Konzeptpapier Lichtsteuerung

Marius Schuller Stefan Thiemann Patrick Wildt

14. Oktober 2015

Inhaltsverzeichnis

1	Einführung	2				
2	Lichtsteuerungs-Technologien					
3	Komponenten	3				
4	Hardware	3				
	4.1 RaspBee Premium, Raspberry-Pi Einzeln	3				
	4.2 RaspBee Premium, Raspberry-Pi Bundle	3				
	4.3 Hinweis	3				
5	Grobarchitektur	4				
	5.1 Hue LED Licht	4				
	5.2 ZigBee Controller	5				
	5.3 Lichtsteuerung	6				
	5.4 API	6				
	5.5 Webserver	6				
	5.6 GUI	6				
	5.7 CLI	6				

Hier wird kurz die Grundidee des Schwerpunktprojekts, sowie welche Hardware benötigt wird, beschrieben.

1 Einführung

Im Zuge der Internet-of-Things-Kampagne¹ werden immer mehr "dumme" bzw. einfache Geräte miteinander vernetzt und die resultierenden Daten intelligent miteinander verknüpft. Dazu gehören auch Lichter und Glühbirnen. Zur Vernetzung und Steuerung der Lichter existieren bereits mehrere aktuelle Technologien. Mit Hilfe einer der standardisierten Technologie möchten wir einen Controller implementieren, welcher diese Lichter kontrollieren kann.

2 Lichtsteuerungs-Technologien

Üblicherweise möchten Hersteller ein eigenes Produkt-Ökosystem erstellen, aus dem ein Anwender nicht oder nur schwer entkommen kann. Hierfür werden von den Herstellern eigene, unfreie Protokolle implementiert. Beispielsweise bietet LimitlessLED ² Glühbirnen, welche sich über 2,4 GHz WLAN in das lokale Netzwerk verbinden. Für die eigentliche Steuerung wurde dazu eine eigene API entwickelt. Eine weitere bekannte Technologie zur Steuerung von Geräten ist Bluetooth. Hier ist es derzeit möglich mit Hilfe des Generic Attribute Profile, kurz $GATT^3$, ein eigenes Protokoll zu sprechen. Dies wird bei mehreren smarten Glühbirnen verwendet um ein proprietäres Lichtsteuerungsprotokoll zu implementieren.

Die Bluetooth Konkurrenten Z-Wave⁴, welches sich auf das so genannte Home Control-Szenario konzentriert, sowie ZigBee⁵, implementieren wieder jeweils eigene Lichtprotokolle. Diese Protokolle sind jedoch für jeden Client des Funkstandards nutzbar, sodass die Hersteller kein eigenes Protokoll implementieren mussten. Der Funkstandard ZigBee wird von den namhaften Herstellern Philips und Osram verwendet.

Für das Schwerpunktprojekt würden wir uns auf ZigBee kompatible Geräte konzentrieren. Vor allem die Produkte der Philips hue Reihe.

¹http://www.nextgenerationmedia.de

²http://www.limitlessled.com

³https://de.wikipedia.org/wiki/Bluetooth-Profile

 $^{^4}$ http://www.z-wavealliance.org

 $^{^5}$ http://www.zigbee.org

3 Komponenten

Die eigentliche Logik zur Steuerung der Lichter kann auf einem RaspberryPi implementiert werden. Um den Funkstandard ZigBee sprechen zu können wird ein kompatibles Funkmodul benötigt. Hierfür kann das RaspBee-Modul verwendet werden. Dieses gibt es in zwei Varianten, Basic und Premium. Während man mit der Basic-Variante nur mit 5 Knoten sprechen darf, ist dies bei der Premium-Variante unbegrenzt. Die Lichter würden aus einem Philips Hue Starterkit bestehen.

