IMPORTING PANDAS LIBRARY AND EXPLORING THE FUNCTIONS IN IT

Aim:

To import the pandas library and exploring the functions in it for data analysis in Google Colab.

Given Dataset: Employee dataset

```
data = {'EmployeeID': [101, 102, 103, 104, 105,106,107,108,109,110],
'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Cathey', 'Darth', 'John', 'Peter', 'Alex'],
'Age': [25, 30, 28, 30, 27, 45, 35, 43, 52, 31],
'Department': ['HR', 'IT', 'HR', 'Finance', 'Finance', 'IT', 'HR', 'IT', 'IT'],
'Salary': [50000, 80000, 75000, 60000, 90000,100000,65000,85000, 55000, 65000]}
```

DataFrame:

import pandas as pd

```
data = { 'EmployeeID': [101, 102, 103, 104, 105,106,107,108,109,110],
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Cathey', 'Darth', 'John', 'Peter', 'Alex'],
    'Age': [25, 30, 28, 30, 27, 45, 35, 43, 52, 31],
    'Department': ['HR', 'IT', 'IT', 'HR', 'Finance', 'Finance', 'IT', 'HR', 'IT', 'IT'],
    'Salary': [50000, 80000, 75000, 60000, 90000,100000,65000,85000, 55000, 65000]}
    df = pd.DataFrame(data)
    print(df)
```

	EmployeeID	Name	Age	Department	Salary
0	101	Alice	25	HR	50000
1	102	Bob	30	IT	80000
2	103	Charlie	28	IT	75000
3	104	David	30	HR	60000
4	105	Eve	27	Finance	90000
5	106	Cathey	45	Finance	100000
6	107	Darth	35	IT	65000
7	108	John	43	HR	85000
8	109	Peter	52	IT	55000
9	110	Alex	31	IT	65000

Questions:

1. How can you display the first 5 rows and last 3 rows of employee dataset?

```
[ ] print(df.head(5))
   print(df.tail(3))
Name Age Department Salary
   0 101 Alice 25 HR 50000
           102 Bob 30
                               IT 80000
   1
         103 Charlie 28 IT 75000
104 David 30 HR 60000
   2
   3
         105 Eve 27 Finance 90000
    EmployeeID Name Age Department Salary
   7 108 John 43 HR 85000
8 109 Peter 52 IT 55000
9 110 Alex 31 IT 65000
           110 Alex 31
                              IT 65000
```

2. Retrieve a random sample of 5 rows from the employee dataset.

```
[ ] print(df.sample(n=5))

EmployeeID Name Age Department Salary
6 107 Darth 35 IT 65000
1 102 Bob 30 IT 80000
2 103 Charlie 28 IT 75000
7 108 John 43 HR 85000
5 106 Cathey 45 Finance 100000
```

3. How can you get a concise summary of employee dataset including data typesand non-null values?

4. Display the data types of each column in employee dataset?

```
[ ] df.dtypes

EmployeeID int64
Name object
Age int64
Department object
Salary int64
dtype: object
```

5. Show the number of rows and columns in the dataset.

```
[ ] df.shape

(10, 5)
```

6. How can you sort your employee dataset by 'Age' in descending order?

7. Show the 3 largest salaries in employee dataset.

8. Calculate the mean salary of employees in each department.

```
mean_salary_per_department = df.groupby('Department')['Salary'].mean()
print(mean_salary_per_department)

Department
Finance 95000.0
HR 60000.0
IT 68000.0
Name: Salary, dtype: float64
```

9. How many unique departments are there in employee dataset?

```
unique_departments= df['Department'].unique()
print(unique_departments)

['HR' 'IT' 'Finance']
```

10. Create a copy of your employee dataset.

```
df_copy = df.copy()
print(df_copy)
  EmployeeID
               Name Age Department
                                  Salary
0
        101
              Alice
                     25
                               HR
                                   50000
                     30
1
        102
                Bob
                               IT
                                   80000
2
        103 Charlie
                     28
                               IT
                                   75000
3
             David 30
                               HR
        104
                                   60000
                     27 Finance
4
        105
                Eve
                                   90000
            Cathey 45 Finance 100000
5
        106
             Darth 35
6
        107
                               IT 65000
              John
                    43
                              HR
7
        108
                                   85000
8
        109
              Peter 52
                               IT
                                   55000
        110
              Alex
                     31
                               IT
                                   65000
```

11. Rename the column 'EmployeeID' as'ID', 'Department' as'Dept ' in employee dataset

```
df.rename(columns={'EmployeeID': 'ID', 'Department': 'Dept'}, inplace=True)
print(df)
   ID
         Name Age
                      Dept Salary
 101
        Alice
1 102
          Bob
               30
                        IT
                             80000
2 103 Charlie
                28
                        IT
                             75000
        David
                             60000
 104
                30
                        HR
               27 Finance
4 105
       Cathey 45 Fig. Darth 35
          Eve
                             90000
 106
               45 Finance 100000
6 107
                        IT
                             65000
                             85000
7 108
                        HR
        Peter
                             55000
8 109
                        IT
         Alex
                             65000
```

12. Show the total number of elements in the DataFrame

```
print(df.size)

50
```

13. Display the number of dimensions (axes) of the DataFrame.

```
[ ] number_of_dimensions = df.ndim
    print(number_of_dimensions)
```

