

ALGONQUIN COLLEGE

CST8390 BUSINESS INTELLIGENCE & DATA ANALYTICS

Week 6 Regression

Agenda

- Linear regression
 - Simple linear regression
 - Multiple linear regression
- Multivariate regression
- Logistic regression

Types of Relationships

- Deterministic (or functional) relationship
- Statistical relationship

Deterministic (or functional) Relationship

• Ex. Relationship between Celsius and Fahrenheit

$$F = \frac{9}{5} * C + 32$$

The observed (x, y) data points fall directly on the line.

For deterministic relationship, the equation exactly describes the relationship between the two variables.

Statistical Relationship

Examples

- Height and weight as height increases, you'd expect weight to increase, but not perfectly.
- Alcohol consumed and blood alcohol content as alcohol consumption increases, you'd expect one's blood alcohol content to increase, but not perfectly.
- Driving speed and gas mileage as driving speed increases, you'd expect gas mileage to decrease, but not perfectly.

Statistical Relationship

Example: The response variable *y* is the mortality due to skin cancer (number of deaths per 10 million people) and the predictor variable *x* is the latitude (degrees North) at the center of 49 states in the U.S.

	State	Lat	Mort	Ocean	Long
	Alabama	33	219	1	87
	Arizona	34.5	160	0	112
	Arkansas	35	170	0	92.5
	California	37.5	182	1	119.5
	Colorado	39	149	0	105.5
	Connectio	41.8	159	1	72.8
	Delaware	39	200	1	75.5
	Wash,D.C	39	177	0	77
	Florida	28	197	1	82
	Georgia	33	214	1	83.5
	Idaho	44.5	116	0	114
	Illinois	40	124	0	89.5
•	Indiana	40.2	128	0	86.2
_	lowa	42.2	128	0	93.8
	Kansas	38.5	166	0	98.5
	Kentucky	37.8	147	0	85
	Louisiana	31.2	190	1	91.8
	Maine	45.2	117	1	69
	Maryland	39	162	1	76.5
	Massachu	42.2	143	1	71.8
	Michigan	43.5	117	0	84.5
	Minnesota	46	116	0	94.5
	Mississipp	32.8	207	1	90
	Missouri	38.5	131	0	92
	Montana	47	109	0	110.5
	Nebraska	41.5	122	0	99.5
	Nevada	39	191	0	117
	NewHamp	43.8	129	1	71.5
	NewJerse	40.2	159	1	74.5
	NewMexic	35	141	0	106
	MewYork	43	152	1	75.5
	NorthCard		199	1	79.5
	NorthDak	47.5	115	0	100.5
	Ohio	40.2	131	0	82.8
	Oklahoma	35.5	182	0	97.2
	Oregon	44	136	1	120.5
	Pennsylva	40.8	132	0	77.8
	Rhodelsla		137	1	71.5
	SouthCar	33.8	178	1	81
	SouthDak	44.8	86	0	100
	Tennesse		186	0	86.2
	Texas	31.5	229	1	98
	Utah	39.5	142	0	111.5
	Vermont	44	153	1	72.5
	Virginia	37.5	166	1	78.5
	Washingto		117	1	121
	WestVirgi		136	0	80.8
	Wisconsir		110	0	90.2
	Wyoming	43	134	0	107.5
	,				

Regression

- When you have a series of continuous data that follow some sort of pattern.
- determines the strength of the relationship between dependent variable and a series of other changing variables (known as independent variables).

Simple Linear Regression

- Statistical method that allows us to summarize and study relationships between two continuous variables
 - One variable, denoted as x, as the independent (predictor) variable
 - The other variable, denoted as y, as the dependent (response) variable

Parameters for line:

• In mathematics, a line needs two parameters:

$$y = mx + b$$

- *m* is the slope, *b* is the y-intercept
- In regression, the parameters take different names:
- $h(x) = \Theta_0 + \Theta_1 x$
- h(x) is the predicted value for x
- Θ_0 , Θ_1 are the coefficients.

Linear Regression with one variable

- Try to fit a best-fit line to a data set. This line is then used to predict real values for continuous output.
- Need a training set:
 - x an input variable
 - y The output variable.
 - h is a function that maps $x \rightarrow y$
 - $h(x) = \Theta_0 + \Theta_1 x$, or y = mx + b
- Also called Univariate linear regression.

Linear Regression with one variable

- To choose the best values of Θ_0 and Θ_1 , we use a cost function.
- This calculates the total error between your predicted value, and the actual values. We continue to change the values until we find the minimum error.
- The h function deals with x, where the cost function deals with Θ_1 .

Linear Regression - Example

Height	Weight
63	127
64	121
66	142
69	157
69	162
71	156
71	169
72	165
73	181
75	208

Which line (red or pink) is the best fit?

