

Факультет компьютерных наук Департамент программной инженерии Выпускная квалификационная работа

«Программа имитации рукописного текста»

Научный руководитель: доцент департамента программной инженерии, к.т.н. Ахметсафина Римма Закиевна Выполнил студент группы БПИ131 образовательной программы 09.03.04 «Программная инженерия» Семенкович Софья Алексеевна

основные понятия

Аффинное преобразование — отображение плоскости или пространства в себя, при котором параллельные линии остаются параллельными, пересекающиеся — пересекающимися, скрещивающиеся — скрещивающимися.

Бинаризация – приведение изображения к черно-белому виду

Глиф – конкретное изображение графемы. Одному символу может соответствовать бесконечное множество глифов

Графема – единица письменности (буква, иероглиф, цифра и т.д.)

Дерево решений — один из алгоритмов классификации, представляющий собой дерево, в листьях которого стоят значения целевой функции, а в остальных узлах — условия перехода, определяющие, по какому из ребер идти, в зависимости от того, истинно или ложно условие для классифицируемого объекта

ОСНОВНЫЕ ПОНЯТИЯ

Классификация – раздел машинного обучения, посвященный решению такой задачи: существуют множество объектов, которые разделены на классы; для конечного числа объектов из этого множества известны их классы; требуется построить алгоритм, который способен определить классовую принадлежность произвольного объекта из множества. Данный алгоритм называется **классификатором**

Лигатура – линия, соединяющая два глифа. Чем больше лигатур в тексте, тем более связным он выглядит

Сегментация изображения – разделение изображения на части для облегчения последующего анализа

Собственный вектор – ненулевой вектор u, который при умножении на некоторую квадратную матрицу A превращается в самого себя с числовым коэффициентом λ , называется собственным вектором матрицы A. Коэффициент λ называется собственным значением матрицы

ОБЛАСТЬ ПРИМЕНЕНИЯ

- Конспекты и рефераты
- Открытки и письма
- Игровая индустрия
- Кинематограф
- Мультипликация
- Комиксы

ОБОСНОВАНИЕ АКТУАЛЬНОСТИ РАБОТЫ

• 1977 г.: Кнут, METAFONT

• С 1980-ых г.г.: Создание множества рукописных шрифтов

• 1996 г.: Изабелль Гуйон, имитация рукописного текста

с использованием планшета

• 2013 г.: Алекс Грейвс, имитация рукописного текста с

использованием планшета и нейронных сетей

• С 2000-ых г.г.: Создание большого количества веб-сервисов

для генерации рукописного текста

• 2015 г. Веб-сервис «Handwriter»

• 2016 г.: Веб-сервис «Писец»

• 2016 г.: Томас Аода и др., "My Text in Your Handwriting"

АНАЛИЗ СУЩЕСТВУЮЩИХ РЕШЕНИЙ

Название Критерий	Программа имитации рукописного текста	Шрифты	Имитация текста с использованием планшета	Писец	Handwriter	Англо- язычные веб- сервисы
Поддержка латиницы	+	+	+	+	-	+
Возможность использования своего почерка	+	-	+	+	-	-
Автоматическое распознавание почерка	+	-	+	-	-	-
Возможность работы без подключения к интернету	+	+	+	-	+	-
Бесплатность	+	+/-	+	+/-	+	-
Скорость работы	высокая	высокая	высокая	высокая	средняя	высокая
Правдоподобность результатов	высокая	низкая	низкая	высокая	средняя	средняя

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

Цель работы:

Создание программного продукта, позволяющего реалистично имитировать почерк конкретного человека по предоставленному образцу.

Задачи работы:

- 1. Изучение предметной области.
- 2. Сравнение различных подходов к распознаванию изображений и синтезу почерка.
- 3. Выбор алгоритмов реализации, информационных моделей и структур данных.
- 4. Выбор технических средств реализации.
- 5. Разработка программного продукта, позволяющего распознавать текст и формировать банк данных из предоставленного образца (с возможностью корректировки неправильно распознанных символов), а также правдоподобно имитировать почерк.
- 6. Разработка технической документации.

