▼ [沙필사 과제 안내]

필사를 진행하며, 주요 코드나 작업에 대해 손과 눈에 최대한 익으실 수 있도록 함입니다:)

수업을 진행하시며 이해가 잘 되지 않았던 부분을 천천히 써보시거나,

단순히 다시 한 번 따라서 진행해보시는 것만으로도 좋습니다.

새롭게 노트북파일을 만드신 뒤, 써주세요 ₩

01. Analysis Seoul CCTV

▼ 1. 데이터 읽기

```
1 import pandas as pd
```

```
1 CCTV_Seoul = pd.read_csv("../data/01. Seoul_CCTV.csv")
```

² CCTV Seoul.head()

	기관명	소계	2013년도 이전	2014년	2015년	2016년
0	강남구	3238	1292	430	584	932
1	강동구	1010	379	99	155	377
2	강북구	831	369	120	138	204
3	강서구	911	388	258	184	81
4	관악구	2109	846	260	390	613

1 CCTV Seoul.columns

```
Index(['기관명', '소계', '2013년도 이전', '2014년', '2015년', '2016년'], dtype='object')
```

1 CCTV_Seoul.columns[0]

'기관명'

```
1 CCTV_Seoul.rename(columns={CCTV_Seoul.columns[0]: "구별"}, inplace=True)
```

² CCTV_Seoul.head()

	구별	소계	2013년도 이전	2014년	2015년	2016년	
0	강남구	3238	1292	430	584	932	•
1	강동구	1010	379	99	155	377	
2	강북구	831	369	120	138	204	
3	강서구	911	388	258	184	81	
4	관악구	2109	846	260	390	613	

¹ pop_Seoul = pd.read_excel("../data/01. Seoul_Population.xls")

² pop_Seoul.head()

	기간	자 치 구	세대	인구	인구.1	인구.2	인구.3	인구.4	인구.5	인구.6
0	기간	자 치 구	세대	합계	합계	합계	한국인	한국인	한국인	등록외 국인
1	기간	자 치 구	세대	계	남자	여자	계	남자	여자	계

```
1 pop_Seoul = pd.read_excel(
2    "../data/01. Seoul Population.xls", header=2, usecols="B, D, G, J, N")
```

³ pop Seoul.head()

	자치구	계	계.1	계.2	65세이상고령자
0	합계	10124579	9857426	267153	1365126
1	종로구	164257	154770	9487	26182
2	중구	134593	125709	8884	21384
3	용산구	244444	229161	15283	36882
4	성동구	312711	304808	7903	41273

```
1 pop Seoul.rename(
2
     columns={
          pop_Seoul.columns[0]: "구별",
3
          pop Seoul.columns[1]: "인구수",
4
          pop Seoul.columns[2]: "한국인",
5
          pop Seoul.columns[3]: "외국인",
6
7
          pop Seoul.columns[4]: "고령자",
8
      },
9
      inplace=True
10)
11 pop Seoul.head()
```

	구별	인구수	한국인	외국인	고령자
0	합계	10124579	9857426	267153	1365126
1	종로구	164257	154770	9487	26182
2	중구	134593	125709	8884	21384
3	용산구	244444	229161	15283	36882

▼ Pandas 기초

- Python에서 R 만큼의 강력한 데이터 핸들링 성능을 제공하는 모듈
- 단일 프로세스에서는 최대 효율
- 코딩 가능하고 응용 가능한 엑셀로 받아들여도 됨
- 누군가 스테로이드를 맞은 엑셀로 표현함

Series

- index와 value로 이루어져 있습니다
- 한 가지 데이터 타입만 가질 수 있습니다

```
1 import pandas as pd
2 import numpy as np
```

- pandas는 통상 pd
- numpy는 통상 np

```
1 pd.Series()
```

```
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: DeprecationWar """Entry point for launching an IPython kernel.
Series([], dtype: float64)
```

1 pd.Series([1, 2])

```
0 1
1 2
dtype: int64
```

1 # pd.Series([1, 2, 3, 4], dtype=float64)

1 pd.Series([1, 2, 3, 4], dtype=np.float64)

```
0
       1.0
       2.0
   1
       3.0
   2
   3
        4.0
   dtype: float64
1 pd.Series([1, 2, 3, 4], dtype=str)
   1
        2
   2.
        3
   3
   dtype: object
1 pd.Series(np.array([1, 2, 3]))
   0
       1
        2
   1
   2
        3
   dtype: int64
1 pd.Series({"Key": "Value"})
   Key
         Value
   dtype: object
1 \text{ data} = \text{pd.Series}([1, 2, 3, 4, 5])
2 data
   0
       1
   1
   2
        3
   3
        4
   4
        5
   dtype: int64
1 data = pd.Series([1, 2, 3, 4, "5"])
2 data
   0
       1
   1
       2
   2
        3
   3
        4
   dtype: object
1 # 짝수를 찾고 싶다
2 # data % 2
1 data = pd.Series([1, 2, 3, 4])
2 data
```

```
1 2 2 3 3 4 dtype: int64

1 data % 2

0 1 1 0 2 1 3 0 dtype: int64
```

▼ 날짜 데이터

DataFrame

1

- pd.Series()
 - o index, value
- pd.DataFrame()
 - o index, value, column

```
1 # 표준정규분포에서 샘플링한 난수 생성
2 data = [1, 2, 3, 4]
3 data
[1, 2, 3, 4]
1 df = pd.DataFrame(data, columns=["A"], index=["A", "B", "C", "D"])
2 df
```

A

▼ 데이터 프레임 정보 탐색

• df.head()

1 df.head()

	A	В	C	D
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096

df.tail()

1 df.tail()

	A	В	C	D
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096
2021-01-06	0.388703	0.480877	0.067397	0.230019

df.index

1 df.index

1 df.columns

```
Index(['A', 'B', 'C', 'D'], dtype='object')
```

1 df.values

```
array([[-0.73781701, 0.46598837, 2.2852592, -0.537783], [-0.21842499, 0.0318088, 2.49341958, 0.79512753], [-1.44181122, -0.7379117, 1.10107334, 0.33198805], [-0.37915635, 0.72701723, -1.80799187, -0.26771797], [-0.38694081, -0.59565941, -0.37206786, 1.55509569], [ 0.38870316, 0.48087685, 0.06739712, 0.23001877]])
```

