Springer-Lehrbuch

Die Welt der Primzahlen

Geheimnisse und Rekorde

Zweite, vollständig überarbeitete und aktualisierte Auflage

Aus dem Englischen übersetzt von Jörg Richstein. Auf den neuesten Stand gebracht von Wilfrid Keller.

Prof. Dr. Paulo Ribenboim Department of Mathematics and Statistics Queen's University Kingston, Ontario K7L 3N6 Canada

Die Abbildung auf der Titelseite zeigt den Verlauf der Funktion $r_2(2n)$ aus Kapitel 4, Abschnitt VI (D) im Bereich 2 < n < 500000.

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Aktualisierte Übersetzung der englischen Ausgabe *The Little Book of Bigger Primes* von Paulo Ribenboim, Springer New York, 2. Aufl. 2004, ISBN 0-387-20169-6

Mathematics Subject Classification (2000): 11A41, 11B39, 11A51

ISSN 0937-7433 ISBN 978-3-642-18078-1 e-ISBN 978-3-642-18079-8 DOI 10.1007/978-3-642-18079-8 Springer Heidelberg Dordrecht London New York

© Springer-Verlag Berlin Heidelberg 2006, 2011

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Einbandentwurf: WMXDesign GmbH, Heidelberg

Gedruckt auf säurefreiem Papier

Springer ist Teil der Fachverlagsgruppe Springer Science+Business Media (www.springer.com)

Nel mezzo del cammin di nostra vita mi ritrovai per una selva oscura che la diritta via era smarrita

Dante Alighieri, L'Inferno

Vorwort zur zweiten Auflage

Die zweite Auflage dieses Buches könnte den Untertitel tragen: Die alten Geheimnisse und neue Rekorde.

In der Tat wurden seit der ersten Auflage keine entscheidenden Fortschritte erzielt, um der Lösung der wichtigsten noch ausstehenden Fragen über die Primzahlen näher zu kommen.

Demgegenüber findet sich hier eine Fülle beeindruckender neuer Rekorde, die Zeugnis ablegen von einer außerordentlichen Rechentätigkeit, welche zumeist im Rahmen groß angelegter Vorhaben koordiniert stattfindet. Die genannten Ergebnisse spiegeln in der Regel den Stand vom August 2010 wieder.

Die Zusammenstellung dieser Daten wurde durchweg von Wilfrid Keller vorgenommen. Ihm spreche ich erneut meinen Dank aus – der im gleichen Maße wie die Rekordzahlen anwächst.

Der gesamte Text des Buches ist noch einmal überarbeitet worden, wobei einige Passagen neu hinzugefügt wurden. Beispielsweise sollte in dem Unterabschnitt über die Faktorisierung den neueren Verfahren, die auf Siebtechniken beruhen, Rechnung getragen werden.

Rio de Janeiro September 2010 Paulo Ribenboim

Vorwort zur ersten Auflage

Das vorliegende Buch ist eine Übersetzung von The Little Book of Bigger Primes, welches eine komprimierte Fassung des früheren, umfassenderen The New Book of Prime Number Records darstellt. Man hätte daher als Titel anstelle von Die Welt der Primzahlen auch Eine Auswahl aus The New Book of Prime Number Records wählen können, was Sie aber vielleicht gar nicht erst dazu bewogen hätte, das Buch aufzuschlagen, geschweige denn, es zu kaufen.

Dieses Paperback unterscheidet sich kaum von seinem großen Bruder. Gleich einem Bonsai, der sämtliche Merkmale eines großen Baumes trägt, sollte es die gleiche verhängnisvolle Anziehungskraft ausüben. Ich wünsche mir, dass es genauso gefährlich wie das andere ist. Ich wünsche Ihnen, junger Student, Lehrer oder Mathematiker im Ruhestand, Ingenieur, Computer-Fan und Ihnen allen, die Sie Freunde der Zahlen sind, dass Sie dazu verleitet werden, über die wunderbare Theorie der Primzahlen samt ihrer tief verwurzelten Geheimnisse nachzudenken. Ich wünsche Ihnen, dass Sie Ihren Kopf und Ihre Finger gebrauchen – in dieser Reihenfolge.

Im Laufe der Zeit sind die Primzahlen "größer geworden". In unzähmbarer Emsigkeit haben Rechenspezialisten Rekorde in Höhen getrieben, die früher noch undenkbar waren. Diese Anstrengungen führten zu neuen Algorithmen und großen Fortschritten bei den Programmiertechniken und Hardware-Entwicklungen – oder sie wurden da-

durch überhaupt erst möglich gemacht. Ein fruchtbares Zusammenwirken beim Bestreben, große, fantastische Zahlen hervorzubringen.

