COMP5212: Machine Learning

Lecture 10

Definition

- The VC dimension of a hypothesis set \mathcal{H} , denoted by $d_{VC}(\mathcal{H})$, is the largest value of N for which $m_{\mathcal{H}}(N)=2^N$
 - "The most points ${\mathscr H}$ can shatter"
- $N \le d_{VC}(\mathcal{H}) \Rightarrow \mathcal{H}$ can shatter N points
- $k > d_{VC}(\mathcal{H}) \Rightarrow \mathcal{H}$ cannot be shattered
- The smallest break point is 1 above VC-dimension

The growth function

• In terms of a break point *k*:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$

• In terms of the VC dimension d_{VC} :

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{d_{\text{VC}}} \binom{N}{i}$$

VC dimension of linear classifier

• For d = 2, $d_{VC} = 3$

- For d = 2, $d_{VC} = 3$
- What if d > 2?

- For d = 2, $d_{VC} = 3$
- What if d > 2?
- In general,
 - $d_{VC} = d + 1$

- For d = 2, $d_{VC} = 3$
- What if d > 2?
- In general,
 - $d_{VC} = d + 1$
- We will prove $d_{VC} \ge d + 1$ and $d_{VC} \le d + 1$

VC dimension of linear classifier

• A set of N = d + 1 points in \mathbb{R}^d shattered by the linear hyperplane

$$\mathbf{X} = \begin{bmatrix} & -\mathbf{x}_{1}^{\mathsf{T}} - \\ & -\mathbf{x}_{2}^{\mathsf{T}} - \\ & -\mathbf{x}_{3}^{\mathsf{T}} - \\ & \vdots & \\ & -\mathbf{x}_{d+1}^{\mathsf{T}} - \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & & 0 \\ & \vdots & & \ddots & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix}$$

VC dimension of linear classifier

• A set of N = d + 1 points in \mathbb{R}^d shattered by the linear hyperplane

$$\mathbf{X} = \begin{bmatrix} & -\mathbf{x}_{1}^{\mathsf{T}} - \\ & -\mathbf{x}_{2}^{\mathsf{T}} - \\ & -\mathbf{x}_{3}^{\mathsf{T}} - \\ & \vdots & & \vdots \\ & -\mathbf{x}_{d+1}^{\mathsf{T}} - \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & & 0 \\ & \vdots & & \ddots & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix}$$

X is invertible!

Can we shatter the dataset?

For any
$$y=\begin{bmatrix}y1\\y_2\\\vdots\\y_{d+1}\end{bmatrix}=\begin{bmatrix}\pm1\\\pm1\\\vdots\\\pm1\end{bmatrix}$$
, can be find w satisfying

• sign(Xw) = y

For any
$$y=\begin{bmatrix}y1\\y_2\\\vdots\\y_{d+1}\end{bmatrix}=\begin{bmatrix}\pm1\\\pm1\\\vdots\\\pm1\end{bmatrix}$$
, can be find w satisfying

- sign(Xw) = y
- Easy! Just set $w = X^{-1}y$

For any
$$y=\begin{bmatrix}y1\\y_2\\\vdots\\y_{d+1}\end{bmatrix}=\begin{bmatrix}\pm1\\\pm1\\\vdots\\\pm1\end{bmatrix}$$
, can be find w satisfying

- sign(Xw) = y
- Easy! Just set $w = X^{-1}y$

- This implies what?
 - [a] $d_{VC} = d + 1$
 - [b] $d_{VC} \le d + 1$
 - [c] $d_{VC} \ge d + 1$
 - [d] No conclusion

- This implies what?
 - [a] $d_{VC} = d + 1$
 - [b] $d_{VC} \le d + 1$
 - [c] $d_{VC} \ge d + 1$
 - [d] No conclusion

- To show $d_{VC} \le d + 1$
 - [a] There are d + 1 points we cannot shatter
 - [b] There are d + 2 points we cannot shatter
 - [c] We cannot shatter any set of d+1 points
 - [d] We cannot shatter any set of d + 2 points

- To show $d_{VC} \le d + 1$, we need to show
 - We cannot shatter any set of d + 2 points

VC dimension of linear classifier

- To show $d_{VC} \le d + 1$, we need to show
 - We cannot shatter any set of d + 2 points
- For any d + 2 points
 - $x_1, x_2, ..., x_{d+1}, x_{d+2}$
- More points than dimensions ⇒ linear dependent

$$x_j = \sum_{i \neq j} a_i x_i$$

• Where not all a_i 's are zeros

VC dimension of linear classifier

$$x_j = \sum_{i \neq j} a_i x_i$$

Now we construct a dichotomy that cannot be generated:

$$y_i = \begin{cases} \operatorname{sign}(a_i) & \text{if } i \neq j \\ -1 & \text{if } i = j \end{cases}$$

VC dimension of linear classifier

$$x_j = \sum_{i \neq j} a_i x_i$$

Now we construct a dichotomy that cannot be generated:

$$y_i = \begin{cases} sign(a_i) & \text{if } i \neq j \\ -1 & \text{if } i = j \end{cases}$$