• df.info(): 데이터 프레임의 기본 정보 확인

1 df.info()

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 6 entries, 2021-01-01 to 2021-01-06
Freq: D
Data columns (total 4 columns):
# Column Non-Null Count Dtype
   _____
          6 non-null
                         float64
          6 non-null
1 в
                         float64
          o non-null
6 non-null
at64/4\
                         float64
                         float64
3 D
dtypes: float64(4)
memory usage: 240.0 bytes
```

• df.describe(): 데이터 프레임의 기술통계 정보 확인

1 df.describe()

	A	В	С	D
count	6.000000	6.000000	6.000000	6.000000
mean	-0.462575	0.062020	0.627848	0.351122
std	0.605248	0.608966	1.655208	0.752973
min	-1.441811	-0.737912	-1.807992	-0.537783
25%	-0.650098	-0.438792	-0.262202	-0.143284
50%	-0.383049	0.248899	0.584235	0.281003
75%	-0.258608	0.477155	1.989213	0.679343
max	0.388703	0.727017	2.493420	1.555096

▼ 데이터 정렬

- sort_values()
- 특정 컬럼(열)을 기준으로 데이터를 정렬합니다

1 df

	A	В	С	D
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096
2021-01-06	0.388703	0.480877	0.067397	0.230019

1 df.sort values(by="B", ascending=False, inplace=True)

1 df

	A	В	С	D
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718
2021-01-06	0.388703	0.480877	0.067397	0.230019
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096
2021-01-03	-1.441811	-0.737912	1.101073	0.331988

▼ 데이터 선택

1 df

	A	В	С	D
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718
2021-01-06	0.388703	0.480877	0.067397	0.230019
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096
2021-01-03	-1.441811	-0.737912	1.101073	0.331988

1 # 한 개 컬럼 선택

2 df["A"]

2021-01-04 -0.379156

2021-01-06 0.388703

```
2021-01-01 -0.737817
2021-01-02 -0.218425
2021-01-05 -0.386941
2021-01-03 -1.441811
Name: A, dtype: float64
```

1 type(df["A"])

pandas.core.series.Series

1 df.A

```
2021-01-04 -0.379156

2021-01-06 0.388703

2021-01-01 -0.737817

2021-01-02 -0.218425

2021-01-05 -0.386941

2021-01-03 -1.441811

Name: A, dtype: float64
```

1 df = pd.DataFrame(data, index=dates, columns=["A", "B", "C", "D"])
2 df

	A	В	С	D
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096
2021-01-06	0.388703	0.480877	0.067397	0.230019

1 df.D

```
2021-01-01 -0.537783

2021-01-02 0.795128

2021-01-03 0.331988

2021-01-04 -0.267718

2021-01-05 1.555096

2021-01-06 0.230019
```

Freq: D, Name: D, dtype: float64

```
1 # 두 개 이상 컬럼 선택
2 df[["A", "B"]]
```

	A	В
2021-01-01	-0.737817	0.465988
2021-01-02	-0.218425	0.031809
2021-01-03	-1.441811	-0.737912

offset index

- [n:m] : n부터 m-1 까지
- 인덱스나 컬럼의 이름으로 slice 하는 경우는 끝을 포함합니다

1 df

	A	В	С	D
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096
2021-01-06	0.388703	0.480877	0.067397	0.230019

1 df[0:3]

	A	В	С	D
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988

1 df["20210101":"20210104"]

	A	В	С	D
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718

- loc: location
- index 이름으로 특정 행, 열을 선택합니다

1 df

	A	В	С	D
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096
2021-01-06	0.388703	0.480877	0.067397	0.230019

1 df.loc[:, ["A", "B"]]

	A	В
2021-01-01	-0.737817	0.465988
2021-01-02	-0.218425	0.031809
2021-01-03	-1.441811	-0.737912
2021-01-04	-0.379156	0.727017
2021-01-05	-0.386941	-0.595659
2021-01-06	0.388703	0.480877

1 df.loc["20210102":"20210104", ["A", "D"]]

	A	D
2021-01-02	-0.218425	0.795128
2021-01-03	-1.441811	0.331988
2021-01-04	-0.379156	-0.267718

1 df.loc["20210102":"20210104", "A":"D"]

	A	В	C	D
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718

1 df

	A	В	С	D
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096
2021-01-06	0.388703	0.480877	0.067397	0.230019

1 df.loc["20210102", ["A", "B"]]

A -0.218425

В 0.031809

Name: 2021-01-02 00:00:00, dtype: float64

- iloc: inter location
 - 컴퓨터가 인식하는 인덱스 값으로 선택

1 df

	A	В	C	D
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096
2021-01-06	0.388703	0.480877	0.067397	0.230019

1 df.iloc[3]

A -0.379156

в 0.727017

C -1.807992

D -0.267718

Name: 2021-01-04 00:00:00, dtype: float64

1 df.iloc[3, 2]

-1.8079918710632994

1 df.iloc[3:5, 0:2]

	A	В
2021-01-04	-0.379156	0.727017
2021-01-05	-0.386941	-0.595659

1 df

	A	В	C	D
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096
2021-01-06	0.388703	0.480877	0.067397	0.230019

1 df.iloc[[1, 2, 4], [0, 2]]

	A	С
2021-01-02	-0.218425	2.493420
2021-01-03	-1.441811	1.101073
2021-01-05	-0.386941	-0.372068

1 df.iloc[:, 1:3]

	В	С
2021-01-01	0.465988	2.285259
2021-01-02	0.031809	2.493420
2021-01-03	-0.737912	1.101073
2021-01-04	0.727017	-1.807992
2021-01-05	-0.595659	-0.372068
2021-01-06	0.480877	0.067397

condition

1 df

	A	В	С	D
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096
2021-01-06	0.388703	0.480877	0.067397	0.230019

1 # A 컬럼에서 0보다 큰 숫자(양수)만 선택

3 df["A"] > 0

2021-01-01 False 2021-01-02 False 2021-01-03 False 2021-01-04 False 2021-01-05 False 2021-01-06 True

Freq: D, Name: A, dtype: bool

1 df

		A	В	С	D
2021-0	1-01	-0.737817	0.465988	2.285259	-0.537783
2021-0	1-02	-0.218425	0.031809	2.493420	0.795128
2021-0	1-03	-1.441811	-0.737912	1.101073	0.331988
2021-0	1-04	-0.379156	0.727017	-1.807992	-0.267718
2021-0	1-05	-0.386941	-0.595659	-0.372068	1.555096
2021-0	1-06	0.388703	0.480877	0.067397	0.230019

1 df[df["A"] > 0]

 A
 B
 C
 D

 2021-01-06
 0.388703
 0.480877
 0.067397
 0.230019

1 df[df > 0]

	A	В	С	D
2021-01-01	NaN	0.465988	2.285259	NaN
2021-01-02	NaN	0.031809	2.493420	0.795128
2021-01-03	NaN	NaN	1.101073	0.331988
NaN : Not a Nu	mber			
2021-01-05	NaN	NaN	NaN	1 555096

▼ 컬럼 추가

- 기존 컬럼이 없으면 추가
- 기존 컬럼이 있으면 수정

1 df

	A	В	С	D
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096
2021-01-06	0.388703	0.480877	0.067397	0.230019

1 df["E"] = ["one", "one", "two", "tree", "four", "seven"]
2 df

	A	В	C	D	E
2021-01-01	-0.737817	0.465988	2.285259	-0.537783	one
2021-01-02	-0.218425	0.031809	2.493420	0.795128	one
2021-01-03	-1.441811	-0.737912	1.101073	0.331988	two
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718	tree
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096	four
2021-01-06	0.388703	0.480877	0.067397	0.230019	seven

- isin()
- 특정 요소가 있는지 확인

1 df["E"].isin(["two"])

