Melcome (1) Agenda: Djikstra's

Floyd Warshall Algo. Cobring bragh 2 gress.

Dijkstra's algo => Single source shortest path also for weighted graph with the weights.

Q There are N cities in a country, you are living in city 1. Find min. distance to reach every city from

d[1] = 0 L source)

d[2] = 2 d[2] = 2 d[3] = 2+2 = 4

Relaving an edge.

q (a[u_w] > a[u_v] + d[v_w]) d[υ_ω] = d[υ_ν] + d[ν_w]

Yi'>1 d[i] = INT_MAX

[d[s] + wt, s, d] $(\frac{1}{3}, \frac{1}{4}, \frac{1}{2})$ $(\frac{1}{3}, \frac{1}{4}, \frac{1}{4})$ $(\frac{1}{3}, \frac{1}$

d=[0 1 12 8 11 16]

P=[-1 1 4 1 4 5]

Find the min. distance path from source (1) to city 6.

Aus = 6 < 5 < 4 < 1

- De Insert all edges connected to source in min. heap.
- 2) het min. distance path from heap, update distance of destination if it is INT_MAX
- 3) Insert all edges connected to the poped out element which are not directed to modes for which we already have the answer. i.e. d[n] = INT_MAX

TE OLELOGE)

SC OLE)

Floyd Warshall Algo.

a Find min distance from every node to every other node.

mo 2D array.

Is shortest distance from 1A to B
is 5?

Howdes, consider it as a intermediate node. I try all alternate paths.

Distan	بو چ	1	2	3	4
	l	0	9	-4	8
\mathcal{D}_{i}	2	6	0	2	2
	3	000	5	0	8
	4	8	00	1	0

$$0 = \frac{1}{2} = \frac{3}{4} = \frac{4}{11}$$

$$0 = \frac{1}{2} = \frac{3}{4} = \frac{4}{11} = \frac{4}{11} = \frac{3}{11} = \frac{4}{11} = \frac{4}{11} = \frac{3}{11} = \frac{4}{11} = \frac{4}{11} = \frac{3}{11} = \frac{4}{11} = \frac{4}{$$

ay.	Wat Piec					
•	1	2	3	4		
ŧ	D	9	-4	٥		
2	6	D	G	Z		
3	O	5	Ð	0		
L	Ð	D	9	ာ		

1 is my intermediat	L.
d(2-3) d	(2-1) + d(1-3) 6 + -4 = 2
LL2-4) = 2	$d(2-1)+d(1-4)$ $= \infty$
d(3-2)	d(3-1)+d(1-2)
=5	o + 9

$$d(1-2) + d(2-4)$$

$$0$$

$$2 + 2 = 11$$

$$d(3-4)$$

$$0$$

$$3 + 2 = 7$$

Similarly consider 3 d 4 as intermediate mode to get ans.

Code for $(k \rightarrow 1 \text{ to } N) \leftarrow \text{decides intermediate node}$ {

for $(i \rightarrow 1 \text{ to } N) \leftarrow \text{source}$ {

for $(j \rightarrow 1 \text{ to } N) \leftarrow \text{destination}$ for $(j \rightarrow 1 \text{ to } N) \leftarrow \text{destination}$ if $(dCi)Cij) \rightarrow (dCi)Cik) + dCk)Cij)$ {

dCi)Cij) = (dCi)Cik) + dCk)Cijreturn d.

T: $C = O(N^3)$ S: C = O(1)

hvaph boloving

adjacent

odjacent

Aus= cnt=3.

Special cons.

1) Trees

cret = 2

2) lyde graph $CN = 2 + (N'/\cdot 2)$

Bipartite graph ((N=2)

=> broph can be divided into two sets st there is no egge blu nodes in the same set.

heck if the graph is bi-partite.

Travel and wolor all nodes s.t no 2 adjacent nodes have same color. If not possible, return fale. Hi, w[i] = -1

0,1 -> wlars $\omega [S] = 0$

boolean dfs (v) -> exsumed the graph to be connected and undirected. Otherwise, bondle for (v: adj[U]) accordingly.

if (w(Cv) == -1) $\omega([v] = 1 - \omega[[v]]$ if (!dfs(v)) return fale.

else if (101 (V) = = 101 [U])
return false. TIC -> O(N+E) S.C -> O(N) A country consist of N cities connected by (N-1) roods. King of that country want to construct man. roads s.t the cities can be divided into 2 sets of there is no road blu cities in the same set. Ebspartite Find man # new roads king can construct. ILP > wount of elements in set 2 d set 2 T.C -> O(N+E) SC -> O(N) New roads = (cnt 1 + ent 2) - (N-1) Total roads enisting possible? Is an=0