Segment Trees

- · Basic data structure in computational geometry.
- · Computational geometry.
 - Computations with geometric objects.
 - Points in 1-, 2-, 3-, d-space.
 - · Closest pair of points.
 - Nearest neighbor of given point.
 - Lines in 1-, 2-, 3-, d-space.
 - · Machine busy intervals.

Examples

- Closest pair of points in 3D → track aircraft.
- 2D →Objects on earth (longitude and latitude).
- Nearest neighbor → find nearest gas station to current location.
- Nearest ship (longitude and latitude).

Segment Trees

- Rectangles or more general polygons in 2-space.
 - VLSI mask verification:Sufficient overlap between rectangles that represent wires and contact points on components of a VLSI design.
 - Finding most-specific matching rule requires finding the smallest rectangle that contains the point given by the packet's (source.dest).
 - Detect conflicting 2-d filters requires rectangle intersection detection. Filter matches addresses in the rectangle ([8,11], [6,7])

6

Source address

11

Segment Tree Application

- Store intervals of the form [i,j], i < j, i and j are integers.
 - [i,j] may, for example represent the fact that a machine is busy from time i to time j.
- Answer queries of the form: which intervals intersect/overlap with a given unit interval [a,a+1].
 - List all machines that are busy from 2 to 3.

Segment Tree – Definition

- · Binary tree.
- Each node, v, represents a closed interval.
 - s(v) = start of v's range.
 - e(v) = end of v's range.
 - s(v) < e(v).
 - s(v) and e(v) are integers.
 - Root range = [1,n].
- $e(v) = s(v) + 1 \Rightarrow v$ is a leaf node (unit interval).
- $e(v) > s(v) + 1 \Longrightarrow$
 - Left child range is [s(v), (s(v) + e(v))/2].
 - Right child range is [(s(v) + e(v))/2, e(v)].

Cream colored boxes are leaves/unit intervals.

In the worst-case, L, R, all ancestors of L and R, and possibly the other child of each of these ancestors are reached.


```
Top-Down\ Delete \label{eq:controlled} \begin{tabular}{ll} delete(s, e, v) & $\{ \mbox{$/$} delete(s, e] \mbox{ from subtree rooted at $v$} \\ if (s <= s(v) \&\& e(v) <= e) \\ delete(s, e] \mbox{ from $v$; $/\!\!/$ interval spans node range} \\ else & $\{$ if (s < (s(v) + e(v))/2)$ \\ delete(s, e, v. leftChild); \\ if (e > (s(v) + e(v))/2)$ \\ delete(s, e, v. rightChild); \\ $\}$ }
```

Search [a,a+1]

- Follow the unique path from the root to the leaf node for the interval [a,a+1].
- Report all segments stored in the nodes on this unique path.
- No segment is reported twice, because no segment is stored in both a node and the ancestor of this node.

