Supervises Learning

- + Definitions
- + LINEAR Regression
- + BATCH & STOCHASTIC GRADIENT
- + Mormal Equations

Superviseo LEARNILLY

PREDICTION

A: X - 4

IMAGES CAT

TEXT IS HAVE SPEECH!

HOUSE DATA PRICE

WE CARE ABOUT NEW X VALUES NOT IN FRAINLY SET.

y IS OSLIETE > Classification

y IS Continuous > Regressin

GIVEN TRAINING SET

{(X(1), y(1)), --- (x(n), y(n))}

x" ex , y" e 4

Do: find good h: 2 → 4 (hyporen)

EXAMPLE DATA HOUSE POLCES (AMES DATAGET, KAGGLE DATALET)

	SalePrice	Lot.Area
4	189900	13830
5	195500	9978
9	189000	7500
10	175900	10000
12	180400	8402
22	216000	7500
36	376162	12858
47	320000	13650
55	216500	7851
56	185088	8577
58	222500	9505
59	333168	14774

h: Lot. AREA -> PRICE

Slightly Richer Gramole...

	Lot.Area	SalePrice	Bedroom.AbvGr
4	13830	189900	3
5	9978	195500	3
9	7500	189000	3
10	10000	175900	3
12	8402	180400	3
22	7500	216000	3
36	12858	376162	3
47	13650	320000	3
55	7851	216500	4
56	8577	185088	3
58	9505	222500	3
59	14774	333168	4

How do we represent
$$R_0^2$$

$$\chi_0^{(1)} = 1$$

$$\chi_0^{(1)} = 0 + 0 \cdot \chi_1$$

$$\frac{S12E}{2} = \frac{8E2RDM}{2} = 1$$

$$\chi_0^{(1)} = 1$$

$$\chi_0^{($$

$$\mathcal{L}(x) = \Theta_0 x_0 + \Theta_1 x_1 + \dots + \Theta_0 x_0$$

$$= \underbrace{2}_{0} \Theta_0 \cdot x_0 \cdot X_0$$

$$X = \begin{bmatrix} x^{(n)} \\ x^{(n)} \end{bmatrix} \in \mathbb{R}^{n \times (d+1)}$$

$$\vdots$$

GRADIENT DESCENT

$$\Theta_{j}^{(6)} = \emptyset$$

$$\Theta_{j}^{(4)} := \Theta_{j}^{(4)} - \chi \frac{\partial}{\partial \Phi_{j}} \mathcal{J}(\theta^{(6)})$$

$$\frac{2}{2\theta_{j}} J(\theta) = \sum_{i=1}^{n} \frac{1}{2} \frac{2}{2\theta_{i}} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$= \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{1}{2\theta_{i}} h_{\theta}(x^{(i)})$$

$$= \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{1}{2\theta_{i}} h_{\theta}(x^{(i)})$$

$$= \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{1}{2\theta_{i}} h_{\theta}(x^{(i)})$$

$$= \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{1}{2\theta_{i}} h_{\theta}(x^{(i)})$$

$$= \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{1}{2\theta_{i}} h_{\theta}(x^{(i)})$$

$$= \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{1}{2\theta_{i}} h_{\theta}(x^{(i)})$$

$$f_{i}(x) = \Theta_{0} x_{0} + \Theta_{i} x_{1} + \Theta_{2} x_{2} + --- + \Theta_{3} x_{3}$$

$$2 | f_{i}(x) = x :$$

$$\frac{2}{2\theta_{3}} h_{0}(k) = \chi_{j}$$

$$\frac{(4+1)}{2} := \theta^{(4)} - \alpha \sum_{i=1}^{n} \left(h_{0}(\chi_{(i)}) - y_{(i)} \right) \chi_{(i)}^{(i)}$$

$$\frac{1}{2\theta_{3}} h_{0}(k) = \chi_{j}^{(4)} - \alpha \sum_{i=1}^{n} \left(h_{0}(\chi_{(i)}) - y_{(i)} \right) \chi_{(i)}^{(i)}$$

VECTOR

EQUATION

$$\bigcirc^{(4+1)} := \Theta^{(4)} - \alpha \sum_{i=1}^{n} \left(h_{\Theta} \left(\chi^{(i)} \right) - y^{(i)} \right) \chi^{(c)}$$

MINIGATEU \mathcal{B} (AT RANDOM) \mathcal{B} (CN) $\mathcal{B}^{(H1)} := \mathcal{B}^{(H)} - \mathcal{A}_{\mathcal{B}} \mathcal{B}^{(H)} (\mathcal{A}_{\mathcal{B}}^{(G)}) - \mathcal{A}_{\mathcal{B}}^{(G)} \mathcal{A}_{\mathcal{B}}^{(G)}$

Normal Equation