

EGCP 281: Designing with VHDL Fall 2024

Lecture 10: Bistable Memory Devices

Rakesh Mahto, Ph.D.

Office: E 314, California State University, Fullerton
Office Hour: Monday and Wednesday 2:00 - 4:00 pm

Or by appointment

Zoom Meeting ID: 894 4126 5483

Email: ramahto @fullerton.edu **Phone No**: 657-278-7274

Sequential Circuits and Bistable Memory Devices

Two Types of Logic Circuits: Combinational

1. Combinational – outputs determined directly from present combination of inputs. Previous inputs do not matter

Sequential – outputs determined directly from present AND previous inputs inputs. Previous inputs does matter

Sequential Circuits

Sequential Circuits are specified by:

- Inputs
- Outputs
- Internal states (past output values)

Two types of sequential circuits:

1)Asynchronous: output can be affected at any point in time by changes in input variables.

Ex. storage element = time delay device Flip-Flop

2)Synchronous: outputs are changed only at discrete instants of time.

Ex. storage element = clocked Flip-Flop

Concept of Feedback

Example feedback circuit with no stable states. Oscillator or Clock signal.

Bistable Feedback

Bistable means that there are two stable states, allowing these devices to store, save, or capture the value for a logic 1 or logic 0.

Memory Storage Devices

Logic Storage Devices

		S	R	Q(t+1)	Operation
	S — Q	0	0	Q(t)	Hold
$\begin{vmatrix} \neg s & \alpha - \\ \rightarrow c \end{vmatrix}$		0	1	0	Reset
— Ro	R Q'	1	0	1	Set
		1	1	?	Undefined
	7)	Q(t+1)	Operation
)	0	Reset
>co	<u> </u>	1		1	Set
		J	К	Q(t+1)	Operation
		0	0	Q(t)	Hold
- 	J D D Q +	0	1	0	Reset
—Kb	K->>	1	0	1	Set
		1	1	Q(t)	Toggle
TO	4	1	Γ	Q(t+1)	Operation
$\rightarrow c$	T # D Q + C > C	()	Q(t)	No Change
	ر کے ۲	-	1	Q(t)	Toggle

Register is a digital component that can temporarily store single or multiple bits.

Circuit Analysis of S-R **NOR Latch**

Different Techniques for Analysis

- 1. Circuit delay model.
- 2. Characteristic table.
- 3. Characteristic equation.
- 4. PS/NS (present-state/next-state) table.
- 5. Timing diagram.

Five Different Conditions for a Light Switch

A light switch and a two cross-coupled NOR gates, which is a digital circuit called S-R NOR Latch have similar characteristics.

Signal Propagation in a SR-Latch

Signal Propagation in a SR-Latch

Analyzing an S-R NOR Latch

Latch is the simplest circuit form of a single-bit register.

Circuit Delay Model for S-R NOR Latch

$$t_p=0$$

$$SR = 10$$

$$Q = 1$$

$$Q' = 0$$
 Set

$$t_p=1$$

$$SR = 00$$

$$Q = 1$$

$$Q' = 0$$
 Hold

$$t_p=2$$

$$SR = 01$$

$$Q = 0$$

$$Q' = 1$$

$$t_p=3$$

$$Q = ?$$

$$Q' = ?$$

Forbidden

NOR Function

X	Y	F
0	0	1
0	1	0
1	0	0
1	1	0

NOTE: Any time one of the inputs X or Y is a 1 the output F is a 0.

Characteristic Table for an S-R NOR Latch

CHARACTERISTIC TABLE

NOR FOR S-R LATCH

S	R	Q(t+1)	Next State	
0	0	Q(t)	Present State (High or Low)	HOLD
0	1	0	Low	RESET
1	0	1	High	SET
1	1	?	Reset dominant (normally not used)	FORBIDDEN

NAND FOR S-R LATCH

S	R	Q(t+1)	Next State	
0	0	?	Reset dominant (normally not used)	FORBIDDEN
0	1	1	High	SET
1	0	0	Low	RESET
1	1	Q(t)	Present State (High or Low)	HOLD

PS/NS Table for an S-R NOR Latch

State Transition Table S-R NOR Latch

S	R	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	?

