Summary for Modern Algebra II

SEUNGWOO HAN

Contents

CHAPTER I	INTEGRAL DOMAINS	PAGE 2	_
1.1	Basics of Integral Domains	2	
1.2	Euclidean Domains	5	
1.3	Principal Ideal Domains	8	
1.4	Unique Factorization Domains	11	
1.5	Unique Factorizations in Polynomial Rings	12	
1.6	Irreducibility Criteria for Polynomials	12	
1.7	Field Extensions and Minimal Polynomials	12	
1.8	Integrally Closed Domains	12	
CHAPTER 2	FIELD EXTENSIONS	Page 17	_
	Finite Extensions and Degree of Field Extension	17	

Chapter 1

Integral Domains

1.1 Basics of Integral Domains

Definition 1.1.1: Integral Domain

A ring *R* is an *integral domain* if *R* is a commutative ring with identity which has no zero divisor.

Note

Here are some basic facts regarding an integral domain R.

- (1) If ac = bc and $c \neq 0$, then a = b.
- (2) Let $c_1, \dots, c_n \in R$.

$$(c_1, \dots, c_n) \triangleq \{ r_1 c_1 + \dots + r_n c_n \mid r_i \in R \} \subseteq R$$

is called the *ideal generated by* c_1, \dots, c_n . If n = 1, then it is called a *principal ideal*.

- (3) For $a, b \in R$ with $a \neq 0$, we write $a \mid b$ if b = ad for some $d \in R$.
- (4) For $a, b \in R \setminus \{0\}$, $d \in R$ is a greatest common divisor if
 - (i) $d \mid a$ and $d \mid b$; and
 - (ii) if $d' \mid a$ and $d' \mid b$, then $d' \mid d$.
- (5) $u \in R$ is a *unit* in R if uv = 1 for some $v \in R$. v is called the *inverse* of u and is denoted u^{-1} .
- (6) For $a, b \in R$, a is an associate of b if a = bu for some $u \in R$, or equivalently, if (a) = (b).
- (7) For a non-unit $p \in R \setminus \{0\}$, p is *irreducible* if p = ab implies a or b is a unit, or equivalently, only divisors of p are associates of p and units.
- (8) For a non-unit $p \in R \setminus \{0\}$, p is prime in R if $p \mid ab$ implies $p \mid a$ or $p \mid b$, or equivalently, p is prime if (p) is a prime ideal of R.
- (9) $R^* \triangleq \{u \in R \mid u \text{ is a unit in } R\}$ is a group under "."

Theorem 1,1,2

Let R be an integral domain. If $p \in R$ is prime, then it is irreducible.

Proof. Suppose p = ab. WLOG, $p \mid a$. Then, a = pr for some $r \in R$. Hence, p = prb, which implies rb = 1; b is a unit.

Example 1.1.3

- (i) \mathbb{Z} is an integral domain. $\mathbb{Z}^* = \{\pm 1\}$. For nonzero $n \in \mathbb{Z}$, n and -n are associate. $p \in \mathbb{Z}$ is a prime number if and only if $\pm p$ is prime in \mathbb{Z} .
- (ii) $\mathbb{Z}[\sqrt{2}] := \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$. Then, $\pm 1 + \sqrt{2}$ are units in $\mathbb{Z}[\sqrt{2}]$. $\sqrt{2}$ and $2 \sqrt{2}$ are associate. There is no $a, b \in \mathbb{Z}$ such that $(a + b\sqrt{2})\sqrt{2} = 2b + a\sqrt{2} = 1$. Hence, $\sqrt{2}$ is not a unit in $\mathbb{Z}[\sqrt{2}]$.

Now, we prove that $\sqrt{2}$ is irreducible in $\mathbb{Z}[\sqrt{2}]$. Suppose $(a+b\sqrt{2})(c+d\sqrt{2}) = \sqrt{2}$ for some $a, b, c, d \in \mathbb{Z}$. Then, we get ac + 2bd = 0 and ad + bd = 1. Hence,

$$-2 = (ac + 2bd)^{2} - 2(ad + bc)^{2}$$
$$= (a^{2} - 2b^{2})(c^{2} - 2d^{2}).$$

WLOG, $(a + b\sqrt{2})(a - b\sqrt{2}) = a^2 - 2b^2 = \pm 1$; thus $a + b\sqrt{2}$ is a unit in $\mathbb{Z}[\sqrt{2}]$.

Definition 1.1.4

 $d \in \mathbb{Z} \setminus \{0,1\}$ is square-free if $c^2 \nmid d$ for all $c \in \mathbb{Z}_{\geq 2}$.

$$\mathbb{Q}(\sqrt{d}) \triangleq \{ a + b\sqrt{d} \mid a + b \in \mathbb{Q} \}$$

is a field. Now, we introduce a function called *norm*:

$$N: \mathbb{Q}(\sqrt{d}) \longrightarrow \mathbb{Q}$$

$$a + b\sqrt{d} \longmapsto (a + b\sqrt{d})(a - b\sqrt{d}) = a^2 - b^2d.$$

Note that for d < 0, $N(\alpha) \ge 0$ for all $\alpha \in \mathbb{Q}(\sqrt{d})$.

Theorem 1.1.5

Let *d* be a square-free integer. Let $\alpha, \beta \in \mathbb{Q}(\sqrt{d})$.

- (i) $N(\alpha) = 0 \iff \alpha = 0$
- (ii) $N(\alpha\beta) = N(\alpha)N(\beta)$

Definition 1.1.6: Ring of Quadratic Integer

Let *d* be a square-free integer. Then,

$$\mathcal{O}_{\mathbb{Q}(\sqrt{d})} \triangleq \begin{cases} \mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\} & \text{if } d \equiv 2, 3 \pmod{4} \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] = \left\{a + \frac{1+\sqrt{d}}{2}b \mid a, b \in \mathbb{Z}\right\} & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

is an integral domain. As $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is a subring of $\mathbb{Q}(\sqrt{d})$, we may apply the norm function N for $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$.

