

(1) Publication number:

0 312 000 B1

12

EUROPEAN PATENT SPECIFICATION

- (3) Date of publication of patent specification: 18.03.92 (9) Int. Cl.5: C07D 263/20, C07D 413/10, A61K 31/42, A61K 31/44
- (1) Application number: 88116903.1
- 2 Date of filing: 12.10.88

- Aminomethyl oxooxazolidinyl aroylbenzene derivatives useful as antibacterial agents.
- Priority: 16.10.87 US 109032
- 43 Date of publication of application: 19.04.89 Bulletin 89/16
- 45 Publication of the grant of the patent: 18.03.92 Bulletin 92/12
- Beginsted Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE
- 66 References cited: EP-A- 0 127 902 EP-A- 0 184 170 FR-A- 2 500 450

US-A-3 687 965

- (73) Proprietor: THE DU PONT MERCK PHARMA-**CEUTICAL COMPANY** Barley Mill Plaza, Building 25 Wilmington, Delaware 19880-0025(US)
- Inventor: Gregory, Walter Adelman 104 Rockingham Drive Wilmington Delaware 19803(US) Inventor: Kezar, Hollis Smith III 2076 Bentwood Court Wilmington Delaware 19804(US)
- Representative: von Kreisler, Alek, Dipl.-Chem. et al Patentanwälte Von Kreisler-Selting-Werner, Deichmannhaus am Hauptbahnhof W-6000 Köln 1(DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

Technical Field

5

10

15

20

25

30

35

40

50

55

This invention relates to novel aminomethyl oxooxazolidinyl aroylbenzene derivatives, their preparation, to pharmaceutical compositions containing them, and to methods of using them to alleviate bacterial infections

Background of the Invention

At the present time, no existing antibacterial product provides all features deemed advantageous. There is continual development of resistance by bacterial strains. A reduction of allergic reactions and of irritation at the site of injection, and greater biological half-life (i.e., longer in vivo activity) are currently desirable features for antibacterial products.

U.S. Patent 4,128,654 issued to Fugitt et al. on December 5, 1978, discloses, among others, compounds of the formula:

where

 $A = RS(O)_n$;

X = CI, Br or F;

R = C₁-C₃ alkyl; and

n = 0, 1 or 2.

The compounds are disclosed as being useful in controlling fungal and bacterial diseases of plants.

U.S. Reissue Patent 29,607 reissued April 11, 1978 discloses derivatives of 5-hydroxymethyl-3-substituted-2-oxazolidinones of the formula:

where R is H, F, CH₃, or CF₃. Such compounds are described as having antidepressive, tranquilizing, sedative, and antiinflammatory properties.

U.S. Patent 4,250,318, which was issued on February 10, 1981, discloses antidepressant compounds of the formula:

where R can be, among others, a para-n-pentylamino group, and SR₁ group where R₁ is C₁-C₅ alkyl, or an

acetylmethylthio group.

U.S. Patent 4,340,606 issued to Fugitt et al. on July 20, 1982, discloses antibacterial agents of the general formula:

5

10

$$R_1S(O)_n$$
 N O X

where

 $R_1 = CH_3, C_2H_5, CF_2H, CF_3$ or

15 CF2CF2H; and

 $X = OR_2$ ($R_2 = H$ or various acyl moieties).

U.S. Patent 3,687,965, issued to Fauran et al. on August 29, 1972, discloses compounds of the formula:

20

$$R_3-N$$
O

 $CH_2N(R_1)(R_2)$

25

where

-N(R₁)(R₂) represents either dialkylamino radical in which the alkyl portions have one to five carbon atoms, or a heterocyclic amino radical which may be substituted by an alkyl radical having one to five carbon atoms or by a pyrrolidinocarbonylmethyl radical, and

R₃ represents a phenyl radical which may be substituted by one or more of the following radicals: an alkoxy radical having one to five carbon atoms;

a halogen atom;

a trifluoromethyl radical, or

35 a carboxyl radical which may be esterified.

The patent states that these compounds possess hypotensive, vasodilatatory, spasmolytic, sedative, myorelaxant, analgesic and antiinflammatory properties. There is no mention of antibacterial properties.

Belgian Patent 892,270, published August 25, 1982, discloses monoamine oxidase inhibitors of the formula

40

45

where

R is H, C₁-C₄ alkyl or propargyl;

Ar is phenyl, optionally substituted by halo or trifluoromethyl;

n is 0 or 1; and

X is $-CH_2CH_2$ -, -CH = CH-, an acetylene group or $-CH_2O$ -.

U.S. Patent 4,461,773 issued to W. A. Gregory on July 24, 1984, discloses antibacterial agents of the formula

$$R_1 \longrightarrow N \longrightarrow OR_{10}$$

wherein, for the £, and mixtures of the d and £ stereoisomersof the compound,

 \mbox{R}_{3} and \mbox{R}_{4} are independently H, alkyl of 1-4 carbons or cycloalkyl of 3-8 carbons; R₅ is NR₃R₄ or OR₃;

R₅ is alkyl of 1-4 carbons;

5

 $R_{\rm J}$ is alkyl of 1-4 carbons, optionally substituted with one or more halogens;

25 R_8 and R_9 are independently alkyl of 1-4 carbons or, taken together are -(CH₂)_p-; R₁₀ is H, alkyl of 1-3 carbons,

O O O CO₂H or -G-CH-R₁₂;
$$CO_2H = CO_2H \text{ or } -G-CH-R_{12};$$

R₁₁ is alkyl of 1-12 carbons;

 R_{12} is H, alkyl of 1-5 carbons, CH_2OH or CH_2SH ;

X is Cl, Br or I;

Z is a physiologically acceptable cation;

m is 2 or 3;

n is 0 or 1; and

p is 3, 4 or 5;

and when R_{10} is alkyl of 1-3 carbons, R_1 can also be $CH_3S(O)_q$ where q is 0, 1 or 2;

or a pharmaceutically acceptable salt thereof.

