▶ A linear classifier is given by:

$$h(X) = 1$$
 if $\sum_{i=1}^{d'} w_i \phi_i(X) + w_0 > 0$
= 0 Otherwise

where ϕ_i are fixed functions.

- ▶ For simplicity of notation, we use augumented feature vector and omit ϕ .
- We take $h(X) = sign(W^T X)$ for simplicity of notation.
- Perceptron is a classical algorithm to learn such a classifier.

▶ For linear regression the objective is to learn a model:

$$\hat{y}(X) = \sum_{i=1}^{d} w_i x_i + w_0 = W^T X$$

We could use $\phi_i(X)$ in place of x_i .

▶ The least squares criterion is to minimize

$$J(W) = \frac{1}{2} \sum_{i=1}^{n} (W^{T} X_{i} - y_{i})^{2}$$

ightharpoonup The minimizer of J is given by

$$W^* = (A^T A)^{-1} A^T Y$$

Where A is a matrix whose rows are X_i^T and Y is a vector whose components are y_i .

▶ This method can be used for learning linear classifiers also

- ▶ We can also minimize *J* by iterative gradient descent.
- ► An incremental version of this gradient descent is the LMS algorithm.
- The LMS algorithm is:

$$W(k+1) = W(k) - \eta (X(k)^{T}W(k) - y(k))X(k)$$

where (X(k), y(k)) is the (random) sample picked and W(k) is the weight vector at iteration k.

▶ This is used in many adaptive signal processing problems.

For any random variables X, y

$$f^*(X) \stackrel{\text{def}}{=} \arg\min_f \ E\left[(y - f(X))^2\right] = E[y|X]$$

- ▶ If X, y are jointly Gaussian then this is a linear function.
- ▶ If $y \in \{0, 1\}$, then

$$E[y|X] = \mathsf{Prob}[y = 1|X] = q_1(X)$$

► In linear least squares method, we are essentially learning a parametric model for the posterior probability (A discriminative model)

- ▶ If we assume the model $y = W^TX + \xi$ where ξ is a zero-mean Gaussian, then the MLE would be same as the linear least squares solution.
- ▶ The residual squared error is the MLE of noise variance.
- ► For linear regression, the Gaussian noise assumption is reasonable.

- ▶ For $y \in \{0, 1\}$, we can model conditional distribution of y given X as Bernoulli with parameter $\sigma(W^TX)$.
- ► The resulting algorithm to maximize log likelihood is logistic regression:

$$W(k+1) = W(k) + \eta \sum_{i=1}^{n} (y_i - \sigma(W^T X_i)) X_i$$

- Logistic regression is a better way to learn posterior probability for classification problems.
- ► Logistic regression is a prototypical example of learning a discriminative model.
- Logistic regression can also be foormulated as an IRLS algorithm.

 In regularized least squares (Ridge regression) we minimize

$$J(W) = \frac{1}{2} \sum_{i=1}^{n} (W^{T} X_{i} - y_{i})^{2} + \frac{\lambda}{2} W^{T} W$$

The solution now is

$$W^* = (A^T A + \lambda I)^{-1} A^T Y$$

- In general, in regularization we take the objective to be sum of data error and model complexity.
- Regularization helps mitigate problems of overfitting.

- ▶ Under the model $y = W^TX + \xi$ where ξ is a zero-mean Gaussian, the MLE is the linear least squares solution.
- ▶ Under the same model, the MAP estimate with a Gaussian prior is the L₂-regularized least squares solution.
- ▶ In general, different regularization terms amount to choosing different priors.

- Least squares soln is sensitive to outliers.
- Minimizing absolute value of error is more robust.
- ▶ We can formulate it as an IRLS algorithm.
- ► Huber loss is combination of squared and absolute value of error and is useful for robust regression.

