Guidelines: Advanced Data Structures and Algorithms

S.No.	Topic	Reference	Weigtage
1.	Advanced Data Structures	Ch 19 [2]	15
	Dynamic Tables	17.4 [2]	
	Priority Queues		
	Fibonacci Heaps		
2.	Divide & Conquer	5.3 [1]	15
	Counting Inversions	5.4 [1]	
	Closest Pairs of Points	5.5 [1]	
	Integer Multiplication		
3.	Greedy Technique		10
	Proving Optimality using Stays Ahead and Exchange Arguments	4.1 [1] Self Study	
	Interval Scheduling		
	Huffman Codes	4.8 [1]	
4.	Dynamic Programming		10
	Principles of Dynamic Programming	6.2 [1] Self Study	
	Sequence Alignment	6.6 [1]	
	Shortest Path in a Graph	6.8[1]	
5.	Network Flows		15
	Maximum Flow Problem and Ford Fulkerson Algorithm	7.1[1]	
	Maximum flows and Minimum Cuts in a Network	7.2[1]	
	Bipartite Matching	7.5[1]	
6.	NP Completeness	8.1[1]	10
	Polynomial Time Reductions	8.2[1]	
	Reductions Via Gadgets (Satisfiability Problem)	8.3[1]	
	Efficient Certification and Definition of NP	8.4[1] (till pg 466)	
	NP Complete Problems		

Ref: [1]. Algorithm Design, Kleinberg and Tardos, Pearson Publication

[2]. Introduction to Algorithms, CLRS, 3rd Edition, PHI