Algoritmos para joins óptimos en el peor caso

Clase 26

IIC 3413

Prof. Cristian Riveros

Programa entero para cota de cubrimiento

- $Q := R_1(\bar{x}_1), \ldots, R_n(\bar{x}_n) \text{ con } y_1, \ldots, y_m \text{ todas las variables en } Q.$
- $\mathcal{H}_Q = (V, E)$ es el hipergrafo con $V = \{y_1, \dots, y_m\}$ y $E = \{R_1, \dots, R_n\}$.
- D una base de datos tal que $N_R = |R(D)|$ para todo $R \in E$.

$$|Q(D)| \le \min_{C \text{ cubrimiento de } \mathcal{H}_Q} \left\{ \prod_{R \in C} N_R \right\}$$

Cota de cubrimiento versión en programación entera

$$\mathcal{P}_{Q,D}: \quad \min \qquad \prod_{R \in E} (N_R)^{c_R}$$

$$\text{tal que:} \quad \sum_{R: y \in R} c_R \ \geq \ 1 \quad \text{para cada variable } y \in V$$

$$c_R \in \{0,1\} \qquad \text{para cada relación } R \in E$$

Cota AGM (Atserias-Grohe-Marx)

Podemos relajar el programa anterior desde los enteros a los racionales:

$$\mathcal{P}_{Q,D}^*: \quad \min \qquad \sum_{R \in E} \log_2(\textit{N}_R) \cdot c_R$$

$$\text{tal que:} \quad \sum_{R:y \in R} c_R \ \geq \ 1 \qquad \text{para cada variable } y \in V$$

$$0 \leq c_R \leq 1 \qquad \text{para cada relación } R \in E$$

Teorem (Cota AGM)

Para toda consulta conjuntiva Q y base de datos D, si $O_{Q,D}^*$ es el valor óptimo para el programa lineal $\mathcal{P}_{Q,D}^*$, entonces:

$$|Q(D)| \leq 2^{O_{Q,D}^*}$$

y existen BD D arbitrariamente grandes tal que $|Q(D)| = 2^{O_{Q,D}^*}$.

La cota $2^{O_{Q,D}^*}$ es **óptima***

Conclusión sobre la cota AGM

min $N^{c_R} \cdot N^{c_S} \cdot N^{c_T}$

tal que: $c_R + c_T \ge 1$

 $c_R + c_S \ge 1$
 $c_S + c_T \ge 1$

 c_R , c_S , $c_T \in [0,1]$

Conclusión sobre $Q_{\Delta} := R(x, y), S(y, z), T(z, x)$

- El tamaño de $|Q_{\Delta}(D)|$ es a lo más $N^{\frac{3}{2}}$.
- El tamaño de $|R \bowtie S|$, $|R \bowtie T|$, o $|T \bowtie S|$ puede ser N^2 .

¿es posible calcular $Q_{\Delta}(D)$ en tiempo $\mathcal{O}(N^{\frac{3}{2}})$? Para toda Q y D, ¿es posible calcular Q(D) en tiempo a lo más $\mathcal{O}(2^{O_{Q,D}^*})$?

Algoritmos de joins óptimos en el peor caso

Algoritmos que calculan Q(D) en tiempo a lo más $\mathcal{O}(2^{O_{Q,D}^*})$.

Varias propuestas

- Worst-case optimal join algorithms (2012)
 Hung Ngo, Ely Porat, Christopher Ré, Atri Rudra.
- Beyond worst-case analysis for joins with minesweeper (2014)
 Hung Ngo, Dung Nguyen, Christopher Ré, Atri Rudra.
- Joins via Geometric Resolutions: Worst-case and Beyond (2015)
 Mahmoud Khamis, Hung Ngo, Christopher Ré, Atri Rudra.
- Leapfrog Triejoin: A Simple Worst-Case Optimal Join Algorithm (2014) Todd L. Veldhuizen.

. . . .

Outline

Joins unarios

Leapfrog Triejoin

Outline

Joins unarios

Leapfrog Triejoin

Joins unarios / intersecciones

Suponga una consulta conjuntiva unaria (intersección):

$$Q(x) := R_0(x), \dots, R_{n-1}(x)$$

¿qué dice la cota AGM sobre el tamaño de Q(x)? ¿cómo calculamos Q(D) en tiempo a lo más $\mathcal{O}(\min_i |R_i|)$?

