icpc 算法模板

Catch-22

2022 年 7 月 14 日

目录

	*F 57	
1	数学	4
	1.1 求逆元	4
	1.2 扩展欧几里德算法	4
	1.3 筛法	5
	1.4 组合数	7
	1.5 容斥原理	8
	1.6 数论分块	9
	1.7 Möbius 反演	9
	1.8 高斯消元	9
	1.9 Miller Rabin 素数测试	10
2	数据结构	11
	2.1 (带权) 并查集	11
	2.2 Sparse Table	12
	2.3 01Trie	12
	2.4 树状数组	13
	2.5 线段树	13
	2.6 可持久化线段树	13
	2.7 线段树合并	13
	2.8 树链剖分	13
	2.9 莫队	13
	2.10 左偏树	13
3	图论	15
	3.1 spfa	15
	3.2 dijkstra	16
	3.3 最小生成树	17
	3.4 kruskal 重构树	19
	3.5 强连通分量缩点	21
	3.6 lca	23
	3.7 基环树	25
4	动态规划	26
	4.1 数位 dp	26
	4.2 换根 dp	26
_	⇒ <i>你</i> 中	20
5	字符串	28
	5.1 KMP	28
	5.2 字符串 Hash	
	5.3 Trie	
	5.4 AC 自动机	
	5.5 SA	31

	.6 Manacher
6	其他 33
	.1 glibc 内置函数
	.2int128 读写 33
	.3 单调栈
	.4 单调队列

1 数学

1.1 求逆元

注意考虑 x 是 mod 倍数的情况

```
11 qpow(11 a, 11 b) {
        11 \text{ res} = 1;
        while(b) {
            if(b & 1) res = res * a % mod;
            a = a * a \% mod;
            b >>= 1;
        return res;
   }
9
   11 inv(11 x) { return qpow(x, mod - 2); }
11
12
   const int N = 1e6 + 10;
13
   // 线性递推求逆元 [1, n] 的所有数关于 p 的逆元
14
   int inv[N];
15
   void init_inv () {
        int n, p;
17
        cin >> n >> p;
        inv[0] = 0, inv[1] = 1;
19
        for (int i = 2; i <= n; i++)</pre>
20
            inv[i] = (ll)(p - p / i) * inv[p % i] % p;//为了保证大于零加了个 p
21
        for (int i = 1; i <= n; i++)</pre>
22
            cout << inv[i] << endl;</pre>
23
24
        return 0;
25
   }
26
```

1.2 扩展欧几里德算法

bezout 定理: 设 a,b 为正整数,则关于 x,y 的方程 ax+by=c 有整数解当且仅当 c 是 $\gcd(a,b)$ 的倍数。

```
返回结果: ax + by = gcd(a,b) 的一组解 (x, y) 时间复杂度: \mathcal{O}(nlogn)
```

```
11
        int d = exgcd(b, a % b, y, x);
12
        y -= a/b * x;
13
        return d;
14
   }
15
16
   int main() {
17
        int x, y;
18
        cin >> n;
19
        while(n -- ) {
20
            cin >> a >> b >> m;
21
            int d = exgcd(a, m, x, y); // d = gcd(a, m)s
22
            if(b % d != 0) puts("impossible"); //bezout 定理: 有解的条件, gcd(a, m) | b
23
            else printf("%lld\n", (ll)x * (b/d) % m);
24
25
        return 0;
26
   }
27
   1.3
          筛法
   #include<bits/stdc++.h>
   using namespace std;
   using ll = long long;
   const int N = 1e7 + 10;
   int primes[N], cnt;
   bool vis[N]; //合数 true
   int n, q;
   //linear
   void get_prime(int n) {
      for(int i = 2; i <= n; i ++) {</pre>
10
          if(!vis[i]) primes[ ++ cnt] = i;
11
          for(int j = 1; j <= cnt && i * primes[j] <= n; ++ j) {</pre>
12
              vis[i * primes[j]] = 1;
                if(i % primes[j] == 0) break;
14
          }
15
        }
16
   }
17
   //about linear :0(nloglogn)
19
   bool isprime[N];
20
   inline void getprime(int n) {
        for (int i = 2; i <= n; i++) isprime[i] = 1;</pre>
22
23
        for (int i = 2; i <= n; i++) {
            if(isprime[i]) {
24
                primes[++cnt] = i;
25
                if((ll)i*i<=n)
26
                for (int j = i * i; j <= n; j+=i){</pre>
27
                     isprime[j] = 0;
28
```

}

29

```
}
30
        }
31
   }
32
   #include <bits/stdc++.h>
   using namespace std;
   /*phi compute
    根据给定 n 计算 phi(n) O(agrt(n))
   核心公式 phi(n) = n*(1-1/p1)*(1 - 1/p2)*...
   int get_phi(int n) {
        int res = n;
        for (int i = 2; i <= n / i; i++) {
10
            if(n % i == 0) {
11
                 res = res / i * (i - 1); // res *= (1 - 1/n)
12
                while(n % i == 0)
                                    n /= i;
13
            }
14
15
        if(n > 1) res = res / n * (n - 1);
16
        return res;
17
   }
18
19
   using ll = long long;
20
   const int N = 1e6 + 10;
21
22
   int phi[N], prime[N];
23
   bool vis[N]; //合数 true
24
25
   void sel_phi(int n) {
26
        int cnt = 0;
27
        phi[1] = 1;
28
        for (int i = 2; i <= n; i ++) {
29
            if(!vis[i]) {
30
                prime[cnt++] = i;
31
                phi[i] = i - 1;
32
            }
33
            for (int j = 0; prime[j] <= n / i; j ++) {</pre>
34
                vis[prime[j] * i] = true;
35
                 if(i % prime[j] == 0) {
36
                     phi[i * prime[j]] = phi[i] * prime[j];
37
                     break;
38
                }
39
                else
40
                     phi[prime[j] * i] = phi[i] * (prime[j] - 1);
41
            }
42
        }
43
   }
44
```