Die Rekorde, von denen hier berichtet wird, sind sämtlich aktualisiert worden. Es handelt sich um eine Momentaufnahme von Ende Mai 2006. Was die theoretischen Ergebnisse anbelangt, so gab es nur wenige Fortschritte. Sie werden an geeigneter Stelle erläutert. Die alten klassischen Probleme sind nach wie vor offen und hören nicht auf, unseren großen Geistern zu trotzen. Mit einem verschmitzten Lächeln sagen sie uns: "Wenn ihr mich löst, werdet ihr nichts mehr zu tun haben." Nicht wissend, dass wir Mathematiker mehr Probleme erfinden, als wir lösen können. Langeweile werden wir keine haben.

Kingston, Ontario, Kanada Juli 2006 Paulo Ribenboim

Danksagungen

Es lässt keinen Autor unberührt, wenn eines seiner Bücher übersetzt wird. Eine Ausgabe dieses Buches auf Deutsch erfreut mich besonders, und sie ist auch angebracht, denn viele der Entdeckungen über Primzahlen wurden zuerst in deutscher Sprache veröffentlicht.

Ein besonderes Glück ist es, wenn die Übersetzer Experten des betreffenden Fachgebiets sind. Die Zusammenarbeit mit Jörg Richstein, der eine gelungene Übersetzung erstellte, und mit Wilfrid Keller, der die Rekorde aktualisierte, war eine wunderbare Erfahrung.

Ihre hingebungsvolle Arbeit erinnert an den Winzer in Sauternes, der mit unermüdlicher Sorgfalt seiner Sémillon-Rebe ihren köstlichen Nektar entlockt, oder an den stolzen Maßschneider in Buenos Aires, der nicht zufrieden war, bis das Jackett wie angegossen passte. Dieses Selbstverständnis und ihre Sachkenntnis bürgen für einen aussagekräftigen Text.

Jörg Richstein hat sich regelmäßig mit mir besprochen, um verschiedene Sachverhalte möglichst treffend auszudrücken. Die Aktualisierung der Rekorde wurde von Wilfrid Keller gewissenhaft vorgenommen, wobei er insbesondere auf die Glaubwürdigkeit der angemeldeten Resultate zu achten hatte. Ihnen beiden bin ich zu großem Dank verpflichtet.

Chris Caldwell unterhält eine höchst ergiebige und gut dokumentierte Website über Primzahlen, die ich häufig mit großem Nutzen zu Rate gezogen habe.

Schließlich möchte ich mich bei zahlreichen Kollegen bedanken, die mir ihre Arbeiten zusandten und mir manches Mal ihre Ergebnisse geduldig erklärten. Ihre Namen sind im Text verzeichnet.

Inhaltsverzeichnis

Vo	Vorwort zur zweiten Auflage v						
V	Vorwort zur ersten Auflage						
Da	anksa	agungen	x				
Aı	nleitu	ıng für den Leser x	vi				
Er	kläru	ing der Symbole	xix				
Ei	nleitı	ung	1				
1	Wie	viele Primzahlen gibt es?	3				
	Ι	Beweis von Euklid	3				
	II	Ein Beweis von Goldbach!	6				
	III	Beweis von Euler	8				
	IV	Beweis von Thue	10				
	V	Drei vergessene Beweise	10				
		A Beweis von Perott	11				
		B Beweis von Auric	11				
		C Beweis von Métrod	12				
	VI	Beweis von Washington	12				
	VII	Beweis von Furstenberg	13				
2	Wie	kann man Primzahlen erkennen?	15				
	Ι	Das Sieb des Eratosthenes	16				
	II	Einige grundlegende Sätze über Kongruenzen	17				

