C.R. Math. Rep. Acad. Sci. Canada - Vol. VII, No. 3, June 1985 juin

6-ANNEAUX ET VECTEURS DE WITT

ANDRE JOYAL

Presented by P. Ribenboim, F.R.S.C.

Résumé

Nous donnons à la théorie des vecteurs de Witt une formulation nouvelle en utilisant les méthodes de l'algèbre universelle et de la théorie des catégories. On introduit une structure algébrique, celle de 6-anneau. Un 6-anneau est un anneau commutatif muni d'une opération unaire supplémentaire satisfaisant à des identités algébriques simples. Le résultat principal consiste à montrer que le foncteur oubliant de la catégorie des 6-anneaux vers celle des anneaux commutatifs possède un adjoint à <u>droite</u> W. Un calcul explicite permet l'identification de W(A) avec l'anneau des vecteurs de Witt sur A. On donne des démontrations plus conceptuelles de plusieurs résultats de la théorie des vecteurs de Witt [7,2].

1- δ-anneaux

Fixons une fois pour toute un nombre premier p et une puissance $q=p^r$ $(r \ge 0)$.

DEFINITION 1 Un δ -anneau A est un anneau commutatif muni d'une opération unaire δ : A + A satisfaisant aux identités suivantes:

i)
$$\delta(x+y) = \delta(x) + \delta(y) - \sum_{i=1}^{q-1} \frac{1}{p} {q \choose i} x^i y^{q-i}$$

ii)
$$\delta(xy) = x^q \delta(y) + \delta(x) y^q + p \delta(x) \delta(y)$$
, $\delta(1) = 0$

Nous dirons aussi que A est un δ -anneau relativement au couple (p,q).

Ces conditions entraînent que l'opération unaire $f(x) = x^{q} + p\delta(x)$ est un endomorphisme de l'anneau A:

$$f(x+y) = f(x) + f(y)$$

 $f(xy) = f(x)f(y)$
 $f(1) = 1$

Nous dirons que f est l'<u>endomorphisme</u> <u>de</u> <u>Frobenius</u>. Inversement, soit f un endomorphisme d'un anneau commutatif A sans p-torsion. Supposons que pour tout $x \in A$

$$f(x) \equiv x^q \mod pA$$

On obtient une structure de δ -anneau sur A en définissant δ comme suit:

$$\delta(x) = \frac{1}{p}(f(x) - x^q)$$

Exemple 2 Soit L une extension galoisienne d'un corps K. Soit BcL un anneau de valuation discrète et soit A=BnK. On suppose que $p=p\cdot l$ est une uniformisante pour B et que $A/pA \approx F_q$. On sait montrer [l] l'existence d'une substitution de Frobenius $\sigma \epsilon Galois$ (L/K) caractérisée par

- f(B) = B
- 11) $\sigma(x) \equiv x^q \mod pB$

Un morphisme de δ -anneau est un homomorphisme d'anneaux qui préserve δ . Nous dirons aussi que c'est un δ -morphisme. On vérifie que l'endomorphisme de Frobenius est un δ -morphisme.

THEOREME 1 Soit $Z[x_0,x_1,\ldots]$ l'anneau des polynômes sur une suite infinie d'indéterminés. Il y a une seule structure de δ -anneau sur $Z[x_0,x_1,\ldots]$ pour laquelle $\delta(x_n)=x_{n+1}$ pour tout n. Muni de cette structure, $Z[x_0,x_1,\ldots]$ est un δ -anneau libre sur x_0 .

Désignons par \underline{A} la catégorie des anneaux et par $\underline{\delta A}$ celle des δ -anneaux.

THEOREME 2 Le foncteur oubliant U: $\underline{\delta A} \rightarrow \underline{A}$ possède un adjoint à droite W: $\underline{A} \rightarrow \underline{\delta A}$.

La théorie des catégorie [6] met en évidence l'équivalence entre le théorème précédent et le suivant:

THEOREME 3 Soient A \rightarrow B et A \rightarrow C des morphismes de δ -anneaux. Considérons le carré

Il y a sur B®C une seule structure de δ -anneaux pour laquelle i_1 et i_2 sont des δ -morphismes.

On peut donner une démonstration directe de ces théorèmes ou encore utiliser [8,9]. Comme conséquence, on a:

COROLLAIRE Le foncteur W: $\underline{A} \Rightarrow \underline{\delta A}$ est représentable par l'anneau $Z[x_0, x_1, \ldots]$. Il y a une bijection naturelle:

$$\gamma_A : W(A) \stackrel{\sim}{\rightarrow} A^N$$

La bijection γ_A s'explicite comme suit:

$$W(A) \simeq Hom_{\delta}(Z[x_0,x_1,...], W(A))$$

 $\simeq Hom(Z[x_0,x_1,...], A)$
 $\simeq A^N$

2- Vecteurs de Witt

Pour voir que W(A) est isomorphe à l'anneau des vecteurs de Witt sur A, il suffira d'utiliser une description différente du ó-anneau libre sur un générateur. Cette description est basée sur le résultat suivant.

