Matrice d'un isomorphisme

Soit E et F deux espaces vectoriels de **même dimension finie** non nulle n de bases respectives \mathcal{B} et \mathcal{C} .

Soit $u \in \mathcal{L}(E, F)$.

u est un isomorphisme de E sur F si, et seulement si, $\operatorname*{Mat}_{\mathcal{B},\mathcal{C}}(u)$ est inversible avec, dans ce cas,

$$\operatorname{Mat}_{\mathcal{C},\mathcal{B}}(u^{-1}) = \left(\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u)\right)^{-1}.$$

Preuve:

 \square Supposons que u est un isomorphisme de E sur F.

Alors, par propriété, sa bijection réciproque u^{-1} est un isomorphisme de F sur E et on a :

$$u \circ u^{-1} = \operatorname{Id}_F \text{ et } u^{-1} \circ u = \operatorname{Id}_E.$$

Par traduction matricielle de ces égalités d'applications linéaires, on trouve successivement :

$$\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u) \times \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(u^{-1}) = \operatorname{Mat}_{\mathcal{C},\mathcal{C}}(\operatorname{Id}_F) \text{ et } \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(u^{-1}) \times \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u) = \operatorname{Mat}_{\mathcal{B},\mathcal{B}}(\operatorname{Id}_E).$$

$$\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u) \times \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(u^{-1}) = I_n \text{ et } \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(u^{-1}) \times \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u) = I_n.$$

Ceci prouve, par définition, que : $\underset{\mathcal{B},\mathcal{C}}{\operatorname{Mat}}(u)$ est inversible d'inverse $\underset{\mathcal{C},\mathcal{B}}{\operatorname{Mat}}(u^{-1})$.

 \square Supposons que $A = \underset{\mathcal{B}, \mathcal{C}}{\operatorname{Mat}}(u)$ est inversible.

Alors, A^{-1} existe et appartient à $\mathcal{M}_{n,n}(\mathbb{K})$. Comme $\psi: w \mapsto \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(w)$ est un isomorphisme de $\mathcal{L}(F,E)$ vers $\mathcal{M}_{n,n}(\mathbb{K})$, il existe une unique application linéaire $v \in \mathcal{L}(F,E)$ telle que $A^{-1} = \psi(v) = \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(v)$.

Or $\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(v \circ u) = \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(v) \times \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u)$ donc

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(v \circ u) = A^{-1} \times A = I_n$$

puis

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(v \circ u) = \operatorname{Mat}_{\mathcal{B},\mathcal{B}}(\operatorname{Id}_{E})$$

et enfin

$$v \circ u = \mathrm{Id}_E$$

car une application linéaire est déterminée par la donnée de sa matrice dans un couple de bases fixé.

Ainsi, u est inversible à gauche donc, par caractérisation des isomorphismes entre espaces vectoriels de même dimension finie, u est un isomorphisme de E vers F.

Bilan: le résultat attendu est montré par double-implication.

Caractérisation des matrices de rang r par équivalence

Une matrice A de $\mathcal{M}_{n,p}(\mathbb{K})$ est de rang r si, et, seulement si, A est équivalente à $J_r = \begin{pmatrix} I_r & 0_{r,p-r} \\ 0_{n-r,r} & 0_{n-r,p-r} \end{pmatrix}$. NB: dans le cas r = 0, J_r est la matrice nulle de $\mathcal{M}_{n,p}(\mathbb{K})$.

Preuve:

 \square Supposons que A est équivalente J_r .

Alors, par propriété, le rang de A est égal au rang de J_r . Comme les r premières colonnes de J_r forment une famille libre de \mathbb{K}^n et que les suivantes sont nulles, le rang de J_r est égal à r.

Conclusion : A est de rang r.

 \square Supposons que A est de rang r.

Par définition, l'application linéaire $u: \mathbb{K}^p \to \mathbb{K}^n$ canoniquement associée à A est alors de rang r.

Par théorème du rang appliqué à $u \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ avec \mathbb{K}^p de dimension finie p, on a : dim Ker u = p - r.

Soit S un supplémentaire de Ker u dans \mathbb{K}^p (qui existe car \mathbb{K}^p est de dimension finie). On a : dim S=r.

On considère $\mathcal{B}_S = (e_1, \dots, e_r)$ une base de S et $\mathcal{B}_{\mathrm{Ker}\ u} = (e_{r+1}, \dots, e_p)$ une base de $\mathrm{Ker}\ u$.

