1ère Session, Juin 2022 Partie 1

NOM:	PRENOM:	SECTION:

Consignes à lire impérativement!

L'examen est composé de **2 parties**. Chaque partie dure **2 heures**. Il vous est demandé de respecter les consignes suivantes.

- Commencez par écrire vos **nom**, **prénom** et **section** (math, info, ...) sur chaque feuille, y compris les feuilles de brouillon.
- Laissez vos calculatrice, téléphone portable et notes de cours dans votre sac. Leur usage n'est **pas autorisé**. Pensez à éteindre votre téléphone portable!
- Faites attention à la clarté et à l'organisation de vos réponses. Respectez les règles grammaticales et orthographiques.
- Utilisez pour vos réponses les **cadres** prévus à cet effet. Si davantage d'espace est nécessaire, utilisez le dos de la feuille ou une feuille supplémentaire et indiquez clairement où se situe le restant de la réponse.
- Vous devez terminer cette partie de l'examen avant de pouvoir sortir de la salle (pour aller à la toilette par exemple).
- Toutes les feuilles (énoncé et brouillon) doivent être remises en fin d'examen.
- Vérifiez que vous avez répondu à toutes les questions (il y a 2 questions dans cette partie).

Question 1 – Echauffement (/3)

Un système informatique composé d'un processeur 32-bits est connecté à une mémoire RAM de 1 GB (1073741824 octets). De combien de bits se compose une adresse sur le bus mémoire?

()]	la	۱ -	-	N	o	n	ıŁ	r	e	d	e	b	ii	ts	C	ľ	a	dı	re	S	se																																	
																																									 ٠														
								٠						٠			٠			٠		٠			٠			٠		٠	٠		٠	٠		٠					 ٠			 ٠				٠				٠			

Supposons que l'addition dans un processeur MIPS 32-bits soit implémentée avec un additionneur de type *ripple-carry* tel que vu au cours. Le temps de propagation de chacun des additionneurs complets et demi-additionneurs qui le composent vaut $\tau_{\rm fadd} = \tau_{\rm hadd} = 2$ ns tandis que la lecture et l'écriture d'un registre prennent chacune $\tau_{\rm reg} = 1$ ns. Quelle est la fréquence maximale $f_{\rm max}$ du processeur si l'instruction d'addition doit être réalisée en 1 cycle? On fait l'hypothèse que la mise à jour du registre *program counter* se fait en parallèle avec l'addition et n'augmente pas la durée du cycle.

Q1b – Fréquence	naximale

1ère Session, Juin 2022 Partie 1

NOM: SECTION: SECTION:

Le mot binaire $0 \times 8 D09 FFFB$ est une instruction MIPS LW qui transfère un mot de 32-bits depuis la mémoire vers le registre t1. Cette instruction est de type I, comme illustré à la Figure 1. Le registre t0 contient la valeur $0 \times 10 CA00 FC$. L'opcode de l'instruction vaut 100011, les index des registres t0 et t1 sont respectivement 8 et 9. Donnez l'adresse à laquelle l'instruction effectue une lecture.

FIGURE 1 – Format d'une instruction de type I. Les nombres affichés sous les différentes parties de l'instruction indiquent leurs premier et dernier bits.

Q1c – Adresse lue	en mémoire

Question 2 – Relation de Pascal (/7)

L'objectif de cette question est l'implémentation en langage d'assemblage MIPS d'une fonction calculant le nombre de façons de prendre p éléments parmi n, sans replacement. Ce nombre, noté $\binom{n}{p}$, peut être calculé à l'aide de la relation de Pascal, une relation de récurrence définie comme suit lorsque 0

$$\binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}$$

Ses cas de base sont $\binom{n}{0} = 1$ et $\binom{n}{n} = 1$.

Cette relation permet notamment de calculer le triangle de Pascal montré ci-dessous. Il est possible d'y observer par exemple qu'il existe 6 façons de prendre 2 éléments parmi 4, i.e. $\binom{4}{2} = 6$.

				p			
		0	1	2	3	4	5
	0	1					
	1	1	1				
m	2	1	2	1			
n	3	1	3	3	1		
	4	1	4	6	4	1	
	5	1	5	10	10	5	1

	1 ^{ère} Session, Juir Partie 1	1 2022	
NOM:	PRENOM :	SECTION:	
Il vous est demandé de fournir un	os implémentation en langage	d'assamblesa MIDS de la fanctio	an rágurgiya gamb
Il vous est demandé de fournir un qui calcule à l'aide de la relation de Prespecter la convention d'appel suivar est retourné dans le registre v0.	Pascal le nombre de façons de j	prendre p éléments parmi n . La f	onction comb doit
Afin d'illustrer l'usage de la fonction d'assemblage MIPS de la fonction ma			entation en langage
Ce qui vous est demandé :			
Q2a Implémentation de la fonction n	main qui appelle comb.		
Q2b Implémentation de la fonction of Pascal. Attention! Une implém comme incorrecte et ne rappo	nentation non récursive ou n'	$\binom{n}{p}$ de manière récursive, sur bas du tilisant pas la relation de Pasc	
Q2a		(implémentation de la	fonction main)
			,
	,		,

