

Spherical cusine rule:

$$\alpha = \pi/2 = 3$$
 cos $\alpha = 0 = 3$ as $\alpha = \omega s \beta \cos \delta$

spherical Pythaguras' theoren.

$$\alpha = \gamma = \pi/2 \implies \cos \alpha = \cos \beta = 0.$$

S.P.T. $\cos \alpha = \cos \beta \cos \beta$

S.P.7.
$$\cos \alpha = \cos \beta \cos \delta$$

 $0 = \cos \beta \cdot 0 \ V$.

2. a. Recall from HWS 666 that a spherical circle is the intersection of a plane TI (not necessarily containing the angin) with the sphere 5?

he A,B,CES? there is a migul place TICIR3 containing A, 8, 4C. (Otherwise, A, B, C are colliner, But a line interests the sphere in at most 2 pants. * .)

The C= TI152 is the might phecial circle than A,B, C.

b. The unique place IT passing throw A=110,01, B=10,101, C=10,011 has equation x+4+2 = 1.

The E = TIASZ is the phesical circle passing than A, B, C.

It has cate the part P $n/\overline{UP} = \Lambda = unit normal to <math>\Pi = \frac{1}{13}(1)$

(compare HWSGG.)

It has spleiced radius $d(P,A) = a\overline{s}'(\overline{UP}'.\overline{OA}) = a\overline{s}'(\frac{1}{\sqrt{3}}(\frac{1}{\sqrt{3}})) = a\overline{s}'(\frac{1}{\sqrt{3}})$

$$|\overline{AB} \times \overline{AC}|$$

3. a.
$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$$
 $2 \le p \le q \le r$.

Notice
$$\frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$$

It follows that, if
$$(p,q,r) \neq (3,3,3)$$
, the $p < 3$, so $p = 2$.

Notice
$$\frac{1}{4} \rightarrow \frac{1}{4} = \frac{1}{2}$$
.

It lellows that, if
$$(p,q,i) \neq (2,4,4)$$

Notice
$$\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
. Then $\frac{1}{4} + \frac{1}{4} = \frac{1}{12} + \frac{1}{12} = \frac{1}{12} > 1$.

It follows that, if $(p_1q_11) \neq (2,4,4)$, $q < 4$, so $q = 2 \times q = \frac{1}{2} = \frac{3}{2}$.

otherwise 1+ { + { + + } + }

b. (3,3,3):

tiling by

(2,3,6)

(2,4,4)

(subdivide tiling by squares)

(subdivide tiling by Lexagans)

Notice
$$\frac{1}{3} + \frac{1}{3} = 1$$

So, must have
$$p=2$$
 (otherwise $\frac{1}{p}-\frac{1}{q}+\frac{1}{r}\leq 1$)

Notice
$$\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{r} > 1$$
, $\frac{1}{r} > \frac{1}{6}$.

b. (2,2,5):

triangles =
$$2r+2r=4r$$
.

(2,3,3)

tetrahedran. Subdivide faces of fetrahedran as shown:

Nan project onto sphere

(ongles at earl votex are equal to un to 211.)

Subdivide faces:

Project anto sphere

(2,3,5)

duderahedra.

(12 taus, each a regular pertagon) search images on google.

Jubdivide faces.

https://commons.wikimedia.org/wiki/

File: I washed on Litellian domains

C. # triangles =

$$\frac{Aea(S^2)}{Area(hringle)} = \frac{471}{7/p+7/4-7/r-71} = \frac{4}{1/p+7/4+7/r-71}$$

recall:
$$a+b+c=T+Aea(\Delta ABC)$$
 = $\frac{4pqs}{qs+ps+pq-pqs}$.

Ex. P=7, q=3, r=5. # triangles = $\frac{4.2\cdot 3\cdot 5}{3.5+7\cdot 5+7\cdot 3-7\cdot 3\cdot 5} = \frac{120}{15+10+6-30} = 120$

$$\Lambda=3$$
. $\alpha+b+c=T+Area (\Delta ABC)$ proved in class = $(n-z)\cdot T+Area (\Delta ABC)$

 $\Lambda=1 \Lambda+1$. Suppose time for Λ . We show it's time for $\Lambda+1$.

P : Subdivide P by joining An to A, by

Az Shartest path.

b. Area of $S^2 = 471 = 5$ we of areas of files

Sum of $+\sum_{i=1}^{F} 27i$ angles at each = $27i \cdot V - (2E) \cdot 7i + F \cdot 27i$

i.e.
$$4\pi = 2\pi \cdot (V - E + F)$$
 \(\tau \) \(\frac{7}{2} = V - E + F \) \(\text{Euler's formula.} \)

6 a

UA' = 1BC, normal vector to place TIBC

cantaining U,B,C,

of leight 1 & on some side of TIBC as A.

$$\frac{\overline{OB}'}{OB'} = \Delta_{AC}$$

$$\frac{\overline{OC}'}{OC'} = \Delta_{AB}.$$

a) $\alpha' = d(B'_{A}C') = angle between <math>\overline{OB'} + \overline{CC'} = angle between \underline{AC} + \underline{AB}$. View larking along line $\overline{\Pi_{AC}} + \overline{\Pi_{AB}} + i.o.$ here A towards 0.

We see $a + \frac{\pi}{2} + \frac{\pi}{2} = 2\pi$.

=7 $\alpha' = \pi - a$.

Similarly $B' = \pi - b$, $\delta' = \pi - c$.

b). DABC W> DA'B'C' ~> DA"B"C".

Wat to show A"=A, B"=B, C"=C.

 $\overrightarrow{OA''}$ is the normal rector to the plane spanned by $\overrightarrow{OB'} = \underline{\Lambda}_{AC} + \overrightarrow{OC'} = \underline{\Lambda}_{AB}$. (of unit length, lan some side of the plane as A').

But robe that OA' is perpedicular to UB' 4 UC'

(because $\overline{OB}' = \Delta_{AC}$ is perentially to $\overline{OA}' + \overline{OC}'$ by definition, a similarly for \overline{OC}' .) So $\overline{OA}' = \pm \overline{OA}'' + \overline{OA}'' + \overline{OC}''$ we see $\overline{OA}' = \overline{OA}''$, so $\overline{A} = \overline{A}''$. Similarly $\overline{B} = \overline{B}'' + \overline{OC}''$.

c). By b. DABC is the polar of DA'BC! So by a. $\alpha = 71 - a'$, $\beta = 71 - b'$, $\delta = 71 - c'$, i.e.,

a'= 11- a, b'= 71-B, c'= 71-8.

7. SCR: cosa = cospast + >inj3>hd cosa.

Apply to polar triangle

cos x' = cos B'cos &' = sin B'sin &'cos a'

 $\alpha' = \overline{\Pi} - \alpha$, $\beta' = \overline{\Pi} - b$, $\delta' = \overline{\Pi} - c$, $\alpha' = \overline{\Pi} - \alpha$ by $\alpha \in \alpha \in C$

So $\cos(77-a) = \cos(77-b)\cos(77-c) + \sin(77-b) \sin(77-c)\cos(77-a)$

as(71-x) = -usx

Sin (TI-X) = Sin X

= 7 - wsa = (-asb)(-cosc) + sinbsinc (-usa)

 $=) \left[\frac{\omega sa + \omega sb \cos c}{\sin b \sin c \cos \alpha} \right].$ $\left(\frac{\omega sa + \omega sb \cos c}{\sinh b \sin c} \right).$