INTRODUCCIÓN A LA FÍSICA Guía 6 – Segundo Cuatrimestre 2018

Problema 1: Resolver el triángulo rectángulo, encontrando el valor de la longitud de sus lados y sus ángulo, sabiendo que la hipotenusa mide 27 cm y uno de sus ángulos es de 30°.

Problema 2: Desde el espejo de un faro marino situado a 250 m sobre el nivel del mar se observa un bote bajo un ángulo de depresión, respecto a la dirección horizontal, de 30°. Calcule la distancia horizontal entre el bote y el faro.

Problema 3: Dos observadores en tierra, separados por una distancia de 1000 m, observan un globo aerostático que se encuentra elevado entre ellos. Ambos observadores y el globo se hallan en un mismo plano vertical. Uno de los observadores mide un ángulo de elevación de 65° y el otro mide 35°. Calcule la altura a la que se encuentra el globo.

Problema 4: Dados los vectores $\vec{A}=(2,3)$; $\vec{B}=(5,-1)$; $\vec{C}=(-4,3)$ y $\vec{D}=(0,1)$. Hallar gráfica y analíticamente las componentes, módulo, dirección y sentido de los vectores:

a) $\vec{A} + \vec{B} - \vec{C} - \vec{D}$

d) $\vec{B} - \vec{A}$

b) $2(\vec{A} - 2\vec{B} + 3\vec{C})$

e) $-6\vec{C}$

c) $\vec{A} - \vec{B}$

Calcular:

- f) $\vec{A} \bullet \vec{B}$; $\vec{B} \bullet \vec{A} \lor \vec{C} \bullet \vec{D}$
- g) Los ángulos formados entre \vec{A} y \vec{C} y entre (3 ($\vec{A} \vec{B}$)) y ($2\vec{C} + \vec{D}$).

Problema 5: Sea el vector de componentes (1/3,2/3).

- a) Hallar las componentes del vector de módulo 5 que tiene la misma dirección y sentido que el vector dado
- b) Encuentre las componentes de un vector de módulo 8 que tiene la misma dirección y sentido opuesto al vector dado.

Problema 6: Dados los vectores \vec{A} y \vec{B} de módulos 3 y 4 respectivamente.

- a) Calcule el módulo de la resultante de ambos vectores cuando el ángulo comprendido entre ellos es θ = 30°.
- b) Calcule la dirección de la resultante respecto del vector \vec{A} .

Problema 7: Un avión vuela 200 km hacia el NE en una dirección que forma un ángulo de 30° hacia el este de la dirección norte. En ese punto cambia su dirección de vuelo hacia el NO. En esta dirección vuela 60 km formando un ángulo de 45° con la dirección norte.

- a) Calcular la máxima distancia hacia el este del punto de partida a la que llegó el avión.
- b) Calcular la máxima distancia hacia el norte del punto de partida, a la que llegó el avión.
- c) Calcular la distancia a la que se encuentra el avión del punto de partida, al cabo de su recorrido.

Problema 8: Sean los vectores $\vec{P}_1 = (-1,0)$ y $\vec{P}_2 = (2,-3)$ calcular:

- a) Las componentes del vector diferencia entre $\vec{P}_{\!\scriptscriptstyle 1}$ y $\vec{P}_{\!\scriptscriptstyle 2}$
- b) Calcular el módulo del vector diferencia.

Problema 9: Dados los vectores $\vec{A}_1=3\hat{i}-5\hat{j}$; $\vec{A}_2=2\hat{i}+3\hat{j}$ y $\vec{A}_3=\hat{i}+3\hat{j}$, calcular:

a)
$$\vec{A}_1 + \vec{A}_2 - \vec{A}_3$$

b)
$$6(\vec{A}_1 + \vec{A}_2 - \vec{A}_3)$$

c)
$$\vec{A}_1 - \vec{A}_2 + \vec{A}_3$$

c)
$$\vec{A}_1 - \vec{A}_2 + \vec{A}_3$$

d) $2(\vec{A}_1 - 2\vec{A}_2 + 3\vec{A}_3)$

e) La componente de \vec{A}_1 en la dirección de \vec{A}_2

f) La componente de $\vec{A}_{\scriptscriptstyle 1}$ en la dirección de $\vec{A}_{\scriptscriptstyle 3}$

g) La componente de $\vec{A}_{\scriptscriptstyle 3}$ en la dirección de $\vec{A}_{\scriptscriptstyle 2}$