

REGRESSÃO LINEAR

LIMITAÇÕES DOS TESTES DE HIPÓTESE

- Estabelecem se existe associação entre duas variáveis, mas...
- Não quantificam a força da associação; e
- Não permitem representar a relação existente sob uma forma funcional.

RELEMBRANDO: COEFICIENTE DE CORRELAÇÃO

Coeficiente de correlação linear de Pearson

Valor numérico que mede a intensidade da associação linear existente entre as duas variáveis a partir de uma série de observações.

O coeficiente de correlação assume valores entre -1 e 1.

Valores próximos de 1 indicam uma forte relação linear positiva.

Valores próximos de -1 indicam uma forte relação linear negativa.

COEFICIENTE DE CORRELAÇÃO

Correlação indica a força e a direção do relacionamento linear entre duas variáveis aleatórias. No uso estatístico geral, correlação se refere à medida da relação entre duas variáveis, embora correlação não implique causalidade. Neste sentido, existem vários coeficientes medindo o grau de correlação adaptados à natureza dos dados.

Covariância
$$r_{xy} = \frac{S_{xy}}{S_x S_y} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i} (x_i - \overline{x})^2 \sum_{i} (y_i - \overline{y})^2}}$$

RELEMBRANDO: COEFICIENTE DE CORRELAÇÃO

Objetivo: Estabelecer uma função matemática que descreva a relação entre uma variável contínua (variável explicada ou dependente) e uma ou mais variáveis explicativas ou independentes.

PREVISÕES sobre o comportamento futuro de um fenômeno atual extrapolam-se para o futuro o comportamento presente das variáveis:

Ex.: Prever a população de uma cidade no futuro.

Ex.: Prever a natalidade infantil para o ano 2050.

Ex.: Prever a demanda futura por habitação.

SIMULAR os efeitos de uma variável X sobre uma variável Y avalia-se as relações de causa-efeito entre 2 variáveis.

Ex.: Simular os efeitos sobre a segurança na cidade (Y) em função do aumento do policiamento ostensivo nas ruas (X) .

Ex.: Simular o efeito sobre o trânsito (Y) de uma cidade em função da elevação do preço da gasolina (X).

Observação	X	Υ
1	30	4300
2	21	3350
3	35	5200
4	42	4900
5	37	4700
6	20	2100
7	8	1950
8	17	2700
9	35	4000
10	25	4800

Relação Direta

Idade X Renda mensal

Relação Direta Idade X Renda mensal

MODELO LINEAR

A Análise de Regressão é o processo matemático para calcular os parâmetros "a" e "b" de uma função f (X).

$$Y = a + b X$$

Estes parâmetros determinam as características da função que relaciona 'Y' com 'X'.

No caso do modelo linear, esta função é representada pela chamada reta de regressão.

A regressão significa que os pontos plotados no gráfico são regredidos, isto é, são definidos ou modelados por uma reta que corresponde à menor distância entre cada ponto plotado e a reta.

 $Y = \alpha + \beta X$ equação da reta a partir dos dados coletados

Y' = a + b X' equação da reta a partir das estimativas

ERRO OU DESVIO

Haverá sempre alguma diferença entre o valor observado Y e o valor estimado Y'. Essa diferença em estatística é chamada de erro ou desvio:

$$e = Y - Y'$$

O erro indica que:

- As variações de Y não são perfeitamente explicadas pelas variações de X ou;
- Existem outras variáveis das quais Y depende ou;
- Os valores de X e Y são obtidos de uma amostra particular que não é representativa da realidade.

OBJETIVO DE UMA REGRESSÃO

- Reduzir a diferença entre Y (plotado / observado) e Y' (estimado / calculado) ou;
- Tornar mínimos os somatórios dos desvios entre Y e Y'.

$$\sum (Y - Y') = (y_1 - y'_1) + (y_2 - y'_2) + \dots + (y_n - y'_n) = mínimo$$

OBJETIVO DE UMA REGRESSÃO

A reta de regressão é apenas uma aproximação da realidade.

É um modo útil para indicar a tendência dos dados.

Duas medidas são utilizadas para indicar quanto confiável, útil ou aproximada da realidade é a reta:

- Erro-padrão da estimativa.
- · Coeficiente de determinação.

MODELOS DE REGRESSÃO LINEAR

Modelos matemáticos para determinação da relação linear entre variáveis permitem, sob algumas condições, a predição de uma variável em função de outra.

FUNÇÃO LINEAR: A RETA

Função Linear: a reta.

