Analisi Matematikoa

Topologia

Espazio Metrikoa eta Normaduna

December 16, 2016

Aurkibidea

2	Top	ologia	1
	2.1	Espazio Metrikoa	1
	2.2	Espazio Normaduna	4
	2.3	Ariketak	4

2. GaiaTopologia

2.1 Espazio Metrikoa

- **2.1. Definizioa.** Izan bedi E multzo ez-hutsa. $d: E \times E \to \mathbb{R}$ aplikazioa distantzia edo metrika da propietate hauek betetzen baditu:
 - M1 $\forall x, y \in E \ d(x, y) = 0 \Leftrightarrow x = y \ (Distantzia \ 0 \ bada, \ x \ eta \ y \ berdinak \ dira);$
 - M2 $\forall x,y \in E \ d(x,y) = d(y,x)$ (Bi puntuen arteko distantzia berdina da x-tik y-ra edo y-tik x-era hartuta);
 - M3
 ∀x, y, z ∈ E d(x, z) + d(z, y) ≥ d(x, y) (desberdintza triangeluarra).
 (E, d) bikoteari espazio metriko deritzo.
 Definiziotik ondoriozta daiteke ∀x, y ∈ E d(x, y) ≥ 0 beteko dela.
- **2.2.** Adibidea. $\mathbb{R}^m = \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R}$ multzoa da. Bertan, $x \in \mathbb{R}^m \Rightarrow x = (x_1, x_2...x_m)$ izango da, non $x_i \in \mathbb{R}$ den, i = 1, 2, ..., m izanik. x_i horiek x-ren koordenatuak dira. \mathbb{R}^m multzoan distantzia euklidearra:

$$x, y \in \mathbb{R}^m, x = (x_1, x_2, ... x_m)$$
 eta $y = (y_1, y_2, ... y_m)$.

$$d(x, y) = d((x_1, x_2, ... x_m), (y_1, y_2, ... y_m)) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + ... + (y_m - x_m)^2}.$$

- 1. \mathbb{R}^3 $d((1,-2,3),(0,2,-1)) = \sqrt{(-1)^2 + (-4)^2 + 4^2} = \sqrt{33}$.
- 2. $(i,j),(k,l) \in S$ d((i,j),(k,l)) = |k-i| + |l-j| (Urrats kopurua da espazio kuadrikulatu batean, urratsak bakarrik bertikalki eta horizontalki eginda)
- 3. $E \neq \emptyset$, $d: E \times E \rightarrow \mathbb{R}$ aplikazioa

$$x, y \in E \Rightarrow d(x, y) = \begin{cases} 0 & \Leftarrow x = y \text{ denean,} \\ 1 & \Leftarrow x \neq y \text{ denean} \end{cases}$$

Froga.

• M1

$$x, y \in E \ d(x, y) = 0 \Rightarrow x = y$$

• M2

$$x, y \in E \ x = y \Rightarrow d(x, y) = 0$$
 eta $y = x \Rightarrow d(y, x) = 0 \Rightarrow d(x, y) = d(y, x)$
 $x, y \in E \ x \neq y \Rightarrow d(x, y) = 1$ eta $y \neq x \Rightarrow d(y, x) = 1 \Rightarrow d(x, y) = d(y, x)$

• M3

 $\forall x, y, z \in E \ d(x, z) + d(z, y) \ge d(x, y)$ (Kasuka froga: ikus. Table 2.1)

Table 2.1:
$$d(x,y) \quad d(x,z) \quad d(z,y)$$

$$x = y/y = z/z = x \quad 0 \qquad 0 \qquad 0$$

$$x \neq y/y \neq z/z = x \quad 1 \qquad 0 \qquad 1$$

$$x \neq y/y = z/z \neq x \quad 1 \qquad 1 \qquad 0$$

$$x = y/y \neq z/z \neq x \quad 0 \qquad 1 \qquad 1$$

$$x \neq y/y \neq z/z \neq x \quad 1 \qquad 1 \qquad 1$$

Kasu guztietan betetzen denez, frogatuta geratzen da.

