Palm Recognition System (Palmistry)

Enrolment no: 12103530,12103528,12103509

Name of Student: Sumit Bansal, Vrishti Gahlaut, Aman Singhal

Name of Supervisor(s): Mr Manish Kumar Thakur

Ms Somya Jain

December-2015

Submitted in partial fulfilment of the Degree of Bachelor of Technology

In

Computer Science Engineering

<u>Department of Computer Science Engineering and Information Technology</u>

Jaypee Institute of Information Technology, NOIDA

TABLE OF CONTENTS

Chapter No.	Topics	Page No.		
	Student Declaration	II		
	Certificate from the Supervisor	III		
	Acknowledgement	IV		
	Summary	V		
	List of Figures	VI		
	List of Tables	VII		
	List of Symbols and Acronyms	VIII		
Chapter 1	Introduction	1-2		
	1.1 General Introduction			
	1.2 List some relevant current/open problems.			
	1.3 Problem Statement			
	1.4 Overview of proposed solution approach and Novelty/benefits			
Chapter 2	Background Study	3-8		
	2.1 Literature Survey			
	2.1.1 Summary of papers			
	2.1.2 Integrated summary of the literature studied			
	2.2 Details of Empirical Study			
Chapter 3	Analysis, Design and Modeling	9-20		
	3.1 Requirements Specifications			
	3.2 Functional and Non Functional requirements			
	3.3 Overall architecture with component description and dependency details			
	3.4 Design Documentation			
	3.4.1Use Case diagrams			
	3.4.2 Control Flow Diagrams			

	3.4.3 Activity diagrams			
3.4.4 Data Structures and Algorithms / Protocols				
	3.5 Risk Analysis and Mitigation Plan			
Chapter-4	Implementation and Testing	21-30		
	4.1 Implementation details and issues			
	4.2 Testing			
	4.2.1 Testing Plan			
	4.2.2 Component decomposition and type of	of testing required		
4.2.3 List all test cases in prescribed format				
	4.2.4 Limitations of the solution			
Chapter-5	Findings & Conclusion	31		
	5.1 Findings			
	5.2 Conclusion			
	5.3 Future Work			
References		32		
Appendices		33		
Brief Bio-data		34-38		

(II)

DECLARATION

We hereby declare that this submission is our own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgment has been made in the text.

Place: Noida	Signature:
Date: 07-04-2016	Name: Sumit Bansal
	Enrollment No: 12103530
	Signature:
	Name: Vrishti Gahlaut
	Enrollment No: 12103528
	Signature:
	Name: Aman Singhal

Enrollment No: 12103509

(III)

CERTIFICATE

This is to certify that the work titled "PALM RECOGNITION SYSTEM" submitted by "Sumit Bansal, Vrishti Gahlaut and Aman Singhal" in partial fulfillment for the award of degree of Bachelors of Technology (Computer science engineering) of Jaypee Institute of Information Technology University, Noida has been carried out under my supervision. This work has not been submitted partially or wholly to any other University or Institute for the award of this or any other degree or diploma.

Signature of Supervisor _____

Name of Supervisor Dr.Manish Kumar Thakur

Designation Assistant Professor (Senior Grade)

Signature of Supervisor _____

Name of Supervisor Ms Somya Jain

Designation Assistant Professor (Grade-I)

Date 07-04-2016

ACKNOWLEDGEMENT

This project consumed huge amount of research and dedication. Implementation would not have been possible if we did not have support of many individuals and organizations. Therefore we would like to extend our sincere gratitude to all of them.

We would like to thank our mentor, Mr. Manish Kumar Thakur and Ms Somya Jain for their continuous guidance and support and providing necessary information for our project. We would also like to thank JIIT staff members for helping us in different ways.

Nevertheless, we express our gratitude toward our families and colleagues for their kind cooperation and encouragement which help us in completion of this project.

Signature of the Student		
Name of Student	Vrishti Gahlaut	
Enrollment Number	12103528	
Date	07-04-2016	
Signature of the Student		
Name of Student	Sumit Bansal	
Enrollment Number	12103530	
Date	07-04-2016	
Signature of the Student		
Name of Student	Aman Singhal	
Enrollment Number	12103509	
Date	07-04-2016	

Signature of the Student

(V)

SUMMARY

The Project titled "Palm Recognition System" with the aim of implementing key concepts in Data Mining was found to meet all objectives. Utmost care has been taken to see that the results obtained are true and the underlying procedures are implemented in true form. The aim of this project is to present a novel software based selection method that can be used by anyone to get predictions by scanning only the image of their hands. It provides a User-Friendly way to select the lines they want to interpret for future predictions. We have used as our basic and core algorithm for computing and predicting the result. The proposed method will provide a novel way to read lines in an affective budget friendly way.

