Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Basin Outlook Reports and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

LOCAL SOIL CONSERVATION SERVICE FIELD OFFICE or William Weller

Water Supply Specialist Soil Conservation Service W. 316 Boone Ave.; Suite 450 Spokane, WA 99201-2348 (509) 353-2341

How forecasts are made

Most of the annual streamflow in the Western United States originates as snowfall that has accumulated high in the mountains during winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Predictions are based on careful measurements of snow water equivalent at selected index points. Precipitation, temperature, soil moisture and antecedent streamflow data are combined with snowpack data to prepare runoff forecasts. Streamflow forecasts are coordinated by Soil Conservation Service and National Weather Service hydrologists. This report presents a comprehensive picture of water supply conditions for areas dependent upon surface runoff. It includes selected streamflow forecasts, summarized snowpack and precipitation data, reservoir storage data, and narratives describing current conditions.

Snowpack data are obtained by using a combination of manual and automated SNOTEL measurement methods. Manual readings of snow depth and water equivalent are taken at locations called snow courses on a monthy or semi-menthly schedule during the winter. In addition, snow water equivalent, precipitation and temperature are monitored on a daily basis and transmitted via meteor burst telemetry to central data collection facilities. Both monthy and daily data are used to project snowmelt runoff.

Forecast uncertainty originates from two sources: (1) uncertainty of future hydrologic and climatic conditions, and (2) error in the forecasting procedure. To express the uncertainty in the most probable forecast, four additional forecasts are provided. The actual streamflow can be expected to exceed the most probable forecast 50% of the time. Similarly, the actual streamflow volume can be expected to exceed the 90% forecast volume 90% of the time. The same is true for the 70%, 30%, and 10% forecasts. Generally, the 90% and 70% forecasts reflect drier than normal hydrologic and climatic conditions; the 30% and 10% forecasts reflect wetter than normal conditions. As the forecast season progresses, a greater portion of the future hydrologic and climatic uncertainty will become known and the additional forecasts will move closer to the most probable forecast.

Rock Pointe Tower II
W. 316 Boone Avenue; Suite 450
Spokane, WA 99201-2348

Basin Outlook Reports

In addition to basin outlook reports, a Water Supply Forecast for the Western United States is published by the Soil Conservation Service and National Weather Service monthly, January through May. Reports may be obtained from the Soil Conservation Service, West National Technical Center, 511 Northwest Broadway, Room 248, Portland, OR 97209-3489.

Issued by

William (Bill) Richards Chief Soil Conservation Service U.S. Department of Agriculture Released by

Lynn A. Brown
State Conservationist
Soil Conservation Service
Spokane, Washington

aTD224 .W2W37

FEBRUARY 1991

GENERAL OUTLOOK

SUMMARY:

JANUARY PRECIPITATION WAS 67% OF NORMAL STATE WIDE, AND VARIED FROM 54% OF AVERAGE IN THE SPOKANE BASIN TO 94% IN THE COLVILLE BASIN. YEAR-TO-DATE PRECIPITATION VARIES FROM 80% IN THE COLVILLE TO 143% IN THE NORTH PUGET. JANUARY TEMPERATURES WERE BELOW NORMAL AND VARIED FROM 4 DEGREES BELOW IN THE OKANOGAN BASIN TO NORMAL IN THE WALLA WALLA BASIN. THE SNOWPACK IS NOW BELOW NORMAL STATE WIDE, BUT VARIES FROM 37% IN THE COLVILLE BASIN TO 144% IN THE CHELAN BASIN. WASHINGTON'S SNOTEL SITES ARE AVERAGING 86% OF NORMAL SNOWPACK ON FEBRUARY 1 (BY FEBRUARY 8, THE STATEWIDE AVERAGE WAS 87%). FEBRUARY 1 RESERVOIR STORAGE IS GENERALLY GOOD THROUGHOUT THE STATE, WITH RESERVOIRS IN THE YAKIMA BASIN AT 125% OF AVERAGE AND 75% OF CAPACITY. JANUARY STREAMFLOWS VARIED FROM 198% OF NORMAL ON THE WENATCHEE RIVER TO 56% ON THE LEWIS RIVER AT AERIL. FORECASTS FOR 1991 RUNOFF VARY FROM 145% OF AVERAGE FOR SMILKAMEEN RIVER TO 61% ON MILL CREEK IN THE WALLA WALLA BASIN.

SNOWPACK:

Snowpack, as a percent of normal, declined in Washington during January. Snowpack varies over the state from 144% of normal in the Chelan Basin to 37% in the Colville Basin. In the Walla Walla River Basin snowpack is 48%. The Yakima Basin is now at 68%. Snowpack along the west slopes of the Cascade Mountains are the Green with 76%, the Cowlitz Basin with 79% and the Skagit 139%. The eastern slopes of the Cascade Mountains show the Wenatchee Basin at 92% of normal, and the Spokane at 93%. SNOTEL sites in Washington are showing snowpack that is 86% of average for February 1, state wide. Maximum snow cover is at the Lyman Lake SNOTEL, in the Chelan Basin, with 64.3 inches, up from 52.1 inches of water content. This site would normally have 45.0 inches of water content on February 1.

PRECIPITATION:

January precipitation varied from 94% of average in the Colville Basin, to 51% in the Walla Walla Basin. State wide, January precipitation from National Weather Service stations was 67% of average. The year-to-date precipitation varied from 143% of normal in the North Puget Basin to 80% in the Colville-Pend Oreille Basin. SNOTEL sites in Washington showed the high elevation year-to-date precipitation values to be 115%, down from 131% of average last month. Maximum year-to-date precipitation was at the Olallie Meadows SNOTEL site near Snoqualmie Pass with 104.5 inches since October 1,1990, normal for this site would be 63.5 inches.

