WU #11 - Cross Validation

Math 158 - Jo Hardin

Thursday 3/3/2022

Name:	-	
Names of people you worked with: $_$		_

Consider the following dataset measuring fat content and calories for 12 fast food items. Cross validated models have been fit for v = 3 folds.

The values of the observations in group **a** are as follows:

##	#	A tibble	: 4 x 3	
##		calories	total_fat	fold_pred
##		<dbl></dbl>	<dbl></dbl>	<chr></chr>
##	1	630	31	a
##	2	210	11	a
##	3	720	31	a
##	4	540	21	a

Calculate \mathbb{R}^2 and RMSE for the observations in fold a. (That is, calculate exactly two numbers.)

a and b points

##	#	A tibble: 2	х 5			
##		term	${\tt estimate}$	std.error	${\tt statistic}$	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	56.1	61.9	0.906	0.400
##	2	total fat	20.4	2.99	6.84	0.000480

a and c points

## #	A tibble: 2	x 5			
##	term	${\tt estimate}$	std.error	${\tt statistic}$	p.value
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	(Intercept)	49.1	57.7	0.851	0.427
## 2	total_fat	20.0	2.65	7.54	0.000282

b and c points

## #	A tibble: 2	x 5			
##	term	${\tt estimate}$	${\tt std.error}$	${\tt statistic}$	p.value
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	(Intercept)	80.6	59.3	1.36	0.223
## 2	total_fat	18.4	3.52	5.22	0.00197

 $^{^{1}{\}rm the}$ data actually come from a much larger and real dataset

Solution:

```
a_pts <- ff %>%
 filter(fold_pred == "a")
bc_mod <- ff %>% filter(fold_pred != "a") %>% lm(calories ~ total_fat, data = .)
bc_mod %>% tidy()
## # A tibble: 2 x 5
                estimate std.error statistic p.value
##
   term
##
    <chr>
                  <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept)
                  80.6
                             59.3
                                       1.36 0.223
## 2 total_fat
                    18.4
                              3.52
                                      5.22 0.00197
bc_mod %>%
predict(a_pts)
         1
## 650.8049 282.9193 650.8049 466.8621
bc_mod %>%
augment(newdata = a_pts)
## # A tibble: 4 x 5
   calories total_fat fold_pred .fitted .resid
                <dbl> <chr>
##
       <dbl>
                                   <dbl> <dbl>
## 1
         630
                    31 a
                                    651. -20.8
## 2
         210
                    11 a
                                    283. -72.9
## 3
         720
                                    651. 69.2
                    31 a
## 4
         540
                                    467.
                                          73.1
                    21 a
bc_mod %>%
 augment(newdata = a_pts) %>%
  summarize(R2 = 1 - sum(.resid^2) / sum((calories - mean(calories))^2),
           RMSE = sqrt(sum(.resid^2)/4))
## # A tibble: 1 x 2
##
       R2 RMSE
     <dbl> <dbl>
## 1 0.893 63.0
```