Evolucioni period arhitekture računara oko 1990. (nastavak)

- Povećanje brzine izvršavanja
 - uloga kompajlera
- Samo neophodne naredbe load/store arhitektura
 - prenos podataka
 - celobrojna/realna aritmetika
 - logičke
 - upravljačke
- Realizacija zauzima mnogo manje prostora od CISC
 - skraćivanje procesorskog ciklusa
 - povećanje broja registara opšte namene
 - 32 i više
 - register window skup registara za podršku rada pojedinačnih potprograma
 - povećanje paralelizma u radu procesora
 - ugradnja skrivene memorije u procesor
 - prebacivanje upravljanja virtuelnom memorijom u nadležnost procesora

- Realizacija zauzima mnogo manje prostora od CISC
 - Proširenje adresnog prostora
 - 64-bitne arhitekture:
 - 1974. CDC Star-100
 - 1976. Cray-1
 - 1991. MIPS R4000
 - 1992. DEC ALPHA
 - 1997. IBM RS64 PowerPC
 - 2001. Intel Itanium IA-64
 - 2003. AMD Opteron, Athlon 64
 - 2006. Sony, IBM i Toshiba Cell
 - 2011. ARM ARMv8-A

- Povećanje paralelizma
 - Više sabirnica (engl. three-bus architecture)
 - u jednom ciklusu
 - dva registra do AL jedinice
 - rezultat u registar
 - Stepen za dobavljanje protočne strukture uvećava PC
 - Više nezavisnih stepeni za izvršavanje aritmetike
 - Super-skalari izvršavaju višenaredbi odjednom
 - IBM RS/6000
 - DEC ALPHA
 - precizni i neprecizni prekidi

- Skrivena memorija
 - Data/instruction cache
 - Dva nivoa:
 - viši nivo manja i brža (blizu brzine registara)
 - niži nivo veća i sporija
 - DEC ALPHA 21164
 - 2 x 8K (data/instruction)
 - 96k
 - Prebacivanje MMU u procesor
 - brže pretvaranje adresa

- Uloga kompajlera
 - Direktno odgovoran za ubrzanje rada
 - Što dugotrajnije preklapanje
 - razdvajanje međusobno zavisnih naredbi
 - statičko raspoređivanje
 - Nepostojanje status registra
 - veća sloboda kompajlera
 - upotreba registara opšte namene
 - spajanje provere uslova i skoka
 - Odmotavanje petlje (engl. loop unrolling)
 - Najčešće korišćene vrednosti

- Uslovne upravljačke naredbe
 - Moguće pražnjenje protočne strukture
 - **Dinamičko predviđanje** (engl. dynamic branch prediction)
 - loše predviđanje poništavanje efekata loših naredbi
 - privremene lokacije za rezultate
 - privremene lokacije za originalne vrednosti
 - pamćenje ishoda prethodnih izvršavanja
 - kompajler može da označi sigurne ishode

Dinamičko predviđanje

```
int rand partsum(int n){
    int i,k;
    long sum = 0;
    int \sqrt[4]{\text{vec}} = \text{malloc}(n*\text{sizeof}(int));
    for (i = 0; i < n; i++)
          vec[i] = rand()%n;
    //qsort(vec,n,sizeof(int),cmpfunc);
    for (k = 0; k < 1000000; k++)
          for (i = 0; i < n; i++)
                     if (\text{vec}[i] > n/2) sum += vec[i];
    return sum;
```

Intel Core i7-5500U, $n = 5000 \sim 30s$

Dinamičko predviđanje

```
int rand partsum(int n){
    int i,k;
    long sum = 0;
    int \sqrt[4]{\text{vec}} = \text{malloc}(n*\text{sizeof}(int));
    for (i = 0; i < n; i++)
          vec[i] = rand()%n;
    qsort(vec,n,sizeof(int),cmpfunc);
    for (k = 0; k < 1000000; k++)
          for (i = 0; i < n; i++)
                     if (\text{vec}[i] > n/2) sum += vec[i];
    return sum;
```

Intel Core i7-5500U, *n* = 5000~30s

sa sortiranjem ~ 13 s (mnogo bolje dinamičko predviđanje poređenja)

