

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

## Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

### **About Google Book Search**

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/



GODFREY LOWELL CABOT SCIENCE LIBRARY of the Harvard College Library

# This book is FRAGILE

and circulates only with permission.

Please handle with care
and consult a staff member
before photocopying.

Thanks for your help in preserving Harvard's library collections.





in city

#### THE

# ENGINEER'S HANDBOOK

# LONDON PRINTED BY SPOTTISWOODE AND CO NEW-STREET SQUARE

### THE

# ENGINEER'S HANDBOOK

BY

# CHARLES S. LOWNDES

LONDON
LONGMAN, GREEN, LONGMAN, AND ROBERTS
1860

345.11

HARVARD UNIVERSITY

JUN 20 1917 TRANSFERRED TO MANYAND COLLEGE LIBRARY

# PREFACE.

THE Author has endeavoured in this work, to lay before the young engineer the principles which should guide him in the construction of machinery; and to put together in a concise and intelligible form the necessary rules and tables for his assistance. He has himself used most of these rules habitually for many years, and offers them to the public with every confidence.

The rule for calculating the evaporative power of boilers will be found very useful; by its help any engine may be adapted with a boiler capable of supplying it properly with steam, under whatever conditions it may be worked, with unvarying certainty.

The comparative economical effect of using steam expansively is shown clearly and conclusively in the table of expansions, which is recommended to every engineer's particular attention.

The principles which regulate the speed of steam vessels are as yet somewhat obscure. The Author believes that the article on this subject will not be without value, as at least opening the way, in a practical and intelligible manner, to a more complete exa-

mination of the subject. The rule given has been derived from the results obtained from a number of the fastest and most successful steamers both in this country and in America.

In conclusion, the Author would recommend every young engineer, at his leisure, to scrutinise and investigate every rule carefully, either by going down to the principle of it, or by comparing the results obtained from it, with the best and most successful examples that come before his notice.

LISCARD, NEAR LIVERPOOL. Oct. 25, 1859.

# CONTENTS.

|              |            |     | Ī | age |                        | Page        |
|--------------|------------|-----|---|-----|------------------------|-------------|
| Air Pump .   |            | •   |   | 1   | Brickwork              | . 28        |
| Beams, solid | •          | •   |   | 3   | " weight .             | 89.         |
| " cast       | iron, flan | ged |   | 5   | Case Hardening         | 29          |
| " wrou       | ght iron   | •   |   | 6   | Centre, main           | 40          |
| ", engir     | 1e .       | •   |   | 39  | Centrifugal Force .    | . 29        |
| Bilge Pump.  |            | •   |   | 10  | Chimney                | . 21        |
| " injectio   | on .       |     |   | 60  | Coal'                  | . 22        |
| Boiler evapo | ration     |     |   | 11  | Cocks                  | . 29        |
| " econo      | my.        |     | • | 15  | Cold water Pump .      | . 30        |
| " · power    |            |     |   | 11  | Columns, solid         | . 30        |
| " propo      | rtions     |     |   | 16  | " hollow, wrought iron | 32          |
| " streng     | th .       | •   | • | 17  | Condensor              | . 35        |
| " rivetti    | ng .       |     | • | 18  | Connecting Rod         | . 39        |
| " form       | and settir | ıg  | • | 19  | Copper, strength       | . 78        |
| ,, furnac    | е .        |     | • | 20  | " weight               | . 89        |
| " tubing     | <b>.</b>   |     |   | 21  | Crane                  | . 36        |
| " chimn      | ey .       |     |   | 21  | Crank Pin              | . 40        |
| " · coal     |            |     | • | 22  | Crosshead              | . 40        |
| Bolt and Cu  | tter ,     |     | • | 23  | Cutter                 | . 23        |
| Boring and ' | Turning    | •   |   | 24  | Engine, power          | . 38        |
| Bracket      |            | •   |   | 66  | " friction             | . 38        |
| Brass, comp  | osition    |     | • | 24  | " sizes                | . 39        |
| " castin     | g .        | •   | • | 24  | " proportion of parts  | . 39        |
| " mould      | ing .      | •   |   | 27  | " expansion .          | . 41        |
| " crucib     | les .      |     | • | 27  | " evaporation necessar | y           |
| " streng     | th .       |     | • | 78  | to supply .            | . 42        |
| " weigh      | t.         | •   | • | 89  | " economy of expansion | a <b>43</b> |

## CONTENTS.

|                             | P | age |                            | 1 | Page |
|-----------------------------|---|-----|----------------------------|---|------|
| Engine, table of expansion  | , | 45  | Soldering                  |   | 71   |
| " modes of expansion        |   | 48  | Steam, volume              |   | 73   |
| " speed                     |   | 51  | " velocity                 | • | 74   |
| Fans .                      |   | 52  | Steam pipe                 |   | 40   |
| Feed Pump                   |   | 54  | Steam vessel, resistance   |   | 74   |
| Fly Wheel                   |   | 56  | " propelling               |   | 76   |
| Friction                    |   | 57  | " speed .                  |   | 77   |
| " of engines .              |   | 38  | Stone, crushing force .    |   | 78   |
| Governor                    |   | 57  |                            |   | 89   |
| , for water wheel           |   | 85  | Strength of Materials .    |   | 78   |
| Gudgeon                     |   | 58  | Table of Decimal Parts     |   | 92   |
| Heat                        |   | 58  | " Areas                    |   | 93   |
| Injection                   |   | 58  | ,, ,, .                    |   | 94   |
| Iron, strength              |   | 78  | " Squares and Cubes        |   | 99   |
| " weight .                  |   | 89  | " Square and Cub           | е |      |
| Lead, strength              |   | 78  | Roots                      |   | 110  |
| " weight                    |   | 89  | Tempering                  |   | 79   |
| Locomotive, evaporation     |   | 61  | Timber, strength           |   | 78   |
| " traction .                |   | 62  | " weight                   |   | 89   |
| " resistance .              |   | 62  | Valve spindle              |   | 40   |
| Paddle Wheel, proportions   | • | 63  | ,, shaft                   |   | 40   |
| " slip .                    |   | 64  | Water                      |   | 80   |
| Parallel Motion Rod .       |   | 40  | " discharge through orific | е | 80   |
| Pedestal and Bracket        |   | 66  | Water Wheels               | • | 82   |
| Piston Rod                  |   | 40  | " " power .                | • | 83   |
| Ports                       |   | 40  | " " water supply           |   | 83   |
| Rivet                       | • | 18  | " " ventilation            | • | 84   |
| Rope                        | • | 67  | " " governor               |   | 85   |
| Screw                       |   | 67  | Weight, rules              | • | 87   |
| Screw Propeller, proportion | 8 | 68  | " boiler plates .          | • | 88   |
| " slip .                    | • | 69  | " of materials .           | • | 89   |
| " speed                     | • | 70  | Wheels, power              | • | 89   |
| Shaft                       | • | 70  | " strength                 | • | 90   |
| " engine                    | • | 40  | ,, proportions .           | • | 91   |
|                             |   |     | 1                          |   |      |

#### THE

# ENGINEER'S HANDBOOK.

#### AIR PUMP.

Contents at least  $\frac{1}{8}$  of that of cylinder, medium about  $\frac{1}{8}$  of cylinder, occasionally  $\frac{1}{8}$  of cylinder.

Air pump rod usually 1 diameter of pump.

Cylinder diameter 
$$\times$$
 '5 gives  $\frac{1}{8}$  When the stroke is  $\frac{1}{2}$  ,  $\times$  '575 ,  $\frac{1}{8}$  that of the piston.

For engines working with steam of 4 or 5 lbs. pressure, and for all engines where the pressure is reduced down to that of the atmosphere at the end of the stroke,  $\frac{1}{8}$  of the cylinder's content will be found sufficient. For engines using steam of 10 or 12 lbs. throughout,  $\frac{1}{8}$  will be a proper size, but for engines working with a pressure of 20 lbs., and carrying their steam throughout, the largest size will be preferable. With these proportions the pump will be capable of lifting fully four times as much water as it will have to do to keep the condensor clear, as will be seen from the examples below.

For instance, take a cylinder 40 ins. diameter, 5 ft. stroke, at 20 revolutions per minute. This cylinder with 5 lbs. steam,  $\frac{4}{5}$  full, requires 1 cubic foot water per minute, in the form of steam (see page 42), requiring 23 5 cubic feet water per minute to condense it (see page 59): being  $24\frac{1}{2}$  cubic feet of water to be removed by the pump every minute; pump 20 ins. diameter, 2 ft. 6 in. stroke,  $\frac{1}{6}$  capacity of cylinder,

Digitized by Google

will lift 109 cubic feet per minute, being fully four times the quantity required.

Now take the same cylinder with 20 lbs. steam,  $\frac{4}{5}$  full, the quantity of water required in the form of steam will be 1.76 cubic feet per minute, requiring 40 cubic feet of water to condense it; being 41.76 cubic feet of water for the pump to lift. If the pump is now made 26 ins. diameter  $\times$  2 ft. 6 in. stroke, equal  $\frac{1}{5}$  content of cylinder, it will be capable of lifting 187 cubic feet per minute; being still above four times the quantity required.

Though this large size, in proportion to the work required, necessitates a considerable expenditure of power when the pump is being lifted up, a part of this force is restored to the engine during the first portion of the down stroke; and it is most probable that the benefit to the vacuum in the condensor more than compensates for the extra load on the engine.

The principal points to be observed in designing air or vacuum pumps.—Both foot and delivery valves should be as accessible as possible, and arranged so as to be removeable without interfering with the pump bucket. As small a space as possible should be allowed between the valves and the bucket, especially between the delivery valve and the bucket, when the latter is at the top of its stroke; for the bucket will always carry with it as much water as will fill this space, and the more water there is upon the bucket, the greater will be the obstruction to the passage of the hot air and steam (which it is partly the object of the air pump to remove), as these will have to be compressed until they are able to force a passage through the water on the bucket,

Air pumps for land engines usually of cast iron with cast iron buckets; delivery and suction valves with brass faces; valves of brass or india-rubber. Air pumps for marines, either all brass, or of cast iron lined with brass; buckets and valve seats, all of brass; valves, brass, or india-rubber; rods, either of copper or composition; or for large engines,

of wrought iron, with a shell of brass cast round it. The buckets for large pumps, instead of having one large valve, sometimes have a number of small valves, each about the diameter of the available space between the rod and the edge; when thus arranged, the valves are of a more convenient size, and even though one or two were to get out of order, the pump would still be able to do its work.

Size of valves or passages usually 1 the area of pump.

It may be observed with respect to these, that the speed of the water through them should not be made to exceed 500 ft. per minute; that is, a pump working at a speed of 100 ft. per minute should have a clear area through its valves and bucket of at least  $\frac{1}{5}$  the area of the pump, and if working faster than this, the area of passages should be increased proportionably.

Double acting air pumps.—The efficiency of these depends principally on the position of the condensor, the bottom of which should be at least as high as the top of the pump, if it can possibly be so arranged.

#### BEAMS.

SOLID, RECTANGULAR, AND ROUND: TO FIND THEIR STRENGTH.

Square and rectangular.

 $\frac{(\text{Depth ins.})^2 \times \text{Thickness ins.}}{\text{Length, ft.}} \times \text{Tabular No.} = \text{Breaking}$ 

weight, tons.

Round.

 $\frac{\text{(Diameter ins.)}^3}{\text{Length in ft.}} \times \text{Tabular No.=Breaking weight, tons.}$ 

Hollow.

 $\frac{\text{(Outside dia. ins.)}^3 - \text{(Inside dia. ins.)}}{\text{Length, ft.}} \times \text{Tabular No.} =$ 

Breaking weight, tons.

в 2

| Thickness not exceeding {                    | l inch for iron.<br>3" for wood. | 2 ins. for iron.<br>6" for wood. | 3 ins. for iron.<br>12" for wood. |  |  |  |  |  |  |
|----------------------------------------------|----------------------------------|----------------------------------|-----------------------------------|--|--|--|--|--|--|
| Square and Rectangular.                      |                                  |                                  |                                   |  |  |  |  |  |  |
| Cast and Wrought Iron . 1 '85 '7             |                                  |                                  |                                   |  |  |  |  |  |  |
| Teak and greenheart Pitch pine, and Canadian | •36                              | •32                              | •26                               |  |  |  |  |  |  |
| oak<br>Fir, red pine, and English            | •25                              | •22                              | ·18                               |  |  |  |  |  |  |
| oak                                          | · •18                            | ·16                              | •13                               |  |  |  |  |  |  |
| Round.                                       |                                  |                                  |                                   |  |  |  |  |  |  |
| Cast and Wrought Iron.                       | •8                               | •68                              | •56                               |  |  |  |  |  |  |
| Teak and greenheart .                        | ·28                              | •25                              | •2                                |  |  |  |  |  |  |
| Fir and English oak .                        | ·14                              | ·125                             | •1                                |  |  |  |  |  |  |

To find the Breaking Weight in lbs. use the Tabular No. below.

| Thick                   | ness no | t exceeding | { | l inch for iron.<br>3" for wood. | 2 ins. for iron.<br>6" for wood. | 3 ins. for iron.<br>12" for wood. |  |  |  |  |
|-------------------------|---------|-------------|---|----------------------------------|----------------------------------|-----------------------------------|--|--|--|--|
| Square and Rectangular. |         |             |   |                                  |                                  |                                   |  |  |  |  |
| Iron                    |         | •           | • | 2240                             | 1900                             | 1570                              |  |  |  |  |
| Teak                    |         | •           |   | 800                              | 710                              | 570                               |  |  |  |  |
| Fir and                 | doak .  |             |   | 400                              | 355                              | 285                               |  |  |  |  |
|                         |         |             |   | Round.                           |                                  |                                   |  |  |  |  |
| Iron                    |         | •           |   | 1800                             | 1570                             | 1260                              |  |  |  |  |
| Teak                    |         |             |   | 640                              | 570                              | 460                               |  |  |  |  |
| Fir and                 | oak     |             |   | . 320                            | 285                              | 230                               |  |  |  |  |

A wrought iron bar 
$$1'' \times 1'' \times \begin{cases} \frac{1}{16} \text{ with 1 ton.} \\ \frac{1}{10} \text{ or long} \end{cases}$$
 deflects  $\frac{1}{8}$  ,  $\frac{1}{4}$  ,  $\frac{1}{4$ 

The above rule gives the weight that will break the beam if put on the middle. If the weight is laid equally all over, it would require double the weight to break it.

A beam should not be loaded with more than  $\frac{1}{3}$  of the breaking weight in any case, and as a general rule not with more than  $\frac{1}{4}$ , for purposes of machinery not with more than  $\frac{1}{6}$  to  $\frac{1}{10}$ , depending on circumstances.

To find the proper size for any given purpose.

## Rectangular.

Weight × Length ft.

Tabular No.

stances = B D<sup>2</sup> ins.

#### Round.

3/Weight × Length, ft. ×3 or 4 or 6, &c. according to circumstances = diam. ins.

CAST IRON WITH FEATHERS OR FLANGES: TO FIND THEIR STRENGTH.

Sec. area, bottom flange ins.  $\times$  depth ins.  $\times$  2 = Breaking Length in feet.

weight, tons.

If the metal exceeds 1 inch in thickness deduct 1/8.

If above 2" deduct 1.

This description of beam is of the strongest form, when the sectional area of the bottom flange is six times that of the top flange.

In designing this description of beam, the bottom flange may be from  $\frac{1}{2}$  to  $1\frac{1}{2}$  the depth of beam; the top flange from  $\frac{1}{4}$  to  $\frac{1}{3}$  the width of the bottom one, and  $\frac{2}{3}$  to  $\frac{1}{4}$  the thickness of it; the feather being made at the top a little

thicker than the top flange, increasing to the bottom to nearly the thickness of the bottom flange; in this way avoiding any sudden variation in the thickness and saving

Fig. 1.

weight; many engineers, however, prefer keeping the same thickness throughout in every part. The vertical brackets for stiffening the girder should not be made straight, but hollowed out something like the sketch, as thus they are much less liable to crack, and all the corners should be well filled in.

In most cases it is necessary that the beam should be of uniform depth

throughout; it will, however, save weight, without diminishing the strength of the beam, if the width of the bottom flange be reduced very considerably towards the ends;  $\frac{1}{2}$  of the width of the middle being quite sufficient; care being taken to maintain a sufficient surface for bearing, if the beam has to be carried on a wall.



#### WROUGHT IRON BEAMS.

I. Girders.—The sketch shows a very strong form for Fig. 3. this description of girder, when rolled solid. The top flange being condensed and square is in a good form to resist compression; the bottom flange has a wider surface to rest on, and the middle rib is light; an experimental beam of this description 8 ins. deep and 11 feet long requiring 5 tons to break it.

The top flange should have a sectional area  $1\frac{1}{2}$  times that of the bottom.

When thus proportioned:

Sec. area top flange, ins.  $\times$  depth ins.  $\times$  5 = Breaking weight Length feet.

in tons.

This is an inferior shape.

In such a beam the top flange should have an area  $1\frac{3}{4}$  that of the bottom flange.

When thus proportioned:

 $\frac{\text{Sec. area top flange ins.} \times \text{depth ins.}}{\text{Length feet.}} \times 4 =$ 

Breaking weight, tons.



Beams of the above forms, made of plates and of L iron, are of equal strength with the above; care being taken to make the bottom flange of double plates, with joint plates over the butts, allowing a little extra area in the bottom to compensate for the rivet holes, though this is not necessary if they are rivetted up by steam.

#### WROUGHT IRON BEAMS.

Hollow Girders.— The sketch represents the form for hollow girders combining the greatest strength with the least weight, the top being in the best form for resisting compression.

The proportion of the bottom sectional area to that of the top should be as 11 to 12, or  $\frac{4}{5}$ ; and the sides should be well stiffened with angle iron, to keep them from buckling; the sectional area of the top and bottom may be reduced at the extremities to  $\frac{1}{3}$  of the area

Fig. 5.

at the middle, without diminishing the strength of the beam.

When thus proportioned:

Section. area top, ins. × depth ins.

Length feet.

Length feet.

An experimental beam of this form, 75 feet long between supports, 4' 6" deep, with 6 cells at the top, about 6" square each, with a sectional area 24 sq. ins., the sides stiffened with  $1\frac{1}{2}$   $\perp$  irons, 2 feet apart, required 86 tons to break it.

Fig. 6.

In the plain hollow girder the top should have a sectional area 13 that of the bottom.

Thus proportioned:

 $\frac{\text{Sec. area top, ins.} \times \text{depth ins.}}{\text{Length feet.}} \times 4 = \text{Break-ing weight, tons.}$ 

To find the strength of a round girder.

Fig. 7.  $\frac{\text{Sec. area, ins.} \times \text{dia. ins.}}{\text{Length feet.}} = \text{Breaking weight,}$ tons.

To find the strength of any beam.

If the top flange is the weakest, find the compressive breaking strain in tons per square inch due to its shape, thickness, and length. (See Columns.)

If the bottom is the weakest, find the tensional breaking strain of the material in tons per square inch.

Then,

Sec. area ins. of  $\times$  breaking strain, tons pr. inch  $\times$  depth of beam ft.  $\times$  4 weakest flange

Length between supports, feet.

=Breaking weight, tons.

This rule will be found useful, either to confirm the results obtained from the previous rules, or to find the strength of any beams of irregular shape not included in them.

The mode of ascertaining the compression and tension on the top and bottom flanges of beams is sufficiently simple.

Take the case of a beam, 20 feet long, 2 feet deep, with a weight of 20 tons on the middle; the force counteracting this weight will be 10 tons on each end; the force of com-



pression at the top in the middle of the beam, and that of tension at the bottom, taking the central weight as the fulcrum, will be just in proportion to the leverage; in this case, as 10 to 2, or 5 to 1. The force of 10 tons applied to the end will thus result in a force of 50 tons of compression and tension on the flanges in the middle of the beam. Or in a simple form,

 $\frac{\text{Weight, tons} \times \text{length, feet}}{\text{Depth, feet} \times 4} = \text{Strain on top and bottom}$  flanges, tons.

The ultimate compressive strength of boiler plate iron may be taken at 16 tons per square inch, the tensile strength at 20 tons per square inch; and this is the reason why, in all wrought iron beams, the top requires to be the strongest.

But as in cast iron the compressive strength is about 48 tons, while the tensile strength is only about 7 tons per square inch, the bottom flange in cast iron girders requires to be much the strongest.

The fullest information on this subject, and the experiments in detail, will be found in Mr. Eaton Hodgkinson's

experiments on the strength of cast-iron beams, and in Mr. Edwin Clark's work on the Britannia and Conway tubular bridges.

#### BILGE PUMP.

Usually same capacity as the feed pump; if, however, the



engine is very small in proportion to the vessel, it should be made larger than this. Principal points to be observed in construction and arrangement: the pump should be so arranged that it may be connected or disconnected without stopping the engine; various ways of effecting this will occur to every engineer. A simple and safe way for beam engines is shown in the sketch.

The pump rod passes through the air pump cross-

head, having a good shoulder below; the pump is put in gear by driving in the cutter when the crosshead is at the bottom of its stroke. When in gear the rod works through the guide a, when out of gear the rod itself forms a guide for the crosshead. The cutter should have a crosspin for security, and should be hung up clear of the engine when not in use.

The valve box should be fixed in a convenient place clear of the engine, and some height above the ship's floor, so that it may be examined, and cleared if necessary, without stopping the engine; and so that it may be accessible even though there should be a good deal of water in the vessel.

The discharge pipe should be connected to the ship's side close under the deck, or, at all events, considerably above the water line; this is an important point, as it may happen that both valves will get choked, and if the discharge is below the water surface there is nothing to prevent the water from flowing from the sea into the hold, besides which the valve box cannot be overhauled without a great deal of difficulty.

The suction pipe should have a large copper rose with small holes in a convenient and attainable place for keeping The pump should be fitted with a pet cock.

Plunger and valve seats of gun metal.

Valves of gun metal or india-rubber.

Discharge pipe of copper.

Suction pipe usually lead, but copper is preferable.

#### BOILERS.

To find the horse power approximately.

Land boiler 
$$\frac{\text{(Dia. ft. + dia. inter. flue)} \times \text{length ft.}}{6}$$
=H.P.

Marine boiler 
$$\frac{\text{Rough cubic contents}}{16} = \text{H.P.}$$

To find the evaporating power of any boiler.

Find the effective heating surface in square feet of the furnace and flues separately.

All top horizontal surface

being taken as effective surface.

light to light the horizontal surface of moderate curves, as the bottom of waggen half.

Then 
$$\frac{\text{Furnace eff. surface}}{3} + \frac{1 \text{st flue eff. surface}}{3 \sqrt{\text{prop. of flue} + \text{furnace to fire}}}$$

+ 
$$\frac{2nd \text{ flue eff. surface}}{3\sqrt{\text{prop. of total flue + furnace to fire}}$$

= Water evaporated in cubic feet per hour from cold fresh water, when burning the following quantities of coal per square foot of grate per hour.

| 10 lbs. best Welsh coal.                                             | 15 lbs. Scotch coal.        |
|----------------------------------------------------------------------|-----------------------------|
| 12 ,, average do. 13 ,, good Newcastle, Lan- cashire, and Yorkshire. | 11½, patent fuel. 10, coke. |

The evaporation when burning a less or greater quantity with the natural draught being nearly in direct proportion to the quantity of coal consumed, up to 15 lbs. best Welsh coal per foot per hour and up to 30 lbs. of the fast burning coals.

The following table will assist in finding the divisors: -

| Total to | Fire. | Divisor. | Total to | Fire. | Divisor. | Total | to Fire.    | Divisor. |
|----------|-------|----------|----------|-------|----------|-------|-------------|----------|
| 1.1      | √×3   | 3.15     | 5.5      | √×3   | 7.02     | 16    | √ × 3       | 12.      |
| 1.2      | _     | 3.27     | 6        |       | 7:38     | 17    |             | 12:36    |
| 1.3      |       | 3.42     | 6.5      |       | 7.65     | 18    |             | 12.72    |
| 1.4      |       | 3.54     | 7        |       | 7.92     | 19    | -           | 13.08    |
| 1.5      |       | 3.675    | 7.5      | _     | 8.16     | 20    | _           | 13.41    |
| 1.6      | _     | 3.795    | 8        | _     | 8.49     | 21    | -           | 13.74    |
| 1.7      |       | 3.9      | 8.5      | _     | 8.7      | 22    |             | 14.07    |
| 1.8      | _     | 4.02     | 9        | -     | 9        | 23    |             | 14.4     |
| 1.9      |       | 4.12     | 9.5      |       | 9.24     | 24    | <del></del> | 14.7     |
| 2        | _     | 4.2      | 10       |       | 9.48     | 25    |             | 15.      |
| 2.5      | _     | 4.74     | 10.5     |       | 9.72     | 26    | -           | 15.3     |
| 3        |       | 5.19     | 11       |       | 9 96     | 27    |             | 15.6     |
| 3.5      |       | 5.61     | 12       |       | 10.38    | 28    |             | 15.9     |
| 4        |       | 6        | 13       |       | 10.8     | 29    | _           | 16.2     |
| 4.5      |       | 6.36     | 14       | _     | 11.22    | 30    |             | 16.43    |
| 5        | _     | 6.72     | 15       | _     | 11.61    | 1     |             |          |

In marine boilers there must be deducted from the final result,  $\frac{1}{8}$  for the loss in blowing off, if with ordinary blowoff cocks,  $\frac{1}{10}$  if with surface blowoff cocks.

The close approximation this mode of calculating will give to the actual evaporation, will be seen from the two following well-known boilers:—

# Waggon Boiler, Albion Mills.

$$\left. \begin{array}{c} 16' \ 0'' \ \text{long} \\ 6' \ 0'' \ \text{wide} \\ 8' \ 6'' \ \text{high} \end{array} \right\} \ \text{Flue through boiler} \ 4' \ 3'' \ \text{diam.} \\ \text{Furnace} \ 6' \ 0'' \ \text{wide} \ \times \ 4' \ 0'' \ \text{long.}$$

Fire surface, 24 square feet.

| ]            | Divisor.     | Eff. f | t. | Cub. f | ì.                   |
|--------------|--------------|--------|----|--------|----------------------|
| Furnace      | . <u>1</u> . | 27     | =  | 9      | evaporated per hour. |
| Under boiler | 1 4:36       | 81     | =  | 12.7   | "                    |
| Flue         |              | 85     |    |        | 99                   |
| Round        |              | 100    |    |        | >>                   |
|              |              |        |    | 41.7   |                      |

That is 41.7 cubic feet of water evaporated per hour while burning 13 lbs. Newcastle coal per foot per hour, equal to 52.7 cubic feet while burning 16.5 lbs. per foot.

Actual evaporation 55.6 cubic feet per hour, from 100° burning 16½ lbs. Newcastle coal per foot, per hour.

Explanation. — Furnace, effective feet divided by 3 gives 9 cubic ft. Under the boiler  $\frac{81 \text{ ft} + 27 \text{ ft. furnace}}{24 \text{ ft. fire}}$  gives 4.5 as the proportion of absorbing surface to fire, and  $3\sqrt{4.5}$  gives 6.36 as divisor for the surface under the boiler.

Flue 
$$\frac{85 \text{ ft.} + 108 \text{ ft. previous surface}}{24 \text{ ft. fire}} = 8 \text{ and } 3\sqrt{8} = 8.5$$

as divisor for this. The divisor for the surface round the boiler being found in exactly the same way.

#### Cornish Boiler.

36' 0" long Tube through boiler 4' 0" diar.
6' 0" diam. Furnace 4' 0" wide, and 6' 0" long.
Fire, 24 square feet.

|              | Divisor. | Eff. Su | rf. | Cub. ft. |               |
|--------------|----------|---------|-----|----------|---------------|
| Furnace      | 1/3      | 30      | =   | 10 eva   | ap. per hour. |
| Remainder of | f flue 🖁 | 157     | =   | 19.6     | ,,            |
| Round        | 11.6     | 172     | =   | 15.7     | ,,            |
| Under        | 1<br>14  | 172     | =   | 12.      | ,,,           |
|              |          |         |     | 57.3     |               |

57.3 cubic feet while burning 12 lbs. Welsh coal per square foot per hour; equal to 13.5 cubic feet while burning 2.83 lbs. per foot.

Actual evaporation 11.8 cubic feet from 100° while burning 2.83 lbs. Welsh coal per foot, per hour.

The cause of the deficiency in this case in the actual evaporation below the calculated will appear pretty clearly in treating of the economy of boilers.

For Boilers with an artificial draught, see LOCOMOTIVE.

## To ascertain the actual evaporation of any boiler.

After the boiler has been at work a little time, and is doing its best, feed up the boiler to the top of the glass, and then shut the feed completely off: weigh all the coal put on after this time, and notice the time occupied in reducing the water from the top of the glass to the bottom. From these data the effective evaporating power of the boiler can be ascertained very closely, care being taken to leave as much fire at the termination as at the commencement.

To find the evaporation from the above data.

Water surface, sq. ft. × evaporation ins. × 5
Minutes occupied in evaporation
water, cubic feet, per hour.

## To find the economical evaporation.

Evaporation per hour, cubic ft.  $\times$  62.5 = Water evaporated coal consumed per hour, lbs. lbs. per lb. of coal.

#### ECONOMY OF BOILERS.

The comparative economical results, derived from boilers with different proportions of heating surface, and with different rates of combustion, are shown in the following experiments made by the Admiralty on a marine boiler at Woolwich of 80 H.P. the size of the furnace being varied, and the experiments being made with the best Welsh coal, hand picked.

Tube surface, 330 effective square feet.

|   | Fire Grate. | Total effective<br>surface<br>to Fire. | Coal burnt<br>per hour per<br>sq. ft. grate. | Evaporation<br>per hour cubic<br>feet water. | Evaporation<br>from 100° per<br>lb. coal. |
|---|-------------|----------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------|
| 1 | 52 sq. ft.  | 9 to 1                                 | 7 lbs.                                       | 70                                           | 9·3 lbs.                                  |
| 2 | ""          | " "                                    | 15 "                                         | 110                                          | 8.8 "                                     |
| 3 | 34 sq. ft.  | 13 to 1                                | 9 lbs.                                       | 55                                           | 11.23 lbs.                                |
| 4 | ,, ,,       | " "                                    | 12 "                                         | 68                                           | 10.4 "                                    |
| 5 | 26 sq. ft.  | 16.7 to 1                              | 10½ lbs.                                     | 56                                           | 12.8 lbs.                                 |
| 6 | ,, ,,       | ,, ,,                                  | $10\frac{1}{2}$ lbs. $17\frac{1}{2}$ ,,      | 77                                           | 10.88 "                                   |

In the two boilers previously calculated, if the evaporation be reduced to lbs. water, per lb. best Welsh coal, the result will be:—

|                         |     |   | Total effective surface to Fire. | Evaporation from 100° per ib. coal. |
|-------------------------|-----|---|----------------------------------|-------------------------------------|
| Albion Mills<br>Cornish | : : | • | 13 to 1<br>22 to 1               | 11.4 lbs.<br>13.3 ,,                |

The Albion Mills boiler giving an economical result fully

higher than the Woolwich boiler, with the same proportion of absorbing surface to fire grate.

The Cornish boiler, though with considerably more surface, and working at an exceedingly slow rate of combustion, very slightly exceeding in economical effect the Woolwich boiler with a quick combustion; and even this advantage being possibly derived from the different quality of coal the boiler is calculated as using.

It would seem nearly conclusive from these examples that there is no advantage in point of economy in having a larger proportion of total effective surface to the fire than 16 to 1. It would also seem that very great economy can be obtainable with a fair rate of combustion, and that the excessively slow combustion practised in Cornwall is not a requisite.

#### PROPORTIONS OF BOILERS.

Marine. Land.

Fire grate '5 to '8 '7 to 1 sq. ft. per nom. H.P. Total heating surface 15 ,, 25 15 ,, 35

A very good proportion for both purposes will be found.— Fire grate \(\frac{3}{4}\) sq. ft. per H.P. or per cubic foot to be evaporated per hour; and Total effective heating surface varying from 9 to 16 square feet for every foot of fire grate; 9 as a minimum, when the boiler is required to be as compact as possible; 16 as a maximum, when the greatest economy of fuel is desired.

In the case, however, of engines working much above their nominal power, of engines working expansively, and of most marine engines, the proper plan is to ascertain what steam is really required by the engine, and what evaporation of water will be required to produce that steam (see Engines, page 42), and then to arrange the proportions of the boiler, so as to give the required result when calculated over by the previous rule for ascertaining the evaporative power of boilers.

Section through tubes  $\frac{1}{4}$  to  $\frac{1}{7}$  of fire grate. ,, chimney  $\frac{1}{7}$ ,  $\frac{1}{9}$ , ,

The smaller proportion is sufficient when a moderate rate of combustion is intended, say 13 or 14 lbs. per foot per hour, of Newcastle coal. The larger size will give a quicker draught, and will enable the boiler to burn without forcing much more coal, and to evaporate an increased quantity of water nearly in proportion to the coal consumed, provided the chimney be not deficient in height. (See CHIMNEY, page 21.)

#### STRENGTH OF BOILERS.

To find the pressure that a circular boiler may be safely loaded with, if made of the best Staffordshire plates.

 $\frac{11200}{\text{Dia. ins.}} \times \text{thickness of shell} = \text{Pressure in lbs. per sq. in.}$ 

Thus loaded, the strain on the boiler is equal to about  $\frac{1}{6}$  the breaking strain.

Or simply, if the shell is of 3 plates, best Staffordshire,

 $\frac{350}{\text{Dia. feet.}}$  = Pressure in lbs. per sq. in. it may be safely loaded with.

For every  $\frac{1}{16}$  additional thickness up to  $\frac{1}{2}$  thick, add  $\frac{1}{6}$ . For best Yorkshire plates ,,  $\frac{1}{5}$ . For double rivetted longitudinal seams ,  $\frac{1}{2}$ .

Digitized by Google

To find the strain on the plates with a given pressure in a boiler.

