Kap. 5: Grundlagen Internet

- 5.1 Definition und Organisation des Internets
- 5.2 Protokolle, Schichten und Refezenzmodell
- 5.3 IP-Protokoll
- 5.4 IP-Adressen
- 5.6 TCP und UDP

Definition: Internet

Engl. Abk. für "Interconnected Network"

Allgemein:

 Die technische Vernetzung einzelner Computernetzwerke

Speziell:

- Das internationale Netz, das aus dem ehemaligen ARPAnet hervor gegangen ist
- Auf dem Internetdienste wie WWW, Email, VoIP, etc. aufbauen.

Oft Synonym für:

 Für das WWW (World Wide Web), was aber nur ein Dienst auf dem Internet ist.

Teile einer "Karte" des Internets opte.org am 15.01.2005

Wer hat etwas zu sagen im Internet? (1)

Internet Society

- NGO seit 1992
- zur Pflege und Weiterentwicklung der <u>Internetinfrastruktur</u> des Internets
- Unterorganisationen
 - IANA: vergibt Adressen
 - ICANN: vergibt
 Top-Level-Domains
 - IETF: entwickelt neue Technologien
- Veröffentlichungen als RFC (Request for Comments)
 - z.B. RFC 793 (TCP);
 - RFC 959 (FTP)

Wer hat etwas zu sagen im Internet? (2)

- World Wide Web Consortium (kurz: W3C)
 - NGO seit 1994
 - zur Standardisierung der das World Wide Web betreffenden Techniken
- Veröffentlicht Recommendations z.B. zu
 - Hypertext Markup Language (HTML)
 - Extensible Hypertext Markup Language (XHTML)
 - Extensible Markup Language (XML)
 - Extensible Stylesheet Language (XSL)
 - Cascading Style Sheets (CSS)
 - SOAP (SOAP)
 - Web Services Description Language (WSDL)
 - ...

Wer hat etwas zu sagen im Internet? (3)

Außerdem

- ITU: International Telecommunication Union
 - 1865 gegründet als Internationalen Telegraphenverein
 - heute Sonderorganisation der Vereinten Nationen
 - für technischen Aspekten der Telekommunikation
 - Standards für Telefon(Netze), Mobilfunk, Fequenzen
- ISO: International Organization for Standardization
 - seit 1946 für sonstige technische Standards
- IEEE: Institute of Electrical and Electronics Engineers
 - Seit 1963 weltweiter Berufsverband von Ingenieuren aus den Bereichen Elektrotechnik und Informatik
 - Standardisierung von Techniken, Hardware und Software
 - z.B. Standards für Bussysteme und Protokolle, Ethernet, WLAN, ...

Ethische Aspekte des Internets

Netzneutralität

- Darf das Netz (ein Netzwerkprovider) Inhalte und Anbieter bevorzugt behandeln?
- Wer zahlt die Kosten der Datenübertragung?

Digitale Lücke

- Unterschiedliche Verfügbarkeit und Bandbreiten
- Stadt und Land, in den verschiedenen Ländern und Kontinenten

Datenschutz

- Anonymität und informationelle Selbstbestimmung vs.
- Kommerzielle und staatliche Interessen

Zensur

- Freie Meinungsäußerung vs.
- Internetkriminalität (von Copyright bis Kindesmissbrauch)

"Struktur" des Internet

- Besteht aus zusammengefügten Netzen unterschiedlicher Organisationen
 - ♦ Sog. "Autonomen Systeme" (AS)
- IP, das "Internet Protocol" hält alles zusammen

Beispiel: Philosoph, Übersetzer, Sekretär

Schichten, Protokolle und Interfaces

Kommunikation zwischen den verschiedenen Schichten

Internet Martin Gergeleit

Grundideen der ISO OSI-Schichtenaufteilung

ISO OSI := ISO Open System Interconnection

Eine Schicht

- stellt eine neue Abstraktionsebene dar.
- sollte genau definierte Funktionen erfüllen
- sollte auch im Hinblick auf bestehende intern. Protokolle festgelegt werden
- sollte so definiert sein, dass an ihren Interfaces nur minimalen Informationsfluss nötig ist

