Exhibit 26

Target

288pin Load Reduced DIMM based on 16Gb M-die

78FBGA with Lead-Free & Halogen-Free (RoHS compliant)

datasheet

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2018 Samsung Electronics Co., Ltd. All rights reserved.

Case 2:22-cv-00293-JRG Document 386-8 Filed 01/24/24 Page 3 of 42 TRagge | Re#:0.0

Load Reduced DIMM

DDR4 SDRAM

Revision History

 Revision No.
 History
 Draft Date
 Remark
 Editor

 0.0
 - First SPEC Release
 21st Sep, 2018
 Target
 T.Y.Lee

J.Y.Bae

Table Of Contents

288pin Load Reduced DIMM based on 16Gb M-die	- 4
1. DDR4 Load Reduced DIMM ORDERING INFORMATION	
2. KEY FEATURES	
3. ADDRESS CONFIGURATION	
4. Load Reduced DIMM PIN COFIGURATIONS (FRONT SIDE / BACK SIDE)	
5. PIN DESCRIPTION	
6. ON DIMM THERMAL SENSOR	
7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION	
8. REGISTERING CLOCK DRIVER SPECIFICATION	10
8.1 Timing & Capacitance Values	
9. FUNCTION BLOCK DIAGRAM: 9.1 128GB, 16Gx72 Module (Populated as 4 ranks of x4 DDR4 SDRAMs)	1: 1:
10. ABSOLUTE MAXIMUM RATINGS	12
11. AC & DC OPERATING CONDITIONS	
12. AC & DC INPUT MEASUREMENT LEVELS.	18
12.1 AC & DC Logic Input Levels for Single-Ended Signals	
12.2 AC and DC Input Measurement Levels: VREF Tolerances	
12.3.1. Differential Signals Definition	
12.3.2. Differential Swing Requirements for Clock (CK_t - CK_c)	
12.3.3. Single-ended Requirements for Differential Signals	
12.3.5. Clock Overshoot and Undershoot Specifications	
12.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications	20
12.4 Slew Rate Definitions	
12.4.1. Slew Rate Definitions for Differential Input Signals (CK)	
12.5 Differential Input Cross Point Voltage	23
12.6 CMOS rail to rail Input Levels	
12.6.1. CMOS rail to rail Input Levels for RESET_n	
12.7.1. Differential signal definition	
12.7.2. Differential swing requirements for DQS (DQS t - DQS c)	29
12.7.3. Peak voltage calculation method 12.7.4. Differential Input Cross Point Voltage	20
12.7.5. Differential Input Slew Rate Definition	
13. AC AND DC OUTPUT MEASUREMENT LEVELS	
13.1 Output Driver DC Electrical Characteristics	29
13.1.1. Voltage and Temperature Sensitivity	
13.1.2. Alert_n output Drive Characteristic	
13.2 Single-ended AC & DC Output Levels	
13.3 Differential AC & DC Output Levels	
13.4 Single-ended Output Slew Rate	
13.6 Single-ended AC & DC Output Levels of Connectivity Test Mode	
13.7 Test Load for Connectivity Test Mode Timing	3
14. SPEED BIN	
14.1 Speed Bin Table Note	
15. IDD AND IDDQ SPECIFICATION PARAMETERS AND TEST CONDITIONS 15.1 IDD, IPP and IDDQ Measurement Conditions	
16. IDD SPEC TABLE	60
17. INPUT/OUTPUT CAPACITANCE	63
18. ELECTRICAL CHARACTERISTICS & AC TIMING	63
18.1 Reference Load for AC Timing and Output Slew Rate	
18.2 tREFI	
19.3.1 Definition for tCK/abs)	6

Load Reduced DIMM

DDR4 SDRAM

18.3.3. Definition for tCH(avg) and tCL(avg)	
19. TIMING PARAMETERS BY SPEED GRADE 19.1 Rounding Algorithms 19.2 The DQ input receiver compliance mask for voltage and timing	66
19.3 Command, Control, and Address Setup, Hold, and Derating	
20. PHYSICAL DIMENSIONS	
20.1.1. x72 DIMM, populated as Quad physical ranks of x4 DDR4 SDRAMs	
21. PRODUCT REGULATORY COMPLIANCE	

1. DDR4 Load Reduced DIMM ORDERING INFORMATION

[Table 1] Ordering Information Table

Part Numb	Part Number ²⁾ Density M386AAG40MMB-CVF 128GB		Organization	Component Composition ()	Number of Rank	Height	
M386AAG40M			16Gx72	DDP 8Gx4(K4ABG045WM-MC##)*36	4	31.25mm	

NOTE:

1) "##" - VF

2) VF(2933Mbps 21-21-21).

2. KEY FEATURES

[Table 2] Speed Bins

Provide Co.	DDR4-1600	DDR4-1866	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	21476	
Speed	11-11-11	13-13-13	15-15-15	17-17-17	19-19-19	21-21-21	Unit	
tCK(min)	1.25	1.071	0.937	0.833	0.75	0.682	ns	
CAS Latency	11	13	15	17	19	21	nCK	
tRCD(min)	13.75	13.92	14.06	14.16	14.25	14.32	ns	
tRP(min)	13.75	13.92	14.06	14.16	14.25	14.32	ns	
tRAS(min)	35	34	33	32	32	32	ns	
tRC(min)	48.75	47.92	47.06	46.16	46.25	46.32	ns	

- JEDEC standard 1.2V ± 0.06V Power Supply
- V_{DDQ} = 1.2V ± 0.06V
- 800 MHz f_{CK} for 1600Mb/sec/pin,933 MHz f_{CK} for 1866Mb/sec/pin, 1067MHz f_{CK} for 2133Mb/sec/pin,1200MHz f_{CK} for 2400Mb/sec/pin, 1333MHz f_{CK} for 2666Mb/sec/pin and 1467MHz fCK for 2933Mb/sec/pin.
- 16 Banks (4 Bank Groups)
- Programmable CAS Latency: 10,11,12,13,14,15,16,17,18,19,20,21, 22
- Programmable Additive Latency (Posted CAS): 0, CL 2, or CL 1 clock
- Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12 (DDR4-1866), 11,14 (DDR4-2133), 12,16 (DDR4-2400), 14,18 (DDR4-2666) and 16, 20 (DDR4-2933).
- . Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS]
- · Bi-directional Differential Data Strobe
- On Die Termination using ODT pin
- Average Refresh Period 7.8us at lower then T_{CASE} 85°C, 3.9us at 85°C < T_{CASE} ≤ 95°C
- · Asynchronous Reset

3. ADDRESS CONFIGURATION

Organization	Row Address	Column Address	Bank Group Address	Bank Address	Auto Precharge
8Gx4(32Gb DDP) based Module	A0-A16	A0-A9	BG0-BG1	BA0-BA1	A10/AP

⁻ Backward compatible to lower frequency.

4. Load Reduced DIMM PIN COFIGURATIONS (FRONT SIDE / BACK SIDE)

Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back
1	12V ³ ,NC	145	12V ³ ,NC	40	TBQ\$12_L	184	VSS	78	EVENT_n	222	PARITY	117	DQ52	261	VSS
2	VSS	146	VREFCA	41	TDQS12_c, DQS12_c	185	DQS3_c	79	A0	223	VDD	118	VSS	262	DQ53
3	DQ4	147	VSS	42	VSS	186	DQS3_L	80	VDD	224	BA1	119	DQ48	263	VSS
4	VSS	148	DQ5	43	DQ30	187	VSS	81	BAO	225	A10/AP	120	VSS	264	DQ49
5	DQ0	149	VSS	44	VSS	188	DQ31	82	RAS_r/A16	226	VDD	121	TDQS15_t, DQS15_t	265	Vss
6	VSS	150	DQ1	45	DQ26	189	VSS	83	VDD	227	RFU	122	TDQS15_c, DQS15_c	266	DQS6_c
7	TDQS9_t, DQS9_t	151	VSS	46	VSS	190	DQ27	84	S0_n	228	WE_n/A14	123	VSS	267	DQS6_1
8	TDQS9_c, DQS9_c	152	DQS0_c	47	CB4	191	VSS	85	VDD	229	VDD	124	DQ54	268	VSS
9	Vss	153	DQS0_t	48	VSS	192	CB5	86	CAS_r/A15	230	NC	125	Vss	269	DQ55
10	DQ6	154	Vss	49	СВО	193	VSS	87	ОТО	231	VDD	126	DQ50	270	VSS
11	VSS	155	DQ7	50	VSS	194	CB1	88	VDD	232	A13	127	VSS	271	DQ51
12	DQ2	156	VSS	51	TDQS17_t, DQS17_1	195	VSS	89	S1_n	233	VDD	128	DQ60	272	VSS
13	VSS	157	DQ3	52	TDQS17_c, DQS17_c	196	DQS8_c	90	VDD	234	A17	129	VSS	273	DQ61
14	DQ12	158	VSS	53	VSS	197	DQS8_t	91	ODT1	235	NC,C2	130	DQ56	274	VSS
15	VSS	159	DQ13	54	CB6	198	VSS	92	VDD	236	VDD	131	VSS	275	DQ57
16	DQ8	160	VSS	55	VSS	199	CB7	93	C0,CS2_n,NC	237	NC,CS3_c,C1	132	TDQS16_t, DQS16_1	276	VSS
17	VSS	161	DQ9	56	CB2	200	VSS	94	VSS	238	SA2	133	TDQS16_c, DQS16_c	277	DQS7_c
18	TDQS10_t. DQS10_t	162	VSS	57	VSS	201	CB3	95	DQ36	239	VSS	134	VSS	278	DQS7_
19	TDQS10_c, DQS10_c	163	DQS1_c	58	RESET_n	202	VSS	96	VSS	240	DQ37	135	DQ62	279	VSS
20	VSS	164	DQS1_t	59	VDD	203	CKE1	97	DQ32	241	VSS	136	VSS	280	DQ63
21	DQ14	165	VSS	60	CKE0	204	VDD	98	VSS	242	DQ33	137	DQ58	281	VSS
22	vss	166	DQ15	61	VDD	205	RFU	99	TDQS13_t, DQS13_t	243	Vss	138	VSS	282	DQ59
23	DQ10	167	VSS	62	ACT_n	206	VDD	100	TDQS13_c, DQS13_c	244	DQS4_c	139	SAO	283	VSS
24	Vss	168	DQ11	63	BG0	207	BG1	101	Vss	245	DQS4_1	140	SAT	284	VDDSPI
25	DQ20	169	VSS	64	VDD	208	ALERT_n	102	DQ38	246	VSS	141	SCL	285	SDA
26	Vss	170	DQ21	65	A12/BC_n	209	VDD	103	Vss	247	DQ39	142	VPP	286	VPP
27	DQ16	171	VSS	66	A9	210	A11	104	DQ34	248	VSS	143	VPP	287	VPP
28	VSS	172	DQ17	67	VDD	211	A7	105	VSS	249	DQ35	144	RFU	288	VPP ⁴
29	TOOSHILL	173	VSS	68	A8	212	VDD	106	DQ44	250	VSS			-	
30	TDQS11_c, DQS11_c	174	DQS2_c	69	A6	213	A5	107	VSS	251	DQ45				
31	VSS	175	DQS2_t	70	VDD	214	A4	108	DQ40	252	VSS	1			
32	DQ22	176	VSS	71	А3	215	VDD	109	VSS	253	DQ41	1			
33	Vss	177	DQ23	72	A1	216	A2	110	TDQS14_t, DQS14_t	254	VSS				
34	DQ18	178	VSS	73	VDD	217	VDD	111	TDQS14_G DQS14_G	255	DQS5_c	1			
35	VSS	179	DQ19	74	CK0_t	218	CK1_t	112	VSS	256	DQS5_t				
36	DQ28	180	VSS	75	CK0_c	219	CK1_c	113	DQ46	257	VSS	1			
37	VSS	181	DQ29	76	VDD	220	VDD	114	VSS	258	DQ47				
38	DQ24	182	VSS	77	VTT	221	VTT	115	DQ42	259	VSS				
39	VSS	183	DQ25		K	ΕY		116	Vss	260	DQ43	1			

