TTI3A3 Sistem Komunikasi 1

Pokok Bahasan:

Transmisi Digital Baseband

Dosen: Dr. Suhartono Tjondronegoro

Rencana Pembelajaran Semester

	Materi Pembelajaran	Capaian Pembelajaran
Minggu ke 10 dan 11. PLO 5. CLO 3. Sub-CLO 11.	 Sinyal baseband digital: pengertian, unipolar, bipolar, RZ, NRZ, AMI, HDB3. Pengenalan modulasi digital: ASK, FSK, PSK, QAM. Modulasi M-level, bit- rate, simbol rate, bandwidth. 	 Memahami modulasi digital baseband dan passband serta perbedaannya. Mengenal beberapa contoh modulasi baseband. Mengetahui jenis-jenis modulasi passband dan sifat-sifatnya. Memahami arti level modulasi dan pengaruhnya terhadap bandwidth.

Transmisi Digital Baseband

- Pendahuluan
- 2. Level-encoded keluaran line coding
- 3. Interferensi antar simbol
- 4. Kanal Nyquist
- 5. Spektrum pulsa "Raised-Cosine"
- 6. Bandwidth Transmisi
- 7. Bit Error Rate (BER)
- 8. SNR referensi untuk sistem digital
- 9. Deteksi pulsa dilingkungan derau
- 10. Kinerja BER

1. Pendahuluan (1)

- Terminologi "baseband" dipakai menyebutkan band frekuensi yang merespresentasikan sinyal original dari sumber informasi.
- Contoh sumber informasi:
 - Sebuah komputer yang mengeluarkan aliran data biner, terdiri dari simbol 0 dan 1.
- Tugas sistem komunikasi digital adalah membawa aliran data dari sumber ke tujuan melalui sebuah kanal dengan andal.
- Untuk transmisi baseband, sistem komunikasi menggunakan "discrete pulse-amplitude modulation", merupakan sebuah bentuk "pulse-amplitude modulation" dengan amplituda dikuantisasi kedalam sebuah himpunan level-level diskrit.

1. Pendahuluan (2)

1. Pendahuluan (3)

Diagram blok pengirim:

Masukan data biner

- Elemen b_k merepresentasikan simbol biner 1 atau 0, dikeluarkan oleh sumber informasi.
- Keluaran pengkode line, adalah sinyal level-encoded a_k , dapat ditulis secara spesifik:

$$a_k = \begin{cases} +1 \ Volt, & bila \ masukan \ b_k \ adalah \ simbol \ 1 \\ -1 \ Volt, & bila \ masukan \ b_k \ adalah \ simbol \ 0 \end{cases}$$

• Sinyal a_k masuk ke filter pengirim, untuk menghasilkan deretan pulsapulsa s(t), dimana bentuknya ditentukan oleh respons impuls g(t) dan respons frekuensi G(f), hubungan antara g(t) dengan G(f):

$$g(t) \stackrel{TF}{\Leftrightarrow} G(f)$$

1. Pendahuluan (4)

Diagram blok pengirim:

Masukan data biner

Keluaran filter pengirim adalah sinyal PAM diskrit, dengan persamaan:

$$s(t) = \sum_{k=-\infty}^{\infty} a_k g(t - kT_b)$$

• Sinyal s(t) masuk ke kanal, apabila derau yang ada di kanal diabaikan, maka persamaan masukan dipenerima:

$$x(t) = s(t) * h(t)$$

• Dan dipenerima: y(t) = x(t) * q(t)

1. Pendahuluan (5)

- Diagram blok sederhana:
- Merepresentasikan pemancar, kanal dan penerima sebelum devais pembuat keputusan.

Versi

- Keluaran filter y(t) akan dicuplik secara sinkron dengan generator pulsa-pulsa pendetak di pengirim.
- Dengan memakai devais pembuat keputusan, maka keluaran penerima adalah versi rekonstruksi deretan level-encoded $\{a_k\}$

2. Level-encoded keluaran line coding (1)

- Line codes suatu cara secara listrik merepresentasikan sebuah aliran bit didalam sistem komunikasi digital baseband.
- Pemilihan bentuk line coding berdasarkan pertimbangan antara lain sebagai berikut:
 - 1. DC component.
 - 2. Self-Clocking.
 - 3. Error detection capability.
 - 4. Bandwidth compression.
 - 5. Differential encoding.
 - 6. Noise immunity.

