Fecal Sampling Comparison Project Markdown

Dan Hudson and Xochitl Morgan

09/March/2020

Load phyloseq object

Phyloseq object was generated on the server using serverScript.R, following the running of this script it was downloaded to the local machine and used to make plots

```
ps0 <- readRDS("../PrimaryData/phyloObject.rds")</pre>
# read metadata
meta <- read.csv("../PrimaryData/purcell_meta.csv")</pre>
# add tree
tree <- read_tree("../PrimaryData/purcellFastTree_edit.tre")</pre>
# load metadata and tree into phyloseg object
meta <- sample data(meta)
meta$Individual <- as.factor(meta$Individual)</pre>
row.names(meta) <- meta$Sample_name</pre>
ps <- merge_phyloseq(ps0, meta, tree)</pre>
# unedited phyloseq object
psOG <- ps
# Assign DNA sequences to refseq slot and replace with simple names to improve readability
dna <- Biostrings::DNAStringSet(taxa_names(ps))</pre>
names(dna) <- taxa names(ps)</pre>
ps <- merge_phyloseq(ps, dna)</pre>
taxa_names(ps) <- paste0("ASV", seq(ntaxa(ps)))</pre>
## phyloseq-class experiment-level object
## otu table()
                 OTU Table:
                                     [ 4872 taxa and 60 samples ]
## sample_data() Sample Data:
                                      [ 60 samples by 7 sample variables ]
                 Taxonomy Table: [ 4872 taxa by 6 taxonomic ranks ]
## tax_table()
## phy_tree()
                 Phylogenetic Tree: [ 4872 tips and 4870 internal nodes ]
## refseq()
                 DNAStringSet:
                                      [ 4872 reference sequences ]
```

Custom Rarefaction Plot

Not run in this Markdown

```
# Data
psdata <- ps
# Loading required library and displaying core configuration
library(doParallel)
detectCores(all.tests = TRUE)
# Setting up and registering the cluster
cl <- makeCluster(detectCores(all.tests = TRUE)-1)</pre>
registerDoParallel(cl)
# Calculate alpha diversity
calculate_rarefaction_curves <- function(psdata, measures, depths, parallel = FALSE) {</pre>
  require(plyr) # ldply
  require(reshape2) # melt
 require(doParallel)
  # set parallel options if required
  if (parallel) {
   paropts <- list(.packages = c("phyloseq", "reshape2"))</pre>
  } else {
    paropts <- NULL
  }
  estimate_rarified_richness <- function(psdata, measures, depth) {</pre>
    if(max(sample_sums(psdata)) < depth) return()</pre>
    psdata <- prune_samples(sample_sums(psdata) >= depth, psdata)
    rarified_psdata <- rarefy_even_depth(psdata, depth, verbose = FALSE)
    alpha_diversity <- estimate_richness(rarified_psdata, measures = measures)</pre>
    # as.matrix forces the use of melt.array, which includes the Sample names (rownames)
    molten_alpha_diversity <- melt(as.matrix(alpha_diversity),</pre>
                                    varnames = c('Sample', 'Measure'),
                                    value.name = 'Alpha_diversity')
    molten_alpha_diversity
  names(depths) <- depths # this enables automatic addition of the Depth to the output by ldply
  rarefaction_curve_data <- ldply(depths,</pre>
                                   estimate_rarified_richness,
                                   psdata = psdata,
                                   measures = measures,
                                   .id = 'Depth',
                                   .progress = ifelse(interactive() && ! parallel, 'text', 'none'),
                                   .parallel = parallel,
                                   .paropts = paropts)
  # convert Depth from factor to numeric
  rarefaction_curve_data$Depth <- as.numeric(levels(rarefaction_curve_data$Depth))[rarefaction_curve_da
```

```
rarefaction_curve_data
}
rarefaction_curve_data <- calculate_rarefaction_curves(psdata, c('Observed'),</pre>
                                                       rep(c(1, 100, 1:100 * 1000),
                                                           each = 100)
summary(rarefaction_curve_data)
saveRDS(rarefaction_curve_data, file = "../PrimaryData/rare_object.rds")
# Data
psdata <- ps
# Load Rarefaction Curve Data Object
rarefaction_curve_data <- readRDS(file = "../PrimaryData/rare_object.rds")</pre>
summary(rarefaction_curve_data)
##
        Depth
                                          Measure
                                                        Alpha_diversity
## Min.
         :
                1 X10B : 10200
                                      Observed:602300
                                                        Min. : 1.0
## 1st Qu.: 24000 X10C : 10200
                                                        1st Qu.:306.0
## Median : 49000 X11A : 10200
                                                        Median :391.0
## Mean : 48853 X11C
                           : 10200
                                                        Mean :378.1
                                                        3rd Qu.:451.0
## 3rd Qu.: 74000 X12B
                          : 10200
## Max. :100000 X12C : 10200
                                                        Max. :672.0
                     (Other):541100
##
# Summarise alpha diversity
rarefaction_curve_data_summary <- ddply(rarefaction_curve_data,</pre>
                                        c('Depth', 'Sample', 'Measure'),
                                        summarise,
                                        Alpha_diversity_mean = mean(Alpha_diversity),
                                        Alpha_diversity_sd = sd(Alpha_diversity))
colnames(rarefaction_curve_data_summary) <- gsub("X","",</pre>
                                                 colnames(rarefaction_curve_data_summary))
rarefaction_curve_data_summary$Sample <- gsub("X","", rarefaction_curve_data_summary$Sample)
# Add sample data
rarefaction_curve_data_summary_verbose <- merge(rarefaction_curve_data_summary,</pre>
                                                data.frame(sample_data(psdata)),
                                                by.x = 'Sample',
                                                by.y = 'row.names')
# Produce summary df of rarefaction data
df_mod <- summarySE(rarefaction_curve_data_summary_verbose,</pre>
                   measurevar = "Alpha_diversity_mean",
                   groupvars = c("Depth", "Sample_type"))
df_mod <- df_mod %>%
  subset(Depth == 1 | Depth == 1000 | Depth == 10000 | Depth == 20000 | Depth == 30000 | Depth == 40000
ggplot(df_mod, aes(x = Depth,
                   y = Alpha_diversity_mean,
                   ymin = Alpha_diversity_mean - ci,
                   ymax = Alpha_diversity_mean + ci,
                   colour = Sample_type)) +
  geom_errorbar(size = 0.5, width = 2500, alpha = 0.6) +
```

```
geom_line(size = 0.8) +
labs(x = "Tested sequencing depth", y = "Observed Mean", color = "Sample Type")
```



```
ggsave("../Results/S1)Rarefaction_Curve.pdf", width = 11, height = 8)
```

Rarefy

```
# Rarefy to even sequencing depth, 90% of minimum sample depth, seed for randomness is 1
ps_rare <- rarefy_even_depth(ps, rngseed = 1,</pre>
                             sample.size = 0.9 * min(sample_sums(ps)),
                             replace = FALSE)
## `set.seed(1)` was used to initialize repeatable random subsampling.
## Please record this for your records so others can reproduce.
## Try `set.seed(1); .Random.seed` for the full vector
## ...
## 2430TUs were removed because they are no longer
## present in any sample after random subsampling
## ...
sample_sums(ps)
##
             10B
                    10C
                                  11B
                                                 12A
                                                        12B
                                                               12C
                                                                             13B
                           11A
                                          11C
                                                                      13A
## 97672 152224 136830 107226 92295 142349 63696 151049 153224 170086 154765
```

```
##
      13C
             14A
                     14B
                            14C
                                    15A
                                            15B
                                                   15C
                                                           16A
                                                                  16B
## 146933 160605 171722 140943 175324 114245 168613 120816 131462 141789 153959
      17B
             17C
                     18A
                            18B
                                    18C
                                            19A
                                                   19B
                                                           19C
                                                                   1A
                                                                                  1C
## 127615
           94965 160212 126836 159814 161407 153370 121330 165497
                                                                       96844 113268
      20A
             20B
                     20C
                              2A
                                     2B
                                             20
                                                    ЗA
                                                            3B
                                                                   3C
## 195853 115506 127239 110007 118680 110327 146390 136636 106307 104581 125868
               5A
                      5B
                              5C
                                     6A
                                             6B
                                                    6C
                                                            7A
                          88650 140459 164106 92481 137767 138331 120381 140622
## 131775 160742 121440
               8C
                      9A
                              9B
    97857 112182 84876 143122 108117
sample_sums(ps_rare)
##
     10A
            10B
                  10C
                                     11C
                                            12A
                                                  12B
                                                         12C
                                                               13A
                                                                     13B
                                                                            13C
                                                                                  14A
                        11A
                               11B
## 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326
           14C
     14B
                  15A
                        15B
                               15C
                                     16A
                                            16B
                                                  16C
                                                         17A
                                                               17B
                                                                     17C
                                                                            18A
## 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326
     18C
           19A
                  19B
                        19C
                                1A
                                      1B
                                             1C
                                                  20A
                                                         20B
                                                               20C
                                                                      2A
                                                                             2B
## 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326
            3B
                   3C
                                4B
                                      4C
                                             5A
                                                   5B
                                                          5C
                                                                       6B
                                                                             6C
      3A
                         4A
                                                                6A
## 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326 57326
##
      7B
            7C
                   A8
                         8B
                                8C
                                      9A
                                             9B
                                                   9C
## 57326 57326 57326 57326 57326 57326 57326
```

