Changing Beliefs About Correlations in Atypical Scatterplots

GABRIEL STRAIN, Department of Computer Science, Faculty of Science and Engineering, University of Manchester, United Kingdom

ANDREW J. STEWART, Department of Computer Science, Faculty of Science and Engineering, University of Manchester, United Kingdom

PAUL WARREN, Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, United Kingdom

CHARLOTTE RUTHERFORD, Division of Psychology Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, United Kingdom

CAROLINE JAY, Department of Computer Science, Faculty of Science and Engineering, University of Manchester, United Kingdom

abstract goes here

 21

 $\frac{22}{23}$ $\frac{24}{24}$

CCS Concepts: • Computer systems organization \rightarrow Embedded systems; Redundancy; Robotics; • Networks \rightarrow Network reliability.

Additional Key Words and Phrases: belief change, correlation perception, scatterplot, crowdsourced

ACM Reference Format:

Authors' addresses: Gabriel Strain, Department of Computer Science, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester, United Kingdom, M13 9PL; Andrew J. Stewart, Department of Computer Science, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester, United Kingdom, M13 9PL; Paul Warren, Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester, United Kingdom, M13 9PL; Charlotte Rutherford, Division of Psychology Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester, United Kingdom, M13 9PL; Caroline Jay, Department of Computer Science, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester, United Kingdom, M13 9PL.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM.

49 © 2018 ACM.
50 Manuscript submitted to ACM

2 Strain et al.

1 INTRODUCTION

2 RELATED WORK

3 GENERAL METHODS

In this section we discuss our general research methods, including our implementations of open research practices, our approach to and justification for crowdsourcing, and our approach to stimulus generation.

3.1 Open Research

Both our pre and main studies were conducted according to the principles of open and reproducible research [2]. We pre-registered hypotheses and analysis plans with the Open Science Framework (OSF) for the pre-study¹ and the main experiment², and there were no deviations from them. All data and analysis code are included in a GitHub repository³. This repository contains instructions for building a Docker container [7] that reproduces the computational environment the paper was written in. This allows for full replication of stimuli, figures, analysis, and the paper itself. Ethical approval was granted the (removed for anon).

4 PRE-STUDY: INVESTIGATING BELIEFS ABOUT RELATEDNESS STATEMENTS

4.1 Introduction

4.1.1 Testing Beliefs.

4.1.2 Preparation of Stimuli. Due to previous evidence suggesting effects of prior belief strength and topic emotionality on the propensity for belief change, we first aim to build a picture of people's thoughts and feelings along these dimensions in our population of interest. With the intention of testing the potential for changes in beliefs about correlations displayed in scatterplots depicting weak and strong correlations, and those whose topics were both strong and neutral in emotional valence, we began by using ChatGPT4 [9] to generate 100 correlation statements using the following prompt:

"Generate 100 statements that describe the correlation between two variables, such as:

"X is associated with a higher level of Y" or

"As X increases, Y increases".

Try to match all the statements on emotionality."

The full list of these statements can be found in the supplementary materials. Note that we cite our use of ChatGPT according to the AI Code of Conduct developed by Iliada Eleftheriou and Ajmal Mubarik and the University of Manchester [4]. Two authors rated each statement on topic emotionality and strength of correlation using Likert scales from 1 to 7. Topic emotionality had a midpoint at 4, whereas strength of correlation varied between 1 (Not Related At All) and 7 (Strongly Related). We calculated a quadratic weighted Cohen's Kappa between the two raters using the **irr** package (version 0.84.1[6]), in order to penalise larger magnitude disagreements more harshly. We found agreement above chance for both topic emotionality ($\kappa = 0.49$, p < .001) and strength of correlation ($\kappa = 0.51$, p < .001), indicating moderate levels of agreement in both cases [3, 5].

¹https://osf.io/xuf4d

²tbc

³https://github.com/gjpstrain/beliefs_attitudes_atypic

¹⁰⁴ Manuscript submitted to ACM

Table 1. Pre-test statements that were rated as being strongly correlated.

105 106 107

108

109

110

111

112

113

114

115

116

117

118 119

120

121

122

Statement - Strong Correlation Depicted

Increased exposure to sunlight is correlated with higher vitamin D levels.

As caffeine consumption increases, so does the average heart rate.

Greater frequency of exercise is linked to a lower risk of depression.

Greater use of helmets is associated with a lower incidence of head injuries in cyclists.

As the quality of healthcare improves, life expectancy tends to increase.

As access to clean water improves, the incidence of waterborne diseases decreases.

Higher levels of empathy are linked to stronger interpersonal relationships.

As soil quality degrades, agricultural productivity tends to decrease.

Higher levels of civic engagement are linked to a stronger sense of community.

Higher sugar consumption is associated with an increased risk of dental cavities.

Higher attendance at preventive health screenings is linked to earlier detection of diseases.

Increased use of energy-efficient appliances is associated with lower electricity bills.

As pedestrian-friendly infrastructure improves, urban walkability tends to increase.

Greater regularity in sleep patterns is associated with improved mental health.

123 124

Table 2. Pre-test statements that were rated as being weakly correlated.

125 126

128

129

130

131

132

133

134 135

136

137

138 139

Statement - Weak Correlation Depicted

Greater water consumption is linked to improved kidney function.

As the amount of sleep decreases, the risk of obesity increases.

Greater intake of omega-3 fatty acids is associated with lower inflammation levels.

Greater exposure to music education is linked to enhanced cognitive development in children.

Higher exposure to air conditioning is associated with increased respiratory issues.

Higher frequency of family meals is linked to better eating habits in children.

As participation in community arts programs increases, local cultural engagement tends to rise.

