Конспект по матанализу II семестр Современное программирование, факультет математики и компьютерных наук, СПбГУ (лекции Бахрева Федора Львовича)

Тамарин Вячеслав

26 февраля 2020 г.

Оглавление

1	Интергирование			
	1.1			
		1.1.1	Формула Тейлора с остаточным членом в интегральной форме	
		1.1.2	Теорема о среднем	
	1.2	2		
		1.2.1	Свойства	
	1.3	Вычис	сление площадей и объемов	1
		1.3.1	Площади	1
		1.3.2	Объемы	1

ОГЛАВЛЕНИЕ

Глава 1

Интергирование

1.1

Лекция 1

14 feb

1.1.1 Формула Тейлора с остаточным членом в интегральной форме

$$f(x) = T_{n,x_0} f(x) + R_{n,x_0} f(x),$$

где

$$T_{n,x_0}f(x) = \sum_{i=0}^{n} \frac{1}{i!} f^{(i)}(x) (x - x_0)^i,$$

а R_{n,x_0} — остаток.

Theorem 1 (Формула Тейлора с остатком в интегральной форме). $f \in C^{n+1}(\langle a,b \rangle), \ x,x_0 \in (a,b).$ Тогда остаток в формуле Тейлора представим в виде

$$R_{n,x_0} = \frac{1}{n!} \int_{x_0}^{x} f^{(n+1)}(t)(x-t)^n dt.$$

Доказательство. Индукция по n.

База: n = 1. По формуле Ньютона-Лейбница:

$$R_{0,x_0}f(x) = f(x) - f(x_0) = \int_{x_0}^x f'(t)dt.$$

Переход: $n-1 \to n$.

$$R_{n-1,x_0}f(x) = \frac{1}{(n-1)!} \int_{x_0}^x f^{(n)}(x-t)^{n-1} dt =$$

$$= \frac{1}{(n-1)!} \int_{x_0}^x f^{(n)}(t) d\left(\frac{(x-t)^n}{n}\right) =$$

$$= \underbrace{-\frac{1}{n!} f^{(n)}(t)(x-t)^n \Big|_{x_0}^x}_{n!} + \underbrace{\frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt}_{R_{n,x_0}f(x)}$$

1.1.2 Теорема о среднем

Theorem 2 (Хитрая теорема о среднем). $f,g \in C[a,b], g \geqslant 0$. Тогда

$$\exists c \in (a,b): \int_a^b f(x)g(x)dx = f(c)\int_a^b g(x)dx.$$

Доказательство. Найдем максимум и минимум f на [a,b].

$$m \leqslant f(x) \leqslant M$$
.

Тогда

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x).$$

Так как интеграл монотонен

$$m \int_{a}^{b} g(x)dx \leqslant \int_{a}^{b} f(x)d(x)dx \leqslant M \int_{a}^{b} g(x)dx$$
$$m \leqslant \frac{\int_{a}^{b} f(x)g(x)dx}{\int_{a}^{b} g(x)dx} \leqslant M.$$

По теореме Больцано-Коши о промежуточном значении

$$\exists c \in (a,b) : f(c) = \frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx}.$$

Corollary. Если $|f^{(n+1)}| \leq M$, то существует понятно какая оценка сверху для $|R_{n,x_0}f(x)|$.

Theorem 3. Формула Тейлора с остатком в форме Лагранжа следует из формулы Тейлора с остатком в интегральной форме.

Доказательство. Запишем остаток в форме Лагранжа:

$$R_{n,x_0}f(x)=rac{f^{(n+1)}(\Theta)}{(n+1)!}(x-x_0)^{n+1},\quad \Theta$$
 лежит между $x,x_0.$

По прошлой теореме 2, где $g(t) = (x-t)^n$, получаем, что

$$\frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt = \frac{1}{n!} \cdot f^{(n+1)}(\Theta) \int_{x_0}^x (x-t)^n dt = \frac{1}{n!} \cdot f^{(n+1)}(\Theta) \cdot \left(-\frac{((x-t)^n)^{n+1}}{n+1}\right) \Big|_{x_0}^x.$$

 $1.2 \quad 2$

Лекция 2

1.2.1 Свойства

Property.

