

Reference Manual for Interacting Quantum Impurity Systems Simulating Toolkit

Core Developers:

Li Huang † and Yilin Wang ‡

Key Contributors:

Zi Yang Meng ‡ and Liang $\mathbf{D}\mathbf{u}^{\sharp}$

Directors and Supervisors:

Philipp Werner † and Xi Dai ‡

[†]Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland

[‡]Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

[‡]Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA

Draft Version October 7, 2014

To my lovely wife X. Zhao

L. H

To my lovely girlfriend X.Y. Mao

Y.L. Wang

Copyright 2014 by Li Huang

Permission is granted to copy, distribute and/or modify *the documentation* under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Permission is granted to copy, distribute and/or modify *the code of the package* under the terms of the GNU Public License, Version 2 or any later version published by the Free Software Foundation.

Permission is also granted to distribute and/or modify *both the documentation and the code* under the conditions of the LaTeX Project Public License, either version 1.3 of this license or (at your option) any later version.

Contents

1	INT	TRODUCTION	1
	1.1	What's iQIST?	1
	1.2	Motivation	1
	1.3	Software architecture	1
	1.4	Main features	1
	1.5	Development history	1
	1.6	Policy and licences	1
2	INS	STALLATION	3
	2.1	Obtain	3
	2.2	Uncompress	3
	2.3	Directory structures	3
	2.4	Compiling environment	3
	2.5	Compiling system	3
	2.6	Build impurity solvers	3
	2.7	Build auxiliary tools	3
	2.8	Build documents	3
	2.9	Build application programming interfaces	3
3	RU	NNING	5
	3.1	Configure your system	5
	3.2	Create input files	5
	3.3	Execute codes	5
	3.4	Monitor and Profile	5
4	STA	ANDARD INPUT FILES	7
	<i>1</i> 1	solver etame in	7

ii CONTENTS

	4.2	solver.eimp.in	7
	4.3	solver.hyb.in	7
	4.4	solver.anydos.in	7
	4.5	solver.ktau.in	7
	4.6	atom.cix	7
_	C/TD A	AND ADD OUTDUIT BUILDS	0
5	5.1	ANDARD OUTPUT FILES Terminal output	9 10
	5.1		
	F 0	5.1.1 out.dat	10
	5.2	File output	10
		5.2.1 solver.green.dat	10
		5.2.2 solver.green.bin	10
		5.2.3 solver.weiss.dat	10
		5.2.4 solver.hybrid.dat	10
		5.2.5 solver.grn.dat	10
		5.2.6 solver.wss.dat	10
		5.2.7 solver.hyb.dat	10
		5.2.8 solver.sgm.dat	10
		5.2.9 solver.hub.dat	10
		5.2.10 solver.nmat.dat	10
		5.2.11 solver.schi.dat	10
		5.2.12 solver.ochi.dat	10
		5.2.13 solver.twop.dat	10
		5.2.14 solver.vrtx.dat	10
		5.2.15 solver.hist.dat	10
		5.2.16 solver.prob.dat	10
		5.2.17 solver.kernel.dat	10
		5.2.18 solver.status.dat	10
6	PAI	RAMETERS	11
Ŭ	6.1	issef	12
	6.2	issun	12
	6.3	isspn	12
	6.4	isbin	12
	6.5	isort	12
		isvrt	12
	0.0	_ <u></u>	-4

CONTENTS

6.7 isscr	. 12
6.8 nband	. 12
6.9 nspin	. 12
6.10 norbs	. 12
6.11 ncfgs	. 12
6.12 nzero	. 12
6.13 nvect	. 12
6.14 nhmat	. 12
6.15 nfmat	. 12
6.16 niter	. 12
6.17 U	. 12
6.18 Uc	. 12
6.19 Uv	
6.20 Jz	
6.21 Js	. 12
6.22 Jp	
6.23 lc	. 12
6.24 wc	. 12
6.25 mune	. 12
6.26 beta	. 12
6.27 part	. 12
6.28 alpha	. 12
6.29 lemax	. 12
6.30 legrd	. 12
6.31 chmax	. 12
6.32 chgrd	. 12
6.33 mkink	. 12
6.34 mfreq	
6.35 nffrq	
6.36 nbfrq	. 12
6.37 nfreq	. 12
6.38 ntime	. 12
6.39 nleja	
6.40 npart	. 12
6.41 nflip	. 12

