

http://informatica.usal.es/gii pttb://intormatica.usal.es/gii

Extracto de los temas transporte y aplicación

Introducción al nivel de transporte
Nivel de transporte en Internet: TCP y UDP
El modelo cliente-servidor
Los servicios de Internet
Programación con sockets

Introducción

 Función: proporcionar un transporte de los datos extremo a extremo (host a host), independientemente de la red o redes en uso (optimizar los servicios del nivel de red)

• El Nivel de transporte busca proporcionar un servicio eficiente y fiable a sus usuarios, los procesos de la capa de

aplicación

El nivel de Transporte en Internet I

- Internet ofrece los dos tipos de servicios en el nivel de transporte
 - Con conexión (TCP) y sin conexión (UDP)
- Direccionamiento Números de puerto
 - Los puntos finales de una comunicación son dos procesos de usuario, uno en cada sistema
 - Los dos sistemas pueden estar en redes diferentes, conectadas por uno o más routers
 - Esto requiere tres niveles de direccionabilidad:
 - Red y host (Dirección IP)
 - Identificador único para cada comunicación en un host
 - A este identificador se le denomina Número de Puerto
 - Tanto TCP como UDP usan un entero de 16 bits para esta identificación

El nivel de Transporte en Internet II

- Los numero de puerto en el rango 1 a 255 están reservados para los puertos bien conocidos (RFC 7100)
 - Cada servicio de Internet tiene reservado un número de puerto
 - Son asignados por la organización llamada Internet Assigned Number Authority
 - Algunos sistema operativos reservan puertos adicionales para programas privilegiados (4.3 BSD reserva los puertos 1-1023 para procesos de superusuario)
 - El resto son para puertos del usuario que se denominan puertos efímeros
 - o Por ejemplo
 - FTP es un servicio bien conocido que se proporciona en TCP en el puerto 21

El nivel de Transporte: TCP

TCP - Transmisión control protocol

- Es un protocolo orientado a conexión y fiable
- TSAP = Conexión (Dirección IP origen, nº puerto), (Dirección IP destino, nº puerto)
- Un puerto TCP se pueden compartir entre varias conexiones
- o Es responsable de
 - Establecer, mantener y terminar una conexión entre procesos
 - Permitir múltiples conexiones entre procesos distintos en un mismo host
 - Fraccionar el mensaje en datagramas, reensamblarlo en destino (ordenando los datagramas si no han llegado en orden)
 - Garantizar que la transmisión sea segura extremo a extremo (checksum, asentimientos, retransmisiones, timeouts, ...)
 - Proporcionar un control de flujo extremo a extremo utilizando la técnica de ventana deslizante
- En la <u>RFC 793</u> se describe el estándar TCP

La cabecera TCP

El nivel de Transporte: UDP

- UDP: "User Datagram Protocol"
 - Proporciona un servicio de transporte no fiable, sin conexión
 - TSAP = (Dirección IP, nº Puerto)
 - No proporciona asentimiento de los datagramas recibidos al receptor. Al igual que IP los paquetes pueden llegar desordenados, perderse o duplicarse
 - La única facilidad que incorpora UDP es la asignación y gestión de los números de puerto para identificar aplicaciones individuales que se ejecutan en un host
 - No fragmenta
 - UDP es más rápido que TCP debido a la sobrecarga en las funciones que realiza TCP
 - Se describe en la RFC 768

Puerto origen	Puerto destino			
Longitud	Checksum			
Datos				

El modelo Cliente-Servidor I

- Modelo estándar para desarrollo de aplicaciones en red
 - O Un servidor es un proceso que esta esperando peticiones de los procesos clientes para los que tiene que hacer algo. El esquema típicamente es de la siguiente forma:
 - El proceso servidor se arranca en un determinado sistema. El proceso se inicializa y queda en espera de que contacten con él los procesos clientes
 - Comienza un proceso cliente, en la misma computadora o en otra distinta que está conectada con el sistema servidor mediante una red
 - El proceso cliente envía una petición a través de la red al servidor
 - Algunos ejemplos son:
 - » Devuelve la fecha y hora al cliente
 - » Imprime un fichero por el cliente
 - » Lee o escribe un fichero en el sistema del servidor por el cliente
 - » Permite al cliente entrar en el sistema del servidor
 - » Ejecuta un comando por el cliente en el sistema del servidor
 - Cuando el proceso servidor termina de proporcionar el servicio el servidor vuelve a la espera de nuevos clientes
 - o Ventajas:
 - Esquema válido de direccionamiento
 - Minimiza el tráfico en la red