RESERVOIRS:

Reservoir storage in the Yakima Basin was 803,200 acre feet, 125% of normal. Reservoir storage is good and varies with reservoirs in the Cascade Mountains above average for February 1, and those on the east side of the state below average. Storage at other reservoirs include Roosevelt at 117% of average and the Okanogan reservoirs contain 135% of February 1 normal. The power reservoirs contain the following: Coeur d'Alene Lake, 162,200 acre feet, or 79 % of normal; Chelan Lake, 503.100 acre feet at 112% of average and 74% of capacity, and Ross Lake at 102% of average, and 75% of capacity.

STREAMFLOW:

Streamflow forecasts were down from last month and varied from 159% of average for the Smilkameen River to 61% of normal on Mill Creek in the Walla Walla River Basin. February forecasts for some west side streams include: Cedar River, 96%; Skagit River, 120%; and the Dungeness River, 88%. Some east side streams include the Yakima River at Parker 82%; the Wenatchee River at Peshastin 105% and the Okanogan River, 152%. January streamflows were generally above average in northern Washington and below in the south. Streamflows were the following percent of normal, the Cowlitz River, 92%, the Walla Walla River, 66%; the Spokane River, 104%; the Columbia at the Canadian border, 119%. The Wenatchee River with 198% was the highest in the state. The Okanogan River was 170%, and the Methow with 168 continued high.

