

Quantization 1

Kaisheng Ma

Assistant Professor IIIS Tsinghua University

kaishengthu@163.com

Lecture Plan

Today we will:

- 1. Review the numeric *data types* used in the modern computing systems, including integers and floating-point numbers.
- 2. Learn the basic concept of *neural network quantization*
- 3. Learn three types of common neural network quantization:
 - 1. K-Means-based Quantization
 - 2. Linear Quantization
 - 3. Binary and Ternary Quantization

Low Bit-Width Operations are Cheap

Less Bit-Width → **Less Energy**

Operation	Energy [pJ]			
8 bit int ADD	0.03	30 ×	•	
32 bit int ADD	0.1			
16 bit float ADD	0.4			
32 bit float ADD	0.9			
8 bit int MULT	0.2		16 ×	
32 bit int MULT	3.1			
16 bit float MULT	1.1			
32 bit float MULT	3.7			
Rough Energy Cost For Vario		1 10	100	1000
	1 = 20	0 ×+		

Low Bit-Width Operations are Cheap

Less Bit-Width → **Less Energy**

Operation	Energy [pJ]	
8 bit int ADD	0.03	30 ×
32 bit int ADD	0.1	
16 bit float ADD	0.4	

How should we make deep learning more efficient?

Numeric Data Types

How is numeric data represented in modern computing systems?

Integer

- Unsigned Integer
 - *n*-bit Range: $[0, 2^n 1]$
- Signed Integer
 - Sign-Magnitude Representation
 - *n*-bit Range: $[-2^{n-1}-1, 2^{n-1}-1]$
 - Both 000...00 and 100...00 represent 0
 - Two's Complement Representation
 - *n*-bit Range: $[-2^{n-1}, 2^{n-1} 1]$
 - 000...00 represents 0
 - 100...00 represents -2^{n-1}

Sign Bit

Fixed-Point Number

Example: 32-bit floating-point number in IEEE 754

$$0.265625 = 1.0625 \times 2^{-2} = (1 + 0.0625) \times 2^{125-127}$$

Example: 32-bit floating-point number in IEEE 754

How should we represent 0?

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$$

(Normal Numbers, Exponent≠0)

23 bit Fraction

Should have been $(-1)^{sign} \times (1 + Fraction) \times 2^{0-127}$

But we force to be $(-1)^{sign} \times Fraction \times 2^{1-127}$

(Subnormal Numbers, Exponent=0)

$$0.265625 = 1.0625 \times 2^{-2} = (1 + 0.0625) \times 2^{125-127}$$

Example: 32-bit floating-point number in IEEE 754

What is the minimum positive value?

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

23 bit Fraction

$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$$

 $(-1)^{sign} \times Fraction \times 2^{1-127}$

$$2-149 = 2-23 \times 2-126$$

Example: 32-bit floating-point number in IEEE 754

What is the maximum positive subnormal value?

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

23 bit Fraction

$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$$

(Normal Numbers, Exponent≠0)

$$(-1)^{sign} \times Fraction \times 2^{1-127}$$

(Subnormal Numbers, Exponent=0)

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

23 bit Fraction

 $(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$

(Normal Numbers, Exponent≠0)

 $(-1)^{sign} \times Fraction \times 2^{1-127}$

(Subnormal Numbers, Exponent=0)

much waste. Revisit in fp8.

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

23 bit Fraction

Exponent	Fraction=0	Fraction≠0	Equation
00н = 0	±0	subnormal	(-1)sign × Fraction × 21-127
01н FEн = 1 254	normal		(-1)sign × (1 + Fraction) × 2Exponent-127
FF _H = 255	±INF	NaN	

Exponent Width → Range; Fraction Width → Precision

Numeric Data Types

• Question: What is the following IEEE half precision (IEEE FP16) number in decimal?

Exponent Bias = 15₁₀

- Sign: -
- Exponent: $10001_2 15_{10} = 17_{10} 15_{10} = 2_{10}$
- Fraction: $1100000000_2 = 0.75_{10}$
- Decimal Answer = $-(1 + 0.75) \times 2^2 = -1.75 \times 2^2 = -7.0_{10}$

Numeric Data Types

• Question: What is the decimal 2.5 in Brain Float (BF16)?

$$2.5_{10} = 1.25_{10} \times 21$$

Exponent Bias = 127₁₀

- Sign: +
- Exponent Binary: $1_{10} + 127_{10} = 128_{10} = 10000000_2$
- Fraction Binary: $0.25_{10} = 0100000_2$
- Binary Answer

