Section 9: "Optimal" estimators

ARE 210

November 2, 2017

The section notes are available on the section Github at github.com/johnloeser/are210 in the "section9" folder.

1 Definitions

• Statistics

- A function of the data T(X) is a **statistic**
- $-X \sim P_{\theta_0}, \, \theta_0 \in \Theta, \, T(X)$ is **sufficient** for $\mathbf{P} = \{P_{\theta} : \theta \in \Theta\}$ (or sufficient for θ) if $P_{\theta}[X|T] = P[X|T]$
- Factorization theorem: $\{f_{\theta}: \theta \in \Theta\}$, T(X) statistic, T is sufficient $\Leftrightarrow f(X,\theta) = g(T(X),\theta)h(X)$
- Exponential family of distributions: $p(x,\theta) = h(x) \exp(\sum_{j=1}^{k} \eta_j(\theta) T_j(x) \beta(\theta))$
- S is ancillary for θ if the distribution of S does not depend on θ
- T is **complete** for θ if \forall g such that $\mathbf{E}_{\theta}[g(T)] = 0 \ \forall \ \theta \in \Theta, \ g(T) = 0$ almost everywhere.
- X_i iid, $p(X, \theta)$ from the exponential family, then $T(X_1, \ldots, X_n) = (\sum_{i=1}^n T_1(X_i), \ldots, \sum_{i=1}^n T_k(X_i)) \text{ is complete for } \theta \text{ if } \{\eta_1(\theta), \ldots, \eta_k(\theta)\} \text{ contains an open set in } \mathbf{R}^k. \text{ By the factorization theorem, } T(X_1, \ldots, X_n) \text{ is always sufficient for } \theta.$
- Basu: If T is complete and sufficient, then $T \perp$ every ancillary statistic.

• "Optimal" statistics

- For estimators, unbiased = good, consistency = good, efficiency = good
- $-\phi(X)$ is **UMVUE** of $g(\theta)$ if 1) $\phi(X)$ is unbiased, and 2) $\forall \delta(X)$ unbiased for $g(\theta)$, $V_{\theta}[\phi(X)] \leq V_{\theta}[\delta(X)] \forall \theta \in \Theta$
 - * If $\phi(X)$ is UMVUE of $g(\theta)$, then it is the unique UMVUE of $g(\theta)$
- Rao-Blackwell: Let h(X) be any unbiased estimator of $g(\theta)$, T(X) sufficient statistic for θ . Let $\phi(T) = \mathbf{E}_{\theta}[h(X)|T] = \mathbf{E}[h(X)|T]$, then $\phi(T)$ is also unbiased and has lower variance.
 - * $\phi(T)$ only a statistic because T is sufficient

- $-\phi(S(X))$ unbiased for $g(\theta)$, S is a complete statistic, then ϕ equals any other unbiased statistic that's a function of S(X) almost everywhere
- Lehmann-Scheffe: T(X) sufficient and complete for θ , $\phi(T(X))$ unbiased for $g(\theta)$, then ϕ is UMVUE for $g(\theta)$
- Hausman principle: Let $\mathbf{E}_{\theta}[W(X)] = \tau(\theta)$, then W is UMVUE of $\tau(\theta)$ if and only if W is uncorrelated with all unbiased estimators of $0 \,\forall \, \theta \in \Theta$
- Variance bounds
 - * Below, assume $X \sim P_{\theta}$, $p(X, \theta)$ density, conditions (1) the support of p does not depend on θ , (2) $\frac{\partial p(x,\theta)}{\partial \theta}$ exists \forall θ , for almost all x, and is finite, (3) if T(X) is any statistic such that $\mathbf{E}_{\theta}[|T|] < \infty \ \forall \ \theta$, then $\frac{\partial}{\partial \theta} \int T(x) p(x, \theta) dx = \int T(x) \frac{\partial p(x, \theta)}{\partial \theta} dx$ * Define $I(\theta) \equiv \mathbf{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log p(x, \theta) \right) \left(\frac{\partial}{\partial \theta} \log p(x, \theta) \right)' \right]$

 - * Information matrix equality: $\mathbf{E}_{\theta^*}[\frac{\partial}{\partial \theta} \log p(x, \hat{\theta}^*)] = 0$, $I(\theta^*) = V_{\theta^*} \left[\frac{\partial}{\partial \theta} \log p(x, \theta^*) \right], I(\theta^*) = -\mathbf{E}_{\theta^*} \left[\frac{\partial^2}{\partial \theta \partial \theta'} \log p(x, \theta^*) \right]$
 - * Cramer-Rao inequality: T(X) real valued statistic, $\mathbf{E}_{\theta}[T(X)] = \phi(\theta)$, $I(\theta)$ non-singular. Then, $\forall \theta, V_{\theta}[T(X)] \ge \frac{d\phi(\theta)}{d\theta}I(\theta)^{-1}\frac{d\phi(\theta)}{d\theta}$
 - \cdot (CRI Lemma): Let Y be a scalar random variable, Z random vector, $\mathbf{E}[ZZ']^{-1}$ and $\mathbf{E}[ZY]$ exist, and either $\mathbf{E}[Z]=0$ or Z contains a constant, then let $\beta(P) = \arg\min_{c} \mathbf{E}[(Y - Z'c)^{2}]$ and let $\mu_L(Z) = Z'\beta(P)$, then 1) $\beta(P) = \mathbf{E}[ZZ']^{-1}\mathbf{E}[ZY]$, and 2) $V[Y] \geq$ $V[\mu_L(Z)] = \beta(P)'V[Z]\beta(P)$
 - · Proof: (CRI Lemma) letting $Z = \frac{\partial \log p(x,\theta)}{\partial \theta}$ and Y = T(X)

Some useful bits 2

- 1. Unbiased estimators need not exist, when they do exist UMVUE need not exist
- 2. Main lessons here OLS is great, IV with one endogenous variable and one instrument is great, finding minimally sufficient statistics = complete sufficient statistics for your model is great, writing down models with minimally sufficient statistics is great, MLE is great (when you're correctly specified-ish)
- 3. Exponential families have nice results
- 4. IME \Rightarrow MLE equivalent to setting the score equal to 0, and the variance of the score is the negative Hessian of the log likelihood; we'll use this basically to get simpler expressions for the variance of estimators

3 Practice questions

- 1) Prove (CRI Lemma).
- 2) (**Identification in Exponential Families**) Consider the (canonical) exponential family $\{p(y,\theta):\theta\in\Theta\subset\mathbb{R}^d\}$ where

$$p(y, \theta) = h(y) \exp \left\{ \sum_{k=1}^{d} \theta_k T_k(y) - A(\theta) \right\}$$

and suppose that $A(\theta)$ is continuously differentiable for all $\theta \in \Theta$. Show that θ is identified if the $d \times d$ matrix

$$I\left(\theta^{*}\right) = \mathbb{E}_{\theta^{*}}\left(\frac{d\log p\left(y,\theta^{*}\right)}{d\theta} \frac{d\log p\left(y,\theta^{*}\right)'}{d\theta}\right)$$

is non-singular for every $\theta^* \in \Theta$ (where $\frac{d \log p(y, \theta^*)}{d\theta} = \left. \frac{d \log p(y, \theta)}{d\theta} \right|_{\theta = \theta^*}$)

3) Prove the Hausman principle.