

Bayesian Inference in Breast Cancer Prediction

Yidong Wu

School of Data Science, Fudan University

June 16, 2024

- 1 Introduction
- 2 Data Description
- 3 Exploratory Data Analysis
- 4 Model Descriptions
- 5 Stan Code

- 6 Convergence Diagnostics
- 7 Posterior Predictive Checking
- 8 Predictive Performance
- 9 Sensitivity Analysis
- 10 Model Comparison
- 11 Discussion and Further Improvements

Introduction

- **Breast cancer:** Affects 2.3 million women annually, over 680,000 deaths each year.
- **Traditional diagnostics:** Subjective, dependent on clinician's experience, variability in diagnosis.
- Bayesian methods: Incorporate prior knowledge, continuously update with new data.
- Advantages: Quantifies uncertainty, improves prediction accuracy, suitable for medical decision-making.
- Project goal: Apply Bayesian logistic regression to predict malignant or benign tumors.

3 / 46

- 1 Introduction
- 2 Data Description
- 3 Exploratory Data Analysis
- 4 Model Descriptions
- 5 Stan Code

- 6 Convergence Diagnostics
- 7 Posterior Predictive Checking
- 8 Predictive Performance
- 9 Sensitivity Analysis
- 10 Model Comparison
- 11 Discussion and Further Improvements

Data Description

- Dataset: Breast Cancer Wisconsin (Diagnostic) dataset
- Instances: 569, Features: 30
- Diagnosis: Malignant (M) as 1, Benign (B) as 0
- Features computed: Mean, Standard Error, Worst (mean of three largest values)

Feature	Description				
Radius	Mean of distances from center to points on the perimeter				
Texture	Standard deviation of gray-scale values				
Perimeter	Perimeter of the cell nuclei				
Area	Area of the cell nuclei				
Smoothness	Local variation in radius lengths				
Compactness	(Perimeter ² / Area - 1.0)				
Concavity	Severity of concave portions of the contour				
Concave Points	Number of concave portions of the contour				
Symmetry	Symmetry of the cell nuclei				
Fractal Dimension	'Coastline approximation' - 1				

Image Samples

Figure: Image Samples of Breast Cancer Cells

- 1 Introduction
- 2 Data Description
- 3 Exploratory Data Analysis
 - Normalization
 - Visualization of some Distributions
 - Variable Selection with Correlation Heatmap
- 4 Model Descriptions

- 5 Stan Code
- 6 Convergence Diagnostics
- 7 Posterior Predictive Checking
- 8 Predictive Performance
- 9 Sensitivity Analysis
- 10 Model Comparison
- 11 Discussion and Further Improvements

Normalization

Normalization ensures all features contribute equally to the model. This step improves performance and stability by rescaling features to a standard range, enhancing prediction accuracy and reliability.

$$X_j' = \frac{X_j - \mu_j}{\sigma_j}$$

Distribution of Diagnosis

The dataset contains 357 (62.74%) benign (0) and 212 (37.26%) malignant (1) cases, showing an imbalance. Evaluation metrics must account for this imbalance to ensure accurate model performance.

Introduction Data Description Exploratory Data Analysis Model Descriptions Stan Code Convergence Diagnostics Posterior Pre

Violin plots of Features by Diagnosis

- Red line: mean, black lines: quartiles
- Distinct patterns for several features, indicating importance in distinguishing classes
- Features not skewed enough for transformation

Correlation Heatmap

- Use correlation heatmap to identify and remove highly correlated features
- Reduces multicollinearity, simplifies model
- Retain most informative features, enhance accuracy and interpretability
- Example: area_mean highly correlated with radius_mean and perimeter_mean (both 0.99), we choose area_mean for more information
- No absolutely correct answer

Correlation Heatmap

Correlation Heatmap

Correlation Heatmap

Pearson Correlation 1.00 0.75 0.50 0.25 0.00

-0.25

- 1 Introduction
- 2 Data Description
- 3 Exploratory Data Analysis
- 4 Model Descriptions
 - Bayesian Logistic Regression
 - Other Machine Learning Methods

