Chapter 2

- 1. (a) Show every number field of degree 2 over $\mathbb Q$ is one of the quadratic fields. Let K be a number field of degree 2, and $f(x) = x^2 + px + q$ be its minimum polynomial over $\mathbb Q$. Since $p,q \in \mathbb Q$ we can multiply through to clear the denominators and give us a polynomial $g(x) = ax^2 + bx + c$ over $\mathbb Z$ with the same roots as f(x). Therefore $K = \mathbb Q[\sqrt{b^2 4ac}]$ is a quadratic field for $m = b^2 4ac$.
- 1. (b) Suppose $K = \mathbb{Q}[\sqrt{m}]$ contains \sqrt{n} for n a squarefree integer. Since K has the basis $\{1, \sqrt{m}\}$, so $\sqrt{n} = p + q\sqrt{m}$ for $p, q \in \mathbb{Q}$. Therefore $n = p^2 + 2pq\sqrt{m} + q^2m$, so either p = 0 or q = 0.

If p = 0, then $\sqrt{n} = q\sqrt{m}$ and so $\sqrt{n}/\sqrt{m} = q$. This can only happen if q = 1, meaning m = n.

If q=0, then $\sqrt{n}=p$, which can only happen if p is also an integer, contradicting n squarefree.

Therefore the quadratic fields are each distinct.

2. Let I be the ideal generated by 2 and $1 + \sqrt{-3}$ in the ring $\mathbb{Z}[\sqrt{-3}]$.

We have $I \neq (2)$ because $1 + \sqrt{-3}$ ($\in I$) does not have the form $2a + b\sqrt{-3}$ for $a, b \in \mathbb{Z}$. The ideal I^2 is generated by $(4, 2 + 2\sqrt{-3}, -2 + 2\sqrt{-3})$. The number $-2 + 2\sqrt{-3} = 2 + 2\sqrt{-3} - 4$ and so is redundant as a generator; therefore $I^2 = (4, 2 + 2\sqrt{-3}) = 2I$.

Since $I^2 = 2I$, prime factorization of ideals in $\mathbb{Z}[\sqrt{-3}]$ must not hold; if we did then I would be invertible, meaning it could be cancelled from the right-hand-side of each equality, giving us I = (2) which is not true (from above).

Suppose P is a prime ideal of $\mathbb{Z}[\sqrt{-3}]$ containing 2. Then $4 \in P$ also. Since $(1+\sqrt{-3})(1-\sqrt{-3})=4$ and P is a prime ideal, one of $1+\sqrt{-3}$ and $1-\sqrt{-3}$ are also in P. However, if $1-\sqrt{-3} \in P$ then $1+\sqrt{-3} \in P$ since $-1 \cdot (1-\sqrt{-3})+2=1+\sqrt{-3}$. Therefore any prime ideal containing (2) also contains I and I is the unique prime ideal that contains (2). Since I cannot be expressed as a product of prime ideals, neither can (2).

(We should expect this; $\mathbb{Z}[\sqrt{-3}]$ is an order of conductor 2 in $\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$ and I is not prime to the conductor, meaning it is not invertible.)

3. Complete the proof of Corollary 2, Theorem 1.

The statement of the text leaves off with α being an algebraic integer if and only if 2r and $r^2 - ms^2$ are both integers, where $r, s \in \mathbb{Q}$.

2r being an integer requires that $r = \frac{a}{2}$, where a is an integer. Substituting $r = \frac{a}{2}$ into the second equation, we see that $a^2 - 4ms^2$ is an integer divisible by 4. In order for the quantity to be an integer, $s = \frac{b}{2}$, where b is an

integer. Therefore α is an algebraic integer of the form $\frac{a+b\sqrt{m}}{2}$ if and only if $a^2-mb^2=0 \mod 4$.

We finish by considering $m \mod 4$ and seeing under which statements the given equation is solvable. The key is that integer squares are either equivalent to 0 or 1 modulo 4.

- $m \equiv 1$ (4): Let a be even then $a^2 \equiv 0 \mod 4$, and to satisfy the equality, $b^2 \equiv 0 \mod 4$ and so b must also be even. Similarly, if a is odd, then $a^2 \equiv 1 \mod 4$ to satisfy the equality, b must also be odd. Therefore $\alpha = \frac{a+b\sqrt{m}}{2}$ for all $a \equiv b$ (2) as required.
- $m \equiv 2,3 \mod 4$: For the equation to be solvable, both a and b must be equivalent to 0 or 2 modulo 4 (and so even), meaning $\alpha = c + d\sqrt{m}$ for $c, d \in \mathbb{Z}$ as required.
- 4. Suppose a_0, \ldots, a_{n_1} are algebraic integers and α is a complex number satisfiying $\alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_1\alpha + a_0 = 0$. Show the ring $\mathbb{Z}[a_0, \ldots, a_{n-1}, \alpha]$ has a finitely generated additive group.

For each a_i let k_i be the degree of the algebraic integer a_i over \mathbb{Q} : therefore for any power $k >= k_i$, it can be written as a linear combination of powers of a_i less than k_i . Additionally any power of α^k where $k \geq n$ can be written as a linear combination of powers of α multiplied by each of the a_i . Therefore only a finite number of powers of $a_0^{m_0} \cdots a_n^{m_n} \alpha^m$ are needed; the a_i terms are capped to be lower than k_i and the α term is capped to be lower than n.

Since α is a member of a subring of $\mathbb C$ that is finitely generated, α is therefore an algebraic integer.

5. Let f be a polynomial over \mathbb{Z}_p where p is a prime. We prove $f(x^p) = (f(x))^p$ by induction on number of terms.

If $f(x) = kx^b$ where $k \in \mathbb{Z}_p$, then $f(x^p) = kx^{pb} = k^px^{bp} = (kx^b)^p$ (since $k^p = k$ for all $k \in \mathbb{Z}_p$).

Next, let f(x) = g(x) + h(x) where g(x) and h(x) have fewer terms than f(x).

$$f(x)^{p} = (g(x) + h(x))^{p}$$

$$= g(x)^{p} + h(x)^{p} + \sum_{k=1}^{p} \binom{p}{k} g(x)^{k} h(x)^{p-k}$$

$$= g(x)^{p} + h(x)^{p}$$

$$= g(x^{p}) + h(x^{p}) \text{ (using the inductive hypothesis)}$$

$$= f(x^{p})$$

This is the required result.

6. If f and g are polynomials over a field K and $f^2 \mid g$, then $g = f^2h$. Therefore $g' = f^2h' + 2hff'$, so $f \mid g'$.

7. Complete the proof of Corollary 2, Theorem 3.

Let ϕ_k be the automorphism of $\mathbb{Q}[\omega]$ sending ω to ω^k . Then $(\phi_a \circ \phi_b)(\omega) = (\omega^a)^b = \omega^{ab} = \phi_{ab}$, giving the required result that composition of automorphisms corresponds to multiplication modulo m.

8. (a) Let $\omega = e^{2\pi i/p}$ where p is an odd prime. Then

$$\operatorname{disc}(\omega) = \prod_{1 \le r < s \le n} (\alpha_r - \alpha_s)^2 = \pm p^{p-2}$$

Therefore

$$\Big| \prod_{1 \le r \le s \le n} (\alpha_r - \alpha_s) \Big| = \sqrt{\pm p^{p-2}} = p^{(p-3)/2} \sqrt{\pm p}$$

Let $\zeta = e^{2\pi i/3}$. Using the above we have the identity $(\zeta - \zeta^2) = \sqrt{-3}$.

Let
$$\zeta = e^{2\pi i/5}$$
. Note $\zeta^4 = -(\zeta^3 + \zeta^2 + \zeta + 1)$.

We expand the product:

$$(\zeta - \zeta^2)(\zeta - \zeta^3)(\zeta - z^4)(\zeta^2 - \zeta^3)(\zeta^2 - \zeta^4)(\zeta^3 - \zeta_4) = 10\zeta^3 + 10\zeta^2 + 1$$

Observing that this product is negative we flip the signs and divide by $5^{(5-3)/2} = 5$ to get the identity $\sqrt{5} = -2\zeta^3 - 2\zeta^2 - 1$.

- 8. (b) The 8th cyclotomic polynomial is x^4+1 , so the 8th cyclotomic field contains all the roots of this equation, which includes $\sqrt{i} = (1/\sqrt{2})(1+i)$ and its complex conjugate $(1/\sqrt{2})(1-i)$. Thus the 8th cyclotomic field also contains their sum $2/\sqrt{2} = \sqrt{2}$.
- 8. (c) Let m be a squarefree number. Then m can be written as $2^i q$ where $2 \nmid q$, and $i \in \{0,1\}$. We proceed by case analysis, showing for each that \sqrt{m} is contained in the dth cyclotomic field, where $d = \operatorname{disc}(\mathbb{A} \cap \mathbb{Q}[\sqrt{m}])$.

m = -1: $\sqrt{-1}$ is contained in the 4th cyclotomic field which contains the complex unit i (d = -4).

m = 2: $\sqrt{2}$ is contained in the 8th cyclotomic field by part (b) $(d = 4 \cdot 2 = 8)$.

m = -2: The 8th cyclotomic field contains i (since it contains the 4th cyclotomic field as a subfield) so it contains $\sqrt{-2} = i\sqrt{2}$ ($d = 4 \cdot -2 = -8$).

m = q where $q \equiv 1 \mod 4$: Because $q \equiv 1 \mod 4$, q has an even number of prime factors $\equiv 3 \mod 4$, meaning that \sqrt{q} must be contained in the q-th cyclotomic field $(d = q \text{ since } q \equiv 1 \mod 4)$.

m=q where $q\equiv 3 \mod 4$: The 4q-th cyclotomic field contains the q-th cyclotomic field (containing $\sqrt{-q}$) and the 4th cyclotomic field (containing $\sqrt{-1}$) (d=4q since $q\equiv 3 \mod 4$), and so contains \sqrt{q} .

m = 2q where q is a product of odd primes: Here d = 8q. By the above, \sqrt{q} is contained in either the q-th or 4q-th cyclotomic field, depending on its residue mod 4. Thus $\sqrt{2q}$ is contained in the 8q-th cyclotomic field.

This shows every quadratic field $\mathbb{Q}[\sqrt{m}]$ is contained within the d-th cyclotomic field.

9. Let θ be a primitive k-th root of unity, i.e. $\theta = e^{2\pi i/k}$. Let $\gcd(k,m) = d$. Using Euclid's extended algorithm we can find u, v such that uk + vm = d. Then we have

$$\omega^{u}\theta^{v} = e^{(2\pi i u)/m}e^{(2\pi i v)/k} = e^{2\pi i (uk+vm)/km} = e^{2\pi i d/km} = e^{2\pi i l/m}$$

where $r = \operatorname{lcm}(k, m)$ ($\operatorname{lcm}(k, m) = km/\operatorname{gcd}(k, m)$).

10. Show if m is even, $m \mid r$, and $\phi(r) \leq \phi(m)$ then r = m.

If $m \mid r$ there is some k such that mk = r. Let $d = \gcd(k, m)$, so r = mdj with j satisfying $\gcd(j, m) = 1$. Therefore $\phi(r) = \phi(md)\phi(j)$. Since $d \mid m$, $\phi(md) = d \cdot \phi(m)$, so

$$\phi(r) = d \cdot \phi(m)\phi(j) \le \phi(m)$$

The inequality forces d=1 and $\phi(j)=1$. Because $2\mid m\mid r, \phi(j)=1$ implies j=1. Therefore m=r.

11. (a) Suppose all the roots to a monic polynomial f have absolute value 1. Show that the coefficient of x^r has absolute value $\leq \binom{n}{r}$, where n is the degree of f and $\binom{n}{r}$ is the binomial coefficient.

Factor f as $f = (x - \alpha_0) \cdots (x - \alpha_n)$. Re-expanding f we see that the coefficient of x^r is equal to $\sum_{S \subseteq \{0,\dots,n\}, |S| = r} x^r \prod_{i \in S} \alpha_i$. By assumption $|\alpha_i| = 1$ for all i, so $|\prod_{i \in S} \alpha_i| = 1$. There are $\binom{n}{r}$ of these subsets of S.

Using the identity $|a + b| \le |a| + |b|$ we have:

$$\left| \sum_{S \subseteq \{0, \dots, n\}, |S| = r} \prod_{i \in S} \alpha_i \right| \leq \sum_{S \subseteq \{0, \dots, n\}, |S| = r} \left| \prod_{i \in S} \alpha_i \right|$$

$$\leq \sum_{S \subseteq \{0, \dots, n\}, |S| = r} 1$$

$$\leq \binom{n}{r}$$

11. (b) We will consider all monic polynomials f of degree n and show that only a finite number of them can have a root α all of whose conjugates have absolute value 1.

By Theorem 1, if α is an algebraic integer, than the coefficients of f are integers. By (b), the absolute value of the coefficients of f are bounded above $\binom{n}{r}$, therefore there are at most $2\binom{n}{r}$ choices for each coefficient beyond the x^n th term. The constant term of the polynomial must be 1 (since α has absolute value 1) and the first term of the polynomial must also be 1 (since f is monic). This gives an upper bound of $\sum_{r=1}^{n-1} 2\binom{n}{r} = 2(2^n-2) = 4(2^{n-1}-1)$ on the number of algebraic integers satisfying the given condition.

11. (c) (TODO)

- 12. (a) Let u be a unit in $\mathbb{Z}[\omega]$, where $\omega = e^{2\pi i/p}$. Show u/\overline{u} is a root of 1.
 - The field $\mathbb{Q}[\omega]$ has Galois group $\simeq \mathbb{Z}_p^{\times}$, which has cardinality p-1 and so has an element of order 2 (complex conjugation). Therefore u has p-1 conjugates, which consist of (p-1)/2 elements along with their complex conjugates. Enumerate the conjugates of u as $a_1, \ldots, a_n, \overline{a_1}, \ldots, \overline{a_n}$.

