Spectral Theory

Contents

- Preliminary
 Complex Numbers
 Complex Arrays
- 2 Eigenvalue Decomposition
- Singular Value Decomposition Singular Value Decomposition: Overview Understanding SVD
- Properties of SVD
 Properties of SVD
 Unitary Diagonalization and SVD
 Reduction of Dimensions

Preliminary

Complex Numbers

Complex Numbers

In what follows, we assume all scalars, vectors, and matrices may be complex.

Notation.

- \mathbb{R} : the set of all real numbers
- C: the set of all complex numbers, i.e.,

$$\{z=x+iy\,|\,x,y\in\mathbb{R}\}$$
 where $i=\sqrt{-1}$.

Complex Numbers in MATLAB

Let
$$z = x + iy \in \mathbb{C}$$
.

MATLAB	Name	Notation
real(z)	real part of z	$\operatorname{Re} z$
imag(z)	imaginary part of \emph{z}	$\operatorname{Im} z$
conj(z)	conjugate of \emph{z}	\overline{z}
abs(z)	modulus of z	z
angle(z)	argument of \emph{z}	arg(z)

Euler's Formula

• Recall that the Maclaurin series for e^t is

$$e^{t} = 1 + t + \frac{t^{2}}{2} + \dots + \frac{t^{n}}{n!} + \dots = \sum_{n=0}^{\infty} \frac{t^{n}}{n!}, -\infty < t < \infty.$$

 Replacing t by it and separating real and imaginary parts (using the cyclic behavior of powers of i), we obtain

$$e^{it} = \underbrace{\sum_{k=0}^{\infty} \frac{(-1)^k t^{2k}}{(2k)!}}_{\cos(t)} + i \underbrace{\sum_{k=0}^{\infty} \frac{(-1)^k t^{2k+1}}{(2k+1)!}}_{\sin(t)}$$

The result is called the Euler's formula.

$$e^{it} = \cos(t) + i\sin(t).$$

Polar Representation and Complex Exponential

• Polar representation: A complex number $z=x+iy\in\mathbb{C}$ can be written as

$$z = re^{i\theta}$$
 where

$$r = |z|, \quad \tan \theta = \frac{y}{x}.$$

• Complex exponentiation:

$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos y + i\sin y).$$

Complex Arrays

Complex Vectors

Denote by $\mathbb{C}^n = \mathbb{C}^{n \times 1}$ the space of all column vectors of n complex elements.

• The hermitian or conjugate transpose of $\mathbf{u} \in \mathbb{C}^n$ is denoted by \mathbf{u}^* :

$$\mathbf{u}^* \in \mathbb{C}^{1 \times n}$$
.

• The inner product of $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$ is defined by

$$\mathbf{u}^*\mathbf{v} = \sum_{k=1}^n \overline{u}_k v_k.$$

The 2-norm for complex vectors is defined in terms of this inner product:

$$\|\mathbf{u}\|_2^2 = \mathbf{u}^*\mathbf{u}.$$

Complex Matrices

Denote by $\mathbb{C}^{m\times n}$ the space of all complex matrices with m rows and n columns.

• The **hermitian** or conjugate transpose of $A \in \mathbb{C}^{m \times n}$ is denoted by A^* :

$$A^* = (\overline{A})^{\mathrm{T}} = \overline{(A^{\mathrm{T}})} \in \mathbb{C}^{n \times m}.$$

• A unitary matrix is a complex analogue of an orthogonal matrix. If $U \in \mathbb{C}^{n \times n}$ is unitary, then

$$U^*U = UU^* = I$$

and

$$\left\| U\mathbf{z} \right\|_2 = \left\| \mathbf{z} \right\|_2, \quad ext{for any } \mathbf{z} \in \mathbb{C}^n.$$

Complex Matrices: Some Analogies

	Real	Complex
Norm	$\left\ \mathbf{v}\right\ _2 = \sqrt{\mathbf{v}^T\mathbf{v}}$	$\left\ \mathbf{u}\right\ _2 = \sqrt{\mathbf{u^*u}}$
Symmetry	$S^{ m T} = S$ (symmetric matrix)	$S^{f *}=S$ (hermitian matrix)
Orthonormality	$Q^{\mathrm{T}}Q=I$ (orthogonal matrix)	$U^*U=I$ (unitary matrix)
Householder	$H = I - \frac{2}{\mathbf{v}^{\mathrm{T}} \mathbf{v}} \mathbf{v} \mathbf{v}^{\mathrm{T}}$	$H = I - \frac{2}{\mathbf{u}^* \mathbf{u}} \mathbf{u} \mathbf{u}^*$

