1 Chapter 7

- **7.1.6:** Not one-to-one.
- **7.1.12:** Not one-to-one.
- **7.1.14:** h(x) is one-to-one.
- **7.1.20:** $f^{-1}(1) = 0$.
- **7.1.40:** $(f^{-1})'(2) = 1/4$.
- **7.1.42:** $(f^{-1})'(2) = 2/3$.
- **7.1.44:** G'(2) = -1.
- 7.2*.4: $\ln 3 + 2 \ln x 5 \ln (x+1)$.
- **7.2*.8:** $\ln\left(\frac{xy^a}{z^b}\right)$.
- **7.2*.10:** Ask in class.
- 7.2*.14: $\frac{2x}{x^2+10}$.
- 7.2*.16: $\frac{-\sin(\ln x)}{x}$.
- 7.2*.24: $\frac{4}{x} + 2 \cot x$.
- 7.2*.26: $\frac{-6}{9u^2-4}$.
- **7.2*.32:** $y' = \frac{1-2\ln x}{x^3}$, $y'' = \frac{6\ln x 5}{x^4}$.
- **7.2*.44:** $y' = \left(\frac{y}{x}\right) \frac{xy \cos x 1}{1 y \sin x}$.
- **7.2*.56:** $y' = \frac{(x^3+1)^4 \sin^2 x}{x^{1/3}} \left(\frac{12x^2}{x^3+1} + 2 \cot x \frac{1}{3x} \right).$
- **7.2*.58:** $y' = \frac{x}{1-x^4} \sqrt[4]{\frac{x^2+1}{x^2-1}}$.

- **7.2*.64:** $\ln(\ln 6)$.
- **7.2*.66:** $\ln(2 + \sin x) + C$.
- **7.2*.74:** $f(x) = -\ln x + (\ln 2)x \ln 2$.
- **7.3*.4:** a) $\sin x$, b) xe^x .
- **7.3*.6:** a) $x = \frac{1}{2}(\ln 7 3)$, b) $x = \frac{1}{2}(5 e^{-3})$.
- 7.3*.8: $\ln(\ln 10)$.
- **7.3*.26:** 0.
- **7.3*.28:** -1.
- 7.3*.30: ∞.
- 7.3*.32: $y' = \frac{xe^x}{(x+1)^2}$.
- **7.3*.36:** $y' = e^x \left(\ln x + \frac{1}{x} \right)$.
- **7.3*.40:** $y' = -\pi e^{\pi x} \sin(e^{\pi x}).$
- 7.3*.70: $\frac{1}{2}(1-\frac{1}{e})$.
- **7.4*.8:** a) -1, b) 2.
- **7.4*.10:** a) -1, b) 28.
- **7.4*.24:** $g'(x) = x^3 4^x (x \ln 4 + 4)$.
- **7.4*.26:** $y' = 10^{\tan \theta} (\ln 10) (\sec^2 \theta)$.
- **7.4*.28:** $y' = 2^{3x^2} (\ln 2) 3^{x^2} (\ln 3) (2x)$.
- **7.4*.32:** $y' = x^{1/x} \left(\frac{1 \ln x}{x^2} \right)$.

- **7.4*.36:** $y' = (x)^{\ln x} \left(\frac{2 \ln x}{x} \right)$.
- **7.4*.40:** $f'(x) = x^{\cos x} \left[\frac{\cos x}{x} \sin x \ln x \right].$
- 7.4*.42: $\frac{15}{64 \ln 2}$.
- 7.4*.46: $\frac{1}{\ln 2} \ln(2^x + 1) + C$.
- **7.4*.52:** 0.
- **7.5.2:** $a) \frac{\pi}{4}, b) \frac{\pi}{6}.$
- **7.5.6:** $a) \frac{\pi}{4}, b) \frac{\sqrt{3}}{2}.$
- 7.5.8: $\frac{5}{4}$.
- 7.5.10: $\frac{-1}{\sqrt{2}}$.
- 7.5.12: $\frac{x}{\sqrt{1-x^2}}$.
- **7.5.24:** $1 \frac{x \sin^{-1} x}{\sqrt{1 x^2}}$.
- 7.5.28: $\frac{e^{\sec^{-1}t}}{t\sqrt{t^2-1}}$.
- 7.5.32: $\frac{1}{2(1+x^2)}$.
- 7.5.44: $\frac{\pi}{3}$.
- 7.5.46: $-\frac{\pi}{2}$.
- **7.5.60:** π .
- **7.5.62:** $\frac{1}{2}\sin^{-1}(2t) + C$.
- 7.5.64: $\frac{\pi}{4}$.
- **7.5.66:** $\frac{1}{2}(\tan^{-1}x)^2 + C$.

- **7.5.68:** $\frac{1}{2} \sec^{-1}(\frac{1}{2}x) + C$.
- **7.5.70:** $\frac{1}{2}\sin^{-1}(e^{2x}) + C$.
- **7.7.6:** −1.
- 7.7.8: $\frac{a}{b}$.
- 7.7.14: 0. L'Hospital's Rule does not apply here.
- 7.7.20: $-\frac{1}{\pi}$.
- 7.7.22: $\frac{1}{6}$.
- **7.7.28:** 0.
- 7.7.34: $\sqrt{\frac{1}{2}}$.
- 7.7.36: 0. L'Hospital's Rule does not apply here.
- **7.7.38:** 0.
- **7.7.40:** 0.
- 7.7.42: 0. L'Hospital's Rule does not apply here.
- **7.7.46:** 0.
- 7.7.48: $\frac{1}{2}$.
- **7.7.50:** 1.
- **7.7.54:** e^{ab} .
- **7.7.58:** *e*.

7.7.62: e^{-8} .