Das gesamte Modell sollte

- so viele Schichten haben wie nötig, um unterschiedliche Funktionen auch in verschiedene Schichten zu separieren
- so wenige Schichten haben wie möglich um Unübersichtlichkeit zu vermeiden

Internet Martin Gergeleit

Aufgaben der 7 Schichten des ISO OSI-Modells 1-3

Bitübertragur	ngsschicht
	Maßnahmen und Verfahren zur Übertragung von Bits
Schicht 1 Physical	Die Bitübertragungsschicht definiert die elektrische, mechanische und funktionale Schnittstelle zum Übertragungsmedium. Die Protokolle dieser Schicht unterscheiden sich nur nach dem eingesetzten Übertragungsmedium und -verfahren. Das Übertragungsmedium ist jedoch kein Bestandteil der Schicht 1.
Sicherungss	chicht
	Logische Verbindungen mit Datenpaketen und elementare Fehlererkennungsmechanismen
Schicht 2 Data Link	Die Sicherungsschicht sorgt für eine zuverlässige und funktionierende Verbindung zwischen Endgerät und Übertragungsmedium. Zur Vermeidung von Übertragungsfehlern und Datenverlust enthält diese Schicht Funktionen zur Fehlererkennung, Fehlerbehebung und Datenflusskontrolle. Auf dieser Schicht findet auch die physikalische Adressierung von Datenpaketen statt.
Vermittlungs	schicht
	Routing und Datenflusskontrolle
Schicht 3 Network	Die Vermittlungsschicht steuert die zeitliche und logische getrennte Kommunikation zwischen den Endgeräten, unabhängig vom Übertragungsmedium und -topologie. Auf dieser Schicht erfolgt erstmals die logische Adressierung der Endgeräte. Die Adressierung ist eng mit dem Routing (Wegfindung vom Sender zum Empfänger) verbunden.

Quelle: http://www.elektronik-kompendium.de

Internet Martin Gergeleit

Aufgaben der 7 Schichten des ISO OSI-Modells 4-7

Transportschi	cht									
Schicht 4	Logische Ende-zu-Ende-Verbindungen									
Transport	Die Transportschicht ist das Bindeglied zwischen den transportorientierten und anwendungsorientierten Schichten. Hier werden die Datenpakete einer Anwendung zugeordnet.									
Kommunikatio	onsschicht									
Schicht 5	Prozeß-zu-Prozeß-Verbindungen									
Session	Die Kommunikationsschicht organisiert die Verbindungen zwischen den Endsystemen. Dazu sind Steuerungs- und Kontrollmechanismen für die Verbindung und dem Datenaustausch implementiert.									
Darstellungss	chicht									
Schicht 6	Ausgabe von Daten in Standardformate									
Presentation	Die Darstellungsschicht wandelt die Daten in verschiedene Codecs und Formate. Hier werden die Daten zu oder von der Anwendungsschicht in ein geeignetes Format umgewandelt.									
Anwendungss	schicht									
Schicht 7	Dienste, Anwendungen und Netzmanagement									
Application	Die Anwendungsschicht stellt Funktionen für die Anwendungen zur Verfügung. Diese Schicht stellt die Verbindung zu den unteren Schichten her. Auf dieser Ebene findet die Dateneingabe und -ausgabe statt.									

Quelle: http://www.elektronik-kompendium.de

Das ISO OSI-Referenzmodel Übersicht und Komponenten

Internet Martin Gergeleit

Datenübertragung im OSI-Referenzmodell

- Die Daten fließen in den Schichten 2-7 vertikal
 - von oben nach unten, bzw. wieder von unten nach oben
- Nur in Schicht 1 (physical) fließen Daten von einem Rechner zum anderen

Jede Schicht betrachtet die Daten der darüber liegenden als zu

transportierende Daten

 Jede Schicht kann eigene Daten hinzufügen

- Vor den Daten (Header) oder
- danach (Trailer)