BASE 4-R-39260

FEBRUARY 1991

						FE	BRUARY 1991							
SHOW COURSE	ELEVATION	DATE	SNOH OEPTH	HATER CONTENT	LAST YEAR	AVERAGE 1961-85	₱3NON COURSE		EVATION	0ATE	SHOH OEPTH	WATER CONTENT	LAST 'YEAR	AVERAGE 1961(-85
PENO OREILLE RIVER							COLOCKUR CREEK							
DENTON MEADON	2370	1/30/91	13	3.5	2.2	5.1		PILLOW	5310	2/01/91		2.85	4.8	8.7
BENTON SPRING BUNCHGRASS HEADOWS	4920 5000	1/30/91 2/01/91	38	12.0 22.8E	11.6	13.2	YAKIHA RIVER		2444	2/01/91		4.55		
BUNCHGRASS MOMPILLO MEART LAKE TRAIL	H 5000 4800	2/01/91 2/01/91		21.8 17.1E	19.9	20.9 15.2	ANTANUM R.S. BIG BOULDER CR		3100 3200	1/29/91	35	4.5E 12.4	12.8	13.3
HOOOOO CREEK	6050 5900	2/01/91 2/01/91		40.1E 35.7E		34.6 31.7 23.6	BLEWETT PASS #		4270 4270 3450	1/28/91 2/01/91 1/30/91	26 15	9.6 7.85	13.0	11.9
LOOKOUT NELSON CAN		2/04/91	63 40	21.0 10.4 28.0E	21.8 9.6 30.2	11.3	BUMPING LAKE BUMPING LAKE (BUMPING RICGE		3400 4600	1/30/91 2/01/91	18	6.1 7.8 13.45	9.5 11.3 12.9	11.8
SCHWEITZER RIOGE	6200	2/01/91		20172	30.2		CAYUSE PASS COLOCKUM PASS	112204	5300 5370	2/01/91	- 26	40.6E	43.3	18.4 54.1 11.8
KETTLE RIVER BARNES CREEK CAN	. 5300	1/29/91	61	18.7	16.9	13.6		PILLOW	6000 3370	2/01/91 1/29/91	58	21.8S 20.4	24.2	24.9
BIG WHITE HTH CAN		1/27/91 2/01/91	23	15.5 5.0E	10.6 3.3	12.8 6.7	GREEN LAKE	PILLOW	3370 6000	2/01/91 2/01/91		19.45 17.2E	27.7 15.9	25.6 23.4
FARRON CAN		1/29/91	32 19	8.7 4.3	6.0 2.9	9.8 5.4	GROUSE CAMP	PILLOW PILLOW	5380	2/01/91 2/01/91		10.5S 7.0S	11.3	14.3
MONASHEE PASS CAN SUMMIT G.S.	. 4500 4600	1/29/91 2/01/91	43	12.6 4.0E	11.1	9.4 5.7	LAKE CLE ELUM MORSE LAKE OLALLIE E.S.	FILLOW	2200 5400 3960	1/28/91 2/01/91 2/01/91	11 	3.4 13.15 32.95	5.7 27.5 28.9	7.3 34.8
COLVILLE RIVER							OLALLIE MEADOW		3630 4200	2/01/91 2/01/91	51	22.4 17.1S	19.3	45.1 30.2 24.8
тосо	3370	1/30/91	14	3.0	4.2	8.2	STAMPEDE FASS TUNNEL AVENUE		3860 2450	2/01/91	 35	25.9S 11.2	31.8	27.8 15.7
OMAK LAKE, THIN LAKES							WHITE PASS ES	PILL OW	4500	2/01/91		12.95	15.0	17.2
HISSION (OHAK)	1150 2000	1/29/91	26 8	7.5 1.8			AHTANUM CREEK -							!
HOUNT TOLMAN THIN LAKES	2700	1/23/91	15	3.2	1.3		ANTANUM R.S. GREEN LAKE		3100 6000	2/01/91 2/01/91		4.5E 17.2E	2.8 15.9	23.4
SPOKANE RIVER							GREEN LAKE	PILLOW	6000	2/01/91		10.55	11.3	14.3
ABOVE BURKE FOURTH OF JULY SUM	4100 3200	2/01/91 2/04/91	14	14.0E 3.8	12.3 8.0 21.8	14.2 7.1 23.6	HILL CREEK					•		
LOOKOUT LOST LAKE	5140 6110	2/04/91	63 75	21.0 41.4E 25.2	33.3	39.1	HIGH RIDGE TOUCHET #2	PILLOW PILLOW	4980 5530	2/01/91 1/29/91		10.05 15.65	8.2	20.8 22.4
HOSOUITO RIDGE HOSOUITO PILLO	5200 W 5200 3200	1/30/91 2/01/91 2/01/91		25.1 7.6E	26.8	26.3	LEWIS - COWLITZ R	IVERS						
SHERHIH	5540	1/29/91	80	22.5	17.4	22.8	CAYUSE PASS		5300	2/01/91		40.6E	43.3	54.1
SUNSET PILLO	H 5540	2/01/91		26.5	22.1	24.3	JUNE LAKE LONE PINE	PILLOW	3200 3800 5500	2/01/91 2/01/91 2/01/91		21.0S 13.7S 49.3S	23.5 15.0 39.1	19.5 28.6 47.7
NEHMAN LAKE QUARTZ PEAK PILLO	H 4700	2/01/91		11.7	14.1		PARAOISE PARK PIGTAIL PEAK POTATO HILL		5900 4500	2/01/91		40.95 12.25	31.6	35.1 21.2
OKANOGAN RIVER	4700	2,017.1		11.7	1411			PILLOW	4050 3400	2/01/91		23.9S 12.0S	19.8	30.7 19.4
ABEROEEN LAKE CAN	. 4300	1/30/91	23	6.2	3.1	5.0	SPIRIT LAKE 22COBS IS NOT (PILLOW	3100	2/01/91		1.15	10.1	10.0
BLACKHALL PEAK CAN ENOERBY CAN	. 6200	1/24/91 1/31/91	109	41.9 36.5	22.6 30.7	23.8 24.8	SURPRISE LKS WHITE PASS ES		4250 4500	2/01/91 2/01/91		24.6S 12.9S	27.5 15.0	36.0 17.2
FREEZEOUT CK. TRAIL GREYBACK RES CAN	. 5120	1/31/91	35 35	12.0 9.5	4.1	9.3 6.1	WHITE RIVER							
HAHILTON HILL CAN HARTS PASS HARTS PASS PILLO	6500	1/27/91 1/31/91 2/01/91	48 111	15.6 41.0 49.85	7.4 34.0	10.8 30.7	CAYUSE PASS		5300 6000	Z/01/91 Z/04/91	25	40.6E	43.3	54.1
ISINTOK LAKE CAN LOST HORSE HTN CAN	. 5500	1/30/91	31 44	8.6	4.0	39.1 5.6 6.5	CORRAL PASS CORRAL PASS HORSE LAKE	FILLOW PILLOW	6000 5400	2/01/91		21.8S 13.1S	27.5	24.9 34.8
HCCULLOCH CAN HISSION CREEK CAN	4200	1/31/91	Z8 60	7.1 17.5	16.8	5.0 13.3	GREEN RIVER	· ILLON	3.00	2, 11, 7, 1				
MONASHEE PASS CAN MT. KOBAU CAN	4500	1/29/91	43 24	12.6 5.8	11.1	9.4 8.7		PILLOW	3200	2/01/91		13.65	12.6	13.6
MUTTON CREEK #1 POSTILL LAKE CAN		1/30/91 1/31/91	24 30	6.Z 7.2	4.2	9.7 5.8	GRASS MOUNTAI	N #2	2900 3100	2/05/91 2/05/91	33	.0 11.2	9.0	11.6
RUSTY CREEK SALHON MOHS PILLO		1/30/91 2/01/91	11	2.1 4.1S	3.1 6.1	5.3 10.3	LYNN LAKE SAHMILL RIOGE		4000 4700	2/05/91	35 49	12.7	18.0	18.1 24.3 27.8
SILVER STAR HTH CAN SUMMERLAND RES CAN SUNDAY SUMMIT CAN	4200	1/27/91 1/28/91 1/27/91	68 30 27	22.8 7.4	16.8	7.0	STAMPEDE PASS THIN CAMP	PILLOW	3860 4100	2/01/91 2/05/91	38	25.9S 15.0	31.8 17.0	16.8
TROUT CREEK CAN	4690	1/26/91 2/01/91	29 48	6.9 7.4 14.9	3.0 3.1 8.6	4.8 5.6 15.7	SHOOUALMIE RIVER							
METHOW RIVER					•		KROHONA MINE OLALLIE E.S.	PILLOW	2400 3960	1/30/91 2/01/91		21.1 32.9S	28.9	45.1
HARTS FASS	6500	1/31/91	111	41.0		30.7	OLALLIE MEAOO OLNEY PASS	WS	3630 3250	2/01/91 1/30/91	51 37	22.4 16.7	19.3	30.2
HARTS PASS PILLO	5700	2/01/91	24	49.85 6.2	34.0 4.2	39.1 2.7	SKYKOMISH RIVER							
RUSTY CREEK SALMON MOWS PILLOW	4000 4 4500	1/30/91 2/01/91	11	2.1 4.1S	3.1 6.1	5.3 10.3	STAMPEGE PASS STEVENS PASS		3860 4070	2/01/91 2/01/91		25.9S 31.2S	31.8 35.0	27.8 29.7
CHELAN LAME BASIN							STEVENS PASS		3700	1/30/91	62	22.3	24.0	24.3
CLOUOY PASS AM Lyman Lake	5900	1/28/91 1/28/91	112 36	44.8 14.4	28.7 42.2	27.9 41.0	SKAGIT RIVER							
LYMAN LAKE PILLOM LITTLE MOMS AM MINERS RIOGE PILLOM	5280	2/01/91	100	64.35 40.0	46.3 30.5	45.0 29.7	BEAVER CREEK		2200 3680	1/31/91	32 52	10.0	16.1	20.3
PARK CK RIOGE PILLOW PARK CK RIOGE PILLOW	6200 4600 4600	2/01/91 2/01/91 2/01/91		52.9S 43.5e 42.65	41.0 35.4 34.3	33.3 32.3	EROHN TOP CLOUDY PASS	AH AH	6000 6500	1/31/91	167	65.0 44.8 49.9	41.6 28.7 27.4	41.7 27.9 31.0
RAINY PASS RAINY PASS PILLOW	4780	1/31/91 2/01/91	104	35.0 40.65	29.6	28.2 34.3	OEVILS PARK FREEZEOUT CK. HARTS PASS	TRAIL	5900 3500 6500	1/31/91 1/31/91 1/31/91	135 35 111	12.0 41.0	4.1	9.3 30.7
ENTIAT RIVER						5115	HARTS PASS KLESILKHA	PILLOW CAN,	6500 3710	2/01/91 1/25/91	42	49.85 14.1	34.0 9.5	39.1 9.3
BRIEF	1600	1/29/91	15	3.9	4.2	6.1	LYMAN LAKE	PILLOW	5900 5900	1/28/91 2/01/91	36	14.4 64.35	42.2 46.3	41.0 45.0
POPE RIOGE PILLOW	3540	2/01/91		10.55	12.8	12.4	MEADOHS CARIN NEW HOZOMEEN L		1900 2800	1/31/91	19 32	7.0 10.0 35.0	2.7 7.2 29.6	5.7 8.3 28.2
HENATCHEE RIVER BERNE-HILL CREEK	2170	1 /20 /01		10.0		20.0	RAINY PASS RAINY PASS THUNOER BASIN	PILLOW	4780 4780 4200	1/31/91 2/01/91 1/31/91	104	40.6S 16.0	10.8	34.3
BLEHETT PASS #2 BLEHETT PASS#2PILLOH	3170 4270 4270	1/30/91 1/28/91 2/01/91	55 26 	18.3 9.6 7.8S	21.4 13.0 14.5	20.0 11.9 18.1	ELWHA RIVER			, 1	,			/.
CHIHAUKUM [*] G.S. FISH LAKE PILLOW	2500 3370	1/30/91 2/01/91	20	5.4 19.45	6.5 27.7	8.9 25.6	HURRICANE		4500	1/30/91	28	8.8	8.0	14.2
LYMAN LAKE PILLOW	5900 5900	1/28/91 2/01/91	36	14.4 64.35	42.2	41.0 45.0	MORSE CREEK							
HERRITT HISSION RIDGE STEVENS PASS PILLOW	2140 5000 4070	1/30/91	32 26	10.2 7.5	7.3	13.0	COX VALLEY		4500	1/29/91	54	20.5	14.5	25.5
STEVENS PASS PILLOR STEVENS PASS SAND SO TROUGH #2 PILLOR	4070 3700 5310	2/01/91 1/30/91 2/01/91	62	31.25 22.3 2.85	35.0 24.0 4.8	29.7 24.3 8.7	OUNGENESS RIVER							40.0
UPPER WHEELER UPPER WHEELER PILLOW	4400 4400	2/01/91 2/01/91		5.0E 6.95	4.0	8.4 12.3	OEER PARK OUILCENE RIVER		5200	1/28/91	30	10.6	9.5	13.9
STEMILT CREEK				-				FILLOW	4050	2/01/91		7.58	10.8	
STEMILT SLIDE UPPER WHEELER	5000 4400	1/29/91 2/01/91	26	7.7 5.0E	7.1 4.0	10.5 8.4								
UPPER WHEELER PILLOW	4400	2/01/91		6.95	5.3	12.3								

