OPERAÇÕES UNITÁRIAS I

PROF^a KASSIA G SANTOS

2020/1- CURSO REMOTO

DEPARTMENTO DE ENGENHARIA QUÍMICA

UFTM

AULA 6

2. Caracterizaçãode Partículas2.1 Tamanho

Caracterização de Partículas

TAMANHO DE PARTÍCULAS

O conhecimento do tamanho e da distribuição do tamanho de partícula é um pré-requisito fundamental para muitas operações de produção e processamento envolvendo sistemas de materiais particulados.

A determinação de valores exatos de tamanho de partícula é importante, mas de difícil medida. Como cada técnica de análise é baseada em princípios físicos diferentes, os resultados obtidos por estas análises podem também ser diferentes.

Além disso, os fabricantes de equipamentos de análise usam projetos de construção distintos, o que também pode acarretar em resultados diferentes mesmo entre equipamentos que utilizam o mesmo princípio físico básico.

Um dos fatores de grande importância a ser considerado na determinação da distribuição do tamanho de partícula é qual dimensão da partícula está sendo medida. Uma esfera pode ter o seu tamanho definido por um único valor: o diâmetro.

Porém partículas com formatos irregulares necessitam de mais de uma medida para a quantificação do seu tamanho. Para expressar este valor em um único número, normalmente adota-se o valor de uma esfera equivalente.

Dependendo do que é medido (maior ou menor comprimento, volume, massa, área projetada, velocidade de sedimentação, etc.) o diâmetro desta esfera equivalente apresenta valores diferentes

I) Dimensão Característica

Para partículas que possuem uma forma geométrica canônica como esfera, cilindro ou cubo, a determinação do tamanho das mesmas se dá (convencionalmente) pela medida do seu raio ou diâmetro, do diâmetro da base e altura e do comprimento da aresta, respectivamente.

Nas plantas de beneficiamento de minérios, as partículas na grande maioria das vezes possuem forma irregular, daí o uso do conceito de tamanho equivalente, que é determinado pela medida de uma propriedade dependente do tamanho da partícula relacionando-a com uma dimensão linear.

GEOMETRIAS CANÔNICAS

GEOMETRIAS IRREGULARES

A) Diâmetro de Peneira

→d# (refer.Perry): abertura da peneira.

As peneiras são especificadas pelo Mesh, que é o numero de aberturas em cada polegada linear medida ao longo de um fio (peneiras série Tyler).

