데이터 전처리 : 데이터의 품질을 올린다! (왜? 그래야 학습이 잘 되겠지?)

데이터 전처리 과정

- 데이터 실수화 : 문자열과 같은 데이터를 컴퓨터가 이해할 수 있게 실수화 하는 것.
- 불완전한 데이터 제거: NULL, NAN, NA 같은 빈 데이터를 제거.
- 잡음이 섞인 데이터 제거 : 잡음이라고 판단되는 값들을 제거 (ex 음수인 가격, 과도하게 큰 연령데이터 등).
- 모순된 데이터 제거 : 남성 중 주민번호가 '2'로 시작하는 경우와 같이 모순적인 값 제거 또는 수정.
- 불균형 데이터 해결 : 특정 클래스만 많은 (ex 남성 데이터 : 여성 데이터 = 99 : 1)
 - 과소표집(undersampling), 과대표집(oversampling) 등의 기법으로 교정

데이터 전처리 주요 기법

- 데이터 실수화 (Data Vectorization) : 범주형, 텍스트, 이미지 자료 등을 실수 형태로 전환.
- 데이터 정제 (Data Cleaning) : 없는 데이터는 채우고, 잡음 데이터는 제거하고, 모순 데이터를 올바른 데이터로 교정하는 것.
- 데이터 통합 (Data Integration) : 여러 개의 데이터 파일을 하나로 합치는 과정
- 데이터 축소 (Data Reduction) : 데이터가 과도하게 크면 분석 및 학습이 오래 걸리고 비효율 적이기 때문에 데이터의 수를 줄이거나(Simpling) 데이터 차원을 축소하는 작업
- 데이터 변환 (Data transformation) : 데이터를 정규화(normalization, standardization)하거나, 로그를 씌우거나, 평균값을 계산하여 사용하거나, 사람 나이 등을 10대, 20대, 30대 등으로 구간 화 하는 작업
- 데이터 균형 (Data balancing) : 특정 클래스의 관측치가 다른 클래스에 비해 매우 낮을 경우 샘플링(과소표집, 과대표집)을 통해 클래스 비율을 맞추는 작업

데이터 실수화 (Data Vectorization): 범주형, 텍스트, 이미지 자료 등을 실수 형태로 전환.

- 2차원 자료의 예시
 - [n_samples, n_features], 2차원 자료는 2차원 행렬 또는 2차원 텐서라고 불림
- 자료의 유형

- 연속형 자료 (Continuous data)의 실수화 : 사람들의 나이 같은 데이터를 구간을 나 누어 mapping을 한다.
- 범주형 자료 (Categorical data)의 실수화 :
- One-hot encoding 을 이용한 데이터 실수화 : 0, 1을 행렬의 형태로 나타낸다.

id	City
1	Seoul
2	Dubai
3	LA

id	Cityl	City2	City3
1	1	0	0
2	0	1	0
3	0	0	1

Scikit-learn의 DictVectorizer 함수 : 위와 같은 One-hot encoding을 해준다. Input argument의 디폴트는 sparse=True이다. 이건 아래서 설명

- 희소행렬(Sparse Matrix): 위에서 봤듯이 One-hot endcoding을 하면 행렬의 값이 대부분 0인데, 이는 메모리 낭비이기 때문에 이를 COO 표현식과 CSR 표현식으로 해결하는데 그러면 행렬처럼 우리 눈으로 볼 수는 없다.
- CSR 표현식 (Compressed Sparse Row): COO 형식에 비해 메모리 및 속도에서 효율적임. COO는 데이터 값만 저장한 배열과 그 데이터 값의 행렬 좌표를 저장한 배열을 만드는 방식. CSR은 이 좌표 배열을 또 최적화 한 것임.

```
1 vec1=DictVectorizer(sparse=True) # 메모리를 줄이기 위해 sparse=True
2 x1=vec1.fit_transform(x)
3 x1

C- <3x4 sparse matrix of type '<class 'numpy.float64'>'
with 6 stored elements in Compressed Sparse Row format>
```

■ 텍스트 자료 (Text data)의 실수화 :

• 단어의 출현 횟수를 이용한 데이터 실수화 (TF): 아래처럼 단어의 빈도 수로 표현 하는 방법이다. 그러나 영어의 관사 a, the 처럼 의미가 없으나 빈도수가 높은 경우가 있다. 그래서 TF-IDF 기법을 이용한다.