- Fisher Linear Discriminant is another way to learn a linear classifier.
- ► Seeks to find a direction along which the projected data has best separation between the two classes.
- ▶ It can be obtained by solving a generalized eigen value problem

- ► Generalizing linear regression to handle vector-valued functions is straight-forward.
- ▶ We can formulate a K-class linear classifier by having K functions $g_s(X) = W_s^T X + b_s$ and having

$$h(X) = C_j$$
 if $g_j(X) \ge g_s(X), \forall s$

► Then learning multi-class classifier through least squares method is same as learning vector-valued functions.

Logistic Regression – multi-class case

- We can similarly generalize logistic regression also for multi-class case.
- ▶ Let us recall the main idea in logistic regression in the two class case.
- We approximate posterior probability as

$$q_1(X) = h(W^T X + w_0)$$

where h is the logistic function

$$h(a) = \frac{1}{1 + \exp(-a)}$$

▶ The motivation for using the logistic function is

$$q_1(X) = \frac{f_1(X) p_1}{f_0(X) p_0 + f_1(X) p_1}$$
$$= \frac{1}{1 + \exp(-\xi)} \text{ where}$$

$$\xi = -\ln\left(\frac{f_0(X) p_0}{f_1(X) p_1}\right) = \ln\left(\frac{f_1(X) p_1}{f_0(X) p_0}\right)$$

We now use the same Bayes rule to find a convenient model for posterior probabilities in the multiclass case. ▶ In the multi-class case, Bayes rule gives

$$q_j(X) = \frac{f_j(X)p_j}{\sum_s f_s(X)p_s} = \frac{\exp(a_j)}{\sum_s \exp(a_s)}$$

where $a_s = \ln(f_s(X)p_s)$.

- ▶ The idea is that we approximate $a_s = W_s^T X + w_{s0}$.
- ► The above function is a good candidate for modeling posterior probabilities in the multi-class case.

- ▶ In the two class case we want to know which of $f_1(X)p_1$ and $f_0(X)p_0$ is greater.
- ▶ This can be done by looking at sign of $\ln \left(\frac{f_1(X) p_1}{f_0(X) p_0} \right)$.
- 'sign' is a discontinuous function and the logistic function is a kind of continuous analog for this.
- In the multiclass case, we need to find the maximum of $f_i(X)p_i$, $i=1,\cdots,K$.
- ▶ So, we need a smooth function to approximate the maximum computation.

▶ Define a function $g: \Re^K \to \Re^K$, with $g(a) = [g_1(a) \cdots g_K(a)]^T$ and for $j = 1, \cdots, K$,

$$g_j(a) = \frac{\exp(a_j)}{\sum_s \exp(a_s)}, \ a = (a_1, \dots, a_K)^T \in \Re^K.$$

- This is known as the softmax function.
- ▶ Essentially if a_j is the maximum of the components of a then $g_j(a)$ would be closer to one and all other components of g would be closer to zero.
- ▶ We note, for later use, that

$$\frac{\partial g_k}{\partial a_j} = g_k(a)(\delta_{kj} - g_j(a))$$

where $\delta_{kj} = 0$ if $k \neq j$ and $\delta_{kj} = 1$ if k = j.

- We now take, for each s, $a_s = W_s^T X + w_{s0}$ and learn all W_s and w_{s0} .
- ▶ Using augumented feature vector, we can write $a_s = W_s^T X$. Let W be a matrix with columns W_s .
- ▶ After learning, W, given a new X, we calculate $g(W^TX)$ and then put X in class C_j if the j^{th} component of $q(W^TX)$ is the highest.

