Линейная алгебра и геометрия

Slava Boben

September 9, 2019

Содержание

1	Лег	Лекция 1								
	1.1	Обща	ая информация							
		1.1.1	Контакты							
		1.1.2	О дисциплине							
		1.1.3	Оценка							
		1.1.4	Содержание курса							
	1.2	Матрі	рицы							
		1.2.1	Операции над матрицами							
		1.2.2	\mathbb{R}^n							
		1.2.3	Транспонирование							
		1.2.4	Умножение матриц							
	2.1 2.2 2.3	Умнох	иа эжение матрицемы линейных уравнений							
3	Cen	иинар	1							
	3.1	Конта	акты							
	3.2	Матрі	оицы							
		3.2.1	Аномалии							
		3.2.2	Блочные операции							
		3.2.3	Кек							
		3.2.4	Лол							
		3.2.5	Xex							
		3.2.6	Мла							

1 Лекция 1

1.1 Общая информация

1.1.1 Контакты

Авдеев Роман Сергеевич

- suselr@yandex.ru
- ravdeev@hse.ru

1.1.2 О дисциплине

1 - 4 модули

Письменный экзамен: 2, 4 модули

1.1.3 Оценка

- 1. Экзамен
- 2. Коллоквиум
- 3. Контрольная работа
- 4. Больше ДЗ
- 5. Работа на семинарах
- 6. Бонус Задачи из листков

$$O_{\rm Итог} = \min(10, {\rm Округлениe}(0.4*O_{\rm Эк3} + 0.22*O_{\rm Колл} + 0.16*O_{\rm KP} + 0.16*O_{\rm ДЗ} + 0.08*O_{\rm Cem} + 0.08*O_{\rm Л}), 10)$$

Округление
$$(x) = [x]$$

1.1.4 Содержание курса

- 1. Начало алгебры 9 10 занятий
 - Матрицы
 - Системы линейных уравнений
 - Определители
 - Комплексные числа
- 2. Собственно линейная алгебра
 - Вектороное пространство

1.2 Матрицы

Определение 1. Матрица размера $n \times m$ — это прямоугольная таблица высоты m и ширины n

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

 $a_i j$ – элемент на пересечении і-й строки и ј-го столбца

Краткая запись – $A = (a_{ij})$

Множество всех матриц размера $m \times n$ с коэффициентами из \mathbb{R} (множество всех действительных чисел) — $\mathrm{Mat}_{n*m}(\mathbb{R})$ или Mat_{n*m}

Определение 2. Две матрицы $A \in \mathrm{Mat}_{n \times m}$ и $B \in \mathrm{Mat}_{p \times q}$ называются *равными*, если m = p, n = q, и соответствующие элементы равны

2

Пример.
$$\begin{pmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \end{pmatrix} \neq \begin{pmatrix} \circ & \circ \\ \circ & \circ \\ \circ & \circ \end{pmatrix}$$

Операции над матрицами

 $A, B \in \mathrm{Mat}_{m*n}$

- $Cymma\ A + B := (a_{ij} + b_{ij})$
- Произведение на скаляр $\alpha \in \mathbb{R} \implies \lambda A := (\lambda a_{ij})$

Свойства суммы и произведения на скаляр

 $\forall A, B, C \in \mathrm{Mat}_{m * n} \forall \lambda, \mu \in \mathbb{R}$

- (1) A + B = B + A (коммутативность)
- (2) (A + B) + C = A + (B + C) (ассоциативность)

(3)
$$A + 0 = 0 + A = A$$
, где $0 = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$

- (4) A + (-A) = 0-A — Противоположная матрица
- (5) $(\lambda + \mu)A = \lambda A + \mu A$
- (6) $\lambda(A+B) = \lambda A + \lambda B$
- (7) $\lambda(\mu A) = \lambda \mu A$
- (8) 1A = A

Упражнение. Доказать эти свойства

Примечание. Из свойств (1) – (8) следует, что $\mathrm{Mat}_{n*m}(\mathbb{R})$ является векторным пространством над \mathbb{R}

