

Ministerul Educației, Cercetării și Tineretului Olimpiada Națională de Fizică, 2008 Problema 5 OPTICĂ

REZOLVARE ŞI BAREM DE EVALUARE

I. A. Fronturile AB și ED din figura 1R sunt suprafețe echifazice astfel că $\Phi_{AE} = \Phi_{BC} + \Phi_{CD}$.

FIGURA 1R

C. Privim figura 2R și raționăm ca la punctul A. Avem $\Phi_{AE} = \Phi_{BC} + \Phi_{CD}$, din care rezultă $-\sqrt{\varepsilon_r \mu_r} k d_{BC} + k d_{CD} = k d_{AE}$, adică

$$d_{\scriptscriptstyle AE} - d_{\scriptscriptstyle CD} = - \sqrt{\varepsilon_r \mu_r} d_{\scriptscriptstyle BC} < 0 \, . \label{eq:condition}$$

Această relație poate fi satisfăcută când $d_{CD}>d_{AE}$, ca în figura 2 (enunț) . Așadar, desenul lce arată cum se produce refracția este plauzibil (1p). Cu relațiile evidente $d_{CD}-d_{AE}=d_{AC}\sin\theta_r$ și

FIGURA 2R

II. Lumina se va refracta "negativ" la nivelul ambelor interfețe cu $\theta_i = \theta_r$ și traseul simetric al razelor este cel din figura 3R.

1.00 puncte

FIGURA 3R

III. Diferența de fază între două raze succesiv transmise în exterior (1 și 2 sau 2 și 3, etc) este $\Delta\Phi = 2k(d-0.4d)-2.0.5k.0.4d+2\pi=1.2kd-0.4kd+2\pi=0.8(2\pi/\lambda)d+2\pi$ (primul termen se referă la propagarea prin aer, al doilea-la propagarea prin mediul neuzual iar ultimul corespunde celor două reflexii). Condiția interferenței multiple constructive este $\Delta\Phi=2m\pi$ și obținem $\lambda=(0.8d)/(m-1)$ cu m=2,3,4,... **2,00 puncte**

IV.Mersul unei raze de lumină este arătat în figura 4R. Toate unghiurile (de incidență, interne și de emergență) sunt egale. Unghiul total de deviație este $4\theta_i$.

Planul receptor nu este atins dacă $\pi/2 \le 4\theta_i \le 3\pi/2$, adică atunci când $\pi/8 \le \theta_i \le 3\pi/8$. Observăm că $\sin \theta_i = x/R$ și rezultă imediat că $R\sin(\pi/8) \le |x| \le R\sin(3\pi/8)$2,00 puncte

FIGURA 4R