

E-paper Display Series

GDEM0213U23

Dalian Good Display Co., Ltd.

Specification for 2.13 inch EPD

Model NO.: GDEM0213U23

Good Display's Confirmation:

Prepared by	Checked by	Approved by

Customer approval:

Customer	Approved by	Date

Revision History

Version	Content	Date	Producer
1.0	New release	2016/01/07	
2.0	Add Command Table	2016/01/30	
3.0	Added Part Number Definition	2016/06/12	
4.0	 Changed the command table Improved the operating Sequence Add the partial update function 	2016/12/01	
5.0	Part number change	2017/06/07	
5.1	1.Add the optimal storage environment 2.Change the ESD Gun test	2017/08/08	
5.2	Update Operating temperature and application circuit	2017/12/04	
5.3	Update Features and DC Characteristics and Over View	2018/03/12	
5.4	Update Circuit (Diode type)	2018/03/27	
5.5	Redefine typical test conditions	2018/09/28	

CONTENTS

1.Over View	6
2. Features	6
3. Mechanical Specification	6
4.Mechanical Drawing of EPD Module	7
5. Input/output Pin Assignment.	8
6. Electrical Characteristics	9
6.1 Absolute Maximum Rating.	9
6.2 Panel DC Characteristics	10
6.3 Panel DC Characteristics(Driver IC Internal Regulators)	11
6.4 Panel AC Characteristics.	11
6.4.1 MCU Interface Selection.	11
6.4.2 MCU Serial Interface (4-wire SPI)	11
6.4.3 MCU Serial Interface (3-wire SPI)	12
6.4.4 Interface Timing.	13
7.Command Table	15
8. Optical Specification	19
9. Handling, Safety, and Environment Requirements	19
10. Reliability Test.	20

11. Block Diagram	21
12. Typical Application Circuit with SPI Interface	22
13. Typical Operating Sequence	23
13.1Normal Operation Flow	23
13.2 Normal OperationReference Program Code	24
14. Inspection condition	25
14.1 Environment	25
14.2 Illuminance	25
14.3 Inspect method	25
14.4 Display area	26
14.5 Inspection standard	26
14.5.1 Electric inspection standard	26
14.5.2 Appearance inspection standard	28
15.Packaging	30

1. Over View

GDEM0213U23 is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white ,black and red full display capabilities. The 2.13inch active area contains 250×122 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2. Features

- ◆250×122 pixels display
- ◆High contrast High reflectance
- ◆Ultra wide viewing angle Ultra low power consumption
- ◆ Pure reflective mode
- ♦Bi-stable display
- ◆Commercial temperature range
- ◆ Landscape portrait modes
- ◆ Hard-coat antiglare display surface
- ◆Ultra Low current deep sleep mode
- ◆On chip display RAM
- ◆ Waveform can stored in On-chip OTP or written by MCU
- ◆ Serial peripheral interface available
- ♦ On-chip oscillator
- ◆On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage

3. Mechanical Specification

Parameter	Specifications	Unit	Remark
Screen Size	2.13	Inch	
Display Resolution	122(H)×250(V)	Pixel	DPI:130
Active Area	23.67×48.50	mm	
Pixel Pitch	0.194×0.194	mm	
Pixel Configuration	Rectangle		
Outline Dimension	29.2(H)×59.2 (V) ×1.05(D)	mm	
Weight	3.2±0.5	g	

4. Mechanical Drawing of EPD Module

5. Input/output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	VGL	С	Negative Gate driving voltage	
5	VGH	С	Positive Gate driving voltage	
6	NC		Do not connect with other NC pins	Keep Open
7	Tout1	О	For Test	Keep Open
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	Ι	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	D0	Ι	Serial Clock pin (SPI)	
14	D1	I	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	Keep Open
20	VSH	С	Positive Source driving voltage	
21	VGH	С	Positive Gate driving voltage	
22	VSL	С	Negative Source driving voltage	
23	PREVGL	С	Power Supply pin for VCOM, VGL and VSL	
24	VCOM	С	VCOM driving voltage	

- I = Input Pin, O = Output Pin, /O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin
- Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.
- Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent.

Note 5-5: Bus interface selection pin

BS1 State MCU Interface				
L	4-lines serial peripheral interface(SPI) - 8 bits SPI			
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI			

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +4.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to+25	°C.
Storage Temp range	TSTG	-25 to+70	°C.
Operating Temp range max	TOPRm	0 to +40	°C.
Optimal Storage Temp	TSTGo	23±2	°C.
Optimal Storage Humidity	HSTGo	55±10%	RH

Note:

1.Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 PanelDC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C.

