Analysis Qualifying Exam, Fall 2008

Burckel & Fang

August 26, 2008

Instruction: Pick five problems from #1 - 6, and pick five problems from #7 - 12. Start each problem with a separate page, and clearly label the problem number.

Notations: \mathbb{R} denotes the reals, \mathbb{C} the complexes, \mathbb{D} the open disk $\{z \in \mathbb{C}, |z| < 1\}$, Ω an open connected, non-void subset of \mathbb{C} , and $H(\Omega)$ the holomorphic functions on Ω , and \mathbb{T} the unit circle $\{z \in \mathbb{C} : |z| = 1\}$.

- 1. Let $a \in \mathbb{C} \setminus \{0\}$. What is the radius of convergence of the power series $\sum_{n=0}^{\infty} a^n z^{n^2}$?
- 2. (a) Let M and R be positive numbers, and f be a holomorphic function in $R\mathbb{D}$ and bounded by M. Show that

$$|f(w) - f(0)| \le 2MR^{-1}|w|, \quad w \in R\mathbb{D}.$$

Hint: Apply Schwarz' Lemma to an appropriate function.

- (b) If F is holomorphic and bounded in \mathbb{C} , use (a) to infer (Liouville's Theorem) that F is constant.
- 3. Let $f(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^2}$.
 - (a) Show that this series converges absolutely in $\bar{\mathbb{D}}$.
 - (b) Show that f has no holomorphic extension to any neighborhood of z=1.

Hint: Look at the power series for f''(z) in \mathbb{D} and consider real $z \nearrow 1$.

- 4. For positive real a, compute $\int_{-\infty}^{\infty} \frac{\cos(x)}{x^2+a^2} dx$.
- 5. Let K be a compact subset of Ω , an open connected subset of \mathbb{C} . Let $u:\Omega\to\mathbb{R}$ be harmonic, $c\in\mathbb{R}$, and $u\leq c$ in $\Omega\setminus K$. Show that $u\leq c$ throughout Ω .
- 6. Assume that U, V are open subsets of \mathbb{C} , and $g_n, g: U \to V$ are holomorphic, $f_n, f: V \to \mathbb{C}$ are holomorphic, $f_n \to f$ and $g_n \to g$ locally uniformly. Prove that $f_n \circ g_n \to f \circ g$ locally uniformly.

Can the holomorphy hypothesis be weakened to mere continuity?

- 7. (a) State Fubini's theorem.
 - (b) State Lebesgue's dominated convergence theorem.
- 8. Decide which space is bigger, $L^1([0,1])$ or $L^2([0,1])$? Explain why.
- 9. Let dm(z) be the normalized Lebesgue area measure on \mathbb{D} , that is, $dm(z) = \frac{dA(z)}{2\pi}$, and let $B = \{f \in H(\mathbb{D}), \int_{\mathbb{D}} |f(z)|^2 dm(z) < \infty\}$. Define a Hilbert inner product on B by

$$< f,g> = \int_{\mathbb{D}} f(z) \overline{g(z)} dm(z)$$

Then prove the space B is complete with respect to the metric defined by the above inner product.

- 10. Let $f, g \in L^1(\mathbb{R})$. Define the convolution f * g and show that $f * g \in L^1(\mathbb{R})$.
- 11. Let $f:[0,1] \to \mathbb{R}$ be a continuously differentiable function with f(0) = 0. Show that for any $t \in [0,1]$,

$$|f(t)| \le \left[\int_0^1 f'(x)^2 dx\right]^{1/2}.$$

12. Let f be holomorphic on \mathbb{D} and continuous on $\overline{\mathbb{D}}$. Show that

$$\lim_{r \to 1^{-}} ||f_r||_p = ||f||_p.$$

Here $f_r(z) = f(rz)$ and for $1 \le p < \infty$, the p-norm $||g||_p$ on the circle \mathbb{T} is defined by

$$||g||_p = \{ \int_{\mathbb{T}} |g|^p dm \}^{1/p},$$

and dm is the normalized Lebesgue measure on \mathbb{T} , that is, $m(\mathbb{T}) = 1$.