Grong homomorphism. Define: an = a. - - a n copies a° = e $\alpha^{-n} = (\alpha^{-1})^n$ chuh a min = a m. an for all p: 7/ -> G gray homo So /m l = Z/hrp. mel sup graps of Z. = nZ. call ord(a) = n. 2 Ld(a) = 0 n = 0, (a l (Minimal k>0, (.t. ak = e subgrap generated by a. <a>

(or (lagrange):
$$\#6$$
(+ $\%$ =7 \circ 2 $d(a)$ | $\#6$.

Define ((gelic growp)) $G = (a)$ or
$$G \cong \mathbb{Z}/n\mathbb{Z}, n\geq 1$$
or \mathbb{Z}

Correspondence:

(i: G, ---) Gz, (subjective)

(subgroups containing bace) (1:1) (subgroups

1-1 (-1) (-1) (-1)

Subgroups of 2 contains nz 9

Group actions (operations) (Symmetry)

Defin:
$$X$$
 set, G group, G operates in X

If $G \times X \to X$

If G

Further properties $A \cdot (x + y) = Ax + Ay$ proserving linear strainer $A \cdot (x + y) = A(x)$

Left
$$G \times G \rightarrow G$$
.

Prodult $(g, h) \rightarrow g \cdot h$

Pright $f \times G \rightarrow G$

Prodult $(g, h) \rightarrow g - 1$

Projection $G \times G \rightarrow G$
 $(g, h) \rightarrow g - 1$

Further paperty preserving group someone $g \times (h, h) = (g \times h) (g \times h)$

Another point of view. $\int_{X} = \left\{ f: X - JX \middle| f \text{ hijelbing} \right\}$

Conversly: Given P. G -> 5x 1) etine GP Sx by g. x = p(g) (x) $\begin{cases} G(x) \\ G(x) \end{cases} \begin{cases} \frac{1!}{1} \\ \frac{1!}{1} \\ \frac{1!}{1} \end{cases} \end{cases} \begin{cases} G(x) \\ \frac{1!}{1} \\ \frac{1!}{1} \\ \frac{1!}{1} \end{cases} \end{cases}$

Why this is he (pfal!)

Defn: When beer $Q = \{e^{i}\}$, the operation is

called faith fal.

=) If $g \cdot x = x$ for all $x \in x$ then g = ia.

Prop: G is isomorphic to a subgroup of G.

Pf:
$$G < G$$
 by $g \cdot h = gh$

Then $f \cdot G \rightarrow SG = S_{u}$

If $g \cdot h = h$ for all h , then $g = e$
 $= 0$ $G = 1$ M a subgroup of S_{u}

Classification of G -operations.

Classification of Defin (orbits) GPX, define equivalence relation by x ~ y iff 2 g & h, s.t. g. x=y Chech x ~ y, =) y ~ x x~x, YxEX $x \sim y$, $y \sim 7 = x \sim 7$ eghiralmu Each class is called an orbit. 9.×19667.

Then X is disjonit union of equivalence

Classes or orbits of 6 = prention

Ex: HC (7) "byrow.

H×G-7G (h, g) ->gh-1

Then any H-oubit has the form

g H or Hight H-1-10SEF.

Ex: 6 × 6/1-1 -> 6/1-1 (9, 91H) 1-2 9:91-1 Ex: (5 × 6 → 6)

(9, h) → 9hg-1

(peth) each orbit is called a conjugation cross.

reduce the c(assification to each orbit.

Defin (Transitive) If GPX has only

ohe orbit, then we call it transitive.

Ex: 606/H, transitive.

Duty (Stabiliter) $\forall x \in X$, Staba $= \langle g \in G \mid g : x = x \rangle$ Phys: Staba is a subgroup of G. Pf: Chuch 12

Assume GCX transitively Prop. There is a bijection between F: (5/5+abx -> X, s.t. (7 × G/Stab -> G/stab LIDGXF 2 LF $(7 \times X \longrightarrow X)$ Check F "well-sepined" l° + : bijective, and preserves the (7 - operation G (X) = Ans; tive = 3 $H(X) = A(1) / H S + Ab_X$ (pr :

Notice: Stabgx = g Stabx g-1

Counting: $G \propto X$ have orbits $G \leftarrow X \quad have \quad orbits$ $G \leftarrow X \quad have \quad orbits$

Application: $C(assification of groups of order y^2$, p prime number.

Prop: $H(G = y^2 =)$ G(yulic of order)Prop: $H(G = y^2 =)$ G(yulic of order)

Pf: Let O1 --- On by conjugacy c(45Ks of 6, then # Oi | p2, # Oi = 1, p, or p2 If 01= Leg, then #01=1. => # Oi = 1 or 2, $\frac{1}{\sum_{i=1}^{n}} 40i = p^2 \equiv o \pmod{p}$ $=) \qquad \sum_{i=2}^{n} A O_i = -1 \quad (m - dp)$ 二) ヨ Oi, izz, S+. # $O_i = 1$. sach $O_i = 1$ xily satisfying $g \times_i g^{-1} = \chi_i$. Defin C(6) = 4 h+6/ hg=gh +g-64

$$C(6) \text{ is a hormal subgroup of } G.$$

$$So \quad C(6) \neq \{eG\}.$$

$$=) \quad C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

$$C(6) = G \quad \text{or } \#C(6) = p$$

More work => 5 = 2/p7 x 2/p2 or 2/p2Z.

Application to group theory. Sylow him.