Analyse I – Série 5

Exercice 1. (V/F : Limites des suites)

Soit $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites de nombres réels.

Q1: Si (a_n) est bornée, alors (a_n) converge.

Q2: Si $\lim_{n\to\infty} a_n = 0$, alors $\lim_{n\to\infty} (a_n \sin(n)) = 0$.

Q3: Si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, alors (a_n) diverge.

Q4: Si (a_n) converge, il existe $\epsilon > 0$ tel que $|a_n| \le \epsilon$ pour tout n.

Q5: Si $\lim_{n\to\infty} a_n = a$, alors il existe $\delta > 0$ tel que $|a_n - a| \le \delta$ pour tout n.

Q6: Si $(a_n + 3b_n)$ converge, alors (a_n) converge et (b_n) converge.

Q7: Si $(a_n + 3b_n)$ converge, alors au moins une des deux suites (a_n) et (b_n) est convergente.

Q8: Si $\lim_{n\to\infty} b_n = 0$, alors la suite $(a_n b_n)$ converge.

Q9: Si $(a_n b_n)$ converge et $\lim_{n\to\infty} a_n = l \neq 0$, alors (b_n) converge.

Q10: Si (a_n) et (b_n) convergent, alors la suite $(|a_n| - |b_n|)$ converge aussi.

Q11: Si $\left(\frac{a_n}{b_n}\right)$ converge, alors $\lim_{n\to\infty} b_n \neq 0$

Q12: Si $\left(\frac{a_n}{b_n}\right)$ diverge et (a_n) converge, alors soit (b_n) diverge, soit $\lim_{n\to\infty}b_n=0$.

Q13: Si (a_nb_n) diverge, alors soit (a_n) converge et (b_n) diverge, soit (a_n) diverge et (b_n) converge.

Intermezzo.

Les informations suivantes seront utiles pour les exercices qui suivent:

1) $\lim_{n\to\infty} \frac{1}{n^p} = 0$, pour tout p > 0.

2) $1 \le \sqrt{1+x} \le 1 + \frac{1}{2}x$, pour tout $x \ge 0$.

3) $1 + x \le \sqrt{1+x} \le 1 + \frac{1}{2}x$, pour $-1 \le x \le 0$.

Démonstration:

1) (Voir les notes du cours du 10 octobre). Il faut montrer que pour tout $\varepsilon > 0$ il existe $n_0 \in \mathbb{N}^*$ tel que $\frac{1}{n^p} \leq \varepsilon$ pour tout $n \geq n_0$. On peut par exemple choisir

$$n_0 = \left[\frac{1}{\varepsilon^{\frac{1}{p}}}\right] + 1 > \frac{1}{\varepsilon^{\frac{1}{p}}} ,$$

car on trouve pour $n \geq n_0$,

$$\frac{1}{n^p} \le \frac{1}{n_0^p} < \varepsilon \ .$$

2) Pour $x \ge 0$ on a

$$1 \le \sqrt{1+x} \le \sqrt{1+x+\frac{1}{4}x^2} = 1+\frac{1}{2}x$$
.

3) Pour $-1 \le x \le 0$ on a $0 \le 1 + x \le 1$ et donc $(1+x)^2 \le 1 + x$. Donc

$$1 + x \le \sqrt{1 + x} \le \sqrt{1 + x + \frac{1}{4}x^2} = 1 + \frac{1}{2}x$$
.

Exercice 2. (Existence des limites)

Déterminer, si elle existe, la limite $n \to \infty$ de la suite (a_n) avec

i)
$$a_n = \frac{5n^2 - 3n + 2}{3n^2 + 7}$$
 ii) $a_n = (-1)^n \frac{\sqrt[4]{n}}{\sqrt[3]{n}}$ iii) $a_n = \frac{\sqrt{n^2 + 2}}{2n}$

ii)
$$a_n = (-1)^n \frac{\sqrt[4]{n}}{\sqrt[3]{n}}$$

$$iii) \ a_n = \frac{\sqrt{n^2 + 2}}{2n}$$

Exercice 3. (Calcul des limites)

