6 - Introduzione agli Spazi di Banach

Premesse

> Convenzione: Campo degli scalari di uno spazio vettoriale

Uno spazio vettoriale si intenderà sempre su \mathbb{R} .

> Sottospazio generato da un sottoinsieme di uno spazio vettoriale

Sia E uno spazio vettoriale.

Sia $A \subseteq E$.

Si dice sottospazio generato da A (o inviluppo lineare di A), e si denota con $\mathrm{span}(A)$, l'intersezione di tutti i sottospazi vettoriali di E contenenti A.

> Norma di uno spazio vettoriale

Sia E uno spazio vettoriale.

Si dice norma una funzione $\|\cdot\|:E\to\mathbb{R}_0^+$ tale che:

- 1. Omogeneità: $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$;
- 2. Sub-additività: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$;
- 3. Definitività positiva: $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$.

La coppia costituita da uno spazio vettoriale e da una norma su di esso è detta spazio normato.

> Metrica indotta da una norma.

Sia $(E, \|\cdot\|)$ uno spazio normato.

La norma $\|\cdot\|$ induce su E una metrica d; essa è definita ponendo $d(\mathbf{x},\mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$ per ogni $\mathbf{x},\mathbf{y}\in E$.

☐ Spazio di Banach

Uno spazio normato si dice spazio di Banach quando è completo rispetto alla metrica indotta dalla norma.

Alcune proprietà degli spazi normati

Proposizione 6.1: Estremo superiore della distanza di un versore da un sottospazio proprio chiuso di uno spazio normato

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia $F \subseteq E$ un sottospazio vettoriale di E, chiuso rispetto alla metrica d indotta dalla norma.

Si ha
$$\sup_{\mathbf{x} \in E} d(\mathbf{x}, F) = 1.$$
 $\|\mathbf{x}\| = 1$

Osservazioni preliminari

Sia $\mathbf{x} \in E$ tale che $\|\mathbf{x}\| = 1$.

Essendo F sottospazio vettoriale di E, si ha $\mathbf{0} \in F$.

Allora, $d(\mathbf{x}, F) \leq \|\mathbf{x} - \mathbf{0}\| = \|\mathbf{x}\| = 1$.

Segue $\sup_{\mathbf{x}\in E} d(\mathbf{x},F) \leq 1$ per arbitrarietà di $\mathbf{x}\in E$ con $\|\mathbf{x}\|=1$. $\|\mathbf{x}\|=1$

Dimostrazione

In virtù dell'osservazione preliminare, basta mostrare che $\sup_{\mathbf{x} \in E} d(\mathbf{x}, F) \geq 1.$

Essendo $F \subseteq E$, esiste $\mathbf{x}_0 \in E \setminus F$.

Essendo F chiuso e $\mathbf{x}_0 \notin F$, esiste un intorno sferico di \mathbf{x}_0 disgiunto da F; pertanto, si ha $d(\mathbf{x}_0, F) > 0$.

Sia arepsilon>0; si provi che $\sup_{\mathbf{x}\in E} d(\mathbf{x},F)\geq 1-arepsilon.$ $\|\mathbf{x}\|=1$

Si supponga $\varepsilon < 1$ senza perdere di generalità; ne segue che $\frac{1}{1-\varepsilon} > 1$.

Si ha allora $d(\mathbf{x}_0,F)<\frac{1}{1-\varepsilon}d(\mathbf{x}_0,F)$; dalla definizione di $d(\mathbf{x}_0,F)$ segue allora l'esistenza di $\mathbf{x}_1\in F$ tale che $\|\mathbf{x}_0-\mathbf{x}_1\|<\frac{1}{1-\varepsilon}d(\mathbf{x}_0,F)$.

Si ponga $ilde{\mathbf{x}} = \frac{\mathbf{x}_0 - \mathbf{x}_1}{\|\mathbf{x}_0 - \mathbf{x}_1\|}$; evidentemente, $\| ilde{\mathbf{x}}\| = 1$.

Si valuti $d(\tilde{\mathbf{x}}, F)$.

Si fissi $y \in F$.

Si ha

$$\begin{split} \|\tilde{\mathbf{x}} - \mathbf{y}\| &= \left\| \frac{\mathbf{x}_0 - \mathbf{x}_1}{\|\mathbf{x}_0 - \mathbf{x}_1\|} - \mathbf{y} \right\| \\ &= \left\| \frac{\mathbf{x}_0 - \mathbf{x}_1 - \|\mathbf{x}_0 - \mathbf{x}_1\| \mathbf{y}}{\|\mathbf{x}_0 - \mathbf{x}_1\|} \right\| = \frac{1}{\|\mathbf{x}_0 - \mathbf{x}_1\|} \|\mathbf{x}_0 - (\mathbf{x}_1 + \|\mathbf{x}_0 - \mathbf{x}_1\| \mathbf{y}) \| \quad \text{Proprietà dei vettori e della norma} \end{split}$$

$$d \geq rac{1}{\|\mathbf{x}_0 - \mathbf{x}_1\|} d(\mathbf{x}_0, F)$$

un vettore in F

 $\|\mathbf{x}_0 - \mathbf{x}_1\| \in \mathbb{R}$, pertanto $\|\mathbf{x}_0 - (\mathbf{x}_1 + \|\mathbf{x}_0 - \mathbf{x}_1\|\mathbf{y})\|$ è distanza tra \mathbf{x}_0 è

