ELTORGANISATION FÜR GEISTIGES EIGENTU **PCT** Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C12N 15/52, 15/82, A61K 35/78, C07K 14/415

(11) Internationale Veröffentlichungsnummer:

WO 96/15248

(43) Internationales Veröffentlichungsdatum:

23. Mai 1996 (23.05.96)

(21) Internationales Aktenzeichen:

PCT/EP95/04415

A1

- (22) Internationales Anmeldedatum: 9. November 1995 (09.11.95)
- (30) Prioritätsdaten:

P 44 41 408.0

10. November 1994 (10.11.94) DE

- (71) Anmelder (für alle Bestimmungsstaaten ausser US): INSTITUT FÜR GENBIOLOGISCHE FORSCHUNG BERLIN GMBH [DE/DE]; [hnestrasse 63, D-14195 Berlin (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): KOSSMANN, Jens [DE/DE]; Koblenzer Strasse 1, D-10715 Berlin (DE). SPRINGER, Franziska [DE/DE]; Mühlenstrasse 1, D-14167 Berlin (DE). ABEL, Gernot, J. [AT/AT]; Pichlgut Au 36, A-5311 Post Loibichl (AT).
- (74) Anwalt: VOSSIUS & PARTNER; Postfach 86 07 67, D-81634 München (DE).

(81) Bestimmungsstaaten: AU, CA, HU, JP, SI, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: DNA MOLECULES THAT CODE FOR ENZYMES INVOLVED IN STARCH SYNTHESIS, VECTORS, BACTERIA, TRANSGENIC PLANT CELLS AND PLANTS CONTAINING SAID MOLECULES
- (54) Bezeichnung: DNA-MOLEKÜLE CODIEREND ENZYME, DIE AN DER STÄRKESYNTHESE BETEILIGT SIND, VEKTOREN, BAKTERIEN, TRANSGENE PFLANZENZELLEN UND PFLANZEN ENTHALTEND DIESE MOLEKÜLE

(57) Abstract

DNA molecules code for enzymes involved in starch synthesis in plants. These enzymes are two different isoforms of soluble starch synthase and a starch granule-bound starch synthase. Also disclosed are vectors, bacteria, plant cells transformed by said DNA molecules and regenerable plants derived therefrom, as well as starch that can be extracted from plants containing said proteins with an increased or reduced activity.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft DNA-Moleküle, die für Enzyme codieren, die an der Stärkesynthese in Pflanzen beteiligt sind. Bei diesen Enzymen handelt es sich um zwei verschiedene Isoformen der löslichen Stärkesynthase sowie um eine Stärkekorn-gebundene Stärkesynthase. Weiterhin betrifft diese Erfindung Vektoren, Bakterien, sowie mit den beschriebenen DNA-Molekülen transformierte Pflanzenzellen und aus diesen regenerierbare Pflanzen. Ferner betrifft die Erfindung Stärke, die aus Pflanzen mit gesteigerter oder verringerter Aktivität der beschriebenen Proteine isoliert werden kann.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Osterreich	GA	Gabon	MR	Manageria
ΑU	Australien	GB	Vereinigtes Königreich	MW	Mauretanien
BB	Barbados	GE	Georgien		Malawi
BE	Belgien	GN	Guinea	NE	Niger
BF	Burkina Faso	GR	Griechenland .	NL	Niederlande
BG	Bulgarien	HU		NO	Norwegen
BJ	Benin	IE	Ungam Irland	NZ	Neusceland'
BR	Brasilien	ΙŢ		PL	Polen
BY	Belarus		Italien	PT	Portugal
CA	Kanada	JP	Japan	RO	Rumānien
CF		KE	Kenya	RU	Russische Föderation
CG	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CH	Kongo Schweiz	KP	Demokratische Volksrepublik Korea	SE	Schweden
CI		KR	Republik Korea	SI	Slowenien
	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DΕ	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	-
Ft	Finnland	ML	Mali	UZ	Vereinigte Staaten von Amerika
FR	Frankreich	MN	Mongolei		Usbekistan
				ŅΝ	Vietnam

WO 96/15248 PCT/EP95/04415

DNA-Moleküle codierend Enzyme, die an der Stärkesynthese beteiligt sind, Vektoren, Bakterien, transgene Pflanzenzellen und Pflanzen enthaltend diese Moleküle

Die vorliegende Erfindung betrifft DNA-Moleküle, die Enzyme codieren, die an der Stärkesynthese in Pflanzen beteiligt sind. Bei diesen Enzymen handelt es sich um zwei verschiedene Isoformen der löslichen Stärkesynthase sowie um eine Stärkekorn-gebundene Stärkesynthase.

Weiterhin betrifft diese Erfindung Vektoren, Bakterien, sowie mit den beschriebenen DNA-Molekülen transformierte Pflanzenzellen und aus diesen regenerierbare Pflanzen.

Ferner werden Verfahren zur Herstellung transgener Pflanzen beschrieben, die aufgrund der Einführung von DNA-Molekülen, die lösliche bzw. Stärkekorn-gebundene Stärkesynthasen codieren, eine in ihren Eigenschaften veränderte Stärke synthetisieren.

Im Hinblick auf die zunehmende Bedeutung, die pflanzlichen Inhaltsstoffen als erneuerbaren Rohstoffquellen in letzter Zeit beigemessen wird, ist es eine der Aufgaben der biotechnologischen Forschung, sich um eine Anpassung dieser pflanzlichen Rohstoffe an die Anforderungen der verarbeitenden Industrie zu bemühen. Um eine Anwendung von nachwachsenden Rohstoffen in möglichst vielen Einsatzgebieten zu ermöglichen, ist es darüber hinaus erforderlich, eine große Stoffvielfalt zu erreichen.

Neben Ölen, Fetten und Proteinen stellen Polysaccharide die wesentlichen nachwachsenden Rohstoffe aus Pflanzen dar. Eine zentrale Stellung bei den Polysacchariden nimmt neben Cellulose die Stärke ein, die einer der wichtigsten Speicherstoffe in höheren Pflanzen ist. Neben Mais, Reis und Weizen spielt die Kartoffel bei der Stärkeproduktion eine wichtige Rolle.

Das Polysaccharid Stärke ist ein Polymer aus chemisch einheitlichen Grundbausteinen, den Glucosemolekülen. Es handelt sich dabei jedoch um ein sehr komplexes Gemisch aus unterschiedlichen Molekülformen, die sich hinsichtlich ihres Polymerisationsgrades und des Auftretens von Verzweigungen der Glucoseketten unterscheiden. Daher stellt Stärke keinen einheitlichen Rohstoff dar. Man unterscheidet insbesondere die Amylose-Stärke, ein im wesentlichen unverzweigtes Polymer aus α -1,4-glycosidisch verknüpften Glucosemolekülen, von der Amylopektin-Stärke, die ihrerseits ein komplexes Gemisch aus unterschiedlich verzweigten Glucoseketten darstellt. Die Verzweigungen kommen dabei durch das Auftreten von zusätzlichen α-1,6-glycosidischen Verknüpfungen zustande. In typischen für die Stärkeproduktion verwendeten Pflanzen, wie z.B. Mais oder Kartoffel, besteht die synthetisierte Stärke zu ca. 25 % aus Amylosestärke und zu ca. 75 % aus Amylopektin-Stärke.

Um eine möglichst breite Anwendung von Stärke zu ermöglichen, erscheint es wünschenswert, Pflanzen zur Verfügung zu stellen, die in der Lage sind, modifizierte Stärke zu synthetisieren, die sich für verschiedene Verwendungszwecke besonders eignet. Eine Möglichkeit, derartige Pflanzen bereitzustellen, besteht – neben züchterischen Maßnahmen – in der gezielten genetischen Veränderung des Stärkemetabolismus stärkeproduzierender Pflanzen durch gentechnologische Methoden. Voraussetzung hierfür ist jedoch die Identifizierung und Charakterisierung der an der Stärkesynthese und/oder –modifikation beteiligten Enzyme sowie die Isolierung der entsprechenden, diese Enzyme codierende DNA-Moleküle.

Die biochemischen Synthesewege, die zum Aufbau von Stärke führen, sind im wesentlichen bekannt. Die Stärkesynthese in pflanzlichen Zellen findet in den Plastiden statt. In photosynthetisch aktiven Geweben sind dies die Chloroplasten, in photosynthetisch inaktiven, stärkespeichernden Geweben die Amyloplasten.

Die wichtigsten an der Stärkesynthese beteiligten Enzyme sind die Stärkesynthasen sowie Verzweigungsenzyme. Bei den Stärkesynthasen sind verschiedene Isoformen beschrieben, die alle eine Polymerisierungsreaktion durch Übertragung eines Glucosylrestes von ADP-Glucose auf α -1,4-Glucane katalysieren. Verzweigungsenzyme katalysieren die Einführung von α -1,6-Verzweigungen in lineare α -1,4-Glucane.

Darüber hinaus wird die Beteiligung weiterer Enzymaktivitäten, beispielsweise hydrolytischer oder phosphorolytischer, an der Stärkesynthese diskutiert (Preiss in Oxford Surveys of Plant Molecular and Cell Biology, Oxford University Press, Vol. 7 (1991), 59-114). Im Fall des "R-Enzyms", des sogenannten Disproportionierungsenzyms, und der Stärkephosphorylasen kann ebenfalls eine Beteiligung an der Stärkesynthese nicht ausgeschlossen werden, obwohl diese Enzyme bisher meist mit dem Stärkeabbau in Verbindung gebracht werden. Stärkesynthasen können in zwei Klassen eingeteilt werden: die Stärkekorn-gebundenen Stärkesynthasen ("granule-bound starch synthases"; GBSS), die überwiegend an Stärkekörner gebunden, aber auch in löslicher Form vorliegen, und die löslichen Stärkesynthasen ("soluble starch synthases"; SSS). Für verschiedene Pflanzenspezies werden innerhalb dieser. Klassen wiederum verschiedene Isoformen beschrieben, die sich hinsichtlich ihrer Abhängigkeit von Startermolekülen unterscheiden (sogenannte "primer dependent" (Typ II) und "primer independent" (Typ I) starch synthases).

Lediglich für die Isoform GBSS I gelang es bisher, die genaue Funktion bei der Stärkesynthese zu ermitteln. Pflanzen, in denen diese Enzymaktivität stark oder vollkommen reduziert ist, synthetisieren eine amylosefreie (sogenannte "waxy") Stärke (Shure et al., Cell 35 (1983), 225-233; Visser et al., Mol. Gen. Genet. 225 (1991), 289-296; WO 92/11376), so daß diesem Enzym eine entscheidende Rolle bei der Synthese der Amylosestärke zugesprochen wird. Dieses Phänomen wird ebenfalls in Zellen der Grünalge Chlamydomonas reinhardtii beobachtet (Delrue et al., J. Bacteriol. 174 (1992), 3612-3620). Bei Chlamydomonas konnte darüber hinaus

gezeigt werden, daß GBSS I nicht nur an der Synthese der Amylose beteiligt ist, sondern auch einen Einfluß auf die Amylopektinsynthese besitzt. In Mutanten, die keine GBSS I-Aktivität aufweisen, fehlt eine bestimmte Fraktion des normalerweise synthetisierten Amylopektins, die längerkettige Glucane aufweist.

Die Funktionen der anderen Isoformen der Stärkekorn-gebundenen Stärkesynthasen, insbesondere der GBSS II, und der löslichen Stärkesynthasen sind bisher unklar. Es wird angenommen, daß die löslichen Stärkesynthasen zusammen mit Verzweigungsenzymen an der Synthese des Amylopektins beteiligt sind (siehe z.B. Ponstein et al., Plant Physiol. 92 (1990), 234-241) und daß sie eine wichtige Funktion bei der Regulation der Stärkesyntheserate spielen.

Bei Kartoffel wurden die Isoformen GBSS I, GBSS II, sowie zwei bzw. drei Isoformen der löslichen Stärkesynthasen, die bisher nicht näher bezeichnet wurden, identifiziert (Ponstein et al., Plant Physiol. 92 (1990), 234-241; Smith et al., Planta 182 (1990), 599-604; Hawker et al., Phytochemistry 11 (1972), 1287-1293). Für Erbse wurde ebenfalls eine GBSS II nachgewiesen (Dry et al., The Plant Journal 2,2 (1992), 193-202).

Eine GBSS I aus Kartoffel codierende cDNA sowie eine genomische DNA sind bereits beschrieben (Visser et al., Plant Sci. 64 (1989), 185-192; van der Leij et al., Mol. Gen. Genet. 228 (1991), 240-248). Nucleinsäuresequenzen, die weitere Stärkekorn-gebundene Stärkesynthasen oder eine der löslichen Stärkesynthase-Isoformen aus Kartoffel codieren, lagen jedoch bisher noch nicht vor.

Außer bei der Kartoffel wurden lösliche Stärkesynthasen auch in einer Reihe weiterer Pflanzenarten identifiziert. Lösliche Stärkesynthasen sind beispielsweise bis zur Homogenität aus Erbse (Denyer und Smith, Planta 186 (1992), 609-617) und Mais (WO 94/09144) isoliert worden. Im Fall der Erbse stellte sich heraus, daß die als SSS II identifizierte Isoform der löslichen Stärkesynthase identisch ist mit der

Stärkekorn-gebundenen Stärkesynthase GBSS II (Denyer et al., Plant J. 4 (1993), 191-198). Für einige weitere Pflanzenspezies wurde das Vorhandensein mehrerer SSS-Isoformen mit Hilfe chromatographischer Methoden beschrieben, beispielsweise bei Gerste (Tyynelä und Schulman, Physiologia Plantarum 89 (1993) 835-841; Kreis, Planta 148 (1980), 412-416), Mais (Pollock und Preiss, Arch. Biochem. Biophys. 204 (1980), 578-588) und Weizen (Rijven, Plant Physiol. 81 (1986), 448-453). DNA-Sequenzen, die diese Proteine codieren, wurden jedoch bisher nicht beschrieben.

Eine cDNA-Sequenz, die eine lösliche Stärkesynthase codiert, wurde bisher lediglich für Reis beschrieben (Baba et al., Plant Physiol. 103 (1993), 565-573).

Um Möglichkeiten bereitzustellen, beliebige stärkespeicherde Pflanzen dahingehend zu verändern, daß sie eine modifizierte Stärke synthetisieren, ist es erforderlich, jeweils DNA-Sequenzen zu identifizieren, die die verschiedenen Isoformen der Stärkekorn-gebundenen bzw. löslichen Stärkesynthasen codieren.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, DNA-Moleküle, insbesondere aus Kartoffel, zur Verfügung zu stellen, die an der Stärkebiosynthese beteiligte Enzyme codieren und mit deren Hilfe es möglich ist, gentechnisch veränderte Pflanzen herzustellen, die eine erhöhte oder erniedrigte Aktivität dieser Enzyme aufweisen, wodurch es zu einer Veränderung der chemischen und/oder physikalischen Eigenschaften der in diesen Pflanzen synthetisierten Stärke kommt.

Diese Aufgabe wird durch die Bereitstellung der in den Patentansprüchen bezeichneten Ausführungsformen gelöst.

Die Erfindung betrifft daher DNA-Moleküle, die Stärkesynthasen codieren, insbesondere solche DNA-Moleküle, die Stärkekorn-gebundene Stärkesynthasen der Isoform II codieren, als auch DNA-Moleküle, die lösliche Stärkesynthasen codieren.

Insbesondere betrifft die vorliegende Erfindung DNA-Mole-küle, die Proteine mit der biologischen Aktivität einer Stärkekorn-gebundenen Stärkesynthase der Isoform II (GBSSII) codieren oder ein biologisch aktives Fragment eines solchen Proteins, wobei derartige Moleküle vorzugsweise Proteine mit der unter Seq ID No. 8 angegebenen Aminosäuresequenz codieren. Insbesondere betrifft die Erfindung DNA-Moleküle mit der unter Seq D No. 7 angegebenen Nucleotidsequenz, bevorzugt Moleküle, die die in Seq ID No. 7 angegebene codierende Region umfassen.

Gegenstand der Erfindung sind ebenfalls DNA-Moleküle, die eine GBSSII codieren und deren Sequenz aufgrund der Degeneration des genetischen Codes von den Nucleotidsequenzen der oben beschriebenen DNA-Moleküle abweicht.

Ferner betrifft die vorliegende Erfindung DNA-Moleküle, die GBSSII codieren und die mit einem der oben beschriebenen DNA-Moleküle hybridisieren. Derartige DNA-Moleküle stammen vorzugsweise aus stärkespeichernden Pflanzen, insbesondere dicotylen Pflanzen, und besonders bevorzugt aus Kartoffel.

Die durch die erfindungsgemäßen DNA-Moleküle codierten GBSSII-Proteine haben vorzugsweise ein Molekulargewicht von 85±5 kD. GBSSII-Proteine liegen vorwiegend an Stärkekörner gebunden vor, können jedoch auch in löslicher Form vorliegen.

Ferner betrifft die vorliegende Erfindung DNA-Moleküle, die Proteine mit der biologischen Aktivität einer löslichen Stärkesynthase der Isoform B (SSSB) codieren oder ein biologisch aktives Fragment eines solchen Proteins, wobei derartige Moleküle vorzugsweise Proteine mit der unter Seq ID No. 10 angegebenen Aminosäuresequenz codieren. Insbesondere betrifft die Erfindung DNA-Moleküle mit der unter Seq ID No. 9 angegebenen Nucleotidsequenz, bevorzugt Moleküle, die die in Seq ID No. 9 angegebene codierende Region umfassen.

Gegenstand der Erfindung sind ebenfalls DNA-Moleküle, die eine SSSB codieren und deren Sequenz aufgrund der Degenera-

WO 96/15248 PCT/EP95/04415

7

tion des genetischen Codes von den Nucleotidsequenzen der oben beschriebenen DNA-Moleküle abweicht.

Ferner betrifft die vorliegende Erfindung DNA-Moleküle, die SSSB codieren und die mit einem der oben beschriebenen DNA-Moleküle hybridisieren. Ausgenommen sind dabei DNA-Moleküle aus Reis. Die gradurch die erfindungsgemäßen DNA-Moleküle codierten SSSB-Proteine haben vorzugsweise ein Molekulargewicht von 78±5 kD.

Die enzymatischen Eigenschaften der SSSB-Proteine sind in den Beispielen beschrieben.

Die Erfindung betrifft weiterhin DNA-Moleküle, die Proteine mit der biologischen Aktivität einer löslichen Stärkesynthase der Isoform A (SSSA) codieren. Derartige Proteine können beispielsweise dadurch charakterisiert werden, daß sie von einem Antikörper, der gegen das Peptid mit der Aminosäuresequenz

NH2-GTGGLRDTVENC-COOH (Seq ID No. 13)

gerichtet ist, erkannt werden. Die enzymatischen Eigenschaften der SSSA-Proteine sind in den Beispielen beschrieben. Ein Beispiel für ein DNA-Molekül, das ein derartiges Protein codiert, ist ein DNA-Molekül mit der in Seq ID No. 11 dargestellten codierenden Region. Dieses DNA-Molekül kann verwendet werden, um aus anderen Organismen, insbesondere Pflanzen DNA-Moleküle zu isolieren, die SSSA-Proteine codieren. Somit betrifft die vorliegende Erfindung auch DNA-Moleküle, die Proteine mit der biologischen Aktivität einer löslichen Stärkesynthase der Isoform A (SSSA) codieren oder ein biologisch aktives Fragment eines solchen Proteins, wobei derartige Moleküle vorzugsweise Proteine mit der unter Seq ID No. 12 angegebenen Aminosäuresequenz codieren. Insbesondere betrifft die Erfindung DNA-Moleküle mit der unter SeqID No. 11 angegebenen Nucleotidsequenz, bevorzugt Moleküle, die die in Seq ID No. 11 angegebene codierende Region umfassen.

Gegenstand der Erfindung sind ebenfalls DNA-Moleküle, die eine SSSA codieren und deren Sequenz aufgrund der Degeneration des genetischen Codes von den Nucleotidsequenzen der oben beschriebenen DNA-Moleküle abweicht.

Ferner betrifft die vorliegende Erfindung DNA-Moleküle, die SSSA codieren und die mit einem der oben beschriebenen DNA-Moleküle hybridisieren.

Das SSSA-Protein hat dabei vorzugsweise in einer SDS-Gelelektrophorese ein apparentes Molekulargewicht von ca. 120 bis 140 kD, insbesondere von ca. 135 kD.

Der Begriff "Hybridisierung" bedeutet im Rahmen dieser Erfindung eine Hybridisierung unter konventionellen Hybridisierungsbedingungen, vorzugsweise unter stringenten Bedingungen, wie sie beispielsweise in Sambrock et al., Molecular Cloning, A Laboratory Manual, 2. Aufl. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) beschrieben sind. DNA-Moleküle, die mit den erfindungsgemäßen DNA-Molekülen hybridisieren, können prinzipiell aus jedem beliebigen Organismus (d.h. Proparyonten oder Eukaryonten, insbesondere aus Bakterien, Pilzen, Algen, Pflanzen oder tierischen Oprganismen) stammen, der derartige DNA-Moleküle besitzt. Sie stammen vorzugsweise aus monokotylen oder dikotylen Pflanzen, insbesondere aus Nutzpflanzen, und besonders bevorzugt aus Stärke-speichernden Pflanzen.

DNA-Moleküle, die mit den erfindungsgemäßen DNA-Molekülen hybridisieren, können z.B. aus genomischen oder aus cDNA-Bibliotheken verschiedener Organismen isoliert werden.

Die Identifizierung und Isolierung derartiger DNA-Moleküle aus Pflanzen oder anderen Organismen kann dabei unter Verwendung der erfindungsgemäßen DNA-Moleküle oder Teile dieser DNA-Moleküle bzw. der reversen Komplemente dieser Moleküle erfolgen, z.B. mittels Hybridisierung nach Standardverfahren (siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).

Als Hybridisierungsprobe können z.B. DNA-Moleküle verwendet werden, die exakt die oder im wesentlichen die unter Seq ID No. 7, 9 oder 11 angegebene DNA-Sequenz oder Teile dieser Sequenz aufweisen. Bei den als Hybridisierungsprobe verwendeten DNA-Fragmenten kann es sich auch um synthetische DNA-Fragmente handeln; die mit Hilfe der gängigen DNA-Synthesetechniken hergestellt wurden und deren Sequenz im wesentlichen mit der eines erfindungsgemäßen DNA-Moleküls übereinstimmt. Hat man Gene identifiziert und isoliert, die mit den erfindungsgemäßen DNA-Sequenzen hybridisieren, ist eine Bestimmung der Sequenz und eine Analyse der Eigenschaften der von dieser Sequenz codierten Proteine erforderlich.