NOTE:

1) VPP is 2.5V DC

²⁾ Pin 230 is defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pin 230 is defined as SAVE_n for NVDIMMs.

³⁾ Pins 1 and 145 are defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pins 1 and 145 are defined as 12V for Hybrid /NVDIMM

⁴⁾ The 5th VPP is required on all modules. DIMMs.

Target

288pin Load Reduced DIMM based on 16Gb M-die

78FBGA with Lead-Free & Halogen-Free (RoHS compliant)

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other-

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2018 Samsung Electronics Co., Ltd. All rights reserved

Case 2:22-cv-00293-JRG Document 386-8 Filed 01/24/24 Page 10 of 42-page kev#0.0

Load Reduced DIMM DDR4 SDRAM

Revision History

 Revision No.
 History
 Draft Date
 Remark
 Editor

 0.0
 - First SPEC Release
 7th Jul, 2018
 Target
 T.Y.Lee

J.Y.Bae

Table Of Contents

288pin Load Reduced DIMM based on 16Gb M-die	
1. DDR4 Load Reduced DIMM ORDERING INFORMATION	5
2. KEY FEATURES	5
3. ADDRESS CONFIGURATION	5
4. Load Reduced DIMM PIN COFIGURATIONS (FRONT SIDE / BACK SIDE)	6
5. PIN DESCRIPTION	7
6 ON DIMM THERMAL SENSOR	88
7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION	9
8, REGISTERING CLOCK DRIVER SPECIFICATION	
8.1 Timing & Capacitance Values	
9. FUNCTION BLOCK DIAGRAM: 9.1 256GB, 32Gx72 Module (Populated as 8 ranks of x4 DDR4 SDRAMs)	12
10. ABSOLUTE MAXIMUM RATINGS	
11. AC & DC OPERATING CONDITIONS	
12. AC & DC INPUT MEASUREMENT LEVELS.	
12.1 AC & DC Logic Input Levels for Single-Ended Signals	
12.2 AC and DC Input Measurement Levels: VREF Tolerances.	
12.3 AC and DC Logic Input Levels for Differential Signals	
12.3.2. Differential Swing Requirements for Clock (CK_t - CK_c)	
12.3.3. Single-ended Requirements for Differential Signals	
12.3.4. Address, Command and Control Overshoot and Undershoot specifications	
12.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications	
12.4 Slew Rate Definitions	2
12.4.1. Slew Rate Definitions for Differential Input Signals (CK)	2
12.5 Differential Input Cross Point Voltage	2
12.6 CMOS rail to rail Input Levels	
12.6.1. CMOS rail to rail Input Levels for RESET_n 12.7 AC and DC Logic Input Levels for DQS Signals	
12.7.1. Differential signal definition	20
12.7.2. Differential swing requirements for DQS (DQS_t - DQS_c)	
12.7.3. Peak voltage calculation method 12.7.4. Differential Input Cross Point Voltage	
12.7.5. Differential Input Slew Rate Definition	
13. AC AND DC OUTPUT MEASUREMENT LEVELS	
13.1 Output Driver DC Electrical Characteristics	
13.1.1. Alert_n output Drive Characteristic	3
13.2 Single-ended AC & DC Output Levels	34
13.3 Differential AC & DC Output Levels	
13.4 Single-ended Output Slew Rate	
13.6 Single-ended AC & DC Output Levels of Connectivity Test Mode	3
13.7 Test Load for Connectivity Test Mode Timing	
14. IDD AND IDDQ SPECIFICATION PARAMETERS AND TEST CONDITIONS	
15. DIMM IDD SPECIFICATION DEFINITION	4
16, IDD SPEC TABLE	53
17. INPUT/OUTPUT CAPACITANCE	56
18. ELECTRICAL CHARACTERISTICS & AC TIMINGS FOR DDR4-1600-3DS TO DDR4-2933-3DS	
18.1 Refresh parameters	
18.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding bin	
19. ELECTRICAL CHARACTERISTICS & AC TIMING	
19.1 Reference Load for AC Timing and Output Slew Rate	64
19.2 (REF)	
19.3 Clock Specification	

Load Reduced DIMM

DDR4 SDRAM

19.3.2. Definition for tCK(avg)	
19.3.3. Definition for tCH(avg) and tCL(avg)	
19.3.4. Definition for tERR(nper)	
20. TIMING PARAMETERS BY SPEED GRADE	66
20.1 Rounding Algorithms	72
20.2 The DQ input receiver compliance mask for voltage and timing	73
20.3 Command, Control, and Address Setup, Hold, and Derating	77
20.4 DDR4 Function Matrix	
21. PHYSICAL DIMENSIONS	
21.1 16Gbx4(3DS 4H) based 32Gx72 Module (8 Ranks) - M386ABG40M50	81
21.1.1 y72 DIMM, populated as Quad physical ranks of y4 DDR4 SDRAMs	81

1. DDR4 Load Reduced DIMM ORDERING INFORMATION

Document 386-8

[Table 1] Ordering Information Table

Part Number 2)	Density	Organization	Component Composition 1)	Number of Rank	Height
M386ABG40M50-CYF	256GB	32Gx72	3DS 4H 16Gx4 (K4ACG045WM-5C##)*36	8 (2 physical ranks / 4 logical ranks)	31.25mm

NOTE :

1) "##" - RB/TC/WD/YF

2) YF(2933Mbps 24-21-21)

2. KEY FEATURES

[Table 2] Speed Bins

Bussel	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	1 (4/2)	
Speed	17-15-15	19-17-17	22-19-19	24-21-21	Unit	
tCK(min)	0.937	0.833	0.75	0.682	ns	
CAS Latency	17	19	22	24	nCK	
tRCD(min)	14.06	14.16	14.25	14.32	ns	
tRP(min)	14.06	14.16	14.25	14.32	ns	
tRAS(min)	33	32	32	32	ns	
tRC(min)	47.06	46.16	46.25	46.32	ns	

- JEDEC standard 1.2V ± 0.06V Power Supply
- V_{DDQ} = 1.2V ± 0.06V
- 800 MHz f_{CK} for 1600Mb/sec/pin,933 MHz f_{CK} for 1866Mb/sec/pin, 1067MHz f_{CK} for 2133Mb/sec/pin,1200MHz f_{CK} for 2400Mb/sec/pin, 1333MHz f_{CK} for 2666Mb/sec/pin and 1467MHz fCK for 2933Mb/sec/pin.
- · 16 Banks (4 Bank Groups)
- Programmable CAS Latency: 11,12,13,14,15,16,17,18,19,20,21, 22,23,24,25
- Programmable Additive Latency (Posted CAS): 0, CL 2, or CL 1 clock
- Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12 (DDR4-1866), 11,14 (DDR4-2133), 12,16 (DDR4-2400), 14,18 (DDR4-2666) and 16, 20 (DDR4-2933).
- Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS]
- Bi-directional Differential Data Strobe
- On Die Termination using ODT pin
- Average Refresh Period 7.8us at lower then T_{CASE} 85°C, 3.9us at 85°C < T_{CASE} ≤ 95°C
- · Asynchronous Reset

3. ADDRESS CONFIGURATION

Organization	Row Address	Column Address	Bank Group Address	Bank Address	Auto Precharge
16Gx4(64Gb 3DS 4H) based Module	A0-A17	A0-A9	BG0-BG1	BA0-BA1	A10/AP

