The following is a partial English translation of JP 2003-173073, paragraphs [0060] to [0067].

[0060] Referring now to FIGS. 9, 10 and 11, operation for adjusting the distance H between the LED head 227 and the photosensitive drum 222 performed by the write head adjusting device 3 is described below. While the following explanation is directed to adjustment of one end of the write head adjusting device 3 by the first adjustment means 9 only, the same explanation also applies to adjustment of the other end of the write head adjusting device 3 by the first adjustment means 9. In FIGS. 9, 10 and 11, illustration of the frame member 6, the spring 8, etc. is omitted to prevent the drawings from becoming too complex. In FIG. 11, illustration of the gap adjustment screw 30, support shaft 4 and the spring 11 is further omitted.

[0061] A biasing force Fo of the spring 11 is exerted on an end of the first movable member 5a in a longitudinal direction of the support shaft 4 as shown in FIG. 9. Also, a force component Fu of the biasing force of the spring 8 directed upward along the y-axis direction is exerted on the first contact member 7a.

[0062] FIG. 10 is a front view showing a state in which the LED head 227 moves up and down along the y-axis

direction as the first movable member 5a moves when the gap adjustment screw 30 is advanced and retracted along the x-axis direction, and FIG. 11 is a front view schematically showing their movements. Provided that the distance between the LED head 227 and the photosensitive drum 222 is initially H, the distance between the LED head 227 and the photosensitive drum 222 can be made equal to H1 which is smaller than H, or to H2 which is larger than H, as shown in FIG. 10 by advancing or retracting the gap adjustment screw 30.

[0063] This is explained more specifically referring to FIG. 10 below. Here, it is assumed that the tapered surface 15 of the first movable member 5a and the first contact member 7a are in mutual contact at a contact point "a" and the distance H between the LED head 227 and the photosensitive drum 222 is Ha when the first movable member 5a is located at a position Xa. If the first movable member 5a in this condition is moved from the position Xa to a position Xb which is located within the extension of the write head adjusting device 3, the contact point between the first movable member 5a and the first contact member 7a shifts downward along the y-axis direction and the first movable member 5a and the first contact member 7a come in contact with each other at a contact point "b". As the contact point between the first movable member 5a and

the first contact member 7a shifts downward along the yaxis direction, or in a direction toward the photosensitive drum 222, the distance H between the LED head 227 and the photosensitive drum 222 becomes equal to Hb which is smaller than Ha. On the contrary, if the first movable member 5a is moved from the position Xa to a position Xc which is located close to an end of the write head adjusting device 3, the contact point between the first movable member 5a and the first contact member 7a shifts upward along the y-axis direction and the first movable member 5a and the first contact member 7a come in contact with each other at a contact point "c". As the contact point between the first movable member 5a and the first contact member 7a shifts upward along the y-axis direction, or in a direction going away from the photosensitive drum 222, the distance H between the LED head 227 and the photosensitive drum 222 becomes equal to Hb which is smaller than Ha.

[0064] FIG. 12(a) is a front view showing operation performed in a case where the distance H between the LED head 227 and the photosensitive drum 222 is reduced. When reducing the distance H between the LED head 227 and the photosensitive drum 222, the first movable member 5a is moved by as much as X1 in a direction opposing the biasing force Fo of the spring 8, or in a direction toward the

inside of the write head adjusting device 3 (rightward as illustrated in FIG. 11(a)), by advancing the gap adjustment screw 30. As the first movable member 5a moves, the first contact member 7a moves by as much as Y1 downward along the y-axis direction opposing the force component Fu of the biasing force of the spring 8 directed upward along the y-axis direction, or in a direction toward the photosensitive drum 222. As a result, the distance between the LED head 227 and the photosensitive drum 222 can be made equal to H1 which is smaller than H.

[0065] FIG. 12(b) is a front view showing operation performed in a case where the distance H between the LED head 227 and the photosensitive drum 222 is increased.

When increasing the distance H between the LED head 227 and the photosensitive drum 222, the first movable member 5a is moved by as much as X2 in a direction in which the biasing force Fo of the spring 8 is exerted, or in a direction toward the outside of the write head adjusting device 3 (leftward as illustrated in FIG. 11(b)), by retracting the gap adjustment screw 30. As the first movable member 5a moves, the first contact member 7a moves by as much as Y2 upward along the y-axis direction in which the force component Fu of the biasing force of the spring 8 is exerted, or in a direction going away from the photosensitive drum 222. As a result, the distance between

the LED head 227 and the photosensitive drum 222 can be made equal to H2 which is larger than H.

[0066] While the present embodiment has illustrated a construction in which each of the movable members 5 having the tapered surface 15 is brought into contact with an upper part of each contact member 7, this construction may be modified such that each movable member 5 has a downward extending contact part and a slant surface is formed on an upper surface of the LED head support member 3 with which an end of the contact part comes in contact. In this construction, the LED head 227 can be moved up and down along the y-axis direction by the slant surface provided at the top of the LED head support member 3 when each movable member 5 moves along the support shaft 4, whereby the distance H between the LED head 227 and the photosensitive drum 222 can be adjusted.

[0067] As so far discussed, it is possible to adjust the distance H between the LED head 227 and the photosensitive drum 222 by using the write head adjusting device 3. Therefore, even if a construction in which the bottom of the LED head 227 is not exposed is employed, the position of the LED head 227 relative to the photosensitive drum 222 can be easily adjusted from side of the write head adjusting device 3. Using the gap adjustment screws 30 as the first adjustment means 9, rotary motion of the gap

adjustment screws 30 is converted into linear motion of the respective movable members 5, so that adjustment of the distance H between the LED head 227 and the photosensitive drum 222, or focus adjustment of the LED head, can be performed with high accuracy.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-173073 (P2003-173073A)

(43)公開日 平成15年6月20日(2003.6.20)

(51) Int.Cl. ⁷		識別記号		FI				テーマコート*(参考)		
G 0 3 G	15/04	111		G 0 3	G	15/04		111	2 C 0 6 4	
B41J	2/44			H 0 4	N	1/036		Α	2 C 1 6 2	;
	2/45			B41	J	3/21		L	2H076	,
	2/455					25/30		G	5 C 0 5 1	
	25/308									
			審查請求	未請求	水髓	関の数15	OL	(全 20 頁)	最終頁に	続く
(21)出願番号		特顧2001-371803(P2001-371803)		(71)出願人 000005049						
		•				シャー	プ株式	会社		
(22)出顧日		平成13年12月5日(2001.			大阪府	大阪市	阿倍野区長池	町22番22号		
				(72) §	è明和	り 原田	吉和			
						大阪府	大阪市	阿倍野区長池	町22番22号	シ
						ャープ	株式会	社内		
				(72)多	き明る	中山智	敏央			
						大阪府	大阪市	阿倍野区長池	町22番22号	シ
						ャープ	株式会	社内		
				(74) ∱	(理)	100075	557			
						弁理士	西教	圭一郎		
									最終頁に	始

(54) 【発明の名称】 書込みヘッド調整装置およびそれを備える画像形成装置

(57)【要約】

【課題】 本体装置の側部から書込みヘッドと感光体ドラムとの距離および書込みヘッドの感光体ドラムに対する走査傾きの少なくともいずれか1つを調整可能な書込みヘッド調整装置およびそれを備える画像形成装置を提供する。

【解決手段】 長手方向端部に設けられる間隔調整ネジ 9によって、移動部材 5 を感光体ドラム 2 2 2 の軸線方向に移動させ、弾発性部材 8 によって移動部材 5 側に付勢されている当接部材 7 を感光体ドラム 2 2 2 に向かう方向、または感光体ドラム 2 2 2 から離反する方向に移動させることで、LEDヘッド 2 2 7 と感光体ドラム 2 2 2 との間の距離日を調整することができる。したがって、本体装置の側部からLEDヘッド 2 2 7 と感光体ドラム 2 2 2 との距離を調整することができる。

【特許請求の範囲】

【請求項1】 本体装置のフレーム間に回転可能に支持される円筒形の感光体ドラムに対向して配置される書込みへッドの位置を調整する書込みへッド調整装置において

感光体ドラムの軸線に略平行に移動する移動部材と、 書込みへッドの両端部に設けられ、前記移動部材に当接 する当接部材と、

前記当接部材を移動部材側に付勢する弾発性部材と、 前記本体装置のフレーム側に設けられ、前記移動部材を 10 移動させて書込みヘッドと感光体ドラムとの距離を調整 する調整手段とを備えることを特徴とする書込みヘッド 調整装置。

【請求項2】 本体装置のフレーム間に回転可能に支持される円筒形の感光体ドラムに対向して配置される書込みへッドの位置を調整する書込みへッド調整装置において

感光体ドラムに略平行に配置される支持軸と、

書込みヘッドを保持し、前記支持軸に支持される枠部材 ょ

前記本体装置のフレーム側に設けられ、前記支持軸を中心として枠部材をねじり回転させることによって、枠部材に保持される書込みヘッドの感光体ドラムに対する走査傾きを調整する調整手段とを備えることを特徴とする書込みヘッド調整装置。

【請求項3】 本体装置のフレーム間に回転可能に支持される円筒形の感光体ドラムに対向して配置される書込みへッドの位置を調整する書込みへッド調整装置において、

感光体ドラムに略平行に配置される支持軸と、

前記支持軸に沿って移動し、感光体ドラムの軸線に略平 行に移動する移動部材と、

前記支持軸に支持される枠部材と書込みヘッドの両端部 に設けられ、前記移動部材および枠部材に当接する当接 部材と、

前記当接部材を移動部材側および枠部材側に付勢する弾 発性部材と、

前記本体装置のフレーム側に設けられ、前記移動部材を 移動させて書込みヘッドと感光体ドラムとの距離を調整 する第1調整手段と、

前記支持軸を中心として枠部材をねじり回転させること によって枠部材に保持される書込みヘッドの感光体ドラ ムに対する走査傾きを調整する第2調整手段とを備える ことを特徴とする書込みヘッド調整装置。

【請求項4】 前記移動部材および当接部材の少なくともいずれか一方は、感光体ドラムの軸線方向に傾斜する傾斜面を有し、当接部材は傾斜面に案内されて移動することで書込みヘッドと感光体ドラムとの距離を調整することを特徴とする請求項1または3記載の書込みヘッド調整装置。

