# Lecture 5: Learning Rate Schedules Neural Networks

## Recap

- We have some dataset of (x,y)
- We have a **score function**:  $s=f(x;W)\stackrel{\text{e.g.}}{=}Wx$
- We have a **loss function**:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 Softmax $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$  SVM $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$  Full loss



### Finding the best W: Optimize with Gradient Descent





```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

<u>Landscape image</u> is <u>CC0 1.0</u> public domain <u>Walking man image</u> is <u>CC0 1.0</u> public domain

#### Gradient descent

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow:(, approximate:(, easy to write:)
Analytic gradient: fast:), exact:), error-prone:(

In practice: Derive analytic gradient, check your implementation with numerical gradient

### Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

### Last time: fancy optimizers



# Learning rate schedules

### Learning rate schedules

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update

Learning rate
```

# SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter.



Q: Which one of these learning rates is best to use?

# SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter.



Q: Which one of these learning rates is best to use?

A: In reality, all of these are good learning rates.

## Learning rate decays over time



**Step:** Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.



**Step:** Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine: 
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Loshchilov and Hutter. "SGDR: Stochastic Gradient Descent with Warm Restarts". ICLR 2017 Radford et al, "Improving Language Understanding by Generative Pre-Training", 2018 Feichtenhofer et al. "SlowFast Networks for Video Recognition", arXiv 2018 Child at al. "Generating Long Sequences with Sparse Transformers", arXiv 2019

 $\alpha_0$ : Initial learning rate

 $\alpha_t$  : Learning rate at epoch t  ${\bf T}$  : Total number of epochs



**Step:** Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine: 
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Loshchilov and Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts", ICLR 2017 Radford et al, "Improving Language Understanding by Generative Pre-Training", 2018 Feichtenhofer et al. "SlowFast Networks for Video Recognition", arXiv 2018 Child at al. "Generating Long Sequences with Sparse Transformers", arXiv 2019

 $\alpha_0$ : Initial learning rate

 $\alpha_t$  : Learning rate at epoch t T : Total number of epochs



**Step:** Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine: 
$$\alpha_t = \frac{1}{2}\alpha_0\left(1+\cos(t\pi/T)\right)$$

Linear: 
$$\alpha_t = \alpha_0(1 - t/T)$$

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", 2018

 $lpha_0$ : Initial learning rate  $lpha_t$ : Learning rate at epoch t T: Total number of epochs



**Step:** Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine: 
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Linear: 
$$\alpha_t = \alpha_0(1 - t/T)$$

Inverse sqrt: 
$$\alpha_t = \alpha_0/\sqrt{t}$$

 $\alpha_0$ : Initial learning rate

 $\alpha_t$ : Learning rate at epoch t T: Total number of epochs

Vaswani et al, "Attention is all you need", NIPS 2017

## In practice:

- Adam is a good default choice in many cases; it often works ok even with constant learning rate
- **SGD+Momentum** can outperform Adam but may require more tuning of LR and schedule

# **Neural Networks**

### Neural networks: the original linear classifier

(**Before**) Linear score function: 
$$f = Wx$$

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

### Neural networks: 2 layers

(**Before**) Linear score function: 
$$f = Wx$$
(**Now**) 2-layer Neural Network  $f = W_2 \max(0, W_1 x)$ 

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

(In practice we will usually add a learnable bias at each layer as well)

#### Why do we want non-linearity?



Cannot separate red and blue points with linear classifier

### Why do we want non-linearity?



$$f(x, y) = (r(x, y), \theta(x, y))$$



Cannot separate red and blue points with linear classifier

After applying feature transform, points can be separated by linear classifier

### Neural networks: also called fully connected network

(**Before**) Linear score function: 
$$f = Wx$$
(**Now**) 2-layer Neural Network  $f = W_2 \max(0, W_1 x)$ 

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

### Neural networks: 3 layers

(**Before**) Linear score function: 
$$f=Wx$$
 (**Now**) 2-layer Neural Network  $f=W_2\max(0,W_1x)$  or 3-layer Neural Network

$$f=W_3\max(0,W_2\max(0,W_1x))$$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

(In practice we will usually add a learnable bias at each layer as well)

#### Neural networks: hierarchical computation

(**Before**) Linear score function:

$$f = Wx$$

(Now) 2-layer Neural Network

$$f = W_2 \max(0, W_1 x)$$



$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

### Neural networks: learning 100s of templates

(**Before**) Linear score function:

$$f = Wx$$

(Now) 2-layer Neural Network

$$f = W_2 \max(0, W_1 x)$$



Learn 100 templates instead of 10.

Share templates between classes

Neural networks: why is max operator important?

(**Before**) Linear score function: 
$$f=Wx$$

(Now) 2-layer Neural Network 
$$f = W_2 \max(0, W_1 x)$$

The function max(0, z) is called the **activation function**.

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$

Neural networks: why is max operator important?

(**Before**) Linear score function: 
$$f = Wx$$

(Now) 2-layer Neural Network 
$$f = W_2 \max(0, W_1 x)$$

The function max(0, z) is called the **activation function**.

**Q:** What if we try to build a neural network without one?

$$f = W_2 W_1 x$$
  $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$ 

A: We end up with a linear classifier again!

