

Проверка точности модели, переобучение, регуляризация

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ

Вопросы занятия

- 1. Обучающая и тестовая выборка, кросс-валидация;
- 2. Метрики качества: accuracy, precision, recall;
- 3. Смещение и разброс (bias-variance tradeoff);
- 4. Признаки переобучения и регуляризация.

В конце занятия научимся:

- проводить кросс-валидацию модели;
- оценивать качество разных версий модели по AUC;
- подбирать параметры модели, чтобы бороться с переобучением.

ОБУЧАЮЩАЯ ВЫБОРКА

Содержит значения признаков и целевой переменной.

На обучающей выборке строим модель.

ТЕСТОВАЯ ВЫБОРКА

Содержит значения признаков, по которым необходимо предсказать значение целевой переменной.

Оцениваем качество различных вариантов модели.

ПРОБЛЕМЫ

Модель может хорошо работать на обучающей выборке, однако сильно терять в качестве на тестовой (один из вариантов - переобучение).

Преобразования данных на обучающей выборке должны быть повторены и иметь смысл для тестовой.

РАЗБИВАЕМ ОБУЧАЮЩУЮ ВЫБОРКУ

Разбиваем обучающую выборку на 2 части. На одной будем тренировать модель, на другой – проверять (т. е. использовать в качестве тестовой, только с известной целевой переменной)

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size = 0.3, random_state = 0 )
```

ОБУЧАЮЩАЯ ВЫБОРКА

TRAINING

TEST

PRECISION RECALL ТОЧНОСТЬ И ПОЛНОТА

ПОРОГ ДЛЯ ТЕСТОВОЙ ВЫБОРКИ