Alpha Diversity

```
# Calculate alpha diversity, using Richness and Shannon
alpha_summary <- estimate_richness(ps_rare, measures = c("Observed", "Shannon"))</pre>
shapiro.test(alpha_summary$0bserved)
##
##
   Shapiro-Wilk normality test
##
## data: alpha_summary$Observed
## W = 0.99288, p-value = 0.9797
shapiro.test(alpha summary$Shannon)
##
##
   Shapiro-Wilk normality test
## data: alpha_summary$Shannon
## W = 0.97844, p-value = 0.3662
# Blocking Test
r0 <- alpha_summary$Observed
rS <- alpha_summary$Shannon
f <- c("Clinician", "Self", "Stool") # treatment levels
k <- 3 # number of treatment levels
n <- 20 # number of control blocks
tm <- gl(k, 1, n*k, factor(f)) # matching treatment
blk <- gl(n, k, k*n) # blocking factor
```

```
av0 \leftarrow aov(r0 \sim tm + blk)
summary(av0)
              Df Sum Sq Mean Sq F value
##
                                           Pr(>F)
## tm
               2 106186
                           53093 14.357 2.27e-05 ***
## blk
              19 332244
                           17487
                                  4.729 2.33e-05 ***
## Residuals
              38 140525
                            3698
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
avS <- aov(rS ~ tm + blk)
summary(avS)
##
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
## tm
               2 0.849 0.4247
                                 6.675 0.003278 **
              19 4.871 0.2564
                                 4.030 0.000126 ***
## blk
## Residuals
              38 2.418 0.0636
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Test whether the observed number of OTUs differs significantly between samples
# p adjustment using Benjamini and Hochberg
pairwise.t.test(alpha_summary$0bserved, sample_data(ps_rare)$Sample_type, p.adjust = "BH")
##
## Pairwise comparisons using t tests with pooled SD
##
## data: alpha_summary$Observed and sample_data(ps_rare)$Sample_type
##
##
                 Rectal swab CT Rectal swab ST
## Rectal swab ST 0.1409
                                 0.0646
## Stool
                  0.0023
##
## P value adjustment method: BH
pairwise.t.test(alpha_summary$Shannon, sample_data(ps_rare)$Sample_type, p.adjust = "BH")
##
## Pairwise comparisons using t tests with pooled SD
## data: alpha_summary$Shannon and sample_data(ps_rare)$Sample_type
##
##
                  Rectal swab CT Rectal swab ST
## Rectal swab ST 0.19
                  0.04
                                 0.32
## Stool
##
## P value adjustment method: BH
# Make adjusted p value dataframe
pObs <- pairwise.t.test(alpha_summary$Observed, sample_data(ps_rare)$Sample_type, p.adjust = "BH")
pSha <- pairwise.t.test(alpha_summary$Shannon, sample_data(ps_rare)$Sample_type, p.adjust = "BH")
variable <- c("Observed", "Observed", "Shannon", "Shannon", "Shannon")
group1 <- c("Rectal swab CT", "Rectal swab ST", "Rectal swab CT",</pre>
            "Rectal swab CT", "Rectal swab ST", "Rectal swab CT")
group2 <- c("Stool", "Stool", "Rectal swab ST", "Stool", "Stool", "Rectal swab ST")</pre>
```

```
pVal \leftarrow c(round(p0bsp.value[2,1], 3), round(p0bsp.value[2,2], 3), round(p0bsp.value[1,1], 3),
       round(pSha$p.value[2,1], 3), round(pSha$p.value[2,2], 3), round(pSha$p.value[1,1], 3))
y.position \leftarrow c(730, 630, 690, 5.4, 5.1, 5.25)
pAdjusted <- bind_cols(variable, group1, group2, pVal, y.position)</pre>
## New names:
## * NA -> ...1
## * NA -> ...2
## * NA -> ...3
## * NA -> ...4
## * NA -> ...5
colnames(pAdjusted) <- c("variable", "group1", "group2", "p", "y.position")</pre>
# Plot Observed richness, Shannon, and Simpson diversity values
p <- plot_richness(ps_rare, x = "Sample_type",</pre>
                  measures = c("Observed", "Shannon"))
# Add boxplot, individual data points, and linked lines using geom layers
p$layers <- p$layers[-1]</pre>
p + geom_boxplot() + geom_point() + xlab("Sample Type") +
  geom_line(aes(group = Individual, colour = Individual), size = 0.3, linetype = "dashed") +
  theme(axis.text.x = element_text(angle = 315, hjust = 0),
        aspect.ratio = 1, legend.position = "none") +
  stat_pvalue_manual(pAdjusted) +
  stat_compare_means(method = "anova", label.y = 3)
```


ggsave("../Results/1)Alpha_Diversity.pdf", width = 7, height = 4.5)

Beta Diversity - Bray-Curtis

```
# Ordinate data using Non-metric multidimensional scaling (NMDS) on Bray-Curtis dissimilarity (distance
bray_dist <- phyloseq::distance(ps_rare, method = "bray")</pre>
ord.nmds.bray <- ordinate(ps_rare, "NMDS", "bray")</pre>
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.1711863
## Run 1 stress 0.1684071
## ... New best solution
## ... Procrustes: rmse 0.04413298 max resid 0.1986277
## Run 2 stress 0.1712493
## Run 3 stress 0.171249
## Run 4 stress 0.171249
## Run 5 stress 0.1684069
## ... New best solution
## ... Procrustes: rmse 0.0001460378 max resid 0.0008854301
## ... Similar to previous best
## Run 6 stress 0.1684186
## ... Procrustes: rmse 0.001341072 max resid 0.006882538
## ... Similar to previous best
## Run 7 stress 0.1711861
## Run 8 stress 0.171249
## Run 9 stress 0.1711862
## Run 10 stress 0.1684181
## ... Procrustes: rmse 0.001248294 max resid 0.006799046
## ... Similar to previous best
## Run 11 stress 0.1684069
## ... New best solution
## ... Procrustes: rmse 5.458079e-05 max resid 0.0003677635
## ... Similar to previous best
## Run 12 stress 0.2132782
## Run 13 stress 0.2033464
## Run 14 stress 0.168407
## ... Procrustes: rmse 6.000605e-05 max resid 0.0003168814
## ... Similar to previous best
## Run 15 stress 0.2049706
## Run 16 stress 0.1684072
## ... Procrustes: rmse 0.0001684513 max resid 0.001050944
## ... Similar to previous best
## Run 17 stress 0.1684069
## ... Procrustes: rmse 1.018318e-05 max resid 4.545695e-05
## ... Similar to previous best
## Run 18 stress 0.1712437
## Run 19 stress 0.168407
## ... Procrustes: rmse 5.314934e-05 max resid 0.0003272289
## ... Similar to previous best
## Run 20 stress 0.1712434
## *** Solution reached
# Call newly created file to get the stress value of the plot
ord.nmds.bray
```

```
## Call:
## metaMDS(comm = veganifyOTU(physeq), distance = distance)
## global Multidimensional Scaling using monoMDS
##
             wisconsin(sqrt(veganifyOTU(physeq)))
## Data:
## Distance: bray
##
## Dimensions: 2
## Stress:
               0.1684069
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation, halfchange scaling
## Species: expanded scores based on 'wisconsin(sqrt(veganifyOTU(physeq)))'
# Stress plot
stressplot(ord.nmds.bray)
              \simNon–metric fit, R<sup>2</sup> = 0.972
                Linear fit, R^2 = 0.898
Ordination Distance
      -0.06
           0.2
                             0.4
                                               0.6
                                                                  0.8
                                                                                    1.0
                                      Observed Dissimilarity
# Stats
# Test whether the sample types differ significantly from each other using PERMANOVA
adonis(bray_dist ~ sample_data(ps_rare)$Sample_type)
##
## Call:
## adonis(formula = bray_dist ~ sample_data(ps_rare)$Sample_type)
## Permutation: free
   Number of permutations: 999
##
  Terms added sequentially (first to last)
##
##
                                      Df SumsOfSqs MeanSqs F.Model
##
                                                                          R2 Pr(>F)
                                            1.3629 0.68145 2.0786 0.06798 0.001
```

sample_data(ps_rare)\$Sample_type 2

```
0.93202
## Residuals
                                    57
                                         18.6866 0.32784
## Total
                                         20.0495
                                                                  1.00000
##
## sample_data(ps_rare)$Sample_type ***
## Residuals
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
adonis(formula = bray_dist ~ sample_data(ps_rare)$Individual)
##
## Call:
## adonis(formula = bray_dist ~ sample_data(ps_rare)$Individual)
## Permutation: free
## Number of permutations: 999
## Terms added sequentially (first to last)
##
                                   Df SumsOfSqs MeanSqs F.Model
                                                                    R2 Pr(>F)
                                        14.9269 0.78563 6.1346 0.7445 0.001 ***
## sample_data(ps_rare)$Individual 19
## Residuals
                                   40
                                         5.1226 0.12807
                                                                0.2555
## Total
                                   59
                                        20.0495
                                                                1.0000
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
adonis(bray_dist ~ sample_data(ps_rare)$Sample_type*sample_data(ps_rare)$Individual)
##
## adonis(formula = bray_dist ~ sample_data(ps_rare)$Sample_type *
                                                                        sample_data(ps_rare)$Individual
## Permutation: free
## Number of permutations: 999
## Terms added sequentially (first to last)
##
##
                                                                    Df SumsOfSqs
## sample_data(ps_rare)$Sample_type
                                                                          1.3629
                                                                     2
## sample_data(ps_rare)$Individual
                                                                     19
                                                                          14.9269
## sample_data(ps_rare)$Sample_type:sample_data(ps_rare)$Individual 38
                                                                          3.7597
## Residuals
                                                                          0.0000
## Total
                                                                          20.0495
                                                                     59
                                                                    MeanSqs
##
## sample_data(ps_rare)$Sample_type
                                                                           1
## sample_data(ps_rare)$Individual
                                                                           1
## sample_data(ps_rare)$Sample_type:sample_data(ps_rare)$Individual
                                                                           0
                                                                        Inf
## Residuals
## Total
                                                                    F.Model
##
## sample_data(ps_rare)$Sample_type
                                                                           0
## sample_data(ps_rare)$Individual
                                                                           0
## sample_data(ps_rare)$Sample_type:sample_data(ps_rare)$Individual
                                                                           0
```