1.4 组合数

```
1. C_n^m = C_n^{n-m}
     \mathbf{2.} \  \, C_n^m = C_{n-1}^m + C_{n-1}^{m-1}
     3. C_n^0 + C_n^1 + \dots + C_n^n = 2^n
     4. lucas: C_n^m \equiv C_{n \mod p}^{m \mod p} * C_{n/p}^{m/p}
   //求组合数的几种方法
   //不确定的时候都开 Long Long
    #include <bits/stdc++.h>
   using namespace std;
   using ll = long long;
    const int mod = 1e9 + 7, N = 1e6 + 10;
    //C(a, b) a \perp b \top
    /*1. 依照定义 适用于 a, b 很小的时候(几十)*/
    int C(ll a, int b) /* a \perp b \top */{\{}
10
        if(a < b) return 0;</pre>
11
        int up = 1, down = 1;
12
        for (ll i = a; i > a - b; i -- ) up = i % mod * up % mod; //up *= i
13
        for (int j = 1; j <= b; j ++) down = (11)j * down % mod; // down *= j
14
        return (11)up * qpow(down, mod - 2) % mod; // (up/down)
15
   }
16
17
   /*2. 递推 杨辉三角 a, b 在 2000 这个数量级 */
18
    //0(N^2) 1e6~1e7
19
    void init()
20
21
        for (int i = 0; i < N; i ++)</pre>
22
            for (int j = 0; j <= i; j ++)
23
                 if(!j) C[i][j] = 1;
24
                 else C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) \% mod;
25
   }
26
27
28
    /*3. 预处理 fac[], invfac[]*/
29
30
31
     * 1ll * fac[b] * invfac[a] % mod * invfac[b - a] % mod;
32
33
   // O(N) 1e6 左右 看 N 大小
34
    int fac[N], invfac[N];
35
    void init() {
36
        fac[0] = 1;
37
        for (int i = 1; i < N; i ++) (ll)fac[i] = fac[i - 1]*i% mod;</pre>
38
        invfac[N - 1] = qpow(fac[N - 1], mod - 2);
39
        for (int i = N - 2; i >= 0; i --)
40
            invfac[i] = (ll)invfac[i + 1] * (i + 1) % mod;
41
```

```
}
42
43
   /*4. Lucas 定理 当 a, b 的值特别大 如 1e9 以上...1e18 等 */
44
   int C(int a, int b) {
45
       int res = 1;
46
       for (int i = 1, j = a; i <= b; i ++, j --) {
47
           res = (11)res * j % p;
48
           res = (ll)res * binpow(i, p - 2) % p;
49
50
       return res;
51
   }
52
53
   11 lucas(11 a, 11 b) {//p 为质 (模) 数
54
       if(a 
55
       return (11)C(a % p, b % p) * lucas(a / p, b / p) % p;
56
   }
57
```

1.5 容斥原理

 S_i 为有限集, |S| 为 S 的大小 (元素个数), 则:

$$|\bigcup_{i=1}^{n} S_{i}| = \sum_{i=1}^{n} |S_{i}| - \sum_{1 \le i < j \le n} |S_{i} \cap S_{j}| + \sum_{1 \le i < j < k \le n} |S_{i} \cap S_{j} \cap S_{k}| + \dots + (-1)^{n+1} |S_{1} \cap \dots \cap S_{n}|$$

```
1 // 容斥原理
   // 给定素数集合 A(大小为 k), 求 [L, R] 中素数集合的任意元素的倍数的个数
   // 1<=L<=R<=10^18,1<=k<=20,2<=ai<=100
   #include <bits/stdc++.h>
   using ll = long long;
   using namespace std;
   int main() {
     ll l, r, k, f[25];
     cin >> 1 >> r >> k;
10
     for (int i = 0; i < k; i++) cin >> f[i];
11
12
     11 ans = 0;
13
14
     for (int i = 1; i < 1 << k; i ++) {// 枚举集合中全部的非空子集
15
       ll cnt = 0, a = r, b = 1 - 1; // cnt 用来表示所取的数的个数
16
       for (int j = 0; j < k; j ++) {
17
         if(i >> j & 1) {
18
           cnt++;
19
           a /= f[j], b /= f[j];
20
         }
21
22
       if(cnt & 1) ans += (a - b);
23
       else ans -= (a - b);
24
     }
25
```

```
26    cout << ans << endl;
27    return 0;
28  }
```

1.6 数论分块

考虑和式: $\sum_{i=1}^n f(i)\lfloor \frac{n}{i} \rfloor$,由于 $\lfloor \frac{n}{i} \rfloor$ 的值成一个块状分布,故可以一块一块运算。我们先求出 f(i) 的前缀和,每次以 $[l,r]=[l,\lfloor \frac{n}{\lfloor \frac{n}{i} \rfloor} \rfloor]$ 为一块分块求出贡献累加到结果中。(常配合莫反使用) 常见转换:

1.7 Möbius 反演

1.8 高斯消元

12 }

```
#include<bits/stdc++.h>
   using namespace std;
   const int N = 110;
   const double eps = 1e-6;
   int n;
   double a[N][N];
   int gauss() {
        int c, r;
        for(c = 0, r = 0; c < n; c ++) {
10
            int t = r;
11
            for(int i = r; i < n; i ++)//找到首元素最大
12
                if(fabs(a[i][c]) > fabs(a[t][c]))
13
                    t = i;
14
15
            if(fabs(a[t][c]) < eps) continue;</pre>
16
17
            for(int i = c; i <= n; i ++) swap(a[t][i], a[r][i]);</pre>
18
            for(int i = n; i >= c; i --) a[r][i] /= a[r][c];
19
```

```
for(int i = r + 1; i < n; i ++)</pre>
20
                  if(fabs(a[i][c]) > eps)
21
                      for(int j = n; j >= c; j --)
22
                           a[i][j] -= a[r][j] * a[i][c];
23
             r ++;
24
        }
25
        if(r < n) {
26
             for(int i = r; i < n; i ++)</pre>
27
                 if(fabs(a[i][n]) > eps)
28
                      return 2;
29
             return 1;
30
        }
31
32
        for(int i = n - 1; i >= 0; i --)
33
             for(int j = i + 1; j < n; j ++)</pre>
34
                 a[i][n] -= a[i][j] * a[j][n];
35
36
        return 0;//有唯一解
37
    }
38
39
    int main() {
40
        cin >> n;
41
        for(int i = 0; i < n; i ++)</pre>
42
             for(int j = 0; j < n + 1; j ++)</pre>
43
                 cin >> a[i][j];
44
45
        int t = gauss();
46
        if(t == 0)
47
             for(int i = 0; i < n; i ++) printf("%.2f\n", a[i][n]);</pre>
48
        else if(t == 1)
49
             puts("Infinite group solutions");
50
        else puts("No solution");
51
52
        return 0;
53
    }
54
```

