

Nanjing University

ACM-ICPC Codebook 2

Number Theory Linear Algebra Combinatorics

2 CONTENTS

Contents

1	Nun	nber Theory	4
	1.1	Modulo operations	4
		1.1.1 Modular exponentiation (fast power-mod)	4
		1.1.2 Mathematical modulo operation	4
		1.1.3 Modular multiplication on long long	4
	1.2	Extended Euclidian algorithm	4
		1.2.1 Modular multiplicative inverse	4
	1.3	Primality test (Miller-Rabin)	(
	1.4	Sieve of Eratosthenes	-
	1.5	Chinese remainder theorem	-
	1.6	Quadratic residue	1
		1.6.1 Legendre symbol	-
2	Line	ear Algebra	-
	2.1	Modular exponentiation of matrices	,
3	Combinatorics		
	3.1	Pólya enumeration theorem	8

CONTENTS

3

1 Number Theory

1.1 Modulo operations

1.1.1 Modular exponentiation (fast power-mod)

Calculate $b^e \mod m$.

 \triangle Cannot be performed on long long, unless use 1.1.3 Modular multiplication on long long .

Time complexity: $O(\log e)$

```
1
   LL powmod(LL b, LL e, LL m){
       LL r = 1;
2
       while (e){
3
            if (e \& 1) r = r * b % m;
4
            b = b * b % m;
5
6
            e >>= 1;
7
8
       return r;
9
   }
```

1.1.2 Mathematical modulo operation

The result has the same sign as divisor.

```
inline LL mathmod(LL a, LL b){
   return (a % b + b) % b;
}
```

1.1.3 Modular multiplication on long long

Calculate $ab \mod m$, where a, b, m are long long integers.

 \triangle a, b, m must be non-negative.

Time complexity: $O(\log b)$

```
LL mulmod(LL a, LL b, LL m){
LL r = 0;
a %= m; b %= m;
while(b) {
   if(b & 1) r += a, r %= m;
}
```

1.2 Extended Euclidian algorithm

```
Solve ax + by = g = \gcd(a, b) w.r.t. x, y.
```

If (x_0, y_0) is an integer solution of $ax + by = g = \gcd(x, y)$, then every integer solution of it can be written as $(x_0 + kb', y_0 - ka')$, where a' = a/g, b' = b/g, and k is arbitrary integer.

 \triangle x and y must be positive.

Usage:

```
exgcd(a, b, g, x, y) Find a special solution to ax+by=g=\gcd(a,b).
```

Time complexity: $O(\log \min\{a, b\})$

```
void exgcd(LL a, LL b, LL &g, LL &x, LL &y){
   if (!b) g = a, x = 1, y = 0;
   else exgcd(b, a % b, g, y, x), y -= x * (a / b);
}
```

1.2.1 Modular multiplicative inverse

An integer a has modular multiplicative inverse w.r.t. the modulus m, iff $\gcd(a,m)=1$. Assume the inverse is x, then

```
ax \equiv 1 \mod m.
```

Call exgcd(a, m, g, x, y), if g = 1, x + km is the modular multiplicative inverse of a w.r.t. the modulus m.

```
inline LL minv(LL a, LL m){
LL g, x, y;
exgcd(a, m, g, x, y);
return (x % m + m) % m;
}
```

Or, by Fermat's little theorem ($a^p \equiv a \mod p$), when m is a prime, the multiplicative can also be written as $a^{-1} = (a^{p-2} \mod p)$.

1.3 Primality test (Miller-Rabin)

Test whether n is a prime.

 \triangle When n exceeds the range of int, the mul-mod and pow-mod operations should be rewritten.

Requirement:

1.1.1 Modular exponentiation (fast power-mod)

Time complexity: $O(\log n)$

```
bool test(LL n){
1
        if (n < 3) return n==2;
2
        //! The array a[] should be modified if the range of x changes.
 3
        const LL a[] = {2LL, 7LL, 61LL, LLONG MAX};
4
        LL r = 0, d = n-1, x;
5
        while (~d & 1) d >>= 1, r++;
 6
7
        for (int i=0; a[i] < n; i++){</pre>
8
            x = powmod(a[i], d, n);
            if (x == 1 || x == n-1) goto next;
9
10
            rep (i, r) {
                 x = (x * x) % n;
11
                 if (x == n-1) goto next;
12
13
14
            return false;
15
    next:;
16
        return true;
17
18
```

1.4 Sieve of Eratosthenes

1.5 Chinese remainder theorem

1.6 Quadratic residue

1.6.1 Legendre symbol

For non-negative integer a and **odd** prime p, the Legendre symbol is defined as

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } a \mid p \\ 1 & \text{if } a \nmid p \text{ and } a \text{ is a quadratic residue modulo } p \\ p-1 & \text{if } a \nmid p \text{ and } a \text{ is a quadratic non-residue modulo } p \end{cases}$$

Call powmod(a, (p-1)/2, p) to calculate Legendre symbol.

2 Linear Algebra

2.1 Modular exponentiation of matrices

Calculate $b^e \mod modular$, where b is a matrix. The modulus is element-wise.

Usage:

```
n Order of matrices.

modular The divisor in modulo operations.

m_powmod(b, e) Calculate b^e \mod modular. The result is stored in r.
```

Time complexity: $O(n^3 \log e)$

```
const int MAXN = 105;
 1
    const LL modular = 1000000007;
 2
    int n; // order of matrices
 3
 4
 5
    struct matrix{
        LL m[MAXN][MAXN];
6
 7
        void operator *=(matrix& a){
8
            static LL t[MAXN][MAXN];
9
            Rep (i, n){
10
                Rep (j, n){
11
12
                     t[i][j] = 0;
13
                     Rep (k, n){
                         t[i][j] += (m[i][k] * a.m[k][j]) % modular;
14
```

```
t[i][j] %= modular;
15
                     }
16
                 }
17
18
19
            memcpy(m, t, sizeof(t));
        }
20
21
    };
22
    matrix r;
23
    void m_powmod(matrix& b, LL e){
24
        memset(r.m, sizeof(r.m), 0);
25
        Rep(i, n)
26
            r.m[i][i] = 1;
27
        while (e){
28
            if (e & 1) r *= b;
29
            b *= b;
30
31
             e >>= 1;
32
        }
    }
33
```

3 Combinatorics

3.1 Pólya enumeration theorem