Proyecto Arquitectura de computadoras

Integrantes:

- Noé Paredes
- Omar Chavarria

Índice

- FMUL
- FADD
- IMPLEMENTACIÓN EN LA PLACA

Datapath PCWrite IsMovm Contral IsMovt AdrSrc Unit ResultSrc MemWrite ALUControl [3:0] **IRWrite** ALUSrcB Cond ALUSrcA Op Func ImmSrc Rd RegWrite Flags RegWriteHi CLK CLK CLK \downarrow SrcA WE4 PC RA1 Instr[31:0] RD1 EN EN operand_selector 00 RA2 A2 RD2 01 00 SrcB 10 АЗ WD WD3 R15 WD4 Å Extend EN

PASOS PARA FMUL - IEEE 754 de 32 bits

Formato IEEE 754 (32 bits)

• **Signo**: 1 bit [31]

• **Exponente**: 8 bits [30:23] (sesgo = 127)

• **Mantisa**: 23 bits [22:0] (bit implícito = 1)

Pasos de Implementación:

- 1. Detectar operandos cero
- 2. Extraer componentes
- 3. **Sumar exponentes** y restar sesgo (127)
- 4. Multiplicar mantisas $(24 \times 24 = 48 \text{ bits})$
- 5. **Normalizar resultado** (verificar MSB)
- 6. **XOR signos** para signo final

Ejemplo: $R1 \times R2 = 0.5 \times 2.4 = 1.2$

 $Exp_result = 126 + 128 - 127 = 127$

 $Mult_mantisas = 1.0 \times 1.2 = 1.2$

Signo Result = $0 \oplus 0 = 0$

Resultado: 3F99999A ≈ 1.2

ALUOp	$egin{array}{c} ext{Funct}_{4:1} \ ext{(cmd)} \end{array}$	Funct ₀ (S)	Туре	ALUControl	$\mathbf{FlagW}_{1:0}$
0	X	X	Not DP	000 (Add)	00
1	1000	0	FADDS	1000 (FADDS)	00
1	1000	0	FMULS	1001 (FMULS)	00

Op	Funct _{4:1}	Funct ₀ (S)	Tipo	RegWHi	RegW	ALUOp
00	1000	0	DP FP32 Add (FADDS)	0	1	1
	(Opcode=	1000, S=0)		100		
00	1000	1	DP FP32 Mul (FMULS)	0	1	1
	(Opcode=	1000, S=1)				

Encoding 32b

FADD RO, R1, R2

FMUL RO, R1, R2

11:8	7:6	5	4:0
Shamt5	sh	1	Rm

E1010002

E1010012

31:28	27:26	25	24:21	20	19:16	15:12	11:0	I ≠ 0
cond	op 00	I	1000	S	Rn	Rd	Src2	

Instrucciones Codificación

MOV R1, #0x0	000		E3A01000
MOVM R1, #0x	00		E3C01000
MOVT R1, #0x	3F0 //MOV R1,	#0x3f000000	E34013F0
MOV R2, #0x9	9A		E3A0299A
MOVM R2, #0x	299		E3C02099
MOVT R2, #0x	401 //MOV R2,	#0x4019999a	E3402401

Encoding

Instrucción FMUL

FMUL RO, R1, R2

31:28	27:26	25	24:21	20	19:16	15:12	11:7	6:5	4	3:0
1110	op 00	0	1000	0	0001	0000	00000	00	1	0001

11100001000000100000000000010010

Codificación:

E1010012

Waveform

Resultado

ALUOp	$egin{array}{c} \mathbf{Funct}_{4:1} \ \mathbf{(cmd)} \end{array}$	Funct ₀ (S)	Туре	ALUControl	$\mathbf{FlagW}_{1:0}$
0	X	X	Not DP	000 (Add)	00
1	1001	0	FADDH	1110 (FADDH)	00
1	1001	0	FMULH	1111 (FMULH)	00

Op	Funct _{4:1}	Funct ₀ (S)	Tipo	RegWHi	RegW	ALUOp
00	1000	0	DP FP32 Add (FADDS)	0	1	1
	(Opcode=	1000, S=0)		1111		
00	1000	1	DP FP32 Mul (FMULS)	0	1	1
	(Opcode=	1000, S=1)				

