Types for Hereditary Permutators

Makoto Tatsuta (National Institute of Informatics)

Seminar

School of Computer Science and Engineering, Seoul National University March 29, 2012

Introduction

TLCA open problem 20:

- Typed Lambda Calculi and Applications
- Find a type system that characterizes hereditary permutators

Hereditary permutator

- a λ -term representing a bijection
- (infinite) nests of permutators

Results:

- (1) No single type for hereditary permutators
- the set of hereditary permutators is not recursively enumerable
- (2) Some countably infinite set of types for hereditary permutators

Ideas:

- coding of halting problem by an infinite Böhm tree
- intersection types for describing infinite computation

λ -Calculus

$$\lambda$$
-terms $M, N, \ldots := x | \lambda x. M | MM$

$$\beta$$
-reduction $(\lambda x.M)N \to_{\beta} M[x := N]$

$$\beta$$
-equality $M =_{\beta} N$

M head normal

- if
$$M$$
 is $\lambda x_1 \dots x_n.yN_1 \dots N_m$

M head normalizing

- if $M =_{\beta} N$ head normal

FV(M) the set of free variables in M Λ the set of λ -terms

Böhm Tree

A (possibly infinite) tree with labels $\lambda x_1 \dots x_n y$ or \perp

Böhm tree BT(M) of a λ -term M is defined by

(1) $BT(M) = \bot$ if M not head normalizing

- represents infinite computation
- head variables partial results
- \perp useless computation

Examples of Böhm Trees

Let $\Delta = \lambda x.xx$

Eg 1. BT
$$(\lambda x.x(\Delta \Delta)x)=$$

Let
$$Y_0 = \lambda xy.y(xxy)$$
 and $Y = Y_0Y_0$

Eg 2.
$$Yx =_{\beta} x(Yx) =_{\beta} x(x(Yx)) =_{\beta} ...$$

$$\mathsf{BT}(Yx) = \begin{array}{c} x \\ x \\ x \\ x \\ \vdots \\ \vdots \end{array}$$

Hereditary Permutators

A permutation Eg. $(1\ 2\ 3\ 4\ 5) \mapsto (1\ 3\ 2\ 5\ 4)$ A permutator Eg. $f(x_1, x_2, x_3) \mapsto g(x_1, x_2, x_3) = f(x_2, x_3, x_1)$ This permutator is represented by $\lambda zx_1x_2x_3.zx_2x_3x_1$ $-g = (\lambda z x_1 x_2 x_3 . z x_2 x_3 x_1) f$ Nests of permutators Eg. $f(x_1, x_2, x_3) \mapsto h(x_1, x_2, x_3) = f(x_2', x_3, x_1)$ where $x_2'(y_1, y_2) = x_2(y_2, y_1)$ This is represented by $\lambda z x_1 x_2 x_3 . z((\lambda z y_1 y_2 . z y_2 y_1) x_2) x_3 x_1$ $-h = (\lambda z x_1 x_2 x_3 z ((\lambda z y_1 y_2 z y_2 y_1) x_2) x_3 x_1) f$ A hereditary permutator (infinite) nests of permutators

Definition of Hereditary Permutators

We call y the head variable of the node $\lambda x_1 \dots x_n y$

 λ -term M is hereditary permutator if $\operatorname{BT}(M)$ satisfies (H1) Its root has the shape $\lambda z x_1 \dots x_n . z$, it has n child nodes, and each x_i is the head variable of some child node (H2) A node except the root has the shape $\lambda x_1 \dots x_n . y$, it has n child nodes, and each x_i is the head variable of some child node

Related Work

M invertible

- if there is N such that M(Nx) = x and N(Mx) = x
- a bijection

[Dezani 76]

Finite hereditary permutators are the same as invertible terms in $\lambda\beta\eta$

[Bergstra and Klop 80]

Hereditary permutators are the same as invertible terms in D_{∞}

A λ -term M is a hereditary permutator iff M is a bijection in D_{∞}

Non-Recursive Enumerability

HP the set of hereditary permutators

Theorem. HP is not recursively enumerable

The next theorem immediately follows from this theorem

Theorem. There does not exist any type system T with any type A such that its language and the set of its inference rules are recursively enumerable, and HP is the same as $\{M \in \Lambda | \Gamma \vdash M : A \text{ is provable in } T \text{ for some } \Gamma\}$

