- 1. DHard automation: specialised machines for high-volume manufacturing (i.e., ascembly line)
 - 2) Flexible automation; robots in place of specialised machines used in hard automation. Vo
 - 3) Planar robot: robot whose end-effector's motion is limited to a single plane
 - 1) Dextrous works pace: volume of space the end-effector can reach with any desired orientation

2) Lap 1,
$$M = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$
 $S = -1(4) + 5 = 1$

3) A= Trans(3,3,2) + Rot (7, ~39.7°) : it is a valid representation of a frame, the others do not match the transformation matrices.

3)
$$(eot(2)-90)^{-1})* rans(3,0.5,2)^{-1}*B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 73/2 & 0 & 0 \\ 0 & 0.5 & 1 & 0 \\ 0 & 6 & 6 & 1 \end{bmatrix}$$

Undoesn't match a translation/notation matrix

6)	i	0 i	di	a;	α_i
	1	900	di*	0	900
	2	900	d_2^*	0	900
	3	03	0	103	-90°

joint variables are starred to *

- c) See diagram in a
- d) by the formula to calculate A matrices from DH parameters:

$$AI = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$T = A1 * A2 * A3$$

$$T = \begin{cases} S0.3 & O & C03 & d_2 + a_3 S03 \\ O & -1 & O & O \\ C03 & O & S03 & d_1 + a_3 C03 \\ O & O & O & 1 \end{cases}$$

3.e)
$$\emptyset = 0_3$$

 $P_{\frac{1}{2}} = d_1 + Co_3 \rightarrow d_1 = P_2 - a_3 C \emptyset$
 $P_{\frac{1}{2}} = d_2 + So_3 \rightarrow d_2 = P_{\frac{1}{2}} - a_3 S \emptyset$

say the robot operates in the XY plane Py = d3502 Px=d1 + d3 CO2 PZ=0

$$3_1 = 3_3 = 0$$
 to prismatic $3_2 = 1$ to revolute $3_2 = 1$ to revolute $3_2 = 1$ to revolute

- sin (02)=0, when 02=0, 180°

translation in the y-axis & and rotation in 2 are s the two lost DOF

5. huntontal plane + assume alg)=0.

a)
$$P_{X} = 0.3 CO_{12} + 0.4 CO_{1}$$

$$P_{Y} = 0.3 SO_{12} + 0.4 SO_{1}$$

$$J(Q) = \begin{cases} \frac{3P_{X}}{30}, & \frac{3P_{X}}{30^{2}}, & \frac{3P_{X}}{30^$$