$11a_{314} \ (K11a_{314})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 8.61471 \times 10^{40} u^{35} - 1.83411 \times 10^{41} u^{34} + \dots + 5.25231 \times 10^{41} b - 3.70395 \times 10^{41}, \\ &= 2.23742 \times 10^{42} u^{35} - 7.36115 \times 10^{42} u^{34} + \dots + 1.10299 \times 10^{43} a - 4.47196 \times 10^{43}, \ u^{36} - 3u^{35} + \dots - 41u + I_2^u \\ &= \langle -2.43055 \times 10^{20} a u^{32} + 6.47281 \times 10^{20} u^{32} + \dots - 3.83637 \times 10^{20} a - 8.61406 \times 10^{20}, \\ &= 4.95038 \times 10^{20} a u^{32} - 3.49948 \times 10^{20} u^{32} + \dots + 5.33454 \times 10^{20} a + 1.26914 \times 10^{21}, \ u^{33} + u^{32} + \dots - 2u - 1 I_3^u \\ &= \langle u^5 a - 3u^4 a - 4u^5 + 4u^3 a + 3u^4 - 2u^2 a - 13u^3 + 8u^2 + 3b - a - 12u + 1, \\ &= 21u^5 a + 19u^5 + 63u^3 a - 23u^4 + 14u^2 a + 72u^3 + 7a^2 + 42au - 67u^2 + 56a + 80u - 20, \\ &= u^6 - u^5 + 4u^4 - 3u^3 + 5u^2 - u + 1 \rangle \\ &= \langle -u^3 - 2u^2 + b - 2u - 1, \ u^4 + u^3 + a - u - 2, \ u^5 + 2u^4 + 3u^3 + 3u^2 + u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 119 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \ I_1^u = \\ \langle 8.61 \times 10^{40} u^{35} - 1.83 \times 10^{41} u^{34} + \dots + 5.25 \times 10^{41} b - 3.70 \times 10^{41}, \ 2.24 \times 10^{42} u^{35} - \\ 7.36 \times 10^{42} u^{34} + \dots + 1.10 \times 10^{43} a - 4.47 \times 10^{43}, \ u^{36} - 3u^{35} + \dots - 41u + 8 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.202851u^{35} + 0.667384u^{34} + \cdots - 15.2882u + 4.05441 \\ -0.164017u^{35} + 0.349200u^{34} + \cdots - 2.46540u + 0.705203 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.105569u^{35} + 0.356434u^{34} + \cdots - 12.7501u + 5.10427 \\ -0.226388u^{35} + 0.544294u^{34} + \cdots - 6.01564u + 1.25342 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.00692985u^{35} - 0.108881u^{34} + \cdots + 5.10249u + 0.776589 \\ 0.0935874u^{35} - 0.140600u^{34} + \cdots - 2.26813u + 1.29025 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0388338u^{35} + 0.318184u^{34} + \cdots - 12.8228u + 3.34921 \\ -0.164017u^{35} + 0.349200u^{34} + \cdots - 2.46540u + 0.705203 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.103938u^{35} + 0.595414u^{34} + \cdots - 24.0552u + 7.44471 \\ -0.283599u^{35} + 0.624540u^{34} + \cdots - 3.18323u - 0.831508 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.0881504u^{35} + 0.100434u^{34} + \cdots + 3.42966u + 1.14876 \\ 0.201683u^{35} - 0.426849u^{34} + \cdots + 1.75702u + 0.310670 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.396588u^{35} - 0.858030u^{34} + \cdots + 4.64230u - 0.696871 \\ -0.354176u^{35} + 0.932845u^{34} + \cdots + 4.64230u - 0.696871 \\ -0.354176u^{35} + 0.932845u^{34} + \cdots + 4.64230u - 0.696871 \\ -0.354176u^{35} + 0.932845u^{34} + \cdots + 4.64230u - 0.696871 \\ -0.354176u^{35} + 0.932845u^{34} + \cdots + 4.64230u - 0.696871 \\ -0.354176u^{35} + 0.932845u^{34} + \cdots + 4.64230u - 0.696871 \\ -0.354176u^{35} + 0.932845u^{34} + \cdots + 4.64230u - 0.696871 \\ -0.354176u^{35} + 0.932845u^{34} + \cdots + 4.64230u - 0.696871 \\ -0.354176u^{35} + 0.932845u^{34} + \cdots + 4.64230u - 0.696871 \\ -0.354176u^{35} + 0.932845u^{34} + \cdots + 4.64230u - 0.696871 \\ -0.354176u^{35} + 0.932845u^{34} + \cdots + 4.64230u - 0.696871 \\ -0.354176u^{35} + 0.932845u^{34} + \cdots + 4.64230u - 0.696871 \\ -0.354176u^{35} + 0.932845u^{34} + \cdots + 16.5994u + 2.94258 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.705642u^{35} 1.36959u^{34} + \cdots 2.37672u + 0.386803$