основной алгоритм

АЛГОРИТМ РАСПОЗНАВАНИЯ ОБРАЗЦА: ПОДРОБНОЕ ОПИСАНИЕ

АЛГОРИТМ РАСПОЗНАВАНИЯ ОБРАЗЦА

- 1. Перевод в оттенки серого
- 2. Шумоподавление
- 3. Бинаризация

- 1. Сегментация строк
- 2. Сегментация слов
- 3. Сегментация символов

- 1. Предварительная подготовка обучающей выборки
- 2. Обучение классификатора
- 3. Распознавание символов

ПОДГОТОВКА ИЗОБРАЖЕНИЯ

1. Перевод в оттенки серого:

$$I = 0.2125 * R + 0.7154 * G + 0.0721 * B$$

- 2. Шумоподавление:
 - 1. Медианный фильтр
 - 2. Фильтр Гаусса
- 3. Бинаризация: Метод Оцу

СЕГМЕНТАЦИЯ СТРОК

- 1. Вычислить построчные суммы значений пикселей, построить гистограмму
- 2. Найти области на изображении, где суммы пикселей равны нулю
 - а. Если количество таких подряд идущих строк больше определенного порога, считается, что начата новая строка.

СЕГМЕНТАЦИЯ СЛОВ

- 1. Гистограмма распределения плотностей по столбцам
- 2. Поиск всех областей разрыва, на которых не было встречено ни одного белого пикселя в столбце
- 3. Количество пробелов N для данной строки в исходном тексте
- 4. Из всех найденных областей разрыва выбираются *N* максимальных, строка делится по этим областям разрыва, получившиеся области изображения считаются словами

СЕГМЕНТАЦИЯ СИМВОЛОВ: УСТРАНЕНИЕ ПЕРЕКОСА

Найти центральные моменты изображения второго порядка:

$$\mu_{02} = \frac{m_{02}}{m_{00}} - \bar{y}^2$$

$$\mu_{11} = \frac{m_{11}}{m_{00}} - \bar{x}\bar{y}$$

$$\bar{x} = \frac{m_{10}}{m_{00}}$$
 , $\bar{y} = \frac{m_{01}}{m_{00}}$

 m_{00} – площадь, занятая ненулевыми (белыми) пикселями,

 m_{10} – среднее значение x по всему объекту,

 m_{01} – среднее значение y

СЕГМЕНТАЦИЯ СИМВОЛОВ: УСТРАНЕНИЕ ПЕРЕКОСА

Угол перекоса:

$$\alpha = \frac{\mu_{11}}{\mu_{02}}$$

Матрица преобразования:

$$\begin{bmatrix} 1 & 0 \\ \alpha & 1 \end{bmatrix}$$

Новые координаты точек изображения:

$$(x', y') = \begin{bmatrix} 1 & 0 \\ \alpha & 1 \end{bmatrix} * (x, y)$$

ПОДГОТОВКА ТРЕНИРОВОЧНОЙ ВЫБОРКИ

- 1. База данных EMNIST (2017, латинские рукописные буквы и цифры)
- 2. Шаги подготовки:
 - а. Бинаризация
 - b. Устранение перекоса
 - с. Уменьшение размерности пространства признаков: метод анализа главных компонент

ПОДГОТОВКА ТРЕНИРОВОЧНОЙ ВЫБОРКИ: МЕТОД АНАЛИЗА ГЛАВНЫХ КОМПОНЕНТ

- 1. Кластерный анализ данных
- 2. По каким признакам различаются объекты?
- 3. Как взаимосвязаны признаки?

