Algorithms: New Techniques for Old Problems

Jason Li Carnegie Mellon University

October 5, 2020

Algorithms is a broad, rich, and fast-growing field

- Algorithms is a broad, rich, and fast-growing field
- Many different sub-fields, and many techniques developed
 - Graph sparsification for fast algorithms, LP rounding for approximation algorithms

- Algorithms is a broad, rich, and fast-growing field
- Many different sub-fields, and many techniques developed
 - Graph sparsification for fast algorithms, LP rounding for approximation algorithms
- "Meta": general technique applicable to many areas
 - greedy algorithms, linear programming, amortized analysis

- Algorithms is a broad, rich, and fast-growing field
- Many different sub-fields, and many techniques developed
 - Graph sparsification for fast algorithms, LP rounding for approximation algorithms
- "Meta": general technique applicable to many areas
 - greedy algorithms, linear programming, amortized analysis

- Algorithms is a broad, rich, and fast-growing field
- Many different sub-fields, and many techniques developed
 - Graph sparsification for fast algorithms, LP rounding for approximation algorithms
- "Meta": general technique applicable to many areas
 - greedy algorithms, linear programming, amortized analysis

- Preconditioning [Spielman-Teng'04]
 - "What if the input graph is an expander?"

- Algorithms is a broad, rich, and fast-growing field
- Many different sub-fields, and many techniques developed
 - Graph sparsification for fast algorithms, LP rounding for approximation algorithms
- "Meta": general technique applicable to many areas
 - greedy algorithms, linear programming, amortized analysis

- Preconditioning [Spielman-Teng'04]
 - "What if the input graph is an expander?"
- Iterative methods [CKMST'11, Sherman'13]
 - "Continuous formulation of a discrete problem?"

- Algorithms is a broad, rich, and fast-growing field
- Many different sub-fields, and many techniques developed
 - Graph sparsification for fast algorithms, LP rounding for approximation algorithms
- "Meta": general technique applicable to many areas
 - greedy algorithms, linear programming, amortized analysis

- Preconditioning [Spielman-Teng'04]
 - "What if the input graph is an expander?"
- Iterative methods [CKMST'11, Sherman'13]
 - "Continuous formulation of a discrete problem?"
- I work on preconditioning and iterative methods for graphs

• In general, worst-case problems are difficult

• In general, worst-case problems are difficult

Beyond worst-case

In general, worst-case problems are difficult

Beyond worst-case

• Parameterization: degree $\leq \Delta$, treewidth $\leq k$, *H*-minor free

In general, worst-case problems are difficult

Beyond worst-case

- Parameterization: degree $\leq \Delta$, treewidth $\leq k$, H-minor free
- Smoothed analysis: worst-case + random perturbation, think "average case"

In general, worst-case problems are difficult

Beyond worst-case

- Parameterization: degree $\leq \Delta$, treewidth $\leq k$, H-minor free
- Smoothed analysis: worst-case + random perturbation, think "average case"

Preconditioning

"condition" the input while preserving full generality

In general, worst-case problems are difficult

Beyond worst-case

- Parameterization: degree $\leq \Delta$, treewidth $\leq k$, *H*-minor free
- Smoothed analysis: worst-case + random perturbation, think "average case"

Preconditioning

- "condition" the input while preserving full generality
 - Lets us assume "w.l.o.g." that input "behaves like random"
 - Worst case = average case!

• In general, worst-case problems are difficult

Beyond worst-case

- Parameterization: degree $\leq \Delta$, treewidth $\leq k$, H-minor free
- Smoothed analysis: worst-case + random perturbation, think "average case"

Preconditioning

- "condition" the input while preserving full generality
 - Lets us assume "w.l.o.g." that input "behaves like random"
 - Worst case = average case!

...for graphs: expanders

"well-conditioned" ∼ high conductance (expander)

In general, worst-case problems are difficult

Beyond worst-case

- Parameterization: degree $\leq \Delta$, treewidth $\leq k$, H-minor free
- Smoothed analysis: worst-case + random perturbation, think "average case"

Preconditioning

- "condition" the input while preserving full generality
 - Lets us assume "w.l.o.g." that input "behaves like random"
 - Worst case = average case!

...for graphs: expanders

- "well-conditioned" ∼ high conductance (expander)
- Easy case: when input graph is an expander

• In general, worst-case problems are difficult

Beyond worst-case

- Parameterization: degree $\leq \Delta$, treewidth $\leq k$, *H*-minor free
- Smoothed analysis: worst-case + random perturbation, think "average case"

Preconditioning

- "condition" the input while preserving full generality
 - Lets us assume "w.l.o.g." that input "behaves like random"
 - Worst case = average case!

...for graphs: expanders

- "well-conditioned" ∼ high conductance (expander)
- Easy case: when input graph is an expander
- Precondition by expander decomposition

• Given unweighted, undirected graph G, its conductance is

$$\Phi(G) = \min_{S \subseteq V} \frac{|E(S, V \setminus S)|}{\min\{\mathbf{vol}(S), \mathbf{vol}(V \setminus S)\}}$$

where
$$\operatorname{vol}(S) = \sum_{v \in S} \deg(v)$$
.

