rechtstotal*
- Eine surjektive Funktion ist rechtstotal
- Jede Relation ist eine Funktion
- Jede Funktion ist eine Relation

Wahr oder Falsch?

- Eine Funktion muss *linkseindeutig* sein
- Eine injektive Funktion ist *rechtstotal*
- Eine surjektive Funktion ist rechtstotal
- Jede Relation ist eine Funktion
- Jede Funktion ist eine Relation

Schluss

- 1 Übungsblätter
- 2 Wörter

- **3** Vollständige Induktion
- 4 Schluss

Alphabet

Ein Alphabet ist eine endliche Menge von Zeichen.

Übungsblätter

Alphabet

Ein Alphabet ist eine endliche Menge von Zeichen.

Wort

■ Ein Wort w über einem Alphabet A ist eine Folge von Zeichen aus A

Alphabet

Ein Alphabet ist eine endliche Menge von Zeichen.

Wort

■ Ein Wort w über einem Alphabet A ist eine Folge von Zeichen aus A

Vollständige Induktion

■ Eine surjektive Abbildung $f: G_n \to A$ wobei $G_n = \{i \in \mathbb{N}_0 : 0 \le i < n\}$

Alphabet

Ein Alphabet ist eine endliche Menge von Zeichen.

Wort

- Ein Wort w über einem Alphabet A ist eine Folge von Zeichen aus A
- Eine surjektive Abbildung $f: G_n \to A$ wobei $G_n = \{i \in \mathbb{N}_0 : 0 < i < n\}$

Beispiel

$$A = \{a, b\}$$

Alphabet

Ein Alphabet ist eine endliche Menge von Zeichen.

Wort

- Ein Wort w über einem Alphabet A ist eine Folge von Zeichen aus A
- **Eine** Surjektive Abbildung $f: G_n \to A$ wobei $G_n = \{i \in \mathbb{N}_0 : 0 < i < n\}$

Beispiel

$$A = \{a, b\}$$

$$A^* \ni w_1 = aabbabab$$

$$A^* \ni w_2 = ab$$

$$A^* \ni w_3 = a$$

Konkatenation von Wörtern

z.b. $w_1 = Schrank$, $w_2 = Schlüssel$

Dann gilt

 $w_1 \circ w_2 = SchrankSchlüssel$

Aber

 $w_2 \circ w_1 = SchlüsselSchrank \neq w_1 \circ w_2$

Vollständige Induktion

Übungsblätter

Konkatenation von Wörtern

z.b. $w_1 = Schrank$, $w_2 = Schlüssel$

Dann gilt

 $w_1 \circ w_2 = SchrankSchlüssel$

Aber

 $w_2 \circ w_1 = SchlüsselSchrank \neq w_1 \circ w_2$

Falls $w = w_1 \circ w_2$ und $w_1 \in A^*, w_2 \in B^*$, dann gilt

$$w \in (A \cup B)^*$$

Das Leere Wort

Es gilt

$$\varepsilon := f : \mathbb{G}_0 \to A$$

Das Leere Wort

Es gilt

$$\varepsilon := f : \mathbb{G}_0 \to A$$

Vollständige Induktion

Weiterhin gilt $\varepsilon \circ w \circ \varepsilon = w$

Ein Wort ohne Buchstaben der Länge 0. Wofür braucht man sowas?

Das Leere Wort

Es gilt

$$\varepsilon := f : \mathbb{G}_0 \to A$$

Weiterhin gilt $\varepsilon \circ w \circ \varepsilon = w$

Ein Wort ohne Buchstaben der Länge 0. Wofür braucht man sowas?

Mehrfachkonkatenation

$$w^k = \underbrace{w \circ w \circ \cdots \circ w}_{k-mal}$$

und

$$w^0 = \varepsilon$$

Das Leere Wort

Es gilt

$$\varepsilon := f : \mathbb{G}_0 \to A$$

Weiterhin gilt $\varepsilon \circ w \circ \varepsilon = w$

Ein Wort ohne Buchstaben der Länge 0. Wofür braucht man sowas?