Joins unarios / intersecciones

Suponga una consulta conjuntiva unaria (intersección):

$$Q(x) := R_0(x), \ldots, R_{n-1}(x)$$

Cada relación R_i esta ordenada de manera creciente con la interfaz:

 R_i .begin(): posición en el menor valor (default \perp).

 R_i .key(): retorna el valor actual.

 $R_{i}.next()$: avanza al siguiente valor mayor al actual.

 $R_i.seek(k)$: avanza al menor valor mayor o igual a k.

- Métodos entregan null en caso de llegar al final.
- **b**egin, key, next toman tiempo constante $(\mathcal{O}(1))$.
- seek: toman tiempo $\mathcal{O}(\log(|R_i|))$.

¿cómo podemos implementar esta interfaz para cada R_i ?

Joins unarios / intersecciones

Cada relación R_i esta ordenada de manera creciente con la interfaz:

 R_i .begin(): posición en el menor valor \bot .

 R_i .key(): retorna el valor actual.

 $R_{i}.\mathtt{next}()$: avanza al siguiente valor mayor al actual. $R_{i}.\mathtt{seek}(k)$: avanza al menor valor mayor o igual a k.

¿cómo calculamos $Q(x) := R_0(x), \dots, R_{n-1}(x)$?

Algoritmo Leapfrog para joins unarios

```
Algoritmo
open-LF(R_0,\ldots,R_{n-1})
    for i = 0 ... n - 1 do
      R_i.begin()
next-LF(R_0,\ldots,R_{n-1})
     R_0.next()
    i := 1 \mod n
    while true do
         if R_i.key() = R_{\lceil (i-1) \mod n \rceil}.key() then
           return R_i.key()
         else
         R_{i}.\mathtt{seek}(R_{[(i-1) \bmod n]}.\mathtt{key}())
i := (i+1) \bmod n
```

Algoritmo Leapfrog para joins unarios

```
Algoritmo
next-LF(R_0,\ldots,R_{n-1})
     R_0.next()
    i := 1 \mod n
    while true do
         if R_i.key() = R_{\lceil (i-1) \mod n \rceil}.key() then
           return R_i.key()
         else
      R_{i}.\mathtt{seek}(R_{[(i-1) \bmod n]}.\mathtt{key}())
i := (i+1) \bmod n
```

Tiempo algoritmo Leapfrog

$$\mathcal{O}\left(n\cdot\left(\min_{i}|R_{i}|\right)\cdot\log(\max_{i}|R_{i}|)\right)$$

Leapfrog caso favorable

Tiempo algoritmo Leapfrog

$$\mathcal{O}\left(n\cdot\left(\min_{i}|R_{i}|\right)\cdot\log(\max_{i}|R_{i}|)\right)$$

Caso favorable

$$R_0 = \{1, \dots, 2n\}$$

$$R_1 = \{n+1, \dots, 3n\}$$

$$R_2 = \{1, \dots, 2n+1, \dots, 3n\}$$

- $R_0 \cap R_1 \cap R_2 = \emptyset$
- $\blacksquare R_0 \cap R_1 \neq \emptyset, \ R_1 \cap R_2 \neq \emptyset, \ R_0 \cap R_2 \neq \emptyset$
- Leapfrog toma tiempo $\mathcal{O}(1)$ para todo n.

Un algoritmo de **join de a pares** tomará por lo menos $\Omega(n)$.

Outline

Joins unarios

Leapfrog Triejoin

Para una consulta conjuntiva (sin proyección ni constantes):

$$Q(y_1,\ldots,y_m)\coloneqq R_1(\bar{x}_1),R_2(\bar{x}_2),\ldots,R_n(\bar{x}_n)$$

fije el orden de variables y_1, \ldots, y_m (GAO - General Attribute Order) tal que cada $R_i(\bar{x}_i)$ las variables \bar{x}_i siguen el orden y_1, \ldots, y_m .

