PROGRAMA DE CURSO

Código	Nombre				
CC5502	Geom	Geometría Computacional			
Nombre en Inglé	es				
Computational C	Computational Geometry				
SCT		Unidades	Horas de	Horas Docencia	Horas de Trabajo
301		Docentes	Cátedra	Auxiliar	Personal
6		10	3	0	7
Requisitos			Carácter	del Curso	
CC3001,(CC3101/AUTOR)			Electivo		
	Resultados de Aprendizaie				

Este curso tiene por objetivo estudiar y analizar algoritmos geométricos bi- y tridimensionales (2D y 3D) para modelar objetos reales en forma discreta, tanto desde el punto de vista teórico como práctico.

Estos algoritmos permiten crear objetos a partir de especificaciones simples o a partir de operaciones geométricas aplicadas sobre objetos existentes, ya sea para para visualizarlos, usarlos en simulaciones, juegos, o en otras aplicaciones en ciencia e ingeniería.

Al final del curso el/la estudiante debe ser capaz de:

- conocer las áreas de aplicación de la geometría computacional
- conocer los problemas clásicos en geometría computacional
- conocer y aplicar las técnicas/estrategias más usadas para resolver problemas geométricos
- resolver problemas geométricos teniendo presente casos degenerados y de robustez del algoritmo
- diseñar e implementar algoritmos teniendo en cuenta casos degenerados y problemas de robustez
- escoger el algoritmo más apropiado para un problema geométrico dado dependiendo de su entrada
- estimar la complejidad de un algoritmo geométrico
- conocer algoritmos geométricos paralelos sobre las GPUs
- conocer y usar las bibliotecas geométricas más importantes

Metodología Docente	Evaluación General
El curso consiste en clases de cátedra tradicionales y en clases usando la metodología de aprendizaje basado en problemas. Los/as etudiantes deberán desarrollar tareas de programación de algoritmos gemétricos, un proyecto computacional y leer artículos /capítulos de libro en inglés. Este semetre se dicta en modalidad online.	El curso posee tres controles de lectura (cuyo promedio es el control C1), tres evaluaciones grupales (2 o tres personas), cuyo promedio es el control C2, tareas de programación (NT), proyecto computacional (NPC) y la presentacion oral del proyecto computacional (NPO). No hay examen. La nota final (NF) se calcula como sigue:
	NC = (0.3*C1+0.3*C2 +0.3*NPC +0.1*NPO). NF = 60% NC + 40%NT NC y NT deben >= 4.0 independientemente.
	,

Unidades Temáticas

Número	Nombre	e de la Unidad	Duración en Semanas
1	Conce	eptos Básicos	3
Cor	ntenidos	Resultados de Aprendizajes de Unidad	e la Referencias a la Bibliografía
 Definición de Operaciones Propiedades Implementa triangulación 	geométricas básicas de las triangulaciones ción de un algoritmo de	 Conocer los problemas inherentes a resolver un problema geométrico Aprender a abordar un problema geométrico Conocer bibliotecas geométricas open-source 	[Mark98] [Rourke1994] [CGAL 2010]

Número	Nombre	e de la Unidad	Dur	ación en Semanas
2	Algoritmos de búsqueda e intersecciones			2
Cor	ntenidos	Resultados de Aprendizajes d Unidad	e la	Referencias a la Bibliografía
	polígono entre segmentos. de polígonos convexos.	 Aprender algoritmos eficientes para resolver problemas comunes Aprender a detectar y a enfrentar problemas de robustez y casos degenerados Implementar y validar algorimos 		[Mark98], [Rourke1994]

Número	Nombre	e de la Unidad	Dur	ación en Semanas
3	Cerradura	a convexa en 2D		2,5
Contenidos		Resultados de Aprendizajes d Unidad	e la	Referencias a la Bibliografía
 Algoritmos s robustez y ca Algoritimo G Algoritmo Q Algoritmo de Algoritmo in 	e Graham.	 Conocer los algoritmos p resolver uno de los problemas clásicos en geometría computaciona Aprender a detectar y enfrentar problemas de robustez y casos degenerados Conocer distintas estrate para enfrentar un mismo problema Implementar y validar algoritmos 	al egias	[Mark98], [Rourke1994]

Número	Nombre	e de la Unidad	Duración en Semanas
4	Cerradura	a Convexa en 3D	1,5
Cor	ntenidos	Resultados de Aprendizajes de la Unidad	e Referencias a la Bibliografía
- Definición de - Poliedros reg - Algoritmo Gi - Algoritmo in - Dificultades	gulares. ft-wrapping.	- Conocer los algoritmos para resolver uno de los problemas clásicos en geometría computaciona en 3D	[Mark98], [Rourke1994]