Ref 1, halaman 88.

2. Level-encoded keluaran line coding (2)

Unipolar NRZ

Spektrum Amplituda

$$G_{x}(f) = \frac{A^{2}T_{b}}{4}\operatorname{sinc}^{2}(fT_{b})\left(1 + \frac{1}{T_{b}}\delta(f)\right)$$

2. Level-encoded keluaran line coding (3)

Polar NRZ

Spektrum Amplituda

$$G_{x}(f) = A^{2}T_{b}\operatorname{sinc}^{2}(fT_{b})$$

2. Level-encoded keluaran line coding (4)

Unipolar RZ

Spektrum Amplituda

$$G_{x}(f) = \frac{A^{2}T_{b}}{16}\operatorname{sinc}^{2}\left(\frac{fT_{b}}{1}\right)\left[1 + \frac{1}{T_{b}}\sum_{n=-\infty}^{\infty}\delta\left(f - \frac{n}{T_{b}}\right)\right]$$

2. Level-encoded keluaran line coding (5)

Bipolar RZ

Spektrum Amplituda

$$G_{x}(f) = \frac{A^{2}T_{b}}{4}\operatorname{sinc}^{2}\left(\frac{fT_{b}}{2}\right)\operatorname{sin}^{2}(\pi fT_{b})$$

3. Interferensi antar simbol (1)

 Effek derau additif dikanal, diabaikan, perhatian kita ditujukan kepada pengaruh respons frekuensi kanal (adaya dispersi bentuk pulsa akibat kanal) terhadap transmisi data melalui kanal.

$$s(t) = \sum_{k=-\infty}^{\infty} a_k g(t - kT_b)$$

• Keluaran filter penerima:

$$y(t) = \sum_{k=-\infty}^{\infty} a_k p(t - kT_b)$$

Diagram blok:

Respons impuls

$$p(t) = g(t) * h(t) * q(t)$$

3. Interferensi antar simbol (2)

- Dikawasan frekuensi: P(f) = G(f)H(f)Q(f)
- Keluaran filter penerima y(t) dicuplik secara sinkron dengan pengirim, bila:

$$y(iT_b) = \sum_{k=-\infty}^{\infty} a_k p[(i-k)T_b], \qquad i = 0, \pm 1, \pm 2, ...$$

• Menyatakan cuplikan y(t), dihasilkan pada saat $t = iT_b$. Untuk menyederhanakan penulisan, ditulis:

$$y_i = y(iT_b)$$
, dan $p_i = p(iT_b)$

• Maka hasil cuplikan y(t) pada saat $t=iT_b$, dapat ditulis sebagai penjumlahan konvolusi diskrit:

$$y_i = \sum_{k=-\infty}^{\infty} a_k p_{i-k}, \qquad i = 0, \pm 1, \pm 2, \dots$$

• Kita lihat bahwa $y_i = y(iT_b)$ adalah masukan ke devais pembuat keputusan.

3. Interferensi antar simbol (3)

Definisikan:

$$p_0 = p(0) = \sqrt{E}$$

- Dimana E adalah energi sinyal yang ditransmisikan per bit (atau per simbol).
- Dari persamaan:

$$y_i = \sum_{k=-\infty}^{\infty} a_k p_{i-k}, \qquad i = 0, \pm 1, \pm 2, \dots$$

• Bila suku yang menyatakan k = i, dipisahkan, maka diperoleh:

$$y_i = \sqrt{E}a_i + \sum_{k=-\infty}^{\infty} a_k p_{i-k}, \qquad i = 0, \pm 1, \pm 2, \dots$$

• Besaran $\sqrt{E}a_i$ merepresentasikan simbol biner yang ditransmisikan

$$\sum_{k=-\infty, k\neq i}^{\infty} a_k p_{i-k} \text{ merepresentasikan } \mathbf{interferensi antar simbol}$$

3. Interferensi antar simbol (4)

- Interferensi antar simbol: simbol-simbol yang ditransmisikan, setelah melalui kanal, saling tumpang tindih.
- Bila tidak ada interferensi antar simbol

$$y_i = \sqrt{E}a_i$$
, untuk semua i

- Kondisi ini merepresentasikan kondisi dekoding yang sempurna.
- Pada kondisi derau kanal diabaikan, masalah "pulse-shaping problem" didalam perencanaan sistem PAM dapat dinyatakan sebagai berikut:
- Dengan adanya respons frekuensi kanal H(f), perancang sistem komunikasi menentukan spektrum pulsa yang ditransmisikan G(f) dan respons frekuensi filter penerima Q(f) agar memenuhi 2 syarat dasar:
 - a. Interferensi antar simbol diperkecil sampai nol.
 - Bandwidth transmisi dibuat hemat.