Residuals

```
## Total
##
                                                                           R2 Pr(>F)
## sample_data(ps_rare)$Sample_type
                                                                      0.06798
## sample_data(ps_rare)$Individual
                                                                      0.74450
                                                                                   1
## sample_data(ps_rare)$Sample_type:sample_data(ps_rare)$Individual 0.18752
                                                                                   1
## Residuals
                                                                     0.00000
## Total
                                                                      1.00000
anosim(bray dist, sample data(ps rare)$Sample type)
##
## Call:
## anosim(x = bray_dist, grouping = sample_data(ps_rare)$Sample_type)
## Dissimilarity: bray
##
## ANOSIM statistic R: 0.2048
##
         Significance: 0.001
##
## Permutation: free
## Number of permutations: 999
BCanoSamp <- (anosim(bray_dist, sample_data(ps_rare)$Sample_type))</pre>
summary(BCanoSamp)
##
## Call:
## anosim(x = bray_dist, grouping = sample_data(ps_rare)$Sample_type)
## Dissimilarity: bray
## ANOSIM statistic R: 0.2048
##
         Significance: 0.001
##
## Permutation: free
## Number of permutations: 999
##
## Upper quantiles of permutations (null model):
             95% 97.5%
      90%
## 0.0296 0.0435 0.0568 0.0732
## Dissimilarity ranks between and within classes:
##
                  0%
                         25%
                                50%
                                        75%
                                               100%
## Between
                   1 491.250 982.50 1410.50 1769.5 1200
## Rectal swab CT 46 392.750 684.50 1053.25 1752.0 190
## Rectal swab ST 58 513.125 951.50 1353.25 1722.0
## Stool
                  44 267.750 616.25 885.75 1405.0 190
plot(BCanoSamp)
```


anosim(bray_dist, sample_data(ps_rare)\$Individual)

```
##
## Call:
## anosim(x = bray_dist, grouping = sample_data(ps_rare)$Individual)
## Dissimilarity: bray
## ANOSIM statistic R: 0.789
##
         Significance: 0.001
##
## Permutation: free
## Number of permutations: 999
BCanoInd <- anosim(bray_dist, sample_data(ps_rare)$Individual)
summary(BCanoInd)
```

```
##
## Call:
## anosim(x = bray_dist, grouping = sample_data(ps_rare)$Individual)
## Dissimilarity: bray
##
## ANOSIM statistic R: 0.789
##
         Significance: 0.001
## Permutation: free
## Number of permutations: 999
## Upper quantiles of permutations (null model):
             95% 97.5%
                           99%
## 0.0732 0.1019 0.1270 0.1512
## Dissimilarity ranks between and within classes:
```

```
0%
                  25%
                                           100%
##
                          50%
                                    75%
## Between 44 480.25
                        909.5 1337.625 1769.5 1710
                15.00
                         21.0
             9
                                 25.500
                                           30.0
## 2
                22.50
                         29.0
                                 33.000
                                           37.0
                                                   3
            16
## 3
             5
                19.00
                         33.0
                                 34.000
                                           35.0
                                                   3
## 4
             8
                29.50
                         51.0
                                 60.000
                                           69.0
                                                   3
## 5
            10
                23.00
                         36.0
                                 37.000
                                           38.0
                                                   3
                13.00
                         25.0
                                 25.500
                                           26.0
## 6
             1
                                                   3
##
  7
            20
                95.50
                        171.0
                               733.750 1296.5
                                                   3
## 8
             4
                15.50
                                 29.000
                                                   3
                         27.0
                                           31.0
## 9
            41
                41.50
                         42.0
                                761.000 1480.0
                                                   3
                45.00
                               137.500
                                          197.0
## 10
            12
                         78.0
                                                   3
             7
                10.50
                                 18.000
                                           22.0
                                                   3
## 11
                         14.0
                         61.0
## 12
            32
                46.50
                                 62.500
                                           64.0
                                                   3
## 13
            19
                35.50
                         52.0
                               423.750
                                          795.5
                                                   3
## 14
            23
                31.00
                         39.0
                                 41.000
                                           43.0
                                                   3
## 15
            28 736.50 1445.0 1587.000 1729.0
                                                   3
                 7.50
                                                   3
## 16
                         13.0
                                 15.500
                                           18.0
## 17
                17.50
                         24.0
                                 29.000
                                           34.0
                                                   3
            11
            40 857.00 1674.0 1714.500 1755.0
                                                   3
## 18
                                 16.000
## 19
             3
                 9.00
                         15.0
                                           17.0
                                                   3
## 20
             6 125.00
                        244.0
                               394.000
                                          544.0
```

plot(BCanoInd)

Warning in bxp(list(stats = structure(c(44, 480, 909.5, 1338, 1769.5, 9, : some
notches went outside hinges ('box'): maybe set notch=FALSE

BCps.disper <- betadisper(bray_dist, sample_data(ps_rare)\$Sample_type)
anova(BCps.disper)</pre>

Analysis of Variance Table

##

```
## Response: Distances
##
            Df Sum Sq Mean Sq F value Pr(>F)
             2 0.010371 0.0051855 2.6804 0.07717 .
## Residuals 57 0.110273 0.0019346
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
permutest(BCps.disper)
##
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
##
## Response: Distances
##
            Df
                 Sum Sq
                                       F N.Perm Pr(>F)
                         Mean Sq
             2 0.010371 0.0051855 2.6804
                                            999 0.087 .
## Residuals 57 0.110273 0.0019346
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
permutest(BCps.disper, pairwise = TRUE)
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
##
## Response: Distances
##
            Df
                 Sum Sq Mean Sq
                                       F N.Perm Pr(>F)
             2 0.010371 0.0051855 2.6804
## Groups
## Residuals 57 0.110273 0.0019346
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Pairwise comparisons:
## (Observed p-value below diagonal, permuted p-value above diagonal)
##
                 Rectal swab CT Rectal swab ST Stool
## Rectal swab CT
                                      0.152000 0.402
## Rectal swab ST
                       0.156123
                                               0.034
## Stool
                       0.395585
                                      0.028482
TukeyHSD(BCps.disper)
    Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
##
## Fit: aov(formula = distances ~ group, data = df)
##
## $group
                                       diff
                                                    lwr
                                                               upr
## Rectal swab ST-Rectal swab CT 0.01985443 -0.01361660 0.05332546 0.3337714
## Stool-Rectal swab CT
                                -0.01203124 -0.04550227 0.02143979 0.6643777
## Stool-Rectal swab ST
                                -0.03188567 -0.06535670 0.00158536 0.0649792
# Beta Dispersion Plots
BCbeta.Dispersion <- BCps.disper
```

BCbeta.Dispersion

plot(BCbeta.Dispersion, hull = FALSE, ellipse = TRUE)

BCbeta.Dispersion


```
# Bray-Curtis NMDS plot
bcdf <- plot_ordination(ps_rare, ord.nmds.bray, justDF = TRUE)

BC_plot <- ggplot(bcdf, aes(x = NMDS1, y = NMDS2)) +
   geom_line(aes(group = Individual), size = 0.2, linetype = "dashed") +</pre>
```

```
geom_point(aes(color = Sample_type), alpha = 0.75) +
stat_ellipse(aes(color = Sample_type)) +
annotate("text", x = -0.02, y = -0.023, label = "Stress = ") +
annotate("text", x = -0.008, y = -0.023, label = round(ord.nmds.bray$stress, 4)) +
ggtitle("Bray-Curtis Ordination") + labs(color = "Sample Type") +
theme(aspect.ratio = 1, plot.margin = unit(c(0, 1, 0, 0), "pt"))
BC_plot
```

Bray-Curtis Ordination

ggsave(".../Results/2A)Beta_Diversity_BC.pdf", width = 6, height = 4.5)

Beta Diversity - Weighted UniFrac

```
# Ordinate data using Non-metric multidimensional scaling (NMDS) on Weighted Unifrac dissimilarity (dis
uni_dist <- phyloseq::distance(ps_rare, method = "wunifrac")

## Warning in UniFrac(physeq, weighted = TRUE, ...): Randomly assigning root as --
## ASV109 -- in the phylogenetic tree in the data you provided.

ord.nmds.uni <- ordinate(ps_rare, "NMDS", "wunifrac")

## Warning in UniFrac(physeq, weighted = TRUE, ...): Randomly assigning root as --
## ASV3449 -- in the phylogenetic tree in the data you provided.

## Run 0 stress 0.1443313
## Run 1 stress 0.1443313</pre>
```

```
## ... Procrustes: rmse 1.612822e-05 max resid 0.0001137646
## ... Similar to previous best
## Run 2 stress 0.2084974
## Run 3 stress 0.2200524
## Run 4 stress 0.1483252
## Run 5 stress 0.2072392
## Run 6 stress 0.1773149
## Run 7 stress 0.1799837
## Run 8 stress 0.1768408
## Run 9 stress 0.1470084
## Run 10 stress 0.205156
## Run 11 stress 0.1483251
## Run 12 stress 0.1475256
## Run 13 stress 0.1497001
## Run 14 stress 0.1836523
## Run 15 stress 0.1493964
## Run 16 stress 0.1463927
## Run 17 stress 0.1494814
## Run 18 stress 0.2066355
## Run 19 stress 0.1475256
## Run 20 stress 0.1475256
## *** Solution reached
# Call newly created file to get the stress value of the plot
ord.nmds.uni
##
## Call:
## metaMDS(comm = ps.dist)
## global Multidimensional Scaling using monoMDS
##
## Data:
             ps.dist
## Distance: user supplied
## Dimensions: 2
## Stress:
               0.1443313
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation
## Species: scores missing
# Stress plot
stressplot(ord.nmds.uni)
```


