Task:

Issuing Bank is a significant role in credit card transaction. It functions as a bridge between cardholder, Acquirer Bank, and Payment Network. The report follows the order of data cleansing, data analyzing, modeling and decision making. The prime goal of this report is to introduce a credit score mechanism to reduce Credit default risk and increase the profit of the Issuing Banking. In order to make a better decision for card issuers, the key point is predicting the probability of credit card default precisely.

Data Preparation:

In the data cleansing process, there are 17 duplicate data removed and 698 'corrupted' data removed in total. Values out of range or blank are removed. Outliers are not considered.

Data Analysis

We choose the Chi-square test to test different variables against monthly payment status. We used Pearson Correlation to see relationship between monthly payment status and other month payment status.

		Total	Percentage
Gender	Male	11898	39.8%
Gender	Female	17989	60.2%
	Master's degree & Doctoral Degree	10653	35.6%
Education	Bachelor's Degree	14099	47.2%
Education	High School's Degree	4960	16.6%
	Others	175	0.6%
	Married	13570	45.4%
Marital_Status	Single	15915	53.3%
	Others	402	1.3%
Jan_Repay_Status	Paid on time	22935	76.7%
Jaii_Repay_Status	Payment Delayed	6952	23.3%
Feb Repay Status	Paid on time	25283	84.6%
reb_kepay_status	Payment Delayed	4604	15.4%
Mar Repay Status	Paid on time	25516	85.4%
iviai_kepay_status	Payment Delayed	4371	14.6%
Apr Repay Status	Paid on time	26201	87.7%
Apr_Repay_Status	Payment Delayed	3686	12.3%
May Ponay Status	Paid on time	26745	89.5%
May_Repay_Status	Payment Delayed	3142	10.5%
lun Ponay Status	Paid on time	26632	89.1%
Jun_Repay_Status	Payment Delayed	3255	10.9%

Comment

Female accounts for 60.2% of the total users, 1.5x of Male users. Undergrads users are the majority, followed by Grads and Post-Grads More Single than Married users.

 $\label{eq:male-users} \mbox{Male users have a lower paid on time rate than Female users.}$

Users with higher education have a higher paid on time rate.

		Ma	ale	Fen	nale
Ion Bonov Status	Paid on time	8962	75.3%	13973	77.7%
Jan_Repay_Status	Payment Delayed	2936	24.7%	4016	22.3%
Feb Repay Status	Paid on time	9831	82.6%	15452	85.9%
reb_kepay_status	Payment Delayed	2067	17.4%	2537	14.1%
Mar Repay Status	Paid on time	9939	83.5%	15577	86.6%
iviai_kepay_status	Payment Delayed	1959	16.5%	2412	13.4%
Apr Bonay Status	Paid on time	10235	86.0%	15966	88.8%
Apr_Repay_Status	Payment Delayed	1663	14.0%	2023	11.2%
May Repay Status	Paid on time	10471	88.0%	16274	90.5%
iviay_nepay_status	Payment Delayed	1427	12.0%	1715	9.5%
lun Bonov Status	Paid on time	10458	87.9%	16174	89.9%
Jun_Repay_Status	Payment Delayed	1440	12.1%	1815	10.1%
Max delayed rate			24.7%		22.3%
Min delayed rate			12.0%		9.5%
Average delayed ra	ite		16.1%		13.5%

0.007965933

				Edu	cation				
		Master's degree &	Doctoral Degree	Bachelor	's Degree	High Scho	ol's Degree	Ot	hers
Ian Banay Status	Paid on time	8473	79.5%	10721	76.0%	3624	73.1%	117	66.9%
Jan_Repay_Status	Payment Delayed	2180	20.5%	3378	24.0%	1336	26.9%	58	33.1%
Feb Repay Status	Paid on time	9454	88.7%	11689	82.9%	4008	80.8%	132	75.4%
Teb_Nepay_Status	Payment Delayed	1199	11.3%	2410	17.1%	952	19.2%	43	24.6%
Mar Repay Status	Paid on time	9480	89.0%	11850	84.0%	4055	81.8%	131	74.9%
Mai_Nepay_Status	Payment Delayed	1173	11.0%	2249	16.0%	905	18.2%	44	25.1%
Apr_Repay_Status	Paid on time	9685	90.9%	12190	86.5%	4196	84.6%	130	74.3%
Apr_Nepay_Status	Payment Delayed	968	9.1%	1909	13.5%	764	15.4%	45	25.7%
May Ponay Status	Paid on time	9799	92.0%	12473	88.5%	4338	87.5%	135	77.1%
May_Repay_Status	Payment Delayed	854	8.0%	1626	11.5%	622	12.5%	40	22.9%
lun Banau Status	Paid on time	9719	91.2%	12423	88.1%	4361	87.9%	129	73.7%
Jun_Repay_Status	Payment Delayed	934	8.8%	1676	11.9%	599	12.1%	46	26.3%
Max delayed rate			20.5%		24.0%		26.9%		33.1%
Min delayed rate			8.0%		11.5%		12.1%		22.9%
Average delayed rat	te		11.4%		15.7%		17.4%		26.3%

