

C211. Equipo 14

En este trabajo, implementamos, en Python, los métodos de Euler, Euler mejorado y de Runge Kutta para aproximar las soluciones a problemas diferenciales.

Ejercicios Correspondientes a Nuestro Equipo:

- Ejercicio 21 página 122
- Ejercicio 21 página 142
- Ejercicio 25 página 132

Equipo:

Karen Dianelis Cantero López Luis Alejandro Rodríguez Otero Héctor Miguel Rodríguez Sosa Sebastián Suárez Gómez

Explicación breve de los métodos usados:

Todos los métodos reciben 4 parámetros:

- 1. x0 : representa el array que contiene los valores de x para los cuales se va a calcular el valor de y
- 2. y0 : representa el array que contiene los valores de y en la x correspondiente
- 3. h : representa el paso
- 4. f: representa la función

```
def MtodoEuler(x0,y0,h,f):
    for i in range(1,len(x0)):
        y0.append(y0[i-1] + h* f(x0[i-1], y0[i-1]))
        y0[i] = round(y0[i],4)
def MetodoEulerMejor(x0,y0,h,f):
    for i in range(0,len(x0)-1):
        k1 = f(x0[i],y0[i])
        u = y0[i]+h*k1
        k2=f(x0[i+1],u)
        y0.append(y0[i] + h/2*(k1+k2))
        y0[i+1] = round(y0[i+1],4)
def MetodoRunge_Kutta(x0,y0,h,f):
    for i in range(0,len(x0)-1):
        k1= f(x0[i],y0[i])
        k2 = f(x0[i] + h/2, y0[i] + h*k1/2)
        k3 = f(x0[i] + h/2, y0[i] + h*k2/2)
        k4 = f(x0[i+1], y0[i] + h*k3)
        y0.append(y0[i]+ h/6 *(k1+2*k2+2*k3+k4))
        y0[i+1] = round(y0[i+1],4)
def Funcion(x,y):
    return log(y).real
```

Para graficar las aproximaciones, usamos la biblioteca Matplotlib:

```
plt.plot(x0,yEuler, label = 'Aproximacion Euler')
plt.plot(x0,yEulerMejorado, label = 'Aproximacion Euler Mejorado')
plt.plot(x0,yRunge_Kutta, label = 'Aproximacion Runge-Kutta')
```

Para tabular las aproximaciones de forma automática, usamos la biblioteca <u>Tabulate</u>:

```
rowiDs = ["Euler", "Euler Mejorado", "Runge Kutta"]
table = [x0, yEuler, yEulerMejorado, yRunge_Kutta]
print(tabulate(table, headers="firstrow", showindex=rowiDs))
```

Ejercicio 21 página 122

h=0.1

	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
Euler Euler Mejorado	2	2.0693	2.142	2.2182	2.2979	2.3811	2.4679	2.5582	2.6521	2.7496	2.8507
Euler Mejorado	2	2.071	2.1455	2.2236	2.3053	2.3906	2.4795	2.5721	2.6684	2.7684	2.872
Runge Kutta	2	2.0711	2.1457	2.2238	2.3055	2.3908	2.4798	2.5725	2.6688	2.7688	2.8725

	1.0	1.02	1.04	1.06	1.08	1.1	1.12	1.14	1.16	1.18	1.2
Euler	2	2.0139	2.0279	2.042	2.0563	2.0707	2.0853	2.1	2.1148	2.1298	2.1449
Euler Mejorado	2	2.0139	2.028	2.0422	2.0566	2.0711	2.0857	2.1005	2.1154	2.1305	2.1457
Runge Kutta	2	2.0139	2.028	2.0422	2.0566	2.0711	2.0857	2.1005	2.1154	2.1305	2.1457

	1.0	1.004	1.008	1.012	1.016	1.02	1.024	1.028	1.032	1.036	1.04
Euler	2	2.0028	2.0056	2.0084	2.0112	2.014	2.0168	2.0196	2.0224	2.0252	2.028
Euler Mejorado	2	2.0028	2.0056	2.0084	2.0112	2.014	2.0168	2.0196	2.0224	2.0252	2.028
Runge Kutta	2	2.0028	2.0056	2.0084	2.0112	2.014	2.0168	2.0196	2.0224	2.0252	2.028

	1.0	1.0008	1.0016	1.0024	1.0032	1.004	1.0048	1.0056	1.0064	1.0072	1.008
Euler	2	2.0006	2.0012	2.0018	2.0024	2.003	2.0036	2.0042	2.0048	2.0054	2.006
Euler Mejorado	2	2.0006	2.0012	2.0018	2.0024	2.003	2.0036	2.0042	2.0048	2.0054	2.006
Runge Kutta	2	2.0006	2.0012	2.0018	2.0024	2.003	2.0036	2.0042	2.0048	2.0054	2.006

Ejercicio 21 página 142

h=0.2

1.2

1.0

1.4

1.6

1.8

2.0

Ejercicio 25 página 132

h=0.01

Para este paso, en el intervalo de 0 a 2, son 201 valores de x. Tomando el mismo paso, solo vamos a mostrar los valores de diferencia 0.1

¿Qué porcentaje de la velocidad límite, 20 ft/s, se alcanza después de 1 s?

R/ (15.963/20)*100 = 79.815 %

¿Después de 2 s?

R/ (19.185/20)*100= 95.925 %

h=0.005

De igual modo, para este paso, en el intervalo de 0 a 2, son 401 valores de x. Solo mostraremos los valores de diferencia 0.1

¿Qué porcentaje de la velocidad límite, 20 ft/s, se alcanza después de 1 s?

R/ (15.964/20)*100 = 79.82 %

¿Después de 2 s?

R/(19.187/20)*100=95.935 %