Signature of Student Signature of Supervisor I

Name: Sumit Bansal Name: Dr.Manish Kumar Thakur

Date: 07-04-2016 Date: 07-04-2016

Signature of Student Signature of Supervisor II

Name: Vrishti Gahlaut Name: Ms. Somya Jain

Date: 07-04-2016 Date: 07-04-2016

Cianatura of the Ctudent

Signature of the Student

Signature of the Student

Name: Aman Singhal

Date: 07-04-2016

(VI) LIST OF FIGURES

Figure No.	Title
1	Canny Image Detection
2	Use case diagram
3	Control flow diagram
4	Activity diagram
5	Weighted Inter-Relationship Graph
6	GUI of Palmistry
7	Canny Edge Detection Method Applied
8	Edges of Palm
9	Add new data of person
10	Calculate Ratios & Predicting

(VII) LIST OF TABLES

Table No.	Title
1.1-1.11	Summary of papers
2	Integrated summary of the literature studied
3	Risk analysis
4	Prioritizing Risk Areas as per IG Graph
5	Risk Enumeration
6	Testing Strategy
7	Test Tam Details
8	Test Schedule
9	Type of Testing
10	Black Box Testing

(VIII)

LIST OF SYMBOLS AND ACRONYM

Acronyms	Description	
K	Number of clusters	
IEEE	Institute of Electrical and Electronics Engineers	

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Palmistry has changed very little over the years. For thousands of years, in diverse cultures, people have believed that an individual's destiny is previewed in the hands. Some people believe that every palm holds, in its own unique network of lines and markings, the key to life's potential. Palmistry can be used as a tool to enhance ones view on life. A palm reading can open your eyes to characteristics you may be unaware of. Palm readers usually compare the subject's right and left hand, looking for differences. A dominant hand can reveal choices the person has made and what may lie ahead for them.

1.2 Some Relevant Current / Open Problems

Palm reading and analyzing the past, present and future has been increasingly in demand since the last decade. Needless to say that with everything going digital, a lot of platforms are trying to bring technical system for the same. No algorithm or mathematical model till now has been able to predict 100% correct future or past of a person. So every researcher is trying to add extra attributes, devising new methods and possibilities to improve this ratio. In Traditional System there are doctors who can predict the diseases based on the lines but they require more time & also they get poor result. The previously stated works and other simple studies have obviously demonstrated the need to propose and create a good model for the analysis. Every new research in this field bring about a variety of possibilities to be manipulated, used or mixed with different parameters to get a new and better result.

1.3 Problem Statement

Palmistry deals with studying the lines, their lengths and ratios. As stated earlier in older times the manual calculation of ratios was not always correct. Let alone common man could not differentiate the frauds from the learned. The validation of any universal rule made during the ancient time does not exist even in the modern time. The problem is "Pattern Classification in the field of palmistry and validation of traditional rules."

1.4 Overview of proposed solution and Novelty/Benefits

We will solve the problem in various steps starting from data extraction, data sorting, classification, calculating ratios and finally making predictions. There have been a lot of work done in this area but each research is majorly based on three lines-education, head and brain line. Then we predict that this ratio is good ,average or bad on the basis of previous data. If the prediction correlates with the reality the rule for prediction is validated however if it does not it proves that not all rules of prediction are precise.

Until now no one has made efforts to validate the rules of palmistry and thus this branch of astrology has always been a victim of faith despite being accurate a lot of times. We will apply data mining algorithms to calculate the clusters inorder to decide the ranges and predict about performance in that particular area.

Figure 2 – Canny Image Detection

CHAPTER 2 BACKGROUND STUDY

2.1 <u>Literature Survey</u>

2.1.1 Summary of papers

Title	Application of Digital Image Processing and Analysis in Healthcare		
	Based on Medical Palmistry		
Authors	Mr. D.Thirumal Reddy M.Tech, Mr. P.Balaramudu M.Tech		
Year of Publication	Year of Publication 2015		
Publication	International Journal for Development In Computer Science and		
Details	Technology		
Summary	In this paper, an application of digital image processing and analysis		
	techniques has been discussed, which can be useful in healthcare domain		
	to predict some major diseases for human being. Discussion on the steps		
	involved in image processing is given. Also a short description on patterns		
	important in palmistry is published.		
Web Link	http://ijdcst.com/pdf/Application%20of%20Digital%20Image%20Proce		
	ssing%20and%20Analysis%20in%20Healthcare%20Based%20on%20		
	Medical%20Palmistry.pdf		
Table 1.1: Research paper 1			

Title	Study and Comparison of Various Image Edge Detection Techniques		
Authors	DrRaman Maini ,Dr. Himanshu Aggarwal		
Year of Publication	2009		
Publication Details	International Journal of Image Processing (IJIP), Volume (3): Issue (1)		
Summary	Edges characterize boundaries and are therefore a problem of fundamental importance in image processing. Image Edge detection significantly reduces the amount of data and filters out useless information, while preserving the important structural properties in an image. Since edge detection is in the forefront of image processing for object detection, it is crucial to have a good understanding of edge detection algorithms. In this paper the comparative analysis of various Image Edge Detection techniques is presented.		
Web Link	http://people.ucalgary.ca/~dasaid/CPSC535/lab10/IJIP-15.pdf		
Table 1.2: Research paper 2			

