



# **Document History**

| Ver. Rel.<br>No. | Release<br>Date | Prepared. By | Reviewed By | Approved By | Remarks/Revision<br>Details |
|------------------|-----------------|--------------|-------------|-------------|-----------------------------|
| 1                | 17/09/20<br>20  | Shabana R P  |             |             |                             |
| 2                | 18/09/20<br>20  | Shabana R P  |             |             |                             |
| 3                | 19/09/20<br>20  | Shabana R P  |             |             |                             |
|                  |                 |              |             |             |                             |
|                  |                 |              |             |             |                             |



### **Contents**

## Table 1

| Document History                       |    |
|----------------------------------------|----|
| ACTIVITY 1 System/Software Development |    |
| 1.Introduction:                        |    |
| Product Definition:                    |    |
| SWOT Analysis:                         |    |
| Requirement Gathering                  | 6  |
| 4.1 High level requirement             |    |
| 4.2 Low Requirement:                   |    |
| Design Models:                         |    |
| Structural Diagrams:                   | 11 |
| Behavioral diagrams                    |    |
| Test Plans (agile method):             |    |
| Activity 2-AGILE CONCEPTS              | 22 |
| Theme: Emotion detection from Text     | 22 |
| Epics:                                 | 22 |
| User stories:                          | 23 |
| Activity 3-GITHB Final Submission      | 24 |
| Project title: Online banking system   | 24 |
| High Level Requirements:               | 24 |
| Low Level Requirements:                | 25 |
| Design:                                | 26 |
| Test cases:                            | 27 |
| CI Workflow:                           | 30 |
| References:                            | 37 |



| Figure 1:Emotion classifier                           | 11 |
|-------------------------------------------------------|----|
| Figure 2:information retrival                         | 12 |
| Figure 3Sequence diagram for classifying emotions     | 13 |
| Figure 4:Use Case Diagram for obtaining accuracy      | 13 |
| Figure 6:Process                                      | 14 |
| Figure 5:Feature selection                            | 14 |
| Figure 7 Tokenization                                 | 15 |
| Figure 8:Pre processing                               | 16 |
| Figure 9:Class diagram for banking system             | 26 |
| Figure 10:git commits                                 | 30 |
| Figure 11: Issue created                              | 30 |
| Figure 12:Git Workflow                                | 31 |
| Figure 13: Code Quality                               | 32 |
| Figure 14: Badges                                     | 33 |
| Figure 15:Build                                       |    |
| Figure 16: Github basics                              | 35 |
| Figure 17: Repositories(after completing those tasks) | 36 |
| Table 1 Requirement Gathering(Aing vs costing)        | 3  |
| Table 2High level Requirement                         |    |
| Table 3:Low level Requirement                         | 10 |
| Table 4 Requirement Based Test cases                  | 17 |
| Table 5:Scenario based                                | 18 |
| Table 6:Boundary Based Test cases                     | 19 |
| Table 7:High level Requirement(Activity 3)            | 24 |
| Table 8:low level requirement(activity 3)             | 25 |
| Table 9:Test cases (activity 3)                       | 28 |



## **ACTIVITY 1 System/Software Development**

#### 1.Introduction:

This project proposes a new algorithm for emotion classification using NLP, that requires fewer data for training. Instead of using words and word relation i.e. association rules from these words are used to derive feature set from classified text documents.

#### 2. Product Definition:

An emotion is a feeling such as happiness, love, fear, anger, or hatred, which can be caused by the situation that you are in or the people you are with. Emotion can be expressed in many ways that can be seen such as facial expression and gestures, speech and by written text.



### 3. SWOT Analysis:

### Strength:

Efficient Accuracy

Easy to distinguish the documents based on categories

#### Weakness:

Time consuming
Syntactically similar works are also emotionally similar

### **Opportunity:**

Extending dataset Using word2vec tool Adding POS Taggers to Emotion words

#### Threats:

Extending dataset should be done carefully

## 4. Requirement Gathering

Research: aging and costing in terms of performance and accuracy

| Years | Performance                                                                               | Cost value(accuracy) |
|-------|-------------------------------------------------------------------------------------------|----------------------|
| 2002  | 2.5 million emotions tweets covering 7 emotion categories for automatic emotion detection | 60.4%                |
| 2012  | Unigram method,<br>Lemmatized unigram,<br>Naïve Bayes lexical model                       | 65.57%               |
| 2014  | LDA and SVM                                                                               | 70%                  |

**Table 1:Requirement Gathering 1** 



## Past:

## **Keyword-based:**

In Existing solution method detection of emotions is limited to some short documents. They detect emotions by classifying it into positive , negative and neutral.

