Introduction to Computational Logic

Homework 6

DUE DATE: JANUARY 3, 2018

學號:b03902129 系級:資工四 姓名:陳鵬宇

- (1) Show $\phi \mathbf{U}\psi \equiv \psi \mathbf{R}(\phi \vee \psi) \wedge \mathbf{F}\psi$ using semantic equivalences. Since $\phi \mathbf{U}\psi \equiv \phi \mathbf{W}\psi \wedge F\psi$, it remains to prove that $\phi \mathbf{W}\psi \equiv \psi \mathbf{R}(\phi \vee \psi)$ and it's in the problem (2).
- (2) Show $\phi \mathbf{W} \psi \equiv \psi \mathbf{R} (\phi \vee \psi)$ from definitions.
 - $\phi \mathbf{W} \psi \to \psi \mathbf{R} (\phi \vee \psi)$. Suppose $\pi \vDash \phi \mathbf{W} \psi$. Then there are two conditions:
 - (a) Either there is some $i \ge 0$ such that $\pi^i \models \psi$ and for all $0 \le j < i$ we have $\pi^j \models \phi$;
 - (b) or for all k > 0 we have $\pi^k \models \phi$.

In case (a), there is a minimal such i, say i_0 , and so $\pi^{i_0} \vDash \psi$ and, for all $0 \le j < i_0, \pi^j \nvDash \psi$ and $\pi^j \vDash \phi$, hence $\pi \vDash \psi \mathbf{R}(\phi \lor \psi)$.

In case (b), $\pi^k \vDash \phi$ for all $k \ge 0$, hence $\pi \vDash \psi \mathbf{R}(\phi \lor \psi)$.

Therefore, we have proved that in both case (a) and case (b), $\pi \vDash \psi \mathbf{R}(\phi \lor \psi)$.

- $\phi \mathbf{W} \psi \leftarrow \psi \mathbf{R}(\phi \vee \psi)$. Suppose $\pi \vDash \psi \mathbf{R}(\phi \vee \psi)$. Then there are two conditions:
 - (a) Either there is some $i \geq 0$ such that $\pi^i \models \psi$ and for all $0 \leq j \leq i$ we have $\pi^i \models \phi \lor \psi$;
 - (b) or for all $k \geq 0$ we have $\pi^k \models \phi \lor \psi$

In case (a), there is a minimal such i, say i_0 , and so $\pi^{i_0} \vDash \psi$ and, for all $0 \le j < i_0, \pi^j \nvDash \psi$ and $\pi^j \vDash \phi$; in particular, $\pi^0 \vDash \phi$ i.e. $\pi \vDash \phi$, hence $\pi \vDash \phi \mathbf{W} \psi$.

In case (b), either $\pi^k \models \phi$ for all $k \geq 0$, and hence $\pi \models \phi \mathbf{W} \psi$; or there is $h \geq 0$ such that $\pi^h \not\models \phi$ and $\pi^h \models \psi$, hence there is a minimal such h, say h_0 , and so $\pi^i \models \phi$ for all $0 \leq i < h_0$, thus $\pi \models \phi \mathbf{W} \psi$.

Therefore, we have proved that in both case (a) and case (b), $\pi \vDash \phi \mathbf{W} \psi$.

(3) Give a model $\mathcal{M} = (S, \to, L)$ and $s \in S$ such that $\mathcal{M}, s \models \mathbf{AF}(\phi \lor \psi)$ but $\mathcal{M}, s \not\models \mathbf{AF}\phi \lor \mathbf{AF}\psi$. Let $\mathcal{M} = (S, \to, L)$ with $S = \{s_0, s_1, s_2\}, \to = \{(s_0, s_1), (s_0, s_2), (s_1, s_1), (s_2, s_2)\}$, and $L(s_0) = \emptyset, L(s_1) = \{\phi\}$, and $L(s_2) = \{\psi\}$ in below:

For each path that starts in state s_0 we have that $\mathbf{AF}(\phi \lor \psi)$ holds. This follows directly from the fact that each path visits either state s_1 or state s_2 eventually, and $s_1 \vDash (\phi \lor \psi)$ and $s_2 \vDash (\phi \lor \psi)$.

However, state s_0 does not satisfy $\mathbf{AF}\phi \vee \mathbf{AF}\psi$. For instance, path $s_0(s_1)^\omega \models \mathbf{F}\phi$ but $s_0(s_1)^\omega \not\models \mathbf{F}\psi$. Thus, $\mathcal{M}, s_0 \not\models \mathbf{AF}\psi$. By a similar reasoning applied to path $s_0(s_2)^\omega$ it follows $\mathcal{M}, s_0 \not\models \mathbf{AF}\phi$. Thus, $\mathcal{M}, s_0 \not\models \mathbf{AF}\phi \vee \mathbf{AF}\psi$.

(4) Express the following statement in CTL^* :

"the event p is never true between the event q and r on a path."

 $[\mathbf{AG}(q \to \neg \mathbf{EF}(p \land \mathbf{EF}r))] \land [\mathbf{AG}(r \to \neg \mathbf{EF}(p \land \mathbf{EF}q))].$

(5) Show $\mathbf{AGF}p$ and $\mathbf{AGEF}p$ specify different properties.

Give a model $\mathcal{M} = (S, \to, L)$ with $S = \{s_0, s_1\}, \to = \{(s_0, s_0), (s_0, s_1), (s_1, s_1)\}, \text{ and } L(s_0) = \emptyset, \text{ and } L(s_1) = \{p\} \text{ in below:}$

The formula $\mathbf{AGF}p$ is true in model \mathcal{M} at state s_0 if from every state on every path from $s_0(\mathbf{AG})$, p is eventually true($\mathbf{F}p$) on that same path, and $s_0^{\omega_0}$ doesn't hold.

The formula $\mathbf{AGEF}p$ is true in model \mathcal{M} at state s_0 if from every state on every path from $s_0(\mathbf{AG})$, there exists a path on which p is eventually $\mathrm{true}(\mathbf{EF}p)$, and $s_0(s_1)^{\omega_1}$ holds.

Thus $\mathcal{M}, s_0 \nvDash \mathbf{AGF}p$ but $\mathcal{M}, s_0 \vDash \mathbf{AGEF}p$.