Note

The weird definition follows from the fact that $\mathbb{Z}[\sqrt{d}]$ when $d \equiv 1 \pmod{4}$ is not integrally closed.

Theorem 1,1,7

Let *d* be a square-free integer.

- (i) $\forall \alpha \in \mathcal{O}_{\mathbb{O}(\sqrt{d})}, N(\alpha) \in \mathbb{Z}$
- (ii) $\forall u \in \mathcal{O}_{\mathbb{Q}(\sqrt{d})}$, (u is a unit $\iff N(u) = \pm 1$)
- (iii) $\forall \alpha \in \mathcal{O}_{\mathbb{Q}(\sqrt{d})}$, $(N(\alpha) \text{ is prime in } \mathbb{Z} \implies \alpha \text{ is irreducible in } \mathcal{O}_{\mathbb{Q}(\sqrt{d})})$
- (iv) If $\pi \in \mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is prime, then $N(\pi) \in \{\pm p^2, \pm p\}$ for some prime $p \in \mathbb{Z}$. Either p is irreducible in $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ (in which $N(\pi) = \pm p^2$) or $p = \pi \pi'$ for some irreducible π' (in which $N(\pi) = \pm p$).

Proof. For simplicity, let

$$\omega \triangleq \begin{cases} \sqrt{d} & \text{if } d \equiv 2,3 \pmod{4} \\ \frac{1+\sqrt{d}}{2} & \text{if } d \equiv 1 \pmod{4} \end{cases} \text{ and } \overline{\omega} \triangleq \begin{cases} -\sqrt{d} & \text{if } d \equiv 2,3 \pmod{4} \\ \frac{1-\sqrt{d}}{2} & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

so that $\mathcal{O}_{\mathbb{Q}(\sqrt{d})} = \mathbb{Z}[\omega]$.

(i)

$$N(a + b\omega) = \begin{cases} a^2 - db^2 & \text{if } d \equiv 2, 3 \pmod{4} \\ a^2 + ab + \frac{1 - d}{4}b^2d & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

is an integer.

- (ii) If $u \in \mathbb{Z}[\omega]$ is a unit, then $1 = N(1) = N(uu^{-1}) = N(u)N(u^{-1})$. Hence, by (i), $N(u) = \pm 1$. If $N(a + b\omega) = \pm 1$, then $(a + b\omega)(a b\omega) = \pm 1$. Hence, $a + b\omega$ is a unit.
- (iii) Suppose $\alpha = \beta \gamma$ where $\alpha, \beta, \gamma \in \mathbb{Z}[\omega]$ and let $N(\alpha) = p$ is prime in \mathbb{Z} . Then, $p = N(\alpha) = N(\beta)N(\gamma)$ and $N(\beta), N(\gamma) \in \mathbb{Z}$ by (i). Hence, $N(\beta) = \pm 1$ or $N(\gamma) = \pm 1$, which implies β or γ is a unit in $\mathbb{Z}[\omega]$ by (ii).
- (iv) Let $(\pi) \subseteq \mathbb{Z}[\omega]$ be a prime ideal. π is irreducible by Theorem 1.1.2. Let

$$\iota: \mathbb{Z} \longrightarrow \mathbb{Z}[\omega]$$
$$a \longmapsto a + 0\omega$$

be an injective ring homomorphism. Then, $\iota^{-1}\big((\pi)\big)=(\pi)\cap\mathbb{Z}\subseteq\mathbb{Z}$ is a prime ideal in $\mathbb{Z}.^1$ Hence, $(\pi)\cap\mathbb{Z}=(p)$ for some prime $p\in\mathbb{Z}$, and thus $p=\pi\pi'$ for some $\pi'\in\mathbb{Z}[\omega]$. Therefore, we get $N(\pi)N(\pi')=N(p)=p^2$ in \mathbb{Z} . As $N(\pi)\in(\pi)\cap\mathbb{Z}$, we have $p\mid N(\pi)$. Thus, $N(\pi)\in\{\pm p^2,\pm p\}$.

If $N(\pi) = \pm p^2$, then π' is a unit by (ii), i.e., p is an associate of π and hence p is irreducible. If $N(\pi) = \pm p$, then $N(\pi') = \pm p$; hence π' is irreducible by (iii).

Example 1.1.8

- (i) $\mathcal{O}_{\mathbb{Q}(i)} = \mathbb{Z}[i]$ is the ring of Gaussian integers. $\mathbb{Z}[i]^* = \{\pm 1, \pm i\}$. $N(1 \pm i) = 2$; $1 \pm i$ is irreducible in $\mathbb{Z}[i]$.
- (ii) Consider $\mathcal{O}_{\mathbb{Q}(\sqrt{-5})} = \mathbb{Z}[\sqrt{-5}]$. $N(1+\sqrt{-5})=6$; hence $1+\sqrt{-5}$ is not prime in $\mathbb{Z}[\sqrt{-5}]$ by Theorem 1.1.7 (iv).

Suppose $1 + \sqrt{-5} = \alpha\beta$ for some $\alpha, \beta \in \mathbb{Z}[\sqrt{-5}]$. Then, $6 = N(1 + \sqrt{-5}) = N(\alpha\beta) = N(\alpha)N(\beta)$. Write $\alpha = a + b\sqrt{-5}$ so that $N(\alpha) = a^2 + 5b^2 \in \{1, 2, 3, 6\}$. As $a, b \in \mathbb{Z}$, $N(\alpha) \in \{1, 6\}$. If $N(\alpha) = 6$, then $N(\beta) = 1$. Then, we may conclude that

¹Given a ring homomorphism between commutative rings with identity, the inverse image of prime ideal is a prime ideal.