SPOKANE

WATER SUPPLY OUTLOOK:

Forecasted summer runoff for the Spokane River Basin is 98% of normal this is down from 111% last month. This forecast is based on a snowpack 93% of average and a water year-to-date precipitation value 114% of normal. Precipitation for January was 54% of average. Streamflow on the Spokane River was 104% of normal for January. February 1 storage in Coeur d'Alene Lake was 162,200 acre feet, 79% of normal; average storage in Coeur d'Alene for February 1 is 205,400 acre feet. Temperatures in the basin were normal during January.

SPOKANE RIVER BASIN

				ST	REAMFLOW	FORECASTS				
FORFOART POANT	ŀ					ONDITIONS		-	 	
FORECAST POINT	FORECAST : PERIOD :		70% (1000af)	1 5		PROBABLE) :		10% (1000AF)	; ; ;	25 YR. (1000AF)
SPOKANE or Post Falls (1,2)	APR-SEP	1660	2450	 	2820	100 ¦	3160	398Ø		2820
	APR-JUL	1610	237Ø	} }	2720	100 :	3050	384Ø		2723
SPOKANE at Long Lake (2)	APR-JUL	1740	2590	 	298Ø	98 	3350	4239		3045
RESERV	OIR STORAGE	(1	000AF)		1	WATEF	RSHED SNOWPAC	K ANALYSIS)	
RESERVOIR	USEABLE : CAPACITY:		LE STORAG	E **	: WATER	ocucn	NO. COUR		YEAR	AS % OF
RESERVOIR		YEAR	YEAR	AVG.		/ancu	AVG'		YR.	AVERAGE
COEUR D'ALENE	291.2	162.2	182.2	2Ø5.4	Spoka 	ine River	14	1Ø1		93

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

⁽Z) - The value is natural flow - actual flow may be affected by upstream water management.

COLVILLE - PEND OREILLE

WATER SUPPLY OUTLOOK:

January streamflow was 98 % of normal on the Pend Oreille River, 119% on the Columbia at the International Boundary and 101% on the Kettle River. The forecast for the Kettle River streamflow is 110% of normal, the Pend Oreille 111% and the Colville River 78% of normal for the summer runoff period. Precipitation during January was 94% of average, bringing the water year-to-date to 80% of normal. February 1 snow cover is 91% of average on the Pend Oreille, 112% on the Kettle, and 37% on the Colville River. Snowpack at Bunchgrass Meadow SNOTEL site was 21.7 inches of water, the average February 1 reading is 20.2. Temperatures averaged near normal for January.