Ejemplo

Orden
$$x, y, z \Rightarrow R(x, y), S(y, z), T(x, z)$$

Orden $y, z, x \Rightarrow R(y, x), S(y, z), T(z, x)$

Orden
$$z, y, x \Rightarrow R(y, x), S(z, y), T(z, x)$$

Para una consulta conjuntiva (sin proyección ni constantes):

$$Q(y_1,\ldots,y_m)\coloneqq R_1(\bar{x}_1),R_2(\bar{x}_2),\ldots,R_n(\bar{x}_n)$$

fije el orden de variables y_1, \ldots, y_m (GAO - General Attribute Order) tal que cada $R_i(\bar{x}_i)$ las variables \bar{x}_i siguen el orden y_1, \ldots, y_m .

Definiciones

Para valores a_1, \ldots, a_{k-1} y $R(x_1, \ldots, x_l)$ sea:

$$R[a_1,\ldots,a_{k-1},y_k] := \pi_{y_k}(\sigma_{y_1=a_1\wedge\ldots\wedge y_{k-1}=a_{k-1}}(R))$$

Casos bordes:

- si $y_i \notin \{x_1, \dots, x_l\}$ para i < k, entonces $y_i = a_i$ es verdadero.
- si $y_k \notin \{x_1, \ldots, x_l\}$, entonces se define $R[a_1, \ldots, a_{k-1}, y_k] = \text{true}$.

Definiciones

Para valores a_1,\ldots,a_{k-1} y $R(x_1,\ldots,x_l)$ sea:

$$R[a_1,\ldots,a_{k-1},y_k] := \pi_{y_k}(\sigma_{y_1=a_1\wedge\ldots\wedge y_{k-1}=a_{k-1}}(R))$$

Ejemplo

Para el orden de variables x, y, z, u:

1 2 4	
1 3 4	
$\begin{vmatrix} 1 & 3 & 5 \end{vmatrix}$:= {1,3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:= {3,4,5}
$\begin{bmatrix} 1 & 4 & 8 \\ 1 & 4 & 0 \end{bmatrix}$ $R[1,4,u]$] := true
1 4 9] crue
1 5 2 R[1,4,7	$,z] \coloneqq \{6,8,9\}$
3 5 2	

Para una consulta conjuntiva (sin proyección ni constantes):

$$Q(y_1,\ldots,y_m)\coloneqq R_1(\bar{x}_1),R_2(\bar{x}_2),\ldots,R_n(\bar{x}_n)$$

fije el orden de variables y_1, \ldots, y_m (GAO - General Attribute Order) tal que cada $R_i(\bar{x}_i)$ las variables \bar{x}_i siguen el orden y_1, \ldots, y_m .

Definiciones

Para valores a_1, \ldots, a_{k-1} y $R(x_1, \ldots, x_l)$ sea:

$$R[a_1, \dots, a_{k-1}, y_k] := \pi_{y_k} (\sigma_{y_1 = a_1 \wedge \dots \wedge y_{k-1} = a_{k-1}}(R))$$

$$Q[a_1, \dots, a_{k-1}, y_k] := R_1[a_1, \dots, a_{k-1}, y_k], \dots, R_n[a_1, \dots, a_{k-1}, y_k]$$

Notar que $Q[a_1, \ldots, a_{k-1}, y_k]$ es un **join unitario**!

Algoritmo para multijoin: Leapfrog Triejoin

```
Algoritmo
input: Q(y_1, ..., y_m) = R_1(\bar{x}_1), R_2(\bar{x}_2), ..., R_n(\bar{x}_n) y base de datos D
output: Enumerar todas las tuplas en Q(D)
Leapfrog-TrieJoin(Q, D)
     open-LF(Q[y_1])
     foreach a_1 \in \text{next-LF}(Q[y_1]) do
          open-LF(Q[a_1, y_2])
          foreach a_2 \in \text{next-LF}(Q[a_1, y_2]) do
                open-LF(Q[a_1, a_2, y_3])
                foreach a_3 \in \text{next-LF}(Q[a_1, a_2, y_3]) do
                  \begin{array}{l} \text{open-LF}\big(Q\big[a_1,a_2,\ldots,a_{m-1},y_m\big]\big) \\ \textbf{foreach} \ a_m \in \text{next-LF}\big(Q\big[a_1,a_2,\ldots,a_{m-1},y_m\big]\big) \ \textbf{do} \end{array}
                    enumerate (a_1,\ldots,a_m)
```

