Step1 Team Project Multivariate Analysis

Adrian White, Cesar Conejo, Xavier Bryant

12/6/2020

Introduction data set

We have selected the CRASH-2 data set provided by Vanderbilt School of Biostatistics for our project. It describes the outcome of a randomized controlled trial and economic valuation of the effects of transcamic acid on death, vascular occlusive events, and transfusion requirement in bleeding trauma patients. Transcamic acid reduces bleeding in trauma patients undergoing surgery but is an expensive treatment option. The trial's objective was to assess the effects and cost-effectiveness of an early administration of this medication.

Participants of the study were adults with, or at risk of, significant bleeding within 8 hours of injury. Sample randomization was determined by the allocation of an eight-digit sequence randomly generated by a computer. Patients and staff were masked to the treatment allocation of the transcamic acid.

We have adjusted the original data set to remove some variables that were not relevant to our investigation. We have removed variables regarding the exact surgical procedures administered to patients, various IDs, and details on the patient outcome. We removed the health outcome columns because of complications regarding missing data, where the boolean structure of the columns relating to specific outcomes, like stroke or pulmonary embolism, left a large number of cases with missing values. Instead, we added a boolean variable for a general outcome of survival to assess the efficacy of the procedure, rather than looking at particular health outcomes in post-surgery for living patients.

We will be using variables regarding the sex, age, and injury of the patient as well as certain biometrics, like blood pressure, respiratory and heart rates, details on surgical blood transfusion, and a boolean variable on the survival of the patient. Our selection provides us with a balance of continuous and categorical variables, many of which are boolean, with minimal complications due to missing data.

Summary variables in the data set

The variables in this dataset are the following:

- 1. sex: (Boolean) The sex of the patient (Male/Female)
- 2. age: (Numerical) Age of the patient(Years)
- 3. injurytime: (Numerical) Hours since injury (Hours)
- 4. injurytype: (Categorical) Type of injury {Blunt, Penetrating, Blunt and Penetrating}
- 5. sbp: (Numerical) Systolic Blood Pressure (mmHg)
- 6. rr: (Numerical) Respiratory Rate (rate per minute)
- 7. cc: (Numerical) Central Capillary Refille Time (seconds)
- 8. hr: (Numerical) Heart Rate (rate per minute)
- 9. ndaysicu: (Numerical) Number of days in ICU (days)
- 10. ncell: (Numerical) Number of Units of Red Call Products Transfused.

11. Death: (Boolean) Indicator if the patient survived after the procedure A summary of the data type is the following:

variable	$type_variable$	sub_type_variable
sex	Qualitative	Nominal
age	Quantitative	Continuous
injurytime	Quantitative	Continuous
injurytype	Qualitative	Nominal
sbp	Quantitative	Continuous
rr	Quantitative	Continuous
cc	Quantitative	Continuous
hr	Quantitative	Continuous
ndaysicu	Quantitative	Discrete
ncell	Quantitative	Continuous
death	Qualitative	Nominal

A review of the structure of the dataset is the following:

```
## 'data.frame':
                   9497 obs. of 11 variables:
               : Factor w/ 2 levels "male", "female": 1 1 1 1 1 1 1 1 2 ...
##
   $ sex
##
               : int 50 30 40 19 27 16 29 41 56 37 ...
   $ age
   $ injurytime: num 1 1 2 3 0.5 1 1 0.5 0.5 8 ...
   $ injurytype: Factor w/ 3 levels "blunt", "penetrating", ..: 1 1 2 2 2 2 1 2 1 2 ...
##
##
   $ sbp
               : int 75 70 60 90 90 90 116 120 60 104 ...
##
   $ rr
                : int
                      28 26 20 30 26 28 15 15 9 23 ...
##
   $ cc
                : int
                      5 6 5 5 5 2 3 3 3 5 ...
##
   $ hr
                : int
                      120 130 120 90 96 118 118 70 100 92 ...
##
               : num 06297077232...
   $ ndaysicu
   $ ncell
                : num 1 2 4 2 1 1 16 8 4 4 ...
   $ death
                : Factor w/ 2 levels "0","1": 2 1 2 2 1 1 1 1 1 1 ...
```

