Thermal heat storage

- □ it allows excess thermal energy to be stored and used hours, days, months later, at scales ranging from the individual process, building, multiuser-building, district, town, or region.
- ☐ The different kinds of thermal energy storage can be divided into three separate categories: sensible heat, latent heat, and thermo-chemical heat storage.
- ☐ Each of these has different advantages and disadvantages that determine their applications.

Sensible heat storage

- ☐ The most direct way is the storage of sensible heat.
- □ Sensible heat storage is based on raising the temperature of a liquid or solid to store heat and releasing it with the decrease of temperature when it is required.
- ☐ Materials used in sensible heat storage must have high heat capacity and also high boiling or melting point.
- □ Although this method of heat storage is currently less efficient, it is least complicated compared with latent or chemical heat and it is inexpensive.
- ☐ From thermodynamics point of view, the storage of sensible heat is based on the increase of enthalpy of the material in the store, either a liquid or a solid in most cases.
- ☐ The sensible effect is a change in temperature.

Sensible heat storage

☐ Heat stored can be obtained by the equation:

$$\Delta Q = m \cdot \int_{T_1}^{T_2} c_p (T) \cdot dT$$

where

ΔQ is the energy stored [J]

m is the mass of an object [kg]

c_p is the specific heat capacity [J.kg⁻¹.K⁻¹]

dT is the temperature difference

- ☐ Heat Capacity:
- ➤ When a given amount of heat is added to different substances, their temperatures increase by different amounts.
- This proportionality constant between the heat Q that the object absorbs or loses and the resulting temperature change T of the object is known as the heat capacity C of an object. $C = Q/\Delta T$

Sensible heat storage

- ☐ Multiple forms are already being used and improved while new ones are being investigated actively. Some important ones are:
- ❖ Molten-salt technology:
- > The sensible heat of molten salt is also used for storing solar energy at a high temperature.
- ➤ Presently, this is a commercially used technology to store the heat collected by concentrated solar power.
- ➤ The heat can later be converted into superheated steam to power conventional steam turbines and generate electricity.
- ➤ Various eutectic mixtures of different salts are used (e.g., sodium nitrate, potassium nitrate and calcium nitrate).

Working principle

- ✓ The salt melts at 131 °C (268 °F) and it is kept liquid at 288 °C (550 °F) in an insulated "cold" storage tank.
- ✓ The liquid salt is pumped through panels in a solar collector where the focused sun heats it to 566 °C.
- ✓ It is then sent to a hot storage tank.
- ✓ With proper insulation of the tank the thermal energy can be usefully stored for up to a week.
- ✓ When electricity is needed, the hot molten salt is pumped to a conventional steam-generator to produce superheated steam for driving a conventional turbine/generator set as used in any coal or oil or nuclear power plant.
- ✓ A 100-megawatt turbine would need a tank of about 30 ft tall and 79 ft in diameter to drive it for four hours by this design.

Sensible heat storage

❖ Hot silicon technology:

- ➤ Solid or molten silicon offers much higher storage temperatures than salts with consequent greater capacity and efficiency.
- ➤ It is being researched as a possible more energy efficient storage technology.
- ➤ Silicon is able to store more than 1 MWh of energy per cubic metre at 1400 °C.
- ➤ An additional advantage is the relative abundance of silicon when compared to the salts used for the same purpose.

Sensible heat storage

Heat storage in hot rocks or concrete

- ➤ Water has one of the highest thermal capacities at 4.2 J/(cm3·K) whereas concrete has about one third of that.
- ➤ On the other hand, concrete can be heated to much higher temperatures (1200 °C) by for example electrical heating and therefore has a much higher overall volumetric capacity.
- ➤ Thus in the example below, an insulated cube of about 2.8 m³ would appear to provide sufficient storage for a single house to meet 50% of heating demand.
- ➤ Siemens-Gamesa built a 130 MWh thermal storage near Hamburg with 750 °C in basalt and 1.5 MW electric output.
- ➤ A similar system is scheduled for Sorø, Denmark, with 41–58% of the stored 18 MWh heat returned for the town's district heating, and 30–41% returned as electricity.

Sensible heat storage

❖ Molten aluminum:

- Another medium that can store thermal energy is molten (recycled) aluminum.
- ➤ This technology was developed by the Swedish company Azelio.
- ➤ The material is heated to 600 degrees C.
- ➤ When needed, the energy is transported to a Stirling engine using a heat-transfer fluid.

Phase-change storage

Ч	Latent Heat Storage (LHS) is associated with a phase
	transition, the general term for the associated media is
	Phase-Change Material (PCM).
	During these transitions, heat can be added or extracted
	without affecting the material's temperature, giving it an
	advantage over SHS-technologies.
	Storage capacities are often higher as well.
	There are a multitude of PCMs available, including but not
	limited to salts, polymers, gels, paraffin waxes and metal
	alloys, each with different properties.
	This allows for a more target-oriented system design.
	As the process is isothermal at the PCM's melting point, the
	material can be picked to have the desired temperature
	range.
	Desirable qualities include high latent heat and thermal
	conductivity.
	Furthermore, the storage unit can be more compact if volume
	changes during the phase transition are small.