Stats
Test whether the sample types differ significantly from each other using PERMANOVA
adonis(uni_dist ~ sample_data(ps_rare)\$Sample_type)

```
##
## Call:
## adonis(formula = uni_dist ~ sample_data(ps_rare)$Sample_type)
##
## Permutation: free
## Number of permutations: 999
## Terms added sequentially (first to last)
##
                                    Df SumsOfSqs MeanSqs F.Model
##
                                                                       R2 Pr(>F)
## sample_data(ps_rare)$Sample_type
                                         0.47754 0.238770
                                                            5.256 0.15571 0.001
## Residuals
                                    57
                                         2.58939 0.045428
                                                                  0.84429
## Total
                                         3.06693
                                    59
                                                                  1.00000
##
## sample_data(ps_rare)$Sample_type ***
## Residuals
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
adonis(formula = uni_dist ~ sample_data(ps_rare)$Individual)
##
## Call:
## adonis(formula = uni_dist ~ sample_data(ps_rare)$Individual)
##
## Permutation: free
## Number of permutations: 999
```

```
## Terms added sequentially (first to last)
##
                                   Df SumsOfSqs MeanSqs F.Model
##
                                         1.9315 0.101659 3.5814 0.62979 0.001
## sample_data(ps_rare)$Individual 19
## Residuals
                                   40
                                         1.1354 0.028385
                                                                  0.37021
## Total
                                   59
                                         3.0669
                                                                  1.00000
## sample_data(ps_rare)$Individual ***
## Residuals
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
adonis(uni dist ~ sample data(ps rare)$Sample type*sample data(ps rare)$Individual)
##
## Call:
## adonis(formula = uni_dist ~ sample_data(ps_rare)$Sample_type *
                                                                        sample_data(ps_rare)$Individual)
## Permutation: free
## Number of permutations: 999
## Terms added sequentially (first to last)
##
                                                                     Df SumsOfSqs
## sample_data(ps_rare)$Sample_type
                                                                      2
                                                                          0.47754
## sample data(ps rare)$Individual
                                                                          1.93153
## sample_data(ps_rare)$Sample_type:sample_data(ps_rare)$Individual 38
                                                                          0.65786
## Residuals
                                                                          0.00000
## Total
                                                                     59
                                                                          3.06693
##
                                                                     MeanSqs
## sample_data(ps_rare)$Sample_type
                                                                           0
## sample_data(ps_rare)$Individual
                                                                           0
## sample_data(ps_rare)$Sample_type:sample_data(ps_rare)$Individual
                                                                           0
## Residuals
                                                                        -Inf
## Total
##
                                                                     F.Model
## sample_data(ps_rare)$Sample_type
                                                                           0
## sample_data(ps_rare)$Individual
                                                                           0
## sample_data(ps_rare)$Sample_type:sample_data(ps_rare)$Individual
## Residuals
## Total
##
                                                                          R2 Pr(>F)
## sample_data(ps_rare)$Sample_type
                                                                     0.15571
## sample data(ps rare)$Individual
                                                                     0.62979
                                                                                  1
## sample_data(ps_rare)$Sample_type:sample_data(ps_rare)$Individual 0.21450
## Residuals
                                                                     0.00000
## Total
                                                                     1.00000
anosim(uni_dist, sample_data(ps_rare)$Sample_type)
##
## Call:
## anosim(x = uni_dist, grouping = sample_data(ps_rare)$Sample_type)
```

Dissimilarity:

```
##
## ANOSIM statistic R: 0.1875
##
         Significance: 0.001
##
## Permutation: free
## Number of permutations: 999
UWFanoSamp <- (anosim(uni_dist, sample_data(ps_rare)$Sample_type))</pre>
summary(UWFanoSamp)
##
## Call:
## anosim(x = uni_dist, grouping = sample_data(ps_rare)$Sample_type)
## Dissimilarity:
##
## ANOSIM statistic R: 0.1875
##
         Significance: 0.001
##
## Permutation: free
## Number of permutations: 999
## Upper quantiles of permutations (null model):
      90%
             95% 97.5%
## 0.0325 0.0478 0.0615 0.0768
## Dissimilarity ranks between and within classes:
##
                  0%
                        25%
                               50%
                                       75% 100%
## Between
                   1 486.75 967.5 1400.25 1770 1200
## Rectal swab CT 34 258.75 546.5 921.00 1727
## Rectal swab ST 17 493.25 851.5 1262.50 1763
## Stool
                  22 379.50 819.0 1258.50 1749
plot(UWFanoSamp)
```


Rectal swab CT

Between

Stool

```
anosim(uni_dist, sample_data(ps_rare)$Individual)
##
## Call:
## anosim(x = uni_dist, grouping = sample_data(ps_rare)$Individual)
## Dissimilarity:
##
## ANOSIM statistic R: 0.5524
##
        Significance: 0.001
##
## Permutation: free
## Number of permutations: 999
UWFanoInd <- anosim(uni_dist, sample_data(ps_rare)$Individual)</pre>
summary(UWFanoInd)
##
## Call:
## anosim(x = uni_dist, grouping = sample_data(ps_rare)$Individual)
## Dissimilarity:
##
## ANOSIM statistic R: 0.5524
##
        Significance: 0.001
##
## Permutation: free
## Number of permutations: 999
##
## Upper quantiles of permutations (null model):
##
     90%
             95% 97.5%
                           99%
## 0.0848 0.1119 0.1333 0.1535
##
## Dissimilarity ranks between and within classes:
           0%
                  25%
##
                        50%
                                 75% 100%
## Between 17 470.25
                      903.5 1336.75 1769 1710
## 1
            9 21.00
                       33.0
                              77.50 122
                                             3
## 2
           64 98.00 132.0 198.00 264
                                             3
            3 91.00 179.0 189.50 200
## 3
                                             3
## 4
            8 510.00 1012.0 1160.00 1308
                                             3
## 5
           12 152.00 292.0 305.00 318
                                             3
## 6
            1 48.00
                       95.0 106.50 118
                                             3
## 7
           11 275.50 540.0 702.50 865
                                             3
## 8
            4 142.50 281.0 311.00 341
                                             3
## 9
           117 274.50 432.0 897.00 1362
                                             3
## 10
           10 826.50 1643.0 1652.50 1662
                                             3
## 11
                 9.50
                       13.0
                              18.50
                                             3
## 12
          147 331.50 516.0 518.00 520
                                             3
## 13
           15 427.00 839.0 1005.50 1172
                                             3
## 14
           18 157.50 297.0 407.00 517
                                             3
          168 964.00 1760.0 1765.00 1770
## 15
                                             3
            5 22.00
                        39.0
## 16
                               39.50
                                      40
                                             3
## 17
           14 34.00
                       54.0 139.50 225
                                             3
## 18
          212 561.50 911.0 1141.00 1371
                                             3
## 19
                 9.00
                       16.0
                              18.00
                                             3
## 20
            7 666.00 1325.0 1327.00 1329
                                             3
```

```
plot(UWFanoInd)
```

```
## Warning in bxp(list(stats = structure(c(17, 470, 903.5, 1337, 1769, 9, 21, : ## some notches went outside hinges ('box'): maybe set notch=FALSE
```


UWFps.disper <- betadisper(uni_dist, sample_data(ps_rare)\$Sample_type)
anova(UWFps.disper)</pre>

```
## Analysis of Variance Table
##
## Response: Distances
                  Sum Sq
##
                            Mean Sq F value Pr(>F)
             \mathsf{Df}
              2 0.010549 0.0052747 1.9298 0.1545
## Groups
## Residuals 57 0.155798 0.0027333
permutest(UWFps.disper)
##
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
##
## Response: Distances
##
             \mathsf{Df}
                   Sum Sq
                            Mean Sq
                                          F N.Perm Pr(>F)
## Groups
              2 0.010549 0.0052747 1.9298
                                               999
                                                   0.172
## Residuals 57 0.155798 0.0027333
permutest(UWFps.disper, pairwise = TRUE)
```

```
##
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
```

```
##
## Response: Distances
                                         F N.Perm Pr(>F)
##
             Df
                  Sum Sq
                          Mean Sq
              2 0.010549 0.0052747 1.9298
                                              999 0.151
## Groups
## Residuals 57 0.155798 0.0027333
##
## Pairwise comparisons:
## (Observed p-value below diagonal, permuted p-value above diagonal)
##
                  Rectal swab CT Rectal swab ST Stool
## Rectal swab CT
                                        0.091000 0.132
## Rectal swab ST
                         0.081515
                                                 0.818
## Stool
                        0.128939
                                        0.824097
TukeyHSD(UWFps.disper)
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
##
## Fit: aov(formula = distances ~ group, data = df)
##
## $group
##
                                          diff
                                                       lwr
                                                                   upr
## Rectal swab ST-Rectal swab CT 0.029757314 -0.01002727 0.06954190 0.1787741
## Stool-Rectal swab CT
                                   0.026151485 - 0.01363310 \ 0.06593607 \ 0.2617186
## Stool-Rectal swab ST
                                  -0.003605828 -0.04339042 0.03617876 0.9741292
# Beta Dispersion Plots
UWFbeta.Dispersion <- UWFps.disper
plot(UWFbeta.Dispersion)
```