Número	Nombre	e de la Unidad	Duración en Semanas
5	Diagrama de Voronoi y	particiones de Delaunay en 2D y 3D	2
Сог	ntenidos	Resultados de Aprendizajes de la Unidad	Referencias a la Bibliografía
- Algoritmos o - Algoritmo In - Extensiones Voronoi - Arból de cob - Aplicaciones	de los diagramas de pertura mínima	 Conocer un problema de partición del espacio clásico y algoritmos eficientes para resolverlos Conocer distintas estrategias para enfrentar un mismo problema 	

Número	Nombre	e de la Unidad	Duración en Semanas
6	Generación d	e mallas en 2D y 3D	2
	ntenidos	Resultados de Aprendizajes de la Unidad	Referencias a la Bibliografía
objeto Algoritmos p Delaunay y E - Algoritmos d malla y pará - Algoritmos ba - Algoritmos p	nes de la geometría de un para triangulaciones de Delaunay restringida le mejoramiento de una metros de calidad. sados en quadtrees lara generación de mallas s y mixtas basados en	 Aprender algoritmos clásicos para la generación de mallas en 2D y 3D Conocer herramientas open- source existentes Conocer algoritmos paralelos 	[Mark98], [Rourke1994][ACMtog] [Visual] [EngWithComp] [IntConf]

Número	Nombre de la Unidad Duración en Sen		Duración en Semanas
7	Partición binaria del espacio		1
Contenidos		Resultados de Aprendizajes de la Unidad	Referencias a la Bibliografía
- Definición de binary partition trees			
(BSP)		 Aprender estructuras 	[Mark98]

- BPS y algoritmo del pintor	espaciales útiles para	
- Construyendo el BSP	diversas aplicaciones	
- Aplicaciones	gráficas	
·		

Número	Nombre de la Unidad [Duración en Semanas
6	Planificació	n de movimientos	1
Cor	ntenidos	Resultados de Aprendizajes de la Unidad	e Referencias a la Bibliografía
corto.	e colisiones. ara obtener el camino más e caminos en regiones con	- Aprender a resolver aplicaciones en geometrí computacional	[Mark98], a [Rourke1994]

Bibliografía

[Mark1998] Mark de Berg, Marc van Kreveld, Mark Overmars, Otfried Schwarzkopf, Computational Geometry: Algorithms and applications. Springer (segunda edici ón)

. 1998

[Rourke1994] Joseph O'Rourke, Computational Geometry in C. Cambridge University Press, 1994 (second edition 1998).

[Okabe2000] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, Sung Nok Chiu, Spatial tessellations. Concepts and applications of oronoi diagrams.

Wiley Series in Probability and Statistics. 2000.

[ACMtog] ACM Transactions on Graphics

[Visual] Visual computer Journal

[EngWithComp] Engineering with Computers

[IntConf] International conferences related to the area

Vigencia desde:	2021
Elaborado por:	Nancy Hitschfeld Kahler

Actividades del curso y

Calendario de Evaluaciones

Primavera 2021

1. Proyectos:

Temas van desde implementar un algoritmo para resolver un problema geometrico hasta investigar sobre un tema o uso de una libreria geometrica que les interese aprender. Los algoritmos o modelos geoemtricos pueden parte de un juego, para analizar datos o visualizar informacion geometrica, entre otros. Las tecnologias a usar pueden ser:

- CGAL (Computational geometry library) (http://www.cgal.org/)
 - Convex-hulls and polygons
 - Cell Complexes and polyhedra
 - Triangulations and Delaunay Triangulations
- Otra librería geométrica
- Cuda u opencl
- OpenGL y Shaders (GLSL)
- Webgl 2 o Three.js
- Unity, Unreal u otro motor de juegos

Presentacion del tema: Descripción de media página (6ta semana de clases)

- Tema de presentación
- Tema de Proyecto a desarrollar/investigar (puede cambiar)
- Puede ser individual o en grupos de dos.

3. Fechas Controles de Lectura

- Control de Lectura 1: miércoles 1 septiembre
- Control de Lectura 2: miércoles 6 octubre
- Control de Lectura 3: miércoles 10 noviembre

4. Fechas evaluaciones Ejercicios: (en grupo 2 o tres)

- Evaluación 1: miércoles 29 septiembre
- Evaluacion 2: miércoles 13 octubre
- Evaluacion 3: miércoles 17 noviembre

6. Tareas de programación

- Algoritmos geométricos clásicos
- Programacion orientada a objetos en c++