2.17298E-09

p

		Marital_Status							
		Mar	ried	Sin	gle	0	thers		
Ian Bonay Status	Paid on time	10328	76.1%	12358	77.7%	249	61.9%		
Jan_Repay_Status	Payment Delayed	3242	23.9%	3557	22.3%	153	38.1%		
Feb Repay Status	Paid on time	11440	84.3%	13560	85.2%	283	70.4%		
Teb_Kepay_Status	Payment Delayed	2130	15.7%	2355	14.8%	119	29.6%		
Mar Repay Status	Paid on time	11599	85.5%	13634	85.7%	283	70.4%		
	Payment Delayed	1971	14.5%	2281	14.3%	119	29.6%		
Apr. Danay Status	Paid on time	11890	87.6%	14022	88.1%	289	71.9%		
Apr_Repay_Status	Payment Delayed	1680	12.4%	1893	11.9%	113	28.1%		
May Repay Status	Paid on time	12158	89.6%	14286	89.8%	301	74.9%		
wiay_nepay_status	Payment Delayed	1412	10.4%	1629	10.2%	101	25.1%		
Jun Repay Status	Paid on time	12130	89.4%	14206	89.3%	296	73.6%		
Juli_Kepay_Status	Payment Delayed	1440	10.6%	1709	10.7%	106	26.4%		
Max delayed rate			23.9%		22.3%		38.1%		
Min delayed rate			10.4%		10.2%		25.1%		
Average delayed rate			14.6%		14.1%		29.5%		

