Raycasting in cub3d

July 23, 2020

1 The grid

2 Drawing a pixel column

Hence, we have:

$$\frac{\text{perceived_height}}{\text{WALL_HEIGHT}} = \frac{\text{SCREEN_DISTANCE}}{\text{dist_to_wall}}$$

$$\text{perceived_height} = \text{WALL_HEIGHT} \times \frac{\text{SCREEN_DISTANCE}}{\text{dist_to_wall}}$$

Hence:

$$\tan\left(\frac{\pi}{4}\right) = \frac{\text{screen_width/2}}{\text{SCREEN_DISTANCE}}$$

$$1 = \frac{\text{screen_width}}{2 \times \text{SCREEN_DISTANCE}}$$

 $screen_width = 2 \times SCREEN_DISTANCE$

If (res.x, res.y) is the resolution of the window:

$$\frac{\text{screen_height}}{\text{res.y}} = \frac{\text{screen_width}}{\text{res.x}}$$

$$\text{screen_height} = \text{res.y} \times \frac{\text{screen_width}}{\text{res.x}}$$

As showed above, screen_width = $2 \times SCREEN_DISTANCE$, so

 $screen_height = 2 \times SCREEN_DISTANCE \times res.y \div res.x$

3 Drawing a sprite

$$\alpha = \operatorname{atan}\left(\frac{y_C - y_P}{x_C - x_P}\right)$$

$$\cos(\beta) = \frac{PC}{d'} = \frac{\text{dist_to_sprite}}{d'}$$
$$d' = \frac{\text{dist_to_sprite}}{\cos(\beta)}$$