What Is Claimed Is:

1	1. A method for using a computer system to solve an unconstrained
2	interval global optimization problem specified by a function f , wherein f is a scalar
3	function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the method comprising:
4	receiving a representation of the function f at the computer system;
5	storing the representation in a memory within the computer system; and
6	performing an interval global optimization process to compute guaranteed
7	bounds on a globally minimum value of the function $f(x)$ over a subbox X ;
8	wherein performing the interval global optimization process involves,
9	applying term consistency to a set of relations associated
10	with the function f over the subbox X , and excluding any portion of
11	the subbox X that violates any of these relations,
12	applying box consistency to the set of relations associated
13	with the function f over the subbox X , and excluding any portion of
14	the subbox X that violates any of these relations, and
15	performing an interval Newton step on the subbox \mathbf{X} to
16	produce a resulting subbox Y, wherein the point of expansion of
17	the interval Newton step is a point x within the subbox X , and
18	wherein performing the interval Newton step involves evaluating
19	the gradient $g(x)$ of the function $f(x)$ using interval arithmetic.
1	2. The method of claim 1, wherein applying term consistency
2	involves:
3	symbolically manipulating an equation within the computer system to
4	solve for a term $g(x_j)$, thereby producing a modified equation $g(x_j) = h(\mathbf{x})$, wherein
5	the term $g(x)$ can be analytically inverted to produce an inverse function $g^{-l}(v)$;

6	substituting the subbox X into the modified equation to produce the
7	equation $g(X'_j) = h(\mathbf{X});$
8	solving for $X'_{j} = g^{-1}(h(\mathbf{X}))$; and
9	intersecting X'_j with the interval X_j to produce a new subbox \mathbf{X}^+ ;
10	wherein the new subbox \mathbf{X}^+ contains all solutions of the equation within
11	the subbox X , and wherein the size of the new subbox X^+ is less than or equal to
12	the size of the subbox \mathbf{X} .

- 1 3. The method of claim 1, wherein performing the interval global 2 optimization process involves: 3 keeping track of a smallest upper bound f bar of the function $f(\mathbf{x})$;
- removing from consideration any subbox X for which f(X) > f bar; and 4 5 wherein applying term consistency to the f bar relation involves applying 6 term consistency to the inequality $f(\mathbf{x}) \le f$ bar over the subbox \mathbf{X} .
- 4. The method of claim 3, wherein applying box consistency to the 2 set of relations involves applying box consistency to the inequality $f(\mathbf{x}) \le f$ bar 3 over the subbox X.
- 1 5. The method of claim 1, wherein performing the interval global 2 optimization process involves:
- 3 determining the gradient g(x) of the function f(x), wherein g(x) includes 4 components $g_i(\mathbf{x})$ (i=1,...,n);
- 5 removing from consideration any subbox for which any element of g(x) is 6 bounded away from zero, thereby indicating that the subbox does not include a 7 stationary point of $f(\mathbf{x})$; and

8	wherein applying term consistency to the set of relations involves applying
9	term consistency to each component $g_i(\mathbf{x})=0$ ($i=1,,n$) of $\mathbf{g}(\mathbf{x})=0$ over the subbox
10	X.
1	6. The method of claim 5, wherein applying box consistency to the
2	set of relations involves applying box consistency to each component
3	$g_i(\mathbf{x})=0$ $(i=1,,n)$ of $\mathbf{g}(\mathbf{x})=0$ over the subbox \mathbf{X} .
1	7. The method of claim 1, wherein performing the interval global
2	optimization process involves:
3	determining diagonal elements $H_n(\mathbf{x})$ ($i=1,,n$) of the Hessian of the
4	function $f(\mathbf{x})$;
5	removing from consideration any subbox for which a diagonal element of
6	the Hessian is always negative, which indicates that the function f is not convex
7	and consequently does not contain a global minimum within the subbox;
8	wherein applying term consistency to the set of relations involves applying
9	term consistency to each inequality $H_{ii}(\mathbf{x}) \ge 0$ ($i=1,,n$) over the subbox \mathbf{X} .
•	
1	8. The method of claim 7, wherein applying box consistency to the
2	set of relations involves applying box consistency to each inequality
3	$H_n(\mathbf{x}) \ge 0$ $(i=1,,n)$ over the subbox \mathbf{X} .
1	O The mosthed of alaim 1
1	9. The method of claim 1,
2	wherein performing the interval Newton step involves,
3	computing the Jacobian $J(x,X)$ of the gradient g evaluated

