

Workshop: ETL Processing of Nested Data

ETL JSON Processing - Agenda

- Bio
- Problem Description
- Selected Python Techniques
- Transforming Nested Data
- Optimization Techniques
- Pitfalls
- Q & A

Hi, I'm Bijan!

- From Canada
- Started writing code at age 7

- B. Sc. in Software Engineering and Human Biology 2000
- Entered workforce as Software Developer since 1999
- MBA 2007
- Worked in FX/Derivative Trading, Gaming, D/R, and Network Apps
- Javascript, C/C++, Java, C#, perl, and ruby
- Worked on most modern O/S platforms

- Python developer since 2012
- Senior Developer with WebApps team @Clover Health since 2016

Source Code

Available here:

https://github.com/CloverHealth/pycon2017

Problem Description

Data collected via <u>forms</u> uses nested JSON in two shapes:

```
"Schema" describes Questions
 "label": "Basic Info",
 "slug": "basic_info",
 "widget": "panel",
 "nodeType": "section",
 "children": [
    "slug": "primary_phone",
    "label": "Primary Phone",
    "nodeType":"question",
    "answerType": "text",
    "widget": "phone_number_control",
  },
```


Problem Description

Data collected via <u>forms</u> uses nested JSON in two shapes:

```
"Submission" captures Answers
```

Problem Description - Nesting

```
"slug": "basic_info",
"children": [
   "slug": "member_info",
   "children": [
        "slug": "contact_info",
         "children": [
              "slug": "phone",
           },
```

Problem Description - Sample Output

schema_path (key)	value
basic_info.member_info.vitals. name	"McTestface"
basic_info.member_info.vitals.age	"42"
basic_info.member_info.vitals.favorite_color	"blue"
basic_info.member_info.vitals. bmi	"24"
other_form.new_section.info.bmi	"26"

Problem Description - ETL Process

"ETL" = Extract + Transform + Load

Extraction Reading source data

Transform Converting or computing output data

Our ETL application will convert our data to a **flat** key/value table.

Why?

- Nested JSON is cumbersome to query in Postgres
- Different form schemas have different nested structures
- Single data format for easier "downstream" processing
 - e.g. metrics, reports, pivot views, etc.

Python Technologies Used

Core python

Generators	Chaining flow of data
	Conserve memory
functools	Partial functions for encapsulation
	Caching
more_itertools	Batching / chunking

Data Access

SQLAlchemy	Object Relational Mapper (ORM)
psycopg2	Postgres database driver
testing.postgresql	Manage disposable/reuseable test database

11

Python Generators

Generators are a powerful but simple technique for

- Concisely creating iterators
- Deferred evaluation
- Incremental evaluation
- Chaining operations

How?

- Use yield keyword to "generate" a value
- Returns an iterable object. Not a list!
- Evaluate at your own leisure
- Save memory.
- Easy to "chain" generators

Simple example: squares() generator function

Python Generators

Simple examples in core_techniques.ipynb

- **squares()** generator function
- Chaining generators (fun_A(), fun_B() and fun_C())

Partial Function Application

Partial functions can be created in python using functions.partial():

- "Freezes" some portion of a function's args and/or kwargs
- Creates a new callable object
- Can still be called as a function.
- Simplifies signature during execution

Back to examples in core_techniques.ipynb

Partial Function Application - Encapsulation

Encapsulation = "Construct that bundles data with methods"

You can do this in python using:

- Classes
- Closures / Inner methods
- Partial (function) application

Data attributes in __init__()

Variables from outer scope

"Frozen" args/kwargs for a function

These are all *valid* approaches.