PROPOSITION 1 On peut définir dans la théorie des δ -anneaux une suite unique d'opérations unaires $\delta_0, \delta_1, \delta_2, \ldots$ vérifiant les identités

$$f^{n}(x) = \delta_{0}(x)^{q^{n}} + p\delta_{1}(x)^{q^{n-1}} + ... + p^{n}\delta_{n}(x)$$
 (n\ge 0)

Les deux premiers termes de la suite sont $\delta_0(x) = x$ et $\delta_1(x) = \delta(x)$.

PROPOSITION 2 If y a sur $\mathbb{Z}[Y_0,Y_1,Y_2,...]$ une seule structure de δ -anneau pour laquelle $\delta_n(Y_0) = Y_n$ pour tout $n \ge 0$. Muni de cette structure, $\mathbb{Z}[Y_0,Y_1,Y_2,...]$ est un δ -anneau libre sur Y_0 .

THEOREME 4 Si q=p l'anneau W(A) s'identifie à l'anneau des vecteurs de Wittsur A.

A chaque element xeW(A) correspondant un vecteur de Witt $\pi_A(x) \in A^N$. La description de π_A est semblable à celle de γ_A mais elle utilise plutôt le δ -anneau libre $2[Y_0,Y_1,\ldots]$.

L'endofoncteur composé $\underline{A} + \underline{6A} \Rightarrow \underline{A}$ est une co-monade [6,3,2] sur \underline{A} . Pour simplifier, nous noterons encore ce foncteur par W. On a des transformations naturelles

$$W(A) \xrightarrow{\epsilon_{A}} A \qquad W(A) \xrightarrow{E_{A}} W(W(A))$$

satisfaisant à des conditions d'associativité et d'unité. L'homomorphisme E_A est étroitement relié à l'exponentielle de Artin-Hasse [3]. Une structure de δ -anneau sur A équivaut à une structure de co-algèbre [6] $\underline{\delta}$: A \rightarrow H(A). Celle-ci se décrit comme suit: pour tout xeA on a $\pi_A \underline{\delta}(x) = (\delta_0(x), \ \delta_1(x), \dots)$.

Remarques

- 1) Soit A un anneau sans p-torsion muni d'un endomorphisme f tel que pour tout $x \in A$, $f(x) \equiv x^q \mod pA$. Le lemme de Dieudonné-Cartier [4, page 508] affirme l'existence d'un homomorphisme $s_f \colon A \to W(A)$. Ce résultat s'interprête comme suit dans le contexte présent: les hypothèses entraînent l'existence d'une structure de δ -anneau sur A et on vérifie que $s_f = \underline{\delta}$.
- Sous les hypothèses de la remarque précédente, on donne une description particulièrement simple de W(A) [5]. Posons

$$B = \{(a_n) \in A^N | a_{n+1} = f(a_n) \mod p^{n+1} \ \forall n\}$$

On vérifie que B est un sous-anneau de l'anneau produit A^N . L'opérateur de translation $t((a_n))=(a_{n+1})$ est un endomorphisme de B et pour tout $x \in B$,

$$t(x) \equiv x^{Q} \mod pB$$

Comme B est sans p-torsion, on a une structure de δ -anneau sur B pour laquelle t est l'endomorphisme de Frobenius. On vérifie ensuite directement

qu'avec la projection $B \Rightarrow A$, B devient le δ -anneau co-libre sur l'anneau A, donc que $B \approx W(A)$.

Bibliographie

- [1] Bourbaki. Algēbre, Chap. V, 11.
- [2] Bourbaki. Algèbre, Chap. 8 et 9.
- [3] M. Hazewinkel. Formal Groups and Applications. Academic Press Monographs 78, 1978.
- [4] L. Illusie. Complexe de De Rham-Witt et cohomologie cristalline. Annales Scientifiques de l'Ecole Normale Supérieure. 4^o série, tl2, 1979, p. 501 à 661.
- [5] M. Lazard. Commutative Formal Groups. Lect. Notes in Math. 443, Springer-Verlag.
- [6] S. MacLane. Category theory for the working Mathematician. Graduate text in Math. 5, Springer Verlag.
- [7] P. Ribenboim. L'Arithmétique des corps. Hermann, Paris 1972.
- [8] D.O. Tall, G.C. Wraith. Representable Functors and Operations on Rings. Proceedings of the London Mathematical Society (3) 20 (1970) p. 619-643.
- [9] G.C. Wraith. Algebras over theories. Colloquium Mathematicum. vol. XXIII (1971) fasc 2.

Département de Mathématiques et d'informatique Université du Québec à Montréal

Received March 28, 1985