Solving Non-Linear Real Arithmetic Formulas with Virtual Substitution

Author: Aklima Zaman Supervision: Erika Ábrahám

Theory of Hybrid Systems - Informatik 2 - RWTH-Aachen

Satisfiability Checking Seminar, Winter-16/17

Outline

- Motivation
- Real Arithmetic Formula
- Virtual Substitution
 - Sign Invariant Regions
 - Compute Zeros
 - Compute Test Candidates
 - Virtual Substitution Rules

Motivation

- Other related methods
 - interval constraint propagation
 - cylindrical algebraic decomposition
- Virtual substitution
 - applicable only to sub-language
 - eliminates quantified variables up to degree 4

Flow Chart of Virtual Substitution

• Real arithmetic (RA) formula has the following syntax:

polynomials: $t := 0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$

constraints: c := t < t

formulas: $\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi$

Real arithmetic (RA) formula has the following syntax:

```
polynomials: t := 0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t
```

constraints: c := t < t

formulas: $\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi$

• Real arithmetic (RA) formula has the following syntax:

polynomials: $t := 0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$

constraints: c := t < t

formulas: $\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi$

• Real arithmetic (RA) formula has the following syntax: polynomials: $t := 0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$ constraints: c := t < t formulas: $\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi$

• Real arithmetic (RA) formula has the following syntax: **polynomials:** $t := 0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$

constraints: c := t < t

formulas: $\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi$

• Polynomial $p(x) \in Z[x_1, ..., x_n][x]$ normal form:

$$p(x) = a_d x^d + a_{d-1} x^{d-1} + \ldots + a_0 x^0$$

$$\varphi = (\underbrace{(x^2 + 2x + 4z)}_{p_1} \le 0 \lor \underbrace{(yx^2 + 6y^3x + 4z)}_{p_2} = 0)$$

• Real arithmetic (RA) formula has the following syntax: polynomials: $t:=0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$ constraints: c:=t < t

formulas: $\varphi := c \mid \neg \varphi \mid \varphi \wedge \varphi \mid \exists x \cdot \varphi$

• Polynomial $p(x) \in Z[x_1 ..., x_n][x]$ normal form:

$$p(x) = a_d x^d + a_{d-1} x^{d-1} + \ldots + a_0 x^0$$

$$\varphi = (\underbrace{(x^2 + 2x + 4z)}_{p_1} \le 0 \lor \underbrace{(yx^2 + 6y^3x + 4z)}_{p_2} = 0)$$

• Real arithmetic (RA) formula has the following syntax: polynomials: $t:=0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$ constraints: c:=t < t

formulas: $\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi$

• Polynomial $p(x) \in Z[x_1, \dots, x_n][x]$ normal form:

$$p(x) = a_d x^d + a_{d-1} x^{d-1} + \ldots + a_0 x^0$$

$$\varphi = (\underbrace{(x^2 + 2x + 4z)}_{p_1} \le 0 \lor \underbrace{(yx^2 + 6y^3x + 4z)}_{p_2} = 0)$$

• Real arithmetic (RA) formula has the following syntax: polynomials: $t := 0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$ constraints: c := t < t

formulas: $\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi$

• Polynomial $p(x) \in Z[x_1 ..., x_n][x]$ normal form:

$$p(x) = a_d x^d + a_{d-1} x^{d-1} + \ldots + a_0 x^0$$

$$\varphi = (\underbrace{(x^2 + 2x + 4z)}_{p_1} \le 0 \lor \underbrace{(yx^2 + 6y^3x + 4z)}_{p_2} = 0)$$

Flow Chart of Virtual Substitution

Virtual Substitution

Quantifier elimination procedure:

$$\exists x_1 \dots \exists x_n \cdot \varphi \equiv \exists x_1 \dots \exists x_{n-1} \cdot \psi$$

where φ, ψ quantifier free.

