

Hive - Básico

Aula 5

Eu sou Rodrigo Augusto Rebouças.

Engenheiro de dados da Semantix Instrutor do Semantix Academy

Você pode me encontrar em: rodrigo.augusto@semantix.com.br

Particionamento

Conceitos e Comandos Básicos

Particionamento Hive

- Tabela não particionada
 - Consultas precisam varrer todos os arquivos no diretório
 - Processo lento para big table
- Tabela particionada
 - Consultas podem varrer os arquivos de uma partição
 - Campo com registros duplicados (grupos)
 - estado, gênero, categoria, classe, etc...
 - Fatias horizontais de dados, separadas por partes

Tabela Particionada

- Definir parâmetros na criação da tabela
 - Partição
 - o Um campo que não está na estrutura da tabela
 - Organizar os dados
 - Consultas SQL interpretarão como coluna
 - Select * from user where cidade=sp
 - Comando
 - partitioned by (<campo> <type>)
 - Buket
 - Quantidade que os dados serão divididos
 - Campo precisa estar na estrutura da tabela
 - Comando
 - clustered by (<campo>) into <qtd> buckets

Exemplo Criação de Tabela

Tabela Particionada
create table user(
 id int,
 name String,
 age int
)
partitioned by (data String)
clustered by (id) into 4 buckets;

Tipos de Particionamento

Estático e Dinâmico

Particionamento Estático

- O Você pode inserir os arquivos individualmente em uma tabela de partição
- Criar novas partições manualmente
- Comando
 - hive> alter table <nomeTabela> add partition(<partição>='<valor>');
- O Ex.
 - Criar uma partição para cada dia
 - hive> alter table logs add partition(data='2019-21-02');

Particionamento Dinâmico

- O Partições são criadas automaticamente nos tempos de carregamento
- Novas partições podem ser criadas dinamicamente
 - Baseada no valor da última coluna
 - Se a partição não existir, ela será criada
 - Se existir, os dados serão adicionados na partição
 - Ex.
 - hive> insert overwrite table user_cidade partition (cidade) select * from user;
- O Por padrão, o particionamento dinâmico está desativado, para ativar
 - SET hive.exec.dynamic.partition = true;
 - SET hive.exec.dynamic.partition.mode = nonstrict;

Opções com Partições

- Visualizar partições de uma tabela
 - hive> show partitions user;

- Excluir partições de uma tabela
 - hive> alter table user drop partition (city='SP');

- Alterar nome da partição de uma tabela
 - hive> alter table user partition city rename to partition state;

Reparar Tabela

Reparar Tabela

- Reparar partições na tabela Hive
 - Quando a tabela não encontra a partição
 - Sincronizar a tabela com o metastore
- Comando
 - o msck repair table <nomeTabela>

Laboratório

Resolução de exercícios

Exercícios Criação de Tabela Particionada

- 1. Criar a pasta "/user/aluno/<nome>/data/nascimento" no HDFS
- Criar e usar o Banco de dados <nome>
- 3. Criar uma tabela externa no Hive com os parâmetros:
 - a) Tabela: nascimento
 - b) Campos: nome (String), sexo (String) e frequencia (int)
 - c) Partição: ano
 - d) Delimitadores:
 - a) Campo ','
 - b) Linha '\n'
 - e) Salvar
 - a) Tipo do arquivo: texto
 - b) Local: '/user/aluno/<nome>/data/nascimento'
- 4. Adicionar partição ano=2015
- 5. Enviar o arquivo local "/input/exercises-data/names/yob2015.txt" para o HDFS no diretório /user/aluno/<nome>/data/nascimento/ano=2015
- 6. Selecionar os 10 primeiros registros da tabela nascimento no Hive
- 7. Repita o processo do 4 ao 6 para os anos de 2016 e 2017.

Exercícios Seleção de Tabelas

- 1. Selecionar os 10 primeiros registros da tabela nascimento pelo ano de 2016
- 2. Contar a quantidade de nomes de crianças nascidas em 2017
- 3. Contar a quantidade de crianças nascidas em 2017
- 4. Contar a quantidade de crianças nascidas por sexo no ano de 2015
- 5. Mostrar por ordem de ano decrescente a quantidade de crianças nascidas por sexo
- 6. Mostrar por ordem de ano decrescente a quantidade de crianças nascidas por sexo com o nome iniciado com 'A'
- 7. Qual nome e quantidade das 5 crianças mais nascidas em 2016
- 8. Qual nome e quantidade das 5 crianças mais nascidas em 2016 do sexo masculino e feminino

Tipos de arquivos e compressão

Tipos de Arquivo para Salvar

- Adicionar o parâmetro stored na criação da tabela
- o stored as <formatoArquivo>
 - TEXTFILE (Padrão)
 - SEQUENCEFILE
 - RCFILE
 - ORC (Hortonworks)
 - PARQUET (Cloudera)
 - AVRO
 - JSONFILE

Tipos de Compressão para Salvar

- Se o arquivo mapred-site.xml n\u00e3o estiver configurado pode setar manualmente
 - hive> SET hive.exec.compress.output=true;
 - hive> SET mapred.output.compression.codec= codec;
 - hive> SET mapred.output.compression.type=BLOCK;

Codec:

- gzip: org.apache.hadoop.io.compress.GzipCodec
- bzip2: org.apache.hadoop.io.compress.BZip2Codec
- LZO: com.hadoop.compression.lzo.LzopCodec
- Snappy: org.apache.hadoop.io.compress.SnappyCodec
- Deflate: org.apache.hadoop.io.compress.DeflateCodec

Tipos de Compressão para Salvar

- Adicionar o parâmetro compress em tblproperties na criação da tabela
- stored as <formatoArquivo> tblproperties(' formatoArquivo.compress'='<CompressaoArquivo>');
 - GZIP
 - BZIP2
 - LZO
 - SNAPPY
 - DEFLATE

Exemplo Criação de Tabela

Tabela com partição e compressão create table user(id int, name String, age int partitioned by (data String) clustered by (id) into 256 buckets stored as parquet tblproperties('parquet.compress'='SNAPPY');

Laboratório

Resolução de exercícios

Exercícios Criação de Tabelas Otimizadas

- Usar o banco de dados <nome>
- 2. Selecionar os 10 primeiros registros da tabela pop
- 3. Criar a tabela pop_parquet no formato parquet para ler os dados da tabela pop
- 4. Inserir os dados da tabela pop na pop_parquet
- 5. Contar os registros da tabela pop_parquet
- 6. Selecionar os 10 primeiros registros da tabela pop parquet
- 7. Criar a tabela pop_parquet_snappy no formato parquet com compressão Snappy para ler os dados da tabela pop
- 8. Inserir os dados da tabela pop na pop_parquet_snappy
- Contar os registros da tabela pop_parquet_snappy
- 10. Comparar as tabelas pop, pop_parquet e pop_parquet_snappy no HDFS.

Obrigado!

Alguma pergunta?

Você pode me encontrar em: rodrigo.augusto@semantix.com.br

GET SMARTER