Carrier or Contract		-51-000			1		7 7	-
SRN	1	4	1 1	3	1	- 1		
OLLIA		1	1 1	1	1 1	1	10 000	
			1	- 1	1 1			

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE15EC353

END SEMESTER ASSESSMENT (ESA) B.TECH. VI SEMESTER- May, 2018 UE15EC353-DIGITAL SYSTEM DESIGN USING HDL

I 11	ne:	3 hrs. Max. Marks	: 100					
1.	a)	Explain the four levels of abstraction at which the internals of a Verilog Module can be defined.						
	b)	Write the structural model in Verilog for negative-edge triggered 4-bit bir asynchronous up counter using D flip flop module and a not gate.						
	c)	Explain two types of Variable vector part select operators in Verilog HDL with example declarations and usage. With this feature, show using a loop, selection of an 8-bit vector at a time from a vector of 256 bits.	6					
2.	a)	What will be the output of the following primitive gates in Verilog, if the two inputs $(i1,i2)$ take values $(0,x)$, $(1,x)$, $(0,z)$, $(z,1)$? (i) nand (ii) nor and (iii) xnor.	6					
	b)	Using primitive buffers available, write a Verilog code to synthesize a 4 to 1 multiplexer.	4					
	c)	Write a Verilog design module to synthesize the circuit shown in fig.Q2(c). Draw the waveforms for a,b,c,e and out when the following stimulus is applied to the design module. module stimulus; reg A, B, C; wire OUT; D d1(OUT, A, B, C); //design module instantiation initial begin A= 1'b0; B= 1'b0; C= 1'b0; #10 A= 1'b1; B= 1'b1; C= 1'b1; #10 A= 1'b1; B= 1'b0; C= 1'b0; #20 \$finish; end endmodule	5					
	d)	Write a Verilog code to synthesize 8 to 3 line priority encoder using continuous assignment statement.	5					
3.	a)	What is the value to which the following expressions in Verilog are evaluated? Given reg [0:5]b; integer t; integer p, q, r; $p = 0$; $q = -13$; (i) 15 % -4 (ii) 43 < 8'hxFF (iii) 'b10x1 + 'b01111 (iv) if $b = -4$ 'd12; what is the value in binary? (v) if $t = -2 + (-4)$ what is the value in binary? (vi) $r = p + (q >>> 4)$	6					
	b)	Write a Verilog model at data flow level of abstraction to synthesize D flip-flop shown in fig. Q3(b).	5					