- 5 Stan Code
- 6 Convergence Diagnostics
- 7 Posterior Predictive Checking
- 8 Predictive Performance
- 9 Sensitivity Analysis
- 10 Model Comparison
- Discussion and Further Improvements

Bayesian Logistic Regression

Model:

$$\Pr(y = 1 \mid X, \beta) = \frac{1}{1 + \exp(-X\beta)}$$

- $\beta = \{\beta_0, \beta_1, \dots, \beta_p\}$ are coefficients
- Likelihood function:

$$\mathcal{L}(y \mid X, \beta) = \prod_{i=1}^{n} \left(\frac{1}{1 + \exp(-X_{i}\beta)} \right)^{y_{i}} \left(1 - \frac{1}{1 + \exp(-X_{i}\beta)} \right)^{1 - y_{i}}$$

- Incorporate prior knowledge, obtain full posterior distribution
- Posterior distribution:

$$p(\beta \mid X, y) \propto \mathcal{L}(y \mid X, \beta) \cdot p(\beta)$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 めQ@

Prior Assumptions

- β_i $(i=1,\cdots,p)$ are i.i.d.
- $\alpha \sim \mathcal{N}(0, 10^2)$
- Here α is actually β_0
- Our X used in the following code does not have the intercept column

Priors

Gaussian Prior:

$$\begin{split} \beta_j \mid \theta, \sigma^2 &\sim \mathcal{N}(\theta, \sigma^2) \\ \theta \mid \sigma^2 &\sim \mathcal{N}(0, \frac{\sigma^2}{4}) \\ 1/\sigma^2 &\sim \mathsf{Gamma}(4, 4) \end{split}$$

- Laplace Prior:
- $eta_j \mid b \sim \mathsf{Laplace}(0, b)$ $b \sim \mathcal{N}(2, 1)$

■ Cauchy Prior:

 $\beta_j \mid \gamma \sim \mathsf{Cauchy}(0, 2)$ $\gamma \sim \mathcal{N}(2, 1)$ Introduction Data Description Exploratory Data Analysis Model Descriptions Stan Code Convergence Diagnostics Posterior Pre

Other Machine Learning Methods

- Support Vector Machine
- Random Forest
- These methods are only as a supplement and contrast

- 1 Introduction
- 2 Data Description
- 3 Exploratory Data Analysis
- 4 Model Descriptions
- 5 Stan Code

- 6 Convergence Diagnostics
- 7 Posterior Predictive Checking
- 8 Predictive Performance
- 9 Sensitivity Analysis
- 10 Model Comparison
- 11 Discussion and Further Improvements

Introduction Data Description Exploratory Data Analysis Model Descriptions Stan Code Convergence Diagnostics Posterior Pre

Stan Code

- Stan code too long for main report; see R Markdown file
- Set random seed for reproducibility
- Split dataset into training (80%) and test (20%) sets
- Each model: 5000 iterations across 4 chains

- 1 Introduction
- 2 Data Description
- 3 Exploratory Data Analysis
- 4 Model Descriptions
- 5 Stan Code
- 6 Convergence Diagnostics
 Rhat

- Effective Sample Size
- Divergences
- 7 Posterior Predictive Checking
- 8 Predictive Performance
- 9 Sensitivity Analysis
- 10 Model Comparison
- 11 Discussion and Further Improvements

Rhat

- Rhat for all three models are very close to 1
- Chains have converged adequately
- MCMC simulations are reliable for inference.

Effective Sample Size

- Independent samples in the MCMC chain
- A relatively good mixing of the chains and a lower degree of autocorrelation

Introduction Data Description Exploratory Data Analysis Model Descriptions Stan Code Convergence Diagnostics Posterior Pro

Divergences

- Zero divergences for all three priors
- MCMC sampling process was stable and reliable across these priors
- No significant issues in exploring the posterior distributions.

