Announcements

- Homework 2 online due today
- No Homework next week
- Exam 1 Next Friday!

Exam Details

- In class
- Randomized assigned seats
- You may use 6 one-sided pages of notes
- No textbook or electronic aids
- 3 Questions in 45 minutes
 - 1st straightforward implementation of algorithm
 - 2nd requires some thought
 - 3rd can be quite tricky

Exam Topics

- Chapter 3
 - Graph basics
 - Explore/DFS
 - Connected components
 - Pre/Post orderings
 - DAGs
 - Topological sort
 - Strongly connected components

- Chapter 4
 - Shortest path definitions
 - BFS
 - Dijkstra
 - Priority queues
 - Bellman-Ford
 - Negative weight cycles
 - Shortest paths in DAGs

Review Options

- I will produce a brief review video
- Lecture podcasts / slides
- Textbook
- OH questions
- Old exams from problem archive

Last Time

- Shortest paths with negative edge weights
- Negative weight cycles
- Computing paths with bounded numbers of edges

Negative Edge Weights

- So far we have talked about the case of nonnegative edge weights.
 - The usual case (distance & time usually cannot be negative).
 - However, if "lengths" represent other kinds of costs, sometimes they can be negative.
- Problem statement same. Find path with smallest sum of edge weights.

Negative Weight Cycles

Definition: A <u>negative weight cycle</u> is a cycle where the total weight of edges is negative.

- If G has a negative weight cycle, then there are probably no shortest paths.
 - Go around the cycle over and over.
- Note: For undirected G, a single negative weight edge gives a negative weight cycle by going back and forth on it.

Algorithm Idea

Instead of finding shortest paths (which may not exist), find shortest paths of length at most k.

For
$$w \neq s$$
,

$$\operatorname{dist}_k(w) = \min_{(v,w) \in E} \operatorname{dist}_{k-1}(v) + \ell(v,w).$$


```
Bellman-Ford(G, s, \ell)
   dist_{0}(v) \leftarrow \infty \text{ for all } v
      //cant reach
   dist_0(s) \leftarrow 0
   For k = 1 to n
      For w E V
         dist_k(w) \leftarrow min(dist_{k-1}(v) + \ell(v, w))
      dist_k(s) \leftarrow min(dist_k(s), 0)
         // s has the trivial path
```

Today

- Bellman-Ford
 - Computing shortest paths
 - Detecting negative weight cycles
- Shortest paths in DAGs
- Introduction to divide & conquer

```
Bellman-Ford(G, s, \ell)
   dist_{0}(v) \leftarrow \infty \text{ for all } v
      //cant reach
   dist_0(s) \leftarrow 0
   For k = 1 to n
      For w E V
         dist_k(w) \leftarrow min(dist_{k-1}(v) + \ell(v, w))
      dist_k(s) \leftarrow min(dist_k(s), 0)
         // s has the trivial path
```

```
Bellman-Ford(G, s, \ell)
   dist_0(v) \leftarrow \infty \text{ for all } v
      //cant reach
   dist_0(s) \leftarrow 0
   For k = 1 to n
     For w E V
         dist_k(w) \leftarrow min(dist_{k-1}(v) + \ell(v, w))
      dist_k(s) \leftarrow min(dist_k(s), 0)
         // s has the trivial path
```

```
Bellman-Ford(G, s, \ell)
   dist_0(v) \leftarrow \infty \text{ for all } v
      //cant reach
                                 What value of k
   dist_{0}(s) \leftarrow 0
                                 do we use?
   For k = 1 to n
     For w \in V
         dist_k(w) \leftarrow min(dist_{k-1}(v) + \ell(v, w))
      dist_k(s) \leftarrow min(dist_k(s), 0)
         // s has the trivial path
```

O(|E|)

Stabalizes

Analysis

<u>Proposition:</u> If $n \ge |V|-1$ and if G has no negative weight cycles, then for all v, $dist(v) = dist_n(v)$.

Analysis

<u>Proposition:</u> If $n \ge |V|-1$ and if G has no negative weight cycles, then for all v, dist(v) = dist_n(v).