#### **Activation functions**

### **Sigmoid**

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



#### tanh



#### ReLU

$$\max(0, x)$$



# ReLU is a good default choice for most problems

#### **Leaky ReLU**

 $\max(0.1x, x)$ 



#### **Maxout**

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

#### **ELU**

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$



#### Neural networks: Architectures



#### Example feed-forward computation of a neural network



hidden layer 1 hidden layer 2

```
# forward-pass of a 3-layer neural network: f = lambda \ x: \ 1.0/(1.0 + np.exp(-x)) \ \# \ activation \ function \ (use \ sigmoid) \\ x = np.random.randn(3, 1) \ \# \ random \ input \ vector \ of \ three \ numbers \ (3x1) \\ h1 = f(np.dot(W1, x) + b1) \ \# \ calculate \ first \ hidden \ layer \ activations \ (4x1) \\ h2 = f(np.dot(W2, h1) + b2) \ \# \ calculate \ second \ hidden \ layer \ activations \ (4x1) \\ out = np.dot(W3, h2) + b3 \ \# \ output \ neuron \ (1x1)
```

```
import numpy as np
    from numpy.random import randn
 3
    N, D_{in}, H, D_{out} = 64, 1000, 100, 10
    x, y = randn(N, D in), randn(N, D out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
    for t in range(2000):
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y pred = h.dot(w2)
11
      loss = np.square(y_pred - y).sum()
      print(t, loss)
12
13
14
      grad_y pred = 2.0 * (y_pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
16
      grad h = grad y pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
      w1 -= 1e-4 * grad_w1
20
      w2 = 1e-4 * qrad w2
```

```
import numpy as np
    from numpy.random import randn
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
    x, y = randn(N, D in), randn(N, D out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
    for t in range(2000):
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y pred = h.dot(w2)
11
      loss = np.square(y_pred - y).sum()
      print(t, loss)
12
13
14
      grad_y pred = 2.0 * (y_pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
16
      grad h = grad y pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad_w1
19
20
      w2 = 1e-4 * qrad w2
```

Define the network

```
import numpy as np
    from numpy.random import randn
 3
    N, D_{in}, H, D_{out} = 64, 1000, 100, 10
    x, y = randn(N, D in), randn(N, D out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
 8
    for t in range(2000):
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y_pred - y).sum()
12
      print(t, loss)
13
14
      grad_y pred = 2.0 * (y_pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
16
      grad h = grad y pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
      w1 -= 1e-4 * grad_w1
20
      w2 -= 1e-4 * grad w2
```

Define the network

Forward pass

```
import numpy as np
    from numpy.random import randn
 3
    N, D_{in}, H, D_{out} = 64, 1000, 100, 10
    x, y = randn(N, D in), randn(N, D out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
    for t in range(2000):
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y pred = h.dot(w2)
11
      loss = np.square(y_pred - y).sum()
      print(t, loss)
12
13
      grad_y_pred = 2.0 * (y_pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
16
      grad h = grad y pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
      w1 -= 1e-4 * grad_w1
20
      w2 -= 1e-4 * grad w2
```

Define the network

Forward pass

Calculate the analytical gradients

```
import numpy as np
    from numpy.random import randn
 3
    N, D_{in}, H, D_{out} = 64, 1000, 100, 10
                                                                 Define the network
    x, y = randn(N, D in), randn(N, D out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
    for t in range(2000):
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y pred = h.dot(w2)
                                                                 Forward pass
11
      loss = np.square(y_pred - y).sum()
      print(t, loss)
12
13
14
      grad_y pred = 2.0 * (y_pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
                                                                 Calculate the analytical gradients
16
      grad h = grad y pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 = 1e-4 * grad_w1
19
                                                                 Gradient descent
20
      w2 = 1e-4 * qrad w2
```

## Setting the number of layers and their sizes



Do not use size of neural network as a regularizer. Use stronger regularization instead:



(Web demo with ConvNetJS: <a href="http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html">http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html</a>)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$



This image by Fotis Bobolas is licensed under CC-BY 2.0

# Impulses carried toward cell body dendrite presynaptic terminal cell body

Impulses carried away from cell body

This image by Felipe Perucho is licensed under CC-BY 3.0





### Biological Neurons: Complex connectivity patterns



This image is CC0 Public Domain

### Neurons in a neural network: Organized into regular layers for computational efficiency



### Biological Neurons: Complex connectivity patterns



This image is CC0 Public Domain

# But neural networks with random connections can work too!



Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

## Be very careful with your brain analogies!

### **Biological Neurons:**

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

# Plugging in neural networks with loss functions

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
 Nonlinear score function

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
 SVM Loss on predictions

$$R(W) = \sum_k W_k^2 \operatorname{Regularization}$$

$$L=rac{1}{N}\sum_{i=1}^{N}L_{i}+\lambda R(W_{1})+\lambda R(W_{2})$$
 Total loss: data loss + regularization

# Problem: How to compute gradients?

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
 Nonlinear score function

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
 SVM Loss on predictions

$$R(W) = \sum_k W_k^2 \quad \text{Regularization}$$

$$L = \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization}$$
 If we can compute  $\frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2}$  then we can learn  $W_1$  and  $W_2$ 

# (Bad) Idea: Derive $\nabla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{i \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

**Problem**: Very tedious: Lots of matrix calculus, need lots of paper

**Problem**: What if we want to change loss? E.g. use softmax instead of SVM? Need to rederive from scratch =(

**Problem**: Not feasible for very complex models!

$$\nabla_W L = \nabla_W \left( \frac{1}{N} \sum_{i=1}^N \sum_{j \neq y_i} \max(0, W_{j,:} \cdot x + W_{y_i,:} \cdot x + 1) + \lambda \sum_k W_k^2 \right)$$

# Next lecture: Computational graphs + Backpropagation