as a function of a point x over the subbox X,

5	computing an approximate inverse B of the center of
6	J(x,X), and
7	using the approximate inverse B to analytically determine
8	the system $\mathbf{Bg}(\mathbf{x})$, wherein $\mathbf{g}(\mathbf{x})$ is the gradient of the function $f(\mathbf{x})$,
9	and wherein $g(x)$ includes components $g_i(x)$ ($i=1,,n$); and
10	wherein applying term consistency to the set of relations involves applying
11	term consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for each variable
12	x_i ($i=1,,n$) over the subbox X .
1	10. The method of claim 9, wherein applying box consistency to the
2	set of relations involves applying box consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$
3	$(i=1,,n)$ for each variable x_i $(i=1,,n)$ over the subbox X .
1	
1	11. The method of claim 1, further comprising terminating attempts to
2	further reduce the subbox X when:
3	the width of X is less than a first threshold value; and
4	the magnitude of $f(X)$ is less than a second threshold value.
1	12. The method of claim 11, wherein performing the interval Newton
2	step involves:
3	computing $J(x,X)$, wherein $J(x,X)$ is the Jacobian of the function f
4	evaluated as a function of \mathbf{x} over the subbox \mathbf{X} ; and
5	determining if $J(x,X)$ is regular as a byproduct of solving for the subbox Y
6	that contains values of y that satisfy $M(x,X)(y-x) = r(x)$, where
7	M(x,X) = BJ(x,X), $r(x) = -Bf(x)$, and B is an approximate inverse of the center of
8	J(x,X).

1	13. A computer-readable storage medium storing instructions that
2	when executed by a computer cause the computer to perform a method for using a
3	computer system to solve an unconstrained interval global optimization problem
4	specified by a function f, wherein f is a scalar function of a vector
5	$\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the method comprising:
6	receiving a representation of the function f at the computer system;
7	storing the representation in a memory within the computer system; and
8	performing an interval global optimization process to compute guaranteed
9	bounds on a globally minimum value of the function $f(\mathbf{x})$ over a subbox \mathbf{X} ;
10	wherein performing the interval global optimization process involves,
11	applying term consistency to a set of relations associated
12	with the function f over the subbox X , and excluding any portion of
13	the subbox X that violates any of these relations,
14	applying box consistency to the set of relations associated
15	with the function f over the subbox X , and excluding any portion of
16	the subbox \mathbf{X} that violates any of these relations, and
17	performing an interval Newton step on the subbox X to
18	produce a resulting subbox Y, wherein the point of expansion of
19	the interval Newton step is a point x within the subbox X , and
20	wherein performing the interval Newton step involves evaluating
21	the gradient $g(x)$ of the function $f(x)$ using interval arithmetic.
1	14. The computer-readable storage medium of claim 13, wherein
2	applying term consistency involves:
3	symbolically manipulating an equation within the computer system to
4	solve for a term $g(x_j)$, thereby producing a modified equation $g(x_j) = h(\mathbf{x})$, wherein
5	the term $g(x_j)$ can be analytically inverted to produce an inverse function $g^{-1}(y)$;

1

2

3

1

17.

stationary point of $f(\mathbf{x})$; and

6	substituting the subbox X into the modified equation to produce the
7	equation $g(X'_j) = h(\mathbf{X});$
8	solving for $X'_{J} = g^{-1}(h(\mathbf{X}))$; and
9	intersecting X'_{j} with the interval X_{j} to produce a new subbox \mathbf{X}^{+} ;
10	wherein the new subbox X^+ contains all solutions of the equation within
11	the subbox X , and wherein the size of the new subbox X^+ is less than or equal to
12	the size of the subbox X .
1	15. The computer-readable storage medium of claim 13, wherein

2 performing the interval global optimization process involves: 3 keeping track of a smallest upper bound f bar of the function $f(\mathbf{x})$; 4 removing from consideration any subbox X for which f(X) > f bar; and 5 wherein applying term consistency to the f_bar relation involves applying

term consistency to the inequality $f(\mathbf{x}) \le f$ bar over the subbox \mathbf{X} .

16. The computer-readable storage medium of claim 15, wherein applying box consistency to the set of relations involves applying box consistency to the inequality $f(\mathbf{x}) \le f$ bar over the subbox \mathbf{X} .