UWFbeta.Dispersion

UWFbeta.Dispersion

boxplot(UWFbeta.Dispersion)

UniFrac NMDS Plot
wuni <- plot_ordination(ps_rare, ord.nmds.uni, justDF = TRUE)</pre>

Weighted UniFrac Ordination

RELATIVE ABUNDANCE - Using Taxonomic Level Class

```
# Subset Phyloseq Objects
ps_class <- subset_taxa(ps_rare, Class != "NA")</pre>
sample_clin <- subset_samples(ps_class, Sample_type == "Rectal swab CT")</pre>
sample_self <- subset_samples(ps_class, Sample_type == "Rectal swab ST")</pre>
sample_stool <- subset_samples(ps_class, Sample_type == "Stool")</pre>
# Relative Abundance - Clinician Taken Swab
clin_class <- tax_glom(sample_clin, taxrank = "Class") # aqqlomerate taxa</pre>
clin_class <- transform_sample_counts(clin_class, function(x) x/sum(x)) #qet abundance in %</pre>
clin_melt <- psmelt(clin_class) # create dataframe from phyloseq object</pre>
clin_melt$Class <- as.character(clin_melt$Class) #convert to character</pre>
clin_melt <- clin_melt[order(-clin_melt$Abundance),]</pre>
clin_melt[!clin_melt$Class %in% c(unique(clin_melt$Class)[1:10]), "Class"] <- "Other"</pre>
# Relative Abundance - Self Taken Swab
self_class <- tax_glom(sample_self, taxrank = "Class") # agglomerate taxa</pre>
self_class <- transform_sample_counts(self_class, function(x) x/sum(x)) #get abundance in %
self_melt <- psmelt(self_class) # create dataframe from phyloseq object</pre>
self_melt$Class <- as.character(self_melt$Class) #convert to character</pre>
self_melt <- self_melt[order(-self_melt$Abundance),]</pre>
self_melt[!self_melt$Class %in% c(unique(self_melt$Class)[1:10]), "Class"] <- "Other"</pre>
```

```
# Relative Abundance - Stool Sample
stool_class <- tax_glom(sample_stool, taxrank = "Class") # agglomerate taxa</pre>
stool_class <- transform_sample_counts(stool_class, function(x) x/sum(x)) #get abundance in %
stool melt <- psmelt(stool class) # create dataframe from phyloseg object
stool_melt$Class <- as.character(stool_melt$Class) #convert to character</pre>
stool melt <- stool melt[order(-stool melt$Abundance),]</pre>
stool_melt[!stool_melt$Class %in% c(unique(stool_melt$Class)[1:10]), "Class"] <- "Other"
# Set order of bars and get colours
sort.clin <- clin_melt %>%
 plyr::count("Class", wt = "Abundance") %>%
  arrange(desc(freq)) %>%
  pull(Class)
sort.clin <- sort.clin[!sort.clin %in% "Other"]</pre>
sort.clin <- append("Other", sort.clin)</pre>
sort.self <- self_melt %>%
 plyr::count("Class", wt = "Abundance") %>%
 arrange(desc(freq)) %>%
  pull(Class)
sort.self <- sort.self[!sort.self %in% "Other"]</pre>
sort.self <- append("Other", sort.self)</pre>
sort.stool <- stool_melt %>%
 plyr::count("Class", wt = "Abundance") %>%
  arrange(desc(freq)) %>%
 pull(Class)
sort.stool <- sort.stool[!sort.stool %in% "Other"]</pre>
sort.stool <- append("Other", sort.stool)</pre>
barOrder <- unique(c(sort.clin, sort.self, sort.stool))</pre>
# Get Colours and Assign to Bacteria
spectralExtra <- colorRampPalette(brewer.pal(11, "Spectral"))(length(barOrder))</pre>
cols <- setNames(c(spectralExtra), c(rev(barOrder)))</pre>
# Create Custom Legend
dummy_df <- data.frame(</pre>
 Class = as.factor(barOrder) ,
 value = c(1,2,3,4,5,6,7,8,9,10,11,12,13)
dummy_df <- mutate(dummy_df, Class = factor(Class, levels = rev(bar0rder)))</pre>
rel_legend <- get_legend(ggplot(dummy_df, aes(x = Class, y = value)) +
    geom_bar(stat = "identity", aes(fill = Class)) +
    scale_fill_manual(values = cols) +
    theme(legend.text = element_text(size = 8), legend.key.size = unit(0.75, "line")))
# Plot - Relative Abundance - Clinician Taken Swab
t1_class <- clin_melt %>%
 mutate(Sample = factor(Sample, levels = c("1A", "2A", "3A", "4A", "5A",
                                              "6A", "7A", "8A", '9A', "10A",
```

```
"11A", "12A", "13A", "14A", "15A",
                                            "16A", "17A", "18A", "19A", "20A"))) %>%
  mutate(Class = factor(Class, levels = rev(barOrder))) %>%
  ggplot(aes(x = Sample, y = Abundance, fill = Class)) +
  geom_bar(stat = "identity", position = "fill") +
  scale_y_continuous(labels = scales::percent_format()) +
  theme(text = element_text(size = 7)) +
  ggtitle("Clinician - Class - Top 10") +
  ylab("Relative abundance") +
  scale_fill_manual(values = cols) + theme(legend.position = "none")
# Plot - Relative Abundance - Self Taken Swab
t2_class <- self_melt %>%
  mutate(Sample = factor(Sample, levels = c("1B", "2B", "3B", "4B", "5B",
                                            "6B", "7B", "8B", "9B", "10B",
                                            "11B", "12B", "13B", "14B", "15B",
                                            "16B", "17B", "18B", "19B", "20B"))) %>%
  mutate(Class = factor(Class, levels = rev(barOrder))) %>%
  ggplot(aes(x = Sample, y = Abundance, fill = Class)) +
  geom_bar(stat = "identity", position = "fill") +
  scale y continuous(labels = scales::percent format()) +
  theme(text = element text(size = 7)) +
  ggtitle("Self - Class - Top 10") +
  ylab("Relative abundance") +
  scale_fill_manual(values = cols) + theme(legend.position = "none")
# Plot - Relative Abundance - Stool Sample
t3_class <- stool_melt %>%
  mutate(Sample = factor(Sample, levels = c("1C", "2C", "3C", "4C", "5C",
                                            "6C", "7C", "8C", "9C", "10C",
                                            "11C", "12C", "13C", "14C", "15C",
                                            "16C", "17C", "18C", "19C", "20C"))) %>%
  mutate(Class = factor(Class, levels = rev(barOrder))) %>%
  ggplot(aes(x = Sample, y = Abundance, fill = Class)) +
  geom_bar(stat = "identity", position = "fill") +
  scale_y_continuous(labels = scales::percent_format()) +
  theme(text = element_text(size = 7)) +
  ggtitle("Stool - Class - Top 10") +
  ylab("Relative abundance") +
  scale_fill_manual(values = cols) + theme(legend.position = "none")
plots <- ggarrange(t1_class, t2_class, t3_class, nrow = 3, labels = "AUTO")</pre>
ggarrange(plots, legend.grob = rel_legend, legend = "right")
```


OTU differential abundance testing with DESeq2

```
ps_deseq <- ps %>%
    tax_glom(taxrank = "Genus")

sample_data(ps_deseq)$Sample_type <- gsub(" ", "_", sample_data(ps_deseq)$Sample_type)
sample_data(ps_deseq)$Sample_type <- as.factor(sample_data(ps_deseq)$Sample_type)

# Convert the phyloseq object to a DESeqDataSet
ds <- phyloseq_to_deseq2(ps_deseq, ~ Sample_type)

## converting counts to integer mode
ds <- DESeq(ds)

## estimating size factors

## estimating dispersions

## gene-wise dispersion estimates

## mean-dispersion relationship

## final dispersion estimates

## fitting model and testing

## -- replacing outliers and refitting for 151 genes</pre>
```

```
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
# Plot of Dispersion Estimates
plotDispEsts(ds, ylim = c(1e-8, 1e4))
      le-08 1e-05 1e-02 1e+01 1e+04
dispersion
                                                                                gene-est
                                                                               fitted
                                                                                final
           1e-02
                                   1e+00
                                                         1e+02
                                                                                 1e+04
                                    mean of normalized counts
```

MA-plot of Clinician vs Self

hist(resCTST\$pvalue, col = "gray", main = "Wald Model - Clinician vs Self", xlab = "Original p-values")

