Sean Bibby, Lee Fisher, Lucas Meyers, Hunter Patton

Problem 1.

 \square

Problem 2 (3.3).

Will be cleaned up later. But it should be mostly correct.

Lemma 2.1. The product of two perfect sets are perfect.

Proof. Let X,Y be perfect sets. Consider $(x,y) \in X \times Y$. Let U be an open neighborhood of x. Then $U \times Y$ is an open neighborhood of (x,y). However since (x,y) is a limit point of $X \times Y$ it follows that $U \times Y \cap X \times Y \neq \phi$. This implies that $U \cap X \neq \phi$. Since this holds for any open neighborhood x is a limit point of X and as such $x \in X$. By the same reasoning $y \in Y$ which implies that $(x,y) \in X \times Y$. Therefore $X \times Y$ contains all of its limit points.

Next suppose that $(x, y) \in X \times Y$. Then $x \in X$ and $y \in Y$ and so it follows that x and y are limit points of X and Y respectively as they are perfect. This in turn implies that (x, y) is a limit point of $X \times Y$.

Therefore the product of two perfect sets is perfect.

Proof. Define $f([a,b]) = [a,\frac{a+b}{3}] \cup [\frac{2(a+b)}{3},b]$ and $f(\bigcup_1^n [a_k,b_k]) = \bigcup_1^n f([a_k,b_k])$. Then we can define $C_k = f^k([0,1])$ and the Cantor set is defined as $C = \bigcap_1^\infty C_k$. Similarly we can define

$$g([a,b]\times[c,d]) = \left[a,\frac{a+b}{3}\right]\times\left[c,\frac{c+d}{3}\right] \cup \left[a,\frac{a+b}{3}\right] \times \left[\frac{2(c+d)}{3},d\right] \cup \left[\frac{2(a+b)}{3},b\right] \times \left[c,\frac{c+d}{3}\right] \cup \left[\frac{2(a+b)}{3},b\right] \times \left[\frac{2(c+d)}{3},\frac{c+d}{3}\right] = \left[a,\frac{a+b}{3}\right] \times \left[a,\frac{a+b}{$$

and $g(\bigcup_{1}^{n}[a_{k},b_{k}]\times[c_{k},d_{k}])=\bigcup_{1}^{n}g([a_{k},b_{k}],[c_{k},d_{k}])$. Then let $D_{k}=g^{k}([0,1]^{2})$ and define $D=\bigcap_{1}^{\infty}D_{k}$.

Note that $g([a,b] \times [c,d]) = f([a,b]) \times f([c,d])$.

Now we will show that $D = C^2$, that |D| = 0, and that D is perfect.

• First we'll show that $D_k = C_k^2$. For k = 0 we have $g([0,1]^2) = [0,1]^2 = [0,1] \times [0,1] = f([0,1]) \times f([0,1])$. Assume that $D_n = C_n^2$ for n < k. Then for k we have $D_k = g^k([0,1]^2) = g(g^{k-1}([0,1]^2)) = g(f^{k-1}([0,1]) \times f^{k-1}) = f^k([0,1]) \times f^k([0,1]) = C_k^2$ Therefore by induction $D_k = C_k^2$ for all k.

Let $(x,y) \in D$. Then $(x,y) \in D_k$ for all k. However $D_k = C_k^2$ which implies that $x,y \in C_k$ for all k and as such $x,y \in C$. Therefore $D \subset C$.

Next let $(x,y) \in C^2$. Then $x,y \in C_k$ for all k. However this implies that $(x,y) \in C_k^2 = D_k$ for all k and as such $(x,y) \in D$ and $D \subset C$.

Therefore $C^2 = D$.

• First let us look at how g affects the measure of a set. Let $I = [a, b] \times [a, a + b]$ be a square interval. Then $|I| = b^2$ and if we take g(I) we get four smaller squares with measure $\left(\frac{b}{3}\right)^2 = |I|/9$. However since there are four we have $|g(I)| = \frac{4|I|}{9}$ when I is a square.

Then if we look at D_k the measure of D_k is

$$|D_k| = g^k([0,1]^2) = \left(\frac{4}{9}\right)^k$$

We know that D is measurable since it is the countable intersection of measurable sets. Since $D \subset D_k$ for all k it follows that $|D| < \left(\frac{4}{9}\right)^k$ for all k and as such |D| = 0. Therefore the measure of D is 0. • From our lemma the product of two perfect sets is perfect. This implies that $C^2 = D$ is also perfect. Therefore D is a perfect set. **Problem 3** (3.7). Proof. **Problem 4** (3.9). Proof. **Problem 5** (3.10). Proof. Let E_1, E_2 be measurable sets. Then by Carathéodory's Theorem we have that $|E_1| = |E_1 \cap E_2| + |E_1 \setminus E_2|$ and $|E_2| = |E_1 \cap E_2| + |E_2 \setminus E_1$ If we add the two equations together we get $|E_1| + |E_2| = 2|E_1 \cap E_2| + |E_1 \setminus E_2| + |E_2 \setminus E_1|$ Since $E_1 \setminus E_2, E_2 \setminus E_1, E_1 \cap E_2$ are disjoint it follows from two applications of Lemma 4.7 of the notes that $|E_1 \cup E_2| = |E_1 \Delta E_2| + |E_1 \cap E_2| = |E_1 \setminus E_2| + |E_2 \setminus E_1| + |E_1 \cap E_2|$ **Problem 6** (3.12). Proof.

Problem 7 (3.13).

- Proof. By definition $|E|_i = \sup\{|F|\}$ where F is a closed subset of E. Likewise, $|E|_e = \inf\{|G|\}$ where G is an open set containing E. Consider particular satisfying setss, F and G. We know $F \subset G$, so $|F| \leq |G|$. This holds for any pair of sets F and G satisfying the restraint, so we can conclude $|E|_i \leq |E|_e$.
- Proof. \rightarrow Suppose E is measurable. By Lemma 3.22 we know that for any $\epsilon > 0$ there is a closed F, a subset of E for which $|E/F|_e < \epsilon$. Consider F, we know from the earlier part that $|F| \leq |E|_i \leq |E|_e$. However, $E = F \cup (E/F)$, so $|E|_e \leq |F| + |E/F|_e < |F| + \epsilon$. Finally we have $|F| \leq |E|_i \leq |E|_e < |F| + \epsilon$. Let ϵ tend to zero and we have it. $|E|_i = |E|_e$.
 - \leftarrow Suppose $|E|_i = |E|_e$. Since these measures are equal, we can say that for any $\epsilon > 0$ there will be F a closed subset of E and G an open superset of E such that, $|G| |F| < \epsilon$. Consider two such satisfying sets. Then we have $G/E \subset G/F$. Which implies that $|G/E|_e \leq |G/F|_e$. Since G and F are both measurable this simplifies to: $|G/E|_e \leq |G| |F| < \epsilon$. This is precisely the definition of measurability, so E is measurable.