Die mit den erfindungsgemäßen DNA-Molekülen hybridisierenden Moleküle umfassen auch Fragmente, Derivate und allelische Varianten der oben beschriebenen DNA-Moleküle, die eines der oben beschriebenen Proteine codieren. Unter Fragmenten werden dabei Teile der DNA-Moleküle verstanden, die lang genug sind, um eines der beschriebenen Proteine zu codieren. Der Ausdruck Derivat bedeutet in diesem Zusammenhang, daß die DNA-Sequenzen dieser Moleküle sich von den Sequenzen der oben beschriebenen DNA-Moleküle an einer oder mehreren Positionen unterscheiden und einen hohen Grad an Homologie zu diesen DNA-Sequenzen aufweisen. Homologie bedeutet dabei eine Sequenzidentität von mindestens 40 %, insbesondere eine Identität von mindestens 60 %, vorzugsweise über 80 % und besonders bevorzugt über 90 %. Die Abweichungen zu den oben beschriebenen DNA-Molekülen können dabei durch Deletion, Substitution, Insertion oder Rekombination entstanden sein. Homologie bedeutet ferner, daß funktionelle und/oder strukturelle Äquivalenz zwischen den betreffenden DNA-Molekülen oder den durch sie codierten Proteinen, besteht. Bei den DNA-Molekülen, die homolog zu den oben beschriebenen DNA-Molekülen sind und Derivate dieser DNA-Moleküle darstellen, handelt es sich in der Regel um Variationen dieser DNA-Moleküle, die Modifikationen darstellen, die dieselbe biologische Funktion ausüben. Es kann sich dabei sowohl um natürlicherweise auftretende Variationen handeln, beispielsweise um Sequenzen aus anderen Organismen, oder um Mutationen, wobei diese Mutationen auf natürliche Weise aufgetreten sein können oder durch gezielte Mutagenese eingeführt wurden. Ferner kann es sich bei den Variationen um synthetisch hergestellte Sequenzen handeln. Bei den allelischen Varianten kann es sich sowohl um natürlich auftretende Varianten handeln, als auch um synthetisch hergestellte oder durch rekombinante DNA-Techniken erzeugte Varianten.

Die von den verschiedenen Varianten der erfindungsgemäßen DNA-Moleküle codierten Proteine weisen bestimmte gemeinsame Charakteristika auf. Dazu können z.B. Enzymaktivität, Molekulargewicht, immunologische Reaktivität, Konformation etc. gehören, sowie physikalische Eigenschaften wie z.B. das Laufverhalten in Gelelektrophoresen, chromatographisces Verhalten, Sedimentationskoeffizienten, Löslichkeit, spektroskopische Eigenschaften, Stabilität; pH-Optimum, Temperatur-Optimum etc.

Wichtige Charakteristika einer Stärkesynthase sind: i) ihre Lokalisation im Stroma der Plastiden pflanzlicher Zellen; ii) ihre Fähigkeit zur Synthese linearer α -1,4-verknüpfter Polyglucane unter Verwendung von ADP-Glucose als Substrat. Diese Aktivität kann wie in Denyer und Smith (Planta 186 (1992), 606-617) und in den Beispielen beschrieben bestimmt werden.

Die erfindungsgemäßen DNA-Moleküle können prinzipiell aus jedem Organismus stammen, der die beschriebenen Proteine exprimiert, vorzugsweise aus Pflanzen, insbesondere aus stärkesynthetisierenden bzw. stärkespeichernden Pflanzen. Diese können sowohl monokotyle oder auch dikotyle Pflanzen sein. Besonders bevorzugt sind dabei z.B. Getreidearten (wie Gerste, Roggen, Hafer, Weizen etc.), Mais, Reis, Erbse, Maniok, Kartoffel usw.

Ferner betrifft die Erfindung Vektoren, insbesondere Plasmide, Cosmide, Viren, Bacteriophagen und andere in der Gentechnik gängige Vektoren, die die oben beschriebenen erfindungsgemäßen DNA-Moleküle enthalten.

In einer bevorzugten Ausführungsform sind die in den Vektoren enthaltenen DNA-Moleküle verknüpft mit DNA-Elementen, die die Transkription und Synthese einer translatierbaren RNA in prokaryontischen oder eukaryontischen Zellen gewährleisten.

Die Expression der erfindungsgemäßen DNA-Moleküle in prokaryontischen Zellen, beispielsweise in Escherichia coli, ist insofern interessant, als daß auf diese Weise eine genauere Charakterisierung der enzymatischen Aktivitäten dieser Enzyme, für die diese Moleküle codieren, ermöglicht wird. Es ist insbesondere möglich, das Produkt, das von den entsprechenden Enzymen in Abwesenheit anderer, in der pflanzlichen Zelle an der Stärkesynthese beteiligter Enzyme synthetisiert wird, zu charakterisieren. Dies läßt Rückschlüsse zu auf die Funktion, die das entsprechende Protein bei der Stärkesynthese in der Pflanzenzelle ausübt.

Darüber hinaus ist es möglich, mittels gängiger molekular-biologischer Techniken (siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) verschiedenartige Mutationen in die erfindungsgemäßen DNA-Moleküle einzuführen, wodurch es zur Synthese von Proteinen mit eventuell veränderten biologischen Eigenschaften kommt. Hierbei ist zum einen die Erzeugung von Deletionsmutanten möglich, bei denen durch fortschreitende Deletionen vom 5'- oder vom 3'- Ende der codierenden DNA-Sequenz DNA-Moleküle erzeugt werden, die zur Synthese entsprechend verkürzter Proteine führen. Durch derartige Deletionen am 5'-Ende der DNA-Sequenz ist es beispielsweise möglich, Aminosäuresequenzen zu identifizieren, die für die Translokation des Enzyms in die Plastiden verantwortlich sind (Transitpeptide). Dies erlaubt

es, gezielt Enzyme herzustellen, die durch Entfernen der entsprechenden Sequenzen nicht mehr in den Plastiden, sondern im Cytosol lokalisiert sind, oder aufgrund der Addition von andereren Signalsequenzen in anderen Kompartimenten lokalisiert sind.

Andererseits ist auch die Einführung von Punktmutationen denkbar an Positionen, bei denen eine Veränderung der Aminosäuresequenz einen Einfluß beispielweise auf die Enzymaktivität oder die Regulierung des Enzyms hat. Auf diese Weise können z.B. Mutanten hergestellt werden, die einen veränderten K_m-Wert besitzen oder nicht mehr den normalerweise in der Zelle vorliegenden Regulationsmechanismen über allosterische Regulation oder kovalente Modifizierung unterliegen. Des weiteren können Mutanten hergestellt werden, die eine veränderte Substrat- oder Produktspezifität aufweisen, wie z.B. Mutanten, die als Substrat ADP-Glucose-6-Phosphat anstatt ADP-Glucose verwenden. Weiterhin können Mutanten hergestellt werden, die ein verändertes Aktivitäts-Temperatur-Profil aufweisen.

Für die gentechnische Manipulation in prokaryontischen Zellen können die erfindungsgemäßen DNA-Moleküle oder Teile dieser Moleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe von Standardverfahren (vgl. Sambrook et al., 1989, Molecular Cloning: A laboratory manual, 2. Aufl., Cold Spring Harbor Laboratory Press, NY, USA) können Basenaustausche vorgenommen oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder linker angesetzt werden. Ferner können Manipulationen, die passende Restriktionsschnittstellen zur Verfügung stellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen in Frage kommen, können in vitro-Mutagenese, "primer repair", Restriktion oder Ligation verwendet werden. Als Analysemethode werden im allgemeinen

eine Sequenzanalyse, eine Restriktionsanalyse und weitere biochemisch-molekularbiologische Methoden durchgeführt.

In einer weiteren Ausführungsform betrifft die Erfindung Wirtszellen, insbesondere prokaryontische oder eukaryontische Zellen, die ein oben beschriebenes erfindungsgemäßes DNA-Molekül oder einen erfindungsgemäßen Vektor enthalten. Dabei handelt es sich vorzugsweise um bakterielle Zellen oder pflanzliche Zellen.

Gegenstand der Erfindung sind ferner die Proteine, die durch die erfindungsgemäßen DNA-Moleküle codiert werden, sowie Verfahren zu deren Herstellung, wobei eine erfindungsgemäße Wirtszelle unter Bedingungen kultiviert wird, die die Synthese des Proteins erlauben, und das Protein aus den kultivierten Zellen und/oder dem Kulturmedium isoliert wird.

Es wurde nun gefunden, daß es durch die Bereitstellung der erfindungsgemäßen DNA-Moleküle möglich ist, mit Hilfe gentechnischer Methoden in den Stärkemetabolismus von Pflanzen einzugreifen, wie es bisher nicht möglich war, und ihn dahingehend zu verändern, daß es zur Synthese einer Stärke kommt, die in ihren physikalisch-chemischen Eigenschaften, insbesondere dem Amylose/Amylopektin-Verhältnis, dem Verzweigungsgrad, der durchschnittlichen Kettenlänge, dem Phosphatgehalt, der Verkleisterung, der Stärkekorngröße und/oder der Stärkekornform im Vergleich zu in Wildtyp-Pflanzen synthetisierter Stärke verändert ist. Lösliche Stärkesynthasen spielen beispielsweise eine zentrale Rolle bei der Regulation der Syntheserate der Stärke. Daher ist durch eine Erhöhung der Aktivität dieser Enzyme oder durch die Bereitstellung von Mutanten, die nicht mehr den zelleigenen Reguunterliegen und/oder unterschiedliche lationsmechanismen Temperaturabhängigkeiten in bezug auf ihre Aktivität besitzen, eine Ertragssteigerung in entsprechend gentechnisch veränderten Pflanzen möglich. Die wirtschaftliche Bedeutung der Möglichkeit des Eingriffs in die Stärkesynthese allein WO 96/15248 PCT/EP95/04415

14

bei Kartoffelpflanzen ist offensichtlich: Die Kartoffel ist beispielsweise in Europa neben Mais und Weizen eine der wichtigsten Pflanzen zur Stärkegewinnung. Ca. 20 % der in Europa jährlich produzierten Stärke wird aus Kartoffeln gewonnen. Ferner weist Kartoffelstärke im Vergleich zu Stärke aus Mais und Weizen einige vorteilhafte Eigenschaften auf, beispielsweise einen niedrigen Protein- und Lipidgehalt sowie verhältnismäßig große Stärkekörner, Phosphatgehalt, weshalb sie, falls dies möglich ist, vorzugsweise verwendet wird.

Möglich ist somit die Expression der erfindungsgemäßen DNAMoleküle in pflanzlichen Zellen, um die Aktivität einer oder
mehrerer Stärkesynthasen zu erhöhen. Ferner ist es möglich,
die erfindungsgemäßen DNA-Moleküle nach dem Fachmann bekannten Methoden zu modifizieren, um Stärkesynthasen zu erhalten, die nicht mehr den zelleigenen Regulationsmechanismen
unterliegen, bzw. veränderte Temperaturabhängigkeiten oder
Substrat- bzw. Produktspezifitäten aufweisen.

Es besteht grundsätzlich die Möglichkeit, daß das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein kann. Um die Lokalisation in einem bestimmten Kompartiment zu erreichen, muß die die Lokalisation in Plastiden gewährleistende Sequenz deletiert werden und die verbleibende codierende Region gegebenenfalls mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in dem jeweiligen Kompartiment gewährleisten. Derartige Sequenzen sind bekannt (Siehe beispielsweise Braun et al., 1992, EMBO J. 11:3219-3227; Wolter et al., 1988, Proc. Natl. Acad. Sci. USA 85:846-850; Sonnewald et al., 1991, Plant J. 1:95-106).

Die vorliegende Erfindung betrifft somit auch transgene Pflanzenzellen, die ein erfindungsgemäßes DNA-Molekül enthalten, wobei dieses mit regulatorischen DNA-Elementen verknüpft ist, die die Transkription in pflanzlichen Zellen ge-

währleisten, insbesondere mit einem Promotor, der in bezug auf das DNA-Molekül heterolog ist.

Die transgenen Pflanzenzellen können nach dem Fachmann bekannten Techniken zu ganzen Pflanzen regeneriert werden. Die durch Regeneration der erfindungsgemäßen transgenen Pflanzenzellen erhältlichen Pflanzen sind ebenfalls Gegenstand der vorliegenden Erfindung. Ferner sind Gegenstand der Enfindung Pflanzen, die die obenbeschriebenen transgenen Pflanzenzellen enthalten. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h. sowohl monokotyle als auch dikotyle Pflanzen. Bevorzugt handelt es sich um Nutzpflanzen, wie z.B. Getreidearten (Roggen, Gerste Hafer, Weizen etc.), Reis, Mais, Erbse, Maniok oder Kartoffel.

Die Erfindung betrifft ebenfalls Vermehrungsmaterial der erfindungsgemäßen Pflanzen, beispielsweise Früchte, Samen, Knollen, Stecklinge etc.

Die erfindungsgemäßen transgenen Pflanzenzellen und Pflanzen synthetisieren aufgrund der Expression bzw. zusätzlichen Expression eines erfindungsgemäßen DNA-Moleküls eine Stärke, die im Vergleich zu Stärke aus Wildtyp-Pflanzen, d.h. nichttransformierten Pflanzen, modifiziert ist, insbesondere im Hinblick auf die Viskosität wäßriger Lösungen dieser Stärke und/oder den Phosphatgehalt.

Gegenstand der vorliegenden Erfindung ist somit auch die aus den erfindungsgemäßen transgenen Pflanzenzellen und Pflanzen erhältliche Stärke.

Ein weiterer Gegenstand der Erfindung sind transgene Pflanzenzellen, in denen die Aktivität eines erfindungsgemäßen Proteins verringert ist im Vergleich zu nicht-transformierten Pflanzen. Es wurde gefunden, daß es in Pflanzenzellen mit einer verringerten Aktivität eines erfindungsgemäßen Proteins zur Synthese einer Stärke mit veränderten chemischen und/oder physikalischen Eigenschaften kommt verglichen mit Stärke aus Wildtyp-Pflanzenzellen.

WO 96/15248 PCT/EP95/04415

16

Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines erfindungsgemäßen Proteins kann beispiels-weise unter Verwendung der erfindungsgemäßen DNA-Moleküle erreicht werden. Möglich sind hierbei die Expression einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte spaltet, die eines der erfindungsgemäßen Proteine codieren. Vorzugsweise wird zur Reduzierung der Aktivität eines erfindungsgemäßen Proteins in pflanzlichen Zellen eine antisense-RNA exprimiert.

Hierzu kann zum einen ein DNA-Molekül verwendet werden, das die gesamte für ein erfindungsgemäßes Protein codierende Sequenz einschließlich eventuell vorhandener flankierender Sequenzen umfaßt, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Es können im allgemeinen Sequenzen bis zu einer Mindestlänge von 15 bp, vorzugsweise einer Länge von 100-500 bp, für eine effiziente antisense-Inhibition insbesondere Sequenzen mit einer Länge über 500 bp verwendet werden. In der Regel werden DNA-Moleküle verwendet, die kürzer als 5000 bp, vorzugsweise Sequenzen, die kürzer als 2500 bp sind. Bevorzugt werden DNA-Moleküle verwendet, die homolog in bezug auf die zu transformierende Pflanzenspezies sind.

Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den Sequenzen der erfindungsgemäßen DNA-Moleküle aufweisen, aber nicht vollkommen identisch sind. Die minimale Homologie sollte größer als ca. 65 % sein. Die Verwendung von Sequenzen mit Homologien zwischen 95 und 100 % ist zu bevorzugen.

Die erfindungsgemäßen transgenen Pflanzenzellen können nach dem Fachmann bekannten Techniken zu ganzen Pflanzen regeneriert werden. Gegenstand der Erfindung sind somit auch Pflanzen, die die erfindungsgemäßen transgenen Pflanzenzellen enthalten. Bei diesen Pflanzen kann es sich prinzipiell

um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h. sowohl monokotyle als auch dikotyle Pflanzen. Vorzugsweise handelt es sich um Nutzpflanzen, insbesondere stärkespeichernde Pflanzen, wie z.B. Getreidearten (Roggen, Gerste, Hafer, Weizen, etc.), Reis, Mais, Erbse, Maniok oder Kartoffel. Die Erfindung betrifft ebenfalls Vermehrungsmaterial der erfindungsgemäßen Pflanzen, wie z.B. Früchte, Samen, Knollen, Stecklinge etc.

Die erfindungsgemäßen transgenen Pflanzenzellen und Pflanzen synthetisieren aufgrund der Verringerung der Aktivität eines der erfindungsgemäßen Proteine eine Stärke, die im Vergleich zu Stärke aus nicht-transformierten Pflanzenzellen bzw. Pflanzen veränderte chemische und/oder physikalische Eigenschaften aufweisen. Diese Stärke zeigt beispielsweise eine veränderte Viskosität ihrer wäßrigen Lösungen und/oder einen veränderten Phosphatgehalt.

Gegenstand der Erfindung ist somit auch die aus den vorgehend beschriebenen transgenen Pflanzenzellen und Pflanzen erhältliche Stärke.

Die erfindungsgemäßen Stärken können nach dem Fachmann bekannten Verfahren modifiziert werden und eignen sich in unmodifizierter oder modifizierter Form für verschiedene Verwendungen im Nahrungsmittel- oder Nicht-Nahrungsmittelbereich.

Die Einsatzmöglichkeit der Stärke läßt sich grundsätzlich in zwei große Bereiche unterteilen. Der eine Bereich umfaßt die Hydrolyseprodukte der Stärke, hauptsächlich Glucose und Glucanbausteine, die über enzymatische oder chemische Verfahren erhalten werden. Sie dienen als Ausgangsstoff für weitere chemische Modifikationen und Prozesse, wie Fermentation. Von Bedeutung kann hier die Einfachheit und kostengünstige Ausführung eines Hydrolyseverfahrens sein, wie es gegenwärtig im wesentlichen enzymatisch unter Verwendung von

Amyloglucosidase verläuft. Vorstellbar wäre eine Kosteneinsparung durch einen geringeren Einsatz von Enzymen. Eine Strukturveränderung der Stärke, z.B. Oberflächenvergrößerung des Korns, leichtere Verdaulichkeit durch geringeren Verzweigungsgrad oder eine sterische Struktur, die die Zugänglichkeit für die eingesetzten Enzyme begrenzt, könnte dies bewirken.

Der andere Bereich, in dem die Stärke wegen ihrer polymeren Struktur als sogenannte native Stärke verwendet wird, gliedert sich in zwei weitere Einsatzgebiete:

1. Nahrungsmittelindustrie

Stärke ist ein klassischer Zusatzstoff für viele Nahrungsmittel, bei denen sie im wesentlichen die Funktion des Bindens von wäßrigen Zusatzstoffen übernimmt bzw. eine Erhöhung der Viskosität oder aber eine erhöhte Gelbildung hervorruft. Wichtige Eigenschaftsmerkmale sind das Fließ- und Sorptionsverhalten, die Quell- und Verkleisterungstemperatur, die Viskosität und Dickungsleistung, die Löslichkeit der Stärke, die Transparenz und Kleisterstruktur, die Hitze-, Scher- und Säurestabilität, die Neigung zur Retrogradation, die Fähigkeit zur Filmbildung, die Gefrier/Taustabilität, die Verdaulichkeit sowie die Fähigkeit zur Komplexbildung mit z.B. anorganischen oder organischen Ionen.

2. Nicht-Nahrungmittelindustrie

In diesem großen Bereich wird Stärke als Hilfsstoff für unterschiedliche Herstellungsprozesse bzw. als Zusatzstoff in technischen Produkten eingesetzt. Bei der Verwendung von Stärke als Hilfsstoff ist hier insbesondere die Papier- und Pappeindustrie zu nennen. Stärke dient dabei in erster Linie zur Retardation (Zurückhaltung von Feststoffen), der Abbindung von Füllstoff- und Feinstoffteilchen, als Festigungsstoff und zur Entwässerung. Darüber hinaus werden die günstigen Eigenschaften der Stärke in bezug auf die Steifigkeit, die Härte, den Klang, den Griff, den Glanz, die

WO 96/15248 PCT/EP95/04415

19

Glätte, die Spaltfestigkeit sowie die Oberflächen ausgenutzt.

2.1 Papier- und Pappeindustrie

Innerhalb des Papierherstellungsprozesses sind vier Anwendungsbereiche, nämlich Oberfläche, Strich, Masse und Sprühen, zu unterscheiden.

Die Anforderungen an die Stärke in bezug auf die Oberflächenbehandlung sind im wesentlichen ein hoher Weißegrad, eine angepaßte Viskosität, eine hohe Viskositätsstabilität, eine gute Filmbildung sowie eine geringe Staubbildung. Bei der Verwendung im Strich spielt der Feststoffgehalt, eine angepaßte Viskosität, ein hohes Bindevermögen sowie eine hohe Pigmentaffinität eine wichtige Rolle. Als Zusatz zur Masse ist eine rasche, gleichmäßige, verlustfreie Verteilung, eine hohe mechanische Stabilität und eine vollständige Zurückhaltung im Papierfließ von Bedeutung. Beim Einsatz der Stärke im Sprühbereich sind ebenfalls ein angepaßter Feststoffgehalt, hohe Viskosität sowie ein hohes Bindevermögen von Bedeutung.

2.2 Klebstoffindustrie

Ein großer Einsatzbereich der Stärken besteht in der Klebstoffindustrie, wo man die Einsatzmöglichkeiten in vier Teilbereiche gliedert: die Verwendung als reinem Stärkeleim, die Verwendung bei mit speziellen Chemikalien aufbereiteten Stärkeleimen, die Verwendung von Stärke als Zusatz zu synthetischen Harzen und Polymerdispersionen sowie die Verwendung von Stärken als Streckmittel für synthetische Klebstoffe. 90 % der Klebstoffe auf Stärkebasis werden in den Bereichen Wellpappenherstellung, Herstellung von Papiersäcken, Beuteln und Tüten, Herstellung von Verbundmaterialien für Papier und Aluminium, Herstellung von Kartonagen und Wiederbefeuchtungsleim für Briefumschläge, Briefmarken usw. eingesetzt.

WO 96/15248 PCT/EP95/04415

20

2.3 Textil- und Textilpflegemittelindustrie

Ein großes Einsatzfeld für Stärken als Hilfmittel und Zusatzstoff ist der Bereich Herstellung von Textilien und Textilpflegemitteln. Innerhalb der Textilindustrie sind die folgenden vier Einsatzbereiche zu unterscheiden: Der Einsatz der Stärke als Schlichtmittel, d.h. als Hilfstoff zur Glättung und Stärkung des Klettverhaltens zum Schutz gegen die beim Weben angreifenden Zugkräfte sowie zur Erhöhung der Abriebfestigkeit beim Weben, Stärke als Mittel zur Textilaufrüstung vor allem nach qualitätsverschlechternden Vorbehandlungen, wie Bleichen, Färben usw., Stärke als Verdickungsmittel bei der Herstellung von Farbpasten zur Verhinderung von Farbstoffdiffusionen sowie Stärke als Zusatz zu Kettungsmitteln für Nähgarne.

2.4 Baustoffindustrie

Der vierte Einsatzbereich ist die Verwendung der Stärken als Zusatz bei Baustoffen. Ein Beispiel ist die Herstellung von Gipskartonplatten, bei der die im Gipsbrei vermischte Stärke mit dem Wasser verkleistert, an die Oberfläche der Gipsplatte diffundiert und dort den Karton an die Platte bindet. Weitere Einsatzbereiche sind die Beimischung zu Putz- und Mineralfasern. Bei Transportbeton werden Stärkeprodukte zur Verzögerung der Abbindung eingesetzt.

