Parametricity, Quotient Types, and Theorem Transfer

Brian Huffman

Galois Tech Seminar

March 5, 2013

Outline

- I Parametricity, free theorems
- II Quotient types, subtypes (type abstraction)
- III Theorem transfer, Isabelle/HOL automation

Parametricity

Parametricity

Parametrically polymorphic functions

- may be instantated at different types
- all instances behave uniformly
- limited in what they can do with their arguments

How to make this precise?

Mapping $[\![-]\!]$ takes type expressions to binary relations

Mapping $\llbracket - \rrbracket$ takes type expressions to binary relations

Ground types are identity relations

- ightharpoonup $[Int] = Id_{Int}$
- $\blacktriangleright \ \llbracket \texttt{Bool} \rrbracket = \textit{Id}_{\texttt{Bool}}$

Mapping $\llbracket - \rrbracket$ takes type expressions to binary relations

Ground types are identity relations

- ▶ [Int] = Id_{Int}
- ▶ $[Bool] = Id_{Bool}$

Functions are related if they take related input to related output

- $(A \mapsto B) f g \Longleftrightarrow (\forall x y. A x y \Longrightarrow B (f x) (g y))$

Mapping $\llbracket - \rrbracket$ takes type expressions to binary relations

Ground types are identity relations

- ▶ [Int] = Id_{Int}
- $\blacktriangleright \ \llbracket \texttt{Bool} \rrbracket = \textit{Id}_{\texttt{Bool}}$

Functions are related if they take related input to related output

- $\blacktriangleright (A \mapsto B) f g \Longleftrightarrow (\forall x y. A x y \implies B (f x) (g y))$

Type variables map to arbitrary relations

- $\blacksquare \ \llbracket \mathtt{a} \rrbracket = A$
- ightharpoonup $\llbracket b \rrbracket = B$

The Parametricity Theorem

Theorem. If term f has type τ , then $\llbracket \tau \rrbracket f f$

The Parametricity Theorem

Theorem. If term f has type τ , then $\llbracket \tau \rrbracket f f$

Example:

- ▶ foo :: $a \rightarrow b \rightarrow a$
- $\blacktriangleright \ [\![\mathtt{a} \to \mathtt{b} \to \mathtt{a}]\!] \ \mathtt{foo} \ \mathtt{foo}$
- ▶ $(A \Rightarrow B \Rightarrow A)$ foo foo (for arbitrary A, B)
- $A x x' \wedge B y y' \implies A (foo x y) (foo x' y')$
- ▶ Implies e.g. that foo x y = x

Proof of the Parametricity Theorem

Lambda calculus typing rules:

$$\frac{\Gamma \vdash f : \tau_1 \to \tau_2 \qquad \Gamma \vdash x : \tau_1}{\Gamma \vdash f x : \tau_2} \text{ App}$$

$$\frac{\Gamma, x : \tau_1 \vdash u : \tau_2}{\Gamma \vdash \lambda x. \ u : \tau_1 \to \tau_2} \text{ Abs } \frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau} \text{ Var}$$

Proof of the Parametricity Theorem

Lambda calculus typing rules:

$$\frac{\Gamma \vdash f : \tau_1 \to \tau_2 \qquad \Gamma \vdash x : \tau_1}{\Gamma \vdash f x : \tau_2} \mathsf{App}$$

$$\frac{\Gamma, x : \tau_1 \vdash u : \tau_2}{\Gamma \vdash \lambda x. \ u : \tau_1 \to \tau_2} \text{ Abs } \qquad \frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau} \text{ Var}$$

Inference rules for relations:

$$\frac{\Gamma \vdash (R_1 \Rightarrow R_2) f g \qquad \Gamma \vdash R_1 \times y}{\Gamma \vdash R_2 (f \times) (g \ y)} \text{ App}$$

$$\frac{\Gamma, R_1 \times y \vdash R_2 \ u \ v}{\Gamma \vdash (R_1 \Rightarrow R_2) \ (\lambda x. \ u) \ (\lambda y. \ v)} \ \mathsf{Abs} \qquad \frac{R \times y \in \Gamma}{\Gamma \vdash R \times y} \ \mathsf{Var}$$

