2022년 1학기 물리학 I: Quiz 17

김현철^{a1,†} and Lee Hui-Jae^{1,‡}

¹Hadron Theory Group, Department of Physics, Inha University, Incheon 22212, Republic of Korea (Dated: Spring semester, 2022)

문제 1. (40 pt) 태풍이 불 때 어떤 집의 지붕 위에서 바람(공기의 밀도 1.20 kg/m³)의 속력은 100 km/h였다.

- (가) 지붕의 안과 밖의 압력차는 얼마인가?
- (나) 지붕의 면적이 100 m^2 일 때, 바람이 지붕을 들어올리는 힘은 얼마인가?

풀이:

(가) 지붕의 두께는 무시할 수 있을 정도로 작다고 가정하자. 베르누이 방정식을 이용해 압력차를 구할 수 있다. 베르누이 방정식은

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2 \tag{1}$$

이다. 지붕의 두께를 0이라 하면 $y_1=y_2=0$ 이고 집 내부 공기가 일정한 방향으로 흐르지 않는다고 하면 $v_2=0$ 이다. 베르누이 방정식은 다음과 같이 다시 쓸 수 있다.

$$P_1 + \frac{1}{2}\rho v_1^2 = P_2. (2)$$

 $ho,\ P_1,\ v_1$ 은 각각 공기의 밀도, 지붕 위에서 공기에 의한 압력, 지붕 위에서 공기의 속력이다. P_2 는 집 안에서 공기에 의한 압력이다. 따라서 압력차 ΔP 는

$$\Delta P = P_2 - P_1 = \frac{1}{2}\rho v_1^2 \tag{3}$$

이다. 수치를 대입하면,

$$\Delta P = \frac{1}{2} (1.20 \,\text{kg/m}^3) (100 \,\text{km/h})^2 = (0.60 \,\text{kg/m}^3) \left((100 \,\text{km/h}) \left(\frac{1 \,\text{h}}{3 \,600 \,\text{s}} \right) \left(\frac{1 \,000 \,\text{m}}{1 \,\text{km}} \right) \right)^2$$

$$= 4.63 \times 10^2 \,\text{N} \cdot \text{m}^2$$
(4)

이다. 지붕의 안과 밖의 압력차는 $463\,\mathrm{N}\cdot\mathrm{m}^2$ 이고 지붕 안의 압력이 더 크다.

(나) 지붕에 작용하는 힘은 지붕의 면적과 지붕에 작용하는 압력을 곱한 값과 같다. 지붕에 작용하는 총 압력은 아래로 작용하는 P_1 과 위로 작용하는 P_2 의 차이고 이는 압력차 ΔP 와 같다. 면적이 $100~\rm m^2$ 라면 지붕에 작용하는 힘은

$$F = \Delta P A = \frac{1}{2} \rho v_1^2 A$$

$$= (0.60 \text{ kg/m}^3) \left((100 \text{ km/h}) \left(\frac{1 \text{ h}}{3600 \text{ s}} \right) \left(\frac{1000 \text{ m}}{1 \text{ km}} \right) \right)^2 (100 \text{ m}^2)$$

$$= 4.60 \times 10^4 \text{ N}$$
(5)

이다. 압력은 위로 작용하므로 이 힘은 지붕을 들어올리는 힘이 된다.

문제 2. (60 pt) 관의 지름이 d인 수도꼭지에서 물이 초기속도 v로 끊임없이 흘러나와서 아래로 떨어지고 있다(즉, 수도꼭지에서 나오는 물줄기의 지름이 d이고, 수도꼭지는 아래 방향을 향하고 있다). 수도꼭지에서 h만큼 떨어진 곳에

a Office: 5S-436D (면담시간 매주 화요일-16:00~20:00)

[†] hchkim@inha.ac.kr

 $^{^{\}ddag}\,$ hjlee
6674@inha.edu

서 물줄기의 지름은 얼마인가? 단, 공기의 저항은 무시하고, 물줄기는 끊어지거나 물방울이 되지 않는다고 가정한다.