⁻ Backward compatible to lower frequency,

4. Load Reduced DIMM PIN COFIGURATIONS (FRONT SIDE / BACK SIDE)

Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back
1	12V ³ ,NC	145	12V ³ ,NC	40	TBQ\$12_1	184	VSS	78	EVENT_n	222	PARITY	117	DQ52	261	VSS
2	VSS	146	VREFCA	41	TDQS12_c, DQS12_c	185	DQS3_c	79	A0	223	VDD	118	VSS	262	DQ53
3	DQ4	147	VSS	42	VSS	186	DQS3_I	80	VDD	224	BA1	119	DQ48	263	Vss
4	VSS	148	DQ5	43	DQ30	187	VSS	81	BA0	225	A10/AP	120	VSS	264	DQ49
5	DQ0	149	VSS	44	VSS	188	DQ31	82	RAS_r/A16	226	VDD	121	TDQS15_t, DQS15_t	265	Vss
6	VSS	150	DQ1	45	DQ26	189	VSS	83	VDD	227	RFU	122	TDQS15_c, DQS15_c	266	DQS6_c
7	TDQS9_t,	151	VSS	46	VSS	190	DQ27	84	S0_n	228	WE_n/A14	123	VSS	267	DQS6_1
8	TDQS9_c, DQS9_c	152	DQS0_c	47	CB4	191	VSS	85	VDD	229	VDD	124	DQ54	268	VSS
9	Vss	153	DQS0_t	48	VSS	192	CB5	86	CAS_r/A15	230	NC	125	Vss	269	DQ55
10	DQ6	154	VSS	49	СВО	193	VSS	87	ODT0	231	VDD	126	DQ50	270	VSS
11	VSS	155	DQ7	50	VSS	194	CB1	88	VDD	232	A13	127	VSS	271	DQ51
12	DQ2	156	VSS	51	TDQS17_t. DQS17_1	195	VSS	89	S1_n	233	VDD	128	DQ60	272	VSS
13	VSS	157	DQ3	52	TDQS17_c, DQS17_c	196	DQS8_c	90	VDD	234	A17	129	VSS	273	DQ61
14	DQ12	158	VSS	53	VSS	197	DQS8_t	91	ODT1	235	NC,C2	130	DQ56	274	VSS
15	VSS	159	DQ13	54	CB6	198	VSS	92	VDD	236	VDD	131	VSS	275	DQ57
16	DQ8	160	vss	55	VSS	199	CB7	93	C0,CS2_n,NC	237	NC,CS3_c,C1	132	TDQS16_t, DQS16_t	276	VSS
17	VSS	161	DQ9	56	CB2	200	VSS	94	VSS	238	SA2	133	TDQS16_c, DQS16_c	277	DQS7_c
18	TDQS10_t. DQS10_t	162	vss	57	VSS	201	CB3	95	DQ36	239	VSS	134	VSS	278	DQS7_t
19	TDQS10_c. DQS10_c	163	DQS1_c	58	RESET_n	202	VSS	96	VSS	240	DQ37	135	DQ62	279	VSS
20	VSS	164	DQS1_t	59	VDD	203	CKE1	97	DQ32	241	VSS	136	VSS	280	DQ63
21	DQ14	165	VSS	60	CKE0	204	VDD	98	VSS	242	DQ33	137	DQ58	281	VSS
22	VSS	166	DQ15	61	VDD	205	RFU	99	TDQS13_t, DQS13_1	243	VSS	138	VSS	282	DQ59
23	DQ10	167	VSS	62	ACT_n	206	VDD	100	TDQS13_c, DQS13_c	244	DQS4_c	139	SAO	283	VSS
24	Vss	168	DQ11	63	BG0	207	BG1	101	VSS	245	DQS4_1	140	SA1	284	VDDSPD
25	DQ20	169	VSS	64	VDD	208	ALERT_n	102	DQ38	246	VSS	141	SCL	285	SDA
26	VSS	170	DQ21	65	A12/BC_n	209	VDD	103	VSS	247	DQ39	142	VPP	286	VPP
27	DQ16	171	VSS	66	A9	210	A11	104	DQ34	248	VSS	143	VPP	287	VPP
28	VSS	172	DQ17	67	VDD	211	A7	105	VSS	249	DQ35	144	RFU	288	VPP ⁴
29	TROSH-L	173	VSS	68	8A	212	VDD	106	DQ44	250	VSS			1.00	
30	TDQS11_c, DQS11_c	174	DQS2_c	69	A6	213	A5	107	VSS	251	DQ45				
31	VSS	175	DQS2_1	70	VDD	214	A4	108	DQ40	252	VSS				
32	DQ22	176	VSS	71	A3	215	VDD	109	VSS	253	DQ41				
33	VSS	177	DQ23	72	A1	216	A2	110	TDQS14_t, DQS14_1	254	VSS				
34	DQ18	178	VSS	73	VDD	217	VDD	111	TDQS14_g, DQS14_g	255	DQS5_c				
35	VSS	179	DQ19	74	CK0_t	218	CK1_t	112	VSS	256	DQS5_t				
36	DQ28	180	VSS	75	CK0_c	219	CK1_c	113	DQ46	257	VSS				
37	VSS	181	DQ29	76	VDD	220	VDD	114	VSS	258	DQ47				
38	DQ24	182	VSS	77	VTT	221	VTT	115	DQ42	259	VSS				
39	VSS	183	DQ25		KF	Y		116	Vss	260	DQ43				

NOTE:

¹⁾ VPP is 2.5V DC

²⁾ Pin 230 is defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pin 230 is defined as SAVE_n for NVDIMMs.

³⁾ Pins 1 and 145 are defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pins 1 and 145 are defined as 12V for Hybrid /NVDIMM

⁴⁾ The 5th VPP is required on all modules. DIMMs.

Target

288pin Load Reduced DIMM based on 16Gb M-die

78FBGA with Lead-Free & Halogen-Free (RoHS compliant)

datasheet

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2018 Samsung Electronics Co., Ltd. All rights reserved

Case 2:22-cv-00293-JRG Document 386-8 Filed 01/24/24 Page 17 of 42 Rage 12.174

Load Reduced DIMM DDR4 SDRAM

Revision History

 Revision No.
 History
 Draft Date
 Remark
 Editor

 0.0
 - First SPEC Release
 21st Sep, 2018
 Target
 T.Y.Lee

J.Y.Bae

Table Of Contents 288pin Load Reduced

28	BBPIN LOAG REGUCEG DIMM DASEG ON 16GD M-GIE
1.	DDR4 Load Reduced DIMM ORDERING INFORMATION
2.	KEY FEATURES

1. DDR4 Load Reduced DIMM ORDERING INFORMATION	5
2. KEY FEATURES	5
3. ADDRESS CONFIGURATION	5
4. Load Reduced DIMM PIN COFIGURATIONS (FRONT SIDE / BACK SIDE)	6
5. PIN DESCRIPTION	7
6, ON DIMM THERMAL SENSOR	8
7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION	9
8. REGISTERING CLOCK DRIVER SPECIFICATION	1
8.1 Timing & Capacitance Values	
8.2 Clock Driver Characteristics	
FUNCTION BLOCK DIAGRAM: 9.1 256GB, 32Gx72 Module (Populated as 8 ranks of x4 DDR4 SDRAMs).	1
10. ABSOLUTE MAXIMUM RATINGS	
11. AC & DC OPERATING CONDITIONS	
12. AC & DC INPUT MEASUREMENT LEVELS	
12.1 AC & DC Logic Input Levels for Single-Ended Signals	
12.2 AC and DC Input Measurement Levels: VREF Tolerances.	
12.3 AC and DC Logic Input Levels for Differential Signals 12.3.1. Differential Signals Definition	
12.3.2. Differential Swing Requirements for Clock (CK_t - CK_c)	
12.3.3. Single-ended Requirements for Differential Signals	
12.3.4. Address, Command and Control Overshoot and Undershoot specifications	
12.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications	2
12.4 Slew Rate Definitions	
12.4.2. Slew Rate Definition for Single-ended Input Signals (CMD/ADD)	2:
12.5 Differential Input Cross Point Voltage	24
12.6 CMOS rail to rail Input Levels	
12.6.1. CMOS rail to rail Input Levels for RESET_n	20
12,7,1, Differential signal definition	20
12.7.2. Differential swing requirements for DQS (DQS_t - DQS_c)	20
12.7.4. Differential Input Cross Point Voltage	
12.7.5. Differential Input Slew Rate Definition	29
13. AC AND DC OUTPUT MEASUREMENT LEVELS	
13.1 Output Driver DC Electrical Characteristics 13.1.1. Output Driver Temperature and Voltage Sensitivity	3(
13.1.2. Alert_n output Drive Characteristic	
13.1.3. Output Driver Characteristic of Connectivity Test (CT) Mode	3
13.2 Single-ended AC & DC Output Levels	
13.4 Single-ended Output Slew Rate	
13.5 Differential Output Slew Rate	
13.6 Single-ended AC & DC Output Levels of Connectivity Test Mode	
14. IDD AND IDDQ SPECIFICATION PARAMETERS AND TEST CONDITIONS	
14.1 IDD, IPP and IDDQ Measurement Conditions	
15. DIMM IDD SPECIFICATION DEFINITION	4
16. IDD SPEC TABLE	53
17. INPUT/OUTPUT CAPACITANCE	55
18. ELECTRICAL CHARACTERISTICS & AC TIMINGS FOR DDR4-1600-3DS TO DDR4-2933-3DS	56
18.1 Refresh parameters	
18.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding bin	
19. ELECTRICAL CHARACTERISTICS & AC TIMING	
19.1 Reference Load for AC Timing and Output Slew Rate	64
19.2 tREFI	
19.3 Clock Specification	

DDR4 SDRAM

Load Reduced DIMM

19.3.1. Definition for tCK(abs)	65
19.3.2. Definition for tCK(avg)	65
19.3.3. Definition for tCH(avg) and tCL(avg)	65
19.3.4. Definition for tERR(nper)	
20. TIMING PARAMETERS BY SPEED GRADE	66
20.1 Rounding Algorithms	72
20.2 The DQ input receiver compliance mask for voltage and timing	73
20.3 Command, Control, and Address Setup, Hold, and Derating	77
20.4 DDR4 Function Matrix	
21. PHYSICAL DIMENSIONS	81
21.1 16Gbx4(3DS 4H) based 32Gx72 Module (8 Ranks) - M386ABG40M5B	
21.1.1. x72 DIMM, populated as Quad physical ranks of x4 DDR4 SDRAMs	81
22. PRODUCT REGULATORY COMPLIANCE	82
22.1 Product Regulatory Compliance And Certifications	82

DDR4 SDRAM

1. DDR4 Load Reduced DIMM ORDERING INFORMATION

Document 386-8

[Table 1] Ordering Information Table

Part Number 2)	Density	Organization	Component Composition 1)	Number of Rank	Height
M386ABG40M5B-CYF	256GB	32Gx72	3DS 4H 16Gx4 (K4ACG045WM-5C##)*36	8 (2 physical ranks / 4 logical ranks)	31.25mm

NOTE:

- 1) "##" RB/TC/WD/YF
- 2) YF(2933Mbps 24-21-21)
- Backward compatible to lower frequency,