- ▶ In the 2-class logistic regression, we used the logistic function to model posterior probability.
- ▶ In the multi-class case we want to use the softmax function for modeling the conditional distribution of *y* given *X*.
- Let us now write

$$g_j(W, X) = \frac{\exp(W_j^T X)}{\sum_s \exp(W_s^T X)}$$

Let us represent the class label as a one-hot vector:

$$y = (y^1, \dots, y^K)^T; \ y^j \in \{0, 1\}; \ \sum_i y^j = 1$$

- ▶ y takes only K different values and let us represent them as e_1, \dots, e_K .
- We take (as our probability model) $P[y = e_i \mid X] = q_i(W, X).$

► The probability model for the conditional distribution now is

$$f(y \mid X, W) = \prod_{i=1}^{K} (g_i(W, X))^{y^i}$$

- ▶ Let the data be $\mathcal{D} = \{(X_1, y_1), \cdots, (X_n, y_n)\}.$
- The likelihood now is

$$L(W_1, \dots, W_K | \mathcal{D}) = \prod_{i=1}^n f(y_i | X_i, W) = \prod_{i=1}^n \prod_{j=1}^K (g_j(W, X_i))^{y_i^j}$$

 $i = 1 \quad j = 1$

► The log likelihood is

$$l(W_1, \dots, W_K \mid \mathcal{D}) = \sum_{i=1}^{n} \sum_{j=1}^{K} y_i^j \ln (g_j(W, X_i))$$

We need to maximize this to learn the W.

▶ The log likelihood is

$$l(W_1, \dots, W_K \mid \mathcal{D}) = \sum_{i=1}^n \sum_{j=1}^K y_i^j \ln(g_j(W, X_i))$$

▶ By differentiating this and using earlier formula for derivative of g_i , we can show that

$$\nabla_{W_j} l(W_1, \dots, W_K \mid \mathcal{D}) = \sum_{i=1}^n (y_i^j - g_j(W, X_i)) X_i$$

▶ Hence an iterative algorithm for ML estimate of W_j , $j = 1, \dots, K$, is

$$W_j(k+1) = W_j(k) + \eta \sum_{i=1}^{n} (y_i^j - g_j(W, X_i)) X_i$$

▶ This is the multi-class logistic regression.

- ▶ We can generalize Fisher linear discriminant also to multi-class case.
- ▶ In the 2-class case we are interested in finding a direction or a one-dimensional subspace onto which we project the data.
- In the K-class case, we want to find a (K-1)-dimensional subspace onto which we project the data.
- ► The idea is to find a subspace where in the projected data, the means of the two classes have maximum separation relative to the variances.

Learning and generalization

- ► The problem of designing a classifier is essentially one of learning from examples.
- Given training data, we want to find an appropriate classifier.
- ▶ It amounts to searching over a family of classifiers to find one that minimizes 'error' over training set.
- For example, in least squares approach we are searching over the family of linear classifiers for minimizing square of error.

- ► As we discussed earlier, performance on training set is not the ultimate objective.
- We would like the learnt classifier to perform well on new data.
- ► This is the issue of generalization. Does the learnt classifier generalize well?

- ▶ In practice one assesses the generalization of the learnt classifier by looking at the error on a separate set of labelled data called test set.
- Since the test set would not be used in training, error on that data could be a good measure of the performance of the learnt classifier.
- ▶ But here we are more interested in formalizing the notion of generalization error.
- We look at the specific issues of practice later on. Currently our focus would be on theoretical analysis of how to say whether a learning algorithm would generalize well.

- ► Any learning algorithm takes training data as the input and outputs a specific classifier/function.
- ► For this, it searches over some chosen family of functions to find one that optimizes a chosen criterion function.

$$\{(X_i,y_i)\} o egin{pmatrix} {\sf Learning Algorithm} \\ {\sf (searching over } \mathcal{F}) \end{pmatrix} o f \in \mathcal{F}$$

- ► The question is: how can we formalize correctness of learning?
- ► There are many ways of addressing this issue (MDL, VC-theory etc).

- We discuss (at an elementary level) a specific statistical approach to address the issue of correctness of learning.
- ► We begin with a simple formalism where there is no 'noise' and the goal of learning is well-defined.

