Practice Problems 1

- 1. Let X have the pdf $f(x) = 4x^3$, for 0 < x < 1, zero elsewhere.
- a) 1.7.23 (7th and 6th edition) Find the cdf and the pdf of $Y = -\ln X^4$.
- b) Let $Y = e^{X}$. Find the probability distribution of Y.
- c) Let $Y = X^2$. Find the probability distribution of Y.
- d) Let $Y = \sqrt{X}$. Find the probability distribution of Y.
- 2. 1.7.22 (7th and 6th edition)

 Let X have the uniform pdf $f_X(x) = \frac{1}{\pi}$, for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. Find the pdf of Y = tan X. This is the pdf of a Cauchy distribution.
- 3. 1.8.8 (7th edition) 1.8.10 (6th edition) + $(a\frac{1}{2})$ Let f(x) = 2x, 0 < x < 1, zero elsewhere, be the p.d.f. of X.
- a) Compute $E(\frac{1}{X})$.
- $a\frac{1}{2}$) Compute E(X). Does $E(\frac{1}{X})$ equal $\frac{1}{E(X)}$?
- b) Find the c.d.f. and the p.d.f. of $Y = \frac{1}{X}$.
- c) Compute E(Y) and compare this result with the answer obtained in part (a).

4. Let X be a random variable with probability density function

$$f_X(x) = \frac{1}{(1+x)^2},$$
 zero otherwise.

- a) Find the probability distribution of $Y = \frac{1}{4+X}$.
- b) Find the probability distribution of $Y = e^{-X/2}$.
- 5. Let X be a random variable with probability density function

$$f_X(x) = -\ln x$$
, $0 < x < 1$, zero otherwise.

- a) Find the probability distribution of $Y = -\ln X$.
- b) Find the probability distribution of $Y = \sqrt{X}$.
- c) Find the probability distribution of $Y = \frac{1}{\sqrt[3]{X}}$.
- **6.** Let $\theta > 1$ and let X be a random variable with probability density function

$$f(x;\theta) = \frac{1}{x \ln \theta},$$
 $1 < x < \theta.$

- a) Let $U = \ln X$. What is the probability distribution of U?
- b) Let a > 0 and let $V = X^a$. What is the probability distribution of V?
- c) Let $W = \frac{X}{\theta}$. What is the probability distribution of W?
- d) Let $Y = \frac{1}{X}$. What is the probability distribution of Y?

7. Suppose a random variable X has the following probability density function:

$$f_{X}(x) = \begin{cases} xe^{x} & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

- a) Find the moment-generating function of X, $M_X(t)$.
- b) Let $Y = e^{X}$. Find the probability distribution of Y.
- c) Find Var(Y).
- **8.** Let X be a random variable with probability density function

$$f_X(x) = \frac{x+1}{8}$$
, $-1 < x < 3$, zero otherwise.

Find the probability distribution of $Y = X^2$.

9. Let X be a random variable with the probability density function

$$f_X(x) = \frac{11 - 2x}{50}$$
, $-2 < x < 3$, zero otherwise.

Find the probability distribution of $Y = X^2$.

Answers:

- 1. Let X have the pdf $f(x) = 4x^3$, for 0 < x < 1, zero elsewhere.
- a) **1.7.23** (7th and 6th edition)

Find the cdf and the pdf of $Y = -\ln X^4$.

$$F_X(x) = x^4,$$
 $0 < x < 1.$
 $0 < x < 1$ $y = -4 \ln x$ \Rightarrow $y > 0$
 $F_Y(y) = P(Y \le y) = P(-4 \ln X \le y) = P(X \ge e^{-y/4}) = 1 - e^{-y},$ $y > 0$
 $\Rightarrow f_Y(y) = F_Y(y) = e^{-y},$ $y > 0.$

 \Rightarrow Y has Exponential distribution with mean 1.

