C3 Data Representation

Outline

- Bits and Bytes
- 2. Representation of Character Sets
 - a. ASCII
 - b. Unicode
- 3. Representation of Data Types
 - Numeric, Boolean, Character, String
- 4. Representation of Numbers
- 5. Representation of Images, Sound and Video (not included in Syllabus)

Values are stored inside a computer as a series of 0s and 1s

Binary digit or bit

- ► How big is a Byte?
- Depend on the computer (hardware) architecture
 - ▶ Early computers by CDC Corp: 6-bit byte
 - ► Early computers by BB&N: 10-bit byte
 - ▶ Today's computers: 8-bit byte

- ▶ Byte Size determines the maximum number of possible values that can be stored.
 - ▶ 1 bit : 0 or 1 \rightarrow 2 = 21 values
 - ▶ 2 bits : 00, 01, 10 or $11 \rightarrow 4 = 2^2$ values
 - ▶ 3 bits : 000, 001, 010, 011, 100, 101, 110 or $111 \rightarrow 8 = 2^3$ values
 - \blacktriangleright 4 bits:... \rightarrow 2⁴ = 16 values
 - **...**
 - ▶ 8 bits : ... \rightarrow 2⁸ = 256 values
 - ▶ 16 bits : ... \rightarrow 2¹⁶ = 65,536 values
 - ▶ 32 bits : ... \rightarrow $2^{32} = 4,294,967,296$ values

The bits themselves have no intrinsic meaning, the interpretation of the values is determined by the way the hardware and software use the bits

2. Representation of Character Sets

Using a byte for a character, we have 256 codes, enough to represent each of the characters on a standard keyboard

01000001

2. Representation of Character Sets

<u>Computer 1</u> 01000001 → 'A'

Computer 2 11001001 → 'A'

► These two computers cannot communicate with each other because they uses different Character Representation Sets.

2. Representation of Character Sets a. ASCII

- ▶ 1960s agreed a standard set of codes
- American Standard Code for Information Interchange (ASCII)
- ► "Ask-key"

2. Representation of Character Sets a. ASCII

▶ Uses 7 bits to represent each character and the 8th bit as a means of checking the rest of the 7 bits.

(we will learn this under the topic 'Parity Check')

▶ 128 characters can be represented in the standard ASCII character set.

2. Representation of Character Sets

b. Unicode

b. Unicode

- ▶ More recent
- ▶ 16-bit code (2 bytes)
- Can represent over 65,000 characters
 - ▶ All the characters used by the world's languages
- Widely used to handle documents that is required to be written in different languages
- ► Allows localisation of software standard software can be adapted for use in different cultures by modifying the layout and features

	0	1	2	3	4	5	б	7	8	9	A	В	С	D	Е	F
9900 9910 9920 9930 9940 9950 9960 9980 9980 9980 99B0 99B0 99B0	菱 餐餅餡盒蟹饰馀馐馠助蚘駐聊駰	. 	666666666666666666666666666666666666		金甫炎鮮堂養竹饴毘醬馬馬馬馬馬	一餅餕餥餵饅饕饥饵馅馕馥馵駅駕駥駵	。就短帳餶熚饖饦饶馆首馦蚑駆駖駦駶	· 飼煉簽堂區變饧饷馇馗醖퇘炇駗眮駷	餐飲食食食食物 医乳蛋白素 医	- 俞爺食態僅質气馅肾香費用厕財監影	養餚餪餺艥饚饪饺馊馚馪馺駊駛駪駺	養館運輸農飲物物	餌餜餬餼饌廢饬饼馌馜馬馼駌駜駬駼	一麼筋蝗魄饍饝饭饽馍馝駁馽駍駝駭駽		飲飯食食食食物質
	0	1	2	3	4	5	б	7	8	9	A	В	С	D	Е	F
9A00 9A10	駿駝	騁騑	騂騒	験験	縣賜	騅腰	駧駑	騇騗	財聰	駹騙	騙騙	騋騛	騌騜	騍騝	騎騞	騏騟