Parametricity with Datatypes

Data structures are related if

- they have the same shape
- elements are related pointwise

Parametricity with Datatypes

Data structures are related if

- they have the same shape
- elements are related pointwise

Pairs

$$(A \otimes B) (x,y) (x',y') \Longleftrightarrow A \times x' \wedge B \times y'$$

Lists

- ► A* [][]
- $A^* (x : xs) (x' : xs') \Longleftrightarrow A \times x' \wedge A^* \times xs \times s'$

Constructors satisfy parametricity theorem

- $\blacktriangleright (A \Rightarrow B \Rightarrow A \otimes B) (,) (,)$
- \blacktriangleright $(A \Rightarrow A^* \Rightarrow A^*)$ (:) (:)

Theorems for Free! (Wadler)

Recipe for generating free theorems:

- 1. Start with parametricity theorem for the given type
- 2. Instantiate relations with graphs of functions
- 3. Simplify

Theorems for Free! (Wadler)

Recipe for generating free theorems:

- 1. Start with parametricity theorem for the given type
- 2. Instantiate relations with graphs of functions
- 3. Simplify

Example:

- $\blacktriangleright \ \texttt{reverse} :: [\texttt{a}] \to [\texttt{a}]$
- $(A^* \Rightarrow A^*)$ reverse reverse
- ▶ Let A = graph(f)
- ▶ Then $A^* = graph(map f)$
- ▶ $A^* xs ys \implies A^* (reverse xs) (reverse ys)$
- ▶ map $f xs = ys \implies map f$ (reverse xs) = reverse ys
- ▶ map f (reverse xs) = reverse (map f xs)

Some functions are polymorphic, but not completely parametric

Some functions are polymorphic, but not completely parametric

Example:

- \blacktriangleright (=) :: a \rightarrow a \rightarrow Bool
- ▶ Its type suggests $(A \Rightarrow A \Rightarrow Id_{Bool}) (=) (=)$
- ▶ I.e. $A \times x' \wedge A \times y' \implies (x = y \iff x' = y')$

Some functions are polymorphic, but not completely parametric

Example:

- \blacktriangleright (=) :: a \rightarrow a \rightarrow Bool
- ▶ Its type suggests $(A \Rightarrow A \Rightarrow Id_{Bool})$ (=)
- ▶ I.e. $A \times x' \wedge A \times y' \implies (x = y \iff x' = y')$

Not true for all A, but for some A

- Valid iff A is single-valued in both directions (bi-unique)
- ightharpoonup bi-unique(A) \Longrightarrow $(A \mapsto A \mapsto Id_{Bool})$ (=)
- Extra assumption works like Eq constraint

Some functions are polymorphic, but not completely parametric

Example 2:

- \blacktriangleright (\forall) :: (a \rightarrow Bool) \rightarrow Bool
- ▶ Its type suggests $((A \Rightarrow Id_{Bool}) \Rightarrow Id_{Bool}) (\forall) (\forall)$
- ▶ I.e. $(\forall x \ y. \ A \ x \ y \implies p \ x \Leftrightarrow q \ y) \implies (\forall x. \ p \ x) \Leftrightarrow (\forall y. \ q \ y)$

Not true for all A, but for some A

- Valid iff A is surjective in both directions (bi-total)
- $\blacktriangleright bi\text{-}total(A) \implies ((A \mapsto Id_{\texttt{Bool}}) \mapsto Id_{\texttt{Bool}}) \, (\forall) \, (\forall)$
- Extra assumption works like a class constraint

Parametricity in Higher Order Logic

Theorems for free cheap!

Non-parametric polymorphic functions exist $(=, \forall)$

- Can't infer theorems from types alone
- Must prove parametricity theorem for each constant
- Easy syntax-directed proof (App/Abs/Var rules)
- ► Some constants need *bi-unique* or *bi-total* constraints

Parametricity in Higher Order Logic

Isabelle/HOL maintains a database of parametricity theorems

▶ Wadler-style free theorems are one application

How else can we use parametricity?

Quotient Types

Quotients and subtypes are everywhere

- integers
- rationals
- reals
- ▶ n-bit words
- multisets
- finite sets
- finite maps
- \triangleright vectors \mathbb{R}^n
- balanced trees
- **.**..

