计组第五次作业(201700130011 菁英班 刘建东)

8.18

题目: 什么是中断隐指令, 有哪些功能?

概念: CPU响应中断之后,经过某些操作,转去执行中断服务程序。这些操作是由硬件直接实现的,把它称为中断隐指令。中断隐指令并不是指令系统中一条真正的指令,它没有操作码,所有中断隐指令是一种不允许、也不可能为用户使用的特殊指令。

功能: (1) 保存断点

- (2) 暂不允许中断(关中断)
- (3) 引出中断服务程序,即向量地址送PC(硬件向量法)或中断识别程序入口地址送PC(软件查询法)

8.26

题目:设某机配有 A、B、C 3台设备,其优先级按 A->B->C 降序排列,为改变中断处理次序,它们的中断屏蔽字设置如下:

设备	屏蔽字
А	1 1 1
В	0 1 0
С	0 1 1

按下图所示时间轴给出的设备请求中断的时刻,画出 CPU 执行程序的轨迹。设 A、B、C 中断服务程序的执行时间均为 20us。

一开始是A服务执行到结束。然后是B服务开始执行,由于B没有屏蔽C,因此C请求之后,C开始执行,C执行完毕后,B继续执行至结束。

8.28

题目:设某机有4个中断源1、2、3、4,其响应优先级按1->2->3->4降序排列,现要求将中断处理次序改为4->1->3->2。根据下图给出的4个中断源的请求时刻,画出CPU执行程序的轨迹,并给出每个中断源对应的中断屏蔽字:0开放,1屏蔽。设每个中断源的中断服务程序时间均为20us。

由于中断处理次序为4->1->3->2,因此每个中断源对应的中断屏蔽字如下图所示。

中断源	屏蔽字				
	Α	В	С	D	
Α	1	1	1	0	
В	0	1	0	0	
С	0	1	1	0	
D	1	1	1	1	

根据中断屏蔽字,我们可以画出CPU执行程序的轨迹,如下图所示。

思考题

8.16

题目: 计算机为了管理中断,在硬件上通常有哪些设置? 各有何作用? 对指令系统有何考虑? 计算机设置了中断系统用于管理中断,在硬件上主要设置了下列这些中断装置用于中断管理。

- 1. 中断请求触发器, 其个数与中断源个数相同, 用于标志某个中断源向CPU提出中断请求。
- 2. **中断屏蔽触发器**,其个数与中断请求触发器相等,当其为1时,表示该中断源的中断请求被屏蔽, CPU不能响应。
- 3. 排队器, 用来进行中断判优。当多个中断源同时请求时, 排队器可选中优先级最高的中断请求。
- 4. 向量地址形成部件,用以产生中断源的向量地址,从而可找到中断服务程序的入口地址。
- 5. 允许中断触发器, 当其为1时, CPU允许处理中断。
- 6. 堆栈, 用来保护现场。
- 7. 中断查询信号电路。在每条指令执行周期结束时刻,该电路向各中断源发查询信号。

在计算机系统中、指令系统设有开中断、关中断、置屏蔽字及中断返回等指令用于中断管理。

8.24

题目:现有A、B、C、D4个中断源,其优先级由高向低按A->B->C->D顺序排列。若中断服务程序的执行时间为20us,根据下图所示时间轴给出的中断源请求中断的时刻,画出CPU执行程序的轨迹。

中断处理优先级为A->B->C->D,按此优先级即可求出CPU执行程序轨迹,具体结果如下图所示。

8.25

题目: 设某机有5个中断源 L_0 、 L_1 、 L_2 、 L_3 、 L_4 ,按中断响应的优先次序由高到低排序为 $L_0 \to L_1 \to L_2 \to L_3 \to L_4$,现要求中断处理次序改为 $L_1 \to L_4 \to L_2 \to L_0 \to L_3$,根据下面的格式,写出各中断源的屏蔽字。

中断源	屏蔽字					
	0	1	2	3	4	
Lo			'			
L						
L ₂						
[.3		•				
\mathbf{L}_{4}						

由中断处理次序 $L_1 o L_4 o L_2 o L_0 o L_3$,可以得到下述各中断源的屏蔽字。

中断源	屏蔽字				
	LO	L1	L2	L3	L4
LO	1	0	0	1	0
L1	1	1	1	1	1
L2	1	0	1	1	0
L3	0	0	0	1	0
L4	1	0	1	1	1

题目:设某机有3个中断源,其优先级按1->2->3降序排列。假设中断处理时间均为r,在下图所示的时间内共发生5次中断请求,图中①表示1级中断源发出中断请求信号,其余类推,画出CPU执行程序的轨迹。

此题与之前的题目没有太大差别,只需要抓住优先级1->2->3降序排列这一特征就可以完成,具体CPU 执行程序轨迹如下图所示。

