Statistical Machine Learning

7주차

담당: 15기 박지우

1. XgBoost

2. LightGBM

3. CatBoost

1. XgBoost

• XgBoost는 기존 Gradient Tree Boosting 알고리즘에 과적합 방지를 위한 기법이 추가된 지도 학습 알고리즘

정의

- 1) XgBoost는 Gradient Tree Boosting
- 2) XgBoost는 과적합 방지를 위한 기법이 추가된 알고리즘

$$F_0(x) = rg min \sum_{i=1}^n L(y_i,c)$$

$$g_i = \left[rac{\partial L(y_i, F(x_i))}{\partial F(x_i)}
ight]_{F(x) = F_{m-1}(x)}$$

$$h_i = \left[rac{\partial^2 L(y_i, F(x_i))}{\partial F(x_i)^2}
ight]_{F(x) = F_{m-1}(x)}$$

$$g_i = \left[rac{\partial L(y_i, F(x_i))}{\partial F(x_i)}
ight]_{F(x) = F_{m-1}(x)} \qquad \phi_m = rg \min_{\phi} \sum_{i=1}^n rac{1}{2} h_i igg[-rac{g_i}{h_i} - \phi(x_i)igg]^2 + \gamma T + rac{1}{2} \lambda \|\phi\|^2$$

$$F_m(x)=F_{m-1}(x)+l\cdot\phi_m(x) \qquad F_M(x)=\sum_{m=0}^M F_m(x)$$

$$l = \sum_{i=1}^n L(y_i, F_{m-1}(x_i) + \phi(x_i)) + \gamma T + rac{1}{2} \lambda \|\phi\|^2$$

$$egin{aligned} ilde{l} &= \sum_{i=1}^n \left[g_i \phi(x_i) + rac{1}{2} h_i \phi(x_i)^2
ight] + \gamma T + rac{1}{2} \lambda \sum_{j=1}^T w_j^2 \ &= \sum_{j=1}^T \left[\left(\sum_{x_i \in R_j} g_i
ight) w_j + rac{1}{2} \left(\sum_{x_i \in R_j} h_i + \lambda
ight) w_j^2 + \gamma
ight] \end{aligned}$$

Previous Tree Models - Basic exact greedy algorithm

Split Finding Algorithm

Global Variant

Local Variant

• XGBoost의 파라미터는 크게 일반, 부스터, 학습과정으로 나뉩니다

• 일반 파라미터

booster : 어떤 부스터 구조를 쓸지 결정 - gbtree, gblinear, dart nthread : 몇 개의 쓰레드를 동시에 처리할지 - 디폴트 : 가능한 많이 num_feature : feature 차원의 숫자를 정하는 옵션 - 디폴트 : 가능한 많이

• 부스팅 파라미터

eta: learning rate

gamma : 트리 복잡도 파라미터. 커지면 트리 깊이가 줄어들어서 보수적인 모델이 된다. - 디폴트 : 0 max_depth : 한 트리당 깊이 - 디폴트 : 6, 키울수록 과적합 위험 ↑ lambda : L2 Regularization Form에 달리는 weights이다. 숫자가 클 수록 보수적인 모델이 된다. alpha : L1 Regularization Form weights. 숫자가 클수록 보수적인 모델이 된다.

• 학습 과정 파라미터

object : 목적함수. reg-linear(linear-regression), binary-logistic (binary-logistic classification), count-poission(count data poison regression) 등 다양하다. eval_metric : 모델의 평가 함수를 조정하는 함수다. Rmse(root mean square error), log loss(log-likelihood), MAP(mean average precision) 등, 해당 데이터의 특성에 맞게 평가 함수를 조정한다.

• 커맨드 라인 파라미터

num_rounds : boosting 라운드를 결정. 적당히 큰 것이 좋고 epoch 옵션과 동일하다.

2. LightGBM

Leaf-wise tree growth

Gradient based One-Side Sampling (GOSS)

Exclusive Feature Bundling (EFB)

Gradient based One-Side Sampling (GOSS)

Exclusive Feature Bundling (EFB)

	x _I	x ₂	X ₃	X ₄	X ₅
\mathbf{I}_{1}	1	1	0	0	- 1
I ₂	0	0	1	1	- 1
I ₃	1	2	0	0	2
I ₄	0	0	2	3	- 1
I ₅	2	1	0	0	3
16	3	3	0	0	- 1
I ₇	0	0	3	0	2
I ₈	1	2	3	4	3
l ₉	1	0	1	0	0
I ₁₀	2	3	0	0	2

	×ı	x ₂	X ₃	X ₄	X ₅
$\mathbf{x}_{\mathbf{I}}$	-	6	2	1	6
x ₂	6	723	1	1	6
× ₃	2	1	-	3	4
X ₄	1	1	3	-	3
X ₅	6	6	4	3	-

	× ₅	×ı	× ₂	X ₃	X ₄
d	19	15	14	10	8

	× _I	× ₂	× ₃	X ₄	X ₅
I _I	1	1	0	0	- 1
l ₂	0	0	1	1	- 1
l ₃	1	2	0	0	2
l ₄	0	0	2	3	- 1
l ₅	2	- 1	0	0	3
l ₆	3	3	0	0	- 1
l ₇	0	0	3	0	2
l ₈	1	2	3	4	3
ا9	- 1	0	-1	0	0
I ₁₀	2	3	0	0	2

	X ₅	x _I	X ₄	× ₂	X3
I_1	- 1	-1	0	1	0
I ₂	1	0	1	0	- 1
l ₃	2	- 1	0	2	0
14	1	0	3	0	2
I ₅	3	2	0	1	0
16	- 1	3	0	3	0
I ₇	2	0	0	0	3
l ₈	3	- 1	4	2	3
l ₉	0	- 1	0	0	- 1
110	2	2	0	3	0

	X ₅	x _I	X ₄	× ₂	X ₃
I_1	1	1	0	1	0
I ₂	1	0	1	0	- 1
I_3	2	- 1	0	2	0
14	1	0	3	0	2
I ₅	3	2	0	- 1	0
16	-1	3	0	3	0
I ₇	2	0	0	0	3
l ₈	3	-1	4	2	3
19	0	1	0	0	-1
110	2	2	0	3	0
-10					

	X ₅	X ₁₄	X ₂₃
I_1	-1	1	- 1
l ₂	1	4	4
l ₃	2	1	2
l ₄	- 1	6	5
l ₅	3	2	-1
16	- 1	3	3
l ₇	2	0	6
l ₈	3	1	2
19	0	1	4
I ₁₀	2	2	3

3. CatBoost

Distinction

Target Leakage

→ Ordered TS(Target Statistics)

Prediction Shift

→ Ordered Boosting

Ordered Target encoding

Ordered Boosting

- Ordered Boosting
 - √ A boosting algorithm not suffering from the prediction shift problem

Ordered Boosting

Ordered Boosting

Coding Session

1. CatBoost

https://catboost.ai/en/docs/concepts/python-reference catboostclassifier

2. LightGBM

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html

3. XgBoost

https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRFClassifier https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRFRegressor

