TAUTOLOGY INNOVATION SCHOOL

BY TAUTOLOGY

Classification Tree

Introduction

What is Classification Tree?

Pros & Cons

Data for Classification Tree

Real World Application

เป็น algorithm ตัวเดียว (decision tree) ที่ให้ผลลัพธ์ของ model อยู่ในรูปของเหตุผล หรือ เราเรียกมันว่ากฎนั่นเอง

Classification Tree เป็นหนึ่งใน algorithm ประเภท supervised

learning ที่ใช้สำหรับแก้ปัญหา classification โดยมีหลักการทำงาน

คือ การสร้างชุดของกฎเพื่อจำแนกประเภทของข้อมูล

ผลการตรวจผู้ป่วยเบาหวาน

sex	ВМІ	target	
0	26	diabetes	
1	26	normal	
1	28	diabetes	
1	30	diabetes	
0	28	normal	
0	30	normal	


```
sex <= 0.5
         BMI <= 27
                  predict = 'diabetes'
                                            => If sex <= 0.5 and BMI <= 27, then 'diabetes'
         BMI > 27
                  predict = 'normal'
                                            => If sex <= 0.5 and BMI > 27, then 'normal'
sex > 0.5
         BMI <= 27
                  predict = 'normal'
                                            => If sex > 0.5 and BMI <= 27, then 'normal'
         BMI > 27
                  predict = 'diabetes'
                                            => If sex > 0.5 and BMI > 27, then 'diabetes'
```

Introduction

What is Classification Tree?

Data for Classification Tree

Pros & Cons

Real World Application

Data for Classification Tree

ตัวอย่างของข้อมูลที่เหมาะกับ Classification Tree

Data for Classification Tree

ตัวอย่างของข้อมูลที่ไม่เหมาะกับ Classification Tree

Introduction

What is Classification Tree?

Data for Classification Tree

Pros & Cons

Real World Application

Pros & Cons

ข้อดี

- หลักการของ algorithm เรียบง่าย
- สามารถตีความผลลัพธ์ได้ของ model ได้ง่าย (model อยู่ในรูปของกฎ)

ข้อเสีย

- ง่ายต่อการเกิด overfitting
- การเปลี่ยนแปลงข้อมูลเพียงเล็กน้อยใน training อาจส่งผลให้ model เปลี่ยนแปลงอย่างมาก

ข้อจำกัด

• decision boundary ที่ได้จะขนานกับแกนเสมอ

Introduction

What is Classification Tree?

Data for Classification Tree

Pros & Cons

Real World Application

Real World Application

การจำแนกผู้ป่วยโรคหัวใจ

โดยพิจารณาจาก อายุ เพศ ความดัน โลหิต คอลเลสเตอรอล ประเภทการ เจ็บหน้าอก เป็นต้น

อ้างอิง : [2023, Ozcan & Peker] A classification and regression tree algorithm for heart disease modeling and prediction

Real World Application

อ้างอิง : [2022, Abdulrahman & Salim] Using Decision Tree Algorithms in Detecting Spam Emails Written in Malay: A Comparison Study

การระบุ spam e-mail

โดยพิจารณาจาก e-mail ที่ถูกส่ง เข้าของ University Utara Malaysia's Computer Center ใน 1 สัปดาห์

Real World Application

การจำแนกประเภทลูกค้าที่ สามารถกู้เงินได้

โดยพิจารณาจาก เพศ อายุ ประเภท ของบริษัทที่ทำงาน อาชีพ ระดับ การศึกษา การแต่งงาน รายได้ จำนวนปีที่จะกู้

อ้างอิง : [2004, Xiu Li et al.] Applications of Classification Trees to Consumer Credit Scoring Methods in Commercial Banks

Introduction

What is Classification Tree?