ASTM	MESH	Abert.	TOL. (malha)	Máx. até	Máx. indiv.	FIO	TOL	(fio)
USS	TYLER	mm./y	DE	ATÉ	6% + Z	+ X	mm.	DE	ATÉ
4" .	****	100,00	97,06	102,94	103,38	103,82	6,30	5,4	7,2
3.1/2" .	****	90,00	87,34	92,66	93,09	93,53	6,30	5,4	7,2
3" .	****	75,00	72,78	77,22	77,65	78,09	6,30	5,4	7,2
2.1/2" .	****	63,00	61,13	64,87	65,29	65,71	5,60	4,8	6,4
2" .	****	50,00	48,51	51,49	51,89	52,29	5,00	4,3	5,8
1.3/4" .	****	45,00	43,65	46,35	46,73	47,12	4,50	3,9	5,2
1.1/2" .	****	37,50	36,37	38,63	38,99	39,35	4,50	3,8	5,2
1.1/4" .	****	31,50	30,55	32,45	32,79	33,13	4,00	3,4	4,6
1" .	****	25,00	24,24	25,76	26,07	26,38	3,55	3,0	4,1
3/4" .	****	19,00	18,42	19,58	19,85	20,13	3,15	2,7	3,6
5/8" .	****	16,00	15,51	16,49	16,74	16,99	3,15	2,7	3,6
1/2" .	****	12,50	12,11	12,89	13,11	13,33	2,50	2,1	2,9
		10,00	9,69	10,31	10,51	10,71	2,50	2,1	2,9
3/8" .	****	9,50	9,20	9,80	9,99	10,18	2,24	1,9	2,6
5/16".	****	8,00	7,75	8,25	8,43	8,60	2,00	1,7	2,3
1/4" .	****	6,30	6,10	6,50	6,65	6,81	1,80	1,5	2,1
3,5	3,5	5,60	5,42	5,78	5,92	6,07	1,60	1,3	1,9
		5,00	4,84	5,16	5,29	5,43			
4	4	4,75	4,60	4,90	5,03	5,16	1,60	1,3	1,9
5	5	4,00	3,87	4,13	4,25	4,37	1,40	1,2	1,7
6	6	3,35	3,24	3,46	3,57	3,67	1,25	1,06	1,5
7	7	2,80	2,71	2,89	2,99	3,09	1,12	0,95	1,3
8	8	2,36	2,28	2,44	2,53	2,61	1,00	0,85	1,15
10	9	2,00	1,93	2,07	2,15	2,23	0,90	0,77	1,04
12	10	1,70	1,64	1,76	1,83	1,90	0,80	0,68	0,92
14	12	1,40	1,35	1,45	1,51	1,58	0,71	0,60	0,92
16	14	1,18	1,14	1,22	1,28	1,34	0,63	0,54	0,72
18	16	1,00	0,97	1,03	1,09	1,14	0,56	0,48	0,64
*****	******	******	******	******	******	******	*****	****	*****
20	20	850	821	879	928	977	500	430	580
25	24	710	685	735	779	822	450	380	520
30	28	600	579	621	661	701	400	340	460
35	32	500	482	518	554	589	315	270	360
40	35	425	409	441	473	506	280	240	320
45	42	355	342	368	398	427	224	190	260
50	48	300	288	312	338	365	200	170	230
60	60	250	240,1	259,9	284	308	160	130	190
70	65	212	203,3	220,7	242	264	140	120	170
80	80	180	172,4	187,6	207	227	125	105	150
100	100	150	143,4	156,6	175	193	100	85	115
120	115	125	119,2	130,8	147	163	90	77	104
140	150	106	100,8	111,2	126	141	71	60	82

B) Diâmetro da esfera de igual volume que a partícula ou diâmetro volumétrico (d_p)

Medidas de Volume de partícula: $Vp = \frac{\pi d_p^3}{6}$

A) Método mais utilizado: Picnometria (mais barato)

$$\begin{split} m_{pic} + m_{H_2O} &==> m_{H_2O} \xrightarrow{\rho_{H_2O}(T,P)} V_{H_2O} = V_{total} \\ \left(m_{pic} + m_{s\'olido}\right) + m_{H_2O}^I \xrightarrow{\rho_{H_2O}(T,P)} V_{H_2O}^I \neq V_{total} \\ V_{s\'olido} = V_{total} - V_{H_2O}^I \xrightarrow{conhece \text{ m}_{s\'olido}} \rho_{s\'olido} = \frac{m_{s\'olido}}{V_{s\'olido}} \end{split}$$

B) Diâmetro da esfera de igual volume que a partícula ou diâmetro volumétrico (d_p)

b)Outros métodos: **Coulter Counter** (equipamento eletrônico de alto valor) que mede o volume através de um campo elétrico (variação da condutividade)

Equipamento Coulter Counter

C) Diâmetro de Stokes

d_{st} (refer. Perry): diâmetro da esfera que tem o mesmo comportamento dinâmico que a partícula, em movimento lento (baixos Reynolds → Regime de Stokes).

 $\mathbf{d_{st}}$: Diâmetro da esfera que cai com a mesma $\mathbf{v_t}$ (velocidade terminal) que a partícula em baixos Reynolds.

Onde, **vt** (velocidade terminal): velocidade que a partícula cai com aceleração nula no inicio da queda.

D) Diâmetro da esfera de mesma área projetada que partícula (d_a)

Método de microscopia ótica com software de análise de imagem acoplado.