Im Vergleich: das (einfachere) TCP/IP Referenzmodell

Internet Martin Gergeleit

Funktionalität von IP

- Best-Effort Dienst zum Transport von Datagrammen von der Quelle zum Ziel
 - Best-Effort: kann klappen, muss aber nicht
 - ◆ Datagramme: einzelne Pakete, keine ganzen Datenströme
 - Quelle zum Ziel: von Rechner zu Rechner, nicht von Programm zu Programm
- Unabhängig davon, ob diese Rechner im gleichen Netz liegen oder nicht
- Fragmentiert diese Datagramme und baut sie falls erforderlich wieder zusammen (reassembly)
 - Um mit unterschiedlichen Maximal-Paketgrößen in verschiedenen Netzwerken umgehen zu können
 - Heute nur noch sehr selten verwendet!

Internet Martin Gergeleit

IPv4 Header (1)

Version

Zz. v4, ermöglicht gemischten Betrieb mit neueren Versionen (IPv6!)

IHL

Header Length (Einheiten von 32 Bits, min 5, max 15)

IPv4 Header (2)

- Type of service (usually ignored)
 - 3 bits precedence (priority), normal to network control
 - 3 flags (Delay, Throughput, Reliability)
- Total length
 - Length of header and data in bytes (max. 65535)

IPv4 Header (3)

- Identification identifies parts of a fragment
- DF "Don't Fragment"
- MF "More Fragments"
- Fragment Offset (in 8 Byte Einheiten)

IPv4 Header (4)

Time to live

Verbleibende Zeit in sec (max. 255), normalerweise "Hops"

Protocol

• Transportprotokoll zu dem das Datagramm gehört (TCP,UDP)

Ein Paket im Netzwerk-Sniffer (Wireshark)

Internet Martin Gergeleit

ICMP – Internet Control Message Protocol (1)

- Einzelne Paketverluste werden im Normalfall von IP nicht gemeldet (unzuverlässiger Datagrammdienst).
- Schwerwiegende Probleme werden zur Vermeidung von Folgefehlern mittels ICMP den Kommunikationspartnern mitgeteilt.

 ICMP unterstützt den Austausch von Fehlermeldungen, Statusanfragen und Zustandsinformation.

ICMP - Internet Control Message Protocol (2)

ICMP-Nachrichtentypen

Message type	Description							
Destination unreachable	Packet could not be delivered							
Time exceeded	Time to live field hit 0							
Parameter problem	Invalid header field							
Source quench	Choke packet							
Redirect	Teach a router about geography							
Echo request	Ask a machine if it is alive							
Echo reply	Yes, I am alive							
Timestamp request	Same as Echo request, but with timestamp							
Timestamp reply	Same as Echo reply, but with timestamp							

Internet Martin Gergeleit

The IPv4 Header Format (5)

Options

Option	Description							
Security	Specifies how secret the datagram is							
Strict source routing	Gives the complete path to be followed							
Loose source routing	Gives a list of routers not to be missed							
Record route	Makes each router append its IP address							
Timestamp	Makes each router append its address and timestamp							

IPv4-Adressen

- 32 Bit-Werte
 - d.h. es gibt max. 4.294.967.296 verschiedene Adressen
- Dargestellt meist als 4 Bytes in Dezimaldarstellung durch Punkte getrennt
 - Historisch bedingt, extrem unpraktisch, aber Standard
- Beispiel:

Internet Martin Gergeleit

IPv4 klassische Adressformate

- Unterteilung in Netzwerk (geroutet) und Hostteil (lokal)
- Class A: 126 Netzwerke mit 16 Millionen Hosts
- Class B: 16382 Netzwerke mit 64k Hosts
- Class C: ca. 2 Millionen Netzwerke mit 254 Hosts

Internet Martin Gergeleit

Spezielle IPv4 Adressen

- Broadcast-Adresse eines Netzes
 - ♦ Broadcast = Nachricht an alle Hosts des Netzes
 - Letzte Adresse des Netzes reserviert für Broadcast
 - d.h. Hostteil alles Einsen
 - ♦ Beispiel: Broadcast-Adresse des Class C Netzes 192.168.0.0 ist 192.168.0.255
- Universelle Broadcast-Adresse 255.255.255.255
 - Nachricht an alle im eigenen Netz (egal, wie das Netz heißt)
- Loopback Addresse 127.x.x.x
 - ◆ Alle Adressen in diesem Class A-Netz gehen an den eigenen Rechner, z.B. meist 127.0.0.1

