Examenul de bacalaureat național 2014 Proba E. c) – 2 iulie 2014 Matematică *M_şt-nat*

Varianta 5

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Se consideră numărul complex z = 2 + i. Calculați z^2 .
- **5p** 2. Determinați numărul real m știind că punctul M(m,1) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 3.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_3(x-3)=2$.
- **5p** | **4.** Determinați numărul submulțimilor cu număr impar de elemente ale mulțimii $A = \{1, 2, 3, 4\}$.
- **5p** | **5.** În dreptunghiul ABCD se notează cu M mijlocul laturii AD. Arătați că $\overrightarrow{MB} + \overrightarrow{MC} = 2\overrightarrow{AB}$.
- **5p** | **6.** Se consideră triunghiul ABC dreptunghic în A. Arătați că $\sin B \cdot \cos C + \sin C \cdot \cos B = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 0 & 2014 \\ 1 & -1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** | **a**) Calculați det A.
- **5p b**) Arătați că $A + A \cdot A = 2014I_2$.
- **5p** c) Rezolvați în $\mathcal{M}_2(\mathbb{R})$ ecuația matriceală $A \cdot X = 2014 I_2$.
 - **2.** Se consideră polinomul $f = X^3 6X^2 + mX 6$, unde m este număr real.
- **5p** a) Calculați f(0).
- $\mathbf{5p}$ **b)** Arătați că $\frac{1}{x_1x_2} + \frac{1}{x_1x_3} + \frac{1}{x_2x_3} = 1$ știind că x_1, x_2 și x_3 sunt rădăcinile polinomului f.
- **5p** c) Determinați numărul real m știind că rădăcinile polinomului f sunt trei numere întregi consecutive.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{x^2 + 1}$.
- **5p** a) Arătați că $f'(x) = \frac{(1-x)(1+x)}{(x^2+1)^2}, x \in \mathbb{R}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 1$, situat pe graficul funcției f.
- **5p** $| \mathbf{c} |$ Determinați punctele de extrem ale funcției f.
 - 2. Se consideră funcția $f:(-1,+\infty)\to\mathbb{R}$, $f(x)=\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{x+3}$.
- **5p** a) Arătați că $\int_{0}^{1} \left(f(x) \frac{1}{x+2} \frac{1}{x+3} \right) dx = \ln 2$.
- **5p b**) Arătați că orice primitivă a funcției f este concavă pe intervalul $(-1, +\infty)$.
- **5p** c) Arătați că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = n, are aria mai mare sau egală cu $\ln 4$, pentru orice număr natural nenul n.