МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (МОСКОВСКИЙ ПОЛИТЕХ)

Кафедра «Инфокогнитивные технологии»

Практические и лабораторные занятия по дисциплине «Проектирование интеллектуальных систем»

Лабораторная работа № 4

«Обучение нейронной сети с помощью генетических алгоритмов»

Группа 224-321

Студент Пахомов Денис Владимирович

Преподаватель Кружалов Алексей Сергеевич

Краткое описание

Разработка компьютерной программы, которая обучает искусственный нейрон распознавать изображения с помощью генетических алгоритмов.

Цель работы

Изучить принципы работы и алгоритм обучения простейших искусственных нейронных сетей (НС).

Порядок выполнения работы

- Предварительно выполнить лабораторные работы:
 - Решение оптимизационных задач с помощью генетических алгоритмов
 - о Распознавание изображений с помощью персептрона
- Сформировать обучающую выборку из множества изображений.
- Разработать компьютерную программу (среда разработки выбирается студентом самостоятельно).
- Провести серию из 5+ испытаний с различными исходными данными, выявить трудности, ограничения и недостатки обучения НС с помощью генетических алгоритмов.
- Оформить отчет по лабораторной работе.

Требования к функциональности компьютерной программы

- В программе должна быть реализована возможность задания обучающей выборки из внешних файлов изображений.
- Изображения должны быть черно-белыми (bitmap) и размером не менее 1616 (4x4)(4x4) пикселей.
- Программа должна иметь два режима работы: обучения и распознавания.
- Обучение НС должно производиться с помощью генетического алгоритма.

На экранной форме режима обучения должны отображаться:

- элементы обучающей выборки (изображения),
- правильные варианты элементов обучающей выборки,

- текущие (итоговые) веса нейронов и значение порога активационной функции,
- размер ошибки, при котором обучение нейрона завершается,
- режим обучения должен иметь два варианта работы:
 - о пошаговый на экране должны отображаться все представители (хромосомы) одного поколения до и после применения каждого оператора (скрещивания, селекции, редукции и мутации).
 - о циклический на экране должны отражаться только агрегированные данные по каждому поколению и итоговый набор хромосом.

На экранной форме режима распознавания должны отображаться:

- распознаваемое изображение (должно выбираться из всего множества),
- результат распознавания,
- веса нейронов и значение порога активационной функции,
- значения выхода нейрона.

Описание выбранной задачи:

Разработка осуществлялась на языке Python.

Блок-схемы:

1) Блок-схема работы функции forward

2) Блок-схема алгоритма обучения

3) Блок-схема ГА

Эксперименты:

Общие параметры:

Входное изображение: 28x28

Выходные нейроны: 2

Кол-во эпох: 1

Таблица 1 -Результаты экспериментов

No	Кол-во	Кол-во	Вероятность	Вероятность	Accuracy
	инд.	поколений	мутации	кроссовер	
1	50	5	0.1	1	79.72 %
2	50	5	0.5	1	77.25 %
3	50	5	1	1	47.42%
4	50	5	0.1	0.3	46.49%
5	50	5	0.1	0.6	84.74%
6	50	5	0.1	0.9	97.59%
7	50	10	0.1	1	99.11%
8	50	15	0.1	1	76.56%
9	50	20	0.1	1	88.37%
10	10	5	0.1	1	78.75%
11	20	5	0.1	1	78.45%
12	100	5	0.1	1	90.82%

Параметры:

Кол-во индивид.: 50

Кол-во поколений: 5

Вероятность мутации: 0.1

Вероятность кроссовера: 1

<u>Accuracy: 79.72</u>

Результаты работы алгоритма представлены на рисунке 1.

Рисунок 1 – Эксперимент номер 1

Кол-во поколений: 5

Вероятность мутации: 0.5

Вероятность кроссовера: 1

Accuracy: 77.25

Результаты работы алгоритма представлены на рисунке 2.

Рисунок 2 – Эксперимент номер 2

Кол-во поколений: 5

Вероятность мутации: 1

Вероятность кроссовера: 1

Accuracy: 47.

Результаты работы алгоритма представлены на рисунке 3.

Рисунок 3 – Эксперимент номер 3

Кол-во поколений: 5

Вероятность мутации: 0.1

Вероятность кроссовера: 0.3

Accuracy: 46.

Результаты работы алгоритма представлены на рисунке 4.

Рисунок 4 – Эксперимент номер 4

Кол-во поколений: 5

Вероятность мутации: 0.1

Вероятность кроссовера: 0.6

Accuracy: 84.

Результаты работы алгоритма представлены на рисунке 5.

Рисунок 5 – Эксперимент номер 5

Кол-во поколений: 5

Вероятность мутации: 0.1

Вероятность кроссовера: 0.9

Accuracy: 97.59

Результаты работы алгоритма представлены на рисунке 6.

Рисунок 6 – Эксперимент номер 6

Кол-во поколений: 10

10

15

20

25

Вероятность мутации: 0.1

Кол-во эпох: 1

<u>Accuracy: 99.11</u>

Результаты работы алгоритма представлены на рисунке 7.

Рисунок 7 – Эксперимент номер 7

Кол-во поколений: 15

Вероятность мутации: 0.1

Вероятность кроссовера: 1

Accuracy: 76.56

Результаты работы алгоритма представлены на рисунке 8.

Рисунок 8 – Эксперимент номер 8

Кол-во поколений: 20

Вероятность мутации: 0.1

Вероятность кроссовера: 1

Accuracy: 88.37

Результаты работы алгоритма представлены на рисунке 9.

Рисунок 9 – Эксперимент номер 9

Кол-во поколений: 5

Вероятность мутации: 0.1

Вероятность кроссовера: 1

<u>Accuracy: 78.75</u>

Результаты работы алгоритма представлены на рисунке 10.

Рисунок 10 – Эксперимент номер 10

Кол-во поколений: 5

Вероятность мутации: 0.1

Вероятность кроссовера: 1

Accuracy: 78.45

Результаты работы алгоритма представлены на рисунке 11.

Рисунок 11 – Эксперимент номер 11

Кол-во поколений: 5

Вероятность мутации: 0.1

Вероятность кроссовера: 1

<u>Accuracy: 90.82</u>

Результаты работы алгоритма представлены на рисунке 12.

Рисунок 12 – Эксперимент номер 12

Вывод:

Однослойный перцептрон, обученный с помощью генетического алгоритма, подходит для задач бинарной классификации, большую долю успеха обучения с помощью ГА занимается формирование первоначальной популяции. На графиках видно, что при поступлении нового изображения функция приспособленности начинает уменьшаться, а потом снова расти.

Наибольший результат показывает перцептрон обученный с помощью ГА с 10% шансом мутации, 100 % шансом мутации, популяция состоит из 50 индивидуалов, а кол-во поколений равно 10. Обратная ситуация наблюдается при обученный с помощью ГА с 10% шансом мутации, 30 % шансом мутации, популяция состоит из 50 индивидуалов, а кол-во поколений равно 5.

Балансирую параметры ГА алгоритма, можно добиться высоких показателей для задачи классификации

Программный код представлен на GitHub:

https://github.com/GongniR/Mag_2_semester/tree/main/DoIS/LW_4