 $\frac{\text{Dia. ins.} \times \text{ pressure lbs. per in.}}{\text{Thickness plates} \times 2.} = \text{Strain on plates per sq. in.}$ 

A seam single rivetted will bear \( \frac{2}{3} \) of the weight that will \( \text{, double rivetted } \), \( \frac{2}{5} \) break the solid plate, \( \text{provided the rivets be properly proportioned and spaced.} \)

In large circular boilers with internal tubes, especially when the boiler is very long, the flue tubes require to be carefully strengthened, if intended to carry the same strain as the shell is capable of. In some experiments that Mr. Fairbairn made on a boiler 7' 0" diameter, 30 ft. long, with 2 flues 3' 0" diameter; one of the flues collapsed with 100 lbs. per sq. in., while the shell would require 300 lbs. per sq. in. to burst it.

Mr. Fairbairn also found that a tube 3'6" diameter, 10'0" long, required 300 lbs. per sq. in. to collapse it; and he recommends rigid rings, at intervals of 10 ft., to be used for stiffening the internal flues, in those cases where the length and the pressure make it necessary.

#### RIVETS.

The following will be found good proportions: -

Dia.=twice thickness of plates
Distance centre to centre=3 times dia.

Single rivetting.

Dia.=1½ times thickness of plate Centre to centre=4 times dia.

Double rivetting.

#### FORM OF BOILERS.

The common egg ended boiler is a good form for small sized boilers.

Diameter, 2' 6" to 3' 6". Length 5 to 8 times diameter, and sometimes even longer.

The best way of setting, if the boiler is long enough, is with a straight flue from the fire all under the boiler, bricked an equal distance from the boiler all along, to make the heat spread properly; the length of fire grate being made about  $\frac{1}{6}$  the length of the boiler, and the boiler being carried either on a thin central wall or on brackets.

The Cornish boiler is a very good form for sizes from 4'0" to 6'0" diameter, either egg ended, or flat ended; length 4 to 5 times diameter, with a fire flue inside. The simplest way of setting is with a central wall, the flue round the outside dipping under the front to return.

It is a good plan in making this description of boiler to put the angle iron for the front on the outside; this will enable the fire flue to be 3 ins. larger in diameter at the furnace end than it would otherwise be, which, especially in small boilers, is a considerable advantage for the furnace. Boilers above 6' 0" may have 2 flues inside; length of boiler 3 to 4 times diameter.

In setting land boilers, of whatever description or form, it will be found very beneficial to set the brickwork as close to the boiler all along as possible, leaving a proper sectional area to the flue; the effect of this is to keep the flame or heat closely and equally in contact with the surface of the boiler, which also gets the benefit of the heat radiating from the brickwork; this tells when the furnace is fresh coaled, and boilers set in this way always make steam steadily.

For marine boilers of the ordinary description, it is an improvement to have dry water bottoms, and an outside

smokebox; the dry water bottoms are a decided improvement, saving both weight, cost, and fuel; and as the old water bottoms were always exposed more or less to the damp and steam from the bilge, they nearly always gave out before the rest of the shell of the boiler, and were very troublesome to repair.

The smoke box outside is also an improvement, provided that the boiler has sufficient surface in the tubes to absorb the heat from the fire properly, otherwise it becomes very hot. If, however, the chimney take up is made to pass through the steam space or steam chest, particular care should be taken to carry it up as straight as possible after it is once clear of the water, as this part of the boiler is exceedingly liable to be burned away; it is also liable to salt up very fast in the thin space between the boiler front and the take up, and it is a good plan to have a cock on the front, and to blow off the saturated water regularly from this part of the boiler.

It is also an improvement to have the crowns of the furnaces semicircular, as they then require no stays above the fire, and are much less liable to buckle.

#### FURNACE.

The length of furnace, in a round fire flue, should not much exceed twice the diameter of the flue, if a quick draught is desired; otherwise there will not be sufficient area over the bridge, nor at the front for admission of air.

And 8 ft. is the outside length advisable in any case.

2' 6" to 2' 10" from the floor is the most convenient height for firing.

Bars,  $\frac{1}{3}$  to  $\frac{3}{4}$  thick  $-\frac{3}{8}$  to  $\frac{5}{8}$  spaces, depending on the quality of the coal.

Working height of water over flues 8" to 10"; 4" minimum working height in any case.

 $10\frac{1}{2}$ " clear must be left between bottom of tubes and crown of furnaces in marine boilers, in order to allow room for scraping and scaling the furnace tops and sides.

#### TUBING.

In tubing marine boilers with iron tubes, a good plan is, after putting the tube into its place, first to hammer out

a slight swell behind the tube plate with a ball end hammer, then rivet and turn over and finish with a good moulding tool; this is a simple and secure way, and every tube acts as a stay both ways.

For brass tubes for locomotives, drift up mandrels at both ends at the same time, take out mandrels and rivet over, then put in again and finish with moulding tool.



#### CHIMNEY.

The proper area under any circumstances may be found by Watt's rule.

 $\frac{\text{lbs. coal burned per hour} \times 12}{\sqrt{\text{height, feet.}}} = \text{Area, square inches.}$ 

A common proportion for marines with 2 engines, and locomotives, is to make the chimney the same diameter as the cylinder.

#### BRICK CHIMNEY.

Each side of a chimney with a square base should be 1 ft. wide at least for every 10 ft. in height.

COAL.

The comparative evaporating power of different coals may be stated as follows:—

|              |             |       |            |      | vaporated<br>1 lb. coal. | Space occupied as stowed<br>in Bunkers.<br>Cub. ft. per ton. |             |  |
|--------------|-------------|-------|------------|------|--------------------------|--------------------------------------------------------------|-------------|--|
| 70 . 377 1.1 | 731 1 TT 1. |       |            |      | Average.                 |                                                              | Average.    |  |
| Best Welsh,  |             |       |            |      |                          | 1                                                            | <del></del> |  |
| Duffryn, an  | ıd Merthyı  | 10    | to         | 10.2 | 10                       | 42                                                           | 42          |  |
| Average Wel  | sh.         | 7.5   | <b>5</b> — | 10   | 9                        | 33 to 45                                                     | 39          |  |
| Patent Fuel  |             | 8.8   | <b>5</b> — | 10.3 | 9                        | 32 - 36                                                      | 34          |  |
| Lancashire   |             | . 7.9 | 2 —        | 8.8  | - 8                      | 40 - 46                                                      | 43          |  |
| Newcastle    |             | 6-8   | 3 —        | 93   | 8                        | 40 - 47                                                      | 43½         |  |
| Scotch .     |             | 7     | _          | 8.5  | 7.7                      | 40 50                                                        | 45          |  |
| Derbyshire   |             |       |            |      | 7:3                      |                                                              | 1           |  |
| Dry wood     | •           | 1     |            | •    | 4                        |                                                              |             |  |

The above table does not represent the highest evaporating power of the different coals, but the comparative evaporating power as ascertained in the experimental boiler at Woolwich.

- $12\frac{3}{4}$  lbs. water have been evaporated from  $100^{\circ}$  per lb. best Welsh coal. Woolwich experiments.
- 12½ lbs. water have been evaporated from 100° per lb. best Newcastle, with smoke burning apparatus. Newcastle experiments.

These being the highest results recorded, and both obtained from boilers having about 16 sq. ft. efficient heating surface to 1 sq. ft. of fire grate.

The space allowed in the Navy for stowage is 48 cubic ft. per ton.

#### BOLT-CUTTER.

A strain of 4000 lbs. on whole area is equal to about  $2\frac{1}{2}$  tons per inch on actual area at threads; 6000 on whole area = about 4 tons actual area at threads.

The first is a good proportion to use for joints, &c. which can allow of no perceptible stretching; the last for pedestals, &c. if lightness is particularly requisite.

In long bolts or rods intended to carry a considerable tensile strain, both ends should be swelled out to 1½ times the diameter of the body of the rod, in order to compensate for the loss caused by the cutter hole at the one end and the threads for the nut at the other. And the cutter to have equal strength with the bolts should have the following proportions:—

Depth = 1½ dia. of largest part of rod. Thickness = ·22 ... ...

Cutters for engine work are usually made as follows: -

Depth = dia. of rod or bolt.

Thickness  $= \frac{1}{4}$  do.

Taper ½ per foot, is a good proportion.

A good mode of securing the cutters for those parts of

marine engines, principally the crank end of the connecting rod, which occasionally require to be adjusted while the engine is in motion, is sketched herewith; the screw being put upon the gib instead of the cutter, the cutter can be driven back or forwards without fear of injury; and the nuts being made with projections can be loosened or tightened with a hammer



or tightened with a hammer with the greatest facility.

## BORING AND TURNING.

The best speed for boring cast iron is about  $7\frac{3}{4}$  feet per minute.

For drilling about 10 or 11 feet per minute is a good speed for the circumference of the tool. For a 1" drill 40 revs. = 11 ft. per minute, other sizes in proportion.

For turning, the proper speed for the circumference is about 15 feet per minute.

BRASS.

COMPOSITIONS OF BRASS.

| :                                                                                    |         | Copper.                    | Tin.                 | Zinc.                                   |
|--------------------------------------------------------------------------------------|---------|----------------------------|----------------------|-----------------------------------------|
| Watch-maker's brass . German brass . Yellow brass . Speculum metal . Bell metal .    |         | 1 part 1 ,, 2 ,, 2 ,, 3 ,, | l part               | 2 parts 1 ,, 1 ,,                       |
| Light castings and small bea<br>Ditto a little harder<br>Heavy castings<br>Gun metal | rings . | 4 ",<br>4 ",<br>6 to 7     | 1 ",<br>1 ",<br>1 ", | 1 " " " " " " " " " " " " " " " " " " " |

The addition of a little lead makes the metal more easily wrought, and is advantageous when the work is not intended for exposure to heat.

#### BRASS CASTING.

As it is often useful to engineers, especially abroad, to be able to cast brass, a slight description of the process may not be out of place. The ordinary furnace used is of very simple construction, as may be seen from the sketch annexed.

a is the body of the furnace.

b is the chimney with an area at least 1 that of the fire

Fig. 12.



Fig. 13.



grate; it should be fitted with a damper to regulate the draught.

c is the covering plate.

d tongs for lifting the pot off the fire.

e pouring tongs.

The front bearer for carrying the bars should not be built in as a fixture, but should have a small recess provided for it to slide forward in, so as to let the front end of the bars drop down when required.

After lighting the fire, put the pot intended for use bottom upwards over it, so as to warm gradually through. As soon as the fire is burned well through, put the pot into its place, resting the bottom on a fire brick to keep it off the bars, and filling round with lumps of coke to steady it; then put in the copper, either blocks cut up into pieces of convenient size, or if this is not to be had, sheet copper doubled up; as the metal sinks down add more copper or old brass till the pot is nearly full of melted metal; now add the tin, and when this is melted and mixed, put in a piece or two of zinc; if this begins to flare add the rest of the zinc in, stir it well in, lift the pot off at once, skim the rubbish off the top, and pour into the mould. If, however, it does not flare up, put a little coal on to excite the fire, and cover over till it comes to a proper heat. As soon as the zinc begins to flare, add in the rest, and take the pot off the fire. If old brass alone is melted down no tin is required, but a small quantity of zinc. If part copper and part brass, add tin and zinc in proportion to the new copper, with a little extra zinc for the brass.

As soon as the boxes are run, it is the usual custom to open them at once, and to sprinkle the castings with water from the rose of a watering can, this has the effect of making them softer than they would otherwise be; the boxes are then emptied, and fresh moulds made while fresh metal is being melted.

When the casting is completed, draw the bearer forward, and let the bars all drop, so that the furnace can be effectually cleared from the clinkers, and put the pot among the ashes to cool gradually,

The moulding boxes may be of hard wood, well secured at the corners, either by dovetailing or by strong nails and iron corner plates, with guides to keep the boxes fair with one another. A few cross bars in the top box help to carry the sand.

Fig. 14.



Fresh green sand, the same as used for iron founding, mixed with a small quantity of coal dust, about  $\frac{1}{12}$  part, should be sifted over the patterns on all sides to the thickness of about an inch, the box then filled up with old sand, and properly rammed up, and well pricked to let the air and gas escape, then remove the patterns, and dust over the mould with a little charcoal powder from a bag, or with a little flour, cover over the box again, and the mould is ready for pouring.

For long articles, spindles, bars, &c. make a good airhole at the opposite end from where the metal is poured, incline the box slightly, and pour the metal at the lower end; for flat, thin and straggling articles it is necessary to have two or more pouring holes, and to fill them all at the same time.

The pots generally used are the Stourbridge clay pots, and black lead pots, both kinds being made of various sizes up to 60 lbs.; the former are less durable, but much cheaper

than the latter, they require to be carefully hardened by gradual exposure to the fire.

Clay pots are made of 2 parts raw Stourbridge clay to 1 of gas coke pulverised; well mixed up together with water, dried gently, and slightly baked in a kiln.

Black lead pots of 2 parts graphite, and 1 of fireclay, mixed with water, baked slightly in a kiln, but not completely until required for use.

The pots are made on a wood mould, the shape and size of the inside of the pot, the clay being plastered round it to the thickness desired.

## BRICKWORK.

Bricks. Ordinary size,  $8\frac{3}{4}'' \times 4\frac{1}{4}'' \times 2\frac{1}{2}''$ . Weight, 4 lbs. 15 oz.

272 superficial feet, or 306 cubic feet make 1 rod of reduced brickwork of the standard of 11 brick thick.

1 rod of brickwork weighs 13 tons.

1 cubic foot , , 125 lbs.

18 cubic foot = 1 ton.

To find the number of bricks in any piece of work.

Area of wall in square feet  $\times$  No. of bricks in thickness  $\times 11 = \text{No.}$  of bricks.

For instance; To find the number of bricks in 1 rod reduced brickwork, 12 brick thick.

1 rod = 272 superficial feet.

 $272 \times 1\frac{1}{8} \times 11 = 4488$  the number required.

or, Cubic contents × 14.7 = Number of bricks.

## CASE HARDENING.

Put the articles requiring to be hardened, after being finished but not polished, into an iron box in layers with animal carbon, that is, horns, hoofs, skins, or leather, partly burned so as to be capable of being reduced to powder, taking care that every part of the iron is completely surrounded; make the box tight with a lute of sand and clay in equal parts, put the whole into the fire, and keep it at a light red heat for half an hour to two hours, according to the depth of hardened surface required, then empty the contents of the box into water, care being taken that any articles liable to buckle be put in separately and carefully, end in first.

Cast iron may be case hardened as follows: -

Bring to a red heat, and roll it in a mixture of powdered prussiate of potash, saltpetre and sal-ammoniac in equal parts, then plunge it into a bath containing 2 oz. prussiate of potash, and 4 oz. sal-ammoniac per gallon of water.

## CENTRIFUGAL FORCE.

 $\frac{\text{(Revolutions per min.)}^2 \times \text{dia. in ft.} \times \text{weight}}{5870} = \text{Centri-}$ 

fugal force in terms of weight.

## COCKS.

3 inches per ft. is a very good taper for the plug. Bottom diam. of plug,  $1\frac{1}{4}$  times diam. of hole. Square of plug,  $\frac{1}{4}$  diam. of hole; height the same. Length of handle, 6 times diam. of hole.

For marines and engine work, the principal cocks should always have solid bottoms, and be fitted at the top with a gland packed with hemp or india-rubber.

## COLD WATER PUMP. .

Usually  $\frac{1}{2}$  of cylinder diam. when the stroke is  $\frac{1}{2}$  that of piston.

To find the proper size, under any circumstances, capable of supplying twice the quantity ordinarily used for injection.

Area of pump in sq. ft.

For Rule, see page 42.

## SOLID COLUMNS

| Fail by crushing | wit.  | h length         | under    | :         | 5   | diame    | eters. |
|------------------|-------|------------------|----------|-----------|-----|----------|--------|
| Principally by c | rushi | ing fron         | a        |           | 5   | to 15    | ,,     |
| Partly by crushi | ng, p | ertly by         | y bendi  | ing, from | 15  | to 25    | ,,     |
| Altogether by be | endir | ig <b>a</b> bove | ı        |           |     | 25       | "      |
|                  |       |                  |          |           | Per | square i | inch.  |
| Cast iron of av  | erag  | e quality        | y is cru | shed wit  | h - | 49 to    | ns     |
| Wrought iron     |       | "                | "        | ,,        | -   | 16       |        |
| "                | is pe | rmanen           | tly inju | ared with | · - | 12       |        |
| Oak "            | is cı | ushed v          | rith     | -         | -   | 4        |        |
| Deal             | **    | ,,               | ••       | •         | -   | 2        |        |

The comparative strength of different columns, of different lengths, will be seen very clearly from the following table derived from experiments by Mr. Hodgkinson:—

| Wrought Iron Bars. |            | Proportion of Length to Thickness. | Gave way with          |
|--------------------|------------|------------------------------------|------------------------|
| Square             | Length.    |                                    |                        |
| ins.               | ft. ins.   | 7½ to 1                            | 21.7 tons per sq. inch |
| *,*                | 1 3        | 15 to 1                            | 15.4 ,                 |
| ,,                 | 2 6        | 30 to 1                            | 11.3 "                 |
| ,,                 | 5 0<br>7 6 | 60 to 1<br>90 to 1                 | 7·5 ,,                 |
| "<br>12 × 12       | 5 Ö        | 120 to 1                           | 2.5 ,,                 |
| *,*                | 76         | 180 to 1                           | 1. "                   |

To find the strength of any wrought iron column with square ends.

Area of column sq. ins. × tons per in. corresponding to proportion of length, as per table above = Breaking weight, tons.

If the ends are rounded, divide the final result by 3 to find the breaking weight.

In columns of oblong section, the narrowest side must always be taken in calculating the proportion of height to width.

To find the strength of round columns exceeding 25 diameters in length. Mr. Hodgkinson's rule.

 $\frac{(\text{Diameter, ins.})^{3\cdot6}}{(\text{Length, ft.})^{1\cdot7}} \times \text{Tabular No.} = \text{Breaking weight, tons.}$ 

| 77  | 26  |
|-----|-----|
| 44  |     |
| 44  | 15  |
| 4.5 | 1.7 |
| 3.3 | 1.2 |
|     |     |

A column should not be loaded with more than  $\frac{1}{3}$  of the breaking weight in any case, and as a general rule, not with more than  $\frac{1}{4}$ ; for purposes of machinery not with more than  $\frac{1}{6}$  to  $\frac{1}{10}$ , according to circumstances.

Tables of Powers for the Diameters and Lengths of Columns.

| Diameter.             | 3.6 Power. | Diameter.             | 3.6 Power. |
|-----------------------|------------|-----------------------|------------|
| 1"                    | 1.         | 7"                    | 1102.4     |
| 1                     | 2.23       | 1                     | 1251       |
| 1                     | 4.3        | į                     | 1413.3     |
| 1<br>1<br>2<br>3<br>4 | 7.5        | 1<br>1<br>2<br>3<br>4 | 1590.3     |
| 2                     | 12.1       | 8                     | 1782.9     |
| 1/4                   | 18.5       | 1                     | 1991.7     |
| 1                     | 27.        | 1                     | 2217.7     |
| 14<br>12<br>34        | 38.16      | 14 12 34              | 2461.7     |
| 3                     | 52.2       | 9                     | 2724.4     |
| 1                     | 69.63      | 1                     | 3006.85    |
| 1                     | 90.9       | ì                     | 3309.8     |
| 14<br>19<br>34        | 116.55     | 14 1 2 3 4            | 3634.3     |
| 4                     | 147.       | 10                    | 3981-07    |
| 1/4                   | 182.9      | 1                     | 4351.2     |
| 14<br>10<br>34        | 224.68     | 14 19 314             | 4745 5     |
| 3                     | 272.96     | 8                     | 5165.      |
| 5                     | 328.3      | 11                    | 5610.7     |
| 1/2                   | 391.36     | 1/2                   | 6083.4     |
| 1                     | 462.71     | i i                   | 6584.3     |
| 14<br>13<br>84        | 543.01     | 14 1 19 814           | 7114.4     |
| 6                     | 632.91     | 12                    | 7674.5     |
| 1                     | 733-11     |                       | ]          |
| 1<br>4<br>1<br>9      | 844.28     |                       |            |
| -                     | 967·15     |                       |            |
|                       | l          | 1                     | J          |

| Length.  | 1.7 Power. |
|----------|------------|
| 1        | 1.         |
| 2        | 3.25       |
| 3        | 6.47       |
| -        | 1          |
| 4        | 10.556     |
| 5        | 15.426     |
| 6        | 21.031     |
| 7        | 27.332     |
| 8        | 34-297     |
| 9        | 41.9       |
| 10       | 50.119     |
| 11       | 58.934     |
| 12       | 68:329     |
| 13       | 78-289     |
| 14       | 88.88      |
| 15       | 99.85      |
| 16       | 111.43     |
| 17       | 123.53     |
| 18       | 136.13     |
| 19       | 149.24     |
| 20       | 162.84     |
| 21       | 176.92     |
| 21<br>22 | 191.48     |
| 23       | 206.21     |
| 23<br>24 | 200.21     |
| 24       | 222        |

#### HOLLOW COLUMNS.

Hollow columns fail principally by crushing, provided the length does not exceed 25 diameters; indeed, the length does not appear to affect the strength much till it exceeds 50 diameters.

The comparative strength of different forms and of different thicknesses will appear so distinctly from the experiments below, made by Mr. Hodgkinson, that no difficulty will be found in ascertaining the strength due to any size or form of column that may be required.

## Round Columns of Plate Iron Rivetted,

| ed, |   |
|-----|---|
| cu, | J |

|                |        | Same C<br>Reduced i                                         |                         |                     |                       |             |
|----------------|--------|-------------------------------------------------------------|-------------------------|---------------------|-----------------------|-------------|
| Dia-<br>meter. | Thick- | Proportion of Thick-                                        | Proportion of Length to | Breaking<br>Weight, | Breaking              | Weights.    |
| meter.         | ness.  | ness to<br>Diameter.                                        | Diameter.               | Weight.             | 5' 0" long. 2' 6" lor |             |
|                |        |                                                             |                         | Tons per sq.in.     | Tons per s            | quare inch. |
| 1 <u>1</u>     | ·1     | 15                                                          | 80 to 1                 | 6.5                 | 13.9                  | 5.8         |
| 2              | •1     | 1 20                                                        | 60 to 1                 | 10.35               | 14.8                  | 16.5        |
| 2½             | •1     | 100                                                         | 48 to 1                 | 13.3                | 15.6                  | 16.3        |
| ,,             | •24    | 11                                                          | ,,                      | 9.6                 | 99                    | 16          |
| ,,             | ·21    | 10                                                          | ,,                      | 9.9                 | 13·                   | 17          |
| 3              | ·15    | 1 98                                                        | 40 to 1                 | 12-36               | ,,                    | 16.5        |
| 4              | ·15    | 1 28                                                        | 30 to 1                 | 12:34               | ,,                    |             |
| 6              | -1     | 100                                                         | 20 to 1                 | 15.                 | 17                    | 18.6        |
| 6              | .13    | 15<br>120<br>15<br>15<br>11<br>11<br>11<br>26<br>160<br>146 | ,,                      | 18.6                |                       |             |

It would seem from this that a thickness of  $\frac{1}{48}$ , or  $\frac{1}{4}$ " in thickness for every foot in diameter is a good proportion for this kind of column.

## Square Columns of Plate Iron Rivetted,

|           |            | Columns 10' 0''                               | lona                              |                                                    |
|-----------|------------|-----------------------------------------------|-----------------------------------|----------------------------------------------------|
|           |            |                                               |                                   |                                                    |
| Size.     | Thickness. | Proportion of<br>Thickness to Width.          | Proportion of<br>Length to Width. | Breaking weight<br>Tons per sq. in.<br>of section. |
| 4" × 4"   | -03        | 188                                           | 30 to 1                           | 4.9                                                |
| , ,,      | •06        | <del>1</del>                                  | ,,                                | 8.6                                                |
| "         | •1         | 1<br>40                                       | "                                 | 10                                                 |
| **        | -2         | 1<br>20                                       | ,,                                | 12                                                 |
| 8" × 8"   | .06        | 1<br>133                                      | 15 to 1                           | 6                                                  |
| "         | •14        | 1 60                                          | ,,                                | 9                                                  |
| "         | -22        | 36                                            | ,,                                | 11.5                                               |
| **        | •25        | 166<br>140<br>170<br>1833<br>160<br>1336<br>1 | ,,                                | 12                                                 |
|           |            | Column 8' 0'' lo                              | mg.                               |                                                    |
| 18" × 18" | •5         | 1 practically                                 | 5.4 to 1                          | 13.6                                               |

|         | 出          |                                      |                                   |                                                    |
|---------|------------|--------------------------------------|-----------------------------------|----------------------------------------------------|
| Size.   | Thickness. | Proportion of<br>Thickness to Width. | Proportion of<br>Length to Width. | Breaking weight<br>Tons per sq. in.<br>of section. |
| 8" × 8" | •06        | 1 of width of cells                  | 15 to 1                           | 8.6                                                |

## To find the strength of any hollow wrought iron column.

Sec. area, sq. ins. × Tons per inch, corresponding to the proportions of length and thickness to width as per tables

Breaking weight, tons,

It will be seen from these experiments, that it is the proportion of thickness to the width of cell which regulates the strength within certain limits of height.

And that a thickness of  $\frac{1}{3}$  or  $\frac{1}{8}$ " for every 4 ins. in width will give the highest result practicable for square columns.

## Columns of Oblong Section,

The strength of these may be ascertained by the same rule as that of square columns. The smallest width being taken in calculating the proportion of height to width, while the longest side must be taken into consideration in calculating the proportion of thickness to width.

|         | Column 10' 0'' long. |                                                  |                                            |                                                           |  |  |  |
|---------|----------------------|--------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|--|--|--|
| Size.   | Thickness.           | Proportion of<br>Thickness to<br>greatest Width. | Proportion of<br>Length to least<br>Width. | Actual Breaking<br>Weight Tons per<br>sq. in. of Section. |  |  |  |
| 8" × 4" | •06                  | 133                                              | 30 to 1                                    | 6.78                                                      |  |  |  |

The experiments in detail on hollow wrought iron columns will be found in Mr. Edwin Clark's work on the Britannia and Conway tubular bridges.

## CONDENSOR.

As a maximum, made of equal capacity with the cylinder. As a minimum, of equal capacity with the air pump.

For marine engines working at a good pressure, and carrying steam through the whole stroke, about  $\frac{2}{3}$  of contents of cylinder is a good proportion. If the steam is expanded and reduced to the pressure of the atmosphere at the end of the stroke,  $\frac{1}{3}$  contents of cylinder; minimum for marines in any case,  $\frac{1}{3}$  contents of cylinder.

In land engines, where the pressure is always more reduced, and more equable, and where the condensor is altogether surrounded by water, a smaller size is found to be quite sufficient; and the proportion may vary, according to the room at disposal, and the pressure of steam, from  $\frac{1}{2}$  to  $\frac{1}{6}$  the capacity of the cylinder.

In marine engines it is important that the condensor should be of considerable height, and that it should be compact at the bottom. If made shallow, when the vessel is rolling or pitching heavily, the water is apt to get out of the reach of the pump at the proper time, and to accumulate so as to make the air-pump work heavily and unevenly, occasionally to such an extent as to cause injury to the pump. With a deep condensor the injection water can be better dispersed through the steam, and the water accumulates in a compact body, ready for the pump to act upon at any time.

For double-acting air pumps, in order to make them act with efficiency on both up and down strokes, the condensor should be so arranged, if possible, that the bottom of the condensor may be at least as high as the top part of the pump.

#### CRANE.

The strains on the principal parts can be ascertained with great ease in the following manner — the strength being proportioned accordingly.

## To find the strain on the post.

Weight suspended, tons × Projection, feet

Height of post above ground, feet.

post, tons.

The post can then be calculated as a beam, twice as long as this height from ground, with twice the weight on the middle. (See Beams, p. 3.)

## To find the strain on the jib and tension rods.

On the sketch of the crane, mark off on the chain a distance by scale equal to the weight on the chain; from this point draw a line parallel to the tension rod, and where this intersects the jib, draw another vertical line.

The distances from the end of the jib to the points thus intersected on the jib, and tension rods, will represent the proportionate strains.

The strains on the annexed sketch being respectively-

10 tons weight on the chain.

31 , strain on the jib, compressively.

26 ,, , on the tension rods.

The jib can then be calculated as a column with the ends rounded one way. (See COLUMNS.)

Under ordinary circumstances a crane should not be loaded with more than  $\frac{1}{8}$  of the breaking weight; if however fitted without a brake, so that the weight can only be lowered by hand, it may be loaded with  $\frac{1}{8}$ , and the parts may be proportioned accordingly.

14 lbs. on the handle is the outside to allow for intermittent work.

10 lbs. on the handle is sufficient, if intended for continuous work.



Handles. 1'4" to 1'6" radius. 1'3" to 2'6" long. Height. About 3'0" to 3'2" from the ground is the most convenient.

Wheelwork. (See WHEELS.)

## ENGINE.

## To find the effective horse power.

Area cyl. ins. 
$$\times$$
 (aver. press.—friction, lbs.)  $\times$  speed piston ft. per min.  $=$  HP.

For the friction the Table annexed will give a fair approximation.

| Diameter<br>Cyl. ins. | Oscillating and<br>Trunk. | Beam and<br>Geared. | Direct Acting and<br>Vertical. |
|-----------------------|---------------------------|---------------------|--------------------------------|
|                       | lbs. per sq. in.          | lbs.                | lbs.                           |
| 10                    | 5                         | 6                   | 7                              |
| 15                    | 1 4 1                     | 5                   | 6                              |
| 20                    | 31/9                      | 4                   | 5                              |
| 25                    | 3 1                       | 3 <del>1</del>      | 41                             |
| 30                    | 3                         | 3 <del>1</del>      | 1 4º                           |
| 35                    | 21/9                      | 3                   | 91                             |
| 50                    | $2\frac{1}{2}$            | 21                  | 3 <u>1</u><br>3                |
| 60                    | 2 2                       | $\frac{-3}{2}$      | 3                              |
| 70                    | 2                         | 21/2<br>21/2        | 21                             |
| 80                    | 1 2                       | 22                  | 21                             |
| 100                   | 111                       | 2                   | 21                             |
| 110                   | $1\frac{1}{2}$            | 2                   | 2 2                            |
| 1                     | 1 -                       |                     | 1                              |

TABLE OF FRICTION OF ENGINES.

To find the friction of any larger or smaller size.

Oscillating and 
$$\frac{15}{\sqrt{\text{diam. cyl. ins.}}}$$
 = Friction, lbs. per sq. in.

Beam and Geared 
$$\frac{18}{\sqrt{\text{diam. cyl. ins.}}}$$
=Friction, lbs. per sq. in.

Direct-acting and Vertical 
$$\frac{21}{\sqrt{\text{diam. cyl. ins.}}}$$
=Friction, lbs. per sq. in.

TABLE OF THE ORDINARY SIZES OF ENGINES.

| High Pressure.       |            |                            |  |  |  |  |
|----------------------|------------|----------------------------|--|--|--|--|
| Nominal<br>H. Power. | Diam. Cyl. | Sq. ins. per<br>Nom. H. P. |  |  |  |  |
| 6                    | 9          | 10                         |  |  |  |  |
| 10                   | 111        | ,,                         |  |  |  |  |
| 15                   | 14         | ٠,,                        |  |  |  |  |
| 20                   | 16         | ,,                         |  |  |  |  |
| 30                   | 19         | 9                          |  |  |  |  |
| 40                   | 21½        | ,,                         |  |  |  |  |
| 50                   | 24         | ,,                         |  |  |  |  |
| 60                   | 26         | ",                         |  |  |  |  |

| Marine and Condensing.        |                                  |                            |  |  |  |  |
|-------------------------------|----------------------------------|----------------------------|--|--|--|--|
| Nominal<br>H. Power.          | Diam. Cyl.<br>ins.               | Sq. ins. per<br>Nom. H. P. |  |  |  |  |
| 15<br>20<br>40<br>60<br>100   | 20<br>25<br>36<br>42<br>51<br>62 | 28<br>25<br>,,<br>22<br>20 |  |  |  |  |
| 200<br>Above 200<br>Above 300 | 72                               | "<br>19<br>18              |  |  |  |  |

With a stroke of 1 to  $1\frac{1}{2}$  times diameter for marine and condensing engines respectively, and of  $2\frac{1}{2}$  to 3 times diameter for high pressure engines. A little more area being allowed if the stroke is made less than the above proportion, and less area if the stroke be larger.

#### PROPORTIONS OF ENGINES.

The following will be found good proportions for the main parts.

BEAM.—For Marines. Length, 2½ to 3 times stroke.

Land engines ,, 3 times stroke.

Depth, ½ stroke.

Thickness, ½ of depth.

CONNECTING ROD.—Length, 2 to 3 times stroke.

The length should not be less than twice in any case, and there appears to be no advantage in having it more than 3 times. Diameter at neck=piston rod, is sufficient as far as strength is concerned.

Swelling,  $\frac{1}{8}$ " to  $\frac{1}{4}$ " per foot.  $\frac{3}{18}$  is a good medium.

CRANK.—Depth of large eye = diameter of shaft.

Metal round eye  $=\frac{1}{3}$  ditto

Depth of small eye = '7 of shaft's diameter.

Metal round ditto  $= \frac{1}{9}$  diameter of crank pin.

CRANK PIN.—Diameter,  $1\frac{1}{4}$  to  $1\frac{1}{3}$  diameter of piston rod. Length  $1\frac{1}{4}$  to  $1\frac{1}{3}$  its own diameter.

It is always advisable to have a good size and surface, as it thus becomes less liable to heat.

CROSSHEAD.—Depth at eye, 3 times diameter of rod.
Thickness, 1 of depth.

MAIN CENTRE.—Diameter = 11/2 times diameter of piston rod.

