

Installation and Operating Manual for V–Belt Drives Slide Rails Foundation Blocks

Installation and Operating Manual V-Belt Drives

- All V-belts used should be manufactured in conformance with standards. Thoroughly remove any residues of oil and grease and other contamination. No traces of rust are admissible on the V-belt pulleys, especially in the area of the wedged grooves.
- All V-belts used should be of one original set of identical length. Avoid mixtures of V-belts of different manufacturers. The V-belts should have been stored free from damages and to the state of the art according to manufacturer's specifications. You can clean dirty V-belts with a mix of glycerine and spirit in the ratio of 1:10.
- It is important to install the V-belt pulleys parallel to the axis and aligning each other. Make sure that pulley concentricity and run-out tolerance will not exceed the predefined limit values according to DIN 2211 or 2217 (also refer to Table 1).
- For installation, approach the belt pulleys to each other until the V-belts can be mounted without using force. It is prohibited to use any aids, such as tire levers or similar, since this might lead to damage of the V-belts.
- If you have mounted the V-belts conforming to the grooves, tighten the drive according to manufacturer's specifications. For this purpose, tighten the belt pulley, which can be moved parallel to the axis for tightening, by slowly turning the drive until the V-belt has reached the required initial tension. Always check the belt inital tension perpendicularly to the drawing part of the belt (load part) by means of appropriate strain viewers. Refer to Table 2 for the required amounts for inital tension, by using the impression depth mentioned on the continuation page of this Manual.
- After a first service period of approx. 0.5 to 2 hours, check the belt initial tension again and retighten, if required. After further approx. 20 operating hours under load, it is recommended to check and retighten again in order to compensate for the V-belt stretching during the start-up period.
- V-belt drives using high-capacity V-belts of standardized profile series are mainly maintenance-free during operation for their entire service lives. It is advisable to regularly inspect the belts and belt pulleys for any trace of damage and wear and tear.

Table No. 1

Effective Ø								
from	50	106	170	280	450	710	1120	1800
to	100	160	250	400	630	100	1600	4000
Admissible pulley concentricity and run-out tolerance	0.2	0.3	0.4	0.5	0.6	0.8	1.0	1.2

Table No. 2

Profile [mm]	Ø small pulley [N]	Test force Length of free- running part of belt	Impression depth per 100 mm
SPZ	63 - 180	25	2.3
SPA	90 - 140	50	3.2
	160 - 250	50	2.7
SPB	140 - 200	75	3.7
	224 - 400	75	2.7
SPC	224 - 315	125	3.2
	355 - 630	125	2.7

L = Length of free-running part of belt

F = Test force

E_a = Impression depth of free-running
part of belt

Example of application:

Profile SPB, \varnothing small pulley (e.g. motor pulley) = 180 mm, length of free-running part of belt = 460 mm Test force from the Table = 75 N, impression depth = 3.7 x (460//100) = 17 mm.

Installation and Operating Manual Taper Bush

The **Taper Bush** system consists of conical clamping bushes with various bores in standardized sizes and the V-belt or flat belt pulleys with appropriately executed conical bore. The advantages of the taper bush system are easy assembly and dismantling and the capacity of the belt pulleys to adapt to different bore diameters by exchanging the corresponding taper bush.

Assembly

- Clean all polished bush surface from grease, oil and dirt prior to assembly. Such surfaces are, in particular, the bore, the outside cone of the bush and all semi-bores and semi-thread bores. Also degrease the conical bore of the belt pulley.
- Introduce the taper bush now into the hub of the pulley until the specific semi-bores in the hub and in the bush coincide. Make sure that every thread (semi-thread) in the bush corresponds to a smooth semi-bore in the hub and vice versa. The fastening screws for the bush included in the supply are slightly lubricated with oil at its thread, point, and bottom part of its head and manually screwed into the provided holes. Further keep in mind that the fastening bores are those, which are provided with a semi-thread in their hubs.
- Now push the belt pulley unit with the pre-assembled taper bush to its correct position of the shaft. When using a key scat, insert key first into keyway of shaft prior to assembling the bush. Only use keys supporting on their edges. Now tighten the fastening screws of the bush uniformly and step-by-step with the help of a torque wrench until reaching the recommended starting torque according to Table No. 3, in order to prevent any cocking between bush and pulley. Make sure that, at first, the bush is clamped on the shaft,and that the hub slides into its end position only afterwards. With light blows of a hammer on a sleeve or a wooden block, you can drive down the clamping bush into the cone to slightly increase the clamping effect. After that, the screws can be tightened until the recommended starting torque is obtained. Never exceed the starting torques mentioned in the assignment table.
- With perpendicular shaft arrangement and particularly rough operation (shock load), take further safety precautions against any movement of the taper clamping bush on the shaft.
- Empty bores are filled with grease to avoid penetration of dirt or foreign substances. After a short warm-up period of the drive under load, it is recommended to check the fastening screws of the taper clamping bush.