ПОДГОТОВКА ТРЕНИРОВОЧНОЙ ВЫБОРКИ: МЕТОД АНАЛИЗА ГЛАВНЫХ КОМПОНЕНТ

размерность пространства признаков

ОБУЧЕНИЕ КЛАССИФИКАТОРА: РЕШАЮЩЕЕ ДЕРЕВО

ОБУЧЕНИЕ КЛАССИФИКАТОРА: СЛУЧАЙНЫЙ ЛЕС

ОБУЧЕНИЕ КЛАССИФИКАТОРА: ЭКСПЕРИМЕНТ

число деревьев

СЕГМЕНТАЦИЯ СИМВОЛОВ

Разделение в областях, которые:

- 1. имеют значение плотности пикселей меньше некоторого порогового значения (0.25 от общей высоты строки);
- 2. расположены в предполагаемых местах разбиения символов
- 3. предшествуют возрастанию плотности пикселей текста

РАСПОЗНАВАНИЕ СИМВОЛОВ

- 1. Вычисляется степень уверенности классификатора в том, что данное изображение является тем символом, который программа пытается отделить от слова на данном шаге
- 2. Результат распознавания запоминается, и программа переходит к распознаванию следующего символа
- 3. Разбиение с наилучшим результатом считается правильным. Такое разбиение ищется методом Дейкстры в графе узлами которого будут значения координаты по оси *х* предполагаемых точек разбиения слова, а веса ребер будут равны вероятности ошибки классификации данного символа
- 4. Для выявления отделенных от слова символов на изображении используется метод прослеживания контура

АЛГОРИТМ СОЗДАНИЯ БАЗЫ СИМВОЛОВ: ПОДРОБНОЕ ОПИСАНИЕ

СОСТАВЛЕНИЕ БАЗЫ СИМВОЛОВ

Символы в базе – это файлы, вырезанные из исходного изображения и сохраненные в соответствующие папки:

- строчные символы в папку "lowercase\SYMBOL_NAME"
- заглавные символы в "uppercase\SYMBOL_NAME"
- числа в "numbers\SYMBOL_NAME"

Имена файлов имеют вид «POSITION_NEIGHBOURS_NUMBER.png», где:

- POSITION может принимать значения ["o", "s", "m", "e"] (что означает: единственный символ (без соседей), в начале слова, в середине слова, в конце слова, соответственно)
- NEIGHBOURS предыдущий и последующий соседи символа (принимает значение 0, если соседей нет)
- NUMBER номер символа в базе

АЛГОРИТМ ГЕНЕРАЦИИ ТЕКСТА: ПОДРОБНОЕ ОПИСАНИЕ

АЛГОРИТМ ГЕНЕРАЦИИ

АЛГОРИТМ ГЕНЕРАЦИИ: ВЫБОР СИМВОЛА ИЗ БАЗЫ

При выборе символа из базы учитывается:

- 1. Класс символа
- 2. Положение символа в слове
- 3. Соседи символа

АЛГОРИТМ ГЕНЕРАЦИИ: ДЕФОРМАЦИЯ И РАСПОЛОЖЕНИЕ СИМВОЛА

ТРЕБОВАНИЯ К ПРОГРАММЕ

- 1. программа должна уметь распознавать текст на английском языке, написанный от руки (английские большие и маленькие буквы, а также цифры)
 - а. инструмент написания шариковая или капиллярная ручка
 - b. текст должен быть написан на обычном белом листе бумаги формата A4, отсканированном с разрешением 600 dpi
 - с. строки на изображении не должны пересекаться между собой
 - d. на вход программе должен подаваться также файл с транскрипцией текста на изображении
- 2. программа должна составлять базу символов из образца почерка (описание базы представлено ниже)
- 3. программа должна генерировать текст, который будет предоставлен пользователем, почерком образца:
 - а. текст должен состоять только из тех символов, которые присутствовали в образце
 - b. программа должна генерировать .png-файл с готовым текстом