id	
1	떴다 떴다 비행기 날아라 날아라
2	높이 높이 날아라 우리 비행기
3	내가 만든 비행기 날아라 날아라
4	멀리 멀리 날아라 우리 비행기

	id	날아라	내가	높이	떴다	만든	멀리	비행기	우리
	1	2	0	0	2	0	0	1	0
>	2	1	0	2	0	0	0	1	1
	3	2	1	0	0	1	0	1	0
	4	1	0	0	0	0	2	1	1

CountVectorizer의 fit_transform()

['뗬다 떴다 비행기 날아라 날아라', '높이 높이 날아라 우리 비행기', '내가 만든 비행기 날아라 날아라', '멀리 멀리 날아라 우리 비행기']

- 날아라
 내가
 높이
 떴다
 만든
 멀리
 비행기
 우리

 0
 2
 0
 0
 2
 0
 0
 1
 0

 1
 1
 0
 2
 0
 0
 0
 1
 1
 1

 2
 2
 1
 0
 0
 0
 1
 0
 1
 0

 3
 1
 0
 0
 0
 0
 2
 1
 1
- fit_transform()
- toarray(): CSR 표현의 압축을 풀기 위해 사용

 TF-IDF (Term Frequency Inverse Document Frequency) : 각 단어의 가중치를 구해서 빈도 에 곱해준다.

tf(d,t): 특정 문서 d에서 특정 단어 t의 등장 횟수.

df(t): 특정 단어 t가 등장한 문서의 수.

 $ext{ldf}(d,\ t)$: $ext{df}(t)$ 에 반비례. 즉 모든 문서에서 자주 등장하는 단어는 중요도가 낮다고 판단. $ext{idf}(d,t) = log(rac{n}{1+df(t)})$ log를 쓰는 이유는 전체 문서의 수(n)이 커질 경우 아래의 예시

처럼 희귀 단어들에 엄청난 가중치가 부여될 수 있기 때문이다.

 $\begin{aligned} &df(d,t) = log(n/df(t)) \\ &\iota = 1,000,000 \end{aligned}$

단어 t	df(t)	idf(d,t)
word1	1	6
word2	100	4
word3	1,000	3
word4	10,000	2
word5	100,000	1
word6	1,000,000	0

1렇다면 log를 사용하지 않으면 idf의 값이 어떻게 커지는지 보겠습니다.

$$df(d,t)=n/df(t)$$
1 = 1,000,000

단어 t	df(t)	idf(d,t)
word1	1	1,000,000
word2	100	10,000
word3	1,000	1,000
word4	10,000	100
word5	100,000	10
word6	1,000,000	1

TfidVectorizer의 fit_transform() 함수

```
[ ] 1 from sklearn.feature_extraction.text import TfidfVectorizer
2 tfid=TfidfVectorizer()
3 x2=tfid.fit_transform(text).toarray() # 높은 빈도는 낮은 가중치, 낮은 빈도는 높은 가중치
4 x3=pd.DataFrame(x2,columns=tfid.get_feature_names())
5 x3
```

0		날아라	내가	높이	떴다	만든	멀리	비행기	우리
	0	0.450735	0.000000	0.00000	0.86374	0.000000	0.00000	0.225368	0.000000
	1	0.229589	0.000000	0.87992	0.00000	0.000000	0.00000	0.229589	0.346869
	2	0.569241	0.545415	0.00000	0.00000	0.545415	0.00000	0.284620	0.000000
	3	0.229589	0.000000	0.00000	0.00000	0.000000	0.87992	0.229589	0.346869

데이터 변환 (Data Transformation):

- 데이터 변환의 필요성 : 머신러닝은 데이터가 가진 특성(Feature)들을 비교하여 데이터 패턴을 찾음. 이 때 데이터가 가진 특성 간 스케일 차이가 심하면 패턴을 찾는데 문제가 발생함.
- 데이터 변환 법 :

표준화 (Standardization) : 평균값을 기준으로 1~0의 분포

$$x_{std} = \frac{x - mean(x)}{sd(x)}$$

정규화 (Normalization) : 최대값과 최소값을 기준으로 1~0의 분포

$$x_{nor} = \frac{x - min(x)}{max(x) - min(x)}$$

정규화가 표준화보다 유용함. 단, 데이터 특성이 bell-shape 이거나 이상치가 있을 경우에는 표준화가 유용함.

