Trees

Outline

- Preliminaries
 - What is Tree?
 - Implementation of Trees using C++
 - Tree traversals and applications
- Binary Trees
- Binary Search Trees
 - Structure and operations
 - Analysis
- AVL Trees

What is a Tree?

- A tree is a collection of nodes with the following properties:
 - The collection can be empty.
 - Otherwise, a tree consists of a distinguished node r, called *root*, and zero or more nonempty sub-trees $T_1, T_2, ..., T_k$, each of whose roots are connected by a *directed edge* from r.
- The root of each sub-tree is said to be *child* of r, and r is the *parent* of each sub-tree root.
- If a tree is a collection of N nodes, then it has N-1 edges.

Preliminaries

- Node A has 6 children: B, C, D, E, F, G.
- B, C, H, I, P, Q, K, L, M, N are *leaves* in the tree above.
- K, L, M are *siblings* since F is parent of all of them.

Preliminaries (continued)

- A *path* from node n_1 to n_k is defined as a sequence of nodes $n_1, n_2, ..., n_k$ such that n_i is parent of n_{i+1} $(1 \le i < k)$
 - The *length* of a path is the number of edges on that path.
 - There is a path of length zero from every node to itself.
 - There is exactly one path from the root to each node.
- The *depth* of node n_i is the length of the path from *root* to node n_i
- The *height* of node n_i is the length of longest path from node n_i to a *leaf*.
- If there is a path from n_1 to n_2 , then n_1 is *ancestor* of n_2 , and n_2 is *descendent* of n_1 .
 - If $n_1 \neq n_2$ then n_1 is proper ancestor of n_2 , and n_2 is proper descendent of n_1 .

Figure 1A tree, with height and depth information

Implementation of Trees

Figure 2: The Unix directory with file sizes

Listing a directory

```
// Algorithm (not a complete C code)
listAll ( struct TreeNode *t, int depth)
{
    printName ( t, depth );
    if (isDirectory())
      for each file c in this directory (for each child)
        listAll(c, depth+1 );
}
```

- printName() function prints the name of the object after "depth" number of tabs -indentation. In this way, the output is nicely formatted on the screen.
- The order of visiting the nodes in a tree is important while traversing a tree.
 - Here, the nodes are visited according to preorder traversal strategy.

Figure 3: The directory listing for the tree shown in Figure 2

10

Size of a directory

```
int FileSystem::size () const
{
   int totalSize = sizeOfThisFile();

   if (isDirectory())
      for each file c in this directory (for each child)
          totalSize += c.size();
   return totalSize;
}
```

- •The nodes are visited using *postorder* strategy.
- •The work at a node is done after processing each child of that node.

Figure 18.9

A trace of the size method

			ch1	9
			ch2	7
		dsaa		17
			ch1	4
			ch2	6
		еср		11
			ch1	3
			ch2	8
		ipps		12
	books			41
			syl	2
		cop3223	-	3
			syl	3
		cop3530		4
	courses			8
	.login			2
mark	-			52

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Algorithm preOrder(v) visit(v) for each child w of v preorder (w)

Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)

Binary Trees

- A *binary tree* is a tree in which no node can have more than two children
- The depth can be as large as *N-1* in the worst case.

A binary tree consisting of a root and two subtrees T_L and T_R , both of which could possibly be empty.

Binary Tree Terminology

- **Left Child** The left child of node n is a node directly below and to the left of node n in a binary tree.
- **Right Child** The right child of node n is a node directly below and to the right of node n in a binary tree.
- Left Subtree In a binary tree, the left subtree of node n is the left child (if any) of node n plus its descendants.
- **Right Subtree** In a binary tree, the right subtree of node n is the right child (if any) of node n plus its descendants.

Binary Tree -- Example

- A is the root.
- B is the left child of A, and C is the right child of A.
- D doesn't have a right child.
- H doesn't have a left child.
- B, F, G and I are leaves.

