EASWARI ENGINEERING COLLEGE, CHENNAI-600 089 DEPARTMENT OF INFORMATION TECHNOLOGY LESSON PLAN

SUBJECT CODE	:	CS 6401
SUBJECT TITLE	:	OPERATING SYSTEMS
HOURS DISTRIBUTION	:	(LTPC3003)
COURSE/ BRANCH	:	B.Tech (IT)
SEMESTER	:	IV
ACADEMIC YEAR	:	2014 - 2015
FACULTY NAME	:	Mrs.K.VARUNI
OBJECTIVE OF COURSE:		
☐Study the basic concepts and func	tion	s of operating systems.
☐ Understand the structure and fund	ctio	ns of OS.
☐ Learn about Processes, Threads a	and	Scheduling algorithms.
☐ Understand the principles of cond	curr	rency and Deadlocks.
☐ Learn various memory manaæme	ent	schemes.
☐ Study I/O management and File s	syst	ems.
☐ Learn the basics of Linux system	ano	d perform administrative tasks on Linux Servers.
OUTCOME OF COURSE:		
At the end of the course, the stude	ent s	should be able to
☐ Design various Scheduling algorit	hms	s.
☐ Apply the principles of concurren	ncy.	
☐ Design deadlock, prevention and	avo	oidance algorithms.
☐ Compare and contrast various me	emo	ory management schemes.
☐ Design and Implement a prototyp	pe fi	ile systems.
☐ Perform administrative tasks on l	Linı	ux Servers.

PREREQUISTE

: KNOWLEDGE IN COMPUTER ARCHITECTURE

UNITS	TOPIC NO	ТОРІС	PERIOD	BOOKS REFERRED	PAGE NO								
		UNIT - I (9)											
	OPERATING SYSTEMS OVERVIEW												
		FIVE: To learn the objective, structure, function of an on is executing in OS	operating s	ystem and how	an								
	1	Computer System Overview-Basic Elements	1	R1	8-12								
	2	Instruction Execution, Interrupts, Memory Hierarchy	2	R1	12-29								
I	3	Cache Memory, Direct Memory Access, Multiprocessor and Multicore Organization	3	R1	29-33								
•	4	Operating system overview-objectives and functions	4	T1	4 – 7								
	5	Evolution of Operating System - Computer System Organization	5	T1	7 – 19								
	6	Operating System Structure and Operations	6	T1	19 – 24								
	7	System Calls	7	T1	62 – 66								
	8	System Programs	8	T1	74 – 75								
	9	OS Generation and System Boot	9	T1	91 – 92								
		UNIT - II (9)											
		PROCESS MANAGEMEN	ΙΤ										
	to learn	FIVE: Learning different CPU scheduling algorithms the design solutions for process synchronization pre- tor better resource utilization											
	1	Processes-Process Concept, Process Scheduling	10	T1	105 – 115								
	2	Operations on Processes, Interprocess Communication	11	T1	115 – 122 122 – 130								
II	3	Threads- Overview, Multicore Programming, Multithreading Models	12	T1	163 – 171								
	4	Windows 7- Thread and SMP Management	13		Handout								
	5	Process Synchronization - Critical Section Problem	14	T1	105 – 115								
	6	Mutex, Locks, Semophores, Monitors	15	T1	115 – 130								
	7	CPU Scheduling	16	T-1	162 171								
	8	CPU Scheduling	17	T1	163 – 171								
	9	Deadlocks	18	T1	115 – 130								

		UNIT - III (9)										
	STORAGE MANAGEMENT											
	implem	CTIVE: Objective is to learn different memory matering virtual memory concepts and understanding the and 64 bit architecture										
	1	Main Memory - Contiguous Memory Allocation	19	T1	360 – 364							
	2	Segmentation, Paging	20	T1	364 – 378							
III	3	32 and 64 bit architecture Examples	21	T1	383 – 388							
	4	Virtual Memory- Demand Paging	22	T1	401 – 408							
	5	Page Replacement	23		400 424							
	6	Page Replacement	24	T1	409 – 421							
	7	Allocation, Thrashing	25	T1	421 – 430							
	8	Allocating Kernel Memory	26	T1	436 – 439							
	9	OS Examples	27	T1	445 – 448							
		UNIT - IV (9+1)										
		I/O SYSTEMS										
	OBJECTIVE: To learn file system structure, allocation, access methods and various disk scheduling techniques											
	1	Mass Storage Structure - Overview	28	T1	467 – 470							
	2	Disk Scheduling and Management	29	TD 1	472 402							
13.7	3	Disk Scheduling and Management	30	T1	472 – 482							
IV	4	File System Storage-File Concepts	31	T1	503 – 513							
	5	Directory and Disk Structure, Sharing and Protection	32	T1	515 – 526 528 – 538							
	6	File System Implementation- File System Structure	33	T1	543 – 546							
	7	Directory Structure	34	T1	552 – 553							
	8	Allocation Methods	35	T1	553 – 561							
	9	Free Space Management, I/O Systems	36	T1	587 – 618							
	10	CBS	37	Handout								
		UNIT - V (9+1)										
		CASE STUDY										
V		CTIVE: To learn about the requirements of Linux systems on Linux host and adding guest OS	em administ	rator and how	to set up							
	1	Linux System- Basic Concepts	38	Handout								
		•	•	•	•							

