3 Abbildungen

3.1 Abbildung

3.1 Def. Seien X,Y Mengen. Eine Abbildung f von X nach Y ist eine Vorschrift, die jedem $x \in X$ genau ein Element aus Y zuordnet. Dieses Element aus Y wird durch f(x) bezeichnet. Wenn f eine Abbildung von X nach Y ist, dann bezeichnet man das durch: $f:X \to Y$. Die Menge X heißt der Definitionsbereich von f, Y heißt der Wertebereich von f.

meine Mana = Nama (ich).

- **3.2 Bsp.** \bullet $f: \mathbb{R} \to \mathbb{R},$ $f(x) := x^2 2x + 7 \ \forall \ x \in \mathbb{R}$
 - $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$, $f(x) := \frac{1}{x-1} \, \forall \, x \in \mathbb{R}$
 - $\operatorname{sign}: \mathbb{R} \to \mathbb{R}$

- $f:2^{\mathbb{N}} \to \mathbb{N}, f(A):=\min(A) \ \forall \ A\subseteq \mathbb{N}, \ \mathbf{z.B.} \ f(\{1,7,43\})=1$
- $f: \mathbb{N} \to 2^{\mathbb{N}}, f(k) := \{1, \dots, k\} \ \forall \ k \in \mathbb{N}$

3.3. Zwei Abbildungen $f,g:X\to Y$ heißen gleich, falls f(x)=g(x) für alle $x\in X$ gilt.

3.4. Für Mengen X und Y, bezeichnet man als Y^X die Menge aller Abbildungen von X nach

3.4. Fur Mengen X and Y, bezeichnet man als
$$Y^X$$
 die Menge aller Abbildur OY . O 2 O 1 O 2 O 1 O 2 O 1 O 2 O 2 O 1 O 2 O 3 O 4 O 4 O 2 O 2 O 3 O 4 O 4 O 5 O 6 O 7 O 8 O 9 O

$$\begin{cases}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac$$

3.5 Aufgabe. Aus wie vielen Abbildungen besteht die Menge $\{1,2,3\}^{\{1,2\}}$? Zählen Sie diese Abbildungen auf? Was ist mit $\{1,2\}^{\{-1,0,1\}}$?

3.2 Bild und Urbild

$$f_{8}(1) = 3$$

$$f_{8}(1) = 3$$

$$f_{8}(2) = 2$$

3.6 Def. Seien X,Y,A,B Mengen mit $A\subseteq X$ und $B\subseteq Y$. Sei $f:X\to Y$. Dann heißt $f(A):=\{f(x):x\in A\}$ das Bild von A bzgl. f und $f^{-1}(B):=\{x\in X:f(x)\in B\}$ das Urbild von B bzgl. f.

$$f(\{1,3,73\}) = \{2,513\}$$

$$f^{-1}(\{1,2\}) = \{1,10,13,253\}$$

f(x)= x2

3.7 Bsp. Sei $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) := x^2$ für alle $x \in \mathbb{R}$.

•
$$f^{-1}([1,4]) = [1,2] \cup [-2,-1] \nearrow \mathsf{Abb.} 2$$

•
$$f^{-1}([-7, 8]) = \{x \in \mathbb{R} : f(x) \in [-7, 8]\}$$

 $= \{x \in \mathbb{R} : -7 \le f(x) \le 8\}$
 $= \{x \in \mathbb{R} : -7 \le x^2 \le 8\}$
 $= \{x \in \mathbb{R} : x^2 \le 8\}$
 $= \{x \in \mathbb{R} : |x| \le \sqrt{8}\}$
 $= [-\sqrt{8}, \sqrt{8}]$

1 = x = 2 000e

3.8 (Intervalle). Seien $a, b \in \mathbb{R}$ mit $a \leq b$. Dann können Intervalle wie folgt definiert werden:

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$$

$$(a,b) := \{x \in \mathbb{R} : a < x < b\}$$

$$(a,b] := \{x \in \mathbb{R} : a < x \le b\}$$

$$[a,b) := \{x \in \mathbb{R} : a \le x < b\}$$

3.3 Injektivität, Surjektivität und Bijektivität

- **3.9 Def.** Seien X, Y Mengen und sei $f: X \to Y$. Dann heißt f:
 - injektiv, falls für alle $x_1, x_2 \in X : x_1 \neq x_2$ die Bedingung $f(x_1) \neq f(x_2)$ gilt.
 - surjektiv, falls für jedes $y \in Y$ ein $x \in X$ mit der Eigenschaft f(x) = y existiert.
 - bijektiv, falls f injektiv und surjektiv ist.