【請求項5】 前記移動部材は、書込みヘッドの両端部 に設けられる当接部材の両方に対して設けられることを 特徴とする請求項1,3,4のいずれか1つに記載の書 込みヘッド調整装置。

【請求項6】 前記移動部材は、本体装置のフレーム側 に突出する突出片を備え、

前記枠部材は、前記突出片との位置関係によって書込み ヘッドと感光体ドラムとの位置関係を確認するための開 口部を備えることを特徴とする請求項3記載の書込みヘッド調整装置。

【請求項7】 前記感光体ドラムの軸線方向をX軸方向 とし、前記X軸方向に垂直で感光体ドラムの軸線から移 動部材に向かう方向をY軸方向とし、前記X軸方向およ びY軸方向に垂直な方向を2軸方向とする場合に、

前記弾発性部材は、書込みヘッドの一端部に設けられる第1当接部材のY軸方向一端部を移動部材に対してY軸方向に付勢し、Y軸方向他端部を枠部材に対してZ軸方向に付勢し、書込みヘッドの他端部に設けられる第2当接部材のY軸方向一端部を移動部材に対してY軸方向およびZ軸方向に付勢し、Y軸方向他端部を枠部材に対してX軸方向およびZ軸方向に付勢することで書込みヘッドの位置決めが行われることを特徴とする請求項3記載の書込みヘッド調整装置。

【請求項8】 前記移動部材は、第2当接部材のY軸方向一端部が当接する凹部を有し、

前記凹部の底部はX軸方向に傾斜する傾斜面とし、前記凹部の底部および側面に前記当接部材が当接するように 弾発性部材によって付勢することで、書込みヘッドのY 軸方向および Z 軸方向の位置決めが行われることを特徴とする請求項7記載の書込みヘッド調整装置。

【請求項9】 前記枠部材は、第2当接部材のY軸方向 他端部が係止する係止部を有し、

前記係止部には2軸方向に先端部を有する楔形の切り込みが形成され、切り込み底部の2箇所に第1当接部材が当接するように弾発性部材によって付勢することで、書込みヘッドのX軸方向および2軸方向の位置決めが行われることを特徴とする請求項7記載の書込みヘッド調整 装置

【請求項10】 前記凹部の底部には、Z軸方向に傾斜 40 する第2の傾斜面が形成され、前記凹部はX軸に垂直な 断面形状が楔形状であることを特徴とする請求項8記載 の書込みヘッド調整装置。

【請求項11】 前記枠部材は、書込みヘッドよりも剛性が低いことを特徴とする請求項2または3記載の書込みヘッド調整装置。

【請求項12】 請求項1~3のいずれか1つに記載の 書込みへッド調整装置を備え、フレーム間に回転可能に 支持される円筒形状の感光体ドラムに、書込みヘッド調 整装置に保持される書込みヘッドによって静電潜像を形 50 成し、形成された静電潜像をトナーによって現像し、現

像した画像を記録部材に転写して画像形成物を得るとと を特徴とする画像形成装置。

【請求項13】 前記書込みヘッド調整装置は書込みヘッドとともに1つのユニットとしてフレームに着脱自在に構成され、前記ユニットのフレームに対しての位置決めは、フレームの一方側部に設けられる切欠きと、他方側部に設けられる孔によって行われることを特徴とする請求項12記載の画像形成装置。

【請求項14】 請求項2または3記載の書込みヘッド 調整装置を備え、フレーム間に回転可能に支持される円 10 筒形状の感光体ドラムに、書込みヘッド調整装置に保持 される書込みヘッドによって静電潜像を形成し、形成さ れた静電潜像をトナーによって現像し、現像した画像を 記録部材に転写して画像形成物を得る画像形成装置であ って

前記書込みヘッド調整装置は書込みヘッドとともに1つのユニットとしてフレームに着脱自在に構成され、前記ユニットのフレームに対しての位置決めは、フレームの一方側部に設けられる切欠きに支持軸の一方側を当接し、他方側部に設けられる孔に支持軸の他方側を挿通することで、前記ユニットの位置決めを行うことを特徴とする画像形成装置。

【請求項15】 請求項2または3記載の書込みヘッド 調整装置を備え、フレーム間に回転可能に支持される円 筒形状の感光体ドラムに、書込みヘッド調整装置に保持 される書込みヘッドによって静電潜像を形成し、形成さ れた静電潜像をトナーによって現像し、現像した画像を 記録部材に転写して画像形成物を得る画像形成装置であ って、

枠部材の一端部に調整手段が配置され、フレームの一方側部に枠部材の一端部が支持軸を中心として回動自在に支持され、フレームの他方側部に枠部材の他端部が固定され、調整手段によって支持軸を中心に枠部材の一端部をねじり回転させることによって、枠部材に保持される書込みへッドの感光体ドラムに対する走査傾きを調整することを特徴とする画像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、たとえばディジタル複合機、プリンタ、およびファクシミリなどの画像形 40 成装置に用いられる書込みユニットに関し、特に、書込みヘッドと感光体ドラムとの間隔および書込みヘッドの感光体ドラムの走査方向に対する傾きを調整する書込みヘッド調整装置およびそれを備える画像形成装置に関する

[0002]

【従来の技術】電子写真方式の画像形成装置、たとえば ディジタル複合機、プリンタおよびファクシミリなどに 用いられる書込みヘッド、たとえばLED(Light Emit tingDiode)ヘッドなどは、感光体ドラムに対して所定 の間隔で位置決めされて取り付けられる。

【0003】しかしながら、書込みヘッドと感光体ドラムとの距離が同一となるように組み立てることは非常に困難であり、組み立て時にばらつきが生じてしまう。したがって、組み立てた後で装置毎に書込みヘッドの位置を調整する必要がある。

【0004】このような問題に鑑み、LEDへッドの下部を開放可能なクラムシェル方式の画像形成装置が知られている。クラムシェル方式の画像形成装置では、書込みへッドと感光体ドラムとを所定の距離に位置決めするときに、LEDへッドの下部を開放することができるので、書込みへッドの取り付け位置を調整することができる。

【0005】また、特開平5-278266号公報に書込みへッドと感光体ドラムとの距離を調整可能なプリンタ装置が開示されている。特開平5-2782266号公報に開示される従来技術は、LEDへッドが取り付けられる一のフレームを本体フレームの上方に開放可能に構成し、本体装置の上方からLEDへッドと感光体ドラムとの距離を調整することができる。

[0006]

【発明が解決しようとする課題】しかしながら、LED ヘッドの下部の開放が可能なクラムシェル方式を採用できない構造の画像形成装置、および小型化のために空きスペースを設けることができない構造の画像形成装置の場合、一旦装置を組み立ててしまうと書込みヘッドの位置を調整する箇所に調整工具などが挿入できない。したがって、LEDヘッドの位置の調整を行うために装置を分解する必要があり、調整に手間がかかるといった問題がある。

【0007】また、特開平5-278266号公報の従来技術に開示されるプリンタ装置では、LEDへッドの上方からLEDへッドの位置の調整を行うので、LEDへッドの上方にプリンタ装置の構成部材がある場合には、プリンタ装置を分解する必要がある。また、LEDへッドと感光体ドラムとの距離を調整することは可能であるが、LEDへッドの感光体ドラムに対する走査傾きを調整することはできない。

[0008]また、書込みヘッドの調整はテスト印字を 行いその印刷結果に基づいて行われるので、できるだけ すぐに印刷可能な状態でLEDヘッドの調整作業を行う ことができる画像形成装置が望まれている。

【0009】本発明の目的は、本体装置の側部から書込みへッドと感光体ドラムとの距離および書込みへッドの感光体ドラムに対する走査傾きの少なくともいずれか一方を調整可能な書込みへッド調整装置およびそれを備える画像形成装置を提供することである。

[0010]

【課題を解決するための手段】本発明は、本体装置のフ 50 レーム間に回転可能に支持される円筒形の感光体ドラム に対向して配置される書込みヘッドの位置を調整する書 込みヘッド調整装置において、感光体ドラムの軸線に略 平行に移動する移動部材と、書込みヘッドの両端部に設 けられ、前記移動部材に当接する当接部材と、前記当接 部材を移動部材側に付勢する弾発性部材と、前記本体装 置のフレーム側に設けられ、前記移動部材を移動させて 書込みヘッドと感光体ドラムとの距離を調整する調整手

ド調整装置である。

【0011】本発明に従えば、円筒形の感光体ドラムが 10回転可能に支持される本体装置のフレーム側に設けられる調整手段によって、移動部材を感光体ドラムの軸線に略平行に移動させることができる。書込みヘッドの両端部に設けられる移動部材には当接部材が当接し、当接部材は弾発性部材によって移動部材側に付勢されている。移動部材の感光体ドラムの軸線方向への移動に伴って、当接部材を感光体ドラムに向かう方向、または感光体ドラムから離反する方向に移動させることで、書込みヘッドと感光体ドラムとの間の距離を調整することができる。したがって、本体装置の側部から書込みヘッドと感 20光体ドラムとの距離を調整することができる。

段とを備えることを特徴とする書込みヘッド調整装置で

【0012】また本発明は、本体装置のフレーム間に回転可能に支持される円筒形の感光体ドラムに対向して配置される書込みヘッドの位置を調整する書込みヘッド調整装置において、感光体ドラムに略平行に配置される支持軸と、書込みヘッドを保持し、前記支持軸に支持される枠部材と、前記本体装置のフレーム側に設けられ、前記支持軸を中心として枠部材をねじり回転させることによって、枠部材に保持される書込みヘッドの感光体ドラムに対する走査傾きを調整する調整手段とを備えることを特徴とする書込みヘッド調整装置である。

【0013】本発明に従えば、支持軸は感光体ドラムに略平行に配置され、この支持軸は書込みへッドを保持する枠部材を支持する。円筒形の感光体ドラムが回転可能に支持される本体装置のフレーム側に設けられる調整手段は、支持軸を中心として枠部材をねじり回転させることができ、これによって、枠部材に保持される書込みへッドの感光体ドラムに対する走査傾きを調整することができる。したがって、本体装置の側部から書込みへッドの感光体ドラムに対する走査傾きを調整することができる。なお、走査傾きの調整とは、書込みへッドの長手方向を感光体ドラムの回転軸線を中心とする円筒形状の面内で感光体ドラムの軸線方向と平行にすることである。

