Norwegian University of Science and Technology, Department of Structural Engineering

Exam in subject TKT4150 Biomechanics

Saturday 29. May 2010 Time: 09:00 - 13:00

Scientific contact during exam: Victorien Prot (mob 98497731)

Supporting materials: approved calculator

All answers must be explained, and sufficient calculations must be included so the procedure is obvious from the solution.

grade available 18. June 2010

Problem 1: 20%

A specimen of human cortical bone tissue was subjected to a simple tension test until failure. The test result revealed a stress–strain diagram (see Fig.(1) which has three distinct regions.

These regions are an initial linearly elastic region (O-A), an intermediate nonlinear elastoplastic region

Figure 1: Tensile stress-strain behaviour for cortical bone

(A–B), and a final linearly plastic region (B–C). The stresses and corresponding longitudinal strains at points O, A, B and C are measured (see Table 1).

- 1) Calculate the elastic modulus (Young's modulus) of the bone specimen.
- 2) Present briefly Hill's three-element model for cardiac muscle.

Table 1: Measured stresses and strains		
Point	Stress σ (MPa)	Strain ϵ
О	0	0.0
A	85	0.005
В	114	0.010
C	128	0.026

Problem 2: 40%

Let's consider a steady, laminar flow of an incompressible Newtonian fluid in a cyclindrical blood vessel. Let L be the length of the blood vessel, d the diameter of the vessel and η the viscosity of the blood. $v_z(r)$ denotes the velocity of the fluid at a distance r from the central axis in the longitudinal direction. $v_z(r)$ is the only non-zero component of the velocity field in cylindrical coordinates (r, θ, z) : $v_\theta = 0$, $v_z(r) = v_z(r) = 0$. Then the laminar flow of a blood in a cylindrical vessel can be modelled by

$$v_z(r) = \frac{(\Delta P)(\frac{d^2}{4} - r^2)}{4\eta L},$$
 (1)

where r is the distance from the center of the vessel and $\Delta P = P_1 - P_2$.

There is a change of velocity with respect to distance from the center across the vessel, $\frac{dv_z}{dr}$. The constitutive equations for an incompressible Newtonian fluid read:

$$\mathbf{T} = -p\mathbf{1} + 2\eta\mathbf{D} \text{ or in index notation, } T_{ij} = -p\delta_{ij} + 2\eta D_{ij},$$
 (2)

where **T** is the stress tensor, **D** the strain rate tensor with components: $D_{ij} = 1/2(v_{i,j} + v_{j,i})$.

1) Derive an expression of the volumetric flow Q through the vessel as a function of ΔP , d, η and L

 $(Q = \int_{S} v \cdot dS).$

2) Show that the ratio between Q and the velocity at the center of the vessel $v_0 = v_z(r=0)$ is equal to 1/2S, where $S = \pi (d/2)^2$.

A viscous force $F_{viscous} = F$, acts on any cylindrical element of blood in the direction opposite the flow due to slower moving blood outside the element. The magnitude of the viscous force is given by

$$F = -A\tau_{rz},\tag{3}$$

where $A = 2\pi rL$ is the area of the cylindrical element and τ_{rz} is shear stress component that can be derived from eq.(2).

- 3) Derive the expression of F as a function of $v_z(r)$, A and η .
- 4) Calculate the viscous force on the wall of the vessel (at r = d/2) using the result of question 3).
- 5) Calculate the viscous force on the wall of the vessel (at r = d/2) using the force equilibrium on the fluid inside the vessel of length L and radius d/2.

Problem 3: 40%

Let's consider a vessel of internal radius R_i and wall thickness H in its undeformed configuration Ω_0 . The vessel is subjected to an internal pressure p_i and has an internal radius r_i and a wall thickness h in the deformed configuration Ω .

The deformation gradient **F** can be expressed in the cylindrical coordinate system (\mathbf{e}_{rr} , $\mathbf{e}_{\theta\theta}$, \mathbf{e}_{zz}) as:

$$\begin{bmatrix} \mathbf{F} \end{bmatrix} = \begin{bmatrix} \lambda_{rr} & 0 & 0 \\ 0 & \lambda_{\theta\theta} & 0 \\ 0 & 0 & \lambda_{zz} \end{bmatrix}, \tag{4}$$

(5)

where $\lambda_{rr}=\lambda_r$, $\lambda_{\theta\theta}=\lambda_\theta$, $\lambda_{zz}=\lambda_z$ are the stretches in the radial, circumferential and longitudinal directions, respectively. We assume that the vessel wall is incompressible: $J=\det \mathbf{F}=\lambda_r\lambda_\theta\lambda_z=1$. The stretch in the longitudinal direction is equal to one, $\lambda_z=1$.