- **2.3. Definizioa.** (E,d) espazio metrikoa emanik, $a \in E$ puntua hartuz, multzo hauek definitzen dira:
 - 1. Bola irekia: $B(a,r) = \{x \in E/d(a,x) < r\}$
 - 2. Bola itxia: $\overline{B}(a,r) = \{x \in E/d(a,x) \le r\}$
 - 3. Esfera: $S(a,r) = \{x \in E/d(a,x) = r\}$

2.4. Adibidea.

1.
$$\mathbb{R}^2$$
, $B((-1,2),3) = \{(x,y) \in \mathbb{R}^2 / d((-1,2),(x,y)) < 3\} =$
= $\{\sqrt{(x+1)^2 + (y-2)^2} < 3\} = \{(x+1)^2 + (y-2)^2 < 9\}$

Emaitza: Bola irekia.

Zentroa: (1, -2).

Erradioa: 3.

2. R-n bolak inguruneak dira $\Rightarrow \mathcal{E}(a,r)$

$$\mathcal{E}(a,r) = \{x \in \mathbb{R}/d(a,x) < r\} = \{x \in \mathbb{R}/|x-a| < r\} = \{x \in \mathbb{R}/-r < x - a < r\} = \{x \in \mathbb{R}/a - r < x < a + r\} = (a - r, a + r)$$

$$\overline{\mathcal{E}}(a,r) = [a - r, a + r]$$

$$S(a,r) = \{a - r, a + r\}$$

$$\mathcal{E}(-2,3) = ((-2-3), (-2+3)) = (-5,1)$$

- **2.5.** Definizioa. Izan bitez (E, d) espazio metrikoa eta $A \subseteq E$ azpimultzoa:
 - $x \in E$ A-ren barne-puntua da baldin $\exists r > 0/B(x,r) \subset A$ (Bola bat gutxienez existitzen da x puntua zentrotzat duena eta A-ko elementuak bakarrik dituena)
 - $x \in E$ A-ren kanpo-puntua da baldin $\exists r > 0/B(x,r) \subset A^c$ (Bola bat gutxienez existitzen da x puntua zentrotzat duena eta A^c -ko elementuak bakarrik dituena, hau da, A-ko elementurik ez duena)
 - $x \in E$ A-ren muga-puntua da baldin $\forall r > 0/B(x,r) \cap A^c \neq \emptyset$ eta $B(x,r) \cap A \neq \emptyset$ bada.
- **2.6.** Definizioa. Izan bitez (E, d) espazio metrikoa eta $A \subseteq E$ azpimultzoa:
 - A-ren barne-puntu quztiek A-ren barnealdea osatzen dute. Å adierazten da.
 - \bullet A-ren kanpo-puntu guztiek A-ren kanpoaldea osatzen dute. $\operatorname{ext}(A)$ adierazten da.
 - A-ren muga puntuek A-ren muga osatzen dute. $\partial(A)$ adierazten da.

Honetaz gain, kontuan hartu behar da: $\mathring{A} \subset A$ eta $\operatorname{ext}(A) \subset A^c$.

- **2.7.** Adibidea. (\mathbb{R}, d) A = (a, b]
 - $x < a \text{ edo} x > b \Rightarrow x \in (-\infty, a) \text{ edo } x \in (b, \infty) \Rightarrow x \in A^c; r_0 = \frac{1}{2}d(x, (a \text{ edo b})),$ hortaz, $\mathcal{E}(x, r_0) \subset A^c \Rightarrow x \in \text{ext}(A)$, hots, x kanpo-puntua da.
 - $a < x < b \Rightarrow x \in (a,b) \Rightarrow x \in A$; $r_0 = \frac{1}{2} \min\{d(x,a), d(x,b)\}$, hortaz, $\mathcal{E}(x,r_0) \subset A \Rightarrow x \in \mathring{A}$, hots, x barne-puntua da.
 - $x = a \in A^c$ edo $x = b \in A$ bada, $\forall r > 0$ $\mathcal{E}(a,r) = (a-r,a+r)$ edo $\mathcal{E}(b,r) = (b-r,b+r)$ da eta $\forall x \ /a r < x < a \ x \in A^c$ eta $\forall x \ /a < x < a + r \ x \in A$ edo $b-r < x < b \ x \in A$ eta $\forall x \ b < x < b + r \ x \in A^c \Rightarrow \mathcal{E}(a,r) \cap A \neq \emptyset$ eta $\mathcal{E}(a,r) \cap A^c \neq \emptyset$ edo $\mathcal{E}(B,r) \cap A \neq \emptyset$ eta $\mathcal{E}(B,r) \cap A^c \neq \emptyset$, beraz, muga puntuak dira, $x = a, \ x = b \in \partial(A)$
- **2.8.** Definizioa. (E, d) espazio metrikoa emanik eta $A \subseteq E$ azpimultzoa:
 - 1. A irekia da A = A bada.
 - 2. A itxia da baldin $A = \mathring{A} \cup \partial(A)$ bada.
- 2.9. Adibidea.

