

PHYSICS

Chapter 4

3th

SECONDARY

FUERZAS

Fuerza cantidad física vectorial que podemos encontrar en todas partes

¿CÓMO SURGEN LAS FUERZAS?

Las fuerzas surgen en las interacciones.

INTERACCIÓN: Acción mutua entre dos cuerpos

LAS INTERACCIONES PUEDEN SER:

POR CONTACTO

Existe un punto de contacto

A DISTANCIA No hay contacto

Interacciona con la Tierra

Interacciona con el imán

TERCERA LEY DE NEWTON

En toda interacción surgen dos fuerzas denominadas de Acción y Reacción, que presentan igual módulo, son colineales de orientaciones opuestas y actúan en cuerpos diferentes por lo cual no se anular

FUERZAS MAS USUALES

FUERZA DE GRAVEDAD $\overline{F_g}$

- Debido a la atracción que ejerce la tierra a los cuerpos que están en su entorno.
- Actúa en el centro de gravedad (C.G.) de los cuerpos.

Siempre se grafica vertical apuntando al centro de la tierra

En una persona

$$F_g = m \cdot g$$

m = masa en kg

g = módulo de la aceleración de la gravedad en $\frac{m}{s^2}$

FUERZA DE TENSION \vec{T}

- Surge en las cuerdas al tensionarla oponiéndose a su deformación.
- Se realiza un corte imaginario, y se grafica del cuerpo hacia el corte.

Fuerza Normal $(\overline{F_N})$

- Surge en el contacto entre superficies.
- · Se grafica hacia el cuerpo en dirección perpendicular a las superficies.

FUERZA ELASTICA $\overrightarrow{F_E}$

En cuerpos elásticos deformados como resortes, ligas, entre otros.

Se determina con la ley de Hooke

$$F_E = \mathbf{k} \cdot \mathbf{x}$$

K: Constante de rigidez del resorte en N/m X: Deformación en m

DIAGRAMA DE CUERPO LIBRE (D.C.L.)

- Es la representación grafica de todas las fuerzas que actúan sobre un cuerpo.
- Para realizar un correcto D.C.L. debemos seguir los siguientes pasos, presta atención...

Realice el diagrama de cuerpo libre del tronco

RESOLUCIÓ N

Realice el diagrama de cuerpo libre del bloque.

3

Realice el diagrama de cuerpo libre del bloque si el resorte está estirado.

Realice el diagrama de cuerpo libre de la barra si el resorte está comprimido.

RESOLUCIÓ

Realice el diagrama de cuerpo libre de la polea

ideal y del bloque.

DCL de la polea ideal:

DCL del bloque:

En la intersección de dos avenidas, se encuentra un semáforo, que está suspendido por unos cables como se muestra en la figura. Realice el D.C.L. del nudo A.

RESOLUCIÓ N

DCL del nudo A

En un partido clásico del fútbol español, el cual estaba empatado, al final se marcó un tiro libre. El delantero realizó el tiro y dejó parado al portero, pero el balón chocó en el travesaño, como se observa en la figura.

RESOLUCIÓ N DCL del balón:

Se agradece su colaboración y participación durante el tiempo de la clase.

