Cálculo II

Nicholas Mc-Donnell

 $1 er \ semestre \ 2018$

Programa

Profesor: Godofredo Iommi Email: giommi@mat.uc.cl

- 1. La Integral de Riemann
- 2. Técnicas de integración
- 3. Aplicaciones
- 4. Integrales impropias
- 5. Sucesiones y Series de funciones

Bibliografía

- Calculus, 4 edición, Kitchens
- www.mat.uc.cl/~igiommi

Adicional

- Análise Real Vol. I, Lima
- Introduction to Calculus and Analysis, Courant y John

Evaluaciones

I1: Jueves 5 Abril 7-8

I2: Jueves 3 Mayo 7-8

I3: Miércoles 6 Junio 7-8

Examen: Martes 26 Junio 3-4

$$NF = 0.7 \cdot \frac{(I1 + I2 + I3)}{3} + 0.3 \cdot EX$$

No hay eximición

Índice general

Ι	La Integral de Riemann	•
1.	Axioma del Supremo	ţ

 $\acute{\text{INDICE GENERAL}}$

Parte I La Integral de Riemann

Capítulo 1

Axioma del Supremo

Estructura algebraica: \mathbb{R} es un cuerpo Estructura de orden: \mathbb{R} esta ordenado \mathbb{R} es completo (\mathbb{Q} no es completo)

Definición 1.0.1 (Cota Superior). Sea $A \subseteq \mathbb{R}$ un conjunto no vacío, diremos que $a \in \mathbb{R}$ es cota superior de A si para todos $x \in A$ se tiene que $x \leq a$

Definición 1.0.2 (Cota Inferior). Análogamente se define cota inferior

Observación 1.0.1. Las cotas superiores e inferiores \underline{no} son unicas.

Ejemplo: 1.0.1.

$$A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$$

es tal que 0 es cota inferior y 2 es cota superior.

Ejemplo: 1.0.2.

$$A = [0, +\infty]$$

Posee cota inferior, pero no superior

Definición 1.0.3. Diremos que $A \subset \mathbb{R}, A \neq \emptyset$ es <u>acotado superiormente</u> (resp. inferiormente) si posee cotas superiores (resp. inferiores).

Diremos que A es <u>acotado</u> si lo es inferior y superiormente.

Definición 1.0.4. Sea $A \subset \mathbb{R}, A \neq \emptyset$ si $a \in A$ es cota superior (resp. inferior) de A diremos que "a. es el maximo (resp. minimo) de A

Definición 1.0.5 (Supremo). Sea $A \subset \mathbb{R}$ un conjunto no vacio, diremos que $a \in \mathbb{R}$ es el supremo de A y anotaremos $a = \sup A$ si satisface:

1. El numero a es cota superior de A

2. Si $b \in \mathbb{R}$ es cota superior de A entonces $a \leq b$

Observación 1.0.2. El supremo es la menor de las cotas superiores de A

Observación 1.0.3. Es posible reformular la definición de supremo. En efecto, $a = \sup A$ si:

- 1. a es cota superior de A
- 2. $\forall \epsilon > 0 \exists x \in A : a \epsilon < x \le a$

Definición 1.0.6 (Ínfimo). Análogamente el ínfimo se define con cotas inferiores y con notación ínf

Definición 1.0.7 (Axioma del Supremo). Todo conjunto $A \subset \mathbb{R}$ acotado superiormente posee supremo.

Observación 1.0.4. Todo conjunto $A \subset \mathbb{R}$ acotado inferiormente posee ínfimo.

Ejemplo: 1.0.3. Sea A = (a, b), demuestre que inf A = a

Demostración. De la defincion de intervalo tenemos que "a. es cota inferior.

Si $\epsilon > b-a$ entonces para todo $x \in A$ se tiene que $x < a+\epsilon$

Sea $0 < \epsilon < b - a$ y consideremos el numero $c = a + \frac{\epsilon}{2}$

Entonces:

1. a < c

Luego inf A = a

$$2. \ a + \frac{\epsilon}{2} \le a + \epsilon < a + b - a = b$$

$$\implies c \in A$$

Proposición 1.0.4 (Arquimediana). Dado un numero real x, existe $n \in \mathbb{N}$ tal que x < n

Demostración. La afirmación es equivalente a decir que el conjunto \mathbb{N} <u>no</u> esta acotado superiormente.

Supongamos por el contrario que $\mathbb N$ es acotado superiormente. Por el axioma del supremo existe $c=\sup\mathbb N$

En particular c-1 no es cota superior de \mathbb{N} . Es decir, existe $n \in \mathbb{N}$ tal que c-1 < n. Luego, $\sup \mathbb{N} = c < n+1$ como $n+1 \in \mathbb{N}$, tenemos la contradicción que prueba el resultado.

Ejemplo: 1.0.5. Pruebe que el infimo de $A = \{\frac{1}{n} : n \in \mathbb{N}\}$ es igual a 0.

Demostraci'on. Cero es cota inferior ya que los elementos de A son cuocientes de numeros positivos y por lo tanto son positivos.

Supongamos que a>0 es tal que inf A=a. Es decir, para todo $n\in\mathbb{N}$ se tiene que

$$a \le \frac{1}{n}$$

En particular, para todo $n\in\mathbb{N}$ se tiene que $n\leq\frac{1}{a}$ que contradice la proposicion Arquimediana. Luego, ínf A=0

Ejemplo: 1.0.6. Demuestre que inf $\{\frac{|\sin(n)|}{n}: n \in \mathbb{N}\}$ es igual a 0.

 $\begin{array}{ll} \textit{Demostraci\'on.} \ \ \text{Notemos que} \ |\sin(n)| \geq 0 \ \text{y} \ n \geq 0. \ \text{Luego} \ x = 0 \ \text{es cota inferior de} \ \{\frac{|\sin(n)|}{n} : n \in \mathbb{N}\}. \\ \text{Notemos ademas que} \ |\sin(n)| \leq 1. \ \text{Luego}, \ \frac{|\sin(n)|}{n} \leq \frac{1}{n} \end{array} \qquad \qquad \square$