

Major Project Final Defense Presentation

A Comprehensive Study on Development of a Roman Nepali Chatbot for E-commerce Customer Care

Project Members:

Aakash Kumar Thakur (PUR077BCT003)

Kshitiz Gajurel (PUR077BCT042)

Manish Kathet (PUR077BCT044)

Manoj Kumar Baniya (PUR077BCT046)

Supervisor: Er. Pukar Karki

INTRODUCTION

Roman Nepali Chatbot

A chatbot designed to understand and respond to user queries in the Roman Nepali language.

Ecommerce Chatbot

An e-commerce customer bot is an automated tool designed to interact with customers on an e-commerce platform to simulate human-like conversations and assist users with various tasks.

PROBLEM STATEMENT

1. Manual Customer Support

2. Slow Response Time

3. Limited Language Support (English/Nepali)

OBJECTIVES

1. Romanized Nepali E-commerce Chatbot Development

2. Chatbot Architecture Analysis & Optimization

3. Enhanced Response Quality with Dynamic Retrieval

LITERATURE REVIEW

- ➤ GUS (Genial Understander System) [1] A frame-driven dialogue system (1977) using predefined templates for structured conversations. It enabled goal-directed interactions and influenced modern intent recognition. Our chatbot applies ML-based intent classification for better Romanized Nepali support in e-commerce.
- > [2] Optimizes LLMs for low-resource languages like Veitnamese. Enhances chatbot accuracy despite limited data. We apply this to improve Romanized Nepali chatbot performance, ensuring better responses for e-commerce customer care.

METHODOLOGY

PREPARING DATASET

STEPS ON PREPARING DATASET

- Synthetic Dataset Generation
 Ecommerce Q/A pair dataset (Roman Nepali)
- Data Cleaning and Filtering
- Labeling Intent and Entity Dataset
- Pre-Processing and Adding Prompt Template

Fine Tuning Dataset: 17886 (Q/A pairs)

We used GPT-40 and DeepSeek AI to generate Romanized Nepali dialogues through diverse prompts, ensuring natural chatbot conversations with a balanced mix of:

- 1. Common user intents (browsing, ordering, tracking) with suitable responses.
- 2. Varied tones (formal, informal, friendly, professional).
- 3. Multiple topics (greetings, inquiries).
- 4. To improve the diversity and quality of the dataset, we used various prompt engineering techniques (*Zero Shot, Few Shot and Dynamic Scenario Prompt*)
- 5. We further validate and filter our dataset final (17886)

Intent and Entity Dataset

- We aimed for only 4 different e-commerce intents (*product-inquiry*, *order-tracking*, *order-product*, *payment-method*).
- Manually Prepared dataset on each intents.
- Same dataset was used for training entity recognition model.

Query	Intent		
ma saman order garna chahanxu	ORDER_PRODUCT		
laptop ko price kati ho?	PRODUCT_INQUIRY		
mero order ko status ke ho jankari dinu?	ORDER_TRACKING		

Intent Classification: Dataset

WORD REPLACEMENT

chha:{cha,chhaa,xa,xha,xaa,x}

malaai:{malai,malaai,malae,molai,maalai,maalaai}

maile:{mailee,mailey,mailei,maileey}

k:{*ke*}

paryo:{paro,pariyo,pario,parryo,parryoo}

Malae store location bare bataidinu paro.

Malai store location bareey bataidinu paryo.

Entity Recognition: Data Labeling

Labeling Entity using Custom Labeling App

Token	Store	ma	macbook	ko	laptop	ха	ki	xaina
Label	0	0	PRODUCT	0	CATEGORY	0	0	0

Token	malai	2	ta	IPhone	11	pro	order	garne
Label	0	QUANTITY	0	PRODUCT		0	0	

Formatting Fine Tuning Dataset

Prompt Template for Fine Tuning Dataset

```
<start_of_turn>system {SYSTEM_PROMPT}<end_of_turn>
<start_of_turn>user {USER_QUESTION} {CONTEXT}<end_of_turn>
<start_of_turn>model {MODEL_RESPONSE}<EOS>
```

Example Training Dataset using Prompt Template

SYSTEM ARCHITECTURE

Three Types of Chatbot

- Rule Based Chatbot (Menu Chatbot)
- Machine Learning Chatbot (Dialogue System)
- Generative Chat (RAG Chatbot)

Rule Based Chatbot

Rule Based Chatbot

- The chatbot operates using predefined rules and structured menu-driven interactions to ensure accurate and efficient responses.
- It processes user queries based on structured dialogue states and retrieves relevant data using predefined logic and generates appropriate responses for user interactions.

PRODUCT INQUIRY

ORDER PRODUCT

ORDER TRACKING

Rule Based Chatbot

System Diagram: (Rule Based Chatbot)

ML Chatbot

ML Chatbot: Introduction

The chatbot is developed using a machine learning-based approach that integrates multiple natural language processing (NLP) techniques to ensure accurate intent classification, entity recognition, and dialogue management through slot filling.