El modelo Cliente-Servidor II

- Cuando un proceso cliente desea contactar con un servidor, el cliente debe saber la forma de identificar al servidor que desea
 - Dirección IP (red y host) donde se ejecuta el servidor
 - Identificar a ese servidor en concreto
 - Para resolver esto, tanto TCP y UDP utilizan un grupo de puertos bien conocidos. Por ejemplo FTP esta en el puerto 21
 - El proceso cliente también debe obtener un número de puerto local que irá en la cabecera del protocolo de transporte para que el proceso servidor pueda enviarle las respuestas
 - Este número de puerto debe ser único en el sistema y recibe el nombre de puerto efímero (de corta vida)
- En toda comunicación es necesaria la 5-tupla que definimos como Asociación. Es la 5-tupla que especifica completamente dos procesos que tienen una conexión:
 - {protocolo,dirección-local,puerto-local,dirección-remota,puerto-remoto}
 - Protocolo (TCP o UDP)
 - La dirección IP del host local (32 bits)
 - El número de puerto local (16 bits)
 - La dirección IP del host remoto (32 bits)
 - El número de puerto remoto (16 bits)

El nivel de aplicación

- Se construye directamente sobre el nivel de transporte
 - En UNIX: /etc/services
 - https://www.iana.org/assignments/service-names-portnumbers/service-names-port-numbers.xhtml

Servicio	Protocolo	Protocolo transporte	Nº puerto
Transmisión de ficheros	FTP	TCP	21
Login remoto cifrado	SSH	TCP	22
Login remoto	TELNET	TCP	23
Correo electrónico	SMTP	TCP	25
Web	HTTP	TCP	80
Transmisión de ficheros sencilla	TFTP	UDP	69
Servidor de nombres de dominio	DNS	UDP	53
Configuración dinámica de equipos	DHCP	UDP	67/68

Los sockets de Berkeley I

- Uno de los API (Application Program Interface) de comunicación para sistemas Unix
 - Es un interfaz muy usado por programadores para acceder a los servicios que proporcionan los protocolos de comunicación de la red
 - Los sockets proporcionan la interfaz entre el nivel de transporte y los niveles superiores
- Se suele decir que un socket es un mecanismo que proporciona un punto final para establecer una comunicación a través de la red
- Podríamos definir un socket como un punto de acceso a un servicio perfectamente identificado en la red, por el se mandan y aceptan paquetes de información

Los sockets de Berkeley II

Operación	Cliente	Servidor
Crear un socket	socket	socket
Asociar dirección	bind	bind
Especificar nº conexiones en espera		listen
Solicitar conexión	connect	
Esperar y aceptar conexión		accept
Enviar información	write, send, sendto	idem
Recibir información	read, recv, recvfrom	idem
Desconectar socket	shutdown, close	idem

Los sockets de Berkeley III

Con conexión - TCP

Los sockets de Berkeley IV

Ejemplo de la orden netstat -a

A) Estamos en el host TEJO y la salida de la orden es la siguiente:

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 *.23456 *.* LISTEN

B) Instantes después en TEJO la salida de netstat es la siguiente:

Active Internet connections (including servers)

Proto	Recv-Q	Send-Q	Local Address	Foreign Address	(state)
tcp	0	0	tejo.usal.es.23456	tejo.usal.es.4854	ESTABLISHED
tcp	0	0	tejo.usal.es.4854	tejo.usal.es.23456	ESTABLISHED
tcp	0	0	*.23456	* . *	LISTEN

C) Momentos después en TEJO la salida es:

Active Internet connections (including servers)

Proto	Recv-Q	Send-Q	Local Address	Foreign Address(state)	
tcp	0	0	tejo.usal.es.23456	encina.usal.es.1184	ESTABLISHED
tcp	0	0	*.23456	* . *	LISTEN

y en ENCINA

Active Internet connections (including servers)

Proto	Recv-Ç	Send-Q	Local Address	Foreign	Address	(state)
tcp	0	0	encina.usal.es.	1184	tejo.usa	al.es.23456

6