Title	Automated Medical Palmistry System based on Image Processing		
	Techniques		
Authors	Ms.Disha Desai, Mrs.Mugdha Parekh, Mr.Devanshi Shah, Prof.		
	Vinaya Sawant, Prof. Anuja Nagare		
Year of Publication	November, 2014		
Publication Details	International Journal of Advanced Research in Computer Science		
	and Software Engineering		
Summary	Palmistry is the art of characterization and foretelling the future		
	through the study of the palm, also known as palm reading, or		
	chorology. Palm lines and fingers are useful for recognizing the		
	characteristics of a person and to foretell his future. This paper		
	describes an application of digital image processing and analysis		
	technique. This can be useful in healthcare domain to predict diseases		
	for human being. The images of human palm form input to the system.		
	Then, system applies digital image processing techniques on input		
	images to identify certain features in the image and by using		
	knowledge base of medical palmistry it analyzes certain features in		
	image and predicts probable disease.		
Web Link	http://www.ijarcsse.com/docs/papers/Volume_5/1_January2015/V5I		
	1-0287.pdf		
Table 1.3: Research paper 3			

Title	A Novel Approach for Hand Analysis Using Image Processing			
Title				
	Techniques			
Authors	Manish Kumar Thakur, Vishwaratana Nigam, Divakar Yadav			
Year of	2010			
Publication				
Publication	(IJCSIS) International Journal of Computer Science and Information			
Details	Security, Vol. XXX, No. XXX, 2010			
Summary	With the help of palm lines and fingers one can know the characteristics			
	as well as can foretell the future of a person but still this field is not much			
	technically developed and a person has to analyze hands personally. In			
	this paper we propose a ratio based system to characterize persons on the			
	basis of their palm width-length and their finger length. We applied image			
	processing techniques to generate and analyze the results.			
Web Link	http://www.researchgate.net/profile/Divakar_Yadav2/publication/44288			
	389_A_Novel_Approach_for_Hand_Analysis_Using_Image_Processing			
	_Techniques/links/0deec5314033aa7ca0000000.pdf			
Table 1.4: Research paper 4				

2.1.2 Integrated summary of the literature studied

S.No.	Title	Strength	Weakness	Feature
1.	Application of	A lot of	Attributes like brain	An application of
	Digital Image	prediction rules	and education line	digital image
	Processing and	related to health	have been neglected.	processing and analysis
	Analysis in	have been		techniques has been
	Healthcare	researched in		discussed, which can be
	Based on	the paper.		useful in healthcare
	Medical			domain.
	Palmistry			
2.	Study and	.Image Edge	Edges characterize	Comparative analysis
	Comparison of	detection	boundaries and are	of various Image Edge
	Various Image	significantly	therefore a problem of	Detection techniques is
	Edge Detection	reduces the	fundamental	presented.
	Techniques	amount of data	importance in image	
		and filters out	processing.	
		useless		
		information,		
		while		
		preserving the		
		important		
		structural		
		properties in an		
		image.		
3.	Automated	lines and	Attributes like brain	Applies digital image
	Medical	fingers are	and education line	processing techniques
	Palmistry	useful for	have been neglected.	on input images to
	System based on	recognizing the		identify certain features
	Image	characteristics		in the image and by
	Processing	of a person and		using knowledge base
	Techniques	to foretell his		of medical palmistry it
		future.		analyzes certain
				features in image and

				predicts probable
				disease.
4.	A Novel	A new	Edge detection is not	a ratio based system to
	Approach for	approach in this	focused.	characterize persons on
	Hand Analysis	field		the basis of their palm
	Using Image			width-length and their
	Processing			finger length.
	Techniques			

Table 2

2.2 Details of empirical study

1. MATLALB

(Matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. A proprietary developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python.

CHAPTER 3

ANALYSIS, DESIGN AND MODELLING

3.1 Requirements Specification

Software Requirement

1. Operating system: windows 7/10

2. Language: python

Hardware requirement

1. CPU: 500 MHz processor

2. Computer Processor: Intel i5 or Intel i3 core

3. Computer Memory: 500Mb or more

4. Graphics hardware: Not required

5. Network: No internet connection

3.2 Functional and Non-functional Requirements

Functional Requirements

1. Requirement ID R1.01

Title: Data Extraction

Description: This event extracts the required data from the

User along with the scanned image of the palm.

2. Requirement ID R1.02

Title: Feature selection

Description: This event selects the appropriate features for the

Classification of datasets extracted.

3. Requirement ID R1.03

Title: data classification

Description: This event classifies data using various proposed

Algorithms

4. Requirement ID R1.04

Title: Prediction

Description: This event will give the prediction based on the user input.

Non Functional Requirements

1. Safety Requirements - For the safety requirements nothing but an operation of

weekly backups for the data should take place.

2. Security and Privacy Requirements - There are no specific security requirements,

anyone can access and use the information since it is for the public use.

3. Reliability - The solution should provide reliability to the user that the product will

run with all the features mentioned in this document and execute perfectly. It should

be tested and debugged completely. All exceptions should be well handled.

4. Accuracy - The solution should be able to reach the desired level of accuracy, also

keeping in mind that this model is for implementing the concept of the project.