COLVILLE - PEND OREILLE RIVER BASINS

				S	TREAMFLOW	FORECASTS				
			- DRIER		FUTURE CO	ONDITIONS	WETTER		> ;	
FORECAST POINT	FORECAST	· 		Ci	HANCE OF E	EXCEEDING *			·- ¦	
	PERIOD		7Ø	% S	50% (MOST	PROBABLE) :	30% (1000AF)	10% (1000A		25 YR.
							(IPPDAL)			(1000AF
PEND OREILLE by Box Canyon (1,2)	APR-SEP	13000	156Ø	Ø ¦	16900	111	18100	20600	5	15170
	APR-JUL	12000	1430	Ø ¦	15500	112	16500	18900	1	13900
	APR-JUN	10300	1230	Ø	13300	111	14200	16300	j	11960
CHAMŪKANE CK nr Long Lake	MAY-AUG	1.1	4.	7	7.5	68	10.3	14.5	i	11.1
COLVILLE at Kettle Falls	APR-SEP	53	8	7 :	110	79	133	167		140
	APR-JUL	47	79	9 ¦	100	78	121	153		128
	AFR-JUN	45	7:	3 !	92	78 :	111	140		118
ETTLE nr Laurier	APR-SEP	1390	18Ø		2100	110	2400	2800		1907
	APR-JUL	1290	171		1990	110 ;	227Ø	2690	i	1897
	APR-JUN	115Ø	153	Ø ¦	1780	110 :	2030	2410		1622
OLUMBIA at Birchbank (1,2)	APR-SEP	43400	533Ø6		55600	125	57700	62690		44390
	APR-JUL	38600	42500		44400	125	46100	50000		35440
	APR-JUN	28000	30800	Ø ;	32100	125 ;	33300	36200		2565Ø
OLUMBIA at Grand Coulee Dm (1,2)	APR-SEP	67100	75899		79600	120 ;	83100	92400		6646Ø
	APR-JUL	56300	63500		66800	120 :	697ØØ	77500		55730
	APR-JUN	43900	49500	ð ;	52100	120 :	54300	60400		43420
	. 			; ; 			- 			
RESERVOIR	STORAGE	(1	000AF)		; ;	WATER	SHED SNOWPACK	(ANALY	SIS	
	USEABLE :	** USEAB	LE STOR	 RAGE **	 		 NO.	Ti	HIS YEA	 R AS % OF
RESERVOIR	CAPACITY		LAST			SHED	COURS	ES		
	: 		YEAR	AVG.	!		AVG'D	L	AST YR.	AVERAG
OOSEVELT	5232.0	4395.7 4	748.3	3749.0	Colvi !	lle River	1	7	71	37
NVS		NO REPORT			Pend	Oreille River	6	16	ð1	91
					: Kettl	e River	6	12	28	112
					:					

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

OKANOGAN AND METHOW

WATER SUPPLY OUTLOOK:

June-September runoff forecast for the Okanogan River is 138% of normal; the Similkameen River, 145%, the highest in the state; and the Methow River, 145% of normal. February 1 snow cover was 125% of average on the Okanogan, and 97% for the Methow Basin. Temperatures were 4 degrees below normal for the month. January precipitation in the Okanogan-Methow was 90% of normal, with water year-to-date 109% of average. January streamflow on the Methow River was 168% of normal, 170 % on the Okanogan River, and 168% on the Similkameen. Summer runoff for the area's small streams is expected to be below normal, with Salmon Meadows SNOTEL having 4.1 inches of water against a normal of 10.3. Snow water content at the Harts Pass SNOTEL, elevation 6500 feet, was 49.8 inches of water content in the pack. Storage in the Conconully Reservoirs is 17,800 acre feet, which is 76% of capacity and 133% of February 1 average.

OKANOGAN - METHOW RIVER BASINS

				Ę	STREAMFLOW	FORECASTS					
		}				ONDITIONS		• 5		; ;	
FORECAST POINT	FORECAST					EXCEEDING *				1	
	PERIOD		70% (1000AF)			PROBABLE) (% AVG.)					25 YR. (1000AF)
				;			;				
SIMILKAMEEN nr Nighthawk	APR-SEP		1980	1	2080	145	1	2180	2320		1432
	APR-JUL	1710	1840		1930	145	i	2020	2150		1333
	APR-JUN	1470	1590	i	1660	147	1	1730	185Ø		1129
KANOGAN RIVER nr Tonasket	APR-SEP	178Ø	2080	1	2290	138	!	2500	2800		1661
	APR-JUL	1610	1890	i	2070	138	i	2250	2530		1501
	APR-JUN	1370	1580		1720	137		1860	2070		1256
METHOW RIVER or Pateros	AFR-SEP	860	1020	1	1130	115	1	1240	1400		980
	APR-JUL	785	935	;	1949	115	1	1140	1290		907
	APR-JUN	665	800	1	895	116	1	990	1130		770
				1			1				
RESERV	OIR STORAGE	(1	ØØØAF)		:	MAT	rersi	IED SNOWPACI	K ANALYSI	 -	
	USEABLE :	** USEAB	LE STORAGE	 **	-			NO.	THI	S YEA	R AS % OF
RESERVOIR	CAPACITY:	THIS YEAR		AVG.				COURS AVG'I) LAS		AVERAGE
CONCONULLY LAKE (SALMON)	10.5	9.7	8.3	7.5	'	gan River					125
CONCONULLY RESERVOIR	13.0	8.9	7.1	6.3	Metho	w River		4	131		97

^{* 98%, 78%, 38%,} and 18% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 96% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

WENATCHEE AND CHELAN

WATER SUPPLY OUTLOOK:

February 1 snowpack in the Wenatchee Basin is 92%, down from 100% of average and the Chelan Basin144% down from 152%. Reservoir storage in Lake Chelan is 503,100 acre feet or 112% of February 1 average and 74 % of capacity. Lyman Lake SNOTEL had the most snow water with 64.3 inches of water, this site would normally have 45.0 inches. Snowpack continues low along Colockum Ridge with only 55% of average along the Squilchuck - Stimilt drainage. Runoff for the Entiat River is forecast to be 95% of normal for the summer, down from 130% last month. Forecasts for the Chelan River are for 110%, Wenatchee River's runoff 105%, and 85% on the Squilchuck-Stemilt. Streamflow for January on the Chelan River was 86% of average and the Wenatchee River was 198% of normal. Precipitation during January was 79% of normal in the basin and 138% for the year-to-date.

