This exercise is designed to evaluate your skills in data modeling, ETL, big data processing, and database optimization

Assignment Overview

The goal of this exercise is to assess your ability to:

- Design efficient data models for both analytical and operational needs.
- Implement ETL processes to load and transform data.
- Work with large datasets using big data frameworks (e.g Hadoop, Spark).
- Optimize database performance and ensure data integrity.

Assignment Details

You will be provided with two datasets:

- 1. **Float Data**: This csv contains staffing and allocation information for projects, including details like team member name, project name, role, estimated hours, and project dates.
- 2. **ClickUp Data**: This csv contains task and time tracking information, including details like team member name, task name, project name, date, hours logged, and billable hours.

Your tasks are:

1. Data Warehousing & ETL Process

Task: Design a data warehouse schema that can handle these datasets and support both reporting and operational needs.

Instructions:

- Create a dimensional model for the data (star schema).
- Implement an ETL process to load the datasets into your schema. You may use any tool or language (SQL, Python, Apache Airflow, etc.). - Use Airflow to load into a DB within a docker container. Build an airflow pipeline that reads and loads to respective tables.
- Ensure data integrity and cleanliness throughout the process.

Deliverables:

- A detailed explanation of your data warehouse design. Will be included in Overall PowerPoint Slide
- ETL scripts or processes used to load the data.
- A description of how you ensure data integrity and cleanliness.

2. Database Query Optimization

Task: In the below pre-written SQL query that operates on a complex dataset provided to you. Your job is to optimize the query for performance.

SELECT

c.Name,

```
f.Role,
SUM(c.hours) AS Total_Tracked_Hours
SUM(f.Estimed Hours) AS Total_Allocated_Hours,
Date
FROM
ClickUp c
JOIN
Float f on c.Name = f.Name
GROUP BY
c.Name, f.Role
HAVING
SUM(c.hours) > 100
ORDER BY
Total_Allocated_Hours DESC;
```

Instructions:

- Analyze and refactor the query for efficiency.
- Implement indexing, partitioning, or other techniques as needed.
- Provide a brief explanation of the steps you took, and the performance improvements achieved. To be added to powerpoint Slide.

Deliverables:

- The optimized SQL query.
- A description of the optimization steps and their impact.

3. Big Data Processing with Spark or Hive

Task: Using either Apache Spark or Hive, process and analyze a large dataset of your choice (e.g any task log records of over 20 million).

Instructions:

- Perform a transformation on the dataset (e.g., aggregating hours logged by project).
- Ensure scalability and efficient processing of large volumes of data.

Deliverables:

- The code used to process the data in Spark or Hive.
- An explanation of your approach and the performance considerations.

4. Data Modeling Techniques

Task: Using the provided datasets, design data models for both analytical and operational purposes.

Instructions:

 Create both a dimensional model (for analytical purposes) and an entity-relationship model (for operational use) • Explain why you chose this model and how it addresses operational needs.

Deliverables:

- The data model diagram.
- A brief report explaining your design decisions.

Submission

Please submit your ETL scripts, SQL queries, diagrams,dockerized solution with instructions in a readme file and any related files. Share any code in a GitHub repository, Jupyter notebook, or equivalent and screenshots of your process and output can also be helpful.

Any written explanations or reports should be submitted as a Google Document.