Química Física IIA - 2º Teste 2015 - 14h-16 h

1) Moelwyn-Hughes et al. estudaram a hidrólise¹ do acetato de etilo em solução aquosa, catalisada por ácido clorídrico de concentração 0,05 M. Os resultados, à temperatura de 15 ºC,

t/horas	mM	da evolução da concentração do reagente acetato com o tempo são apresentados na tabela ao lado.
0	39.8	Τ
4	38.88	a) Comprove que a reação é de pseudo-primeira ordem e calcule a
15.5	35.88	constante de velocidade k₁.
27	33.18	constante de verocidade K <u>1</u> .
40	30.47	b) Explique porque é que se utiliza o termo "pseudo" neste caso e
calcule a c	onstante de	e velocidade k ₂ , <u>justificando</u> os cálculos.

2) No me	smo trabalh	o referido em 1, os autores apresentam resultados da constante de	
T/°C	10 ⁶ k ₁ /s ⁻¹	velocidade obtida nas mesmas condições de concentração, mas a	
20	3.16	outras temperaturas.	
30	8.52	a) Cala la casa de altra a casa de casa casa	
50	50.13	a) Calcule a energia de ativação da reação	
60	114.1	h) Calcula a entropia de ativação da reação, utilizando a fórmula	

b) Calcule a entropia de ativação da reação, utilizando a fórmula $\Delta S^{\dagger} = R [ln(A/B)-2]$, em que $B = 1,732 \times 10^9 \, T^2 \, M^{-1} \, s^{-1} \, e \, A$ é o fator pré exponencial da equação de Arrhenius. Relacione o valor obtido com a estrutura e organização do complexo ativado.

3) Em meio alcalino, o ião persulfato oxida o ião sulfito, produzindo sulfato, segundo a reação:

$$S_2O_8^{2-} + SO_3^{2-} + 2OH^- \rightarrow 3SO_4^{2-} + H_2O$$

O mecanismo proposto processa-se através dum intermediário muito reativo S₂O₇²⁻

$$k_1$$
 $S_2O_8^{2-} + SO_3^{2-} \rightarrow S_2O_7^{2-} + SO_4^{2-}$
 k_2
 $S_2O_7^{2-} + H_2O \rightarrow 2 SO_4^{2-} + 2 H^+$
 k_3
 $2 H^+ + 2 OH^- \rightarrow 2 H_2O$

Deduza a equação de velocidade da reação, utilizando o método do estado estacionário. Diga se há algum passo controlador da velocidade da reação e **porquê**.

- 4) a) Explique quais os principais problemas que se encontram quando se estudam reações rápidas.
- b) Para ultrapassar um destes problemas, podem utilizar-se, em alguns casos, métodos de relaxação. Explique em que casos podem eles ser adotados, e como se procede.

¹ Hidrólise é uma reação com a água, que, neste caso, é o solvente

Teste 2 QFIIA 16 maio 2015

1a)

t/horas	mM			t/s	In (M)
0	39.8	0	3.683867	0	-3.22389
4	38.88	4	3.66048	14400	-3.24728
15.5	35.88	15.5	3.58018	55800	-3.32758
27	33.18	27	3.501947	97200	-3.40581
40	30.47	40	3.416743	144000	-3.49101

A linearidade dos gráficos ln (concentração de reagente) = f(t) demonstra que a reação é de 1ª ordem em relação ao acetato de etilo.

b) A reação é catalisada por ácidos. Como a concentração dum ácido não varia, [HCI] vai manter-se constante e igual a 0,05 M ao longo da reação. Como o enunciado da pergunta indica que a constante de velocidade da reação é k_2 , podemos admitir que a ordem global é 2 e, sendo 1 em relação ao acetato de etilo, será também 1 em relação ao ácido. Dos gráficos da alínea a), podemos concluir que $k_1 = k_2 \times 0,05 = 1,87\times 10^{-6} \text{ s}^{-1} = 6,73\times 10^{-3} \text{ h}^{-1}$. Donde $k_2 = 3,74\times 10^{-5} \text{ s}^{-1} = 1,37\times 10^{-1} \text{ h}^{-1}$.

T/ºC	10^6 k	1/T	ln k
15	1.87	0.003472	-13.1896
20	3.16	0.003413	-12.6649
30	8.52	0.0033	-11.6731

50 50.13 0.003096 -9.90089 60 114.1 0.003003 -9.07844

Ou

Ea= $8733 \times 8,314 = 72,6 \text{ kJ mol}^{-1}$.

b) O gráfico representa ln (k_1), a constante aparente de 1ª ordem. Se representássemos k_2 = $k_1/0,05$ = 20 k_1 , o declive da reta não seria afetado, mas a ordenada na origem seria ln A = 17,143 + ln(20).

In(20)	LN A	Α	
2.995732	20.13873	5.5737E+08	
	B* T2	1.5381E+14	
	DELTA S	-1.2079E+02	J K-1 mol-1
	17.143	27868288.85	
		-1.7524E+01	
		-1.4569E+02	