Storage Server

IEEE BigData19

Many DL Workloads Dominated by I/O

- each GPU easily consumes 1 GByte/s
- 16 GPU machine = 16 GBytes/s in data I/O alone
- hardware
 - 150 MBytes/s rotation storage
 - 3 Gbytes/s SSD
 - 5 Gbytes/s Ethernet/Infiniband

The YouTube8m Dataset

- 6.5 million videos
- 300 TB of data
- 1 PB when transcoded, normalized
- applications: unsupervised and semi-supervised learning
- assume pre-sharded into 100000 10G shards chunks-{000000..099999}.tar

IEEE BigData19 Page 3 / 17

Datasets Larger than Local Storage

- 7-32 TB of local SSD storage
- need to replicate dadtaset across all nodes for local I/O
- alternatively, partition dataset across all nodes
- 64 GPUs w/DGX-1 = 8 nodes = 56-240 TB of local storage

Limits:

- largest replicated dataset: 32 TB
- largest partitioned dataset: 240 TB
- ullet anything larger o distributed storage

Distributed Storage

Architecture dependent on application. Classes of technologies:

- full POSIX semantics
 - fully consistent, read, write, seek, partial updates, etc.
 - local file systems
- partial POSIX semantics
 - behaves mostly like POSIX but not fully consistent
 - many network file systems (NFS, etc.)
- object store only
 - get object / put object only
 - object storage servers, web servers, cloud storage (S3 etc.)

Other Considerations

- loss of drives vs loss of data, recovery
- loss of servers vs loss of service
- access patterns
- effectiveness of caching

IEEE BigData19

Typical Workflow

Two major operations: (1) ETL (2) training

Page 7 / 17

Deep Learning on File System

- FileDataSet assumes POSIX semantics
- each training sample is a file, accessed in random order
- good performance on local SSD
- poor performance on rotational / network file systems
- ETL via file-by-file transformations on file system
- repeated iteration over full dataset makes caching pointless (no hotspots)
- LMDB reduces number of system calls but not random access

Deep Learning with Sequential Reads

- requires only object store semantics (but works with POSIX)
- thousands of training samples are bundled into shards
- shuffling for training is two stage: shard shuffle and sample shuffle
- good performance on SSD, rotational, network file systems
- ETL via shard-to-shard transformations (only sequential reads)

Collection of Technologies

- proven technologies, re-implemented with DL focus and using standard formats
- use for production and/or use as didactic example to understand other systems
- TFRecord/tf.Example in principle used the same way (but little public

AIStore

- provides an infinitely scalable object store for DL/AI applications
- uses HTTP(s) for all communications
 - avoidance of bottlenecks (using HTTP redirection protocol)
 - location transparency for DL jobs (using HTTP proxy protocol)
- can be deployed in Kubernetes
- provides additional server-side support for DL/AI applications (inference, sort, ...)
- even if you don't use it, illustrates important concepts in high performance storage

(We'll talk about the client libraries separately.)

Avoiding Bottlenecks in Object Storage

IEEE BigData19

Handling Drive and Server Failures

Drive and server failures are inevitable with petascale datasets.

Two modes of recovery from drive failure:

- reconstruct via erasure coding
- retrieve from upstream storage (when used as a cache)

Continued operation in the presence of hardware failures:

- use consistent hashing to redirect to working server
- server initiates recovery from erasure coded parts or upstream server

AIStore Performance

- AlStore achieves performance using rotational drives comparable to local SSD on large scale datasets
- 🔯 ությութ 🗚 🔂 toge agan take maximum advantage of all available drive hardware bandwidth Page 14 / 17

How do you use Sharded Distributed Storage?

All you need is a URL:

```
samples = WebDataset("http://aistore/yt8m/chunks-{000000..099999}.tar", extensions="mjpeg json)
for clip, json in samples:
...
```

- common protocols ('http:', 'file:', 'gs:', 's3:', etc.)
- brace syntax enumerates the shards (just like in shell)
- works against any web server, cloud storage, local storage
- code is otherwise the same as in multi-node training with local replicated data
- performance is as good as local SSD

WebDataset and AlStore "Scale Down" Nicely

Student / Desktop Use

Small Work Groups / Academic Groups

Simple Cloud Usage

High Performance Cloud Usage

AIStore and WebDataset

- illustrate important concepts in efficient large scale storage
- fully open source, open standards based solutions
- utilizes full I/O bandwidth of both rotational and SSD drives
- easy migration of existing apps & data
- unlimited scalability (both out and down)

IEEE BigData19 Page 17 / 17