3.3 Overall Architecture with Component Description and Dependency

Details

This project is aimed at creating a predictive and validating model for all. Using algorithms

proposed in papers inclusive of the novel approach discussed earlier. The datasets of people

their educational background, health and social background are used to create clusters using

data mining algorithm. This will help us to calculate the range of the ratios . This range will help

us know whether the calculated length ratio is good or bad. Then for the image readability we

first convert it into a 2D matrix format .Once the image can be read we use the canny's

algorithm by using the same command as the name suggests. Now we will have an image with

only edges and palm lines. After the palm lines are read and patterns are detected we need to

calculate the ratios. These ratios will be analysed to see they fall under which category

according to the previous data. The accuracy and performance of the particular palmistry rule

will be measured. Lastly, if the prediction completely agrees with the reality this data will be

added to the data set.

10

3.4 <u>Design Documentation</u>

3.4.1 Use Case Diagrams

Figure 2 – Usecase Diagram

3.4.2 Control Flow Diagrams

Figure 3 – Control Flow Diagram

Figure 4 – Activity Diagram

3.4.4 Data Structure and Algorithms used

There are many ways to perform edge detection. However, the most may be grouped into two categories, gradient and Laplacian. The gradient method detects the edges by looking for the maximum and minimum in the first derivative of the image. The Laplacian method searches for zerocrossings in the second derivative of the image to find edges. This first figure shows the edges of an image detected using the gradient method (Roberts, Prewitt, Sobel) and the Laplacian method (Marrs- Hildreth).

The **Canny edge detector** is an edge detection operator that uses a multi-stage algorithm to detect a wide range of edges in images.

Prediction

After the palm lines are read and patterns are detected we need to calculate the ratios. These ratios will be analysed to see they fall under which category according to the previous data.

Clustering

For clustering we have use K-means algorithm using Euclidian Distance between the centroids and other points in the cluster. Initially k(number of clusters) points are randomly selected as centroids then the distance of all other points to these points is calculated and the closest

centroid gets the respective point. In the next iteration new centroids are calculated by taking the average of the existing points in the cluster. Iteration is repeated until stable clusters are formed.

3.5 Risk Analysis and Mitigation Plan

Probability and Impact: 1- Low 3- Medium 5- High

1	2	3	4	5	6	7
Ris	Classificati	Description	Risk	Probability	Impact	RE(R*I)
k	on	of	Area			
Id	(Acc to SEI	Risk				
	taxonomy)					
1	Familiarity	Familiarity with	Project	1	3	3
		the development	Scope			
		process covers				
		knowledge of				
		experience in,				
		and comfort				
		with the				
		prescribed				
		process.				
		Development of				
		the project				
2	Planning	The planning	Project	3	3	9
		attribute	Develo			
		addresses risks	pment			
		associated with				
		the developing a				
		well-defined				
		plan.				
		Requirement				
		analysis of the				
		project				

3	Stability	Change in the	Project	3	5	15
		requirements.	Develo			
		Development of	pment			
		more				
		functionality				
		since current				
		combination				
		may not give the				
		desired result				
4	Maintainabilit	Engineering	Implem	3	3	9
	у	specialties.	entation			
		Coding				
		standards are not				
		followed.				
5	Validity	Misinterpretatio	Perfor	1	5	5
		n of the	mance			
		requirements.				
		Development of				
		wrong				
		functionalities in				
		the system				
6	Product	Development	Externa	3	5	15
	Control	Process. One of	1 Input			
		the requirements				
		is not met. (Not				
		Crawled every				
		data set)				
7	Environment	Integration and	Project	1	5	5
		testing. Parts of	Scope			
		the model not				
		compatible with				
		the software /				
		Hardware.				
		(External Tester				

		only demo				
		version)				
8	Functionality	Algorithm	Perfor	1	5	5
		selection.	mance			
		Selection of				
		Algorithm				
		feasible to the				
		system				
9	Testability	Testing Code	Testing	3	3	9
		not designed				
		properly for				
		testing				
10	Unit Test	Preparation and	Testing	3	3	9
		planning for				
		resources.				
		Testing of the				
		features				
11	Coding	Inadequate	Implem	1	5	5
		systems	entation			
		properties.				
		System				
		properties do not				
		match with				
		tool's				
		requirements				
12	Suitability	Development	Project	1	5	5
		process.	Develo			
		Functionalities	pment			
		provided by the				
		tool are not				
		suitable				
13	Capacity	Development	Perfor	3	5	15
		system. Large	mance			
		size of image				

		can make the				
		process slower				
14	Usability	Development	Perfor	1	3	3
		system. Tool	mance			
		developed may				
		not be easy to				
		use or				
		understand				
15	Planning	Project	Persona	3	5	15
		Management.	1 related			
		One group				
		member is not				
		able to complete				
		his/her work on				
		time				
16	Project	Project	Persona	3	5	15
	Organization	Management.	l related			
		One member				
		does not				
		implements the				
		actual work				
		assigned to				
		him/her				
17	Functionality	Restricted input	Externa	5	3	15
		files.	1 Input			
		Only text are				
		allowed.				
18	Performance	Efficient	Perfor	3	5	15
		Design. Model	mance			
		may not be				
		efficient on				
		large text .				
19	Difficulty	Functional	Implem	3	5	15
		requirements	entation			
		l	<u>l</u>	<u> </u>	<u>l</u>	

		difficult to implement. Implementing cost estimation using regression				
20	Quality Assurance	It refers to keeping the quality of the project at its best always	Testing	2	5	10
21	Capacity	Risk associated with capacity of the insufficient processing power etc.	Project Develo pment	5	1	5