• If there is a negative weight cycle, there probably is no shortest path.

Analysis

<u>Proposition:</u> If $n \ge |V|-1$ and if G has no negative weight cycles, then for all v, dist(v) = dist $_n(v)$.

- If there is a negative weight cycle, there probably is no shortest path.
- If not, we only need to run our algorithm for |V| rounds, for a final runtime O(|V||E|).

 We need to show that the shortest path has fewer than |V| edges.

- We need to show that the shortest path has fewer than |V| edges.
- If a path has at least |V| edges, it must contain the same vertex twice (by the pigeonhole principle).

- We need to show that the shortest path has fewer than |V| edges.
- If a path has at least |V| edges, it must contain the same vertex twice (by the pigeonhole principle).
- This means it has a loop.

- We need to show that the shortest path has fewer than |V| edges.
- If a path has at least |V| edges, it must contain the same vertex twice (by the pigeonhole principle).
- This means it has a loop.
- Removing the loop gives a shorter path.

Non-negative total weight (no negative weight cycles)

Non-negative total weight (no negative weight cycles)

Remove Non-negative total weight other cycles (no negative weight cycles) until none left

Remove Non-negative total weight other cycles (no negative weight cycles) until none left

Remove other cycles until none left

Non-negative total weight (no negative weight cycles)

At most |V|-1 edges

New Algorithm

While Bellman-Ford computes shortest paths in time O(|V||E|), it is possible to do better. A recent breakthrough gave an algorithm that runs in time

 $O(log^8|V|log(W)(|V|+|E|))$

where W is the most negative edge weight.

Detecting Negative Cycles

If there are no negative weight cycles, Bellman-Ford computes shortest paths (and they might not exist otherwise).

Detecting Negative Cycles

If there are no negative weight cycles, Bellman-Ford computes shortest paths (and they might not exist otherwise).

How do we know whether or not there are any?

Cycle Detection

Proposition: For any $n \ge |V| - 1$, there are no negative weight cycles reachable from s if and only if for every $v \in V$

 $dist_n(v) = dist_{n+1}(v)$

Cycle Detection

<u>Proposition:</u> For any $n \ge |V| - 1$, there are no negative weight cycles reachable from s if and only if for every $v \in V$

$$dist_n(v) = dist_{n+1}(v)$$

- Detect by running one more round of Bellman-Ford.
- Need to see if any v's distance changes.

Proof of "Only If"

Suppose no negative weight cycles.

Proof of "Only If"

- Suppose no negative weight cycles.
- For any n ≥ |V| 1, dist_n(v) = dist(v).

Proof of "Only If"

- Suppose no negative weight cycles.
- For any $n \ge |V| 1$, $dist_n(v) = dist(v)$.
- So

$$dist_n(v) = dist(v) = dist_{n+1}(v)$$

Suppose $dist_n(v) = dist_{n+1}(v)$ for all v.

Suppose $dist_n(v) = dist_{n+1}(v)$ for all v.

$$\operatorname{dist}_{n+2}(w) = \min_{(v,w)\in E} (\operatorname{dist}_{n+1}(v) + \ell(v,w))$$
$$= \min_{(v,w)\in E} (\operatorname{dist}_{n}(v) + \ell(v,w))$$
$$= \operatorname{dist}_{n+1}(w).$$

Suppose $dist_n(v) = dist_{n+1}(v)$ for all v.

$$\operatorname{dist}_{n+2}(w) = \min_{(v,w)\in E} (\operatorname{dist}_{n+1}(v) + \ell(v,w))$$
$$= \min_{(v,w)\in E} (\operatorname{dist}_{n}(v) + \ell(v,w))$$
$$= \operatorname{dist}_{n+1}(w).$$

So

$$dist_n(v) = dist_{n+1}(v) = dist_{n+2}(v) = dist_{n+3}(v) = \dots$$

Suppose $dist_n(v) = dist_{n+1}(v)$ for all v.

$$\operatorname{dist}_{n+2}(w) = \min_{(v,w)\in E} (\operatorname{dist}_{n+1}(v) + \ell(v,w))$$
$$= \min_{(v,w)\in E} (\operatorname{dist}_{n}(v) + \ell(v,w))$$
$$= \operatorname{dist}_{n+1}(w).$$

So

$$dist_n(v) = dist_{n+1}(v) = dist_{n+2}(v) = dist_{n+3}(v) = \dots$$

But if there were a negative weight cycle, distances would decrease eventually.