 α or β is a unit in $\mathbb{Z}[\sqrt{-5}]$ by Theorem 1.1.5 (ii). Hence, $1+\sqrt{-5}$ is irreducible but not prime, which is a counterexample of the converse of Theorem 1.1.7 (iii). Moreover there is no gcd of 6 and $2+2\sqrt{-5}$. Note that $6=(1+\sqrt{-5})(1-\sqrt{-5})=2\cdot3$. Hence, $1+\sqrt{-5}$ and 2 are common divisors of 6 and $2+2\sqrt{-5}$. Suppose $d=a+b\sqrt{-5}$ is a gcd of 6 and $2+2\sqrt{-5}$ for the sake of contradiction. Then, by Theorem 1.1.5 (ii), $N(1+\sqrt{-5})=6$ and N(2)=4 both divide $N(d)=a^2+5b^2$. Hence, $12\mid N(d)=a^2+5b^2$. On the other hand, as d divides both 6 and $2+2\sqrt{-5}$, $N(d)=a^2+5b^2$ divides N(6)=36 and $N(2+2\sqrt{-5})=24$. Hence, $N(d)=a^2+5b^2=12$; but there is no such $a,b\in\mathbb{Z}$.

1.2 Euclidean Domains

Definition 1.2.1: Euclidean Domain

An integral domain R is a Euclidean domain if R has a Euclidean function $\delta: R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ satisfying

- (EF1) If $a, b \in R \setminus \{0\}$, then $\delta(a) \le \delta(ab)$.
- (EF2) If $a \in R$ and $b \in R \setminus \{0\}$, then there exist $q, r \in R$ such that a = bq + r with r = 0 or $\delta(r) < \delta(b)$.

Note

The condition (EF1) is reduntant. If $\delta': R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ is a function that satisfies (EF2), then

$$\delta: R \setminus \{0\} \longrightarrow \mathbb{Z}_{\geq 0}$$
$$r \longmapsto \min\{\delta'(rx) \mid x \in R \setminus \{0\}\}$$

is a Euclidean function. By definition, δ evidently satisfies (EF1).

To see how δ satisfies (EF2), take any $a \in R$ and $b \in R \setminus \{0\}$. Then, there exist $q, r \in R$ such that a = bq + r and either r = 0 or $\delta'(r) < \delta'(b)$. If r = 0, then we are done; hence assume $b \nmid a$. By definition, $\delta(b) = \delta'(bx)$ for some $x \in R$. There exist $q' \in R$ and $r' \in R \setminus \{0\}$ such that a = (bx)q' + r' and $\delta'(r') < \delta'(bx)$. Now, we have $\delta(r') \leq \delta'(r') < \delta'(bx) = \delta(b)$ and a = b(xq') + r'.

Example 1.2.2

- (i) Every field F is a Euclidean domain, since a = (a/b)b for all $a, b \in F \setminus \{0\}$. The Euclidean function is $a \mapsto 0$.
- (ii) \mathbb{Z} is a Euclidean domain. The Euclidean function is $n \mapsto |n|$. The pairs q, r may not be unique; 10 = (-7)(-1) + 3 = (-7)(-2) + (-4).
- (iii) Let F be a field. Then, F[x] is a Euclidean domain. The Euclidean function is $f(x) \mapsto \deg f(x)$. Moreover, the quotient and the remainder of any division is unique.
- (iv) $\mathbb{Z}[i]$ is a Euclidean domain with the function $a + bi \mapsto a^2 + b^2$ (the norm of $\mathbb{Z}[i]$). (EF1) is satisfied by Theorem 1.1.5 (ii).

To check (EF2), take any $a+bi\in\mathbb{Z}[i]$ and $c+di\in\mathbb{Z}[i]\setminus\{0\}$. Then, in $\mathbb{Q}(i)$, $\frac{a+bi}{c+di}=t'+s'i$ for some $t',s'\in\mathbb{Q}$. Let $t\triangleq \lfloor t' \rfloor$ and $s\triangleq \lfloor s \rfloor$ so that $|t-t'|,|s-s'|\leq t$

1/2. Let $q \triangleq t + si \in \mathbb{Z}[i]$ and

$$r \triangleq (a+bi) - (c+di)q$$

= $(a+bi) - (c+di)\{(t'+s'i) + ((t-t') + (s-s')i)\}$
= $(c+di)((t-t') + (s-s')i)$

so that a + bi = (c + di)q + r. Now, as

$$\delta(r) = \delta(c+di)\delta((t-t')+(s-s')i)$$

$$= \delta(c+di)\left((t-t')^2+(s-s')^2\right)$$

$$\leq \frac{1}{2}\delta(c+di) < \delta(c+di),$$

(EF2) is verified.

- (v) $\mathcal{O}_{\mathbb{Q}(\sqrt{-19})} = \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is not a Euclidean domain. Let $\omega \triangleq \frac{1+\sqrt{-19}}{2}$. Here are some facts easy to verify:
 - (1) $N(a+b\omega) = a^2 + ab + 5b^2 = (a+b/2)^2 + \frac{19}{4}b^2$.
 - (2) $N(\alpha) \ge 5 \text{ if } \alpha \notin \{0, \pm 1, \pm 2\}.$
 - (3) $N(a+b\omega) \notin \{2,3\}.$
 - (4) $\mathbb{Z}[\omega]^* = \{\pm 1\}.$

2 is irreducible in $\mathbb{Z}[\omega]$. If $2 = \alpha\beta$ in $\mathbb{Z}[\omega]$, Then, $4 = N(2) = N(\alpha)N(\beta)$; thus one of α and β is a unit by (3) and Theorem 1.1.7 (ii). Similarly, 3 is irreducible in $\mathbb{Z}[\omega]$.

Suppose $\mathbb{Z}[\omega]$ is a Euclidean domain with $\delta \colon \mathbb{Z}[\omega] \setminus \{0\} \to \mathbb{Z}_{\geq 0}$. Choose $m \in \mathbb{Z}[\omega] \setminus \{0, \pm 1\}$ such that $\delta(m)$ is smallest. Note that m is not a unit by (4). There exists $q, r \in \mathbb{Z}[\omega]$ with 2 = mq + r with r = 0 or $\delta(r) < \delta(m)$. We have $r \in \{0, \pm 1\}$.

