

工科数学分析

刘青青

§2.8 连续函数的性质

- ▶ 连续函数的运算
- ▶ 初等函数的连续性
- ▶ 有界闭区间上连续函数 的性质
- ▶ 函数的一致连续性

定理 (连续函数的四则运算)

设函数f(x) 和g(x) 在a 点连续,则

- ▶ $\alpha f(x) + \beta g(x) (\alpha, \beta)$ 为常数)在 a 点连续;
- ▶ $f(x) \cdot g(x)$ 在 a 点连续;
- ▶ 若 $g(a) \neq 0$, 则 $\frac{f(x)}{g(x)}$ 在 a 点连续.

复合函数的连续性

定理(复合函数的连续性)

设函数 g(x) 在 x_0 点连续, f(u) 在 $u_0 = g(x_0)$ 点连续, 则 $f \circ g(x)$ 在 x_0 点连续.

$$\lim_{x \to x_0} f(g(x)) = f\left(\lim_{x \to x_0} g(x)\right).$$

反函数的连续性

定理 (反函数的连续性)

设函数 f(x) 在区间 I 上严格递增(减)且连续, 值域为区间 J,则其反函数 $x=\varphi(y)$ 在区间 J 上严格递增(减)且连续.

初等函数的连续性

- ▶ 基本初等函数(三角函数、指数函数、对数函数、幂函数、 反三角函数)在其定义区间上是连续的.这里定义区间指 包含于定义域的区间.
- ▶ 初等函数由基本初等函数经有限次四则运算和有限次复合得到,因此在其定义区间上仍然是连续的.
- ▶ 初等函数在定义域上未必连续.

如:函数 $f(x) = \sqrt{\cos x - 1}$ 的定义域为 $x = 2k\pi, k \in \mathbb{Z}$, 不包含任何区间. f(x) 在定义域中任意点都不连续.

若f(x) 在点a 连续,则

$$\lim_{x \to a} f(x) = f(a) = f\left(\lim_{x \to a} x\right).$$

因此,计算函数趋于连续点a的极限只需计算f(a)的值.

例

计算极限

$$(1)\lim_{x\to 0}\cos(1+x)^{\frac{1}{x}},\quad (2)\lim_{x\to 0}\frac{\ln(1+x)}{x},\quad (3)\lim_{x\to 0}\frac{a^x-1}{x}.$$

有界闭区间上连续函数的有界性

定理 (有界性定理)

闭区间 [a,b] 上的连续函数必定有界.

定理的条件闭区间和连续性都必不可少.

- ▶ $f(x) = \frac{1}{x}$ 在区间 (0,1) 上连续, 但无界.
- ► $f(x) = \frac{1}{x}$ 在区间 [-1,1] 上不连续, 且无界.

有界闭区间上连续函数的最值

定理 (最值定理)

闭区间 [a,b] 上的连续函数 必定有最大值和最小值.

最值定理

定理的条件闭区间和连续性都必不可少.

- ▶ $f(x) = x^2$ 在区间 (0,1) 上连续, 但无最大最小值.
- ▶ $f(x) = \arctan x$ 在区间 $(-\infty, +\infty)$ 连续, 但不能取到最值.

$$f(x) = \begin{cases} -x+1, & 0 \le x < 1, \\ 1, & x = 1, \\ -x+3, & 1 < x \le 2, \end{cases}$$

在区间 [0,2] 上不连续, 既没有最大值也没有最小值.

有界闭区间上连续函数的零点

定理 (零点存在定理)

设 f(x) 是闭区间 [a,b] 上的连续函数. 若 $f(a) \cdot f(b) < 0$,则至少存在一点 $\xi \in (a,b)$ 使 $f(\xi) = 0$.

例

证明方程 $x2^x = 1$ 在 (0,1) 至少有一个根.

例

设函数 f(x) 在闭区间 [a,b] 上连续, 且 f(a) < a, f(b) > b, 证明: 至少存在一点 $\xi \in (a,b)$ 使得

$$f(\xi) = \xi.$$

有界闭区间上连续函数的介值定理

定理 (介值定理)

设f(x) 是闭区间 [a,b] 上的连续 函数且 $f(a) \neq f(b)$. 则对 介于f(a) 和f(b) 间的任一数c, 至少存在一点 $\xi \in (a,b)$ 使

$$f(\xi) = c.$$

介值定理的应用

推论

设f(x) 是闭区间 [a,b] 上的连续函数,则其值域f([a,b]) 也是一个闭区间(可退化为一点).