Red line: w = -266.53 + 6.1376h Pink line: w = -331.2 + 7.1h

For the student with the height 63 inches, actual weight is 127 pounds. Based on the red fitted line, weight is -266.53 + 6.1376 * 63 = 120.1Prediction Error = 127 - 120.1 = 6.9

Based on the pink fitted line, weight is -331.2 + 7.1 * 63 = 116.1Prediction Error = 127 - 116.1 = 10.9

A line that fits the data "best" will be the one with overall minimal prediction errors.

In order to find the overall prediction error, "least squares criterion" can be used.

Least Squares Criterion

w = -266.53 + 6.1376h							w = -331.2 + 7.1h						
		X	y i	y _i '	y _i - y _i '	$(y_i - y_i')^2$			x	y i	y _i '	y _i - y _i '	$(y_i - y_i')^2$
-266.53	6.1376	63	127	120.1388	6.8612	47.07607	-331.2	7.1	63	127	116.1	10.9	118.81
-266.53	6.1376	64	121	126.2764	-5.2764	27.8404	-331.2	7.1	64	121	123.2	-2.2	4.84
-266.53	6.1376	66	142	138.5516	3.4484	11.89146	-331.2	7.1	66	142	137.4	4.6	21.16
-266.53	6.1376	69	157	156.9644	0.0356	0.001267	-331.2	7.1	69	157	158.7	-1.7	2.89
-266.53	6.1376	69	162	156.9644	5.0356	25.35727	-331.2	7.1	69	162	158.7	3.3	10.89
-266.53	6.1376	71	156	169.2396	-13.2396	175.287	-331.2	7.1	71	156	172.9	-16.9	285.61
-266.53	6.1376	71	169	169.2396	-0.2396	0.057408	-331.2	7.1	71	169	172.9	-3.9	15.21
-266.53	6.1376	72	165	175.3772	-10.3772	107.6863	-331.2	7.1	72	165	180	-15	225
-266.53	6.1376	73	181	181.5148	-0.5148	0.265019	-331.2	7.1	73	181	187.1	-6.1	37.21
-266.53	6.1376	75	208	193.79	14.21	201.9241	-331.2	7.1	75	208	201.3	6.7	44.89
					Total	597.3863						Total	766.51

 $y_i - y_i'$: Prediction error

 $(y_i - y_i')^2$: Squared prediction error

Overall squared prediction error =
$$\sum_{i=1}^{\infty} (yi - yi')2$$

Finding m and b

									$(y_i - \overline{y})^2$	$x_i - \bar{x}$
		x	y i	\bar{x}	$x_i - \bar{x}$	$(x_i - \bar{x})^2$	\bar{y}	$y_i - \bar{y}$	$(y_i - \bar{y})^2$	$y_i - \bar{y}$
		63	127	69.3	-6.3	39.69	158.8	-31.8	1011.24	200.34
		64	121	69.3	-5.3	28.09	158.8	-37.8	1428.84	200.34
		66	142	69.3	-3.3	10.89	158.8	-16.8	282.24	55.44
		69	157	69.3	-0.3	0.09	158.8	-1.8	3.24	0.54
		69	162	69.3	-0.3	0.09	158.8	3.2	10.24	-0.96
		71	156	69.3	1.7	2.89	158.8	-2.8	7.84	-4.76
		71	169	69.3	1.7	2.89	158.8	10.2	104.04	17.34
		72	165	69.3	2.7	7.29	158.8	6.2	38.44	16.74
		73	181	69.3	3.7	13.69	158.8	22.2	492.84	82.14
		75	208	69.3	5.7	32.49	158.8	49.2	2420.64	280.44
	Sqrt(Sum)					11.7516			76.15510488	847.6
									$m = \frac{\sum_{i=1}^{n} (x_i)}{\sum_{i=1}^{n} (x_i)}$	$\frac{-\overline{x})(y_i - \overline{y})}{(x_i - \overline{x})^2}$
										6.137581463
	m	6.1375815								
	SD	3.7161808	24.08236							
	Mean	69.3	158.8							
b =	$\overline{y} - m\overline{x}$	-266.5344								

Weka Demo for Height-Weight file

Measuring accuracy - How can you tell if your regression line is a good fit?

• Calculate the "Coefficient of determination", the residual, or also called r^2 , where r is the correlation coefficient.

• This is a number between 0 and 1, which normally means how close your data is to the line. If your data is always on the line, then $R^2 = 1$. If your data is far away from the line then R^2 will be low.

