ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

(ФПИиКТ)

Лабораторная №6 Работа с системой компьютерной вёрстки ТеХ Вариант 49

> Выполнил: Студент группы Р3115 Зыков Иван Евгеньевич

Проверил: Авксентьева Елена Юрьевна, к.п.н., доцент факультета ПИиКТ

Содержание

1	Задание			
	1.1	Подготовка к работе	3	
	1.2	Обязательное задание	3	
	1.3	Дополнительное задание №1	3	
	1.4	Дополнительное задание $N^{\circ}2$	S	
2			5	
	2.1	Обязательное задание	٦	
	2.2	Дополнительное задание №2	7	

1 Задание

1.1 Подготовка к работе

- 1. Скачать и установить любой дистрибутив TEX (например, MiKTeX) или создать аккаунт на сайте ShareLaTeX (sharelatex.com), Overleaf (overleaf.com) или любом аналогичном.
- 2. Выбрать год и номер журнала «Квант» (kvant.ras.ru) согласно варианту из таблицы на последней странице документа. Вариант выбирается как сумма последнего числа в номере группы, умноженного на 10, и номера в списке группы согласно ISU на текущий день.
- 3. Выбрать одну страницу из всего номера, отвечающую следующим требованиям:
 - Текст должен состоять минимум из 2 колонок.
 - Заголовок не должен превышать 20
 - Страница должна содержать 1 или 2 картинки, общая площадь которых не должна превышать 40
 - Текст должен содержать не менее 2 сложных формул. Желательно, чтобы были такие математические операции, как сумма элементов (не путать с простым сложением), извлечение корня, логарифм и т.п.
 - В тексте должна быть как минимум 1 таблица. Размерность таблицы должна превышать 2^*2 элемента.

В случае, если такая страница не найдена, то взять 1.5 страницы, где на одной будет большая часть задания, а на оставшейся — меньшая. В случае, если и таким образом страница не найдена, необходимо увеличить год выпуска на 19 лет и искать материал в новом выпуске.

1.2 Обязательное задание

Сверстать страницу, максимально похожую на выбранную страницу из журнала «Квант».

1.3 Дополнительное задание №1

- 1. Сверстать титульный лист.
- 2. Создать файл main.tex, в котором будет содержаться преамбула и ссылки на 2 документа: титульный лист и статью (ссылки создаются с помощью команды input).

1.4 Дополнительное задание №2

Выполнение данного задания позволяет получить до 15 дополнительных процентов от максимального числа баллов БаРС за данную лабораторную.

1. Рассчитать номер варианта по следующей схеме: $\Phi - \kappa$ оличество букв в фамилии, $H - \kappa$ оличество букв в имени Hомер варианта = $1 + ((\Phi * H) \mod 27)$

- 2. Выполнить задание из полученного варианта, используя средства LaTeX.

 1) Сформировать таблицу периодических элементов Д.И. Менделеева, максимально похожую на предложенную: 2-16) Используя pdf-документ (книга «ПЕРВЫЕ ШЕСТЬ КНИГ НАЧАЛ ЕВКЛИДА») сверстать 1 страницу. При этом геометрические фигуры и отрезки должны быть нарисованы, а не вставлены как картинка. Можно использовать любой удобный для вас способ рисования.
 - 2 ctp. 26
 - 3 ctp. 28
 - 4 ctp. 29
 - 5 ctp. 31
 - 6 ctp. 37
 - 7 ctp. 40
 - 8 ctp. 46
 - 9 ctp. 48
 - 10 ctp. 49
 - 11 ctp. 50
 - 12 ctp. 51
 - 13 ctp. 59
 - 14 ctp. 74
 - 15 ctp. 89
 - 16 − ctp. 96
 - 17-27) Используя пакет MusiXTeX написать не менее 25 первых нот гимна страны, название которой на русском языке начинается со следующей буквы:
 - 17 A
 - 18 − B
 - 19 B
 - 20 − Γ
 - 21 Д
 - 22 3
 - 23 K
 - 24Π
 - 25 M
 - 26 H
 - 27 P

