Réseaux Euclidiens

Vecteur le plus court

• Soit
$$B = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$

- Le réseau engendré est \mathbb{Z}^2
- Le vecteur le plus court est
 - $v = (0, \pm 1)$ ou $v = (\pm 1, 0)$
 - $\lambda = 1$

Réseaux Euclidiens

Recherche du vecteur le plus court: énumération

- Soit $D=B^{-T}=d_1,...,d_n\in\mathbb{R}^n$ la base du réseaux dual de L(B)
 - D est telle que $b_i d_j = \delta_{i,j}$ (1 si i=j et 0 sinon)
- . Soit $w = \min_{b_i \in B} \|b_i\|$ la norme du plus petit vecteur de la base
- On peut borner les coefficients du plus court vecteur $v = \sum_{i=1}^{n} x_i b_i$ par

$$|x_i| \leq ||d_i||w$$