A Learning problem is defined by giving:

- (i) \mathcal{X} input space; often \Re^d (feature space)
- (ii) $\mathcal{Y} = \{0, 1\}$ output space (set of class labels)
- (iii) $\mathcal{C} \subset 2^{\mathcal{X}}$ concept space (family of classifiers) Each $C \in \mathcal{C}$ is a subset of \mathcal{X} . It can also be viewed as a function $C: \mathcal{X} \to \{0, \ 1\}$, with C(X) = 1 iff $X \in C$.
- (iv) $S = \{(X_i, y_i), i = 1, \cdots, n\}$ the set of examples, X_i are drawn iid according to some distribution P_x on \mathcal{X} $y_i = C^*(X_i)$ for some $C^* \in \mathcal{C}$. C^* is called target concept.

- ▶ We are considering a 2-class case.
- ▶ Hence any classifier is a function $C: \mathcal{X} \to \{0, 1\}$.
- ightharpoonup Thus, $\mathcal C$ is a family of classifiers.
- ▶ We call this concept space because we can say the system is learning a 'concept' from examples.
- ▶ The learning algorithm knows \mathcal{X} , \mathcal{Y} , \mathcal{C} ; but does not know C^* .
- ▶ It needs to learn the target concept from examples.

Some Comments

- We do not know the distribution P_x .
- ▶ We are trying to teach a concept through examples that come from an arbitrary distribution.
- ► However, taking that the examples are *iid* ensures we get 'representative' examples.
- ▶ Since we have taken $y_i = C^*(X_i)$, $\forall i$, there is no 'noise'.
- Also assuming that $C^* \in \mathcal{C}$ means that ideally we can learn the target concept. (Realizability assumption)

- We could take $\mathcal{C}=2^{\mathcal{X}}$.
- ► This means we are searching over the family of all possible (2-class) classifiers.
- This may not be viable.
- We can choose a particular C based on either some knowledge we have about the problem or because of the kind of learning algorithm we have.
- For example we can take C to be all half-spaces the family of all linear classifiers.

Probably Approximately Correct Learning

- Let us now try to define the goal of learning.
- Note that each $C \in \mathcal{C}$ can be viewed either as a subset of \mathcal{X} or a binary valued function on \mathcal{X} .
- Let C_n denote the concept or classifier output by the learning algorithm after it processes n *iid* examples.
- ▶ For correctness of the learning algorithm we want C_n to be 'close' to C^* as n becomes large.
- ▶ The closeness of C_n to C^* is in terms of classifying samples drawn from \mathcal{X} according to P_x .

 \blacktriangleright We define **error** of C_n by

$$\operatorname{err}(C_n) = P_x(C_n \Delta C^*) = P_x\left((\bar{C}_n \cap C^*) \cap (C_n \cap \bar{C}^*)\right)$$
$$= \operatorname{Prob}[\{X \in \mathcal{X} : C_n(X) \neq C^*(X)\}]$$

▶ The $\operatorname{err}(C_n)$ is the probability that on a random sample, drawn according to P_x , the classification of C_n and C^* differ.

- ightharpoonup Essentially, we want $\operatorname{err}(C_n)$ to become zero as $n \to \infty$.
- ▶ However, $\operatorname{err}(C_n)$ is a random variable because C_n is a function of the random samples X_1, \dots, X_n .
- ▶ We take the above convergence to be in probability.

PAC learning

• We say a learning algorithm **Probably Approximately** Correctly (PAC) learns a concept class $\mathcal C$ if given any $\epsilon, \delta > 0$, $\exists N < \infty$ such that

$$\mathsf{Prob}[\mathsf{err}(C_n) > \epsilon] < \delta$$

for all n > N and for any distribution P_x and any C^* .

- ▶ The probability above is with respect to the distribution of n-tuples of iid samples drawn according to P_x on \mathcal{X} .
- ▶ The P_x is arbitrary. But, for testing and training the distribution is same 'fair' to the algorithm.

lacktriangle An algorithm PAC learns ${\cal C}$ if

$$\mathsf{Prob}[\mathsf{err}(C_n) > \epsilon] < \delta$$

for sufficiently large n and any P_x .