PORTS.— Steam  $\left\{ \begin{array}{l} \text{width} = \frac{1}{2} \text{ diam. of cyl.} \\ \text{depth} = \frac{1}{8} \text{ of width} \end{array} \right\} = \frac{1}{20} \text{ of cyl. area.}$ Exhaust, depth =  $\frac{1}{3}$  to  $\frac{1}{4}$  of width.

Piston Rod.  $\frac{1}{10}$  of diam. of cyl. for condensing engines.  $\frac{1}{8}$  to  $\frac{1}{7}$  of ditto for high pressure.

Parallel motion rods.—Piston rod × ·3

SHAFT.—If of wrought iron, Piston rod × 2 to 21/8.

STEAM PIPE.—Area equal to that of steam ports.

VALVE SPINDLE.—Piston rod × ·4.

VALVE SHAFT.—Piston red × 9.

#### EXPANSION OF STEAM.

To find the pressure at any particular point of expansion.

Pressure before expansion, lbs. +14.7

No. of times the steam is expanded.

—14.7 = Pressure required, lbs.

## To find the average pressure.

Construct a rough diagram as per sketch annexed, which is of 40 lbs. cut off at  $\frac{1}{4}$ , and divide it into a suitable number of parts for calculation; find the pressure due to each stage of expansion; add these together and divide by the number of parts the diagram is composed of, the result gives the average pressure on the whole.



.35

This theoretic diagram will not correspond quite exactly with the real diagram of an engine in any case; it will however very nearly, if the steam be shut off close to the port, if the valve and piston be tight, and if the steam be fully protected from condensation by steam jacket or otherwise; but in ordinary engines, where the expansion valve is behind the casing, the whole steam in the casing expands with that in the cylinder, and alters the proportion of expansion materially.

For instance,—suppose the contents of casing and passages to be only  $\frac{1}{10}$  that of the cylinder, and the steam to be cut off when the piston has moved  $\frac{1}{4}$  of its stroke, the steam expanding will then be to the whole contents of the cylinder and casing as 3.5 to 1.1; so that the steam will only expand 3 times instead of 4 times.

In order to see clearly the advantage in an economical point of view of using steam expansively, and in order to compare the effective value of different kinds of engines working under different circumstances as to pressure, expansion, and speed, it is necessary in the first place to bring them all to some common basis.

This basis should be ---

Effective Horse Power obtained from every cubic foot of Water evaporated per hour. (There is no use in going further than this as far as the engine is concerned.)

The number of lbs. coal consumed per cubic foot of water evaporated depends upon the boiler. (See BOILER.)

From engine and boiler combined, we come to a final simple basis of lbs. coal per Horse Power per hour.

# To find the evaporation of water required to supply any engine with steam.

Find the actual quantity of steam in cubic feet contained in the cylinder, passages, and casing, up to the point where the steam is cut off.

 $\mathsf{Digitized} \ \mathsf{by} \ Google$ 

Then Cub. ft. in cyl. thus found × revolutions per min.

No. in table corresponding to pressure.

Cubic feet of water to be evaporated per hour.

| Pressure. | Divisor. | Pressure. | Divisor.    | Pressure. | Divisor. |
|-----------|----------|-----------|-------------|-----------|----------|
| 2.5 lbs.  | 12:47    | 20        | 6.4         | 80        | 2.6      |
| 3         | 12·1     | 25        | 5.6         | 90        | 2.36     |
| 4         | 11.4     | 30        | 5.          | 100       | 2.2      |
| 5         | 10.7     | 35        | 4.6         | 120       | 1.9      |
| 6         | 10.      | 40        | 4.2         | 135       | 1.7      |
| 8         | 9·4      | 45        | 3.9         | 150       | 1.56     |
| 10        | 8.7      | 50        | <b>3</b> ·6 | 165       | 1.4      |
| 12        | 8.1      | 55        | 3· <b>4</b> | 180       | 1.3      |
| 14        | 7.6      | 60        | 3.2         | 195       | 1.25     |
| 16        | 7.1      | 65        | 3           | 210       | 1.17     |
| 18        | 6.75     | 70        | 2.8         | 235       | 1.1      |

For table in detail from which this divisor is derived, see FEED PUMP.

#### RCONOMY OF EXPANSION.

To show the comparative economical result derived from using steam expansively, we will take an ordinary condensing engine of 30 horse power, under two or three different rates of pressure and expansion, and reduce the result to the above basis of Horse Power per cubic feet of water evaporated.

Engine cylinder 30" diam. 4' 0" stroke; 25 revolutions; vacuum average  $12\frac{1}{2}$  lbs.

Cylinder 707" area; 19.6 cubic ft. contents; passages and casing say  $\frac{1}{8}$ =3.2 cubic feet.

1st. Engine working with steam of 7 lbs.; full steam for  $\frac{3}{4}$  of the stroke, till cut off by the slide valve. Average pressure on steam side 6 lbs —

$$\frac{707 \times (18\frac{1}{2} - 3\frac{1}{2} \text{ friction}) \times 200 \text{ speed}}{33,000} = 64 \text{ H.P. effective.}$$

The evaporation of water to supply the cylinder being 37.3 cubic feet per hour, see Rule on previous page.

Economical result: 1.7 Horse Power for every cubic foot of water evaporated.

2nd. Engine working with steam of 25 lbs. cut off at  $\frac{1}{4}$  stroke, by means of an ordinary expansion valve behind the casing —

The actual expansion, taking the steam in the casing into account, will be 2.8 to 1; giving an average pressure on the piston of 12 lbs. per inch —

$$\frac{707 \text{ area} \times (12 \text{ av.} + 12\frac{1}{2} \text{ vac.} - 3\frac{1}{2} \text{ fric.}) \times 200}{33,000} = 90 \text{ H.P. eff.}$$

The evaporation required to supply the cylinder being 36 cubic feet per hour.

Economical result: 2.5 Horse Power per cubic foot of water evaporated.

3rd. Engine working with steam of 25 lbs. cut off at ½ stroke, but cut off close to the port instead of behind the casing —

The average pressure on the piston will be 9 lbs. per sq. in.

And the result will be 77 Horse Power effective;

Evaporation required being 22 cubic feet per hour;

Economical result: 3.5 Horse Power per cubic foot of water evaporated.

The last arrangement giving just double the economical result of the first arrangement of the same engine, or in other words, developing an equal power with the first with half the expenditure of fuel.

The following table shows the average pressure, and the relative economy, derived from the different pressures and degrees of expansion.

Table of Expansion of Steam and Comparative Economical Effect.

| Initial   | Cut off at                  | Average | High Pressure<br>Engines.                            | Condensing Engines, including 13 lbs. vacuum.        |
|-----------|-----------------------------|---------|------------------------------------------------------|------------------------------------------------------|
| Pressure. | cubic ft. of                |         | Gross H. P. per<br>cubic ft. of water<br>evaporated. | Gross H. P. per<br>cubic ft. of water<br>evaporated. |
| 7 lbs.    | <u>9</u>                    | 5.5     |                                                      | 2·18                                                 |
| 10        | 3                           | 8-4     |                                                      | 2.23                                                 |
| 15        | 2 3                         | 12.8    | 1.13                                                 | 2:27                                                 |
| "         | 1/9                         | 10.2    | 1.35                                                 | 2.7                                                  |
| ,,        | 1<br>8                      | 5.8     | 1.02                                                 | 3.29                                                 |
| "         | 1/4                         | 2.8     | ·65                                                  | 3.69                                                 |
| ,,        | 615 rig rig rig rig rig rig | -1.2    |                                                      | 3.83                                                 |
| "         | 13                          | -4.8    |                                                      | 4.88                                                 |
| 20        |                             | 17.7    | 1.36                                                 | 2.35                                                 |
| ,,        | <u>1</u>                    | 14.7    | 1.5                                                  | 2.83                                                 |
| ,,        | 1/3                         | 9.4     | 1.44                                                 | 3.44                                                 |
| "         | 1/4                         | 5.7     | 1.18                                                 | 3.84                                                 |
| - >9      | · 1                         | 1.2     | -38                                                  | 4.36                                                 |
| 25        |                             | 22.8    | 1.54                                                 | 2.41                                                 |
| "         | <u>1</u>                    | 19.1    | 1.63                                                 | 2.87                                                 |
| "         | <u>1</u>                    | 13.4    | 1.8                                                  | 3.55                                                 |
| "         | 1/4                         | 9       | 1.62                                                 | 3.94                                                 |
| . ,,      | 18                          | 3.3     | •91                                                  | 4.39                                                 |
| 40        | 2/3                         | 36.4    | 1.83                                                 | 2.49                                                 |
| 99        | 1/2                         | 31.4    | 2.11                                                 | 2.98                                                 |
| "         | 1<br>8                      | 23.4    | 2:36                                                 | 3.67                                                 |
| "         |                             | 17.5    | 2.35                                                 | 4.1                                                  |
| "         | 18                          | 10.2    | 2.07                                                 | 4.76                                                 |
| "         | 18                          | 5.9     | 1.59                                                 | 5.08                                                 |
| 60        | ceția rice rice rite rite   | 55.1    | 2.03                                                 |                                                      |
| ,,        | 1/2                         | 48.5    | 2.47                                                 | 3.15                                                 |
| ,,        | 1 3                         | 37.2    | 2.86                                                 | 3.86                                                 |
| "         | 1                           | 29.8    | 3.05                                                 | 4.39                                                 |
| 99        | 븁                           | 19.2    | 3.15                                                 | 4.93                                                 |
| ,,        | 18                          | 13.4    | 2.74                                                 | 5.41                                                 |

| Initial   |                                                  | Average   | High Pressure<br>Engines.                            | Condensing Engines, including 13 lbs. vacuum.       |
|-----------|--------------------------------------------------|-----------|------------------------------------------------------|-----------------------------------------------------|
| Pressure. |                                                  | Pressure. | Gross H. P. per<br>cubic ft. of water<br>evaporated. | Gross H P. per<br>cubic ft. of water<br>evaporated. |
| 80        | 2 2                                              | 73.8      | 2:31                                                 |                                                     |
| ,,        | 1                                                | 65.2      | 2.71                                                 |                                                     |
| ,,        | Ĩ                                                | 51.5      | 3.22                                                 | 4.02                                                |
| ,,        | 1/2                                              | 40.6      | 3.37                                                 | 4.46                                                |
| , ,       | Î a                                              | 28.65     | 3.58                                                 | 5 <b>·2</b>                                         |
| ,,        | 1 8                                              | 20.9      | 3.48                                                 | 5.72                                                |
| "         | 해하 - (대 - )하 - ) 하 - ) 하 - ) 하 - ) 하 - ) 하 - ) 하 | 15.8      | 3.29                                                 | 6.                                                  |
| 100       | 2/3                                              | 90.4      | 2.93                                                 |                                                     |
| ,,        | 1/2                                              | 80.6      | 2.84                                                 |                                                     |
| ,,        | 1 8                                              | 63.4      | 3.35                                                 |                                                     |
| ,,        | 3132 -1133 -1145 -1150 -1150 -1 <mark>1</mark> 5 | 52.       | 3.67                                                 |                                                     |
| ,,        | 1 6                                              | 37.7      | 3.99                                                 |                                                     |
| "         | 18                                               | 28.5      | 4.02                                                 |                                                     |
| ",        | 10                                               | 22.4      | 3.95                                                 |                                                     |

## To find the economical effect of any other rate of expansion.

(Average steam pres.+13 lbs. for condensing eng.) × No. of times steam is expanded No. in table below, corresponding to initial pressure No. in table below, corresponding to initial pressure = Economical effect. Gross H.P. per cubic feet water evaporated.

| Initial<br>Pressure. | Divisor. | Initial<br>Pressure. | Divisor. | Initial<br>Pressure. | Divisor. |
|----------------------|----------|----------------------|----------|----------------------|----------|
| 2.5 lbs.             | 10.02    | 20 lbs.              | 19.53    | 80                   | 48.07    |
| 3                    | 10.33    | 25                   | 22.82    | 90                   | 52.11    |
| 4                    | 10.96    | 30                   | 25.      | 100                  | 56.8     |
| 5                    | 11.68    | 35                   | 27.17    | 120                  | 65.79    |
| 6                    | 12.5     | 40                   | 29.76    | 135                  | 78.53    |
| 8                    | 13.3     | 45                   | 32.05    | 150                  | 80.12    |
| 10                   | 14.37    | 50                   | 34.72    | 165                  | 89.28    |
| 12                   | 15.43    | 55                   | 36.76    | 180                  | 96.15    |
| 14                   | 16.44    | 60                   | 39.06    | 195                  | 100.     |
| 16                   | 17.6     | 65                   | 41.7     | 210                  | 106.83   |
| 18                   | 18.51    | 70                   | 44.64    | 235                  | 113.6    |

The foregoing table also being derived from the Table of Volumes, see page 55.

To find the Effective Horse Power per cubic foot of water evaporated.

Find the proportion the friction due to the particular size and form of the engines, as per table page 38, bears to the average steam pressure (+vacuum for condensing engines), and deduct this proportion from the gross H.P. per cubic foot of water evaporated, as found above: the result will be Effective H.P. per cubic foot of water evaporated.

For instance, take an engine with steam of 20 lbs. cut off at  $\frac{1}{4}$ , and with  $3\frac{1}{2}$  lbs. friction:

The average pressure 5.7 lbs. +13 vacuum is 18.7 lbs.

The friction here is  $\frac{1}{5.3}$  of the average pressure.

 $\frac{1}{5.3}$  deducted from 3.84 gross H.P.=3.12 effective H.P. per cubic ft. water evaporated.

Or in another form, perhaps simpler.

Gross H.P. per cub. ft. water evaporated x actual pressure, after deducting friction as per table, page 38.

Total average steam pressure+13lbs. for condensing engines Reflective H.P. per cub. ft. water evaporated.

The above Table of comparative economical effect of pressures and expansions shows clearly and conclusively:

1st. That the rate of expansion being the same, the higher the pressure is, the greater is the economical effect, whether in Condensing or in Non-Condensing engines;

2nd. That in Non-Condensing engines, the most economical result is obtained, when the steam is cut off at such a point that the pressure is reduced to that of the atmosphere at the end of the stroke:

That is 25 lbs. cut off at 1 of stroke.

| ,, | 40 "  | **              | 1   | "  |
|----|-------|-----------------|-----|----|
| ,, | 60 "  | <b>&gt;&gt;</b> | į.  | ,, |
| ,, | 80 "  | ,,              | 1 6 | ,, |
| "  | 100 " | ,,              | 18  | ,, |
| 29 | 130 " | ,,              | 10  | ** |

3rd. That in Condensing engines the sooner the steam is cut off, the more economical is the result.

The greatest attention should be paid to the principles indicated above in constructing engines of any sort.

The degree of expansion being properly arranged. according to the pressure that can be conveniently obtained and the work required to be done; and the strength of the engine being proportioned to the initial pressure: the only disadvantage connected with using steam expansively is the considerable difference between the pressures at the different parts of the stroke. It is not at all clear however, that the difference of speed of the piston at the different parts of the stroke does not entirely correct this inequality of pressure. At the beginning of the stroke, while the pressure is high, the speed of the piston is very low, afterwards the pressure decreases while the speed is increasing; while the momentum previously acquired comes into play, when the speed decreases again. The force developed being probably more equable than otherwise. At all events any inequalities may be corrected quite sufficiently for all practical purposes, by having a well-proportioned flywheel, or by using two engines coupled together.

#### MODES OF EXPANSION.

Every engineer will be acquainted with some mode of expansion, though the arrangements in ordinary use in this

country are far from being satisfactory. In marine engines, double conical valves, put behind the casing, and worked by cams, being the most general plan, throttle valves sometimes being used instead of equilibrium valves; occasionally a separate slide working behind the slide valve is used, for small engines, this last saves the steam in the casing, and is so far an improvement.

In land engines, the double cylinder arrangement is perhaps the most in use, but is a complicated and expensive plan, besides which it does not allow of the extension of power which can be attained with a single cylinder, and which is often found most convenient and desirable. Mr. Fairbairn has a very efficient arrangement in his improved engines; but the slide valve is still far too much in vogue.

A slight description of the usual plans adopted in America, where a great deal of attention is paid to this point, both in their river boat engines, and their land engines, may not be without use or interest.

The usual arrangement for the fast running boats on the Hudson, is to have double beat conical valves working close to the port, a steam and exhaust pair to each port, the steam valves worked by one eccentric, the exhaust by another, the valves being lifted by means of wipers on the valve shaft. The steam eccentric and wipers are so arranged, that the valve is not opened till the eccentric is nearly at the end of its stroke, consequently allowing the valve to shut very soon again, cutting off at whatever fixed part of the stroke may be thought desirable: the wiper carrying the weight of the valve and rod till it reaches its seat again. The exhaust eccentric and wipers are so arranged that one exhaust is always open.

Another plan used on the Hudson is to have both steam and exhaust valves worked by the same eccentric: the exhaust being arranged to open a little sooner than the steam valve; the steam valve being arranged so as to detach itself at a certain part of the stroke, and to fall down and shut itself; in due course the rod falls down to shut the exhaust, and the steam valve connects ready for lifting again. When this arrangement is used, the spindle of the steam valve is made to drop into a small close box full of water, which breaks its fall, and eases it down upon its seat. With this cut off, the rate of expansion can be varied with the greatest facility.

On the Ohio and Mississippi, where horizontal engines are mostly in use, they also have conical valves, generally but not always double, placed close to the ports, lifted by long levers the ends of which nearly meet over the middle of the cylinder; the wiper shaft in two halves being arranged to work all the levers; the steam and exhaust valves being worked by separate cams of peculiar shape on the shaft.

In smaller boats slide valves are used, the slide being made with a large exhaust and a great deal of cover, worked by a cam so arranged as just to cut off the steam at whatever point may be required, leaving the exhaust still open; and the valve works in two jumps instead of continuously.

The great ease with which these double conical valves can be handled is a point of some importance, especially in large engines.

On the Hudson, and also in Cornwall, where the same description are universally used on the pumping engines, though worked in a different manner to suit the purpose required, the engines of the largest size, 80" diameter and 12 feet stroke and upwards, can be handled by one man with the greatest ease.

For engines running very fast, such as locomotives and screw boat engines, the slide valve worked by the link motion is nearly universally used; and, if properly arranged, is a very efficient expansion apparatus for these purposes.

#### SPEED OF ENGINES.

It will always be found advantageous in point of economy to arrange for running an engine at as great a speed as can be maintained without heating, undue friction, or shaking.

The same power is gained with a less expenditure of steam, or a greater power with an equal expenditure, in consequence of the engine getting the benefit of the steam expansion, which it will do whether it be properly fitted with expansion valve, or merely throttled.

Ft. per min.

200 may be the minimum for any purpose,

250 a good speed for land engines with a fair stroke,

250 to 300 for marine paddle-wheel engines and geared screw engines,

300 to 400 for direct-acting screw engines, well balanced and secured,

500 to 600 ordinary speed on the Hudson for engines 10 feet stroke and upwards,

Up to 1000 for locomotives.

# To show in a practical manner the economical effect of running an engine fast.

We will take any condensing engine, with a boiler capable of evaporating 100 cubic feet of water per hour at a pressure of 20 lbs. per inch. Suppose the engine to have  $2\frac{1}{2}$  lbs. friction, and the steam to be cut off close to the ports.

Suppose this evaporation be sufficient to supply the cylinder  $\frac{2}{3}$  full of steam when running at 180 feet per minute, the same evaporation at higher speeds will give the following results:—

| Speed.<br>Feet per Minute. | Steam.<br>cut off. | Effective Average<br>Steam. Vacuum. Friction | Pressure. | Effective<br>Horse-power |
|----------------------------|--------------------|----------------------------------------------|-----------|--------------------------|
| 180                        | 3                  | 17.7 + 13 - 2.5                              | 28·2 lbs. | 216                      |
| 225                        | 100                | 14.7 + 13 - 2.5                              | 25.2      | 257                      |
| 270                        | į                  | 9.4 + 13 - 2.5                               | 19∙9      | 306                      |
| 450                        | 1/2                | 5.7 + 13 - 2.5                               | 16.2      | 333                      |
| 540                        | i                  | 1.2 + 13 - 2.5                               | 11.7      | 360                      |

## FAN.

Case should be strong and heavy. Bearings long. Blades and arms as light and well balanced as possible.

Good proportions-

Inlet  $= \frac{1}{6}$  diam. of fan,

Blades  $= \frac{1}{4}$  diam. of fan each way,

Outlet = area of blades.

The area of tuyeres is most advantageous when made area of blades

=density of blast, oz. per sq. in.

and it should not exceed double this size.

VELOCITY OF FANS.

THE BEST VELOCITY OF CIRCUMFERENCE FOR DIFFERENT DENSITIES.

| Velocity of Circumference. | Density of Blast. |
|----------------------------|-------------------|
| Feet per Second.           | Oz. per Inch.     |
| 170                        | 3                 |
| 180                        | . 4               |
| 195                        | 5                 |
| 205                        | 6                 |
| 215                        | 7                 |

A speed of 180 to 200 feet per second, giving a density of 4 or 5 oz., is very suitable for smithy fires.

250 to 300 feet per second is a proper speed for cupolas.

A fan 4'0" diameter, blade 1'0" square, will supply 40 fires with  $1\frac{\pi}{8}$  tuyeres at a density of 4 oz.

## To find the Horse Power required for any fan,

Let D = density of blast in oz. per inch.

A = area of discharge at tuyeres in square inches.

V = velocity of circumference in feet per second.

$$\frac{V^2}{1000} \times D \times A = \text{Effective Horse Power required.}$$

To find the density to be attained with any given fan,

Let d = diameter of fan in feet.

Then 
$$\frac{\left(\frac{V}{4}\right)^3}{120 \times d}$$
 = Density of blast in oz. per inch.

Or the density may be found by comparison with the following table:—

| Velocity of Circumference.<br>Feet per Second. | Area of Nozzles. |               | Density of Blast.<br>Oz. per Inch. |
|------------------------------------------------|------------------|---------------|------------------------------------|
| 150                                            | Twice a          | rea of blades | 1                                  |
| **                                             | Equal            | ditto         | 2                                  |
| "                                              | 1                | ditto         | 8                                  |
| 170                                            | 1                | ditto         | 4 .                                |
| 200                                            | 1                | ditto         | 4                                  |
| **                                             | . 1              | ditto         | 6                                  |
| 220                                            | 1 3              | ditto         | 6                                  |

To find the quantity of air that will be delivered by any fan, the density being known.

Total area nozzles, sq. ft. × velocity, ft. per min. corresponding to density (as per table) = 

Air delivered, cubic ft. per min.

| Density. Os. per Sq. Inch. | Velocity.<br>Feet per Minute. | Density.<br>Lbs. per Sq. Inch. | Velocity.<br>Feet per Minute. |
|----------------------------|-------------------------------|--------------------------------|-------------------------------|
| 1                          | 5,000                         | 1                              | 20,000                        |
| 2                          | 7,000                         | 11/2                           | 24,500                        |
| 3                          | 8,600                         | 2 2                            | 28,300                        |
| 4                          | 10,000                        | $\frac{2\frac{1}{2}}{3}$       | 31,600                        |
| 5                          | 11,000                        | 3                              | 34,640                        |
| 6                          | 12,250                        | 4                              | 40,000                        |
| 7                          | 13,200                        | 6                              | 49,000                        |
| 8                          | 14,150                        | 8                              | 56,600                        |
| 9                          | 15,000                        | 10                             | 63,200                        |
| 10                         | 15,800                        | 12                             | 69,280                        |
| 11                         | 16,500                        | 15                             | 78,000                        |
| 12                         | 17,300                        | 20                             | 89,400                        |

## FEED PUMP.

For condensing engines, usually-

 $\frac{1}{13}$  of cyl. diam. when  $\frac{1}{2}$  stroke of piston.

High-pressure engines-

 $\frac{1}{9}$  of cyl. diam. when  $\frac{1}{2}$  stroke of piston.

To find the proper size under all circumstances capable of supplying three times the quantity of water required by the cylinder.

Area of cyl. sq. ins. × length of stroke before steam is cut off, feet × 6 Tabular No. corresponding to pressure in boiler × stroke of pump, ft. = Area of pump, sq. ins.

TABLE OF VOLUMES OF STEAM PRODUCED BY ONE OF WATER.

| Pressure.<br>lbs. per<br>sq. inch. | Volume of<br>Steam to 1 of<br>Water. | Pressure.<br>lbs. per<br>sq. inch. | Volume of<br>Steam to 1 of<br>Water. | Pressure.<br>lbs. per<br>sq. inch. | Volume of<br>Steam to 1 of<br>Water. |
|------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
| 2.5 -                              | 1496                                 | 20                                 | 767                                  | 80                                 | 310                                  |
| 3                                  | 1453                                 | 25                                 | 678                                  | 90                                 | 283                                  |
| 4                                  | 1366                                 | 30                                 | 609                                  | 100                                | 264                                  |
| 5                                  | 1282                                 | 35                                 | 553                                  | 120                                | 224                                  |
| 6                                  | 1225                                 | 40                                 | 506                                  | 135                                | 203                                  |
| 8                                  | 1127                                 | 45                                 | 468                                  | 150                                | 187                                  |
| 10                                 | 1044                                 | 50                                 | 435                                  | 165                                | 173                                  |
| 12                                 | 973                                  | 55                                 | 407                                  | 180                                | 161                                  |
| • 14                               | 911                                  | 60                                 | 382                                  | 195                                | 150                                  |
| 16                                 | 857                                  | 65                                 | 362                                  | 210                                | 141                                  |
| 18                                 | 810                                  | 70                                 | 342                                  | 235                                | 133                                  |

In marine engines, it is advantageous to arrange so that the pump may be disconnected without stopping, in the same manner as the bilge pump (see page 10); and the feed valve boxes should be placed clear of the engine, so that the valves can be overhauled at any time.

For regulating the feed in single boilers, a cock on the suction pipe is the simplest plan; a check valve being put close to the boiler, so that the valve box may be overhauled at any time.

For marine engines, a check valve close to the boiler, the lift of which is regulated by a screw stop, is preferable to a cock.

The size of the valves should be so arranged that the speed of water passing through may not exceed 500 feet per minute. If arranged at 250 or 300 feet per minute, they will work quietly and comfortably; that is, for a pump working at 100 feet per minute, the area of valve should be  $\frac{1}{3}$  of the pump's area; at 50 feet per minute,  $\frac{1}{6}$ ; and so on.

## FLY WHEEL.

Diameter, 3 to 5 times the stroke of engine: 4 times is a good proportion.

Weight of rim about 3 cwt. per horse power.

To find the proper weight under any circumstances.

Area cyl. ins.  $\times$  average pressure on piston, lbs.  $\times$  stroke, ft. Diameter wheel, feet  $\times$  45

= Weight of rim, cwts. suitable for ordinary circumstances.

If a light wheel is required, use 60 as divisor instead of 45.

If a heavy one, , 30 , , ,

The principle being that the momentum of the wheel should be from 3 to 6 times the average momentum of the piston.

The weight and diameter being determined on, to find the size of rim.

 $\frac{\text{Weight cwts.} \times 11.4}{\text{Mean diam. of rim, feet}} = \text{Sectional area, sq. ins.}$ 

When the work is steady and the engine well balanced, a light wheel will be sufficient; with irregular work, or an unbalanced engine, the wheel should be heavier; and for some purposes—rolling mills, sugar mills, &c.—the wheel can hardly be made too heavy. Engines working at a very high rate of expansion also require heavy wheels.

## FRICTION.

## From Mr. Rennie's Experiments.

The friction of metal on metal, without unguents, May be taken at  $\frac{1}{6}$  of the weight up to 40 lbs. per sq. in.

$$\frac{1}{8}$$
 , , 100 , Brass on east iron  $\frac{1}{4}$  , , 800 , Wrought on east iron  $\frac{1}{3}$  , , 500 ,

With tallow at  $\frac{1}{10}$  of the weight.

,, olive oil at 
$$\frac{1}{13}$$
 ,,

800 lbs. per inch forces out the oil.

Friction of journals under ordinary circumstances  $\frac{1}{30}$  of wght.

well oiled, sometimes only  $\frac{1}{60}$  ,,

FRICTION OF ENGINES, see page 38.

## GOVERNOR.

Let L be the vertical height, ins. between plane of balls and points of suspension.

 $\frac{188}{\sqrt{L}}$  = Revolutions per minute required to maintain the balls at that height.

And 
$$\left(\frac{188}{\text{Revs. per min.}}\right)^2$$
 = Length or vertical height, ins.

The amount of variation may be  $\frac{1}{10}$  to  $\frac{1}{15}$  of the mean velocity. Suppose a governor be adapted for 30 revolutions as a mean speed, at 29 revolutions it should open the valve wide; at 31 revolutions it should close it altogether.

## GUDGEONS.

See SHAFTS.

HEAT,

EFFECTS OF HEAT AT CERTAIN TEMPERATURES.—GRIER.

| •                                        |     | Fahrenheit. |
|------------------------------------------|-----|-------------|
| Tin and Bismuth, equal parts, melt at    | .   | 283°        |
| Tin melts                                | .   | 442         |
| Polished steel acquires straw colour .   | .   | 460         |
| Bismuth melts at                         | .   | 476         |
| Sulphur burns                            | .   | 560         |
| Oil of turpentine boils                  | .   | )1          |
| Polished steel acquires deep blue colour |     | 580         |
| Lead melts                               |     | 594         |
| Linseed oil boils                        | .   | 600         |
| Quicksilver boils                        |     | 660         |
| Zinc melts                               | . 1 | 700         |
| Iron, bright red in the dark             | . I | 752         |
| " red-hot in twilight                    | .   | 884         |
| Red heat fully visible in daylight .     | •   | 1077        |
| Brass melts                              | • 1 | 3807        |
| Copper melts                             | •   | 4587        |
| Silver melts                             |     | 4717        |
| Gold melts                               | •   | 5237        |
| Welding heat of iron, from               | • 1 | 12777       |
| to                                       | .   | 13427       |
| Greatest heat of smith's forge           | •   | 17327       |
| Cast iron begins to melt                 | •   | 17977       |
| , thoroughly melted                      | :   | 20577       |

## INJECTION.

Injection pipe  $\frac{1}{6}$  to  $\frac{1}{15}$  of cylinder's diameter.

of cylinder's diameter being the proportion used in the
 steamers on the Hudson, working with 20 to 35 lbs. steam,
 and running 450 to 600 feet per minute.

 $\frac{1}{15}$  usual proportion for marines, working with 10 to 15 lbs. steam, and running 200 feet per minute.

# To find the proper size under any circumstances capable of supplying three times the quantity used.

Cubic ft. water used in cylinder per hour in form of steam.

9

= Area of injection, sq. ins.

For Rule, see page 42.

- 9 is divisor when the steam is expanded down to the atmosphere on reaching the condensor.
- 8.9 is divisor when the steam is equal to 5 lbs. per inch.

The above simple rule is deduced from the following:-

# To find the quantity of water required to condense a given amount of steam.

Let C=temperature of condensing water.

S=temperature of steam corresponding to pressure as per table below.

Then 
$$\frac{900+S}{100-C} = \begin{cases} \text{The number of cub. ft. of water required to condense each cubic foot of water in the form of steam used in the cylinder.} \end{cases}$$

| Pressure.<br>bs. above atmosphere. | Temperature.<br>Fahrenheit. | Pressure-<br>lbs. | Temperature.<br>Fahrenheit. |
|------------------------------------|-----------------------------|-------------------|-----------------------------|
| 2                                  | 219°                        | 16                | 253°                        |
| 4                                  | 225                         | 18                | 257                         |
| 6                                  | 231                         | 20                | 260                         |
| . 8                                | 236                         | 25                | 269                         |
| 10                                 | 240                         | 30                | 276                         |
| 12                                 | 245                         | 35                | 283                         |
| 14                                 | 249                         | 40                | 289                         |

The temperature of condensing water is taken as generally 52°.

The quantity of water used in cylinder is found by Rule, page 42.

`To find the size of pipe necessary to supply a given quantity of water.

Cub. ft. water required per min.
Velocity due to vacuum as per
table

Area of pipe, square feet, making no allowance for friction.

If 1500 be taken as divisor, it allows  $\frac{1}{7}$  for friction with a vacuum of 13 lbs., and if the injection delivery be well below the surface of the water, this may be considered an ample allowance.

| Vacuum.<br>lbs. per Inch. | Velocity of Water.<br>Feet per minute. |
|---------------------------|----------------------------------------|
| 12.15                     | 1714                                   |
| 13                        | 1774                                   |
| 1,4                       | 1832                                   |

In high and large condensors for marines, the injection should be led in pretty near the top; taking care, especially when the steamer is shallow, to keep the outlet at a lower level than the water surface outside; the outlet should be arranged with a rose or dashplate to scatter the water as much as possible over the whole area.

The bilge injection for marines should always be kept quite distinct from the sea injection; it should have a good large rose placed in the bilge in a convenient and attainable place, and should be led direct into the condensor by a separate pipe and cock. This is a point of great importance, for when the bilge injection is connected with the sea injection before reaching the condensor, if by any accident or mismanagement both cocks be left open, the sea water can run direct into the bilge. These sort of mistakes do occur sometimes, and cannot always be rectified till too late. By keeping the pipes entirely distinct, the possibility of accident from this source is avoided.

### LOCOMOTIVE.

To find the evaporating power of a locomotive boiler.

Find the evaporating power of the boiler when burning 10 lbs. of coke per sq. foot of grate per hour, as per Rule, page 11.

Then:

Evap. thus found × No. in table corresp. to rate of combust.

=Water evaporated, cub. ft. per hour.

| Coke consumed.<br>lbs. per ft. per hour. | Multiplier. | Coke consumed.<br>lbs. per ft. per hour. | Multiplier. |  |  |
|------------------------------------------|-------------|------------------------------------------|-------------|--|--|
| 20                                       | 2.          | 50                                       | 3.          |  |  |
| 25                                       | 2.25        | 60                                       | 3.1         |  |  |
| 30                                       | 2.4         | 70                                       | 3.5         |  |  |
| 35                                       | 2.6         | 80                                       | 3.3         |  |  |
| 40                                       | 2.8         | 95                                       | 3.4         |  |  |

In the higher rates of combustion there is evidently a great loss of effect, most probably from the want of sufficient time being allowed for the surface to absorb and transfer the large quantity of heat which is generated; partly, perhaps, from a portion of the fuel not wholly burned being continually abstracted from the fire, and drawn through the tubes by the force of the draught.

