マイコン側のラベルと「皆層シート側のラベルをそれ RS485_RingNW 電解コンの耐圧注意 Power MainTXx_RS485RingXRX > MainTX_RS485RingX_RX MainRX_RS485RingX_TX V_Meas. MainRXx_RS485RingXTX V_Meas.< File: Power.kicad_sch マイコン File: RS485_RingNW.kicad_sch F446RE HSE RS485_MD C5 Y2 22pF 16MHz MainTXx_RS485MDRX > MainTX_RS485MD_RX MainRXx_RS485MDTX MainRX_RS485MD_TX HSE_IN File: RS485_MD.kicad_sch HSE_OUT +3.30 C6 22pF 1uF ShutDown/BOOT Switch LED_LGO
LED_LGO
LED_YO MainTXx_RS485RingXRX C9 (x_RS485RingXTX MainR: GNDD LED nRO LED_nRO MainTXx_RS485RingYRX SHDN/BOOT PA0 14 x_RS485RingYTX LED_B0 > LED_B0 LED_B1 > LED_B1 NRST) NRST MainR: +3.3V NRST воото 60 BOOTO SW1 ВООТО PA2 MainTXx_RS485MDRX SW_SPST PA3 MainR (x_RS485MDTX ВООТО SlideSW0 SlideSW0 R68 10k C11 PA4 NRST VCAP_1 GNDD PA5 DIPSW0 DIPSW0 GNDD DIPSW1 DIPSW1 4.7uF PA6 SCLx DIPSW2
DIPSW3
DIPSW3 Z Q GNDD PA7 PA8 41 use PA9 42 SCLK Main to BNO055 Reset PA10 43 MOSI File: UI.kicad_sch HSE_IN РН0 PA11 Q15 RST_BNO 書き込み 6 PH1 PA12 45 HSE_OUT BSS138 BN0055 +3.3V PA13 46 SWDIO 54 PD2 D1 PA14 INT_BN O J1 SWCLK) Main->RST_BNO PA15 50 Main->RST_BNO Conn_01x14_Pin 1N5819WS SDAx −DI2C_SDA R3 8 PCO SCLx > 12C_SCL 9 PC1 10 PC2 10k R62 PB0 Main->INT_Mouse PB1 1k INT_BNO 10k 11 PC3 RST_BNO >nRST PB2 R2 (SWDIO) GNDD 24 PC4 PB3 (SWO) GNDD 25 PC5 PB4 SWCLK > LED_ File: BN0055.kicad_sch 37 PC6 PB5 LED_i 38 PC7 (SWO) PB6 39 PC8 Mouse Main to PIM573 Initialize PB7 40 PC9 PB8 Q16 INT_Mouse 51 PC10 PB9 BSS138 MOSIx -⊳MOSI 52 PC11 53 PC12 NRST MISOx MISO PB10 PB12 SCLKx ->CLK Main->INT_Mouse 2 PC13 GNDD PB13 34 CSx_Mouse DCS. ×3 PC14 ×4 PC15 R59 **PB14** 10k INT_Mouse -DINT パスコン U2 +3.3V File: Mouse.kicad_sch GNDD STM32F446RETx V_Mea GNDD SHDN, BOOT 0.1 un 0.101 Sheet: / File: Drive.kicad sch GNDD Title: Date: ze: A4 Rev: KiCad E.D.A. kicad 7.0.11 ld: 1/7

GNDPWR

インジケーターLED

GND

TestPoint

電源スイッチ 耐圧大丈夫? 三端子を新しく選定したのにする 電源直付けのための穴を設定する 電源で過去されば、サロサを設計の

電源平滑コンデンサは基板設計の時に良い感じに数調整

3.3V生成

St. 1. (D	
Sheet: /Power/ File: Power.kicad_sch	
Title:	
Size: A3 Date:	Rev:
KiCad E.D.A. kicad 7.0.11	ld: 2/7
7	1 0

RS485_RingNW_X

RS485_RingNW_Y

Sheet: /RS485_RingNW/ File: RS485_RingNW.kicad_sch			
Title:			
Size: A4	Date:		Rev:
KiCad E.D.A. kicad	7.0.11		ld: 3/7
4		5	T 6

RS485_RingNW_X MAX3485_Tx(3,4Pin) Conn +3.3V C29 0.1uF Q14 ~68550 R46 GNDD 2.2k RS485MD_TA RS485MD_TA _____ 2 RS485MD_TB _____ 3 JP4 RS485MD_RA Jumper_2_Open 120 RS485MD_RB MainTX_RS485MD_RXD-RS485MD_TB R44 20k R47 2.2k MAX3485 GNDD Conn_01x05_MountingPin GNDD MAX3485_Rx(5,6Pin) +3.3V C30 GNDD 1 0.1uF RS485MD_TA ____ 2 RS485MD_TB RS485MD_RA R48 RS485MD_RB GNDD 2.2k RS485MD_RA MainRX_RS485MD_TXD-JP5 2 R51 120 GNDD Jumper_2_Open Conn_01x05_MountingPin RS485MD_RB R45 10k R49 2.2k MAX3485 GNDD Sheet: /RS485_MD/ File: RS485_MD.kicad_sch Title: Size: A4 Date: Rev: KiCad E.D.A. kicad 7.0.11 ld: 7/7

