Работа 150А СПЕКТРАЛЬНЫЙ АНАЛИЗ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ

Подлесный Артём группа 827

15 декабря 2019 г.

Цель работы: В работе изучаются спектры периодических электрических сигналов различной формы (последовательности прямоугольных импульсов и цугов, а также амплитудно-модулированных гармонических колебаний).

Оборудование: персональный компьютер; USB-осциллограф АКИП4107; функциональный генератор WaveStation 2012; соединительные кабели.

Экспериментальная установка

Рис. 1: Схема установки для проведения эксперимента.

Работа проводится на компьютере, поэтому единственное, что требуется для измерений - четко настраивать начальные параметры.

Исследование спектра периодической последовательности прямоугольных импульсов.

Периодическая последовательность прямоугольных импульсов (рис. 2) с амплитудой V_0 , длительностью τ , частотой повторения $\Omega_1 = 2\pi/T$, где — период повторения импульсов. Найдём среднее значение (постоянную составляющую). Согласно формуле

$$\langle V \rangle = V_0 \frac{\tau}{T}.$$

Коэффициенты при косинусовых составляющих равны:

$$a_n = 2V_0 \frac{\tau}{T} \frac{\sin\left(\frac{n\Omega_1 \tau}{2}\right)}{\frac{n\Omega_1 \tau}{2}} \sim \frac{\sin x}{x}.$$

Поскольку наша функция чётная, все коэффициенты синусоидальных гармоник равны 0. Спектр a_n последовательности прямоугольных импульсов представлен на рис. 2.

Рис. 2: Слева – периодическая последовательность прямоугольных импульсов, справа – её спектр.

Здесь видна ширина спектра $\Delta \nu$.

После установки всех необходимых параметров, получаем картину спектра. Можно понять, как он меняется в зависимости от $f_{\text{повт}}$ и τ . Для этого они поочередно изменялись в 2 раза, что показано на рис. 3. Отсюда подтверждаем, что $\tau \Delta \nu \sim 1$.

Далее были проведены измерения зависимости ширины спектра от длительности импульса, представленные на таблице 1.

Δu , к Γ ц									
au, MKC	40	60	80	100	120	140	160	180	200

Таблица 1: Данные зависимости $\Delta \nu(\tau)$.

Рис. 3: Картина спектра: сверху рабочий спектр, под ним - спектр с увеличенной вдвое τ и неизменной частотой $f_{\text{повт}}$, ниже - спектр с увеличенной вдвое $f_{\text{повт}}$ и неизменной τ .

Далее в работе необходимо было посчитать зависимость между номером гармоники спектра, амплитудой и частотой этой гармоники, при начальной частоте f=1 к Γ ц, и $\tau=50$, и 100 мкс. Благодаря точности установки, частоты совпадали с номером гармоники в к Γ ц, что не удивительно с таким значением частоты. Данные представлены на таблице 2, а картины самих спектров представлены на рис. 4.

Рис. 4: Спектры прямоугольных импульсов, где слева длительность импульса – 50 мкс, справа – 100 мкс.

Построим график $\Delta \nu(\frac{1}{\tau})$. Он показан на рисунке 5.

50 мкс			100 мкс		
n	A, м B	$ u$, к Γ ц	n	A, мВ	$ u$, к Γ ц
0	123.5	0.003	0	221.4	0.001
1	68.97	1.005	1	136.5	1.002
2	66.76	2.003	2	127.1	2.005
3	63.18	3.004	3	113.1	2.996
4	58.53	4.004	4	94.9	4.021
5	57.1	4.997	5	80.72	5.002
6	57.01	5.997	6	66.76	5.994
7	55.2	6.999	7	50.3	7.008
8	52.45	7.999	8	32.38	8.01
9	48.75	9.002			
10	43.81	10			
11	38.59	11			
12	32.89	12			
13	27.06	13.01			
14	23.87	13.99			
15	20.32	15			

Таблица 2: Таблица значений амплитуд для 2 спектров, с длительностью импульса в 50 и 100 мкс соответственно.

Вывод

Как видно по графику, его угол наклона - 0.95, а точка пересечения с осью ординат - 0.1, что показывает, что он практически проходит через начало координат. На основании этого можем убедиться в том, что соотношение неопределенности $\Delta\nu\Delta t\simeq 1$ — выполняется. Несовместимость острой локализации волнового процесса во времени с узким спектром частот — явление широко известное в радиотехнике. Ширина селективной настройки $\Delta\nu$ радиоприёмника ограничивает приём радиосигналов длительностью $t<1/\Delta\nu$.

По картинам спектра так же заметно это соотношение, к тому же амплитуды импульсов спектра с большей их длительностью – выше, что логично.

Рис. 5: График зависимости $\Delta \nu(\frac{1}{\tau})$, показывающий выполнение частного случая принципа неопределенности.

Исследование спектра периодической последовательности цугов гармонических колебаний.

Периодическая последовательность цугов гармонического колебания $V_0 \cos(\omega_0 t)$ с длительностью цуга τ и периодом повторения T (рис. 6).

