The Wave Equation

An introduction

November 2019

What is a wave?

What is a wave?

Not easy to define rigorously...

 Typically: transfer through space of oscillatory energy (vibrations in time)

- Obvious examples:
 - Light (E-M)
 - Sound

Why are waves important?

Why are waves important?

Almost everything we experience comes to us through waves...

- Throughout all areas of the physical world:
 - Light (E-M)
 - Sound
 - Gravity
 - Quantum

Applications for wave-modelling?

Applications for wave-modelling?

- Imaging, Exploration, NDT, Interferometry...
 - Seismology
 (e.g. earthquakes, volcanoes, petroleum, helioseismics)
 - Ultrasound
 (e.g. medical imaging, pipeline testing)
 - Electric / magnetic / E-M
 (e.g. pipeline testing, body-scanners, fibre-optic signals)
 - Gravitational
 (e.g. binary mergers, supernovas, primordial cosmology)

Characteristics of waves

Characteristics of waves

Longitudinal

- oscillating in same direction as propagation.
- e.g. sound (acoustic pressure), P-waves

Transverse

- oscillating perpendicular to propagation
- e.g. E-M, S-waves (shear waves)

Characteristics of waves

- Frequency, f (also use angular freq: $\omega = 2\pi f$)
 - Rate of oscillation in time
 - S.I. unit: Hertz (Hz) = s^{-1} (or rad. s^{-1} for ω)
- Propagation speed, c
 - Distance per unit time
 - S.I. units: Metres per second (ms⁻¹)
- Amplitude (various symbols)

Wavelength: $\lambda = c / f$ distance (m)

Also, (angular) wavenumber: $k = \omega/c = 2\pi/\lambda (\text{rad.}) \,\text{m}^{-1}$

The 1D Wave Equation

The 1D Wave Equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

The 1D Wave Equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

- Second order P.D.E.
 - twice differentiated (in time & space)
 - domain over more than one variable (x & t)
- Hyperbolic (rather than elliptic/parabolic)
 - signal travels at finite speed

November 2019

Imperial College London