p 0.027100105

Pearson Correlation of Features

Credit_Limit	1	0.025	-0.24	-0.11	0.13	-0.25	0.19	0.28	-0.27	0.19	0.28	-0.27	0.2	0.28	-0.25	0.2	0.29	-0.23	0.21	0.29	-0.22	0.21	0.29	-0.15	
Sex	0.025	1	0.0091	0.033	0.095	0.064	0.003	0.035	0.075	0.006	0.032	0.069	0.015	0.027	0.065	0.006	0.024	0.059	0.007	0.019	0.051	0.006	5-0.02	0.042	
Education	-0.24	0.0091	1	-0.14	0.19	0.14	0.035	0.0064	0.16	0.032	0.0024	0.15	0.041	0.001	0.15	-0.03	0.012	0.13	0.039	0.01€	0.12	0.042	0.012	0.051	
Marital_Status	-0.11	0.033	-0.14	1	-0.37	0.05	0.0079	0.023	0.051	.0026	0.021	0.061	0.012	0.023	0.06		0.021	0.064	0.012	0.023	0.068	0.0083	0.018	-0.02	
Age	0.13	0.095	0.19	-0.37	1	0.029	0.046	0.056	0.022	0.04	0.053	0.0025	0.053	0.055	0.024	0.048	0.053	0.013	0.054	0.055	0.022	0.043	0.053	0.02	
Jan_Repay_Status	-0.25	0.064	0.14	0.05	0.029	1	0.018	0.18	0.67	-0.03	0.18	0.58	0.015	0.17	0.57	0.0027	0.17	0.54	0.0078	0.17	0.51	0.0087	70.18	0.31	
Previous_Payment_Prior_Jan	0.19	0.003	0.035	0.0079	0.046	0.018	1	0.15	-0.02	0.32	0.28	0.047	0.27	0.25	0.038	0.22	0.23	0.041	0.17	0.22	0.053	0.21	0.21	0.064	
Jan_Statement	0.28	0.035	0.0064	0.023	0.056	0.18	0.15	1	0.22	0.11	0.95	0.2	0.15	0.9	0.19	0.16	0.86	0.19	0.17	0.83	0.19	0.18	0.8	-0.018	
Feb_Repay_Status	-0.27	0.075	0.16	0.051	0.022	0.67	-0.02	0.22	1	0.018	0.22	0.74	0.0024	0.21	0.67	0.013	0.21	0.63	0.025	0.21	0.6	0.025	0.21	0.25	
Previous_Payment_Prior_Feb	0.19	0.006	0.032	0.0026	0.04	-0.03	0.32	0.11	0.018	1	0.12	0.032	0.27	0.29	0.033	0.19	0.23	0.037	0.15	0.2	0.037	0.18	0.18	-0.058	
Feb_Statement	0.28	0.032	0.0024	0.021	0.053	0.18	0.28	0.95	0.22	0.12	1	0.22	0.14	0.93	0.21	0.15	0.89	0.21	0.16	0.86	0.21	0.17	0.83	0.013	
Mar_Repay_Status	-0.27	0.069	0.15	0.061	0.0025	0.58	0.047	0.2	0.74	0.032	0.22	1 -	0.009	0.21	0.75	0.007	0.22	0.68	0.016	0.21	0.64	0.014	0.21	0.23	
Previous_Payment_Prior_Mar	0.2	0.015	0.041	0.012	0.053	0.015	0.27	0.15	0.0024	0.27	0.14	0.009	1	0.13	0.016	0.23	0.29	0.054	0.18	0.24	0.061	0.18	0.22	0.048	
Mar_Statement	0.28	0.027	0.001	0.023	0.055	0.17	0.25	0.9	0.21	0.29	0.93	0.21	0.13	1	0.23	0.14	0.93	0.23	0.16	0.89	0.23	0.18	0.86	0.012	
Apr_Repay_Status	-0.25	0.065	0.15	0.06	0.024	0.57	0.038	0.19	0.67	0.033	0.21	0.75	0.016	0.23	1	0.013	0.23	0.79	0.023	0.23	0.71	0.031	0.23	0.21	
Previous_Payment_Prior_Apr	0.2	0.006	-0.030	.0009	0.048	0.0027	0.22	0.16	0.013	0.19	0.15	0.007	0.23	0.14	0.013	1	0.14	0.001	0.17	0.29	0.073	0.18	0.25	-0.05	
Apr_Statement	0.29	0.024	0.012	0.021	0.053	0.17	0.23	0.86	0.21	0.23	0.89	0.22	0.29	0.93	0.23	0.14	1	0.25	0.16	0.94	0.25	0.18	0.9 -	3800.0	
May_Repay_Status	-0.23	0.059	0.13	0.064	0.013	0.54	0.041	0.19	0.63	0.037	0.21	0.68	0.054	0.23	0.79-	0.001	0.25	1	0.031	0.26	0.78	0.035	0.25	0.2	
Previous_Payment_Prior_May	0.21	0.0074	0.039	0.012	0.0540	0.0078	0.17	0.17	0.025	0.15	0.16	0.016	0.18	0.16	0.023	0.17	0.16	0.031	1	0.15	0.019	0.18	0.31	0.046	
May_Statement	0.29	0.019	0.016	0.023	0.055	0.17	0.22	0.83	0.21	0.2	0.86	0.21	0.24	0.89	0.23	0.29	0.94	0.26	0.15	1	0.27	0.17	0.94	0.004-	
Jun_Repay_Status	-0.22												0.061										0.27	0.19	
Previous_Payment_Prior_Jun	0.21												0.18								0.035	1	0.13	0.045	
Jun_Statement													0.22						0.31			0.13	1 -	0.003	
July_Payment_Status	-0.15	0.042	0.051	-0.02		0.31	0.064	0.018	0.25	0.058	0.013	0.23	0.048	0.012	0.21	-0.05	0.008	0.2	0.046	0.004	0.19	0.045	0.003	1	
	Gredit_Limit	ä	Education	Status	Age	Status	lor_Jan	atement	Status	lor_Feb	stement	Status	lor_Mar	atomont	Status	nor_Apr	atement	Status	or_May	atement	Stafus	for Jun	atement	Status	
	Ogo		ä	Marital		Repay	Payment Prior	Jan_Statem	Repay	Payment Prior	Feb_Staten	Repay	ayment Prior	Mar_Statem	Repay Statu	Payment_Prior	Apr_Stater	Repay	nent_Prior_Ma	May_Staten	Repay Statu	ment Pr	Jun_Statem	July_Payment_Status	
						nd.	Paym		2	Paym		Mar	Paym	-	Apr	s_Payn		May	Paym	4	Jun.	Paym		July P.	
							Peviou			heviou.			reviou.			Previou			hevious			Previous			

1.00

0.75

0.50

0.25

0.00

-0.2

Above variables have weak correlation with each other, which coincides with common sense.