2. KEY FEATURES

[Table 2] Speed Bins

Bussel	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	1 (642)
Speed	17-15-15	19-17-17	22-19-19	24-21-21	Unit
tCK(min)	0.937	0.833	0.75	0.682	ns
CAS Latency	17	19	22	24	пСК
tRCD(min)	14.06	14.16	14.25	14.32	ns
tRP(min)	14.06	14.16	14.25	14.32	ns
tRAS(min)	33	32	32	32	ns
tRC(min)	47.06	46.16	46.25	46.32	ns

- JEDEC standard 1.2V ± 0.06V Power Supply
- V_{DDQ} = 1.2V ± 0.06V
- 800 MHz f_{CK} for 1600Mb/sec/pin,933 MHz f_{CK} for 1866Mb/sec/pin, 1067MHz f_{CK} for 2133Mb/sec/pin,1200MHz f_{CK} for 2400Mb/sec/pin, 1333MHz f_{CK} for 2666Mb/sec/pin and 1467MHz fCK for 2933Mb/sec/pin.
- · 16 Banks (4 Bank Groups)
- Programmable CAS Latency: 11,12,13,14,15,16,17,18,19,20,21, 22,23,24,25
- Programmable Additive Latency (Posted CAS): 0, CL 2, or CL 1 clock
- Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12 (DDR4-1866), 11,14 (DDR4-2133), 12,16 (DDR4-2400), 14,18 (DDR4-2666) and 16, 20 (DDR4-2933).
- Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS]
- · Bi-directional Differential Data Strobe
- · On Die Termination using ODT pin
- Average Refresh Period 7.8us at lower then T_{CASE} 85°C, 3.9us at 85°C < T_{CASE} ≤ 95°C
- Asynchronous Reset

3. ADDRESS CONFIGURATION

Organization	Row Address	Column Address	Bank Group Address	Bank Address	Auto Precharge
16Gx4(64Gb 3DS 4H) based Module	A0-A17	A0-A9	BG0-BG1	BA0-BA1	A10/AP

4. Load Reduced DIMM PIN COFIGURATIONS (FRONT SIDE / BACK SIDE)

Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back
1	12V ³ ,NC	145	12V ³ ,NC	40	TBQS12_L	184	VSS	78	EVENT_n	222	PARITY	117	DQ52	261	VSS
2	VSS	146	VREFCA	41	TDQS12_c, DQS12_c	185	DQS3_c	79	A0	223	VDD	118	VSS	262	DQ53
3	DQ4	147	VSS	42	VSS	186	DQS3_L	80	VDD	224	BA1	119	DQ48	263	VSS
4	VSS	148	DQ5	43	DQ30	187	VSS	81	BAO	225	A10/AP	120	VSS	264	DQ49
5	DQ0	149	VSS	44	VSS	188	DQ31	82	RAS_r/A16	226	VDD	121	TDQS15_t, DQS15_t	265	Vss
6	VSS	150	DQ1	45	DQ26	189	VSS	83	VDD	227	RFU	122	TDQS15_c, DQS15_c	266	DQS6_c
7	TDQS9_t,	151	VSS	46	VSS	190	DQ27	84	S0_n	228	WE_n/A14	123	VSS	267	DQS6_1
8	TDQS9_c, DQS9_c	152	DQS0_c	47	CB4	191	VSS	85	VDD	229	VDD	124	DQ54	268	VSS
9	Vss	153	DQS0_t	48	VSS	192	CB5	86	CAS_r/A15	230	NC	125	Vss	269	DQ55
10	DQ6	154	VSS	49	CB0	193	VSS	87	ODT0	231	VDD	126	DQ50	270	VSS
11	VSS	155	DQ7	50	VSS	194	CB1	88	VDD	232	A13	127	VSS	271	DQ51
12	DQ2	156	VSS	51	TDQS17_t. DQS17_1	195	VSS	89	S1_n	233	VDD	128	DQ60	272	VSS
13	VSS	157	DQ3	52	TDQS17_c, DQS17_c	196	DQS8_c	90	VDD	234	A17	129	VSS	273	DQ61
14	DQ12	158	VSS	53	VSS	197	DQS8_t	91	ODT1	235	NC,C2	130	DQ56	274	VSS
15	VSS	159	DQ13	54	CB6	198	VSS	92	VDD	236	VDD	131	VSS	275	DQ57
16	DQ8	160	VSS	55	VSS	199	CB7	93	C0,CS2_n,NC	237	NC,CS3_c,C1	132	TDQS16_t, DQS16_t	276	VSS
17	VSS	161	DQ9	56	CB2	200	VSS	94	VSS	238	SA2	133	TDQS16_c, DQS16_c	277	DQS7_c
18	TDQS10_t, DQS10_t	162	VSS	57	VSS	201	CB3	95	DQ36	239	VSS	134	VSS	278	DQS7_t
19	TDQS10_c. DQS10_c	163	DQS1_c	58	RESET_n	202	VSS	96	VSS	240	DQ37	135	DQ62	279	VSS
20	VSS	164	DQS1_t	59	VDD	203	CKE1	97	DQ32	241	VSS	136	VSS	280	DQ63
21	DQ14	165	VSS	60	CKE0	204	VDD	98	VSS	242	DQ33	137	DQ58	281	VSS
22	VSS	166	DQ15	61	VDD	205	RFU	99	TDQS13_t,	243	VSS	138	VSS	282	DQ59
23	DQ10	167	VSS	62	ACT_n	206	VDD	100	DQS13_1 TDQS13_c,	244	DQS4 c	139	SAO	283	VSS
24	VSS	168	DQ11	63	BG0	207	BG1	101	DQS13_c	245	DQS4 1	140	SA1	284	VDDSPD
25	DQ20	169	VSS	64	VDD	208	ALERT n	102	DQ38	246	VSS	141	SCL	285	SDA
26	VSS	170	DQ21	65	A12/BC_n	209	VDD	103	Vss	247	DQ39	142	VPP	286	VPP
27	DQ16	171	VSS	66	A9	210	A11	104	DQ34	248	VSS	143	VPP	287	VPP
28	VSS	172	DQ17	67	VDD	211	A7	105	VSS	249	DQ35	144	RFU	288	VPP ⁴
29	TBQ\$11_4	173	VSS	68	A8	212	VDD	106	DQ44	250	VSS	1722		1.00	- KH1.
30	TDQS11 c,	174	DQS2 c	69	A6:	213	A5	107	VSS	251	DQ45				
31	VSS VSS	175	DQS2_1	70	VDD	214	A4	108	DQ40	252	VSS				
32	DQ22	176	VSS	71	A3	215	VDD	109	VSS	253	DQ41				
33	VSS	177	DQ23	72	A1	216	A2	110	TDQS14_t, DQS14_1	254	VSS				
34	DQ18	178	VSS	73	VDD	217	VDD	111	TDQS14_0, DQS14_6	255	DQS5 c				
35	VSS	179	DQ19	74	CKO t	218	CK1 t	112	VSS VSS	256	DQS5 t				
36	DQ28	180	VSS	75	CK0_c	219	CK1_o	113	DQ46	257	VSS				
37	VSS	181	DQ29	1 × 65	VDD	220	VDD	113	VSS	258	DQ47				
-	4-4	2.304	3359	76	-			-	7.2.	A 1					
38	DQ24	182	VSS	77	VTT	221	VTT	115	DQ42	259	VSS				

NOTE:

VSS

KEY

DQ43

¹⁾ VPP is 2.5V DC

²⁾ Pin 230 is defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pin 230 is defined as SAVE_n for NVDIMMs.

³⁾ Pins 1 and 145 are defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pins 1 and 145 are defined as 12V for Hybrid /NVDIMM

⁴⁾ The 5th VPP is required on all modules. DIMMs.

32176 Case 2.22-cv-00293-JRG Document 386-8 Filed 01/24/24 Page 22 01 42 Page D #.

Target

288pin Load Reduced DIMM based on 16Gb M-die

78FBGA with Lead-Free & Halogen-Free (RoHS compliant)

datasheet

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2018 Samsung Electronics Co., Ltd. All rights reserved

Case 2:22-cv-00293-JRG Document 386-8 Filed 01/24/24 Page 24 of 42 Rage Rev#0.0

Load Reduced DIMM DDR4 SDRAM

Revision History

 Revision No.
 History
 Draft Date
 Remark
 Editor

 .0.0
 - First SPEC Release
 5th Jun, 2018
 Target
 T.Y.Lee

J.Y.Bae

Table Of Contents

200-1-	1	Reduced	DINALA	4	120	ACCL	
JAKOIO	1 020	REGUICEG	DIMM	nasen	on	Incor	M-die
LUUDIII		Neudeced	D1141141	Duscu	~	1000	IVI GIC

1. DDR4 Load Reduced DIMM ORDERING INFORMATION	4
2, KEY FEATURES	4
3. ADDRESS CONFIGURATION	4
4. Load Reduced DIMM PIN COFIGURATIONS (FRONT SIDE / BACK SIDE)	5
5. PIN DESCRIPTION	
6. ON DIMM THERMAL SENSOR	
7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION	
8. REGISTERING CLOCK DRIVER SPECIFICATION	
8.1 Timing & Capacitance Values	10
8.2 Clock Driver Characteristics	
9. FUNCTION BLOCK DIAGRAM: 9.1 128GB, 16Gx72 Module (Populated as 4 ranks of x4 DDR4 SDRAMs)	11
10. ABSOLUTE MAXIMUM RATINGS	14
11. AC & DC OPERATING CONDITIONS	
12. AC & DC INPUT MEASUREMENT LEVELS	
12.1 AC & DC Logic Input Levels for Single-Ended Signals	15
12.2 AC and DC Input Measurement Levels: VREF Tolerances. 12.3 AC and DC Logic Input Levels for Differential Signals	15
12.3.1. Differential Signals Definition	16
12.3.2. Differential Swing Requirements for Clock (CK_t - CK_c)	16
12.3.3. Single-ended Requirements for Differential Signals	
12.3.5. Clock Overshoot and Undershoot Specifications	19
12.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications	20
12.4.1. Slew Rate Definitions for Differential Input Signals (CK)	21
12.4.2. Slew Rate Definition for Single-ended Input Signals (CMD/ADD)	
12.6 CMOS rail to rail Input Levels	24
12.6.1. CMOS rail to rail Input Levels for RESET n	24
12.7 AC and DC Logic Input Levels for DQS Signals	25
12.7.2. Differential swing requirements for DQS (DQS_t - DQS_c)	25
12.7.3. Peak voltage calculation method 12.7.4. Differential Input Cross Point Voltage	26
12.7.5. Differential Input Closs Form Vollage	28
13. AC AND DC OUTPUT MEASUREMENT LEVELS	29
13.1 Output Driver DC Electrical Characteristics	
13.1.1. Alert_n output Drive Characteristic	32
13.2 Single-ended AC & DC Output Levels	33
13.3 Differential AC & DC Output Levels	34
13.5 Differential Output Slew Rate	35
13.6 Single-ended AC & DC Output Levels of Connectivity Test Mode	36
14. SPEED BIN	
14.1 Speed Bin Table Note	
15. IDD AND IDDQ SPECIFICATION PARAMETERS AND TEST CONDITIONS	45
15.1 IDD, IPP and IDDQ Measurement Conditions	
16. IDD SPEC TABLE	
17. INPUT/OUTPUT CAPACITANCE	
18. ELECTRICAL CHARACTERISTICS & AC TIMING 18.1 Reference Load for AC Timing and Output Slew Rate	63
18.2 tREFI	
18.3 Clock Specification	64
18.3.1. Definition for tCK(abs)	
18.3.3. Definition for tCH(avg) and tCL(avg)	
18.3.4. Definition for tERR(nper)	
19. TIMING PARAMETERS BY SPEED GRADE	
19.1 Rounding Algorithms 19.2 The DQ input receiver compliance mask for voltage and timing	72
19.3 Command, Control, and Address Setup, Hold, and Derating	76
19.4 DDR4 Function Matrix	
20. PHYSICAL DIMENSIONS	
20.1.1 x72 DIMM, populated as Quad physical ranks of x4 DDR4 SDRAMs.	