First, we consider the case where $h \ll r_i$. Therefore, the vessel can be treated as a thin–walled structure and the membrane theory can be apply to the vessel wall.

- 1) Use Laplace's law $\left(\frac{\sigma_1}{r_1} + \frac{\sigma_2}{r_2} = \frac{p_i}{h}\right)$ to express the internal pressure p_i as a function of r_i , h and $\sigma_{\theta\theta}$ the Cauchy stress in the circumferential direction.
- 2) Express h as a function of H and λ_{θ} and r_i as a function of R_i and λ_{θ} .
- 3) Express p_i as a function of R_i , H, $\sigma_{\theta\theta}$ and λ_{θ} .

Now, we assume that the vessel wall can be modeled as an incompressible isotropic hyperelastic material. The second Piola–Kirchhoff stress tensor S can be expressed as:

$$\mathbf{S} = 2f(I_1)\mathbf{1} + q\mathbf{C}^{-1},\tag{6}$$

where f is a scalar function, $\mathbf{C} = \mathbf{F}^T \mathbf{F}$ is the right Cauchy–Green tensor, $\mathbf{1}$ is the second order identity tensor, q is a Lagrange multiplier and $I_1 = \operatorname{tr} \mathbf{C}$ is the first invariant of \mathbf{C} .

4) The Cauchy stress σ can be found by pushing forward the second Piola-Kirchhoff stress tensor \mathbf{S} into the current configuration: $\sigma = J^{-1}\mathbf{F}\mathbf{S}\mathbf{F}^T$. Give the expression of the Cauchy stress tensor σ (note that $\mathbf{B} = \mathbf{F}\mathbf{F}^T$ is the left Cauchy Green tensor).

In the case where $h \ll r_i$, the stress in the radial direction can be neglected: $\sigma_{rr} = 0$ or $S_{rr} = 0$. Hence, the vessel is in a plane stress state.

5) Use the plane stress condition to derive an expression of the Lagrange multiplier q (as a function of $f(I_1)$ and λ_{θ}).

In many cases, the condition $h << r_i$ is not fulfilled and the vessel as to be treated as a thick-walled cylindrical structure. Then the Cauchy equations of motion can be used to write the cross-sectional equilibrium,

$$\operatorname{div} \boldsymbol{\sigma} + \rho \mathbf{b} = \rho \mathbf{a},\tag{7}$$

where ρ is the density of the structure, **b** the body forces and **a** the acceleration. The Cauchy equation in cylindrical coordinates (r, θ, z) in the radial direction is,

$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{\sigma_{rr} - \sigma_{\theta\theta}}{r} + \frac{1}{r} \frac{\partial \tau_{r\theta}}{\partial \theta} + \frac{\partial \tau_{zr}}{\partial z} + \rho b_r = \rho a_r, \tag{8}$$

where σ_{rr} and $\sigma_{\theta\theta}$ are normal stresses and $\tau_{r\theta}$ and τ_{zr} are shear stresses.

- 6) If the normal stresses σ_{rr} , $\sigma_{\theta\theta}$ and σ_{zz} are also principal stresses, give the value of the shear stresses.
- 7) Simplify eq.(8) when body forces and accelerations are excluded and e_{rr} , $e_{\theta\theta}$ and e_{zz} are principal stress directions.
- 8) Now, let's consider the vessel subjected to an internal pressure p_i . Using the result from question 7) and the boundary conditions $p_i = -\sigma_{rr}|_{r=r_i}$ and $\sigma_{rr}|_{r=r_0} = 0$ show that:

$$p_i = \int_{r_i}^{r_0} \frac{\sigma_{\theta\theta} - \sigma_{rr}}{r} dr, \quad r_i \le r \le r_0, \tag{9}$$

where r_0 is the outer radius of the vessel in Ω .