Table 3 – Risk Analysis

 $Figure\ 5-Weighted\ Inter-Relationship\ Graph$

S.N.	Risk Area	# of Risk	Weights(In +	Total	Priority
		Statements	Out)	Weight	
1	Performance	8	9+3+9+3+1+3+9+3	40	1
2	Project Development	6	9+3+3+9+1+3	28	2
3	Implementation	6	9+3+3+1+3+3	22	3
4	Testing	4	9+3+3+3	18	4
5	Project Scope	5	9+3+1+1+3	17	5
6	External Inputs	4	1+3+3+3	10	6
7	Personnel Related	3	1+3+3	7	7

Table 4 - Prioritizing Risk Areas as per IG Graph

Risk Id	Risk Area	Risk Statement	Priority of Risk Area in IG
13	Performance	Large Size of text file can make	1
		the process slower but that will	
		happen only once in a while	
		during clustering.	
17	External Inputs	Data files with right format are	6
		allowed for e.g. cs.txt	
10	Testing of the	Testing the code was a risk as	4
	features	the codes were on different	
		platforms. So, the testing like	
		integration testing was medium	
		level risk analysis	

Table 5 - Risk Enumeration

CHAPTER 4 IMPLEMENTATION AND TESTING

4.1 <u>Implementation Details and Issues</u>

Figure 6 – GUI of Palmistry

Figure 7 – Canny Edge Detection Method Applied

Figure 8 – Edges of palm

Figure 9 – Add New Data Of Person

Figure 10 – Calculate Ratios & Predicting

4.2 <u>Testing</u>

Testing includes series of steps. The first step is making a test plan. A test plan is a document. Which describes ((i) Scope of testing, (ii) Approach used for testing, (iii) personal responsible for various stages of testing, (iv) Schedule of testing, (v) various guidelines and (vi) level of testing used for each unit of the software. Test cases and reports are generated for each unit of the product; and the reports are analyzed.

4.2.1 Testing Plan

Type Of Test	Performed?	Comments/Explanations	Software
			Components
Requirements	Yes	Requirement testing is done	Python
Testing		because it will let us know the	components
		needs and constraints of the	
		project, which will eventually	
		help us in the better	
		development of the project.	
		We have to estimate the time	
		required, technology required,	
		etc. for the project, so that we	
		can properly start the project.	
Unit Testing	Yes	Unit testing is the most	Python classes
		important of all testing levels.	
		It will help in finding the bugs	
		during the progress of the	
		project, which is much more	
		economical to fix as compared	
		to than after the completion of	
		the project.	
Integration	Yes	Integration testing will be	Integration testing
Testing		performed to verify functional,	is performed after
		performance, and reliability	unit testing taking

		requirements placed on major	as input the
		design items. It is required to	modules that have
		test that all components within	been unit tested,
		the group of units interact	grouping it in
		completely.	larger aggregates,
			and then tested.
Performance	No	Performance testing is	
		performed to determine how	
		fast some aspect of a system	
		performs under a particular	
		workload.	
Stress	No	Stress Testing is a form of	
		testing that is used to	
		determine the stability of a	
		given system or entity. It	
		involves testing beyond	
		normal operational capacity,	
		often to a breaking point, in	
		order to observe the results.	
Compliance	No	Compliance testing means	
		checking the behavior of the	
		system at run time to	
		determine if it behaves as	
		desired.	
Security	No	Security testing is a process to	
		determine that an information	
		System protects data maintain	
		functionalities intended.	
Load	Yes	Load Testing is important as	Real time data
		this stage as we are dealing	extracted
		with real time data right now	
Volume	Yes	Volume Testing belongs to the	Real Time data
		group of non- functional tests	extracted
		i.e. for non-functional	İ

requirements. It means testing
a software application with a
certain amount of data. This
generally involves testing the
software with a file.

Table 6 – Testing Strategy

- **Requirement Testing:** For our project we had constraints like the file should be in the correct format else differentiating in data would be difficult.
- **Unit Testing:** We calculated the clusters and the ranges correctly that matches the data set as well.
- **Integration Testing:** We tested the rules of prediction on the people around for each line education, brain, health line. And found the results if results validate the reality.

Test Team Details

Role	Name	Specific Responsibilities
Test Designer	RV1	Ensure Phase 1 is delivered to schedule and quality. Produce High level and Detailed Test conditions. Ensure test system problems are reported immediately and followed up.
Tester	RV2	Identifying the appropriate techniques and guidelines to implement the required tests.

	2.	Analyzing the inputs, its
		effects and distinguishing
		clearly between the test
		cases.
	3.	Report progress at regular
		status reporting meetings.
	4.	Raise software error
		reports.