OR

$$y = g(x) = -4 \ln x \qquad \Rightarrow \qquad x = g^{-1}(y) = e^{-y/4}$$

$$\Rightarrow \qquad \frac{dx}{dy} = -\frac{1}{4} e^{-y/4}$$

$$f_{Y}(y) = f_{X}(g^{-1}(y)) \left| \frac{dx}{dy} \right| = 4 \left(e^{-y/4} \right)^{3} \times \left| -\frac{1}{4} e^{-y/4} \right| = e^{-y}, \qquad y > 0$$

⇒ Y has Exponential distribution with mean 1.

$$M_{Y}(t) = E(e^{Y \cdot t}) = E(e^{-4 \ln X \cdot t}) = E(X^{-4t}) = \int_{0}^{1} (x^{-4t} \cdot 4x^{3}) dx$$
$$= \int_{0}^{1} 4x^{3-4t} dx = \frac{4}{4-4t} = \frac{1}{1-t}, \qquad t < 1.$$

- \Rightarrow Y has Exponential distribution with mean 1.
- b) Let $Y = e^{X}$. Find the probability distribution of Y.

$$0 < x < 1 \qquad y = e^{x} \qquad \Rightarrow \qquad 1 < y < e.$$

$$y = g(x) = e^{x} \qquad \Rightarrow \qquad x = g^{-1}(y) = \ln y$$

$$\Rightarrow \qquad \frac{dx}{dy} = \frac{1}{y}$$

$$f_{Y}(y) = f_{X}(g^{-1}(y)) \left| \frac{dx}{dy} \right| = 4(\ln y)^{3} \times \left| \frac{1}{y} \right| = \frac{4}{y}(\ln y)^{3}, \qquad 1 < y < e.$$

$$F_X(x) = x^4,$$
 $0 < x < 1.$
 $F_Y(y) = P(Y \le y) = P(e^X \le y) = P(X \le \ln y) = (\ln y)^4,$ $1 < y < e.$
 $\Rightarrow f_Y(y) = F_Y(y) = 4(\ln y)^3 \times \frac{1}{y} = \frac{4}{y}(\ln y)^3,$ $1 < y < e.$

c) Let $Y = X^2$. Find the probability distribution of Y.

$$F_X(x) = x^4$$
, $0 < x < 1$. $0 < x < 1$ $y = x^2 \implies 0 < y < 1$. $F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(X \le \sqrt{y}) = F_X(\sqrt{y}) = y^2$, $0 < y < 1$. $f_Y(y) = F_Y'(y) = 2y$, $0 < y < 1$.

OR

$$g(x) = x^{2} g^{-1}(y) = \sqrt{y} = y^{1/2} dx/_{dy} = \frac{1}{2} y^{-1/2}$$

$$f_{Y}(y) = f_{X}(g^{-1}(y)) \left| \frac{dx}{dy} \right| = (4y^{3/2}) \left| \frac{1}{2} y^{-1/2} \right| = 2y, 0 < y < 1.$$

d) Let $Y = \sqrt{X}$. Find the probability distribution of Y.

$$F_X(x) = x^4$$
, $0 < x < 1$. $0 < x < 1$ $y = \sqrt{x} \implies 0 < y < 1$. $F_Y(y) = P(Y \le y) = P(\sqrt{X} \le y) = P(X \le y^2) = F_X(y^2) = y^8$, $0 < y < 1$. $f_Y(y) = F_Y'(y) = 8y^7$, $0 < y < 1$.

$$g(x) = \sqrt{x} g^{-1}(y) = y^2 \frac{dx}{dy} = 2y$$

$$f_{Y}(y) = f_{X}(g^{-1}(y)) \left| \frac{dx}{dy} \right| = (4y^{6}) |2y| = 8y^{7}, 0 < y < 1$$

2. 1.7.22 (7th and 6th edition)

Let X have the uniform pdf $f_X(x) = \frac{1}{\pi}$, for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. Find the pdf of Y = tan X. This is the pdf of a **Cauchy distribution**.

$$f_{X}(x) = \begin{cases} \frac{1}{\pi} & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ 0 & \text{o.w.} \end{cases}$$

$$F_{X}(x) = \begin{cases} 0 & x < -\frac{\pi}{2} \\ \frac{x}{\pi} + \frac{1}{2} & -\frac{\pi}{2} \le x < \frac{\pi}{2} \\ 1 & x \ge \frac{\pi}{2} \end{cases}$$

$$F_{Y}(y) = P(Y \le y) = P(\tan X \le y) = P(X \le \arctan(y)) = \frac{1}{\pi}\arctan(y) + \frac{1}{2},$$
$$-\infty < y < \infty.$$

$$f_{\rm Y}(y) = \frac{1}{\pi(1+y^2)}, \quad -\infty < y < \infty.$$
 (Standard) Cauchy distribution.

