Feuille d'exercices n°8

PTSI B Lycée Eiffel

10 janvier 2013

Exercice 1 (**)

Calculer à l'aide des définitions les limites suivantes :

- $\lim_{n \to +\infty} n^2 2n = +\infty$ $\lim_{n \to +\infty} \frac{1}{2n+3} = 0$ $\lim_{n \to +\infty} \frac{2n-1}{n+1} = 2$
- $\lim_{n \to +\infty} \sqrt{n+3} = +\infty$

Exercice 2 (**)

Vrai ou faux?

- 1. Une suite croissante à partir d'un certain rang est minorée.
- 2. Une suite convergente est nécessairement monotone à partir d'un certain rang.
- 3. Une suite divergeant vers $+\infty$ est nécessairement croissante à partir d'un certain rang.
- 4. Si (v_n) est croissante, et $\forall n \in \mathbb{N}, u_n \geqslant v_n$, alors (u_n) est croissante.
- 5. Si $(|u_n|)$ converge, alors (u_n) aussi.
- 6. Si $(|u_n|)$ converge vers 0, alors (u_n) aussi.

Exercice 3 (* à **)

Déterminer la limite éventuelle de chacune des suites suivantes :

$$\bullet \ u_n = \frac{3^n - 2^n}{4^n}$$

$$\bullet \ u_n = (-n+2)e^{-n}$$

$$\bullet \ u_n = \frac{n^2 - 3n + 2}{2n^2 + 5n - 34}$$

$$\bullet \ u_n = \sqrt{n^2 - 1} - r$$

$$\bullet \ u_n = \frac{(n+2)!}{(n^2+1) \times n!}$$

$$\bullet \ u_n = e^{-\frac{1}{2n}} + \ln\left(\frac{n}{n+2}\right)$$

•
$$u_n = \frac{n + \sin(n)}{n - \cos(n)}$$

$$\bullet \ u_n = \operatorname{sh}(2n) - 2\operatorname{sh}(n)$$

•
$$u_n = \frac{3^n - 2^n}{4^n}$$
 • $u_n = (-n+2)e^{-n}$ • $u_n = \frac{n^2 - 3n + 2}{2n^2 + 5n - 34}$
• $u_n = \sqrt{n^2 - 1} - n$ • $u_n = \frac{(n+2)!}{(n^2 + 1) \times n!}$ • $u_n = e^{-\frac{1}{2n}} + \ln\left(\frac{n}{n+2}\right)$
• $u_n = \frac{n + \sin(n)}{n - \cos(n)}$ • $u_n = \sinh(2n) - 2\sinh(n)$ • $u_n = \arctan\left(\frac{n\sqrt{\ln(1 + \frac{\pi^2}{n^2})}}{4}\right)$

Exercice 4 (**)

Trois réels a, b et c (avec $a \neq 0$) vérifient les drôles de conditions suivantes :

- a, b et c sont trois termes consécutifs d'une suite géométrique de raison q.
- a, 2b et 3c sont trois termes consécutifs d'une suite arithmétique de raison q (la même que ci-dessus, donc).

1

Déterminer les valeurs possibles de a, b, c et q.

Exercice 5 (*)

Déterminer pour chacune des suites suivantes la valeur de u_n en fonction de n:

- 1. $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = 4u_n 6$.
- 2. $u_0 = 0$; $u_1 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 3u_{n+1} 2u_n$
- 3. $u_0 = 0$; $u_1 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 6u_{n+1} 9u_n$
- 4. $u_0 = 1$, $u_1 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+2} = \frac{u_{n+1} + u_n}{2}$ (méthode alternative à celle que vous avez naturellement utilisée : étudier la suite $(u_{n+1} u_n)$)
- 5. $u_0 = 2$; $u_1 = \frac{10}{3}$ et $\forall n \in \mathbb{N}$, $3u_{n+2} = 4u_{n+1} u_n$
- 6. $u_n = 1 + 11 + 111 + \dots + \underbrace{11 \dots 11}_{n}$
- 7. $z_0 = 2i$ et $\forall n \in \mathbb{N}, z_{n+1} = \frac{1}{3}(2z_n \overline{z_n})$ (oui, c'est une suite de nombres complexes)

Exercice 6 (**)

On considère la suite (u_n) définie par $u_0 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 2u_n + 2n^2 - n$. Déterminer trois réels a, b et c tels que la suite (v_n) définie par $v_n = u_n + an^2 + bn + c$ soit une suite géométrique. En déduire la valeur de u_n .

Exercice 7 (**)

On considère une suite (u_n) définie par $u_0 > 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$, où a est un réel fixé strictement positif.