Examen du cours de Fonctionnement des Ordinateurs 1ère Session, Juin 2022 Partie 1

NOM:	PRENOM:	SECTION:

Q2b	(implémentation de la fonction comb)

Examen du cours de Fonctionnement des Ordinateurs 1ère Session, Juin 2022 Partie 1

NOM:	PRENOM:	SECTION:

Q2b	(implémentation de la fonction comb — suite)

1ère Session, Juin 2022 Partie 2

NOM:	PRENOM:	SECTION:

Consignes à lire impérativement!

L'examen est composé de **2 parties**. Chaque partie dure **2 heures**. Il vous est demandé de respecter les consignes suivantes.

- Commencez par écrire vos **nom**, **prénom** et **section** (math, info, ...) sur chaque feuille, y compris les feuilles de brouillon.
- Laissez vos calculatrice, téléphone portable et notes de cours dans votre sac. Leur usage n'est **pas autorisé**. Pensez à éteindre votre téléphone portable!
- Faites attention à la clarté et à l'organisation de vos réponses. Respectez les règles grammaticales et orthographiques.
- Utilisez pour vos réponses les **cadres** prévus à cet effet. Si davantage d'espace est nécessaire, utilisez le dos de la feuille ou une feuille supplémentaire et indiquez clairement où se situe le restant de la réponse.
- Vous devez terminer cette partie de l'examen avant de pouvoir sortir de la salle (pour aller à la toilette par exemple).
- Toutes les feuilles (énoncé et brouillon) doivent être remises en fin d'examen.
- Vérifiez que vous avez répondu à toutes les questions (il y a 2 questions dans cette partie).

Question 1 – Représentation de nombres à virgule flottante (/5)

On considère une représentation de nombre flottants qui suit les principes d'IEEE 754, mais en adoptant des tailles de mantisse et d'exposant différentes. On désigne par E la taille de l'exposant et par M la taille de la mantisse. Les valeurs de E et M considérées dans cette question sont données à la Table 1. Le calcul du biais B ainsi que la distinction entre représentations normalisée, dénormalisée et valeurs spéciales reposent sur les mêmes conventions qu'avec IEEE 754. Les arrondis sont calculés selon F000 F100 F101 F102 F103 F104 F105 F106 F106 F107 F107 F108 F109 F110 F109 F109 F109 F109 F109 F109 F109 F109 F110 F109 F109 F109 F109 F109 F110 F1

E	3
M	5

TABLE 1 – Valeurs des paramètres E et M.

Ce qui vous est demandé: Veuillez répondre à toutes les questions ci-dessous, en justifiant vos réponses. L'absence de justification est équivalente à l'absence de réponse.

Donnez la valeur du biais B du système.

Q1a	(valeur de B)

1 ^{ère} Session, Juin 2	2022
Partie 2	

	Partie 2	
NOM: PREN	OM:	SECTION:
Donnez la valeur de l'epsilon machine ϵ_M .		
Q1b		(valeur de ϵ_M)
Pour chaque ensemble de bit de signe s , d'expabres qui sont représentés.	posant e et de mantisse m donn	né en binaire ci-dessous, déterminez le
Q1c		(s = 0, e = 001 et m = 10000)
Q1d		(s = 0, e = 000 et m = 00011)
Q1e		(s = 0, e = 111 et m = 00000)
Donnez la représentation binaire des nombres s	suivants.	
Q1f		(représentation de $x = 11.75$)
Q1g		(représentation de $y = 10.134$)

1ère Session, Juin 2022 Partie 2 PRENOM: SECTION: NOM: En utilisant leur représentation binaire, effectuez l'addition des nombres x et y donnés ci-dessus. Q1h (addition de x et y) En utilisant leur représentation binaire, effectuez la soustraction des nombres x et y donnés ci-dessus. Q1i (soustraction de x et y)

Examen du cours de Fonctionnement des Ordinateurs

Question 2 – Cache (/5)

On considère un système informatique doté d'une mémoire et d'une cache. La mémoire est composée de cellules de 8 bits et les adresses sont encodées sur 16 bits. Un extrait du contenu de la mémoire, situé entre les adresses 0×0000 et 0×00 FF, est donné à la Table 3. La cache est de type *set-associative* est ses caractéristiques sont résumées à la Table 2.

taille de la cache	64 (octets)
associativité	2
nombre de lignes	8
stratégie d'écriture	write-back
stratégie d'éviction	least-recently-used (LRU)

TABLE 2 – Spécification de la cache.

