

Introduction to NLP

Background

Linguistic Knowledge

Constituents:

- Children eat pizza.
- They eat pizza.
- My cousin's neighbor's children eat pizza.
- Eat pizza!

Collocations:

- Strong beer but *powerful beer
- Big sister but *large sister
- Stocks rise but ?stocks ascend
 - in the past: 225,000 hits vs. 47 hits on Google, now 550,000 vs 57,000

How to get this knowledge in the system:

- Manual rules
- Automatically acquired from large text collections (corpora)

Linguistic Knowledge

- Knowledge about language:
 - Phonetics and phonology the study of sounds
 - Morphology the study of word components
 - Syntax the study of sentence and phrase structure
 - Lexical semantics the study of the meanings of words
 - Compositional semantics how to combine words
 - Pragmatics how to accomplish goals
 - Discourse conventions how to deal with units larger than utterances
- Separate lecture

Finite-state Automata

Theoretical Computer Science

- Automata
 - Deterministic and non-deterministic finite-state automata
 - Push-down automata
- Grammars
 - Regular grammars
 - Context-free grammars
 - Context-sensitive grammars
- Complexity
- Algorithms
 - Dynamic programming

Mathematics and Statistics

- Probabilities
- Statistical models
- Hypothesis testing
- Linear algebra
- Optimization
- Numerical methods

Mathematical and Computational Tools

- Language models
- Estimation methods
- Context-free grammars (CFG)
 - for trees
- Hidden Markov Models (HMM)
 - for sequences
- Conditional Random Fields (CRF)
- Generative/discriminative models
- Maximum entropy models

Statistical Techniques

- Vector space representation for WSD
- Noisy channel models for MT
- Graph-based Random walk methods for sentiment analysis

$$\hat{E} = \underset{E \in English}{\operatorname{argmax}} P(E \mid F)$$

$$= \underset{E \in English}{\operatorname{argmax}} \frac{P(F \mid E)P(E)}{P(F)}$$

$$= \underset{E \in English}{\operatorname{argmax}} P(F \mid E)P(E)$$

E∈*English*

Artificial Intelligence

- Logic
 - First-order logic
 - Predicate calculus
- Agents
 - Speech acts
- Planning
- Constraint satisfaction
- Machine learning