A=[a,b) ez da itxia edo irekia, izan ere, $a,b\in\partial(A)$ ematen da, baina $b\notin A$ eta $a\in A$

B = [a, b] itxia da, a eta b muga puntuak ere B-ren barruan daudelako.

C = (a, b) irekia da, $a, b \in C$ baina $a, b \notin C$ izateagatik.

- **2.10.** Definizioa. (E, d) espazio metrikoa emanik, $A \subseteq E$ multzo bornatua da $\exists K > 0 \ \forall x, y \in A \ d(x, y) \leq K \ baita.$
- **2.11. Teorema.** \mathbb{R} multzoan maximoa eta minimoa existitzeko baldintza nahikoa: $A \subset \mathbb{R}$ bornatua eta itxia bada, A multzoan maximoa eta minimoa daude.

2.2 Espazio Normaduna

- **2.12. Definizioa.** Izan bedi $(E, +, \cdot)$ bektore-espazioa \mathbb{R} gainean. $\|\cdot\| : E \to \mathbb{R}$ norma da hau betezten badu:
 - N1 $\forall x \in E ||x|| = 0 \Leftrightarrow x = \theta_E \text{ (Elementu neutroa)};$
 - N2 $\forall x \in E, \forall \lambda \in \mathbb{R} \|\lambda x\| = |\lambda| \cdot \|x\|;$
 - N3 $\forall x, y \in E \ ||x + y|| \le ||x|| + ||y||$). Orduan, $(E, ||\cdot||)$ bikoteari espazio normadun deritzo. Definiziotik ondorioztatzen da: $\forall x \in E \ ||x|| \ge 0$.
- **2.13. Adibidea.** \mathbb{R}^m espazioan, $x = (x_1, x_2, ... x_m)$ bada: $||x|| = ||(x_1, x_2, ... x_m)|| = \max\{|x_1|, |x_2|, ... |x_m|\}$ (Gorenaren norma) $||x|| = ||(x_1, x_2, ... x_m)|| = \sqrt{x_1^2 + x_2^2 + ... + x_m^2}$ (Norma euklidearra) $||x|| = ||(x_1, x_2, ... x_m)|| = |x_1| + |x_2| + ... + |x_m|$ (Baturaren norma)
- **2.14. Propietatea.** $(E, \|\cdot\|)$ espazio normaduna emanik, $d: E \times E \to \mathbb{R}$, $d(x, y) = \|y x\|$ aplikazioa distantzia da.

Ondorioz, espazio normadunak espazio metrikoak dira ere.

2.15. Adibidea. \mathbb{R} multzoan, $|\cdot|$ balio absolutua norma da.

$$|-3| = 3$$

 $d(x,y) = |y-x|, d(-3,2) = |2-(-3)| = 5$

2.16. Definizioa. $(E, \|\cdot\|)$ espazio metrikoan $A \subset E$ multzoa bornatua da $\exists k \geq 0$ $\forall x \in A \|x\| \leq k$ baita.

2.3 Ariketak

• 2 ariketa

Determina itzazu bola irekia, itxia eta esfera metrika diskretua erabiliz, $a \in E$ izanik eta r = 1.

$$x,y\in E\Rightarrow d(x,y)=\left\{\begin{array}{ll}0&x=y\text{ denean,}\\1&x\neq y\text{ denean}\end{array}\right.$$

$$B(a,1)=\left\{x\in E/d(a,x)<1\right\}=\left\{x\in E/d(x,a)=0\right\}=\left\{a\right\}$$

$$\overline{B}(a,1) = \{x \in E/a(a,x) < 1\} = \{x \in E/a(x,a) = 0\} = \{a\}$$

$$\overline{B}(a,1) = \{x \in E/d(a,x) \le 1\} \Rightarrow \forall x, a \in E \ d(x,a) \le 1 \Rightarrow \overline{B}(a,1) = E$$

$$S(a,1) = \{x \in E/d(a,x) = 1\} = \{x \in E/x \ne a\} = E - \{a\}$$

2.3. Ariketak 5

• 4 ariketa (b atala)

