CS7NS5/CSU44032 Security & privacy

Stephen Farrell

stephen.farrell@cs.tcd.ie

Course materials:

https://down.dsg.cs.tcd.ie/cs7053/

https://github.com/sftcd/cs7053

Slideware + some papers

Computer and Network Security is...

- ...a good thing to study ("one born every minute", and some of those are programmers!)
- ...something with more and more impact (scaling factor is about the same as the Internet)
- ...a part of risk management

Privacy is...

- ...nowhere near as well understood
- ...an issue for people and not companies
- ...not clearly a part of risk management, but related
 - I'm unsure if risk analysis is a good approach to address privacy

So-called "consent"

- Web sites/services/licensed things (like s/w) impose terms and conditions and require you "consent" to those (maybe via a "click-through")
 - Legal fiction, everyone knows people do not read T&C documents designed to obfuscate
 - Apparently, the legal fiction is still considered non-fiction by courts
- So-called "consent" is an awful model that only pretends to address privacy
- Good presentation on the so-called "consent" problem, with IMO less good (but worth exploring) ideas on HOWTO fix https://datatracker.ietf.org/meeting/105/materials/slides-10-5-ietf-sesse-privacy-modern-concerns-steven-m-bellovin-00

<u>.pdf</u>

Privacy

- RFC6973 In addition to "normal" security threats we need to care about
 - Correllation
 - Identification
 - Secondary use
 - Disclosure
 - Exclusion
 - Re-identification

Privacy Puzzle

- Emails contain a Received header field which can contain the mail user agent IP address
 - What consequences?
 - Overall good or bad from a privacy perspective?

Privacy Processes

- Various have been proposed or are in use:
- Privacy by design
 - https://en.wikipedia.org/wiki/Privacy_by_design
- Data protection by design and default
 - https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/accountability-and-governance/data-protection-by-design-and-default/
- Data protection impact assessments
 - https://dataprotection.ie/en/organisations/know-your-obligations/data-protection-impact-assessments

Privacy by design (PbD) Principles

7 "foundational principles":

- Proactive not reactive; preventive not remedial
- Privacy as the default setting
- Privacy embedded into design
- Full functionality positive-sum, not zero-sum
- End-to-end security full lifecycle protection
- Visibility and transparency keep it open
- Respect for user privacy keep it user-centric

Not clear (to me) that incentives align here such that result will be a privacy "win."

A few more thoughts on privacy

- Who cares? About what?
 - Governments, marketeers and large corporates do "care deeply" about your (lack of) privacy
- How can designers/implementers improve/protect privacy?
 - Behave as if your entire family will all be users
 - Encrypt things in transit and storage
 - Short-lived dynamic identifiers are better than long-lived static identifiers
 - Just don't (require) identification
 - Your idea here...
- How can you help yourself as a user?
 - Don't create more accounts
 - Target diversity
 - Your idea here...
 - Also see https://down.dsg.cs.tcd.ie/witidtm/

Risk Management

- Risks (bad things)
 - Disclosure of trade secrets
 - Sabotage (information or hardware)
 - Denial of service
 - Accidents (fire, flooding, earth quakes, ...)
- Solutions (not always good things)
 - Security policies and mechanisms
 - Physical security (locks, guards, CCTV, ...)
 - Formal specification/verification of software
 - Halon, UPS, off-site backups

Vulnerabilities

- Many risks arise due to the existence of vulnerabilities in computer systems
- All systems have vulnerabilities, our goal is not to remove absolutely all of them, but to control their impact
 - Reducing numbers is good
 - Can also isolate parts of the system (e.g. Firewalling)

Vulnerabilities

- Very common:
 - Scripting user agents
 - Buffer overruns
 - –XSS & Injection (e.g. SQL injection)
 - https://owasp.org/www-community/at tacks/xss/
 - Insecure default settings
- Uncommon, but interesting:
 - Acoustic side-channel key extraction,
 - Genkin, Shamir & Tromer
 - https://eprint.iacr.org/2013/857.pdf

Figure 6: Parabolic microphone (same as in Figure 5), attached to the portable measurement setup (in a padded briefcase), attacking a target laptop from a distance of 4 meters. Full key extraction is possible in this configuration and distance (see Section 5.4).

Figure 7: Acoustic measurement frequency spectrogram of a recording of different CPU operations using the Brüel&Kjær 4939 microphone capsule. The horizontal axis is frequency (0–310 kHz), the vertical axis is time (3.7 sec), and intensity is proportional to the instantaneous energy in that frequency band.

Good/Bad Actors

- Systems have users
 - Normal, administrative, "root"
- Networks have nodes
 - -"Inside", "outside", trusted...
- Attackers
 - –Can be one of the above, or not…
 - Hijacked ISP router, compromised SIM card factory, bot etc.

Possible Bad Actors

- Disgruntled employees (plenty)
- Crackers (hackers)
- Script-Kiddies (cracker wannabes)
- Spies (industrial and military)
- Criminals (thieves, organized crime)
- Terrorists
- Governments
- Bait'n'switchers

Possible Exploits

- Force legitimate user to reveal passwords
- Social engineering
- Recruit legitimate user
- Sabotage (fire, electricity, ...)
- Sifting through garbage
- Attacking the network (network threats)
- Install malware

Active/Passive Attacks

- Active attacks
 - Fabrication, modification, deletion, replay of messages
- Passive attacks
 - –eavesdropping/traffic analysis
 - -can be off-line (e.g. if weak encryption)
- Different protocol mechanisms are used to counter these

Risk Analysis Process

Many variations exist, mostly they resemble:

- Identify assets
- Identify risks and vulnerabilities
- Consider probabilities
- Consider consequent costs/losses
- Rank risks
- Develop mitigation(s) for highest ranked risk(s)
- Iterate, until effort exhausted or time up
 - All the time recording what you've done

Summing up risk

- Risk is a function of the cost of threats and their probability of occurrence
 - Which function can be debated
 - –High/Medium/Low
 - For both costs and probabilities
- Threats occur when a vulnerability is exploited