Friedrich-Alexander-Universität Erlangen-Nürnberg

Decision Theory

Lecture 7

Michael Hartisch

Friedrich-Alexander Universität Erlangen-Nürnberg, Department Data Science June 3, 2024

Recap: What did we do?

- Utilité Additive (UTA)
- Intertemporal decision making

FAU M. Hartisch Decision Theory June 3, 2024 2/48

UTA

- Optimization approach
- Given:
 - Criteria
 - Alternatives A
 - Score matrix
 - Ranking information on $A^R \subseteq A$
- Find:
 - Utility function for each criterion
 - Such that rankings are reproduced
 - As close as possible

UTA

- Let $[\alpha_i, \beta_i]$ be range of criterion i
- Use grid of points $x_i^0, x_i^1, \dots, x_i^{\gamma_i}$ in interval
- Set *u_i* as a piece-wise linear function
- We only need to find values $u_i(x_i^j)$
- Then $U(x) = \sum_{i \in [n]} u_i(x_i)$ with

$$u_i(a) = u_i(x_i^j) + \frac{u_i(x_i^{j+1}) - u_i(x_i^j)}{x_i^{j+1} - x_i^j} (g_i(a) - x_i^j)$$

UTA

• Determine $u_i(x_i^j)$ such that

$$U(a_k) \ge U(a_{k+1}) + \varepsilon$$

$$U(a_k) = U(a_{k+1})$$

$$u_i(x_i^{j+1}) - u_i(x_i^j) \ge 0$$

$$u_i(\alpha_i) = 0$$

$$\sum_{i \in [n]} u_i(\beta_i) = 1$$

$$\forall k \in [m-1] : a_k \succ a_{k+1}$$

$$\forall k \in [m-1] : a_k \sim a_{k+1}$$

$$\forall i \in [n], j \in [\gamma_i - 1]$$

$$\forall i \in [n]$$

UTA Example

I want to rank my favourite actors

- Criteria:
 - 1. Academy awards, including nominations
 - 2. Voice quality
 - 3. Acting quality

UTA Example				
		awards	voice	acting
	Sam Neill	0	8	8
	Sean Bean	0	10	7
	Leo diC	5	3	6
	Jason Statham	0	7	2
	Keanu Reeves	0	6	7
	Nic Cage	2	2	10
Partial ranking:		ı		

Sam Neill ≻ Leo diC ≻ Jason Statham

UTA Example

- I use a simple grid where only α_i and β_i are included (affine linear functions)
- Write as an optimization problem:
 - Find value functions fulfilling my ranking constraints
 - No objective function
- Solution:

	awards	voice	acting
$u_i(\alpha_i)$	0.000	0.000	0.000
$u_i(eta_i)$	0.334	0.666	0.000

UTA	Exampl	e
-----	---------------	---

	awards	voice	acting
$u_i(\alpha_i)$	0.000	0.000	0.000
$u_i(eta_i)$	0.334	0.666	0.000

	awards	voice	acting	score
Sam Neill	0	8	8	0.4995
Sean Bean	0	10	7	0.6660
Leo diC	5	3	6	0.4173
Jason Statham	0	7	2	0.4163
Keanu Reeves	0	6	7	0.3330
Nic Cage	2	2	10	0.1336

UTA Example

1.

0.6660

2

0.4995

3

0.4173

4

0.4163

5

0.3330

6.

0.1336

UTA

- Is this the end of the story?
- There can be many possible value functions fulfilling the criteria
- We have chosen an arbitrary one
- Necessary preference relations \succeq^N :
 - Hold for every compatible value function
 - Found by minimizing value difference over compatible value functions
- Possible preference relations \succeq^P
 - Hold for at least one compatible value function
 - Found by maximizing value difference over compatible value functions
- Solve LP for each pair of alternatives, checking \succeq^N and \succeq^P

FAU M. Hartisch Decision Theory June 3, 2024 12/48

UTA

- How to find a representative ranking?
- Maximize value difference for alternatives where necessary preference is known
 - Max difference of Neill over diCaprio and Reeves
 - Max difference of Bean and diCaprio over Statham
- Lexicographically, minimize value difference for alternatives where this is not the case
 - Min difference between Bean, diCaprio, and Reeves

UTA Ex	ample
---------------	-------

	awards	voice	acting
$u_i(\alpha_i)$	0.000	0.000	0.000
$u_i(eta_i)$	0.111	0.000	0.889

	awards	voice	acting	score
Sam Neill	0	8	8	0.6667
Sean Bean	0	10	7	0.5556
Leo diC	5	3	6	0.5556
Jason Statham	0	7	2	0.0000
Keanu Reeves	0	6	7	0.5556
Nic Cage	2	2	10	0.9333

UTA Example

1.

