Bell Work: Simplify

If the
$$\tan \theta = -\frac{4}{3}$$
 and $\sin \theta > 0$.

What quadrant is the θ located in and what are the other 5 trig functions?

For Next Time

Page 306 #1, 5-6, 30-31, 37-40, 45, 47, 57, 63-64, 67, 71

Get a Head Start...

Page 316 #9, 11, 13, 19-24, 37-44, 45-51 (odd), 69, 71, 97

PRE-CALC TRIG

Day 35

4.4 Trig Functions of Any Angle

Objective: Evaluate trig functions of any angles

<u>Definitions of Trigonometric Functions of Any Angle</u>

Let θ be an angle in standard position with (x, y) a point on the terminal side of θ and $r = \sqrt{x^2 + y^2} \neq 0$.

$$\cos \theta = \frac{x}{r}$$

$$\sec \theta = \frac{r}{x}, \ x \neq 0$$

$$\sin \theta = \frac{y}{r}$$

$$\csc \theta = \frac{r}{y}, \ y \neq 0$$

$$\tan\theta=\frac{y}{x},\ x\neq0$$

$$\cot \theta = \frac{x}{y}, \ y \neq 0$$

Note: See picture on page 310 for image of what is meant by x, y, and r.

Example: Let (-6, 8) be a point on the terminal side of θ . Find the cosine, sine, and tangent of θ . Also find the secant, cosecant, and cotangent.

Example: Let (-6, 8) be a point on the terminal side of θ . Find the cosine, sine, and tangent of θ . Also find the secant, cosecant, and cotangent.

$$r = \sqrt{(-6)^2 + (8)^2} = \sqrt{36 + 64} = \sqrt{100} = 10...$$

$$\cos\theta = \frac{-6}{10} \qquad \sin\theta = \frac{8}{10} \qquad \tan\theta = \frac{8}{-6}$$

$$\sec \theta = \frac{10}{-6} \qquad \csc \theta = \frac{10}{8} \qquad \cot \theta = \frac{-6}{8}$$

Example: Given that $\tan \theta = -\frac{4}{7}$ and $\cos \theta < 0$, find $\sin \theta$ and $\sec \theta$.

-- Note that θ is in Quadrant II because that is the only quadrant in which tangent is negative and cos is negative.

Example: Given that $\tan \theta = -\frac{4}{7}$ and $\cos \theta < 0$, find $\sin \theta$ and $\sec \theta$.

$$\tan \underline{\theta} = -\frac{4}{7}$$

so you know that y = 4 and x = -7

So,
$$r = \sqrt{16 + 49} = \sqrt{65}$$

$$\sin \theta = \frac{y}{r} = \frac{4}{\sqrt{65}} = 0.496$$

$$\sec \theta = \frac{r}{x} = \frac{\sqrt{65}}{-7} = -1.152$$

Evaluating Trig Functions of Any Angle

To find the value of a trig function of any angle θ

Determine the function value for the associated reference angle θ' (reference angle)

Depending on the quadrant in which θ lies, affix the appropriate sign to the function value.

Reference Angles

Let θ be an angle in standard position. The reference angle is the acute angle θ' formed by the terminal side of θ and the horizontal axis.

Quadrant II	Quadrant III	<u>Quadrant IV</u>
$\theta' = \pi - \theta(radian)$	$\theta' = \theta - \pi(radian)$	$\theta' = 2\pi - \theta(radian)$
$\theta' = 180 - \theta(degree)$	$\theta' = \theta - 180(degree)$	$\theta' = 2\pi - 180(degree)$

Note: See Figure 4.39 on page 312 for a visual

Example

Find the reference angle θ'

1.)
$$\theta = 290^{\circ}$$

2.)
$$\theta = 3.4$$

Example

$$\theta = 290^{\circ}$$

$$\theta' = 360^{\circ} - 290^{\circ} = 70^{\circ}$$

$$\theta = 3.4$$

Note:
$$\frac{\pi}{2} \approx 1.57$$
 $\pi \approx 3.14$ $\frac{3\pi}{2} \approx 4.71$

Therefore 3.4 radians is between π and $\frac{3\pi}{2}$ (in otherwords the 3rd quadrant)

$$\theta' = 3.4 - \pi \approx 0.258 \, radians$$

4.7 Inverse Trig Functions

Objective: Evaluate and graph inverse functions

Think about... In order for a function to have an inverse, it must be one-to-one (must pass Horizontal Line Test). $y = \sin x$ doesn't pass, but if we focus on domain $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ it will pass.

Inverse of Trig Functions (explained with sine)

On this interval $y = \sin x$ is increasing.

On this interval $y = \sin x$ takes on full range of values,

$$-1 \le y = \sin x \le 1$$

On this interval $y = \sin x$ is one-to-one

Therefore, on restricted domain $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, $y = \sin x$ has an inverse.