Therefore, the conjugates of u/\overline{u} have the form $a_i/\overline{a_i}$ or $\overline{a_i}/a_i$. Multiplying over all conjugates of u/\overline{u} , we have $\prod_{i=0}^n a_i/\overline{a_i} \cdot \prod_{i=0}^n \overline{a_i}/a_i = 1$, and so u/\overline{u} and all its conjugates have absolute value 1. By 11 (c), u/\overline{u} is then a root of 1, and so has form $\pm \omega^k$.

- 12. (b) Suppose $u/\overline{u} = -\omega^k$. We derive a contradiction. Raising both sides to the p-th power we have $u^p/\overline{u^p} = -(\omega^k)^p = -(\omega^p)^k = -1$, and so $u^p = -\overline{u^p}$. By exercise 1.25, $u^p \equiv a$ (p) for some $a \in \mathbb{Z}$. Applying exercise 1.23, we see $\overline{u^p} \equiv \overline{a} = a$ (p), and so $a \equiv -a$ (p). There a must be 0, and $u^p \equiv 0$ (p), so p divides u^p . This contradicts u^p being a unit, since if p divided u^p , p would also divide the absolute value of u^p , which is 1. Therefore $u/\overline{u} = \omega^k$.
 - 13. Show that 1 and -1 are the only units in the ring $A \cap \mathbb{Q}[\sqrt{m}]$, m squarefree and $m < 0, m \neq -1, -3$. What if m = -1, -3?

Let u be a unit in $A \cap \mathbb{Q}[\sqrt{m}]$. Then $u = a + b\sqrt{m}$ where $p, q \in A \cap \mathbb{Q}[sqrtm]$. Since N(u) = 1, then $(a + b\sqrt{m})(a - b\sqrt{m}) = a^2 - b^2m = 1$. We proceed by cases on whether $m \equiv 1$ (4).

If $m \not\equiv 1 \mod 4$, then a and b must be integers and so $a^2 - b^2 m = 1$ can only be satisfied if one of the terms is 1 and the other is 0. If $a^2 = 1$, then $b^2 m = 0$. This corresponds to the units 1 and -1 in $A \cap \mathbb{Q}[\sqrt{m}]$. If $-b^2 m = 1$, then $b^2 m = -1$ and so m = -1. This corresponds to the units i and -i in $A \cap \mathbb{Q}[\sqrt{-1}]$.

If $m \equiv 1$ (4) then let a = r/2 and b = s/2. Therefore $r^2 - s^2 m = 4$. Since m is negative, both r^2 and $-s^2 m$ must be positive. r^2 must be either 0, 1, or 4.

If r^2 is 0 then $-s^2m = 4$, so $s^2m = -4$, forcing m = -1 which is not $\equiv \mod 4$. (We have considered this case already.)

If r^2 is 1 then $-s^2m=3$ so $s^2m=-3$ and m=-3, $s=\pm 1$. This corresponds to the unit $\pm \frac{1}{2} \pm \frac{\sqrt{-3}}{2}$ in the ring $A \cap \mathbb{Q}[\sqrt{-3}]$.

If r^2 is 4 then $-s^2m=0$, which corresponds to the unit ± 1 in the ring $A\cap \mathbb{Q}[\sqrt{m}].$

14. Show that $1 + \sqrt{2}$ is a unit in $\mathbb{Z}[\sqrt{2}]$, but not a root of 1.

 $1+\sqrt{2}$ is a unit, as $-(1-\sqrt{2})$ is its inverse:

$$-(1+\sqrt{2})(1-\sqrt{2}) = -1 + (\sqrt{2})^2 = 1$$

If $1+\sqrt{2}$ were a root of 1, we would have $(1+\sqrt{2})^k=1$ for some k. However by the Binomial Theorem, $(1+\sqrt{2})^k=\sum_{i=0}^k \binom{k}{i}(\sqrt{2})^i$, which will always

contains a term $\sqrt{2}$ multiplied by a positive number. Therefore $1 + \sqrt{2}$ is not a root of 1.

Let $(1+\sqrt{2})^k = a+b\sqrt{2}$. The inverse of this term is

$$((1+\sqrt{2})^k)^{-1} = ((1+\sqrt{2})^{-1})^k = (-1)^k (1-\sqrt{2})^k = (-1)^k (a-b\sqrt{2})^k$$

Therefore, $(a+b\sqrt{2})^k \cdot (a-b\sqrt{2})^k = \pm 1$ and so the powers of $1+\sqrt{2}$ give an infinite number of a, b such that $a^2-2b^2=\pm 1$.

- 15. (a) Let $a + b\sqrt{-5}$ be an element of $\mathbb{Z}[\sqrt{-5}]$. Then the norm of $a + b\sqrt{-5}$ is $(a+b\sqrt{-5})(a-b\sqrt{-5}) = a^2 + 5b^2$, where $a, b \in \mathbb{Z}$. Since there are no integer solutions a, b such that $a^2 + 5b^2 = 2$ or $a^2 + 5b^2 = 3$, there can be no element of $\mathbb{Z}[\sqrt{-5}]$ with a norm of 2 or 3.
- 15. (b) In $\mathbb{Z}[\sqrt{-5}]$, $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$. If unique factorization held in $\mathbb{Z}[\sqrt{-5}]$, there would be elements $a, b, c, d \in \mathbb{Z}[\sqrt{-5}]$ such that $a \cdot b = 2$, $c \cdot d = 3$, $a \cdot d = 1 + \sqrt{-5}$, $b \cdot c = 1 \sqrt{-5}$. However by (a), 2 and 3 are irreducible in $\mathbb{Z}[\sqrt{-5}]$, meaning they are irreducible elements, and so no a, b, c, d can exist.
 - 16. We argue in the style of K. Conrad: Trace and Norm, Section 4. Suppose $\sqrt{3} \in \mathbb{Q}[\alpha]$ where $\alpha = \sqrt[4]{2}$; therefore $\sqrt{3} = a + b\alpha + c\alpha^2 + d\alpha^3$. We have the following traces:

$$Tr(\sqrt{3}) = \sqrt{3} - \sqrt{3} = 0$$

$$Tr(\alpha) = \alpha - \alpha + i\alpha - i\alpha = 0$$

$$Tr(\alpha^2) = \alpha^2 - \alpha^2 + i\alpha^2 - i\alpha^2 = 0$$

$$Tr(\alpha^3) = \alpha^3 - \alpha^3 + i\alpha^3 - i\alpha^3 = 0$$

Since $\sqrt{3} = a + b\alpha + c\alpha^2 + d\alpha^3$,

$$Tr(\sqrt{3}) = Tr(a + b\alpha + c\alpha^2 + d\alpha^3)$$

$$0 = aTr(1) + bTr(\alpha) + cTr(\alpha^2) + dTr(\alpha^3)$$

$$0 = 4a$$

Therefore a = 0, and we have $\sqrt{3} = b\alpha + c\alpha^2 + d\alpha^3$. We have $\text{Tr}(\sqrt{3}\alpha) = \text{Tr}(\sqrt[4]{9/2}) = \sqrt[4]{9/2} - \sqrt[4]{9/2} + i\sqrt[4]{9/2} - i\sqrt[4]{9/2} = 0$, so $0 = b\text{Tr}(1) + c\text{Tr}(\alpha) + d\text{Tr}(\alpha)^2 = 4b$ and so b = 0.

Similarly $\operatorname{Tr}(\sqrt{3}/\alpha^2) = \operatorname{Tr}(\sqrt{3/2}) = 0$, and so c = 0.

From eliminating the coefficients a,b,c, we have $d\sqrt[4]{8} = \sqrt{3}$ and so $3 = d^2\sqrt{8} = 2d^2\sqrt{2}$. Therefore $\sqrt{2}$ is expressible as a rational number $3/d^2$, a contradiction. Therefore $\sqrt{3} \notin \mathbb{Q}[\alpha]$.

(Where would this argument break down for $\sqrt{2}$? $\sqrt{2} = \alpha^2$ so $\sqrt{2}/\alpha^2 = 1$ and so we would conclude that c = 1 rather than c = 0.)

17 - TODO

18 - TODO

19 - TODO

- 20. Write $f(x) = (x \alpha)g(x)$. By the chain rule $f'(x) = (x \alpha)g'(x) + g(x)$, so $f'(\alpha) = g(\alpha) = \prod_{\beta \neq \alpha} (\alpha \beta)$.
- 21. Let f(x) = g(x)h(x), where g(x) is the minimum polynomial of α over \mathbb{Z} . Then f'(x) = g'(x)h(x) + g(x)h'(x) and $f'(\alpha) = g'(\alpha)h(\alpha)$. We have

$$N(f'(\alpha)) = N(g'(\alpha))N(h(\alpha))$$

. By Theorem 8, $N(g'(\alpha)) = \pm disc(\alpha)$, so

$$N(f'(\alpha)) = \pm disc(\alpha)N(h(\alpha))$$

Therefore $\operatorname{disc}(\alpha)$ divides $\operatorname{N}(f'(\alpha))$ as required.

23. (c) Let $\{\alpha_1, \ldots, \alpha_n\}$ be an integral basis for K $(n = [K : \mathbb{Q}))$ and let $\{\beta_1, \ldots, \beta_m\}$ be an integral basis for L $(m = [L : \mathbb{Q}])$. Therefore

$$\{\alpha_i\beta_i \mid 1 \le i \le n, 1 \le j \le m\}$$

is an integral basis for KL.

We have the tower of field extensions $KL : K : \mathbb{Q}$ where [KL : K] = m, $[K : \mathbb{Q}] = n$. By the formula established in (b),

$$\operatorname{disc}(\alpha_i\beta_j) = (\operatorname{disc}(\alpha_i))^m N_{\mathbb{Q}}^K \operatorname{disc}(\beta_j) = (\operatorname{disc}\,R)^m (\operatorname{disc}\,S)^n$$

Because disc S is an integer, its norm is the degree of K over \mathbb{Q} .

24 Let G be a free abelian group of rank n and let H be a subgroup. Take $G = \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$. We show by induction that H is a free abelian group of rank $\leq n$.

First prove the result for n = 1.

If G is a free abelian group of rank 1, $G = \mathbb{Z}$. If H is a subgroup of G then H must have a least non-negative element, call it m. Then H is generated by m (all subgroups of \mathbb{Z} are generated by a single element).

Next, we assume the result holds for n-1, and define $\pi: G \to \mathbb{Z}$ the projection of G onto the first factor. Let K denote the kernel of π .

(a): Show that $H \cap K$ is a free abelian group of rank $\leq n-1$.

Let ι be the map that drops the first factor from G; as K is a subgroup of G, then $\iota(H \cap K)$ must be a subgroup of $\iota(G)$. $\iota(G)$ is a free abelian group of rank n-1, and so applying the inductive hypothesis, we see $\iota(H \cap K)$ = $0 \oplus (H \cap K)$ is a free abelian group of order n-1.

(b): The image $\pi(H) \subset \mathbb{Z}$ is either $\{0\}$ or infinite cyclic. If it is 0, then $H = H \cap K$. Otherwise let $h \in \pi(H)$ be a generator of $\pi(H)$. Show H is the direct sum of its subgroups $\mathbb{Z}h$ and $K \cap H$.

Let h be as in the problem statement. Let $a \in H$. We will show a is a member of $\mathbb{Z}h \oplus (K \cap H)$. If $\pi(a) = 0$, then $a \in H \cap K$ and so a is a member of the required group. Otherwise $\pi(a) = m\pi(h)$ for some integer m and so $mh - a \in K \cap H$ (a free abelian group of rank $\leq n - 1$). Therefore a is the direct sum of $mh \in \mathbb{Z}h$ and the components of mh - a. Since a was chosen arbitrarily, $H = \mathbb{Z}h \oplus (K \cap H)$.

25. Let α be an algebraic number, so there is some $f \in \mathbb{Q}[x]$ such that $f(\alpha) = 0$. We convert this polynomial into a (non-monic) $g \in \mathbb{Z}[x]$ by through multiplying by the GCD m for all of the denominators in the coefficients of f. Then $g = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ and $g(\alpha) = 0$. Multiplying through by a_n^{n-1} gives the relationship $(a_n \alpha)^n + a_{n-1} a_n^{n-1} \alpha^{n-1} + \dots + a_n^{n-1} a_0 = 0$. This is a monic polynomial with integer coefficients, so $ma_n^n \alpha$ is an algebraic integer.

Given any finite set of algebraic numbers, $\{\alpha_0, \dots \alpha_n\}$ let m_i be such that $m_i\alpha_i$ is an algebraic integer. Therefore taking M to be the least common multiple of each m_i gives us a number M such that each $M\alpha_i$ is an algebraic integer.

- 26. The proof that two sets that generate the same subgroup have the same discriminant is the same as that of Theorem 11: as $\{\beta_1, \ldots, \beta_n\}$ and $\gamma_1, \ldots, \gamma_n\}$ generate the same additive subgroup, we can write the γ_i in terms of the β_i through an matrix M with entries in \mathbb{Z} , and vice versa. This shows that the translate matrices must have determinant 1, so the discriminants are equal.
- 27. Let G and H be two free abelian subgroups of rank n in K, with $H \subset G$.
- 27. (a) Show G/H is a finite group.

Since G and H are free abelian subgroups of rank $n, G \simeq \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ and since H is a subgroup of G, then $H \simeq I_1 \oplus \cdots \oplus I_n$, where each $I_i \subseteq \mathbb{Z}$ is an additive subgroup of \mathbb{Z} . Each \mathbb{Z}/I_i is finite, having cardinality equal to the generating element of I_i . Therefore G/H is finite, having cardinality $\prod_{i=0}^{n} |\mathbb{Z}/I_i|$.