• Given unweighted, undirected graph G, its conductance is

$$\Phi(G) = \min_{S \subseteq V} \frac{|E(S, V \setminus S)|}{\min\{\mathbf{vol}(S), \mathbf{vol}(V \setminus S)\}}$$

where $vol(S) = \sum_{v \in S} deg(v)$.

• G is a ϕ -expander if $\Phi(G) \ge \phi$

• Given unweighted, undirected graph G, its conductance is

$$\Phi(G) = \min_{S \subseteq V} \frac{|E(S, V \setminus S)|}{\min\{\mathbf{vol}(S), \mathbf{vol}(V \setminus S)\}}$$

where $vol(S) = \sum_{v \in S} deg(v)$.

- G is a ϕ -expander if $\Phi(G) \ge \phi$
- Cheeger's inequality: normalized Laplacian has all eigenvalues in $[\phi^2/2, 1]$ (except 0)

• Given unweighted, undirected graph G, its conductance is

$$\Phi(G) = \min_{S \subseteq V} \frac{|E(S, V \setminus S)|}{\min\{\mathbf{vol}(S), \mathbf{vol}(V \setminus S)\}}$$

where **vol**(S) = $\sum_{v \in S} \deg(v)$.

- G is a ϕ -expander if $\Phi(G) \ge \phi$
- Cheeger's inequality: normalized Laplacian has all eigenvalues in $[\phi^2/2, 1]$ (except 0)
- Examples of ϕ -expanders ($\phi \ge \frac{1}{\text{polylog}(n)}$): hypercube, random graphs, peer-to-peer networks

- Given graph G = (V, E), partition V into V_1, \ldots, V_k s.t.
 - Each induced graph $G[V_i]$ is a ϕ -expander for $\phi \ge 1/n^{o(1)}$
 - · At most half of edges go between expanders

- Given graph G = (V, E), partition V into V_1, \ldots, V_k s.t.
 - Each induced graph $G[V_i]$ is a ϕ -expander for $\phi \ge 1/n^{o(1)}$
 - · At most half of edges go between expanders
- (1) Solve problem on each expander (easy case)

- Given graph G = (V, E), partition V into V_1, \ldots, V_k s.t.
 - Each induced graph $G[V_i]$ is a ϕ -expander for $\phi \ge 1/n^{o(1)}$
 - · At most half of edges go between expanders
- (1) Solve problem on each expander (easy case)
- (2) Solve recursively on inter-cluster edges (half the size)

- Given graph G = (V, E), partition V into V_1, \ldots, V_k s.t.
 - Each induced graph $G[V_i]$ is a ϕ -expander for $\phi \ge 1/n^{o(1)}$
 - · At most half of edges go between expanders
- (1) Solve problem on each expander (easy case)
- (2) Solve recursively on inter-cluster edges (half the size)

- Given graph G = (V, E), partition V into V_1, \ldots, V_k s.t.
 - Each induced graph $G[V_i]$ is a ϕ -expander for $\phi \ge 1/n^{o(1)}$
 - At most half of edges go between expanders
- (1) Solve problem on each expander (easy case)
- (2) Solve recursively on inter-cluster edges (half the size)
- (3) Stitch all solutions together (problem-specific)

- Given graph G = (V, E), partition V into V_1, \ldots, V_k s.t.
 - Each induced graph $G[V_i]$ is a ϕ -expander for $\phi \ge 1/n^{o(1)}$
 - At most half of edges go between expanders
- (1) Solve problem on each expander (easy case)
- (2) Solve recursively on inter-cluster edges (half the size)
- (3) Stitch all solutions together (problem-specific)

- Given graph G = (V, E), partition V into V_1, \ldots, V_k s.t.
 - Each induced graph $G[V_i]$ is a ϕ -expander for $\phi \ge 1/n^{o(1)}$
 - At most half of edges go between expanders
- (1) Solve problem on each expander (easy case)
- (2) Solve recursively on inter-cluster edges (half the size)
- (3) Stitch all solutions together (problem-specific)
 - If can handle (3), then reduces to case when G is expander

- Given graph G = (V, E), partition V into V_1, \ldots, V_k s.t.
 - Each induced graph $G[V_i]$ is a ϕ -expander for $\phi \ge 1/n^{o(1)}$
 - At most half of edges go between expanders
- (1) Solve problem on each expander (easy case)
- (2) Solve recursively on inter-cluster edges (half the size)
- (3) Stitch all solutions together (problem-specific)
 - If can handle (3), then reduces to case when G is expander