Quotients and subtypes are type abstractions

Hidden details of type construction and representation

Properties encoded in type signatures

- functions maintain datatype invariant
- functions respect equivalence relation

Equality on abstract type \longleftrightarrow other relation on raw type

Formalizing a new abstract type

- 1. Define representation ("raw") type
- 2. Define raw operations
- 3. Prove theorems about raw operations
- 4. Construct abstract type
- 5. **Lift operations** from raw to abstract
- 6. Transfer theorems from raw to abstract

1. Raw type: $\mathbb{N} \times \mathbb{N}$

- 1. Raw type: $\mathbb{N} \times \mathbb{N}$
- 2. Raw operation: $(x,y) +_{\mathtt{raw}} (u,v) = (x+u,y+v)$ Raw operation: $(x,y) \leq_{\mathtt{raw}} (u,v) = (x+v \leq u+y)$ Equivalence relation: $(x,y) \approx (u,v) \Leftrightarrow x+v=u+y$

- 1. Raw type: $\mathbb{N} \times \mathbb{N}$
- 2. Raw operation: $(x,y) +_{\mathtt{raw}} (u,v) = (x+u,y+v)$ Raw operation: $(x,y) \leq_{\mathtt{raw}} (u,v) = (x+v \leq u+y)$ Equivalence relation: $(x,y) \approx (u,v) \Leftrightarrow x+v=u+y$
- 3. Raw theorem: $a \leq_{raw} b \implies a +_{raw} c \leq_{raw} b +_{raw} c$

- 1. Raw type: $\mathbb{N} \times \mathbb{N}$
- 2. Raw operation: $(x,y) +_{\mathtt{raw}} (u,v) = (x+u,y+v)$ Raw operation: $(x,y) \leq_{\mathtt{raw}} (u,v) = (x+v \leq u+y)$ Equivalence relation: $(x,y) \approx (u,v) \Leftrightarrow x+v=u+y$
- 3. Raw theorem: $a \leq_{\text{raw}} b \implies a +_{\text{raw}} c \leq_{\text{raw}} b +_{\text{raw}} c$
- 4. Construct quotient $\mathbb{Z}=(\mathbb{N}\times\mathbb{N})/\approx$ (requires that \approx is an equivalence relation)

- 1. Raw type: $\mathbb{N} \times \mathbb{N}$
- 2. Raw operation: $(x,y) +_{\mathtt{raw}} (u,v) = (x+u,y+v)$ Raw operation: $(x,y) \leq_{\mathtt{raw}} (u,v) = (x+v \leq u+y)$ Equivalence relation: $(x,y) \approx (u,v) \Leftrightarrow x+v=u+y$
- 3. Raw theorem: $a \leq_{\text{raw}} b \implies a +_{\text{raw}} c \leq_{\text{raw}} b +_{\text{raw}} c$
- 4. Construct quotient $\mathbb{Z}=(\mathbb{N}\times\mathbb{N})/\approx$ (requires that \approx is an equivalence relation)
- 5. Lift $+_{\texttt{raw}}$ to $+_{\texttt{int}}: \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}$ Lift $\leq_{\texttt{raw}}$ to $\leq_{\texttt{int}}: \mathbb{Z} \to \mathbb{Z} \to \texttt{Bool}$ (requires that $+_{\texttt{raw}}$ and $\leq_{\texttt{raw}}$ respect \approx)

- 1. Raw type: $\mathbb{N} \times \mathbb{N}$
- 2. Raw operation: $(x,y) +_{\mathtt{raw}} (u,v) = (x+u,y+v)$ Raw operation: $(x,y) \leq_{\mathtt{raw}} (u,v) = (x+v \leq u+y)$ Equivalence relation: $(x,y) \approx (u,v) \Leftrightarrow x+v=u+y$
- 3. Raw theorem: $a \leq_{\text{raw}} b \implies a +_{\text{raw}} c \leq_{\text{raw}} b +_{\text{raw}} c$
- 4. Construct quotient $\mathbb{Z}=(\mathbb{N}\times\mathbb{N})/\approx$ (requires that \approx is an equivalence relation)
- 5. Lift $+_{\texttt{raw}}$ to $+_{\texttt{int}}: \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}$ Lift $\leq_{\texttt{raw}}$ to $\leq_{\texttt{int}}: \mathbb{Z} \to \mathbb{Z} \to \texttt{Bool}$ (requires that $+_{\texttt{raw}}$ and $\leq_{\texttt{raw}}$ respect \approx)
- 6. Transfer theorem to $a \leq_{int} b \implies a +_{int} c \leq_{int} b +_{int} c$