```
2021-01-01
               False
   2021-01-02
                False
   2021-01-03
                 True
   2021-01-04
                 False
   2021-01-05
                False
   2021-01-06
               False
   Freq: D, Name: E, dtype: bool
1 df["E"].isin(["two", "five"])
   2021-01-01
                False
   2021-01-02
                 False
   2021-01-03
                 True
   2021-01-04
                False
   2021-01-05
                False
   2021-01-06
                False
   Freq: D, Name: E, dtype: bool
1 df["E"].isin(["two", "five", "three"])
   2021-01-01
                 False
   2021-01-02
                False
   2021-01-03
                 True
   2021-01-04
                 False
   2021-01-05
                False
   2021-01-06
                False
   Freq: D, Name: E, dtype: bool
1 df[df["E"].isin(["two", "five", "three"])]
                                                   E
    2021-01-03 -1.441811 -0.737912 1.101073 0.331988 two
```

▼ 특정 컬럼 제거

- del
- drop

1 df

A B C D E

1 del df["E"]

2 df

	A	В	С	D
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-04	-0.379156	0.727017	-1.807992	-0.267718
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096
2021-01-06	0.388703	0.480877	0.067397	0.230019

1 df.drop(["D"], axis=1) # axis=0 가로, axis=1 세로

	A	В	С
2021-01-01	-0.737817	0.465988	2.285259
2021-01-02	-0.218425	0.031809	2.493420
2021-01-03	-1.441811	-0.737912	1.101073
2021-01-04	-0.379156	0.727017	-1.807992
2021-01-05	-0.386941	-0.595659	-0.372068
2021-01-06	0.388703	0.480877	0.067397

1 df.drop(["20210104"])

	A	В	С	D
2021-01-01	-0.737817	0.465988	2.285259	-0.537783
2021-01-02	-0.218425	0.031809	2.493420	0.795128
2021-01-03	-1.441811	-0.737912	1.101073	0.331988
2021-01-05	-0.386941	-0.595659	-0.372068	1.555096
2021-01-06	0.388703	0.480877	0.067397	0.230019

- apply()

1 df

```
D
    2021-01-01 -0.737817
                         0.465988
                                  2.285259
                                           -0.537783
    2021-01-02 -0.218425
                         0.031809
                                  2.493420
                                            0.795128
    2021-01-03 -1.441811 -0.737912
                                  1.101073
                                            0.331988
    2021-01-04 -0.379156
                        0.727017 -1.807992
                                           -0.267718
    2021-01-05 -0.386941 -0.595659 -0.372068
                                           1.555096
1 df["A"].apply("sum")
   -2.7754472042709937
1 df["A"].apply("mean")
   -0.46257453404516563
1 df["A"].apply("min"), df["A"].apply("max")
   (-1.4418112187047896, 0.38870315635485564)
1 df[["A", "D"]].apply("sum")
   Α
       -2.775447
       2.106729
   dtype: float64
1 df["A"].apply(np.sum)
   2021-01-01 -0.737817
   2021-01-02
                -0.218425
   2021-01-03
                 -1.441811
   2021-01-04
               -0.379156
   2021-01-05
                -0.386941
   2021-01-06
                 0.388703
   Freq: D, Name: A, dtype: float64
1 df["A"].apply(np.mean)
   2021-01-01
                -0.737817
   2021-01-02
                 -0.218425
   2021-01-03
                -1.441811
   2021-01-04
                 -0.379156
   2021-01-05
                -0.386941
   2021-01-06
                 0.388703
   Freq: D, Name: A, dtype: float64
1 df["A"].apply(np.std)
   2021-01-01
                  0.0
   2021-01-02
                  0.0
```

```
2021-01-03
              0.0
   2021-01-04
                0.0
   2021-01-05
                0.0
   2021-01-06
               0.0
   Freq: D, Name: A, dtype: float64
1 df.apply(np.sum)
       -2.775447
   Α
   В
       0.372120
   C
        3.767090
        2.106729
   dtype: float64
1 df
```

