Zastosowania sieci neuronowych oraz modeli alternatywnych

http://zajecia.jakubw.pl/nai

PLAN WYKŁADU

- Przykładowe zastosowania sieci
- Sieci neuronowe a drzewa decyzyjne
- Sieci neuronowe + zbiory rozmyte

KOMPRESJA OBRAZU

- Obraz dzielony jest na kwadraty (np. 8x8)
- Sieć neuronowa o 16 wyjściach zamienia dane wejściowe na 16 liczb
- Liczby są kwantowane i przekazywane drugiej sieci, odtwarzającej dane oryginalne
- Kryterium nauki: minimalizacja błędu rekonstrukcji

ROZPOZNAWANIE WZORCÓW

- <u>Wzorce</u>: obrazy, nagrania, dane personalne, sposoby prowadzenia pojazdu, etc.
- Reprezentacja:
 - Wektor cech (wejść do sieci neuronowej)
- Klasyfikacja wzorców:
 - Klasyfikacja do jednej z istniejących klas
 - Formowanie klas wzorców
- Asocjacyjne odtwarzanie wzorców
 - Odtwarzanie wzorców podobnych
 - Uzupełnianie wzorców
 - Odzyskiwanie (czyszczenie) wzorców

PAMIĘCI ASOCJACYJNE (SIEĆ HOPFIELDA)

- Wzorzec: układ stanów (wyjść) neuronów x_i (1 lub -1).
- <u>Uczenie sieci:</u> dla danego wzorca ustawiamy wagi między neuronami na $w_{ij} = x_i x_j$ dla wielu wzorców uśredniamy wagi policzone j.w. dla każdego wzorca.
- Wykorzystanie sieci: wynik działania sieci to stan stacjonarny (taki, w którym nie następuje już zmiana stanu neuronów). Startując z dowolnego wzorca, sieć zatrzymuje się w jednym z
- wzorców wyuczonych (lub jego "negatywie").

 Reguła zmiany stanu: $x_i := \begin{cases} 1 & gdy \sum_j w_{ij} x_j \ge 0 \\ 1 & 1 \end{cases}$

DRZEWA DECYZYJNE

- Sieci neuronowe nie są jedynym narzędziem reprezentacji zależności
- Dobór narzędzia zależy od wymogów danego zastosowania
- Do innych narzędzi należą na przykład metody symboliczne, oparte na regułach bądź drzewach decyzyjnych

DRZEWA A SIECI NEURONOWE

	Sun (%)	Temp.	Humid. (%)	Wind (km/h)	Run (km/h)
1	100	31	90	10	6
2	90	22	85	50	8
3	50	25	95	20	12
4	0	15	80	0	13
5	10	4	70	10	15
6	30	7	55	40	7
7	40	8	65	60	15
8	70	14	90	20	10
9	80	1	70	30	14
10	20	13	60	0	14
11	80	11	60	70	14
12	60	17	80	50	13
13	50	26	55	30	16
14	20	12	95	60	9

Można szukać sieci, która w warstwie wejściowej pobiera wartości zmiennych Sun, Temp, Humid, Wind, zaś na wyjściu stara się przyjmować stosowne wartości zmiennej Run

DRZEWA A SIECI NEURONOWE

- Drzewa decyzyjne:
 - Reprezentują zależności logiczne
 - Zdania wiązane tymi zależnościami mogą dotyczyć zarówno zmiennych symbolicznych jak i numerycznych
- Sieci neuronowe:
 - Reprezentują zależności numeryczne
 - Nawet w przypadku opisu powiązań symbolicznych, trzeba je przedstawić w formie funkcji rzeczywistych

DRZEWA A SIECI NEURONOWE

- Drzewa decyzyjne:
 - Mają przejrzystą strukturę
 - Nie nadają się jednak do dokładnej reprezentacji zależności funkcyjnych
- Sieci neuronowe:
 - Doskonałe dla wyrażania zależności funkcyjnych pomiędzy rzeczywistymi zmiennymi wejściowymi i wyjściowymi
 - Struktura bardzo ciężka do interpretacji

DRZEWA A SIECI NEURONOWE

- Drzewa decyzyjne:
 - Doskonałe do uwzględniania wiedzy eksperckiej...
 - ...Chyba, że wiedza ta wyrażana jest w postaci, np., równań różniczkowych
- Sieci neuronowe:
 - Nieprzystosowane do uwzględniania w naturalny sposób wiedzy eksperckiej...
 - ...Chyba, że przekłada się ona na wagi powiązań oraz funkcje aktywacji

ZDANIEM Marvina Minsky'ego

- "Some researchers hope that systems modeled on neural nets will quickly overtake more traditional systems based on symbol manipulation. Others believe that symbol manipulation remains the only viable approach."
- "Artificial Intelligence must employ many approaches. The time has come to build systems out of diverse components, some connectionist and some symbolic, each with its own diverse justification."

