

OCTAL D FLIP-FLOP WITH ENABLE; HEX D FLIP-FLOP WITH ENABLE; 4-BIT D FLIP-FLOP WITH ENABLE

The SN54/74LS377 is an 8-bit register built using advanced Low Power Schottky technology. This register consists of eight D-type flip-flops with a buffered common clock and a buffered common clock enable.

The SN54/74LS378 is a 6-Bit Register with a buffered common enable. This device is similar to the SN54/74LS174, but with common Enable rather than common Master Reset.

The SN54/74LS379 is a 4-Bit Register with buffered common Enable. This device is similar to the SN54/74LS175 but features the common Enable rather then common Master Reset.

- 8-Bit High Speed Parallel Registers
- Positive Edge-Triggered D-Type Flip Flops
- Fully Buffered Common Clock and Enable Inputs
- True and Complement Outputs
- Input Clamp Diodes Limit High Speed Termination Effects

PIN NAME	ES .	LOADING (Note a)			
		HIGH	LOW		
E	Enable (Active LOW) Input	0.5 U.L.	0.25 U.L.		
D_0-D_3	Data Inputs	0.5 U.L.	0.25 U.L.		
CP	Clock (Active HIGH Going Edge) Input	0.5 U.L.	0.25 U.L.		
<u>Q</u> 0- <u>Q</u> 3	True Outputs (Note b)	10 U.L.	5 (2.5) U.L.		
Q_0-Q_3	Complemented Outputs (Note b)	10 U.L.	5 (2.5) U.L.		
NOTEC.			-		

a) 1 TTL Unit Load (U.L.) = $40 \mu A HIGH/1.6 mA LOW$.

SN54/74LS377 SN54/74LS378 SN54/74LS379

OCTAL D FLIP-FLOP WITH ENABLE; HEX D FLIP-FLOP WITH ENABLE; 4-BIT D FLIP-FLOP WITH ENABLE

LOW POWER SCHOTTKY

b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

CONNECTION DIAGRAM DIPS (TOP VIEW)

SN54/74LS377

SN54/74LS378

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

SN54/74LS379

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

LOGIC DIAGRAMS

SN54/74LS378

SN54/74LS379

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
loh	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Tes	t Conditions
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
VIL	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for	
Ŭ VIL	Input LOVV Voltage	74			0.8	V	All Inputs	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA	
V	Output HICH Voltage	54	2.5	3.5		V	V _{CC} = MIN, I _{OH}	= MAX, V _{IN} = V _{IH}
VOH	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth Table	
Val	Outrot LOW/Vales as			0.25	0.4	V	$I_{OL} = 4.0 \text{ mA}$ $V_{CC} = V_{CC} \text{ MIN}$	V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table
I	Innut I II CI I Current				20	μΑ	$V_{CC} = MAX, V_{IN} = 2.7 V$	
¹IH	Input HIGH Current				0.1	mA	$V_{CC} = MAX, V_{IN} = 7.0 V$	
I _I L	Input LOW Current				-0.4	mA	$V_{CC} = MAX$, $V_{IN} = 0.4 V$	
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX	
ICC	Power Supply Current LS	377 378 379			28 22 15	mA	V _{CC} = MAX, NOTE 1	

NOTE: With all inputs open and GND applied to all data and enable inputs, I_{CC} is measured after a momentary GND, then 4.5 V is applied to clock. Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

			Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
f _{MAX}	Maximum Clock Frequency	30	40		MHz	V _{CC} = 5.0 V C _L = 15 pF	
tPLH tPHL	Propagation Delay, Clock to Output		17 18	27 27	ns		

AC SETUP REQUIREMENTS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

			Limits				
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions
t _W	Any Pulse Width		20			ns	
t _S	Data Setup Time		20			ns	
	Enable Setup	Inactive — State	10			ns	V _{CC} = 5.0 V
ts Time		Active — State	25			ns	
th	Any Hold Time		5.0			ns	

DEFINITION OF TERMS

SETUP TIME (ts) — is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW-to-HIGH in order to be recognized and transferred to the outputs.

HOLD TIME (th) — is defined as the minimum time following

the clock transition from LOW-to-HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW-to-HIGH and still be recognized.

TRUTH TABLE

E	СР	Dn	Qn	Qn
Н	\	Х	No Change	No Change
L	\	Н	Н	L
L		L	L	Н

L = LOW Voltage Level

H = HIGH Voltage Level

X = Immaterial

AC WAVEFORMS

SN54/74LS377

Figure 1. Clock to Output Delays Clock Pulse Width, Frequency, Setup and Hold Times Data or Enable to Clock

SN54/74LS378

Figure 2. Clock to Output Delays Clock Pulse Width, Frequency, Setup and Hold Times Data or Enable to Clock

SN54/74LS379

^{*}The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 3. Clock to Output Delays Clock Pulse Width, Frequency, Setup and Hold Times Data, Enable to Clock