The computer-readable storage medium of claim 13, wherein

performing the interval global optimization process involves: 2 3 determining the gradient g(x) of the function f(x), wherein g(x) includes 4 components $g_i(\mathbf{x})$ (i=1,...,n); 5 removing from consideration any subbox for which any element of g(x) is 6 bounded away from zero, thereby indicating that the subbox does not include a 7

wherein applying term consistency to the set of relations involves applying
term consistency to each component $g_i(\mathbf{x})=0$ ($i=1,,n$) of $\mathbf{g}(\mathbf{x})=0$ over the subbox
X .
18. The computer-readable storage medium of claim 17, wherein
applying box consistency to the set of relations involves applying box consistency
to each component $g_i(\mathbf{x})=0$ ($i=1,,n$) of $\mathbf{g}(\mathbf{x})=0$ over the subbox \mathbf{X} .
19. The computer-readable storage medium of claim 13, wherein
performing the interval global optimization process involves:
determining diagonal elements $H_{u}(\mathbf{x})$ ($i=1,,n$) of the Hessian of the
function $f(\mathbf{x})$;
removing from consideration any subbox for which a diagonal element of
the Hessian is always negative, which indicates that the function f is not convex
and consequently does not contain a global minimum within the subbox;
wherein applying term consistency to the set of relations involves applying
term consistency to each inequality $H_{ii}(\mathbf{x}) \ge 0$ ($i=1,,n$) over the subbox \mathbf{X} .
20. The computer-readable storage medium of claim 19, wherein
applying box consistency to the set of relations involves applying box consistency
to each inequality $H_n(\mathbf{x}) \ge 0$ ($i=1,,n$) over the subbox \mathbf{X} .
21. The computer-readable storage medium of claim 13,
wherein performing the interval Newton step involves,
computing the Jacobian $J(x,X)$ of the gradient g evaluated
as a function of a point x over the subbox X ,

5	computing an approximate inverse B of the center of
6	J(x,X), and
7	using the approximate inverse B to analytically determine
8	the system $\mathbf{Bg}(\mathbf{x})$, wherein $\mathbf{g}(\mathbf{x})$ is the gradient of the function $f(\mathbf{x})$,
9	and wherein $g(x)$ includes components $g_i(x)$ ($i=1,,n$); and
10	wherein applying term consistency to the set of relations involves applying
11	term consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for each variable
12	x_i ($i=1,,n$) over the subbox X .
1	22. The computer-readable storage medium of claim 21, wherein
2	applying box consistency to the set of relations involves applying box consistency
3	to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for each variable x_i $(i=1,,n)$ over the
4	subbox X .
1	23. The computer-readable storage medium of claim 13, wherein the
2	method further comprises terminating attempts to further reduce the subbox \mathbf{X}
3	when:
4	the width of X is less than a first threshold value; and
5	the magnitude of $f(X)$ is less than a second threshold value.
1	24. The computer-readable storage medium of claim 13, wherein
2	performing the interval Newton step involves:
3	computing $J(x,X)$, wherein $J(x,X)$ is the Jacobian of the function f
4	evaluated as a function of \mathbf{x} over the subbox \mathbf{X} ; and
5	determining if $J(x,X)$ is regular as a byproduct of solving for the subbox Y

that contains values of y that satisfy M(x,X)(y-x) = r(x), where

2	$\mathbf{J}(\mathbf{X},\mathbf{X})$.
1	25. An apparatus that solves an unconstrained interval global
2	optimization problem specified by a function f, wherein f is a scalar function of a
3	vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the apparatus comprising:
4	a receiving mechanism that is configured to receive a representation of the
5	function f;
6	a memory for storing the representation; and
7	an interval global optimization mechanism that is configured to perform
8	an interval global optimization process to compute guaranteed bounds on a
9	globally minimum value of the function $f(\mathbf{x})$ over a subbox \mathbf{X} ;
10	a term consistency mechanism within the interval global optimization
11	mechanism that is configured to apply term consistency to a set of relations
12	associated with the function f over the subbox X , and to exclude any portion of the
13	subbox X that violates any of these relations;
14	a box consistency mechanism within the interval global optimization
15	mechanism that is configured to apply box consistency to the set of relations
16	associated with the function f over the subbox X , and to exclude any portion of the
17	subbox X that violates any of these relations; and
18	an interval Newton mechanism within the interval global optimization
19	mechanism that is configured to perform an interval Newton step on the subbox X
20	to produce a resulting subbox Y, wherein the point of expansion of the interval
21	Newton step is a point x within the subbox X , and wherein performing the interval
22	Newton step involves evaluating the gradient $g(x)$ of the function $f(x)$ using
23	interval arithmetic.