Binary Tree – Representing Algebraic Expressions

Height of Binary Tree

- The height of a binary tree T can be defined recursively as:
 - If T is empty, its height is -1.
 - If T is non-empty tree, then since T is of the form

the height of T is 1 greater than the height of its root's taller subtree; i.e.

$$height(T) = 1 + max\{height(T_I), height(T_R)\}$$

Height of Binary Tree (cont.)

Binary trees with the same nodes but different heights

Number of Binary trees with Same # of Nodes

Full Binary Tree

- In a *full binary tree* of height h, all nodes that are at a level less than h have two children each.
- Each node in a full binary tree has left and right subtrees of the same height.
- Among binary trees of height h, a full binary tree has as many leaves as possible, and they all are at level h.
- A full binary has no missing nodes.
- Recursive definition of full binary tree:
 - If T is empty, T is a full binary tree of height -1.
 - If T is not empty and has height h>0, T is a full binary tree if its root's subtrees are both full binary trees of height h-1.

Full Binary Tree – Example

A full binary tree of height 2

Complete Binary Tree

- A *complete binary tree* of height h is a binary tree that is full down to level h-1, with level h filled in from left to right.
- A binary tree T of height h is complete if
 - 1. All nodes at level h-2 and above have two children each, and
 - 2. When a node at level h-1 has children, all nodes to its left at the same level have two children each, and
 - 3. When a node at level h-1 has one child, it is a left child.
- A full binary tree is a complete binary tree.

Complete Binary Tree – Example

Balanced Binary Tree

- A binary tree is *height balanced* (or *balanced*), if the height of any node's right subtree differs from the height of the node's left subtree by no more than 1.
- A complete binary tree is a balanced tree.
- Other height balanced trees:
 - AVL trees
 - Red-Black trees
 - B-trees

• • • •

A Pointer-Based Implementation of Binary Trees

Binary Tree Traversals

Preorder Traversal

- the node is visited before its left and right subtrees,

Postorder Traversal

- the node is visited after both subtrees.

Inorder Traversal

- the node is visited between the subtrees,
- Visit left subtree, visit the node, and visit the right subtree.

Binary Tree Traversals

(Numbers beside nodes indicate traversal order.)

Preorder

```
void preorder(struct tree_node * p)
{ if (p !=NULL) {
    printf("%d\n", p->data);
    preorder(p->left_child);
    preorder(p->right_child);
}
```

Inorder

```
void inorder(struct tree_node *p)
{ if (p !=NULL) {
    inorder(p->left_child);
    printf("%d\n", p->data);
    inorder(p->right_child);
}
```

Postorder

```
void postorder(struct tree_node *p)
{ if (p !=NULL) {
    postorder(p->left_child);
    postorder(p->right_child);
    printf("%d\n", p->data);
}
```

Finding the maximum value in a binary tree

```
int FindMax(struct tree node *p)
     int root val, left, right, max;
    \max = -1; // Assuming all values are positive integers
     if (p!=NULL) {
       root val = p -> data;
       left = FindMax(p ->left child);
       right = FindMax(p->right child);
       // Find the largest of the three values.
       if (left > right)
            max = left;
       else
           max = right;
       if (root val > max)
           max = root val;
     return max;
```

Adding up all values in a Binary Tree

```
int add(struct tree_node *p)
{
    if (p == NULL)
        return 0;
    else
        return (p->data + add(p->left_child)+
            add(p->right_child));
}
```

Exercises

- 1. Write a function that will count the leaves of a binary tree.
- 2. Write a function that will find the height of a binary tree.
- 3. Write a function that will interchange all left and right subtrees in a binary tree.

Binary Search Trees

- An important application of binary trees is their use in searching.
- Binary search tree is a binary tree in which every node X contains a data value that satisfies the following:
 - a) all data values in its left subtree are smaller than the data value in X
 - b) the data value in X is smaller than all the values in its right subtree.
 - c) the left and right subtrees are also binary search tees.