Eigenvalue Decomposition

Eigenvalue Decomposition

Eigenvalue Problem

Find a scalar eigenvalue λ and an associated nonzero eigenvector ${\bf v}$ satisfying

$$A\mathbf{v} = \lambda \mathbf{v}.$$

- The spectrum of A is the set of all eigenvalues; the spectral radius is $\max_j |\lambda_j|$.
- The problem is equivalent to

ullet An eigenvalue of A is a root of the **characteristic polynomial**

Eigenvalue Decomposition (cont')

Let $A \in \mathbb{C}^{n \times n}$ and suppose that $A\mathbf{v}_k = \lambda_k \mathbf{v}_k$ for $k \in \mathbb{N}[1, n]$.

Then

• If V is nonsingular, we can further write

which is called an **eigenvalue decomposition (EVD)** of A. If ${\bf v}$ is an eigenvector of A, then so is $c{\bf v}$, $c \ne 0$. Thus an EVD is not unique.

Eigenvalue Decomposition (cont')

If A has an EVD, we say that A is **diagonalizable**; otherwise **nondiagonalizable**.

Theorem 1 (Diagonalizability)

If $A \in \mathbb{C}^{n \times n}$ has n distinct eigenvalues, then A is diagonalizable.

Notes.

• Let $A, B \in \mathbb{C}^{n \times n}$. We say that B is similar to A if there exists a nonsingular matrix X such that

$$B = XAX^{-1}.$$

- So diagonalizability is similarity to a diagonal matrix.
- Similar matrices share the same eigenvalues.

Calculating EVD in MATLAB

- E = eig(A)
 produces a column vector E containing the eigenvalues of A.
- [V, D] = eig(A) produces V and D in an EVD of A, $A = VDV^{-1}$.

Understanding EVD: Change of Basis

Let $X \in \mathbb{C}^{n \times n}$ be a nonsingular matrix.

- The columns $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ of X form a basis of \mathbb{C}^n .
- Any $\mathbf{z} \in \mathbb{C}^n$ is uniquely written as

$$\mathbf{z} = X\mathbf{u} = u_1\mathbf{x}_1 + u_2\mathbf{x}_2 + \dots + u_n\mathbf{x}_n.$$

- The scalars u₁,..., u_n are called the coordinates of z with respect to the columns of X.
- The vector u = X⁻¹z is the representation of z with respect to the basis consisting of the columns of X.

Upshot

Left-multiplication by X^{-1} performs a **change of basis** into the coordinates associated with the columns of X.

Understanding EVD: Change of Basis (cont')

Suppose $A \in \mathbb{C}^{n \times n}$ has an EVD $A = VDV^{-1}$. Then, for any $\mathbf{z} \in \mathbb{C}^n$, $\mathbf{y} = A\mathbf{z}$ can be written as

Interpretation

The matrix A is a diagonal transformation in the coordinates with respect to the V-basis.

What Is EVD Good For?

Suppose
$$A \in \mathbb{C}^{n \times n}$$
 has an EVD $A = VDV^{-1}$.

• Economical computation of powers A^k :

• Analyzing convergence of iterates $(\mathbf{x}_1,\mathbf{x}_2,\ldots)$ constructed by

$$\mathbf{x}_{j+1} = A\mathbf{x}_j, \quad j = 1, 2, \dots$$

Conditioning of Eigenvalues

Theorem 2 (Bauer-Fike)

Let $A \in \mathbb{C}^{n \times n}$ be diagonalizable, $A = VDV^{-1}$, with eigenvalues $\lambda_1, \dots, \lambda_n$. If μ is an eigenvalue of $A + \delta A$ for a complex matrix δA , then

$$\min_{1 \leqslant j \leqslant n} \left| \mu - \lambda_j \right| \leqslant \kappa_2(V) \left\| \delta A \right\|_2.$$

Singular Value Decomposition

Singular Value Decomposition: Overview

Singular Value Decomposition

Theorem 3 (SVD)

Let $A \in \mathbb{C}^{m \times n}$. Then A can be written as

$$A = U\Sigma V^*, \tag{SVD}$$

where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal. If A is real, then so are U and V.

