RL: Deep

Marius Lindauer

l l Leibniz l o 2 Universität o o 4 Hannover

RL with Function Approximation

ullet Represent state-action value function by Q-network with weights ${f w}$

$$\hat{Q}(s, a; \mathbf{w}) \approx Q(s, a)$$

Recall: Incremental Model-Free Control Approaches

- Similar to policy evaluation, true state-action value function for a state is unknown and so substitute a target value
- ullet In Monte Carlo methods, use a return G_t as a substitute target

$$\Delta \mathbf{w} = \alpha (G_t - \hat{Q}(s_t, a_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s_t, a_t; \mathbf{w})$$

• For SARSA instead use a TD target $r + \gamma \hat{Q}(s',a';\mathbf{w})$ which leverages the current function approximations value

$$\Delta \mathbf{w} = \alpha(r + \gamma \hat{Q}(s', a'; \mathbf{w}) - \hat{Q}(s, a; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

• For Q-learning instead use a TD target $r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w})$ which leverages the max of the current function approximations value

$$\Delta \mathbf{w} = \alpha (r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}) - \hat{Q}(s, a; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

Using these Ideas to do Deep RL in Atari

Image by David Silver

Using these Ideas to do Deep RL in Atari

- ullet End-to-end learning of values Q(s,a) from pixels s
- ullet Input state s is stack of raw pixels from last 4 frames
- ullet Output is Q(s,a) for 18 joystick/button positions
- Reward is change in score for that step
- Network architecture and hyperparameters fixed across all games

DQN source code: sites.google.com/a/deepmind.com/dqn/

Q-Learning with Value Function Approximation

- Minimize MSE loss by stochastic gradient descent
- ullet Converges to the optimal $Q^*(s,a)$ using table lookup representation
- But Q-learning with VFA can diverge
- Two of the issues causing problems:
 - Correlations between samples violates i.i.d assumption of DNNs
 - Non-stationary targets
- Deep Q-learning (DQN) addresses both of these challenges by
 - Experience replay
 - ► Fixed Q-targets

DQNs: Replay Buffer

- ullet To help remove correlations, store dataset (called a replay buffer) ${\cal D}$ from prior experience
- To perform experience replay, repeat the following:
 - $(s,a,r,s') \sim \mathcal{D}$: sample experience tuple from the dataset
 - ② Compute the target value for the sampled $s: r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w})$
 - Use stochastic gradient descent to update the network weights

$$\Delta \mathbf{w} = \alpha(r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}) - \hat{Q}(s, a; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

DQNs: Replay Buffer

- ullet To help remove correlations, store dataset (called a replay buffer) ${\cal D}$ from prior experience
- To perform experience replay, repeat the following:
 - **①** $(s, a, r, s') \sim \mathcal{D}$: sample experience tuple from the dataset
 - ② Compute the target value for the sampled s: $r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w})$
 - Use stochastic gradient descent to update the network weights

$$\Delta \mathbf{w} = \alpha (r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}) - \hat{Q}(s, a; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

- Remarks:
 - ► Fixed sized buffer → first-in-first-out scheme (as default implementation)
 - heuristic trade-off between performing new episodes and sampling from the replay buffer

DQNs: Replay Buffer

- ullet To help remove correlations, store dataset (called a replay buffer) ${\cal D}$ from prior experience
- To perform experience replay, repeat the following:
 - **1** $(s,a,r,s') \sim \mathcal{D}$: sample experience tuple from the dataset
 - ② Compute the target value for the sampled $s: r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w})$
 - Use stochastic gradient descent to update the network weights

$$\Delta \mathbf{w} = \alpha (r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}) - \hat{Q}(s, a; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

- Remarks:
 - ► Fixed sized buffer \leadsto first-in-first-out scheme (as default implementation)
 - heuristic trade-off between performing new episodes and sampling from the replay buffer
- Can treat the target as a scalar, but the weights will get updated on the next round, changing the target value

DQNs: Fixed Q-Targets

- To help improve stability, fix the target weights used in the target calculation for multiple updates
- Target network uses a different set of weights than the weights being updated
- \bullet Let parameters \mathbf{w}^- be the set of weights used in the target and \mathbf{w} be the weights that are being updated
- Slight change to computation of target value:
 - $(s, a, r, s') \sim \mathcal{D}$: sample experience tuple from the dataset
 - ▶ Compute the target value for the sampled s: $r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}^-)$
 - Use stochastic gradient descent to update the network weights

$$\Delta \mathbf{w} = \alpha(r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}^{-}) - \hat{Q}(s, a; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

DQNs: Fixed Q-Targets

- To help improve stability, fix the target weights used in the target calculation for multiple updates
- Target network uses a different set of weights than the weights being updated
- ullet Let parameters ${f w}^-$ be the set of weights used in the target and ${f w}$ be the weights that are being updated
- Slight change to computation of target value:
 - $(s, a, r, s') \sim \mathcal{D}$: sample experience tuple from the dataset
 - ▶ Compute the target value for the sampled s: $r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}^-)$
 - Use stochastic gradient descent to update the network weights

$$\Delta \mathbf{w} = \alpha(r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}^{-}) - \hat{Q}(s, a; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

- Remark:
 - ► Hyperparameter how often you update w⁻
 - ► Trade-off between updating too often (\(\simp \) instability) and too rarely (\(\simp \) too old state information)

DQN Summary

- DQN uses experience replay and fixed Q-targets
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in reply memory \mathcal{D}
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Compute Q-learning targets wrt old, fixed parameters w⁻
 - ▶ Update w⁻ from time to time
- Optimizes MSE between Q-network and Q-learning targets
- Uses stochastic gradient descent

