1.

Prove that for any a < b, the interval (a,b) contains a rational number and an irrational number. Proof: Let q > 2/(b-a) and $p = \lfloor qa \rfloor + 1$, then bq - aq > 2 so $p \in (aq,bq)$ i.e. $p/q \in (a,b)$. Hence (a,b) contains a rational number. Apply this to the interval $(a/\sqrt{2},b/\sqrt{2})$, then (a,b) contains an irrational number of the form $\sqrt{2}p/q$.

2.

Given an ellipsis Γ with foci F_1, F_2 .

(1) Suppose a light ray is emitted from point A_1 on Γ , that intersects F_1F_2 and then Γ at A_2 . After reflecting on Γ , it again intersects Γ at points A_3, A_4, \cdots , prove that A_nA_{n+1} always intersect F_1F_2 . Proof: It suffices to show that A_2A_3 intersects F_1F_2 . Note that the line A_2A_2 bisects both angles $\angle F_1A_2F_2$ and $\angle A_1A_2A_3$, hence A_2A_3 intersects F_1F_2 iff A_1A_2 intersects F_1F_2 .

2025/9/17

1.

Prove that the Cantor set is uncountable but has measure $\boldsymbol{0}$.

Proof: The Cantor set

$$\mathcal{C}=\left\{\sum_{i=1}^{\infty}a_n3^{-n}:a_n\in\{0,2\}
ight\}$$

is uncountable since it can be mapped bijectively to (0,1) by $\sum_{i=1}^{\infty}a_n3^{-n}\mapsto\sum_{i=1}^{\infty}b_n2^{-n}$ where $b_n=a_n/2$. By the construction of $\mathcal C$ we know $m(\mathcal C)=0$, where m is the Lebesgue measure.

2.

Prove that any infinite set contains a countable subset.

Proof: For any infinite set X, let x_1 be an arbitrary element of X, and define x_n inductively by $x_n \in X \setminus \{x_1, x_2, \cdots, x_{n-1}\}$. x_n always exist since X is infinite, so X has a countable subset $\{x_1, x_2, \cdots\}$.

3.

Prove that the union of a countable set and an uncountable set is uncountable.

Proof: Let A be countable and B uncountable. If there is an injective map $f:A\cup B\to \mathbb{N}$, then let $g:B\to \mathbb{N}$, $b\mapsto f(b)$ is injective, leading to contradiction.

4.

Suppose S is countable, and $f:S\to X$ is surjective, then X is countable. Proof: Consider the injective mapping $g:S\to\mathbb{N}$, then $\varphi:X\to\mathbb{N}$, $x\mapsto \min g(f^{-1}(\{x\}))$ is injective, so X is countable.

5.

Prove that any interval of positive length on \mathbb{R} is uncountable.

Proof: An unbounded interval contains a bounded interval. Any bounded open interval (a,b) can be mapped bijectively to (0,1) by $x\mapsto (x-a)/(b-a)$, hence it is uncountable. By problem3, any interval is uncountable.

6.

- 6.7(i): Consider the discrete metric $d(x,y)=egin{cases} 1,&x
 eq y \ 0,&x=y \end{cases}$ on $\mathbb Z.$ 6.7(ii): Consider the metric $d(x,y)=egin{cases} 1,&xy<0 \ 0,&xy>0 \end{cases}$ on $\mathbb Zackslash\{0\}.$