1. DDR4 Load Reduced DIMM ORDERING INFORMATION

[Table 1] Ordering Information Table

Part Number ²⁾	Density	Organization	Component Composition ()	Number of Rank	Height
M386AAG40MM2-CVF	128GB	16Gx72	DDP 8Gx4(K4ABG045WM-MC##)*36	4	31.25mm

NOTE: 1) "##" - VF

2) VF(2933Mbps 21-21-21).

2. KEY FEATURES

[Table 2] Speed Bins

Description of the last of the	DDR4-1600	DDR4-1866	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	1142
Speed	11-11-11	13-13-13	13-13-13 15-15-15		19-19-19	21-21-21	Unit
tCK(min)	1.25	1.071	0.937	0.833	0.75	0.682	ns
CAS Latency	11	13	15	17	19	21	nCK
tRCD(min)	13.75	13.92	14.06	14.16	14.25	14.32	ns
tRP(min)	13.75	13.92	14.06	14.16	14.25	14.32	ns
tRAS(min)	35	34	33	32	32	32	ns
tRC(min)	48.75	47.92	47.06	46.16	46.25	46.32	ns

- JEDEC standard 1.2V ± 0.06V Power Supply
- V_{DDQ} = 1.2V ± 0.06V
- 800 MHz f_{CK} for 1600Mb/sec/pin,933 MHz f_{CK} for 1866Mb/sec/pin, 1067MHz f_{CK} for 2133Mb/sec/pin,1200MHz f_{CK} for 2400Mb/sec/pin, 1333MHz f_{CK} for 2666Mb/sec/pin and 1467MHz fCK for 2933Mb/sec/pin.
- 16 Banks (4 Bank Groups)
- Programmable CAS Latency: 10,11,12,13,14,15,16,17,18,19,20,21, 22
- Programmable Additive Latency (Posted CAS): 0, CL 2, or CL 1 clock
- Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12 (DDR4-1866), 11,14 (DDR4-2133), 12,16 (DDR4-2400), 14,18 (DDR4-2666) and 16, 20 (DDR4-2933).
- . Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS]
- · Bi-directional Differential Data Strobe
- On Die Termination using ODT pin
- Average Refresh Period 7.8us at lower then T_{CASE} 85°C, 3.9us at 85°C < T_{CASE} ≤ 95°C
- · Asynchronous Reset

3. ADDRESS CONFIGURATION

Organization	Row Address	Column Address	Bank Group Address	Bank Address	Auto Precharge
8Gx4(32Gb DDP) based Module	A0-A16	A0-A9	BG0-BG1	BA0-BA1	A10/AP

⁻ Backward compatible to lower frequency.

4. Load Reduced DIMM PIN COFIGURATIONS (FRONT SIDE / BACK SIDE)

Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back
1	12V ³ ,NC	145	12V ³ ,NC	40	TBOS12-1	184	VSS	78	EVENT_n	222	PARITY	117	DQ52	261	VSS
2	vss	146	VREFCA	41	TDQS12_c, DQS12_c	185	DQS3_c	79	A0	223	VDD	118	VSS	262	DQ53
3	DQ4	147	VSS	42	VSS	186	DQS3_L	80	VDD	224	BA1	119	DQ48	263	VSS
4	VSS	148	DQ5	43	DQ30	187	VSS	81	BAO	225	A10/AP	120	VSS	264	DQ49
5	DQ0	149	VSS	44	VSS	188	DQ31	82	RAS_ri/A16	226	VDD	121	TDQS15_t, DQS15_t	265	VSS
6	VSS	150	DQ1	45	DQ26	189	VSS	83	VDD	227	RFU	122	TDQS15_c, DQS15_c	266	DQS6_c
7	TDQS9_t,	151	VSS	46	VSS	190	DQ27	84	S0_n	228	WE_n/A14	123	VSS	267	DQS6 1
8	TDQS9_c, DQS9_c	152	DQS0_c	47	CB4	191	VSS	85	VDD	229	VDD	124	DQ54	268	VSS
9	VSS	153	DQS0 t	48	VSS	192	CB5	86	CAS_r/A15	230	NC	125	Vss	269	DQ55
10	DQ6	154	VSS	49	СВО	193	VSS	87	ODT0	231	VDD	126	DQ50	270	VSS
11	VSS	155	DQ7	50	VSS	194	CB1	88	VDD	232	A13	127	VSS	271	DQ51
12	DQ2	156	VSS	51	TDQS17 t.	195	VSS	89	S1_n	233	VDD	128	DQ60	272	VSS
13	VSS	157	DQ3	52	DQS17_1 TDQS17_c,	196	DQS8 ¢	90	VDD	234	A17	129	VSS	273	DQ61
14	DQ12	158	VSS	53	DQS17_c	197	DQS8 t	91	ODT1	235	NC,C2	130	DQ56	274	VSS
15	VSS	159	DQ13	54	CB6	198	VSS	92	VDD	236	VDD	131	VSS	275	DQ57
16	DQ8	160	VSS	55	VSS	199	CB7	93	C0,CS2_n,NC	237	NC,CS3 c,C1	132	TDQS16 t,	276	VSS
17	VSS	161	DQ9	56	CB2	200	VSS	94	VSS	238	SA2	133	DQS16_1 TDQS16_a,	277	DQS7_c
18	TDQS10 t.	162	VSS	57	VSS	201	CB3	95	DQ36	239	VSS	134	DQS16_c	278	DQS7_t
19	DQS10_1 TDQS10_c.	163	DQS1 c	58	RESET	202	VSS	96	VSS	240	DQ37	135	DQ62	279	VSS
20	DQS10_c	164	DQS1_t	59	VDD	203	CKE1	97	DQ32	241	VSS	136	VSS	280	DQ63
21	DQ14	165	VSS	60	CKE0	204	VDD	98	VSS	242	DQ33	137	DQ58	281	VSS
	- 44-74	201		22.5	774.5	7.7	10000	4.1	TDQS13_t,				44.0	1	10.00
22	VSS	166	DQ15	61	VDD	205	RFU	99	DQS13_1 TDQS13_c,	243	VSS	138	VSS	282	DQ59
23	DQ10	167	VSS	62	ACT_n	206	VDD	100	DQS13_c	244	DQS4_c	139	SA0	283	VSS
24	VSS	168	DQ11	63	BG0	207	BG1	101	VSS	245	DQS4_1	140	SA1	284	VDDSPD
25	DQ20	169	VSS	64	VDD	208	ALERT_n	102	DQ38	246	VSS	141	SCL	285	SDA
26	VSS	170	DQ21	65	A12/BC_n	209	VDD	103	VSS	247	DQ39	142	VPP	286	VPP
27	DQ16	171	VSS	66	A9	210	A11	104	DQ34	248	VSS	143	VPP	287	VPP
28	VSS	172	DQ17	67	VDD	211	A7	105	VSS	249	DQ35	144	RFU	288	VPP ⁴
29	TDQSH1_4	173	VSS	68	8A	212	VDD	106	DQ44	250	VSS				
30	TDQS11_c, DQS11_c	174	DQS2_c	69	A6	213	A5	107	VSS	251	DQ45				
31	VSS	175	DQS2_1	70	VDD	214	A4	108	DQ40	252	VSS				
32	DQ22	176	VSS	71	А3	215	VDD	109	VSS	253	DQ41	1			
33	VSS	177	DQ23	72	A1	216	A2	110	TDQS14_t, DQS14_1	254	VSS	1			
34	DQ18	178	VSS	73	VDD	217	VDD	111	TDQS14_G DQS14_G	255	DQS5_c	1			
35	VSS	179	DQ19	74	CK0_t	218	CK1_t	112	VSS	256	DQS5_t	1			
36	DQ28	180	VSS	75	CK0_c	219	CK1_o	113	DQ46	257	VSS	1			
37	VSS	181	DQ29	76	VDD	220	VDD	114	VSS	258	DQ47	1			
38	DQ24	182	VSS	77	VTT	221	VTT	115	DQ42	259	VSS	1			
39	VSS	183	DQ25		KE	Y		116	Vss	260	DQ43	1			

NOTE:

¹⁾ VPP is 2.5V DC

²⁾ Pin 230 is defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pin 230 is defined as SAVE_n for NVDIMMs.

³⁾ Pins 1 and 145 are defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pins 1 and 145 are defined as 12V for Hybrid /NVDIMM

⁴⁾ The 5th VPP is required on all modules. DIMMs.

