Homework Assignment 2

Question 1

The center of A_1 is at (-1,0), A_2 is at (1/2,0), A_3 is at (-1/3,0), A_4 is at (1/4,0), and so on. We can see that the center gets closer and closer to (0,0) but oscillates between the negative and positive part of the x-axis. The circle gets closer and closer to the circle centered at the origin with radius 1 but never approaches it. If we denote that circle by C, consider the set $\{(x,y): x^2 + y^2 < 1\}$, then for all points in that set, we can find an N large enough such that for all $n \ge N$, A_n contains (x,y). Therefore, $\liminf_n A_n = \{(x,y): x^2 + y^2 < 1\}$.

Now consider the border of C in the set $\{(x,y): x^2+y^2=1\}$, if we only consider the A_i 's with odd i's, then their centers all lie on the negative part of the x-axis. Therefore, the left half border $\{(x,y): x^2+y^2=1 \text{ where } x<0\}$ is in all such infinitely many A_i 's. Similarly, the right half $\{(x,y): x^2+y^2=1 \text{ where } x>0\}$ is also in infinitely many A_i 's for even i's. Since the center never gets to the origin, (0,1) and (0,-1) is not in any circles. Therefore, $\limsup_n A_n = \{(x,y): x^2+y^2\leq 1 \text{ and } (x,y)\neq (0,1) \text{ or } (0,-1)\}$

Question 2

Show \mathcal{F} is a σ -field.

 \mathcal{F} is non-empty since we can find A in \mathbb{R} such that A is countable. For example, A can be finite sets of integers.

Next, we want to show that \mathcal{F} is closed under complement. If $A \in \mathcal{F}$ and A is countable, then $A^c \in \mathcal{F}$ because $(A^c)^c = A$ is countable. If $A \in \mathcal{F}$ and A^c is countable, then it follows that $A^c \in \mathcal{F}$. Therefore, \mathcal{F} is closed under complement.

Finally, we need to show that \mathcal{F} is closed under countable union. Assume $\bigcup_{n=1}^{\infty} A_n$ is uncountable. If all the A_n 's are countable, then $\bigcup_{n=1}^{\infty} A_n$ is also countable, since countable union of countable sets is countable. If some of the A_n 's are uncountable, which means that some of the A_n 's are countable, then by De Morgan's law, $(\bigcup_{n=1}^{\infty} A_n)^c = \bigcap_{n=1}^{\infty} A_n^c$, which is countable, since we have some A_n^c 's that are countable. Therefore, $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$ for all $A \in \mathcal{F}$, which completes the proof.

Question 3

Let $A \in \mathcal{X}_1 \cap \mathcal{X}_2$ and A_n be a sequence of such A's.

Since \mathcal{X}_1 is a σ -field, we have $A^c \in \mathcal{X}_1$ and $\bigcup_{n=1}^{\infty} A_n \in \mathcal{X}_1$.

Since \mathcal{X}_2 is a σ -field, we have $A^c \in \mathcal{X}_2$ and $\bigcup_{n=1}^{n-1} A_n \in \mathcal{X}_2$.

It follows that $A^c \in \mathcal{X}_1 \cap \mathcal{X}_2$ and $\bigcup_{n=1}^{\infty} A_n \in \mathcal{X}_1 \cap \mathcal{X}_2$. $\mathcal{X}_1 \cap \mathcal{X}_2$ is non-empty since both \mathcal{X}_1 and \mathcal{X}_2 contain Ω . Therefore, $\mathcal{X}_1 \cap \mathcal{X}_2$ is a σ -field.

Question 4

Let $A \in \cap_{\mathcal{X} \in \mathbf{G}} \mathcal{X}$ and A_n be a sequence of such A's.

We know that $\cap_{\mathcal{X} \in \mathbf{G}} \mathcal{X}$ is not empty since $\Omega \subset \mathcal{X}$ for every $\mathcal{X} \in \mathbf{G}$.