ГЛАВА 1. ИНТЕРГИРОВАНИЕ

1 $c \in (a, b)$:

$$\int_{a}^{\to b} f dx = \int_{a}^{c} f dx + \int_{c}^{\to b}.$$

 $2 \int_a^{\to b} f dx - cxo \partial umcs \Longrightarrow \lim_{A \to b} \int_A^{\to b} f = 0$

2' $Ecnu \int_A^{\to b} f \not\to_{A\to b-} \Longrightarrow \int_a^{\to b} pacxodumcs$ (необходимое условие сходимости несобственного интеграла).

линейность $f, g - \phi y$ нкции на $[a, b), \alpha, \beta \in \mathbb{R}$

$$\int_{a}^{\to b}, \int_{a}^{\to b} g \, \operatorname{cxodsmcs} \implies \int_{a}^{\to b} (\alpha f + \beta g) = \alpha \int_{a}^{\to b} + \beta \int_{a}^{\to b} g.$$

монотонность $f \leqslant g, \int_a^{\to b} f + \int_a^{\to b} g \, \cos \theta s m c s$.

$$\int_{a}^{\to b} f \leqslant \int_{a}^{\to b} g.$$

Definition 1: Абсолютная сходимость

 ${\it Говорят},\ {\it что}\ \int_a^{ o b} f\ {\it c}$ ходится абсолютно, ${\it ecnu}\ {\it cxodumcs}\ \int_a^{ o b} |f|.$

Eсли $\int_a^{\to b} f$ сходится абсолютно, то $\int_a^{\to b} f$ сходится и верно неравенство

$$\left| \int_{a}^{b} f \right| \leqslant \int_{a}^{b} |f|.$$

Доказательство. Воспользуемся критерием Больцано-Коши:

$$\int_{a}^{\to b} |f| \, \operatorname{сходится} \implies \forall \varepsilon > 0 \,\, \exists \delta \in (a,b) : \forall B_1, B_2 \in (\delta,b) : \int_{B_1}^{B_2} |f| dx < \varepsilon \Longrightarrow \left| \int_{B_1}^{B_2} f dx \right| < \varepsilon.$$

Для любого B:

$$\left| \int_{a}^{B} \right| \leqslant \int_{a}^{B} |f| dx.$$

Definition 2: Условная сходимость

 $\int_a^{\to b} f$ называется условно сходящимся, если $\int_a^{\to b} f$ сходится, а $\int_a^{\to b} |f|$ расходится.

интегрирование по частям $f,g \in C^1[a,b)$

$$\int_{a}^{b} fg' = fg \Big|_{a}^{b} - \int_{a}^{b} f'g, \quad fg \Big|_{a}^{b} = \lim_{x \to b^{-}} f(x)g(x) - f(a)g(a).$$

Если два предела из трех существуют, то существует третий и верно это равенство.

замена переменной $\varphi: [\alpha, \beta) \to [a, b), \ \varphi \in C^1[\alpha, \beta), f \in C[a, b).$ Если существует предел, обозначим его так: $\exists \lim_{x \to \beta^-} \varphi(x) = \varphi(\beta^-).$

$$\int_{\alpha}^{\beta} f(\varphi(x))\varphi'(x)dx = \int_{\varphi(\alpha)}^{\varphi(\beta-)} f(y)dy.$$

ГЛАВА 1. ИНТЕРГИРОВАНИЕ

Доказательство. $D \in [\alpha, \beta)$.

$$\Phi(\gamma) = \int_{\alpha}^{\gamma} f(\varphi(x)) \varphi'(x) dx.$$

 $c \in [a, b)$

$$F(c) = \int_{\varphi(\alpha)}^{c} f(y)dy.$$

Обычная формула замены перменной: $\Phi = F(\varphi(x))$.

