MATH 161

Review Problems

Sectons 3.4, 3.7, Chapter 4, Sections 10.1, 10.2, 10.9

Section 3.4: Find real roots of polynomials Main ideas: Rational Root Theorem, Descartes Rule of Signs, Factoring after finding roots

- 1. Give a list of all possible rational roots of the function $f(x) = -12x^4 + 100x 2$.
- 2. Find all rational zeros of

(a)
$$f(x) = x^3 - 3x^2 - 4$$
 (b) $g(x) = x^4 - 2x^3 - 3x^2 + 8x - 4$ (c) $h(x) = 6x^3 + 11x^2 - 3x - 2$

- 3. Find all real roots of $x^3 + 4x^2 + 3x 2$. (Textbook 47)
- 4. Sketch a plot of $x^4 5x^3 + 6x^2 + 4x 8$ (Textbook 61)

Section 3.7: Rational functions Main ideas: Plotting rational functions; finding vertical, horizontal and slant asymptotes; understanding 'end behavior'

Sketch the following. In your analysis, you should

- 1) Factor numerator (zeros) and denominator (vertical asymptotes).
- 2) Find x- and y-intercepts.
- 3) Determine behavior of graph near vertical asymptotes (to ∞ or $-\infty$)
- 4) Determine the horizontal asymptotes and/or end behavior.
- 5) Sketch.

1.
$$R(x) = \frac{6x^3 - 2}{2x^3 + 5x^2 + 6x}$$
 (Textbook 29)

2.
$$f(x) = \frac{x^2 + 2}{x - 1}$$
 (Textbook 31)

3.
$$W(x) = \frac{x^4 + 2}{x - 1}$$
 (Variation on Textbook 31)

4.
$$g(x) = \frac{x^2 - 2x + 1}{x^3 - 3x^2}$$
 (Textbook 63)

Section 4.1: Exponential functions Main ideas: Graphs of exponential functions; compound interest.

1. Sketch (a)
$$y = -2^{-x} + 5$$
 (b) $h(x) = -\left(\frac{1}{3}\right)^x + 2$.

- 2. Suppose you invest \$2000 at an interest rate of 5%.
 - (i) Compute the amount of money in your account assuming the interest is
 - (a) compounded annually (b) compounded semiannually (c) compounded quarterly
 - (d) compounded monthly (e) compounded daily
 - (ii) Now suppose at the end of 1 year you have \$2016.20 in your account, but that interest was computed using the **simple** interest formula. What the **simple** interest rate for this year?

Section 4.2: The natural exponential e^x Main ideas: Plotting and computing with $y = e^x$, continuously compounded interest.

- 1. Use a calculator to compute $e^{1.2}$, $e^{-.1}$, $e^{-.2}$, e^3 .
- 2. Sketch a plot of $y = -e^x + e$. Include intercepts and asymptotes.
- 3. Suppose you invest \$10,000 in an account with interest rate r = 1.1%.
 - (a) If the interest is compounded continuously, how much money is in the account after 1 year? 2 years? 3.5 years?
 - (b) If the interest is compounded quarterly, how much money is in the account after 1 year? 2 years? 3.5 years?

Section 4.3: Logarithm functions and Section 4.4 Laws of logarithms Main ideas: Plotting and computing with $y = \log x$, $y = \ln x$, understanding logarithms and how to simplify them. Using the laws of logarithms. Change of base formula.

- 1. Without a calculator simplify

 - (r) $\log_2(8^5)$ (r) $\log_{\pi}(\pi)$
- 2. Without a calculator, answer whether the following expressions are positive, negative, zero, or undefined.
 - (a) $\log_2(-.1)$ (b) $\ln(3)$ (c) $\ln(\frac{1}{2})$ (d) $\log(.7)$ (e) $\ln e$
- 3. Textbook 4.4: 7-51 odd
- 4. Sketch $y = \ln(x+1) 2$. Include intercepts and asymptotes. Give the domain and range.
- 5. Without a calculator, find integers a, b so that

(a)
$$a < \log(76) < b$$
 (b) $a < \ln(\frac{1}{2}) < b$ (c) $a < \log_4(70) < b$

- 6. Suppose you invest \$10,000 in an account where the interest is compounded continuously. After two years you have \$10,202.01 in the account. What was the interest rate r?
- 7. Use a calculator to estimate the following. Round your answer to three decimal places.
 - (a) $\log_5(23.2)$ (b) $\log_2(\frac{1}{3})$
- 8. Write down the three laws of logarithms.
- 9. Sketch $y = |\ln(x+3)|$.

Section 4.5: Exponential and Logarithmic Equations Main ideas: Solving equations with the variable in the argument of a logarithm or in the exponent position. Doubling time for investment, population growth.

- 1. Solve for x. Check your answers.

 - (a) $\log(x+2) = -1$ (b) $\log(x^2-1) = 3$ (c) $\ln(x+1) = 2 \ln(x)$ (d) $\log_2(3x-1) = 2$ (e) $2\log_2 x = -3$ (f) $e^{2x} e^x = 6$ (g) $3^{\frac{x}{14}} = .1$ (h) $2^{3x-1} = 3^{x+2}$ (i) $e^{\ln(x^2-3x)} = 4$
 - (j) $e^x = -4$
- 2. Explain in your own words why
 - (a) $\log\left(\frac{2}{3}\right) \neq \frac{\log(2)}{\log(3)}$ (b) $\log(2+x) \neq \log(2) + \log(x)$ (c) What are the rules of log's?
- 3. A student invests \$3000 in an account which pays 3% interest per year. When will there \$5000 in the account,
 - (a) The interest in compounded quarterly? (b) The interest in compounded monthly?
 - (c) The interest in compounded continously?

Section 4.6: Modeling with exponential and logarithm functions Main ideas: Doubling/Tripling/Halving times and exponential growth; Relative growth rates.

- 1. A certain breed of rat was introduced on an island 8 months ago. The current rat population on the island is estimated to be 4100 and doubling every three months.
 - (a) What was the initial size of the population?
 - (b) Estimate the population one year after the rabbits were introduced to the island.
 - (c) Sketch a graph of the rabbit population.
- 2. Population of California: (Textbook 15) The population of California was 29.76 million in 1990 and 33.87 million in 2000. Assume that the population grows exponentially.
 - (a) Find a function that models the population t years after 1990.
 - (b) Find the time required for the population to double.
 - (c) Use the function from part (a) to predict the population in 2010.

Section 10.1: Systems of linear equations in two variables Main ideas: Solving such systems; counting the number of solutions. Understanding the solutions as intersections of lines.

1. Textbook 33, 35, 37

Section 10.2: Systems of linear equations in several variables Main ideas: Transforming to an equivalent upper triangular system. Unique solutions, No solutions $\equiv inconsistent system$, Infinitely many solutions.

1. Textbook 23, 24, 27, 31

Section 10.9: Solving systems of inequalities Main ideas: Partitioning the plane into regions corresponding to '>', '<', and '='.

1. Solve

$$x^2 + y^2 < 25$$

$$x + 2y > 5$$