Irudika ezazu B((0,0),1) hurrengo kasuan: $||(x,y)|| = \max\{|x|,|y|\}$ (gorenaren norma)

$$B((0,0),1) = \{(x,y) \le \mathbb{R}^2 / \max\{|x|,|y|\} < 1\}$$

Orain, puntuak irudikatuko dira. Puntu hauek bete behar duten baldintza bakarra, gorenaren norma jarraituz, bi koordenatuen balio absolutuen arteko maximoa 1 baino txikiagoa izatea da, beraz, $\forall x,y \in B - 1 < x < 1$ eta -1 < y < 1. Barneko puntuak modu egokian argitzeko, mugako puntuak $(-1 \le x \le 1$ eta $-1 \le y \le 1)$ irudikatu behar dira kasu honetan (Ikus. Table 2.2).

Table 2.2: 4 ariketa $(\max\{|x|,|y|\}=1)$

X	У
1	$-1 \le y \le 1$
-1	$-1 \le y \le 1$
$-1 \le x \le 1$	1
$-1 \le x \le 1$	-1

• 5 ariketa (d atala)

Determina itzazu $A = \mathbb{Q}$ multzoaren \mathring{A} , $\operatorname{ext}(A)$ eta $\partial(A)$:

Definizioz, $\forall x, y \in \mathbb{Q} \exists z \in \mathbb{R} - \mathbb{Q}/x < z < y$ edo y < z < x. Hau da, bi zenbaki arrazionalen artean beti gutxienez irrazional bat egongo da beti, izan ere, bi arrazional artean infinitu zenbaki bai irrazional bai arrazional daudelako. Ondorioz:

 $\forall x \in A, \forall r > 0 \Rightarrow \mathcal{E}(x,r) \cap A \neq \emptyset$ eta $\mathcal{E}(x,r) \cap A^c \neq \emptyset \Rightarrow x$ muga puntua da beti, ez dagoelako ingurunerik bakarrik Ako elementuak edo bakarrik A^c ko elementuak dituena. Hau da:

Gaia 2. Topologia

 $A = \mathbb{Q} \Rightarrow \partial(A) = \mathbb{R}$ Hemen $\mathbb{R} - \mathbb{Q}$ irrazionalak sartzen dira ere, inguruan bai A multzoko puntuak bai A^c ko puntuak dituztelako beti. $\mathring{A}, \text{ext}(A) = \emptyset$

• 8 ariketa (b atala)

Irudika ezazu \mathbb{R}^2 espazioaren azpimultzo hau, eta esan ezazu irekia, itxia edo bornatua den; kalkula ezazu multzoaren diametroa.

$$B=\{(x,y)\in\mathbb{R}^2/1\leq x\leq 3 \text{ eta } y=5\}$$

Multzoa lerro bat izanik, garbi ikusten da ez dagoela B((x,5),r) bolarik non elementuak B multzoan dauden, $y \neq 5$ izanik puntu hori B multzoan ez dago eta. Hau da, ez dago B((x,5),r) bolarik non elementuak B multzoan dauden, multzoko elementu guztiak y=5 zuzenean egonik, bere inguruko puntu batzuetan $y\neq 5$ delako, eta beraz, multzoan ez daude, nahiz eta ingurunea txikitu, bakarrik y=5 denean ematen delako. Beraz:

 $B = \partial(B)$. Multzo itxiaren definizioz, A multzo itxia da baldin $A = \mathring{A} \cup \partial(A)$. Kasu honetan, $B = \emptyset \cup \partial(B)$. Beraz, B multzo itxia da.

Gainera, B bornatua da:

$$\forall x \in B \ \exists a \le x \ \text{eta} \ \exists b \ge x/a \le 1 \text{eta} \ b \ge 3$$

$$\forall y \in B \ \exists a \leq y \ \text{eta} \ \exists b \geq y/a \leq 5 \leq b$$

Multzoaren diametroa multzoko punturen artean atera daiteken distantzia maximoa da.

$$d((1,5),(3,5)) = 2$$