```
В
                                      C
                  A
                                                 D
2021-01-01 -0.737817
                     0.465988
                                2.285259
                                         -0.537783
2021-01-02 -0.218425
                     0.031809
                               2.493420
                                         0.795128
2021-01-03 -1.441811 -0.737912
                               1.101073
                                         0.331988
2021-01-04 -0.379156
                     0.727017 -1.807992
                                         -0.267718
2021-01-05 -0.386941 -0.595659 -0.372068
                                         1.555096
2021-01-06 0.388703
                    0.480877 0.067397
```

```
0.230019
1 def plusminus(num):
     return "plus" if num > 0 else "minus"
1 df["A"].apply(plusminus)
   2021-01-01
                 minus
   2021-01-02
                 minus
   2021-01-03
                minus
   2021-01-04
                 minus
   2021-01-05
                minus
   2021-01-06
                 plus
   Freq: D, Name: A, dtype: object
1 df["A"].apply(lambda num: "plus" if num > 0 else "minus")
   2021-01-01
                 minus
   2021-01-02
                minus
   2021-01-03
                 minus
   2021-01-04
                minus
   2021-01-05
                minus
   2021-01-06
                  plus
   Freq: D, Name: A, dtype: object
```

▼ 2. CCTV 데이터 훑어보기

1 CCTV_Seoul.head()

	구별	소계	2013년도 이전	2014년	2015년	2016년
() 강남구	3238	1292	430	584	932
1	강동구	1010	379	99	155	377
2	2 강북구	831	369	120	138	204
3	강서구	911	388	258	184	81
4	. 관악구	2109	846	260	390	613

1 CCTV_Seoul.tail()

	구별	소계	2013년도 이전	2014년	2015년	2016년
20	용산구	2096	1368	218	112	398
21	은평구	2108	1138	224	278	468
22	종로구	1619	464	314	211	630
23	중구	1023	413	190	72	348
24	중랑구	916	509	121	177	109

1 CCTV_Seoul.sort_values(by="소계", ascending=True).head(5)

	구별	소계	2013년도	이전	2014년	2015년	2016년
9	도봉구	825		238	159	42	386
2	강북구	831		369	120	138	204
5	광진구	878		573	78	53	174
3	강서구	911		388	258	184	81
24	중랑구	916		509	121	177	109

1 CCTV_Seoul.sort_values(by="소계", ascending=False).head(5)

```
구별소계2013년도이전2014년2015년2016년0강남구32381292430584932
```

- 1 # 기존 컬럼이 없으면 추가, 있으면 수정
- 2 CCTV Seoul["최근증가율"] = (
- 3 (CCTV_Seoul["2016년"] + CCTV_Seoul["2015년"] + CCTV_Seoul["2014년"]) / CCTV_Se
- 4)

5

6 CCTV_Seoul.sort_values(by="최근증가율", ascending=False).head(5)

	구별	소계	2013년도 이전	2014년	2015년	2016년	최근증가율
2	2 종로구	1619	464	314	211	630	248.922414
9	도봉구	825	238	159	42	386	246.638655
12	2 마포구	980	314	118	169	379	212.101911
8	노원구	1566	542	57	451	516	188.929889
1	강동구	1010	379	99	155	377	166.490765

▼ 3. 인구현황 데이터 훑어보기

1 pop Seoul.head()

	구별	인구수	한국인	외국인	고령자
0	합계	10124579	9857426	267153	1365126
1	종로구	164257	154770	9487	26182
2	중구	134593	125709	8884	21384
3	용산구	244444	229161	15283	36882
4	성동구	312711	304808	7903	41273

1 pop_Seoul.tail()

	구별	인구수	한국인	외국인	고령자
21	관악구	520929	503297	17632	70046
22	서초구	445401	441102	4299	53205
23	강남구	561052	556164	4888	65060
24	송파구	671173	664496	6677	76582
25	강동구	440359	436223	4136	56161

```
1 pop_Seoul.drop([0], axis=0, inplace=True)
2 pop Seoul.head()
```

```
구별인구수한국인외국인고령자1종로구1642571547709487261822중구1345931257098884213843용산구244444422916115283368824성동구3127113048087903412735광진구3722983577031459543953
```

1 pop_Seoul["구별"].unique()

```
array(['종로구', '중구', '용산구', '성동구', '광진구', '동대문구', '중랑구', '성북구', '강북구', '도봉구', '노원구', '은평구', '서대문구', '마포구', '양천구', '강서구', '구로구', '금천구', '영등포구', '동작구', '관악구', '서초구', '강남구', '송파구', '강동구'], dtype=object)
```

1 len(pop_Seoul["구별"].unique())

25

```
1 # 외국인비율, 고령자비율
```

2

```
3 pop Seoul["외국인비율"] = pop Seoul["외국인"] / pop Seoul["인구수"] * 100
```

5 pop Seoul.head()

	구별	인구수	한국인	외국인	고령자	외국인비율	고령자비율
1	종로구	164257	154770	9487	26182	5.775705	15.939656
2	중구	134593	125709	8884	21384	6.600640	15.887899
3	용산구	244444	229161	15283	36882	6.252148	15.088118
4	성동구	312711	304808	7903	41273	2.527254	13.198448
5	광진구	372298	357703	14595	43953	3.920247	11.805865