$$\Phi(\gamma_n) = F(\varphi(\gamma_n)).$$

$$\int_{\alpha}^{\gamma_n} f \circ \varphi' = \int_{\varphi(\alpha)}^{\varphi(\gamma_n)} \to \int_{\varphi(\alpha)}^{\varphi(\beta)}.$$

- 1. $\varphi(\beta-) < b$ очевидно.
- 2. $\varphi(\beta-) = b \ \{c_n\} \subset [\varphi(\alpha), b), \ c_n \to b \ \exists \gamma_{n \in [\alpha, \beta)} : \varphi(\gamma_n) = c_n.$ Существует подпоследовательность, стремящаяся либо к β , либо к числу меньшему β .
 - $\{\gamma_{n_k}\} \to \beta$

$$\int_{\alpha}^{\gamma_{n_k}} = \int_{\varphi(\gamma)}^{\varphi(\gamma_{n_k} = c_{n_k})}.$$

• $\{\gamma_{n_k}\} \to \tilde{\beta} < \beta$

$$\varphi(\gamma_{n_k}) \to \varphi(\beta) \in [a, b) < b.$$

Но должно быть равно b. Противоречие.

Значит $\gamma_n \to b$.

$$\int_{alpha}^{\varphi(\gamma_n)} (f \circ g) \varphi' = \int_{phi(alpha)}^{phi(\gamma_n)} f = \int_{\varphi(\alpha)}^{c_n} f.$$

Theorem 4 (Признаки сравнения). Пусть $0\leqslant f\leqslant g,\ f,g\in C[a,b)$. Тогда

- 1. если $\int_a^{\to b} g$ сходится, то $\int_a^{\to b} f$ сходится,
- 2. если $\int_a^{\to b} g$ расходится, то $\int_a^{\to b} f$ расходится.

Доказательство.

- 1. Используем критерий Коши $\forall \varepsilon > 0 \ \exists \delta \in (a,b): \forall B_1, B_2 \in (\delta,b): \ \int_{B_1}^{B_2} g < \varepsilon \Longrightarrow \int_{B_1}^{B_2} f < \varepsilon$
- 2. Аналогично

Theorem 5 (Признаки Абеля и Дирихле). $f \in C[a,b), g \in C^1[a,b), g$ монотонна.

Признак Дирихле $\mathit{Ecnu}\ f$ имеет ограниченную первообразную на $[a,b),g \to 0,\ mo\ \int^{tb} fg\ cxo \partial umcя.$

Признак Абеля Eсли $\int_a^{\to b} f$ сходится, g ограничена, то $\int_a^{\to b} f g$ сходится.

Доказательство. F — первообразная f. $F(B) = \int_a^B f$.

$$\int_{a}^{\to b} fg dx = \int_{a}^{\to b} g dF = Fg \Big|_{a}^{\to b} - \int_{a}^{\to b} Fg' dx.$$

признак Даламбера $\lim_{B\to b^-} F(B)g(B) = 0$

признак Абеля $\exists \lim F, \exists \lim g$

Теперь про интеграл. Пусть $M = \max F$, он существует, так как F ограничена в любом случае.

$$\int_{a}^{\to b} Fg'dx \leqslant M \cdot \int_{a}^{\to b} |g|dx = M \cdot \left| \int_{a}^{\to b} g'dx \right| = M \cdot |g(b-) - g(a)|.$$

Example 1.

$$\int_0^{\frac{1}{2}} x^{\alpha} |\ln x|^{\beta}.$$

Рассмотрим случай $\alpha>1$. Метод удавливания логарифма: $\varepsilon>0$: $\alpha-\varepsilon>-1$,

$$|x^{\alpha}|\ln x|^{\beta} = x^{\alpha-\varepsilon}x^{\varepsilon}|\ln x|^{\beta} \underset{x\to 0}{\longrightarrow} 0 \leqslant Cx^{\alpha-\varepsilon}.$$