Mehrfachkonkatenation

$$w^k = \underbrace{w \circ w \circ \cdots \circ w}_{k-mal}$$

und

$$w^0 = \varepsilon$$

Länge eines Wortes

Unter Länge eines Wortes versteht man die Anzahl der Zeichen, die es beinhaltet:

Vollständige Induktion

Länge eines Wortes

Unter Länge eines Wortes versteht man die Anzahl der Zeichen, die es beinhaltet:

z.B.

$$|\mathsf{hallo}| = 5$$

Es gilt laut Vorlesung

$$|w^k| = k|w|$$

und für das leere Wort gilt

$$|\varepsilon| = 0$$

Weiterhin gilt

$$|a \circ b| = |a| + |b|$$

Praefix

Ein Praefix ist ein beliebig langer Teil von Anfang eines Wortes, d.h.

Vollständige Induktion

Sei $w = a \circ b$, so ist a Praefix von w

Suffix

Ein Suffix ist ein beliebig langer Teil bis zum Ende des Wortes, d.h. Sei $w = a \circ b$, so ist b Praefix von w

Aufgabe

Übungsblätter

- Welche Wörter lassen sich aus dem Alphabet $A = \{a, b\}$ bilden? Was enthält die Menge A^* ?
- Ist das Wort w = aabaa ein Element der Menge A^5 ?
- Was ist **aabba·babba**? Was ist $A^2 \times A^2$? Und $A^2 \cdot A^2$?

Lösung

Übungsblätter

Welche Wörter lassen sich aus dem Alphabet $A = \{a, b\}$ bilden? Was enthält die Menge A*?

Lösung

Übungsblätter

Welche Wörter lassen sich aus dem Alphabet $A = \{a, b\}$ bilden? Was enthält die Menge A*?

Aus A lassen sich z.B. die Wörter

a, b, aa, bb, ab, ba, aaa, bbb, . . .

bilden.

Lösung

Übungsblätter

Welche Wörter lassen sich aus dem Alphabet $A = \{a, b\}$ bilden? Was enthält die Menge A*?

Aus A lassen sich z.B. die Wörter

a, b, aa, bb, ab, ba, aaa, bbb, . . .

bilden. Die Menge A* enthält gerade diese Wörter. Beachte: Auch ε ist in $A^*!$

Lösung

Übungsblätter

Ist das Wort w = aabaa ein Element der Menge A^5 ?

Übungsblätter

Ist das Wort w = aabaa ein Element der Menge A^5 ?

Ja. Das Wort besteht aus 5 Symbolen, die alle in A liegen.

Vollständige Induktion

Inhalt und Definitionen

Lösung

Übungsblätter

Was ist aabba·babba? Was ist $A^2 \times A^2$? Und $A^2 \cdot A^2$?

Übungsblätter

Was ist aabba·babba? Was ist $A^2 \times A^2$? Und $A^2 \cdot A^2$?

 $aabba \cdot babba = aabbababba$

$$A^2\times A^2=\{(aa,aa),(aa,bb),(aa,ab),(aa,ba),(bb,aa),\dots\}$$

$$A^2\cdot A^2=\{aaaa,aabb,aaab,aaaba,bbaa,\dots\}=A^4$$

Vollständige Induktion

0000000000

- 1 Übungsblätter
- 2 Wörter

- 3 Vollständige Induktion
- 4 Schluss

Definition und Beispiel

Übungsblätter

Vollständige Induktion ist wie stille Post.

Vollständige Induktion ist wie stille Post.

Wir zeigen, dass die Behauptung für das erste mögliche Argument stimmt.

•000000000

Definition und Beispiel

Übungsblätter

Vollständige Induktion ist wie stille Post.

Wir zeigen, dass die Behauptung für das erste mögliche Argument stimmt.

Dannach nehmen wir an es stimmt für ein beliebiges, aber festes $n \in \mathbb{N}_0$ und zeigen, dass es für n+1 auch stimmt.

