

## **Department of Computer Science and Engineering**

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

| Course Title : Data Analytics |                             |              |            |  |  |  |  |
|-------------------------------|-----------------------------|--------------|------------|--|--|--|--|
| Course Code: P18CS63          | Semester : 6                | L:T:P: 4:0:0 | Credits: 4 |  |  |  |  |
| Contact Period: Lecture: 52 I | Weightage: CIE:50%, SEE:50% |              |            |  |  |  |  |

## **Course Content**

#### Unit-1

Introduction To Data Analytics: What is Data? A Short Taxonomy of Data Analytics, Examples of Data Use, Breast Cancer in Wisconsin, Polish Company Insolvency Data, A Project on Data Analytics, The KDD Process, The CRISP-DM Methodology **Descriptive Statistics:** Scale Types, Descriptive Univariate Analysis, Descriptive bivariate Analysis. **Multivariate Analysis:** Multivariate Frequencies, Multivariate Data Visualization, Multivariate Statistics.

Self study component : Operationalize, Case study : Global innovation network and analysis.

10 Hours

#### Unit-2

Data Quality and Pre-processing: Data Quality, Missing Values, Redundant Data, Inconsistent Data, Noisy Data Outliers, Converting to a Different Scale Type, Converting to a Different Scale, Data Transformation, Dimensionality Reduction: Attribute Aggregation: Principal Component Analysis. Attribute selection: filters, wrappers. Review of Basic Data Analytic Methods using R: Introduction to R: Data types, Data import and Export, Descriptive statistics. Exploratory Data Analysis: Visualization tools for single and multivariable: Bar chart, Histogram, line graph, box plot and scatter plot and scatter plot matrix.

Self study component: Search strategies.

10 Hours

### Unit-3

Clustering: Distance Measures, Difference between Values of Common Attribute Types, Distance Measures for Objects with Quantitative Attributes, Distance Measures for Nonconventional Attributes, Clustering Validation, Clustering Techniques, K-means, Centroids and Distance Measures, How K-means Works, Density-based spatial clustering of applications with

noise (DBSCAN), **Frequent Pattern Mining:** Frequent Item sets, Setting the min\_sup Threshold, Apriori – a Join-based Method, Eclat, FP-Growth, Maximal and Closed Frequent Item sets, Association Rules.

Self study component: Other types of pattern.

11 Hours

### Unit-4

**Regression:** Predictive Performance Estimation, Generalization, Model Validation, Predictive Performance Measures for Regression, Finding the Parameters of the Model, Linear Regression, **Classification**: Binary Classification, Predictive Performance Measures for Classification, Distance-based Learning Algorithms, K-nearest Neighbor Algorithms, Case-based Reasoning, Logistic Regression Algorithm, Naive Bayes Algorithm.

Self study component: Empirical error.

11 Hours

#### Unit-5

Additional Predictive Methods: Search-based Algorithms, Decision Tree Induction Algorithms, Decision Trees for Regression Optimization-based Algorithms: Support



## **Department of Computer Science and Engineering**

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Vector Machines Applications for Text, Web and Social Media: Working with Texts, Recommender Systems.

Self study component: Social network analysis.

10 Hours

#### **Textbook:**

- 1. A General Introduction to Data Analytics, João Mendes Moreira, André C.P.L.F. deCarvalho, © 2019 John Wiley & Sons, Inc
- 2. Data Science & Big Data Analytics, Discovering, Analyzing, Visualizing and Presenting Data, Published by John Wiley & Sons, Inc.

### **Reference Books:**

1. Big Data and Data Analytics by Seema Acharya & Subhashini Chellappan by Wiley India Pvt Ltd.

### **Course Outcomes:**

- 1. Students can able to Understanding the Data Analytics Life Cycle & Taxonomy.
- 2. Students can Analyze Preprocessing of the Data & Analytical Methods with data system With R Tool.
- 3. Students can able to build and Perform Clustering & Frequent Pattern Mining.
- 4. Student can able to Implement Additional Predictive Methods including Applications of Text, Web & Social Media.
- 5. Design and Implement real time applications in data analytics

# **CO-PO Mapping**

| Semester: 6 Course code: |                                               | P18CS63                 |    |    | Title: Data Analytics |    |    |    |    |    |    |    |    |    |    |           |
|--------------------------|-----------------------------------------------|-------------------------|----|----|-----------------------|----|----|----|----|----|----|----|----|----|----|-----------|
| CO                       | Statement                                     |                         | PO | PO | PO                    | PO | PO | PO | PO | PO | PO | PO | PO | PO | PS | PS        |
|                          |                                               |                         |    | 2  | 3                     | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 01 | <b>O2</b> |
| CO -1                    | O -1 Students can able to Understanding       |                         | 2  | 2  |                       |    |    |    |    |    |    |    |    |    |    | 2         |
|                          | the Data Analytics Life Cycle &               |                         |    |    |                       |    |    |    |    |    |    |    |    |    |    |           |
|                          | Taxonomy                                      |                         |    |    |                       |    |    |    |    |    |    |    |    |    |    |           |
| CO-2                     | <b>D-2</b> Students can Analyze Preprocessing |                         | 1  | 1  | 1                     | 1  | 2  |    |    |    |    |    |    |    |    | 2         |
|                          | of the Data & Analytical Methods              |                         |    |    |                       |    |    |    |    |    |    |    |    |    |    |           |
|                          | with data system With R Tool.                 |                         |    |    |                       |    |    |    |    |    |    |    |    |    |    |           |
| CO-3                     | <b>0-3</b> Students can able to build and     |                         | 1  | 1  | 1                     | 1  | 1  | 1  |    |    |    |    |    |    |    | 2         |
|                          | Perform Clustering & Frequent                 |                         |    |    |                       |    |    |    |    |    |    |    |    |    |    |           |
|                          | Pattern Mining.                               |                         |    |    |                       |    |    |    |    |    |    |    |    |    |    |           |
| CO -4                    | Student can                                   | able to Implement       | 1  | 1  | 1                     | 1  | 1  | 1  |    |    |    |    |    |    |    | 2         |
|                          | Additional                                    | Predictive Methods      |    |    |                       |    |    |    |    |    |    |    |    |    |    |           |
|                          | including App                                 | olications of Text, Web |    |    |                       |    |    |    |    |    |    |    |    |    |    |           |
|                          | & Social Med                                  |                         |    |    |                       |    |    |    |    |    |    |    |    |    |    |           |
| CO-5                     | Design and In                                 | plement real time       | 2  | 2  | 2                     | 2  | 2  | 2  |    |    |    |    |    |    |    | 2         |
|                          | applications in                               | data analytics          |    |    |                       |    |    |    |    |    |    |    |    |    |    |           |