Note that the closer the (previous) month is, the higher the correlation.

Data Modelling (1)

Used qcut for continuous variables

This graph is slightly messy.

It can be further improved by grouping columns together (e.g. repay_status 8~12 etc.)

We have corrected -2~0 as 0 for Repay Status (Nonetheless, the distribution is still somewhat skewed, so it could be improved).

Used random forest classifier to generate probability of default and tested with test smaple.

Out[53]:

	Probability
0	0.589750
1	0.163333
2	0.249895
3	0.117000
4	0.586833

The experimental Value of the Probability is 3503.874, against my test file with Accepted Value 3300 defaulters => 93.82 Accuracy (in a good way since more defaulters are predicted).

We can assign the probability for the new credit card applicant as credit score (simple approach).

Comparing Models

Logistic Regression

Decision Tree Classifier

roc_auc_so accuracy:						roc_auc_sc accuracy:	0.8579	73212029			
Predicted Actual	0	1				Predicted Actual	0	1			
0	795	654				0	1171	278			
1	360	2148				1	284	2224			
	pr	recision	recall	f1-score	support		pre	cision	recall	f1-score	support
	0	0.69	0.55	0.61	1449		0	0.80	0.81	0.81	1449
	1	0.77	0.86	0.81	2508		1	0.89	0.89	0.89	2508
avg / tota	al	0.74	0.74	0.74	3957	avg / tota	1	0.86	0.86	0.86	3957

RandomForest Classifer

Gradient Boost Classifier

roc_auc_sc accuracy:						roc_auc_sc accuracy:					
Predicted Actual	0	1				Predicted Actual	0	1			
0	1284	165				0	1310	139			
1	231	2277				1	267	2241			
	pre	cision	recall	f1-score	support		pre	cision	recall	f1-score	support
	0	0.85	0.89	0.87	1449		0	0.83	0.90	0.87	1449
	1	0.93	0.91	0.92	2508		1	0.94	0.89	0.92	2508
avg / tota	1	0.90	0.90	0.90	3957	avg / tota	1	0.90	0.90	0.90	3957

Cross-Validation

logistric regression: 0.83139841444

decision tree: 0.838458987724 random forest: 0.95322533704 gradient boosting: 0.961566894862

GridSearchCV - Logistic Regression

Voting Based Ensemble Model

roc_auc_sc accuracy:	0.74	222896133				roc_auc_so					
Predicted Actual 0 1	9 800	1 649 2137				Predicted Actual 0 1	984 257	1 465 2251			
	рі	recision	recall	f1-score	support		pr	recision	recall	f1-score	support
	0 1	0.68 0.77	0.55 0.85	0.61 0.81	1449 2508		0 1	0.79 0.83	0.68 0.90	0.73 0.86	1449 2508
avg / tota	1	0.74	0.74	0.74	3957	avg / tota	1	0.82	0.82	0.81	3957

Testing on Acutal Dataset

Voting Based Ensemble

Logistics Regression

roc_auc_score: accuracy: 0.599		56		roc_auc_score: @ accuracy: 0.5125		41		
Predicted 0 Actual 0 6486 1 835	5156				1 6588 2605			
pr	ecision re	ecall f1-score	support	pre	cision	recall	f1-score	support
0 1		0.56 0.68 0.75 0.45	11642 3300	0 1	0.88 0.28	0.43 0.79	0.58 0.42	11642 3300
avg / total	0.76	0.60 0.63	14942	avg / total	0.75	0.51	0.54	14942
1.0 Line Positive Rate 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.2 0.4 False Po		sting aining	1.0 Line Positive Rate 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 0.4	0. Positive	tra	sting ining

