	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_1^{\#_2^2}$	$\tau_{1}^{\#1}_{\alpha\beta}$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1^{-}}^{\#1}\alpha$	$\tau_{1}^{\#2}{}_{\alpha}$
$r_1^{#1} + \alpha \beta$	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	0	0	0	0
$ +^{\alpha \beta} $	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\tau_1^{\#1} + \alpha \beta$		$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#1} +^{lpha}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$
$\sigma_1^{\#2} +^{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
$\tau_{1}^{\#_{1}} + \alpha$	0	0	0	0	0	0	0
$\tau_{1}^{\#2} + ^{\alpha}$	0	0	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{4k^2}{(\alpha_0\!-\!4\beta_1)(1\!+\!2k^2)^2}$

	$\omega_{2^{+}lphaeta}^{\sharp1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{\alpha\beta}$	$-\frac{\alpha_0}{4}+\beta_1$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$-\frac{\alpha_0}{4}+\beta_1$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}_{\alpha\beta\lambda}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$

$f_{1^-}^{\#2} lpha$	0	0	0	$-\frac{1}{2}\tilde{I}\left(\alpha_{0}-4\beta_{1}\right)k$	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{4} \left(\alpha_0 - 4 \beta_1 \right)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$\frac{1}{2}\bar{l}(\alpha_0-4\beta_1)k$
$f_{1}^{\#1}{}_{lphaeta}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#_2}$	$\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}_{+}{}_{\alpha\beta}$	$\frac{1}{1}(\alpha_0-4\beta_1)$	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
	$\omega_1^{#1} + \alpha^{\beta}$	$\omega_1^{#2} + \alpha \beta$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_1^{#2} + \alpha$

$f_{1^-}^{\#2} lpha$	0	0	0	$-\frac{1}{2}\bar{l}(\alpha_0-4eta)$	0	0	0
$f_{1^{}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2} f_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$\frac{1}{4} \left(\alpha_0 - 4 \beta_1 \right)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$\frac{1}{2}\tilde{l}\left(\alpha_0-4eta_1\right)k$
$f_1^{\#1}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$ $f_{1}^{\#1}{}_{\alpha\beta}$	<u> </u>	0 0	0 0	0 0	0 0	0 0	0 0
$\omega_{1+lphaeta}^{\#1}$ $\omega_{1+lphaeta}^{\#2}$ $f_{1+lphaeta}^{\#1}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\alpha_0-4\beta_1}{2\sqrt{2}}\qquad \qquad 0\qquad \qquad 0$	$-\frac{i(\alpha_0-4\beta_1)^k}{2\sqrt{2}} \qquad 0 \qquad 0$	0 0 0	0 0 0	0 0 0	0

Unitarity conditions $\alpha_0 > 0 \&\& \alpha_6 > 0 \&\& \beta_1 < 0 \mid |\beta_1 > \frac{\alpha_0}{4}$

Lagrangian density	$-\frac{1}{2}\alpha_0\ \omega_{\alpha\chi\beta}\ \omega^{\alpha\beta\chi} - \frac{1}{2}\alpha_0\ \omega^{\alpha\beta}\ \omega^{\chi}_{\beta\ \chi} + 2\beta_1\ \omega^{\alpha\beta}_{\alpha}\ \omega^{\chi}_{\beta\ \chi} - 2\beta_1\ \omega^{\chi\delta}_{\alpha}\ \omega^{\chi\delta}_{\chi\delta} +$	$f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - 2\beta_1 \omega_{\alpha\chi}^{\chi} \partial_{\beta} f^{\alpha\beta} - 2\beta_1 \omega_{\alpha\delta}^{\delta} \partial_{\beta} f^{\alpha\beta} - \alpha_0 f^{\alpha\beta} \partial_{\beta} \omega_{\alpha\chi}^{\chi} +$	$\alpha_0 \partial_\beta \omega^{\alpha\beta}_{\ \alpha} + 2 \beta_1 \omega^{ \chi}_{\beta \chi} \partial^\beta f^\alpha_{\ \alpha} + 2 \beta_1 \omega^{ \delta}_{\beta \delta} \partial^\beta f^\alpha_{\ \alpha} - 2 \beta_1 \partial_\beta f^\chi_{\ \chi} \partial^\beta f^\alpha_{\ \alpha} +$	$\alpha_0 \ f^{\alpha\beta} \ \partial_\chi \omega_{\alpha \ \beta}^{\ \chi} - \alpha_0 \ f^{\alpha}_{\ \alpha} \ \partial_\chi \omega^{\beta\chi}_{\ \beta} + 4 \ \beta_1 \ \omega_{\alpha\chi\beta} \ \partial^\chi f^{\alpha\beta} + \beta_1 \ \partial_\chi f_{\ \beta}^{\ \delta} + \beta_{\delta} + \beta_{\delta}$	$\beta_1 \partial_\chi f^\delta_{\ \beta} \partial^\chi f^\beta_{\ \delta} + 4 \beta_1 \partial^\beta f^\alpha_{\ \alpha} \partial_\delta f^\beta_{\ \beta} - 2 \beta_1 \partial_\beta f^\beta_{\ \chi} \partial_\delta f^{\chi\delta} + \tfrac{2}{3} \alpha_6 \partial_\beta \omega^{\alpha\beta}_{\ \alpha} \partial_\delta \omega^{\chi\delta}_{\ \chi} -$	$\beta_1 \partial^\chi f_\zeta^{\ \beta} \partial^\zeta f_{\beta\chi} - \beta_1 \partial^\chi f_\zeta^{\ \beta} \partial^\zeta f_{\chi\beta} + \beta_1 \partial^\chi f_{\delta\zeta} \partial^\zeta f^\delta_{\ \chi} - \beta_1 \partial^\chi f_{\zeta\delta} \partial^\zeta f^\delta_{\ \chi}$	
--------------------	---	---	---	--	---	---	--