		A	Der kleine Satz von Fermat und Primitivwurzeln		
			modulo einer Primzahl		17
		В	Der Satz von Wilson		20
		С	Die Eigenschaften von Giuga und von Wolsten-		
			holme		22
		D	Primzahlpotenzen als Teiler der Fakultät einer		
			Zahl		24
		E	Der chinesische Restsatz		27
		F	Die Eulersche φ -Funktion		28
		G	Folgen von Binomialzahlen		34
		Н	Quadratische Reste		37
	III	Klassis	sche Primzahltests auf der Grundlage von Kon-		
			en		39
	IV	Lucas-			44
	V	Primza	ahltests auf der Grundlage von Lucas-Folgen		59
	VI		t-Zahlen		71
	VII	Merser	nne-Zahlen		76
	VIII		primzahlen		90
		A	Pseudoprimzahlen zur Basis 2 (psp)		90
		В	Pseudoprimzahlen zur Basis a (psp (a))		94
		\mathbf{C}	Euler-Pseudoprimzahlen zur Basis a (epsp (a)).		97
		D	Starke Pseudoprimzahlen zur Basis a (spsp (a))		98
	IX	Carmio	chael-Zahlen	.]	102
	X	Lucas-	Pseudoprimzahlen	.]	105
		A	Fibonacci-Pseudoprimzahlen	.]	106
		В	Lucas-Pseudoprimzahlen $(lpsp(P,Q))$.]	108
		\mathbf{C}	Euler-Lucas-Pseudoprimzahlen (elpsp (P,Q)) und		
			starke Lucas-Pseudoprimzahlen (slpsp (P,Q))	.]	109
		D	Carmichael-Lucas-Zahlen	.]	110
	XI	Primza	ahltests und Faktorisierung	.]	111
		A	Aufwand für einen Primzahltest	.]	112
		В	Weitere Primzahltests	.]	113
		\mathbf{C}	Titanische und sonderbare Primzahlen	.]	123
		D	Faktorisierung	.]	126
		E	Kryptographie mit öffentlichem Schlüssel	,]	132
3		_	imzahldefinierende Funktionen?		.37
	Ι		onen mit der Eigenschaft (a)		
	II		onen mit der Eigenschaft (b)		
	III		ahlerzeugende Polynome		
		A	Primzahlwerte linearer Polynome	.]	146

		В	Über quadratische Zahlkörper	. 146
		\mathbf{C}	Primzahlerzeugende quadratische Polynome	. 151
		D	Der Wettlauf um Primzahlwerte und Primteiler	
	IV	Funkt	ionen mit der Eigenschaft (c)	
4	Wie	\mathbf{sind}	die Primzahlen verteilt?	163
	Ι	Die Fu	unktion $\pi(x)$. 164
		A	Historische Entwicklung	. 165
		В	Summen unter Einschluss der Möbius-Funktion	. 178
		\mathbf{C}	Primzahltabellen	. 179
		D	Exakte Werte von $\pi(x)$ und Vergleiche mit x/\log	x,
			Li(x) und $R(x)$. 180
		\mathbf{E}	Die nichttrivialen Nullstellen von $\zeta(s)$. 183
		\mathbf{F}	Nullstellenfreie Bereiche von $\zeta(s)$ und das Feh-	
			lerglied im Primzahlsatz	. 187
		G	Einige Eigenschaften von $\pi(x)$. 188
		Η	Die Verteilung der Werte von Eulers Funktion	. 190
	II	Die n -	te Primzahl und Lücken zwischen Primzahlen .	. 191
		A	Die n -te Primzahl	. 191
		В	Lücken zwischen Primzahlen	. 192
	III	Primz	ahlzwillinge	. 200
	IV	Primz	ahlmehrlinge	. 206
	V	Primz	ahlen in arithmetischer Folge	. 213
		A	Es gibt unendlich viele!	. 213
		В	Die kleinste Primzahl in einer arithmetischen	
			Folge	. 215
		\mathbf{C}	Primzahlreihen in arithmetischer Folge	. 217
	VI	Goldb	eachs berühmte Vermutung	. 220
	VII	Die Ve	erteilung von Pseudoprimzahlen und Carmichael-	
		Zahler	1	. 226
		A	Verteilung von Pseudoprimzahlen	. 226
		В	Verteilung von Carmichael-Zahlen	. 228
		С	Verteilung von Lucas-Pseudoprimzahlen	. 230
5			esonderen Arten von Primzahlen wurden	
	unt	ersuch		233
	Ι	_	äre Primzahlen	
	II	_	e-Germain-Primzahlen	
	III		rich-Primzahlen	
	IV		n-Primzahlen	
	17	Donie	nit Drimanhlan	246

xvi Inhaltsverzeichnis

	VI	Zahlen der Form $k \times b^n \pm 1$. 248
	V 11	Ordnung	. 256
6	Heu	ıristische und probabilistische Betrachtungen	263
	Ι	Primzahlwerte linearer Polynome	. 264
	II	Primzahlwerte von Polynomen beliebigen Grades	. 267
	III	Polynome mit großen Bereichen zerlegbarer Werte	. 275
	IV	Partitio Numerorum	. 277
Aı	nhan	g	283
A۱	uskla	ang	287
Li	terat	ur	289
W	ebse	iten	333
Pı	rimza	ahlen bis 10 000	337
Ve	erzeio	chnis der Tabellen	341
Ve	erzeio	chnis der Rekorde	343
N	amer	nsverzeichnis	345
Sa	chve	rzeichnis	359

Anleitung für den Leser

Falls eine nicht selbsterklärende Bezeichnung ohne weitere Erläuterung zum Beispiel auf Seite 107 erscheint, sehen Sie bei den Erklärungen der Symbole nach. Diese sind nach der Seitenzahl geordnet; die Definition der Bezeichnung sollte vor oder auf Seite 107 erscheinen.

