### **Linear Regression**

- Regression refers to a set of methods for modeling the relationship between one or more independent variables and a dependent variable.
- In the Natural and Social Sciences: characterizes the relationship between the inputs and outputs.
- In Machine Learning: concerned with *prediction* of a numerical (real) value.
- Common examples include predicting prices (of homes, stocks, etc.), predicting length of stay (for patients in the hospital), demand forecasting (for retail sales), among countless others.

# Basic Elements of Linear Regression

- Linear Regression: simplest and most popular regression method.
- Assumes that the relationship between the independent variables  $\mathbf{x}$  and the dependent variable y is linear  $\rightarrow y$  can be expressed as a weighted sum of the elements in  $\mathbf{x}$

# **Basic Elements of Linear Regression**

- **Example**: Estimate the prices of houses (in pounds) based on their area (in square feet) and age (in years).
- Target (price) can be expressed as a weighted sum of the features (area and age):

price = 
$$w_{\text{area}} \cdot \text{area} + w_{\text{age}} \cdot \text{age} + b$$
.

- $w_{
  m area}$  and  $w_{
  m age}$  are called *weights*, and b is called a *bias* 
  - Weights determine the influence of each feature on our prediction and
  - Bias: the predicted price when all of the features take value 0.

# **Training Dataset**

- To find the weights and bias of a model for predicting house prices, we need a training dataset consisting of sales for which we know the sale price, area, and age for each home.
  - n: the number of examples in our dataset. Each input:  $\mathbf{x}^{(i)} = [x_1^{(i)}, x_2^{(i)}]^{\mathsf{T}}$  and the corresponding label:  $y^{(i)}$ .

### **Linear Model**

• When inputs consist of d features, our prediction  $\hat{y}$  is

$$\hat{y} = w_1 x_1 + \ldots + w_d x_d + b.$$

- Collecting all features into a vector  $\mathbf{x} \in \mathbb{R}^d$  and all weights into a vector  $\mathbf{w} \in \mathbb{R}^d$ :  $\hat{y} = \mathbf{w}^\mathsf{T} \mathbf{x} + b$ .
- Define Design Matrix  $\mathbf{X} \in \mathbb{R}^{n \times d}$ : contains one row for every example and one column for every feature. For a collection of features  $\mathbf{X}$ :

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{w} + b,$$

broadcasting is applied during the summation.

# Finding the Weights from Training Data

- Given features of a training dataset X and corresponding (known) labels y, the goal is to find w and b that given features of a new data point, its label will be predicted with the lowest error. We will need two more things:
  - a quality measure for some given model.
  - a procedure for updating the model to improve its quality.
- A noise term can be incorporated to account for measurement errors in the training dataset.

### **Loss Function**

- The loss function quantifies the distance between the real and predicted value of the target.
- A non-negative number where smaller values are better and perfect predictions incur a loss of 0.
- Most popular loss function in regression is the squared error:

$$l^{(i)}(\mathbf{w},b) = \frac{1}{2} (\hat{y}^{(i)} - y^{(i)})^2.$$

- $\hat{y}^{(i)}$ : prediction,  $y^{(i)}$ : true label for example i
- The error is only a function of the model parameters.
- **Example:** regression problem for a 1-d case:



### **Loss Function**

• To measure the quality of a model on the entire dataset of *n* examples, we average (or sum) the losses on the training set:

$$L(\mathbf{w}, b) = \frac{1}{n} \sum_{i=1}^{n} l^{(i)}(\mathbf{w}, b) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b - y^{(i)})^{2}.$$

• Training as an optimization problem: find parameters ( $\mathbf{w}^*$ ,  $b^*$ ) that minimize the total loss across all training examples:

$$\mathbf{w}^*, b^* = \underset{\mathbf{w}, b}{\operatorname{argmin}} L(\mathbf{w}, b).$$

# **Analytic Solution**

- Linear regression can be solved analytically by applying a simple formula.
- Our prediction problem is to minimize  $\|\mathbf{y} \mathbf{X}\mathbf{w}\|^2$ .
  - Subsume bias b into the parameter w by appending a column to the design matrix consisting of all ones.
- Taking the derivative of the loss with respect to **w** and setting it equal to zero yields the analytic (closed-form) solution:

$$\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}.$$

• While simple problems like linear regression may admit analytic solutions, we should not get used to such good fortune:)

# **Gradient Descent (GD)**

- Even in cases where we cannot solve the models analytically, it turns out that we can still train models effectively in practice.
- **Gradient Descent**: The key technique for optimizing nearly any deep learning model, consists of iteratively reducing the error by updating the parameters in the direction that incrementally lowers the loss function.



# Updating the model weights using GD

 We can express the update mathematically as follows (\(\partial\) denotes the partial derivative):

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\eta}{N} \sum_{i=1}^{N} \nabla_{\mathbf{w}} l^{(i)}(\mathbf{w}, b),$$
$$b \leftarrow b - \frac{\eta}{N} \sum_{i=1}^{N} \frac{\partial l^{(i)}(\mathbf{w}, b)}{\partial b}.$$

- $\eta$  is a positive scalar called the **Learning Rate**.
- We initialize the values of the model parameters, typically at random.

### Reminder: Gradient vector

- We can concatenate partial derivatives of a multivariate function  $f(\mathbf{x})$  with respect to all its input variables to obtain the *gradient* vector of the function.
- The gradient of the function  $f(\mathbf{x})$  with respect to  $\mathbf{x}$  is a vector of n partial derivatives:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \left[ \frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n} \right]^{\mathsf{T}},$$

where  $\nabla_{\mathbf{x}} f(\mathbf{x})$  is often replaced by  $\nabla f(\mathbf{x})$  when there is no ambiguity.

