Organización de Computadoras – Fac. de Informática - UNLP – Prof. Jorge Runco Curso 2015 - Práctica $N^{\rm o}$ 2 : Números con signo

1)

1)				
Nº decimal	BCS	Cal	Ca2	Exceso
0	00000000	00000000	00000000	100000000
	10000000	11111111		
+1	00000001	00000001	00000001	10000001
+127	01111111	01111111	01111111	11111111
128	Fuera de rango	Fuera de rango	Fuera de rango	Fuera de rango
255	Fuera de rango	Fuera de rango	Fuera de rango	Fuera de rango
256	Fuera de rango	Fuera de rango	Fuera de rango	Fuera de rango
-1	10000001	11111110	11111111	11111111
				+10000000
				01111111
-8	10001000	+8=00001000	+8=00001000	11111000
		-8= 11110111	-8= 11111000	+10000000
				01111000
-127	11111111	+127=01111111	+127=01111111	10000001
		-127= 10000000	-127= 10000001	+10000000
				00000001
-128	Fuera de rango	Fuera de rango	10000000	10000000
				+10000000
				00000000
-256	Fuera de rango	Fuera de rango	Fuera de rango	Fuera de rango
137	Fuera de rango	Fuera de rango	Fuera de rango	Fuera de rango
-199	Fuera de rango	Fuera de rango	Fuera de rango	Fuera de rango
+100	01100100	01100100	01100100	11100100
-100	11100100	10011011	10011100	10011100
				+10000000
				00011100

2)

Binario	BCS	Ca1	Ca2	Exceso
00000000	0	+0	0	0-128= -128
11111111	-127	-0	-1	255-128=+127
01010101	+85	+85	+85	85-128= -43
10101010	-42	-127+32+8+2=	-128+32+8+2=	170-128= +42
		-85	-86	
10000000	-0	-127	-128	128-128=0
01111111	+127	+127	+127	127-128= -1
11111110	-126	-127+64+32+16	-128+64+32+16	254-128= 126
		+8+4+2= -1	+8+4+2= -2	
01100110	+102	+102	+102	102-128= -26

Organización de Computadoras – Fac. de Informática - UNLP – Prof. Jorge Runco Curso 2015 - Práctica Nº 2 : Números con signo

$$N_1 = 0$$
 11111,1111 = + 31,9375
 $N_2 = 1$ 11111,1111 = - 31,9375
 $N_3 = 0$ 00000,0001 = + 0,0625
 $N_4 = 1$ 00000,0001 = - 0,0625

Resolución = distancia entre dos representaciones sucesivas = 0,0625

4)
$$1,2 \rightarrow 0.00001,0011 = (1+0,125+0,0625) = 1,1875$$

$$0.2 \times 2 = 0.4$$

$$0,4 \times 2 = 0,8$$

$$0.8 \times 2 = 1.6$$

$$0.6 \times 2 = 1.2$$

$$1,25 = 0 00001,0100$$

$$-1,25 = 1 00001,0100$$

35
$$\longrightarrow$$
 El más grande = 0 11111,1111 = +31,9375

$$1,0625 = 0 00001,0001$$

$$-1,5625 = 1 00001,1001$$

$$-35,5 \longrightarrow El \text{ más chico} = 1 11111,1111 = -31,9375$$

5)

$$0.10000,0000 = +16$$

$$1\ 111111,11111 = -31,9375$$

$$0\ 10101,0101 = +21 + 0,25 + 0,0625 = +21,3125$$

$$1\ 01010,1010 = -(\ 10 + 0,5 + 0,125\) = -\ 10,625$$

$$1\ 00000,0000 = -0$$

$$0.11111,11111 = +31,9375$$

Organización de Computadoras – Fac. de Informática - UNLP – Prof. Jorge Runco Curso 2015 - Práctica Nº 2 : Números con signo

Organización de Computadoras – Fac. de Informática - UNLP – Prof. Jorge Runco Curso 2015 - Práctica $N^{\rm o}$ 2 : Números con signo

10000000	ZNVC=1000	1 → 000000	000 ZNVC=011	1
- 10000000		- 100000	00	
00000000		101111	00	

7) Sumas

Ca2	BSS
29 + 27 = 56	29 + 27 = 56
- 99 + 114 = 15	157 + 114 = 15 X
118 + 113 = -25 X	118 + 113 = 231
- 71 + (-29) = - 100	185 + 227 = 156 X
58 + 15 = 73	58 + 15 = 73
112 + (-15) = 97	112 + 241 = 97 X
76 + 112 = - 68 X	76 + 112 = 188
- 52 + (-16) = -68	204 + 240 = 188 X
-128 + (-128) = 0 X	128 + 128 = 0 X
0 + (-128) = -128	0 + 128 = 128

Restas

Ca2	BSS
29 - 27 = 2	29 - 27 = 2
-99 - 114 = 43 X	157 - 114 = 43
118 - 113 = 5	118 - 113 = 5
- 71 – (-29) = - 42	185 - 227 = 214 X
56 - 15 = 43	56 - 15 = 43
112 - (-15) = 127	112 - 241 = 127 X
76 - 112 = -36	76 - 112 = 220 X
- 52 – (-16) = -36	204 - 240 = 220 X
-128 - (-128) = 0	128 - 128 = 0
0 - (-128) = -128 X	0 - 128 = 128 X

8) 9)

Cada vez que hay V (overflow) es incorrecto el resultado en Ca2.

Cada vez que hay C (carry en la suma y borrow en la resta), es incorrecto el resultado es BSS.

En los resultados marcados con X hay condición de V ó C según corresponda.

11)

	BCS	Ca1	Ca2	Exceso
+7	0111	0111	0111	1111
+6	0110	0110	0110	1110
+ 5	0101	0101	0101	1101
+4	0100	0100	0100	1100
+ 3	0011	0011	0011	1011
+ 2	0010	0010	0010	1010
+ 1	0001	0001	0001	1001
+0	0000	0000	0000	1000
- 0	1000	1111		
- 1	1001	1110	1111	0111
- 2	1010	1101	1110	0110
- 3	1011	1100	1101	0101
- 4	1100	1011	1100	0100
- 5	1101	1010	1011	0011
- 6	1110	1001	1010	0010
- 7	1111	1000	1001	0001
- 8			1000	0000

Rango BCS =
$$[-7; -0; +0; +7] = [-(2^{n-1} - 1); +(2^{n-1} - 1)]$$

Ca1 = $[-7; -0; +0; +7] = [-(2^{n-1} - 1); +(2^{n-1} - 1)]$
Ca2 = $[-8; -0; +0; +7] = [-(2^{n-1}); +(2^{n-1} - 1)]$
Exceso = $[-8; -0; +0; +7] = [-(2^{n-1}); +(2^{n-1} - 1)]$

En todos los casos se pueden representar 2^n cadenas distintas y para BCS y Ca1: 2^n -1 números distintos (2 ceros) y para Ca2 y Exceso : 2^n números distintos.

- 12) La representación en exceso M está definida por : $N^o + M = N^o$ en exceso M. Una definición más rigurosa sería para base 2: partiendo de la representación en Ca2 (+ y -) se le suma M y el número resultante es la representación en exceso.
- 13) Los flags están diseñados para responder frente a operaciones en BSS y Ca2. No sirven para los otros sistemas (Ca1, BCS).

Algunas reglas:

*Para sumar ó restar en BCS hay que realizar la operación con los módulos y asignar al resultado el signo del número con módulo mayor, no podemos sumar ó restar el bit de signo, justamente porque sólo representa al signo.

Organización de Computadoras – Fac. de Informática - UNLP – Prof. Jorge Runco Curso 2015 - Práctica Nº 2 : Números con signo

*En Ca1 el problema es por tener 2 ceros. Se puede demostrar que en la suma cuando hay carry es porque "pasamos" por el doble cero y hay que sumar 1 más al resultado.

14)
a.
$$00100110 = 2^5 + 2^2 + 2^1 = 32 + 4 + 2 = 38$$
b. $11011000 = -2^7 + 2^6 + 2^4 + 2^3 = -128 + 64 + 16 + 8 = -40$
c. $00111000 = 2^5 + 2^4 + 2^3 = 32 + 16 + 8 = 56$
d. $00000000 = 0$
e. $10000000 = -2^7 = -128$

15)
a. 10100110

$$10100110 - 10000000 = 00100110 = 2^5 + 2^2 + 2^1 = 32 + 4 + 2 = 38$$
b. 01011000

$$01011000 - 10000000 = 11011000 = -2^7 + 2^6 + 2^4 + 2^3 = -128 + 64 + 16 + 8 = -40$$
c. 10111000

$$10111000 - 10000000 = 00111000 = 2^5 + 2^4 + 2^3 = 32 + 16 + 8 = 56$$
d. 10000000

$$10000000 - 100000000 = 000000000 = 0$$
e. 00000000

$$00000000 - 100000000 = 100000000 = -2^7 = -128$$

Otro método para exceso: tratar a los números como BSS, pero ojo tienen signo.

a.
$$10100110 = 166$$

b. $01011000 = 88$
c. $10111000 = 184$
d. $100000000 = 128$
e. $000000000 = 0$

$$166 - 128 = 38$$

$$88 - 128 = -40$$

$$184 - 128 = -56$$

$$128 - 128 = 0$$

$$0 - 128 = -128$$