Lets us assume "w.l.o.g." that input is an expander

- Given graph G = (V, E), partition V into V_1, \ldots, V_k s.t.
 - Each induced graph $G[V_i]$ is a ϕ -expander for $\phi \ge 1/n^{o(1)}$
 - At most half of edges go between expanders
- (1) Solve problem on each expander (easy case)
- (2) Solve recursively on inter-cluster edges (half the size)
- (3) Stitch all solutions together (problem-specific)
 - If can handle (3), then reduces to case when G is expander

- · Lets us assume "w.l.o.g." that input is an expander
- [CGLNPS'20]: deterministic exp. decomp. in $m^{1+o(1)}$ time
 - Derandomize cut-matching game [KRV'07]

• Given online sequence of edge inserts and deletions, output whether *G* is connected at each time

- Given online sequence of edge inserts and deletions, output whether G is connected at each time
- Amortized polylog(n) [HdLT'01], randomized worst-case [KM'13, NSW'17]

- Given online sequence of edge inserts and deletions, output whether G is connected at each time
- Amortized polylog(n) [HdLT'01], randomized worst-case [KM'13, NSW'17]
- [CGLNPS'20]: deterministic in $n^{o(1)}$ worst-case update time, improves upon $\tilde{O}(\sqrt{n})$ [Frederickson'85]

- Given online sequence of edge inserts and deletions, output whether G is connected at each time
- Amortized polylog(n) [HdLT'01], randomized worst-case [KM'13, NSW'17]
- [CGLNPS'20]: deterministic in $n^{o(1)}$ worst-case update time, improves upon $\tilde{O}(\sqrt{n})$ [Frederickson'85]
 - Expanders are easy: takes many deletions to disconnect an expander ⇒ more running time allowed

- Given online sequence of edge inserts and deletions, output whether G is connected at each time
- Amortized polylog(n) [HdLT'01], randomized worst-case [KM'13, NSW'17]
- [CGLNPS'20]: deterministic in $n^{o(1)}$ worst-case update time, improves upon $\tilde{O}(\sqrt{n})$ [Frederickson'85]
 - Expanders are easy: takes many deletions to disconnect an expander ⇒ more running time allowed
 - Stitching together expanders:

Dynamic version: framework of [NSW'17]

Expander Decomposition: Applications

Deterministic global min-cut

 Given undirected, weighted graph, remove smallest weight set of edges to disconnect graph

- Given undirected, weighted graph, remove smallest weight set of edges to disconnect graph
- Randomized Õ(m)
 [Karger'00], deterministic Õ(mn) [HO'92]

- Given undirected, weighted graph, remove smallest weight set of edges to disconnect graph
- Randomized Õ(m)
 [Karger'00], deterministic Õ(mn) [HO'92]
- [LP'20]: deterministic in polylog(n) many s-t max-flows

- Given undirected, weighted graph, remove smallest weight set of edges to disconnect graph
- Randomized Õ(m)
 [Karger'00], deterministic Õ(mn) [HO'92]
- [LP'20]: deterministic in polylog(n) many s-t max-flows
 - $\tilde{O}(m \cdot \min\{m^{1/2}, n^{2/3}\})$ time using Goldberg-Rao

- Given undirected, weighted graph, remove smallest weight set of edges to disconnect graph
- Randomized Õ(m)
 [Karger'00], deterministic Õ(mn) [HO'92]
- [LP'20]: deterministic in polylog(n) many s-t max-flows
 - $\tilde{O}(m \cdot \min\{m^{1/2}, n^{2/3}\})$ time using Goldberg-Rao
 - Expanders are easy: in a φ-expander, smaller side of min-cut has ≤ 1/φ vertices (this talk)

- Given undirected, weighted graph, remove smallest weight set of edges to disconnect graph
- Randomized Õ(m)
 [Karger'00], deterministic Õ(mn) [HO'92]
- [LP'20]: deterministic in polylog(n) many s-t max-flows
 - $\tilde{O}(m \cdot \min\{m^{1/2}, n^{2/3}\})$ time using Goldberg-Rao
 - Expanders are easy: in a φ-expander, smaller side of min-cut has < 1/φ vertices (this talk)
 - · General case: vertex sparsification (skip)

- Given undirected, weighted graph, remove smallest weight set of edges to disconnect graph
- Randomized Õ(m)
 [Karger'00], deterministic Õ(mn) [HO'92]
- [LP'20]: deterministic in polylog(n) many s-t max-flows
 - $\tilde{O}(m \cdot \min\{m^{1/2}, n^{2/3}\})$ time using Goldberg-Rao
 - Expanders are easy: in a φ-expander, smaller side of min-cut has < 1/φ vertices (this talk)
 - · General case: vertex sparsification (skip)
- [GKLTW'20]: deterministic in $m^{1+o(1)}$ time (skip)