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$u^{36} + 2u^{35} + \dots - 144u - 14$
c_2, c_6	$u^{36} + 3u^{35} + \dots + 41u + 8$
c_{3}, c_{7}	$u^{36} - u^{35} + \dots + u - 7$
c_4, c_9	$7(7u^{36} - 27u^{35} + \dots - 32u - 64)$
c_{5}, c_{8}	$7(7u^{36} - 6u^{35} + \dots - 4u + 1)$
c_{11}	$u^{36} + 6u^{35} + \dots - 2641u - 394$

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$y^{36} + 2y^{35} + \dots - 2592y + 196$
c_2, c_6	$y^{36} + 13y^{35} + \dots - 641y + 64$
c_3, c_7	$y^{36} - 9y^{35} + \dots + 321y + 49$
c_4, c_9	$49(49y^{36} - 1289y^{35} + \dots - 31744y + 4096)$
c_5,c_8	$49(49y^{36} - 456y^{35} + \dots - 20y + 1)$
c_{11}	$y^{36} + 4y^{35} + \dots - 1886765y + 155236$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.664991 + 0.788504I		
a = 0.206169 - 0.722289I	-1.34782 - 1.56519I	0.84439 + 2.92266I
b = 0.096578 + 0.477168I		
u = 0.664991 - 0.788504I		
a = 0.206169 + 0.722289I	-1.34782 + 1.56519I	0.84439 - 2.92266I
b = 0.096578 - 0.477168I		
u = 0.309249 + 0.905547I		
a = 1.79251 + 0.71331I	-1.22381 - 2.38943I	-2.60962 + 0.88195I
b = 0.751216 + 0.448888I		
u = 0.309249 - 0.905547I		
a = 1.79251 - 0.71331I	-1.22381 + 2.38943I	-2.60962 - 0.88195I
b = 0.751216 - 0.448888I		
u = -0.888722 + 0.321374I		
a = 0.363466 - 0.084941I	-1.32711 - 7.08620I	-4.38282 + 7.74538I
b = 0.703627 - 0.796093I		
u = -0.888722 - 0.321374I		
a = 0.363466 + 0.084941I	-1.32711 + 7.08620I	-4.38282 - 7.74538I
b = 0.703627 + 0.796093I		
u = -0.518925 + 1.036550I		
a = -0.767941 + 0.827823I	3.19944 + 1.84265I	5.26933 - 1.44076I
b = -1.051610 + 0.091581I		
u = -0.518925 - 1.036550I		
a = -0.767941 - 0.827823I	3.19944 - 1.84265I	5.26933 + 1.44076I
b = -1.051610 - 0.091581I		
u = -1.16822		
a = -0.710710	-7.32636	-13.3830
b = 0.650117		
u = 0.478238 + 1.066020I		
a = 2.08338 + 0.02701I	-0.67631 - 8.62575I	0.85500 + 10.45337I
b = 0.97824 - 1.76146I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.478238 - 1.066020I		
a = 2.08338 - 0.02701I	-0.67631 + 8.62575I	0.85500 - 10.45337I
b = 0.97824 + 1.76146I		
u = 0.398028 + 1.136150I		
a = 0.553917 + 0.951098I	-0.316044 + 1.377840I	0.40549 - 3.04607I
b = 1.25000 + 0.81047I		
u = 0.398028 - 1.136150I		
a = 0.553917 - 0.951098I	-0.316044 - 1.377840I	0.40549 + 3.04607I
b = 1.25000 - 0.81047I		
u = -0.420762 + 1.153070I		
a = -1.70439 + 0.18358I	3.76935 + 5.55914I	7.29930 - 8.75003I
b = -1.14723 - 1.04061I		
u = -0.420762 - 1.153070I		
a = -1.70439 - 0.18358I	3.76935 - 5.55914I	7.29930 + 8.75003I
b = -1.14723 + 1.04061I		
u = 1.22770		
a = 0.220807	-2.30591	-25.6820
b = 0.272974		
u = 0.773847 + 1.014680I		
a = 0.823733 + 0.526895I	-0.76840 - 4.07443I	-2.61964 + 5.42418I
b = 0.348098 - 0.539202I		
u = 0.773847 - 1.014680I		
a = 0.823733 - 0.526895I	-0.76840 + 4.07443I	-2.61964 - 5.42418I
b = 0.348098 + 0.539202I		
u = 1.213610 + 0.471997I		
a = 0.0522347 + 0.0634017I	-7.25713 + 12.05490I	-6.87385 - 7.36867I
b = -0.99435 - 1.13172I		
u = 1.213610 - 0.471997I		
a = 0.0522347 - 0.0634017I	-7.25713 - 12.05490I	-6.87385 + 7.36867I
b = -0.99435 + 1.13172I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.611418 + 1.156610I		
a = 1.75019 - 0.34229I	1.15223 + 12.56020I	-2.14661 - 10.43699I
b = 0.948743 + 0.849128I		
u = -0.611418 - 1.156610I		
a = 1.75019 + 0.34229I	1.15223 - 12.56020I	-2.14661 + 10.43699I
b = 0.948743 - 0.849128I		
u = -0.096544 + 1.309750I		
a = 1.024940 - 0.533084I	4.46757 - 3.67706I	3.45782 + 3.48358I