```
model = LogisticRegression()
model.fit(X train, y train)
predictions = model.predict proba(X test)
zip(predictions[:, 1], y test)
[(0.64583193796528038, 0),
 (0.075906148028446599, 0),
 (0.2704606033743272, 0),
 (0.26938542699540474, 0),
 (0.26433391263337475, 1),
 (0.1443590034736055, 0),
 (0.17840859560894495, 0),
 (0.21871761029690232, 0),
 (0.75293068528621931, 1),
 (0.2694630112685994, 0),
 (0.11209927315788928, 0),
 (0.18717054508217956, 0),
 (0.081787486664569364, 0).
```

Выберем порог, выше которого будем считать полученное значение принадлежащим 1. А ниже – нулю.

Это определит долю угаданных моделью значений

МАТРИЦА ОШИБОК ДЛЯ ПОРОГА

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

False positive — ошибка I рода (ложная тревога).

False negative — ошибка II рода (пропуск цели).

точность

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

Accuracy – доля правильно предсказанных от всех вариантов.

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

ПРАКТИКА

Logres_affair.IPYNB

ПОЧЕМУ ТОЧНОСТИ НЕДОСТАТОЧНО

100 обычных писем

10 спам-писем

False negative True positive 5

На почту пришло 100 обычных писем. И 10 писем спама.

Наша модель из 100 обычных 10 классифицировала как спам. Из 10 спам-писем – 5 как спам

ПОЧЕМУ ТОЧНОСТИ НЕДОСТАТОЧНО

	Actual positive	Actual negative
Predicted positive	5	5
Predicted negative	10	90

Accuracy – доля правильно предсказанных от всех вариантов.

$$Accuracy = \frac{5+90}{5+90+10+5} = 86\%$$

ПОЧЕМУ ТОЧНОСТИ НЕДОСТАТОЧНО

обычными.

100 обычных писем

True negative 100 Возьмём модель, которая считает все письма

10 спам-писем

False negative 10

ПОЧЕМУ ТОЧНОСТИ НЕДОСТАТОЧНО

	Actual positive	Actual negative
Predicted positive	0	10
Predicted negative	0	100

Возьмем модель, которая считает все письма обычными

$$Accuracy = \frac{0+100}{0+100+0+10} = 91\%$$

PRECISION

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

Precision – доля правильно предсказанных среди причисленных моделью к категории 1.

$$Precision = \frac{TP}{TP + FP}$$

Способность алгоритма отличать данный класс от других.

RECALL

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

Recall — доля правильно предсказанных среди категории 1.

$$Recall = \frac{TP}{TP + FN}$$

Синоним — True Positive Rate (sensivity)

Способность алгоритма обнаруживать данный класс вообще

PRECISION И RECALL ДЛЯ СПАМА

100 обычных писем

True negative 100

10 спам-писем

False negative 10

	Actual positive	Actual negative
Predicted positive	0	10
Predicted negative	O	100

КРИВАЯ PRECISION-RECALL

Модель тем лучше, чем выше площадь под кривой.

AREA UNDER CURVE

TRUE POSITIVE RATE

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

True Positive Rate — доля правильно предсказанных среди категории 1

$$TPR = \frac{TP}{TP + FN}$$

FALSE POSITIVE RATE

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

False Positive Rate – доля неправильно предсказанных среди относящихся к категории 0.

$$FPR = \frac{FP}{FP + TN}$$

ИДЕАЛЬНЫЙ СЛУЧАЙ

СРАВНЕНИЕ ДВУХ МОДЕЛЕЙ

TIPAKTUKAATHLETES_CLASSIFIER.IPYNB

Дана статистика спортсменов ОИ 2016. Необходимо построить модель, предсказывающая пол спортсмена по имеющимся признакам (кроме столбца sex).

Построить графики Precision-Recall и FPR-TPR, посчитать AUC.

ПРАКТИКА

SHELTER.IPYNB

Оценка многоклассовой классификации

ПРИМЕР ПЕРЕОБУЧЕНИЯ

Имеются данные из 6 точек

ПРИМЕР ПЕРЕОБУЧЕНИЯ

Имеются данные из 6 точек

y = kx + b; есть ошибка > 0

ПРИМЕР ПЕРЕОБУЧЕНИЯ

Имеются данные из 6 точек

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5$$

КРОСС-ВАЛИДАЦИЯ

k-fold cross validation

Final Accuracy = Average(Round 1, Round 2, ...)

Лучше, чем случайная выборка

ПРАКТИКА

CROSS_VAL_SCORE.IPYNB

Дана статистика картинок цифр, каждая из которых описывается набором из 64 признаков.

Используя модель DecisionTreeClassifier, подберите значение параметра модели max_depth, при котором точность модели (accuracy) максимальна.

СМЕЩЕНИЕ И РАЗБРОС

Смещение и разброс

Ошибка прогноза

Можем разложить на слагаемые:

- Bias средняя ошибка прогноза
- Variance изменение ошибки при обучении на разных наборах данных
- Неустранимая ошибка

Смещение и разброс

ОШИБКА ПРОГНОЗА

Сложная модель (учитывает много признаков) увеличивает разброс ошибки

Слишком простая модель (мало признаков) вызывает смещение в пользу одного признака.

Смещение и разброс

ОПТИМАЛЬНЫЙ ВАРИАНТ

Можно ли повлиять на стабильность модели, то есть уменьшить Variance?

L1 И L2 РЕГУЛЯРИЗАЦИЯ

ПРОШЛЫЙ ПРИМЕР ПЕРЕОБУЧЕНИЯ

Переберем модели, увеличивая степень функции

$$y = a_0 + a_1 x$$

$$y = a_0 + a_1 x + a_2 x^2$$

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
...
$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_5 x^5$$

как будут варьироваться а?

При увеличении степени полинома вариация коэффициентов быстро растет

НАДО УМЕНЬШИТЬ РАЗБРОС КОЭФФИЦИЕНТОВ

Имеем модель целевой переменной у и коэффициентами а

Целевая функция =
$$\sum_i (y_{\phi a \kappa \tau} - Xa)^2$$

ШТРАФ ЗА СЛОЖНОСТЬ

Основные варианты регуляризации

$$L_1 = \sum_{i} (y_{\phi \text{akt}} - Xa)^2 + \lambda \sum_{i} |a_i|$$

$$L_2 = \sum_{i} (y_{\phi \text{akt}} - Xa)^2 + \lambda \sum_{i} a_i^2$$

ПРАКТИКА

Дана статистика пользователей adult.csv.

Получите значения AUC для различных моделей и их параметров.

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

- 1. Изучили метрики оценки качества моделей.
- 2. На практике потренировались в проведении кросс-валидации моделей.
- 3. Изучили признаки и способы борьбы с переобучением на примере L1 и L2 регуляризации.

Проверка точности модели, переобучение, регуляризация

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