

# Formation Data Scientist

Soutenance

# **Projet 7**

Implémentez un modèle de scoring

### **SOMMAIRE**

- I. Présentation de la problématique et du jeu de données
- II. Explication de l'approche de modélisation
- III. Présentation du Dashboard

# **Projet 7**

Implémentez un modèle de scoring

### **SOMMAIRE**

- I. Présentation de la problématique et du jeu de données
- II. Explication de l'approche de modélisation
- III. Présentation du Dashboard

## Contexte

2022



Société financière qui propose des crédits à la consommation aux personnes ayant peu d'historique de prêt.

BESOIN

Développer un outil d'aide à la décision d'octroi de crédit.

LIVRABLES

- Un modèle de scoring
- Un dashboard restituant :
  - La probabilité de défaut de paiement d'un client
  - Des éléments justifiant le score
  - Ses informations personnelles

## Problématique

2022



### Contrainte technique

Problème de classification binaire de classes déséquilibrées.

Entraînement des modèles en appliquant différentes méthodes d'ajustement de la distribution des classes.

Limiter les pertes engendrées par les clients en défaut de paiement.

Contrainte métier

--> Restriction des faux négatifs (clients considérés comme solvable à tord) par le choix de métriques adaptées.

## Les données

### Caractéristiques

7 fichiers (Informations personnelles et détails crédit des clients)

Fichier principal : application\_train.csv

Plus de 307 000 clients

Client en défaut de paiement: 1
Client sans défaut de paiement: 0



|                       | Rows    | Columns | Missing Values (%) | Duplicate (%) | object_dtype | float_dtype | int_dtype | bool_dtype |
|-----------------------|---------|---------|--------------------|---------------|--------------|-------------|-----------|------------|
| application_test.csv  | 48744   | 121     | 23.81              | 0.0           | 16           | 65          | 40        | 0          |
| application_train.csv | 307511  | 122     | 24.40              | 0.0           | 16           | 65          | 41        | 0          |
| bureau.csv            | 1716428 | 17      | 13.50              | 0.0           | 3            | 8           | 6         | 0          |

## Les données

### Nettoyage et features engineering

2022



Le nettoyage et le features engineering des données ont été effectués à l'aide du kernel <u>LightGBM\_with\_simple\_features</u>



Remplacement de valeurs incohérentes par NaN values



Encodage de variables catégorielles



Création de variables agrégées par client



Création de nouvelles variables

Format fichier d'entrainement : 79060, 555

# **Projet 7**

Implémentez un modèle de scoring

### **SOMMAIRE**

- I. Présentation de la problématique et du jeu de données
- II. Explication de l'approche de modélisation
- III. Présentation du Dashboard

Démarche

2022

Afin d'éviter le data leakage, mise en place d'une pipeline de 3 étapes :

- Etape 1 : Méthode de traitement du déséquilibre des données
- Etape 2 : Méthode de recalibrage des données (StandardScaler)
- Etape 3 : Modèle à entrainer

Les opération ne seront donc appliquées que sur les données d'entrainement.

Cette pipeline sera entrainée via un GridSearchcv (cv=5) avec modification d'un unique paramètre par modèle.

### Méthodes de traitement du déséquilibre des données

2022

1

#### Ajustement des poids de classe

Un poids est affecté à chaque classe. La classe minoritaire aura le poids le plus élevé. Cette méthode est mise en place à l'aide de l'option

class\_weight = 'balanced

2

### Sous-échantillonnage ou *Undersampling*

La classe majoritaire est réduite à l'effectif de la classe minoritaire. La réduction est faite à l'aide de la fonction RandomUnderSampler. 3

### Sur-échantillonnage ou Oversampling

La classe minoritaire est augmentée au niveau de l'effectif de la classe majoritaire. De nouvelles observations sont créées.
Test de deux algorithmes : SMOTE et ADASYN.

Modèles à entrainer

2022

Classifieur binaire

Logistic Regression

BASELINE

Classifieur multi-classe

RandomForest

GradientBoosting

LGBM

Métrique d'évaluation - ROC\_AUC

2022



- ---- Courbe ROC représentant le pire des cas avec un fort effet du hasard (AUC de 0,5 associée à une capacité de discrimination très faible)
- Courbe ROC représentant le meilleur des cas (AUC de 1 associée à une capacité de discrimination très forte, le modèle donne des prédictions exactes)
- Courbe ROC représentant la capacité de discrimination d'un modèle étudié (AUC compris entre 1 et 0,5)

(source: Decout, 2007)

Courbe Receiver Operator Characteristic ou ROC est utilisée pour montrer la capacité de prédiction d'un classifieur binaire.

Sensitivité = Taux de vrais positifs ou Recall Spécificité = Taux de faux positifs

La mesure ROC\_AUC est l'aire sous la courbe ROC, elle est comprise entre 0 et 1.