【0014】また本発明は、本体装置のフレーム間に回転可能に支持される円筒形の感光体ドラムに対向して配置される書込みヘッドの位置を調整する書込みヘッド調整装置において、感光体ドラムに略平行に配置される支持軸と、前記支持軸に沿って移動し、感光体ドラムの軸線に略平行に移動する移動部材と、前記支持軸に支持される枠部材と書込みヘッドの両端部に設けられ、前記移50

助部材および枠部材に当接する当接部材と、前記当接部材を移動部材側および枠部材側に付勢する弾発性部材と、前記本体装置のフレーム側に設けられ、前記移動部材を移動させて書込みへッドと感光体ドラムとの距離を調整する第1調整手段と、前記支持軸を中心として枠部材をねじり回転させることによって枠部材に保持される書込みへッドの感光体ドラムに対する走査傾きを調整する第2調整手段とを備えることを特徴とする書込みへッ

【0015】本発明に従えば、支持軸は感光体ドラムに 略平行に配置され、支持軸は書込みヘッドを保持する枠 部材を支持する。円筒形の感光体ドラムが回転可能に支 持される本体装置のフレーム側に設けられる第1調整手 段によって、移動部材を支持軸に沿って移動させ、感光 体ドラムの軸線に略平行に移動させることができる。書 込みヘッドの両端部に設けられる移動部材および枠部材 には当接部材が当接し、当接部材は弾発性部材によって 移動部材側および枠部材側に付勢されている。移動部材 の感光体ドラムの軸線方向への移動に伴って、当接部材 を感光体ドラムに向かう方向、または感光体ドラムから 離反する方向に移動させることで、書込みヘッドと感光 体ドラムとの間の距離を調整することができる。また、 本体装置のフレーム側に設けられる第2調整手段は、支 持軸を中心として枠部材をねじり回転させることがで き、これによって、枠部材に保持される書込みヘッドの 感光体ドラムに対する走査傾きを調整することができ る。したがって、本体装置の側部から書込みヘッドと感 光体ドラムとの距離と、書込みヘッドの感光体ドラムに 対する走査傾きとを調整することができる。

【0016】また本発明は、前記移動部材および当接部材の少なくともいずれか一方は、感光体ドラムの軸線方向に傾斜する傾斜面を有し、当接部材は傾斜面に案内されて移動することで書込みヘッドと感光体ドラムとの距離を調整することを特徴とする。

【0017】本発明に従えば、移動部材および当接部材の少なくともいずれか一方は、感光体ドラムの軸線方向に傾斜する傾斜面を有する。したがって、移動部材を感光体ドラムの軸線方向に移動させることで傾斜面に沿って当接部材を感光体ドラムに向かう方向、または感光体ドラムから離反する方向に案内することができる。つまり、感光体ドラムの軸線に略平行に移動部材を移動させることで、感光体ドラムの軸線方向に垂直な方向に当接部材を移動させることができ、書込みヘッドと感光体ドラムとの間の距離を調整することができる。

【0018】また本発明は、前記移動部材は、書込みへッドの両端部に設けられる当接部材の両方に対して設けられることを特徴とする。

【0019】本発明に従えば、移動部材は書込みヘッド の両端部に設けられる当接部材の両方に対して設けられ るので、書込みヘッドの両端部において個別に感光体ド

ラムとの距離を調整することができる。したがって、感 光体ドラムの軸線方向に沿って書込みヘッドと感光体ド ラムとの間の距離を精度が高く、また容易に調整すると とができる。

【0020】また本発明は、前記移動部材は、本体装置 のフレーム側に突出する突出片を備え、前記枠部材は、 前記突出片との位置関係によって書込みヘッドと感光体 ドラムとの位置関係を確認するための開口部を備えると とを特徴とする。

【0021】本発明に従えば、移動部材には本体装置の 10 フレーム側に突出する突出片が設けられ、枠部材には前 記突出片が突出可能な開口部が設けられる。調整手段に よって移動部材を移動させて書込みヘッドと感光体ドラ ムとの間の距離を調整するときに、移動部材が移動する ことによって突出片が移動するので、開口部と突出片と の位置関係によって、書込みヘッドと感光体ドラムとの 位置関係を確認することができる。

【0022】また本発明は、前記感光体ドラムの軸線方 向をX軸方向とし、前記X軸方向に垂直で感光体ドラム の軸線から移動部材に向かう方向をY軸方向とし、前記 X軸方向およびY軸方向に垂直な方向をZ軸方向とする 場合に、前記弾発性部材は、書込みヘッドの一端部に設 けられる第1当接部材のY軸方向一端部を移動部材に対 してY軸方向に付勢し、Y軸方向他端部を枠部材に対し てZ軸方向に付勢し、書込みヘッドの他端部に設けられ る第2当接部材のY軸方向一端部を移動部材に対してY 軸方向およびZ軸方向に付勢し、Y軸方向他端部を枠部 材に対してX軸方向およびZ軸方向に付勢することで書 込みヘッドの位置決めが行われることを特徴とする。

【0023】本発明に従えば、書込みヘッドの一端部を Y軸方向およびZ軸方向に位置決めし、他端部をX軸方 向、Y軸方向およびZ軸方向に位置決めすることがで き、書込みヘッドをX軸方向、Y軸方向およびZ軸方向 の全ての方向に位置決めすることができる。また、第1 移動部材のY軸方向一端部および他端部、第2移動部材 のY軸方向一端部および他端部のそれぞれを個別にX軸 方向、Y軸方方向、およびZ軸方向に位置決めしないの で、支持軸を中心として枠部材をねじり回転させたとき に書込みヘッドのねじれを防止することができる。

【0024】また本発明は、前記移動部材は、第2当接 40 部材のY軸方向一端部が当接する凹部を有し、前記凹部 の底部はX軸方向に傾斜する傾斜面とし、前記凹部の底 部および側面に前記当接部材が当接するように弾発性部 材によって付勢することで、書込みヘッドのY軸方向お よびZ軸方向の位置決めが行われることを特徴とする。

【0025】本発明に従えば、移動部材は第2当接部材 のY軸方向一端部が当接する凹部を有する。凹部の底部 をX軸方向に傾斜する傾斜面として、凹部の底部および 凹部の側面に第2当接部材が当接するように弾発性部材 によって付勢することで1方向の付勢力によってY軸方 50 向および2軸方向の位置決めを行うことができる。

【0026】また本発明は、前記枠部材は、第2当接部 材のY軸方向他端部が係止する係止部を有し、前記係止 部にはZ軸方向に先端部を有する楔形の切り込みが形成 され、切り込み底部の2箇所に第1当接部材が当接する ように弾発性部材によって付勢することで、書込みへっ ドのX軸方向およびZ軸方向の位置決めが行われること を特徴とする。

【0027】本発明に従えば、枠部材は第2当接部材の Y軸方向他端部が係止される係止部を有する。係止部に は乙軸方向に先端部を有する楔形の切り込みが形成され る。この切り込みの底部の2箇所に第1当接部材が当接 するように弾発性部材によって付勢することで、1方向 の付勢力によってX軸方向および Z軸方向の位置決めを 行うととができる。

【0028】また本発明は、前記凹部の底部には、乙軸 方向に傾斜する第2の傾斜面が形成され、前記凹部はX 軸に垂直な断面形状が楔形状であることを特徴とする。

【0029】本発明に従えば、前記凹部の底部には、Z 軸方向で感光体ドラムに向かう方向に傾斜する第2の傾 斜面が形成される。第1当接部材は、凹部の底部に形成 された第2の傾斜面に当接するととで、凹部の側面に当 接しやすくなり、1方向の付勢によって第1の当接部材 のY軸方向およびZ軸方向の位置決めを確実に行うこと ができる。

【0030】また本発明は、前記枠部材は、書込みへッ ドよりも剛性が低いことを特徴とする。

【0031】本発明に従えば、枠部材は書込みヘッドよ りも剛性が低いので、枠部材をねじり回転させて、枠部 材に支持された書込みヘッドを移動させ、書込みヘッド の感光体ドラムに対する走査傾きを調整することができ る。また、枠部材をねじり回転させ変形させたときに、 書込みヘッドがねじれて変形することを防止できる。

【0032】また本発明は、前記、書込みヘッド調整装 置を備え、フレーム間に回転可能に支持される円筒形状 の感光体ドラムに、書込みヘッド調整装置に保持される 書込みヘッドによって静電潜像を形成し、形成された静 電潜像をトナーによって現像し、現像した画像を記録部 材に転写して画像形成物を得ることを特徴とする画像形 成装置である。

【0033】本発明に従えば、フレーム間に回転可能に 支持される円筒形状の感光体ドラムに、前記書込みへっ ド調整装置に保持される書込みヘッドによって、静電潜 像を形成することができる。感光体ドラムに形成された 静電潜像をトナーによって現像し、記録部材に転写する ことによって高品質な画像を形成することができる。ま た、本体装置の側部から書込みヘッドの位置調整を行う ことができるので、テスト印刷を実行しながらでも調整 作業を行うことができる。

【0034】また本発明は、前記書込みヘッド調整装置

は書込みヘッドとともに1つのユニットとしてフレーム に着脱自在に構成され、前記ユニットのフレームに対し ての位置決めは、フレームの一方側部に設けられる切欠 きと、他方側部に設けられる孔によって行われることを 特徴とする。

【0035】本発明に従えば、書込みヘッド調整装置は 書込みヘッドとともに1つのユニットとして本体装置の フレームに着脱自在に構成されるので、書込みヘッドの 交換では、書込みヘッド調整装置ごと本体装置のフレー ムから外して交換することができる。また、フレームの 10 一方側部には切欠きが設けられ、他方側部には孔が設け れ、前記ユニットはこれらによってフレームに位置決め されるので、書込みヘッドを感光体ドラムに対して確実 に位置決めすることができる。

