Curso de Licenciatura em Engenharia Informática e de Telecomunicações

Unidade Curricular	Física I
Turmas	LEIT 13 e 14
Ano	I
Semestre	I
Tipo de avaliação	MINI-TESTE I
Duração (minutos)	50
Data e período	17/03/2023 Hora:14:20 – 15:10 Hrs e Hora:16:20 – 17:10 Hrs
Docente	Belarmino Luís Matsinhe

GUIA DE CORRECÇÃO

Sejam dados os seguintes vectores $\vec{a} = -4\vec{i} + 5\vec{j} + 3\vec{k}$ e $\vec{b} = 2\vec{i} + 2\vec{j} + 2\vec{k}$. Encontre as soluções das seguintes operações vectoriais e represente os vectores resultantes, se existirem, no sistema dextrogiro de coordenadas cartesianas ortogonais. (80)

$$\vec{a} + \vec{b} = (a_x + b_x)\vec{i} + (a_y + b_y)\vec{j} + (a_z + b_z)\vec{k}$$

$$5 \qquad \Longrightarrow$$

$$\vec{a} + \vec{b} = (-4 + 2)\vec{i} + (5 + 2)\vec{j} + (3 + 2)\vec{k}$$

$$\vec{a} + \vec{b} = -2\vec{i} + 7\vec{j} + 5\vec{k}$$

ISUTC - 2023 Pág. 1 / 2

$$\vec{a} - \vec{b} = (a_x - b_x)\vec{i} + (a_y - b_y)\vec{j} + (a_z - b_z)\vec{k}$$

$$5 \qquad \Longrightarrow$$

$$(b) \quad \vec{a} - \vec{b} = (-4 - 2)\vec{i} + (5 - 2)\vec{j} + (3 - 2)\vec{k}$$

$$\vec{a} + \vec{b} = -6\vec{i} + 3\vec{j} + \vec{k}$$

(c)
$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$
 (5) $\Longrightarrow \vec{a} \cdot \vec{b} = -4.2 + 5.2 + 3.2$ (5) $\vec{a} \cdot \vec{b} = -8 + 10 + 6$ (5) $\Longrightarrow \vec{a} \cdot \vec{b} = 12$ (5)

(d)
$$\vec{a} \times \vec{b} = (a_y b_z - a_z b_y) \vec{i} + (a_z b_x - a_x b_z) \vec{j} + (a_x b_y - a_y b_x) \vec{k}$$
 $\stackrel{\frown}{\mathbf{5}} \Longrightarrow \vec{a} \times \vec{b} = (5 \cdot 2 - 3 \cdot 2) \vec{i} + (-4 \cdot 2 - 3 \cdot 2) \vec{j} + (-4 \cdot 2 - 5 \cdot 2) \vec{k} \stackrel{\frown}{\mathbf{5}}$
 $\vec{a} \times \vec{b} = 4\vec{i} + 14\vec{j} - 18\vec{k} \stackrel{\frown}{\mathbf{5}}$

ISUTC - 2023 Pág. 2 / 2