Introduction to Machine Learning

Fall Semester

Homework 3: Nov 11th, 2018

Due: Nov 25th (See the submission guidelines in the course web site)

Theory Questions

- 1. (10 points) Perceptron Lower Bound. Show that for any $0 < \gamma < 1$ there exists a number d > 0, vector $\mathbf{w}^* \in \mathbb{R}^d$ for which $\|\mathbf{w}^*\| \le 1$ and a sequence of examples $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)$ such that:
 - (a) $\|\mathbf{x}_i\| = 1$.
 - (b) $\frac{y_i \mathbf{x}_i \cdot \mathbf{w}^*}{\|\mathbf{w}^*\|} \ge \gamma$.
 - (c) Perceptron makes $\left\lfloor \frac{1}{\gamma^2} \right\rfloor$ mistakes on the sequence.

(Hint: Choose $m = d = \left| \frac{1}{\gamma^2} \right|$ and let $\{\mathbf{x}_i\}_i$ be the standard basis of \mathbb{R}^d)

2. (10 points) Halving Algorithm. Denote by $\mathcal{A}_{Halving}$ the Halving algorithm you have seen in class. Let $d \geq 6$, $\mathcal{X} = \{1, 2, ..., d\}$ and let $\mathcal{H} = \{h_{i,j} \mid 1 \leq i < j \leq d\}$ where

$$h_{i,j}(x) = \begin{cases} 1 & (x=i) \lor (x=j) \\ 0 & otherwise \end{cases}$$

Show that $M(A_{Halving}, \mathcal{H}) = 2$.

(Definition of mistake bound $M(\mathcal{A}, \mathcal{H})$: Let \mathcal{H} be a hypothesis class and \mathcal{A} an online algorithm. Given any sequence $S = (x_1, h^*(x_1)), ..., (x_m, h^*(x_m))$ where m is an integer and $h^* \in \mathcal{H}$, let $M_{\mathcal{A}}(S)$ be the number of mistakes \mathcal{A} makes on the sequence S. Then $M(\mathcal{A}, \mathcal{H}) = \sup_S M_{\mathcal{A}}(S)$.)

- 3. (10 points) Max of Convex Functions. Consider m convex functions $f_1(\mathbf{x}), \ldots, f_m(\mathbf{x})$, where $f_i : \mathbb{R}^d \to \mathbb{R}$. Now define a new function $g(\mathbf{x}) = \max_i f_i(\mathbf{x})$.
 - (a) Prove that g(x) is a convex function.
 - (b) Show that the sub-gradient of g at point x is the gradient of f_i where i is the $argmax\{f_1(x),...,f_m(x)\}$
- 4. (15 points) ℓ^2 penalty. Consider the following problem:

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{C}{2} \sum_{i=1}^m \xi_i^2$$

s.t. $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i \quad \forall i = 1, \dots, m$

- (a) Show that a constraint of the form $\xi_i \geq 0$ will not change the problem. meaning, Show that these non-negativity constraints can be removed. That is, show that the optimal value of the objective will be the same whether or not these constraints are present.
- (b) What is the Lagrangian of this problem?
- (c) Minimize the Lagrangian with respect to $\mathbf{w}, b, \boldsymbol{\xi}$ by setting the derivative with respect to these variables to 0.
- (d) What is the dual problem?
- 5. (10 points) Interval growth function. The goal of this exercise is to compute the growth function of the interval hypothesis class $H = \{h_{a,b} : a < b\}$ and $\chi = \Re$. Where h(x) = 1 if $x \in [a,b]$ else 0. In other words, your goal is to give an explicit expression to $\Pi_H(m) = \max_{C:|C|=m}|H_C|$ where H_C is the restriction of H on the set C.
- 6. (15 points) Sample complexity of agnostic PAC. Let H be a hypothesis class of functions from a domain χ to $\{0,1\}$ and let the loss function be the 0-1 loss. Assume that $VCdim(H) = d < \infty$. Show that if

$$n \ge \frac{64d}{\epsilon^2} ln(\frac{16d}{\epsilon^2}) + \frac{16}{\epsilon^2} \ln(\frac{1}{\delta})$$

then:

$$P[e_p(ERM(S)) - min_{h \in H}e_p(h) > \epsilon] \le \delta$$

To prove the above claim you can use the following lemma without proving it: Lemma: Let $a \ge 1$ and b > 0. Then: $x \ge 4alog(2a) + 2b \to x \ge alog(x) + b$