It must be observed that the proportion of heating surface to fire, most suitable for ordinary boilers with a natural draft, does not appear to be the best for a locomotive boiler with an artificial draft. The great quantity of heat generated requires a proportionable surface to absorb it; and there is no reason to doubt that 30 square feet of effective heating surface to 1 of fire grate gives a more economical result than 20 to 1, although with ordinary boilers 16 to 1 appears to be the outside proportion. See page 16.

### TRACTION.

To find the power of traction of a locomotive engine.

Area cyl. ins. × average pressure on piston, lbs. × 2

Proportion of circumference of wheel to the double stroke

=Force applied on circum. of wheel, or on drag link, lbs.

Or simply,

Area cyl. ins. × average pressure on piston, lbs. × stroke, feet No. in table corresponding to diameter of wheel.

=Force applied on drag link, lbs.

| Diameter Wheel,<br>Feet. | Divisor. | Diameter Wheel.<br>Feet. | Divisor. |
|--------------------------|----------|--------------------------|----------|
| 3.6                      | 2.75     | 6.0                      | 4.71     |
| 4.0                      | 3.14     | 6.6                      | 5.1      |
| 4.6                      | 3.5      | 7.0                      | 5.49     |
| 5.0                      | 3.92     | 76                       | · 5·89   |
| 5.6                      | 4.32     | 8.0                      | 6.28     |

The above rule makes no allowance for friction, as this is taken into account in the resistance to be overcome.

### RESISTANCE.

The resistance to be overcome is composed of the following:-

## 1st. The Friction:

That of the engine=15 lbs. per ton.

Tender and carriages = 8

2nd. The resistance of the air due to the speed, as per following table:—

| Velocity of Wind. F | orce per sq. foot. | Velocity of Wind. | Force per sq. foot. |
|---------------------|--------------------|-------------------|---------------------|
| Miles per hour.     | lbs.               | Miles per hour.   | lbs.                |
| 10                  | ·5 ,               | 45                | 10                  |
| 15                  | 1                  | 50                | 12.5                |
| 20                  | 2                  | 60                | 18                  |
| 25                  | 3                  | 70                | 24                  |
| 30                  | 4.5                | 80                | 32                  |
| 35                  | 6                  | 90                | 40                  |
| 40                  | 8                  | 100               | 50                  |

15 miles per hour is the speed of a fresh breeze of wind.

Besides the above, which may be taken as standard resistances, the force of the wind may be taken into account either for or against the engine, as it may happen; and in some cases, i. e. strong side winds, very high speeds, or for badly laid rails, an extra rate for friction should be allowed.

## To find the resistance or assistance at inclines.

Weight of train. Engine and tender. lbs. Proportion of the incline. Resistance due to incline, lbs.

For instance, for an inclination of 1 in 90, divide by 90.

### PADDLE WHEELS.

Diameter, 3 to 5 times the stroke of engines.

3 times is a good proportion for tug boats with a good stroke, and for engines of low power in proportion to size of boat.

4 times is a good proportion for ordinary purposes; with this proportion an engine running 250 feet per minute will drive boat 14 miles per hour.

5 times, outside size, for sharp boats of large power.

The fast running boats on the Hudson, with engines of 8 to 15 feet stroke, running very fast, and developing a great power with a light engine, use the first proportion.

On the Ohio and Mississippi, engines 6 to 10 feet stroke, the wheels generally are 4 times the stroke.

The influence of the size in affecting the performance of the engine will be seen clearly in investigating the speed of vessel. (See STEAM VESSEL.)

### FLOATS.

Length, ½ to ½ of width of boat; Breadth, ½ to ½ of depth of boat;

Diminishing in the proportions as the size of the vessel increases.

The principle being, that the total vertical area of the floats immersed should be about  $\frac{1}{2}$  the immersed midship section of the vessel;  $\frac{1}{3}$  the minimum; equal to it the maximum.

### SLIP OF WHEELS.

The slip will be a minimum, when the total immersed float area is equal to the vessel's immersed section; the depth of float being not more than  $\frac{1}{14}$  of the diameter of the wheel, the float being immersed overhead and no more; in this case the slip will not be more than  $\frac{1}{16}$ .

When the total float area is made equal to  $\frac{1}{2}$  the immersed midship section, which will be found a good medium, the slip will vary from  $\frac{1}{6}$  to  $\frac{1}{6}$ , depending on the immersion. See below.

Fig. 17.

A total float surface  $= \frac{1}{3}$  the mid. section may be sufficient for boats of small power and moderate speed, but this should be the minimum in any case; the slip will vary from  $\frac{1}{4}$  to  $\frac{1}{4}$ .

To find the slip of floats as depending on the immersion, the total vertical area of floats immersed being not less than  $\frac{1}{2}$  the immersed midship section of vessel.

Let ABC be the immersed circumference of wheel;
A C the water line.

Then 
$$\frac{(A B C - A C) \times 2}{A B C}$$
 = Slip for an ordinary wheel,

The fractional difference between the lengths  $\times$  2 representing the slip.

For instance; Suppose the wheel to be 15 feet diameter, immersed 3 feet.

Then the proportion of immersed circumference to the chord will be as  $15\frac{3}{4}$  to  $14\frac{1}{4}$ ;

The fractional difference between the two lengths is  $\frac{1}{10}$ , and  $\frac{1}{10} \times 2 = \frac{1}{5}$  slip.

For a wheel with vibrating floats, the slip is only  $\frac{1}{2}$  that of an ordinary wheel of equal immersion and area.

And 
$$\frac{ABC-AC}{ABC}$$
 = Slip for a wheel with vibrating floats,

To find the speed of floats in miles per hour, the size of wheel and number of revolutions being ascertained.

Mean diam. of wheel Ft. × Revs. per min. to centre of floats. = Speed of floats, miles per hour.

To find the diameter necessary to maintain a given speed of floats, the number of revolutions being determined.

 $\frac{\text{Speed required, miles per hour} \times 28}{\text{Revs. per min.}} = \frac{\text{Mean diam. of wheel, feet.}}{\text{to centre of floats.}}$ 

### PEDESTAL - BRACKET.

### PEDESTAL.

Good proportions.

Thickness of cover ·4 of diam. of bearing.

Ditto of sole plate 3

" " if 2.

Diameter of bolts 25

" if there are 4.

", "18 ", "if there Distance between bolts twice diameter of bearing.

### BRACKET.

Solid. Metal round brass  $= \frac{1}{3}$  diam. of bearing. General thickness web, &c.  $= \frac{1}{4}$  , , with feathers. Width at lightest = diam. of bearing. Thickness  $= \frac{1}{8}$  ,

### RIVET.

See Boiler, page 18.

### ROPE.

To find breaking weight of an ordinary tarred hemp rope.

A rope should not be loaded with more than  $\frac{1}{3}$  its breaking weight.

$$\frac{(\text{Circum. ins.})^2 \times \text{Length, feet}}{24} = \text{Weight, lbs.}$$

Or,

$$\frac{(\text{Circum. ins.})^2}{4}$$
 = Weight, lbs. per fathom.

### SCREW.

The table below gives the number of threads for each diameter in Whitworth's taps.

| Diameter                | Threads                         | Diameter                               | Threads                    | Diameter                          | Threads                                |
|-------------------------|---------------------------------|----------------------------------------|----------------------------|-----------------------------------|----------------------------------------|
| Tap.                    | per inch.                       | Tap.                                   | per inch.                  | Tap.                              | per inch.                              |
| 14 sie 12 5ie si4 7ie 1 | 20<br>16<br>12<br>11<br>10<br>9 | 11 11 11 11 11 11 11 11 11 11 11 11 11 | 7<br>6<br>5<br>4<br>4<br>3 | 3½ 3½ 4 3¾ 4 4¼ 4½ 4½ 5 5¼ 5 5¾ 6 | 314<br>3<br>275 214 155 225<br>225 225 |

In the above threads the angle used is 55°.

The depth of thread = pitch.

t of the depth of thread is rounded off at top and bottom.

Square threads have half the above number of threads per inch.

### SCREW PROPELLER.

Usual proportions:-

Diameter,  $\frac{1}{3}$  to  $\frac{1}{2}$  beam of vessel.

Pitch \(\frac{2}{3}\) to 2\frac{1}{2}\times diameter, and 8 to 12 times the stroke of engine. See below.

Length,  $\frac{1}{8}$  to  $\frac{1}{4}$  diameter.

As to diameter, the larger it is made the better; the pitch can bear a better proportion to the diameter; the slip is reduced, and the screw propels with more certainty and success in head winds.

The pitch should not exceed 1½ times diameter where it can be avoided; the proper proportion, however, depends principally upon the stroke of the engine, and its power in proportion to the size of vessel.

When the power is small for the vessel, and the engine is intended to run pretty fast, propelling the vessel at a moderate speed, the pitch should not be more than 8 times the stroke of engine.

If the boat is intended to go fast, and has sufficient propelling power, a proportion of 10 times the stroke will be found satisfactory; in this case the engine running 300 feet per minute will propel the vessel fully 14 miles per hour, allowing  $\frac{1}{8}$  for slip.

For ocean steamers, where there may be difficulty in keeping the engines running very fast for a continuance, and for sharp vessels with large power, 12 times the stroke may be given. Thus arranged, the engine running 220 feet per minute, will drive the vessel  $12\frac{1}{2}$  miles per hour, and proportionably, allowing  $\frac{1}{6}$  for slip.

If the engine is geared, the pitch  $\times$  number of revolutions for 1 of engine, must be taken as effective pitch in proportioning screw to engine.

The influence of the pitch in affecting the performance of the engine will be seen clearly in investigating the speed of vessel. (See STEAM VESSEL.)

To find the effective area of any screw.

 $(\frac{\text{Diameter, feet})^2 \times \text{Length, ft.}}{\text{Pitch, ft.}} \times 7 = \text{Area of each blade.}$ 

supposing the edges to be parallel, looking on the side.

As a general rule, an effective area of  $\frac{1}{10}$  of the immersed midship section will be found a good proportion. For boats of light draught considerably larger if possible.

### SLIP.

The slip of screw propellers varies very much; the table below will however give a rough approximation under ordinary circumstances.

| Effective Area.                                      | Effective Area. Pitch=Diam. Pitch=1 D |             |                  |
|------------------------------------------------------|---------------------------------------|-------------|------------------|
| $\frac{1}{9}$ of immersed section . $\frac{1}{12}$ . | 1<br>8<br>1<br>7                      | - 17<br>166 | 1<br>6<br>1<br>5 |

The slip will be more than this, in screws with a pitch exceeding two diameters, and in boats where the shaft is but little below the surface of the water—in some cases the slip being as much as  $\frac{1}{2}$ , and generally from  $\frac{1}{3}$  to  $\frac{1}{2}$ , when the shaft is not more than 2 feet below the surface.

The slip will be less than this, when the pitch is less than the diameter, and when the screw is very deeply immersed. To find the speed of a screw in miles per hour, the pitch and number of revolutions being ascertained.

 $\frac{\text{Pitch, ft.} \times \text{Revs per minute}}{88} = \text{Speed, miles per hour.}$ 

To find the pitch necessary to maintain a given speed of screw, with a given number of revolutions.

Speed required, miles per hour × 88 Revs. per minute Pitch, feet.

A very good way of securing the screw on the shaft is that adopted by Penn; that is, a broad cross cutter through boss and shaft; the eye of the screw not being recessed, but bored straight through. The shaft is thus secured from rusting; the cutter can easily be driven back, and the screw can afterwards be loosed by appropriate cutters through the same hole with certainty and ease.

### SHAFT.

### CRANK SHAFT.

Wrought iron - - 2 to  $2\frac{1}{8}$  piston rod. Cast iron - - -  $2\frac{1}{2}$  ,

To find the size of any shaft necessary to transmit a given Power.

 $\frac{3}{\sqrt{\frac{\text{Horse-Power} \times 300}{\text{Revs. per min.}}}} = \text{Diameter, ins. wrought iron.}$ 

The above applies to flywheel or paddlewheel shafts.

For ordinary purposes, 2nd motion shafting, &c. 200 is the proper multiplier.

Cast iron do. . . . 300 ,, ,,

For cast iron flywheel shafts, 450 is the proper multiplier.

For marines with a single engine, wrought iron shaft

200 " "

To find the size of bearing necessary to carry a given weight; as for water-wheels, axles, &c.

$$\sqrt[3]{\frac{\text{Weight, lbs.} \times \text{Length bearing, ins.}}{1000}} = \begin{cases} \text{Diam. inches} \\ \text{wrought iron.} \end{cases}$$

600 is divisor for cast iron.

In all the above cases, if the weight be carried at any distance from the bearings, the body of the shaft must be calculated as a beam, and proportioned accordingly.

To find the size necessary to withstand a given amount of torsion.

$$\sqrt[8]{\frac{\text{Weight, lbs.} \times \text{Leverage, ft.}}{150}} = \begin{cases} \text{Diam. ins. wrot. iron, equal} \\ \text{to 6 times breakg. weight.} \end{cases}$$

100 is the divisor for cast iron.

The weight required to twist a wrought iron shaft being:

$$\frac{(\text{Diam. ins.})^3 \times 1000}{\text{Leverage, feet}} = \text{Twisting weight.}$$

600 is multiplier for cast iron.

1700 , steel. 450 , copper.

### SOLDERING.

The solder for joints requires to be of some metal more fusible than that of the substances to be joined. For Copper, usual solder 6 to 8 parts brass to 1 of zinc; 1 of tin sometimes added.

A still stronger solder, 3 parts brass, 1 of zinc.

To prepare this solder. — Melt the brass in a crucible, when melted add in the zinc, and cover over for 2 or 3 minutes till the combination is effected, then pour it out, over a bundle of twigs, into a vessel of water, or into a mould composed of a number of little channels, so that the solder may be in long strips convenient for use.

Brass filings alone will answer very well.

To braze with this solder. — Scrape the surfaces perfectly clean, and secure the flange or joint carefully; cover the surfaces to be brazed with borax powder moistened; apply the solder, and melt it in with the flame of a clear coke fire from a smith's hearth; particular care being taken not to burn the copper.

Iron and brass are soldered with spelter, which is brass and zinc in equal parts; the process being performed in a manner similar to the above. For ironwork, however, sometimes rather differently; the articles are fixed in their position, and the solder applied, a covering of loam is then put over all to exclude the air, the work thus prepared is then put into the fire a sufficient time to melt the solder in.

For Lead the solder is 1 part tin, 1 to 2 of lead.

In using these the surfaces to be joined are made perfectly clean and smooth, and then covered with sal-ammoniac, or resin, or both; the solder is then applied, being melted in, and smoothed over by the soldering iron.

The joints of lead plates for some purposes are made as follows: —

The edges are brought together, hammered down into a sort of channel cut out of Fig. 18.

wood, and secured with a few
tacks. The hollow is then scraped clean with a scraper,
rubbed over with candle grease, and a stream of hot lead is poured into it, the surface being afterwards Fig. 19.

smoothed with a red-hot plumber's iron.

To joint lead pipes.—Widen out the end of one pipe with a taper wood drift, and scrape it clean inside; scrape the end of the other pipe outside a little tapered, and insert it in the former: then solder it with common lead solder as before described; or if required to be strong, rub a little tallow over, and cover the joint with a ball of melted lead, holding a cloth (2 or 3 plies of greased bed-tick) on the under side; and smoothing over with it and the plumber's iron.

### STEAM.

To find the pressure of steam from the temperature.

$$\frac{\left(\frac{\text{Temp. }^{\circ}+100}{177}\right)^{6}}{2\cdot04} - 14\cdot7 = \frac{\text{Pressure above atmosphere,}}{\text{lbs. per sq. inch.}}$$

To find the volume of steam from the pressure.

Tredgold.

(Temp. ° corresponding to pressure  $+459^{\circ}$ ) +76.5Pressure above atmosphere, lbs.  $\times 4$ =Volume of steam produced by 1 of water.

For table of volumes under different pressures, see p. 55-

To find the velocity of steam of a given pressure through an orifice.

## Tredgold.

8/Vol. of steam from 1 of water × Pressure, lbs. ×2·2

=Velocity of steam, feet per second.

| Pressure,<br>lbs. per<br>sq. inch. | per feet per he feet per |    | Velocity,<br>feet per<br>Second. | Pressure,<br>lbs. | Velocity,<br>feet per<br>Second. |  |
|------------------------------------|--------------------------|----|----------------------------------|-------------------|----------------------------------|--|
| 1                                  | 482                      | 20 | 1504                             | 80                | 1919                             |  |
| 2                                  | · 663                    | 30 | 1643                             | 90                | 1936                             |  |
| 3                                  | 791                      | 40 | 1729                             | 100               | 1957                             |  |
| 4                                  | 890                      | 50 | . 1791                           | 110               | 1972                             |  |
| 5                                  | 973                      | 60 | 1838                             | 120               | 1991                             |  |
| 10                                 | 1241                     | 70 | 1872                             | 130               | 2004                             |  |

### STEAM VESSEL.

### RESISTANCE.

The resistance of, or force required to propel, any vessel, depends,

1st, and principally, upon the area of the immersed midship section, which in fact represents the body of water which requires to be moved aside to permit the passage of the vessel.

2nd. Upon the shape of the vessel, in a paddle steamer principally upon the angle of the bow; in a screw steamer the shape of the stern being also of great importance, as enabling the screw to act properly on the water.

3rd. Upon the speed at which the vessel is driven; the speed being doubled, it requires four times the force to propel it.

The friction of the water may also be something, but the resistance from this source is so small in comparison with that from the causes represented above, that practically it need not be taken into account.

In calculating the power necessary to propel, and in comparing the resistance of different vessels, it is necessary to bring each to some common point of comparison; a very convenient one being lbs. per square foot of immersed section at 10 miles per hour.

To find approximately the resistance of any vessel at 10 miles per hour.

Find the proportion the average water lines of the bow bear to half the beam.

Then

100

Prop. of aver. bow lines to the 1 beam

= { Resistance, lbs. per sq. ft. immersed section, at 10 miles per hour.

For instance:

Suppose AB be centre line of a vessel;
AC a line showing the average sharpness of the water lines immersed;
BC half the beam of the vessel.

Then  $\frac{AC}{BC}$  gives the proportion of average water lines of bow to the  $\frac{1}{8}$  beam.

If A c be 40 feet, B c 8 feet,

$$\frac{100}{\frac{A}{B}} = \frac{100}{5} = 20 \text{ lbs. per sq. foot resistance.}$$

To find the resistance at any other speed.

If less than 10 miles,

Resistance at 10 miles 
$$\frac{10}{\text{Speed, miles per hour}}^2 = \begin{cases} \text{Resistance at the lower speed,} \\ \text{lbs. per square foot of immersed} \end{cases}$$



If more than 10 miles,

Resistance at 10 miles  $\times \left(\frac{\text{Speed, miles per hour}}{10}\right)^2 = \text{Resistance at increased speed, lbs. per sq. ft. immersed section.}$ 

The resistance at a given speed being ascertained, to reduce it to the resistance at 10 miles per hour.

If the speed is less than 10 miles,

 $\left(\frac{10}{\text{Speed in miles}}\right)^2 \times \text{Given resistance} = \text{Resistance}$  at 10 miles per hour, lbs. per sq. foot, immersed section.

If more than 10 miles,

$$\frac{\text{Given resistance}}{\left(\frac{\text{Speed}}{10}\right)^2} = \begin{cases} \text{Resistance at 10 miles per hour, lbs.} \\ \text{per sq. foot, immersed section.} \end{cases}$$

### PROPELLING FORCE.

The force a given engine is able to apply in propelling a steam-vessel depends:

1st. On the pressure on the piston, minus the friction due to the size and form of engine.

2nd. On the speed of the advance of screw or float as compared with the speed of the piston.

3rd. On the slip of the screw or float.

The pressure on the piston, if not found by indicator diagram, can be ascertained approximately, by calculating the evaporative power of the boiler (see p. 12); by then finding how full this supply of steam will fill the cylinders, the number of strokes being known. For Table of Friction, see p. 38.

The speed of advance of float or screw as compared to that of piston is simply as follows:

## For paddle-wheels.

Circum. at centre of float, ft. = Prop. speed of float to engine.

## For direct acting screws.

Pitch of screw, ft.
Twice stroke of engine, ft. Prop. speed of screw to engine.

## For geared screws.

Pitch of screw × No. of rev. to lof engine = { Prop. speed of screw to engine.

For the slip of paddle-wheel, or screw, see pages 64, 69.

To find the force a given pair of engines are able to apply in propelling a vessel.

Area cyls. ins. × (Average pressure—friction lbs.)

Prop. speed of float or screw to double stroke

Force applied to immersed mid. section, lbs.

Suppose the force applied by the engine to the float or screw be 10,000 lbs.

And the slip be taken at 1,

The actual force applied to the immersed mid. section will be 10,000-2000=8000 lbs.

and Force applied to imm. mid. section, lbs.

Area immersed section, sq. ft.

to immersed section, lbs. per sq. ft.

# Finally, to find the speed at which a given engine will propel a given vessel.

1st. Find the force the engines are able to apply, as per rule above.

2nd. Find the resistance of vessel at 10 miles per hour, as per rule, page 75.

3rd. Find the speed at which the resistance of the vessel is equal to the force the engines are able to apply at that speed; and this will be the outside speed attainable in smooth water, and with no wind, the vessel being of good shape and proportions.

# STRENGTH OF MATERIALS.

|           |        |       |         |    |   |   | Cohe | sive Force<br>per sq. in | Crushing Fore<br>Tons per sq. is |
|-----------|--------|-------|---------|----|---|---|------|--------------------------|----------------------------------|
|           |        | Meta  | ls.     |    |   |   |      |                          |                                  |
| Brass     |        |       |         | •  | • | • | i    | 8                        | 4.5                              |
| Copper,   | cast   |       | •       | •  | • | • | l    | 8.2                      | 1                                |
| "         | wrou   | ght   |         |    | • | • |      | 15                       | 1                                |
| Gun me    | tal    | •     |         |    |   |   | 1    | 16                       | i                                |
| Iron, car |        |       |         | •  |   |   | 1    | 8                        | 49                               |
| " bai     | r. En  | glish |         | ٠. | • |   | l    | 25                       | 20                               |
| " boi     | ler p  | late  |         |    |   |   |      | 20                       | 16                               |
| Lead      | P      | •     |         |    |   |   | 1    | •8                       | 1                                |
| Steel     |        | -     |         |    |   |   |      | 55                       |                                  |
| Tin .     | ·      |       |         | •  |   | • | 1    | 2                        |                                  |
|           |        | Гімві |         |    |   |   |      |                          | ŀ                                |
| Ash       |        | TIMD  | Si Elle |    |   |   | l    | 7                        | 4                                |
| Beech     | •      | •     | •       |    | • | • | l    | 5                        | 1 4                              |
| Cedar     | •      | •     | •       | •  | • | • | l    | 3                        | 2                                |
| Elm       | •      | •     | •       | •  | • | • | l    | 4.5                      | 4.5                              |
|           | 4.4    | •     | •       | •  | • | • | l    | 3                        | 2.5                              |
| Fir, Sco  |        | •     | •       | •  | • | • | l    | 4                        | 2.5                              |
| _" Rig    | a      | •     | •       | •  | • | • | l .  | -                        | 2 3                              |
| Larch     | ٠.     | • •   | •       | •  | • | • | ١.   | 5                        | 3                                |
| Mahoga    | ny, E  | ionan | ras     | •  | • | • | l    | 3<br>8                   | 8                                |
| "_        | 8      | panis | n.      | •  | • | • | 1    |                          | 4                                |
| Oak, En   | iglish | •     | •       | •  | • | • |      | 5                        |                                  |
| Pine, pi  | tch    | •     | •       | •  | • | • | l    | 4.2                      | 2                                |
| ", уе     | llo₩   | •     | • •     | •  | • | • | 1    | 5                        | 2                                |
| Popiar    | •      | •     | •       | •  | • | • | 1    | 2.5                      | 2                                |
| Teak      | •      | •     | •       | •  | • | • |      | 6                        | 5                                |
|           |        | STON  | ē.      |    |   |   | l    |                          |                                  |
| Brickwo   | rk     |       |         |    | • |   |      |                          | 30                               |
| Sandston  | ne     |       |         |    |   |   |      |                          | 120                              |
| Limesto   | ne     |       |         |    |   |   |      |                          | 450                              |
| Granite,  |        | rdeen |         | -  |   |   | ١.   |                          | 540                              |

Rules for Columns and Pillars, see page 30.

### TEMPERING.

The article after being completed, is hardened by being heated gradually to a bright red, and then plunged into cold water; it is then tempered by being warmed gradually and equably, either over a fire, or on a piece of heated metal till of the colour corresponding to the purpose for which it is required, as per table below, when it is again plunged into the water.

```
Corresponding Temperature.
A very pale straw
                    - 430° Lancets 1
Straw
                    - 450° Razors J
                    - 470° Penknives ] All kinds of wood
Darker straw
                    - 490° Scissors
                                       I tools. Screwtaps.
Yellow
                    - 500° Hatchets, Chipping chisels,
Brown yellow
Slightly tinged purple 520°
                               Saws.
                    - 530° J All kinds of percussive tools.
Purple
Dark purple -
Blue -
Dark blue
                     - 600°
                             Soft for saws.
```

## To temper by the thermometer.

Put the articles to be tempered into a vessel containing a sufficient quantity to cover them,

of Oil or Tallow;

Sand:

or a mixture of 8 parts bismuth, 5 of lead, and 3 of tin, the whole to be brought up to, and kept up at the heat corresponding to the hardness required, by means of a suitable thermometer, till heated equally throughout; the articles are then withdrawn and plunged into cold water.

If no thermometer is available, it may be observed that oil or tallow begins to smoke at 430° or straw colour, and that it takes fire on a light being presented, and goes out when the light is withdrawn, at 570° or blue.

### WATER.

A cubic foot = 6.232 gallons.

 $= 62.5 \, \text{lbs.}$ 

A gallon = 10 lbs.

1 cwt. = 1.8 cub. ft.=11.2 gallons.

1 ton = 35.84 , = 224 ,

A column 1 inch square, 1 foot high = .434 lbs.

", 1 ", diam. ", = 341 lbs.

Centre of pressure is at 3 depth from surface.

To find the quantity of water that will be discharged through an orifice, or pipe, in the side or bottom of a vessel.

Area of orifice, sq. in. × { No. corresp. to height of surface above orifice, as per table = Cubic feet discharged per minute.

To find the size of hole necessary to discharge a given quantity of water under a given head.

Cubic ft. water discharged
No. corresp. to height, as per table 
Area of orifice, sq. ins.

To find the height necessary to discharge a given quantity through a given orifice.

Cub. ft. water discharged
Area orifice, sq. ins.

No. corresp. to height, as per table.

| Height of<br>Surface above<br>Orifice, | Multiplier. | Height of<br>Surface above<br>Orifice. | Multiplier. | Height of<br>Surface above<br>Orifice, | Multiplier,  |
|----------------------------------------|-------------|----------------------------------------|-------------|----------------------------------------|--------------|
| Ft.                                    | 0.07        | Ft. 18                                 | 0.5         | Ft.                                    | 14:0         |
| 2                                      | 2·25<br>3·2 | 20                                     | 9·5<br>10·  | 40<br>45                               | 14·2<br>15·1 |
| 4                                      | 4.5         | 22                                     | 10.2        | 50                                     | 16.          |
| 6                                      | 5.44        | 24                                     | 11.         | 60                                     | 17.4         |
| 8                                      | 6.4         | 26                                     | 14.5        | 70                                     | 18.8         |
| 10                                     | 7·1         | 28                                     | 12.         | 80                                     | 20.1         |
| 12                                     | 7:8         | 30                                     | 12.3        | 90                                     | 21.3         |
| 14                                     | 8.4         | 32                                     | 12.7        | 100                                    | 22.5         |
| 16                                     | 9.          | 35                                     | 13.3        |                                        |              |

The velocity of water issuing from an orifice in the side or bottom of a vessel being ascertained to be as follows:—

$$\sqrt{\text{Height ft. surface above orifice}} \times 5.4 = \begin{cases} \text{Velocity of water,} \\ \text{ft. per second.} \end{cases}$$

$$\sqrt{\text{Height ft.}} \times \text{Area orifice, ft.} \times 324 = \begin{cases} \text{Cubic ft. discharged} \\ \text{per minute.} \end{cases}$$

$$\sqrt{\text{Height ft.}} \times \text{Area orifice, ins.} \times 2.2 = Do. do.$$

It may be observed, that the above rules represent the actual quantities that will be delivered through a hole cut in the plate; if a short pipe be attached, the quantity will be increased, the greatest delivery with a straight pipe being attained with a length equal to 4 diameters, and being  $\frac{1}{3}$  more than the delivery through the plain hole; the quantity gradually decreasing as the length of pipe is increased, till, with a length = 60 diameters the discharge again equals the discharge through the plain orifice. If a taper pipe be attached the delivery will be still greater, being  $1\frac{1}{2}$  times the delivery through the plain orifice; and it is probable that if a pipe with curved decreasing taper were to be tried, the delivery through it would be equal to the theoretical discharge, which is about 1.65 the actual discharge through a plain hole.

To find the quantity of water that will run through any orifice, the top of which is level with the surface of water as over a sluice or dam.

Height, ft. from water surface to to bottom of orifice or top of dam x4. Area of water passage, x216

=Cub. ft. discharged per minute.

Or,

 $\frac{2}{3}$  Area of water passage, sq. ins.  $\times$  No. corresp. to height as per table.

-Cub. ft. discharged per minute.

To find the time in which a vessel will empty itself through a given orifice.

 $\sqrt{\text{Height ft. surface above orifice}} \times \text{Area water surface, sq. ins.}$ Area orifice, sq. in.  $\times 3.7$ 

=Time required, seconds.

The above rules are founded on Bank's experiments.

### WATER WHEEL.

Undershot wheels are used when the fall of water does not exceed  $4\frac{1}{2}$  feet.

Speed of rim  $= \frac{1}{2}$  the velocity of the water.

Power given out, 3 to 4 of the Horse Power of the water. Poncelet's wheels, with curved floats, speed 8 to 10 ft. per second, developing 5 of the Horse Power of the water.

### BREAST WHEEL.

Diameter of wheel about twice the height of fall. Speed of rim about 6 feet per second. Power given out 6 of the Horse Power of the water.

### HIGH BREAST WHEEL.

Diameter of wheel  $1\frac{1}{2}$  times height of fall.

Speed of rim about 5 feet per second.

Power given out 66 of the Horse Power of the water.

### OVERSHOT WHEEL.

Diameter of wheel 1 to 1½ the height of fall.

Speed of rim 4 to 5 feet per second.

Power given out '75 of the Horse Power of the water.

## To find the effective Horse Power of any wheel.

Water expended per second, cub. ft. × Effective height of fall, ft.

= Horse Power of Overshot wheels.

13.3 is divisor for High breast wheels.

14.6 " Breast "
20 ... Undershot "

The effective height of fall being the vertical distance from the point where the water reaches the wheel to the surface of the tail water,  $+\frac{1}{3}$  the height from the sluice to the wheel, if the water is arranged to drop upon the wheel.

To find the quantity of water a given stream is capable of supplying, the velocity of the surface being ascertained with a float.

Area of channel, sq. ft.  $\times$  Surface velocity, ft. per sec.  $\times$  8 = Water supplied, cub. ft. per second.

02

To find the velocity of a stream from the inclination of the channel.

### Eytelwein.

Let d = the mean hydraulic depth of the stream, *i. e.* the depth where it has an equal sectional area above and below.

Then

 $\sqrt{d \times Fall}$ , ft. per mile  $\times 94 = Mean$  velocity, miles per hour.

 $\sqrt{d \times Fall}$ , ft. per mile  $\times 82.5 = Mean$  velocity, ft. per min.

## The velocity being thus found,

Sectional area of stream, sq. ft. × Velocity ft. per min. = Water supplied, cub. ft. per min.

The water should be arranged to come upon the wheel with a velocity somewhat greater than that of the circumference of the wheel.

In the overshot wheel, the water being kept at a sufficient head above the sluice to give it this velocity, or else being allowed to drop a short distance upon the wheel; this distance, however, should not exceed the height necessary to give the required velocity, as the force thus developed is not more than \( \frac{1}{2} \) of that which is developed from the weight of the same water acting upon the wheel.

In other cases, the bottom of the canal is inclined on approaching the wheel, in order to give the water the required velocity.

Buckets, 2 at least for every foot in diameter.

Shrouds, usually 1'0" to 1'9" wide.

Gudgeon, see Shaft, page 70.

### VENTILATION OF WATER WHEELS.

A very important point in the construction of water wheels is the ventilation. If this is not attended to, the water can neither fill nor leave the buckets readily, and the wheel is consequently unable to develop so much power as it would do otherwise.

The best way of all to ventilate effectually, probably

would be to do away with the sole plate altogether, carrying the back of each bucket well up behind the bucket above, leaving a clear space between, as per sketch; in this case, the back of each bucket should be nearly level with the front at the time the water enters upon the bucket.

Thus arranged, the air is enabled to get out and in with the greatest freedom, both when the water comes on the wheel and when the buckets are leaving the water.

If not otherwise arranged, a few holes should



be made in the bottom of each bucket for ventilation.

#### GOVERNOR FOR WATER WHEELS.

A simple and effective governor for water wheels is represented in the annexed sketch.

a a are two mitre wheels running loose on the governor spindle, working into the wheel b, which drives a shaft, which by means of a train of wheels or a screw, lowers or raises the sluice according to the way in which it is turned; on the faces of these two wheels are clutches.

c is a catch box turning with the spindle on a feather, and connected to the governor above by two rods dd, and cross bars e e, which are prevented from turning round by a guide on one of the rods attached to any convenient place.