5

10

European Patent Application 127,902, published December 12, 1984, and 184,170, published June 11, 1986, disclose antibacterial agents of the formula:

wherein, for the £, and mixtures of the d and £ stereoisomersof the compound,

40 of 1 to 8 carbons, optionally substituted with one or more halogen atoms, OH, = O other than at alpha position, S(O)_nR₂₄, NR₅R₅, alkenyl of 2-5 carbons, alkynyl of 2-5 carbons or cycloalkyl of 3-8 carbons; R₁ is C₁-C₄ alkyl, optionally substituted with one or more halogen atoms, OH, CN, NR₅R₆ or

 R_2 and R_3 are independently C_1 - C_2 alkyl or, taken together are -(CH_2)_q-; R_4 is alkyl of 1-4 carbons, optionally substituted with one or more halogens; R_5 and R_6 are independently H, alkyl of 1-4 carbons or cycloalkyl of 3-8 carbons;

55

5

R₈ is H or alkyl of 1-4 carbons;

R₉ is H, C₁-C₄ alkyl or C₃-C₈ cycloalkyl;

 R_{10} is H, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_3 - C_4 cycloalkyl, -OR₈ or -NR₁₁R_{11A};

 R_{11} and R_{11A} are independently H or C_1 - C_4 alkyl, or taken together, are -(CH_2),-;

10 X is Cl, Br or I:

Y is H, F, Cl, Br, alkyl or 1-3 carbons, or NO2, or A and Y taken together can be -O-(CH2),O-;

Z is a physiologically acceptable cation;

n is 0, 1 or 2;

p is 0 or 1:

q is 3, 4 or 5:

r is 4 or 5;

t is 1, 2 or 3;

20

25 R₁₂ is H, C₁-C₁₀ alkyl or C₃-C₈ cycloalkyl;

R₁₃ is H; C₁-C₄ alkyl optionally substituted with one or more halogen atoms; C₂-C₄ alkenyl; C₃-C₄ cycloalkyl; phenyl; -CH $_2$ OR $_{15}$; -CH(OR $_{15}$)OR $_{17}$;

30

$$\begin{array}{c} & \text{0} \\ -\text{CH}_2\text{S}(0)_{\mathbf{v}}\text{R}_{14}; & \overset{\text{e}}{\text{CR}}_{15}; & -\text{OR}_{18}; & -\text{SR}_{14}; & -\text{CH}_2\text{N}_3; \end{array}$$

aminoalkyl groups derived from α -amino acids such as glycine, L-alanine, L-cysteine,

L-proline, and D-alanine; -NR19R20; or

C(NH₂)R₂₁R₂₂;

R₁₄ is C₁-C₄ alkyl, optionally substituted with one or more halogen atoms;

R₁₅ is H or C₁-C₄ alkyl, optionally substituted with one or more halogen atoms;

 R_{15} and R_{17} are independently $C_1\text{-}C_4$ alkyl or, taken together, are -(CH₂)_m-:

40 R₁₈ is C₁-C₄ alkyl or C₇-C₁₁ aralkyl;

 R_{19} and R_{20} are independently H or $C_1\text{-}C_2$ alkyl;

R₂₁ and R₂₂ are independently H, C₁-C₄ alkyl, C₃-C₆ cycloalkyl, phenyl or, taken together, are -(CH₂)_s-;

v is 0, 1 or 2;

45 m is 2 or 3;

s is 2, 3, 4 or 5; and

 R_{23} is H, alkyl of 1-8 carbons optionally substituted with one or more halogens, or cycloalkyl of 3-8 carbons;

 R_{24} is alkyl of 1-4 carbons or cycloalkyl of 3-8 carbons;

 R_{25} is alkyl of 1-4 carbons substituted with one or more of

50

55

alkenyl of 2-5 carbons optionally substituted with CHO; or a pharmaceutically suitable salt thereof; provided that:

1) when A is CH₃S-, then B is not

2) when A is CH₃SO₂-, then B is not

CH₃ | or -N-COCF₃;

3) when A is H2NSO2- and B is

then R₁₂ is H;

5

10

15

20

25

30

35

40

45

50

55

- 4) when A is -CN, B is not -N3;
- 5) when A is (CH₃)₂CH, B is not NHCOCH₂Cl;
- 6) when A is OR5, then B is not NH2;
- 7) when A is F, then B is not NHCO2CH3.

None of the above-mentioned references suggest the novel antibacterial compounds of this invention.

Summary of the Invention

According to the present invention, there is provided an oxazolidinone having the formula:

where for the ${\bf t}$ isomer or racemic mixtures containing it B is NH₂,

or N₃ u is 1 or 2;

R₃ is H, alkyl of 1-10 carbon atoms, or cycloalkyl of 3-8 carbon atoms;

R₄ is H, alkyl of 1-4 carbon atoms, alkenyl of 2-4 carbon atoms, cycloalkyl of 3-4 carbon

 R_5 is alkyl of 1-4 carbon atoms;

taken together are H_2 , H and OH, = O, = NOH, H and $N(R_6)_2$, = NOR₅, R₁ and R₂

10

or

15

20

25

35

40

45

 R_6 is H or alkyl of 1-4 carbon atoms;

Х is pyridinyl or phenyl optionally substituted with from 1-3 substituents each independently

selected from a group selected from halogen, alkyl of 1-4 carbon atoms, NO2, OR5, or S-

is 0, 1 or 2;

or a pharmaceutically suitable salt thereof.

