

Universidad Carlos III de Madrid Departamento de Informática Curso de Sistemas Operativos

Autor: Jesús Carretero

Ejercicio

Ejercicio 3 (3,5 puntos para eval continua, 2 puntos para NO eval continua).

Dado el sistema de ficheros de la figura, que tiene las siguientes características:

- Tamaño de bloque: 1024 bytes.
- Tamaño de dirección de bloque: 2 bytes.
- Número de sectores por bloque: 2
- Tiempo de lectura de un sector: 1 ms.
- Cada i-nodo ocupa un bloque.
- Campos de un i-nodo:
 - o Identificador de i-nodo (ID)
 - o Metadatos (atributos del fichero, identificador propietario y grupo, etc.)
 - o Tipo de elemento: directorio (dir), fichero (fil) o enlace (lnk).
 - o Contador de enlaces (CE)
 - o 1 punteros directos (PD),
 - o 1 puntero indirecto simple (PIS)
 - o 1 puntero indirecto doble (PID).

La siguiente figura muestra una configuración del sistema de ficheros. Un valor en blanco significa que la entrada asociada está vacía (es tipo void/nill).

Bloque 0	Bloque 1	Bloque 2	Bloque 3	Bloque 4	Bloque 5	Bloque 6	Bloque 7	Bloque 8
Superbloque	ID: 0	ID: 1	ID: 2	ID: 3	ID: 4	ID: 5	ID: 6	ID: 7
i-nodo raíz: 0	Metadatos							
	Tipo: dir	Tipo: fil	Tipo: fil	Tipo: dir	Tipo: dir	Tipo: lnk	Tipo: dir	Tipo: fil
	CE: 3	CE: 1	CE: 1	CE: 4	CE: 2	CE: 1	CE: 2	CE: 1
	PD: 51	PD: 100	PD: 103	PD: 53	PD: 54	PD: 55	PD: 56	PD: 120
	PIS:	PIS:	PIS: 52	PIS:	PIS:	PIS:	PIS:	PIS: 121
	PID:	PID: 57						

Bloque 5	51	Bloque 52	Bloque 5	53	Bloque 5	54	Bloque 55	Bloc	que 56	Bloque 57	Bloque 58	Bloque 59
	0	104		3		4	/Murcia		6	130	131	
	0	105		0		3			3	58	132	
Madrid	1	106	Norte	4	Ciudad	5					133	
Lugo	2		Sur	6								
Murcia	3		Centro	7								

Se pide:

- 1. Representar la estructura del árbol de ficheros/directorios. ¿Qué problema puede existir al recorrer la estructura anterior en la búsqueda de un fichero?
- 2. ¿Cuál es el tamaño máximo que puede tener un fichero?
- 3. Describa cómo se realizan la siguiente operación y qué cambios se efectuarían en el sistema de ficheros.

rm /Murcia/Norte/Ciudad

Universidad Carlos III de Madrid Departamento de Informática Curso de Sistemas Operativos

Autor: Jesús Carretero

- 4. Calcule el tiempo necesario para leer el primer byte del fichero /Madrid
- 5. Calcule el tiempo necesario para leer el último byte del fichero /Murcia/Centro

NOTA: Comando *rm*: borra un fichero.

SOLUCIÓN:

1. Representar la estructura del árbol de ficheros/directorios. ¿Qué problema puede existir al recorrer la estructura anterior en la búsqueda de un fichero? En caso en que hubiera un problema ¿cómo se podría resolver?

/Madrid (Fichero)
/Lugo (Fichero)
/Murcia/Norte/Ciudad (Enlace)
/Murcia/Sur (Directorio vacío)
/Murcia/Centro (Fichero)

El problema es una referencia circular a través del enlace:

/Murcia/Norte/Ciudad que apunta a /Murcia

Dos posibles soluciones es no utilizar enlaces simbólicos en las búsquedas o restringir el número de directorios de las mismas.

2. ¿Cuál es el tamaño máximo que puede tener un fichero?

Un puntero directo direcciona un bloque de 1 KB.