1.2.2 \mathbb{R}^n

$$\mathbb{R}^n := \{(x_1, \dots, x_n) \mid x_i \in \mathbb{R} \ \forall i = 1, \dots, n\}$$

$$\mathbb{R}^1 = \mathbb{R}$$
 — числовая прямая

$$\mathbb{R}^2$$
 – плоскость

$$\mathbb{R}^3$$
 — трехмерное пространство

Договоримся отождествлять \mathbb{R}^n со столбцами высоты n

договоримся отождествлять
$$\mathbb{R}$$
 со столюцами высоты n
 $(x_1,\ldots,x_n) \leftrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ — "вектор столбец"
$$\mathbb{R}^n \leftrightarrow \mathrm{Mat}_{n*m}(\mathbb{R})$$

$$\begin{bmatrix} x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n \end{bmatrix} \implies [x = y \iff x_i = y_i \forall i]$$

$$x + y := \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

$$\lambda \in \mathbb{R} \implies \lambda x_i := (\lambda x_1, \ldots)$$

$$\lambda \in \mathbb{R} \implies \lambda x_i := (\lambda x_1, \dots)$$

1.2.3 Транспонирование

$$A \in \operatorname{Mat}_{m*n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \rightsquigarrow A^T \in \operatorname{Mat}_{n*m} := \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

3

 A^T — Транспонированная матрица

Свойства:

(1)
$$(A^T)^T - A$$

(1)
$$(A^T)^T = A$$

(2) $(A+B)^T = A^T + B^T$
(3) $(\lambda A)^T = \lambda A^T$

(3)
$$(\lambda A)^T = \lambda A^T$$

Пример.
$$\begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^T = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Пример.
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}^T = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}$$

Пример.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$

1.2.4 Умножение матриц

$$A = (a_{ij})$$

 $A_{(i)}$ — i-я строка матрицы A $A^{(j)}$ — j-й столбец матрицы A

(1) Частный случай: Произведение строки на столбец одинаковой длинны

$$\underbrace{(x_1,\ldots,x_n)}_{1\times n}\underbrace{\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}}_{n\times 1} = x_1 * y_1 + \cdots + x_n * y_n$$

(2) A - матрица размера m*n

B - матрица размера n*p

Кол-во строк матрицы A равно кол-ву столбцов матрицы B — условие согласованности матриц $AB := C \in \mathrm{Mat}_{m*p}$, где $C_{ij} = A_{(i)}B^{(j)}$

Пример.
$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} := \begin{pmatrix} x_1 y_1 & x_2 y_1 & \dots & x_n y_1 \\ x_1 y_2 & x_2 y_2 & \dots & x_n y_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1 y_n & x_2 y_m & \dots & x_n y_m \end{pmatrix}$$

Пример.
$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \end{pmatrix} \times \begin{pmatrix} 2 & -1 \\ 0 & 5 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1*2+0*0+2*1 & 1*(-1)+0*5+2*1 \\ 0*2+(-1)*0+3*1 & 0*(-1)+(-1)*5+3*1 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 3 & -2 \end{pmatrix}$$

Лекция 2

Сумма

 S_p,S_{p+1},\dots,S_q – набор чисел $\sum_{i=p}^q S_i:=S_p+S_{p+1}+\dots+S_q$ – сумма по i от p до q $\sum_{i=1}^1 00i^2=1^2+2^2+\dots+100^2$

1. $\lambda \sum_{i=1}^{n} S_i = \sum_{i=1}^{q} \lambda S_i$

2. $\sum_{i=1}^{q} (S_i + t_i) = \sum_{i=1}^{n} S_i + \sum_{i=1}^{n} t_i$

3. $\sum_{i=1}^{m} \sum_{j=1}^{n} S_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{m}$ — Сумма всех элементов матрицы $S = (s_{ij})$