Table 7 – Test Team Details

Test Environment

Software Requirements

We have done most of the testing manually as we don't have license of the testing tools so we wrote the test cases the functionality of the application and then we try to remove the error.

Hardware Requirements

• Operating System: Windows 7 or windows 8 or above

• Computer Processor: Intel i5 or Intel i3 core

• Computer Memory: 500Mb or more

Test Schedule

Activity	Start Date	End Date	Hours
Information Gathering	20/08/2015	30/08/2015	5
Test planning	1/09/2015	15/09/2015	8
Test Case Development	1/10/2015	15/10/2015	10
Test Execution	18/11/2015	30/11/2015	20
Implementation	01/12/2015	22/11/2015	48

Table 8 – Test Schedule

4.2.2 Component decomposition and identification of tests required

S.NO	List of various modules	Type of testing	Technique for
	where testing is required	required	writing the test
			cases
1.	Data Extraction	Requirement testing,	White box testing
		Unit Testing,	and black box testing
		Integration Testing,	
		Load testing,	
		Volume testing	
2.	Clustering application	Requirement testing,	White box testing
		Unit Testing,	and black box testing
		Integration Testing	
3.	Calculating ratios	Requirement testing,	White box testing
		Unit Testing,	and black box testing
		Integration Testing	
4.	Display of prediction	Unit Testing,	White box testing
		Compliance testing	and black box testing

Table 9 – Type of Testing

4.2.3 Test Cases

Test Case Id	Module	Input	Expected output	Status
1.	Data Set	Available people	Data in txt file	Pass
2.	Clustering the data set	Txt file	Clustered data with range	Pass
3.	Calculating ratios	Image file	Ratios	Pass
4.	Predicting the result	Ratios	prediction	Pass

Table 10 – Black Box Testing

4.2.4 Limitations of the Solution

- Not possible if previous data is not available.
- User must be familiar with python environment.
- Only file in txt format compatible.
- The user is not clear about which area of palm is related to which prediction.

CHAPTER 5

FINDINGS AND CONCLUSION

5.1 Findings

- 1. Finding suitable datasets is the most important part as all the information and conclusions are drawn from the mining of the data we use. So in the absence of an appropriate dataset, we won't find any significance results.
- 2. Although there are many predicting rules of palmistry only a few can be validated without any exception to it.
- 3. Our application runs on a Python application which unlike other techniques doesn't demand very high system requirements
- 4. The project and the plots are quite self-explanatory, so even a user who doesn't have much idea about the Data Mining can draw fair enough conclusions.

5.2 Conclusion

Predicting human's past, present or future hundred percent accurately is an impossible task. Data mining algorithms can only predict it accurately to some extent. Also not every predicting rule is error proof. This newly developed model could help to validate the accuracy of each rule. Until now palmistry did not have a solid data set to prove if it correct but now slowly and gradually as the data set increases new trends will come into action. It is a simple and an accurate mathematical approach used for classification of ratios into good, average or bad category. This model will provide a mathematical fact for the fixation of certain value for a particular rule and also apply it. Not only will palmistry gain trust of people it will also be recognized as a mainstream research area with some solid results to back up the predictions. It will also save people to hire any astrologer, rather they can do this on their own, which also saves them from frauds and fake astrologers.

5.3 <u>Future Work</u>

- Validating more lines and rules.
- Increasing the dataset of already explored ones.
- Making plots more insightful for better comparisons.
- Making system more robust and scalable.
- More techniques for the visualization for the results.

(IX)

References

- [1] Mr. D.Thirumal Reddy M.Tech, Mr. P.Balaramudu M.Tech "Application of Digital Image Processing and Analysis in Healthcare Based on Medical Palmistry" International Journal for development in Computer Technology, April, 2015.
- [2] Dr.Raman Maini, Dr. Himanshu Aggarwal "Study and Comparison of Various Image Edge Detection Techniques" International Journal of Image Processing (IJIP), Volume (3): Issue (1).
- [3] Ms.Disha Desai, Mrs. Mugdha Parekh, Mrs.Devanshi Shah, Prof. Vinaya Sawant, Prof. Anuja Nagare "Automated Medical Palmistry System based on Image Processing Techniques" International Journal of Advanced Research in Computer Science and Software Engineering,
- [4] Dr. Manish Kumar Thakur, Mr. Thakur Vishwaratana Nigam ,Dr. Divakar Yadav "A Novel Approach for Hand Analysis Using Image Processing Techniques" (IJCSIS) International Journal of Computer Science and Information Security, Vol. XXX, No. XXX, 2010

(X)

Appendix

A. Project Plan (Work Break down structure)

1 Major Project

1.1	Research
1.1.1	Data collection
1.1.2	Tabulating data
1.1.3	Algorithm implementation

	1.2	Project Requirements
_	1.2.1	Software Installation
	1.2.2	Hardware requirements
	1.2.3	Functional requirements
	1.2.4	Non-functional
		requirements

	1.3	Coding
_	1.3.1	Data Set clustering
	1.3.2	Tabulating data
	1.3.3	Algorithm implementation

1.4	Testing and Analyzing
1.4.1	Analyzing output
1.4.2	Testing performance
1.4.3	Fixing errors

VRISHTI GAHLAUT

 6^{th} Semester Undergraduate,B.Tech

Computer Science and Engineering,

Jaypee Institute of Information Technology.

