HW#4 Multipath Propagation

I. Analytic

Look over the solution to Problem #8.64 in [1].

II. Numerical

Fix $n_0 = 4$ and use the same vertical axis dynamic range on all FFT plots since the desire is to compare them. Use ω (radians/sample) or f (cycles/sample) as the frequency axis rather than k (FFT bin index). There is no need to plot the negative frequencies.

Note: $H_1(k) = \frac{1}{H(k)}$ samples the Fourier transform of the true inverse system $H_i(z) = \frac{1}{H(z)}$

- A. Plot h(n) and the zero locations of H(z). Augment h(n) with zeros out to NFFT = 256, FFT, and plot linear magnitude and phase of H(k) vs. ω to illustrate the amplitude and phase distortion caused by the multipath.
- B. Let N = 16
 - 1. Obtain the N-point DFT H(k) of h(n) and the N-point DFT $H_1(k)$ of $h_1(n)$. Plot linear magnitude and phase of H(k) and $H_1(k)$ vs. ω .
 - 2. Obtain $h_1(n)$ and plot $h_1(n)$ and the zero locations of $H_1(z)$.
 - 3. Augment $h_1(n)$ with zeros out to NFFT = 256, FFT, and plot linear magnitude and phase of $H_1(k)$ vs. ω .
 - 4. Obtain the linear convolution $h_2(n) = h(n) * h_1(n)$ via FFT (2N = 32 point result).
 - 5. Plot $h_2(n)$ and zero locations of $H_2(z)$. Note: Trailing zeros in the 2N-point result for $h_2(n)$ should be truncated prior to determining zero locations for $H_2(z)$.
 - 6. Augment $h_2(n)$ with zeros out to NFFT = 256, FFT, and plot linear magnitude and phase of $H_2(k)$ vs. ω to see how well $h_1(n)$ has equalized the channel.
- C. Let N = 64

Repeat II B [1 - 6]. Note that $h_1(n)$ closely resembles $h_i(n)$ out through n = 63. Part (4) yields a 2N = 128 point result.

References

[1] A. Oppenheim, R. Schafer, and J. Buck. *Discrete-Time Signal Processing*. 2nd Ed. Prentice-Hall (1999).