GREENE'S DUALITY THEOREM FOR TIMED WORDS

AMRITANSHU PRASAD

Definition 1 (Vertical and Horizontal strips). Let $\lambda = (\lambda_1, \dots, \lambda_l) \subset \mu = (mu_1, \dots, \mu_m)$ be real partitions. Then, we say that λ/μ is a vertical strip of size r if $\lambda_i - \mu_i \leq 1$ for each $i = 1, \dots, l$, and $\mu_i \leq 1$ for $i = l + 1, \dots, m$, and $r = l(\lambda) - l(\mu)$. We say that λ/μ is a horizontal strip of size r if λ and μ can be padded with 0's in such a way that l = m + 1, and $\lambda_i \geq \mu_i \geq \lambda_{i+1}$ for all $i = 1, \dots, m$, and $l(\lambda) - l(\mu) = r$.

Definition 2. A *timed row* in A_n is a timed word of the form

$$u = 1^{t_1} \cdots n^{t_n}$$
, with $t_i \ge 0$ for $i = 1, \dots, n$.

The set of all timed rows of length r is denoted $R^{\dagger}(r)$. A timed column in A_n is a timed word of the form

$$u = n^{t_n} \cdots 1^{t_1}$$
, with $0 < t_i < 1$ for $i = 1, \dots, n$.

The set of all timed columns of length r is denoted $C^{\dagger}(r)$.

Theorem 3 (Pieri Rule and its Dual). For every real partition λ , the function

$$(t,u)\mapsto P(tu)$$

defines a bijection

$$\operatorname{Tab}_n(\lambda) \times R_n^{\dagger}(r) \tilde{\to} \coprod_{\mu} \operatorname{Tab}_n(\mu),$$

the union being over all real partitions μ such that μ/λ is a horizontal strip of size r.

Similarly, the function

$$(t,u)\mapsto P(tu)$$

defines a bijection

$$\operatorname{Tab}_n(\lambda) \times C_n^{\dagger}(r) \tilde{\to} \coprod_{\mu} \operatorname{Tab}(\mu),$$

the union being over all real partitions μ such that μ/λ is a vertical strip of size r.

Proof. Suppose that $u = 1^{s_1} \cdots n^{s_n}$ is a timed row. Suppose $i, j \in A_n$ are such that i > j, and $s, t \in [0, 1]$. Let

$$(v_1, u_1) = RINS(u, i^s),$$

$$(v_2, u_2) = RINS(u_1, j^t).$$

Then v_1 is a prefix of $(i+1)^{s_{i+1}} \cdots n^{s_n}$ of length $\min(s, s_{i+1} + \cdots + s_n)$. Since j < i,

Definition 4 (Dual Timed Tableau). A dual timed tableau of shape $\lambda = (\lambda_1, \dots, \lambda_l)$ is a sequence (u_1, \dots, u_l) of timed rows such that

- (1) $l(u_i) = \lambda_i \text{ for } i = 1, ..., l$,
- (2) $u_i(t+1) > u_i(t)$ for all $t \in [0, l(u_i) 1)$ for all i = 1, ..., l,
- (3) $u_i(t) \le u_{i+1}(t)$ for all $i = 0, \dots, l-1$, and $t \in [0, \lambda_{i+1})$.

The weight of a dual timed tableau is the sum of the weight vectors of its rows. The set of dual timed tableau of shape λ and weight μ is denoted by Tab*(λ, μ).

Given a dual timed tableau $t=(u_1,\ldots,u_l)$ of shape λ , let $\lambda_i^{(j)}$ be the length of the restriction of u_i to the alphabet $\{1,\ldots,j\}$ for $j=1,\ldots,n$. Then setting $\lambda^{(j)}=(\lambda_1^{(j)},\ldots,\lambda_l^{(j)})$, its dual Gelfand-Tsetlin pattern is defined to be the chain of real partitions:

(1)
$$GT^*(t) := (\emptyset = \lambda^{(0)} \subset \cdots \subset \lambda^{(n)} = \lambda),$$

such that

(2)
$$|\lambda^{(j)}| - |\lambda^{(j-1)}| = \mu_j \text{ for } j = 1, \dots, n,$$

(3)
$$\lambda_i^{(j-1)} \le \lambda_i^{(j)} \le \lambda_i^{(j-1)} + 1 \text{ for } i = 1, dotsc, l \text{ and } j = 1, dotsc, n.$$

Definition 5 (Dual Gelfand-Tsetlin Patterns). A dual Gelfand-Tsetlin pattern of shape λ and weight μ is a sequence of real partitions of the form (1) satisfying the conditions (2) and (3).

Lemma 6. The map GT^* is a bijection from the set of dual timed tableau of shape λ and weight μ onto the set of dual Gelfand-Tsetlin patterns of weight μ .

