INSTITUT PROVINCIAL DE PROMOTION SOCIALE ET DE FORMATION CONTINUE Année académique 2018-2019

Élément de statistique : évaluation formative Partie 1 (C1/C2/C3/C4)

Nom: Prénom:

Consignes:

- > Toutes vos réponses doivent être **justifiées** et votre argumentation doit convaincre le lecteur. L'argumentation doit être courte (une phrase ou deux maximum).
- ➤ Votre écriture doit être le plus lisible possible.
- Les réponses finales doivent figurer dans les encadrés prévus à cet effet. Vous pouvez utiliser tous les versos de toutes les pages comme brouillon.

Exercice 1

Voici un tableau qui informe du nombre de places de concert (variable X_i) achetées au cours de l'année 2018 par un échantillon représentatif de 10 étudiants belges du secondaire, ainsi que leur âge (variable Y_i).

i	(X_i)	$(\mathbf{Y_i})$
1	3	16
2	2	15
3	4	18
4	5	21
5	2	16
6	0	14
7	1	15
8	2	15
9	2	16
10	3	17

1.1 Quel est le type de la variable X_i ? Soyez aussi précis(e) que possible, et justifiez votre réponse.

Quantitatif discret. Réponses chiffrées (et sens intrinsèque des chiffres), et pas de décimale possible (chiffres « ronds » obligatoires).

1.2 Quel est le type de la variable Y_i ? Soyez aussi précis(e) que possible, et justifiez votre réponse.

Quantitatif continu. Réponses chiffrées (et sens intrinsèque des chiffres), et décimales possibles.

1.3 Réalisez un tableau de fréquences complet de la variable X_i. N'oubliez pas de nommer les colonnes en utilisant les notations mathématiques adéquates.

<u>Attention</u>: dans chaque colonne, j'ai déjà placé une valeur, afin de vous amener à savoir quelle information doit se trouver dans quelle colonne du tableau. Respectez bien l'ordre d'apparition des colonnes que je vous impose.

J	Xj	$\mathbf{n}_{\mathbf{j}}$	$\mathbf{f_{j}}$	$N_{\rm j}$	$\mathbf{F_{j}}$
1	0	1	10%	1	10%
2	1	1	10%	2	20%
3	2	4	40%	6	60%
4	3	2	20%	8	80%
5	4	1	10%	9	90%
6	5	1	10%	10	100%

1.4 Calculez la moyenne, le mode, la médiane et l'écart moyen absolu de la variable Xi, en utilisant la formule de votre choix. Dans l'espace disponible à la page 3, dites brièvement la méthode/formule que vous avez choisie et détaillez vos calculs. Retransmettez ensuite la réponse finale dans le tableau ci-dessous. N'arrondissez pas vos réponses.

<u>Attention</u>. Le calcul est tout aussi important que la réponse finale : juste fournir la réponse sans montrer le calcul pour y arriver ne sera pas accepté! Pour chaque indicateur, expliquez en quelques mots la formule/méthode choisie, et détaillez vos calculs de manière aussi structurée que possible.

	Variable X _i
Moyenne	2,4
Mode	2
Médiane	2
EMA	1,08

Espace de calcul

<u>Moyenne</u>: je propose trois solution de réponse, mais une seule suffit (vous choisissez celle avec laquelle vous êtes le(la) plus à l'aise).

Au départ des données brutes :
$$\frac{3+2+4+5+2+0+1+2+2+3}{10} = \frac{24}{10} = 2,4$$

Au départ des fréquences absolues :
$$\frac{1\times0+1\times1+4\times2+2\times3+1\times4+1\times5}{10} = \frac{24}{10} = 2,4$$

Au départ des fréquences relatives :
$$0, 1 \times 0 + 0, 1 \times 1 + 0, 4 \times 2 + 0, 2 \times 3 + 0, 1 \times 4 + 0, 1 \times 5 = 2.4$$

Mode : 2 (car il s'agit de la valeur associée à la fréquence absolue/relative la plus élevée)

<u>Médiane</u>: je propose deux solutions de réponse, mais une seule suffit (vous choisissez celle avec laquelle vous êtes le(la) plus à l'aise).