iv CONTENTS

	6.42	ntherm	12
	6.43	nsweep	12
	6.44	nwrite	12
	6.45	nclean	12
	6.46	nmonte	12
	6.47	ncarlo	12
7	\mathbf{AU}	XILIARY TOOLS	13
	7.1	\mathcal{J} asmine component	14
	7.2	${\cal H}{ m ibiscus}$ component	14
		7.2.1 Maximum entropy method: entropy1	14
		7.2.2 Maximum entropy method: entropy2	14
		7.2.3 Stochastic analytical continuation: sac	14
		7.2.4 Analytical continuation for self-energy: swing	14
		7.2.5 toolbox/makechi	14
		7.2.6 toolbox/makedos	14
		7.2.7 toolbox/makekra	14
		7.2.8 toolbox/makescr	14
		7.2.9 toolbox/makesig	14
		7.2.10 toolbox/makestd	14
		7.2.11 toolbox/maketau	14
		7.2.12 toolbox/makeups	14
		7.2.13 script/pysci.py	14
		7.2.14 script/check.py	14
	7.3	Parquet component	14
8	AP	PLICATION PROGRAMMING INTERFACES	15
	8.1	Fortran binding	15
	8.2	Python binding	15
	8.3	iqist.py	15
9	$i\Omega$	IST IN ACTION	17
	9.1	Basic applications	18
		9.1.1 Hello <i>i</i> QIST!	18
		9.1.2 Mott metal-insulator transition	18
	9.2	Advanced applications I: Complex systems	18

