丁厂

- (a) False. (REF may not be unique)
- (may have no-many) (b) False.
- (c) True.
- (d) False (may have no solin)
- (e) True.
- (f) True: (This is hard but: Ax = 5 has > 1 solution if the line/plane/whatever containing those solutions passes through some point \vec{p} , and the solution set to $A\vec{X} = \vec{0}$ is just the translate of that, parallel to it, such that \$ = 0. See PP 46-47.)
- (g) *False, (true if $A\vec{x} = \vec{b}$ has sol'n for all \vec{b} . for counter-ex, to written question: If $\vec{b} = \vec{0}$ is "some \vec{b} " & $A\vec{x} = \vec{0}$ has a non-trivial solin, then columns of A span space w feurer dimensions!)
- (h) False, [RREF may have [0,...,0,1] row]
- (RREF unique)
- (j) False. (A= = always has trivial solution! They omitted the word "only" here)
- (K)-(n) -> sicipped.
- (0) True.* (see(f) & note: going b->c is going b->c->c.

 so $A\vec{x}=\vec{c}$ has solution set parallel to that of $A\vec{x}=\vec{b}$.

 This is a bad question.)

- (p) True. ($A = m \times n \ \omega$ / cols spanning $IR^{m} \Rightarrow A\vec{r} = \vec{b}$ always has a soln; A (.e. $B \Rightarrow B\vec{x} = \vec{b}$ always does, too, So cols(B) span IR^{m} .)
- (q) False, $(\vec{v}_3 = \vec{v}_1 + \vec{v}_2 \Rightarrow L.D., \text{ for example})$
- (r) True, (3 vecs L.I. => vecs have = 3 components).
- (s) False.
- (+) True. (-il = -11+07).
- (u) False. (need u &. v to be L.I.)
- (v) True. (vi linear combo => ?u, v, w} L.D. =>
 - OR: If $\vec{w} = x_1\vec{u} + x_2\vec{v}$, then $\vec{u} = \frac{1}{x_1}(\vec{w} x_2\vec{v})$.
- (w) True. (v2 not a multiple of vi => {vi, v2 } c. I. Now, adding \vec{V}_3 will stay L.I <=> \vec{V}_3 not a linear combo of \vec{V}_1 & \vec{V}_2 (by defn. of L.I./5pan)).