	31:28	27:26	25	24:21	20	19:16	15:12	11:7	6:5	4	3:0	
>	1110	op 00	0	1001	0	0001	0000	00000	00	1	0001	×

ALUOp	$egin{array}{c} \mathbf{Funct}_{4:1} \ \mathbf{(cmd)} \end{array}$	Funct ₀ (S)	Туре	ALUControl	$\mathbf{FlagW}_{1:0}$
0	X	X	Not DP	000 (Add)	00
1	1000	0	FADDS	1000 (FADDS)	00
1	1000	0	FMULS	1001 (FMULS)	00

Op	Funct _{4:1}	Funct ₀ (S)	Tipo	RegWHi	RegW	ALUOp
00	1000	0	DP FP32 Add (FADDS)	0	1	1
	(Opcode=	1000, S=0)				
00	1000	1	DP FP32 Mul (FMULS)	0	1	1
	(Opcode=	1000, S=1)				

PASOS PARA FADD - IEEE 754 de 32 bits

Formato IEEE 754 (32 bits)

• **Signo**: 1 bit [31]

• **Exponente**: 8 bits [30:23] (sesgo = 127)

Mantisa: 23 bits [22:0] (bit implícito = 1)

Pasos de Implementación:

- 1. **Extraer componentes** (signo, exponente, mantisa)
- 2. **Agregar bit implícito** (1.mantisa)
- 3. Comparar exponentes y calcular diferencia
- 4. **Alinear mantisa** menor (desplazar a la derecha)
- 5. **Sumar/restar mantisas** según signos
- 6. **Normalizar resultado** y ajustar exponente

Ejemplo: R1 + R2 = 0.5 + 2.4 = 2.9

Proceso:

- Exp_diff = 128-126 = 2
- Alinear R1: 1.0 >> 2 = 0.25
- Sumar: 1.2 + 0.25 = 1.45
- Normalizar: $1.45 \times 2^1 = 2.9$
- Resultado: 40399999 ≈ 2.9

Encoding 32b

11:8	7:6	5	4:0
Shamt5	sh	0	Rm

31:28	27:26	25	24:21	20	19:16	15:12	11:0 l=	ŧ0
cond	op 00	I	1000	S	Rn	Rd	Src2	

Instrucciones

Codificación

MOV R1, #0x000		E3A01000	
MOVM R1, #0x00		E3C01000	
MOVT R1, #0x3F0	//R1=3F000000	E34013F0	//R1 = 3F000000: 0.5
MOV R2, #0x99A		E3A0299A	UTEC UNIVERSIDAD DE INCENIENTA Y TECNOLOGIA
MOVM R2, #0x99		E3C02099	
MOVT R2, #0x401	// R1=4019999A	E3402401	//R2 = 4019999A: 2.4
FADD RO,R1,R2		E1010002	//FADD

Encoding

Instrucción FADD

FADD RO,R1,R2

31:28	27:26	25	24:21	20	19:16	15:12	11:7	6:5	4	3:0	
1110	op 00	0	1000	0	0001	0000	00000	00	0	0001	

Codificación:

E1010002

Waveform

Resultado

ALUOp	$egin{array}{c} ext{Funct}_{4:1} \ ext{(cmd)} \end{array}$	Funct ₀ (S)	Туре	ALUControl	$\mathbf{FlagW}_{1:0}$
0	X	X	Not DP	000 (Add)	00
1	1001	0	FADDH	1110 (FADDH)	00
1	1001	0	FMULH	1111 (FMULH)	00

Op	Funct _{4:1}	Funct ₀ (S)	Tipo	RegWHi	RegW	ALUOp
00	1000	0	DP FP32 Add (FADDS)	0	1	1
	(Opcode=	1000, S=0)	1111			
00	1000	1	DP FP32 Mul (FMULS)	0	1	1
	(Opcode=	1000, S=1)				

31:28	27:26	25	24:21	20	19:16	15:12	11:7	6:5	4	3:0
1110	op 00	0	1001	0	0001	0000	00000	00	0	0001

Gracias