Denoted: $y = \arcsin x$ or $y = \sin^{-1} x$

Definitions of Inverse Sine Function

The inverse sine function is defined by $y = \arcsin x$ if and only if $\sin y = x$ $where -1 \le x \le 1 \text{ and } -\frac{\pi}{2} \le y \le \frac{\pi}{2}.$

The domain of $y = \arcsin x$ is [-1,1] and the range is $[-\frac{\pi}{2}, \frac{\pi}{2}]$ Examples: If possible, find the exact value.

1.)
$$\arcsin\left(\frac{\sqrt{3}}{2}\right)$$

$$2.) sin^{-1}\left(\frac{-1}{2}\right)$$

3.)
$$sin^{-1}(5)$$

Examples: If possible, find the exact value.

1.)
$$\arcsin\left(\frac{\sqrt{3}}{2}\right)$$

1.)
$$\arcsin\left(\frac{\sqrt{3}}{2}\right)$$
 since $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$ (for $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$) it follows that $\arcsin\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$

2.)
$$sin^{-1}\left(\frac{-1}{2}\right)$$

since
$$\sin\left(-\frac{\pi}{6}\right) = \frac{-1}{2}$$
 (for $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$)

it follows that
$$sin^{-1}\left(\frac{-1}{2}\right) = -\frac{\pi}{6}$$

3.)
$$sin^{-1}(5)$$

Not possible because 5 is not in the

range for
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

Definitions of the Inverse Trig Functions

Functions

Domain

Range

$$y = \arcsin x$$
 if $f \sin y = x$

$$-1 \le x \le 1$$

$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

$$y = \arccos x \quad iff \quad \cos y = x$$

$$-1 \le x \le 1$$

$$0 \le y \le \pi$$

$$y = \arctan x \quad iff \quad \tan y = x$$

$$-\infty \le x \le \infty$$

$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

Graphs on page 343 for a visual

Examples: If possible, find the exact value.

1.)
$$\arccos\left(\frac{\sqrt{2}}{2}\right)$$

2.)
$$cos^{-1}(-1)$$

3.)
$$tan^{-1}(0)$$

Examples: If possible, find the exact value.

1.)
$$\arccos\left(\frac{\sqrt{2}}{2}\right)$$
 since $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$ (for $0 \le y \le \pi$) it follows that $\arccos\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$

2.)
$$\cos^{-1}(-1)$$
 since $\cos(\pi) = -1$ (for $0 \le y \le \pi$) it follows that $\cos^{-1}(-1) = \pi$

3.)
$$tan^{-1}(\mathbf{0})$$
 since $tan(0) = 0$ ($for -\frac{\pi}{2} \le y \le \frac{\pi}{2}$) it follows that $tan^{-1}(\mathbf{0}) = \mathbf{0}$

Inverse Properties of Trig Functions

If
$$-1 \le x \le 1$$
 and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, then $\sin(\arcsin x) = x$ and $\arcsin(\sin y) = y$

If
$$-1 \le x \le 1$$
 and $0 \le y \le \pi$, then $\cos(\arccos x) = x$ and $\arccos(\cos y) = y$

If x is a real number and
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$
, then tan(arctan x) = x and arctan(tan y) = y

Examples: If possible, find the exact value.

1.) tan(arctan 7)

Since 7 is in the domain and is a real number, the inverse property applies

tan(arctan 7) = 7

2.)
$$\arcsin\left(\sin\frac{5\pi}{3}\right)$$
 but

$$\frac{5\pi}{3}$$
 does not lie within range of arcsine, its coterminal angle of $\frac{-\pi}{3}$ does...

$$arcsin\left(sin\frac{5\pi}{3}\right) = \frac{-\pi}{3}$$

4.)
$$cos(cos^{-1}\pi)$$

 $cos^{-1}\pi$ is not defined because the domain is [-1,1]

Calculus Preview Examples:

Find the exact value.

1.)
$$\tan\left(arccos\frac{2}{3}\right)$$

Solution

If you let
$$u = \arccos \frac{2}{3}$$

Then $\cos u = \frac{2}{3}$

And we know that x = 2, r = 3

and therefore $y = \sqrt{5}$

[note tan(arccos(u)) now]

since it is positive it is in Quad I)

(Draw triangle if needed)

$$\tan u = \frac{\sqrt{5}}{2}$$
 Therefore, $\tan \left(arccos \frac{2}{3} \right) = \frac{\sqrt{5}}{2}$

Calculus Preview Examples:

Find the exact value.

2.)
$$\cos\left(\arcsin\left(\frac{-3}{5}\right)\right)$$

Solution

If you let
$$u = \arcsin \frac{-3}{5}$$

[note cos(arcsin(u)) now]

Then
$$\sin u = \frac{-3}{5}$$

(since sin is neg.. it is in Quad IV)

And we know that y = -3,

$$r = 5$$
 and therefore $x = 4$

(Draw triangle if needed)

$$\cos u = \frac{4}{5}$$
 There

Therefore,
$$\cos\left(arcsin\frac{-3}{5}\right) = \frac{4}{5}$$

For Next Time

Page 316 #9, 11, 13, 19-24, 37-44, 45-51 (odd), 69, 71, 97

Get a Head Start...

Page 347 #1-4, 5-9 (odd), 23-27 (odd), 43, 49-51, 55, 105, 111