Københavns Universitet. Økonomisk Institut

2. årsprøve 2016 V-2DM ex ret

Skriftlig eksamen i Dynamiske Modeller

Torsdag den 7. januar 2016

Rettevejledning.

Opgave 1. Vi betragter fjerdegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^4 + 6z^3 + 13z^2 + 12z + 4.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^4x}{dt^4} + 6\frac{d^3x}{dt^3} + 13\frac{d^2x}{dt^2} + 12\frac{dx}{dt} + 4x = 0,$$

og

$$(**) \qquad \frac{d^4x}{dt^4} + 6\frac{d^3x}{dt^3} + 13\frac{d^2x}{dt^2} + 12\frac{dx}{dt} + 4x = 72e^t + 20.$$

(1) Vis, at tallene z = -1 og z = -2 er rødder i polynomiet P. Bestem dernæst samtlige rødder i polynomiet P.

Løsning. Ved udregning ser vi, at P(-1) = P(-2) = 0. Desuden ser vi, at faktoriseringen

$$\forall z \in \mathbf{C} : P(z) = (z+1)^2(z+2)^2$$

er gældende, så P har rødderne z=-1 og z=-2 begge med multiplicitet 2.

(2) Bestem den fuldstændige løsning til differentialligningen (*), og begrund, at (*) er globalt asymptotisk stabil.

Løsning. Den fuldstændige løsning til differentialligningen (*) er

$$x = c_1 e^{-t} + c_2 t e^{-t} + c_3 e^{-2t} + c_4 t e^{-2t}$$
, hvor $c_1, c_2, c_3, c_4 \in \mathbf{R}$.

Da rødderne i polynomiet P er negative, er (*) globalt asymptotisk stabil.

(3) Bestem den fuldstændige løsning til differentialligningen (**).

Løsning. Vi gætter på en løsning af formen $\hat{x} = Ae^t + B$, hvor $A, B \in \mathbf{R}$. Ved indsættelse i differentialligningen (**) får vi, at $36Ae^t + 4B = 72e^t + 20$, så A = 2 og B = 5. Den fuldstændige løsning til (**) er derfor

$$x = c_1 e^{-t} + c_2 t e^{-t} + c_3 e^{-2t} + c_4 t e^{-2t} + 2e^t + 5$$
, hvor $c_1, c_2, c_3, c_4 \in \mathbf{R}$.

En homogen, lineær differentialligning af femte orden har det karakteristiske polynomium $Q: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : Q(z) = (z+1)P(z).$$

(4) Opskriv denne differentialligning og bestem dens fuldstændige løsning.

Løsning. Vi ser, at polynomiet Q har forskriften

$$\forall z \in \mathbf{C} : Q(z) = z^5 + 7z^4 + 19z^3 + 25z^2 + 16z + 4,$$

som har rødderne z=-1 med multiplicitet 3 og z=-2 med multiplicitet 2.

Den søgte differentialligning er derfor

$$\frac{d^5x}{dt^5} + 7\frac{d^4x}{dt^4} + 19\frac{d^3x}{dt^3} + 25\frac{d^2x}{dt^2} + 16\frac{dx}{dt} + 4x = 0,$$

som har den fuldstændige løsning

$$x = c_1 e^{-t} + c_2 t e^{-t} + c_3 t^2 e^{-t} + c_4 e^{-2t} + c_5 t e^{-2t}$$
, hvor $c_1, c_2, c_3, c_4, c_5 \in \mathbf{R}$.

Opgave 2. Vi betragter korrespondancen $F: \mathbf{R} \to \mathbf{R}$, som har forskriften

$$F(x) = \begin{cases} [0,1], & \text{for } x < 0\\ [0,2], & \text{for } 0 \le x < 3\\ [0,3], & \text{for } x \ge 3 \end{cases}.$$

og den funktion $f: \mathbb{R}^2 \to \mathbb{R}$, som er givet ved udtrykket

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2 + xy.$$

(1) Vis, at korrespondancen F har afsluttet graf egenskaben.

Løsning. Grafen for korrespondancen F er en afsluttet mængde i \mathbb{R}^2 , så F har afsluttet graf egenskaben.

(2) Vis, at korrespondancen F ikke er nedad hemikontinuert.

