Polish spaces

Alessandro Andretta

Dipartimento di Matematica Università di Torino

A. Andretta (Torino) Polish spaces AA 2024–2025 1/19

Recall...

A topological space is

- separable if it contains a countable dense set,
- **first countable** if the filter of neighborhoods of any point has a countable base,
- second countable if the topology has a countable base,
- metrizable if there is a metric that induces the topology.

If d is a metric then

- d is complete if every Cauchy sequence converges,
- $\frac{d}{1+d}$ is a metric compatible with d, and it is bounded by 1. (Two metrics are compatible if they induce the same topology.)

A. Andretta (Torino) Polish spaces AA 2024–2025 2 / 19

Polish spaces

Definition 1.1.1

 $X=(X,\tau)$ is **Polish** if it is second-countable and completely metrizable, that is there is a complete metric d on X compatible with its topology, i.e. such that τ is generated by the d-open balls

$$B_d(x,r) = \{ y \in X \mid d(y,x) < r \}.$$

When a specific compatible (complete) metric d on X is singled out, we call X=(X,d) a **Polish metric space**.

The class of Polish spaces is closed under homeomorphism. Any metric space (X,d) admits a (unique, up to isometry) **completion** (\hat{X},\hat{d}) so any second-countable metrizable spaces is contained in a Polish space as a dense subspace.

A. Andretta (Torino)

Polish spaces

AA 2024-2025

3/19

Closure properties of Polish spaces

- Closed subspaces
- Countable products: if the X_n are Polish, then $\prod_{n\in\mathbb{N}} X_n$ with the product topology is Polish. A complete compatible metric d is

$$d(x,y) = \sum_{n=0}^{\infty} 2^{-n} d_n(x(n), y(n))$$

where each d_n is a compatible complete metric on X_n bounded by 1.

• Countable sums: if the X_n are Polish, then their disjoint union $\bigoplus_{n\in\mathbb{N}} X_n$ is Polish with with the smallest topology refining all the topologies of the X_n 's (so that each X_n is clopen in $\bigoplus_{n\in\mathbb{N}} X_n$).

$$d(x,y) = \begin{cases} d_n(x,y) & \text{if } x,y \in X_n \\ 1 & \text{if } x \text{ and } y \text{ belong to different } X_n\text{'s.} \end{cases}$$

A. Andretta (Torino) Polish spaces AA 2024–2025 4 / 19

Closure properties of Polish spaces

• Countable intersections: if $Y_n \subseteq X$ are Polish, then $Y = \bigcap_{n \in \mathbb{N}} Y_n$ is Polish. Indeed, $Z = \prod_{n \in \mathbb{N}} Y_n$ is Polish and so is its closed subset

$$C = \{z \in Z \mid z(i) = z(j) \text{ for all } i, j \in \mathbb{N}\}$$

and the diagonal map $Y\to C$, $y\mapsto (z(n))_{n\in\mathbb{N}}$ where z(n)=y for all $n\in\mathbb{N}$ is a homeomorphism.

A. Andretta (Torino)

Polish spaces

AA 2024-2025

5 / 10

Examples of Polish spaces

- ① \mathbb{R}^n , \mathbb{C}^n , $\mathbb{R}^\mathbb{N}$, and $\mathbb{C}^\mathbb{N}$, [0;1], $\mathbb{T}=\{x\in\mathbb{C}\mid |x|=1\}$, the Hilbert cube $[0;1]^\mathbb{N}$, . . .
- ② $A^{\mathbb{N}}$ with the product topology, where A is a countable set with the discrete topology. In particular, when $A=2=\{0,1\}$ and $A=\mathbb{N}$ we obtain the **Cantor space** $2^{\mathbb{N}}$ and the **Baire space** $\mathbb{N}^{\mathbb{N}}$.

$$U_n = \{ X \subseteq \mathbb{N} \mid n \in X \} \qquad \hat{U}_n = \{ X \subseteq \mathbb{N} \mid n \notin X \}$$

The resulting space is homeomorphic to $2^{\mathbb{N}}$.