	$\sigma^{\sharp 1}_{0^+}$	$ au_{0}^{\#1}$	$ au_0^{\#2}$	$\sigma_{0}^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{8 \beta_1}{\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2}$	$-\frac{i\sqrt{2} (\alpha_0-4\beta_1)}{\alpha_0 (\alpha_0-4\beta_1)k+8\alpha_6\beta_1 k^3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i \sqrt{2} (\alpha_0 - 4 \beta_1)}{\alpha_0 (\alpha_0 - 4 \beta_1) k + 8 \alpha_6 \beta_1 k^3}$	$-\frac{\alpha_0 - 4 \beta_1 + 2 \alpha_6 k^2}{k^2 (\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2)}$	0	0
$ au_{0}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0 - 4 \beta_1}$

		#	1	\mathcal{C}	3	\mathcal{C}	1
$\beta_1 \ \omega_{\alpha\chi\beta} \ \partial^{\chi} f^{\alpha\beta} + \beta_1 \ \partial_{\chi} f_{\beta}^{\ \delta} \partial^{\chi} f_{\beta}^{\ \beta} +$ $(-2)^{2} \beta_1 \partial_{\beta} f_{\chi}^{\ \beta} \partial_{\delta} f^{\chi\delta} + \frac{2}{3} \alpha_6 \partial_{\beta} \omega^{\alpha\beta}_{\alpha} \partial_{\delta} \omega^{\chi\delta}_{\chi} -$ $(-2)^{3} \beta_{\chi} f_{\delta\zeta} \partial^{\zeta} f^{\delta}_{\chi} - \beta_1 \partial^{\chi} f_{\zeta\delta} \partial^{\zeta} f^{\delta}_{\chi}$	Source constraints	SO(3) irreps	$\tau_0^{#2} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \ \sigma_{1}^{\#2}{}^{\alpha} == 0 \ 3$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0 \ 3$	Total #:
$\beta_1 \ \omega_{\alpha\chi\beta} \ \partial^{\chi} f^{\alpha\beta} + \beta_1 \ \partial_{\chi} f_{\beta}^{\ \delta} $ $(5)^{2} \beta_1 \ \partial_{\beta} f_{\chi}^{\ \beta} \ \partial_{\delta} f^{\chi\delta} + \frac{2}{3} \ \alpha_6 \ \partial_{\beta} u$ $(5)^{3} f_{\delta\zeta} \partial^{\zeta} f^{\delta} - \beta_1 \ \partial^{\chi} f_{\zeta\delta} \partial^{\zeta} f^{\delta}$	$\omega_{0}^{\#1}$, (0	0	0	0 $\frac{1}{2} (\alpha_0 - 4 \beta_1)$	
β_1 ($\frac{2}{2}\beta_1$	#5 0+		0	0	0	0	

-4 $\beta_1 k^2$

0

 $\omega_{0}^{#1} + f_{0}^{#1} + f_{0}^{#1} + f_{0}^{#2} + f_{0}^{#2} + \omega_{0}^{#1} + f_{0}^{#1} + f_{$

 $\frac{\alpha_0}{2} - 2\beta_1 + \alpha_6 k^2$

 $\omega_{0}^{\#1}$