GridSearch - Logistic Regression

Decision Tree Classifier

Predicted	0	1			
Actual		_			
0	5112	6530			
1	711	2589			
	pre	cision	recall	f1-score	support
	0	0.88	0.44	0.59	11642
	1	0.28	0.78	0.42	3300
avg / tota	1	0.75	0.52	0.55	14942

roc_auc_so accuracy:					
Predicted	0	1			
Actual					
0	8409	3233			
1	1436	1864			
	pre	cision	recall	f1-score	support
	0	0.85	0.72	0.78	11642
	1	0.37	0.56	0.44	3300
avg / tota	al	0.75	0.69	0.71	14942

Random Forest Classifier

Gradient Boost Classifier

roc_auc_score: 0.741427524689 accuracy: 0.749364208272					
Predicted Actual	0	1			
0	9300	2342			
1	1403	1897			

accuracy:			
Predicted Actual	0	1	
0	9669	1973	
1	1380	1920	

support	f1-score	recall	precision		support	f1-score	recall	precision	
11642	0.85	0.83	0.88	0	11642	0.83	0.80	0.87	0
3300	0.53	0.58	0.49	1	3300	0.50	0.57	0.45	1
14942	0.78	0.78	0.79	avg / total	14942	0.76	0.75	0.78	avg / total

It can be seen clearly that logistic regression gave the best performance among the rest with an AUC score of 0.738, Ensemble, Random Forest and Boost Classifier lead to overfitting and does not show clear improvement on the testing set. Unfortunately, in credit risk an AUC of 0.75 or higher is the industry accepted standard and prerequisite to model acceptance, so clearly there is room for improvement.

The lift analysis shows little flaws as the few small noticeable peaks are relatively smooth, which shows that the model reflects reality decently. Overall, logistic regression performs within expectations as shown at the rightmost bucket is highest.

Data Modelling (2)

Null Model

PREDICTION	pay	default	Total
TRUE			
pay	3476	0	3476
default	1008	0	1008
Total	4484	0	4484

Classification Trees

PREDICTION	pay	default	Total
TRUE			
pay	3126	350	3476
default	661	347	1008
Total	3787	697	4484

Logistic Regression

PREDICTION	pay	default	Total
TRUE			
pay	3358	118	3476
default	740	268	1008
Total	4098	386	4484

Naive Bayes Classifier

PREDICTION	pay	default	Total
TRUE			
pay	3112	364	3476
default	552	456	1008
Total	3664	820	4484

	NULL	LogisticReg	ClassTree	NaiveBayes
accuracy	77.5201	80.8653	77.4532	79.5718
precision	0	69.4301	49.7848	55.6098
recall	0	26.5873	34.4246	45.2381

Null: always predict the most common category, used as a base case

best model with precision is LR but best with recall (which is more important) is NB accuracy is relatively equal for the three models

but results could be changed drastically if threshold was changed

LR is slightly better than NB: for a given level of recall, LR performs better than NB

lower threshold increases the likelihood of being predicted as default, hence increasing recall, but precision will decrease as a result given our conservative consideration (unpredicted default may pose bigger problem), this is an acceptable trade-off

Recall: 64.7817460317 Precision: 42.9040735874 Accuracy: 72.7029438002

PREDICTION pay default Total TRUE

pay	2607	869	3476
default	355	653	1008
Total	2962	1522	4484

Making individual predictions

```
In [17]: def make ind prediction(new data):
                 data = new_data.values.reshape(1, -1)
                 data = robust_scaler.transform(data)
                 prob = logistic_regression.predict_proba(data)[0][1]
                 if prob >= 0.2:
                     return 'Will default'
                 else:
                     return 'Will pay'
In [18]: pay = default[default['default']==0]
In [20]: from collections import OrderedDict
            new_customer = OrderedDict([('credit_limit', 4000), ('age', 50),
                                             ('jan_repay_status', -1), ('previous_payment_prior_jan', 0), ('jan_statement', 500),('feb_repay_status', 0), ('previous_payment_prior_feb', 0),('feb_statement', 35509),
                                               ('mar_repay_status', 0),('previous_payment_prior_mar', 0),
                                             ('mar_statement', 689),('apr_repay_status', 0),
  ('previous_payment_prior_apr', 0), ('apr_statement', 0),
  ('may_repay_status', 0),('previous_payment_prior_may', 0),
                                              ('may_statement', 0),('jun_repay_status', 0),
                                               ('previous_payment_prior_jun', 0),('jun_statement', 0),
                                               ('july_payment_status', 0),
                                              ('master\'s degree & doctoral degree', 0),
                                              ('bachelor\'s degree', 0), ('high School\'s degree', 0),
                                              ('married', 1),('single', 0)])
            new_customer = pd.Series(new_customer)
            make_ind_prediction(new_customer)
Out[20]: 'Will default'
```

This model is even simpler, simply by predicting if the new applicant will default.