57

3.10 Bsp. Untersuche folgende Funktionen auf Bijektivität:

- $f:\mathbb{R} \to \mathbb{R}, f(x):=x^2$ für alle $x \in \mathbb{R}$ surjektiv ? nein, $-1 \neq f(x)$ für alle $x \in \mathbb{R}$ injektiv ? nein, f(x)=f(-x) für alle $x \in \mathbb{R}$
- $f: \mathbb{R} \to [0, +\infty), f(x) := x^2$ für alle $x \in \mathbb{R}$ surjektiv ? ja injektiv ? nein (analog)
- $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = \frac{1}{x}$ für alle $x \in \mathbb{R}$ surjektiv ? nein, 0 wird nicht angenommen injektiv ? ja
- $f: \mathbb{R} \to R, f(x) = 2x + 3$ für alle $x \in \mathbb{R}$

bijektiv ? ja

3.4 Umkehrfunktion

3.11 Def. Seien X,Y Mengen und sei $f:X\to Y$ bijektiv. Die Abbildung, die jedem $y\in Y$ das eindeutige $x\in X$ mit f(x)=y zuordnet, heißt die Umkehrabbildung von f und wird durch f^{-1} bezeichnet.

$$f: \{1,2,3\} \longrightarrow \{3,4,5\} \qquad f^{-1}(3) = 3$$

$$f(4) = 4 \qquad f^{-1}(3) = 3$$

$$f(3) = 3 \qquad f(5) = 2$$

$$f(5) = 2$$

3.12 Aufgabe. Was ist die Umkehrfunktion von $f: \mathbb{R} \to \mathbb{R}: f(x) := 2x + 3$?

3.5 Komposition

61

3.13 Def. Seien X,Y,Z Mengen, $f:X\to Y$ und $g:Y\to Z$. Dann heißt $g\circ f:X\to Z$ mit $(g\circ f)(x):=g(f(x))$ für alle $x\in X$ die Komposition von g und f.

3.14 Bsp. Seien $f: \mathbb{R} \to \mathbb{R}: f(x) = 2x + 3$ für alle $x \in \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}: g(x) = x^2$ für alle $x \in \mathbb{R}$. Dann ist $(f \circ g)(x) = 2x^2 + 3$ und $(g \circ f)(x) = (2x + 3)^2$.

3.6 Identische Abbildung

3.15 Def. Sei X eine Menge. Dann heißt die Abbildung $\mathrm{id}_X:X\to X$ mit $\mathrm{id}_X(x):=x$ für alle $x\in X$ die identische Abbildung auf X. Man schreibt auch häufig id , wenn X nicht angegeben werden muss.

3.16. Seien X, Y Mengen und sei $f: X \to Y$ bijektiv. Dann gilt

- $f \circ f^{-1} = \mathrm{id}_Y$,
- $f^{-1} \circ f = \mathrm{id}_X$.

3.7 Vereinigung und Durchschnitt einer indexierten Mengenfamilie

65

3.17 Def. Seien I, X Mengen und sei $A: I \to 2^X$. Man schreibt auch in diesem Fall A_i statt A(i) für $i \in I$, $(A_i)_{i \in I}$ ist eine Familie (Schar) von Teilmengen von X.

Für die Familie $(A_i)_{i \in I}$ definiert man

$$\bigcap_{i\in I}A_i:=\{x\in X:x\in A_i\text{ für alle }i\in I\},$$
 die Vereinigung
$$\bigcup_{i\in I}A_i:=\{x\in X:x\in A_i\text{ für ein }i\in I\}.$$

$$A_i \subseteq X$$
 (i $\in I$)

Ha: = f(kg): x, y GR, y = a2 - 2a6-a)3 (G, G2) 1 +1a = d (xy): x,y 6/12, y=x23 a ER

3.18 Bsp. Sei $\alpha \in (0, \pi)$ und $v_0 > 0$ (\nearrow Abb. 3). K_{α} ist die Flugbahn beim Auswurf eines Objekts mit der Anfangsgeschwindigkeit v_0 unter dem Winkel α zu Erde.

$$K_{\alpha} := \{(x,y) \in R^2 : x = \cos(\alpha)t, y = \sin(\alpha)t - \frac{gt^2}{2}, y \ge 0, t \ge 0\}$$

$$\bigcap_{\alpha \in (0,\pi)} K_{\alpha} = \{(0,0)\}$$

$$\bigcup_{\alpha \in (0,\pi)} K_{\alpha} = \text{alle Werte unter der Parabel } (\nearrow \text{Abb. 4})$$

