toom this table x1 is the entering variable & 52 is the leaving variable X 1 is the pivotal element

First Iteration Method

В	asis	cost of	3	2	0	0	Ratio
св	В	solnza	×I	22	Sı	Sa	
0	Sı	2	0	2	1	-1	1
3	21	2	1	-1	0	1	-2
optin	nality	zj = 6	3	-3	0	3	
is not Obtained		zj-cj	0	-5	0	3	

Si is the leaving variable x 2 is the entering variable x second Iteration Method

Bo	asis	costej	3	2	0	0	Ratio
CB	В	soln xB	×ı	22	Si	82	Rado
2	×2	1	0	1.	1/2	-1/2	
3	21	3	1	0	1/2	1/2	
optim	ality	Zj = 11	3	2	5/2	1/2	
is Obtai	ned	7j-Gj	0	0	5/2	1/2	

Hence zj-cj zo

Hence the optimality is attained.

Hence the optimal soln is 21 = 3 ×2=1

The max value of the obj finis 2=11.

Simplex Method

1. Max2 = 4x1+10x2

subject to constraints is.

221 + 22 4 50

221+522-100

221+322 490

X112220

61.T. Maz = 421+10×2

Subject to constraint is,

221+22 450

221+522 4100

221+320 490

X1, X2 70

The std form of IPP is ,

Maxz = 4x1+10x2+08,+082+083

Subject to constraint is,

221+22+51=50

2x1+5x2+ S2=100

221+3962+83=90

×1,2,51,32, 53 70

The initial basic feasible solution is got by putting 24=0 X2 =0 .

31 · 50 80 : 100 83 : 90.

```
2 Maz 2 = 3x1 + 2x2
  Subject to constraint is,
       24 + 22 4 4
       x1-x2 4 &
       2197220
HQ1:-
    GT.T
      Max 7: 3x1+2x2
    subject to constraint is ,
        20 + 22 4 4
        21-22 - 8
         X19 X2 ZO
   The std form of Ipp is ,
   Max 7 = 3x1+2x2+051+052
  subject to constraint.
         21 + 22 + 51 = 4
         x1-x2+82 =0
         21121215115220
   The initial basic teasible solution is got by putting.
 x1=0 x2=0 S1=4 S2=2.
 Initial simplex table :-
                                           0
                                     0
                       3
                              2
    Basis
            cost g
                                                  katio
                                           32
            SoinxB
                                     31
       B
  CB
                       21
                              20
                              3
                                            0
      SI
              4
 0
                                                     4
                      11
                             -1
                                     0
                                                     2 1
              2
      So
 0
                              0
                                           0
                                      0
optimality
          7j=0
                       0
  is not
                                          0
           7j-cj
                                    0
                             - 2
                      -3
obtained
```

Basis		cost of	3	2	0	0	
CB	В	soln x _B	24	262	Sı	S2	Ratio
0	Sı	3	0	1/2	1	-1/2	64
3	24	3	1	1/2	0	1/2	6
imal	ity is	zj=9	3	3/2	0	3/2	
not	-	zj-cj	0	-1/2	0	3/2	

From this table 22 is entering variable 4 31 is the leaving variable 4 1/2 is pivotal element and Iteration Mothod:

В	asis	costaj	3	2	0	0	Ratio
св	В	soln xB	21	72	S,	32	A. C.
2	X2	6	0	1	2	-1	
3	21	0	1	0	-1	1	
	mality	Zj = 12	8	2	3	1	
attai	s ned	Zj-cj	0	0	3	1	

Hence 7-9 20

Hence the optimality is attained

-Honce the optimal soln is 21=0 22=6

the max value of the obj for is Max z = 12.

Scanned with CamScanner

8 Max 7 = 3x1+2x2

sc ton

x1+x2 46

221+22 6

2192220

101

Or + Max 7 = 3x1 + 2x2

St 100

21+2266

221+226

X1 , X2 20

the std form of upp to.

Max z = 3x1+2x2+05, +092

SC 10 . 21+22+51 = 6

221+22+52=6

21 + x2+51+52 70

The initial basic trasible soln is got by putting x1=0 x2=0

Initial simplex rable:-

В	asis	cost of	3	2	0	0	ball.
Св	В	adn 28	×ı	22	Sı	32	Ratio
0	Sı	6	1	1	1	0	6
0	Sa	6	2	1	0	1	3 -
optimal	lity	7j = 0	0	0	0	0	
not		zj-cj	-3	-2	0	0	

From this table x1 is entering variable x 32 is leaving variable x 2 is the pivotal element

The pt of intersection E is (301) Hence the stegien of feasibility is The closed polygon of ODEA the extreme pt of feasibility oregion is gn by 0 10,000 A 10,000 D (400) E(301) z at 0 (0,0) = 221+422 = 2(0)+4(0) =0 z at D (4,0) + 2(4) + 4(0) : 8 z at E (3,0 = 2(3)+ 4(1) = 10 z at A (0,25) = 2(0)+4(25)=10 Now Max z & obtained at the pt E(3,1) The optimal solu is 21=3 x2=1 The max value is 10. 5. Max z = 21+x2 St 10, 21+22 L1 -3x1+x2 73 21 + X2 ZO OFT MOXZ = XI+ XZ 30 10, 21 +22 41 -321+ X2 Z3 2119 X2 70 This problem is std form taken 21 4 x2 axis since XI. X2 ZO The feasibility region lies in the first constraint Now consider x1+x2=1 -321+22=3 XI=0 X2=0 21=0 X2=0 2211 2101 X2=3 -3X1=3 21=83/-3 Dt A (001) B(100) 24 = -1. C(0,3) D(-1,0)

Bo	iois	cost of	4	10	0	0	0	h-4-
cB	В	soln xg	24	262	8,	S2	33	Rotio
0	Si	50	2	1	1	0	0	50
0	82	100	2	5	0	1	0	20 6
0	S3	90	2	3	0	0	1	30
ptimo	City	zj=0	0	0	0	0	0	
is not	ined	Zj-Cj	-4	-10	0	0	0	

From this table to is entering variable, 30 is the leaving variable & 5 is the pivotal element.

First Iteration Table

ŧ	Basis	costaj	4	10	0	0	0	Ratio
CB	В	soln xB	21	38	81	Sa	83	Ratio
0	Sı	30	8/5	0	1	-1/5	0	
10	21.2	20	2/5	1	0	45	0	
0	Sa	30	4/5	0	0	-3/5	1	
optima	city	zj = 200	4	10	0	2	0	
not obtained		7j-cj	0	0	0	2	0	

Hence zj-y zo

Hence the optimality is attained

Thence the optimal solu is 24=0 x2=20

The max value of the obj for is 200.

