8-BIT ARITHMETIC OPERATIONS USING 8051

Exp No.: 12 Name: S Vishakan

Date: 21-10-2020 **Reg. No:** 18 5001 196

AIM:

To write assembly language programs to perform the following arithmetic operations using an 8051 microcontroller:

- 1. 8-bit addition
- 2. 8-bit subtraction
- 3. 8-bit multiplication
- 4. 8-bit division

PROGRAM – 1: 8-BIT ADDITION:

- 1. Begin
- 2. Initialize R0 with 00h.
- 3. Move the value in R1 to A.
- 4. Add the value in A to with value in R2.
- 5. Increment R0 if carry is produced.
- 6. Move R0 to R3 (carry) and A to R4 (sum).
- 7. End.

	PROGRAM	COMMENTS
MOV	R0, #00	R0 has address of 0x00
MOV	A, R1	0x01 has 1st 8-bit number
ADD	A, R2	0x02 has 2nd 8-bit number. Add it with A
JNC	LABEL	If no carry, jump to "LABEL".
INC	RO	If carry, increment R0
LABEL:		
MOV	R4, A	Move output to R4 from A
MOV	03, R0	Move carry to R3. (MOV R3, R0) is invalid
HALT:		
SJMP	HALT	Halt the program with a loop.

PROGRAM – 2: 8-BIT SUBTRACTION:

- 1. Begin.
- 2. Initialize R0 with 00h
- 3. Move the value in R1 to A.
- 4. Subtract the value in A to with value in R2.
- 5. Increment R0 if carry is produced and take 2's complement of A.
- 6. Move R0 to R3 (borrow) and A to R4 (difference)
- 7. End.

	PROGRAM	COMMENTS
MOV	R0, #00	R0 has address of 0x00
MOV	A, R1	0x01 has 1st 8-bit number
SUBB	A, R2	;0x02 has 2nd 8-bit number. Subtract it from A.
JNC	LABEL	If no carry, jump to "LABEL".
INC	RO	If carry, increment R0
CPL	A	1's complement the difference
INC	A	2's complement the difference
LABEL:		
MOV	R4, A	Move output to R4 from A
MOV	03, R0	Move carry to R3. (MOV R3, R0) is invalid
HALT:		
SJMP	HALT	Halt the program with a loop.

PROGRAM – 3: 8-BIT MULTIPLICATION:

- 1. Begin.
- 2. Initialize R0 with 00h
- 3. Move the value in R1 to A.
- 4. Move the value in R2 to B.
- 5. Multiply A and B.
- 6. Move B to R4 (MSB of product) and A to R5 (LSB of product)
- 7. End.

	PROGRAM	COMMENTS
MOV	RO, #00	R0 has address of 0x00
MOV	A, R1	0x01 has 1st 8-bit number
MOV	B, R2	0x02 has 2nd 8-bit number
MUL	AB	BA = A * B
MOV	R5, A	Move lower byte to R5 from A
MOV	R4, B	Move higher byte to R4 from B
HALT:		
SJMP	HALT	Halt the program with a loop.

PROGRAM – 4: 8-BIT DIVISION:

- 1. Begin.
- 2. Initialize R0 with 00h.
- 3. Move the value in R1 to A.
- 4. Move the value in R2 to B.
- 5. Divide A by B.
- 6. Move A to R4 (quotient) and B to R5 (remainder)
- 7. End.

	PROGRAM	COMMENTS
MOV	R0, #00	R0 has address of 0x00
MOV	A, R1	0x01 has 1st 8-bit number
MOV	B, R2	0x02 has 2nd 8-bit number
DIV	AB	BA = A / B, A: Quotient, B: Remainder
MOV	R5, A	Move quotient to R4 from A
MOV	R4, B	Move remainder to R5 from B
HALT:		
SJMP	HALT	Halt the program with a loop.

RESULT:

The assembly level programs were written to perform the above specified 8-bit arithmetic operations using an 8051 microcontroller and the outputs were verified.