- Given undirected, weighted graph, remove smallest weight set of edges to disconnect graph
- Randomized Õ(m)
 [Karger'00], deterministic Õ(mn) [HO'92]
- [LP'20]: deterministic in polylog(n) many s-t max-flows
 - $\tilde{O}(m \cdot \min\{m^{1/2}, n^{2/3}\})$ time using Goldberg-Rao
 - Expanders are easy: in a φ-expander, smaller side of min-cut has < 1/φ vertices (this talk)
 - · General case: vertex sparsification (skip)
- [GKLTW'20]: deterministic in m^{1+o(1)} time (skip)
 - Compute skeleton graph in $m^{1+o(1)}$ and use Karger'00

- Given undirected, weighted graph, remove smallest weight set of edges to disconnect graph
- Randomized Õ(m)
 [Karger'00], deterministic Õ(mn) [HO'92]
- [LP'20]: deterministic in polylog(n) many s-t max-flows
 - $\tilde{O}(m \cdot \min\{m^{1/2}, n^{2/3}\})$ time using Goldberg-Rao
 - Expanders are easy: in a φ-expander, smaller side of min-cut has ≤ 1/φ vertices (this talk)
 - · General case: vertex sparsification (skip)
- [GKLTW'20]: deterministic in m^{1+o(1)} time (skip)
 - Compute skeleton graph in $m^{1+o(1)}$ and use Karger'00
 - Derandomize graph sparsification by random sampling [BK'96]

• Theorem: if G is a ϕ -expander, then one side of min-cut has $k \leq 1/\phi$ vertices.

 Theorem: if G is a φ-expander, then one side of min-cut has $k \leq 1/\phi$ vertices. Proof:

• $\Phi(G) = \min_{S \subseteq V} \frac{|E(S, V \setminus S)|}{\min\{\text{vol}(S), \text{vol}(V \setminus S)\}} \ge \phi$

• Theorem: if G is a ϕ -expander, then one side of min-cut has $k \le 1/\phi$ vertices.

Proof:

•
$$\Phi(G) = \min_{S \subseteq V} \frac{|E(S, V \setminus S)|}{\min\{\text{vol}(S), \text{vol}(V \setminus S)\}} \ge \phi$$

• Let S be the side of min-cut with $\operatorname{vol}(S) \leq \operatorname{vol}(V \setminus S) \Longrightarrow \frac{|E(S,V \setminus S)|}{\operatorname{vol}(S)} \geq \phi$

• Theorem: if G is a ϕ -expander, then one side of min-cut has $k \le 1/\phi$ vertices.

Proof:

- $\Phi(G) = \min_{S \subseteq V} \frac{|E(S, V \setminus S)|}{\min\{\text{vol}(S), \text{vol}(V \setminus S)\}} \ge \phi$
- Let S be the side of min-cut with $\operatorname{vol}(S) \leq \operatorname{vol}(V \setminus S) \Longrightarrow \frac{|E(S,V \setminus S)|}{\operatorname{vol}(S)} \geq \phi$
- $\operatorname{vol}(S) = \sum_{v \in S} \operatorname{deg}(v) \ge \sum_{v \in S} \lambda = \lambda |S|$ ($\lambda = \operatorname{mincut}$)

• Theorem: if G is a ϕ -expander, then one side of min-cut has $k \le 1/\phi$ vertices.

Proof:

- $\Phi(G) = \min_{S \subseteq V} \frac{|E(S, V \setminus S)|}{\min\{\text{vol}(S), \text{vol}(V \setminus S)\}} \ge \phi$
- Let S be the side of min-cut with $\operatorname{vol}(S) \leq \operatorname{vol}(V \setminus S)$ $\Longrightarrow \frac{|E(S,V \setminus S)|}{\operatorname{vol}(S)} \geq \phi$
- $\operatorname{vol}(S) = \sum_{v \in S} \deg(v) \ge \sum_{v \in S} \lambda = \lambda |S| \ (\lambda = \operatorname{mincut})$
- $\phi \le \frac{|E(S, V \setminus S)|}{\text{vol}(S)} \le \frac{\lambda}{\lambda |S|} \implies |S| \le 1/\phi$

- Theorem: if G is a φ-expander, then one side of min-cut has k ≤ 1/φ vertices.
- Theorem (minimum isolating cuts) [LP'20]: for any subset T ⊆ V (|T| ≥ 2), can compute the following in \[log_2 |T| \] calls to s-t max-flow: for each vertex t ∈ T, the min-cut separating t from T \ t

- Theorem: if G is a φ-expander, then one side of min-cut has k ≤ 1/φ vertices.
- Theorem (minimum isolating cuts) [LP'20]: for any subset T ⊆ V (|T| ≥ 2), can compute the following in \[\log_2 |T| \] calls to s-t max-flow: for each vertex t ∈ T, the min-cut separating t from T \ t
- If $|S \cap T| = 1$, then recover min-cut

- Theorem: if G is a φ-expander, then one side of min-cut has k ≤ 1/φ vertices.
- Theorem (minimum isolating cuts) [LP'20]: for any subset T ⊆ V (|T| ≥ 2), can compute the following in [log₂ |T|] calls to s–t max-flow: for each vertex t ∈ T, the min-cut separating t from T \ t
- If $|S \cap T| = 1$, then recover min-cut