Higher consumption of spicy foods is associated with a lower risk of certain types of cancer.

Greater adherence to a Mediterranean diet is linked to a lower risk of neurodegenerative diseases.

Higher consumption of nuts and seeds is associated with reduced risk of cardiovascular diseases.

As cultural preservation efforts increase, community identity and cohesion tend to strengthen.

140 141 142

143

144

145 146

147

148

149

150

Following this, we selected strongly and weakly correlated statements with the highest level of absolute agreement, resulting in the 14 strongly correlated statements that can be seen in Table 1 and the 11 weakly correlated statements that can be seen in Table 2. As we only needed two statements for each of the high and low correlation conditions in our main experiment, we elected to test these 25 statements with a representative UK sample in order to ascertain consensus on both topic emotionality and strength of correlation. Doing so allows us to effectively exclude these factors when we analyse the effects of our atypical scatterplot designs on the propensity for belief change in our main experiment.

155

156

4.2 Method

4.2.1 Participants. 100 participants were recruited using the Prolific.co platform [1]. English fluency and residency was required for participation, as our main experiment relied on familiarity with data visualisations

Manuscript submitted to ACM

4 Strain et al.

from a popular British news source. In addition to 25 experimental items, we included six attention check items, which asked participants to provide specific answers. No participants failed more than 2 out of 6 attention check items, and therefore data from all 100 were included in the full analysis (52.0% male and 48.0% female. Participants' mean age was 41.1 (SD=12.3). The average time taken to complete the survey was 7.6 minutes (SD=2.9 minutes).

4.2.2 Design. Each participant saw all survey items (Table 1 and ?@tbl-pre-test-lo), along with the six attention check items, in a fully randomised order. All experimental code, materials, and instructions are hosted on GitLab⁴.

172

 $\frac{176}{177}$

4.2.3 Procedure. The experiment was built using Psychopy [8] and hosted on Pavlovia.org. Participants were permitted to complete the experiment using a phone, tablet, desktop, or laptop computer. Participants were first shown the participant information sheet and were asked to provide consent through key presses in response to consent statements. They were asked to provide their age in a free text box, followed by their gender identity. Participants were told that they would be asked to read statements about the relatedness between a pair of variables, after which they would have to indicate their beliefs about topic emotionality and the strength of correlation suggested. To familiarize themselves with the slider, they were asked to complete a practice round in response to the statement "As participation in online experiments increases, society becomes happier."

4.3 Results

All analyses were conducted using R (version 4.4.0). We use the **irr** package to calculate Fleiss' Kappa to measure interrater agreement on topic emotionality and strength of correlation for the 25 experimental items. This analysis revealed that raters agreed above chance for both topic emotionality ($\kappa = 0.07$, p < .001) and strength of correlation ($\kappa = 0.06$, p < .001).

4.4 Discussion

5 MAIN STUDY: POTENTIAL FOR BELIEF CHANGE USING ATYPICAL SCATTERPLOTS

- 5.1 Introduction
- ¹⁹⁵ 5.2 Method

5.2.2 Design.

201 202

5.2.3 Procedure.

⁴https://gitlab.pavlovia.org/Strain/beliefs_scatterplots_pretest

²⁰⁸ Manuscript submitted to ACM

5.3 Results

 $\frac{259}{260}$

- **5.4 Discussion**
- ²¹² 6 GENERAL DISCUSSION
- 214 7 LIMITATIONS
 - 8 FUTURE WORK
- 217 9 CONCLUSION

REFERENCES

- [1] 2023. Prolific. https://www.prolific.co
- [2] Paul Ayris, Isabel Bernal, Valentino Cavalli, Bertil Dorch, Jeannette Frey, Martin Hallik, Kistiina Hormia-Poutanen, Ignasi Labastida i Juan, John MacColl, Agnès Ponsati Obiols, Simone Sacchi, Frank Scholze, Birgit Schmidt, Anja Smit, Adam Sofronijevic, Jadranka Stojanovski, Martin Svoboda, Giannis Tsakonas, Matthijs van Otegem, Astrid Verheusen, Andris Vilks, Wilhelm Widmark, and Wolfram Horstmann. 2018. LIBER Open Science Roadmap. (July 2018). https://doi.org/10.20350/digitalCSIC/15061
- [3] Jacob Cohen. 1968. Weighted Kappa: Nominal Scale Agreement Provision for Scaled Disagreement or Partial Credit. Psychological Bulletin 70, 4 (1968), 213–220. https://doi.org/10.1037/h0026256
- [4] Iliada Eleftheriou and Ajmal Mubarik. 2023. AI Code of Conduct. https://www.iliada-eleftheriou.com/AICodeOfConduct/#how-to-cite-and-reference-chatgpt.
- [5] Joseph L. Fleiss, Jacob Cohen, and B. S. Everitt. 1969. Large Sample Standard Errors of Kappa and Weighted Kappa. Psychological Bulletin 72, 5 (Nov. 1969), 323–327. https://doi.org/10.1037/h0028106
- [7] Dirk Merkel. 2014. Docker. Linux Journal (March 2014). https://doi.org/10.5555/2600239.2600241
- [8] Jonathan Peirce, Jeremy R. Gray, Sol Simpson, Michael MacAskill, Richard Höchenberger, Hiroyuki Sogo, Erik Kastman, and Jonas Kristoffer Lindeløv. 2019. PsychoPy2: Experiments in Behavior Made Easy. Behavior Research Methods 51, 1 (Feb. 2019), 195–203. https://doi.org/10.3758/s13428-018-01193-y
- [9] version 4. 2024. ChatGPT. OpenAI.