- **4.5.4.** Let X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m be independent random samples from the two normal distributions $N(0, \theta_1)$ and $N(0, \theta_2)$.
 - (a) Find the likelihood ratio Λ for testing the composite hypothesis $H_0: \theta_1 = \theta_2$ against the composite alternative $H_1: \theta_1 \neq \theta_2$.
 - (b) This Λ is a function of what F-statistic that would actually be used in this test?

$$\chi \sim V(o'0')$$
 $\chi \sim V(o'07)$

$$= \frac{1}{(M+N)^{\frac{1}{M+N}}} = \frac{1}{(M+N)^{\frac{$$

$$(b) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N}$$

The relevant
$$F$$
 statistic $F = \frac{\frac{1}{N}\sum_{i=1}^{N}x_i}{\frac{1}{m}\sum_{j=1}^{N}y_j^2}$