Frequent pattern and association rule mining

Dataset

• Oakland Crime Statistics 2011 to 2016 (https://www.kaggle.com/cityofoakland/oakland-crime-statistics-2011-to-2016)

这个数据集由2011年至2016年的奥克兰犯罪统计数据组成。

Data analysis requirements

1. Data pre-process

```
In [1]:
        import os
        import time
        import json
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from progressbar import *
        from mpl_toolkits.mplot3d import Axes3D
        # timekeeping
        timekeeping = time.time()
        # load csv file
        data2011 = pd.read csv('../Oakland-Crime-Statistics-2011-to-2016/re
        cords-for-2011.csv')
        data2012 = pd.read csv('../Oakland-Crime-Statistics-2011-to-2016/re
        cords-for-2012.csv')
        data2013 = pd.read csv('../Oakland-Crime-Statistics-2011-to-2016/re
        cords-for-2013.csv')
        data2014 = pd.read csv('../Oakland-Crime-Statistics-2011-to-2016/re
        cords-for-2014.csv')
        data2015 = pd.read_csv('../Oakland-Crime-Statistics-2011-to-2016/re
        cords-for-2015.csv')
        data2016 = pd.read csv('../Oakland-Crime-Statistics-2011-to-2016/re
        cords-for-2016.csv')
        # descriptors of the raw datase
        print('2011:')
        data2011.info()
        print('2012:')
        data2012.info()
        print('2013:')
        data2013.info()
        print('2014:')
        data2014.info()
        print('2015:')
        data2015.info()
        print('2016:')
        data2016.info()
```

2011:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180016 entries, 0 to 180015
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Agency	180015 non-null	object
1	Create Time	180015 non-null	object
2	Location	180016 non-null	object
3	Area Id	179112 non-null	float64
4	Beat	179496 non-null	object
5	Priority	180015 non-null	float64

```
6
     Incident Type Id
                               180015 non-null object
 7
    Incident Type Description 180015 non-null object
    Event Number
                               180015 non-null object
 8
 9
     Closed Time
                               180009 non-null object
dtypes: float64(2), object(8)
memory usage: 13.7+ MB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 187431 entries, 0 to 187430
Data columns (total 11 columns):
 #
    Column
                               Non-Null Count
                                                Dtype
    _____
                               _____
                                                ____
    Agency
                               187430 non-null object
                               187430 non-null object
    Create Time
                               186016 non-null float64
 2
    Area Id
 3
    Beat
                               186447 non-null object
                               187430 non-null float64
 4
   Priority
 5
    Incident Type Id
                               187430 non-null object
    Incident Type Description 187430 non-null object
 7
    Event Number
                               187430 non-null object
    Closed Time
                               187412 non-null object
    Location 1
                               187361 non-null object
                               175 non-null
                                                float64
 10 Zip Codes
dtypes: float64(3), object(8)
memory usage: 15.7+ MB
2013:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 188052 entries, 0 to 188051
Data columns (total 10 columns):
    Column
                               Non-Null Count
                                               Dtype
    _____
                               _____
                                                ____
                               188051 non-null object
 0
    Agency
                               188051 non-null object
    Create Time
 1
 2
    Location
                               188052 non-null object
 3
   Area Id
                               185794 non-null float64
                               186874 non-null object
 4
    Beat
 5
    Priority
                               188051 non-null float64
    Incident Type Id
                               188051 non-null object
 6
 7
    Incident Type Description 188047 non-null object
    Event Number
                               188051 non-null object
    Closed Time
                               188050 non-null object
dtypes: float64(2), object(8)
memory usage: 14.3+ MB
2014:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 187480 entries, 0 to 187479
Data columns (total 11 columns):
 #
    Column
                               Non-Null Count
                                                Dtype
--- -----
                               _____
                                                ____
                               187480 non-null object
 0
    Agency
    Create Time
                               187480 non-null object
 1
 2
   Area Id
                               9693 non-null
                                                float64
 3
    Beat
                               186263 non-null object
```

```
Priority
                              187480 non-null int64
  Incident Type Id
                              187480 non-null object
    Incident Type Description 187339 non-null object
 7
    Event Number
                              187480 non-null object
 8
    Closed Time
                              187480 non-null object
    Location 1
                              187438 non-null object
 9
 10 Zip Codes
                              177 non-null
                                               float64
dtypes: float64(2), int64(1), object(8)
memory usage: 15.7+ MB
2015:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 192581 entries, 0 to 192580
Data columns (total 10 columns):
    Column
                              Non-Null Count
                                               Dtype
--- ----
                               _____
                              192581 non-null object
 0
   Agency
                              192581 non-null object
 1
    Create Time
    Location
                              192581 non-null object
 2
 3
   Area Id
                              192581 non-null object
 4
                              191256 non-null object
    Beat
   Priority
                              192581 non-null int64
    Incident Type Id
                              192581 non-null object
 6
 7
    Incident Type Description 192338 non-null object
    Event Number
                              192581 non-null object
 8
 9
    Closed Time
                              192581 non-null object
dtypes: int64(1), object(9)
memory usage: 14.7+ MB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 110828 entries, 0 to 110827
Data columns (total 10 columns):
 #
    Column
                              Non-Null Count
                                               Dtype
____
                               _____
    Agency
                              110827 non-null object
 0
  Create Time
                              110827 non-null object
    Location
                              110828 non-null object
    Area Id
                              110827 non-null object
 3
 4
    Beat
                              110247 non-null object
 5
   Priority
                              110827 non-null float64
   Incident Type Id
                              110827 non-null object
 7
    Incident Type Description 110827 non-null object
    Event Number
                              110827 non-null object
 8
    Closed Time
                              110827 non-null object
dtypes: float64(1), object(9)
```

