Wave Energy Prediction: A Machine Learning Approach

Subject Area Overview

Problem Statement/Opportunity

Employ machine learning to predict/forecast wave energy that is as accurate as existing models and provides a computationally efficient alternative to numeric and physics based models.

- Wave power is the energy derived from ocean waves.
- Swell, generated from wind and weather patterns.
- The prediction of wave power and other wave characteristics traditionally relies on established methods, such as numerical and physics based mathematical models.

Vision for Tackling the Problem

- Use Data Science and machine learning, to better understand complex interactions between environmental variables and wave power generation.
- Use machine learning to build a robust model to predict wave power available. Possibly Random Forest and Time Series analysis.
- Build a live forecasting model to provide real time insight.

Potential Impact

- Being able to accurately predict wave energy has implications in renewable energy, recreational activities as well as maritime safety operations.
- Running simulations of models such as the SWAN forecasting or Hindcast model may require supercomputing facilities or specialized high-performance computing clusters.

Introduction to Dataset

Data collected from 4 Different Sources:

- Historical buoy Data:
 - Laperouse buoy
 - MEDS Tofino
- HINDCAST MSC50 numerical model
- Tidal Data, station 8615 Tofino

Data Types

- Continuous numerical
- Directional
- Date time

DataFrame shape: (199026, 38)

- Combined historical buoy data and Hindcast gridpoint.
- Possible inclusion of other data, or working with other data frames, taking distance into account.