Beispiel

Übungsblätter

Behauptung:

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2, x_0 = 0 \iff \forall n \in \mathbb{N}_0 : x_n = 2n$$

Beispiel

Übungsblätter

Behauptung:

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2, x_0 = 0 \iff \forall n \in \mathbb{N}_0 : x_n = 2n$$

Behauptung:

Übungsblätter

Beispiel

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2, x_0 = 0 \iff \forall n \in \mathbb{N}_0 : x_n = 2n$$

IA Zeige es für n = 0

Behauptung:

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2, x_0 = 0 \iff \forall n \in \mathbb{N}_0 : x_n = 2n$$

IA Zeige es für
$$n = 0$$

$$x_0 = 0$$

$$x_0=2\cdot 0=0$$

Behauptung:

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2, x_0 = 0 \iff \forall n \in \mathbb{N}_0 : x_n = 2n$$

IA Zeige es für
$$n = 0$$

$$x_0 = 0$$

$$x_0=2\cdot 0=0$$

IV Für ein beliebig, aber festes $n \in \mathbb{N}_0$ gelte nun $x_n = 2n$

Beispiel

Behauptung:

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2, x_0 = 0 \iff \forall n \in \mathbb{N}_0 : x_n = 2n$$

IA Zeige es für
$$n = 0$$

$$x_0 = 0$$

$$x_0 = 2 \cdot 0 = 0$$

- IV Für ein beliebig, aber festes $n \in \mathbb{N}_0$ gelte nun $x_n = 2n$
- **IS** Dann stimmt die Behauptung, falls $x_{n+1} = 2(n+1)$

Beispiel

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2, x_0 = 0 \iff \forall n \in \mathbb{N}_0 : x_n = 2n$$

IA Zeige es für n = 0

$$x_0 = 0$$
 $x_0 = 2 \cdot 0 = 0$

- IV Für ein beliebig, aber festes $n \in \mathbb{N}_0$ gelte nun $x_n = 2n$
- **IS** Dann stimmt die Behauptung, falls $x_{n+1} = 2(n+1)$

$$x_{n+1}=x_n+2$$

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2, x_0 = 0 \iff \forall n \in \mathbb{N}_0 : x_n = 2n$$

IA Zeige es für n = 0

$$x_0 = 0$$

Übungsblätter

Beispiel

$$x_0 = 2 \cdot 0 = 0$$

- IV Für ein beliebig, aber festes $n \in \mathbb{N}_0$ gelte nun $x_n = 2n$
- **IS** Dann stimmt die Behauptung, falls $x_{n+1} = 2(n+1)$

$$x_{n+1} = x_n + 2$$

$$\stackrel{!V}{=} 2n + 2$$

Beispiel

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2, x_0 = 0 \iff \forall n \in \mathbb{N}_0 : x_n = 2n$$

IA Zeige es für n = 0

$$x_0 = 0$$

$$x_0 = 2 \cdot 0 = 0$$

- IV Für ein beliebig, aber festes $n \in \mathbb{N}_0$ gelte nun $x_n = 2n$
- **IS** Dann stimmt die Behauptung, falls $x_{n+1} = 2(n+1)$

$$x_{n+1} = x_n + 2$$

$$\stackrel{IV}{=} 2n + 2$$

$$= 2(n+1)$$

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2, x_0 = 0 \iff \forall n \in \mathbb{N}_0 : x_n = 2n$$

IA Zeige es für n = 0

$$x_0 = 0$$

Übungsblätter

Beispiel

$$x_0 = 2 \cdot 0 = 0$$

- **IV** Für ein beliebig, aber festes $n \in \mathbb{N}_0$ gelte nun $x_n = 2n$
- **IS** Dann stimmt die Behauptung, falls $x_{n+1} = 2(n+1)$

$$x_{n+1} = x_n + 2$$

$$\stackrel{IV}{=} 2n + 2$$

$$= 2(n+1)$$

Somit stimmt die Behauptung.

Aufgabe (WS 2009)

Gegeben sei folgende induktiv definierte Folge von Zahlen:

$$x_0 = 0$$

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2n + 1$$

- Berechnen Sie x_1, x_2, x_3, x_4 .
- Geben Sie für x_n eine geschlossene Formel an (d.h. einen arithmetischen Ausdruck, in dem nur Zahlen, n und die Grundrechenarten vorkommen).
- Beweisen Sie Ihre Aussage aus Teilaufgabe b) durch vollständige Induktion.