b = 0.729584 - 0.253643I		
u = -0.096544 - 1.309750I		
a = 1.024940 + 0.533084I	4.46757 + 3.67706I	3.45782 - 3.48358I
b = 0.729584 + 0.253643I		
u = 0.556045 + 0.380280I		
a = 0.75859 + 1.37452I	-2.98357 - 5.46509I	-4.40298 + 5.74809I
b = 0.611800 - 1.101080I		
u = 0.556045 - 0.380280I		
a = 0.75859 - 1.37452I	-2.98357 + 5.46509I	-4.40298 - 5.74809I
b = 0.611800 + 1.101080I		
u = 0.331294 + 0.549198I		
a = -2.03245 + 0.47407I	-2.49638 + 4.90008I	-3.79310 - 7.77480I
b = 0.44966 + 1.55974I		
u = 0.331294 - 0.549198I		
a = -2.03245 - 0.47407I	-2.49638 - 4.90008I	-3.79310 + 7.77480I
b = 0.44966 - 1.55974I		
u = -0.572685 + 0.080761I		
a = 0.472008 - 0.470814I	0.74933 - 1.67412I	0.81111 + 4.63626I
b = -0.639767 + 0.652105I		
u = -0.572685 - 0.080761I		
a = 0.472008 + 0.470814I	0.74933 + 1.67412I	0.81111 - 4.63626I
b = -0.639767 - 0.652105I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.74631 + 1.24839I		
a = -1.54739 - 0.38151I	-4.7264 - 18.9578I	-4.99741 + 9.85636I
b = -1.09203 + 1.33473I		
u = 0.74631 - 1.24839I		
a = -1.54739 + 0.38151I	-4.7264 + 18.9578I	-4.99741 - 9.85636I
b = -1.09203 - 1.33473I		
u = -0.19922 + 1.64465I		
a = -0.938395 - 0.165870I	1.57745 + 7.38932I	0
b = -1.27867 - 0.61003I		
u = -0.19922 - 1.64465I		
a = -0.938395 + 0.165870I	1.57745 - 7.38932I	0
b = -1.27867 + 0.61003I		
u = 0.317864		
a = 1.05754	-3.24067	-2.80810
b = 0.804397		
u = -1.70401		
a = 0.0619210	-5.25552	0
b = -1.05525		

 $\begin{matrix} I_2^u = \langle -2.43 \times 10^{20} a u^{32} + 6.47 \times 10^{20} u^{32} + \cdots -3.84 \times 10^{20} a - 8.61 \times 10^{20}, \ 4.95 \times 10^{20} a u^{32} - 3.50 \times 10^{20} u^{32} + \cdots +5.33 \times 10^{20} a + 1.27 \times 10^{21}, \ u^{33} + u^{32} + \cdots -2u - 1 \rangle \end{matrix}$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 6.17561au^{32} - 16.4463u^{32} + \dots + 9.74756a + 21.8868 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 15.4244au^{32} + 18.6669u^{32} + \dots - 21.4494a + 11.7346 \\ -2.41747au^{32} - 4.89104u^{32} + \dots + 4.36925a + 5.31631 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -20.3325au^{32} - 29.5888u^{32} + \dots + 30.2366a + 1.23756 \\ -1.92091au^{32} + 11.7466u^{32} + \dots - 5.00243a - 20.0640 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -6.17561au^{32} + 16.4463u^{32} + \dots + 9.74756a + 21.8868 \\ 6.17561au^{32} - 16.4463u^{32} + \dots + 9.74756a + 21.8868 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 8.00399au^{32} + 35.7108u^{32} + \dots + 9.74756a + 21.8868 \\ 9.29658au^{32} - 21.9349u^{32} + \dots + 8.00399a + 41.1530 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -9.74756au^{32} - 30.4209u^{32} + \dots + 24.0610a + 16.6620 \\ -10.5850au^{32} + 5.09705u^{32} + \dots + 6.17561a - 27.2965 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.494744au^{32} + 24.1111u^{32} + \dots - 16.2512a - 28.9205 \\ 11.8477au^{32} - 13.2154u^{32} + \dots + 5.90658a + 35.7744 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.494744au^{32} + 24.1111u^{32} + \dots + 16.2512a - 28.9205 \\ 11.8477au^{32} - 13.2154u^{32} + \dots + 5.90658a + 35.7744 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{233960085812908682097}{131190918790065866633}u^{32} - \frac{122838803537233845053}{39357275637019759989}u^{31} + \cdots - \frac{1020433678799244188345}{39357275637019759989}u - \frac{1174252898466954031738}{39357275637019759989}$$

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$u^{66} - u^{65} + \dots + 360u + 11$