这6年的数据集中共包括10个共同的属性: Agency、 Create Time、 Location (Location 1 and Location)、 Area Id、 Beat、 Priority、 Incident Type Id、 Incident Type Description、 Event Number、 Closed Time

memory usage: 8.5+ MB

另外,只有2012和2014年的数据中包括了 Zip Codes 属性,且缺失值非常多,所以在频繁模式与关联规则挖掘过程中去掉该属性,然后把2012和2014年的数据中属性字段 Location 1 改为统一的字段 Location。这里2013年的字段 Location 多出来一个空格,也需要将该字段统一

```
In [2]: # delete 'Zip Codes attribute
        data2012 = data2012.drop('Zip Codes', 1)
        data2014 = data2014.drop('Zip Codes', 1)
        # rename 'Location 1' with 'Location'
        data2012.rename(columns={'Location 1': 'Location'}, inplace = True)
        data2013.rename(columns={'Location': 'Location'}, inplace=True)
        data2014.rename(columns={'Location 1': 'Location'}, inplace=True)
In [3]: data2011 frequency = {key: data2011[key].value counts() for key in
        data2011.columns}
        print(data2011 frequency)
        {'Agency': OP
                          180015
        Name: Agency, dtype: int64, 'Create Time': 2011-06-02T00:00:00.000
        2011-03-27T00:22:41.000
                                    3
        2011-09-21T14:05:59.000
                                    3
        2011-05-03T19:30:24.000
                                    2
        2011-09-10T13:09:26.000
                                    2
        2011-09-14T00:00:00.000
                                    1
        2011-06-26T00:29:05.000
                                    1
        2011-02-26T22:50:25.000
                                    1
        2011-04-02T05:04:20.000
        2011-06-06T10:07:44.000
        Name: Create Time, Length: 179451, dtype: int64, 'Location':
        RNATIONAL BLVD
                               3866
         MACARTHUR BLVD
                                    3129
         AV&INTERNATIONAL BLVD
                                    3067
         BROADWAY
                                    2132
         FOOTHILL BLVD
                                    1791
                                    . . .
        14TH WILLOW ST
                                       1
        GRAND EARHART RD
                                       1
        MACARTHUR AV&D ST
                                       1
        REDWOOD PIEDMONT AV
                                       1
        EDES ALICE ST
        Name: Location, Length: 32505, dtype: int64, 'Area Id': 1.0
                                                                         791
        52
        2.0
               67261
        3.0
               32699
        Name: Area Id, dtype: int64, 'Beat': 04X
                                                      7410
        08X
                6885
        26Y
                5478
        30Y
                5295
        06X
                5119
```