Data for Classification Tree

Pros & Cons

Real World Application

facebook/tautologyai www.tautology.live

Classification Tree

Classification Tree

Classification Tree เป็นหนึ่งใน algorithm ประเภท supervised learning

Concept of Supervised Learning

Data ⇒ **Model** ⇒ **Prediction**

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Assumption

No Missing Features

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Real Face of the Model

Classification Tree คือ ชุดของกฎเพื่อจำแนกประเภทของข้อมูล

```
sex <= 0.5
        BMI <= 27
                  predict = 'diabetes'
                                            => If sex <= 0.5 and BMI <= 27, then 'diabetes'
         BMI > 27
                 predict = 'normal'
                                            => If sex <= 0.5 and BMI > 27, then 'normal'
sex > 0.5
        BMI <= 27
                 predict = 'normal'
                                            => If sex > 0.5 and BMI <= 27, then 'normal'
         BMI > 27
                 predict = 'diabetes'
                                         => If sex > 0.5 and BMI > 27, then 'diabetes'
```


Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

EURN -> SUYUYOU -> Overfit

- ☐ Step 1: พิจารณา unique values ของ feature ทุกตัวใน dataset
- ☐ Step 2 : ตั้งคำถามจาก unique values
- ☐ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ classification tree มี ความสามารถในการพยากรณ์มากยิ่งขึ้น ภายใต้เงื่อนไขที่กำหนด

เรามี metric ก็ในกัดคุณภาพงองคาถาม

information gain = ด. ยุงเนยงเมา=บน ก่อ น่อากาม ด. ยงเนยงเมา=บน หลัง อำกาม

ค. รังเหย่ง ของระบบสามารถกัดได้ตั้ง => Gini Impurity

1. กานผิดภามลึก (ในทางยามเรา

2. จานานรักอยางงาย ทั่งสุดที่ไม่ตั้งเกาให้เ

ตัวอย่างการคำนวณ Classification Tree

sex	ВМІ	target
0	26	diabetes
1	26	normal
1	28	diabetes
1	30	diabetes
0	28	normal
0	30	normal

ตารางแสดงข้อมูลผู้ป่วยที่เป็นโรคเบาหวาน

Step 1: พิจารณา unique values ของ feature ทุกตัวใน dataset

sex	ВМІ	target	
0	26	diabetes	→ unique_values(sex) = {0, 1}
1	26	normal	→ unqiue_values(BMI) = {26, 28, 30}
1	28	diabetes	
1	30	diabetes	
0	28	normal	
0	30	normal	

✓ Step 2 : ตั้งคำถามจาก unique values

unique_values(sex) = {0, 1}

unqiue_values(BMI) = {26, 28, 30}

Question1: sex <= 0.5?

Question2: BMI <= 27?

Question3: BMI <= 29?

nu feature nidu

3 V O

How to Create Model (Math อาเมนายนตรายานต

☑ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ classification tree มี ความสามารถในการพยากรณ์มากยิ่งขึ้น ภายใต้เงื่อนไขที่กำหนด

Gini nowonan =
$$1 - P_{normal} - P_{diaboles}$$

$$= 1 - \left(\frac{1}{z}\right)^2 - \left(\frac{1}{z}\right)^2 = 1 - \frac{1}{4} - \frac{2}{4}$$
In formation Gain = Gini now - Gininal

Fini nay =
$$\frac{4}{9}$$

$$\frac{3}{6} \left(1 - \left(\frac{2}{3}\right)^2 - \left(\frac{1}{3}\right)^2 + \frac{2}{3} + \frac{2}{3}$$

Gini năun
$$2000 = 12$$

$$4(1-(1)^2-(1)^2+12)$$

$$2(1-(1)^2-(1)^2+12)$$

$$6(1-(1)^2-(1)^2+12)$$

☑ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ classification tree มี ความสามารถในการพยากรณ์มากยิ่งขึ้น ภายใต้เงื่อนไขที่กำหนด

☑ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ classification tree มี ความสามารถในการพยากรณ์มากยิ่งขึ้น ภายใต้เงื่อนไขที่กำหนด

