AE 625 - Particles Methods for Fluid Flow Simulation SPH function and derivative approximation

Chillapalli Jyothi Durga Prasad - 140010042

21 August 2017

Contents

1 Plot the L2 error in the approximation with respect to the exact value as a function of the number of points used and the hvalue chosen. Use both a cubic spline kernel and the Gaussian Kernels. The L2 norm of a vector y is $|y| = (\sum iy_i)^{0.5}$. Perform the same for the derivative of the function and compare with the exact solution using the formula discussed..

 $\mathbf{2}$

2 Finally, pick one of the kernels and add a small amount of noise to the positions of the particles (by adding a small random displacement, uniformly distributed), and see how this affects the accuracy.

13

List of Figures

1	Cubic spline - function approx	2
2	Cubic spline - derivative approx	3
3	Cubic spline - derivative approx close up	4
4	Cubic spline - function approx. error	5
5	Cubic spline - derivative approx. error	6
6	Gaussian - function approx	7
7	Gaussian - derivative approx	8
8	Gaussian - derivative approx closeup	9
9	Gaussian - function approx. error	10
10	Gaussian - derivative approx. error	11
11	Kernel comparison - function approx	12
12	Kernel comparison - derivative approx	13
13	function approx without noise	14
14	derivative approx without noise	15
15	function approx with noise	16
16	derivative approx with noise	17

Consider the function $\sin(\pi x)$ in the region [-1, 1]. Sample this function at equal spaced intervals and perform an SPH approximation of the exact function.

The report is generated through the command " sh a 7-140010042.sh " $\,$

Plot the L2 error in the approximation with respect to the exact value as a function of the number of points used and the hvalue chosen. Use both a cubic spline kernel and the Gaussian Kernels. The L2 norm of a vector y is $|y| = (\sum iy_i)^{0.5}$. Perform the same for the derivative of the function and compare with the exact solution using the formula discussed..

Results:

Cubic spline kernel

Figure 1: Cubic spline - function approx.

Figure 2: Cubic spline - derivative approx.

Figure 3: Cubic spline - derivative approx close up.

Figure 4: Cubic spline - function approx. error.

Figure 5: Cubic spline - derivative approx. error.

Gaussian kernel

Figure 6: Gaussian - function approx.

Figure 7: Gaussian - derivative approx.

Figure 8: Gaussian - derivative approx closeup.

Figure 9: Gaussian - function approx. error.

Figure 10: Gaussian - derivative approx. error.

Figure 11: Kernel comparison - function approx.

Figure 12: Kernel comparison - derivative approx.

2 Finally, pick one of the kernels and add a small amount of noise to the positions of the particles (by adding a small random displacement, uniformly distributed), and see how this affects the accuracy.

Results:

Approximation without noise for hdx = 1.1.

Figure 13: function approx without noise

Figure 14: derivative approx without noise

Figure 15: function approx with noise

Figure 16: derivative approx with noise