AMBA AXI Stream

2015 - 2016 - 2017

Ando Ki, Ph.D. (adki@future-ds.com)

Agenda

- Introduction
 - → Evolution of AMBA Standards
 - → AXI Interfaces
 - → Memory mapped v.s. stream
 - → Typical examples of stream interface
- MBA AXI-Stream
 - → VALID/READY handshake mechanism
 - → AMBA AXI-Stream
 - → Data streams
 - → Interface signals
 - Data signaling
 - Byte qualifiers

- Example using TEA
 - → Simple case
 - → AXI stream case project

Copyright © 2014-2017 by Ando Ki

Intro AMBA AXI Stream (2)

Agenda

- Introduction
 - → Evolution of AMBA Standards
 - → AXI Interfaces
 - → Memory mapped v.s. stream
 - → Typical examples of stream interface
- MBA AXI-Stream
 - → VALID/READY handshake mechanism
 - → AMBA AXI-Stream
 - Data streams
 - → Interface signals
 - Data signaling
 - → Byte qualifiers

- Example using TEA
 - → Simple case
 - → AXI stream case project

Copyright © 2014-2017 by Ando Ki

Intro AMBA AXI Stream (7)

AMBA AXI-Stream There is only one data channel. No address channel, no read and write, always just master to slave (Effectively an AXI4 "write data" channel) Unlimited burst length AXI AXI slave TVALID master TREADY-Copyright © 2014-2017 by Ando Ki Intro AMBA AXI Stream (8)

		Interface signals		
a: .				
Signal	Source	Description		
ACLK	Clock source	The global clock signal. All signals are sampled on the rising edge of \mathbf{ACLK} .		
ARESETn	Reset source	The global reset signal. ARESETn is active-LOW.		
TVALID	Master	TVALID indicates that the master is driving a valid transfer. A transfer takes place when both TVALID and TREADY are asserted.		
TREADY	Slave	TREADY indicates that the slave can accept a transfer in the current cycle.		
TDATA[(8n-1):0]	Master	TDATA is the primary payload that is used to provide the data that is passing across the interface. The width of the data payload is an integer number of bytes.		
TSTRB[(n-1):0]	Master	TSTRB is the byte qualifier that indicates whether the content of the associated byte of TDATA is processed as a data byte or a position byte.		
TKEEP[(n-1):0]	Master	TKEEP is the byte qualifier that indicates whether the content of the associated byte of TDATA is processed as part of the data stream. Associated bytes that have the TKEEP byte qualifier deasserted are null bytes and can be removed from the data stream.		
TLAST	Master	TLAST indicates the boundary of a packet.		
TID[(i-1):0]	Master	TID is the data stream identifier that indicates different streams of data.		
TDEST[(d-1):0]	Master	TDEST provides routing information for the data stream.		
TUSER[(u-1):0]	Master	TUSER is user defined sideband information that can be transmitted alongside the data stream.		

Copyright © 2014-2017 by Ando Ki

Copyright © 2014-2017 by Ando Ki

Data signaling Byte types Adapting data width Data byte Merging valid information a the process of combining bytes from two different transfers into one transfer → Position (placeholder) byte Packing a indicates the relative positions of data bytes within the stream. a the process of removing null bytes from a stream → Null byte Downsizing o no valid data a converting from a given data bus width to a narrower data bus width Upsizing a converting from a given data bus width to a Downsizing wider data bus width **Upsizing**

Intro AMBA AXI Stream (14)

Intro AMBA AXI Stream (13)

Byte qualifiers

TKEEP[x]

- associated with TDATA[(8x+7):8x]
- → indicates whether the content of the associated byte must be transported to the destination.
 - a HIGH: must be transmitted to the destination
 - a LOW: a null byte that can be removed from the stream

TSTRB[x]

- → associated with TDATA[(8x+7):8x]
- → indicates whether the content of the associated byte is a data byte or a position byte.
 - When TKEEP[x] is high
 - TSTRB[x] indicates data or positional
 - HIGH: valid information
 - LOW: not valid information, but positional

TKEEP	TSTRB	Data Type	Description
HIGH	HIGH	Data byte	The associated byte contains valid information that must be transmitted between source and destination.
HIGH	LOW	Position byte	The associated byte indicates the relative position of the data bytes in a stream, but does not contain any relevant data value
LOW	LOW	Null byte	The associated byte does not contain information and can be removed from the stream.
LOW	HIGH	Reserved	Must not be used.

Agenda

Introduction

- Evolution of AMBA Standards
- → AXI Interfaces
- → Memory mapped v.s. stream
- → Typical examples of stream interface

MBA AXI-Stream

- → VALID/READY handshake mechanism
- → AMBA AXI-Stream
- Data streams
- → Interface signals
- Data signaling
- → Byte qualifiers

- Example using TEA
 - → Simple case
 - → AXI stream case project

Copyright © 2014-2017 by Ando Ki

Intro AMBA AXI Stream (16)

Agenda

- Introduction
 - → Evolution of AMBA Standards
 - AXI Interfaces
 - → Memory mapped v.s. stream
 - → Typical examples of stream interface
- MBA AXI-Stream
 - → VALID/READY handshake mechanism
 - → AMBA AXI-Stream
 - Data streams
 - → Interface signals
 - Data signaling
 - → Byte qualifiers

- Example using TEA
 - → Simple case
 - → AXI stream case project

Copyright © 2014-2017 by Ando Ki

Intro AMBA AXI Stream (21)

Usage of TID and TUSER

- 'TUSER[...]' can carries VSYNC and HSYNC information.
 - → 2'b00: data
 - → 2'b01: VSYNC
 - → 2'b10: HSYNC
- TID[...]' can carries line identification

Copyright © 2014-2017 by Ando Ki

Intro AMBA AXI Stream (25)

References

■ AMBA® 4 AXI4-Stream Protocol Version: 1.0 Specification, IHI 0051A (ID030510), ARM Limited, 2010.

Copyright © 2014-2017 by Ando Ki

Intro AMBA AXI Stream (26)