PTC 3420 - Programação Matemática Aplicada a Controle - 1^a Lista

 1^a Questão: Um diretor de produção está planejando o lançamento de 3 produtos em 4 máquinas. Cada produto pode ser manufaturado em cada uma das máquinas. O custo por unidade de produção (em \$) é mostrado abaixo.

máquina	1	2	3	4
produto				
1	4	4	5	7
2	6	7	5	6
3	12	10	8	11

O tempo em horas necessário para produzir cada unidade do produto em cada máquina é como a seguir:

máquina	1	2	3	4
produto				
1	0.3	0.25	0.2	0.2
2	0.2	0.3	0.2	0.25
3	0.8	0.6	0.6	0.5

Suponha que 4000, 5000 e 3000 unidades dos produtos 1, 2 e 3 respectivamente são necessários, e que as horas de máquinas disponíveis são 1500, 1200, 1500, e 2000 respectivamente. Deseja-se determinar a produção de cada produto em cada máquina de modo a minimizar os custos. Formule este problema como um problema de programação linear (PL).

 2^a Questão: Uma companhia fabrica um produto a partir de dois ingredientes, A e B. Cada quilo de A contém 1/2 unidades do produto P_1 , 3/10 unidades do produto P_2 , 1/5 unidades do produto P_3 e custa R\$ 100. Cada quilo de B contém 1/6 unidades do produto P_1 , 1/3 unidades do produto P_2 , 1/2 unidades do produto P_3 e custa R\$ 150. A mistura deve conter pelo menos 20 unidades de P_1 , 27 unidades de P_2 e 30 unidades de P_3 . Formule este problema como um problema de PL para que o custo do produto seja o menor possível. Resolva o problema graficamente.

 3^a Questão: Um depósito de 20000 m² deve ser alocado para armazenar três tipos de produtos, P_1, P_2 e P_3 . Sabe-se que P_2 não deve ocupar mais espaço do que P_1 , que o espaço ocupado por P_1 não deve ser maior que 3000 m^2 a mais que a soma das áreas de P_2 e P_3 , e que os espaços ocupados por P_2 e P_3 devem ter pelo menos 5000 m^2 . Sabendo que o lucro de P_1 é R\$ 10000, de P_2 é R\$ 8000, e de P_3 é R\$ 5000 por m², formule o problema como um problema de PL, de tal forma que o lucro seja o máximo possível.

4^a Questão: Considere o seguinte problema de PL:

$$\begin{aligned} \max 2x_1 + 5x_2 \\ sujeito \, a \\ x_1 + 2x_2 &\leq 16 \\ 2x_1 + x_2 &\leq 12 \\ x_1 &\geq 0, \, x_2 &\geq 0. \end{aligned}$$

- a) Desenhe a região factível no plano (x_1, x_2) .
- b) Introduza as variáveis de folga x_3 e x_4 . Identifique as regiões no plano (x_1, x_2) onde as variáveis x_3 e x_4 são iguais a zero.
- c) Determine todas as soluções básicas do sistema acima, e localize-as no plano (x_1, x_2) . Quais são as soluções básicas factíveis?
- d) Determine os pontos extremos do conjunto.
- e) O ponto (1,1) pertence à região de factibilidade? Caso pertença, determine uma representação desse pontos através de uma combinação convexa dos pontos extremos do conjunto.
- f) Sabendo que o ótimo vai ser uma solução básica factível, resolva o problema acima.

- g) Resolva agora o problema pelo método simplex com 3 variáveis: max $2x_1 + 5x_2 + 3x_3$ sujeito a $x_1 + 2x_2 + x_3 < 16$, $2x_1 + x_2 + x_3 < 12$, $x_1 > 0$, $x_2 > 0$, $x_3 > 0$.
- 5^a Questão: Desenhe a região factível do conjunto $\{x \in R^2; Ax \leq b\}$ onde A e b são dados abaixo. Determine em cada caso se a região é vazia ou não, e se é limitada ou não.

a)
$$A = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ 0 & 1 \end{pmatrix}$$
, $b = \begin{pmatrix} 6 \\ 6 \\ 2 \end{pmatrix}$ b) $A = \begin{pmatrix} 1 & 1 \\ -1 & -2 \\ -1 & 0 \end{pmatrix}$, $b = \begin{pmatrix} 4 \\ -12 \\ 0 \end{pmatrix}$ c) $A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \\ 2 & 3 \\ 1 & -1 \end{pmatrix}$, $b = \begin{pmatrix} 0 \\ 0 \\ 12 \\ 5 \end{pmatrix}$.