1.9 Miller Rabin 素数测试

```
//loj143 prime test
#include <bits/stdc++.h>
susing namespace std;
using ull = unsigned long long;
susing ll = long long;
/* O(sqrt(n))
bool is_prime(ll x)
{
fif(x < 2) return false;
for(ll i = 2; i <= x / i; ++i)
if(x % i == 0) return false;</pre>
```

```
return true;
12
   }
13
14
   //常常是大素数测试, 要用到 int128
15
    inline ll qmul(ll a, ll b, ll p) { return (ll)((__int128)a * b % p); }
16
    11 qpow(11 a, 11 b, 11 p) {
17
        11 \text{ res} = 1;
18
        while(b) {
19
            if(b & 1) res = qmul(res, a, p);
20
            a = qmul(a, a, p);
21
            b >>= 1;
22
        }
23
        return res;
24
   }
25
    const int test_time = 8;
26
27
    bool mr_test(ll n) {
28
        if(n < 3 || n % 2 == 0) return n == 2;</pre>
29
        11 a = n - 1, b = 0;
30
        while(a % 2 == 0) a /= 2, ++b;
31
32
        for (int i = 1, j; i <= test_time; ++i) {</pre>
33
            11 x = rand() \% (n - 2) + 2, v = qpow(x, a, n);
34
            if(v == 1) continue;
35
            for (j = 0; j < b; ++j) {
36
                 if(v == n - 1) break;
37
                 v = qmul(v, v, n);
38
            }
39
            if(j >= b) return 0;
40
        }
41
        return 1;
42
   }
43
44
    int main() {
45
        srand(time(0));
46
        11 x;
47
        while(cin >> x) {
48
            if(mr_test(x)) puts("Y");
49
            else puts("N");
50
        }
51
        return 0;
52
   }
53
```

2 数据结构

2.1 (带权) 并查集

```
const int N = 1e5 + 10;
int fa[N], n, m, d[N];
```

```
3
   int find(int x) {return x == fa[x] ? x : fa[x] = find(fa[x]);}
   // 对于带权并查集,一般的 find 函数写作:
   int find(int x) {
       if(x == fa[x]) return x;
       int rt = find(fa[x]); //这和下面一行顺序很重要
       d[x] += d[fa[x]]; //可以改成 d[x] \stackrel{\wedge}{=} d[fa[x]],根据权值意义的需要修改
9
       return fa[x] = rt;
10
   }
11
12
   void init() {
13
       for (int i = 1; i <= n; i++) fa[i] = i;</pre>
14
   }
15
```

2.2 Sparse Table

时间复杂度 $\mathcal{O}(1)$,空间复杂度 $\mathcal{O}(nlogn)$ 静态区间查询可重复贡献信息,如"区间最值"、"区间按位和"、"区间按位或"、"区间 GCD"

```
#include<bits/stdc++.h>
   using namespace std;
   const int N = 1e5 + 10;
   int f[N][21], n, m;
   int a[N];
   //f[i][j] 表示闭区间 [i, i + 2^j - 1] 的最大值
   void init st() {
       // cout << __lg(N) << endl;</pre>
10
       for (int j = 0; j < 21; j ++)
11
            for (int i = 1; i + (1 << j) - 1 <= n; i++)//区间长度是 2<sup>n</sup>j 所以要减一
12
                if(!j) f[i][j] = a[i];
13
                else
14
                    f[i][j] = max(f[i][j - 1], f[i + (1 << j - 1)][j - 1]);
15
   }
16
17
   int query(int 1, int r) {
18
        int k = __lg(r - l + 1);
19
        return max(f[1][k], f[r - (1 << k) + 1][k]);
20
   }
21
```

2.3 01Trie

```
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10,M = N * 31;
int a[N];
int son[M][2], idx;

void insert(int x) {
```

```
int p = 0;
8
        for (int i = 30; i >= 0; --i) {
9
            int u = ((x>>i) & 1);
10
            if(!son[p][u]) son[p][u] = ++idx;
11
            p = son[p][u];
12
        }
13
   }
14
   // 集合内和 x 异或的最大值
15
   int query(int x) {
16
      int p = 0, res = 0;
17
      for (int i = 30; i >= 0; --i) {
18
        int u = (x >> i) & 1;
19
        if(son[p][u \land 1]) p = son[p][u \land 1], res |= (1 << i);
20
        else p = son[p][u];
21
            // 集合内和 x 异或的最小值
22
            // if(son[p][u]) p = son[p][u];
23
            // else res |= (1 << i), p = son[p][u ^ 1];
24
      }
25
        return res;
26
   }
27
28
   int main() {
29
        int n, res = 0;
30
        cin >> n;
31
        for(int i = 0; i < n; i++) cin >> a[i];
32
        for(int i = 0; i < n; i++) {</pre>
33
            insert(a[i]);
34
            res = max(res, query(a[i]));
35
36
        cout << res;</pre>
37
        return 0;
38
   }
39
```

- 2.4 树状数组
- 2.5 线段树
- 2.6 可持久化线段树
- 2.7 线段树合并
- 2.8 树链剖分
- 2.9 莫队
- 2.10 左偏树

支持操作 (以维护最小值为例):

