Universität Augsburg Lehrstuhl für Algebra und Zahlentheorie Prof. Marc Nieper-Wißkirchen Ingo Blechschmidt

Übungsblatt 12 zur Algebra II

Abgabe bis 21. Januar 2014, 17:00 Uhr

Aufgabe 1. (2+2+2) Beispielrechnungen in endlicher Charakteristik

- a) Finde von jedem Element aus \mathbb{F}_7 all seine siebten Wurzeln.
- b) Sei $E := \mathbb{F}_3[X]/(X^3 + X^2 + 2)$. Schreibe $\alpha := [X] \in E$ als einen in α^3 rationalen Ausdrück über \mathbb{F}_3 .
- c) Sei K ein Körper der Charakteristik p. Sei x ein Element einer Körpererweiterung mit $K(x) = K(x^p)$. Konstruiere ein separables Polynom über K, das x als Nullstelle besitzt.

Aufgabe 2. (2+2) Vererbung von Separabilität

Sei $L\supseteq E\supseteq K$ ein Turm von Körpererweiterungen. Zeige oder widerlege folgende Aussagen:

- a) Ist ein Element aus L über K separabel, so auch über E.
- b) Ist ein Element aus L über E separabel, so auch über K.

Aufgabe 3. (2+2) Kriterium für Separabilität

Sei $N \geq 0$ eine natürliche Zahl und K ein Körper von Charakteristik größer als N.

- a) Sei f(X) ein Polynom vom Grad $\leq N$ über K. Zeige: Ist f(X) irreduzibel, so auch separabel.
- b) Sei ferner K faktoriell und L eine endliche Erweiterung vom Grad N. Zeige, dass L faktoriell ist.

Aufgabe 4. (2+1) Gerichteter Limes von Körpern

Sei $(K_i)_{i \in I}$ ein gerichtetes System von Ringen. Seien alle K_i sogar Körper.

- a) Zeige, dass der gerichtete Limes $L := \varinjlim_{i \in I} K_i$ ein Körper ist.
- b) Zeige, dass L in kanonischer Art und Weise als Körpererweiterung eines jeden K_i aufgefasst werden kann.

Aufgabe 5. (2+1) Vollkommene Körper

Sei K ein faktorieller Körper.

- a) Zeige, dass K genau dann vollkommen ist, wenn jedes irreduzible Polynom über K auch separabel über K ist.
- b) Welche Richtung lässt sich noch zeigen, wenn wir nicht voraussetzen wollen, dass K faktoriell ist?