【0036】また本発明は、前記、書込みヘッド調整装置を備え、フレーム間に回転可能に支持される円筒形状の感光体ドラムに、書込みヘッド調整装置に保持される書込みヘッドによって静電潜像を形成し、形成された静電潜像をトナーによって現像し、現像した画像を記録部材に転写して画像形成物を得る画像形成装置であって、前記書込みヘッド調整装置は書込みヘッドとともに1つのユニットとしてフレームに着脱自在に構成され、前記ユニットのフレームに対しての位置決めは、フレームの一方側部に設けられる切欠きに支持軸の一方側を当接し、他方側部に設けられる孔に支持軸の他方側を挿通することで、前記ユニットの位置決めを行うことを特徴とする画像形成装置である。

【0037】本発明に従えば、フレーム間に回転可能に 支持される円筒形状の感光体ドラムに、前記書込みへッ ド調整装置に保持される書込みヘッドによって、静電潜 像を形成することができる。感光体ドラムに形成された 静電潜像をトナーによって現像し、記録部材に転写する ことによって高品質な画像を形成することができる。ま た、本体装置の側部から書込みヘッドの位置調整を行う ことができるので、テスト印刷を実行しながらでも調整 作業を行うことができる。また、書込みヘッド調整装置 は書込みヘッドとともに1つのユニットとして本体装置 のフレームに着脱自在に構成されるので、書込みヘッド の交換などでは、書込みヘッド調整装置とと本体装置の フレームから外して交換することができる。また、フレ 40 ームの一方側部に設けられる切欠きに支持軸の一方側を 当接し、フレームの他方側に設けられる孔に支持軸の他 方側を挿通することで、書込みヘッドを感光体ドラムに 対して確実に位置決めすることができる。

【0038】また本発明は、前記、書込みヘッド調整装置を備え、フレーム間に回転可能に支持される円筒形状の感光体ドラムに、書込みヘッド調整装置に保持される書込みヘッドによって静電潜像を形成し、形成された静電潜像をトナーによって現像し、現像した画像を記録部材に転写して画像形成物を得る画像形成装置であって、

枠部材の一端部に調整手段が配置され、フレームの一方側部に枠部材の一端部が支持軸を中心として回動自在に支持され、フレームの他方側部に枠部材の他端部が固定され、調整手段によって支持軸を中心に枠部材の一端部をねじり回転させることによって、枠部材に保持される書込みヘッドの感光体ドラムに対する走査傾きを調整することを特徴とする画像形成装置である。

【0039】本発明に従えば、フレーム間に回転可能に支持される円筒形状の感光体ドラムに、前記書込みへッド調整装置に保持される書込みへッドによって、静電潜像を形成することができる。感光体ドラムに形成された静電潜像をトナーによって現像し、記録部材に転写することによって高品質な画像を形成することができる。また、本体装置の側部から書込みへッドの位置調整を行うことができるので、テスト印刷を実行しながらでも調整作業を行うことができる。また、書込みへッド調整装置の枠部材の一端部はフレームの一方側部に対して回動可能に設けられ、枠部材の他端部はフレームの他方側部に対して固定される。調整手段は枠部材の一方端部に配置され、支持軸を中心に枠部材をねじり回転させることによって、枠部材に保持される書込みへッドの感光体ドラムに対する走査傾きを調整することができる。

[0040]

【発明の実施の形態】図1は、本発明の実施の一形態の画像形成装置であるディジタルカラー複写機(以下、複写機と略称する)1の構成を概略的に示す断面図である。

【0041】複写機1は、本体上部に原稿台111および操作パネル(図示しない)を備え、本体内部に画像読み取り部110および画像形成部210を備える。原稿載置台111の上面には、原稿載置台111に対して開閉可能に支持され、原稿載置台111に対して所定の位置関係をもって両面自動原稿送り装置(RADF; Reversing Automatic Document Feeder)112が設けられる。

【0042】複写機1は、カラー画像の複写が可能な電子写真方式の画像形成装置である。原稿台111の上に載置される原稿の画像または両面自動原稿送り装置112によって搬送される原稿の画像を画像読み取り部110で読み取り、読み取った原稿の画像を画像形成部210の第1~第4画像形成ステーションPa, Pb, Pc, Pdで記録紙100上に再現する。第1の画像形成ステーションPaは記録紙100に原稿画像の黒色成分の画像を再現し、第2の画像形成ステーションPbは記録紙100に原稿画像のシアン成分の画像を再現し、第3の画像形成ステーションPcは記録紙100に原稿画像のマゼンタ成分の画像を再現し、第4画像形成ステーションPdは記録紙100に原稿画像のイエロー成分の画像を再現する。第1~第4の画像形成ステーションPa、Pdは同一の構成であるので、これらをまとめて画

像形成ステーションPとして説明する。

【0043】図2は、画像形成部210の画像形成ステ ーションPの構成を拡大して示す断面図である。画像形 成ステーションPは、記録紙100にトナー像を形成す るユニットである。画像形成ステーションPは、複写機 1のフレーム間に回転可能に水平に支持される円筒形状 の感光体ドラム222、感光体ドラム222を一様に帯 電させる帯電器223、感光体ドラム222の表面に形 成された静電潜像にトナーを付着させて現像する現像装 置224、現像された感光体ドラム222の表面のトナ 10 - 像を記録紙100に転写する転写用放電器225、感 光体ドラム222の表面に残留するトナーを除去するク リーニング装置226を含み構成される。前記帯電器2 23、224、転写用放電器225およびクリーニング 装置226は、感光体ドラム222の回転方向に沿って 順に配置される。また、感光体ドラム222と転写用放 電器225との間には、記録紙100を搬送する転写搬 送ベルト216が設けられ、記録紙100を矢符2方向 に搬送する。感光体ドラム222は、図1および図2の 紙面に垂直な方向に延びる回転軸し1を中心に矢符Fの 20 方向に回転する。

【0044】また画像形成ステーションPは、書込みへッドであるLEDへッド227を備える。LEDへッド227は感光体ドラム222の上方で、その長手方向が感光体ドラム222の軸線方向に略平行に設けられる。LEDへッド227は、感光体ドラム222の回転方向に沿って設けられる帯電器223で帯電させた感光体ドラム222の表面に光を照射して静電潜像を形成する。

【0045】LEDヘッド227は、画像データに応じ 30 て変調されたドット光を発する発光ダイオードをライン 状に基板上に形成して構成されるLED基板ユニット、 および前記発光ダイオードからの光を感光体ドラム22 2の表面に結像させるレンズアレイ、LEDヘッド22 7の骨格を成すベース部材を含み構成される。ベース部 材は、LEDヘッド227の長手方向に延び、剛性の高 い金属ブロックによって形成されている。また、LED ヘッド227は熱を発生するので、ベース部材は熱伝導 性のよいアルミニウムを用いて作製される。これによっ て、LEDヘッド227の発熱を抑制することができ る。また、ベース部材にアルミニウムを用いることでし EDヘッド227は十分な剛性を得ることができ、また LEDヘッドを軽量に構成することができる。また、L EDヘッド227の両端部には、ベース部材の両端部が 突出し、ヘッド支持部2を構成する。

【0046】図3は、LEDヘッド227とこのLED ヘッド227を保持する書込みヘッド調整装置3とによって構成される書込みユニットの斜視図である。書込みヘッド調整装置3は、LEDヘッド227を保持し、このLEDヘッド227と感光体ドラム222との間の距 50

離の調整およびLEDへッド227の感光体ドラム22 2に対する走査傾きを調整する。ことで、走査傾きの調整とは、書込みへッドの長手方向を感光体ドラム222 の回転軸線を中心とする円筒形状の面内で感光体ドラム 222の軸線方向と平行にすることである。書込みへッ ド調整装置3は、その長手方向両端部が、前記感光体ド ラム222が支持される複写機1のフレームに取り付け られる。

【0047】図4は、書込みユニットの正面断面図である。図5(a)は書込みユニットの一端部を拡大して示す正面断面図であり、図5(b)は書込みユニットの他端部を拡大して示す正面断面図である。図6(a)は図4の切断面線A-Aから見た断面図であり、図6(b)は図4の切断面線B-Bから見た断面図である。

【0048】書込みへッド調整装置3は、感光体ドラム222に略平行に配置される支持軸4、支持軸4に沿って移動可能に設けられ、感光体ドラム222の軸線に略平行に移動する移動部材5、前記支持軸4に支持される枠部材6、LEDへッド227の両端部に設けられ、前記等財部材7を移動部材5側および枠部材6側に付勢する弾発性部材であるスプリング8、複写機1のフレーム側、つまり枠部材6の長手方向端部に設けられ、LEDへッド227と感光体ドラム222との間の距離日を調整する第1調整手段9、およびLEDへッド227の感光体ドラム222に対する走査傾きを調整する第2調整手段10を含み構成される。

【0049】以下の説明で、感光体ドラム222の軸線 方向をX軸方向とし、前記X軸方向に垂直で感光体ドラム222の軸線から移動部材5に向かう方向をY軸方向 とし、前記X軸方向およびY軸方向に垂直な方向をZ軸 方向とする。本実施形態では、X軸方向およびZ軸方向 は水平方向であり、Y軸方向は鉛直方向である。

【0050】当接部材7は、LEDへッド227の両端部のヘッド支持部2に固定して設けられ、LEDへッドの長手方向(図4の左右方向)に対して垂直な方向に延びるピン部材である。当接部材7は、Y軸方向に延び、Y軸方向一端部である上端部が移動部材5に当接し、Y軸方向他端部である下端部が枠部材6に当接する。当接部材7は、LEDヘッド227の一端部に設けられる第1当接部材7aと、LEDヘッド227の他端部に設けられる第2当接部材7bとから構成される。

【0051】移動部材5は、前記LEDへッド227の両端部に設けられる当接部材7の両方に対して設けられる。移動部材5は、LEDへッド227の一端部に設けられる第1当接部材7aが当接する第1移動部材5a、およびLEDへッド227の他端部に設けられる第2当接部材7bが当接する第2移動部材5bとを含む。移動部材5は、前記支持軸4に沿って、感光体ドラム222の軸線に略平行に移動可能に設けられる。具体的には、

