University of California, Los Angeles Department of Statistics

Statistics 100B Instructor: Nicolas Christou

Joint moment generating functions

Let
$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}$$
, be a random vector and let $\mathbf{t} = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{pmatrix}$. The joint moment generating function of \mathbf{X} is defined as $M_{\mathbf{X}}(\mathbf{t}) = Ee^{\mathbf{t}'\mathbf{X}} = Eexp(\sum_{i=1}^n t_i x_i)$.

Theorem

Let
$$M_i(\mathbf{t}) = \frac{\partial M_{\mathbf{X}}(\mathbf{t})}{\partial t_i}$$
, $M_{ii}(\mathbf{t}) = \frac{\partial^2 M_{\mathbf{X}}(\mathbf{t})}{\partial t_i^2}$, and $M_{ij}(\mathbf{t}) = \frac{\partial^2 M_{\mathbf{X}}(\mathbf{t})}{\partial t_i \partial t_j}$.
Then, $EX_i = M_i(\mathbf{0})$, $EX_i^2 = M_{ii}(\mathbf{0})$, and $EX_iX_j = M_{ij}(\mathbf{0})$.

Corollary

Let
$$\psi(\mathbf{t}) = log M_{\mathbf{X}}(\mathbf{t})$$
, $\psi_i(\mathbf{t}) = \frac{\partial \psi_{\mathbf{X}}(\mathbf{t})}{\partial t_i}$, $\psi_{ii}(\mathbf{t}) = \frac{\partial^2 \psi_{\mathbf{X}}(\mathbf{t})}{\partial t_i^2}$, and $\psi_{ij}(\mathbf{t}) = \frac{\partial^2 \psi_{\mathbf{X}}(\mathbf{t})}{\partial t_i \partial t_j}$. Then EX_i Augustian Help

Theorem Let $\mathbf{X} = \begin{pmatrix} \mathbf{Y} \\ \mathbf{Z} \end{pmatrix}$. The marginal moment generating function of $\mathbf{Y}(\mathbf{Z})$ is the moment generating function of \mathbf{X} ignoring the vector $\mathbf{Z}(\mathbf{Y})$. This is expressed as $M_{\mathbf{Y}}(\mathbf{u}) = \mathbf{M}_{\mathbf{X}}(\mathbf{u}, \mathbf{0})$ and $M_{\mathbf{Z}}(\mathbf{v}) = \mathbf{M}_{\mathbf{X}}(\mathbf{0} \mathbf{A} \mathbf{c} \mathbf{u} \mathbf{c} \mathbf{v})$ expressed as $\mathbf{M}_{\mathbf{Y}}(\mathbf{u}) = \mathbf{M}_{\mathbf{X}}(\mathbf{u}, \mathbf{0})$ Proof

Theorem

If Y and Z are independent then $M_{\mathbf{X}}(\mathbf{t}) = M_{\mathbf{Y}}(\mathbf{u})M_{\mathbf{Z}}(\mathbf{v})$. **Proof**

Example 1

$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$$
 have joint moment generating function

$$M_{\mathbf{X}}(t_1, t_2, t_3) = (1 - t_1 + 2t_2)^{-4} (1 - t_1 + 3t_3)^{-3} (1 - t_1)^{-2}.$$

Use the corollary on page 1 to find:

- a. $E(X_1)$, $E(X_2)$, $E(X_3)$.
- b. $var(X_1), var(X_2), var(X_3)$.
- c. $cov(X_1, X_2), cov(X_1, X_3), cov(X_2, X_3).$
- d. ρ_{X_1,X_3} .

Example 2

Let X and Y be independent normal random variables, each with mean μ and standard deviation σ .

- a. Consider the random quantities X + Y and X Y. Find the moment generating function of X+Y and the moment generating function of X-Y and the moment generating function of X-Y b. Find the joint moment generating function of (X+Y,X-Y).
- c. Are X + Y and X Y independent? Explain your answer using moment generating https://powcoder.com

2

Example 3

Let
$$\mathbf{X} = (X_1, X_2, X_3)$$
 has joint woment generating function $M_{\mathbf{X}}(t_1, t_2, t_3) = (1 - t_1 + 2t_2)^{-4} (1 - t_1 + 3t_3)^{-3} (1 - t_1)^{-2}$.

Answer the following questions:

- a. Find the moment generating function of (X_1, X_3) .
- b. Find the moment generating function of X_1 .
- c. Find the moment generating function of X_3 .
- d. Are X_1, X_3 independent?
- e. Find the moment generating function of (X_2, X_3) .
- f. Are X_2, X_3 independent?