5. PIN DESCRIPTION

Pin Name	Description
A0-A17 ¹⁾	Register address input
BAO, BA1	Register bank select input
BG0, BG1	Register bank group select input
RAS_n2)	Register row address strobe input
CAS_n3)	Register column address strobe input
WE_n ⁴⁾	Register write enable input
CS0_n, CS1_n, CS2_n, CS3_n	DIMM Rank Select Lines input
CKE0, CKE1	Register clock enable lines input
ODT0, ODT1	Register on-die termination control lines input
ACT_n	Register input for activate input
DQ0-DQ63	DIMM memory data bus
CB0-CB7	DIMM ECC check bits
DQS0_t- DQS17_t	Data Buffer data strobes (positive line of differential pair)
DQS0_c- DQS17_c	Data Buffer data strobes (negative line of differential pair)
CK0_t, CK1_t	Register clock input (positive line of differential pair)
CK0_c, CK1_c	Register clocks input (negative line of differential pair)

Pin Name	Description
SCL	I2C serial bus clock for SPD/TS and register
SDA	I2C serial bus data line for SPD/TS and register
SA0-SA2	12C slave address select for SPD/TS and register
PAR	Register parity input
VDD	SDRAM core power supply
VPP	SDRAM activating power supply
VREFCA	SDRAM command/address reference supply
VSS	Power supply return (ground)
VDDSPD	Serial SPD/TS positive power supply
ALERT_n	Register ALERT_n output
RESET_n	Set Register and SDRAMs to a Known State
EVENT_n	SPD signals a thermal event has occurred
VIT	SDRAM I/O termination supply
RFU	Reserved for future use

- 1) Address A17 is only valid for 16 Gb x4 based SDRAMs.
 2) RAS_n is a multiplexed function with A16.
 3) CAS_n is a multiplexed function with A15.

- 4) WE_n is a multiplexed function with A14.

32183 32183 Social Page 29 01 42 Page 10 #.

288pin Load Reduced DIMM based on 8Gb B-die

78FBGA with Lead-Free & Halogen-Free (RoHS compliant)

datasheet

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2018 Samsung Electronics Co., Ltd. All rights reserved.

Revision History

Revision No.	History	Draft Date	Remark	Editor
1.0	- First SPEC Release	Jul. 2015	8	J.Y.Lee
1.1	- Change of IDD value on page 25	3rd Feb. 2016	8	J.Y.Lee
	- Change of 8.1 Timing & Capacitance values (tACT) on page 9			
	- Change of Physical Dimensions (Module Thickness) on page 38			
1.2	- Update Physical dimension.	8th Jun, 2017	Final	J.Y.Bae
	1. Add PCB hole.			
	2. Update Module height information.			
	- Update Absolute Maximum Ratings.			
	- Update Input/Output Capacitance.			
1.3	- Update INPUT/OUTPUT FUNCTIONAL DESCRIPTION.	9th Feb, 2018	Final	Hyeon. Kang
	- Update AC & DC INPUT MEASUREMENT LEVELS.			J.Y.Bae
	- Add AC AND DC OUTPUT MEASUREMENT LEVELS.			
	- Update TIMING PARAMETERS BY SPEED GRADE			

Table Of Contents

288pin	Load	Reduced	DIMM	based	on 8Gb	B-die
			F - F - A			

1. DDR4 Load Reduced DIMM ORDERING INFORMATION	4
2. KEY FEATURES	4
3. ADDRESS CONFIGURATION	
4. Load Reduced DIMM PIN CONFIGURATIONS (Front side/Back side)	5
5. PIN DESCRIPTION	6
6. ON DIMM THERMAL SENSOR	6
7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION	7
8. REGISTERING CLOCK DRIVER SPECIFICATION	
8.1 Timing & Capacitance Values	99
9. FUNCTION BLOCK DIAGRAM: 9.1 64GB, 8Gx72 Module (Populated as 4 ranks of x4 DDR4 SDRAMs)	10
10. ABSOLUTE MAXIMUM RATINGS 10.1 Absolute Maximum DC Ratings	
11. AC & DC OPERATING CONDITIONS	
12. AC & DC INPUT MEASUREMENT LEVELS	
12.1 AC & DC Logic Input Levels for Single-Ended Signals. 12.2 AC and DC Input Measurement Levels: VREF Tolerances.	
12.3 AC and DC Logic Input Levels for Differential Signals	
12.3.1. Differential Signals Definition	
12.3.3. Single-ended Requirements for Differential Signals	1
12.3.4. Address, Command and Control Overshoot and Undershoot specifications	18
12.3.5. Clock Overshoot and Undershoot Specifications	20
12.4 Slew Rate Definitions.	2
12.4.1. Slew Rate Definitions for Differential Input Signals (CK)	2
12.5 Differential Input Cross Point Voltage	23
12.6.1. CMOS rail to rail Input Levels for RESET_n	24
12.7 AC and DC Logic Input Levels for DQS Signals	25
12.7.2. Differential swing requirements for DQS (DQS_t - DQS_c)	2!
12.7.3. Peak voltage calculation method 12.7.4. Differential Input Cross Point Voltage	
12.7.5. Differential Input Slew Rate Definition	2
13. AC AND DC OUTPUT MEASUREMENT LEVELS	29
13.1 Output Driver DC Electrical Characteristics 13.1.1 Alert n output Drive Characteristic	29
13.1.2. Output Driver Characteristic of Connectivity Test (CT) Mode	
13.2 Single-ended AC & DC Output Levels	3:
13.4 Single-ended Output Slew Rate	
13.5 Differential Output Slew Rate	3:
13.7 Test Load for Connectivity Test Mode Timing	
14. SPEED BIN	38
14.1 Speed Bin Table Note.	
15. IDD AND IDDQ SPECIFICATION PARAMETERS AND TEST CONDITIONS	4:
16, IDD SPEC TABLE	
17. INPUT/OUTPUT CAPACITANCE	
18. ELECTRICAL CHARACTERISTICS & AC TIMING	62
18.2 tREFI	
18.3 Clock Specification	
18.3.2. Definition for tCK(avg)	6
18.3.3. Definition for tCH(avg) and tCL(avg)	6
19. TIMING PARAMETERS BY SPEED GRADE	
19.1 Rounding Algorithms	
19.2 The DQ input receiver compliance mask for voltage and timing	
19.4 DDR4 Function Matrix	
20. PHYSICAL DIMENSIONS	79
20.1 4Gbx4(DDP) based 8Gx72 Module (4 Ranks) - M386A8K40BMB. 20.1.1. x72 DIMM, populated as Quad physical ranks of x4 DDR4 SDRAMs	79

1. DDR4 Load Reduced DIMM ORDERING INFORMATION

[Table 1] Ordering Information Table

Part Number 2)	Density	Organization	Component Composition 1)	Number of Rank	Height
M386A8K40BMB-CPB/RC	64GB	8Gx72	DDP 4Gx4(K4AAG045WB-MC##)*36	4	31,25mm

NOTE:

1) "##" - PB/RC

2) PB(2133Mbps 15-15-15)/RC(2400Mbps 17-17-17)

2. KEY FEATURES

[Table 2] Speed Bins

Connect	DDR4-1600	DDR4-1866	DDR4-2133	DDR4-2400	Unit
Speed	11-11-11	13-13-13	15-15-15	17-17-17	Unit
tCK(min)	1.25	1.071	0.938	0,833	ns
CAS Latency	11	13	15	17	nCK
tRCD(min)	13.75	13.92	14.06	14.16	ns
tRP(min)	13.75	13.92	14.06	14.16	ns
tRAS(min)	35	34	.33	32	ns
tRC(min)	48.75	47.92	47.06	46.16	ns

- JEDEC standard 1.2V ± 0.06V Power Supply
- V_{DDQ} = 1.2V ± 0.06V
- 800 MHz f_{CK} for 1600Mb/sec/pin,933 MHz f_{CK} for 1866Mb/sec/pin, 1067MHz f_{CK} for 2133Mb/sec/pin,1200MHz f_{CK} for 2400Mb/sec/pin
- · 16 Banks (4 Bank Groups)
- Programmable CAS Latency: 10,11,12,13,14,15,16,17,18
- Programmable Additive Latency (Posted CAS): 0, CL 2, or CL 1 clock
- Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12 (DDR4-1866), 11,14 (DDR4-2133) and 12,16 (DDR4-2400)
- Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS]
- Bi-directional Differential Data Strobe
- On Die Termination using ODT pin
- * Average Refresh Period 7.8us at lower then T_{CASE} 85°C, 3.9us at 85°C < $T_{CASE} \le 95$ °C
- · Asynchronous Reset

3. ADDRESS CONFIGURATION

Organization	Row Address	Column Address	Bank Group Address	Bank Address	Auto Precharge
4Gx4(16Gb DDP) based Module	A0-A16	A0-A9	BG0-BG1	BA0-BA1	A10/AP

⁻ DDR4-2400(17-17-17) is backward compatible to DDR4-2133(15-15-15)

