PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-016710

(43) Date of publication of application: 17.01.2003

(51)Int.Cl.

G11B 17/04 G11B 17/035

(21)Application number: 2002-107536

(71)Applicant:

MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

10.04.2002

(72)Inventor:

SAJI YOSHITO **INADA MASAHIRO**

WADA SHINICHI OTA HIDEHIKO MASAOKA KENGO

(30)Priority

Priority number : 2001131409

Priority date: 27.04.2001

Priority country: JP

(54) DISK UNIT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a small and thin slot-in type disk unit. SOLUTION: The disk unit 1 is provided with a base 100 with a spindle motor having a turntable surface for placing a disk, a first rocker 250 which rocks within a surface substantially parallel to the turntable surface and pulls in the disk inserted from the outside to a position where the center of the disk coincides with the center of the spindle motor, a second rocker 350 which rocks within the surface substantially parallel to the turntable surface and unloads the disk from the position where the center of the spindle motor coincides with the center of the disk to a unloading position where the disk is exposed partially, and a first and second sliders 210 and 310 which engage with the first rocker 250 and the second rocker 350, respectively, and reciprocate within the surface parallel to the turntable surface are provided so as to carry out the pulling-in operation of the first rocker 250 and the unloading operation of the second rocker 350.

LEGAL STATUS

[Date of request for examination]

12.07.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] [Date of registration] 3737062

04.11.2005

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-16710 (P2003-16710A)

(43)公開日 平成15年1月17日(2003.1.17)

(51) Int.Cl.7		識別記号		FΙ			テーマコード(参考)		
G11B	17/04	313		G 1 1	В 17/04		313G	5 D O 4 6	
							313C	5D138	
							313K		
							313M		
							313Q	•	
			審査請求	有	請求項の数33	OL	(全 24 頁)	最終頁に続く	

(32) 優先相主張留号 特額201 = 131405 (F2001 = 131405) (大阪州 1英市大学門真1006番地 松下電器 (32) 優先権主張国 日本(JP) (72) 発明者 稲田 真寛 大阪府門真市大学門真1006番地 松下電器

産業株式会社内

(74)代理人 100101683 弁理士 奥田 誠司

最終頁に続く

(54) 【発明の名称】 ディスク装置

(57)【要約】 (修正有)

【課題】 小型で薄い、スロットインタイプのディスク 装置を提供する。

【解決手段】 ディスク装置1は、ディスクを載置するためのターンテーブル面を有するスピンドルモータを含むベース体100と、ターンテーブル面と実質的に平行な面内で揺動し、外部から挿入されたディスクを、ディスクの中心とスピンドルモータの中心とが一致する位置まで、ディスクを引き込む第1の揺動体250と、ペンテーブル面と実質的に平行な面内で揺動し、スピンドルモータの中心とディスクの中心とが一致する位置にあるディスクを、外部に対してその一部が露出する排出位置まで排出する第2の揺動体350と、第1の揺動体250の引き込み動作および第2の揺動体350とそれぞれ係合しており、ターンテーブル面に平行な面内で往復移動する第1および第2のスライド部材210、310とを備える。

【特許請求の範囲】

【請求項1】 ディスクを載置するためのターンテーブ ル面を有するスピンドルモータを含むベース体と、 前記ターンテーブル面と実質的に平行な面内で揺動し、 外部から挿入されたディスクを、前記ディスクの中心と 前記スピンドルモータの中心とが一致する位置まで、前 記ディスクを引き込む第1の揺動体と、

1

前記ターンテーブル面と実質的に平行な面内で揺動し、 前記スピンドルモータの中心とディスクの中心とが一致 する位置にある前記ディスクを、前記外部に対してその 10 一部が露出する排出位置まで排出する第2の揺動体と、 前記第1の揺動体の引き込み動作および前記第2の揺動 体の排出動作を行わせるために、前記第1の揺動体およ び前記第2の揺動体とそれぞれ係合しており、前記ター ンテーブル面と実質的に平行な面内で往復移動する第1 および第2のスライド部材とを備え、

前記第1および第2の揺動体ならびに前記第1および第 2のスライド部材は前記ターンテーブル面よりも下方に 位置しており、

前記ディスクが前記ディスクの排出位置に排出されるま 20 で、前記第2のスライド部材が前記第2の揺動体と係合 し駆動しており、

前記第1および第2のスライド部材のうち、少なくとも 1つは、前記ベース体の側面を支持しており、前記往復 移動によって前記ベース体の側面を昇降させるディスク 装置。

【請求項2】 前記第1のスライド部材と前記第2のス ライド部材を連結するスライド連結部材をさらに備え、 前記第1のスライド部材および前記第2のスライド部材 は連動して往復移動する請求項1に記載のディスク装 置。

【請求項3】 前記スライド連結部材は、前記ターンテ ーブル面より下方に位置している、請求項2に記載のデ ィスク装置。

【請求項4】 前記ディスクが前記ターンテーブル面に 載置された状態において、前記第1および第2の揺動体 ならびに前記スライド連結部材は、前記ベース本体の上 方にも下方にも位置していない請求項3に記載のディス ク装置。

【請求項5】 前記ベース体は、前記側面に突起を有 し、前記第1および第2のスライド部材のうち、少なく とも1つは、前記往復移動によって前記ベース体の側面 が昇降するように、前記ベース体の側面の突起を案内す るカム溝を有する請求項1に記載のディスク装置。

【請求項6】 前記第1および第2のスライド部材は、 前記ベース体の対向する2面をそれぞれ支持しており、 前記往復移動によって前記ベース体の側面を昇降させて いる請求項1から5のいずれかに記載のディスク装置。

【請求項7】 前記スピンドルモータ近傍に設けられた 突起を更に有し、前記ベース体の側面を昇降することに 50 び第1の方向と反対の第2の方向へ移動し、前記第1お

よって、前記ターンテーブル面の少なくとも一部は前記 突起の先端より上方に位置する状態および下方に位置す る状態を取り得る請求項1に記載のディスク装置。

【請求項8】 前記第1および第2のスライド部材は、 前記ベース体を挟むように前記ベース体の側方に配置さ れ、前記スライド連結部材は、前記ベース体に対して前 記ディスクが挿入される側とは反対側に配置される請求 項4に記載のディスク装置。

【請求項9】 前記第1および第2のスライド部材の往 復移動する方向と実質的に平行な方向に、前記ディスク は前記第1および第2の揺動体によって搬送され、前記 第1のまたは第2のスライド部材を外部から押すことに より、前記第2の揺動体がディスクの排出を行うことが できる請求項1に記載のディスク装置。

【請求項10】 前記ベース体を収納する第1の空間 と、前記第1の空間に隣接し、前記第1および第2のス ライダが往復移動する方向に沿って伸びる切り欠き部 と、前記第1の空間および前記切り欠き部上に設けられ ており、前記ディスクが回転し得るための第2の空間と を含む外装筐体を更に備えており、前記第1の揺動体 は、前記切り欠き部上の前記第2の空間内において回転 する請求項1に記載のディスク装置。

【請求項11】 前記スピンドルモータは、前記ディス クの中心孔と係合するハブを有し、前記外装筐体は、前 記ベース体が上昇したときに、前記ハブの一部を受ける 空間を形成している凸部を有している請求項10に記載 のディスク装置。

【請求項12】 前記第2の揺動体を回転軸に対し両回 転方向に付勢しうる反転バネを備え、前記反転バネは少 なくとも前記第2の揺動体が第2のスライド部材と係合 していないとき、前記ディスクを排出する方向に回転す るよう前記第2の揺動体を付勢する請求項1に記載のデ ィスク装置。

【請求項13】 前記第1および第2のスライド部材の うちの少なくとも一方を移動させるための駆動手段と、 前記ベース体の近傍において、前記駆動手段を支持する ために駆動手段支持体と、

前記駆動手段支持体に設けられており、前記ベース体の 側面の突起が前記第1および第2のスライド部材のカム 40 溝に接するように前記ベース本体を付勢する板バネ部と を更に備える請求項5に記載のディスク装置。

【請求項14】 前記ベース体は、前記スピンドルモー タと実質的に同じ高さを有する衝立形状部を備え、前記 衝立形状部は、前記ディスクが前記ターンテーブル面に 載置された状態において、前記ディスクの投影面積より も外側でかつディスク挿入口の近傍に設けられている請 求項1に記載のディスク装置。

【請求項15】 前記ディスクを挿入する際、前記第1 および第2のスライド部材がそれぞれ、第1の方向およ

よび第2のスライド部材の移動に連動して、前記第1の 揺動体が前記ディスクを前記ディスクの中心と前記スピ ンドルモータの中心とが一致する位置まで、前記ディス クを引き込み、前記ベース体が上昇することによって、 前記ターンテーブル面に前記ディスクが載置され、 前記ディスクを排出する際、前記第1および第2のスラ イド部材は、前記第2および第1の方向へ移動し、前記 第1および第2のスライド部材の移動に連動して、前記 ベース体が下降することによって、前記ディスクが前記 記ディスクを排出する請求項1に記載のディスク装置。

【請求項16】 前記ディスクが外部から挿入される 際、前記ディスクが前記ベース体上の部品と接触しない よう、前記ディスクの挿入角度を規制し、案内する挿入 ガイドを更に備える請求項1に記載のディスク装置。

【請求項17】 前記挿入ガイドは、前記ディスクが前 記ターンテーブル面に載置された状態において前記ディ スクの外周に沿う円弧状のガイド縁部を有する請求項1 6に記載のディスク装置。

【請求項18】 前記ディスクが外部から挿入される 際、前記ディスクが前記ベース体上の部品と接触しない よう、前記第2の揺動体は、ディスクの挿入角度を規制 し、案内する形状を備えている請求項16に記載のディ スク装置。

【請求項19】 前記ディスクを挿入する際、前記第1 および第2のスライド部材がそれぞれ、第1の方向およ び第1の方向と反対の第2の方向へ距離Aだけ移動し、 前記第1および第2のスライド部材の移動に連動して、 前記第1の揺動体が前記ディスクを前記ディスクの中心 と前記スピンドルモータの中心とが一致する位置まで、 前記ディスクを引き込み、前記ベース体が上昇すること によって、前記ターンテーブル面に前記ディスクが載置

前記ディスクを排出する際、前記第1および第2のスラ イド部材は、前記第2および第1の方向へ距離 $A + \alpha$ だ け移動し、前記第1および第2のスライド部材の移動に 連動して、前記ベース体が下降することによって、前記 ディスクが前記ターンテーブル面から解離して、前記第 2の揺動体が前記ディスクを排出し、

ディスクの排出が完了した後、前記第2の揺動体を運動 40 る請求項25に記載のディスク装置。 させることなく、前記第1および前記第2のスライド部 材が、それぞれ、前記第1の方向および第2の方向へ距 離αだけ移動し、初期状態へ復帰する請求項1に記載の ディスク装置。

【請求項20】 前記ディスクの正規サイズに対し、直 径が約3分の2である第2のディスクが挿入されても前 記第2のディスクを押し返すような位置に前記第2の揺 動体が配置されている請求項19に記載のディスク装 置。

び前記ディスクのターンテーブル面への載置完了を検出 するための第1の検知手段を更に有し、前記第1の検出 手段は、前記ディスクの排出完了または、前記初期状態 への復帰完了のいずれかを更に検出する請求項20に記 載のディスク装置。