MODELOS DE REGRESSÃO LINEAR

SITUAÇÃO 1: Uma vez verificada a existência de uma relação entre o investimento em treinamento e as vendas de uma empresa, desejamos desenvolver um modelo para estimar a medida de vendas (variável y) a partir da medida dos investimentos em treinamento (variável x).

Qual a reta que melhor se ajusta a estes dados?

MODELOS DE REGRESSÃO LINEAR

MÉTODO DOS MÍNIMOS QUADRADOS

O objetivo é minimizar a soma do quadrado dos erros:

$$\sum_{i=1}^{n} (y_i - y_i)^2$$

Obtendo os valores de b e a que minimizam a equação acima.

MÉTODO DOS MÍNIMOS QUADRADOS

A equação que descreve a relação entre as duas variáveis é:

$$y = \alpha x + b + \varepsilon$$

Podemos utilizar a reta de regressão para estimar os valores de:

$$y \\ \hat{y} = a \cdot x + b$$

$$a = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} y_{i}\right) / n}{\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2} / n}$$

$$b = \overline{y} - a \cdot \overline{x}$$

ESTIMATIVA DOS PARÂMETROS

\mathcal{X}_{i}	${\cal Y}_i$
5	27
10	46
20	73
8	40
4	30
6	28
12	46
15	59
·	

$$\hat{y} = b + a \cdot x$$

ESTIMATIVA DOS PARÂMETROS

$\mathcal{X}^{}_i$	${\cal Y}_i$
5	27
10	46
20	73
8	40
4	30
6	28
12	46
15	59
$\hat{\mathbf{n}} - \mathbf{b}$	1 a x

$$\hat{y} = b + a \cdot x$$

 $\hat{y} = 14,577 + 2,095 \cdot x$

Coeficiente de Determinação

Quando fazemos uma regressão linear, os valores observados (xi,yi) estão espalhados ao redor da reta de regressão. Quanto menor for este espalhamento, melhor a reta de regressão representa o conjunto de valores observados. A variância amostral total, como estimador do espalhamento, pode ser decomposta da seguinte forma:

$$\sum_{i=1}^{n} \left(y_i - \overline{y} \right)^2 = \sum_{i=1}^{n} \left(y_i - \overline{y} \right)^2 + \sum_{i=1}^{n} \left(y_i - \overline{y}_i \right)^2$$

$$y_i$$
 = Valores observados

$$v = Valor médio$$

$$v = Valores estimados$$

Análise de Variância

A variabilidade total observada na variável dependente está dividida em 2 componentes:

$$\widehat{Y}_i - Yi = resíduo da regressão$$
 $\widehat{Y}_i - \overline{Y}_i = \mathbf{dist} \hat{\mathbf{a}} \mathbf{ncia} da média dos Y's$

$$\sum (Y_i \, - \, \bar{Y})^2 = \, \sum \bigl(Y_i \, - \, \widehat{Y}_i\bigr)^2 \, + \, \sum \bigl(\widehat{Y}_i \, - \, \bar{Y}\bigr)^2$$

Soma dos quadrados total SQT ou SST

Soma dos resíduos total SQE ou SSE

Soma dos quadrados regressão SQR ou SSR Onde:

SST = total sum of squares.

SSR = sum of squares due to regression.

SSE = sum of squares due to error.

$$\sum (Y_i - \bar{Y})^2 = \sum (Y_i - \widehat{Y}_i)^2 + \sum (\widehat{Y}_i - \bar{Y})^2$$

Soma dos quadrados total SQT ou SST Soma dos resíduos total SQE ou SSE Soma dos quadrados regressão SQR ou SSR

$$R^2 = \frac{SSR}{SST} = r^2$$

Onde r é o coeficiente de correlação de Pearson.

R múltiplo	0.74
R-Quadrado	0.55
R-quadrado ajustado	0.53
Erro padrão	123.27
Observações	25

ANOVA

	gl	SQ	MQ	F	F de significação
Regressão	1	428912.3522	428912.3522	28.22781	0.00
Resíduo	23	349477.4932	15194.67362		
Total	24	778389.8455	Market Control Control Market Control Control		

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores
Interseção	194.93	34.13	5.71	0.00	124.33	265.52
VendasCartão (X)	2.11	0.40	5.31	0.00	1.29	2.93

Resultados do Excel

ANOVA

R múltiplo	0.74
R-Quadrado	0.55
R-quadrado ajustado	0.53
Erro padrão	123.27
Observações	25

A relação linear entre as duas variáveis é medida pelo coeficiente de correlação

R-quadrado da regressão, que mede a proporção da variabilidade em Y que é explicada por X. É uma função direta da correlação entre as variáveis

é uma medida semelhante ao R-quadrado mas que, ao contrário deste, não aumenta com a inclusão de variáveis independentes não significativas

Erro padrão: mede a dispersão dos valores observados em relação a equação da reta

$$\sum_{\text{Soma de}} (\gamma_i - \overline{\gamma}_i)^2 = \sum_{\text{Soma de}} (\gamma_i - \hat{\gamma}_i)^2 + \sum_{\text{Soma de}} (\hat{\gamma}_i - \overline{\gamma}_i)^2$$
Soma de
Quadrados Total
Quadrados da
Residual
Regressão
Regressão

ANOVA	104574575W	COROLLA COLOR		Part 191	
	gl	SQ	MQ	F	F de significação
Regressão	1	428912.3522	428912.3522	28.22781	0.00
Resíduo	23	349477.4932	15194.67362		
Total	24	778389 8455			

A estatística F serve para testar quanto o modelo de regressão ajusta os dados. Se a probabilidade associada com F é pequena, a hipótese que R²pop = 0 é rejeitada.

-	Coeficientes	Erro padrão	Stat t (3)	valor-P (4)	95% (5 inferiores) 95% superiores
(1) Interseção	194.93	34.13	5.71	0.00	124.33	265.52
(2) VendasCartão (X)	2.11	0.40	5.31	0.00	1.29	2.93

- (1) Parâmetro B_o (intercepto)
- (2) Parâmetro B₁ (inclinação da reta)
- (3) Teste de hipóteses dos parâmetros Bo e B1
- (4) Nível descritivo do teste de hipóteses (3)
- (5) Intervalo de confiança da estimativa do parâmetro

EQUAÇÃO DA REGRESSÃO LINEAR SIMPLES

Interceptor

Ponto em que a reta

de regressão toca o

eixo Y.

Coeficiente da variável independente.

 $Y = \beta_0 + \beta_1 x_1 + \varepsilon$

Erro, uma variável aleatória não observável.

EQUAÇÃO DA REGRESSÃO LINEAR MÚLTIPLA

HIPÓTESES ASSUMIDAS PELO MODELO

H1) A relação entre as variáveis é linear Y = β 0 + β 1xi + ε i=1,n:

H2) Média nula: $E(\varepsilon i) = 0$ para todo i=1,n

H3) Variância constante: $V(\varepsilon i) = \sigma 2$ para todo i=1,n

H4) Erros não correlacionados: Cov(εi, εk) = 0 para todo i≠k

H5) Distribuição Normal: $\varepsilon i \sim N(0,\sigma^2)$ para todo i=1,n

 ε i são independentes e identicamente distribuídos N(0, σ 2)

H6) A variável explicativa X é fixa, i.e., não é estocástica.

ROOT MEAN SQUARE ERROR (RMSE)

- A medida de erro normalmente utilizada para avaliar a qualidade do ajuste de um modelo é a chamada RAIZ DO ERRO MÉDIO QUADRÁTICO.
- Ela é a raiz do erro médio quadrático da diferença entre a predição e o valor real.
- Podemos pensar nela como sendo uma medida análoga ao desvio-padrão.
- A medida RMSE tem a mesma unidade que os valores de y.
- RMSE é uma boa medida, porque geralmente ela representa explicitamente o que vários métodos tendem a minimizar.

MEAN ABSOLUTE ERROR (MAE)

Nas estatísticas, o erro absoluto médio (MAE) é uma medida de erros entre observações emparelhadas que expressam o mesmo fenômeno. Exemplos de Y versus X incluem comparações de tempo previsto versus observado, tempo subsequente versus tempo inicial e uma técnica de medição versus uma técnica alternativa de medição.

ERRO ABSOLUTO RELATIVO (RAE)

O erro absoluto relativo (RAE) é uma maneira de medir o desempenho de um modelo preditivo usada principalmente em aprendizado de máquina, mineração de dados e gerenciamento de operações. O RAE não deve ser confundido com erro relativo, que é uma medida geral de precisão ou exatidão para instrumentos, como relógios, réguas ou balanças.

O erro absoluto relativo é expresso como uma razão, comparando um erro médio (residual) com os erros produzidos por um modelo trivial ou ingênuo. Um modelo razoável (que produz resultados melhores que um modelo trivial) resultará em uma proporção menor que um.