### Minibatch Stochastic Gradient Descent

- GD takes the average of the derivative of the losses computed on every single example in the dataset.
  - this can be extremely slow: we must pass over the entire dataset before making a single update.
- Minibatch Stochastic Gradient Descent: Sample a random minibatch of examples every time to compute the update:
  - 1. In each iteration, randomly sample a minibatch  ${\cal B}$  consisting of a fixed number of training examples.
  - 2. Compute the derivative (gradient) of the average loss on the minibatch with regard to the model parameters.
  - 3. Multiply the gradient by the learning rate  $\eta$  and subtract the resulting term from the current parameter values.

### Minibatch Stochastic Gradient Descent

• The updates are given by:

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \nabla_{\mathbf{w}} l^{(i)}(\mathbf{w}, b),$$
$$b \leftarrow b - \frac{\eta}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \frac{\partial l^{(i)}(\mathbf{w}, b)}{\partial b}.$$

•  $|\mathcal{B}|$ : the number of examples in each minibatch: the **Batchsize** 

• For the case of quadratic loss and linear regression:

$$\nabla_{\mathbf{w}} l^{(i)}(\mathbf{w}, b) = \mathbf{x}^{(i)} \left( \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b - y^{(i)} \right) = \mathbf{x}^{(i)} \left( \hat{y}^{(i)} - y^{(i)} \right)$$
$$\frac{\partial l^{(i)}(\mathbf{w}, b)}{\partial b} = \left( \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b - y^{(i)} \right) = \left( \hat{y}^{(i)} - y^{(i)} \right)$$

• We observe that the gradient depends on the error between the prediction and the ground truth value:  $\hat{y}^{(i)} - y^{(i)}$ 

### Minibatch Stochastic Gradient Descent

- Batchsize and Learning Rate are manually pre-specified
  - Called Hyperparameters.
  - Hyperparameter tuning is the process by which hyperparameters are chosen, based on results on a separate Validation Set.
- After training for some predetermined number of iterations (or until some other stopping criteria are met), we record the estimated model parameters, denoted  $\hat{\mathbf{w}}$ ,  $\hat{b}$ .
- These parameters will not be the exact minimizers of the loss because, although the algorithm converges slowly towards the minimizers it cannot achieve it exactly in a finite number of steps.

### Making Predictions with the Learned Model

- Given the learned linear regression model  $\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x} + \hat{b}$ , we can now estimate the price of a new house (not contained in the training data) given its area  $x_1$  and age  $x_2$ .
  - Commonly called Prediction or Inference.

### From Linear Regression to Deep Networks

• A visualization of a linear regression model as a neural network:



- The above diagram highlights the connectivity pattern i.e. how each input is connected to the output
  - does not show the weights or biases.
- Inputs are  $x_1, \ldots, x_d$ , so the feature dimensionality in the input layer is d.
- The output of the network is  $o_1$ , so the number of outputs in the output layer is 1.
- The number of layers for the neural network above is 1.
- We can think of linear regression models as neural networks consisting of just a single artificial neuron, or as single-layer neural networks.
- Since every input is connected to every output (in this case there is only one output), we can regard this as a *fully-connected layer* or *dense layer*.

# **Biology**

• A biological neuron consists of *dendrites* (input), the *nucleus* (CPU), the *axon* (output wire), and the *axon terminals* (output), connecting to other neurons via *synapses*.



- Information  $x_i$  arriving from other neurons (or environmental sensors such as the retina) is received in the dendrites.
- $x_i$  is weighted by synaptic weights  $w_i$  determining the effect of the inputs (e.g., activation or inhibition via the product  $x_i w_i$ ).
- The weighted inputs arriving from multiple sources are aggregated in the nucleus as a weighted sum  $y = \sum_i x_i w_i + b$ , and this information is then sent for further processing in the axon y, typically after some nonlinear processing via  $\sigma(y)$ .
- From there it either reaches its destination (e.g., a muscle) or is fed into another neuron via its dendrites.

### The Normal Distribution and Squared Loss

- Linear regression was invented by Gauss in 1795, who also discovered the normal distribution (also called the *Gaussian*).
- It turns out that there is connection between the normal distribution and linear regression
- The probability density of a normal distribution with mean  $\mu$  and variance  $\sigma^2$  (standard deviation  $\sigma$ ) is given as:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$

• Below we define a Python function to compute the normal distribution.

```
In [6]: def normal(x, mu, sigma):
    p = 1 / math.sqrt(2 * math.pi * sigma**2)
    return p * torch.exp(-0.5 / sigma**2 * (x - mu)**2)
```

We can now visualize various normal distributions.

```
In [7]: # Input values
    x = torch.arange(-7, 7, 0.01)
    # Mean and standard deviation pairs
    params = [(0, 1), (0, 2), (3, 1)]
    a = [normal(x, mu, sigma) for mu, sigma in params]
    [plt.plot(x, a[i], label="mu = {}, sigma {}".format(params[i][0], params[i][1])) f
    or i in range(len(a))]
    plt.legend(loc="upper left");
    plt.xlabel('x');
    plt.ylabel('p(x)');
    fig = plt.gcf()
    fig.set_size_inches(10, 5, forward=True)
    plt.show()
```



# Summary

- Key ingredients in a machine learning model are training data, a loss function, an optimization algorithm, and quite obviously, the model itself.
- Vectorizing makes everything better (mostly math) and faster (mostly code).
- Minimizing an objective function and performing maximum likelihood estimation can mean the same thing.
- Linear regression models are neural networks, too.