CSE 564 VISUALIZATION AND VISUAL ANALYTICS

VISUAL DESIGN & AESTHETICS

KLAUS MUELLER

COMPUTER SCIENCE DEPARTMENT STONY BROOK UNIVERSITY

Lecture	Торіс	Projects
1	Intro, schedule, and logistics	
2	Applications of visual analytics, basic tasks, data types	
3	Introduction to D3, basic vis techniques for non-spatial data	Project #1 out
4	Data assimilation and preparation	
5	Bias in visualization	
6	Data reduction and dimension reduction	
7	Visual perception and cognition	Project #1 due
8	Visual design and aesthetics	Project #2 out
9	Data mining techniques: clusters, text, patterns, classifiers	
10	Data mining techniques: clusters, text, patterns, classifiers	
11	Computer graphics and volume rendering	
12	Techniques to visualize spatial (3D) data	Project #2 due
13	Scientific and medical visualization	Project #3 out
14	Scientific and medical visualization	
15	Midterm #1	
16	High-dimensional data, dimensionality reduction	Project #3 due
17	Big data: data reduction, summarization	
18	Correlation and causal modeling	
19	Principles of interaction	
20	Visual analytics and the visual sense making process	Final project proposal due
21	Evaluation and user studies	
22	Visualization of time-varying and time-series data	
23	Visualization of streaming data	
24	Visualization of graph data	Final Project preliminary report due
25	Visualization of text data	
26	Midterm #2	
27	Data journalism	
	Final project presentations	Final Project slides and final report due

THREE KEY VISUAL REPRESENTATIONS

Gestalt Principles:

 the tendency to perceive elements as belonging to a group, based on certain visual properties

Pre-attentiveness:

 certain low level visual aspects are recognized before conscious awareness

Visual variables:

the different visual aspects that can be used to encode information

GESTALT

Concept of totality

you grasp the "totality" of something before worrying about the

details

PRE-ATTENTIVENESS

Also called pop-out (multiple conjunctions shown here):

WHICH POPPED-OUT FASTER

Color (red vs. green)
Shape (circle vs. square)

VISUAL VARIABLES

Formal theory linking perception to visualization Established by Jacques Bertin (1967)

- he called it 'Image Theory'
- original book in French (Sémiologie Graphique)
 translated into English by W. Berg (1983)
- not formally linked to vision research more based on intuition
- but has been shown later by M. Green to be quite accurate

VISUAL VARIABLES

Two planar variables

- spatial dimensions
- map (arm, grip) to (x,y)

Six retinal variables

- size
- color
- shape
- orientation
- texture
- brightness

Retinal variables allow for one more variable to be encoded

- more than three variables will hamper efficient visual search
- recall low decoding speed of conjunctions

ASSOCIATIVE VS. SELECTIVE

Both are nominal qualities

Associative

- lowest organizational level
- enables visual grouping of all elements of a variable

Selective

- next lowest level
- enables viewer to isolate encoded data and ignore others

VISUAL VARIABLE #1 - PLANAR

Visual property	Can convey
Associative	
Selective	
Ordered	
Quantitative	

VISUAL VARIABLE #1 - PLANAR

Visual property	Can convey
Associative	Υ
Selective	Υ
Ordered	Υ
Quantitative	Υ

VISUAL VARIABLE #2 - SIZE

Visual property	Can convey
Associative	
Selective	
Ordered	
Quantitative	

VISUAL VARIABLE #2 - SIZE

Visual property	Can convey
Associative	Υ
Selective	Υ
Ordered	Υ
Quantitative	(Y)

VISUAL VARIABLE #3 - BRIGHTNESS

Visual property	Can convey
Associative	
Selective	
Ordered	
Quantitative	

VISUAL VARIABLE #3 - BRIGHTNESS

Visual property	Can convey
Associative	Υ
Selective	Υ
Ordered	Υ
Quantitative	

VISUAL VARIABLE #4 - TEXTURE

Visual property	Can convey
Associative	
Selective	
Ordered	
Quantitative	

VISUAL VARIABLE #4 - TEXTURE

Visual property	Can convey
Associative	Υ
Selective	Υ
Ordered	
Quantitative	

VISUAL VARIABLE #4 - COLOR

Visual property	Can convey
Associative	
Selective	
Ordered	
Quantitative	

VISUAL VARIABLE #4 - COLOR

Visual property	Can convey
Associative	Υ
Selective	Υ
Ordered	
Quantitative	

VISUAL VARIABLE #5 - ORIENTATION

Visual property	Can convey
Associative	
Selective	
Ordered	
Quantitative	

VISUAL VARIABLE #5 - ORIENTATION

Visual property	Can convey
Associative	(Y)
Selective	(Y)
Ordered	
Quantitative	

VISUAL VARIABLE #6 - SHAPE

Visual property	Can convey
Associative	
Selective	
Ordered	
Quantitative	

VISUAL VARIABLE #6 - SHAPE

Visual property	Can convey
Associative	(Y)
Selective	(Y)
Ordered	
Quantitative	

LEVELS OF ORGANIZATION

Visual variables differ in what data properties they can convey

	Associative	Selective	Ordered	Quantitative
Planar	yes	yes	yes	yes
Size	yes	yes	yes	(yes)
Brightness (Value)	yes	yes	yes	
Texture	yes	yes		
Color (Hue)	yes	yes		
Orientation	(yes)	(yes)		
Shape	(yes)	(yes)		