1. 找到最小值 O(1)

```
2. 删除最小值 \mathcal{O}(logn)
     3. 插入一个值 \mathcal{O}(logn)
     4. 合并两个堆 O(logn)
  #include <bits/stdc++.h>
   #define endl '\n'
   using namespace std;
   const int N = 2e5 + 10;
   int val[N], lson[N], rson[N], dis[N];
   int fa[N], idx, n;
   int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); }
   bool cmp(int x, int y) { return val[x] == val[y] ? x < y : val[x] < val[y]; }</pre>
9
10
   int merge(int x, int y) {
11
        if(|x| | y) return x + y;
12
        if(cmp(y, x)) swap(x, y);
13
        rson[x] = merge(rson[x], y);
14
        if(dis[rson[x]] > dis[lson[x]]) swap(lson[x], rson[x]);
15
        dis[x] = dis[rson[x]] + 1;
16
        return x;
17
   }
18
19
   int main() {
20
        ios::sync_with_stdio(false), cin.tie(0);
21
        cin >> n;
22
        val[0] = 2e9;
23
        while(n --) {
24
            int op, x, y; cin >> op;
25
            if(op == 1) {
26
                cin >> x;
27
                val[++idx] = x;
28
                fa[idx] = idx;
29
                dis[idx] = 1;
30
            }
31
            else if(op == 2) {
32
                cin >> x >> y;
33
                x = find(x), y = find(y);
34
                if(x != y) {
35
                     if(cmp(y, x)) swap(x, y); //x 为较小的
36
                     fa[y] = x;
37
                     merge(x, y);
38
                }
39
            }
40
            else if(op == 3) {
41
                cin >> x;
42
                cout << val[find(x)] << endl;</pre>
43
            }
44
            else { // 删除 x 所在堆的最小值
45
```

```
cin >> x; x = find(x);
46
                 if(cmp(rson[x], lson[x])) swap(lson[x], rson[x]);
47
                 fa[x] = lson[x], fa[lson[x]] = lson[x];
48
                 merge(lson[x], rson[x]);
49
            }
50
        }
51
        return 0;
52
   }
53
```

3 图论

3.1 spfa

```
#include <bits/stdc++.h>
   #define pb push_back
   using namespace std;
   const int N = 1e5 + 10, inf = 0x3f3f3f3f;
   struct node{int v, w;};
   vector<node> G[N];
   int dis[N], n, m;
   bool inq[N];
11
   void spfa() {
        memset(dis, 0x3f, sizeof dis);
12
        dis[1] = 0;
13
        inq[1] = 1;
        queue<int> q;
        q.push(1);
16
17
        while(q.size()) {
            int u = q.front(); q.pop();
            inq[u] = 0;
19
            for(auto [v, w]:G[u]) {
20
                if(dis[v] > w + dis[u]) {
21
                     dis[v] = dis[u] + w;
22
                     if(!inq[v])
23
                         q.push(v), inq[v] = true;
                }
            }
26
        }
27
   }
28
   int main() {
30
31
        cin >> n >> m;
        while(m -- ) {
32
            int u, v, w;
33
            cin >> u >> v >> w;
34
            G[u].pb({v, w});
35
36
        }
```

```
spfa();
spfa();
if(dis[n] == inf) cout << "impossible";
else cout << dis[n];
return 0;

1 }</pre>
```

3.2 dijkstra

```
稀疏图 dijkstra:
```

```
//acwing 849
    #include <bits/stdc++.h>
   using namespace std;
    const int N = 510, inf = 0x3f3f3f3f3;
    int dis[N], G[N][N], n, m;
    bool vis[N];
    void dij() {
        memset(dis, 0x3f, sizeof dis);
        dis[1] = 0;
10
        for (int j = 0; j < n; j ++) {
11
             int minv = inf, pos = -1;
12
            for(int i = 1; i <= n; i ++)</pre>
13
                 if (!vis[i] && minv > dis[i])
14
                     minv = dis[i], pos = i;
15
16
            if(pos == -1) break;
17
            vis[pos] = 1;
18
            for (int i = 1; i <= n; i ++)</pre>
19
                 if(!vis[i] && dis[pos] + G[pos][i] < dis[i])</pre>
20
                     dis[i] = dis[pos] + G[pos][i];
21
        }
22
   }
23
24
    int main() {
25
        cin >> n >> m;
26
        scanf("%d %d", &n, &m);
27
        memset(G, 0x3f, sizeof(G));
28
        while(m --) {
29
            int u, v, w; scanf("%d %d %d", &u, &v, &w);
30
            G[u][v] = min(G[u][v], w);
31
        }
32
33
        dij();
34
35
        cout << (dis[n] == inf ? -1 : dis[n]);</pre>
36
        return 0;
37
   }
38
```

稠密图 dijkstra:

```
#include <bits/stdc++.h>
   #define pb push_back
   #define fi first
   #define se second
   using namespace std;
   using P = pair<int, int>;
   const int N = 151000, inf = 0x3f3f3f3f;
   struct node{int v, w;};
   vector<node> G[N];
10
   int dis[N], n, m;
11
   bool vis[N];
12
13
   void dij() {
14
        memset(dis, 0x3f, sizeof dis);
15
        priority_queue<P, vector<P>, greater<P>> q;
16
        q.push({0, 1});
17
        while(q.size()) {
18
            auto t = q.top(); q.pop();
19
            int u = t.se, d = t.fi;
20
            if(vis[u]) continue;
21
            vis[u] = true;
22
            for(auto [v, w] : G[u]) {
23
                if(dis[v] > d + w) {
24
                    dis[v] = d + w;
25
                    q.push({dis[v], v});
26
                }
27
            }
28
        }
29
   }
30
31
   int main() {
32
        ios::sync_with_stdio(false);
33
        cin >> n >> m;
34
        while(m -- ) {
35
            int u, v, w; cin >> u >> v >> w;
36
            G[u].pb({v, w});
37
        }
38
        dij();
39
        cout << (dis[n] == inf ? -1 : dis[n]);
40
        return 0;
41
   }
42
   3.3 最小生成树
1 // kruskal
   const int N = 1e5 + 10;
   struct edge {
```

int u, v, w;

```
bool operator<(const edge &rhs) const { return w < rhs.w; }</pre>
    } edges[N];
    int fa[N], n, m;
    int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); }
10
    int kruskal() {
11
        cin >> n >> m;
12
        int u, v, w, ans = 0;
13
        for (int i = 1; i <= m; i ++) {
14
             cin >> u >> v >> w;
15
            edges[i] = \{u, v, w\};
16
17
        sort(edges + 1, edges + 1 + m);
18
        for (int i = 1; i <= n; i ++) fa[i] = i;
19
        for (int i = 1; i <= m; i ++) {</pre>
20
            auto [u, v, w] = edges[i];
21
            u = find(u), v = find(v);
22
            if(u == v) continue;
23
            fa[u] = v;
24
            ans += w;
25
26
        return ans;
27
   }
28
29
   //prim
30
    const int N = 510, inf = 0x3f3f3f3f;
31
   int G[N][N], dis[N];
32
    int n, m;
33
    bool vis[N];
34
35
    int prim() {
36
        int res = 0;
37
        memset(dis, 0x3f, sizeof dis);
38
        dis[1] = 0; //随便选一点进入 mst 集合
39
        for(int j = 0; j < n; j ++) {</pre>
40
            int minv = inf, pos = -1;
41
            for(int i = 1; i <= n; i ++)</pre>
42
                 if(!vis[i] && dis[i] < minv)</pre>
43
                     pos = i, minv = dis[i];
44
45
            if(pos == -1) return inf;
46
            vis[pos] = true;
47
             res += dis[pos];
48
49
            for(int i = 1; i <= n; i ++)</pre>
50
                 if(!vis[i] && dis[i] > G[pos][i])
51
                     dis[i] = G[pos][i];
52
        }
53
```

```
return res;
 }
```