Parameter	Symbol	Condition	Applicab le pin	Min.	Тур.	Max.	Unit
Single ground	Vss	-		-	0	-	V
Logic supply voltage	Vci	-	VCI	2.2	3.0	3.7	V
Core logic voltage	V _{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	Vih	-	-	0.8 Vci	-	-	V
Low level input voltage	VIL	-	-	-	-	0.2 Vci	V
High level output voltage	Voh	IOH = -100uA	-	0.9 Vci	-	-	V
Low level output voltage	Vol	IOL = 100uA	-	-	-	0.1 Vci	V
Typical power	Ртүр	V _{CI} =3.0V	-	-	12	-	mW
Deep sleep mode	PSTPY	Vci =3.0V	-	-	0.003	-	mW
Typical operating current	Iopr_VCI	V _{CI} =3.0V	-	-	4	-	mA
Image update time	-	23 °C	-	-	12	-	sec
Sleep mode current	Islp_Vci	DC/DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_Vci	DC/DC off No clock No input load Ram data not retain	-	-	3	5	uA

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Good Display.

6.3 Panel DC Characteristics(Driver IC Internal Regulators)

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C.

Parameter	Symbol	Condition	Applicable pin	Min.	Тур.	Max.	Unit
VCOM output voltage	VCOM	-	VCOM	-	TBD	-	V
Positive Source output voltage	Vsh	-	S0~S121	+14.5	+15	+15.5	V
Negative Source output voltage	Vsl	-	S0~S121	-15.5	-15	-14.5	V
Positive gate output voltage	Vgh	-	G0~G249	+21	+22	+23	V
Negative gate output voltage	Vgl	-	G0~G249	-21	-20	-19	V

6.4 Panel AC Characteristics

6.4.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Comm	and Interface	Control Signal		
Bus interface	D1	D0	CS#	D/C#	RES#
BS1=L 4-wire SPI	SDIN	SCLK	CS#	D/C#	RES#
BS1=H 3-wire SPI	SDIN	SCLK	CS#	L	RES#

Note: L is connected to VssH is connected to VCI

6.4.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	1
Write data	L	Н	1

Note: \(\) stands for rising edge of signal

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (RAM) or command register in the same clock. Under serial mode, only write operations are allowed.

Figure 6-1: Write procedure in 4-wire SPI mode

6.4.3 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Function	CS#	D/C#	SCL
Write command	L	Tie	1
Write data	L	Tie	↑

Figure 6-2: Write procedure in 3-wire SPI mode

6.4.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C.

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
Fosc	Internal Oscillator frequency	VCI=2.4 to 3.3V	CL	0.95	1	1.05	MHz

Serial Interface Timing Characteristics

 $(VCI - VSS = 2.2V \text{ to } 3.7V, TOPR = 23^{\circ}C, CL=20pF)$

Symbol	Parameter	Min	Тур	Max	Unit
Tcycle	Clock Cycle Time	250	-	1	ns
Tas	Address Setup Time	150	-	-	ns
Tah	Address Hold Time	150	-	-	ns
Tess	Chip Select Setup Time	120	-	-	ns
Tesh	Chip Select Hold Time	60	-	-	ns
Tdsw	Write Data Setup Time	50	-	1	ns
Tdhw	Write Data Hold Time	15	-	1	ns
Telkl	Clock Low Time	100			ns
Telkh	Clock High Time	100			ns
Tr	Rise Time [20% ~ 80%]			15	ns
Tf	Fall Time [20% ~ 80%]			15	

7. Command Table

R/W#	D/C#	Hex	D7	D6	D4	D3	D1	D0	Command	Description
0	0	01	0	0	0	0	0	1	Driver Output	Gate setting
0	1		A7	A6	A4	A3	A1	A0	control	Set A[7:0]=F9h
0	1		0	0	0	0	В1	В0		Set B[7:0]=01h
0	0	03	0	0	0	0	1	1		Set Gate Driving voltage
0	1		0	0	A4	A3	A1	A0	voltage control	In red/black/white region(LUT1)
0	1		0	0	0	В3	B1	В0		A[4:0]=10h[POR],VGH at 22V[POR] VGH setting from 15V to 22V B[3:0]=0Ah[POR],VGL at 20V[POR] VGL setting from -15V to -20V In red region(LUT2) A[4:0]=02h[POR],VGH at 15V[POR] VGH setting from 15V to 22V B[3:0]=0Ah[POR],VGL at 20V[POR] VGL setting from -15V to -20V
0	0	04	0	0	0	0	0	0		SetSource Driving voltage
0	1		A7	A6	A4	A3	A1	A0	voltage control In red/black/white region(LUT1) A[7:0]=19h[POR],VSH/VSL at + In red region (LUT2) A[7:0]=36h[POR],VSH5.4V	
0	0	05	0	0	0	0	0	1	Red display	Set analog mode for red display
0	1		A7	A6	0	0	0	0	control	A[7:6]=00 analog mode in red/black/white region(LUT1) A[7:6]=11 analog mode in red region(LUT2)
0	0	10	0	0	1	0	0	0	Deep Sleep	Deep Sleep mode Control
0	1		0	0	0	0	0	A_0	mode	A[0]: Description 0 Normal Mode [POR] 1 Enter Deep Sleep Mode
0	0	11	0	0	1	0	0	1	Data Entry	Define data entry sequence
0	1		0	0	0	0	Aı	Ao	mode setting	A [1:0] = ID[1:0]Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 - Y decrement, X decrement, 01 - Y decrement, X increment, 11 - Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated

0	0	12	0	0	1	0	1	0	SWRESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode Note: RAM are unaffected by this command.
0	0	1A	0	0	1	1	1	0	Temperature	Write to temperature register.
0	1		A7	A6	A4	A3	A1	A0	Sensor Control	A[7:0] – MSByte 01111111[POR] B[7:0] – LSByte 11110000[POR]
0	1		В7	В6	B4	0	0	0		
0	0	20	0	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h User should not interrupt this operation to avoid corruption of panel images.
0	0	21	0	0	0	0	0	1	Display	Option for Display Update
0	1	21	0	0	0	A3	A1	A0		Bypass Option used for Pattern Display, which is used for display the RAM content into the DisplayOld RAM Bypass option A[7] = 1: Enable bypass A[7] = 0: Disable bypass [POR] A[4] = 0 [POR] A[1:0] Initial Update Option – SourceControl A[1:0] GSA GSB 01[POR] GSO GS1
0	0	22	0	0	0	0	1	0	Display	Display Update Sequence Option:
	1		A7	A6	A4	A3	A1	A0	Update Control 2	Enable the stage for Master Activation
										Enable Clock Signal, Then Enable Analog Then PATTERN DISPLAY C7 Then Disable Analog Then Disable OSC Setting for LUT from OTP according external Temperature Sensor operatio Then Enable Analog Then Load LUT Enable Analog Then PATTERN DISPLAY Then Disable Analog Then Disable OSC Setting for LUT from OTP according to the Enable Analog Then Enable Analog Then Disable Analog Then Disable OSC

0	0	24	0	0		0	0	0	0	WriteRAM1	After this command, data entries will be written into the RAM until another command is written. Address pointers will advance accordingly. For Write pixel: Content of write RAM(BW)=1 For Black pixel: Content of write RAM(BW)=0
0	0	26	0	0		0	0	0	0	WriteRAM for Red	After this command, data entries will be written into the RAM until another command is written. Address pointers will advance accordingly. For RED pixel: Content of write RAM(BW)=1 For Black/White pixel: Content of write RAM(BW)=0
0	0	2C	0	0		0	1	0	0	Write VCOM	Set A[7:0]=7Bh
0	1		A7	A6	A	۸4	A3	A1	A0	register	
0	0	2D	0	0		0	1	0	1	VCOM	Read VCOM Register:
1	1		A7	A6	A	44	A3	A1	A0	Register Read	1. A[7:0]=00H
1	1		В7	В6	I	34	В3	В1	В0		2. B[7:0]: VCOM Register
0	0	2F	0	0		0	1	1	1	Status Bit	Read IC status Bit
1	1		0	0		0	0	A1	A0	Read	A[1:0]: chip ID [POR=01] A[2] : Busy flog [POR=0]
0	0	32	0	0		1	0	1	0	Write LUT	Write LUT register from MCU
0	1		A7	A6	I A	\ 4	A3	A1	A0	register	interface [29 bytes].
0	1		В7	В6	I	34	В3	B1	В0		
0	1		:	:		:	:	:	:		
0	0	3A	0	0		1	1	1	0	Set dummy	Set A[6:0]=04h
0	1		0	A6	A	\ 4	A3	A1	A0	line period	Default value will give 100Hz Frame frequency
0	0	3B	0	0		1	1	1	1		Set A[3:0]=04h
0	1		0	0		0	A3	A1	A0	width	Default value will give 100Hz Frame frequency
0	0	3C	0	0		1	1	0	0	Border control	Select border waveform for VBD

