Identifiability and Adaptive Control of Markov Chains

Ben Pence Scott Moura

EECS 558 Project

December 12, 2009

Outline

- Stochastic system with unknown parameters
- Want to identify the parameters
- Adapt the control based on the parameter estimate

Identifiability

Model: Controlled Markov Chain

 $P_{ij}(u, \alpha)$ Transition Probability Matrix from state i to j; i,j \in S

 $\alpha \in A$ $\alpha = Unknown Parameter, A=Parameter Space$

 $u \in U$ u=Control Action, U=Control Space

"Identifiability" condition:

If $\alpha \neq \beta$ in A, then

$$P_{ij}(u,\alpha) \neq P_{ij}(u,\beta)$$
 For any $u \in U$

Identifiability

$$P_{ij} = \begin{bmatrix} 0.5 - \alpha & 0.5 + \alpha \\ 1 & 0 \end{bmatrix} \quad \begin{array}{c} u \in \{1, 2\} \\ \alpha \in \{0.1, 0.2, 0.3\} \end{array}$$

$$P_{ij} = \begin{bmatrix} 0.5 - 2\alpha + \alpha u & 0.5 + 2\alpha - \alpha u \\ 1 & 0 \end{bmatrix} \begin{array}{c} u \in \{1,4\} \\ \alpha \in \{0.1,0.2,0.3\} \end{array} \begin{array}{c} \text{Identifiable} \\ \text{Not Identifiable} \end{array}$$

Parameter Estimation

Maximum Likelihood Estimator

What value of α makes this trajectory most likely?

$$\hat{\alpha}_t = \arg\max_{\alpha} \prod_{s=0}^{t-1} P(x_s, x_{s+1}; u_s, \alpha)$$

Probability of transitioning from x_s to x_{s+1} given u_s and α

Adaptive Control

$$U_{t} = g^{\alpha}\left(X_{t}\right)$$

At each time step, apply the SMP corresponding to the parameter estimate $\hat{\alpha}_t$

$$U_{t} = g^{\hat{\alpha}_{t}}\left(X_{t}\right)$$

Outline

Identifiability

Estimation

Adaptive Control

Results With Identifiability

Mandl (1973)

Results W/O Identifiability

Borkar, Varaiya (1979,82)

Conclusions

Main Result of Mandl, 1973

Theorem 1

For the model under consideration, with the assumptions previously outlined (indentifiability), there exists random time T such that for $t \ge T$

$$\hat{lpha}_{\scriptscriptstyle t} = lpha^*$$
 Parameter estimate reaches limit point

$$lpha^*=lpha^0$$
 Limit point is true parameter value!

$$P(i,j;g^{\alpha^*}(i),\alpha^*) = P(i,j;g^{\alpha^0}(i),\alpha^0) \quad i,j \in S$$

Moreover, closed-loop transition probabilities are the same as if we had known the true parameter

Example 1: Identifiable System

Markov Chain

$$S = \{1, 2\}$$

$$U = \{1, 2\}$$

$$A = \{0.1, 0.2, 0.3\}$$

Transition Prob's
$$P_{ij} = \begin{bmatrix} 0.5 - \alpha & 0.5 + \alpha \\ 1 & 0 \end{bmatrix}$$

True parameter $\alpha^0 = 0.2$

Control
$$u = g^{0.1}(i) = 2$$

Law $u = g^{0.2}(i) = 1$
 $u = g^{0.3}(i) = 2$

Outline

Identifiability

Estimation

Adaptive Control

Results With Identifiability

Mandl (1973

Results W/O Identifiability

Borkar, Varaiya (1979,82)

Conclusions

Motivation of Borkar and Varaiya, 1979

Hypothesis

The identifiability assumption is too restrictive

$$P_{ij} = \begin{bmatrix} 0.5 - 2\alpha + \alpha u & 0.5 + 2\alpha - \alpha u \\ 1 & 0 \end{bmatrix} \quad \begin{array}{c} u \in \{1, 2\} \\ \alpha \in \{0.1, 0.2, 0.3\} \end{array} \quad \begin{array}{c} \square \text{ Identifiable} \\ \text{Not Identifiable} \end{array}$$

Question

What happens if we relax this assumption?