Also provided is a process for preparing compounds of Formula (I), such a process being described in detail hereinafter.

Additionally provided are a pharmaceutical composition containing a compound of Formula (I) and a method of using a compound of Formula (I) to treat a bacterial infection in a mammal.

Preferred Embodiments

Preferred compounds are the oxazolidinones of Formula (I) wherein: 30

(a) B is

where R4 is H, CH3, or OR5; or

(b) R_1 and R_2 taken together are H_2 , H and OH,

=0, =NOH, or =N-N

(c) X is 3-pyridinyl or phenyl optionally substituted with from 1-2 substituents each independently selected from halogen, NO_2 , $S(O)_mR_5$ or OR_5 .

More preferred compounds are the oxazolidinones of Formula (I) wherein:

50 (a) B is

55

(b) R_1 and R_2 taken together are H_2 , H and OH,

5

10

(c) X is phenyl optionally substituted with from 1-2 substituents each selected from F, Cl, NO2, or OCH3. Specifically preferred are the following compounds:

- (1)-N-[3-[4-(2,4-difluorobenzoyl)phenyl]-2-oxooxazolidin-5-ylmethyl]acetamide;
- (1)-N-[3-[4-(4-nitrobenzoyl)phenyl]-2-oxooxazolidin-5-ylmethyl]acetamide;
- (1)-N-[3-[4-(4-fluorobenzoyl)phenyl]-2-oxooxazolidin-5-ylmethyl]acetamide.

Detailed Description

The compounds of Formula (I) contain at least one chiral center and, as such, exist as two individual isomers or as a mixture of both. This invention relates to the levorotatory isomer (1), which for many of the compounds in this invention can be referred to as the (S) isomer, as well as mixtures containing both the (R) and (S) isomers. Additional chiral centers may be present in the B group, or when R₁ and R₂ taken together are H and OH or H and $N(R_6)_2$. The invention relates to all possible stereoisomers of the above.

For the purposes of this invention, the t-isomer of compounds of Formula (I) is intended to mean compounds of the configuration depicted; when B is NHAc, and closely related groups, this isomer is described as the (S)-isomer in the Cahn-Ingold-Prelog nomenclature:

30

35

Synthesis

Compounds of Formula (I) where R₁ and R₂ taken together are = O, and X and B are as previously defined can be prepared as follows:

Scheme 1

55

Compounds of Formula (II), which are prepared by the process previously described in published European applications 127,902 and 184,170, are converted to aroyl derivatives (III) by treatment of either a mixture of methanesulfonic acid and methanesulfonic anhydride or a mixture of trifluoromethanesulfonic acid and trifluoromethanesulfonic anhydride and the corresponding aroyl carboxylic acid at room temperature to 80 ° C.

Compounds of Formula (I) where R₁ and R₂ taken together are not = 0 but as described previously can be prepared as follows:

Aroyl derivatives (III) can be converted to compounds (IV)-(VIII) by standard procedures. Hydrogenation of (III) in a solvent such as ethyl acetate, methanol, or ethanol in the presence of a hydrogenation catalyst such as Pd/C or Pt/C under 0-15 lb hydrogen pressure at room temperature to 80°C gives (IV). Alcohols (V) are prepared according to the procedure described in Example 19 by use of an alkali metal borohydride. Reaction of (III) with (R₆)₂NH in an alcoholic solvent such as methanol or ethanol at room temperature to 80°C in the presence of sodium cyanoborohydride affords amines (VI). Treatment of (III) with hydroxyamine hydrochloride or H₂NOR₅ in the presence of a base such as pyridine or triethylamine in an alcoholic solvent such as methanol or ethanol at room temperature to 100°C yields oximes (VII). Finally, aroyl derivatives (III) are converted to (VIII) by reacting with 1-amino-4-methylpiperazine in a refluxing solvent such as tetrahydrofuran (THF) or dioxane containing boron trifluoride etherate.

Pharmaceutically suitable salts of compounds of Formula (I) can be prepared in a number of ways known in the art. When R_1 , R_2 , X or B contain a basic nitrogen, pharmaceutically salts include these resulting from treatment with acids such as acetic, hydrochloric, sulfuric, phosphoric, succinic, fumaric, ascorbic and olutaric acid.

The invention can be further understood by the following examples in which parts and percentages are by weight unless indicated otherwise.

#0 Example 1

Preparation of (1)-N-[3-[4-(4-fluorobenzoyl)-phenyl]-2-oxooxazolidin-5-ylmethyl]acetamide (I; R₁,

$X = 4-C_6H_4F$, $B = NHCOCH_3$)

To a solution of methanesulfonic anhydride (7.45g, 43 mmol), methanesulfonic acid (14 mL), and (£)-N-(3-phenyl-2-oxo-5-oxazolidin-5-yl-methyl)acetamide (2.0g, 9 mmol) was added 4-fluorobenzoic acid (4.8g, 34 mmol). The mixture was stirred at 50-60 °C overnight and allowed to cool to room temperature before being poured into 120 mL ice/water. The resulting mixture was extracted with a chloroform/2-propanol mixture. The organic extract was washed with saturated sodium bicarbonate, saturated brine and dried (Na₂SO₄). The solvent was removed in vacuo and the residue was purified by flash chromatography followed by crystallization from ethyl acetate. Recovered 2.2g (73%) of the title compound, m.p. 168.5 ° -170.5 °C. IR (KBr): 1752, 1652, 1600 cm⁻¹; NMR (d₅-DMSO) δ: 8.29 (m,1H), 7.78 (m,6H), 7.40 (m,2H), 4.79 (m,1H), 4.20 (dd,J=9,9 Hz,1H), 3.83 (dd,J=6.5, 9.1 Hz,1H) 3.45 (m,2H), 1.83 (s,3H); C,H analysis, calcd: C 64.04, H