c_2, c_6	$(u^{33} - u^{32} + \dots - 2u + 1)^2$
c_{3}, c_{7}	$u^{66} - 11u^{65} + \dots - 3027u + 484$
c_4, c_9	$(u^{33} - 13u^{31} + \dots + 60u + 9)^2$
c_5, c_8	$u^{66} + 2u^{65} + \dots - 9u + 2$
c_{11}	$(u^{33} - 5u^{32} + \dots + 88u - 47)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$y^{66} + 25y^{65} + \dots - 60564y + 121$
c_{2}, c_{6}	$(y^{33} + 21y^{32} + \dots - 20y - 1)^2$
c_{3}, c_{7}	$y^{66} - 29y^{65} + \dots - 9905185y + 234256$
c_4, c_9	$(y^{33} - 26y^{32} + \dots + 828y - 81)^2$
c_5, c_8	$y^{66} + 28y^{65} + \dots - 41y + 4$
c_{11}	$(y^{33} - 23y^{32} + \dots + 24852y - 2209)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.417392 + 0.929081I		
a = 0.117806 - 1.017110I	-0.35121 + 5.74395I	-4.00846 - 9.48122I
b = 0.61426 - 1.45227I		
u = -0.417392 + 0.929081I		
a = -2.40309 + 0.13570I	-0.35121 + 5.74395I	-4.00846 - 9.48122I
b = -0.476485 - 0.850411I		
u = -0.417392 - 0.929081I		
a = 0.117806 + 1.017110I	-0.35121 - 5.74395I	-4.00846 + 9.48122I
b = 0.61426 + 1.45227I		
u = -0.417392 - 0.929081I		
a = -2.40309 - 0.13570I	-0.35121 - 5.74395I	-4.00846 + 9.48122I
b = -0.476485 + 0.850411I		
u = 0.414454 + 0.869237I		
a = -0.900638 + 0.750691I	-0.30625 - 1.73487I	-2.88654 + 2.20347I
b = -0.465090 - 0.778291I		
u = 0.414454 + 0.869237I		
a = -2.65339 - 0.05663I	-0.30625 - 1.73487I	-2.88654 + 2.20347I
b = -0.671706 + 0.442842I		
u = 0.414454 - 0.869237I		
a = -0.900638 - 0.750691I	-0.30625 + 1.73487I	-2.88654 - 2.20347I
b = -0.465090 + 0.778291I		
u = 0.414454 - 0.869237I		
a = -2.65339 + 0.05663I	-0.30625 + 1.73487I	-2.88654 - 2.20347I
b = -0.671706 - 0.442842I		
u = -0.472417 + 1.010790I		
a = -1.61213 + 0.10091I	-4.16587 + 3.01159I	-11.51158 - 5.38736I
b = -0.036980 - 0.568939I		
u = -0.472417 + 1.010790I		
a = 2.01812 - 0.47306I	-4.16587 + 3.01159I	-11.51158 - 5.38736I
b = 1.80069 + 1.09379I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.472417 - 1.010790I		
a = -1.61213 - 0.10091I	-4.16587 - 3.01159I	-11.51158 + 5.38736I
b = -0.036980 + 0.568939I		
u = -0.472417 - 1.010790I		
a = 2.01812 + 0.47306I	-4.16587 - 3.01159I	-11.51158 + 5.38736I
b = 1.80069 - 1.09379I		
u = 0.100593 + 1.216160I		
a = 1.33835 + 0.55468I	4.81646 - 2.61267I	2.98003 + 2.49183I
b = 0.808856 + 0.245405I		
u = 0.100593 + 1.216160I		
a = -1.41971 + 0.56060I	4.81646 - 2.61267I	2.98003 + 2.49183I
b = -1.094700 + 0.741598I		
u = 0.100593 - 1.216160I		
a = 1.33835 - 0.55468I	4.81646 + 2.61267I	2.98003 - 2.49183I
b = 0.808856 - 0.245405I		
u = 0.100593 - 1.216160I		
a = -1.41971 - 0.56060I	4.81646 + 2.61267I	2.98003 - 2.49183I
b = -1.094700 - 0.741598I		
u = -0.392936 + 0.664924I		
a = 0.193117 - 0.538220I	-1.06351 - 2.23250I	-4.94311 + 2.28132I
b = -0.344357 + 1.111940I		
u = -0.392936 + 0.664924I		
a = 1.58119 + 0.03868I	-1.06351 - 2.23250I	-4.94311 + 2.28132I
b = 0.675409 + 0.632548I		
u = -0.392936 - 0.664924I		
a = 0.193117 + 0.538220I	-1.06351 + 2.23250I	-4.94311 - 2.28132I
b = -0.344357 - 1.111940I		
u = -0.392936 - 0.664924I		
a = 1.58119 - 0.03868I	-1.06351 + 2.23250I	-4.94311 - 2.28132I
b = 0.675409 - 0.632548I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.557709 + 1.097620I		
a = -0.260077 + 0.915977I	-5.04427 + 9.67271I	-8.11986 - 8.22619I
b = -0.154095 - 1.041730I		
u = -0.557709 + 1.097620I		
a = 1.93591 - 0.15684I	-5.04427 + 9.67271I	-8.11986 - 8.22619I
b = 1.09058 + 1.15805I		
u = -0.557709 - 1.097620I		
a = -0.260077 - 0.915977I	-5.04427 - 9.67271I	-8.11986 + 8.22619I
