

IIC2223 - Teoría de Autómatas y Lenguajes Formales

Ayudantía 10

Franco Bruña y Dante Pinto 26 de Noviembre, 2021

Pregunta 1

Considere la gramática

$$\mathcal{G} = \left(\{S', S, B, E, J, L\}, \{;, :=, , (,), , \}, \begin{cases} S' & \to & S \\ S & \to & LB \\ B & \to & ; S; L \mid := L \\ E & \to & a \mid L \\ J & \to & , EJ \mid &) \\ L & \to & (EJ) \end{cases}, S' \right)$$

Para cada variable X de \mathcal{G} , calcule $first_1(X)$ y $follow_1(X)$ usando los algoritmos vistos en clases.

Pregunta 2

- 1. Demuestre que para todo k, existe una gramática libre de contexto $\mathcal G$ tal que $L=\mathcal L(\mathcal G)$ y $\mathcal G$ no es LL(k).
- 2. Demuestre que para todo lenguaje regular L, existe una gramática libre de contexto \mathcal{G} tal que $L = \mathcal{L}(\mathcal{G})$ y \mathcal{G} es LL(k) para algún k.

Pregunta 3

Sea $\mathcal{G}=(V,\Sigma,P,S)$. Demuestre que si i^* es el menor número tal que $\mathrm{follow}_k^{i^*}(X)=\mathrm{follow}_k^{i^*+1}(X)$ para todo $X\in V$. Entonces para todo $X\in V$:

$$\mathtt{follow}_k^{i^*}(X) = \mathtt{follow}_k(X)$$