COMP9336 Mobile Data Networking

Written by Jiayang Jiang

Task-1 Frequency re-use [2 marks]

a.

Therefore, when N = 9. We used i=3, j=0.

Therefore, when N = 12. We used i=2, j=2.

Task-2 Measuring cellular signal strength [2 marks]

I measured the RSRP value at four different spots within my home, ensuring each spot was no more than 1 meter away (horizontally) from the nearest spot. I used two different heights: the floor and a chair. I turned off WiFi and set my phone to 4G mode. Then, I placed my phone on the floor and on the chair, holding it in position for a few seconds at each spot to collect the RSRP data.

My screenshot:

RSRP value table:

	In bedroom(spot1)	Outside the	Living room center	Between two
		bedroom (spot2)	(spot3)	rooms (spot4)
Floor(dBm)	-106	-109	-102	-116
Chair(dBm)	-102	-104	-96	-113

The RSRP data indicates expected indoor signal behavior: strongest in the living room center (fewer obstacles, direct signal path), almost similar in and near rooms (wall attenuation), lowest between rooms (multiple wall blockage causing interference and a dead zone), and higher on a chair than the floor (less ground absorption and interference).

My carrier is **optus**, this is the coverage map for my place:

I live on the 6th floor at a street corner, this could benefit from fewer ground-level obstacles and an open corner location, improving the RSRP. However, multipath reflections from nearby buildings might affect the signal stability.