2.5 Bodenstabilisation

Ein weiterer Markt für Stärke bietet sich bei der Herstellung von Mitteln zur Bodenstabilisation an, die bei künstlichen Erdbewegungen zum temporären Schutz der Bodenpartikel gegenüber Wasser eingesetzt werden. Kombinationsprodukte aus Stärke und Polymeremulsionen sind nach heutiger Kenntnis in ihrer Erosions- und verkrustungsmindernden Wirkung den bisher eingesetzten Produkten gleichzusetzen, liegen preislich aber deutlich unter diesen.

2.6 Einsatz bei Pflanzenschutz- und Düngemitteln

Ein Einsatzbereich liegt bei der Verwendung der Stärke in Pflanzenschutzmitteln zur Veränderung der spezifischen Eigenschaften der Präparate. So werden Stärken zur Verbesserung der Benetzung von Pflanzenschutz- und Düngemitteln, zur dosierten Freigabe der Wirkstoffe, zur Umwandlung flüssiger, flüchtiger und/oder übelriechender Wirkstoffe in mikrokristalline, stabile, formbare Substanzen, zur Mischung inkompatibler Verbindungen und zur Verlängerung der Wirkdauer durch Verminderung der Zersetzung eingesetzt.

2.7 Pharmaka, Medizin und Kosmetikindustrie

Ein weiteres Einsatzgebiet besteht im Bereich der Pharmaka, Medizin und Kosmetikindustrie. In der pharmazeutischen Industrie werden Stärken als Bindemittel für Tabletten oder zur Bindemittelverdünnung in Kapseln eingesetzt. Weiterhin dienen Stärken als Tablettensprengmittel, da sie nach dem Schlucken Flüssigkeit absorbieren und nach kurzer Zeit soweit quellen, daß der Wirkstoff freigesetzt wird. Medizinische Gleit- und Wundpuder basieren aus qualitativen Gründen auf Stärke. Im Bereich der Kosmetik werden Stärken beispielsweise als Träger von Puderzusatzstoffen, wie Düften und Salicylsäure eingesetzt. Ein relativ großer Anwendungsbereich für Stärke liegt bei Zahnpasta.

2.8 Stärkezusatz zu Kohle und Brikett

Einen Einsatzbereich bietet die Stärke als Zusatzstoff zu Kohle und Brikett. Kohle kann mit einem Stärkezusatz quantitativ hochwertig agglomeriert bzw. brikettiert werden, wodurch ein frühzeitiges Zerfallen der Briketts verhindert wird. Der Stärkezusatz liegt bei Grillkohle zwischen 4 und 6%, bei kalorierter Kohle zwischen 0,1 und 0,5%. Des weiteren gewinnen Stärken als Bindemittel an Bedeutung, da durch ihren Zusatz zu Kohle und Brikett der Ausstoß schädlicher Stoffe deutlich vermindert werden kann.

2.9 Erz- und Kohleschlammaufbereitung

Die Stärke kann ferner bei der Erz- und Kohleschlammaufbereitung als Flockungsmittel eingesetzt werden.

2.10 Gießereihilfsstoff

Ein weiterer Einsatzbereich besteht als Zusatz zu Gießereihilfsstoffen. Bei verschiedenen Gußverfahren werden Kerne
benötigt, die aus Bindemittel-versetzten Sänden hergestellt
werden. Als Bindemittel wird heute überwiegend Bentonit eingesetzt, das mit modifizierten Stärken, meist Quellstärken,
versetzt ist.

Zweck des Stärkezusatzes ist die Erhöhung der Fließfestigkeit sowie die Verbesserung der Bindefestigkeit. Darüber hinaus können die Quellstärken weitere produktionstechnische Anforderungen, wie im kalten Wasser dispergierbar, rehydratisierbar, gut in Sand mischbar und hohes Wasserbindungsvermögen, aufweisen.

2.11 Einsatz in der Kautschukindustrie

In der Kautschukindustrie kann die Stärke zur Verbesserung der technischen und optischen Qualität eingesetzt werden. Gründe sind dabei die Verbesserung des Oberflächenglanzes, die Verbesserung des Griffs und des Aussehens, dafür wird Stärke vor der Kaltvulkanisation auf die klebrigen gummierten Flächen von Kautschukstoffen gestreut, sowie die Verbesserung der Bedruckbarkeit des Kautschuks.

2.12 Herstellung von Lederersatzstoffen

Eine weitere Absatzmöglichkeit der modifizierten Stärken besteht bei der Herstellung von Lederersatzstoffen.

2.13 Stärke in synthetischen Polymeren

Auf dem Kunststoffsektor zeichnen sich folgende Einsatzgebiete ab: die Einbindung von Stärkefolgeprodukten in den Verarbeitungsprozess (Stärke ist nur Füllstoff, es besteht keine direkte Bindung zwischen synthetischem Polymer und Stärke) oder alternativ die Einbindung von Stärkefolgepro-

dukten in die Herstellung von Polymeren (Stärke und Polymer gehen eine feste Bindung ein).

Die Verwendung der Stärken als reinem Füllstoff ist verglichen mit den anderen Stoffen wie Talkum nicht wettbewerbsfähig. Anders sieht es aus, wenn die spezifischen Stärkeeigen-Tragen kommen und hierdurch das Eigenschaften zum schaftsprofil der Endprodukte deutlich verändert wird. Ein Beispiel hierfür ist die Anwendung von Stärkeprodukten bei der Verarbeitung von Thermoplasten, wie Polyäthylen. Hierbei werden die Stärke und das synthetische Polymer durch Koexpression im Verhältnis von 1 : 1 zu einem 'master batch' kombiniert, aus dem mit granuliertem Polyäthylen unter Anwendung herkömmlicher Verfahrenstechniken diverse Produkte hergestellt werden. Durch die Einbindung von Stärke in Polyäthylenfolien kann eine erhöhte Stoffdurchlässigkeit bei Hohlkörpern, eine verbesserte Wasserdampfdurchlässigkeit, ein verbessertes Antistatikverhalten, ein verbessertes Antiblockverhalten sowie eine verbesserte Bedruckbarkeit mit wäßrigen Farben erreicht werden. Gegenwärtige Nachteile betreffen die ungenügende Transparenz, die verringerte Zugfestigkeit sowie eine verringerte Dehnbarkeit.

Eine andere Möglichkeit ist die Anwendung der Stärke in Polyurethanschäumen. Mit der Adaption der Stärkederivate sowie durch die verfahrenstechnische Optimierung ist es möglich, die Reaktion zwischen synthetischen Polymeren und den Hydroxygruppen der Stärken gezielt zu steuern. Das Ergebnis sind Polyurethanfolien, die durch die Anwendung von Stärke folgende Eigenschaftsprofile erhalten: eine Verringerung des Wärmeausdehnungskoeffizienten, Verringerung des Schrumpfverhaltens, Verbesserung des Druck/Spannungsverhaltens, Zunahme der Wasserdampfdurchlässigkeit ohne Veränderung der Wasseraufnahme, Verringerung der Entflammbarkeit und der Aufrißdichte, kein Abtropfen brennbarer Teile, Halogenfreiheit und verminderte Alterung. Nachteile, die gegenwärtig noch vorhanden sind, sind verringerte Druckfestigkeit sowie eine verringerte Schlagfestigkeit.

WO 96/15248 PCT/EP95/04415

24

Die Produktentwicklung beschränkt sich inzwischen nicht mehr nur auf Folien. Auch feste Kunststoffprodukte, wie Töpfe, Platten und Schalen, sind mit einem Stärkegehalt von über 50 % herzustellen. Des weiteren sind Stärke/ Polymermischungen günstig zu beurteilen, da sie eine sehr viel höhere biologische Abbaubarkeit aufweisen.

Außerordentliche Bedeutung haben weiterhin auf Grund ihres extremen Wasserbindungsvermögen Stärkepfropfpolymerisate gewonnen. Dies sind Produkte mit einem Rückgrat aus Stärke und einer nach dem Prinzip des Radikalkettenmechanismus aufgepfropften Seitengitters eines synthetischen Monomers. Die heute verfügbaren Stärkepfropfpolymerisate zeichnen sich durch ein besseres Binde- und Rückhaltevermögen von bis zu 1000 g Wasser pro g Stärke bei hoher Viskosität aus. Die Anwendungsbereiche für diese Superabsorber haben sich in den letzten Jahren stark ausgeweitet und liegen im Hygienebereich mit Produkten Windeln und Unterlagen sowie im landwirtschaftlichen Sektor, z.B. bei Saatgutpillierungen.

Entscheidend für den Einsatz der neuen, gentechnisch veränderten Stärken sind zum einen die Struktur, Wassergehalt, Proteingehalt, Lipidgehalt, Fasergehalt, Asche/Phosphatgehalt, Amylose/Amylopektinverhältnis, Molmassenverteilung, Verzweigungsgrad, Korngröße und -form sowie Kristallisation, zum anderen auch die Eigenschaften, die in folgende Merkmale münden: Fließ- und Sorptionsverhalten, Verkleisterungstemperatur, Viskosität, Dickungsleistung, Löslichkeit, Kleisterstruktur, Transparenz, Hitze-, Scher- und Säurestabilität, Retrogradationsneigung, Gelbildung, Gefrier/Taustabilität, Komplexbildung, Jodbindung, Filmbildung, Klebekraft, Enzymstabilität, Verdaulichkeit und Reaktivität.

Die Erzeugung modifizierter Stärken mittels gentechnischer Eingriffe in einer transgenen Pflanze kann zum einen die Eigenschaften der aus der Pflanze gewonnenen Stärke dahingehend verändern, daß weitere Modifikationen mittels chemischer oder physikalischer Verfahren nicht mehr notwendig erscheinen. Zum anderen können die durch gentechnische Ver-

fahren veränderte Stärken weiteren chemischen Modifikationen unterworfen werden, was zu weiteren Verbesserungen der Qualität für bestimmte der oben beschriebenen Einsatzgebiete führt. Diese chemischen Modifikationen sind grundsätzlich bekannt. Insbesondere handelt es sich dabei um Modifikationen durch

- Hitzebehandlung,
- Säurebehandlung,
- Oxidation und
- Veresterungen,

welche zur Entstehung von Phosphat-, Nitrat-, Sulfat-, Xanthat-, Acetat- und Citratstärken führen. Weitere organische Säuren können ebenfalls zur Veresterung eingesetzt werden:

- Erzeugung von Stärkeethern Stärke-Alkylether, O-Allylether, Hydroxylalkylether, O-Carboxylmethylether, N-haltige Stärkeether, P-haltige Stärkeether, S-haltige Stärkeether
- Erzeugung von vernetzten Stärken
- Erzeugung von Stärke-Pfropf-Polymerisaten

Zur Expression der erfindungsgemäßen DNA-Moleküle in senseoder antisense-Orientierung in pflanzlichen Zellen werden
diese mit regulatorischen DNA-Elementen verknüpft, die die
Transkription in pflanzlichen Zellen gewährleisten. Hierzu
zählen insbesondere Promotoren.

Der Promotor kann dabei so gewählt sein, daß die Expression konstitutiv erfolgt oder nur in einem bestimmten Gewebe, zu einem bestimmten Zeitpunkt der Pflanzenentwicklung oder zu einem durch äußere Einflüsse determinierten Zeitpunkt. In Bezug auf die Pflanze kann der Promotor homolog oder hetero-

log sein. Sinnvolle Promotoren sind z.B. der Promotor der 35S RNA des Cauliflower Mosaic Virus für eine konstitutive Expression, der Patatingen-Promotor B33 (Rocha-Sosa et al., EMBO J. 8 (1989), 23-29) für eine knollenspezifische Expression in Kartoffeln oder ein Promotor, der eine Expression lediglich in photosynthetisch aktiven Geweben sicherstellt, z.B. der ST-LS1-Promotor (Stockhaus et al., Proc. Natl. Acad. Sci. USA 84 (1987), 7943-7947; Stockhaus et al., EMBO J. 8 (1989), 2445-2451) oder für eine endosperm-spezifische Expression der HMG-Promotor aus Weizen oder Promotoren von Zein-Genen aus Mais.

Ferner kann eine Terminationssequenz vorhanden sein, die der korrekten Beendigung der Transkription dient sowie der Addition eines Poly-A-Schwanzes an das Transkript, dem eine Funktion bei der Stabilisierung der Transkripte beigemessen wird. Derartige Elemente sind in der Literatur beschrieben (vgl. Gielen et al., EMBO J. 8 (1989), 23-29) und sind beliebig austauschbar.

Prinzipiell ist es erfindungsgemäß möglich, Pflanzen herzustellen, bei denen nur die Aktivität einer Isoform der SSS bzw. der GBSS II verändert ist, als auch Pflanzen, bei denen gleichzeitig die Aktivitäten mehrerer Stärkesynthaseformen verändert sind. Dabei sind alle Kombinationen und Permutationen denkbar.

Durch die Veränderung der Aktivitäten einer oder mehrerer Isoformen der Stärkesynthasen in Pflanzen kommt es zur Synthese einer in ihrer Struktur veränderten Stärke.

Durch die Steigerung der Aktivität einer oder mehrerer Isoformen der Stärkesynthasen in den Zellen der stärkespeichernden Gewebe transformierter Pflanzen wie z.B. in der
Knolle bei der Kartoffel oder in dem Endosperm von Mais oder
Weizen kann es darüber hinaus zu einer Ertragssteigerung
kommen.

Da die GBSS I aus Kartoffel codierende DNA-Sequenz bereits bekannt ist (Visser et al., Plant Sci. 64 (1989), 185-192), stehen somit für alle bisher in Kartoffel identifizierten Stärkesynthasen codierende DNA-Sequenzen zur Verfügung. Dies erlaubt nun sowohl die Identifizierung der Funktion der einzelnen Isoformen- bei der Stärkebiosynthese, als auch die Herstellung gentechnisch veränderter Pflanzen, bei denen die Aktivitäten eines oder mehrerer dieser Enzyme verändert sind. Dies ermöglicht die Synthese einer Stärke mit veränderter Struktur und somit veränderten physikalisch-chemischen Eigenschaften in derartig manipulierten Pflanzen.

Die erfindungsgemäßen DNA-moleküle können daher auch dazu verwendet werden, Pflanzen herzustellen, bei denen die Aktivität der benannten Stärkesynthasen erhöht oder verringert ist und gleichzeitig die Aktivitäten anderer, an der Stärkesbiosynthese beteiligter Enzyme verändert sind. Es sind dabei alle möglichen Kombinationen denkbar. Beispielsweise können gemäß dem beschriebenen Verfahren DNA-Sequenzen, die SSS-Proteine oder GBSS II codieren, in Pflanzenzellen eingebracht werden, bei denen bereits die Synthese endogener GBSS I-Proteine aufgrund eines antisense-Effektes inhibiert ist (wie beschrieben in Visser et al., Mol. Gen. Genet. 225 (1991), 289-296) oder die Synthese des Verzweigungsenzyms inhibiert ist (wie beschrieben in WO92/14827).

Soll die Inhibierung der Synthese mehrerer Stärke-Synthasen in transformierten Pflanzen erreicht werden, so können DNA-Moleküle zur Transformation verwendet werden, die gleichzeitig mehrere, die entsprechenden Stärkesynthasen codierenden Regionen in antisense-Orientierung unter der Kontrolle eines geeigneten Promotors enthalten. Hierbei kann alternativ jede Sequenz unter der Kontrolle eines eigenen Promotors stehen, oder die Sequenzen können als Fusion von einem gemeinsamen Promotor transkribiert werden. Letztere Alternative wird in der Regel vorzuziehen sein, da in diesem Fall die Synthese der entsprechenden Proteine in etwa gleichem Maße inhibiert werden sollte.

Weiterhin ist die Konstruktion von DNA-Molekülen möglich, bei denen neben DNA-Sequenzen, die Stärke-Synthasen codieren, weitere DNA-Sequenzen, die andere Proteine, die an der Stärkesynthese oder -modifikation beteiligt sind, in antisense-Orienierung an einen geeigneten Promotor gekoppelt sind. Die Sequenzen können hierbei wiederum hintereinander-: geschaltet sein und von einem gemeinsamen Promotor transkribiert werden. Für die Länge der einzelnen codierenden Regionen, die in einem derartigen Konstrukt verwendet werden, gilt das, was oben bereits für die Herstellung von antisense-Konstrukten ausgeführt wurde. Eine obere Grenze für die Anzahl der in einem derartigen DNA-Molekül von einem Promotor aus transkribierten antisense-Fragmente gibt es nicht. Das entstehende Transkript sollte aber in der Regel eine Länge von 10 kb, vorzugsweise von 5 kb nicht überschreiten.

Codierende Regionen, die in derartigen DNA-Molekülen in Kombination mit anderen codierenden Regionen in antisense-Orientierung hinter einem geeigneten Promotor lokalisiert sind, können aus DNA-Sequenzen stammen, die für folgende Proteine codieren: Stärkekorn-gebundene (GBSS I und II) und lösliche Stärkesynthasen (SSS I und II), Verzweigungsenzyme (Koßmann et al., Mol. Gen. Genet. 230 (1991), 39-44), "Debranching"-Enzyme (R-Enzyme), Disproportionierungsenzyme (Takaha et al., J. Biol. Chem. 268 (1993), 1391-1396) und Stärkephosphorylasen. Dies ist nur eine beispielhafte Aufzählung. Auch die Verwendung anderer DNA-Sequenzen im Rahmen einer derartigen Kombination ist denkbar.

Mit Hilfe derartiger Konstrukte ist es möglich, in Pflanzenzellen, die mit diesen transformiert wurden, die Synthese mehrerer Enzyme gleichzeitig zu inhibieren.

Zur Vorbereitung der Einführung fremder Gene in höhere Pflanzen stehen eine große Anzahl von Clonierungsvektoren zur Verfügung, die ein Replikationssignal für *E.coli* und ein Markergen zur Selektion transformierter Bakterienzellen enthalten. Beispiele für derartige Vektoren sind pBR322, pUC-

Serien, M13mp-Serien, pACYC184 usw. Die gewünschte Sequenz kann an einer passenden Restriktionsschnittstelle in den Vektor eingeführt werden. Das erhaltene Plasmid wird für die Transformation von E. coli-Zellen verwendet. Transformierte E. coli-Zellen werden in einem geeigneten Medium gezüchtet, anschließend geerntet und lysiert. Das Plasmid wird wiedergewonnen. Als Analysemethode zur Charakterisierung der gewonnenen Plasmid-DNA werden im allgemeinen Restriktionsanalysen, Gelelektrophoresen und weitere biochemisch-molekularbiologische Methoden eingesetzt. Nach jeder Manipulation kann die Plasmid DNA gespalten und gewonnene DNA-Fragmente mit anderen DNA-Sequenzen verknüpft werden. Jede Plasmid-DNA-Sequenz kann in den gleichen oder anderen Plasmiden cloniert werden.

Für die Einführung von DNA in eine pflanzliche Wirtszelle stehen eine Vielzahl von Techniken zur Verfügung. Diese Techniken umfassen die Transformation pflanzlicher Zellen mit T-DNA unter Verwendung von Agrobacterium tumefaciens oder Agrobacterium rhizogenes als Transformationsmittel, die Fusion von Protoplasten, die Injektion, die Elektroporation von DNA, die Einbringung von DNA mittels der biolistischen Methode sowie weitere Möglichkeiten.

Bei der Injektion und Elektroporation von DNA in Pflanzenzellen werden an sich keine speziellen Anforderungen an die verwendeten Plasmide gestellt. Es können einfache Plasmide wie z.B. pUC-Derivate verwendet werden. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist die Anwesenheit eines selektierbaren Markergens notwendig.

Je nach Einführungsmethode gewünschter Gene in die Pflanzenzelle können weitere DNA-Sequenzen erforderlich sein. Werden z.B. für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so muß mindestens die rechte Begrenzung, häufig jedoch die rechte und linke Begrenzung der Ti- und Ri-Plasmid T-DNA als Flankenbereich mit den einzuführenden Genen verbunden werden.

Werden für die Transformation Agrobakterien verwendet, muß die einzuführende DNA in spezielle Plasmide cloniert werden, und zwar entweder in einen intermediären Vektor oder in einen binären Vektor. Die intermediären Vektoren können aufgrund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, durch homologe Rekombination in das Ti- oder Ri-Plasmid der Agrobakterien integriert werden. Dieses enthält außerdem die für den Transfer der T-DNA notwendige vir-Region. Intermediäre Vektoren können nicht in Agrobakterien replizieren. Mittels eines Helferplasmids kann der intermediäre Vektor auf Agrobacterium tumefaciens übertragen werden (Konjugation). Binäre Vektoren können sowohl in E.coli als auch in Agrobakterien replizieren. Sie enthalten ein Selektionsmarker-Gen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA Grenzregion eingerahmt werden. Sie können direkt in die Agrobakterien transformiert werden (Holsters et al. Mol. Gen. Genet. 163 (1978), 181-187). Das als Wirtszelle dienende Agrobakterium soll ein Plasmid, das eine vir-Region trägt, enthalten. Die vir-Region ist für den Transfer der T-DNA in die Pflanzenzelle notwendig. Zusätzliche T-DNA kann vorhanden sein. Das derartig transformierte Agrobakterium wird zur Transformation von Pflanzenzellen verwendet.

Die Verwendung von T-DNA für die Transformation von Pflanzenzellen ist intensiv untersucht und ausreichend in EP 120516; Hoekema, In: The Binary Plant Vector System Offsetdrukkerij Kanters B.V., Alblasserdam (1985), Chapter V; Fraley et al., Crit. Rev. Plant. Sci., 4: 1-46 und An et al. EMBO J. 4 (1985), 277-287 beschrieben worden.

Für den Transfer der DNA in die Pflanzenzelle können Pflanzen-Explantate zweckmäßigerweise mit Agrobacterium tumefaciens oder Agrobacterium rhizogenes kokultiviert werden. Aus dem infizierten Pflanzenmaterial (z.B. Blattstücke, Stengelsegmente, Wurzeln, aber auch Protoplasten oder Suspensions-kultivierte Pflanzenzellen) können dann in einem geeigneten Medium, welches Antibiotika oder Biozide zur Selektion transformierter Zellen enthalten kann, wieder ganze

(J.)2

413

Pflanzen regeneriert werden. Die so erhaltenen Pflanzen können dann auf Anwesenheit der eingeführten DNA untersucht werden. Andere Möglichkeiten der Einführung fremder DNA unter Verwendung des biolistsischen Verfahrens oder durch Protoplastentransformation sind bekannt (vergl. z.B. Willmitzer, L., 1993 Transgenic plants. In: Biotechnology, A Multi-Volume Comprehensive Treatise (H.J. Rehm, G. Reed, A. Pühler, P. Stadler, eds.), Vol. 2, 627-659, VCH Weinheim-New York-Basel-Cambridge).

Ist die eingeführte DNA einmal im Genom der Pflanzenzelle integriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle erhalten. Sie enthält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum wie Kanamycin, G 418, Bleomycin, Hygromycin oder Phosphinotricin u.a. vermittelt. Der individuelle gewählte Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die eingeführte DNA fehlt, gestatten.

Die transformierten Zellen wachsen innerhalb der Pflanze in der üblichen Weise (siehe auch McCormick et al. (1986) Plant Cell Reports 5:81-84). Die resultierenden Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen besitzen, gekreuzt werden. Die daraus entstehenden hybriden Individuen haben die entsprechenden phänotypischen Eigenschaften.