INTENT CLASSIFICATION

ENTITY RECOGNITION

ML Chatbot: Intent Classification

ML Chatbot: Entity Recognition

Conditional Random Field (CRF):

CRF is a machine learning model for sequence prediction, used in entity recognition. It considers word relationships and context for better accuracy.

Use in Entity Recognition:

CRF tags words as entities (e.g., names, locations) by analyzing surrounding words, ensuring meaningful label patterns (e.g., "New" \rightarrow "York" as a location).

CRF Formula:

$$P(y|x) = rac{1}{Z(x)} \exp \left(\sum_t \sum_k \lambda_k f_k(y_t, y_{t-1}, x, t)
ight)$$

x = Input sequence (words in a sentence)

y = Output sequence (entity labels)

fk = Feature functions capturing word properties and dependencies

 λk = Weights for feature functions

Z(x) = Normalization factor ensuring a valid probability distribution

Generative Chatbot

Generative Chatbot: Introduction

- Uses **Deep Learning Techniques** to create responses from scratch so generative.
- Unlike **Rule-Based and Dialogue System Chatbot**, which select responses from a predefined set based on user input, generative chatbots generate new responses dynamically, tailoring them to the specific context and content of the conversation.
- Trained on large amount on text data.
- Much more complex than rule based and retrieval based approach.

RNN based

- LSTM (Long Short Term Memory)
- GRU (Gated Recurrent Unit)

Transformer based

- **GPT** (Open AI)
- Llama (Meta AI)
- Gemma (Google Research)

Fine Tuning: Gemma2 (9 Billion Parameter Model)

Gemma 29B

- Model Architecture: A 9-billion parameter decoder-only transformer model.
- Key Features: Uses optimized attention mechanisms and rotary positional embeddings for better efficiency
- Advantages: Supports fast inference, efficient fine tuning and domain adaptation.

Why Gemma 2 9B?

Its pretrained model understands Romanized Nepali, making text tokenization easier.

Training of Gemma 2 Model

- 17886 Instructional datasets used.
- Fine-tuned on **Google Colab** which a free **Tesla T4 GPU** (16GB VRAM).
- Model Storage on Hugging Face for easy access.
- Deployed using Google Colab with API tunneling.
- Pinecone vector store utilize for dynamic data retrieval.

Fine Tuning: Computation Required for Fine Tuning

- **Model Weights Storage**: Loads pre-trained parameters.
- **Gradient Storage**: Stores weight updates during training.
- Optimizer States: Maintains momentum and scaling factors.
- **Activations Memory**: Holds intermediate outputs for backpropagation.

Total Requirement: Exceeds standard GPU limits, making full fine-tuning infeasible.

SOLUTION:

Used PEFT techniques for memory-efficient fine-tuning.

Gemma 2 9b Model Size

Fine Tuning: PEFT Technique

1. Quantization

- Reduces model weight precision from 64-bit/32-bit to 4-bit, lowering memory use.

2. LoRA & QLoRA

- Freezes most model weights, trains only **small adapter layers** for efficiency.
- Applies **4-bit quantization** before using LoRA, further reducing memory needs.

System Diagram (RAG Chatbot)

Result and Discussion

Criteria	Rule Based Chatbot	ML Based Chatbot	LLM Based Chatbot
1. Query Adaptability	Predefined flows, struggles with deviation	Handles some variations, misclassifies unseen phrasing	Handles diverse queries, occasional hallucinations
2. Response Quality	Static responses, no personalization	Template-based, misclassifies tokens	Context-aware, BLEU score: 36.13 , human ratings: 8-10 , better entity recognition
3. Resource Efficiency	Low cost, limited functionality	Moderate cost, balanced performance	High cost, advanced capabilities

Challenges

- 1. Lack of Roman Nepali Dataset publicly available to experiment.
- Fine-tuning large language models for Romanized Nepali remains challenging due to limited pre-trained resources.
- 3. Hardware resource constraint to train/fine tune large language model.
- **4.** Hallucinations of LLM (for ecommerce customer care we need accurate responses).

Conclusion

- We explored chatbot techniques for e-commerce in Roman Nepali language focusing on rule-based, retrieval-based and generation-based approach.
- We Collected and prepared a diverse dataset to train machine learning model.
- Fine tuned small model [gemma2 9B] to learn the techniques for efficiently fine tuning on low resource.

References

[1] D. G. Bobrow, R. M. Kaplan, M. Kay, D. A. Norman, H. Thompson, and T. Winograd, "Gus, a frame-driven dialog system," *Artificial Intelligence*, vol. 8, no. 2, pp. 155–173, Apr. 1977. [Online]. Available: https://doi.org/10.1016/0004-3702(77)90018-2

[2] V.-T. Doan, Q.-T. Truong, D.-V. Nguyen, V.-T. Nguyen, and T.-N. N. Luu, "Efficient finetuning large language models for Vietnamese chatbot," *arXiv preprint arXiv:2309.04646*, 2023. [Online]. Available: https://arxiv.org/abs/2309.04646

Thank You