Определение 1. Комплексное число z — это пара вещественных чисел (a,b). При этом a называется вещественной частью числа z (обозначение $\operatorname{Re} z$), а b — мнимой частью числа z (обозначение $\operatorname{Im} z$). На множестве комплексных чисел определены операции сложения и умножения:

$$(a,b) + (c,d) \stackrel{\text{def}}{=} (a+c,b+d)$$
$$(a,b) \cdot (c,d) \stackrel{\text{def}}{=} (ac-bd,ad+bc)$$

Комплексное число (a,0) обычно отождествляют с вещественным числом a. Комплексное число (0,1) называется мнимой единицей и обозначается через i.

Таким образом любое комплексное число z=(a,b) можно переписать в виде z=a+bi. Это представление называется алгебраической формой записи комплексного числа.

Множество комплексных чисел обозначается буквой $\mathbb C$.

Задача 1°. Докажите, что \mathbb{C} — поле.

Определение 2. Сопоставим каждому комплексному числу z = a + bi вектор с координатами (a, b). Длина этого вектора называется modynem комплексного числа z и обозначается |z|. Пусть $z \neq 0$. Угол, отсчитанный против часовой стрелки от вектора с координатами (1, 0) до вектора с координатами (a, b), называется aprymenmom комплексного числа z и обозначается aprymenmom комплексного числа z и обозначается aprymenmom комплексного числа z и обозначается z.

Задача 2. Найдите модуль и аргумент следующих комплексных чисел:

$$-4$$
, $1+i$, $1-i\sqrt{3}$, $\sin \alpha + i\cos \alpha$, $\frac{1+i\tan \alpha}{1-i\tan \alpha}$, $1+\cos \alpha + i\sin \alpha$.

Задача 3°. (*Тригонометрическая форма записи*) Докажите, что для любого ненулевого комплексного числа z имеет место равенство $z = r(\cos \varphi + i \sin \varphi)$, где r = |z|, $\varphi = \operatorname{Arg}(z)$.

Задача 4. а) Доказать, что сумме комплексных чисел отвечает вектор, равный сумме векторов, отвечающих слагаемым. б) Пусть z и w — комплексные числа. Выразите |zw| и $\operatorname{Arg}(zw)$ через |z|, |w|, $\operatorname{Arg}(z)$ и $\operatorname{Arg}(w)$.

Задача 5. Верно ли, что $|z+w| \leq |z| + |w|$ при любых комплексных числах z и w?

Определение 3. Пусть z = a + bi. Число $\overline{z} = a - bi$ называется комплексно-сопряжённым к z.

Задача 6. Выразите модуль и аргумент числа \overline{z} через модуль и аргумент числа z.

Задача 7. Докажите, что **a)** $|z|^2=z\overline{z}$ для любого $z\in\mathbb{C};$ **б)** $\overline{z_1+z_2}=\overline{z}_1+\overline{z}_2$ и $\overline{z_1z_2}=\overline{z}_1\overline{z}_2$ для любых $z_1,z_2\in\mathbb{C}.$

Задача 8°. а) Докажите, что из любого комплексного числа можно извлечь квадратный корень. **6)** Решите квадратное уравнение с комплексными коэффициентами $az^2 + bz + c = 0$.

Задача 9. Пусть $P(x) \in \mathbb{R}[x], z \in \mathbb{C}$ и P(z) = 0. Докажите, что $P(\overline{z}) = 0$.

Задача 10. Можно ли на множестве комплексных чисел ввести отношение порядка ≤ так, чтобы получилось упорядоченное поле?

Задача 11. Вычислите:

а)
$$\frac{(5+i)(7-6i)}{3+i}$$
; б) $\frac{(1+i)^5}{(1-i)^3}$; в) $\frac{(1+3i)(8-i)}{(2+i)^2}$; г) $(1+i\sqrt{3})^{150}$; д) $\frac{(\sqrt{3}+i)}{(1-i)^{30}}$.

Задача 12. Решите уравнения:

а)
$$z^2 = i$$
; б) $z^2 = \overline{5} - 12i$; в) $z^2 + (2i - 7)z + 13 - i = 0$; г) $\overline{z} = z^2$; д) $\overline{z} = z^3$.

Задача 13. Вычислите суммы: **a)**
$$C_n^1 - C_n^3 + C_n^5 - C_n^7 + \dots$$
; **6)** $C_n^0 + C_n^4 + C_n^8 + C_n^{12} + \dots$

1	2	3	4 a	4 6	5	6	7 a	7 б	8 a	8 6	9	10	11 a	11 б	11 B	11 Г	11 Д	12 a	12 б	12 B	12 Г	12 Д	13 a	13 6

Листок №21 Страница 2

Задача 14°. (*Формула Муавра*) Пусть $z = r(\cos \varphi + i \sin \varphi), n \in \mathbb{N}$. Докажите, что $z^n = r^n(\cos n\varphi + i \sin n\varphi)$.