对于完全图的 MST 问题,一般考虑使用 Boruvka 算法,我们要在 nlogn 或 $nlog^2n$ 时间内求出每个连通块最小的连接的边,而这个边权一般可通过点权以一定方式求出。

```
1  // cf888G botuvka+01trie
2  #include <bits/stdc++.h>
3  using namespace std;
4  using ll = long long;
5
6  int main() {
7
8
9
10  return 0;
11 }
```

3.4 kruskal 重构树

```
//kruskal 重构树
   //性质:
   //两个点之间的所有简单路径上最大边权的最小值
  // = 最小生成树上两个点之间的简单路径上的最大值
  // = Kruskal 重构树上两点之间的 LCA 的权值。
   //Loj136
   #include <bits/stdc++.h>
   #define pb push_back
   using namespace std;
10
11
   const int N = 1010 << 1, M = 3e5 + 10;</pre>
   int n, m, k, val[N];// kruskal 重构树的点权
   int idx; //重构树的节点数
14
   struct Edge{
16
17
       bool operator<(const Edge &rhs) const { return w < rhs.w; }</pre>
18
   }edges[M];
20
   vector<int> G[N];
21
22
   int p[N];
   int find(int x) { return x == p[x] ? x : p[x] = find(p[x]); }
24
25
   int dep[N], fa[N][21];
26
27
   void bfs(int s)
28
29
   {
       dep[0] = 0, dep[s] = 1;
```

```
queue<int> q;
31
        q.push(s);
32
        while(q.size())
33
34
            int u = q.front(); q.pop();
35
            for(int v:G[u])
36
            {
37
                 if(dep[v] > dep[u] + 1)
38
39
                     dep[v] = dep[u] + 1;
40
                     q.push(v);
41
                     fa[v][0] = u;
42
                     for (int i = 1; i <= 20; i ++)
43
                          fa[v][i] = fa[fa[v][i - 1]][i - 1];
44
45
                 }
            }
46
        }
47
   }
48
49
   int lca(int a, int b)
50
51
        if(dep[a] < dep[b]) swap(a, b);</pre>
52
        for (int k = 20; k >= 0; k --)
53
            if(dep[fa[a][k]] >= dep[b])
54
                 a = fa[a][k];
55
        if(a == b) return a;
56
        for (int k = 20; k >= 0; k --)
57
            if(fa[a][k] != fa[b][k])
58
                 a = fa[a][k], b = fa[b][k];
59
        return fa[a][0];
60
   }
61
62
   void build()
63
64
        idx = n;
65
        int cnt = 0;
66
        for (int i = 1; i <= m; i ++)</pre>
67
            int u = edges[i].u, v = edges[i].v, w = edges[i].w;
69
            int fu = find(u), fv = find(v);
70
            if(fu != fv)
71
            {
72
                 val[++idx] = w;
73
                 G[idx].pb(fu), G[idx].pb(fv);
74
                 G[fu].pb(idx), G[fv].pb(idx);
75
                 p[fu] = p[fv] = idx;
76
                 cnt++;
77
            }
78
            if(cnt >= n - 1) break;
79
```

```
}
80
    }
81
82
    int main()
83
84
         scanf("%d %d %d", &n, &m, &k);
85
         for (int i = 1; i <= m; i ++)</pre>
86
87
             int u, v, w; scanf("%d %d %d", &u, &v, &w);
88
             edges[i] = \{u, v, w\};
89
90
         sort(edges + 1, edges + m + 1);
91
         for (int i = 1; i <= (n << 1); i ++) p[i] = i;
92
93
         build(); // kruskal 重构树
94
95
         memset(dep, 0x3f, sizeof dep);
96
         bfs(idx); //bfs 的根节点一定要是重构树的最高点
97
98
         while(k -- )
99
100
             int s, t;
101
             scanf("%d %d", &s, &t);
102
             if(find(s) != find(t))
                                         puts("-1");
103
             else
104
                 printf("%d\n", val[lca(s, t)]);
105
106
         return 0;
107
    }
108
```