When the speed is too slow, the governor falls and puts the catch in gear with the lower wheel, which is arranged



so as to open the sluice, and to give more water to the wheel. When the right speed is reached, the catch is lifted out of gear by the governor, and the sluice remains stationary at that point. On the other hand, if the speed is too great, the governor puts the upper wheel in gear, and the sluice is lowered until the proper speed is reached, when the catch is put out of gear in the same manner as before.

### WEIGHT.

## To find the weight of any casting.

Width in  $\frac{1}{4}$  ins.  $\times$  Thickness in  $\frac{1}{8}$  ins.

$$\frac{\text{or vice versa.}}{10} \times \text{Length, ft.} = \begin{cases} \text{Weight, lbs.} \\ \text{cast iron.} \end{cases}$$

For instance; to find the weight of a casting  $3\frac{1}{4}$ "  $\times$   $1\frac{1}{8}$ "  $\times$  2' 6" long.

$$\frac{13 \times 9}{10} = 11.7 \times 2.5 = 29.25 \, \text{lbs.}$$

This rule is very useful, and can easily be remembered in the following form.

Width in ½ ins. × Thickness in ½ ins. } Cut off 1 fig. for or vice versa decimal, result is lbs. per foot of length.

For Wrought Iron add  $\frac{1}{20}$  to the result.

| Lead   | 27 | 1            | 91 |
|--------|----|--------------|----|
| Brass  | ,, | 1            | 91 |
| Copper | 22 | <del>1</del> | 91 |

## To find the weight from the areas.

Area, sq. ins.  $\times$  Length, ft.  $\times 3 \neq =$  Weight, lbs. cast iron.

Multiplier for Cast iron 3.156 or 3\frac{1}{2}.

"Wrought iron 3.312 ", 3\frac{1}{3}.

"Lead 4.854"

"Brass 3.644"

"Copper 3.87

Or, Area, sq. ins.  $\times$  10=lbs. per yard for wrought iron.

## To find the weight in cwts.

 $\frac{\text{Area, sq. ins.} \times \text{Length, ft.}}{31.9} = \text{Weight, cwts. cast iron.}$ 

For wrought iron, divide by 33.6.

### WEIGHT OF BOILER PLATES.

| Thickness, ins.           | 18  | 18 | 3<br>16 | 1  | 5<br>18 | 8  | 7 18 | 1 2 | <u>5</u> | 8  | 78 | 1  |
|---------------------------|-----|----|---------|----|---------|----|------|-----|----------|----|----|----|
| Weight, lbs. per sq. foot | 2.5 | 5  | 7.5     | 10 | 12.5    | 15 | 17.5 | 20  | 25       | 30 | 85 | 40 |

For cast iron deduct  $\frac{1}{20}$ .

## To find weight of boiler plates in cwts.

Area sq. ft.

No. corresponding to thickness in table below.

| Thickness.         | Divisor.                  | Thickness.                              | Divisor.                | Thickness.                 | Divisor.                   |
|--------------------|---------------------------|-----------------------------------------|-------------------------|----------------------------|----------------------------|
| In. 18 8 16 14 4 5 | 22:4<br>15:<br>11:2<br>9: | In.<br>3<br>5<br>7<br>16<br>1<br>2<br>9 | 7·5<br>6·3<br>5·6<br>5· | In.<br>58<br>84<br>77<br>8 | 4·48<br>3·73<br>3·2<br>2·8 |

### WEIGHT OF MATERIALS.

|                   | Lbs.<br>per<br>Cub.<br>ft. | Cub. ft.<br>per Ton. |       |                | Lbs.<br>per<br>Cub.<br>ft. | Cub. ft.<br>per Ton. |
|-------------------|----------------------------|----------------------|-------|----------------|----------------------------|----------------------|
| METALS:           |                            |                      |       | STONE:         |                            |                      |
| Brass             | 524                        | 4.3                  | 3.3   | Granite        | 165                        | 13.5                 |
| Copper, cast -    | 549                        | 4.08                 | 3.147 | Limestone -    | 165                        | 13.5                 |
| " wrought         | 557                        | 4.02                 | 3.1   | Marble         | 171                        | 13.1                 |
| Gun metal -       | 549                        | 4.08                 | 3.147 | Paving stone - | 151                        | 14.8                 |
| Iron, cast -      | 454                        | 4.93                 | 3.8   | Portland ,, -  | 160                        | 14                   |
| " wrought -       | 485                        | 4'62                 | 3.56  | Sandstone -    | 130                        | 17                   |
| Lead              | 709                        | 3.12                 | 2.43  | TIMBER:        | 1                          |                      |
| Steel             | 490                        | 4.6                  | 3.52  | Ash            | 48                         | 46                   |
| Tin               | 456                        | 4.9                  | 3.78  | Beech          | 46                         | 48.7                 |
| Zinc              | 439                        | 5                    | 3.93  | Cedar          | 35                         | 64                   |
| MISCELLANEOUS:    | l                          |                      |       | Elm            | 44                         | 51                   |
| Brick             | 120                        | 18.7                 |       | Fir, Riga -    | 30                         | 74                   |
| Chalk -           | 174                        | 12.8                 |       | Memel -        | 34                         | 66                   |
| Clay              | 125                        | 18                   |       | Larch          | 33                         | 68                   |
| Coal, see BOILERS |                            | 28                   |       | Mahog. Spanish |                            | 39.3                 |
| Cork              | 15                         | 149.3                |       | Oak, English - | 52                         | 43                   |
| Earth             | 110                        | 20                   |       | " African -    | 59                         | 38                   |
| Glass             | 180                        | 12.44                |       | Pine, pitch -  | 43                         | 51.6                 |
| Mercury           | 848                        | 2.64                 |       | " red -        | 41                         | 54.6                 |
| Oil, olive -      | 57                         | 39.3                 |       | " yellow -     | 38                         | 59                   |
| Sand              | 95                         | 23.56                |       | white -        | 34                         | 66                   |
| Slate             | 167                        | 13.4                 |       | Poplar         | 33                         | 68                   |
| Water, fresh -    | 62.5                       | 35.8                 | 1     | Teak           | 46                         | 48.7                 |
| ,, sea -          | 64.5                       | 34.8                 |       |                | 1 -0                       |                      |
| White lead -      | 198                        | 11.3                 |       |                |                            |                      |

### WHEEL.

# To find size of teeth necessary to transmit a given H.P. Tredgold.

 $\frac{\text{Horse Power} \times 240}{\text{Diameter of wheel, ft.} \times \text{Revs. per min.}} = \text{Strength of tooth.}$ 

 $\sqrt{\frac{\text{Strength}}{\text{Breadth, ins.}}} = \text{Pitch, ins.} \quad \frac{\text{Strength}}{(\text{Pitch, ins.})^2} = \text{Breadth, ins.}$ 

The above rule will be found very suitable for a speed of circumference of about 240 feet per minute. For speeds above, add to 240 half the difference, for speeds below, deduct half the difference, between 240 and the actual speed, the result being a suitable multiplier.

For instance; at 300 ft. per min., 60 being the difference, 240 + 30 = 270 multiplier.

At 160 ft. per min., 80 being the difference, 240 - 40 = 200 multiplier.

The reason being, that with higher speeds, the friction, wear, and liability to shocks is increased, at lower speeds decreased, and the teeth may advantageously be proportioned accordingly.

To find the Horse Power that any wheel will transmit.

(Pitch, ins.)<sup>2</sup> × Breadth, ins. × Diam. ft. × Revs. per min.

Appropriate No. according to speed, as above.

= Horse Power.

To find the multiplying number for any wheel.

 $\frac{(\text{Pitch, ins.})^2 \times \text{Breadth, ins.} \times \text{Diam. ft.} \times \text{Revs. per min.}}{\text{Horse Power}}$ 

=Multiplying No. as above.

To find the size of teeth to carry a given load in lbs.

 $\frac{\text{Load, lbs.}}{1120} = \text{Breaking strength of teeth.}$ 

 $\frac{\text{Load, lbs.}}{280} = \begin{cases} \text{Strength for very low speeds, and for steady} \\ \text{work; being 4 times the breaking strength.} \end{cases}$ 

 $\frac{\text{Load, lbs.}}{140} = \left\{ \begin{array}{l} \text{Strength for ordinary purposes of machinery;} \\ \text{being 8 times the breaking strength.} \end{array} \right.$ 

 $\frac{\text{Load, lbs.}}{100} = \begin{cases} \text{Strength for high speeds, and irregular work;} \\ \text{or when the teeth are exposed to shocks.} \end{cases}$ 

As before,

$$\frac{\text{Strength}}{(\text{Pitch, ins.})^2} = \text{Breadth, ins.} \sqrt{\frac{\text{Strength}}{\text{Breadth, ins.}}} = \text{Pitch, ins.}$$

### PROPORTIONS FOR WHEELS.

Length of tooth, ? of pitch.

Clearance of tooth, 16 inch for every inch of pitch.

Breadth of face, 21 pitch is a good proportion.

Rim and flat arms equal in thickness to the teeth.

Breadth of flat arms,  $1\frac{1}{4}$  to  $1\frac{1}{3}$  pitch, depending on their number, increasing in width towards the centre,  $\frac{1}{2}$  inch per foot.

Feathers, thickness, ·3 of pitch.

Boss, thickness, \(\frac{1}{2}\) diam. of bore for moderate depths, and when the shaft is proportioned to the wheel: if the shaft is larger, '8 of pitch is a proper proportion.

TABLE OF DECIMAL PARTS.

| Inch.          | Decimal of an Inch. |  |
|----------------|---------------------|--|
| $\frac{1}{32}$ | .03125              |  |
| 16             | .0625               |  |
| 3 32           | -09375              |  |
| 18             | ·125                |  |
| 1 16           | 1875                |  |
| 1              | <b>.</b> 25         |  |
| 1 18           | *3125               |  |
| 8              | ·375                |  |
| 1 16           | 4375                |  |
| 1 9            | •5                  |  |
| 18             | •5625               |  |
| 5 8            | •625                |  |
| 1 16           | ·6875               |  |
| 3 4            | •75                 |  |
| 18             | *8125               |  |
| 7 8            | •875                |  |
| 18             | 9375                |  |

|                                            | Docimar of a Poot. |  |  |
|--------------------------------------------|--------------------|--|--|
| 1 16                                       | .0052              |  |  |
| 불                                          | ·01041             |  |  |
| 1/4                                        | ·02083             |  |  |
| 3 8                                        | ·03125             |  |  |
| 불                                          | ·04166             |  |  |
| 그 등 기술 | ·0528              |  |  |
| 2                                          | ·0625              |  |  |
| 7                                          | •0729              |  |  |
| 1 1                                        | ·0833              |  |  |
| 2                                          | ·1666              |  |  |
| 3                                          | •25                |  |  |
| 4                                          | •3333              |  |  |
| 5                                          | <b>·4</b> 166      |  |  |
| 6                                          | •5                 |  |  |
| 7                                          | ·5833              |  |  |
| 8                                          | ·6666              |  |  |
| 9                                          | ·75                |  |  |
| 10                                         | *8333              |  |  |
| 11                                         | •9166              |  |  |
|                                            |                    |  |  |

The intermediate  $\frac{1}{32}$  may be found by adding in 03125.

For instance; to find what decimal of a foot  $9\frac{7}{8}\frac{1}{16}$  is.

9 - .75

 $\frac{7}{8}$  = .0729

 $\frac{1}{16} = 0052$ 

 $9\frac{7}{8}\frac{1}{16} = 8281$ 

TABLE OF AREAS.

| Dia, Ins.                               | Area, Feet.    | Dia. Ins.                | Area, Feet.       |
|-----------------------------------------|----------------|--------------------------|-------------------|
| 1                                       | *00034         | 614                      | ·213              |
| 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | .00136         | 1<br>1<br>2              | 2304              |
| 2                                       | •00306         | . 2                      | <b>·24</b> 57     |
| 1                                       | ·005 <b>4</b>  | 7                        | ·2672             |
| 14.<br>19<br>84                         | •0085          | 1 1                      | ·2867             |
| i                                       | . •0123        | 14 19 84                 | •3068             |
| 3                                       | ·0167          | 1 1                      | ·3276             |
| 2                                       | ·0218          | 8                        | ·3497             |
| 1                                       | ·0276          | 1 1                      | ·3712             |
| į                                       | .0341          | 14 19 84                 | ·3941             |
| 19 29                                   | .0412          |                          | · <b>4</b> 176    |
| 3                                       | <b>*0491</b>   | 9                        | <b>·44</b> 18     |
| 1                                       | .0576          | 1 1                      | <b>.</b> 4666     |
| 14 1 8 8                                | •0668          | 14118                    | · <b>4922</b>     |
| 8                                       | •0767          | 2                        | ·5185             |
| 4                                       | •0873          | 10                       | ·545 <b>4</b>     |
| 1/2                                     | •0985          | 1 1                      | ·573              |
| 1000                                    | ·110 <b>4</b>  | 4 1 1 2 2 2 2 4          | ·6013             |
| 2                                       | ·123           | 1 1                      | .6308             |
| 5                                       | .1363          | 11                       | •6599             |
| 1                                       | ·1503          | 1 1                      | •6903             |
| 14 19 84                                | ·16 <b>4</b> 9 | -14<br>-14<br>-18<br>-14 | ·7213             |
| 3                                       | ·1803          | 1 1                      | ·753              |
| 6                                       | ·1963          | 12                       | •785 <del>4</del> |

TABLE OF AREAS.

| Diam.             | Area.         | Diam.               | Area.               | Diam.                                                 | Area.         |
|-------------------|---------------|---------------------|---------------------|-------------------------------------------------------|---------------|
| 32                | •00076        | $2\frac{1}{2}$      | 4.9                 | 61                                                    | 30.68         |
| 16                | ·00305        | 충                   | 5.4119              | 8 8                                                   | 31.918        |
| 1 8               | .0122         | 56 <b>3</b> 4 7 a   | 5.9395              |                                                       | 33·183        |
| 1<br>18           | •0276         | 7 8                 | 6.4918              | 5 8                                                   | 34.472        |
| 14                | ·0 <b>4</b> 9 | 8                   | 7.0686              | 2                                                     | 35.785        |
| 16                | •0769         | 1 8                 | 7.6699              | 19 50 814 70                                          | 37.122        |
| 3 8               | ·1104         | 1                   | 8.2957              | 7                                                     | <b>38·485</b> |
| 16                | ·1503         | 3                   | 8.9462              | 18                                                    | 39-871        |
| 1/2               | .1963         | 1 2                 | 9.6211              | 1 1                                                   | 41.282        |
| 18                | ·2485         | 기연 기구 최연 기억 되면 최구 가 | 10.321              | 14 38 12 56 314                                       | 42.718        |
| 5 6               | ·3068         | 1                   | 11.045              | 1                                                     | 44.179        |
| 16                | ·3714         | 7 8                 | 11.793              |                                                       | 45.663        |
| 3                 | ·4417         | 4                   | 12.566              | 3                                                     | 47.173        |
| 16                | ·5185         | 1 8                 | 13 <sup>.</sup> 364 | -                                                     | 48.707        |
| 7 8               | ·601 <b>3</b> | 1                   | 14.186              | 8                                                     | 50-265        |
| 16                | ·6 <b>9</b>   | 3 8                 | 15.033              | 1 8                                                   | 51.849        |
| 1                 | ·785 <b>4</b> | 14 sic 12           | 15.9                |                                                       | 53.456        |
| 18                | ·8866         | - <del>-</del>      | 16.8                | 2                                                     | 55.088        |
| 18                | ·99 <b>4</b>  | 8<br>4<br>7         | 17.72               | 가 등 이번 보는 일본 가 기계 | 56.745        |
| 3 16              | 1.1075        | 7 8                 | 18.665              | <u>8</u>                                              | 58.426        |
| 1/4               | 1.2271        | 5                   | 19.635              | 3                                                     | 60.132        |
| 흏                 | 1.4848        | 1 8                 | 20.629              | 7                                                     | 61.862        |
| 1 1               | 1.7671        | 1                   | 21.647              | 9                                                     | 63.617        |
| 14 38 14 58 54 74 | 2.0739        | 기식 회장 기점 되장 회식      | 22.691              | 1 8                                                   | 65:397        |
| 3 4               | 2·4           | 1 2                 | 23.758              | 1 1                                                   | 67.201        |
| 7 8               | 2.7611        | 5                   | 24.85               | 3                                                     | 69.029        |
| 2                 | 3.1416        | 3                   | - 25.967            | i                                                     | 70.882        |
| 18                | 3.5465        | 7 8                 | 27.108              | 5                                                     | 72.76         |
| 1                 | 3.976         | 6                   | 28.274              | . 3                                                   | 74.662        |
| 33                | 4.43          | 븀                   | 29.465              | 14 316 15 56 814 718                                  | 76.589        |

| Diam.          | Area.          | Diam. | Area.  | Diam.  | Area.    |
|----------------|----------------|-------|--------|--------|----------|
| 10             | 78:54          | 163   | 220.35 | 25½    | 510.7    |
| 1 8            | 80.516         | 17    | 226.98 | 3      | 520-77   |
| 1              | 82.516         | 1     | 233.70 | 26     | 530.93   |
| 14 sic 15      | 84:541         | 1 2   | 240.53 | 1      | 541·19   |
| 1 2            | 86-59          | 3     | 247.45 | 1 2    | 551.55   |
| 5              | 88.664         | 18    | 254.47 | 2      | 562      |
| 2              | 90.768         | 1     | 261.59 | 27     | 572.55   |
| 7 8            | 92.886         | 1     | 268:8  | 1      | 583.21   |
| 11             | 95.033         | 3     | 276.12 | ì      | 593-96   |
| 븀              | 97:205         | 19    | 283.53 | 2      | 604.81   |
| 1              | 99.402         | 1     | 291-06 | 28     | 615.75   |
| 3              | 101.62         | 1 2   | 298.65 | 1      | 626.79   |
| 하는 나는 이번 하는 어떤 | 103.87         | 2     | 306:35 | a<br>a | 637.94   |
| 5              | 106-14         | 20    | 314·16 | 3      | 649.18   |
| 3              | 108:43         | 1     | 322:06 | 29     | 660-52   |
| 7 6            | 110.75         | 1     | 330.06 | 1      | 671.96   |
| 12             | 113.1          | 2     | 338·16 | 1      | 683-49   |
| 1              | 117:86         | 21    | 346.36 | 3      | 695·13   |
| 1              | 122.72         | 1     | 354.66 | 30     | 706.86   |
| 2              | 127:68         | 1     | 363.05 | 1      | 718-69   |
| 13             | 132·7 <b>3</b> | 34    | 371.54 | 1 1    | 730-62   |
| 1              | 137.89         | 22    | 380·13 | 3 4    | 742.64   |
| 1 2            | 143-14         | 1     | 388-82 | 31     | 754.77   |
| 3 4            | 148-49         | 1 2   | 397:61 | 1/2    | 766-99   |
| 14             | 153.94         | 34    | 406.49 | 고      | 779:31   |
| 1              | 159:48         | 23    | 415.47 | 34     | 791.73   |
| 1 2            | 165 <b>·13</b> | 1     | 424.56 | 32     | 804.25   |
| 3 4            | 170.87         | 1/2   | 433.74 | 1      | · 816·86 |
| 15             | 176.71         | 34    | 443·01 | 1 2    | 829.58   |
| 1              | 182.65         | 24    | 452-39 | 2      | 842:39   |
| 1<br>2<br>3    | 188-69         | ł     | 461·86 | 33     | 855.3    |
| 3              | 194.83         | 1     | 471.43 | 1      | 868-31   |
| 16             | 201-06         | 3     | 481.1  | 1/2    | 881.41   |
| 1              | 207:39         | 25    | 490-87 | 3      | 894.62   |
| 1<br>1<br>9    | 213.82         | 1     | 500.74 | 34     | 907-92   |

| Diam. | Area.   | Diam. | Area.   | Diam. | Area.                |
|-------|---------|-------|---------|-------|----------------------|
| 341/4 | 921:32  | 43    | 1452-2  | 513   | 2103:34              |
| 1 2   | 934.82  | 1     | 1469-14 | 52    | 2123.72              |
| 3     | 948.42  | 1 2   | 1486-17 | 1     | 2144.19              |
| 35    | 962-11  | 24    | 1503.3  | 1     | 2164.75              |
| 1     | 975.91  | 44    | 1520-53 | 3 4   | 2185.42              |
| 12    | 989.8   | 1     | 1537.86 | 53    | 2206.18              |
| 34    | 1003.79 | 1     | 1555.28 | 14    | 2227:04              |
| 36    | 1017:88 | 8     | 1572.81 | 1 2   | 2248.01              |
| 1/4   | 1032.06 | 45    | 1590.43 | 3 4   | 2269.06              |
| 1 2   | 1046:35 | 1     | 1608-15 | 54    | 2290-22              |
| 2     | 1060.73 | 1     | 1625-97 | 1     | 2311 <sup>.</sup> 48 |
| 37    | 1075-21 | 3     | 1643.89 | 1/2   | 2332.83              |
| 1     | 1089.79 | 46    | 1661.9  | 24    | <b>2354</b> ·28      |
| 1 2   | 1104.47 | 1     | 1680.02 | 55    | 2375.83              |
| 34    | 1119-24 | 1     | 1698-23 | 1     | 2397:48              |
| 38    | 1134.11 | -     | 1716.54 | 1 2   | 2419-22              |
| 1 1   | 1149.09 | 47    | 1734.94 | 1     | 2441.07              |
| 1 2   | 1164·16 | 1     | 1753-45 | 56    | 2463.01              |
| 3     | 1179:32 | 1 2   | 1772.05 | 1     | 2485·05              |
| 39    | 1194.59 | 2     | 1790.76 | 1 2   | 2507·19              |
| 1     | 1209.95 | 48    | 1809-56 | 2     | 2529.42              |
| 1 2   | 1225-42 | 1     | 1828:46 | 57    | 2551.76              |
| 34    | 1240.98 | 1 2   | 1847:45 | 1     | 2574.19              |
| 40    | 1256.64 | 2     | 1866.58 | 1/2   | 2596.72              |
| 14    | 1272:39 | 49    | 1885.74 | 2     | 2619:35              |
| 1/2   | 1288-25 | 1/4   | 1905.03 | 58    | 2642.08              |
| 3 4   | 1304-2  | 1 2   | 1924·42 | 1 4   | 2664.9               |
| 41    | 1320-25 | . 3   | 1943-91 | 1 2   | 2687:83              |
| 1/4   | 1336.4  | 50    | 1963·49 | 34    | 2710.85              |
| 1 2   | 1352.65 | 1     | 1983-18 | 59    | 2733.97              |
| 3     | 1369    | 1 2   | 2002:96 | 1/2   | 2757·19              |
| 42    | 1385.44 | 3 4   | 2022:84 | 효     | 2780.51              |
| 14    | 1401.98 | 51    | 2042.82 | 34    | 2803·9 <b>2</b>      |
| 1/2   | 1418-62 | 1     | 2062-9  | 60    | 2827:43              |
| 34    | 1435:36 | 1/2   | 2083:07 | 1     | 2851.04              |

| Diam.       | Area.   | Diam. | Area,                | Diam. | Area.   |
|-------------|---------|-------|----------------------|-------|---------|
| 60 <u>1</u> | 2874.75 | 691   | 3766:43              | 78    | 4778:36 |
| 3           | 2898-96 | 1 2   | 3793.67              | 1/4   | 4809.04 |
| 61          | 2922-47 | 34    | 3821.01              | 1 5   | 4839.82 |
| 1/4         | 2946-47 | 70    | 3848.45              | 3     | 4870.69 |
| 1 2         | 2970.57 | 1     | 3875.99              | 79    | 4901.67 |
| 3           | 2994.77 | 1 1   | 3903.62              | 1     | 4932.74 |
| 62          | 3019:07 | 3 3   | \$931·36             | 1/2   | 4963-91 |
| 1           | 8043.47 | 71    | 3959.19              | 3     | 4995.18 |
| 1 2         | 3067-96 | 1/4   | 3987·12              | 80    | 5026.55 |
| 3 1         | 3092.55 | 1/2   | 4015·15              | 1/4   | 5058.01 |
| 63          | 3117-24 | 34    | 4043.28              | 1     | 5089.58 |
| 1 4         | 3142.03 | 72    | 4071.5               | 2     | 5121.24 |
| 1/2         | 3166.92 | 1 1   | 4099.83              | 81    | 5153    |
| 3 4         | 3191.91 | 1 2   | 4128.25              | 1     | 5184.85 |
| 64          | 3216.99 | 34    | 4156.77              | 1 1   | 5216·81 |
| 1/4         | 3242.17 | 73    | 4185.39              | 2     | 5248.86 |
| 1 2         | 3267.45 | 1     | 4214·1               | 82    | 5281.02 |
| 3 2         | 3292.83 | 1 2   | 4242.92              | 1     | 5313-27 |
| 65          | 3318:31 | 3 4   | 4271 <sup>.</sup> 83 | 1 2   | 5345.62 |
| 1/4         | 3343.88 | 74    | 4300.84              | 3     | 5378.06 |
| 1/2         | 3369.55 | 1/4   | 4329.95              | 83    | 5410.61 |
| 34          | 3395.32 | 1 2   | 4359.16              | 1     | 5443-25 |
| 66          | 3421.19 | 34    | 4388.46              | 1 2   | 5475.99 |
| 14          | 3447.16 | 75    | 4417.86              | 3 1   | 5508.83 |
| 1 2         | 3473-23 | 1 1   | 4447:37              | 84    | 5541.77 |
| 3           | 3499:39 | 1 1   | 4476.9               | 1     | 5574.8  |
| 67          | 3525.65 | 3 4   | 4506.66              | 1 2   | 5607.94 |
| 14          | 3552.01 | 76    | 4536.46              | 3 4   | 5641.17 |
| 1 2         | 3578-47 | 1/4   | 4566:35              | 85    | 5674·5  |
| 3 1         | 3605.03 | 1/2   | 4596· <b>3</b> 5     | 1     | 5707.93 |
| 68          | 3631.68 | 3 4   | 4626.44              | 1 2   | 5741.46 |
| 1           | 3658.43 | 77    | 4656.63              | 34    | 5778:08 |
| 1 9         | 3685-28 | 1     | 4686.91              | 86    | 5808.8  |
| 3 2         | 3712.23 | 1/2   | 4717:3               | 1     | 5842.63 |
| 69          | 3739.28 | 84    | 4747.78              | 1 3   | 5876.54 |

| Diam.      | Area.   | Diam.                                     | Area.           | Diam. | Area.           |
|------------|---------|-------------------------------------------|-----------------|-------|-----------------|
| 863        | 5910.56 | 93                                        | 6792.91         | 991   | 7786.61         |
| 87         | 5944.68 | 1                                         | 6829:48         | 1 1   | 7775.64         |
| 14         | 5978.89 | 1 2                                       | 6866·15         | 3 4   | 7814.76         |
| 1 2        | 6013·2  | 3 4                                       | 6902·91         | 100   | 7853.98         |
| 34         | 6047.61 | 94                                        | 6939.78         | 101   | 8011.85         |
| 88         | 6082-12 | 1                                         | 6976.74         | 102   | 8171-28         |
| 1          | 6116.73 |                                           | 7013.8          | 103   | 8332.29         |
| 1 2        | 6151.43 | 1<br>2<br>3<br>4                          | 7050-96         | 104   | 8494.87         |
| 34         | 6186-24 | 95                                        | 7088-22         | 105   | 8659.01         |
| 89         | 6221.14 | 1                                         | 7125.58         | 106   | 8824.73         |
| 1          | 6256.14 | 1                                         | 7163.03         | 107   | 8992.02         |
| 1 9        | 6291.23 | 3 4                                       | 7200.58         | 108   | 9160.88         |
| 3          | 6326.43 | 96                                        | 7238-23         | 109   | 9331-31         |
| 90         | 6361.72 | 1                                         | 7275.98         | 110   | 9503· <b>32</b> |
| 14         | 6397:12 |                                           | 7313·8 <b>2</b> | 111   | 9676-89         |
| 1 2        | 6432.61 | 1 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 7351.77         | 112   | 9852.03         |
| 3          | 6468.19 | 97                                        | 7389.81         | 113   | 10028-75        |
| 91         | 6503.88 | 1                                         | 7427.95         | 114   | 10207:03        |
| 1          | 6539.67 | 1/2                                       | 7466-19         | 115   | 10386-88        |
| 1 9        | 6575.55 | 3                                         | 7504.53         | 116   | 10568-31        |
| 34         | 6611.53 | 98                                        | 7542.96         | 117   | 10751:31        |
| 92         | 6647:61 | 1                                         | 7581.5          | 118   | 10935.88        |
| 1          | 6683.79 | į                                         | 7620-13         | 119   | 11122-02        |
|            | 6720.06 | 3                                         | 7658-86         | 120   | 11309.72        |
| - <u>3</u> | 6756:44 | 99                                        | 7697.69         | -     | ]               |