$$g(x) = \tan x$$
 $g^{-1}(y) = \arctan(y)$ $\frac{dx}{dy} = \frac{1}{1+y^2}$

$$f_{Y}(y) = f_{X}(g^{-1}(y)) \left| \frac{dx}{dy} \right| = \left(\frac{1}{\pi} \right) \left(\frac{1}{1+y^{2}} \right) = \frac{1}{\pi (1+y^{2})}, \quad -\infty < y < \infty.$$

$$F_{Y}(y) = \int_{-\infty}^{y} \frac{1}{\pi (1+u^{2})} du = \frac{1}{\pi} \arctan(y) + \frac{1}{2}, \qquad -\infty < y < \infty.$$

3. 1.8.8 (7th edition) 1.8.10 (6th edition) +
$$(a\frac{1}{2})$$

Let $f(x) = 2x$, $0 < x < 1$, zero elsewhere, be the p.d.f. of X.

a) Compute $E(\frac{1}{X})$.

$$E(\frac{1}{X}) = \int_{0}^{1} \frac{1}{x} \cdot 2x \, dx = \int_{0}^{1} 2 \, dx = \mathbf{2}.$$

a $\frac{1}{2}$) Compute E(X). Does $E(\frac{1}{X})$ equal $\frac{1}{E(X)}$?

$$E(X) = \int_{0}^{1} x \cdot 2x \, dx = \int_{0}^{1} 2x^{2} \, dx = \frac{2}{3}.$$

$$E(\frac{1}{X}) \neq \frac{1}{E(X)}.$$

b) Find the c.d.f. and the p.d.f. of $Y = \frac{1}{X}$.

$$0 < x < 1$$
 $Y = \frac{1}{X}$ \Rightarrow $y > 1.$

$$g(x) = \frac{1}{x}$$
 $g^{-1}(y) = \frac{1}{y} = y^{-1}$ $\frac{dx}{dy} = -y^{-2}$

$$f_{\rm Y}(y) = f_{\rm X}({\rm g}^{-1}(y)) \left| \frac{dx}{dy} \right| = (2y^{-1})(y^{-2}) = 2y^{-3}, \quad y > 1.$$

OR

$$F_{Y}(y) = P(Y \le y) = P(\frac{1}{X} \le y) = P(X \ge \frac{1}{y}) = 1 - P(X < \frac{1}{y})$$

$$= 1 - F_{X}(\frac{1}{y}) = 1 - \frac{1}{y^{2}}, \qquad y > 1.$$

$$F_{Y}(y) = \begin{cases} 0 & y < 1 \\ 1 - \frac{1}{y^{2}} & y \ge 1 \end{cases} \qquad f_{Y}(y) = \begin{cases} 0 & y < 1 \\ \frac{2}{y^{3}} & y \ge 1 \end{cases}$$

c) Compute E(Y) and compare this result with the answer obtained in part (a).

$$E(Y) = \int_{1}^{\infty} y \cdot \frac{2}{y^3} dy = \int_{1}^{\infty} \frac{2}{y^2} dy = \left(-\frac{2}{y}\right)\Big|_{1}^{\infty} = \mathbf{2}.$$
 Same \odot .

4. Let X be a random variable with probability density function

$$f_X(x) = \frac{1}{(1+x)^2},$$
 zero otherwise.

a) Find the probability distribution of $Y = \frac{1}{4+X}$.

$$y = \frac{1}{4+x} \qquad x > 0 \qquad \Rightarrow \qquad 0 < y < \frac{1}{4}.$$

$$y = \frac{1}{4+x}$$
 $x = \frac{1}{y} - 4 = g^{-1}(y)$ $\frac{dx}{dy} = -\frac{1}{y^2}$

$$f_{Y}(y) = f_{X}(g^{-1}(y)) \left| \frac{dx}{dy} \right| = \frac{1}{\left(1 + \frac{1}{y} - 4\right)^{2}} \times \left| -\frac{1}{y^{2}} \right| = \frac{1}{\left(1 - 3y\right)^{2}},$$