図5 および図6 に示すように移動部材5 は支持軸4 に嵌入して設けている。移動部材5 は、弾発性部材であるスプリング11 によって支持軸4 の軸線方向両端部に付勢される。スプリング11 はコイルバネであり、支持軸4 に嵌入されて設けられる。

【0052】また移動部材5は、感光体ドラム222の軸線方向、つまりX軸方向に傾斜する傾斜面15を有する。前記傾斜面15は、移動部材5の感光体ドラム222に向かう側、つまり移動部材5の下部に形成される。本実施形態では、第1移動部材5 a および第2移動部材5 b に設けられる傾斜面15の傾斜方向を異ならせている。つまり、第1移動部材5 a では、支持軸4の一方側から他方側に向かうに連れて上方に傾斜するように傾斜面15を形成し、第2移動部材5 b では、支持軸4の他方側から一方側に向かうに連れて上方に傾斜するように傾斜面15を形成している。このように移動部材5の傾斜面を設けることで、LEDへッド227をX軸方向に安定させることができる。

【0053】第1移動部材5aには、図6(a)に示すように前記第1当接部材7aと一点で当接するように傾 20 斜面15が形成される。第2移動部材5bでは、図6(b)に示すように前記第2当接部材7bと2点以上で当接するように第2当接部材5bは下部に凹部16を有し、傾斜面15は凹部16の底部に形成される。本実施形態では、前記凹部16をX軸方向に延びる溝状に形成している。このように凹部16を設けて当接部材7を当接させることによって、凹部16の底部に形成される傾斜面15と、凹部16の側面とで当接部材7の位置決めを行うことができる。

【0054】枠部材6は、LEDヘッド227を覆うよ 30 うに設けられる。枠部材6は、長手方向一端部側の第1 フレーム20、長手方向他端部側の第2フレーム21、 および第1フレームおよび第2フレームとの間の第3フ レーム23とから構成される。前記第1~第3フレーム は一枚の金属製の板材を折り曲げた一体構造となってい る。枠部材6の長手方向両端部、つまり第1フレーム2 0および第2フレーム21には貫通孔が設けられる。支 持軸4は前記貫通孔に挿通されて枠部材6を支持する。 枠部材6は支持軸4に対して回転可能に支持される。枠 部材6の感光体ドラム222に対向する側、つまり枠部 40 材6の下部には、前記当接部材7のY軸方向他端部(下 端部)が当接する係止部25が設けられる。前記係止部 25は、第3フレーム22に形成される。また、LED ヘッド227の一端部に設けられる第1当接部材7aが 当接する枠部材6の一端部の係止部25を第1係止部2 5aとし、LEDヘッド227の他端部に設けられる第 2 当接部材7 b とが当接する枠部材6 の他端部の係止部 25を第2係止部25bとする。

【0055】図7(a)は枠部材6の第1係止部25a を示す部分底面図であり、図7(b)は枠部材6の第2 係止部25 bを示す部分底面図である。図7(a) および図7(b) に示すように第1係止部25 a および第2係止部25 bの形状は異なる。第1係止部25 a は、乙軸方向に先端部を有する略U字状の切り込みによって構成される。第1係止部25によって、第1当接部材7aの下端部を Z軸方向に位置決めすることができる。第2係止部25 bは、 Z軸方向に先端部を有する楔形(略V字状)の切り込みによって構成される。第2係止部25 bによって、第2当接部材7bの下端部を X軸方向および Z軸方向に位置決めすることができる。本実施形態では、係止部25 は書込みユニットの正面側が開放された切り込みによって形成されているが、切り込みを有する貫通孔または凹部によって形成されてもよい。

【0056】ヘッド支持部2と枠部材6との間にはスプ リング8が設けられ、LEDヘッド227を斜め上方に 付勢する。本実施形態では、スプリング8としてコイル バネを用いる。具体的には図4および図6に示すよう に、スプリング8は、LEDヘッド227のヘッド支持 部2と枠部材6の背面上方とにわたって設けられ、LE Dヘッド227を枠部材6の背面上方に付勢する。した がって、LEDヘッド227には常に背面上方に付勢力 が働くので、当接部材7が移動部材5側および枠部材6 側に付勢される。スプリング8は、LEDヘッド227 の第1当接部材7 a の Y 軸方向一端部 (上端部) を第1 移動部材5aに対してY軸方向に付勢し、LEDヘッド 227の第1当接部材7aのY軸方向他端部(下端部) を枠部材6に対して Z 軸方向に付勢し、LEDヘッド2 27の第2当接部材7bのY軸方向一端部(上端部)を 第2移動部材5bに対してY軸方向およびZ軸方向に付 勢し、LEDヘッド227の第2当接部材7bのY軸方 向他端部(下端部)を枠部材6に対してX軸方向および Z軸方向に付勢することができる。したがって、LED ヘッド227をX軸方向、Y軸方向およびZ軸方向の全 ての方向に位置決めすることができる。

【0057】図8は、第2移動部材5bと第2当接部材 7 b との当接部を拡大して示す断面図である。第2移動 部材5の下部には上述したように溝状の凹部16が形成 される。この凹部16の底部に形成され傾斜面15は、 2つの方向に傾斜する面を有する。この凹部16の底部 に形成される傾斜面15は、X軸方向に傾斜し、Z軸方 向に傾斜しない第1傾斜面15aと、前記第1傾斜面1 5 a に連なり、X軸方向に傾斜し、さらに Z軸方向の感 光体ドラム222に向かう方向に傾斜する第2の傾斜面 15bとから構成される。第2当接部材7bを凹部16 に当接させると、スプリング8の付勢力Fslによっ て、Y軸方向およびZ軸方向の分力FuおよびFhが働 く。これによって、凹部16の壁面に空間18aが形成 され、凹部16の底部に空間18 bが形成されるととも に、凹部16の第2の傾斜面16とスプリング8に近接 50 する側面19との2箇所で第2当接部材7bが当接す

る。したがって、第2当接部材7bをY軸方向およびZ軸方向に確実に当接させて位置決めを行うことができる。本実施形態では、第2移動部材5bが配置される枠部材6の他端部側がLEDへッド227の書込みへッド調整装置3に対する位置決めの基準側となっている。これに対して、第1移動部材5aと第1当接部材7aとの当接部では、Y軸方向にのみ位置決めを行い、Z軸方向には位置決めを行わない構成としている。このように第1移動部材5a側では、Z軸方向の位置規制を行わないが、LEDへッド227は十分な剛性を有するので、スプリングS1によって斜め上方に引っ張られてもZ軸方向に第1当接部材7aは傾かない。

【0058】書込みヘッド調整装置3の複写機1のフレ ーム側、つまり書込みヘッド調整装置3の長手方向の一 端部および他端部には、LEDヘッド227と感光体ド ラム222との間の距離Hを調整する第1調整手段9が それぞれ設けられる。第1調整手段9は、間隔調整ネジ 30および枠部材6のフレームに設けられるネジ孔31 から構成される。前記ネジ孔31は、移動部材5の側面 に対応する位置に設けられる。 このネジ孔31に間隔調 整ネジ30を螺合させて、その先端部を移動部材5に当 接させる。移動部材5は、スプリング11によって書込 みヘッド調整装置3の長手方向の端部側に付勢されてい るので、スプリング11の付勢力と間隔調整ネジ30と によって、移動部材5のX軸方向の位置決めを行うこと ができる。間隔調整ネジ30は、書込みヘッド調整装置 3が複写機1のフレームに装着された場合に、複写機1 の側部から外側に突出するように構成される。したがっ て、複写機1の外装を開ける構成としておき、この外装 を取り外すだけで、間隔調整ネジ30を容易に回転させ 30 て移動部材5を移動させることができる。

【0059】間隔調整ネジ30を回転させることによって、移動部材5を支持軸4に沿って移動させる、つまり X軸方向に移動させると、移動部材5の傾斜面15に当接する当接部材7は、傾斜面15に案内されてY軸方向に移動する。当接部材7がY軸方向に移動することによって、LEDへッド227がY軸方向に移動する。したがって、LEDへッド227と感光体ドラム222との間の距離Hを調整することができる。

【0060】次に、図9、図10および図11を参照して書込みへッド調整装置3によるLEDへッド227と感光体ドラム222との間の距離Hの調整動作について説明する。とこでは、書込みへッド調整装置3の一端部の第1調整手段9による調整についてのみ説明するが、他端部の第1調整手段9でも同様である。なお、図9~11では、枠部材6、スプリング8などは図が煩雑となることを防ぐため省略し、図11では、さらに間隔調整ネジ30、支持軸4およびスプリング11を省略して示している。

【0061】図9に示すように、第1移動部材5aには 50

支持軸4の軸線方向の端部側にスプリング11の付勢力 Foが働いている。また、第1当接部材7aにはスプリング8の付勢力のうちY軸方向上方に作用する力Fuが 働いている。

【0062】図10は間隔調整ネジ30をX軸方向に進退させたときに移動する第1移動部材5aに関連して、LEDへッド227がY軸方向に上下移動する状態を示す正面図であり、図11はその動作を模式的に示す正面図である。LEDへッド227と感光体ドラム222との間の距離がHである場合に、間隔調整ネジ30を進退させることで、図10に示すようにLEDへッド227と感光体ドラム222との間の距離をHよりも短いH1あるいは、Hよりも長いH2とすることができる。

【0063】図10を参照して具体的に説明すると、第 1移動部材5aが位置Xaにあるときには、第1移動部 材5aの傾斜面15と第1当接部材7aとは当接点aで 接触し、このときのLEDヘッド227と感光体ドラム 222との間の距離HはHaであるとする。この状態か ら第1移動部材5aを位置Xaから書込みヘッド調整装 置3の内側の位置Xb に移動させると、第1移動部材5 aと第1当接部材7aとの当接点はY軸方向の下方に移 動し、第1移動部材5aと第1当接部材7aとは当接点 bで接触する。第1移動部材5aと第1当接部材7aと の当接点がY軸方向の下方、つまり感光体ドラム222 に向かう方向に移動することで、LEDヘッド227と 感光体ドラム222との間の距離HがHaよりも短いH bとなる。逆に、第1移動部材5aを位置Xaから書込 みヘッド調整装置3の端部側の位置Xc に移動させる と、第1移動部材5aと第1当接部材7aとの接触点は Y軸方向の上方に移動し、第1移動部材5aと第1当接 部材7aとは当接点cで接触する。第1移動部材5aと 第1 当接部材7 a との当接点がY軸方向の上方、つまり 感光体ドラム222から離反する方向に移動すること で、LEDヘッド227と感光体ドラム222との間の 距離HがHaよりも長いHbとなる。