Wenn Sie wissen möchten, wo und wie oft Ihr Name in diesem Buch erwähnt wird, blättern Sie zum Namensverzeichnis am Ende des Buches. Sollte ich dazu anmerken, dass es keinen direkten Zusammenhang zwischen der Errungenschaft und der Anzahl der Erwähnungen gibt?

Und falls Sie schließlich das Buch gar nicht lesen wollen, sondern einfach eine Information über Cullen-Zahlen suchen – was völlig legitim, wenn nicht gar löblich ist – dann gehen Sie schnell zum Sachverzeichnis. Sehen Sie nicht unter Zahlen, sondern unter Cullen nach. Bei einem Thema wie starke Lucas-Pseudoprimzahlen haben Sie genau drei Möglichkeiten...

Erklärung der Symbole

Diese üblichen Bezeichnungen werden im Text ohne weitere Erläuterung verwendet:

Erklärung
die Zahl m teilt die Zahl n die Zahl m teilt die Zahl n nicht
p ist eine Primzahl und $p^e \mid n$, aber $p^{e+1} \nmid n$
größter gemeinsamer Teiler von m und n
kleinstes gemeinsames Vielfaches von m und n
natürlicher Logarithmus der reellen Zahl $x>0$
Ring der ganzen Zahlen
Körper der rationalen Zahlen
Körper der reellen Zahlen
Körper der komplexen Zahlen

Die folgenden Symbole sind in der Reihenfolge ihres Auftretens im Buch aufgelistet:

Δ	Δ

Seite	Symbol	Erklärung
3	p_n	die <i>n</i> -te Primzahl
4	p#	Produkt aller Primzahlen $q \leq p$, oder
7	F_n	Primfakultät von p n -te Fermat-Zahl, $F_n = 2^{2^n} + 1$
15	$\begin{bmatrix} x \end{bmatrix}$	ganzzahliger Anteil von x , die einzige gan-
		ze Zahl $[x]$, die $[x] \le x < [x] + 1$ erfüllt
19	g_p	kleinste Primitivwurzel modulo p
	$\varphi(n)$	Eulersche phi-Funktion
	$\lambda(n)$	Carmichael-Funktion
	$\omega(n)$	Anzahl der verschiedenen Primfaktoren
31	L(x)	Anzahl der zerlegbaren $n \leq x$,
39	$V_{\varphi}(m)$	für die $n-1$ von $\varphi(n)$ geteilt wird $\#\{n \ge 1 \mid \varphi(n) = m\}$
$\frac{32}{35}$	•	primitiver Teil von $a^n - b^n$
	k(m)	quadratfreier Kern von m
	P[m]	größter Primfaktor von m
	S_r	Menge der Zahlen n mit höchstens
		$r\log\log n$ verschiedenen Primfaktoren
	$\left(\frac{a}{p}\right),(a p)$	Legendre-Symbol
38	$\left(\frac{a}{b}\right)$, $(a \mid b)$	Jacobi-Symbol
44	$U_n = U_n(P,Q)$	n-tes Glied der Lucas-Folge mit Parametern (P, Q)
	$V_n = V_n(P, Q)$	n-tes Glied der begleitenden Lucas-Folge mit Parametern (P,Q)
50	$\rho(n) = \rho(n, U)$	kleinstes $r \geq 1$, für dass gilt $n \mid U_r$
	$\psi(p)$	$= p - (D \mid p)$
53	$\left(\frac{\alpha,\beta}{n}\right)$	ein Symbol, das sich auf die Wurzeln
	(p)	$\alpha, \beta \text{ von } X^2 - PX + Q \text{ bezieht}$
53	$\psi_{lpha,eta}(p)$	$= p - \left(\frac{\alpha, \beta}{p}\right)$ mit ungerader Primzahl p
		p p p p p p p p p p
53	$\psi_{\alpha,\beta}(p^e)$	$= p^{e-1} \psi_{\alpha,\beta}(p)$ mit $e \ge 1$ und ungerader Primzahl p
53	$\lambda_{\alpha,\beta} (\prod p^e)$	$kgV\{\psi_{lpha,eta}(p^e)\}$
57	$\mathcal{P}(U)$	Menge der Primzahlen p , die irgendeinen
٥,	, ()	Term $U_n \neq 0$ teilen
57	$\mathcal{P}(V)$	Menge der Primzahlen p , die irgendeinen
		Term $V_n \neq 0$ teilen