$\mathbf{2}$ Выполнение

Обязательное задание 2.1

http://kvant.mccme.ru

Пусть О -- «нулевой» узел, начало координат. В описание Р входит список U, состоящий из r узлов u_1, \ldots, u_r , от состояний которых в момент t зависит состояние узла O в момент t+1. В примере 1 число этих узлов r = 5, в примере 2 r = 3. Состояние любого узла Aв момент t+1 зависит от состояний узлов $A + u_1, \ldots, A + u_r$ в момент t. Знак + здесь означает сложение векторов. Например, если A = $(x, y), u_1 = (x', y'), \text{ to } A + u_1 = (x + x', y + y').$

Упражнение 2. Напишите координаты векторов u_1, \ldots, u_5 в примере 1 и векторов u_1, u_2, u_3 в примере 2.

Кроме списка U, в задание оператора Р входит функция, определяющая, как именно зависит состояние узла A в момент t+1 от состояний узлов $A + u_1, \ldots, A + u_r$ в момент t. Чтобы задать такую функцию, нужно указать, что будет в узле A в момент t+1 единица или же нуль -- для каж дой комбинации единиц и нулей в узлах $A + u_1, \ldots, A + u_r$ в момент t. Всего таких комбинаций 2'. Можно, например, составить таблицу, в которой против каждой комбинации из единиц и нулей поставить либо единицу, либо нуль, что и сделано на рисунке 4 (проверьте, что функция, заданная этой таблицей, определяет оператор Р из примера 2).

состояния узлов							
	B MOMEHT t						
(0,0)	(0,1)	(1,0)	(0,0)				
0	0	- 0	0				
0	0	1	0				
0	1.	0	0				
0	1	1	1				
1	0	0	0				
1	0	1	1				
1	1	0	1				
1	1	1	1				

Рис. 4

Составлять таблицу, конечно, не обязательно, можно функцию задать словесно, но так, чтобы по сло-весному заданию можно было бы однозначно составить такую таблицу.

Функции $f = f(a_1, a_2, \ldots, a_r),$ аргументы и значения которых принимают только два значения, 0 и 1, называются булевскими или двоичными. Булевская функция называется монотонной, если из

$$a_1\leqslant a'_1,\ldots,a_r\leqslant a'_r$$
 cheavet $f(a_1,\ldots,a_r)\leqslant f(a'_1,\ldots,a'_r)$.

Как уже говорилось, мы будем рассматривать только монотонные операторы. Они задаются монотонными функциями. Положим, кроме того, f(0, ..., 0) = 0, f(1, ..., 1) = 1. Эти ограничения несущественны, поскольку и е удовлетворяют им из монотонных функ-ций только константы — функции, прини-мающие только одно значение (всегда пуль или всегда единицу). Функции - константы очень просты, и поэтому неинтересны.

Пример 3. Пусть в мент t+1 в узле A=(x, y) будет нуль в том и только в том случае, если в момент t выполняется хотя бы одно из двух условий:

а) нули стоят лах (x, y) в (x, y + 1);

б) нули стоят в обоих узлах (x+1, y) и (x+1, y+1). обоих уз-Оператор Р задан.

Упражиение 3. а) Проследите эволюцию колоний, изображенных на рисунке 1, под действием этого оператора. Не правда ли, создается впечатление,

что колонии сплющиваются с правого бока, по зато вытягиваются вверх?

б) Докажите, что под действием оператора примера 3 всякая конечная колония

Пример 4. Пусть в мент t + 1 в узле A = (x, y) будет нуль тогда и только тогда, если в момент t выполняется хотя бы одно из двух условий:

а) нули стоят в обоих узлах

(x, y) H (x + 1, y + 1);

б) нули стоят в обоих (x+1, y) и (x, y+1). Оператор Р задан.