4. Kanal Nyquist (1)

Diagram blok sederhana:

Versi

- Solusi optimum masalah "pulse-shaping problem": kondisi interferensi antar simbol = nol harus memenuhi kemungkinan bandwidth transmisi minimum.
- Dengan $y_i = a_i$ untuk semua i mendefinisikan kondisi interferensi antar simbol = nol, artinya dari persamaan:

$$y_i = \sqrt{E}a_i + \sum_{k=-\infty, k\neq i}^{\infty} a_k p_{i-k}, \qquad i = 0, \pm 1, \pm 2, \dots$$

4. Kanal Nyquist (2)

• Transformasi Fourier invers terhadap P(f) harus memenuhi kondisi:

$$p_i = p(iT_b) = \begin{cases} \sqrt{E}, & i = 0\\ 0, & \forall i \neq 0 \end{cases}$$

- Pencuplikan p(t) dengan rate uniform = rate bit $1/T_b$.
- Diandaikan bahwa p(t) adalah band frekuensi terbatas dalam selang $-B_0 < f < B_0$, dimana B_0 akan didefinisikan.
- Dengan memakai rumus interpolasi:

$$g(t) = \sum_{n=-\infty}^{\infty} g\left(\frac{n}{2W}\right) \operatorname{sinc}(2Wt - n)$$

Kita peroleh:

$$p(t) = \sum_{n=-\infty}^{\infty} p\left(\frac{i}{2B_0}\right) \operatorname{sinc}(2B_0 t - i)$$

• Diandaikan bandwidth B_0 terhubung dengan rate bit $1/T_b$ dengan persamaan $B_0 = 1/2T_b$.

4. Kanal Nyquist (3)

Dari persamaan:

$$p_i = p(iT_b) = \begin{cases} \sqrt{E}, & i = 0 \\ 0, & \forall i \neq 0 \end{cases}, dan B_0 = 1/2T_b$$

Dimasukkan kepersamaan:

$$p(t) = \sum_{n=-\infty}^{\infty} p\left(\frac{i}{2B_0}\right) \operatorname{sinc}(2B_0 t - i)$$

Diperoleh bentuk pulsa optimum:

$$p_{opt}(t) = \sum_{n=-\infty}^{\infty} p(iT_b) \operatorname{sinc}(2B_0 t - i) \bigg|_{i=0} = \sqrt{E} \operatorname{sinc}(2B_0 t)$$

$$p_{opt}(t) = \sqrt{E} \frac{\sin(2\pi B_0 t)}{(2\pi B_0 t)}$$

4. Kanal Nyquist (4)

• Spektrum pulsa P(f) keseluruhan adalah fungsi "optimum brick-wall function"

$$P_{opt}(f) = \begin{cases} \frac{\sqrt{E}}{2B_0}, & untuk - B_0 < f < B_0 \\ 0, & nilai \ lain \end{cases}$$

4. Kanal Nyquist (5)

- Ada beberapa hal penting yang perlu diperhatikan:
 - Spektrum brick-wall $P_{opt}(f)$ mendefinisikan B_0 adalah bandwidth transmisi minimum untuk interferensi antar simbol = nol.
 - Parameter B_0 :

$$B_0 = \frac{1}{2T_b} = \frac{r_b}{2}$$
, disebut **bandwidth Nyquist**

- Sistem PAM dengan spektrum pulsa optimum $P_{opt}(f)$ disebut kanal Nyquist.
- Bentuk pulsa optimum $p_{opt}(t)$ mempunyai nilai maksimum di t=0, bernilai nol di $t=kT_b$, artinya pulsa-pulsa yang didefinisikan oleh $p_{opt}(t-kT_b)$ dan ada dipersamaan:

$$y(t) = \sum_{k=-\infty}^{\infty} a_k p(t - kT_b), k = 0, \pm 1, \pm 2, \dots$$

$$tidak \ saling \ interferensi$$

4. Kanal Nyquist (6)

- Solusi optimum untuk interferensi antar simbol = 0 dan bandwidth transmisi minimum, dalam kondisi tanpa derau kanal.
- Ada 2 kesulitan yang menyebabkan solusi optimum di sistem PAM menjadi tidak praktis:
 - 1. Respons pulsa $p_{opt}(t)$ tidak kausal, artinya $P_{opt}(f)$ tidak dapat direalisasikan.
 - Secara praktis tidak ada marjin error untuk waktu pencuplikan dipenerima.