Seite	Symbol	Erklärung
59	U_n^*	Primitiver Teil von U_n
59	$\psi_D\bigg(\prod_i^s p_i^{e_i}\bigg)$	$= \frac{1}{2^{s-1}} \prod_{i=1}^{s} p_i^{e_i - 1} \left(p_i - \left(\frac{D}{p_i} \right) \right)$
73	Pn	i=1 n -stellige Primzahl
73	Cn	zerlegbare Zahl mit n Stellen
77	M_q	$=2^{q}-1$, Mersenne-Zahl
86	$\sigma(n)$	Teilersumme von n
88	$\tau(n)$	Anzahl der Teiler von n
88	H(n)	harmonisches Mittel der Teiler von n
88	V(x)	Anzahl der vollkommenen Zahlen kleiner
0.0	()	oder gleich x
89	s(n)	Summe der echten Teiler von n
90	psp	Pseudoprimzahl zur Basis 2
94 96	psp(a)	Pseudoprimzahl zur Basis a Anzahl der Basen a , $1 < a \le n - 1$,
90	$B_{\rm psp}(n)$	ggT $(a, n) = 1$, für die n eine psp (a) ist
97	epsp(a)	Euler-Pseudoprimzahl zur Basis a
98	$B_{\text{epsp}}(n)$	Anzahl der Basen a , $1 < a \le n - 1$,
30	$\mathcal{D}_{\text{epsp}}(n)$	ggT(a, n) = 1, für die n eine $epsp(a)$ ist
98	$\operatorname{spsp}(a)$	starke Pseudoprimzahl zur Basis a
100	$B_{\rm spsp}(n)$	Anzahl der Basen a , $1 < a \le n - 1$,
100	= spsp(**)	ggT(a, n) = 1, für die n eine $spsp(a)$ ist
103	$M_3(m)$	= (6m+1)(12m+1)(18m+1)
103	$M_k(m)$	$= (6m+1)(12m+1)\prod^{k-2} (9 \times 2^{i}m+1)$
	n ()	i=1
104	C_k	Menge der zerlegbaren Zahlen $n > k$
		mit $1 < a < n, ggT(a, n) = 1,$
		die $a^{n-k} \equiv 1 \pmod{n}$ erfüllen
		(im Fall $k > 1$ die Knödel-Zahlen)
	lpsp(P,Q)	Lucas-Pseudoprimzahl mit Parametern (P,Q)
108	$B_{\text{lpsp}}(n,D)$	Anzahl der Zahlen P , $1 \le P \le n$,
		für die ein Q mit $P^2 - 4Q \equiv D \pmod{n}$
100	1 (P.O)	derart existiert, dass n eine lpsp (P,Q) ist
109	elpsp(P,Q)	Euler-Lucas-Pseudoprimzahl mit Parametern (P,Q)
109	slpsp(P,Q)	starke Lucas-Pseudoprimzahl mit
	、 , •,	Parametern (P,Q)
138	$\pi(x)$	die Anzahl der Primzahlen $p \leq x$

