# Link Budget Calculation: Wireless Link Project

Haitham Babbili, Hozaifa Abdelgadir, Josefine Åberg, Oscar Wallin, Yagnasri Eswarasai Pavankumarreddy Telluri

November 2021

### 1 Introduction

In the course Wireless link project (MCC125) the task is to design and construct a wireless communication system that can communicate over 100 m. This document explains the link budget for the project.

### 2 Design

The system is designed to operate at QPSK and 16-QAM. Assuming a maximum  $BER = 10^{-5}$  which requires a SNR = 24.7 dB for QPSK and a SNR = 28.5 dB for 16-QAM respectively. The transmitted message is a text message using a bit rate of 80 Kbps. The sampling rate is 1562500 Hz and the bandwidth is 28 KHz for QPSK and 14 KHz when using 16-QAM.

#### 2.1 Hardware Design

The transmitter is designed as shown in the figure 1.

The specifications of the transmitter elements @2.4 GHz@+25C are shown in the table 1. The calculated gain delivered by the transmitter is 25 dB with an output power of 22 dBm.

Table 1: Transmitter Block Elements

| Elements                              | Input Power (dBm) | Output Power (dBm) | Gain<br>(dB) | Noise Figure<br>(dB) | Input P1dB (dBm) |
|---------------------------------------|-------------------|--------------------|--------------|----------------------|------------------|
| USRP Transm (N210)                    | -                 | -2.8               | -            | -                    | -                |
| Power Amplifier -1:<br>(HMC347)       | -2.8              | 7.2                | 10           | 3                    | 8                |
| Mixer:<br>(HMC213 RF)                 | 7.2               | -2.6               | -9.8         | 5                    | 9                |
| Power Amplifier - 2:<br>(HMC347)      | -2.6              | 7.4                | 10           | 3                    | 8                |
| Power Amplifier - 3:<br>(HMC636ST89E) | 7.4               | 19.4               | 12           | 3                    | 22               |
| Antenna<br>(VERT2450)                 | 19.4              | 22.4               | 3            | -                    | -                |



Figure 1: Transmitter Block Diagram

The specifications of the Receiver elements @2.4 GHz@+25C are shown in the table 2.

Table 2: Receiver Block Elements

| Elements                        | Input Power (dBm) | Output Power (dBm) | Gain (dB) | Noise figure (dB) |
|---------------------------------|-------------------|--------------------|-----------|-------------------|
| Antenna<br>VERT2450             | -57.6             | -54.6              | 3         | -                 |
| Bandpass filter:<br>VBF2435+    | -54.6             | -56.5              | -1.9      | -                 |
| Low Noise Amplifier:<br>HMC374E | -56.5             | -46.5              | 10        | 1.5               |
| Mixer<br>HMC213 IF              | -46.5             | -56.5              | -10       | 5                 |
| Power Amplifier<br>HMC480       | -56.5             | -41.5              | 15        | 3                 |
| Power Amplifier<br>HMC480       | -41.5             | -26.5              | 15        | 3                 |
| Low-pass Filter<br>SBLP-39+     | -26.5             | -28.5              | -2        | 2                 |

The receiver is designed as shown in the figure 2. The noise figure of receiver is  $7~\mathrm{dB}$  with a total gain of  $29~\mathrm{dB}$ .



Figure 2: Receiver Block Diagram

## 3 Frequency

The frequency of the local oscillator  $(F_{lo})$  is set to 2.4 GHz. The intermediate frequency  $(F_{IF})$  is set to 20 MHz. The transmitted frequency can be calculated as Eq.(1).

$$F_{RF} = F_{lo} \pm F_{IF} \tag{1}$$

Hence, the  $F_{RF} = 2.4 \pm 0.02$ .

#### 4 Total NF of the receiver

The noise floor of the receiver is calculated to be 7 dB. The system input thermal noise depends on the antenna temperature which can be calculated from Eq.(2).

$$T_a = e_r \times T_b + (1 - e_r) \times T_p \tag{2}$$

The equation gives an antenna temperature of 31.7 K and a system bandwidth of 20MHz where the input noise power is calculated as -111 dBm. From the receiver gain and noise figure above, we get the output thermal noise from Eq.(3).

$$N_0 = N_i \times G \times F$$

$$N_0(dBm) = -111 + 7 + 29$$

$$= -75dBm$$
(3)

This is lower than the USRP's noise floor of -70 dBm. Therefore, we can consider the the USRP noise which is dominating the system and neglect the thermal noise. So, for the best case the SNR

at the receiver output is:

$$SNR = Signal \quad power - N_0$$
 
$$SNR_{16-QAM} = -28.5 + 70$$
 
$$SNR_{16-QAM} = 41.5dB$$
 (4)

The margin for the SNR can be calculated with the system margin to be SNR-SNR $_{req(16-QAM)}$ , so the margin for the SNR = 41.5 - 28 = 13.5dB.

## 5 Receiver sensitivity and transmit power

The receiver sensitivity is measured to be -70 dB with a noise floor of -97 dB and a power from the USRP = -2.8 dBm. The LO Power is measured in the lab as -3.8 dBm at it's lowest and 4.8 dBm at it's highest.