b = -0.154095 + 1.041730I		
u = -0.557709 - 1.097620I		
a = 1.93591 + 0.15684I	-5.04427 - 9.67271I	-8.11986 + 8.22619I
b = 1.09058 - 1.15805I		
u = -0.412549 + 0.632401I		
a = 0.06708 - 1.54795I	-5.44291 + 0.78188I	-12.85213 - 1.24354I
b = 0.247885 + 0.969351I		
u = -0.412549 + 0.632401I		
a = -0.41241 - 1.69473I	-5.44291 + 0.78188I	-12.85213 - 1.24354I
b = 0.85738 - 1.44035I		
u = -0.412549 - 0.632401I		
a = 0.06708 + 1.54795I	-5.44291 - 0.78188I	-12.85213 + 1.24354I
b = 0.247885 - 0.969351I		
u = -0.412549 - 0.632401I		
a = -0.41241 + 1.69473I	-5.44291 - 0.78188I	-12.85213 + 1.24354I
b = 0.85738 + 1.44035I		
u = 0.355820 + 0.662489I		
a = 1.360960 - 0.272301I	-0.93123 - 1.60031I	-4.00690 + 5.61012I
b = 0.444016 - 0.015311I		
u = 0.355820 + 0.662489I		
a = 0.518884 - 0.139240I	-0.93123 - 1.60031I	-4.00690 + 5.61012I
b = 0.020761 + 0.794705I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.355820 - 0.662489I		
a = 1.360960 + 0.272301I	-0.93123 + 1.60031I	-4.00690 - 5.61012I
b = 0.444016 + 0.015311I		
u = 0.355820 - 0.662489I		
a = 0.518884 + 0.139240I	-0.93123 + 1.60031I	-4.00690 - 5.61012I
b = 0.020761 - 0.794705I		
u = 0.498996 + 1.149370I		
a = -0.38658 - 1.38128I	-3.63632 - 8.62361I	-12.3273 + 8.9713I
b = -1.85663 - 1.80445I		
u = 0.498996 + 1.149370I		
a = 1.90689 - 0.02871I	-3.63632 - 8.62361I	-12.3273 + 8.9713I
b = 0.79240 - 1.24669I		
u = 0.498996 - 1.149370I		
a = -0.38658 + 1.38128I	-3.63632 + 8.62361I	-12.3273 - 8.9713I
b = -1.85663 + 1.80445I		
u = 0.498996 - 1.149370I		
a = 1.90689 + 0.02871I	-3.63632 + 8.62361I	-12.3273 - 8.9713I
b = 0.79240 + 1.24669I		
u = 1.29498		
a = 0.222091	-2.30187	-31.9940
b = 0.544464		
u = 1.29498		
a = 0.181714	-2.30187	-31.9940
b = 0.0439292		
u = 0.691384 + 0.062495I		
a = 0.254081 + 0.231283I	-6.68521 - 4.32166I	-11.81943 + 6.69112I
b = 0.467648 - 1.124340I		
u = 0.691384 + 0.062495I		
a = 1.03700 + 2.83810I	-6.68521 - 4.32166I	-11.81943 + 6.69112I
b = -0.961413 - 0.876208I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.691384 - 0.062495I		
a = 0.254081 - 0.231283I	-6.68521 + 4.32166I	-11.81943 - 6.69112I
b = 0.467648 + 1.124340I		
u = 0.691384 - 0.062495I		
a = 1.03700 - 2.83810I	-6.68521 + 4.32166I	-11.81943 - 6.69112I
b = -0.961413 + 0.876208I		
u = -0.601870 + 0.332174I		
a = -0.145333 - 0.282143I	-7.19868 - 4.98844I	-12.36402 + 2.27839I
b = 0.676050 - 1.175820I		
u = -0.601870 + 0.332174I		
a = 2.11833 - 2.52447I	-7.19868 - 4.98844I	-12.36402 + 2.27839I
b = -0.529191 + 0.664200I		
u = -0.601870 - 0.332174I		
a = -0.145333 + 0.282143I	-7.19868 + 4.98844I	-12.36402 - 2.27839I
b = 0.676050 + 1.175820I		
u = -0.601870 - 0.332174I		
a = 2.11833 + 2.52447I	-7.19868 + 4.98844I	-12.36402 - 2.27839I
b = -0.529191 - 0.664200I		
u = 0.626600 + 1.208130I		
a = -0.891596 - 0.208892I	0.84876 - 6.19552I	-3.00000 + 7.44126I
b = -0.885135 + 0.559574I		
u = 0.626600 + 1.208130I		
a = 1.51704 + 0.31423I	0.84876 - 6.19552I	-3.00000 + 7.44126I
b = 0.819944 - 0.828069I		
u = 0.626600 - 1.208130I		
a = -0.891596 + 0.208892I	0.84876 + 6.19552I	-3.00000 - 7.44126I
b = -0.885135 - 0.559574I		
u = 0.626600 - 1.208130I		
a = 1.51704 - 0.31423I	0.84876 + 6.19552I	-3.00000 - 7.44126I
b = 0.819944 + 0.828069I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.60344 + 1.36253I		
a = -0.300421 - 0.241381I	-3.20813 - 1.17398I	-16.8881 + 0.I
b = 0.183626 - 0.365150I		
u = -0.60344 + 1.36253I		
a = -0.029011 + 0.370695I	-3.20813 - 1.17398I	-16.8881 + 0.I