Internet Martin Gergeleit

IPv4 Adressen in privaten Netzen

- Geregelt im RFC 1918 (Address Allocation for Private Internets)
 - Jeder kann aus diesen Bereichen den Adressbereich für sein eigenes privates Netz auswählen

Die folgenden Adressbereiche sind für private Netze reserviert:

♦ Klasse A:
10.0.0.0

Privates Klasse A-Netz: 10.0.0.0 bis 10.255.255.254

Klasse B: 172.16.0.0 bis 172.31.0.0

- Es sind 16 Klasse B-Netze reserviert
 Jedes dieser Netze kann aus bis zu 65.534 Hosts bestehen
 (z.B. ein Netz mit den Adressen von 172.17.0.1 bis 172.17.255.254).
- Klasse C: 192.168.0.0 bis 192.168.255.0
 - 256 Klasse C-Netze stehen zur privaten Nutzung zur Verfügung.
 Jedes dieser Netze kann jeweils 254 Hosts enthalten
 - Häufig genutzt bei DSL-Routern

CIDR - Classless InterDomain Routing

Problemen

- IP Adressen wurden knapp
- Class A und B Netzwerke sind zu groß, Class C zu klein
- Explosion der Routing Tabellen sollte vermieden werden

Lösung

- 1993 eingeführt (RFC 1518, RFC 1519)
- Länge von Netzwerk- und Hostteil kann beliebig gewählt werden
- Vergabe der Netzwerke in Größen von 2ⁿ
- Generell wird bei Netzen immer die Länge der Adresse mit angegeben
 - Als Netzmaske (markiert Bits im Netzteil mit 1):
 - z.B. 255.255.254.0
 - Oder äquivalent als Anzahl der Bits im Netzteil mit "/"
 - z.B. 192.85.16.0/23

IP-Netze (1)

- Ein IP-Netz ist eindeutig definiert durch seine Netzadresse und die Netzmaske
 - Die IPv4 Netzadresse ist eine 32-bittige Zahl, i.d.R. geschrieben in der Punkt-Schreibweise mit Dezimalzahlen
 - z.B.: 151.41.176.0 (= 10010111 00101001 10110000 00000000₂)
 - Die IPv4 Netzmaske ist eine Zahl von 0-32, die angibt, wieviele Bitstellen der Netzadresse zur Netznummer gehören, i.d.R. geschrieben in der /-Notation oder auch in der Punkt-Schreibweise
 - z.B.: /20 oder 255.255.240.0 (= 11111111 11111111 1111 0000 00000000₂) 20 x 1
 - Die Bitstellen der Netzadresse, die nicht zur Netznummer gehören sind in der Netzadresse immer alle 0
 - z.B.: 151.41.176.0/20 (= 10010111 00101001 1011 0000 0000000₂)

20 Bit Netznummer

12 Bit mit 0

Internet Martin Gergeleit

IP-Netze (2)

- Die Bitstellen der Netzadresse, die nicht zur Netznummer gehören, werden für die Hostnummern genutzt
 - Ein IP-Netz hat also immer 2^{32-Länge der Netzmake} Hostnummern
 - z.B.: 151.41.176.0/20 hat 212 Hostnummern
- Eine kompette IP-Adresse setzt sich somit aus der Netznummer und der Hostnummer zusammen
 - z.B.: Das Netz 151.41.176.0/20 hat also die Adressen von
 - 151.41.176.0 (= $10010111 00101001 10110000 00000000_2$) bis
 - 151.41.191.255 (= 10010111 00101001 10111111 11111111₂)
- Die höchste IP-Adresse, also die mit nur 1en in der Hostnummer, ist die Broadcast-Adresse des Netzes
 - ★ z.B. 151.41.191.255 (= 10010111 00101001 10111111 11111111₂) ist die Broadcast-Adresse von 151.41.176.0/20