- 1. Étudier la nature de la suite (u_n) .
- 2. On pose $v_n = \frac{u_n \sqrt{a}}{u_n + \sqrt{a}}$, déterminer v_{n+1} en fonction de v_n , puis v_n en fonction de n et de v_0 .
- 3. En déduire une majoration de l'écart entre u_n et la limite de la suite en fonction de u_0 et de v_0 . Pour a=2, quelle valeur de n suffit-il de choisir pour que u_n soit une valeur approchée de la limite à 10^{-100} près (calculatrice autorisée pour l'application numérique!).

Exercice 8 (***)

On considère une suite (u_n) définie par $u_n = \left(1 + \frac{a}{n}\right)^n$, avec $a \in \mathbb{R}_+$.

- 1. Montrer que la suite est croissante (pour cette question, on étudiera les variations de la fonction $f: x \mapsto x \ln\left(1 + \frac{a}{x}\right)$ en la dérivant deux fois).
- 2. Montrer que, $\forall x \ge 0$, $\frac{t}{1+t} \le \ln(1+t) \le t$.
- 3. En déduire que, $\forall n \in \mathbb{N}^*, \frac{na}{n+a} \leqslant \ln u_n \leqslant a$.
- 4. Montrer que la suite (u_n) est convergente.
- 5. Quel résultat obtient-on en prenant a=1?

Exercice 9 (**)

On considère deux suites (u_n) et (v_n) telles que $u_0 = v_0 = 1$ et $\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = 3u_n + v_n + 1 \\ v_{n+1} = 2 - 2u_n \end{cases}$

- 1. Montrer que $a_n = u_n + v_n$ définit une suite arithmétique.
- 2. Montrer que $b_n = 2u_n + v_n$ définit une suite arithmético-géométrique.
- 3. En déduire les expressions de u_n et de v_n .
- 4. Calculer $S_n = \sum_{k=0}^n u_k$ et déterminer la limite de cette suite.

Exercice 10 (*)

On considère la suite (u_n) définie par $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$, où on a posé $f(x) = \frac{4x+2}{x+5}$.

- 1. Déterminer les réels x vérifiant f(x) = x. On note a le plus petit d'entre eux, et b le plus grand.
- 2. Expliquer soigneusement pourquoi la suite (v_n) définie par $v_n = \frac{u_n b}{u_n a}$ est effectivement bien définie.
- 3. Montrer que la suite (v_n) est géométrique.
- 4. En déduire une expression explicite de u_n .

Exercice 11 (*)

On considère deux suites (u_n) et (v_n) définies de la façon suivante : $u_n = \sum_{k=0}^{k=n} \frac{1}{k!}$, et $v_n =$

 $u_n + \frac{1}{n \times n!}$. Montrer que ces deux suites sont adjacentes (les curieux seront contents d'apprendre que leur limite commune vaut e). Question subsidiaire (nettement plus difficile) : montrer que la limite commune des ces deux suites est un nombre irrationnel (qu'on ne peut pas écrire sous la forme d'un quotient d'entiers) en faisant un raisonnement par l'absurde.

Exercice 12 (**)

Soient a et b deux réels vérifiant 0 < a < b. On définit deux suites de la façon suivante : $u_0 = a$; $v_0 = b$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n v_n}$ et $v_{n+1} = \frac{u_n + v_n}{2}$.

3

- 1. Vérifier que ces deux suites sont bien définies.
- 2. Montrer que, $\forall n \in \mathbb{N}, u_n \leq v_n$ (pour une fois, pas besoin de récurrence).
- 3. Déterminer la monotonie de chacune des deux suites.
- 4. En déduire que (u_n) et (v_n) convergent vers la même limite.

Exercice 13 (**)

Soit p un entier fixé supérieur ou égal à 2. On pose $u_n = \frac{1}{\binom{n+p}{n}}$, et $S_n = \sum_{k=1}^{k=n} u_k$.

1. Montrer la relation $(n + p + 2)u_{n+2} = (n + 2)u_{n+1}$.

- 2. Montrer par récurrence que $S_n = \frac{1}{p-1}(1-(n+p+1)u_{n+1}).$
- 3. En posant $v_n = (n+p)u_n$, montrer que (v_n) converge vers 0.
- 4. En déduire la limite de la suite (S_n) .

Exercice 14 (***)

Démontrer le théorème de Cesaro : si une suite (u_n) converge vers une limite finie l, alors la suite (v_n) définie par $\forall n \in \mathbb{N}, \ v_n = \frac{1}{n+1} \sum_{k=0}^{k=n} u_k$ a la même limite l (on pourra commencer par traiter le cas particulier où l=0, et revenir à la définition de la limite).

Pour une suite (u_n) convergeant vers l, on pose désormais $v_n = \frac{1}{n^2} \sum_{k=0}^{k=n} k u_k$. Déterminer la limite de (v_n) en utilisant une technique proche de celle de la première question.

Exercice 15 (***)

On considère une suite complexe définie par $z_0 \in \mathbb{C}$ et $\forall n \in \mathbb{N}, z_{n+1} = \frac{z_n + |z_n|}{2}$.