【請求項22】 前記スライド連結部材を所定の面内に おいて回動可能なように支持する支持外装筐体を更に備 える請求項9に記載のディスク装置。

【請求項23】 前記支持外装筐体は、前記ターンテー ターンテーブル面から解離して、前記第2の揺動体が前 10 ブル面より下方に配置され、前記外装筐体に固定されて いることを請求項22に記載のディスク装置。

> 【請求項24】 前記支持外装筐体は、前記第1及び第 2のスライド部材の移動方向に直角な方向に伸びてお り、長手方向の両端において折り曲げられている請求項 23に記載のディスク装置。

【請求項25】 前記ディスクに対し前記第1の揺動体 と反対側で前記ディスクの搬送方向を規制するディスク ガイドと、前記ディスクの外周を前記第1の揺動体と前 記ディスクガイドとに向かって押し付ける第3の揺動体 とを更に備え、前記ディスクのスピンドルモータへの位 置決めが前記ディスクガイドと前記第1の揺動体との当 接によって行われる請求項1に記載のディスク装置。

【請求項26】 前記ディスクガイドは、前記ディスク が挿入される際には、前記ディスクと当接しないように 位置し、前記ディスクの引き込み動作の途中から前記デ ィスクに当接して前記ディスクをスピンドルモータへ位 置決めし、前記ディスクが前記ターンテーブル面に載置 された後、前記ディスクから離間するよう前記第2のス ライド部材と連動する請求項25に記載のディスク装

【請求項27】 前記ディスクガイドが前記ディスクの 下方になるよう前記ディスク装置が設置されても、前記 ディスクを支持し、かつディスクをスピンドルモータへ 位置決めし得るように前記第2のスライダ部材と連動し ている請求項26に記載のディスク装置。

【請求項28】 前記第3の揺動体は、前記第3の揺動 体が前記ディスクの下方になるように前記ディスク装置 が設置されても前記ディスクを第1の揺動体と前記ディ スクガイドとに押し付けるように前記ディスクを付勢す

【請求項29】 前記第3の揺動体は前記スライド連結 部材と連動し、前記ディスクが前記ターンテーブル面に 載置された後、前記ディスクから離間する請求項25に 記載のディスク装置。

【請求項30】 前記ディスクが所定の位置まで挿入さ れたとき、前記ディスクの挿入によって回転する前記第 3の揺動体の動作を検出するディスク挿入検出器を更に 備え、前記ディスク挿入検出器の検出信号に基づいて、 前記第1および第2のスライド部材によるディスク引き 【請求項21】 前記ディスクの引き込み動作完了およ 50 込み動作が開始される請求項25に記載のディスク装

5

置。

【請求項31】 前記第3の揺動体はスライド連結部材 と連動し、ディスク排出動作における前記スライド連結 部材の動きによって前記第3の揺動体を初期位置まで移 動させる請求項30に記載のディスク装置。

【請求項32】 ディスクを載置するためのターンテー ブル面を有するスピンドルモータを含むベース体と、 前記ターンテーブル面と実質的に平行な面内で揺動し、 外部から挿入されたディスクを、前記ディスクの中心と 記ディスクを引き込む第1の揺動体と、

前記ターンテーブル面と実質的に平行な面内で揺動し、 前記スピンドルモータの中心とディスクの中心とが一致 する位置にある前記ディスクを、前記外部に対してその 一部が露出する排出位置まで排出する第2の揺動体と、 前記第1の揺動体の引き込み動作および前記第2の揺動 体の排出動作を行わせるために、前記第1の揺動体およ び前記第2の揺動体とそれぞれ係合しており、前記ター ンテーブル面と実質的に平行な面内で往復移動する第1 および第2のスライド部材と、

前記ディスクが外部から挿入される際、前記ディスクが 前記ベース体上の部品と接触しないよう、前記ディスク の挿入角度を規制し、案内する挿入ガイドとを備え、 前記第1および第2の揺動体ならびに前記第1および第 2のスライド部材は前記ターンテーブル面よりも下方に 位置しており、

前記第1および第2のスライド部材のうち、少なくとも 1つは、前記ベース体の側面を支持しており、前記往復 移動によって前記ベース体の側面を昇降させるディスク 装置。

【請求項33】 前記挿入ガイドは、前記ディスクが前 記ターンテーブル面に載置された状態において前記ディ スクの外周に沿う円弧状のガイド縁部を有する請求項3 2に記載のディスク装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、CD、DVD等の ディスク状記録媒体に対して情報の記録および/または 再生を行うディスク装置に関し、特に外部からディスク を直接挿入および排出できる、いわゆるスロットインタ 40 イプのディスク装置に関する。

[0002]

【従来の技術】従来の一般的なディスク装置は、ディス クをディスク装置へ挿入・排出するためのトレイを備え ている。操作者は、トレイを排出させて、ディスクをト レイの上に置き、トレイを収納することによってディス クをディスク装置へ挿入する。

【0003】また、操作者がディスクを出し入れするた めの扉や蓋を開閉し、ターンテーブルに直接ディスクを 載置する方式のディスク装置も普及している。

【0004】これに対して、より快適な操作性を操作者 に提供するため、操作者がトレイの排出・収納をした り、扉の開閉をしなくてもよい機構を備えたディスク装 置が徐々に増えてきている。このような機構を備えたデ ィスク装置としてスロットインタイプ(スロットローデ ィング) のディスク装置が知られている。

【0005】スロットインタイプのディスク装置は、デ ィスクを挿入・排出するためのスロットを備え、操作者 がスロットにディスクを途中まで挿入すると、ディスク 前記スピンドルモータの中心とが一致する位置まで、前 10 装置が自動的にディスクを引き込んで、ディスクをディ スク装置内のターンテーブルに装着する。また、操作者 の指令に基づいて、ディスクが自動的にスロットから排 出される。例えば特開平7-220353号公報には、 ディスクの直径より長い搬送ローラおよび固定されたガ イド体を備え、搬送ローラとガイド体との間にディスク を挟み込み、この搬送ローラを回転させることによりデ ィスクを搬送するディスク装置が開示されている。

[0006]

【発明が解決しようとする課題】近年、電子機器の小型 20 化、薄型化が求められており、これらに搭載される周辺 機器としてのディスク装置も、小さく、薄い形状になる よう要望が高まっている。

【0007】しかしながら、上述のような従来のスロッ トインタイプのディスク装置では、ディスク直径より長 い搬送ローラを必要とするため、ディスク装置の幅が大 きくなってしまう。またディスク上面側に配置するガイ ド体は、ディスクの搬送方向を精度良く決めるため一定 の厚みが必要となる。さらに、ディスクを保持するため のクランパをディスク上面側に配置しなければならな い。このため、従来のスロットインタイプのディスク装 置を小型化・薄型化するのは困難である。

【0008】本発明は、上記従来技術の問題を解決し、 小型で薄いスロットインタイプのディスク装置を提供す ることを目的とする。

[0009]

【課題を解決するための手段】本発明のディスク装置 は、ディスクを載置するためのターンテーブル面を有す るスピンドルモータを含むベース体と、前記ターンテー ブル面と実質的に平行な面内で揺動し、外部から挿入さ れたディスクを、前記ディスクの中心と前記スピンドル モータの中心とが一致する位置まで、前記ディスクを引 き込む第1の揺動体と、前記ターンテーブル面と実質的 に平行な面内で揺動し、前記スピンドルモータの中心と ディスクの中心とが一致する位置にある前記ディスク を、前記外部に対してその一部が露出する排出位置まで 排出する第2の揺動体と、前記第1の揺動体の引き込み 動作および前記第2の揺動体の排出動作を行わせるため に、前記第1の揺動体および前記第2の揺動体とそれぞ れ係合しており、前記ターンテーブル面と実質的に平行 50 な面内で往復移動する第1および第2のスライド部材と

を備えている。前記第1および第2の揺動体ならびに前 記第1および第2のスライド部材は前記ターンテーブル 面よりも下方に位置しており、前記ディスクが前記ディ スクの排出位置に排出されるまで、前記第2のスライド 部材が前記第2の揺動体と係合し駆動しており、前記第 1および第2のスライド部材のうち、少なくとも1つ は、前記ベース体の側面を支持しており、前記往復移動 によって前記ベース体の側面を昇降させる。

【0010】ある好ましい実施形態において、前記第1 のスライド部材と前記第2のスライド部材を連結するス 10 ライド連結部材をさらに備え、前記第1のスライド部材 および前記第2のスライド部材は連動して往復移動す る。

【0011】ある好ましい実施形態において、前記スラ イド連結部材は、前記ターンテーブル面より下方に位置 している。

【0012】ある好ましい実施形態において、前記ディ スクが前記ターンテーブル面に載置された状態におい て、前記第1および第2の揺動体ならびに前記スライド 連結部材は、前記ベース本体の上方にも下方にも位置し 20 ていない。

【0013】ある好ましい実施形態において、前記べ一 ス体は、前記側面に突起を有し、前記第1および第2の スライド部材のうち、少なくとも1つは、前記往復移動 によって前記ベース体の側面が昇降するように、前記ベ ース体の側面の突起を案内するカム溝を有する。

【0014】ある好ましい実施形態において、前記第1 および第2のスライド部材は、前記ベース体の対向する 2面をそれぞれ支持しており、前記往復移動によって前 記ベース体の側面を昇降させている。

【0015】ある好ましい実施形態において、前記スピ ンドルモータ近傍に設けられた突起をさらに有し、前記 ベース体の側面を昇降することによって、前記ターンテ ーブル面の少なくとも一部は前記突起の先端より上方に 位置する状態および下方に位置する状態を取り得る。

【0016】ある好ましい実施形態において、前記第1 および第2のスライド部材は、前記ベース体を挟むよう に前記ベース体の側方に配置され、前記スライド連結部 材は、前記ベース体に対して前記ディスクが挿入される 側とは反対側に配置される。

【0017】ある好ましい実施形態において、前記第1 および第2のスライド部材の往復移動する方向と実質的 に平行な方向に、前記ディスクは前記第1および第2の 揺動体によって搬送され、前記第1のまたは第2のスラ イド部材を外部から押すことにより、前記第2の揺動体 がディスクの排出を行うことができる。

【0018】ある好ましい実施形態において、前記べ一 ス体を収納する第1の空間と、前記第1の空間に隣接 し、前記第1および第2のスライダが往復移動する方向 に沿って伸びる切り欠き部と、前記第1の空間および前 50 ガイドは、前記ディスクが前記ターンテーブル面に載置

記切り欠き部上に設けられており、前記ディスクが回転 し得るための第2の空間とを含む外装筐体を更に備えて おり、前記第1の揺動体は、前記切り欠き部上の前記第 2の空間内において回転する。

【0019】ある好ましい実施形態において、前記スピ ンドルモータは、前記ディスクの中心孔と係合するハブ を有し、前記外装筐体は、前記ベース体が上昇したとき に、前記ハブの一部を受ける空間を形成している凸部を 有している。

【0020】ある好ましい実施形態において、前記第2 の揺動体を回転軸に対し両回転方向に付勢しうる反転バ ネを備え、前記反転バネは少なくとも前記第2の揺動体 が第2のスライド部材と係合していないとき、前記ディ スクを排出する方向に回転するよう前記第2の揺動体を 付勢する。

【0021】ある好ましい実施形態において、ディスク 装置は、前記第1および第2のスライド部材のうちの少 なくとも一方を移動させるための駆動手段と、前記べ一 ス体の近傍において、前記駆動手段を支持するために駆 動手段支持体と、前記駆動手段支持体に設けられてお り、前記ベース体の側面の突起が前記第1および第2の スライド部材のカム溝に接するように前記ベース本体を 付勢する板バネ部とを更に備える。