【0064】図12(a)は、LEDへッド227と感光体ドラム222との間の距離日を狭くする場合の動作を示す正面図である。LEDへッド227と感光体ドラム222との間の距離日を狭くする場合には、間隔調整ネジ30を進入してスプリング8の付勢力Foに逆らう方向、つまり書込みへッド調整装置3の内側(図11(a)の右方向)に第1移動部材5aをX1移動させる。第1移動部材5aの移動に伴って、第1当接部材7aはスプリング8の付勢力のうちY軸方向上方に作用する力Fuに逆らうY軸方向下方、つまり感光体ドラム22に向かう方向にY1移動する。これによって、LEDへッド227と感光体ドラム222との間の距離を日よりも狭いH1とすることができる。

【0065】図12(b)は、LEDヘッド227と感 光体ドラム222との間の距離Hを広くする場合の動作 を示す正面図である。LEDへッド227と感光体ドラム222との間の距離Hを広くする場合には、間隔調整ネジ30を退出してスプリング8の付勢力Foの働く方向、つまり書込みヘッド調整装置3の外側(図11

17

(b)の左方向)に第1移動部材5aをX2移動させる。第1移動部材5aの移動に伴って、第1当接部材7aはスプリング8の付勢力のうちY軸方向上方に作用する力Fuが働くY軸方向の上方、つまり感光体ドラム222に離反する方向にY2移動する。これによって、LEDヘッド227と感光体ドラム222との間の距離を 10 Hよりも広いH2とすることができる。

【0066】なお、本実施形態では下部に傾斜面15を有した移動部材5を当接部材7の上部に当接させる構成を示したが、反対に、下方に延びる当接部を移動部材5に設け、この当接部の先端部が当接するLEDへッド支持部材3の上面に傾斜面を形成する構成としてもよい。これによって、移動部材5が支持軸4に沿って移動するとき、LEDへッド支持部材3の上部に設けられた傾斜面によってLEDへッド227をY軸方向に上下に移動させることができ、LEDへッド227と感光体ドラム 2022との間の距離Hを調整することができる。

【0067】以上のように書込みへッド調整装置3を用いることによって、LEDへッド227の両側からLEDへッド227と感光体ドラムと222の間の距離日を調整することができる。したがって、LEDへッド227の下方が開放されない構造であったとしても、書込みへッド調整装置3の側部からLEDへッド227の感光体ドラム222に対する位置を容易に調整することができる。また、第1調整手段9として、間隔調整ネジ30を用いることによって、間隔調整ネジ30の回転を移動30部材5の直線移動に変換するので、LEDへッド227と感光体ドラム222との間の距離日を調整、つまりLEDへッドのピント調整を精密に行うことができる。

【0068】また、前記移動部材5に設けられる傾斜面 15の傾斜角度を変更することによって間隔調整ネジ30の移動量に対するLEDへッド227の移動量である 調整率を変えてもよい。傾斜面15のX軸方向に対する傾斜角度を小さくすることで、調整ネジ15の移動量に対してLEDへッド227の移動量を小さくすることができるので、微小な間隔調整が可能となる。また、移動部材5に設けられる傾斜面15は、所定の曲率を有する曲面としてもよい。

【0069】また、書込みヘッド調整装置3では、LE Dヘッド227の両端部に設けられる当接部材7の両方に移動部材5が設けられ、それぞれの移動部材5を第1 調整手段9が設けられるので、LEDヘッド227の両端部で個別に感光体ドラム222との距離を調整することができる。したがって、感光体ドラム222の軸線が傾斜していても、これに対応してLEDヘッド227の位置を調整することができる。

【0070】また、移動部材5には、枠部材6の長手方 向端部に向かって突出する突出片35が設けられる。図 13は第1移動部材5aの突出片35を拡大して示す正 面断面図であり、図14は第1移動部材5aの突出片3 5を拡大して示す側面図である。枠部材6の第1フレー ム20には、突出片35の端部に対応した位置に開口部 36が設けられる。開口部36は、枠部材6に孔によっ て構成してもよく、また切欠きによって構成してもよ い。これによって、開口部36を通して、突出片35の 先端部の位置を確認することができ、前記突出片35と 開口部35との位置関係によって、LEDヘッド227 と感光体ドラム222との間の距離Hを確認することが できる。なお、図13および図14では、書込みヘッド 調整装置3の一端部の第1移動部材5aに設けられる突 出片35についてのみ示しているが、他端部の第2移動 部材5bに設けられる突出片35についても同様に構成 される。さらに、複写機1のフレームには、書込みへッ ド調整装置3を複写機1のフレームに取り付けたとき に、前記突出片35の位置を確認することができる位置 に確認窓が設けられる。したがって、書込みヘッド調整 装置3が複写機1に装着された状態においても、LED ヘッド227と感光体ドラム222との位置関係を確認 することができる。

【0071】図15は、複写機1のフレーム(以下、本体フレームと呼称する)に取り付けられた書込みユニットを示す斜視図である。図16は、図15の切断面線CーCから見た正面断面図である。図17(a)は図16の切断面線DーDから見た断面図であり、図17(b)は図16の切断面線EーEから見た断面図である。また図18は、本体フレームに取り付けられた書込みユニットを感光体ドラム222側から見た平面図である。図19は(a)は、本体フレームに取り付けられた書込みユニットを一方側から見た側面図であり、図19(b)は、本体フレームに取り付けられた書込みユニットを他方側から見た側面図である。

【0072】第2調整手段10は、枠部材6の一端部に設けられる。第2調整手段10は、支持板40、ネジ孔41および走査傾き調整ネジ42を含み構成される。支持板40は、枠部材6の一端部の第1フレーム20から枠部材6の長手方向(X軸方向)に突出する。前記支持板40にネジ孔41が設けられ、このネジ孔41に走査傾き調整ネジ42が螺合する。本実施形態では支持板40は第1フレーム20の上端部に配置される。なお、支持板40は、枠部材6と一体的に構成してもよい。第2調整手段10によるLEDへッド227の感光体ドラム22に対する走査傾きの調整については後述する。

【0073】複写機1の一方側部のフレーム(以下、第1本体フレームを記す)45には、書込みヘッド調整装置3の長手方向に突出する支持軸4の外形と等しい切欠き46が設けられる。支持軸4の一端部を前記切欠き4

6に当接させて位置決めを行い、第1固定ネジ47によって枠部材6を第1本体フレーム45に固定する。第1固定ネジ47は、枠部材6の第1フレーム20に設けられる孔48に挿通され、これに対応する第1本体フレーム45に設けられるネジ孔に螺合する。孔48は、第1固定ネジ47を緩めると枠部材6が第1本体フレーム42に対して可動するように設けられ、本実施形態では略楕円形状としている。

【0074】複写機1の他方側部のフレーム(以下、第 2本体フレームと記す) 50には、書込みヘッド調整装 10 置3の長手方向に突出する支持軸4が挿通される孔51 が設けられる。支持軸4の他端部を前記孔51に挿通さ せて位置決めを行い、固定ネジによって枠部材6を複写 機1の他方側部のフレームに固定する。本実施形態で は、支持軸4の上方に設けられる第2固定ネジ52、お よび支持軸4の下方に設けられる第3固定ネジ53の2 箇所で枠部材6の他端部を第2本体フレーム50に固定 している。また本実施形態では、第1固定ネジ47は、 第2固定ネジ52に対応する位置に固定される。また、 第2本体フレーム50には、書込みヘッド調整装置3の 20 移動部材5から突出する突出片35が設けられる位置 に、フレーム開口部54が設けられる。これによって、 書込みヘッド調整装置3を本体フレームに複写機1のフ レームに取り付けた状態でも、側方から係止片35の位 置を確認することができ、LEDヘッド227と感光体 ドラム222との間の距離Hの調整が容易となる。

【0075】このように枠部材6は、複写機1のフレームに対して支持軸4を基準に装着され、複数の固定ネジによって固定される。上述したように書込みユニットを複写機1のフレームに取り付けることによって、LEDヘッド227を交換する時に、複写機1の側方から固定ネジを外して、書込みユニットを容易に取り外すことができる。

【0076】第1本体フレーム45は、外方に突出し、前記枠部材6の支持板40に対向するフレーム突出部60を有する。フレーム突出部60は、第1本体フレーム45と一体に構成されてもよい。フレーム突出部60には、枠部材6を所定の方向に付勢するスプリング61が取り付けられている。前記第1本体フレーム45のフレーム突出部60に設けられるスプリング61は、走査傾40き調整ネジ42の先端部をフレーム突出部60側に付勢する。

【0077】 ここで、第2調整手段10を用いて行うし EDへッド227の感光体ドラム222に対する走査傾 きの調整について具体的に説明する。図20および図2 1は、走査傾きを調整するときの書込みへッド調整装置 3の動作を示す側面図および平面図である。まず、枠部 材6の他端部を第2本体フレーム50に固定した状態 で、枠部材6の一端部を第1本体フレーム45に固定し ている第1固定ネジ47を緩める。ここで、走査傾き調 50

整ネジ42を回転させてフレーム突出部60に向かう方向(図20および図21の矢符F1の方向)に進入させると、走査傾き調整ネジ42はフレーム突出部60に阻止され、枠部材6の上端部70はフレーム突出部60から離反する方向(図20および図21の矢符F2の方向)に作用を受ける。枠部材6は、支持軸4に回転可能に支持されているので、支持軸4を中心にねじり回転され、枠部材6の下端部71には図20の矢符F3の方向に回転力が作用する。これによって、枠部材6が支持軸4を中心にねじられる。