0	1		A7	A6		A4	0	A1 A0	A[7] Follow Source at Initial UpdateDisplay A [7]=0: [POR] A [7]=1: Follow Source at Initial Update Display for VBD, A [6:0] setting are beingoverridden at Initial display stage A [6] Select GS Transition/ Fix Level A[6]=0: Select GS Transition A[3:0] A [6]=1: Select FIX level Setting A[5:4] A [5:4] Fix Level Setting for VBD A[5:4] VBD level 00 VSS 01 VSH 10 VSL 11[POR] HiZ A [1:0] GS transition setting for VBD (Select waveform like data A[3:2] to			
									data A[1:0]) A[1:0] GSC GSD			
									01[POR] GS0 GS1			
0	0	44	0	1	0	0	0	Set RAM X - address				
0	1		0	0	A ₄	A ₃	A_0	Start / End position	window address in the X direction by an address unit			
0	1		0	0	B ₄	B ₃	B_0		A[4:0]: XSA[4:0], XStart, POR = 00h B[4:0]: XEA[4:0], XEnd, POR = 0Fh			
0	0	45	0	1	0	0	1	Set Ram Y- address	Specify the start/end positions of the			
0	1		A ₇	A ₆	A_4	A_3	A_0	Start / End position	window address in the Y direction by an			
0	1		B ₇	B ₆	B ₄	B ₃	B_0		address unit A[7:0]: YSA[7:0], YStart, POR = 00h B[7:0]: YEA[7:0], YEnd, POR = F9h			
0	0	4E	0	1	0	1	0	Set RAM X address	Make initial settings for the RAM X			
0	1		0	0	A ₄	A ₃	A_0	counter	address in the address counter (AC) A[4:0]: XAD[4:0], POR is 00h			
0	0	4F	0	1	0	1	1	Set RAM Y address	Make initial settings for the RAM Y			
0	1		A ₇	A ₆	A ₄	A ₃	A_0	counter	address in the address counter (AC) A[7:0]: YAD[7:0], POR is 00h			
0	0	75	0	1	1	0	1		Set Analog Mode for Red Display			
0	1		0	0	0	0	0		B7=0 Analog Mode inRed/Black/White region			
0	1		В7	0	0	0	0	Red Display Control	(LUT1).			
0	1		0	0	0	0	0		B7=1 Analog Mode in Red region(LUT2).			

8. Optical Specification

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	indoor	8:1		-		8-2
GN	2Grey Level	-	-	DS+(WS-DS)*n(m-1)			8-3
Tupdate	Image update time	at 23 °C	-	3	-	sec	
Life		Topr		1000000times or 5years			

Notes: 8-1. Luminance meter: Eye-One Pro Spectrophotometer.

8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

8-3 WS: White state, DS: Dark state

9. Handling, Safety, and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status								
Product specification	This data sheet contains final product specifications.							
Limiting values								
or more of the limiting values operation of the device at these	ccordance with the Absolute Maximum Rating System (IEC 134). Stress above one may cause permanent damage to the device. These are stress ratings only and e or at any other conditions above those given in the Characteristics sections of the Exposure to limiting values for extended periods may affect device reliability.							
Application information								
Where application information	n is given, it is advisory and does not form part of the specification.							

10. Reliability Test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=60°C, RH=35%, 240h Test in white pattern
3	High-Temperature Operation	T=40°C, RH=35%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 168h
6	High Temperature, High Humidity Storage	T=50°C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25°C 30min]→[+60 °C 30 min] : 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell,not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display,no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display,including IC and FPC area)

Note:Put in normal temperature for 1hour after test finished, display performance is ok.