- 7 Posterior Predictive Checking

Posterior Predictive Checking

Introduction Data Description Exploratory Data Analysis Model Descriptions Stan Code Convergence Diagnostics Posterior Pro

Posterior Predictive Checking

Model	Precision	Recall	Accuracy	F1 Score
Gaussian Prior	0.9551008	0.9473359	0.9718615	0.9332871
Laplace Prior	0.9642164	0.9664749	0.9663301	0.9610915
Cauchy Prior	0.9632764	0.9723962	0.9633485	0.9831463

- Compare observed and predicted values (training set) for models with Gaussian, Laplace, and Cauchy priors
- Histograms show binary outcomes (0 and 1) and intermediate values, which are the results of averaging predictions across samples
- Most predict values close to 0 or 1 and sparse values around 0.5 indicate high confidence in predictions
- High metrics indicate excellent model fit to training data

- 1 Introduction
- 2 Data Description
- 3 Exploratory Data Analysis
- 4 Model Descriptions
- 5 Stan Code

- 6 Convergence Diagnostics
- 7 Posterior Predictive Checking
- 8 Predictive Performance
- 9 Sensitivity Analysis
- 10 Model Comparison
- 11 Discussion and Further Improvements

Predictive Performance - Posterior Mean

We use the posterior means as the estimates for α and β and run our models on the test set.

Model	Precision	Recall	Accuracy	F1 Score
Gaussian Prior	0.9646018	0.9571429	0.9852941	0.9710145
Laplace Prior	0.9646018	0.9571429	0.9852941	0.9710145
Cauchy Prior	0.9557522	0.9565217	0.9705882	0.9635036

Predictive Performance - MAP

We use the posterior modes as the estimates for α and β and run our models on the test set.

Model	Precision	Recall	Accuracy	F1 Score
Gaussian Prior	0.9469027	0.9305556	0.9852941	0.9571429
Laplace Prior	0.9557522	0.9436620	0.9852941	0.9640288
Cauchy Prior	0.9646018	0.9571429	0.9852941	0.9710145

Predictive Performance - Posterior Sampling

We use all the posterior samples of α and β to make predictions on the test set and then averaged the results

Model	Precision	Recall	Accuracy	F1 Score
Gaussian Prior	0.9646018	0.9571429	0.9852941	0.9710145
Laplace Prior				
Cauchy Prior	0.9557522	0.9565217	0.9705882	0.9635036

Predictive Performance

- Gaussian and Laplace priors: similar performance, robust choices
- High accuracy, precision, recall, and F1 scores for both priors
- Cauchy prior: competitive results, especially with MAP estimates
- Cauchy provides different regularization, may benefit in certain scenarios
- Consistent results across estimation methods (posterior means, MAP, posterior sampling)

- 1 Introduction
- 2 Data Description
- 3 Exploratory Data Analysis
- 4 Model Descriptions
- 5 Stan Code

- 6 Convergence Diagnostics
- 7 Posterior Predictive Checking
- 8 Predictive Performance
- 9 Sensitivity Analysis
- 10 Model Comparison
- 11 Discussion and Further Improvements

Sensitivity Analysis

Now, we turn our focus to sensitivity analysis, specifically examining how variations in the parameters of the Gaussian prior influence the results. We will use these four Gaussian priors:

$$\begin{split} \text{Prior 1: } & \alpha \sim \mathcal{N}(0, 10^2), \\ & \beta_j \mid \theta, \sigma^2 \sim \mathcal{N}(\theta, \sigma^2), \\ & \theta \mid \sigma^2 \sim \mathcal{N}(0, \frac{\sigma^2}{4}), \\ & 1/\sigma^2 \sim \mathsf{Gamma}(9, 2) \end{split}$$

Prior 2:
$$\alpha \sim \mathcal{N}(0, 10^2)$$
, $\beta_j \mid \theta, \sigma^2 \sim \mathcal{N}(\theta, \sigma^2)$, $\theta \mid \sigma^2 \sim \mathcal{N}(0, \sigma^2)$, $1/\sigma^2 \sim \mathsf{Gamma}(9, 2)$

Sensitivity Analysis

Prior 3:
$$\alpha \sim \mathcal{N}(0, 100^2)$$
,
$$\beta_j \mid \theta, \sigma^2 \sim \mathcal{N}(\theta, \sigma^2)$$
,
$$\theta \mid \sigma^2 \sim \mathcal{N}(0, \frac{\sigma^2}{4})$$
,
$$1/\sigma^2 \sim \mathsf{Gamma}(4, 4)$$