Example

A binary search tree

Not a binary search tree, but a binary tree

Binary Search Trees – containing same data

Operations on BSTs

- Most of the operations on binary trees are O(log N).
 - This is the main motivation for using binary trees rather than using ordinary lists to store items.
- Most of the operations can be implemented using recursion.
 - we generally do not need to worry about running out of stack space, since the average depth of binary search trees is O(logN).

The BinaryNode class

find

```
/**
 * Method to find an item in a subtree.
 * x is item to search for.
 * t is the node that roots the tree.
 * Return node containing the matched item.
 * /
template <class Comparable>
BinaryNode<Comparable> *
find (const Comparable & x, BinaryNode < Comparable > *t ) const
  if(t == NULL)
      return NULL;
  else if ( x < t->element )
      return find(x, t->left);
  else if (t->element < x)
      return find(x, t->right);
  else
      return t; // Match
```

findMin (recursive implementation)

```
/**
 * method to find the smallest item in a subtree t.
 * Return node containing the smallest item.
 * /
template <class Comparable>
BinaryNode<Comparable> *
findMin( BinaryNode<Comparable> *t ) const
   if(t == NULL)
       return NULL;
   if(t->left == NULL)
       return t;
   return findMin( t->left );
```

findMax (nonrecursive implementation)

```
/**
 *method to find the largest item in a subtree t.
 *Return node containing the largest item.
 * /
template <class Comparable>
BinaryNode<Comparable> *
findMax( BinaryNode<Comparable> *t ) const
  if ( t != NULL )
    while ( t->right != NULL )
       t = t - > right;
  return t;
```

Insert operation

Algorithm for inserting X into tree T:

- Proceed down the tree as you would with a find operation.
- if X is found
 do nothing, (or "update" something)
 else
 insert X at the last spot on the path traversed.

Example

• What about duplicates?

Insertion into a BST

```
/* method to insert into a subtree.
 * x is the item to insert.
 * t is the node that roots the tree.
 * Set the new root.
 * /
template <class Comparable>
void insert (const Comparable & x,
             BinaryNode<Comparable> * & t ) const
   if ( t == NULL )
      t = new BinaryNode<Comparable>(x, NULL, NULL);
   else if (x < t->element)
      insert( x, t->left );
   else if (t->element < x)
      insert( x, t->right );
   else
      ; // Duplicate; do nothing
```

Deletion operation

There are three cases to consider:

- 1. Deleting a leaf node
 - Replace the link to the deleted node by NULL.
- 2. Deleting a node with one child:
 - The node can be deleted after its parent adjusts a link to bypass the node.
- 3. Deleting a node with two children:
 - The deleted value must be replaced by an existing value that is either one of the following:
 - The largest value in the deleted node's left subtree
 - The smallest value in the deleted node's right subtree.

Deletion – Case1: A Leaf Node

To remove the leaf containing the item, we have to set the pointer in its parent to NULL.

Deletion – Case2: A Node with only a left child

Delete 45 (A node with only a left child)

Deletion – Case2: A Node with only a right child

Delete 60 (A node with only a right child)

Deletion – Case3: A Node with two children

- Locate the inorder successor of the node.
- Copy the item in this node into the node which contains the item which will be deleted.
- Delete the node of the inorder successor.

Delete 40 (A node with two children)

Deletion – Case3: A Node with two children

Deletion routine for BST

```
template <class Comparable>
void remove( const Comparable & x,
             BinaryNode<Comparable> * & t ) const
{
   if(t == NULL)
      return; // Item not found; do nothing
   if ( x < t->element )
      remove(x, t->left);
   else if (t->element < x)
      remove (x, t->right);
   else if ( t->left != NULL && t->right != NULL {
       t->element = findMin( t->right )->element;
       remove(t->element, t->right);
   else {
      BinaryNode<Comparable> *oldNode = t;
      t = (t-) left != NULL ) ? t-) left : t-) right;
      delete oldNode;
```

Analysis of BST Operations

- The cost of an operation is proportional to the depth of the last accessed node.
- The cost is logarithmic for a well-balanced tree, but it could be as bad as linear for a degenerate tree.
- In the best case we have logarithmic access cost, and in the worst case we have linear access cost.