```
1 pop Seoul.sort values(["인구수"], ascending=False).head(5)
```

⁴ pop Seoul["고령자비율"] = pop Seoul["고령자"] / pop Seoul["인구수"] * 100

구별인구수한국인외국인고령자외국인비율고령자비율24송파구6711736644966677765820.99482511.410173

1 pop_Seoul.sort_values(["외국인"], ascending=False).head(5)

	구별	인구수	한국인	외국인	고령자	외국인비율	고령자비율
19	영등포구	402024	368550	33474	53981	8.326369	13.427308
17	구로구	441559	410742	30817	58794	6.979135	13.315095
18	금천구	253491	235154	18337	34170	7.233787	13.479769
21	관악구	520929	503297	17632	70046	3.384722	13.446362
6	동대문구	366011	350647	15364	55718	4.197688	15.223040

1 pop_Seoul.sort_values(["외국인비율"], ascending=False).head()

	구별	인구수	한국인	외국인	고령자	외국인비율	고령자비율
19	영등포구	402024	368550	33474	53981	8.326369	13.427308
18	금천구	253491	235154	18337	34170	7.233787	13.479769
17	구로구	441559	410742	30817	58794	6.979135	13.315095
2	중구	134593	125709	8884	21384	6.600640	15.887899
3	용산구	244444	229161	15283	36882	6.252148	15.088118

1 pop Seoul.sort values(by="고령자", ascending=False).head()

	구별	인구수	한국인	외국인	고령자	외국인비율	고령자비율
24	송파구	671173	664496	6677	76582	0.994825	11.410173
16	강서구	608255	601691	6564	76032	1.079153	12.500021
12	은평구	491202	486794	4408	74559	0.897390	15.178888
11	노원구	558075	554403	3672	74243	0.657976	13.303409
21	관악구	520929	503297	17632	70046	3.384722	13.446362

1 pop_Seoul.sort_values(by="고령자비율", ascending=False).head()

	구별	인구수	한국인	외국인	고령자	외국인비율	고령자비율
Ω	가브그	ვენისე	201170	3503	56520	1 07/070	17 02/651

▼ Pandas에서 데이터 프레임을 병합하는 방법

- pd.concat()
- pd.merge()
- pd.join()

pd.merge(left, right)

```
1 # 딕셔너리 안의 리스트 형태
2
3 left = pd.DataFrame({
4    "key": ["K0", "K4", "K2", "K3"],
5    "A": ["A0", "A1", "A2", "A3"],
6    "B": ["B0", "B1", "B2", "B3"]
7 })
8 left
```

```
    key A B
    K0 A0 B0
    K4 A1 B1
    K2 A2 B2
    K3 A3 B3
```

```
1 # 리스트 안의 딕셔너리 형태
2
3 right = pd.DataFrame([
4 {"key":"K0", "C":"C0", "D":"D0"},
5 {"key":"K1", "C":"C1", "D":"D1"},
6 {"key":"K2", "C":"C2", "D":"D2"},
7 {"key":"K3", "C":"C3", "D":"D3"},
8 ])
9 right
```

	key	С	D
0	K0	C0	D0
1	K1	C1	D1
2	K2	C2	D2
3	КЗ	СЗ	D3

pd.merge()

- 두 데이터 프레임에서 컬럼이나 인덱스를 기준으로 잡고 병합하는 방법
- 기준이 되는 컬럼이나 인덱스를 키값이라고 합니다
- 기준이 되는 키값은 두 데이터 프레임에 모두 포함되어 있어야 합니다

1 pd.merge(left, right, how="inner", on="key")

	key	A	В	С	D
0	K0	A0	В0	C0	D0
1	K2	A2	B2	C2	D2
2	K3	A3	B3	C3	D3

1 pd.merge(left, right, how="left", on="key")

	key	A	В	С	D
0	K0	A0	В0	C0	D0
1	K4	A1	B1	NaN	NaN
2	K2	A2	B2	C2	D2
3	КЗ	АЗ	ВЗ	СЗ	D3

1 left

	key	A	В
0	K0	A0	В0
1	K4	A1	B1
2	K2	A2	B2
3	КЗ	АЗ	ВЗ

1 right

	key	С	D
0	K0	C0	D0
1	K1	C1	D1
2	K2	C2	D2
3	КЗ	СЗ	D3

1 pd.merge(left, right, how="right", on="key")

	key	A	В	С	D
0	K0	A0	В0	C0	D0
1	K1	NaN	NaN	C1	D1
2	K2	A2	B2	C2	D2
3	КЗ	АЗ	ВЗ	СЗ	D3

1 pd.merge(left, right, how="outer", on="key")

	key	A	В	С	D
0	K0	A0	В0	C0	D0
1	K4	A1	B1	NaN	NaN
2	K2	A2	B2	C2	D2
3	КЗ	АЗ	ВЗ	С3	D3
4	K1	NaN	NaN	C1	D1

▼ 4. 두 데이터 합치기

1 CCTV Seoul.head(1)

	구별	소계	2013년도 이전	2014년	2015년	2016년	최근증가율
0	강남구	3238	1292	430	584	932	150.619195

1 pop_Seoul.head(1)