3.5 强连通分量缩点

16

时间复杂度 O(m+n),反向枚举 scc_cnt 即是新图拓扑序。

```
#include<bits/stdc++.h>
   #define pb push_back
   using namespace std;
   const int N = 1e4 + 10;
   vector<int> G[N], G2[N];
   stack<int> s;
   int n, m, tim, scc_cnt;
   int w[N], dfn[N], low[N], id[N];
   int dist[N], ind[N], W[N];
10
   bool ins[N];
11
12
   void tarjan(int u) {
13
       low[u] = dfn[u] = ++tim;
14
        s.push(u); ins[u] = true;
15
```

```
for(int v:G[u]) {
17
            if(!dfn[v]) {
18
                 tarjan(v);
19
                 low[u] = min(low[v], low[u]);
20
            }
21
            else if(ins[v])
22
                 low[u] = min(low[u], dfn[v]);
23
        }
24
25
        if(low[u] == dfn[u]) {
26
            int y; ++scc_cnt;
27
            do {
28
                 y = s.top(); s.pop();
29
                 ins[y] = false;
30
                 id[y] = scc_cnt;
31
                 W[scc\_cnt] += w[y];
32
            } while (y != u);
33
        }
34
   }
35
36
   int sol() {
37
38
        queue<int> q;
39
        for (int i = 1; i <= scc_cnt; i++)</pre>
40
            if(!ind[i]) {
41
                 q.push(i);
42
                 dist[i] = W[i];
43
            }
44
45
        while(q.size()) {
46
            //cout << "cnt = " << ++cnt << endl;
47
            int u = q.front(); q.pop();
48
            for (int v:G2[u]) {
49
50
                 \hookrightarrow //当有重边时, dist[v] 被更新的值始终不变,即 dist[v] = dist[u] + W[v]; 所以不会影响
                 dist[v] = max(dist[v], dist[u] + W[v]);
51
                 if(--ind[v] == 0)
52
                     q.push(v);
53
54
            }
        }
55
56
        int ans = 0;
57
        for (int i = 1; i <= scc_cnt; i++)</pre>
58
            ans = max(ans, dist[i]);
59
        return ans;
60
   }
61
62
63
   int main() {
```

```
ios::sync_with_stdio(false), cin.tie(0);
65
       cin >> n >> m;
66
       for (int i = 1; i <= n; i ++)
                                        cin >> w[i];
67
       while(m--) {
68
           int u, v;
69
           cin >> u >> v;
70
           G[u].pb(v);
71
       }
72
       for (int i = 1; i <= n; i ++)</pre>
73
           if(!dfn[i])
74
               tarjan(i);
75
       //缩点
76
       for (int u = 1; u <= n; ++u) {
77
           for(int v : G[u]) {
78
               if(id[v] != id[u]) {
79
                   G2[id[u]].pb(id[v]);
80
                   ind[id[v]]++;
81
                   //printf("ind[%d] = %d\n",id[v], ind[id[v]]);
82
               }
83
           }
84
       }
85
       // debug
86
       // for (int i = 1; i <= scc_cnt; i++)
87
             printf("ind[%d] = %d\n",i, ind[i]);
88
       // for (int i = 1; i <= scc_cnt; i++)
89
       // {
90
91
              printf("%d->", i);
       //
92
       //
              for (int v:G2[i])
93
                  printf("%d ", v);
       //
94
              puts("");
       //
95
       // }
96
       printf("%d\n", sol());
97
       return 0;
98
   }
99
   3.6 lca
   /*
   求 Lca: 1. 倍增 2. 树剖 3.tarjan 离线
   Lca 用处
   1. 树上两点之间的距离 (多维护一个 dist 数组, dis[u] + dis[v] - 2 * dis[Lca(u, v)])
   2. 树上两条路径是否相交 (如果两条路径相交, 那么一定有一条路径的 LCA 在另一条路径上)
   */
   //acwing1171 树上距离
  #include <bits/stdc++.h>
  #define pb push_back
  #define endl '\n'
```

```
using namespace std;
12
    const int N = 1e4 + 10;
13
14
    struct node{int v, w;};
15
    vector<node> G[N];
16
    int fa[N][19], dep[N], dis[N];
17
    int n, m;
18
19
    void bfs(int s) {
20
        memset(dep, 0x3f, sizeof dep);
21
        dep[0] = 0, dep[s] = 1;
22
        dis[s] = 0;
23
        queue<int> q; q.push(s);
24
        while(q.size()) {
25
             int u = q.front(); q.pop();
26
             \quad \text{for(auto [v, w] : G[u]) } \{
27
                 if(dep[v] > dep[u] + 1) {
28
                      dis[v] = dis[u] + w;
29
                      dep[v] = dep[u] + 1;
30
                      fa[v][0] = u;
31
                      q.push(v);
32
                      for(int i = 1; i < 19; ++i)</pre>
33
                          fa[v][i] = fa[fa[v][i - 1]][i - 1];
34
                 }
35
             }
36
        }
37
   }
38
39
    int lca(int a, int b) {
40
        if(dep[a] < dep[b]) swap(a, b);</pre>
41
        for(int k = 18; k >= 0; k--)
42
             if(dep[fa[a][k]] >= dep[b])
43
                 a = fa[a][k];
44
        if(a == b) return a;
45
46
        for(int k = 18; k >= 0; --k)
47
             if(fa[a][k] != fa[b][k])
48
                 a = fa[a][k], b = fa[b][k];
49
        return fa[a][0];
50
   }
51
52
    int main() {
53
        ios::sync_with_stdio(false), cin.tie(0);
54
        cin >> n >> m;
55
        for(int i = 1; i < n ; i ++) {</pre>
56
             int u, v, w; cin >> u >> v >> w;
57
             G[u].pb({v, w}), G[v].pb({u, w});
58
        }
59
        bfs(1);
60
```

```
61     while(m -- ) {
62         int u, v; cin >> u >> v;
63         int anc = lca(u, v);
64         cout << dis[u] + dis[v] - 2 * dis[anc] << endl;
65     }
66     return 0;
67 }</pre>
```

