

Intro to Neural Networks

Dr. Chelsea Parlett-Pelleriti

Neural Networks

Nodes

Nodes Hold Values

Weights

Weights multiply the number in a previous node and add it to the next node

Weights

We can have multiple weights feeding into one node

Biases

Biases move the value of a node up (for positive values) or down (for negative values) no matter what the weights and previous nodes' values were

Biases

Together, nodes, weights, and biases make up the core structure of a neural network

Linear Regression as a NN

LINEAR REGRESSION

(as a neural network)

@CHELSEAPARLETT

Loss: $\Sigma(x_i - \hat{x})^2$

Logistic Regression as a NN

LOGISTIC REGRESSION (as a neural network) , activation fx + bias ("intercept") age 35% salary Twitch Streamer? rent weights ("coefficients")

@CHELSE A PARLETT

Building a FF NN Structure

- 1. Structure
- 2. Connections
- 3. Activations

Common Loss Functions (continuous)

$$\frac{1}{N} \sum_{i=1}^{N} (\text{actual - predicted})^2$$

$$\frac{1}{N} \sum_{i=1}^{N} |\text{actual} - \text{predicted}|$$

Common Loss Functions (categorical)

Log Loss/ Binary Cross Entropy

$$-\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p_i) + (1 - y_i) \cdot log(1 - p_i)$$

Universal Function Approximation

Feature Engineering

Backpropagation/Gradient Descent

- 1. Which direction goes down the most?
- 2. Take a step in that direction.
- 3. Repeat until you get somewhere flat.

