Задача1

- 1. С использованием типов данных и конструкций расширения System Verilog создайте описание параметризированного устройства (ALU) описание и варианты приведены в приложении А.
- 2. С использованием типов данных и конструкций расширения System Verilog для созданного устройства разработайте тест класса 2 (с самопроверкой).
 - а. Исходные данные и ожидаемые данные для проверки должны считываться из файлов. Типы команд считывания из файлов любые.
 - b. Тест должен обеспечивать проверку всех режимов работы устройства (сброс, сигнал Valid = 0 = 1) и доказывать правильность работы разработанного устройства (работает в соответствии с алгоритмом)
- 3. В пакете ModelSim проведите моделирование созданного устройства.
- 4. Интегрируйте созданное устройство как библиотечный компонент в PD (библиотечная папка-kurs).

Задача 2

- 1. С использованием типов данных и конструкций расширения System Verilog создайте описание устройства (STREAM_GEN), которое будет формировать потоковые данные по Avalon ST (Stream) интерфейсу. Тип формируемых данных выход счетчика на сложение/вычитание с переменным шагом счета. Устройство должно позволять настраивать режим его работы (направление счета на сложение/вычитание, шаг счета) по интерфейсу Avalon MM slave.
 - а. Выводы устройства (имена выводов модуля м.б. выбраны любыми, **рекомендуется** выбрать имена, облегчающие интеграцию с Platform Designer (PD))
 - b. Канал выходных потоковых данных:
 - i. Data[N:1] информационные выходы.
 - ii. Должн быть ориентирован на использование Avalon ST (Stream) интерфейса в Platform Designer (PD).
 - 1. Выход Valid постоянно =1 (т.к. выходные потоковые данные формируются непрерывно)
 - 2. Вход Ready: если = 1 идет формирование выходных потоковых данных; если = 0 счетчик, формирующий потоковые данные, останавливается.
 - ііі. Вход: тактового сигнала clk.
 - iv. Вход: сигнала синхронного сброса sreset.
 - с. Выводы интерфейса Avalon MM slave.
- 2. С использованием типов данных и конструкций расширения System Verilog для созданного устройства разработайте тест класса 1.
- 3. В пакете ModelSim проведите моделирование созданного устройства. Тест должен обеспечивать проверку всех режимов работы устройства (сброс, сигнал Ready =0 =1, запись конфигурационных данных по Avalon MM slave интерфейсу) и доказывать правильность работы разработанного устройства (работает в соответствии с алгоритмом)
- 4. Интегрируйте созданное устройство как библиотечный компонент в PD (библиотечная папкаkurs).

Задача 3

- 1. С использованием типов данных и конструкций расширения System Verilog создайте **параметризированное** описание устройства (FSM_master), которое будет передавать по интерфейсу Avalon MM Master настройки для компонентов STREAM_GEN
 - а. Количество компонентов STREAM_GEN в системе, для всех вариантов, = 4
 - і. Адрес каждого компонента STREAM_GEN в системе задается параметром
 - ii. Режим работы **каждого** компонента STREAM_GEN в системе (счет на сложение/вычитание, шаг счета) задается параметром.

- b. Выводы устройства (имена выводов модуля м.б. выбраны любыми, **рекомендуется** выбрать имена, облегчающие интеграцию с Platform Designer (PD))
 - і. Выводы интерфейса Avalon MM Master.
 - іі. Вход: тактового сигнала clk.
 - ііі. Вход: сигнала синхронного сброса sreset.
- 2. С использованием типов данных и конструкций расширения System Verilog для созданного устройства разработайте тест класса 1.
- 3. В пакете ModelSim проведите моделирование созданного устройства. Тест должен обеспечивать проверку всех режимов работы устройства (сброс) и доказывать правильность работы разработанного устройства (работает в соответствии с алгоритмом передает по шине Avalon MM по адресам, заданным параметрами, данные, заданные параметрами.)
- 4. Интегрируйте созданное устройство как библиотечный компонент в PD (библиотечная папкаkurs).