• For all $i \neq j$, assume the labels are correct: $sign(a_i) = sign(w^T x_i) \Rightarrow a_i w^T x_i > 0$

VC dimension of linear classifier

$$x_j = \sum_{i \neq j} a_i x_i$$

Now we construct a dichotomy that cannot be generated:

$$y_i = \begin{cases} \operatorname{sign}(a_i) & \text{if } i \neq j \\ -1 & \text{if } i = j \end{cases}$$

- For all $i \neq j$, assume the labels are correct: $sign(a_i) = sign(w^T x_i) \Rightarrow a_i w^T x_i > 0$
- Therefore, $y_j = \text{sign}(w^T x_j) = +1$ (cannot be -1)

Putting it together

- We proved for d-dimensional linear hyperplane
 - $d_{VC} \ge d + 1$ and $d_{VC} \le d + 1 \Rightarrow d_{VC} = d + 1$
- Number of parameters $w_0, ..., w_d$
 - d+1 parameters!

Putting it together

- We proved for d-dimensional linear hyperplane
 - $d_{VC} \ge d + 1$ and $d_{VC} \le d + 1 \Rightarrow d_{VC} = d + 1$
- Number of parameters $w_0, ..., w_d$
 - d+1 parameters!
- Parameters create degrees of freedom

Examples

• Positive rays: 1 parameters, $d_{VC} = 1$

Examples

• Positive rays: 1 parameters, $d_{VC} = 1$

$$h(x) = -1$$

$$h(x) = +1$$

• Positive intervals: 2 parameters, $d_{VC} = 2$

$$h(x) = -1$$
 $h(x) = +1$ $h(x) = -1$

Examples

• Positive rays: 1 parameters, $d_{VC} = 1$

$$h(x) = -1$$

$$a \qquad h(x) = +1$$

• Positive intervals: 2 parameters, $d_{VC} = 2$

$$h(x) = -1$$

$$h(x) = +1$$

$$h(x) = -1$$

- Not always true ...
 - d_{VC} measures the effective number of parameters

Number of data points needed

$$\mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \le 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2 N}$$

• If we want certain ϵ and δ , how does N depend on d_{VC} ?

Number of data points needed

$$\mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \le 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2 N}$$

- If we want certain ϵ and δ , how does N depend on d_{VC} ?
- Need $N^d e^{-N}$ = small value

Number of data points needed

$$\mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \le 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2 N}$$

- If we want certain ϵ and δ , how does N depend on d_{VC} ?
- Need $N^{d}e^{-N}$ = small value

N is almost linear with d_{VC}

The polynomial model

• $\mathcal{H}_{\mathcal{O}}$: polynomials of order Q

$$\mathcal{H}_Q = \{ \sum_{q=0}^Q w_q L_q(x) \}$$

• Linear regression in the ${\mathcal Z}$ space with

•
$$z = [1, L_1(x), ..., L_O(x)]$$

Unconstrained solution

- Input $(x_1, y_1), ..., (x_N, y_N) \rightarrow (z_1, y_1), ..., (z_N, y_N)$
- Linear regression:

• Minimize:
$$E_{tr}(w) = \frac{1}{N} \sum_{n=1}^{N} (w^{T} z_{n} - y_{n})^{2}$$

- Minimize: $\frac{1}{N}(Zw y)^T(Zw y)$
- Solution $w_{tr} = (Z^T Z)^{-1} Z^T y$

Constraining the weights

- Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} (with $w_q=0$ for q>2)

Constraining the weights

• Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} (with $w_q=0$ for q>2)

. Soft-order constraint: $\sum_{q=0}^{Q} w_q^2 \le C$

Constraining the weights

• Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} (with $w_q=0$ for q>2)

• Soft-order constraint:
$$\sum_{q=0}^{Q} w_q^2 \le C$$

• The problem given soft-order constraint:

Minimize
$$\frac{1}{N}(Zw-y)^T(Zw-y)$$
 s.t. $w^Tw \leq C$ smaller hypothesis space

• Solution w_{reg} instead of w_{tr}

Equivalent to the unconstrained version

- Constrained version:
 - $\min_{w} E_{\mathsf{tr}}(w) = \frac{1}{N} (Zw y)^{T} (Zw y)$
 - s.t. $w^T w \leq C$

- Optimal when
 - $\nabla E_{\text{tr}}(w_{\text{reg}}) \propto -w_{\text{reg}}$
 - Why? If $-\nabla E_{tr}(w_{reg})$ and w are not parallel, can decrease $E_{tr}(w)$ without violating the constraint

Equivalent to the unconstrained version

Constrained version:

•
$$\min_{w} E_{tr}(w) = \frac{1}{N} (Zw - y)^{T} (Zw - y)$$
 s.t. $w^{T} w \le C$