## TABLE OF SQUARES AND CUBES.

| No.      | Square.            | Cube.          | No.      | Square.      | Cube.            |
|----------|--------------------|----------------|----------|--------------|------------------|
| 1        | 1                  | 1              | 44       | 1936         | 85184            |
| 2        | 4                  | 8              | 45       | 2025         | 91125            |
| 8        | .9                 | 27             | 46       | 2116         | 97336            |
| 4        | 18                 | 64             | 47       | 2209         | 103823           |
| 5        | 25                 | 125            | 48       | 2304         | 110592           |
| 6        | 36                 | 216            | 49       | 2401         | 117649           |
| 7        | 49                 | 343            | 50       | 2500         | 125000           |
| 8        | 64                 | 512            | 51       | 2601         | 132651           |
| 9        | 81                 | 729            | 52       | 2704         | 140608           |
| 10       | 100                | 1300           | 53       | 2809         | 148877           |
| 11       | 121                | 1331           | 54       | 2916         | 157464           |
| 12       | 144                | 1728           | 55       | 3025         | 166375           |
| 13       | 169                | 2197           | 56       | 3136         | 175616           |
| 14       | 196                | 2744           | 57       | 3249         | 185193           |
| 15       | 225                | 3375           | 58       | 3364         | 195112           |
| 16       | 256                | 4096           | 59       | 3481         | 205379           |
| 17       | 289                | 4913           | 60       | 3600         | 216000           |
| 18       | 324                | 5832           | 61       | 3721         | 226981           |
| 19       | 361                | 6859           | 62       | 3844         | 238328           |
| 20       | 400                | 8000           | 63       | 3969         | 250047           |
| 21       | 441                | 9261           | 64       | 4096         | 262144           |
| 22       | 484                | 10648          | 65       | 4225         | 274625           |
| 23       | 529                | 12167          | 66       | 4356         | 287496           |
| 24       | 576                | 13824          | 67       | 4489         | 360763           |
| 25       | 625                | 15625          | 68<br>69 | 4624         | 314432           |
| 26<br>27 | 67 <b>6</b><br>729 | 17576          | 70       | 4761<br>4900 | 328509           |
| 28       | 784                | 19683<br>21952 | 70       | 5041         | 343000           |
| 29       | 841                |                | 71       |              | 357911           |
| 30       | 900                | 24389<br>27000 | 73       | 5184<br>5329 | 373248<br>389017 |
| 31       | 961                | 27000<br>29791 | 74       | 5476         | 405224           |
| 32       | 1024               | 32768          | 75       | 5625         | 421875           |
| 32<br>33 | 1024               | 35937          | 76       | 5776         | 438976           |
| 34       | 1156               | 39304          | 77       | 5929         | 456533           |
| 35       | 1225               | 42875          | 78       | 6084         | 474552           |
| 36       | 1225               | 46656          | 79       | 6241         | 493039           |
| 37       | 1369               | 50653          | 80       | 6400         | 512000           |
| 38       | 1444               | 54872          | 81       | 6561         | 531441           |
| 39       | 1521               | 59319          | 82       | 6724         | 551368           |
| 40       | 1600               | 64000          | 83       | 6889         | 571787           |
| 41       | 1681               | 68921          | 84       | 7056         | 592704           |
| 42       | 1764               | 74088          | 85       | 7225         | 614125           |
| 43       | 1849               | 79507          | 86       | 7396         | 636056           |
|          | 1                  | 1              | 50       | 1000         | 00000            |

| No. | Square. | Cube.   | No. | Square. | Cube.   |
|-----|---------|---------|-----|---------|---------|
| 87  | 7 5 6 9 | 658503  | 134 | 17956   | 2406104 |
| 88  | 7744    | 681472  | 135 | 18225   | 2460375 |
| 89  | 7921    | 704969  | 136 | 18496   | 2515456 |
| 90  | . 8100  | 729000  | 137 | 18769   | 2571353 |
| 91  | 8281    | 753571  | 138 | 19044   | 2620872 |
| 92  | 8464    | 778688  | 139 | 19321   | 2685619 |
| 93  | 8649    | 804357  | 140 | 19600   | 2744000 |
| 94  | 8836    | 830584  | 141 | 19881   | 2803221 |
| 95  | 9025    | 857375  | 142 | 20164   | 2863288 |
| 96  | 9216    | 884736  | 143 | 20449   | 2924207 |
| 97  | 9409    | 912673  | 144 | 20736   | 2985984 |
| 98  | 9604    | 941192  | 145 | 21025   | 3048625 |
| 99  | 9801    | 970299  | 146 | 21316   | 3112136 |
| 100 | 10000   | 1000000 | 147 | 21609   | 3176523 |
| 101 | 10201   | 1030301 | 148 | 21904   | 3241792 |
| 102 | 10404   | 1061208 | 149 | 22201   | 3307949 |
| 103 | 10609   | 1092727 | 150 | 22500   | 3375000 |
| 104 | 10816   | 1124864 | 151 | 22801   | 3442951 |
| 105 | 11025   | 1157625 | 152 | 23104   | 3511808 |
| 106 | 11236   | 1191016 | 153 | 23409 - | 3581577 |
| 107 | 11449   | 1225043 | 154 | 23716   | 3652264 |
| 108 | 11664   | 1259712 | 155 | 24025   | 3723875 |
| 109 | 11881   | 1295028 | 156 | 24336   | 3796416 |
| 110 | 12100   | 1331000 | 157 | 24649   | 3869893 |
| 111 | 12321   | 1367631 | 158 | 24964   | 3944312 |
| 112 | 12544   | 1404920 | 159 | 25281   | 4019679 |
| 113 | 12769   | 1442897 | 160 | 25600   | 4096000 |
| 114 | 12996   | 1481544 | 161 | 25921   | 4173281 |
| 115 | 13225   | 1520875 | 1€2 | 26244   | 4251528 |
| 116 | 13456   | 1560896 | 163 | 26569   | 4330747 |
| 117 | 13689   | 1601613 | 164 | 26896   | 4410944 |
| 118 | 13924   | 1643032 | 165 | 27225   | 4492125 |
| 119 | 14161   | 1685159 | 166 | 27556   | 4574296 |
| 120 | 14400   | 1728000 | 167 | 27889   | 4657453 |
| 121 | 14641   | 1771561 | 168 | 28224   | 4741632 |
| 122 | 14884   | 1815848 | 169 | 28561   | 4826809 |
| 123 | 15129   | 1860867 | 170 | 28900   | 4913000 |
| 124 | 15376   | 1906624 | 171 | 29241   | 5000211 |
| 125 | 15625   | 1953125 | 172 | 29584   | 5088448 |
| 126 | 15876   | 2000376 | 173 | 29929   | 5177717 |
| 127 | 16129   | 2048383 | 174 | 30276   | 5268024 |
| 128 | 16384   | 2097152 | 175 | 30625   | 5359375 |
| 129 | 16641   | 2146689 | 176 | 30976   | 5451776 |
| 130 | 16900   | 2197000 | 177 | 31329   | 5545233 |
| 131 | 17161   | 2248091 | 178 | 31684   | 5639752 |
| 132 | 17424   | 2299968 | 179 | 32041   | 5735339 |
| 133 | 17689   | 2352637 | 180 | 32400   | 5832000 |

| No. | Square. | Cube.    | No. | Square. | Cube.    |
|-----|---------|----------|-----|---------|----------|
| 181 | 32761   | 5929741  | 228 | 51984   | 11852352 |
| 182 | 33124   | 6028568  | 229 | 52441   | 12008989 |
| 183 | 33489   | 6128487  | 230 | 52900   | 12167000 |
| 184 | 33856   | 6229504  | 231 | 53361   | 12326391 |
| 185 | 34225   | 6331625  | 232 | 53824   | 12487168 |
| 186 | 34596   | 6434856  | 233 | 54289   | 12649337 |
| 187 | 34969   | 6539203  | 234 | 54756   | 12812904 |
| 188 | 35344   | 6644672  | 235 | 55225   | 12977875 |
| 189 | 35721   | 6751269  | 236 | 55696   | 13144256 |
| 190 | 36100   | 6859000  | 237 | 56169   | 13312053 |
| 191 | 36481   | 6967871  | 238 | 56644   | 13481272 |
| 192 | 36864   | 7077888  | 239 | 57121   | 13651919 |
| 193 | 37249   | 7189057  | 240 | 57600   | 13824000 |
| 194 | 37636   | 7301384  | 241 | 58081   | 13997521 |
| 195 | 38025   | 7414875  | 242 | 58564   | 14172488 |
| 196 | 38416   | 7529536  | 243 | 59049   | 14348907 |
| 197 | 38≺09   | 7645373  | 244 | 59536   | 14526784 |
| 198 | 39204   | 7762392  | 245 | 60025   | 14706125 |
| 199 | 39601   | 7880599  | 246 | 60516   | 14886936 |
| 200 | 40000   | 8000000  | 247 | 61009   | 15069223 |
| 201 | 40401   | 8120601  | 248 | 61504   | 15252992 |
| 202 | 40804   | 8242408  | 249 | 62001   | 15438249 |
| 203 | 41209   | 8365427  | 250 | 62500   | 15625000 |
| 204 | 41616   | 8489664  | 251 | 63001   | 15813251 |
| 205 | 42025   | 8615125  | 252 | 63504   | 16003008 |
| 206 | 42436   | 8741816  | 253 | 64009   | 16194277 |
| 207 | 42849   | 8869743  | 254 | 64516   | 16387064 |
| 208 | 43264   | 8998912  | 255 | 65025   | 16581375 |
| 209 | 43681   | 9123329  | 256 | 65536   | 16777216 |
| 210 | 44100   | 9261000  | 257 | 66049   | 16974593 |
| 211 | 44521   | 9393931  | 258 | 66564   | 17173512 |
| 212 | 44944   | 9528128  | 259 | 67081   | 17373979 |
| 213 | 45369   | 9963597  | 260 | 67600   | 17576000 |
| 214 | 45796   | 9800344  | 261 | 68121   | 17779581 |
| 215 | 46225   | 9938375  | 262 | 68644   | 17984728 |
| 216 | 46656   | 10077696 | 263 | 69169   | 18191447 |
| 217 | 47089   | 10218313 | 264 | 69696   | 18399744 |
| 218 | 47524   | 10360232 | 265 | 70225   | 18609625 |
| 219 | 47961   | 10503459 | 266 | 70756   | 18821096 |
| 220 | 48400   | 10648000 | 267 | 71289   | 19034163 |
| 221 | 48841   | 10793861 | 268 | 71824   | 19248832 |
| 222 | 49284   | 10941048 | 269 | 72361   | 19465109 |
| 223 | 49729   | 11089567 | 270 | 72900   | 19683000 |
| 224 | 50176   | 11239424 | 271 | 73441   | 19902511 |
| 225 | 50625   | 11390625 | 272 | 73984   | 20123648 |
| 226 | 51076   | 11543176 | 273 | 74529   | 20346417 |
| 227 | 51529   | 11697083 | 274 | 75076   | 20570824 |
| l!  |         | 1        | ł   |         | l        |

| No. | Square. | Cube.    | No. | Square. | Cube.    |
|-----|---------|----------|-----|---------|----------|
| 275 | 75625   | 20796875 | 322 | 103684  | 33386248 |
| 276 | 76176   | 21024576 | 323 | 104329  | 33698267 |
| 277 | 76729   | 21253933 | 324 | 104976  | 34012224 |
| 278 | 77284   | 21484952 | 325 | 105625  | 34328125 |
| 279 | 77841   | 21717639 | 326 | 106276  | 34645976 |
| 280 | 78400   | 21952000 | 327 | 106929  | 34965783 |
| 281 | 78961   | 22188041 | 328 | 107584  | 35287552 |
| 282 | 79524   | 22425768 | 329 | 108241  | 35611289 |
| 283 | 80089   | 22665187 | 330 | 108900  | 35937000 |
| 284 | 80656   | 22906304 | 331 | 109561  | 36264691 |
| 285 | 81225   | 23149125 | 332 | 110224  | 36594368 |
| 286 | 81796   | 23393656 | 333 | 110889  | 36926037 |
| 287 | 82369   | 23639903 | 334 | 111556  | 37259704 |
| 288 | 82944   | 23887872 | 335 | 112225  | 37595375 |
| 289 | 83521   | 24137569 | 336 | 112896  | 37933056 |
| 290 | 84100   | 24389000 | 337 | 113569  | 88272753 |
| 291 | 84681   | 24642171 | 338 | 114244  | 38614472 |
| 292 | 85264   | 24897088 | 339 | 114921  | 88958219 |
| 293 | 85849   | 25153757 | 340 | 115600  | 89304000 |
| 294 | 86436   | 25412184 | 341 | 116281  | 39651821 |
| 295 | 87025   | 25672375 | 342 | 116964  | 40001688 |
| 296 | 87616   | 25934336 | 343 | 117649  | 40353607 |
| 297 | 88209   | 26198073 | 344 | 118336  | 40707584 |
| 298 | 88804   | 26463592 | 345 | 119025  | 41063625 |
| 299 | 89401   | 26730899 | 346 | -119716 | 41421736 |
| 300 | 90000   | 27000000 | 347 | 120409  | 41781923 |
| 301 | 90601   | 27270901 | 348 | 121104  | 42144192 |
| 302 | 91204   | 27543608 | 349 | 121801  | 42508549 |
| 303 | 91809   | 27818127 | 350 | 122500  | 42875000 |
| 304 | 92416   | 28094464 | 351 | 123201  | 43243551 |
| 305 | 93025   | 28372625 | 352 | 123904  | 43614208 |
| 306 | 93636   | 28652616 | 353 | 124609  | 43986977 |
| 307 | 94249   | 28934443 | 354 | 125316  | 44361864 |
| 308 | 94864   | 29218112 | 355 | 126025  | 44738875 |
| 309 | 95481   | 29503629 | 356 | 126736  | 45118016 |
| 310 | 96100   | 29791000 | 357 | 127449  | 45499293 |
| 311 | 96721   | 30080231 | 358 | 128164  | 45882712 |
| 312 | 97344   | 30371328 | 359 | 128881  | 46268279 |
| 313 | 97969   | 30664297 | 360 | 129600  | 46656000 |
| 314 | 98596   | 30959144 | 361 | 130321  | 47045881 |
| 315 | 99225   | 31255875 | 362 | 131044  | 47437928 |
| 316 | 99856   | 31554496 | 363 | 131769  | 47832147 |
| 317 | 100489  | 31855013 | 364 | 132496  | 48228544 |
| 318 | 101124  | 32157432 | 365 | 133225  | 48627125 |
| 319 | 101761  | 32461759 | 366 | 133956  | 49027896 |
| 320 | 102400  | 32768000 | 367 | 134689  | 49430863 |
| 321 | 103041  | 33076161 | 368 | 135424  | 49836032 |
|     |         |          |     |         |          |

| No. | Square. | Cube.    | No. | Square. | Cube.    |
|-----|---------|----------|-----|---------|----------|
| 369 | 136161  | 50243409 | 416 | 173056  | 71991296 |
| 370 | 136900  | 50653000 | 417 | 173889  | 72511713 |
| 371 | 137641  | 51064811 | 418 | 174724  | 73034632 |
| 372 | 138384  | 51478848 | 419 | 175561  | 78560059 |
| 373 | 139129  | 51895117 | 420 | 176400  | 74088000 |
| 374 | 139876  | 52313624 | 421 | 177241  | 74618461 |
| 375 | 140625  | 52734375 | 422 | 178084  | 75151448 |
| 376 | 141376  | 53157376 | 423 | 178929  | 75686967 |
| 377 | 142129  | 53582633 | 424 | 179776  | 76225024 |
| 378 | 142884  | 54010152 | 425 | 180625  | 76765625 |
| 379 | 143641  | 54439939 | 426 | 181476  | 77308776 |
| 380 | 144400  | 54872000 | 427 | 182329  | 77854483 |
| 381 | 145161  | 55306341 | 428 | 183184  | 78402752 |
| 382 | 145924  | 55742968 | 429 | 184041  | 78953589 |
| 383 | 146689  | 56181887 | 430 | 184900  | 79507000 |
| 384 | 147456  | 56623104 | 431 | 185761  | 80062991 |
| 385 | 148225  | 57066625 | 432 | 186624  | 80621568 |
| 386 | 148996  | 57512456 | 433 | 187489  | 81182737 |
| 387 | 149769  | 57960603 | 434 | 188356  | 81746504 |
| 388 | 150544  | 58411072 | 435 | 189225  | 82312875 |
| 389 | 151321  | 58863869 | 436 | 190096  | 82881856 |
| 390 | 152100  | 59319000 | 437 | 190969  | 83453453 |
| 391 | 152881  | 59776471 | 438 | 191844  | 84027672 |
| 392 | 153664  | 60236288 | 439 | 192721  | 84604519 |
| 393 | 154449  | 60698457 | 440 | 193600  | 85184000 |
| 394 | 155236  | 61162984 | 441 | 194481  | 85766121 |
| 395 | 156025  | 61629875 | 442 | 195364  | 86350388 |
| 396 | 156816  | 62099136 | 443 | 196249  | 86938307 |
| 397 | 157609  | 62570773 | 444 | 197136  | 87528384 |
| 398 | 158404  | 63044792 | 445 | 198025  | 88121125 |
| 399 | 159201  | 63521199 | 446 | 198916  | 88716536 |
| 400 | 160000  | 64000000 | 447 | 199809  | 89314623 |
| 401 | 160801  | 64481201 | 448 | 200704  | 89915392 |
| 402 | 161604  | 64964808 | 449 | 201601  | 90518849 |
| 403 | 162409  | 65450827 | 450 | 202500  | 91125000 |
| 404 | 163216  | 65939264 | 451 | 203401  | 91733851 |
| 405 | 164025  | 66430125 | 452 | 204304  | 92345408 |
| 406 | 164836  | 66923416 | 453 | 205209  | 92959677 |
| 407 | 165649  | 67419143 | 454 | 206106  | 93576664 |
| 408 | 166464  | 67911312 | 455 | 207025  | 94196375 |
| 409 | 167281  | 68417929 | 456 | 207936  | 94818816 |
| 410 | 168100  | 68921000 | 457 | 208849  | 95443993 |
| 411 | 168921  | 69426531 | 458 | 209764  | 96071912 |
| 412 | 169744  | 69934528 | 459 | 210681  | 96702579 |
| 413 | 170569  | 70444997 | 460 | 211600  | 97336000 |
| 414 | 171396  | 70957944 | 461 | 212521  | 97972181 |
| 415 | 172225  | 71473375 | 462 | 213444  | 98611128 |
|     |         |          |     | A LUTTE | 30011128 |

| No. | Square.                      | Cube.     | No.        | Square. | Cube.     |
|-----|------------------------------|-----------|------------|---------|-----------|
| 463 | 214369                       | 99252847  | 510        | 260100  | 132651000 |
| 464 | 215296                       | 99897344  | 511        | 261121  | 133432831 |
| 465 | 216225                       | 100544625 | 512        | 262144  | 134217728 |
| 466 | 217156                       | 101194696 | 513        | 263169  | 135005697 |
| 467 | 218089                       | 101847563 | 514        | 264196  | 135796744 |
| 468 | 219024                       | 102503232 | 515        | 265225  | 136590875 |
| 469 | 219961                       | 103161709 | 516        | 266256  | 137388096 |
| 470 | 220900                       | 103823000 | 517        | 267289  | 138188413 |
| 471 | 221841                       | 104487111 | 518        | 268324  | 138991832 |
| 472 | 222784                       | 105154048 | 519        | 269361  | 139798359 |
| 473 | 223729                       | 105823817 | 520        | 270400  | 140608000 |
| 474 | 224676                       | 106496424 | 521        | 271441  | 141420761 |
| 475 | 225625                       | 107171875 | 522        | 272484  | 142236648 |
| 476 | 226576                       | 107850176 | 523        | 273529  | 143055667 |
| 477 | 227529                       | 108531333 | 524        | 274576  | 143877824 |
| 478 | 228484                       | 109215352 | 525        | 275625  | 144703125 |
| 479 | 229441                       | 109902239 | 526        | 276676  | 145531576 |
| 480 | 230400                       | 110592000 | 527        | 277729  | 146363183 |
| 481 | 231361                       | 111284641 | 528        | 278784  | 147197952 |
| 482 | 232324                       | 111980168 | 529        | 279841  | 148035889 |
| 483 | 233289                       | 112678587 | 530        | 280900  | 148877000 |
| 484 | 234256                       | 113379904 | 531        | 281961  | 149721291 |
| 485 | 235225                       | 114084125 | 532        | 283024  | 150568768 |
| 486 | 236196                       | 114791256 | 533        | 284089  | 151419437 |
| 487 | 237169                       | 115501303 | 534        | 285156  | 152273304 |
| 488 | 238144                       | 116214272 | 535        | 286225  | 153130375 |
| 489 | 239121                       | 116930169 | 536        | 287296  | 153990656 |
| 490 | 240100                       | 117649000 | 537        | 288369  | 154854153 |
| 491 | 241081                       | 118370771 | 538        | 289444  | 155720872 |
| 492 | 242064                       | 119095488 | 539        | 290521  | 156590819 |
| 493 | 242064                       | 119093488 | 540        | 291600  | 157464000 |
| 494 | 244036                       | 120553784 | 541        | 292681  | 158340421 |
| 495 | 245025                       | 121287375 | 542        | 293764  | 159220088 |
| 496 | 245025<br>246016             | 121257375 | 543        | 293764  | 160103007 |
| 497 | 247009                       | 122763478 | 544        | 295936  | 160989184 |
| 498 | 247009                       | 123505992 | 545        | 297025  | 161878625 |
| 499 | 24800 <del>4</del><br>249001 | 124251499 | 546        | 297025  | 162771336 |
| 500 | 250000                       | 124251499 | 547        | 299209  | 163667323 |
| 501 | 251000<br>251001             | 125751501 | 548        | 300304  | 164566592 |
| 502 | 252004                       | 126506008 | 549        | 301401  | 165469149 |
| 503 | 253009                       | 126506008 | 550        | 302500  | 166375000 |
| 504 | 253009<br>254016             | 128024864 | 551        | 302500  | 167284151 |
| 504 | 255025                       | 128787625 | 552        | 304704  | 168196608 |
| 506 | 256036                       | 129757625 | 552<br>553 | 305809  | 169112377 |
| 507 | 257049                       | 130323843 | 554        | 306916  | 170031464 |
| 507 | 257049<br>258064             | 131096512 | 555        | 308916  | 170031464 |
| 509 | 259081                       | 131872229 | 556        | 309136  | 171879616 |
| อบฮ | 209001                       | 1310/2229 | 996        | 303130  | 111012010 |

| No. | Square. | Cube.     | No. | Square. | Cube.     |
|-----|---------|-----------|-----|---------|-----------|
| 557 | 310249  | 172808693 | 604 | 364816  | 220348864 |
| 558 | 311364  | 173741112 | 605 | 366025  | 221445125 |
| 559 | 312481  | 174676879 | 606 | 367236  | 222545016 |
| 560 | 313600  | 175616000 | 607 | 368449  | 223648543 |
| 561 | 314721  | 176558481 | 608 | 369664  | 224755712 |
| 562 | 315844  | 177504328 | 609 | 370881  | 225866529 |
| 563 | 316969  | 178453547 | 610 | 372100  | 226981000 |
| 564 | 318096  | 179406144 | 611 | 373321  | 228099131 |
| 565 | 319225  | 180362125 | 612 | 374544  | 229220928 |
| 566 | 320356  | 181321496 | 613 | 375769  | 230346397 |
| 567 | 321489  | 182284263 | 614 | 376996  | 231475544 |
| 568 | 322624  | 183250432 | 615 | 378225  | 232608375 |
| 569 | 323761  | 184220009 | 616 | 379456  | 233744896 |
| 570 | 324900  | 185193000 | 617 | 380689  | 234885113 |
| 571 | 326041  | 186169411 | 618 | 381924  | 236029032 |
| 572 | 327184  | 187149248 | 619 | 383161  | 237176659 |
| 573 | 328329  | 188132517 | 620 | 384400  | 238328000 |
| 574 | 329476  | 189119224 | 621 | 385641  | 239483061 |
| 575 | 330625  | 190109375 | 622 | 386884  | 240641848 |
| 576 | 331776  | 191102976 | 623 | 388129  | 241804367 |
| 577 | 332929  | 192100033 | 624 | 389376  | 242970624 |
| 578 | 334084  | 193100552 | 625 | 390625  | 244140625 |
| 579 | 335241  | 194104539 | 626 | 391876  | 245314376 |
| 580 | 336400  | 195112000 | 627 | 393129  | 246491883 |
| 581 | 337561  | 196122941 | 628 | 394384  | 247673152 |
| 582 | 338724  | 197137368 | 629 | 395641  | 248858189 |
| 583 | 339889  | 198155287 | 630 | 396900  | 250047000 |
| 584 | 341056  | 199176704 | 631 | 398161  | 251239591 |
| 585 | 342225  | 200201625 | 632 | 399424  | 252435968 |
| 586 | 343396  | 201230056 | 633 | 400689  | 253636137 |
| 587 | 344569  | 202262003 | 634 | 401956  | 254840104 |
| 588 | 345744  | 203297472 | 635 | 403225  | 256047875 |
| 589 | 346921  | 204336469 | 636 | 404496  | 257259456 |
| 590 | 348100  | 205379000 | 637 | 405769  | 258474853 |
| 591 | 349281  | 206425071 | 638 | 407044  | 259694072 |
| 592 | 350464  | 207474688 | 639 | 408321  | 260917119 |
| 593 | 351649  | 208527857 | 640 | 409600  | 262144000 |
| 594 | 352836  | 209584584 | 641 | 410881  | 263374721 |
| 595 | 354025  | 210644875 | 642 | 412164  | 264609288 |
| 596 | 355216  | 211708736 | 643 | 413449  | 265847707 |
| 597 | 356409  | 212776173 | 644 | 414736  | 267089984 |
| 598 | 357604  | 213847192 | 645 | 416025  | 268336125 |
| 599 | 358801  | 214921799 | 646 | 417316  | 269586136 |
| 600 | 360000  | 216000000 | 647 | 418609  | 270840023 |
| 601 | 361201  | 217081801 | 648 | 419904  | 272097792 |
| 602 | 362404  | 218167208 | 649 | 421201  | 273359449 |
| 603 | 363609  | 219256227 | 650 | 422500  | 274625000 |