6^a Questão: Suponha que o problema de programação linear

$$min c'x$$

 $sujeito a$
 $Ax = b, x \ge 0$

possua duas soluções ótimas x^* e y^* , com $x^* \neq y^*$. Mostre então que existe uma infinidade de soluções ótimas. 7^a Questão: Considere o problema de programação linear

$$min c'x$$

 $sujeito a$
 $Ax \le b, x \ge 0$

onde $c_i \neq 0$ para todo i = 1, ..., n. Considere x_0 tal que $Ax_0 < b$ e $x_0 > 0$. Mostre que x_0 não pode ser ótimo.

 8^a Questão: Considere o seguinte problema de programação linear:

$$maximizar x_1 + 3x_2$$

 $sujeito a$
 $-x_1 + x_2 \le 4$,
 $-x_1 + 2x_2 \le 12$,
 $x_1 + x_2 \le 10$,
 $x_1 \ge 0, x_2 \ge 0$

- a) Desenhe a região factível no plano (x_1,x_2) e identifique a solução ótima.
- b) Identifique todos os pontos extremos e reformule o problema em termos de combinações convexas dos pontos extremos. Resolva o problema resultante.
- c) Suponha que a terceira desigualdade seja eliminada. Identifique os pontos extremos e direções extremas e reformule o problema em termos de combinações convexas dos pontos extremos e combinações positivas das direções extremas. Resolva o problema resultante, identifique a solução ótima do problema original e interprete a solução.
- 9^a Questão: Resolva o seguinte problema:

$$\begin{aligned} maximiz & ax_1 + 9x_2 + 6x_3 + 7x_4 + x_5 + 8x_6 \\ & sujeito \ a \\ & x_1 + 5x_2 + 3x_3 + 4x_4 + 2x_5 + 5x_6 \leq 207, \\ & x_1 \geq 0, x_2 \geq 0, x_3 \geq 0, x_4 \geq 0, x_5 \geq 0, x_6 \geq 0. \end{aligned}$$

10^a Questão: Determine os pontos extremos de

$$H = \{x \in \mathbb{R}^3; x_1 + x_2 + x_3 \le 1, \frac{1}{2}x_1 + 2x_2 + x_3 \le 1, x_1 \ge 0, x_2 \ge 0, x_3 \ge 0\}$$

e resolva o problema

$$maximizar x_1 + x_2 + x_3$$

 $sujeito a x \in H.$

11^a Questão: Mostre que o conjunto K é convexo: $K = \{(x_1, x_2); x_1^2 + x_2^2 \le 1\}$.

 12^a Questão: Através de operações de pivotação, obtenha o conjunto solução do sistema abaixo:

$$x_1 + 2x_2 + x_3 = 7$$
$$2x_1 - x_2 + 2x_3 = 6$$

Determine os pontos extremos deste conjunto quando incluímos as restrições $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$. Escreva a representação do conjunto em função de seus pontos extremos.

 13^a Questão: Suponha que se deseje maximizar o retorno esperado de uma carteira formada por um ativo livre de risco com retorno $r_f=8\%$ e 2 ativos de risco conforme a Figura 1. Todos os nós terminais são igualmente prováveis de ocorrer. O valor inicial é $V_0=1000$, e o percentual máximo que pode ser aplicado nos ativos de risco 1 e 2 é respectivamente 60% e 70% do total da carteira. O percentual mínimo no ativo livre de risco é 20%. Determine a composição da carteira ótima e o valor esperado do retorno.

Figura 1: Árvore de cenários

 14^a Questão: Resolva pelo método simplex. Identifique B^{-1} no tableau ótimo.

$$\begin{aligned} & minimiz ar & 5x_1 - 8x_2 - 3x_3 \\ & sujeito \ a & 2x_1 + 5x_2 - x_3 \leq 1 \\ & -3x_1 - 8x_2 + 2x_3 \leq 4 \\ & -2x_1 - 12x_2 + 3x_3 \leq 9 \\ & x_1 \geq 0, x_2 \geq 0, \ x_3 \geq 0 \end{aligned}$$

15^a Questão: Considere o seguinte sistema dinâmico escalar:

$$x(k+1) = \frac{1}{3}x(k) + 4u(k), \quad x(0) = 9.$$

Deseja-se obter os controles u(0), u(1), u(2) de forma a levar o sistema para x(3) = 0, minimizando o gasto de energia dado por z = |u(0)| + |u(1)| + |u(2)|.

- a) Escreva o problema acima como um problema de PL.
- b) Resolva o problema de PL do item a) e obtenha o controle ótimo u(k), k=0,1,2.
- c) Escreva os valores do x(k), k = 0, 1, 2, quando se utiliza o controle do item b).

