

¿Que es un Modelo?

"Modelo Automóvil"

Características esenciales, imprescindibles

- Vehículo autopropulsado
- Tiene cuatro ruedas
- Medio de transporte terrestre
- Se dirige mediante un volante
- Está destinado al transporte de personas

¿Que es un Modelo?

Entonces... ¿éste es un automóvil?

- Con características "no esenciales" bien diferentes
 pero...
- Iguales en cuanto a sus propiedades fundamentales

ATENCION! Las características no esenciales pueden ser muy útiles/convenientes

Modelo Relacional

Modelo Relacional - Estructura Integridad - Manipulación

Modelo Relacional - Estructura

La **ESTRUCTURA** describe la forma en la que se almacenan los datos

Única estructura de datos del Modelo Relacional

Modelo Relacional - Estructura

Base de Datos Relacional = Colección de Relaciones

- Tienen propiedades que las distinguen
- Términos propios

Relación (Gráficamente)

relación

Un dominio D es un conjunto de valores atómicos válidos, desde los cuales los atributos toman sus valores

Un dominio, en general, tendrá:

- Nombre
- Tipo de datos
- Formato
- Información adicional (por ejemplo, unidad de medida)

Ejemplos:

- Nros. de teléfonos de Argentina
 - Def. lógica: Conjunto de nros. tel. válidos de xxx dígitos de Argentina.
 - Tipo de dato/Formato: Cadena de caracteres de la forma (ddd)dddd, donde cada d representa a un dígito decimal, y los 3 primeros forman el código de área.
- Pesos_de pacientes
 - **Def.** lógica: Pesos posibles de los pacientes de un médico pediatra, oscilan entre 0,500 y 60 (por ejemplo).
 - Tipo de dato/Formato: Número real entre 0,500 y 60.
 - Unidad de medida: Kilogramo
- Promedios de_notas: Valores posibles de los promedios de notas será un valor real entre 0 y 10.
- Edades_de alumnos: Edades posibles de los alumnos de la facultad, entre 17 y 50 (por ejemplo).
- Estados civiles empleados: Valores posibles para el estado civil de un empleado, a saber: soltero, casado, separado, viudo.
- Estados_civiles_alumnos: Valor posible para el estado civil de un alumno de una escuela primaria, a saber: soltero.

Complejidad del concepto de dominios:

- Definir el conjunto de todos los dominios posibles
- Definir las operaciones (unarias, binarias) válidas
- Para cada operación válida definida, identificar el dominio resultante

Ejemplo:

Sean los siguientes dominios, ambos enteros:

- Capacidad de personas de un aula
- Cantidad de alumnos
- ¿Sería "correcto" sumar elementos de ambos dominios?
- ¿Sería "correcto" comparar elementos de ambos dominios?

Sean los siguiente dominios definidos:

- Velocidad
- Tiempo

¿Es posible aplicar la operación "multiplicación" entre valores de ambos? ¿a qué dominio pertenece el resultado? (distancia)

Estructura: Relación

Se distinguen dos aspectos:

- Esquema de Relación o Intensión de una relación
- Relación propiamente dicha, Estado o Extensión de la relación

Estructura: Esquema de Relación / Intensión de una Relación

Un esquema de relación se compone de:

- Nombre
- Conjunto de pares (atributo, dominio)

Denotado:

$$R = \{ (A_1D_1), (A_2D_2), ..., (A_nD_n) \}$$

nombre

grado = cantidad de atributos

Estructura: Relación / Estado de Relación / Extensión

Una <u>relación</u> r(R) del esquema de relación $R = \{(A_1D_1), (A_2D_2),..., (A_nD_n)\}$ es es un conjunto finito de tuplas

$$r = \{t_1, t_2, ..., t_m\}$$

Donde:

- res un subconjunto del producto cartesiano de los dominios de R
- Cada t[A_i] es un elemento de D(A_i) o bien un valor nulo
- Cada tupla se considera como un conjunto de pares (atributo, valor)

$$t_i = \{(A_3, V_{i3}), (A_1, V_{i1}), (A_m, V_{im}), \ldots\}$$

Por lo tanto, puesto que ya vimos que $r = \{t_1, t_2, ..., t_m\}$ entonces r es un conjunto de conjuntos

Estructura: Características de las Relaciones

Características que se desprenden de la definición inc son exigencias o restricciones impuestas a las relaciones, son consecuencias!

- Las tuplas de una relación no están ordenadas
- Los atributos de una tupla no están ordenados
- Cada valor en una tupla es un valor atómico
- No existen tuplas repetidas (de ahí se desprende que siempre existirá una clave primaria para toda relación)

Modelo Relacional

Modelo Relacional

Concepto Integridad:

Refiere a la correctitud de los datos

Las restricciones contribuyen a mantenerla

Restricciones aplicadas a bases de datos

Un esquema de una base de datos relacional S es:

- Un conjunto de esquemas de relaciones $S=\{R_1, R_2, ..., R_m\}$
- Un conjunto de restricciones RI de integridad

Restricciones aplicadas a bases de datos

Un <u>estado de una base de datos</u> relacional *BD* de *S* es un conjunto de estados de relaciones $BD=\{r_1, r_2, ..., r_m\}$ tal que:

- Cada ri es un estado de Ri
- Todo r_i satisface las restricciones de integridad especificadas en RI

Restricción de integridad de entidades

Ningún valor de clave primaria (CP) puede contener valores nulos

Restricción de integridad referencial

<u>Clave foránea</u> (R_1 y R_2 , no necesariamente distintas): Un conjunto de atributos CF del esquema de relación R_1 es una clave foránea de R_1 si satisface:

- Los atributos de CF tienen el mismo dominio que los atributos de la CP del esquema de relación R₂.
- Todo valor de CF en una tupla t_{i:}
 - (a) ocurre como valor de CP en alguna tupla del estado actual de r₂ o
 - (b) bien es totalmente nulo.

Contiene la Regla de Integridad Referencial

 $R_1 \Longrightarrow Relación Referenciante R_2 \Longrightarrow Relación Referenciada$

Dado el ejemplo:

- 1. Identifiquemos claves primarias y foráneas
- 2. Quien es la relación referenciada y la referenciante?
- 3. Evaluemos la Regla de Integridad Referencial.
- 4. ¿El atributo dep, podría tener un valor nulo? Cumpliría las Reglas de Integridad?
- 5. ¿ Que pasaría si el atributo dep para el empleado nro. 5, tuviese como valor "d2"?

Empleado				
nº_emp	dni	nombre	dirección	dep
1	20.450.120	Juan Pérez	Cuenca 20	dl
5	11.345.678	Ana Orts	Cuenca 20	d3

Departamento

cod_dep	descripción	
d1	Ventas	
d3	Contabilidad	

Modelo Relacional

Modelo
Relacional

- Estructura
- Integridad
- Manipulación