4.81, F 5.33, N 7.86, found: C 64.12, H 4.82, F 5.37, N 7.90; $[\alpha]_D$ = -31 ° (c = 1.01, acetone). By using the procedure described in Example 1, the following compounds in Table I were prepared or can be prepared.

5	<u>Table I</u>						
10			х Ү—{	z-	Î	N O	`О В
15	_			_		_	
	Ex.	<u> </u>	<u>Y</u>	<u>z</u> _		somer	<u>ш.р. (°С)</u>
20	1	4-F	Ħ	CH	NHCOCH3	٤	168.5-170.5
	2	H	H	CH	NHCOCH3	٤	175-177
	3	4-0CH3	H	CH	NHCOCH3	٤	162-163.5
25	4	4-C1	H	CH	NHCOCH3	Ł	222.5-224
	5	3- F	H	СН	NHCOCH3	٤	166.5-168
30	6	2-F	4-F	CH	NHCOCH3	l	169-170
30	7	2-0CH3	4-C1	CH	NHCOCH3	L	212-214
	8	4-SCH3	H	CH	NHCOCH3	Ł	
35	9	4-N0 ₂	Ħ	CH	NHCOCH3	Ł	220-222
	10	4-SOCH3	H	CH	NECOCH3	Ł	
40	11	4-S0 ₂ CH ₃	H	CH	NECOCH3	R	
40	12	Ħ	H	CH	NH ₂	٤	
	13	H	H	CH	N ₃	٤	
45	14	E	H	CH	NECO-	dl	
	15	H	H	N	NHCOCH3	L .	184-185.5
	16	4-CH ₃	H	CH	NHSOC ₂ H ₅	dl	
50	17	2-C ₂ H ₅	H	CH	N(CH3)SO2CH3	٤	
	18	H	H	N	N(C ₂ H ₅)COCH ₃	٤	

Example 19

Preparation of (£)-N-[3-[4-[(4-fluorophenyl)-(hydroxy)methyl]phenyl]-2-oxooxazolidin-5-yl-methyl]acetamide (l; $R_1 = H$, $R_2 = OH$, $x = 4-C_6H_4F$, $B = NHCOCH_3$)

To a solution of (*l*)-N-[3-[4-[(4-fluorobenzo)-phenyl]-2-oxooxazolidin-5-ylmethyl]acetamide (1.50 g, 4.2 mmol) in THF (30 mL) was added lithium borohydride (1.05 mL, 2 M in THF, 2.1 mmol). The mixture was stirred at room temperature overnight before quenching with water followed by 1N hydrochloric acid. The solution was diluted with 1N hydrochloric acid and extracted with a chloroform/2-propanol mixture. The organic extract was washed with saturated sodium bicarbonate, saturated brine and dried (Na₂SO₄). The solvent was removed in vacuo and the residue was purified by flash chromatography. Recovered 0.52 g (34%) of the title compound, m.p. 73-76°C. IR (KBr): 1745,1655 cm⁻¹; NMR (d₅-DMSO) δ: 8.24 (m.1H), 7.41 (m,6H), 7.10 (m,2H), 5.93 (d,J=4Hz,1H), 5.70 (d,J=4Hz,1H), 4.69 (m,1H), 4.06 (M,1H), 3.71 (m,1H), 3.39 (m,1H), 1.83 (s,3H); MS: m/z 358.1335 (m^{*}), calcd. for C₁₉H₁₉N₂O₄F, 358.1329; [α]_D = -12* (C=1.0, ethanol).

By using the procedure described in Example 19, the following compounds in Table II were prepared or can be prepared.

Table II 20 OH 25 Ex. 30 X Y Z В Isomer <u>m.p. (°C)</u> 19 4-F H CH NHCOCH3 L 73-76 20 Ħ Ħ CH NHCOCH3 ٤ 68-70 35 21 2-F 4-F CH NECOCE3 L 70-73 22 4-SCH3 H CH NECOCH3 ٤ 23 H 40 H CH NHCO2CH3 dl 24 4-CH3 H CH NHSOCH3 L 25 2-C2H5 H CH NHSO2C4H9 L 45 26 H H N NECOCH3 L 27 4-F H CH Nз dl 28 Ħ 50 H CH MH_2 ٤ 29 H H CH N(CH3)COC2H5 dl

By using chemistry previously described in Synthesis section, compounds in Table III can be prepared.

Table III

15	Ex.	<u> </u>	R_1,R_2	B	Isomer	m.p. (*C)
	30	C ₆ H ₅	=N-N N-CH ₃	NECOCE3	e	
20 ,	31	$4-FC_6H_4$	H,NH2	NHSOCH3	đL	
	32	4-C1C6H4	H,N(CH3)2	N ₃	e	
	33	2,4-F ₂ C ₆ H ₄	=NOH	NH ₂	Ł	
25	34	4-CH3C6H4	=NOCH ₃	NECO ₂ CE ₃	dl	
	35	2-pyridyl	=N0CC2H5	NECO-	L	
30	36	3-pyridyl	${\tt H}, {\tt NH}_2$	М(СВ3)СОС2В5	Ł	
35	37	4-pyridyl	=N-N_N-CH3	N(C ₂ H ₅)SO ₂ CH ₃	Ł	

Dosage Forms

The antibacterial agents of this invention can be administered by any means that produces contact of the active agent with the agents' site of action in the body of a mammal. They can be administered by any conventional means available for use in conjunction with pharmaceuticals, either as individual therapeutic agents or in a combination of therapeutic agents. They can be administered alone, but are generally administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.