Au départ des données brutes :

1) Trier les observations par ordre croissant et leur associer un rang :

X_i	0	1	2	2	2	2	3	3	4	5
Rang	1	2	3	4	5	6	7	8	9	10

- 2) Calculer le rang médian = $\frac{n+1}{2} = \frac{10+1}{2} = \frac{11}{2} = 5,5$ (soit entre les rangs 5 et 6)
- 3) Au départ du tableau de fréquences : $\frac{2+2}{2}$ =2

Au départ des fréquences relatives : regarder la première modalité de x_j dont la fréquence relative cumulée dépasse $50\% \Rightarrow 2$

<u>ATTENTION</u>: bien que ça ne soit pas le cas dans l'exemple ici, n'oubliez pas que si la fréquence relative cumulée d'une modalité vaut EXACTEMENT 50%, la valeur de la médiane sera la moyenne entre cette modalité et la modalité qui vient juste après (comme expliqué dans le cours).

EMA: même remarque: une seule méthode suffit

Au départ des données brutes : $\frac{\sum_{i=1}^{n} |X_i - \overline{X}|}{10} = \frac{10.8}{10} = 1,08$

i	(X_i)	$(\mathbf{X_{i}} extsf{-}\overline{X})$	$ \mathbf{X}_{\mathbf{i}}\text{-}\overline{X} $
1	3	3 - 2,4 = 0,6	0,6
2	2	2 - 2,4 = -0,4	0,4
3	4	4 - 2,4 = 1,6	1,6
4	5	5 - 2,4 = 2,6	2,6
5	2	2 - 2,4 = -0,4	0,4
6	0	0 - 2,4 = -2,4	2,4
7	1	1 - 2,4 = -1,4	1,4
8	2	2 - 2,4 = -0,4	0,4
9	2	2 - 2,4 = -0,4	0,4
10	3	3 - 2,4 = 0,6	0,6

Au départ des fréquences absolues : $\frac{\sum_{j=1}^{k} n_j | \, \text{Xi} - \overline{\text{X}} |}{10} = \frac{1 \times 2,4 + 1 \times 1,4 + 4 \times 0,4 + 2 \times 0,6 + 1 \times 1,6 + 1 \times 2,6}{10} = \frac{10,8}{10} = 1,08$

Au départ des fréquences relatives : $\sum_{j=1}^k f_j | Xi - \overline{X}| = 0, 1 \times 2, 4 + 0, 1 \times 1, 4 + 0, 4 \times 0, 4 + 0$

 $0, 2 \times 0, 6 + 0, 1 \times 1, 6 + 0, 1 \times 2, 6 = 1,08$

1.5 Pour chaque variable, calculez la variance et l'écart-type, en utilisant la formule de votre choix. Utilisez l'espace disponible ci-dessous pour détailler vos calculs, et ne transmettez que la réponse finale dans le tableau du bas de la page. Arrondissez vos réponses finales à 2 décimales. Attention. Même remarque qu'au point précédent.

Espace de calcul

Variance de Xi :

Au départ des données brutes : $\frac{\sum_{i=1}^n (X_i - \overline{X})^2}{10} = \frac{18.4}{10} = 1,84$

i	$(\mathbf{X_i})$	$(\mathbf{X_{i}}\text{-}\overline{X})$	$(\mathbf{X_{i}}\mathbf{-}\overline{\mathbf{X}})^{2}$
1	3	0,6	0,36
2	2	-0,4	0,16
3	4	1,6	2,56
4	5	2,6	6,76
5	2	-0,4	0,16
6	0	-2,4	5,76
7	1	-1,4	1,96
8	2	-0,4	0,16
9	2	-0,4	0,16
10	3	0,6	0,36

