4

1

2

3

CLAIMS

What is claimed is:

1	1.	A dynamic random access memory device comprising:	
2		a storage trench;	
3		a storage conductor within said storage trench;	
4		a lip strap connected to said storage conductor; and	
5		a control device electrically connected to said storage conductor through	
6	said lip strap.		
1	2.	The device in claim 1, wherein said trench has a corner adjacent said	
2	contro	l device and said lip strap comprises a conductor surrounding said corner.	
1	3.	The device in claim 1, wherein said control device includes a control	
2	device	conductive region adjacent said trench and said lip strap comprises a	
3	conduc	ctor extending along a side of said trench and along a portion of said control	

4. The device in claim 1, further comprising a collar insulator along a top portion of said trench, wherein said lip strap comprises a conductor extending from a top of said collar to a top of said trench, said lip strap further extending

device conductive region.

4	along	along a surface of said device adjacent said trench and perpendicular to said		
5	trencl	trench.		
		,		
1	5.	The device in claim 4, further comprising a node dielectric lining said		
2	trench	trench, wherein said lip strap surrounds an upper portion of said node dielectric		
3	adjace	adjacent said top portion of said trench.		
1	6.	The device in claim 1, further comprising a trench top oxide, wherein said		
2	lip str	ip strap extends into said trench top oxide and forms an inverted U-shaped		
3	struct	structure.		
1	7.	The device in claim 1, wherein said lip strap comprises a conductor		
2	extend	ding along two perpendicular portions of a top corner of said trench.		
1	8.	A method of forming a dynamic random access memory structure, said		
2	metho	method comprising:		
3		forming a trench within a substrate;		
4		filling said trench with a trench conductor;		
5		forming a pad oxide along a surface of said substrate adjacent said trench;		
6		forming a collar along an upper portion of said trench such that said collar		
7	insulat	insulates said substrate from said trench conductor;		
R		recessing said collar and said rad axida.		

11

1

2

3

1

2

3

4

5

9	depositing a lip strap over said trench conductor and in recesses produced
10	by said recessing; and

forming an isolation region adjacent said lip strap.

- 9. The method in claim 8, further comprising forming a control device adjacent said trench, wherein said trench has a corner adjacent said control device and said lip strap comprises a conductor surrounding said corner.
 - 10. The method in claim 8, wherein said forming of said control device includes forming a control device conductive region adjacent said trench and said lip strap comprises a conductor formed along a side of said trench and along a portion of said control device conductive region.
 - 11. The method in claim 8, further comprising forming a collar insulator along a top portion of said trench, wherein said lip strap comprises a conductor formed to extend from a top of said collar to a top of said trench, said lip strap further extending along a surface of said device adjacent said trench and perpendicular to said trench.
- 12. The method in claim 11, further comprising lining said trench with a node dielectric, wherein said lip strap surrounds an upper portion of said node dielectric adjacent said top portion of said trench.

ત્ર

3

1	13.	The method in claim 8, further comprising forming a trench top oxide,		
2	such t	such that said lip strap extends into said trench top oxide and forms an inverted U		
3	shape	shaped structure.		
1	14.	The method in claim 8, wherein said lip strap comprises a conductor		
2	forme	ed along two perpendicular portions of a top corner of said trench.		
1	15.	A method of forming a dynamic random access memory structure, said		
2	metho	method comprising:		
3		forming a trench within a substrate;		
4		filling said trench with a trench conductor;		
5		forming a pad oxide along a surface of said substrate adjacent said trench;		
6		forming a collar along and upper portion of said trench such that said		
7	collar	collar insulates said substrate from said trench conductor;		
8		forming an isolation region adjacent said trench conductor;		
9		recessing said collar and said pad oxide; and		
10		depositing a lip strap over said trench conductor and in recesses produced		
11	by sai	d recessing.		
1	16.	The method in claim 15, further comprising forming a control device		

adjacent said trench, wherein said trench has a corner adjacent said control device

and said lip strap comprises a conductor surrounding said corner.

- 1 17. The method in claim 15, wherein said forming of said control device
 2 includes forming a control device conductive region adjacent said trench and said
 3 lip strap comprises a conductor formed along a side of said trench and along a

 portion of said control device conductive region.
 - 18. The method in claim 15, further comprising forming a collar insulator along a top portion of said trench, wherein said lip strap comprises a conductor formed to extend from a top of said collar to a top of said trench, said lip strap further extending along a surface of said device adjacent said trench and perpendicular to said trench:
 - 19. The method in claim 11, further comprising lining said trench with a node dielectric, wherein said lip strap surrounds an upper portion of said node dielectric adjacent said top portion of said trench.
 - 20. The method in claim 15, further comprising forming a trench top oxide, such that said lip strap extends into said trench top oxide and forms an inverted U-shaped structure.