0.9333

2

0.6667

3.

0.5556

3.

0.5556

3

0.5556

6.

0.0000

Intertemporal Decision Making

- Decisions over multiple time steps
- Utility at time τ :

$$U^{\tau}(a_i) = \delta^{\tau} u_{\tau}(e_i^{\tau}) + \beta \sum_{t=\tau+1}^{T} \delta^t u_t(e_i^t)$$

- δ : the further in the future, the less important
- β : inconsistency, today is more important than the future

Intertemporal Decision Making

- Three types of decision makers
- Time consistent (TC)
 - $\circ \beta = 1$
 - Does what is overall best
- Naive
 - $\circ x\beta < 1$
 - Is not aware of being naive
 - Optimistic about the future
- Sophisticated
 - $\circ \beta < 1$
 - Aware of own decision making
 - Realistic about the future

Today

Decision under Uncertainty: Basics

Problem

- Know possible consequences for each decision
- Do not know which state will occur
- Do not know probabilities

Criteria

- As with multi-criteria problems: there is no "best" solution
- Can only decide if we set a criterion
- In this lecture:
 - Minimax/Maximin
 - Minimax Regret
 - Hurwicz
 - Average

FAU M. Hartisch Decision Theory June 3, 2024 20/48

Example

What is a good path?

Path	Scenario 1	Scenario 2
Тор	8	9
Middle	10	8
Bottom	9	10

Maximin/Minimax

- Initial approach, aka "worst-case"
- Choose a solution so that the worst case is as good as possible
- For maximization problems: "maximin" (maximize the minimum)
 - \circ Formally: $\max_{i \in [m]} \min_{j \in [n]} e_{ij}$
- For minimization problems: "minimax" (minimize the maximum)
 - Formally: $min_{i \in [m]} max_{j \in [n]} e_{ij}$

FAU M. Hartisch Decision Theory June 3, 2024 22/48

Example

What is a good path? (minimax)

Path	Scenario 1	Scenario 2	Max
Тор	8	9	9
Middle	10	8	10
Bottom	9	10	10

Interpretation

- Against "devilish nature"
- Against "saboteur/attacker"
- Conservative
 - A solution can always be good, except for once
 - We evaluate only based on the one bad case
- Provides guarantee:
 - Bridge should not collapse
 - Airplane should not crash
- In practice: choose meaningful scenarios

Minimax Regret

- Variant of Minimax/Maximin
- Always minimax; aims to minimize "regret" always
- Evaluate not based on the worst case but through the difference to the best case in each scenario (what could I have achieved?)
- For maximization problems:

$$\min_{i \in [m]} \max_{j \in [n]} \left(\max_{\ell \in [m]} e_{\ell j} - e_{ij} \right)$$

For minimization problems:

$$\min_{i \in [m]} \max_{j \in [n]} \left(e_{ij} - \min_{\ell \in [m]} e_{\ell j} \right)$$

Example

What is a good path?

Path	Scenario 1	Scenario 2	Max Regret
Тор	8-8=0	9-8=1	1
Middle	10-8=2	8-8=0	2
Bottom	9-8=1	10-8=2	2

Minimax Regret, Example

Maximize

$$\begin{array}{c|cccc}
s_1 & s_2 \\
\hline
a_1 & 0 & 100 \\
a_2 & 1 & 1
\end{array}$$

• Maximin: choose a_2

Difference to the best case:

• Minimax regret: choose a₁

Hurwicz

- Mix of pessimism and optimism
- Let m_i be the worst value for a_i
- Let M_i be the best value for a_i
- Let $\alpha \in [0, 1]$ be a fixed value, "optimism parameter"
- Choose the alternative for which $\alpha m_i + (1 \alpha)M_i$ is best
- For α = 1: Maximin/Minimax (worst case)
- For α = 0: Maximax/Minimin (best case)