 $0 < y < \frac{1}{4}.$

$$F_X(x) = P(X \le x) = 1 - \frac{1}{1+x}, \qquad x > 0.$$

$$F_{Y}(y) = P(Y \le y) = P(\frac{1}{4+X} \le y) = P(X \ge \frac{1}{y} - 4)$$

$$= 1 - F_{X}(\frac{1}{y} - 4) = \frac{1}{1 + \frac{1}{y} - 4} = \frac{y}{1 - 3y}, \qquad 0 < y < \frac{1}{4}.$$

$$f_{Y}(y) = F_{Y}'(y) = \frac{(1-3y)-y(-3)}{(1-3y)^{2}} = \frac{1}{(1-3y)^{2}}, \qquad 0 < y < \frac{1}{4}.$$

b) Find the probability distribution of $Y = e^{-X/2}$.

$$y = e^{-x/2} \qquad x > 0 \qquad \Rightarrow \qquad 0 < y < 1.$$

$$y = e^{-x/2} \qquad x = -2\ln y = g^{-1}(y) \qquad \frac{dx}{dy} = -\frac{2}{y}$$

$$f_{Y}(y) = f_{X}(g^{-1}(y)) \left| \frac{dx}{dy} \right| = \frac{1}{(1 - 2\ln y)^{2}} \times \left| -\frac{2}{y} \right| = \frac{2}{y(1 - 2\ln y)^{2}},$$

$$0 < y < 1.$$

$$F_{X}(x) = P(X \le x) = 1 - \frac{1}{1+x}, \qquad x > 0.$$

$$F_{Y}(y) = P(Y \le y) = P(e^{-X/2} \le y) = P(X \ge -2 \ln y)$$

$$= 1 - F_{X}(-2 \ln y) = \frac{1}{1-2 \ln y}, \qquad 0 < y < 1.$$

$$f_{Y}(y) = F_{Y}'(y) = -\frac{1}{(1-2 \ln y)^{2}} \cdot \left(-\frac{2}{y}\right) = \frac{2}{y(1-2 \ln y)^{2}}, \qquad 0 < y < 1.$$

5. Let X be a random variable with probability density function

$$f_{\mathbf{X}}(x) = -\ln x,$$

$$0 < x < 1$$
,

zero otherwise.

Find the probability distribution of $Y = -\ln X$. a)

$$y = -\ln x$$

$$\Rightarrow$$

$$0 < v < \infty$$

$$y = -\ln x$$

$$x = e^{-y}$$

$$y = -\ln x$$
 $x = e^{-y}$ $\frac{dx}{dy} = -e^{-y}$

$$f_{Y}(y) = f_{X}(g^{-1}(y)) \left| \frac{dx}{dy} \right| = y \times \left| -e^{-y} \right| = y e^{-y}, \quad 0 < y < \infty.$$

$$0 < y < \infty$$

Y has a Gamma distribution with $\alpha = 2$ and $\theta = 1$.

Find the probability distribution of $Y = \sqrt{X}$. b)

$$y = \sqrt{x}$$

$$\Rightarrow$$

$$y = \sqrt{x} \qquad 0 < x < 1 \qquad \Rightarrow \qquad 0 < y < 1.$$

$$y = \sqrt{x}$$

$$x = y^2$$

$$y = \sqrt{x} \qquad x = y^2 \qquad \frac{dx}{dy} = 2y$$

$$f_{Y}(y) = f_{X}(g^{-1}(y)) \left| \frac{dx}{dy} \right| = -2 \ln y \times |2y| = -4 y \ln y, \qquad 0 < y < 1.$$

Find the probability distribution of $Y = \frac{1}{3\sqrt{X}}$. c)

$$y = \frac{1}{\sqrt[3]{x}} \qquad 0 < x < 1 \qquad \Rightarrow \qquad 1 < y < \infty.$$

$$\Rightarrow$$

$$1 < y < \infty$$
.

$$y = \frac{1}{\sqrt[3]{x}}$$

$$x = y^{-\frac{1}{2}}$$

$$y = \frac{1}{\sqrt[3]{x}}$$
 $x = y^{-3}$ $\frac{dx}{dy} = -3y^{-4}$

$$f_{\rm Y}(y) = f_{\rm X}(g^{-1}(y)) \left| \frac{dx}{dy} \right| = 3 \ln y \times \left| -3 y^{-4} \right| = 9 y^{-4} \ln y = \frac{9 \ln y}{y^4},$$

6. Let $\theta > 1$ and let X be a random variable with probability density function

$$f(x;\theta) = \frac{1}{x \ln \theta},$$
 $1 < x < \theta.$

a) Let $U = \ln X$. What is the probability distribution of U?

