

Solid Rockets

Solid Motors 1 Copyright © 2007-2008 by Jerry M. Seitzman. All rights reserved.

Solid Propellants

- Two basic types
- Homogeneous
 - reactants (fuel, oxidizer) mixed at molecular level
 - e.g., double-base propellants
- Heterogeneous
 - fuel and oxidizer are "macroscopically" separated
 - e.g., composite propellants

Solid Motors 3

Consulate © 2007-2009 by James M. Saliteman, All rights resonance

AE4451 Jet and Rocket Propulsion

Double-Base Propellant

- Nitrocellulose + Nitroglycerine
 - see Table 12.6 Sutton
- Used in early modern rockets, e.g. at JPL
 - replaced gun/black powder
 - used in WWII JATOs and early Sidewinders

Solid Motors 4

Copyright © 2007-2008 by Jerry M. Seitzman. All rights reserved.

Composite Propellants

- "Oxidizer" particles held together in polymer (fuel)
- Ground oxid. crystals
 - materials

- Binder
 - materials
- · Curing agents
- Other fuels (metals) and catalysts

see Table 12-7 Sutton

Solid Motors 5
Copyright © 2007-2008 by Jerry M. Seltzman. All rights reserve

AE4451 Jet and Rocket Propulsion

Mass "Production" Rate

Propellant converted to gas at rate given by

(VI.1) $\dot{m} = r\rho_s A_b$

• (Surface) Regression Rate r

r = dx/dt sometimes \dot{r}_b

standard model (Burning Rate "Law" or St. Robert's "Law")

(VI.2) $r = ap_o^n$ with a=f(T,...)

- also, $r = c + bp_o^n$ etc.

iolid Motors 6 Copyright © 2007-2008 by Jerry M. Seitzman. All rights reserved.

Internal Ballistics (con't)

• Solve for rate of pressure change

(VI.3)
$$\frac{V_o}{RT_o} \frac{dp_o}{dt} = rA_b (\rho_s - \rho_o) - p_o A_t \sqrt{\frac{\gamma}{RT_o} \left(\frac{2}{\gamma + 1}\right)^{\gamma + 1/\gamma - 1}}$$

• For steady (neutral) burning

$$p_o = ap_o^n \frac{A_b}{A_t} (\rho_s - \rho_o)c^* \Rightarrow p_o = \left[aK(\rho_s - \rho_o)c^* \right]_{1-n}^{1/2} \quad \text{(VI.5)}$$

$$A_b/A_t \equiv K$$

For steady burning (if a, n, T_o , γ , and A_t constant) then A_b must be constant

$$p_o \sim K^{\frac{1}{1-n}}$$

AE4451 Jet and Rocket Propulsion

Pressure Histories

- Motor designer can adjust pressure profile ("history") of a solid motor by arranging how burning area changes with time (grain geometry)
- Thrust given by $\tau = p_o A_t c_{\tau}$
 - so thrust history of motor essentially follows motor's pressure history
- Characterize pressure/thrust histories as generally
 - progressive: increase with time
 - neutral: constant with time
 - regressive: decrease with time
 - combinations

Motor Stability

 Recall mass conservation for steady operation (p_o=constant)

$$\begin{split} \dot{m}_{exit} &= \dot{m}_b - \rho_o A_b r = A_b (\rho_s - \rho_o) r = \Delta \dot{m}_{incr} \\ \dot{m}_{exit} &\propto p_o \qquad \qquad \Delta \dot{m}_{incr} \propto p_o^n \end{split}$$

- Is this condition (point) stable?
 - only if $n \le 1$
 - normally use 0.3<*n*<0.7

AE4451 Jet and Rocket Propulsion

_Georgia College of Tech Engineering

Combustion Limits

- If n or p_o too low
 - do not get stable combustion
 - after ignition, propellant soon stops burning (r→0)

- At high p_o
 - possibility of erratic, unpredictable burning (usually > 5000 psi)

olid Motors 14 opyright © 2007-2008 by Jerry M. Seitzman. All rights reserved.