МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Систем автоматического управления

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 ПО ДИСЦИПЛИНЕ «МИКРОПРОЦЕССОРНАЯ ТЕХНИКА В МЕХАТРОНИКЕ И РОБОТОТЕХНИКЕ» ТЕМА: «РАБОТА С ИНКРЕМЕНТНЫМ ЭНКОДЕРОМ»

Студенты гр. 1492	Старцев Н.А.
Преподаватель	Илатовская Е.В

Санкт-Петербург

Цель работы: получение навыков работы с энкодером, обработка данных от энкодера

Основные сведения

Для работы с внешними прерываниями в МК AVR есть несколько регистров. Каждое внешнее устройство прерывания подключается к контактам внешних прерываний МК (контакты внешних прерываний Atmega128 PD0...PD7, см. INT0... INT7 на рис. 1.3). Если пользователю требуется работать с внешним источником прерывания (например, кнопкой), необходимо установить вывод МК, к которому подключена кнопка, как вывод внешнего прерывания (а не как контакт ввода/вывода). Для этого используется регистр EIMSK.

EICRA работает с выводами внешних прерываний *INT0*... *INT3*, EICRB работает с выводами внешних прерываний *INT4*... *INT7*.

Комбинации EICRA

ISCn1	ISCn0	Описание
0	0	Низкий уровень на INTn генерирует запрос прерывания
0	1	Зарезервировано
1	0	Падающий срез на INTn генерирует запрос прерывания
1	1	Нарастающий фронт на INTn генерирует запрос прерывания

Комбинации EICRB

ISCn1	ISCn0	Описание
0	0	Низкий уровень на INTn генерирует запрос прерывания
0	1	Любое изменение (1-в-0 или 0-в-1) на INTn генерирует запрос
1	0	Падающий срез на INTn генерирует запрос прерывания
1	1	Нарастающий фронт на INTn генерирует запрос прерывания

Механический энкодер предназначен для ввода информации (например, для плавного изменения параметров), как более надежная и удобная замена потенциометру. В отличие от потенциометра энкодер не имеет ограничения угла поворота.

Принцип работы энкодера представлен на рис. 4.1.2. При вращении энкодера на его выходах A и B (PD0 (INT0) и PD1 (INT1) контроллера, соответственно) формируются импульсы. Если вращать энкодер вправо, то импульс A будет незначительно опережать импульс B, если вращать влево, то - наоборот.

Рис. 4.1.2. Принцип работы механического энкодера

Таким образом, считая импульсы на любом из выходов можно определить на какой угол повернули энкодер, а по последовательности выходов можно определить направление вращения.

Схема подключения

Результаты работы

Написать программу вывода значения поворота энкодера на семисегментные индикаторы, используя внешнее прерывание INT1 для определения направления вращения энкодера (на индикаторы должны выводиться как положительные, так и отрицательные значения углов поворота). По нажатию на кнопку энкодера, подключенную к INT2, счётчик оборотов должен обнулиться

```
Код программы:
#include <avr/io.h>
// #define F CPU 11059200
#include <util/delay.h> //для использования пауз
#include <avr/interrupt.h>
uint8_t my_znak[] = {0b00111111, 0b00000110, 0b01011011,
                      0b01001111, 0b01100110, 0b01101101, 0b011111101, 0b00000111, 0b01111111, 0b01101111, 0b00000000}; // рисунки цифр
// функция для возведения 10 в нужную степень
int16_t angle = 0;
ISR(INT0_vect)
    if ((PIND & (1 << 0)) != 0)
        EICRA = (1 << ISC01) | (1 << ISC21);
        if ((PIND & (1 << 1)) != 0)
            angle+=90;
             angle-=90;
    }
    else
    {
        EICRA = (1 << ISC01) | (1 << ISC00) | (1 << ISC21);
        if ((PIND & (1 << 1)) != 0)
            angle-=90;
        else
            angle+=90;
    if (angle>9999){angle=-9999;}
    if (angle<-9999){angle=9999;}
}
ISR(INT2_vect){angle=0;}
uint16_t raz(uint8_t k) // определяет разрядность числа
    uint16_t a = 1;
    for (uint16 t i = 0; i < k; i++)
    {
        a *= 10;
    return a;
int main(void)
    sei();
    EIMSK |= (1 << INT0);
    EIMSK |= (1 << INT2);</pre>
    EICRA = (1 << ISC01) | (1 << ISC00) | (1 << ISC21);
    DDRA = 0xFF; // теперь ножки это выход
    DDRC = 0xFF;
```

```
int16 t abs = 0; // задаем кол-во шагов
while (1)
{
    // костыль чтобы нули до первой не нулевой цифры не рисовались
    uint8_t k = 0;
    uint8_t flag = 1;
    if (angle < 0){} // Рисуем минус
        PORTC = 0b01000000;
        PORTA = 1 << (1);
        _delay_us(3);
        PORTA = 0x00;
        abs = -angle/10;
    }
    else
    {
        PORTC = 0b00000000; // не рисуем минус
        PORTA = 1 << (1);
        _delay_us(3);
        PORTA = 0 \times 00;
        abs = angle/10;
    }
    for (uint8_t i = 2; i < 6; i++)
                                      // бежим по всем разрядам
        k = (abs / raz(5 - i)) % 10; // вычисляем цифру в разряде
        if (k > 0)
        {
            flag = 0;
        }
        // подменям ноль на пустоту, если цифры уже были
        if (flag && i!=5)
        {
            k = 10;
        PORTC = my\_znak[k]; // вгружаем в по порту нашу цифру
        // выбираем разряд в который будем рисовать
        PORTA = 1 << (i);
        _delay_us(3);
        \overline{PORTA} = 0x00;
    }
}
```

Блок схема программы:

Вывод:

В ходе лабораторной работы были освоены навыки взаимодействия с внешними прерываниями, обработка прерываний энкодера и кнопки.