Data Quality: Possible concerns, Q-flag values

Preliminary EDA and Next Steps

	Correlation Matrix Heatmap DEPTH - 1.00 -0.01 -0.01 0.00 0.02 0.03 0.03 -0.00 -0.01 -0.01 -0.01 -0.01 -0.00 0.01 0.02 -0.00 0.01 -0.01 -0.01 -0.01 0.00 0.00														- 1.00							
DEPTH - 1.00 -	-0.01 -0.01 0	.00 0.02 0.0	0.03	-0.00 -0.	.01 -0.01	-0.01 -0.	01 -0.00	0.01 0	.01 -0.	00 -0.01	0.02	-0.00	0.01 -0.0	01 -0.0	0.01	-0.01	0.00		1.00			
VWH\$0.01	1.00 0.96 0	.22 -0.01 0.	45 0.50	-0.38 -0.	.24 -0.11	-0.15 0.1		-0.13 0	.01 0.4	46 0.52	-0.05	0.46 -	0.09 0.0	0.6	0.04	0.08	0.09					
VCMX0.01	0.96 1.00 0	.21 -0.00 0.	44 0.49	-0.37 -0.	.24 -0.11	-0.14 0.5	52 0.56	-0.13 0	.01 0.4	44 0.50	-0.05	0.43 -	0.09 0.0	0.6	0.04	0.08	0.08		- 0.75		Lasso	so Regression
VTP\$ - 0.00	0.22 0.21 1	.00 -0.11 -0.	.08 -0.06	0.00 -0.	.15 -0.02	-0.16 0.3	10 0.21	0.13 -0	.02 0.:	12 0.08	0.06	0.22	0.12 0.0	01 0.2	24 -0.01	-0.01	0.08	-				
WDIR - 0.02 -	-0.01 -0.00 -0	0.11 1.00 0.0	02 0.02	0.08 0.	18 0.06	0.25 -0.	08 -0.09	0.04 -0	.06 -0.	04 -0.04	-0.16	-0.11	0.04 0.0	00 -0.1	11 -0.08	0.12	0.02					
WSPD - 0.03	0.45 0.44 -0	0.08 0.02 1.0	00 0.99	-0.31 -0.	.08 -0.07	-0.08 0.2	21 0.21	-0.06 0	.04 0.	15 0.19	0.01	0.19 -	0.03 -0.0	02 0.2	24 0.06	0.01	0.03					
GSPD - 0.03	0.50 0.49 -0	0.06 0.02 0.9	99 1.00	-0.33 -0.	.11 -0.08	-0.09 0.3	24 0.25	-0.06 0	.04 0.:	17 0.22	0.00	0.21 -	0.03 -0.0	01 0.2	0.06	0.01	0.04		- 0.50	•	Next	Steps:
ATMS0.00	-0.38 -0.37 0	.00 0.08 -0.	.31 -0.33	1.00 0.	02 -0.00	0.16 -0.	18 -0.22	0.04 -0	.01 -0.	16 -0.15	-0.08	-0.18	0.03 0.0	09 -0.2	23 -0.03	0.06	0.10			-		•
DRYT0.01 -	-0.24 -0.24 -0	0.15 0.18 -0.	.08 -0.11	0.02 1.0	00 0.24	0.13 -0.	23 -0.21	0.09 -0	.08 -0.	15 -0.21	-0.04	-0.19	0.07 -0.3	10 -0.2	26 -0.11	0.03	0.15				0	Time Series
SSTP0.01 -	-0.11 -0.11 -0	0.02 0.06 -0.	.07 -0.08	-0.00 0.	24 1.00	0.04 -0.	10 -0.09	0.06 -0	.02 -0.	08 -0.10	-0.00	-0.06	0.05 -0.0	04 -0.1	10 -0.03	0.00	0.04	-	- 0.25			Analysis
WD0.01 -	-0.15 -0.14 -0	0.16 0.25 -0.	.08 -0.09	0.16 0.	13 0.04	1.00 -0.	06 -0.06	0.01 -0	.06 -0.	02 0.07	-0.44	-0.07 -	0.00 0.0	0.0- 80	0.09	0.33	0.01				0	What influences
WS0.01	0.55 0.52 0	.10 -0.08 0.	21 0.24	-0.18 -0.	.23 -0.10	-0.06 1.0	0.64	-0.27 0	.23 0.	75 0.92	-0.02	0.19 -	0.09 0.0	0.6	0.27	-0.16	0.12				Ü	
ETOT0.00	0.59 0.56 0	.21 -0.09 0.3	21 0.25	-0.22 -0.	21 -0.09	-0.06 0.0	64 1.00	-0.02 -0	.00 0.	82 0.63	-0.09	0.73	0.01 -0.0	0.9	0.01	0.14	0.12	-	- 0.00			Sea State and
TP - 0.01 -	-0.13 -0.13 0	.13 0.04 -0.	.06 -0.06	0.04 0.	09 0.06	0.01 -0.	27 -0.02	1.00 -0	.18 -0.	16 -0.24	0.01	0.15	0.86 -0.0	06 -0.0	05 -0.21	-0.05 -	0.06					Swell?
VMD - 0.01	0.01 0.01 -0	0.02 -0.06 0.0	04 0.04	-0.01 -0.	.08 -0.02	-0.06 0.3	23 -0.00	-0.18	.00 0.:	12 0.15	0.22	-0.15 -	0.06 0.1	13 0.0	0.93	-0.19	0.02				0	Possible inclusion
ETTSea0.00	0.46 0.44 0	.12 -0.04 0.	15 0.17	-0.16 -0.	.15 -0.08	-0.02 0.	75 0.82	-0.16 0	.12 1.0	00 0.71	-0.04	0.21 -	0.05 0.0	0.7	4 0.13	0.03 -	0.01	-	0.25		0	
TPSea0.01	0.52 0.50 0	.08 -0.04 0.	19 0.22	-0.15 -0.	.21 -0.10	0.07 0.9	92 0.63	-0.24 0	.15 0.	71 1.00	-0.17	0.23 -	0.10 0.0	0.6	7 0.18	-0.05 -	0.07					of other features.
VMDSea - 0.02 -	-0.05 -0.05 0	.06 -0.16 0.	01 0.00	-0.08 -0.	.04 -0.00	-0.44 -0.	02 -0.09	0.01 0	.22 -0.	04 -0.17	1.00	-0.10	0.04 -0.3	10 -0.0	09 0.28	-0.39	0.15					
ETTSw0.00	0.46 0.43 0	.22 -0.11 0.	19 0.21	-0.18 -0.	.19 -0.06	-0.07 0.3	19 0.73	0.15 -0	.15 0.:	21 0.23	-0.10	1.00	0.08 -0.0	06 0.7	6 -0.14	0.21	0.22	_	-0.50			
TPSw - 0.01 -	-0.09 -0.09 0	.12 0.04 -0.	.03 -0.03	0.03 0.	07 0.05	-0.00 -0.	09 0.01	0.86 -0	.06 -0.	05 -0.10	0.04	0.08	1.00 -0.0	0.0-80	00 -0.07	-0.10 -	0.11					
VMDSw0.01	0.00 0.00 0	.01 0.00 -0.	.02 -0.01	0.09 -0.	.10 -0.04	0.08 0.0	01 -0.03	-0.06 0	.13 0.0	0.01	-0.10	-0.06 -	0.08 1.0	0.0-	04 0.15	0.09	0.24					
HS0.01	0.65 0.62 0	.24 -0.11 0.:	24 0.28	-0.23 -0.	.26 -0.10	-0.08 0.0	68 0.96	-0.05 0	.00 0.	74 0.67	-0.09	0.76	0.00 -0.0	04 1.0	0.02	0.16	0.15		0.75			
DMDIR - 0.01	0.04 0.04 -0	0.01 -0.08 0.0	06 0.06	-0.03 -0.	.11 -0.03	-0.09 0.2	27 0.01	-0.21 0	.93 0.:	13 0.18	0.28	-0.14 -	0.07 0.1	15 0.0	1.00	-0.27 -	0.04		0.73			
ANGSPR0.01	0.08 0.08 -0	0.01 0.12 0.0	01 0.01	0.06 0.	0.00	0.33 -0.	16 0.14	-0.05 -0	.19 0.0	03 -0.05	-0.39	0.21 -	0.10 0.0	09 0.1	6 -0.27	1.00	0.59					
INLINE - 0.00	0.09 0.08 0	.08 -0.02 0.0	03 0.04	0.10 -0.	.15 -0.04	0.01 -0.	12 0.12	-0.06 0	.02 -0.	01 -0.07	-0.15	0.22 -	0.11 0.2	24 0.1	5 -0.04	0.59	1.00					
ОЕРТН -	VCMX -	VTP\$ - WDIR -	GSPD -	ATMS -	SSTP -	- DW	ETOT -	- d :	- OMD	TPSea -	Sea -	- MS	- ws	- 외	OIR -	SPR -	INLINE -	100	-1.00			
DEP	× ×	> \$ \$	89	A S	בי א		Б	7	VMD	i i	VMDSea	ETTSW	TPSw		DMDIR	ANGSPR	Z					