 16^a Questão: Resolva pelo método simplex de 2 fases. Identifique B^{-1} no tableau ótimo. Escreva e resolva o dual desse problema e compare as soluções.

maximizar
$$4x_1 - x_2 - x_3$$

 $sujeito \ a \ -2x_1 + x_2 \ge 1$
 $x_1 + \frac{1}{2}x_2 + x_3 \le 1$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

 17^a Questão: Resolva pelo método simplex de 2 fases. Identifique B^{-1} no tableau ótimo. Escreva e resolva o dual desse problema e compare as soluções.

$$\begin{aligned} & minimiz ar & & x_1 + \frac{3}{4}x_2 + \frac{1}{4}x_3 \\ & sujeito \ a & & 2x_1 + x_2 + 4x_3 \leq 5 \\ & & 4x_1 + x_2 + 2x_3 = 1 \\ & & & x_1 + x_2 + 2x_3 \leq 2 \\ & & x_1 \geq 0, x_2 \geq 0, \ x_3 \geq 0 \end{aligned}$$

 18^a Questão: Resolva pelo método simplex de 2 fases. Identifique B^{-1} no tableau ótimo.

$$\begin{aligned} & minimiz ar & x_1 - 2x_2 \\ & sujeito \ a & x_1 + x_2 \ge 2 \\ & -x_1 + x_2 \ge 1 \\ & x_2 \le 3 \\ & x_1 \ge 0, x_2 \ge 0 \end{aligned}$$

19^a Questão: Apresenta-se abaixo o tableau simplex atual de um problema de maximização. O objetivo é

$$max \ 5x_1 + 3x_2$$

e as variáveis de folga são x_3 e x_4 . As restrições são do tipo \leq .

x_1	x_2	x_3	x_4	b
1	u_2	u_6	u_3	10
3/5	0	1	1/5	1
u_4	u_5	0	1	u_1

- a) Determine $u_1, u_2, u_3, u_4, u_5, u_6$.
- b) Determine a matrix A e o vetor b.
- c) Determine a base atual B.
- d) O tableau atual é ótimo? Caso não seja, determine o tableau ótimo.

 20^a Questão: O tableau abaixo mostra a solução ótima de um problema de programação linear (minimização). Sabe-se que x_4 e x_5 são as variáveis de folga na 1a e 2a restrição do problema original. As restrições são do tipo \leq .

x_1	x_2	x_3	x_4	x_5	b
0	-4	0	-4	-2	-40
0	1/2	1	1/2	0	$\frac{5/2}{5/2}$
1	-1/2	0	-1/6	1/3	5/2

- a) Identifique B^{-1} .
- b) Escreva o problema original (isto é, identifique A, b, c).

c) Se trocássemos o vetor c por c_{novo} , onde

$$c_{novo} = c + \begin{pmatrix} 0 \\ -2 - \lambda \\ -2 \end{pmatrix}$$

como ficaria o tableau acima?

- c.1) Para que valores de λ o tableau continuaria ótimo?
- c.2) Determine o valor de λ que corresponderia à existência de infinitas soluções. Escreva essas soluções.
- c.3) Determine a solução ótima para $\lambda = 10$.
- d) Como ficaria o tableau acima se trocássemos o vetor b por b_{novo} , onde

$$b_{novo} = b + \begin{pmatrix} 1 \\ \lambda - 10 \end{pmatrix}?$$

- d.1) Para que valores de λ o tableau continuaria ótimo?
- d.2) Determine o valor de λ que corresponderia a uma solução degenerada.

21^a Questão: Considere o seguinte problema

$$\begin{aligned} & minimiz ar & & 10x_1 + 24x_2 + 20x_3 + 20x_4 - 25x_5 \\ & sujeito \ a & & x_1 + x_2 + 2x_3 - 3x_4 + 5x_5 \leq 19 \\ & & & 2x_1 - 4x_2 + 3x_3 - 2x_4 + x_5 \leq 57 \\ & & & & 8x_1 + 9x_3 \leq 2 \\ & & & x_1 \geq 0, x_2 \geq 0, \ x_3 \geq 0, x_4 \geq 0, x_5 \geq 0 \end{aligned}$$

- a) Escreva o problema dual e obtenha a solução ótima graficamente.
- b) Use o item a) para achar a solução do problema primal.

 22^a Questão: Mostre por dualidade que se o problema $\min c'x$ sujeito a $Ax = b, x \ge 0$, tem uma solução ótima finita, então o novo problema $\min c'x$ sujeito a $Ax = \bar{b}, x \ge 0$, não pode ser ilimitado para qualquer \bar{b} .

 23^a Questão: Considere o problema de programação linear $\min c'x$ sujeito a $Ax=b,\,x\geq 0$. Suponha que este problema e o dual sejam factívies. Seja λ uma solução ótima conhecida do dual.

- a) Se a k^{esima} equação do primal for multiplicada por $\mu \neq 0$, determine uma solução ótima w do dual deste novo problema.
- b) Suponha que, no problema original primal, adicionamos μ vezes a k^{esima} equação à r^{esima} equação. Determine uma solução ótima w do problema dual correspondente.
- c) Suponha que ao problema primal, adicionamos μ vezes a k^{esima} linha de A à c. Determine uma solução ótima do problema dual correspondente.