Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2020/2021 Corso di Laurea in Ingegneria Fisica Quinto appello di Analisi 3, 8/9/2021 – Prof. I. FRAGALÀ

TEST 1. (8 punti)

Stabilire quali delle seguenti affermazioni sono vere per una funzione di variabile complessa $f: \mathbb{C} \to \mathbb{C}$:

a. f(z) olomorfa $\Rightarrow f(\overline{z})$ olomorfa

FALSO, ad esempio f(z)=z è olomorfa, mentre $f(\overline{z})=\overline{z}$ non lo è

b. $f(\overline{z})$ olomorfa $\Rightarrow f(z)$ olomorfa

FALSO, ad esempio prendendo $f(z) = \overline{z}$ si ha che $f(\overline{z}) = z$ è olomorfa, mentre f(z) non lo è

c. f(z) olomorfa $\Rightarrow \overline{f(\overline{z})}$ olomorfa

VERO: se f(z) = u(x,y) + iv(x,y) si ha che $\overline{f(\overline{z})} = u(x,-y) - iv(x,-y)$. Si verifica facilmente che, se u e v soddisfano le condizioni di Cauchy Riemann lo stesso vale per U(x,y) = u(x,-y) e V(x,y) = -v(x,-y)

d. $\overline{f(\overline{z})}$ olomorfa $\Rightarrow f(z)$ olomorfa

VERO: come sopra, se U e V soddisfano le condizioni di Cauchy-Riemann lo stesso vale per u e v

TEST 2. (8 punti)

Stabilire quali affermazioni sono vere per la funzione

$$f(x) = -\frac{x}{(x^2 + 4)^2}$$

e per la sua trasformata di Fourier \hat{f} .

e. f appartiene a $L^2(\mathbb{R})$

VERO, poiché
$$f^2(x) \sim \frac{1}{x^6}$$
 as $x \to +\infty$

f. f appartiene a $L^1(\mathbb{R})$

VERO, poiché
$$f(x) \sim \frac{1}{x^3}$$
 as $x \to +\infty$

g. \widehat{f} appartiene a $L^2(\mathbb{R})$

VERO, poiché f appartiene a $L^2(\mathbb{R})$.

h. \widehat{f} appartiene a $L^1(\mathbb{R})$

VERO, poiché
$$f(x)=\frac{1}{2}g'(x)$$
, dove $g(x)=\frac{1}{x^2+4}$. Quindi $\widehat{f}(\xi)=\frac{1}{2}(i\xi)\widehat{g}(\xi)=i\xi\frac{\pi}{4}e^{-2|\xi|}$

ESERCIZIO (10 punti)

Si consideri la successione di funzioni $f_n: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definita, per ogni $n \ge 1$, da

$$f_n(x) = \arctan\left(\frac{1}{|x|^n}\right).$$

- a. Determinare $f: \mathbb{R} \to \mathbb{R}$ tale che $f_n \to f$ puntualmente quasi ovunque su \mathbb{R} .
- b. Detto $\widetilde{f}_n : \mathbb{R} \to \mathbb{R}$ il prolungamento di f_n continuo nell'origine, stabilire se la successione \widetilde{f}_n converge uniformemente su [-1,1].
- c. Stabilire per quali $n \geq 1$, si ha che f_n appartiene a $L^1(\mathbb{R})$.
- d. Stabilire se $f_n \to f$ in $L^1(\mathbb{R})$.

Soluzione.

a. Il limite puntuale quasi ovunque (in ogni punto x con $|x| \neq 1$) è

$$f(x) = \begin{cases} \frac{\pi}{2} & |x| < 1\\ 0 & |x| > 1 \end{cases}.$$

b. La successione \widetilde{f}_n è una successione di funzioni continue, e pertanto non puó convergere uniformemente a f visto che f non è continua.

c. In un intorno dell'origine, tutte le funzioni f_n sono integrabili in quanto restano limitate. In un intorno di $\pm \infty$, si ha

$$f_n(x) \sim \frac{1}{|x|^n}$$

e pertanto si ha $f_n \in L^1(\mathbb{R}) \Leftrightarrow n \geq 2$.

d. Per ogni $n \geq 2$ e per q.o. $x \in \mathbb{R}$, si ha

$$|f_n(x)| \le g(x) = \begin{cases} \frac{\pi}{2} & |x| < 1\\ f_2(x) & |x| > 1, \end{cases}$$

Poiché $g\in L^1(\mathbb{R}),$ grazie al teorema di convergenza dominata si ha

$$\lim_{n \to +\infty} \int_{\mathbb{R}} |f_n(x) - f(x)| \ dx = \int_{\mathbb{R}} \lim_{n \to +\infty} |f_n(x) - f(x)| \ dx = 0,$$

ovvero $f_n \to f$ in $L^1(\mathbb{R})$.

TEORIA (6 punti)

i. Spiegare perché l'analogo dell'identitá di Plancherel $\|\widehat{u}\|_{L^2(\mathbb{R})} = \sqrt{2\pi} \|u\|_{L^2(\mathbb{R})}$ non puó valere se si sostituisce $L^2(\mathbb{R})$ con $L^1(\mathbb{R})$.

Perché in generale, data $u \in L^1(\mathbb{R})$, la sua trasformata di Fourier non appartiene a $L^1(\mathbb{R})$ (basta prendere la funzione u uguale alla funzione caratteristica di un intervallo [a,b]).

ii. Fornire un esempio di una successione di funzioni che risulti limitata in $L^{\infty}(\mathbb{R})$ ma non ammetta limite in $L^{\infty}(\mathbb{R})$.

2

Si puó prendere ad esempio $u_n = \chi_{[n,n+1]}$. Per ogni n, si ha $||u_n||_{\infty} = 1$, ma la successione non converge in in $L^{\infty}(\mathbb{R})$ poiché il suo limite puntuale è nullo, ma chiaramente $||u_n||_{\infty} \neq 0$.

(Oppure si puó anche prendere la successione f_n dell'esercizio sopra).