Universidade do Minho ML::FA

Laboratório 1: Métricas e distâncias

O objetivo deste trabalho é implementar diversas métricas com algumas aplicações elementares. Vamos considerar dois tipos de dados: numéricos e binários.

1 Dados numéricos

O ficheiro cars.csv é constituído por 8 atributos numéricos e notamos por $\mathcal{A} = A_1 \times \cdots \times A_8$ o espaço dos atributos enquanto $D = (x^n)_{n=1,\dots,N}$ representa o conjunto de dados, $x_i^n \in A_i = \mathbb{R}$. Para ler os dados, usamos a biblioteca pandas da maneira seguinte

```
import scipy.spatial.distance as dist
import pandas as pd
import numpy as np
#-----
cars = pd.read_csv('../csv/cars.csv',sep=',')
A=np.array(cars.values[:,1:8],dtype=np.float)
```

A é uma matrix onde A[n] corresponde ao vetor de atributos do elemento n da base de dados.

1.1 Implementação das distâncias

Vão implementar em funções distintas as distâncias e dessemelhanças seguintes: euclidiana, Manhattan, Chebyshev, Canberra e cosine.

```
def Euclidian(x,y):
    ...
    blablabla
    ...
    return distance
```

onde x,y são do tipo numpy array e retorna o valor distance, a distância entre os dois vetores. Testar cada função com os vetores A[0], A[1]. Comparar os seus resultados com as métricas dadas pela biblioteca scipy. Por exemplo dist.euclidean(A[0],A[1]) retorna a distância euclidiana.

1.2 Visualizar uma bola

Depois da fase de validação, vamos determinar e visualizar a bola centrada no ponto $x^1 = A[0]$ e de raio \mathbf{r} . Recordamos que esta bola corresponde aos elementos de D tais que

$$B = \{x^n \in D, \ d(x^1, x^n) < r\}$$

onde a distância d(x, x') depende da escolha da métrica.

Para simplificar e permitir uma visualização tridimensional, vamos tratar os dados **unicamente com três atributos**. Para isso, definimos B=A[:,[3,4,5]] que reduz a dimensão do espaço dos atributos para três componentes.

1. Implementar uma rotina que determine as componentes dos vetores xe[],ye[],ze[] que correspondem aos pontos da bola de raio re usando a distância euclidiana. Visualizar num mesmo gráfico, em azul claro todos os dados e em vermelho apenas os dados que pertencem à bola.

```
fig = plt.figure()
ax = fig.add_subplot(221, projection='3d')
ax.scatter(B[:,0],B[:,1], B[:,2], c='b', marker='.')
ax.scatter(xe, ye, ze, c='r', marker='o')
```

Escolher re = 100 no exemplo.

2. Fazer o mesmo trabalho mas com as outras dessemelhanças: rm=100 para Manhattan, r=0.2 para Canberra e r=0.00001 para o cosine.

2 Dados binários

O ficheiro SCADI.csv representa um exemplo de dado do ICF-CY: International classification of functioning, disability and health: children & youth version onde cada atributo indica a presença (1) ou ausência (0) de uma capacidade da criança. O espaço dos atributos é $\mathcal{A} = \{0,1\}^{206}$ que obtemos como

```
import scipy.spatial.distance as dist
import pandas as pd
import numpy as np
#SCADI = pd.read_csv('../csv/SCADI.csv',sep=',')
A=np.array(SCADI.values[:,2:-1],dtype='int32')
```

A matriz A é constituidas dos vetores A[n] correspondentes aos eventos $n=1,\dots,N$. Por exemplo, o vetor A[1] contem os 206 valores binarios associados ao evento 1.

2.1 Implementação das distâncias

As dessemelhaças que usamos são todas baseadas na matriz de confusão CM que contabiliza quatro tipos de situações. As linhas (primeira componente) representa a realidade enquanto as colunas (segunda componente) representa a predicção. Logo temos CM[1,1] true positive, CM[0,0] true negative, CM[0,1] false positive, CM[1,0] false negative. Implementar uma função que retorna a matriz de confusão entre dois vetores binarios.

onde x é o vetor considerado como correto (true ou false) enquanto y é o vetor de predicção (positive, negative).

A partir da matriz de confusão, construir as distâncias seguintes: matching (ou Hamming), Dice, Jaccard e Sokal-Michener usando o formato seguinte

onde CM é a matriz de confusão.

2.2 Path-based clustering

Um caminho $l(x,y) = \{z^0, z^1, \dots, z^K\}$ entre dois pontos x,y de D é uma lista ordenada de elementos de D tal como $x = z^0$ e $y = z^K$. Para qualquer distância (ou métrica) d, notamos por |l(x,y)| a distância do caminho como a distância máxima entre dois pontos sucessivos,

$$|l(x,y)| = \max_{k=1}^{K} d(z_{k-1}, z^k).$$

Seja $\varepsilon > 0$ um parâmetro positivo. Dois pontos x,y fazem parte do mesmo cluster C se existe um caminho l(x,y) tal que $|l(x,y)| < \varepsilon$. Por outras palavras, existe uma sucessão de pontos de D, de distância sucessiva inferior a ε que liga x para y. Neste trabalho, usamos $\varepsilon = 0.5$.

Na base desta definição, construimos uma partição do conjuntos de dados em subconjuntos (ou path-based clusters). O objetivo desta parte é construir e identificar os clusters com os dados do SCADI.

1. Construir a matriz de dessemelhança DT:

cujas entradas DT [n,m] são as distâncias entre x^n e x^m .

- 2. Seja $\varepsilon > 0$ dado, construir a matriz de adjacência (adjacency Matrix) M de entradas M[n,m]=1 se $DT[n,m]<\varepsilon$, 0 senão.
- 3. Para ligar os elementos de um mesmo cluster entre eles, precisamos de um algoritmo de tipo: "the friends of my friends are my friends", o que se chama em Matemática transitive closure. Basicamente, precisamos de construir uma matriz constituida por 0 e 1 que indica quais são os elementos ligados entre si via um caminho de distância inferior a ε . O algoritmo (não otimal) seguinte realiza esta operação

```
def transitive_closure(M):
1
        n=M.shape[0]
2
        for i in range(n):
3
            for j in range(i+1,n):
4
                 if M[i,j]:
5
                     for k in range(n):
6
                          if M[i,k]:
7
                               M[j,k]=1
8
                               M[k,j]=1
9
        for i in range(n):
10
            ii=n-i-1
11
            for j in range(i+1,n):
12
                 jj=n-j-1
13
                 if M[ii,jj]:
14
                      for k in range(n):
15
                          if M[ii,k]:
16
                               M[jj,k]=1
17
                               M[k,jj]=1
18
        return M
19
```

Como deduzir os clusters com esta rotina?

- 4. A última coluna do ficheiro SCADI.csv contem a classe associada a cada evento, com $C = \{1, \dots, 7\}$, onde os valores representam o nível de dependência de uma criança.
 - para cada cluster determinar a sua média de dependência.
 - Realizar uma função que retorna a estatística de cada cluster, seja o número de eventos associados a cada nível de dependência. Como definir a classe de um cluster?