First Midterm Examination, Advanced Calculus I ,10/31/2006 Total 110 pts.

- 1. (10%)(i) Let S be an infinite set. State the definition that S is countable.
 - (ii) Let Q be the set of rational numbers. Show that Q is countable.
- 2. (20%) (i) Let $S \subseteq R$. State the definition of inf S.
- (ii) Let $S \subseteq R$ be bounded below and d be a lower bound of S. Show that $d=\inf S \Leftrightarrow \text{for any } \varepsilon > 0$ there exists $x \in S$ such that $d+\varepsilon > x$.
- (iii) Let $\{a_k\}$ be a bounded below and monotone decreasing sequence in R.

Show that
$$\lim_{k\to\infty} a_k = \inf S$$
, where $S = \{a_k\}$.

- 3. (10%) (i) Let $\{a_n\}$ be a sequence in R. State the definitions of $\limsup a_n$ and $\liminf a_n$.
- (ii) Find $\limsup a_n$ and $\liminf a_n$ if a_n is given by

(a)
$$(1+\frac{1}{n})\cos n\pi$$
 (b)(-1)ⁿ n

- 4.(10%) (i) State Cauchy-Schwartz Inequality.
 - (ii) Let $x, y \in R^n$. Use Cauchy-Schwartz Inequality to prove triangular Inequality $||x + y|| \le ||x|| + ||y||$.
- 5.(15%) (i) Let $A \subseteq R^n$. State the definition that A is an open set in R^n .
 - (ii) Show that open ball $B(a,r) = \{x \in R^n \mid |x-a| < r\}$ is an open set.
 - (iii) Show that finite intersection of open sets is open.
- 6.(15%) Determine all accumulation points of the following sets and decide whether the sets are open or closed (or neither).
 - (a) Z, the set of integers,

(b)
$$S = \{\frac{1}{n} + \frac{1}{m} : m, n = 1, 2, 3,\}$$

- (c) $S=\{(x,y):x \ge 0\}$
- 7.(10%) Let $A \subseteq \mathbb{R}^n$. Show that if for any sequence $\{x_k\} \subseteq A, x_k \to x$ we have $x \in A$, then A is a closed set.
- 8.(10%) Let $A, B \subseteq R^n$. Show that

 (i) $Cl(A \cap B) \subseteq Cl(A) \cap Cl(B)$ (ii) $A \cap Cl(B) \subseteq Cl(A \cap B)$ if A is open
- 9.(10%) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a contraction map, i.e., $\forall x, y \in \mathbb{R}^n, ||Tx Ty|| \le \theta ||x y||$, for some $0 < \theta < 1$. Show that there exists a unique fixed point x of T, i.e. Tx = x.