【0078】枠部材6がねじり回転すると、枠部材6の 内部に保持されているLEDヘッド227は、第2当接 部材7 b 側を基準側として揺動し、回転運動する。これ によって、感光体ドラム222の軸線を中心とした円筒 形状の面内でLEDヘッド227の長手方向を感光体ド ラム222の軸線方向と平行にすることができる。ま た、図22は、前記調整を行ったときの書込みユニット の動作を示す断面図である。図22に示す実線は調整前 の書込みユニットの状態を示し、破線は調整後の書込み ユニットの状態を示す。書込みヘッド調整装置3では、 LEDヘッド227の第1当接部材7aのY軸方向上端 部が当接する第1移動部材5aの傾斜面15を、凹部を 設けないフラットな形状としているので、枠部材6をね じり回転させたとき、図22に示すように第1当接部材 7 a は、傾斜面 1 5 をすべることができる。また上述し たように、第1当接部材7aの下端部はZ軸方向にのみ 位置決めされている。したがって、LEDヘッド227 に歪みを与える力を逃がすことができ、枠部材6をねじ り回転させてもLEDヘッド227の破壊または変形を 防止することができる。また、図20および図21で は、走査傾き調整ネジ42を矢符F1方向に進入させた 場合について説明したが、矢符F 1方向とは反対方向に 移動させると、枠部材6を逆にねじることができる。以 上のように枠部材6を、支持軸4を中心にねじり回転さ せることによって、第2調整手段10によって感光体ド ラム222の軸線を中心とした円筒形状の面内でLED ヘッド227の長手方向を感光体ドラム222の軸線方 向と平行にすることができ、LEDヘッド227の感光 体ドラム222に対する走査傾きを調整することができ

【0079】LEDヘッド227の感光体ドラム222 に対する走査傾きの調整は、複写機1の一方側部から調整することができる。また、走査傾き調整ネジ42を用い、この走査傾き調整ネジ42を回転させ、直線運動させることで枠部材6をねじり回転させる力としているので、LEDヘッド227の感光体ドラム222に対する走査傾きを精密に行うことができる。

【0080】また、本実施形態では走査傾き調整ネジ4 2によって調整を行うが、偏心部材を用いて枠部材6 を、支持軸4を中心に回転させる構成としてもよい。

114の第3ミラーによって偏向された原稿からの反射 光像を縮小し、縮小した光像CCDラインセンサ116 上の所定位置に結像させる。

【0081】なお、走査傾き調整ネジ42によってLEDへッド227の感光体ドラム222に対する走査傾きを調整した後は、枠部材6の一端部を固定ネジによって複写機1の一方側部のフレームに固定する。このとき、固定ネジの他に枠部材6を複写機1の一方側部のフレームに固定する固定手段を更に設けてもよい。

【0087】CCDラインセンサ116は、結像された 光像を順次光電変換して電気信号として出力する。CC Dラインセンサ116は、白黒画像あるいはカラー画像 を読み取り、R(赤)、G(緑)、B(青)の各色成分 に分解したラインデータを出力可能な3ラインのカラー CCDである。CのCCDラインセンサ116によって 電気信号に変換された原稿画像情報は、さらに、図示しない画像処理部に転送されて所定の画像データ処理が施まれる

【0082】以上のように、書込みヘッド調整装置3によってLEDヘッド227と感光体ドラム222との間の距離日を調整することができ、また、LEDヘッド227の感光体ドラム222に対する走査傾きを調整する 10 ことができる。また、LEDヘッド227と感光体ドラム222との間の距離日は、LEDヘッド227の両端部で個別に調整することができる。感光体ドラム222に対するLEDヘッド227の位置を精密に調整することができる。

【0088】次に、画像形成部210の構成および画像形成装置210に関わる各部の構成について説明する。【0089】画像形成部210の下方には、用紙トレイ内に積載収容されている記録紙100を一枚ずつ分離して、画像形成部210に向かって供給する給紙機構211が設けられている。給紙機構211によって一枚ずつ分離された記録紙100は、画像形成部210の手前に設けられる1対のレジストローラ212によってタイミングが制御されて画像形成部210に搬送される。

【0083】再び図1を参照して、複写機1の他の構成を説明する。両面自動原稿送り装置112は、まず原稿の一方の面が原稿台111の所定位置において画像読み取り部110に対向するように原稿を搬送し、この一方の面についての画像の読み取りが終了した後に、原稿の20他方の面が原稿台111の所定位置において画像読み取り部110に対向するように原稿を反転して原稿載置台111に向かって搬送する。そして、両面自動原稿送り装置112は、1枚の原稿について両面の画像の読み取りが終了した後に、この原稿を排出し、次の原稿についての搬送動作を実行する。以上の原稿の搬送および反転動作は、複写機1全体の動作に関連して制御部200によって制御される。また、複写機1の各部は制御部200によって制御される。

【0090】画像形成部210の下部には、転写搬送ベルト機構213が配置されている。転写搬送ベルト機構213は、駆動ローラ214と従動ローラ215との間に転写搬送ベルト216を略平行に延びるように張架し、この転写搬送ベルト216に記録紙100を静電吸着させて搬送する。

【0084】原稿読み取り部110は、原稿台111の下方に配置され、原稿台111上に載置される原稿、または両面自動原稿送り装置112によって原稿台111上に搬送されてきた原稿の画像を読み取る。画像読み取り部110は、原稿台111の下面に沿って平行に往復移動する原稿走査体113、114と、光学レンズ115と、光電変換素子であるCCD (Charge Coupled Device)ラインセンサとを含み構成される。

【0091】用紙搬送路における転写搬送ベルト機構213の下流側には、記録紙100上に転写形成されたトナー像を記録紙100上に定着させるための定着装置217が配置されている。定着装置217が備える1対の定着ローラ間にニップ部を通過した記録紙100は、搬送方向切り換えゲート218を経て、排出ローラ219によって複写機1本体の外壁に取り付けられている排紙トレイ220上に排出される。

【0085】原稿走査体113,114は、第1の走査ユニット113と第2の走査ユニット114とから構成される。第1の走査ユニット113は、原稿の表面を露 40光する露光ランプと、原稿からの反射光像を所定の方向に向かって偏向する第1ミラーとを有し、原稿台111の下面に対して一定の距離を保ちながら所定の走査速度で平行に往復移動する。第2の走査ユニット114は、第1の走査ユニット113の第1ミラーによって偏向された原稿からの反射光像を更に所定の方向に向かって偏向する第2および第3ミラーとを有し、第1の走査ユニット113と一定の速度関係を保って平行に往復移動する。

【0092】搬送方向切り換えゲート218は、トナー像を定着させた後の記録紙100の搬送経路を、複写機1本体から排出する経路と、画像形成部210に再供給する経路とを選択的に切り換える。切り換えゲート218によって再び画像形成部210に向かって搬送される記録紙100は、スイッチバック搬送経路221によって表裏が反転された後、レジストローラ212によってタイミングが制御されて画像形成装置210へと再度供給される。

【0086】光学レンズ115は、第2の走査ユニット 50 る。

【0093】画像形成部210の上部には、転写搬送ベルト216に沿って第1の画像形成ステーションPa、第2の画像形成ステーションPb、第3の画像形成ステーションPc および第4の画像形成ステーションPdが記録紙100の搬送経路上流側から順に並設されてい

【0094】転写搬送ベルト216は、駆動ローラ214によって、図1の矢符Zの方向に摩擦駆動され、上述したように給紙機構211によって供給される記録紙100を吸着し、第1~第4の画像形成ステーションPa~Pbへと順次搬送する。

【0095】各画像形成ステーションは、実質的に同一の構成であり、図2に示す構成である。LEDへッド227aには、カラー画像の黒色成分像に対応する画像信号が入力され、LEDへッド227bには、カラー画像のシアン成分像に対応する画像信号が入力され、LED 10へッド227cには、カラー画像のマゼンタ成分像に対応する画像信号が入力され、LEDへッド227dには、カラー画像のイエロー成分像に対応する画像信号が入力される。

【0096】 これによって、色変換された原稿画像情報 に対応する静電潜像が各感光体ドラム222a~222 d上に形成される。現像装置224aには黒色のトナーが収容され、現像装置224bにはシアンのトナーが収容され、現像装置224cにはマゼンタのトナーが収容され、現像装置224dにはイエローのトナーが終了さ 20 れる。感光体ドラム222a~222dに形成された静電潜像は、これら各色のトナーによって現像される。これによって、色変換された原稿画像情報が各色のトナー像として再現される。

【0097】また第1の画像形成ステーションPaと給紙機構との間には、用紙吸着用帯電器228が設けられる。用紙吸着用帯電器228は、ブラシ帯電器であり、転写搬送ベルト216の表面を帯電させる。これによって、給紙機構211から供給された記録紙100は、転写搬送ベルト216上に確実に吸着させた状態で第1の 30 画像形成ステーションPaから第4の画像形成ステーションPdの間を搬送することができる。

【0098】一方、第4の画像形成ステーションPdと定着装置217との間で、駆動ローラ214の上方には徐電器229が設けられる。徐電器229には、交流電流が印加されており、転写搬送ベルト216に吸着されている記録紙100を転写搬送ベルト216から分離する。

【0099】上述した構成の複写機1では、記録紙100としてカットシート状の記録紙100が用いられる。記録紙100は、給紙トレイから送り出されて給紙機構211の給紙搬送経路のガイド内に供給されると、記録紙100の先端部分がセンサ(図示せず)によって検知され、このセンサから出力される検知信号に基づいて1対のレジストローラ212によって一端停止される。

【0100】そして、記録紙100は第1~第4の画像 形成ステーションPa~Pdとタイミングをとって図1 の矢符Z方向に回転している転写搬送ベルト216上に 送られる。このとき転写搬送ベルト216は、上述した ように吸着用帯電器228によって所定の帯電が施され 50

ているので、記録紙100は第1〜第4の画像形成ステーションPa〜Pbを通過する間、安定して搬送される

【0101】第1~第4の画像形成ステーションPa~Pdでは、転写搬送ベルト216によって静電吸着されて搬送される記録紙100上に各色のトナー像を重ね合わせる。第4の画像形成ステーションPdによる記録紙100へのトナー像の転写が完了すると、記録紙100はその先端部分から順次、除電器229によって転写搬送ベルト216上から剥離され、定着装置217へと導かれる。最後に、定着装置217によってトナー像が定着された記録紙100は、用紙排出口(図示せず)から排紙トレイ220上へと排出される。