$$1 < x < \theta$$
 $u = \ln x$ \Rightarrow $0 < u < \ln \theta$

$$x = e^u$$

$$\frac{dx}{du} = e^u$$

$$f_{\rm U}(u) = f_{\rm X}(g^{-1}(u)) \left| \frac{dx}{du} \right| = \frac{1}{e^u \ln \theta} \cdot e^u = \frac{1}{\ln \theta}, \quad 0 < u < \ln \theta.$$

Uniform on $(0, \ln \theta)$.

b) Let a > 0 and let $V = X^a$. What is the probability distribution of V?

$$1 < x < \theta \qquad \qquad v = x^a \qquad \Rightarrow \qquad 1 < v < \theta^a$$

$$x = v^{1/a} \qquad \qquad dx/_{dv} = \frac{1}{a}v^{(1/a)-1}$$

$$f_{V}(v) = f_{X}(g^{-1}(v)) \left| \frac{dx}{dv} \right| = \frac{1}{v^{(1/a)} \ln \theta} \cdot \frac{1}{a} v^{(1/a) - 1} = \frac{1}{a v \ln \theta} = \frac{1}{v \ln \theta} a,$$

c) Let
$$W = \frac{X}{\theta}$$
. What is the probability distribution of W?

$$1 < x < \theta \qquad \qquad w = \frac{x}{\theta} \qquad \qquad \Rightarrow \qquad \qquad \frac{1}{\theta} < w < 1$$

$$x = \theta w \qquad \frac{dx}{dw} = \theta$$

$$f_{\mathrm{W}}(w) = f_{\mathrm{X}}(g^{-1}(w)) \left| \frac{dx}{dw} \right| = \frac{1}{\theta w \ln \theta} \cdot \theta = \frac{1}{w \ln \theta}, \quad \frac{1}{\theta} < w < 1.$$

d) Let $Y = \frac{1}{X}$. What is the probability distribution of Y?

$$1 < x < \theta$$
 $\Rightarrow \frac{1}{\theta} < y < 1$

$$x = \frac{1}{y} \qquad \qquad \frac{dx}{dy} = -\frac{1}{y^2}$$

$$f_{W}(w) = f_{X}(g^{-1}(w)) \left| \frac{dx}{dw} \right| = \frac{y}{\ln \theta} \cdot \frac{1}{v^{2}} = \frac{1}{y \ln \theta}, \quad \frac{1}{\theta} < y < 1.$$

7. Suppose a random variable X has the following probability density function:

$$f_{X}(x) = \begin{cases} xe^{x} & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

a) Find the moment-generating function of X, $M_X(t)$.

$$M_{X}(t) = \int_{0}^{1} e^{tx} \cdot x e^{x} dx = \int_{0}^{1} x e^{(t+1)x} dx$$

$$= \left[\frac{1}{t+1} x e^{(t+1)x} - \frac{1}{(t+1)^{2}} e^{(t+1)x} \right]_{0}^{1}$$

$$= \frac{1}{t+1} e^{t+1} - \frac{1}{(t+1)^{2}} e^{t+1} + \frac{1}{(t+1)^{2}}$$

$$= \frac{t e^{t+1} + 1}{(t+1)^{2}}, \qquad t \neq -1.$$

$$M_X(-1) = \int_0^1 x dx = \frac{1}{2}.$$

b) Let $Y = e^{X}$. Find the probability distribution of Y.

$$y = g(x) = e^x$$
 $x = g^{-1}(y) = \ln y$ $\frac{dx}{dy} = \frac{1}{y}$

$$f_{Y}(y) = f_{X}(g^{-1}(y)) \left| \frac{dx}{dy} \right| = (\ln y \cdot y) \cdot \frac{1}{y} = \ln y, \qquad 1 < y < e$$

$$F_X(x) = 1 + x e^x - e^x$$
, $0 < x < 1$.
 $F_Y(y) = P(Y \le y) = P(e^X \le y) = P(X \le \ln y) = F_X(\ln y) = 1 + \ln y \cdot y - y$, $1 < y < e$.
 $f_Y(y) = F_Y'(y) = \ln y$, $1 < y < e$.

c) Find Var(Y).