Chinese Character Set – thousands of different characters

```
161 4
                            193 Á
                                      225 á
                   162 ¢
                             194 Â
                                      2226 â
                   163 £
                   164 🙀
                            196 Ä
100 d
                   165 ¥
                            197 Å
                                      229 å
101 e
                   166
102 f
                             198 Æ
                                      230 æ
                   167 §
                            199 Ç
                                      231 Ç
                   168
104 h
                            200 È
                                      232 è
105 i
                   169 🞯
                                      233 é
                   170 ₫
                            202 Ê
106 j
                                      234 ê
                            203 Ë
107 k
                   171 «
108 1
                   172
                            204 Ì
                                      236 ì
                                      237 í
                            205 j
                   174 ®
                            206 Î
                                      238 î
110 n
                   175
                            207 Ï
                                      239 ï
                   176 °
112 p
                            208 Đ
                                      240 ð
                   177 ±
113 q
                            209 Ñ
                                      241 ñ
                   178 2
114 r
                            210 Ò
                                      242 ò
115 5
                   179 3
                            212 Ô
116 t
                   180
                                      244 ô
                            213 Õ
                   181 µ
                                      245 6
118 u
                   182 ¶
                            214 Ö
                                      246 ö
119 w
                            215 X
120 x
                   184
                            216 8
                                      248 g
                   185 1
                            217 Ù
                                      249 ù
122 z
          į54 š
                   186 ഉ
                            218 Ú
                                      250 ú
123 {
                   187 »
                            219 Û
                                      251 û
124
                   188 1/4
                            220 ij
                                      252 ü
125 }
                   189 💃
                                      253 t
126 ~
                                      254 þ
         139 Ÿ
                   191 🕹
                                      255 ij
```

► ANSI Set – Graphical symbols, lines and shapes

[■] Indicates that this character isn't supported by Windows.

IT Indicates that this character is available only in TaueType fonts

3. Representing Data Types – Numerical Data

- ▶ Integers
- Negative numbers
- ▶ Real numbers

- ➤ Size: either 1, 2 or 4 bytes
 - ▶ Larger number of bytes can store larger numbers
 - ▶ 1 byte → 0 to 255
 - ▶ 2 bytes → 0 to 65,535

3. Representing Data Types – Boolean Data

- Data with two states
- ▶ 0 or 1
- ▶ Size: 1 bit

3. Representing Data Types – Character & String Data

- ► Character → <u>single</u> letter, digit or symbol
- ► Size: usually 1 byte

- String -> sequence of characters stored together
- Size: depends on the number of characters

4. Representation of Numbers

- 1. Unsigned (Positive) Integers
- 2. Signed Integers (not in Syllabus)
 - 1. Sign-Magnitude
 - 2. One's Complement
 - 3. Two's Complement
- 3. Floating Point Numbers (not in Syllabus)

3. Representation of Positive Integers

3. Representation of Positive Integers

Hindu-Arabic	Roman
1	I
5	V
10	X
50	L
100	С
500	D
1 000	M

Positional Weighted System

- ► The position of a digit in a number carries different weight
- ► Example (Base 10):
 - Digits in base 10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

9715

9 x 1000

7 x 100

1 x 10

5 x 1

Formal definition {base(radix) 10}

$$(a_n a_{n-1} ... a_0)_{10} = a_n \times 10^n + a_{n-1} \times 10^{n-1} + ... + a_0 \times 10^0$$

$$9715_{10} = 9 \times 10^3 + 7 \times 10^2 + 1 \times 10^1 + 5 \times 10^0$$

How about other bases?