Main Result of Borkar and Varaiya, 1979

Theorem 2

For the model under consideration, with the assumptions previously outlined except indentifiability, there exists random time T such that for $t \ge T$

$$\hat{lpha}_{\scriptscriptstyle t} = lpha^*$$
 Parameter estimate reaches limit point

But this limit point is not necessarily equal to the true parameter!

$$P(i,j;g^{\alpha^*}(i),\alpha^*) = P(i,j;g^{\alpha^*}(i),\alpha^0) \quad i,j \in S$$

However, closed-loop transition probabilities are the same

- 1. for true system and some imaginary system where the parameter really was α^*
- 2. control law corresponding to α^* is applied

Example 2: Not Identifiable System

Markov Chain

Transition Prob's P.

$$P_{ij} = \begin{bmatrix} 0.5 - 2\alpha + \alpha u & 0.5 + 2\alpha - \alpha u \\ 1 & 0 \end{bmatrix}$$

$$S = \{1, 2\}$$

$$U = \{1, 2\}$$

$$A = \{0.1, 0.2, 0.3\}$$

True parameter $\alpha^0 = 0.2$

ol of Markov Chains

SLIDE 13 of 24

Interpretation of Theorem 2

Recall the objectives:

- ullet Estimate the unknown parameter lpha
- Satisfactorily control the Markov chain

- Only uses control $U_k = g^{\alpha^*}(X_k)$
- ullet Can only identify subset $\{P_{ij}(u) \mid u=g^{\alpha^*}(i)\}$ of all transition probs $\{P_{ij}(u) \mid u \in U\}$
- Adaptive controller should "probe" outside subset

Control Randomization

Borkar and Varaiya (1982)

Main Idea

Probe outside the subset of transition probabilities by perturbing control signals randomly

Key Assumption: "Partial" Identifiability

If $\alpha \neq \beta$ in A, then the MC is partially identifiable if in every open set $O \in U$, there exist $u \in O$ s.t.

$$P_{ij}(u,\alpha) \neq P_{ij}(u,\beta)$$

Control Randomization

Borkar and Varaiya (1982)

Construction of Randomized Controls

- Current parameter estimate = α
- Construct an open ball $B_{\varepsilon}(u_t)$ for each u_t
 - Radius $\varepsilon > 0$ small centered at u
- Construct a probability measure μ on U which assigns probabilities to open balls
- Perform independent experiment to generate random control u_t from $\mathbf{B}_{\varepsilon}(\mathbf{g}^{\alpha}(x_t))$ using μ

Main Result of Borkar and Varaiya, 1982

Theorem 3

For the model under consideration, with the assumptions previously outlined including partial indentifiability, then under any ε -randomization of g

$$\lim_{t \to \infty} \hat{\alpha}_t = \alpha^*$$
 Parameter estimate reaches limit point

$$lpha^* = lpha^0$$
 Limit point is true parameter value!

$$P(i,j;g^{\alpha^*}(i),\alpha^*) = P(i,j;g^{\alpha^0}(i),\alpha^0) \quad i,j \in S$$

Moreover, closed-loop transition probabilities are the same as if we had known the true parameter

Example 3: Control Randomization

Markov Chain

Transition Prob's
$$P_{ij} = \begin{bmatrix} 0.5 - 2\alpha + \alpha u & 0.5 + 2\alpha - \alpha u \\ 1 & 0 \end{bmatrix}$$

$$A = \{0.1, 0.2, 0.3\}$$

True parameter $\alpha^0 = 0.2$

Randomized Control Law

$$P(u = 2 \mid \alpha \in \{0.1, 0.3\}) = 0.75$$
 Control $P(u = 1 \mid \alpha \in \{0.1, 0.3\}) = 0.25$ Probe

$$P(u = 1 | \alpha \in \{0.2\}) = 0.75$$
 Control

$$P(u = 2 \mid \alpha \in \{0.2\}) = 0.25$$
 Probe

ntrol of Markov Chains

Interpretation of Theorem 3

Recall the objectives:

- ullet Estimate the unknown parameter α \checkmark
- Satisfactorily control the Markov chain

Summary:

Relaxed restrictive identifiability condition through local probing

Outline

Identifiability

Estimation

Results With Identifiability

Adaptive Control

Mandl (1973)

Results W/O Identifiability

Borkar, Varaiya (1979,82)

Conclusions

Concluding Remarks

- Simultaneously identify and control a Markov chain with unknown parameters
- MLE converges to true parameter in closed-loop, under identifiability condition
- Without identifiability condition, MLE may not converge to true parameter
- Through "probing" control only need "partial" identifiability to converge to the true parameter

Potential Future Directions

- Theoretical Questions
 - What if α⁰∉A ?
 - Can control randomization be stopped eventually?
 - Alternative estimation methods?
- Application Areas
 - Adaptive control of hybrid vehicles through drive cycle identification
 - Algorithms for calculating the maximum likelihood estimate

Thank you for your attention!

Questions?

Comments?

Suggestions?

Appendix Slides

Parameter Estimation

Maximum Likelihood Estimator

$$L_{t}(\alpha) = \prod_{s=0}^{t-1} P(X_{t}, X_{t+1}; U_{t}, \alpha)$$

$$\hat{\alpha}_{t} = \arg \max \{L_{t}(\alpha)\}$$

Likelihood Ratio

$$\Lambda_{t}\left(\alpha\right) = \frac{L_{t}\left(\alpha\right)}{L_{t}\left(\alpha^{0}\right)}$$

Control Randomization

Construction of Randomized Controls

- Suppose current parameter estimate is α and corresponding control is $u = g^{\alpha}(x)$
- Construct an open ball with radius $\varepsilon > 0$ small centered at u, denoted by $B_{\varepsilon}(u_t)$, for each $u \in U$
- ullet Construct a probability measure μ on $oldsymbol{U}$ which assigns probabilities to open balls
- Perform independent experiment to generate random control u_t from $B_{\varepsilon}(g^{\alpha}(x_t))$ using μ

Sequence $\{u_t, t = 0,1,...\}$ is called the ε -randomization of g

Presentation Outline

- Model and Problem Formulation
- Main Results under Identifiability (1st paper)
- Results without Identifiability (2nd paper)
- Control Randomization (3rd paper)
- Concluding Remarks

Motivation of Borkar and Varaiya, 1979

Motivation

The identifiability assumption is too restrictive For every $\alpha \neq \beta$ in A, there exist at least one $i \in S$

$$[P(i,1;u,\alpha) \quad P(i,2;u,\alpha) \quad \cdots \quad P(i,I;u,\alpha)]$$

$$\neq [P(i,1;u,\beta) \quad P(i,2;u,\beta) \quad \cdots \quad P(i,I;u,\beta)]$$

$$\forall u \in \mathbf{U}$$

Question

What happens if we relax this assumption?

Presentation Outline

- Model and Problem Formulation
- Main Results under Identifiability (1st paper)
- Results without Identifiability (2nd paper)
- Control Randomization (3rd paper)
- Concluding Remarks

Model

- Controlled Markov chain (MC)
- \bullet Finite state space $S = \{1, 2, ..., I\}$
- ullet Finite action space $oldsymbol{U}$
- Finite parameter space A
- Transition probabilities

$$\{P(i,j;u,\alpha) \mid i,j \in S \quad u \in U \quad \alpha \in A\}$$

- Stationary Markov policy (SMP) $U_t = g(X_t)$
- Perfect Recall

Objective

- ightharpoonup Estimate the unknown parameter α
- Adaptively Control the Markov chain
- Analyze the asymptotic convergence properties
 - Convergence or not?
 - What assumptions are necessary?
 - Quantify performance of adaptive MC

Assumptions

- 1. Controlled MC is irreducible, $\forall u \in U, \alpha \in A$
- 2. True parameter $\alpha^0 \in A$
- 3. The SMP corresponding to α , g^{α} , precomputed
- 4. "Identifiability" condition: If $\alpha \neq \beta$ in A, then

$$P_{ij}(u,\alpha) \neq P_{ij}(u,\beta)$$
 For any $u \in U$

Outline

- Model and Problem Formulation
- Main Results under Identifiability (1st paper)
- Results without Identifiability (2nd paper)
- Control Randomization (3rd paper)
- Concluding Remarks

