TP1- Connexité, Matrices d'adjacence d'un graphe

Objectifs: Manipuler les matrices d'adjacence

On suppose N villes avec une matrice des distances donnée. Deux villes sont reliées par voie radio si elles sont éloignées de moins de d kms

Le listing suivant contient les fragments d'un script Matlab. Complétez le en répondant aux questions suivantes et en ajoutant les commandes correspondantes dans le script *TP1.m*.

```
addpath('matlab_bgl'); %load graph libraries addpath('matlab_tpgraphe'); %load tp ressources load TPgraphe.mat; %load data
```

%%%%%% DISPLAY INPUT DATA ON TERMINAL %%%%%

cities %names of cities

D % distance matrix bw cities

pos %x-y pos of the cities

Exercice 1

Q1) Modéliser le graphe A, représentant la connectivité entre les villes pour une portée radio de 500km.

La fonction viz_adj (D, A, pos, cities) permet d'afficher le graphe A.

La fermeture transitive d'un graphe G(X, A) est la relation transitive minimale contenant la relation (X, A), il s'agit d'un graphe $G^*=(X, *)$ tel que $(x, y) \in *$ si et seulement s'il existe un chemin f dans G d'origine x et d'extrémité y.

La fonction graphPower (G, n) calcule de façon itérative la fermeture transitive. Afficher la matrice de retour de graphPower pour les valeurs de n = 2, 3, 10 et 12. Cette matrice indique la présence de chemins de longueur <=n.

Q2) Afficher en utilisant les fonctions *viz_adj* et *graphPower* les matrices de présence de chemins de longueur respectivement inférieurs à 2, 3, 10 et 12. Que constatez vous ? Expliquer.

```
%%%%%%EXO 1 (modeliser et afficher le graphe) %%%%%%

A= XXX à faire % adj matrix
viz_adj(D,A,pos,cities);
viz_adj(D,XXX à faire,pos,cities);
```

Exercice 2

On cherche à déterminer pour ces villes :

- **Q1**) l'existence d'un chemin d'interconnexions de 3 sauts exactement.
- **Q2**) le nombre de chemins d'interconnexions de 3 sauts exactement.
- Q3) le nombre de chemins d'interconnexions de longueur inférieure ou égale à 3 sauts.

On utilisera *bmul*(*A*,*B*) pour la multiplication booléenne de matrices.

```
%%%%%% EXO 2 %%%%%
%Q1 - existence d'un chemin de longueur 3
```

```
XXX à faire
```

%Q2 - nb de chemins de 3 sauts

XXX à faire

% Q3 - nb de chemins <=3

XXX à faire

Exercice 3

On stocke une chaîne c comme une suite de sommets (vecteur d'indices des sommets).

- Q1) Quelles sont les conditions sur les paires successives des sommets d'une chaîne pour que celle-ci appartienne au graphe ?
- **Q2**) Ecrire la fonction possedechaine(G, chaine) qui permet de déterminer si une chaîne donnée appartient à un graphe G.
- **Q3**) Tester les chaînes : « Paris, Londres, Dublin », « Paris, Bernes, Ankara » et « Zagreb, Berlin, Oslo »

```
%%%%%% EXO 3 %%%%%

c = [18 13 9]; %la chaine 18 13 9 est elle dans le graphe?

possedechaine(A,c)

c = [18 6 3]; %la chaine 18 6 3 est elle dans le graphe?

possedechaine(A,c)

C = [26 5 17]; %la chaine 26 5 17 est elle dans le graphe?

possedechaine(A,c)
```

Exercice 4

Une chaîne eulérienne est une chaîne empruntant une fois et une fois seulement chaque arrête du graphe.

- **Q1**) Implémenter à l'aide des fonctions matricielles une méthode (*isEulerien*) pour déterminer si un graphe possède une chaîne eulérienne.
- **Q2**) Tester sur le graphe G de matrice d'adjacence A. Commenter le résultat.

```
%%%%%% EXO 4 %%%%% isEulerien(A)
```

Exercice 5

On cherche à identifier les valeurs de d pour lequel le graphe admet une chaîne eulérienne.

Proposer une méthode qui détermine pour toutes les valeurs de portée d (dans R) si G(d) possède une chaîne eulérienne.

La fonction porteeEulerien(D) affiche les valeurs de d pour lesquelles G(d) admet une chaîne Eulérienne. Invoquer la fonction portéeEulerien sur D et expliquer.

```
%%%%%% EXO 5 %%%%%
porteeEulerien(D)
```