11. Block Diagram

12. Typical Application Circuit with SPI Interface

13 Typical Operating Sequence

13.1 Normal Operation Flow

13.2Normal OperationReference Program Code

ACTION	VALUE/DATA	COMMENT
	POWER O	
delay	10ms	
	PIN CONFIG	
RESE#	high	Hardware reset
delay	200us	
RESE#	low	
delay	200us	
Read busy pin	-	Wait for busy low
Command 0x12		Software reset
Read busy pin		Wait for busy low
Command 0x01	Data 0xf9 0x01	Set display size and driver output control
Command 0x11	Data 0x03	Ram data entry mode
Command 0x44	Data 0x00 0x0F	Set Ram X address
Command 0x45	Data 0x00 0XF9	Set Ram Y address
Command 0x3A	Data 0x04	Frame setting 100hz
Command 0x3B	Data 0x04	-
Command 0x3C	Data 0x01	Set border
Command 0x2C	Data 0x7B	Set VCOM value
	LOAD IMAGE	
Command 0x4E	Data 0x00	Set Ram X address counter
Command 0x4F	Data 0x00	Set Ram Y address counter
Command 0x24	4000bytes	Load B/Wimage (128/8*250)
Command 0x4E	Data 0x00	Set Ram X address counter
Command 0x4F	Data 0x00	Set Ram Y address counter
Command 0x24	4000bytes	Load REDimage (128/8*250)
	SET VOLTAGE / LOAD	LUT/ UPDATE
Command 0x03	Data 0x10 0x0A	Gate voltage setting for B/W
Command 0x04	Data 0x19	Source voltage setting for B/W
Command 0x05	Data 0x00	B/W mode
Command 0x32	Write 29bytes LUT for B/W	Load B/W LUT
Command 0x75	Data 0x00 0x00 0x00	B/W mode
Command 0x22	Data 0XC7	Image B/W update
Command 0x20		
Read busy pin		
Command 0x03	Data 0x02 0x0A	Gate voltage setting for RED
Command 0x04	Data 0x36	Source voltage setting for RED
Command 0x05	Data 0xC0	RED mode
Command 0x32	Write 29bytes LUT for B/W	Load RED LUT
Command 0x75	Data 0x00 0x80 0x00	RED mode
Command 0x22	Data 0XC7	Image RED update
Command 0x20		
Read busy pin		
Command 0x10	Data 0X01	Enter deep sleep mode
	POWER OFF	

14. Inspection condition

14.1 Environment

Temperature: 25 ± 3 °C Humidity: 55 ± 10 %RH

14.2 Illuminance

Brightness:1200~1500LUX;distance:20-30CM;Angle:Relate 30°surround.

14.3 Inspect method

14.4 Display area

14.5 Inspection standard

14.5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
2	Black/White spots	D≤0.25mm, Allowed 0.25mm < D≤0.4mm ∘ N≤3, and Distance≥5mm 0.4mm < D Not Allow	MI	Visual inspection	
3	Black/White spots (No switch)	L \leq 0.6mm, W \leq 0.2mm, N \leq 1 L \leq 2.0mm, W $>$ 0.2mm, Not Allow L $>$ 0.6mm, Not Allow		Visual/ Inspection card	Zone A

4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
6	Shortcircuit/ Circuit break/ Display abnormal	Not Allow			

14.5.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	D= $(L+W)/2$ D ≤ 0.25 mm, Allowed 0.25mm $\leq D\leq 0.4$ mm, N ≤ 3 D ≥ 0.4 mm, Not Allow	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual / Microscope	Zone A Zone B
3	Dirty	Allowed if can be removed	MI		Zone A Zone B
4	Chips/Scratch/ Edge crown	$X \le 3$ mm, $Y \le 0.5$ mm $X \le 3$ mm, $Y \le 3$ mm $X \le 3$ mm, $Y \le 3$ mm $X \le 3$ mm, $Y \le 3$ mm	MI	Visual / Microscope	Zone A Zone B
5	Substrate color difference	Allowed			
6	FPC broken/ Goldfingers xidation/ scratch	Not Allow	MA	Visual / Microscope	Zone B

7	PCB damaged/ Poor welding/ Curl	PCB(Circuit area)damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
8	Edge Adhesives height/FPL/ Edge adhesives bubble	Edge Adhesives height≤Display surface Edge adhesives seep in≤1/2 Margin width FPL tolerance ±0.3mm Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm₀ n≤3	MI	Visual / Ruler	Zone B
9	Protect film	Surface scratch but not effect protect function, Allow		Visual Inspection	

15.Packaging

DATE 2016.11.30 EPD PACKING INSTRUCTION DESIGN CHECKED APPROVED Customer Code Ref.P/N Туре Printing Pull Tape Bar.Code PKG Method GDEM0213U23 GLASS Blister BACK None YES None Marks instruction: Pull tape: print on the back of the product Contents: model+Lot# Packing Materials List 28PCS/LAYER,2 INNER BOX/CTN,TOTAL 560PCS/CTN. List Model Materials Q'ty Unit Barcode Instruction: corrugate Piece Carton 7#(INNER) corrugate Piece 2 BOX GDEM0213U23 PET 22 Piece Blister 20 Thin foam 301.6*265.73*T1.8-2.0 EPE Piece 430.0*590.0*0.075 Vaccum bag Piece GD2251-10 EPE Foam board 4 Piece Detail: Blister box: Foam board TOTAL 10 LAYERS PER INNER BOX WITH Empty blister Thin foam ONE MORE EMPTY BLISTER ON THE TOP OF Blister THE PRODUCTS. PUT IT INTO 7# INNER CARTON INNER BOX LABEL 7# INNER BOX PUT TWO 7# INNER BOXS INTO 7# CARTON Packing belt Quantity:4*7=28PCS