Alternative Proof

• Assume $dist_n(v) = dist_{n+1}(v) = d(v)$ for all v.

Alternative Proof

- Assume $dist_n(v) = dist_{n+1}(v) = d(v)$ for all v.
- $d(w) = min(d(v) + \ell(v, w))$.
 - $-d(w) \le d(v)+\ell(v,w)$ for all $(v,w) \in E$
 - $-\ell(v,w) \ge d(w) d(v)$

Alternative Proof

- Assume $dist_n(v) = dist_{n+1}(v) = d(v)$ for all v.
- $d(w) = min(d(v) + \ell(v, w)).$
 - $-d(w) \le d(v)+\ell(v,w)$ for all $(v,w) \in E$
 - $-\ell(v,w) \ge d(w) d(v)$
- Given cycle $v_1, v_2, v_3, ..., v_m$ total length of cycle is $\ell(v_1, v_2) + \ell(v_2, v_3) + \ldots + \ell(v_m, v_1)$

$$\geq -d(v_1) + d(v_2) - d(v_2) + d(v_3) - \dots - d(v_m) + d(v_1) = 0.$$

• Let $\ell'(v,w) = \ell(v,w) - d(v) + d(w) \ge 0$

- Let $\ell'(v,w) = \ell(v,w) d(v) + d(w) \ge 0$
 - Imagine somebody lending you d(w) when you arrive at w, but having to pay it back when you leave.

- Let $\ell'(v,w) = \ell(v,w) d(v) + d(w) \ge 0$
 - Imagine somebody lending you d(w) when you arrive at w, but having to pay it back when you leave.
- For any s-t path P, $s_1, v_2, ..., t$

$$\ell'(P) = \ell'(s, v_1) + \ell'(v_1, v_2) + \dots + \ell'(v_m, t)$$

$$= \ell(s, v_1) + \ell(v_1, v_2) + \dots + \ell(v_m, t)$$

$$- d(s) + d(v_1) - d(v_1) + d(v_2) + \dots - d(v_m) + d(t)$$

$$= \ell(P) - d(s) + d(t).$$

- Let $\ell'(v,w) = \ell(v,w) d(v) + d(w) \ge 0$
 - Imagine somebody lending you d(w) when you arrive at w, but having to pay it back when you leave.
- For any s-t path P, $s_1v_1, v_2, ..., t$

$$\ell'(P) = \ell'(s, v_1) + \ell'(v_1, v_2) + \dots + \ell'(v_m, t)$$

$$= \ell(s, v_1) + \ell(v_1, v_2) + \dots + \ell(v_m, t)$$

$$- d(s) + d(v_1) - d(v_1) + d(v_2) + \dots - d(v_m) + d(t)$$

$$= \ell(P) - d(s) + d(t).$$

Shortest paths same. Non-negative edges.

Shortest Paths in DAGs

We saw that shortest paths is harder when we needed to deal with negative weight cycles. For general graphs, we needed to use Bellman-Ford, which is much slower than our other algorithms.

Shortest Paths in DAGs

We saw that shortest paths is harder when we needed to deal with negative weight cycles. For general graphs, we needed to use Bellman-Ford, which is much slower than our other algorithms.

One way to avoid this was to make edge weights non-negative. In this case, we could use Dijkstra.

Shortest Paths in DAGs

- We saw that shortest paths is harder when we needed to deal with negative weight cycles. For general graphs, we needed to use Bellman-Ford, which is much slower than our other algorithms.
- One way to avoid this was to make edge weights non-negative. In this case, we could use Dijkstra.
- Another way to get rid of negative weight cycles, is to get rid of cycles. If G is a DAG, there are better algorithms.

