Agregation Interne de Mathématiques

Intégration 2011-2012

Ι.

1) Montrer que : $\sum_{k=1}^n \frac{e^{\frac{-n}{k}}}{k^2} \sim_{n \to +\infty} \frac{1}{e.n}$

2) $f \in \mathcal{C}'([0,1]; \mathbb{R})$. Montrer que $\sum_{k=0}^{n-1} \left(f(\frac{2k+1}{2n}) - f(\frac{k}{n}) \right) \to_{n \to +\infty} \frac{1}{2} \left(f(1) - f(0) \right)$

3) Calculer:

a)
$$\lim_{n\to+\infty} \left(\sum_{k=1}^n \frac{n+k}{n^2+k^2}\right)$$

b)
$$\lim_{n\to+\infty} \left(\prod_{k=n+1}^{2n} (k^{\frac{1}{k}})\right)$$

II .

 $f:[a,b] \to \mathbb{R}$ une fonction dérivable telle que f' soit bornée. On pose $M = \sup_{t \in [a,b]} (|\ f'(t)\ |)$.

On suppose que f(a) = f(b) = 0. Montrer que :

$$\left| \int_{a}^{b} f(x)dx \right| \leq \frac{(b-a)^{2}}{4}.M$$

Etudier le cas d'égalité.

III .

soit a < b et $E = \mathcal{C}([a, b]; \mathbb{R}_+^*)$. Déterminer $\inf_{f \in E} \left(\left(\int_a^b f(t) dt \right) \left(\int_a^b \frac{dt}{f(t)} \right) \right)$.

IV .

Soit $g:[0,1] \to [0,1]$ strictement croissante et surjective, et soit $f:[0,1] \to \mathbb{R}$ continue.

On suppose que $\forall x \in [0,1]$: $\int_0^1 \left[\min(x,g(x)) \right] . f(t) dt = 0$.

Montrer que f est identiquement nulle.

V .

0 < a < b

- a) Calculer $\lim_{x\to 0} \left(\int_{ax}^{bx} \frac{e^{-t}}{t} dt \right)$
- b) Calculer $\int_0^{+\infty} \frac{e^{-at} e^{-bt}}{t} dt$

VI.

$$f: x \to \int_x^{x^2} \frac{dt}{\ln(t)}$$
 et $g: x \to \frac{dt}{t \ln(t)}$

- a) Définition et dérivabilité de la fonction f.
- b) En déduire que $\int_0^1 \frac{t-1}{\ln(t)} dt = \ln(2)$.

VII .

- 1) a) Montrer que la fonction $t \to \ln(\sin(t))$ est intégrable sur $]0, \pi[$, et la fonction $t \to \ln(\cos(t))$ est intégrable sur $]0, \frac{\pi}{2}[$.
 - b) Montrer que $\int_0^{\pi} \ln(\sin(t))dt = 2\int_0^{\frac{\pi}{2}} \ln(\sin(t))dt = 2\int_0^{\frac{\pi}{2}} \ln(\cos(t))dt$.
 - c) En déduire que $\int_0^\pi \ln(\sin(t)) dt = -\pi \ln(2)$
- 2) a) Montrer que $\forall x \in \mathbb{R}$: $\prod_{k=1}^{n-1} \left(x^2 2\cos(\frac{k\pi}{n}).x + 1\right) = \sum_{k=0}^{n-1} x^{2k}$
 - b) En déduire que : $\prod_{k=1}^{n-1} \left(\sin(\frac{k\pi}{n}) \right) = \frac{\sqrt{n}}{2^{n-1}}$
 - c) En déduire que : $\int_0^{\frac{\pi}{2}} \ln{(\sin(t))} \, dt = -\pi. \frac{\ln(2)}{2}$

VIII .

1) a) Montrer que
$$(x^n - 1)^2 = \prod_{k=1}^n (x^2 - 2\cos(\frac{2k\pi}{n}).x + 1)$$

b) En déduire que
$$\int_0^{2\pi} \ln\left(x^2 - 2\cos(\theta).x + 1\right) d\theta = \begin{cases} 4\pi \ln(|x|) & si|x| > 1\\ 0 & si|x| < 1 \end{cases}$$

b) En déduire que
$$\int_0^{2\pi} \ln (x^2 - 2\cos(\theta).x + 1) d\theta = \begin{cases} 4\pi \ln(|x|) & si|x| > 1 \\ 0 & si|x| < 1 \end{cases}$$

c) En déduire que $\int_0^{\pi} \ln (x^2 - 2\cos(\theta).x + 1) d\theta = \begin{cases} 2\pi \ln(|x|) & si|x| > 1 \\ 0 & si|x| < 1 \end{cases}$

2) Justifier et calculer
$$\int_0^{\pi} \ln(2 - 2\cos(\theta)) d\theta$$
 et $\int_0^{\pi} \ln(2 + 2\cos(\theta)) d\theta$ (On pourra utiliser le résultat de l'exo. 7).

IX .

$$f \in \mathcal{C}([0,1];\mathbb{R})$$
. calculer $\lim_{n \to +\infty} \left(\int_0^1 f(t^n) dt \right)$

X .