Dismantling

For dismantling, loosen all the fastening screws of the taper bush degrease the bores filled with lubricant. Degrease the pull-off bores, up to 2 items according to the bush size each, and slightly lubricate them with oil. Yu can recognize the pull-off from the fact that the relevant semi-threads are located on the bush side.

- The screws are screwed into the pull-off bores and steadily tightened until the taper bush comes free from the hub and is freely moveable on the shaft.
- The parts can now be removed from the shaft.

Table No. 3
Torques- and slipping moments for taper bushes

Bushes No.	Bush bore mm	Slipping moment without key Nm	Starting torque of screws without key Nm	Starting torques of screws with key Nm
1210	16 19 24 32	82 105 142 210	20	15
1610 1615	19 24 38 42	98 135 240 265	20	15
2012	24 38 42 48 50	165 310 340 400 420	30	25
2517	24 38 42 48 55 60	220 380 430 510 600 670	50	35
3020 3030	38 48 55 60 75	520 730 890 970 1300	90	70
3535 3525	42 60 75 90	1000 1580 2150 2600	115	85
4040 4030	48 60 75 100	1700 2300 3150 4400	170	120
4545 4535	55 75 100 110	2500 3900 5500 6300	190	140
5050 5040	75 100 125	3950 5650 7370	270	200
6050	100 125 150	8950 11900 14900	884	660
7060	125 150 175	15600 19400 23200	884	660

The indicated slipping moments for the starting torques were determined on the test bench for the specific bore diameters. The starting torques of screws without keys are applicable to power transmission by means of solid friction between shaft and bore. If shock load occurs, divide the slipping moment by 2.

If power transmission takes place by positive fit with the key inserted, the starting torques for the installation of the taper bush recommended in the column "stating torques of screws with key" will be sufficient to prevent the connection between shaft and bore from sliding at normal operation.

With shock loaded, vibrating or suspended operation, you should additionally provide mechanical locking against sliding or creeping on the shaft.

Trouble-Shooting Table

	FAULT	POSSIBLE CAUSE	REMEDY
BELT FAILURE	Broken belt(s)	Insufficiently rated drive Belt is rolled or levered on pulley Foreign body dropped into drive Extreme shock load	New calculation required On assembly, use retightening option Install suitable safety device or drive protection New calculation to adapt to shock load
	Belt(s) do(es) not resist load (creep); no visible cause	Insufficiently rated drive Traction body damaged Worn–out pulley grooves Movement axle distance	New calculation required Keep to correct assembly method Check groove wear, replace, if required Check drive for axle distance movement during operation
	Failure lateral assembly	Non-aligning pulleys Traction body damaged	Check and correct alignment Keep to correct assembly method
PREMATURE	Belt spalling and substructure detaching	Pulley too small Traction body damaged	Check drive design, use larger pulleys Increase diameter of outer tightening roller accordingly
	Wear on the upper belt shell	Friction on safeguarding equipment Malfunction of tightening roller	Replace or repair safety equipment Replace the tightening roller
	Wear on the upper belt edge	Incorrect belt pulley seat (belt too small for groove)	Use the correct belt-pulley combination
	Wear on flanges	Belt creep Non-alignment Worn-out pulleys Wrong belt	Retighten until creep is gone Realign pulleys Replace pulleys Replace by correct belt size
AR,	Wear on lower belt edge	Incorrect belt–pulley seat Worn–out pulleys	Use the correct belt–pulley combination Replace pulleys
STRONG OR UNUSUAL BELT WEAR,	Wear on lower belt shell	Belt substructure on pulley groove (belt too small for groove) Worn-out grooves Dirty pulleys	Use the correct belt–pulley combination Replace pulleys Clean pulleys
STRONG OR UN	Crack formation in substructure	Pulley diameter too small Belt creep Outer tightening roller too small Incorrect storage	Use larger pulley diameter Retightening Use larger diameter for outer tightening roller Do not stretch belt too tight, do not bend or inflect. Avoid heat and direct sunlight

