Exercice 16

Résolvons dans Z les systèmes suivants

1)
$$\int x = 2 \mod 10$$

 $\int x = 5 \mod 13$

$$13 = 10+3$$
 $10 = 3\times3+1$
 $10 = 3\times3+1$
 $10 = 1$
 $10 = 1$
 $10 = 1$

ainsi,
$$x_1 = 40$$
 et $x_1 = 0 [10]$; $x_1 = 1 [13]$;

of
$$x_2 = -39$$
; $x_2 = 1 [10]$ of $x_2 = 0 [13]$.

Donc une solution particulière de ce pystème got:

$$N = 5x_1 + 2x_2$$

$$N = 122$$

2-)
$$\begin{cases} x = 4 \mod 6 \\ x = 7 \mod 9 \end{cases}$$

(43)

Comme
$$2\times(1)-3\times(-1)=1$$
;
alors $(-1;-1)$ st une solution de l'équation $(\#)$.
Et ona: $\begin{cases} 2a-3b=1 \\ 2\times(-1)-3\times(-4)=1 \end{cases}$ (1)

(1) -(2) = 0 2 (a+1) - 3 (b+1) = 0

$$2 (a+1) = 3 (b+1)$$

Alon 2 divise 3(b+1) et $2 \wedge 3 = 1$ donc 2 divise b+1Aini b+1 = 2k, $k \in \mathbb{Z}$ c'est- \bar{a} -dire b = 2k-1, $k \in \mathbb{Z}$

30)
$$\int 5x = 4 \mod 27$$
 (1).
 $12x = 9 \mod 51$ (2)
(1) Résolvons (1)

(i) Resolvoits (b)

$$27 = 5 \times 5 + 2$$

 $5 = 2 \times 2 + 1$
 $5 = 2 \times 2 + 1$
 $5 \times 44 + 27 \times (-8) = 4$

$$d' v \hat{x} \propto = 44 [27]$$

 $a \sin 8 \hat{x} \approx 47 [27]$

(ii) Résolvons (2)

$$4x = 3 [47]$$

$$17 = 4 \times 4 + 1 \implies 17 + 4 \times (-4) = 1$$

$$=0$$
 $17\times3+4\times(-12)=3$

$$d'oú \propto = -12 [17]$$

C'est-ā-dire,
$$x = 5$$
 [17]

Dapré (i) et (ii),
$$5x = 4(27)$$
 $x = 10$ [27] $x = 10$ $x = 10$

(45) Résolvons le système:
$$1 = 17[27]$$
 $\gamma = 5[27]$

$$27 = 17+10$$
 $17 = 10+7$
 $10 = 7+3$
 $10 = 7+3$
 $10 = 3x2+1$
 $10 = 3x2+1$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 $10 = 10+7$
 10

$$\chi_2 = -135$$
, $\chi_2 = 0$ [27]

Vonc une solution particulière de notre système let:

$$N = 17 \times 136 + 5 \times (-135)$$