Other Material

Some comparison and analysis

ROC Curve:

Min-Cost Curve

```
_____
                Feature Coefficient
               intercept : -0.08865856905365048
            Credit Limit : -4.136162845874544e-05
                  Sex : -0.4089395762493226
               Education : -0.07261082643287912
          Marital_Status : -0.20981889995885875
                   Age : -0.002447224223894175
         Jan_Repay_Status : 0.7738707917817925
Previous_Payment_Prior_Jan : -0.00017966609206909718
           Jan_Statement : -7.875996407512707e-05
        Feb_Repay_Status : 0.17802740287324434
Previous_Payment_Prior_Feb : -0.0002599402278097557
           Feb_Statement : -1.5023880492144783e-05
        Mar_Repay_Status : -0.047933717225651894
Previous_Payment_Prior_Mar : 0.0001133511563180129
           Mar_Statement : 0.0002740486759693342
        Apr_Repay_Status : 0.12009493472367604
Previous_Payment_Prior_Apr : -0.0006770830869556257
           Apr_Statement : -2.3963213260562036e-05
        May_Repay_Status : 0.13750412073484533
Previous_Payment_Prior_May : 3.474917423446337e-05
           May_Statement : -7.554021592178651e-05
         Jun Repay Status : 0.08465026678573004
Previous_Payment_Prior_Jun : 0.0001374334193104724
           Jun_Statement : -0.00010608076814533911
                               Training
         Training Test
rea Under the ROC Curve: 0.78076 0.73501
Minimum Cost Per Event: 2337.36762 2545.38578
        Area Under the ROC Curve: 0.78076
                  at threshold: -0.8273779713
            Condition Incidence: 0.2415 0.2415
                                           0.112
   Probability of True Positives: 0.126
 Test (Classification) Indidence: 0.15083 0.13301
```

Because the difference Area Under the ROC Curve for the training data and the test data is small, we can tell that this model is quite robust. If we didn't know the cost per false positive and cost per false negative, we'd stop here and know our model is pretty good. But with that information included, we can see that Minimum Cost Per Event for both training and test data are also very close. This also tells us our threshold: -0.7550077141.

We now know that for a bank to maximize profits, they should put each application to a test of:

-0.05993497005393214

Credit Limit: -2.2643978164886102e-05

Sex: -0.3328744363145741

Education : -0.07360755731444764 | Marital_Status : -0.1604192700256958 |

Age: 0.002856709986298127 |

Jan Repay Status: 0.5283071703974944

Previous Payment Prior Jan: -0.00022701497676949007

Jan_Statement : -0.00014932851410334562 | Feb_Repay_Status : 0.14275210240318223 |

Previous_Payment_Prior_Feb: -0.00025566945568331534 |

Feb_Statement : -1.8480409145272735e-05 | Mar_Repay_Status : -0.059158684303796484 |

Previous Payment Prior Mar: 0.00013925464219661843

Mar_Statement : 0.0002771085172073992 | Apr_Repay_Status : 0.04959604226000935 |

Previous_Payment_Prior_Apr : -0.0005689907699989463 |

Apr_Statement : -4.1194600110986226e-05 | May_Repay_Status : 0.09586304419201959 |

Previous Payment Prior May: 3.117998499414399e-05

May_Statement : -7.181084692175177e-05 | Jun_Repay_Status : 0.0011831585562662168 |

Previous Payment Prior Jun: 0.0001769404100671579 |

Jun Statement: -8.168264199434573e-05

If the sum of them is greater than the threshold, -0.6698867856, the bank should reject the credit card application. In the data given, there is a 24.15% default rate on 3000 applications, with a cost per false negative of \$5000. If the bank were to simply accept all applications, the defaulted credit card accounts would cost the bank

24.15% *5000*2000= \$2,415,000

which results in a cost per application event of 2415000 / 2000 = \$1207.5. This logistic regression/binary classification model has a cost per event of \$2594.55 on the test set, which indicates that this model would save the bank 2594.55 - 1207.5 = \$1387.05 per application, if we assume that these 3000 applications are representative of all future applications.