Seite	Symbol	Erklärung
140	$\mu(x)$	Möbius-Funktion
147	Δ	Fundamentaldiskriminante zu $d \neq 0, 1$
1/17	$\mathbb{Q}(\sqrt{d})$	gehörend = $\mathbb{Q}(\sqrt{\Delta})$, quadratischer Zahlkörper
148	Cl_d oder Cl_Δ	Klassengruppe von $\mathbb{Q}(\sqrt{d})$
148	$h_d ext{ oder } h_\Delta$	Klassenzahl $\mathbb{Q}(\sqrt{d})$
148	e_d	Exponent der Klassengruppe Cl_d
	$\pi_{f(X)}^*(N)$	# $\{n \mid 0 \le n \le N, f(n) \text{ ist prim}\}$
	$P_0[m]$	kleinster Primfaktor von $m > 1$
	$P_0[f(X)]$	$= \min\{P_0[f(k)] \mid k = 0, 1, 2, \dots\}$
		f, h sind asymptotisch gleich
		die Differenz $f(x) - g(x)$ ist letztendlich
	+O(h(x))	durch ein konstantes Vielfaches von $h(x)$
	, ,	beschränkt
165	f(x) = g(x)	die Differenz $f(x) - g(x)$ ist im Vergleich
	+o(h(x))	zu $h(x)$ vernachlässigbar
165	$\zeta(s)$	Riemannsche Zetafunktion
167	B_k	Bernoulli-Zahl
168	$S_k(n)$	$=\sum_{j=1}^{n}j^{k}$
	$B_k(X)$	Bernoulli-Polynom
169	Li(x)	Logarithmisches Integral
	$\theta(x)$	$=\sum_{p\leq x}\log p$, Tschebyscheff-Funktion
	Re(s)	Realteil von s
	$\Gamma(s)$	Gamma-Funktion
171	γ	Eulersche Konstante
173	J(x)	gewichtete Primzahlpotenzen zählende
	D()	Funktion
174	\ /	Riemann-Funktion
	$\Lambda(x)$	von Mangoldt-Funktion
176	$\psi(x)$	summatorische Funktion der von Mangoldt- Funktion
178	M(x)	Mertens-Funktion
180	$\varphi(x,m)$	$\#\{a \mid 1 \leq a \leq x, a \text{ ist kein Vielfaches von } $
		$\{2,3,\ldots,p_m\}$
184	$ ho_n$	n -te Nullstelle von $\zeta(s)$ in der oberen
		Hälfte des kritischen Streifens
184	N(T)	$\#\{\rho = \sigma + it \mid 0 \le \sigma \le 1, \zeta(\rho) = 0,$
	_	$0 < t \le T\}$
192	d_n	$= p_{n+1} - p_n$

Seite	Symbol	Erklärung
193	g(p)	Anzahl der aufeinander folgenden zerlegbaren Zahlen größer als p
193	G	$= \{m \mid m = g(p) \text{ für ein } p > 2\}$
193	p[m]	die kleinste Primzahl p mit $g(p) = m$
198	$\log_2 x$	$\log \log x$
198	$\log_3 x$	$\log \log \log x$
198	$\log_4 x$	$\log \log \log x$
201	B	Brunsche Konstante
201	$\pi_2(x)$	$\#\{p \text{ prim } p \leq x \text{ und } p + 2 \text{ ist ebenfalls} $ eine Primzahl $\}$
202	C_2	$= \prod_{p>2} \left(1 - \frac{1}{(p-1)^2}\right), \text{ Primzahlzwillings-}$
		konstante
205	$\pi_{2k}(x)$	$\#\{n \ge 1 \mid p_n \le x \text{ und } p_{n+1} - p_n = 2k\}$
206	$\pi_{2,6}(x)$	
206	$\pi_{4,6}(x)$	$\#\{p \text{ prim } p \leq x \text{ und } p+4, p+6 \text{ sind auch } Primzahlen}\}$
207	$\pi_{2,6,8}(x)$	$\#\{p \text{ prim } p \leq x \text{ und } p+2, p+6, p+8 $ sind auch Primzahlen $\}$
207	$B_{2,6}$	$=\sum \left(\frac{1}{p}+\frac{1}{p+2}+\frac{1}{p+6}\right),$
		summiert über alle Primzahldrillinge
		(p, p+2, p+6)
207	$B_{4,6}$	$=\sum \left(\frac{1}{p} + \frac{1}{p+4} + \frac{1}{p+6}\right),$
	24,0	(1 1 /
		summiert über alle Primzahldrillinge
		(p, p+4, p+6)
207	$B_{2,6,8}$	$= \sum \left(\frac{1}{p} + \frac{1}{p+2} + \frac{1}{p+6} + \frac{1}{p+8} \right),$
	=,0,0	\ /
		summiert über alle Primzahlvierlinge
200	-*()	(p, p + 2, p + 6, p + 8)
208	$\rho^*(x)$	= k, wenn es ein zulässiges $(k-1)$ -Tupel
		unterhalb von x gibt, aber keines mit
209	o(x)	mehr Komponenten $= \lim_{n \to \infty} \sup_{x \to \infty} \left(\pi(x + u) - \pi(u) \right)$
	$\rho(x)$	$= \limsup_{y \to \infty} \left(\pi(x+y) - \pi(y) \right)$ #[a prim $\pi < x, n = a \pmod{d}$]
214	, ()	$\#\{p \text{ prim } p \le x, p \equiv a \pmod{d}\}$
215	p(d, a)	kleinste Primzahl in der arithmetischen
		Folge $\{a + kd \mid k \ge 0\}$

