

Câteva consecințe

Propoziția 1.52

Pentru orice mulțime de formule Γ și orice formule φ, ψ ,

$$\Gamma \cup \{\psi\} \vdash \varphi \quad \text{si} \quad \Gamma \cup \{\neg\psi\} \vdash \varphi \quad \Rightarrow \quad \Gamma \vdash \varphi.$$

Dem.:

(1)
$$\Gamma \cup \{\psi\} \vdash \varphi$$

(2)
$$\Gamma \vdash \psi \rightarrow \varphi$$

(3)
$$\Gamma \cup \{\neg \psi\} \vdash \varphi$$

$$(4) \quad \Gamma \vdash \neg \psi \to \varphi$$

(5)
$$\Gamma \vdash (\psi \rightarrow \varphi) \rightarrow (\neg \varphi \rightarrow \neg \psi)$$
 (42) și P.1.39.(ii)

(6)
$$\Gamma \vdash \neg \varphi \rightarrow \neg \psi$$

(7)
$$\Gamma \vdash \neg \varphi \rightarrow \varphi$$

(8)
$$\Gamma \vdash (\neg \varphi \rightarrow \varphi) \rightarrow \varphi$$

(9)
$$\Gamma \vdash \varphi$$

ipoteză

Teorema deducției

ipoteză

Teorema deducției

Câteva consecințe

Propoziția 1.53

Pentru orice formule φ, ψ ,

$$\{\varphi \wedge \psi\} \vdash \varphi \qquad (46)$$

$$\{\varphi \wedge \psi\} \vdash \psi \qquad (47)$$

$$\{\varphi, \psi\} \vdash \varphi \wedge \psi \qquad (48)$$

$$\{\varphi, \psi\} \vdash \chi \quad ddac\check{a} \quad \{\varphi \wedge \psi\} \vdash \chi \qquad (49)$$

$$\vdash \varphi \wedge \psi \leftrightarrow \psi \wedge \varphi \qquad (50)$$

Dem.: Exercițiu.

SINTAXA și SEMANTICA

Corectitudine

Teorema 1.54 (Teorema de corectitudine (Soundness Theorem))

Orice Γ-teoremă este consecință semantică a lui Γ, adică,

$$\Gamma \vdash \varphi \quad \Rightarrow \quad \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form \ \ \ \ \Gamma \subseteq Form.$

Dem.: Fie

$$\Sigma := \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma) \subseteq \Sigma$. O facem prin inducție după Γ -teoreme.

- ightharpoonup Axiomele sunt în Σ (exercițiu).
- ► Evident, $\Gamma \subseteq \Sigma$.
- Presupunem că Σ este închisă la modus ponens. Presupunem că $\varphi, \varphi \to \psi \in \Sigma$, adică, $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \to \psi$. Conform Propoziției 1.28.(i), obținem că $\Gamma \vDash \psi$, adică, $\psi \in \Sigma$.

Fie $e: V \rightarrow \{0,1\}$ o evaluare și $v \in V$ o variabilă.

Definim

$$\mathbf{v}^{\mathbf{e}} = egin{cases} v & \mathsf{dac} \ \mathbf{e}(v) = 1 \ \ \neg v & \mathsf{dac} \ \mathbf{e}(v) = 0. \end{cases}$$

Aşadar, $e^+(v^e) = 1$.

Pentru orice mulțime $W = \{x_1, \dots, x_k\}$ de variabile, notăm

$$W^e = \{v^e \mid v \in W\} = \{x_1^e, x_2^e, \dots, x_k^e\}.$$

Pentru orice $a \in \{0,1\}$, definim evaluarea $e_{v \leftarrow a}: V \rightarrow \{0,1\}$ prin

$$e_{v \leftarrow a}(x) = egin{cases} e(x) & \operatorname{daca} x
eq v \ a & \operatorname{daca} x = v. \end{cases}$$

Propoziția 1.55

Fie e : $V \rightarrow \{0,1\}$ o evaluare. Pentru orice formulă φ ,

- (i) Dacă $e^+(\varphi) = 1$, atunci $Var(\varphi)^e \vdash \varphi$.
- (ii) Dacă $e^+(\varphi) = 0$, atunci $Var(\varphi)^e \vdash \neg \varphi$.

