Project 2 Report Template

Date-7th Nov 2018

Your Name -Saloni Shambhuwani

Unity ID-sdshambh

Student ID-200266197

Email Address-sdshambh@ncsu.edu

Note: For the requested diagrams, scans or photos of hand-drawn diagrams are sufficient for full credit.

Part A

Timing Analysis

1. What is the original SPI bit rate?

Ans:1.515MHz

2. What is the fastest SPI bit rate which works for your μ SD card?

Ans: 12.5MHz

5. Logic analyzer screen shot showing SPI and debug signals for during SD_Read or SD_Write operation (not SD_Init), marked with segments (Compute, I/O-SD, I/O-SPI, Other).

Ans: SD_READ

Total Read time: 1.273ms

SD time:205us

SPI time:947 us

Others:129.9us

Write Time:

Computation time:21.48us

Computation and SD time: 745us

SPI time and computation:2.875ms

Code Structure Analysis

6. Control flow graph for SD_Read.

Ans:

7. Control flow graphs highlighting operations which may block (i.e. repeat a loop an unknown time number of times).

Ans: Highlighted code may block.

a. SD_Init

Code Transformation

- 8. CFG with FSM states overlaid
 - a. Marked-up control flow graphs allocating code to states
 - i. SD_Init

ii. SD_Read

iii. SD_Write

9. FSM diagrams

a. State diagram with both states and transitions labeled

i. SD_Init

ii. SD_Read

iii. SD_Write

- b. State diagram showing which states are busy and which are idle.
 - i. SD_Read
 - ii. SD_Write

i. SD_Init

10. FSM Verification

- a. Logic analyzer screen shot showing SPI signals (SPI CLK, SPI DI, SPI DO, SPI CS) and debug signals (SD_Read, SD_Write, SD_Init, test_write).
 - i. SD_Init operation: Total operation time for SD_Init is 453.9ms

ii. SD_Read operation: total read operation time with FSM is 4.054ms

iii. SD_Write operation: 4.509ms is the total write operation time.

b. Find and analyze the state with longest code. List the state name and the maximum execution time observed. Note: this is the state which takes the longest time to execute its code once. It is not the total time spent in the state, or the total time spent executing this state's code.

i. SD_Init operation

ii. SD_Read operation

iii. SD_Write operation

c. Table with maximum state execution times of your FSM-based code.

Function	Name and Duration of State with Longest Code
SD_Init	Case:S8; 600 µs
SD_Read	Case:S1; 21.97 µs
SD_Write	Case S2; 25.61 µs