Chapter 40 Séries numériques

Exercice 1 (40.0)

Déterminer si les propositions suivantes sont vraies ou fausses ; construire un contre-exemple dans ce dernier cas.

- 1. Si $\sum u_n$ converge, alors $\sum v_n$ et $\sum (u_n + v_n)$ ont même nature.
- 2. Si $\sum (u_n + v_n)$ converge, alors $\sum u_n$ et $\sum v_n$ convergent toutes deux.
- 3. si $\sum_{n\in\mathbb{N}} u_n$ est convergente, alors pour tout $m\in\mathbb{N}$, $\sum_{n\in\mathbb{N}} u_{n+m}$ converge aussi et a la même somme.
- **4.** Quel que soit $c \in \mathbb{R}$, si $\sum_{n \in \mathbb{N}} cu_n$ est convergente, alors $\sum_{n \in \mathbb{N}} u_n$ converge.
- **5.** Si $\sum_{n \in \mathbb{N}} u_n$ converge, alors $\lim_{n \to +\infty} (-1)^n u_n = 0$.
- **6.** Si $\sum_{n\in\mathbb{N}} u_n$ converge, alors $\lim_{n\to+\infty} nu_n = 0$.

Exercice 2 (40.0)

Déterminer si les propositions suivantes sont vraies ou fausses ; construire un contrexemple dans ce dernier cas.

- 1. Si une série converge, la suite de ses sommes partielles est majorée.
- 2. Pour qu'une série converge, il est nécessaire que ses sommes partielles soient toutes nulles.
- 3. Pour qu'une série converge, il est suffisant que ses sommes partielles soient toutes nulles.
- **4.** Pour qu'une série converge, il est nécessaire que ses sommes partielles tendent vers 0.
- 5. Pour qu'une série converge, il est suffisant que la suite de ses sommes partielles soit décroissante.
- 6. Pour qu'une série converge, il est nécessaire que la suite de ses sommes partielles soit croissante.
- 7. Si une série converge, la suite de ses sommes partielles est bornée.
- 8. Si une série converge, la suite de ses sommes partielles ne prend qu'un nombre fini de valeurs.
- 9. Une série converge si la suite de ses sommes partielles ne prend qu'un nombre fini de valeurs.
- 10. Une série converge si la suite de ses sommes partielles est constantes.

Exercice 3 (40.0)

Après avoir calculé les sommes partielles, étudier la convergence de

1.
$$\sum_{n\geq 1} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n^2 + n}}$$
;

2.
$$\sum_{n>2} \ln \left(1 - \frac{1}{n^2}\right)$$
;

3.
$$\sum_{n\geq 1} \frac{3-n}{n(n+1)(n+2)}$$
;

4.
$$\sum_{n\geq 1} \frac{\sin\frac{1}{n(n+1)}}{\cos\frac{1}{n}\cos\frac{1}{n+1}}$$
.

Exercice 4 (40.0)

Pour calculer $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$, Claude procède comme suit

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \frac{1}{4 \times 5} + \dots$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \dots$$

$$= 1 - \left(\frac{1}{2} - \frac{1}{2}\right) - \left(\frac{1}{3} - \frac{1}{3}\right) - \left(\frac{1}{4} - \frac{1}{4}\right) - \dots$$

$$= 1.$$

tandis que Dominique utilise la méthode suivante

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \frac{1}{4 \times 5} + \dots$$

$$= \left(2 - \frac{3}{2}\right) + \left(\frac{3}{2} - \frac{4}{3}\right) + \left(\frac{4}{3} - \frac{5}{4}\right) + \left(\frac{5}{4} - \frac{6}{5}\right) + \dots$$

$$= 2 - \left(\frac{3}{2} - \frac{3}{2}\right) - \left(\frac{4}{3} - \frac{4}{3}\right) - \left(\frac{5}{4} - \frac{5}{4}\right) - \dots$$

$$= 2.$$

L'un des deux a-t-il raison? Si oui, lequel?

Exercice 5 (40.0)

- **1.** Montrer que les polynômes 1, X, X(X-1), X(X-1)(X-2) forment une base de $\mathbb{R}_3[X]$.
- **2.** Calculer la somme de la série $\sum_{n=1}^{+\infty} \frac{n^3}{n!}$.

Exercice 6 (40.0) Séries géométriques dérivées

On fixe un réel x tel que $0 \le x < 1$.

- 1. Soit $p \in \mathbb{N}$. Démontrer que la série $\sum_{k \ge p} \binom{k}{p} x^k$ converge.
- 2. On pose $S_p = \sum_{k=p}^{+\infty} {k \choose p} x^k$.
- 3. Calculer $x(S_p + S_{p+1})$.
- **4.** En déduire une expression simple de S_p en fonction de p et x.
- 5. En déduire la valeur de $\sum_{k=p}^{+\infty} {k \choose p} x^{k-p}$ (série géométrique dérivée).

Exercice 7 (40.0)

Déterminer la nature de la série de terme général u_n dans les exemples suivants

1.
$$\frac{|\cos n|}{n^2}$$
2. $\sqrt{n+\frac{1}{2}}-\sqrt{n}$
3. $\left(\frac{1}{3}+\frac{1}{n}\right)^n$
4. $\ln\frac{n^2+3n+2}{n^2+3n+1}$

$$5. \ \frac{1}{n^2 \ln n}$$

7.
$$\frac{n!}{n!}$$

6.
$$\frac{\ln n}{n}$$

7.
$$\frac{n!}{n^n}$$
8. $\ln\left(1+\frac{2}{n}\right)-\frac{1}{n}$.