3.7 基环树

基环树的性质:点数等于边数;度数是点数两倍。一般题目中出现"从一个点到另一个点建一条边","N 个点通过恰好 N 条双向道路连接起来,不存在任何两条道路连接了相同的两个点"等类似信息可以判定该图是基环树森林。以下是求基环树 (森林) 直径 (和) 代码

```
//基环树森林求直径和最大
  #include <bits/stdc++.h>
   #define endl '\n'
  #define pb push_back
   using 11 = long long;
   using namespace std;
   const int N = 1e6 + 10, M = N << 1;</pre>
   int h[N], e[M], w[M], ne[M], idx;
   11 s[N], sum[M], d[M]; //环上的前缀和数组, 破环成链后两倍的前缀和
   bool ins[N], vis[N];
10
   int n, cir[M], ed[M], cnt; //cnt 环的个数
11
   int fa[N], fw[N]; //父节点, 反向权值
12
   int q[M];
13
   ll ans;
14
15
   void add(int a, int b, int c) {
16
       e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
17
   }
18
19
   //深搜 + 栈 找环
20
   void dfs(int u, int from) {
21
       vis[u] = ins[u] = true;
22
       for (int i = h[u]; ~i; i = ne[i]) {
23
           //如果是反向边则跳过,必须用边来判断,这样才能确定是通过反向变回到父节点
24
           if (i == (from ^ 1)) continue;
25
           int v = e[i];
26
           fa[v] = u, fw[v] = w[i];
27
           if (!vis[v]) dfs(v, i);
28
           else if(ins[v]) {
29
               cnt++;
30
               ed[cnt] = ed[cnt - 1];
31
               11 \text{ tot} = w[i];
32
               for (int k = u; k != v; k = fa[k]) {
33
                   s[k] = tot;
34
                   tot += fw[k];
35
                   cir[++ ed[cnt]] = k;
36
```

```
}
37
                s[v] = tot, cir[++ ed[cnt]] = v;
38
            }
39
       }
40
       ins[u] = false;
41
   }
42
43
   // 求以 u 为根节点的子树的最大深度
44
   11 dfs_d(int u) {
45
       vis[u] = true;
46
        11 d0 = 0, d1 = 0; //最大距离,次大距离
47
        for (int i = h[u]; ~i; i = ne[i]) {
48
            int v = e[i];
49
            if (vis[v]) continue;
50
            ll d = dfs_d(v) + w[i];
51
            if (d >= d0) d1 = d0, d0 = d;
52
            else if (d > d1) d1 = d;
53
54
        ans = max(ans, d1 + d0);
55
       return d0;
56
   }
57
58
   int main() {
59
        ios::sync_with_stdio(false), cin.tie(0);
60
        cin >> n;
61
       memset(h, -1, sizeof h);
62
       for (int u = 1; u <= n; u ++) {</pre>
63
            int v; ll w; cin >> v >> w;
64
            add(u, v, w), add(v, u, w);
65
       }
66
67
       for (int i = 1; i <= n; i ++)</pre>
68
            if(!vis[i])
69
                dfs(i, -1);
70
71
       memset(vis, 0, sizeof vis);
72
       for (int i = 1; i <= n; i ++) vis[cir[i]] = 1; //标记环上所有点
73
74
       11 \text{ res} = 0;
75
        for (int i = 1; i <= cnt; i ++) {</pre>
76
            ans = 0; // 当前基环树的直径
77
            int sz = 0; // 当前基环树的环的大小
78
            for (int j = ed[i - 1] + 1; j \le ed[i]; j ++) {
79
                int k = cir[j];
80
                d[sz] = dfs_d(k); // 求以当前点为根的子树的最大深度
81
                sum[sz] = s[k];
82
                sz++;
83
            }
84
            // 破环成链, 前缀和数组和 d[] 数组延长一倍
85
```

4 动态规划 27

```
for (int j = 0; j < sz; j ++)</pre>
86
                 d[sz + j] = d[j], sum[sz + j] = sum[j] + sum[sz - 1];
87
88
             // 做一遍滑动窗口, 比较依据是 d[k] - sum[k]
89
             int hh = 0, tt = -1;
90
             for (int j = 0; j < sz * 2; j++) {
91
                 while (hh <= tt && q[hh] <= j - sz) hh++;
92
                 if (hh <= tt) ans = max(ans, d[j] + sum[j] + d[q[hh]] - sum[q[hh]]);
93
                 while (hh <= tt \&\& d[j] - sum[j] >= d[q[tt]] - sum[q[tt]]) tt--;
94
                 q[ ++ tt] = j;
95
             }
96
             res += ans;
97
98
         cout << res << endl;</pre>
99
         return 0;
100
    }
101
```

4 动态规划

4.1 数位 dp

4.2 换根 dp

换根 dp 一般时间复杂度为 $\mathcal{O}(n)$,需要对树处理得到大规模答案,如对每个点得到一个答案。

```
// 求树上 对某个点来说包含他的连通点集个数
   #include <bits/stdc++.h>
   #define pb push_back
   #define endl '\n'
   using ll = long long;
   using namespace std;
   const int N = 1e6 + 10, mod = 1e9 + 7;
   11 f[N], ans[N], n;
   vector<int> G[N];
10
11
   11 qpow(ll a, ll b) {
12
        11 \text{ res} = 1;
13
        while(b) {
14
            if(b & 1) res = res * a % mod;
            a = a * a \% mod;
16
            b >>= 1;
17
18
        return res;
19
   }
20
21
   void dfs(int u, int fa) {
22
        f[u] = 1;
23
        for (auto v:G[u]) {
24
```

4 动态规划 28

```
if(v == fa) continue;
25
           dfs(v, u);
26
           f[u] = f[u] * (f[v] + 1) % mod;
27
       }
28
   }
29
30
31
   考虑换根, ans[u] 记为以 u 为根, 和整棵树其他点能形成的所有子树数量。(即最终答案)
32
   换根方程: ans[v]=(ans[u]/(f[v]+1)+1)*f[v]
33
   解释: u 点答案除以 v 点贡献 (f[v]+1) 为与 v 无关的 u 点答案, +1 后为其余点对 v 点贡献,再乘上 f[v]
34
35
   有一个很坑的地方,就是 (f[v]+1) 求逆元可能得到 0 (f[v] 可能为 mod-1),这时相当于除于 0,出错
36
   当逆元 inv 为 0 时, ans[u] 实际是由在树形 dp 的时候求出的 f[u], 而 f[u] 又等于 (他所有儿子 f 的值 +1) 的乘积。
37
   所以 ans[u] / (f[v]+1) 又可以变成 u 的其他儿子的乘积: u 除 v 外的其他儿子记 brother。
38
   (f[brother_1]+1) * (f[brother_2] + 1) * ..... 他的所有兄弟的值乘积。
39
40
41
   void dp(int u, int fa) {
42
       for (int v:G[u]) {
43
           if(v == fa) continue;
44
           ll inv = qpow(f[v] + 1, mod - 2);
45
           if(inv) ans[v] = (ans[u] * inv % mod + 1) % mod * f[v] % mod;
46
           else {
47
               11 t = 1;
48
               for (auto other:G[u]) {
49
                  if(other == v || other == fa) continue;
50
                  t = t * (f[other] + 1) \% mod;
51
52
               ans[v] = (t + 1) * f[v] % mod;
53
54
           dp(v, u);
55
       }
56
   }
57
   int main() {
59
       cin >> n;
60
       for (int i = 1; i < n; i ++) {</pre>
61
           int u, v; cin >> u >> v;
62
           G[u].pb(v), G[v].pb(u);
63
       }
64
       dfs(1, 0);
65
       ans[1] = f[1];
66
       dp(1, 0);
67
68
       for (int i = 1; i <= n; i ++) cout << ans[i] << endl;</pre>
69
       return 0;
70
```

