Homework 1

Math 4610 *Cody Frisby* 9/16/2017

1. Let

$$f(x) = -2 \quad for \quad x \le 2.5$$

$$f(x) = -2 + 6(x - 2.5) \quad for \quad 2.5 < x$$

A sketch is included for reference.

Of the 4 methods used, and with a similar set tolerance for each method, Newton's converges the quickest, needing just two iterations to find the root, which is approximately 2.833333. First guess for each method is 3. If a method requires two initial points then the second one is 2.

guess	fx	dfx	error
3.000000	1	6	0.1666667
2.833333	0	6	0.0000000

Next fastest was the false position method. It needed 3 iterations to converge on the solution.

guess	a	b	iteration
2.666667	3.000000	2.000000	1
2.833333	3.000000	2.666667	2
2.833333	2.666667	2.833333	3

And third is the secant method, needing 4.

guess	iteration	e
2.666667	1	0.3333333
3.333333	2	0.2500000
2.833333	3	0.1500000
2.833333	4	0.0000000

For the sake of brevity, I do not include all the iterates of the bisection method. It took 28 to converge on the root, being very slow at the end.

guess	a	b	iteration
2.500000	3.000000	2.000000	1
2.750000	3.000000	2.500000	3
2.833984	2.835938	2.832031	10
2.833252	2.833496	2.833008	13
2.833333	2.833333	2.833333	27
2.833333	2.833333	2.833333	28

2. Write down a quadratically convergent method to solve the following equation for \mathbf{x} .

$$\int_0^x e^{-t^2} dt = 0.1$$

Visually, the solution is the area under the curve that is equal to 0.1 from 0 to x.

I do not know of a way to find the indefinite integral $\int e^{-x^2}$. But, we could take the Taylor series expansion of e^{-x^2} out to two terms, integrate, and then solve using a technique that converges quadratically.

$$\int_0^x 1 - t^2 \ dt = 0.1$$

$$x - \frac{x^3}{3} - 0.1 = 0$$

And since newton's method converges at least quadratically, we can apply it using the second function above and its derivative, which after 3 iterations we get

$$x = 0.1003367$$

guess	fx	dfx	error
0.0000000	-0.1000000	1.0000000	$\begin{array}{c} 0.1000000 \\ 0.0003367 \\ 0.0000000 \end{array}$
0.1000000	-0.0003333	0.9900000	
0.1003367	0.0000000	0.9899325	

In summary, using Newton's method, my solution looks like this:

$$x_{n+1} = x_n - \frac{x_n - \frac{x_n^3}{3} - 0.1}{1 - x_n^2}$$

In class the method indicated could be

$$x_{n+1} = x_n - \frac{\int_0^x e^{-t^2} dt - 0.1}{e^{-t^2}}$$

3. Find a third order convergent method to approximate a solution of f(x) = 0.

A sequence that has cubic convergence could look something like

$$P_n = 10^{-3^n}$$

and a method that has this same behavior approximating f(x) = 0 is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} - \frac{1}{2} \frac{f(x_n)^2 f^2(x_n)}{f'(x_n)^3}$$

which when tested on, say, f(x) = cos(x) - x = 0 converges to a given tolerance one iteration quicker than Newton's method.

Below are the results comparing two methods. The initial guess is $x_0 = 1$ for both methods.

Table 6: Newton's Method for cos(x) - x = 0

n	guess	error
1	0.0000000	1.0000000
2	1.0000000	0.2496361
3	0.7503639	0.0112510
4	0.7391129	0.0000278
5	0.7390851	0.0000000

Table 7: Third Order Convergent Method for cos(x) - x = 0

n	guess	error
1	0.0000000	0.5000004
2	0.5000004	0.2359022
3	0.7359026	0.0031825
4	0.7390851	0.0000000

It is interesting to visualize the three iterations for f(x) = cos(x) - x.

$$g(x) = \cos(x) - x - \frac{\cos(x) - x}{-\sin(x) - 1}$$

$$h(x) = \cos(x) - x - \frac{\cos(x) - x}{-\sin(x) - 1} - \frac{(\cos(x) - x)^2 - \cos(x)}{2(-\sin(x) - 1)^3}$$

4. Write Muller's method in the form

$$x_{n+1} = x_n + []f(x_n)$$

where the expression in the brackets is an approximation of $\frac{-1}{f'(r)}$.

I have no idea how to do this one. Sorry.

Muller's method can be written, with initial guesses p_0, p_1, p_2 , as

$$x_{n+1} = x_n - (x_n - x_{n-1}) \frac{2c}{max(b \pm \sqrt{b^2 - 4ac})}$$

where a, b, and c are found using

$$c = f(p_2)$$

$$b = \frac{(p_0 - p_2)^2 [f(p_1) - f(p_2)] - (p_1 - p_2)^2 [f(p_0) - f(p_2)]}{(p_0 - p_2)(p_1 - p_2)(p_0 - p_1)}$$

$$a = \frac{(p_1 - p_2)[f(p_0) - f(p_2)] - (p_0 - p_2)[f(p_1) - f(p_2)]}{(p_0 - p_2)(p_1 - p_2)(p_0 - p_1)}$$

.

5. When does the method $x_{n+1} = x_n + f(x_n)$ converge to a solution r o

$$f f(x) = 0$$
?

This occurs when $|(x_n + f(x_n))'| < 1$. This can converge very rapidly or very slowly (like with sin(x) - x = 0) depending on how closely the values of x_{n+1} and $|(x_n + f(x_n))'|$ are to each other.

6.

 $x_0 = 2.251616$. The results of Newton's method, using this value for my starting point are here as well.

guess	fx	dfx	error
2.251616	2.0687747	4.503232	0.4593978
1.792218 1.733340	$\begin{array}{c} 0.2110463 \\ 0.0034667 \end{array}$	3.584436 3.466680	$0.0588785 \\ 0.0010000$

For the Newton's method of the problem, I define the following functions:

$$f(x) = x^2 - 3 = 0$$
$$f'(x) = 2x$$

Here's is the code of my function:

```
err <- function(p0 = 1, p1 = 4, n = 30, e = 0.001) {
  q0 \leftarrow newton2(x0 = p0, n = 3)[3, 4] - e
  q1 \leftarrow newton2(x0 = p1, n = 3)[3, 4] - e
  r \leftarrow p1 - q1 * ((p1 - p0) / (q1 - q0))
  for(i in 1:n) {
    q0 \leftarrow newton2(x0 = p0, n = 3)[3, 4] - e
    q1 \leftarrow newton2(x0 = p1, n = 3)[3, 4] - e
    r \leftarrow p1 - q1 * ((p1 - p0) / (q1 - q0))
    if (abs(q1) \le 1e-14) \{
      names(r) <- NULL</pre>
      break
    }
    i <- i + 1
    p0 <- p1
    q0 <- q1
    p1 <- r
    q1 \leftarrow newton2(x0 = r)[3, 4] - 0.001
  names(r) <- NULL</pre>
```

```
CHECK <- newton2(x0 = r, n = 3)
RESULT <- r
return(list(x0 = r, check = CHECK))
}</pre>
```

7.

$$x_{n+1} = g(x, a) = ax - ax^2$$

For the below plot, a starts at 1 and goes to 4 by 0.01 and initial point $x_0 = 0.5$.

Thanks for walking me through this problem, professor.