

ĐỘNG HỌC CHẤT ĐIỂM							
	Ném ngang		Ném xiên				
Theo Ox	$v_x = v_0 = const$		$v_x = v_0 \cdot \cos \alpha = const$				
THEO OX	$x = v_0.t$		$x = v_0.t.\cos\alpha$				
	$v_y = gt$		$v_y = v_0 \cdot \sin \alpha - gt$				
Theo Oy	$y = \frac{1}{2}gt^2$		$y = v_0. t. \sin \alpha - \frac{1}{2} gt^2$				
Vật chạm đất	$t = \sqrt{\frac{2h}{g}}$		$t = \frac{2v_0.\sin\alpha}{g}$				
v at cham dat	$L = v_0. \sqrt{\frac{2h}{g}}$		$L = \frac{v_0^2 \cdot \sin 2\alpha}{g}$				
Vận tốc	$v = \sqrt{v_0^2 + (gt)^2}$ $y = \frac{g}{2v_0^2}x^2$		$v = \sqrt{v_x^2 + v_y^2}$				
Quỹ đạo	$y = \frac{g}{2v_0^2}x^2$		$y = \frac{-g}{2v_0^2 \cdot \cos^2 \alpha} x^2 + x \cdot \tan \alpha$				
Độ сао сựс đại			$t = \frac{v_0 \cdot \sin\alpha}{g}$				
			$H = \frac{v_0^2 \cdot \sin^2 \alpha}{2g}$				
	CƠ HỘC V	ÂT RẮN	I				
Tọa độ khối tâm:		$\overrightarrow{OC} = \overrightarrow{r_C} = \frac{\sum_1^n m_i \overrightarrow{r_1}}{\sum_1^n m_i} = \frac{\sum_1^n m_i \overrightarrow{r_1}}{m}$					
Mon	nen quán tính I củ	a một số loại vậ	ìt thể				
Thanh đồng chất (Trục quay tại trung điểm):		$I = \frac{1}{2}ml^2$					
Vòng tròn (Trục quay tại tâm):		$I = mR^2$					
Đĩa tròn (Trục quay tại tâm):		$I = \frac{1}{2}mR^2$					
Trụ rỗng (Trục quay tại tâm đáy):		$I = mR^2$					
Trụ đặc (Trục quay tại tâm đáy):		$I = \frac{1}{2}mR^2$					
Cầu rỗng (Trục quay qua tâm cầu):		$I = \frac{2}{3} mR^2$					
Cầu đặc (Trục quay qua tâm cầu):		$I = \frac{2}{5} mR^2$					