EXEMPLO 1

$$\hat{y}_i = 14,577 + 2,905 \cdot x_i$$

		▼			
\mathcal{X}_{i}	${\cal Y}_i$	$\hat{{\mathcal{Y}}}_i$	$(y_i - \overline{y})^2$	$(\hat{y}_i - \overline{y})^2$	$(y_i - \hat{y}_i)^2$
5	27	29	276,39	210,92	4
10	46	44	5,64	0,000004	6
20	73	73	862,89	844,02	0
8	40	38	13,14	33,73	5
4	30	26	185,64	303,74	14
6	28	32	244,14	134,98	16
12	46	49	5,64	33,78	12
15	59	58	236,39	211,03	1

$$\overline{y} = 43,625$$
 $\Sigma = 1830$ $\Sigma = 1772$ $\Sigma = 58$

$$R^2 = \frac{SSR}{SST} = \frac{1772}{1830} = 0,9683$$

$$SST = SSR + SSE$$

EXEMPLO

$\mathcal{X}^{}_i$	${\cal Y}_i$
2,772	10,98
6,193	16,05
9,917	30,87
4,841	17,61
6,910	23,59
8,372	23,07
4,290	11,24

EXEMPLO

\mathcal{X}_i	${\cal Y}_i$
2,772	10,98
6,193	16,05
9,917	30,87
4,841	17,61
6,910	23,59
8,372	23,07
4,290	11,24

$$y = 2,769 x + 1,935$$

EXEMPLO

$$\hat{y}_i = 2,769 + 1,935 \cdot x_i$$

		<u> </u>			
\mathcal{X}_{i}	${\cal Y}_i$	$\hat{{\mathcal{Y}}}_i$	$(y_i - \overline{y})^2$	$(\hat{y}_i - \overline{y})^2$	$(y_i - \hat{y}_i)^2$
2,772	10,98	9,61	65,26	89,28	1,878
6,193	16,05	19,08	9,05	0,00	9,185
9,917	30,87	29,39	139,51	106,76	2,188
4,841	17,61	15,34	2,10	13,85	5,164
6,910	23,59	21,07	20,53	4,03	6,372
8,372	23,07	25,11	16,09	36,66	4,175
4,290	11,24	13,81	61,13	27,52	6,616
2,772	10,98	9,61	65,26	89,28	1,878
	\overline{y} = 19,06		\(\sum_{=313,68}\)	\(\sum_{=} 278,10 \)	\(\sum_{= 35,58}\)

$$R^2 = \frac{SSR}{SST} = \frac{278,10}{313,68} = 0,8866$$

$$SST = SSR + SSE$$

Estimativa de s2.

O erro médio quadrático (MSE) fornece uma estimativa de s^2 . Usamos a notação s^2 :

$$s^2 = MSE = SSE/(n - 2)$$

Onde:

SSE =
$$\sum (y_i - \hat{y}_i)^2 = \sum (y_i - b - a \cdot x_i)^2$$

• Estimativa de s (erro-padrão):

$$s = \sqrt{\text{MSE}} = \sqrt{\frac{\text{SSE}}{n-2}}$$

$$\hat{y}_i = 2,769 \cdot x_i + 1,935$$

		▼			
\mathcal{X}_{i}	${\cal Y}_i$	$\hat{{\mathcal{Y}}}_i$	$(y_i - \overline{y})^2$	$(\hat{y}_i - \overline{y})^2$	$(y_i - \hat{y}_i)^2$
2,772	10,98	9,61	65,26	89,28	1,878
6,193	16,05	19,08	9,05	0,00	9,185
9,917	30,87	29,39	139,51	106,76	2,188
4,841	17,61	15,34	2,10	13,85	5,164
6,910	23,59	21,07	20,53	4,03	6,372
8,372	23,07	25,11	16,09	36,66	4,175
4,290	11,24	13,81	61,13	27,52	6,616
2,772	10,98	9,61	65,26	89,28	1,878

$$\overline{y} = 19,06$$
 $\sum = 313,68$ $\sum = 278,10$ $\sum = 35,58$ SST = SSR + SSE

$$s^2 = MSE = \frac{SSE}{(N-2)} = \frac{35,58}{5} = 7,116 \Rightarrow s = \sqrt{7,116} = 2,668$$

É uma extensão de modelos de regressão linear simples, visto que utiliza mais de uma variável explicativa.

$$y_i = \beta_0 + \beta_1 \cdot x_{1i} + \beta_2 \cdot x_{2i} + \dots + e_i$$

EXEMPLO 4:

Dados do laboratório sobre a influência da temperatura média, ou seja, das estações do ano, em relação a um remédio desenvolvido para apoio no combate à gripe.

