- **7.1.** 1) Докажите, что в конечномерном векторном пространстве над \mathbb{R} любые два непересекающихся выпуклых множества разделены гиперплоскостью.
- **2)** Приведите пример двух замкнутых выпуклых непересекающихся подмножеств в \mathbb{R}^2 , не разделенных гиперплоскостью строго.
- **7.2.** Приведите пример двух непересекающихся выпуклых подмножеств в каком-либо вещественном векторном пространстве, не разделенных гиперплоскостью.
- **7.3-b.** Приведите пример двух непересекающихся замкнутых выпуклых подмножеств в вещественном гильбертовом пространстве ℓ^2 , не разделенных замкнутой гиперплоскостью.
- **Определение 7.1.** Пусть X векторное пространство над \mathbb{R} , и пусть $S \subseteq X$. Назовем точку $x \in S$ линейно внутренней для S, если множество S-x поглощающее. Назовем S линейно открытым, если все его точки линейно внутренние.
- **7.4.** 1) Докажите, что семейство всех линейно открытых множеств в произвольном векторном пространстве X задает топологию на X.
- **2)** Докажите, что топология из п. 1 не слабее топологии, порожденной любой нормой на X.
- 3) Докажите, что если $\dim X > 1$, то операция сложения в топологии из п. 1 не является непрерывной и, следовательно, эта топология строго сильнее, чем топология, порожденная любой нормой на X.
- **7.5.** Докажите следующую разновидность теоремы об отделении выпуклых множеств (ср. теорему с лекции): если X векторное пространство над $\mathbb R$ и $A,B\subset X$ выпуклые непересекающиеся множества, причем линейная внутренность одного из них непуста, то A и B разделены гиперплоскостью.
- 7.6. Выведите теорему Хана-Банаха из теоремы, сформулированной в предыдущей задаче.
- **7.7-b** (*теорема Хелли*). Пусть дано семейство выпуклых компактных подмножеств в \mathbb{R}^n , любые n+1 из которых имеют непустое пересечение. Докажите, что тогда и все семейство имеет непустое пересечение.

 $У \kappa a з a н u e$. Сведите утверждение к случаю, когда семейство конечно. Если оно содержит N=n+2 множества, то проведите индукцию по n и воспользуйтесь теоремой об отделении выпуклых множеств. Если оно содержит N>n+2 множеств, проведите индукцию по N.

- Пусть X векторное пространство над \mathbb{R} , $S \subseteq X$ выпуклое множество и f_0, \ldots, f_n выпуклые функции на S. Задачей выпуклого программирования называется задача отыскания минимума f_0 на множестве $S \cap \{x: f_i(x) \leq 0 \ \forall i=1,\ldots,n\}$. Функцией Лагранжа этой задачи называется функция $\mathcal{L}: S \times \mathbb{R}^{n+1} \to \mathbb{R}$, $\mathcal{L}(x,\lambda) = \sum_{i=0}^n \lambda_i f_i(x)$.
- **7.8-b** (*теорема Куна-Таккера*). Пусть $x_0 \in S$ решение описанной выше задачи выпуклого программирования. Докажите, что существует такое $\lambda = (\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$ (набор *множите*-лей Лагранжа), $\lambda \neq 0$, что
 - 1) $\lambda_i \geqslant 0$ для всех $i = 0, \ldots, n$;
 - 2) $\lambda_i f_i(x) = 0$ для всех i = 1, ..., n;
 - 3) (x_0, λ) точка минимума \mathscr{L} на S.
- **7.9-b** (*теорема о минимаксе*). Пусть $A, B \subset \mathbb{R}^n$ непустые выпуклые компакты (множества стратегий двух игроков), и пусть $\varphi \colon A \times B \to \mathbb{R}$ непрерывная функция, выпуклая по первому аргументу и вогнутая по второму (функция платы сумма, которую заплатит 2-й игрок 1-му, если 1-й будет играть по стратегии x, а 2-й по стратегии y). Докажите, что существует $(x_0, y_0) \in A \times B$ (оптимальная пара стратегий), для которой

$$\max_{x \in A} \min_{y \in B} \varphi(x, y) = \varphi(x_0, y_0) = \min_{y \in B} \max_{x \in A} \varphi(x, y).$$