	FAULT	POSSIBLE CAUSE	REMEDY
AB	Burned out and hard edges and substructure	Belt creep	Retighten until creep is gone
		Worn-out pulleys	Replace the pulleys
WE		Insufficiently rated drive	New calculation of drive
3ELT		Wavy movement	Check if there are any changes in the axle distance
UAL	Extreme hardening of belt shell	Hot surrounding of belt	Improve drive ventilation
STRONG OR UNUSUAL BELT WEAR	Flocky, sticky or swollen belt surface	Pollution through oil or chemicals at belts or in the pulleys	Do not use belt stretching agents; remove oil, grease or chemicals
	Individual or composite belts	Shock load or vibration	Check drive design, use PowerBand
V- BELTS TWIST OR JUMP OFF THE DRIVE		Foreign substances in pulley grooves	Shield grooves and drive
M ■		Non-aligned pulleys	New alignment of the pulleys
JU *		Worn-out pulley grooves	Replace pulleys
P.		Traction body damaged	Use correct assembly and storage
.SIM		Wrong position of flat tightening roller	procedures Carefully insert flat tightening roller into
rs T			loose part of belt, as close as possible to the driving pulley
V- BELTS T THE DRIVE		Wrong belt set	Replace with new belt set. Do not mix old and new belts
구 로		Inappropriate drive design	Check stability, axle distance and means of reducing vibration
	Composite belts will not extend	Non-aligned drive	Realign and retighten drive
Ω	uniformly	Dirty pulleys	Clean pulleys
EYON UE		Broken traction body or damaged substructure	Replace all belts, assemble properly
N BE		Wrong belt set	Assembly the correct belt set
SIOIS	Individual belts or all belts expand in the same way	Not sufficient clearance for retightening	Check the amount of retightening
XTEN	,	High overloaded or not sufficiently rated drive	Recalculation of the drive
BELT EXTENSION BEYOND RETIGHTENING VALUE		Broken traction bodies	Replacement of belts, crrect assembly
ВУ	Whistling or "chirping"	Belt creep Dirt	Retightening required Clean belt and pulleys
	Whipping noise	Loose belt	Retightening required
SEL		Flat belt set Non-alignment	Insert correct belt set New alignment of pulleys, so that all
CAU		-	pulleys are equally loaded
NOISE CAUSED BY BELTS	Grinding noise	Safety equipment is in grinding contact	Repair, replacement or new design of safety equipment

	FAULT	POSSIBLE CAUSE	REMEDY
>	Grinding noise	Bearings are damaged	Replace, align and grease
NOISES CAUSED BY BELTS	Unusually loud drive	Wrong belt Worn-out pulleys Dirt on grooves	Use correct belt size Replace pulleys Clean pulleys, improve protection. Remove rust, colour or dirt from grooves
	Fluttering belts	Tension of belt is too low Wrong belt sets Non-alignment of pulleys	Retighten Assemble new belt set Alignment of pulleys
UNUSUAL VIBRATION	Excessive vibration in drive system	Wrong belt Unsuitable design of machinery or equipment Pulleys jumped out Loose drive components	Use proper belt profile section for each pulley Check structure and clips for correct tightness Replace pulley Check all machine parts, safety equipment, motor supports, motor padding, bushes, clips and housing for stability, appropriate construction thickness, correct maintenance and assembly
	Cover band coming off	Worn-out pulleys Wrong groove space	Replace pulleys Measure pulley grooves and replace with standard pulleys
V- BELTS	Worn-out or damaged cover band of belt	Safety equipment is obstructed Malfunction or damage of outer tightening roller	Check safety equipment Repair or replace outer tightening roller
MPOSITE	Composite belt comes off the drive	Dirty pulleys	Clean grooves, use individual belts to avoid dirt collecting in the grooves
FAULTS WITH COMPOSITE V- BELTS	One or several ribs are mistracking outside the pulley	Non-alignment Tension is too low	New alignment of drive Retighten

