Report

Eigen open source library

The reason I used Eigen library is it integrated different matrix manipulations inside and all these manipulations are optimized.

Linear Equation Algorithm

For a long period, I have been working on comparing different algorithms to solve our linear equations. These algorithms include LU decomposition, LLT, LDLT, QR, Conjugate Gradient, BiCGSTAB.

After comparing the performances of these algorithms with different input matrices, we decided to use LU decomposition(considering accuracy and efficiency). I tried 3 different versions of LU decomposition, one is called LU which is from Eigen library. One is superLU sequential from SuperLU open source library, and one is superLU distribution version.

These are the benchmarks that I tested for these three algorithms:

	LU	SuperLU	SuperLU_DIST
1000 x 1000	183ms	110ms	100ms
7,000		486,022 nnz in L+U	379,091 nonzeros in L+U
5,000 x 5,000	15s	9.4s	3.31s
35,000		11,774,945 nnz in L+U	9,233,428 nonzeros in L+U
10,000 x 10,000	134s	80s	27s
70,000		46,196,731 nnz in L+U	37,050,042 nonzeros in L+U

15,000 x 15,000	464s	288s	109s
105,000		104,775,128 nnz in L+U	
20,000 x 20,000	1205s	758s	L+U 291s
140,000		188,204,860 nnz in L+U	145,082,055 nonze in L+U
10,000 x 10,000	64s	42s	18s
50,000		29,741,070 nnz in L+U	4,617,951 nonzeros L+U
10,000 x 10,000	134s	80s	27s
70,000		46,196,731 nnz in L+U	37,050,042 nonzero
(37,050,042 nonzeros in L+U)			L+U
10,000 x 10,000	204s	116s	36s
90,000		57,771,962 nnz in L+U	46,084,154 nonzero L+U
10,000 x 10,000	247s	135s	42s
110,000		65,415,173 nnz in L+U	53,191,193 nonzero L+U
10,000 x 10,000	27	2 154s	42s
130,000		70,719,216 nnz in L+U	58,585,536 nonzero L+U
Jacobi Matrix 1	502s	40ms	150ms
18,482 x 18,482 (149,892 NNZ)		512,136 nnz in L+U	(381,662 nonzeros L+U)
Jacobi Matrix 2	8s	10ms	60ms
5,492 x 5,492 (37,156 NNZ)		132,139 nnz in L+U	108,408 nonzeros i L+U)

Jacobi Matrix 3	12s	20ms	60ms
6240 x 6240 (41,896 NNZ)		151,206 nnz in L+U	122,830 nonzeros in L+U
Dense 200 x 200	Paritial Pivoting 2ms	10 ms	10ms
40,000 nonzeors in L+U			
Dense 400 x 400	Paritial Pivoting 20ms	20ms	40ms
160,000 nonzeros in L+U			
Dense 600 x 600	Paritial Pivoting 47ms	40ms	90ms
360,000 NNZ in L+U	47ms		
Dense 800 x 800	Paritial Pivoting 96ms	90ms	160ms
640,000 nnz in L+U	901115		
Dense 1000 x 1000	Paritial Pivoting 180ms	160ms	X
1,000,000 nnz in L+U	rooms		
Jacobi Matrix(case5) 10 x 10 (68 NNZ)		less than 1ms	less than 1ms
100 nnz in L+U			
Jacobi		20 ms	60ms
Matrix(case2746) 5492 x 5492 (37,100 NNZ)		141,255 nnz in L+U	109,360 nnz in L+U
Jacobi Matrix(case		20ms	75ms
3120) 6240 x 6240 (41,819 NNZ)		161,142 nnz in L+U	125,397 nnz in L+U
Jacobi Matrix(case		40ms	140ms
9241) 18482 x 18482 (149,874 NNZ)		574,767 nnz in L+U	390,769 nnz in L+U

These records are just for solving linear equation time, which means actual execution

time would definitely larger than these.

Conclusion: we choose SuperLU sequential

Gaussian Elimination

Implemented this algorithm to decrease the size of original matrices. The codes of this algorithm are included inside superlu.cpp file. But we didn't use this method in our project even for once.

Bus reform & Y bus generate

use Eigen to implement these two functions, one is to reform bus the other one is to generate y bus. These two functions work perfectly. The codes are included in superlu.cpp file.

ODE45 from ODEint open source library

Used ODEint library to use the ode45(Matlab) in C++, I have googled so many different ode implement in C++ and found out this one is the most accurate as ODE45 in Matlab. The ode works but it runs couple times in one step(which should be exactly one time). I am still working on this to see if there any ways to control this issue.

Compiler Optimization

Modify the compile parameters to -O3 in order to make programs running faster.

Solving equations for multiple times but with same sparsity of A

A x = B, when we tried to solve this equation for multiple times and A1, A2,A3....are the same sparsity with A, we can reuse some datas from the first time. There are four options to do this. The datas below are my result:

Matrix	DOFACT	SamePattern	SampPattern_Sa meRowPerm	FACTORED
case2746wp	1st: 22ms	1st: 23ms	1st:23ms	1st:23ms
	2nd: 22ms	2nd: 17ms	2nd:17ms	2nd:0.658ms
case3120sp	1st: 26ms	1st: 24ms	1st:25ms	1st:24ms
	2nd: 25ms	2nd: 18ms	2nd:18ms	2nd:0.605ms

case9241pegase	1st: 69ms	1st: 58ms	1st:56ms	1st:56ms
	2nd: 65ms	2nd: 47ms	2nd:45ms	2nd: 1.5 ms