Sistemas Informáticos II

Introducción

Daniel Hernández Lobato (<u>daniel.hernandez@uam.es</u>) Álvaro Ortigosa Juárez (<u>alvaro.ortigosa@uam.es</u>) Manuel Sánchez-Montañés (<u>manuel.smontanes@uam.es</u>)

Objetivos de la asignatura

- Estudio de los **conceptos clave** en arquitecturas de sistemas distribuidos y "data centers" (centros de datos y computación):
 - Comunicación
 - Rendimiento.
 - Disponibilidad.
 - Seguridad.
- Ejercicios de aplicación de los conceptos y arquitecturas estudiados en la teoría:
 - Problemas y programas.
 - Modelos reales. Distintas alternativas. Razonar soluciones.
- Realizar prácticas en ordenador sobre los conceptos estudiados.

Google Server

Data Center

Objetivos

- Sistemas y servicios interconectados
- Alto rendimiento (e.g. escalabilidad)
- Alta disponibilidad
- Seguridad

Centro de Computación Científica.

Profesores

- Grupo 231 (Mañana)
 - Álvaro Ortigosa Juárez (<u>alvaro.ortigosa@uam.es</u>)
- Grupo 236 (Tarde) (Coordinador)
 - Daniel Hernández Lobato (<u>daniel.heranndez@uam.es</u>)
- Grupo 240 (Tarde)
 - Manuel Sánchez-Montañés (<u>manuel.smontanes@uam.es</u>)
- Prácticas
 - Pedro Pascual (coordinador) (pedro.pascual@uam.es)
 - Sara Pérez Soler (<u>sara.perezs@uam.es</u>)
 - Juan José Sánchez (<u>juanjo.sanchez@uam.es</u>)
- Datos de contacto en guía docente y página de la escuela.

Clases

Teoría:

- Exposición de contenido teórico
 - Presentación a través de guion en transparencias.
 - Disponibles en Moodle
- Resolución de ejercicios.
 - Disponible en Moodle ejercicios para todos los temas
 - Resolución de algunos ejercicios durante las clases de teoría.
 - Ejercicios para que los alumnos los resuelvan y entreguen en los plazos señalados.
- Trabajo en grupo.
 - Realización de exposiciones y trabajos en equipos de 4 alumnos
 - Según disponibilidad se reserva una hora de clase para iniciar los trabajos o realizar exposiciones

Clases

Prácticas:

- 2 horas / semana.
- Realización de programas siguiendo los modelos vistos en la teoría

Trabajo no presencial:

- Trabajos en grupo
- Trabajos individuales/realización de ejercicios

Horario

	Lunes	Martes	Miércoles	Jueves	Viernes
9-10			Teoría (231)		Prácticas
10-11					(2312 y 2313)
11-12					Teoría (231)
12-13					
13-14					
14-15					
15-16		Teoría (236 y 240)			
16-17		Prácticas		Teoría	
17-18		(2401)		(236 y 240)	
18-19		Prácticas	Prácticas		
19-20		(2361)	(2362, 2363)		

Normas de la asignatura. Evaluación

- Disponible en la guía docente: http://www.eps.uam.es
 - Ir a: Estudios y Repositorio de Guías Docentes
- Calificación de la asignatura
 - 0,25*Prácticas + 0.75*Teoría
 - Es necesario tener un mínimo de 5 puntos en la nota final de teoría y 5 puntos en la nota final de prácticas, para poder aprobar la asignatura. En caso contrario, la calificación final de la asignatura será de suspenso, y la calificación numérica, la menor de ambas
- Teoría en itinerario con asistencia obligatoria
 - Pruebas teóricas (60%)
 - Primera prueba teórica intermedia (33%)
 - Quita materia si nota > 5
 - Segunda prueba teórica intermedia (33%)
 - Quita materia si nota > 5
 - Prueba teórica final (33%)
 - Problemas y ejercicios (20%)
 - Actividades en equipo (20%)
- Teoría en itinerario sin asistencia obligatoria (y convocatoria extraordinaria)
 - Prueba teórica final (100%)

Moodle

- URL curso: https://moodle.uam.es/course/view.php?id=62135
- Normas de prácticas: próximamente
- Se colgarán las transparencias de clase
- Actividades a entregar
- Prácticas
- Ejemplos
- Exámenes finales y parciales de otros años

Contenido del curso

- 1. Middleware.
- 2. Aspectos operacionales de los sistemas distribuidos: rendimiento.
- 3. Aspectos operacionales de los sistemas distribuidos: disponibilidad.
- 4. Aspectos operacionales de los sistemas distribuidos: seguridad.

El temario detallado se muestra en la guía docente.

Bibliografía general

- COULOURIS, G., DOLLIMORE, J. y KINDBERG, T., Sistemas distribuidos. Conceptos y diseño, Addison-Wesley, 2001. 3ª ed.
- ORFALI, R., HARKEY, D. y EDWARDS, J., The Essential Client/Server Survival Guide, Willey, 1999. 3^a ed.
- RENAUD, P., Introduction to Client / Server Systems: A Practical Guide for Systems Professionals, John Wiley, 1996. 2^a ed.
- TANENBAUM, A., Distributed Systems, Prentice Hall, 2002.
- En cada tema se indica la bibliografía recomendada (ver guía docente)