33

3 Квант № 9

Рис. 1: страница из журнала квант

Пусть O - "нулевой" узел, начало координат. В описание \mathbf{P} входит $cnuco\kappa$ \mathbf{U} , состоящий из r узлов $u_1,...,u_r$, от состояний которых в момент t зависит состояние узла O в момент t+1. В примере 1 число этих узлов r-5, в примере 2 r-3. Состояние любого узла A в момент t+1 зависит от состояний узлов $A+u_1,...,A+u_r$ в момент t. Знак + здесь означает сложение векторов. Например, если $A=(x,y),\ u_1=(x',y'),$ то $A+u_1=(x+x',y+y')$.

 $y \ n \ p \ a \ ж \ n \ e \ n \ u \ e \ 2$. Напишите координаты векторов $u_1, ..., u_5$ в примере 1 и векторов u_1, u_2, u_3 в примере 2.

Кроме списка \mathbf{U} , в з $a \ \partial \ a \ n \ u \ e$ оператора \mathbf{P} входит функция, определяющая, как именно зависит состояние узла A в момент t+1от состояния узлов $A + u_1, ..., A + u_r$ в момент t. Чтобы задать такую функцию, нужно указать, что будет в узле A в момент t+1 - единица или же нуль для к а ж д о й комбинации единиц и нулей в узлах $A + u_1, ..., A + u_r$ в момент t. Всего таких комбинаций 2^{r} . Можно, например, составить таблицу, в которой против каждой комбинации из единиц и нулей поставить либо единицу, либо нуль, что и сделано на рисунке 4 (проверьте, что функция, заданная этой таблицей, определяет оператор P из примера 2).

ner oneparop r no nphimepa 2								
Состояние узлов								
В	в момент t							
(0,0)	(0,1)	(1,0)	(0,0)					
0	0	0	0					
0	0	1	0					
0	1	0	0					
0	1	1	1					
1	0	0	0					
1	0	1	1					
1	1	0	1					
1	1	1	1					

Составлять таблицу, конечно, не обязательно, можно функцию задать словесно, но так, чтобы по слоесному заданию можно было бы однозначно составить такую таблицу.

Функции $f = f(a_1, a_2, ..., a_r)$, аргументы и значения которых принимают только два значения, 0 и 1, называются булевскими или двоичными. Булевская функция называется монотонной, если из

$$a_1 \le a'_1, ..., a_r \le a'_r$$

следует

$$f(a_1, ..., a_r) \le f(a'_1, ..., a'_r).$$

Как уже говорилось, мы будем рассматривать только монотонные операторы. Они задаются монотонными функциями. Положим, кроме того, f(0,...,0) = 0, f(1,...,1) = 1.

Эти ограничения несущественны, поскольку удовлетворяют ИМ из монотонных функций только константы — функции, принимающие только одно значение (всегда единицу). нуль или всегда Функции константы очень просты, и поэтому неинтересны.

П р и м е р 3. Пусть в момент t+1 в узле A+(x,y) будет нуль в том и только в том случае, если в момент t выполняется хотя бы одно из двух условий:

- 1. нули стоят в обоих узлах (x, y) и (x, y + 1);
- 2. нули стоят обоих узлах (x+1,y) и (x+1,y+1). Оператор **P** задан.

Упражнение 3. a) Проследите эволюцию колоний, изображенных на рисунке 1, под действием этого оператора.

Не правда ли, создается впечатление, что колонии сплющиваются с правого бока, но зато *вытягиваются* вверх?

- б) Докажите, что под действием оператора примера 3 всякая конечная вымирает.
- П р и м е р 4. Пусть момент t+1 в узле =(x,y) будет нуль тогда и только тогда, если в момент t выполняется хотя бы одно из двух условий: а) нули стоят в обоих узлах (x,y) и (x+1,y+1); б) нули стоят в обоих узлах (x,y) и (x+1,y) и (x,y+1). Оператор Р задан.

2.2 Дополнительное задание №2

Вариант 10

КНИГА І ПРЕДЛ. XXV. ТЕОРЕМА

Рис. 2: страница из книги

КНИГА І ПРЕД. XXV. ТЕОРЕМА

