X-RAY SATELLITE INTENSITIES IN THE SUDDEN APPROXIMATION

T. ÅBERG

Research Institute for Theoretical Physics, University of Helsinki, Helsinki, Finland

Received 24 February 1968

The relative intensities of the $K\alpha_1\alpha_2$ satellite group $\alpha'\alpha_3\alpha_4$ are calculated for neon-like ions (9 $\leq Z \leq 20$), and compared with experimental intensities resulting from both electron and X-ray excitation.

A recent theory of X-ray satellites is based on the sudden approximation [1,2]. In this note we show that it accounts for relative intensities of $K\alpha$ satellites appearing both in electron and in X-ray excitation. The influence of the K Auger width on the relative intensity is considered. Previously it has been assumed that the Auger transition rates of the K single- and multi-hole states are equal.

We treat the most prominent $K\alpha$ satellite group of neon-like ions in LS coupling. The initial states of the satellite lines are identified as ${
m KL}_{I}$ and ${
m KL}_{II,\;III}$ double-hole states in accordance with energy calculations [3,4]. The relative intensity is obtained from

$$\frac{I(\alpha'\alpha_3\alpha_4)}{I(\alpha_1\alpha_2)} = k_{2s}W(2s) + \frac{5}{6}k_{2p}W(2p).$$
 (1)

Here W(nl) is the relative sudden approximation probability [1,2] that K-shell ionization is followed by excitation or ionization of an nl electron. The correction factor $k_{nl} = \nu_{nl}^4 M_{nl}^2 \Gamma_0^{\rm A} / \nu_0^4 M_0^2 \Gamma_{nl}^{\rm A}$ takes into account that the frequency ν and the

Table 1 Relative integrated intensities (in percent) of the $K\alpha_1\alpha_2$ satellite group $\alpha'\alpha_3\alpha_4$.

\overline{z}	Target	Experiment					Theory
		electron excitation			X-ray excitation		Incory
		Ref.11	Ref.10	Ref.4 *	Ref.13	Ref.12	Eq.(1)
9	NaF	39.5 ± 1.5					42.5
10							26.0
11	NaF	20.3 ± 0.8			21.5 ± 1		18.2
	NaCl		22				
12	Mg	16.1 ± 0.5		12.6	13.8 ± 0.8		13.6
	MgO	15.9 ± 0.5		14.1	15.9 ± 0.4	15 ± 1.5	
13	Al	10.1 ± 0.4		10.7	10.7 ± 0.4		10.5
	${ m Al_2O_3}$	11.9 ± 0.4		11.9		9.3 ± 1.5	
14	Si	7.5 ± 0.4	11	9.0	7.7 ± 0.4		8.3
	sio_2	9.3 ± 0.4		10.0	8.9 ± 0.4		
15	P	6.2 ± 0.4					6.8
16	S, Fes	5.6 ± 0.4	4.8				5.7
17							4.8
18							4.1
19	K_3PO_4		2.6				3.5
20	CaO		2.2				3.1

^{*} Excitation mode not given

dipole matrix element M of the line as well as the Auger width Γ^A of the initial state change when the nl hole is formed besides the K hole. The radiative width Γ^R has been neglected in k_{nl} as $\Gamma^R \ll \Gamma^A$ for atoms with $Z \subseteq 20$ [5].

The probabilities W(nl) were first calculated by using ground-state orbitals [6] with the atomic number Z+1 instead of K-state orbitals with atomic number Z. Only for some ions [2] has it been possible to obtain the probabilities directly by using K-state orbitals [7]. For the remaining ions the final values W(nl) corresponding to K-state orbitals were then found by interpolating the slowly varying reduction factor. The ratio M_{2p}^2/M^2 has been calculated in the frozen structure approximation [8]. In the 2s case this ratio has been estimated to be 1.02 times the 2p ratio. Using Archard's relative values [9] of the KLL Auger probabilities P(nl',nl) in LS coupling we have obtained the Auger-width correction from

$$\frac{\Gamma_{0}^{A}}{\Gamma_{nl}^{A}} = \frac{P(2s, 2s) + P(2s, 2p) + P(2p, 2p)}{a_{nl}P(2s, 2s) + b_{nl}P(2s, 2p) + c_{nl}P(2p, 2p)}(2)$$

The constants a_{nl} , b_{nl} and c_{nl} take the nl hole into account ($a_{2s}=0$, $b_{2s}=\frac{1}{2}$, $c_{2s}=1$, $a_{2p}=1$, $b_{2p}=\frac{5}{6}$ and $c_{2p}=\frac{2}{3}$). The ratio (2) which results in a correction of about 30% is rather insensitive to the choice of the relative Auger probabilities and nearly independent of Z.

The experimental relative intensities in table 1 do not reveal any differences between electron and X-ray excitation in accordance with the sudden approximation. The agreement between the measurements and the calculations, resting on the assumption of a free neon core, is good up to Z=16. For heavier atoms exchange effects between the 2p and 3p shell must be taken into account.

- V.P. Sachenko and V.F. Demekhin, Zh. Eksp. i. Teor. Fiz. 49 (1965) 765; Soviet Phys. JETP 22 (1966) 532.
- 2. T.Åberg, Phys.Rev.156 (1967) 35.
- 3. Z. Horak, Proc. Phys. Soc. (London) A77 (1961) 980.
- V. F. Demekhin and V. P. Sachenko, in Röntgenspektren und Chemische Bindung (VEB Repprocolor, Leipzig 1966) 58.
- 5. E.J. Callan, Phys. Rev. 124 (1961) 793.
- 6. E.Clementi, Tables of atomic functions (Supplement to IBM J.Res. Devel. 9 (1965) 2).
- 7. P.S. Bagus, Phys. Rev. 139 (1965) A619.
- 8. Equation (3.3) in ref. 2. Note, however, the misprint: r^2 should be replaced by r^3 .
- 9. G.D.Archard, private communication to W.N. Asaad (W. Mehlhorn and W.N.Asaad, Z. Physik 191 (1966) 231).
- 10. L.G. Parrat, Phys. Rev. 50 (1936) 1.
- 11. The author is indebted to Dr. Fischer for sending him the relative integrated intensities; see also D.W.Fischer and W.L.Baun, Spectrochim, Acta 21 (1965) 443, J.Appl.Phys.36 (1965) 534, and D.W.Fischer, J.Chem.Phys.42 (1965) 3814.
- 12. From photoelectron spectra; M.O. Krause, T.A. Carlson and R.D. Dismukes, to be published.
- J. Utriainen, M. Linkoaho, E. Rantavuori, T. Åberg and G. Graeffe, to be published.

ERRATA

Influence of lattice defects on the hyperfine interaction: Mn^{2+} in NaCl, K.N.Schrivastava, Physics Letters 26A (1968) 251.

The correct name of the author is K. N. Shrivastava.

p.251, col. 1, line 8

read An interesting variation ... instead of An increasing variation...

p.251, col. 2, line 15

read corresponds to ρ_{Mn} = 0.910... instead of corresponds to ρ_{Mn} = -0.910...

In the caption of table 1 read NaCl instead of CaCl

The correct references 1, 7 and 13 are

- 1. J.S. Van Wieringen, Diss. Faraday Soc. 19 (1955) 118.
- 7. E. Clementi, IBM J. Res. Develop. 9 (1965) 2, and supplement;
- C. Fraose, Proc. Cambridge Phil. Soc. 53 (1957) 206.
- 13. M.I.Kornfel'd and Yu.N.Tolparov, Fiz. Tverd. Tela 9 (1967) 2047; Soviet Phys. Solid State 9 (1968) 1607.