14. Generate descriptive statistics for numerical columns.

15. Display unique values in a 'Department' column.

```
unique_departments = df['Dept'].unique()
print("Unique values in the 'Dept' column:")
print(unique_departments)

Unique values in the 'Dept' column:
['HR' 'IT' 'Finance']
```

16. Count the number of unique values in an 'Age' column.

```
unique_age_count = df['Age'].nunique()
print("Number of unique values in the 'Age' column:",unique_age_count)
Number of unique values in the 'Age' column: 9
```

17. Display the salaries of employees between 30,000 and 90,000.

18. Get the list of column names in the DataFrame.

```
column_names = df.columns.tolist()
print("Column Names:", column_names)

Column Names: ['EmployeeID', 'Name', 'Age', 'Department', 'Salary']
```

19. Display the salary details in ascending order.

```
sorted_salary = df['Salary'].sort_values()
print("Salaries in ascending order:\n", sorted salary)
Salaries in ascending order:
      50000
8
      55000
3
     60000
6
    65000
9
     65000
     75000
2
1
    80000
7
     85000
4
     90000
5
    100000
Name: Salary, dtype: int64
```

20. Count occurrences of unique values in a 'Department'.

21. Display the top 5 rows with the largest values in a 'Salary' column.

```
top 5 salaries = df.nlargest(5, 'Salary')
print("Top 5 salaries:\n", top 5 salaries)
Top 5 salaries:
   EmployeeID
                Name Age Department Salary
        106 Cathey 45 Finance 100000
5
                Eve 27 Finance 90000
        105
7
        108
               John 43
                             HR 85000
                               IT 80000
1
        102
                Bob 30
2
        103 Charlie 28
                               IT 75000
```

22. Create a deep copy of the DataFrame.

```
df copy = df.copy(deep=True)
print(df_copy)
  EmployeeID
              Name Age Department
                                Salary
0
       101
             Alice 25
                            HR
                                 50000
1
        102
              Bob 30
                             TT
                                 80000
2
        103 Charlie
                    28
                             IT
                                 75000
       104 David 30
                             HR
3
                                 60000
               Eve 27 Finance
4
       105
                                 90000
           Cathey 45 Finance 100000
5
        106
6
        107
            Darth 35 IT
                                65000
7
        108
             John 43
                             HR
                                 85000
8
        109
             Peter
                    52
                             IT
                                 55000
           Alex 31
9
        110
                             IT
                                 65000
```

23. How do you extract rows from a DataFrame where the values in the 'Age' column are greater than 28?

```
age greater 28 = df[df['Age'] > 28]
print("Rows where Age > 28:\n", age_greater_28)
Rows where Age > 28:
   EmployeeID
               Name Age Department
                                  Salary
1
        102
               Bob 30
                             IT
                                  80000
            David 30
3
        104
                             HR
                                  60000
        106 Cathey 45 Finance 100000
5
       107 Darth 35
6
                           IT 65000
7
             John 43
        108
                            HR
                                  85000
             Peter 52
8
       109
                            IT 55000
9
        110 Alex 31
                            IT 65000
```

24. How would you update values in a DataFrame based on a condition, replacing values with 'Below 60k' where the condition ('Salary' > 60000) is not true?

```
df['Salary'] = df['Salary'].apply(lambda x: x if x > 60000 else 'Below 60k')
print("Updated Salary column:\n", df)
Updated Salary column:
   EmployeeID Name Age Department
                                    Salary
       101 Alice 25 HR Below 60k
              Bob 30
1
       102
                            IT
                                  80000
       103 Charlie 28 IT 75000
104 David 30 HR Below 60k
2
3
              Eve 27 Finance
4
       105
                                 90000
        106 Cathey 45 Finance
5
                                   100000
            Darth 35
                        IT
6
        107
                                    65000
7
        108
              John 43
                            HR
                                    85000
                           IT Below 60k
8
        109
            Peter 52
        110 Alex 31 IT 65000
```

25. Display the dataframe using Group by 'Department' and calculate mean, sum of values for salary.

26. Insert a new column in location 4 into the DataFrame.

```
df.insert(4, 'Bonus', [5000, 8000, 7500, 6000, 9000, 10000, 6500, 8500, 5500, 6500])
print("DataFrame with new Bonus column:\n", df)
```

DataFrame with new Bonus column:

	EmployeeID	Name	Age	Department	Bonus	Salary
0	101	Alice	25	HR	5000	0.0
1	102	Bob	30	IT	8000	80000.0
2	103	Charlie	28	IT	7500	75000.0
3	104	David	30	HR	6000	0.0
4	105	Eve	27	Finance	9000	90000.0
5	106	Cathey	45	Finance	10000	100000.0
6	107	Darth	35	IT	6500	65000.0
7	108	John	43	HR	8500	85000.0
8	109	Peter	52	IT	5500	0.0
9	110	Alex	31	IT	6500	65000.0

Rubrics:				
Rubrics: Problem Understanding (10)	Implementation (20)	Viva (10)	Time Management (10)	Total (50)
Problem Understanding	Implementation (20)	Viva (10)	Management	
Problem Understanding	Implementation (20)	Viva (10)	Management	

Thus the implementation of importing the pandas library and exploring the functions in it for data analysis in Google Colab was successfully executed and the output was verified.