

UNIVERSIDAD DE GRANADA

Control y coordinación de drones Crazyflie

ALUMNO: ÁNGEL HURTADO FLORES

TUTOR: HÉCTOR GARCÍA DE MARINA PEINADO

ÍNDICE

- I. Introducción
 - I. Motivación
 - 2. Descripción general
 - 3. Objetivos
 - 4. Planificación
- 2. Preliminares
 - I. Pruebas con software oficial
 - 2. Pruebas con Paparazzi
 - 3. Desarrollo básico en Paparazzi

- 3. Control de un Crazyflie
 - I. Control básico
 - 2. Algoritmos GVF
 - 3. Implementación de GVF
- 4. Coordinación entre Crazyflies
 - 1. Algoritmos de coordinación
 - 2. Implementación de la coordinación
 - 3. Simulación de formaciones
 - 4. Resultados de las formaciones
- Conclusiones

MOTIVACIÓN

- Explorar conceptos de robótica, control y coordinación
- Entender estos conceptos en el marco de los drones
- Aplicar, entender y diseñar algoritmos avanzados de control y coordinación
- En el futuro, aplicar la coordinación en escenarios reales prácticos

DESCRIPCIÓN GENERAL

Crazyflie 2.1

- UAV (popularmente llamado dron) de contenidas dimensiones y peso
- Se le puede cambiar el firmware por uno open source
- Queremos mover coordinadamente 2 o más drones

Posicionamiento

- Permite la localización en el espacio. Ejemplo:
- Loco Positioning Node como puntos de referencia o anchors
- Loco Positioning Deck para cada Crazyflie
- Existen más alternativas

Paparazzi UAV

- Proyecto que abarca software, firmware y hardware para UAVs
- Usaremos un firmware para Crazyflie 2.1 que expandiremos
- Usaremos el software Paparazzi
 Center para control del dron

OBJETIVOS

El objetivo final trata de conseguir que los Crazyflies puedan seguir trayectorias de forma coordinada utilizando firmware y software open source de Paparazzi UAV.

- OBJ-I: familiarización con el trabajo. Realización de la planificación, objetivos etc...
- **Preliminares (OBJ-2):** se montará el dron y se harán pruebas que verifiquen su correcto funcionamiento básico
- Control de un Crazyflie (OBJ-3): control de un solo Crazyflie haciendo hovering (PID) y posterior adición de algoritmos de control (GVF)
- Coordinación entre Crazyflies (OBJ-4): extender el objetivo 3 añadiendo coordinación entre 2 o más drones.
- Conclusiones (OBJ-5): entender los resultados, posibles aplicaciones y extraer conclusiones
- OBJ-6: Repaso general del trabajo. Modificaciones leves al resto de objetivos

PLANIFICACIÓN

Planificación General																			
	Feb	rero		Marzo				Abril				Mayo				Junio			
W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4
	OBJ-1																		
	OBJ-			2															
				OBJ-3															
										OBJ-	4								
													OBJ-	5					
															OBJ-	6			

ÍNDICE

- I. Introducción
 - I. Motivación
 - 2. Descripción general
 - 3. Objetivos
 - 4. Planificación
- 2. Preliminares
 - I. Pruebas con software oficial
 - 2. Pruebas con Paparazzi
 - 3. Desarrollo básico en Paparazzi

- 3. Control de un Crazyflie
 - Control básico
 - 2. Algoritmos GVF
 - 3. Implementación de GVF
- 4. Coordinación entre Crazyflies
 - 1. Algoritmos de coordinación
 - 2. Implementación de la coordinación
 - 3. Simulación de formaciones
 - 4. Resultados de las formaciones
- Conclusiones

PRUEBAS CON SOFTWARE OFICIAL

Crazyflie 2.1

- Montamos los drones
- Actualizamos firmware, no obligatorio, pero recomendable

Crazyradio 2.0

- Permite conectarnos a los Crazyflie 2. I
- No funciona de fábrica
- Necesitamos cargar el firmware

Crazyflie Client

- Permite controlar los Crazyflie
- Puede actualizar el firmware de los Crazyflie
- Necesita Crazyradio 2.0

VARIABLES DE CONTROL DE UN ROTORCRAFT

Entre las variables más típicas de control en un dron tenemos las siguientes. En **negrita** las que Crazyflie Client nos muestra:

- Roll, pitch y yaw: Rotación sobre los ejes X,Y,Z, respectivamente
- Posición en los ejes X,Y,Z (posición relativa)
- Coordenadas GPS (posición absoluta)
- Altura, respecto a nivel del mar o suelo
- Throttle/Thrust o uso/empuje de los motores
- Nivel de batería
- Velocidades y aceleraciones en cada eje

PRIMERAS PRUEBAS

PRUEBAS CON PAPARAZZI

Paparazzi Center

- Sustituye a Crazyflie Client
- Incluye otras herramientas como Paparazzi GCS para control de los drones

Simulaciones

 Podemos realizar simulaciones de vuelo usando Paparazzi Center + Paparazzi Ground Control Station

Firmware Crazyflie 2.1

- Instalamos dependencias diversas y ajustamos ciertos parámetros
- Cambiamos el firmware al firmware de Paparazzi siguiendo la guía oficial

CARGAR FIRMWARE DE PAPARAZZI

CONEXIÓN CON RADIO

SIMULACIÓN

DESARROLLO BÁSICO CON PAPARAZZI

```
<!DOCTYPE module SYSTEM "module.dtd">
<module name="demo module">
                                                             Lenguaje C y archivos XML
 <doc>
   <description>Demo module</description>
 </doc>
 <header>
   <file name="demo module.h"/>
 </header>
 <init fun="init demo()"/>
 <periodic fun="periodic 1Hz demo()" freq="1." start="start demo()" stop="stop demo()" autorun="TRUE"/>
 <periodic fun="periodic 10Hz demo()" period="0.1" start="start demo()" stop="stop demo()" autorun="FALSE"/>
 <makefile>
   <raw>
#Example of RAW makefile part
   </raw>
   <define name="DEMO MODULE LED" value="2"/>
   <file name="demo module.c"/>
 </makefile>
 <makefile target="demo">
   <define name="SOME FLAG"/>
   <configure name="SOME DEFINE" value="bla"/>
 </makefile>
</module>
```


Firmware

ÍNDICE

- I. Introducción
 - I. Motivación
 - 2. Descripción general
 - 3. Objetivos
 - 4. Planificación
- 2. Preliminares
 - I. Pruebas con software oficial
 - 2. Pruebas con Paparazzi
 - 3. Desarrollo básico en Paparazzi

- 3. Control de un Crazyflie
 - I. Control básico
 - 2. Algoritmos GVF
 - 3. Implementación de GVF
- 4. Coordinación entre Crazyflies
 - I. Algoritmos de coordinación
 - 2. Implementación de la coordinación
 - 3. Simulación de formaciones
 - 4. Resultados de las formaciones
- 5. Conclusiones

CONTROL BÁSICO

CONTROL BÁSICO: HOVERING

ALGORITMOS GVF

Campo vectorial de guiado, del inglés Guiding Vector Field

IMPLEMENTACIÓN DEL ALGORITMO

Control mínimo

- Integrado parcialmente en Paparazzi
- Falta el control para rotorcrafts

Control de velocidad

 Aprovechando las variables de GVF, podemos añadir control de velocidad constante

Alineación con trayectoria

- Los rotorcrafts pueden alinearse o no con la trayectoria, al tener más grados de libertad
- Modificamos el yaw para que mire en la dirección del campo

IMPLEMENTACIÓN DEL ALGORITMO: PRUEBA

ÍNDICE

- I. Introducción
 - I. Motivación
 - 2. Descripción general
 - 3. Objetivos
 - 4. Planificación
- 2. Preliminares
 - I. Pruebas con software oficial
 - 2. Pruebas con Paparazzi
 - 3. Desarrollo básico en Paparazzi

- 3. Control de un Crazyflie
 - Control básico
 - 2. Algoritmos GVF
 - 3. Implementación de GVF
- 4. Coordinación entre Crazyflies
 - I. Algoritmos de coordinación
 - 2. Implementación de la coordinación
 - 3. Simulación de formaciones
 - 4. Resultados de las formaciones
- 5. Conclusiones

ALGORITMOS DE COORDINACIÓN

Formaciones Circulares

- UAVs se coordinan para ir en círculos con cierto desfase deseado entre ellos con velocidad constante
- Integrado parcialmente en Paparazzi, falta soporte para rotorcrafts

STOBY ELLIPSE CIRCLE STOBY

Formaciones en segmentos paralelos

- Ida y vuelta en segmentos de misma longitud y paralelos, los UAVs deberán tener un desfase fijo
- Nueva implementación y nuevo algoritmo sólo para rotorcrafts

Ambos están pensados para aplicarse sobre un algoritmo de control, no necesariamente GVF

IMPLEMENTACIÓN DE LA COORDINACIÓN

Formaciones Circulares

 Al estar ya integrado en Paparazzi, tan sólo se modifica un script de Python para que pueda interactuar con rotorcrafts (distintas variables de telemetría, control etc...). Pensado para usarse con GVF

Formaciones en segmentos paralelos

- Basado en el ejemplo de formaciones circulares, modificamos la implementación para que funcione con segmentos (puede o no con GVF)
- Se añade normalización del segmento

SIMULACIÓN DE FORMACIONES: CÍRCULOS

SIMULACIÓN DE FORMACIONES: CÍRCULOS

SIMULACIÓN DE FORMACIONES: SEGMENTOS

SIMULACIÓN DE FORMACIONES: SEGMENTOS

RESULTADOS DE LAS FORMACIONES: PAPARAZZI

RESULTADOS DE LAS FORMACIONES: BITCRAZE

RESULTADOS DE LAS FORMACIONES

RESULTADOS DE LAS FORMACIONES

RESULTADOS DE LAS FORMACIONES

ÍNDICE

- I. Introducción
 - I. Motivación
 - 2. Descripción general
 - 3. Objetivos
 - 4. Planificación
- 2. Preliminares
 - I. Pruebas con software oficial
 - 2. Pruebas con Paparazzi
 - 3. Desarrollo básico en Paparazzi

- 3. Control de un Crazyflie
 - I. Control básico
 - 2. Algoritmos GVF
 - 3. Implementación de GVF
- 4. Coordinación entre Crazyflies
 - 1. Algoritmos de coordinación
 - 2. Implementación de la coordinación
 - 3. Simulación de formaciones
 - 4. Resultados de las formaciones
- 5. Conclusiones

CONCLUSIONES

	Planificación (Resultado Real)																		
	Feb	rero		Marzo				Abril					Ma	ayo		Junio			
W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4
	OBJ-	1																	
	OBJ-2																		
						OBJ-3													
												OBJ-	4						
															ОВ	J-5			
		OBJ-	6																

CONCLUSIONES

- Resultados prometedores, GVF permite buen control y la coordinación tiende a bajo error.
- Aplicaciones y usos futuros muy diversos
- Muchas ramificaciones futuras: mejor coordinación, coordinación descentralizada, uso para N drones...
- En general, buenos resultados y potencial a futuro

FIN

¿PREGUNTAS?