| 652         425104         277167808         699         488601         3415320           653         426409         278145077         700         490000         3430000           654         427716         279726264         701         491401         3444721           655         429025         281011375         702         492804         3459480           657         431649         283593393         704         49616         3489136           658         432961         284890312         705         497025         3504026           659         434281         286191179         706         498436         3518958           660         435600         297496000         707         499849         3533932           661         436921         28804781         708         501264         3548949           663         439569         291434247         710         504100         3579110           664         440896         292754944         711         505521         3594254           665         443556         295408296         713         508369         3624670           667         448899         296740963         714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |         | ,         |      |         |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-----------|------|---------|-----------|
| 652 425104 277167808 699 488601 3415320 653 426409 278145077 700 490000 3430000 654 427716 279726264 701 491401 3444721 655 429025 281011375 702 492804 3459480 656 430336 282300416 703 494209 3474289 657 431649 283593393 704 49.5616 3489136 658 432964 284890312 705 497025 3504026 659 434281 286191179 706 498436 3518958 660 435600 287496000 707 499849 3533932 661 436921 288804781 708 501264 3548949 662 438244 290117528 709 502681 3564008 663 439569 291434247 710 504100 3579110 664 440896 292754944 711 505521 3594254 665 442225 294079625 712 506944 3609441 6664 443556 295408296 713 508369 3624670 667 444889 296740963 714 509796 3639943 668 446224 298077632 715 511225 3655258 669 447561 299418309 716 512656 3670616 670 448900 300763000 717 514089 3686018 670 448900 300763000 717 514089 3686018 671 450241 302111711 718 515524 3701462 672 451584 303464448 719 516961 3716949 673 452929 304821217 720 518400 3732480 674 454276 306182024 721 519841 3748053 676 456976 308915776 723 522729 3779330 677 458329 310288733 724 524176 3795034 688 465240 314432000 727 528529 3842405 681 463761 315821241 728 52984 3858283 6684 467856 32013504 731 534361 3874204 683 466489 318611987 730 532900 3890170 684 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 467856 32013504 731 534361 3874204 688 473344 325660672 735 535824 3922231 688 473344 325660672 735 535824 3922231 688 473344 325660672 735 53584 4003155 649 476804 476860 324247 | No. | Square. | Cube.     | No.  | Square. | Cube.     |
| 652         425104         277167808         699         488601         3415320           653         426409         278445077         700         490000         3430000           654         427716         279726264         701         491401         3444721           655         429025         281011375         702         492804         3459480           656         430336         282300416         703         494209         3474289           657         431649         283593339         704         49.616         3489136           658         432961         286191179         706         498436         3518958           660         435600         287496000         707         499849         3533932           661         436921         28804781         708         501264         3548949           663         439569         291434247         710         504100         3579110           664         440896         292754944         711         505521         3594254           665         442225         294079625         712         506944         3609441           666         443556         295408296         713 <td< td=""><td>651</td><td>423801</td><td>275894451</td><td>698</td><td>487204</td><td>340068392</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 651 | 423801  | 275894451 | 698  | 487204  | 340068392 |
| 653         426409         278445077         700         490000         3430000           654         427716         279726264         701         491401         3444721           655         429025         281011375         702         492804         3459480           656         430336         282300416         703         494209         3474289           657         431649         283593393         704         49.616         3489136           659         434281         286191179         706         498436         3518958           660         435600         287496000         707         499849         3533932           661         436921         288804781         708         501264         3548949           662         438244         290117528         709         502681         3564008           663         439569         291434247         710         504100         3579110           664         440896         292754944         711         506944         3609443           665         442225         294079625         712         506944         3609433           666         443556         295408296         713 <t< td=""><td>652</td><td>425104</td><td>277167808</td><td></td><td></td><td>341532099</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 652 | 425104  | 277167808 |      |         | 341532099 |
| 654         427716         279726264         701         491401         3444721           655         429025         281011375         702         492804         3459480           656         430336         282300416         703         494209         347289           657         431649         283593393         704         49.616         3489136           658         432964         284890312         705         497025         3504026           659         434281         286191179         706         498436         3518958           660         435600         287496000         707         499849         3533932           661         436921         288804781         708         502681         3564008           662         438244         290117528         709         502681         3564008           663         439569         291434247         710         504100         3579110           664         440896         292754944         711         505521         3594254           665         443556         295408296         713         508369         3624670           667         448890         3076300         717         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 653 | 426409  | 278445077 |      |         | 343000000 |
| 655         429025         281011375         702         492804         3459480           656         430336         282300416         703         494209         3474289           657         431649         283593393         704         49.616         3489136           658         432964         284890312         705         498436         3518958           660         435600         287496000         707         499849         3533932           661         436921         28804781         708         501264         3548949           662         438244         290117528         709         502681         3564008           663         439569         291434247         710         504100         3579110           664         440896         292754944         711         505521         3594254           665         442225         294079625         712         506944         360941           667         44889         296740963         714         509796         363943           668         46224         298077632         715         511225         3655258           669         447561         299418309         716         512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 654 | 427716  | 279726264 | 701  |         | 344472101 |
| 656         430336         282300416         703         494209         3474289           657         431649         283593393         704         49,616         3489136           658         432964         284890312         705         497025         3504026           659         434281         286191179         706         498436         3518958           660         435600         287496000         707         499849         3533932           661         436921         288804781         708         501264         3548949           662         438244         290117528         709         502681         3564008           663         439569         291434247         710         504100         3579110           664         440896         292754944         711         506944         3609441           665         442225         294079625         712         506944         3609441           667         444889         296740963         714         509796         3655258           669         447561         299418309         716         512656         3670616           670         44890         300766300         717 <td< td=""><td>655</td><td>429025</td><td>281011375</td><td>702</td><td></td><td>345948088</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 655 | 429025  | 281011375 | 702  |         | 345948088 |
| 657         431649         283593393         704         49.5616         3489136           658         432964         284890312         705         497025         3504026           659         434281         286191179         706         498436         3518958           660         435600         287496000         707         499849         3533932           661         436921         288804781         708         501264         3548949           662         438244         290117528         709         502681         3564008           663         439569         291434247         710         504100         3579110           664         440896         292754944         711         505521         3594254           665         443556         295408296         713         508369         3624670           667         444889         296740963         714         509796         3639943           668         446224         298077632         715         511225         3655258           669         447561         299418309         716         514089         366018           671         450241         30211171         718 <td< td=""><td>656</td><td>430336</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 656 | 430336  |           |      |         |           |
| 658         432964         284890312         705         497025         3504026           659         434281         286191179         706         498436         3518958           660         435600         287496000         707         499849         3533932           661         436921         288804781         708         501264         3548948           662         438244         290117528         709         502681         3564008           663         439569         291434247         710         504100         3579110           664         440896         292754944         711         505521         3694254           665         442225         294079625         712         506944         3609441           666         443556         295408296         713         508369         3624670           667         448890         296740963         714         509796         3639943           668         446224         298077632         715         511225         3655258           669         447561         299418309         716         514089         3686018           670         448900         300763000         717 <t< td=""><td>657</td><td>431649</td><td>283593393</td><td></td><td></td><td>348913664</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 657 | 431649  | 283593393 |      |         | 348913664 |
| 659         434281         286191179         706         498436         3518958           660         435600         287496000         707         499849         3533932           661         436921         288804781         708         501264         3548949           662         438244         290117528         709         502681         3564008           663         439569         291434247         710         504100         3579110           664         440896         292754944         711         505521         3594254           665         442225         294079625         712         506944         3609441           666         443556         295408296         713         508369         3624670           667         444889         296740963         714         509796         363943           668         446224         298077632         715         511225         3655258           669         447561         299418309         716         512656         3670616           671         450241         302111711         718         515524         3701462           672         451584         303464448         719 <td< td=""><td>658</td><td>432964</td><td>284890312</td><td>705</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 658 | 432964  | 284890312 | 705  |         |           |
| 660         435600         287496000         707         499849         3533932           661         436921         288804781         708         501264         3548949           662         438244         290117528         709         502681         3564008           663         439569         291434247         710         504100         3579110           664         440896         292754944         711         505521         3594254           665         442225         294079625         712         506944         3609441           666         443556         295408296         713         508369         3624670           667         444889         296740963         714         509796         3659528           669         447561         299418309         716         512656         3670616           670         448900         300763000         717         514089         3686018           671         450241         302111711         718         515524         3701462           673         452929         304821217         720         518400         3732480           674         454276         306182024         721 <t< td=""><td>659</td><td>434281</td><td>286191179</td><td>706</td><td></td><td>351895816</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 659 | 434281  | 286191179 | 706  |         | 351895816 |
| 661         436921         288804781         708         501264         354844           662         438244         290117528         709         502681         3564008           663         439569         291434247         710         504100         3579110           664         440896         292754944         711         505521         3594254           665         442225         294079625         712         506944         3609441           666         443566         295408296         713         508369         3624670           667         444889         296740963         714         509796         3639943           668         446224         298077632         715         511225         3655258           669         447561         299418309         716         512656         3670616           670         448900         300763000         717         514089         3686018           671         450241         30211171         718         515524         3701462           672         451584         30346448         719         516961         3716949           673         452929         304821217         720         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 660 | 435600  |           |      |         |           |
| 662         438244         290117528         709         502681         3564008           663         439569         291434247         710         504100         3579110           664         440895         292754944         711         505521         3594254           665         442225         294079625         712         506944         3609441           666         443556         295408296         713         508369         3624670           667         444889         296740963         714         509796         3639943           668         446224         298077632         715         511225         365528           669         447561         299418309         716         512656         365528           669         447561         299418309         716         512656         365528           670         448900         300763000         717         514089         3686018           671         450241         302111711         718         515524         3701462           673         452929         304821217         720         518400         3732480           674         454276         306182024         721         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 661 | 436921  | 288804781 |      |         |           |
| 663         439569         291434247         710         504100         3579110           664         440896         292754944         711         505521         3594254           665         442225         294079625         712         506944         3609441           666         443556         295408296         713         508369         3639943           668         446224         298077632         715         511225         3655258           669         447561         299418309         716         512656         3670616           670         448900         300763000         717         514089         3686018           671         450241         302111711         718         51524         3701462           672         451584         303464448         719         516961         3716949           673         452929         304821217         720         518400         3732480           675         455625         307546875         722         521284         3763670           676         456976         308915776         723         522729         3779330           677         458329         310288733         724 <t></t>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 662 | 438244  |           |      |         |           |
| 664         440895         292754944         711         505521         3594254           665         442225         294079625         712         506944         3609441           666         443556         295408296         713         508369         3624670           667         444889         296740963         714         509796         3639943           669         447561         299418309         716         512656         3670616           670         448900         300763000         717         514089         3686018           671         450241         302111711         718         515524         3701462           672         451584         303464448         719         516961         3716949           673         452929         304821217         720         518400         3732480           674         454276         306182024         721         519841         3748053           675         455625         307546875         722         521284         3763670           676         456976         3088;15776         723         522729         3779330           677         458329         310288733         724         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 663 | 439569  |           |      |         |           |
| 665         442225         294079625         712         506944         3609441           666         443566         295408296         713         508369         3624670           667         444889         296740963         714         509796         3639943           668         446224         298077632         715         511225         3659258           669         447561         299418309         716         512656         3670616           670         448900         300763000         717         514089         3686018           671         450241         302111711         718         515524         3701462           672         451584         303464448         719         516961         3732480           673         452929         304821217         720         518400         3732480           674         454276         306182024         721         519841         3748053           676         456976         308915776         723         522729         3779330           677         458129         310288733         724         52176         3826571           679         461041         313046839         726 <td< td=""><td>664</td><td>440896</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 664 | 440896  |           |      |         |           |
| 666         443556         295408296         713         508369         3624670           667         444889         296740963         714         509796         3639943           668         446224         298077632         715         511225         365528           669         447561         299418309         716         512656         365528           670         448900         300763000         717         514089         3686018           671         450241         302111711         718         515524         3701462           673         452929         304821217         720         518400         3732480           674         454276         306182024         721         519841         3748053           675         455625         307546875         722         521284         3763670           676         456976         308915776         723         522729         3779330           677         458329         310288733         724         524176         376379           679         461041         313046839         726         527076         3826571           680         462400         314432000         727         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 665 | 442225  |           |      |         |           |
| 667         444889         296740963         714         509796         3639943           668         446224         298077632         715         511225         3655258           669         447561         299418309         716         512656         3670616           670         448900         300763000         717         514089         3686018           671         450241         302111711         718         515524         3701462           672         451584         303464448         719         516961         3716949           673         452929         304821217         720         518400         3732480           674         454276         306182024         721         519841         3748053           675         455625         307546875         722         521284         3763670           676         456976         308915776         723         522729         3779330           677         458329         310288733         724         524176         3795034           679         461041         313046839         726         527076         3826571           680         462400         314432000         727 <t< td=""><td>666</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 666 |         |           |      |         |           |
| 668         446224         298077632         715         511225         3655288           669         447561         299418309         716         512656         3670616           670         448900         300763000         717         514089         3686018           671         450241         302111711         718         515524         3701462           672         451584         303464448         719         516961         3716949           673         452929         304821217         720         518400         3732480           674         454276         306182024         721         519841         3748058           675         455625         307546875         722         521284         3763670           676         456976         308815776         723         522729         3779330           677         458329         310288733         724         524176         3795034           678         459684         311665752         725         525625         3810781           679         461041         313046839         726         527076         3826571           680         462400         31432000         727 <td< td=""><td>667</td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 667 |         |           |      |         |           |
| 669         447561         299418309         716         512656         3670616           670         448900         300763000         717         514089         3686018           671         450241         302111711         718         515524         3701462           672         451584         303464448         719         516961         3732480           673         452929         304821217         720         518400         3732480           674         454276         306182024         721         519841         3748053           676         456976         308915776         723         522729         3779330           677         458329         310288733         724         524176         3795034           678         459684         311665752         725         525625         3810781           679         461041         313046839         726         527076         3826571           680         462400         314432000         727         528529         3842405           681         463761         315821241         728         529984         3858283           682         465124         317214568         729 <t< td=""><td>668</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 668 |         |           |      |         |           |
| 670         448900         300763000         717         514089         3686018           671         450241         302111711         718         515524         3701462           672         451584         303464448         719         516961         3716949           673         452929         304821217         720         518400         3732480           674         454276         306182024         721         519841         3748053           675         455625         307546875         722         521284         3763670           676         456976         308915776         723         522729         3779330           677         458329         310288733         724         524176         3763670           679         461041         313046839         726         527076         3826571           681         463761         315821241         728         529984         3858283           682         465124         317214568         729         531441         3874204           683         466489         318611987         730         532900         3890170           684         467866         320013504         731 <t< td=""><td>669</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 669 |         |           |      |         |           |
| 671         450241         302111711         718         515524         3701462           672         451584         303464448         719         516961         3716949           673         452929         304821217         720         518400         3732480           674         454276         306182024         721         519841         3748053           675         455625         307546875         722         521284         3763676           676         456976         3089!5776         723         522729         3779330           677         458329         310288733         724         524176         3795034           679         461041         313046839         726         527076         3826571           680         462400         314432000         727         528529         3842405           681         463761         315821241         728         529984         3858283           682         465124         317214568         729         531441         3874204           683         46689         318611987         730         532900         3890170           684         467856         32013504         731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 670 |         |           |      |         |           |
| 672         451584         303464448         719         516961         3716949           673         452929         304821217         720         518400         3732480           674         454276         306182024         721         519841         3748053           675         455625         307546875         722         521284         3763670           676         456976         308915776         723         522729         3779330           677         458329         310288733         724         524176         3795034           678         459684         311665752         725         525625         3810781           679         461041         313046839         726         527076         3826571           680         462400         314432000         727         528529         3842405           681         463761         315821241         728         529984         3858283           682         465124         317214568         729         531441         3874204           683         466489         318611987         730         532900         3890170           684         467856         320013504         731 <t< td=""><td>  </td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         |           |      |         |           |
| 673         452929         304821217         720         518400         3732480           674         454276         306182024         721         519841         3748053           675         455625         307546875         722         521284         3763670           676         456976         308915776         723         522729         3795034           677         458129         310288733         724         524176         3795034           678         459684         311665752         725         525625         3810781           679         461041         313046839         726         527076         3826571           680         462400         314432000         727         528529         3842405           681         463761         315821241         728         529984         3858283           682         465124         317214568         729         531441         3874204           683         466499         318611987         730         532900         3890170           684         467856         320013504         731         534361         3906178           685         469225         321419125         732 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |         |           |      |         |           |
| 674         454276         306182024         721         519841         3748053           675         455625         307546875         722         521284         3763670           676         456976         308915776         723         522729         3779330           677         458329         310288733         724         524176         3795034           679         461041         313046839         726         527076         3826571           680         462400         314432000         727         528529         3842405           681         463761         315821241         728         529984         3858283           682         465124         317214568         729         531441         3874204           683         466489         318611987         730         532900         3890170           684         467856         320013504         731         534361         3906178           685         469225         321419125         732         535824         3922231           687         471969         324242703         734         538756         395468           688         473344         325660672         735 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |           |      |         |           |
| 675         455625         307546875         722         521284         3763670           676         456976         308915776         723         522729         3779330           677         458329         310288733         724         524176         3795034           678         459684         311665752         725         525625         3810781           679         461041         313046839         726         527076         3826576           680         462400         314432000         727         528529         3842405           681         463761         315821241         728         529984         3858283           682         465124         317214568         729         531441         3874204           683         466489         318611987         730         532900         3890170           684         467856         320013504         731         534361         3906170           685         469225         321419125         732         535824         3922231           687         471969         324242703         734         538756         3954469           688         473344         325660672         735 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |         |           |      |         |           |
| 676         456976         3089!5776         723         522729         379330           677         458329         310288733         724         524176         3795034           678         459684         311665752         725         525625         3810781           679         461041         313046839         726         527076         3826571           680         462400         314432000         727         528529         3842405           681         463761         315821241         728         529984         3858283           682         465124         317214568         729         531441         3874204           683         466489         318611987         730         532900         3890170           684         467856         320013504         731         534361         3906178           685         469225         321419125         732         535824         3922231           686         470596         322828856         733         537289         3938328           687         471969         324242703         734         538756         3954469           688         473344         325660672         735 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |           |      |         |           |
| 677         458129         310288733         724         524176         3795034           678         459684         311665752         725         525625         3810781           679         461041         313046839         726         527076         3826571           680         462400         314432000         727         528529         3842405           681         463761         315821241         728         529984         3858283           682         465124         317214568         729         531441         3874204           683         466489         318611987         730         532900         3890170           684         467856         320013504         731         534361         3906178           685         469225         321419125         732         535249         392231           686         470596         322828856         733         537289         3938328           687         471969         324242703         734         538756         3954469           688         473344         325660672         735         540225         3970653           689         474721         327082769         736 <td< td=""><td></td><td></td><td></td><td>1</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         |           | 1    |         |           |
| 678         459684         311665752         725         525625         3810781           679         461041         313046839         726         527076         3826571           680         462400         314432000         727         528529         3842405           681         463761         315821241         728         529984         3858283           682         465124         317214568         729         531441         3874204           683         466489         318611987         730         532900         3890170           684         467856         320013504         731         534361         3906178           685         469225         321419125         732         535824         3922231           687         471969         324242703         734         538756         3954469           688         473344         325660672         735         540225         3970658           689         474721         327082769         736         541696         3986882           690         476100         328509000         737         543169         4003155           691         47781         329939371         738 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |           |      |         |           |
| 679         461041         313046839         726         527076         3826571           680         462400         314432000         727         528529         3842405           681         463761         315821241         728         529984         3858283           682         465124         317214568         729         531441         3874204           683         466489         318611987         730         532900         3890170           684         467856         320013504         731         534361         3906178           685         469225         321419125         732         535824         3922231           686         470596         322828856         733         537289         3938328           687         471969         324242703         734         538756         3954469           688         473344         325660672         735         540225         3954469           689         474721         327082769         736         541696         3986882           690         476100         328509000         737         543169         4003155           691         477481         329939371         738 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |         |           |      |         |           |
| 680         462400         314432000         727         528529         3842405           681         463761         315821241         728         529984         3858283           682         465124         317214568         729         531441         3874204           683         466489         318611987         730         532900         3890170           684         467856         320013504         731         534361         3906178           685         469225         321419125         732         535824         3922231           686         470596         322828856         733         537289         3938328           687         471969         324242703         734         538756         3954468           688         473344         325660672         735         540225         3970653           689         474721         327082769         736         541696         398688           690         476100         328509000         737         543169         4003155           691         477481         329939371         738         544644         4019472           692         478864         331373888         739 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |           |      |         |           |
| 681         463761         315821241         728         529984         3858283           682         465124         317214568         729         531441         3874204           683         466489         318611987         730         532900         3890170           684         467856         320013504         731         534361         3906178           685         469225         321419125         732         535824         3922231           686         470596         322828856         733         537289         3938328           687         471969         324242703         734         58756         3954469           688         473344         325660672         735         540225         3970658           689         474721         327082769         736         541696         396886           690         476100         328509000         737         543169         4003155           691         477481         329939371         738         544644         4019472           692         47864         331373888         739         546121         4035834           693         480249         332812557         740         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |           |      |         |           |
| 682         465124         317214568         729         531441         3874204           683         466489         318611987         730         532900         3890170           684         467856         320013504         731         534361         3906178           685         469225         321419125         732         535824         3922231           686         470596         322828856         733         537289         3938328           687         471969         324242703         734         538756         3954469           688         473344         325660672         735         540225         3970653           689         474721         327082769         736         541696         398688           690         476100         328509000         737         543169         4003155           691         477481         329939371         738         544644         4019472           692         478864         331373888         739         546121         4035834           693         480249         332812557         740         547600         4052246           694         481636         334255384         741 <td< td=""><td></td><td></td><td></td><td>1</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         |           | 1    |         |           |
| 683         466489         318611987         730         532900         3890170           684         467856         320013504         731         534361         3906178           685         469225         321419125         732         535824         3922231           686         470596         322828856         733         537289         3938328           687         471969         324242703         734         538756         3954658           688         473344         325660672         735         540225         3974659           689         474721         327082769         736         541696         3986882           690         476100         328509000         737         543169         4003155           691         477881         329939371         738         544644         4019472           692         478864         331373888         739         546121         4035834           693         480249         332812557         740         547600         4052240           694         481636         334255384         741         549081         4085184           695         483025         335702375         742 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |           |      |         | 1         |
| 684         467856         320013504         731         534361         3906178           685         469225         321419125         732         535824         3922231           686         470596         322828856         733         537289         3938328           687         471969         324242703         734         538756         3954469           688         473344         325660672         735         540225         3956882           689         474721         327082769         736         541696         3986882           690         476100         328509000         737         543169         4003155           691         477481         329939371         738         544644         4019472           692         478864         331373888         739         546121         4035834           693         480249         332812557         740         547600         4052240           694         481636         33425384         741         549081         406896           695         483025         335702375         742         550564         4085184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |         |           |      |         |           |
| 685         469225         321419125         732         535824         3922231           686         470596         322828856         733         537289         3938328           687         471969         324242703         734         538756         3954468           688         473344         325660672         735         540225         3970653           689         474721         327082769         736         541696         398688           690         476100         328509000         737         543169         4003155           691         477481         329939371         738         544644         4019472           692         478864         331373888         739         546121         4035834           693         480249         332812557         740         547600         4052240           694         481636         33425384         741         549081         40689184           695         483025         335702375         742         550564         4085184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |         |           |      |         |           |
| 686 470596 322828856 733 537289 3938328<br>687 471969 324242703 734 538756 3954469<br>688 473344 325660672 735 540225 3970653<br>689 474721 327082769 736 541696 3986882<br>690 476100 328509000 737 543169 4003155<br>691 477481 329939371 738 544644 4019472<br>692 478864 331373888 739 546121 4035834<br>693 480249 332812557 740 547600 4052240<br>694 481636 334255384 741 549081 406866<br>695 483025 335702375 742 550564 4085184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         |           |      |         |           |
| 687         471969         324242703         734         538756         3954469           688         473344         325660672         735         540225         3970653           689         474721         327082769         736         541696         3986882           690         476100         328509000         737         543169         4003155           691         477481         329939371         738         544644         4019472           692         478864         331373888         739         546121         4035834           693         480249         332812557         740         547600         4052240           694         481636         334255384         741         549081         4068690           695         483025         335702375         742         550564         4085184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |           |      |         |           |
| 688         473344         32560672         735         540225         3970658           689         474721         327082769         736         541696         3986882           690         476100         328509000         737         543169         4003155           691         477481         329939371         738         544644         4019472           692         478864         331373888         739         546121         4035834           693         480249         332812557         740         547600         4052240           694         481636         334255384         741         549081         406869           695         483025         335702375         742         550564         4085184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         |           |      |         |           |
| 689 474721 327082769 736 541696 3986882<br>690 476100 328509000 737 543169 4003155<br>691 477481 329939371 738 544644 4019472<br>692 478864 331373888 739 546121 4035834<br>693 480249 332812557 740 547600 4052240<br>694 481636 334255384 741 549081 406866<br>695 483025 335702375 742 550564 4085184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |         |           |      |         |           |
| 690         476100         328509000         737         543169         4003155           691         477481         329939371         738         544644         4019472           692         478864         331373888         739         546121         4035834           693         480249         332812557         740         547600         4052240           694         481636         334255384         741         549081         406869           695         483025         335702375         742         550564         4085184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         |           |      |         |           |
| 691         477481         329939371         738         544644         4019472           692         478864         331373888         739         546121         4035834           693         480249         332812557         740         547600         4052240           694         481636         334255384         741         549081         4068690           695         483025         335702375         742         550564         4085184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |         |           |      |         |           |
| 692     478864     331373888     739     546121     4035824       693     480249     332812557     740     547600     4052240       694     481636     334255384     741     549081     4068690       695     483025     335702375     742     550564     4085184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |           |      |         |           |
| 693 480249 332812557 740 547600 4052240<br>694 481636 334255384 741 549081 4068690<br>695 483025 335702375 742 550564 4085184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |         |           |      |         |           |
| 694 481636 334255384 741 549081 4068690<br>695 483025 335702375 742 550564 4085184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |         |           |      |         |           |
| 695 483025 335702375 742 550564 4085184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |         |           |      |         |           |
| 1000104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |         |           |      |         |           |
| 696   484416   337153536   743   552049   4101724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 696 | 484416  | 337153536 |      |         |           |
| 101/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |         |           |      |         | 410172407 |
| 200000 00000070 744 0000000 4118307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 001 | #00000  | 000000013 | / 42 | 203230  | 411830784 |

| No. | Square.        | Cube.     | No. | Square. | Cube.     |
|-----|----------------|-----------|-----|---------|-----------|
| 745 | 555025         | 413493625 | 792 | 627264  | 496793088 |
| 746 | 556516         | 415160936 | 793 | 628849  | 498677257 |
| 747 | 558009         | 416832723 | 794 | 630436  | 500566184 |
| 748 | 559504         | 418508992 | 795 | 632025  | 502459875 |
| 749 | 561001         | 420189749 | 796 | 633616  | 504358336 |
| 750 | 562500         | 421875000 | 797 | 635209  | 506261573 |
| 751 | 564001         | 423564751 | 798 | 636804  | 508169592 |
| 752 | 565504         | 425259008 | 799 | 638401  | 510082399 |
| 753 | 567009         | 426957777 | 800 | 640000  | 512000000 |
| 754 | 568516         | 428661064 | 801 | 641601  | 513922401 |
| 755 | 570025         | 430368875 | 802 | 643204  | 515849608 |
| 756 | 571536         | 432081216 | 803 | 644809  | 517781627 |
| 757 | 573049         | 433798093 | 804 | 646416  | 519718464 |
| 758 | 574564         | 435519512 | 805 | 648025  | 521660125 |
| 759 | 576081         | 437245479 | 806 | 649636  | 523606616 |
| 760 | 577600         | 438976000 | 807 | 651249  | 525557943 |
| 761 | 579121         | 440711081 | 808 | 652864  | 527514112 |
| 762 | 580644         | 442450728 | 809 | 654481  | 529475129 |
| 763 | 582169         | 444194947 | 810 | 656100  | 531441000 |
| 764 | 583696         | 445943744 | 811 | 657721  | 533411731 |
| 765 | 585225         | 447697125 | 812 | 659344  | 535387328 |
| 766 | 586756         | 449455096 | 813 | 660969  | 537366797 |
| 767 | 588289         | 451217663 | 814 | 662596  | 539353144 |
| 768 | 589824         | 452984832 | 815 | 664225  | 541348375 |
| 769 | 591361         | 454756609 | 816 | 665856  | 543338496 |
| 770 | 592900         | 456533000 | 817 | 667489  | 545338513 |
| 771 | 594441         | 458314011 | 818 | 669124  | 547343432 |
| 772 | 595984         | 460099648 | 819 | 670761  | 549353259 |
| 773 | 5975 <b>29</b> | 461889917 | 820 | 672400  | 551368000 |
| 774 | 599076         | 463684824 | 821 | 674041  | 553387661 |
| 775 | 600625         | 465484375 | 822 | 675684  | 555412248 |
| 776 | 602176         | 467288576 | 823 | 677329  | 557441767 |
| 777 | 603729         | 469097488 | 824 | 678976  | 559476224 |
| 778 | 605284         | 470910952 | 825 | 680625  | 561515625 |
| 779 | 606841         | 472729139 | 826 | 682276  | 563559976 |
| 780 | 608400         | 474552000 | 827 | 683929  | 565609283 |
| 781 | 609961         | 476379541 | 828 | 685584  | 567663552 |
| 782 | 611524         | 478211768 | 829 | 687241  | 569722789 |
| 783 | 613089         | 480048687 | 830 | 688900  | 571787000 |
| 784 | 614656         | 481890304 | 831 | 690561  | 573856191 |
| 785 | 616225         | 483736025 | 832 | 692224  | 575930368 |
| 786 | 617796         | 485587656 | 833 | 693889  | 578009537 |
| 787 | 619369         | 487443403 | 834 | 695556  | 580093704 |
| 788 | 620944         | 489303872 | 835 | 697225  | 582182875 |
| 789 | 622521         | 491169069 | 836 | 698896  | 584277056 |
| 790 | 624100         | 493039000 | 837 | 700569  | 586376253 |
| 791 | <b>62</b> 5681 | 494913671 | 838 | 702244  | 588480472 |

| No. | Square.                   | Cube.                  | No.        | Square. | Cube.                  |
|-----|---------------------------|------------------------|------------|---------|------------------------|
| 839 | 703921                    | 590589719              | 886        | 784996  | 695506456              |
| 840 | 705600                    | 592704000              | 887        | 786769  | 697864103              |
| 841 | 707281                    | 594823321              | 888        | 788544  | 700227072              |
| 842 | 708964                    | 596947688              | 889        | 790321  | 702595369              |
| 843 | 710649                    | 599077107              | 890        | 792100  | 704969000              |
| 844 | 712336                    | 601211584              | 891        | 793881  | 707347971              |
| 845 | 714025                    | 603351125              | 892        | 795664  | 709732288              |
| 846 | 715716                    | 605495736              | 893        | 797449  | 712121957              |
| 847 | 717409                    | 607645423              | 894        | 799236  | 714516984              |
| 848 | 719104                    | 609800152              | 895        | 801025  | 716917375              |
| 849 | 720801                    | 611960049              | 896        | 802816  | 719323136              |
| 850 | 722500                    | 614125000              | 897        | 804609  | 721734273              |
| 851 | 724201                    | 616295051              | 898        | 806404  | 724150792              |
| 852 | 725904                    | 618470208              | 899        | 808201  | 724150792              |
| 853 | 727609                    | 620650477              | 900        | 810000  | 729000000              |
| 854 | 729316                    | 622835864              | 901        | 811804  |                        |
| 855 | 731025                    | 625026375              | 902        | 813604  | 731432701              |
| 856 | 732736                    | 627222016              | 903        | 815409  | 733870808<br>736314327 |
| 857 | 734449                    | 629422793              | 903        | 817216  |                        |
| 858 | 736164                    | 631628712              | 905        | 819025  | 738763264              |
| 859 | 737881                    | 633839779              | 905        |         | 741217625              |
| 860 | 739600                    | 636056000              |            | 820836  | 743677416              |
| 861 | 741321                    | 638277381              | 907<br>908 | 822649  | 746142643              |
| 862 | 741321                    | 640503928              |            | 824464  | 748613312              |
| 863 | 744769                    | 642735647              | 909<br>910 | 826281  | 751089429              |
| 864 | 746496                    | 644972544              | 910        | 828100  | 753571000              |
| 864 | 748225                    | 647214625              |            | 829921  | 756058031              |
| 866 | 749225                    | 649461896              | 912        | 831744  | 758550528              |
| 867 | 749936<br>751689          | 651714363              | 913        | 833569  | 761048497              |
| 868 | 753424                    | 653972032              | 914        | 835396  | 763551944              |
| 869 | 755161                    | 656234909              | 915        | 837225  | 766060875              |
| 870 | 756900                    | 658503000              | 916        | 839056  | 768575296              |
| 871 | •                         |                        | 917        | 840889  | 771095213              |
| 872 | 758 <b>64</b> 1<br>760384 | 660776311<br>663054848 | 918        | 842724  | 773620632              |
| 873 | 762129                    | 665338617              | 919<br>920 | 844561  | 776151559              |
| 874 | 762129                    | 667627624              | 920<br>921 | 846400  | 778688000              |
| 875 | 765625                    | 669921875              |            | 848241  | 781229961              |
| 876 | 763625<br>767376          | 672221376              | 922<br>923 | 850084  | 783777448              |
| 877 | 767376                    | 674526133              |            | 851929  | 786330467              |
| 878 | 770884                    | 676836152              | 924<br>925 | 853776  | 788889024              |
| 879 | 770684                    | 679151439              |            | 855625  | 791453125              |
| 880 | 774400                    | 681472000              | 926        | 857476  | 794022776              |
| 188 | 774400                    | 683797841              | 927<br>928 | 859329  | 796597983              |
| 882 | 777924                    | 686128968              | 928<br>929 | 861184  | 799178752              |
| 883 | 777924                    | 688465387              | 929        | 863041  | 801765089              |
| 884 | 779009<br>781456          | 690807104              | 930        | 864900  | 804357000              |
| 885 | 783225                    | 693154125              | 931        | 866761  | 806954491              |
| 000 | 100220                    | 050104120              | 302        | 868624  | 809557568              |

| No. | Square. | Cube.             | No. | Square. | Cube.     |
|-----|---------|-------------------|-----|---------|-----------|
| 933 | 870489  | 812166237         | 967 | 935089  | 904231063 |
| 934 | 872356  | 814780504         | 968 | 937024  | 907039232 |
| 935 | 874225  | 817400375         | 969 | 938961  | 909853209 |
| 936 | 876096  | 820025856         | 970 | 940900  | 912673000 |
| 937 | 877969  | 822656953         | 971 | 942841  | 915498611 |
| 938 | 879844  | 825293672         | 972 | 944784  | 918330048 |
| 939 | 881721  | 827936019         | 973 | 946729  | 921167317 |
| 940 | 883600  | 830584000         | 974 | 948676  | 924010424 |
| 941 | 885481  | 833237621         | 975 | 950625  | 926859375 |
| 942 | 887364  | 835896888         | 976 | 952576  | 929714176 |
| 943 | 889249  | 838561807         | 977 | 654529  | 932574833 |
| 944 | 891136  | 841232384         | 978 | 956484  | 935441352 |
| 945 | 893025  | 843908625         | 979 | 958441  | 938313739 |
| 946 | 894916  | 846590536         | 980 | 960400  | 941192000 |
| 947 | 896809  | 849278123         | 981 | 962361  | 944076141 |
| 948 | 898704  | 851971392         | 982 | 964324  | 946966168 |
| 949 | 900601  | 854670349         | 983 | 966289  | 949682087 |
| 950 | 902500  | 857375000         | 984 | 968256  | 952763904 |
| 951 | 904401  | 860085351         | 985 | 970225  | 955671625 |
| 952 | 906304  | 862801408         | 986 | 972196  | 958585256 |
| 953 | 908209  | 865523177         | 987 | 974169  | 961504803 |
| 954 | 910116  | 868250664         | 988 | 976144  | 964430272 |
| 955 | 912025  | 870983875         | 989 | 978121  | 967361669 |
| 956 | 913936  | 873722816         | 990 | 980100  | 970299000 |
| 957 | 915849  | 876467493         | 991 | 982081  | 973242271 |
| 958 | 917764  | 87321791 <b>2</b> | 992 | 984064  | 976191488 |
| 959 | 919681  | 881974079         | 993 | 986049  | 979146657 |
| 960 | 921600  | 884736000         | 994 | 988036  | 982107784 |
| 961 | 923521  | 887503681         | 995 | 990025  | 985074875 |
| 962 | 925444  | 890277128         | 996 | 992016  | 988047936 |
| 963 | 927369  | 893056347         | 997 | 994009  | 991026973 |
| 964 | 929296  | 895841344         | 998 | 996004  | 994011992 |
| 965 | 931225  | 898632125         | 999 | 998001  | 997002999 |
| 966 | 933156  | 901428696         |     |         | ļ         |

TABLE OF SQUARE AND CUBE ROOTS.

| No. | Square Root. | Cube Root, | No.       | Square Root. | Cube Root.    |
|-----|--------------|------------|-----------|--------------|---------------|
| 1   | 1            | 1          | 41        | 6.403        | 3.448         |
| 2   | 1.414        | 1.26       | 42        | 6.481        | 3.476         |
| 3   | 1.732        | 1.442      | 43        | 6.557        | 3.503         |
| 4   | 2            | 1.587      | 44        | 6.633        | 3.53          |
| 5   | 2.236        | 1.71       | 45        | 6.708        | 3.557         |
| 6   | 2.449        | 1.817      | 46        | 6.782        | 3.283         |
| 7   | 2.646        | 1.913      | 47        | 6.856        | 3.609         |
| 8   | 2.828        | 2          | 48        | 6.928        | 3 634         |
| 9   | 3            | 2.08       | 49        | 7            | 3.659         |
| 10  | 3.162        | 2.154      | 50        | 7.071        | 3.684         |
| 11  | 3.317        | 2.124      | 51        | 7.141        | 3.708         |
| 12  | 3.464        | 2 289      | <b>52</b> | 7.211        | 3·73 <b>3</b> |
| 13  | 3.606        | 2.351      | 53        | 7-28         | 3.756         |
| 14  | 3.742        | 2.41       | 54        | 7:348        | 3.78          |
| 15  | 3.873        | 2.466      | 55        | 7.416        | 3.803         |
| 16  | 4            | 2.52       | 56        | 7.483        | 3.826         |
| 17  | 4.123        | 2.571      | 57        | 7.55         | 3.849         |
| 18  | 4.243        | 2.621      | 58        | 7.616        | 3.871         |
| 19  | 4.359        | 2.668      | 59        | 7.681        | 3 893         |
| 20  | 4.472        | 2.714      | 60        | 7.746        | 3.915         |
| 21  | 4.583        | 2.759      | 61        | 7 81         | 3.936         |
| 22  | 4.69         | 2.802      | 62        | 7.874        | 3-958         |
| 23  | 4.796        | 2.844      | 63        | 7.937        | 3.979         |
| 24  | 4.899        | 2.884      | 64        | 8            | 4             |
| 25  | 5            | 2.924      | 65        | 8.062        | 4.021         |
| 26  | 5.099        | 2-962      | 66        | 8.124        | 4 041         |
| 27  | 5.196        | 3          | 67        | 8.185        | 4.062         |
| 28  | 5.292        | 3.037      | 68        | 8.246        | 4.082         |
| 29  | 5.385        | 3 072      | 69        | 8.307        | 4.102         |
| 30  | 5.477        | 3.107      | 70        | 8.367        | 4.121         |
| 31  | 5.568        | 3.141      | 71        | 8.426        | 4.141         |
| 32  | 5.657        | 3.175      | 72        | 8.485        | 4.16          |
| 83  | 5.745        | 3.208      | 73        | 8.544        | 4 179         |
| 34  | 5.831        | 3.24       | 74        | 8.602        | 4.198         |
| 35  | 5.916        | 3.271      | 75        | 8.66         | 4.217         |
| 36  | 6            | 3.302      | 76        | 8.718        | 4.236         |
| 37  | 6.083        | 3.332      | 77        | 8 775        | 4 254         |
| 38  | 6.164        | 3.362      | 78        | 8.832        | 4.273         |
| 39  | 6.245        | 3.391      | 79        | 8.888        | 4.291         |
| 40  | 6.325        | 3.42       | 80        | 8.914        | 4.309         |

| No. | Square Root.        | Cube Root. | No. | Square root. | Cube Root. |
|-----|---------------------|------------|-----|--------------|------------|
| 81  | 9                   | 4:327      | 128 | 11:314       | 5.04       |
| 82  | 9.055               | 4.344      | 129 | 11.358       | 5.053      |
| 83  | 9.11                | 4.362      | 130 | 11.402       | 5.066      |
| 84  | 9.165               | 4.38       | 131 | 11.446       | 5.079      |
| 85  | 9.22                | 4.397      | 132 | 11.489       | 5.092      |
| 86  | 9.274               | 4.414      | 133 | 11.533       | 5.104      |
| 87  | 9.327               | 4.431      | 134 | 11.576       | 5.117      |
| 88  | 9:381               | 4.448      | 135 | 11.619       | 5.13       |
| 89  | 9.434               | 4.465      | 136 | 11.662       | 5.143      |
| 90  | 9.487               | 4.481      | 137 | 11.705       | 5.155      |
| 91  | 9.539               | 4.498      | 138 | 11.747       | 5.168      |
| 92  | 9.592               | 4.514      | 139 | 11.79        | 5.18       |
| 93  | 9.644               | 4.531      | 140 | 11.832       | 5.192      |
| 94  | 9.695               | 4.547      | 141 | 11.874       | 5.205      |
| 95  | 9.747               | 4.563      | 142 | 11.916       | 5.217      |
| 96  | 9.798               | 4.579      | 143 | 11.958       | 5.229      |
| 97  | 9.849               | 4.595      | 144 | 12           | 5.241      |
| 98  | 9.899               | 4.61       | 145 | 12.042       | 5.254      |
| 99  | 9.95                | 4.626      | 146 | 12.083       | 5.266      |
| 100 | 10                  | 4 642      | 147 | 12.124       | 5.278      |
| 101 | 10.05               | 4.657      | 148 | 12.166       | 5.29       |
| 102 | 10.1                | 4.672      | 149 | 12.207       | 5.301      |
| 103 | 10.149              | 4.688      | 150 | 12.247       | 5.313      |
| 104 | 10.198              | 4.703      | 151 | 12.288       | 5.325      |
| 105 | 10.247              | 4.718      | 152 | 12:329       | 5.337      |
| 106 | 10.296              | 4.733      | 153 | 12.369       | 5.348      |
| 107 | 10.344              | 4.747      | 154 | 12.41        | 5 36       |
| 108 | 10.392              | 4.762      | 155 | 12.45        | 5.372      |
| 109 | 10.44               | 4.777      | 156 | 12:49        | 5.383      |
| 110 | 10.488              | 4.791      | 157 | 12.53        | 5.395      |
| 111 | 10.536              | 4.806      | 158 | 12.57        | 5.406      |
| 112 | 10 <sup>.</sup> 583 | 4.82       | 159 | 12 61        | 5.418      |
| 113 | 10.63               | 4.835      | 160 | 12.649       | 5.429      |
| 114 | 10.677              | 4.849      | 161 | 12.689       | 5.44       |
| 115 | 10.724              | 4.863      | 162 | 12 728       | 5.451      |
| 116 | 10.77               | 4.877      | 163 | 12.767       | 5.463      |
| 117 | 10.817              | 4.891      | 164 | 12.806       | 5.474      |
| 118 | 10.863              | 4.905      | 165 | 12.845       | 5.485      |
| 119 | 10.909              | 4 9 1 9    | 166 | 12.884       | 5.496      |
| 120 | 10.954              | 4.932      | 167 | 12.923       | 5.507      |
| 121 | 11                  | 4.946      | 168 | 12.961       | 5.518      |
| 122 | 11.045              | 4.96       | 169 | 13           | 5.529      |
| 123 | 11.091              | 4.973      | 170 | 13.038       | 5.54       |
| 124 | 11.136              | 4.987      | 171 | 13.077       | 5 5 5      |
| 125 | 11.18               | 5          | 172 | 13.115       | 5.561      |
| 126 | 11-225              | 5.013      | 173 | 13.153       | 5.572      |
| 127 | 11.269              | 5 027      | 174 | 13.191       | 5.583      |

| No. | Square Root. | Cube Root. | No.   | Square Root. | Cube Root.         |
|-----|--------------|------------|-------|--------------|--------------------|
| 175 | 13.229       | 5.593      | . 222 | 14.9         | 6.055              |
| 176 | 13.266       | 5.604      | 223   | 14.933       | 6.064              |
| 177 | 13.304       | 5.615      | 224   | 14.967       | 6.073              |
| 178 | 13.342       | 5.625      | 225   | 15           | 6.082              |
| 179 | 13.379       | 5.636      | 226   | 15.033       | 6.091              |
| 180 | 13.416       | 5.646      | 227   | 15.067       | 6.1                |
| 181 | 13.454       | 5.657      | 228   | 15.1         | 6.109              |
| 182 | 13.491       | 5.667      | 229   | 15.133       | 6.118              |
| 183 | 13.528       | 5.677      | 230   | 15.166       | 6.127              |
| 184 | 13.565       | 5.688      | 231   | 15.199       | 6.136              |
| 185 | 13.601       | 5.698      | 232   | 15.232       | 6.145              |
| 186 | 13.638       | 5.708      | 233   | 15.264       | 6.153              |
| 187 | 13.675       | 5.718      | 234   | 15.297       | 6.162              |
| 188 | 13.711       | 5.729      | 235   | 15.33        | 6.171              |
| 189 | 13.748       | 5.739      | 236   | 15.362       | 6.18               |
| 190 | 13.784       | 5.749      | 237   | 15.395       | 6.188              |
| 191 | 13.82        | 5.759      | 238   | 15.427       | 6.197              |
| 192 | 13.856       | 5.769      | 239   | 15.46        | 6.206              |
| 193 | 13 892       | 5.779      | 240   | 15.492       | 6.214              |
| 194 | 13.928       | 5.789      | 241   | 15.524       | 6.223              |
| 195 | 13.964       | 5.799      | 242   | 15.556       | 6.232              |
| 196 | 14           | 5.809      | 243   | 15.588       | 6.24               |
| 197 | 14.036       | 5.819      | 244   | 15.62        | 6.249              |
| 198 | 14.071       | 5.828      | 245   | 15.652       | 6.257              |
| 199 | 14.107       | 5.838      | 246   | 15.684       | 6.266              |
| 200 | 14.142       | 5.848      | 247   | 15.716       | 6.274              |
| 201 | 14.177       | 5.858      | 248   | 15.748       | 6.283              |
| 202 | 14.213       | 5.867      | 249   | 15.78        | 6.291              |
| 203 | 14.248       | 5.877      | 250   | 15.811       | 6.3                |
| 204 | 14.283       | 5.887      | 251   | 15.843       | 6.308              |
| 205 | 14.318       | 5.896      | 252   | 15.875       | 6.316              |
| 206 | 14.353       | 5.906      | 253   | 15.906       | 6:325              |
| 207 | 14.387       | 5.915      | 254   | 15.937       | 6.333              |
| 208 | 14.422       | 5.925      | 255   | 15.969       | 6 <sup>.</sup> 341 |
| 209 | 14.457       | 5.934      | 256   | 16           | 6.35               |
| 210 | 14.491       | 5.944      | 257   | 16.031       | 6.358              |
| 211 | 14.526       | 5.953      | 258   | 16.062       | 6.366              |
| 212 | 14.56        | 5.963      | 259   | 16.093       | 6.374              |
| 213 | 14.595       | 5 972      | 260   | 16.125       | 6.383              |
| 214 | 14.629       | 5.981      | 261   | 16.155       | 6.391              |
| 215 | 14.663       | 5.991      | 262   | 16.186       | 6.399              |
| 216 | 14.697       | 6          | 263   | 16.217       | 6.407              |
| 217 | 14.731       | 6.009      | 264   | 16.248       | 6.415              |
| 218 | 14.765       | 6.018      | 265   | 16.279       | 6.423              |
| 219 | 14.799       | 6.028      | 266   | 16:31        | 6.431              |
| 220 | 14.832       | 6.037      | 267   | 16.34        | 6.439              |
| 221 | 14.866       | 6.046      | 268   | 16.371       | 6.447              |