Wald Model - Clinician vs Self

resCTST_sig <- resCTST[(resCTST\$padj < alpha),]
resCTST_sig <- cbind(as(resCTST_sig, "data.frame"), as(tax_table(ps)[rownames(resCTST_sig),], "matrix"
head(resCTST_sig)</pre>

```
baseMean log2FoldChange
                                         lfcSE
                                                   stat
                                                              pvalue
## ASV1580
           8.191810
                           6.205783 0.9102231 6.817871 9.239974e-12 2.808952e-09
## ASV3522 10.246362
                           7.072852 1.2769844 5.538714 3.046999e-08 4.631439e-06
                           4.339785 0.7977984 5.439702 5.336990e-08 5.408149e-06
## ASV1634 55.398735
## ASV3554 8.010744
                           6.131689 1.1953911 5.129441 2.906035e-07 2.208587e-05
## ASV1485 26.218338
                           4.915912 1.1726628 4.192093 2.763921e-05 1.473097e-03
## ASV1582 14.753210
                           6.139537 1.4685785 4.180598 2.907429e-05 1.473097e-03
            Kingdom
                            Phylum
                                                  Class
## ASV1580 Bacteria Proteobacteria Gammaproteobacteria Enterobacterales
## ASV3522 Bacteria
                        Firmicutes
                                             Clostridia
                                                           Clostridiales
## ASV1634 Bacteria Proteobacteria Gammaproteobacteria
                                                         Pseudomonadales
## ASV3554 Bacteria
                        Firmicutes
                                                            Clostridiales
                                             Clostridia
## ASV1485 Bacteria Proteobacteria Gammaproteobacteria
                                                            Aeromonadales
## ASV1582 Bacteria Proteobacteria Gammaproteobacteria Enterobacterales
                     Family
                                                    Genus
## ASV1580
               Yersiniaceae
                                                 Yersinia
## ASV3522
             Clostridiaceae
                             Clostridium_sensu_stricto_5
## ASV1634 Pseudomonadaceae
                                              Pseudomonas
             Clostridiaceae Clostridium_sensu_stricto_13
## ASV3554
## ASV1485
             Aeromonadaceae
                                                Aeromonas
## ASV1582
                 Hafniaceae
                                   Hafnia-Obesumbacterium
# Swab CT vs Stool
resCTS <- results(ds, contrast = c("Sample_type", "Rectal_swab_CT", "Stool"),</pre>
                  alpha = alpha)
resCTS <- resCTS[order(resCTS$padj, na.last = NA), ]</pre>
plotMA(resCTS, alpha = 0.01, main = "MA-plot of Clinician vs Stool")
```

MA-plot of Clinician vs Stool

Wald Model - Clinician vs Stool


```
resCTS_sig <- resCTS[(resCTS$padj < alpha), ]
resCTS_sig <- cbind(as(resCTS_sig, "data.frame"), as(tax_table(ps)[rownames(resCTS_sig), ], "matrix"))
head(resCTS sig)</pre>
```

```
baseMean log2FoldChange
##
                                          lfcSE
                                                    stat
                                                                 pvalue
            371.68353
## ASV3460
                            26.83913 1.1950890 22.45785 1.072464e-111
## ASV3599
            569.52608
                             28.29018 1.3237180 21.37176 2.447353e-101
## ASV940
            102.45995
                             26.62138 1.5030199 17.71193 3.392565e-70
## ASV3146
            112.98959
                            26.83745 1.6813612 15.96174
                                                          2.360599e-57
             82.54958
                            27.21862 1.7630615 15.43827
## ASV1183
                                                          9.049272e-54
                             11.79910 0.7864814 15.00239
## ASV1254 3585.31720
                                                          7.082408e-51
##
                    padj Kingdom
                                             Phylum
                                                               Class
## ASV3460 2.252174e-109 Bacteria
                                         Firmicutes
                                                      Negativicutes
## ASV3599
            2.569720e-99 Bacteria
                                         Firmicutes
                                                          Clostridia
## ASV940
            2.374796e-68 Bacteria
                                         Firmicutes
                                                          Clostridia
            1.239315e-55 Bacteria
                                                             Bacilli
## ASV3146
                                         Firmicutes
            3.800694e-52 Bacteria
                                       Synergistota
## ASV1183
                                                         Synergistia
            2.478843e-49 Bacteria Campilobacterota Campylobacteria
## ASV1254
##
                                          Order
## ASV3460
                Veillonellales-Selenomonadales
                                  Clostridia_or
## ASV3599
           Peptostreptococcales-Tissierellales
## ASV940
                               Lactobacillales
## ASV3146
## ASV1183
                                  Synergistales
## ASV1254
                              Campylobacterales
##
                                            Family
## ASV3460
                                   Veillonellaceae Negativicoccus
```

```
## ASV3599
                            Hungateiclostridiaceae Fastidiosipila
## ASV940 Peptostreptococcales-Tissierellales_fa
                                                         Gallicola
## ASV3146
                                     Aerococcaceae
                                                         Facklamia
## ASV1183
                                    Synergistaceae Pyramidobacter
## ASV1254
                                Campylobacteraceae Campylobacter
# Swab ST vs Stool
resSTS <- results(ds, contrast = c("Sample_type", "Rectal_swab_ST", "Stool"),</pre>
                  alpha = alpha)
resSTS <- resSTS[order(resSTS$padj, na.last = NA), ]</pre>
plotMA(resSTS, alpha = 0.01, main = "MA-plot of Self vs Stool")
```

MA-plot of Self vs Stool

hist(resSTS\$pvalue, col = "gray", main = "Wald Model - Self vs Stool", xlab = "Original p-values")

Wald Model - Self vs Stool


```
resSTS_sig <- resSTS[(resSTS$padj < alpha), ]
resSTS_sig <- cbind(as(resSTS_sig, "data.frame"), as(tax_table(ps)[rownames(resSTS_sig), ], "matrix")
head(resSTS_sig)</pre>
```

```
baseMean log2FoldChange
                                          lfcSE
                                                                 pvalue
            371.68353
                             29.01258 1.1939331 24.30001 1.960067e-130
## ASV3460
## ASV3599
            569.52608
                             30.42730 1.3230276 22.99823 4.854894e-117
## ASV940
            102.45995
                             27.70469 1.5015082 18.45124
                                                           5.095997e-76
  ASV3146
            112.98959
                             27.85901 1.6801511 16.58125
                                                           9.522523e-62
  ASV1254 3585.31720
                             11.98355 0.7864397 15.23772
                                                           1.986922e-52
  ASV1183
             82.54958
                             26.79915 1.7628105 15.20251
                                                           3.403086e-52
##
                          Kingdom
                                             Phylum
                                                               Class
                    padj
## ASV3460 5.252978e-128 Bacteria
                                         Firmicutes
                                                       Negativicutes
## ASV3599 6.505558e-115 Bacteria
                                         Firmicutes
                                                          Clostridia
## ASV940
            4.552424e-74 Bacteria
                                         Firmicutes
                                                          Clostridia
## ASV3146
            6.380090e-60 Bacteria
                                         Firmicutes
                                                             Bacilli
  ASV1254
            1.064990e-50 Bacteria Campilobacterota Campylobacteria
## ASV1183
            1.520045e-50 Bacteria
                                       Synergistota
                                                         Synergistia
##
                                          Order
## ASV3460
                Veillonellales-Selenomonadales
## ASV3599
                                  Clostridia or
## ASV940
           Peptostreptococcales-Tissierellales
## ASV3146
                                Lactobacillales
## ASV1254
                              Campylobacterales
## ASV1183
                                  Synergistales
##
                                                             Genus
                                            Family
## ASV3460
                                   Veillonellaceae Negativicoccus
## ASV3599
                            Hungateiclostridiaceae Fastidiosipila
           Peptostreptococcales-Tissierellales_fa
                                                         Gallicola
## ASV940
## ASV3146
                                     Aerococcaceae
                                                         Facklamia
```

Differential Abundance - ggplot Heatmap

```
diffCTST <- resCTST_sig %>%
  select(log2FoldChange, Phylum, Genus)
colnames(diffCTST)[1] <- "CTST log2FoldChange"</pre>
diffCTS <- resCTS_sig %>%
  select(log2FoldChange, Phylum, Genus)
colnames(diffCTS)[1] <- "CTS_log2FoldChange"</pre>
diffSTS <- resSTS_sig %>%
  select(log2FoldChange, Phylum, Genus)
colnames(diffSTS)[1] <- "STS_log2FoldChange"</pre>
heat <- rbind.fill(as.data.frame(t(diffCTS)), as.data.frame(t(diffSTS)))</pre>
heat <- rbind.fill(as.data.frame(heat), as.data.frame(t(diffCTST)))</pre>
heat <- t(heat)
heat <- as.data.frame(heat)</pre>
colnames(heat) <- c("CTS", "CTS_phylum", "CTS_genus",</pre>
                     "STS", "STS_phylum", "STS_genus",
                     "CTST", "CTST_phylum", "CTST_genus")
heat$sigPhylum <- as.character(heat$CTS phylum)</pre>
heat$sigPhylum[nrow(heat)] <- as.character(heat$STS_phylum[nrow(heat)])</pre>
heat$sigGenus <- as.character(heat$CTS_genus)</pre>
heat$sigGenus[nrow(heat)] <- as.character(heat$STS_genus[nrow(heat)])</pre>
heat <- select(heat, -CTS_genus, -STS_genus, -CTST_genus, -CTS_phylum, -STS_phylum, -CTST_phylum)
# file for ggplot based heatmap
SamplingComparison <- c(1:(nrow(heat)*3))</pre>
SamplingComparison[1:nrow(heat)] <- "CTS"</pre>
SamplingComparison[(nrow(heat)+1):(nrow(heat)*2)] <- "STS"</pre>
SamplingComparison[((nrow(heat)*2)+1):(nrow(heat)*3)] <- "CTST"</pre>
log2FC \leftarrow c(1:(nrow(heat)*3))
log2FC[1:nrow(heat)] <- as.numeric(as.character(heat$CTS))</pre>
log2FC[(nrow(heat)+1):(nrow(heat)*2)] <- as.numeric(as.character(heat$STS))</pre>
log2FC[((nrow(heat)*2)+1):(nrow(heat)*3)] <- as.numeric(as.character(heat$CTST))
Phylum <- c(1:(nrow(heat)*3))
Phylum[1:nrow(heat)] <- heat$sigPhylum</pre>
Phylum[(nrow(heat)+1):(nrow(heat)*2)] <- heat$sigPhylum</pre>
```

```
Phylum[((nrow(heat)*2)+1):(nrow(heat)*3)] <- heat$sigPhylum</pre>
Genus <- c(1:(nrow(heat)*3))</pre>
Genus[1:nrow(heat)] <- heat$sigGenus</pre>
Genus[(nrow(heat)+1):(nrow(heat)*2)] <- heat$sigGenus</pre>
Genus[((nrow(heat)*2)+1):(nrow(heat)*3)] <- heat$sigGenus</pre>
ftp <- as.data.frame(cbind(SamplingComparison, log2FC, Phylum, Genus))</pre>
ftp$log2FC <- as.numeric(as.character(ftp$log2FC))</pre>
ftp$SamplingComparison <- factor(ftp$SamplingComparison, levels = c("CTST", "CTS", "STS"))</pre>
heatLog <- ggplot(ftp, aes(SamplingComparison, Genus, fill = log2FC)) + geom_tile() +
  geom_text(aes(label = sprintf("%2.1f", log2FC)), size = 2) +
  theme(axis.title = element_blank(), legend.position = "bottom",
        axis.text.y = element_blank(),
        axis.text.x = element_text(family = "Helvetica", size = 10, face = "plain"),
        plot.background = element_blank(),
        plot.margin = margin(t = 2, r = 0, b = 0, l = 0, unit = "pt"),
        legend.margin = margin(t = 0, r = 0, b = 0, l = 0, unit = "pt")) +
  guides(fill = guide_colourbar(title.position = "bottom", title.hjust = 0.5)) +
  scale_fill_distiller(palette = "RdBu") +
  scale_x_discrete(position = "top", labels = (c("Clinician vs Self",
                                                  "Clinician vs Stool",
                                                  "Self vs Stool")))
heatPhylum <- ggplot(ftp, aes(SamplingComparison, Genus, fill = Phylum)) + geom_tile() +
  theme(axis.title = element blank(), legend.position = "bottom",
        axis.text.y = element text(size = 8),
        axis.text.x = element_blank(), axis.ticks.x = element_blank(),
        plot.margin = margin(t = 16.5, r = 5, b = 11, l = 0, unit = "pt"),
        legend.margin = margin(t = 0, r = 0, b = 0, l = 0, unit = "pt"),
        legend.text = element_text(size = 8), legend.key.size = unit(0.75, "line")) +
  scale_fill_brewer(palette = "Set3", guide = guide_legend(ncol = 3))
heatChanges <- ggarrange(heatPhylum, heatLog, widths = c(1, 2))
heatChanges
```


