МФТИ

Алгоритмы и структуры данных, осень 2022 Семинар №08. Быстрое преобразование Фурье

Везде, где не сказано иное, предполагается, что используемые числа помещаются в стандартные типы данных; погрешностями округления пренебречь.

- **1.** Пусть $a = (a_0, a_1, \dots, a_{n-1})$ и $b = (b_0, b_1, \dots, b_{m-1})$ два вектора. Для каждого $i \in [0, n-m]$ найдите $a_i b_0 + a_{i+1} b_1 + \dots + a_{i+m-1} b_{m-1}$, то есть скалярное произведение (a_i, \dots, a_{i+m-1}) и b. Асимптотика: $O(n \log n)$.
- **2.** Пусть $a=(a_0,\ldots,a_{n-1})$ и $b=(b_0,\ldots,b_{n-1})$ два вектора. Для каждого $i\in[0,n-1]$ найдите $a_ib_0+a_{i+1}b_1+\ldots+a_{i+n-1}b_{n-1},$ считая, что $a_{k+n}=a_k$ для любого k.
- **3.** Пусть $s=s_0s_1\dots s_{n-1}$ текст, а $p=p_0p_1\dots p_{m-1}$ шаблон. Скажем, что p почти входит в s, начиная с позиции i, если p отличается от $s_is_{i+1}\dots s_{i+m-1}$ не более чем в k символах. Предложите способ найти все почти-вхождения p в s за:
 - a) $O(kn + n \log n)$;
 - б) $O(|\Sigma| \cdot n \log n)$.
- **4.** Дана строка a из n битов. Найти количество троек (i,j,k), таких что $i < j < k, \ a_i = a_j = a_k = 1$ и k-j=j-i.
- **5.** Найдите число правильных структур AVL-дерева (то есть без учёта значений ключей) на n вершинах глубины h. Асимптотика: $O(nh\log n)$.
- **6.** Пусть $a_n = \sum_{i=0}^{s-1} b_i a_{n-s+i}$ линейная рекуррента. По начальным членам a_0, \dots, a_{s-1} и коэффициентам b_1, \dots, b_s найдите a_n за
 - a) $O(s^3 \log n)$;
 - б) $O(s^2 \log n)$;
 - B) $O(s \log s \log n)$.
- 7. Многочлен от двух переменных x, y можно задать таблицей коэффициентов $(n+1) \times (m+1)$, если его степень по x равна n, а по y-m. Предложите способ перемножения двух таких многочленов за $O(nm\log(nm))$.
- **8.** Дан набор различных положительных чисел a_1, \ldots, a_n , каждое из которых не превосходит m. Для каждого i существует сколь угодно много предметов веса a_i .
 - а) В пакет можно сложить сколько угодно предметов каких угодно весов (из имеющихся), но только при условии, что их суммарный вес положителен и не превосходит m. Проверьте, верно ли, что любой собранный пакет имеет один из весов a_1, \ldots, a_n . Иными словами, верно ли, что других весов набрать нельзя? Асимптотика: $O(m \log m)$.
 - б) В предположении, что условие пункта а) выполнено, найдите все i, такие что нельзя собрать пакет веса a_i без использования предмета i. Асимптотика: $O(m \log m)$.
- 9. Дан белый клетчатый квадрат размером $n \times n$, окружённый чёрным цветом. За один ход можно выбрать любой белый квадрат размером $m \times m$ для произвольного нечётного m, который окружён клетками чёрного цвета, и закрасить в нём центральный столбец и центральную строку чёрной краской. (После этого квадрат либо исчезает, либо порождает 4 квадрата меньших размеров). По данным n и k определите число различных последовательностей действий длины k. Асимптотика: $O(k \log k \log n)$.