				STF	REAMFLOW	FORECASTS				
;		(DRIER	F	TUTURE CO	NDITIONS	WETTER	>	:	
FORECAST POINT	FORECAST			СНА	NCE OF E	XCEEDING *			: :	
	PERIOD		70%	1 50	% (MOST	PROBABLE) :		10% (1000AF)	 	25 YR. (1000AF
CHELAN RIVER at Chelan (1)	APR-SEP	920	1180	;	1200	110	1424	1/04		4100
CHELAN NIVEN AC CHETAII (17	APR-JUL	805	1646	1	1144	110 : 110 :	1744	168Ø 147Ø		1182 1040
	APR-JUN	635	815		895	110	975	1160		815
				i		1		2.02		010
TEHEKIN R. at Stehekin	APR-SEP	705	800	1	87Ø	103 ;	940	1949		844
	APR-JUL	595	680	1	735	103	790	875		714
	APR-JUN	460	520	1	565	104 :	619	67ø		541
NATAL DANGE - A And	ADD CC0	1/2	407		007		0.45	202		
NTIAT RIVER nr Ardenvoir	APR-SEP		197	1	220	* * * * * * * * * * * * * * * * * * * *	245	280		233
	APR-JUL	155	188	!	210		230	265		221
	APR-JUN	120	145	i	162	95	179	205		171
ENATCHEE R. at Peshastin	APR-SEP	1190	1530		1760	105	1990	2330		1678
civilence its as resilient	APR-JUL	1979	1370	i	1580	104	1790	2090		1516
	APR-JUN	85ø	1090	i	1260	104	1430	1670		1216
FEMALE	H44 050	74	~~	:	44=	- !	404			
FEMILT or Wenatchee (miners in)	MAY-SEP	71	98	1	117	85 : :	136	164		138
CICLE CREEK or Leavenworth	APR-SEP	255	330	i	38ø	103	430	505		370
	APR-JUL	235	305	1	350	103 :	395	465		340
	APR-JUN	189	245	1	280	184	315	370		270
DLUMBIA R. bl Rock Island Dam (2)	APR-SEP	73888	81900		87400	121	92900	101000		72250
ADIDIA NO DI NOCK ISTANO DAM (ET	APR-JUL	62400	69200		73900		78600	85400		61050
	APR-JUN	48800	54200		57800	121	61400	66800		47730
			V.2.5					0002		
				 ;						
RESERVOIR	STORAGE	(1	000AF)			WATERS	SHED SNOWPAC	K ANALYSIS		
	USEABLE :	** USEAB	LE STORAGE	##		***************************************	NO.	THIS	YEAR	AS % Of
RESERVOIR	CAPACITY	THIS		:	WATER	SHED	COUR	000		
	:	YEAR	YEAR	AVG. :			AVG'	D LAST	YR.	AVERAGE
ELAN LAKE	676.1	503.1	383.2 4	50.6	Chela	n Lake Basin	3	139		144
					Entia	t River	2	85		7 8
					Wenat	thee River	9	95		94
					Squi I	chuck Creek	ø	ø		Ø
					Stemi	It Creek	2	118		64
				i	Color	kum Creek	1	58		32
					20100		•			

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

YAKIMA

WATER SUPPLY OUTLOOK:

February 1 snowpack is 68%, down from 79% of average on January 1, in the Yakima Basin based upon 19 snow courses and SNOTEL readings. January precipitation was 85% of normal and 124% for the water yearto-date. The outlook for irrigation water for the summer is excellent with February 1 reservoir storage for the five major reservoirs at 803,200 acre feet. February 1 streamflow forecasts for the Yakima Basin runoff vary throughout the basin as follows: the Yakima River at Cle Elum, 85%; Naches River, 84%; the Yakima River at Parker, 88%; Ahtanum Creek, 85%, and Tieton River 86%. January streamflow on the Yakima River at Parker was 103% of normal, 106% on the Yakima near Cle Elum, and 103% on the Naches River. Temperatures were two degrees below average for January. Volume forecasts for the Yakima Basin are for natural flow. As such, they may differ from the U.S. Bureau of Reclamation's forecast for the total water supply available which includes adjustments for reservoir operation and irrigation return flow.