Species Abundance ggplot Heatmap

```
# Make figure with individual abundance to go next to heatmap
heat ps <- subset taxa(ps rare, Genus %in% heat$sigGenus)
heat_ps <- heat_ps %>%
 tax glom(taxrank = "Genus")
# Clinician Swab
heat_clin <- subset_samples(heat_ps, Sample_type == "Rectal swab CT")</pre>
melted clin <- psmelt(heat clin)</pre>
melted_clin <- select(melted_clin, Individual, Genus, Abundance)</pre>
melted_clin$Abundance[melted_clin$Abundance == 0] <- 1</pre>
melted_clin$log2Abundance <- log2(melted_clin$Abundance)</pre>
melted_clin$log10Abundance <- log10(melted_clin$Abundance)</pre>
heatCS <- ggplot(melted_clin, aes(Individual, Genus, fill = log10Abundance)) + geom_tile() +
  scale_x_discrete(position = "top") + xlab("Clinician Swab") +
  theme(axis.title.x = element_text(family = "Helvetica", size = 10, face = "plain"),
        axis.title.y = element_blank(),
        axis.text = element_blank(), legend.position = "bottom", legend.background = element_blank(),
        plot.margin = margin(t = 1, r = 0, b = 0, l = 0, unit = "pt"),
        legend.margin = margin(t = 11, r = 0, b = 0, l = 0, unit = "pt")) +
  scale_fill_gradient(low = "white", high = "red") +
```

```
guides(fill = guide_colourbar(title.position = "bottom", title.hjust = 0.5))
# Self Swab
heat_self <- subset_samples(heat_ps, Sample_type == "Rectal swab ST")
melted_self <- psmelt(heat_self)</pre>
melted_self <- select(melted_self, Individual, Genus, Abundance)</pre>
melted_self$Abundance[melted_self$Abundance == 0] <- 1</pre>
melted self$log2Abundance <- log2(melted self$Abundance)</pre>
melted self$log10Abundance <- log10(melted self$Abundance)</pre>
heatSS <- ggplot(melted_self, aes(Individual, Genus, fill = log10Abundance)) + geom_tile() +
  scale_x_discrete(position = "top") + xlab("Self Taken Swab") +
  theme(axis.title.x = element_text(family = "Helvetica", size = 10, face = "plain"),
        axis.title.y = element_blank(),
        axis.text = element_blank(), legend.position = "bottom", legend.background = element_blank(),
        plot.margin = margin(t = 1, r = 0, b = 0, l = 0, unit = "pt"),
        legend.margin = margin(t = 11, r = 0, b = 0, 1 = 0, unit = "pt")) +
  scale_fill_gradient(low = "white", high = "red") +
  guides(fill = guide_colourbar(title.position = "bottom", title.hjust = 0.5))
# Stool
heat_stool <- subset_samples(heat_ps, Sample_type == "Stool")</pre>
melted_stool <- psmelt(heat_stool)</pre>
melted_stool <- select(melted_stool, Individual, Genus, Abundance)</pre>
melted stool$Abundance[melted stool$Abundance == 0] <- 1</pre>
melted stool$log2Abundance <- log2(melted stool$Abundance)</pre>
melted stool$log10Abundance <- log10(melted stool$Abundance)</pre>
heatSt <- ggplot(melted_stool, aes(Individual, Genus, fill = log10Abundance)) + geom_tile() +
  scale_x_discrete(position = "top") + xlab("Stool") +
  theme(axis.title.x = element_text(family = "Helvetica", size = 10, face = "plain"),
        axis.title.y = element_blank(),
        axis.text = element_blank(), legend.position = "bottom", legend.background = element_blank(),
        plot.margin = margin(t = 1, r = 0, b = 0, l = 0, unit = "pt"),
        legend.margin = margin(t = 11, r = 0, b = 0, l = 0, unit = "pt")) +
  scale_fill_gradient(low = "white", high = "red") +
  guides(fill = guide_colourbar(title.position = "bottom", title.hjust = 0.5))
heatAbundance <- ggarrange(heatCS, heatSS, heatSt, ncol = 3, common.legend = TRUE, legend = c("bottom")
```

Combined Heatmaps

```
ggarrange(heatChanges, heatAbundance, widths = c(2, 1), legend = c("bottom"))
```


Supplementary 2 - Calculate some stats re deseq2 enrichment

```
mytax <- data.frame(tax table(ps deseq))</pre>
mytable <- mytax %>%
 group_by(Phylum) %>%
  summarize(Phycount = n_distinct(Genus))
sigdat <- SignificantResults %>%
  group_by(Comparison, Phylum) %>%
  summarize(count = n_distinct(Genus))
## `summarise()` has grouped output by 'Comparison'. You can override using the `.groups` argument.
mysum <- sum(mytable$Phycount)</pre>
#mytable$PhyRatio = mytable$Phycount /mysum
mytable$ConditionA = "Clinician Taken Swab vs Stool"
mytable$ConditionB = "Self Taken Swab vs Stool"
mytable$ConditionC = "Clinician Taken Swab vs Self Taken Swab"
data_long <- tidyr::gather(mytable, condition, Comparison, ConditionA:ConditionC, factor_key = TRUE)
joined2 <- sigdat %>%
 full_join(data_long)
## Joining, by = c("Comparison", "Phylum")
```

```
joined2<-joined2 %>%
    mutate_at(c(3), ~replace(., is.na(.), 0))
joined2$Phycount = joined2$Phycount - joined2$count

dat_long <- joined2 %>%
    tidyr::gather("count", "measurement", count, Phycount)
dat_long$measurement = as.numeric(as.character(dat_long$measurement))

ggplot(dat_long) +
    geom_col(aes(x = Phylum, y = measurement, fill = count)) +
    facet_grid(~Comparison) +
    theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
    ylab("Total genera") +
    scale_fill_discrete(name = "Treatment-Affected", labels = c("True", "False"))
```



```
ggsave("../Results/S2)TreatmentAffectedGenera.pdf", width = 10, height = 6)

joined2$total = joined2$count + joined2$Phycount
joined2$condition = gsub("ConditionC", 0.019, joined2$condition)
joined2$condition = gsub("ConditionB", 0.15, joined2$condition)
joined2$condition = gsub("ConditionA", 0.195, joined2$condition)
joined2$condition = as.numeric(as.character(joined2$condition))

f<-NULL;
for(i in c(1:48))
{</pre>
```

```
#print(joined2$total[i])
r<-binom.test(joined2$count[i], joined2$total[i], joined2$condition[i])
#print(r)
f<-rbind(f, c(r$statistic, r$parameter, r$null.value, r$p.value))</pre>
++i
colnames(f)[4] = "p.val"
# Not significant after FDR correction
p.adjust(f[,4], method = "BH")
## [1] 1.000000 0.626522 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
## [9] 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
## [17] 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
## [25] 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
## [33] 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
## [41] 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
joined2[7:10] = f[,1:4]
colnames(joined2)[7:10] = c("successes", "trials", "pSuccess", "pval")
joined2$p.adjust = p.adjust(f[,4], method = "BH")
```

