Problem Set 6

Problem 1: The PDF of exp(X)

Let X be a random variable with PDF f_X . Find the PDF of the random variable $Y = e^X$ for each of the following cases:

- 1. For general f_X , when y > 0, $f_Y(y) =$
- 2. When $f_X(x) = \begin{cases} 1/3, & \text{if } -2 < x \le 1, \\ 0, & \text{otherwise,} \end{cases}$

we have
$$f_Y(y) = \begin{cases} g(y), & \text{if } a < y \leq b, \\ 0, & \text{otherwise.} \end{cases}$$

Give a formula for g(y) and the values of a and b using standard notation. (In your answers, you may use the symbol 'e' to denote the base of the natural logarithm.)

$$g(y) =$$

$$a =$$

$$b =$$

3. When
$$f_X(x) = \begin{cases} 2e^{-2x}, & \text{if } x > 0, \\ 0, & \text{otherwise,} \end{cases}$$

we have
$$f_Y(y) = \begin{cases} g(y), & \text{if } a < y, \\ 0, & \text{otherwise.} \end{cases}$$

Give a formula for g(y) and the value of a using the standard notation.

$$g(y) =$$

$$a =$$

4. When X is a standard normal random variable, we have, for y > 0, $f_Y(y) =$

Problem 2: Functions of a standard normal

The random variable X has a standard normal distribution. Find the PDF of the random variable Y, where:

1.
$$Y = 3X - 1$$
.

2.
$$Y = 3X^2 - 1$$
. For $y \ge -1$,

Problem 3: The PDF of the maximum

Let X and Y be independent random variables, each uniformly distributed on the interval [0, 1].

1. Let $Z = \max\{X, Y\}$. Find the PDF of Z. Express your answer in terms of z using standard notation.

For
$$0 < z < 1$$
, $f_Z(z) =$

2. Let $Z = \max\{2X, Y\}$. Find the PDF of Z. Express your answer in terms of z using standard notation.

For
$$0 < z < 1$$
, $f_Z(z) =$

For
$$1 < z < 2$$
, $f_Z(z) =$

Problem 4: Convolution calculations

1. Let the discrete random variable X be uniform on $\{0,1,2\}$ and let the discrete random variable Y be uniform on $\{3,4\}$. Assume that X and Y are independent. Find the PMF of X+Y using convolution. Determine the values of the constants a,b,c, and d that appear in the following specification of the PMF.

$$p_{X+Y}(z) = \begin{cases} a, & z = 3, \\ b, & z = 4, \\ c, & z = 5, \\ d, & z = 6, \\ 0, & \text{otherwise.} \end{cases}$$

$$a = b = c = d = d = d$$

2. Let the random variable X be uniform on [0,2] and the random variable Y be uniform on [3,4]. (Note that in this case, X and Y are continuous random variables.) Assume that X and Y are independent. Let Z=X+Y. Find the PDF of Z using convolution. The following figure shows a plot of this PDF. Determine the values of a,b,c,d, and e.

$$a =$$

$$b =$$

$$d =$$

$$e =$$

3. Let X and Y be two independent random variables with the PDFs shown below. below.

$$f_X(x) = \begin{cases} 5, & \text{if } 0 \le x \le 0.1 \text{ or } 0.9 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$f_Y(y) = \begin{cases} 1, & \text{if } 0 \le y \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Let W = X + Y. The following figure shows a plot of the PDF of W. Determine the values of a, b, c, d, e, f, and g.

u —

h —

c =

d =

•

f =

g =

Problem 5: Covariance for the multinomial

Consider n independent rolls of a k-sided fair die with $k \geq 2$: the sides of the die are labelled 1, $2, \ldots, k$ and each side has probability 1/k of facing up after a roll. Let the random variable X_i denote the number of rolls that result in side i facing up. Thus, the random vector (X_1, \ldots, X_k) has a multinomial distribution.

1. Which of the following statements is correct? Try to answer without doing any calculations.

 X_1 and X_2 are uncorrelated.

 X_1 and X_2 are positively correlated.

 X_1 and X_2 are negatively correlated.

2. Find the covariance, $cov(X_1, X_2)$, of X_1 and X_2 . Express your answer as a function of n and k using standard notation. *Hint:* Use indicator variables to encode the result of each roll.

$$cov(X_1, X_2) =$$

3. Suppose now that the die is biased, with a probability $p_i \neq 0$ that the result of any given die roll is i, for i = 1, 2, ..., k. We still consider n independent tosses of this biased die and define X_i to be the number of rolls that result in side i facing up.

Generalize your answer to part 2: Find $cov(X_1, X_2)$ for this case of a biased die. Express your answer as a function of n, k, p_1, p_2 using standard notation. Write p_1 and p_2 as p_1 and p_2 , respectively, and wrap them in parentheses in your answer; i.e., enter (p_1) and (p_2) . $cov(X_1, X_2) =$

Problem 6: Correlation coefficients

Consider the random variables X, Y and Z, which are given to be pairwise uncorrelated (i.e., X and Y are uncorrelated, X and Z are uncorrelated, and Y and Z are uncorrelated). Suppose that

- $\mathbf{E}[X] = \mathbf{E}[Y] = \mathbf{E}[Z] = 0$,
- $\mathbf{E}[X^2] = \mathbf{E}[Y^2] = \mathbf{E}[Z^2] = 1$,
- $\mathbf{E}[X^3] = \mathbf{E}[Y^3] = \mathbf{E}[Z^3] = 0,$
- $\mathbf{E}[X^4] = \mathbf{E}[Y^4] = \mathbf{E}[Z^4] = 3.$

Let $W = a + bX + cX^2$ and V = dX, where a, b, c, and d are constants, all greater than 0.

Find the correlation coefficients $\rho(X-Y,X+Y)$, $\rho(X+Y,Y+Z)$, $\rho(X,Y+Z)$ and $\rho(W,V)$.

- 1. $\rho(X Y, X + Y) =$
- 2. $\rho(X + Y, Y + Z) =$
- 3. $\rho(X, Y + Z) =$
- 4. $\rho(W, V) =$

Problem 7: Sum of a random number of r.v.'s

A fair coin is flipped independently until the first Heads is observed. Let K be the number of Tails observed **before** the first Heads (note that K is a random variable). For $k = 0, 1, 2, \ldots, K$, let X_k be a continuous random variable that is uniform over the inter-val [0, 3]. The X_k 's are independent of one another and of the coin flips. Let the random variable X be defined as the sum of all the X_k 's generated before the first Heads. That is, $X = \sum_{k=0}^{K} X_k$. Find the mean and variance of X. You may use the fact that the mean and variance of a geometric random variable with parameter p are 1/p and $(1-p)/p^2$, respectively.

 $\mathbf{E}[X] =$

var(X) =