Lab 8: Controls Part 2

EECS 16B Fall 2022

https://links.eecs16b.org/lab8-slides

Lab Schedule

Today's Lab

- More Controls!
 - Last week: Implemented a controller to make S1XT33N drive straight
 - This week: extend controller to turning
 - Derive equation
 - Implement turning in Arduino code
- Ensure mic board is still working in preparation for Classification next week

Review: Closed-Loop Control

Open-Loop Equations

$$rac{u_L^{OL}}{ heta_L} = rac{v^* + eta_L}{ heta_L}$$

$$rac{u_R^{OL}}{ heta_R} = rac{v^* + eta_R}{ heta_R}$$

Closed-Loop Equations

$$u_L[i] = \frac{u_L^{OL}}{\theta_L} - \frac{f_L}{\theta_L} \delta[i]$$

$$u_R[i] = \frac{u_R^{OL}}{u_R} + \frac{f_R}{\theta_R} \delta[i]$$

$$\delta[i] = d_L[i] - d_R[i]$$

Part 1: Exploiting Delta to Turn our Car

• Turning:

- One wheel moves faster than the other
- + delta \rightarrow dL > dR \rightarrow turning right
- \circ delta \rightarrow dL < dR \rightarrow turning left
- How can we make one wheel travel farther with our control scheme?
 - \circ Add an offset value to $\delta[i]$ in the code
 - Car "corrects" it by driving $\delta \rightarrow 0$
 - Naive idea: add a constant offset?

Closed-Loop Equations

$$u_L[i] = \frac{u_L^{OL}}{\theta_L} - \frac{f_L}{\theta_L} \delta[i]$$

$$u_R[i] = \frac{u_R^{OL}}{\theta_R} + \frac{f_R}{\theta_R} \delta[i]$$

$$\delta[i] = d_L[i] - d_R[i]$$

Part 1: Controlled Turning

- Issues with adding constant offset:
 - Car tries to turn very suddenly
 - o if offset is too big, wheels leave the controllable range
 - o Isn't really "aesthetic": car will turn and then drive straight rather than sweeping an angle

Part 1: Controlled Turning (continued)

- We want a gradual, circular turn.
 - Add offset as a variable dependent on time
- In the case of a circular turn, what should $\delta[i]$ be at time i?
 - Use arc length formula!
 - Relate distance to velocity and time steps!
 - Check with us when you derive $\delta_{ref}[i] = f(r, v^*, l, i)$

Parts 2 - 3: turning.ino File

- Code the function for $\delta[i]$ you found in Part 1
 - Control loop and the data collection have different periods
 - Account for different sampling rates of data collection and controller
- (Optionally) apply a straight correction for any lingering turning due to mechanical errors

Part 4: Mic Board Verification

- We will be using the mic board next week for the SVD/PCA lab!
- Verify that your biasing circuits and front-end circuitry still work as expected.

Tips and Common Errors

- Make sure to have one delta_reference positive (left) and the other negative (right)
- You can manipulate the turn radius and run times (in ms!) of the turning sequence
- Ensure you've replaced v* with v* / m ONLY in delta_reference function

Forms & Information

- Help request form: https://eecs16b.org/lab-help
- Checkoff request form: https://eecs16b.org/lab-checkoff
- Extension Requests: https://eecs16b.org/extensions
- Makeup Lab: https://makeup.eecs16b.org
- Slides: https://links.eecs16b.org/lab8-slides
- Anon Feedback: https://eecs16b.org/lab-anon-feedback
- Lab Grades error: https://links.eecs16b.org/lab-checkoff-error