Solutions to homework 7:

1. We define a relation \mathcal{R} on $\mathcal{P}(\{1,2\})$ (the power set of $\{1,2\}$) by

$$SRT \iff S \cap T = \emptyset.$$

Write down all the elements in \mathcal{R} .

- $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $\bullet \ \ \mathrm{Therefore}, \mathcal{R} = \{(\emptyset,\{1\}),(\{1\},\emptyset),(\emptyset,\{2\}),(\{2\},\emptyset),(\emptyset,\{1,2\}),(\{1,2\},\emptyset),(\{1\},\{2\})(\{2\},\{1\})\}$
- 2. Let R be a relation on a nonempty set A. Then $\overline{R} = (A \times A) R$ is also a relation on A. Prove or disprove each of the following statements.
 - If R is reflexive, then \overline{R} is reflexive.
 - Let's assume that R is reflexive, then $\forall a \in A$, a R a.
 - Then $\forall a \in A, (a, a) \in R$.
 - Therefore, $(a, a) \notin \overline{R}$ and this shows that \overline{R} is not reflexive.
 - If R is symmetric, then \overline{R} is symmetric.
 - Let's prove by the contrapositive.
 - Then if \overline{R} is not symmetric, then R is not symmetric.
 - Let's say for $a, b \in A$, $(a, b) \in \overline{R}$.
 - As \overline{R} is not symmetric we can conclude that $(b, a) \notin \overline{R}$.
 - This is equivalent to saying that $(b, a) \in R$ however $(a, b) \notin R$.
 - Therefore, R is also not symmetric.
 - Thus as the contrapositive is true, the original statement is true.
 - If R is transitive, then \overline{R} is transitive.
 - Let's prove by the contrapositive.
 - If \overline{R} is not transitive, then R is not transitive.
 - Let's $(a,b),(b,c),(a,c)\notin \overline{R}$ for $a,b,c\in A$, thus proving that \overline{R} is not transitive.
 - However, $(a, b), (b, c), (a, c) \notin \overline{R}$ shows us that $(a, b), (b, c), (a, c) \in R$.
 - Therefore, a R b, b R c and a R c.
 - We can re-express this to if $(a R b) \wedge (b R c) \implies a R c$.
 - Thus, R is transitive.
 - As the contrapositive is false the original statement is false.
- 3. Let R be a relation on a set A. Suppose that R is reflexive and satisfy $(a R c \wedge b R c) \implies a R b$ for any $a, b, c \in A$. Prove that R is symmetric and transitive.
 - Let $a, b \in A$ such that b R a.

- As R is reflexive we know that a R a.
- By the given implication, $(a R a) \land (b R a) \implies a R b$.
- As a R b and b R a, we can conclude that R is symmetric.
- Now let $a, b, c \in A$ such that a R c, c R b.
- As R is reflexive, b R c.
- By the given implication, $(a R c \wedge b R c) \implies a R b$.
- Thus, a R b, b R c and a R c co-exist. R is transitive.
- 4. Let R be a relation on set A and $f: A \to B$ a function. We define a relation \mathcal{R}' on B as

$$\mathcal{R}' = \{ (f(x), f(y)) : (x, y) \in \mathcal{R} \}$$

Determine (with proof) whether the following are true.

- (a) If \mathcal{R} is reflexive then \mathcal{R}' is reflexive.
 - Define f(x) = x + 1, and let $A = \{1\}, B = \{2, 3\}$.
 - And let $\mathcal{R} = \{1, 1\}$ such that \mathcal{R} is reflexive.
 - Then $(2,2) \in \mathcal{R}'$, however $(3,3) \notin \mathcal{R}'$ therefore \mathcal{R}' is not reflexive.
- (b) If \mathcal{R} is symmetric then \mathcal{R}' is symmetric.
 - Let $a, b \in A$, such that $a \mathcal{R} b$ and $b \mathcal{R} a$.
 - Therefore, $(a, b), (b, a) \in \mathcal{R}$.
 - When $(a, b), (b, a) \in \mathcal{R}, (f(a), f(b)), (f(b), f(a)) \in \mathcal{R}'.$
 - This shows that $f(a) \mathcal{R}' f(b)$ and $f(b) \mathcal{R}' f(a)$.
 - Thus, \mathcal{R}' is symmetric.
- 5. We define a relation \mathcal{R} on the real number as

$$\mathcal{R} = \{(x, x+n) : x \in \mathbb{R}, n \in \mathbb{N}\}.$$

Determine (with proof) whether the following holds:

- (a) If $x_1 \mathcal{R} y_1$ and $x_2 \mathcal{R} y_2$ then $(x_1 + x_2) \mathcal{R} (y_1 + y_2)$.
 - Let $x_1 \mathcal{R} y_1$ and $x_2 \mathcal{R} y_2$ then $y_1 = x_1 + n_1$ and $y_2 = x_2 + n_2$.
 - Then we can figure that $y_1 + y_2 = x_1 + x_2 + n_1 + n_2$.
 - As $n \in \mathbb{N}$, we can choose a new n_3 such that $n_3 = n_1 + n_2$.
 - Thus we can see that $y_1 + y_2 = x_1 + x_2 + n_3 = x_1 + x_2 + n_1 + n_2$.
 - Therefore, $(x_1 + x_2) \mathcal{R} (y_1 + y_2)$.
- (b) If $x_1 \mathcal{R} y_1$ and $x_2 \mathcal{R} y_2$ then $(x_1 \cdot y_1) \mathcal{R} (x_2 \cdot y_2)$.
 - Let $x_1 \mathcal{R} y_1$ and $x_2 \mathcal{R} y_2$ then $y_1 = x_1 + n$ and $y_2 = x_2 + n$.

$$- y_2 \cdot x_2 = (x_2 + n) \cdot x_2 \text{ and } y_1 \cdot x_1 = (x_1 + n) \cdot x_1$$

- We can see that $x_2^2 + n \cdot x_2 \neq x_1^2 + n \cdot x_1 + n$.

