Задача 1

Кирилл Васильевич Новоселов

8 октября 2022 г.

1. Постановка задачи

Решается смешанная задача для уравнения Пуассона :

$$\Delta u = -f,$$

 $x \in \Omega,$
 $f = (1 + 4y^2)sin(x + y^2) - 2cos(x + y^2)$ (1.1)

с граничными условиями:

$$\begin{array}{ll} u(x,y) = u_{exact}, & \mathbf{x} \in \Gamma_{\mathrm{in}}, \\ u(x,y) = \frac{\partial u_{exact}}{\partial \vec{n}}, & \mathbf{x} \in \Gamma_{\mathrm{out}}, \end{array}$$

где

$$u_{exact} = sin(x + y^2).$$

Рис. 1.1: Область в которой проводились рассчеты

2. МКЭ для смешанной задачи

Так как мы рассматриваем задачу Дирихле на внутренней границе и задачу Неймана на внешней границе, то выберем тестовую функцию

$$v|_{\Gamma_{\rm in}=0,} \tag{2.1}$$

умножим (1.1) на нее и проинтегрируем по Ω

$$-\int_{\Omega} fv dx dy = \int_{\Omega} \Delta uv dx dy =$$

$$= \int_{\Omega} \operatorname{div}(\nabla uv) dx dy - \int_{\Omega} \nabla u \cdot \nabla v dx dy =$$

$$= \int_{\Gamma_{\text{out}}} \frac{\partial u}{\partial \mathbf{n}} v ds - \int_{\Omega} \nabla u \cdot \nabla v dx dy = - \int_{\Omega} \nabla u \cdot \nabla v dx dy.$$

В итоге, получаем, что нам нужно найти функцию $u\in H^1(\Omega)$, удовлетворяющую слабой постановке задачи

$$\int_{\Omega} \nabla u \cdot \nabla v dx dy = \int_{\Omega} f v dx dy + \int_{\Gamma_{\text{out}}} \frac{\partial u}{\partial \mathbf{n}} v ds. \tag{2.2}$$

3. Результаты вычислений

Рис. 3.1: Абсолютная ошибка

Если известно точное решение u, то порядок сходимости p считается по следующей формуле

$$\log_2 \frac{\|u_h - u\|_{L_2}}{\|u_{h/2} - u\|_{L_2}} = p + O(h) \tag{3.1}$$

Если же точное решение u неизвестно, то порядок сходимости p считается по следующей формуле

$$\frac{\|u_h - u_{h/2}\|_{L_2}}{\|u_{h/2} - u_{h/4}\|_{L_2}} = 2^p + O(h)$$
(3.2)

Таблица 3.1: Параметры, когда известно точное решение

Параметр размера сетки	Абсолютная погрешность	L_2 -норма численного решения	Относительная погрешность	Порядок сходимости
0.396526	52.2184	52.6136	7.03072	2,37
0.194891	10.0722	12.8261	1.1742	2,00
0.109722	2.52671	9.17016	0.280779	2,24
0.0519095	0.532333	9.08174	0.0584141	1,90
0.0295961	0.143013	9.13153	0.0156431	-

Таблица 3.2: Параметры, когда не известно точное решение

Параметр размера сетки	Абсолютная погрешность	L_2 -норма численного решения	Относительная погрешность	Порядок сходимости
0.396526	42.9109	52.6136	3.34559	2,42
0.194891	7.97303	12.8261	0.869453	1.97
0.109722	2.03421	9.17016	0.223989	2.35
0.0519095	0.399011	9.08174	0.0436959	-

4. Выводы

После построения численного решения на разных сетках было установлено, что порядок сходимсоти приблизительно равен 2, что и говорит теория. Однако наблюдаются небольшие отклонения от 2. Скорее всего это связано с тем, что функция, которая выбрана в качестве точного решения, имеет очень частые осцилляции на области, где производятся вычисления. Поэтому интерполяция функции между узлами сетки может привести как к небольшому ухудшению порядка сходимости, так и, наоборот, к небольшому увеличению порядка сходимости.