23X	5051
30X	4956
19X	4955
34X	4673
29X	4483
20X	4287
27Y	4159
07X	4134
31Y	4082
25X	4022
35X	3880
33X	3849
03X	3819
32X	3711
27X	3703
09X	3630
21Y	3435
32Y	3125
22X	3061
26X	2978
02Y	2970
10X	2967
14X	2733
03Y	2726
22Y	2664
12Y	2651
05X	2633
02X	2614
31X	2603
21X	2593
17Y	2582
24Y	2575
13Z	2546
15X	2509
24X	2459
12X	2422
10Y	2383
01X	2210
28X	2191
17X	2133
11X	2087
13Y	2017
35Y	1956
31Z	1870
18Y	1778
16Y	1561
14Y	1492
25Y	1482
13X	1122
18X	1063
16X	994
05Y	710
PDT2	20

```
Name: Beat, dtype: int64, 'Priority': 2.0
                                               143314
1.0
        36699
0.0
            2
Name: Priority, dtype: int64, 'Incident Type Id': 933R
                                                              17348
          12817
SECCK
          11393
415
          10752
10851
           7180
10801
              1
FLOOD
              1
963
              1
MTHLAB
148
Name: Incident Type Id, Length: 263, dtype: int64, 'Incident Type
                                        17348
Description': ALARM-RINGER
911 HANG-UP
                         12817
SECURITY CHECK
                         11393
STOLEN VEHICLE
                          7180
415 UNKNOWN
                          6624
INJURE TELEPHONE/POW
                             1
LOCKOUT
                             1
ASSAULT ON A POLICE
                             1
PLAYING BALL IN STRE
                             1
OBSTRUCTING JUSTICE-
                             1
Name: Incident Type Description, Length: 265, dtype: int64, 'Event
Number': LOP110216000538
LOP111003000732
                    1
LOP111031000539
                    1
LOP110531000847
                    1
LOP110804001120
                    1
LOP110302000970
                    1
LOP111116000689
                    1
LOP111007000035
                    1
LOP110127000940
                    1
LOP110228000936
                    1
Name: Event Number, Length: 180015, dtype: int64, 'Closed Time': 2
011-08-01T19:50:11.000
                           2
2011-12-28T18:22:52.000
                            2
2011-02-21T18:03:57.000
                            2
2011-10-13T15:48:36.000
                            2
2011-06-08T09:52:38.000
                            2
2011-06-21T15:28:04.000
                            1
2011-07-31T00:06:02.000
                            1
2011-03-10T14:33:34.000
                            1
2011-05-02T18:44:54.000
                            1
2011-11-08T23:21:31.000
Name: Closed Time, Length: 179506, dtype: int64}
```

根据2011年的各项属性的频数,选取共同属性中的部分属性来进行分析,选取的属性为: Agency 、 Location 、 Area Id 、 Beat 、 Priority 、 Incident Type Id 、 Incident Type Description 、 Event Number

```
In [4]: attribute seleted = ['Agency', 'Location', 'Area Id', 'Beat', 'Prio
        rity', 'Incident Type Id', 'Incident Type Description', 'Event Numb
        er'l
        data2011 seleted = data2011[['Agency', 'Location', 'Area Id', 'Beat
        ', 'Priority', 'Incident Type Id', 'Incident Type Description', 'Ev
        ent Number']]
        data2012_seleted = data2012[['Agency', 'Location', 'Area Id', 'Beat
        ', 'Priority', 'Incident Type Id', 'Incident Type Description', 'Ev
        ent Number']]
        data2013_seleted = data2013[['Agency', 'Location', 'Area Id', 'Beat
        ', 'Priority', 'Incident Type Id', 'Incident Type Description', 'Ev
        ent Number']]
        data2014 seleted = data2014[['Agency', 'Location', 'Area Id', 'Beat
        ', 'Priority', 'Incident Type Id', 'Incident Type Description', 'Ev
        ent Number']]
        data2015_seleted = data2015[['Agency', 'Location', 'Area Id', 'Beat
        ', 'Priority', 'Incident Type Id', 'Incident Type Description', 'Ev
        ent Number']]
        data2016 seleted = data2016[['Agency', 'Location', 'Area Id', 'Beat
        ', 'Priority', 'Incident Type Id', 'Incident Type Description', 'Ev
        ent Number']]
```