PRZYKŁADOWE POLE DO POPISU

- Analiza dźwięku, obrazu, bądź danych multimedialnych, nie może opierać się ani wyłącznie na sieciach neuronowych, ani na, np., drzewach
- Konieczne jest połączenie metod numerycznych, naśladujących działanie ludzkich zmysłów, z metodami symbolicznymi, naśladującymi ludzkie rozumowanie

ZBIORY ROZMYTE (1)

Metoda reprezentacji wiedzy wyrażonej w języku naturalnym:

informacja liczbowa – naturalna dla systemów komputerowych

Zamiast dwóch wartości logicznych (prawda i fałsz), dopuszcza się istnienie nieskończenie wielu wartości (odpowiadających liczbom

rzeczywistym od 0 do 1)

informacja opisowa –

naturalna dla człowieka

ZBIORY ROZMYTE (2)

 $m: X \rightarrow [0,1]$ <u>funkcja przynależności</u> (funkcja charakterystyczna) zbioru rozmytego A

Funkcja przynależności mówi nam, w jakim stopniu bylibyśmy skłonni uznać daną wartość za należącą do zbioru, np. w jakim stopniu powietrze o temperaturze 20 °C może być uznane za "dość ciepłe"

ZBIORY ROZMYTE (3)

Pojęcia "ciepło" czy "gorąco" są określone w sposób nieostry: trudno jednoznacznie określić ich granice, ich zakresy mogą się częściowo pokrywać

PRZYNALEŻNOŚĆ A AKTYWACJA

Funkcja charakterystyczna odpowiadająca pojęciu liczby dodatniej

Funkcja przynależności dla zbioru rozmytego odpowiadającego pojęciu liczby dodatniej

REGUŁY ROZMYTE (1)

- Reguły, których przesłanki lub wnioski wyrażone są w języku zbiorów rozmytych
 - Jeżeli x jest **małe** i y jest **średnie**, to uruchom alarm
 - Jeżeli x jest małe i y jest małe, to ustaw z na duże
 - Jeżeli x jest duże, to ustaw z na małe
- Reguły pochodzące od ekspertów zwykle wyrażone są w języku nieprecyzyjnym
- Zbiory rozmyte pozwalają nam przełożyć ten język na konkretne wartości liczbowe
- Kwestie techniczne: jak realizować operacje logiczne (np. koniunkcja, implikacja) na wartościach rozmytych?

REGUŁY ROZMYTE (2)

	Sun (%)	Temp.	Humid. (%)	Wind (km/h)	Run (km/h)
1	100	31	90	10	6
2	90	22	85	50	8
3	50	25	95	20	12
4	0	15	80	0	13
5	10	4	70	10	15
6	30	7	55	40	7
7	40	8	65	60	15
8	70	14	90	20	10
9	80	1	70	30	14
10	20	13	60	0	14
11	80	11	60	70	14
12	60	17	80	50	13
13	50	26	55	30	16
14	20	12	95	60	9

Zbiory rozmyte pozwalają konstruować reguły typu

jeśli temperatura jest wysoka i wilgotność jest niska, to sąsiad biega

w języku naturalnym, przekładalne jednak na zależności numeryczne

REGUŁY ROZMYTE (3)

- Metoda powiązania cech modeli symbolicznych, takich jak np. drzewa decyzyjne, oraz modeli numerycznych, takich jak np. sieci neuronowe
- W zastosowaniach, wymagany jest proces uczenia kształtów zbiorów rozmytych dla poszczególnych zmiennych występujących w regułach

FUZZY-NEURO RICE COOKER

- Fuzzy Logic Controls The Cooking Process
- Self Adjusting For Rice & Water Conditions
- Cooks Brown Rice In Addition To White, Sweet (Glutinous, Mochigome) Mixed Variety, Porridge
- Porridge Setting Can Also Be Used As A Slow Cooker
- Automatically Cooks and Switches to Keep Warm
- Will Finish Cooking When You Want It To With Its 24 Hour Preset Timer
- Fast Cook of White Rice 13
 Minutes Faster Than Regular
 Cycle Additional Reheat
 Function For Piping Hot Rice
- Sale Price: \$119.00