- If r = 0, then $m \mid 2$; hence $m \in \{\pm 2\}$ as 2 is irreducible.
- If r = 1, then $m \mid 1$, which is impossible.
- If r = -1, then $m \mid 3$; hence $m \in \{\pm 3\}$ as 3 is irreducible.

Hence, $m \in \{\pm 2, \pm 3\}$.

Now, write $\omega = mq' + r'$ for some $q', r' \in R$ with r' = 0 or $\delta(r') < \delta(m)$. This means $r' \in \{0, \pm 1\}$. We have

$$N(\omega - r') = N(mq') = N(m)N(q') \in \{4N(q'), 9N(q')\}$$

while

$$N(\omega - r') = (r')^2 - r' + 5 \in \{5, 7\},\$$

which is a contridiction.

|x| for $x \in \mathbb{R}$ is an integer closest to x.

Theorem 1,2,3

Let *R* be a Euclidean domain with the Euclidean function $\delta: R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$. Let $u \in R \setminus \{0\}$. TFAE.

(i) u is a unit in R.

- (ii) $\delta(u) = \delta(1)$.
- (iii) There exists $c \in R \setminus \{0\}$ such that $\delta(c) = \delta(uc)$.

Proof.

- (i) \Rightarrow (ii) $\delta(1) \leq \delta(1 \cdot u) = \delta(u) \leq \delta(uu^{-1}) = \delta(1)$.
- (ii) \Rightarrow (iii) Take c = 1.
- (iii) \Rightarrow (i) There exist $q, r \in R$ such that c = (uc)q + r with r = 0 or $\delta(r) < \delta(uc) = \delta(c)$. If $r \neq 0$, then

$$\delta(uc) = \delta(c) \le \delta(c(1-uq)) = \delta(c-ucq) = \delta(r) < \delta(uc),$$

which is a contridiction. Hence, c = ucq, i.e., uq = 1.

Theorem 1.2.4

Let R be a Euclidean domain with the Euclidean function $\delta : \mathbb{R} \setminus \{0\} \to \mathbb{Z}_{\geq 0}$. Let $I \subseteq R$ be a nonzero ideal in R. Then, there exists $d \in I \setminus \{0\}$ such that $\forall a \in I \setminus \{0\}$, $\delta(d) \leq \delta(a)$ and I = (d).

Proof. Choose $d \in I \setminus \{0\}$ such that $\delta(d)$ is minimized. Take any $a \in I$. Then, there exist $q, r \in R$ such that a = dq + r with r = 0 or $\delta(r) < \delta(d)$. As $r = a - dq \in I$, r = 0 by the choice of d. Hence, $a = dq \in (d)$.

Theorem 1,2,5

Let R be an integral domain. Let $a, b \in R \setminus \{0\}$. Assume (a, b) = (d) for some $d \in R$. Then,

- (i) *d* is a greatest common divisor of *a* and *b*.
- (ii) If d' is a greatest common divisor of a and b, then (a, b) = (d').

Proof.

- (i) Since $a, b \in (a, b) = (d)$, it follows that $d \mid a, b$ so that d is a common divisor of a and b. If $m \mid a, b$, then $(d) = (a, b) \subseteq (m)$ so that $m \mid d$.
- (ii) $d' \mid d$, i.e., $(d) \subseteq (d')$. On the other hand, $d \mid d'$, i.e., $(d') \subseteq (d)$. Therefore, (d') = (d) = (a, b).

Note

The assumption that there exists $d \in R$ such that (a, b) = (d) in Theorem 1.2.5 is critical. For instance in the integral domain $\mathbb{Z}[x]$, elements 2 and x are prime and thus irreducible; thus 1 is a greatest common divisor of 2 and x but $(2, x) \neq (1)$.

Lemma 1.2.6

Let *R* be a Euclidean domain with the Euclidean function $\delta : \mathbb{R} \setminus \{0\} \to \mathbb{Z}_{\geq 0}$. Let $a, b \in \mathbb{R} \setminus \{0\}$. Let $q, r \in \mathbb{R}$ satisfy a = bq + r with r = 0 or $\delta(r) < \delta(b)$. Then, (a, b) = (b, r).

Proof. By Theorem 1.2.4, there exist $d, d' \in R$ such that (a, b) = (d) and (b, r) = (d'). By Theorem 1.2.5, d and d' are greatest common divisors of a, b and b, r, respectively. We have $d \mid a - bq = r$ so d is a common divisor of b and c; thus $d \mid d'$. On the other hand, we have $d' \mid bq + r = a$, so d' is a common divisor of a and b; thus $d' \mid d$. Hence, (d) = (d').

Definition 1.2.7: Euclidean Algorithm

Let R be a Euclidean domain and let $\delta: R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ be its Euclidean function. The following algorithm is called *Euclidean algorithm*. For CS majors, assume that there is a Euclidean divison oracle for Line 3.

EUCLIDEAN ALGORITHM

```
1 Algorithm \operatorname{EUCLID}(a, b)

Input: a, b \in R

Output: x, y \in R such that (a, b) = (ax + by)

2 if b = 0 then return (1, 0)

3 Find q, r \in R such that a = bq + r with r = 0 or \delta(r) < \delta(b).

4 (x, y) \leftarrow \operatorname{EUCLID}(b, r)

5 return (y, x - qy)
```

Theorem 1.2.8

Let *R* be a Euclidean domain and let $\delta: R \setminus \{0\} \to \mathbb{Z}_{>0}$ be its Euclidean function.

- (i) Euclidean Algorithm terminates in a finite number of recursions.
- (ii) The result of EUCLIDEAN ALGORITHM is correct.
- (iii) For any greatest common divisor d of a and b, there exist $x, y \in R$ such that d = ax + by.

Proof.

- (i) At Line 4, $\delta(\cdot)$ value of the right argument strictly decreases. Hence, in at most $\delta(b)$ recursions, the algorithm falls into the base case at Line 2.
- (ii) We first make sure that Line 2 is evidently correct; and hence the case in which r = 0 at Line 3 is correct.

