

Exercise sheet 4: Parameter-efficient Fine-tuning

Problem 1: Selecting PEFT configuration under parameter constraints [MG]

You are tasked with fine-tuning a small **encoder-only Transformer** using parameter-efficient methods, under a limited *trainable parameter* budget.

Model configuration The model to be fine-tuned has the following configuration:

- Number of blocks: $N_{\rm blocks}=2$
- Number of attention heads per layer: h = 2
- Embedding dimension: $d_{\text{model}} = 32$
- Key/query/value dimension: $d_k = d_q = d_v = 16$

PEFT methods You will use the following techniques:

- 1. **LoRA:** Applied to all query and key matrices, \mathbf{W}^Q and \mathbf{W}^K , in every self-attention layer, with rank parameter r.
- 2. **Soft prompts:** Introduction of *P* soft prompt tokens.
- 3. Adapters: One adapter (without biases) is added after each attention layer. Each adapter is a feedforward network with one hidden layer of dimension d_a .
- 4. IA³: Elementwise scaling inside attention (on keys and values):

$$\mathbf{A} = \operatorname{softmax} \left(\frac{\mathbf{Q} (\mathbf{l}_k \odot \mathbf{K}^\top)}{\sqrt{d_k}} \right) (\mathbf{l}_v \odot \mathbf{V}),$$

with a separate set of \mathbf{l}_k and \mathbf{l}_v vectors in each head of each attention layer.

Parameter limits You are given the following **limits** for the maximum number of trainable parameters you can have for these techniques:

- Maximum LoRA parameters: $N_{\text{LoRA}} = 1200$
- Maximum soft prompt parameters: $N_{\text{soft}} = 320$
- Maximum adapter parameters: $N_{\text{adapters}} = 1100$

Task 1: Compute the number of trainable parameters

Find the **largest even values** for

$$r$$
, P , d_a

that meet the following constraints.

1. The chosen LoRa rank r ensures

total number of LoRA trainable parameters $\leq N_{\text{LoRA}}$.

2. The number of soft prompt tokens P ensures

total number of soft prompt trainable parameters $\leq N_{\text{soft}}$.

3. The hidden layer adapter dimension d_a ensures

total number of adapter parameters $\leq N_{\text{adapters}}$.

Also, compute the total number of IA³ trainable parameters in the model.

Submission format: Submit a text file named peft_config.txt containing your chosen hyperparameters and computed parameter counts, formatted exactly as follows:

```
# LoRA (applied to W_Q and W_K in each block)
r = ...
num_trainable_lora = ...

# Soft Prompts
P = ...
num_trainable_soft = ...

# Adapters (one per attention layer)
d_a = ...
num_trainable_adapters = ...

# IA3 (keys and values in each block)
num_trainable_ia3 = ...
```


Exercise 2: Fine-tuning an LM [MG]

We work with the following indexed token vocabulary

$$\mathcal{V} = \{1 : \text{hi}, 2 : \text{hello}, 3 : \text{bye}, 4 : \text{regards}\}.$$

The associated token embeddings are as follows:

$$E(hi) = [1, 0], \quad E(hello) = [1, 0], \quad E(bye) = [0, 1], \quad E(regards) = [0, 1].$$

Consider a **simplified decoder-only LM** given by:

$$\mathbf{Z} = \operatorname{softmax}(\mathbf{Q}\mathbf{K}^{\top})\mathbf{V}\,\mathbf{W}^{O} \quad (1) \text{ self-attention output (embeddings)}$$

$$\mathbf{H} = \mathbf{X} + \mathbf{Z}$$
 (2) residual connection (embeddings)

$$\mathbf{P} = \text{Softmax}(\mathbf{h}_L \mathbf{W} + \mathbf{b})$$
 (3) language modeling head (next-token probabilities)

where:

- $\mathbf{X} \in \mathbb{R}^{L \times d_{\text{model}}}$: input embeddings.
- $\mathbf{W} \in \mathbb{R}^{d_{\text{model}} \times |\mathcal{V}|}$: weight matrix in the LM head.
- $\mathbf{b} \in \mathbb{R}^{1 \times |\mathcal{V}|}$: bias vector in the LM head.
- $\mathbf{h}_L \in \mathbb{R}^{1 \times d_{\text{model}}}$: representation of the last token in the sequence.

The attention weight matrices are: $\mathbf{W}_Q = \mathbf{W}_K = \mathbf{W}_V = \mathbf{W}^O = \mathbf{I}_2$. The LM head weight matrix is (column order [hi, hello, bye, regards]):

$$\mathbf{W} = \begin{bmatrix} 4 & 3 & 0 & 0 \\ 0 & 0 & 4 & 3 \end{bmatrix}.$$

and the bias vector is a zero vector $\mathbf{b} = \{0\}^{|\mathcal{V}|}$.

Fine-tuning for behavior change Currently, the model responds to informal greetings such as hi with hi, and farewells such as bye with bye. More precisely, the model generates the following next-token probabilities:

$$P(\mathtt{hi} \mid \mathtt{hi}) \approx 1, \qquad P(\mathtt{bye} \mid \mathtt{bye}) \approx 1.$$

We wish to fine-tune the model so that it adopts a slightly more formal communication style, replying hello to hi, and regards to bye. Formally, the *fine-tuned model* should satisfy:

$$P_{\rm fine-tuned}({\tt hello}\mid {\tt hi})\approx 1, \qquad P_{\rm fine-tuned}({\tt regards}\mid {\tt bye})\approx 1.$$

To achieve this change in behavior without retraining the entire model, we will consider two **parameter-efficient fine-tuning (PEFT)** techniques:

- 1. **BitFit:** fine-tuning the bias vector $\mathbf{b} \in \mathbb{R}^{1 \times |\mathcal{V}|}$ only.
- 2. **LoRA:** low-rank adaptation of the LM head matrix $\mathbf{W} \in \mathbb{R}^{d_{\text{model}} \times |\mathcal{V}|}$ with rank r = 1.

Task 2: BitFit.

In BitFit, only the bias vectors get fine-tuned. Define a new bias vector $\mathbf{b}_{\text{fine-tuned}}$ that makes the model respond as intended:

$$P_{\mathrm{fine-tuned}}(\mathtt{hello} \mid \mathtt{hi}) \approx 1, \qquad P_{\mathrm{fine-tuned}}(\mathtt{regards} \mid \mathtt{bye}) \approx 1.$$

Task 3: LoRA (with rank r = 1) on W only.

With LoRA, fine-tuning the matrix **W** yields an updated weight matrix

$$\mathbf{W}' = \mathbf{W} + \Delta \mathbf{W}, \qquad \Delta \mathbf{W} = \mathbf{AB},$$

where $\mathbf{A} \in \mathbb{R}^{d_{\text{model}} \times r}$, $\mathbf{B} \in \mathbb{R}^{r \times |\mathcal{V}|}$, and r = 1. The fine-tuned LM head computes next-token probabilities as follows:

$$\mathbf{P}_{\text{fine-tuned}} = \operatorname{Softmax}(\mathbf{h}_L \mathbf{W}' + \mathbf{b}).$$

Choose matrices A and B which induce the following behavior:

$$P_{\text{fine-tuned}}(\text{hello} \mid \text{hi}) \approx 1, \qquad P_{\text{fine-tuned}}(\text{regards} \mid \text{bye}) \approx 1.$$

Report A, B and the resulting W'.

Submission format: Submit a single text file named peft.txt containing all parameter values, formatted exactly as follows (replace all placeholders with numbers):