E) Diâmetro de Ferret (d_{Fe})

Distância entre duas paralelas, seguindo uma direção arbitrária, as quais apenas tocam o contorno da imagem projetada da partícula em um plano sobre o qual ela repousa na configuração mais estável

Diâmetros de Feret:

Diâmetro mínimo de Feret = Diâmetro máximo de Feret = Diâmetro médio de Feret =

Dynamic Image Analysis

F) Diâmetro de Martin (d_{Ma})

Comprimento do segmento de reta paralelo a uma direção arbitrária, e que une dois pontos do contorno da imagem projetada da partícula em um plano sobre o qual ela repousa na configuração mais estável, e que divide sua área projetada em áreas iguais.

II) DISTRIBUIÇÃO GRANULOMÉTRICA

PENEIRAMENTO

É o método clássico de se obter uma análise granulométrica. As peneiras (padronizadas) são agrupadas em ordem decrescente de mesh, de baixo para cima, ou em ordem crescente de diâmetro de peneira.

-9+10 1,85mm 1,44mm

-10+14 -14+20 -20+28

1,01mm 0,72mm 0,51mm

-28+35 (2+1,7)/2 (1,7+1,18)/2 (1,18+0,85)/2 (0,85+0,6)/2 (0,6+0,425)/2 (0,425+0,3)/2

0,36mm

-35+48

PENEIRAMENTO

PENEIRAMENTO

Fração de massa retida

Exemplo:

Fazer a distribuição granulométrica por meio de peneiramento (sistema tyler) de uma amostra de 242 g de areia empregada em construção civil.

Sistema Tyler (mesh)	Massa retida (g)	Abertura da peneira d# (mm)	D# (mm)	Fração em massa retida (∆x)	X
-9+10	0	1.70	1.85	0	1
-10+14	8.01	1.18	1.44	0.0341	0.9659
-14+20	35.33	0.85	1.01	0.1504	0.8155
-20+28	43.55	0.6	0.72	0.1854	0.6301
-28+35	48.52	0.425	0.5125	0.2066	0.4235
-35+48	52.5	0.3	0.3625	0.2235	0.2000
-48+100	39.56	0.15	0.225	0.1684	0.0316
-100+200	5.27	0.075	0.1125	0.0224	0.0091
-200 (fundo)	2.14	0	0.0375	0.0091	3.6E-17
Total	242				

X – Fração Mássica acumulativa: fração de massa de partículas com diâmetro menor que D (dimensão característica, no caso d#).

Representando a análise granulométrica graficamente

a) Distribuição acumulativa

D – dimensão característica;

X – fração em massa das partículas com diâmetro menor que D;

∆x – fração em massa retida em cada peneira

Representando a análise granulométrica graficamente

b) Distribuição de Frequência (dx/dD vs. D)

D – dimensão característica; X – fração em massa das partículas com diâmetro menor que D; Δx – fração em massa retida em cada peneira

a) G.G.S. (Gates, Gaudin & Schumann):

Parâmetros:

 $K = [L] \rightarrow comprimento (é o D_{100});$

m= adimensional

$$X = \left(\frac{D}{k}\right)^m$$

$$\frac{dX}{dD} = \frac{m}{k} \left(\frac{D}{k}\right)^{m-1}$$

Na forma linearizada

$$\log[X] = m(\log[D] - \log[k]) = m\log[D] - m\log[k]$$

b) R.R.B. (Rosin-Rammler e Bennet):

Parâmetros

D' ou D_{63} = [L] \rightarrow comprimento;

n = adimensional.

$$X = 1 - e^{-\left(\frac{D}{D'}\right)^n} \qquad \frac{dX}{dD} = \frac{n}{D'} \left(\frac{D}{D'}\right)^{n-1} \cdot e^{-\left(\frac{D}{D'}\right)^n}$$

$$n\left[\ln(D) - \ln(D')\right] = \ln\left|\ln\left(\frac{1}{1-X}\right)\right|$$

Se D = D'
$$\rightarrow$$
 X = 1 - e⁻¹ \rightarrow D' = D_{63,2}

D_{63,2} = diâmetro onde 63,2% das partículas tem dimensão menor que ele.

c) Log-Normal:

Parâmetros:

 $D_{50} = [L] \rightarrow comprimento;$

 δ = adimensional.