ТЕХНОЛОГИИ И ИНСТРУМЕНТЫ РЕАЛИЗАЦИИ

ДЕМОНСТРАЦИЯ

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

- 1. Изучены источники информации по компьютерному зрению, обработке изображений и машинному обучению, получено достаточно глубокое представление об этих областях;
- 2. Рассмотрены и проанализированы различные подходы к распознаванию и синтезу рукописного текста;
- 3. Выбраны наиболее подходящие для использования при реализации данного приложения алгоритмы
- 4. Выбраны технические средства реализации
- 5. Разработано приложение, которое:
 - а. Распознает предоставленный пользователем образец почерка,
 - b. Позволяет корректировать неправильно распознанные символы,
 - с. Составляет на его основе базу символов,
 - d. Генерирует запрашиваемый пользователем текст с использованием данной базы.
- 6. Разработана техническая документация

НАПРАВЛЕНИЯ ДАЛЬНЕЙШЕЙ РАБОТЫ

- 1. Реализация поддержки кириллицы
- 2. Добавление знаков пунктуации
- 3. Обеспечение распознавания символов без предоставления пользователем транскрипта рукописного текста

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Дёмин А. Ю., Кудинов А. В. Цифровые фильтры изображений [Электронный ресурс] / Компьютерная графика. Режим доступа: http://compgraph.tpu.ru/filtrs.htm, свободный. (дата обращения 25.04.17)
- 2. Drizhuk D. Computer Graphics [Электронный ресурс] / complynx.net. Режим доступа: http://complynx.net/4/ip.pdf, свободный (дата обращения 20.05.17)
- 3. Cohen G., Afshar S., Tapson J., Schaik A. EMNIST: an extension of MNIST to handwritten letters [Электронный ресурс]: arXiV, 2017. Режим доступа: https://arxiv.org/abs/1702.05373, свободный. (дата обращения: 20.04.17)
- 4. Haines T.S.F., Aodha O.M., Brostow G. J. My Text in Your Handwriting/ ACM Transaction on Graphics 2016. Vol. 35.
- 5. Турбин А. Программная реализация размытия по Гауссу // РГРТУ 2007.
- 6. Демин А.А. Обзор интеллектуальных систем для оценки каллиграфии // Москва : Инженерный вестник (МГТУ им. Н.Э. Баумана). Электронный журнал. - 2012 - № 9.
- 7. Исследование методов обработки изображений [Электронный ресурс] / Вунивере.ру. Режим доступа: https://vunivere.ru/work15671/page6, свободный (дата обращения: 20.04.17).
- Р.К. Захаров Методы повышения качества изображений в задачах распознавания // Современные научные исследования и инновации. - 2012 - 8.

Спасибо за внимание!

Семенкович Софья Алексеевна, sasemenkovich@yandex.ru

Москва - 2017

ПЕРЕВОД В ОТТЕНКИ СЕРОГО

- Изображение матрица пикселей;
- Каждый пиксель обладает степень интенсивности красного, зеленого и синего цветов по шкале от 0 до 255;
- Перевод в оттенки серого осуществляется по формуле:

$$I = 0.2125 * R + 0.7154 * G + 0.0721 * B$$

ПЕРЕВОД В ОТТЕНКИ СЕРОГО

The two gentlemen haistily seperated each in a fever of excitement wholly The two gentlemen haistily seperated each in a fever of excitement wholly

ШУМОПОДАВЛЕНИЕ: ВИДЫ ШУМОВ

- Импульсные (соль и перец)
- Аддитивные (гауссов шум)
- Мультипликативные

ШУМОПОДАВЛЕНИЕ: МЕДИАННЫЙ ФИЛЬТР

ШУМОПОДАВЛЕНИЕ: ФИЛЬТР ГАУССА

ШУМОПОДАВЛЕНИЕ: ФИЛЬТР ГАУССА

$$G(u, v) = \frac{1}{2\pi\sigma^2} e^{\frac{-(u^2+v^2)}{2\sigma^2}}$$

0,003	0,013	0,022	0,013	0,003
0,013	0,059	0,097	0,059	0,013
0,022	0,097	0,159	0,097	0,022
0,013	0,059	0,097	0,059	0,013
0,003	0,13	0,022	0,013	0,003

БИНАРИЗАЦИЯ: МЕТОД ОЦУ