FIG. 1. 문제 2

풀이: 관에서 나온 물에 대해 연속 방정식을 적용할 수 있다. 연속 방정식은

$$Av = A'v' \tag{6}$$

이다. A와 v는 관에서의 물줄기의 단면적과 속력이고 A'와 v'는 h만큼 낙하한 물줄기의 단면적과 속력이다. 물은 낙하하면서 떨어진 높이만큼의 중력 퍼텐셜 에너지를 운동 에너지로 전환받으므로

$$\frac{1}{2}\rho v^2 = \frac{1}{2}\rho v'^2 + \rho g h \Longrightarrow v'^2 = v^2 + 2g h \tag{7}$$

이다. 또한 A와 A'는 단면적이므로

$$A = \pi \left(\frac{d}{2}\right)^2, \quad A' = \pi \left(\frac{d'}{2}\right)^2 \tag{8}$$

이다. 식 (6)에 식 (7), (8)을 대입하면

$$\pi \left(\frac{d}{2}\right)^2 v = \pi \left(\frac{d'}{2}\right)^2 \sqrt{v^2 + 2gh} \tag{9}$$

이고 우리가 구하고자 하는 d'에 대해 정리하면 다음을 얻을 수 있다.

$$d' = d\left(\frac{v^2}{v^2 + 2gh}\right)^{\frac{1}{4}}. (10)$$

문제 3. (50pt) 질량 0.500 kg인 물체가 가벼운 용수철(용수철 상수 $2.40 \times 10^3 \text{ N/m}$)에 매달려 마루 위에 있다.

용수철을 평형지점에서 8.00 cm 압축하였다가 놓았을 때

- (가) 운동방정식을 세워라.
- (나) 초기위상은 얼마인가?

- (다) t = 0.25 s일 때 물체의 위치를 구하여라.
- (라) 이 계의 총 에너지를 구하여라.
- (\mathbf{r}) x = +5.0 cm와 x = -5.0 cm일 때의 속도를 각각 구하여라.
- (바) 물체의 최대속도를 구하여라. 어느 지점에서 나타나는가?

풀이:

 (γ) 용수철이 평행지점으로부터 x만큼 압축되거나 늘어나면 훅의 법칙에 의해 kx만큼의 복원력이 평행지점 방향으로 작용한다. 따라서 운동방정식은

$$ma = -kx \tag{11}$$

이다. 혹은 다음과 같이 적을 수 있다.

$$\frac{d^2x}{dt^2} = -\omega^2 x, \quad \omega^2 = \frac{k}{m}.$$
 (12)

(나) 초기위상을 구하기 위해 식 (12)의 해를 구해보자. x를 두번 미분해서 x에 $-\omega^2$ 가 곱해진 형태를 얻는 x는 삼각함수 혹은 지수함수의 형태라고 가정할 수 있다. 즉,

$$x(t) = c\cos(\omega t + \phi) \tag{13}$$

라고 가정할 수 있다. 해를 어떻게 구할 수 있을지 다루어보자. 용수철을 평행지점에서 A만큼 압축하였다가 놓았다는 것은 t=0일 때 x(0)=A이고 x'(0)=0이라는 뜻이다. x(0)=A이므로 c는 $c=A/\cos\phi$ 이고 x'(0)=0이므로

$$x'(0) = -\frac{A\omega}{\cos\phi}\sin\phi = 0\tag{14}$$

이다. 식 (14)가 0이기 위해서는 $\phi = 0$ 이어야 한다. 따라서 x(t)에 대한 표현은

$$x(t) = A\cos\omega t \tag{15}$$

이고 초기위상 ∅는 0이다.

(다) $A=8.00~{\rm cm}$ 이고 $m=0.500~{\rm kg},~k=2.40\times 10^3~{\rm N/m}$ 이다. $t=0.25~{\rm s}$ 일 때 물체의 위치를 알고 싶으므로 수치들을 식 (15)에 대입하면

$$x(0.25 s) = (8.00 cm) cos \left(\sqrt{\frac{2.40 \times 10^3 \text{ N/m}}{0.500 \text{ kg}}} (0.25 s) \right)$$

= 0.334 cm.

