Part 1

Digital Design and Computer Architecture, 2nd Edition

David Money Harris and Sarah L. Harris

BBM 231

Hours: Mondays: **13:00 – 16:00**

Instructors:

- Section 1: Ufuk Çelikcan
- Section 2: Özgür Erkent
- Section 3: Murat Aydos
- Register the course on Piazza:

https://piazza.com/hacettepe.edu.tr/fall2024/bbm231

BBM 233 Lab

- We will announce the details later
- Follow the announcements on Piazza
- https://piazza.com/hacettepe.edu.tr/fall2024 /bbm233
- You will be using online circuit simulators and verilog software to do the lab.

BBM231 Grading

- Class Participation: 5%
- 1 Midterm exam: 35%
- Final exam: 40%
- Online Quizzes: 20%

Quizzes

- Will be administered online via Hadi(probably)
- 9(?) Quizzes

References

 M. Morris Mano, Digital Design: With an Introduction to the Verilog HDL, <u>5th Edition</u>, Prentice Hall, 2013

- Other references
 - Tons of digital design books
 - Lectures from MIT Open Courseware and Stanford

Chapter 1 :: Topics

- Background
- The Game Plan
- The Art of Managing Complexity
- The Digital Abstraction
- Number Systems
- Logic Gates
- Logic Levels
- CMOS Transistors
- Power Consumption

Background

- Microprocessors have revolutionized our world
 - Smartphones, Internet, rapid advances in medicine, etc.
- The semiconductor industry has grown from \$21 billion in 1985 to \$300 billion in 2011

The Game Plan

- Purpose of course:
 - Understand what's under the hood of a computer
 - Learn the principles of digital design
 - Learn to systematically debug increasingly complex designs

The Art of Managing Complexity

- Abstraction
- Discipline
- The Three –Y's
 - Hierarchy
 - Modularity
 - Regularity

Abstraction

 Hiding details when they aren't important

focus of this course

Discipline

- Intentionally restrict design choices
- Example: Digital discipline
 - Discrete voltages instead of continuous
 - Simpler to design than analog circuits can build more sophisticated systems
 - Digital systems replacing analog predecessors:
 - i.e., digital cameras, digital television, cell phones, CDs

The Three -Y's

Hierarchy

A system divided into modules and submodules

Modularity

Having well-defined functions and interfaces

Regularity

Encouraging uniformity, so modules can be easily reused

Example: The Flintlock Rifle

Hierarchy

- Three main modules:
 lock, stock, and barrel
- Submodules of lock:
 hammer, flint, frizzen,
 etc.

Example: The Flintlock Rifle

Modularity

- Function of stock: mount barrel and lock
- Interface of stock: length and location of mounting pins

Regularity

Interchangeable parts

The Digital Abstraction

- Most physical variables are continuous
 - Voltage on a wire
 - Frequency of an oscillation
 - Position of a mass
- Digital abstraction considers discrete subset of values

The Analytical Engine

- Designed by Charles
 Babbage from 1834 –
 1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before it was finished

Chapter 1 < 17>

Digital Discipline: Binary Values

- Two discrete values:
 - 1's and 0's
 - 1, TRUE, HIGH
 - 0, FALSE, LOW
- 1 and 0: voltage levels, rotating gears, fluid levels, etc.
- Digital circuits use voltage levels to represent 1 and 0
- Bit: Binary digit

George Boole, 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland.
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT.

Number Systems

Decimal numbers

Binary numbers

Number Systems

Decimal numbers

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

Binary numbers

ONE 9 ZERO FROM

Powers of Two

•
$$2^0 =$$

•
$$2^1 =$$

•
$$2^2 =$$

•
$$2^3 =$$

•
$$2^4 =$$

•
$$2^5 =$$

•
$$2^6 =$$

•
$$2^7 =$$

•
$$2^8 =$$

•
$$2^9 =$$

•
$$2^{10} =$$

•
$$2^{11} =$$

•
$$2^{12} =$$

•
$$2^{13} =$$

•
$$2^{14} =$$

•
$$2^{15} =$$

ONE 6 O ZER FROM

Powers of Two

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•
$$2^7 = 128$$

•
$$2^8 = 256$$

•
$$2^9 = 512$$

•
$$2^{10} = 1024$$

•
$$2^{11} = 2048$$

•
$$2^{12} = 4096$$

•
$$2^{13} = 8192$$

•
$$2^{14} = 16384$$

•
$$2^{15} = 32768$$

• Handy to memorize up to 29

Number Conversion

- Binary to decimal conversion:
 - Convert 10011₂ to decimal

- Decimal to binary conversion:
 - Convert 47₁₀ to binary

Number Conversion

• Binary to decimal conversion:

- Convert 10011₂ to decimal
- $-16\times1+8\times0+4\times0+2\times1+1\times1=19_{10}$

Decimal to binary conversion:

- Convert 47₁₀ to binary
- $-32\times1+16\times0+8\times1+4\times1+2\times1+1\times1=101111_2$

Binary Values and Range

- N-digit decimal number
 - How many values?
 - Range?
 - Example: 3-digit decimal number:

- N-bit binary number
 - How many values?
 - Range:
 - Example: 3-digit binary number:

Binary Values and Range

- N-digit decimal number
 - How many values? 10^N
 - Range? $[0, 10^{N} 1]$
 - Example: 3-digit decimal number:
 - $10^3 = 1000$ possible values
 - Range: [0, 999]
- N-bit binary number
 - How many values? 2^N
 - Range: $[0, 2^N 1]$
 - Example: 3-digit binary number:
 - 2³ = 8 possible values
 - Range: [0, 7] = [000₂ to 111₂]

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
A	10	
В	11	
C	12	
D	13	
Е	14	
F	15	

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Hexadecimal Numbers

- Base 16
- Shorthand for binary

Hexadecimal to Binary

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary

- Hexadecimal to decimal conversion:
 - Convert 0x4AF to decimal

Hexadecimal to Binary

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - 0100 1010 1111₂

- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal
 - $16^2 \times 4 + 16^1 \times 10 + 16^0 \times 15 = 1199_{10}$

Bits, Bytes, Nibbles...

Bits

10010110 most least significant significant bit bit

Bytes & Nibbles

10010110 nibble

Bytes

Large Powers of Two

```
• 2^{10} = 1 \text{ kilo} \approx 1000 (1024)
```

•
$$2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$$

•
$$2^{30} = 1$$
 giga ≈ 1 billion (1,073,741,824)

Estimating Powers of Two

• What is the value of 2^{24} ?

 How many values can a 32-bit variable represent?

Estimating Powers of Two

• What is the value of 2^{24} ?

$$2^4 \times 2^{20} \approx 16$$
 million

 How many values can a 32-bit variable represent?

$$2^2 \times 2^{30} \approx 4$$
 billion

Addition

Decimal

Binary

Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

Overflow!

Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits
- See previous example of 11 + 6

Signed Binary Numbers

- Sign/Magnitude Numbers
- Two's Complement Numbers

Sign/Magnitude Numbers

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0 $A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$
 - Negative number: sign bit = 1

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

• Example, 4-bit sign/mag representations of \pm 6:

• Range of an *N*-bit sign/magnitude number:

Sign/Magnitude Numbers

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0 $A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$
 - Negative number: sign bit = 1

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

• Example, 4-bit sign/mag representations of \pm 6:

$$+6 = 0110$$
 $-6 = 1110$

• Range of an *N*-bit sign/magnitude number:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

Sign/Magnitude Numbers

• Problems:

- Addition doesn't work, for example -6 + 6:

– Two representations of $0 (\pm 0)$:

1000

0000

Two's Complement Numbers

- Don't have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

Two's Complement Numbers

• Msb has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- Most positive 4-bit number:
- Most negative 4-bit number:
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's comp number:

Two's Complement Numbers

• Msb has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- Most positive 4-bit number: 0111
- Most negative 4-bit number: 1000
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's comp number:

$$[-(2^{N-1}), 2^{N-1}-1]$$

"Taking the Two's Complement"

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$

"Taking the Two's Complement"

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$
 - 1. 1100

$$2. + 1$$

$$\overline{1101} = -3_{10}$$

Two's Complement Examples

• Take the two's complement of $6_{10} = 0110_2$

• What is the decimal value of 1001₂?

Two's Complement Examples

• Take the two's complement of $6_{10} = 0110_2$

```
1. 1001
```

$$\frac{2. + 1}{1010_2} = -6_{10}$$

• What is the decimal value of the two's complement number 1001₂?

2. + 1
$$0111_2 = 7_{10}$$
, so $1001_2 = -7_{10}$

• Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers

Add 6 + (-6) using two's complement numbers
 111
 0110
 + 1010

Add -2 + 3 using two's complement numbers
 111

What is the 2's complement of 0000?

What is the 2's complement of 0000?

>> Also 0000, single representation for 0

Increasing Bit Width

- Extend number from N to M bits (M > N):
 - Sign-extension
 - Zero-extension

Sign-Extension

- Sign bit copied to msb's
- Number value is same

• Example 1:

- 4-bit representation of 3 = 0011
- 8-bit sign-extended value: 00000011

Example 2:

- 4-bit representation of -5 = 1011
- 8-bit sign-extended value: 11111011

Zero-Extension

- Zeros copied to msb's
- For unsigned numbers
 - Value changes for negative signed numbers

Example 1:

$$0011_2 = 3_{10}$$

- 8-bit zero-extended value: $00000011 = 3_{10}$

Example 2:

$$1011 = -5_{10}$$

- 8-bit zero-extended value: $00001011 = 11_{10}$

Number System Comparison

Number System	Range
Unsigned	$[0, 2^{N}-1]$
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

For example, 4-bit representation:

