_

Lab 5: Post-hoc Tests & Factorial ANONA

PSC 103B

Marwin Carmo

Today's dataset

- We'll be using a modified version of last week's data set.
- I randomly chose 68 penguins from each species, because the manual post-hoc test we are doing requires equal group sizes.

```
1 penguins_data <- read.csv("data/penguins_103b.csv")</pre>
```

<u></u>

Post-Hoc Tests

different species of penguins had, on average, equal bill lengths, or whether there The one-way ANOVA we conducted last week we were interested in whether the was some difference in the average bill length among the 3 species.

```
<u></u>
   my_anova <- aov(bill_length_mm ~ species, data = penguins_data)
                                                                                                                                                                                             Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ''
                                                                            Df Sum Sq Mean Sq F value Pr(>F)
2 4436 2217.9 241.8 <2e-16
201 1844 9.2
                                     summary (my anova)
                                                                                                                                         Residuals
                                                                                                          species
```

What can we conclude?

Post-Hoc Tests

- After a significant ANOVA result, we're interested in learning where those differences are.
- that your chances of a Type 1 error (saying 2 groups have different means when Post-hoc tests are meant to correct for the many comparisons you are doing, so they actually have the same means) stays at .05.
- There are multiple post-hoc tests available, and they differ in how conservative they are. We're focus on Tukey's Honest Significant Difference (HSD) Test.

Tukey's HSD

• It computes a value called a "Critical Difference", and so any group differences that are larger than the Critical Difference (CD) in absolute value are significant.

$$CD=q imes\sqrt{rac{MS_w}{n}}$$

ullet where n is the group size within each group, and MS_w is the Mean Squared Within you can get from your ANOVA table.

Find $\it n$ and $\it MS_{\it w}$

u

```
<u></u>
                                                                                  <u></u>
  table (penguins_data$species)
                                           Gentoo
                                         Adelie Chinstrap
                                                                                    1 n <- 68
```

MS_w (tip: look in the ANOVA summary)

```
0
                                                                                          0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
                                          241.8 <2e-16 ***
                         Df Sum Sq Mean Sq F value Pr(>F)
2 4436 2217.9 241.8 <2e-16
201 1844 9.2
   summary (my_anova)
                                                          201
                                                                                             Signif. codes:
                                                                                                                      1 MSW <-
                                                          Residuals
                                          species
```


To find q, we can use the function $\mathsf{qtukey}()$, that takes 3 main arguments:

- p, which is the probability to the left of the critical value,
- nmeans, which is the number of groups we're comparing and,
- df, which is just df within
- If our test is conducted at the .05 level, then the probability below the critical value is .95.

Exercise

Find q using the qtukey() function. Set the values for the arguments p, nmeans, and df. Save your result to an object called qvalue. Tip: you can also find df within in the ANOVA summary

Find q

[1] 3.339252

UCDAVIS

Tukey's HSD

Now, we can go ahead and calculate our CD.

```
<u></u>
  cd <- qvalue * sqrt(MSW / n)
```

[1] 1.228255

How can we get all the groups' means?

```
<u></u>
 penguin means <- tapply (penguins data\$bill length mm,
                              penguins_data$species,
                                                           mean, na.rm = TRUE)
                                                                                        penguin means
```

Adelie Chinstrap Gentoo 38.38529 48.83382 47.60588

UCDAVIS

Exercise

Find all the possible mean differences between groups and compare to the critical difference we just calculated. What can we conclude about those differences?

<pre>1 adelie_mean <- penguin_means[1] 2 chinstrap_mean <- penguin_means[2] 3 gentoo_mean <- penguin_means[3]</pre>	
1 adelie_mean - chinstrap_mean	
Adelie -10.44853	
1 adelie_mean - gentoo_mean	
Adelie -9.220588	
1 chinstrap_mean - gentoo_mean	

Chinstrap 1.227941

Tukey's HSD

Comparison	Mean difference
Adelie - Chinstrap	-10.45
Adelie - Gentoo	-9.22
Chinstrap - Gentoo	1.23

- Given our CD of 1.21 which of these differences are significant?
- We can say that Adelie has a significantly lower average bill length than both Chinstrap and Gentoo.
- And Chinstrap has a significantly longer bill length, on average, than Gentoo.

Tukey's HSD

R has a built-in function for Tukey's HSD, called TukeyHSD(), and the only argument you need to give it is the ANOVA object you saved earlier:

```
Fit: aov(formula = bill length_mm ~ species, data = penguins_data)
                                                                                                                                                                                                                                                                                           9.222071 11.674988263 0.0000000
                                                                                                                                                                                                                                                                                                                               7.994129 10.447047086 0.0000000
                                                                                                                                                                                                                                                                                                                                                                 Gentoo-Chinstrap -1.227941 -2.454400 -0.001482326
                                                Tukey multiple comparisons of means
                                                                                  95% family-wise confidence level
                                                                                                                                                                                                                                                                                             Chinstrap-Adelie 10.448529
                                                                                                                                                                                                                                                                                                                               9.220588
TukeyHSD (my_anova)
                                                                                                                                                                                                                                                                                                                                   Gentoo-Adelie
                                                                                                                                                                                                                             $species
```


Factorial ANOVA allow us examine in one test:

- is there an effect of Grouping Variable 1 (at least one mean is different in those groups)?
- is there an effect of Grouping Variable 2?
- is there an interaction between the 2 variables (so that the effect of Grouping Variable 1 depends on Grouping Variable 2, or vice versa)?