$$E(Y) = E(e^{X}) = M_{X}(1) = \frac{e^{2} + 1}{4}.$$

$$E(Y^{2}) = E[(e^{X})^{2}] = E(e^{2X}) = M_{X}(2) = \frac{2e^{3} + 1}{9}.$$

$$Var(Y) = E(Y^{2}) - [E(Y)]^{2} = \frac{2e^{3} + 1}{9} - \left(\frac{e^{2} + 1}{4}\right)^{2} \approx 0.176.$$

$$OR$$

$$Var(Y) = \int_{1}^{e} y^{2} \cdot \ln y \, dy - \left(\int_{1}^{e} y \cdot \ln y \, dy\right)^{2} = \dots$$

8. Let X be a random variable with probability density function

$$f_X(x) = \frac{x+1}{8}$$
, zero otherwise.

Find the probability distribution of $Y = X^2$.

$$y < 0$$
 $P(X^{2} \le y) = 0$ $F_{Y}(y) = 0$. $Y \ge 0$ $F_{Y}(y) = P(Y \le y) = P(X^{2} \le y) = P(-\sqrt{y} \le X \le \sqrt{y})$

Case 1:
$$0 \le y < 1 \implies 0 \le \sqrt{y} < 1 \implies -1 < -\sqrt{y} \le \sqrt{y} < 3$$

$$F_{Y}(y) = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{x+1}{8} dx = \left(\frac{x^{2}}{16} + \frac{x}{8}\right) \left| \frac{\sqrt{y}}{-\sqrt{y}} \right| = \frac{\sqrt{y}}{4}.$$

Case 2:
$$1 \le y < 9 \implies 1 \le \sqrt{y} < 3 \implies -\sqrt{y} \le -1 < \sqrt{y} < 3$$

$$F_{Y}(y) = \int_{-1}^{\sqrt{y}} \frac{x+1}{8} dx = \left(\frac{x^{2}}{16} + \frac{x}{8}\right) \left| \frac{\sqrt{y}}{-1} \right| = \frac{y}{16} + \frac{\sqrt{y}}{8} - \frac{1}{16} + \frac{1}{8} = \frac{\left(\sqrt{y} + 1\right)^{2}}{16}.$$

Case 3:
$$y \ge 9$$
 $F_Y(y) = 1$.

$$F_{Y}(y) = \begin{cases} 0 & y < 0 \\ \frac{\sqrt{y}}{4} & 0 \le y < 1 \\ \frac{(\sqrt{y} + 1)^{2}}{16} & 1 \le y < 9 \\ 1 & y \ge 9 \end{cases} \qquad f_{Y}(y) = \begin{cases} \frac{1}{8\sqrt{y}} & 0 < y < 1 \\ \frac{\sqrt{y} + 1}{16\sqrt{y}} & 1 < y < 9 \\ 0 & \text{o.w.} \end{cases}$$

9. Let X be a random variable with the probability density function

$$f_{X}(x) = \frac{11-2x}{50}, -2 < x < 3,$$

$$-2 < x < 3$$
,

zero otherwise.

Find the probability distribution of $Y = X^2$.

$$P(X^2 \le y) = 0$$

$$F_{Y}(y) = 0.$$

$$y \ge 0$$

$$F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y})$$

Case 1:

$$0 \le y < 4$$

$$0 \le \sqrt{y} < 2$$

$$0 \le y < 4$$
 \Rightarrow $0 \le \sqrt{y} < 2$ \Rightarrow $-2 < -\sqrt{y} \le \sqrt{y} < 3$

$$F_{Y}(y) = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{11 - 2x}{50} dx = \frac{11x - x^{2}}{50} \bigg|_{-\sqrt{y}}^{\sqrt{y}} = \frac{11\sqrt{y}}{25}, \qquad 0 \le y < 4.$$