Умножение матриц

 $A \in \mathrm{Mat}_{m \times n}, B \in \mathrm{Mat}_{n \times p}$

$$AB = C$$

 $c_{ij} = A_{(i)}B^{(j)} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{1n}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$

Свойства умножения матриц:

1.
$$\underline{\underline{A(B+C)}} = \underline{\underline{AB+AC}}$$
 – левая дистрибутивность

Доказательство $x_{ij} = A_{(i)}(B+C)^{(j)} = \sum_{k=1}^{n} a_{ik}(b_{kj}+c_{kj}) = \sum_{k=1}^{n} (a_{ik}b_{kj}+a_{ik}c_{kj}) = \sum_{k=1}^{n} a_{ik}bkj + \sum_{k=1}^{n} a_{ik}c_{kj} = A_{(i)}B^{(j)} + A_{(i)}C^{(j)} = yij$

2. (A+B)C = AC + BC – правая дистрибутивность, доказывается аналогично

3.
$$\lambda(AB) = (\lambda A)B = A(\lambda B)$$

4. (AB)C = A(BC) – ассоциативность

Доказательство

$$\underbrace{(AB)C}_{u} = x, \underbrace{A}\underbrace{(BC)}_{v} = y$$

$$x_{ij} = \sum_{k=1}^{p} u_{ik} * c_{kp}$$

$$= \sum_{k=1}^{p} (\sum_{l=1}^{n} a_{il} b_{lk}) c_{kj}$$

$$= \sum_{k=1}^{p} (\sum_{l=1}^{n} a_{il} b_{lk}) c_{kj})$$

$$= \sum_{l=1}^{n} (\sum_{k=1}^{p} a_{il} b_{lk}) c_{kj}$$

$$= \sum_{l=1}^{n} a_{il} (\sum_{k=1}^{p} b_{lk} c_{kj})$$

$$= \sum_{l=1}^{n} a_{il} v_{lj}$$

$$= y_{ij}$$

$$5. \ \underbrace{(\stackrel{T}{AB})}_{x} = \underbrace{B^{T}A^{T}}_{y}$$

Доказательство

$$x_{ij} = [AB]_{ji} = A_{(j)}B^{(i)} = (B^T)_{(i)}(A^T)^{(j)} = y_{ij}$$

Умножение матриц не коммутативно

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, BA = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Определение 3. $A \in \operatorname{Mat}_{n \times n} \implies A$ называется $\kappa aadpmanoй$ матрицей подярка n

Обозн.:
$$M_n := \operatorname{Mat}_{n \times n} A \in M_n$$

Определение 4. Матрица $A \in M_n$ называется *диагональной* если все ее элементы вне главной диагонали равны нулю $(a_{ij} = 0$ при $i \neq j)$

$$A = \Longrightarrow A = diag(a_1, a_2, \dots, a_n)$$

Лемма. $A = diag(a_1, \ldots, a_n) \in M_n \implies$

1.
$$\forall B \in Mat_{n \times p}, AB = \begin{pmatrix} a_1 B_{(1)} \\ a_2 B_{(2)} \\ \vdots \\ a_n B_{(n)} \end{pmatrix}$$

2. $\forall B \in Mat_{m \times n}$ – аналогично (вектор строка)

Доказательство

1.
$$[AB]_{ij} = \begin{pmatrix} 0 & \dots & 0 & a_i & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{pmatrix} = a_i b_{ij}$$

2.
$$[BA]_{ij} =$$

Определение 5. Матрица $E=E_n=diag(1,1,\ldots,1)$ называется eduhuvhoù матрицей порядка n.