【0102】以上のように本発明のディジタルカラー複写機1では、LEDへッド227と感光体ドラム222との間の距離Hを複写機1のフレームの側部から調整することができ、またLEDへッド227の感光体ドラム222に対する走査傾きを複写機のフレームの側部から調整することができる。したがって、本体装置の外装を開けるだけでLEDへッド227の感光体ドラム222に対する位置を調整することができる。

【0103】上述した本実施形態では、書込みヘッドとしてLEDヘッド227を用いているが、蛍光体発光素子(FL)、エレクトロルミネッセンス(EL)などの固体発光素子を用いた書込みヘッド、液晶などのシャッターを用いた書込みヘッドを用いてもよい。

【0104】また、本発明は複写機1の他に、プリンタおよびファクシミリなどの画像形成装置に好適に適用することができる。

[0105]

【発明の効果】以上のように本発明によれば、調整手段によって本体装置の側部から書込みへッドと感光体ドラムとの距離を調整することができる。したがって、本体装置の内部の部品を分解することなく、本体装置の外装を開けるだけで、書込みへッドと感光体ドラムとの間の距離の調整が可能である。

【0106】また本発明によれば、調整手段によって本体装置の側部から書込みヘッドの感光体ドラムに対する走査傾きを調整することができる。したがって、本体装置の内部の部品を分解することなく、本体装置の外装を開けるだけで、書込みヘッドの感光体ドラムに対する走査傾の調整が可能である。

【0107】また本発明によれば、移動部材および当接部材の少なくともいずれか一方は、感光体ドラムの軸線方向に傾斜する傾斜面を有するので、感光体ドラムの軸線方向の移動部材を移動させることで、感光体ドラムの軸線方向に垂直な方向に当接部材を移動させることができ、書込みヘッドと感光体ドラムとの間の距離を調整することができる。

0 【0108】また本発明によれば、移動部材は書込みへ

ッドの両端部に設けられる当接部材の両方に対して設けられるので、感光体ドラムの軸線方向に沿って書込みへッドと感光体ドラムとの間の距離を精度が高く、また容易に調整することができる。

【0109】また本発明によれば、枠部材に設けられる 開口部と移動部材に設けられる突出片との位置関係によって、書込みヘッドと感光体ドラムとの位置関係を確認 することができるので、書込みヘッドと感光体ドラムと の間の距離の調整を容易に行うことができる。

【0110】また本発明によれば、書込みヘッドの一端 10 部をY軸方向および 2 軸方向に位置決めし、他端部を X 軸方向、Y軸方向および 2 軸方向に位置決めすることによって、書込みヘッドを X 軸方向、Y 軸方向および 2 軸方向の全ての方向に位置決めすることができる。また、支持軸を中心として枠部材をねじり回転させたときに書込みヘッドのねじれを防止することができるので、書込みヘッドが破壊または変形しない。

【0111】また本発明によれば、移動部材は第2当接部材のY軸方向一端部が当接する凹部を有する。凹部の底部をX軸方向に傾斜する傾斜面として、凹部の底部および凹部の側面に第2当接部材が当接するように弾発性部材によって付勢することで1方向の付勢力によってY軸方向およびZ軸方向の位置決めを行うことができる。

【0112】また本発明によれば、枠部材は第2当接部材のY軸方向他端部が当接する係止部を有する。係止部にはZ軸方向に先端部を有する楔形の切り込みが形成される。この切り込みの底部の2箇所に第1当接部材が当接するように弾発性部材によって付勢することで、1方向の付勢力によってX軸方向およびZ軸方向の位置決めを行うことができる。

【0113】また本発明によれば、前記凹部の底部には、Z軸方向で感光体ドラムに向かう方向に傾斜する第2の傾斜面が形成されるので、第1当接部材のY軸方向一端部は凹部の底部および側面に確実に当接させることができる。

【0114】また本発明によれば、枠部材は書込みへッドよりも剛性が低いので、枠部材をねじり回転させて、枠部材に支持された書込みへッドの当接部材を移動させ、書込みへッドの感光体ドラムに対する走査傾きを調整することができる。また、枠部材をねじり回転させ変 40 形させたときに、書込みヘッドがねじれて変形することを防止できる。

【0115】また本発明によれば、フレーム間に回転可能に支持される円筒形状の感光体ドラムに、前記書込みへッド調整装置に保持される書込みへッドによって、静電潜像を形成することができる。感光体ドラムに形成された静電潜像をトナーによって現像し、記録部材に転写することによって高品質な画像を形成することができる。また、本体装置の側部から書込みへッドの位置調整を行うことができるので、テスト印刷を実行しながらで50

も調整作業を行うことができる。 【0116】また本発明によれば、書込みヘッド調整装

【0116】また本発明によれば、書込みヘッド調整装置は書込みヘッドとともに1つのユニットとして本体装置のフレームに着脱自在に構成されるので、書込みヘッドの交換では、書込みヘッド調整装置ごと本体装置のフレームから外して交換することができる。また、フレームの一方側部には切欠きが設けられ、他方側部には孔が設けれ、前記ユニットはこれらによってフレームに位置決めされるので、書込みヘッドを感光体ドラムに対して確実に位置決めすることができる。

【0117】また本発明によれば、フレームの一方側部 に設けられる切欠きに支持軸の一方側を当接し、フレームの他方側に設けられる孔に支持軸の他方側を挿通する ことで、書込みヘッドを感光体ドラムに対して確実に位 置決めすることができる。

【0118】また本発明によれば、書込みへッド調整装置の枠部材の一端部はフレームの一方側部に対して回動可能に設けられ、枠部材の他端部はフレームの他方側部に対して固定される。調整手段は枠部材の一方端部に配置され、支持軸を中心に枠部材をねじり回転させることによって、枠部材に保持される書込みへッドの感光体ドラムに対する走査傾きを調整することができる。

【図面の簡単な説明】

【図1】本発明の実施の一形態の画像形成装置であるディジタルカラー複写機1の構成を概略的に示す断面図である。

【図2】画像形成部210の画像形成ステーションPの 構成を拡大して示す断面図である。

【図3】LEDヘッド227とこのLEDヘッド227 80 を保持する書込みヘッド調整装置3とによって構成され る書込みユニットの斜視図である。

【図4】書込みユニットの正面断面図である。

【図5】(a)は書込みユニットの一端部を拡大して示す正面断面図であり、(b)は書込みユニットの他端部を拡大して示す正面断面図である。

【図6】(a)は図4の切断面線A-Aから見た断面図であり、(b)は図4の切断面線B-Bから見た断面図である。

【図7】(a)は枠部材6の第1係止部25aを示す部 分底面図であり、(b)は枠部材6の第2係止部25b を示す部分底面図である。

【図8】第2移動部材5bと第2当接部材7bとの当接部を拡大して示す断面図である。

【図9】第1移動部材5aおよび第1当接部材7aに働く力を示す正面図である。

【図10】間隔調整ネジ30をX軸方向に進退させたときに移動する第1移動部材5aに関連して、LEDへッド227がY軸方向に上下移動する状態を示す正面図である。その動作を模式的に示す正面図である。

50 【図11】間隔調整ネジ30をX軸方向に進退させたと

きに移動する第1移動部材5aに関連して、LEDへッ ド227がY軸方向に上下移動を模式的に示す正面図で

【図12】(a)はLEDヘッド227と感光体ドラム 222との間の距離 Hを狭くする場合の動作を示す正面 図であり、LEDヘッド227と感光体ドラム222と の間の距離Hを広くする場合の動作を示す正面図であ る。

【図13】第1移動部材5aの突出片35を拡大して示 す正面断面図である。

【図14】第1移動部材5aの突出片35を拡大して示 す側面図である。

【図15】複写機1のフレームに取り付けられた書込み ユニットを示す斜視図である。

【図16】図15の切断面線C-Cから見た正面断面図 である。

【図17】(a)は図16の切断面線D-Dから見た断 面図であり、(b)は図16の切断面線E-Eから見た 断面図である。

【図18】本体フレームに取り付けられた書込みユニッ 20 35 突出片 トを感光体ドラム222側から見た平面図である。

【図19】(a)は、本体フレームに取り付けられた書 込みユニットを一方側から見た側面図であり、(b) は、本体フレームに取り付けられた書込みユニットを他 方側から見た側面図である。

【図20】走査傾きを調整するときの書込みヘッド調整 装置3の動作を示す側面図である。

【図21】走査傾きを調整するときの書込みヘッド調整 装置3の動作を示す平面図である。

*【図22】枠部材6をねじり回転させたときの書込みへ ッド調整装置3の動作示す断面図である。

【符号の説明】

- 1 ディジタルカラー複写機
- 2 ヘッド支持部材
- 3 書込みヘッド調整装置
- 4 支持軸
- 5 移動部材
- 6 枠部材
- 7 当接部材 10
 - 8 スプリング
 - 9 第1調整手段
 - 10 第2調整手段
 - 15 傾斜面
 - 15a 第2の傾斜面
 - 16 凹部
 - 25 係止部
 - 30 間隔調整ネジ
 - 31,41 ネジ孔
 - - 36 開口部
 - 40 支持板
 - 42 走査傾き調整ネジ
 - 45 第1本体フレーム
 - 46 切欠き
 - 50 第2本体フレーム
 - 51 孔
 - 222 感光体ドラム
 - 227 LED ~ " F

【図2】

【図3】

【図1】

【図12】

(a) LEDヘッドと感光体の間隔を狭くする場合

(b) LEDヘッドと聴光体の関隔を広くする場合

【図17】

【図18】

【図21】

[図22]

【図19】

フロントページの続き

(51)Int.Cl.'

識別記号

пред

(72)発明者 山内 孝一

H 0 4 N 1/036

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 寺田 光良

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 冨田 教夫

大阪府大阪市阿倍野区長池町22番22号 シ

ャーフ株式会社内

FΙ

テーマコート' (参考)

(72)発明者 中村 光一

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

Fターム(参考) 2C064 CC02 CC05 CC13 DD02 DD14

2C162 AE12 AE21 AE28 AE47 AE55

AE57 FA04 FA17 FA45 FA50

FA67 FA68

2H076 AB42 AB51 AB60 EA24

5C051 AA02 CA08 DA03 DB02 DB29

DB35 DE21