b = -0.98290 + 1.89865I		
u = -0.60344 - 1.36253I		
a = -0.300421 + 0.241381I	-3.20813 + 1.17398I	-16.8881 + 0.I
b = 0.183626 + 0.365150I		
u = -0.60344 - 1.36253I		
a = -0.029011 - 0.370695I	-3.20813 + 1.17398I	-16.8881 + 0.I
b = -0.98290 - 1.89865I		
u = -0.90200 + 1.23014I		
a = 0.567900 - 0.143956I	-2.85108 + 10.01350I	0
b = 0.233108 + 0.551448I		
u = -0.90200 + 1.23014I		
a = -1.36302 + 0.57989I	-2.85108 + 10.01350I	0
b = -1.16123 - 1.45442I		
u = -0.90200 - 1.23014I		
a = 0.567900 + 0.143956I	-2.85108 - 10.01350I	0
b = 0.233108 - 0.551448I		
u = -0.90200 - 1.23014I		
a = -1.36302 - 0.57989I	-2.85108 - 10.01350I	0
b = -1.16123 + 1.45442I		
u = -0.050458 + 0.377504I		
a = -0.729840 - 1.049950I	-6.81266 + 4.73250I	-21.9711 - 14.2148I
b = 0.396037 + 1.206410I		
u = -0.050458 + 0.377504I		
a = -9.49427 - 0.72345I	-6.81266 + 4.73250I	-21.9711 - 14.2148I
b = -1.60778 - 0.29179I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.050458 - 0.377504I	0.01000 1.500507	04.05444.04.407
a = -0.729840 + 1.049950I	$\begin{bmatrix} -6.81266 - 4.73250I \end{bmatrix}$	-21.9711 + 14.2148I
b = 0.396037 - 1.206410I		
u = -0.050458 - 0.377504I	0.010.00 1.000.00	04.05444.0440.7
a = -9.49427 + 0.72345I	$\begin{bmatrix} -6.81266 - 4.73250I \end{bmatrix}$	-21.9711 + 14.2148I
b = -1.60778 + 0.29179I		
u = 0.57543 + 1.63125I		
a = -0.238828 - 0.129721I	-2.87513 - 0.70475I	0
b = 0.07358 + 1.85946I		
u = 0.57543 + 1.63125I		
a = 0.005781 + 0.205594I	-2.87513 - 0.70475I	0
b = 0.231256 + 0.346251I		
u = 0.57543 - 1.63125I		
a = -0.238828 + 0.129721I	-2.87513 + 0.70475I	0
b = 0.07358 - 1.85946I		
u = 0.57543 - 1.63125I		
a = 0.005781 - 0.205594I	-2.87513 + 0.70475I	0
b = 0.231256 - 0.346251I		

$$\begin{aligned} \text{III. } I_3^u = \langle u^5a - 4u^5 + \cdots - a + 1, \ 21u^5a + 19u^5 + \cdots + 56a - 20, \ u^6 - u^5 + \\ 4u^4 - 3u^3 + 5u^2 - u + 1 \rangle \end{aligned}$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{3}u^{5}a + \frac{4}{3}u^{5} + \dots + \frac{1}{3}a - \frac{1}{3} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.333333au^{5} + 0.476190u^{5} + \dots + 1.33333a + 2.09524 \\ \frac{2}{3}u^{5}a + \frac{1}{3}u^{5} + \dots + \frac{1}{3}a - \frac{7}{3} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5}a + u^{5} + u^{3}a - 2u^{4} + 2u^{2}a + 5u^{3} + au - 7u^{2} + 6u - 3 \\ \frac{4}{3}u^{5}a - \frac{7}{3}u^{5} + \dots + \frac{2}{3}a + \frac{7}{3} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{3}u^{5}a - \frac{4}{3}u^{5} + \dots + \frac{2}{3}a + \frac{1}{3} \\ -\frac{1}{3}u^{5}a + \frac{4}{3}u^{5} + \dots + \frac{1}{3}a - \frac{3}{3} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{3}u^{5}a - \frac{7}{3}u^{5} + \dots - \frac{1}{3}a + \frac{7}{3} \\ -\frac{1}{3}u^{5}a + \frac{5}{3}u^{5} + \dots + \frac{1}{3}a - \frac{8}{3} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{3}u^{5}a + \frac{5}{3}u^{5} + \dots - \frac{1}{3}a - \frac{8}{3} \\ \frac{2}{3}u^{5}a - \frac{8}{3}u^{5} + \dots + \frac{1}{3}a + \frac{8}{3} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4}a + 2u^{5} + u^{3}a - 4u^{4} + 8u^{3} + 2au - 11u^{2} + 10u - 5 \\ -\frac{7}{3}u^{5}a - \frac{2}{3}u^{5} + \dots + \frac{4}{3}a + \frac{11}{3} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4}a + 2u^{5} + u^{3}a - 4u^{4} + 8u^{3} + 2au - 11u^{2} + 10u - 5 \\ -\frac{7}{3}u^{5}a - \frac{2}{3}u^{5} + \dots + \frac{4}{3}a + \frac{11}{3} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $7u^5 4u^4 + 19u^3 + 2u^2 + 14u + 10$