	R'Q' 00	R'Q 01	RQ 11	RQ' 10
S' 0	0	1	0	0
S 1	1	1		5

S	R	Q	Q ⁺
0	0	0	Q = 0, Hold
0	0	1	Q = 1, Hold
0			0, Reset
0	1	1	0, Reset
1			
1	0	1	1, Set
1	1	0	?, Invalid
1	1	1	? , Invalid
	0 0 0 0	0 0 0 0 0 1 0 1 1 0 1 0	0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0

CHARACTERISTIC EQUATION FOR S-R NOR LATCH

Characteristic Equation: S and R cannot be both 1

$$Q^+ = S + R'Q$$
 with don't cares

$$Q^{+} = \overline{S + Q + R}$$

$$= \overline{S} \overline{Q} + R$$

$$= (\overline{S} \overline{Q})\overline{R}$$

$$= (\overline{S} + \overline{Q})\overline{R}$$

$$= (S + Q)\overline{R}$$

$$= S\overline{R} + Q\overline{R}$$

VHDL DESIGN FOR S-R NOR LATCH

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity S R NOR LATCH is port (
     S, R : in std logic;
     Q : inout std logic
                              Q^+ = SR' + R'Q without don't cares
     );
end S R NOR LATCH;
architecture dataflow of S R NOR LATCH is
begin
     Q \ll (Q \text{ and not } R) \text{ or } (S \text{ and not } R);
end dataflow;
                                                      200 ns
                          0 ns
 Name
              Value
```

ALTERNATE DESIGN FOR S-R NOR LATCH

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity S_R_NOR_LATCH_int is port (
    S, R : in std_logic;
    Q : out std_logic
    );
end S_R_NOR_LATCH_int;
architecture dataflow of S_R_NOR_LATCH_int is
    signal Q_int: std_logic;
begin
    Q_int <= (Q_int and not R) or (S and not R);
    Q <= Q_int;
end dataflow;</pre>
```

Name	Value	0 ns	200 ns
↓ s	0		
Ŭ⊕ r	0		
Ū₀ q	U		

State Transition Table S-R NAND Latch

S	R	Q(t+1)
1	1	Q(t)
1	0	0
0	1	1
0	0	5

	R'Q' 00	R'Q 01	RQ 11	RQ' 10
S' 0	?	?	1	1
S 1	0	0	0	1

	S	R	Q	Q ⁺
_	1	1	1	Q = 0, Hold
	1	1	0	Q = 1, Hold
	1	0	1	0, Reset
	1	0	0	0, Reset
	0	1	1	1, Set
	0	1	0	1, Set
	0	0	1	?, Invalid
	0	0	0	? , Invalid

CHARACTERISTIC EQUATION FOR S-R NOR LATCH

Characteristic Equation: S and R cannot be both 1

Q⁺ = S'R + RQ' without don't cares

$$Q^+ = S' + RQ'$$
 with don't cares

VHDL DESIGN FOR S-R NAND LATCH

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity S R NAND LATCH is port (
    S, R : in std logic;
    Q : inout std logic
                                 Q^+ = S' + RQ' with don't cares
end S R NAND LATCH;
architecture dataflow of S R NAND LATCH is
begin
    Q \ll (R \text{ and } Q) \text{ or not } S;
end dataflow;
                                                     200 ns
                          0 ns
 Name
             Value
```

Timing Diagrams

S	IR	Q(t+1)
1	1	Q(t)
1	0	0
0	1	1
0	0	?

S	R	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	?

Asynchronous Events
Time between events is not the same

Asynchronous Events
Time between events is not the same

Multiple Inputs S-R NAND Latch

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

We use bubbled input OR gates to represent the NAND gates because these equivalent gate forms help remind us that the inputs to an S-R NAND Latch are active low inputs.

This type of Latch is also referred as and S'-R' NAND Latch.

CLOCK (Oscillator)

A clock provides a sequence of pulses at its output.

Clocks are used in the design of synchronous sequential circuits.

Crystal Clock Oscillators are much more stable.

EX. your PC, smartphone, tablet, etc.

State Diagram for a CLOCK

- Circle or oval represents each state of the circuit.
- A state transition line is used to represent the flow of the circuit when it changes from one state to the next.
- Four major parts of a state diagram: state bubbles, statetransition lines, state variables, and states or state values.

PS/NS Table for CLOCK (Oscillator)

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$\begin{array}{c|cc}
Q & Q^+ \\
\hline
0 & 1 \\
\hline
1 & 0
\end{array}$$

Characteristic Equation = $\Sigma m(0) = m0 - SOM$

Gate-level Circuit Design for the CLOCK

Ideal Timing Diagram for CLOCK

CLOCK Circuit with RC Circuit Added for Frequency Adjustment

Q&A