Algoritmo para multijoin: Leapfrog Triejoin

```
Leapfrog-TrieJoin(Q, D)
     open-LF(Q[y_1])
     foreach a_1 \in \text{next-LF}(Q[y_1]) do
           open-LF(Q[a_1, y_2])
           foreach a_2 \in \text{next-LF}(Q[a_1, y_2]) do
                \begin{aligned} & \text{open-LF}(Q[a_1,a_2,\ldots,a_{m-1},y_m]) \\ & \textbf{foreach} \ a_m \in \text{next-LF}(Q[a_1,a_2,\ldots,a_{m-1},y_m]) \ \textbf{do} \end{aligned}
                enumerate (a_1,\ldots,a_m)
```

Teorema (Correctitud)

Algoritmo Leapfrog-Triejoin enumera todos los resultados de $\mathcal{Q}(D)$.

Importante: necesitamos la interfaz de **Leapfrog** para $R[a_1, \ldots, a_{k-1}, y_k]$.

Estructura de trie para relaciones

Para una relación $R(x_1,...,x_k)$ y orden de variables $x_1,...,x_n$ contamos con una estructura de trie de las tuplas.

Estructura de trie para relaciones

Para una relación $R(x_1,...,x_k)$ y orden de variables $x_1,...,x_n$ contamos con una estructura de trie de las tuplas.

Estructurando la relación como un trie, podemos implementar la interfaz:

```
R[a_1,\ldots,a_{k-1},y_k].\mathsf{begin}(): posición en el menor valor \bot. R[a_1,\ldots,a_{k-1},y_k].\mathsf{key}(): retorna el valor actual. R[a_1,\ldots,a_{k-1},y_k].\mathsf{next}(): avanza al siguiente valor mayor al actual. R[a_1,\ldots,a_{k-1},y_k].\mathsf{seek}(k): avanza al menor valor mayor o igual a k.
```

para valores a_1, \ldots, a_{k-1} tal que:

- Métodos entregan null en caso de llegar al final.
- key y next toman tiempo constante $(\mathcal{O}(1))$.
- begin y seek: toman tiempo $\mathcal{O}(\log(|R_i|))$.

¿cómo podemos implementar esta interfaz usando un trie (más algo)?

Importante: notar que la estructura depende del orden GAO.

Optimalidad Leapfrog Triejoin

Podemos relajar el programa anterior desde los enteros a los racionales:

$$\mathcal{P}_{Q,D}^*: \quad \min \qquad \sum_{R \in E} \log_2(N_R) \cdot c_R$$

$$\text{tal que:} \quad \sum_{R: y \in R} c_R \ \geq \ 1 \qquad \quad \text{para cada variable } y \in V$$

$$0 \leq c_R \leq 1 \qquad \quad \text{para cada relación } R \in E$$

Teorem (Optimalidad)

Para toda consulta conjuntiva Q y base de datos D, si $O_{Q,D}^*$ es **el valor óptimo para el programa lineal** $\mathcal{P}_{Q,D}^*$, entonces el algoritmo de Leapfrog Triejoin toma tiempo:

$$\mathcal{O}(n \cdot 2^{O_{Q,D}^*} \cdot \log(\max_i |R_i|))$$

Grupo de investigación en manejo de datos

(Faltan varios)

Temas de investigación

Manejo de datos:

- Big data.
- Datos streaming.
- Extracción de información.

Lógica / Lenguajes formales:

- Teoría de modelos finitos.
- Teoría de automatas.

Grafos de datos:

- Web semántica.
- Base de datos de grafos.
- Centralidad de datos.

Teoría de la Computación:

- Complejidad computacional.
- Algoritmos aleatorios.

Proyectos de implementación

1. MilleniumDB

Base de datos de grafos

2. core

Base de datos streaming

3. REmatch

Motor de extracción de información

Estan **invitados a colaborar** en cualquiera de estos proyectos como práctica laboral (IMFD), IPre, Magister, . . .

(solo escribanme y pregunten)