Alternative Answers for Workshop 6 Problem 4

Tamar Zeilberger

We are asked to show that

if x^* is a **local maximum** of $\ln f(x)$ then it is also a local maximum of f(x).

Defining $g(x) = \ln f(x)$, this is **equivalent** to the statement

if x^* is a **local maximum** of g(x) then it is also a local maximum of $e^{g(x)}$.

(It is equivelant because $f(x) = e^{\ln f(x)}$.)

And since an **exponential** function is an **increasing** function, it follows that $e^{g(x)}$ has the same **ups and downs** as g(x).

So g(x) and $e^{g(x)}$ will share the same maxima (and minima!).

We can also show this with calculus.

We are given that $g'(x^*) = 0$, $g''(x^*) < 0$.

Since $f(x) = e^{g(x)}$, by the **chain rule**, we have

$$f'(x) = e^{g(x)} \cdot g'(x) \tag{1}$$

In particular

$$f'(x^*) = e^{g(x^*)} \cdot g'(x^*) = 0$$
.

So we know right away that x^* is a **critical point** of f(x).

To see whether it is a maximum or minimum, we need to express f''(x) in terms of g(x) and its derivatives.

Applying the **product rule** to Eq. (1), we have

$$f''(x) = (e^{g(x)} \cdot g'(x))' = (e^{g(x)})' \cdot g'(x) + e^{g(x)} \cdot g''(x)$$
(2)

Using Eq. (1) again we have

$$f''(x) = e^{g(x)} \cdot g'(x) \cdot g'(x) + e^{g(x)} \cdot g''(x) = e^{g(x)} \cdot g'(x)^2 + e^{g(x)} \cdot g''(x)$$
 (3)

Factoring out $e^{g(x)}$

$$f''(x) = e^{g(x)}(g'(x)^2 + g''(x)) . (3)$$

Plugging-in $x = x^*$ we get

$$f''(x^*) = e^{g(x^*)}(g'(x^*)^2 + g''(x^*)) . (4)$$

But, we already know that $g'(x^*) = 0$, so

$$f''(x^*) = e^{g(x^*)}(0^2 + g''(x^*)) = e^{g(x^*)}(0 + g''(x^*)) = e^{g(x^*)} \cdot g''(x^*) .$$
 (5)

Since $e^{anything}$ is always **positive**, and by assumption $g''(x^*) < 0$, and since the product of a positive and a negative is a negative, we proved that $f''(x^*) < 0$. Combined with the above fact that $f'(x^*) = 0$, this shows that x^* is also a local maximum of $f(x) = e^{g(x)}$.