Свойства

1.
$$EA = A \quad \forall A \in \mathrm{Mat}_{n \times p}$$

2.
$$AE = A \quad \forall A \in \text{Mat}_{p \times n}$$

3.
$$AE = EA = A \quad \forall A \in M_n$$

Определение 6. *Следом* матрицы $A \in M_n$ называется число $trA = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^n a_{ii}$

Свойства

1.
$$tr(A+B) = trA + trB$$

2.
$$tr(\lambda A) = \lambda tr A$$

3.
$$tr(A^T) = tr(A)$$

4.
$$tr(AB) = tr(BA) \forall A \in Mat_{m \times n}, B \in Mat_{nm}$$

Доказательство

$$AB = x \in M_m, BA = y \in M_n$$

$$trx = \sum_{i=1}^m x_{ii} = \sum_{i=1}^m \sum_{j=1}^n a_{ij}b_{ji} = \sum_{j=1}^n \sum_{i=1}^m b_{ji}a_{ij} = \sum_{j=1}^n y_{ij} = try$$

Пример.
$$A=(1,2,3), B=\begin{pmatrix}4\\5\\6\end{pmatrix}$$

$$tr(AB)=tr(1\cdot 4+2\cdot 5+3\cdot 6)=32$$

$$tr(BA)=\begin{pmatrix}4&8&12\\5&10&15\\6&12&18\end{pmatrix}=4+10+18=32$$

2.3 Системы линейных уравнений

Определение 7. Линейное уравнение –
$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$
 a_1, a_2, \ldots, a_n, b – коэффициенты x_1, x_2, \ldots, x_n – неизвестные

Система линейных уравнений

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

$$a_{ij}, b_i \in \mathbb{R}$$

Основная задача: решить СЛУ

Пример.
$$n=m=1$$
 $ax=b$ $a\neq 0 \implies x=\frac{b}{a}$ $a=0 \implies 0x=b$ $b\neq 0 \implies$ нет решений $b=0 \implies x\in \mathbb{R}$ – бесконечно много решений

$$A \in Mat_{m \times n}(R) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 — матрица коэффициентов

$$B\in \mathrm{Mat}_{m imes 1}=egin{pmatrix} b_1\b_2\ dots\begin{pmatrix}b_2\cdots\begin{pmatrix}c\\b_n\end{pmatrix}$$
 — столбец правых частей

$$X \in \mathrm{Mat}_{m imes 1} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 — столбец неизвестных

 $(*) \leftrightarrow Ax = b$ — Матричная форма записи СЛУ

Определение 8. СЛУ называется

- совместной, если у нее есть хотя бы одно решение
- несовмествной, если решений нет

3 Семинар 1

3.1 Контакты

Трушин Дмитрий Витальевич – Дима trushindima@yandex.ru

3.2 Матрицы

3.2.1 Аномалии

1.
$$A \cdot B \neq B \cdot A$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

2.
$$A \neq 0$$

$$A^{2} = 0$$

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}^{2} = 0$$

$$\begin{pmatrix} 0 & 1 \\ 0 \end{pmatrix}^{2} = 0$$

 $A \neq 0 \cdot B \neq 0 = 0$

3.2.2 Блочные операции

Α	R			
C	D			
	D	1		
X	Y			
Z	W			
$A\lambda$	X + B	Z	AY + BW]
CY	$\overline{I} + \overline{D}$	Z	CY + DW]
$A \cdot I$	3 = A	$1 \cdot ($	B_1, B_2, \ldots, B_n	N
B =	$(B_1,$	B_2	$\ldots, B_N) = (A_n)$	AB_1, AB_2, \ldots, AB_n

$$A = (A_1, \dots, A_n)$$

$$B = (B_1, \dots, B_n)$$

$$AB^T = (A_1, \dots, A_n) \begin{pmatrix} B_1^T \\ \vdots \\ B_N^T \end{pmatrix} = A_1 B_1^T + \dots + A_n B_n^T$$

- 3.2.3 Кек
- 3.2.4 Лол

$$(A \cdot B)^T = B^T \cdot A^T$$

3.2.5 Xex

ſ	A	В	T
ĺ	С	D	
ſ	A^T	C	T
Ī	B^T	L	T

3.2.6 Мда

$$x \in M_n(\mathbb{R})$$
$$xJ_0 = J_0x$$