Supplementary 3 - DESeq2 Significance by Abundance

```
library(patchwork)
sup_ps <- ps_rare %>%
  tax_glom(taxrank = "Genus")
sup bugs <- as.character(unique(SignificantResults$Genus))</pre>
sup_bugsCTST <- as.character(resCTST_sig$Genus)</pre>
sup_bugsCTS <- as.character(resCTS_sig$Genus)</pre>
sup_bugsSTS <- as.character(resSTS_sig$Genus)</pre>
sup_melt <- psmelt(sup_ps)</pre>
sup_melt$Phylum <- as.character(sup_melt$Phylum)</pre>
sup_melt$Genus <- as.character(sup_melt$Genus)</pre>
sup_melt$Significant <- ifelse(sup_melt$Genus %in% sup_bugs, "YES", "NO")</pre>
sup_melt$Significant <- factor(sup_melt$Significant, levels = c("YES", "NO"))</pre>
sup_melt$CTST <- ifelse(sup_melt$Genus %in% sup_bugsCTST, "YES", "NO")</pre>
sup_melt$CTST <- factor(sup_melt$CTST, levels = c("YES", "NO"))</pre>
sup_melt$CTS <- ifelse(sup_melt$Genus %in% sup_bugsCTS, "YES", "NO")</pre>
sup_melt$CTS <- factor(sup_melt$CTS, levels = c("YES", "NO"))</pre>
sup_melt$STS <- ifelse(sup_melt$Genus %in% sup_bugsSTS, "YES", "NO")</pre>
sup_melt$STS <- factor(sup_melt$STS, levels = c("YES", "NO"))</pre>
sup_CTST <- ggplot(sup_melt, aes(x = Phylum, y = Abundance, fill = CTST)) +</pre>
  geom_col() + labs(subtitle = "Clinician Swab vs Self Swab", fill = "Significant") +
  theme(axis.text.x = element text(angle = 45, hjust = 1),
        axis.title.x = element_blank(), legend.position = "none")
```

Clinician Swab vs Se Clinician Swab vs Stc Self Swab vs Stool


```
ggsave("../Results/S3)SignificanceByAbundance.pdf", width = 10, height = 6)
```

Supplementary 4 - Differential Abundance Figure

```
ggplot(resCTST_sig, aes(x = log2FoldChange, y = reorder(Genus, log2FoldChange), fill= Phylum)) +
  geom_bar(stat = "identity", position = "identity", width = 0.5) +
  labs(title = "Clinician Swab vs Self Swab", y = "Genus", x = "log2 Fold Change") +
  theme(aspect.ratio = 1) +
  scale_fill_brewer(palette = "Set1")
```


Clinician Swab vs Stool

Supplementary 5 - Boxplot Sanity Checks

```
resCTS_sig <- resCTS_sig[order(-resCTS_sig$log2FoldChange),]</pre>
int <- row.names(resCTS_sig)[1:12]</pre>
ASVlabs <- tax_table(ps)[int, 6]
names(ASVlabs) <- int</pre>
ASVlabs <- as.list(ASVlabs)
ASV_labeller <- function(variable, value){
  return(ASVlabs[value])
}
# Sanity Plots with Fold Change
tcounts <- t(log2((counts(ds[int, ], normalized = TRUE, replaced = FALSE) + .5))) %>%
  merge(colData(ds), ., by = "row.names") %>%
  tidyr::gather(ASV, log2FC, (ncol(.)-length(int) + 1):ncol(.))
tcounts %>%
  select(Row.names, Sample_type, Individual, ASV, log2FC) %>%
  head %>%
  knitr::kable()
```

Row.names	Sample_type	Individual	ASV	log2FC
10A	Rectal_swab_CT	10	ASV3599	3.017179
10B	$Rectal_swab_ST$	10	ASV3599	5.359164
10C	Stool	10	ASV3599	-1.000000
11A	$Rectal_swab_CT$	11	ASV3599	4.888552
11B	$Rectal_swab_ST$	11	ASV3599	-1.000000
11C	Stool	11	ASV3599	-1.000000

Warning: The labeller API has been updated. Labellers taking `variable` and
`value` arguments are now deprecated. See labellers documentation.


```
ggsave("../Results/S5)Sanity_FoldChange_plots.pdf", width = 7, height = 8)
# Sanity Plots with Abundance
sanity_ps <- subset_taxa(ps_deseq, taxa_names(ps_deseq) %in% int)
sanity <- psmelt(sanity_ps)
ggplot(sanity, aes(Sample_type, Abundance)) +</pre>
```

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Removed 474 rows containing non-finite values (stat_boxplot).


```
ggsave("../Results/S5)Sanity_logAbundance_plots.pdf", width = 7, height = 8)
```

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Removed 474 rows containing non-finite values (stat_boxplot).

Session Info

Platform: x86_64-apple-darwin17.0 (64-bit)

```
sessionInfo()
## R version 4.0.3 (2020-10-10)
```

```
## Running under: macOS Catalina 10.15.7
##
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_NZ.UTF-8/en_NZ.UTF-8/en_NZ.UTF-8/C/en_NZ.UTF-8/en_NZ.UTF-8
## attached base packages:
## [1] parallel
                stats4
                           stats
                                     graphics grDevices utils
                                                                    datasets
## [8] methods
                 base
## other attached packages:
## [1] patchwork_1.1.1
                                    DESeq2_1.30.1
##
   [3] SummarizedExperiment_1.20.0 Biobase_2.50.0
## [5] MatrixGenerics_1.2.1
                                    matrixStats_0.58.0
## [7] GenomicRanges 1.42.0
                                    GenomeInfoDb 1.26.2
## [9] IRanges_2.24.1
                                    S4Vectors_0.28.1
                                    ggpubr_0.4.0
## [11] BiocGenerics 0.36.0
## [13] ggplot2_3.3.3
                                    phyloseq_1.34.0
## [15] dplyr_1.0.5
                                    vegan_2.5-7
## [17] permute_0.9-5
                                    Rmisc_1.5
                                    lattice_0.20-41
## [19] plyr_1.8.6
## [21] RColorBrewer_1.1-2
## loaded via a namespace (and not attached):
##
     [1] colorspace_2.0-0
                                ggsignif_0.6.1
                                                        ellipsis_0.3.1
##
     [4] rio_0.5.26
                                XVector_0.30.0
                                                        farver_2.1.0
##
     [7] bit64_4.0.5
                                AnnotationDbi_1.52.0
                                                        fansi_0.4.2
##
    [10] codetools_0.2-18
                                splines_4.0.3
                                                        cachem_1.0.4
  [13] geneplotter_1.68.0
                                knitr_1.31
                                                        ade4_1.7-16
  [16] jsonlite_1.7.2
                                broom_0.7.5
                                                        annotate_1.68.0
  [19] cluster_2.1.1
                                compiler_4.0.3
                                                        httr_1.4.2
   [22] backports 1.2.1
                                fastmap 1.1.0
                                                        assertthat 0.2.1
## [25] Matrix_1.3-2
                                htmltools_0.5.1.1
                                                        prettyunits_1.1.1
## [28] tools 4.0.3
                                igraph 1.2.6
                                                        gtable 0.3.0
## [31] glue_1.4.2
                                GenomeInfoDbData_1.2.4 reshape2_1.4.4
   [34] Rcpp_1.0.6
                                carData_3.0-4
                                                        cellranger_1.1.0
##
## [37] vctrs_0.3.6
                                Biostrings_2.58.0
                                                        rhdf5filters_1.2.0
## [40] multtest 2.46.0
                                ape 5.4-1
                                                        nlme 3.1-152
## [43] iterators 1.0.13
                                xfun_0.21
                                                        stringr_1.4.0
  [46] openxlsx 4.2.3
                                lifecycle_1.0.0
                                                        rstatix 0.7.0
##
                                                        MASS_7.3-53.1
  [49] XML_3.99-0.5
                                zlibbioc_1.36.0
  [52] scales_1.1.1
                                hms_1.0.0
                                                        biomformat_1.18.0
  [55] rhdf5_2.34.0
                                yaml_2.2.1
                                                        curl_4.3
##
##
   [58] gridExtra_2.3
                                memoise_2.0.0
                                                        stringi_1.5.3
##
  [61] RSQLite_2.2.3
                                highr_0.8
                                                        genefilter_1.72.1
  [64] foreach_1.5.1
                                zip_2.1.1
                                                        BiocParallel_1.24.1
##
   [67] rlang_0.4.10
                                pkgconfig_2.0.3
                                                        bitops_1.0-6
                                purrr_0.3.4
## [70] evaluate_0.14
                                                        Rhdf5lib_1.12.1
## [73] labeling_0.4.2
                                cowplot_1.1.1
                                                        bit_4.0.4
                                                       R6_2.5.0
## [76] tidyselect_1.1.0
                                magrittr_2.0.1
## [79] generics_0.1.0
                                DelayedArray_0.16.2
                                                        DBI_1.1.1
```

##	[82]	pillar_1.5.1	haven_2.3.1	foreign_0.8-81
##	[85]	withr_2.4.1	mgcv_1.8-34	survival_3.2-7
##	[88]	abind_1.4-5	RCurl_1.98-1.2	tibble_3.1.0
##	[91]	crayon_1.4.1	car_3.0-10	utf8_1.1.4
##	[94]	rmarkdown_2.7	progress_1.2.2	locfit_1.5-9.4
##	[97]	grid_4.0.3	readxl_1.3.1	data.table_1.14.0
##	[100]	blob_1.2.1	forcats_0.5.1	digest_0.6.27
##	[103]	xtable_1.8-4	tidyr_1.1.3	munsell_0.5.0