CONTENTS

		9.2.1	General Coulomb interaction	18
		9.2.2	Spin-orbital coupling	18
		9.2.3	Crystal field splitting	18
		9.2.4	Retarded interaction and dynamical screening effect	18
	9.3	Advan	ced applications II: Accurate measurement of physical observables	18
		9.3.1	One-shot and self-consistent calculations	18
		9.3.2	Data binning mode	18
		9.3.3	Imaginary-time Green's function	18
		9.3.4	Matsubara Green's function and self-energy function	18
		9.3.5	Spin-spin correlation function and orbital-orbital correlation function	18
		9.3.6	Two-particle Green's function and vertex function	18
	9.4	Advan	ced applications III: post-processing procedures	18
		9.4.1	Analytical continuation for imaginary-time Green's function	18
		9.4.2	Analytical continuation for Matsubara self-energy function	18
	9.5	Practio	cal exercises	18
		9.5.1	Orbital-selective Mott transition in two-band Hubbard model	18
		9.5.2	Orbital Kondo and spin Kondo effects in three-band Anderson impurity model	18
10	INS	\mathbf{IDE}_{-i}	\mathbf{QIST}	19
10			QIST cheory and methods	19 20
10		Basic t		
10		Basic t	cheory and methods	20
10		Basic to 10.1.1 10.1.2	Cheory and methods	20 20
10		Basic to 10.1.1 10.1.2 10.1.3	Cheory and methods	20 20 20
10		Basic to 10.1.1 10.1.2 10.1.3 10.1.4	Cheory and methods	20 20 20 20
10	10.1	Basic to 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5	Cheory and methods	20 20 20 20 20
10	10.1	Basic (10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Implements	Cheory and methods	20 20 20 20 20 20
10	10.1	Basic (10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Implement 10.2.1	Cheory and methods Quantum impurity model Principles of continuous-time quantum Monte Carlo algorithm Hybridization expansion Physical observables Two-particle measurements and DMFT + Parquet formalism mentations and optimizations	20 20 20 20 20 20 20
10	10.1	Basic (10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Implem 10.2.1 10.2.2	Cheory and methods Quantum impurity model Principles of continuous-time quantum Monte Carlo algorithm Hybridization expansion Physical observables Two-particle measurements and DMFT + Parquet formalism mentations and optimizations Development platform	200 200 200 200 200 200 200 200
10	10.1	Basic (10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Implem 10.2.1 10.2.2 10.2.3	Cheory and methods Quantum impurity model Principles of continuous-time quantum Monte Carlo algorithm Hybridization expansion Physical observables Two-particle measurements and DMFT + Parquet formalism mentations and optimizations Development platform Orthogonal polynomial representation	200 200 200 200 200 200 200 200 200
10	10.1	Basic (10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Implement 10.2.1 10.2.2 10.2.3 10.2.4	Cheory and methods Quantum impurity model Principles of continuous-time quantum Monte Carlo algorithm Hybridization expansion Physical observables Two-particle measurements and DMFT + Parquet formalism mentations and optimizations Development platform Orthogonal polynomial representation Improved estimator for the self-energy function	200 200 200 200 200 200 200 200 200 200
10	10.1	Basic (10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Implementary 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5	Cheory and methods Quantum impurity model Principles of continuous-time quantum Monte Carlo algorithm Hybridization expansion Physical observables Two-particle measurements and DMFT + Parquet formalism mentations and optimizations Development platform Orthogonal polynomial representation Improved estimator for the self-energy function Random number generators	200 200 200 200 200 200 200 200 200 200
10	10.1	Basic (10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Implem 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6	Cheory and methods Quantum impurity model Principles of continuous-time quantum Monte Carlo algorithm Hybridization expansion Physical observables Two-particle measurements and DMFT + Parquet formalism mentations and optimizations Development platform Orthogonal polynomial representation Improved estimator for the self-energy function Random number generators Subspaces and symmetry	200 200 200 200 200 200 200 200 200 200
10	10.1	Basic (10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Implem 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7	Quantum impurity model	200 200 200 200 200 200 200 200 200 200
10	10.1	Basic (10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 Implement 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7 10.2.8	Cheory and methods Quantum impurity model Principles of continuous-time quantum Monte Carlo algorithm Hybridization expansion Physical observables Two-particle measurements and DMFT + Parquet formalism mentations and optimizations Development platform Orthogonal polynomial representation Improved estimator for the self-energy function Random number generators Subspaces and symmetry Truncation approximation Lazy trace evaluation	200 200 200 200 200 200 200 200 200 200

•	CONTENTE
71	('() N T T E N T T S
/ 1	CONTENTS

Appendix	21
A.1 TODO	21

List of Figures

List of Tables

INTRODUCTION

- 1.1 What's iQIST?
- 1.2 Motivation
- 1.3 Software architecture
- 1.4 Main features
- 1.5 Development history
- 1.6 Policy and licences

INSTALLATION

- 2.1 Obtain
- 2.2 Uncompress
- 2.3 Directory structures
- 2.4 Compiling environment
- 2.5 Compiling system
- 2.6 Build impurity solvers
- 2.7 Build auxiliary tools
- 2.8 Build documents
- 2.9 Build application programming interfaces

RUNNING

- 3.1 Configure your system
- 3.2 Create input files
- 3.3 Execute codes
- 3.4 Monitor and Profile

STANDARD INPUT FILES

- 4.1 solver.ctqmc.in
- 4.2 solver.eimp.in
- 4.3 solver.hyb.in
- 4.4 solver.anydos.in
- 4.5 solver.ktau.in
- 4.6 atom.cix

STANDARD OUTPUT FILES

5.1	Terminal	output

- 5.1.1 out.dat
- 5.2 File output
- 5.2.1 solver.green.dat
- 5.2.2 solver.green.bin
- 5.2.3 solver.weiss.dat
- 5.2.4 solver.hybrid.dat
- 5.2.5 solver.grn.dat
- 5.2.6 solver.wss.dat
- 5.2.7 solver.hyb.dat
- 5.2.8 solver.sgm.dat
- 5.2.9 solver.hub.dat
- 5.2.10 solver.nmat.dat
- 5.2.11 solver.schi.dat
- 5.2.12 solver.ochi.dat
- 5.2.13 solver.twop.dat
- 5.2.14 solver.vrtx.dat

