编译原理 -Assignment 4

Q1:列举三种编译器构造中的三种中间语言: Parse Tree, Abstract Syntax Tree, three address code

Q2: 给定数组int a, 按行优先的方式存放在起始于base的一片连续单元中,数组下标从0开始,每个元素的字节数为4,a[i]的起始地址为 **&a + 4 * i**

Q3: 以短路计算方式生成布尔表达式的中间代码时,跳转目标地址尚未确定,可使用(**回填**)技术避免多遍扫描

Q4: 将下列语句翻译为抽象语法树(AST)、四元式、三元式与间接三元式

$$a := (b+c) * e + (b+c)/f$$

1. **AST**

$$t_1 = b + c$$
 $t_2 = t_1 * e$
 $t_3 = t_1/f$
 $t_4 = t_2 + t_3$
 $a = t_4$

2. 四元式

	op	arg_1	arg_2	result
(0)	+	b	С	t_1
(1)	*	t_1	е	t_2

	op	arg_1	arg_2	result
(2)	1	t_1	f	t_3
(3)	+	t_2	t_3	t_4
(4)	=	t_4		a

3. 三元式

	op	arg_1	arg_2
(0)	+	b	С
(1)	*	(0)	е
(2)	1	(0)	f
(3)	+	(1)	(2)
(4)	=	a	(3)

4. 间接三元式

step	instruction
0	(0)
1	(1)
2	(2)
3	(3)
4	(4)

index	op	arg_1	arg_2
(0)	+	b	С
(1)	*	(0)	е
(2)	1	(0)	f
(3)	+	(1)	(2)
(4)	=	a	(3)

Q5: 给定一个5 x 6的二维数组a, a中的每个元素大小为 4 字节 (bytes)。请给出i=a[3][2]的四元式

$$t_1 = 3*6$$
 $t_2 = t_1 + 2$
 $t_3 = t_2*4$
 $t_4 = a[t_3]$
 $i = t_4$

	op	arg_1	arg_2	result
(0)	*	3	6	t_1
(1)	+	t_1	2	t_2
(2)	*	t_3	4	t_3
(3)		a	t_3	t_4
(4)	=	t_4		i

Q6: 给定数组A[i,j], i 的值域为1-10, j 的值域为1-20。a中的每个元素大小为4 字节 (bytes)。假设A 的起始地址为0,求 A[4,5] 和 A[10,8]的地址

$$A[4,5]$$
地址为 $0+4*(4-1)*20+4*(5-1)$

$$A[10,8]$$
地址为 $0+4*(10-1)*20+4*(8-1)$

Q7: 使用英文教材411页的SDT,补全 x < 100 || (y > 200 && x != y) 的翻译结果,并说明回填依据与尚不能回填的代码地址的含义

100: if x < 100 goto _

101: goto _

102:

103:

104: 105:

100: if $x < 100 \text{ goto } _$

101: goto _

102: if $y > 200 \text{ goto } _$

103: goto _

104: if x != y goto_

105: goto _

回填:

104回填到指令102,在归约 $B \to B_1$ && M B_2 时, $backpatch(B_1.truelist, M.instr)$,其中 $B_1.truelist=102, M.instr=104$

```
100: if x < 100 goto _
101: goto _
102: if y > 200 goto 104
103: goto _
104: if x != y goto_
105: goto _
```

102回填到指令101,同样在归约 $B \to B_1 \mid\mid M B_2$ 时, $backpatch(B_1. falselist, M. instr)$,其中 $B_1. falselist = 101, M. instr = 102$

```
100: if x < 100 goto _

101: goto 102

102: if y > 200 goto 104

103: goto _

104: if x != y goto_

105: goto _
```

尚不能回填的代码地址的含义: 当100: x < 100时,这段表达式为真,103: y <= 200时这段表达式为假,104: x != y时,表达式为真,105: x == y时表达式为假,这段表达式都获得确定的真值,回填的内容需要由后续其他的汇编过程决定,也就是根据表达式的真假决定要做什么。