Positive Primitive Recursive Functions

 $\{e\}^{pr}(x)$ e-th unary primitive recursive function

$$PPR = \{e \mid \forall x(\{e\}^{pr}(x) > 0)\}\$$

- the set of indices of positive primitive recursive functions

Theorem. PPR is not recursively enumerable

Proof. Any partial recursive function f is represented by $f(x) = h(\mu y.(g(x,y) = 0))$ where g,h are primitive recursive

The index of g(x,) is in PPR iff f(x) is undefined

Hence PPR is not recursively enumerable □

Primitive Recursive Functions in λ -Calculus

$$\overline{n}$$
 n-th Church numeral $\lambda fx.f^nx = f(f(\dots(fx)\dots))$
Successor $S = \lambda yfx.f(yfx)$

Function
$$u(x,y) = \{x\}^{pr}(y)$$

- a universal function for unary primitive recursive functions

 λ -term U represents u

$$- U\overline{nm} =_{\beta} \overline{k} \text{ iff } \mathbf{u}(n,m) = k$$

Infinite Linear Hereditary Permutator

Infinite linear hereditary permutator $P=Y(\lambda pz_0z_1.z_0(pz_1))$ $\lambda z_0z_1.z_0$ $\mathrm{BT}(P)=\frac{\lambda z_2.z_1}{\lambda z_3.z_2}$

Proof of Theorem

Let
$$T = Y(\lambda txyz_0z_1.Uxy(\lambda w.z_0(tx(Sy)z_1))(\Delta\Delta))$$

Then

$$T\overline{en}z_n =_{\beta} \lambda z_1.\Delta \Delta \text{ if } \{\underline{e}\}^{pr}(n) = 0$$

$$T\overline{en}z_n =_{\beta} \lambda z_{n+1}.z_n(T\overline{e}(n+1)z_{n+1}) \text{ if } \{\underline{e}\}^{pr}(n) > 0$$

Hence

$$e \in PPR \text{ iff } BT(\lambda z_0.T\overline{e}\overline{0}z_0) = BT(\underline{P})$$

Therefore $e \in \mathsf{PPR}$ iff $\lambda z_0.T\overline{e}\overline{0}z_0 \in \mathsf{HP}$ Hence HP is not recursively enumerable \square

A Best-Possible Solution

 $M \in \mathsf{HP}$ not represented by $\exists x P(M,x)$, but $\forall n \exists x P(M,n,x)$ where P quantifier-free

The next goal:

- Find p_n such that $M:p_n$ for all n iff $M\in\mathsf{HP}$
- (Actually HP is Π_2^0 -complete)

A solution:

- $M: p_n$ iff BT(M) of depth < n satisfies the conditions (H1) and (H2)
- Because $M \in \mathsf{HP}$ iff $\mathsf{BT}(M)$ satisfies (H1) and (H2)

Type System T

Type constants $p_n, q_m \quad (n \ge 0, m \ge 1)$, Ω

Types
$$A, B, \ldots := p_n |q_m| \Omega |A \to A |A \cap A$$

 $\mathsf{TC}(\vec{A})$ the set of type constants in \vec{A}

 \mathcal{S}_m the symmetric group of order m

Type partial equivalence $A \sim_n B$ for n > 0 is defined by

$$\Omega \sim_0 \Omega$$

$$\frac{A_i \sim_n B_i \quad (1 \le i \le m)}{B_{\pi(1)} \to \dots \to B_{\pi(m)} \to q_k \sim_{n+1} A_1 \to \dots \to A_m \to q_k}$$

where $\pi \in \mathcal{S}_m$ and $\mathsf{TC}(A_i, B_i) - \{\Omega\}$ $(1 \le i \le m), \{q_k\}$ are disjoint