71 }

5 字符串 29

5 字符串

5.1 KMP

```
//poj2406
   #include <bits/stdc++.h>
   using namespace std;
   const int N = 1e6 + 10;
   char s[N];
   int nxt[N], n;
   /*
   //区间 L->r 的 kmp
       nxt[l] = 0;
       for (int i = l + 1; i <= r; i ++) {
10
            int j = nxt[i - 1];
11
            while(j && s[i] != s[l + j])
                                           j = nxt[l + j - 1];
12
            if(s[i] == s[j + l]) j++;
13
            nxt[i] = j;
15
   */
16
   void get_nxt() {
17
        nxt[1] = 0;
18
        for (int i = 2, j = 0; i <= n; i ++) {
19
            while(j && s[i] != s[j + 1]) j = nxt[j];
            if(s[i] == s[j + 1]) j++;
21
            nxt[i] = j;
22
        }
23
   }
24
25
   int main() {
26
        while(~scanf("%s", s + 1)) {
27
            if(s[1] == '.') break;
28
            n = strlen(s + 1);
29
            get_nxt();
30
            int period = n - nxt[n];
31
            if(n % period == 0) printf("%d\n", n / period);
32
            else puts("1");
33
34
        return 0;
35
   }
36
```

5.2 字符串 Hash

5.3 Trie

```
#include <bits/stdc++.h>
using namespace std;

const int N = 1e5 + 10;
char str[N];
```

5 字符串 30

```
int son[N][26], cnt[N], idx;
   void insert(char *str) {
        int p = 0;
        for (int i = 0; str[i]; i ++) {
10
            int u = str[i] - 'a';
11
            if(!son[p][u]) son[p][u] = ++idx;
12
            p = son[p][u];
13
        }
14
        ++cnt[p];
15
   }
16
17
   int query(char *str) {
18
        int p = 0;
19
        for (int i = 0; str[i]; ++i) {
20
            int u = str[i] - 'a';
21
            if(!son[p][u]) return 0;
22
            p = son[p][u];
23
24
        return cnt[p];
25
   }
26
   5.4 AC 自动机
   //Luogu3808
   #include <bits/stdc++.h>
   using namespace std;
   const int N = 1e6 + 10;
   int n;
   char s[N];
   namespace ac
10
11
   int tr[N][26], fail[N], idx;
   queue<int> q;
   int cnt[N];
15
   void insert(char* s) {
        int p = 0;
17
        for (int i = 1; s[i]; ++i) {
18
            int u = s[i] - 'a';
19
            if(!tr[p][u]) tr[p][u] = ++idx;
20
            p = tr[p][u];
22
        ++cnt[p];
23
   }
24
```

5 字符串 31

```
void build() {
26
        for (int i = 0; i < 26; ++i)</pre>
27
            if(tr[0][i]) q.push(tr[0][i]);
28
29
        while(q.size()) {
30
            int u = q.front(); q.pop();
31
            for (int i = 0; i < 26; i++) {
32
                if(tr[u][i])
33
                    fail[tr[u][i]] = tr[fail[u]][i], q.push(tr[u][i]);
34
                     → //原本这个 tr[fail[u]][i] 可能不存在(为 0)
35
                                                                           → // 但是下一步 eLse 做了一个优化 (类似
                else
36
                    tr[u][i] = tr[fail[u]][i];
37
38
            }
        }
39
   }
40
41
   int query(char *s) {
42
        int u = 0, res = 0;
43
        for (int i = 1; s[i]; ++i) {
44
            u = tr[u][s[i] - 'a'];
45
            for (int j = u; j && cnt[j] != -1; j = fail[j])
46
                res += cnt[j], cnt[j] = -1;
47
48
        return res;
49
   }
50
51
   }
52
53
   int main() {
54
        scanf("%d", &n);
55
        for (int i = 1; i <= n; i ++) {
56
            scanf("%s", s + 1);
57
            ac::insert(s);
58
        }
59
        ac::build();
60
        scanf("%s", s + 1);
61
        printf("%d\n", ac::query(s));
62
        return 0;
63
   }
```

64

6 其他 32

5.5 SA

5.6 Manacher

6 其他

6.1 glibc 内置函数

```
_1 // Returns the number of 1-bits in _x.
   int __builtin_popcount(unsigned int x);
   // Returns the number of trailing 0 (undefined when x == 0)
   int __builtin_ctz(unsigned int x);
   // Returns Log_2(x)
   int __lg(int x);
   int __gcd(int x, int y);
   6.2 int128 读写
   inline __int128 read(){
       __int128 x = 0, f = 1;
       char ch = getchar();
       while (ch<'0' \mid | ch>'9') \{ if(ch == '-') f = -1; ch = getchar(); \}
       while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
       return x * f;
   }
   inline void print(__int128 x) {
       if(x < 0) { putchar('-'); x = -x; }
10
       if(x > 9) print(x / 10);
       putchar(x % 10 + '0');
12
   }
13
   6.3 单调栈
  #include <bits/stdc++.h>
   using namespace std;
   const int N = 100010;
   //单调栈,记录每个数左边比他小(大)的第一个数(也可以记录其下标)
   int stk[N], tt, a[N];
   int main() {
       ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
       int n; cin >> n;
       for (int i = 1; i <= n; i ++) cin >> a[i];
10
11
       for (int i = 1; i <= n; i++) {</pre>
12
```

while(tt && stk[tt] >= a[i]) tt--;

13

6 其他 33

```
if(tt) cout << stk[tt] << ' ';
stk[++tt] = a[i];
return 0;
}</pre>
```

6.4 单调队列

```
#include<bits/stdc++.h>
   using namespace std;
   const int N = 1e6 + 10;
   int a[N], q[N],n, k;
   //滑动窗口
   int main() {
       cin >> n >> k;
       for(int i = 0; i < n; i++) cin >> a[i];
       int hh = 0, tt = -1;
       for(int i = 0; i < n; i++) {</pre>
           //判断队头是否已经划出窗口
11
           if( h \le tt & i - k + 1 > q[hh]) hh++;
12
           while(hh <= tt && /* 后面改成要维护的最小值 */a[q[tt]] >= a[i]) tt -- ;//求区间最小
           q[ ++ tt ] = i;
           if(i >= k-1) printf("%d ",a[q[hh]]);
15
       return 0;
   }
19
```