Randomized: sample each vertex into T w.p. 1/k

- Theorem: if G is a φ-expander, then one side of min-cut has k ≤ 1/φ vertices.
- Theorem (minimum isolating cuts) [LP'20]: for any subset T ⊆ V (|T| ≥ 2), can compute the following in [log₂ |T|] calls to s–t max-flow: for each vertex t ∈ T, the min-cut separating t from T \ t
- If $|S \cap T| = 1$, then recover min-cut

- Randomized: sample each vertex into T w.p. 1/k
- Derandomization: overhead of $k^{O(1)} \log n$

- Theorem: if G is a φ-expander, then one side of min-cut has k ≤ 1/φ vertices.
- Theorem (minimum isolating cuts) [LP'20]: for any subset T ⊆ V (|T| ≥ 2), can compute the following in [log₂ |T|] calls to s–t max-flow: for each vertex t ∈ T, the min-cut separating t from T \ t
- If $|S \cap T| = 1$, then recover min-cut

- Randomized: sample each vertex into T w.p. 1/k
- Derandomization: overhead of k^{O(1)} log n
- Theorem: if G is a φ-expander, then deterministic min-cut in φ^{-O(1)}polylog(n) many s-t max-flows

Expander decomposition

• Deterministic graph sparsification: $(1 + \epsilon)$ -approximate cut sparsifier in near-linear time?

- Deterministic graph sparsification: $(1 + \epsilon)$ -approximate cut sparsifier in near-linear time?
 - [GKLTW'20] Skeleton graph does not preserve very large cuts up to $(1 + \epsilon)$

- Deterministic graph sparsification: $(1 + \epsilon)$ -approximate cut sparsifier in near-linear time?
 - [GKLTW'20] Skeleton graph does not preserve very large cuts up to $(1+\epsilon)$
- Gomory-Hu tree in o(n) many s-t max-flow?

- Deterministic graph sparsification: $(1 + \epsilon)$ -approximate cut sparsifier in near-linear time?
 - [GKLTW'20] Skeleton graph does not preserve very large cuts up to $(1 + \epsilon)$
- Gomory-Hu tree in o(n) many s-t max-flow?
 - Expanders are easy, but do not know how to stitch together expanders!

- Deterministic graph sparsification: $(1 + \epsilon)$ -approximate cut sparsifier in near-linear time?
 - [GKLTW'20] Skeleton graph does not preserve very large cuts up to $(1+\epsilon)$
- Gomory-Hu tree in o(n) many s-t max-flow?
 - Expanders are easy, but do not know how to stitch together expanders!
- Directed global min-cut in o(mn) time?

- Deterministic graph sparsification: $(1 + \epsilon)$ -approximate cut sparsifier in near-linear time?
 - [GKLTW'20] Skeleton graph does not preserve very large cuts up to $(1+\epsilon)$
- Gomory-Hu tree in o(n) many s-t max-flow?
 - Expanders are easy, but do not know how to stitch together expanders!
- Directed global min-cut in o(mn) time?
 - Requires directed version of expander decomposition [Louis'10], or other preconditioning

Formulate discrete problem as continuous optimization

- Formulate discrete problem as continuous optimization
- Start from a trivial solution and iteratively improve it

- Formulate discrete problem as continuous optimization
- Start from a trivial solution and iteratively improve it

Goal: bound # iterations to be small (e.g. polylogarithmic)

- Formulate discrete problem as continuous optimization
- Start from a trivial solution and iteratively improve it

- Goal: bound # iterations to be small (e.g. polylogarithmic)
- multiplicative weight update / gradient descent in online algorithms, convex programming, machine learning

Integrality of flow: max discrete flow = max continuous flow

- Integrality of flow: max discrete flow = max continuous flow
- Max-flow as a continuous problem: $\min ||f||_{\infty}$: Af = b

- Integrality of flow: max discrete flow = max continuous flow
- Max-flow as a continuous problem: $\min ||f||_{\infty} : Af = b$
- Sherman '13 for max-flow: $(1 + \epsilon)$ -approx. in $\tilde{O}(m)$ time

- Integrality of flow: max discrete flow = max continuous flow
- Max-flow as a continuous problem: $\min ||f||_{\infty}$: Af = b
- Sherman '13 for max-flow: $(1 + \epsilon)$ -approx. in $\tilde{O}(m)$ time
 - compute "oblivious routing" matrix R ∈ R^{?×V} such that for all demands b ∈ R^V, maxflow(G, b) ≤ ||Rb||_∞ ≤ α · maxflow(G, b)

- Integrality of flow: max discrete flow = max continuous flow
- Max-flow as a <u>continuous</u> problem: min $||f||_{\infty}$: Af = b
- Sherman '13 for max-flow: $(1 + \epsilon)$ -approx. in $\tilde{O}(m)$ time
 - compute "oblivious routing" matrix R ∈ R^{?×V} such that for all demands b ∈ R^V, maxflow(G, b) ≤ ||Rb||_∞ ≤ α · maxflow(G, b)
 - minimize $\|f\|_{\infty} + 2\alpha \|R(b Af)\|_{\infty} : f \in \mathbb{R}^{E}$,