Now, we conduct the induction on $\delta(b)$; assume the algorithm is correct for all inputs (a',b') such that $b'\neq 0$ or $\delta(b')<\delta(b)$. Then, the algorithm will reach Line 3 with r=0 or $\delta(r)<\delta(b)$. If r=0, then it is done; in the other case, by the induction hypothesis and Lemma 1.2.6,

$$(a,b) = (b,r) = (bx + ry) = (bx + (a - bq)y) = (ay + b(x - qy)).$$

The result follows by the mathematical induction.

(iii) It is a direct consequence of Theorem 1,2,4 and Theorem 1,2,5.

1.3 Principal Ideal Domains

Definition 1.3.1: Principal Ideal Domain

A principal ideal domain is an integral domain in which every ideal is principal.

Note

By Theorem 1.2.4, as the zero ideal is principal, every Euclidean domain is a principal ideal domain.

Example 1.3.2

- (i) \mathbb{Z} , F[x], and $\mathbb{Z}[i]$ are principal ideal domains.
- (ii) $\mathcal{O}_{\mathbb{Q}(\sqrt{-19})}$ is not a Euclidean domain but is a principal ideal domain. In Example 1.2.2 (v), we already showed that $\mathcal{O}_{\mathbb{Q}(\sqrt{-19})}$ is not a Euclidean domain.

Let $\omega = \frac{1+\sqrt{-19}}{2}$ and let $I \subsetneq \mathbb{Z}[\omega]$ be a proper nonzero ideal of $\mathbb{Z}[\omega]$. Choose $\beta \in I \setminus \{0\}$ such that $N(\beta)$ is the smallest. Suppose there exists $\alpha \in I \setminus (\beta)$ for the sake of contradiction. To this end, it is enough to show that there exists $s, t \in \mathbb{Z}[\omega]$ such that

$$0 < N\left(\frac{\alpha}{\beta}s - t\right) < 1,$$

which contradicts the minimality of β . Write

$$\frac{\alpha}{\beta} = \frac{a + b\sqrt{-19}}{c} \in \mathbb{Q}(\sqrt{-19})$$

with $a, b, c \in \mathbb{Z}$, c > 0, and they have no common divisor. Note that, if c = 1, then $\beta \mid \alpha$, i.e., $\alpha \in (\beta)$, which is a contradiction. We have four cases: $c \geq 5$, $2 \leq c \leq 4$.

• Assume $c \ge 5$. There exist $x, y, z \in \mathbb{Z}$ such that ax + by + cz = 1. There exist $q, r \in \mathbb{Z}$ such that

$$ax - 19bx = cq + r$$
 with $|r| \le c/2$.

Let $s \triangleq y + x\sqrt{-19} \in \mathbb{Z}[\omega]$ and $t \triangleq q - z\sqrt{-19} \in \mathbb{Z}[\omega]$ so that

$$\frac{\alpha}{\beta}s - t = \frac{(a+b\sqrt{-19})(y+x\sqrt{-19})}{c} - (q-z\sqrt{-19})$$

$$= \frac{(ay-19bx) + (ax+by)\sqrt{-19}}{c} - \frac{cq-cz\sqrt{-19}}{c}$$

$$= \frac{(ay-19bx-cq) + (ax+by+cz)\sqrt{-19}}{c} = \frac{r+\sqrt{-19}}{c},$$

and hence

$$0 < N\left(\frac{\alpha}{\beta}s - t\right) = \frac{r^2 + 19}{c^2} \le \frac{1}{4} + \frac{19}{c^2}.$$

Then, when $c \ge 6$, we have $N\left(\frac{\alpha}{\beta}s - t\right) \le \frac{7}{9}$, and when c = 5, we have $|r| \le 2$ so that $N\left(\frac{\alpha}{\beta}s - t\right) \le \frac{23}{25}$; we eventually reached the contradiction.

• Assume $2 \le c \le 4$. There exists $q, r \in \mathbb{Z}$ such that

$$a^2 + 19b^2 = cq + r$$
 with $0 \le r < c$.

– Consider the case in which $r \neq 0$. Let $s \triangleq a - b\sqrt{-19} \in \mathbb{Z}[\omega]$ and $t \triangleq q \in \mathbb{Z}[\omega]$. Then, we have

$$\frac{\alpha}{\beta}s - t = \frac{(a + b\sqrt{-19})(a - b\sqrt{-19})}{c} - q = \frac{a^2 + 19b^2 - cq}{c} = \frac{r}{c},$$

so we have $0 < N\left(\frac{\alpha}{\beta}s - t\right) = \frac{r^2}{c^2} < 1$.

- Now, consider the case r = 0, which means $c \mid a^2 + b^2$ while a, b, and c have no common divisor.
 - * if c = 2, then $a^2 + 19b^2$ is even thus a and b are both odd. Then,

$$\frac{\alpha}{\beta} = \frac{a+b\sqrt{-19}}{2} = \frac{a-b}{2} + b\omega \in \mathbb{Z}[\omega],$$

which is a contradiction.

- * If c = 3, then $3 \nmid a$ or $3 \nmid b$ so that $a^2 + 19b^2 \equiv a^2 + b^2 \equiv 1$ or 2 (mod 3) while it must be $c \mid a^2 + 19b^2$.
- * If c=4, then a and b are both odd. As $a^2, b^2\equiv 1\pmod 8$, we have $a^2+19b^2=8k+4$ for some $k\in\mathbb{Z}$. Let

$$s \triangleq \frac{a - b\sqrt{-19}}{2} = \frac{a + b}{2} - b\omega \in \mathbb{Z}[\omega] \text{ and } t \triangleq k \in \mathbb{Z}[\omega].$$

Then, we have

$$\frac{\alpha}{\beta}s - t = \frac{(a + b\sqrt{-19})(a - b\sqrt{-19})}{8} - k = \frac{a^2 + 19b^2 - 8k}{8} = \frac{1}{2},$$

hence
$$0 < N\left(\frac{\alpha}{\beta}s - t\right) = \frac{1}{4} < 1$$
.

