Note: 13.2/20 (score total: 46.5/70.5)

+25/1/60+

UE INF1601

2019

Théorie des langages et compilation Contrôle continu numéro 2 (45 minutes)

Nom et prénom : LE BERRE Simuel

Noircissez les bonnes réponses (cocher ne suffit pas). Les questions faisant apparaître le symbole & peuvent présenter une ou plusieurs bonnes réponses ; les autres ont une seule bonne réponse. Toute absence de réponse équivaut à une réponse fausse. Utilisez le verso des feuilles comme brouillon si nécessaire.

	Langages et grammaires					
	Question 1	Le vocabulaire d'un langage peut être un ensemble infini de symboles.				
1/1	faux	□ vrai				
	Question 2 🌲	Quel sont les termes synonymes de vocabulaire d'un langage ?				
0.25/1.25	grammaire	e 🗐 alphabet 🔀 lexique 🔲 mot 🔲 syntaxe				
	Question 3 langage.	Un mot d'un langage est une séquence finie d'éléments du vocabulaire de ce				
1/1	aux	wrai vrai				
	Question 4	Question 4 Une grammaire est composée de l'ensemble des mots d'un langage.				
-1/1	vrai	faux				
	Question 5 ૈ	Une grammaire formelle possède :				
0.5/1.5	une table des états	de transition un axiome des règles de productions des symboles non terminaux des symboles terminaux				
	Question 6	L'axiome d'une grammaire est un symbole non terminal.				
-1/1	🔀 vrai	faux				
	Question 7	7 Le formalisme BNF est un méta-langage.				
1/1	vrai	aux .				
	Question 8	La hiérarchie de Chomsky est une classification des grammaires.				
1/1	faux	vrai				
	Question 9 🌲	Les grammaires de type 1 sont les grammaires :				
1/1	régulières	algébriques contextuelles hors contexte				

	Question 10 & Les grammaires de type 2 sont	les grammaires :					
0/1	hors contexte contextuelles	algébriques régulières					
	Question 11 Les grammaires contextuelles so	nt utilisées dans les compilateurs.					
1/1	faux	vrai vrai					
	Question 12 4 Les grammaires de type 3 son	t les grammaires :					
1/1	☐ hors contexte ☐ algébriques	contextuelles régulières					
	Question 13 Les grammaires régulières sont mots terminaux du langage.	utilisées dans les compilateurs pour décrire les					
1/1	vrai vrai	faux					
N 8	Question 14 \clubsuit La grammaire définie sur $V_t = \{a, b, c\}$ par : $\left\{ \begin{array}{l} X \to Xa Yb \\ Y \to cY \epsilon \end{array} \right.$ est :						
-2/1	de type 2 est récursive à droite	de type 3 est récursive à gauche					
	Expressions régulières						
	Question 15 \clubsuit Parmi les expressions régulière que la grammaire suivante: $ \begin{cases} A \to aA aB \\ B \to bB \varepsilon \end{cases} $	s suivantes, lesquelles décrivent le même langage					
1.25/1.25	$ \begin{array}{ccc} a^n b^n & \qquad & \qquad & \qquad \\ b^* a^+ & \qquad & \qquad & \qquad & \qquad \\ \end{array} $	a^+b^*					
	Question 16 Donnez une expression régulière qui n'ont jamais deux a ou deux b consécutifs.	qui décrit le langage sur a,b des mots non vides					
	a (ab) a? b (ba) b?						
4/5	□A ■B □C □D □E	F Réservé au correcteur : ne pas cocher !					
	Automates d'états finis						
	Question 17 - Un automate à nombre finis d'états possède :						
0/2	un ensemble fini d'états un ensemble de symbole non terminaux un ensemble de symboles d'entrée un ensemble d'états finaux	une fonction de transition un ensemble de règles de production un seul état initial un seul état final					
	Question 18 Un automate déterministe cont	ient au plus une transition entre deux états.					
1/1	☐ vrai	faux					
49	Question 19 Toute expression régulière es déterministe.	t reconnaissable par un automate d'états finis					
1/1	wrai vrai	faux					

