Московский государственный технический университет им. Н.Э.Баумана 31 октября - 4 декабря 2022

Студенческий практикум МГТУ им. Н.Э.Баумана по обработке и визуализации графов

Алексей Юрьевич Попов, Станислав Вадимович Ибрагимов, Егор Николаевич Дубровин, Ли ЦзяЦзянь, Михаил Гейне

Московский государственный технический университет им. Н.Э. Баумана, Москва, РФ

Проблемы слабого искусственного интеллекта

Искусственные нейронные сети генерируют выходные данные для любого входного шаблона

Результат обучения нейронной сети не всегда предсказуем

Внесение шума в изображение существенно снижает точность распознавания

Трансляционная инвариантность приводит к ошибкам

Person 92% Lipstick 60%

Дэниэлл Денетт, философ из Университета Тафтса

«Я считаю, что если мы собираемся использовать эти вещи и зависеть от них, тогда нужно понимать, как и почему они действуют так, а не иначе. Если они не могут лучше нас объяснить, что они делают, то не стоит им доверять».

Аналитическая система на основе графов знаний

Этого достигли ИТ

- Структуры/способы/методы/алгоритмы статичны.
- Структура вычислителя определяется на основе принципов универсальности.
- Структура программных систем определяется применяемыми технологиями.
- Информация в большинстве случаев представляется в виде реляционных моделей.
- Технический эффект достигается в рабочем режиме информационной системы.

Это сделала природа

- Живой организм непрерывно обучается с момента рождения до смерти, при этом обеспечивает свою жизнедеятельность.
- Окружающая действительность определяют физиологические особенности, которые передаются последующим поколениям.
- Знания передаются различными способами.
- Человек проходит около 12 различных стадий на жизненном пути.

Представление знаний

Знания представляются в виде графовых моделей, позволяющих однозначно интерпретировать результат. Вершины и ребра графа представления знаний обладают атрибутами, которые анализируются алгоритмами и позволяет делать логический вывод.

Динамический граф сцены

Фрагмент графа обмена веществ

Граф результатов анализа контрагентов для участника рынка

Граф белокбелковых взаимодействий

Применение графов в биологии и медицине

- Интерактомика
- Анализ проблемы индивидуальной нормы
- Моделирование и визуализация процессов в биологических системах
- Моделирование и анализ популяций и сложных сообществ

Существующие подходы к обработки графов

Режимы обработки

- Обработка статичных графов
- Потоковая обработка статичных графов
- Обработка динамических графов

Программные решения

- Эффективные структуры данных
- Библиотеки обработки графов
- Графовые базы данных

Аппаратные решения

- Многопоточность и многонитевость
- Графические ускорители
- Специализированная память
- Ускорители на ПЛИС

Набор команд дискретной математики DISC

Discrete math operations	Description	DISC instructions
$A = \langle A_1, \ldots, A_n \rangle$	- store function of n sets as an A tuple	Insert
$R(A_i,x,y),x\in A_i,y\in A$	\mathbf{A}_{i} - relationship between the x and y in the set \mathbf{A}_{i}	Next/Previous/Neighbors
$\mid A_{i} \mid$, $i=1,n$	- cardinality of the A _i set	Cardinality
$x\in A_i,x\notin A_i\ ,i=1,\!n$	- check the inclusion/exclusion of the x in the se	t Search
$A_i \cup x, i = 1,n$	- inserting the x into the set	Insert
A $_{i}\setminus x,i=1,n$	- removing an element x from the set	Delete, Delete structure
$\mathrm{A}\setminus\mathrm{A_{i}}$	- removing the set A _i from the tuple A	Delete structure
$\rm A_i \subset A_j$	- inclusion relation of the set A_i in A_j	Slices
$ m A_i \equiv A_j$	- equivalence relation operation	Slices
$\rm A_i \cup A_j$	- union operation of two sets	OR
$\rm A_i \cap A_j$	- intersection operation of two sets	AND
$\rm A_i \setminus A_j$	- difference operation	NOT
$ m A_i \ \triangle \ A_j$	- symmetric difference	_
A	- complement of the A _i	NOT
$A_{i} \times A_{j}$	- Cartesian product operation	_
2^{Ai}	- Boolean operation	_

Набор команд дискретной математики DISC

Операции, основанные на поиске

Поиск по ключу SRCH

Поиск минимального *MIN*

Поиск максимального МАХ

Поиск следующего *NEXT*

Поиск предыдущего PREV

Ближайший больший *NGR*

Ближайший меньший *NSM*

Операции добавления/удаления

Вставка INS

Удаление DEL

Удаление множества DELS

Операции И-ИЛИ-НЕ

Объединение множеств *OR*

Пересечение множеств AND

Дополнение множеств *NOT*

Операции среза

Срез больше *GR*

Срез больше или равно GREQ

Срез меньше *LS*

Срез меньше или равно *LSEQ*

Срез меньше/больше GRLS

Свойства множеств

Мощность множества *CNT*

- Предусмотрено длительное размещение графов в оперативном доступе.
- · Используется ассоциативная память большого объема (2.5ГБ на одно ядро Graph Processing Core, GPC)
- Ядра GPC являются весокоэффективными гетерогенными системами, взаимодействующими через единой адресное пространство PCIe
- GPC самостоятельно обращается в локальное графовое хранилище 30ТБ и графовые хранилища других узлов
- Хост система выполняют второстепенные функции (инициализация,распределение и т.д.)