Hurwicz – Problem

• Maximize, with $\alpha = 1/4$

- Hurwicz of a_1 is $1/4 \cdot 0 + 3/4 \cdot 1 = 3/4$
- Hurwicz of a_2 is $1/4 \cdot 0 + 3/4 \cdot 1 = 3/4$
- Hurwicz of a_3 is $1/4 \cdot 0 + 3/4 \cdot 1/2 = 3/8$
- a_1 and a_2 are optimal, but not their combination

Problem for all Methods

- Intuitively, we find a_1 better
- According to Maximin, Regret, Hurwicz: both equally good
- Equivalent to

Principle of Insufficient Information

When one does not know the probabilities of the states s_1, \ldots, s_n , one should behave as if they are equally probable.

Average (Laplace)

Choose decision *i* that maximizes/minimizes

$$\frac{e_{i1}+e_{i2}+\ldots+e_{in}}{n}$$

32/48

Example

Maximize:

	S_1	<i>S</i> ₂	<i>S</i> ₃	S ₄
a_1	8	6	0	10
a_2	3	5	2	4
a_3	4	5	3	7
a_4	2	11	2	3

Determine the best solution according to Maximin, Average, Hurwicz with α = 3/4, and Regret

FAU M. Hartisch Decision Theory

June 3, 2024

Example

Maximize:

	s_1	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄	Min	Max	Average	Hurwicz	Regret
a_1	8	6	0	10	0	10	24/4	10/4	5
a_2	3	5	2	4	2	5	14/4	11/4	6
a_3	4	5	3	7	3	7	19/4	16/4	6
a_4	2	11	2	3	2	11	18/4	17/4	7
Max	8	11	3	10					

Determine the best solution according to Maximin, Average, Hurwicz with α = 3/4, and Regret

Result: Maximin: a_3 , Average: a_1 , Hurwicz: a_4 , Regret: a_1

Example

Maximize:

Determine rankings according to Maximin, Hurwicz with $\alpha = 3/4$, and Average

Example

Maximize:

Determine rankings according to Maximin, Hurwicz with $\alpha = 3/4$, and Average

• Maximin: a_2, a_3, a_1

• Hurwicz: *a*₃, *a*₁, *a*₂

• Average: *a*₁, *a*₂, *a*₃

Axiomatic Approach

- We now know four decision criteria
 - Maximin (aka "worst case")
 - Minimax Regret (aka "Savage")
 - Hurwicz
 - Average (aka "Laplace")
- Which one to use depends on the decision maker
- Axiomatic approach: what properties do these criteria fulfill?
- Introduce 8 desirable properties (axioms)

Axiom 1 (Complete Ranking)

A decision rule should provide a complete ranking of alternatives.

Explanation

- Transitive, complete order
- We can build a list from 1st to last place

FAU M. Hartisch Decision Theory June 3, 2024 35/48

Axiom 2 (Independence of Order)

For an $m \times n$ outcome matrix, a decision rule should yield the same result for any permutation of columns or rows.

Explanation

• These problems should yield the same solution:

	<i>S</i> ₁	<i>S</i> ₂
a_1	10	0
a_2	8	3

Axiom 3 (Independence of Scaling)

For an $m \times n$ decision matrix with entries e_{ij} , a decision rule should give the same result if we use instead

$$e'_{ij} = \alpha e_{ij} + \beta$$

for fixed $\alpha > 0$, β .

Explanation

- Can double the entire table
- Can add +10 to all values
- Can convert meters to kilometers
- Can convert degrees Celsius to Fahrenheit

Axiom 4 (Strong Dominance)

If for two alternatives a_i , a_j it holds that $e_{ik} > e_{jk}$ for all $k \in [n]$, then a decision rule should prefer a_i over a_i .

Explanation

- If one alternative is always better, it must also be ranked as better
- Example:

We must strictly prefer a₁ over a₂

Axiom 5 (Irrelevant Alternatives)

If an additional row is added to a decision matrix, it should not change the order within the previous rows.

