AMENDMENTS TO THE CLAIMS

Claim 1 (Currently Amended): An apparatus for processing data in a spread spectrum system, comprising:

a decimation circuit having an associated decimation factor;

a memory coupled to said decimation circuit; and

an interpolation circuit coupled to said memory, said interpolation circuit having an associated interpolation factor;

wherein said decimation circuit decimates a data rate of received <u>spread spectrum</u> data by said decimation factor to a decimated rate and stores said received data into said memory at said decimated rate; and

wherein said interpolation circuit interpolates said decimated rate by said interpolation factor to an interpolated rate and retrieves said received data from said memory at said interpolated rate.

Claim 2 (Original): The apparatus of claim 1, further comprising:

a communication processor coupled to said interpolation circuit for receiving data from said memory at said interpolated rate.

Claim 3 (Original): The apparatus of claim 1, further comprising:

a dedicated controller for controlling data retrieval from said memory.

Claim 4 (Original): The apparatus of claim 1, further comprising:

a micro-processor for controlling data retrieval from said memory.

Claim 5 (Original): The apparatus of claim 1, wherein said decimation factor is programmable by configuring said decimation circuit.

Claim 6 (Original): The apparatus of claim 1, where in said decimation factor is hard-coded into said decimation circuit.

Claim 7 (Original): The apparatus of claim 1, wherein said interpolation factor is programmable by configuring said interpolation circuit.

Claim 8 (Original): The apparatus of claim 1, wherein said interpolation factor is hard-coded into said interpolation circuit.

Claim 9 (Original): The apparatus of claim 1, wherein said memory is a single port RAM.

Claim 10 (Currently Amended): An apparatus for processing data in a spread spectrum system,
comprising:
a decimation circuit having an associated decimation factor;
a memory, which is a single port RAM, coupled to said decimation circuit The apparatus of
claim-9, wherein said memory is divided into memory blocks such that during processing a first
subset of memory blocks is in a Read mode and a second subset of memory blocks is in a Write
mode; and
an interpolation circuit coupled to said memory, said interpolation circuit having an
associated interpolation factor;
wherein said decimation circuit decimates a data rate of received data by said decimation
factor to a decimated rate and stores said received data into said memory at said decimated rate; and
wherein said interpolation circuit interpolates said decimated rate by said interpolation factor
to an interpolated rate and retrieves said received data from said memory at said interpolated rate.

Claim 11 (Original): The apparatus of claim 10, further comprising a plurality of despreaders.

Claim 12 (Original): The apparatus of claim 11, wherein each of said plurality of despreaders includes:

a selector circuit; and

a rake finger.

Claim 13 (Original): The apparatus of claim 12, wherein each of said memory blocks are divided into segments such that data stored in each segment is read out sequentially onto a bussing element accessible by multiple rake fingers via selector circuits in said plurality of despreaders.

Claim 14 (Original): The apparatus of claim 12, wherein said selector circuit includes a block multiplexer, a plurality of sample multiplexers, and a cache coupled to each rake finger.

Claim 15 (Original): The apparatus of claim 1, wherein said memory is a circular buffer.

Claim 16 (Original): The apparatus of claim 15, wherein said circular buffer includes multiple registers.

Claim 17 (Original): The apparatus of claim 16, further comprising a plurality of despreaders.

Claim 18 (Original): The apparatus of claim 17, wherein each of said plurality of despreaders includes:

a selector circuit; and

a rake finger.

Claim 19 (Original): The apparatus of claim 18, wherein data stored in said multiple registers are accessible by multiple rake fingers via selector circuits in said plurality of despreaders.

Claim 20 (Currently Amended): An apparatus for processing data in a spread spectrum system,
comprising:
a decimation circuit having an associated decimation factor;
a memory, which is a circular buffer including multiple registers, coupled to said decimation
circuit;
an interpolation circuit coupled to said memory, said interpolation circuit having an
associated interpolation factor; and

a plurality of despreaders, wherein each of said plurality of despreaders includes:
a selector circuit; and
a rake finger;
wherein said decimation circuit decimates a data rate of received data by said decimation
factor to a decimated rate and stores said received data into said memory at said decimated rate;
wherein said interpolation circuit interpolates said decimated rate by said interpolation factor
to an interpolated rate and retrieves said received data from said memory at said interpolated
rateThe apparatus of claim 18; and
,wherein said selector circuit includes a first set of multiplexers for selecting in-phase data,
a second set of multiplexers for selecting quadrature data, and multiple sample select lines coupled
to each rake finger.