```
1 data_result = pd.merge(CCTV_Seoul, pop_Seoul, on="구별")
2 data result.head()
```

	구 별	소계	2013년 도 이전	2014 년	2015 년	2016 년	최근증가율	인구수	한국인	외국인	고령자	
0	강 남	3238	1292	430	584	932	150.619195	561052	556164	4888	65060	0.

▼ 년도별 데이터 컬럼 삭제

- del
- drop()
- 1 del data result["2013년도 이전"]
- 1 del data_result["2014년"]
- 1 data_result.head(3)

	구별	소계	2015년	2016년	최근증가율	인구수	한국인	외국인	고령자	외국인비율	고
0	강남구	3238	584	932	150.619195	561052	556164	4888	65060	0.871220	11.
1	강동구	1010	155	377	166.490765	440359	436223	4136	56161	0.939234	12.
2	강북구	831	138	204	125.203252	328002	324479	3523	56530	1.074079	17.1

1 data_result.drop(["2015년", "2016년"], axis=1, inplace=True)

1 data result.head()

	구별	소계	최근증가율	인구수	한국인	외국인	고령자	외국인비율	고령자비율
0	강남구	3238	150.619195	561052	556164	4888	65060	0.871220	11.596073
1	강동구	1010	166.490765	440359	436223	4136	56161	0.939234	12.753458
2	강북구	831	125.203252	328002	324479	3523	56530	1.074079	17.234651
3	강서구	911	134.793814	608255	601691	6564	76032	1.079153	12.500021
4	관악구	2109	149.290780	520929	503297	17632	70046	3.384722	13.446362

▼ 인덱스 변경

- set_index()
- 선택한 컬럼을 데이터 프레임의 인덱스로 지정
- 1 data_result.set_index("구별", inplace=True)
- 2 data_result.head()

	소계	최근증가율	인구수	한국인	외국인	고령자	외국인비율	고령자비율
구별								
강남구	3238	150.619195	561052	556164	4888	65060	0.871220	11.596073
강동구	1010	166.490765	440359	436223	4136	56161	0.939234	12.753458
강북구	831	125.203252	328002	324479	3523	56530	1.074079	17.234651
강서구	911	134.793814	608255	601691	6564	76032	1.079153	12.500021

▼ 상관계수

- corr()
- correlation 의 약자입니다
- 상관계수가 0.2 이상인 데이터를 비교

1 data_result.corr()

	소계	최근증가율	인구수	한국인	외국인	고령자	외국인비율	고령기
소계	1.000000	-0.264378	0.232555	0.227852	0.030421	0.163905	-0.045956	-0.26
최근증가율	-0.264378	1.000000	-0.097165	-0.086341	-0.156421	-0.072251	-0.047102	0.19
인구수	0.232555	-0.097165	1.000000	0.998151	-0.167243	0.936737	-0.601076	-0.63
한국인	0.227852	-0.086341	0.998151	1.000000	-0.226853	0.936155	-0.645463	-0.62
외국인	0.030421	-0.156421	-0.167243	-0.226853	1.000000	-0.175318	0.838612	-0.02
고령자	0.163905	-0.072251	0.936737	0.936155	-0.175318	1.000000	-0.620300	-0.34
외국인비율	-0.045956	-0.047102	-0.601076	-0.645463	0.838612	-0.620300	1.000000	0.24
고령자비율	-0.267841	0.190396	-0.637414	-0.628360	-0.021147	-0.348840	0.242816	1.00

1 data result.info()

<class 'pandas.core.frame.DataFrame'>
Index: 25 entries, 강남구 to 중랑구
Data columns (total 8 columns):
Column Non-Null Count Dtype
--- 0 소계 25 non-null int64
1 최근증가율 25 non-null float64
2 인구수 25 non-null int64

2 인구수 25 non-null int64 3 한국인 25 non-null int64 4 외국인 25 non-null int64 5 고령자 25 non-null int64 6 외국인비율 25 non-null float64

25 non-null

dtypes: float64(3), int64(5)

memory usage: 1.8+ KB

고령자비율

7

float64

```
1 data_result["CCTV비율"] = data_result["소계"] / data_result["인구수"] 2 data_result["CCTV비율"] = data_result["CCTV비율"] * 100
```

1 data result.head()

		소계	최근증가율	인구수	한국인	외국인	고령자	외국인비율	고령자비율	CCTV비율
	구별									
강	남구	3238	150.619195	561052	556164	4888	65060	0.871220	11.596073	0.577130
강	동구	1010	166.490765	440359	436223	4136	56161	0.939234	12.753458	0.229358
강	북구	831	125.203252	328002	324479	3523	56530	1.074079	17.234651	0.253352
강	서구	911	134.793814	608255	601691	6564	76032	1.079153	12.500021	0.149773
관	악구	2109	149.290780	520929	503297	17632	70046	3.384722	13.446362	0.404854

1 data_result.sort_values(by="CCTV비율", ascending=False).head()

	소계	최근증가율	인구수	한국인	외국인	고령자	외국인비율	고령자비율	CCTV비율
구별									
종로구	1619	248.922414	164257	154770	9487	26182	5.775705	15.939656	0.985651
용산구	2096	53.216374	244444	229161	15283	36882	6.252148	15.088118	0.857456
중구	1023	147.699758	134593	125709	8884	21384	6.600640	15.887899	0.760069
강남구	3238	150.619195	561052	556164	4888	65060	0.871220	11.596073	0.577130
금천구	1348	100.000000	253491	235154	18337	34170	7.233787	13.479769	0.531774

1 data_result.sort_values(by="CCTV비율", ascending=True).head()

소계	최근증가율	인구수	한국인	외국인	고령자	외국인비율	고령자비율	CCTV비율
911	134.793814	608255	601691	6564	76032	1.079153	12.500021	0.149773
1081	104.347826	671173	664496	6677	76582	0.994825	11.410173	0.161061
916	79.960707	412780	408226	4554	59262	1.103251	14.356800	0.221910
1010	166.490765	440359	436223	4136	56161	0.939234	12.753458	0.229358
878	53.228621	372298	357703	14595	43953	3.920247	11.805865	0.235833
	911 1081 916 1010	911 134.793814 1081 104.347826 916 79.960707 1010 166.490765	911 134.793814 608255 1081 104.347826 671173 916 79.960707 412780 1010 166.490765 440359	911 134.793814 608255 601691 1081 104.347826 671173 664496 916 79.960707 412780 408226 1010 166.490765 440359 436223	911 134.793814 608255 601691 6564 1081 104.347826 671173 664496 6677 916 79.960707 412780 408226 4554 1010 166.490765 440359 436223 4136	911 134.793814 608255 601691 6564 76032 1081 104.347826 671173 664496 6677 76582 916 79.960707 412780 408226 4554 59262 1010 166.490765 440359 436223 4136 56161	911 134.793814 608255 601691 6564 76032 1.079153 1081 104.347826 671173 664496 6677 76582 0.994825 916 79.960707 412780 408226 4554 59262 1.103251 1010 166.490765 440359 436223 4136 56161 0.939234	911 134.793814 608255 601691 6564 76032 1.079153 12.500021 1081 104.347826 671173 664496 6677 76582 0.994825 11.410173 916 79.960707 412780 408226 4554 59262 1.103251 14.356800 1010 166.490765 440359 436223 4136 56161 0.939234 12.753458

▼ matplotlib 기초

```
1 import matplotlib.pyplot as plt
2 from matplotlib import rc
3
4 rc("font", family="Arial Unicode MS") # Windows : Malgu Gothic
5 # %matplotlib inline
6 get ipython().run line magic("matplotlib", "inline")
```

matplotlib 그래프 기본 형태

3 plt.show()

```
plt.figure(figsize=(10, 6))
plt.plot(x, y)
plt.show

1 plt.figure(figsize=(10, 6))
2 plt.plot([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 1, 2, 3, 4, 2, 3, 5, -1, 3])
```


▼ 예제1: 그래프 기초

▼ 삼각함수 그리기

- np.arange(a, b, s): a부터 b까지 s의 간격
- np.sin(value)

