Conditional Probability and Bayes Theorem

$$P(D_2=2 \mid D_1 + D_2 \le 5)$$

$$P(D_2=2 \mid D_1 + D_2 \le 5)$$

Event 1: $D_1 + D_2 \leq 5$

$$P(D_2=2 \mid D_1 + D_2 \le 5)$$

Event 1: $D_1 + D_2 \leq 5$

 $P(E_1)$

$$P(D_2=2 \mid D_1 + D_2 \le 5)$$

Event 1: $D_1 + D_2 \leq 5$

$$P(D_2=2 \mid D_1 + D_2 \le 5)$$

Event 1: $D_1 + D_2$

≤ 5

$$P(D_2=2 \mid D_1 + D_2 \le 5)$$

Event 1: $D_1 + D_2 \leq 5$

$$P(E_2 \mid E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)}$$

$$P(E_{2} | E_{1}) = \frac{P(E_{1} \cap E_{2})}{P(E_{1} \cap E_{1})}$$

D2	D1 —	•					
		1	2	3	4	5	6
•	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
•	3	4	5	6	7	8	9
	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

D2	o1 →	•					
		1	2	3	4	5	6
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
	3	4	5	6	7	8	9
	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

$$P(E_{2} | E_{1}) = \frac{P(E_{1} \cap E_{2})}{P(E_{1} \cap E_{2})}$$

$$P(E_{2} | E_{1}) = \frac{3/36}{2}$$

$$P(E_{2} | E_{2}) = \frac{3/36}{2}$$

$$P(D_2=2 \mid = \frac{3/36}{10/36}$$

 $D_1+D_2 \le 5)$

D2	D1 →	•					
1		1	2	3	4	5	6
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
•	3	4	5	6	7	8	9
	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

$$P(E_{2} | E_{1}) = \frac{P(E_{1} \cap E_{2})}{P(E_{1} \cap E_{2})}$$

$$P(D_{2} = 2 | = \frac{3/36}{10/36}$$

$$= 0.3$$

D2	D1 →	•		lacksquare			
1		1	2	3	4	5	6
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
•	ფ	4	5	6	7	8	9
	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

$$P(E_2 \mid E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)}$$

$$P(E_{2} | E_{1}) = \frac{P(E_{1} \cap E_{2})}{P(E_{1})}$$

$$P(E_{1} | E_{2}) = \frac{P(E_{2} \cap E_{1})}{P(E_{2} \cap E_{2})}$$

$$P(E_{2} | E_{1}) = \underbrace{P(E_{1} \cap E_{2})}_{P(E_{1} | E_{1})}$$

$$P(E_{1} | E_{2}) = \underbrace{P(E_{2} \cap E_{1})}_{P(E_{2} | E_{2})}$$

$$P(E_{2} | E_{1}) = \frac{P(E_{1} \cap E_{2})}{P(E_{1} | E_{1})} = \frac{P(E_{2} \cap E_{1})}{P(E_{1} | E_{1})}$$

$$P(E_{1} | E_{2}) = \frac{P(E_{2} \cap E_{1})}{P(E_{2} | E_{2})}$$

$$P(E_{2} | E_{1}) = \frac{P(E_{1} \cap E_{2})}{P(E_{1} | E_{1})} = \frac{P(E_{2} \cap E_{1})}{P(E_{1} | E_{2})}$$

$$P(E_{1} | E_{2}) = \frac{P(E_{2} \cap E_{1})}{P(E_{2} | E_{2})} \longrightarrow P(E_{2} \cap E_{1}) = P(E_{1} | E_{2}) * P(E_{2} \cap E_{2})$$

$$P(E_{2} | E_{1}) = \frac{P(E_{1} \cap E_{2})}{P(E_{1} | E_{1})} = \frac{P(E_{2} \cap E_{1})}{P(E_{1} | E_{2})} = \frac{P(E_{1} | E_{2}) *}{P(E_{1} | E_{2})}$$

$$P(E_{1} | E_{2}) = \frac{P(E_{2} \cap E_{1})}{P(E_{2} \cap E_{1})} \longrightarrow P(E_{2} \cap E_{1}) = \frac{P(E_{1} | E_{2}) *}{P(E_{2} \cap E_{2})}$$

$$P(E_{1} | E_{2}) = \frac{P(E_{1} | E_{2}) *}{P(E_{2} \cap E_{1})} \longrightarrow P(E_{2} \cap E_{1})$$

$$P(E_{2} | E_{1}) = \frac{P(E_{1} \cap E_{2})}{P(E_{1} | E_{1})} = \frac{P(E_{2} \cap E_{1})}{P(E_{1} | E_{2})} = \frac{P(E_{1} | E_{2}) *}{P(E_{1} | E_{2})}$$

$$P(E_{1} | E_{2}) = \frac{P(E_{2} \cap E_{1})}{P(E_{2} | E_{2})} \longrightarrow P(E_{2} \cap E_{1}) = P(E_{1} | E_{2}) *}{P(E_{2} | E_{2})}$$

Bayes Theorem