The dosage administered will, of course, vary depending upon known factors such as the pharmacodynamic characteristics of the particular agent, and its mode and route of administration; age, health, and weight of the recipient; nature and extent of symptoms; kind of concurrent treatment; frequency of treatment; and the effect desired. Usually, a daily dosage of active ingredient can be about 5 to 20 milligrams per kilogram of body weight. Ordinarily, when the more potent compounds of this invention are used, 5 to 15, and preferably 5 to 7.5 milligrams per kilogram per day, given in divided oral doses 2 to 4 times a day or in sustained release form, is effective to obtain desired results. These drugs may also be administered parenterally.

Projected therapeutic levels in humans should be attained by the oral administration of 5-20 mg/kg of body weight given in divided doses two to four times daily. The dosages may be increased in severe or life-threatening infections.

Dosage forms (compositions) suitable for internal administration contain from about 1.0 milligram to about 500 milligrams of active ingredient per unit. In these pharmaceutical compositions, the active

ingredient will ordinarily be present in an amount of about 0.5-95% by weight based on the total weight of the composition.

The active ingredient can be administered orally in solid dosage forms, such as capsules, tablets, and powders, or in liquid dosage forms, such as elixirs, syrups, and suspensions. It can also be administered parenterally, in sterile liquid dosage forms.

Gelatin capsules contain the active ingredient and powdered carriers, such as lactose, sucrose, manitol, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.

Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.

In general, water, a suitable oil, saline, aqueous dextrose (glucose), and related sugar solutions and glycols such as propylene glycol or polyethylene glycols are suitable carriers for parenteral solutions. Solutions for parenteral administration contain preferably a water soluble salt of the active ingredient, suitable stabilizing agents, and, if necessary, buffer substances. Antiooxidants such as sodium bisulfate, sodium sulfite, or ascorbic acid either alone or combined are suitable stabilizing agents. Also used are citric acid and its salts and sodium EDTA. In addition, parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol.

Suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences, A. Osol, a standard reference text in this field.

Useful pharmaceutical dosage forms for administration of the compounds of this invention can be illustrated as follows:

Capsules

25

A large number of unit capsules are prepared by filling standard two-piece hard gelatin capsules each with 75 milligrams of powdered active ingredient, 150 milligrams of lactose, 24 milligrams of talc, and 6 milligrams of magnesium stearate.

Soft Gelatin Capsules

A mixture of active ingredient in soybean oil is prepared and injected by means of a positive displacement pump into gelatin to form soft gelatin capsules containing 75 milligrams of the active ingredient. The capsules are washed and dried.

Tablets

A large number of tablets are prepared by conventional procedures so that the dosage unit is 75 milligrams of active ingredient, 0.2 milligrams of colloidal silicon dioxide, 5 milligrams of magnesium stearate, 250 milligrams for microcrystalline cellulose, 11 milligrams of cornstarch and 98.8 milligrams of lactose. Appropriate coatings may be applied to increase palatability or delay absorption.

5 Injectables

A parenteral composition suitable for administration by injection is prepared by stirring 1.5% by weight of active ingredient in 10% by volume propylene glycol and water. The solution is made isotonic with sodium chloride and sterilized.

Suspensions

An aqueous suspension is prepared for oral administration so that each 5 milliliters contain 75 milligrams of finely-divided active ingredients. 200 milligrams of sodium carboxymethyl cellulose, 5 milligrams of sodium benzoate, 1.0 grams of sorbitol solution, U.S.P., and 0.025 milliliters of vanillin.

Utility

Test results indicate that the novel compounds of this invention are biologically active against gram positive bacteria including multiply antibiotic resistant strains of staphylococci and streptococci. These compounds are potentially useful for the treatment of both human and animal bacterial infections including diseases of the respiratory, gastrointestinal, genitoturinary systems; blood; interstitial fluids; and soft tissues.

As shown in Table IV, compounds of Formula (I) exert an in vitro antibacterial effect. A standard microdilution method (National Committee for Clinical Standards. Tentative standard M7-T. Standard methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. National Committee for Clinical Laboratory Standards, Villanova, PA. 1982) with Mueller-Hinton broth is used to determine the 24-hour minimal inhibitory concentrations (MIC's) for test strains of Staphylococcus aureus and Escherichia coli.

The in vivo potency of these compounds is exemplified by the data summarized in Table V. Determinations of in vivo efficacy are performed by inoculating mice intraperitoneally with cultures of the infecting organism diluted to produce 100% mortality in control animals within twenty-four hours. The culture of S. aureus used to infect the animals was diluted to the required bacterial density using 5% aqueous hog gastric mucin. The compounds are dissolved or suspended in 0.25% aqueous Methocel® (Methocel®: Hydroxypropyl Methylcellulose, E15 Premium, Dow Chemical Company) for oral administration or sterile distilled water containing 5% dimethylsulfoxide (Fisher Scientific Company, Fairlawn, NJ) for subcutaneous administration. The mice are dosed at one hour and at four hours post-infection. Mortality is recorded daily until test termination seven days post infection. The number of survivors in each treatment group on the seventh day after infection is used in the calculation of the ED₅₀, the dose of compound that protects 50% of the mice (Litchfield, J. T. and Wildoxon. A simplified method for evaluating dose-effect experiments. J. Pharmacol Exp. Ther., 96:99-113, 1949).