#### Limitations:

Ambiguity in Keyword Definitions
Incapability of Recognizing Sentences without Keywords Lack
of Linguistic Information



#### **Present:**

**Sentiment Analysis (SA) or Opinion Mining (OM)** is the computational study of people's opinions, attitudes and emotions toward an entity. The entity can represent individuals, events or topics. These topics are most likely to be covered by reviews. The two expressions SA or OM are interchangeable.

In [1], the authors explore the field of sentiment analysis. According to them domain-specific corpus gives better results than working on the domain independent corpus. There is still lack of research in the field of domain-specific SA which is sometimes called context-based SA. This is because building the domain-specific corpus is more complicated than using the domain-independent one

### Future:

Above project can be fine-tuned by implementing it with POS tagger and word2vec tool by making it domain independent

### **Added features:**

POS Tagger

Word2vec tool

Comparing accuracy of keyword based and POS Tagging based methods

4. High level and low level Requirement(traditional):

#### 4.1 High level requirement

- 1) Data Pre processing
- 2) Identify basic emotions
- 3) Extend dataset

### 4.2 Low Requirement:

- 1. Data Preprocessing
  - Tokenization
  - Lemmatization
  - Stemming
  - Stopword removal



- 2. Identify basic emotions
  - Classify emotions by implementing algorithms
- 3. Pos tagging
- 4. Classification
- 5. Extend Dataset
  - ❖ Implement Word2vec tool

# 4 . High level and low level Requirement(agile): High Level Requirement:

| ID | Description                |
|----|----------------------------|
| 1  | 4) Data Pre-processing     |
| 2  | 5) Identify basic emotions |
| 3  | 6) Extend dataset          |

Table 2



## Low Requirement:

| ID | Description                                                                                                                                                                                                                                                           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Tokenization: Tokenization is a key (and mandatory) aspect of working with text data                                                                                                                                                                                  |
| 2  | Lemmatization: takes into consideration the morphological analysis of the words. To do so, it is necessary to have detailed dictionaries which the algorithm can look through to link the form back to its lemma.                                                     |
| 3  | Stemming: algorithms work by cutting off the end or the beginning of the word, taking into account a list of common prefixes and suffixes that can be found in an inflected word.                                                                                     |
| 4  | Stop word removal: A stop word is a commonly used word (such as "the", "a", "an", "in") that a search engine has been programmed to ignore                                                                                                                            |
| 5  | Classify emotions by implementing algorithms :Classify them into basic emotion classes                                                                                                                                                                                |
| 6  | Pos tagging: is the process of assigning a <b>part-of-speech</b> like noun, verb, pronoun, preposition, adverb, adjective or other lexical class marker to each word in a sentence. The <b>POS tagger</b> assigns to each token in the input one of <b>POS tags</b> . |
| 7  | Implement Word2vec tool: To extend database implement word2vec                                                                                                                                                                                                        |

**Table 3:Low level Requirement** 



## Design Models:

a. High-level design

# **Structural Diagrams:**



Figure 1:Emotion classifier



Figure 2:information retrival



## **Behavioral diagrams**



Figure 3Sequence diagram for classifying emotions



Figure 4:Use Case Diagram for obtaining accuracy



# b. Low-level design

# (1) Structural Diagrams:



Figure 5:Feature selection



Figure 6:Process



Figure 7 Tokenization





Figure 8:Pre processing



Test Plans (agile method):

Requirement Based Test cases: To classify sentences into basic emotions

| ID | Description                              | Pre<br>condition                                      | Expected input                                           | Expected output              | Actual output |
|----|------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------------|---------------|
| 1  | Classify the sentence into fear Class    | It should identify fear keyword with word much        | I am having<br>so much fear<br>about my life             | Emotion<br>Detected:<br>Fear | ·             |
| 2  | Classify the sentence into joy class     | It should identify happy, good keyword with word very | I am very<br>happy and<br>good                           | Emotion<br>Detected:<br>Joy  |               |
| 3  | Classify the sentence into sad class     | It should take intensity of sadness                   | I was sad by<br>hearing that<br>news                     | Emotion Detected:<br>Sad     |               |
| 4  | Classify the sentence into Anger class   | It should take intensity of sadness                   | The sport riot caused too much anger in players and fans | Emotion Detected:<br>Anger   |               |
| 5  | Classify the sentence into disgust class | It should take intensity of sadness                   | It was a<br>disgusting move<br>by the<br>government      | Emotion detected:<br>disgust |               |