	FAULT	POSSIBLE CAUSE	REMEDY
FAULTS WITH PULLEYS	Broken or damaged pulley Pollution Strong, fast wear of grooves	Wrong assembly of pulleys Foreign substances in drive Excessive circumferential speeds Wrong assembly of belts Excessive tension of belts Sand, dirt or other pollution	Do not tighten bush bolts beyond recommended torques Use appropriate safety equipment for drive Keep cicumferential speed of pulleys below recommended maximum limits Do not use levers to mount belts on pulleys Retighten, check drive design Clean and protect the drive to the optimum extent
FAULTS WITH DRIVE COMPONENTS	Bent or broken shaft Safety equipment damaged	Extreme overstrain of belts Over–dimensioned drive* Accidental damage Error of machine design Damage by error or inappropriate design of safety equipment	Retighten Check drive design, mount smaller belts or fewer belts if required Recalculation of safety equipment Check machine design Repair, rate referring to long life
	Over–tightened drive belt Diameter of pulley too small	Worn-out grooves, belt makes contact, but no power is transmitted unless it is overtightened Wrong tension Diameters of pulleys prescribed by motor manufacturer were not observed	Replace pulleys, tighten the drive properly Retighten Recalculation of drive
ш	Bad condition of bearings Pulleys are seated on shaft too close to the front	Over-dimensioned bearings Insufficient maintenance of bearings Error or obstacle	Check bearing calculation Align and lubricate bearings Position the pulleys as close as possible to bearings, eliminate obstacles
HOT STORE	Belt creep	Tension of drive is too small	Retighten

^{*}Too many drive belts or too wide ones can strongly affect the motor or driving shafts. This may occur if load requirements for a drive are reduced, but the belts are not recalculated accordingly. This can also occur by calculation of too high quantities for belts. The forces arising due to belt tension will be too high for those shafts.

Instructions for Foundation Block Installation

Regarding their functional dimensions, the foundation blocks are conforming to DIN 799. They are manufactured of the material **EN-GJL 200** in accordance with DIN EN 1561.

For installation, use foundation blocks without any paint.

Prepare openings in the provided cement floor in specified sizes referring to DIN 799 where the foundation blocks can be sealed. To prevent concrete or mortar from penetrating into the threads, seal them or fill them with grease.

For pouring the openings, use concrete of the same solidity and granulation classes as for the surrounding concrete surfaces.

Installation and Operating Manual Motor Slide Rails

1. Quality

Slide rail made of material: EN-GJL-200 according to DIN 1561. Fastening screws for the machine, as well as straining screws, are included in the supply

Stone bolts with hexagonal nut for anchoring are to be ordered seperately.

2. Safety Precautions

Screws coming loose are very dangerous. Always make sure that you keep to the prescribed starting torques for the screws, and to check them regularly.

Never carry out adjusting work with the machine running. Make sure to lock the main switch of the machine against unintentional restarting.

3. Mounting the Slide Rail

When fastening the slide rails to foundations, check, prior to tightening the stone bolts, the firm seat of the foundation screws after the specified setting period.

When fastening the slide rails on frames, plates and such, use rails with machined base surface in order to avoid breakage due to distortion.

All contact surfaces should be even and properly aligned.

The connecting screws may not turn themselves; there must be enough space for the wrench.

3.1 Arrangement of slide rails

Keep to the motor foot distance X. Arrangement of slide rails acc. to Fig. 1. Make sure that the slide rails are placed in parallel.

Maximum parallel deviation should not exceed X +/- 1 mm. The height relating to each other can be checked with a spirit level.

3.2 Slide Rail Design

Lightweight version A up to and DIN 42923-version up to

650 mm 500 mm

Fig. 3 Lightweight version B up to and DIN 42923–version from

700 - 1500 mm 630 - 1000 mm

Fig. 4 Lightweight version C from and DIN 42923 version

1600 - 2200 mm - 1250 mm

Fig. 5 Haevy version WEN 40003

4. Fastening the Motor

Place the motor on the slide rail and tighten the fastening nut until, at first, the motor still remains moveable. Accurately align the motor by means of the straining screws. With flat belt drives or chain drives, adjust the required initial tension (keep to supplier's instruction). Then definitely tighten the fastening nuts.

LÜTGERT-DRIVES

V–Belts Flat Belts **V-Belt Pulleys** Flat Belt Pullevs **V–Ribbed Pulleys Conical Pulleys** Cage-Type Pulleys for Elevators **Belt Drums for Belt Conveyors and Transportation Plants Special Design Toothed Belt Drives Pulleys with Double-Arm System Customized Flywheels** Foundation Blocks Slide Rails Gearwheel Bodies **Customer Casting**

...for top-quality service

LÜTGERT & CO. GMBH

FOUNDRY AND MACHINE SHOP P.O.Box 4251,D-33276 Gütersloh Friedrichsdorfer Straße 48, 33335 Gütersloh

Phone: +49 52 41 74 07-0 · Fax: +49 52 41 74 07-90

Internet: http://www.luetgert-antriebe.de · e-mail: luetgert-antriebe@t-online.de