- ▶ If $\operatorname{err}(C_n) \leq \epsilon$, then C_n is 'approximately correct'.
- ▶ So, what the above says is that the classifier output by the algorithm after seeing n random examples, C_n , is approximately correct with a high probability.
- ▶ The ϵ and δ are called the accuracy and confidence parameters respectively.

A Simple Example

- ▶ Suppose we want to learn the concept of medium-build persons based on features of height and weight.
- Here $\mathcal{X} = \Re^2$.
- ▶ We would be given examples (with no errors!) drawn from some arbitrary distribution.

► The examples for learning our concept could be the following.

- ▶ What could be C in this example?
- We can take C to be all subsets of \Re^2 .
- Or we can use some problem-based intuition and choose C to be all axis-parallel rectangles.
- ▶ In this case, assuming $C^* \in \mathcal{C}$ means that the 'god-given' classifier is also an axis-parallel rectangle.

lacktriangleright The examples along with C^* now could be

- ▶ Now consider a very general class of algorithms.
- ▶ The strategy of the learning algorithm is as follows.
- ► The algorithm outputs a classifier which correctly classifies all examples.
- ▶ This is called a consistent classifier. Since $C^* \in \mathcal{C}$, we know there is always at least one consistent classifier.
- ▶ If there is more than one $C \in \mathcal{C}$ that is **consistent** with all examples, we output the 'smallest' such C.

- ► For finite sets, smallest is in terms of number of poins; for other sets it is in terms of the 'areas' of the sets.
- ightharpoonup We take \mathcal{C}_1 to be the set of all axis-parallel rectangles.
- We take C_2 to be $2^{\mathcal{X}}$; that is, set of all possible classifiers.
- ► We will look at what we can say about the output of the algorithm in the two cases.

- \blacktriangleright We assume that C^* is an axis-parallel rectangle.
- ▶ Then C^* belongs to both \mathcal{C}_1 and \mathcal{C}_2 .
- \blacktriangleright All our examples are classified according to C^* .
- We assume that the boundary of the rectangle is part of C^* .

- ▶ First consider C_1 .
- ▶ The smallest $C \in \mathcal{C}$ consistent with all examples would be the smallest axis-parallel rectangle enclosing all the positive examples seen so far.

▶ The concept output by the algorithm (when using C_1) would be the following.

- ▶ Thus, under the strategy of our learning algorithm, for all n, the C_n would always be inside the C^* .
- ▶ Now let us show that this is a PAC learning algorithm.

- ▶ Whenever any example is classified as positive by C_n it would also be classified positive by C^* .
- ▶ Hence the points of \mathcal{X} where C_n makes errors is the annular region.

▶ Since C_n is also an axis-parallel rectangle which is inside C^* , the $C_n\Delta C^*$ would be the annular region between the two rectangles.

- ▶ Hence, $err(C_n)$ is the P_x -probability of this annular region.
- ▶ Note that we are not really bothered about the area of this annular region; we are only interested in the probability mass of this region under P_x .

- Now, given an $\epsilon > 0$, we have to bound the probability that $\operatorname{err}(C_n) > \epsilon$.
- ▶ The error is greater than ϵ only if the probability mass (under P_x) of the annular region is greater than ϵ .
- ▶ When does this event $[\operatorname{err}(C_n) > \epsilon]$ occur?
- ► Only when none of the examples seen happen to be in the annular region.
- ▶ Why? Otherwise, the rectangle learnt by our algorithm would have been closer to C^* .

- ▶ Hence the probability of the event $[\operatorname{err}(C_n) > \epsilon]$ is same as the probability that when n iid examples are drawn according to P_x none of them came from a subset of $\mathcal X$ that has P_x -probability at least ϵ .
- ▶ That is, all examples came from a subset of probability at most (1ϵ) .
- ▶ The probability of this happenning is at most $(1 \epsilon)^n$.

