Podstawy Sztucznej Inteligencji Dokumentacja końcowa

Interaktywny projektant soczewek

Autorzy: Arkadiusz Szlachetka Maciej Jagiełło Maciej Kucharski

1 Kluczowe decyzje projektowe

1. Interakcja z użytkownikiem

Podczas uruchomienia programu, użytkownik jest pytany o parametry konieczne do przeprowadzenia symulacji, tj. ilość symulowanych promieni, ilość segmentów, z których składa się soczewka, wartość współczynnika załamania dla materiału, z którego jest wykonana soczewka, tolerancję zerowania skupienia elementów oraz minimalną wartość zaburzenia losowego. Następnie symulacja rozpoczyna się i jest to zarazem koniec interakcji z użytkownikiem.

2. Zastosowany algorytm ewolucyjny

W programie zaimplementowany algorytm ewolucyjny 1+1. W każdej iteracji utrzymywana jest jednoelementowa populacja. Następnie przeprowadzane jest krzyżowanie, w wyniku którego jest tworzona nowa soczewka. Jeśli wartość jej funkcji przynależności jest korzystniejsza, niż dla starej, to jest ona przekazywana do następnej generacji, w przeciwnym wypadku przekazywana jest stara. W przypadku znalezienia soczewki o zadowalającym wyniku, bądź wykrycia, że aktualnie używana wartość elementu losowego jest mniejsza od założonej minimalnej, symulacja jest przerywana.

3. Wybrany punkt skupiania

Założony punkt skupiania nie podlega wyborowi przez użytkownika. Został arbitralnie wybrany jako jeden ze znajdujących się na osi układu współrzędnych.

4. Przyjęta funkcja przystosowania

Za wartość funkcji przystosowania uznawana jest suma kwadratów odległości załamanych promieni od założonego ogniska soczewki. W przypadku wystąpienia zjawiska całkowitego wewnętrznego odbicia, dany promień nie jest przetwarzany i do wyniku soczewki zostaje dodana bardzo duża liczba. Wartość funkcji przystosowania jest minimalizowana.

2 Opis struktury programu

2.1 Architektura

Program został przygotowany zgodnie z wzorcem projektowym Model-View-Controller. W pakiecie mma.pszt.model znajdują się klasy odpowiedzialne za odzorowanie soczewek i promieni.

Pakiet mma.pszt.view zawiera klasy zajmujące się wizualizacją danych.

Pakiet utils to głównie klasy realizujące istotne, jednak poboczne z punktu widzenia zadania, zagadnienia.

Klasa mma.pszt.controller.Controller zawiera główną pętlę programu, pośredniczy w wymianie danych między warstwą modelu i widoku oraz interpretuje otrzymywane wyniki. Główną klasą programu jest klasa mma.pszt.LensDesigner. Tworzy ona kontroler i uruchamia petle programu.

2.2 Narzędzia poboczne

W programie są wykorzystywane zewnętrzne biblioteki, stąd celem łatwiejszego zarządzania zależnościami wykorzystany został program Apache Maven. Aby zbudować uruchamialną wersję programu (bez IDE) należy, znajdując się w katalogu programu, wpisać w terminalu:

```
mvn clean package -Dmaven.test.skip=true
```

Po zbudowaniu aplikację można uruchomić poprzez wpisanie polecenia:

```
java -jar target/LensDesigner-1.0-SNAPSHOT.jar
```

Uruchomi się wtedy okno programu, w którym należy podać dane niezbędne do przeprowadzenia symulacji. Po tym okienko wprowadzania danych zniknie i pojawi się okno prezentujące przebieg symulacji.

3 Wyniki testowania

 \cos

4 Wnioski

haha