A summary of the values in the data set are:

```
##
                                      injurytime
        sex
                                                                        injurytype
                        age
##
    male :7906
                   Min.
                           :14.00
                                    Min.
                                           : 0.100
                                                      blunt
                                                                             :5211
##
    female:1591
                   1st Qu.:24.00
                                    1st Qu.: 1.000
                                                      penetrating
                                                                             :2937
##
                   Median :31.00
                                    Median : 3.000
                                                      blunt and penetrating: 1349
##
                   Mean
                          :34.66
                                    Mean
                                           : 3.094
##
                   3rd Qu.:43.00
                                    3rd Qu.: 4.500
##
                   Max.
                           :96.00
                                            :48.000
                                    Max.
##
         sbp
                                                                hr
##
          : 4.00
                              : 2.00
                                               : 1.000
                                                                 : 3.0
    Min.
                      Min.
                                       Min.
                                                          Min.
    1st Qu.: 80.00
                                       1st Qu.: 2.000
                                                          1st Qu.: 96.0
##
                      1st Qu.:20.00
##
    Median : 90.00
                      Median :22.00
                                       Median : 3.000
                                                          Median :110.0
##
    Mean
           : 93.13
                      Mean
                              :23.46
                                       Mean
                                               : 3.438
                                                          Mean
                                                                 :108.1
                                                          3rd Qu.:120.0
##
    3rd Qu.:104.00
                      3rd Qu.:28.00
                                       3rd Qu.: 4.000
##
    Max.
            :225.00
                              :91.00
                                       Max.
                                               :20.000
                                                          Max.
                                                                 :220.0
                      Max.
##
       ndaysicu
                          ncell
                                        death
                                        0:7672
    Min.
           : 0.000
                      Min.
                              : 0.000
                      1st Qu.: 2.000
##
    1st Qu.: 0.000
                                         1:1825
## Median : 1.000
                      Median : 3.000
## Mean
           : 4.137
                      Mean
                              : 3.912
    3rd Qu.: 5.000
                      3rd Qu.: 5.000
## Max.
            :58.000
                              :60.000
                      {\tt Max.}
```

Finally, the list of different values by column is the following:

Table 2: Count of distinct values of each variable

sex	age	injurytime	injurytype	sbp	rr	cc	hr	ndaysicu	ncell	death
2	81	78	3	153	58	16	154	47	47	2

Visual Analysis

First, we will review the distribution of the variables involve in the dataset

In the case of age, the figure 1 reflects how this variable appears to be largely weighted to the left, with lower ages featuring more frequently than those that are greater, possibly reflecting that younger people often take more risk and work higher at-risk occupations, raising their chance of experiencing trauma involving bleeding.

Figure 1: Distribution of age variable

The figure 2 show the distribution of the variable Injury time. We can see how this variable is highly positive skewed with almost all values falling below ten minutes since the injury was experienced. This is likely due to the fact that in cases of serious injury victims are brought to the hospital quite quickly. Then, we apply a log transformation log_injurytime = log(injurytime + 1) to this variables as we can see in figure 3.

For sbp (Systolic Blood Pressure), the distribution is a fairly centrally balanced distribution around 90 mmHg. This is logical as a sample of biological characteristics observed in a population is likely to have most people around the mean and then a reasonably tight distribution of those who differ, similar to that of other biological features like height. Furthermore, most people are fairly young in the sample and therefore would have rates that deviant less from the norm, at a healthy level. The distribution is given by figure 4.

In the case of rr (Respiratory Rate) appears, similar to sbp, resembling a moderately balanced distribution around 22 respirations per minute, although is weighted more to the right. The distribution of this variable is showed in figure 5. Taking a log transformation $log_rr = log(rr)$, we have the new distribution in figure 6.

In the case of hr (Heart rate), figure 7 show that this distribution seems fairly balanced at around 110, similar to the variables above, like sbp and rr.

For cc (Central capillary) refill has 75% of the observations below of 4 as we can appreciate in figure 8.

Figure 2: Distribution of injurytime variable

Figure 3: Distribution of the log injurytime variable

Figure 4: Distribution of sbp (Systolic Blood Pressure)

Figure 5: Distribution of rr (Respiratory Rate)

Figure 6: Distribution of log transformation of rr (Respiratory Rate)

Figure 7: Distribution of hh (hearth Rate)

However, the distribution is right-skewed. As a result, we apply a *log* transformation log_cc = log(cc) that is given in figure 9.