Inference Rules

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma, x : A \vdash x : A} (Ass) \qquad \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M : A \to B} (\to I)$$

$$\frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash M N : B} (\to E)$$

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash M : B}{\Gamma \vdash M : A \cap B} (\cap I)$$

$$\frac{\Gamma \vdash M : A \cap B}{\Gamma \vdash M : A} (\cap E_1) \qquad \frac{\Gamma \vdash M : A \cap B}{\Gamma \vdash M : B} (\cap E_2)$$

$$\frac{\Gamma, z : A \vdash M : B \qquad A \sim_n B}{\Gamma \vdash \lambda z . M : p_n} (p_n I)$$

Theorem. $\vdash M : p_n$ for all n iff $M \in \mathsf{HP}$

Permutator Scheme

$$PS_0(z) = \Lambda$$

$$PS_{n+1}(z) = \{M \in \Lambda | M =_{\beta} \lambda x_1 \dots x_m . z M_{\pi(1)} \dots M_{\pi(m)}, m \in \mathcal{S}_m, M_i \in PS_n(x_i) \quad (1 \leq i \leq m)\}$$

$$M \in \mathsf{PS}_n(z)$$
 - $\mathsf{BT}(\lambda z.M)$ of depth $< n$ satisfies (H1) and (H2)

Lemma. $M \in \mathsf{PS}_n(z)$ for all n iff $\lambda z.M \in \mathsf{HP}$

Soundness Proof

right(A) the rightmost type constant in A

Proposition. If $\overrightarrow{x}:\overrightarrow{B}\vdash M:A$ and $\operatorname{right}(A)\neq\Omega$, M is head normalizing

This is proved by

$$[|q_n|] = [|p_{n+1}|] = (\text{head normalizing terms})$$

 $[|\Omega|] = \Lambda$
 $[|A \to B|] = [|A|] \to [|B|]$
 $[|A \cap B|] = [|A|] \cap [|B|]$

Key Lemma. If $A \sim_n B$ and $\Gamma, z : A \vdash M : B$ are provable and $\operatorname{core}(\Gamma) \cap (\mathsf{TC}(A,B) - \{\Omega\}) = \phi$, then M is in $\mathsf{PS}_n(z)$, where

$$core(c) = \{c\}$$
 $(c = q_n, p_n, \Omega)$
 $core(A \rightarrow B) = core(B)$
 $core(A \cap B) = core(A) \cup core(B)$

This is proved by induction on n

Lemma. $\vdash \lambda z.M : p_n \text{ implies } M \in \mathsf{PS}_n(z)$

Completeness Proof

Lemma. If $M \in \mathsf{PS}_n(z)$, there are A and B such that $z : A \vdash M : B$ and $A \sim_n B$

This is proved by induction on n

Example: Types for Linear Hereditary Permutators

Let
$$P = Y(\lambda fxy.x(fy))$$

Then BT(
$$P$$
) =
$$\begin{array}{c} \lambda x_0 x_1.x_0 \\ \lambda x_2.x_1 \\ \lambda x_3.x_2 \end{array}$$

 $P \in \mathsf{HP}$ (infinite linear hereditary permutator)

Let
$$P_0 = \lambda z.z$$
 and $P_{n+1} = \lambda zx_1.z(P_nx_1)$

Then BT(
$$P_n$$
) = $egin{array}{c} \lambda z_0 z_1.z_0 \ \lambda z_2.z_1 \ \vdots \ \lambda z_n.z_{n-1} \ z_n \end{array}$

 $P_n \in \mathsf{HP}$ (finite linear hereditary permutator)

Example (cont)

Let
$$A_0 = \Omega$$

 $A_{n+1} = A_n \rightarrow q_{n+1}$

Then $\vdash P : A_n \to A_n$ for all n $\vdash P_m : A_n \to A_n$ for all n

If $\vdash M : A_n \to A_n$ for all n, then $\mathsf{BT}(M) = \mathsf{BT}(P)$ or $M =_\beta P_m$ for some m

Conclusion

TLCA open problem 20:

- Find a type system that characterizes hereditary permutators

Hereditary permutator

- a λ -term representing a bijection
- (infinite) nests of permutators

Results:

- (1) No single type for hereditary permutators
- the set of hereditary permutators is not recursively enumerable
- (2) Some countably infinite set of types for hereditary permutators

Ideas:

- coding of halting problem by an infinite Böhm tree
- intersection types for describing infinite computation