1. Let $M = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\})$ be an NFA, where $\delta(q_0, 0) = \{q_0, q_1\}$ $\frac{1}{q_0}$ $\frac{1}{[q_0, q_1]}$ $\frac{1}{[q_0, q_1]}$

Solution:

We can construct a DFA $M' = (Q', \{0,13, 5', [96], F')$

Q' = all subsels of {90,9,3.

Q' = { [90], [2], [20,9], 43.

recon F' = Set of states of Q' containing a state in F

F' = { [9,], [90,9,]}

Transition Table: 8'

	0	1
LaoJ]	[90,9,]	[9,]
[9,]	φ.	[90,9]
[20,9,]	?	?
φ		 φ

1

```
To find & ([90, 91], 0).
  S({90,9,3,0} = S.(90,0), U.S (9,0)
                   = { 90, 9, 3 U - $
                   = {90,9;}...
    8'([90,9,],0) = [90,9,]
To find 8! ([90, 9,], 1)
   8([20, 9,3,1) = 8(90,1) U8(9,1)
                = { 9,9 U f 90, 9,3
                = { 90, 9, 3
    : 8 ( [90,9,J,1) = [90,9,J
  i. M' = (Q', E', Non, & limitet) il relations)
     Q' = { [90], [91], [90, 993, 9], p]
     E = {0,13.
                       EP3 1.1°
     20 = [20].
     F' = { [9,], [9, 9], [9] } { ap } | sp *
               Construct an equivalent DIA
```