【0022】ある好ましい実施形態において、前記べ一 ス体は、前記スピンドルモータと実質的に同じ高さを有 する衝立形状部を備え、前記衝立形状部は、前記ディス クが前記ターンテーブル面に載置された状態において、 前記ディスクの投影面積よりも外側でかつディスク挿入 口の近傍に設けられている。

【0023】ある好ましい実施形態において、前記ディ スクを挿入する際、前記第1および第2のスライド部材 がそれぞれ、第1の方向および第1の方向と反対の第2 の方向へ移動し、前記第1および第2のスライド部材の 移動に連動して、前記第1の揺動体が前記ディスクを前 記ディスクの中心と前記スピンドルモータの中心とが一 致する位置まで、前記ディスクを引き込み、前記ベース 体が上昇することによって、前記ターンテーブル面に前 記ディスクが載置され、前記ディスクを排出する際、前 記第1および第2のスライド部材は、前記第2および第 40 1の方向へ移動し、前記第1および第2のスライド部材 の移動に連動して、前記ベース体が下降することによっ て、前記ディスクが前記ターンテーブル面から解離し て、前記第2の揺動体が前記ディスクを排出する。

【0024】ある好ましい実施形態において、ディスク 装置は、前記ディスクが外部から挿入される際、前記デ ィスクが前記ベース体上の部品と接触しないよう、前記 ディスクの挿入角度を規制し、案内する挿入ガイドを更 に備える。

【0025】ある好ましい実施形態において、前記挿入

された状態において前記ディスクの外周に沿う円弧状のガイド緑部を有する。

【0026】ある好ましい実施形態において、前記ディスクが外部から挿入される際、前記ディスクが前記ベース体上の部品と接触しないよう、前記第2の揺動体は、ディスクの挿入角度を規制し案内する形状を備えている。

【0027】ある好ましい実施形態において、前記ディ スクを挿入する際、前記第1および第2のスライド部材 がそれぞれ、第1の方向および第1の方向と反対の第2 10 の方向へ距離Aだけ移動し、前記第1および第2のスラ イド部材の移動に連動して、前記第1の揺動体が前記デ ィスクを前記ディスクの中心と前記スピンドルモータの 中心とが一致する位置まで、前記ディスクを引き込み、 前記ベース体が上昇することによって、前記ターンテー ブル面に前記ディスクが載置され、前記ディスクを排出 する際、前記第1および第2のスライド部材は、前記第 2および第1の方向へ距離 A + α だけ移動し、前記第1 および第2のスライド部材の移動に連動して、前記ベー ス体が下降することによって、前記ディスクが前記ター ンテーブル面から解離して、前記第2の揺動体が前記デ ィスクを排出し、ディスクの排出が完了した後、前記第 2の揺動体を運動させることなく、前記第1および前記 第2のスライド部材が、それぞれ、前記第1の方向およ び第2の方向へ距離αだけ移動し、初期状態へ復帰す る。

【0028】ある好ましい実施形態において、前記ディスクの正規サイズに対し、直径が約3分の2である第2のディスクが挿入されても前記第2のディスクを押し返すような位置に前記第2の揺動体が配置されている。

【0029】ある好ましい実施形態において、前記ディスクの引き込み動作完了および前記ディスクのターンテーブル面への載置完了を検出するための第1の検知手段を更に有し、前記第1の検出手段は、前記ディスクの排出完了または、前記初期状態への復帰完了のいずれかを更に検出する。

【0030】ある好ましい実施形態において、ディスク 装置は、前記スライド連結部材を所定の面内において回 動可能なように支持する支持外装筐体を更に備える。

【0031】ある好ましい実施形態において、前記支持 40 外装筐体は、前記ターンテーブル面より下方に配置され、前記外装筐体に固定されている。

【0032】ある好ましい実施形態において、前記支持外装筐体は、前記第1及び第2のスライド部材の移動方向に直角な方向に伸びており、長手方向の両端において折り曲げられている。

って押し付ける第3の揺動体とを更に備え、前記ディスクのスピンドルモータへの位置決めが前記ディスクガイドと前記第1の揺動体との当接によって行われる。

【0034】ある好ましい実施形態において、前記ディスクガイドは、前記ディスクが挿入される際には、前記ディスクと当接しないように位置し、前記ディスクの引き込み動作の途中から前記ディスクに当接して前記ディスクをスピンドルモータへ位置決めし、前記ディスクが前記ターンテーブル面に載置された後、前記ディスクから離間するよう前記第2のスライド部材と連動する。

【0035】ある好ましい実施形態において、前記ディスクガイドが前記ディスクの下方になるよう前記ディスク装置が設置されても、前記ディスクを支持し、かつディスクをスピンドルモータへ位置決めし得るように前記第2のスライダ部材と連動している。

【0036】ある好ましい実施形態において、前記第3の揺動体は、前記第3の揺動体が前記ディスクの下方になるように前記ディスク装置が設置されても前記ディスクを第1の揺動体と前記ディスクガイドとに押し付けるように前記ディスクを付勢する。

【0037】ある好ましい実施形態において、前記第3の揺動体は前記スライド連結部材と連動し、前記ディスクが前記ターンテーブル面に載置された後、前記ディスクから離間する。

【0038】ある好ましい実施形態において、前記ディスクが所定の位置まで挿入されたとき、前記ディスクの挿入によって回転する前記第3の揺動体の動作を検出するディスク挿入検出器を更に備え、前記ディスク挿入検出器の検出信号に基づいて、前記第1および第2のスライド部材によるディスク引き込み動作が開始される。

【0039】ある好ましい実施形態において、前記第3の揺動体はスライド連結部材と連動し、ディスク排出動作における前記スライド連結部材の動きによって前記第3の揺動体を初期位置まで移動させる。

【0040】また、本発明のディスク装置は、ディスクを載置するためのターンテーブル面を有するスピンドルモータを含むベース体と、前記ターンテーブル面と実質的に平行な面内で揺動し、外部から挿入されたディスクを、前記ディスクの中心と前記スピンドルモータの中心とが一致する位置まで、前記ディスクを引き込む第1の揺動体と、前記ターンテーブル面と実質的に平行な面内で揺動し、前記スピンドルモータの中心とディスクの中心とが一致する位置にある前記ディスクを、前記外部に対してその一部が露出する排出位置まで排出する第2の揺動体と、前記第1の揺動体の引き込み動作および前記第2の揺動体の引き込み動作および前記第2の揺動体の非出動作を行わせるために、前記第1の揺動体および前記第2の揺動体とそれぞれ係合しており、前記ターンテーブル面と実質的に平行な面内で往復移動する第1および第2のスライド部材と、前記ディスストルが知り、

体上の部品と接触しないよう、前記ディスクの挿入角度を規制し、案内する挿入ガイドとを備え、前記第1および第2の揺動体ならびに前記第1および第2のスライド部材は前記ターンテーブル面よりも下方に位置しており、前記第1および第2のスライド部材のうち、少なくとも1つは、前記ベース体の側面を支持しており、前記往復移動によって前記ベース体の側面を昇降させる。

【0041】ある好ましい実施形態において、前記挿入 ガイドは、前記ディスクが前記ターンテーブル面に載置 された状態において前記ディスクの外周に沿う円弧状の 10 ガイド緑部を有する。

[0042]

【発明の実施の形態】 (第1の実施形態) 以下、図面を参照しながら本発明のディスク装置の第1の実施形態を説明する。まず、図1(a)および(b)を参照してディスク装置全体の概要を説明する。図1(a)は、本実施形態のディスク装置1をディスクが搬送される面に垂直な方向から見た平面図であり、図1(b)は図1

(a) のディスク装置を図中の矢印10A方向(ディスク入口の方向)からみた正面図である。本実施形態のデ 20ィスク装置は、外装筐体90、ベース体100、第1の揺動体250、第2の揺動体350、第1のスライド部材210および第2のスライド部材310を備える。

【0043】外装筐体90は、ディスク装置1の外形を形成しており、六面体形状から切り欠き90fおよび切り欠き90tが削り落とされた形状を備えている。外装筐体90には、ベース体100を収納する第1の空間90aおよび第1の空間90aの上方に位置し、記録媒体であるディスク10を回転し得るように収納する第2の空間90bが含まれる。切り欠き90fは図1(b)に 30示すように、第2の空間90bの下方であって、第1の空間90aに隣接している。

【0044】ベース体100は、ハブ110aおよびターンテーブル面110bを有するスピンドルモータ110を含む。スピンドルモータは自己保持タイプであり、ハブ110aにディスク10の中心孔10aをはめ込み、ターンテーブル面110bにディスク10を押し付ければ、3つの保持ツメ110cによりディスクを保持することができる。また、ベース体100は、ディスク10に対し情報(信号)を記録または再生する光ヘッド40120と、図示しない手段により光ヘッド120をディスク10の半径方向へ移動できるように支持する支軸121および122とを含む。

【0045】 これらの構成要素はベースシャーシ130 内に組み込まれる。ベースシャーシ130は、ディスク10の入口側(ディスク装置の前面側)であって、ターンテーブル面110bにディスク10が載置された時、ディスク10よりも外側において、スピンドルモータ110のハブ110aの上面と同程度の高さを有する衝立形状部130aを備えている。

【0046】第1のスライド部材210および第2のス ライド部材310は、ベース体100を挟むようにベー ス体100の側面に隣接して設けられる。第1のスライ ド部材210は、図1(b)においてベース体100の 右側に位置しており、ディスク装置の前後方向(ディス ク搬送方向10Aまたは10Bと同じ方向) に移動可能 である。ベース体100に向かい合った側面にはカム溝 210 a および 210 b が形成されていて、ベースシャ ーシ130の側面に固定されたピン132a、132b をそれぞれ支持している。第2のスライド部材310 は、図1(b)においてベース体100の左側に位置し ており、ディスク搬送方向10Aまたは10Bと同じ方 向に移動可能である。ベース体100に向かい合った側 面にはカム溝310aおよび310bが設けられてい て、ベースシャーシ130の側面に固定されたピン13 3a、133bをそれぞれ支持している。ベース体10 0は、図示しないガイド手段によりディスク面に垂直な 方向、即ち矢印100Aまたは100B方向に昇降する よう規制されている。

【0047】外装筐体90の天井には、スピンドルモー タ110のターンテーブル面110bに対応する位置 に、内部側へ突出した凸部90 s が設けられている。凸 部90gは、ベース体100が上昇したとき、スピンド ルモータ110のハブ110aの先端が入り込む穴90 hを形成している。また、外装筐体90の底には、内部 側に突出したピン91が設けられている。ピン91は、 スピンドルモータ110に近接しており、ターンテーブ ル面110bにディスク100が載置されたとき、ディ スク10の内周側に設けられた非記録領域の下方に位置 している。ピン91はベースシャーシ130の穴130 bを貫通して外装筐体90に設けられているため、後述 するようにベース体100が昇降しても、ピン91は固 定したままである。ピン91の上面は、ベース体100 が降下したときには、ターンテーブル面110bより高 いところに位置しており、ベース体100が上昇し、タ ーンテーブル面110bがディスク10を保持している ときには、ターンテーブル面110bより低いところに 位置している。