Es sollten zwei oder mehrere Generationen angezogen werden, um sicherzustellen, daß das phänotypische Merkmal stabil beibehalten und vererbt wird. Auch sollten Samen geerntet werden, um sicherzustellen, daß der entsprechende Phänotyp oder andere Eigenarten erhalten geblieben sind.

Das im Rahmen der vorliegenden Erfindung verwendete Plasmid pBinARHyg wurde bei der als internationale Hinterlegungsstelle anerkannten Deutschen Sammlung von Mikroorganismen (DSM) in Braunschweig, Bundesrepublik Deutschland, entsprechend den Anforderungen des Budapester Vertrages für die

internationale Anerkennung der Hinterlegung von Mikroorganismen zum Zwecke der Patentierung am 20.10.1994 unter der Nummer DSM 9505 hinterlegt.

Verwendete Abkürzungen

bp Basenpaar

GBSS granule bound starch synthase (Stärkekorn-

gebundene Stärkesynthase)

IPTG Isopropyl B-D-Thiogalacto-Pyranosid

SSS soluble starch synthase (lösliche

Stärkesynthase)

PMSF Phenylmethylsulfonylfluorid

VK Vollängeclon

In den Beispielen verwendete Medien und Lösungen:

20 x SSC 175,3 g NaCl

88,2 g Natrium-Citrat ad 1000 ml mit ddH₂O pH 7,0 mit 10 N NaOH

Puffer A 50 mM Tris-HCl pH 8,0

2,5 mM DTT

2 mM EDTA

0,4 mM PMSF

10 % Glycerin

0,1 % Natriumdithionit

Puffer B 50 mM Tris-HCl pH 7,6

2,5 mM DTT

2 mM EDTA

Puffer C 0,5 M Natriumcitrat pH 7,6

50 mM Tris-HCl pH 7,6

2,5 mM DTT

2 mM EDTA

10 x TBS 0,2 M Tris-HCl pH 7,5

5,0 M NaCl

10 x TBST 10 x TBS

0,1 % (Vol/Vol) Tween 20

Elutionspuffer 25 mM Tris pH 8,3

250 mM Glycin

Dialysepuffer 50 mM Tris-HCl pH 7,0

50 mM NaCl

2 mM EDTA

14,7 mM B-Mercaptoethanol

0,5 mM PMSF

Proteinpuffer 50 mM Natriumphosphatpuffer pH 7,2

10 mM EDTA

0,5 mM PMSF

14,7 mM B-Mercaptoethanol

Fig. 1 zeigt das Plasmid pSSSA

Die fein gezogene Linie entspricht der Sequenz von pBluescript II SK(-). Die starke Linie repräsentiert die cDNA, die die Isoform SSS A aus Solanum tuberosum codiert. Restriktionsschnittstellen der Insertion sind angegeben. Die cDNA-Insertion ist zwischen die EcoR I- und Xho I-Schnittstellen des Polylinkers des Plasmids ligiert. Die DNA-Sequenz der cDNA-Insertion ist unter Seq ID No. 1 angegeben.

Fig. 2 zeigt das Plasmid pSSSB

Die fein gezogene Linie entspricht der Sequenz von pBluescript II SK(-). Die starke Linie repräsentiert die cDNA, die die Isoform SSS B aus Solanum tuberosum codiert. Restriktionsschnittstellen der Insertion sind angegeben. Die

cDNA-Insertion ist zwischen die EcoR I- und Xho I-Schnittstellen des Polylinkers des Plasmids ligiert. Die DNA-Sequenz der cDNA-Insertion ist unter Seq ID No. 2 angegeben.

Fig. 3 zeigt das Plasmid p35S-anti-SSSA

Aufbau des Plasmids:

- A = Fragment A: CaMV 35S-Promotor, nt 6909-7437 (Franck et al., Cell 21 (1980), 285-294)
- B = Fragment B: cDNA aus Solanum tuberosum codierend für lösliche Stärkesynthase; Isoform SSSA;

 Xba I/Asp718-Fragment aus pSSSA, ca. 2,1 kb
 Orientierung zum Promotor: antisense
- C = Fragment C: nt 11748-11939 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835846)

Fig. 4 zeigt das Plasmid p35S-anti-SSSB

Aufbau des Plasmids:

- A = Fragment A: CaMV 35S-Promotor, nt 6909-7437 (Franck et al., Cell 21 (1980), 285-294)
- B = Fragment B: cDNA aus Solanum tuberosum codierend für lösliche Stärkesynthase; Isoform SSSB;

 Xho I/Spe I-Fragment aus pSSSB, ca. 1,8 kb
 Orientierung zum Promotor: antisense
- C = Fragment C: nt 11748-11939 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al.; EMBO J. 3 (1984), 835846)

Fig. 5 zeigt das Plasmid pGBSSII

Die fein gezogene Linie entspricht der Sequenz von pBluescript II SK(-). Die starke Linie repräsentiert die cDNA, die die Isoform GBSS II aus Solanum tuberosum codiert. Restriktionsschnittstellen der Insertion sind angegeben. Die cDNA-Insertion ist zwischen die EcoR I- und Xho I-Schnitt-

stellen des Polylinkers des Plasmids ligiert. Die DNA-Sequenz der cDNA-Insertion ist unter Seq ID No. 3 angegeben.

Fig. 6 zeigt das Plasmid p35S-anti-GBSSII

Aufbau des Plasmids:

- A = Fragment A: CaMV 35S-Promotor, nt 6909-7437 (Franck et al., Cell 21 (1980), 285-294)
- B = Fragment B: cDNA aus Solanum tuberosum codierend für Stärkekorn-gebundene Stärkesynthase; Isoform GBSS II;
 - Sma I/Asp 718-Fragment aus pGBSS II, ca. 1,9 kb Orientierung zum Promotor: antisense
- C = Fragment C: nt 11748-11939 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835-846)
- Fig. 7 zeigt einen partiellen Vergleich der Aminosäuresequenzen von prokaryontischen Glycogensynthasen, Stärkekorngebundenen Stärkesynthasen und löslichen Stärkesynthasen aus verschiedenen Organismen.
- a: Glycogensynthase aus E. coli
- b: GBSS I aus Gerste
- c: GBSS I aus Weizen
- d: GBSS I aus Mais
- e: GBSS I aus Reis
- f: GBSS I aus Maniok
- g: GBSS I aus Kartoffel
- h: GBSS II aus Erbse
- i: GBSS II aus Kartoffel
- k: SSS aus Reis
- 1: SSS A aus Kartoffel
- m: SSS B aus Kartoffel

Die markierten Bereiche (I), (II) und (III) geben drei Peptidsequenzen an, die zwischen den verschiedenen Stärkesynthasen bzw. Glycogensynthasen stark konserviert sind.

Fig. 8 zeigt Aktivitäts-Gele der löslichen Stärkesynthase-Isoformen aus Knollenextrakten von Wildtyp- und Stärkesynthase-"Antisense"-Kartoffelpflanzen.

- A) GBSS II-"Antisense"-Pflanze, Linie 14 und 35, K = Wildtyp-Pflanze
- B) SSS A-"Antisense"-Pflanze, Linie 25 und 39, K = Wildtyp-Pflanze
- C) SSS B-"Antisense"-Pflanze, Linie 1 und 4, K = Wildtyp-Pflanze

Je 50 μ g des Proteinextraktes wurden auf einem 7,5%igen nativen Gel getrennt und die Aktivitäten der Synthase-Isoformen im Citrat-stimulierten Ansatz mit 0,1 % Amylopektin als "Primer" bestimmt. Die synthetisierten Glucane wurden mit Lugolscher Lösung angefärbt.

Die Beispiele erläutern die Erfindung.

In den Beispielen werden die folgenden Methoden verwendet:

1. Clonierungsverfahren

Zur Clonierung in *E.coli* wurde der Vektor pBluescript II SK (Stratagene) verwendet.

Für die Pflanzentransformation wurden die Genkonstruktionen in den binären Vektor pBinAR Hyg (DSM 9505) cloniert.

2. Bakterienstämme

Für den Bluescript-Vektor und für die pBinAR Hyg-Konstrukte wurde der E.coli-Stamm D $H5\alpha$ (Bethesda Research Laboratories,

Gaithersburgh, USA) verwendet. Für die in vivo excision wurde der E.coli-Stamm XL1-Blue verwendet.

Die Transformation der Plasmide in die Kartoffelpflanzen wurde mit Hilfe des Agrobacterium tumefaciens-Stammes C58C1 pGV2260 durchgeführt (Deblaere et al., Nucl. Acids Res. 13 (1985), 4777-4788).

3. Transformation von Agrobacterium tumefaciens

Der Transfer der DNA erfolgte durch direkte Transformation nach der Methode von Höfgen&Willmitzer (Nucl. Acids Res. 16 (1988), 9877). Die Plasmid-DNA transformierter Agrobakterien wurde nach der Methode von Birnboim&Doly (Nucl. Acids Res. 7 (1979), 1513-1523) isoliert und nach geeigneter Restriktionsspaltung gelelektrophoretisch analysiert.

4. Transformation von Kartoffeln

Zehn kleine mit dem Skalpell verwundete Blätter einer Kartoffel-Sterilkultur (Solanum tuberosum L.cv. Desiree) wurden in 10 ml MS-Medium (Murashige&Skoog, Physiol. Plant. 15 (1962), 473) mit 2 % Saccharose gelegt, welches 50 µl einer unter Selektion gewachsenen Agrobacterium tumefaciens-Übernachtkultur enthielt. Nach 3-5 minütigem, leichtem Schütteln erfolgte eine weitere Inkubation für 2 Tage im Dunkeln. Daraufhin wurden die Blätter zur Kallusinduktion auf MS-Medium mit 1,6 % Glucose, 5 mg/l Naphthylessigsäure, 0,2 mg/l Benzylaminopurin, 250 mg/l Claforan, 50 mg/l Kanamycin, und 0,80 % Bacto Agar gelegt. Nach einwöchiger Inkubation bei 25°C und 3000 Lux wurden die Blätter zur Sproßinduktion auf MS-Medium mit 1,6 % Glucose, 1,4 mg/l Zeatinribose, 20 mg/l Naphthylessigsäure, 20 mg/l Giberellinsäure, 250 mg/l Claforan, 50 mg/l Kanamycin, und 0,80 % Bacto Agar gelegt.

5. Radioaktive Markierung von DNA-Fragmenten

Die radiokative Markierung von DNA-Fragmenten wurde mit Hilfe eines DNA-Random Primer Labelling Kits der Firma Boehringer (Deutschland) nach den Angaben des Herstellers durchgeführt.

6. Bestimmung der Stärkesynthase-Aktivität

Die Bestimmung der Stärkesynthaseaktivität erfolgte durch Bestimmung des Einbaus von 14 C-Glucose aus ADP[14 C-Glucose] in ein in Methanol/KCl unlösliches Produkt wie beschrieben in Denyer und Smith (Planta 186 (1992), 609-617).

7. Nachweis von löslichen Stärkesynthasen im nativen Gel

Zum Nachweis der Aktivität löslicher Stärkesynthasen durch nicht-denaturierende Gelelektrophorese wurden Gewebeproben von Kartoffelknollen in 50 mM Tris-HCl pH 7,6, 2 mM DTT, 2,5 mM EDTA, 10 % Glycerin und 0,4 mM PMSF aufgeschlossen. Die Elektrophorese wurde in einer MiniProtean II Kammer (BioRAD) durchgeführt. Die Monomerkonzentration der 1,5 mm dicken Gele war 7,5 % (Gew./Vol.), und als Gel- wie auch Laufpuffer diente 25 mM Tris-Glycin pH 8,4. Gleiche Mengen an Proteinextrakt wurden aufgetragen und für 2 h bei 10 mA je Gel aufgetrennt.

Anschließend erfolgte die Inkubation der Aktivitäts-Gele in 50 mM Tricine-NaOH pH 8,5, 25 mM Kaliumacetat, 2 mM EDTA, 2 mM DTT, 1 mM ADP-Glucose, 0,1 % (Gew./Vol.) Amylopektin und 0,5 M Natriumcitrat. Gebildete Glucane wurden mit Lugolscher Lösung angefärbt.

8. Stärkeanalytik

Die von den transgenen Kartoffelpflanzen gebildete Stärke wurde durch folgende Methoden charakterisiert:

a) Bestimmung des Phosphatgehaltes

In der Kartoffelstärke können einige Glucoseeinheiten an den Kohlenstoffatomen der Position C3 und C6 phosphoryliert sein. Zur Bestimmung des Phosphorylierungsgrades an der C6-Position der Glucose wurden 100 mg Stärke in 1 ml 0,7 M HCl für 4 Stunden bei 95°C hydrolysiert (Nielsen et al., Plant Physiol. 105 (1994), 111-117). Nach Neutralisation mit 0,7 M KOH wurden zur Glucose-6-phosphat-Bestimmung 50 μ l des Hydrolysats einem optisch-enzymatischen Test unterzogen. Die Änderung der Absorption des Testansatzes (100 mM Imidazol/HCl; 10 mM MgCl₂; 0,4 mM NAD; 2 Units Glucose-6-phosphat-Dehydrogenase aus Leuconostoc mesenteroides; 30°C) wurde bei 334 nm verfolgt.

b) Analyse der Seitenkettenlängenverteilung

Zur Analyse der Seitenketten der Stärkemoleküle wurde 1 ml einer 0,1%igen Stärkelösung mit ca. 1 Unit Isoamylase über Nacht bei 37°C in 100 mM Na-Citrat-Puffer, pH 4,0 verdaut (Y.C. Lee, Analytical Biochemistry 189 (1990), 151-162). Die Trennung der einzelnen Glucanketten erfolgte mittels eines komplexen Gradienten über HPLC (Säule PA1; Laufmittel 150 mM NaOH mit Na-Acetat-Gradienten).

c) Korngrößenbestimmung

Die Korngrößenbestimmung wurde mit einem Fotosedimentometer des Typs "Lumosed" der Firma Retsch GmbH, Deutschland, durchgeführt. Hierfür wurden 0,2 g Stärke in ca. 150 ml Wasser suspendiert und sofort vermessen. Das vom Hersteller mitgelieferte Programm berechnete den mittleren Durchmesser der Stärkekörner auf der Annahme einer durchschnittlichen Dichte der Stärke von 1,5 g/l.

d) Verkleisterungseigenschaften

Die Verkleisterungskurven der Stärke wurden mit einem Viskograph E der Firma Brabender oHG, Deutschland, oder mit einem Rapid Visco Analyser, Newport Scientific Pty Ltd, Investment Support Group, Warriewood NSW 2102, Australien, aufgezeichnet. Bei Verwendung des Viskographen E wurde eine Suspension von 30 g Stärke in 450 ml Wasser folgendem Heizprogramm unterzogen: aufheizen von 50°C auf 96°C mit 3°/min, 30 Minuten konstant halten, abkühlen auf 30°C mit 3°/min und abermals 30 Minuten konstant halten. Das Temperaturprofil lieferte charakteristische Verkleisterungseigenschaften.

Bei Messung mittels des Rapid Visco Analysers wurde eine Suspension von 2 g Stärke in 25 ml Wasser folgendem Heizprogramm unterzogen: 50 s bei 50°C suspendieren, aufheizen von 50°C auf 95°C mit 12°/min, 2,5 Minuten konstant halten, abkühlen auf 50°C mit 16,4°/min und abermals 2 Minuten konstant halten. Das Temperaturprofil lieferte die maximale und Endviskosität sowie die Verkleisterungstemperatur.

Beispiel 1

Identifizierung, Isolierung und Charakterisierung zweier cDNAs, die die Isoformen SSS B und GBSS II der Stärkesynthasen aus Solanum tuberosum codieren

Zwar wurden SSS-Proteine bereits in einer ganzen Reihe von Pflanzenspezies, u.a. in Kartoffel, nachgewiesen und cDNA-Sequenzen für SSS-Proteine aus Reis beschrieben (Baba et al., s.o.), jedoch ist bisher die Reinigung dieser Proteine aus Kartoffel oder anderen Pflanzen sowie die Identifizierung entsprechender DNA-Sequenzen nicht gelungen. Die Problematik bei der Isolierung derartiger DNA-Sequenzen besteht darin, daß die homogene Reinigung lösliche Stärkesynthasen aus technischen Gründen trotz zahlreicher Versuche bisher erfolglos blieb. Die löslichen Synthasen kopurifizieren in allen Reinigungsschritten mit dem Verzweigungsenzym und an-

deren Verunreinigungen. Für die Bestimmung partieller Aminosäuresequenzen sind diese Proteine daher bislang nicht zugänglich. Daher ist es sehr schwierig, cDNA-Sequenzen durch Hybridisierung mit aus der Aminosäuresequenz abgeleiteten degenerierten Oligonucleotiden zu identifizieren. Ebenso besteht aus denselben Gründen nicht die Möglichkeit, Antikörper zu entwickeln, die diese Enzyme spezifisch erkennen und somit für die Durchmusterung von Expressionsbanken eingesetzt werden könnten.

Die Isolierung von DNA-Sequenzen, die für SSS-Proteine aus Kartoffel codieren, mit Hilfe der Hybridisierung mit heterologen Proben, die lösliche Stärkesynthasen aus anderen Pflanzenspezies codieren, setzt voraus, daß eine ausreichend hohe Homologie besteht und gleichzeitig keine signifikanten Homologien zu anderen codierenden DNA-Sequenzen vorliegen. Im Fall der einzigen zur Verfügung stehenden heterologen DNA-Sequenz aus Reis (Baba et al., s.o.) war jedoch bekannt, daß diese hohen Homologien zu den Stärkekorn-gebundenen Stärkesynthasen aus Reis sowie zu GBSS I und daher vermutlich auch zu GBSS II, aus Kartoffel hat. Aufgrund dieser hohen Homologien zu GBSS I und II kommt es beim Durchmustern von cDNA-Banken zu Kreuzhybridisierung mit GBSS I- und IIcDNAs. Die Identifizierung von cDNAs, die für SSS-Proteine codieren kann daher nur durch ein differentielles Screening erreicht werden. Dies setzt jedoch voraus, daß cDNA-Sequenzen für GBSS I- und II-Proteine aus Kartoffel zur Verfügung stehen. cDNA-Sequenzen, die für GBSS II aus Kartoffel codieren, waren jedoch bisher nicht zugänglich.

Im folgenden wird die Isolierung einer für eine lösliche Stärkesynthase aus Kartoffel codierenden cDNA beschrieben. Hierzu wurde zunächst ein DNA-Fragment aus einer cDNA aus Reis, die eine lösliche Stärkesynthase codiert (Baba et al., 1993, Plant Physiol. 103:565-573), mit Hilfe der "Polymerase chain reaction" amplifiziert. Als Primer wurden dabei folgende Oligonucleotide verwendet:

Cligonucleotid 1: 5'-ACAGGATCCTGTGCTATGCGGCGTGTGAAG-3'

(Seq ID No. 14)

Oligonucleotid 2: 5'-TTGGGATCCGCAATGCCCACAGCATTTTTTTC-3'
(Seq ID No. 15)

Das aus der PCR-resultierende Fragment war 1067 bp lang. Dieses DNA-Fragment wurde später als heterologe Probe für die Identifizierung für lösliche Stärkesynthasen codierender cDNA-Sequenzen aus Kartoffel verwendet.

Für die Herstellung einer cDNA-Bibliothek wurde aus Kartof-

felknollen der Kartoffelvarietät "Berolina" poly(A+)-mRNA isoliert. Ausgehend von der poly(A+)-mRNA wurde nach der Methode von Gubler und Hoffmann (1983, Gene 25:263-269) unter Verwendung eines Xho I-Oligo d(t) 18-Primers cDNA hergestellt. Diese wurde nach EcoR I-Linkeraddition mit Xho Inachgeschnitten und orientiert in einen mit EcoR I und Xho I geschnittenen Lambda ZAP II-Vektor (Stratagene) ligiert. 500 000 Plaques einer derart konstruierten cDNA-Bibliothek wurden mit Hilfe der heterologen Probe aus Reis auf DNA-Sequenzen hin untersucht, die homolog zu dieser sind. Da die verwendete Probe aus Reis eine starke Kreuzhybridisierung mit verschiedenen Sequenzen aus Kartoffel aufweist, war eine direkte Identifizierung von cDNA-Molekülen, die lösliche Stärkesynthasen codieren, nicht möglich. Aus Homologievergleichen war bekannt, daß die das SSS-Protein aus Reis codierende cDNA eine hohe Homologie zu der bereits aus Kartoffel isolierten GBSS I-cDNA aufweist. Da GBSS I und GBSS II in anderen Organismen starke Homologien aufweisen, war zu vermuten, daß die Probe aus Reis auch eine hohe Homologie zu GBSS II-Sequenzen aus Kartoffel aufweist. Um eine Identifizierung von cDNA-Sequenzen zu ermöglichen, die eine lösliche Stärkesynthase aus Kartoffel codieren, war es daher notwendig, über Sequenzen zu verfügen, die GBSS I und II aus Kartoffel codieren. DNA-Sequenzen, die GBSS I aus Kartoffel codieren waren bereits beschrieben, jedoch keine, die GBSS II

aus Kartoffel codieren. Es wurde daher zunächst eine cDNA isoliert, die GBSS II aus Kartoffel codiert.

Hierzu wurden Stärkekorn-gebundene Proteine aus Kartoffelstärke isoliert. Die Isolierung erfolgte durch Elektroelution in einer-Elutionsvorrichtung, die analog zu dem "Model 422 Electro-Eluter" (BIORAD Laboratories Inc., USA) konstruiert war, aber ein wesentlich größeres Volumen aufwies (ca. 200 ml). Es wurden 25 g getrocknete Stärke in Elutionspuffer aufgenommen (Endvolumen 80 ml). Die Suspension wurde im Wasserbad auf 70-80°C erwärmt. Anschließend wurden 72,07 g Harnstoff zugegeben (Endkonzentration 8 M) und das Volumen mit Elutionspuffer auf 180 ml aufgefüllt. Die Stärke löste sich unter ständigem Rühren und bekam eine kleisterartige Konsistenz. Die Proteine wurden aus der Lösung mit Hilfe des Elutionsvorrichtung über Nacht elektroeluiert (100 V; 50-60 mA). Die eluierten Proteine wurden vorsichtig aus der Apparatur entnommen. Schwebstoffe wurden durch kurze Zentrifugation entfernt. Der Überstand wurde 2-3 mal je eine Stunde bei 4°C gegen Dialysepuffer dialysiert. Anschließend wurde das Volumen der Proteinlösung bestimmt. Die Proteine wurden durch Zugabe von Ammoniumsulfat (90 % Endkonzentration) gefällt. Die Zugabe erfolgte unter ständigem Rühren bei 0°C. Die gefällten Proteine wurden durch Zentrifugation sedimentiert und in Proteinpuffer aufgenommen.

