Machine learning II, unsupervised learning and agents: reinforcement learning

- ▶ RL has many applications and is quite a hot topic.
- ▶ Deep Reinforcement Learning has received a lot of attention recently.

Atari games

Figure - [?]

► AlphaGo

Figure - Go game, beaten by AlphaGo in 2017 [?]

Presentation of Reinforcement Learning

Reinforcement Learning is also being used in the community of Computationnal neuroscience. Presentation of Reinforcement Learning

Overview

Supervised learning and Correction

- ► In supervised learning, the supervisor indicates the expected answer the agent should give.
- ► The feedback does not depend on the action performed by the agent (for instance the prediction from the agent)

Supervised learning and Correction

- ► In supervised learning, the supervisor indicates the expected answer the agent should give.
- ► The feedback does not depend on the action performed by the agent (for instance the prediction from the agent)
- ▶ We say that the agent receives an instructive feedback.

Supervised learning Correction

- ► In supervised learning, the supervisor indicates the expected answer the agent should give.
- ▶ The agent must then **correct its model** based on this answer.

Cost sensitive learning

- ▶ In Cost sensitive learning, the situation is different.
- ► The agent receives an **evaluative feedback**. The feedack depends on the action performed by the agent.

Cost sensitive learning

- In Cost sensitive learning, the situation is different.
- ► The agent receives an evaluative feedback. The feedack depends on the action performed by the agent.
- Examples :
 - Al playing a game and receiving "victory" or "defeat" as a feedback.
 - Child playing with an animal.

► Reinforcement learning is a particular case of cost-sensitive learning.

- ► Reinforcement learning is a particular case of cost-sensitive learning.
- In reinforcement learning, the feedback is a real number.

- ► Reinforcement learning is a particular case of cost-sensitive learning.
- In reinforcement learning, the feedback is a real number.
- **Example**: amount of coins won after a poker turn.

- ► First, the agent does not know if a reward is good or bad per se.
- ▶ A reward of -10 can be good or bad depending on the other rewards that are possible to obtain!

- First, the agent does not know if a reward is good or bad per se.
- ▶ A reward of -10 good be good or bad depending on the other rewards that are possible to obtain.
- ► Most of the time, the objective of the agent will be to optimize the **agregation of rewards**.

► The agent lives in a world *E*, and can be in several states *s*. The agent performs **actions** *a* and receives rewards *r*.

- ▶ The agent lives in a world E, and can be in several states s. The agent performs **actions** a and receives rewards r.
- Examples :
 - ightharpoonup world = \mathbb{R}^2
 - ▶ state = position
 - actions = moving somewhere
 - reward = amount of food found

Formalization

► There are many aspects of the problem that we need to formalize. Several formalizations are possible depending on the situation.

Formalization

- ► There are many aspects of the problem that we need to formalize. Several formalizations are possible depending on the situation.
- ► We will consider discrete spaces :
 - the time will be discrete
 - the number of possible states will be finite
 - the number of possible actions will be finite
- Continuous spaces are also available for RL. In those cases the objects are slightly different, and the optimization procedures also differ. For an introductory course, discrete spaces are more suitable.

Question

- We will consider discrete spaces :
 - ▶ the time will be discrete
 - the number of possible states will be finite
 - the number of possible actions will be finite
- Are these hypotheses valid in the case of AlphaGo?

Question

- We will consider discrete spaces :
 - the time will be discrete
 - the number of possible states will be finite
 - the number of possible actions will be finite
- Are these hypothesis valid in the case of AlphaGo?

Yes! This shows that discrete spaces can still describe very complex problems.

Formalization

- we will write :
 - \triangleright S_t : state at time t
 - $ightharpoonup R_t$: reward received at time t
 - \triangleright A_t : action performed at time t
- \blacktriangleright the actions are chosen according to a **policy** π

Policies

- ▶ The policy π is a function of the current state.
- ▶ It can be **deterministic**: the action chosen is chosen with probability 1.

Policies

- ▶ The policy π is a function of the current state.
- ▶ It can be **deterministic**: the action chosen is chosen with probability 1.
- Or stochastic : the action performed in a given state is drawn from a distribution.

Two levels of randomness

- ▶ The policy can be deterministic or stochastic.
- ▶ But the result of an action could also be stochastic! This is called a **stochastic transition function**.

Two levels of randomness

- ► The policy can be deterministic or stochastic.
- ▶ But the result of an action could also be stochastic! This is called a **stochastic transition function**.

Figure – A stochastic policy with a stochastic transition function.

Exercice 1:

What is the probability of staying in state s when performing an action from s? and from S_1 and S_2 ?

Figure – A stochastic policy with a stochastic transition function.

Agregation of rewards

- ▶ Remember that our agent want to optimize the **agregation of** the rewards.
- ► There are several ways to agregate the rewards.

Returns

We introduce the **return** G_t .