- Предусмотрено длительное размещение графов в оперативном доступе.
- · Используется ассоциативная память большого объема (2.5ГБ на одно ядро Graph Processing Core, GPC)
- Ядра GPC являются весокоэффективными гетерогенными системами, взаимодействующими через единой адресное пространство PCIe
- GPC самостоятельно обращается в локальное графовое хранилище 30ТБ и графовые хранилища других узлов
- Хост система выполняют второстепенные функции (инициализация,распределение и т.д.)

- Предусмотрено длительное размещение графов в оперативном доступе.
- · Используется ассоциативная память большого объема (2.5ГБ на одно ядро Graph Processing Core, GPC)
- Ядра GPC являются весокоэффективными гетерогенными системами, взаимодействующими через единой адресное пространство PCIe
- GPC самостоятельно обращается в локальное графовое хранилище 30ТБ и графовые хранилища других узлов
- Хост система выполняют второстепенные функции (инициализация,распределение и т.д.)

- Предусмотрено длительное размещение графов в оперативном доступе.
- · Используется ассоциативная память большого объема (2.5ГБ на одно ядро Graph Processing Core, GPC)
- Ядра GPC являются весокоэффективными гетерогенными системами, взаимодействующими через единой адресное пространство PCIe
- GPC самостоятельно обращается в локальное графовое хранилище 30ТБ и графовые хранилища других узлов
- Хост система выполняют второстепенные функции (инициализация,распределение и т.д.)

- Предусмотрено длительное размещение графов в оперативном доступе.
- · Используется ассоциативная память большого объема (2.5ГБ на одно ядро Graph Processing Core, GPC)
- Ядра GPC являются весокоэффективными гетерогенными системами, взаимодействующими через единой адресное пространство PCIe
- GPC самостоятельно обращается в локальное графовое хранилище 30ТБ и графовые хранилища других узлов
- Хост система выполняют второстепенные функции (инициализация,распределение и т.д.)

Архитектура комплекса Тераграф

Характеристика	Значение
Количество процессоров Леонард Эйлер	9
Количество GPC	216
Кэш память (DDR4, ГБ)	576
Оперативная память GPC (ТБ)	48
Количество хранимых ключей	1 триллион

Гетерогенное ядро обработки графов

- · GPC состит из двух тесно связанных микропроцессоров: Computing Processor Element (CPE) и Structure Processing Element (SPE).
- СРЕ реализован на базе микропроцессора с набором команд riscv32im.
- SPE представляет собой микропроцессор с набром команд дискретной математики DISC
- SPE подключен, как ускорительное ядро к шине памяти CPE.
- Производительность GPC сопоставима с производительностью одного ядра Intel Xeon Platinum v8 при 10х меньшей частоте (267 МГц) и 40х меньшем количестве вентилей (2.5 млн.)

Микропроцессор Леонард Эйлер

- · Ядра GPC объединяются в группы ядер (до 6 ядер в группе)
- В каждой группе предусмотрена глобальная память 128КБ для обмена данными между хост-подсистемой и СРЕ.
- В каждом ядре СРЕ предусмотрены аппаратные очереди сообщений Host2GPC и GPC2Host на 512 записей по 32 бит каждая.
- Bce GPC в одной группе подключены к одной шине памяти DDR4 (16ГБ).
- · Хост-подсистема может независимо управлять каждым GPC в отдельности.
- Основным программным компонентов программного ядра является обработчик (подобно шейдеру), который написан на языке С и загружается по запросу хост-системы.

Пример работы одного гетерогенного ядра Тераграф

Студенческий практикум по обработке и визуализации графов

Практакум №1. Разработка и отладка программ в вычислительном комплексе Тераграф с помощью библиотеки leonhard x64 xrt

- Изучение принципов работы системы Тераграф
- Индивидуальные задания

Практикум №2. Обработка и визуализация графов в вычислительном комплексе Тераграф

- Изучение алгоритмов обработки и визуализации графов
- Индивидуальные задания

Командный практикум. Обработка и визуализация графов в вычислительном комплексе Тераграф

- Командная разработка (команда от 5 до 10 человек)
- Результат работы команды: визуализация графа по выбранной предметной области (pdf, 300 dpi)

Страница практикума

https://alexbmstu.github.io/2022/

Студенческий практикум МГТУ им. Н.Э.Баумана по обработке и визуализации графов

Московский государственный технический университет им. Н.Э.Баумана, 31 октября - 4 декабря 2022

Руководители практикума

Алексей Попов,

МГТУ им. Н.Э.Баумана

МГТУ им. Н.Э.Баумана

МГТУ им. Н.Э.Баумана

Ли Цзяцзянь N МГТУ им. Н.Э.Баумана N

Михаил Гейне МГТУ им. Н.Э.Баумана Студенческий практикум МГТУ им. Н.Э.Баумана по обработке и визуализации графов

Аннотация 1. Графы знаний

> 11. Актуальность создания эффективных программных и аппаратных средств обработки графов

 Применения графов в задачах аналитики данных и искусственном интеллекте

2. Структура микропроцессора Леонард Эйлер и вычислительного комплекса Тераграф

2.1. Набор команд дискретной математики

2.2. Структура вычислительного комплекса Тераграф

2.2.1. Хост-подсистема

2.2.2. Подсистема хранения графов

 2.2.3. Подсистема коммутации узлов

