

Geometria Plana

Lista de Exercícios: P2

Polígonos
Quadriláteros
Áreas de figuras planas: triângulos e quadriláteros
Semelhança
Relações Métricas nos Triângulos
Circunferências

Profa. Karla Lima FACET/UFGD

1 Polígonos

Exercício 1 Calcule o número de lados de um polígono cuja soma dos ângulos internos vale 1440°.

Exercício 2 Quantos lados tem um polígono regular cujo ângulo externo vale 36°?

Exercício 3 Um polígono tem 5 lados a mais que outro e a diferença entre os números de diagonais distintas de cada um deles é de 80. Calcular o número de lados de cada polígono.

Gabarito

- 1. 10
- 2. 10
- 3. 15 e 20.

2 Quadriláteros

Exercício 4 Num quadrilátero ABCD, o ângulo vale 160° . Calcular o ângulo Ĉ, sabendo-se que os vértices B, C e D são equidistantes do vértice A.

Exercício 5 Num paralelogramo ABCD, tem-se:

- a) o perímetro (soma dos comprimentos de todos os lados) vale 42;
- b) o ângulo \hat{A} mede 120°;
- c) a bissetriz do ângulo D passa pelo ponto médio M do lado \overline{AB} .

Calcule o lado maior do paralelogramo dado e os ângulos do triângulo CMD.

Exercício 6 Dado um quadrado ABCD, considere o triângulo equilátero ABM, interno ao quadrado. Unindo-se o ponto M ao vértice C, calcule o ângulo BMC.

Exercício 7 Seja P um ponto da base de um triângulo isósceles, distinto de seus extremos. De P, traçam-se retas paralelas aos lados congruentes. Prove que o perímetro do paralelogramo formado é igual à soma das medidas dos lados congruentes do triângulo.

Exercício 8 Num trapézio retângulo ABCD, os ângulos \hat{A} e \hat{D} são retos. As bissetrizes dos ângulos \hat{A} e \hat{B} formam o ângulo A $\hat{M}B$ que vale 87°30′. Calcule os ângulos \hat{B} e \hat{C} .

Exercício 9 Num trapézio isósceles ABCD, a base menor \overline{AB} , mede 5 e a diagonal \overline{DB} é perpendicular ao lado não paralelo \overline{BC} . Calcule o perímetro desse trapézio, sabendo-se que a soma dos ângulos obtusos é o dobro da soma dos ângulos agudos.

Gabarito

- 4. 100°
- 5. Comprimento do Maior Lado: 14. Ângulos: 30°, 60° e 90°.
- 6. 75° .
- 7.
- 8. $95^{\circ} e 85^{\circ}$.
- 9. 25.

3 Área de Polígonos

Exercício 10 A base de um triângulo é o dobro da altura e sua área mede 289. Calcule a base e a altura desse triângulo.

Exercício 11 Mostre que qualquer mediana de um triângulo divide-o em dois triângulos de mesma área.

Exercício 12 A área de um hexágono regular é $162\sqrt{3}$. Calcule a área do polígono estrelado que se obtém prolongando dois a dois os lados desse hexágono.

Gabarito

- 10. b = 34 e h = 17.
- 11.
- 12. $324\sqrt{3}$.

4 Semelhança

Exercício 13 Um feixe de retas paralelas determina sobre duas transversais os pontos A, B, C, D e E, F, G, H, respectivamente. Conhecem-se: AB = 2 cm, BC = 3 cm, CD = 4 cm e EF = 3 cm. Calcule as medidas dos segmentos \overline{FG} e \overline{GH} .

Exercício 14 Num trapézio ABCD, uma paralela às bases divide o lado não paralelo \overline{AD} em dois segmentos cuja razão entre suas medidas é 2/3. Calcule as medidas dos segmentos determinados sobre o outro lado não paralelo, sabendo-se que $BC = 30\,\mathrm{cm}$.

Exercício 15 a) Prove o Teorema da Bissetriz Interna.

b) Os lados de um triângulo ABC medem: AB = 10 cm, AC = 20 cm e BC = 27 cm. Calcule as medidas dos segmentos determinados sobre o lado oposto ao maior ângulo do triângulo, formados pela bissetriz do mesmo.

Exercício 16 Num triângulo ABC, seus lados medem: $AB = 4 \, cm$, $AC = 12 \, cm$ e $BC = 15 \, cm$. Pelo ponto M, tomado sobre o lado \overline{BC} , tal que $BM = 3 \, cm$, traçam-se as paralelas \overline{MD} e \overline{ME} , respectivamente aos lados \overline{AC} e \overline{AB} , com $D \in \overline{AB}$ e $E \in \overline{AC}$. Calcule o perímetro do paralelogramo MDAE.

Exercício 17 Seja ABC um triângulo equilátero de lado 1 cm.