LABYRINTH					
Hình nón (Trục quay qua tâm đáy):	$I = \frac{3}{10} mR^2$				
Navyân lý Stainan Hwychanau	10				
Nguyên lý Steiner – Huyghens:					
I _c : Momen quán tính tại khối tâm	N. 17. 14. 10				
d : Khoảng cách giữa 2 trục quay song song (Khối tá					
$I = I_C + md^2$					
Chuyển động tịnh tiến	Chuyển động quay				
Quãng đường: $\Delta x = v_0 t + \frac{1}{2} a t^2$	Gốc quay: $\Delta\theta = \omega_0 t + \frac{1}{2}\alpha t^2 = \frac{\Delta x}{R}$				
Vận tốc dài: $v = v_0 + at$	Vận tốc góc: $\omega = \omega_0 + at = \frac{v}{R}$				
Hệ thức độc lập: $v^2 - v_0^2 = 2a\Delta x$	Hệ thức độc lập: $ω^2 - ω_0^2 = 2αΔθ$				
Gia tốc dài: $a = \frac{\Delta v}{\Delta t}$	Gia tốc góc: $\alpha = \frac{\Delta \omega}{\Delta t} = \frac{a}{R}$				
Lực gây ra chuyển động tịnh tiến:	Momen ngoại lực gây ra chuyển động quay:				
F _G (điểm đặt tại khối tâm)	$M = F_T$. d				
	F _T (điểm đặt tại vị trí tiếp xúc)				
Định luật II Newton: $\sum \overrightarrow{F_{ngl}} = m. \vec{a}$	Phương trình cơ bản vật rắn: $\sum \overrightarrow{M} = I \cdot \overrightarrow{\alpha}$				
Động lượng: $\vec{p} = m\vec{v}$	Momen động lượng: $\vec{L} = I\vec{\omega}$				
Xung của lực:	Định lý biến thiên momen động lượng:				
$\Delta \vec{p} = \vec{F}. \Delta t$	$\Delta \vec{L} = \vec{M}. \Delta t$				
Khối lượng: m	Momen quán tính: $I = \sum mR^2 = \int R^2 dm$				
Năng le	rợng				
Động năng tịnh tiến: $W_D = \frac{1}{2}mv^2$	Động năng quay: $W_R = \frac{1}{2}I\omega^2$				
Thế năng: V	$V_{ m T}={ m mgh}$				
Cơ năng: W = V	$W_D + W_R + W_t$				
Dạng bài tập thường gặp					
Hệ vật va chạm:	Vật rắn quay quanh trục O:				
Bảo toàn động lượng (hệ kín): $\Delta \vec{p} = 0$	Định luật II Newton: $\sum \overrightarrow{F_{ngl}} = m. \vec{a}$				
Bảo toàn động năng (va chạm đàn hồi): $\Delta W_D = 0$	Phương trình cơ bản vật rắn: $\sum \vec{M} = I \cdot \vec{\alpha}$				
Định lý động năng (va chạm không đàn hồi): $\Delta W_D = F_{ngl}$	Chú ý: M = F_T . d, I = $\sum mR^2$, $\alpha = \frac{a}{R}$				
Bảo toàn cơ năng (hệ kín): $\Delta W = 0$					

NHIỆT ĐỘNG LỰC HỌC

NILICA #O TO [IZ]		1	0		
Nhiệt độ T [K]		$T_{K} = T_{C} + 273; T_{F} = \frac{9}{5}T_{C} + 32$			
Áp suất P [N/m²]		$1\frac{N}{m^2} = 1 \text{ Pa; } 1 \text{atm} = 10^5 \text{ Pa}$			
Thể tích V [m ³]		$1l = 10^{-3} m^3$			
$S\hat{o} \text{ mol } n \text{ [mol]} = \frac{m}{M} = \frac{N}{N_A}$		Bậc tự do của khí i:			
		Khí đơn nguyên tử: i = 3			
Điều kiện tiêu chuẩn:		Khí lưỡng nguyên tử: i = 5			
$P = 1 \text{ atm} = 10^5 \text{ N/m}^2$		Khí đa nguyên tử: i = 6			
$T = 0^{\circ}C = 273K$					
Hằng số khí lý tưởng:		Nhiệt dung phân tử đẳn	Nhiệt dung phân tử đẳng tích:		
$R = 8.31 \frac{J}{\text{mol. K}}$		$c_{V} = \frac{i}{2}$. R			
Hằng số Boizman:		Nhiệt dung phân tử đẳng áp:			
$k_B = \frac{R}{N_A} = 1,38.10^{-23} J/K$		$c_{P} = \left(\frac{i}{2} + 1\right). R$			
Hệ số dãn nở dài: $\alpha [(^{\circ}C)^{-1}]$		Hệ số Poisson:			
Hệ số dãn nở thể tích: $\beta = 3\alpha$		$\gamma = \frac{c_{\rm P}}{c_{\rm V}} = 1 + \frac{2}{\rm i}$			
Công thức dãn nở:	Công thức dãn nở:		Phương trình trao đổi nhiệt: Q = m. c. ΔT		
Dãn nở dài: $\Delta L = L_0$. α . ΔT		Nhiệt ẩn (Nhiệt lượng chuyển pha):			
Dãn nở diện tích: $\Delta S = S_0$. 2α . ΔT		L ong \leftrightarrow Khí: $Q = \pm m$. L_V			
Dãn nở thể tích: $\Delta V = V_0$. β . ΔT		R ắn \leftrightarrow Lỏng: $Q=\pm m$. L_f			
Định luật khí lý tưởng:		Định luật bảo toàn nhiệt lượng:			
$P. V = n. R. T = N. k_B. T$		$\sum Q_{t \hat{o} a} + \sum Q_{thu} = 0$			
Nhiệt lượng của khí lý tu	ong: Q [J]	Công của khí lý tưởng: A [J]			
Hệ nhận nhiệt: $Q > 0$		Hệ nhận công: $A>0$			
Hệ mất nhiệt: Q < 0		Hệ sinh: A < 0			
Nguyên lý 1 Nhiệt động lực học					
$\Delta \mathbf{U} = \mathbf{A} + \mathbf{Q}$					
Một chu trình Carnot	Biến thiên nội năng:	Công:	Nhiệt lượng:		
$kh\acute{e}p\ k\acute{i}n \rightarrow \Delta U = 0$	$\Delta U = \frac{i}{2}$. n. R. ΔT	$A = -\int_{V_1}^{V_2} p. dV$	Q		
			1		