27. (b) The well-known finite structure theorem for abelian groups says G/H is a direct sum of at most n cyclic groups. Use this to show that G has a generating set β_1, \ldots, β_n such that for appropriate integers $d_i, d_1\beta_1, \ldots, d_n\beta_n$ is a generating set for H.

Let β_i be 1 projected to the *i*th-factor and 0 elsewhere. Then the set of $\{\beta_i\}$ generate G. Let d_i be the minimum element of I_i , an additive subgroup of \mathbb{Z} : we show $\{d_i\beta_i\}$ generates H. Take $a \in H$, and let $\iota_i(a)$ be the *i*th factor of a, so $\iota_i(a) \in I_i$. By choice of d_i , $\iota_i(a) = d_i m$ for some

integer m, and $a = \iota_1(a) \oplus \cdots \oplus \iota_n(a) = d_1\beta_1 + \cdots + d_n\beta_n$. Since a was chosen arbitrarily, the $\{d_i\beta_i\}$ generates H.

27. (c) $\operatorname{disc}(H) = \operatorname{disc}(d_1\beta_1, \dots, d_n\beta_n)$: by Exercise 3.18 (a),

$$\operatorname{disc}(H) = (d_1 \cdots d_n)^2 \operatorname{disc}(\beta_1, \dots, \beta_n) = |G/H|^2 \operatorname{disc}(G)$$

- 27. (d) Show that if $\alpha_1, \ldots, \alpha_n \in R = \mathbb{A} \cap K$, then they form an integral basis iff $\operatorname{disc}(\alpha_1, \ldots, \alpha_n) = \operatorname{disc}(R)$.
 - Let H be the additive subgroup formed by $\alpha_1, \ldots, \alpha_n$. By (c), we have $\operatorname{disc}(H) = |R/H|^2 \operatorname{disc}(R)$. Therefore $\operatorname{disc}(R) = \operatorname{disc}(G)$ iff $|G/H|^2 = 1$, which is the same as saying that there is $b \in G$ such that $b \notin H$. Therefore $\operatorname{disc}(\alpha_1, \ldots, \alpha_n) = \operatorname{disc}(R)$ if and only if they form an integral basis for R.
- 27. (e) Show that if $\alpha_1, \ldots, \alpha_n \in R = A \cap K$ and $\operatorname{disc}(\alpha_1, \ldots, \alpha_n)$ is squarefree, then the α_i form an integral basis for R.
 - If $\operatorname{disc}(H)$ is squarefree then |R/H| = 1 which implies that $\operatorname{disc}(H) = \operatorname{disc}(R)$. By (d) the α_i form an integral basis for R.
- 28. (a) Taking the derivative of the polynomial, we have $f'(x) = 3x^2 + a$. We then have:

$$f'(\alpha) = 3\alpha^{2} + a$$

$$\alpha f'(\alpha) = 3\alpha^{3} + a\alpha$$

$$\alpha f'(\alpha) = -3(a\alpha + b) + a\alpha$$

$$\alpha f'(\alpha) = -2a\alpha - 3b$$

$$f'(\alpha) = -(2a\alpha + 3b)/\alpha$$

28. (b) It is straightforward that $2a\alpha + 3b$ is a root of the polynomial $g(x) = (\frac{x-3b}{2a})^3 + a(\frac{x-3b}{2a}) + b$. To calculate the norm of $2a\alpha + 3b$ over $\mathbb{Q}[\alpha]$, we thus divide the zero coefficient of g(x) by negative the initial coefficient of g(x) (negative since n = 3 is odd):

$$-(2a)^3 \left(\frac{(-3b)^3}{(2a)^3} - \frac{3b}{2} + b \right)$$

Reducing terms gives us

$$N(2a\alpha + 3b) = (3b)^3 + (2^2)a^3b = 27b^3 + 4a^3b$$

- 28. (c) By Theorem 8, disc(a) = $-N(f'(\alpha))$ (the negative sign holds since $n = 3 \not\equiv 0, 1$ (4),).
 - Note that given the factoring of f(x) into $(x \alpha_1)(x \alpha_2)(x \alpha_3)$, $(-1)\alpha_1\alpha_2\alpha_3 = -N(\alpha) = b$, $N(\alpha) = -b$.

We now compute the discriminant of α :

$$\operatorname{disc}(\alpha) = -\operatorname{N}(f'(\alpha))$$

$$= -\operatorname{N}(-(2a\alpha + 3b)/\alpha)$$

$$= \frac{27b^3 + 4a^3b}{-b}$$

$$= -(27b^2 + 4a^3)$$

This is the required result.

28. (d) If $\alpha^3 = \alpha + 1$, then a = -1 and b = -1. By (c), $\operatorname{disc}(\alpha) = -27 - 4 = -31$, which is squarefree. By 27 (c) the powers of α thus form an integral basis for $\mathbb{A} \cap \mathbb{Q}[\alpha]$.

Similarly if a = 1 and b = -1, then $\operatorname{disc}(\alpha) = -27 + 4 = -23$ (squarefree) and so again by 27 (c) the powers of α form an integral basis for $\mathbb{A} \cap \mathbb{Q}[\alpha]$.

29. Let $\mathbb{Q}[\sqrt{m}, \sqrt{n}]$, where (m, n) = 1. Find an integral basis and the discriminant of this basis for (a): the case where $m, n \equiv 1$ (4) and (b) where $m \equiv 1$ (4), $n \not\equiv 1$ (4).

For both given scenarios, the ring of integers is a linear combination of the ring of integers of $\mathbb{Q}[\sqrt{m}]$ and $\mathbb{Q}[\sqrt{n}]$, and so Theorem 12, Corollary 1 applies, and an integral basis can be found as a combination of the bases of the individual rings.

- 29. (a) $m, n \equiv 1$ (4): The corresponding rings of integers for $\mathbb{Q}[\sqrt{m}]$ and $\mathbb{Q}[\sqrt{n}]$ are $\mathbb{Z}[(1+\sqrt{m})/2]$ and $\mathbb{Z}[(1+\sqrt{n})/2)]$ with discriminants m and n. By assumption, these discriminants are relatively prime, so Theorem 12, Corollary 1 applies. The field $\mathbb{Q}[\sqrt{m}, \sqrt{n}]$ thus has an integral basis $\{1, (\sqrt{m}+1)/2, (\sqrt{n}+1)/2, (1+\sqrt{m}+\sqrt{n}+\sqrt{nm})/4\}$. By Exercise 23 (c), the discriminant for this basis is m^2n^2 .
- 29. (b) The rings of integers for $\mathbb{Q}[\sqrt{m}]$ and $\mathbb{Q}[\sqrt{n}]$ are $\mathbb{Z}[(1+\sqrt{m})/2]$ and $\mathbb{Z}[\sqrt{n}]$, with discriminants m and 4n. Since m was assumed to be square-free, (m, 4n) = 1, so Theorem 12, Corollary 1 applies again. The field $\mathbb{Q}[\sqrt{m}, \sqrt{n}]$ thus has an integral basis $\{1, (\sqrt{m}+1)/2, \sqrt{n}, (\sqrt{mn}+\sqrt{n})/2\}$. By Exercise 23 (c), the discriminant for this basis is $m^2(4n)^2 = 16m^2n^2$.
 - 30. Let f be the monic irreducible polynomial for α over \mathbb{Z} and for each $g \in \mathbb{Z}[x]$, let \overline{g} denote the polynomial in $\mathbb{Z}_3[x]$ obtained by reducing the coefficients mod 3.
- 30. (a) Show that $g(\alpha)$ is divisible by 3 in $\mathbb{Z}[\alpha]$ if and only if \overline{g} is divisible by \overline{f} in $\mathbb{Z}_3[x]$.

Suppose $g(\alpha)$ is divisible by 3. Then $g(\alpha) = 3m$ for some m and so $(g-3m)(\alpha) = 0$. Since this is a polynomial in α and f is the minimum polynomial, $f \mid g - 3m$. Therefore $\overline{f} \mid \overline{g - 3m} = \overline{g}$.

If \overline{g} is divisible by \overline{f} in $\mathbb{Z}_3[x]$, then $\overline{g} = \overline{fh}$ for some $h \in \mathbb{Z}[x]$, and so g = (f+3j)h in $\mathbb{Z}[x]$ for some poylnomial $j(x) \in \mathbb{Z}[x]$. So $g(\alpha) = 3j(\alpha)h(\alpha)$ and $g(\alpha)$ is divisible by 3.

30. (b) Consider the four algebraic integers:

$$\alpha_1 = (1 + \sqrt{7})(1 + \sqrt{10})$$

$$\alpha_2 = (1 + \sqrt{7})(1 - \sqrt{10})$$

$$\alpha_3 = (1 - \sqrt{7})(1 + \sqrt{10})$$

$$\alpha_4 = (1 - \sqrt{7})(1 - \sqrt{10})$$

The conjugates of each α_i are the other α_j , and each product $\alpha_i\alpha_j$ is divisible by 3: $\alpha_1\alpha_3$, $\alpha_2\alpha_3$, $\alpha_1\alpha_4$, and $\alpha_2\alpha_4$ are divisible by -6, and $\alpha_1\alpha_2$, $\alpha_1\alpha_4$, $\alpha_2\alpha_3$, and $\alpha_3\alpha_4$ are divisible by -9.

We show that $\alpha_i^n/3$ is not an algebraic integer by considering its trace: $\operatorname{Tr}(\alpha_i^n/3) = \operatorname{Tr}(\alpha_i^n)/3$, so we compute $\operatorname{Tr}(\alpha_i^n)$. The conjugates of α_i^n are each of the other α_j^n , so $\operatorname{Tr}(\alpha_i^n) = \alpha_1^n + \alpha_2^n + \alpha_3^n + \alpha_4^n$. Modulo 3, $(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)^n \equiv \alpha_1^n + \alpha_2^n + \alpha_3^n + \alpha_4^n$ because any of the monomials with any nonzero powers is divisible by 3 and so cancel out mod 3. However $(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)^n = 1^n = 1$. Since each α_i is conjugate to each of the α_j , their traces must be identical.

Therefore the trace of α_i^n is an integer $\equiv 1$ (3), and so $\text{Tr}(\alpha_i^n/3)$ cannot be an integer, and so by Corollary 2 to Theorem 4, $\alpha_i^n/3$ must not be an algebraic integer.

- 30. (c) Let α_i from (b) be defined by $f_i(\alpha)$ (for any fixed α). Because $\alpha_i \alpha_j$ is divisible by 3, by (a), $\overline{f} \mid \overline{f_i f_j}$. However, $\overline{f} \not \mid \overline{f_i}^n$ for any power of n (or else 3 would $\overline{f_i}^n$ which is not the case by (b)), so $\overline{f_i f_j} \neq \overline{f_i}^n$ for any n. Therefore, since $\mathbb{Z}_3[x]$ is a UFD, \overline{f} has an irreducible factor that does not divide $\overline{f_i}$ but does divide $\overline{f_j}$ for all $j \neq i$.
- 30. (d) The result of (c) is that \overline{f} has at least 4 irreducible factors in $\mathbb{Z}_3[x]$. However, \overline{f} is of degree at most 4, since $\alpha \in \mathbb{Q}[\sqrt{7}, \sqrt{10}]$. For there to be at least 4 irreducible factors of \overline{f} it would imply each are of degree 1, but there are only 3 monic polynomials of degree 1 in $\mathbb{Z}_3[x]$: x, x-1, x-2. Therefore $\mathbb{A} \cap \mathbb{Q}[\sqrt{7}, \sqrt{10}] \neq \mathbb{Z}[\alpha]$ for any α .
 - 31. Show that $\frac{\sqrt{3}+\sqrt{7}}{2}$ is an algebraic integer.

 $\frac{\sqrt{3}+\sqrt{7}}{2}$ is the root of the degree 4 polynomial $f(x)=x^4-5x^2+1$. This shows that the intersection of the ring of integers $\mathbb{Z}[\sqrt{3}]$ and $\mathbb{Z}[\sqrt{7}]$ is not $\mathbb{Z}[\sqrt{3},\sqrt{7}]$; neither original ring contains fractional elements. (Their discriminants are 12 and 28 respectively, sharing a factor of 4.)

- 32. The fields $\mathbb{Q}[\sqrt[3]{2}]$ and $\mathbb{Q}[\omega\sqrt[3]{2}]$ where $\omega = e^{2\pi i/3}$ both have degree 3 over \mathbb{Q} , but their composition $\mathbb{Q}[\omega, \sqrt[3]{2}]$ has degree 6 over \mathbb{Q} .
- 33. Let $\omega = e^{2\pi i/m}$, where $m \ge 3$. We know that $N(\omega) = \pm 1$ because ω is a unit. Show the + sign holds.

Write $e^{2\pi ik/m}$ as ω_k . The conjugates of ω have the form ω_k where (k,m) = 1. There are $\phi(m)$ of these, which is even for all $m \ge 3$. If ω_k is a conjugate, then ω_{m-k} is also a conjugate, since (k,m) = 1 implies there exist integers a, b such that ak+bm = 1, so -a(m-k)+(b+a)m = 1, and so (m-k,m) = 1.

For each conjugate ω_k , $\omega_k \neq \omega_{m-k}$; if this were the case, k = -k (m), so 2k = 0 (m) and so k would divide m, contradicting (k, m) = 1. Therefore all the conjugates are distinct.

Finally, for each conjugate ω_k , $\omega_k \cdot \omega_{m-k} = 1$, so in computing the norm of ω , all the conjugates cancel out and the norm of ω is seen to be 1.

