

Introduction of Machine Learning & Deep Learning for Geoinformatics

Attawut Nardkulpat

Faculty of Geoinformatics

Burapha University

21/09/2020

attawut@buu.ac.th

Outline

- Week 1
 - Overview AI, Machine Learning & Deep Learning
 - Regression
- Week 2
 - Logistic Classification & Image Classification
- Week 3
 - Ensemble Learning & Neural Network
- Week 4
 - Deep Learning

How Unsupervised Machine Learning Works

Logistic regression

- จะใช้เมื่อคุณมีการจัดหมวดหมู่ปัญหา
- ตัวแปรเป้าหมายของคุณ (หรือตัวแปรที่คุณสนใจในการทำนาย) ประกอบด้วย หมวดหมู่
- หมวดหมู่เหล่านี้อาจเป็นใช่ / ไม่ใช่หรือบางอย่างเช่นตัวเลขระหว่าง 1 ถึง 10 แสดงถึงความพึงพอใจของลูกค้า
- Logistic Regression Model ใช้สมการเพื่อสร้างเส้น โค้งค้วยข้อมูลของคุณ จากนั้นใช้เส้น โค้งนี้เพื่อทำนายผลลัพธ์ของการสังเกตใหม่

Overview of logistic regression

Overview of logistic regression

$$h(x^{(i)}, \theta) = \frac{1}{1 + e^{-\theta^T x^{(i)}}}$$

Training LR

Testing logistic regression

$$Y_{val} = egin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} \ pred = egin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \ (Y_{val} == pred) = egin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

Accuracy = 4/5 = 0.8

Naïve Bays

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

Naïve Bayes for Sentiment Analysis

Positive tweets

I am happy because I am learning NLP I am happy, not sad.

Negative tweets

I am sad, I am not learning NLP I am sad, not happy

word	Pos	Neg
	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
N _{class}	13	12

$P(w_i | class)$

word	Pos	Neg
	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
Nclass	13	12

word	Pos	Neg
ı	0.24	0.25
am	0.24	0.25
happy	0.15	0.08
because	80.0	0.00
learning	80.0	80.0
NLP	80.0	80.0
sad	80.0	0.17
not	0.08	0.17
Sun	n 1	1

Naïve Bayes

Tweet: I am happy today; I am learning.

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} = \frac{0.14}{0.10} = 1.4 > 1$$

$$\frac{0.20}{0.20}*\frac{0.20}{0.20}*\frac{0.14}{0.10}*\frac{0.20}{0.20}*\frac{0.20}{0.20}*\frac{0.10}{0.10}$$

word	Pos	Neg
ı	0.20	0.20
am	0.20	0.20
happy	0.14	0.10
because	0.10	0.05
learning	0.10	0.10
NLP	0.10	0.10
sad	0.10	0.15
not	0.10	0.15

What means classification?

- Overall objective \rightarrow (automatically) categorize all pixels in an image in certain (i.e. predefined) classes or themes
- Thematic classification allocates pixels to classes based on functions of the spectral (or backscatter) properties

Fig. 1: Schematic Classification Workflow (after Lillesand et al. (2008))

Algorithm based differentiation

Parametric Classifiers

- Implying a specific statistical distribution
- → Generally gaussian distribution
- Calculation statistical measurement
 (e.g. Standard deviation or Covariance

Non-Parametric Classifiers

- No assumtion on the statistical distribution of the data
- Robust due to ability to describe numerous statistical distributions other than gaussian distribution

SAR dats is usually not gaussian distributed!

Classification

(see PPT, The histogram' in #1201)

→ Non-parametric classifiers are more appropriate in Radar remote sensing

Differentiation by training concept

Unsupervised Classifiers

- No Training stage
- Purely based on the statistical distribution of the input data

Supervised classifiers

Employing manual traing of the data set to distinguish the desired classes

Differentiation by training concept

Unsupervised vs. Supervised

Fig. 2: Basic steps of classification (after Lillesand et al. (2008))

(1) TRAINING STAGE
Collect numerical
data from training
areas on spectral
response patterns
of land cover
categories

(1) CLASSIFIACTION STAGE Forming clusters of pixels according to their spectral properties (2) OUTPUT STAGE Present results:

- Maps
- Tables
- GIS Data

• ...

Concept: Unsupervised
Algorithm: Parametric

Pros:

No interaction or a
priori tuning necessary
initial cluster centers
Empty classes possible

a₊ b₊ c₊ Cluster centers

Idealized data clusters

(K-)Nearest Neighbor

Data point under investigation

No Water

Settlement

Support Vector Machines (SVM)

Fig. 9: SVM Classifier Attribute 1

Which line divides the classes best?

- Support Vectors
 - Training Pixel Class A
 - Training Pixel Class B