— Puisque $\mathbb{K}^p = S \oplus \text{Ker } u$, par concaténation de \mathcal{B}_S et $\mathcal{B}_{\text{Ker } u}$, on obtient une base de \mathbb{K}^p

$$\mathcal{B}' = (e_1, \dots, e_r, e_{r+1}, \dots, e_p)$$

dite adaptée à la décomposition en somme directe.

— D'après la version géométrique du théorème du rang, l'application $\widetilde{u}: S \to \text{Im} u$ définie par $\forall x \in S, \widetilde{u}(x) = u(x)$ est un isomorphisme donc transforme toute base de S en une base de Im u.

Ainsi, $(\widetilde{u}(e_1), \ldots, \widetilde{u}(e_r)) = (u(e_1), \ldots, u(e_r))$ est une base de Im u donc une famille libre de \mathbb{K}^n .

On peut donc la compléter, par théorème de la base incomplète, en une base de \mathbb{K}^n :

$$C' = (u(e_1), \dots, u(e_r), f_{r+1}, \dots, f_n).$$

Comme $\forall i \in [1, r], u(e_i) = u(e_i)$ et $\forall i \in [r+1, p], u(e_i) = 0_{\mathbb{K}^n}$, par définition de la matrice d'une application linéaire dans un couple de bases, on a

$$\operatorname{Mat}_{\mathcal{B}',\mathcal{C}'}(u) = \begin{pmatrix} I_r & 0_{r,p-r} \\ 0_{n-r,r} & 0_{n-r,p-r} \end{pmatrix} = J_r.$$

<u>Conclusion</u>: A et J_r sont équivalentes, par propriété, car elles représentent $u \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ dans des couples de bases différents.

Rang et matrices extraites

Le rang de $A \in \mathcal{M}_{n,p}(\mathbb{K})$ est supérieur ou égal au rang de toute matrice extraite de A.

Preuve

On note B une matrice extraite de la matrice A, c'est-à-dire une matrice obtenue en supprimant des colonnes $C_{j_1} \ldots, C_{j_s}$ ou des lignes L_{i_1}, \ldots, L_{i_t} de A.

Par propriété, le rang d'une matrice est le rang de la famille de ses colonnes donc on a

où A' est la matrice extraite de A obtenue en supprimant les colonnes C_{j_1}, \ldots, C_{j_s} .

De même

$$\operatorname{rg} A'^{\top} \ge \operatorname{rg} B^{\top}$$

car B est la matrice extraite de A' en supprimant les lignes L_{i_1}, \ldots, L_{i_t} donc B^{\top} est une matrice extraite de A'^{\top} en supprimant des colonnes.

Le rang étant invariant par transposition, on en déduit que : $rgA \ge rg B$.

Conclusion : Le rang de A est supérieur ou égal au rang de toute matrice extraite de A.

Caractérisation du rang par les matrices carrées extraites

Le rang de $A \in \mathcal{M}_{n,p}(\mathbb{K})$ est la taille maximale des matrices extraites de A qui sont inversibles.

Preuve

Soit $r \in \mathbb{N}^*$.

Montrons que : $rgA \ge r$ si, et seulement si, il existe une matrice extraite de A inversible et de taille r.

(ce qui prouvera que le rang de A est la taille maximale des matrices extraites de A inversibles sachant de plus que la matrice nulle est de rang nul et qu'aucune de ses matrices extraites n'est inversible).

 \square Supposons qu'il existe une matrice extraite de A qui soit inversible et de taille r.

Alors, par caractérisation de l'inversibilité par le rang, cette matrice est de rang r donc, par propriété vue sur le rang des matrices extraites de A, on a : $\operatorname{rg} A \ge r$.

 \square Supposons $\operatorname{rg} A \geqslant r$.

Il existe donc r colonnes, $C_{j_1} \dots, C_{j_r}$, de A qui forment une famille libre. On note $B \in \mathcal{M}_{n,r}(\mathbb{K})$ la matrice extraite de A en ne conservant que ces colonnes; B est de rang r.

Par propriété, la matrice $B^{\top} \in \mathcal{M}_{r,n}(\mathbb{K})$ est aussi de rang r. En reprenant le même principe, on obtient donc une matrice $D \in \mathcal{M}_{r,r}(\mathbb{K})$ de rang r extraite de B^{\top} en ne conservant que r colonnes de B^{\top} formant une famille libre.

Les colonnes conservées étant des lignes de la matrice B, la matrice $D^{\top} \in \mathcal{M}_r(\mathbb{K})$ est une matrice extraite de A de taille r et de rang r donc elle est inversible.

Ainsi, il existe bien une matrice extraite de A inversible et de taille r.

Conclusion: $rgA \geqslant r$ si, et seulement si, il existe une matrice extraite de A inversible et de taille r