12 PARAMETERS

Chapter 6

$\mathbf{p}_{\mathbf{\Lambda}}$	\mathbf{R}	Λ	$\mathbf{N}I$	\mathbf{E}	$\Gamma \mathbf{E} \mathbf{F}$	\mathbf{S}

C	1	•	·C
6.		iss	CT

- 6.2 issun
- 6.3 isspn
- 6.4 isbin
- 6.5 isort
- 6.6 isvrt
- **6.7** isscr
- 6.8 nband
- 6.9 nspin
- 6.10 norbs
- 6.11 ncfgs
- 6.12 nzero
- **6.13** nvect
- C 1 4 mlarant

14 AUXILIARY TOOLS

Chapter 7

AUXILIARY TOOLS

7.1	\mathcal{J} asmine	component
(· T	<i>J</i> asimine	component

- 7.2 Hibiscus component
- 7.2.1 Maximum entropy method: entropy1
- 7.2.2 Maximum entropy method: entropy2
- 7.2.3 Stochastic analytical continuation: sac
- 7.2.4 Analytical continuation for self-energy: swing
- 7.2.5 toolbox/makechi
- 7.2.6 toolbox/makedos
- 7.2.7 toolbox/makekra
- 7.2.8 toolbox/makescr
- 7.2.9 toolbox/makesig
- 7.2.10 toolbox/makestd
- 7.2.11 toolbox/maketau
- 7.2.12 toolbox/makeups
- 7.2.13 script/pysci.py
- 7.2.14 script/check.py

7.3 Parquet component

APPLICATION PROGRAMMING INTERFACES

- 8.1 Fortran binding
- 8.2 Python binding
- 8.3 iqist.py

18 iQIST IN ACTION

*i*QIST IN ACTION

9.1	Basic applications
9.1.1	Hello iQIST!
9.1.2	Mott metal-insulator transition
9.2	Advanced applications I: Complex systems
9.2.1	General Coulomb interaction
9.2.2	Spin-orbital coupling
9.2.3	Crystal field splitting
9.2.4	Retarded interaction and dynamical screening effect
9.3	Advanced applications II: Accurate measurement of physi-
	cal observables
9.3.1	One-shot and self-consistent calculations
9.3.2	Data binning mode
9.3.3	Imaginary-time Green's function
9.3.4	Matsubara Green's function and self-energy function
9.3.5	Spin-spin correlation function and orbital-orbital correlation function
9.3.6	Two-particle Green's function and vertex function
9.4	Advanced applications III: post-processing procedures
9.4.1	Analytical continuation for imaginary-time Green's function
9.4.2	Analytical continuation for Matsubara self-energy function

9.5 Practical exercises

- 9.5.1 Orbital-selective Mott transition in two-band Hubbard model
- 9.5.2 Orbital Kondo and spin Kondo effects in three-band Anderson impurity

 $\underline{20} \hspace{2cm} \textit{INSIDE} \hspace{2mm} \textit{iQIST}$

Chapter 10

${\bf INSIDE} \ \ {\it iQIST}$

10.2.9 Parallelization

10.1	Basic theory and methods
10.1.1	Quantum impurity model
10.1.2	Principles of continuous-time quantum Monte Carlo algorithm
10.1.3	Hybridization expansion
10.1.4	Physical observables
10.1.5	Two-particle measurements and DMFT $+$ Parquet formalism
10.2	Implementations and optimizations
10.2.1	Development platform
10.2.2	Orthogonal polynomial representation
10.2.3	Improved estimator for the self-energy function
10.2.4	Random number generators
10.2.5	Subspaces and symmetry
10.2.6	Truncation approximation
10.2.7	Lazy trace evaluation
$\overline{10.2.8}$	Divide-and-conquer and sparse matrix tricks

Appendix

A.1 TODO