【0048】ディスク装置1には、第1のスライド手段210を駆動するモータなどの駆動手段281が設けられている。駆動手段281にはウオームギヤ281aが取り付けられ、ウオームギヤ281aが中間ギヤ282およびピニオンギヤ283を介して第1のスライド部材210に設けられたラック210gと噛み合っている。駆動手段281を往復回転させることにより、第1のスライド部材210を矢印10Aまたは10B方向に搬送することができる。駆動手段281としては、種々のモータを用いることができる。また、線形動作を行う圧電アクチュエータなどを用いてもよい。

50 【0049】駆動手段281およびピニオンギヤ283

14

は駆動手段支持体285により支持され、外装筐体90に取り付けられている。駆動手段支持体285は、細長く突出した板バネ部285aを有し、板バネ部285aがベースシャーシ130がディスク10に記録再生を行う位置まで持ち上げられた時、これと接触し、ベースシャーシ130を下方へ押し下げる。これにより、ピン132bの下端をカム溝210bの底面に沿わせる。

【0050】ディスク装置1は、更にスライド連結部材410を備える。スライド連結部材410は、ディスク1010が挿入される側とは反対側に位置するベース体100の奥において支持点410aを中心に回動自在に外装筐体90に取り付けられている。スライド連結部材410の両端には、固定ピン412cおよび413cが設けられ、第1のスライド部材210の後端に設けられた孔210cおよび第2のスライド部材310の後端に設けられた孔210cとそれぞれ係合している。駆動手段281により第1のスライド部材210を矢印10A方向に移動させると、これと連動して、第2のスライド部材310を矢印10B方向に移動させると、第2のスライド部材210を矢印10B方向に移動させると、第2のスライド部材310は矢印10A方向に移動する。

【0051】第1の揺動体250は、第1のスライド部材210の上方において支持点250aを中心にディスク面と平行に回動し得るよう外装筐体90に取り付けられる。図示しない手段により第1の揺動体250は、矢印250A方向に付勢されている。第1の揺動体250は、下方に突出して第1のスライド部材210と係合するピン250sと、外装筐体90のガイド部90cと係30合する折り曲げ部250hを有している。外装筐体90のガイド部90cと折り曲げ部250hとの係合によって、第1の揺動体250はディスク面と垂直な方向へは浮き上がることなく回動することができる。

【0052】第2の揺動体350は、下方に突出して第2のスライド部材310と係合するピン350sを有し、第2のスライド部材310近傍に設けられた支持点350aを中心にディスク面と平行に回動可能なように外装筐体90に取り付けられている。第2の揺動体350は、一端356aが外装筐体90に取り付けられてお40り、反転バネの一種である捻りコイルバネ356によって、作用点350bで矢印350A方向に付勢されている。後述するように、ディスク10の挿入によって、第2の揺動体350が矢印350B方向に一定以上回転すると、捻りコイルバネ356の作用点350bにおける作用力の方向が支持点350aに対して反転するため、第2の揺動体350は矢印350B方向に付勢される。

【0053】ディスク装置1は、更にディスク位置決め 側)に位置し、第2のスライド部材310は最も奥に位部材510を備える。ディスク位置決め部材510は、 置している。第1の揺動体250は、図2(b)に示すその上面に固定されたピン511aおよび511bを有 50 ように矢印250A方向に付勢されたピン250sが第

し、ディスク10の外縁がピン511aおよび511bと当接したとき、ディスク中心孔10aの中心がスピンドルモータ110のハブ110aの中心と一致する位置に配置されている。スライド連結部材410が矢印410A方向へ一定以上回転すると、スライド連結部材410の折り曲げ部410bがディスク位置決め部材510の上面に固定されたピン512を押し、ディスク位置決め部材510をピン511aおよびピン511bと共に矢印10A方向に移動させる。

【0054】また、回路基板810が、ベース体100の奥においてディスク位置決め部材510およびスライド連結部材410の下に設けられている。回路基板810には、外部と電気的に接続されるコネクタ811および検出スイッチ812、813が実装されている。

【0055】上述した構成要素のうち、ディスク10の外縁に接触してディスク10をガイドするピン250 d、350d、511aおよび511bを除くと、スピンドルモータ110および光へッドを含むベース体100、第1のスライド部材210、第2のスライド部材310、第1の揺動体250、第2の揺動体350、スライド連結部材410、ディスク位置決め部材510、および回路基板810は、全てターンテーブル面110bより下方に位置している。つまり、ディスク10がディスク装置1に挿入される挿入位置10Rからディスクがターンテーブル面110bに載置される位置10Sまでのディスク10が通過する領域およびディスク10が値置する領域において、これらの構成要素はディスク10と接触しないように配置されている。

【0056】このほか、ディスク装置1には、スイッチレバー370ならびにガイド体720および730が設けられている。スイッチレバー370は、スライド部材310の上で支持点370aを中心に回動自在に外装筐体90に取り付けられており、図示しない手段により矢印370Bの方向に付勢されている。第2の揺動体350が一定角度以上に回転すると、第2の揺動体350の一端350eが、スイッチレバー370の一端370eを押すことによって、スイッチレバー370の方向へ回転する。そして、スイッチレバー370の他端に設けられたピン370uが検出スイッチ813を押す。ガイド体720および730は、それぞれ外装筐体90の前面近傍の側面において、挿入されてきたディスク10をガイドする。

【0057】次に図2~図7を参照して、本発明のディスク装置1の動作を説明する。まずディスク10の挿入時の動作について説明する。図2(a)に示すように、ディスク10がディスク装置1に挿入される前、第1のスライド部材210は最も手前(ディスクを挿入する側)に位置し、第2のスライド部材310は最も奥に位置している。第1の揺動体250は、図2(b)に示すように矢印250xが第

第1の揺動体250のピン250dは、ディスク10をディスク位置決め部材510のピン511aおよびピン511bに当接するまで矢印10A方向へ引き込み、搬送する。

1のスライド部材210の上面に設けられたカム溝210sに当接して停止している。図2(d)に示すように、第2の揺動体350は、矢印350A方向に付勢され、図示しない停止手段により図2(a)に示す位置に停止している。この時、ピン350sは図2(c)に示すように第2のスライド部材310の上面に設けられたカム溝310sから離れた位置にいる。操作者によってディスク10がディスク装置1に挿入されると、ディスク10は、位置10Rにおいて第1の揺動体250の先端に設けたピン250dに当接する。

【0062】この時、図4(c)に示すように、第2のスライド部材310は矢印10B方向に移動するため、第2の揺動体350のピン350sは、第2のスライド部材310のカム溝310s内を側壁に沿って図4

【0058】次に、操作者がさらにディスク10を奥に挿入すると、ディスク10は第1の揺動体250のピン250dおよび左右のガイド体720、730により、高さ方向と左右位置を規制されながら図3(a)に示す位置まで到達する。この動作の途中において、ディスク10は、第2の揺動体350のピン350dにも接触し、第2の揺動体350がディスク10の先端の高さを規制する。

(c) に示す位置まで相対的に移動する。第2の揺動体 10 350も支持点350aにおいて支持されているため、ピン350sの移動に伴って、第2の揺動体350は、図4(a)に示すように矢印350B方向に回転する。このとき、第2の揺動体350のピン350dは、第1の揺動体250の先端のピン250dと同期してディスク10を支持したまま矢印350B方向に移動し、ディスク10がディスク位置決め部材510のピン511aおよびピン511bに当接した後はディスク10から僅かに離れた位置まで回転する。図4(a)に示す状態において、ディスク10の中心孔10aはスピンドルモー 20 タ110のハブ110aの中心と一致している。

【0059】図2(a)および図3(a)に示すように、ディスク10の外縁が第1の揺動体250のピン2 2050dを押しながら、ディスク10が挿入されるため、第1の揺動体は図3(a)に示すように矢印250B方向に回転する。また、第1の揺動体250のピン250sは、図3(b)に示す位置までカム溝210sの中を移動する。

【0063】図3(a)、(b)および(c)から図4 (a)、(b)および(c)に至るディスク10の搬送 動作をディスクの引き込み動作と呼ぶ。また、この引き 込み動作の途中で捻りコイルバネ356の作用力の方向 が反転するため、第2の揺動体350は矢印350B方 向に大きな角度で回転するにもかかわらず第2のスライ ド部材310にかかる負荷はわずかなものとなる。ま た、第1の揺動体250も矢印250Aの方向に付勢さ れているため、第1のスライド部材210にかかる負荷 も小さい。このため、引き込み動作における駆動手段2 81の負荷は僅かなものとなる。さらに、図4(a)に 示すように、第1の揺動体250および第2の揺動体3 50はベース体100の投影面積の外に位置しており、 ベース体100の上方にも下方にも位置していない。こ のため、第1の揺動体250および第2の揺動体350 がこの後のベース体100の上昇を妨げることがない。

【0060】ディスク10がピン350dを押すことによって、第2の揺動体350も矢印350B方向に回転し、ピン350sは図3(c)に示すようにカム溝310sの入口位置まで回転する。また、図3(a)に示すように、第2の揺動体350の一端350eがスイッチ30レバー370の一端370eを押すため、スイッチレバー370が矢印370A方向に回転し、ピン370uが検出スイッチ813を押す。ここまでの動作において、第1のスライド部材210および第2のスライド部材310は実質的に静止した状態を保っている。

【0064】次にベース体100の上昇とこれに伴うスピンドルモータ110によるディスク10の保持動作を説明する。ディスク10の中心10aとハブ110aの40中心が一致するまで、ディスク10がディスク装置1に引き込まれた後、第1のスライド部材210および第2のスライド部材310はさらに移動を続ける。しかし、図4(b)および図4(c)に示すように、ピン250sもピン350sも、カム溝210sおよび310sの直線部分に位置しているため、第1のスライド部材210および第2のスライド部材310が移動を続けてピン250sが250s'の位置に、ピン350sが350s'の位置に来るまで、第1の揺動体250も第2の揺動体350も図4(a)に示す状態で回転を停止している。

【0061】検出スイッチ813が押されると、駆動手段281が始動し、第1のスライド部材210が矢印10A方向へ移動しはじめる。これと連動して、第2のスライド部材310も矢印10B方向へ移動する。これによりディスク装置1の各部は図4(a)、(b)および(c)に示す状態へ移行する。具体的には、図4(a)および(b)に示すように、第1のスライド部材210が矢印10Aの方向に移動する。これに伴って、第1のスライド部材210のカム溝210sが移動し、第1の 揺動体250のピン250sは第1のスライド部材210のカム溝210sが移動し、第1の に張動体250のピン250sは第1のスライド部材210のカム溝210s内を側壁に沿って図4(b)に示す位置まで相対的に移動する。第1の揺動体250は支持点250aにおいて支持されているため、ピン250sの移動によって、第1の揺動体250は図4(a)に示すように矢印250Aの方向に回転する。これにより、50

【0065】一方、図5(a)、(b)および(c)に 示すように、第1のスライド部材210および第2のス ライド部材310が移動を続けることによって、ベース 体100が上昇し、ディスク10をターンテーブル面1 10 bへ載置する動作が行われる。

【0066】図5(a)に示すように、第1のスライド 部材210が矢印10Aの方向に移動し上述の動作を行 う間、ベース体100のベースシャーシ130の側面に 設けられたピン132aおよび132bは、第1のスラ び210bの水平な部分を移動していた。このため、第 1のスライド部材210が矢印10Aの方向に移動して も、ベースシャーシ130は高さ方向の位置を変えるこ となく外装筐体90の底部に近接していた。