"regularizer": \approx cost to route remaining demands b-Af solve up to $(1+\epsilon)$ factor using MWU / gradient descent

- Integrality of flow: max discrete flow = max continuous flow
- Max-flow as a <u>continuous</u> problem: min $||f||_{\infty}$: Af = b
- Sherman '13 for max-flow: $(1 + \epsilon)$ -approx. in $\tilde{O}(m)$ time
 - compute "oblivious routing" matrix $R \in \mathbb{R}^{? \times V}$ such that for all demands $b \in \mathbb{R}^{V}$, maxflow $(G, b) \le ||Rb||_{\infty} \le \alpha \cdot \max \text{flow}(G, b)$
 - minimize $\|f\|_{\infty} + 2\alpha \|R(b Af)\|_{\infty} : f \in \mathbb{R}^{E}$,

"regularizer": \approx cost to route remaining demands b-Af solve up to (1 $+\epsilon$) factor using MWU / gradient descent

• Preconditions $A' \leftarrow RA$, $b' \leftarrow Rb$, to minimize $\|f\|_{\infty} + 2\alpha \|b' - A'f\|_{\infty}$

- Integrality of flow: max discrete flow = max continuous flow
- Max-flow as a <u>continuous</u> problem: min $||f||_{\infty}$: Af = b
- Sherman '13 for max-flow: $(1 + \epsilon)$ -approx. in $\tilde{O}(m)$ time
 - compute "oblivious routing" matrix R ∈ R^{?×V} such that for all demands b ∈ R^V, maxflow(G, b) ≤ ||Rb||_∞ ≤ α · maxflow(G, b)
 - minimize $\|f\|_{\infty} + 2\alpha \|R(b Af)\|_{\infty} : f \in \mathbb{R}^{E}$,

"regularizer": \approx cost to route remaining demands b-Af solve up to $(1+\epsilon)$ factor using MWU / gradient descent

- Preconditions $A' \leftarrow RA$, $b' \leftarrow Rb$, to minimize $\|f\|_{\infty} + 2\alpha \|b' A'f\|_{\infty}$
- Recursively route remaining demands b Af (small)

- Integrality of flow: max discrete flow = max continuous flow
- Max-flow as a continuous problem: $\min ||f||_{\infty}$: Af = b
- Sherman '13 for max-flow: $(1 + \epsilon)$ -approx. in $\tilde{O}(m)$ time
 - compute "oblivious routing" matrix $R \in \mathbb{R}^{? \times V}$ such that for all demands $b \in \mathbb{R}^{V}$, maxflow $(G, b) \le \|Rb\|_{\infty} \le \alpha \cdot \mathsf{maxflow}(G, b)$
 - minimize $\|f\|_{\infty} + 2\alpha \|R(b Af)\|_{\infty} : f \in \mathbb{R}^{E}$,

"regularizer": \approx cost to route remaining demands b-Af solve up to $(\mathbf{1}+\epsilon)$ factor using MWU / gradient descent

- Preconditions $A' \leftarrow RA$, $b' \leftarrow Rb$, to minimize $\|f\|_{\infty} + 2\alpha \|b' A'f\|_{\infty}$
- Recursively route remaining demands b − Af (small)
- $(1 + \epsilon)$ -approximate max-flow in O(m) time

Transshipment: uncapacitated min-cost flow, also integral

- Transshipment: uncapacitated min-cost flow, also integral
- Transshipment as a continuous problem: $\min ||f||_1 : Af = b$

- Transshipment: uncapacitated min-cost flow, also integral
- Transshipment as a continuous problem: $\min ||f||_1 : Af = b$
- Sherman '17 for transshipment

- Transshipment: uncapacitated min-cost flow, also integral
- Transshipment as a continuous problem: $\min ||f||_1 : Af = b$
- Sherman '17 for transshipment
 - compute " ℓ_1 -oblivious routing" matrix $R \in \mathbb{R}^{? \times V}$ such that for all demands $b \in \mathbb{R}^V$, $tship(G, b) \le ||Rb||_1 \le \alpha \cdot tship(G, b)$

- Transshipment: uncapacitated min-cost flow, also integral
- Transshipment as a continuous problem: min $||f||_1$: Af = b
- Sherman '17 for transshipment
 - compute " ℓ_1 -oblivious routing" matrix $R \in \mathbb{R}^{? \times V}$ such that for all demands $b \in \mathbb{R}^V$, $tship(G, b) \le ||Rb||_1 \le \alpha \cdot tship(G, b)$
 - minimize $||f||_1 + 2\alpha ||R(b Af)||_1 : f \in \mathbb{R}^E$