Case 2:
$$4 \le y < 9$$
 \Rightarrow $2 \le \sqrt{y} < 3$ \Rightarrow $-\sqrt{y} \le -2 < \sqrt{y} < 3$

$$F_{Y}(y) = \int_{-2}^{\sqrt{y}} \frac{11 - 2x}{50} dx = \frac{11x - x^{2}}{50} \bigg|_{-2}^{\sqrt{y}} = \frac{26 + 11\sqrt{y} - y}{50}, \qquad 4 \le y < 9.$$

$$y \ge 9 \qquad \qquad F_{Y}(y) = 1.$$

$$F_{Y}(y) = \begin{cases} 0 & y < 0 & f_{Y}(y) = F'_{Y}(y) \\ \frac{11\sqrt{y}}{25} & 0 \le y < 4 \\ \frac{26 + 11\sqrt{y} - y}{50} & 4 \le y < 9 \\ 1 & y \ge 9 \end{cases} \qquad f_{Y}(y) = \begin{cases} \frac{11}{50\sqrt{y}} & 0 < y < 4 \\ \frac{11 - 2\sqrt{y}}{100\sqrt{y}} & 4 < y < 9 \\ 0 & \text{otherwise} \end{cases}$$

$$f_{X}(x) = \frac{11-2x}{50}$$

$$f_{X}(x) = \frac{11-2x}{50}$$

$$f_{X}(x) = \frac{11-2x}{50}$$

$$f_{X}(x) = \frac{11-2x}{50}$$

$$Y = g(X) = X^{2}$$

$$x = -\sqrt{y} = g^{-1}(y)$$

$$\frac{dx}{dy} = -\frac{1}{2\sqrt{y}}$$

$$0 < y < 4$$

$$f_{X}(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

$$\frac{11+2\sqrt{y}}{50} \cdot \left| -\frac{1}{2\sqrt{y}} \right| = \frac{11+2\sqrt{y}}{100\sqrt{y}}$$

$$\frac{11-2\sqrt{y}}{50} \cdot \left| \frac{1}{2\sqrt{y}} \right| = \frac{11-2\sqrt{y}}{100\sqrt{y}}$$

 $f_{Y}(y) = \begin{cases} \frac{11+2\sqrt{y}}{100\sqrt{y}} + \frac{11-2\sqrt{y}}{100\sqrt{y}} & 0 < y < 4 \\ 0 + \frac{11-2\sqrt{y}}{100\sqrt{y}} & 4 < y < 9 \end{cases} = \begin{cases} \frac{11}{50\sqrt{y}} & 0 < y < 4 \\ \frac{11-2\sqrt{y}}{100\sqrt{y}} & 4 < y < 9 \end{cases}$ $0 + \frac{11-2\sqrt{y}}{100\sqrt{y}} & 0 + \frac{11-2\sqrt{y}}{100\sqrt{y}} & 0$

$$F_X(x) = 0,$$
 $x < -2.$

$$F_X(x) = \int_{-2}^x \frac{11 - 2u}{50} du = \frac{11u - u^2}{50} \Big|_{-2}^x = \frac{11x - x^2 + 26}{50}, \quad -2 \le x < 3.$$

 $F_X(x) = 1, \qquad x \ge 3.$

$$y < 0 P(X^{2} \le y) = 0 F_{Y}(y) = 0.$$

$$y \ge 0 F_{Y}(y) = P(Y \le y) = P(X^{2} \le y) = P(-\sqrt{y} \le X \le \sqrt{y})$$

$$= F_{X}(\sqrt{y}) - F_{X}(-\sqrt{y})$$

$$= \begin{cases} \frac{11\sqrt{y} - y + 26}{50} - \frac{-11\sqrt{y} - y + 26}{50} & 0 \le y < 4 \end{cases}$$

$$= \begin{cases} \frac{11\sqrt{y} - y + 26}{50} - 0 & 4 \le y < 9 \end{cases}$$

$$1 - 0 y \ge 9$$

$$= \begin{cases} \frac{11\sqrt{y} - y + 26}{50} & 0 \le y < 4 \end{cases}$$

$$= \begin{cases} \frac{11\sqrt{y} - y + 26}{50} & 0 \le y < 4 \end{cases}$$

$$= \begin{cases} \frac{11\sqrt{y} - y + 26}{50} & 0 \le y < 4 \end{cases}$$

$$= \begin{cases} \frac{11\sqrt{y} - y + 26}{50} & 0 \le y < 4 \end{cases}$$

$$= \begin{cases} \frac{11\sqrt{y} - y + 26}{50} & 0 \le y < 4 \end{cases}$$

$$= \begin{cases} \frac{11\sqrt{y} - y + 26}{50} & 0 \le y < 4 \end{cases}$$

$$= \begin{cases} \frac{11\sqrt{y} - y + 26}{50} & 0 \le y < 4 \end{cases}$$