Internet Martin Gergeleit

IP-Netze (3)

- Um zu testen, ob eine beliebigen IP-Adresse zu einem bestimmten Netzwerk gehört:
 - ♦ Testet man, ob: IP-Adresse & Netzmaske == Netzadresse
 - z.B. Test, ob IPv4-Adresse 151.41.181.201 in 151.41.176.0/20 liegt:

Internet Martin Gergeleit

IP-Netze (4)

z.B. Test, ob IPv4-Adresse 151.41.193.201 in 151.41.176.0/20 liegt:

Internet Martin Gergeleit

IPv6 - Warum?

- Mangel an IPv4-Adressen
 - 2011 waren keine neuen IPv4-Adressen mehr zu vergeben
 - 2³² (= ca. 4 Mrd.) ist nicht viel
- Neuer Adressierungsmodus "Anycast"
 - z.B. "an einen Router, der mich hört"
 - IPv4 kannte nur Unicast, Broadcast, Multicast
- Einfachere Adressstruktur
 - Einfacher Umzug/Umnummerierung von Adressen
- Eingebaute Unterstützung für
 - Mobilität (MobilelPv6)
 - Sicherheit (IPSec)
 - QoS (Dienstgüte)
- Einfacher Header, schnelleres Routing

Internet Martin Gergeleit

IPv6 Adressen

- Länge: 128 Bit, (statt 32 Bit in IPv4)
- Notation
 - 8 Gruppen von je 4 Hexziffern
 - z.B.: 8000:0000:0000:0000:1234:32E1:1234:EDFA
 - Abkürzungen
 - "0000:" werden ":"
 - folgende ":" werden "::"
 - z.B: 8000::1234:32E1:1234:EDFA
 - Netze werden in der CIDR (also "/") Schreibweise angegeben
 - z.B. 3ffe::/16
- Jeder Rechner hat eine (oder mehrere) global erreichbare Adressen
 - Keine Adressübersetzung (NAT)

TCP (Transmission Control Protocol)

Ziel:

• Zuverlässiger, verbindungsorientierter Byte-Strom über ein unzuverlässiges Netz (Internet)

Anforderungen:

Der Byte-Strom des Benutzers wird in Pakete von max. 64 KByte Größe unterteilt

Erbrachter Dienst:

- Wiederherstellung des ursprünglichen Byte-Stroms durch Ordnung der Pakete in der richtigen Reihenfolge
- Timeout und Wiederholung um die Zuverlässigkeit der Übertragung zu gewährleisten

Das TCP Servicemodell

- Sender und Empfänger erzeugen als Endpunkte sog. Sockets
- Jeder Socket hat als ID (Adresse) eine lokale Nummer (sog. Port)
- Um den TCP Dienst wird auf einer Verbindung zwischen den Sockets von Sender und Empfänger erbracht
- Ein Socket kann mehrere Verbindungen zu einem Zeitpunkt haben
- Verbindungen werden durch die Socket-IDs beider Enden bezeichnet: (Socket1, Socket2)

Internet Martin Gergeleit

TCP - Portnummern

- Adressierung der Applikationen
- Portnummer sind 16 Bit groß (65.535 TCP-Verbindungen)
- Portnummern sind nicht einzigartig zwischen den Transportprotokollen, die Transportprotokolle haben jeweils eigene Adressräume.
- Eine IP-Adresse zusammen mit der Portnummer spezifiziert einen Socket.
- auf UNIX-Systemen sind Portnummern in der Datei "/etc/services " definiert.
- Portnummer sind in drei Bereiche aufgeteilt:
 - 0 1023 well-known ports (root-Rechte!)
 - 1024 49151 registered ports
 - **49152 65535** dynamic and/or private ports