Donnez un AFD qui reconnaît le langage sur a,b des mots non vides qui n'ont

Question 20

jamais deux a ou deux b consécutifs. Réservé au correcteur : ne pas cocher ! E 5/5 A B Un automate d'états finis reconnaît un langage algébrique. Question 21 vrai -1/1faux Tous les automates d'états finis non déterministes peuvent être déterminisés. Question 22 wrai 1/1 faux Pour quels langages suivants peut on construire un automate d'états finis ? Question 23 & a^nb^n pour n quelconque a^nb^m pour n et m quelconques $a^nb^nc^n$ pour n fixé 0.5/1.5 $a^n b^m$ pour n et m fixés a^nb^n pour n fixé $a^nb^nc^n$ pour n quelconque Grammaires hors-contexte Les grammaires hors contextes sont nécessaires pour décrire les structures im-Question 24 briquées des langages de programmation faux -1/1vrai On peut décrire le langage des expressions arithmétiques classiques avec des Question 25 expressions régulières -1/1 faux vrai La grammaire suivante $G = \{E, T, F\},\$ Question 26 & $\{nb, +, \times, (,)\},\$ $\{E \to E + T | T,$ $T \to T \times F|F$ $F \to (E)|nb|,$ récursive à droite LL(1)ambiguë pour $2 \times 3 + 5$ 0.5/1.5factorisable à gauche récursive à gauche propre L'automate à pile est le moyen de reconnaître qu'un mot appartient à un langage Question 27 hors contexte. 1/1 faux vrai

Donnez une grammaire définissant le langage sur a, b des mots de la forme mm^{-1} où m^{-1} est le mot miroir de m, c-à-d. le mot m écrit à l'envers. Exemples de mots générés par la grammaire : abbbaabbba, abbbba, aa, bb G= ({5?, (5-> asa 1656/E). A В D E F Réservé au correcteur : ne pas cocher ! C Tous les langages hors contextes sont reconnaissables par des automates à pile Question 29 déterministes. faux On considère la grammaire suivante $G = \langle \{S\}, \}$ Question 30 $\{S \to S \oplus S | nb \},\$ S >Éliminez sa récursivité à gauche et donnez la nouvelle grammaire obtenue : G = < (S) 17. Sond, OR,

SS-> mb @ St | mb?, empirite

serroman warrando В D Réservé au correcteur : ne pas cocher ! A C E F Quel problème subsiste avec cette nouvelle grammaire ? Démontrez le sur un Question 31 exemple. tayous poo déterminer si quand mb est le prochain symbole Sien quelle règle 5-7 mb->5 F Réservé au correcteur : ne pas cocher ! Table d'analyse 1. $E \rightarrow *E$ On considère l'extrait ci-contre de la grammaire 6. $M \rightarrow id$ 2. $E \rightarrow P$ du langage C pour les expressions postfixes, tel 3. $P \rightarrow M P'$ qu'obtenu après suppression de la récursivité à 4. $P' \rightarrow ++P'$ gauche.

5/5

1/1

2/4

1.5/2.5

	1100	

	Question 32 🦂	Quels symboles appartiennent à l'ensemble PREMIER de E?		
1.75/1.75	\square) \square ε	*	\$ ++	id
	Question 33 🌲	Quels symboles appartien	nent à l'ensemble PREM	IER de P ?
1.75/1.75	$\square * $ ε		\$	
	Question 34 🌲	Quels symboles appartien	ment à l'ensemble PREM	HER de M ?
1.75/1.75	- * - ε	☐ ++ ■ id	\$),
(4) (Question 35 🌲	Quels symboles appartien	ment à l'ensemble PREM	HER de P' ?
1.75/1.75	++ ε	□ * id	\$	
	Question 36 🌲	Quels symboles appartier	nnent à l'ensemble SUIVA	Δ NT de E ?
1.75/1.75	□ ++ \$	\square ε \square *	\Box id \Box (
	Question 37 🌲	Quels symboles appartier	nnent à l'ensemble SUIVA	ANT de P?
1.75/1.75	\$	*	☐ <i>id</i> ☐ ++	\square ε
	Question 38 🌲	Quels symboles appartier	nnent à l'ensemble SUIVA	ANT de M ?
1.75/1.75	☐ (■ ++	* id) □ ε	\$
	Question 39 🌲	Quels symboles appartier	nnent à l'ensemble SUIVA	ANT de P' ?
1.75/1.75) *	$igsqcup arepsilon arepsilon \ id$	(++	\$
4	Question 40	Donnez sa table d'analyse :	(mettre des numéros de	règles dans les cases)
		* ++	id () \$	
		E (A)	00	
		P h	6 9 5	
5/5	A	_B _C _D _	E F Réservé au c	correcteur : ne pas cocher !
	Question 41	Déduisez en à quoi est équ	ivalent l'expression $*i++$	
1/1	*(i++)			