3.8 Summen und Produkte

3.19 Def. Eine Menge X heißt endlich, falls $X=\emptyset$ oder falls eine bijektive Abbildung von $\{1,\ldots,n\}$ nach X existiert mit $n\in\mathbb{N}$. Der Wert n heißt die Anzahl der Elemente (Kardinalität) von X und wird durch |X| bezeichnet. Man setzt die Kardinalität von \emptyset gleich 0. Bei einer unendlichen Mengen X setzt man $|X|=\infty$.

$$|\{1,2,3,33,83\}| = 4$$

 $|\{1,2,3,43\}| = 4$
 $|\{1,2,3,43\}| = 4$
 $|\{1,2,3,43\}| = 4$
 $|\{1,2,3,33,83\}| = 4$

3.20. |X| ist wohl definiert, d.h. eine Menge kann nicht zwei unterschiedliche Kardinalitäten haben.

3.21 Def. Sei X eine nichtleere endliche Menge. Dann kann X als $X = \{x_1, \dots, x_n\}$ dargestellt werden mit $x_i \neq x_j \Leftrightarrow i \neq j$ für alle $i, j \in \{1, \dots, n\}$.

Für eine Abbildung $f:X\to\mathbb{R}$ definiert man

$$\sum_{x \in X} f(x) := f(x_1) + \ldots + f(x_n),$$

$$\prod_{x \in X} f(x) := f(x_1) \cdot \ldots \cdot f(x_n).$$

 $\text{Im Fall } X = \emptyset \text{ definiert man für } f: X \to \mathbb{R} \text{ und } \sum_{x \in X} f(x) = 0 \text{ und } \prod_{x \in X} f(x) = 1.$

$$\frac{\beta_{sp}}{\sum_{i=1}^{n}} = \sum_{i \in \{1,\dots,k\}} i = 1 + 2 + \dots + n$$

$$2 = (1 + ... + 1) + (n + ... + 1)$$

$$= (1 + n) + ... + (n + 1)$$

$$= n \cdot (n+1)$$

$$\frac{n}{2}i = \frac{1}{2}n.(n+1)$$

$$\sum_{i=0}^{N} 2^{i} = 2^{0} + 2^{1} + \dots + 2^{N}$$

$$\sum_{i=0}^{N} 2^{i} = 2^{0} + 2^{0} + \dots + 2^{0}$$

$$2 \sum_{i=0}^{N} 2^{i} = 2^{1} + 2^{2} + \dots + 2^{N+1}$$

$$2 \sum_{i=0}^{N} 2^{i} - \sum_{i=0}^{N} 2^{i} = 2^{N+1}$$

$$2 \sum_{i=0}^{N} 2^{i} - \sum_{i=0}^{N+1} 2^{i} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} + 2^{1} + \dots + 2^{N+1} = 2^{N+1}$$

$$2^{0} +$$

$$1^{2} + 2^{2} + 3^{2} + 4^{2}$$

$$= 1 + 4 + 9 + 16$$

$$= 10 + 20 = 30$$

3.22. Die Summe und das Produkt über eine Menge X sind wohldefiniert (d.h., die beiden Werte sind von der Nummerierung x_1, \ldots, x_n der Elemente von X unabhängig).

3.9 Tupel

3.23 Def. Für Objekte a,b kann man das *geordnete Paar* (a,b) definieren. Für Objekte a,b,c,d definiert man die Gleichheit (a,b)=(c,d) durch a=c und b=d. a heißt das erste Element des Paares (a,b) und b heißt das zweite Element.

3.24 Def. Für Mengen X,Y definiert man das *Kreuzprodukt* $A \times B$ durch $A \times B := \{(x,y) : x \in X, y \in Y\}$. Analog definiert man geordnete Tupel und das Kreuzprodukt $A \times B \times C$ von Mengen X,Y und Z. Noch allgemeiner kann man für jedes $n \in \mathbb{N}$ geordnete n-Tupel (x_1,\ldots,x_n) einführen und das Kreuzprodukt $X_1 \times \ldots \times X_n := \{(x_1,\ldots,x_n) : x_1 \in X_1,\ldots,x_n \in X_n\}$ von Mengen X_1,\ldots,X_n .

$$X \times Y = \{ (x,y) : x \in X, y \in Y \}$$

$$X = \{ a, 6, c \}$$

$$Y = \{ 1, 2, 3, 4 \}$$

$$X \times Y = \{ (a, 1), (8, 1)$$

3.25. Für eine Menge X führt man die Bezeichnung

$$X^n := \underbrace{X \times \ldots \times X}_{n \text{ mal}} = \{(x_1, \ldots, x_n) : x_1, \ldots, x_n \in X\}.$$

Das Element x_i mit $i \in \{1, ..., n\}$ im n-Tupel $(x_1, ..., x_n)$ heißt die i-te Komponente des Tupels.

- 7.12. Es gilt sogar eine stärkere Aussage: jeder Körper besitzt eur kingesammen. dil algebraisch abysolosser or, and
- die klient volume Der Körper der komplexen Zahlen Envertery it equality

i ein formale, Elemen, welches Zu Rhierenkommt und i 2+1 = 0 Øfillt.

Das ist die Sogmanne incopière Einle Meit.

C = { X+ Bi : K,y ER3

チニメトが

122 = X

Im 2 = 3

2= x- 9:

72= x2+y2 V2==. |2| Be/105 cm 2.

1.4 Lemma. Seien A und B endliche Menge. Dann gilt:

$$|A \times B| = |A| \cdot |B|.$$

percentage

$$\Rightarrow |A \times B| = |\bigcup_{i=1}^{k} \{a_i 3 \times B\}|$$

$$\Rightarrow |A \times B| = |\bigcup_{i=1}^{k} \{a_i 3 \times B\}|$$

$$= \sum_{i=1}^{k} |\{a_i 3 \times B\}| = \bigcup_{i=1}^{k} |M| = |K|M|$$

$$B = \{b_1, ..., b_m\}$$

$$\{(a_i, b_1)_{1,..., k}, (a_i, b_m)\}$$

$$B_{1,..., b_m} \text{ peasure}$$

$$\text{verwieden}$$

138

2 X^k und B^A

$$\chi^{k} = \chi \times \dots \times \chi = |\chi| \cdot \dots \cdot |\chi| = |\chi|^{k}.$$

$$k mel$$

A= 3 en -- ck3 paneix vermieden.

T. BA - BK mit

F (q) = (q(ai), ..., q(ak)).

Die Mildry wir een Bojalmon. Since op of FBA vergebooden 20..... Foir jedles (61,..., 611)...

 $2. X^K UND B^A$

2.1 Thm. Sei X eine endliche Menge mit n Elementen und sei $k \in \mathbb{N}$. Dann hat die Menge X^k genau n^k Elemente (d.h., $|X^k| = |X|^k$).

Beweis. Die Formel ist trivial für n=0 (d.h., $X=\emptyset$). Wir nehmen also $n\in\mathbb{N}$ an. Wir beweisen zun die Behauptung durch Induktion über k.

Die Formel ist trivial für k=1: es gilt $|X^1|=|X|$. Sei $k\geq 2$ und sei die Formel $|X^{k-1}|=n^{k-1}$ bereits verifiziert.

Sei $X=\{x_1,\ldots x_n\}$ mit paarweise verschiedenen X. Das letzte Element eines k-Tupels aus X^k ist eines der n Elemente x_1,\ldots,x_n . Daher ist die Menge X^k disjukte Vereinigung der n Mengen $X^{k-1}\times\{x_i\}$ mit $i=1,\ldots n$. Für jede der n Mengen $X^{k-1}\times\{x_i\}$ ist die Abbildung von $X^{k-1}\times\{x_i\}$ nach X^{k-1} , welche die letzte (fixierte) Komponente x_i weglässt, eine Bijektion. Somit hat $X^{k-1}\times\{x_i\}$ genauso viele Elemente wie X^{k-1} . Wir haben also X^k als die Disjunkte Vereinigung von n Mengen dargestellt, die Jeweils n^{k-1} Elemente haben. Es

folgt, dass X^k genau $n \times n^{k-1} = n^k$ Elemente hat.

 $\mathbf{3} \quad {X \choose k}$

4 Zählen der bijektiven und injektiven Abbildungen

Benes: Indubrion à Ger le.

Koroller. Die Maall der bijeksten Attilderege con

X wed X in 1x1! Then. $\binom{X}{k} = \binom{|X|}{k}$. Bluein: lujekpick Abbildunger war {1,-, k3 much x betach Km. $g \in X^{\{1,\dots,k\}}$: finishing $= (\cdot)$ if $\in \mathcal{G}^{\{1,\dots,k\}}$ is forjewing. n.(n-1)....-(n-k+1) = |(k)|.k! $= \frac{1}{2} \left(\frac{1}{k} \right) = \frac{1}{2} \frac{1}{k!} \frac{1}{k!} \frac{1}{k!} \frac{1}{k!}$