Vendas no Trimestre (10.000 un)	Despesas com Propaganda (\$ 10.000)	Média da Temperatura (°C)
Vendas	Propaganda	Temperatura
25	9	13
10	7	22
8	4	24
25	12	14
20	9	18
12	6	20
13	5	22
15	6	14
18	8	17

Estatística de regressão					
R múltiplo	0,949676887				
Quadrado de R	0,901886189				
Quadrado de R ajustado	0,869181586				
Erro-padrão	2,24259699				
Observações .					

ANOVA

	gl		SQ	MQ	F	F de significância
Regressão		2	277,380108	138,690054	27,57673509	0,000944475
Residual		6	30,17544757	5,029241262		
_Total		8	307,5555556			

	Coeficientes	Erro-padrão	Stat t	valor P	95% inferior
Interceptar	19,12813299	7,506193252	2,548313419	0,043589583	0,761139766
Propaganda	1,378005115	0,451520517	3,051921369	0,022456485	0,27317421
Temperatura	-0,718414322	0,263548007	-2,725933429	0,03437098	-1,363293064

Vendas = 19,1281 + 1,378 Propaganda - 0,7184 Temperatura

TESTES DE SIGNIFICÂNCIA DO AJUSTE

Teste F do ajuste

Hipótese
$$\begin{cases} H_0: \beta_i = 0 \text{ para algum valor de } i \neq 0 \\ H_a: \beta_i \neq 0 \forall i \neq 0 \end{cases}$$

Estatística do teste (ANOVA): F = MSR/MSE

Rejeitar H0 se valor-p < α ou F > F α

Teste dos coeficientes:

Hipótese:
$$\begin{cases} H_0: \beta_i = 0 \\ H_1: \beta_i \neq 0 \end{cases}$$

Estatística do teste t

Rejeitar H0 se valor-p < α ou t > t α

MULTICOLINEARIDADE

- Problema que ocorre quando as variáveis explicativas não são independentes.
- Consequência da Multicolinearidade: as estimativas dos parâmetros perdem a confiabilidade.
- Indicações de Multicolinearidade:
 - Resultados obtidos <u>atentam contra o bom senso</u>.
 - Valor-P maior que 0,05.
 - Alta correlação entre as variáveis do modelo.

Ação necessária: eliminar alguma variável explicativa e efetuar uma nova regressão.

Vendas (R\$ 1.000) Propaganda	(R\$ 1.000)	Desconto (%)
2562	16,66	0,5
2592	33,34	1,5
2751	40	2
2670	50	4
2880	66,66	4,5
2640	70	5
3110	83,34	5 5
3120	100	5,5
2811	110	6 <i>,</i> 5
2838	116,66	8
3258	133,34	8,5
3080	150	9
2925	160	9,5
3495	166,66	10,5
3152	183,34	11
3057	190	12
3424	200	12

SUMÁRIO DOS RESULTADOS

Estatística de regressão					
R múltiplo	0,803217619				
Quadrado de R	0,645158544				
Quadrado de R ajustado	0,594466907				
Erro-padrão	179,2507745				
Observações	17				

<u>ANO</u>VA

	gl	SQ	MQ	F	F de significância
Regressão	2	817866,1201	408933,06	12,72712005	0,000708338
Residual	14	449831,7623	32130,84016		
Total	16	1267697,882			

Vendas	(R\$ 1.000) Proj	oaganda (R\$ 1.000)	Desconto (%)
	2562	16,66	0,5
	2592	33,34	1,5
	2751	40	2
	2670	50	4
	2880	66,66	4,5
	2640	70	5
	3110	83,34	5
	3120	100	5,5
	2811	110	6,5
	2838	116,66	8
	3258	133,34	8,5
	3080	150	9
	2925	160	9,5
	3495	166,66	10,5
	3152	183,34	11
	3057	190	12
	3424	200	12

	Coeficientes	Erro-padrão	Stat t	valor P	95% inferior	95% superior	nferior 95,0%	uperior 95,0%
Interceptar	2540,420837	94,56668608	26,86380312	1,90948E-13	2337,595467	2743,24621	2337,59547	2743,24621
Propaganda (R\$ 1.000)	6,800985526	5,542032663	1,227164461	0,239997399	-5,085492353	18,6874634	-5,0854924	18,6874634
Desconto (%)	-48,1738883	88,96120288	-0,541515703	0,596665179	-238,976692	142,628915	-238,97669	142,628915

