

Boundaryless EAM with Semantic Web Tools The Open Group London Event and Member Meeting

Thomas Kaleske, Senior Integration Architect, Kuehne + Nagel, Hamburg April 25-28, 2016 – London (UK)

Agenda

Business Overview

Semantic Web Project

Outlook and Questions

The Global Logistics Network

- Worldwide network more than 1,200 locations in over 100 countries
- Integrated service portfolio approximately 67,000 employees
- Net Turnover of CHF 16,731 million in 2015

Comprehensive Global Logistics Solutions

World Class Capabilities and Positioning

Airfreight
Top 2 globally

Contract Logistics
Top 2 globally

Seafreight
No.1 globally

Overland

Top 3 in Europe

Integrated Logistics
No.1 globally

3.8 million TEUs shipped

1.25 million tons handled

22.5 million road orders

9.5 million m²
Logistics Centre footprint
683 locations
58 countries

750 experts in 7 global Logistics Control Centres

Note: All figures relate to 2015

Dedicated Solutions for the World's Major Industries

Aerospace Automotive High-Tech Consumer

Pharma & Healthcare

Contract Logistics

Focus Verticals & Services

Agenda

Business Overview

Semantic Web Project

Outlook and Questions

Evaluation of Semantic Web Tools for EAM

Project from September 2015 to January 2016

Capabilities of EAM Tools (Kuehne + Nagel)

- 1. Meta Modelling (flexible data structures)
- Sophisticated Reporting (own query language)
- 3. Integration of Enterprise Information Sources
- 4. Visualization
- 5. Simple User Interface
- 6. Support of Different Stakeholders

Assumption:

Through semantic web and modern web technologies all required capabilities can be addressed

Semantic Web and the Technology Stack

Tim Berners Lee et.al. "The Semantic Web", Scientific American, May 2001

Sparql Protocol And Rdf Query Language (SPARQL)

Query language for RDF graph databases
Uses similar syntax as SQL (SELECT WHERE ...)

Web Ontology Language (OWL)

Family of knowledge representation languages (OWL Lite, OWL DL, OWL Full, OWL2 EL, OWL2 QL, OWL2 RL) based on description logic – provides simple inferencing

kn:HAM kn:locatedIn kn:WEU kn:Warehouse-HH1 kn:locatedIn kn:HAM

=> kn:Warehouse-HH1 kn:locatedIn kn:WEU

RDF Schema (RDFS)

Extension of RDF with classes, datatypes, domains, ranges...

Resource Description Framework (RDF)

Triples (subject predicate object) based on URI's and primitives, e.g. (turtle syntax)

@prefix kn: http://kuehne-nagel.com kn:HAM_kn:locatedIn_kn:WEU

Tool Selection for Evaluation Prototype

two key components

OWL Editor

Protégé was selected

- large set of plugins
- collaboration support (web version)

Note: the collaboration feature wasn't used, because of the limitations of the web version

Note: Commercial products were not investigated

Triple Store (RDF)

GraphDB from Ontotext was selected

- free version
- simple setup
- widely used RDF database
- supports all required features

Note: no commercial product selection

Features that we looked into

- SPARQL 1.1
- OWI 2
- User roles
- API's
- Runtime Environment
- Inference/Reasoning Engine
- Stackoverflow Count
- Free Version

Market Overview for Graph Databases

Bloor Research

Evaluation based on a Concrete Business Demand

Business impact analysis for the Parcel Carrier Integration Platform

Analysis of business and IT structures to support the incident manager

Flements

- Customers and carriers
- Organizational structures
- Servers and applications

Covered IT incidents

- server failure
- carrier connection failure

Ontology

Following ontology was defined during the prototype project

Web UI-Prototype with AngularJS and Bootstrap - Demo

(mainly selected, because of existing knowledge and layout reuse)

Application flow

- 1. Server or carrier is selected
- 2. Impacted customers are shown
- 3. Responsible persons are shown

Agenda

Outlook and Questions

Outlook

Three projects started to address different aspects on the next level

Incident Collaboration

- Implementation of a Business Impact Knowledge Base based on semantic web (semantic web sub project)
- Agile approach
- For all corporate core applications
- Focus on organizational aspects

Semantic Web Platform (university project)

- Evaluation of viable ontologies for EAM use cases (e.g. Archimate)
- Interface Catalog selected as use case
- Comparison with EAM tool implementation
- Identification of platform components

ITIL Ontology Evaluation (master thesis)

- Evaluation of ITIL ontology for infrastructure use cases
- ITSMO selected as ontology
- Identification of platform components

Vision for KN Semantic Web Platform

Collaborative initiative of all corporate IT departments

Thank you!

Any further questions?