• Let $\mathcal{L} = \{R_i \mid i \in I\}$ (with I an initial segment of \mathbb{N}) be countable relational language, where each R_i has arity n_i . Every \mathcal{L} -structure \mathcal{A} with domain $\mathbb N$ can be identified with an element of

$$\operatorname{Mod}_{\mathcal{L}} = \prod_{i \in I} 2^{(\mathbb{N}^{n_i})}$$

via the characteristic functions of its predicates $R_i^{\mathcal{A}}$. Endowing each $2^{(\mathbb{N}^{n_i})}$ with the (countable) product of the discrete topology on 2, they all become Polish spaces (homeomorphic to the Cantor space). Thus $\operatorname{Mod}_{\mathcal{L}}$ is Polish, and can be regarded as the Polish space of all countable \mathcal{L} -structures (up to isomorphism).

A. Andretta (Torino)

5 Set $\mathcal{L} = \{R\}$ with R binary, so that $\operatorname{Mod}_{\mathcal{L}} = 2^{\mathbb{N} \times \mathbb{N}}$. Consider the set

$$LO = \{x \in Mod_{\mathcal{L}} \mid x \text{ codes a linear order}\},\$$

that is: $x \in LO$ if R^{A_x} is a reflexive, antisymmetric, transitive and total relation. Then

$$LO = \bigcap_{n \in \mathbb{N}} R_n \cap \bigcap_{\substack{n,m \in \mathbb{N} \\ n \neq m}} A_{n,m} \cap \bigcap_{\substack{n,m,k \in \mathbb{N}}} T_{n,m,k} \cap \bigcap_{\substack{n,m \in \mathbb{N}}} L_{n,m},$$

where

• $R_n = \{x \in 2^{\mathbb{N} \times \mathbb{N}} \mid x(n,n) = 1\},$ • $A_{n,m} = \{x \in 2^{\mathbb{N} \times \mathbb{N}} \mid x(n,m) = 0 \lor x(m,n) = 0\},$ • $T_{n,m,k} = \{x \in 2^{\mathbb{N} \times \mathbb{N}} \mid x(n,m) = 0 \lor x(m,k) = 0 \lor x(n,k) = 1\},$ • $L_{n,m} = \{x \in 2^{\mathbb{N} \times \mathbb{N}} \mid x(n,m) = 1 \lor x(m,n) = 1\}.$

Since each of the above sets is clopen (= closed and open), it follows that LO is closed in $Mod_{\mathcal{L}}$, and thus it can be regarded as the Polish space of all countable linear orders (up to isomorphism).

① Let p be any prime number. Every $q \in \mathbb{Q}$ can be written in a unique way as $p^n \frac{a}{b}$ with a and b not divisible by p. Define the p-adic absolute value of q as

$$|q|_p = p^{-n}.$$

The space of p-adic numbers \mathbb{Q}_p is the completion of (\mathbb{Q}, d_p) where d_p is the metric induced by $|\cdot|_p$, i.e. $d_p(q, q') = |q - q'|_p$. Each p-adic number may be written in a unique way as

$$\sum_{i=k}^{\infty} a_i p^i$$

where $k \in \mathbb{Z}$ is such that $a_k \neq 0$ and each a_i belongs to $\{0,\ldots,p-1\}$. The subring of p-adic integers \mathbb{Z}_p consists of those p-adic numbers such that $a_i=0$ for all i<0. Both \mathbb{Q}_p and \mathbb{Z}_p are Polish spaces. Indeed, \mathbb{Z}_p is homeomorphic to the Cantor space $2^{\mathbb{N}}$, while \mathbb{Q}_p is homeomorphic to $2^{\mathbb{N}}$ minus a point.

A. Andretta (Torino)

Polish spaces

AA 2024-2025

9/19

- All separable Banach spaces are Polish. These include
 - the ℓ^p spaces $(1 \le p < \infty)$, in particular the **Hilbert space** ℓ^2 (which can be shown to be homeomorphic to $\mathbb{R}^{\mathbb{N}}$);
 - c_0 , the space of converging-to-0 sequences with the sup norm;
 - the $L^p(\mu)$ spaces $(1 \le p < \infty)$, μ a σ -finite measure on a countably generated σ -algebra;
 - ullet C(X), the space of continuous (real or complex) functions on a compact metrizable space X with the sup norm.

