Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 2: lista M 7 23 listopada 2016 r.

M7.1. 1 punkt Określmy wielomian $H_{2n+1} \in \Pi_n$ za pomocą wzoru

$$H_{2n+1}(x) = \sum_{k=0}^{n} f(x_k) h_k(x) + \sum_{k=0}^{n} f'(x_k) \bar{h}_k(x),$$

gdzie węzły x_0, \ldots, x_n są parami różne, ponadto

$$\begin{array}{l}
h_k(x) := [1 - 2(x - x_k)\lambda'_k(x_k)]\lambda_k^2(x), \\
\bar{h}_k(x) := (x - x_k)\lambda_k^2(x), \\
\lambda_k(x) := \frac{p_{n+1}(x)}{(x - x_k)p'_{n+1}(x_k)},
\end{array}$$

$$(0 \le k \le n)$$

oraz $p_{n+1}(x)=(x-x_0)(x-x_1)\cdots(x-x_n)$. Wykazać, że H_{2n+1} spełnia warunki

(1)
$$H_{2n+1}(x_i) = f(x_i), \quad H'_{2n+1}(x_i) = f'(x_i) \quad (0 \le i \le n).$$

M7.2. 1,5 punktu Niech będzie $f \in C^{2n+2}[a,b]$ i niech wielomian $H_{2n+1}(x) \in \Pi_{2n+1}$ spełnia warunki (1) dla parami różnych węzłów $x_0, \ldots, x_n \in [a,b]$. Udowodnić, że dla każdego $x \in [a,b]$ istnieje taki punkt $\xi \in (a,b)$, że

$$f(x) - H_{2n+1}(x) = \frac{1}{(2n+2)!} f^{(2n+2)}(\xi) p_{n+1}^2(x).$$

M7.3. 1 punkt Wyznaczyć wielomian $H_5 \in \Pi_5$, spełniający warunki $H_5(x_i) = y_i$, $H_5'(x_i) = y_i'$ (i = 0, 1, 2), gdzie x_i, y_i, y_i' mają następujące wartości:

i	x_i	y_i	y_i'
0	-1	7	-1
1	0	6	0
2	2	22	56

M7.4. 1 punkt, Włącz komputer! Niech $f(x) = e^{\arctan(x)}$. Rozważyć interpolację w przedziale [a,b] := [-5,5] w n+1 równoodległych węzłach. Znaleźć postać potęgową wielomianu interpolacyjnego $L_n(x)$ oraz naturalną funkcję sklejaną trzeciego stopnia s(x). Rozważyć n=10,20,30 i podać wartości całek

$$\int_{a}^{b} [f''(x)]^{2} dx, \qquad \int_{a}^{b} [L''_{n}(x)]^{2} dx, \qquad \int_{a}^{b} [s''(x)]^{2} dx.$$

Wyniki należy przedstawić z dokładnością do 8 cyfr dziesiętnych.

M7.5. 1 punkt Wykazać, że jeśli s jest naturalną funkcją sklejaną trzeciego stopnia, interpolującą funkcję f w węzłach x_0, x_1, \ldots, x_n $(a = x_0 < x_1 < \ldots < x_n = b)$, to

$$\int_{a}^{b} [s''(x)]^{2} dx = \sum_{k=1}^{n-1} (f[x_{k}, x_{k+1}] - f[x_{k-1}, x_{k}]) M_{k},$$

gdzie $M_k := s''(x_k) \ (k = 0, 1, \dots, n).$

M7.6. $\boxed{1 \text{ punkt}}$ Wielomiany Bernsteina n-tego stopnia definiujemy następująco

$$B_i^{(n)}(t) := \binom{n}{i} t^i (1-t)^{n-i}, \qquad i = 0, 1, \dots, n, \quad n \geqslant 0.$$

Udowodnić następujące własności:

- a) $\sum_{i=0}^{n} B_i^{(n)}(t) \equiv 1$.
- b) $B_i^{(n)}(t) \ge 0$ dla $t \in [0, 1]$.
- c) $B_i^{(n)}(t) = (1-t)B_i^{(n-1)}(t) + tB_{i-1}^{(n-1)}(t)$.
- d) $\left[B_i^{(n)}(t)\right]' = n\left(B_{i-1}^{(n-1)}(t) B_i^{(n-1)}(t)\right)$.
- e) $B_i^{(n)}(t) = \frac{n+1-i}{n+1}B_i^{(n+1)}(t) + \frac{i+1}{n+1}B_{i+1}^{(n+1)}(t)$.

M7.7. 1 punkt Niech $B_i^{(n)}(t)$ oznaczają wielomiany Bernsteina n-tego stopnia. Wyprowadzić wzory na współczynniki $a_k^{(n,i)}$, $b_k^{(n,i)}$, dla których

$$B_i^{(n)}(t) = \sum_{k=0}^n a_k^{(n,i)} t^k, \qquad t^i = \sum_{k=0}^n b_k^{(n,i)} B_k^{(n)}(t).$$

M7.8. 1 punkt Niech wielomian $p \in \Pi_n$ będzie dany w postaci Béziera

(2)
$$p(t) = \sum_{i=0}^{n} \beta_i B_i^n(t).$$

Wykazać, że

$$p^{(r)}(t) = \frac{n!}{(n-r)!} \sum_{i=0}^{n-r} (\Delta^r \beta_i) B_i^{n-r}(t) \qquad (r = 0, 1, 2, \ldots),$$

gdzie $\Delta^0 \beta_i = \beta_i$ oraz $\Delta^r \beta_i = \Delta^{r-1} \beta_{i+1} - \Delta^{r-1} \beta_i \ (r=1,2,\ldots)$. Wywnioskować stąd, że

$$p^{(r)}(0) = \frac{n!}{(n-r)!} \Delta^r \beta_0, \qquad p^{(r)}(1) = \frac{n!}{(n-r)!} \Delta^r \beta_{n-r}.$$

M7.9. 1,5 punktu Niech będą dane n+1 parami różne punkty $t_0, t_1, \ldots, t_n \in [0, 1]$. Opracować algorytm, który dla danych współczynników c_0, c_1, \ldots, c_n postaci Newtona

$$L_n(t) = \sum_{i=0}^{n} c_i \prod_{j=0}^{i-1} (t - t_i)$$

wielomianu $L_n \in \Pi_n$ oblicza współczynniki $\beta_0, \beta_1, \dots, \beta_n$ jego postaci Béziera

$$L_n(t) = \sum_{k=0}^n \beta_k B_k^n(t).$$