```
1 import numpy as np
2
```

```
3 t = np.arange(0, 12, 0.01)
4 y = np.sin(t)

1 plt.figure(figsize=(10, 6))
2 plt.plot(t, np.sin(t))
3 plt.plot(t, np.cos(t))
4 plt.show()
```


- 1. 격자무늬 추가
- 2. 그래프 제목 추가
- 3. x축, y축 제목 추가
- 4. 주황색, 파란색 선 데이터 의미 구분

```
1 def drawGraph():
2
3
      plt.figure(figsize=(10, 6))
      plt.plot(t, np.sin(t), label="sin")
4
      plt.plot(t, np.cos(t), label="cos")
5
      plt.grid(True)
6
7
      plt.legend(loc=2) # 범례
8
      plt.title("Example of sinewave")
9
      plt.xlabel("time")
10
      plt.ylabel("Amplitude") # 진폭
11
      plt.show()
```

1 drawGraph()

▼ 예제2: 그래프 커스텀

```
1 t = np.arange(0, 5, 0.5)
2 t

array([0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5])

1 plt.figure(figsize=(10, 6))
2 plt.plot(t, t, "r--") # red ----
3 plt.plot(t, t ** 2, "bs")
4 plt.plot(t, t ** 3, "g>")
5 plt.show()
```



```
1 \# t = [0, 1, 2, 3, 4, 5, 6]
 2 t = list(range(0, 7))
 3 y = [1, 4, 5, 8, 9, 5, 3]
 1 def drawGraph():
 2
 3
      plt.figure(figsize=(10, 6))
 4
      plt.plot(
 5
           t,
 6
           У,
 7
           color="red",
           linestyle="--",
 8
           marker="o",
 9
10
           markerfacecolor="blue",
11
           markersize=10,
12
       )
13
14
      plt.xlim([-0.5, 6.5])
      plt.ylim([0.5, 9.5])
15
16
      plt.show()
17
18 drawGraph()
```


예제3: scatter plot

```
1 t = np.array(range(0, 10))
2 y = np.array([9, 8, 7, 9, 8, 3, 2, 4, 3, 4])
1 def drawGraph():
2
3    plt.figure(figsize=(10, 6))
```

```
4 plt.scatter(t, y)
5 plt.show()
6
7 drawGraph()
```



```
1 colormap = t
2
3 def drawGraph():
4
5    plt.figure(figsize=(10, 6))
6    plt.scatter(t, y, s=150, c=colormap, marker="<")
7    plt.colorbar()
8    plt.show()
9
10 drawGraph()</pre>
```

____9

- ▼ 예제4: Pandas에서 plot 그리기
 - matplotlib 을 가져와서 사용합니다
 - 1 data_result.head()

	소계	최근증가율	인구수	한국인	외국인	고령자	외국인비율	고령자비율	CCTV비율	
구별										
강남구	3238	150.619195	561052	556164	4888	65060	0.871220	11.596073	0.577130	
강동구	1010	166.490765	440359	436223	4136	56161	0.939234	12.753458	0.229358	
강북구	831	125.203252	328002	324479	3523	56530	1.074079	17.234651	0.253352	
강서구	911	134.793814	608255	601691	6564	76032	1.079153	12.500021	0.149773	
과안구	2109	149 290780	520929	503297	17632	70046	3 384722	13 446362	0 404854	

¹ data_result["인구수"].plot(kind="bar", figsize=(10, 10));

1 data_result["인구수"].plot(kind="barh", figsize=(10, 10));

▼ 5. 데이터 시각화

```
1 import matplotlib.pyplot as plt
2 # import matplotlib as mpl
3 from matplotlib import rc
4
5 plt.rcParams["axes.unicode_minus"] = False # 마이너스 부호 때문에 한글이 깨질 수가 있어 주는
6 rc("font", family="Arial Unicode MS") # Windows: Malgun Gothic
7 # %matplotlib inline
8 get_ipython().run_line_magic("matplotlib", "inline")
```

1 data_result.head()

	소계	최근증가율	인구수	한국인	외국인	고령자	외국인비율	고령자비율	CCTV비율
구	별								
강남-	구 3238	150.619195	561052	556164	4888	65060	0.871220	11.596073	0.577130
강동	구 1010	166.490765	440359	436223	4136	56161	0.939234	12.753458	0.229358
강북	구 831	125.203252	328002	324479	3523	56530	1.074079	17.234651	0.253352
강서-	구 911	134.793814	608255	601691	6564	76032	1.079153	12.500021	0.149773
관악-	구 2109	149.290780	520929	503297	17632	70046	3.384722	13.446362	0.404854

▼ 소계 컬럼 시각화

1 data_result["소계"].plot(kind="barh", grid=True, figsize=(10, 10));


```
1 def drawGraph():
```

² data_result["소계"].sort_values().plot(

3 kind="barh", grid=True, title="가장 CCTV가 많은 구", figsize=(10, 10)); 4 drawGraph()

1 data_result.head()

	소계	최근증가율	인구수	한국인	외국인	고령자	외국인비율	고령자비율	CCTV비율	
구별										
강남구	3238	150.619195	561052	556164	4888	65060	0.871220	11.596073	0.577130	
강동구	1010	166.490765	440359	436223	4136	56161	0.939234	12.753458	0.229358	
강북구	831	125.203252	328002	324479	3523	56530	1.074079	17.234651	0.253352	
강서구	911	134.793814	608255	601691	6564	76032	1.079153	12.500021	0.149773	
관악구	2109	149.290780	520929	503297	17632	70046	3.384722	13.446362	0.404854	

▼ CCTV비율 컬럼 시각화

```
1 def drawGraph():
2     data_result["CCTV비율"].sort_values().plot(
3     kind="barh", grid=True, title="가장 CCTV가 많은 구", figsize=(10, 10));
4 drawGraph()
```


▼ 6. 데이터의 경향 표시

1 data_result.head()

소계 최근증가율 인구수 한국인 외국인 고령자 외국인비율 고령자비율 ccrv비율

▼ 인구수와 소계 컬럼으로 scatter plot 그리기