Table IV

In Vitro B	roth Microdilution Minimal Inhi (MIC's)	ibitory Concentrations			
Ex. No.	Minimum Inhibitory Concentration (μg/mL)				
	Staphylococcus aureus	Escherichia coli			
1	4	>128			
2	4	>128			
3	4	>128			
5	8	>128			
6	1 1	>128			
7	32	>128			
8	4	>128			
9	1 1	>128			
10	16	>128			
11	4	>128			
15	8	>128			
20	32	>128			

Table V

	Lethal Mouse I	aphylococcus Aureus in an Acute Model		
Ex. No.	ED₅₀ (mg/kg)			
	Oral Administration	Subcutaneous Administration		
1 2	40	20		
3	47	60		
5	41	15		
6	42 30	25		
7	>120	26		
8	>90	>120		
9	>90	>90 >90		
10	>90	>90		
11	>90	>90		
15	>90	59		
20	65	52		

Claims

5

10

15

20

1. A compound having the formula:

wherein for the $\,t\,$ isomer or racemic mixtures containing it B is NH₂,

or N₃

40

45

u is 1 or 2;

R₃ is H, alkyl of 1-10 carbon atoms, or cycloalkyl of 3-8 carbon atoms;

 R_4 is H, alkyl of 1-4 carbon atoms, alkenyl of 2-4 carbon atoms, cycloalkyl of 3-4 carbon atoms, or 50

Rs is alkyl of 1-4 carbon atoms;

 R_1 and R_2 taken together are H_2 , H and OH,

= O, = NOH, H and $N(R_6)_2$, = NOR₅,

or

5

10

R₆ is H or alkyl of 1-4 carbon atoms;

X is pyridinyl or phenyl optionally substituted with from 1-3 substituents each independently selected from a group selected from halogen, alkyl of 1-4 carbon atoms, NO_2 , OR_5 , or $S(O)_mR_5$; and m is 0, 1 or 2;

or a pharmaceutically suitable salt thereof.

2. A compound of Claim 1 wherein B is

15

0 -NHCR

where R₄ is H, CH₃, or OR₅.

3. A compound of Claim 1 wherein R₁ and R₂ taken together are H₂, H and OH, = O, = NOH, or

25

- A compound of Claim 1 wherein X is 3-pyridinyl or phenyl optionally substituted with 1-2 substituents each independently selected from halogen, NO₂, S(o)_mR₅, or OR₅.
 - 5. A compound of Claim 1 wherein:
 - (a) B is

35

O -NHCR4

40

where R4 is H, CH3, or OR5;

(b) R_1 and R_2 taken together are H_2 , H and OH, = O, = NOH, or

45

and

- (c) X is 3-pyridinyl or phenyl optionally substituted with 1-2 substituents each independently selected from halogen, NO₂, S(O)_mR₅, or OR₅.
- 6. A compound of Claim 1 wherein B is

55

7. A compound of Claim 1 wherein R_1 and R_2 taken together are H_2 , H and OH, =O, or

- 8. A compound of Claim 1 wherein X is phenyl optionally substituted with from 1-2 substituents each selected from F, Cl, NO₂, or OCH₃.
- A compound of Claim 1 wherein:
 (a) B is

5

10

20

30

(b) R_1 and R_2 taken together are H_2 , H and OH_1 = O, or

- 25 (c) X is phenyl optionally substituted with from 1-2 substituents each selected from F, CI, NO₂, or OCH₃.
 - Compounds of Claim 1 selected from (t)-N-[3-[4-(2,4-difluorobenzoyl)phenyl]-2-oxo-oxazolidin-5-ylmethyl]acetamide; (t)-N-[3-[4-(4-nitrobenzoyl)phenyl]-2-oxooxazo-lidin-5-ylmethyl]acetamide; and (t)-N-[3-[4-(4-fluorobenzoyl)phenyl]-2-oxooxazolidin-5-ylmethyl]acetamide.
 - 11. A pharmaceutical composition consisting essentially of a pharmaceutically suitable carrier and an antibacterial amount of a compound of any of Claims 1 to 10.
- 12. A process for preparing a compound of Claim 1 which comprises:
 (a) when R₁ and R₂ taken together are = 0, contacting a compound of the formula:

where B is defined in Claim 1 with a carboxylic acid of the formula

XCO₂H

where X is defined in Claim 1 in the presence of a mixture of methanesulfonic acid, and methanesulfonic anhydride, or a mixture of trifluoromethanesulfonic acid and trifluoromethane sulfonic anhydride to prepare a compound of the formula:

55

$$X \xrightarrow{\circ} N \xrightarrow{\circ} B$$
 ;

and

5

10

15

25

30

45

55

(b) when R_1 and R_2 taken together are as defined in Claim 1 other than = 0, contacting a compound of Formula (III) prepared in step (a) with:

- (i) hydrogen gas in the presence of a hydrogenation catalyst; or
- (ii) an alkali metal borohydride; or
- (iii) (R₆)₂NH in the presence of sodium cyanoborohydride; or
- (iv) H2 NOH or H2 NOR5 in the presence of a base; or
- (v) 1-amino-4-methylpiperazine in a refluxing solvent.