Exponent Width \rightarrow Range; Fraction Width \rightarrow Precision

<u>IEEE 754</u> Single Precision 32-bit Float (IEEE FP32)	Exponent (bits)	Fraction (bits)	Total (bits)
	8	23	32
IEEE 754 Half Precision 16-bit Float (IEEE FP16)			
	5	10	16
Nvidia FP8 (E4M3)			
* FP8 E4M3 does not have INF, and S.1111.111 ₂ is used for NaN. * Largest FP8 E4M3 normal value is S.1111.110 ₂ =448.	4	3	8
Nvidia FP8 (E5M2) for gradient in the backward			
* FP8 E5M2 have INF (S.11111.00 ₂) and NaN (S.11111.XX ₂). * Largest FP8 E5M2 normal value is S.11110.11 ₂ =57344.	5	2	8

INT4 and FP4

Exponent Width \rightarrow Range; Fraction Width \rightarrow Precision

INT4

S			
0	0	0	1
0	1	1	1

-1, -2, -3, -4, -5, -6, -7, -8 0, 1, 2, 3, 4, 5, 6, 7

-1, -2, -3, -4, -5, -6, -7, -8 0, 1, 2, 3, 4, 5, 6, 7

FP4 (E1M2)

S	Ε	M	M
0	0	0	1
0	1	1	1

-0,-0.5,-1,-1.5,-2,-2.5,-3,-3.5 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5

 $-0, -1, -2, -3, -4, -5, -6, -7 \times 0.5$ 0, 1, 2, 3, 4, 5, 6, 7

FP4 (E2M1)

S	Ш	Ы	M
0	0	0	1
0	1	1	1

-0, -0.5, -1, -1.5, -2, -3, -4, -60, 0.5, 1, 1.5, 2, 3, 4, 6

 $-0, -1, -2, -3, -4, -6, -8, -12 \times 0.5$ 0, 1, 2, 3, 4, 6, 8, 12

$$=(1+0.5)\times2^{3-1}=1$$

 $=0.5\times21-1=0.5$

 $=0.25\times21-0=0.5$

 $=(1+0.75)\times2^{1-0}=3.5$

no inf, no NaN

FP4 (E3M0)

-0, -0.25, -0.5, -1, -2, -4, -8, -160, 0.25, 0.5, 1, 2, 4, 8, 16

$$=(1+0)\times27-3=16$$

no inf, no NaN

What is Quantization?

Quantization is the process of constraining an input from a continuous or otherwise large set of values to a discrete set.

The difference between an input value and its quantized value is referred to as quantization error.

Original Image

16-Color Image

Images are in the public domain. "Palettization"

Neural Network Quantization: Agenda

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	3	1	0	1:	0.00
3	1	2	2	0:	-1.00

1	0	1	1
1	0	0	1
0	1	1	0
1	1	1	1

K-Means-based Quantization

Linear Quantization

Binary/Ternary Quantization

Storage	Floating-Point Weights	
Computation	Floating-Point Arithmetic	

Neural Network Quantization: Agenda

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	3	1	0	1:	0.00
3	1	2	2	0:	-1.00

K-Means-based Quantization

Linear Quantization

Binary/Ternary Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	

Neural Network Quantization

Weight Quantization

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Neural Network Quantization

Weight Quantization

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

3.2 × smaller

Assume N-bit quantization, and #parameters = $M >> 2^{N}$.

storage

Deep Compression [Han et al., ICLR 2016]

reconstructed weights (32-bit float)

2.00	-1.00	1.50	0.00
0.00	0.00	-1.00	2.00
-1.00	2.00	0.00	-1.00
2.00	0.00	1.50	1.50

quantization error

0.09	0.02	-0.02	0.09
0.05	-0.14	-0.08	0.12
0.09	-0.08	0	-0.03
-0.13	0	0.03	-0.01

Fine-tuning Quantized Weights

aı	ra	di	ام	ni
႘၊	d	ЦI	C	Ц

-0.03	-0.01	0.03	0.02
-0.01	0.01	-0.02	0.12
-0.01	0.02	0.04	0.01
-0.07	-0.02	0.01	-0.02

Fine-tuning Quantized Weights

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Model Size Ratio after Compression

Deep Compression [Han et al., ICLR 2016]

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Deep Compression [Han et al., ICLR 2016]

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Pruning + Quantization Pruning Only Quantization Only

Model Size Ratio after Compression

Before Quantization: Continuous Weight

After Quantization: Discrete Weight

After Quantization: Discrete Weight after Training

Deep Compression [Han et al., ICLR 2016]

How Many Bits do We Need?