VICTURY LITABLE DVOTE

STREAMFLOW FORECASTS

						TONLONGIS			
		¦	- DRIER		FUTURE CO	ONDITIONS	WETTER	> !	
FORECAST POINT	FORECAST			Ch	ANCE OF E	EXCEEDING *			
	PERIOD		79%			PROBABLE) :	30%	10% ;	25 YR.
*		: (1000AF) 	A 99061)	.F) [(1A00AF)	(% AVG.) :	(1000AF)	(1000AF) ¦	(1000AF)
YAKIMA RIVER at Martin (1)	APR-SEP	96	112	: ;	120	88 ;	128	145	136
	APR-JUL	87	103		110	87	117	133	126
	APR-JUN	78	92	.	9 8	88 ;	104	118	
YAKIMA RIVER at Cle Elum (2)	APR-SEP	680	755		819	85	865	940	951
	APR-JUL	6Ø5	675		720	85	770	840	846
	APR-JUN	525	585		625	85 ;	665	725	735
YAKIMA RIVER nr Parker (2)	APR-SEP	1170	1490		1719	82 ;	1930	2250	2075
	APR-JUL	1050	1340		1530	82 1	1720	2010	1862
	APR-JUN	925	1180	' !	135Ø	82 ;	1520	1770	1643
KACHESS RIVER or Easton (1)	APR-SEP	91	111	1	120	90 ;	129	149	133
	APR-JUL	78	95	1	193	99 1	111	128	114
	APR-JUN	70	85	1	92	90 :	99	114	102
CLE ELUM RIVER nr Roslyn (1)	APR-SEP	315	375		405	88	435	495	459
	APR-JUL	290	345		370	89 1	395	45Ø	417
	APR-JUN	245	295	1	315	89	335	385	353
BUMPING RIVER or Nile (1)	APR-SEP	79	111	1	125	90 :	140	172	139
	APR-JUL	72	102		115	90 :	128	158	128
	APR-JUN	61	85	!	96	91	197	132	106
AMERICAN RIVER or Nile	APR-SEP	85	103	i i	115	95	127	145	121
	APR-JUL	78	95		106	95	117	134	112
	APR-JUN	67	81	1	99	96	99	113	94
TIETON RIVER at Tieton (1)	APR-SEP	128	185	·	219	86	235	290	244
	APR-JUL	112	160	1	182	88 1	205	250	208
	APR-JUN	91	130	1	147	88 ;	165	205	168
NACHES RIVER or Naches (2)	APR-SEP	485	630	i	725	84	820	965	860
	APR-JUL	425	550	1	649	82	730	855	779
	APR-JUN	360	470	1	54 5	82 :	620	730	667
AHTANUM CREEK nr Tampico (2)	APR-SEP	21	33	i	40	85	43	59	47
	APR-JUL	19.0	29		36	84 1	43	53	43
	APR-JUN	16.0	25	; ;	31	84 :	37	46	37
				;		!			
RESERVO)IR STORAGE	(1000AF)		: :	WATER	SHED SNOWPACK	(ANALYSIS	
	USEABLE :	** USEA		AGE **	:		NO.		'EAR AS % OF
RESERVOIR	CAPACITY!	THIS YEAR	LAST YEAR	AVG.	: WATER	SHED	COURS AVG 'I)LJ	'R. AVERAGE
KEECHELUS	157.8	116.7	96.A	96.Ø	!	2 River	19	87	68
					:				
KACHESS	. Z39.Ø	194.8	134.1	170.0	: Ahtan :	um Creek	2	106	74
CLE ELUM	436.9	340.4	195.2	251.0	:				
BUMFING LAKE	33.7	16.1	17.2	9.0					
RIMROCK	198.0	135.2	123.4	115.0	i :				
					:				

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

WALLA WALLA

WATER SUPPLY OUTLOOK:

The forecast is for 79% of average streamflow in the Walla Walla River for the coming summer, the Grande Ronde 76%, the Snake 68% and 61% for Mill Creek. February snowpack is at 48% down from 63% of normal, as the Walla Walla Basin continues to miss the major snow events for the second year. January streamflow was 66% of normal on the Walla Walla River, 63% for the Snake River and 72% on the Grande Ronde River near Troy. January precipitation was 51% of average bringing the water year-to-date precipitation to 111% of normal. Temperatures were near average for January.

WALLA WALLA RIVER BASIN

				STREAMFLO	V FORECASTS			
		. <	DRIER	FUTURE (CONDITIONS	WETTER	} - <u>-</u> >	:
								1
FORECAST FOINT	FORECAST				EXCEEDING *			
	PERIOD	90% (1000AF)			PROBABLE) :	30% (1000AF)	10% (1000AF)	25 YR.
SELVING FOUNDS 4 T	MAF: 1111	£75	645	4488		= ~		
GRANDE RONDE at Troy	MAR-JUL	575	845	1150	76	145Ø	1720	1512
	AFR-SEP	520	765 :	1949	76	1310	1560	1369
SNAKE bl Lower Granite Dam (1,2)	APR-JUL	6150	12500	15500	68 ;	18400	24800	22760
,	APR-SEP	6910	14100	17400	68	20700	27900	25578
			;		;			
MILL CREEK at Walla Walla	APR-SEP	2.8	7.6	10.9	62 :	14.2	19.0	17.7
	APR-JUL	2.7	7.5	10.8	61 ;	14.1	18.9	17.6
	APR-JUN	2.7	7.5	10.7	62 ;	13.9	18.7	17.3
			ł		!			
SF WALLA WALLA or Milton Freewater	APR-JUL	34	4Ø	44	8Ø :	48	54	55
COLUMBIA R. at The Dalles (2)	APR-SEP	82	95	104	102	113	126	192
becomes in a fine parter (a)	APR-JUL	70100	81400	89100	102	96800	108000	87100
	APR-JUN	56500	65700	71900	102	78100	87300	70470
			1		1			
			1		1			
				¦				
RESERVOIR	STORAGE	(1	000AF)	 	WATERS	SHED SNOWPAC	K ANALYSIS	
	HISEADLE !	** QC \ D	 LE STORAGE *	¦ ¥ !		 NO.	THIC	YEAR AS % OF
RESERVOIR		THIS	LAST		RSHED	cour		TEAN NO 7. UI
NEGERVOIR		YEAR		G. 1	IVE: ILU	AVG '		YR. AVERAGE
				 ! #311	Creek	<u>-</u> - 1	 122	 48
				1 1311	OI CEK	1	122	70

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

COWLITZ AND LEWIS

WATER SUPPLY OUTLOOK:

Summer runoff forecasts for the Lewis River are 100%, and for the Cowlitz River, 105%. January precipitation was 64% of normal, bringing the water year-to-date precipitation to 111% of average. February 1 snow cover for the Cowlitz River is 84% and the Lewis Basin is 64% of normal. January streamflow on the Cowlitz River was 92% of average, and 56% on the Lewis River. The Paradise Park SNOTEL has the maximum water content for the basin with 49.3 inches of water, normal February 1 water content is 47.7 inches. Temperatures were one degree below normal for January.