Theorem 7. There exists a dual timed tableau of shape λ and weight μ if and only if

(4)
$$\mu_1 + \dots + \mu_j \le \min(\lambda_1, j) + \dots + \min(\lambda_l, j),$$
 for all $j = 1, \dots, n$.

Proof. Suppose $t = (u_1, \ldots, u_l)$ is a dual timed tableau. Then each letter has weight at most one in the rows u_i , $w_1(u_i) + \cdots + w_j(u_i) \leq \min(l(u_i), j)$ for each i. Adding over all i gives (4).

For the converse, suppose the

The following algorithm takes as input an $m \times n$ matrix $A = (a_{ij})$ such that $0 \le a_{ij} \le 1$ for all i, j.

Dual RSK Algorithm

- $P \leftarrow \emptyset$, $Q \leftarrow \emptyset$
- For j = 1, ..., n repeat the following steps: $-Q \leftarrow \text{INS}(Q, n^{a_{nj}} \cdots 2^{a_{n2}} 1^{a_{n1}})$
 - $-P \leftarrow \text{INFL}(P, \text{shape}(Q), j)$
- Return P, Q.

If the dual RSK algorithm return (P,Q) on input A, we write:

$$RSK^*(A) = (P, Q).$$

Theorem 8. Let $\mu = (\mu_1, \dots, \mu_m)$ and $\nu = (\nu_1, \dots, \nu_n)$ be real partitions such that $|\mu| = |\nu|$. Let $N_{\mu\nu}$ denote the set of all matrices $A = (a_{ij})_{m \times n}$ with $0 \le a_{ij} \le 1$. Then the dual RSK algorithm defines a bijection:

$$\operatorname{RSK}^*: N_{\mu\nu} \tilde{\to} \coprod_{\lambda} \operatorname{Tab}^*(\lambda, \nu) \times \operatorname{Tab}(\lambda, \mu).$$

Recall also the following theorem:

Theorem 9. Let $\lambda = (\lambda_1, \ldots, \lambda_l)$ and $\mu = (\mu_1, \ldots, \mu_m)$ be real partitions, with $|\lambda| = |\mu|$. There exists a timed tableau of shape λ and content μ if and only if $l \leq m$, $\mu_1 + \ldots + \mu_j \leq \lambda_1 + \cdots + \lambda_j$ for $j = 1, \ldots, l$.

Proof. Suppose that $\lambda_i < \mu_m \le \lambda_{i-1}$. Then fill m into the last $\lambda_i - \lambda_{i+1}$ of rows $i, i+1, \ldots, l$. Totally this uses up λ_i amount of m. Also fill m into the last $\mu_m - \lambda_i$ of the (i-1)st row. Thus the feasibility problem is reduced to $(\mu_1, \ldots, \mu_{m-1})$, and $(\lambda_1, \ldots, \lambda_{i-2}, \lambda_{i-1} - \mu_m + \lambda_i, \lambda_{i+1}, \ldots, \lambda_l, 0)$. Note that $\lambda_{i-1} > \lambda_{i-1} - (\mu_m - \lambda_i)$, so the (i-1)st row of lambda is reduced in length, but $(i-1) + \lambda_i \ge \lambda_i \ge \lambda_{i+1}$, so the new vector is still a partition. For $j = 1, \ldots, i-2$, the feasibility condition $\mu_1 + \cdots + \mu_j \le \lambda_1 + \cdots + \lambda_j$ remains unchanged. For j = i-1, we have $\mu_1 + \cdots + \mu_{i-1} \le \lambda_1 + \lambda_{i-1} - \mu_m + \lambda_i$,

Combining Theorems 7, 8, and 9, we get:

Theorem 10 (Real Gale-Ryser Theorem). Let μ and ν be real partitions with the same sum. Then $N_{\mu\nu}$ is non-empty if and only if there exists a real partition $(\lambda = (\lambda_1, \ldots, \lambda_l))$ such that both the conditions

$$\mu_1 + \dots + \mu_j \le \min(\lambda_1, j) + \dots + \min(\lambda_l, j)$$
 for $j = 1, \dots, m$,
 $\nu_1 + \dots + \nu_j \le \lambda_1 + \dots + \lambda_j$ for $j = 1, \dots, l$.

Lemma 11. Suppose λ and μ are real partitions with $|\lambda| = |\mu|$. Then $\mu_1 + \cdots + \mu_j \leq \min(\lambda_1, j) + \cdots + \min(\lambda_l, j)$ for $j = 1, \cdots + m$ if and only if

$$\lambda_1 + \dots + \lambda_j \le \min(\mu_1, j) + \dots + \min(\mu_m, j) \text{ for } j = 1, \dots + l.$$