Hence we have

$$\mathsf{Prob}[\mathsf{err}(C_n) > \epsilon] \le (1 - \epsilon)^n$$

- ▶ Let N be such that $(1 \epsilon)^n < \delta$, for all n > N.
- ► The required N is $N \ge \frac{\ln(\delta)}{\ln(1-\epsilon)}$ (bound on number of examples).
- ► For this N, we have

$$\mathsf{Prob}[\mathsf{err}(C_n) > \epsilon] \leq \delta, \ \forall n \geq N$$

showing the algorithm PAC learns the concept class.

- Now let us consider the same algorithm with concept class $C_2 = 2^{\mathcal{X}}$.
- ▶ Here we are searching over all possible 2-class classifiers.
- So, intuitively, we do not expect the algorithm to be able to learn anything.
- There is too much 'flexibility' in the bag of classifiers over which we are searching.
- Let us show this formally.

- ▶ What would be C_n now?
- After seeing n examples, the smallest set in C_2 that is consistent with all examples is the set consisting of all the positive examples seen so far!!
- Now the algorithm simply remembers all the positive examples seen.
- ► This happened because every possible finite subset of X is in our concept class.

- So, now, $C_n \Delta C^*$ would be the axis parallel rectangle C^* minus some finite number of points from it.
- So, under any continuous P_x , $err(C_n) = P_x(C_n\Delta C^*) = P_x(C^*)$.
- ▶ Hence, for $\epsilon < P_x(C^*)$, $\mathsf{Prob}[\mathsf{err}(C_n) > \epsilon] = 1$ for all n.
- ▶ Thus, the algorithm can not PAC learn with C_2 .

- ► This example clearly illustrates the difficulty of learning from examples if the bag of classifiers being considered is too 'large'.
- ► The largeness is not interms of number of elements in our concept class.
- Both C₁ and C₂ contain uncountably infinite number of classifiers.
- We would later define an appropriate quantity to quantify the sense in which one concept class can be said to be bigger than (or more complex than) another.

- ▶ At this point we can still see how C_1 is smaller than C_2 .
- Since every axis parallel rectangle can be specified by four quantities, this class can be parameterized by four parameters.
- ▶ However, there is no such finite parameterization for $C_2 = 2^{\Re^2}$.
- ▶ Also, the strategy of our algorithm can be coded efficiently in case of C_1 .

- The concept of PAC learnability is interesting.
- ▶ It allows one to properly define what is correctness of learning and allows us to ask questions like whether a given algorithm learns correctly.
- As we have seen in our example, we can also bound the number of examples needed to learn to a given level of accuracy and confidence.
- ► Thus we can appreciate relative complexities of different learning problems.

- ► However, PAC learnability deals with ideal learning situations.
- We assume there is a ('god-given') C^* and that it is in our \mathcal{C} .
- ▶ Also, we assume that examples are noise free and are perfectly classified.
- ▶ Next we consider an extension of this framework that is relevant for realistic learning scenarios.

In our new framework we are given

- ▶ X input space; (as earlier, Feature space)
- ▶ *y* Output space (as earlier, *Set of class labels*)
- ► H hypothesis space (family of classifiers)

Each $h \in \mathcal{H}$ is a function: $h : \mathcal{X} \to \mathcal{A}$ where \mathcal{A} is called *action space*.

▶ Training data: $\{(X_i, y_i), i = 1, \dots, n\}$ drawn *iid* according to some distribution P_{xy} on $\mathcal{X} \times \mathcal{Y}$.

Some Comments

- ▶ We have replaced C with H.
- If we take A = Y then it is same as earlier.
- But the freedom in choosing A allows for taking care of many situations.
- ▶ For example, when $\mathcal{Y} = \{0, 1\}$, we can take $\mathcal{A} = [0, 1]$ (e.g., logistic regression).

- Now we draw examples from $\mathcal{X} \times \mathcal{Y}$ according to P_{xy} . This allows for 'noise' in the training data.
- ► For example, when class conditional densities overlap, same X can come from different classses with different probabilities.
- We can always factorize $P_{xy} = P_x P_{y|x}$. If $P_{y|x}$ is a degenerate distribution then it will be same as earlier we draw iid samples from \mathcal{X} and each point is essentially classified by the target classifier.
- ▶ However, having examples drawn from $\mathcal{X} \times \mathcal{Y}$ using a distribution, allows for many more scenarios.