- The columns of *U* are called the **left singular vectors** of *A*;
- The columns of V are called the **right singular vectors** of A;
- The diagonal entries of Σ , written as $\sigma_1, \sigma_2, \ldots, \sigma_r$, for $r = \min\{m, n\}$, are called the **singular values** of A and they are nonnegative numbers ordered as

$$\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r \geqslant 0.$$

Singular Value Decomposition (cont')

Thick vs Thin SVD

Suppose that m > n and observe that:

SVD in MATLAB

```
• Thick SVD: [U,S,V] = svd(A);
```

```
• Thin SVD: [U,S,V] = svd(A, 0);
```

Understanding SVD

Geometric Perspective

Write
$$A=U\Sigma V^*$$
 as $AV=U\Sigma$:
$$A\mathbf{v}_k=\sigma_k\mathbf{u}_k,\quad k=1,\ldots,r=\min\{m,n\}.$$

The image of the unit sphere under any $m\times n$ matrix is a hyperellipse.

Algebraic Perspective

Alternately, note that $\mathbf{y} = A\mathbf{z} \in \mathbb{C}^m$ for any $\mathbf{z} \in \mathbb{C}^n$ can be written as

$$(U^*\mathbf{y}) = \Sigma (V^*\mathbf{z}).$$

Any matrix $A \in \mathbb{C}^{m \times n}$ can be viewed as a diagonal transformation from \mathbb{C}^n (source space) to \mathbb{C}^m (target space) with respect to suitably chosen orthonormal bases for both spaces.

SVD vs. EVD

Recall that a diagonalizable $A = VDV^{-1} \in \mathbb{C}^{n \times n}$ satisfies

$$\mathbf{y} = A\mathbf{z} \longrightarrow \left(V^{-1}\mathbf{y}\right) = D\left(V^{-1}\mathbf{z}\right).$$

This allowed us to view any diagonalizable square matrix $A \in \mathbb{C}^{n \times n}$ as a diagonal transformation from \mathbb{C}^n to itself¹ with respect to the basis formed by a set of eigenvector of A.

Differences.

- Basis: SVD uses two ONBs (left and right singular vectors); EVD uses one, usually non-orthogonal basis (eigenvectors).
- Universality: all matrices have an SVD; not all matrices have an EVD.
- Utility: SVD is useful in problems involving the behavior of A or A⁺; EVD is relevant to problems involving A^k.

¹The source and the target spaces of the transformation coincide.

Properties of SVD

Properties of SVD

SVD and the 2-Norm

Theorem 4

Let $A \in \mathbb{C}^{m \times n}$ have an SVD $A = U\Sigma V^*$. Then

- **1** $||A||_2 = \sigma_1$ and $||A||_F = \sqrt{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_r^2}$.
- $\mathbf{2}$ The rank of A is the number of nonzero singular values.
- 3 Let $r = \min\{m, n\}$. Then

$$\kappa_2(A) = ||A||_2 ||A^+||_2 = \frac{\sigma_1}{\sigma_r}.$$

Connection to EVD

Let $A = U\Sigma V^* \in \mathbb{C}^{m\times n}$ and $B = A^*A$. Observe that

- $B \in \mathbb{C}^{n \times n}$ is a hermitian matrix², i.e., $B^* = B$.
- B has an EVD:

- The squares of singular values of A are eigenvalues of B.
- An EVD of B = A*A reveals the singular values and a set of right singular vectors of A.

 $^{^2\}text{This}$ is the $\mathbb{C}\text{-extension}$ of real symmetric matrices.

Connection to EVD (cont')

Theorem 5

The nonzero singular values of $A \in \mathbb{C}^{m \times n}$ are the square roots of the nonzero eigenvalues of A^*A or AA^* .

Unitary Diagonalization and SVD

Unitary Diagonalization of Hermitian Matrices

The previous discussion is relevant to hermitian matrices constructed in a specific manner. For a generic hermitian matrix, we have the following result.

Theorem 6 (Spectral Decomposition)

Let $A \in \mathbb{C}^{n \times n}$ be hermitian. Then A has a unitary diagonalization

$$A = VDV^{-1},$$

where $V \in \mathbb{C}^{n \times n}$ is unitary and $D \in \mathbb{R}^{n \times n}$ is diagonal.

In words, a hermitian matrix (or symmetric matrix) has a complete set of orthonormal eigenvectors and all its eigenvalues are real.

Notes on Unitary Diagonalization and Normal Matrices

- A unitarily diagonalizable matrix $A = VDV^{-1}$ with $D \in \mathbb{C}^{n \times n}$, is called a **normal matrix**³. All hermitian matrices are normal.
- Let $A = VDV^{-1} \in \mathbb{C}^{n \times n}$ be normal. Since $\kappa_2(V) = 1$ (why?), Bauer-Fike implies that eigenvalues of A can be changed by no more than $\|\delta A\|_2$.

