Geteilte Turing-Maschinen – Konstruktion einer äquivalenten geteilten Turing-Maschine

Es sei M_0 eine gegebene Turing-Maschine, deren Startzustand nicht zu den Endzuständen gehört, und die den LSK niemals unbewegt lässt. Dann gibt es eine äquivalente Turing-Maschine M mit dem gleichen Eingabe- und Bandalphabet wie bei M_0 , die im folgenden Sinne "geteilt" ist: Die Zustandsmenge Q von M hat eine disjunkte Zerlegung $Q = Q_L \cup \{q_0\} \cup Q_R$ mit zwei gleich großen "Hälften" Q_L und Q_R , so dass M wie folgt zwischen den "Hälften" hin und her wechselt:

Der Sinn solch einer Teilung liegt darin: Nach dem ersten Verarbeitungsschritt befindet sich die Turing-Maschine stets in einem Zustand, der zur Menge Q_L oder zur Menge Q_R gehört, und man kann dann am aktuellen Zustand erkennen, wie der LSK zuletzt bewegt wurde: gehört der aktuelle Zustand zu Q_L , so fand zuletzt eine Linksbewegung statt, gehört er zu Q_R , so fand zuletzt eine Rechtsbewegung statt. Damit kann man z.B. leichter entscheiden, ob der LSK über das linke oder das rechte Ende der Bandaufschrift hinausbewegt wurde.

Die Konstruktion der äquivalenten Maschine *M* ist z.B. wie folgt möglich:

Wir konstruieren zur gegeben Turing-Maschine $M_0 = (Q_0, \Sigma, \Gamma, \delta_0, q_0, B, F_0)$ wie folgt eine neue Turing-Maschine $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$: Die Alphabete Σ und Γ , das Leerzeichen B und der Startzustand q_0 werden für M unverändert von M_0 übernommen.

Wir setzen $Q_R \coloneqq Q_0 \setminus \{q_0\}$. Wir nehmen für jedes Element $q \in Q_R$ ein neues Element hinzu, das wir mit q^* bezeichnen (solch ein neues Element darf natürlich nicht mit q_0 übereinstimmen); die Menge aller neuen Elemente bildet dann die Menge Q_L . Damit gibt es eine umkehrbare Abbildung $Q_R \to Q_L, q \mapsto q^*$, und die beiden Mengen enthalten gleich viele Elemente. Die

Zustandsmenge für M sei nun $Q \coloneqq \underbrace{Q_R \cup \{q_0\}}_{Q_0} \cup Q_L$. Die Menge der Endzustände für M sei $F \coloneqq F_0 \cup \left\{q^* \middle| q \in F_0\right\}$; eine Hälfte der Endzustände liegt also in Q_R , die andere in Q_L (hier wird

übrigens die Voraussetzung $q_0 \notin F$ verwendet).

Wir definieren die neue Zustandsübergangsfunktion $\delta: Q \times \Gamma \to Q \times \Gamma \times \{-1,1\}$ wie folgt: bei den Bewegungsrichtungen steht dabei -1 für links und 1 für rechts, und die in den folgenden Fallunterscheidungen verwendeten Farben entsprechen den Pfeilfarben im obigen Schaubild:

Für $(q, X) \in Q_R \times \Gamma$:

$$\delta(q,X) \coloneqq \begin{cases} \left(q'^*,Y,-1\right) & \text{falls} & \delta_0\left(q,X\right) = \left(q',Y,-1\right) \\ \left(q',Y,1\right) & \text{falls} & \delta_0\left(q,X\right) = \left(q',Y,1\right) \\ \text{undefiniert} & \text{falls} & \delta_0\left(q,X\right) \text{ undefiniert ist} \end{cases}$$

Für $(q^*, X) \in Q_L \times \Gamma$ (beachte: zu $q^* \in Q_L$ gehört genau ein Zustand $q \in Q_R \subset Q_0$):

$$\delta(q^*, X) \coloneqq \begin{cases} (q'^*, Y, -1) & \text{falls} \quad \delta_0(q, X) = (q', Y, -1) \\ (q', Y, 1) & \text{falls} \quad \delta_0(q, X) = (q', Y, 1) \\ \text{undefiniert} & \text{falls} \quad \delta_0(q, X) \text{ undefiniert ist} \end{cases}$$

und schließlich noch für $X \in \Gamma$:

$$\delta \big(q_0, X \big) \coloneqq \begin{cases} \big({q'}^*, Y, -1 \big) & \text{falls} \qquad \delta_0 \big(q_0, X \big) = \big({q'}, Y, -1 \big) \\ \big({q'}, Y, 1 \big) & \text{falls} \qquad \delta_0 \big(q_0, X \big) = \big({q'}, Y, 1 \big) \\ \text{undefiniert} & \text{falls} \qquad \delta_0 \big(q_0, X \big) \text{ undefiniert ist} \end{cases}$$

Offensichtlich wechselt dann M - wie in der Skizze oben angedeutet - zwischen $\mathcal{Q}_{\scriptscriptstyle L}$ und $\mathcal{Q}_{\scriptscriptstyle R}$ hin und her, denn die Definition von $\,\delta\,$ zeigt, dass eine Rechtsbewegung des LSK immer mit einem Zielzustand aus $\mathcal{Q}_{\mathbb{R}}$ und eine Linksbewegung immer mit einem Zielzustand aus $\mathcal{Q}_{\mathbb{L}}$ verknüpft ist.