Quantifier elimination by virtual substitution:

$$\exists x_1 \ldots \exists x_n \cdot \varphi \equiv \exists x_1 \ldots \exists x_{n-1} \cdot \bigvee_{t \in T} (\varphi[t//x] \wedge S_t)$$

Sign Invariant Regions

Compute Zeros

constant polynomial ⇒ constant zero or non zeros

Compute Zeros

$$p(x) = ax^2 + bx + c$$
 side condition: $a = 0 \land b \neq 0$

$$x = -c/b$$

Compute Zeros

$$p(x) = ax^2 + bx + c$$
 side condition: $a \neq 0 \land b^2 - 4ac \ge 0$

$$X_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, X_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

Compute Test Candidates

Possible solution intervals for x on $p \sim 0$:

Constraints	$-\infty$	<i>X</i> ₁	$x_1 + \epsilon$	<i>X</i> ₂	$x_2 + \epsilon$	<i>X</i> 3	$x_3 + \epsilon$
p = 0	-	✓	-	✓	-	✓	-
$p > 0, p < 0, p \neq 0$	✓	-	✓	-	✓	-	✓
$p\geqslant 0, p\leqslant 0$	✓	✓	-	✓	-	✓	-

$$\varphi := (\underbrace{(xy-1)}_{p_1} = 0) \land \underbrace{y^2-1}_{p_2} < 0)$$
 Elimination of y :

	constraints	test candidates
1.	from all constraints	$-\infty$
2.	$p_1 = 0$	$1/x$ if $x \neq 0$
3.	$p_2 < 0$	$1+\epsilon$
4.	$p_2 < 0$	$-1+\epsilon$

$$\varphi:=(\underbrace{(xy-1}_{p_1}=0)\wedge\underbrace{y^2-1}_{p_2}<0)$$

Elimination of y:

	constraints	test candidates		
1.	from all constraints	$-\infty$		
2.	$p_1 = 0$	$1/x$ if $x \neq 0$		
3.	$p_2 < 0$	$1+\epsilon$		
4.	$p_2 < 0$	$-1+\epsilon$		

$$\exists x \cdot \exists y \cdot \varphi \quad \leftrightarrow \quad \exists x \cdot \quad (\varphi[-\infty//y]) \qquad \lor$$

$$(\varphi[\frac{1}{x}//y] \qquad \land x \neq 0) \quad \lor$$

$$(\varphi[1 + \epsilon//y]) \qquad \lor$$

$$(\varphi[-1 + \epsilon//y])$$

Substitution of a Minus Infinity

Assume
$$(p(x) = ax^2 + bx + c) < 0$$
 and test candidate is $-\infty$

$$p(x) < 0[-\infty//x] = \underbrace{a < 0}_{\text{Case 1}} \lor$$

$$\underbrace{a = 0 \land b > 0}_{\text{Case 2}} \lor$$

$$a = 0 \land b = 0 \land c < 0$$

Case 3

Substitution of a Minus Infinity

Substitution of a Minus Infinity

$$\exists x \cdot \exists y \cdot ((xy - 1 = 0) \land y^2 - 1 < 0)$$

$$p(x) < 0[-\infty//x] = (a < 0) \lor (a = 0 \land b > 0) \lor (a = 0 \land b > 0 \land c < 0)$$
Elimination of y : Test candidate: $-\infty$

$$\exists x \cdot ((xy - 1 = 0)[-\infty//y]$$

$$\land (y^2 - 1 < 0)[-\infty/y])$$

$$\exists x \cdot \exists y \cdot ((xy - 1 = 0) \land y^2 - 1 < 0)$$

$$p(x) < 0[-\infty//x] = (a < 0) \lor (a = 0 \land b > 0) \lor (a = 0 \land b > 0 \land c < 0)$$
Elimination of y : Test candidate: $-\infty$

$$\exists x \cdot ((xy - 1 = 0)[-\infty//y]$$

$$\land (y^2 - 1 < 0)[-\infty/y])$$

$$\Leftrightarrow \exists x \cdot ((x = 0 \land - 1 = 0))$$

$$\exists x \cdot \exists y \cdot ((xy - 1 = 0) \land y^2 - 1 < 0)$$

$$p(x) < 0[-\infty//x] = (a < 0) \lor (a = 0 \land b > 0) \lor (a = 0 \land b > 0 \land c < 0)$$
Elimination of y : Test candidate: $-\infty$

$$\exists x \cdot ((xy - 1 = 0)[-\infty//y]$$

$$\land (y^2 - 1 < 0)[-\infty/y])$$

$$\Leftrightarrow \exists x \cdot ((x = 0 \land - 1 = 0))$$

$$\land (1 < 0 \lor (1 = 0 \land 0 > 0) \lor (1 = 0 \land 0 = 0 \land -1 < 0)))$$

