Devoir maison 8.

À rendre le lundi 28 février 2022

Exercice 1

Pour tout intervalle I de \mathbb{R} , on note $\mathcal{A}(I,\mathbb{R})$ l'ensemble des fonctions $f:I\to\mathbb{R}$ de classe \mathcal{C}^{∞} sur I et vérifiant :

$$\forall n \in \mathbb{N}, \ \forall x \in I, \ f^{(n)}(x) \ge 0.$$

Partie 1: Premiers exemples

- 1°) Montrer que $\exp \in \mathcal{A}(\mathbb{R}, \mathbb{R})$.
- **2°)** Pour $f: x \mapsto \frac{1}{1-x}$, déterminer le plus grand intervalle I possible tel que $f \in \mathcal{A}(I, \mathbb{R})$.

Partie 2 : Stabilité par quelques opérations

- **3°)** Soit I un intervalle et f, g des éléments de $\mathcal{A}(I,\mathbb{R})$. Montrer que $f+g\in\mathcal{A}(I,\mathbb{R})$ et que $fg\in\mathcal{A}(I,\mathbb{R})$.
- **4**°) Soit I un intervalle et $f \in \mathcal{A}(I,\mathbb{R})$. On pose $\varphi = \exp \circ f$.
 - a) Montrer que φ est de classe \mathcal{C}^{∞} sur I, et exprimer φ' en fonction de f' et de φ .
 - b) En déduire, pour tout $n \in \mathbb{N}$, une expression de $\varphi^{(n+1)}$ en fonction de dérivées successives de f et des dérivées de φ d'ordre plus petit.
 - c) Montrer alors, à l'aide d'une récurrence, que $\varphi \in \mathcal{A}(I,\mathbb{R})$.

Partie 3 : Quelques propriétés - prolongement à gauche

- **5**°) Montrer que si $f \in \mathcal{A}(I, \mathbb{R})$, alors pour tout $n \in \mathbb{N}$, $f^{(n)} \in \mathcal{A}(I, \mathbb{R})$.
- **6**°) Soit I un intervalle. Montrer que si $f \in \mathcal{A}(I,\mathbb{R})$, alors f est croissante et minorée sur I.
- **7°)** Soit a un réel, et $b \in \mathbb{R} \cup \{+\infty\}$, vérifiant b > a si b est réel.
 - a) Montrer que si $f \in \mathcal{A}([a, b[, \mathbb{R}), \text{ alors } f \text{ admet une limite finie } \ell_0 \text{ en } a, \text{ et que } \ell_0 \geq 0.$
 - **b)** Montrer que si $f : [a, b] \to \mathbb{R}$ est continue et que $f \in \mathcal{A}(]a, b[, \mathbb{R})$, alors f est de classe \mathcal{C}^1 sur [a, b], et $f'(a) \geq 0$.
 - c) Montrer que si $f \in \mathcal{A}(]a, b[, \mathbb{R})$, alors f se prolonge par continuité en a. Montrer alors que la fonction f ainsi prolongée est dans $\mathcal{A}([a, b[, \mathbb{R}).$ Indication: on effectuera une récurrence.
 - d) Justifier par un contre-exemple qu'un tel prolongement n'est pas possible en b pour une fonction de $\mathcal{A}([a, b[, \mathbb{R})], \text{ avec } b \in \mathbb{R} \text{ et } a \in \mathbb{R} \cup \{-\infty\}.$

Exercice 2

On pose
$$A = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$$
.

- $\mathbf{1}^{\circ}$) Vérifier que A^2 est combinaison linéaire de A et I_3 .
- 2°) En déduire que A est inversible et exprimer A^{-1} en fonction de A et de I_3 .
- 3°) Un premier calcul de A^n
 - a) Montrer que, pour tout $n \in \mathbb{N}$, $A^{n+1} 2A^n = A 2I_3$.
 - **b)** On pose, pour tout $n \in \mathbb{N}$, $G_n = A^n + 2A 2I_3$. Exprimer, pour tout $n \in \mathbb{N}$, G_{n+1} en fonction de G_n . En déduire l'expression de A^n pour tout $n \in \mathbb{N}$ en fonction de A et I_3 .
- **4°**) Un deuxième calcul de A^n

On n'utilisera pas la question précédente bien sûr.

- a) On pose $B=A-I_3$ et $C=2I_3-A$. Exprimer A comme une combinaison linéaire de B et de C.
- **b)** Calculer, pour tout $n \in \mathbb{N}^*$, B^n et C^n .
- c) En déduire A^n pour tout $n \in \mathbb{N}^*$.