**Table 4 Requirement Based Test cases** 



# 2. Scenario Based Test cases:

| ID | Description             | Pre-condition                                                                                                                                               | Expected input    | Expected output | Actual output |
|----|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|---------------|
| 1  | Keyword based approach: | If not is used before the emotion word or within some specified window it should be considered and sentence should be classified according to their Classes | I am not<br>happy | Sad             |               |
| 2  | POS Tagging method:     | If there are more tags with more emotional words in the sentence then adjective and adverb tagged words should be prioritized                               | I am not<br>angry | Neutral         |               |

Table 5:Scenario based

# 3. Boundary Based Test cases:

| ID | Description                     | Pre-condition                                                                                                                 | Expected                    | Expected output                                                                                                                         | Actual |
|----|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------|
|    |                                 |                                                                                                                               | input                       |                                                                                                                                         | output |
| 1  | Positive or<br>above<br>neutral | : If different adjectives or<br>adverbs are given before<br>the emotional word it<br>should detect the degree<br>of intensity | I am very<br>happy<br>today | Happy It should consider adverb (very in this case) along with emotional word ie happy to depict the emotion and consider its intensity |        |



| 2 | Neutral<br>(nullifying)      | If different adjectives or adverbs are given before the emotional word it should detect the degree of intensity | I am neither<br>happy nor<br>sad                      | Neutral It should nullify this statement to neutral as it contains Both positive and negative emotion                                                                                                                                              |
|---|------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Neutral                      | It should consider this sentence neutral as there is no emotional words in it.                                  | Delhi is the<br>Capital of<br>India                   | Neutral                                                                                                                                                                                                                                            |
| 4 | Negative or<br>below Neutral | If different adjectives or adverbs are given before the emotional word it should detect the degree of intensity | I found it<br>very<br>disgusting<br>and I am<br>angry | It should consider adverb (very in this case) along with negative emotional words i.e. disgusting and angry to depict the emotion and consider its degree of intensity. if we assign weights, we will have more weightage to disgusting than angry |

**Table 6:Boundary Based Test cases** 







### **Activity 2-AGILE CONCEPTS**

#### Theme:

**Emotion detection from Text** 

- This project is aimed to design a prototype which classifies 5 different levels of emotions from smaller to larger text documents using NLP.
- To classify text as emotional or non-emotional text.
- To compare Natural Language processing.
- To develop a prototype to provide overall accuracy for 5 different emotions.
- To find out Parts of speech for tokenized word.
- To compare Accuracy of both POS and Keyword based Emotion detection methods.

### Epics:

- 1. Data Pre processing
  - Tokenization
  - Stop word removal
  - Case folding
  - Stemming
  - Classifying Emotions
  - Detect and Classify Emotions into 5 different Categories.
  - Accuracy
- 2. Identify basic emotions
  - Classify emotional and non-emotional keywords and then apply algorithms on emotional text to detect correct emotions
- 3. Extend dataset
  - To include new keywords data set should be extended using word2vec-tool



User stories:

### Pre-Processing (epic 1)

**Tokenization** In this process, divide the user query input into small tokens. that is divide the text or sentence into words.

EX. I am not happy today, I am feeling very sad

Tokens: [I] [am] [not] [happy] [today] Next is **Stop word removal**, In this process remove the stop word from the text or sentence, like a, an, the, after, before etc. EX: I am not happy today, I am feeling very sad In the above example after removing stop words the text should be like ANS: happy today feeling very sad, after removing stop words next step is **Case folding** In this process, convert the all words into lowercase for easy comparison. EX: happy today feeling very sad Last step is **Stemming**, In this process, convert the all words into root words. EX: feeling ANS: feel

Effort: 8 hours

### **Identifying Emotions(epic 2)**

The system should be able to detect emotions from different sized documents. Emotions are divided into 5 different types based on the Paul Ekman Theory. Happy, Sad, Angry, Fear, Disgust, when an input is given it should apply the above discussed preprocessing techniques to extract features then it should apply 2 methods on it i.e. keyword-based approach and POS Tagger approach and then Identify keywords that are the useful to the classifier from the input dataset. Then finally classify extracted features to their respective classes of emotion then Find and compare accuracy of the Emotions for both the methods.

Effort:7 hours

#### Extend dataset(epic 3)

We have an emotion based Keyword dataset and Phrase dataset. Key word dataset has key words which can be used for training the system by classifying keywords into different files according to their emotions. Phrase dataset has phrases which can be used for testing the system by classifying Phrases into different files according to their emotions or keep it as 1 big fat file These dataset may be not sufficient at high level, hence extend the these dataset u sing a tool called word2vec tool.