(a) Figura para o item a)

- (b) Figura para o item b)
- a) Calcule as medidas de a, b e da altura h.
- b) Considere o triângulo qualquer DEF. Usando semelhança de triângulos com algum dos triângulos descritos no desenho inicial, mostre que:

$$sen(30^\circ) = \frac{DE}{EF} = \frac{1}{2}$$
 e $sen(60^\circ) = \frac{DF}{EF} = \frac{\sqrt{3}}{2}$

c) Conclua que as medidas seno e cosseno estão bem definidas a partir dos ângulos do triângulo retângulo, independente do 'tamanho' do triângulo dado.

Gabarito

- 13. FG = 4,5 cm e GH = 6 cm.
- 14. 12 cm e 18 cm.
- 15. b) 9 cm e 18 cm.
- 16. 11, 2 cm.

5 Relações Métricas nos Triângulos

Exercício 18 Num triângulo retângulo, a hipotenusa mede 250 m. Os catetos são proporcionais aos números 3 e 4 e somam 350 m. Calcule as projeções desses catetos sobre a hipotenusa.

Exercício 19 Num triângulo retângulo, a soma das medidas de seus lados vale 48 cm e a soma dos quadrados dessas medidas vale 800 cm². Calcule os lados desse triângulo.

Exercício 20 As bases de um trapézio isósceles medem 2 cm e 8 cm. A altura vale 4 cm. Calcule o perímetro do trapézio.

Exercício 21 Num triângulo retângulo ABC, o ângulo B mede 30° e a hipotenusa BC = 10 cm. Calcule a distância do vértice A ao ponto M do lado \overline{BC} , sabendo-se que BM = 4 cm.

Exercício 22 Num trapézio, os ângulos adjacentes à base maior são congruentes e mede 60°, cada um. Calcule a área desse trapézio sabendo-se que as bases medem, respectivamente, 8 e 2.

Gabarito

- 17. 160 m e 90 m.
- 18. $20 \, cm$, $16 \, cm = 12 \, cm$.
- 19. $20 \, m$.
- 20. $\sqrt{31} \, cm$.
- 21. $15\sqrt{3}$.

6 Circunferência

Exercício 23 Em uma circunferência de raio 10 cm, uma corda dista 6 cm do centro. Qual o comprimento da corda?

Exercício 24 Em uma circunferência, uma corda de 12 cm é paralela a uma tangente e bisseca o raio traçado pelo ponto de tangência. Qual o comprimento do raio?

Exercício 25 Na figura abaixo, cada uma das circunferências com centros A, B e C é tangente às outras duas. Se AB = 10, AC = 14 e BC = 18, calcule os raios das circunferências.

Exercício 26 Na figura abaixo, \overline{AC} e \overline{BD} são diâmetros da circunferência. Prove que \overline{CD} e \overline{AB} são congruentes. Além disso, mostre que $\overline{CD} \parallel \overline{AB}$.

Exercício 27 Na figura abaixo, P é o centro da circunferência e RQ = PS. Determine a medida dos arcos \widehat{RQ} , \widehat{RS} e \widehat{RSQ} .

Exercício 28 Um ângulo inscrito é formado por uma corda e um diâmetro. O arco compreendido entre os lados do ângulo é triplo do arco subentendido pela corda. Calcule o valor do ângulo.

Exercício 29 Um ângulo excêntrico externo intercepta dois arcos onde um é o triplo do outro. Sabendo-se que os outros dois arcos, não compreendidos entre os lados do ângulo, um tem 10° a mais que o menor dos dois primeiros e o outro 50° a menos que o maior, calcule o valor do ângulo excêntrico externo.

Exercício 30 Num quadrilátero inscrito num círculo de centro O, os seus vértices, consecutivos, são A, B, C e D. Sabe-se que: $\hat{C} = 60^{\circ}$ e $A\hat{B}D = 20^{\circ}$. Calcule o ângulo $A\hat{O}B$.

Exercício 31 Na figura abaixo, as retas \overrightarrow{PR} e \overrightarrow{QS} são tangentes e \overline{PQ} é um diâmetro. Sendo $\widehat{MQ} = 120^{\circ}$ e RQ = 8 cm, determinar o raio da circunferência.

Gabarito

- 22. 16 cm.
- 23. $4\sqrt{3} \, cm$.
- 24. Raio da circunferência de centro B: 7; raio da circunferência de centro A: 3; Raio da circunferência de centro C: 11.

25.

26.
$$\widehat{RQ}=60^{\circ}, \ \widehat{RS}=120^{\circ} \ \mathrm{e} \ \widehat{RSQ}=300^{\circ}.$$

27. 67°30′.

 $28.~50^{\circ}$.

29. 80°.

30. $2\sqrt{3} \, cm$.