【0067】しかし、図4(b)に示すように、第1の スライド部材210が更に移動してピン250sが25 0 s'の位置に移動する間、第1のスライド部材210 の側面では、ピン132aおよび132bが図5(a) および(b) に示すように、カム溝210aおよび21 0 bの傾斜部分を移動する。第1のスライド部材210 の移動に伴って、ピン132aおよび132bがカム溝 210 aおよび210 bの側面に押されながらカム溝2 10 a および 210 b を移動するため、ベース体 100 が上方へ押し上げられる。

【0068】図1(a)に示すように、第2のスライド 部材310の側面にもカム溝310aおよび310bが 設けられ、ベースシャーシ130のピン133aおよび 133bと係合している。このため、図示していないが 第2のスライド部材310ならびにピン133aおよび 133bも上述と同様の動作を行う。この結果、ベース 30 体100は、その対向する一対の側面が持ち上げられ、 外装筐体90の底部に対しておおよそ垂直に上昇する。

【0069】図5(b)に示すように、ベース体100 が上昇するにつれて、スピンドルモータ110のハブ1 10 aがディスク10の中心孔10 aにはまりこむ。さ らにスピンドルモータ110が上昇すると、ディスク1 0が外装筐体90の天井に設けた凸部90 sとスピンド ルモータ110のターンテーブル面110bとに挟まれ て、スピンドルモータ110のツメ110cがディスク 10をターンテーブル面110b上に保持する。この 時、スピンドルモータ110のハブ110aの先端は凸 部90sにより形成された穴90hに入り込む。これに より、ディスク10がターンテーブル面110bに載置 される。

【0070】図5 (c) に示すように、ピン132aお よび132bがカム溝210aおよび210bの端部ま で移動すると、ベース体100はスピンドルモータ11 Oにより保持したディスク10と共に凸部90 sから離 間してやや下降する。ベース体100はこの高さにおい て保持され、ディスク10をスピンドルモータ110に 50 ク挿入口を塞ぐので、スピンドルモータ110の回転中

よって回転させ、光ヘッド120を動作させてディスク 10に対して記録、再生動作を行う。

【0071】上述したように、第2のスライド部材31 0も第1のスライド部材210と同様に動作するため、 ベース体100はピン132aおよび132bならびに ピン133aおよび133bの4点において支持され、 水平状態を保ったまま昇降する。

【0072】図5(b)に示すように、カム溝210b には底面の受けしか備えていないので、ベース体100 イド部材210の側面に設けられたカム溝210aおよ 10 が変形していた場合、4点目であるピン132bは第1 のカム溝210bから浮き上がってしまう可能性があ る。しかし、ベース体100が図5(c)に示す記録再 生を行う位置まで上昇したときは、駆動手段支持体28 5から細長く突出した板バネ部285aがベースシャー シ130を下方へ押し下げ、ピン132bの下端をカム 溝210bの底面に沿わせる(図1(a))。このた め、ピン132bの浮きは防止され、ベース体100は 水平を維持することができる。

> 【0073】また、図5(b)から(c)に至る第1の スライド部材210の動作により、図6(a)に示すよ うに、第1の揺動体250のピン250sはカム溝21 0 s により僅かに矢印250 B方向に回転させられる。 このため、第1の揺動体250のピン250dはディス ク10から離間する。またスライド連結部材410が矢 印410A方向へ回転するため、スライド連結部材41 0の折り曲げ部410bがディスク位置決め部材510 を矢印10A方向に押し、ピン511aおよびピン51 1 bをディスク10から僅かに離間させる。

> 【0074】第2の揺動体350のピン350dは、図 4 (a)、(b) および(c) に示す状態において、既 にディスク10から離間しており、図5(c)または図 6 (a) に示す状態において、第2の揺動体350が更 に移動することはない。図5(c)または図6(a)の 状態において、矢印10B方向に移動してきた第2のス ライド部材310が外装筐体90内で最も手前の位置に 到達し、矢印10A方向に移動してきた第1のスライド 部材210が外装筐体90内で最も奥の位置に到達す る。第1のスライド部材210が検出スイッチ812を 押すことによって、駆動手段281は停止する。

> 【0075】図5(a)から図5(b)に示す状態にお けるベース体100の上昇とこれに伴うスピンドルモー タ110によるディスク10の保持、図5(b)から図 5 (c) または図6 (a) に示す状態におけるベース体 100の下降、ディスク10を搬送し位置決めしていた ピン250d、511aおよび511bのディスク10 からの離間および駆動手段281の停止をあわせてディ スクの保持動作と呼ぶ。なお、ベース体100が図5 (c) に示す位置まで上昇しているとき、ベースシャー シ130の衝立形状部130aがディスク装置のディス

£.,

OB方向へ搬送する。

解除されるまでの動作をディスク保持の解除動作と呼

に誤って外部からディスクを挿入されることがない。 【0076】次にディスク10をスピンドルモータ11 0から解除し、ディスク装置1からディスク10を排出 させる動作を説明する。これらの動作は、概ねディスク 10の挿入とは逆の動作で行われる。

【0077】図6(a)および図7(a)に示す状態に おいて、操作者により排出命令が図1に示すコネクタ8 11を介してコンピュータから送られるか、もしくはデ ィスク装置1に設けた図示しない排出スイッチが押され ると、駆動手段281が駆動を開始し、第1のスライド 10 部材210を矢印10B方向へ移動させ、第2のスライ ド部材310を矢印10A方向へ移動させる。これらの 方向は挿入時と逆の方向である。第1のスライド部材2 10および第2のスライド部材310の移動に伴って、 第1の揺動体はいったん矢印250Aの方向へ移動し、 ディスク10から離間していた第1の揺動体250のピ ン250 dがディスク10に当接する。同様にスライド 連結部材410が矢印410B方向へ回転するため、デ ィスク位置決め部材510のピン511aおよびピン5 11bがディスク10に当接する。その結果、ディスク 20 装置1は、図4(a)に示す状態となる。

【0078】この時、同時に図7(b)に示す状態まで、第1のスライド部材210が矢印10Bの方向へ移動し、カム溝210aがピン132aを押し上げ、ベース体100をディスク10が再び外装筐体90の天井に設けた凸部90sと当接するまで押し上げる。

【0079】第1のスライド部材210および第2のス ライド部材310は更に移動を続け、ピン250sおよ び350sが、図4(b)および図4(c)に示す位置 へ移動する。この時、第1の揺動体250および第2の 30 揺動体350は移動せず図4(a)の位置を保って静止 している。一方、図7 (c) および(d) に示すよう に、第1のスライド部材210が矢印10Bの方向へ移 動するために、カム溝210aおよび210bの側面に 押されながらピン132aおよび132bがカム溝21 0 a および210 b の傾斜部分を相対的に移動する。こ れに伴って、ベース体100が下降し、ディスク10が 挿入される前の位置に戻る。この過程において、ベース 体100はディスク10を保持したまま降下しようとす るが、ディスク10の外縁はピン250dおよびピン3 40 50dに保持されているため、図7(c)に示すように ディスク10は反った状態となる。しかし、外装筐体9 0の底から突出したピン91の先端がスピンドルモータ 110の近傍でディスク10を押すため、スピンドルモ ータ110のハブ110aに設けられたツメ110cが ディスク10の中心孔10 aの外周に押されて引っ込 み、ハブ110aがディスク10中心孔10aから抜け る。その結果、図7 (d) に示すように、スピンドルモ ータ110がディスク10を保持した状態を解除するこ

【0080】次にディスク10の排出動作について説明する。図3(b) および(c) に示すように、第1のスライド部材210および第2のスライド部材310がそれぞれ矢印10Bおよび10Aの方向へ移動するにつれて、第2の揺動体350のピン350sはカム溝310s内を進み、図3(c)に示す位置に達する。この時、第2の揺動体350は支持点350aを中心として、矢印350Aの方向に回転する。これにより第2の揺動体350の先端のピン350dは、ディスク10を矢印1

【0081】また図3(b)に示すように、第1の揺動体250のピン250sはカム溝210s内を進む。これに伴って、第1の揺動体250は支持点250aを中心として矢印250Bの方向に回転する。第1の揺動体250の先端のピン250dは、第2の揺動体350の先端のピン350dと同期してディスク10を支持したまま矢印250Bの方向に回転し、ディスク10を矢印10B方向に搬送する。

【0082】図3(a)に示す位置まで、第2の揺動体350が矢印350Aの方向へ回転すると、第2の揺動体350の一端350eとスイッチレバー370の一端370eとの接触が解け、スイッチレバー370が矢印370Bの方向へ回転する。これにより、スイッチレバー370のピン370uによる検出スイッチ813の押圧が解除される。

【0083】検出スイッチ813が解除されたことにより、駆動手段281が停止し、矢印10A方向に移動してきた第2のスライド部材310は外装筐体90内で最も奥の位置に到達して停止し、矢印10B方向に移動してきた第1のスライド部材210が外装筐体90内で最も手前の位置に到達して停止する。

【0084】また、図4(a)および(c)から図3(a)および(c)に至る排出動作の途中において、捻りコイルバネ356の作用力の方向が反転するため、図3(a)に示す状態では、第2の揺動体350は矢印350A方向に付勢されている。したがって、第2のスライド部材310が停止した後も、第2の揺動体350は第1の揺動体250の矢印250Aへの付勢力に打ち勝って、ディスク10を矢印10Bの方向へ搬送する。その結果、図2(a)の10Eおよび図2(c)の状態まで第2の揺動体350は回転する。この時、第1の揺動体250は第2の揺動体350に押され、破線250に示す位置まで後退する。このようにして、ディスク10が操作者により取り出せる位置まで排出される。この第2の揺動体350によるディスク10の排出する動作を、ディスクの排出動作と呼ぶ。

ータ110がディスク10を保持した状態を解除するこ 【0085】以上、詳述したように、駆動手段281に とができる。駆動手段281が始動し、ディスク10が 50 より駆動される第1のスライド部材210および第2の

22

スライド部材310の一連の移動に連動して、第1の揺 動体250によるディスク10の引き込み動作、ベース 体100の上昇とこれに伴うスピンドルモータ110に よるディスク10の保持動作が順次行われる。また第1 のスライド部材210および第2のスライド部材310 の逆方向の一連の移動に連動して、ベース体100の降 下とこれに伴うディスク保持の解除動作および第2の揺 動体350によるディスクの排出動作が順次行われる。

【0086】また緊急時に操作者が強制的にディスク1 0を排出したい場合には、図示しない手段により中間ギ 10 れる。フロントベゼル80には、ディスク10を排出す ヤ282または駆動手段281の他のギヤとの噛み合い を外す。そして、図6に示すように最も手前に来ている 第2のスライド部材310の先端310fを外部から直 接押すことにより、第2のスライド部材310は矢印1 O A方向へ移動させ、これと連動して第1のスライド部 材210は矢印10B方向へ移動させる。これによっ て、上述したように、ディスクの排出動作を行い、ディ スクを排出させることができる。

【0087】本発明のディスク装置1によれば、ディス ク搬送手段としてローラを用いる必要がない。このた め、ディスクが回転するように収納する空間を規定する 部分のみディスクより広い幅を必要とし、その他の部分 の幅はディスクよりも狭くすることができる。例えばデ ィスクを収納する空間の下部に切り欠き部を設けた外装 筐体を用いることも可能となる。