| No.   | Square Root. | Cube Root. | No. | Square Root. | Cube Root.     |
|-------|--------------|------------|-----|--------------|----------------|
| 269   | 16.401       | 6:455      | 316 | 17:776       | 6.811          |
| 270   | 16.432       | 6.463      | 317 | 17.804       | 6.818          |
| 271   | 16.462       | 6.471      | 318 | 17.833       | 6 826          |
| . 272 | 16.492       | 6.479      | 319 | 17.861       | 6.833          |
| 273   | 16.523       | 6.487      | 320 | 17.889       | 6.84           |
| 274   | 16.553       | 6.495      | 321 | 17.916       | 6.847          |
| 275   | 16.583       | 6.503      | 322 | 17.944       | 6.854          |
| 276   | 16.613       | 6.511      | 323 | 17.972       | 6.861          |
| 277   | 16.643       | 6.519      | 324 | 18           | 6.868          |
| 278   | 16.673       | 6.527      | 325 | 18.028       | 6.875          |
| 279   | 16.703       | 6.534      | 326 | 18:055       | 6.882          |
| 280   | 16.733       | 6.242      | 327 | 18.083       | 6.889          |
| 281   | 16.763       | 6·55       | 328 | 18.111       | 6.896          |
| 282   | 16.793       | 6.558      | 329 | 18.138       | 6.903          |
| 283   | 16.823       | 6.565      | 330 | 18.166       | 6.91           |
| 284   | 16.852       | 6.573      | 331 | 18.193       | 6917           |
| 285   | 16.882       | 6.581      | 332 | 18:221       | 6.924          |
| 286   | 16.912       | 6.289      | 333 | 18:248       | 6.931          |
| 287   | 16.941       | 6.296      | 334 | 18:276       |                |
| 288   | 16.971       | 6.604      | 335 | 18:303       | 6·938<br>6·945 |
| 289   | 17           | 6 611      | 336 | 18 33        | 6.952          |
| 290   | • 17.029     | 6.619      | 337 | 18.358       | 6.959          |
| 291   | 17.059       | 6.627      | 338 | 18:385       |                |
| 292   | 17:088       | 6.634      | 339 | 18.412       | 6.966          |
| 293   | 17.117       | 6.642      | 340 | 18 439       | 6.973          |
| 294   | 17:146       | 6.649      | 341 | 18.466       | 6.98           |
| 295   | 17.176       | 6.657      | 342 | 18.493       | 6·993          |
| 296   | 17.205       | 6.664      | 343 | 18.52        | 7              |
| 297   | 17.234       | 6.672      | 344 | 18:547       | 7.007          |
| 298   | 17.263       | 6.679      | 345 | 18:574       | 7.014          |
| 299   | 17.292       | 6.687      | 346 | 18.601       | 7.014          |
| 300   | 17:321       | 6.694      | 347 | 18.628       | 7.027          |
| 301   | 17:349       | 6.702      | 348 | 18.655       | 7.034          |
| 302   | 17:378       | 6.709      | 349 | 18.682       | 7:034          |
| 303   | 17.407       | 6.717      | 350 | 18.708       | 7.041          |
| 304   | 17.436       | 6.724      | 351 | 18.735       | 7.054          |
| 305   | 17.464       | 6.731      | 352 | 18.762       | 7:054          |
| 306   | 17.493       | 6.739      | 353 | 18.788       | 7.061          |
| 307   | 17.521       | 6.746      | 354 | 18.815       | 7 074          |
| 308   | 17.550       | 6.753      | 355 | 18.841       | 7.074          |
| 809   | 17.578       | 6.761      | 356 | 18.868       | 7:081          |
| 310   | 17.607       | 6.768      | 357 | 18.894       | 7.094          |
| 311   | 17.635       | 6.775      | 358 | 18.921       | 7.101          |
| 312   | 17.664       | 6.782      | 359 | 18:947       | 7.101          |
| 313   | 17.692       | 6.79       | 360 | 18.974       | 7.114          |
| 314   | 17.72        | 6.797      | 361 | 19           | 7.12           |
| 315   | 17.748       | 6.804      | 362 | 19 026       | 7.127          |
|       |              |            | 502 | 10 020       | 1 121          |

| No. | Square Root.     | Cube Root. | No.        | Square Root. | Cube Root,     |
|-----|------------------|------------|------------|--------------|----------------|
| 363 | 19.053           | 7.133      | 410        | 20-248       | 7:429          |
| 364 | 19.079           | 7.14       | 411        | 20.273       | 7:435          |
| 365 | 19.105           | 7.147      | 412        | 20.298       | 7:441          |
| 366 | 19.131           | 7.153      | 413        | 20:322       | 7.447          |
| 367 | 19.157           | 7.16       | 414        | 20.347       | 7.453          |
| 368 | 19.183           | 7.166      | 415        | 20.372       | 7.459          |
| 369 | 19.209           | 7.173      | 416        | 20.396       | 7.465          |
| 370 | 19.235           | 7.179      | 417        | 20.421       | 7:471          |
| 371 | 19:261           | 7.186      | 418        | 20.445       | 7:477          |
| 372 | 19.287           | 7.192      | 419        | 20.469       | 7.483          |
| 373 | 19.313           | 7.198      | 420        | 20.494       | 7.489          |
| 374 | 19.339           | 7.205      | 421        | 20.218       | 7.495          |
| 375 | 19.365           | 7.211      | 422        | 20.543       | 7.501          |
| 376 | 19:391           | 7.218      | 423        | 20.567       | 7.507          |
| 377 | 19.416           | 7.224      | 424        | 20.591       | 7.513          |
| 378 | 19.442           | 7.23       | 425        | 20.616       | 7.518          |
| 379 | 19 468           | 7.237      | 426        | 20.64        | 7.524          |
| 380 | 19 400<br>19 494 | 7.243      | 427        | 20 664       | 7.53           |
|     | 19.519           | 7.25       | 428        | 20.688       | 7.536          |
| 381 |                  | 7.256      | 429        | 20 000       | 7.542          |
| 382 | 19.545           | 7.262      | 430        | 20.736       | 7.548          |
| 383 | 19.57            |            |            | 20.761       | .7.554         |
| 384 | 19.596           | 7.268      | 431<br>432 |              | 7.56           |
| 385 | 19.621           | 7.275      |            | 20.785       |                |
| 386 | 19.647           | 7.281      | 433        | 20.809       | 7·565<br>7·571 |
| 387 | 19.672           | 7.287      | 434        | 20.833       |                |
| 388 | 19.698           | 7.294      | 435        | 20.857       | 7.577          |
| 389 | 19.723           | 7.3        | 436        | 20.881       | 7.583          |
| 390 | 19.748           | 7.306      | 437        | 20.905       | 7.589          |
| 391 | 19.774           | 7.312      | 438        | 20.928       | 7.594          |
| 392 | 19.799           | 7:319      | 439        | 20.952       | 7.6            |
| 393 | 19.824           | 7.325      | 440        | 20 976       | 7.606          |
| 394 | 19.849           | 7.331      | 441        | 21           | 7.612          |
| 395 | 19.875           | 7:337      | 442        | 21.024       | 7:617          |
| 396 | 19.9             | 7:343      | 443        | 21.048       | 7.623          |
| 397 | 19.925           | 7.35       | 444        | 21.071       | 7.629          |
| 398 | 19.95            | 7.356      | 445        | 21.095       | 7.635          |
| 399 | 19.975           | 7.362      | 446        | 21.119       | 7.64           |
| 400 | 20               | 7.368      | 447        | 21.142       | 7.646          |
| 401 | 20.025           | 7:374      | 448        | 21.166       | 7.652          |
| 402 | 20.05            | 7.38       | 449        | 21.19        | 7.657          |
| 403 | 20.075           | 7.386      | 450        | 21.213       | 7.663          |
| 404 | 20.1             | 7:393      | 451        | 21.237       | 7.669          |
| 405 | 20.125           | 7:399      | 452        | 21.26        | 7.674          |
| 406 | 20.149           | 7.405      | 453        | 21.284       | 7.68           |
| 407 | 20.174           | 7.411      | 454        | 21.307       | 7.686          |
| 408 | 20.199           | 7.417      | 455        | 21.331       | 7.691          |
| 409 | 20:224           | 7.423      | 456        | 21.354       | 7.697          |
|     |                  |            |            | <u> </u>     |                |

| No. | Square Root. | Cube Root.    | No.        | Square Root.     | Cube Root.     |
|-----|--------------|---------------|------------|------------------|----------------|
| 457 | 21:378       | 7.703         | 504        | 22:450           | 7.958          |
| 457 |              |               | 504        | 22.472           | 7.963          |
| 458 | 21.401       | 7.708         |            |                  |                |
| 459 | 21.424       | 7.714         | 506        | 22:494           | 7·969<br>7·974 |
| 460 | 21:448       | 7.719         | 507        | 22.517           | 7.974          |
| 461 | 21.471       | 7.725         | 508<br>509 | 22·539<br>22·561 | 7.984          |
| 462 | 21.494       | 7.731         |            |                  | 7.984          |
| 463 | 21.517       | 7.736         | 510<br>511 | 22.583           | 7·99<br>7·995  |
| 464 | 21.541       | 7.742         | 512        | 22·605<br>22·627 |                |
| 465 | 21.564       | 7.747         |            |                  | 8              |
| 466 | 21.587       | 7.753         | 513        | 22.65            | 8.005          |
| 467 | 21.61        | 7.758         | 514        | 22.672           | 8.01           |
| 468 | 21.633       | 7.764         | 515        | 22.694           | 8.016          |
| 469 | 21.656       | 7.769         | 516        | 22.716           | 8.021          |
| 470 | 21.679       | 7.775         | 517        | 22.738           | 8.026          |
| 471 | 21.703       | 7.78          | 518        | 22.76            | 8.031          |
| 472 | 21.726       | 7.786         | 519        | 22.782           | 8.036          |
| 473 | 21.749       | 7.791         | 520        | 22.804           | 8.041          |
| 474 | 21.772       | 7.797         | 521        | 22.825           | 8.047          |
| 475 | 21.794       | 7.802         | 522        | 22.847           | 8.052          |
| 476 | 21.817       | 7.808         | 523        | 22.869           | 8.057          |
| 477 | 21.840       | 7.813         | 524        | 22.891           | 8.062          |
| 478 | 21.863       | 7.819         | 525        | 22.913           | 8.067          |
| 479 | 21.886       | 7.824         | 526        | 22.935           | 8.072          |
| 480 | 21.909       | 7.83          | 527        | 22.956           | 8.077          |
| 481 | 21.932       | 7.835         | 528        | 22.978           | 8.082          |
| 482 | 21.954       | 7.841         | 529        | 23               | 8.088          |
| 483 | 21.977       | 7.846         | 530        | 23.022           | 8.093          |
| 484 | 22           | 7.851         | 531        | 23.043           | 8.098          |
| 485 | 22.023       | 7.857         | 532        | 23.065           | 8.103          |
| 486 | 22.045       | 7.862         | 533        | 23.087           | 8.108          |
| 487 | 22.069       | 7.868         | 534        | 23.108           | 8.113          |
| 488 | 22·09 l      | 7.873         | 535        | 23.18            | 8.118          |
| 489 | 22.113       | 7.878         | 536        | 23.152           | 8.123          |
| 490 | 22.136       | 7.884         | 537        | 23.173           | 8.128          |
| 491 | 22.159       | 7.889         | 538        | 28.195           | 8.133          |
| 492 | 22.181       | 7.894         | 539        | 23.216           | 8.138          |
| 493 | 22-204       | 7.9           | 540        | 23.238           | 8.143          |
| 494 | 22-226       | 7.905         | 541        | 23.259           | 8.148          |
| 495 | 22-249       | <b>7</b> ·910 | 542        | 23.281           | 8.153          |
| 496 | 22.271       | 7.916         | 543        | 23.302           | 8.158          |
| 497 | 22-293       | 7.921         | 544        | 23.324           | 8.163          |
| 498 | 22.216       | 7.926         | 545        | 23.345           | 8.168          |
| 499 | 22:339       | 7.932         | 546        | 23.367           | 8.173          |
| 500 | 22:361       | 7.937         | 547        | 23:388           | 8.178          |
| 501 | 22.383       | 7.942         | 548        | 23.409           | 8.183          |
| 502 | 22.405       | 7.948         | 549        | 23.431           | 8.188          |
| 503 | 22.428       | 7.953         | 550        | 23.452           | 8.193          |
|     |              |               |            |                  |                |

| No. | Square Root.        | Cube Root. | No. | Square Root. | Cube Root. |
|-----|---------------------|------------|-----|--------------|------------|
| 551 | 23.473              | 8-198      | 598 | 24.454       | 8.425      |
| 552 | 23.495              | 8.203      | 599 | 24.474       | 8.43       |
| 553 | 23·516              | 8.208      | 600 | 24.495       | 8.434      |
| 554 | 53.537              | 8.213      | 601 | 24.515       | 8.439      |
| 555 | 23.558              | 8.218      | 602 | 24.536       | 8:444      |
| 556 | 23.58               | 8.223      | 603 | 24.556       | 8.448      |
| 557 | 23.601              | 8.228      | 604 | 24.576       | 8.453      |
| 558 | 23.622              | 8.233      | 605 | 24.597       | 8.458      |
| 559 | 23.643              | 8.238      | 606 | 24.617       | 8.462      |
| 560 | 23.664              | 8.243      | 607 | 24.637       | 8.467      |
| 561 | 23.685              | 8.247      | 608 | 24.658       | 8.472      |
| 562 | 23.707              | 8.252      | 609 | 24.678       | 8 476      |
| 563 | 23.728              | 8.257      | 610 | 24.698       | 8.481      |
| 564 | 23.749              | 8.262      | 611 | 24.718       | 8.486      |
| 565 | 23.770              | 8.267      | 612 | 24.739       | 8.49       |
| 566 | 23.791              | 8.272      | 613 | 24.759       | 8.495      |
| 567 | 23.812              | 8.277      | 614 | 24.779       | 8.499      |
| 568 | 23.833              | 8.282      | 615 | 24.799       | 8.504      |
| 569 | 23.854              | 8.286      | 616 | 24.819       | 8.509      |
| 570 | 23.875              | 8 291      | 617 | 24.839       | 8.213      |
| 571 | 23.896              | 8.296      | 618 | 24.86        | 8.218      |
| 572 | 23.917              | 8.301      | 619 | 24.88        | 8.522      |
| 573 | 23.937              | 8.306      | 620 | 24.9         | 8.527      |
| 574 | 23.958              | 8.311      | 621 | 24.92        | 8.532      |
| 575 | 23.979              | 8.316      | 622 | 24.94        | 8.536      |
| 576 | 24                  | 8.32       | 623 | 24.96        | 8.541      |
| 577 | 24.021              | 8.325      | 624 | 24.98        | 8.545      |
| 578 | 24.042              | 8.33       | 625 | 25           | 8.55       |
| 579 | 24.062              | 8.335      | 626 | 25.02        | 8.554      |
| 580 | 24.083              | 8:34       | 627 | 25-04        | 8.559      |
| 581 | 24.104              | 8:344      | 628 | 25.06        | 8.564      |
| 582 | 24.125              | 8:349      | 629 | 25.08        | 8.568      |
| 583 | 24.145              | 8.354      | 630 | 25.1         | 8.573      |
| 584 | 24.166              | 8.359      | 631 | 25.12        | 8.577      |
| 585 | 24.187              | 8.363      | 632 | 25.14        | 8.582      |
| 586 | 24.207              | 8.368      | 633 | 25.159       | 8.286      |
| 587 | 24.228              | 8.373      | 634 | 25.179       | 8.591      |
| 588 | 24.249              | 8.378      | 635 | 25.199       | 8.595      |
| 589 | 24.269              | 8.382      | 636 | 25.219       | . 8.6      |
| 590 | 24.29               | 8:387      | 637 | 25.239       | 8.604      |
| 591 | 24.81               | 8.392      | 988 | 25.259       | 8.609      |
| 592 | 24 <sup>.</sup> 331 | 8:397      | 639 | 25.278       | 8.613      |
| 593 | 24.352              | 8.401      | 640 | 25.298       | 8.618      |
| 594 | 24.372              | 8.406      | 641 | 25.318       | 8.622      |
| 595 | 24.893              | 8.411      | 642 | 25.338       | 8.627      |
| 596 | 24.418              | 8.416      | 643 | 25.857       | 8.631      |
| 597 | 24.484              | 8.42       | 644 | 25.877       | 8.636      |
|     |                     |            |     |              | 0.000      |

| No. | Square Root. | Cube Root. | No.  | Square Root. | Cube Root. |
|-----|--------------|------------|------|--------------|------------|
| 645 | 25:397       | 8.64       | 692  | 26:306       | 8 845      |
| 646 | 25.417       | 8.645      | 693  | 26.325       | 8.849      |
| 647 | 25.436       | 8.649      | 694  | 26.344       | 8.854      |
| 648 | 25.456       | 8.653      | 695  | 26.368       | 8.858      |
| 649 | 25.475       | 8.658      | 696  | 26.382       | 8.862      |
| 650 | 25.495       | 8.662      | 697  | 26.401       | 8.866      |
| 651 | 25.212       | 8.667      | 698  | 26.42        | 8.871      |
| 652 | 25.534       | 8.671      | 699  | 26 439       | 8.875      |
| 653 | 25.554       | 8.676      | 700  | 26.458       | 8.879      |
| 654 | 25.573       | 8.68       | 701  | 26.476       | 8.883      |
| 655 | 25.593       | 8.685      | 702  | 26.495       | 8.887      |
| 656 | 25.612       | 8.689      | 703  | 26.514       | 8.892      |
| 657 | 25.632       | 8.693      | 704  | 26.533       | 8.896      |
| 658 | 25.652       | 8.698      | 705  | 26.552       | 8.9        |
| 659 | 25.671       | 8.702      | 706  | 26.571       | 8.904      |
| 660 | 25.69        | 8.707      | 707  | 26.589       | 8.909      |
| 661 | 25.71        | 8.711      | 708  | 26.608       | 8.913      |
| 662 | 25.72        | 8.715      | 709  | 26.627       | 8.917      |
| 663 | 25.749       | 8.72       | 710  | 26.646       | 8.921      |
| 664 | 25.768       | 8.724      | 711  | 26.665       | 8.925      |
| 665 | 25.788       | 8.729      | 712  | 26.683       | 8.929      |
| 666 | 25.807       | 8.733      | 713  | 26.702       | 8.934      |
| 667 | 25.826       | 8.737      | 714  | 26.721       | 8.938      |
| 668 | 25.846       | 8.742      | 715  | 26.739       | 8.942      |
| 669 | 25.865       | 8.746      | 716  | 26.758       | 8.946      |
| 670 | 25.884       | 8.75       | 717  | 26.777       | 8.95       |
| 671 | 25.904       | 8.755      | 718  | 26.796       | 8.955      |
| 672 | 25.923       | 8.759      | 719  | 26.814       | 8.959      |
| 673 | 25.942       | 8.763      | 720  | 26.833       | 8.963      |
| 674 | 25.962       | 8.768      | 721  | 26.851       | 8.967      |
| 675 | 25.981       | 8.772      | 722  | 26.87        | 8.971      |
| 676 | 26           | 8.776      | 723  | 26.889       | 8.975      |
| 677 | 26.019       | 8.781      | 724  | 26.907       | 8.979      |
| 678 | 26.038       | 8.785      | 725  | 26-926       | 8.984      |
| 679 | 26.058       | 8.789      | 726  | 26.944       | 8.988      |
| 680 | 26.077       | 8.794      | 727  | 26.963       | 8.992      |
| 681 | 26.096       | 8.798      | 728  | 26.981       | 8.996      |
| 682 | 26.112       | 8.802      | 729  | 27           | 9          |
| 683 | 26.134       | 8.807      | 780  | 27:019       | 9.004      |
| 684 | 26:153       | 8.811      | 731  | 27:037       | 9.008      |
| 685 | 26.173       | 8.815      | 732  | 27.055       | 9.012      |
| 686 | 26.192       | 8.819      | 733  | 27.074       | 9.016      |
| 687 | 26.211       | 8.824      | 734  | 27.092       | 9.021      |
| 688 | 26.23        | 8.828      | 785  | 27.111       | 9.025      |
| 689 | 26:249       | 8.832      | 736  | 27.129       | 9.029      |
| 690 | 26.268       | 8.837      | 787  | 27.148       | 9.033      |
| 691 | 26-287       | 8.841      | 738  | 27.166       | 9.037      |
| ۱   |              |            | ,,,, |              |            |

| No. | Square Root. | Cube Root. | No. | Square Root. | Cube Root. |
|-----|--------------|------------|-----|--------------|------------|
| 739 | 27.185       | 9:041      | 786 | 28.036       | 9.229      |
| 740 | 27.203       | 9.045      | 787 | 28.054       | 9.233      |
| 741 | 27.221       | 9.049      | 788 | 28.071       | 9.238      |
| 742 | 27.24        | 9.053      | 789 | 28.089       | 9.24       |
| 743 | 27.258       | 9.057      | 790 | 28.107       | 9.244      |
| 744 | 27.276       | 9.061      | 791 | 28.125       | 9.248      |
| 745 | 27.295       | 9.065      | 792 | 28.142       | 9.252      |
| 746 | 27:313       | 9.069      | 793 | 28.16        | 9.256      |
| 747 | 27:331       | 9.073      | 794 | 28.178       | 9.26       |
| 748 | 27.35        | 9.078      | 795 | 28.196       | 9.264      |
| 749 | 27.368       | 9.082      | 796 | 28.213       | 9.268      |
| 750 | 27:386       | 9.086      | 797 | 28.231       | 9.272      |
| 751 | 27:404       | 9.09       | 798 | 28.249       | 9.275      |
| 752 | 27.423       | 9.094      | 799 | 28.267       | 9.279      |
| 753 | 27:441       | 9.098      | 800 | 28·284       | 9.279      |
| 754 | 27.459       | 9.102      | 801 | 28.302       | 9 283      |
| 755 | 27.477       | 9.106      | 802 | 28.32        | 9.291      |
| 756 | 27:495       | 9.11       | 803 | 28.337       | 9.295      |
| 757 | 27.514       | 9.114      | 804 | 28.355       | 9.299      |
| 758 | 27.532       | 9.118      | 805 | 28.373       | 9.302      |
| 759 | 27.55        | 9.122      | 806 | 28.39        | 9.302      |
| 760 | 27.568       | 9.126      | 807 | 28.408       | 9.31       |
| 761 | 27.586       | 9.13       | 808 | 28.425       | 9.314      |
| 762 | 27.604       | 9.134      | 809 | 28.443       | 9.318      |
| 763 | 27.622       | 9.138      | 810 | 28.46        | 9.322      |
| 764 | 27:641       | 9.142      | 811 | 28.478       | 9.326      |
| 765 | 27.659       | 9.146      | 812 | 28.496       | 9.329      |
| 766 | 27.677       | 9.15       | 813 | 28.513       | 9.333      |
| 767 | 27.695       | 9.154      | 814 | 28.531       | 9.337      |
| 768 | 27.713       | 9.158      | 815 | 28.548       | 9.341      |
| 769 | 27.731       | 9.162      | 816 | 28.566       | 9.345      |
| 770 | 27.749       | 9.166      | 817 | 28.583       | 9.348      |
| 771 | 27.767       | 9.17       | 818 | 28.601       | 9.352      |
| 772 | 27.785       | 9.174      | 819 | 28.618       | 9.356      |
| 773 | 27.803       | 9.178      | 820 | 28.636       | 9.36       |
| 774 | 27.821       | 9.182      | 821 | 28.653       | 9:364      |
| 775 | 27.839       | 9.185      | 822 | 28.671       | 9.368      |
| 776 | 27.857       | 9.189      | 823 | 28.688       | 9.371      |
| 777 | 27.875       | 9.193      | 824 | 28.705       | 9.375      |
| 778 | 27.893       | 9.197      | 825 | 28.723       | 9.379      |
| 779 | 27.911       | 9.201      | 826 | 28.74        | 9.383      |
| 780 | 27.928       | 9.205      | 827 | 28.758       | 9.386      |
| 781 | 27.946       | 9.209      | 828 | 28.775       | 9.39       |
| 782 | 27.964       | 9.213      | 829 | 28.792       | 9.394      |
| 783 | 27.982       | 9.217      | 830 | 28.81        | 9.398      |
| 784 | 28           | 9.221      | 831 | 28.827       | 9.402      |
| 785 | 28.018       | 9.925      | 832 | 28.844       | 9 405      |
|     |              |            |     |              |            |

| No.   | Square Root.           | Cube Root. | No. | Square Root.   | Cube Root. |
|-------|------------------------|------------|-----|----------------|------------|
| 833   | 28.862                 | 9.409      | 880 | 29.665         | 9.583      |
| 834   | 28.879                 | 9.413      | 881 | 29.682         | 9.586      |
| 835   | 28.896                 | 9.417      | 882 | 29.698         | 9.59       |
| 836   | 28.914                 | 9.42       | 883 | 29.715         | 9.594      |
| 837   | 28.931                 | 9.424      | 884 | 29.732         | 9.597      |
| 838   | 28.948                 | 9.428      | 885 | 29.749         | 9.601      |
| 839   | 28-965                 | 9.432      | 886 | 29.766         | 9.605      |
| 840   | 28.983                 | 9.435      | 887 | 29.783         | 9.608      |
| 841   | 29                     | 9.439      | 888 | 29.799         | 9.612      |
| 842   | 29.017                 | 9.443      | 889 | 29.816         | 9.615      |
| · 843 | 29.034                 | 9.447      | 890 | 29.833         | 9.619      |
| 844   | 29.052                 | 9.45       | 891 | 29.85          | 9.623      |
| 845   | 29.069                 | 9.454      | 892 | 29.866         | 9.626      |
| 846   | 29.086                 | 9 458      | 893 | 29.883         | 9.63       |
| 847   | 29.103                 | 9.462      | 894 | 29.9           | 9.633      |
| 848   | 29.12                  | 9.465      | 895 | 29.917         | 9.637      |
| 849   | 29.138                 | 9.469      | 896 | 29.933         | 9.641      |
| 850   | 29.155                 | 9.473      | 897 | 29.95          | 9.644      |
| 851   | 29.172                 | 9.476      | 898 | 29.967         | 9.648      |
| 852   | 29.189                 | 9.48       | 899 | 29.983         | 9.651      |
| 853   | 29.206                 | 9.484      | 900 | 30             | 9.655      |
| 854   | 29.223                 | 9.488      | 901 | 30.017         | 9.658      |
| 855   | 29.24                  | 9.491      | 902 | 30.033         | 9.662      |
| 856   | 29 257                 | 9.495      | 903 | 30.05          | 9.666      |
| 857   | 29.275                 | 9.499      | 904 | 30.067         | 9.669      |
| 858   | 29.292                 | 9.502      | 905 | 30.083         | 9.673      |
| 859   | 29 309                 | 9.506      | 906 | 30·1           | 9.676      |
| 860   | 29.326                 | 9.51       | 907 | 30.116         | 9.68       |
| 861   | 29.343                 | 9.513      | 908 | 30.133         | 9.683      |
| 862   | 29.36                  | 9.517      | 909 | 30.15          | 9.687      |
| 863   | 29:377                 | 9.521      | 910 | 30.163         | 9.691      |
| 864   | 29.394                 | 9.524      | 911 | 30.183         | 9.694      |
| 865   | 29.411                 | 9.528      | 912 | 30.199         | 9.698      |
| 866   | 29.428                 | 9.532      | 913 | 30.216         | 9.701      |
| 867   | 29.445                 | 9.535      | 914 | 30.232         | 9.705      |
| 868   | 29.462                 | 9.539      | 915 | 30.249         | 9.708      |
| 869   | 29.479                 | 9.543      | 916 | 30.265         | 9.712      |
| 870   | 29.496                 | 9.546      | 917 | 30.282         | 9.715      |
| 871   | 29 513                 | 9.55       | 918 | 30.299         | 9.719      |
| 872   | 29.530                 | 9.554      | 919 | 30.315         | 9.722      |
| 873   | 29.547                 | 9.557      | 920 | 30.332         | 9.726      |
| 874   | <b>29</b> ·56 <b>3</b> | 9.561      | 921 | 30.348         | 9.729      |
| 875   | 29.58                  | 9.565      | 922 | 30.364         | 9.733      |
| 876   | 29.597                 | 9.568      | 923 | 30.381         | 9.736      |
| 877   | 29.614                 | 9.572      | 924 | 30·39 <i>7</i> | 9.74       |
| 878   | 29.631                 | 9.576      | 925 | 30.414         | 9.743      |
| 879   | 29.648                 | 9.579      | 926 | 30.43          | 9.747      |

| No. | Square Root. | Cube Root. | No. | Square Root,  | Cube Root. |
|-----|--------------|------------|-----|---------------|------------|
| 927 | 30:447       | 9.75       | 964 | 31.048        | 9.879      |
| 928 | 30.463       | 9.754      | 965 | 31.064        | 9.882      |
| 929 | 30.48        | 9.758      | 966 | 31.081        | 9.885      |
| 930 | 30.496       | 9.761      | 967 | 31.097        | 9.889      |
| 931 | 30.512       | 9.764      | 968 | 31.113        | 9 892      |
| 932 | 30.529       | 9.768      | 969 | 31.129        | 9.896      |
| 933 | 30.545       | 9.771      | 970 | 31.145        | 9 899      |
| 934 | 30.561       | 9.775      | 971 | 31.161        | 9.902      |
| 935 | 30.578       | 9.778      | 972 | 31.177        | 9.906      |
| 936 | 30.594       | 9.783      | 973 | 31.193        | 9 9 0 9    |
| 937 | 30.61        | 9.785      | 974 | 31.209        | 9.913      |
| 938 | 30.627       | 9.789      | 975 | 31.225        | 9.916      |
| 939 | 80.643       | 9.792      | 976 | 31.241        | 9.919      |
| 940 | 30.659       | 9.796      | 977 | 31-257        | 9.923      |
| 941 | 30.676       | 9.799      | 978 | 31.273        | 9.926      |
| 942 | 30.692       | 9 803      | 979 | 81.289        | 9.93       |
| 943 | 30.708       | 9.806      | 980 | <b>31</b> 305 | 9.933      |
| 944 | 30.725       | 9.81       | 981 | 81.321        | 9.936      |
| 945 | 30.741       | 9.813      | 982 | 31.337        | 994        |
| 946 | 30.757       | 9.817      | 983 | 31.353        | 9.943      |
| 947 | 30.773       | 9.820      | 984 | 81.369        | 9.946      |
| 948 | 30.79        | 9.824      | 985 | 81.385        | 9.95       |
| 949 | 30.806       | 9 827      | 986 | 31.401        | 9.953      |
| 950 | 30.822       | 9.83       | 987 | 31.417        | 9.956      |
| 951 | 30.838       | 9.834      | 988 | 31.432        | 9.96       |
| 952 | 30.854       | 8.837      | 989 | 31.448        | 9.963      |
| 953 | 30.871       | 9.841      | 990 | 31.464        | 9.967      |
| 954 | 30.887       | 9 844      | 991 | 31.48         | 9.97       |
| 955 | 30.903       | 9.848      | 992 | 31.496        | 9.973      |
| 956 | 30.919       | 9.851      | 993 | 31.512        | 9.977      |
| 957 | 30.935       | 9.855      | 994 | 31.528        | 9.98       |
| 958 | 30.952       | 9.858      | 995 | 31.544        | 9.983      |
| 959 | 30 968       | 9.861      | 996 | 31 559        | 9 987      |
| 960 | 30.984       | 9.865      | 997 | 31.575        | 9.99       |
| 961 | 31           | 9 868      | 998 | 81.591        | 9.993      |
| 962 | 31.016       | 9.872      | 999 | 31.607        | 9.997      |
| 963 | 31 032       | 9 875      |     |               |            |

THE END.

LONDON PRINTED BY SPOTTISWOODE AND CO. NEW-STREET SQUARE





Eng 348.60.3
The engineer's handbook.
Cabot Science 005935175