Løsning. Vælg y=2, og vælg en følge (x_k) , så $x_k<0$ for ethvert $k\in \mathbb{N}$. Antag, at $(x_k)\to 0$. En følge (y_k) , hvor $y_k\in F(x_k)=[0,1]$, kan ikke være konvergent med y=2 som grænsepunkt. Dette viser, at korrespondancen F ikke er nedad hemikontinuert.

(3) Vis, at korrespondancen F er opad hemikontinuert.

Løsning. Vi bemærker, at $F(x) \subseteq [0,3]$ for ethvert $x \in \mathbf{R}$. Heraf følger påstanden umiddelbart.

(4) Bestem mængden af alle fikspunkter for korrespondancen F. [Et fikspunkt for F er et punkt, så $x \in F(x)$.]

Løsning. Korrespondancen har fikspunkerne $x^* \in [0,2] \cup \{3\}$.

(5) Bestem en forskrift for den maksimale værdifunktion $v_u: \mathbf{R} \to \mathbf{R}$, idet udsagnet

$$\forall x \in \mathbf{R} : v_u(x) = \max\{f(x, y) \mid y \in F(x)\}\$$

er opfyldt.

Løsning. Vi finder, at

$$v_u(x) = \begin{cases} x^2, & \text{for } x < 0 \text{ med } y = 0\\ 0, & \text{for } x = 0 \text{ med } y \in [0, 2]\\ x^2 + 2x, & \text{for } 0 < x < 3 \text{ med } y = 2\\ x^2 + 3x, & \text{for } x \ge 3 \text{ med } y = 3 \end{cases}.$$

(6) Bestem en forskrift for maksimumskorrespondancen $M_u: \mathbf{R} \to \mathbf{R}$, som er defineret ved udtrykket

$$\forall x \in \mathbf{R} : M_u(x) = \{ y \in F(x) \mid v_u(x) = f(x, y) \}.$$

Løsning. Man får, at

$$M_u(x) = \begin{cases} \{0\}, & \text{for } x < 0\\ [0, 2], & \text{for } x = 0\\ \{2\}, & \text{for } 0 < x < 3\\ \{3\}, & \text{for } x \ge 3 \end{cases}.$$

Betragt korrespondancen $G: [0, 4[\rightarrow \mathbf{R}, \text{ som er givet ved forskriften}]$

$$G(x) = \begin{cases} [0,2], & \text{for } 0 \le x < 3\\ [0,3], & \text{for } 3 \le x < 4 \end{cases}.$$

(7) Har korrespondancen G afsluttet graf egenskaben?

Løsning. Grafen for korrespondancen G er mængden

$$Gr(G) = ([0, 3[\times[0, 2]) \cup ([3, 4[\times[0, 3]),$$

der er en afsluttet mængde i delrummet $M = [0, 4] \times \mathbf{R}$.

Korrespondancen G har derfor afsluttet graf egenskaben.

Opgave 3. Vi betragter den symmetriske 3×3 matrix

$$A = \left(\begin{array}{rrr} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right)$$

og vektordifferentialligningerne

(i)
$$\frac{dx}{dt} = Ax$$
 og (ii) $\frac{dx}{dt} = Ax + \begin{pmatrix} 1\\2\\-1 \end{pmatrix}$,

hvor $x \in \mathbf{R}^3$.

(1) Vis, at vektorerne $v_1 = (1,0,1), v_2 = (0,1,0)$ og $v_3 = (-1,0,1)$ er egenvektorer for matricen A, og bestem de tilhørende egenværdier.

Løsning. Vi ser, at $Av_1 = \underline{0}$, $Av_2 = v_2$ og $Av_3 = 2v_3$, hvilket viser, at vektorerne v_1 , v_2 og v_3 er egenvektorer for matricen A, og at de tilhørende egenværdier er $\lambda_1 = 0$, $\lambda_2 = 1$ og $\lambda_3 = 2$.

(2) Bestem den fuldstændige løsning til vektordifferentialligningen (i).

Løsning. Vi ser, jvf. det ovenstående, at den fuldstændige løsning til vektordifferentialligningen (i) er

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + c_2 e^t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_3 e^{2t} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix},$$

hvor $c_1, c_2, c_3 \in \mathbf{R}$.