Effort:5 hours



# **Activity 3-GITHB Final Submission**

Project title: Online banking system

High Level Requirements:

| ID | Description                                                                        |
|----|------------------------------------------------------------------------------------|
| 1  | Create a user account                                                              |
| 2  | View the account details                                                           |
| 3  | Credit Money                                                                       |
| 4  | Debit money                                                                        |
| 5  | Transfer Money between accounts                                                    |
| 6  | Mobile number change: If user enters old mobile number it should display a message |

Table 7:High level Requirement(Activity 3)



## Low Level Requirements:

| ID | Description                                                                                                                                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | If a user is below 18 year old, he should not be permitted to create account                                                                 |
| 2  | It should take password from user and match it with the user database                                                                        |
| 3  | If user credits money which exceeds daily transaction time it should notify user, on successful credit it should display a confirmation mail |
| 4  | If user tries to debit money from the empty /low balance account It should pop up an error                                                   |
| 5  | It should check whether both accounts are valid                                                                                              |

Table 8:low level requirement(activity 3)



## Design:



Figure 9:Class diagram for banking system



## Test cases:

| ID | Description              | Pre condition                                                                                                                                | Expected                                                 | Expected                                                                                                     | Actual                                                                                                       |
|----|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|    |                          |                                                                                                                                              | input                                                    | output                                                                                                       | output                                                                                                       |
| 1  | Create a user            | If a user is below 18 year old, he should                                                                                                    | User below 18<br>year old                                | Account cannot be                                                                                            | Account cannot be                                                                                            |
|    | account                  | not be permitted to create account                                                                                                           | Ex age < 18                                              | created                                                                                                      | created                                                                                                      |
| 2  | View the account details | It should take password from user and match it with the user database                                                                        | User enters password with allowed inputs                 | If password matches: display the details  If password does not                                               | If password matches: display the details  If password does not                                               |
|    |                          |                                                                                                                                              |                                                          | matches:<br>display the<br>error                                                                             | matches:<br>display the<br>error                                                                             |
| 3  | Credit<br>Money          | If user credits money which exceeds daily transaction time it should notify user ,on successful credit it should display a confirmation mail | User enters credit<br>amount based on<br>pre condition   | On valid<br>transaction:<br>successfully<br>credit<br>On invalid<br>transaction:<br>display error<br>message | On valid<br>transaction:<br>successfully<br>credit<br>On invalid<br>transaction:<br>display error<br>message |
| 4  | Debit<br>money           | If user tries to debit<br>money from the empty<br>/low balance account<br>It should pop up an<br>error                                       | The sport riot caused too much anger in players and fans | On valid transaction: successfully debited On invalid transaction: Invalid transaction                       | On valid transaction: successfully debited On invalid transaction: Invalid transaction                       |



| 5 | Transfer<br>Money<br>between<br>accounts | It should check<br>whether both<br>accounts are valid                 | User enters 2 account numbers and the amount to be transferred | On valid<br>transaction:<br>successfully<br>transferred On<br>invalid<br>transaction: In<br>valid<br>Transfer | On valid transaction: successfully transferred On invalid transaction: Invalid Transfer |
|---|------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 6 | Mobile<br>number<br>change               | If user enters old<br>mobile number it<br>should display a<br>message | User enters<br>new mobile<br>number                            | On valid input: Mobile number changed On invalid in valid: this is the old number                             | On valid input: Mobile number changed On invalid in valid: this is the old number       |

**Table 9:Test cases (activity 3)** 





### CI Workflow:



Figure 10:git commits



Figure 11: Issue created





Figure 12:Git Workflow





Figure 13: Code Quality





Figure 14: Badges





Figure 15:Build

<u>Link To github Repository</u>: https://github.com/99002638/miniproject



## **Appendix**

## Completion of 5 basic github courses



Figure 16: Github basics





Figure 17: Repositories (after completing those tasks)

Link to the Stepin\_Repository: https://github.com/stepin105014



### **References:**

- [1]. Medhat, Walaa, Ahmed Hassan, and Hoda Korashy. "Sentiment analysis algorithms and applications: A survey." Ain Shams Engineering Journal (2014).
- [2] <a href="https://www.researchgate.net/publication/225045375">https://www.researchgate.net/publication/225045375</a> Emotion Detection from Text [3] <a href="https://www.tutorialspoint.com/uml/uml">https://www.tutorialspoint.com/uml/uml</a> activity diagram.ht

ml

- [4] [4] https://en.m.wikipedia.org/wiki/Use case diagram
- [5] https://en.m.wikipedia.org/wiki/Data-flow\_diagram
- [6] https://en.m.wikipedia.org/wiki/Sequence diagram
- [7] https://www.javatpoint.com/online-banking-project