Therefore, in all cases, $(\beta) \subsetneq I$ reached a contradiction. Hence, I is a principal ideal.

(iii) $\mathcal{O}_{\mathbb{Q}(\sqrt{-5})} = \mathbb{Z}[\sqrt{-5}]$ is not a PID. We will show $I \triangleq (3, 2 + \sqrt{-5}) \subseteq \mathbb{Z}[-5]$ is not principal. I is an proper ideal. Otherwise, there exist $x, y, z, w \in \mathbb{Z}$ such that

$$1 = 3(x + y\sqrt{-5}) + (2 + \sqrt{-5})(z + w\sqrt{-5})$$

= $(3x + 2z - 5w) + (3y + z + 2w)\sqrt{-5}$,

i.e., 3x + 2z - 5w = 1 and 3y + z + 2w = 0. Hence, it follows that

$$1 = 3x + 2(-3y - 2w) - 5w = 3(x - 2y - 3w)$$

which is a contradiction. Hence, *I* is a proper ideal.

Suppose $I = (a + b\sqrt{-5})$. Then, $3 = (a + b\sqrt{-5})(c + d\sqrt{-5})$ for some $c, d \in \mathbb{Z}$. Then, we have

$$9 = N(3) = (a^2 + 5b^2)(c^2 + 5d^2).$$

 $a^2 + 5b^2 \neq 1$ as I is not proper; hence $a^2 + 5b^2 = 9$ and $c^2 + 5d^2 = 1$, which implies $c + d\sqrt{-15}$ is a unit and $a + b\sqrt{-5}$ is an associate of 3. Therefore, I = (3), which is a contradiction.

Theorem 1.3.3

Let *R* be a principal ideal domain. If $p \in R$ is irreducible, then $(p) \subseteq R$ is a maximal ideal.

Proof. Let $M \subseteq R$ be an ideal containing (p). As R is a PID, M = (m) for some $m \in R$. Hence, p = mr for some $r \in R$. If r is a unit, then (p) = (m). If m is a unit, then M = R.

1.4 Unique Factorization Domains

Definition 1.4.1: Unique Factorization Domain

A unique factorization domain is an integral domain R such that:

- (i) Every nonzero nonunit element is a product of irreducible elements of R.
- (ii) If $u = p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s$ are two products of irreducible elements of R, then r = s, and (possibly after reordering) p_i is an associate of q_i for all $i \in [r]$.

Example 1.4.2

- (i) \mathbb{Z} is a unique factorization domain by Fundamental Theorem of Arithmetic.
- (ii) $\mathcal{O}_{\mathbb{O}(\sqrt{-5})}$ is not a unique factorization domain.

$$6 = (1 + \sqrt{-5})(1 - \sqrt{-5}) = 2 \cdot 3$$

is a two different factorizations of 6 into irreducible elements.

Theorem 1.4.3

Let *R* be a UFD. Then, every irreducible element in *R* is prime.

Proof. Let $p \in R$ be irreducible. If $p \mid ab$, then ab = pc for some $c \in R$. Since R is a UFD, a or b has a factor which is an associate of p, i.e., $p \mid a$ or $p \mid b$.

Definition 1.4.4: Ascending Chain Condition on Principal Ideals

Let *R* be an integral domain. *R* is said to satisfy *ascending chain condition on principal ideals* if, for all infinite chains of principal ideals

$$(a_1) \subseteq (a_2) \subseteq (a_3) \subseteq \cdots$$

then there exists $n \in \mathbb{N}$ such that $(a_n) = (a_{n+1}) = (a_{n+1}) = \cdots$.

Theorem 1.4.5

Let R be an integral domain. R is a unique factorization domain if and only if

- (i) R satisfies ascending chain condition on principal ideals and
- (ii) if *p* is irreducible in *R*, then *p* is prime in *R*.

Proof.

- (\Rightarrow) Thanks to Theorem 1.4.3, we only need to check (i).
 - Let $(a_1) \subseteq (a_2) \subseteq \cdots$ be an ascending chain of principal ideals. Let $a_1 = up_1^{e_1} \cdots p_n^{e_n}$ be an irreducible factorization. There are at most $e_1 + \cdots + e_n$ strict inclusions.
- (\Leftarrow) Take any nonunit $r \in R \setminus \{0\}$. We want to find an irreducible factorization of r. If r is already irreducible, then we are done.

Assume $r = r_1 r_1'$ for some nonunit $r_1, r_1' \in R \setminus \{0\}$ so that $(r) \subsetneq (r_1)$. Continue this to get an ascending chain $(r) \subsetneq (r_1) \subsetneq (r_2) \subseteq \cdots$. Hence, we get an irreducible factor r_k at some point.

Corollary 1.4.6

Every principal ideal domain is a unique factorization domain.

Proof. By Theorem 1.3.3, every irreducible element in *R* is prime.

Let $I_1 \subseteq I_2 \subseteq \cdots$ be an ascending chain of principal ideals in R. Let $I \triangleq \bigcup_{i \geq 1} I_i$ so that I is an ideal in R. Then, as R is a principal ideal domain, I = (c) for some $c \in R$. By definition, $c \in I_n$ for some $n \in \mathbb{Z}_{>0}$. Hence, $I = (c) \subseteq I_n \subseteq I_{n+1} \subseteq \cdots \subseteq I = (c)$.

Theorem 1.4.7

Let $d \in \mathbb{Z}$ be a square-free integer. Every nonzero nonunit element in $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is a product of irreducible elements.

Proof. Let

 $S \triangleq \{\text{nonzero nonunit elements in } \mathcal{O}_{\mathbb{Q}(\sqrt{d})} \text{ that are not a product of irreducible elements} \}.$

Suppose $S \neq \emptyset$ for the sake of contradiction and choose $a \in S$ such that |N(a)| is minimized. As a is not irreducible, then a = bc for some nonunit $b, c \in R \setminus \{0\}$. If $b, c \notin S$, then b and c are products of irreducible elements; hence $b \in S$ or $c \in S$. WLOG, $b \in S$. Then, |N(b)| < |N(a)|, which contradicts the choice of a.