Huffman Coding

- In-frequent weights: use more bits to represent
- Frequent weights: use less bits to represent

Summary of Deep Compression

Deep Compression Results

Network	Original Size	Compressed Size	Compression Ratio	Original Accuracy	Compressed Accuracy
LeNet-300	1070KB	27KB	40x	98.36%	98.42%
LeNet-5	1720KB	44KB	39x	99.20%	99.26%
AlexNet	240MB	6.9MB	35x	80.27%	80.30%
VGGNet	550MB	11.3MB	49x	88.68%	89.09%
GoogleNet	28MB	2.8MB	10x	88.90%	88.92%
ResNet-18	44.6MB	4.0MB	11x	89.24%	89.28%

Can we make compact models to begin with?

SqueezeNet

Deep Compression on SqueezeNet

Network	Approach	Size	Ratio	Top-1 Accuracy	Top-5 Accuracy
AlexNet	-	240MB	1x	57.2%	80.3%
AlexNet	SVD	48MB	5x	56.0%	79.4%
AlexNet	Deep Compression	6.9MB	35x	57.2%	80.3%
SqueezeNet	-	4.8MB	50x	57.5%	80.3%
SqueezeNet	Deep Compression	0.47MB	510x	<u>57.5%</u>	80.3%

K-Means-based Weight Quantization

- The weights are decompressed using a lookup table (i.e., codebook) during runtime inference.
- K-Means-based Weight Quantization only saves storage cost of a neural network model.
 - All the computation and memory access are still floating-point.

Neural Network Quantization

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	3	1	0	1:	0.00
3	1	2	2	0:	-1.00

K-Means-based
Quantization

Linear Quantization

Binary/Ternary Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

What is Linear Quantization?

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

What is Linear Quantization?

An affine mapping of integers to real numbers

weights (32-bit float)

 2.09
 -0.98
 1.48
 0.09

 0.05
 -0.14
 -1.08
 2.12

 -0.91
 1.92
 0
 -1.03

 1.87
 0
 1.53
 1.49

quantized weights (2-bit signed int)

1	-2	0	-1
-1	-1	-2	1
-2	1	-1	-2
1	-1	0	0

zero point (2-bit signed int)

scale (32-bit float)

reconstructed weights (32-bit float)

2.14	-1.07	1.07	0
0	0	-1.07	2.14
-1.07	2.14	0	-1.07
2.14	0	1.07	1.07

quantization error

-0.05	0.09	0.41	0.09
0.05	-0.14	-0.01	-0.02
0.16	-0.22	0	0.04
-0.27	0	0.46	0.42

Binary	Decimal
01	1
00	0
11	-1
10	-2

What is Linear Quantization?

An affine mapping of integers to real numbers

weights (32-bit float)

 2.09
 -0.98
 1.48
 0.09

 0.05
 -0.14
 -1.08
 2.12

 -0.91
 1.92
 0
 -1.03

 1.87
 0
 1.53
 1.49

quantized weights (2-bit signed int)

1	-2	0	-1
-1	-1	-2	1
-2	1	-1	-2
1	-1	0	0

zero point (2-bit signed int)

scale (32-bit float)

reconstructed weights (32-bit float)

2.14	-1.07	1.07	0
0	0	-1.07	2.14
-1.07	2.14	0	-1.07
2.14	0	1.07	1.07

quantization error

-0.05	0.09	0.41	0.09
0.05	-0.14	-0.01	-0.02
0.16	-0.22	0	0.04
-0.27	0	0.46	0.42

Binary	Decimal
01	1
00	0
11	-1
10	-2

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Scale of Linear Quantization

$$r_{\text{max}} = S(q_{\text{max}} - Z)$$

$$r_{\text{min}} = S(q_{\text{min}} - Z)$$

$$\downarrow$$

$$r_{\text{max}} - r_{\text{min}} = S(q_{\text{max}} - q_{\text{min}})$$

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

Scale of Linear Quantization

$q_{ m min}$ $q_{ m max}$	
	—
-2 -1 0	
1	

Binary	Decimal
01	1
00	0
11	-1
10	-2

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$= \frac{2.12 - (-1.08)}{1 - (-2)}$$
$$= 1.07$$

Zero Point of Linear Quantization

$$r_{\min} = S (q_{\min} - Z)$$

$$Z = q_{\min} - \frac{r_{\min}}{S}$$

$$\downarrow$$

$$Z = round (q_{\min} - \frac{r_{\min}}{S})$$

Zero Point of Linear Quantization

q_{min} q_{max}	
-2 -1 0	
1	

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$Z = q_{\min} - \frac{r_{\min}}{S}$$

Sinary
 Decimal

 01
 1

 00
 0

 11
 -1

 10
 -2

$$= round(-2 - \frac{-1.08}{-1.07})$$
 $= -1$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• Consider the following matrix multiplication.

