

Effects of mismatches in three-way strand displacement: destabilizing branch migration or introducing hairpin traps?

DNA30

Chenwei Zhang (cwzhang@cs.ubc.ca), Jordan Lovrod, Boyan Beronov, Khanh Dao Duc, Anne Condon

Motivation

- Kinetic control of toehold-mediated strand displacement is essential in autonomous molecular machinery and molecular computation.
- Introducing mismatched base pairs can strongly affect kinetic rates. However, the mechanisms of such effects are not fully understood.

Contributions

- In this work, we revisit three-way strand displacement reactions by Machinek et al. [1], using Multistrand [2] to simulate reaction trajectories and employing ViDa [3] to visualize their energy landscapes.
- Our computational analyses suggest that in three-way strand displacement reactions, mismatches can have a strong hairpin-mediated influence on kinetic rates.

Experiments

Kinetic hypotheses by Machinek et al. [1]

- The mismatch near the toehold destabilizes the system once the toehold is bound, forcing the system to spend considerably more time in the toehold-only state.
- Higher probability for spontaneous detachment of the invader and thus a reduced overall reaction rate.

Simulated sequence designs

- Machinek-Perfect: no mismatch in the invader [1]
- Machinek-Proximal: a mismatch (C) close to the toehold [1]
- Proximal-C2T: mismatch T instead of C

Multistrand simulation settings

- Simulation mode: trajectory mode
- Reactant concentration: 100 µM | Temperature: 25 °C
- Stop condition: the incumbent dissociates from the substrate
- Maximum simulation time: 2000 s

ViDa visualization tool [3]

low-dimensional embeddings Creates of secondary structure state spaces using the output of kinetics simulators, e.g., Multistrand [2].

References

- [1] Machinek, R.R., et al., Nat. Commun., 5 (1): 5324, 2014.
- [2] Schaeffer, J.M., et al., DNA 21, pp. 194-211, 2015.
- [3] Zhang C., et al., MLCB, pp. 148-162, PMLR, 2024.

Reaction: Machinek-Proximal

Reaction	Median simulated time (s)	Experimental rate (M ⁻¹ s ⁻¹)
Machinek-Perfect [1]	0.14	1.45×10^6
Machinek-Proximal [1]	1631.23	1.51×10^{3}
Proximal-C2T	83.96	-

Machinek-Proximal

"Bad" hairpins (a):

- Impede the branch migration process
- Significantly slow down the overall reaction

Proximal-C2T

- No stable hairpin formation
- Mismatch destabilizes branch migration
- Much faster reaction than Machinek-Proximal

	Invader ——	Substrate ——	Incumbent ——	ΔG (kcal mol ⁻¹)
	GGTGAGTTTGAGGTT <mark>C</mark> A <mark>ATGTGGA</mark>	CCCTCCACATTCAACCTCAAACTCACC	TGGTGTTTGTGGGTGTGAGTTTGAGGTTGA	
ì	((((()))).(((()))))((((((((((((())))))))))))))).	-34.623

Reaction: Machinek-Perfect

| | | • • •

CCTC CAC

Machinek-Perfect

Two reaction modes:

(1) Slow pathway: Mis-stack formation (2) Fast pathway: No mis-stack formation

"Good" hairpins (c & d):

- Provide "escape route" (c)
- Prevent mis-stack formation (d)

*ATGTGGA & TCCACAT: toeholds **C: mismatch

	Invader ——	Substrate ——	Incumbent ——	ΔG (kcal mol ⁻¹)
	GGTGAGTTTGAGGTTGAATGTGGA	CCCTCCACATTCAACCTCAAACTCACC	TGGTGTTTGTGGGTGTGAGTTTGAGGTTGA	
b	.(((((((.))))))((((((((((((())))))))))))))))))	-32.518
С	((()))	(((((((((((((((((((((((((((((((((()))))))))))))))))	-24.752
d	((())).((((()))))((((((((((((((((((((((((((((())))))))))))))))))	-30.499