- Izvršavanje naredbi van redosleda (engl. out of order)
 - nakon dobavljanja zavisne naredbe se odmah prelazi na sledeću (nezavisnu)
 - evidencija korišćenja registara (scorebording)
 - ako naredbe samo koriste isti registar
 - korišćenje rezervnog registra (engl. register renaming, Tomasulov algoritam)
- Neophodne velike radne memorije
- Memorijski preslikani ulaz-izlaz
- IEEE 754 standard za aritmetiku realnih brojeva

IEEE 754 standard za aritmetiku realnih brojeva

- 3 formata MNF:
 - jednostruka preciznost od 32 bita
 - najznačajniji bit za predznak
 - narednih 8 bita za podešeni eksponent
 - preostalih 23 za frakciju
 - dvostruka preciznost od 64 bita
 - najznačajniji bit za predznak
 - narednih I I bita za podešeni eksponent
 - preostalih 52 za frakciju
 - proširena preciznost od 80 bita (interno korišćenje)

IEEE 754 standard za aritmetiku realnih brojeva

- Denormalizovani (engl. denormalized) brojevi
- Za vrednosti manje od mogućnosti MNF (engl. underflow)
- Oznaka za beskonačno (engl. infinity)
- Oznaka za neodređeno (NaN, engl. not a number)

Arhitektura naredbi MIPS

- Mašinski format naredbe
- Aritmetičko-logičke naredbe:

6 bita	5 bita	5 bita	5 bita	5 bita	6 bita
kod naredbe	ulazni reg1	ulazni reg2	izlazni reg	konstanta	kod naredbe

Naredbe prenosa:

6 bita	5 bita	5 bita	16 bita
kod naredbe	ulazni reg	izlazni reg	konstanta

Upravljačke naredbe:

6 bita	5 bita	5 bita	16 bita
kod naredbe	ulazni reg1	ulazni reg2	konstanta

- poređenje dva registra
- 0 ili 1 u registru

Arhitektura naredbi MIPS

- Mašinski format naredbe
- Bezuslovni skokovi:

6 bita	10 bita
kod naredbe	konstanta

Tipovi naredbi:

- naredbe za rukovanje podacima (za prenos podataka)
- naredbe za rukovanje bitima (logičke naredbe i naredbe pomeranja)
- naredbe za celobrojnu binarnu aritmetiku (obuhvaćene sve aritmetičke operacije),
- naredbe za aritmetiku realnih brojeva (obuhvaćene sve aritmetičke operacije)
- upravljačke naredbe
- sistemske naredbe

Arhitektura naredbi Intel Pentium Pro, 1995 (u odnosu na 80386)

- FPU
- Naredbe za regulaciju potrošnje energije
 - prenosni računari
- MMX
 - SIMD
- Super-skalar
 - do 3 naredbe u jednom ciklusu
 - RISC jezgro
 - 12-stepena protočna struktura, out of order izvršavanje
 - izvršava mikro-programe Pentium Pro naredbi
 - 8 kB L1 data cache, 8 kB L1 instruction cache, 96 kB L2 cache

"Ring" writing element

- Magnetni diskovi
- Kapacitet 60% godišnje
- Povećanje gustine, perpendicular recording (2005)

- Magnetni diskovi
 - srednje vreme pristupa 3% godišnje
 - veća gustina \Rightarrow manje dimenzije \Rightarrow manji pređeni put
 - povećanje broja sektora na spoljnjim stazama
 - kB, MB, GB, KiB, MiB, GiB
 - korišćenje K diskova u nizu (engl. disk array) za veću brzinu
 - slično modularnoj memoriji
 - sukcesivne lokacije na sukcesivnim diskovima (engl. data stripping)
 - korišćnje više diskova za veću pouzdanost
 - **RAID** (engl. redundant array of independent disks)

- RAID
 - RAID 0
 - stripping
 - manja pouzdanost
 - RAID I
 - mirroring
 - RAID 2
 - bit-level striping + Hamingov kod
 - poseban disk za Hamingov kod
 - RAID 3
 - byte-level striping + paritet
 - poseban disk za paritet
 - RAID 4
 - block-level striping + paritet
 - poseban disk za paritet