5. Spektrum Pulsa "Raised-Cosine" (1)

- Untuk menjamin bahwa spektrum pulsa P(f) dapat direalisasikan secara physik, dibutuhkan sebuah solusi yang berbeda dari kanal Nyquist dalam satu hal yang penting: P(f) yang sudah dimodifikasi mengecil menuju nol secara kontinyu daripada mengecil dengan tiba-tiba.
- P(f) yang diusulkan terdiri dari 2 (dua) bagian:
 - 1. Bagian flat (rata), yang memakai band frekuensi $0 \le |f| \le f_1$, dimana parameter f_1 akan didefinisikan.
 - 2. Bagian roll-off (menurun), yang memakai band frekuensi $f_1 < |f| < 2B_0 f_1$
- Parameter f_1 dapat diatur dibawah kendali perancang P(f).

5. Spektrum Pulsa "Raised-Cosine" (2)

• Persamaan P(f):

$$P(f) = \begin{cases} \frac{\sqrt{E}}{2B_0}, & 0 \le |f| < f_1 \\ \frac{\sqrt{E}}{4B_0} \left\{ 1 + \cos \left[\frac{\pi(|f| - f_1)}{2(B_0 - f_1)} \right] \right\}, & f_1 \le |f| < 2B_0 - f_1 \\ 0, & 2B_0 - f_1 \le |f| \end{cases}$$

• Frekuensi $f_{f 1}$ dan bandwidth Nyquist $B_{f 0}$ dihubungkan oleh parameter:

$$\alpha = 1 - \frac{f_1}{B_0}$$
 disebut **faktor roll – off**

Respons pulsa:

$$p(t) = \sqrt{E} \operatorname{sinc}(2B_0 t) \left(\frac{\cos(2\pi \alpha B_0 t)}{1 - 16\alpha^2 B_0^2 t^2} \right)$$

5. Spektrum Pulsa "Raised-Cosine" (3)

- Spektrum pulsa "Raised-Cosine"
- $\alpha = 0$ $\alpha = 1/2$ 0.8 $\alpha = 1$ $2B_0P(f)/\sqrt{E}$ 0.6 0.4 0.2 -0.50.5 f/B_0
- Respons pulsa p(t)

6. Bandwidth Transmisi

Bandwidth transmisi memakai Spektrum pulsa "Raised-Cosine":

$$B_T = 2B_0 - f_1 = B_0(1 + \alpha)$$

$$B_0 = \frac{1}{2T_b} = \frac{r_b}{2}, \quad bandwidth \, Nyquist$$

 $f_v = \alpha B_0$ disebut excess bandwidth

Kode Line	Bandwidth Absolut	Effisiensi Spektral			
Unipolar NRZ	$B_0(1+\alpha)$	$2/(1+\alpha)$			
Polar NRZ	$B_0(1+\alpha)$	$2/(1+\alpha)$			
Unipolar RZ	$2B_0(1+\alpha)$	$1/(1+\alpha)$			
Bipolar RZ (AMI)	$B_0(1+\alpha)$	$2/(1+\alpha)$			
Manchester	$2B_0(1+\alpha)$	$1/(1+\alpha)$			
M-ary PAM	$B_0(1+\alpha)/k$	$2k/(1+\alpha)$			

7. Bit Error Rate (BER)

- Kualitas sistem komunikasi digital diukur dengan besaran bit error rate (BER) rata-rata.
- Sebuar error bit terjadi bila bit yang diterima tidak sama dengan bit yang ditransmisikan, hali ini adalah kejadian acak.
- Bila n adalah jumlah eror-eror bit yang diamati selama deretan bit-bit dengan panjang N, maka definisi frekuensi relatif BER adalah:

$$BER = \lim_{N \to \infty} \left(\frac{n}{N}\right)$$

Nilai BER yang dibutuhkan tergantung aplikasi:

Aplikasi	Nilai BER				
Vocoded speech	$10^{-2} - 10^{-3}$				
Transmisi data lewat kanal nirkabel	$10^{-5} - 10^{-6}$				
Transmisi video	$10^{-7} - 10^{-12}$				
Data finansial	< 10 ⁻¹¹				

8. SNR referensi untuk sistem digital

 SNR referensi adalah rasio antara "modulated energy per information bit" terhadap "the oneside noise spectral density"

$$SNR_{ref}^{digital} = \frac{Modulated\ energy\ per\ bit}{Noise\ spectral\ density} = \frac{E_b}{N_0}$$

• Untuk membandingkan sitem modulasi-demodulasi digital, dipakai kinerja BER sebagai fungsi SNR_{ref} yang dinyatakan dengan E_b/N_0

9. Deteksi pulsa dilingkungan derau (1)

Pemrosesan sebuah pulsa di baseband:

- Pembanding threshold dipakai untuk menentukan situasi dibawah ini, mana yang sudah terjadi:
- 1. Sinyal yang diterima r(t) hanya terdiri dari derau putih Gaussian w(t).
- 2. Sinyal yang diterima r(t) terdiri dari w(t) ditambag sinyal s(t) yang bentuknya diketahui.
- Derau diasumsikan mempunyai mean = nol dan densitas spektral daya $N_0/2$.

9. Deteksi pulsa dilingkungan derau (2)

Binary pulse amplitude modulation memakai pengsinyalan on-off:

$$s(t) = \begin{cases} Ada \ pulsa, & merepresentasikan \ simbol \ 1 \\ Tidak \ ada \ pulsa. & merepresentasikan \ simbol \ 0 \end{cases}$$

Sinyal yang diterima:

$$r(t) = \begin{cases} s(t) + w(t), & Ada \ pulsa \\ w(t), & Tidak \ ada \ pulsa \end{cases}$$

- s(t) adalah sebuah pulsa baseband, $\neq 0$, $diinterval\ 0 \leq t \leq T$.
- Filter memproses r(t), keluarannya akan dicuplik (sample) pada saat T, respons impuls filter adalah g(t), linier dan tidak berubah terhadap waktu.

9. Deteksi pulsa dilingkungan derau (3)

Peubah acak untuk menentukan apakah pulsa ada, didefinisikan dengan persamaan:

$$Y = \int_{0}^{T} g(T - t)r(t)dt$$

- Filter yang diinginkan adalah filter yang memaksimalkan rasio sinyal terhadap derau dikeluaran Y.
- Dalam kondisi r(t) = s(t) + w(t), maka:

$$Y = \int_{0}^{T} g(T - t)s(t)dt + \int_{0}^{T} g(T - t)w(t)dt$$

Tergantung ada/tidaknya pulsa. Tergantung derau, selalu ada

Kontribusi derau adalah peubah acak *N*:

$$N = \int_{0}^{T} g(T - t)w(t)dt, \qquad \text{filter merubah } w(t) \text{ menjadi } N$$

9. Deteksi pulsa dilingkungan derau (4)

Nilai statistik peubah acak N, terdistribusi Gaussian:

$$E[N] = \int_0^T g(T-t)E[w(t)]dt = 0, \quad nilai\ rata - rata\ derau = 0$$

$$E[N^2] = \frac{N_0 T}{2}, \quad adalah\ variansi\ derau$$

Kontribusi sinyal adalah S:

$$S = \int_{0}^{T} g(T - \tau)s(\tau)d\tau \quad (*)$$

• Untuk memaksimalkan rasio sinyal terhadap derau, akan dipilih g(t) yang memaksimalkan persamaan (*), dengan batasan:

$$\int_{0}^{T} |g(t)|^2 dt = T$$

9. Deteksi pulsa dilingkungan derau (5)

Memaksimalkan:

$$S = \int_{0}^{T} g(T - \tau)s(\tau)d\tau \quad (*)$$

Dipakai ketidaksamaan Schwarz:

$$\left| \int_{-\infty}^{\infty} g(T-t)s(t)dt \right|^{2} \leq \int_{-\infty}^{\infty} |g(T-t)|^{2}dt \int_{-\infty}^{\infty} |s(t)|^{2}dt$$