It follows that $A^c \in \mathcal{X}$ and $\bigcup_{n=1}^{\infty} A_n \in \mathcal{X}$ for all $\mathcal{X} \in \mathbf{G}$, since all \mathcal{X} 's are σ -algebras, which means that $A^c \in \cap_{\mathcal{X} \in \mathbf{G}} \mathcal{X}$ and $\bigcup_{n=1}^{\infty} A_n \in \cap_{\mathcal{X} \in \mathbf{G}} \mathcal{X}$. Therefore, $\cap_{\mathcal{X} \in \mathbf{G}} \mathcal{X}$ is also a σ -algebra.

10/18

5.

 $X_1 \cup X_2 = \{\emptyset, A, B, A^c, B^c, \Omega\}$ is not a σ -field because it is not closed under countable union. Specifically there is no guarantee that the union of the sets unique to X_1 , A and A^c , and the sets unique to X_2 , B and B^c , will be in $X_1 \cup X_2$, for example $A \cup B$ or $A^c \cup B$. Thus $X_1 \cup X_2$ is not a σ -field.

6.

If $\{A_n\}$ is a decreasing sequence of sets $\implies \{A_n^c\}$ is an increasing sequence of sets.

 $\rightarrow lim_n P(A_n^c) = P(lim_n A_n^c)$ for an increasing sequence of sets as proved in lecture.

Since $\{A_n^c\}$ is an increasing sequence, $\lim_n A_n^c = \bigcup_{n=1}^\infty A_n^c$.

Using DeMorgan's law, $\bigcup_{n=1}^{\infty}A_n^c=(\cap_{n=1}^{\infty}A_n)^c=lim_nA_n^c$

As discussed in class, $P(A) = 1 - P(A^c)$.

$$\rightarrow P(lim_n A_n^c) = 1 - P((lim_n A_n^c)^c)$$

Using the equality derived from Demorgan's law, $\rightarrow 1 - P((\lim_n A_n^c)^c) = 1 - P(((\cap_{n=1}^{\infty} A_n)^c)^c) = 1 - P(((\cap_{n=1}^{\infty} A_n)$

As $\{A_n\}$ is a decreasing set, $\bigcap_{n=1}^{\infty} A_n = \lim_n A_n \implies 1 - P(\bigcap_{n=1}^{\infty} A_n) = 1 - P(\lim_n A_n)$

Thus $P(\lim_n A_n^c) = 1 - P(\lim_n A_n)$

For $\lim_{n} P(A_n^c)$, again using the complement property given above, $\lim_{n} P(A_n^c) = \lim_{n} (1 - P(A_n))$

As the limit of the sum is equal to the sum of the limit, $\rightarrow lim_n(1 - P(A_n)) = lim_n 1 - lim_n P(A_n)$

Additionally, the limit of a constant is equal to the constant.

$$\implies \lim_{n} 1 - \lim_{n} P(A_n) = 1 - \lim_{n} P(A_n)$$

Thus $\lim_{n} P(A_n^c) = 1 - \lim_{n} P(A_n)$

Going back to $\lim_n P(A_n^c) = P(\lim_n A_n^c)$, using our newfound results, we can now say $\lim_n P(A_n^c) = P(\lim_n A_n^c) \implies 1 - \lim_n P(A_n) = 1 - P(\lim_n A_n)$

subtracting 1 from both sides gives us $-lim_n P(A_n) = -P(lim_n A_n)$ and multiplying by -1 gives us $lim_n P(A_n) = P(lim_n A_n)$

Thus, for a decreasing sequence $\{A_n\}$, $\lim_n P(A_n) = P(\lim_n A_n)$.

7.