Тогда $\int_0^{\frac{1}{2}} x^{\alpha-\varepsilon} dx$ сходится. Если $\alpha < -1$,

$$\varepsilon > 0 \ \alpha + \varepsilon < -1.$$

$$x^{\alpha}|\ln x|^b = x^{\varepsilon + \alpha}\underbrace{x^{-\varepsilon}|\ln x|^{\beta}}_{\to \infty}.$$

Тогда $\int_0^{\frac{1}{2}} x^{\alpha+\varepsilon} dx$ расходится. Если $\alpha=-1$, сделаем замену:

$$\int_0^{\frac{1}{2}} \frac{|\ln x|^{\beta}}{x} dx = -\int_0^{\frac{1}{2}} |\ln x|^{\beta} d(f(x)) = \int_{-\ln \frac{1}{2}}^{\infty} y^{\beta} dy.$$

Тоже сходтся.

Example 2.

$$\int_{10}^{+\infty} \frac{\sin x}{s^{\alpha}} dx, \quad \int_{10}^{+\infty} \frac{\cos 7x}{x^{\alpha}} dx.$$

 $\alpha > 0$.

$$\int_{10}^{+\infty} \frac{|\sin x|}{x^{\alpha}} dx \text{ сходится, так как сходится } \int_{10}^{+\infty} \frac{dx}{x^{\alpha}}.$$

2. $0 < \alpha \leqslant 1$. По признаку Дирихле: $f(x) = \sin x$ – ограничена первообразная, $g(x) = \frac{1}{x^{\alpha}}$ – убывает.

Значит

$$\int_{10}^{+\infty} \frac{\sin x}{x^{\alpha}} dx$$
 сходится.

Example 3 (Более общий вид).

$$\int_{10}^{+\infty} f(x) \sin \lambda x dx, \quad \int_{10}^{+\infty} f(x) \cos \lambda x dx, \quad \lambda \in \mathbb{R} \setminus \{0\}.$$

 $f \in C^1[0,+\infty)$, f монотонна.

Если при $x \to +\infty$ $f \to 0$, то интегралы сходятся,

Если при $x \to +\infty$ $f \not\to 0$, то интегралы расходятся.

Remark.

$$\int_{10}^{+\infty} f(x) dx \ \text{сходится} \ \not \Rightarrow f \to 0, \ \text{при} \ x \to +\infty.$$

Practice.

$$\int_{10}^{+\infty} f(x)dx$$
 сходится, $f \in C[10, +\infty)$.

Следует ли из этого, что

$$\int_{10}^{+\infty} (f(x))^3 dx$$
 сходится?

1.3 Вычисление площадей и объемов

1.3.1 Плошали

- 1. $f \in C[a,b], \ f \geqslant 0, \ P_f = \{(x,y) \mid x \in [a,b], \ y \in [0,f(x)]\}$. Тогда $S(P_f) = \int_a^b f(x) dx$
- 2. Криволинейная трапеция. $f,g\in C[a,b],\ f\geqslant g,\ T_{f,g}=\{(x,y)\mid xin[a,b],y\in [g(x),f(x)]\}.$ Тогда $S(T_{f,g})=\int_a^b f(x)-g(x)dx$

Corollary (Принцип Кавальери). Если есть две фигуры на плоскости расположенные в одной полосе и длина всех сечений прямыми, параллельными полосе, равны, то их площади равны.

Сейчас мы можем доказать его только для случаев, когда все границы фигур — графики функции.