- RAID
 - RAID 5
 - block-level striping + distribuirani paritet
 - paritet se distribuira po postojećim diskovima
 - moguć gubitak do 1 diska, minimum 3 diska
 - RAID 6
 - block-level striping + dupli distribuirani paritet
 - paritet se distribuira po postojećim diskovima
 - moguć gubitak do 2 diska, minimum 4 diska
 - ugnježdeni (engl. hybrid) RAID
 - 0+1
 - I+0
 - nestandardni RAID formati

- Optički diskovi
 - Zamenili floppy diskete
 - CD (engl. compact disc)
 - upotreba lasera za čitanje/upis
 - Red Book, IEC 908 audio zapis
 - Blue Book, Yellow Book, itd.
 - zapis podataka (CD-ROM)
 - video materijal (Video CD)
 - fotografije (Photo CD)
 - mogućnost dopisivanja podataka (multisession, CD-XA)
 - fajl sistem ISO 9660
 - 3 vrste, zavisno od čitanja/pisanja
 - CD (read only)
 - CD-R (recordables)
 - CD-RW (rewritables)

- Optički diskovi
 - DVD (engl. digital versatile disk)
 - DVD+R, DVD-R
- Poluprovodnički diskovi (SSD, engl. Solid State Disk)
 - zasnovani na FLASH memoriji

Evolucioni period arhitekture računara oko 2000.

Dalje povećanje integracije

- ULSI (engl. Ultra Large Scale Integration)
- Mikroračunari dobijaju osobine velikih i mini računara
- Gubi se granica između mikro, mini i velikih računara
- Nova podela:
 - ugrađeni (engl. embedded) računari
 - radne stanice (engl. desktop computer, workstation)
 - serveri (engl. servers)

Ugrađeni računari

- Kontroleri/upravljački uređaji
 - industrijski pogoni
 - mala potrošnja (za baterijski napajane)
 - rad u nepovoljnim uslovima (temperatura, vlažnost,...)
 - kontroleri za HD, wireless, itd.
- Sistemi za rad u realnom vremenu (engl. real-time systems)
 - kontrola sistema u vozilima
- Obrada audio/video signala
 - DSP (engl. digital signal processor)
- Računari za jednokratnu upotrebu (engl. disposable computer)
 - RFID (engl. Radio Frequency IDentification)

Radne stanice

- Radne stanice:
 - veliki adresni prostor
 - virtuelna memorija
 - više sabirnica
 - velika masovna memorija
 - primer: Intel Pentium 4

- Multiprocesori
 - deljena radna memorija (engl. shared-memory systems)
 - razmena podataka putem deljenih lokacija
 - problem konzistencije
 - više procesora
 - skrivena memorija
 - pravila ponašanja memorije (engl. memory semantics)
 - stroga konzistentnost (engl. strict consistency)
 - potpuna serijalizacija pristupa memoriji
 - smanjuje stepen paralelizma
 - sekvencijalna konzistetnost (engl. sequential consistency)
 - dozvoljava da čitanje ne preuzima poslednju vrednost
 - zahteva da svaki procesor vidi isti redosled upisa

- Multiprocesori
 - COMA (engl. cache only memory access)
 - deljena memorija se ponaša kao skrivena
 - svaki procesor ima svoju kopiju
 - posebni protokoli (engl. cache coherence protocols)
 - SEQUENT NUMA-Q 2000
 - Modul:
 - 4x INTEL PENTIUM Pro
 - 4GB memorije
 - kontroler sa 32MB memorije za deljenu memoriju

- Multiračunari
 - distribuirana radna memorija (engl. distributed-memory system)
 - razmena poruka
 - MPI (engl. Message Passing Interface)
 - super-računari
 - procesori sa sopstvenom memorijom
 - brze, namenske spojne mreže
 - MPP (engl. massively parallel processors)
 - CRAY T3E
 - 2048x DEC ALPHA 21164 + 2GB RAM
 - dvosmerna trodimenzionalna mreža (engl. full-duplex 3D torus) 6 veza ka susedima
 - dodatna mreža za prenos poruka

