

Presented by Elijah Jacob

PROJECT OUTLINE

Objective

Initial Assumptions

Predictive Modeling

Insight Analysis

Impact Analysis

Recommendation and Next Steps

TOPICS TO COVER

OBJECTIVE

BUILD A PREDICTIVE MODEL FOR THE DIAGNOSIS OF CHRONIC ILLNESS

WHY?

ACCURATE PREDICTION OF CHRONIC ILLNESS CAN ENABLE
US TO PRICE INSURANCE PREMIUMS WELL LEADING TO A
MAXIMIZED SHAREHOLDER AND CUSTOMER VALUE

CHRONIC CONDITIONS

- 1 Diagnosed
- 2 Diagnosedduring pregnancy3 Not Diagnosed

TRAIN/TEST SPLIT

No systematic differences between test and train data.

Initial Data Assumptions

PREDICTIVE MODELING

Data Cleaning

Filtering outliers

Data Standardization

Exploratory
Data Analysis

Trend analysis

Correlationmatrix plot

Feature Selection

Feature importance

Recursive Feature Elimination

Model Implementation

Cross Validation

Hyperparameter
Tuning

SUMMARY OF MODELING PROCESS

First pass achieved **82.4% accuracy** with XGBoost as recommended by paper, then:

- Chose only the first 20 most important features to prevent overfitting of model
- Used GridSearchCV for hyperparameter tuning and cross-validation
- Used Smote to balance training data

Based on the papers in the appendix, I found that for the data I was working with the **XGBoost** model performed the best

MODEL ACCURACY IN PREDICTING CHRONIC ILLNESS ACHIEVED

Major Risk factors as seen from the data include:

Feature Importance

General Health	0.162977
Sex	0.122104
BMI Category	0.09288
Age	0.06398
Kidney Disease Status	0.04905
Last Routine Check Up	0.04268

MAXIMIZING CUSTOMER VALUE

Maximizing coverage based on requirements:

Personalized coverage based on improving general health:

- 1) Age and Gender
- 2) Health metrics (eg. **BMI**, patient history)
- 3) **Exercise** and lifestyle choices (eg. smoking)

Benefits include:

- Potentially lower premiums due to lower risk
- Wider coverage based on lifestyle

MAXIMIZING SHAREHOLDER VALUE

Ensuring insurance is priced at a level where expected returns are consistently profitable.

Strategy:

- **Tiered Pricing**: Adjust premiums based on risk level of key factors.
- **Risk Reduction**: Competitive pricing for low-risk individuals potentially being attractive to more customers.

PREVENTATIVE CARE INCENTIVES

Incentivizing preventative care and check-ups would result in more patient data as well as early detection of disease.

EXERCISE INCENTIVES

Incentivizing exercise as the trend between chronic illness and lack of exercise is prevalent. This may look like a gym membership rebate.

WHY?

BETTER DATA

Through this process, patient data is collected.

Better data will enable better predictions which will enable us to price insurance better

BETTER HEALTH

Incentivizing better health is a better outcome for both parties. Customers are happier and the insurance company makes better margins with lower payouts

Recommendations and Next Steps

Balancing our shareholder and customer objectives

APPENDIX

Park, D.J., Park, M.W., Lee, H., et al. (2021). Development of machine learning model for diagnostic disease prediction based on laboratory tests. Scientific Reports, 11, 7567. https://doi.org/10.1038/s41598-021-87171-5

Lee, C., Jo, B., Woo, H., Im, Y., Park, R. W., & Park, C. H. (2024).

Chronic disease prediction using the common data model:

Development study. Artificial Intelligence in Medicine, 1(1), e41030.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041444/pdf/ai_v1ile41030.pdf

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953