A. Andretta (Torino) Polish spaces AA 2024–2025 10 / 15

1 Let X,Y be separable Banach spaces, and L(X,Y) be the (generally non-separable) Banach space of bounded linear operators $T\colon X\to Y$ with norm $\|T\|=\sup\{\|Tx\|\mid x\in X,\|x\|\leq 1\}$. Then the unit ball

$$L_1(X,Y) = \{ T \in L(X,Y) \mid ||T|| \le 1 \}$$

endowed with the (relative) **strong topology** is Polish. (The strong topology is the weakest topology on L(X,Y) for which the maps $L(X,Y) \to Y$, $T \mapsto Tx$, are continuous, for $x \in X$.)

Proof.

Let $D\subseteq X$ be a countable dense subset of X closed under rational linear combinations. Y^D with the product topology is Polish. Consider the following closed (hence Polish) subset of Y^D :

$$F = \{ f \in Y^D \mid \forall x, y \in D \,\forall p, q \in \mathbb{Q} \, (f(px + qy) = pf(x) + qf(y)) \\ \land \forall x \in D \, (\|f(x)\| \le \|x\|) \}.$$

The map $L_1(X,Y) \to F$, $T \mapsto T \upharpoonright D$, is a homeomorphism.

A. Andretta (Torino)

Polish spaces

AA 2024-2025

11 / 19

Proposition 1.1.4

If X is Polish and $Y \subseteq X$ is open, then Y is Polish.

Proof

Y is second-countable, so we need to show that it is completely metrizable. Let $F = X \setminus Y$, and for any $x \in X$ set $d(x,F) := \inf\{d(x,y) \mid y \in F\}$. Define d' on Y by

$$d'(x,y) = d(x,y) + \left| \frac{1}{d(x,F)} - \frac{1}{d(y,F)} \right|.$$

Let's assume that d and d' generate the same topology on $Y = X \setminus F$. Any d'-Cauchy sequence $(y_i)_{i \in \mathbb{N}}$ in Y is also d-Cauchy, hence $y_i \to y$ for some $y \in X$: we claim that $y \in Y$.

 $(1/d(y_i,F))_{i\in\mathbb{N}}$ is Cauchy in \mathbb{R} because of the second term in the definition of d', hence it converges in \mathbb{R} , and thus $(d(y_i,F))_{i\in\mathbb{N}}$ is bounded away from 0. As $d(y_i,F)\to d(y,F)$ by continuity $d(y,F)\neq 0$, whence $y\notin F$, i.e. $y\in Y$.

A. Andretta (Torino) Polish spaces AA 2024–2025 12 / 19

Proof (continued).

Let us prove that d and d' generate the same topology on $Y = X \setminus F$. As $B_{d'}(x,\varepsilon) \subseteq B_d(x,\varepsilon) \cap Y$ for all $x \in Y$ and $\varepsilon > 0$, it suffices to show that for all $x \in Y$ and $\varepsilon > 0$ there is $\varepsilon' > 0$ such that $B_d(x,\varepsilon') \cap Y \subseteq B_{d'}(x,\varepsilon)$. Choose $0 < \varepsilon' < \frac{\varepsilon}{2}$ such that for all $y \in B_d(x,\varepsilon') \cap Y$

$$\left| \frac{1}{d(x,F)} - \frac{1}{d(y,F)} \right| < \frac{\varepsilon}{2}.$$

Then for all $y \in B_d(x, \varepsilon') \cap Y$ one has

$$d'(x,y) = d(x,y) + \left| \frac{1}{d(x,F)} - \frac{1}{d(y,F)} \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus $B_d(x, \varepsilon') \cap Y \subseteq B_{d'}(x, \varepsilon)$, as desired.

It follows that countable intersections of open subsets of a given Polish space are Polish as well.