► Episodic case (finite number *N* of steps) :

$$G_t = R_{t+1} + R_{t+2} + \dots + R_{t+N} \tag{1}$$

Continuing tasks:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$
 (2)

 $\gamma \in [0,1[$ is the discount factor

Value function

Given a fixed policy π , the value function $v_{\pi}(s)$ quantifies how good a state s is.

$$v_{\pi}(s) = E[G_t|S_t = s] \tag{3}$$

(the expectation is taken over the next actions, following the policy π).

The Bellman equation

Given a fixed policy π , and a state s, we can write a recursive relationship between $v_{\pi}(s)$ and the values v_{π} of the next possible successor states (see the Sutton book for the general form of the equation 3.12 page 85).

More considerations

- ► The Markov hypothesis
- ► Exploitation exploration compromise

ϵ -greedy policy

A way to tackle the exploitation-exploration compromise.

- with probability 1ϵ : go to the best known reward (exploitation).
- \blacktriangleright with probability ϵ : perform a random action (exploration).

Art

"RL is a science, but dealing with the exploration-exploitation compromise is an art" (Sutton)

Dynamic programming

- ► Today we will study a simple case of Reinforcement learning
- Deterministic transition function.

World

Figure – 2 dimensional world.

Reward

Figure – Reward function.

2D world

▶ Our agent can move in the 4 directions, one step at a time.

Optimal value functions

We look for the value of the **optimal policy** π^* , defined by the fact that it has the best value function among all policies.

$$\begin{aligned} v_*(s) &= \max_{a \in \text{available actions}} E[G_t | S_t = s, A_t = a] \\ &= \max_{a \in \text{available actions}} E[\sum_{k \geq 0} \gamma^k R_{t+k+1} | S_t = s, A_t = a] \\ &= \max_{a \in \text{available actions}} E[R_{t+1} + \gamma \sum_{k \geq 1} \gamma^{k-1} R_{t+k+1} | S_t = s, A_t = a] \\ &= \max_{a \in \text{available actions}} E[R_{t+1} + \gamma \sum_{k \geq 0} \gamma^k R_{t+k+2} | S_t = s, A_t = a] \\ &= \max_{a \in \text{available actions}} E[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a] \end{aligned}$$

$$(4)$$

Bellman optimality equation

In the case of our simple 2D deterministic world, the Bellman optimality equation ?? takes a simpler form!

$$v_*(s) = \max_{a \in \text{available actions}} R_{t+1} + \gamma v_*(S_{t+1})$$
 (5)

The expected values are replaced by deterministic values.

Value Iteration

- ▶ Value iteration belongs to dynamic programming methods. They are a specific case of RL where a perfect model of the environment is assumed.
- ▶ In value iteration, equation ?? is used as an update rule at each time step.

Value Iteration

- First, the initial Value function for all the states is 0.
- ► Then we propagate the information about the rewards between the states, in order to update the value function (sweep)

$$\forall s \in V(s) \leftarrow \max_{a} (R_{t+1} + \gamma V(s_{t+1}) | S_t = s, A_t = a)$$
 (6)

▶ In parallel, we explore the world to learn about the distribution of rewards.

Value iteration

▶ After learning, we will obtain a value function

- cd reinforcement learning/
- Use the file create_world.py in order to generate your own environment.
- ▶ You can also use the one that is already there if you prefer.
- ▶ We store the data about the world in .npy files.

Exercice 2:

► In value_iteration.py, modify the function move_agent() so that the agent is randomly moved at each time step.

Exercice 3:

▶ In value_iteration.py, modify the function update_value_function() in order to update the value function according to the Bellman equation, and run the algorithm until convergence of the value function.

Figure – After learning hte optimal policy, the agent can go to the reward.

Figure – After learning, the agent can go to the reward.

Figure – After learning, the agent can go to the reward.

Figure – After learning, the agent can go to the reward.

Figure – After learning, the agent can go to the reward.

Figure – After learning, the agent can go to the reward.

Multiple paradigms

- ► Reinforcement learning has many variants.
- In the ones we studied, a model of the consequence of our actions was known.
- ► This is not always the case.

Temporal difference learning

- In temporal difference learning, the agent does not know a model of its world.
- But it can still learn the value function with the TD (temporal difference) updates

Temporal difference learning

- In temporal difference learning, the agent does not know a model of its world.
- But it can still learn the value function with the TD (temporal difference) updates

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)] \qquad (7)$$

Monte Carlo methods

Monte Carlo methods can be used in Reinforcement Learning to estimate some expected values (such as the expected reward in a given state).

Actor critic methods

- ► Sometimes you can use two policies
 - the behavior policy provides actions and guarantees exploration
 - ▶ the **target policy** is the optimal policy learned in parallel by the agent, that would be used in exploitation mode.

Tabular case and continous case

- ▶ We studied **finite** (and thus discrete situations).
- ▶ However, RL can also be applied to continuous state / discrete action spaces (DQN).

Tabular case and continous case

- ▶ We studied **finite** (and thus discrete situations).
- ▶ However, RL can also be applied to continuous state / discrete action spaces (DQN)
- ► And even to continous state / continous action spaces (DDPG) [?] .

References I