- Multiračunari
 - klasteri (engl. cluster, cluster of workstations) Beowulf klaster
 - radne stanice
 - komercijalne spojne mreže
 - Ethernet
 - prekidači (engl. switch)
 - sistemske mreže SAN (engl. storage or system area network)
 - Google
 - I klaster 5120 radnih stanica
 - Pentium 4
 - 512 MB memorije
 - 80GB hard disk, napajanje, hlađenje
 - ormari sa 80 radnih stanica
 - switch-evi

Paralelizam unutar procesora

- Instruction Level Parallelism (ILP)
 - jedna protočna struktura
 - više protočnih struktura (super-skalari)
- Spekulativno izvršavanje (engl. speculative execution)

```
if (a>b)
    a = a - b;
else
    b = b - a;
```

- unapred se izvrše naredbe obe grane
 - kasnije se bira koja se koristi
- problem obrade izuzetka

Paralelizam unutar procesora

- Eksplicitno obeležavanje nezavisnih delova programa niti (engl. thread level parallelism – TLP)
 - unutar niti sekvencijalno
 - razne niti paralelno
- Nezavisne naredbe
 - Pronalazi ih procesor ili kompajler
 - generisanje naredbi tako da je protočni paralelizam što veći
 - pronalaženje nezavisnih naredbi
 - dugačak mašinski format naredbe VLIW (engl. very long instruction word)
 - računari sa eksplicitnim paralelnim naredbama EPIC (engl. explicitly parallel instruction computers)

Paralelizam unutar procesora

- Računari sa eksplicitnim paralelnim naredbama
 - potrebno što veće preklapanje "dugačkih" naredbi
 - izbegavanje grananja
 - predikatske naredbe (engl. predicated instruction)
 - prvo se proveri predikatski registar (engl. predicate register)
 - ako predikat (uslov) važi, izvršavaju se
 - ako ne važi, ne izvršavaju se
 - sve naredbe iz jedne grane odgovaraju istoj vrednosti predikata
 - posebne naredbe za postavljanje predikatskog registra

Evolucija optičkih diskova

- Plavi poluprovodnički laser
 - manja talasna dužina od crvenog
 - razvoj završen krajem 1990-tih
 - Nobelova nagrada za fiziku 2014.
- HD DVD (engl. High Definition/Density Digital Versatile/Video Disc)
 - I5/30GB
 - povučen 2008.
- Blu-ray
 - 25/50GB
- UDF (Universal Disk Format)

Arhitektura naredbi Intel Itanium

- RISC EPIC
- 64-bitni adresni prostor
- Registri:
 - 128× 64 bita opšte namene
 - 128× 82 bita realni brojevi
 - 64× I bit predikatski
 - 8× 64 bita registri za indirektne skokove (engl. branch registers)
 - razni namenski registri

Arhitektura naredbi Intel Itanium

- Format naredbi
 - sve su predikatske i obavljaju se u grupama (engl. bundle)

41 bit	41 bit	41 bit	5 bita

- prva 3 polja su kodovi naredbi
 - kod tipa naredbe
 - kod predikatskog registra
 - ostalo zavisi od tipa naredbe
 - relativni kod naredbe
 - kodovi registara
 - ..
- 5-bitni kod svežnja (engl. bundle)
 - oznaka kraja označava kraj nezavisnih naredbi
- 3 nivoa skrivene memorije

Evolucioni period arhitekture računara oko 2010.

Dalje povećanje gustine tranzistora na čipu

- Prvi dvojezgarni procesori
 - IBM POWER4 PowerPC
 - AMD Athlon64 X2
 - inicijalno jednostavno 2× CPU
 - kasnije 3, 4, 6, 8, 10, 12, ...
 - omogućavaju viši nivo paralelizma
- Hibridne arhitekture
 - IBM Cell
 - I × PowerPC
 - 8× SIMD jezgro
 - brza interna sabirnica

- Vodeće mesto x86
- Veći ulazak ARM procesora
 - prenosni uređaji
 - PDA
 - telefoni
 - netbook/laptop
 - 2011. prelazak sa 32 na 64 bita
 - povećanje broja jezgara
 - razdvojeni razvoj i proizvodnja
 - više proizvođača