34. (a) Show that $1 + \omega + \omega^2 + \ldots + \omega^{k-1}$ is a unit in $\mathbb{Z}[\omega]$ if k is relatively prime to ω .

$$(1 + \omega + w^2 + \ldots + \omega^{k-1}) \left(\frac{1 - w}{1 - \omega^k} \right) = \frac{1 - \omega^k}{1 - \omega^k} = 1$$

Therefore, if $\frac{1-w}{1-\omega^k} \in \mathbb{Z}[\omega]$ then $1+\omega+\ldots+\omega^{k-1}$ is a unit. Since (k,m)=1, then there exist $a,b\in\mathbb{Z}$ such that ak+bm=1, and so $\omega=\omega^{ak+bm}=\omega^{ak}\omega^{bm}=\omega^{ak}$. Since $\omega^{ak}=\omega^{(m-a)k}$ for negative a,a can be assumed to be positive. We then have

$$\frac{1-\omega}{1-\omega^k} = \frac{1-\omega^{ak}}{1-\omega^k} = 1+\omega^k+\omega^{2k}+\ldots+\omega^{(a-1)k} \in \mathbb{Z}[\omega]$$

This implies $1 + \omega + \omega^2 + \ldots + \omega^{k-1}$ is a unit in $\mathbb{Z}[\omega]$.

34. (b) The conjugates of $1-\omega$ are $\omega^{kp^{r-1}}-1$ for $1 \le k \le p-1$. By (a), $1-w^k = \frac{1-\omega}{1+\omega+1+\omega^k}$, so

$$N(1-w) = (1-\omega)^n \left(\prod_{(j,p^r)=1} \sum_{i=0}^{j} \omega^i\right)^{-1}$$

By (a) the sum of the ω^i factors is a unit in $\mathbb{Z}[\omega]$, so the inverse of the product of each of these is also a unit, call it u. Therefore

$$N(1-w) = u(1-w)^n$$

However as $f(x) = 1 + x^{p^{r-1}} + \ldots + x^{(p-1)p^{r-1}}$ is the p^r th cyclotomic polynomial, the norm of 1 - w is the constant coefficient of the polynomial $1 + (1-x)^{p^{r-1}} + \ldots + (1-x)^{(p-1)p^{r-1}} = p$, and so N(1-w) = p. Setting both sides equal to one another gives $p = u(1-\omega)^n$.

- 35. (a) Let $\omega = e^{2\pi i/m}$ and $\theta = \omega + \omega^{-1}$. Then $\omega^2 (\omega + \omega^{-1})(\omega) + 1 = 0$ and so ω is a root of the polynomial $x^2 + \theta x + 1$. $\omega \notin \mathbb{Q}[\theta]$, therefore $\mathbb{Q}[\omega] : \mathbb{Q}[\theta]$ has degree 2.
- 35. (b) Since $\theta = \omega + \omega^{-1} \in \mathbb{R}$, clearly $\mathbb{Q}[\theta] \subseteq \mathbb{Q}[\omega] \cap \mathbb{R}$. We therefore have the tower of field extensions $\mathbb{Q}[\theta] \subseteq \mathbb{Q}[\omega] \cap \mathbb{R} \subsetneq \mathbb{Q}[\omega]$. By (a), $[\mathbb{Q}[w] : \mathbb{Q}[\theta]] = 2$. By the Tower Law, $[\mathbb{R} \cap \mathbb{Q}[\omega] : \mathbb{Q}[\theta]]$ must be a divisor of 2 by distinct from 2 (since $w \notin \mathbb{R}$). Therefore the degree must be 1 and so $\mathbb{R} \cap \mathbb{Q}[\omega] = \mathbb{Q}[\theta]$.
- 35. (c) Let σ be the automorphism defined by $\sigma(\omega) = \omega^{-1}$. Then $\sigma(\theta) = \theta$, and so $\mathbb{Q}[\theta]$ is in the fixed field of the automorphism σ . As the degree of $\mathbb{Q}[\omega]$ over $\mathbb{Q}[\theta]$ is 2, there can be no distinct intermediate field between $\mathbb{Q}[\omega]$ and $\mathbb{Q}[\theta]$. $\mathbb{Q}[\omega]$ is not in the fixed field of σ and so $\mathbb{Q}[\theta]$ must be the fixed field of this automorphism.
- 35. (d) Show that $\mathbb{A} \cap \mathbb{Q}[\theta] = \mathbb{R} \cap \mathbb{Z}[\theta]$.

$$\begin{split} \mathbb{A} \cap \mathbb{Q}[\theta] &= \mathbb{A} \cap (\mathbb{R} \cap \mathbb{Q}[\omega]) \\ &= (\mathbb{A} \cap \mathbb{Q}[\omega]) \cap \mathbb{R} \\ &= \mathbb{Z}[\omega] \cap \mathbb{R} \end{split} \qquad \text{By associativity of intersection} \\ \text{By Theorem 12, Corollary 2} \end{split}$$

This is the required result.

35. (e) Let $n = \phi(m)/2$. The set $\{1, \omega, \omega^2, \dots, \omega^{n-1}, \omega^n, \omega^{n+1}, \dots, \omega^{m-1}\}$ is an integral basis for $\mathbb{Z}[\omega]$. Since $w^{n-k} = \omega^{-k}$, we can write this basis as $\{1, \omega, \omega^{-1}, \omega^2, \omega^{-2}, \dots, \omega^{-n}\}$ instead (note $\omega^n = \omega^{-n}$). We examine the set $\{1, \omega, \theta, \theta\omega, \theta^2, \theta^2\omega, \dots, \theta^n\}$. Now we pair up the expressions $\theta^k\omega$ with ω^{k+1} and θ^k with ω^{-k} :

$$\{1, \omega, \omega^{-1}, \omega^2, \omega^{-2}, \omega^3, \dots, \omega^n\}$$
 (1)

$$\{1, \omega, \theta, \theta\omega, \theta^2, \theta^2\omega, \dots, \theta^{n-1}\omega\}$$
 (2)

We evaluate the expression θ^k using the Binomial Theorem:

$$\theta^{k} = (\omega + \omega^{-1})^{k} = \sum_{i=0}^{k} {k \choose i} \omega^{i} \omega^{-(k-i)} = \sum_{i=0}^{k} {k \choose i} \omega^{2i-k}$$

Therefore

$$\theta^k \omega = \sum_{i=0}^k \binom{k}{i} \ \omega^{2i-k+1}$$

For θ^k , the power of ω ranges between -k and k for θ^k , and it uses 1 term of the power ω^{-k} and no power of ω with absolute value greater than k.

For $\theta^k \omega$, the power of ranges between -k+1 and k+1 for $\theta^k \omega$. It uses 1 power of ω^k and no other power of ω with absolute value of greater than or equal to k.

Therefore, there is a lower triangular translation matrix A between the basis (1) and (2). A has all 1s in the diagonal, and so A has determinant 1 and is invertible over \mathbb{Z} . Since (1) is an integral basis of $\mathbb{Z}[\omega]$, so is (2).

$$A = \begin{pmatrix} 1 & \omega & \omega^{-1} & \omega^{2} & \omega^{-2} & \dots \\ 1 & 0 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & 0 & \dots \\ 0 & 1 & 1 & 0 & 0 & \dots \\ 1 & 0 & 0 & 1 & 0 & \dots \\ 2 & 0 & 0 & 1 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

35. (f) Show that $\{1, \theta, \theta^2, \dots, \theta^{n-1}\}$ is an integral basis for $\mathbb{A} \cap \mathbb{Q}[\theta]$.

By (d), $\mathbb{A} \cap \mathbb{Q}[\theta] = \mathbb{R} \cap \mathbb{Z}[\theta]$, and by (e), any member α of $\mathbb{Z}[\theta]$ is expressible in terms of the basis vectors $\{1, \omega, \theta, \theta\omega, \theta^2, \ldots\}$:

$$\beta = a_0 + a_1\omega + a_2\theta + a_3\theta\omega + \ldots + a_{m-1}\theta^{n-1}$$

Since $\beta \in \mathbb{R}$, $\sigma(\beta) = \beta$ (where σ is complex conjugation). Therefore:

$$\beta = \sigma(a_0 + a_1\omega + a_2\theta + a_3\theta\omega + \dots + a_{m-1}\theta^{n-1})$$

$$= \sigma(a_0) + \sigma(a_1\omega) + \sigma(a_2\theta) + \sigma(a_3\theta\omega) + \dots + \sigma(a_{m-1}\theta^{n-1})$$

$$= a_0 + a_1\sigma(\omega) + a_2\sigma(\theta) + a_3\theta\sigma(\omega) + \dots + a_{m-1}\theta^{n-1}$$

$$= a_0 + a_1\omega^{-1} + a_2\theta + a_3\theta\sigma(\omega) + \dots + a_{m-1}\theta^{n-1}$$

Since the elements of basis are linearly independent, each odd a_i must be equal to 0, and so β must be expressible as $a_0 + a_2\theta + \ldots + a_{m-1}\theta^{m-1}$, and so $\mathbb{Q}[\theta]$ is an integral basis for $\mathbb{A} \cap \mathbb{Q}[\theta]$.

35. (g) Let p be an odd prime. Use exercise 23 to show that $\operatorname{disc}(\theta) = \pm p^{(p-3)/2}$. Show the plus sign must hold.

By Exercise 23,

$$\begin{aligned} \operatorname{disc}(1,\omega,\theta,\theta\omega,\dots,\theta^{n-1}) &= \operatorname{disc}(\theta)^2 \operatorname{N}_{\mathbb{Q}}^{\mathbb{Q}[\theta]} \operatorname{disc}_{\mathbb{Q}[\theta]}^{\mathbb{Q}[\omega]}(\omega) \\ p^{p-2} &= \operatorname{disc}(\theta)^2 \operatorname{N}_{\mathbb{Q}}^{\mathbb{Q}[\theta]}(2\omega - \theta) \\ &= \operatorname{disc}(\theta)^2 \operatorname{N}_{\mathbb{Q}}^{\mathbb{Q}[\theta]}(\omega - \omega^{-1}) \\ &= \operatorname{disc}(\theta)^2 \operatorname{N}_{\mathbb{Q}}^{\mathbb{Q}[\theta]}(\omega^{-1}(\omega + 1)(\omega - 1)) \\ &= \operatorname{disc}(\theta)^2 p \\ &\pm p^{(p-3)/2} &= \operatorname{disc}(\theta) \end{aligned}$$

As pointed out in the exercise, the square root of the discriminant is present in $\mathbb{Q}[\theta]$. Since $\mathbb{Q}[\theta] \subseteq \mathbb{R}$, $\mathrm{disc}(\theta) = p^{(p-3)/2}$.

37. Let α be an algebraic integer of degree n over \mathbb{Q} and let f and g be polynomials over \mathbb{Q} , each of degree < n, such that $f(\alpha) = g(\alpha)$. Show f = g.

Let h(x) be the minimal polynomial for α . If $f(\alpha) = g(\alpha)$, then $(f - g)(\alpha) = 0$. Since h is the minimum polynomial for α , $h \mid f - g$. However, f - g has degree < n, and so f - g = 0. Therefore f = g.

40. (a) Show $\operatorname{disc}(\alpha) = (d_1 d_2 \cdots d_{n-1})^2 \operatorname{disc}(R)$.

We first show $\operatorname{disc}(\alpha) = \operatorname{disc}(1, f_1(\alpha), \dots, f_{n-1}(\alpha)).$

$$\operatorname{disc}(\alpha) = \operatorname{disc}(1, \alpha, \dots, \alpha^{n-1})$$

Since f_{n-1} is a monic polynomial with degree n-1 it is a linear combination of $\alpha, \ldots, \alpha^{n-1}$, and so generate the same additive subgroup of R_k . By Exercise 26,

$$\operatorname{disc}(1,\alpha,\ldots,\alpha^{n-1}) = \operatorname{disc}(1,\alpha,\ldots,\alpha^{n-2},f_{n-1}(\alpha))$$

Proceeding in this way we have

$$\operatorname{disc}(\alpha) = \operatorname{disc}(1, f_1(\alpha), \dots, f_{n-1}(\alpha))$$

Finally, we have

$$\operatorname{disc}(R) = \operatorname{disc}(1, f_{1}(\alpha)/d_{1}, \dots, f_{n-1}(\alpha)/d_{n-1})$$

$$= \frac{1}{d_{1}^{2} \cdots d_{n-1}^{2}} \operatorname{disc}(1, f_{1}(\alpha)/d_{1}, \dots, f_{n-1}(\alpha)/d_{n-1})$$

$$= \frac{1}{(d_{1} \cdots d_{n-1})^{2}} \operatorname{disc}(\alpha)$$

Multiplying both sides by $(d_1 \cdots d_{n-1})^2$ gives the required result.

40. (b) We show that $R_k/\mathbb{Z}[\alpha]$ has order d_1,\ldots,d_k by induction on k. Since $R=R_{n-1}$ the result with follow by induction.

For the base case we see that $1/\mathbb{Z}[\alpha]$ has order 1. Next let $R_k = R_{k-1} \oplus \frac{1}{d_k} f_k(\alpha)\mathbb{Z}$, so

$$R_k/\mathbb{Z}[\alpha] = R_{k-1}/\mathbb{Z}[\alpha] \oplus \frac{1}{d_k} f_k(\alpha)/\mathbb{Z}[\alpha]$$

By induction $R_{k-1}/\mathbb{Z}[\alpha]$ has order $d_1 \cdots d_{k-1}$. f_k is a monic polynomial in α and so $f_k(\alpha) \in \mathbb{Z}[\alpha]$, therefore $\frac{1}{d_k} f_k(\alpha)/\mathbb{Z}[\alpha] = \frac{1}{d_k}$ which has order d_k , so the order of $R_k = d_1 \cdots d_k$.

40. (c) Show if i + j < n then $d_i d_j \mid d_{i+j}$.