```
강난구 3238 150 619195 561052 556164
                                                      0.871220 11.596073 0.577130
                                          4888 65060
1 def drawGraph():
2
3
     plt.figure(figsize=(14, 10))
     plt.scatter(data_result["인구수"], data_result["소계"], s=50)
4
5
     plt.xlabel("인구수")
6
     plt.ylabel("CCTV")
7
     plt.grid(True)
     plt.show()
9 drawGraph()
```


▼ Numpy를 이용한 1차 직선 만들기

- np.polyfit(): 직선을 구성하기 위한 계수를 계산
- np.poly1d(): polyfit 으로 찾은 계수로 파이썬에서 사용할 수 있는 함수로 만들어주는 기능

```
1 import numpy as np

1 fp1 = np.polyfit(data_result["인구수"], data_result["소계"], 1)
2 fp1
    array([1.11155868e-03, 1.06515745e+03])

1 f1 = np.polyld(fp1)
2 f1
    polyld([1.11155868e-03, 1.06515745e+03])

1 f1(400000)
    1509.7809252413335

• 인구가 40만인 구에서 서울시의 전체 경향에 맞는 적당한 CCTV 수는?

1 fx = np.linspace(100000, 700000, 100)
```

- 경향선을 그리기 위한 X 데이터 생성
- np.linspace(a, b, n): a부터 b까지 n개의 등간격 데이터 생성

```
1 def drawGraph():
2
3
      plt.figure(figsize=(14, 10))
      plt.scatter(data result["인구수"], data_result["소계"], s=50)
5
      plt.plot(fx, f1(fx), ls="dashed", lw=3, color="g")
     plt.xlabel("인구수")
6
7
     plt.ylabel("CCTV")
      plt.grid(True)
8
9
      plt.show()
10 drawGraph()
```


▼ 7. 강조하고 싶은 데이터를 시각화해보자

▼ 그래프 다듬기

경향과의 오차 만들기

- 경향(trend)과의 오차를 만들자
- 경향은 f1 함수에 해당 인구를 입력
- f1(data_result["인구수"])

```
100000 200000 300000 400000 500000 6000000 1 fpl = np.polyfit(data_result["인구수"], data_result["소계"], 1) 2 fl = np.polyld(fpl) 3 fx = np.linspace(100000, 700000, 100)
```

1 data_result.head(3)

```
소계
            최근증가율
                      인구수
                             한국인 외국인 고령자 외국인비율
                                                        고령자비율 CCTV비율
 구별
강남구
     3238 150.619195 561052 556164
                                    4888 65060
                                              0.871220
                                                        11.596073 0.577130
강동구
     1010 166.490765 440359
                            436223
                                    4136
                                         56161
                                               0.939234
                                                        12.753458 0.229358
강북구
      831
          125.203252 328002 324479
                                    3523 56530
                                               1.074079 17.234651 0.253352
```

```
1 data result["오차"] = data result["소계"] - f1(data result["인구수"])
```

1 data result.head(1)

인구수 한국인 외국인 고령자 외국인비율 고령자비율 CCTV비율 소계 최근증가율

```
구볔
```

```
1 # 경향과 비교해서 데이터의 오차가 너무 나는 데이터를 계산
```

```
3 df_sort_f = data_result.sort_values(by="오차", ascending=False) # 내림차순
```

- 1 # 경향 대비 CCTV를 많이 가진 구
- 2 df sort f.head()

	소계	최근증가율	인구수	한국인	외국인	고령자	외국인비율	고령자비율	CCTV비율	
구별										
강남구	3238	150.619195	561052	556164	4888	65060	0.871220	11.596073	0.577130	1
양천구	2482	34.671731	475018	471154	3864	55234	0.813443	11.627770	0.522507	
용산구	2096	53.216374	244444	229161	15283	36882	6.252148	15.088118	0.857456	
서초구	2297	63.371266	445401	441102	4299	53205	0.965198	11.945415	0.515715	
은평구	2108	85.237258	491202	486794	4408	74559	0.897390	15.178888	0.429151	

^{1 #} 경향 대비 CCTV를 적게 가진 구

1 def drawGraph():

2

4

5 6

	소계	최근증가율	인구수	한국인	외국인	고령자	외국인비율	고령자비율	CCTV비율	
구별										
강서구	911	134.793814	608255	601691	6564	76032	1.079153	12.500021	0.149773	-{
송파구	1081	104.347826	671173	664496	6677	76582	0.994825	11.410173	0.161061	-7
도봉구	825	246.638655	346234	344166	2068	53488	0.597284	15.448512	0.238278	-(
중랑구	916	79.960707	412780	408226	4554	59262	1.103251	14.356800	0.221910	-(
광진구	878	53.228621	372298	357703	14595	43953	3.920247	11.805865	0.235833	-6

```
1 from matplotlib.colors import ListedColormap
3 # colormap 을 사용자 정의(user define)로 세팅
4 color_step = ["#e74c3c", "#2ecc71", "#95a9a6", "#2ecc71", "#3498db", "#3498db"]
5 my cmap = ListedColormap(color step)
```

```
3
     plt.figure(figsize=(14, 10))
     plt.scatter(data_result["인구수"], data_result["소계"], s=50, c=data_result["오
     plt.plot(fx, f1(fx), ls="dashed", lw=3, color="g")
```

⁴ df sort t = data result.sort values(by="오차", ascending=True) # 오름차순

² df sort t.head()

```
7
      for n in range(5):
          # 상위 5개
8
9
          plt.text(
              df_sort_f["인구수"][n] * 1.02, # x 좌표
10
              df sort f["소계"][n] * 0.98, # y 좌표
11
              df sort f.index[n], # title
12
              fontsize=15,
13
14
          )
15
          # 하위 5개
16
17
          plt.text(
18
              df sort t["인구수"][n] * 1.02,
              df sort t["소계"][n] * 0.98,
19
              df sort_t.index[n],
20
              fontsize=15
21
22
          )
23
24
      plt.xlabel("인구수")
25
      plt.ylabel("CCTV")
26
27
      plt.colorbar()
28
      plt.grid(True)
29
      plt.show()
30 drawGraph()
```