Au départ des fréquences absolues :
$$\frac{\sum_{j=1}^k \mathbf{n}_j (\mathbf{x}_j - \overline{X})^2}{10} = \frac{1 \times 5,76 + 1 \times 1,96 + 4 \times 0,16 + 2 \times 0,36 + 1 \times 2,56 + 1 \times 6,76}{10} = \frac{18,4}{10} = \mathbf{1},\mathbf{84}$$
 Au départ des fréquences relatives :
$$\sum_{j=1}^k \mathbf{f}_j (\mathbf{x}_j - \overline{X})^2 = \mathbf{0},\mathbf{1} \times \mathbf{5},\mathbf{76} + \mathbf{0},\mathbf{1} \times \mathbf{1},\mathbf{96} + \mathbf{0},\mathbf{4} \times \mathbf{0},\mathbf{16} + \mathbf{0},\mathbf{2} \times \mathbf{0},\mathbf{36} + \mathbf{0},\mathbf{1} \times \mathbf{0}$$

 $2,56+0,1\times 6,76=1,84$

Écart type de $X_i : \sqrt{1.84} = 1.36$

Variance de Yi:

Au départ des données brutes : $\frac{\sum_{i=1}^n(y_i-\overline{Y})^2}{10}=\frac{36,1}{10}=3,61$

i	$(\mathbf{Y_i})$	$(\mathbf{Y_{i}}\text{-}\overline{\mathbf{Y}})$	$(\mathbf{Y_{i}}\mathbf{-}\overline{\mathbf{Y}})^{2}$
1	16	-0,3	0,09
2	15	-1,3	1,69
3	18	1,7	2,89
4	21	4,7	22,09
5	16	-0,3	0,09
6	14	-2,3	5,29
7	15	-1,3	1,69
8	15	-1,3	1,69
9	16	-0,3	0,09
10	17	0,7	0,49

Au départ des fréquences absolues : $\frac{\sum_{j=1}^k n_j (y_j - \overline{Y})^2}{10} = \frac{1 \times 5,29 + 3 \times 1,69 + 3 \times 0,09 + 1 \times 0,49 + 1 \times 2,89 + 1 \times 22,09}{10} = \frac{36,1}{10} = 3,61$

Au départ des fréquences relatives : $\sum_{j=1}^{k} f_j(y_j - \overline{y})^2 = 0, 1 \times 5, 29 + 0, 3 \times 1, 69 + 0, 3 \times 0, 09 + 0, 1 \times 0, 49 + 0, 40 \times 0, 40 \times$

 $0, 1 \times 2, 89 + 0, 1 \times 22, 09$

Écart type de X_i : $\sqrt{3,61} = 1,9$

	Variable X _i	Variable Y _i
Variance	1,84	3,61
Écart-type	1,36	1,90

1.6 Déterminer la valeur du coefficient de corrélation r de Pearson pour déterminer la relation entre les variables X_i et Y_i . Arrondissez votre réponse à <u>3 décimales</u>.

Covariance = 2,38

Ecart-type 1 = 1,36

Ecart-type 2 = 1,90

Corrélation r de Pearson $\approx 0,923$ (en fonction de vos arrondis, vous n'aurez peutêtre pas exactement la même réponse !)