Dado que el tamaño de bloque es 1KB y el tamaño de dirección son 2B, cada punto indirecto simple direcciona un bloque que contiene 1KB/2B=512 punteros directos. Pudiendo direccionar 512 KB en total.

Un puntero indirecto doble direcciona un bloque que contiene 1KB/2B=512 punteros indirectos simples, cada uno de los cuales direcciona 512 KB. Pudiendo direccionar: 512 * 512KB = 256 MB

El tamaño máximo de fichero será: 1KB + 512KB + 256 MB.

3. Describa cómo se realizan cada una de siguiente operación y qué cambios se efectuarían en el sistema de ficheros.

rm /Murcia/Norte/Ciudad

Se accede al bloque 0 y se identifica el i-nodo raíz, se accede al i-nodo 0 (bloque 1) y su contenido (bloque 51). Se accede al i-nodo 3 (bloque 4) y a su contenido (bloque 53). Se accede al i-nodo 4 (bloque 5) y a su contenido (bloque 54). Se accede al i-nodo 5 (bloque 6) y se observa que el contador de enlaces es 1, por lo que puede ser borrado el enlace. Tanto el i-nodo 5 como el bloque 55 quedan libres. El resultado es:

Universidad Carlos III de Madrid Departamento de Informática Curso de Sistemas Operativos

Autor: Jesús Carretero

Bloque 0	Bloque 1	Bloque 2	Bloque 3	Bloque 4	Bloque 5	Bloque 6	Bloque 7	Bloque 8
Superbloque	ID: 0	ID: 1	ID: 2	ID: 3	ID: 4	ID: 5	ID: 6	ID: 7
i-nodo raíz: 0	Metadatos	Metadatos	Metadatos	Metadatos	Metadatos	Metadatos	Metadatos	Metadatos
	Tipo: dir	Tipo: fil	Tipo: fil	Tipo: dir	Tipo: dir	Tipo: lnk	Tipo: dir	Tipo: fil
	CE: 3	CE: 1	CE: 1	CE: 4	CE: 2	CE: 1	CE: 2	CE: 1
	PD: 51	PD: 100	PD: 103	PD: 53	PD: 54	PD: 55	PD: 56	PD: 120
	PIS:	PIS:	PIS: 52	PIS:	PIS:	PIS:	PIS:	PIS: 121
	PID:	PID:	PID:	PID:	PID:	PID:	PID:	PID: 57

Bloque 5	51	Bloque 52	Bloque 5	53	Bloque 5	54	Bloque 55	Bloc	ue 56	Bloque 57	Bloque 58	Bloque 59
	0	104		3		4	/Murcia		6	130	131	
	0	105		0		3			3	58	132	
Madrid	1	106	Norte	4	Ciudad	<u>5</u>					133	
Lugo	2		Sur	6								
Murcia	3		Centro	7								

- 4. Calcule el tiempo necesario para leer el primer byte del fichero /Madrid El acceso al fichero requiere las siguientes operaciones:
 - Se accede al bloque 0 y se identifica el i-nodo raíz, se accede al i-nodo 0 (bloque 1) y su contenido (bloque 51). Se accede al i-nodo 1 (bloque 2) y a su contenido (bloque 100). En total, se acceden a 5 bloques, lo que supone 10 sectores, que tardan 10 ms.
- 5. Calcule el tiempo necesario para leer el último byte del fichero /Murcia/Centro Se accede al bloque 0 y se identifica el i-nodo raíz, se accede al i-nodo 0 (bloque 1) y su contenido (bloque 51). Se accede al i-nodo 3 (bloque 4) y a su contenido (bloque 53). Se accede al i-nodo 7 (bloque 8). El último byte del fichero está asociado al puntero indirecto doble. Por lo que es necesario, acceder al bloque 57 y a través de la última entrada del mismo al bloque 58. La última entrada del mismo apunta al último bloque de datos que es el 133.

Así es necesario acceder a: 9 bloques de datos que suponen 18 sectores con un tiempo asociado de 18 ms.