4. Load Reduced DIMM PIN CONFIGURATIONS (Front side/Back side)

Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back
1	12V ³ ,NC	145	12V ³ ,NC	40	TDQS12_I, DQS12_I	184	VSS	78	EVENT_n	222	PARITY	117	DQ52	261	VSS
2	Vss	146	VREFCA	41	TDQS12_c, DQS12_c	185	DQS3_c	79	A0	223	VDD	118	VSS	262	DQ53
3	DQ4	147	VSS	42	VSS	186	DQS3_t	80	VDD	224	BA1	119	DQ48	263	VSS
4	VSS	148	DQ5	43	DQ30	187	VSS	81	BAO	225	A10/AP	120	VSS	264	DQ49
5	DQ0	149	VSS	44	VSS	188	DQ31	82	RAS_n/A16	226	VDD	121	TDQS15_t, DQS15_t	265	VSS
6	VSS	150	DQ1	45	DQ26	189	VSS	83	VDD	227	RFU	122	TDQS15_c, DQS15_c	266	DQS6_c
7	TDQS9_t, DQS9_t	151	VSS	46	VSS	190	DQ27	84	S0_n	228	WE_n/A14	123	VSS	267	DQS6_t
8	TDQS9_c, DQS9_c	152	DQS0_c	47	CB4	191	VSS	85	VDD	229	VDD	124	DQ54	268	VSS
9	vss	153	DQS0_t	48	VSS	192	CB5	86	CAS_r/A15	230	NC	125	VSS	269	DQ55
10	DQ6	154	VSS	49	СВО	193	VSS	87	ОТО	231	VDD	126	DQ50	270	VSS
11	VSS	155	DQ7	50	VSS	194	CB1	88	VDD	232	A13	127	VSS	271	DQ51
12	DQ2	156	VSS	51	TDQS17_t, DQS17_t	195	VSS	89	\$1_n	233	VDD	128	DQ60	272	VSS
13	VSS	157	DQ3	52	TDQS17_c, DQS17_c	196	DQS8_c	90	VDD	234	A17	129	VSS	273	DQ61
14	DQ12	158	VSS	53	VSS	197	DQS8_t	91	ODT1	235	NC,C2	130	DQ56	274	VSS
15	VSS	159	DQ13	54	CB6	198	VSS	92	VDD	236	VDD	131	VSS	275	DQ57
16	DQ8	160	VSS	55	VSS	199	CB7	93	C0,CS2_n.NC	237	NC,CS3_c,C1	132	TDQS16_t, DQS16_t	276	VSS
17	VSS	161	DQ9	56	CB2	200	VSS	94	VSS	238	SA2	133	TDQS16_c, DQS16_c	277	DQS7_c
18	TDQS10_t, DQS10_t	162	VSS	57	VSS	201	СВЗ	95	DQ36	239	VSS	134	VSS	278	DQS7_t
19	TDQS10_c, DQS10_c	163	DQS1_c	58	RESET_n	202	VSS	96	VSS	240	DQ37	135	DQ62	279	VSS
20	VSS	164	DQS1_t	59	VDD	203	CKE1	97	DQ32	241	VSS	136	VSS	280	DQ63
21	DQ14	165	vss	60	CKE0	204	VDD	98	VSS	242	DQ33	137	DQ58	281	VSS
22	VSS	166	DQ15	61	VDD	205	RFU	99	TDQS13_t, DQS13_t	243	VSS	138	VSS	282	DQ59
23	DQ10	167	VSS	62	ACT_n	206	VDD	100	TDQS13_c, DQS13_c	244	DQS4_c	139	SA0	283	VSS
24	VSS	168	DQ11	63	BG0	207	BG1	101	VSS	245	DQS4_t	140	SA1	284	VDDSPD
25	DQ20	169	VSS	64	VDD	208	ALERT_n	102	DQ38	246	VSS	141	SCL	285	SDA
26	VSS	170	DQ21	65	A12/BC_n	209	VDD	103	VSS	247	DQ39	142	VPP	286	VPP
27	DQ16	171	VSS	66	A9	210	A11	104	DQ34	248	Vss	143	VPP	287	VPP
28	VSS	172	DQ17	67	VDD	211	A7	105	VSS	249	DQ35	144	RFU	288	VPP ⁴
29	TDQS11_1, DQS11_1	173	VSS	68	A8	212	VDD	106	DQ44	250	VSS				
30	TDQS11_c, DQS11_c	174	DQS2_c	69	A6	213	A5	107	VSS	251	DQ45				
31	VSS	175	DQS2_I	70	VDD	214	A4	108	DQ40	252	VSS				
32	DQ22	176	VSS	71	A3	215	VDD	109	VSS	253	DQ41				
33	VSS	177	DQ23	72	A1	216	A2	110	TDQS14_t, DQS14_t	254	VSS				
34	DQ18	178	VSS	73	VDD	217	VDD	111	TDQS14_c, DQS14_c	255	DQS5_c				
35	VSS	179	DQ19	74	CKO_t	218	CK1_t	112	VSS	256	DQS5_t				
36	DQ28	180	VSS	75	CK0_c	219	CK1_c	113	DQ46	257	Vss				
37	VSS	181	DQ29	76	VDD	220	VDD	114	VSS	258	DQ47				
	222	100	100			1		13.22		2.22	1110				

NOTE:

38

39

DQ24

VSS

KEY

221

182

VSS

DQ25

115

116

DQ42

VSS

259

260

VSS

DQ43

¹⁾ VPP is 2.5V DC.

²⁾ Pin 230 is defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pin 230 is defined as SAVE_n for NVDIMMs.

³⁾ Pins 1 and 145 are defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pins 1 and 145 are defined as 12V for Hybrid /NVDIMM.

⁴⁾ The 5th VPP is required on all modules. DIMMs.

5. PIN DESCRIPTION

Pin Name	Description
A0-A17 ¹⁾	Register address input
BAO, BA1	Register bank select input
BG0, BG1	Register bank group select input
RAS_n ²⁾	Register row address strobe input
CAS_n ³⁾	Register column address strobe input
WE_n ⁴⁾	Register write enable input
CS0_n, CS1_n, CS2_n, CS3_n	DIMM Rank Select Lines input
CKE0, CKE1	Register clock enable lines input
ODT0, ODT1	Register on-die termination control lines input
ACT_n	Register input for activate input
DQ0-DQ63	DIMM memory data bus
CB0-CB7	DIMM ECC check bits
DQS0_t-DQS17_t	Data Buffer data strobes (positive line of differential pair)
DQS0_c- DQS17_c	Data Buffer data strobes (negative line of differential pair)
CK0_t, CK1_t	Register clock input (positive line of differential pair)
CK0_c, CK1_c	Register clocks input (negative line of differential pair)

Pin Name	Description					
SCL	I2C serial bus clock for SPD/TS and register					
SDA	I2C serial bus data line for SPD/TS and register					
SA0-SA2	I2C slave address select for SPD/TS and register					
PAR Register parity input						
VDD SDRAM core power supply						
VPP SDRAM activating power supply						
VREFCA	SDRAM command/address reference supply					
VSS	Power supply return (ground)					
VDDSPD	Serial SPD/TS positive power supply					
ALERT_n	Register ALERT_n output					
RESET_n	Set Register and SDRAMs to a Known State					
EVENT_n	SPD signals a thermal event has occurred					
VTT	SDRAM I/O termination supply					
RFU	Reserved for future use					

NOTE:

- 1) Address A17 is only valid for 16 Gb x4 based SDRAMs.
- 2) RAS_n is a multiplexed function with A16.
- 3) CAS_n is a multiplexed function with A15.
- 4) WE_n is a multiplexed function with A14.

6. ON DIMM THERMAL SENSOR

NOTE

1) All Samsung RDIMM support Thermal sensor on DIMM.

[Table 3] Temperature Sensor Characteristics

Grade	Danie	Temp	Temperature Sensor Accuracy			
Grade	Range	Mīn.	Typ.	Max.	Units	NOTE
	75 < Ta < 95		+/- 0.5	+/- 1.0		-
В	40 < Ta < 125		+/- 1.0	+/- 2.0	°C	-
	-20 < Ta < 125		+/- 2.0	+/- 3.0		-
	Resolution		0.25		°C /LSB	

32190 Case 2.22-cv-00293-JRG Document 386-8 Filed 01/24/24 Page 36 01 42 Page D

288pin Load Reduced DIMM based on 8Gb C-die

78FBGA with Lead-Free & Halogen-Free (RoHS compliant)

datasheet

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2018 Samsung Electronics Co., Ltd. All rights reserved.

Load Reduced DIMM

Revision History

Revision No.	History	Draft Date	Remark	Editor
1.0	- First SPEC Release	7th Apr. 2017	*	J.Y.Lee
1.1	- Update Physical Dimension.	13th Jun, 2017	Final	J.Y.Bae
	1. Add PCB hole.			
	2. Change Module height information.			
1.2	- Add 2933Mbps.	6th Feb, 2018	Final	J.H.Han
	- Correct typo.			J.Y.Bae

Table Of Contents

288pin Load Reduced DIMM based on 8Gb C-die	
DDR4 Load Reduced DIMM ORDERING INFORMATION	4
2. KEY FEATURES	
3. ADDRESS CONFIGURATION	
4. Load Reduced DIMM PIN COFIGURATIONS (FRONT SIDE / BACK SIDE)	5
5. PIN DESCRIPTION	6
6. ON DIMM THERMAL SENSOR	
7. INPUT/OUTPUT FUNCTIONAL DESCRIPTION	88
REGISTERING CLOCK DRIVER SPECIFICATION 8.1 Timing & Capacitance Values. 8.2 Clock Driver Characteristics.	
9. FUNCTION BLOCK DIAGRAM: 9.1 64GB, 8Gx72 Module (Populated as 4 ranks of x4 DDR4 SDRAMs)	1
10. ABSOLUTE MAXIMUM RATINGS 10.1 Absolute Maximum DC Ratings	14
11. AC & DC OPERATING CONDITIONS	14
12, AC & DC INPUT MEASUREMENT LEVELS	
12.1 AC & DC Logic Input Levels for Single-Ended Signals	
12.3 AC and DC Logic Input Levels for Differential Signals	
12.3.1. Differential Signals Definition	
12.3.2. Differential Swing Requirements for Clock (CK_t - CK_c)	
12.3.4. Address, Command and Control Overshoot and Undershoot specifications	
12.3.5. Clock Overshoot and Undershoot Specifications	20
12.4 Slew Rate Definitions	2
12.4.1. Slew Rate Definitions for Differential Input Signals (CK) 12.4.2. Slew Rate Definition for Single-ended Input Signals (CMD/ADD)	23
12.5 Differential Input Cross Point Voltage	2
12.6 CMOS rail to rail Input Levels	29
12.6.1. CMOS rail to rail Input Levels for RESET_n	29
12.7.1. Differential signal definition	
12.7.2. Differential swing requirements for DQS (DQS_t - DQS_c)	20
12.7.4. Differential Input Cross Point Voltage	
12.7.5. Differential Input Slew Rate Definition	2
13. AC and DC output Measurement levels	
13.1 Output Driver DC Electrical Characteristics	
13.1.2. Output Driver Characteristic of Connectivity Test (CT) Mode	33
13.2 Single-ended AC & DC Output Levels	3
13.4 Single-ended Output Slew Rate	3
13.5 Differential Output Slew Rate	
13.7 Test Load for Connectivity Test Mode Timing	
14. IDD SPEC TABLE	30
15. INPUT/OUTPUT CAPACITANCE	4
16. SPEED BIN	42
17. IDD and IDDQ Specification Parameters and Test conditions	49
17.1 IDD, IPP and IDDQ Measurement Conditions	
18. DIMM IDD SPECIFICATION DEFINITION	52
19. TIMING PARAMETERS BY SPEED GRADE	70
19.2 The DQ input receiver compliance mask for voltage and timing	

19.4 DDR4 Function Matrix

20.1.1. x72 DIMM, populated as Quad physical ranks of x4 DDR4 SDRAMs.....

