DS 100: Principles and Techniques of Data Science

## Discussion #11

Date: July 31, 2019

Name:

## **Logistic Regression**

- 1. State whether the following claims are true or false. If false, provide a reason or correction.
  - (a) A binary or multi-class classification technique should be used whenever there are categorical features.
  - (b) A classifier that always predicts 0 has a test accuracy of 50% on all binary prediction tasks.
  - (c) For a logistic regression model, all features are continuous, with values from 0 to 1.
  - (d) In a setting with extreme class imbalance in which 95% of the training data have the same label, it is always possible to get at least 95% testing accuracy.
- 2. The next question refers to a binary classification problem with a single feature x. Based on the scatter plot of the data below, draw a reasonable approximation of the logistic regression probability estimates for  $\mathbb{P}(Y=1|x)$ .



3. Suppose you are given the following dataset  $\{(x_i, y_i)\}_{i=1}^n$  consisting of x and y pairs where the covariate  $x_i \in \mathbb{R}$  and the response  $y_i \in \{0, 1\}$ .



Given this data, the value  $\mathbb{P}(Y=1|x=-1)$  is likely closest to:

 $\square$  0.95  $\square$  0.50  $\square$  0.05  $\square$  -0.95

4. You have a classification data set, where x is some value and y is the label for that value:

| x                                      | y |
|----------------------------------------|---|
| 2                                      | 1 |
| $\begin{vmatrix} 2 \\ 3 \end{vmatrix}$ | 0 |
| 0                                      | 1 |
| 1                                      | 0 |

Suppose that we're using a logistic regression model to predict the probability that Y=1 given x:

$$\mathbb{P}(Y=1|x) = \sigma(\mathbf{X}\theta)$$

- (a) Suppose that  $\mathbf{X} = \begin{bmatrix} 1 & x & x^2 \end{bmatrix}^T$  and our model parameters are  $\theta^* = \begin{bmatrix} 1 & 0 & -2 \end{bmatrix}^T$ . For the following parts, leave your answer as an expression (do not numerically evaluate  $\log$ , e,  $\pi$ , etc).
  - i. Compute  $\hat{\mathbb{P}}(y=1|x=0)$ .
  - ii. What is the loss for this single prediction  $\hat{\mathbb{P}}(y=1|x=0)$ , assuming we are using Cross Entropy as our loss function (or equivalently that we are using the cross entropy as our loss function)?

5. Suppose we train a binary classifier on some dataset. Suppose y is the set of true labels, and  $\hat{y}$  is the set of predicted labels.

| y         | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
|-----------|---|---|---|---|---|---|---|---|---|---|
| $\hat{y}$ | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |

Determine each of the following quantities.

- (a) The number of true positives
- (b) The number of false negatives
- (c) The precision of our classifier. Write your answer as a simplified fraction.

## **ROC Curves**

6. State whether the following claims are true or false. If false, provide a reason or correction.



- (a) Point A (0, 1) represents our ideal classifier.
- (b) Point C performs well compared to a classifier that guesses each class randomly.
- (c) The classifier at Point B performs better than the one at Point D.