Multimedia Mobile Applications on Heterogeneous Networks

Meeting Web-Minds Salerno, 20-22 giugno 2005

UNITA' DI RICERCA CINI NAPOLI

Index

- Mobility on Heterogeneous Networks
- Vertical Handoff Performance
- Mobility Management: L2 triggering
- Performance UDP
- Performance TCP
- Mobile Applications Support
- Adaptive Streaming
- Adaptive VoIP

Mobility on Heterogeneous Networks

Wireless and mobile networks represent an enabling technology for ubiquitous access to information systems and services. A really ubiquitous and seamless access demands the following requirements:

- Access must be guaranteed when moving through subnets based on **different technologies**: Ethernet LANs, IEEE 802.11 WLANs, and 2.5/3G cellular data networks (for geographic access).
- No additional configuration effort should be required to final users.
- Sessions must be seamlessly maintained through different subnets.
- Handoff must be fast enough not to cause service disruption.
- Service delivery should be **dynamically adapted** to the characteristics of the network (example: image resolution for video streaming, buffering for voice applications, page content for interactive Web applications)

Mobility on Heterogeneous Networks – Scenario

A comprehensive solution to many of these issues is provided by IPv6

4

Mobile IPv6

Vertical Handoff

Handoffs can be classified into:

- Horizontal handoff: the migration is between homogeneous networks (e.g., WLAN 802.11b)
- Vertical handoff: the migration is between heterogeneous networks (e.g., Ethernet to WLAN 802.11b or WLAN 802.11b to 2.5/3G networks)

Vertical Handoff Performance

- At the same time, a node could be connected to an Ethernet LAN and under the coverage of a Wireless LAN or a cellular data connection.
- A vertical handoff can be initiated for convenience, rather than connectivity reasons.
- It is often possible to have handoffs with no packet loss by performing the configuration and signaling steps on the new network before leaving the old one.

Vertical Handoff Performance

Handoff latency is composed of the following delays:

- delay D_t for detecting lower layer events eventually leading to the handoff;
- 2. delay D_n for configuring an IP address on the new subnet;
- 3. delay D_s for handoff execution (i.e. due to signaling between MN and HA).

Vertical Handoff Performance

Handoff	$LATENCY(D_t + D_n + D_s)$
WLAN-GPRS	2552 ms ±433.
WLAN-UMTS	$1657 \text{ ms} \pm 272.$
GPRS-WLAN	$1960 \text{ ms} \pm 210$
UMTS-WLAN	$1640 \text{ ms} \pm 130$

The latency is too high

IPv6-IPv4 interoperability

Lower layer triggering

The basic idea is to use low level information provided by the devices to determine the most suitable interface according to a predefined policy.

Features:

- 1. Modular application: the architecture can be easily extended by adding handlers for other network interfaces
- 2. Better handoff performance with no changes to the network protocol.

UDP Performance: throughput and packet loss

UDP flow at about 410 kbps, with 2 handoffs and **network-layer handoff triggering**: (a) wlan (b) wlan signal weakening; (c) handoff; (d) flow on UMTS link; (e) handoff: flow from both interfaces; (f) wlan

UDP performance: L2 triggering packet loss and throughput

UDP flow at about 410 bkps, with 2 handoffs and link-layer handoff.

UDP Performance: comparison L3/L2 triggering

Better performance of L2 triggering stems from:

- lower handoff delay (no NUD);
- handoff before the signal is lost;
- less ping-pong effect

TCP implements a congestion control by using:

- Slow start
- Congestion avoidance

TCP improvements (NewReno 1999):

- Selective Acks (SACK): it allows to selectively acknowledge packets;
- Timestamp: to measure accurately the round trip time (RTT) and the retransmission timeout (RTO).

- D-ITG can be configured to generate CBR traffic by tuning two parameters:
 - packet size (PS) and interdeparture time (IDT).
- In our tests the D-ITG sender is the CN, whereas the D-ITG receiver is the MN.
- To take into account the declared bit rate of the cellular network technologies
- in use, we introduced the following *traffic load* classes:
 - Low: PS = 32 bytes and IDT = 1/50 s, corresponding to a bit rate of 12.8 kbps
 - Medium: PS = 256 bytes and IDT = 1/50 s, corresponding to a bit rate of 102.4 kbps
 - High: PS = 512 bytes and IDT = 1/50 s, corresponding to a bit rate of 204.8 kb/s

TCP throughput for handoff from cellular network to WLAN 802.11b:

- a) GPRS;
- b) 100 kb/s UMTS;
- c) 384 kb/s UMTS.

TCP throughput for handoff from WLAN 802.11b to cellular network:

- a) GPRS;
- b) 383 kb/s;
- c) 100 kb/s UMTS with L2 triggering.

- The delay of TCP packets is proportional to the network level delay.
- The decreasing of the delay at network level allows to achieve better performance in TCP handoff.

Mobile Applications Support

Mobility: through MMM cross-layer approach (network and lower layers) **Adaptation**: through Application Mobility Interfaces (AMIs) at session and application layer.

Mobile Applications Support

- Interface between MMM and AMIs:
 - handoff warning and/or notification;
 - periodic update about link performance;
 - notification content: bit-rate, delay, jitter, packetloss, IP address of the interface
- How to obtain link parameters:
 - from network technology (static)
 - from link model (SNR, signal level, etc.)(dynamic)
 - from probing module (dynamic)
 - from QoS agreements (if available)

Adaptive Streaming

Adaptive Streaming

Streaming of a 300 kbps video clip with two handoff (WLAN-UMTS-WLAN)

Adaptive Streaming

Handoff UP (from WLAN to UMTS): session handoff (from a stream at 300 kbps to a stream at 100 kbps) is performed before the network handoff by means of a 'handoff warning' notification subscription issued by the RTSP client to te MM module.

Handoff DOWN: session handoff follows network handoff. 'handoff notification' is used.

Adaptive VoIP

Adaptive VoIP

- Adaptation at the session layer:
 - dynamic change of codec
 - turn on/off video subsession
 - update location at the SIP registrar
- Adaptation at the application layer:
 - change buffer dimension to avoid packet discarding due to jitter