Graph

Tuesday, 24 January 2023 1:38 PM

Graph:

ArrayList representation

Matrix representation

https://www.geeksforgeeks.org/graph-and-its-representations/

https://towardsdatascience.com/10-graph-algorithms-visually-explained-e57faa1336f3

- 1. https://www.geeksforgeeks.org/program-to-count-number-of-connected-component
- 2. https://www.geeksforgeeks.org/program-to-count-number-of-connected-component
 - a. https://www.geeksforgeeks.org/find-the-number-of-islands-using-dfs/
 - b. https://www.geeksforgeeks.org/islands-in-a-graph-using-bfs/
- Swim in rising water -> https://massivealgorithms.blogspot.com/2018/12/leetcode-77
 water.html
 - a. https://dev.to/seanpgallivan/solution-swim-in-rising-water-4gfe#:~:text=You%2 <a href="https://dev.to/seanpgallivan/solution-swim-in-rising-water-4gfe#:~:text=You%2 https://dev.to/seanpgallivan/solution-swim-in-rising-water-4gfe#:~:text=You%2 <a href="https://dev.to/seanpgallivan/solution-swim-in-rising-water-4gfe#:~:text=You%2
 - https://just4once.gitbooks.io/leetcode-notes/content/leetcode/binary-search/2
 water.html
 - <u>LeetCode 70 Problem 4 Swim in Rising Water</u>
 - Dijikrstra's algorithm, BFS traversal with priority queue to choose the least path
 - Already travelled path can be set as -1, use boolean node to set travelled path a
- https://www.geeksforgeeks.org/single-source-shortest-path-between-two-cities/
- As far from land as possible
 - https://jimmylin1991.gitbook.io/practice-of-algorithm-problems/dfs-and-bfs/11
 possible
 - https://www.pepcoding.com/resources/data-structures-and-algorithms-in-java-levelup/graphs/as_far_from_land_as_possible/topic
- Cheapest flight within k stops -> https://aaronice.gitbook.io/lintcode/graph_search/clestops
 - https://leetcode.com/problems/cheapest-flights-within-k-stops/solutions/1155
 Queue-Solution/
 - BFS logic:
 - Insert into queue with k-1 stops for all the adjacency nodes for the curren
 - DFS nruning logic.

s-in-an-undirected-graph/ s-in-an-undirected-graph/
78-swim-in-rising-
Ocan%20swim%20from%
778-swim-in-rising-
s true.
.62as-far-from-land-as-
neapest-flights-within-k-
41/JavaPython-Priority-

t node

Minimum Spanning Tree

https://www.tutorialandexample.com/minimum-spanning-tree

Kruskal's algorithm - sort(edges), union-disjoint set strategy

https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greenses.com/kruskals-minimum-greenses.com/kruskals-minimum-greenses.com/kruskals-minimum-greenses.com/kruskals-minimum-greenses.com/kruskals-minimum-greenses.com/kruskals-minimum-greenses.com/

Prim's algorithm - select min weights and find connectivity

https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algorithms-minimum-spanning-tree-ms-greedy-algorithms-minimum-spanning-tree-ms-greedy-algorithms-minimum-spanning-tree-ms-greedy-algorithms-minimum-spanning-ms-greedy-algorithms-minimum-spanning-ms-greedy-algorithms-minimum-spanning-ms-greedy-algorithms-minimum-spanning-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greedy-algorithms-ms-greed

Topological sorting - https://www.geeksforgeeks.org/topological-sorting/

- Kahn's algorithm (BFS)
 - https://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/