- 1. Étudier la suite dans le cas particulier où $z_0 \in \mathbb{R}$.
- 2. On suppose désormais que z_0 n'est pas réel et on pose $z_0 = re^{i\theta}$, avec $\theta \in]-\pi,0[\cup]0,\pi[$. De même, on notera r_n et θ_n le module et l'argument de z_n . Exprimer r_{n+1} et θ_{n+1} en fonction de r_n et θ_n .
- 3. En déduire une expression explicite de r_n et de θ_n .
- 4. Montrer que la suite (z_n) converge vers une valeur à préciser.

Problème (***)

Pour toutes suites numériques $u=(u_n)_{n\in\mathbb{N}}$ et $v=(v_n)_{n\in\mathbb{N}}$, on définit la suite $u\star v=w$ par :

$$\forall n \in \mathbb{N}, \ w_n = \sum_{k=0}^n u_k \, v_{n-k}$$

Partie A: Exemples

1. Premiers exemples

Pour tout entier naturel n, calculer w_n en fonction de n dans chacun des cas suivants :

- (a) pour tout entier naturel n, $u_n = 2$ et $v_n = 3$.
- (b) pour tout entier naturel n, $u_n = 2^n$ et $v_n = 3^n$.

2. Un résultat de convergence

Dans cette question, la suite u est définie par : $\forall n \in \mathbb{N}, \ u_n = \left(\frac{1}{2}\right)^n$ et v est une suite de réels positifs, décroissante à partir du rang 1 et de limite nulle.

(a) Établir, pour tout couple d'entiers naturels (n, m) vérifiant n < m, l'inégalité :

$$\sum_{k=n+1}^{m} u_k \leqslant u_n$$

(b) Soit n un entier strictement supérieur à 1. Prouver les inégalités :

$$w_{2n} \leqslant v_0 u_{2n} + 2v_n + v_1 u_n$$
 et $w_{2n+1} \leqslant v_0 u_{2n+1} + 2v_{n+1} + v_1 u_n$

- (c) En déduire que les deux suites $(w_{2n})_{n\in\mathbb{N}}$ et $(w_{2n+1})_{n\in\mathbb{N}}$ convergent vers 0 ainsi que la suite $(w_n)_{n\in\mathbb{N}}$.
- (d) Soit u' la suite définie par : $\forall n \in \mathbb{N}, \ u'_n = \left(-\frac{1}{2}\right)^n$. À l'aide de la question précédente, montrer que la suite $u' \star v$ est convergente et de limite nulle.

Partie B: Application à l'étude d'un ensemble de suites

Dans cette partie, A désigne l'ensemble des suites $a=(a_n)_{n\in\mathbb{N}}$ de réels positifs vérifiant :

$$\forall n \in \mathbb{N}^{\times}, \quad a_{n+1} \leqslant \frac{1}{2}(a_n + a_{n-1})$$

- 1. Montrer que toute suite décroissante de réels positifs est élément de A et qu'une suite strictement croissante ne peut appartenir à A.
- 2. Soit $z = (z_n)_{n \in \mathbb{N}}$ une suite réelle vérifiant : $\forall n \in \mathbb{N}^{\times}, \ z_{n+1} = \frac{1}{2}(z_n + z_{n-1}).$
 - (a) Montrer qu'il existe deux constantes réelles α et β telles que l'on a :

$$\forall n \in \mathbb{N}, \quad z_n = \alpha + \beta \left(-\frac{1}{2}\right)^n$$

- (b) En déduire qu'il existe des suites appartenant à A et non monotones.
- 3. Soit $a = (a_n)_{n \in \mathbb{N}}$ un élément de A et b la suite définie par : $\forall n \in \mathbb{N}, \ b_n = \left(-\frac{1}{2}\right)^n$.

On définit alors la suite c par : $c_0 = a_0$ et $\forall n \in \mathbb{N}^{\times}$, $c_n = a_n + \frac{1}{2}a_{n-1}$.

- (a) Montrer que la suite c est décroissante à partir du rang 1 et qu'elle converge vers un nombre ℓ que l'on ne cherchera pas à calculer.
- (b) Pour tout entier naturel n, établir l'égalité : $\sum_{k=0}^{n} \left(-\frac{1}{2}\right)^k c_{n-k} = a_n.$ Que peut-on en déduire pour les suites $b \star c$ et a?
- (c) Soit ε la suite définie par : $\forall n \in \mathbb{N}, \ \varepsilon_n = c_n \ell$ et d la suite $b \star \varepsilon$. En utilisant le résultat de la question **3**. de la Partie **1**, montrer que la suite d converge vers 0.
- (d) Pour tout entier naturel n, établir l'égalité : $d_n = a_n \frac{2}{3}\ell\left(1 \left(-\frac{1}{2}\right)^{n+1}\right)$. En déduire que la suite a converge et préciser sa limite.