例

设f(x)在[a,b]上连续, $\alpha,\beta>0$.

证明: 至少存在一点 $\xi \in [a,b]$,使得

$$f(\xi) = \frac{\alpha f(a) + \beta f(b)}{\alpha + \beta}.$$

连续概念的局部性

函数的连续性反映的是函数局部的性质.

讨论函数 f(x) 在 a 的连续性与 a 的值密切相关.

设
$$0 < a < 1$$
, 函数 $f(x) = \frac{1}{x}$ 在 a 处连续.

$$\forall 0 < \varepsilon < 1$$
,有 $\delta = \frac{1}{2}a^2\varepsilon$,当 $|x - a| < \delta$ 时,有

$$\left|\frac{1}{x} - \frac{1}{a}\right| < \varepsilon.$$

- ▶ 若考虑函数 $f(x) = \frac{1}{x}$ 在 $\left(\frac{1}{2}, 1\right)$ 的连续性,则可取 $\delta = \frac{1}{8}\varepsilon$. 对于这一 δ , 无论 a 在 $\left[\frac{1}{2}, 1\right]$ 中如何变化,只要 $|x - a| < \delta$, 就有 $|f(x) - f(a)| < \varepsilon$. 因此找到了与 a 无关的 δ .
- ▶ 若考虑函数 $f(x) = \frac{1}{x}$ 在 (0,1) 的连续性, 无法找到公共的 δ .

一致连续

定义 (一致连续)

设函数f(x) 在区间I (或开或闭或无穷)上有定义.

若 $\forall \varepsilon > 0$, ∃ δ > 0 (仅与 ε 有关),

使得 $\forall x_1, x_2 \in I$, 只要 $|x_1 - x_2| < \delta$, 就有

$$|f(x_1)-f(x_2)|<\varepsilon,$$

则称函数f(x) 在区间I上一致连续.

一致连续与连续的区别

- ▶ 一致连续的定义中 x_1, x_2 都在区间 I 中变化,只要 $|x_1 x_2| < \delta$, 就有 $|f(x_1) f(x_2)| < \varepsilon$. 连续的定义中 a 是取定的,只有 x 在变化,只要 $|x a| < \delta$, 就有 $|f(x) f(a)| < \varepsilon$.
- ▶ 一致连续的定义中 δ 由 ε 决定, 与 x_1 和 x_2 的具体位置无关. 连续的定义中 δ 随所讨论的点 a 的不同而改变.

一致连续

例

函数 $f(x) = \sqrt{x}$ 在区间 $[0, \infty)$ 上一致连续.

定理

区间 I 上的一致连续函数必是区间 I 上的连续函数.

不一致连续

▶ 函数 f(x) 在区间 I 上不一致连续.

 \Leftrightarrow

► $\exists \varepsilon_0 > 0, \, \forall \delta > 0, \, \exists x_1, x_2 \in I,$ 使得 $|x_1 - x_2| < \delta \ \text{但} \ |f(x_1) - f(x_2)| \ge \varepsilon_0.$

 \Leftrightarrow

▶
$$\exists \varepsilon_0 > 0$$
, $\exists \{x_n\}, \{x'_n\} \subset I$, 使得 $\lim_{n \to \infty} (x_n - x'_n) = 0$, 但 $|f(x_n) - f(x'_n)| \ge \varepsilon_0$.

不一致连续

例

函数 $f(x) = \sin \frac{1}{x}$ 在 (c,1) (c>0) 上一致连续,但在 (0,1) 上不一致连续.

有界闭区间上的一致连续函数

定理 (Cantor 定理)

闭区间 [a,b] 上的连续函数 f(x) 必定在区间 [a,b] 上一致连续.

推论

若函数 f(x) 在 (a,b) 连续且 $\lim_{x\to a^+} f(x)$ 和 $\lim_{x\to b^-} f(x)$ 都存在,则 f(x) 在开区间 (a,b) 内一致连续.

作业:

▶ 习题 2.8 (A)

2. (3)

3. (2) (6) (9)

习题 2.8 (B)

4.

