Matemática atuarial

Anuidade diferida (aula14)

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

> Fluxo Antecipado

$$a_{m|}\ddot{a}_{\overline{n|}} = v^m + v^{m+1} + v^{m+2} + \dots + v^{m+n-1}$$

$$m_{|\ddot{a}_{\overline{n}|}} = v^m \frac{1-v^n}{1-v}$$

$$a_{\overline{n|}} = v^{m+1} + v^{m+2} + v^{m+3} + \dots + v^{m+n}$$

$$a_{\overline{n|}} = v^m v \left(rac{1-v^n}{1-v}
ight)$$

> Fluxo Antecipado

$$m_{|}\ddot{a}_{\overline{n}|} = v^{m} \frac{1-v^{n}}{1-v} = v^{m} \ddot{a}_{\overline{n}|} \quad (m=0) \to \quad \ddot{a}_{\overline{n}|} = \frac{1-v^{n}}{1-v}$$

> Fluxo Postecipado

$$a_{\overline{n}|} = v^{m+1} \left(\frac{1-v^n}{1-v} \right) = v^m a_{\overline{n}|} \quad (m = 0) \to a_{\overline{n}|} = v \left(\frac{1-v^n}{1-v} \right)$$

$$a_{m+1|\ddot{a}_{\overline{n|}}} = a_{m|} a_{\overline{n|}}$$

Anuidades

$$_{m|\ddot{a}_{\overline{n}|}}=v^{m}\frac{1-v^{n}}{1-v}=v^{m}\ddot{a}_{\overline{n}|} \qquad _{m|}a_{\overline{n}|}=v^{m+1}\left(\frac{1-v^{n}}{1-v}\right)=v^{m}a_{\overline{n}|}$$

$$a_{m|}\ddot{a}_{\overline{n|}} = \ddot{a}_{\overline{n+m|}} - \ddot{a}_{\overline{m|}} \qquad a_{m|}a_{\overline{n|}} = a_{\overline{n+m|}} - a_{\overline{m|}}$$

Uma loja de departamentos está vendendo um conjunto de cadeiras. A forma de pagamento proposta pela loja consiste 8 prestações de \$ 6000,00 e só comece a pagar a partir do início do 4° ano após adquirir o produto, considerando uma taxa de juros de 1,25% ao ano, em regime de juros compostos. Determine o quanto custaria essas cadeiras caso fosse pago a vista.

SOLUÇÃO

$$a_{|\dot{a}_{8|}} = v^4 \frac{1 - v^8}{1 - v} \approx 7,29127$$

Assim o valor das cadeiras a vista é dado por:

$$6000 \times_{4|} \ddot{a}_{8|} \approx $43747,62$$

SOLUÇÃO (Caso Postecipado)

$$a_{8|} = v^5 \left(\frac{1 - v^8}{1 - v}\right) \approx 7,201254$$

$$6000 \times _{4|} a_{\overline{8|}} \approx $43207,52$$

Anuidades Diferidas

- ➤ Na prática, planos de aposentadoria são comprado anos antes do início dos recebimentos dos benefícios.
 - > Anuidades diferidas são pagas passado um determinado prazo, diferentemente das anuidades imediatas.
 - Caso o participante faleça antes do início do recebimento da anuidade (antes de aposentadoria) a seguradora não terá que pagar nada ao segurado (considerando que não existe reversão para pensão).

Anuidades vitalícias Diferidas, Antecipado

$$E(m|\ddot{a}_{T_x+1-m|}) = \sum_{t=m} v^t p_x = \sum_{t=0} v^{t+m} p_x$$

 \triangleright Lembrando que $_{t+m}p_x=_{m}p_x\times_{t}p_{x+m}$

$$E(m|\ddot{a}_{T_x+1-m|}) = \sum_{t=0}^{\infty} v^t v^m m p_x t p_{m+x} = v^m m p_x \sum_{t=0}^{\infty} v^t t p_{m+x}$$

$$E\left(m|\ddot{a}_{T_x+1-m|}\right) = m E_x \ddot{a}_{x+m}$$

$$_{m|}\ddot{a}_{x} = {}_{m}E_{x}\ddot{a}_{x+m}$$

Anuidades vitalícias Diferidas, Postecipado

$$E(m|a_{\overline{T_x-m|}}) = \sum_{t=m+1} v^t p_x = \sum_{t=1} v^{t+m} p_x$$

 \triangleright Lembrando que $_{t+m}p_x = _m p_x \times_t p_{x+m}$

$$E(m|a_{\overline{T_{X}}-m|}) = \sum_{t=1}^{\infty} v^{t} v^{m} p_{x} t p_{m+x} = v^{m} p_{x} \sum_{t=1}^{\infty} v^{t} t p_{m+x}$$

$$E(m|a_{\overline{T_{X}}-m|}) = m E_{x} a_{x+m}$$

$$m \mid a_x = {}_m E_x a_{x+m}$$

> FLUXO ANTECIPADO

DO FLUXO POSTECIPADO

$$Y = \begin{cases} m \mid \ddot{a}_{T_x + 1 - m}; & T_x \ge m \\ 0; & \text{caso contrário} \end{cases}$$

$$Y = \begin{cases} m \mid a_{\overline{T_x - m}}; & T_x \ge m \\ 0; & \text{caso contário} \end{cases}$$

$$m | \ddot{a}_x = \sum_{t=m}^{\omega - x - m} v^t p_x$$

$$a_x = \sum_{t=m+1}^{\omega - x - m} v^t t p_x$$

$$_{m|}\ddot{a}_{x}={}_{m}E_{x}\ddot{a}_{x+m}$$

$$a_{x} = {}_{m}E_{x}a_{x+m}$$

$$m \ddot{a}_x = \sum_{t=m}^{\omega - x - m} v^m \frac{1 - v^{t - m + 1}}{1 - v} {}_t p_x q_{x + t}$$

$$a_{m} = \sum_{t=m}^{\omega - x - m} v^{m+1} \left(\frac{1 - v^{t-m}}{1 - v} \right)_{t} p_{x} q_{x+t}$$

$$a_{x} = \ddot{a}_{x} - \ddot{a}_{x:\overline{m}}$$

$$_{m|}a_{x}=a_{x}-a_{x:\overline{m}|}$$

Seja uma pessoa de 40 anos que queira comprar uma anuidade vitalícia diferida por 20 anos, que paga 1 u.m. em fluxo de caixa **antecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% ao ano, calcule o prêmio puro único a ser pago pelo segurado para comprar essa anuidade com pagamento diferido.

$$_{20|}\ddot{a}_{40} = \sum_{t=20}^{\omega-60} v^t \,_t p_{40}$$

$$_{20|}\ddot{a}_{40} = {_{20}E_{40}\ddot{a}_{60}} = v^{20} {_{20}p_{40}} \left(\sum_{t=0}^{\omega-60} v^t {_tp_{60}} \right)$$

Seja uma pessoa de 40 anos que queira comprar uma anuidade vitalícia diferida por 19 anos, que paga 1 u.m. em fluxo de caixa **postecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% ao ano, calcule o prêmio puro único a ser pago pelo segurado para comprar essa anuidade com pagamento diferido.

$$_{19|}a_{40} = v^{19} _{19}p_{40} \left(\sum_{t=1}^{\infty} v^{t} _{t} p_{59} \right)$$

$${}_{19|}a_{40} = v^{19} {}_{19}p_{40} \left(\sum_{t=0}^{t+1} v^{t+1} {}_{t+1}p_{59} \right) = v^{19} {}_{19}p_{40} \left(\sum_{t=0}^{t} v^{t} v^{1} {}_{1}p_{59} {}_{t}p_{59+1} \right)$$

$$_{19|}a_{40}=v^{19}\,_{19}p_{40} \textcolor{red}{v^{1}}\,_{1}p_{59}\Biggl(\sum_{t=0}^{}v^{t}\,_{t}p_{59+1}\Biggr)=v^{20}\,_{19}p_{40}\,_{1}p_{40+19}\Biggl(\sum_{t=0}^{}v^{t}\,_{t}p_{59+1}\Biggr)$$

$$a_{19|}a_{40} = v^{20} a_{19|}p_{40} \left(\sum_{t=0}^{\infty} v^t p_{59+1}\right) = a_{19|}\ddot{a}_{40}$$

Seja uma pessoa de 40 anos que queira comprar uma anuidade vitalícia diferida por 19 anos, que paga 1 u.m. em fluxo de caixa **Postecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o prêmio puro único a ser pago pelo segurado para comprar essa anuidade com pagamento diferido.

$$a_{19|}a_{40} = \sum_{t=19+1} v^t t p_{40} = \sum_{t=20} v^t t p_{40} = \sum_{20|} \ddot{a}_{40}$$

Anuidades Diferidas Temporárias

 \blacktriangleright VPA de uma anuidade temporária por n anos, diferida por m anos com pagamento antecipado, b=1 u. m.

$$m_{\parallel}\ddot{a}_{x:\overline{n}|} = {}_{m}E_{x}\ddot{a}_{x+m:\overline{n}|} = {}_{m}E_{x}\sum_{t=0}^{n-1}v^{t}{}_{t}p_{x+m}$$

 \blacktriangleright VPA de uma anuidade temporária por n anos, diferida por m anos com pagamento postecipado, b=1 u.m.

$$a_{x:\bar{n}|} = {}_{m} E_{x} a_{x+m:\bar{n}|} = {}_{m} E_{x} \sum_{t=1}^{n} v^{t} {}_{t} p_{x+m}$$

Seja uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 *u.m.* no período de 3 anos. No entanto essa anuidade é diferida por 3 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% ao ano, Calcule o prêmio puro único a ser pago pelo segurado para comprar essa anuidade com pagamento diferido, antecipado e postecipado.

