		 	 	 _	_	_			
Reg. No									

B.Tech/M.Tech(Integrated) DEGREE EXAMINATION, NOVEMBER 2023

Third Semester

21MAB206T - NUMERICAL METHODS AND ANALYSIS

(For the candidates admitted during the academic year 2022-2023 onwards)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over	er to
hall invigilator at the end of 40 th minute.	

i. Pa	rt - B and Part - C should be answered in answer booklet.			
Time	Max. Marks: 75			
	PART - A (20 × 1 = 20 Marks) Answer all Questions	Mark	s BL	CO
1.	As soon as a new value of a variable is found by iteration, it is used immediately in the following equation. This method is called	1	1	1
	(A) Gauss-Jordon Method (C) Gauss Jacobi Method (D) Gauss elimination Method			
2.	In solving simultaneous equations by Gauss-Jordon Method, the co-efficient matrix is reduced to	1	1	1
	(A) Diagonal Matrix (C) Square Matrix (D) Identity Matrix			
3.	Newton Raphson method is also called (A) Method of tangents (B) Method of chords	1	1	1
	(C) Method of bisection (D) Method of False position			
4.	The negative root of x^3 -2x+5=0 approximately (A) root lies between 0 and 1 (B) root lies between -1 and -2 (C) the root lies between -2 and -3 (D) root lies between 1 and 2	1	1	1
5.	What is $\Delta^2 f(x)$, if $f(x) = x^2 - 3x + 1$, taking $h = 1$ (A) $2x+1$ (B) $2x$ (C) 2 (D) 0	1	1	2
6.	The operator E $f(x)$ is equivalent to (A) $f(x+h)$ (B) $f(x-h)$ (C) $f(x-2h)$ (D) $f(x+2h)$	1	1	2
7.	With usual notation, $\delta E^{-\frac{1}{2}}$ is equal to	1	1	2
	(A) Δ (B) ∇ (C) E+1 (D) Δ +1			
8.	The missing term in the following table using finite difference technique is	1	1	2
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	(A) 30 (C) 27.5 (B) 30.7 (D) 28.8			

Page 1 of 4

9.	Newton's backward difference formula to g	et the first derivative of $y(x)$ at any x is	1	1	3
	(A) $\frac{dy}{dx} = \frac{1}{h} \left[\nabla y_n + \left(\frac{2\nu+1}{2} \right) \nabla^2 y_n + \dots \right]$ (C) $\frac{dy}{dx} = \frac{1}{h} \left[\Delta y_n + \left(\frac{2\nu+1}{2} \right) \Delta^2 y_n + \dots \right]$	(B) $\frac{dy}{dx} = \frac{1}{h} \left[\nabla y_n + \left(\frac{v+1}{2} \right) \nabla^2 y_n + \dots \right]$			
	(C) $\frac{dy}{dx} = \frac{1}{h} \left[\Delta y_n + \left(\frac{2\nu+1}{2} \right) \Delta^2 y_n + \dots \right]$	(D) $\frac{dy}{dx} = \frac{1}{h} \Delta y_0 + \left(\frac{2u-1}{2}\right) \nabla^2 y_0 + \dots$			
10.	Simpson's three-eight rule can be applied of		1	1	3
	(A) Odd (C) Prime	(B) Even (D) Multiple of 3			
11.	Trapezoidal rule is so called because it (A) Approximates the integral by the sum of n trapezoids	(B) Finds the area of the trapezoid	1	1	3
	(C) Splits into n trapezoids	(D) Gives approximate value			
12.	The error in Simpson's one-third rule is of o (A) h^2	order (B) h ⁴	1	1	3
	(C) h ³	(D) h ⁶			
13.	Taylor's series method is (A) single-step method (C) Iterative method	(B) Multi step method (D) Trial and error method	1	1	4
14.	In Runge - Kutta method of fourth order,	ly stands for	1	1	4
	(A) $\frac{1}{6}(k_1 + k_2 + k_3 + k_4)$ (C) $\frac{1}{6}(2k_1 + k_2 + k_3 + 2k_4)$	(B) $\frac{1}{6}(k_1-2k_2+2k_3-k_4)$			
	(C) $\frac{1}{6}(2k_1+k_2+k_3+2k_4)$	(B) $\frac{1}{6}(k_1 - 2k_2 + 2k_3 - k_4)$ (D) $\frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$			
15.	Modified Euler's algorithm to find numerical so $m = 0.1.2$, is _	lution of a first order differential equation for	1	1	4
	1 /	(B) $y_{m+1} = y_m + \frac{h}{2} [f(x_m, y_m) + f(x_m + h, y_m + hf(x_m, y_m))]$			
	(C) $v_{m+1} = v_m + h f(x_m, v_m)$	(D) $y_{m+1} = y_m + \left[f\left(x_m + \frac{h}{2}\right) \cdot y_m + \frac{h}{2} f(x_m, y_m) \right]$			
16.	Given $y' = x + y$, $y(0) = 1$, then $y(0.1)$ by Eu	ler's method, taking h = 0.1, is	1	1	4
	(A) 1	(B) 0.2			
17	(C) 0.1	(D) 1.1			
17.	Bender-Schmidt recurrence equation is valid $(A) k = \frac{h^2}{2}$	(D)	1	1	5
	$k=\frac{1}{2}$	$k = \frac{ah^2}{2}$			
	$k = \frac{2}{ah^2}$	$(D) k = \frac{2}{h^2}$			
18.	The equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$ is also ca	lled	1	1	5
	(A) Laplace equation	(B) Poisson's equation			
	(C) One-dimensional heat equation	(D) Two-dimensional heat equation			