20 Revendications

1. Un composé présentant la formule:

$$\begin{array}{c} R_1 \\ X \end{array} \begin{array}{c} R_2 \\ N \end{array} \begin{array}{c} O \\ O \end{array}$$

dans laquelle, pour l'isomère 1 ou les mélanges racémiques le contenant:
B est NH₂,

(O)_uR₆ ou N₃, ou

u vaut 1 ou 2;

R₃ est H ou un radical alkyle ayant 1 à 10 atomes de carbone ou cycloalkyle ayant 3 à 8

atomes de carbone;

R4 est H ou un radical alkyle ayant 1 à 4 atomes de carbone, alkényle ayant 2 à 4 atomes

de carbone, cycloalkyle ayant 3 à 4 atomes de carbone, OU ORs;

R₅ est un radical alkyle ayant 1 à 4 atomes de carbone;

 R_1 et R_2 , pris ensemble, forment H_2 , H et $ON_1 = 0$, = NOH, H et $N(R_5)_2$, $= NOR_5$,

R₆ est H ou un radical alkyle ayant 1 à 4 atomes de carbone;

- X est le radical pyridinyle ou un radical phényle éventuellement substitué par 1 à 3 substituants dont chacun est, indépendamment des autres, choisis parmi l'ensemble OR_5 ou $S(O)_mR_5$; et vaut O, 1 ou 2:
- m vaut 0, 1 ou 2; ou un de ses sels pharmaceutiquement acceptables.
- 2. Un composé selon la revendication 1, dans lequel B est -NHC(O)R₄ où R₄ est H, CH₃ ou OR₅.
- 3. Un composé selon la revendication 1, dans lequel R₁ et R₂, pris ensemble, forment H₂, H et OH, = O,

- 4. Un Composé selon la revendication 1, dans lequel X est le radical 3-pyridinyle ou un radical phényle éventuellement substitué par 1 ou 2 substituants qui, indépendamment l'un de l'autre, sont chacun choisis parmi les halogènes, NO₂, S(O)_mR₅ ou OR₅.
 - 5. Un composé selon la revendication 1, dans lequel:
 - (a) B est -NHC(O)R₄ où R₄ est H, CH₃ ou OR₅;
 - (b) R_1 et R_2 , pris ensemble, forment H_2 , H et OH, = O, = NOH

et

5

25

30

35

- (c) X est le radical 3-pyridinyle ou un radical phényle éventuellement substitué par 1 ou 2 substituants qui, indépendamment l'un de l'autre, sont choisis parmi les halogènes, NO_2 , $S(O)_mR_5$ ou OR_5 .
- 6. Un composé selon la revendication 1, dans lequel B est -NHC(O)CH $_{\rm 3}$.
- Un composé selon la revendication 1, dans lequel R₁ et R₂, pris ensemble, forment H₂, H et OH, = O

$$= N - N \qquad N - CH_3.$$

- 8. Un composé selon la revendication 1, dans lequel X est un radical phényle éventuellement substitué par 1 ou 2 substituants dont chacun est choisi parmi F, Cl, NO₂ ou OCH₃.
 - Un composé selon la revendication 1, dans lequel:
 (a) B est

(b) R₁ et R₂, pris ensemble, forment H₂, H et OH, = O ou

- (c) X est un radical phényle éventuellement substitué par 1 ou 2 substituants dont chacun est choisi parmi F, Cl, NO₂ ou OCH₃.
- 10. Composés selon la revendication 1, choisis parmi le (1)-N-[3-[4-(2,4-difluorobenzoyl)phényl]-2-oxo-oxazolidin-5-ylméthyl]acétamide; le (1)-N-[3-[4-(4-nitrobenzoyl)phényl]-2-oxo-oxazolidine-5-ylméthyl]acétamide.
- 11. Une composition pharmaceutique constituée essentiellement d'un support pharmaceutiquement approprié et d'une quantité à effet antibactérien d'un composé selon l'une quelconque des revendications 1 à 10.
 - 12. Un procédé de préparation d'un composé selon la revendication 1, qui consiste:
 - (a) quand R_1 et R_2 , pris ensemble, forment = 0, à mettre en contact un composé de formule:

dans laquelle B est tel que défini dans la revendication 1, avec un acide carboxylique de formule:

XCO₂H

5

10

20

25

30

35

40

45

50

55

dans laquelle X est tel que défini dans la revendication 1, en présence d'un mélange d'acide méthanesulfonique et d'anhydride méthanesulfonique, ou d'un mélange d'acide trifluorométhanesulfonique et d'anhydride trifluorométhanesulfonique, pour préparer un composé de formule:

et

- (b) quand R₁ et R₂, pris ensemble, sont tels que définis dans la revendication 1 et sont autres que = 0, à mettre en contact un composé de formule (III) préparé dans l'étape (a) avec:
 - (i) de l'hydrogène gazeux en présence d'un catalyseur d'hydrogénation; ou
 - (ii) un borohydrure de métal alcalin; ou
 - (iii) du (R₅)₂NH en présence de cyanoborohydrure de sodium; ou
 - (iv) du H₂NOH ou H₂NOR5 en présence d'une base; ou
 - (v) de la 1-amino-4-méthylpipérazine dans un solvant au reflux.