Die isolierten Proteine wurden zur Herstellung von polyclonalen Antikörpern aus Kaninchen verwendet, die spezifisch
Stärkekorn-gebundene Proteine erkennen. Mit Hilfe derartiger
Antikörper wurde anschließend nach Standardmethoden eine
cDNA-Expressionsbibliothek nach Sequenzen durchgemustert,
die Stärkekorn-gebundene Proteine codieren. Die Expressionsbibliothek wurde wie bereits oben beschrieben hergestellt.
Positive Phagenclone wurden unter Anwendung von Standardverfahren weiter gereinigt. Mit Hilfe der in-vivo-excision-Methode wurden von positiven Phagenclonen E. coli-Clone gewonnen, die ein doppelsträngiges pBluescript-Plasmid mit der

jeweiligen cDNA-Insertion enthalten. Nach Überprüfung der Größe und des Restriktionsmusters der Insertionen wurden geeignete Clone, weiter analysiert. Ein Clon cGBSSII, wurde dabei als ein Clon identifiziert, der das GBSSII-Protein codiert.

Aus diesem Clon wurde das Plasmid pGBSSII (Fig. 5) isoliert und seine cDNA-Insertion durch Standardverfahren mittels der Didesoxymethode (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467) bestimmt. Die Insertion ist 1925 bp lang und stellt lediglich eine partielle cDNA-Sequenz dar. Die Nucleotidsequenz ist unter Seq ID No. 5 angegeben. Sequenzvergleiche zeigten, daß auch diese DNA-Sequenz in verschiedenen Bereichen starke Homologie zu der cDNA aus Reis aufwies, die lösliche Stärkesynthase codiert. Daher hybridisieren auch diese Sequenzen bei der Durchmusterung einer cDNA-Bibliothek mit der Probe aus Reis.

Die Insertion dieses Plasmids wurde später bei der Durchmusterung einer cDNA-Bibliothek aus Kartoffelknollen als Probe verwendet, um Sequenzen zu identifizieren, die GBSS II-Proteine codieren.

Neben dem Clon cGBSSII wurden bei der Durchmusterung der Expressionsbibliothek mit den polyclonalen Antikörpern, die gegen Stärkekorn-gebundene Proteine gerichtet sind, Clone isoliert, die cDNA-Insertionen aufwiesen, die für GBSS I aus Kartoffel codieren. Von einem dieser Clone, cGBSSI, wurde das Plasmid pGBSSI isoliert, und die Sequenz der cDNA-Insertion bestimmt. Diese stimmte weitgehend mit den bereits bekannten, GBSS I aus Kartoffel codierenden DNA-Sequenzen überein (Visser et al., Plant Sci. 64 (1989), 185-192; van der Leij et al., Mol. Gen. Genet. 228 (1990), 240-248). Diese cDNA-Insertion, enthalten in dem Plasmid pGBSS I, wurde daher später bei der Durchmusterung einer cDNA-Bibliothek aus Kartoffelknollen als Probe verwendet, um Sequenzen zu identifizieren, die GBSS I-Proteine codieren.

Die oben beschriebene cDNA-Bibliothek aus Kartoffel wurde zunächst nach Sequenzen durchgemustert, die GBSS I oder GBSS

 Λ_{-}^{N}

II aus Kartoffel codierten. Dazu wurden die Phagenplaques auf Nitrozellulose-Filter übertragen, die DNA durch NaOH-Behandlung denaturiert, die Filter neutralisiert und die DNA auf den Filtern durch Hitzebehandlung fixiert. Die Filter wurden in 0,25 M NaHPO4, pH 7,2, 0,25 M NaCl, 7 % SDS, 1 mM EDTA, 25 % Formamid, 10 % PEG für 2 Stunden bei 42 °C vorhybridisiert. Anschließend wurden die Filter in 0,25 M NaHPO4, pH 7,2, 0.25 M NaCl, 7 % SDS, 1 mM EDTA, 25 % Formamid, 10 % PEG nach Zugabe der entsprechenden radioaktiv markierten Probe über Nacht bei 42 °C hybridisiert. Als Probe wurde zum einen die cDNA-Insertion aus dem Plasmid pGBSSII verwendet, und zum anderen die cDNA-Insertion aus dem Plasmid pGBSSI. Die Filter wurden anschließend 2 x 30 min in 0,1 x SSC, 0,5 % SDS bei 65 °C gewaschen und auf Röntgenfilmen exponiert.

Parallel wurden Filter derselben cDNA-Bibliothek mit der aus Reis stammenden radioaktiv markierten cDNA-Probe, die wie oben beschrieben hergestellt wurde, unter denselben Bedingungen hybridisiert wie für GBSS I und II beschrieben. Das Waschen der Filter erfolgte in diesem Fall für 2 x 30 min bei 40 °C mit 2 x SSC, 0,5 % SDS. Phagenclone, die nicht mit GBSS I oder GBSS II aus Kartoffel, aber mit der ReiscDNA hybridisierten, wurden unter Anwendung von Standardverfahren weiter gereinigt. Mit Hilfe der in-vivo-excision-Methode wurden von positiven Phagenclonen E. coli-Clone gewonnen, die ein doppelsträngiges pBluescript-Plasmid mit der jeweiligen cDNA-Insertion enthalten. Nach Überprüfung der Größe und des Restriktionsmusters der Insertionen wurden geeignete Clone einer Sequenzanalyse unterzogen.

Beispiel 2

Sequenzanalyse der cDNA-Insertion des Plasmids pSSSB

Aus einem entsprechend Beispiel 1 erhaltenen E. coli-Clon wurde das Plasmid pSSSB (Fig. 2) isoliert und seine cDNA-Insertion durch Standardverfahren mittels der Didesoxynucleo-

خدو .

tidmethode (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467) bestimmt. Die Insertion ist 1758 bp lang und stellt eine partielle cDNA dar. Die Nucleotidsequenz ist unter Seq ID No. 3 angegeben. Die korrespondierende Aminosäuresequenz ist unter Seq ID No. 4 dargestellt.

Beispiel 3

Isolierung der Vollängen-cDNA, die die Isoform GBSS II der Stärkekorn-gebundenen Stärkesynthase aus Solanum tuberosum codiert

Eine blattspezifische cDNA-Expressionsbank aus Solanum tuberosum L. cv. Désirée (Koßmann et al., Planta 186 (1992), 7-12) wurde nach Standardverfahren mittels Hybridisierung mit einem 5'-Fragment der cDNA-Insertion des Plasmids pGBSS II (1.9 kb) auf Vollänge-Clone hin durchgemustert. In Folge konnte das Plasmid pGBSS II-VK isoliert werden, das eine cDNA-Insertion mit einer Länge von ca. 2.8 kb enthält.

Beispiel 4

Sequenzanalyse der cDNA-Insertion des Plasmids pGBSS II-VK

Aus einem entsprechend Beispiel 3 erhaltenen E. coli-Clon wurde das Plasmid pGBSS II-VK isoliert und seine cDNA-Insertion durch Standardverfahren mittels der Didesoxynucleotidmethode (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467) bestimmt. Die Insertion ist ca. 2.8 kb lang. Die Nucleotidsequenz ist unter Seq ID No. 7 angegeben und umfaßt neben flankierenden Bereichen die gesamte das GBSSII-Protein aus Kartoffel codierende Region. Das aus der Aminosäuresequenz abgeleitete Molekulargewicht des Proteins beträgt ca. 85,1 kD.

Beispiel 5

Isolierung der Vollängen-cDNA, die die Isoform SSS B der löslichen Stärkesynthase aus Solanum tuberosum codiert

Eine blattspezifische cDNA-Expressionsbank aus Solanum tuberosum L. cv. Désirée (Koßmann et al., Planta 186 (1992), 7-12) wurde nach Standardverfahren mittels Hybridisierung mit einem 5'-Fragment der cDNA-Insertion des Plasmids pSSS B (1.6 kb) auf Vollänge-Clone hin durchgemustert. In Folge konnte das Plasmid pSSS B-VK, isoliert werden, das eine cDNA-Insertion mit einer Länge von ca. 2.3 kb enthält.

Beispiel 6

Sequenzanalyse der cDNA-Insertion des Plasmids pSSS B-VK

Aus einem entsprechend Beispiel 5 erhaltenen *E. coli-*Clon wurde das Plasmid pSSS B-VK isoliert und seine cDNA-Insertion durch Standardverfahren mittels der Didesoxynucleotidmethode (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467) bestimmt. Die Insertion ist ca. 2.3 kb lang. Die Nucleotidsequenz ist unter Seq ID No. 9 angegeben und umfaßt neben flankierenden Sequenzen die gesamte codierende Region für die Isoform B der löslichen Stärkesynthase aus Kartoffel. Das aus der Aminosäuresequenz abgeleitete Molekulargewicht des Proteins beträgt ca. 78,6 kD.

Beispiel 7

Identifizierung, Isolierung und Charakterisierung einer cDNA, die die Isoform SSS A der löslichen Stärkesynthase aus Solanum tuberosum codiert

Aus einem Sequenzvergleich zwischen den bisher bekannten Sequenzen, die lösliche und Stärkekorn-gebundene Stärkesynthasen aus Pflanzen codieren (siehe Figur 7), war ersichtlich,

daß es drei stark konservierte Bereiche zwischen den verschiedenen Proteinen gibt (Bereiche (I), (II) und (III) in Figur 7).

Um eine lösliche Stärkesynthase aus Kartoffel zu isolieren, wurden diese drei Bereiche ausgewählt, um polyclonale Peptidantikörper zu erzeugen. Dazu wurden drei synthetische Polypeptide mit den folgenden Aminosäuresequenzen hergestellt:

Peptid 1: NH₂-PWSKTGGLGDVC-COOH (Seq ID No. 16)
Peptid 2: NH₂-PSRFEPCGLNQLY-COOH (Seq ID No. 17)
Peptid 3: NH₂-GTGGLRDTVENC-COOH (Seq ID No. 13)

Diese Peptide wurden an den KLH-Carrier ("keyhole limpet homocyanin") gekoppelt und anschließend zur Herstellung polyclonaler Antikörper in Kaninchen verwendet (Eurogentec,
Seraing, Belgien).

Die resultierenden Antikörper wurden folgendermaßen bezeichnet:

anti-SS1 polyclonaler Antikörper gegen das Peptid 1

anti-SS2 polyclonaler Antikörper gegen das Peptid 2

anti-SS3 polyclonaler Antikörper gegen das Peptid 3.

Die Antikörper wurden mit angereinigten löslichen Stärkesynthasen aus Kartoffel auf ihre Spezifität hin untersucht.

Die Reinigung der löslichen Stärkesynthasen erfolgte dabei folgendermaßen:

2,5 kg Kartoffeln wurden in 2 Liter Puffer A aufgearbeitet. Nach Abtrennen der Stärke durch Zentrifugation bei 1000 g für 5 min wurde der Proteinextrakt an DEAE-FastFlow-Säulenmaterial (Pharmacia LKB) gebunden (äquilibriert mit Puffer B). Nach Waschen der Säule mit dem 5-fachen Säulenvolumen an Puffer B wurden gebundene Proteine mit 300 mM NaCl in Puffer B eluiert. Die eluierten Proteine wurden fraktionsweise aufgefangen, und Fraktionen mit einer hohen Stärkesynthase-Aktivität wurden vereinigt. Die vereinigten Fraktionen wurden durch Chromatographie über eine Gelfiltrationssäule (G25), die mit Puffer B äquilibriert wurde, entsalzt. Das Eluat wurde mit 1 Volumen 1 M Natrium-Citrat, 50 mM Tris-HCl pH 7,6, 2,5 mM DTT, 2 mM EDTA versetzt. Die Proteinlösung wurde

PCT/EP95/04415

auf eine mit Puffer C äquilibrierte Amylose-Resin-Säule (AR-, Säule) aufgetragen. Die Säule wurde mit dem 20-fachen Säulenvolumen an Puffer C gewaschen. Gebundene Proteine wurden anschließend mit Puffer B eluiert.

Die Fraktionen, die eine hohe Stärkesynthase-Aktivität aufwiesen, wurden wereinigt und wiederum mit Hilfe von Gelfiltration über eine G25-Säule entsalzt.

Anschließend wurden die Fraktionen mit hoher Stärkesynthase-Aktivität auf eine mit Puffer B äquilibrierte MonoQ-Säule aufgetragen. Die Säule wurde mit dem 5-fachen Säulenvolumen an Puffer B gewaschen. Gebundene Proteine wurden mit Hilfe eines linearen NaCl-Gradienten von 0-300 mM eluiert und fraktionsweise gesammelt.

Die Analyse der Fraktionen hinsichtlich der Stärkesynthase-Aktivität und des Molekulargewichtes erfolgte mit Hilfe verschiedener Methoden:

- a) Analyse der Fraktionen auf einem nativen Polyacrylamid-Gel
- b) Analyse der Fraktionen auf einem denaturierenden SDS-Polyacrylamidgel und anschließende Silberfärbung
- c) Bestimmung der Stärkesynthase-Aktivität durch Einbau radioaktiv-markierter ADP-Glucose (Amersham, UK) in neusynthetisierte Stärke.
- d) Analyse der Fraktionen in einem Western Blot.

Für eine Western Blot-Analyse wurden 50 μ g, 5 μ g und 0,5 μ g Protein eines Protein-Rohextraktes neben 15 μ g Protein der Fraktionen, die von der DEAE-FastFlow-Säule eluiert wurden, 10 μ g Protein der Fraktionen, die von der AR-Säule eluiert wurden und 3 μ g Protein der Fraktionen, die von der MonoQ-Säule eluiert wurden, auf einem SDS-Polyacrylamid-Gel elektrophoretisch aufgetrennt. Die Proteine wurden mit Hilfe der Semidry-Elektroblot-Methode auf eine Nitrozellulosemembran übertragen.

Die Identifizierung von Proteinen, die von den Antikörpern anti-SS1, anti-SS2 oder anti-SS3 erkannt wurden, erfolgte

mit Hilfe des "Blotting detection kit for rabbit anithodies RPN 23" (Amersham UK) nach den Angaben des Herstellers.

Es wurden parallel drei Western Blot-Analysen durchgeführt mit den obenbeschriebenen polyxlonalen Antikörpern anti-SS1, anti-SS2 und anti-SS3. Dabei stellte sich heraus, daß der Antikörper anti-SS1 spezifisch GBSS I und GBSS II erkannte und der Antikörper anti-SS2 keine Spezifität aufwies. Lediglich der Antikörper anti-SS3 erkannte neben GBSS I und GBSS II im Western Blot spezifisch neue Proteine, insbesondere Proteine mit Molekulargewichten von 120-140 kd.

Der Antikörper anti-SS3 wurde anschließend verwendet, um eine cDNA-Bibliothek aus Kartoffelknollen nach Sequenzen durchzumustern, die lösliche Stärkesynthasen aus Kartoffel codieren. Hierfür wurde eine cDNA-Bibliothek, die wie in Beispiel 1 beschrieben hergestellt wurde, verwendet. Zur Analyse der Phagenplaques wurden diese auf Nitrozellulosefilter übertragen, die vorher für 30-60 min in einer 10 mM IPTG-Lösung inkubiert und anschließend auf Filterpapier getrocknet wurden. Der Transfer erfolgte für 3 h bei 37°C. Anschließend werden die Filter für 30 min bei Raumtemperatur in Blockreagenz inkubiert und zweimal für 5-10 min in TBST-Puffer gewaschen. Die Filter wurden mit dem polyclonalen Antikörper anti-SS3 in geeigneter Verdünnung für 1 h bei Raumtemperatur oder für 16 h bei 4°C geschüttelt. Die Identifizierung von Plaques, die ein Protein exprimierten, das von dem Antikörper anti-SS3 erkannt wurde, erfolgte mit Hilfe des "Blotting detection kit for rabbit antibodies RPN 23" (Amersham UK) nach den Angaben des Herstellers.

Phagenclone der cDNA-Bibliothek, die ein Protein exprimierten, das von dem Antikörper anti-SS3 erkannt wurde, wurden unter Anwendung von Standardverfahren weiter gereinigt. Mit Hilfe der in vivo excision-Methode (Stratagene) wurden von positiven Phagenclonen E.coli-clone gewonnen, die ein doppelsträngiges pBlueskript II SK-Plasmid mit der jeweiligen cDNA-Insertion zwischen der EcoRI- und der Xho I-Schnittstelle des Polylinkers enthalten. Nach Überprüfung der Größe

und des Restriktionsmusters der Insertionen wurde ein geeigneter Clon einer Sequenzanalyse unterzogen.

Beispiel 8

Sequenzanalyse der cDNA-Insertion des Plasmids pSSSA

Aus einem entsprechend Beispiel 7 erhaltenen *E. coli-*Clon wurde das Plasmid pSSSA (Fig. 1) isoliert und seine cDNA-Insertion durch Standardverfahren mittels der Didesoxy-nucleotidmethode (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467) bestimmt. Die Insertion ist 2303 bp lang. Die Nucleotidsequenz ist unter Seq ID No. 1 angegeben. Die korrespondierende Aminosäuresequenz ist unter Seq ID No. 2 dargestellt.

Eine Sequenzanalyse und ein Sequenzvergleich mit bekannten DNA-Sequenzen zeigte, daß die unter Seq ID No. 1 dargestellte Sequenz neu ist und eine partielle codierende Region umfaßt, die ein Protein codiert, das Homologie zu Stärkesynthasen aus verschiedenen Organismen aufweist. Das durch diese cDNA-Insertion oder durch hybridisierende Sequenzen codierte Protein wird im Rahmen dieser Anmeldung als SSSA bezeichnet.

Diese DNA-Sequenz unterscheidet sich von der unter Seq ID No. 2 dargestellten DNA-Sequenz, die ebenfalls eine lösliche Stärkesynthase aus Kartoffel codiert, und ließ sich mit der unter Beispiel 1 beschriebenen Methode nicht aus einer cDNA-Bibliothek von Kartoffelknollen isolieren.

Beispiel 9

Isolierung der Vollängen-cDNA, die die Isoform SSS A der löslichen Stärkesynthase aus Solanum tuberosum codiert

Eine blattspezifische cDNA-Expressionsbank aus Solanum tuberosum L. cv. Désirée (Koßmann et al., Planta 186 (1992), 7-12) wurde nach Standardverfahren mittels Hybridisierung

mit einem 5'-Fragment der cDNA-Insertion des Plasmids pSSA (2.3 kb) auf Vollänge-Clone hin durchgemustert untersucht. In Folge konnte ein Clon isoliert werden, der eine im 5'-Bereich um ca. 1.86 kb längere cDNA-Insertion enthielt. Die cDNA-Insertion hat eine Gesamtlänge von ca. 4.16 kb isoliert werden.

Beispiel 10

Sequenzanalyse der cDNA-Insertion des Plasmids pSSSA-VK

Aus einem entsprechend Beispiel 9 erhaltenen E. coli-Clon wurde das Plasmid pSSSA-VK isoliert und seine cDNA-Insertion durch Standardverfahren mittels der Didesoxynucleotidmethode (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467) bestimmt. Die Insertion ist ca. 4.16 kb lang. Die Nucleotidsequenz ist unter Seq ID No. 11 angegeben. Die korrespondierende Aminosäuresequenz ist unter Seq ID No. 12 angegeben. Das aus der Aminosäuresequenz abgeleitete Molekulargewicht des SSSA-Proteins beträgt ca. 135 kD.

Beispiel 11

Konstruktion des Plasmids p35S-anti-SSSA und Einführung des Plasmids in das Genom von Kartoffelpflanzen

Aus dem Plasmid pSSSA wurde mit Hilfe der Restriktionsendonucleasen Xba I und Asp 718 ein ca. 2,1 kb großes DNA-Fragment isoliert, das die codierende Region für die Isoform A der löslichen Stärkesynthase aus Kartoffel umfaßt, und in den mit Xba I und Asp 718 geschnittenen Vektor pBinAR Hyg (DSM 9505) ligiert.

Durch die Insertion des cDNA-Fragmentes entsteht eine Expressionskassette, die folgendermaßen aus den Fragmenten A, B und C aufgebaut ist (Fig. 3):

Das Fragment A (529 bp) enthält den 35S-Promotor des Cauliflower-Mosaik-Virus (CaMV). Das Fragment umfaßt die

Nucleotide 6909 bis 7437 des CaMV (Franck et al., Cell 21 (1980), 285-294).

Das Fragment B enthält neben flankierenden Bereichen die proteincodierende Region der Isoform A der löslichen Stärkesynthase aus Solanum tuberosum. Diese wurde wie oben beschrieben als Xba I/Asp718-Fragment aus pSSSA isoliert und in antisense-Orientierung an den 35S-Promotor in pBinAR Hygfusioniert.

Fragment C (192 bp) enthält das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835-846).

Die Größe des Plasmids p35S-anti-SSSA beträgt ca. 13 kb.

Das Plasmid wurde mit Hilfe Agrobakterien-vermittelter Transformation in Kartoffelpflanzen transferiert wie oben beschrieben. Aus den transformierten Zellen wurden ganze Pflanzen regeneriert.

, p

....

Als Ergebnis der Transformation zeigten transgene Kartoffelpflanzen eine Verringerung der Aktivität der Isoform A der löslichen Stärkesynthase (vergleiche Figur 8).

Die von diesen Pflanzen gebildete Stärke unterscheidet sich von in Wildtyp-Pflanzen synthetisierter Stärke in ihrem Phosphatgehalt, in der Viskosität wäßriger Lösungen, den Verkleisterungseigenschaften und der mittleren Stärkekorngröße. Die Ergebnisse sind in Tabelle I dargestellt.

Der Phosphatgehalt der in den transgenen Pflanzen gebildeten Stärke liegt um mindestens 30 %, vorzugsweise um 50 %, insbesondere um 70 % über den Werten der von in Wildtyp-Pflanzen synthetisierten Stärke.

Die Endviskosität der Stärke aus SSS A-"Antisense"-Pflanzen zeigt um mindestens 10 %, vorzugsweise um 20 %, insbesondere um 30 % niedrigere Werte im Vergleich zu Wildtyp-Pflanzen.

Die Verkleisterungstemperatur, die maximale Viskosität und die mittlere Stärkekorngröße der modifizierten Stärke liegen deutlich unter den Werten der in Wildtyp-Pflanzen gebildeten Stärke (siehe Tabelle I).

54

Charakteristika der Stärke aus Wildtyp- und SSS A-"Antisense"-Kartoffelpflanzen

Tabelle I

	Wildtyp	Linie 25	Linie 39
Phosphatgehalt [nmol mg l Stärke l]	8,50 ± 0,4	14,61 ± 0,3	14,54 ± 0,2
Verkleisterungs- temperatur [°C]	69,5	67,4	66,2
maximale Viskositāt [cP]	4044	3720	3756
Endviskositāt bei 50°C [cP]	3312	2904	2400
mittlere Stārke- korngröße [μm]	29	24	27

Beispiel 12

Konstruktion des Plasmids p35S-anti-SSSB und Einführung des Plasmids in das Genom von Kartoffelpflanzen

Aus dem Plasmid pSSSB wurde mit Hilfe der Restriktionsendonucleasen Xho I und Spe I ein ca. 1,8 kb großes DNA-Fragment isoliert, das die codierende Region für die Isoform B der löslichen Stärkesynthase aus Kartoffel umfaßt, und in den mit SmaI geschnittenen Vektor pBinAR Hyg (DSM 9505) ligiert. Durch die Insertion des cDNA-Fragmentes entsteht eine Expressionskassette, die folgendermaßen aus den Fragmenten A, B und C aufgebaut ist (Fig. 4):

Das Fragment A (529 bp) enthält den 35S-Promotor des Cauliflower-Mosaik-Virus (CaMV). Das Fragment umfaßt die Nucleotide 6909 bis 7437 des CaMV (Franck et al., Cell 21 1980), 285-294).

Das Fragment B enthält neben flankierenden Bereichen einen Teil der proteincodierenden Region der Isoform B der löslichen Stärkesynthase aus Solanum tuberosum. Diese wurde wie oben beschrieben als Xho I/Spe I-Fragment aus pSSSB isoliert

und in antisense-Orientierung an den 35S-Promotor in pBinAR Hyg fusioniert.

Fragment C (192 bp) enthält das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835-846).

Die Größe des Plasmids p35S-anti-SSSB beträgt ca. 13 kb.

Das Plasmid wurde mit Hilfe Agrobakterien-vermittelter Transformation in Kartoffelpflanzen transferiert wie oben beschrieben. Aus den transformierten Zellen wurden ganze Pflanzen regeneriert.

Als Ergebnis der Transformation zeigten transgene Kartoffelpflanzen eine Verringerung der Aktivität der Isoform B der löslichen Stärkesynthase (vergleiche Figur 8).

Beispiel 13

Konstruktion des Plasmids p35S-anti-GBSS II und Einführung des Plasmids in das Genom von Kartoffelpflanzen

Aus dem Plasmid pGBSS II wurde mit Hilfe der Restriktionsendonucleasen Asp 718 und Sma I ein ca. 1,9 kb großes DNA-Fragment isoliert, das die codierende Region für die Isoform GBSS II der Stärkesynthase aus Kartoffel umfaßt. Die Fragmentenden wurden mit der T4 Polymerase geglättet und das Fragment in den mit SmaI geschnittenen Vektor pBinAR Hyg (DSM 9505) ligiert.

Durch die Insertion des cDNA-Fragmentes entsteht eine Expressionskassette, die folgendermaßen aus den Fragmenten A, B und C aufgebaut ist (Fig. 6):

Das Fragment A (529 bp) enthält den 35S-Promotor des Cauliflower-Mosaik-Virus (CaMV). Das Fragment umfaßt die Nucleotide 6909 bis 7437 des CaMV (Franck et al., Cell 21 (1980), 285-294).

Das Fragment B enthält neben flankierenden Bereichen einen Teil der proteincodierenden Region der Isoform GBSS II der Stärkesynthase aus Solanum tuberosum. Diese wurde wie oben beschrieben als Asp 718/Sma I-Fragment aus pGBSS II isoliert

WO 96/15248 PCT/EP95/04415

56

und nach Glättung der Fragmentenden in antisense-Orientierung an den 35S-Promotor in pBinAR Hyg fusioniert.

Fragment C (192 bp) enthält das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835-846).

Die Größe des Plasmids p35S-anti-GBSS II beträgt ca. 13 kb.

Das Plasmid wurde mit Hilfe Agrobakterien-vermittelter

Transformation in Kartoffelpflanzen transferiert wie oben
beschrieben. Aus den transformierten Zellen wurden ganze

Pflanzen regeneriert.

Als Ergebnis der Transformation zeigten transgene Kartoffelpflanzen eine Verringerung der Aktivität der Isoform GBSS II der Stärkesynthase (vergleiche Figur 8).

Die von diesen Pflanzen gebildete Stärke unterscheidet sich von in Wildtyp-Pflanzen synthetisierter Stärke in ihrem Phosphatgehalt, in der Viskosität, den Verkleisterungseigenschaften und der mittleren Stärkekorngröße. Die Ergebnisse sind in Tabelle II dargestellt.

Tabelle II

Charakteristika der Stärke aus Wildtyp- und GBSS II-"Antisense"-Pflanzen

	Wildtyp	Linie 14	Linie 35	Linie 44
Phosphatgehalt [nmol mg Stärke]	6,99 ± 0,19	4,52 ± 0,2	4,13 ± 0,06	3,76 ± 0,12
Verkleiste- rungstempe- ratur (°C)	64,1	62,55	63,25	63,55
maximale Visko- sität (cP)	4057	2831	2453	2587
Endviskositāt bei 50°C [cP]	2849	2816	2597	2587
mittlere Stärke- korngröße [um]	37	32	31	32

Der Phosphatgehalt der in den transgenen Pflanzen gebildeten Stärke liegt um mindestens 35 %, vorzugsweise um 40 %, insbesondere um 45 % unter den Werten der von in Wildtyp-Pflanzen synthetisierten Stärke.

Die maximale Viskosität der Stärke aus GBSS II-"antisense"-Pflanzen zeigt um mindestens 30 %, vorzugsweise um 35 %, insbesondere um 40 % niedrigere Werte im Vergleich zu Wildtyp-Pflanzen.

Die Verkleisterungstemperatur und die Endviskosität der modifizierten Stärke liegen unter den Werten der in Wildtyp-Pflanzen gebildeten Stärke. Die mittlere Stärkekorngröße der in den transgenen Pflanzen gebildeten Stärke ist deutlich geringer als die von Wildtyp-Stärke.

Beispiel 14

Überexpression der löslichen Stärkesynthasen SSS A und SSS B in E. coli

Für die Überexpression löslicher Stärkesynthasen in $E.\ coli$ wurde der Stamm G6MD2 herangezogen. Hierbei handelt es sich um eine Mutante, die neben dem glg- auch im mal-Operon deletiert ist. Damit besitzt sie weder die Glycogen-Synthase (glgA), das Verzweigungsenzym (glgB) und die AGPase (glgC) noch die Amylomaltase (malQ), die Maltodextrin-Phosphoylase (malP) sowie weitere an der Metabolisierung von Maltose beteiligte Proteine. Aus diesem Grund ist die Mutante G6MD2 nicht fähig, über den ADP-Glucose-Weg Glycogen oder ausgehend von Maltose α -1,4-Glucane zu synthetisieren.

Zellen dieser Mutante wurden mit den cDNA-Clonen pSSSA-VK bzw. pSSSB-VK transformiert. Die Stärkesynthasen exprimierenden E. coli-Zellen wurden nach 2 h Induktion mit IPTG in 50 mM Tris-HCl pH 7,6, 10 % Glycerin, 2 mM EDTA, 2 mM DTT und 0,4 mM PMSF durch Ultraschall aufgeschlossen. Als Kontrolle dienten mit pBluescript transformierte Zellen. Die Abtrennung von intakten Zellen und Zellwandmaterial erfolgte durch eine Zentrifugation für 10 Minuten bei 13.000 g, und

anschließend wurde die Proteinkonzentration des Überstandes bestimmt. 100 µg Proteinextrakt wurden dem Reaktionspuffer (Endkonzentration: 50 mM Tricine-NaOH pH 8,5, 25 mM Kaliumacetat, 2 mM EDTA und 2 mM DTT, 1 mM ADP-Gluose) zugegeben. Für die Untersuchung der Citrat-stimulierten Reaktion ("primer"-unabhängig) befand sich im Reaktionspuffer zusätzlich 0,5 M Natriumcitrat, während die "primer"-abhängige Reaktion in Anwesenheit von 0,02 % (Gew./Vol.) Maltooligosacchariden (Glucidex 19; 1-30 Glucose-Einheiten) getestet wurde. Die Reaktion wurde bei Raumtemperatur über Nacht durchgeführt. Die synthetisierten Glucane wurden dann mit Lugolscher Lösung nachgewiesen und zur weiteren Charakterisierung spektralphotometrisch untersucht.

Sowohl die Isoform SSS A als auch die Isoform SSS B synthetisierten in der "primer"-abhängigen Reaktion (Abwesenheit von Citrat) Glucane. Das Absorptionsmaximum des durch SSS B synthetisierten Glucans lag bei 614 nm, was einem Glucan von ca. 150 Glucose-Einheiten entspricht. Das von SSS A gebildete Glucan absorbierte bei 575 nm, was auf die Synthese von kurzkettigen Glucanen mit einem Polymerisationsgrad von ca. 50 Glucose-Einheiten hindeutet.

In der "primer"-unabhängigen, d.h. bei der Citrat-stimulierten, Reaktion lieferte allein die Isoform SSS B ein Glucan, welches nach Anfärbung mit Lugolscher Lösung bei 612 nm absorbierte. Die Isoform SSS A zeigte bei der "primer"-unabhängigen Reaktion keine Aktivität und synthetisierte folglich kein Glucan.

Die Proteinextrakte aus den mit pBluescript transformierten Zellen lieferten in keinem der Reaktionsansätze Produkte.

4

10 m

59

SEQUENZPROTOKOLL

(1) ALLGEMEINE ANGABEN:

- (i) ANMELDER:
 - (A) NAME: Institut fuer Genbiologische Forschung Berlin GmbH
 - (B) STRASSE: Ihnestrasse 63
 - (C) ORT: Berlin
 - (E) LAND: DE
 - (F) POSTLEITZAHL: 14195
 - (G) TELEFON: (030) 8300070
 - (H) TELEFAX: (030) 83000736
- (ii) BEZEICHNUNG DER ERFINDUNG: DNA-Molekuele codierend Enzyme, die an der Staerkesynthese beteiligt sind, Vektoren, Bakterien, transgene Pflanzenzellen und Pflanzen enthaltend diese Molekuele
- (iii) ANZAHL DER SEQUENZEN: 17
- (iv) COMPUTER-LESBARE FASSUNG:
 - (A) DATENTRÄGER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)
- (2) ANGABEN ZU SEQ ID NO: 1:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÂNGE: 2303 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: nicht bekannt
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
 - (vi) URSPRÜNLICHE HERKUNFT:
 - (A) ORGANISMUS: Solanum tuberosum
 - (B) STAMM: cv Berolina
 - (F) GEWEBETYP: Knollengewebe
 - (vii) UNMITTELBARE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA-Bibliothek in pBluescriptSKII+
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 3..2033

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

GG C.	AC G is G	AG G	TC A	AA A ys L	AG C ys L 5	TT G eu V	TT A	AA T ys S	CT G	AG A lu A 10	GA A rg I	TA G	AT G sp G	TA W	AT sp 15	47
TGG Trp	TGG Trp	TAT Tyr	ACA Thr	GAG Glu 20	GTT Val	GTT Val	ATT Ile	CCT Pro	GAT Asp 25	CAG Gln	GCA Ala	CTT Leu	TTC Phe	TTG Leu 30	GAT Asp	95
TGG Trp	GTT Val	TTT Phe	GCT Ala 35	GAT Asp	GGT Gly	CCA Pro	CCC Pro	AAG Lys 40	CAT His	GCC Ala	ATT	GCT Ala	TAT Tyr 45	GAT Asp	AAC Asn	143
AAT Asn	CAC His	CGC Arg 50	CAA Gln	GAC Asp	TTC Phe	CAT His	GCC Ala 55	ATT Ile	GTC Val	CCC Pro	AAC Asn	CAC His 60	ATT Ile	CCG Pro	GAG Glu	191
GAA Glu	TTA Leu 65	TAT Tyr	TGG Trp	GTT Val	GAG Glu	GAA Glu 70	GAA Glu	CAT His	CAG Gln	ATC Ile	TTT Phe 75	AAG Lys	ACA Thr	CTT	CAG Gln	239
GAG Glu 80	GAG Glu	AGA Arg	AGG Arg	CTT Leu	AGA Arg 85	GAA Glu	GCG Ala	GCT Ala	ATG Met	CGT Arg 90	GCT Ala	AAG Lys	GTT Val	GAA Glu	AAA Lys 95	287
ACA Thr	GCA Ala	CTT	CTG Leu	AAA Lys 100	ACT Thr	GAA Glu	ACA Thr	AAG Lys	GAA Glu 105	AGA Arg	ACT Thr	ATG Met	AAA Lys	TCA Ser 110	TTT Phe	335
TTA Leu	CTG Leu	TCT Ser	CAG Gln 115	Lys	CAT His	GTA Val	GTA Val	TAT Tyr 120	Thr	GAG Glu	CCT Pro	CTT Leu	GAT Asp 125	ATC Ile	CAA Gln	383
GCT Ala	GGA Gly	AGC Ser 130	Ser	GTC Val	ACA Thr	GTT Val	TAC Tyr 135	Tyr	AAT Asn	CCC	GCC Ala	AAT Asn 140	ACA Thr	GTA Val	CTT	431
AAT Asn	GGT Gly 145	Lys	CCT	GAA Glu	ATT	TGG Trp 150	Phe	AGA Arg	TGT Cys	TCA	TTT Phe 155	Asn	CGC Arg	TGG	ACT	479
CAC His 160	Arg	CTG Leu	GGT Gly	CCA	TTG Leu 165	Pro	CCT Pro	CAG Gln	AAA Lys	ATG Met 170	Ser	CCT Pro	GCT Ala	GAA Glu	AAT Asn 175	527
GGC Gly	ACC Thr	CAT His	GTC Val	AGA Arg	Ala	ACT	GTG Val	Lys	GTT Val	Pro	TTG Leu	GAT Asp	GCA Ala	TAT Tyr 190	ATG Met	575

ATG Met	GAT Asp	TTT Phe	GTA Val 195	TTT Phe	TCC Ser	GAG Glu	AGA Arg	GAA Glu 200	GAT Asp	GGT Gly	GGG Gly	ATT Ile	TTT Phe 205	GAC Asp	AAT Asn	623
			ATG Met												AAA Lys	671
			ATG [*] Met													719
			GGA Gly													767
			TTA Leu													815
			ATG Met 275													863
			GGG Gly													911
	_		TAT Tyr													959
			GGT Gly													1007
			TTG Leu													1055
ATT Ile	CAT His	TGC Cys	CAT His 355	GAT Asp	TGG Trp	TCT Ser	AGT Ser	GCT Ala 360	CCT Pro	GTT Val	GCT Ala	TGG Trp	CTC Leu 365	TTT Phe	AAG Lys	1103
GAA Glu	CAA Gln	TAT Tyr 370	ACA Thr	CAC His	TAT	GGT Gly	CTA Leu 375	AGC Ser	AAA AAA	TCT Ser	CGT Arg	ATA Ile 380	GTC Val	TTC Phe	ACG Thr	1151
ATA Ile	CAT His 385	AAT Asn	CTT	GAA Glu	TTT Phe	GGG Gly 390	GCA Ala	GAT Asp	CTC Leu	ATT Ile	GGG Gly 395	AGA Arg	GCA Ala	ATG Met	ACT Thr	1199
AAC Asn 400	GCA Ala	GAC Asp	AAA Lys	GCT Ala	ACA Thr 405	ACA Thr	GTT Val	TCA Ser	CCA Pro	ACT Thr 410	TAC Tyr	TCA Ser	CAG Gln	GAG Glu	GTG Val 415	1247

						TTC Phe			12	295
_						AAC Asn		_	13	343
						GGC Gly 460			13	391
						CAG Gln			14	139
_						AAA Lys			14	187
	 _					AAC Asn			15	535
_						AAC Asn			15	583
						CGC Arg 540			16	531
						TAT Tyr			16	579
						GGA Gly			17	727
_						CGT Arg			17	775
						AAA Lys			18	323
						GAT Asp 620			18	371

		•	GTT													191
Ala	Gly 625	GIÀ	Val	Asp	Tyr	630	Len	Asn	Arg	Ala	635	Ser	Ala	Trp	Tyr	
GAT	GGT	CGG	GAT	TGG	TTC	AAC	TCT	TTA	TGC	AAG	CAG	GTC	ATG	GAA	CAA	196
Asp 640	Gly	Arg	Asp	Trp	Phe 645	Asn	Ser	Leu	Cys	Lys 650	Gln	Val	Met	Glu	Gln 655	
GAT	тсс	עריידי	TGG	אאר	CGA	رصب	GCT	CTT	СУТ	ТДТ	ተ ፐር	GAG	ر بست	TAC	СЪТ	2015
			Trp	Asn					Asp					Tyr		201.
				660					665					670		
			AAG Lys 675			TAGI	TAGI	TTT G	TGAG	ATGO	ET AG	CAGA	LAAAI	A		2063
TTC	ACGAG	מבב		ልጥ ሮ ጥ	יכ ידאַ	CAGG	<u>מ</u> רידים	. ሮፕሮ	:There	CGT	СТСС	BCAG	ירידי ז	لا ملململما	TTTCC	2123
					_											
															TCATT	2183
TCAI	TTTT	TG 1	rgcaa	CATA	T GA	AAGA	GCTT	' AGC	CTCT	'AAT	AATG	TAGT	CA 1	rtgat	GATTA	2243
TTTG	TTTT	GG (GAAGA	AATG	A GA	AATC	AAAG	GAT	'GCAA	AAT	ACTC	TGAA	AA A	LAAAA	AAAA	2303

(2) ANGABEN ZU SEQ ID NO: 2:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 677 Aminosäuren
 - (B) ART: Aminosāure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKULS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

His Glu Val Lys Leu Val Lys Ser Glu Arg Ile Asp Gly Asp Trp
1 10 15

Trp Tyr Thr Glu Val Val Ile Pro Asp Gln Ala Leu Phe Leu Asp Trp 20 25 30

Val Phe Ala Asp Gly Pro Pro Lys His Ala Ile Ala Tyr Asp Asn Asn 35 40 45

His Arg Gln Asp Phe His Ala Ile Val Pro Asn His Ile Pro Glu Glu 50 55

Leu Tyr Trp Val Glu Glu Glu His Gln Ile Phe Lys Thr Leu Gln Glu 65 70 75 80

Glu Arg Arg Leu Arg Glu Ala Ala Met Arg Ala Lys Val Glu Lys Thr 85 90 95

Ala	Leu	Leu	100	Thr	GIU	THE	гуа	105	Arg	inr	Met	Lys	110	FILE	Dea
Leu	Ser	Gln 115	Lys	His	Val	Val	Tyr 120	Thr	Glu	Pro	Leu	Asp 125	Ile	Gln	Ala
Gly	Ser 130	Ser	Val	Thr	Val	Tyr 135	Tyr	Asn	Pro	Ala	Asn 140	Thr	Val	Leu	Asn
Gly 145	Lys	Pro	Glu	Ile	Trp 150	Phe	Arg	Суз	Ser	Phe 155	Asn	Arg	Trp	Thr	His
Arg	Leu	Gly	Pro	Leu 165	Pro	Pro	Gln	Lys	Met 170	Ser	Pro	Ala	Glu	Asn 175	Gly
Thr	His	Val	Arg 180	Ala	Thr	Val	Lys	Val 185	Pro	Leu	Asp	Ala	Тут 190	Met	Met
Asp	Phe	Val 195	Phe	Ser	Glu	Arg	Glu 200	Asp	Gly	Gly	Ile	Phe 205	Asp	Asn	Lys
Ser	Gly 210	Met	Asp	Tyr	His	Ile 215	Pro	Val	Phe	Gly	Gly 220	Val	Ala	Lys	Glu
Pro 225	Pro	Met	His	Ile	Val 230	His	Ile	Ala	Val	Glu 235	Met	Ala	Pro	Ile	Ala 240
Lys	Val	Gly	Gly	Leu 245		Asp	Val	Val	Thr 250	Ser	Leu	Ser	Arg	Ala 255	Val
Gln	Asp	Leu	Asn 260	His	Asn	Val	Asp	11e 265	Ile	Leu	Pro	Lys	Tyr 270	Asp	Суз
Leu	Lys	Met 275			Val			Phe	Arg	Phe	His	Lys 285	Asn	Tyr	Phe
Trp	Gly 290	Gly	Thr	Glu	Ile	Lys 295		Trp	Phe	Gly	300 TÀ2	Val	Glu	Gly	Leu
Ser 305	Val	Tyr	Phe	Leu	Glu 310	Pro	Gln	Asn	Gly	Leu 315	Phe	Ser	Lys	Gly	Cys 320
Val	Tyr	Gly	Cys	Ser 325	Asn	Asp	Gly	Glu	Arg 330		Gly	Phe	Phe	Cys 335	His
Ala	Ala	Leu	Glu 340	Phe	Leu	Leu	Gln	Gly 345	Gly	Phe	Ser	Pro	Asp 350	Ile	Ile
	Cys	355					360					365			
Gln	Tyr 370	Thr	His	Tyr	Gly	Leu 375	Ser	Lys	Ser	Arg	Ile 380	Val	Phe	Thr	Ile

His 385	Asn	Leu	Glu	Phe	Gly 390	Ala	Asp	Leu	Ile	Gly 395		Ala	Met	Thr	Asr
Ala	Asp	Lys	Ala	Thr 405	Thr	Val	Ser	Pro	Thr 410	Tyr	Ser	Gln	Glu	Val 415	Ser
Gly	Asn	Pro	Val 420	Ile	Ala	Pro	His	Leu 425	His	Lys	Phe	His	Gly 430	Ile	Val
Asn	Gly	Ile 435	Asp	Pro	Asp	Ile	Trp 440	Asp	Pro	Leu	Asn	Asp 445	Lys	Phe	Ile
Pro	Ile 450	Pro	Tyr	Thr	Ser	Glu 455	Asn	Val	Val	Glu	Gly 460	Lys	Thr	Ala	Ala
Lys 465	Glu	Ala	Leu	Gln	Arg 470	Lys	Leu	Gly	Leu	Lys 475	Gln	Ala	Asp	Leu	Pro 480
Leu	Val	Gly	Ile	Ile 485	Thr	Arg	Leu	Thr	His 490	Gln	Lys	Gly	Ile	His 495	Leu
Ile	Lys	His	Ala 500	Ile	Trp	Arg	Thr	Leu 505	Glu	Arg	Asn	Gly	Gln 510	Val	Val
Leu	Leu	Gly S15	Ser	Ala	Pro	Asp	Pro 520	Arg	Val	Gln	Asn	Asp 525	Phe	Val	Asn
Leu	Ala 530	Asn	Gln	Leu	His	Ser 535	Lys	Tyr	Asn	Asp	Arg 540	Ala	Arg	Leu	Cys
Leu 545	Thr	Tyr	Asp	Glu	Pro 550	Leu	Ser	His	Leu	Ile 555		Ala	Gly	Ala	Asp 560
Phe	Ile	Leu	Val		Ser									Gln 575	
Thr	Ala	Met	Arg 580	Tyr	Gly	Ser	Ile	Pro 585	Val	Val	Arg	Lys	Thr 590	Gly	Gly
Leu		595					600					605			
Gln	610	_				615					620				
Gly 625					630					635					640
				645	Asn				650					655	
Trp	Ser	Trp	Asn 660	Arg	Pro	Ala	Leu	Asp 665	Tyr	Leu	Glu	Leu	Tyr 670	His	Ala

66

Ala Arg Lys Leu Glu 675

- (2) ANGABEN ZU SEQ ID NO: 3:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LANGE: 1758 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: nicht bekannt
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: cDNA zu mRNA
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
 - (vi) URSPRÜNLICHE HERKUNFT:
 - (A) ORGANISMUS: Solanum tuberosum
 - (B) STAMM: cv. Berolina
 - (F) GEWEBETYP: Knollengewebe
 - (vii) UNMITTELBARE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA-Bibliothek in pBluescriptSKII+
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE:1..1377
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

70

		AGC														48
Gly	Thr	Ser	Asn	Ala	Val	Asp	Leu	Asp	Val	Arg	Ala	Thr	Val	His	Cys	
1				5					10					15		
TTT	GGT	GAT	GCA	CAG	GAA	GTA	GCC	TTC	TAC	CAT	GAA	TAC	AGG	GCA	GGT	96
Phe	Gly	Asp	Ala	Gln	Glu	Val	Ala	Phe	Tyr	His	Glu	Tyr	Arg	Ala	Gly	
			20					25				_	30		_	
GTT	GAT	TGG	GTA	TTT	GTG	GAC	CAC	TCT	TCT	TAC	CGC	AGA	CCT	GGA	ACG	144
Val	Asp	Trp	Val	Phe	Val	Asp	His	Ser	Ser	Tyr	Arg	Arg	Pro	Gly	Thr	
		35					40			_		45		-		
CCA	TAT	GGT	GAT	ATT	TAT	GGT	GCA	TTT	GGT	GAT	AAT	CAG	TTT	CGC	TTC	192
Pro	Tyr	Gly	Asp	Ile	Tyr	Gly	Ala	Phe	Gly	Asp	Asn	Gln	Phe	Arg	Phe	
	50	-	-		-	55			•	•	60					
ACT	TTG	CTT	TCT	CAC	GCA	GCA	TGT	GAA	GCG	CCA	TTG	GTT	CTT	CCA	CTG	240
		Leu														
							-,-									

75

80

65

GGA Gly	GGG Gly	TTC Phe	ACT Thr	TAT Tyr 85	GGA Gly	GAG Glu	AAG Lys	TGC Cys	TTG Leu 90	TTT Phe	CTC Leu	GCT Ala	AAT Asn	GAT Asp 95	TGC Cys	288
AAC Asn	GCT Ala	GCC Ala	TTG Leu 100	GTT Val	CCT Pro	TTA Leu	CTT Leu	TTA Leu 105	GCG Ala	GCC Ala	AAG Lys	TAT Tyr	CGT Arg 110	CCT Pro	TAT Tyr	336
GGT Gly	GTT Val	TAC Tyr 115	AAG Lys	GAT Asp	GCT Ala	CGT	AGT Ser 120	ATT Ile	GTC Val	GCA Ala	ATA Ile	CAC His 125	AAC Asn	ATT Ile	GCA Ala	384
CAT His	CAG Gln 130	GGA Gly	GTG Val	GAG Glu	CCT Pro	GCA Ala 135	GTA Val	ACC Thr	TAC Tyr	AAT Asn	AAT Asn 140	TTG Leu	GGT Gly	TTG Leu	CCT Pro	432
CCA Pro 145	CAA Gln	TGG Trp	TAT Tyr	GGA Gly	GCA Ala 150	GTT Val	GAA Glu	TGG Trp	ATA Ile	TTT Phe 155	CCC Pro	ACA Thr	TGG Trp	GCA Ala	AGG Arg 160	480
GCG Ala	CAT His	GCG Ala	CTT Leu	GAC Asp 165	ACT Thr	GGT Gly	GAA Glu	ACA Thr	GTG Val 170	AAC Asn	GTT Val	TTG Leu	AAA Lys	GGG Gly 175	GCA Ala	528
ATA Ile	GCA Ala	GTT Val	GCT Ala 180	GAT Asp	CGG Arg	ATA Ile	CTG Leu	ACA Thr 185	GTT Val	AGC Ser	CAG Gln	GGA Gly	TAC Tyr 190	TCA Ser	TGG	576
GAA Glu	ATA Ile	ACA Thr 195	ACT Thr	CCT	GAA Glu	GGG Gly	GGA Gly 200	TAT	GGG Gly	CTA Leu	CAT	GAG Glu 205	CTG Leu	TTG	AGC Ser	624
AGT Ser	AGA Arg 210	Gln	TCT	GTT Val	CTT Leu	AAT Asn 215	Gly	ATT	ACT Thr	AAT Asn	GGA Gly 220	Ile	GAT Asp	GTT Val	TAA naA	672
GAT Asp 225	TGG Trp	AAC Asn	CCG Pro	TCG Ser	ACA Thr 230	Asp	GAG Glu	CAT His	ATC Ile	GCT Ala 235	Ser	CAT His	TAC	TCC	ATC Ile 240	720
AAT Asn	GAC Asp	CTC Leu	TCC Ser	CCC Pro 245	Pro	GGA Gly	AAG Lys	GTT Val	CAG Gln 250	Cys	AAG Lys	ACT Thr	GAT Asp	CTG Leu 255	CAA Gln	768
AAG Lys	GAA Glu	CTG Leu	GGC Gly 260	Leu	CCA Pro	ATT	CGA Arg	CCC Pro 265		TGT	CCA Pro	CTG Leu	ATT Ile 270	GIÅ	TTT	816
ATT Ile	GGA Gly	AGG Arg 275	Leu	GAC Asp	TAC	CAG Gln	Lys 280	Gly	GTT Val	GAC Asp	ATA Ile	ATC Ile 285	Leu	TCA Ser	GCA Ala	864
ATT	CCA Pro 290	Glu	CTT	ATG Met	CAG Gln	AAT Asn 295	Asp	GTC Val	CAA Gln	GTT Val	GTA Val 300	Met	CTT Leu	GGA Gly	TCT	912

GGT Gly 305	GAG Glu	AAA Lys	CAA Gln	TAT	GAA Glu 310	GAC Asp	TGG Trp	ATG Met	AGA Arg	CAT His 315	Thr	GAA Glu	AAT Asn	CTT	TTT Phe 320	960
			TTT Phe													1008
			GCA Ala 340													1056
			TTA Leu													1104
			AGC Ser													1152
CCA Pro 385	TAT Tyr	GCT Ala	CAA Gln	G AA Glu	GGA Gly 390	AAA Lys	GGT Gly	GAA Glu	GGT Gly	ACC Thr 395	GGG Gly	TGG Trp	ACA Thr	TTT Phe	TCT Ser 400	1200
			AGT Ser										Ala			1248
		Thr	GAA Glu 420				Ser					Met				1296
	Gly		GAC Asp	Tyr		Trp	Glu				Ile					1344
/al			TGG (Phe						GTCA	g at g.	AT T	TATC.	AAGAA	1397
AGAT	TGCA	AA C	GGGA'	TACA	T CA	TTAA	ACTA	TAC	GCAG.	AGC	TTTT	GGTG	CT A	rtag:	CTACT	1457
STCA:	TTGG	GC G	CGGA	ATGT	T TG	TGGT"	TCTT	TCT	GATT(CAG .	AGAG.	ATCA	AG T	ragt	ICCAA	1517
\GAC	ATGT	AG C	CTGC	CCCT	G TC	TGTG	ATGA	AGT	AAAA	CTA	CAAA	GGCA!	AT T	AGAA	ACCCA	1577
CAA	CAAC'	rg c	CTCC	rttg(G GA	GAAGI	AGTG	GAA	TATA	GTA .	AAAA	AGAA:	rt t	rgag:	PTTAA	1637
GTC	ATT (GA A	TTAA!	TAT"	r ct	CATT	ATTT	AAA	AAAA	CAT	CTCA?	rctci	AT AC	CAAT	ATATA	1697
LAAT?	rgat(CA TO	GATT	GATG	C CC(CCTAJ	AAA	AAA	AAAA	AAA 2	AAAA	LAAA	LA AJ	LAAA	AAAA	1757
									ť							1758

(2) ANGABEN ZU SEQ ID NO: 4:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 459 Aminosäuren
 - (B) ART: Aminosaure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:
- Gly Thr Ser Asn Ala Val Asp Leu Asp Val Arg Ala Thr Val His Cys
 1 10 15
- Phe Gly Asp Ala Gln Glu Val Ala Phe Tyr His Glu Tyr Arg Ala Gly
 20 25 30
- Val Asp Trp Val Phe Val Asp His Ser Ser Tyr Arg Arg Pro Gly Thr
 35 40 45
- Pro Tyr Gly Asp Ile Tyr Gly Ala Phe Gly Asp Asn Gln Phe Arg Phe 50
- Thr Leu Leu Ser His Ala Ala Cys Glu Ala Pro Leu Val Leu Pro Leu 65 70 80
- Gly Gly Phe Thr Tyr Gly Glu Lys Cys Leu Phe Leu Ala Asn Asp Cys 85 90 95
- Asn Ala Ala Leu Val Pro Leu Leu Leu Ala Ala Lys Tyr Arg Pro Tyr 100 105 110
- Gly Val Tyr Lys Asp Ala Arg Ser Ile Val Ala Ile His Asn Ile Ala 115 120 125
- His Glm Gly Val Glu Pro Ala Val Thr Tyr Asn Asn Leu Gly Leu Pro 130 135
- Pro Gln Trp Tyr Gly Ala Val Glu Trp Ile Phe Pro Thr Trp Ala Arg 145 150 150
- Ala His Ala Leu Asp Thr Gly Glu Thr Val Asn Val Leu Lys Gly Ala 165 170 175
- Ile Ala Val Ala Asp Arg Ile Leu Thr Val Ser Gln Gly Tyr Ser Trp 180 185 190
- Glu Ile Thr Thr Pro Glu Gly Gly Tyr Gly Leu His Glu Leu Leu Ser 195 200 205
- Ser Arg Gln Ser Val Leu Asn Gly Ile Thr Asn Gly Ile Asp Val Asn 210 220
- Asp Trp Asn Pro Ser Thr Asp Glu His Ile Ala Ser His Tyr Ser Ile 225 230 235 240

Asn Asp Leu Ser Pro Pro Gly Lys Val Gln Cys Lys Thr Asp Leu Gln 255 250 245 Lys Glu Leu Gly Leu Pro Ile Arg Pro Asp Cys Pro Leu Ile Gly Phe 270 265 260 Ile Gly Arg Leu Asp Tyr Gln Lys Gly Val Asp Ile Ile Leu Ser Ala 285 275 280 Ile Pro Glu Leu Met Gln Asn Asp Val Gln Val Val Met Leu Gly Ser 300 295 290 Gly Glu Lys Gln Tyr Glu Asp Trp Met Arg His Thr Glu Asn Leu Phe 320 315 310 305

Lys Asp Lys Phe Arg Ala Trp Val Gly Phe Asn Val Pro Val Ser His 325 330 335

Arg Ile Thr Ala Gly Cys Asp Ile Leu Leu Met Pro Ser Arg Phe Glu 340 350

Pro Cys Gly Leu Asn Gln Leu Tyr Ala Met Arg Tyr Gly Thr Ile Pro 355 360 365

Ile Val His Ser Thr Gly Gly Leu Arg Asp Thr Val Lys Asp Phe Asn 370 380

Pro Tyr Ala Gln Glu Gly Lys Gly Glu Gly Thr Gly Trp Thr Phe Ser 395 400

Pro Leu Thr Ser Glu Lys Leu Phe Asp Thr Leu Lys Leu Ala Ile Arg 405 410 415

Thr Tyr Thr Glu His Lys Ser Ser Trp Glu Gly Leu Met Lys Arg Gly
420 425 430

Met Gly Arg Asp Tyr Ser Trp Glu Asn Ala Ala Ile Gln Tyr Glu Gln 435

Val Phe Thr Trp Ala Phe Ile Asp Pro Pro Tyr 450 455

- (2) ANGABEN ZU SEQ ID NO: 5:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1926 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: nicht bekannt
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: cDNA zu mRNA
 - (iii) HYPOTHETISCH: NEIN

(iv) ANTISENSE:	NEIN
-----------------	------

- (vi) URSPRÜNLICHE HERKUNFT:
 - (A) ORGANISMUS: Solanum tuberosum
 - (B) STAMM: cv. Berolina
 - (F) GEWEBETYP: Knollengewebe
- (vii) UNMITTELBARE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA-Bibliothek in pBluescriptSK+
- (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 2..1675
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

				GA AAG AAG ly Lys Lys		46
	Met Pro Se				AT GTG GAA is Val Glu 30	94
_				Glu Ala A	AC GAA GAG sn Glu Glu 45	142
					rg gca gga eu Ala gly	190
			Leu Val	GAA TGC GG Glu Cys Al 75		238
				GCA TTA CO Ala Leu Pi	CC AAA GCT co Lys Ala 95	286
		y His Arg		GCA CCT CO Ala Pro Al		334
				AAA ATT TA Lys Ile Ty 12		382
Asp Gly G				GCT TTT AT Ala Phe II 140		430

							CAC His			478
	_						CGC Arg			526
_							CCA Pro			574
							AAT Asn			622
			-				CGT Arg 220			670
							AAC Asn			718
							GAT Asp			766
							GGA Gly			814
							CGT Arg			862
							CAA Gln 300			910
							TTA Leu			958
	Asn						TTG Leu			1006
							ACG Thr		_	1054

				Cys					Gln						CCA Pro	•	1102
			Asp					Gly							CCA Pro		1150
						ATT Ile 390									GGT Gly		1198
						ATG Met											1246
						GAG Glu											1294
						AAG Lys											1342
						TCT Ser							Leu				1390
						GGG Gly 470											1438
						CAG Gln				_							1486
		_				AGG Arg											1534
						ACT Thr											1582
						ATG Met											1630
GCT Ala																	1675
TGAG	GTTC	AT T	'ACTT	'GTAG	A TA	TTTG	GGGA	TTI	TGGC	CAT	TGTA	TCAA	GT T	CTAA	TGATO	}	1735
GGAT	TTCA	GA G	ACAT	GTTI	'C TG	GTAT	'CGAC	ACG	AGAG	GAT	GCAT	'GCAA	CA A	GTTG	GCTA	À	1795

1855

CTAT	CATA	ACT 1	ACTAC	CAC	T C	AGGAJ	ATGAT	TGO	CCCC	ACTT	GAT	CATG	raa '	TCAT	STATAT	1855
ACTO	TAT	TTT (STTTC	CAA	AA TO	STAG:	TAC	A TGT	rtgci	AATT	TCT	LAAA	AAA	LAAAA	AAAAA	1915
AAAA	LAAAJ	VAA 1	A													1926
(2)	ANG!	BEN	zu s	SEQ 1	D NO	D: 6	:									
	(() (I	SEQUI A) Li B) AI	NGE:	: 558 Amino	3 Ami osāu	inosá re	iure	ז							
		·) T(
			DES QUENS						ои с	: 6:						
Gly	Thr	Ser	Lys	Ser 5	Leu	Val	Asp	Val	Pro 10	Gly	Lys	Lys	Ile	Gln 15	Ser	
Tyr	Met	Pro	Ser 20	Leu	Arg	Lys	Glu	Ser 25	Ser	Ala	Ser	His	Val 30	Glu	Gln	
Arg	Asn	Glu 35	Asn	Leu	Glu	Gly	Ser 40	Ser	Ala	Glu	Ala	Asn 45	Glu	Glu	Thr	
Glu	Asp 50	Pro	Val	Asn	Ile	Asp 55	Glu	Lys	Pro	Pro	Pro 60	Leu	Ala	Gly	Thr	
Asn 65	Val	Met	Asn	Ile	Ile 70	. Leu	Val	Ala	Ser	Glu 75	Cys	Ala	Pro	Trp	Ser 80	
Lys	Thr	Gly	Gly	Leu 85	Gly	Asp	Val	Ala	Gly 90	Ala	Leu	Pro	Lys	Ala 95	Leu	
Ala	Arg	Arg	Gly 100	His	Arg	Val	Met	Val 105	Val	Ala	Pro	Arg	Tyr 110	Asp	Asn	
Tyr	Pro	Glu 115	Pro	Gln	Asp	Ser	Gly 120	Val	Arg	Lys	Ile	Tyr 125	Lys	Val	Asp	
Gly	Gln 130	Asp	Val	Glu	Val	Thr 135	Tyr	Phe	Gln	Ala	Phe 140	Ile	Asp	Gly	Val	
Asp 145	Phe	Val	Phe	Ile	Asp 150	Ser	His	Met	Phe	Arg 155	His	Ile	Gly	Asn	Asn 160	
Ile	Tyr	Gly	Gly	Asn 165		Val	Asp	Ile	Leu 170	Lys	Arg	Met	Val	Leu 175	Phe	
Cys	Lys	Ala			Glu								Gly 190	Gly	Val	

Сув	Tyr	Gly 195	Asp	Gly	Asn	Leu	Val 200	Phe	Ile	Ala	Asn	Asp 205	Trp	His	Thr
Ala	Leu 210	Leu	Pro	Val	Tyr	Leu 215	Lys	Ala	Tyr	Tyr	Arg 220	Asp	Asn	Gly	Ile
Met 225	Asn	Tyr	Thr	Arg	Ser 230	Val	Leu	Val	Ile	His 235	Asn	Ile	Ala	His	Gln 240
Gly	Arg	Gly	Pro	Leu 245	Glu	Asp	Phe	Ser	Tyr 250	Val	Asp	Leu	Pro	Pro 255	His
Tyr	Met	Asp	Pro 260	Phe	Lys	Leu	Tyr	Asp 265	Pro	Val	Gly	Gly	Glu 270	His	Phe
Asn	Ile	Phe 275	Ala	Ala	Gly	Leu	Lys 280	Thr	Ala	Asp	Arg	Val 285	Val	Thr	Val
Ser	His 290	Gly	Tyr	Ser	Trp	Glu 295	Leu	Lys	Thr	Ser	Gln 300	Gly	Gly	Trp	Gly
Leu 305	His	Gln	Ile	Ile	Asn 310	Glu	Asn	Asp	Trp	Lys 315	Leu	Gln	Gly	Ile	Val 320
				325					330					His 335	
			340					345					350	Thr	
_		355					360					365		Pro	
	370					375					380			Pro	
385	_				390					395				Gly	400
_				405					410				•	Glu 415	
•			420					425					430	Gly	
	_	435					440					445		Ala	
	450					455					460			Gln	
Tyr 465		Met	Lys	Tyr	Gly 470		Ile	Pro	Val	Val 475	His	Ala	Val	Gly	Gl ₃

Leu	Arg	Asp	Thr	Val 485	Gln	Pro	Phe	Asp	Pro 490	Phe	Asn	Glu	Ser	Gly 495	Leu	
Gly	Trp	Thr	Phe 500	Ser	Arg	Ala	Glu	Ala 505	Ser	Gln	Leu	Ile	His 510	Ala	Leu	
Gly	Asn	Cys 515	Leu	Leu	Thr	Tyr	Arg 520	Glu	Tyr	Lys	Lys	Ser 525	Trp	Glu	Gly	
Ile	Gln 530	Thr	Arg	Cys	Met	Thr 535	Gln	Asp	Leu	Ser	Trp 540	Asp	Asn	Ala	Ala	
Gln 545	Asn	Tyr	Glu	Glu	Val 550	Leu	Ile	Ala	Ala	Lys 555	Tyr	Gln	Trp			
(2)	ANG	BEN	zu s	SEQ I	D NO): 7:	:									
	(ii) (vi)	(A (E (E (E (E (E (E (E (E	A) LA B) AF C) ST C) TO SPRÜN A) OF SP	TRANCOPOLO MOI SILICI RGANI CAMM EWEBE ELBAE BLICE MESSE	IZEIC 279 Nucle FORM OGIE: LEKÜL EKÜL ETYP: CTYP: CTYP: CHLÜ 42	S: CONTRACTOR CONTRACT	seng inzel iear DNA IFT: land rée ittge	zu n	ing iRNA		ı Lan	abda	ZAPI	I		
	(xi)	SEÇ	UENZ	ZBESC	HREI	BUNG	: SE	EQ II	NO:	7:						
CCGC	CCAT	TT T	TCAC	CAA	C GI	TTTI	GACA	TTG	ACCI	CCA	TTGI	CGTI	AC I	TCTI	GGTTT	60
CTCT	TTCA	AT A	TTGC	TTC#	LC AA	TCCC	TAAT	TCI	CTGI	ACT	AGTO	TCTA	TC T	CAAI	TGGGT	120
TTTC	TTT	CT I	GTC	\ATT <i>I</i>	T CI	CTAC	TGGG	TCG	GCTI	CTA	TTTC	CACT	'AG G	TCAC	TCTGG	180
TTCT	TGA	AT C	TTGG	ATTO	C TA	TTAI	CCCI	GTG	BAACT	TCA	TCTT	TTGI	GA I	TTCI	ACTGT	240
					T CT e Le 5				r Gl				e Hi			286
AAC Asn					GCA Ala											334

GGC Gly	TCC Ser	AGT Ser	AGA Arg 35	GAG Glu	CAA Gln	ATG Met	TGG Trp	AGG Arg 40	ATC Ile	AAG Lys	CGC Arg	GTT Val	AAA Lys 45	GCA Ala	ACA Thr	382
													AAT Asn			430
													ATG Met			478
													TCT Ser			526
													GGG Gly		GGT Gly	574
													TAT Tyr 125			62 2
													GAT Asp			670
													AGA Arg			718
													AGA Arg			766
													AAA Lys			814
													ACA Thr 205		TTG Leu	. 862
GAT Asp	GTG Val	AAT Asn 210	TCA Ser	CGC Arg	AAA Lys	AGT Ser	TTA Leu 215	GTA Val	GAT Asp	GTT Val	CCT Pro	GGA Gly 220	AAG Lys	AAG Lys	ATC Ile	910
													TCC Ser			958

											GCT					1006
	Gln	Arg	Asn	Glu		Leu	Glu	Gly	Ser	Ser 250	Ala	Glu	Ala	Asn	Glu 255	
240					245					250				-	233	
GAG	ACT	GAA	GAT	CCT	GTG	AAT	ATA	GAT	GAG	AAA	ccc	CCT	CCA	TTG	GCA	1054
Glu	Thr	Glu	Asp	Pro	Val	Asn	Ile	Asp	Glu	Lys	Pro	Pro	Pro		Ala	_
				260					265					270		
GGA	ACA	TAA	GTT	ATG	AAC	ATT	ATT	TTG	GTG	GCT	TCA	GAA	TGC	GCT	CCA	1102
Gly	Thr	Asn	Val	Met	Asn	Ile	Ile	Leu	Val	Ala	Ser	Glu	Cys	Ala	Pro	
			275					280					285			
TGG	TCT	AAA	ACA	GGT	GGG	CTT	GGA	GAT	GTT	GCT	GGA	GCA	TTA	CCC	AAA	1150
Trp	Ser	Lys	Thr	Gly	Gly	Leu	Gly	Asp	Val	Ala	Gly	Ala	Leu	Pro	Lys	
		290					295					300				
GCT	TTG	GCT	CGA	CGT	GGC	CAC	AGA	GTT	ATG	GTT	GTG	GCA	CCT	CGT	TAT	1198
Ala	Leu	Ala	Arg	Arg	Gly	His	Arg	Val	Met	Val	Val	Ala	Pro	Arg	Tyr	
	305					310					315					
GAC	AAC	TAT	CCT	GAA	CCT	CAA	GAT	TCT	GGT	GTA	AGA	AAA	ATT	TAT	AAA	1246
											Arg					
320					325					330					335	
СТТ	СРТ	ССТ	CAG	TAD	GTG	GAA	GTG	ACT	TAC	TTC	CAA	GCT	TTT	ATT	GAT	1294
											Gln					
	·			340					345					350		
GGT	GTG	GAT	ттт	GTT	TTC	ATT	GAC	AGT	CAT	ATG	TTT	AGA	CAC	ATT	GGG	1342
											Phe					
			355					360					365			
ממ	AAC	Δጥጥ	TAC	GGA	GGG	AAC	CGT	GTG	GAT	ATT	TTA	AAA	CGC	ATG	GTT	1390
											Leu					2330
		370	_	_	_		375					380				
тта	ሙ ተተ	ፐርር	מממ	GCA	GCG	АТТ	GAG	GTT	ССТ	TGG	CAT	GTT	CCA	TGT	GGT	1438
											His					
	385					390					395					
ഭദദ	GTC	ፕሮር	ጥልጥ	GGA	САТ	GGA	ТАА	TTA	GTG	TTC	ATT	GCT	AAT	GAT	TGG	1486
											Ile					
400		-	-		405					410					415	
СРД	аст	GCT	ተጥ አ	ጥ ተር	CCA	GTA	тат	СТС	AAA	GCT	TAT	TAT	CGT	GAC	AAT	1534
											Tyr					
				420					425					430		
GGA	<u> ጉ</u> ጥጥ	ል ተር	ממר	ጥልጥ	ACA	AGA	тст	GTC	CTG	GTG	ATT	CAT	AAC	ATC	GCT	1582
											Ile					
•	_		435	-		_		440					445			
~ · ·	C* C	ccm	ccm	ccm	CCT	₩₩₩	GNC	ርእጥ	ጥጥ	ጥር አ	TAT	СТА	СЪТ	ርጥጥ	CCA	1630
	_										Tyr					7030
		450		•			455	-			_	460	-			