3. Площадь криволинейного сектора в полярных координатах. $f: [\alpha, \beta] \to \mathbb{R}, \ \beta - \alpha \leqslant 2\pi, \ f \geqslant 0,$ g непрерывна.

$$\tilde{P}_f = \{(r, \varphi) \in \mathbb{R}^2 \mid \varphi \in [a, b], \ r \in [0, f(\varphi)]\}.$$

Пусть au — дробление $[lpha,eta], au=\{\gamma_j\}_{j=0}^n,\quad lpha=\gamma_0<\gamma_1<\dots\gamma_n=eta$. Пусть $M_j=\max_{[\gamma_j,\gamma_{j+1},\ m_j=1]}m_j$

Рис. 1.1: sector

 $\min_{[\gamma_j,\gamma_{j+1}]}$

$$\sum \frac{m_j^2}{2} (\gamma_j - \gamma_{j+1}) \leqslant S(\tilde{P}_f) \leqslant \sum \frac{M_j^2}{2(\gamma_j - \gamma_{j+1})}.$$

Крайние стремятся к $\frac{1}{2}\int_{\alpha}^{\beta}f^{2}(\varphi)d\varphi$. Значит

$$S(\tilde{P}_f)\frac{1}{2}\int_a^b fst(\varphi)d\varphi.$$

4. Площадь фигуры, ограниченной праметрически заданной кривой. $x,y:\mathbb{R}to\mathbb{R}.\ \forall t:x(t+T)=x(t),y(t+T)=y(T).\ x,y\in C^1(\mathbb{R})$

$$S = \int_{A}^{B} (f(x) - g(x))dx.$$

$$\int_{A}^{B} g(x)dx = \int_{\substack{x=x(t)\\t\in[b,a+T]\\dx=x'(t)dt\\g(x'(t))=y(t)}} \int_{b}^{a+T} y(f)x'(t)dt$$

$$\int_{A}^{B} f(x)dx = \int_{a=x(t)\\t\in[a,b]} -\int_{b}^{a} y(t)x'(t)dt$$

$$S = \int_{A}^{B} (f(x) - g(x))dx = -\int_{a}^{a+T} y(t)x'(t)dt = \int_{a}^{a+T} y'(t)x(t)dt.$$

ГЛАВА 1. ИНТЕРГИРОВАНИЕ

1.3.2 Объемы

- 1. Аксиомы и свойства такие же как и у площади. Можно определить псевдообъем.
- 2. Фигура $T \subset \mathbb{R}^3$, $T \subset \{(x, y, z) \in \mathbb{R}^3 \mid x \in [a, b]\}$.

Definition 3

Сечение $T(x) = \{(y, z) \in \mathbb{R}^2 \mid (x, y, z) \in T\}.$

 $\forall x: T(x)$ имеет площадь, а

$$V(T) = \int_{a}^{b} S(T(x))dx.$$

3. Дополнительное ограничение не T:

$$\forall \Delta \subset [a, b] \ \exists x_*, x^* \in \Delta : \forall x \in \Delta \ T(x_*) \subset T(x) \subset T(x^*).$$

Example 4. T — тело вращения, $f \in C[a,b], f \geqslant 0$.

$$T = \{(x, y, z) \mid \sqrt{y^2 + z^2} \leqslant f(x)\}.$$

Доказательство формулы. Постулируем объем цилиндра: с произвольным основанием V = SH. Рассмотрим тело T и au дробление отрезка [a,b]. Поместим его между двумя цилиндрами.

$$\sum (x_j - x_{j-1}) S(T(x_* \Delta_j)) \leqslant V \leqslant (x_j - x_{j-1}) S(T(x^* \Delta_j)).$$

Обе суммы стремятся к $\int_a^b S(T(x))dx$ как интегральные суммы.

Рис. 1.2: cilinder

Example 5 (Интеграл Эйлера-Пуассона).

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$

$$T = \{0 \leqslant y \leqslant e^{-(x^2 + y^2)}\}\$$

$$T(x) = \{(y, z) \in \mathbb{R}^2 \mid 0 \leqslant y \leqslant e^{-(x^2 + z^2)}\}.$$

Посчитаем площадь сечения

$$S(T(x)) = \int_{-\infty}^{\infty} e^{-(x^2 + z^2)} dz = e^{-(x^2)} int_{-\infty}^{\infty} e^{-y^2} = Ie^{-x^2}.$$

Рис. 1.3: Интеграл Эйлера-Пуассона