

Ensemble Learning: Random Forests

Pilsung Kang
School of Industrial Management Engineering
Korea University

- A specialized bagging for decision tree algorithms
- Two ways to increase the diversity of ensemble

Random Forests: Algorithm

- 1. For b=1 to B: Individual Learner
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables. (p) = p C m
 - Totomation Gain 1 ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^{B}(x) = majority \ vote \ \{\hat{C}_{b}(x)\}_{1}^{B}$.

- Bagging
 - ✓ Sampling with replacement (學禮)

Group A

- Bagging
 - √ Randomly selected variable

Bootstrap i (X in R²⁵)

$$(x_2, x_{10}, x_{23}, x_{17}, x_9)$$

$$(x_1, x_{13}, x_{21}, x_{11}, x_7)$$

$$(x_{24}, x_{15}, x_2, x_7, x_{19})$$

BB

Group B

Effect

Generalization Error

- ✓ Each tree in random forests may over-fit the data because pruning is not conducted.
- ✓ If the population size is large enough, then the generalization error of random forests bounded by

Generalization Error
$$\leq \frac{\bar{\rho}(1-s^2)}{s^2}$$

- $\bar{\rho}$ is the mean value of the correlation coefficients between individual trees $\frac{1}{2} \frac{1}{2} \frac{1}{2}$
- s^2 is the margin function (for binary classification, it is simply the average difference proportions between the correct and incorrect trees over all training data.
- ✓ The more accurate the individual classifiers, the larger the s^2 and the lower the generalization error
- ✓ The less correlated among the classifiers, the lower the generalization error.

• Generalization Error: Example

Model A				
Label	P(y=1)	P(y=0)	Margin	
I	0.90	0.10	0.80	
I	0.80	0.20	0.60	
I	0.75	0.25	0.50	
I	0.78	0.22	0.56	
I	0.51	0.49	0.02	
0	0.24	0.76	0.52	
0	0.12	0.88	0.76	
0	0.14	0.86	0.72	
0	0.01	0.99	0.98	
0	0.14	0.86	0.72	
А	0.62			

Model B					
Label	P(y=1)	P(y=0)	Margin		
I	0.58	0.42	0.16		
I	0.65	0.35	0.30		
I	0.94	0.06	0.88		
I	0.99	0.01	0.98		
I	0.98	0.02	0.96		
0	0.06	0.94	0.88		
0	0.05	0.95	0.90		
0	0.04	0.96	0.92		
0	0.18	0.82	0.64		
0	0 0.08		0.84		
Α	0.75				

Model C				
Label	P(y=1)	P(y=0)	Margin	
I	0.88	0.12	0.76	
I	0.98	0.02	0.96	
I	0.97	0.03	0.94	
I	0.89	0.11	0.78	
I	0.92	0.08	0.84	
0	0.08	0.92	0.84	
0	0.02	0.98	0.96	
0	0.05	0.95	0.90	
0	0.08	0.92	0.84	
0	0.04	0.96	0.92	
А	0.87			

- ✓ Average correlation = 0.9027 (A & B 0.8229, A & C = 0.9413, B & C = 0.9438)
- ✓ Average margin = 0.7460

✓ Generalization error <= 0.3074

• Variable Importance

- √ Step I: Compute the OOB error for the original dataset (e_i)
- ✓ Step 2: Compute the OOB error for the dataset in which the variable x_i is permuted (p_i)
- ✓ Step 3: Compute the variable importance based on the mean and standard deviation of (p_i-e_i) over all trees in the population

Original OOB Data

 ID
 X1
 ...
 Xi
 ...
 Xd
 Y

 1
 0.1
 ...
 2
 ...
 ...
 Xd
 Y

 2
 0.5
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

Permutation

변수 i가 Tree를 split하는데 한번도 사용되지 않았다면 i번째 변수에 대한 random permutation이 수행된 OOB Data

ID	X1	 Xi	 Xd	Υ
1		1.1		
2		0.2		
3		0.1		
4		1.4		
5		1.2		
6		0.5		
7		1.6		
8		8.0		
9		0.7		
10		0.4		

OOB Error of the Original Data ei

OOB Error of the Permuted Data pi

Original OOB Data

Xd Χi 1 0.1 0.5 1.1 1.2 5 0.4 0.2 0.7 8 0.8 1.4 10 1.6

변수 i가 Tree를 split하는데 중요하게 사용되었다면 i번째 변수에 대한 random permutation이 수행된 OOB Data

ID	X1	 Xi	 Xd	Υ
1		1.1		
2		0.2		
3		0.1		
4		1.4		
5		1.2		
6		0.5		
7		1.6		
8		8.0		
9		0.7		
10		0.4		

OOB Error of the Original Data ei

OOB Error of the Permuted Data pi

- 변수의 중요도
 - ✔ 랜덤 포레스트에서 변수의 중요도가 높다면
 - I) Random permutation 전-후의 OOB Error 차이가 크게 나타나야 하며,
 - 2) 그 차이의 편차가 적어야 함
 - m번째 tree에서 변수 i에 대한 Random permutation 전후 OOB error의 차이

$$d_i^m = p_i^m - e_i^m$$

■ 전체 Tree들에 대한 OOB error 차이의 평균 및 분산

$$\overline{d}_i = \frac{1}{m} \sum_{i=1}^m d_i^m, \quad s_i^2 = \frac{1}{m-1} \sum_{i=1}^m (d_i^m - \overline{d}_i)^2$$

• 변수 중요도 산출 결과