Phase-change storage

PCMs are further subdivided into organic, inorganic and
eutectic materials.
Compared to organic PCMs, inorganic materials are less
flammable, cheaper and more widely available.
They also have higher storage capacity and thermal
conductivity.
Organic PCMs, on the other hand, are less corrosive and not
as prone to phase-separation.
Eutectic materials, as they are mixtures, are more easily
adjusted to obtain specific properties, but have low latent and
specific heat capacities.
Another important factor in LHS is the encapsulation of the
PCM.
Some materials are more prone to erosion and leakage than
others.
The system must be carefully designed in order to avoid
unnecessary loss of heat.

Advantages and disadvantages of PCM use compared to conventional water storage

Thermo-chemical storage

- ☐ Thermo-chemical heat storage (TCS) involves some kind of reversible exotherm/endotherm chemical reaction with thermo-chemical materials (TCM).
- ☐ Depending on the reactants, this method can allow for an even higher storage capacity than LHS.
- ☐ In one type of TCS, heat is applied to decompose certain molecules.
- ☐ The reaction products are then separated, and mixed again when required, resulting in a release of energy.
- ➤ Some examples are the decomposition of potassium oxide (over a range of 300-800 degrees C, with a heat decomposition of 2.1 MJ/kg), lead oxide (300-350 degrees C, 0.26 MJ/kg) and calcium hydroxide (above 450 degrees C, where the reaction rates can be increased by adding zinc or aluminum).
- ➤ The photochemical decomposition of nitrosyl chloride can also be used and, since it needs photons to occur, works especially well when paired with solar energy

Thermo-chemical storage

- ☐ Adsorption (or Sorption) solar heating and storage:
- ✓ It can be used to not only store thermal energy, but also control air humidity.
- ✓ Zeolites (microporous crystalline alumina-silicates) and silica gels are well suited for this purpose.
- ✓ The low cost (\$200/ton) and high cycle rate (2,000X) of synthetic zeolites such as Linde 13X with water adsorbate has garnered much academic and commercial interest recently for use for thermal energy storage (TES)
- ✓ Typically, hot dry air from flat plate solar collectors is made to flow through a bed of zeolite such that any water adsorbate present is driven off.
- ✓ When heat is called for during the night, or sunless hours, or winter, humidified air flows through the zeolite.
- ✓ As the humidity is adsorbed by the zeolite, heat is released to the air and subsequently to the building space.

Thermo-chemical storage

☐ Salt hydrate technology:

- ✓ The system uses the reaction energy created when salts are hydrated or dehydrated.
- ✓ It works by storing heat in a container containing 50% sodium hydroxide (NaOH) solution. Heat (e.g. from using a solar collector) is stored by evaporating the water in an endothermic reaction.
- ✓ When water is added again, heat is released in an exothermic reaction at 50 °C (120 °F).
- ✓ Current systems operate at 60% efficiency.
- ✓ The system is especially advantageous for seasonal thermal energy storage, because the dried salt can be stored at room temperature for prolonged times, without energy loss.
- ✓ The containers with the dehydrated salt can even be transported to a different location.
- ✓ The system has a higher energy density than heat stored in water and the capacity of the system can be designed to store energy from a few months to years.

Thermo-chemical storage

☐ Molecular Solar Thermal-system' (MOST):

- With this approach a molecule is converted by photoisomerization into a higher-energy isomer.
- ❖ Photoisomerization is a process in which one isomer is converted into another by light (solar energy).
- This isomer is capable of storing the solar energy until the energy is released by a heat trigger or catalyst (than converted into its original isomer).
- ❖ A promising candidate for such a MOST are Norbornadienes (NBD).
- Because it has a high energy difference of approximately 96 kJ/mol.
- ✓ The donor-acceptor substitutions provide an effective means for redshifting the longest-wavelength absorption, improves the solar spectrum match.
- ➤ A crucial challenge for a useful MOST system is to acquire a satisfactory high energy storage density.
- Another challenge of a MOST system is that to harvest light in the visible region.

Two or more compounds with the same formula but a different arrangement of atoms in the molecular different properties

Thermo-chemical storage

☐ Molecular bonds:

- ✓ Storing energy in molecular bonds is being investigated.
- ✓ Energy densities equivalent to lithium-ion batteries have been achieved.
- ✓ This has been done by a DSPEC (dys-sensitized photoelectrosythesis cell).
- ✓ The DSPEC generates hydrogen fuel by making use of the acquired solar energy to split water molecules into its elements.
- ✓ As the result of this split, the hydrogen is isolated and the oxygen is released into the air.
- ✓ This sounds easier than it actually is.
- ✓ Four electrons of the water molecules need to be separated and transported elsewhere.
- ✓ Another difficult part is the process of merging the two separate hydrogen molecules.

Comparison among sensible, latent and thermo-chemical heat storage system

Chapter 4 Silicon Solar Cells

Basic Principle

- ☐ Photovoltaic modules, commonly called solar modules, are the key components used to convert sunlight into electricity.
- □ Solar modules are made of semiconductors that are very similar to those used to create integrated circuits for electronic equipment.
- ☐ The most common type of semiconductor currently in use is made of silicon crystal.
- ☐ Silicon crystals are laminated into n-type and p-type layers, stacked on top of each other.
- ☐ Light striking the crystals induces the "photovoltaic effect," which generates electricity.
- ☐ The electricity produced is called direct current (DC) and can be used immediately or stored in a battery.
- ☐ A device called an inverter changes the electricity into alternating current (AC), the standard power used in residential homes.

Working Principle

Working Principle