Seite	Symbol	Erklärung
215	p(d)	$= \max\{p(d, a) \mid 1 \le a < d, ggT(a, d) = 1\}$
216	L	Linniks Konstante
221	P_k	Menge der k-Fastprimzahlen
222	S, S_0	Schnirelmanns Konstanten
223	$r_2(2n)$	Anzahl der Darstellungen von $2n$ als Summe zweier Primzahlen
224	G'(n)	$\#\{2n \mid 2n \leq x, 2n \text{ ist keine Summe zweier Primzahlen}\}$
226	$(psp)_n$	n-te Pseudoprimzahl
226	$P\pi(x)$	Anzahl der Pseudoprimzahlen zur Basis 2,
	()	kleiner oder gleich x
226	$P\pi_a(x)$	dergleichen zur Basis a
226	$EP\pi(x)$	Anzahl der Euler-Pseudoprimzahlen zur
	()	Basis 2, kleiner oder gleich x
226	$EP\pi_a(x)$	dergleichen zur Basis a
226	$SP\pi(x)$	Anzahl der starken Pseudoprimzahlen zur
	. ,	Basis 2, kleiner oder gleich x
226	$SP\pi_a(x)$	dergleichen zur Basis a
227	l(x)	$= e^{\log x \log \log \log x / \log \log x}$
227	psp(d, a)	kleinste Pseudoprimzahl in der arithmetischen Folge $\{a+kd \mid k \geq 1\}$ mit $\operatorname{ggT}(a,d)=1$
228	CN(x)	$\#\{n \mid 1 \le n \le x, n \text{ Carmichael-Zahl}\}\$
230	$L\pi(x)$	Anzahl der Lucas-Pseudoprimzahlen mit
	. ,	Parametern (P,Q) , kleiner oder gleich x
231	$SL\pi(x)$	Anzahl der starken Lucas-Pseudoprimzahlen mit Parametern (P, Q) , kleiner oder gleich x
234	ζ_p	$=\cos(2\pi/p) + i\sin(2\pi/p)$
235	h(p)	Klassenzahl des p-ten Kreisteilungskörpers
236	$\pi_{\rm reg}(x)$	Anzahl der regulären Primzahlen $p \leq x$
236	$\pi_{\mathrm{ir}}(x)$	Anzahl der irregulären Primzahlen $p \leq x$
236	ii(p)	Irregularitätsindex von p
236	$\pi_{iis}(x)$	Anzahl der Primzahlen $p \leq x$ mit $ii(p) = s$
238	$S_{d,a}(x)$	$\#\{p \text{ prim } p \le x, dp + a \text{ ist prim}\}$
242	$q_p(a)$	$= \frac{a^{p-1} - 1}{p}, \text{ Fermat-Quotient von } p \text{ zur Basis } a$ $= \frac{(p-1)! + 1}{p}, \text{ Wilson-Quotient}$
245	W(p)	$=\frac{(p-1)!+1}{p}$, Wilson-Quotient

Seite	Symbol	Erklärung		
		$10^{n} - 1$		
246	Rn	$=\frac{10^n-1}{9}$, Repunit-Zahl		
253	Cn	$= n \times 2^n + 1$, Cullen-Zahl		
253	$C\pi(x)$	$\#\{n \mid Cn \le x \text{ und } Cn \text{ ist prim}\}$		
254	Wn	$= n \times 2^n - 1$, Woodall-Zahl oder Cullen-		
		Zahl der zweiten Art		
257	$\mathcal{P}(T)$	Menge der Primzahlen p , die irgendeinen		
		Term der Folge $T = (T_n)_{n \ge 0}$ teilen		
257	$\pi_H(x)$	$\#\{p \in \mathcal{P}(H) \mid p \le x\}$		
261	S_{2n+1}	NSW-Zahl		
268	$\pi_{f(X)}(x)$	$\#\{n \ge 1 \mid f(n) \le x \text{ und } f(n) \text{ ist prim}\}$		
275	p(f)	kleinste Zahl $m \geq 1$, für die $ f(m) $ prim ist		
278	$\pi_{X,X+2k}(x)$	$\#\{p \text{ prim } p+2k \text{ prim und } p+2k \le x\}$		
278	$\pi_{X^2+1}(x)$	$\#\{p \text{ prim } p \text{ hat die Form } p = m^2 + 1$		
		und $p \le x$		
279	$\pi_{aX^2+bX+c}(x)$	$\#\{p \text{ prim} \mid p \text{ hat die Form} \}$		
		$p = am^2 + bm + c \text{ und } p \le x\}$		