Since $f_i(\alpha)/d_i$ and $f_j(\alpha)/d_j$ are members of the ring R, $f_i(\alpha)f_j(\alpha)/d_id_j$ must also be a member of the ring R. $f_i(\alpha)f_j(\alpha)$ has order i+j. Since

this is < n, this element by be generated by the basis elements of order $\le i + j$. Let a_k be the integers that generate this element. Then

$$\frac{f_i(\alpha)f_j(\alpha)}{d_i d_j} = a_{i+j} \frac{f_{i+j}(\alpha)}{d_{i+j}} + \sum_{k=0}^{i+j-1} a_k \frac{f_k(\alpha)}{d_k}$$
$$f_i(\alpha)f_j(\alpha) = a_{i+j} d_i d_j \frac{f_{i+j}(\alpha)}{d_{i+j}} + \text{Lower terms}$$

We know $a_{i+j} \neq 0$. Since f_i , f_j , and f_{i+j} are each monic, the denominator must cancel with no remainder, giving $d_{i+j} = a_{i+j}d_id_j$. Therefore $d_id_j \mid d_{i+j}$.

40. (d) Take $\frac{f_1(\alpha)}{d_1}$ as the basis element of order 1, and raise this element to the i-th power. Each $(\frac{f_1(\alpha)}{d_1})^i$ is a polynomial of order i and so generated by the basis element $\frac{f_i(\alpha)}{d_i}$. By a similar argument as in 40. (c) (each of these terms is a monic polynomial and so the denominators must cancel with no remainder), $d_1^i \mid d_i$.

Let j_i be the remainder left when dividing d_i by d_1^i $(j_1 = 1)$. Then:

$$\operatorname{disc}(\alpha) = (d_1 \cdots d_{n-1})^2 \operatorname{disc}(R)$$

$$= (d_1 d_1^2 \cdots d_1^{n-1} \prod_{i=0}^{n-1} j_i)^2 \operatorname{disc}(R)$$

$$= (d_1^{n(n-1)/2})^2 (\prod_{i=0}^{n-1} j_i)^2 \operatorname{disc}(R)$$

$$= d_1^{n(n-1)} (\prod_{i=0}^{n-1} j_i)^2 \operatorname{disc}(R)$$

Therefore $d^{n(n-1)} \mid \operatorname{disc}(\alpha)$.

41. (a) Let m be a cubefree integer, $\alpha = \sqrt[3]{m}$, and write m as hk^2 with h, k relatively prime. Let $R = \mathbb{A} \cap \mathbb{Q}[\alpha]$. (Therefore k^2 has any square factors of m.). Show $\mathrm{disc}(\alpha) = -27m^2$ (the 2018 edition has a typo).

Let $f(x) = x^3 - m$; f(x) is the minimum polynomial of α over \mathbb{Q} and has degree 3 (not $\equiv 0, 1$ (4)), so $\operatorname{disc}(\alpha) = -\operatorname{N}(f'(\alpha))$. $f'(\alpha) = 3\alpha^2$ so $\alpha f'(\alpha) = 3m$ and $f'(\alpha) = 3m/\alpha$. Note $\operatorname{N}(\alpha) = m$ so $\operatorname{N}(\alpha^{-1}) = 1/m$. Therefore we have

$$N(3m/\alpha) = 27m^3N(\alpha^{-1}) = 27m^2$$
$$disc(\alpha) = -27m^2$$

Using Exercise 40, we see $-27m^2 = (d_1d_2)^2 \operatorname{disc}(R)$ and $d_1^2|d_2$, so writing $d_2 = d_1^2 j$, we have

 $-27m^2 = d_1^4 j^2 \operatorname{disc}(R)$

Since d_1 has a sextic factor on the righthand-size, the only possibilities for d_1 are 1 or 3. If $d_1 = 3$ then $9 \mid m$.

41. (b) Show $d_1 = 1$ even when $9 \mid m$.

Suppose $9 \mid m$ and $d_1 = 3$. Then R has an integral basis with 1 and $(\alpha + a)/3$ as two of the three basis vectors.

Let $\beta = (\alpha + a)/3$ for some integer a. As suggested in the exercise hint we consider the trace of β^3 . First, we determine the trace of α and α^2 as these will be important to evaluate $\text{Tr}(\beta)$.

$$\operatorname{Tr}(\alpha) = \alpha + \omega \alpha + \omega^2 \alpha = \alpha(\omega^2 + \omega + 1) = 0$$
$$\operatorname{Tr}(\alpha^2) = \alpha^2 + \omega^2 \alpha^2 + \omega \alpha^2 = \alpha^2(\omega^2 + \omega + 1) = 0$$

With these in hand we now have

$$\beta^3 = \frac{(\alpha + a)^3}{27} = \frac{m + 3\alpha^2 a + 3a^2 \alpha + a^3}{27}$$

By the additive linearity of trace, we have

$$Tr(\beta^{3}) = \frac{m}{9} + \frac{3a}{27}Tr(\alpha^{2}) + \frac{3a^{2}}{27}Tr(\alpha) + \frac{3a^{3}}{27}$$

$$= \frac{m}{9} + \frac{3a^{3}}{27}$$

$$= Integer + \frac{3a^{3}}{27}$$

Since β is an algebraic integer, β^3 is also an algebraic integer, and its trace must be a member of \mathbb{Z} . Therefore $\frac{3a^3}{27}$ must be an integer, and so 27 must divide $3a^3$, which means that 9 divides a^3 and so 3 divides a.

Since 3 divides a, $\frac{\alpha+a}{3}=\frac{\alpha}{3}+$ Integer. Therefore $\alpha/3$ is a member of R, so $(\alpha/3)^3=m/27\in R$. However, m is cubefree and so $m/27\notin \mathbb{Z}$. This contradicts Corollary 1 of Theorem 1 - the only members of \mathbb{Q} that are algebraic integers are members of \mathbb{Z} .

Therefore $d_1 = 1$ in all cases, and so R has a basis containing 1 and α . The third basis vector has yet to be determined.

- 41. (c) Write m as hk^2 . Then $(\alpha^2/k)^3 = m^2/k^3 = (h^2k^4)(k^3) = h^2k$, and so α^2/k is the root of the polynomial $f(x) = x^3 h^2k$, and so $\alpha^2/k \in \mathbb{R}$.
- 41. (d) Suppose $m \equiv \pm 1$ (9). Let $\beta = (\alpha \mp 1)^2/3$. Show that

$$\beta^3 - \beta^2 + \frac{1 \pm 2m}{3}\beta - \frac{(m \mp 1)^2}{27} = 0$$

As suggested we calculate $(\beta - 1/3)^3$ in two ways:

$$(\beta - 1/3)^3 = ((\alpha \mp 1)^2/3 - 1/3)^3$$

$$\beta^3 - \frac{3\beta^2}{3} + \frac{3\beta}{9} - \frac{1}{27} = \frac{(\alpha(\alpha \mp 2))^3}{27}$$

$$\beta^3 - \beta^2 + \frac{\beta}{3} - \frac{1}{27} = m\left(\frac{m \mp 6\alpha^2 + 12\alpha \mp 8}{27}\right)$$

$$\beta^3 - \beta^2 + \frac{\beta}{3} - \frac{m^2 \mp 2m + 1}{27} = m\left(\frac{\mp 6\alpha^2 + 12\alpha \mp 6}{27}\right)$$

$$\beta^3 - \beta^2 + \frac{\beta}{3} - \frac{(m \mp 1)^2}{27} = \mp \frac{2m}{3}\left(\frac{\alpha^2 \pm 2\alpha + 1}{3}\right) = \mp \frac{2m}{3}\beta$$

Moving the terms around, we have the required result:

$$\beta^3 - \beta^2 + \frac{1 \pm 2m}{3}\beta - \frac{(m \mp 1)^2}{27} = 0$$

Since $m \equiv \pm 1$ (9), $1 \pm 2m$ is divisible by 3, and $m \mp 1$ is divisible by 9, so $(m \mp 1)^2$ is divisible by 27. Therefore β is the root of a monic polynomial with integer coefficients and so $\beta \in R$.

41. (e) Using (c) and (d), show that if $m \equiv \pm 1$ (9) then

$$\frac{\alpha^2 \pm k^2 \alpha + k^2}{3k} \in R$$

Since $\alpha^2/k \in R$, we can adding $k\alpha + k$ to the element to see that

$$\frac{\alpha^2 + k^2 \alpha + k^2}{k} \in R$$

Next, observe that $k^2 \equiv 1$ (3) - it cannot be 0 since $m \equiv \pm 1$ (9). Therefore $(k^2 - 1)/3$ and $(k^2 + 2)/3$ are integers. Taking $(\alpha^2 \mp 2\alpha + 1)/3$, we add $(k^2 - 1)/3$ to see that

$$\frac{\alpha^2 \mp 2\alpha + k^2}{3} \in R$$

Next we have

$$\frac{\alpha^2 \mp 2\alpha + k^2}{3} \pm \frac{\alpha(k^2 - 2)}{3} = \frac{\alpha^2 \pm k^2 \alpha + k^2}{3} \in R$$

Since $3 \nmid k$ and 3 is a prime, there exist integers a,b such that 3a+bk=1. Therefore

$$b\left(\frac{\alpha^2 \pm k^2 \alpha + k^2}{3}\right) + a\left(\frac{\alpha^2 \pm k^2 \alpha + k^2}{k}\right) = \frac{(kb + 3a)(\alpha^2 \pm k^2 \alpha + k^2)}{3k}$$
$$= \frac{\alpha^2 \pm k^2 \alpha + k^2}{3k} \in R$$

This is the required result.

- 41. (f) We have $\operatorname{disc}(\alpha) = -27m^2$. By Exercise 40(a), $d_2^2\operatorname{disc}(R) = \operatorname{disc}(\alpha) = -27m^2 = -27h^2k^4$. We know $k \mid d_2$ so write $d_2 = jk$, thus $j^2k^2\operatorname{disc}(R) = -27h^2k^4$ and so $j^2\operatorname{disc}(R) = -27h^2k^2 = -27mh$. By assumption h is square-free, so $j^2 \mid -27m$, implying either $j \mid 3$ or $j \mid m$. Therefore $j \mid 3m$.
- 41. (g) Letting p be a prime such that $p \neq 3$, $p \mid m$, $p^2 \mid m$. Let $p \mid d_2$, and write $d_2 = pj$. Therefore if $(\alpha^2 + a\alpha + b)/d_2 \in R$, then

$$j(\alpha^2 + a\alpha + b)/d_2 = (\alpha^2 + a\alpha + b)/p \in R$$

Since $(\alpha^2 + a\alpha + b)/p \in R$, its trace must be an integer; however $\text{Tr}(\alpha^2) = \text{Tr}(\alpha) = 0$, and so $3b/p \in \mathbb{Z}$. $p \neq 3$, therefore $p \mid b$. Therefore $(\alpha^2 + a\alpha)/p \in R$.

$$Tr(((\alpha^2 + a\alpha)/p)^3) = Tr((m^2 + a^3m)/p^3)$$

Therefore $p^3 \mid 3(m^2 + a^3 m)$. Since $p \neq 3$, $p^3 \mid m(m + a^3)$. m is cubefree and $p^2 \nmid m$, so $p^2 \mid m + a^3$. Therefore $a^3 \equiv 0$ (p), meaning $a \equiv 0$ (p). Considering the equation modulo p^2 we then have $m \equiv 0$ (p^2) , a contradiction. Therefore this case is impossible.

41. (h) Let $p \neq 3$ and $p^2 \mid m$. By the previous problem $(\alpha^2 + a\alpha)/p^2 \in R$ and so we consider the trace:

$$\text{Tr}(((\alpha^2 + a\alpha)/p^2)^3) = \text{Tr}((m^2 + a^3m)/p^6)$$

Therefore $p^6 \mid m(m+a^3)$. Since $p^2 \mid m, p^4 \mid m+a^3$. Considering the equation modulo p^2 , we must have $a^3 \equiv 0$ (p^2) , so $p^2 \mid a^3$. Therefore $p \mid a$ and so $p^3 \mid a^3$. Therefore $m+a^3 \equiv 0$ (p^3) and so $m \equiv 0$ (p^3) again contradicting m cubefree.

Together with (g) this shows that d_2 has no common prime factor with m that is not equal to 3.

41. (i) Take $(\alpha^2 + a\alpha + b)/d_2$.

$$\frac{(\alpha^2 + a\alpha + b)^2}{d_2^2} = \frac{m\alpha + 2am + 2\alpha^2b + a^2\alpha^2 + 2ab\alpha + b^2}{d_2^2}$$
$$= \frac{\alpha^2(a^2 + 2b) + \alpha(m + 2ab) + (2am + b^2)}{d_2^2}$$

Since this is an element of the ring and the basis element of order 2 has denominator d_2 , d_2 must divide each of $a^2 + 2b$, m + 2ab, and $2am + b^2$.

41. (j) We now consider what power of 3 divides d_2 . We know $d_2 \mid 3m$. If $3 \nmid m$, then $9 \nmid d_2$. Therefore, if $m \equiv \pm 1$ (9), $d_2 = 3k$; it cannot be any non-3 prime dividing m by (g) and (h), and 9 does not divide m.

We now consider the case where $m \not\equiv \pm 1$ (9) and $3 \nmid m$. We assume $3 \mid d_2$ (to show a contradiction).

We evaluate the congruences obtained in (i) modulo 3. Since $a^2 + 2b \equiv 0$ (3), $a^2 - b \equiv 0$ (3), and so $b \equiv a^2$ (3). Substituting b with a^2 in the equation $m + 2ab \equiv 0$ (3), we have $m + 2a^3 \equiv 0$ (3) and so $m - a^3 \equiv m - a \equiv 0$ (3), so therefore $a \equiv m$ (3). Substituting m for a in the equivalence $b^2 + 2am \equiv 0$ (3), we have $b^2 \equiv -2a^2 \equiv a^2$ (3). Therefore since $a^2 + 2b \equiv 0$ (3), we have $b(b+2) \equiv b(b-1) \equiv 0$ (3). $b \not\equiv 0$ (3) (as this would imply $m \equiv 0$ (3)) so we must have $b \equiv 1$ (3).