Dem.: Suplimentar - nu trebuie citită pentru examen Prin inducție după formule. Avem următoarele cazuri:

- $\varphi = v$. Atunci $Var(\varphi)^e = \{v^e\}$ și $e^+(v) = e(v)$. Dacă e(v) = 1, atunci $v^e = v$, deci, $\{v^e\} \vdash v$. Dacă e(v) = 0, atunci $v^e = \neg v$, deci, $\{v^e\} \vdash \neg v$.
- ▶ $\varphi = \neg \psi$. Atunci $Var(\varphi) = Var(\psi)$, deci $Var(\varphi)^e = Var(\psi)^e$. Dacă $e^+(\varphi) = 1$, atunci $e^+(\psi) = 0$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \neg \psi$, adică, $Var(\varphi)^e \vdash \varphi$. Dacă $e^+(\varphi) = 0$, atunci $e^+(\psi) = 1$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \psi$, adică, $Var(\varphi)^e \vdash \psi$. Deoarece $\vdash \psi \rightarrow \neg \neg \psi$ ((41) din Propoziția 1.51), putem aplica (MP) pentru a obține $Var(\varphi)^e \vdash \neg \neg \psi = \neg \varphi$.

• $\varphi = \psi \to \chi$. Atunci $Var(\varphi) = Var(\psi) \cup Var(\chi)$, deci $Var(\psi)^e$, $Var(\chi)^e \subseteq Var(\varphi)^e$.

Dacă $e^+(\psi \to \chi) = 0$, atunci $e^+(\psi) = 1$ și $e^+(\chi) = 0$. Avem $Var(\psi)^e \vdash \psi$ ipoteza de inducție pentru ψ $Var(\chi)^e \vdash \neg \chi$ ipoteza de inducție pentru χ $Var(\varphi)^e \vdash \{\psi, \neg \chi\}$ $Var(\psi)^e$, $Var(\chi)^e \subseteq Var(\varphi)^e$ și P. 1.39.(i) $\{\psi, \neg \chi\} \vdash \neg (\psi \to \chi)$ (43) din Propoziția 1.51 $Var(\varphi)^e \vdash \neg (\psi \to \chi)$ Propoziția 1.39.(iv).

Dacă $e^+(\psi \to \chi) = 1$, atunci fie $e^+(\psi) = 0$, fie $e^+(\chi) = 1$.

În primul caz, obținem

$$Var(\psi)^e \vdash \neg \psi$$
 ipoteza de inducție pentru ψ

$$Var(\psi)^e \vdash \neg \psi \to (\psi \to \chi)$$
 (38) din P. 1.51 și P. 1.39.(ii)

$$Var(\psi)^e \vdash \psi \to \chi$$
 (MP)

$$Var(\varphi)^e \vdash \psi \rightarrow \chi$$
 $Var(\psi)^e \subseteq Var(\varphi)^e$ și P. 1.39.(i).

În al doilea caz, obținem

$$Var(\chi)^e \vdash \chi$$
 ipoteza de inducție pentru χ

$$Var(\chi)^e \vdash \chi \rightarrow (\psi \rightarrow \chi)$$
 (A1) și Propoziția 1.37.(i)

$$Var(\chi)^e \vdash \psi \to \chi$$
 (MP)

$$Var(\varphi)^e \vdash \psi \rightarrow \chi$$
 $Var(\chi)^e \subseteq Var(\varphi)^e$ și P. 1.39.(i).

Demonstrația propoziției anterioare ne dă o construcție efectivă a unei demonstrații a lui φ sau $\neg \varphi$ din premizele $Var(\varphi)^e$.

Teorema de completitudine

Teorema 1.56 (Teorema de completitudine)

Pentru orice formulă φ ,

$$\vdash \varphi \quad ddac\check{a} \quad \models \varphi.$$

Dem.: " \Rightarrow " Se aplică Teorema de corectitudine 1.54 pentru $\Gamma = \emptyset$. " \Leftarrow " Fie φ o tautologie și $Var(\varphi) = \{x_1, \dots, x_n\}$. Demonstrăm prin inducție după k următoarea proprietate:

(*) pentru orice
$$k \leq n$$
, pentru orice $e: V \rightarrow \{0,1\}$, $\{x_1^e, \dots, x_{n-k}^e\} \vdash \varphi$.

