	SOLVING AX=E	3		
	solving Ax = b			
	when A is non-singular square matrix			
	when A has some special properties,			
	avoid direct inversion			
	problems of the form: Are	i = bi for	c= 1,2	
	loast square problem when A a solution that fits best	has more rou	os than columns.	
	least norm problem when A range among the many a uniq	ue one such	mns than rows.	
	SPECIAL SIMPLE CASES			
	identity matrix			
i i	$A = I$ $\chi = A^{-1}b = b$			
	permutation matrix			
	A is a permutation matrix; exactly lentry is I in			
	each row and each column,			
1 2	diagonal matrix	class	complexity	
3	A is a diagonal matrix	I	0(1)	
		P	00)	
1	triangular matrix	<i>D</i>	O(n)	
563	A is a triangular matrix	U/L Tr.	0 Cn2)	
	11			

	mare ctre	$x \in \mathbb{R}^n \to \text{int. soln.}$
	Axsb +> Ax=b	if A in TU
	22,0	& b is int.
	Ax = b	TU => & -1, 0, 13
	$\mathbb{A} \times = A^{-1}b = \frac{1}{ A } CF(A) [b]$	
	A	
	0	0
	03	03
	20 2	.0/
	(E)	
	1 1 1 1 1	1 0
(v)	2 1 0 1	0
	3 6 1 6	1 1
	A for bi-partite graph is To.	х У
	all elements either 0 or 1.	·
	all submatrices of 1x1? are Tu)
	if every nxn submatrices are	TU
	all (n+1) x (n+1) matrices are	TU
750	DOWN TOWN	0 15
		1 18
	1 (+)	2 16
	Sa(X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	У	
come of 4	nis matrix (+)	
re linearly	independent	+ I

Page 3
> least square
$Ax = b$ $x x = A^{-1}b$
> least norm.
sqrt non-singular.
CHOLESKY AND LU DECOMPOSITION
every PD matrix A can be factorized as
$A = LL^{T}$
cuhere L is a lower triangular matrix
$\begin{bmatrix} a_{11} & A_{21} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} I_{11} & 0 \\ I_{21} & I_{22} \end{bmatrix} \begin{bmatrix} I_{11} & I_{21} \\ 0 & I_{22} \end{bmatrix}$
LU (XA PIOV)
A need not be PD; only needs to be non-singular.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
PD: Positive dei sor cato deliverita
/ LU / DOUTO ALL DO CATO LA LANGE

Date 4.2.2020
Page 4

4 all $(n-1)\times 1$ $(n-1)\times (n-1)\times 1$ $(n-1)\times 1$ $\chi_1 = b_1$; $A_{12} \chi_{11} + A_{22} \chi_{2} = B_2$ Ax = b LLToc= b $A[X_1] = [b_1]$ max. independent set = [V] min. vertex cover

Date 4.2.2020
Page 5

COMPUTATION

1 n3 flops.

cholesky
$$I_{11} = \sqrt{a_{11}} \quad \text{and} \quad L_{21} = \frac{A_{21}}{I_{11}}$$

$$u_{11} = a_{11}$$

which can again be solved by cholesky accomposition

$$L_{21} = \frac{A_{21}}{Q_{11}}$$

$$U_{12} = A_{12}$$

L22 U22 = A22 - 1 A21 A12

TIME COMPLEXITY OF SOLVING AX=B BY CHOLECKYLU factorization Step - cholesky 1 n3 LU: 2 n3 forward substitution (n26lops): Solve Lw = b for z. backward substitution (nº blops): Solve Un= w for n.

Y or other complete

lu-

. 5" 404.