- IBM POWER8 12-jezgarni procesor
- SPARC 16-jezgarni
 - Fujitsu SPARC64 X+
 - Oracle SPARC T5
- Loongson 3B 8-jezgarni procesor
 - MIPS64 arhitektura naredbi
 - hardverski podržana emulacija x86
 - nastao delimično kao odgovor na kontrolisane isporuke x86 procesora

- Istorijat ARM procesora
 - Acorn Computers
 - 1979. Acorn Atom
 - 1980. BBC Microelectronics Education Programme
 - 1981. BBC B
 - 1982. Acorn Electron
 - 1983. Acorn RISC Machine ARM
 - delimično inspirisan sa 6502
 - dodatni procesor za BBC B
 - korišćen za simulacioni i CAD softver za razvoj ARM2
 - 1987. Acorn Archimedes, ARM
 - RISC OS

- Istorijat ARM procesora
 - Acorn Computers
 - 1989. A3000: ARM2
 - 32-bitni procesor
 - 32-bitna data magistrala
 - 26-bitni adresni prostor
 - 1991. A5000
 - 1992. A3010, A3020, A7000: ARM250, ARM3
 - 1994. RISC PC: ARM3, ARM4
 - 1990. izdvajanje ARM Holdings
 - 1992. ARM6 (saradnja sa Apple-om)
 - Apple Newton PDA
 - DEC StrongARM
 - Intel XScale

- Istorijat ARM procesora
 - mnogo proizvođača
 (Samsung, Apple,
 Qualcomm, Broadcom,
 NVidia, AMD, Intel,
 Huawei...)
 - prenosni uređaji
 - više jezgara i SoC (engl. System-on-Chip) pristup
 - dalji razvoj jezgara
 - više od 100 milijardi ARM procesora proizvedenih do kraja 2017.

Internet

- Globalno umrežavanje računara
- Sigurnost
 - bagovi u OS-u
 - bagovi u programima
 - mogućnost upada u sistem
 - krađa informacija (spyware)
 - botnet, enkripcija (malware)
- Praćenje korisnika
 - cookie
 - od strane ISP-a
- Anoniman pristup
 - TOR (engl. The Onion Router)

Grafički procesori

- Povećanje broja jezgara
 - 3D proračuni se mogu dobro paralelizovati
- Upotreba za generalne proračune GPGPU (engl. General-Purpose computing on Graphics Processing Units), poznato i kao GPU Computing
 - 2007. NVidia CUDA I.0 (Compute Unified Device Architecture)
 - 2008. otvoreni standard OpenCL 1.0
 - Nvidia Tesla, Intel Xeon Phi

OpenCL

Super-računari

- Top500 (<u>www.top500.org</u>) i Green500 (<u>www.top500.org/green500</u>)
- Najbrži super-računar (2020): Summit
- Uglavnom od tržišno dostupnih komponenti
- Težnja ka smanjenju potrošnje
- 2015. 85% 64-bit x86, 97% Linux
- 2016. 88% >= 8 jezgara, 100% Linux
- Hibridni super-računari
 - 2008 IBM Roadrunner
 - čvor: 64bit x86 + PowerXCell
 - Intel Xeon Phi, Nvidia Tesla

Prenosni (mobilni) računarski uređaji

- Mobilni telefoni većih mogućnosti (Nokia Symbian)
- Ekran osetljiv na dodir
- Pojava "pametnih" telefona (engl. smartphone)
- Operativni sistemi za prenosne uređaje
 - iOS
 - Android
 - Windows Mobile
- Današnji telefoni/tableti:
 - 2,4,8-jezgarni procesori
 - više GB memorije
 - dominatno ARM procesori
 - dominatno Android/iOS

Arhitektura naredbi AMD Athlon 64/Opteron

- Prvi x86 64-bitni procesori
 - 64-bitni adresni prostor
 - PAE (engl. Physical Address Extension), Pentium Pro, 1995
 - dodatne adresne linije
 - i dalje 32-bitne virtuelne adrese
 - 64-bitni registri
 - ugrađen memorijski kontroler
 - registri
 - 51× sistemski registar
 - I6× 64-bit registara opšte namene
 - 8× 64-bit realni brojevi
 - 16× 256-bit SIMD registri
 - više status/kontrolnih registara
 - kompleksan mašinski format sa prefiksima i postfiksima