Explanation

- A guest enters a new restaurant
- The menu offers salmon for 15 euros or steak for 20 euros
- In a very good restaurant, the guest would choose the steak
- In this case, the guest opts for the cheaper salmon
- The waiter comes and mentions that there are frog legs today
- Then the guest decides on the steak

Axiom 5 – Explanation, Continued

- Action violates axiom 5 (alternative added, optimality of old changes)
- But is it irrational?
- Frog legs were an indication of the restaurant's quality for the guest
- Axiom 5: new alternatives do not change the a priori information about what the true state is
- Availability of alternatives does not change the plausibility of the states

FAU M. Hartisch Decision Theory June 3, 2024 40/48

Axiom 6 (Constants to Columns)

If a constant c is added to a column, the order of decisions should remain the same.

Explanation

• For example:

$$\begin{array}{c|cccc} & s_1 & s_2 \\ a_1 & 6 & 4 \\ a_2 & 3 & 8 \end{array}$$

- The bonus +10 is received in every alternative
- Note: different from axiom 3, where all entries are changed

Axiom 7 (State Permutation)

Let a_i and a_i be two alternatives. If there exists a permutation π of the states such that

$$e_{ik} = e_{j\pi(k)},$$

then a decision rule should evaluate both alternatives equally.

Explanation

• For example:

• a_1 and a_2 should be equally good.

Axiom 8 (Column Duplication)

We can duplicate columns in a decision matrix without changing the ranking of alternatives.

Explanation

• The following problems should lead to the same evaluation:

	<i>S</i> ₁	<i>S</i> ₂
a_1	9	4
a_2	2	6

Summary

- Axiom 1: Complete ranking
- Axiom 2: Independence of order
- Axiom 3: Independence of scaling
- Axiom 4: Strong dominance
- Axiom 5: Irrelevant alternatives
- Axiom 6: Constants to columns
- Axiom 7: State permutation
- Axiom 8: Column duplication

	Minimax	Hurwicz	Regret	Average	
Ax 1	1	√	√	√	
Ax 2	✓	\checkmark	✓	\checkmark	 Ax 5: Irrelevant alternatives
Ax 3	✓	\checkmark	\checkmark	\checkmark	
Ax 4	✓	\checkmark	\checkmark	\checkmark	 Ax 6: Constants to columns
					Ax 7: State permutation
Ax 5	✓	\checkmark	X	\checkmark	
Ax 6	X	X	√	✓	 Ax 8: Column duplication
Ax 7	√	\checkmark	X	\checkmark	
Ax 8	√	√	1	×	

FAU M. Hartisch Decision Theory June 3, 2024 45/48

Irrelevant Alternatives

- Minimax regret is not independent of irrelevant alternatives:
- Maximize

- Regret for a_1 is 6, regret for a_2 is 8 \rightarrow choose a_1
- Add a new alternative:

• New regrets are 10 for a_1 , 8 for a_2 , 9 for $a_3 \rightarrow$ choose a_2

Theorem

If a criterion satisfies the following axioms:

- Axiom 1: Complete ranking
- Axiom 4: Strong dominance
- Axiom 5: Irrelevant alternatives
- Axiom 6: Constants to columns
- Axiom 7: State permutation

then it is equivalent to the Average criterion.

Consequence

There is no decision rule that satisfies all 8 axioms.

Quiz

Question 1

True or false?

The Average criterion satisfies axiom 8: duplicating columns does not change the result.

Question 2

Maximize:

	S_1	<i>S</i> ₂	s ₃	<i>S</i> ₄
a_1	0	10	5	5
a_2	9	0	1	0
a_3	3	1	1	10
a_4	5	2	0	5

- A decision maker prefers a₄
- Is this compatible with
 - Maximin
 - Hurwicz for any α
 - Minimax Regret
 - Average

Quiz

Question 1

True or false?

The Average criterion satisfies axiom 8: duplicating columns does not change the result.

Solution

False: duplicating a column makes it more influential in the evaluation.

Question 2

Maximize:

	S_1	<i>S</i> ₂	s ₃	<i>S</i> ₄
a_1	0	10	5	5
a_2	9	0	1	0
a_3	3	1	1	10
a_4	5	2	0	5

- A decision maker prefers a₄
- Is this compatible with
 - **X** Maximin
 - $\begin{tabular}{ll} \begin{tabular}{ll} \beg$
 - ✓ Minimax Regret
 - X Average