Alexis Martinez

Homework #8

CSE 2321

12/07/2021

1.

(a)

Queue: <1>

i = 1

Nodes	1	2	3	4	5	6	7	8	9	10	11	12
MARK	1	0	0	0	0	0	0	0	0	0	0	0

Queue: <7, 5>

i = 1

No	odes	1	2	3	4	5	6	7	8	9	10	11	12
MA	ARK	1	0	0	0	1	0	1	0	0	0	0	0

Queue: <5 | 3, 12>

i = 7

Nodes	1	2	3	4	5	6	7	8	9	10	11	12
MARK	1	0	1	0	1	0	1	0	0	0	0	1

...Until Queue is empty and all nodes have been visited

(b)

Nodes	1	2	3	4	5	6	7	8	9	10	11	12
PATH LENGTH	0	2	2	3	1	4	1	3	3	2	3	2

Queue: <9>

i = 9

Nodes	1	2	3	4	5	6	7	8	9	10	11	12
MARK	0	0	0	0	0	0	0	0	1	0	0	0

Queue: <10, 6>

i = 9

Nodes	1	2	3	4	5	6	7	8	9	10	11	12
MARK	0	0	0	0	0	1	0	0	1	1	0	0

Queue: <6|5>

i = 10

Nodes	1	2	3	4	5	6	7	8	9	10	11	12
MARK	0	0	0	0	1	1	0	0	1	1	0	0

...Until Queue is empty and all nodes have been visited

(d)

Nodes	1	2	3	4	5	6	7	8	9	10	11	12
PATH LENGTH	3	3	5	4	2	1	4	3	0	1	2	3

2.

 $\label{eq:continuous_state} \text{for each vertex vi of G do G.V[i].mark} \leftarrow \text{not-visited};$

q.Init(); /* q is a queue of vertices */

 $G.V[k].mark \leftarrow visited;$

 $G.V[k].pathlen \leftarrow 0;$

 $G.V[k].num_paths \leftarrow 0;$

```
\begin{split} \text{q.Enqueue(k);} \\ \text{while } & (\text{q.Length}() > 0) \text{ do} \\ & \text{i} \leftarrow \text{q.Dequeue();} \\ & \text{foreach edge (i, j) incident on vj do} \\ & \text{If } & (\text{G.V[j].mark} = \text{not-visited) then} \\ & \text{q.Enqueue(j);} \\ & \text{G.V[j].mark} \leftarrow \text{visited;} \\ & \text{G.V[j].pathlen} \leftarrow \text{G.V[i].pathlen} + 1; \\ & \text{else } \{ \\ & \text{G.V[j].num\_paths} \leftarrow \text{G.V[i].num\_paths} + 1; \\ & \} \end{split}
```


(f)

5. No, because there is a cycle between these nodes:

2-5-9-10-7-12-8-3-2