A. Andretta (Torino)

Polish spaces

AA 2024-2025

13 / 19

Example

Consider the symmetric group S_{∞} of all permutations of \mathbb{N} . Formally, S_{∞} is the subspace of $\mathbb{N}^{\mathbb{N}}$ consisting of all bijections from \mathbb{N} into itself. Thus S_{∞} is the (countable) intersection of the following open sets, where n,m vary over distinct natural numbers:

- $\{x \in \mathbb{N}^{\mathbb{N}} \mid x(n) \neq x(m)\}$
- $\bullet \ \bigcup_{k \in \mathbb{N}} \{x \in \mathbb{N}^{\mathbb{N}} \mid x(k) = n\}.$

Thus S_{∞} is a Polish space. Indeed, it is even a **Polish group**, i.e. a topological group (i.e. a group equipped with a topology turning its operations into continuous functions) whose topology is Polish.

A. Andretta (Torino) Polish spaces AA 2024–2025 14 / 19

Definition

A subset A of a topological space X is \mathbf{G}_{δ} if it can be written as a countable intersection of open subsets of X, and it is \mathbf{F}_{σ} if it can be written as a countable union of closed sets (equivalently: if its complement is \mathbf{G}_{δ}).

The collection of G_{δ} subsets is closed under countable intersections and finite unions, while the collection of all F_{σ} subsets is closed under countable unions and finite intersections. It can be shown that in a Polish space, the intersection of two dense G_{δ} sets is dense.

Example (1.1.7)

The rationals $\mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{q\}$ form an \mathbf{F}_{σ} subset of \mathbb{R} , hence the irrationals $\operatorname{Irr} = \mathbb{R} \setminus \mathbb{Q}$ form a \mathbf{G}_{δ} set. Since \mathbb{Q} and Irr are both dense, \mathbb{Q} is not \mathbf{G}_{δ} and hence Irr is not \mathbf{F}_{σ} .

 $[0;1)=\bigcup_{n\in\mathbb{N}}[0;1-2^{-n}]=\bigcap_{n\in\mathbb{N}}(-2^{-n};1)$ is an example of a subset of \mathbb{R} which is both \mathbf{F}_{σ} and \mathbf{G}_{δ} , but neither open nor closed.

A. Andretta (Torino)

Polish spaces

AA 2024-2025

15 / 19

If X is metrizable, then any closed F is \mathbf{G}_{δ} , as $F = \bigcap_{n \in \mathbb{N}} U_n$ where $U_n = \bigcup \{ B_d(x, 2^{-n}) \mid x \in F \}$ with d any compatible metric on X.

Proposition 1.1.4 [Kec95, Theorem 3.11]

X Polish and $Y \subseteq X$. The following are equivalent:

- Y is Polish (with the induced topology);
- 2 Y is a G_{δ} subset of X.

 Z_1 a topological space, $Z_2=(Z_2,d')$ metric, $A\subseteq Z_1$, and $f\colon A\to Z_2$. The **oscillation** of f at $z\in Z_1$ is

$$\operatorname{osc}_f(z) = \inf \{ \operatorname{diam}(f(U \cap A)) \mid U \subseteq Z_1 \text{ open}, z \in U \},$$

where $diam(B) = \sup\{d'(x,y) \mid x,y \in B\}$ if $B \neq \emptyset$ and $diam(\emptyset) = 0$.

A. Andretta (Torino) Polish spaces AA 2024–2025 16 / 19

$$\operatorname{osc}_f(z) = \inf \{ \operatorname{diam}(f(U \cap A)) \mid U \subseteq Z_1 \text{ open}, z \in U \}$$

If $z \in Z_1 \setminus \operatorname{Cl}(A)$ then $\operatorname{osc}_f(z) = 0$, while if $z \in A$ then $\operatorname{osc}_f(z) = 0$ if and only if z is a continuity point of f. Moreover $A_\varepsilon = \{z \in Z_1 \mid \operatorname{osc}_f(z) < \varepsilon\}$ is open, whence $\{z \in Z_1 \mid \operatorname{osc}_f(z) = 0\} = \bigcap_{n \in \mathbb{N}} A_{2^{-n}}$ is \mathbf{G}_δ . In particular

If Z_1, Z_2 are topological spaces with Z_2 metrizable, then the set of points of continuity of $f: Z_1 \to Z_2$ is \mathbf{G}_{δ} [Kec95, Proposition 3.6].