Aufgabe 1

Lösung

Übungsblätter

$$x_0 = 0$$
 $\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2n + 1$

Berechnen Sie x_1, x_2, x_3, x_4 .

Durch einfaches Einsetzen erhält man:

Übungsblätter

$$x_0 = 0$$
 $\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2n + 1$

Berechnen Sie x_1, x_2, x_3, x_4 .

Durch einfaches Einsetzen erhält man:

$$x_1 = x_{0+1} = x_0 + 2 \cdot 0 + 1 = 0 + 0 + 1 = 1$$

 $x_2 = x_{1+1} = x_1 + 2 \cdot 1 + 1 = 1 + 2 + 1 = 4$
 $x_3 = x_{2+1} = x_2 + 2 \cdot 2 + 1 = 4 + 4 + 1 = 9$
 $x_4 = x_{3+1} = x_3 + 2 \cdot 3 + 1 = 9 + 6 + 1 = 16$

Übungsblätter

$$x_0 = 0$$
 $\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2n + 1$

Berechnen Sie x_1, x_2, x_3, x_4 .

Durch einfaches Einsetzen erhält man:

$$x_1 = x_{0+1} = x_0 + 2 \cdot 0 + 1 = 0 + 0 + 1 = 1$$

 $x_2 = x_{1+1} = x_1 + 2 \cdot 1 + 1 = 1 + 2 + 1 = 4$
 $x_3 = x_{2+1} = x_2 + 2 \cdot 2 + 1 = 4 + 4 + 1 = 9$
 $x_4 = x_{3+1} = x_3 + 2 \cdot 3 + 1 = 9 + 6 + 1 = 16$

Geben Sie für x_n eine geschlossene Formel an.

Lösung

$$x_0 = 0$$
 $\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2n + 1$

Berechnen Sie x_1, x_2, x_3, x_4 .

Durch einfaches Einsetzen erhält man:

$$x_1 = x_{0+1} = x_0 + 2 \cdot 0 + 1 = 0 + 0 + 1 = 1$$

 $x_2 = x_{1+1} = x_1 + 2 \cdot 1 + 1 = 1 + 2 + 1 = 4$
 $x_3 = x_{2+1} = x_2 + 2 \cdot 2 + 1 = 4 + 4 + 1 = 9$
 $x_4 = x_{3+1} = x_3 + 2 \cdot 3 + 1 = 9 + 6 + 1 = 16$

Geben Sie für x_n eine geschlossene Formel an.

Entweder: Betrachte Ergebnisse aus a) oder Erinnerung an binomische Formel.

$$x_n = n^2$$

Übungsblätter

Beweisen Sie Ihre Aussage aus Teilaufgabe b) durch vollständige Induktion.

Übungsblätter

Beweisen Sie Ihre Aussage aus Teilaufgabe b) durch vollständige Induktion.

Induktionsanfang

Übungsblätter

Beweisen Sie Ihre Aussage aus Teilaufgabe b) durch vollständige Induktion.

Induktionsanfang

Für n = 0 gilt nach Definition

$$x_0 = 0 = 0^2$$

Übungsblätter

Beweisen Sie Ihre Aussage aus Teilaufgabe b) durch vollständige Induktion.

Induktionsanfang

Für n = 0 gilt nach Definition

$$x_0 = 0 = 0^2$$

Induktionsvoraussetzung

Übungsblätter

Beweisen Sie Ihre Aussage aus Teilaufgabe b) durch vollständige Induktion.

Induktionsanfang

Für n = 0 gilt nach Definition

$$x_0 = 0 = 0^2$$

Induktionsvoraussetzung

Für ein festes, aber beliebiges $n \in \mathbb{N}^+$ gelte die Behauptung, also

$$x_n = n^2$$

Lösung

Beweisen Sie Ihre Aussage aus Teilaufgabe b) durch vollständige Induktion.