- Let's assume we were interested in whether body mass differed not only among the 3 penguin species, but also whether it differed among males and females.
- If we were to do this as 2 separate ANOVAs, we would have 2 sets of hypotheses:
- One for the species of penguin:
- ullet $H_0:\mu_{Adelie}=\mu_{Chinstrap}=\mu_{Gentoo}$ (there is no difference in average body mass among the species).
- lacktriangle H_A : At least one mean is significantly different from the rest.

- One for the sex:
- ullet $H_0:\mu_{female}=\mu_{male}$ (there is no difference in average body mass among male and female penguins).
- ullet $H_A:\mu_{female}
 eq\mu_{male}$ (note that because there are only 2 groups, we can be more specific with our alternative hypothesis).
- And we also have a hypothesis for the interaction:
- lacktriangle H_0 : There is no interaction between the species of penguin and their sex.
- lacktriangle H_A : There is an interaction between the species of penguin and their sex.

 In R where we "multiply" our two predictors to include an interaction between them.

```
~ species * sex, data = penguins_data)
                                                                                                                                                                                                                     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1
                                                                                                                                             0.000801 ***
                                                                                           < 2e-16 ***
                                                                                                                                           7.395
                                                                    of Sum Sq Mean Sq F value 2 93491533 46745767 466.899
                                                                                                                   1 19697662 19697662 196,741
                                                                                                                                                                                                                                               2 observations deleted due to missingness
     1 factorial_anova <- aov(body_mass_g
2 summary(factorial anova)</pre>
                                                                                                                                             740409
                            summary (factorial anova)
                                                                                                                                             1480819
                                                                                                                                                                  196 19623451
                                                                                                                                              species:sex
                                                                                                                                                                     Residuals
                                                                                           species
```

Which results are significant? What does this tell us?

Main effect of species

At least one species has an average body mass that is significantly different from another species.

```
1 TukeyHSD(factorial_anova)$species
```

<u></u>

```
1484.3284 1355.22009 1613.4366 7.571721e-14
                                                         Gentoo-Chinstrap 1402.7327 1274.09993 1531.3654 7.571721e-14
   210.2284 2.940693e-01
-47.03703
 81.5957
   Chinstrap-Adelie
                                Gentoo-Adelie
```


Main effect of sex

groups) say that there is a significant difference between the body mass of male and The p-value is also less than .05 so we can reject H0 and (since there are only 2 female penguins

```
male-female 620.0387 532.1883 707.8891 7.571721e-14
TukeyHSD (factorial_anova) $sex
```

<u></u>

Interaction

- The difference in body mass between male and female penguins depends on the species.
- We can try to uncover what that interaction is by graphing the means.
- In this graph, we would have one grouping variable on the x-axis and the other grouping variable as different lines on the graph.
- To do this, we will use the function interaction.plot().


```
Sez
<u></u>
                                                                                                      II
                                                                                                   = "Body Mass (g)", trace.label
  grouping variable on x axis
                trace.factor = penguins_data$sex, # grouping variable as lines
                                         # outcome variable
                                                                                                   "Species", ylab
                                        response = penguins_data$body_mass_
   interaction.plot(x.factor = penguins_data$species,
                                                                                                      П
                                                           # summary statistic
                                                                                                   col = c("black", "red"), xlab
                                                                              type = "1", # graph lines
                                                             fun = mean,
   1 7 M 7 M 9
```


- Males, on average, weigh more than females.
- Gentoo penguins weigh more than Adelie and Chinstrap, but Adelie and Chinstrap are pretty close to each other.
- depending on the species. In particular, males and females have a much smaller The interaction appears to be that the magnitude of the difference is different difference in the Chinstrap species than the other 2 species.

Now you try

Exercise

Run a factorial ANOVA testing the interaction between the penguin sex and its island in accounting for differences in body_mass_g. What can you conclude?

```
<u></u>
   = penguins_data)
    data
    sex * island,
                                                                                                                                                                     0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1
                                                                    1 28677875 28677875 106.026 < 2e-16 ***
                                                                                       92.040 < 2e-16 ***
                                                                                                            5.198 0.00632
      >
                                                   Mean Sq F value
                                                                                                                                                                                          2 observations deleted due to missingness
  factorial_anova_2 <- aov(body_mass_g
                                                                                        2 49789988 24894994
                                                                                                           1405880
                                                                                                                               270479
                       summary(factorial anova 2)
                                                  Df Sum Sq
                                                                                                            2811759
                                                                                                                               196 53013843
                                                                                                                                                                        Signif. codes:
                                                                                                              sex:island
                                                                                                                                 Residuals
                                                                                          island
                                                                          Sex
```


Now you try

At least penguins from one island have an average body mass that is significantly different from penguins from another island.

```
-1000.52117 -1183.1127 -817.9296 7.571721e-14
                                                                                                     9.959924e-01
                                                                                                    308.0915
                                                                               -692.1201
                                                                                                     10.74554 -286.6004
                                                                              -989.77563 -1287.4312
1 TukeyHSD(factorial_anova_2)$island
                                                                                 Torgersen-Biscoe
                                                                                                        Torgersen-Dream
                                                         Dream-Biscoe
```

Males have significantly higher body mass than females.

```
male-female 753.9099 609.5154 898.3044 9.325873e-14
TukeyHSD(factorial anova 2) $sex
                                                       diff
```

<u></u>