- 1) Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$
 - a) Montrer que si $n \ge 2$, alors $nI_n = (n-1)I_{n-2}$
 - b) En déduire que $\forall n \in \mathbb{N}^*$: $nI_nI_{n-1} = \frac{\pi}{2}$
 - c) Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante.
 - d) En déduire que $I_n \sim_{+\infty} \sqrt{\frac{\pi}{2n}}$
- 2) a) Montrer que $\int_0^{+\infty} e^{-x^2} dx = \lim_{n \to +\infty} \left(\int_0^{\sqrt{n}} (1 \frac{x^2}{n})^n dx \right) = \lim_{n \to +\infty} (\sqrt{n} \cdot I_{2n+1}).$
 - b) En déduire que $\int_0^{+\infty} e^{-x^2} dx = ??$

XI.

Calculer
$$\lim_{n\to+\infty}\left(\int_0^1 n\ln(1+t^n)dt\right)$$
 (On pourra faire le chg. de variable $x=t^n$) (Rappel : $\sum_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$) (Réponse= $\frac{\pi^2}{12}$)

XII .

- 1) Soit a,b>0 Montrer que $\int_0^1 \frac{t^{a-1}}{1+t^b} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{a+nb}$
- 2) Calculer:
 - a) $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n}$
 - b) $\sum_{n=0}^{+\infty} \frac{(-1)^n}{1+2n}$
 - c) $\sum_{n=0}^{+\infty} \frac{(-1)^n}{1+3n}$
 - d) $\sum_{n=0}^{+\infty} \frac{(-1)^n}{1+4n}$

XIII .

Calculer
$$\lim_{n\to+\infty} \left(\int_0^{+\infty} x^{\frac{-1}{n}} \cdot (1+\frac{x}{n})^{-n} dx \right)$$

XIV .

$$f: x \to \int_0^{+\infty} \frac{\arctan(tx)}{t(1+t^2)} dt$$
.

Définition, dérivabilité et calcul de f(x).

XV .

$$f: x \to \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$$

- 1) Définition, dérivabilité et calcul de f'(x).
- 2) En déduire que $\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$

XVI .

$$f: x \to \int_0^1 \frac{t-1}{\ln(t)} . t^x dt$$

Définition, dérivabilité et calcul de f(x).

XVII .

1) a) Justifier l'existance de $\int_0^{+\infty} \frac{\sin(t)}{t} dt$

b) La fonction $t \to \frac{\sin(t)}{t}$ est-elle intégrable sur $]0, +\infty[$.

2) soit $f: x \to \int_0^{+\infty} e^{-xt} \frac{\sin(t)}{t} dt$

- a) Déterminer la domaine de définition D de f.
- b) Montrer que f est continue sur D.
- c) Montrer que f est dérivable sur \mathbb{R}_+^* .
- d) En déduire que $\int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}$.

XVIII .

1) Calculer $\int_0^1 \frac{\ln(t)}{t^2-1} dt$

2) a) Montrer que $\forall x > 0$: $\int_0^{+\infty} \frac{\arctan(\frac{x}{t})}{1+t^2} dt = \int_0^x \frac{\ln(t)}{t^2-1} dt$.

b) En déduire que $\int_0^{+\infty} \frac{\ln(t)}{t^2-1} dt = \frac{\pi^2}{4}.$

XIX .

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \int_0^{+\infty} \frac{\cos(xt)}{1+t^2} dt$$

- a) Montrer que f est continue sur \mathbb{R} .
- b) Montrer que f est dérivable sur \mathbb{R}^* .
- c) Calculer, pour $x \in \mathbb{R}^*$: $x \cdot f'(x) f(x)$.
- d) Exprimer f à l'aide de fonction usuelle.

XX .

$$f: x \to \int_0^\pi \ln\left(x^2 - 2\cos(\theta).x + 1\right) d\theta$$

- 1) Déterminer la domaine de définition de f.
- 2) a) Montrer que f est dérivable sur $\mathbb{R} \{-1, 1\}$.
 - b) Montrer que $\forall x \in \mathbb{R} \{-1, 1\}$: f'(x) = 4. $\int_0^{+\infty} \frac{(x+1)t^2 + (x-1)}{((x+1)t^2 + (x-1)^2)(1+t^2)} dt$
 - c) En déduire que : $f(x) = \begin{cases} 2\pi \ln(|x|) & si|x| > 1 \\ 0 & si|x| < 1 \end{cases}$
 - d) Montrer que la fonction f est continue sur $\mathbb R$ et calculer $\int_0^\pi \ln(2-2\cos(\theta))d\theta$ et $\int_0^\pi \ln(2+2\cos(\theta))d\theta$

Indication : Montrer que $\forall x \in \mathbb{R} : x^2 - 2\cos(\theta).x + 1 \ge \sin^2(\theta)$ et utiliser le théorème de convergence dominée.

- 3) a) Déterminer le developpement en série entière de la fonction : $g: x \to \ln (x^2 2\cos(\theta).x + 1)$. $\theta \in]0, \pi[$.
 - b) En déduire que $\forall x \in]-1,1[:f(x)=0.$
 - c) Calculer f(x) dans le cas où |x| > 1.

4) a) Déterminer le developpement en série de Fourrier de la fonction

$$h: \theta \to \ln \left(x^2 - 2\cos(\theta).x + 1\right) \text{ avec } x \in]-1,1[$$

b) En déduire la valeur de f(x).

XXI .

Montrer que
$$\int_0^1 x^x dx = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^n}$$
.