2	System Administration-Requirements for Linux System Administrator	39	AR1	1 – 7
3	Setting up a LINUX Multifunction Server	40	AR1	8 – 31
4	Domain Name System	41	AR1	38 – 71
5	Setting Up Local Network Services	42	AR1	163 – 186
6	Virtualization- Basic Concepts	43	AR1	194 – 198
7	Setting Up Xen	44	AR1	199 – 203
8	VMware on Linux Host	45	AR1	204 – 210
9	Adding Guest OS	46	Handout	
10	CBS	47	Handout	

ASSIGNMENT TOPICS

Sl. NO	ASSIGNMENT TOPICS	SUBMISSION DATE
1	ASSIGNMENT PROBLEMS IN CPU SCHEDULING ALGORITHM	January 27, 2015
2	ASSIGNMENT PROBLEMS IN DEADLOCKS	February 16, 2015
3	ASSIGNMENT PROBLEMS IN PAGE REPLACEMENT ALGORITHM	March 18, 2015

CONTENT BEYOND SYLLABUS (CBS)

UNIT No	ТОРІС	PERIOD	BOOKS REFERRED
4	INTRODUCTION TO HADOOP DISTRIBUTED FILE SYSTEM	1	Handout
5	INTRODUCTION TO ANDROID OS	2	Handout

TEXT BOOK

1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 9th Edition, John Wiley and Sons Inc., 2012.

REFERENCES

- 1. William Stallings, "Operating Systems Internals and Design Principles", 7th Edition, Prentice Hall, 2011.
- 2. Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Addison Wesley, 2001.
- 3. Charles Crowley, "Operating Systems: A Design-Oriented Approach", Tata McGraw Hill Education", 1996.

- 4. D M Dhamdhere, "Operating Systems: A Concept-Based Approach", Second Edition, Tata McGraw-Hill Education, 2007.
- 5. http://nptel.ac.in/.

*ADDITIONAL REFERENCES (AR1)

1. Tom Adelstein and Bill Lubanovic, "LINUX SYSTEM ADMINISTRATION" $1^{\rm st}$ Edition, O'Reilly, 2007.

FACULTY INCHARGE

HOD

PROGRAMME EDUCATIONAL OBJECTIVES

- 1. To provide students with a sound foundation in the mathematical, scientific and engineering fundamentals necessary to formulate, solve and analyze engineering problems and to prepare them for graduate studies.
- 2. To develop the ability among students to apply current industry practices and technologies to analyse, design, implement, test and verify computing systems and computer based solutions to real world and research problems.
- 3. To prepare students in communication skills and in leadership for successful careers in industry that meet the needs of Indian and multinational companies.
- 4. To provide opportunity for students to work as part of teams on multidisciplinary projects.
- 5. To make students to use appropriate skill sets towards addressing social issues for the benefit of the society with a concern towards the environment.
- 6. To promote student awareness on life-long learning to be sensitive to the needs of the progressive industrial world.
- 7. To develop the students as professionals with ethics & responsibility to promote societal transformation.

PROGRAMME OUTCOMES (a-I)

- (a) Apply the knowledge of mathematics, science and engineering fundamentals.
- (b) Ability to analyze a problem, identify and define the computing requirements appropriate to its solution.
- (c) Ability to design, implements, and evaluate a computer-based system, process, component, or program to meet desired needs.
- (d) Apply the research-based knowledge and research methods to identify, formulate and solve engineering problems.
- (e) Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice, with an understanding of the limitations.
- (f) Demonstrate understanding of the societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to engineering practice.
- (g) Understand the impact of professional engineering solutions in a societal and environmental context and demonstrate the need for sustainable development.
- (h) Understand and commit to professional ethics and responsibilities.
- (i) Function effectively as an individual, and as a member in multi-disciplinary settings.
- (j) Communicate effectively with the engineering community and with society at large, such as being able to comprehend, write effective reports and design documentation, make effective presentations, and give/ receive clear instructions.
- (k) Demonstrate knowledge and understanding of the engineering and management principles, and apply these to one's own work, as a member and leader in a team, to manage projects in multidisciplinary environments.
- (1) Recognize the need for, and have the ability to engage in independent and life-long learning.

UNITS	COURSE	PROGRAMME EDUCATIONAL OBJECTIVES								PROGRAMME OUTCOMES										
UNITS	OUTCOME	1	2	3	4	5	6	7	а	ь	с	d	e	f	g	h	i	j	k	1
Unit –I OPERATING SYSTEMS OVERVIEW	Design various Scheduling algorithms	S	S		М	М	М	S	S	S	S	М	М		М	S	S		М	S
Unit -II PROCESS MANAGEMENT	Apply the principles of concurrency	S	S		М	М	М	S	S	S	S	М	М		М	S	S		М	S
Unit-III STORAGE MANAGEMENT	Design deadlock, prevention and avoidance algorithms	S	S		М	М	М	S	S	S	S	М	М		М	S	S		М	S
Unit –IV I/O SYSTEMS	Compare and contrast various memory management schemes	S	S		М	М	М	S	S	S	S	М	М		М	S	S		М	S
Unit –V CASE STUDY	Design and Implement a prototype file systems	S	S		М	М	М	S	S	S	S	М	М		М	S	S		М	S
Content Beyond Syllabus		S	S	М	М	М	М	S	S	S	S	М	М		М	S	S		М	S

MAPPING OF COURSE OUTCOMES WITH PEO & THE PROGRAMME OUTCOME - OPERATING SYSTEMS (CS6401)

STRONG	S
MEDIUM	М
WEAK	W