为了方便挖掘更全面的关联规则,把6年以来的所有数据合并起来

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180016 entries, 0 to 180015
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Agency	180015 non-null	object
1	Location	180016 non-null	object
2	Area Id	179112 non-null	float64
3	Beat	179496 non-null	object
4	Priority	180015 non-null	float64
5	Incident Type Id	180015 non-null	object
6	Incident Type Description	180015 non-null	object
7	Event Number	180015 non-null	object

dtypes: float64(2), object(6)

memory usage: 11.0+ MB

针对该数据集进行分析之后,针对缺失的数值,决定采用 将缺失部分剔除

```
In [6]: data_clean = data.dropna()
  data_clean.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 178777 entries, 0 to 180014

Data columns (total 8 columns):

	,		
#	Column	Non-Null Count	Dtype
0	Agency	178777 non-null	object
1	Location	178777 non-null	object
2	Area Id	178777 non-null	float64
3	Beat	178777 non-null	object
4	Priority	178777 non-null	float64
5	Incident Type Id	178777 non-null	object
6	Incident Type Description	178777 non-null	object
7	Event Number	178777 non-null	object

dtypes: float64(2), object(6)

memory usage: 12.3+ MB

至此,完成了对数据集进行处理,转换成适合进行关联规则挖掘的形式

2. Find frequent patterns

定义全局的支持度和置信度的阈值

```
In [7]: min sup = 0.1
        min conf = 0.5
In [8]: # Convert DataFrame to a dictionary store
        data dict = []
        for line in data clean.values.tolist():
            data set = []
            for i, value in enumerate(line):
                if not value:
                     data set.append((attribute seleted[i], 'NA'))
                else:
                     data set.append((attribute seleted[i], value))
            data dict.append(data set)
In [9]: # Generate a number of cell candidate item sets
        def C1 generation(dataset):
            C1 = []
            progress = ProgressBar()
            for data in progress(dataset):
                for item in data:
                     if [item] not in C1:
                        C1.append([item])
            return [frozenset(item) for item in C1]
        # Filter item sets with support below the threshold
        def Ck low support filtering(dataset, Ck):
            Ck count = dict()
            for data in dataset:
                for cand in Ck:
                     if cand.issubset(data):
                         if cand not in Ck_count:
                             Ck count[cand] = 1
                         else:
                             Ck count[cand] += 1
            num items = float(len(dataset))
            return list = []
            sup rata = dict()
            # Filter infrequent itemsets
            for key in Ck count:
                support = Ck count[key] / num items
                if support >= min sup:
                     return list.insert(0, key)
```

```
sup_rata[key] = support
   return return list, sup rata
# check whether the sub set is frequent item
def apriori gen(Fk, k):
   return list = []
   len Fk = len(Fk)
   for i in range(len Fk):
        for j in range(i+1, len Fk):
            \# When the k-2nd item is the same, combine the two sets
            F1 = list(Fk[i])[:k-2]
            F2 = list(Fk[j])[:k-2]
            F1.sort()
            F2.sort()
            if F1 == F2:
                return list.append(Fk[i] | Fk[j])
   return return list
# apriori algorithm
def apriori(dataset):
        C1 = C1_generation(dataset) # Generate a number of cell ca
ndidate item sets
        dataset = [set(data) for data in dataset]
        F1, sup rata = Ck low support filtering(dataset, C1)
        F = [F1]
        k = 2
        while len(F[k-2]) > 0:
            # When the candidate item element is greater than 2, th
e subitem set is checked frequently when merging
           Ck = apriori gen(F[k-2], k)
            # Filter item sets with support below the threshold
            Fk, support k = Ck low support filtering(dataset, Ck)
            sup rata.update(support k)
            F.append(Fk)
            k += 1
        return F, sup rata
```

3. Derive the association rules and calculate their support and confidence

```
In [11]: # evaluation rule
         def cal conf(freg set, H, sup rata, strong rules list):
             prunedH = []
             for reasoned item in H:
                 sup = sup rata[freq set]
                 conf = sup / sup rata[freq set - reasoned item]
                 lift = conf / sup rata[reasoned item]
                 jaccard = sup / (sup_rata[freq_set - reasoned_item] + sup_r
         ata[reasoned item] - sup)
                 if conf >= min conf:
                     strong rules list.append((freq set - reasoned item, rea
         soned item, sup, conf, lift, jaccard))
                     prunedH.append(reasoned item)
             return prunedH
         def rules from reasoned item(freq set, H, sup rata, strong rules li
         st):
             H -> the list of elements that appear at the right of the rule
             m = len(H[0])
             if len(freq set) > (m+1):
                 Hmp1 = apriori gen(H, m+1)
                 Hmp1 = cal conf(freq set, Hmp1, sup rata, strong rules list
         )
                 if len(Hmp1) > 1:
                      rules from reasoned item(freq set, Hmp1, sup rata, stro
         ng rules list)
```

基于Apriori算法,首先从一个频繁项集开始,接着创建一个规则列表,其中规则右部只包含一个元素,然后对这些规则进行测试。接下来合并所有的剩余规则列表来创建一个新的规则列表,其中规则右部包含两个元素。这种方法称作分级法。