Un modèle dont les prédictions sont 100% fausses -> ROC\_AUC =0 Un modèle dont les prédictions sont 100% vraies -> ROC\_AUC = 1

Métriques d'évaluation - Fonction de coût - Fß score

2022

## Mauvaises prédictions

### Faux positifs

Clients prédits « en défaut de paiement » à tord

Manque à gagner





Minimiser les faux négatifs ==> Accorder plus d'importance au recall. - Choix : beta = 3

Résultat - Pondération









| ROC_AUC   | 0,74     |
|-----------|----------|
| Fβ score  | 0,71     |
| Exécution | 1 min 8s |

| ROC_AUC   | 0,72      |
|-----------|-----------|
| Fβ score  | 0,91      |
| Exécution | 12min 11s |

| ROC_AUC   | 0,75   |
|-----------|--------|
| Fβ score  | 0,91   |
| Exécution | 37 min |

| ROC_AUC   | 0,75   |
|-----------|--------|
| Fβ score  | 0,83   |
| Exécution | 34,1 s |

Résultat - Sous-échantillonnage (RandomUnderSampler)



| ROC_AUC   | 0,75   |
|-----------|--------|
| Fβ score  | 0,69   |
| Exécution | 22,6 s |

| ROC_AUC   | 0,74     |
|-----------|----------|
| Fβ score  | 0,69     |
| Exécution | 2min 44s |

| ROC_AUC   | 0,76     |
|-----------|----------|
| Fβ score  | 0,70     |
| Exécution | 13min 4s |

| ROC_AUC   | 0,74  |
|-----------|-------|
| Fβ score  | 0,69  |
| Exécution | 28,1s |

Résultat - Sur-échantillonnage (SMOTE)



| ROC_AUC   | 0,74     |
|-----------|----------|
| Fβ score  | 0,91     |
| Exécution | 1min 18s |

| ROC_AUC   | 0,69      |
|-----------|-----------|
| Fβ score  | 0,91      |
| Exécution | 16min 47s |

| ROC_AUC   | 0,74     |
|-----------|----------|
| Fβ score  | 0,91     |
| Exécution | 1min 14s |

Résultat - Sur-échantillonnage (ADASYN)

2022







| ROC_AUC   | 0,74     |
|-----------|----------|
| Fβ score  | 0,91     |
| Exécution | 2min 11s |

| ROC_AUC   | 0,70      |
|-----------|-----------|
| Fβ score  | 0,91      |
| Exécution | 16min 47s |

| ROC_AUC   | 0,75     |
|-----------|----------|
| Fβ score  | 0,91     |
| Exécution | 1min 14s |

Résultat - Conclusion

2022

Nous obtenons les meilleures performances avec la méthode d'ajustement de classe sous-échantillonnage.

Les modèles les plus performants sont Logistic Regression et LGBM.

Notre choix va se porter sur le modèle LGBM car il laisse davantage de place à l'optimisation.

Optimisation - Hyperopt

2022

#### Paramètres à optimisei

n\_estimators learning\_rate max\_depth num\_leaves

#### Valeurs à tester

[100, 200, 300, 400, 500, 600] [0,001, 0,03, 0,05] [3, 4, 5, 6, 7] [5, 10, 15, 20, 25, 30, 35]

OBJECTIF : Maximiser la métrique ROC\_AUC

#### Valeurs sélectionnée

n\_estimators: 600
learning\_rate: 0,039
max\_depth:7
num\_leaves: 5

▼ Performances

| ROC_AUC   | 0,76  |
|-----------|-------|
| Fβ score  | 0,69  |
| Exécution | 10,5s |

Features importance (global)

2022





Features importance (local)









# **Projet 7**

Implémentez un modèle de scoring

### **SOMMAIRE**

- I. Présentation de la problématique et du jeu de données
- II. Explication de l'approche de modélisation
- III. Présentation du Dashboard

Caractéristiques techniques

2022



## PRÊT À DÉPENSER - Tableau de bord

Aide à la décision d'octroi de crédit

Le tableau de bord est composé de 2 applications:

- Une API de type flask dont le but est calculer le score crédit . Elle est hébergée chez Heroku.
- Une application streamlit qui va récupérer ce score crédit et afficher toutes les informations d'aide à la décision d'octroi de crédit. Elle est également hébergée chez Heroku : <a href="https://scoring-credit-dashboard.herokuapp.com/">https://scoring-credit-dashboard.herokuapp.com/</a>

Le code est disponible chez GitHub.

Présentation - Score client

Le score client correspond à sa probabilité d'être en défaut de paiement.

Le client est topé peu risqué si son score est inférieur à 40 %

Entre 40 % et 60 %, il est à risque et audelà, il est très risqué.



2022

Présentation - Features importance

2022

Features importances locale



### Features importance globale



Présentation - Comparaison client - Analyse simple

2022

### Deux variables à analyser:

- Âge
- Revenu total





Un graphe par classe et le client est positionné.

Présentation - Comparaison client - Analyse bi-variée

2022

Relation entre les deux variables pré-traitée:

- Âge
- Revenu total



Caractéristiques des points:

- Taille = montant des revenus
- Couleur = score de solvabilité



# MERCI DE VOTRE ATTENTION!