TAKE-AWAYS (1)

Planar variable is the single most strongest visual variable

- maps to proximity
- provides an intuitive organization of information
- things close together are perceptually grouped together

TAKE-AWAYS (2)

Size and brightness are good secondary visual variables to encode *relative* magnitude

size appeals to spatial perceptive channels

What are the advantages and disadvantages of brightness

- + brightness does not consume extra space (bigger disks do)
- brightness depends on environmental lighting (size does not) where do you view the visualization (office, outdoors, night or day?)

TAKE-AWAYS (3)

Color is a good visual variable for labeling

texture can do this as well, but it does not support pop-out much

color pop-out

texture pop-out?

TAKE AWAYS (4)

Shape provides only limited pop-out

- compare with color pop-out on the previous slide
- another example: coloring of graphs

Background with same-colored object at the same brightness

- can you see the shape?
- can you count the number of gaps?

Background with different-colored object at similar brightness

- can you see the shape?
- can you count the number of gaps?

Background with different-colored object at lower brightness

- can you see the shape?
- can you count the number of gaps?

Background with different-colored object at higher brightness

- can you see the shape?
- can you count the number of gaps?

WHAT DID WE LEARN FROM THAT EXPERIMENT?

Color is for ...

Brightness (intensity, luminance) is for ...

LUMINANCE AND HUE

luminance mapped to height

just hue

hue and luminance

encode high frequency information by L

ROLE OF SATURATION

Art & Money
By: JeanAbbiateci

COLOR TAGGING FOR IMPORTANCE

Which is the most important structure in each (as intended by the author)

HOW ABOUT AESTHETICS?

Which one do people like better?

perceived importance level of red object is the same

aesthetics

COLOR CODING AND COLORMAPS

- · Color coding
 - large areas: low saturation
 - small areas: high saturation
 - maintain luminance contrast
 - break iso-luminances with borders
- Pseudo-coloring: assign colors to grey levels by indexing the grey levels into a color map

COLOR CODING AND COLORMAPS

- Color coding
 - large areas: low saturation
 - small areas: high saturation
 - maintain luminance contrast
 - break iso-luminances with borders
- Pseudo-coloring: assign colors to grey levels by indexing the grey levels into a color map

original greylevel map

simple spectrum sequence with iso-luminance

more effective:
spiral sequence through
color space

luminance increases with

SPIRAL THROUGH COLOR SPACE

Varies hue and intensity at the same time

shown here: CIE Lab color space

THE RAINBOW COLORMAP

As we saw, colors can add detail information to a visualization

instead of 256 levels get 256³ = 16,777,216

Oftentimes you have a visualization with just one variable

- this would give you a grey level image
- how to turn this into a color image for better detail

Solution 1:

 \blacksquare map to hue \rightarrow the rainbow colormap

can you see all adjacent colors at the same contrast?

AVOID RAINBOW COLORMAPS

BETTER: LINEAR HUE

Moreland's Diverging Colormaps

Algorithmically generated

- all have the same midpoint value (0.865, 0.865, 0.865)
- begin and end point listed here

https://www.kennethmoreland.com/color-maps/

Brewer Scales

Nominal scales

distinct hues, but similar emphasis

Sequential scales

- vary in lightness and saturation
- vary slightly in hue

Diverging scale

- complementary sequential scales
- neutral at "zero"

http://colorbrewer2.org/

OPPONENT COLOR

Definition

- · Achromatic axis
- · R-G and Y-B axis
- Separate lightness from chroma channels

First level encoding

- · Linear combination of LMS
- · Before optic nerve
- · Basis for perception
- · Defines "color blindness"

Add Opponent Color

- · Dark adds light
- · Red adds green
- · Blue adds yellow

These samples will have both light/dark and hue contrast

Opponent colors do not mix

- can only see one of the opponents
- there is no blueish yellow
- there is no reddish green

COLOR BLINDNESS

Most common is deficiency in distinguishing red and green

FORMS OF COLOR BLINDNESS

ISHIHARA TEST

LINE CHARTS

DESIGNING FOR COLOR DEFICIENT USERS

8% (0.5%) of US males (females) are color deficient

so be careful when designing visualizations

What to do?

- use different intensities for red-green (e.g. light green, dark red)
- space red and green colored colors dots far apart or make large
- add symbols to line charts or vary line style
- avoid using gradient colors to indicate data value

SUMMING UP

Use Luminance for detail, shape, and form
Use color for coding – few colors
Use strong colors for small areas
Use subtle colors to code large areas

Visualization artistry:

 Use of luminance to indicate direction

scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- · Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

learn

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors,

random forest, ... Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, ...

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation,

Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, mean-shift, ... Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased

efficiency

Algorithms: PCA, feature selection, nonnegative matrix factorization. - Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning

Modules: grid search, cross validation,

- Examples metrics.

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction.

Examples