Рис. 6: Слева – периодическая последовательность цугов, справа – её спектр.

Коэффициент при n-й гармонике согласно формуле равен:

$$a_n = V_0 \frac{\tau}{T} \left(\frac{\sin[(\omega_0 - n\Omega_1)\frac{\tau}{2}]}{(\omega_0 - n\Omega_1)\frac{\tau}{2}} + \frac{\sin[(\omega_0 + n\Omega_1)\frac{\tau}{2}]}{(\omega_0 + n\Omega_1)\frac{\tau}{2}} \right).$$

Спектр на рис. 6 соответствует случаю, когда T/τ – целое число.

После всех приготовлений получаем картину спектра периодических цуг (рис. 7).

Рис. 7: Спектр цуг – слева при длительности импульса в 100 мкс, справа - в 200.

Несущая частоты в эксперименте - 30 к Γ ц, определяла то, в каком месте спектра главный пик. При уменьшении/увеличении нес частоты, он смещался в лево/право.

Далее по работе была снята зависимость между $\delta \nu$ и $f_{\text{повт}}$. Она показана на таблице 3.

$\delta \nu$	1.004	0.5	2	4
$f_{\scriptscriptstyle \Pi OBT}$	1	0.5	2	4

Таблица 3: Зависимость между $\delta \nu$ и $f_{\text{повт}}$.

Как видно, необязательно даже строить график, чтобы понять, что его угол наклона будет 1, и $f_{\text{гармоники-n}} = n f_{\text{повт}}$.

Как и для прямоугольных импульсов, для цуг была снята зависимость амплитуды гармоники от её номера, по которым были восстановлены спектры для двух начальных условий: при начальной частоте f=1 и 2 к Γ ц, и $\tau=100$ мкс. Данные представлены на таблице 4, а сами спектры - на рис. 8.

1 кГц		2 кГц	
n	A, мВ	n	A, мВ
0	73.34	0	130.8
1	56.25	1	107.3
2	53.4	2	85.44
3	49.13	3	55.63
4	42.84	4	24.68
5	35.6	5	5.317
6	27.89		
7	20.06		
8	12.46		
9	5.578		
10	2.611		

Таблица 4: Таблица данных гармоник спектра.

Рис. 8: Экспериментальные пектры цуг — слева при частоте повтора в 1 к Γ ц, справа — 2.

Вывод

Как видно из спектров цуг - при увеличении частоты повтора число гармоник уменьшается, а амплитуда увеличивается, что вполне согласуется с теорией. Так же можно увидеть, что в отличие от прямоугольных импульсов, положение главной гармоники определяет еще и несущая частота, когда как прямоугольные импульсы имеют максимум амплитуды в нуле. Так же заметно, что амплитуда прямоугольных импульсов - больше.

Исследование спектра гармонических сигналов, модулированных по амплитуде

Амплитудно-модулированные колебания задаются формулой:

$$f(t) = A_0(1 + m\cos\Omega t)\cos\omega_0 t.$$

Коэффициент m называют глубиной модуляции. Глубина модуляции может быть представлена в виде:

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}.$$

Такие колебания легко разложить по спектру:

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos(\omega_0 + \Omega)t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega)t. \tag{1}$$

Они показаны на рис. 9.

Рис. 9: Амплитудно-модулированные колебания и их спектр.

В работе были измерены значения всех амплитуд, в зависимости от двойного напряжения входящего сигнала. Тогда для каждого из значений Vpp была посчитана глубина модуляции сигнала. Эти данные представлены таблицей 5.

Ampl, Vpp	A_{max}	A_{min}	$A_{\rm och}$	$A_{ m fok}$	m
0.2	545.6	456	326.4	14.47	0.089
0.5	625	379.2	326.4	39.62	0.245
0.8	694.2	310	326.4	61.14	0.383
1.1	773.6	238.3	328	84.87	0.529
1.4	850.4	159	327.8	110.9	0.685
1.7	922.1	79.58	326.6	130.5	0.841
2	988	98.11	353.9	139.7	0.819

Таблица 5: Различные амплитуды ам-колебаний. Для каждого сигнала посчитана его глубина модуляции.

Рис. 10: Сверху вниз — изменение картины ам-колебаний при увеличении Ω в 2 раза. Как видно, при этом уменьшается период колебаний амплитуды, что согласуется с теорией.

Так же теперь мы можем посмотреть, как меняется картина колебаний при увеличении Ω . Это показано на рис. 10.

Из теории

$$\frac{A_{\rm fok}}{A_{\rm och}} = \frac{m}{2}.$$

Соответственно, угловой коэффициент графика зависимости $\frac{A_{60\text{к}}}{A_{0\text{cr}}}(m)$ должен быть равен 0.5. Проверим это, построив график, изображенный на рис.11.

Рис. 11: График зависимости $\frac{A_{6 \text{ s. k}}}{A_{\text{осн}}}(m)$.

Вывод

Как видно из графика, его коэффициент наклона 0.47, что примерно равно 0.5, поэтому колебательный режим можно действительно считать амплитудномодулированным, а его спектр действительно задается функцией (1).