COWLITZ - LEWIS RIVER BASIN

				ST	(REAMFLOW	FORECASTS					
FORECAST POINT	FORECAST PERIOD	 90%	70%	· CH	HANCE OF 1	ONDITIONS EXCEEDING * PROBABLE) (% AVG.)	1	30%	-	:	25 YR. (1000AF)
				; ;			:				
	RESERVOIR STORAGE	(1	000AF)		1	WA	rershed	SNOWPACK	ANALYSI	5	
RESERVOIR	USEABLE : CAPACITY: :		LE STORAGE LAST YEAR	** AVG.	: WATER	RSHED		NO. COURS AVG'D	ES		AS % OF
					1						

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

WHITE - GREEN

WATER SUPPLY OUTLOOK:

Summer runoff is forecasted to be 88% on the Green River down from 100% last month, and 96% of normal on the Cedar River down from 103%. February 1 snowpack was 60% of normal on the White River and 76% in the Green Basin. Water content on February 1 at the Stampede Pass SNOTEL, at an elevation of 3860 feet, was 25.9 inches, this site has a February 1 average of 27.8 inches. January precipitation was 73% of normal, bringing the water year-to-date to 135% of average. Temperatures were near average for January.

WHITE - GREEN RIVER BASINS

				S	TREAMFLOW	FORECASTS					
FORECAST POINT	FORECAST PERIOD	 	70%	C	HANCE OF 1	ONDITIONS EXCEEDING * PROBABLE) (% AVG.)	1 36	7%	10%		25 YR. (1000AF)
GREEN R bl Howard Hanson Dam (2)	APR-JUL	144	215 198 177	1	255 235 21 <i>0</i>	88 9Ø 89		295 270 245	355 325 290		291 261 236
CEDAR RIVER nr Cedar Falls	APR-SEP	57	76	:	89	96	1	102	121		93
RESERVOIF	STORAGE	(1	000AF)		 	ГАЖ	ershed sn	NOWPACK	ANALYSIS		
	USEABLE							NŪ.		YEAR	AS % OF
RESERVOIR	CAPACITY:			AVG.		(SHED)		COURSE AVG 'D		YR.	AVERAGE
					- White	River		2	76		6Ø
					i Green	River		7	92		76
					: Cedar	River		Ø	Ø		Ø

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

NORTH PUGET SOUND

WATER SUPPLY

OUTLOOK:

February 1 snow cover in the Skagit Basin is 139% of normal. January streamflow in the Skagit River was 120% of average. Forecast for the Skagit River is 120% of normal for the spring and summer period. February 1 reservoir storage is above average, with Ross Lake reservoir at 102% of normal and 75% of capacity. Precipitation values for January were 79% of average with a water year-to-date at 143% of normal. January temperatures were near normal. Rainy Pass SNOTEL at elevation of 4780 feet, has 40.6 inches of water content; normal February 1 water content is 34.3 inches.

NORTH PUGET SOUND RIVER BASINS

					;	STREAMFLOW	FORECASTS						
FORECAST POINT		FORECAST	:				ONDITIONS EXCEEDING *		- WETTER		·> 	 	
		PERIOD	: 90% : (1000AF	70% (1000A			PROBABLE) (% AVG.)		30% (000AF)	10% (1000)	(F)	 	25 YR. (1000AF
CWACIT DIVER AL MANAGE	10)	ADD DED	2224	2520	1	0704	400	: :	0000	004/			
SKAGIT RIVER at Newhalem	(2)	APR-SEP APR-JUL		2520 2100		2720 2270	120 120	} }	2440	3219 2689			2264 1891
		APR-JUN	1420	1600		1730	120		1860	2008			1442
							•==	i	2002	Z. 12	•		11,12
					;			!					
	RESERVOIR	STORAGE		(1000AF)			WA	TERSHED	SNOWPAC	K ANALY	'SIS		
RESERVOIR		USEABLE :		ABLE STOR LAST	AGE **		SCHED		NO. COUR		HIS	YEAR	AS % 0
KESEKVUIK		CAFACITT		YEAR	AVG.		zanen.		AVG'		.AST	YR.	AVERAG
ROSS		1404.1	1051.9	1048.7	1033.9) Snoqi	ualmie Rive	·	2	1	15		73
DIABLO RESERVOIR		90.6	83.1	85.3	84.2	: Skyko	omish River		3		87		97
GORGE RESERVOIR			NO REPOR	RT		: Skagi	it River		12	1	53		139
						: Baker	River		Ø		Ø		Ø

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

OLYMPIC

WATER SUPPLY OUTLOOK: Ea

February 1 snow cover in the Olympic basins is at 74% of normal. February forecasts of runoff for streamflow in the basin are for 88% of average on the Dungeness River, down from 102% last month, and 91% for the Elwah River, down from 100% last month. The Big Quilcene can expect below normal runoff this summer. January precipitation was 80% of average, with Quillayute receiving 10.87 inches. The basin water year-to- date precipitation accumulation is 126% of normal. The Mount Craig SNOTEL near Quilcene had 7.5 inches on February 1, with the snowpack at Hurricane Ridge at 28 inches in depth and 8.8 inches of water. Temperatures were near normal for January.

OLYMPIC PENINSULA RIVER BASINS

					STREAMFLOW	FORECASTS			
		\	- DRIER		FUTURE CO	ONDITIONS -	WETTER	{>	
FORECAST PÜINT	FORECAST PERIOD	90%	79%	1	50% (MOST	PROBABLE) :	39%	10%	25 YR (1000A)
DUNGENESS RIVER or Sequim	APR-SEP APR-JUL APR-JUN	90	127 1Ø6 79		14Ø 116 87	88 90 90	126	172 142 106	15: 12: 9:
ELWHA RIVER or Port Angeles	APR-SEP		46Ø 39Ø		5Ø5 425	;	550		553 454
RESERV	OIR STURAGE	(1	ØØØAF)		 	WATE	rshed snowpac	X ANALYSIS	
RESERVÜIR	USEABLE CAPACITY 				: WATER	SHED	NO. COUR AVG'	SES	YEAR AS % (
				-	¦ : Elwha	River	1	110	62
					. Morse	Creek	1	141	8Ø
	-				i Dunge	ness River	1	112	76
					. Quilc	ene River.	Ø	Ø	Ø
					•	chee River	Õ	Ø	Ø

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