Crossings	u-Polynomials at each crossing
c_1, c_{10}	$u^{12} + 5u^{10} + \dots + 42u + 14$
c_2	$(u^6 + u^5 + 4u^4 + 3u^3 + 5u^2 + u + 1)^2$
c_3, c_7	$u^{12} - 2u^{11} + \dots + 28u + 7$
c_4, c_9	$7(7u^{12} - 66u^{10} + 264u^8 - 572u^6 + 709u^4 - 477u^2 + 137)$
c_5, c_8	$7(7u^{12} + 7u^{11} + \dots - 3u + 1)$
<i>c</i> ₆	$(u^6 - u^5 + 4u^4 - 3u^3 + 5u^2 - u + 1)^2$
c_{11}	$(u^6 - 5u^5 + 10u^4 - 9u^3 + u^2 + u + 3)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_{10}	$y^{12} + 10y^{11} + \dots - 280y + 196$
c_2, c_6	$(y^6 + 7y^5 + 20y^4 + 31y^3 + 27y^2 + 9y + 1)^2$
c_3, c_7	$y^{12} - 14y^{11} + \dots - 238y + 49$
c_4, c_9	$49(7y^6 - 66y^5 + 264y^4 - 572y^3 + 709y^2 - 477y + 137)^2$
c_5, c_8	$49(49y^{12} + 399y^{11} + \dots + 25y + 1)$
c_{11}	$(y^6 - 5y^5 + 12y^4 - 45y^3 + 79y^2 + 5y + 9)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.594531 + 1.108530I		
a = 0.194027 - 0.521903I	-2.75606 - 8.49886I	-3.32790 + 6.69892I
b = -0.63798 - 1.31450I		
u = 0.594531 + 1.108530I		
a = 1.88170 + 0.26063I	-2.75606 - 8.49886I	-3.32790 + 6.69892I
b = 0.93018 - 1.33338I		
u = 0.594531 - 1.108530I		
a = 0.194027 + 0.521903I	-2.75606 + 8.49886I	-3.32790 - 6.69892I
b = -0.63798 + 1.31450I		
u = 0.594531 - 1.108530I		
a = 1.88170 - 0.26063I	-2.75606 + 8.49886I	-3.32790 - 6.69892I
b = 0.93018 + 1.33338I		
u = 0.048182 + 0.510085I		
a = -0.061872 - 0.552955I	-6.62587 + 4.61385I	9.30218 + 5.10701I
b = 0.418645 + 1.257000I		
u = 0.048182 + 0.510085I		
a = -7.42207 - 1.53777I	-6.62587 + 4.61385I	9.30218 + 5.10701I
b = -1.40319 - 0.25404I		
u = 0.048182 - 0.510085I		
a = -0.061872 + 0.552955I	-6.62587 - 4.61385I	9.30218 - 5.10701I
b = 0.418645 - 1.257000I		
u = 0.048182 - 0.510085I		
a = -7.42207 + 1.53777I	-6.62587 - 4.61385I	9.30218 - 5.10701I
b = -1.40319 + 0.25404I		
u = -0.14271 + 1.54503I		
a = 0.331160 + 0.030135I	-2.95507 + 0.81827I	-26.9743 + 0.5102I
b = 0.33934 + 1.85328I		
u = -0.14271 + 1.54503I		
a = 0.077057 - 0.242870I	-2.95507 + 0.81827I	-26.9743 + 0.5102I
b = 0.353013 - 0.266813I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.14271 - 1.54503I		
a = 0.331160 - 0.030135I	-2.95507 - 0.81827I	-26.9743 - 0.5102I
b = 0.33934 - 1.85328I		
u = -0.14271 - 1.54503I		
a = 0.077057 + 0.242870I	-2.95507 - 0.81827I	-26.9743 - 0.5102I
b = 0.353013 + 0.266813I		

$$IV. \\ I_4^u = \langle -u^3 - 2u^2 + b - 2u - 1, \ u^4 + u^3 + a - u - 2, \ u^5 + 2u^4 + 3u^3 + 3u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4} - u^{3} + u + 2 \\ u^{3} + 2u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4} + 2u^{3} + 3u^{2} + 2u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - 2u^{3} - u^{2} + 2 \\ u^{4} + 2u^{3} + 3u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{4} - 2u^{3} - 2u^{2} - u + 1 \\ u^{3} + 2u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} + 2u^{3} + 3u^{2} + 2u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4} - 2u^{3} - 2u^{2} - u + 1 \\ u^{3} + 2u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{4} - 3u^{3} - 4u^{2} - 4u - 2 \\ -u^{4} - u^{3} - u^{2} + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{4} - 3u^{3} - 4u^{2} - 4u - 2 \\ -u^{4} - u^{3} - u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $7u^4 + 13u^3 + 25u^2 + 15u + 9$

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$u^5 - 2u^4 + 3u^3 - 3u^2 + 3u - 1$
c_2	$u^5 - 2u^4 + 3u^3 - 3u^2 + u - 1$
c_3, c_7	$u^5 + u^4 - u^3 - u^2 + 1$
c_4, c_9	u^5
c_5, c_8	$u^5 - u^3 - u^2 + u + 1$
<i>C</i> ₆	$u^5 + 2u^4 + 3u^3 + 3u^2 + u + 1$