- Hence,
$$(x_1 \cdot y_1) \mathcal{R}(x_2 \cdot y_2)$$
.

6. We define a relation T on $\mathbb{R} - \{0\}$ by

$$a T b \iff \frac{a}{b} \in \mathbb{Q}$$

Show that T is symmetric, reflexive and transitive.

- Let $a \in \mathbb{R} \{0\}$, then $\frac{a}{a} = 1 \in \mathbb{Q}$.
- Thus, we can see that a T a.
- Therefore T is reflexive.
- Now let $a, b \in \mathbb{R} \{0\}$, such that a T b.
- Thus $\frac{a}{b} \in \mathbb{Q}$.
- As $a, b \in \mathbb{R} \{0\}$, We can also conclude that $\frac{b}{a} \in \mathbb{Q}$.
- Which shows that b T a, thus T is symmetric.
- Lastly, let $a, b, c \in \mathbb{R} \{0\}$, such that a T b and b T c.
- Then, $\frac{a}{b}, \frac{b}{c} \in \mathbb{Q}$. $\frac{a}{b} \cdot \frac{b}{c} = \frac{a}{c}$, and because $c \in \mathbb{R} \{0\}$ $\frac{a}{c} \in \mathbb{Q}$.
- Therefore, $(a\ T\ b) \land (b\ T\ c) \implies a\ T\ c$. Making T transitive.
- 7. Let a relation \mathcal{R} on $\{0,1,2,3\}$ be such that $x \mathcal{R} y$ if (x+y) is a multiple of 3.
 - (a) Write out \mathcal{R} as a set.
 - $\mathcal{R} = \{(0,0), (0,3), (1,2), (2,1), (3,0), (3,3)\}.$
 - (b) Is this relation reflexive?
 - In order to be reflexive, $\forall a \in \{0, 1, 2, 3\}, a \mathcal{R} a$.
 - However, this is only satisfied when a = 0 or a = 3.
 - And because $(1,1),(2,2) \notin \mathcal{R}$, \mathcal{R} is not reflexive.
 - (c) Is it symmetric?
 - Let $a, b \in \{0, 1, 2, 3\}$, then if $a \mathcal{R} b$ then $b \mathcal{R} a$.
 - For (a, b) = (0, 0), both $0 \mathcal{R} 0$ and $0 \mathcal{R} 0$ exist.
 - For (a, b) = (1, 2), and as $(2, 1) \in \mathcal{R}$, both 1 \mathcal{R} 2 and 2 \mathcal{R} 1 exist.
 - For (a, b) = (0, 3), and as $(3, 0) \in \mathcal{R}$, both $0 \mathcal{R} 3$ and $3 \mathcal{R} 0$ exist.
 - For (a,b) = (3,3), both 3 \mathcal{R} 3 and 3 \mathcal{R} 3 exist.
 - Therefore, \mathcal{R} is symmetric.
 - (d) What is the fewest number of elements that you need to add to \mathcal{R} so as to obtain a transitive relation?
 - We only need to add (1,1) and (2,2) to satisfy a transitive relation.

- Then $1 \mathcal{R} 1$ and $2 \mathcal{R} 2$ exist.
- Thus when $(1 \mathcal{R} 2)$ and $(2 \mathcal{R} 1)$, $1 \mathcal{R} 1$.
- Also when $(2 \mathcal{R} 1)$ and $(1 \mathcal{R} 2)$, $2 \mathcal{R} 2$.
- Satisfying a transitve relation.
- 8. A relation on a set A is called **circular** if for all $a, b, c \in A$, a R b and b R c imply c R a. Prove that a relation is an equivalence relation if and only if it is reflexive and circular.
 - Let R be an equivalence relation.
 - Then R is automatically reflexive.
 - Now let $a, b, c \in A$ such that a R b and b R c.
 - As R is an equivalence relation, R is transitive.
 - Thus a R c, also, R is transitive so c R a.
 - Showing us that R is circular.
 - Now let's assume that R is reflexive and circular.
 - Now let $a, b \in A$ such that a R b and b R b as R is reflexive.
 - As we know that R is circular $(a R b) \wedge (b R b) \implies b R a$.
 - Therefore, we can see that R is symmetric.
 - Also, by the circular implication we can see that when a R b and bRc then c R a.
 - We know that R is reflexive, therefore a R c.
 - Thus, we can conclude that R is transitive.
 - ullet To conclude, we know that R is reflexive, symmetric and transitive, thus R is an equivalence relation.