Continuous Mapping Theorem

Let ôn be an estimator for the parameter of. If we have $\hat{\theta}_n \xrightarrow{p} \theta$, then for a continuous function $g(\hat{\theta}_n)$, the convergence in probability is preserved, i.e we have (or distribution) $g(\hat{\theta}_n) \xrightarrow{P} g(\theta)$ as $n > \infty$ $g(\hat{\theta}_n)$ will also converge to $g(\theta)$. $\hat{\Theta} = \overline{X}_n$ is an estimator for μ , $g(x) = x^2,$ So, by the continuous mapping theorem, we have that $(\overline{X}_n)^2 \xrightarrow{P} (E[X])^2$ here $\left(\mathbb{C}[X]\right)^2 \xrightarrow{\text{as}} \mathbb{M}^2$.