Esercizi di Algebra Lineare, corso A

Enrico Berni

13/03/2025

Provate a svolgere i seguenti esercizi in maniera autonoma, eventualmente confrontandovi con dei compagni. Le soluzioni saranno discusse durante il tutorato di giovedì 13 marzo.

- 1. Sia φ il prodotto scalare su $V = \mathfrak{M}(2,\mathbb{R})$ dato da $\varphi(X,Y) = \operatorname{tr}(X^tY)$. Sia f l'endomorfismo di V definito da $f(X) = X X^t$.
 - (a) Determinare se $f \in \varphi$ -autoaggiunto.
 - (b) Determinare se f è un'isometria per φ .
 - (c) Scrivere la matrice che rappresenta f rispetto ad una base di V, e confrontare il risultato con quanto ottenuto nei punti precedenti.
- 2. Sia

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 1 & 2 & 3 \\ 1 & 0 & 3 \end{bmatrix}.$$

Esprimere A^5 come combinazione lineare di I, A, A^2 .

- 3. Trovare, se esiste, una matrice $A \in \mathfrak{M}(4,\mathbb{R})$ tale che $\mu_A(t) = t^3 2t^2 + t$.
- 4. Sia $A = \begin{bmatrix} 1-i & i \\ 2+i & i-1 \end{bmatrix} \in \mathfrak{M}(2,\mathbb{C}).$
 - (a) Mostrare che L_A non è un operatore unitario di \mathbb{C}^2 rispetto al prodotto hermitiano standard.
 - (b) Trovare un prodotto hermitiano φ definito positivo rispetto al quale L_A sia un operatore unitario. Scrivere esplicitamente la matrice di φ rispetto alla base canonica.

- 5. Sia V uno spazio vettoriale reale, e sia $f \in \operatorname{End}(V)$ un endomorfismo tale che $f^2 = id$.
 - (a) Esiste un prodotto scalare su V definito positivo rispetto al quale f è autoaggiunto?
 - (b) È vero che f è autoaggiunto rispetto a ogni prodotto scalare su V definito positivo?