Задача 4

- 1. В PD создайте описание системы, включающей:
 - а. модуль тактового сигнала
 - b. ALU
 - с. Четыре устройства STREAM_GEN .
 - d. FSM master
- 2. С использованием типов данных и конструкций расширения System Verilog для созданного устройства разработайте тест класса 1.
- 3. В пакете ModelSim проведите моделирование созданного устройства. Тест должен обеспечивать проверку всех режимов работы устройства (сброс) и доказывать правильность работы разработанного устройства (работает в соответствии с алгоритмом: настраивает устройства STREAM_GEN, обеспечивает обработку данных в соответствии с алгоритмом ALU)

Задача 5

- 1. Настройте In-System Sources & Probes (для формирования сигнала sreset и визуализации выходных данных устройства)
- 2. Настройте Signal TapII для демонстрации временных диаграмм аналогичных временным диаграммам полученным в задаче 4(этап 3).
- 3. На плате MAX10NEEK, с помощью In-System Sources & Probes и Signal TapII покажите и докажите правильность работы разработанного устройства (работает в соответствии с алгоритмом: настраивает устройства STREAM_GEN, обеспечивает обработку данных в соответствии с алгоритмом ALU)

Задача 1

- 1. Скопируйте систему, разработанную в Части 1, в новую папку.
- 2. В скопированной системе замените устройство FSM master процессором NIOSII (ОБРАТИТЕ ВНИМАНИЕ потребуется добавить в систему модуль памяти для хранения программ и данных). Настройка процессора: с JTAG Debug или без него может быть выбрана любой (целесообразно на первом этапе включить с JTAG Debug для возможности отладки на плате).
- 3. Создайте два варианта программы настройки STREAM_GEN
 - а. с использованием указателей;
 - b. с использованием драйверов (макрофункций) или символических имен из system.h.
- 4. Настройте In-System Sources & Probes (для формирования сигнала sreset и визуализации выходных данных устройства)
- 5. Настройте Signal TapII для демонстрации временных диаграмм аналогичных временным диаграммам полученным в задаче 4 (этап 3) части 1.
- 6. На плате MAX10NEEK (для каждого варианта программы настройки STREAM_GEN), с помощью In-System Sources & Probes и Signal TapII покажите и докажите правильность работы разработанного устройства (работает в соответствии с алгоритмом: настраивает устройства STREAM_GEN, обеспечивает обработку данных в соответствии с алгоритмом ALU)

ПРИЛОЖЕНИЕ А (варианты устройств ALU)

Вариант 1 — поиск, на каждом такте, максимума и минимума среди 4 входных потоков данных. Устройство имеет 4 входных потока данных и два выходных потока данных (минимальные и максимальные значения). Разрядность данных — 8 бит.

Вариант 2 — поиск, на каждом такте, медианы среди 4 входных потоков данных (медиана вычисляется как среднее между элементами 2 и 3 в отсортированном массиве из 4 элементов). Устройство имеет 4 входных потока данных и один выходной поток данных. Разрядность данных — 8 бит.

Вариант 3 — поиск, на каждом такте, максимума среди 4 входных потоков данных и формирование 4 выходных потоков данных по алгоритму: входные данные — (минус) найденное максимальное значение (обратите внимание — один из каналов, где на входе было максимальное значение, на выходе даст 0). Устройство имеет 4 входных потока данных и четыре выходных потока данных. Разрядность данных — 8 бит.

Вариант 4 — поиск, на каждом такте, минимума среди 4 входных потоков данных и формирование 4 выходных потоков данных по алгоритму: входные данные — (минус) найденное минимальное значение (обратите внимание — один из каналов, где на входе было минимальное значение, на выходе даст 0). Устройство имеет 4 входных потока данных и четыре выходных потока данных. Разрядность данных — 8 бит.

Вариант 5 — на каждом такте, сумма квадратов среди 1 и 2 входных потоков данных —(минус) сумма квадратов среди 3 и 4 входных потоков данных Устройство имеет 4 входных потока данных и один выходной поток данных. Разрядность данных — 8

бит.

Выводы устройства (имена выводов модуля м.б. выбраны любыми, **рекомендуется** выбрать имена, облегчающие интеграцию с Platform Designer (PD)):

- Каналы входных данных
 - о Каналы должны быть ориентированы на использование Avalon ST (Stream) интерфейса в Platform Designer (PD) с поддержкой сигналов Ready и Valid
 - о На входах данных д.б использованы регистры.
 - по входному сигналу Valid =1 осуществляется запись данных во входные регистры
 - о Выходной сигнал Ready постоянно равен 1
- Каналы выходных данных:
 - о Должны быть ориентированы на использование Avalon Conduit интерфейса в Platform Designer (PD).
 - На выходе д.б использован регистр
- Вход: тактового сигнала clk.
- Вход: сигнала синхронного сброса sreset.