데이터 정제 (Data Cleaning):

• 결측 데이터 채우기 (Empty Values): np.nan, npNaN, None 과 같은 빈 데이터를 평균 (mean), 중위수(median), 최빈수(most frequent value)등 으로 대체한다. 사용가능 함수는

sklearn의 Imputer(): 입력 인자로 평균, 중위수, 최빈수를 선택한다. 버전에 따라 함수가 다르다. 최신 : Simpleimputer()

```
2 x_miss=np.array([[1,2,3,None],[5,np.NAN,7,8],[None,10,11,12],[13,np.nan,15,16]])
    3 x_miss
array([[1, 2, 3, None],
         [5, nan, 7, 8],
         [None, 10, 11, 12],
         [13, nan, 15, 16]], dtype=object)
   1 from sklearn.preprocessing import Imputer
    2 im=Imputer(strategy='mean')
    3 im.fit_transform(x_miss) # 열의 평균값으로 대체
🙆 C:\Anaconda3\lib\site-packages\sklearn\utils\deprecation.py:66: DeprecationWarning: Class Imputer is deprecated; Im
    warnings.warn(msg, category=DeprecationWarning)
   , 8.
                                                      1,
                               , 11.
         [ 6.33333333, 10.
                               , 15.
                                          , 16.
```

데이터 통합 (Data Integration): 여러 개의 데이터 파일을 하나로 합친다.

Pandas의 merge() 함수 사용

C	[13]	5 6	df1=pd.	if1.shape)	-	tore-sa	les-train.c	sv",e	ngine='		네이터 #1 로드
0 1 5 2015-07-31 5263 555 1 1 0 1 1 2 5 2015-07-31 6064 625 1 1 0 1 2 3 5 2015-07-31 8314 821 1 1 0 1 3 4 5 2015-07-31 13995 1498 1 1 0 1	_	pan	das.cor	e.frame.Da	taFrame						
1 2 5 2015-07-31 6064 625 1 1 0 0 1 1 2 3 5 2015-07-31 8314 821 1 1 0 1 1 3 4 5 2015-07-31 13995 1498 1 1 0 1 1											
2 3 5 2015-07-31 8314 821 1 1 0 1 3 4 5 2015-07-31 13995 1498 1 1 0	₽		Store	DayOfWeek	Date	Sales	Customers	Open	Promo	StateHoliday	y SchoolHoliday
3 4 5 2015-07-31 13995 1498 1 1 0	₽	0	Store 1	-				Open	Promo		-
	₽	-	1	5	2015-07-31	5263	555	Open 1	Promo	() 1
4 5 5 2015-07-31 4822 559 1 1 0	₽	1	1 2	5	2015-07-31 2015-07-31	5263 6064	555 625	Open 1 1 1	Promo 1 1 1 1	(1
	D	1 2	1 2 3	5 5 5	2015-07-31 2015-07-31 2015-07-31	5263 6064 8314	555 625 821	Open 1 1 1 1 1	Promo 1 1 1 1 1 1	(1 1 1

DataFrame이라는 pandas의 자료형 두 개를 merge 하여 shape로 크기를 확인.

두 데이터프레임 모두 Store이라는 공통된 열을 가지고 있기 때문에 on='Store'을 해주면 Store 값에 맞는 애들에 붙는다. 공통된 값이 없으면 생략된다.

How='outer' 하면 없는 애에는 NaN이 붙는다.

df1.shape: (1017209, 9) + df2.shape: (1115, 9) = df.shape: (1017209, 18)

데이터 불균형 (Data Imbalance): 머신러닝의 목적이 분류일 때 특정 클래스의 관측 치가 다른 클래스에 비해 매우 낮게 나타나면 이를 과소표집이나 과대표집 기법으로 맞춰준다. 일반적으로 과소표집보다 과대표집이 유용하다. 의사결정나무와 앙상블은 상대적으로 불균형 자료에 강인한 특성을 보인다.

- 과소표집(undersampling) : 다수클래스의 표본을 임의로 학습데이터로부터 제거하는 것. (ex : NearMiss)
- 과대표집(oversampling) : 소수클래스의 표본을 복제하여 이를 학습데이터에 추가하는 것. (ex : SMOTE, ADASYN)

노란색이 불균형하게 많은 걸 볼 수 있다. Matplotlib의 scatter() 함수.

SMOTE와 ADASYN을 돌리면 보라색과 초록색 값이 많아진 걸 볼 수 있다. Fit_resample() 함수.

NearMlss를 돌리면 다 같이 줄었다. Under_sampling() 함수.