 $\Leftrightarrow \exists x \cdot$ (false)

$$\exists x \cdot \exists y \cdot ((xy - 1 = 0) \land y^2 - 1 < 0)$$

$$p(x) < 0[-\infty//x] = (a < 0) \lor (a = 0 \land b > 0) \lor (a = 0 \land b > 0 \land c < 0)$$
Elimination of y: Test candidate: $-\infty$

$$\exists x \cdot ((xy - 1 = 0)[-\infty//y]$$

$$\land (y^2 - 1 < 0)[-\infty/y])$$

$$\Leftrightarrow \exists x \cdot ((x = 0 \land - 1 = 0))$$

$$\land (1 < 0 \lor (1 = 0 \land 0 > 0) \lor (1 = 0 \land 0 = 0 \land -1 < 0)))$$

13/16

Example: Search Tree

Outlook

- Implemented in SMT-RAT and Redlog
- Strengths:
 - Better than Fourier Motzkin
 - Efficient then CAD
- Weaknesses:
 - Unable to handle the formulas of degree > 4
 - Incomplete
 - Exponentially Complex

Reference

R. Loss, V. Weispfenning, *Applying linear quantifier elimination*. The computer Journal 36 (1993), pp. 450-462.

A square root expression has following form:

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

A square root expression has following form:

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

Assume, p(x) = 0 and test candidate is $\frac{u+q\sqrt{r}}{s}$

A square root expression has following form:

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

Assume, p(x) = 0 and test candidate is $\frac{u+q\sqrt{r}}{s}$

• $(p(x) = 0)[\frac{u+q\sqrt{r}}{s}//x]$ to be computed.

A square root expression has following form:

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

Assume, p(x) = 0 and test candidate is $\frac{u+q\sqrt{r}}{s}$

- $(p(x) = 0)[\frac{u+q\sqrt{r}}{s}//x]$ to be computed.
- ② Transform the result to $\frac{u'+q'\sqrt{r}}{s'}=0$ where u',q',s' are polynomials.

A square root expression has following form:

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

- $(p(x) = 0)\left[\frac{u+q\sqrt{r}}{s}//x\right]$ to be computed.
- 2 Transform the result to $\frac{u'+q'\sqrt{r}}{s'}=0$ where u',q',s' are polynomials.

A square root expression has following form:

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

- 2 Transform the result to $\frac{u'+q'\sqrt{r}}{s'}=0$ where u',q',s' are polynomials.
- $\frac{u'+q'\sqrt{r}}{s'} = 0$ $\iff u'+q'\sqrt{r} = 0$

A square root expression has following form:

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

- 2 Transform the result to $\frac{u'+q'\sqrt{r}}{s'}=0$ where u',q',s' are polynomials.
- $\frac{u'+q'\sqrt{r}}{s'} = 0$ $\iff u' + q'\sqrt{r} = 0$ $\iff u'q' \le 0 \land |u'| = |q'\sqrt{r}|$

A square root expression has following form:

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

- 2 Transform the result to $\frac{u'+q'\sqrt{r}}{s'}=0$ where u',q',s' are polynomials.

$$\frac{u'+q'\sqrt{r}}{s'} = 0
\iff u' + q'\sqrt{r} = 0
\iff u'q' \le 0 \land |u'| = |q'\sqrt{r}|
\iff u'q' \le 0 \land u'^2 - q'^2r = 0$$

$$(\rho < 0)[e + \epsilon//x] = \underbrace{((\rho < 0)[e//x])}_{\text{Case 1}} \underbrace{((\rho = 0)[e//x] \land (\rho' < 0)[e//x])}_{\text{Case 2}} \underbrace{((\rho = 0)[e//x] \land (\rho' = 0)[e//x] \land (\rho'' < 0[e//x])}_{\text{Case 3}}$$