Examen du cours de Fonctionnement des Ordinateurs 1ère Session, Juin 2022 Partie 2

NOM:	PRENOM:	SECTION:

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0000	6F	A6	93	02	4A	F2	F5	3A	A5	0В	89	0C	A6	1C	10	32
0010	В4	F1	27	19	E9	7F	D3	E6	8B	64	E6	E1	17	10	53	СВ
0020	DE	C5	46	E8	53	С7	A8	E1	DB	66	37	46	66	79	10	9E
0030	BE	39	E4	43	F4	79	2E	EF	A6	D6	С3	A7	69	16	E5	E5
0040	82	99	59	В5	4B	DF	E4	52	7D	DD	85	D6	AA	C4	01	66
0050	CE	38	AC	C9	4C	9A	C5	78	A5	AF	69	CC	2E	E0	04	6B
0060	8D	68	71	F3	94	AD	A9	78	22	0E	В8	06	C1	5A	36	1C
0070	9A	28	C5	ВВ	В2	F5	AD	6B	F5	63	5F	48	А3	9C	8В	71
0080	88	02	DA	3C	A6	68	69	91	4A	58	78	F0	F0	DB	DF	05
0090	53	44	7в	AA	D9	71	D2	02	CC	В7	63	6F	31	26	61	32
00A0	48	65	59	D2	EF	30	41	С7	0В	С9	96	C5	EF	AF	29	98
00B0	9В	A4	D1	94	6D	0В	1В	50	5F	ΕO	05	20	В6	87	В4	15
0000	В6	В8	93	ВВ	В8	3C	83	9F	7F	E4	4A	7F	ВС	7A	68	1F
00D0	F0	9F	82	D6	8F	0E	FB	DA	Е3	90	EB	52	80	A8	A2	7E
00E0	63	21	54	76	45	26	80	FC	8B	0F	C1	DF	15	EE	F7	31
00F0	2D	A1	62	24	AD	AD	16	7A	D6	6A	75	ВА	8A	7в	0C	C1

TABLE 3 – Contenu de la mémoire. Chaque ligne donne les valeurs de 16 octets consécutifs. La première colonne donne l'adresse du premier de ces 16 octets. A titre d'exemple, la $6^{\text{ème}}$ ligne contient les données situées aux adresses allant de 0×0.050 jusqu'à 0×0.05 F. A la 4ème colonne de cette ligne se trouve l'octet 0×0.05 d'adresse 0×0.05 (montré en gras).

Ce qui vous est demandé: Le processeur effectue des lectures d'entiers non-signés à l'adresse 0x000F avec des endianness différentes. Donnez en hexadécimal les valeurs lues.

Q2a	(lecture d'un entier non-signé de 16 bits, little-endian)
Q2b	(lecture d'entier non-signé de 32 bits, big-endian)

Déterminez la correspondance entre une adresse mémoire et une position en cache, en indiquant à quoi chaque bit de l'adresse est utilisé. Pour chaque bit de l'adresse, utilisez T si le bit fait partie du tag, S pout le set, et O pour l'offset. Cette partie de la question est cruciale pour la suite. Prêtez-y grande attention!!

Q2c													(struc	ture d'	une a
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Examen du cours de Fonctionnement des Ordinateurs 1^{ère} Session, Juin 2022 Partie 2

NOM:	PRENOM:	SECTION:

Exécutez dans l'ordre la séquence d'opérations de la trace fournie ci-dessous. LB (*load byte*) indique une lecture d'un octet tandis que SB (*store byte*) indique une écriture d'un octet. Dans le cas d'une lecture, un seul argument est spécifié : l'adresse à laquelle la lecture a lieu. Dans le cas d'une écriture, deux arguments sont fournis : l'adresse à laquelle l'écriture a lieu et la valeur écrite.

Pour chaque opération réalisée, il est nécessaire de fournir au moins les informations suivantes

- donnez la position (tag, set, ligne, offset) en cache. Les lignes sont numérotées au sein d'un set.
- indiquez s'il s'agit d'un HIT ou d'un MISS.
- si l'accès débouche sur une lecture en mémoire, indiquez à quelle adresse et quelles données sont lues. si l'accès implique un remplacement, donnez en les détails.

Q2d (exécution de la trace d'accès)

Accès	Tag	Set	Ligne	Offset	Hit/Miss	Information supplémentaire
LB 00EA						
LB 00EB						
LB 00F2						
LB 00CA						
SB 00EA 72						
LB 00EA						
LB 002D						
LB 00A2						
LB 00CA						
LB 0069						
LB 00ED						
LB 00A5						
LB 00A4						
LB 00EA						
	1	1			l	