$$X = [1 + erf(z)]/2$$

$$S = \frac{D_{84,1}}{D_{50}} = \frac{D_{50}}{D_{15,9}}$$

$$z = \frac{\ln\left(\frac{D}{D_{50}}\right)}{\sqrt{2}\ln\delta}$$

d) Sigmóide:

Parâmetros:

$$D_{50} = [L] \rightarrow comprimento;$$

p = adimensional

$$X = \frac{1}{1 + \left(\frac{D_{50}}{D}\right)^p}$$

Na forma linearizada

$$p \left[\log \left(D_{50} \right) - \log D \right] = \log \left(\frac{1 - X}{X} \right)$$

Diâmetros Médios de Partículas

A) Diâmetro da partícula cuja o volume é igual ao volume médio de todas as partículas da amostra

$$\overline{d}_{p}^{3} = \frac{1}{\sum_{i=1}^{n} \left(\frac{x_{i}}{D_{i}^{3}}\right)}$$

B) Diâmetro da partícula cuja a área superficial é igual à área $\frac{1}{d_p} = \sum_{i=1}^n \left(\frac{x_i}{D_i}\right) / \sum_{i=1}^n \left(\frac{x_i}{D_i^3}\right)$ superficial média de todas as partículas da amostra superficial média de todas as partículas da amostra

$$\overline{d}_{p}^{2} = \sum_{i=1}^{n} \left(\frac{x_{i}}{D_{i}} \right) / \sum_{i=1}^{n} \left(\frac{x_{i}}{D_{i}^{3}} \right)$$

C) Diâmetro da partícula cuja a relação volume/superfície é a mesma para todas as partículas da amostra Diâmetro médio de Sauter – o mais utilizado em sistemas particulados

$$\bar{D} = \frac{1}{\sum_{i} \frac{\Delta x_{i}}{D}}$$

Diâmetro Médio de Sauter e a Superfície Específica (Sw)

$$\overline{D}$$
 = Diâmetro médio de Sauter = $\frac{1}{\sum_{i} \frac{\Delta x_i}{D}}$, e X = f(D)

$$S_W = \sum_{i} \frac{N_i B_i D_i^2}{M}$$

$$N_i = \frac{M \Delta x_i}{\rho_S c_i D_i^3}$$

$$N_i = \frac{M \Delta x_i}{\rho_s c_i D_i^3}$$

substituido
$$N_i$$
 em S_w : $S_w = \frac{B_i}{\rho_S c_i \bar{D}}$

M =massa das partículas

 B_i = fator de forma tal que $B_i D_i^2$ = área superficial da partícula de diâmetro D_i .

 $Ni = \text{número de partículas na faixa } D_i \pm \Delta D_i/2$

 ρ_s = densidade da partícula

 c_i = fator de forma tal que $c_i D_i^3$ = volume da partícula de diâmetro Di.

$$B_i D_i^2 = \pi D^2 \rightarrow B_i = \pi$$

$$c_i D_i^3 = \frac{\pi}{6} D^3 \rightarrow c_i = \frac{\pi}{6}$$

Ex10: Fazer a distribuição granulométrica da amostra de areia, obtida por peneiramento.

A)	Fazer os gráficos
	da distribuição
	acumulativa e o
	histograma da
	distribuição de
	tamanho da
	amostra.

B)	Encontrar o
	melhor modelo

C) calcular D_{Sauter}

		Massa
Sistema	Abertura	retida
Tyler (n°)	D#(mm)	m(g)
-6 +8	2,380	10,5
-8 +10	1,680	21,9
-10 +14	1,190	34,5
-14 +20	0,841	61,6
-20 +28	0,595	70,5
-28 +35	0,420	77,6
-35 +48	0,297	45,5
-48 +65	0,210	42,1
-65 +100	0,149	30,3
-100 +150	0,105	8,9
-150 +200	0,074	4,1
-200		2,7
		410,2

Faça o exercício e confira com o colega

Atividades da Aula 6

Individual:

- ☐ Assista a aula de exercícios.
- □ Faça o exercício EX10, proposto no slide anterior.