```
In [12]: # Generate strong association rules
         def generate rules(F, sup rata):
              :param F: frequent sets
              :param sup rata: asupport for frequent sets
              :return: list of strong association rules
             strong_rules_list = []
             for i in range(1, len(F)):
                 for freq set in F[i]:
                     H1 = [frozenset([item]) for item in freq set]
                     # Here, only get a collection with two or more elements
                      if i > 1:
                          rules from reasoned item(freq set, H1, sup rata, st
         rong rules list)
                     else:
                          cal conf(freg set, H1, sup rata, strong rules list)
             return strong rules list
```

```
In [13]: # get strong association rules
    strong_rules_list = generate_rules(freq_set, sup_rata)
    strong_rules_list = sorted(strong_rules_list, key=lambda x: x[3], r
    everse=True)
    print("strong_rules_list ", strong_rules_list)
```

strong rules list [(frozenset({('Area Id', 3.0)}), frozenset({('A gency', 'OP')}), 0.18262975662417424, 1.0, 1.0, 0.1826297566241742 4), (frozenset({('Area Id', 2.0)}), frozenset({('Agency', 'OP')}), 0.3756187876516554, 1.0, 1.0, 0.3756187876516554), (frozenset({('P riority', 2.0)}), frozenset({('Agency', 'OP')}), 0.795253304395979 3, 1.0, 1.0, 0.7952533043959793), (frozenset({('Area Id', 1.0)}), frozenset({('Agency', 'OP')}), 0.44175145572417035, 1.0, 1.0, 0.44 175145572417035), (frozenset({('Priority', 1.0)}), frozenset({('Ag ency', 'OP')}), 0.2047355084826348, 1.0, 1.0, 0.2047355084826348), (frozenset({('Area Id', 1.0)}), frozenset({('Priority', 2.0)}), 0. 35613082219748626, 0.8061791706236151, 1.0137388504609035, 0.40429 260858521715), (frozenset({('Area Id', 1.0)}), frozenset({('Priori ty', 2.0), ('Agency', 'OP')}), 0.35613082219748626, 0.806179170623 6151, 1.0137388504609035, 0.40429260858521715), (frozenset({('Agen cy', 'OP')}), frozenset({('Priority', 2.0)}), 0.7952533043959793, 0.7952533043959793, 1.0, 0.7952533043959793), (frozenset({('Area I d', 2.0)}), frozenset({('Priority', 2.0)}), 0.2960951352802654, 0. 7882862759113654, 0.9912392335296165, 0.3384807212737388), (frozen set({('Area Id', 2.0)}), frozenset({('Priority', 2.0), ('Agency', 'OP')}), 0.2960951352802654, 0.7882862759113654, 0.991239233529616 5, 0.3384807212737388), (frozenset({('Area Id', 3.0)}), frozenset({('Priority', 2.0)}), 0.14302734691822774, 0.7831546707503829, 0.9 847864402716494, 0.1713198394672134), (frozenset({('Area Id', 3.0) }), frozenset({('Priority', 2.0), ('Agency', 'OP')}), 0.1430273469 1822774, 0.7831546707503829, 0.9847864402716494, 0.171319839467213 4)1

