Lecture 21 Overview of Iterative Methods

Songting Luo

Department of Mathematics Iowa State University

MATH 562 Numerical Analysis II

Outline

1 Overview of Iterative Methods

Outline

1 Overview of Iterative Methods

Direct v.s. Iterative Methods

- Direct methods, or noniterative methods, compute the exact solution after a finite number of steps (in exact arithmetic)
 - Example: Gaussian elimination, QR factorization, LU, LDL, Cholsky
- Iterative methods produce a sequence of approximations $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots$ that hopefully converge to the true solution
 - Example: Jacobi, Gauss-Seidel, Conjugate Gradient (CG), GMRES, BiCG, etc.
- What have we learned before?
- Why use iterative methods (instead of direct methods)?
 - may be faster than direct methods
 - produce useful intermediate results
 - handle sparse matrices more easily (needs only matrix-vector product)
 - often are easier to implement on parallel computers
- Future?

Two Classes of Iterative Methods

• Stationary methods find a splitting $\mathbf{A} = \mathbf{M} - \mathbf{K}$ and iterates

$$\mathbf{x}^{(k+1)} = \mathbf{M}^{-1}(\mathbf{K}\mathbf{x}^{(k)} + \mathbf{b})$$

- Examples: Jacobi (for linear systems, not the Jacobi iterations for eigenvalues), Gauss-Seidel, Successive Over-Relaxation (SOR) etc.
- Krylov subspace methods find optimal solution in Krylov subspace $\{\mathbf{b}, \mathbf{Ab}, \mathbf{A}^2\mathbf{b}, \cdots, \mathbf{A}^{k-1}\mathbf{b}\}$
 - Build subspace successively
 - Example: Conjugate Gradient (CG), Generalized Minimum Residual (GMRES), BiCG, etc.
 - We will focus on Krylov subspace methods

Krylov Subspace Methods

• Given **A** and **b**, Krylov subspace

$$\{\mathbf{b}, \mathbf{Ab}, \mathbf{A}^2\mathbf{b}, \dots, \mathbf{A}^{k-1}\mathbf{b}\}$$

	linear systems	eigenvalue problems
Hermitian	CG	Lanczos
Nonhermitian	GMRES, BiCG, etc.	Arnoldi

Krylov Subspace Algorithms

• Create a sequence of Krylov subspaces for $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathcal{K}_n = \{\mathbf{b}, \mathbf{Ab}, \dots, \mathbf{A}^{n-1}\mathbf{b}\}$$

and find an approximate (hopefully optimal) solutions $\mathbf{x}_n \in \mathcal{K}_n$

- Only matrix-vector products involved
- Some criterions of "optimal" at each iteration:
 - Residual $\mathbf{r}_n = \mathbf{b} \mathbf{A}\mathbf{x}_n$ is orthogonal to \mathcal{K}_n (Conjugate Gradients)
 - Residual \mathbf{r}_n has minimum norm for $\mathbf{x}_n \in \mathcal{K}_{\frac{n}{m}}$ (GMRES and MINRES)
 - \mathbf{r}_n is orthogonal to a different space $\mathcal{K}_n(\mathbf{A}^T)$ (BiConjugate Gradients)
 - The error \mathbf{e}_n has minimum norm (**SYMMLQ**).

Arnoldi Iteration

- The Arnoldi iteration reduces a general, nonsymmetric matrix A to Hessenberg form by similarity transformation A = QHQ*
- Analogous to Gram-Schmidt-style iteration instead of Householder reflections
- Let $\mathbf{Q}_n = [\mathbf{q}_1 | \mathbf{q}_2 | \cdots | \mathbf{q}_n]$ be $m \times n$ matrix with first n columns of \mathbf{Q} and $\tilde{\mathbf{H}}_n$ be $(n+1) \times n$ upper-left section of \mathbf{H} .
- Consider first n columns of $\mathbf{AQ} = \mathbf{QH}$, or $\mathbf{AQ}_n = \mathbf{Q}_{n+1}\tilde{\mathbf{H}}_n$

$$[\mathbf{A}] [\mathbf{q}_1| \cdots |\mathbf{q}_n] = \begin{bmatrix} \mathbf{q}_1| \cdots |\mathbf{q}_{n+1} \end{bmatrix} \begin{vmatrix} h_{11} & \cdots & h_{1n} \\ h_{21} & & & \\ & \ddots & \vdots \\ & & h_{n+1,n} \end{vmatrix}$$

