Geometric Fundamentals

A Few Practice Problems From 2020 Olympiads

Alex Song

- 1. (Czech-Polish-Slovak 2020) Let ABCD be a parallelogram whose diagonals meet at P. Denote by M the midpoint of AB. Let Q be a point such that QA is tangent to the circumcircle of MAD and QB is tangent to the circumcircle of MBC. Prove that points Q, M, P are collinear.
- 2. (IberoAmerican 2020) Let ABC be an acute scalene triangle such that AB < AC. The midpoints of sides AB and AC are M and N, respectively. Let P and Q be points on the line MN such that $\angle CBP = \angle ACB$ and $\angle QCB = \angle CBA$. The circumscribed circle of triangle ABP intersects line AC at D ($D \neq A$) and the circumscribed circle of triangle AQC intersects line AB at E ($E \neq A$). Show that lines BC, DP, and EQ are concurrent.
- 3. (USAMTS 2020) Let ABC be a triangle with AB < AC. T is the point on \overline{BC} such that \overline{AT} is tangent to the circumcircle of $\triangle ABC$. Additionally, H and O are the orthocenter and circumcenter of $\triangle ABC$, respectively. Suppose that \overline{CH} passes through the midpoint of \overline{AT} . Prove that \overline{AO} bisects \overline{CH} .
- 4. (Cono Sur 2020) Let ABC be an acute triangle such that AC < BC and ω its circumcircle. M is the midpoint of BC. Points F and E are chosen in AB and BC, respectively, such that AC = CF and EB = EF. The line AM intersects ω in $D \neq A$. The line DE intersects the line FM in G. Prove that G lies on ω .
- 5. (Global Quarantine Math Olympiad 2020) Let ABC be an acute scalene triangle, with the feet of A, B, C onto BC, CA, AB being D, E, F respectively. Let W be a point inside ABC whose reflections over BC, CA, AB are W_a, W_b, W_c respectively. Finally, let N and I be the circumcenter and the incenter of W_aW_bW_c respectively. Prove that, if N coincides with the nine-point center of DEF, the line WI is parallel to the Euler line of ABC.

More problems here: https://sites.google.com/site/imocanada/2017-winter-camp