Задача 15. Найдите суммы: **a)** $\sin \varphi + \sin 2\varphi + \ldots + \sin n\varphi$; **6)** $\cos \varphi + \cos 2\varphi + \ldots + \cos n\varphi$; **B)** $\sin \varphi + \frac{1}{2}\sin 2\varphi + \ldots + \frac{1}{2^n}\sin n\varphi$; **r)** $1 + 2\cos \varphi + 3\cos 2\varphi + \ldots + (n+1)\cos n\varphi$.

Задача 16. Выразите $\sin^4 x$ и $\cos^5 x$ в виде суммы чисел вида $\alpha \sin kx$ и $\beta \cos lx$, где α , $\beta \in \mathbb{R}$ и $k, l \in \mathbb{N} \cup \{0\}$.

Задача 17. Выразите $\cos nx$ и $\sin nx$ через $\cos x$ и $\sin x$.

Задача 18. Докажите, что многочлен степени n с комплексными коэффициентами имеет не более n комплексных корней.

Задача 19. а) Найдите (и нарисуйте) все комплексные корни многочленов: $z^2-1, z^3-1, z^4-1, z^5-1, z^6-1$. **6)** Сколько корней имеет уравнение $z^n=1$?

Задача 20. а) Вычислите сумму и произведение всех корней степени n из 1. **б)** Пусть $\alpha_1, \ldots, \alpha_n$ все корни степени n из 1, $\alpha_1 = 1$. Найдите $\alpha_1^s + \ldots + \alpha_n^s$ (где $s \in \mathbb{N}$) и $(1 - \alpha_2) \cdot \ldots \cdot (1 - \alpha_n)$.

Задача 21. Пусть P — многочлен степени k с коэффициентами из $\mathbb C$. Докажите, что среднее арифметическое значений P в вершинах правильного n-угольника равно значению P в центре многоугольника, если n>k.

Задача 22. а) Пусть $z = \frac{3+4i}{5}$. Найдётся ли такое $n \in \mathbb{N}$, что $z^n = 1$?

б) Докажите, что $\frac{1}{\pi} \operatorname{arctg} \frac{4}{3} \notin \mathbb{Q}$.

Задача 23. Пусть $z,v,w\in\mathbb{C}$, причём $z+v+w=z^2+v^2+w^2=z^3+v^3+w^3=0$. Верно ли, что $z^4+v^4+w^4=0$?

Задача 24. Нарисуйте множество комплексных чисел, для которых:

- a) $z^n + 1 = 0$; 6) $|z i| \le 2$; B) |z 1| = 2|z i|; r) $z^2 + \overline{z}^2 = 4$;
- д) $|z-1|-|z+1| \le 3$; e) |z-1|+|z+1|=3; ж) $z+\overline{z}=2|z-1|$.

Задача 25. Каким геометрическим преобразованиям соответствуют следующие отображения:

a) $z \longmapsto \overline{z}$;

б) $z \longmapsto (\cos \varphi + i \sin \varphi)z$, где $\varphi \in \mathbb{R}$;

в) $z \longmapsto \lambda z$, где $\lambda \in \mathbb{R}$;

 \mathbf{r}) $z \longmapsto wz$, где $w \in \mathbb{C}$?

Задача 26. Запишите в виде функции комплексного переменного:

- а) ортогональную проекцию на ось x;
- $\mathbf{6}$) симметрию относительно оси y;
- **в)** центральную симметрию с центром A;
- **г)** поворот на угол φ относительно точки A;
- д) гомотетию с коэффициентом k и центром A;
- e) симметрию относительно прямой y = 3 со сдвигом на 1 влево;
- ж) поворот, переводящий ось x в прямую y = 2x + 1;
- **3)** симметрию относительно прямой y = 2x + 1.

Задача 27. Куда отображение $z \mapsto z^2$ переводит **a)** декартову координатную сетку;

- **б**) полярную координатную сетку; **в**) окружность |z+i|=1;
- **Задача 28.** Те же вопросы для отображения $z \longmapsto 1/z$.

Задача 29. Куда отображение $z \longmapsto \sqrt{z}$ переводит верхнюю полуплоскость (без границы)?

Задача 30. а) Куда отображение $z \longmapsto 1/z$ переводит множество $\{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0, |z| \leqslant 1\}$?

б)* Тот же вопрос для отображения $z \longmapsto \frac{z+1/z}{2}$.

1	$4\begin{vmatrix} 15\\ a\end{vmatrix}$	15 1 б 1	5 3 г	16	17	18	19 a	19 б	20 a	20 6	21	22 a	22 б	23	24 a	24 б	24 B	24 Г	24 Д	24 e	24 ж	25; a	25¦ б	25 B	25 Г	26 a	26 б	26 B	Г	26 ² д	26 e 2	262 K	26 2	272 a	бΙ	27 f B	28	29	303 a	30 б