Prior 4:
$$\alpha \sim \mathcal{N}(0, 1^2)$$
, $\beta_j \mid \theta, \sigma^2 \sim \mathcal{N}(\theta, \sigma^2)$, $\theta \mid \sigma^2 \sim \mathcal{N}(0, \frac{\sigma^2}{4})$, $1/\sigma^2 \sim \mathsf{Gamma}(4, 4)$

Different Distributions of σ^2

Introduction Data Description Exploratory Data Analysis Model Descriptions Stan Code Convergence Diagnostics Posterior Pro

Test Performance

Model	Accuracy	Precision	Recall	F1 Score
Gaussian Prior 0	0.9646018	0.9571429	0.9852941	0.9710145
Gaussian Prior 1	0.9557522	0.9436620	0.9852941	0.9640288
Gaussian Prior 2	0.9557522	0.9436620	0.9852941	0.9640288
Gaussian Prior 3	0.9646018	0.9571429	0.9852941	0.9710145
Gaussian Prior 4	0.9646018	0.9571429	0.9852941	0.9710145

- \blacksquare Overlapping distributions suggest priors do not drastically change β estimates
- Slight differences in tails and peaks indicate regularization effects (Prior 1 and Prior 2)
- Changes in prior for α (Prior 3 and Prior 4) had little effects on β
- lacksquare eta plays a dominant role, influencing lpha
- lacksquare lpha more susceptible to prior modifications
- Model is reliable with different priors

- 1 Introduction
- 2 Data Description
- 3 Exploratory Data Analysis
- 4 Model Descriptions
- 5 Stan Code

- 6 Convergence Diagnostics
- 7 Posterior Predictive Checking
- 8 Predictive Performance
- 9 Sensitivity Analysis
- 10 Model Comparison
- 11 Discussion and Further Improvements

Introduction Data Description Exploratory Data Analysis Model Descriptions Stan Code Convergence Diagnostics Posterior Pre

Model Comparison

- Aim: Achieve better model performance (higher accuracy, other metrics)
- Compare models: Logistic regression (three priors and no prior), SVM, random forest
- Evaluation: k-fold cross-validation (k = 10) due to high computational cost of LOO CV

Model	Accuracy	Precision	Recall	F1 Score
Gaussian	0.9683584	0.9689284	0.9801832	0.9743269
Laplace	0.9666040	0.9686110	0.9771035	0.9726442
Cauchy	0.9666040	0.9659043	0.9798062	0.9726817
No Prior LR	0.9613095	0.9649735	0.9714437	0.9680479
SVM	0.9630952	0.9659962	0.9744007	0.9699156
Random Forest	0.9630952	0.9629294	0.9779274	0.9701556

Model Comparison

- LR without prior has the worst performance, indicating effectiveness of priors
- Gaussian and Laplace priors are akin to ridge and lasso regularization
- Gaussian prior superior due to complex structure and normality assumption
- SVM and Random Forest did not surpass logistic regression models
- Possible reasons: lack of parameter fine-tuning, simplest linear kernel for SVM
- Random Forest might perform better with more raw features
- Results are not absolute

- 1 Introduction
- 2 Data Description
- 3 Exploratory Data Analysis
- 4 Model Descriptions
- 5 Stan Code

- 6 Convergence Diagnostics
- 7 Posterior Predictive Checking
- 8 Predictive Performance
- 9 Sensitivity Analysis
- 10 Model Comparison
- 11 Discussion and Further Improvements

Discussion and Further Improvements

Cross Validation Approach:

- Used 10-fold CV instead of LOO CV
- 10-fold CV balances computational efficiency and performance
- Parallel computing can accelerate CV

■ Feature Selection Methods:

- Current method: correlation heatmap, lacks rigor
- Future methods: RFE, decision tree-based methods, PCA for dimensionality reduction

Discussion and Further Improvements

Prior and Parameter Choices:

- Limited exploration of priors, possibly suboptimal
- Need historical data for better priors
- \blacksquare β are not i.i.d. in reality
- Use current dataset as historical data for newer datasets

Dataset Limitations and Advanced Models:

- Dataset is relatively old
- Contains redundant features
- Future improvements: advanced image processing (thus using CNN for better accuracy)

Thanks!