POLITECNICO DI MILANO – A.A. 2023/24 MSC IN MATHEMATICAL ENGINEERING

MATHEMATICS OF QUANTUM MECHANICS

Prof. MICHELE CORREGGI, Dr. MATTIA CANTONI

Homework 1

Consider the operator T defined on $\ell^2(\mathbb{N})$ as follows

$$Te_n = e_{2n}, \quad n \in \mathbb{N}$$

where e_n is the n-th vector of the canonical basis.

- 1. Find the action of the operator on a generic vector $a = \sum_{n \in \mathbb{N}} a_n e_n$, $\{a_n\}_{n \in \mathbb{N}} \subset \ell^2(\mathbb{N})$, i.e., find $(Ta)_n$, $n \in \mathbb{N}$.
- 2. Prove that the operator is bounded and find its norm.
- 3. Is ran(T) dense in $\ell^2(\mathbb{N})$? is the operator invertible?
- 4. Determine the action of T^* , T^*T and TT^* on a generic sequence $\{a_n\}_{n\in\mathbb{N}}\subset\ell^2(\mathbb{N})$: is the operator T unitary?
- 5. Find the spectra of both operators $\sigma(T)$ and $\sigma(T^*)$:
 - 5.1. find the eigenvalues of T and the eigenvalues of T^* ;
 - 5.2. find $\sigma_{\rm res}(T)$;
 - 5.3. recalling that the spectrum is closed, find $\sigma(T)$, $\sigma(T^*)$, $\sigma_{\text{cont}}(T)$, $\sigma_{\text{cont}}(T^*)$.