1.	Which of the following do you typically see in a ConvNet? (Check all that apply.)	1/1 point				
	FC layers in the last few layers					
	Correct True, fully-connected layers are often used after flattening a volume to output a set of classes in classification.					
	Multiple POOL layers followed by a CONV layer					
	FC layers in the first few layers					
	Multiple CONV layers followed by a POOL layer					
	✓ Correct True, as seen in the case studies.					
	∠ ⁷ Expand					
	✓ CorrectGreat, you got all the right answers.					
	In order to be able to build very deep networks, we usually only use pooling layers to downsize the height/width of the activation volumes while convolutions are used with "valid" padding. Otherwise, we would downsize the input of the model too quickly.	1/1 point				
	○ True					
	False					
	∠ [¬] Expand					
	Correct!					
3.	The motivation of Residual Networks is that very deep networks are so good at fitting complex functions that when training them we almost always overfit the training data. True/False?	1 / 1 point				
	○ True					
	False					

∠ [¬] Expand	
 Correct Correct, very deep neural networks are hard to train and a deeper network does not always imply lower training error. Residual Networks allow us to train very deep neural networks. 	
The following equation captures the computation in a ResNet block. What goes into the two blanks above?	1/1 point
$a^{[l+2]} = g(W^{[l+2]}g(W^{[l+1]}a^{[l]} + b^{[l+1]}) + b^{l+2} + \underline{\hspace{1cm}}) + \underline{\hspace{1cm}}$	
$\bigcirc \ \ 0$ and $z^{[l+1]}$, respectively	
$\bigcirc \ z^{[l]}$ and $a^{[l]}$, respectively	
$igoldsymbol{igoldsymbol{igle}}$ $a^{[l]}$ and 0, respectively	
O and \$\$a^{[i]}\$\$, respectively	
∠ ⁷ Expand	
Which are of the following that are David at Natural and the 20 february 10 and	
Which ones of the following statements on Residual Networks are true? (Check all that apply.)	1/1 point
The skip-connections compute a complex non-linear function of the input to pass to a deeper layer in the network.	
The skip-connection makes it easy for the network to learn an identity mapping between the input and the output within the ResNet block.	
✓ Correct This is true.	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Using a skip-connection helps the gradient to backpropagate and thus helps you to train deeper networks	
✓ Correct This is true.	
∠ [¬] Expand	

4.

5.

⊘ Correct

Great, you got all the right answers.

6.	For a volume of $125 imes 125 imes 64$ which of the following can be used to reduce this to a $125 imes 125 imes 32$ volume?	0 / 1 point				
	\bigcirc Use a $1 imes 1$ convolutional layer with a stride of 2, and 32 filters.					
	\bigcirc Use a $1 imes 1$ convolutional layer with a stride of 1, and 32 filters.					
	lacksquare Use a POOL layer of size $2 imes 2$ with a stride of 2.					
	Typesetting math: 100% of size 2×2 but with a stride of 1.					
	∠ [¬] Expand					
	No, the POOL layer doesn't affect the depth dimension of the volume.					
7.	Which of the following are true about the inception Network? (Check all that apply)	1/1 point				
	Inception blocks allow the use of a combination of 1x1, 3x3, 5x5 convolutions, and pooling by applying one layer after the other.					
	Inception blocks allow the use of a combination of 1x1, 3x3, 5x5 convolutions and pooling by stacking up all the activations resulting from each type of layer.					
	Correct Correct. The use of several different types of layers and stacking up the results to get a single volume is at the heart of the inception network.					
	One problem with simply stacking up several layers is the computational cost of it.					
	 Correct Correct. That is why the bottleneck layer is used to reduce the computational cost. 					
	Making an inception network deeper won't hurt the training set performance.					
	Expand					
	✓ CorrectGreat, you got all the right answers.					
8.	Parameters trained for one computer vision task can't be used directly in another task. In most cases, we must change the softmax layer, or the last layers of the model and re-train for the new task. True/False?	1/1 point				
	○ False					
	● True					
	_∠ ⁷ Expand					

Yes, this is a good way to take advantage of open-source models trained more or less for the task you want to do. This may also help you save a great number of computational resources and data.

9. Which of the following are true about Depth wise-separable convolutions? (Choose all that apply)

0/1 point

- ightharpoonup The result has always the same number of channels n_c as the input.
 - This should not be selected

 No, this is true only for the depthwise convolution.
- They combine depthwise convolutions with pointwise convolutions.
 - ✓ Correct

Correct, this combination is what we call depth wise separable convolutions.

- They have a lower computational cost than normal convolutions.
- They are just a combination of a normal convolution and a bottleneck layer.
 - This should not be selected
 No, they combine separable convolution with pointwise convolutions, although the last one can be seen as a bottleneck layer.

⊗ Incorrect

You didn't select all the correct answers

10. Fill in the missing dimensions shown in the image below (marked W, Y, Z).

1/1 point

MobileNet v2 Bottleneck

- W = 30, Y = 20, Z = 20
- W = 5, Y = 20, Z = 5
- W = 5, Y = 30, Z = 20
- W = 30, Y = 30, Z = 5

∠⁷ Expand

⊘ Correct