TD: Automates à pile

Olivier Raynaud

raynaud@isima.fr http://www.isima.fr/raynaud

Question 1. Montrer que le langage a^nb^n (pour $n \ge 1$) n'est pas rationnel. Concevoir un automate à pile qui reconnaît ce langage.

Question 2. Montrer que le langage des mots composés avec autant de 'a' que de 'b' n'est pas rationnel. Concevoir un automate à pile qui reconnaît ce langage.

Question 3. Concevoir un automate à pile qui reconnaît le langage $\{a^ib^jc^k \mid i=j \text{ ou } j=k\}.$

Question 4. Montrer que le langage des chaînes sur $\{0,1\}$ contenant deux fois plus de 1 que de 0 n'est pas rationnel; Concevoir un automate à pile qui le reconnaît.

Question 5. Concevoir un automate à pile reconnaissant le langage des mots sur $\{a,b\}$ formés de n occurrences de 'a' ou de 'b' suivies de n occurrences de 'a'.

Question 6. Montrer que le langage composé des palindromes impaires sur l'alphabet $\{a, b, X\}$, avec un seul 'X' en position centrale n'est pas rationnel. Concevoir un automate à pile qui reconnaît ce langage.

Question 7. Montrer que le langage composé des palindromes non vides sur l'alphabet $\{a,b\}$ n'est pas rationnel. Concevoir un automate à pile qui reconnaît ce langage.

Question 8. Soit un mot w sur $\{0,1\}$, concevoir un automate à pile qui imprime le plus long des deux premiers facteurs de w composés uniquement de 1.

Question 9. Soit un mot w sur $\{0,1\}$, concevoir un automate à pile qui, lorsqu'il accepte un mot, a imprimé le plus long préfixe α tel que $w = \alpha\beta\gamma$ avec $\alpha\gamma$ formant un palindrome et $|\alpha| = |\gamma|$.

Question 10. Donner des automates à piles pour chacun des langages suivants :

- $-L_1 = \{a^p b^q \mid 0 < q \le p\}$. Peut-on concevoir un automate déterministe?
- $-L_2 = L_{pal} = \{xx^R \mid x \in \{a, b\}^*\};$
- $-L_3 = L_{pal}$;
- $-L_4 = \bar{L}_{copie} \ où \ L_{copie} = \{xx \mid x \in \{a, b\}^*\};$
- $L_5 = L(\mathcal{G})$ avec \mathcal{G} la grammaire ayant pour alphabet terminal $\{d, n, v, p\}$, pour alphabet non terminal $\{S, N, V, P\}$ et pour règles : $\{S \to NV : N \to dn \mid NP : V \to v \mid VN \mid VP , P \to pN\}$