Question number		Scheme	Mark	s	
1.	(a)	Use of $(8 + \lambda)m$		B1	
		$\mathbf{i} : 3m \times 4 + \lambda m \times 4 = (8 + \lambda)m \times 2$	M1		
		Solving to $\lambda = 2$ (*)	M1 A1	(4)	
		$\mathbf{j} \colon 5m \times (-3) + 2m \times 2 = 10m \times k$	M1 A1		
		k = -1.1	A1	(3)	
			(7 marks)		
2.	(a)	$T_r = \frac{24000}{12} \ (=2000)$	M1		
		N2L: $T_r - 1200 = 1000 \times f$			
		f = 0.08		(4)	
	(<i>b</i>)	Work Energy $\frac{1}{2} \times 1000 \times 14^2 = 1200d$		M1 A1	
		$d = 81\frac{2}{3}$ awrt 81.7	A1	(3)	
	(c)	Resistances may vary with speed	B1	(1)	
			(8 marks)		

PROVISIONAL MARK SCHEME JANUARY 2003

	PROVISIONAL MARK SCHEME JANUARY 200					
Question number				Marks		
3.	$(\uparrow) R = 3mg$ $M(B)$ $mga \cos \alpha + 2mg \times \frac{3}{2} a \cos \alpha + Fr \times 2a \sin \alpha = R \times 2a \cos \alpha$			B1 M1 A2 1,0)	
	R mg A mg A mg	Solving to Fr	$= \frac{3}{4} mg$		M1 A1	
	$\operatorname{Fr} \le \mu R \Rightarrow \frac{3}{4} mg \le \mu 3mg$					
	$\mu \ge \frac{1}{4}$ (least value is $\frac{1}{4}$)			M1 A1	(9)	
					(9 m	arks)
4. (a)			\triangleright	\bigcirc		
	MR	$48a^2$	$12a^2$	$60a^2$	B1, B1ft	
	СМ	4 <i>a</i>	$(-)\frac{1}{3} \times 4a$	\overline{x}	B1	
	$48a^2 \times 4a - 12a^2 \times \frac{4}{3}a = 60\bar{x}$				M1 A1	
		Solving to $\bar{x} =$	$\frac{44}{15}a$ (*)		A1	(6)
(b)	$\lambda M \times 4a = M \times \frac{44}{15}$	$\frac{4}{5}a$			M1 A1	
	$\lambda = \frac{11}{15}$				A1	(3)
					(9 m	arks)

Question number	Scheme		Marks	
5. (a)	(a) $v = \int a dt = 2t^2 - 8t \ (+c)$			
	Using $v = 6$, $t = 0$; $v = 2t^2 - 8t + 6$	M1 A1	(4)	
	$v = 0 \Rightarrow 2t^2 - 8t + 6 = 0, \Rightarrow t = 1,3$	M1 A1		
	$S = \int (2t^2 - 8t + 6) dt = \left[\frac{2}{3}t^3 - 4t^2 + 6t\right]$	M1 A2, 1, 0		
	$=0-2\frac{2}{3}$	M1		
	Distance is $(\pm)2\frac{2}{3}$ m	A1	(7)	
			arks)	
6. (a)	L.M. 2u = 2x + y	M1 A1		
	$NEL \ y - x = \frac{1}{3}u$	M1 A1		
	Solving to $x = \frac{5}{9}u$ (*)	M1 A1		
	$y = \frac{8}{9}u (*)$	A1	(7)	
(b)	$(\pm) \frac{8}{9}eu$	В1		
	L.M $\frac{10}{9}u - \frac{8}{9}eu = w$	M1 A1		
	$NEL \ w = \frac{1}{3} \left(\frac{5}{9} u + \frac{8}{9} eu \right)$	M1 A1		
	Solving to $e = \frac{25}{32}$ accept 0.7812s	M1 A1	(7)	
(c)	Q still has velocity and will bounce back from wall colliding with stationary P .	B1	(1)	
			(15 marks)	

Question number	Scheme		Marks	
7. (a)	I = 0.4(15i + 16j + 20i - 4j) $(= 0.4(35i + 12j) = 14i + 4.8j)$		M1	
	$ \mathbf{I} = \sqrt{(14^2 + 4.8^2)} \text{ or } 0.4\sqrt{(35^2 + 12^2)}$ M1 for any magnitude		M1 A1	
	= 14.8 (Ns)			(4)
(b)	Initial K.E. = $\frac{1}{2}m(15^2 + 16^2)$ (= 240.5 m = 96.2 J)			
	$\frac{1}{2}mv^2 = \frac{1}{2}m(15^2 + 16^2) = m \times 9.8 \times 1.2$ —1 each incorrect term		M1 A2, 1,0	
	$v^2 = 504.52$		M1	
	$v = 22 \text{ (m s}^{-1})$ accept 22.5			
(c)	$\arccos \frac{15}{22.5} = 48^{\circ}$ accept 4	8.1°	M1 A1 A1	A1 (4)
(d)	(d) Air resistance			
	Wind (problem not 2 dimensional)			
	Rotation of ball (ball is not a particle) any		B1, B1	(2)
Alt (b)	Resolve ↑ with 16 and 9.8		M1	
	(\uparrow) $v_y^2 = 16^2 + 2 \times (-9.8) \times (-1.2)$		M1 A1	
	$(v_y^2 = 279.52, v_y \approx 16.7)$			
	$v^2 = 15^2 + 279.52$		M1 A1	
	$v = 22 \text{ (m s}^{-1})$ accept	22.5	A1	(6)
Alt (c)	$\arctan \frac{16.7}{15} = 48^{\circ}$		M1 A1 A1	A1 (4)