Convolutional Neural Network 기본 개념

Youngtaek Hong, PhD 2019.11.20

• Fully Connected Layer 만으로 구성된 인공 신경망의 입력 데이터는 1차원(배열) 형태로 한정됩니다.

Why CNN?

• 한 장의 컬러 사진은 3차원 데이터입니다. 배치 모드에 사용되는 여러 장의 사진은 4차원 데이터입니다.

CNN 의 특징

- 각 레이어의 입출력 데이터의 형상 유지
- 이미지의 공간 정보를 유지하면서 인접 이미지와의 특징을 효과적으로 인식
- 복수의 필터로 이미지의 특징 추출 및 학습
- 추출한 이미지의 특징을 모으고 강화할 수 있는 Pooling 레 이어를 사용
- 필터를 공유 파라미터로 사용하기 때문에, 일반 인공 신경망과 비교하여 학습 파라미터가 매우 적음

CNN의 주요 용어 정리

- Convolution(합성곱)
- 채널(Channel)
- 필터(Filter)
- 커널(Kernel)
- 스트라이드(Strid)
- 패딩(Padding)
- 피처 맵(Feature Map)
- 액티베이션 맵(Activation Map)
- 풀링(Pooling) 레이어

Convolution

1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31	32	33	34	35
36	37	38	39	40	41	42
43	44	45	46	47	48	49

0.1	0.2	0.3
0.4	0.5	0.6
0.7	0.8	0.9

$$= 0.1 \times 10 + 0.2 \times 11 + 0.3 \times 12 + 0.4 \times 17 + 0.5 \times 18 + 0.6 \times 19 + 0.7 \times 24 + 0.8 \times 25 + 0.9 \times 26 = 94.2$$

Smoothing Spatial filters

Averaging filters

- Box filter
- Weighted average filter

	1	1	1		1	2	1	
$\frac{1}{9}$ ×	1	1	1	$\frac{1}{16}$ ×	2	4	2	
	1	1	1		1	2	1	
	Box filter				Weig	hted	average	е

Convolution의 작동 원리

- 입력 데이터 5X5, 필터 크기 3X3
- Stride = 1

1 _{×1}	1,	1 _{×1}	0	0
O _{×0}	1 _{×1}	1,0	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

필터(Filter) & Stride

- 필터는 이미지의 특징을 찾아내기 위한 공용 파라미터입니다.
- 필터는 일반적으로 (3, 3)과 같은 정사각 행렬로 정의됩니다.
- CNN에서 학습의 대상은 필터 파라미터 입니다.

Feature Map 생성 과정

채널, Channel

이미지 출처: https://en.wikipedia.org/wiki/Channel_(digital_image)

컬러 영상 (3-channel) 에서 Feature Map 생성 과정

패딩(Padding)

- Convolution 레이어에서 Filter와 Stride에 작용으로 Feature Map 크기는 입력데이터 보다 작습니다.
- Convolution 레이어의 출력 데이터가 줄어드는 것을 방지하는 방법이 패딩입니다
- 패딩은 입력 데이터의 외각에 지정된 픽셀만큼 특정 값으로 채워 넣는 것을 의미합니다. 보통 패딩 값으로 0으로 채워 넣 습니다.

패딩(Padding)

Pooling 레이어

- 풀링 레이어는 컨볼류션 레이어의 출력 데이터를 입력으로 받아서 출력 데이터(Activation Map)의 크기를 줄이거나 특정 데이터를 강조하는 용도로 사용됩니다.
- 플링 레이어를 처리하는 방법으로는 Max Pooling 과 Average Pooning, Min Pooling이 있습니다.

Pooling 레이어

1. Introduction to ConvNets

동영상 강의 자료 활용

1. 영상 처리의 개요

3Blue1Brown

구독자 1,787,688명 • 동영상 83개

3blue1brown, by Grant Sanderson, is some combination of math and entertainment, depending on your disposition. The goal is ...

구독중 178만

업로드한 동영상 모두 재생

What is this? $\frac{\partial T}{\partial t} = \alpha \nabla^2 T$

3BLUE1BROWN SERIES S4 • E2

But what is a partial differential equation? |...

조회수 36만회 • 2주 전 자막 Differential equations
Studying the unsolvable

3BLUE1BROWN SERIES S4 • E1

Overview of differential equations | Chapter 1

조회수 63만회 • 1개월 전 자막

3BLUE1BROWN SERIES S1 •

Cramer's rule, explained geometrically | Essence of...

조회수 25만회 • 1개월 전 자막

▼ 정렬 기준

How colliding blocks act like a beam of light...to comput...

조회수 42만회 • 3개월 전 자막

So why do colliding blocks compute pi?

조회수 110만회 • 3개월 전 자막

The most unexpected answer to a counting puzzle

조회수 200만회 • 3개월 전 자막

But WHY is a sphere's surface area four times its...

조회수 155만회 • 5개월 전 자막

Sneaky Topology (The Borsuk-Ulam theorem)

조회수 27만회 • 5개월 전 자막

신경망 이란 무엇인가?