Pentru k = n, (*) ne dă $\vdash \varphi$.

k = 0. Fie $e: V \to \{0, 1\}$. Deoarece φ este tautologie, $e^+(\varphi) = 1$. Aplicând Propoziția 1.55, obținem că

$$Var(\varphi)^e = \{x_1^e, \ldots, x_n^e\} \vdash \varphi.$$

Teorema de completitudine

 $k \Rightarrow k+1$. Presupunem că (*) este adevărată pentru k și fie $e: V \to \{0,1\}$. Trebuie să arătăm că $\{x_1^e, \ldots, x_{n-k-1}^e\} \vdash \varphi$. Considerăm evaluarea $e' := e_{x_{n-k} \leftarrow \neg e(x_{n-k})}$. Așadar, e'(v) = e(v) pentru orice $v \neq x_{n-k}$ și

$$e'(x_{n-k}) = egin{cases} 0 & \operatorname{dacreve{a}} e(x_{n-k}) = 1 \ 1 & \operatorname{dacreve{a}} e(x_{n-k}) = 0. \end{cases}$$

Rezultă că $x_i^{e'} = x_i^e$ pentru orice $i \in \{1, \dots, n-k-1\}$ și

$$x_{n-k}^{e'} = \begin{cases} \neg x_{n-k} & \text{dacă } x_{n-k}^e = x_{n-k} \\ x_{n-k} & \text{dacă } x_{n-k}^e = \neg x_{n-k}. \end{cases}$$

Din (*) pentru $e ext{ și } e'$, obținem

$$\{x_1^e, \dots, x_{n-k-1}^e, x_{n-k}\} \vdash \varphi \text{ si } \{x_1^e, \dots, x_{n-k-1}^e, \neg x_{n-k}\} \vdash \varphi.$$

Aplicăm acum Propoziția 1.52 cu $\Gamma := \{x_1^e, \dots, x_{n-k-1}^e\}$ și $\psi := x_{n-k}$ pentru a conclude că $\{x_1^e, \dots, x_{n-k-1}^e\} \vdash \varphi$.

Consecință utilă

Propoziția 1.57

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq$ Form. Presupunem că $\varphi \sim \psi$. Atunci

$$\Gamma \vdash \varphi \iff \Gamma \vdash \psi.$$

Dem.: Observăm că

$$\begin{array}{cccc} \varphi \sim \psi & \iff & \models \varphi \rightarrow \psi \text{ \sharp } \models \psi \rightarrow \varphi \\ & & \text{Propozi} \\ & \iff & \vdash \varphi \rightarrow \psi \text{ \sharp } \vdash \psi \rightarrow \varphi \\ & & \text{Teorema de completitudine.} \end{array}$$

" \Rightarrow " Presupunem că $\Gamma \vdash \varphi$. Deoarece $\vdash \varphi \rightarrow \psi$, rezultă din Propoziția 1.39.(ii) că $\Gamma \vdash \varphi \rightarrow \psi$. Aplicăm acum (MP) pentru a obține că $\Gamma \vdash \psi$.

Fie Γ o mulțime de formule și φ o formulă.

Notații

Mulţ

Mulțimi consistente

Definiția 1.58

Fie Γ o mulțime de formule.

- ightharpoonup Γ este consistentă dacă există o formulă φ astfel încât Γ $\not\vdash \varphi$.
- ► Γ este inconsistentă dacă nu este consistentă, adică, $\Gamma \vdash \varphi$ pentru orice formulă φ .

Observație

Fie Γ, Δ mulțimi de formule a.î. $\Gamma \subseteq \Delta$.

- Dacă Δ este consistentă, atunci și Γ este consistentă.
- ightharpoonup Dacă Γ este inconsistentă, atunci și Δ este inconsistentă.

Propoziția 1.59

- (i) ∅ este consistentă.
- (ii) Mulțimea teoremelor este consistentă.

Dem.:

- (i) Dacă $\vdash \bot$, atunci, conform Teoremei de corectitudine 1.54, ar rezulta că $\models \bot$, o contradicție. Așadar $\not\vdash \bot$, deci \emptyset este consistentă.
- (ii) Aplicând Propoziția 1.39 (iv) pentru $\Gamma = \emptyset$, obținem că Thm = Thm(Thm), adică, pentru orice φ ,

 $\vdash \varphi$ ddacă $Thm \vdash \varphi$.

Din (i) rezultă că *Thm* este consistentă.

Propoziția 1.60

Pentru o mulțime de formule Γ sunt echivalente:

- (i) Γ este inconsistentă.
- (ii) Pentru orice formulă ψ , $\Gamma \vdash \psi$ și $\Gamma \vdash \neg \psi$.
- (iii) Există o formulă ψ a.î. $\Gamma \vdash \psi$ și $\Gamma \vdash \neg \psi$.
- (iv) $\Gamma \vdash \bot$.

Dem.: $(i) \Rightarrow (ii) \Rightarrow (iii)$ și $(i) \Rightarrow (iv)$ sunt evidente.

 $(iii) \Rightarrow (i)$ Fie φ o formulă. Conform (38) din Propoziția 1.51,

$$\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi).$$

Aplicând (iii) și de două ori modus ponens, rezultă că $\Gamma \vdash \varphi$. $(iv) \Rightarrow (iii)$. Presupunem că $\Gamma \vdash \bot$. Avem că $\bot = \neg \top$. Deoarece \top este tautologie, aplicăm Teorema de completitudine pentru a conclude că $\vdash \top$, deci și $\Gamma \vdash \top$.