M(x,X) = BJ(x,X), r(x) = -Bf(x), and B is an approximate inverse of the center of

1	26. The apparatus of claim 25, wherein the term consistency
2	mechanism is configured to:
3	symbolically manipulate an equation to solve for a term $g(x_j)$, thereby
4	producing a modified equation $g(x_j) = h(\mathbf{x})$, wherein the term $g(x_j)$ can be
5	analytically inverted to produce an inverse function $g^{-1}(y)$;
6	substitute the subbox \mathbf{X} into the modified equation to produce the equation
7	$g(X'_{J}) = h(\mathbf{X});$
8	solve for $X'_{J} = g^{-1}(h(\mathbf{X}))$; and to
9	intersect X'_j with the interval X_j to produce a new subbox \mathbf{X}^+ ;
10	wherein the new subbox \mathbf{X}^{+} contains all solutions of the equation within
11	the subbox X , and wherein the size of the new subbox X^+ is less than or equal to
12	the size of the subbox X .
1	27. The apparatus of claim 25,
2	wherein the interval global optimization mechanism is configured to,
3	keep track of a smallest upper bound f_bar of the function
4	$f(\mathbf{x})$, and to
5	remove from consideration any subbox X for which
6	$f(\mathbf{X}) > f_bar$; and
7	wherein the term consistency mechanism is configured to apply term
8	consistency to the inequality $f(\mathbf{x}) \le f_bar$ over the subbox \mathbf{X} .
1	28. The apparatus of claim 27, wherein the box consistency
2	mechanism is configured to apply box consistency to the inequality $f(\mathbf{x}) \leq f_bar$
3	over the subbox X .

29.

The apparatus of claim 25,

1 1 B

2	wherein the interval global optimization mechanism is configured to,
3	determine the gradient $g(x)$ of the function $f(x)$, wherein
4	$\mathbf{g}(\mathbf{x})$ includes components $g_i(\mathbf{x})$ ($i=1,,n$), and to
5	remove from consideration any subbox for which any
6	element of $\mathbf{g}(\mathbf{x})$ is bounded away from zero, thereby indicating that
7	the subbox does not include a stationary point of $f(\mathbf{x})$; and
8	wherein the term consistency mechanism is configured to apply term
9	consistency to each component $g_i(\mathbf{x})=0$ ($i=1,,n$) of $\mathbf{g}(\mathbf{x})=0$ over the subbox \mathbf{X} .

- 1 30. The apparatus of claim 29, wherein the box consistency 2 mechanism is configured to apply box consistency to each component 3 $g_i(\mathbf{x})=0$ (i=1,...,n) of $\mathbf{g}(\mathbf{x})=\mathbf{0}$ over the subbox \mathbf{X} .
- 1 31. The apparatus of claim 25, 2 wherein the interval global optimization mechanism is configured to, determine diagonal elements $H_n(\mathbf{x})$ (i=1,...,n) of the 3 4 Hessian of the function $f(\mathbf{x})$, and to 5 remove from consideration any subbox for which a 6 diagonal element of the Hessian is always negative, which 7 indicates that the function f is not convex and consequently does 8 not contain a global minimum within the subbox; 9 wherein the term consistency mechanism is configured to apply term 10 consistency to each inequality $H_{ii}(\mathbf{x}) \ge 0$ (i=1,...,n) over the subbox \mathbf{X} .
- 32. The apparatus of claim 31, wherein the box consistency
 mechanism is configured to apply box consistency to each inequality
 H_u(x) ≥ 0 (i=1,...,n) over the subbox X.

1	33. The apparatus of claim 25,
2	wherein the interval Newton mechanism is configured to,
3	compute the Jacobian $J(x,X)$ of the gradient g evaluated as
4	a function of a point x over the subbox X ,
5	compute an approximate inverse B of the center of $J(x,X)$,
6	and to
7	use the approximate inverse ${\bf B}$ to analytically determine the
8	system $\mathbf{Bg}(\mathbf{x})$, wherein $\mathbf{g}(\mathbf{x})$ is the gradient of the function $f(\mathbf{x})$, and
9	wherein $\mathbf{g}(\mathbf{x})$ includes components $g_i(\mathbf{x})$ ($i=1,,n$); and
10	wherein the term consistency mechanism is configured to apply term
11	consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for each variable
12	x_i ($i=1,,n$) over the subbox X .
1	34. The apparatus of claim 33, wherein the box consistency
2	mechanism is configured to apply box consistency to each component
3	$(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for each variable x_i $(i=1,,n)$ over the subbox \mathbf{X} .
1	35. The apparatus of claim 25, further comprising a termination
2	mechanism that is configured to terminate attempts to further reduce the subbox \mathbf{X}
3	when:
4	the width of X is less than a first threshold value; and
5	the magnitude of $f(X)$ is less than a second threshold value.
1	36. The apparatus of claim 11, wherein the interval Newton
2	mechanism is configured to:,

J(x,X).

compute J(x,X), wherein J(x,X) is the Jacobian of the function f evaluated as a function of x over the subbox X; and to determine if J(x,X) is regular as a byproduct of solving for the subbox Y that contains values of y that satisfy M(x,X)(y-x) = r(x), where M(x,X) = BJ(x,X), r(x) = -Bf(x), and B is an approximate inverse of the center of