【0088】また2本の揺動体のみでディスクの搬送を 行い、一対のスライド部材によって揺動体を駆動し、か つ、スピンドルモータを含むベース体を昇降させること ができる。このため、装置の構造を簡単にすることがで き、装置の低コスト化を図ることができる。

【0089】さらに、ターンテーブル面より下方にほと んどの構成要素を配置し、クランパを用いずにディスク を保持することができるため、薄型の装置を実現するこ とができる。

【0090】(第2の実施の形態)以下、本発明のディ スク装置の第2の実施形態を説明する。まず、図8

(a)、(b) および(c) を参照して、ディスク装置 2の全体の概要を説明する。図8(a)は、本実施形態 のディスク装置2をディスクが搬送される面に垂直な方 向から見た平面図であり、図8(b)は図8(a)のデ 40 イド手段によりディスク面に垂直な方向、即ち矢印10 ィスク装置を図中の矢印10A方向(ディスク入口の方 向) からみた正面図である。図8(c)は図8(a)の ディスク装置の内部を図中の矢印10A方向から見た一 部断面正面図である。

【0091】図8(a)、(b) および(c) において 第1の実施形態と同じ構成要素については、同一番号を 付している。以下、第1の実施形態のディスク装置と異 なる点を主に詳述する。

【0092】第1の実施形態同様、ディスク装置2は、 外装筐体90、ベース体100、第1の揺動体250、 第2の揺動体351、第1のスライド部材211および 第2のスライド部材311を備える。

【0093】また、ディスク装置2は、フロントベゼル 80を備えている。フロントベゼル80は、ディスク装 置2の正面に取り付けられており、ディスク10を挿入 するためのディスク入口80wが設けられている。この ディスク入口80wには埃の侵入を防止するための布製 のカーテンを設けてもよい。ディスク10は操作者によ りこのディスク入口80wから矢印10A方向に挿入さ るための排出スイッチが設けられている。

【0094】ディスク装置2には、挿入ガイド140が 設けられている。挿入ガイド140は、ベースシャーシ 130上に配置されており、ターンテーブル面110b にディスク10が装着されたスピンドルモータ110に 装着された状態のディスク10 s の外周に沿った円弧状 のガイド縁部140eを有している。挿入ガイド140 はディスク入口80wからディスク10が斜めに挿入さ れて、ディスクの下面(情報記録面)がベース体100 20 に接触するのを防ぐ。

【0095】ディスク装置2もベース体100の側面に 設けられた第1のスライド部材211および第2のスラ イド部材311を備える。第1のスライド部材211お よび第2のスライド部材311はベース体100を挟む ようにベース体100の側面に隣接して設けられる。第 1のスライド部材211は、図8(a)においてベース 体100の右側に位置しており、ディスク装置の前後方 向(ディスク搬送方向10Aまたは10Bと同じ方向) に移動可能である。ベース体100に向かい合った側面 30 にはカム溝211aおよび211bが形成されていて、 ベースシャーシ130の側面に固定されたピン132 a、132bをそれぞれ支持している。

【0096】第2のスライド部材311は、図8(a) においてベース体100の左側に位置しており、ディス ク搬送方向10Aまたは10Bと同じ方向に移動可能で ある。ベース体100に向かい合った側面にはカム溝3 11 a および 3 1 1 b が 設けられていて、ベースシャー シ130の側面に固定されたピン133a、133bを それぞれ支持している。ベース体100は図示しないガ O A または 1 O O B 方向に昇降するよう規制されてい る。また第1のスライド部材211は、その端部211 uにおいて回路基板810上に実装された初期状態検出 器816を押下する。

【0097】外装筐体90には、第1のスライド部材2 11および第2のスライド部材311の移動方向(矢印 10A、10B方向)に直角な方向に伸びており、長手 方向の両端において折り曲げられた折り曲げ部742お よび743を有する支持外装筐体740が設けられてい 50 る。折り曲げ部742および743は外装筐体90に固

定されている。

【0098】また、支持外装筐体740上には、スライ ド連結部材410が設けられている。スライド連結部材 410は、回路基板810と一定の距離を保つ高さで所 定の面内において回動可能なように支持点410aにお いて支持されている。スライド連結部材410の両端に 設けられたピン412cおよび413cは、第1のスラ イド部材211の後端に設けられた孔211cおよび第 2のスライド部材311の後端に設けられた孔311c とそれぞれ係合して、第1のスライド部材211と第2 10 手段410の端部410bおよび410cに押されるピ のスライド部材311を連結している。このため、駆動 手段281の回転により第1のスライド部材211を矢 印10Aの方向に移動させると、これと同期して第2の スライド部材311は矢印10Bの方向に移動する。ま た。駆動手段281を逆転させると、第1のスライド部 材211は矢印10Bの方向に移動し、これと同期して 第2のスライド部材311は矢印10Aの方向に移動す る。

【0099】更に、支持外装筐体740上には、支持点 390aを中心に回動可能なように支持されたディスク ガイド390が設けられている。ディスクガイド390 は、ディスク10を挟んで第1の揺動体250と反対側 に位置しており、第1の揺動体250と協同してディス ク10の搬送方向を規制する。図示していないが、ディ スクガイド390は付勢手段により、矢印390A方向 に付勢されている。このため、下方に突出して設けられ たピン390mが常に第2のスライド部材311のガイ ド面311mと接触する。第2のスライド部材311が 移動すると、第2のスライド部材311の側面に沿っ て、ピン390mも移動するため、ピン390mの位置 30 に応じてディスクガイド390は、支点390aを中心 に回転する。

【0100】第2の揺動体351は、第2のスライド部 材311近傍に設けられた支持点351aを中心にディ スク面と平行な面において回動可能なように外装筐体9 0に取り付けられている。図8(a)に示すように、捻 りコイルバネ356により作用点351bで矢印351 Aの方向に付勢される場合は折り曲げ部351oがディ スクガイド390と当接して停止する。また矢印351 Bの方向に一定以上、第2の揺動体351が回転し、捻 40 りコイルバネ356の作用点351bにおける作用力の 方向が支持点351aに対して反転すると、第2の揺動 体351は矢印351Bの方向に付勢される。この場合 は、折り曲げ部351iが支持外装筐体740上のスト ッパ740i (図11参照) に当接して停止する。また 下方に突出して第2のスライド部材311の段差部31 1 pに押されるピン351 pを有する。

【0101】図8(a)に示すように、ディスク装置2 には、第1の実施形態のディスク位置決め部材510に 替えて第3の揺動体540が設けられている。第3の揺 50 イド縁部140eを有するため、ディスク10とガイド

動体540は、支持点540aを中心にして回動可能な ように支持外装筐体740上に設けられている。図示し ない付勢手段によって、第3の揺動体540は矢印54 0 Aの方向へ付勢されており、矢印540 Aの方向へ回 転する力が働いている。このため、第3の揺動体540 先端に設けられたピン540dは、挿入されたディスク 10を第1の揺動体250上のピン250dおよびディ スクガイド390上のディスクガイド面390dに押し 付けて位置決めする。また下方に突出してスライド連結 ン540b、540cを有し、さらに回路基板810上 に実装された引込開始検出器814を押下するピン54 Ouも有する。

【0102】検出レバー380は、支持点380aを中 心として回動可能なように外装筐体90上に設けられて いる。検出レバー380から突出するピン380tは第 2のスライド部材311と係合しており、第2のスライ ド部材311の動きと同期して検出レバー380は回転 する。検出レバー380の先端380uで回路基板81 0上に実装された装着完了検出器815を押下する。

【0103】次に、ディスク装置2の動作を説明する。 まずディスク10の挿入動作について説明する。ディス ク10がディスク装置2に挿入される前、ディスク装置 2では、図9(a)に示すように第1のスライド部材2 11の端部211uが初期状態検出器816を押下した 状態に位置している。第1の揺動体250は図示しない 手段により矢印250A方向に付勢され、図9(b)に 示すようにピン250sが第1のスライド部材211の カム溝211sの壁面に当接して停止している。

【0104】また図9(a)および(d)に示すよう に、第2の揺動体351は捻りコイルバネ356により 作用点351bで矢印351Aの方向に付勢され、折り 曲げ部3510がディスクガイド390と当接して停止 している。この時、ピン351pは図9(c)に示すよ うに第2のスライド部材311の段差部311pから離 れた位置にある。

【0105】この状態で、操作者によってディスク入口 80w(図8(b))から矢印10A方向に挿入された ディスク10は、図9(a)の二点鎖線10Eの位置 で、第1の揺動体250の先端に設けたピン250d と、第2の揺動体351の先端に設けたピン351dに 当接する。ディスク10が、ピン250dおよびピン3 51 dに当接するまでは、ディスク10の先端の高さ は、挿入ガイド140および第2の揺動体351の張り 出し部351gによって規制され、ディスク10の先端 が下がるようにディスク10が斜めに挿入されることを 防ぐ。このため、ディスク10の下面(情報記録面)が 光ヘッド120等のベース体100上の部品と接触して 傷付くことがない。また挿入ガイド140は円弧状のガ 縁部140eはその縁部同士でしか接触することがなく、ディスク10の下面を傷つける心配はない。

【0106】操作者がさらにディスク10を矢印10A 方向に挿入すると、ディスク10は、矢印250Bの方 向へ第1の揺動体250を押しのけた後、左右のガイド 体720、730に規制されながら第2の揺動体351 を矢印351B方向に回転させ、矢印10Aの方向へ進 む。図10(a)に示すように、ディスク10がピン5 40dを押して第3の揺動体540を矢印540Bの方 向に回転させ、ピン540uが引込開始検出器814の 10 押下を解除する。引込開始検出器814が解除される と、駆動手段281が始動し、第1のスライド部材21 1が矢印10A方向へ移動する。これと連動して第2の スライド部材311も矢印10B方向への移動を開始す る。図11(b)に示すように、第1のスライド部材2 11が矢印10A方向へ移動すると、第1の揺動体25 0のピン250sは移動するカム溝211sの側壁に駆 動される。その結果、第1の揺動体250は、図11

- (a) に示す位置まで矢印250A方向に回転しディスク10をディスク装置2内へ引き込む。図10(a)、(b)、(c)および(d)から図11(a)、
- (b)、(c)、および(d)に至るディスク10の搬送動作をディスクの引き込み動作と呼ぶ。

【0107】図9(d)に示すように、駆動手段281 が動作するまで、外側に待避していたディスクガイド3 90は、引き込み動作の途中から動作を始める。図11 (d) に示すように、第2のスライド部材311が矢印 10 B方向に移動すると、そのガイド面311mに沿っ てディスクガイド390のピン390mが駆動される。 このため、ディスクガイド390は、図11(a)に示 30 す位置まで矢印390Bの方向に回転しディスク10と 接するようになる。このようにしてディスク10は、第 3の揺動体540の矢印540A方向への付勢力によ り、ディスクガイド390のディスクガイド面390d および第1の揺動体250のピン250dの2ヶ所に押 し付けられ位置決めされながら、第1の揺動体250に より、図11(a)に示す位置、即ちディスク10の中 心孔10 aがスピンドルモータ110のハブ110 aの 中心と一致する位置まで引き込まれる。

【0108】またこの動作の間に、ディスク10に押さ 40 れて矢印351B方向に回転した第2の揺動体351において、捻りコイルバネ356の作用点351bにおける作用力の方向が支持点351aに対して反転する。このため、第2の揺動体351は、矢印351Bの方向に付勢され、折り曲げ部351iが支持外装筐体740上のストッパ740iに当接して停止している。この状態で第2の揺動体351のピン351dはディスク10外周から離間した位置にある。

