

Medicines in the Media: Understanding External Factors on Prescribing & Adherence Behaviors

Vikram Bahl, Chris Baumann, Trevor Goodyear, and Charity Hilton Georgia Institute of Technology

Introduction

- Medical decision making is often influenced by media coverage, but reports often contain a lack of complete information. [3]
- Highly publicized medical cases have been shown to have a direct effect on the public, such as the death of Katie Couric's husband as a result of colon cancer leading to a rise in colonoscopies in the months following. [2]
- Researchers in pharmacovigilance have previously used social media to detect adverse drug reactions (ADRs). [1]
- However, little has been done to connect recorded data on consumer behavior to news and social media influences. In this project, we ask:
 - 1) How do clinical and non-clinical reports in the media influence prescription drug behavior?
- 2)Does media coverage explain historical trends in prescribing volumes in the US?

Data Sources

- Centers for Medicare & Medicaid Services (CMS) Medicaid State Drug Utilization Datasets for 1992-2017 (74M records, temporal)
- National Library of Medicine RxNorm Dictionary, OMOP v5 Vocabulary (37.8k event tables)
- FDA Adverse Event Reporting System Dataset (2.7M unique events, temporal)
- Custom query using The New York Times Article Search API and The Guardian Open Platform API (28.4k articles, temporal)
- · Twitter REST API (229k tweets, temporal)

Methods

- Scrape The New York Times, The Guardian, and Twitter using their APIs to gather relevant content from the last 25 years
- Recreate Bidirectional Long Short-Term Memory LSTM (BLSTM) Recurrent Neural Network (RNN) to detect ADRs on Twitter and expand coverage to include new drugs to create a community driven dictionary of reactions
- Perform longitudinal prescription data exploration linking social and news media
- Utilize ReactJS and D3 to create interactive application mapping historical trends of pharmaceutical use across US and information from news and social media on user-specified drugs
- Conduct survey to gauge impact of presented information on consumer opinion and decision making

Figure 1: Oxycodone prescription volume for 2015 by state

Figure 3: Mapping of reactions to Oxycodone from Twitter

Figure 4: Evaluation survey QR code

Evaluation of Results

What is your opinion of the following drugs?

How likely is the information you now have going to impact your decisions regarding that drug?

After viewing information, how has your opinion of

Conclusion

Patients have access to more information than ever when making decisions regarding their health. Our findings show that there is a correlation between prescribing trends and media coverage as well as a negative correlation with confirmed adverse events. The results from our evaluation indicate that while 16% of participant responses were negative, 25% stated their opinion decreased after viewing the presented information. The results further show that publicly accessible information can have an effect on their opinion of a prescription drug, as 54% of participants indicated a change in opinion.

Reference

[1] A Cocos, AG Fiks, and AJ Masino. "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts". In: Journal of the American Medical InformaticsAssociation24.4 (2017), pp. 813–821.doi:10.1093/jamia/cocw180. [2] P Cram et al. "The impact of a celebrity promotional campaign on the use of colon cancer screening: The KatieCouric effect". In: Archives of Internal Medicine163.13 (2003), pp. 1801–181.1051.doi:10.1001/archinte.163.13.1601.url:http://dx.doi.org/10.1001/archinte.163.13.1601. [3] A Larsson et al. "Medical messages in the media - barriers and solutions to improving medical journalism". In: Health Expectations6.4 (2003), pp. 323–331.doi:10.1046/j.1369-7625.2003.00228.x.

Acknowledgements

We would like to thank all of the participants in our evaluation survey. We would also like to extend a special thanks to Anne Cocos, PhD student at the University of Pennsylvania, for walking us through and allowing us access to her work on detecting ADRs on Twitter.