1.7 Parmi les trois graphiques ci-dessous, lequel représente la relation entre X_i et Y_i ? Justifiez.

Réponse : graphique A (puisque c'est celu qui montre une forte relation positive entre les variables)

1.8 Comment interprétez la relation entre les variables X_i et Y_i ? Indiquez une croix devant la réponse correcte.

	Corrélation positive moyenne
	Corrélation négative moyenne
X	Forte corrélation positive
	Forte corrélation négative

Exercice 2

Il existe plusieurs méthodes pour apprendre aux enfants à lire. Parmi ces méthodes il y a :

- La méthode syllabique (on part du détail vers l'ensemble : les enfants doivent détecter des syllabes pour arriver à former des mots)
- La méthode globale (on part de l'ensemble vers le détail : les enfants doivent connaître un mot en entier, avant d'en analyser les éléments qui le constituent)
- La méthode mixte (un mélange des méthodes syllabique et globale)

On a demandé à un ensemble d'instituteurs, provenant de diverses écoles un peu partout en Europe, la méthode qu'ils utilisent en classe avec leurs élèves. Le graphique ci-dessous représente les résultats obtenus :

2.1 Combien vaut n? Montrez votre calcul.

142+149+208 = 499

2.2 Quel est le type de la variable représentée ? Soyez aussi précis(e) que possible, et justifiez votre réponse.

Variable qualitative nominale. Les individus sont placés dans des catégories, et pas d'ordre logique entre les catégories.

	3 modalités : méthode syllabique, méthode globale et méthode mixte
	nt appelle-t-on la représentation graphique ci-dessus ? Expliquez brièveme
	nvénient de ce type de graphique, et citez un autre type de graphique de pallier cet inconvénient.
	que réalisé :
	amme circulaire.
	énient : Difficile de distinguer deux catégories lorsqu'elles sont associées à d
fréque	nces relativement similaires.
Alterna	ative : le diagramme en bâtons.
Comme	nt appelle-t-on l'indicateur que vous avez dû déterminer au point 2.5 ?
Le mod	de de la série
Quels so	ont les deux autres indicateurs de tendance centrale vus au cours ? Citez-le
	ont les deux autres indicateurs de tendance centrale vus au cours ? Citez-le
Moyen	ont les deux autres indicateurs de tendance centrale vus au cours ? Citez-le me et médiane calculer, pour la variable étudiée, les deux indicateurs cités au point 2.
Moyen Peut-on	ne et médiane

Exercice 3

Voici un tableau de fréquences et une représentation graphique qui représentent les mêmes données.

Tableau de fréquences du nombre d'heures passées devant la télévision par semaine

j	Хj	Centre de	$\mathbf{n}_{\mathbf{j}}$	$\mathbf{f_{j}}$	$N_{\rm j}$	$\mathbf{F_{j}}$
		classe				
1	0-2	1	32	32	16%	16%
2	2-4	3	68	100	34%	50%
3	4-6	5	66	166	33%	83%
4	6 – 8	7	34	200	17%	100%

3.1 Le tableau de fréquence n'est pas complet : il manque le nom de 4 colonnes. Complétez-le, en utilisant les notations mathématiques adéquates. 3.2 Approximez les valeurs du premier et troisième quartile, grâce à la technique de l'interpolation linéaire.

Valeur de Q1: 1,53

2

Espace calcul:

$$50\% - 16\% = 34\% \implies 3 - 1 = 2$$

25% - 16% = 9%
$$\Rightarrow \frac{2}{34} \times 9 = 0.53 \Rightarrow Q1 = 1 + 0.53 = \underline{1.53}$$

Valeur de Q3: 4,52

Espace calcul:

$$83\% - 50\% = 33\% \rightarrow 3 - 1 = 2$$

75% - 50% = 25%
$$\Rightarrow \frac{2}{33} \times 25 = 1,52 \Rightarrow Q3 = 3 + 1,52 = 4,52$$

3.3 Approximez la valeur de l'écart-interquartile.

3.4 Quel est le pourcentage d'individus de la base de données étudiée dont le temps passé devant la télévision se situe entre les valeurs des premier et le troisième quartile ? Indiquez une croix devant la réponse correcte.

	25%
X	50%
	75%

3.5 Quel est le pourcentage d'individus de la base de données étudiée dont le temps passé devant la télévision est inférieur à la valeur du premier quartile ? Indiquez une croix devant la réponse correcte.

X	25%
	50%
	75%