Therefore we can write the basis element of order 2 as $\frac{\alpha^2 + (m+3l)\alpha + (3j+1)}{3i}$ for some i, l, j, and so by multiplying through by i and subtracting the term $3l\alpha + 3j$ from the resulting fraction, we have:

$$\frac{\alpha^2 + m\alpha + 1}{3} \in R$$

We now proceed by case on m congruence to 3. (Almost there!)

Suppose $m \equiv 1$ (3). Then $\frac{\alpha^2 + \alpha + 1}{3} \in R$ and so by subtracing α , $\frac{\alpha^2 - 2\alpha + 1}{3} = \frac{(\alpha - 1)^2}{3} \in R$.

We raise this to the fourth power and take the trace. The only terms that contribute to the trace are those where α is raised to a power divisible by 3, so we have:

$$\operatorname{Tr}\left(\frac{(\alpha-1)^8}{3^4}\right) = \frac{3}{3^4} \left(\binom{8}{6}\alpha^6(-1)^2 + \binom{8}{3}\alpha^3(-1)^5 + (-1)^8\right)$$
$$= \frac{1}{27} \left(28m^2 - 56m + 1\right)$$

Therefore, 27 must divide $28m^2 - 56m + 1$. Congruent to 9, this equation reduces to $m^2 - 2m + 1 \equiv 0$ (9) so $(m-1)^2 \equiv 0$ (9) and $m \equiv 1$ (9). This contradicts $m \not\equiv \pm 1$ (9). So m cannot be congruent to 1 mod 3.

Next, suppose $m \equiv 2$ (3). Threefore $\frac{\alpha^2 + 2\alpha + 1}{3} = \frac{(\alpha + 1)^2}{3} \in R$. Again we raise this to the fourth power and take the trace. (The equation is the same except for the negative terms.)

$$\operatorname{Tr}(\frac{(\alpha+1)^8}{3^4}) = \frac{1}{27}(28m^2 + 56m + 1)$$

Modulo 9 we have $m^2+2m+1\equiv 0$ (9) so $(m+1)^2\equiv 0$ (9) and so $m\equiv -1$ (9), again contradicting $m\neq \pm 1$ (9).

Therefore if $3 \nmid m$ and $m \not\equiv \pm 1$ (9), $3 \nmid d_2$.

41. (k) Suppose $3 \mid m$ but $9 \nmid m$. We assume $3 \mid d_2$ to show a contradiction. By (i), $a^2 + 2b \equiv 0$ (3), so $a^2 \equiv b$ (3) (*). Plugging this into $m + 2ab \equiv 0$ (3) we have $m - a^3 \equiv 0$ (3). Since $a^3 \equiv a$ (3), we thus have $m \equiv a$ (3) and so $a \equiv 0$ (3), and also $b \equiv 0$ (3) by (*).

Therefore we can write the basis element of order 2 as $\frac{\alpha^2+3i\alpha+3j}{3l}$, and by multiplying through by l and subtracting $i\alpha+j$, we have $\frac{\alpha^2}{3}\in R$. Cubing this element and taking the trace we must have $m^2/9\in\mathbb{Z}$, contradicting $9\nmid m$. Therefore $3\nmid d_2$.

41. (l) Suppose $9 \mid m$. We show $9 \nmid d_2$. Assume $9 \mid d_2$ (to show a contradiction). By (i), $9 \mid ab$ and $9 \mid b^2$ so either $9 \mid b$ or $3 \mid b$. Assume $3 \mid b$, therefore since $a^2 + 2b \equiv 0$ (9), we must have $a^2 \equiv -6 \equiv 3$ (9). However, 3 is not the square of any element mod 9, so this equation is unsatisfiable. We must have $9 \mid b$.

Therefore, $(a^2+a\alpha)/9 \in R$. Taking this to the third power and considering the trace, we must have $9^3 \mid 3(m^2+ma^3)$ and $9^23 \mid m(m+a^3)$. Since m is cubefree and $9 \mid m$, therefore $27 \mid m+a^3$. Considering $m+a^3$ modulo 9, we have $a^3 \equiv 0$ (9); therefore a must be congruent to 0, 3, or 6 modulo 9. In all these cases we have $a^2 \equiv 0$ (9). Since $9^2 \mid a^3$ and $9^2 \mid (m+a^3)$, $9^2 \mid m$, which contradicts m being cube-free. Therefore $9 \nmid d_2$.

43. (a) Let $f(x) = x^5 + ax + b$ with $a, b \in \mathbb{Z}$ and f irreducible over \mathbb{Q} . Let α be a root of f. Show $\operatorname{disc}(\alpha) = 4^4 a^5 + 5^5 b^4$.

We proceed in a similar fashion to Exercise 28: first, we determine $f'(\alpha)$, then we determine $N(f'(\alpha))$ by collecting the most and least significant the coefficients of its polynomial.

 $f'(x) = 5x^4 + a$, so $\alpha f'(x) = 5\alpha^5 + a = -5(a\alpha + b) + a = -4a\alpha - 5b$ and $f'(\alpha) = (-4a\alpha - 5b)/\alpha$. The expression $4a\alpha + 5b$ is a root of the polynomial $(\frac{x-5b}{4a})^5 + a(\frac{x-5b}{4a}) + b$. The norm N($4a\alpha + 5b$) is the negative of the x^0 coefficient divided by the x^5 coefficient (again, negative because 5 is odd), so we calculate those values.

The x^0 coefficient is $(\frac{-5b}{4a})^5 + a(\frac{-5b}{4a}) + b = (\frac{-5b}{4a})^5 + \frac{-b}{4}$, and the x^5 coefficient is $(\frac{1}{4a})^5$, so $N(4a\alpha + 5b) = 5^5b^5 + 4^4a^5b$.

Therefore,

$$\operatorname{disc}(\alpha) = \operatorname{N}(-(4a\alpha + 5b)/\alpha) = -\frac{5^5b^5 + 4^4a^5b}{-b} = 5^5b^4 + 4^4a^5$$

This is the required result. (The plus sign for the discriminant holds because $5 \equiv 1$ (4))

43. (b) Suppose $\alpha^5 = \alpha + 1$. We are given that this polynomial is irreducible because it is irreducible modulo 3. (The options are 0, 1, and 2: $0^5 \not\equiv 0+1$ (3), $1^5 \not\equiv 1+1$ (3), and $2^5 = 2 \not\equiv 1+2=0$ (3).)

In this case a = -1 and b = -1 so the above formula gives $\operatorname{disc}(\alpha) = 5^5 - 4^4 = 125 \cdot 25 - 16 \cdot 16 = 2869 = 19 \cdot 151$. Since the discriminant is squarefree, $\mathbb{A} \cap \mathbb{Q}[\alpha] = \mathbb{Z}[\alpha]$.

43. (c) Let a be squarefree and not equal to ± 1 . Let α be a root and d_1, d_2, d_3, d_4 be as in Theorem 13. Prove that if $4^4a + 5^5$ is squarefree then $d_1 = d_2 = 1$ and $d_3d_4 \mid a^2$.

By exercise 40,

$$\operatorname{disc}(\alpha) = 5^5 a^4 + 4^4 a^5 = a^4 (5^5 + 4^4 a) = (d_1 d_2 d_3 d_4)^2 \operatorname{disc}(R)$$

Here $d_1d_2 \mid d_3$, $d_1d_2 \mid d_4$, and $d_1d_3 \mid d_4$. Therefore d_1 and d_2 both have 6 factors represented in the disc(α) expression which is impossible unless they are both 1. Since $5^5 + 4^4a$ is squarefree, $(d_3d_4)^2$ must divide a^4 and so $d_3d_4 \mid a^2$.

Verify that 4^4a+5^5 is squarefree when a = -2, -3, -6, -7, -10, -11, -13, and -15.

Experimenting a bit more with Sage, we can quickly test integers using the following code:

43. (d) Let α be as in part (c) (α is the root of a polynomial $f(x) = x^5 + ax + a$). Show $\alpha + 1$ is a unit.

We have $\alpha^5 = -a(\alpha+1)$, so we take the norm of both sides. $N(\alpha^5) = -a^5 = N(-a)N(\alpha+1) = -a^5N(\alpha+1)$, so $N(\alpha+1) = 1$. Therefore $\alpha+1$ is a unit in $\mathbb{A} \cap \mathbb{Q}[\alpha]$.

44. (a) Let $f(x) = x^5 + ax^4 + b$ where $a, b \in \mathbb{Z}$, and let α be a root of f. To determine the discriminant of α , we proceed as in exercise 28 and 43. The derivative of f(x) is $f'(x) = 5x^4 + 4ax^3$, so

$$f'(\alpha) = \alpha^3 (5\alpha + 4a)$$

 $N(a^3) = -b^3$ so determine the norm of $5\alpha + 4a$ by observing it is the root of the polynomial $(\frac{x-4a}{5})^5 + (\frac{x-4a}{5})^4 + b$. The x^0 term is $(\frac{-4a}{5})^5 + (\frac{-4a}{5})^4 + b$ while the x^5 term is $\frac{1}{5^5}$,

$$N(5\alpha + 4a) = (4a)^5 - 5a(4a)^4 - 5^5b = -(4a)^5 \cdot (-4 + 5) - 5^5b = -(4^5a^5 + 5^5b)$$

Therefore $\operatorname{disc}(\alpha) = (4^5a^5 + 5^5b)b^3$ as required (the discriminant is positive since $5 \equiv 1$ (4)).

- 44. (b) TODO
 - 45. Let α be the root of the polynomial $f(x) = x^n + ax + b$. Find a formula for $\operatorname{disc}(\alpha)$.

We proceed in similar fashion to exercise 43. $f'(\alpha) = n\alpha^{n-1} + a$, so we have:

$$\alpha f'(\alpha) = n\alpha + a\alpha$$

$$= -n(a\alpha + b) + a\alpha$$

$$= -((n-1)a\alpha + bn)$$

$$f'(\alpha) = -((n-1)a\alpha + bn)/\alpha$$

We now calculate $N((n-1)a\alpha + bn)$). This is the root of the poylnomial

$$g(x) = \left(\frac{x - bn}{(n - 1)a}\right)^n + a\left(\frac{x - bn}{(n - 1)a}\right) + b$$

The norm is equal to $(-1)^n$ times the x_0 coordinate multiplied by the inverse of x_n coordinate. Therefore,

$$N((n-1)a\alpha + bn) = (bn)^n + (-1)^{n+1}a^nb(n-1)^{n-1}$$

The inverse of the x_n coordinate is seen to be $((n-1)a)^n$

The discriminant is then (with the \pm positive if $n \equiv 0, 1$ (4), negative otherwise):

$$\operatorname{disc}(\alpha) = \frac{\pm (-1)^n \operatorname{N}((n-1)a\alpha + bn)}{b(-1)^n}$$
$$= \frac{\pm (bn)^n + (-1)^{n+1}a^nb(n-1)^{n-1}}{b}$$
$$= \pm [b^{n-1}n^n + (-1)^{n+1}a^n(n-1)^{n-1}]$$

Plugging values in gives:

$$n = 2 = -(2^{2}b - a^{2}) = a^{2} - 4b$$

$$n = 3 = -(27b^{2}) + a^{3}2^{2}) = -27b^{2} + 4a^{3}$$

$$n = 4 = b^{3}4^{4} - a^{4}3^{3} = 256b^{3} - 27a^{4}$$

$$n = 5 = b^{4}5^{5} + a^{5}4^{4}$$

These agree with the known values of these polynomials.

Next, we calculate $\operatorname{disc}(\alpha)$ if α is a root of $x^n + ax^{n-1} + b$. The derivative $f'(\alpha) = n\alpha^{n-1} + a(n-1)\alpha^{n-2} = \alpha^{n-2}(\alpha n + a(n-1))$, so

$$\operatorname{disc}(\alpha) = \pm \operatorname{N}(f'(\alpha)) = \pm \operatorname{N}(\alpha^{n-2}) \operatorname{N}(n\alpha + (n-1)a)$$

The norm $N(\alpha^{n-2}) = N(\alpha)^{n-2} = (-1)^n b^{n-2}$, so we only need to calculate $N(n\alpha + (n-1)a)$. This is a root of the polynomial

$$\left(\frac{x-(n-1)a}{n}\right)^n + a\left(\frac{x-(n-1)a}{n}\right)^{n-1} + b$$

We now calculate the norm of this. The x_n coefficient is $\frac{1}{n^n}$, and the x_0 coefficient is

$$\left(-\frac{(n-1)a}{n}\right)^n + a\left(-\frac{(n-1)a}{n}\right)^{n-1} + b$$

Multiplying through by n^n gives us:

$$N(n\alpha + (n-1)a) = (-1)^n [(-1)^n (n-1)^n a^n + (-1)^{n-1} a^n (n-1)^{n-1} n + bn^n]$$

$$= (n-1)^n a^n - a^n (n-1)^{n-1} n + (-1)^n bn^n$$

$$= a^n (n-1)^{n-1} (n-1-n) + (-1)^n bn^n$$

$$= -a^n (n-1)^{n-1} + (-1)^n bn^n$$

Multiplying the norm by $(-1)^n b^{n-2}$ we have

$$\operatorname{disc}(\alpha) = \pm [bn^{n} + (-1)^{n-1}a^{n}(n-1)^{n-1}]b^{n-2}$$

This agrees with the answer to Exercise 44 (a) (n = 5) and I confirmed via Sage that the formula holds for some examples where n = 4 and n = 6:

```
sage: a = 4; b = -7; n = 4
sage: K.<g> = QQ.extension(x^4 + a*x^3 + b)
sage: K.disc([1, g, g^2, g^3])
-426496
sage: (b*n^n - a^n * (n - 1)^(n - 1))*b^(n-2)
-426496
sage: a = 3; b = -5; n = 6
sage: K.<g> = QQ.extension(x^6 + a*x^5 + b)
sage: K.disc([1, g, g^2, g^3, g^4, g^5])
1569628125
sage: -(b*n^n - a^n * (n - 1)^(n - 1))*b^(n-2)
1569628125
```

Chapter 3

- 2. Prove that every finite integral domain D is a field.
 - For $\alpha \in D$, consider the set $\{1, \alpha, \alpha^2, \ldots\}$. Since D is finite this set must also be finite, so there must be some $i, j, i \neq j$ such that $\alpha^i = \alpha^j$. Thus $\alpha^{j-i} = 1$, and $\alpha^{j-i-1}\alpha = \alpha^{j-i} = 1$, so every element in D has an inverse, and D is therefore a field.
- 3. Let G be a free abelian group of rank n, with additive notation. Show for any $m \in \mathbb{Z}$, G/mG is the direct sum of n cyclic group of order m.