```
In [15]: # Save the frequent patterns
         out path = './results'
         freq set file = open(os.path.join(out path, 'frequent pattern.json'
         ), 'w')
         for (key, value) in sup rata out:
             result dict = {'set': None, 'sup': None}
             set result = list(key)
             sup result = value
             if sup_result < min_sup:</pre>
                 continue
             result dict['set'] = set result
             result dict['sup'] = sup result
             json str = json.dumps(result dict, ensure ascii=False)
             freq set file.write(json str + '\n')
         freq set file.close()
         # Save the strong association rules
         rules file = open(os.path.join(out_path, 'association_rule.json'),
         'w')
         for result in strong rules list:
             result dict = {'X set': None, 'Y set': None, 'sup': None, 'conf
         ': None, 'lift': None, 'jaccard': None}
             X_set, Y_set, sup, conf, lift, jaccard = result
             result dict['X set'] = list(X set)
             result dict['Y_set'] = list(Y_set)
             result dict['sup'] = sup
             result dict['conf'] = conf
             result dict['lift'] = lift
             result dict['jaccard'] = jaccard
             json str = json.dumps(result dict, ensure ascii=False)
             rules file.write(json str + '\n')
         rules file.close()
```

4. Evaluation rule

除了支持度(Sup)和置信度(Conf)两项度量规则之外, 还是实现了Lift和Jaccard, 计算公式如下:

$$Sup(X) = \frac{count(X)}{count(data)}$$

$$Conf(X \to Y) = \frac{Sup(X \cup Y)}{Sup(X)}$$

$$Lift(X \to Y) = \frac{Sup(X \cup Y)}{Sup(X) \times Sup(Y)}$$

$$Jaccard(X \to Y) = \frac{Sup(X \cup Y)}{Sup(X) + Sup(Y) - Sup(X \cup Y)}$$

5. Visualizatoin

```
In [17]: def visualization():
             with open('./results/frequent pattern.json') as f:
                 freq = [json.loads(each) for each in f.readlines()]
             with open('./results/association rule.json') as f:
                 rules = [json.loads(each) for each in f.readlines()]
             freq sup = [each['sup'] for each in freq]
             plt.boxplot(freq sup,
                         sym='o',
                         vert=True,
                        widths=0.6,
                        meanline=True)
             plt.ylabel('Frequent Pattern')
             plt.show()
             rules sup = [each['sup'] for each in rules]
             rules conf = [each['conf'] for each in rules]
             plt.scatter(rules sup, rules conf, s=20, c='b', marker='.')
             plt.xlabel = 'Support'
             plt.ylabel = 'Confidence'
             plt.legend(loc='best')
             plt.show()
```

In [18]: visualization()

No handles with labels found to put in legend.


```
In [19]: m, s = divmod(time.time()-timekeeping, 60)
h, m = divmod(m, 60)
print ('run time: %02d:%02d:%02d' % (h, m, s))
```

run time: 01:16:30

6. Analysis

由于时间关系,本次实验未采用所有数据,仅使用2011年的数据共用时 1:16:30 ,挖掘中得到的频繁模式与关联规则会分别保存在 ./results/frequent_pattern.json和 ./results/association_rule.json中

```
In [20]: with open('./results/frequent_pattern.json') as f:
    freq = [json.loads(each) for each in f.readlines()]

with open('./results/association_rule.json') as f:
    rules = [json.loads(each) for each in f.readlines()]

print('frequent_pattern.json')
print(freq)