Internet Martin Gergeleit

Adressierung von Anwendungsprozessen: Beispiel TCP/IP - Portnummern

Internet Martin Gergeleit

Well Known Ports (Auswahl) Vordefinierte Dienste

ftp 21/tcp File Transfer [Control]

telnet 23/tcp Telnet

smtp 25/tcp Simple Mail Transfer

smtp 24/tcp any private mail system

time 37/tcp Time

time 37/udp Time

rap 38/tcp Route Access Protocol

rap 38/udp Route Access Protocol

nicname 43/tcp Who Is

login 49/tcp Login Host Protocol

xns-time 52/tcp XNS Time Protocol

dns 53/tcp Domain Name Server

sql*net 66/tcp Oracle SQL*NET

bootpc 68/udp Bootstrap Protocol Client

tftp 69/udp Trivial File Transfer

http 80/tcp World Wide Web HTTP

hosts2-ns

pop 110/tcp Mail abhollen

nntp 119/tcp Network News

Transfer Protocol

imap2 43/tcp Interactive Mail Access

Protocol v2

https 443/tcp https

irc 6665-6669/tcp chatten

Internet Martin Gergeleit

Identifikation von Verbindungen

Internet Martin Gergeleit

(Berkeley) Sockets Primitive für TCP

Primitive	Meaning							
SOCKET	Create a new communication end point							
BIND	Attach a local address to a socket							
LISTEN	Announce willingness to accept connections; give queue size							
ACCEPT	Block the caller until a connection attempt arrives							
CONNECT	Actively attempt to establish a connection							
SEND	Send some data over the connection							
RECEIVE	Receive some data from the connection							
CLOSE	Release the connection							

Byte-Strom (NICHT Nachrichten-Strom)

TCP-Kommunikation mit Sockets Client/Server

Verbindungsaufbau asymmetrisch:

- Server nutzt eine bestimmte Adresse (IP, Port) – bind()
- Sever bereitet sich auf Verbindungen vor listen()
- Client öffnet Verbindung connect()
- Sever nimmt Verbindung an accept()

Kommunikation dann symmetrisch

- Client und Server können beide Byte-Ströme schreiben und lesen – read(), write() [auch send() und receive ()]
- Client und Server können beide die Kommunikation beenden close()

Der UDP Datagramm-Header

	0									1								2										3	
0	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5										6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1			
	Quell-Portnummer													Ziel-Portnummer															
	Länge											Prüfsumme																	
Daten																													

- UDP ist verbindungslos (im Gegensatz zu TCP)
- setzt auf dem unter ihm liegenden IP-Protokoll auf
- besitzt nur einen kleinen Overhead (<u>keine</u> Transportquittungen oder bis auf Prüfsumme – <u>keine</u> Sicherheitsmaßnahmen)
 - Quell-Port, Ziel-Port (jew. 2 Bytes): identifiziert Anfangs- und Endpunkt einer Verbindung
 - Länge(2 Bytes): Länge des UDP-Headers
 - Prüfsumme (2 Bytes): alle Daten werden als 16-Bit-Wörter addiert und dann das Einerkomplement gebildet
 - Daten: zu übertragene Payload

Internet Martin Gergeleit

UDP-Kommunikation mit Sockets

Kommunikation symmetrisch

- Client und Server nutzt eine bestimmte Adresse (IP, Port) bind()
 - Ohne bind() wird eine beliebige Portnummer gewählt
- Client und Server können beide Byte-Ströme schreiben und lesen – sendto() und receivefrom()
- Client und Server können beide die Kommunikation beenden – close()

Internet Martin Gergeleit

Zusammenfassung

- Das Internet ist ein weltweiter Zusammenschluss verschiedener Netze
 - WWW ist nur ein Dienst auf dem Internet
- Protokolle, Schichten und Interfaces sind in einem Referenzmodell definiert
 - Das 7-Schichten-Modell ist DAS Modell der Rechnernetze
 - Auch wenn TCP/IP nur einen Teil davon implementiert
- Das IP-Protokoll hält das Internet zusammen
 - Bringt Pakete vom sendenden Rechner zum empfangenden
 - IP-Adressen sind strukturiert nach Netz-, (Subnetz) und Hostteil
 - IPv6 wird irgendwann das bisherige IPv4 ablösen
- TCP und UDP sind die Protokolle, die Prozesse/Programme nutzen
 - TCP für Datenströme, UDP für einzelne Datagramme