- As before, the learning machine outputs a hypothesis, $h_n \in \mathcal{H}$, given the training data consisting of n examples.
- ► However, now there is no notion of a target concept/hypothesis.
- ▶ There may be no $h \in \mathcal{H}$ which is consistent with all examples.
- ► Hence we use the idea of loss functions to define the goal of learning.

Loss function

- ▶ Loss function: $L: \mathcal{Y} \times \mathcal{A} \to \Re^+$.
- ▶ The idea is that L(y, h(X)) is the 'loss' suffered by $h \in \mathcal{H}$ on a (random) sample $(X, y) \in \mathcal{X} \times \mathcal{Y}$.
- More generally we can let loss depend on X also explicitly and can write L(X, y, h(X)) for loss function.
- By convention we assume that the loss function is non-negative.
- Now we can look for hypotheses that have low average loss over samples drawn accordding to P_{xy} .

Risk Function

▶ Define the **risk** function, $R: \mathcal{H} \to \Re^+$, by

$$R(h) = E[L(y, h(X))] = \int L(y, h(X)) dP_{xy}$$

- Risk is expectation of loss where expectation is with respect to P_{xy}.
- ▶ We want to find h with low risk.

Risk Minimization

Let

$$h^* = \arg \min_{h \in \mathcal{H}} R(h)$$

- We define the goal of learning as finding h^* , the global minimizer of risk.
- ▶ Risk minimization is a very general strategy adopted by most machine learning algorithms.
- Sometimes called 'Agnostic Learning'
- ▶ Note that we may not have any knowledge of P_{xy} .
- ▶ Minimization of $R(\cdot)$ directly is not feasible.

Empirical Risk function

▶ Define the **empirical risk function**, $\hat{R}_n: \mathcal{H} \to \Re^+$, by

$$\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n L(y_i, h(X_i))$$

This is the sample mean estimator of risk obtained from n iid samples.

Let \hat{h}_n^* be the global minimizer of empirical risk, \hat{R}_n .

$$\hat{h}_n^* = \arg\min_{h \in \mathcal{H}} \hat{R}_n(h)$$

Empirical Risk Minimization

- Given any h we can calculate $\hat{R}_n(h)$.
- ▶ Hence, we can (in principle) find \hat{h}_n^* by optimization methods.
- Approximating h^* by \hat{h}_n^* is the basic idea of empirical risk minimization strategy.
- Used in most ML algorithms.

- ▶ Is \hat{h}_n^* a good approximator of h^* , the minimizer of true risk (for large n)?
- ► This is the question of **consistency of empirical risk minimization**.
- ▶ Thus, we can say a learning problem has two parts.
 - ▶ The optimization part: find \hat{h}_n^* , the minimizer of \hat{R}_n .
 - ▶ The statistical part: Is \hat{h}_n^* a good approximator of h^* .

- ▶ The optimization part depends on the loss function.
- ▶ Note that the loss function is chosen by us; it is part of the specification of the learning problem.
- ► The loss function is intended to capture how we would like to evaluate performance of the classifier.
- ▶ We look at a few loss functions in the 2-class case.

The 0–1 loss function

- ▶ Let $\mathcal{Y} = \{0, 1\}$ and $\mathcal{A} = \mathcal{Y}$.
- ▶ Now, the 0–1 loss function is defined by

$$L(y, h(X)) = I_{[y \neq h(X)]}$$

where $I_{[A]}$ denotes indicator of event A.