- Transshipment: uncapacitated min-cost flow, also integral
- Transshipment as a continuous problem: min $||f||_1$: Af = b
- Sherman '17 for transshipment
 - compute " ℓ_1 -oblivious routing" matrix $R \in \mathbb{R}^{? \times V}$ such that for all demands $b \in \mathbb{R}^V$, $tship(G, b) \le ||Rb||_1 \le \alpha \cdot tship(G, b)$
 - minimize $||f||_1 + 2\alpha ||R(b Af)||_1 : f \in \mathbb{R}^E$
 - $(1 + \epsilon)$ -approximate transshipment in $m^{1+o(1)}$ time

- Transshipment: uncapacitated min-cost flow, also integral
- Transshipment as a continuous problem: min $||f||_1$: Af = b
- Sherman '17 for transshipment
 - compute " ℓ_1 -oblivious routing" matrix $R \in \mathbb{R}^{? \times V}$ such that for all demands $b \in \mathbb{R}^V$, $tship(G, b) \le ||Rb||_1 \le \alpha \cdot tship(G, b)$
 - minimize $||f||_1 + 2\alpha ||R(b Af)||_1 : f \in \mathbb{R}^E$
 - $(1 + \epsilon)$ -approximate transshipment in $m^{1+o(1)}$ time
- [L'20]: can compute " ℓ_1 -oblivious routing" matrix R in $\tilde{O}(m)$ time, for $\alpha = \text{polylog}(n)$

- Transshipment: uncapacitated min-cost flow, also integral
- Transshipment as a continuous problem: min $||f||_1$: Af = b
- Sherman '17 for transshipment
 - compute " ℓ_1 -oblivious routing" matrix $R \in \mathbb{R}^{? \times V}$ such that for all demands $b \in \mathbb{R}^V$, $tship(G, b) \le ||Rb||_1 \le \alpha \cdot tship(G, b)$
 - minimize $||f||_1 + 2\alpha ||R(b Af)||_1 : f \in \mathbb{R}^E$
 - $(1 + \epsilon)$ -approximate transshipment in $m^{1+o(1)}$ time
- [L'20]: can compute " ℓ_1 -oblivious routing" matrix R in $\tilde{O}(m)$ time, for $\alpha = \text{polylog}(n)$
- [L'20] \implies (1 + ϵ)-approx. transshipment in $\tilde{O}(m)$ time

- Transshipment: uncapacitated min-cost flow, also integral
- Transshipment as a continuous problem: $\min ||f||_1 : Af = b$
- Sherman '17 for transshipment
 - compute " ℓ_1 -oblivious routing" matrix $R \in \mathbb{R}^{? \times V}$ such that for all demands $b \in \mathbb{R}^V$, tship $(G, b) \le ||Rb||_1 \le \alpha \cdot \text{tship}(G, b)$
 - minimize $||f||_1 + 2\alpha ||R(b Af)||_1 : f \in \mathbb{R}^E$
 - $(1 + \epsilon)$ -approximate transshipment in $m^{1+o(1)}$ time
- [L'20]: can compute " ℓ_1 -oblivious routing" matrix R in $\tilde{O}(m)$ time, for $\alpha = \text{polylog}(n)$
- [L'20] \implies (1 + ϵ)-approx. transshipment in $\tilde{O}(m)$ time
- Main technical contribution: ℓ_1 -oblivious routing scheme in $\tilde{O}(m)$ time given an ℓ_1 -embedding of the graph

Single-source shortest path in parallel

• [L'20] \Longrightarrow (1 + ϵ)-approx. SSSP in $\tilde{O}(m)$ work and polylog(n) time

- [L'20] \implies (1 + ϵ)-approx. SSSP in $\tilde{O}(m)$ work and polylog(n) time
 - Previous best was $m^{1+\delta}$ work and polylog(n) time [Cohen'00] via hopsets (combinatorial)

- [L'20] \implies (1 + ϵ)-approx. SSSP in $\tilde{O}(m)$ work and polylog(n) time
 - Previous best was $m^{1+\delta}$ work and polylog(n) time [Cohen'00] via hopsets (combinatorial)
- Claim: Exact SSSP reduces to exact transshipment with n-1 supply at s and 1 demand at each $v \neq s$ Proof:

- [L'20] \implies (1 + ϵ)-approx. SSSP in $\tilde{O}(m)$ work and polylog(n) time
 - Previous best was m^{1+δ} work and polylog(n) time [Cohen'00] via hopsets (combinatorial)
- Claim: Exact SSSP reduces to exact transshipment with n − 1 supply at s and 1 demand at each v ≠ s Proof:
 - Must send 1 unit flow $s \rightarrow v$ for all $v \neq s$