- 1. Raw type: $\mathbb{N} \times \mathbb{N}$
- 2. Raw operation: $(x,y) +_{\mathtt{raw}} (u,v) = (x+u,y+v)$ Raw operation: $(x,y) \leq_{\mathtt{raw}} (u,v) = (x+v \leq u+y)$ Equivalence relation: $(x,y) \approx (u,v) \Leftrightarrow x+v=u+y$
- 3. Raw theorem: $a \leq_{\text{raw}} b \implies a +_{\text{raw}} c \leq_{\text{raw}} b +_{\text{raw}} c$
- 4. Construct quotient $\mathbb{Z}=(\mathbb{N}\times\mathbb{N})/\approx$ (requires that \approx is an equivalence relation)
- 5. Lift $+_{\texttt{raw}}$ to $+_{\texttt{int}}: \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}$ Lift $\leq_{\texttt{raw}}$ to $\leq_{\texttt{int}}: \mathbb{Z} \to \mathbb{Z} \to \texttt{Bool}$ (requires that $+_{\texttt{raw}}$ and $\leq_{\texttt{raw}}$ respect \approx)
- 6. Transfer theorem to $a \leq_{int} b \implies a +_{int} c \leq_{int} b +_{int} c$

Steps 4-6 are all automated in Isabelle/HOL

Theorem Transfer

Goal:

▶ Prove equivalence between corresponding propositions e.g. $(\forall x : \mathbb{N} \times \mathbb{N}. x \leq_{\mathtt{raw}} x) \Leftrightarrow (\forall y : \mathbb{Z}. y \leq_{\mathtt{int}} y)$

Goal:

▶ Prove equivalence between corresponding propositions e.g. $(\forall x : \mathbb{N} \times \mathbb{N}. x \leq_{\mathtt{raw}} x) \Leftrightarrow (\forall y : \mathbb{Z}. y \leq_{\mathtt{int}} y)$

Idea:

Think in terms of binary relations:

$$\mathit{Id}_{\mathtt{Bool}}\left(\forall x: \mathbb{N} \times \mathbb{N}. \ x \leq_{\mathtt{raw}} x \right) \left(\forall y: \mathbb{Z}. \ y \leq_{\mathtt{int}} y \right)$$

Goal:

▶ Prove equivalence between corresponding propositions e.g. $(\forall x : \mathbb{N} \times \mathbb{N}. x \leq_{\mathtt{raw}} x) \Leftrightarrow (\forall y : \mathbb{Z}. y \leq_{\mathtt{int}} y)$

Idea:

- ► Think in terms of binary relations: Id_{Bool} ($\forall x : \mathbb{N} \times \mathbb{N}. x \leq_{raw} x$) ($\forall y : \mathbb{Z}. y \leq_{int} y$)
- Use syntax-directed App/Abs/Var rules, just like deriving parametricity theorems

Goal:

▶ Prove equivalence between corresponding propositions e.g. $(\forall x : \mathbb{N} \times \mathbb{N}. x \leq_{\mathtt{raw}} x) \Leftrightarrow (\forall y : \mathbb{Z}. y \leq_{\mathtt{int}} y)$

Idea:

- ► Think in terms of binary relations: Id_{Bool} ($\forall x : \mathbb{N} \times \mathbb{N}. x \leq_{raw} x$) ($\forall y : \mathbb{Z}. y \leq_{int} y$)
- Use syntax-directed App/Abs/Var rules, just like deriving parametricity theorems
- ► Along with parametricity theorems, use transfer rules

Quotient R Abs Rep T

Quotient R Abs Rep T

Equivalence relation

Quotient R Abs Rep T

Abstraction function

Quotient R Abs Rep T

Representation function

Quotient R Abs Rep T

Transfer relation

Transfer Rules

Parametricity theorems relate instances of the same function:

- $(A \mapsto A^* \mapsto A^*) (:) (:)$
- $(A^* \Rightarrow A^*)$ reverse reverse
- $\blacktriangleright (Id_{\texttt{Bool}} \Rightarrow Id_{\texttt{Bool}} \Rightarrow Id_{\texttt{Bool}}) (\Longrightarrow) (\Longrightarrow)$
- $\blacktriangleright \textit{bi-total}(A) \implies ((A \bowtie \textit{Id}_{\texttt{Bool}}) \bowtie \textit{Id}_{\texttt{Bool}}) (\forall) (\forall)$

Transfer rules relate different functions, using transfer relations:

- $\qquad \qquad \bullet \ \, \left(\mathsf{T}_{\mathtt{int}} \mapsto \mathsf{T}_{\mathtt{int}} \mapsto \mathsf{T}_{\mathtt{int}} \right) \left(+_{\mathtt{raw}} \right) \left(+_{\mathtt{int}} \right) \\$
- $\blacktriangleright (T_{\texttt{int}} \mapsto T_{\texttt{int}} \mapsto \textit{Id}_{\texttt{Bool}}) (\leq_{\texttt{raw}}) (\leq_{\texttt{int}})$
- $\qquad \qquad (\mathtt{T}_{\mathtt{int}} \mapsto \mathtt{T}_{\mathtt{int}} \mapsto \mathit{Id}_{\mathtt{Bool}}) \, (\approx) \, (=)$

Using Transfer Rules

Syntax-directed derivation of $(\forall x. \ x \leq_{\mathtt{raw}} x) \Leftrightarrow (\forall y. \ y \leq_{\mathtt{int}} y)$:

$$\frac{ \overline{\left(\operatorname{T}_{\operatorname{int}} \mapsto \operatorname{Id}_{\operatorname{Bool}} \right) \left(\leq_{\operatorname{raw}} \right) \left(\leq_{\operatorname{int}} \right) } \ \overline{\operatorname{T}_{\operatorname{int}} \times y} }{ \overline{\left(\operatorname{T}_{\operatorname{int}} \mapsto \operatorname{Id}_{\operatorname{Bool}} \right) \left(x \leq_{\operatorname{raw}} \right) \left(y \leq_{\operatorname{int}} \right) } } \frac{ \overline{\operatorname{T}_{\operatorname{int}} \times y} }{ \overline{\operatorname{T}_{\operatorname{int}} \times y} }$$

$$\frac{ \operatorname{Id}_{\operatorname{Bool}} \left(x \leq_{\operatorname{raw}} x \right) \left(y \leq_{\operatorname{int}} y \right) }{ \overline{\left(\operatorname{T}_{\operatorname{int}} \mapsto \operatorname{Id}_{\operatorname{Bool}} \right) \left(\lambda x. \, x \leq_{\operatorname{raw}} x \right) \left(\lambda y. \, y \leq_{\operatorname{int}} y \right) } }$$

$$\frac{ bi \cdot \operatorname{total}(\operatorname{T}_{\operatorname{int}}) }{ \overline{\left(\left(\operatorname{T}_{\operatorname{int}} \mapsto \operatorname{Id}_{\operatorname{Bool}} \right) \mapsto \operatorname{Id}_{\operatorname{Bool}} \right) \left(\forall \right) \left(\forall \right) } } \vdots$$

$$\overline{\operatorname{Id}_{\operatorname{Bool}} \left(\forall x. \, x \leq_{\operatorname{raw}} x \right) \left(\forall y. \, y \leq_{\operatorname{int}} y \right) }$$

Implementation in Isabelle/HOL

Quotient package

- quotient_type command
- Constructs quotient type from an equivalence relation

Lifting package

- ▶ lift_definition command
- Defines abstract function from raw function

Transfer package

- transfer proof method
- Replaces abstract goal with equivalent raw goal

Demo

Conclusions

Types-as-relations

- a versatile idea
- with practical applications

Automation

- Lifting and Transfer packages
- Used throughout Isabelle standard libraries
- Saves much manual effort

Paper

- "Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL"
- with Ondřej Kunčar, at Isabelle Workshop 2012