☑ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ classification tree มี ความสามารถในการพยากรณ์มากยิ่งขึ้น ภายใต้เงื่อนไขที่กำหนด

Gini nãu =
$$1(1-0^2-1^2)$$
 +

$$\frac{2}{3}(1-1^2-0^2)$$

Gini
$$n = \frac{2}{3} \left(1 - \left(\frac{1}{z} \right)^{2} - \left(\frac{1}{z} \right) \right) +$$

$$\frac{1}{3}(1-(1)^2-0^2)$$

$$=\frac{2}{3}(\frac{1}{2})+\frac{1}{3}(0)$$

$$= \frac{1}{3} + 0 = \frac{1}{3}$$

☑ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ classification tree มี ความสามารถในการพยากรณ์มากยิ่งขึ้น ภายใต้เงื่อนไขที่กำหนด

Full Tree

☑ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ classification tree มี ความสามารถในการพยากรณ์มากยิ่งขึ้น ภายใต้เงื่อนไขที่กำหนด

Full Tree

☑ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ classification tree มี ความสามารถในการพยากรณ์มากยิ่งขึ้น ภายใต้เงื่อนไขที่กำหนด

```
If sex <= 50 and BMI <= 27, then 'diabetes'
```

If sex <= 0.5 and BMI > 27, then 'normal'

If sex > 0.5 and BMI <= 27, then 'normal'

If sex > 0.5 and BMI > 27, then 'diabetes'

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

ตัวอย่าง Code สำหรับ Classification Tree

sex	вмі	target
О	26	diabetes
1	26	normal
1	28	diabetes
1	30	diabetes
0	28	normal
0	30	normal

ตารางแสดงข้อมูลผู้ป่วยที่เป็นโรคเบาหวาน

• Code สำหรับสร้าง model จากข้อมูลของเราโดยที่

$$X = \begin{bmatrix} 0 & 26 \\ 1 & 26 \\ 1 & 28 \\ 1 & 30 \\ 0 & 28 \\ 0 & 30 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} diabetes \\ normal \\ diabetes \\ diabetes \\ normal \\ normal \end{bmatrix}$$

- 1 clf = DecisionTreeClassifier()
- 2 clf.fit(X, y)

DecisionTreeClassifier()


```
1 r = export_text(clf, feature_names=list(X.columns))
```


Code for this section

Open File

Model Creation.ipynb

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

- Gini Impurity
- Entropy
- Information Gain
- (algorithm Turna) • ID3 Algorithm

- KL Divergence
- Entropy Cross Entropy

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Classification Tree

Classification Tree คือ ชุดของกฎเพื่อจำแนกประเภทของข้อมูล

```
sex <= 0.5
        BMI <= 27
                  predict = 'diabetes'
                                            => If sex <= 0.5 and BMI <= 27, then 'diabetes'
         BMI > 27
                  predict = 'normal'
                                            => If sex <= 0.5 and BMI > 27, then 'normal'
sex > 0.5
         BMI <= 27
                  predict = 'normal'
                                            => If sex > 0.5 and BMI <= 27, then 'normal'
         BMI > 27
                  predict = 'diabetes'
                                            => If sex > 0.5 and BMI > 27, then 'diabetes'
```


If sex <= 0.5 and BMI <= 27, then 'diabetes'

If sex <= 0.5 and BMI > 27, then 'normal'

If sex > 0.5 and BMI <= 27, then 'normal'

If sex > 0.5 and BMI > 27, then 'diabetes'

1-Sample

Multi-Sample

Code

1-Sample

<u>ตัวอย่างการคำนวณ \widehat{y} </u>

sex	ВМІ
0	29

$\widehat{oldsymbol{\mathcal{Y}}}$	
?	