Since G is a free abelian group of rank n,

$$G \simeq \underbrace{\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{n \text{ copies}}$$

Therefore

$$G/mG \simeq \underbrace{\mathbb{Z}/m\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/m\mathbb{Z}}_{n \text{ copies}}$$

Each $\mathbb{Z}/m\mathbb{Z}$ is a cyclic group of order m, so the order of G/mG is m^n .

- 4. Let K be any number field of degree n over \mathbb{Q} . Prove that every nonzero ideal I in $R = \mathbb{A} \cap K$ is a free abelian group of rank n.
 - As an additive subgroup of R, I must be a free abelian group of order $\leq n$. Let $\{\beta_1, \ldots, \beta_n\}$ be a basis for R, and take $\alpha \in I$. $\{\alpha\beta_1, \ldots, \alpha\beta_n\} \subseteq I \subseteq R$ is a free abelian group of order n. Since I contains αI , the rank of I must also be n.
- 7. If I+J=1 then there exist $\alpha \in I$, $\beta \in J$ such that $\alpha + \beta = 1$. Raising both powers to the m+nth power, we have $(\alpha + \beta)^{m+n} = 1^{m+n} = 1$. By the binomial theorem, $(\alpha + \beta)^{m+n} = \sum_{k=0}^{m+n} {m+n-k \choose k} \alpha^{m+n-k} \beta^k$. If k < n, this element is a member of I^m (as $\alpha^{n+\text{positive}} \in I^m$); otherwise this element is a member of J^n . Therefore $(\alpha + \beta)^{m+n} \in I^m + J^n$.
- 8. (a) Suppose I = (2, x) was generated by some $\alpha \in I$. Therefore there are $\beta, \gamma \in \mathbb{Z}[x]$ such that $\alpha\beta = 2$ and $\alpha\gamma = x$. Since $\alpha\beta = 2$, the rank of α must be 0; $\alpha \in \mathbb{Z}$. The only option is $\alpha = 2$ (since $1 \notin I$). However 2 is not a factor of x in $\mathbb{Z}[x]$. Therefore the ideal (2, x) is not principal in $\mathbb{Z}[x]$.
- 8. (b) Let $f, g \in \mathbb{Z}[x]$ and let m, n be the gcd of the coefficients of f and g respectively. Prove mn is the gcd of the coefficients of fg.

Since m and n are the gcds of f and g we can write

$$f = m(a_0 + a_1 x + \dots + a_j x^j) \tag{3}$$

$$g = n(b_0 + b_1 x + \dots + b_k x^k) \tag{4}$$

where $(a_0, \ldots, a_j) = 1$ and $(b_0, \ldots, b_k) = 1$. Let d be the GCD of the coefficients of fg. As

$$fg = mn(\sum_{0 \le l \le j} \sum_{0 \le m \le k} a_l b_m)$$

we know that $mn \mid d$.

Suppose there is some prime p such that p divides a_lb_m for all l,m. Since $(a_0,\ldots,a_j)=1$ and $(b_0,\ldots,b_m)=1$, there is some first a_l and first b_m such that $p+a_l$ and $p+b_m$; so $p\mid a_0,\ldots,a_{l-1}$ but $p+a_l$ and similarly $p\mid b_0,\ldots,b_{m-1}$ but $p+b_m$. The x^{l+m} term in fg has coefficient $a_lb_m+a_{l+1}b_{m-1}+\ldots a_{l-1}b_{m+1}+\ldots$ Taken modulo $p, a_lb_m \not\equiv 0$ (p) but p divides every other term in the expansion. This contradicts p being dividing the sum, and so there must be no other factor d beyond mn.

8. (c) Let $f \in \mathbb{Z}[x]$ be irreducible over \mathbb{Z} . Show f is irreducible over \mathbb{Q} .

Suppose f is irreducible over \mathbb{Z} but reducible over \mathbb{Q} , i.e. f = gh for $g, h \in \mathbb{Q}[x]$. Then we can pull out the denominators from g, h, giving us $gh = \frac{g'h'}{d}$ where $g', h' \in \mathbb{Z}[x]$. Let a and b the GCD of the coefficients of g' and h' respectively. We must have ab! = d because otherwise then f would be reducible into the product of two polynomials in $\mathbb{Z}[x]$. Therefore, reducing to lowest terms if necessary, we have $ab \nmid d$. However, multiplying both sides of the equation by d gives df = g'h' = ab(g''h'') for some g'' and h'' and so by (b), $ab \mid d$; this is a contradiction. Therefore f must be also irreducible over $\mathbb{Q}[x]$.

- 9. Let K and L be number fields, $K \subset L$, $R = \mathbb{A} \cap K$, $S = \mathbb{A} \cap L$.
- 9. (a) TODO Let I and J be ideals in R and suppose $IS \mid JS$. Show $I \mid J$.
 - 10. Show e and f are multiplicative in terms of towers.

Let $K \subset L \subset M$ and $R \subset S \subset T$ be the associated number fields and $P \subset Q \subset U$ prime ideals.

f is multiplicative: By the third isomorphism theorem, there is the field series of field inclusions: $R/P \to S/Q \to T/U$. [S/Q:R/P] = f(Q|P) and [T/U:S/Q] = f(U|Q); therefore the composition map from $R/P \to T/U$ must have degree f(U|P) = f(Q|P)f(U|Q) by the tower law for field extensions.

- **e is multiplicative:** $P = Q^{e(Q|P)}I$ and $Q = U^{e(U|Q)}J$ for ideals I, J such that I + Q and J + U are relatively prime. Therefore $P = U^{e(U|Q)e(Q|P)}IJ$ with $U^{e(Q|P)e(U|Q)}$ and IJ relatively prime; the factor of U dividing P is e(U|P) so e(U|P) = e(U|Q)e(Q|P).
- 11. Since $\alpha \in I$, $I \mid (\alpha)$, and so $I \cdot J = (\alpha)$. Taking norms of both sides, $||I|| \cdot ||J|| = ||(a)||$. By Theorem 22 (c), $||(\alpha)|| = \mathcal{N}_{\mathbb{Q}}^{K}(\alpha)$, so $||I|| \mid \mathcal{N}_{\mathbb{Q}}^{K}(\alpha)$, with equality holding if I is principal.

12. (a) Verify that $5S = (5, \alpha + 2)(5, \alpha^2 + 3\alpha - 1)$ in $S = \mathbb{Z}[\sqrt[3]{2}]$, $\alpha = \sqrt[3]{2}$. Let $I = (5, \alpha + 2)(5, \alpha^2 + 3\alpha - 1)$. The generators of I are:

$$5^2 (1)$$

$$5(\alpha^2 + 3\alpha - 1) \tag{2}$$

$$5(\alpha+2) \tag{3}$$

$$(\alpha + 2)(\alpha^2 + 3\alpha - 1) = \alpha^3 + (3 + 2)\alpha^2 + (-1 + 6)\alpha - 2 = 5(\alpha^2 + \alpha)$$
 (4)

All generators have a factor of 5 so $1 \notin I$; therefore $5 \subset I$. We have $\alpha \cdot (3) - (1) + 3 \cdot (2) = 45$, so $\gcd(45, 5^2) = 5 \in I$. Therefore $(3) - 10 = 5\alpha \in I$ and also $5\alpha^2 \in I$ by subtracting factors from (2); therefore I = 5S.

12. (b) Show there is an isomorphism between $\mathbb{Z}[x]/(5, x^2+3x-1)$ and $\mathbb{Z}_5[x]/(x^2+3x-1)$.

Let $a \in \mathbb{Z}[x]/(5, x^2 + 3x - 1)$. Then a can be associated with a coset representative $f(x) + 5g(x) + (x^2 + 3x - 1)h(x)$ where all of the coefficients of f(x) and h(x) are less than 5 (other terms can be placed in g(x)).

Let ρ be the mapping of $\mathbb{Z}[x] \to \mathbb{Z}_5[x]$ by reducing the coefficients mod 5. $\rho(a) = \rho(f(x)) + (x^2 + 3x - 1)\rho(h(x)) = f(x) + (x^2 + 3x - 1)h(x)$ and so ρ is an isomorphism from the quotient ring $\mathbb{Z}[x]/(5, x^2 + 3x - 1)$ to $\mathbb{Z}_5[x]/(x^2 + 3x - 1)$.

12. (c) Show there is a surjective homomorphism from $\mathbb{Z}[x]/(5, x^2 + 3x - 1)$ onto $S/(5, \alpha^2 + 3\alpha - 1)$.

The ring homomorphism ψ from $\mathbb{Z}[x] \to S$ defined by $\psi(x) = \alpha$ is a surjective. Let $\beta \in S$; $\beta = m_0 + m_1\alpha + m_2\alpha^2$ for integers m_0, m_1, m_2 , so $f(m_0 + m_1x + m_2x^2) = \beta$. Therefore the surjective ψ induces a surjection $\hat{\psi}$ on the quotient rings:

$$\mathbb{Z}[x]/(5, x^2 + 3x + 1) \to S/(5, \alpha^2 + 3\alpha - 1)$$

This utilizes the following lemma on ring homomorphisms:

Lemma 1. Let R and R' be rings and ψ be a sujection $R \to R'$. Let I be an ideal of R. Then the mapping that ψ induces between the quotient groups $R/I \to R/\psi(I)$ is also a surjection.

Proof. Take $a \in R/\psi(I)$; then $a = r' + \psi(I)$ for $r' \in R'$. Since ψ is surjective there must be some $r \in R$ such that $\psi(r) = r'$; therefore the coset r + I is mapped to $r' + \psi(I)$, and the mapping between the quotient groups is also surjective.

12. (d) In \mathbb{Z}_5 , the polynomial $f(x) = x^2 + 3x - 1 = x^2 + 3x + 4$ is irreducible. Any factor must be a a root, and manual testing gives f(0) = 4, f(1) = 3, f(2) = 4

4, f(3) = 2, and f(4) = 2, so the polynomial has no root and is irreducible. Therefore $\mathbb{Z}_5/(x^2 + 3x - 1)$ is a field of order $5^2 = 25$.

Let $I=(5,\alpha^2+3\alpha-1)$. By (b) and (c) there is a surjection $\hat{\psi}$ from $\mathbb{Z}_5/(x^2+3x-1)$ onto S/I. As $\hat{\psi}$ is onto and the source ring has cardinality 25, S/I must have a cardinality dividing 25; the options are 1 (R=S), 5, and 25 $(S/I \simeq \mathbb{Z}_5/(x^2+3x-1))$.

Assume |S/I| = 5; we derive a contradiction. Since $\alpha^3 = 2$, we must have $2 \notin \text{kern}(\psi)$ (otherwise $\alpha^3 = 0$ and so $\alpha \in \text{kern}(\psi)$, giving $S \subset \text{kern}(\psi)$). The only cube root of 2 modulo 5 is 3, so $\psi(\alpha) = 3$. However then $\psi(\alpha^2) = 4 + I$, $\psi(3\alpha) = 4 + I$, and $\psi(-1) = 4 + I$; thus $\psi(\alpha^2 + 3\alpha - 1) = 2$. But we know $\psi(\alpha^2 + 3\alpha - 1) = 0$. This is a contradiction, so $|S/I| \neq 5$.

Therefore $I = (5, \alpha^2 + 3\alpha - 1)$ is either the whole ring or a prime ideal inducing S/I to be a field of order 25.

- 12. (e) Suppose $(5, \alpha^2 + 3\alpha 1) = S$. Then by (a), $5S = (5, \alpha + 2)S$; however, $\alpha + 2 \notin 5$, so $S/(5, \alpha^2 + 3\alpha 1)$ must be a field of order 25.
- 13. (a) Let $S = \mathbb{Z}[\alpha]$, $\alpha^3 = \alpha + 1$. Verify $23S = (23, \alpha 10)^2(23, \alpha 3)$. Let $I = (23, \alpha - 10)^2(23, \alpha - 3)$. The generators of I are:

$$23^3 \tag{1}$$

$$23^2(\alpha - 3) \tag{2}$$

$$23^2(\alpha - 10)$$
 (3)

$$(\alpha - 10)^{2}(\alpha - 3) = -23(\alpha^{2} - 7\alpha + 13)$$
(4)

$$23(\alpha - 10)^2 = 23(\alpha^2 - 20\alpha + 100) \tag{5}$$

$$23(\alpha - 10)(\alpha - 3) = 23(\alpha^2 - 13\alpha + 30) \tag{6}$$

From the generators it is clear that 23 divides every member of I, and so $23S \subset I$. To show the required result we need to show $\{23, 23\alpha, 23\alpha^2\} \in I$.

$$(4) + (5) = 23(-13\alpha + 87) \tag{7}$$

$$2 \cdot (6) - (5) + (4) = 23\alpha + 53 \cdot 23 \tag{8}$$

$$13 \cdot (8) - (7) = 23 \cdot 602 \tag{9}$$

From (1), (2), and (3), we must have $23^2 \in I$ as this is the GCD of (1) with the sum of (2) and (3); since $23 \cdot 602 \in I$, therefore $23 \in I$ as it is the GCD of these two integers. Subtracting a multiple of $23 \in I$ from (8) gives us $23\alpha \in I$, and we thus have $23\alpha^2 \in I$ as well by subtracting the appropriate terms from (5) or (6). This verifies $\{23, 23\alpha, 23\alpha^2\} \in I$ and so $23S = (23, \alpha - 10)^2(23, \alpha - 3)$.