이다. $t=0.25~\mathrm{s}$ 일 때 물체의 위치는 평형점으로부터 $0.334~\mathrm{cm}$ 만큼 떨어진 곳이다.

(라) 계의 역학적 에너지를 구해보자. 식 (15)으로부터 탄성 퍼텐셜에너지 E_p 와 운동에너지 E_k 를 구할 수 있다.

$$E_p = \frac{1}{2}kA^2\cos^2\omega t, \ E_k = \frac{1}{2}m\omega^2A^2\sin^2\omega t.$$
 (17)

 $m\omega^2 = k$ 이므로 두 에너지의 합은

$$E_p + E_k = \frac{1}{2}kA^2(\cos^2\omega t + \sin^2\omega t) = \frac{1}{2}kA^2$$
 (18)

이다. 따라서 E_p 는

$$E_p = \frac{1}{2}kA^2 = \frac{1}{2}(2.40 \times 10^3 \,\text{N/m})(8.00 \times 10^{-2} \,\text{m})^2$$

= 7.68 J

이다.

(마) 식 (15)으로부터,

$$x'(t) = -\omega A \sin \omega t = -\omega \sqrt{A^2 - (x(t))^2}$$
(20)

이다. x = +5.0 cm와 x = -5.0 cm일 때 x'(t)는

$$x' = -\left(\sqrt{\frac{2.40 \times 10^3 \,\mathrm{N/m}}{0.500 \,\mathrm{kg}}} (0.25 \,\mathrm{s})\right) \sqrt{(8.00 \times 10^{-2} \,\mathrm{m})^2 - (\pm 5.0 \times 10^{-2} \,\mathrm{m})^2}$$
(21)

 $1.1\,{\rm m/s}.$

이다. 이는 속력이 1.1 m/s임을 의미한다.

(바) 식 (20)으로부터 물체의 속도는 $\omega t = \frac{3}{2}\pi, \frac{7}{2}\pi, \frac{11}{2}\pi, \cdots$ 일 때 최대이다. 즉, 물체의 속도가 최대가 되는 조건은

$$\omega t = \frac{3}{2}\pi + 2n\pi, \quad n = 0, 1, 2, 3, \dots$$
 (22)

이다. 물론 물체의 속력만을 고려한다면 부호를 따지지 않아도 되기 때문에 $\omega t = \frac{1}{2}\pi, \frac{5}{2}\pi, \frac{9}{2}\pi, \cdots$ 인 순간에도 속력이 최대가 된다. 속도가 최대일 때 물체의 위치 x(t)는

$$x(t) = A\cos\left(\frac{3}{2}\pi + 2n\pi\right) = 0\tag{23}$$

이다. 따라서 물체의 속도가 최대일 때 물체는 항상 평형점에 위치한다.

문제 4. (40pt) 그림 2와 같이 반지름이 R이고 질량이 M인 원판, 링, 속이 꽉 찬 공,속이 텅빈 공을 길이가 L인 질량을 무시할 수 있는 실에 매달아 각 θ 까지 들어올렸다가 단진동을 시킨다.

FIG. 2. 문제 4

- (가) 단진동 주기가 가장 긴 것은 어느 것인가?
- (나) 제일 아래 점에서 질량중심의 속력이 가장 큰 것은 어느 것인가?
- (다) 이러한 진자를 달로 가져가서 똑같은 실험을 하면 주기는 어떻게 되겠는가?
- () 제일 아래 점에서 물체의 각속력을 ω 라 할 때 실의 장력은?