Figure 8: Distribution of cc (Central capillary)

Figure 9: Distribution of log transformation of cc (Central capillary)

The figure 10 shows the distribution of the *ndaysicu*: variable. In this case, the distribution is heavily weighted to the left and right-skewed. Most patients it seems, with injuries at high risk of bleeding, do not often need to remain in the hospital for long. The transformed distribution log_ndaysicu = log(ndaysicu + 1) is given in the figure 11.

Finally, for the *ncell*distribution is weighted to the left with a median of 3 as we can appreciate in the figure 12. The conclusion of this it that with many patients, only needing a small number of or zero units of red cell products transfused. Due to this variable is highly right skewed, we apply the *log* transformation log_ncell = log(ncell + 1) of the figure 13.

For the categorical variables, we will focus on the distributions of deaths. The figure 14, shows that

Figure 10: Distribution of ndaysicu

Figure 11: Distribution of log ndaysicu

Figure 12: Distribution of ncell

Figure 13: Distribution of log ncell

approximately for each death, 4 people survive. In the context of this problem, if we have an unbalanced proportion of people that survive can be considered as a sign that the drugs works.

Figure 14: Distribution of deaths

On the other hand, we can study some relations of the quantitative variables in terms of the categorical variable death. Figure 15 . . .

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Figure 15: Distribution of age in terms of death

Figure 16

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Figure 16: Distribution of the log injurytime in terms of death

Figure 17

Figure 17: Distribution of sbp (Systolic Blood Pressure) in terms of death

Figure 16 ...

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Figure 18: Distribution of log transformation of rr (Respiratory Rate) in terms of death

Figure 19 ...

commodo consequat.

Figure 19: Distribution of hh (hearth Rate) in terms of death

Figure 20 ...

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Figure 20: Distribution of log transformation of cc (Central capillary) in terms of death

Figure 21

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Figure 22 ...

Figure 21: Distribution of log ndaysicu in terms of death

Figure 22: Distribution of log ncell in terms of death

Finally, the scatter plot in figure 23 ...

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

The PCP plot in figure 24...

Figure 23: Scatter plot of all quantitiative variables

commodo consequat.

96 33.8918 225 4.511 3 220 4.08 4.11 14 0.0053 4 0.003 0 3 0.00 0.000 age log_injurytime sbp log_rr log_cc hr log_ndaysicu log_nacell

PCP for individuals in Crash2 trial in terms of death

Figure 24: PCP plot of all quantitiative variables

The Andrews' plot in figure 25...

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

In conclusion

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

In the next section we will make some inference using sample estimators of mean, covariance, correlation

Andrews' Plot for individuals in Crash2 trial in terms of death

Figure 25: Andrews' plot of all quantitiative variables

Sample Estimators

Sample mean

All population...

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Table 3: Sample mean

age	sbp	hr	log_injurytime	log_rr	log_cc	log_ndaysicu	log_ncell
34.66474	93.12909	108.0621	1.26759	3.106722	1.116876	0.9976935	1.394665

Population with death $= 1 \dots$

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Table 4: Sample mean death

age	sbp	hr	log_injurytime	log_rr	\log_{cc}	log_ndaysicu	log_ncell
37.82849	87.33808	111.4559	1.240578	3.110272	1.232432	0.9390286	1.524647

Survival population

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Table 5: Sample mean survive

age	sbp	hr	log_injurytime	log_rr	log_cc	log_ndaysicu	log_ncell
33.91215	94.50665	107.2548	1.274015	3.105878	1.089387	1.011649	1.363745

Sample covariance

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Table 6: Sample covariance matrix

age	sbp	hr	$\log_{injurytime}$	\log_{rr}	$\log _cc$	$\log_{ndaysic}$	u log_ncell
201.8020767	5.6687061	-	0.5843356	0.0754442	0.3511496	1.1379316	0.1173186
		26.9775900					
5.6687061	604.1019094	-	1.8258493	-	-	1.6117323	-
		117.2846636		0.3695028	2.8828312		1.9082923
-	-	459.8457610	-0.0753408	1.3004116	0.8685547	0.9063157	1.4739129
26.9775900	117.2846636						
0.5843356	1.8258493	-0.0753408	0.2877629	-	0.0126630	0.0863252	0.0034858
				0.0037522			
0.0754442	-0.3695028	1.3004116	-0.0037522	0.1092305	0.0119420	-0.0260511	-
							0.0025718
0.3511496	-2.8828312	0.8685547	0.0126630	0.0119420	0.2448313	0.0636306	0.0344845
1.1379316	1.6117323	0.9063157	0.0863252	-	0.0636306	1.1508972	0.1949716
				0.0260511			
0.1173186	-1.9082923	1.4739129	0.0034858	-	0.0344845	0.1949716	0.3404679
				0.0025718			