1.5 Unique Factorizations in Polynomial Rings

Definition 1.5.1: Primitive Polynomial

Let *R* be a unique factorization domain. $f(x) \in R[x] \setminus \{0\}$ is *primitive* if, for $r \in R$, r is a unit whenever whenever a constant polynomial $r \in R[x]$ divides f(x).

1.6 Irreducibility Criteria for Polynomials

1.7 Field Extensions and Minimal Polynomials

1.8 Integrally Closed Domains

Definition 1.8.1: R-module

Let R be a commutative ring with identity. An R-module M is an abelian group (M, +) with $R \times M \to M$ $((r, m) \mapsto rm)$; scalar multiplication) such that following hold for all $a, b \in R$ and $m, n \in M$.

- (1) (a+b)m = am + bm.
- $(2) \ a(m+n) = am + an.$
- (3) (ab)m = a(bm).
- (4) $1 \cdot m = m$.

Example 1.8.2

- (1) If G is an abelian group, then it is a \mathbb{Z} -module.
- (2) If F is a field, then M is a F-module if and only if M is a vector space over F.
- (3) Let R be a commutative ring with identity and I be a subring of R. Then, I is an R-module if and only if I is an ideal of R.

Definition 1.8.3: *R*-submodule

Let *R* be a commutative ring with identity and *M* be an *R*-module. Then, $N \subseteq M$ is an *R*-submodule if

- (1) (N,+) is a subgroup of (M,+) and
- (2) $\forall a \in R, \forall n \in N, an \in N$.

Let $S := \{s_1, s_2, \dots, s_n\} \subseteq M$. The submodule generated by S is

$$\sum_{i=1}^{n} Rs_{i} = \{ r_{1}s_{1} + \dots + r_{n}s_{n} \mid r_{1}, \dots, r_{n} \in R \}.$$

M is *finitely generated* if it is generated by some finite subset of *M*.

Definition 1.8.4: Integral

Let R and S be integral domains with $R \subseteq S$. Then, $u \in S$ is integral over R if u is a root of monic polynomial $f(x) \in R[x]$. Moreover, S is integral over R if all elements of S are integral over R. If S is integral over R, then S is an R-module.

Let $u_1, \dots, u_n \in S$. We define

$$R[u_1, \dots, u_n] \triangleq \{ f(u_1, \dots, u_n) \mid f(x_1, \dots, x_n) \in R[x_1, \dots, x_n] \}.$$

Then, $R[u_1, \dots, u_n]$ is the smallest subring of S containing u_1, \dots, u_n . Furthermore, it is an R-submodule of S.

Note

In general, $R[u_1, \dots, u_n]$ is *not* finitely generated *R*-module.

Theorem 1,8,5

Let *R* be an integral domain and *L* be a field. Let *L* be a subring of *S*. For each $u \in L$, TFAE.

- (1) u is integral over R.
- (2) R[u] is a finitely generated R-module.
- (3) There is a finitely generated nonzero *R*-submodule *M* of *L* such that $uM := \{um \mid m \in M\} \subseteq M$.

Proof.

(i) \Rightarrow (ii) $u^n + a_{n-1}a^{n-1} + \dots + a_1u + a_0 = 0$ for some $a_{n-1}, \dots, a_1, a_0 \in R$. Take any $i \in \mathbb{Z}_{>n}$. Then,

$$u^{i} = u^{n}u^{i-n} = -a_{0}u^{i-n} - a_{1}u^{i-n+1} - \dots - a_{n-1}u^{i-1}.$$

Hence, by induction every, u^i is in $\sum_{j=0}^{n-1} Rs^j$. Therefore, $R[u] = \sum_{j=0}^{n-1} Rs^j$ is finitely generated.

- $(ii) \Rightarrow (iii) \text{ Set } M := R[u].$
- (iii) \Rightarrow (i) Write $M = \sum_{i=1}^{n} R\ell_i$ for some $\ell_1, \dots, \ell_n \in L$. As $u\ell_i \in M$, write $u\ell_i = \sum_{j=1}^{n} b_{ij}\ell_j$ for some $b_{ij} \in R$.

Corollary 1.8.6

Let *R* be an integral domain and *L* be a field. Let *R* be a subring of *L*. Then, $S \triangleq \{u \in L \mid u \text{ is integral over } R\}$ is a subring of *L*. In particular, if $u \in L$ is integral over *R*, then R[u] is an integral extension of *R*.

Proof. If suffices to check if $u, v \in S$, then $u \pm v, uv \in S$. By Theorem 1.8.5, R[u] and R[v] are finitely generated R-modules. Write $R[u] = \sum_{i=1}^n Rf_i$ and $R[v] = \sum_{j=1}^m Rg_j$. Then, $R[u, v] = \sum_{1 \le n1 \le m} Rf_i g_j$. As $(u \pm v)R[u, v], uvR[uv] \subseteq R[u, v]$, by Theorem 1.8.5, they are integral over R.

Definition 1.8.7: Integral Closure

Let R be an integral domain and L be a field. Let R be a subring of L. The set S defined in Corollary 1.8.6 is called the *integral closure* of R in L.

Definition 1.8.8: Integrally Closed Domain

We say R is an *integrally closed domain* if R is the integral closure of R in the fraction field of R.

Theorem 1.8.9

Every unique factorization domain is integrally closed.

Proof. Let R be a unique factorization domain and F be its fraction field. Take any $u \in F$ that is integral over R. Then, there are some $a_0, \dots, a_{n-1} \in R$ with $u^n + a_{n-1}u^{n-1} + \dots + a_1u + a_0 = 0$. Write u = b/c where $b, c \in R$ with $c \neq 0$ and (1) = (b, c). Then,

$$c(a_{n-1}b^{n-1}+\cdots+a_1bc^{n-2}+a_0c^{n-1})=-b^n.$$

Hence, c must be a unit; thus $u = b/c \in R$.