c_{11}	$u^5 + 3u^4 + 5u^3 + 4u^2 + 3u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_{10}	$y^5 + 2y^4 + 3y^3 + 5y^2 + 3y - 1$
c_2, c_6	$y^5 + 2y^4 - y^3 - 7y^2 - 5y - 1$
c_3, c_7	$y^5 - 3y^4 + 3y^3 - 3y^2 + 2y - 1$
c_4, c_9	y^5
c_5,c_8	$y^5 - 2y^4 + 3y^3 - 3y^2 + 3y - 1$
c_{11}	$y^5 + y^4 + 7y^3 + 8y^2 + y - 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.372466 + 1.263920I		
a = -1.347300 + 0.010044I	3.01018 + 5.17259I	-1.83188 - 4.76077I
b = -0.929085 - 0.848284I		
u = -0.372466 - 1.263920I		
a = -1.347300 - 0.010044I	3.01018 - 5.17259I	-1.83188 + 4.76077I
b = -0.929085 + 0.848284I		
u = -1.33263		
a = -0.119827	-2.14584	24.7190
b = -0.480071		
u = 0.038780 + 0.656277I		
a = 1.90721 + 0.97967I	-0.29233 - 3.70382I	-0.52749 + 7.17476I
b = 0.169121 + 1.134660I		
u = 0.038780 - 0.656277I		
a = 1.90721 - 0.97967I	-0.29233 + 3.70382I	-0.52749 - 7.17476I
b = 0.169121 - 1.134660I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_{10}	$(u^{5} - 2u^{4} + 3u^{3} - 3u^{2} + 3u - 1)(u^{12} + 5u^{10} + \dots + 42u + 14)$ $\cdot (u^{36} + 2u^{35} + \dots - 144u - 14)(u^{66} - u^{65} + \dots + 360u + 11)$
c_2	$(u^{5} - 2u^{4} + 3u^{3} - 3u^{2} + u - 1)(u^{6} + u^{5} + 4u^{4} + 3u^{3} + 5u^{2} + u + 1)^{2}$ $\cdot ((u^{33} - u^{32} + \dots - 2u + 1)^{2})(u^{36} + 3u^{35} + \dots + 41u + 8)$
c_3, c_7	$ (u^{5} + u^{4} - u^{3} - u^{2} + 1)(u^{12} - 2u^{11} + \dots + 28u + 7)(u^{36} - u^{35} + \dots + u - 7) $ $ \cdot (u^{66} - 11u^{65} + \dots - 3027u + 484) $
c_4, c_9	$49u^{5}(7u^{12} - 66u^{10} + 264u^{8} - 572u^{6} + 709u^{4} - 477u^{2} + 137)$ $\cdot ((u^{33} - 13u^{31} + \dots + 60u + 9)^{2})(7u^{36} - 27u^{35} + \dots - 32u - 64)$
c_5, c_8	$49(u^{5} - u^{3} - u^{2} + u + 1)(7u^{12} + 7u^{11} + \dots - 3u + 1)$ $\cdot (7u^{36} - 6u^{35} + \dots - 4u + 1)(u^{66} + 2u^{65} + \dots - 9u + 2)$
c_6	$(u^{5} + 2u^{4} + 3u^{3} + 3u^{2} + u + 1)(u^{6} - u^{5} + 4u^{4} - 3u^{3} + 5u^{2} - u + 1)^{2}$ $\cdot ((u^{33} - u^{32} + \dots - 2u + 1)^{2})(u^{36} + 3u^{35} + \dots + 41u + 8)$
c_{11}	$(u^{5} + 3u^{4} + 5u^{3} + 4u^{2} + 3u + 1)(u^{6} - 5u^{5} + 10u^{4} - 9u^{3} + u^{2} + u + 3)^{2}$ $\cdot ((u^{33} - 5u^{32} + \dots + 88u - 47)^{2})(u^{36} + 6u^{35} + \dots - 2641u - 394)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$(y^{5} + 2y^{4} + 3y^{3} + 5y^{2} + 3y - 1)(y^{12} + 10y^{11} + \dots - 280y + 196)$ $\cdot (y^{36} + 2y^{35} + \dots - 2592y + 196)(y^{66} + 25y^{65} + \dots - 60564y + 121)$
c_2, c_6	$(y^{5} + 2y^{4} - y^{3} - 7y^{2} - 5y - 1)$ $\cdot (y^{6} + 7y^{5} + 20y^{4} + 31y^{3} + 27y^{2} + 9y + 1)^{2}$ $\cdot ((y^{33} + 21y^{32} + \dots - 20y - 1)^{2})(y^{36} + 13y^{35} + \dots - 641y + 64)$
c_3, c_7	$(y^{5} - 3y^{4} + 3y^{3} - 3y^{2} + 2y - 1)(y^{12} - 14y^{11} + \dots - 238y + 49)$ $\cdot (y^{36} - 9y^{35} + \dots + 321y + 49)$ $\cdot (y^{66} - 29y^{65} + \dots - 9905185y + 234256)$
c_4, c_9	$2401y^{5}(7y^{6} - 66y^{5} + 264y^{4} - 572y^{3} + 709y^{2} - 477y + 137)^{2}$ $\cdot (y^{33} - 26y^{32} + \dots + 828y - 81)^{2}$ $\cdot (49y^{36} - 1289y^{35} + \dots - 31744y + 4096)$
c_5, c_8	$2401(y^{5} - 2y^{4} + \dots + 3y - 1)(49y^{12} + 399y^{11} + \dots + 25y + 1)$ $\cdot (49y^{36} - 456y^{35} + \dots - 20y + 1)(y^{66} + 28y^{65} + \dots - 41y + 4)$
c_{11}	$(y^{5} + y^{4} + 7y^{3} + 8y^{2} + y - 1)$ $\cdot (y^{6} - 5y^{5} + 12y^{4} - 45y^{3} + 79y^{2} + 5y + 9)^{2}$ $\cdot (y^{33} - 23y^{32} + \dots + 24852y - 2209)^{2}$ $\cdot (y^{36} + 4y^{35} + \dots - 1886765y + 155236)$