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Table 7: Sample covariance matrix death patients

age	sbp	hr	$\log_{-injurytime}$	\log_{rr}	$\log _cc$	log_ndaysic	u log_ncell
261.7057666	17.272379	-	0.8025150	0.0945272	0.3294187	1.1929405	_
		51.3011548					0.3849756
17.2723792	705.035309	-	2.4101714	0.4360450	-	4.1185430	-
		116.7715375			3.2088292		2.2891556
-	-	564.8052079	0.0045026	1.7090123	1.1424702	0.7975679	1.9352979
51.3011548	116.771537						
0.8025150	2.410171	0.0045026	0.2799950	0.0020301	0.0093817	0.0999836	-
							0.0265201
0.0945272	0.436045	1.7090123	0.0020301	0.1899808	0.0014615	-0.0137661	-
							0.0143161
0.3294187	-3.208829	1.1424702	0.0093817	0.0014615	0.2228162	-0.0160445	0.0149818
1.1929405	4.118543	0.7975679	0.0999836	-	-	0.8604265	0.1140010
				0.0137661	0.0160445		
-0.3849756	-2.289156	1.9352979	-0.0265201	-	0.0149818	0.1140010	0.4261349
				0.0143161			

Table 8: Sample covariance matrix survival patients

age	sbp	hr	log_injurytim	e log_rr	$\log _cc$	log_ndaysic	u log_ncell
184.6367863	8.3060201	-	0.5577010	0.0676092	0.2486948	1.1796601	0.1156599
		24.3595684					
8.3060201	570.3044793	-	1.6410806	-	-	0.9158253	-
		111.6340107		0.5550393	2.6086143		1.5962997
-	-	431.5566186	-0.0673383	1.1998768	0.6880413	0.9909257	1.2344841
24.3595684	111.6340107						
0.5577010	1.6410806	-0.0673383	0.2894326	-	0.0143642	0.0826221	0.0116551
				0.0050994			
0.0676092	-0.5550393	1.1998768	-0.0050994	0.0900403	0.0143148	-0.0289142	0.0000845
0.2486948	-2.6086143	0.6880413	0.0143642	0.0143148	0.2461653	0.0845804	0.0347028
1.1796601	0.9158253	0.9909257	0.0826221	-	0.0845804	1.2191014	0.2164958
				0.0289142			
0.1156599	-1.5962997	1.2344841	0.0116551	0.0000845	0.0347028	0.2164958	0.3151667

Sample correlation

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Table 9: Sample covariance matrix

age	sbp	hr	log_injurytime	log_rr	$\log _cc$	$\log_{ndaysicu}$	\log_ncell
1.0000000	0.0162355	-	0.0766800	0.0160691	0.0499569	0.0746681	0.0141536
		0.0885593					
0.0162355	1.0000000	-	0.1384817	-	-	0.0611251	-
		0.2225256		0.0454874	0.2370449		0.1330613
-	-	1.0000000	-0.0065495	0.1834860	0.0818573	0.0393963	0.1177952
0.0885593	0.2225256						
0.0766800	0.1384817	-	1.0000000	-	0.0477075	0.1500037	0.0111366
		0.0065495		0.0211642			
0.0160691	_	0.1834860	-0.0211642	1.0000000	0.0730252	-0.0734743	-
	0.0454874						0.0133361
0.0499569	_	0.0818573	0.0477075	0.0730252	1.0000000	0.1198711	0.1194407
	0.2370449						
0.0746681	0.0611251	0.0393963	0.1500037	-	0.1198711	1.0000000	0.3114691
				0.0734743			
0.0141536	-	0.1177952	0.0111366	-	0.1194407	0.3114691	1.0000000
	0.1330613			0.0133361			

Figure 26 ...