- [L'20] \implies (1 + ϵ)-approx. SSSP in $\tilde{O}(m)$ work and polylog(n) time
 - Previous best was $m^{1+\delta}$ work and polylog(n) time [Cohen'00] via hopsets (combinatorial)
- Claim: Exact SSSP reduces to exact transshipment with n − 1 supply at s and 1 demand at each v ≠ s Proof:
 - Must send 1 unit flow $s \rightarrow v$ for all $v \neq s$
 - Uncapacitated, so different $s \rightarrow v$ flows don't interfere \implies might as well send along shortest $s \rightarrow v$ path

- [L'20] \implies (1 + ϵ)-approx. SSSP in $\tilde{O}(m)$ work and polylog(n) time
 - Previous best was $m^{1+\delta}$ work and polylog(n) time [Cohen'00] via hopsets (combinatorial)
- Claim: Exact SSSP reduces to exact transshipment with n − 1 supply at s and 1 demand at each v ≠ s Proof:
 - Must send 1 unit flow $s \rightarrow v$ for all $v \neq s$
 - Uncapacitated, so different s → v flows don't interfere
 ⇒ might as well send along shortest s → v path
 - For each $v \neq s$, its distance from s is cost of $s \rightarrow v$ flow

- [L'20] \implies (1 + ϵ)-approx. SSSP in $\tilde{O}(m)$ work and polylog(n) time
 - Previous best was $m^{1+\delta}$ work and polylog(n) time [Cohen'00] via hopsets (combinatorial)
- Claim: Exact SSSP reduces to exact transshipment with n − 1 supply at s and 1 demand at each v ≠ s Proof:
 - Must send 1 unit flow $s \rightarrow v$ for all $v \neq s$
 - Uncapacitated, so different s → v flows don't interfere
 ⇒ might as well send along shortest s → v path
 - For each $v \neq s$, its distance from s is cost of $s \rightarrow v$ flow
- [BFKL'16, L'20] Reduce approx. SSSP to approx. transshipment

- [L'20] \implies (1 + ϵ)-approx. SSSP in $\tilde{O}(m)$ work and polylog(n) time
 - Previous best was $m^{1+\delta}$ work and polylog(n) time [Cohen'00] via hopsets (combinatorial)
- Claim: Exact SSSP reduces to exact transshipment with n − 1 supply at s and 1 demand at each v ≠ s Proof:
 - Must send 1 unit flow $s \rightarrow v$ for all $v \neq s$
 - Uncapacitated, so different s → v flows don't interfere
 ⇒ might as well send along shortest s → v path
 - For each $v \neq s$, its distance from s is cost of $s \rightarrow v$ flow
- [BFKL'16, L'20] Reduce approx. SSSP to approx. transshipment
- Iterative methods are inherently parallelizable

Directed graphs

Approximate transshipment and SSSP on directed graphs?
 Both sequential and parallel

- Approximate transshipment and SSSP on directed graphs?
 Both sequential and parallel
 - [CFR'20] Parallel SSSP on directed graphs in $\tilde{O}(m)$ work and $n^{1/2+o(1)}$ time via hopsets

- Approximate transshipment and SSSP on directed graphs?
 Both sequential and parallel
 - [CFR'20] Parallel SSSP on directed graphs in $\tilde{O}(m)$ work and $n^{1/2+o(1)}$ time via hopsets
- Exact SSSP reduces to O(1)-approximate SSSP on <u>directed</u> graphs + "subtractive triangle inequality" [KS'97] ⇒ parallel exact SSSP

- Approximate transshipment and SSSP on directed graphs?
 Both sequential and parallel
 - [CFR'20] Parallel SSSP on directed graphs in $\tilde{O}(m)$ work and $n^{1/2+o(1)}$ time via hopsets
- Exact SSSP reduces to O(1)-approximate SSSP on directed graphs + "subtractive triangle inequality" [KS'97]
 - ⇒ parallel exact SSSP
 - [L'20] iterative methods obtain subtractive triangle inequality for free (hopsets do not!)

- Approximate transshipment and SSSP on directed graphs?
 Both sequential and parallel
 - [CFR'20] Parallel SSSP on directed graphs in $\tilde{O}(m)$ work and $n^{1/2+o(1)}$ time via hopsets
- Exact SSSP reduces to O(1)-approximate SSSP on directed graphs + "subtractive triangle inequality" [KS'97]
 - ⇒ parallel exact SSSP
 - [L'20] iterative methods obtain subtractive triangle inequality for free (hopsets do not!)
 - $\tilde{O}(m)$ work, o(n) time directed?

- Approximate transshipment and SSSP on directed graphs?
 Both sequential and parallel
 - [CFR'20] Parallel SSSP on directed graphs in $\tilde{O}(m)$ work and $n^{1/2+o(1)}$ time via hopsets
- Exact SSSP reduces to O(1)-approximate SSSP on <u>directed</u> graphs + "subtractive triangle inequality" [KS'97]
 - ⇒ parallel exact SSSP
 - [L'20] iterative methods obtain subtractive triangle inequality for free (hopsets do not!)
 - Õ(m) work, o(n) time directed?
 - Sherman's framework breaks down on directed graphs.
 Directed version?