4 Hardware

4.1 RaspBee Premium, Raspberry-Pi Einzeln

Menge	Produkt	Einzelpreis	Gesamtpreis
3	RaspberryPi 2	42 Euro	126 Euro
3	RaspBee Premium	60 Euro	180 Euro
3	Philips Hue LED	59 Euro	177 Euro
	$1 \times 9W A60 E27$		
Gesamtpr	eis	483 Euro	

4.2 RaspBee Premium, Raspberry-Pi Bundle

Menge	Produkt	Einzelpreis	Gesamtpreis
3	RaspberryPi 2 Bundle	70 Euro	210 Euro
3	RaspBee Premium	60 Euro	180 Euro
3	Philips Hue LED	59 Euro	177 Euro
	$1 \times 9W A60 E27$		
Gesamtpr	eis	567 Euro	

4.3 Hinweis

Unter Umständen sind Bestandteile der Liste schon im Vorrat der Hochschule oder der Projektteilnehmer. Je nach Beteiligung der Fachhochschule würden wir für einen Teil der Kosten aufkommen.

5 Grobarchitektur

Die Lichtsteuerung soll aus mehreren miteinander interagierenden Komponenten bestehen, welche im Weiteren genauer beschrieben werden.

5.1 Hue LED Licht

Die Lampen, welche gesteuert werden sollen, werden in eine herkömmliche Fassung geschraubt worüber sie wie normale Leuchtmittel mit Strom versorgt werden. Die Hue LEDs besitzen außerdem einen ZigBee-Chip, mit dem sie Teil eines ZigBee-Netzwerks werden können. In diesem Netzwerk arbeiten sie als *End Device*. Über das ZigBee *Light Link*-Protokoll können die Lampen angesprochen werden und bestimmte Einstellungen wie Helligkeit und Farbe eingestellt werden.

5.2 ZigBee Controller

Der ZigBee Controller ist die eigentliche Funkeinheit. Sie stellt eine rohe Programmierschnittstelle bereit, um auf das ZigBee-Netzwerk zugreifen zu können.

Abbildung 1: RaspBee-Funkmodul

Der Controller besteht aus zwei Komponenten. Zum einen dem RaspBee, eine aufsteckbare Erweiterungsplatine mit Funkmodul für Raspberry Pi, und zum anderen dem Raspberry Pi selber. Der Raspberry Pi, ein Entwicklungsboard, besitzt eine Reihe an GPIO Pins am Rand des Boards.

Abbildung 2: Raspberry 2

Das RaspBee ist an diese GPIO Pins angepasst und wird dadurch mit Strom gespeist. Weiterhin werden die *UART*-Pins zur seriellen Kommunikation mit einem Treiber, der auf dem Raspberry Pi betrieben wird, verwendet.

5.3 Lichtsteuerung

Die Lichtsteuerung dient als hardwarenahes Backend. Diese Software, welche auf dem Raspberry Pi betrieben wird, kommuniziert über die serielle Schnittstelle mit dem ZigBee Controller. Um auf die Nodes des Netzwerks zugreifen zu können bietet das Backend eine Programmierschnittstelle an.

5.4 API

Die API ist eine weitere Software auf dem Raspberry Pi. Sie verwendet die Schnittstelle der Lichtsteuerung und bietet eine REST-basierte Webschnittstelle an. Diese Schnittstelle bietet einen vereinfachten Zugriff auf das Funknetz, mit Fokus auf Steuerung und Verwaltung der Lampen. Durch die Trennung der einzelnen Programme bleiben Treiber, API und GUI austauschbar.

5.5 Webserver

Der Webserver dient primär zum Zugriff auf die Web-GUI, welche die REST-API über den Browser zugänglich macht um bequem die Lichter verwalten und steuern zu können. Weiter wird hier die API etwaigen CLI-Programmen zur Verfügung gestellt.

5.6 GUI

Die GUI, im HTML5 Standard, ist die Schnittstelle zum Benutzer und wird im Browser dargestellt. Über diese kann der Benutzer die Nodes steuern, wie z.B. Helligkeit und Farbe einstellen.

5.7 CLI