1. DDR4 Load Reduced DIMM ORDERING INFORMATION

[Table 1] Ordering Information Table

Part Number ²⁾	Density	Organization	Component Composition 1)	Number of Rank	Height
M386A8K40CM2-CRC/TD/VF	64GB	8Gx72	DDP 4Gx4(K4AAG045WC-MC##)*36	4	31.25mm

NOTE:

1) "##" - RC/TD/VF

2. KEY FEATURES

[Table 2] Speed Bins

Connel	DDR4-1600	DDR4-1866	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	1100
Speed	11-11-11	13-13-13	15-15-15	17-17-17	19-19-19	21-21-21	Unit
tCK(min)	1.25	1.071	0.937	0.833	0.75	0.682	ns
CAS Latency	11	13	15	17	19	21	nCK
tRCD(min)	13.75	13.92	14.06	14.16	14.25	14.32	ns
tRP(min)	13.75	13.92	14.06	14.16	14.25	14.32	ns
tRAS(min)	35	34	33	32	32	32	ns
tRC(min)	48.75	47.92	47.06	46.16	46.25	46.32	ns

- JEDEC standard 1.2V ± 0.06V Power Supply
- V_{DDQ} = 1.2V ± 0.06V
- 800 MHz f_{CK} for 1600Mb/sec/pin,933 MHz f_{CK} for 1866Mb/sec/pin, 1067MHz f_{CK} for 2133Mb/sec/pin,1200MHz f_{CK} for 2400Mb/sec/pin, 1333MHz f_{CK} for 2666Mb/sec/pin and 1467MHz fCK for 2933Mb/sec/pin.
- 16 Banks (4 Bank Groups)
- Programmable CAS Latency: 10,11,12,13,14,15,16,17,18,19,20,21
- Programmable Additive Latency (Posted CAS): 0, CL 2, or CL 1 clock
- Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12 (DDR4-1866), 11,14 (DDR4-2133), 12,16 (DDR4-2400), 14,18 (DDR4-2666) and 16, 20 (DDR4-2933).
- . Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS]
- · Bi-directional Differential Data Strobe
- On Die Termination using ODT pin
- Average Refresh Period 7.8us at lower then T_{CASE} 85°C, 3.9us at 85°C < T_{CASE} ≤ 95°C
- · Asynchronous Reset

3. ADDRESS CONFIGURATION

Organization	Row Address	Column Address	Bank Group Address	Bank Address	Auto Precharge
4Gx4(16Gb DDP) based Module	A0-A16	A0-A9	BG0-BG1	BA0-BA1	A10/AP

²⁾ RC(2400Mbps 17-17-17)/TD(2666Mbps 19-19-19)/VF(2933Mbps 21-21-21).

⁻ Backward compatible to lower frequency.

4. Load Reduced DIMM PIN COFIGURATIONS (FRONT SIDE / BACK SIDE)

Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back
1	12V ³ ,NC	145	12V ³ ,NC	40	TDQS12_L	184	VSS	78	EVENT_n	222	PARITY	117	DQ52	261	VSS
2	VSS	146	VREFCA	41	TDQS12_c, DQS12_c	185	DQS3_c	79	A0	223	VDD	118	VSS	262	DQ53
3	DQ4	147	VSS	42	VSS	186	DQS3_i	80	VDD	224	BA1	119	DQ48	263	VSS
4	VSS	148	DQ5	43	DQ30	187	VSS	81	BA0	225	A10/AP	120	VSS	264	DQ49
5	DQ0	149	VSS	44	VSS	188	DQ31	82	RAS_ri/A16	226	VDD	121	TDQS15_t, DQS15_t	265	Vss
6	VSS	150	DQ1	45	DQ26	189	VSS	83	VDD	227	RFU	122	TDQS15_c, DQS15_c	266	DQS6_c
7	TDQS9_t, DQS9_t	151	VSS	46	VSS	190	DQ27	84	S0_π	228	WE_n/A14	123	VSS	267	DQS6_1
8	TDQS9_c, DQS9_c	152	DQS0_c	47	CB4	191	VSS	85	VDD	229	VDD	124	DQ54	268	VSS
9	Vss	153	DQS0_t	48	VSS	192	CB5	86	CAS_r/A15	230	NC	125	Vss	269	DQ55
10	DQ6	154	VSS	49	CB0	193	vss	87	ODT0	231	VDD	126	DQ50	270	Vss
11	VSS	155	DQ7	50	VSS	194	CB1	88	VDD	232	A13	127	VSS	271	DQ51
12	DQ2	156	VSS	51	TDQS17_t. DQS17_1	195	VSS	89	S1_n	233	VDD	128	DQ60	272	VSS
13	VSS	157	DQ3	52	TDQS17_c, DQS17_c	196	DQS8_c	90	VDD	234	A17	129	VSS	273	DQ61
14	DQ12	158	VSS	53	VSS	197	DQS8_t	91	ODT1	235	NC,C2	130	DQ56	274	VSS
15	VSS	159	DQ13	54	CB6	198	VSS	92	VDD	236	VDD	131	VSS	275	DQ57
16	DQ8	160	VSS	55	VSS	199	CB7	93	C0,CS2_n,NC	237	NC,CS3_c,C1	132	TDQS16_t, DQS16_t	276	VSS
17	VSS	161	DQ9	56	CB2	200	VSS	94	VSS	238	SA2	133	TDQS16_c, DQS16_c	277	DQS7_c
18	TDQS10_1. DQS10_1	162	VSS	57	VSS	201	CB3	95	DQ36	239	VSS	134	VSS	278	DQS7_t
19	TDQS10_c. DQS10_c	163	DQS1_c	58	RESET_n	202	VSS	96	VSS	240	DQ37	135	DQ62	279	VSS
20	VSS	164	DQS1_t	59	VDD	203	CKE1	97	DQ32	241	VSS	136	VSS	280	DQ63
21	DQ14	165	VSS	60	CKE0	204	VDD	98	VSS	242	DQ33	137	DQ58	281	VSS
22	VSS	166	DQ15	61	VDD	205	RFU	99	TDQS13_t, DQS13_t	243	Vss	138	VSS	282	DQ59
23	DQ10	167	VSS	62	ACT_n	206	VDD	100	TDQS13_c, DQS13_c	244	DQS4_c	139	SAO	283	VSS
24	Vss	168	DQ11	63	BG0	207	BG1	101	VSS	245	DQS4_1	140	SA1	284	VDDSPD
25	DQ20	169	VSS	64	VDD	208	ALERT_n	102	DQ38	246	VSS	141	SCL	285	SDA
26	Vss	170	DQ21	65	A12/BC_n	209	VDD	103	Vss	247	DQ39	142	VPP	286	VPP
27	DQ16	171	VSS	66	A9	210	A11	104	DQ34	248	VSS	143	VPP	287	VPP
28	VSS	172	DQ17	67	VDD	211	A7	105	VSS	249	DQ35	144	RFU	288	VPP ⁴
29	TBQ\$11-4	173	VSS	68	A8	212	VDD	106	DQ44	250	VSS			1.00	1000
30	TDQS11_c, DQS11_c	174	DQS2_c	69	A6	213	A5	107	VSS	251	DQ45				
31	VSS	175	DQS2_t	70	VDD	214	A4	108	DQ40	252	VSS				
32	DQ22	176	VSS	71	А3	215	VDD	109	VSS	253	DQ41				
33	Vss	177	DQ23	72	A1	216	A2	110	TDQS14_t, DQS14_1	254	VSS				
34	DQ18	178	VSS	73	VDD	217	VDD	111	TDQS14_g, DQS14_g	255	DQS5_c				
35	VSS	179	DQ19	74	CK0_t	218	CK1_t	112	VSS	256	DQS5_t				
36	DQ28	180	VSS	75	CK0_c	219	CK1_o	113	DQ46	257	VSS				
37	VSS	181	DQ29	76	VDD	220	VDD	114	VSS	258	DQ47				
38	DQ24	182	VSS	77	VTT	221	VTT	115	DQ42	259	VSS				
39	VSS	183	DQ25	20	901	EY	1	116	Vss	260	DQ43				
-															

NOTE:

¹⁾ VPP is 2.5V DC

²⁾ Pin 230 is defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pin 230 is defined as SAVE_n for NVDIMMs.

³⁾ Pins 1 and 145 are defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pins 1 and 145 are defined as 12V for Hybrid /NVDIMM

⁴⁾ The 5th VPP is required on all modules. DIMMs.

5. PIN DESCRIPTION

Pin Name	Description
A0-A17 ¹⁾	Register address input
BAO, BA1	Register bank select input
BG0, BG1	Register bank group select input
RAS_n2)	Register row address strobe input
CAS_n3)	Register column address strobe input
WE_n ⁴⁾	Register write enable input
CS0_n, CS1_n, CS2_n, CS3_n	DIMM Rank Select Lines input
CKE0, CKE1	Register clock enable lines input
ODT0, ODT1	Register on-die termination control lines input
ACT_n	Register input for activate input
DQ0-DQ63	DIMM memory data bus
CB0-CB7	DIMM ECC check bits
DQS0_t- DQS17_t	Data Buffer data strobes (positive line of differential pair)
DQS0_c- DQS17_c	Data Buffer data strobes (negative line of differential pair)
CK0_t, CK1_t	Register clock input (positive line of differential pair)
CK0_c, CK1_c	Register clocks input (negative line of differential pair)

Pin Name	Description
SCL	I2C serial bus clock for SPD/TS and register
SDA	I2C serial bus data line for SPD/TS and register
SA0-SA2	12C slave address select for SPD/TS and register
PAR	Register parity input
VDD	SDRAM core power supply
VPP	SDRAM activating power supply
VREFCA	SDRAM command/address reference supply
VSS	Power supply return (ground)
VDDSPD	Serial SPD/TS positive power supply
ALERT_n	Register ALERT_n output
RESET_n	Set Register and SDRAMs to a Known State
EVENT_n	SPD signals a thermal event has occurred
VIT	SDRAM I/O termination supply
RFU	Reserved for future use

- 1) Address A17 is only valid for 16 Gb x4 based SDRAMs.
 2) RAS_n is a multiplexed function with A16.
 3) CAS_n is a multiplexed function with A15.

- 4) WE_n is a multiplexed function with A14.