print('association_rule.json')
print(rules)
```

```
frequent_pattern.json
[{'set': [['Agency', 'OP']], 'sup': 1.0}, {'set': [['Priority', 2.
     'sup': 0.7952533043959793}, {'set': [['Priority', 2.0], ['Age
ncy', 'OP']], 'sup': 0.7952533043959793}, {'set': [['Area Id', 1.0
]], 'sup': 0.44175145572417035}, {'set': [['Agency', 'OP'], ['Area
Id', 1.0]], 'sup': 0.44175145572417035}, {'set': [['Area Id', 2.0]
], 'sup': 0.3756187876516554}, {'set': [['Agency', 'OP'], ['Area I
d', 2.0]], 'sup': 0.3756187876516554}, {'set': [['Priority', 2.0],
['Area Id', 1.0]], 'sup': 0.35613082219748626}, {'set': [['Priorit
y', 2.0], ['Agency', 'OP'], ['Area Id', 1.0]], 'sup': 0.3561308221
9748626}, {'set': [['Priority', 2.0], ['Area Id', 2.0]], 'sup': 0.
2960951352802654}, {'set': [['Priority', 2.0], ['Agency', 'OP'], [
'Area Id', 2.0]], 'sup': 0.2960951352802654}, {'set': [['Priority'
, 1.0]], 'sup': 0.2047355084826348}, {'set': [['Priority', 1.0], [
'Agency', 'OP']], 'sup': 0.2047355084826348}, {'set': [['Area Id',
3.0]], 'sup': 0.18262975662417424}, {'set': [['Area Id', 3.0], ['A
gency', 'OP']], 'sup': 0.18262975662417424}, {'set': [['Priority',
2.0], ['Area Id', 3.0]], 'sup': 0.14302734691822774}, {'set': [['P
riority', 2.0], ['Area Id', 3.0], ['Agency', 'OP']], 'sup': 0.1430
2734691822774}]
association rule.json
[{'X_set': [['Area Id', 3.0]], 'Y_set': [['Agency', 'OP']], 'sup':
0.18262975662417424, 'conf': 1.0, 'lift': 1.0, 'jaccard': 0.182629
75662417424}, {'X_set': [['Area Id', 2.0]], 'Y_set': [['Agency', '
OP']], 'sup': 0.3756187876516554, 'conf': 1.0, 'lift': 1.0, 'jacca
rd': 0.3756187876516554}, {'X_set': [['Priority', 2.0]], 'Y_set':
[['Agency', 'OP']], 'sup': 0.7952533043959793, 'conf': 1.0, 'lift'
: 1.0, 'jaccard': 0.7952533043959793}, {'X set': [['Area Id', 1.0]
], 'Y_set': [['Agency', 'OP']], 'sup': 0.44175145572417035, 'conf'
: 1.0, 'lift': 1.0, 'jaccard': 0.44175145572417035}, {'X set': [['
Priority', 1.0]], 'Y_set': [['Agency', 'OP']], 'sup': 0.2047355084
826348, 'conf': 1.0, 'lift': 1.0, 'jaccard': 0.2047355084826348},
{'X_set': [['Area Id', 1.0]], 'Y_set': [['Priority', 2.0]], 'sup':
0.35613082219748626, 'conf': 0.8061791706236151, 'lift': 1.0137388
504609035, 'jaccard': 0.40429260858521715}, {'X set': [['Area Id',
1.0]], 'Y_set': [['Priority', 2.0], ['Agency', 'OP']], 'sup': 0.35
613082219748626, 'conf': 0.8061791706236151, 'lift': 1.01373885046
09035, 'jaccard': 0.40429260858521715}, {'X_set': [['Agency', 'OP'
]], 'Y_set': [['Priority', 2.0]], 'sup': 0.7952533043959793, 'conf
': 0.7952533043959793, 'lift': 1.0, 'jaccard': 0.7952533043959793}
, {'X_set': [['Area Id', 2.0]], 'Y_set': [['Priority', 2.0]], 'sup
': 0.2960951352802654, 'conf': 0.7882862759113654, 'lift': 0.99123
92335296165, 'jaccard': 0.3384807212737388}, {'X_set': [['Area Id'
, 2.0]], 'Y_set': [['Priority', 2.0], ['Agency', 'OP']], 'sup': 0.
2960951352802654, 'conf': 0.7882862759113654, 'lift': 0.9912392335
296165, 'jaccard': 0.3384807212737388}, {'X_set': [['Area Id', 3.0
]], 'Y_set': [['Priority', 2.0]], 'sup': 0.14302734691822774, 'con
f': 0.7831546707503829, 'lift': 0.9847864402716494, 'jaccard': 0.1
713198394672134}, {'X set': [['Area Id', 3.0]], 'Y set': [['Priori
ty', 2.0], ['Agency', 'OP']], 'sup': 0.14302734691822774, 'conf':
0.7831546707503829, 'lift': 0.9847864402716494, 'jaccard': 0.17131
98394672134}]
```

根据频繁模式可知:

- 频繁一项集:
 - Agency=OP 的支持度是1, 体现不出什么有价值的信息, 故忽略;
 - Priority=2.0 的支持度为0.795,也就是说该地区的犯罪等级大多是 2;
 - Area Id=1.0 时支持度为0.442, 说明在该地区的犯罪事实出现最多, Area Id=2.0 的支持度为0.375, 比 Area Id=1.0 稍微低一些, 这说明了该地区的犯罪记录为第二多。
- 频繁二项集(除去包含 Agency=OP 的项):
 - Priority=2.0 & Area Id=1.0 的支持度最高,为0.356,说明该地区的犯罪等级大多数为 2

根据关联规则可知(除去 Agency==OP):

● Area Id=2.0 → Priority=2.0 的支持度(sup)=0.296, 置信度(conf)=0.788, lift=0.991, jaccard=0.338, 这说明犯罪的严重性与所在地有着较强联系。