Lemma. There is a functor Π_f : $\mathbf{DP} \to \mathbf{Pos}_{\mathcal{U}}$ which maps:

1. An object (poset) in \mathbf{DP} to the same object (poset) in $\mathbf{Pos}_{\mathcal{U}}$.

2. A morphism $d \in \text{Hom}_{\mathbf{DP}}(\mathbf{F}; \mathbf{R})$ to the morphism $h_d \in \text{Hom}_{\mathbf{Pos}_{\mathcal{U}}}(\mathbf{F}; \mathbf{R})$, where:

where. $h_d: \mathbf{F}^{\mathrm{op}} \to_{\mathbf{Pos}} \langle \mathcal{U} \mathbf{R}, \subseteq \rangle$

 $n_d: \mathbf{r} \to_{\mathbf{Pos}} \langle u \mathbf{R}, \subseteq \rangle$ $f^* \mapsto \{ r \in \mathbf{R} \mid d(f^*, r) = \mathsf{T} \}.$