							GGA Gly		1678
							CGT Arg		1726
							CAA Gln		1774
							TTA Leu 525		1822
							TTG Leu		1870
_							ACG Thr		1918
							CTT		1966 -
CCA Pro							AGG Arg		2014
							TGG Trp 605		2062
	_						CGT Arg		2110
							AAA Lys		2158
							ACT Thr		2206
							GGA Gly	AAC Asn	2254

CAG	CTT	TAT	GCA	ATG	AAA	TAT	GGG	ACT	ATT	CCT	GTT	GTT	CAT	GCA	GTA	2302
Gln	Leu	Tyr	Ala	Met	Lys	Tyr	Gly	Thr	Ile	Pro	Val	Val	His	Ala	Val	
			675					680					68 5			
CCA	CCA	CTC	אכא	CAT	n com	СТС	CAC	ccc	thirthirthirthirthirthirthirthirthirthir	CAT	CCM	- Therese	220	CNC	TCA	2256
														GAG		2350
GIY	GIA	590	My	vah	1111	Val	695	PIO	Pile	Asp	PIO	700	ASII	Glu	ser	
		0,70					0,5,5					700				
GGA	CTG	GGG	TGG	ACC	TTC	AGT	AGG	GCT	GAA	GCT	AGC	CAG	CTG	ATC	CAC	2398
Gly	Leu	Gly	Trp	Thr	Phe	Ser	Arg	Ala	Glu	Ala	Ser	Gln	Leu	Ile	His	
	705					710					715					
														AGT		2446
	Leu	Gly	Asn	Cys		Leu	Thr	Tyr	Arg	Glu	Tyr	Lys	Lys	Ser	Trp	
720					725					730					735	
CAC	CCC	א מיינים	CNC	202	COTT	TCT.	B TCC	B C B	~~ ~	CNG		3 CM	maa			
														GAT		2494
Gru	GIÀ	TIE	Gin	740	Arg	Cys	Met	TIII	745	Asp	ren	ser	rrp	Asp 750	Asn	
				740					743					750		•
GCT	GCT	CAG	AAC	TAT	GAA	GAA	GTT	CTC	ATC	GCT	GCT	AAG	TAT	CAG	TGG	2542
														Gln		-5.5
			755	_				760				•	765		.	
TGAG	GTTC	TA:	ACTI	GTAG	A TA	TTT	GGGA	TTI	TGGC	CAT	TGTA	TCAF	GT 3	CTAA	TGATG	2602
GGAT	TTCA	GA G	BACAI	GTTI	C TG	GTAT	CGAC	: ACG	AGAG	GAT	GCAI	'GCAP	CA A	AGTTG	GCTAA	2662
ርጥ አጥ	יר א ידיא	СТ В	CTNC	ירא ככ	יים כי		יייי אייי	י שייי	ייייי	C CTTTT	C N TT C	י א יייטרות			TATAT	2722
CIAI	CAIA	ICI A	CIAC	CACO	il CA	GGAL	IIGAI	. 160	.cu.	CII	GAIC	AIGI	AA 1	CATG	TATAT	2722
ACTC	TATT	TT G	TTTG	CAAA	A TG	TAGT	TACA	TGT	TGCA	ТТА	ברר	ממממ	. אמ	ממממ	AAAAA	2782
					_, _ 										*******	2702
AAAA	AAAA	AA A														2793
																· - -

(2) ANGABEN ZU SEQ ID NO: 8:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 767 Aminosäuren
 - (B) ART: Aminosaure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

Met Glu Asn Ser Ile Leu Leu His Ser Gly Asn Gln Phe His Pro Asn 1 5 10

Leu Pro Leu Leu Ala Leu Arg Pro Lys Lys Leu Ser Leu Ile His Gly
20 25 30

Ser Ser Arg Glu Gln Met Trp Arg Ile Lys Arg Val Lys Ala Thr Gly
35 40 45

Glu	Asn 50	Ser	Gly	Glu	Ala	Ala 55	Ser	Ala	Asp	Glu	Ser 60	Asn	Asp	Ala	Leu
Gln 65	Val	Thr	Ile	Glu	Lys 70	Ser	Lys	Lys	Val	Leu 75	Ala	Met	Gln	Gln	Asp 80
Leu	Leu	Gln	Gln	Ile 85	Ala 	Glu	Arg	Arg	Lys 90	Val	Val	Ser	Ser	Ile 95	Lys
Ser	Ser	Leu	Ala 100	Asn	Ala	Lys	Gly	Thr 105	Tyr	Asp	Gly	Gly	Ser 110	Gly	Sex
Leu	Ser	Asp 115	Val	Asp	Ile	Pro	Asp 120	Val	Asp	Lys	Asp	Tyr 125	Asn	Val	Thr
Val	Pro 130	Ser	Thr	Ala	Ala	Thr 135	Pro	Ile	Thr	Asp	Val 140	Asp	Lys	Asn	Thr
Pro 145	Pro	Ala	Ile	Ser	Gln 150	Asp	Phe	Val	Glu	Ser 155		Arg	Glu	Ile	Lys 160
Arg	Asp	Leu	Ala	Asp 165	Glu	Arg	Ala	Pro	Pro 170	Leu	Ser	Arg	Ser	Ser 175	Ile
Thr	Ala	Ser	Ser 180	Gln	Ile	Ser	Ser	Thr 185		Ser	Ser	Lys	Arg 190	Thr	Leu
Asn	Val	Pro 195	Pro	Glu	Thr	Pro	Lys 200	Ser	Ser	Gln	Glu	Thr 205	Leu	Leu	Asp
Val	Asn 210	Ser	Arg	Lys	Ser	Leu 215	Val	Asp	Val	Pro	Gly 220	Lys	Lys	Ile	Gln
Ser 225	Tyr	Met	Pro	Ser		Arg							His		
Gln	Arg	Asn	Glu	Asn 245	Leu	Glu	Gly	Ser	Ser 250	Ala	Glu	Ala	Asn	Glu 255	Glu
Thr	Glu	Asp	Pro 260	Val	Asn	Ile	Asp	Glu 265	Lys	Pro	Pro	Pro	Leu 270	Ala	Gly
Thr	Asn	Val 275	Met	Asn	Ile	Ile	Leu 280	Val	Ala	Ser	Glu	Cys 285	Ala	Pro	Trp
Ser	Lys 290	Thr	Gly	Gly	Leu	Gly 295	Asp	Val	Ala	Gly	Ala 300	Leu	Pro	Lys	Ala
Leu 305	Ala	Arg	Arg	Gly	His 310	Arg	Val	Met	Val	Val 315	Ala	Pro	Arg	Tyr	Asp 320
Asn	Tyr	Pro	Glu	Pro 325	Gln	Asp	Ser	Gly	Val 330	Arg	Lys	Ile	Tyr	Lys 335	Val

Asp	Gly	Gln	Asp 340	Val	Glu	Val	Thr	Tyr 345	Phe	Gln	Ala	Phe	Ile 350	Asp	Gly
Val	Asp	Phe 355	Val	Phe	Ile	Asp	Ser 360	His	Met	Phe	Arg	His 365	Ile	Gly	Asn
Asn	Ile 370	Tyr	Gly	Gly	Asn	Arg 375	Val	Asp	Ile	Leu	Lys 380	Arg	Met	Val	Leu
Phe 385	Cys	Lys	Ala	Ala	Ile 390	Glu	Val	Pro	Trp	His 395	Val	Pro	Cys	Gly	Gly 400
Val	Cys	Tyr	Gly	Asp 405	Gly	Asn	Leu	Val	Phe 410	Ile	Ala	Asn	Asp	Trp 415	His
Thr	Ala	Leu	Leu 420	Pro	Val	Tyr	Leu	Lys 425	Ala	Tyr	Tyr	Arg	Asp 430	Asn	Gly
Ile	Met	Asn 435	Tyr	Thr	Arg	Ser	Val 440	Leu	Val	Ile	His	Asn 445	Ile	Ala	His
Gln	Gly 450	Arg	Gly	Pro	Leu	Glu 455	Asp	Phe	Ser	Tyr	Val 460	Asp	Leu	Pro	Pro
His 465	Tyr	Met	Asp	Pro	Phe 470	Lys	Leu	Tyr	Asp	Pro 475	Val	Gly	Gly	Glu	His 480
Phe	Asn	Ile	Phe	Ala 485	Ala	Gly	Leu	Lys	Thr 490	Ala	Asp	Arg	Val	Val 495	Thr
Val	Ser	His	Gly 500	Tyr	Ser	Trp	Glu	Leu 505	Lys	Thr	Ser	Gln	Gly 510	Gly	Trp
Gly	Leu	His 515	Gln	Ile	Ile	Asn			Asp	_	Lys	Leu 525	Gln	Gly	Ile
Val	Asn 530	Gly	Ile	Asp	Thr	Lys 535	Glu	Trp	Asn	Pro	Glu 540	Leu	Asp	Val	His
Leu 545	Gln	Ser	Asp	Gly	Tyr 550	Met	Asn	Tyr	Ser	Leu 555	Asp	Thr	Leu	Gln	Thr 560
Gly	Lys	Pro	Gln	Cys 565	Lys	Ala	Ala	Leu	Gln 570	Lys	Glu	Leu	Gly	Leu 575	Pro
Val	Arg	Asp	Asp 580	Val	Pro	Leu	Ile	Gly 585	Phe	Ile	Gly	Arg	Leu 590	Asp	Pro
Gln	Lys	Gly 5 95	Val	qeA	Leu	Ile	Ala 600	Glu	Ala	Ser	Ala	Trp 605	Met	Met	Gly
Gln	Asp 610	Val	Gln	Leu	Val	Met 615	Leu	Gly	Thr	Gly	Arg 620	Arg	Asp	Leu	Glu

Gln Met Leu Arg Gln Phe Glu Cys Gln His Asn Asp Lys Ile Arg Gly 635 630 635

Trp Val Gly Phe Ser Val Lys Thr Ser His Arg Ile Thr Ala Gly Ala 645 650 655

Asp Ile Leu Leu Met Pro Ser Arg Phe Glu Pro Cys Gly Leu Asn Gln 660 670

Leu Tyr Ala Met Lys Tyr Gly Thr Ile Pro Val Val His Ala Val Gly 675 680 685

Gly Leu Arg Asp Thr Val Gln Pro Phe Asp Pro Phe Asn Glu Ser Gly 690 700

Leu Gly Trp Thr Phe Ser Arg Ala Glu Ala Ser Gln Leu Ile His Ala 705 710 715

Leu Gly Asn Cys Leu Leu Thr Tyr Arg Glu Tyr Lys Lys Ser Trp Glu
725 730 735

Gly Ile Gln Thr Arg Cys Met Thr Gln Asp Leu Ser Trp Asp Asn Ala 740 745 750

Ala Gln Asn Tyr Glu Glu Val Leu Ile Ala Ala Lys Tyr Gln Trp 755 760 765

- (2) ANGABEN ZU SEQ ID NO: 9:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 2360 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: cDNA
 - (vi) URSPRÜNLICHE HERKUNFT:
 - (A) ORGANISMUS: Solanum tuberosum
 - (B) STAMM: cv. Désirée
 - (F) GEWEBETYP: Blattgewebe
 - (vii) UNMITTELBARE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA-Bibliothek in Lambda ZAPII
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 68..1990
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

AGATTTTCTA TATTGAAAGA TTTTGTCTTT ACATGATTCT TGATTTTACA GCAGGTGTCA

ATACCAA ATG Met					CTT AGC Leu Ser 10		
TGT TTA TGT Cys Leu Cys 15					Leu Arg		
CAA GTG GGG Gln Val Gly							
AAA GTT CAA Lys Val Gln				Ser Val			
ATT GCT GAA Ile Ala Glu 65	Asn Lys						
AGA GAT GGT Arg Asp Gly 80							
GTT GCA GGA Val Ala Gly 95					s Asp Ile		
GAT AGA GAT Asp Arg Asp		Ser Glu					
ATC AAA TTA Ile Lys Leu				Val Th			
TAT TCT AAG Tyr Ser Lys 145	Thr Gly					Leu Pro	
GCA CTA GCT Ala Leu Ala 160			Arg Val				
TTG AAT GGA Leu Asn Gly 175					a Asn Ala		
GAT GTG CGG		Val His					Ala
TTC TAC CAT				Asp Tr			

				C AGA												_ ·-	
Sei	Sei	22!		s Arg	, Pro	э сту	230		o Tyr	. G13	/ Asp	239	-	r Gl	y Al	.a	
				CAG												— — —	
Pne	240) Asi	ı Glm	. Phe	Arg 245		Thr	Leu	Leu	250		s Ala	a Ala	а Су	'S	
GAA	GCG	CCA	TTO	GTT	CTT	CCA	CTG	GGA	GGG	TTC	ACT	TAI	GGZ	A GA	3 AA	.G 877	
255		PIC) Lec	val	260		Leu	GTÅ	, GIÅ	265		Tyr	. GIŻ	/ Gli	1 Ly 27		
				GCT													
Cys	Deu	rie	. Leu	Ala 275	ASN	Asp	Trp	HIS	280	Ala	Leu	. Val	Pro	285		u	
				TAT													
Deu	AIA	Ala	290	Tyr	Arg	Pro	Tyr	G1y 295	Val	Tyr	Lys	Asp	Ala 300		, Se	r	
ATT	GTC	GCA	ATA	CAC	AAC	ATT	GCA	CAT	CAG	GGA	GTG	GAG	CCT	GCA	GT!	A1021	
116	val	305		His	ASN	TTE	310	His	Gln	Gly	Val	Glu 315	Pro	Ala	Va]	<u>t</u>	
				TTG												1069	
inr	320	ASN	Asn	Leu	GIÀ	Leu 325	Pro	Pro	Gln	Trp	Tyr 330	Gly	Ala	Val	Glu	1	
				ACA												-1117	
335	116	Pne	PIO	Thr	340	Ala	Arg	Ala	His	Ala 345	Leu	Asp	Thr	Gly	Glu 350		
				TTG													
****	val	ASII	vai	Leu 355	rys	GTA	Ala	11e	360	Val	Ala	Asp	Arg	11e 365	Leu		
				GGA												-	
1111	vai	Ser	370	Gly	lyr	ser		375	Ile	Thr	Thr	Pro	380	Gly	Gly		
				GAG													
TYL	GIY	385	nis	Glu	Leu		390	ser	Arg (GIN		395	Leu	Asn	GIÀ		
				ATA													
	400	ASN	GIÀ	Ile		Val . 405	asn /	asp	rrp /		Pro 410	ser	Tnr	Asp	Glu		
	-			CAT													
415 415	TTE	ΗTG	ser	His '	Tyr . 420	ser	rre y	ASD .		Leu : 425	ser	GIÄ	гÀз	val	Gln 430		
										- 							

TGC Cys	AAG Lys	ACT Thr	Asp	CTG Leu 435	CAA Gln	AAG Lys	GAA Glu	Leu	GGC Gly 440	CTT Leu	CCA Pro	ATT Ile	CGA Arg	CCT Pro 445	GAT Asp	1405
TGT Cys	CCT Pro	CTG Leu	ATT Ile 450	GGA Gly	TTT Phe	ATT Ile	GGA Gly	AGG Arg 455	CTG Leu	GAC Asp	TAC Tyr	CAG Gln	AAA Lys 460	GGT	GTT Val	1453
GAC Asp	ATA Ile	ATC Ile 465	CTG Leu	TCA Ser	GCA Ala	ATT	CCA Pro 470	GAA Glu	CTT Leu	ATG Met	CAG Gln	AAT Asn 475	GAT Asp	GTC Val	CAA Gln	1501
GTT Val	GTA Val 480	ATG Met	CTT Leu	GGA Gly	TCT Ser	GGT Gly 485	GAG Glu	AAA Lys	CAA Gln	TAT Tyr	GAA Glu 490	GAC Asp	TGG Trp	ATG Met	AGA Arg	1549
CAT His 495	ACA Thr	GAA Glu	AAT Asn	CTT Leu	TTT Phe 500	AAA Lys	GAC Asp	AAA Lys	TTT Phe	CGT Arg 505	GCT Ala	TGG Trp	GTT Val	GGA Gly	TTT Phe 510	1597
AAT Asn	GTT Val	CCA Pro	GTT Val	TCT Ser 515	His	AGG Arg	ATA Ile	ACA Thr	GCA Ala 520	GGA Gly	TGC Cys	GAC Asp	ATA Ile	CTA Leu 525	TTG Leu	1645
ATG Met	CCC	TCA Ser	AGA Arg 530	Phe	GAA Glu	CCG Pro	TGT Cys	GGC Gly 535	Leu	AAC Asn	CAA Gln	TTG Leu	TAT Tyr 540	Ala	ATG Met	1693
AGA Arg	TAT	GGC Gly 545	Thr	ATA Ile	CCT	ATT	GTT Val 550	His	AGC Ser	ACG Thr	GGG Gly	GGC Gly 555	Leu	AGA Arg	GAC Asp	1741
ACA Thr	GT0	. Lys	GAT Asp	TTT Phe	AAT Asn	CCA Pro	Туг	GCT Ala	CAA Gln	GAA Glu	GGA Gly 570	rile	GGT Gly	GAA Glu	GGT	1789
ACC Thr 575	Gly	TGC	ACA Thi	TTT Phe	TCT Ser 580	Pro	CTA Lev	ACG Thr	AGT Ser	GAA Glu 585	r PAs	TTC Lev	CTI Lev	GAT ASF	Thr 590	1837
CT(Lev	AA(G CTO	G GCI u Ala	A ATO 116 59	e Gly	ACI	TAT	r ACA	GAA Glu	His	C AAC S Lys	TC/ S Sei	A TCT	TGC Trp 605	GAG Glu	1885
GG/ Gl	Y Le	G ATO	G AGG t Arg	g Ar	A GG1	r ATO	G GG/	A AGG Y Arg 61	g Asp	TAT	r Se	C TG(G GAI p Gli 62	T WRI	r GCA n Ala	1933
GC(C AT a Il	T CA e Gl 62	n Ty	T GA r Gl	A CA	A GT n Va	T TT 1 Ph 63	e Th	C TGO	G GCG p Ala	C TT a Ph	T AT. e Il 63	e AS	p Pro	r CCA o Pro	1981
		l Ar	A TG	ATTT	ATCA	AGA	AAGA	TTG	CAAA	CGGG	AT A	CATC	ATTA	A		2030

· " "

ŧ

i_

ACTATACGCG	GAGCTTTTGG	TGCTATTAGC	TACTGTCATT	GGGCGCGGAA	TGTTTGTGGT	2090
TCTTTCTGAT	TCAGAGAGAT	CAAGTTAGTT	CCAAAGACAT	ACGTAGCCTG	TCCCTGTCTG	2150
TGAGGGAGTA	AAACTACAAA	AGGCAATTAG	AAACCACCAA	GAACTGGCTC	CTTTGGGAGA	2210
AGAGTGGAAA	TATGTAAAAA	AGAATTTTGA	GTTTAATGTC	AATTGATTAA	TTGTTCTCAT	2270
AAAAATTTT	AACATCTCAT	CTCATACAAT	ATATAAAATT	GATCATGATT	GATGAAAAA	2330
AAAAAAAA	AAAAAAAAA	AAAAAAAA				2360

(2) ANGABEN ZU SEQ ID NO: 10:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 641 Aminosauren
 - (B) ART: Aminosaure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKŪLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:

Met Gly Ser Leu Gln Thr Pro Thr Asn Leu Ser Asn Lys Ser Cys Leu 1 5 15

Cys Val Ser Gly Arg Val Val Lys Gly Leu Arg Val Glu Arg Gln Val
20 25 30

Gly Leu Gly Phe Ser Trp Leu Leu Lys Gly Arg Arg Asn Arg Lys Val

Gln Ser Leu Cys Val Thr Ser Ser Val Ser Asp Gly Ser Ser Ile Ala 50 55

Glu Asn Lys Asn Val Ser Glu Gly Leu Leu Leu Gly Ala Glu Arg Asp 65 70 75 80

Gly Ser Gly Ser Val Val Gly Phe Gln Leu Ile Pro His Ser Val Ala 85 90 95

Gly Asp Ala Thr Met Val Glu Ser His Asp Ile Val Ala Asn Asp Arg 100 105 110

Asp Asp Leu Ser Glu Asp Thr Glu Glu Met Glu Glu Thr Pro Ile Lys 115 120 125

Leu Thr Phe Asn Ile Ile Phe Val Thr Ala Glu Ala Ala Pro Tyr Ser 130 135

Lys Thr Gly Gly Leu Gly Asp Val Cys Gly Ser Leu Pro Met Ala Leu 145 150 155 160

Ala	Ala	Arg	Gly	His 165	Arg	Val	Met	Val	Val 170	Ser	Pro	Arg	Tyr	Leu 175	Asn
Gly	Gly	Pro	Ser 180	Asp	Glu	Lys	туг	Ala 185	Asn	Ala	Val	Asp	Leu 190	Asp	Val
Arg	Ala	Thr 195	Val	His	Cys	Phe	Gly 200	Asp	Ala	Gln	Glu	Val 205	Ala	Phe	Tyr
His	Glu 210	Tyr	Arg	Ala	Gly	Val 215	Asp	Trp	Val	Phe	Val 220	Asp	His	Ser	Ser
Tyr 225	Cys	Arg	Pro	Gly	Thr 230	Pro	Tyr	Gly	Asp	Ile 235	Tyr	Gly	Ala	Phe	Gly 240
				245			Leu		250					233	
			260				Gly	265					270		
		275	ı				Ala 280					285			
	290					295					300				
305	i				310		Gln			315					320
				325	i		Gln		330)				333	
			340)				345	•				350		Val
		35	5				360)				365)		Val
	370	ס				37	5				380	J			Gly
38	5				39)				39	5				400
As				40	5				41	0				71.	
			42	0				42	5				731	J	s Lys
Th	r As	p Le	u Gl	n Ly	s Gl	u Le	u Gl	y Le O	u Pr	o Il	e Ar	g Pr	o As _l 5	p Cy	s Pro