Algorithms with Coins

Basic Tools

In this course, the goal is to use randomness as a tool.

We don't try to derive the concentration bounds

Knowing the "basics" can take you surprisingly far

Basic Tools

In this course, the goal is to use randomness as a tool.

We don't try to derive the concentration bounds

- Random variable and events
- Linearity of expectation
- The union bound
- Monte Carlo and Las Vegas algorithms
- Markov, Chebyshev, Chernoff

- Random variable and events
- Linearity of expectation
- The union bound
- Monte Carlo and Las Vegas algorithms
- Markov, Chebyshev, Chernoff

Learning objectives:

You are able to

- name the elements that constitute a probability space
- describe the statements of linearity of expectation and the union bound
- name 3 concentration bounds

Random Variables and Events

Probability space (Ω, F, P)

- 1. Sample space
- 2. Events, usually 2^{Ω}
- 3. Probabilities of events

The sum of the probabilities of the outcomes must be 1.

Random Variables and Events

Probability space (Ω, F, P)

- 1. Sample space
- 2. Events, usually 2^{Ω}
- 3. Probabilities of events

The sum of the probabilities of the outcomes must be 1.

• $\Omega = \{HH, TH, TT, HT\}$

$$P(HH) = \frac{1}{4}$$

•
$$\Sigma_{x \in \Omega} P(x) = 1$$

•
$$E = \{TH, HT\} \subseteq \Omega$$

$$\bullet \quad P(E) = \frac{1}{2}$$

Random Variables and Events

Random variable R

Depends on random outcomes

R:

Get 10 euros if both coins show heads.

0 otherwise.

- Random variable and events
- Linearity of expectation
- The union bound
- Monte Carlo and Las Vegas algorithms
- Markov, Chebyshev, Chernoff

Linearity of Expectation

Linearity of Expectation:

For two random variables X and Y

$$E[X + Y] = E[X] + E[Y]$$

Linearity of Expectation

Linearity of Expectation:

For two random variables X and YE[X + Y] = E[X] + E[Y] Payoff 1 if one coin shows heads. Payoff 2 if both. 0 if neither or only one coin shows heads. Expected payoff?

Linearity of Expectation

Linearity of Expectation:

For two random variables X and Y E[X + Y] = E[X] + E[Y]

Payoff 1 if one coin shows heads. Payoff 2 if both. 0 if neither or only one coin shows heads.

Expected payoff?

$$E[X_1 + X_2]$$
= $\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 = 1$

The Union Bound:

Consider two events E_1 and E_2 .

$$P(E_1 \cup E_2) \le P(E_1) + P(E_2)$$

Ω has area 1

Intersection means dependency.
The sum of areas is at maximum if they are independent.

The Union Bound:

Consider two events E_1 and E_2 .

$$P(E_1 \cup E_2) \le P(E_1) + P(E_2)$$

With High Probability (w.h.p.):

An event holds with probability $1 - n^{-c}$ for a constant c that the algorithm designer can choose.

The Union Bound:

Consider two events E_1 and E_2 . $P(E_1 \cup E_2) \leq P(E_1) + P(E_2)$

With High Probability (w.h.p.):

An event holds with probability $1 - n^{-c}$ for a constant c that the algorithm designer can choose.

Usage in graphs:

Suppose that you have an algorithm that computes, say, a spanning tree. A node u is bad if it is not in the tree and the probability of that is n^{-c} .

Using union bound, we get that no node is bad w.h.p. $(n^{-d}, d = c - 1)$ even if badness is not independent.

The Union Bound:

Consider two events E_1 and E_2 . $P(E_1 \cup E_2) \leq P(E_1) + P(E_2)$

With High Probability (w.h.p.):

An event holds with probability $1 - n^{-c}$ for a constant c that the algorithm designer can choose.

Usage in graphs:

Suppose that you have an algorithm that computes, say, a spanning tree. A node u is bad if it is not in the tree and the probability of that is n^{-c} .

Using union bound, we get that no node is bad w.h.p. $(n^{-d}, d = c - 1)$ even if badness is not independent.

- Random variable and events
- Linearity of expectation
- The union bound
- Monte Carlo and Las Vegas algorithms
- Markov, Chebyshev, Chernoff

Types of Randomized Algorithms

Monte Carlo:

Correct output with some probability p.

Otherwise, may output carbage.

Las Vegas:

Always correct output. Runtime guarantees in expectation

p often a constant.

- Random variable and events
- Linearity of expectation
- The union bound
- Monte Carlo and Las Vegas algorithms
- Markov, Chebyshev, Chernoff

Markov Inequality:

$$P(X \ge \alpha) \le \frac{\mu}{\alpha}$$

 μ is the expectation

Chebyshev:

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Chernoff:

$$P(\hat{X} \ge (1+\delta) \cdot \mu) \le e^{\left(-\frac{\mu\delta^2}{3}\right)}$$

Markov Inequality:

$$P(X \ge \alpha) \le \frac{\mu}{\alpha}$$

Chebyshev:

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Chernoff:

$$P(\hat{X} \ge (1+\delta) \cdot \mu) \le e^{\left(-\frac{\mu\delta^2}{3}\right)}$$

 μ is the expectation

 σ is the standard deviation

Markov Inequality:

$$P(X \ge \alpha) \le \frac{\mu}{\alpha}$$

Chebyshev:

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Chernoff:

$$P(\hat{X} \ge (1+\delta) \cdot \mu) \le e^{\left(-\frac{\mu\delta^2}{3}\right)}$$

 μ is the expectation

 σ is the standard deviation

 \widehat{X} is a sum of independent random variables.

Markov Inequality:

$$P(X \ge \alpha) \le \frac{\mu}{\alpha}$$

Chebyshev:

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Chernoff:

$$P(\hat{X} \ge (1+\delta) \cdot \mu) \le e^{\left(-\frac{\mu\delta^2}{3}\right)}$$

 μ is the expectation

 σ is the standard deviation

 \hat{X} is a sum of independent random variables. There are many variations of this bound (tighter, looser, upper, lower..).

Markov Inequality:

$$P(X \ge \alpha) \le \frac{\mu}{\alpha}$$

Chebyshev:

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Chernoff:

$$P(\hat{X} \ge (1+\delta) \cdot \mu) \le e^{\left(-\frac{\mu\delta^2}{3}\right)}$$

 μ is the expectation

deviation

 σ is the standal Don't worry, many good cheat sheets online

 \hat{X} is a sum of independent random variables. There are many variations of this bound (tighter, looser, upper, lower..).

Wrap-up

Markov Inequality:

$$P(X \ge \alpha) \le \frac{\mu}{\alpha}$$

Chebyshev:

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Chernoff:

$$P(\hat{X} \ge (1+\delta) \cdot \mu) \le e^{\left(-\frac{\mu\delta^2}{3}\right)}$$

Probabity space:

 (Ω, F, P)

The Union Bound:

$$P(E_1 \cup E_2) \le P(E_1) + P(E_2)$$

Linearity of Expectation:

$$E[X + Y] = E[X] + E[Y]$$