Base	"Digits" in the system	Example number	Value in base 10
10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	1011 ₁₀	$1 \times 10^{3} + 1 \times 10^{1} + 1 \times 10^{0}$ = 1011_{10}
2	0, 1	1011 ₂	$1 \times 2^{3} + 1 \times 2^{1} + 1 \times 2^{0} =$ 11_{10}
4	0, 1, 2, 3	1011 ₄	$1 \times 4^{3} + 1 \times 4^{1} + 1 \times 4^{0} = 69_{10}$
8	0, 1, 2, 3, 4, 5, 6, 7	1011 ₈	$1 \times 8^{3} + 1 \times 8^{1} + 1 \times 8^{0} = 521_{10}$
16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F	1011 ₁₆	$1 \times 16^{3} + 1 \times 16^{1} + 1 \times 16^{0}$ = 4113_{10}

Common Bases

- ▶ Base 10 = Denary
 - ▶ Decimal number formed by digits (0, 1, ..., 9)
- ► Base 2 = Binary
 - ▶ Binary number formed by bits (0, 1)
- ▶ Base 8 = Octal
 - Octal number formed by octals (0, 1, ..., 7)
- ▶ Base 16 = Hexadecimal
 - ▶ Hexadecimal number formed by hexadigits (0, 1, ..., 9, A, B, ..., F)

Exercise: Convert Base-R to Decimal

- **▶**1101₂
- ▶572₈
- ▶2A₁₆
- **▶**341₅

Decimal to Binary Conversion

- ► Method 1
 - ▶ Repeated Division by 2

- ► Method 2
 - ▶Sum of Weight

Method 1: Repeated Division by 2

- Use successive division by 2 until the quotient is 0:
- ▶ The remainders form the answer:
 - ► The first remainder is the least significant bit (LSB)
 - ▶ The last remainder is the most significant bit (MSB)

Exercise: Convert Decimal to Binary (Method 1)

89	
24	
100	
73	
127	

Method 2: Sum of Weights

Determine the set of binary weights whose sum is equal to the decimal number

2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1

$$\triangleright$$
 9₁₀ = 8 + 1 = 2³ + 2⁰ = 1001₂

$$\triangleright 18_{10} = 16 + 2 = 2^4 + 2^1 = 10010_2$$

$$\triangleright$$
 58₁₀ = 32 + 16 + 8 + 2 = 2⁵ + 2⁴ + 2³ + 2¹ = 111010₂

Exercise: Convert Decimal to Binary (Method 2)

89	128	64	32	16	8	4	2	1	
24	128	64	32	16	8	4	2	1	
100	128	64	32	16	8	4	2	1	
73	128	64	32	16	8	4	2	1	
127	128	64	32	16	8	4	2	1	

Decimal to Base-R Conversion

- ▶ Method 1 is a "sure-fire" method
 - ▶ Just repeatedly divide by R

► Method 2 still works, BUT...

▶ It is usually harder as you now need to test for

multiples of a weight

	3 ²	31	3 ⁰		
	9	3	1		
19	0, 1, 2	0, 1, 2	0, 1, 2		

Exercise: Convert the Decimal 89 (89₁₀) to Base- R

Base	Answer
5	
8	
16	
10	89

Base-K to Base-J Conversion

- ▶In general,
 - ▶Use the decimal system as the bridge

▶ Base-K \rightarrow Base-10 \rightarrow Base-J

Exercise: Convert Binary to Octal

Binary	Octal
1010111010	
1111101100	
1011000001	
1000111110	
1001000101	
1101101010	

Exercise: Convert Binary to Hexadecimal

Binary	Hexadecimal
1010111010	
1111101100	
1011000001	
1000111110	
1001000101	
1101101010	

Exercise: Octal $\leftarrow \rightarrow$ Hexadecimal

Octal	Hexadecimal
537	
123	
65	
	AAA
	ВОВ
	FACE

Online Tools:

► Number Conversion

https://coderstoolbox.net/number/

►IEEE-754 Floating Point Converter

https://www.h-schmidt.net/FloatConverter/IEEE754.html