Claim 1.1.8.1 [Kec95, Theorem 3.8]

Let Z_1 be metrizable and Z_2 be completely metrizable, $A \subseteq Z_1$, and $f \colon A \to Z_2$ be continuous. Then there is a \mathbf{G}_{δ} set G with $A \subseteq G \subseteq \mathrm{Cl}(A)$ and a continuous function $g \colon G \to Z_2$ with $g \upharpoonright A = f$.

A. Andretta (Torino)

Polish spaces

AA 2024-2025

17 / 10

Proof of the claim.

Let d' be a compatible complete metric on Z_2 . Let $G=\operatorname{Cl}(A)\cap\{z\in Z_1\mid \operatorname{osc}_f(z)=0\}$. This is a \mathbf{G}_δ set, and since f is continuous on A we have $A\subseteq G\subseteq\operatorname{Cl}(A)$. Let $z\in G$, and fix a sequence $(z_n)_{n\in\mathbb{N}}$ of points of A converging to $z\in\operatorname{Cl}(A)$. Then $(f(z_n))_{n\in\mathbb{N}}$ is a d'-Cauchy sequence. Indeed, for every $\varepsilon>0$ there is an open neighborhood U of z with $\operatorname{diam}(f(U\cap A))<\varepsilon$ because $\operatorname{osc}_f(z)=0$, and since $z_n\in U$ for all but finitely many n's (because $z_n\to z$) it follows that there is $N\in\mathbb{N}$ such that $d'(f(z_n),f(z_m))\leq \operatorname{diam}(f(U\cap A))<\varepsilon$ for all $n,m\geq N$. Thus $(f(z_n))_{n\in\mathbb{N}}$ converges in Z_2 , and we can set $g(z)=\lim_{n\to\infty}f(z_n)$.

Clearly g is well-defined (i.e. the value of g(z) is independent of the choice of the sequence $z_n \to z$) and extends f. Finally, to see that g is continuous we have to show that $\operatorname{osc}_g(z) = 0$ for all $z \in G$. But given any open $U \subseteq Z_1$, $g(G \cap U) \subseteq \operatorname{Cl}(f(A \cap U))$ by definition of g, thus $\operatorname{diam}(g(G \cap U)) \leq \operatorname{diam}(f(A \cap U))$, whence $\operatorname{osc}_g(z) \leq \operatorname{osc}_f(z) = 0$. \square

A. Andretta (Torino) Polish spaces AA 2024–2025 18 / 19

Proof of Proposition 1.1.4.

Assume Y is a Polish subspace of X, and let us prove that Y is \mathbf{G}_{δ} . By Claim 1.1.8.1 with $Z_1=X$, $Z_2=A=Y$, and $f=\mathrm{id}_Y$ the identity function on Y, we get that there is a \mathbf{G}_{δ} subset of X and a continuous function $g\colon G\to Y$ such that $Y\subseteq G\subseteq \mathrm{Cl}(Y)$ and $g\upharpoonright Y=\mathrm{id}_Y$. Since Y is dense in G and g is continuous, we have that $g=\mathrm{id}_G$. On the other hand, $\mathrm{rng}(g)\subseteq Y$, hence $G\subseteq Y$. It follows that Y=G is \mathbf{G}_{δ} in X.

 $\mathbb{R}\setminus\mathbb{Q}$ is Polish (it is homeomorphic to $\mathbb{N}^{\mathbb{N}}$). By Example 1.1.7 \mathbb{Q} is not a G_{δ} subspace of \mathbb{R} , so it is not a Polish space. Using Claim 1.1.8.1 one can prove

Theorem (Lavrentiev) [Kec95, Theorem 3.9]

 Z_1,Z_2 completely metrizable, $A\subseteq Z_1$, $B\subseteq Z_2$, and $f\colon A\to B$ a homeomorphism. Then f can be extended to a homeomorphism $h\colon G\to H$ where $G\supseteq A,\, H\supseteq B$ are \mathbf{G}_δ . In particular, a homeomorphism between dense subsets of Z_1,Z_2 can be extended to a homeomorphism between dense \mathbf{G}_δ sets.

A. Andretta (Torino)

Polish spaces

AA 2024-2025

19 / 19