$$(\rho < 0)[e + \epsilon//x] = \underbrace{((\rho < 0)[e//x])}_{\text{Case 1}} \\ \underbrace{((\rho = 0)[e//x] \land (\rho' < 0)[e//x])}_{\text{Case 2}} \\ \underbrace{((\rho = 0)[e//x] \land (\rho' = 0)[e//x] \land (\rho'' < 0[e//x])}_{\text{Case 3}}$$

$$(p < 0)[e + \epsilon//x] = \underbrace{((p < 0)[e//x])}_{\text{Case 1}} \underbrace{((p = 0)[e//x] \land (p' < 0)[e//x])}_{\text{Case 2}} \underbrace{((p = 0)[e//x] \land (p' = 0)[e//x] \land (p'' < 0[e//x])}_{\text{Case 3}}$$

$$\exists x \cdot \exists y \cdot ((xy - 1 = 0) \wedge y^2 - 1 < 0)$$

Elimination of y:

$$\exists x$$
· $((xy - 1 = 0)[\frac{1}{x}//y]$
 $\land (y^2 - 1 < 0)[\frac{1}{x}//y]$
 $\land x \neq 0)$

$$\exists x \cdot \exists y \cdot ((xy - 1 = 0) \wedge y^2 - 1 < 0)$$

Elimination of y:

$$\exists x \cdot ((xy - 1 = 0)[\frac{1}{x}//y] \\ \land (y^2 - 1 < 0)[\frac{1}{x}//y] \\ \land x \neq 0)$$

$$\Leftrightarrow \exists x \cdot ((0 = 0))$$

$$\exists x \cdot \exists y \cdot ((xy - 1 = 0) \wedge y^2 - 1 < 0)$$

Elimination of y:

$$\exists x \cdot (xy - 1 = 0) \left[\frac{1}{x} / / y \right] \\ \wedge (y^2 - 1 < 0) \left[\frac{1}{x} / / y \right] \\ \wedge x \neq 0) \\ \Leftrightarrow \exists x \cdot (0 = 0) \\ \wedge ((1 > 0) \wedge 1 - x^2 < 0 \vee (1 < 0 \wedge 1 - x^2 < 0))$$

$$\exists x \cdot \exists y \cdot ((xy - 1 = 0) \wedge y^2 - 1 < 0)$$

Elimination of y:

$$\exists x \cdot ((xy - 1 = 0)[\frac{1}{x}//y] \\ \land (y^2 - 1 < 0)[\frac{1}{x}//y] \\ \land x \neq 0)$$

$$\Leftrightarrow \exists x \cdot ((0 = 0) \\ \land ((1 > 0) \land 1 - x^2 < 0 \lor (1 < 0 \land 1 - x^2 < 0)) \\ \land x \neq 0)$$

$$\exists x \cdot \exists y \cdot ((xy - 1 = 0) \wedge y^2 - 1 < 0)$$

Elimination of y:

$$\exists x \cdot (xy - 1 = 0)[\frac{1}{x}//y] \\ \land (y^2 - 1 < 0)[\frac{1}{x}//y] \\ \land x \neq 0)$$

$$\Leftrightarrow \exists x \cdot (0 = 0) \\ \land ((1 > 0) \land 1 - x^2 < 0 \lor (1 < 0 \land 1 - x^2 < 0))$$

$$\land x \neq 0)$$

$$\Leftrightarrow \exists x \cdot (1 - x^2 < 0) \\ \land x \neq 0)$$

$$\exists x \cdot (1-x^2 < 0 \land x \neq 0)$$

Elimination of x:

1. Test candidate: $-\infty$

$$(1 - x_2 < 0)[-\infty//x]$$

$$= \quad \left(-1 < 0 \lor \left(-1 = 0 \land 0 > 0 \right) \lor \left(-1 = 0 \land 0 = 0 \land 1 < 0 \right) \right)$$

= true

$$\exists x \cdot (\text{ true } \land x \neq 0)$$

Elimination of x:

1. Test candidate: $-\infty$

$$(x \neq 0)[-\infty//x]$$

$$= (1 \neq 0 \lor 0 \neq 0)$$

= true

$$\exists x \cdot (\text{true} \land \text{true})$$

Elimination of x:

1. Test candidate: $-\infty$

$$(x \neq 0)[-\infty//x]$$

$$= (1 \neq 0 \lor 0 \neq 0)$$

= true