【0109】上述したように、ディスクガイド390が 引き込み動作の途中まで外側に待避していることによ り、ディスク10をディスク装置2に挿入すると、ディスク10はまず、右側のガイド体720にその挿入方向が規制される。このため、ディスク10は中心よりやや左側に寄せられて挿入される。ディスク10がガイド体720を通過し、ディスクが第3の揺動体540のピン540dに接触すると、駆動手段281が動作を始め、第1の揺動体250がディスク10を引き込み始める。この時、ディスクガイド390もディスク10の挿入方向がやや右よりに修正されるようディスク10がディスクガイド390に導かれる。したがって、引き込み動作中、ディスク10の中心は、図11(a)に示す矢印10Lの軌跡をた

26

【0110】このように、ディスク装置2の幅方向のスペースを有効に使ってディスク10を搬送するため、ディスク装置2の幅を小さくすることができる。また第3の揺動体540を矢印540A方向へ付勢しているため、たとえディスク装置2が矢印10A方向を下に縦向きに設置された場合でも、ディスク10の重量に負けることのない十分な大きさの力でディスク10をディスクガイド面390dおよび第1の揺動体250のピン250dに押し付けることができる。

【0111】次に、第1のスライド部材211および第2のスライド部材311によるベース体100の昇降を説明する。ベース体100が上昇し、スピンドルモータのハブ110aにディスク10の中心孔10aが挿入され、ディスク10がターンテーブル面110bに載置される動作は、第1の実施形態において図5(a)、

(b) および(c) を参照して説明した動作とまったく同じである。このスピンドルモータ110によるディスク10の保持動作の間、図11(b)に示すように、第1の揺動体250のピン250sはカム溝211sの直線部分に位置している。また、図11(c)に示すように、第2の揺動体351のピン351pは第2のスライド部材311の段差部311pから離間している。ディスク10が動かないため、第3の揺動体540は図11(a)の状態で停止している。

【0112】第1の実施形態と同様、ディスク装置2が 図5(a)および(b)に示す状態をとった後、図5

40 (b)から(c)に至る状態において、第1のスライド 部材211では、図12(b)に示すように、第1の揺動体250のピン250sが矢印10Aの方向に移動するカム溝211sにより僅かに矢印250Bの方向に回動させられる。このため、図12(a)に示すように第1の揺動体250のピン250dがディスク10の外周から離間する。また図12(a)および(c)に示すように、第2のスライド部材311のガイド面311mが矢印10Bの方向に移動するため、ガイド面311mの凹凸にそってディスクガイド390のピン390mが矢 印10Bの方向に移動する。このため、ディスクガイド

28

390のディスクガイド面390 dはディスク10の外 周から離間する。第1のスライド部材211の移動に連 動してスライド連結部材410が矢印410Aの方向へ 回転するため、端部410bが第3の揺動体540のピ ン540bを押して第3の揺動体540を矢印540B 方向に回転させる。このため、ピン540dもディスク 10の外周から離間する。

【0113】図12(a)に示すように、図9(a)に 示す初期状態から距離 A だけ、矢印10 A 方向に移動し の位置に到達し、矢印10 Bの方向に移動してきた第2 のスライド部材311は外装筐体90内で最も手前の位 置に到達する。図12(d)に示すように、ピン380 tが第2のスライド部材311のカム溝311tに案内 されて矢印380Bの方向に回転し、装着完了検出器8 15を押下する。これによって、駆動手段281が停止 し、第1のスライド部材211および第2のスライド部 材311も停止する。

【0114】上述したように、ディスク10が挿入され のピン250d、第3の揺動体540のピン540dお よびディスクガイド390のディスクガイド面390d がディスク10から離間しているので、ディスク10は スピンドルモータ110によって回転可能な状態となっ ている。この状態で、ディスク装置2は、スピンドルモ ータ110によってディスク10を回転させ、ベース体 100上の光ヘッド120によってディスク10に情報 を記録したり、ディスク10から情報を再生したりする ことができる。

【0115】次に、ディスク10のスピンドルモータ1 10からの解除動作及びディスク10の排出動作を説明 する。図12(a)、(b)、(c)および(d)の状 態から、ディスク10の排出命令がコネクタ811を介 してコンピュータから送られるか、もしくは操作者によ りフロントベゼル80に設けた排出スイッチ81(図8 (b)) が直接押下されると、駆動手段281が駆動を 開始し、第1のスライド部材211が矢印10B方向へ 移動し、第2のスライド部材311は矢印10A方向へ 移動する。つまり、挿入時とは逆方向に第1のスライド 部材211および第2のスライド部材311が移動を開 40 始する。すると、図11(a)に示すようにディスク1 0から離間していた第1の揺動体250のピン250 d、ディスクガイド390のディスクガイド面390 d、および第3の揺動体540のピン540dがディス ク10外周に当接してディスク10を保持する。

【0116】続いて、第1のスライド部材211および 第2のスライド部材311の移動によって、ベース体1 00がいったん上昇したあと下降し、ディスク10がタ ーンテーブル面110bから脱離する。このディスク1 0の解除動作は、図7(a)から(d)を参照して説明 50 スク10の排出完了の検出も兼ねている。

した第1の実施形態と同じ動作である。 【0117】次にディスク10の解除動作に続くディス

ク10の排出動作を説明する。図10(a)および (c) に示すように、第2の揺動体351のピン351 pは矢印10Aの方向に移動する第2のスライド部材3 11の段差部311pにより、矢印10Aの方向に押さ れ、第2の揺動体351は矢印351Aの方向に回転す る。これにより第2の揺動体351のピン351dは、 ディスク10を矢印10B方向へ押し、ディスク10は た第1のスライド部材211が外装筐体90内で最も奥 10 ガイド体720および730により左右方向を規制され ながら排出方向へと搬送される。またこの時、図10 (b) に示すように、第1の揺動体250のピン250 sが矢印10B方向に移動するカム溝211sに案内さ れることにより、第1の揺動体250は矢印250B方 向に回転する。このため、ピン250dは排出されてく るディスク10から逃げるように、ディスク10の外周 から離間しながら回転する。図12(a)の状態から図 10(a)に示す状態へ推移する間に、捻りコイルバネ 356の作用力の方向は反転しており、図10(a)の る際、ディスク10に当接していた第1の揺動体250 20 状態では第2の揺動体351は矢印351Aの方向に付 勢されている。このようにディスク10は、第2の揺動 体351によって搬送される。

【0118】更に第1のスライド部材211及び第2の スライド部材311が移動すると、ディスク装置2は、 図13(a)、(b)(c)および(d)の状態にな る。図13(a)に示すように、矢印10Aの方向に移 動してきた第2のスライド部材311は外装筐体90内 の最も奥の位置に到達し、図12(a)に示す状態から 矢印10B方向に距離A+αだけ移動してきた第1のス ライド部材211は外装筐体90内で最も手前の位置に 到達する。図13 (d) に示すように、検出レバーのピ ン380tが第2のスライド部材311のカム溝311 tに案内されて矢印380B方向に回転し、装着完了検 出器815を押下する。これによって、駆動手段281 は駆動回転方向を反転させ、逆方向に回転を開始する。 【0119】この時、第2の揺動体351は、図13 (c) に示すように、ピン351pが第2のスライド部 材311の段差部311pにより矢印10A方向に押し 切られているため、図13(a)に示すように、第2の 揺動体351のピン351dは中心孔10aが概ねフロ ントベゼル80から外に出る位置までディスク10を排 出する。このように捻りコイルバネ356による付勢力 だけではなく、第2のスライド部材311による駆動に よって、第2の揺動体351はディスク10を確実に排 出する。このため、たとえディスク装置が矢印10A方 向を床面にして縦に設置された場合でも、所定の割合 で、例えば、中心孔10aがディスク装置2外へ露出す るまで、ディスク10を安定して排出することができ る。また装着完了検出器815は、上述したようにディ

【0120】また図13(a)に示すように、スライド 連結部材410の端部410cが第3の揺動体540の ピン540cを押すため、第3の揺動体540は矢印5 40 A方向に回転する。これにより、第3の揺動体54 0のピン540uは引込開始検出器814を押下する。 もともと第3の揺動体540は矢印540Aの方向へ付 勢されているが、スライド連結部材 4 1 0 によって確実 に引込開始検出器814を押下しているため、たとえ引 込開始検出器814を押下する負荷が大きすぎたり、ま た部分的に第3の揺動体540がねじれて回転しにくく 10 なっていたりしても、第3の揺動体540の初期位置へ の復帰と引込開始検出器814の押下を確実に行うこと ができる。

【0121】図13(a)に示す状態において、駆動回 転方向を反転した駆動手段281により、第1のスライ ド部材211は矢印10Aの方向へ移動する。そして、 図9 (a) に示すように、第1のスライド部材211は 矢印10 Α方向へ距離αだけ移動し、第2のスライド部 材311は矢印10B方向へ移動する。これらの移動方 1の端部211uが初期状態検出器816を押下する と、駆動手段281は停止する。図13(a)、

(b)、(c) および(d) に示す状態から図9

(a)、(b)、(c) および(d) へ示す状態へ移行 する際、第2のスライド部材311の段差部311pも 矢印10B方向へと移動するが、第2の揺動体351は 捻りコイルバネ356の付勢力により矢印351A方向 に付勢され、折り曲げ部3510がディスクガイド39 0と当接した位置で停止している。このため、図9

(c) に示すように、ピン351pは段差部311pに 30 は追従せず、第2の揺動体351を停止位置に残したま ま第2のスライド部材311だけが矢印10B方向に移 動する。このように第2の揺動体351が矢印351A 方向に付勢された状態でディスク10排出位置にとどま ることにより、張り出し部351gが次に挿入されるデ ィスク10の案内の役割を果たすことができる。

【0122】このように、ディスク挿入時には、駆動手 段281によって、第1のスライド部材211が矢印1 OAの方向への距離Aだけ移動し、第2のスライド部材 311が矢印10Bの方向へ連動して移動する。これら 40 の動作に伴って、第1の揺動体250がディスク10を **挿入位置からディスク10の回転位置まで引き込む。ま** た、ベース体100が上昇し、スピンドルモータ110 のターンテーブル面110bにディスク10を載置す る。

【0123】一方、ディスク10排出時には、第1のス ライド部材211が矢印10Βの方向へ距離Α+αだけ 移動し、第2のスライド部材が矢印10A方向へ連動し て移動する。この動作に伴って、ベース体100が降下 し、ディスク10がターンテーブル面110bから脱離 50 るので、ディスク装置が縦に設置された場合でも安定し

する。また、第2の揺動体351によって、ディスク1 0がその回転位置から排出位置まで排出される。ディス ク10を排出した後、第1のスライド部材211は再び 矢印10A方向へ距離αだけ移動し、第2のスライド部 材311も再び矢印10B方向へ移動してそれぞれ初期 位置に戻る。この時、ディスク排出方向に付勢される第 2の揺動体351は、第2のスライド部材311の矢印 10B方向への移動に追従せずディスク10排出位置に