Induktionsschluss

Zu zeigen ist die Behauptung für n+1, also

zu zeigen:
$$x_{n+1} = (n+1)^2$$

Dabei dürfen wir nur Dinge verwenden, die wir schon wissen. Das ist zuerst einmal die Definition von x_n , also

$$x_{n+1} = x_n + 2 \cdot (n+1) + 1$$

Übungsblätter

Beweisen Sie Ihre Aussage aus Teilaufgabe b) durch vollständige Induktion.

Induktionsschluss

$$x_{n+1} = x_n + 2n + 1$$

Übungsblätter

Beweisen Sie Ihre Aussage aus Teilaufgabe b) durch vollständige Induktion.

Induktionsschluss

$$x_{n+1} = x_n + 2n + 1$$

$$\stackrel{IV}{=} n^2 + 2n + 1$$

Übungsblätter

Beweisen Sie Ihre Aussage aus Teilaufgabe b) durch vollständige Induktion.

Induktionsschluss

$$x_{n+1} = x_n + 2n + 1$$

$$\stackrel{IV}{=} n^2 + 2n + 1$$

$$= (n+1)^2$$

Aufgabe 2

Übungsblätter

Behauptung

$$\forall n \in \mathbb{N}_+: \sum_{i=1}^n i = \frac{1}{2}n(n+1)$$

Behauptung

$$\forall n \in \mathbb{N}_+ : \sum_{i=1}^n i = \frac{1}{2}n(n+1)$$

Induktionsanfang

$$n = 1$$

$$\sum_{i=1}^{1} i = 1$$

Behauptung

$$\forall n \in \mathbb{N}_+ : \sum_{i=1}^n i = \frac{1}{2}n(n+1)$$

Induktionsanfang

$$n = 1$$

$$\sum_{i=1}^{1} i = 1$$

$$\frac{1}{2} \cdot 1 \cdot (1+1) = \frac{1}{2} \cdot 2 = 1$$

Übungsblätter Aufgabe 2

Induktionsvorraussetzung

Aufgabe 2

Übungsblätter

Induktionsvorraussetzung

Für ein beliebig, aber festes $n \in \mathbb{N}_+$ gilt

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

Induktionsvorraussetzung

Für ein beliebig, aber festes $n \in \mathbb{N}_+$ gilt

$$\sum_{i=1}^n i = \frac{1}{2}n(n+1)$$

Induktionsschluss

$$\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+2) = \frac{1}{2}(n^2 + 3n + 2)$$

Induktionsschluss

$$\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+2) = \frac{1}{2}(n^2 + 3n + 2)$$

Induktionsschluss

$$\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+2) = \frac{1}{2}(n^2 + 3n + 2)$$

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$

Induktionsschluss

Zu zeigen:

$$\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+2) = \frac{1}{2}(n^2 + 3n + 2)$$

Vollständige Induktion

000000000

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$

$$\stackrel{IV}{=} \frac{1}{2} n(n+1) + n + 1$$

Induktionsschluss

Zu zeigen:

$$\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+2) = \frac{1}{2}(n^2 + 3n + 2)$$

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$

$$\stackrel{!V}{=} \frac{1}{2} n(n+1) + n + 1$$

$$= \frac{1}{2} (n^2 + n + 2n + 2)$$

Schluss

Induktionsschluss

$$\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+2) = \frac{1}{2}(n^2 + 3n + 2)$$

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$

$$\stackrel{!V}{=} \frac{1}{2} n(n+1) + n + 1$$

$$= \frac{1}{2} (n^2 + n + 2n + 2)$$

$$= \frac{1}{2} (n^2 + 3n + 2)$$

- 1 Übungsblätter
- 2 Wörter

- 3 Vollständige Induktion
- 4 Schluss

Was ihr nun wissen solltet

Übungsblätter

- Was ein Wort, Praefix, Suffix ist.
- Was das leere Wort ist.
- Wie eine vollständige Inudktion funktioniert.

Abbildung: http://explosm.net/comics/1867/

Kontakt via E-Mail an Philipp Basler oder Nils Braun gbi.ugroup.hostzi.com