Phone no:8585927154

Email:vrishti13@gmail.com

<u>OBJECTIVE:</u> Learning and understanding my professional role by utilizing my managerial, technical and creative skills for the benefit of the firm.

EDUCATION:

B.TECH (6 TH SEMESTER)	JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY,NOIDA	2012-AND STILL PURSUING	CGPA: 8.3/10.0
COMPUTER SCIENCE			
CLASS 12 TH	DELHI PUBLIC SCHOOL,KALYANPUR,KANPUR	2011	91.6%
CLASS 10 TH	ST.THOMAS SCHOOL,KANPUR	2009	92%

PROJECTS:

• IPV4 Network Monitoring Tool(Intern at Department of C.S.E. I.I.T.

Kanpur): The tool has been designed for TCP (Transmission Control Protocol), UDP (User Datagram Protocol). It traces timestamp, source IP, destination IP, source port, destination port and packet length. To keep the track record of all the communication and all the data transfer taking place, we need various network tools.

- Chat Over Donut(A mobile application): This is an android based application

 .Using this a person can chat in three ways namely :via Inboxing(the receiver does not need to have this application),via Bluetooth(the receiver needs to have the application),via mail. There is also a gaming section.
- Pacman (A gaming application): An algorithm based project implementing algorithms like shortest path dijkastra's, greedy. The player can control the pacman while it is chased by his six enemies. Different enemies use different algorithm to chase pacman. If pacman is touched by any enemy it dies.

• <u>City Help Center(A DS based project):</u> This project was made in a group of four members ,C programming language was used.It aims at leading a person to his nearest possible destination .It constitutes of maps, entertainment section ,library that has details of various books.

SMALLER SOLO PROJECTS:

(Android Based):

- Basic calculator
- Snake game
- <u>Tic Tac Toe game</u>
- <u>DrawBoard</u>

AREA OF INTEREST:

- Data Structures
- Algorithm

AIDED SKILLS AND ACHIEVEMENTS:

- Declared GOOGLE STUDENT AMBASSADOR for year 2014-2015. There were only
 75 students from all over India declared as GSA's for that particular year.
- Coordinator of Knuth Programming Hub (2014-2015) (JIIT Programming Hub),
 organized several algorithm based coding competitions and events throughout the year.
- Qualified Facebook Hacker Cup's first round.
- Won High Commendation Award, Certificate Of Merit, Special Recognition in YP.
- Bluetooth Chat Application Certified by BRICS (ran by ex- IITians). Web based application Certified by NIIT.
- Ranks 2nd (in girl ranking),35th (allover college)in the institution based ranking on Codechef.
- Currently ranked 2565 in India and 3547 in world ranking on Codechef.

SUMIT BANSAL

203 , Rameshwar Dham , Opposite Kedia Palace , Murlipura , Jaipur , Rajasthan - 302039

E-mail:sumitbansal291994@gmail.com

Phone: +91-8447502000

OBJECTIVE

A Computer Science undergraduate seeking opportunities to work in an environment which can provide me a platform to solve challenging industrial problems with an efficient solution, learn and innovate, improve upon my technical skills, and enhance my personality.

EDUCATIONAL QUALIFICATIONS

Year	Degree/Certificate	Institute/School	Scores
2015 7 th Sem	B. Tech. (Computer Science Engineering)	Jaypee Institute of Information Technology, Sec-62,Noida,up.	8.1
2011	12 th Board(RBSE)	N.K. Public School, Jaipur	78.46 %
2009	10 th Board(RBSE)	N.K. Public School, Jaipur	88.50 %

AREA OF INTEREST

- Algorithms.
- Data Structures.
- competitive programming.
- Eager to learn new things.

ACADEMIC CERTIFICATIONS

ACADE	WICCERTIFICATIONS		
	- Currently ranked 546 in India on codechef.com. Solved more than 100+		
	problems.		
	Username: bitbyte (As of Sep 2015).		
	- Currently ranked 539 in world on Interviewbit.com.		
	Username: bitbyte (As of July 2015)		
	- Honorable mention in ACM-ICPC Kanpur 2013.		
	- Honorable mention in ACM-ICPC Amritapuri 2013 .		
	- Ranked 1st in Execute 13.2, intra-college competition at JIIT, Noida, Mar 2013.		
Certifications	- Ranked 1st in Knuth entrivista, intra-college competition at JIIT, noida, Mar		
&	2014.		
Achievements	- Top 100 in Code-sprint (Hackerrank all india level coding compitition).		
	- Semi-finalist of TCS-codevita (Tcs coding compitition).		
	- Qualified for Online Round 1 of Google Code Jam 2015.		
	- Qualified for Facebook Hacker Cup.		
	- Qualified for online Round 2 Elimination of CodeChef SnackDown 2015.		
	- PcRemote android application certificate.		
	- Certificate of participation in SAP Techniversity Event.		
	- Certificate of excellence in Rio+21 IYWC india certification Program		
	(Excellence Grade A).		