풀이:

(r) 단진동 주기를 구하기 위해 진자의 운동방정식을 세워보자. 진자는 실과 벽이 연결된 지점을 축으로 하여 회전운동 하는 것으로 생각할 수 있다. 이 때 진자에 대한 돌림힘 τ 는 진자에 작용하는 중력으로부터 발생한다. 따라서 진자의 중심에 작용하는 돌림힘 τ 는

$$\tau = -Mg(L+R)\sin\theta\tag{24}$$

이다. 이 식은 $\theta \ll 1$ 이라고 근사하여 간단하게 풀 수 있다. $\theta \ll 1$ 이면 $\sin \theta \approx \theta$ 이고 $\tau = I\alpha$ 이므로

$$\tau = I\alpha = -Mg(L+R)\theta \tag{25}$$

이고 이는 θ 에 대한 미분방정식이다.

$$\frac{d^2\theta}{dt^2} = -\frac{Mg}{I} (L+R) \theta. \tag{26}$$

따라서 이 진자의 각진동수 ω 는

$$\omega = \sqrt{\frac{Mg}{I}(L+R)} \tag{27}$$

이고 주기 T는

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I}{Mg} \left(\frac{1}{L+R}\right)} \tag{28}$$

이다. 주기가 회전관성 I에 의존하므로 각 경우에 대한 회전관성을 고려하여 주기를 구해보자.

원판인 경우 :
$$I=\frac{1}{2}MR^2+M(L+R)^2\Longrightarrow T=2\pi\sqrt{\left(\frac{R^2}{2g}+\frac{(L+R)^2}{g}\right)\left(\frac{1}{L+R}\right)},$$
 링인 경우 : $I=MR^2+M(L+R)^2\Longrightarrow T=2\pi\sqrt{\left(\frac{R^2}{g}+\frac{(L+R)^2}{g}\right)\left(\frac{1}{L+R}\right)},$ 속이 확 찬 공인 경우 : $I=\frac{2}{5}MR^2+M(L+R)^2\Longrightarrow T=2\pi\sqrt{\left(\frac{2R^2}{5g}+\frac{(L+R)^2}{g}\right)\left(\frac{1}{L+R}\right)},$ 속이 텅 빈 공인 경우 : $I=\frac{2}{3}MR^2+M(L+R)^2\Longrightarrow T=2\pi\sqrt{\left(\frac{2R^2}{3g}+\frac{(L+R)^2}{g}\right)\left(\frac{1}{L+R}\right)}.$

주기가 가장 긴 경우는 링인 경우이다.

- (나) 식 (28)로부터 각진동수 ω 는 주기 T에 반비례함을 알 수 있다. (가)에서 주기가 가장 긴 경우는 링이고 가장 짧은 경우는 속이 꽉 찬 공임을 알 수 있으므로 각속도가 가장 큰 경우는 속이 꽉 찬 공이다.
- (다) 식 (28)로부터 주기 T가 $\sqrt{1/g}$ 에 비례하므로 중력가속도 g가 줄어들면 주기 T가 늘어남을 알 수 있다. 달에서의 중력가속도 g_m 은 지구에서의 중력가속도 g의 1/6배이므로 달에서의 주기를 T_m 이라 하면

$$T_m = 2\pi \sqrt{\frac{6I}{Mg} \left(\frac{1}{L+R}\right)} = \sqrt{6}T \tag{29}$$

이다. 따라서 달에서의 주기는 지구에서의 주기의 $\sqrt{6}$ 배이다.

(라) 장력 T를 구하기 위해 운동방정식을 세워보자. 다만 x, y축이 아니라 물체의 운동방향과 그에 수직한 방향으로 성분을 나눌 것이다. 이는 물체의 회전축을 원점으로 하여 극좌표를 생각하는 것과 같다. 물체의 운동방향 힘을 F_{θ} ,수직한 방향 힘을 F_r 이라고 하면 운동방정식은 다음과 같이 세울 수 있다.

$$\sum F_r = T - Mg\cos\theta = \frac{Mv^2}{L+R},\tag{30}$$

$$\sum F_{\theta} = Ma_{\theta} = Mg\sin\theta. \tag{31}$$

식 (30)의 우변은 구심력이다. 속도는 각속도와 회전 반지름을 곱한 것이므로

$$v = (L + R)\omega \tag{32}$$

이고 장력 T는 다음과 같다.

$$T = Mg\cos\theta + M(L+R)\omega^2. \tag{33}$$