【0124】これまで述べた正規サイズ(例えば、直径 12 cm) のディスク10ではなく、正規サイズの約3 分の2(例えば、直径8cm)までの直径の第2のディ スク11が図9(a)に示すようにフロントベゼル80 のディスク入口80 wから操作者によって誤って挿入さ れた場合を説明する。ディスク入口80wの左側もしく は中央から第2のディスク11が挿入された場合、たと え第2のディスク11の全体が押し込まれたとしても第 2の揺動体351は捻りコイルバネ356による作用力 が反転するところまでは回転しないように構成されてい 向は、それまでとは逆である。第1のスライド部材21 20 る。このため、手を離せば第2のディスク11は捻りコ イルバネ356による第2の揺動体351の矢印351 A方向への回転力により押し出される。またディスク入 口80wの右端からガイド体720のガイド面720d に沿って第2のディスク11が挿入された場合でも、第 2のディスク11は必ず第2の揺動体351の折り曲げ 351iもしくはピン351dに外縁が当たり、第2の 揺動体351を矢印351B方向に回転させるため、バ ネ力により排出される。このように、正規のサイズより も小さいディスクが挿入された場合でも、ディスク装置 2にそのようなディスクが入り込んで取り出せなくなる という可能性はほとんどない。

> 【0125】また、ディスク装置2が矢印10Aの方向 に縦に設置されても、左右の側面のどの方向が下になる ように縦に設置されても、ディスク10の搬送過程にお いて、入口付近では第2の揺動体351とガイド体72 0、730によって支持され、また中央付近ではディス クガイド390と、第3の揺動体540および第1の揺 動体250によって、搬送中のディスク10は常に支持 されるため、ディスク10は安定して搬送される。

> 【0126】以上のように、ディスク装置2によれば、 挿入ガイドと第2の揺動体の張り出し部によって挿入時 のディスク傷を防止し、スライド部材で確実に安定して ディスク排出を行うことができる。また、2つの状態の 検出を1つの検出器で兼ねさせることにより検出器を増 やさず、支持外装筐体によりディスク装置を軽量化する ことができる。小径ディスクが挿入された場合でも、バ ネ力によって排出させることが可能であり、ディスクガ イドを動かすことによりディスク装置の幅を小さくする ことができる。またディスクが搬送過程で常に支持され

たディスク搬送を行い、初期状態検出も確実に行うこと ができる。

【0127】なお、上記第1および第2の実施形態で は、ベース体は第1および第2のスライド部材によって 昇降させられていた。しかし、ベース体はかならずしも 第1および第2のスライド部材によって昇降させなくて もよい。例えば、第1または第2のスライド部材と連動 し、ベース体の側面に設けられた突起と係合するカム溝 を有する第3のスライド部材を設け、第1または第2の スライド部材と第3のスライド部材とによってベース体 10 を昇降させてもよい。このような第3のスライド部材 は、第1または第2のスライド部材に対してベース体を 挟むようにベース体の側面に設けてもよいし、ベース体 の隣接する2つの側面に近接して第1または第2のスラ イド部材と第3のスライド部材とを設けてもよい。

【0128】また、ベース体全体を昇降させて、ターン テーブル面へのディスクの載置およびターンテーブル面 からのディスクの脱離を行っていたが、これらの動作 は、ベース体の1つの側面を昇降させることによっても 行うことができる。具体的には、ベース体の一側面を第 20 1のスライド部材または第2のスライド部材によって昇 降させ、昇降する側面に対向する側面においてベース体 が回転可能なように支持する。このような構造によれ ば、スライド部材の移動に伴って、ターンテーブル面は ベース体を支持する軸を中心として回転し、ディスクに 対して傾いたり平行になったりする。このため、ディス クをターンテーブル面へディスクを載置し、ターンテー ブル面からのディスクを脱離したりすることができる。

【発明の効果】本発明によれば、ディスク搬送手段とし 30 てローラを使用しないため、ディスク装置の幅を小さく することができる。またディスクの搬送を2本の揺動体 のみによって行い、しかもスライド部材によって2本の 揺動体の駆動とベース体の昇降駆動を兼ねさせているた め、ディスク装置の構造を簡単にすることができ、低コ ストで軽量なディスク装置を実現できる。

[0129]

【0130】また、ベース体の側面をスライド部材によ って昇降させることにより、クランパを用いることなく ディスクをターンテーブル面に載置したり、ターンテー ンドルモータおよびベース体を、互いに連動する左右一 対のスライド部材で両側から支持して傾くことなく昇降 させる場合には、ディスクの保持動作、回転動作をより 安定して行わせることができる。

【0131】また、一対のスライド部材、第1及び第2 の揺動体およびスライド連結部材をベース体の投影面積 の外に配置することにより、ほとんどの構成要素をター ンテーブル面より下方に平面的に配置することができ、 しかも自己保持型のスピンドルモータを用いることによ りディスク上面からクランパを排除することができる。

32

これによってディスク装置を薄くすることができる。 【0132】また、ベース体を装置手前側に配置するこ とにより、回路基板および装置外部との接続コネクタを 装置の奥に配置できるので、外部との接続を容易に行 え、しかも回路基板の面積を小さくすることができる。 また、スライド部材の移動方向をディスク搬送方向と概 ね同じとすることにより、外部からスライド部材を強制 的に移動させることができ、緊急時のディスク排出を容 易に行うことができる。

【0133】また、ディスク装置の外装筐体に切り欠き 形状を設けてさらに小型化し、この状態でも外装筐体の ガイド部に第1の揺動体の一部を係合させることによ り、第1の揺動体は浮き上がることなく回動することが できる。また、第2の揺動体の動作に反転バネを用いる ことにより、第2の揺動体は大きな角度で回転するにも かかわらずこれを駆動する駆動手段に必要な駆動負荷は わずかなものとすることができる。

【0134】また、ベース体が変形していても、駆動手 段支持体に設けた板バネ部がこれを矯正するので、ベー ス体は水平を維持でき、安定したディスクの保持、回転 を行わせることができる。また、ディスクが回転してい る時は、ベース体の衝立形状部がディスク挿入口を塞ぐ ので、ディスクを誤挿入されることがない。

【0135】また、挿入ガイドと第2の揺動体の張り出 し部によって、操作者によるディスク挿入時において、 ディスクがベース体上の部品と衝突しないよう案内され るのでディスクが傷つかない。

【0136】また、ディスクを排出するまで第2のスラ イド部材が確実に第2の揺動体を押し切るため、ディス クを安定して一定量排出させることができる。また、排 出後第2の揺動体を残して第2のスライド部材が一定量 戻ることにより、第2の揺動体の張り出し部によるディ スクの案内を可能にしている。また、ディスクの装着完 了検出器と排出完了検出器を兼ねることにより、検出器 を増やすことなく前記動作を可能にしている。

【0137】また、折り曲げ部を有する強固な支持外装 筐体が外装筐体に取り付けられているためディスク装置 の補強や軽量化に寄与している。

【0138】また、正規サイズより小さなディスクが挿 ブル面から脱離させたりすることができる。特に、スピ 40 入されても、必ず第2の揺動体のバネ力によって排出さ れる。

> 【0139】また、ディスクガイドを位置決め位置と待 避位置とに動かすことにより、ディスク搬送軌跡を最適 化しディスク装置幅を小型化できる。また、ディスク搬 送の過程において、常にディスクが支持される構成とし たことにより、ディスク装置が縦に設置された場合でも 安定してディスク搬送を行うことができる。

【0140】また、ディスク排出動作において、必ずス ライド連結手段が第3の揺動体を押して初期位置に復帰 50 させるので、初期状態検出器の第3の揺動体による押下 を確実にし、誤検出を防ぐことができる。

【図面の簡単な説明】

【図1】(a)は、本発明のディスク装置の第1の実施 形態の全体構成を示す平面図であり、(b)はその正面 図である。

【図2】(a)は、図1に示すディスク装置のディスク 搬送動作を示す平面図であり、(b) および(c) は、 第1のスライド部材および第2のスライド部材近傍をそ れぞれ拡大して示す平面図である。

搬送動作を示す平面図であり、(b) および(c) は、 第1のスライド部材および第2のスライド部材近傍をそ れぞれ拡大して示す平面図である。

【図4】(a)は、図1に示すディスク装置のディスク 搬送動作を示す平面図であり、(b)および(c)は、 第1のスライド部材および第2のスライド部材近傍をそ れぞれ拡大して示す平面図である。

【図5】(a)から(c)は、図1のディスク装置にお いてベース体の昇降動作を示す部分断面図である。

【図6】(a)は、図1に示すディスク装置のディスク 20 搬送動作を示す平面図であり、(b)および(c)は、 第1のスライド部材および第2のスライド部材近傍をそ れぞれ拡大して示す平面図である。

【図7】(a)から(d)は、図1のディスク装置にお いてベース体の昇降動作を示す部分断面図である。

【図8】(a)は、本発明のディスク装置の第2の実施 形態の全体構成を示す平面図であり、(b)はその正面 図であり、(c)はフロントベゼルを除いた正面図であ る。

【図9】(a)は、図8に示すディスク装置のディスク 搬送動作を示す平面図であり、(b)は、第1のスライ ド部材近傍を拡大して示す平面図であり、(c)および (d) は、第2のスライド部材近傍を拡大して示す平面 図である。

【図10】(a)は、図8に示すディスク装置のディス ク搬送動作を示す平面図であり、(b)は、第1のスラ イド部材近傍を拡大して示す平面図であり、(c)およ び(d)は、第2のスライド部材近傍を拡大して示す平 面図である。

【図11】(a)は、図8に示すディスク装置のディス ク搬送動作を示す平面図であり、(b)は、第1のスラ イド部材近傍を拡大して示す平面図であり、(c)およ び(d)は、第2のスライド部材近傍を拡大して示す平 面図である。

【図12】(a)は、図8に示すディスク装置のディス ク搬送動作を示す平面図であり、(b)は、第1のスラ イド部材近傍を拡大して示す平面図であり、(c)およ 【図3】(a)は、図1に示すディスク装置のディスク 10 び(d)は、第2のスライド部材近傍を拡大して示す平 面図である。

> 【図13】(a)は、図8に示すディスク装置のディス ク搬送動作を示す平面図であり、(b)は、第1のスラ イド部材近傍を拡大して示す平面図であり、(c)およ び(d)は、第2のスライド部材近傍を拡大して示す平 面図である。

【符号の説明】

- 10 ディスク
- 90 外装筐体
- 90f,90t 切り欠き部
- 90c ガイド部
- 100 ベース体
- 110 スピンドルモータ
- 130 ベースシャーシ
- 130a 衝立形状部
- 210.211 第1のスライド部材
- 250 第1の揺動体
- 281 駆動手段
- 285 駆動手段支持体
- 285a 板バネ部
 - 310,11 第2のスライド部材
 - 350,351 第2の揺動体
 - 356 捻りコイルバネ (反転バネ)
 - 380 検出レバー
 - 390 ディスクガイド
 - 540 第3の揺動体
 - 410 スライド連結部材
 - 810 回路基板

【図11】

【図13】

[図12]

フロントページの続き

(51) Int.Cl.⁷

識別記号

FΙ

テーマコード(参考)

G 1 1 B 17/04

G 1 1 B 17/04

3 1 3 V

3 1 3 W

17/035

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

17/035

(72)発明者 太田 秀彦

(72)発明者 和田 慎一

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 正岡 健吾

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

F ターム(参考) 5D046 CB07 EA04 EA14 EA15 EB02

FA04 FA05 GA02 GA03 GA04

HA05 HA06

5D138 RAO5 RA11 SAO3 SA24 TA33

TA34 TD03 TD04 TD05 TD14

TD16

۳.