Patentansprüche

1. Verbindung der Formel

5 10 (I)

worin

für das t-Isomer oder dieses enthaltende racemische Gemische

NH₂,

20

25

30

35

40

45

15

oder Na ist:

u 1 oder 2 ist;

Rз H, Alkyl mit 1 bis 10 Kohlenstoff-Atomen oder Cycloalkyl mit 3 bis 8 Kohlenstoff-Atomen ist:

 R_4 H, Alkyl mit 1 bis 4 Kohlenstoff-Atomen, Alkenyl mit 2 bis 4 Kohlenstoff-Atomen,

Cycloalkyl mit 3 bis 4 Kohlenstoff-Atomen oder ORs ist;

 R_5 Alkyl mit 1 bis 4 Kohlenstoff-Atomen ist;

R₁ und R₂ zusammengenommen H_2 , H und OH, = O, = NOH, H und $N(R_5)_2$, = NOR_5 ,

O | =NOCR₄ oder =N-N

sind:

 R_6 H oder Alkyl mit 1 bis 4 Kohlenstoff-Atomen ist;

Х Pyridinyl oder Phenyl ist, das gegebenenfalls mit 1 bis 3 Substituenten substituiert ist,

die unabhängig voneinander aus einer aus Halogen, Alkyl mit 1 bis 4 Kohlenstoff-

Atomen, NO_2 , OR_5 oder $S(O)_mR_6$ bestehenden Gruppe ausgewählt sind; und

oder ein pharmazeutisch geeignetes Salz derselben.

2. Verbindung nach Anspruch 1, worin

В 55

ist, worin

R₄ H, CH₃ oder OR₅ ist.

Verbindung nach Anspruch 1, worin
 R₁ und R₂ zusammengenommen H₂, H und OH, = O, = NOH oder

sind.

5

10

15

20

30

35

40

50

- Verbindung nach Anspruch 1, worin X 3-Pyridinyl oder Phenyl ist, das gegebenenfalls mit 1 bis 2 Substituenten substituiert ist, die unabhängig voneinander aus Halogen, NO₂, S(O)_mR₅ oder OR₅ ausgewählt sind.
- 5. Verbindung nach Anspruch 1, worin

O B | -NH-CR_A

25 ist, worin R₄ H, CH₃ oder OR₅ ist;

(b) R₁ und R₂ zusammengenommen H₂, H und OH, = O, = NOH oder

sind; und

- (c) X 3-Pyridinyl oder Phenyl ist, das gegebenenfalls mit 1 bis 2 Substituenten substituiert ist, die unabhängig voneinander aus Halogen, NO_2 , $S(O)_mR_5$ oder OR_5 ausgewählt sind.
- 6. Verbindung nach Anspruch 1, worin

45 ist.

Verbindung nach Anspruch 1, worin
 R₁ und R₂ zusammengenommen H₂, H und OH, = O oder

55 sind.

Verbindung nach Anspruch 1, worin

X Phenyl ist, das gegebenenfalls mit 1 bis 2 Substituenten substituiert ist, die unabhängig

voneinander aus F, CI, NO2 oder OCH3 ausgewählt sind.

9. Verbindung nach Anspruch 1, worin

(a)

5

10

20

25

B -NHCCH3

ist.

(b) R_1 und R_2 zusammengenommen H_2 , H und OH, = O oder

=N-N-CE₃

sind;

(c)

X Phenyl ist, das gegebenenfalls mit 1 bis 2 Substituenten substituiert ist, die unabhängig voneinander aus F, Cl, NO₂ oder OCH₃ ausgewählt sind.

- Verbindungen nach Anspruch 1, ausgewählt aus (1)-N-[3-[4-(2,4-Difluorbenzoyl)phenyl]-2-oxooxazolidin-5-ylmethyl]acetamid; (1)-N-[3-[4-(4-Nitrobenzoyl)phenyl]-2-oxooxazolidin-5-ylmethyl]acetamid; und (1)-N-[3-[4-(4-Fluorbenzoyl)phenyl]-2-oxooxazolidin-5-ylmethyl]acetamid.
- Pharmazeutische Zusammensetzung, bestehend im wesentlichen aus einem pharmazeutisch geeigneten Träger und einer antibakteriellen Menge einer Verbindung nach irgendeinem der Ansprüche 1 bis
- 12. Verfahren zur Herstellung einer Verbindung nach Anspruch 1, umfassend:

(a) wenn R_1 und R_2 zusammengenommen = 0 sind, das InBerührung-Bringen einer Verbindung der Formel

35

30

N O B

45

40

in der B die in Anspruch 1 angegebenen Bedeutungen hat, mit einer Carbonsäure der Formel

XCO₂H

in der X die in Anspruch 1 angegebenen Bedeutungen hat,

in Gegenwart eines Gemischs aus Methansulfonsäure und Methansulfonsäureanhydrid oder eines Gemischs aus Trifluormethansulfonsäure und Trifluormethansulfonsäureanhydrid, um eine Verbindung der Formel

$$X \xrightarrow{O} N \xrightarrow{O} B$$

10

herzustellen; und

- (b) wenn R_1 und R_2 zusammengenommen gemäß der Definition in Anspruch 1 nicht = 0 sind, das In-Berührung-Bringen einer in Schritt (a) hergestellten Verbindung der Formel (III) mit
 - (i) Wasserstoff-Gas in Gegenwart eines Hydrierungs-Katalysators; oder
 - (ii) einem Alkalimetallborhydrid; oder
 - (iii) (R₅)2NH in Gegenwart von Natriumcyanborhydrid; oder
 - (iv) H₂ NOH oder H₂ NOR₅ in Gegenwart einer Base; oder
 - (v) 1-Amino-4-methylpiperazin in einem zum Rückfluß erhitzten Lösungsmittel.

20

15

25

30

35

40

45

50

THIS PAGE BLANK (USPT().

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

fects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPT)