# DNA-Based Computing & Development of Efficient Operators for Solving Traveling Salesman Problem

Tai Hyun Park School of Chemical Engineering

Seoul National University

#### **Contents**

- Introduction
- DNA computing for solving traveling salesman problem
  - Traveling salesman problem (TSP)
  - Molecular algorithm for TSP
  - Experimental implementation
- Unit operators in DNA computing
  - Denaturation temperature gradient polymerase chain reaction (DTG-PCR)
  - □ Initial pool generation using parallel overlap assembly (POA)

## Rise and Growth of DNA Computing

- Adleman's work in 1994
  - □ Hamiltonian path problem (graph problem, NP problem)
  - ☐ City and road information representation using DNA sequences (indicative information)
  - Solution-based DNA computing
- Liu's work in 2000
  - □ SAT problem
  - Surface-based DNA computing
- Benenson's work in 2004
  - Application to disease diagnosis and drug (antisense) administration

#### Our Work in DNA Computing Era

- Solving traveling salesman problem
  - Graph problem with weighted edges
  - Representation of numerical information
  - Expansion to larger problems (in progress)
- Development of unit operators
  - Denaturation temperature gradient PCR (DTG-PCR)
  - □ Initial pool generation for TSP using parallel overlap assembly (POA)
  - Modeling and simulation of DTG-PCR and POA
- New application to medical diagnosis
  - Disease diagnosis model development
  - Experimental verification (in progress)

#### Objective (traveling salesman problem)

- Application of DNA computing to mathematical problems
  - □ 7-city traveling salesman problem
  - ☐ Graph problem with weighted edges
- Representation of numerical values (weighted edges)
- Expansion to practical problems
  - □ 26-variable TSP ← 26 subway stations in Seoul

#### **Traveling Salesman Problem**

- Find...
  - □ The cheapest way of visiting all the cities and returning to the starting point

when a number of cities to visit and the traveling cost between each pair of cities are given.

- Previous work for weight (cost) representation
  - DNA length
  - DNA concentration
- Our method for weight (cost) representation
  - □ Thermal stability of DNA duplex
  - □ Melting temperature (T<sub>m</sub>), GC content

# **Target Problem & Encoding Method**



#### 7-city traveling salesman problem

- 7 cities (0 to 6), 23 roads, 5 costs
- optimal path:  $(0\rightarrow1\rightarrow2\rightarrow3\rightarrow4\rightarrow5\rightarrow6\rightarrow0)$

#### Oligonucleotides & Encoding

- cities and costs are 20-base ssDNA
- roads are 40-base ssDNA
- 35 oligonucleotides
   (7 cities, 23 roads, 5 costs)



# Weight (Cost) Encoding



# Denaturation Temperature Gradient Polymerase Chain Reaction (DTG-PCR)

- Conventional PCR
  - Denaturation (T<sub>d</sub>)
  - $\square$  Annealing  $(T_a)$
  - □ Extention (T<sub>e</sub>)

- Modification of conventional PCR protocol
  - □ Variation in T<sub>d</sub>



## **Denaturation Temperature Gradient**



■ Biased operator: more amplification of DNA strands with lower T<sub>m</sub>
 → biased search for lower cost

# Molecular Algorithm



- (1) Generation of all random pathsHybridization/ligation
- (2) Selection of paths satisfying TSP conditions PCR/electrophoresis/affinity 3
- (3) More amplification of the cheapest path DTG-PCR



## Sequence Design for Cities and Costs

- Using NACST/seq
- Non-cross hybridization
- Similar T<sub>m</sub> among cities
- Different T<sub>m</sub> among costs

| Vertex sequences |                                |       |     |  |
|------------------|--------------------------------|-------|-----|--|
| No.              | Sequence $(5' \rightarrow 3')$ | Tm    | GC% |  |
| 0                | AGGCGAGTATGGGGTATATC           | 60.73 | 50  |  |
| 1                | CCTGTCAACATTGACGCTCA           | 59.24 | 50  |  |
| 2                | TTATGATTCCACTGGCGCTC           | 59.00 | 50  |  |
| 3                | ATCGTACTCATGGTCCCTAC           | 56.81 | 50  |  |
| 4                | CGCTCCATCCTTGATCGTTT           | 58.13 | 50  |  |
| 5                | CTTCGCTGCTGATAACCTCA           | 59.44 | 50  |  |
| 6                | GAGTTAGATGTCACGTCACG           | 56.97 | 50  |  |
| Weight sequences |                                |       |     |  |
| Edge cost        | Sequence $(5' \rightarrow 3')$ | Tm    | GC% |  |
| 3                | ATGATAGATATGTAGATTCC           | 47.89 | 30  |  |
| 5                | GGATGTGATATCGTTCTTGT           | 54.62 | 40  |  |
| 7                | GGATTAGCAGTGCCTCAGTT           | 58.37 | 50  |  |
| 9                | TGGCCACGAAGCCTTCCGTT           | 64.51 | 60  |  |
| 11               | GAGCTGGCTCCTCATCGCGC           | 68.88 | 70  |  |

# **Experimental Implementation for TSP Conditions**

- Strating and ending with city 0
  - □ PCR using primers complementary to city 0
- Visiting every city
  - □ A series of affinity chromatography
  - Each affinity column contains ssDNA complementary to each city.
- Cheapest path
  - □ DTG-PCR

# **Experimental Results**

Random path generation (by hybridization and ligation)  Selective amplification of paths starting and ending with city 0 (by PCR using primers complementary to city 0)



M: 50 bp ladder lane 1,2:
 after hybridization/ligation lane 3: mixture of ssDNA



Separation of paths containing every city

(by a series of affinity chromatography)

 More amplification of paths with lower costs
 (by DTG-PCR)





Separation of the path with lowest cost (by TGGE)



TGGE
 (Temperature Gradient Gel Electrophoresis)



#### Readout

(by cloning and sequencing)

······TTCTGCGTTGTTTCGGGGTACAGTGGCTCCTCCGTT CCGCCTGCACTGTGGAGAGGGGTGAGCAGTGGCTCCTCCGTT CCGCGTGGATTCACAAGGCCATCGCAGTGGCTCCTCCGTT CCGCATACGGCGTGGTTTTTCGGGCAGTGGCTCCTCCGTT CCGCGCACAGTCCACCTGTAGACACAGTGGCTCCTCCGTT CCGCTATGTCCAGCTGTCGCAAAGCAGTGGCTCCTCCGTT CCGCTTCTGCGTTGTTTCGGGGTA······



# **Toward Larger Problems**



#### Target Problem: 26-City TSP



Graph with 26 vertexes (cities) and 92 edges (roads)
 Vertex: station connected with more than two stations
 Weight: number of stations between vertex stations

#### Initial Pool Generation with POA

#### Initial pool

A combinatorial library that contains numerical or indicative information

#### Initial pool generation

 Prerequisite step of most molecular algorithms for mathematical problems

#### Initial pool generation methods

- Hybridization and ligation method
- Parallel overlap assembly method

#### **Initial Pool Generation for TSP**

: POA vs. Hybiridzation/Ligation



Repeat of denaturation/annealing /extension steps

## **Experimental Results**





# **Comparison of Two Methods**

| Parallel overlap assembly                                   | Viewpoint   | Hybridization/ligation                               |  |
|-------------------------------------------------------------|-------------|------------------------------------------------------|--|
| Population size is almost preserved throughout the process. | Scalability | Population size decreases as hybridization proceeds. |  |
| No need of 5'-phosphorylation                               | Гоороту     | 5'-phosphorylation is necessary                      |  |
| Less time & reagents consuming                              | Economy     | More time & reagents consuming                       |  |
| High error rate by non-specific priming                     | Fidelity    | Low error rate (higher hybridization specificity)    |  |

# Summary

- Development of a molecular algorithm for TSP based on the melting temperature difference
- Development of DTG-PCR as an efficient operator for the graph problem with weighted edge
- Success in solving 7-city TSP
- 26-city traveling salesman problem
- POA as an efficient operator for large size TSP

## Acknowledgments

- Prof. Byoung-Tak Zhang
   (School of Computer Science and Engineering, SNU)
- Ji Youn Lee (School of Chemical Engineering, SNU)
- Soo-Yong Shin (SNU)
   (School of Computer Science and Engineering, SNU)
- The Ministry of Commerce, Industry, and Energy