Claim 21 (Currently Amended): A method for processing data in a spread spectrum system, comprising the steps of:

receiving spread spectrum data at a sampling rate;
decimating said sampling rate by a decimation factor to obtain a decimated rate;
storing said data into a memory at said decimated rate;
interpolating said decimated rate to obtain an interpolated rate; and

outputting said data from said memory at said interpolated rate to a communication processor.

Claim 22 (Original): The method of claim 21, further comprising the step of: retrieving data from said memory in accordance with instructions from a micro-processor.

Claim 23 (Original): The method of claim 21, further comprising the step of: retrieving data from said memory in accordance with instructions from a dedicated controller.

Claim 24 (Original): An apparatus for processing data, comprising:

Application No.: 09/920,095

a plurality of rake fingers;

a memory for storing data at the input to said plurality of rake fingers; and

7

a selector circuit positioned between said memory and each of said plurality of rake fingers; wherein said plurality of rake fingers can access said memory substantially simultaneously

via a respective selector circuit, and

wherein said selector circuit includes a first plurality of multiplexers for selecting in-phase data from said memory, a second plurality of multiplexers for selecting quadratrue data from said memory, and a set of select lines for controlling data being selected by said first plurality of multiplexers and said second plurality of multiplexers.

Claim 25 (Original): The apparatus of claim 24, wherein said memory is a circular buffer including a plurality of registers.

Claim 26 (Canceled)

Claim 27 (Original): The apparatus of claim 24, wherein said memory is a single-port RAM.

Claim 28 (Currently Amended): An apparatus for processing data, comprising:

a plurality of rake fingers;

a memory, which is a single-port RAM, for storing data at the input to said plurality of rake fingers; and

a selector circuit positioned between said memory and each of said plurality of rake fingers;

wherein said plurality of rake fingers can access said memory substantially simultaneously via a respective selector circuitThe apparatus of claim 27; and

-wherein said memory is divided into memory blocks such that, during each processing cycle, a first subset of said memory blocks is in a Read mode and a second subset of said memory blocks is in a Write mode.

Docket No.: 04303/100N156-US1

Application No.: 09/920,095

8

Claim 29 (Original): The apparatus of claim 28, wherein each of said memory blocks is divided into segments, such that data stored in each segment is read out sequentially onto a bussing element.

Claim 30 (Original): The apparatus of claim 29, wherein said selector circuit includes a block multiplexer, a plurality of sample multiplexers, and a cache coupled to each rake finger.

Claim 31 (Original): The apparatus of claim 30, wherein said block multiplexer selects a bussing element to receive data from a segment.

Claim 32 (Original): The apparatus of claim 31, wherein said sample multiplexers selects data received from said block multiplexer and stores said data into said cache.

Claim 33 (Original): An apparatus for processing data in spread spectrum systems, comprising: a memory coupled to a set of despreaders via a bus; each of said set of despreaders including:

a block multiplexer coupled to said bus;

a set of sample multiplexers coupled to said block multiplexer;

a cache coupled to said sample multiplexers; and

a rake finger coupled to said cache; and

wherein said set of despreaders can access samples stored in said memory substantially simultaneously via said bus.

Claim 34 (Original): The apparatus of claim 33, wherein said memory is divided into blocks such that during a processing cycle by a despreader, a first subset of said blocks is in a Read mode and a second subset of said blocks is in a Write mode.

Claim 35 (Original): The apparatus of claim 34, wherein said blocks are divided into segments such that samples stored in each of said segments are read out sequentially onto a bussing element coupled to said bus.

Claim 36 (Original): The apparatus of claim 35, wherein said block multiplexer in each of said despreaders selects samples from one bussing element.

Claim 37 (Original): The apparatus of claim 36, wherein said sample multiplexers in each of said despreaders select appropriate Early, On-Time, and Late samples among samples received from said block multiplexer to be stored into said cache.