6.15

$HW7$ $e(x_i) \cdot e(x_i) \mod n = e(x_i \cdot x_i) \mod n$		
(d(y,).d(y,) mod n= d(y,.y,) mod n		
Ve(n,b) (X,1. e(n,b) (X2) mod n = ((X,1) mod n. (X,1) mod n mod n =		
$= (x_1^b \cdot x_2^b) \mod n = (x_1 \cdot x_2)^b \mod n = e(n,b) (x_1 \cdot x_2)$		
Chosen ciphertext affack: Oscar chooses some ct + has one fine access to decrypt it.		
$x = d(y)$, $x + \hat{y}$ Known.		
Bob e(x) - W - Alice		
Dscor		
Oscar: pick x, and compute y, = e(x,)		
compete $\hat{y} = (y, y) \mod n \cdot \hat{x} = d(\hat{y}) = d(y, y) = d(y) \cdot d(y) = x - y$		
thus,		
$\hat{X} = X_1 \cdot X_1 \mod n$ (oscar knows $\hat{X} \& X_1$)		
$(x^2, x^2) = x$		

6.16

- a. If Oscar has access to use a chosen ciphertext attack, then it would be beneficial for him to encrypt the whole alphabet, and he could use that to decrypt each letter in Alice's ciphertext.
- b. He could factor n to get phi(n), then use b and phi(n) to plug into the egcd algorithm. This would yield our a, which we could plug into the square and multiply algorithm along with n and the ciphertext to get our message in plaintext numbers. This is not the way the book wants it, but it's the only way I could figure it out.

6.16b.	
1200 -> factor (18721)	> egcd (b, \$(n))
97 · 193	egcd(25, 18432)
a(n)= (p-1)(q-1)	/ £1 5161 -73
- (96) 192	à
\$(n)= 18432	
Sam (365, 5161, 187	(21) > 21 - V
Sam (0, 5161, 187	121) 70 -A
4845	-> 13 -> N
14930	→8 → I
2608	→ II → L
VAN	ILLA

6.18

All Oscar would have to do is calculate the inverse of the operation that was performed. He would have to do the cube root of y ${}^3\sqrt{y_i}$ and then try a different modulus until he finds a message that makes sense.