Arnoldi Algorithm

- Start by picking a random \mathbf{q}_1 and then determine \mathbf{q}_2 and $\tilde{\mathbf{H}}_1$
- The nth columns of $\mathbf{AQ}_n = \mathbf{Q}_{n+1}\tilde{\mathbf{H}}_n$ can be written as

$$\mathbf{A}\mathbf{q}_n = h_{1n}\mathbf{q}_1 + \dots + h_{nn}\mathbf{q}_n + h_{n+1,n}\mathbf{q}_{n+1}$$

Algorithm: Arnoldi Iteration

```
given random nonzero \mathbf{b}, let \mathbf{q}_1 = \mathbf{b}/\|\mathbf{b}\| for n=1 to 1,2,3,\ldots \mathbf{v} = \mathbf{A}\mathbf{q}_n for j=1 to n h_{jn} = \mathbf{q}_j^*\mathbf{v} \mathbf{v} = \mathbf{v} - h_{jn}\mathbf{q}_j h_{n+1,n} = \|\mathbf{v}\| \mathbf{q}_{n+1} = \mathbf{v}/h_{n+1,n}
```

• A version of Gram-Schmidt, tailored to Krylov subspaces.

QR Factorization of Krylov Matrix

• The vector \mathbf{q}_j from Arnoldi are orthonormal bases of successive Krylov subspaces

$$\mathcal{K}_n = \langle \mathbf{b}, \mathbf{A}\mathbf{b}, \dots, \mathbf{A}^{n-1}\mathbf{b} \rangle = \langle \mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n \rangle \subseteq \mathbb{C}^m$$

• \mathbf{Q}_n is reduced QR factorization $\mathbf{K}_n = \mathbf{Q}_n \mathbf{R}_n$ of Krylov matrix

$$\mathbf{K}_n = \left[\mathbf{b} | \mathbf{A} \mathbf{b} | \cdots | \mathbf{A}^{n-1} \mathbf{b} \right]$$

- The projection of **A** onto this space gives $n \times n$ Hessenberg matrix $\mathbf{H}_n = \mathbf{Q}_n^* \mathbf{A} \mathbf{Q}_n = \tilde{\mathbf{H}}_{1:n,1:n}$
- Eigenvalues of H_n (known as Ritz values) produce good approximations of those of A

Lanczos Iteration for Symmetric Matrices

• For symmetric \mathbf{A} , $\tilde{\mathbf{H}}_n$ \mathbf{H}_n are tridiagonal, denoted by $\tilde{\mathbf{T}}_n$ and \mathbf{T}_n , respectively. $\mathbf{A}\mathbf{Q}_n = \mathbf{Q}_{n+1}\tilde{\mathbf{H}}_n$ can be written as three-term recurrence $\mathbf{A}\mathbf{q}_n = \beta_{n-1}\mathbf{q}_{n-1} + \alpha_n\mathbf{q}_n + \beta_n\mathbf{q}_{n+1}$ where α_i are diagonal entries and β_i are sub-diagonal entries of $\tilde{\mathbf{T}}_n$

Algorithm: Lanczos Iteration

$$\begin{split} \beta_0, \ \mathbf{q}_0 &= \mathbf{0} \\ \text{given random } \mathbf{b}, \ \text{let } \mathbf{q}_1 &= \mathbf{b}/\|\mathbf{b}\| \\ \text{for } n &= 1 \text{ to } 1, 2, 3, \dots \\ \mathbf{v} &= \mathbf{A}\mathbf{q}_n \\ \alpha_n &= \mathbf{q}_n \mathbf{v} \\ \mathbf{v} &= \mathbf{v} - \beta_{n-1} \mathbf{q}_{n-1} - \alpha_n \mathbf{q}_n \\ \beta_n &= \|\mathbf{v}\| \\ \mathbf{q}_{n+1} &= \mathbf{v}/\beta_n \end{split}$$

• Eigenvalues of T_n (known as Ritz values) converge to eigenvalues of A, and extreme eigenvalues converge faster

Properties of Arnoldi and Lanczos Iterations

- Eigenvalues of \mathbf{H}_n (or \mathbf{T}_n in Lanczos iterations) are called Ritz values.
- When m = n, Ritz values are eigenvalues.
- Even for $n \ll m$, Ritz values are often accurate approximations to eigenvalues of \mathbf{A} !
- For symmetric matrices with evenly spaced eigenvalues, Ritz values tend to first convert to extreme eigenvalue.
- With rounding errors, Lanczos iteration can suffer from loss of orthogonality and can in turn lead to spurious "ghost" eigenvalues.