Figure 19.19

(a) The balanced tree has a depth of log N; (b) the unbalanced tree has a depth of N-1.

Maximum and Minimum Heights of a Binary Tree

- The efficiency of most of the binary tree (and BST) operations depends on the height of the tree.
- The maximum number of key comparisons for retrieval, deletion, and insertion operations for BSTs is the height of the tree.
- The <u>maximum</u> of height of a binary tree with n nodes is n-1.
- Each level of a <u>minimum</u> height tree, except the last level, must contain as many nodes as possible.

Maximum and Minimum Heights of a Binary Tree

A maximum-height binary tree with seven nodes

Some binary trees of height 2

Counting the nodes in a full binary tree

Some Height Theorems

Theorem 10-2: A full binary of height $h \ge 0$ has $2^{h+1}-1$ nodes.

Theorem 10-3: The maximum number of nodes that a binary tree of height h can have is $2^{h+1}-1$.

→ We cannot insert a new node into a full binary tree without increasing its height.

Minimum Height

- Complete trees and full trees have minimum height.
- The height of an n-node binary search tree ranges from $\lfloor \log_2(n+1) \rfloor$ to n-1.
- Insertion in search-key order produces a maximum-height binary search tree.
- Insertion in random order produces a near-minimum-height binary tree.
- That is, the height of an n-node binary search tree
 - Best Case $\lfloor \log_2(n+1) \rfloor$

 \rightarrow O(log₂n)

- Worst Case - n-1

 \rightarrow O(n)

- Average Case close to $\lfloor \log_2(n+1) \rfloor$ → O($\log_2 n$)
 - In fact, $1.39\log_2 n$

Order of Operations on BSTs

Operation	Average case	Worst case
Retrieval	O(log n)	O(n)
Insertion	O(log n)	O(n)
Deletion	O(log n)	O(n)
Traversal	O(n)	O(n)

Treesort

• We can use a binary search tree to sort an array.

```
treesort(inout anArray:ArrayType, in n:integer)
// Sorts n integers in an array anArray
// into ascending order
   Insert anArray's elements into a binary search
   tree bTree
   Traverse bTree in inorder. As you visit bTree's
  nodes,
   copy their data items into successive locations of
  anArray
```

Treesort Analysis

- Inserting an item into a binary search tree:
 - Worst Case: O(n)
 - Average Case: O(log₂n)
- Inserting n items into a binary search tree:
 - Worst Case: O(n²)

- \rightarrow $(1+2+...+n) = O(n^2)$
- Average Case: O(n*log₂n)
- Inorder traversal and copy items back into array \rightarrow O(n)
- Thus, treesort is
 - \rightarrow O(n²) in worst case, and
 - \rightarrow O(n*log₂n) in average case.
- Treesort makes exactly the same comparisons of keys as quicksort when the pivot for each sublist is chosen to be the first key.

Saving a BST into a file, and restoring it to its original shape

• Save:

 Use a preorder traversal to save the nodes of the BST into a file.

• Restore:

- Start with an empty BST.
- Read the nodes from the file one by one, and insert them into the BST.

Saving a BST into a file, and restoring it to its original shape


```
(b) bst.searchTreeInsert(60);
   bst.searchTreeInsert(20);
   bst.searchTreeInsert(10);
   bst.searchTreeInsert(40);
   bst.searchTreeInsert(30);
   bst.searchTreeInsert(50);
   bst.searchTreeInsert(70);
```

Preorder: 60 20 10 40 30 50 70

Saving a BST into a file, and restoring it to a minimum-height BST

• Save:

- Use an inorder traversal to save the nodes of the BST into a file. The saved nodes will be in ascending order.
- Save the number of nodes (n) in somewhere.

• Restore:

- Read the number of nodes (n).
- Start with an empty BST.

Put middle element to root, set its left and right BSTs recursively.

10 20 25 **30** 40 50 60

Building a minimum-height BST