Fundamental Shortest Paths Formula

For
$$w \neq s$$
,

$$\operatorname{dist}(w) = \min_{(v,w) \in E} \operatorname{dist}(v) + \ell(v,w).$$

Hard to apply in general because there's no order to solve equations in.

Fundamental Shortest Paths Formula

For
$$w \neq s$$
,

$$\operatorname{dist}(w) = \min_{(v,w) \in E} \operatorname{dist}(v) + \ell(v,w).$$

Hard to apply in general because there's no order to solve equations in.

DAG gives topological order!

```
ShortestPathsInDAGs(G,s, l)
  TopologicalSort (G)
  For w E V in topological order
    If w = s, dist(w) \leftarrow 0
    Else
     dist(w) \leftarrow min(dist(v) + \ell(v, w))
\\ dist(v) for all upstream v
 already computed
```

```
ShortestPathsInDAGs (G, s, l)
  TopologicalSort(G)-O(|V|+|E|)
  For w E V in topological order
    If w = s, dist(w) \leftarrow 0
    Else
     dist(w) \leftarrow min(dist(v)) + \ell(v, w))
\\ dist(v) for all upstream v
 already computed
```

```
ShortestPathsInDAGs (G, s, l)
   TopologicalSort(G)-O(|V|+|E|)
  For w E V in topological order
     If w = s, dist(w) \leftarrow 0
     Else
O(|V|) dist(w)←min(dist(v)+ℓ(v,w))
total
 \\ dist(v) for all upstream v
  already computed
```

```
ShortestPathsInDAGs(G,s, l)
   TopologicalSort(G)-O(|V|+|E|)
   For w E V in topological order
      If w = s, dist(w) \leftarrow 0
                                O(|E|) total
      Else
O(|V|) dist(w) \leftarrow min (dist(v)+\ell(v,w))
total
 \\ dist(v) for all upstream v
   already computed
```

Runtime O(|V|+|E|)

```
ShortestPathsInDAGs (G, s, l)
   TopologicalSort(G)-O(|V|+|E|)
   For w E V in topological order
      If w = s, dist(w) \leftarrow 0
                                O(|E|) total
      Else
O(|V|) dist(w) \leftarrow min (dist(v)+\ell(v,w))
total
 \\ dist(v) for all upstream v
   already computed
```


Shortest Path Algorithms Summary

```
Unit Weights: Breadth First Search
 O(|V|+|E|)
Non-negative Weights: Dijkstra
 O(|V|\log|V|+|E|)
Arbitrary Weights: Bellman-Ford O(|V||E|)
Arbitrary Weights, graph is a DAG:
 Shortest-Paths-In-DAGs O(|V|+|E|)
```

Divide & Conquer (Ch 2)

- General Technique
- Master Theorem
- Karatsuba Multiplication
- Strassen's Algorithm
- Merge Sort
- Order Statistics
- Binary Search
- Closest Pair of Points

Divide and Conquer

This is the first of our three major algorithmic techniques.

Divide and Conquer

This is the first of our three major algorithmic techniques.

- 1. Break problem into pieces
- 2. Solve pieces recursively
- 3. Recombine pieces to get answer

Example: Integer Multiplication

Problem: Given two n-bit numbers find their product.

Example: Integer Multiplication

<u>Problem:</u> Given two n-bit numbers find their product.

Naïve Algorithm: Schoolboy multiplication. The binary version of the technique that you probably learned in elementary school.

ANSWER

Question: Runtime

What is the asymptotic runtime of the schoolboy algorithm?

- A) O(n)
- B) $O(n \log(n))$
- C) $O(n^2)$
- D) $O(n^3)$
- E) $O(2^n)$

Question: Runtime

What is the asymptotic runtime of the schoolboy algorithm?

- A) O(n)
- B) $O(n \log(n))$
- C) $O(n^2)$
- D) $O(n^3)$
- E) $O(2^n)$

Need to write down O(n²) bits of numbers to add.
Addition can be done in linear time.