Let $F \cup G = A$

As denoted in lecture, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

So
$$P(E \cup F \cup G) = P(E \cup A) = P(E) + P(A) - P(E \cap A)$$

$$= P(E) + P(F \cup G) - P(E \cap (F \cup G))$$

$$= P(E) + P(F \cup G) - P((E \cap F) \cup (E \cap G))$$
 by Demorgan's law

Let $E \cap F = B$ and $E \cap G = C$

$$= P(E) + P(F \cup G) - P(B \cup C)$$

$$= P(E) + P(F \cup G) - (P(B) + P(C) - P(B \cap C))$$

$$= P(E) + P(F \cup G) - (P(E \cap F) + P(E \cap G) - P((E \cap F) \cap (E \cap G)))$$

$$= P(E) + P(F \cup G) - (P(E \cap F) + P(E \cap G) - P(E \cap F \cap G))$$

$$= P(E) + P(F \cup G) - P(E \cap F) - P(E \cap G) + P(E \cap F \cap G)$$

$$= P(E) + P(F) + P(G) - P(F \cap G) - P(E \cap F) - P(E \cap G) + P(E \cap F \cap G)$$
8.
a.

Axiom of Countable Additivity: If $A_1, A_2, ... \in \mathcal{B}$ are pairwise disjoint, $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

Axiom of Finite Additivity: If $A \in \mathcal{B}$ and $B \in \mathcal{B}$ are disjoint, $P(A \cup B) = P(A) + P(B)$

Assume the axiom of Countable Additivity to be true, i.e., that $A_1, A_2, ... \in \mathcal{B}$ are pairwise disjoint. Then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

Let $i, j \in \mathbb{N}$ s.t. $i \neq j$

For any A_i and A_j , let it be known that $P(A_i \cap A_j) = 0$

Let all $A_n = \emptyset \ \forall n \neq i, j$

Then
$$P(A_i \cup A_j) = P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n) = P(A_i) + P(A_j)$$

Finally, let $A_i = A$ and $A_j = B$. Thus, we can say that by the axiom of Countable Additivity, $P(A \cup B) = P(A) + P(B)$, i.e. that the Axiom of Finite Additivity holds.

b.

Axiom of Continuity: If $A_n \downarrow \emptyset$, $P(A_n) \rightarrow 0$.

Assume $A_1, A_2, ...$ are all pairwise disjoint and that the axiom of Continuity and axiom of Finite Additivity hold.

 $P(\bigcup_{n=1}^{\infty} A_n) = P(\bigcup_{n=1}^{i} A_n \cup \bigcup_{n=i+1}^{\infty} A_n)$ As the A_n are disjoint and the axiom of Finite Additivty is assumed true.

 $=P(\cup_{n=1}^{i}A_n)+P(\cup_{n=i+1}^{\infty}A_n)$ Again by the axiom of Finite Additivity.

$$= \sum_{i=1}^{n} P(A_i) + P\left(\bigcup_{i=n+1}^{\infty} A_i\right)$$
 (finite additivity)

Now define $B_k = \bigcup_{i=k}^{\infty} A_i$. Note that $B_{k+1} \subset B_k$ and $B_k \to \phi$ as $k \to \infty$. (Otherwise the sum of the probabilities would be infinite.) Thus

$$P\left(\bigcup_{i=1}^{\infty}A_i\right) = \lim_{n \to \infty}P\left(\bigcup_{i=1}^{\infty}A_i\right) = \lim_{n \to \infty}\left[\sum_{i=1}^{n}P(A_i) + P(B_{n+1})\right] = \sum_{i=1}^{\infty}P(A_i).$$

9
$$P(E \cap F) = P(E) + P(F) - P(E \cup F)$$
 $\Rightarrow P(E) + p(F) - P(D)$
 $= 0 ? + 0 ? - 1 = 0.7$

Proof From Probability Colculus, we know $P(E \cup F) = P(E) + P(F) - D(E \cap F)$
And for any set A , $P(A) \leq P(D) = 1$

Thus $P(E \cap F) = P(E) + P(F) - P(E \cup F)$
 $\Rightarrow P(E) + P(F) - P(E) = P(E \cup F)$
 $\Rightarrow P(E) + P(F) - P(D) = P(E) =$