AIAA-2016-4013

Characterization of DBD Plasma Actuators Performance without External Flow – Part I: Thrust-Voltage Quadratic Relationship in Logarithmic Space for Sinusoidal Excitation

David E. Ashpis

NASA Glenn Research Center, Cleveland, Ohio 44135

ashpis@nasa.gov

and

Matthew C. Laun

HX5 Sierra LLC, Cleveland, Ohio 44135

matthew.c.laun@nasa.gov

AIAA Aviation 2016

47th AIAA Plasmadynamics and Lasers Conference

13-17 June, 2016, Washington, DC

OUTLINE

- Introduction
 - DBD actuator
 - DBD actuator thrust
- Test setup
 - Actuator test article
 - Suspended setup
 - Instrumentation
 - Humidity conditions
- Thrust measurement methodology
 - Burn-in
 - Voltage-frequency sweeps
 - Data correction with anti-thrust
- Results
 - Thrust vs voltage on log-log scale
 - Quadratic curve fit
- Concluding remarks

DBD Plasma Actuator

DBD ACTUATOR SCHEMATIC

TYPICAL DISCHARGE

APPLICATIONS

Characterization of Aerodynamic Performance - Thrust Measurements

Thrust read by balance is equal to the momentum generated by the actuator

Surface-parallel direction x:

$$\frac{F_{\text{plasma}}}{L_z} + \frac{F_{\text{shear}}}{L_z} = \underbrace{\rho \int_{\text{right}} v_x^2 \, dy}_{\text{I}} + \underbrace{\rho \int_{\text{top}} v_x v_y \, dx}_{\text{II}}$$
$$- \underbrace{\rho \int_{\text{left}} v_x^2 \, dy}_{\text{III}} + \underbrace{\int_{\text{right}} p \, dy}_{\text{IV}} - \underbrace{\int_{\text{left}} p \, dy}_{\text{V}},$$

Thrust ≈ Momentum

If wall shear is negligible

- Supported by calculation based on Glauert self-similar wall jet - Opaits et al 2010¹ data
- Contradiction with Durscher & Roy 2012²

¹ Opaits, D. F., et al, "Surface Plasma Induced Wall jets," AIAA-2010-469 ² Durscher, R., and Roy, S., "Evaluation of Thrust Measurement Techniques for DBD Actuators," Exp. Fluids 53, 2012, pp. 1165-1176

Sample Performance Map

Thrust- Voltage relationships

Power law $T \propto V^m$ at const. frequency.

Proposed m values :

- Thomas et al, 2009, AIAA Journal
 - m = 3.5 low voltage
 - m = 2.3 high voltage
- Wilkinson et al AIAA-2014-2810

$$m = 4.8$$

Zito et al AIAA 2012-3091 micro-actuators

$$m = 2.2, 3.4, 3.6, 6.6$$

We found a different relationship

Objectives

- Generate a quality data set for pure sine waves excitation
- Find thrust-voltage- frequency relations
- Provide bench mark data for numerical simulation
- Provide predictive capability

Thrust Measurement Approach

- Actuator construction
- Test setup
- Pure sine waves excitation
- Low humidity
- Burn-in procedure
- Anti thrust data correction

 Builds upon Ashpis & Laun AIAA Paper 2014-0486 (also NASA/TM—2014-218115)

Actuator Test Articles

Nominal Thicknesses: 1/16", 1/8", 1/4" Covered Electrode length ≈ 10"

TEST SETUP:

- Out in the room without enclosure
- Balance installed near ceiling
- Balance thermally insulated to eliminate temperature drift
- Test article suspended on nylon lines
- High voltage applied via a liquid interface eliminates lead wire forces
 - Lead wire immersed in tap water
 - Power supply charges tap water

Excitation Voltage

- Waveform- Sine Wave
 - Distortion monitoring

Thermal

Insulation

DBD

Actuator

Tap

Water

Balance

AnD GFX-1000

Ground

HV Power Supply

Nvlon Lines

HV Lead Wire

Ceiling Installation

Humidity effects

- Benard et al 2009 AIAA-2009-488
 - Peak wall-jet velocity decreases with humidity
- Ashpis & Laun AIAA-2014-0486
 - Thrust decreases with humidity (44%)
- Wilkinson et al AIAA-2014-2810
 - Material dependence water retention

Humidity Effects

48 kVpp Frequency Sweep "Dry" RH 18%, Dew Point 33 °F

Humidity Effects – Cont.