Vendas = 2540,42 + 6,8009 propaganda – 48,1733 desconto

SUMÁRIO DOS RESULTADOS

Estatística de regressão							
R múltiplo	0,803217619						
Quadrado de R	0,645158544						
Quadrado de R ajustado	0,594466907						
Erro-padrão	179,2507745						
Observações	17						

Vendas = 2540,42 + 6,8009 propaganda – 48,1733 desconto

<u>ANO</u>VA

	gl	SQ	MQ	F	F de significância
Regressão	2	817866,1201	408933,06	12,72712005	0,000708338
Residual	14	449831,7623	32130,84016		
Total	16	1267697,882			

Desconto (%)	ropaganda (R\$ 1.000)	Vendas (R\$ 1.000)
0,5	16,66	2562
1,5	33,34	2592
2	40	2751
4	50	2670
4,5	66,66	2880
5	70	2640
5	83,34	3110
5,5	100	3120
6,5	110	2811
8	116,66	2838
8,5	133,34	3258
g	150	3080
9,5	160	2925
10,5	166,66	3495
11	183,34	3152
12	190	3057
12	200	3424

	Coeficientes	Erro-padrão	Stat t	valor P	95% inferior	95% superior	nferior 95,0%	uperior 95,0%
Interceptar	2540,420837	94,56668608	26,86380312	1,90948E-13	2337,595467	2743,24621	2337,59547	2743,24621
Propaganda (R\$ 1.000)	6,800985526	5,542032663	1,227164461	0,239997399	-5,085492353	18,6874634	-5,0854924	18,6874634
Desconto (%)	-48,1738883	88,96120288	-0,541515703	0,596665179	-238,976692	142,628915	-238,97669	142,628915

	Vendas (R\$ 1.000)	1.000)	Desconto (%)	
Vendas (R\$ 1.000) 1 Alta corre				s variáveis
Propaganda (R\$ 1.000)	0,80	independentes X ₁ e X ₂		
Desconto (%)	0,78	0,99		<u>1</u>

SUMÁRIO DOS RESULTADOS

Estatística de regressão						
R múltiplo	0,798577582					
Quadrado de R	0,637726155					
Quadrado de Rajustado	0,613574565					
Erro-padrão	174,9769101					
Observações	17					

ANOVA

	gl	SQ	MQ	F	F de significância
Regressão	1	808444,0964	808444,0964	26,40514203	0,000121213
Residual	15	459253,786	30616,91906		
Total	16	1267697 882			

Vendas (R\$ 1.000) Propagar	nda (R\$ 1.000)	Desconto (%)
2562	16,66	0,5
2592	33,34	1,5
2751	40	2
2670	50	4
2880	66,66	4,5
2640	70	5
3110	83,34	5
3120	100	5,5
2811	110	6,5
2838	116,66	8
3258	133,34	8,5
3080	150	9
2925	160	9,5
3495	166,66	10,5
3152	183,34	11
3057	190	12
3424	200	12

	Coeficientes	Erro-padrão	Stat t	valor P	95% inferior	95% superior	nferior 95,0%	uperior 95,09
Interceptar	2541,513792	92,2909115	27,53807228	2,93964E-14	2344,80037	7 2738,22721	2344,80037	2738,22721
Propaganda (R\$ 1.000)	3,828484246	0,745045182	5,13859339	0,000121213	2,240458032	5,41651046	2,24045803	5,41651046

Vendas = 2541,51 + 3,8284 propaganda

- Resíduo é a diferença entre os valores reais (da amostra) e os valores estimados pelo modelo.
- Deve ser feito um gráfico do resíduo para ser analisado.
- Resultados mais imediatos:
 - Necessidade de termos de ordem superior.
 - Variável significativa não presente.
 - Identificação de outliers.
- O resíduo deve ter média 0 e ser uniformemente distribuído em torno do zero, sem evidência de nenhuma estrutura.

ARMADILHAS DA REGRESSÃO: RESÍDUOS

ARMADILHAS DA REGRESSÃO: RESÍDUOS

ARMADILHAS DA REGRESSÃO: RESÍDUOS

OBRIGADO

lattes.cnpq.br/687652 8572507972

Copyright © 2021 | Professor André Silva de Carvalho

Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente proibido sem consentimento formal, por escrito, do professor/autor