Workshop code uses partial function application because:

- Quickly kwargs parameters from JSON config
- This particular application doesn't need class hierarchies
- Each of E, T and L only performs a single operation

Workshop Application - Core Design

app.etl.extractors

Read routines (extraction)

app.etl.transformers

JSON Transformation code

app.etl.loaders

Result insertion routines (loading)

- app.processor
 Main ETL flow in just 3 lines of code
 - Uses python generators to all 3 steps
 - Uses <u>partial functions</u> to encapsulate ETL parameters

See core_techniques.ipynb for simplified example

Transforming Nested Data

- Use a "mapping function" approach
 - Take iterable or generator
 - Apply functions to transform the data
 - Generate transformed results

- Known python built-in examples include:
 - o map() applies a function to an iterable
 - sorted() applies a function to extract an ordering "key"

- For nested JSON structures, we need to:
 - Traverse the tree
 - Filter only required data from each tree node
 - Filter only required children

Transforming Nested Data

Workshop introduces app.etl.transformers.map_nested()

INPUTS

- python dict -- loaded JSON data
- gen function to transform items at each node
- gen function extract children to recurse into

OUTPUTS:

transformed items (as a gen function)

CORE ALGORITHM:

- Pre-order DFS (depth-first search)
- Current path (node slugs) are tracked using an array argument
- Just 5 lines of code --- WAAAAAT?
 - Complexity resides in your INPUT generator functions

Transforming Nested Data - Quick App Demo

- Input Scenario: "demo"
 - 2 form schemas
 - 50 users
 - 50 submissions
- Processor setup: "naive-single"
 - Iterate on Session.query()
 - Call Session.add() for each response event

- Run:
 - python main.py generate demo
 - python main.py process demo naive-single

See README.md for detailed instructions

Transforming Nested Data - Performance

Even with generators, ETL processing of large amounts of data can incur performance problems

- ETL everything in memory?
 - o ... but memory is limited

- ETL one row at a time?
 - will be very slow due to lots of I/O

Performance Optimization - Batching

Find a balance using **batches** (or "chunks")

SQLAlchemy provides:

• Query.yield_per() for extraction using database CURSORs

<u>Session.bulk_save_objects()</u> and <u>Session.bulk_insert_mappings()</u>
 for load insertion

Performance Optimization - Batching

The "T" in ETL (the Transform) is not necessarily 1 to 1

1 row SELECTed will generally <u>not</u> lead to 1 row to INSERTed

In our workshop:

- One JSON structure will lead to multiple key-value pairs
- Different schemas will produce different number of key-value pairs

Do we need to write the "chunking" logic ourselves?

Performance Optimization - Batching

more_itertools library comes to the rescue!

- chunked() method can take <u>any</u> input iterable
- Produces controlled chunks
- No complex logic needed

Loader can easily apply this to transformed output generator to reduce INSERTs

See core_techniques.ipynb for simplified example

chunked() is just 1 line of code

... it uses a partial function!!

Performance Optimization - Caching

- For each form schema, the transformer computes a "path map"
 - o basic info.member info.name -> text
 - o basic_info.member_info.age -> number

Optimize via <u>caching</u> by using <u>functools.lru_cache()</u>

- But read the python docs carefully!
 - "the [...] arguments to the function must be <u>hashable</u>."

- The SQLAlchemy "session" an opaque object.
 - Hashing would include internal state which changes
 - (loaded objects, cursors, etc.)

Performance Optimization - Caching

No problem... use partial functions again!

- Create a custom function using <u>functools.partial()</u>
 - Freeze the "session" argument (it's an opaque reference)
 - form_id is then the only (hashable) parameter

Wrap the resulting partial function with <u>functools.lru_cache()</u>

Client code just calls get_node_path_map(form_id)

Performance Pitfalls - SQLAIchemy ORM

SQLAlchemy ORM keeps code concise....

- Great for for general purpose in transactional apps
- e.g. Web sites, REST APIs, GraphQL
- Anything "CRUD"

... but gets tricky when dealing large datasets in OLAP

- e.g. Data Science, Analytics, Batch processing
- Default lazy loading leads to more SELECTs instead of joins (I/O)
- Transforming python objects to model instances (CPU)

Performance Pitfalls - SQLAIchemy ORM

For analytics, please consider any of these options:

- Explicitly specifying join load types if you must use the ORM
 - see join_queries.ipynb included

- SQLAlchemy Core to compose exact queries
 - Allows more precise queries
 - Be careful with readability!

- Using raw SQL
 - Best query precision (especially for advanced Postgres)
 - Often more readable
 - Via SQLAlchemy's <u>Session.execute()</u>

Bonus! - Performance Analysis

This workshop code include performance test content!

