Trabajo práctico: unidad 3

Probabilidad y estadística

Martín Rossi

```
1) Se definen los sucesos:
```

 T_0 : "se emite un 0"

 T_1 : "se emite un 1"

 R_0 : "se recibe un 0"

 R_1 : "se recibe un 1"

Se tiene que:

 $P(T_0) = 0.5$

 $P(T_1) = 0.5$

Entonces se define el suceso E: "se comete un error en la transmisión" como:

 $E = (T_0 \cap R_1) \cup (T_1 \cap R_0)$

Y se calcula la probabilidad:

$$P(E) = P((T_0 \cap R_1) \cup (T_1 \cap R_0))$$

$$= P(T_0 \cap R_1) + P(T_1 \cap R_0) - P(T_0 \cap R_1 \cap T_1 \cap R_0)$$

$$= P(T_0 \cap R_1) + P(T_1 \cap R_0) \qquad (T_0 \text{ y } T_1 \text{ excluyentes})$$

$$= P(T_0|R_1)P(R_1) + P(T_1|R_0)P(R_0)$$

$$= P(T_0)P(R_1) + P(T_1)P(R_0) \qquad \text{(si se asume independencia entre } R \text{ y } T)$$

$$= 0.5 * P(R_1) + 0.5 * P(R_0)$$

2) Se definen los sucesos:

 I_1 : "error importante en la primer prueba"

 I_2 : "error importante en la segunda prueba"

 M_1 : "error menor en la primer prueba"

 M_2 : "error menor en la segunda prueba"

 N_1 : "ningún error en la primer prueba"

 N_2 : "ningún error en la segunda prueba"

Se tiene que:

$$P(I_1) = 0.6$$

$$P(M_1) = 0.3$$

$$P(N_1) = 0.1$$

a) Usando estas probabilidades junto con la fórmula de probabilidad condicional $P(A|B) = P(A \cap B)/P(B)$ se forma la tabla de intersecciones:

Tipo de error segunda prueba

		Importante	Menor	Ninguno
Tipo de error	Importante	0.18	0.3	0.12
primera prueba	Menor	0.03	0.09	0.18
	Ninguno	0	0.02	0.08

b) Se puede condicionar la probabilidad por el resultado de la primer prueba. Como I_1, M_1, N_1 forman una partición de S, se calcula $P(I_2)$ con los valores de la tabla:

$$P(I_2) = P(I_2|I_1)P(I_1) + P(I_2|M_1)P(M_1) + P(I_2|N_1)P(N_1)$$

= 0.3 * 0.6 + 0.1 * 0.3 + 0 * 0.1
= 0.21

c)

$$P(M_1|I_2) = P(M_1 \cap I_2)/P(I_2)$$

$$= 0.03/0.21$$

$$= 0.1429$$

d)

$$P(M_2) = P(M_2|I_1)P(I_1) + P(M_2|M_1)P(M_1) + P(M_2|N_1)P(N_1)$$

= 0.5 * 0.6 + 0.3 * 0.3 + 0.2 * 0.1
= 0.41

$$P(N_2) = P(N_2|I_1)P(I_1) + P(N_2|M_1)P(M_1) + P(N_2|N_1)P(N_1)$$

= 0.2 * 0.6 + 0.6 * 0.3 + 0.8 * 0.1
= 0.38

Tipo de error primera prueba

		Importante	Menor	Ninguno
Tipo de error	Importante	0.8571	0.1429	0
segunda prueba	Menor	0.7317	0.2195	0.0488
	Ninguno	0.3158	0.4737	0.2105

Ningún resultado de la primera es independiente al de la segunda, una vez hechas las dos pruebas.

3) Se definen los sucesos:

 ${\cal E}$: "una persona tiene la enfermedad"

A: "el test da positivo"

Tenemos los siguientes datos:

$$P(A|E) = 0.9$$

$$P(A|\overline{E}) = 0.05$$

$$P(E) = 0.12$$

$$P(\overline{E}) = 0.88$$

Se calcula $P(\overline{E}|A)$:

$$P(\overline{E}|A) = \frac{P(A|\overline{E})P(\overline{E})}{P(A)}$$
 (Teorema de Bayes)

$$= \frac{0.05 * 0.88}{P(A|E)P(E) + P(A|\overline{E})P(\overline{E})}$$

$$= \frac{0.05 * 0.88}{0.9 * 0.12 + 0.05 * 0.88}$$

$$= 0.2895$$