³Usual defintion: $A \in \mathbb{C}^{n \times n}$ is normal if $AA^* = A^*A$.

Unitary Diagonalization and SVD

Theorem 7

Let $A \in \mathbb{C}^{n \times n}$ be hermitian. Then the singular values of A are the absolute values of the eigenvalues of A.

Precisely, if $A = VDV^{-1}$ is a unitary diagonalization of A, then

$$A = (V \operatorname{sign}(D)) |D| V^*$$

is an SVD, where

$$\operatorname{sign}(D) = \begin{bmatrix} \operatorname{sign}(d_1) & & & \\ & \ddots & & \\ & & \operatorname{sign}(d_n) \end{bmatrix}, \qquad |D| = \begin{bmatrix} |d_1| & & \\ & \ddots & & \\ & & |d_n| \end{bmatrix}.$$

When Do Unitary EVD and SVD Coincide?

Theorem 8

If $A = A^*$, then the following statements are equivalent:

- **1** Any unitary EVD of A is also an SVD of A.
- \mathbf{Q} The eigenvalues of A are positive numbers.
- **3** $\mathbf{x}^* A \mathbf{x} > 0$ for all nonzero $\mathbf{x} \in \mathbb{C}^n$.

(HPD)

- The equivalence of 1 and 2 is immediate from Theorem 7
- The property in 3 is called the **hermitian positive definiteness**, *c.f.*, symmetric positive definiteness.
- The equivalence of 2 and 3 can be shown conveniently using Rayleigh quotient; see next slide.

Note: Rayleigh Quotient

Let $A \in \mathbb{R}^{n \times n}$ be fixed. The **Rayleigh quotient** is the map $R_A : \mathbb{R}^n \to \mathbb{R}$ given by

$$R_A(\mathbf{x}) = \frac{\mathbf{x}^{\mathrm{T}} A \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}.$$

- R_A maps an eigenvector of A into its associated eigenvalue, *i.e.*, if $A\mathbf{v} = \lambda \mathbf{v}$, then $R_A(\mathbf{v}) = \lambda$.
- If $A = A^{\mathrm{T}}$, then $\nabla R_A(\mathbf{v}) = \mathbf{0}$ for an eigenvector \mathbf{v} , and so

$$R_A(\mathbf{v} + \epsilon \mathbf{z}) = R_A(\mathbf{v}) + 0 + O(\epsilon^2) = \lambda + O(\epsilon^2), \quad \text{as } \epsilon \to 0.$$

The Rayleigh quotient is a quadratic approximation of an eigenvalue.

Reduction of Dimensions

Low-Rank Approximations

Let $A \in \mathbb{C}^{m \times n}$ with $m \geqslant n$. Its thin SVD $A = \hat{U} \hat{\Sigma} V^*$ can be written as

$$A = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^* \\ \vdots \\ \mathbf{v}_n^* \end{bmatrix}$$
$$= \begin{bmatrix} \sigma_1 \mathbf{u}_1 & \cdots & \sigma_n \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^* \\ \vdots \\ \mathbf{v}_n^* \end{bmatrix} = \sum_{j=1}^r \sigma_j \mathbf{u}_j \mathbf{v}_j^*,$$

where r is the rank of A.

- Each outer product $\mathbf{u}_j \mathbf{v}_j^*$ is a rank-1 matrix.
- Since $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r > 0$, important contributions to A come from terms with small j.

Low-Rank Approximations (cont')

For $1 \le k \le r$, define

$$A_k = \sum_{j=1}^k \sigma_j \mathbf{u}_j \mathbf{v}_j^* = U_k \Sigma_k V_k^*,$$

where

- U_k is the first k columns of U;
- V_k is the first k columns of V;
- Σ_k is the upper-left $k \times k$ submatrix of Σ .

This is a rank-k approximation of A.

Best Rank-k Approximation

Theorem 9 (Eckart-Young)

Let $A \in \mathbb{C}^{m \times n}$. Suppose A has rank r and let $A = U\Sigma V^*$ be an SVD. Then

- $||A A_k||_2 = \sigma_{k+1}$, for k = 1, ..., r 1.
- For any matrix B with $rank(B) \leq k$, $||A B||_2 \geq \sigma_{k+1}$.