$$Y = WX$$

$$S_{\mathbf{Y}}(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}}) = S_{\mathbf{W}}(\mathbf{q}_{\mathbf{W}} - Z_{\mathbf{W}}) \cdot S_{\mathbf{X}}(\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}})$$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} (\mathbf{q_W} - Z_{\mathbf{W}}) (\mathbf{q_X} - Z_{\mathbf{X}}) + Z_{\mathbf{Y}}$$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} (\mathbf{q_W}\mathbf{q_X} - Z_{\mathbf{W}}\mathbf{q_X} - Z_{\mathbf{X}}\mathbf{q_W} + Z_{\mathbf{W}}Z_{\mathbf{X}}) + Z_{\mathbf{Y}}$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following matrix multiplication.

$$\mathbf{Y} = \mathbf{WX}$$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q_W}\mathbf{q_X} - Z_{\mathbf{W}}\mathbf{q_X} - Z_{\mathbf{X}}\mathbf{q_W} + Z_{\mathbf{W}}Z_{\mathbf{X}} \right) + \mathbf{Z}$$

$$N\text{-bit Integer Multiplication}$$

$$N\text{-bit Integer Addition/Subtraction}$$

$$N\text{-bit Integer Addition}$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• Consider the following matrix multiplication.

$$\mathbf{Y} = \mathbf{WX}$$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q_W}\mathbf{q_X} - Z_{\mathbf{W}}\mathbf{q_X} - Z_{\mathbf{X}}\mathbf{q_W} + Z_{\mathbf{W}}Z_{\mathbf{X}} \right) + \mathbf{Z}_{\mathbf{Y}}$$

• Empirically, the scale $\frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}}$ is always in the interval (0, 1). Fixed-point Multiplication

$$\frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} = 2^{-n}M_0$$
, where $M_0 \in [0.5,1)$

Bit Shift

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• Consider the following matrix multiplication.

Symmetric Linear Quantization

Zero point Z = 0 and Symmetric floating-point range

Bit Width	q min	q max
2	-2	1
3	-4	3
4	-8	7
N	-2 N-1	2N-1-1

Symmetric Linear Quantization

Full range mode

Bit Width	q min	Qmax
2	-2	1
3	-4	3
4	-8	7
N	-2 N-1	2N-1-1

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$S = \frac{r_{\min}}{q_{\min}} = \frac{-|r|_{\max}}{q_{\min}} = \frac{|r|_{\max}}{2^{N-1}}$$

- use full range of quantized integers
- example: PyTorch's native quantization,
 ONNX

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• Consider the following matrix multiplication, when Zw=0.

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} (\mathbf{q_W}\mathbf{q_X} - \mathbf{Z_W}\mathbf{q_X} - \mathbf{Z_X}\mathbf{q_W} + \mathbf{Z_W}\mathbf{Z_X}) + \mathbf{Z_Y}$$
Rescale to N-bit Integer Multiplication 32-bit Integer Addition/Subtraction $\mathbf{Z_W} = 0$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} (\mathbf{q_W}\mathbf{q_X} - \mathbf{Z_X}\mathbf{q_W}) + \mathbf{Z_Y}$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• So far, we ignore bias. Now we consider the following fully-connected layer with bias.

$$Y = WX + b$$

$$S_{Y}(\mathbf{q}_{Y} - Z_{Y}) = S_{W}(\mathbf{q}_{W} - Z_{W}) \cdot S_{X}(\mathbf{q}_{X} - Z_{X}) + S_{b}(\mathbf{q}_{b} - Z_{b})$$

$$\downarrow Z_{W} = 0$$

$$S_{Y}(\mathbf{q}_{Y} - Z_{Y}) = S_{W}S_{X}(\mathbf{q}_{W}\mathbf{q}_{X} - Z_{X}\mathbf{q}_{W}) + S_{b}(\mathbf{q}_{b} - Z_{b})$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• So far, we ignore bias. Now we consider the following fully-connected layer with bias.

$$Y = WX + b$$

$$S_{Y}(\mathbf{q}_{Y} - Z_{Y}) = S_{W}(\mathbf{q}_{W} - Z_{W}) \cdot S_{X}(\mathbf{q}_{X} - Z_{X}) + S_{b}(\mathbf{q}_{b} - Z_{b})$$

$$\downarrow Z_{W} = 0$$

$$S_{Y}(\mathbf{q}_{Y} - Z_{Y}) = S_{W}S_{X}(\mathbf{q}_{W}\mathbf{q}_{X} - Z_{X}\mathbf{q}_{W}) + S_{b}(\mathbf{q}_{b} - Z_{b})$$

$$\downarrow Z_{b} = 0, S_{b} = S_{W}S_{X}$$

$$S_{Y}(\mathbf{q}_{Y} - Z_{Y}) = S_{W}S_{X}(\mathbf{q}_{W}\mathbf{q}_{X} - Z_{X}\mathbf{q}_{W} + \mathbf{q}_{b})$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• So far, we ignore bias. Now we consider the following fully-connected layer with bias.