1-Sample

sex	ВМІ
0	29

ŷ normal

If sex <= 0.5 and BMI <= 27, then 'diabetes'

If sex <= 0.5 and BMI > 27, then 'normal'

If sex > 0.5 and BMI <= 27, then 'normal'

If sex > 0.5 and BMI > 27, then 'diabetes'

Multi-Sample

Code

Multi-Sample

<u>ตัวอย่างการคำนวณ $\hat{\mathbf{y}}$ </u>

sex	ВМІ
0	29
0	26
1	30
1	28

$\widehat{\mathbf{y}}$	
?	
?	
?	
?	

Multi-Sample

If sex <= 0.5 and BMI <= 27, then 'diabetes'

If sex <= 0.5 and BMI > 27, then 'normal'

If sex > 0.5 and BMI <= 27, then 'normal'

If sex > 0.5 and BMI > 27, then 'diabetes'

Multi-Sample

sex	ВМІ
0	29
О	26
1	30
1	28

ŷ	
normal	
diabetes	
diabetes	
diabetes	

<u>ตัวอย่าง code สำหรับการคำนวณ ŷ</u>

sex	ВМІ
0	29
0	26
1	30
1	28

ŷ	
?	
?	
?	
?	

• Code สำหรับสร้าง model จากข้อมูลของเราโดยที่

$$X = \begin{bmatrix} 0 & 29 \\ 0 & 26 \\ 1 & 30 \\ 1 & 28 \end{bmatrix}$$

1 clf.predict(X)

array(['normal', 'diabetes', 'diabetes'], dtype=object)

<u>ดังนั้น</u> เราจะได้ ŷ สำหรับข้อมูลชุดนี้คือ

sex	ВМІ
0	29
0	26
1	30
1	28

ŷ	
normal	
diabetes	
diabetes	
diabetes	

Code for this section

Open File

Model Creation.ipynb

Classification Tree

AI in Healthcare

- Abstract
- Why this project important?
- Who this project for?
- Hepatitis C Dataset
- What we learn from this project?

Abstract

สร้าง model เพื่อวินิฉัยผู้ป่วยโรคไวรัสตับอักเสบ C (Hepatitis C) โดย feature ที่ นำมาใช้ คือ ข้อมูลทั่วไปของผู้ป่วย และ ผลตรวจการทำงานของตับ

Why this project important?

- สามารถสร้างระบบสำหรับตรวจโรคไวรัสตับ อักเสบ c ที่ทำงานได้ตลอด 24 ชั่วโมง
- สามารถนำไปต่อยอดกับการวินิจฉัยโรคอื่น ๆ
- สามารถใช้เป็นพื้นฐานสำหรับการแพทย์
 ทางไกล

Who this project is for?

- 🛨 ผู้บริหารโรงพยาบาล
- → บุคลากรทางการแพทย์
- 🛨 นักวิเคราะห์ข้อมูล

Hepatitis C Dataset

https://www.kaggle.com/datasets/fedesoriano/hepatitis-c-dataset

Hepatitis C Dataset

Feature

- Age : อายุ (ปี)
- Sex : เพศ (m = ชาย, f = หญิง)
- ALB : ปริมาณโปรตีน Albumin ในตับ
- ALP : ปริมาณเอนไซม์ Alkaline phosphatase ในตับ
- ALT : ปริมาณเอนไซม์ Alanine transaminase ในตับ
- AST : ปริมาณเอนไซม์ Aspartate transaminase ในตับ
- BIL : สาร Bilirubin ในตับ

Hepatitis C Dataset

Feature

- CHE : ปริมาณเอนไซม์ Cholinesterase ใน serum
- CHOL : ปริมาณ Cholesterol ในตับ
- CREA : ปริมาณ Creatinine ในตับ
- GGT : ปริมาณโปรตีน Gamma glutamic transpeptidase ในตับ
- PROT : ปริมาณโปรตีน Prothrombin ในตับ

Target

• target : การเป็นโรคไวรัสตับอักเสบ c (0 = ไม่เป็น, 1 = เป็น)

What we learn from this project?

Data Preparation

File

Classification Tree