Exercice 8 (40.0)

Soit $\sum_{n\geq 0} a_n$ une série à termes dans \mathbb{R}_+^* , convergente. Déterminer la nature des séries de termes généraux

1.
$$u_n = \frac{a_n}{1 + a_n}$$
,

3.
$$w_n = \frac{1 - \cos a_n}{a_n}$$
,
4. $x_n = a_n^2$.

2.
$$v_n = e^{a_n} - 1$$
,

4.
$$x_n = a_n^2$$

Exercice 9 (40.0)

Déterminer la nature de la série de terme général u_n dans les exemples suivants

1.
$$e^{-\sqrt{n}}$$

3.
$$n^{1/n^2}$$
 –

5.
$$\frac{1}{n \ln n}$$

2.
$$\frac{\ln n}{n^2}$$

3.
$$n^{1/n^2} - 1$$

4. $\left(1 + \frac{1}{n^3}\right)^{n^2} - 1$
5. $\frac{1}{n \ln n}$
6. $\frac{1}{n (\ln n)^2}$

$$6. \ \frac{1}{n \left(\ln n \right)^2}.$$

Exercice 10 (40.0)

Montrer

$$\sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k} = \ln 2.$$

Exercice 11 (40.0)

Montrer

$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}.$$

Exercice 12 (40.0)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à termes strictements positifs. On suppose

$$\lim_{n\to +\infty}\frac{u_{n+1}}{u_n}=\ell\in [0,1]\,.$$

1. Montrer qu'il existe un entier naturel N tel que, pour tout $n \ge N$,

$$u_{n+1} \le \left(\frac{1+\ell}{2}\right) u_n.$$

- 2. En déduire que la série $\sum_{n=0}^{\infty} u_n$ converge.
- 3. Soient deux réels $\alpha > 0$ et $\alpha > 1$. Déterminer la nature des trois séries suivantes

$$\sum_{n\geq 0}\frac{n^{\alpha}}{a^n},$$

$$\sum_{n>0} \frac{a^n}{n!},$$

$$\sum_{n>0} \frac{n!}{n^n}.$$

Exercice 13 (40.0)

Soit $\sum u_n$ la série définie par

$$u_n = \begin{cases} \frac{1}{\sqrt{n}} & n = 2^p, p \in \mathbb{N}^*, \\ \frac{1}{n^2} & n \neq 2^p. \end{cases}$$

- **1.** Montrer que $\sum u_n$ est convergente.
- **2.** Est-il exact que la convergence d'une série $\sum u_n$ entraı̂ne le fait que $u_n = o\left(\frac{1}{n}\right)$?

Exercice 14 (40.0)

Soient a > 0 et $f : x \in \mathbb{R}_+ \mapsto \sqrt{1 + ax} - 1$.

- 1. Montrer que \mathbb{R}_+ est stable par f, que f est croissante sur \mathbb{R}_+ et que f(x)-x est du signe de x(a-2-x). Déterminer les points fixes de f ainsi que les intervalles stables. Tracer le graphe de f pour différentes valeurs de a.
- **2.** On suppose a < 2 et on considère la suite définie par

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

Montrer que $u_n \to 0$. Quelle est la nature de la série de terme général u_n ?

3. Que dire de la suite (u_n) si a > 2?

Exercice 15 (40.0)

Soit $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$. Étudier la nature de la série de terme général

$$u_n = n^{\alpha} \int_0^{\pi/n} (\sin x)^{\beta} dx.$$

Exercice 16 (40.0)

1. Soit $\alpha \in]0, 1[$. On pose, pour $n \in \mathbb{N}^*$,

$$S_n = \sum_{k=1}^n \frac{1}{k^\alpha}.$$

Déterminer un équivalent de la suite (S_n) .

2. Soit $\alpha > 1$. On pose, pour $n \in \mathbb{N}^*$,

$$R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}.$$

Déterminer un équivalent de la suite (R_n) .

Exercice 17 (40.0)

Montrer qu'il existe $\gamma \in \mathbb{R}$ tel que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right).$$

La réel γ est appelé la constante d'Euler.

Exercice 18 (40.0)

Soit $\sum u_n$ une série de réels strictement positifs. Montre que si

- $\sum u_n$ est convergente,
- (u_n) est une suite décroissante,

alors

$$u_n = o\left(\frac{1}{n}\right).$$

Exercice 19 (40.0)

Étudier si la série de terme général

$$u_n = e^{(-1)^n/\sqrt{n}} - 1$$

converge.

Exercice 20 (40.0)

Étudier si la série de terme général

$$u_n = \cos\left(n^2\pi \ln\left(1 - \frac{1}{n}\right)\right)$$

converge.

Exercice 21 (40.0)

Pour tout $n \ge 2$, posons

$$a_n = \frac{1}{n + (-1)^n}$$
 et $u_n = (-1)^n a_n = \frac{(-1)^n}{n + (-1)^n}$.

Montrer que la série $\sum_{n\geq 2} u_n$ converge.

Exercice 22 (40.0)

Étudier la nature des deux séries

$$\sum \frac{(-1)^n}{\sqrt{n}}$$
 et $\sum \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.

Commenter les résultats.

Exercice 23 (40.0)

Soit $\sum x_n$ une série à termes réels strictement positifs. On suppose qu'il existe $\lambda \in \mathbb{R}$ et une série $\sum y_n$ absolument convergente telle que

$$\forall n \in \mathbb{N}^*, \frac{x_{n+1}}{x_n} = 1 - \frac{\lambda}{n} + y_n.$$

- 1. Montrer que $\ln\left(\frac{x_{n+1}}{x_n}\right) = -\frac{\lambda}{n} + z_n$ où z_n est le terme général d'une série convergente.
- **2.** En déduire qu'il existe A > 0 tel que $x_n \sim \frac{A}{n^{\lambda}}$.
- **3.** Exemple : Nature de la série de terme général $\frac{n^n}{n! e^n}$?