19.	The error in the diagonal five point formula is times the error in the standard	1	1	5
	five point formula			•
	(A) 1 (B) 2			
	(C) 3 (D) 4			
20	Bender-Schmidt scheme converges for	1	1	5
20.		•	1	,
	$\lambda = \frac{1}{2}$			
	(C) $\lambda = 3$ (D) $\frac{2}{3}$			
	(A) $\lambda = 1$ (B) $\lambda = \frac{1}{2}$ (C) $\lambda = 3$ (D) $\lambda = \frac{3}{2}$			
	$PART - B (5 \times 8 = 40 Marks)$	Marl	cs BL	CO
	Answer all Questions			
21	(a) Find a maritima and mark of max = 2 to make all and 1 an	0		1
21.	(a) Find a positive real root of $x e^x = 2$ by using the method of false position, correct to 3 decimal places	8	2	1
	(OR)			
	(b) Solve the system of equations by Gauss Elimination method			
	2x + y + 4z = 12			
	8x - 3y + 2z = 20			
	4x - 11y - z = 33			
22.	(a) Use Lagrange's formula to fit a polynomial to the data and hence find y (x=1).	8	2	2
	x: -1 0 2 3			_
	y: -8 3 1 12			
	2			
	(OR) (b) Find the age corresponding to the annuity value of 13.6 given the table			
	Age (x) 30 35 40 45 50			
	Annuity value (y) 15.9 14.9 14.1 13.3 12.5			
	Innitially votate (f) 13.5 14.5 14.1 13.5 12.5			
23.	(a) Find the value of Sec31° from the following data	8	2	3
	· ·			9
	θ 31 32 33 34			
	(in degrees)			
•	tan0 0.6008 0.6249 0.6494 0.6745			
	(OD)			
	(OR)			
	Evaluate $\int \log_e^x dx$ using trapezoidal rule and Simpson's rule taking			
	4			
	h=0.2			
24.	(a) dv	8	2	4
47,	(a) Solve $\frac{dy}{dx} = x^2 - y$ given y (0) = 1, and get y (0.1), y (0.2) by Taylor series	O	۷	4
	method.			
	(OR)			
				13
	(b) Using Improved Euler's method solve $\frac{dy}{dx} = y + e^x$ y (0)=0, for x=0.2, 0.4.			
26		_		_
25.	(a) Using Crank-Nicholson's scheme	8	2	5
	Solve $u_{xx} = 16u_t$, $0 < x < 1$, $t > 0$, given $u(x, 0) = 0$, $u(0, t) = 0$, $u(1, t) = 100t$			
	Compute u for one step in t direction taking $h = \frac{1}{4}$.			
	(OR)			
	(b) Using Schmid's process solve $u_{xx} = 2u_t$, with the conditions $u(x,0) = \frac{1}{4}x(15-x)$ for			
	$0 \le x \le 12$: $u(0,t) = 0$: $u(12,t) = 9$ for $0 < t < 12$ take h=3=k.			

	PART - C (1 × 15 = 15 Marks) Answer any 1 Questions	Marl	ks BL	CO
26.	Apply the fourth order Runge Kutta method to find y(0.2) given that $y' = y + xy^2$, y(0)=1, by taking h=0.1 correct to four decimal places.	15	3	4
27.	By Iteration method, solve the Laplace equation $u_{xx}+u_{yy}=0$, over the square region, satisfying the boundary conditions. $u(0,y)=0,0\leq y\leq 3$	15	3	5
	$u(3, y) = 9 + y, 0 \le y \le 3$ $u(x,0) = 3x, 0 \le x \le 3$ $u(x,3) = 4x.0 \le y \le 3$ Find the values correct to 3 decimal places			52

* * * *