- Optimal when
 - $\nabla E_{\text{tr}}(w_{\text{reg}}) \propto -w_{\text{reg}}$
- Assume $\nabla E_{\text{tr}}(w_{\text{reg}}) = -2\frac{\lambda}{N}w_{\text{reg}} \Rightarrow \nabla E_{\text{tr}}(w_{\text{reg}}) + 2\frac{\lambda}{N}w_{\text{reg}} = 0$

Equivalent to the unconstrained version

· Constrained version:

•
$$\min_{w} E_{tr}(w) = \frac{1}{N} (Zw - y)^{T} (Zw - y)$$
 s.t. $w^{T} w \le C$

- Optimal when
 - $\nabla E_{\text{tr}}(w_{\text{reg}}) \propto -w_{\text{reg}}$
- Assume $\nabla E_{\mathrm{tr}}(w_{\mathrm{reg}}) = -2\frac{\lambda}{N}w_{\mathrm{reg}} \Rightarrow \nabla E_{\mathrm{tr}}(w_{\mathrm{reg}}) + 2\frac{\lambda}{N}w_{\mathrm{reg}} = 0$
- w_{reg} is also the solution of unconstrained problem
 - $\min_{w} E_{tr}(w) + \frac{\lambda}{N} w^{T} w$ (Ridge regression!)

Equivalent to the unconstrained version

Constrained version:

•
$$\min_{w} E_{tr}(w) = \frac{1}{N} (Zw - y)^{T} (Zw - y)$$
 s.t. $w^{T} w \le C$

- Optimal when
 - $\nabla E_{\text{tr}}(w_{\text{reg}}) \propto -w_{\text{reg}}$
- Assume $\nabla E_{\text{tr}}(w_{\text{reg}}) = -2\frac{\lambda}{N}w_{\text{reg}} \Rightarrow \nabla E_{\text{tr}}(w_{\text{reg}}) + 2\frac{\lambda}{N}w_{\text{reg}} = 0$
- w_{reg} is also the solution of unconstrained problem

•
$$\min_{w} E_{tr}(w) + \frac{\lambda}{N} w^{T} w$$
 (Ridge regression!) $C \uparrow \lambda \downarrow$

Ridge regression solution

L-2 regularization

$$\min_{w} E_{\text{reg}}(w) = \frac{1}{N} \left((Zw - y)^{T} (Zw - y) + \lambda w^{T} w \right)$$

•
$$\nabla E_{\text{reg}}(w) = 0 \Rightarrow Z^T Z(w - y) + \lambda w = 0$$

Ridge regression solution

$$\min_{w} E_{\text{reg}}(w) = \frac{1}{N} \left((Zw - y)^{T} (Zw - y) + \lambda w^{T} w \right)$$

•
$$\nabla E_{\text{reg}}(w) = 0 \Rightarrow Z^T Z(w - y) + \lambda w = 0$$
 Damping factor

• So, $w_{\text{reg}} = (Z^T Z + \lambda I)^{-1} Z^T y$ (with regularization) as opposed to $w_{\text{tr}} = (Z^T Z)^{-1} Z^T y$ (without regularization)

More numerical stable, as it could improve the Z^TZ condition by adding lamda I

The result

$$\min_{w} E_{\mathsf{tr}}(w) + \frac{\lambda}{N} w^{T} w$$

Equivalent to "weight decay"

Consider the general case

Equivalent to "weight decay"

Consider the general case

•
$$\min_{w} E_{\mathsf{tr}}(w) + \frac{\lambda}{N} w^T w$$

Gradient descent:

$$\begin{aligned} w_{t+1} &= w_t - \eta (\nabla E_{\mathsf{tr}}(w_t) + 2\frac{\lambda}{N} w_t) \\ &= w_t \ (1 - 2\eta \frac{\lambda}{N}) \ - \eta \, \nabla E_{\mathsf{tr}}(w_t) \\ &\underbrace{\text{weight decay}} \end{aligned}$$

Variations of weight decay

• Emphasis of certain weights:

$$\sum_{q=0}^{Q} \gamma_q w_q^2$$

- Example 1: $\gamma_q = 2^q \Rightarrow$ low-order fit
- Example 2: $\gamma_q = 2^{-q} \Rightarrow$ high-order fit

Variations of weight decay

• Emphasis of certain weights:

$$\sum_{q=0}^{Q} \gamma_q w_q^2$$

- Example 1: $\gamma_q = 2^q \Rightarrow$ low-order fit
- Example 2: $\gamma_q = 2^{-q} \Rightarrow$ high-order fit
- General Tikhonov regularizer:
 - $w^T H w$ with a positive semi-definite H

Variations of weight decay

• Calling the regularizer $\Omega = \Omega(h)$, we minimize

•
$$E_{\text{reg}}(h) = E_{\text{tr}}(h) + \frac{\lambda}{N}\Omega(h)$$

• In general, $\Omega(h)$ can be any measurement for the "size" of h

L2 vs L1 regularizer

. L1-regularizer:
$$\Omega(w) = \|w\|_1 = \sum_q |w_q|$$

- Usually leads to a sparse solution (only few \boldsymbol{w}_q will be nonzero)