Propoziția 1.61

Fie Γ o mulțime de formule și φ o formulă.

- (i) $\Gamma \vdash \varphi \iff \Gamma \cup \{\neg \varphi\}$ este inconsistentă.
- (ii) $\Gamma \vdash \neg \varphi \iff \Gamma \cup \{\varphi\}$ este inconsistentă.

Dem.:

(i) Avem

$$\Gamma \cup \{\neg \varphi\}$$
 este inconsistentă \iff $\Gamma \cup \{\neg \varphi\} \vdash \bot$

Propoziția 1.60

$$\iff$$
 $\Gamma \vdash \neg \varphi \rightarrow \bot$

Teorema deducției

$$\iff \Gamma \vdash \varphi$$

$$\neg \varphi \to \bot \sim \varphi \text{ și P. 1.57.}$$

(ii) Similar.

86

Propoziția 1.62

Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulțime finită de formule.

- (i) Pentru orice formulă ψ , $\Gamma \vdash \psi$ ddacă $\vdash \varphi_1 \land \ldots \land \varphi_n \rightarrow \psi$ ddacă $\{\varphi_1 \land \ldots \land \varphi_n\} \vdash \psi$.
- (ii) Γ este consistentă ddacă $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este consistentă.

Dem.: Exercițiu.

M

Mulțimi consistente

Propoziția 1.63

Fie Γ o mulțime de formule. Γ este inconsistentă ddacă Γ are o submulțime finită inconsistentă.

Dem.: "←" este evidentă.

"⇒" Presupunem că Γ este inconsistentă. Atunci, conform Propoziției 1.60.(iv), $\Gamma \vdash \bot$. Aplicând Propoziția 1.44, obținem o submulțime finită $\Sigma = \{\varphi_1, \ldots, \varphi_n\}$ a lui Γ a.î. $\Sigma \vdash \bot$. Prin urmare, Σ este inconsistentă.

Un rezultat echivalent:

Propoziția 1.64

Fie Γ o mulțime de formule. Γ este consistentă ddacă orice submulțime finită a lui Γ este consistentă.

Consecință a Teoremei de completitudine

Teorema 1.65

Pentru orice formulă φ ,

 $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

Dem.: Avem

 $\{\varphi\}$ este inconsistentă \iff $\vdash \neg \varphi$

Propoziția 1.61.(ii)

 $\iff \vdash \neg \varphi$

Teorema de completitudine

 \iff $\{\varphi\}$ este nesatisfiabilă Propoziția 1.30.(ii).

Aşadar, $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

Teorema de completitudine tare

Teorema 1.66 (Teorema de completitudine tare - versiunea 1)

Pentru orice mulţime de formule Γ,

Γ este consistentă \iff Γ este satisfiabilă.

Dem.: " \Leftarrow " Presupunem că Γ este satisfiabilă, deci are un model $e: V \to \{0,1\}$. Presupunem că Γ nu este consistentă. Atunci Γ $\vdash \bot$ și, aplicând Teorema de corectitudine 1.54, rezultă că Γ $\vDash \bot$. Ca urmare, $e \vDash \bot$, ceea ce este o contradicție. " \Rightarrow " Presupunem că Γ este consistentă. Demonstrăm că Γ este finit satisfiabilă și aplicăm apoi Teorema de compacitate 1.34 pentru a conclude că Γ este satisfiabilă.

Fie $\Sigma = \{\varphi_1, \ldots, \varphi_n\}$ o submulțime finită a lui Γ. Atunci Σ este consistentă, conform Propoziției 1.64. Din Propoziția 1.62.(ii), rezultă că $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este consistentă. Aplicând acum Teorema 1.65 obținem că $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este satisfiabilă. Deoarece, conform Propoziției 1.31.(i), $\Sigma \sim \{\varphi_1 \wedge \ldots \wedge \varphi_n\}$, avem că Σ este satisfiabilă.

Teorema de completitudine tare

Teorema 1.67 (Teorema de completitudine tare - versiunea 2)

Pentru orice mulțime de formule Γ și orice formulă φ ,

$$\Gamma \vdash \varphi \iff \Gamma \vDash \varphi$$
.

Dem.:

Observație

Am demonstrat Teorema de completitudine tare - versiunea 2 folosind Teorema de completitudine tare - versiunea 1. Se poate arăta că cele două versiuni sunt echivalente (exercițiu).