Einleitung

Das Guinness Buch der Rekorde wurde dadurch berühmt, die ausschlaggebende Informationsquelle zu sein, wenn es darum geht, liebenswerte Auseinandersetzungen an (hoffentlich Guinness-beladenen) Stammtischen zu schlichten. Der riesige Erfolg der Erfassung aller nur denkbarer Heldentaten, Anomalien, Ausdauer- und ähnlicher Spitzenleistungen beeinflusste diese im Gegenzug und regte zu immer neuen Rekorden an. Und ob es nun Paare waren, die unzählige Stunden tanzten oder Leute, die sich tagelang zusammen mit Giftschlangen in einen Sarg legten, die Motivation war immer dieselbe: Einmal in der Bibel der Rekorde namentlich verzeichnet zu sein. So gibt es wirklich alle möglichen Einträge, seien es athletische Leistungen, Menschen mit extremen Ausmaßen, unglaublicher Ausdauer oder sonstigen erstaunlichen Fähigkeiten.

Rekorde im wissenschaftlichen Bereich sind jedoch selten zu finden. Und das, obwohl Wissenschaftler – und Mathematiker im Besonderen – ebenso gerne bei einem Glas Wein oder Bier an einer Theke plaudern. Und spätestens, wenn der Weingeist ihnen in die Köpfe steigt, fangen sie an, über kürzlich errungene Fortschritte zu wettern, wie zum Beispiel auch über neueste Entdeckungen aus dem Reich der Zahlen.

Ehrlich gesagt würde ich es sogar als sehr kultiviert empfinden, in unserer Lokalzeitung von einer gepflegten Prügelei in einem unserer Pubs zu lesen, deren Ursache es war, dass man sich darüber gestritten hat, welches der größte bekannte Primzahlzwilling ist.

Allerdings würde nicht jeder Handgreiflichkeiten zwischen Menschen als wünschenswert erachten, selbst wenn es um solch hochwichtige Dinge geht. Vielleicht sollte ich daher lieber einige dieser Rekorde offenlegen. Und jeder, der es besser weiß, sollte nicht zögern, mir neue Informationen zukommen zu lassen.

2 Einleitung

Ich werde mich darauf beschränken, von *Prim*zahlen zu berichten. Dies sind natürliche Zahlen wie 2, 3, 5, 7, 11, ..., die nicht Vielfache von kleineren Zahlen als sie selbst (ausgenommen der 1) sind. Falls eine natürliche Zahl ungleich 1 keine Primzahl ist, nennt man sie zerlegbar. Primzahlen sind elementar wichtig: Der *Fundamentalsatz der Arithmetik* besagt, dass sich jede natürliche Zahl größer als 1 auf eindeutige Weise als Produkt von Primzahlen schreiben lässt.

Ohne große Mühe ist die Frage "Welches ist die schrägste Primzahl?" zu beantworten: Es ist die 2, denn sie ist die einzige gerade Primzahl!

Es wird viele Gelegenheiten geben, auf weitere Primzahlen wie 1093 oder 608 981 813 029 zu treffen, die unverwechselbare und bemerkenswerte Eigenschaften besitzen. Primzahlen sind wie die Mitglieder einer Familie, sie ähneln sich, sind aber doch verschieden.

Als ich der Aufgabe gegenüberstand, Primzahlrekorde vorzustellen, musste ich mir vor allem darüber klar werden, wie dieses Buch zu gliedern sei. Mit anderen Worten, wie die wesentlichen Züge der Untersuchung und Entwicklung der Theorie der Primzahlen zu klassifizieren sind.

Eine bestimmte Menge von Zahlen zu studieren – in diesem Fall die Primzahlen – wirft sofort einige Fragen auf, die ich hier einmal zwanglos formulieren will:

Wie viele dieser Zahlen gibt es? Wie kann man feststellen, ob eine beliebige Zahl zur Menge gehört? Wie kann man sie beschreiben? Wie sind die Zahlen verteilt, sowohl im Großen als auch in kleinen Intervallen betrachtet? Welche Besonderheiten zeichnen einige dieser Zahlen aus, wie kann man experimentell vorgehen, wie Vorhersagen ihres Auftretens treffen – so wie in jeder anderen Wissenschaft auch?

Ich habe die Präsentation daher in die folgenden Themen unterteilt:

- (1) Wie viele Primzahlen gibt es?
- (2) Wie kann man Primzahlen erkennen?
- (3) Gibt es primzahldefinierende Funktionen?
- (4) Wie sind die Primzahlen verteilt?
- (5) Welche besonderen Arten von Primzahlen wurden untersucht?
- (6) Heuristische und probabilistische Betrachtungen.

Die Diskussion und Beantwortung dieser Fragen wird mich dazu führen, die maßgeblichen Rekorde anzugeben.