Privacy Engineering (70018)

Zero-Knowledge Proofs

Problem 1. Sequential Composition. Consider an arbitrary interactive proving system $\pi = (p, v)$. Let $\Pi_N = (P_N, V_N)$ be an interactive proving system in which π is executed N independent times in sequence such that V_N accepts iff v accepts when invoked on the same common input in all N runs, and P_N invokes p on the same common input in all N runs.

• If the completeness and soundness errors of π are the constants c and s respectively, what are the completeness and soundness errors, C_N and S_N respectively, of Π_N ?

$$C_N = c^N$$
$$S_N = s^N$$

- If p achieves perfect zero-knowledge, what level, if any, of zero-knowledge does P_N achieve for all N? Perfect zero-knowledge.
- If v has a knowledge error equal to the constant k, what is the knowledge error, K_N , of V_N ? $K_N = k^N$
- If $s = \frac{1}{2}$, what is the minimum value of N required for S_N to be strictly less than 10^{-40} ? N = 133

Problem 2. Non-interactive Arguments. Assume that $\pi = (p, v)$ is the proving system for graph isomorphism knowledge defined in section 3.2 on page 11 of the lecture slides.

• What is the expected number of attempts for a cheating prover without knowledge of ϕ to construct a valid argument in π ?

2

• Let $\Pi_N = (P_N, V_N)$ be the sequentially composed version of N invocations to π as done in Problem 1. Specify Π_N in a pseudo-code style similar to that of π .

Repeat N times or until first failure:

```
\begin{split} P &\to V: H = \psi(G_2) \\ V &\to P: c \in \{1,2\} \\ P &\to V: \omega = \psi \circ \phi \text{ if } c = 1 \text{ else } \omega = \psi \\ V &\to P: \text{ pass if } \omega(G_c) = H \text{ else fail} \\ \text{End repeat.} \end{split}
```

• Using Π_N as a basis, specify a non-interactive argument version of it $\bar{\Pi}_N = (\bar{P}_N, \bar{V}_N)$ in pseudo-code. Make sure $\bar{\Pi}_N$ achieves the same soundness, completeness and knowledge error values as Π_N for all values of $N \leq 256$.

```
\begin{split} P: H_n &\leftarrow \psi_n(G_2) \forall n \in \mathbb{Z}_N \\ P: c_n &\leftarrow R(n, G_1, G_2, H_0, ..., H_{N-1}) \forall n \in \mathbb{Z}_N \\ P: \omega_n &\leftarrow \psi_n \circ \phi \text{ if } c_n = 1 \text{ else } \psi_n \forall n \in \mathbb{Z}_N \\ P &\rightarrow V: H_0, ..., H_{N-1}, \omega_0, ..., \omega_{N-1} \end{split}
```

- What is the expected number of attempts, in terms of N, for a cheating prover without knowledge of ϕ to construct a valid argument in $\bar{\Pi}_N$?
- Does \bar{P}_N reveal any knowledge? Arguably the argument itself.