Теория формальных языков. Рубежный контроль №2

Вариант №23

Киселев Кирилл

Теоретическая информатика и компьютерные технологии МГТУ им. Н.Э. Баумана декабрь 2023

Содержание

1	Задача 1	2
	1.1 Решение	2
2	Задача 2 2.1 Решение	3
3	Задача 3 3.1 Решение	4

1 Задача 1

Язык SRS $a \to bab, \, a^3 \to a^2, \, ba \to ac$ над множеством базисных слов $b^n a^n$

1.1 Решение

Замечания:

- 1. Любое не пустое слово содержит хотя бы одну a
- 2. Буквы a могут только уменьшаться
- 3. $|w|_a \le |w|_b + |w|_c$
- 4. Можно бесконечно двигать влево самую первую букву a
- 5. Слова могут начинаться только с $b^i a^k$, где k > 0
- 6. Применение правила 3 ограничивает сдвиг тех a, которые находились правее буквы a, к которой было применено правило.
- 7. При появлении ол

$$w = b^{i_0} a^{p_1} c^{k_1} b^{i_1} a^{p_2} c^{k_2} b^{i_2} a^{p_3} c^{k_3} b^{i_3} \dots a^{p_r} c^{k_r} b^{i_r} a^{p_{r+1}}, p_1 \ge 1$$

$$\sum_{m=1}^{r+1} p_m \le \sum_{m=0}^{r} i_m + \sum_{m=1}^{r} k_m$$

2 Задача 2

Язык $\Big\{ w \; \Big| \; |w|_{ab} \; = \; |w|_{baa} \; \& \; w = w^R \Big\}.$ Алфавит $\{a,b\}$

2.1 Решение

Пусть $L_1 = \{w \mid |w|_{ab} = |w|_{baa}\}, L_2 = \{w \mid w = w^R\}$. Язык L_1 регулярный, а язык L_2 контекстно-свободный. Значит исходный язык L является КС, как пересечение КС и регулярного языков.

Докажем недетерминированность L. Пусть n - длина накачки, положим k=n+1. Тогда возьмем следующие слова:

$$w_1 = a^{2k}b^{2k}a^{2k}, w_2 = a^{2k}b^{2k}a^{3k}b^{2k}a^{3k}b^{2k}a^{2k}$$

Пусть $x=a^{2k}b^{2k}a^{2k-1},$ y=a, $z=a^{k+1}b^{2k}a^{3k}b^{2k}a^{2k}.$ Необходимо рассмотреть 2 случая:

- 1. Рассмотрим общий перефикс x. Пусть $x=x_0x_1x_2x_3x_4$. В случаях: $x_1=a^k$ и $x_3=a^p$, $x_1=a^k$ и $x_3=b^p$, $x_1=b^k$ и $x_3=b^p$; отрицательная накачка в w_2 выводит слово из языка, т.к полученное слово уже не будет являться палиндромом. Если $x_1=a^{k_1}b^{k_2}$, либо $x_2=a^{k_1}b^{k_2}$, то отрицательная накачка выводит оба слова из языка
- 2. Пусть $x=x_0x_1x_2,\ y=y_0y_1y_2,\ z=z_0z_1z_2$. Т.к по условию леммы $|x_1x_2|\leq n$, то $x_1=a^{k_1}$ и $x_2=a^{k_2},\ k_1+k_2\leq n,\ k_1>0$. Также y_1 равно либо пустому слову, либо a, тогда слово $x_0x_1^ix_2y_0y_1^iy_2$ при любом $i\neq 1$ не принадлежит L, т.к. не является палиндромом.

Следовательно, данный язык не является детерменированным КС языком.

3 Задача 3

Язык атрибутной грамматики для регулярок:

```
\begin{split} [S] &\rightarrow [Regexp] &\quad ; \\ [Regexp] &\rightarrow [Regexp][Regexp] &\quad ; \\ [Regexp] &\rightarrow [Regexp][Regexp] &\quad ; \\ [Regexp_0.val &\coloneqq Regexp_1.val + + Regexp_2.val \\ [Regexp] &\rightarrow ([Regexp]|[Regexp]) &\quad ; \\ [Regexp_1.val &\neq \varepsilon \lor Regexp_2.val \neq \varepsilon, \\ [Regexp_1.val &\neq |, Regexp_0.val \coloneqq | \\ [Regexp] &\rightarrow ([Regexp]) * &\quad ; \\ [Regexp_1.val &\neq \varepsilon, Regexp_0.val \coloneqq * \\ [Regexp] &\rightarrow \varepsilon &\quad ; \\ [Regexp_1.val &\equiv \varepsilon \\ [Regexp] &\rightarrow a &\quad ; \\ [Regexp_1.val &\coloneqq a \\ [Regexp] &\rightarrow b &\quad ; \\ [Regexp.val &\coloneqq b \\ \end{split}
```

3.1 Решение

Рассмотрим подвыражения, которые запрещены согласно ограничениям налагаемым условиями на аттрибут:

- $1. \ (\varepsilon|\varepsilon)$ $2. \ ((\cdot\mid\cdot)\mid\cdot)$ $3. \ (\varepsilon)*$
- 4. ((·)*)*

Для исключения подслов вида 1, 2 введем три новых нетерминала, и вместо правила $[Regexp] \to ([Regexp]|[Regexp])$ введем правило $[Regexp] \to [Regexp']$

Для того, чтобы исключить выражения вида 3, 4 введем новый нетерминал $Regexp_{iter}$

```
\begin{split} [Regexp_{iter}] &\rightarrow [Regexp'] \\ [Regexp_{iter}] &\rightarrow [Regexp_{iter}] [Regexp_{iter}] \\ [Regexp_{iter}] &\rightarrow a \\ [Regexp_{iter}] &\rightarrow b \end{split}
```