Akan sama bila:

$$g(T-t) = cs(t)$$
 (**) dengan nilai c skalar

- Implikasinya filter adalah matched dengan bentuk pulsa yang ditransmisikan, ini adalah prinsip "matched filter detection".
- g(T-t) = cs(t), masuk kepersamaan:

$$Y = \int_{0}^{T} g(T - t)r(t)dt \to Y(\tau) = c \int_{0}^{T} s(t)r(t - \tau)dt$$

9. Deteksi pulsa dilingkungan derau (6)

Persamaan:

$$Y(\tau) = c \int_{0}^{T} s(t)r(t-\tau)dt$$

- Ekivalen dengankorelasi silang antara sinyal-sinyal ergodik s(t) dan r(t).
- Struktur penerima dengan persamaan:

$$Y = \int_{0}^{T} g(T - t)r(t)dt \ dengan \ g(T - t) = cs(t)$$

• Disebut sebagai "correlation receiver", dengan r(t) = s(t) + w(t), komponen sinyal dipenerima korelasi dimaksimalkan di $\tau = 0$.

9. Deteksi pulsa dilingkungan derau (7)

Binary pulse amplitude modulation memakai pengsinyalan on-off:

$$s(t) = A \sum_{k=0}^{\infty} b_k h(t - kT), \qquad b_k = \begin{cases} 0, & \text{bila bit ke k adalah 0} \\ 1, & \text{bila bit ke k adalah 1} \end{cases}$$

• h(t) adalah pulsa rectangular dengan durasi T, dengan titik tengah t=T/2

$$h(t) = rect[(t - T/2)/T]$$

Maka filter matched:

$$g(T-t) = h(t)$$

10. Kinerja BER (1)

Detektor "integrate-and-dump"

 Transmisi on-off, penerima harus membuat keputusan diantara 2 hipotesa:

 H_0 : $b_k = 0$ telah ditransmisikan

 H_1 : $b_k = 1$ telah ditransmisikan

- Berdasarkan sinyal yang diterima Y_k selama interval simbol ke k.
- Dengan bentuk pulsa rectangular, deteksi bebas dari satu simbol ke simbol berikutnya, maka notasi Y_k dapat ditulis sebagai Y.
- Kriteria untuk memilih antara 2 hipotesa adalah memilih hipotesa yang paling mungkin berdasarkan observasi.

10. Kinerja BER (2)

- Kita bandingkan 2 peluang bersyarat:
 - $-P(H_0|y)$ adalah peluang bahwa sebuah 0 telah dikirimkan bila y diterima.
 - $-P(H_1|y)$ adalah peluang bahwa sebuah 1 telah dikirimkan bila y diterima.
- y adalah nilai peubah acak Y.
- Nilai terbesar diantara ke 2 peluang memberikan keputusan tentang bit yang dikirimkan.
- Bila sebuah 1 telah dikirimkan, peluang sebuah error type I adalah:

$$P[0 \ diputuskan|H_1] = P[Y < \gamma | H_1]$$

- Y adalah peubah acak terkait dengan observasi y.
- γ adalah nilai ambang (nilai threshold).
- Peubah acak dikeluaran filter matched:

$$Y = S + N$$

10. Kinerja BER (3)

Dari persamaan:

$$s(t) = A \sum_{k=0}^{\infty} b_k h(t - kT)$$

Dimasukkan kepersamaan:

$$S = \int_{0}^{T} g(T - \tau)s(\tau)d\tau$$

• Dengan nilai k=0, diperoleh:

$$S = Ab \int_{0}^{T} h(t)h(t)dt = ATb$$

- Nilai rata-rata $S: \mu = AT$ bila b = 1 yang dikirimkan.
- Y adalah peubah acak terdistribusi Gaussian denagan nilai rata-rata $\mu = AT$

10. Kinerja BER (4)

• Y mempunyai fungsi densitas Gaussian untuk deteksi 1, pensinyalan on-off:

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{\{-(y-\mu)/2\sigma^2\}}$$

Peluang sebuah error type I, yang dituliskan dengan persamaan:

$$P[0 \ diputuskan|H_1] = P[Y < \gamma|H_1]$$

Adalah peluang bahwa keluaran Y masuk didaerah yang diarsir, dibawah nilai γ .