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Figure 26: Sample Correlation Crash2 Dataset

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore

magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Table 10: Sample covariance matrix death patients

age	sbp	hr	$log_injurytime$	\log_{rr}	\log_{cc}	$\log_{ndaysicu}$	\log_ncell
1.0000000	0.0402106	-	0.0937500	0.0134059	0.0431388	0.0794978	-
		0.1334354					0.0364547
0.0402106	1.0000000	-	0.1715408	0.0376765	-	0.1672173	-
		0.1850471			0.2560164		0.1320676
-	-	1.0000000	0.0003580	0.1649837	0.1018409	0.0361794	0.1247455
0.1334354	0.1850471						
0.0937500	0.1715408	0.0003580	1.0000000	0.0088021	0.0375608	0.2037027	-
							0.0767761
0.0134059	0.0376765	0.1649837	0.0088021	1.0000000	0.0071034	-0.0340485	-
							0.0503150
0.0431388	-	0.1018409	0.0375608	0.0071034	1.0000000	-0.0366435	0.0486202
	0.2560164						
0.0794978	0.1672173	0.0361794	0.2037027	-	-	1.0000000	0.1882687
				0.0340485	0.0366435		
-	-	0.1247455	-0.0767761	-	0.0486202	0.1882687	1.0000000
0.0364547	0.1320676			0.0503150			

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Table 11: Sample covariance matrix survival patients

age	sbp	hr	$\log_{injurytime}$	\log_{rr}	$\log _cc$	$\log_{ndaysicu}$	\log_{ncell}
1.0000000	0.0255965	-	0.0762902	0.0165817	0.0368888	0.0786281	0.0151619
		0.0862962					
0.0255965	1.0000000	-	0.1277329	-	-	0.0347328	-
		0.2250216		0.0774554	0.2201623		0.1190669
-	-	1.0000000	-0.0060252	0.1924861	0.0667548	0.0432018	0.1058514
0.0862962	0.2250216						
0.0762902	0.1277329	-	1.0000000	-	0.0538137	0.1390921	0.0385896
		0.0060252		0.0315884			
0.0165817	-	0.1924861	-0.0315884	1.0000000	0.0961511	-0.0872717	0.0005018
	0.0774554						
0.0368888	-	0.0667548	0.0538137	0.0961511	1.0000000	0.1543962	0.1245894
	0.2201623						
0.0786281	0.0347328	0.0432018	0.1390921	-	0.1543962	1.0000000	0.3492684
				0.0872717			
0.0151619	-	0.1058514	0.0385896	0.0005018	0.1245894	0.3492684	1.0000000
	0.1190669						

Figure 27...

Figure 27: Sample Correlation for death and survival patients from Crash2 Dataset

Outliers

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Table 12: Sample robust media all population

age	sbp	hr	$\log_{injurytime}$	log_rr	\log_{cc}	log_ndaysicu	log_ncell
33.94433	92.32304	108.848	1.271321	3.137716	1.106643	0.9422688	1.357334

Comparison of the eigenvalues of the covariance matrix for sample and robust is given by figure 28 ...

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Comparison of eigenvalues

Figure 29: Correlation all population and MCD correlation

Principal Component Analysis

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

PCA Complete dataset

figure 31...

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

figure 32...

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Warning: package 'plotrix' was built under R version 4.0.3

figure 34...

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Figure 30: First two PCs based on the sample covariance all population

Figure 31: Loadings for the first and sencond PCs individually

Figure 32: Loadings for the first two PC $\,$

Figure 33: PC Scores and PC loading all population

Figure 34: Eigenvalues of the sample correlation matrix

figure 36...

IS NECESSARY TO DO THE SAME BY CLASS?

Figure 35: PC Scores and PC loading all population

Figure 36: Correlation between dataset and all PC and the first 4 PCs

PCA by Category

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Important. For these plot the groups are now female (blue) and male (gray)

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

figure 38...

figure ??...

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Figures 40 and 41 \dots

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Figure 37: PC Scores and PC loading all population

Figure 38: Loadings for the first two PC by death and survival patients

Conclusions

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Figure 39: PC Scores and PC loading all population for death and survival patiens

Figure 40: Eigenvalues of the sample correlation matrix for death patients

Figure 41: Eigenvalues of the sample correlation matrix for survival patients