Technical skills

- Programming/Designing/Database languages:
 - o C, C++, Java.
 - o Android, Python. (Beginner)
- Operating Systems: Linux, Windows.

POSITIONS OF RESPONSIBILITY

- Coordinator of Knuth Programming Hub (2014-2015) (JIIT Programming Club), organized several algorithm based coding competitions and events in Impressions'14 (JIIT annual fest).
- Member of Organizing Committee of ICCC Conference.

PROJECTS

Research Intern at Department of C.S.E. I.I.T. Delhi: (May 2015 – July 2015)

A **Machine Learning** based live project of All India Institute of Medical Sciences (A.I.I.M.S.) under Professor **K.K. Biswas , IIT-DELHI**. The project involves training of weekly obtained body parameters (Temperature, IBI, Heart Rate , etc ...) of doctors and nurses to obtain a report whether a person is worthy for performing his/her duty on a particular day or on a particular case . The system is fully automated and the data is trained using SVM . The project is made in python.

PcRemote: (ANDROID APPLICATION) (Sept 2014 - Dec 2014)

An Android based mobile application, by which we can connect a mobile device to a computer and control the computer remotely. The app has options to shutdown, Restart, Volume up/down/mute, Lock screen, play media, create file and delete files on the computer. Apart of these, the app can be used to give any system command to be executed by the computer. This whole process is facilitated by a java program pre-installed on the computer.

FreeDom: (WEB DEVELOPMENT) (Sept 2014 - Dec 2014)

A Web Development project (in a group of 4) was created using Html5, PHP, MySQL, CSS, and JavaScript to facilitate social networking among people. It includes multiple features like chat, comments, photo & video upload, share, like, friend requests and popular trends.

PacMan Game: (ALGORITHM BASED) (Feb 2014 -May 2014)

An Algorithm Based Project was created using Java. The player controls Pac-Man through a maze , eating pac-dots (also called pellets or just dots). When all pac-dots are eaten, Player Won. Six enemies (in which different algorithm applied to catch PacMan – Dijkstra Shortest path , Greedy , Backtracking etc.) roam the maze, trying to catch Pac-Man. If an enemy touches Pac-Man, a life is lost and the Pac-Man itself withers and dies. When all lives have been lost, the game ends.

Alpha++: (NETWORKING BASED)

(Feb 2015 -May 2015)

A server-client based project (group of 4) developed using **python** in which a central server is connected to multiple clients. On the request of a client, the server downloads a particular file using multiple threads to enhance the downloading speed and then transfers the file to the client. This file is now also stored at the server so that the request for the same file by any other client can be served instantly.

City Help Center: (DATA STRUCTURE)

(Feb 2013-May 2013)

A Data Structure Based project (group of 4). The Aim is to facilitate a tourist to search and reach his destination. This project includes the map of city, library (book details), games etc. The project is made in C language and uses circular doubly linked list as its data structure.

MY OTHER INTERESTING PROJECTS (using java language):

- DrawArt (demo version of paint)
- Wordpad++ (demo version of notepad)
- Multi- Clients GUI chat room.
- 2048 laptop java game (3*3 grid).
- Graph plotter. (Plot graph of any mathematical equation)
- LiveWord (notepad Through this user can watch, what the other person is typing).
- Same Sounding Words Detector.

AMAN SINGHAL

E-mail: aman4165@gmail.com **Phone**: +91-8800663443

OBJECTIVE

A platform which provides me opportunity to work at my full potential. Learn something new every day and work on revolutionary ideas.

EDUCATIONAL QUALIFICATIONS

Year Degree/Certificat		Institute/School	Scores
	е		
2016 EXPECTED	B. Tech. (Computer Science Engineering)	Jaypee Institute of Information Technology , Noida	CGPA: 6.7/10 (till 6 th sem)
2011	12th Board(CBSE)	RAINBOW SCHOOL, SAHARANPUR ,UP	86.00%
2009	10 th Board(CBSE)	RAINBOW SCHOOL, SAHARANPUR, UP	90.00%

ACADEMIC PROJECTS

Social Art Forum Website:

- Social networking site for amateur artists where they can display their work.
- Include image crawling, video crawling and profile interface.

Mini operating system in C++:

• Uses Data structure to implement various basic features of an operating system.

Digital Audio Processing and Recognition:

 Digital signal processing of media and speech recognition in peer to peer network using python.

EXTRA-CURRICULAR ACTIVITIES

- Playing guitar and chess
- Sketching
- Basketball, badminton, swimming

TECHNICAL SKILLS

Programming/designing languages: C (proficient), C++ and python (prior knowledge)

POSITIONS OF RESPONSIBILITY

- Captain of college Basketball team
- Sports co-ordinator of college event FSM(fun sports meet)
- Co-ordinator of college Creative hub

ACHIEVEMENTS

Top 10 in JIIT, Noida in ACM ICPC 2014

- Gold medal in inter Jaypee Sports meet (BASKETBALL)
- Gold medal in IMS sports meet (BASKETBALL)
- Two times selected UP STATE BASKETBALL CHAMPIONSHIP