Dijikstra'a algorithm

- Single Source Shortest Path Tree(SPT)
- Based on prim's algorithm logic...but adding distances whereas prim's algorithm won't
- https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
- Return shortest path of each node from source vertex based on weights assigned
- Optimized one: use priority queue/min-heap and adjacency List representation
- BFS search
- https://www.geeksforgeeks.org/dijkstras-algorithm-for-adjacency-list-representation-
- https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-in-java-using-priori
- Difference between dijikstra's SST(Single Source Shortest Path) and prim's DST
 - https://www.baeldung.com/cs/prim-dijkstra-difference#:~:text=Dijkstra's%20algorith
 20shortest,only%20works%20on%20undirected%20graphs
 - https://www.quora.com/Whats-the-difference-between-Prim-algorithm-and-Dijkstra-
- Bellman-Ford algo SST:
 - https://www.geeksforgeeks.org/bellman-ford-algorithm-dp-23/
 - It will be used to calculate distance of all vertices from source. Dist[u]
 - Using dynamic programming approach
 - Identify the shortest path for less vertices first and increase it gradually using
 - Bottom-up manner approach
 - O(VE) time complexity outer loop iterate for (v-1) edges
 - Inner loop iterate all edges
 - Set A as source with 0 first
 - And gradually extend the calculation of short vertices to other vertices in each iteratic

Kruskal's algo MST

eedy-algo-2/

o-5/

greedy-algo-8/

tyqueue/?ref=rp

m%20finds%20the%

-algorithm

n

https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-a

Disjoint data structure

https://www.geeksforgeeks.org/disjoint-set-data-structures/

Job sequencing problem

Solution using disjoint set:

https://www.geeksforgeeks.org/job-sequencing-problem-using-disjoint-set/

Greedy about profits..so sort them the array in decreasing order according to profits https://takeuforward.org/data-structure/job-sequencing-problem/

Spanning tree

https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-a

https://www.geeksforgeeks.org/shortest-path-for-directed-acyclic-graphs/

Floyd warshall algorithm - to find shortest path between any 2 nodes

- https://www.geeksforgeeks.org/finding-shortest-path-between-any-two-nodes-usingref=rp
- Youtube -> G-42. Floyd Warshall Algorithm
- O(V3) = 3 times nested for loop is required to identify shortest path between 2 nodes
- Iterate I and j to get different combinations of I and j
- Iterate K different paths to identify the shortest path between I and J.
- Calculate next[i][j] = next

Detect cycle using bfs in undirected graph

https://takeuforward.org/data-structure/detect-cycle-in-an-undirected-graph-using-bfs/

Bipartite graph:

G-18. Bipartite Graph | DFS | C++ | Java

Difference:

- https://www.tutorialandexample.com/dijkstras-vs-bellman-ford-algorithm
- https://www.geeksforgeeks.org/what-are-the-differences-between-bellman-fords-an
- https://www.baeldung.com/cs/dijkstra-vs-bellman-ford

Bellman Ford's Algorithm	Dijkstra's algorithm
When there is a negative weight edge, Bellman Ford's Algorithm detects the negative weight cycle.	When there is a negative weight ed may or may not work. However, it vin a negative weight cycle.
The vertices in the result contain information about the other vertices to which they are connected.	The vertices in the result contain all not just the vertices to which they a
It is simple to implement in a distributed manner.	It is difficult to implement in a distri
It takes longer to complete than Dijkstra's algorithm. It has an O time complexity (VE).	It takes less time to complete. O is t logV).
The algorithm is implemented using a Dynamic Programming approach.	The algorithm is implemented in a g

	Dijkstra	Bellman-Ford
Non-Negative Weights	Works correctly	Works correctly
	for directed and	for directed and
weights	undirected graphs	undirected graphs
Negative Weights	Fails	Works correctly
riegative weights		with directed graphs only
Nogotivo Cyalog	Negative Cycles Fails	Can detect negative cycles
Negative Cycles		in directed graphs
Time Complexity	$O(V + E \cdot log(V))$	$O(V \cdot E)$

d-dijkstras-algorithms/

ge, Dijkstra's Algorithm vill not work if you are
network information, re connected.
buted manner.
he time complexity (E
reedy manner.