$$Y = WX + b$$

$$Z_{W} = 0 \downarrow Z_{b} = 0, S_{b} = S_{W}S_{X}$$

$$S_{Y}(\mathbf{q}_{Y} - Z_{Y}) = S_{W}S_{X}(\mathbf{q}_{W}\mathbf{q}_{X} - Z_{X}\mathbf{q}_{W} + \mathbf{q}_{b})$$

$$\mathbf{q}_{Y} = \frac{S_{W}S_{X}}{S_{Y}}(\mathbf{q}_{W}\mathbf{q}_{X} + \mathbf{q}_{b} - Z_{X}\mathbf{q}_{W}) + Z_{Y}$$

$$\downarrow \mathbf{q}_{bias} = \mathbf{q}_{b} - Z_{X}\mathbf{q}_{W}$$

$$\mathbf{q}_{Y} = \frac{S_{W}S_{X}}{S_{Y}}(\mathbf{q}_{W}\mathbf{q}_{X} + \mathbf{q}_{bias}) + Z_{Y}$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• So far, we ignore bias. Now we consider the following fully-connected layer with bias.

$$\mathbf{Y} = \mathbf{W}\mathbf{X} + \mathbf{b}$$

$$Z_{\mathbf{W}} = 0$$

$$Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}}S_{\mathbf{X}}$$

$$\mathbf{q}_{bias} = \mathbf{q}_{\mathbf{b}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}}$$

$$\mathbf{q}_{Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} + \mathbf{q}_{bias}\right) + Z_{\mathbf{Y}}$$
Rescale to N-bit Int Mult. N-bit Int N-bit Int Add. Add

Note: both q_b and q_{bias} are 32 bits.

Linear Quantized Convolution Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• Consider the following convolution layer.

$$\mathbf{Y} = \mathsf{Conv}\left(\mathbf{W}, \mathbf{X}\right) + \mathbf{b}$$

$$Z_{\mathbf{W}} = 0$$

$$Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}}S_{\mathbf{X}}$$

$$\mathbf{q}_{bias} = \mathbf{q}_{\mathbf{b}} - \mathsf{Conv}\left(\mathbf{q}_{\mathbf{W}}, Z_{\mathbf{X}}\right)$$

$$\mathbf{q}_{Y} = S_{\mathbf{W}}S_{\mathbf{X}}$$

$$\mathbf{q}_{Y} = S_{\mathbf{W}}S_{$$

Note: both q_b and q_{bias} are 32 bits.

Linear Quantized Convolution Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• Consider the following convolution layer.

Note: both q_b and q_{bias} are 32 bits.

INT8 Linear Quantization

Neural Network	ResNet-50	Inception-V3
Floating-point Accuracy	76.4%	78.4%
8-bit Integer- quantized Acurracy	74.9%	75.4%

Latency-vs-accuracy tradeoff of float vs. integer-only MobileNets on ImageNet using Snapdragon 835 big cores.

Neural Network Quantization

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	3	1	0	1:	0.00
3	1	2	2	0:	-1.00

K-Means-based Quantization

Linear Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

Summary of Today's Lecture

Today, we reviewed and learned

- the numeric data types used in the modern computing systems, including integers and floating-point numbers.
- the basic concept of **neural network quantization**: converting the weights and activations of neural networks into a limited discrete set of numbers.
- two types of common neural network quantization:
 - K-Means-based Quantization
 - Linear Quantization

References

- 1. Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey [Deng et al., IEEE 2020]
- 2. Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]
- 3. Deep Compression [Han et al., ICLR 2016]
- 4. Neural Network Distiller: https://intellabs.github.io/distiller/algo_quantization.html
- 5. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]
- 6. BinaryConnect: Training Deep Neural Networks with Binary Weights during Propagations [Courbariaux et al., NeurIPS 2015]
- 7. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. [Courbariaux et al., Arxiv 2016]
- 8. XNOR-Net: ImageNet Classification using Binary Convolutional Neural Networks [Rastegari et al., ECCV 2016]
- 9. Ternary Weight Networks [Li et al., Arxiv 2016]
- 10. Trained Ternary Quantization [Zhu et al., ICLR 2017]