13. (b) Show that $(23, \alpha - 10, \alpha - 3) = S$. Conclude that $(23, \alpha - 10)$ and $(23, \alpha - 3)$ are relatively prime.

Since $-10 \cdot [(\alpha - 10) - (\alpha - 3)] - 3 \cdot 23 = 1$, $(23, \alpha - 10, \alpha - 3) = S$. Since $(23, \alpha - 10) \mid 23S$ and $(23, \alpha - 3) \mid 23S$, neither is the whole ring S and so they must be relatively prime ideals in S.

- 14. Let K and L are number fields, $K \subset L$, $R = \mathbb{A} \cap K$, $S = \mathbb{A} \cap L$. Assume L is normal over K and let G be the Galois group of L over K. Let |G| = [K : L] = n.
- 14. (a) Suppose Q and Q' are two primes of S lying over a prime P of R. Show the number of automorphisms σ such that $\sigma(Q) = Q$ is the same number of $\sigma \in G$ such that $\sigma(Q) = Q'$. Conclude this number is e(Q|P)f(Q|P).

Enumerate the distinct automorphisms fixing Q as $\sigma_0, \ldots, \sigma_k$, and the automorphisms taking Q to Q' as τ_0, \ldots, τ_l . Let τ be one of the automorphisms taking Q to Q' (by Theorem 23, this must exist) and consider the automorphisms $\sigma_0\tau, \ldots, \sigma_k\tau$. These are k distinct automorphisms taking Q to Q' (if $\sigma_i\tau = \sigma_j\tau$ then $\sigma_i = \sigma_j$), so $k \leq l$. Conversely, consider the automorphisms $\tau\tau_0^{-1}, \ldots, \tau\tau_l^{-1}$ taking Q to Q. Each of these must be one of the σ_k , and each must be distinct; if $\tau\tau_i^{-1} = \tau\tau_j^{-1}$ then $\tau_i = \tau_j$, so $l \leq k$. Therefore l = k.

We count the number of permutations in G so as to determine the number of permutations fixing Q (call this number k). For each prime P, there are r distinct primes Q_1, \ldots, Q_r lying over P, and so there are k automorphisms taking Q_1 to Q_1 , k automorphisms taking Q_1 to Q_2 , etc. Therefore n = kr; since n = re(Q|P)f(Q|P), k = e(Q|P)f(Q|P).

14. (b) For an ideal $I \subset S$, define $N_K^L(I)$ to be the ideal $R \cap \prod_{\sigma \in G} \sigma(I)$. Show that for a prime Q lying over P, $N_K^L(Q) = P^{f(Q|P)}$.

Let e = e(Q|P), f = f(Q|P). and Q_1, \ldots, Q_r be the ideals of S lying over P. By (a) there are ef automorphisms sending Q to Q_1 , Q to Q_2 , etc. Therefore

$$\begin{aligned} \mathbf{N}_K^L(I) &=& R \cap (Q_1^{ef} \cdots Q_l^{ef}) S \\ &=& R \cap (Q_1 \cdots Q_l)^{ef} S \\ &=& R \cap P^f S \\ &=& P^f \end{aligned}$$

14. (c) Let I be an ideal of S. Show $\prod_{\sigma \in G} \sigma(I) = (N_K^L(I))S$.

Let $I = Q_1 \cdots Q_r S$; then $\prod_{\sigma \in G} \sigma(I) = \prod_{\sigma \in G} \sigma(Q_1) \cdots \sigma(Q_r) S$. With the product taken over all $\sigma \in Q$, $\prod \sigma(Q_i) = P_i$ for some prime ideal P_i of R lying under I; therefore $\prod_{\sigma \in G} \sigma(I) = P_1 \cdots P_r S = N_K^L(I) S$.

14. (d)

$$\begin{aligned} \mathbf{N}_{K}^{L}(IJ) &= R \cap \prod_{\sigma \in G} \sigma(IJ) \\ &= R \cap \prod_{\sigma \in G} \sigma(IJ) \\ &= R \cap \prod_{\sigma \in G} \sigma(I) \prod_{\sigma \in G} \sigma(J) \\ &= R \cap (\mathbf{N}_{K}^{L}(I)\mathbf{N}_{K}^{L}(J)) \\ &= \mathbf{N}_{K}^{L}(I)\mathbf{N}_{K}^{L}(J) \end{aligned}$$

The final equality holds since $N_K^L(I)$ and $N_K^L(J)$ are ideals in R.

- 14. (e) If $\beta \in \mathcal{N}_K^L((\alpha))$, then $\beta = \sigma_1(\alpha) \cdots \sigma_k(\alpha) \gamma = \mathcal{N}_K^L(\alpha) \gamma$; since $\beta \in R$ and $\mathcal{N}_K^L(\alpha) \in R$, γ must also be in R. Thus $\mathcal{N}_K^L((\alpha))$ is the ideal generated by $\mathcal{N}_K^L(\alpha)$.
- 15. (a) Show for three fields $K \subset L \subset M$, that $N_K^M(I) = N_K^L N_L^M(I)$ for an ideal $I \subset A \cap M$.

We show the result for a prime U of $T = \mathbb{A} \cap M$. Let R, S be the ring of integers of K, L, M respectively, and let P and Q be the primes of R and S lying under U. Then using the multiplicativity of towers as shown in exercise 10,

$$\mathbf{N}_K^M(U) = P^{f(U|P)} = P^{f(U|S)f(S|P)} = \mathbf{N}_K^L \mathbf{N}_L^M(U)$$

If $I = U_1 \cdots U_r$, then

$$N_K^M(I) = \prod_{i=0}^r N_K^M(U_i) = \prod_{i=0}^r N_K^L N_L^M(U_i) = N_K^L N_L^M(I)$$

15. (b) Let $K \subset L$, where L is not necessarily normal. Extend L to a normal extension M. Let [M:L] = n. We then have:

$$\begin{aligned} \mathbf{N}_{K}^{M}((\alpha)) &= (\mathbf{N}_{K}^{M}(\alpha)) & (\text{exercise 14. (e)}) \\ &= (\mathbf{N}_{K}^{L}(\mathbf{N}_{L}^{M}(\alpha))) & \text{Definition of relative norm} \\ &= (\mathbf{N}_{K}^{L}(\alpha^{n})) & \alpha \in L \text{ and } L \subset M \\ &= (N_{K}^{L}(\alpha))^{n} & \text{Factorization of ideals} \end{aligned}$$

We also have the following transformation on the norm ideal of M over K:

$$N_K^M((\alpha)) = N_K^L N_L^M((\alpha))$$
 part (a)
 $= N_K^L((\alpha^n))$ Exercise 14. (e), M is normal over L
 $= N_K^L((\alpha)^n)$ Factorization of ideals
 $= N_K^L((\alpha))^n$ Exercise 14. (d)

We therefore have

$$(N_K^L(\alpha))^n = N_K^L((\alpha))^n$$

and conclude that $\mathcal{N}_K^L(\alpha) = \mathcal{N}_K^L((\alpha))$.

15. (c) For the case where $K = \mathbb{Q}$, show that $N_{\mathbb{Q}}^{L}(I)$ is the principal ideal in \mathbb{Z} generated by the number ||I||.

For a prime Q of L lying over a prime ideal $P \subset \mathbb{Z}$ containing the prime $p \in P$, $\mathcal{N}_{\mathbb{Q}}^{L}(Q) = P^{f}$, and $||I|| = |R/Q| = p^{f}$. Next, suppose $I = Q_{1} \cdots Q_{r}$ where Q_{i} lies over a prime P_{i} . By Theorem 22 (a), $||I|| = \prod_{i=1}^{r} ||Q_{i}|| = \prod_{i=1}^{r} (P_{i})^{f(Q_{i}|P_{i})}$, this number then generates the principal ideal $\mathcal{N}_{\mathbb{Q}}^{L}(I) = \prod_{i=1}^{r} \mathcal{N}_{\mathbb{Q}}^{L}(Q_{i}) = \prod_{i=1}^{r} (P_{i})^{f(Q_{i}|P_{i})}$.

- 16. Let K and L be number fields, $K \subset L$, $R = \mathbb{A} \cap K$, $S = \mathbb{A} \cap L$. Denote by G(R) and G(S) the ideal class groups of R and S respectively.
- 16. (a) Show that the mapping $\psi: G(S) \to G(R)$ defined by taking any I in a given class C and sending C to the class containing $\mathcal{N}_K^L(I)$ is a homomorphism.

We first show that ψ homomorphism is well-defined. Take $I, J \in C$, so there is some element α, β such that $\alpha I = \beta J$. Therefore

$$\begin{array}{rcl} \mathbf{N}_K^L(\alpha I) &=& \mathbf{N}_K^L(\beta J) \\ \mathbf{N}_K^L((\alpha)) \mathbf{N}_K^L(I) &=& \mathbf{N}_K^L((\beta)) \mathbf{N}_K^L(J) \\ \mathbf{N}_K^L(\alpha) \mathbf{N}_K^L(I) &=& \mathbf{N}_K^L(\beta) \mathbf{N}_K^L(J) \end{array}$$

Therefore the image of I and J are in the same ideal class, ψ does not depend on the choice of ideal in the class C.

- $\psi((\alpha)) = N_K^L((\alpha))$ and so the identity element of the class group maps to the identity element. $\psi(IJ) = N_K^L(IJ) = N_K^L(I)N_K^L(J)$ and so the mapping respects operation. Therefore it is a homomorphism.
- 16. (b) Let Q be a prime of S lying over a prime P of R. Let d_Q denote the order of the class containing Q in G(S), d_P denote the order of the class containing P in G(R). Prove that $d_P \mid d_Q f$, where f = f(Q|P).

Take $\psi: G(S) \to G(R)$ be the homomorphism defined in 1. Then $|\psi(Q)|$ | |Q|. $|\psi(Q)| = P^f$; if $f | d_P$, $|\psi(Q)| = d_P/f$; otherwise $|\psi(Q)| = d_P$. In both cases we have $d_P | d_Q f$.

18. (a) Show disc $(r\alpha_1, \alpha_2, \dots, \alpha_n) = r^2 \text{disc}(\alpha_1, \dots, \alpha_n)$.

Writing the discriminant as the determinant of each of the σ_j conjugates of α_n , we have:

$$\operatorname{disc}(r\alpha_1, \alpha_2, \dots, \alpha_n) = \begin{vmatrix} \sigma_1(r\alpha_1) & \cdots & \sigma_k(\alpha_n) \\ \sigma_2(r\alpha_1) & \cdots & \sigma_k(\alpha_n) \\ \vdots & \ddots & \vdots \\ \sigma_k(r\alpha_1) & \cdots & \sigma_k(\alpha_n) \end{vmatrix}^2$$

Let A_{ij} be the matrix minor corresponding to row i, column j. Since $r \in \mathbb{Q}$, $\sigma_k(r\alpha_1) = r\sigma_k(\alpha_1)$ for all k. Taking the determinant along the first column, we have:

$$\operatorname{disc}(r\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}) = \left(\sum_{i=0}^{n} (-1)^{i} \sigma_{i}(r\alpha_{1}) A_{1i}\right)^{2}$$

$$= \left(\sum_{i=0}^{n} (-1)^{i} r \sigma_{i}(\alpha_{1}) A_{1i}\right)^{2}$$

$$= r^{2} \left(\sum_{i=0}^{n} (-1)^{i} \sigma_{i}(\alpha_{1}) A_{1i}\right)^{2}$$

$$= r^{2} \operatorname{disc}(\alpha_{1}, \dots, \alpha_{n})$$

18. (b) Let β be a linear combination of $\alpha_2, \ldots, \alpha_n$ with coefficients in \mathbb{Q} . Show $\operatorname{disc}(\alpha_1 + \beta, \alpha_2, \ldots, \alpha_n) = \operatorname{disc}(\alpha_1, \ldots, \alpha_n)$.

For all σ_k , $\sigma_k(\alpha_1+\beta) = \sigma_k(\alpha_1) + \sigma_k(\beta)$. If $\beta = p_2\alpha_2 + \ldots + p_n\alpha_n$, then $\sigma_k(\beta) = p_2\sigma_k(\alpha_2) + \ldots + p_n\sigma_k(\alpha_n)$ for $p_i \in \mathbb{Q}$. Writing $\operatorname{disc}(\alpha_1 + \beta, \alpha_2, \ldots, \alpha_n)$ in matrix form, the k-th row of the first column has the form $\sigma_k(\alpha_1) + p_2\sigma_k(\alpha_2) + \ldots + p_n\sigma_k(\alpha_n)$.

Subtracting a column times a linear factor has no effect on the determinant of the matrix, so by subtracting p_i multiplied by column i from the first column for each i, we see $\operatorname{disc}(\alpha_1 + \beta, \alpha_2, \dots, \alpha_n) = \operatorname{disc}(\alpha_1, \dots, \alpha_n)$.