(3) Opskriv den tilhørende fundamentalmatrix $\Phi(t)$, og bestem resolventen R(t,0).

Løsning. Vi ser umiddelbart, at

$$\Phi(t) = \begin{pmatrix} 1 & 0 & -e^{2t} \\ 0 & e^t & 0 \\ 1 & 0 & e^{2t} \end{pmatrix}, \quad \text{så} \quad \Phi(0) = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Da er

$$\left(\Phi(0)\right)^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix},$$

og vi får så, at

$$R(t,0) = \Phi(t) \left(\Phi(0)\right)^{-1} = \begin{pmatrix} 1 & 0 & -e^{2t} \\ 0 & e^t & 0 \\ 1 & 0 & e^{2t} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} + \frac{1}{2}e^{2t} & 0 & \frac{1}{2} - \frac{1}{2}e^{2t} \\ 0 & e^t & 0 \\ \frac{1}{2} - \frac{1}{2}e^{2t} & 0 & \frac{1}{2} + \frac{1}{2}e^{2t} \end{pmatrix}.$$

(4) Bestem den fuldstændige løsning til vektordifferentialligningen (ii).

Løsning. Hvis $k \in \mathbb{R}^3$ er en konstant løsning til vektordifferentialligningen (ii), må det gælde, at

$$\underline{0} = Ak + \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \Leftrightarrow Ak = -\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}.$$

Dette lineære ligningssystem har uendelig mange løsninger, og vi vælger fx løsningen k = (0, -2, 1). Da er den fuldstændige løsning til (ii) givet ved udtrykkt

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + c_2 e^t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_3 e^{2t} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix},$$

hvor $c_1, c_2, c_3 \in \mathbf{R}$.

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^1 \left(4x^2 + 2\dot{x}^2 \right) e^t dt = \int_0^1 \left[4x^2 + 2\left(\frac{dx}{dt} \right)^2 \right] e^t dt$$

og den funktion $F: \mathbf{R}^2 \to \mathbf{R}$, som har forskriften

$$\forall (x,y) \in \mathbf{R}^2 : F(x,y) = (4x^2 + 2y^2)e^t.$$

(1) Vis, at funktionen F er konveks overalt på definitionsmængden \mathbb{R}^2 .

Løsning. Vi ser, at $\frac{\partial F}{\partial x} = 8xe^t$ og $\frac{\partial F}{\partial y} = 4ye^t$. Nu ser vi, at funktionen F = F(x, y) har Hessematricen

$$F''(x,y) = \begin{pmatrix} 8e^t & 0\\ 0 & 4e^t \end{pmatrix},$$

som er positiv definit overalt på \mathbb{R}^2 for ethvert $t \in [0, 1]$.

Dette viser, at funktionen F=F(x,y) er (endda strengt) konveks overalt på ${\bf R}^2.$

(2) Bestem den funktion $x^* = x^*(t)$, der minimerer integralet I(x), idet betingelserne $x^*(0) = 0$ og $x^*(1) = 7(e - e^{-2})$ er opfyldt.

Løsning. Vi opstiller Euler-Lagranges differentialligning og får dermed, at

$$\frac{\partial F}{\partial x} - \frac{d}{dt} \left(\frac{\partial F}{\partial \dot{x}} \right) = 0 \Leftrightarrow 8xe^t - 4\ddot{x}e^t - 4\dot{x}e^t = 0 \Leftrightarrow \ddot{x} + \dot{x} - 2x = 0.$$

Den fuldstændige løsning til denne homogene differentialligning af anden orden er

$$x = c_1 e^t + c_2 e^{-2t}$$
, hvor $c_1, c_2 \in \mathbf{R}$,

thi det karakteristiske polynomium er $P(\lambda)=\lambda^2+\lambda-2$, og de karakteristiske rødder er $\lambda_1=1$ og $\lambda_2=-2$.

Af initialbetingelsen x(0) = 0 får vi, at $c_2 = -c_1$, så vi nu har, at

$$x = c_1 \left(e^t - e^{-2t} \right)$$
, hvor $c_1 \in \mathbf{R}$.

Af finalbetingelsen $x(1) = 7(e - e^{-2})$ får vi dernæst, at $c_1 = 7$. Den ønskede løsning er derfor

$$x^* = x^*(t) = 7(e^t - e^{-2t}).$$