Đẳng nhiệt		$A = n \cdot D \cdot T \cdot \ln \left(V_1 \right)$			
Boyle-Marriote:	$\Delta U = 0$	$A = n. R. T. ln \left(\frac{V_1}{V_2}\right)$	0 – 1		
T = const	$\Delta 0 = 0$	$= P. V. ln \left(\frac{V_1}{V_2}\right)$	Q = -A		
$P_1V_1 = P_2V_2$		$-1.$ V. III $\left(\overline{V_2} \right)$			
Đẳng tích Charles:					
V = const	$\Delta U = n. c_V. \Delta T$	A = 0	$Q = \Delta U = n. c_V. \Delta T$		
$\frac{P_1}{T_1} = \frac{P_2}{T_2}$	Δυ – π. εψ. Δτ	A = 0	$Q = \Delta O = \Pi \cdot CV \cdot \Delta T$		
$\frac{1}{T_1} - \frac{1}{T_2}$					
Đẳng áp Gay-Luysac:					
P = const	$\Delta U = \frac{i}{2}$. n. R. ΔT	$A = -P. \Delta V$	$Q = n. c_P. \Delta T$		
$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	$\frac{20}{2}$. If $\frac{1}{2}$	$A = P. (V_1 - V_2)$	₹ 111 cp. 2 1		
T_1 T_2					
Đoạn nhiệt:		$P_0V_0 - P_0V_0$			
$P.V^{\gamma} = const$	$\Delta U = A$	$A = \frac{P_2 V_2 - P_1 V_1}{v - 1}$	Q = 0		
$T. V^{\gamma-1} = const$		1 -			

Nguyên tắc đọc đồ thị quá trình biến đổi PVT khí lý tưởng

- Đồ thị vuông góc với trục nào thì đại lượng đó là hàng số.
- Đồ thị là đường thẳng đi qua tâm O thì đại lượng còn lại là hằng số.
- Đồ thị đoạn nhiệt luôn là đường cong và luôn tiêm cân truc V.
- Đồ thị T = const càng xa tâm O thì T càng lớn.
- Đồ thị $P=\mbox{const}$ hoặc $V=\mbox{const}$ càng xa OT thì $P,\,V$ càng nhỏ

Nguyên lý 2 Nhiệt động lực học

Hiệu suất động cơ nhiệt:

$$H = \frac{A}{Q_1} = 1 - \frac{Q_2}{Q_1} \le \frac{T_1 - T_2}{T_2} = H_{max}$$

H: hiệu suất của động cơ nhiệt < 1

A: công sinh ra từ động cơ nhiệt

 Q_1 : nhiệt lượng tỏa ra từ nguồn nóng

 Q_2 : nhiệt lượng tỏa ra từ nguồn lạnh

Hiệu năng máy lạnh:

$$\varepsilon = \frac{Q_2}{A} = \frac{Q_2}{Q_1 - Q_2} \le \frac{T_2}{T_1 - T_2} = \varepsilon_{max}$$

arepsilon : Hiệu năng máy lạnh

 T_1 : nhiệt độ tỏa ra từ nguồn nóng

 T_2 : nhiệt độ tỏa ra từ nguồn lạnh