x	qx	px	lx
35	0,000792	0,999208	978890,5
36	0,000794	0,999206	978115,2
37	0,000823	0,999177	977338,6
38	0,000872	0,999128	976534,2
39	0,000945	0,999055	975682,7
40	0,001043	0,998957	974760,7
41	0,001168	0,998832	973744
42	0,001322	0,998678	972606,7
43	0,001505	0,998495	971320,9
44	0,001715	0,998285	969859
45	0,001948	0,998052	968195,7
46	0,002198	0,997802	966309,7
47	0,002463	0,997537	964185,7
48	0,00274	0,99726	961810,9
49	0,003028	0,996972	959175,6
50	0,00333	0,99667	956271,2
51	0,003647	0,996353	953086,8
52	0,00398	0,99602	949610,9
53	0,004331	0,995669	945831,5
54	0,004698	0,995302	941735,1
55	0,005077	0,994923	937310,8

sοιυς̃λο Pagamento antecipado , $b=1\,u.m,\ m=3, n=3,$ i=0.05

$$_{3|}\ddot{a}_{40:\overline{3}|} = _{3}E_{40}\ddot{a}_{43:\overline{3}|}$$

$$a_{3|}\ddot{a}_{40:\overline{3}|} = v^3 a_{3}p_{40} \sum_{t=0}^{3-1} v^t p_{43}$$

$$_{3|\ddot{a}_{40:\overline{3}|}} = v^3 _{3}p_{40}(1 + v p_{43} + v^2 _{2}p_{43})$$

$$_{3|\ddot{a}_{40:\overline{3}|}} = \left(\frac{1}{1,05}\right)^{3} p_{40}p_{41}p_{42} \left[1 + \left(\frac{1}{1,05}\right)p_{43} + \left(\frac{1}{1,05}\right)^{2} p_{43}p_{44}\right]$$

$$_{3|}\ddot{a}_{40:\overline{3}|} \approx 2,457604$$

SOLUÇÃO Pagamento postecipado, b=1 u. m, m=3, i=0.05

X	qx	рх	lx
35	0,000792	0,999208	978890,5
36	0,000794	0,999206	978115,2
37	0,000823	0,999177	977338,6
38	0,000872	0,999128	976534,2
39	0,000945	0,999055	975682,7
40	0,001043	0,998957	974760,7
41	0,001168	0,998832	973744
42	0,001322	0,998678	972606,7
43	0,001505	0,998495	971320,9
44	0,001715	0,998285	969859
45	0,001948	0,998052	968195,7
46	0,002198	0,997802	966309,7
47	0,002463	0,997537	964185,7
48	0,00274	0,99726	961810,9
49	0,003028	0,996972	959175,6
50	0,00333	0,99667	956271,2
51	0,003647	0,996353	953086,8
52	0,00398	0,99602	949610,9
53	0,004331	0,995669	945831,5
54	0,004698	0,995302	941735,1
55	0,005077	0,994923	937310,8

$$_{3|}a_{40:\overline{3}|} = {}_{3}E_{40}a_{43:\overline{3}|}$$

$$_{3|}a_{40:\overline{3}|} = v^{3} {}_{3}p_{40} \sum_{t=1}^{3} v^{t} {}_{t}p_{43}$$

$$_{3|}a_{40:\overline{3}|} = v^{3} {}_{3}p_{40}(v p_{43} + v^{2} {}_{2}p_{43} + v^{3} {}_{3}p_{43})$$

$$_{3|}a_{40:\overline{3}|} = \left(\frac{1}{1,05}\right)^{3} p_{40}p_{41}p_{42} \left[\left(\frac{1}{1,05}\right)p_{43} + \left(\frac{1}{1,05}\right)^{2} p_{43}p_{44} + \left(\frac{1}{1,05}\right)^{3} p_{43}p_{44}p_{45}\right]$$

$$_{3|}a_{40:\overline{3}|} \approx 0,8591533 \times 2,71444$$

 $a_{40:\overline{3}|} \approx 2,33212$

EXEMPLO 5 Mostre um exemplo que verifica-se a relação:

$$_{m+1|}\ddot{a}_{x:\bar{n}|} = _{m|} a_{x:\bar{n}|}$$

x	qx	px	lx
35	0,000792	0,999208	978890,5
36	0,000794	0,999206	978115,2
37	0,000823	0,999177	977338,6
38	0,000872	0,999128	976534,2
39	0,000945	0,999055	975682,7
40	0,001043	0,998957	974760,7
41	0,001168	0,998832	973744
42	0,001322	0,998678	972606,7
43	0,001505	0,998495	971320,9
44	0,001715	0,998285	969859
45	0,001948	0,998052	968195,7
46	0,002198	0,997802	966309,7
47	0,002463	0,997537	964185,7
48	0,00274	0,99726	961810,9
49	0,003028	0,996972	959175,6
50	0,00333	0,99667	956271,2
51	0,003647	0,996353	953086,8
52	0,00398	0,99602	949610,9
53	0,004331	0,995669	945831,5
54	0,004698	0,995302	941735,1
55	0,005077	0,994923	937310,8

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. Actuarial Mathematics, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters.
 Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.

- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES, R. Fundamentos da matemática atuarial: vida e pensões. Curitiba: CRV,2022.