- Timing and Memory Profiling
- Demonstrate tradeoffs between choices
- Repeatable due to "scenarios" template database

Run "jupyter notebook" to get detailed explanations on:

- etl_analysis.ipynb
 Performance tradeoffs
- join_queries.ipynb
 ORM join options for extraction

Please: Ask Bijan questions after the presentation!

Bonus! - Performance Analysis Tools

Profiling and Investigation

cProfile (core python)	Time profiling
memory_profiler	Memory profiling

Presentation and Visualization

jupyter	Detailed write-up on analysis
gprof2dot	Visualize timing profiling (from cProfile)
matplotlib	Visualize memory profiling (from memory_profiler)
sqlparse	Pretty-printing raw SQL in logs (*)

(*) NOTE: In healthcare, SQL debug poses risk of leaking protected information.

This workshop provides SQL debug logging, but all data is fake!

29

Bonus! - Performance Analysis Commands

You can analyze what is happening with the application:

• *Time* profiling

```
python -m cProfile -o timing.stats main.py process demo naive-single
bash visualize_pstats.sh timing.stats
```

Memory profiling

```
mprof run python main.py process demo naive-single
mprof plot
```

SQL debug logging

```
python main.py --debug-sql process demo naive-single > sql.log
less sql.log
```

Q & A

Credits

This workshop would not have been possible without prior work from these folks at Clover:

- James Bennett
- Joey Leingang
- David Flerlage
- Kathy Lass
- Diego Argueta
- Lavinia Karl
- Paul Minton

Thank you & contact information

Bijan Vakili

Senior Developer, Clover Health

bijan.vakili@cloverhealth.com

Appendix

Testing Approach

Unit Tests

- Run all tests within DB transactions that are always rolled back
 - Use Session.flush() instead of Session.commit()
- Extend pytest CLI options to allow reuse a preset database
 - Uses the base_dir option in testing.postgres
 - Preset with schemas and no data
- freezegun:Artificially "Freeze" the system clock in unit tests

Performance Tests

- Reuse template database with preset datasets of any size
 - Uses the copy_data_form option in testing.postgres
 - Preset with schemas, forms and responses
 - No output events

Decision to use JSONB

- Faster reads for this workshop no reparsing necessary
 - (but slower writes than JSON)
- No need to preserve semantically-insignificant whitespace between tokens
- No need to preserve key order
- Can support more Postgres operators and indexing

Pitfalls - SQLAlchemy, Postgres and timestamps

Be aware of how you use timestamps

- Always Include timezone
 - Stick with UTC wherever possible
- Watch out for time truncation by psycopg2 driver

Workshop Application - Usage

Execution: python main.py ...

generateCreate a template dataset ("scenario")

process
 Run the ETL transform using a scenario

psql
 Connect to the resulting database and review the results

cleanCleanup

Configuration: Edit conf/...

schemas/*.jsonSample JSON form schemas

perfdata.conf.jsonDescribe your scenarios

• processors.conf.json Tune your processor

See README.md for instructions

Transforming Nested Data

INPUT: Submissions (nested JSON responses)

OUTPUT: Response events (schema_path, value, tag)

app.etl.transformers module uses:

- Recursion to traverse nested subtrees
- Generators to yield events

Clover Platform - Common Elements

Infrastructure:

- Aptible for "Compliance as a Service"...
 - PaaS Docker containers with healthcare compliance (HIPAA certified)
 - Postgres DBs
 - SSL certificates
- ...on Amazon AWS
 - o EC2, S3, Route 53, . . .

Critical Integrations

- Bug Capture/Monitoring Sentry (raven)
- Monitoring New Relic + Pager Duty (pygerduty)

Pitfalls - SQL logging

SQL debug logging is a great technique for finding root causes...

... but is <u>discouraged</u> in healthcare.

Sensitive member/patient information can be leaked in logs because of:

- INSERT parameters
- SELECT results

"Data cleaning" tools exists... but customization effort is required

- This workshop's code suppresses parameters and results in its logs
 - o app.log
 - app.util.sqldebug