Aufgabe 5: Freizeitcenter (Check-Up)

Gegeben ist das Datenbankschema "Freizeitcenter" mit folgender Ausprägung:

Hinweise:

- Die Courts werden immer für eine Stunde gebucht. Gespeichert ist der Buchungsbeginn.
- Die Tabelle "Buchung" enthält die Daten eines Tages.
- Angabe der Attributwerte von Betrag in Euro
- Court 1-10: Squash, Court 11-20: Badminton, Court 21-30: Tischtennis
- (a) Interpretieren Sie folgende Terme in natürlicher Sprache und geben Sie die Ergebnisrelation an!
 - (i) $\pi_{Name}(\sigma_{Beruf='Student'}(Spieler))$

Es sollen die Nachnamen aller Studenten ausgegeben werden, die im Freizeitcenter registriert sind.

Name Klein

(ii) $\pi_{Beruf,von,bis,Betrag}(\sigma_{Beruf='Schüler'}(Spieler) \bowtie Preis)$

Der gegebene Term gibt nichts aus, da die Relation *Spieler* und *Preis* kein gemeinsames Attribut haben. Es kann kein Naturaljoin statt finden.

Beruf	von	bis	Betrag

Müsste es nicht so heißen?

 $\pi_{\mathsf{Beruf},\mathsf{von},\mathsf{bis},\mathsf{Betrag}}(\sigma_{\mathsf{Beruf}=\mathsf{'Sch\"{u}ler'}}(\mathbf{Preisstufe})\bowtie\mathsf{Preis})$

Beruf	von	bis	Betrag
Schüler	07:00	12:00	10
Schüler	12:00	17:00	15
Schüler	17:00	22:00	20

(iii) $\pi_{\text{Name,Vorname}}(\sigma_{\text{Betrag} \geq 10 \land \text{Betrag} \leq 20}(\text{Preis}) \bowtie \text{Preisstufe} \bowtie \text{Spieler})$

Es werden der Nachname und der Vorname von allen Mitglieder des Freizeitcenters eingezeigt, die der Preisstufe 1 und 2 angehören und deshalb nicht mehr als 20 Euro zahlen müssen.

Name	Vorname
Klein	Mathias
Müller	Inge
Deckard	Klara
Beutlin	Hein

(iv)

```
\pi_{\text{Name,Buchung,Zeit}}(\\ \sigma_{\text{Typ='Tischtennis'}}(\text{Court})\\ \bowtie_{\text{Court.ID=Buchung.Court-ID}} \text{Buchung}\\ \bowtie_{\text{Buchung.Spieler=Spieler.Spieler-ID}} \text{Spieler}
```

Es wird der Name der/des SpielerIn, die Buchung (Court-ID) und die Zeit von allen Tischtennis-Buchungen ausgegeben.

Zwischenschritt:

 $\sigma_{\text{Typ}='\text{Tischtennis'}}(\text{Court}) \bowtie_{\text{Court.ID}=\text{Buchung.Court-ID}} \text{Buchung}$

Court-ID	Zeit	Spieler	Тур
21	16:00	5	Tischtennis
24	12:00	1	Tischtennis

Ergebnis-Relation:

Name	Buchung	Zeit
Beutlin	NULL	16:00
Klein	NULL	12:00

Müsste es nicht so heißen?

 $\pi_{\text{Name}, \text{Court-ID}, \text{Zeit}}($ $\sigma_{\text{Typ='Tischtennis'}}(\text{Court})$ $\bowtie_{\text{Court.ID=Buchung.Court-ID}} \text{Buchung}$ $\bowtie_{\text{Buchung.Spieler=Spieler.Spieler-ID}} \text{Spieler}$

Name	Court-ID	Zeit
Beutlin	21	16:00
Klein	24	12:00

- (b) Formulieren Sie folgende Anfragen in relationaler Algebra!
 - (i) Gesucht sind die Spieler-IDs der Personen, die einen Squash-Court gebucht haben.

$$\pi_{\mathrm{Spieler}}(\sigma_{\mathrm{Typ='Squash'}}(\mathrm{Court})\bowtie_{\mathrm{Court.ID=Buchung.Court-ID}}\mathrm{Buchung})$$

(ii) In welche Preisstufe fällt Frau Tyrell?

$$\pi_{\operatorname{PS}}(\sigma_{\operatorname{Name}='\operatorname{Tyrell'}}(\operatorname{Spieler})\bowtie\operatorname{Preisstufe})$$

(iii) Gesucht sind die Nummern der Courts, die nicht benutzt werden.

$$\pi_{\mathrm{ID}}(\mathrm{Court}) - \pi_{\mathrm{Court-ID}}(\mathrm{Buchung})$$

(iv) Welche Berufe üben die Personen aus, die zwischen 9 und 12 Uhr einen Court gebucht haben?

$$\pi_{\operatorname{Beruf}}(\sigma_{\operatorname{Zeit} \geq 9 \wedge \operatorname{Zeit} \leq 11}(\operatorname{Buchung}) \bowtie_{\operatorname{Buchung.Spieler} = \operatorname{Spieler.Spieler-ID}} \operatorname{Spieler})$$

(v) Gesucht sind Name und Vorname der Spieler, die für mehr als eine Stunde gebucht haben.