Pour les limites qui contiennent sin, les informations suivantes seront utiles. Pour $0 < x < \frac{\pi}{2}$ on a les inégalités suivantes:

$$0 < \sin(x) \le x \le \tan(x) \qquad \Rightarrow \qquad 1 \le \frac{x}{\sin(x)} \le \frac{1}{\cos(x)} \qquad \Rightarrow \qquad \cos(x) \le \frac{\sin(x)}{x} \le 1$$

$$\Rightarrow \qquad \cos(x)^2 \le \left(\frac{\sin(x)}{x}\right)^2 \le 1 \qquad \Rightarrow \qquad 1 - \sin(x)^2 \le \left(\frac{\sin(x)}{x}\right)^2 \le 1$$

$$\Rightarrow \qquad 1 - x^2 \le \left(\frac{\sin(x)}{x}\right)^2 \le 1 \qquad \Rightarrow \qquad \sqrt{1 - x^2} \le \frac{\sin(x)}{x} \le 1 , \quad 0 < x < 1 .$$

Calculer

$$i$$
) $\lim_{n\to\infty} \sin\left(\frac{1}{n}\right)$

$$ii)$$
 $\lim_{n\to\infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}$

$$i)$$
 $\lim_{n\to\infty} \sin\left(\frac{1}{n}\right)$ $ii)$ $\lim_{n\to\infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}$ $iii)$ $\lim_{n\to\infty} n \cdot \sin\left(\frac{2n+3}{n^3}\right)$

Exercice 4. (Calcul des limites par le théorème des deux gendarmes)

Calculer la limite lorsque $n \to \infty$ de la suite (a_n) avec

$$i) \ a_n = \sqrt{n+2} - \sqrt{n}$$

$$ii) \quad a_n = \frac{n^2}{2^n}$$

$$iii) \ a_n = \frac{n!}{n^n}$$

$$iv) \quad a_n = \frac{2^n}{n!}$$

Exercice 5. (Calcul des limites en utilisant $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$.)

Calculer les limites suivantes:

$$i$$
) $\lim_{n\to\infty} \left(1+\frac{2}{n}\right)^n$

$$(ii)$$
 $\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n$

$$i) \quad \lim_{n \to \infty} \left(1 + \frac{2}{n}\right)^n \qquad \qquad ii) \quad \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n \qquad \qquad iii) \quad \lim_{n \to \infty} \left(1 - \frac{1}{n^2}\right)^n$$

Exercice 6. (QCM: Définition de la limite)

On a $\lim_{n\to\infty} a_n = l$ si et seulement si

(i): Il existe $\varepsilon > 0$ et $n_0 \in \mathbb{N}$ tels que pour tout $n > n_0, n \in \mathbb{N}$, on a $|a_n - l| \leq \varepsilon$.

(ii): Pour tout $\xi > 0$, il existe un nombre naturel n_0 et une infinité des nombres naturels $n > n_0$ tels que $|a_n - l| \le \xi$.

(iii): Quel que soit x > 0, il existe $m \in \mathbb{N}$ tel que pour tout $n > m, n \in \mathbb{N}$, on a $|a_n - l| \le 2x$.

(iv): Soit $\varepsilon > 0$. Alors pour tout naturel $n > \frac{1}{\varepsilon}$, on a $|a_n - l| \le \varepsilon$.

Exercice 7. (Limite des suites définies par récurrence)

(1) Soit $(x_n)_{n\in\mathbb{N}}$ une suite de nombres réels, et $l\in\mathbb{R}$ tel que

$$x_{n+1} - l = \frac{1}{n+1}(x_n - l) \quad \forall n \in \mathbb{N}.$$

Prouver que la suite (x_n) est monotone et bornée, donc convergente. Astuce: considerer les cas $x_0 < l, x_0 = l, x_0 > l$.

(2) Soient $(x_n)_{n\in\mathbb{N}}$ et $(a_n)_{n\in\mathbb{N}}$ deux suite, et $0 < a_n < 1$ pour tout $n \in \mathbb{N}$. Soit $l \in \mathbb{R}$ tel que

$$x_{n+1} - l = a_n(x_n - l) \quad \forall n \in \mathbb{N}.$$

Prouver que la suite (x_n) est monotone et bornée, donc convergente.