Example 1.8.10

We showed that $\mathbb{C}[x,y,z,w]/(xy-zw)$ is not a unique factorization domain but is an integrally closed domain.

Lemma 1.8.11

Let R be an integrally closed domain and let F be its fraction field. Let K be an extension field of F. Let $u \in K$ is algebraic over F. Then, u is integral over R if and only if $\min_{u,F}(x) \in R[x]$.

Proof.

(⇒) There is a monic polynomial $f(x) \in R[x]$ such that f(u) = 0. There is some extension field L of F containing all roots of p(x). Let $u_1 = u, u_2, \dots, u_n$ be all roots of p(x) in L. We have $p(x) = (x - u_1)(x - u_2) \cdots (x - u_n) \mid f(x)$ by the definition of minimal polynomial. Hence, u_1, u_2, \dots, u_n are integral over R.

 (\Leftarrow) As the minimal polynomial is monic, it is trivial.

Theorem 1,8,12

Let A, B, and C be integral domains with $A \subseteq B \subseteq C$. Then, C is integral over A if and only if C is integral over B and B is integral over A.

Proof.

- (\Rightarrow) As B is a subring of C, B is integral over A. As a monic polynomial over A is a monic polynomial over B, C is integral over B.
- (⇐) Take any $u \in C$. There is a polynomial $g(x) = x^n + b_{n-1}x^{n-1} + \cdots + b_1x + b_0 \in B[x]$ with g(u) = 0. Then $B' \triangleq A[b_0, \cdots, b_{n-1}, u] \subseteq B$ is a finitely generated *A*-module by Theorem 1.8.5. Then, $uB' \subseteq B'$; hence u is integral over A by Theorem 1.8.5.

Theorem 1.8.13

Let *R* be an integral domain and let *F* be its fraction field. Let *K* be an extension field of *F* with $\dim_F K < \infty$. Let *S* be the integral closure of *R* in *K*.

- (1) $\forall u \in K, \exists (s,d) \in S \times D, u = s/d$. In particular, K is a fraction field of S.
- (2) *S* is an integrally closed domain.
- (3) If *R* is an integrally closed domain, then $S \cap F = R$.

We will show later $u \in K$ is algebraic over F.

Proof.

(1) Let $p(x) \triangleq \min_{u,F}(x) \in F[x]$. Write

$$p(x) = x^{n} + \frac{c_{n-1}}{d_{n-1}}x^{n-1} + \cdots + \frac{c_{1}}{d_{1}}x + \frac{c_{0}}{d_{0}}$$

where $c_i, d_i \in R$ and $d_i \neq 0$. Let $d \triangleq d_0 \cdots d_{n-1}$. Then,

$$0 = d^{n}p(u) = (du)^{n} + \frac{c_{n-1}}{d_{n-1}}d(du)^{n-1} + \cdots + \frac{c_{1}}{d_{1}}d^{n-1}(du) + \frac{c_{0}}{d_{0}}d^{n},$$

i.e., $du \in S$.

- (2) Let S' be the integral closure of S in K. Then, S' is integral over R by Theorem 1.8.12 so that $S' \subseteq S$. Hence, S = S'.
- (3) Trivial. \Box

Corollary 1.8.14

Let R be an integral domain and let F be its fraction field. Let K be a finite extension field of F. Let S be the integral closure of R in K. Then, there are $d_1, d_2, \dots, d_n S$ such that d_1, \dots, d_n is a basis of K over F.

Example 1.8.15

Let $d \in \mathbb{Z}$ be square-free. Then, we claim that $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{d})$. Take any $u = a + b\sqrt{d} \in \mathbb{Q}(\sqrt{d})$.

• Suppose b = 0. Then, $\min_{u,\mathbb{Q}}(x) = x - a$. Thus, u is integral over \mathbb{Z} if and only if $a \in \mathbb{Z}$.

• Suppose $b \neq 0$. Then, $\min_{u,\mathbb{Q}}(x) = x^2 - 2ax + (a^2 - b^2d)$. u is integral over \mathbb{Z} if and only if $2a, a^2 - b^2d \in \mathbb{Z}$. By some elementary arguments, this is equivalent to $u \in \mathcal{O}_{\mathbb{Q}(\sqrt{d})}$.

Chapter 2

Field Extensions

2.1 Finite Extensions and Degree of Field Extension

Definition 2.1.1: Finite Extension

Let *F* be a field and *K* be an extension field over *F*. We say *K* is *finite* over *F* if $\dim_F K$ is finite. We also write $\lceil K:F \rceil \triangleq \dim_F K$ and call it the *degree* of *K* over *F*.

Example 2.1.2

- (1) Let $d \in \mathbb{Z}$ be square-free. Then, $[\mathbb{Q}(\sqrt{d}):\mathbb{Q}] = 2$.
- (2) If *u* is algebraic over *F*, then $[F(u):F] = \deg \min_{u,F}(x)$.

Lemma 2,1,3

Let *F* be a field, *K* be a finite extension field of *K*, and *L* be an extension field of *F*. If there is an isomorphism $f: K \xrightarrow{\approx} L$ such that $\forall c \in F$, f(c) = c, then [K:F] = [L:F].

Proof. f is a bijective linear transformation between vector spaces K and L.

Theorem 2.1.4

Let F be a field and K be a finite extension field of K. Then, every $u \in K$ is algebraic over F.

Proof. Let $n \triangleq [K:F]$. Then, $1, u, u^2, \dots, u^{n-1}, u^n$ are linearly dependent over F. Hence, there are some $c_0, c_1, \dots, c_n \in F$, not all zero, such that $c_0 + c_1 u + c_2 u^2 + \dots + c_n u^n = 0$.

Theorem 2,1,5

Let F, K, and L be fields with $F \subseteq K \subseteq L$. Then, L is finite over F if and only if L is finite over K and K is finite over F. Futhermore, [L:F] = [L:K][K:F].