Measuring accuracy

Correlation Coefficient

$$\Upsilon = \frac{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}{\sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} * b_1$$

where b_1 is the slope in the equation $y = b_0 + b_1 x$

x	y _i	\bar{x}	$x_i - \bar{x}$	$(x_i - \bar{x})^2$	\bar{y}	$y_i - \bar{y}$	$(y_i - \bar{y})^2$
63	127	69.3	-6.3	39.69	158.8	-31.8	1011.24
64	121	69.3	-5.3	28.09	158.8	-37.8	1428.84
66	142	69.3	-3.3	10.89	158.8	-16.8	282.24
69	157	69.3	-0.3	0.09	158.8	-1.8	3.24
69	162	69.3	-0.3	0.09	158.8	3.2	10.24
71	156	69.3	1.7	2.89	158.8	-2.8	7.84
71	169	69.3	1.7	2.89	158.8	10.2	104.04
72	165	69.3	2.7	7.29	158.8	6.2	38.44
73	181	69.3	3.7	13.69	158.8	22.2	492.84
75	208	69.3	5.7	32.49	158.8	49.2	2420.64
				11.7516			76.1551049
			Correlation Coefficient	$\frac{\sqrt{\sum_{i=1}^{n}(x_i)}}{\sqrt{\sum_{i=1}^{n}(y_i)}}$	$\frac{-\bar{x})^2}{-\bar{y})^2} * b_1$	0.947101228	
	63 64 66 69 69 71 71 72 73	63 127 64 121 66 142 69 157 69 162 71 156 71 169 72 165 73 181 75 208	63 127 69.3 64 121 69.3 66 142 69.3 69 157 69.3 69 162 69.3 71 156 69.3 71 169 69.3 72 165 69.3 73 181 69.3 75 208 69.3	63 127 69.3 -6.3 64 121 69.3 -5.3 66 142 69.3 -3.3 69 157 69.3 -0.3 69 162 69.3 -0.3 71 156 69.3 1.7 71 169 69.3 1.7 72 165 69.3 2.7 73 181 69.3 3.7 75 208 69.3 5.7	63 127 69.3 -6.3 39.69 64 121 69.3 -5.3 28.09 66 142 69.3 -3.3 10.89 69 157 69.3 -0.3 0.09 69 162 69.3 -0.3 0.09 71 156 69.3 1.7 2.89 71 169 69.3 1.7 2.89 72 165 69.3 2.7 7.29 73 181 69.3 3.7 13.69 75 208 69.3 5.7 32.49	63 127 69.3 -6.3 39.69 158.8 64 121 69.3 -5.3 28.09 158.8 66 142 69.3 -3.3 10.89 158.8 69 157 69.3 -0.3 0.09 158.8 69 162 69.3 -0.3 0.09 158.8 71 156 69.3 1.7 2.89 158.8 71 169 69.3 1.7 2.89 158.8 72 165 69.3 2.7 7.29 158.8 73 181 69.3 3.7 13.69 158.8 75 208 69.3 5.7 32.49 158.8	63 127 69.3 -6.3 39.69 158.8 -31.8 64 121 69.3 -5.3 28.09 158.8 -37.8 66 142 69.3 -3.3 10.89 158.8 -16.8 69 157 69.3 -0.3 0.09 158.8 -1.8 69 162 69.3 -0.3 0.09 158.8 3.2 71 156 69.3 1.7 2.89 158.8 -2.8 71 169 69.3 1.7 2.89 158.8 10.2 72 165 69.3 2.7 7.29 158.8 6.2 73 181 69.3 3.7 13.69 158.8 22.2 75 208 69.3 5.7 32.49 158.8 49.2

Weka

Measuring accuracy

High R², data is close to line

Lower R², data is far from line

Multiple Regression Model

Linear Regression Model for cpu.arff:

```
class = 0.0491 * MYCT +
0.0152 * MMIN +
0.0056 * MMAX +
0.6298 * CACH +
1.4599 * CHMAX +
-56.075
```

The weights tells the relationship of each variable to the outcome, whether they are positive or negative.

Multivariate Regression

- a technique that estimates a single regression model with more than one outcome variable.
- Example: A doctor has collected data on cholesterol, blood pressure, and weight. She also collected data on the eating habits of the subjects (e.g., how many ounces of red meat, fish, dairy products, and chocolate consumed per week). She wants to investigate the relationship between the three measures of health and eating habits.

Logistic Regression

- Models a relationship between independent (predictor) variable and a categorical response variable.
- Helps us to estimate a probability of falling into a certain level of the categorical response given a set of predictors

Weka Demo with Diabetes dataset

References

- https://www.youtube.com/watch?v=6tDnNyNZDF0
- https://www.youtube.com/watch?v=YIxoyiN8lxo
- https://www.youtube.com/watch?v=ThmZU3dTIDo
- https://onlinecourses.science.psu.edu/stat501/lesson/1