 $\underline{\text{Zeige:}}\ M$ akzeptiert die gleiche Sprache wie M_0 (das ist also die Äquivalenz!)

Zunächst noch zur Sprech- und Schreibweise:

Mit "Konfiguration" ist im Folgenden die Zusammenfassung all dieser Informationen gemeint: aktueller Zustand q der Turing-Maschine, das Teilwort $\xi \in \Gamma^*$, das sich links vom LSK befindet, das Teilwort $\zeta \in \Gamma^*$, dessen erstes Zeichen sich unter dem LSK befindet, und dessen restliche Zeichen rechts vom LSK stehen. Diese Teilworte dürfen auch leer sein. Wir schreiben dafür kurz: $\xi q \zeta$.

- Mit $\xi q \zeta \vdash \xi' q' \zeta'$ ist gemeint, dass die Turing-Maschine in <u>einem einzigen</u> Verarbeitungsschritt von der Konfiguration $\xi q \zeta$ zur Konfiguration $\xi' q' \zeta'$ gelangen kann.
- Mit $\xi q \zeta \vdash \xi' q' \zeta'$ ist gemeint, dass die Turing-Maschine in <u>endlich vielen</u> (0,1,2,...,n) unmittelbar aufeinander folgenden Verarbeitungsschritten von der Konfiguration $\xi q \zeta$ zur Konfiguration $\xi' q' \zeta'$ gelangen kann.

Jetzt zum Beweis der Gleichheit der beiden Sprachen; wir müssen $L(M_0) = L(M)$ zeigen.

$$\underline{\text{Zeige}}\ L(M_0) \subseteq L(M)$$

Bew.: Es sei x das Eingabewort und $q_0x \vdash \xi q\zeta$ irgendeine Folge von Konfigurationen für M_0 ; wir zeigen durch Induktion über die Anzahl m der Schritte, dass diese Folge in eine für M gültige Folge übersetzt werden kann, wobei einander entsprechende Konfigurationen entweder gleich sind oder sich nur im Zustand unterscheiden ($q \in Q_R$ in der Konfiguration für M_0 entspricht in diesem Fall dem zugehörigen Zustand $q^* \in Q_L$ in der Konfiguration für M).

m=0: Die Startkonfiguration q_0x ist unverändert auch für M gültig, weil q_0 auch der Startzustand von M ist.

 $m-1 \rightarrow m$: Es sei m>0. Wir spalten den letzten Schritt ab: $q_0x \stackrel{*}{\vdash} \tilde{\xi}\, p\tilde{\zeta} \vdash \xi q\zeta$. Nach Induktionsannahme gibt es zu $q_0x \stackrel{*}{\vdash} \tilde{\xi}\, p\tilde{\zeta}$ eine für M gültige Folge von Konfigurationen, die entweder mit $\tilde{\xi}\, p\tilde{\zeta}$ ($p\in Q_0=Q_R\cup\{q_0\}$) oder auf $\tilde{\xi}\, p^*\tilde{\zeta}$ ($p^*\in Q_L$) endet. Den letzten Schritt übersetzen wir nun wie folgt:

- Geht der Schritt von $\tilde{\xi}p\tilde{\zeta}$ aus und ist bei M_0 der letzte Übergang $p \to q$ mit einer Rechtsbewegung des LSK verbunden, so ist $\tilde{\xi}p\tilde{\zeta} \to \xi q\zeta$ der letzte Schritt für M.
- Geht der Schritt von $\tilde{\xi}p\tilde{\zeta}$ aus und ist bei M_0 der letzte Übergang $p \to q$ mit einer Linksbewegung des LSK verbunden, so ist $\tilde{\xi}p\tilde{\zeta} \to \xi q^*\zeta$ der letzte Schritt für M.
- Geht der Schritt von $\tilde{\xi} p^* \tilde{\zeta}$ aus und ist bei M_0 der letzte Übergang $p \to q$ mit einer Rechtsbewegung des LSK verbunden, so ist $\tilde{\xi} p^* \tilde{\zeta} \to \xi q \zeta$ der letzte Schritt für M.
- Geht der Schritt von $\tilde{\xi} p^* \tilde{\zeta}$ aus und ist bei M_0 der letzte Übergang $p \to q$ mit einer Linksbewegung des LSK verbunden, so ist $\tilde{\xi} p^* \tilde{\zeta} \to \xi q^* \zeta$ der letzte Schritt für M.

Endet die für M_0 gegebene Konfigurationsfolge $q_0x \vdash \xi q\zeta$ mit einem Zustand $q \in F_0$ (d.h. M_0 akzeptiert das Eingabewort x), so endet auch die entsprechende Folge für M mit einem akzeptierenden Zustand, weil wir $F := F_0 \cup \left\{q^* \middle| q \in F_0\right\}$ gesetzt haben. Dies zeigt $L(M_0) \subseteq L(M)$.

Zeige:
$$L(M) \subseteq L(M_0)$$

Bew.: analog, indem man in ähnlicher Weise eine für M gültige Konfigurationsfolge $q_0x \vdash \xi q\zeta$ in eine für M_0 gültige zurückübersetzt.