Peluang tersebut adalah integral didaerah yang diarsir:

$$P[Y < \gamma | H_1] = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\gamma} e^{\{-(y-\mu)/2\sigma^2\}} dy = Q\left(\frac{\mu - \gamma}{\sigma}\right)$$

10. Kinerja BER (5)

Bila sebuah 0 telah dikirimkan, peluang sebuah error type II adalah:

$$P[1 \ diputuskan|H_0] = P[Y > \gamma|H_0]$$

$$P[Y > \gamma | H_0] = Q\left(\frac{\gamma}{\sigma}\right)$$

Daerah peluang terkait dengan error type I dan type II:

10. Kinerja BER (6)

Peluang error gabungan:

$$P_e = P[Y < \gamma | H_1].P[H_1] + P[Y > \gamma | H_0].P[H_0]$$

- Dimana $P[H_i]$ adalah probabilitas "a priori" bahwa 0 atau 1 ditransmisikan.
- Apabila bit-bit yang ditransmisikan "equiprobable", artinya $P[H_1] = P[H_0] = 0.5$
- Sehingga probabilitas error rata-rata:

$$P_e = \frac{1}{2}Q\left(\frac{\mu - \gamma}{\sigma}\right) + \frac{1}{2}Q\left(\frac{\gamma}{\sigma}\right)$$

• Bila $P[error\ type\ I] = P[error\ type\ II]$, maka dipilih $\gamma = 0.5\mu$, sehingga probabilitas error rata-rata:

$$P_e = Q\left(\frac{\mu}{2\sigma}\right)$$

10. Kinerja BER (7)

Dari paragraph 9:

$$E[N^2] = \sigma^2 = \frac{N_0 T}{2}$$

Persamaan transmisi binary PAM, transmisi on-off:

$$s(t) = A \sum_{k=0}^{\infty} b_k h(t - kT),$$

 Dengan asumsi bahwa bit 0 dan bit 1 adalah "equally likely", maka energi per bit rata-rata:

$$E_b = E\left[\int_0^T |s(t)|^2 dt\right] = A^2 E[b^2] \int_0^T |h(t)|^2 dt$$

$$E_b = A^2 \left\{ \frac{1}{2} \, 0 + \frac{1}{2} \, 1 \right\} T = \frac{A^2 T}{2} \longrightarrow A = \sqrt{\frac{2E_b}{T}}$$

10. Kinerja BER (8)

Dengan nilai:

$$\sigma = \sqrt{\frac{N_0 T}{2}} \ dan \ \mu = AT = \sqrt{\frac{2E_b}{T}}T = \sqrt{2E_b T}$$

Untuk transmisi on-off (unipolar NRZ), probabilitas error:

$$P_e^{on-off} = Q\left(\frac{\mu}{2\sigma}\right) = Q\left(\sqrt{\frac{2E_bT}{2N_0T}}\right) = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

• Untuk transmisi polar NRZ (bipolar), dengan tegangan A/2 dan -A/2, dan threshold $\gamma=0$, energi per bit rata-rata $E_b=A^2T/4$, maka probabilitas error:

$$P_e^{bipolar} = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

Alphabet Greek

A	α	Alpha	I	l	Iota	P	ρ	Rho
В	β	Beta	K	K	Kappa	Σ	σ	Sigma
Γ	γ	Gamma	Λ	λ	Lambda	T	τ	Tau
Δ	δ	Delta	M	μ	Mu	Y	υ	Upsilon
E	\mathcal{E}	Epsilon	N	ν	Nu	Φ	ϕ	Phi
Z	ζ	Zeta	[I]	υS	Xi	X	χ	Chi
Н	η	Eta	0	0	Omicron	Ψ	Ψ	Psi
Н	θ	Theta	Π	π	Pi	Ω	0	omega

Referensi:

- Bernard Sklar, Digital Communications Fundamentals and Applications,
 2nd Edition, Pearson, 2014. Chapter 2.
- 2. Simon Haykin, Michael Moher, Introduction to Analog & Digital Communications, 2nd Edition, Wiley, 2007. Chapter 6.
- 3. Simon Haykin, Michael Moher, Communication Systems, 5th Edition, Wiley, 2009. Chapter 8.

- Transmisi Digital Baseband
- Selesai