▶ The 0-1 loss function is

$$L(y, h(X)) = I_{[y \neq h(X)]}$$

- Risk is expectation of loss.
- ► Hence, $R(h) = \text{Prob}[y \neq h(X)]$; the risk is probability of misclassification.
- So, h* minimizes probability of misclassification.
 (Bayes classifier)

- ▶ Here we assumed that the learning algorithm searches over a class of binary-valued functions on \mathcal{X} .
- ► We can extend this to, e.g., discriminant function learning.
- We take $\mathcal{A} = \Re$ (now h(X) is a discriminant function).
- ▶ We can define the 0-1 loss now as

$$L(y, h(X)) = I_{[y \neq sgn(h(X))]}$$

- ► Having any fixed misclassification costs is essentially same as 0–1 loss.
- ▶ Even if we take $\mathcal{A} = \Re$, the 0–1 loss compares only sign of h(x) with y. The magnitude of h(x) has no effect on the loss.
- ► Here, we can not trade 'good' performance on some data with 'bad' performance on others.
- ► This makes 0–1 loss function more robust to noise in classification labels.

- ▶ While 0–1 loss is an intuitively appealing performance measure, minimizing empirical risk here is hard.
- ► The 0–1 loss function is non-differentiable which makes the empirical risk function also non-differentiable.
- Hence many other loss functions are often used in Machine Learning.

Squared error loss

The squared error loss function is defined by

$$L(y, h(X)) = (y - h(X))^2$$

- As is easy to see, the linear least squares method is empirical risk minimization with squared error loss function.
- ▶ Here we can take \mathcal{Y} as $\{0, 1\}$ or $\{+1, -1\}$. We take $\mathcal{A} = \Re$ so that each h is a discriminant function.
- As we know, we can use this for regression problems also and then we take $\mathcal{Y}=\Re$.

- ▶ Another interesting scenario here is to take $\mathcal{Y} = \{0, 1\}$ and $\mathcal{A} = [0, 1]$.
- ► Then each *h* can be interpreted as a posterior probability (of class-1) function.
- ► As we know, the minimizer of expectation of squared error loss (the risk here) is the posterior probability function.
- ▶ So, risk minimization would now look for a function in \mathcal{H} that is a good approximation for the posterior probability function.

- ► The empirical risk minimization under squared error loss is a convex optimization problem for linear models (when h is linear in its parameters).
- ► The squared error loss is extensively used in many learning algorithms.

soft margin loss or hinge loss

▶ Take $\mathcal{Y} = \{+1, -1\}$ and $\mathcal{A} = \Re$. The loss function is given by

$$L(y, h(X)) = \max(0, 1 - yh(X))$$

- ▶ Here, if yh(X) > 0 then classification is correct and if $yh(X) \ge 1$, loss is zero.
- ► This also results in convex optimization for empirical risk minimization.

Margin Losses

- ▶ All three losses we mentioned can be written as function of yh(X) by taking $\mathcal{Y} = \{-1, +1\}$.
- ► The 0–1 loss :

$$L(y, h(X)) = \mathsf{sign}(-yh(X))$$

The squared error loss:

$$L(y, h(X)) = (y - h(X))^2 = (1 - yh(X))^2$$

The hinge loss (used in SVM):

$$L(y, h(X)) = \max(0, 1 - yh(X))$$

Plot of 2-class loss functions

▶ We can think of the other losses as convex approximations of 0–1 loss.

- ► As we saw, there are many different loss functions one can think of.
- Many of them also make the empirical risk minimization problem efficiently solvable.
- ▶ We consider many such algorithms in this course.
- Now, let us get back to the statistical question that we started with.

Consistency of Empirical Risk Minimization

- ▶ Our objective is to find h^* , minimizer of risk $R(\cdot)$.
- We minimize the empirical risk, \hat{R}_n , and thus find \hat{h}_n^* .
- We want h^* and \hat{h}_n^* to be 'close'.
- More precisely we are interested in the question: Does

$$\forall \delta > 0, \ \mathsf{Prob}[|R(\hat{h}_n^*) - R(h^*)| > \delta] \to 0, \ \text{as} \ n \to \infty?$$

- \blacktriangleright Same as asking whether $R(\hat{h}_n^*)$ converges in probability to $R(h^*)$
- This is the question we will address in the next class.