Segue dalla definizione di $d(\mathbf{x}_0, F)$. Infatti, $\mathbf{x}_1 + \|\mathbf{x}_0 - \mathbf{x}_1\|\mathbf{y} \in F$ essendo $\mathbf{x}_1, \mathbf{y} \in F$ e

 $> 1 - \varepsilon$

Segue dalla disuguaglianza

$$\|\mathbf{x}_0 - \mathbf{x}_1\| < rac{1}{1-arepsilon}d(\mathbf{x}_0,F)$$

Dunque, $\|\tilde{\mathbf{x}} - \mathbf{y}\| > 1 - \varepsilon$ per ogni $\mathbf{y} \in F$; ne segue che $d(\tilde{\mathbf{x}}, F) \ge 1 - \varepsilon$.

Allora, $\sup_{\|\mathbf{x}\|=1} d(\mathbf{x},F) \geq 1-arepsilon$, che è ciò che si voleva ottenere.

La tesi è allora acquisita, essendo $\varepsilon > 0$ arbitrario.

Proposizione 6.2: Sottospazi vettoriali di dimensione finita sono chiusi

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia $F \subseteq E$ un sottospazio vettoriale di dimensione finita.

Allora, F è chiuso in E rispetto alla metrica d indotta dalla norma.

Proposizione 6.3: Non totale limitatezza dell'insieme dei versori in spazi normati di dimensione infinita.

Sia $(E, \|\cdot\|)$ uno spazio normato.

Si supponga che E abbia dimensione infinita.

Sia $S = \{ \mathbf{x} \in E : ||\mathbf{x}|| = 1 \}.$

Dimostrazione

Sia $\mathbf{x}_0 \in S$.

Sia $F_0 = \operatorname{span}(\mathbf{x}_0) = \{\lambda \mathbf{x}_0 \mid \lambda \in \mathbb{R}\}$; esso ha dimensione 1.

Pertanto, $F_0 \subseteq E$ in quanto E ha dimensione infinita per ipotesi, e per la [Proposizione 6.2] esso è chiuso.

Allora, $\sup_{\mathbf{x} \in S} d(\mathbf{x}, F_0) = 1$ (> $\frac{1}{2}$) per la [Proposizione 6.1], da cui segue che esiste $\mathbf{x}_1 \in S$ tale che $d(\mathbf{x}_1, F_0) > \frac{1}{2}$.

Sia $F_1 = \operatorname{span}(\mathbf{x}_0, \mathbf{x}_1)$; esso ha dimensione 2.

Pertanto, $F_1 \subseteq E$ in quanto E ha dimensione infinita per ipotesi, e per la [Proposizione 6.2] esso è chiuso.

Allora, $\sup_{\mathbf{x} \in S} d(\mathbf{x}, F_1) = 1$ (> $\frac{1}{2}$) per la [Proposizione 6.1], da cui segue che esiste $\mathbf{x}_2 \in S$ tale che $d(\mathbf{x}_2, F_1) > \frac{1}{2}$.

Procedendo induttivamente si ottiene una successione $\{\mathbf{x}_n\}_{n\in\mathbb{N}}\subseteq S$ dimodoché $d(\mathbf{x}_n,\operatorname{span}(\mathbf{x}_1,\ldots,\mathbf{x}_{n-1}))>\frac{1}{2}$ per ogni $n\in\mathbb{N}$.

Si provi che $\{\mathbf{x}_n\}_{n\in\mathbb{N}}$ non è totalmente limitato.

Siano $N_1,\ldots,N_k\subseteq\mathbb{N}$ tali che $igcup_{i=1}^k=\mathbb{N}$; almeno uno di essi è infinito (altrimenti \mathbb{N} sarebbe unione finita di insiemi

finiti, cioè sarebbe un insieme finito, il che è falso), sia esso N_{i_0} .

Essendo N_{i_0} infinito, esso ammette due elementi distinti; siano essi m e n, e si supponga n > m.

Essendo n>m, si ha $\mathbf{x}_m\in \mathrm{span}(\mathbf{x}_1,\ldots,\mathbf{x}_n)$; allora, $\|\mathbf{x}_n-\mathbf{x}_m\|\geq d(\mathbf{x}_n,\mathrm{span}(\mathbf{x}_1,\ldots,\mathbf{x}_{n-1}))>\frac{1}{2}$.

Dunque, ogni ricoprimento finito di $\{\mathbf{x}_n\}_{n\in\mathbb{N}}$ ammette due elementi nello stesso insieme aventi distanza maggiore di $\frac{1}{2}$; ne segue che $\{\mathbf{x}_n\}_{n\in\mathbb{N}}$ non è totalmente limitato.

Allora, a maggior ragione S non è totalmente limitato, in quanto $S \supseteq \{\mathbf{x}_n\}_{n \in \mathbb{N}}$.