48 kVpp Frequency Sweep

"Humid" RH 50%, Dew Point 57 °F

Ambient Humidity Conditions

All tests in dry conditions

Actuator	Dew	Relative	Temp
Nominal	Point	Humidity	
thickness	(DP)	(RH)	
inch	° F	%	° F
1/16	39	22	81
1/8	37	26	74
1/4	37	26	74

Anti-thrust Data Correction

Anti-thrust Hypothesis (Ashpis & Laun AIAA-2014-0486):

Total Thrust = Plasma Thrust + Anti-thrust

- Plasma Thrust is the quantity of interest for actuator performance
- It needs to be separated from the total thrust
- Anti-thrust \sim V^2 (parabolic fit)
- Frequency independent
 - Observed from 4 to 64 Hz (at moderate voltages)
- **Assumptions**
 - Frequency independent at all frequencies
 - Extrapolated for higher voltages
- Depends on:
 - Actuator geometry & dielectric properties
 - Installation proximity to surrounding objects and their grounding
 - Ambient conditions Pressure, Humidity, etc. (?)
 - Actuator insulation (?)

Anti-thrust:

Anti-thrust:

Thrust vs. Voltage @ 4Hz

Burn-in and testing

- Set max frequency & voltage
- Step up gradually to max values
- Dwell ≈ 10-20 min
- Return gradually to zero

Perform a series of tests:

- Set frequency
- Step to max voltage,
- Step down in voltage, 60 sec at each voltage.

Typical test profile

RESULTS

Results - 1/16" actuator

Results - 1/8" actuator

Results - 1/4" actuator

Quadratic curve fit coefficients

$$\log(T) = a \left[\log(V) \right]^2 + b \left[\log(V) \right] + c$$

Actuator	f (kHz)	а	b	С
1/16"	0.5	-2.820	12.328	-12.583
	1	-3.483	13.919	-13.287
	2	-2.688	11.352	-11.059
	4	-3.300	12.869	-11.767
	8	-0.236	5.410	-7.031
1/8"	0.25	-3.158	13.977	-14.759
	0.5	-3.307	14.217	-14.546
	1	-3.766	15.211	-14.780
	2	-3.349	13.636	-13.182
	3	-3.358	13.628	-13.141
	4	-3.281	13.324	-12.769
1/4"	1	-8.785	32.672	-30.248
	2	-6.282	23.973	-22.520
	3	-6.054	23.035	-21.509
	4	-4.626	18.321	-17.553
	8	-7.313	26.571	-23.800

Observed relationships: (b-c)/a ≈ const. $b \approx -c$

Effect of Including waveform distortions

Effect of anti-thrust correction Log-Log scale

Effect of anti-thrust correction **Curvefit errors**

Log-Log Curvefit Errors

Discharge Images - 1/8" Actuator

Constant Frequency 2 kHz (a) 5 s exposure

(b) Constant Voltage 27 kV p-p 30 s exposure

Discharge Images Composites- 1/8" Actuator Constant frequency 2 kHz

(a) Fixed exposure. f = 2 kHz

(b) Gamma enhanced. f = 2 kHz

Discharge Images Composites- 1/8" Actuator Constant Voltage 27 kVp-p

(a) Fixed exposure. V = 27 kV p-p

(b) Gamma enhanced. V = 27 kV p-p

Discharge Images Composites- 1/8" Actuator Constant Thrust 300 mg

(b) Gamma enhanced. T = 300 mg

Summary and Discussion

For pure sinusoidal excitation waveform:

- Thrust vs voltage at fixed frequencies can be correlated via quadratics on log-log scales
- The fit is very good, $R^2 = 0.9993$ to 0.9999
- Smooth, orderly curves, nested, no overlap.
- Power law $T \propto V^m$ is not a good representation over the full voltage ranges.
 - m = 3.5, 2.3, 4.8, were proposed, m = 2.2, 3.4, 3.6, 6.6 for micro-actuators
- Logarithmic terms plausible appear in electric field solutions
- Deviations from quadratics in log space can be due to
 - Non-sinusoidal wave forms, harmonics, edge, humidity
 - No compensation for anti thrust
 - No separation of plasma of interest from parasitic plasma

Discussion – Cont.

- Curve fits will not be quadratic or have large deviations if distorted waveform thrust data is included, or if anti-thrust correction not performed.
- Humid conditions increases the randomness in the data.
- Thrust-Frequency at constant voltage relations seems also to follow quadratic
- Quadratic thrust-voltage relationship in log space for sine waveforms and dry environment can be considered as measure of quality of the test.

Conclusion

- Proper approach is needed to obtain benchmark data for DBD actuators
 - Actuator construction
 - The test setup and measurement system
 - Proper isolation of plasma thrust generated by the spanwise edge
 - Low ambient humidity
- The benchmark results can be used for numerical validation and development of models
- Accurate extrapolation of data for power supply and components design.

Thank You

Questions?

BACKUP CHARTS A

- Thrust-Frequency at const. Voltage
- **Actuator detailed dimensions**
- **Normalization lengths**
- **Unit conversions**

Thrust – frequency at const. voltage Log-Log scale

1/8" Actuator

Thrust – frequency at const. voltage Linear scale

Actuator Test Articles

- HDPE High Density Poly Ethylene
 - Dielectric Constant: 2.3 at 1 kHz
 Dielectric Strength: 22 MV/m
 - Dissipation Factor: 0.0005 at 1 kHz
- 3M #1181 Copper tape w/ conductive adhesive
 - Copper thickness: 0.04 mm (1.4 mil)Adhesive thickness: 0.03 mm (1.2 mil)
- Super Corona Dope®: MG Chemicals Inc. Cat. No. 4226-1L
 - Used for edge Insulation buildup
- Kapton® 3M #5413, 0.08 mm (3 mil) thick
 - · Used for upstream edge insulation
- 3M Scotch-Seal No. 229 pads
 - · Used for covered electrode insulation

Designation	t	t	W_e	W_b	L_e	W	а	b
	(Nominal)		,		,			
	inch	mm	mm	mm	mm	mm	mm	mm
HDPE #5	1/16	1.53	12.7	51	282	154	86.5	54.0
HDPE #7	1/8	3.16	12.0	48	283	164	81.0	59.0
			12.8					
HDPE #3	1/4	6.09	12.0	48	254	154	76.5	64.5

Thrust Normalization Length

Designation	t (Nominal)	L_e (exposed electrode)	L_b (covered electrode)	$L_{e ext{-}}$ uninsulated (exposed electrode)	Thrust <i>T</i> to <i>T</i> / <i>L</i> _e conversion factor	Thrust <i>T</i> to T/L _b conversion factor	Thrust <i>T</i> to T/L _{e-uninsulated} conversion factor
	inch	mm	mm	mm	g to mN/m	g to mN/m	g to mN/m
HDPE #5	1/16	282	256	218	34.78	38.31	44.98
HDPE #7	1/8	283	257	249	34.65	38.16	39.38
HDPE #3	1/4	254	256.5	259	38.61	38.23	37.86

conversions

- 1 g = 9.80665 mN
- 1 mg = 0.00980665 mN
- 1 mN = 0.101971621298 g
- 1 mN = 101.971621298 mg