Les Réseaux Informatiques

Transmission Des Données

Sommaire

- 1. Codage de l'Information
- 2. Communication entre Terminaux
- 3. Notions d'Analyse Spectrale
- 4. Techniques de Transmission
- 5. Equipements Téléinformatiques

Codage de l'Information (1)

- Communication = Transmission + Compréhension
- Langages, Ecrit...
- Alphabet, Symboles, Codes
- Télégraphie: Morse, Baudot
- Télex, terminal « Numérique »
- Codage Informatique: Suite de chiffres binaires (bits ou binary digits) O et 1

Codage de l'Information (2)

- Codage de l'Information:
 - Codage sous forme binaire (ASCII, EBCDIC, DCB...)
 - Codage de l'état binaire sous forme physique
- Fonctions de Transcodage
- Principaux codes pour la transmission: Morse (A .- B -... C -.-. D -.. E .), Baudot (code télégraphique ou AI n° 2 ou CCITT n°2) ASCII (AI n° 5 ou Code CCITT n° 5 ou ISO 646)

Communication entre terminaux (1)

- ETTD: Equipement Terminal de Traitement de Données DTE: Data Terminal Equipment
- ETCD: Equipement de Terminaison de Circuit de Données DCTE: Data Circuit Terminating Equipment

DCE: Data Communication Equipment

Communication entre terminaux (2)

Communication entre terminaux (3)

Transmission Asynchrone = par caractère Transmission Synchrone = par bloc de caractères

Communication entre terminaux (4)

- Problème de synchronsiation des horloges
- Causes:
 - Fréquences des horloges différentes;
 - Vitesse de propagation variable;
- Solutions:
 - Transmettre le signal d'horloge;
 - Insérer des caractères de synchronisation;
 - Coder le signal pour avoir des transitions;
- Problème ne se pose pas en transmission asynchrone (Start/Stop)

Communication entre terminaux (5)

> Transmission Simplex ou unidirectionnelle

Transmission Duplex ou bidirectionnelle Half-Duplex (HDX) ou à l'alternat; Liaison 2/4 fils Full-Duplex (FDX) ou simultané; Liaison 4/2 fils

Communication entre terminaux (6)

- Débit binaire = Quantité d'information (bps) que peut envoyer un émetteur et recevoir un récepteur
- Débit = émetteur/récepteur (bps)
 - Débit support;
 - Débit utile (données);
 - Débit réel;

Communication entre terminaux (7)

Temps de latence = Temps de transit
Temps écoulé entre l'émission et la réception

- Il dépend de:
 - Temps de propagation;
 - Temps de traversée des équipements;
 - Temps d'attente (charge du réseau)
- Minimum et/ou constant
- <u>Jitter</u> (Variation du temps de latence)

Communication entre terminaux (8)

- Valence d'un signal: Nombre d'états que peut prendre un signal pour représenter l'information
- Rapidité de modulation: Nombre de changements d'états (ch. États/s ou bauds) du signal
- D=R*log2(V)
- Ne pas confondre Bits par seconde et Bauds

Notions d'Analyse Spectrale (1)

Transmission analogique: le signal varie d'une façon continue (ex. la radiodiffusion)

Transmission digitale: le signal varie d'une façon discrète (nombre d'états fini)

Notions d'Analyse Spectrale (2)

Amplitude maximale Fréquence Phase

Notions d'Analyse Spectrale (3)

Spectre de fréquence:

Signal => largeur de bande Support => bande passante

Notions d'Analyse Spectrale (4)

- Déformations des signaux transmis:
 - Affaiblissement (fonction de la distance)
 - → Amplification N=10*log10(PS/PE) en Décibels
 - Distorsions en Amplitude
 - → Egalisation
 - Distorsions en Fréquence (Filtres)
 - → Transposition en Fréquence
 - Distorsions en Phase (Vitesse de propagation)
 - → Synchronisation

Notions d'Analyse Spectrale (5)

- Bruits (ensemble de signaux parasites aléatoires):
 - Mesure par rapport au signal utile
 (S/B)=10*log10(S/B) en Décibels
 - Sensibilité accrue avec la bande passante
 - Sensibilité accrue avec le débit
 - Erreur d'interprétation par le récepteur
 - Solutions:
 - → Fiabilité des supports
 - > Codes détecteurs d'erreurs

Notions d'Analyse Spectrale (6)

- Capacité du canal:
 - Quantité maximale d'information que peut véhiculer un support C=W*log2(5/B+1) en bits par sec. si W en Hz
 - Dépend de la bande passante
 - Dépend du rapport Signal/Bruit

Techniques de Transmission (1)

Transmission Analogique ou par Modulation (Transposition de fréquence)

P Quand la source est analogique, l'information peut être numérisée avant d'effectuer une transmission.

Techniques de Transmission (2)

Le code NRZ le plus simple est le NRZ-L (Level):

d(i)=0 V(i)=+V d(i)=1 V(i)=-V

Le NRZ-L est utilisé dans la **RS-232** en logique inversée: "1" étant compris entre -3v et -15v et le "0" étant compris entre +3v et +15v

NRZ-M:

d(i)=0 V(i)=V(i-1)

d(i)=1 V(i)=-V(i-1)

NRZ-S:

d(i)=0 V(i)=-V(i-1)

d(i)=1 V(i)=V(i-1)

NRZ-L

NRZI

Techniques de Transmission (3)

Biphase-L:

$$d(i)=0$$
 $V'(i)=+V$ $V''(i)=-V$

$$d(i)=1$$
 $V'(i)=-V$ $V''(i)=+V$

Biphases différentiels:

La transition au début pour le codage du bit pour le bit 0

$$d(i)=0$$
 $V'(i)=-V''(i-1)$ $V''(i)=-V'(i)$

$$d(i)=1$$
 $V'(i)=V''(i-1)$ $V''(i)=-V'(i)$

pour le bit 1

$$d(i)=0$$
 $V'(i)=V''(i-1)$ $V''(i)=-V'(i)$

$$d(i)=1$$
 $V'(i)=-V''(i-1)$ $V''(i)=-V'(i)$

La transition au milieu pour le codage du bit pour le bit 0

$$d(i)=0$$
 $V'(i)=-V''(i-1)$ $V''(i)=-V'(i)$

$$d(i)=1$$
 $V'(i)=-V''(i-1)$ $V''(i)=V'(i)$

pour le bit 1

$$d(i)=0$$
 $V'(i)=-V''(i-1)$ $V''(i)=V'(i)$

$$d(i)=1$$
 $V'(i)=-V''(i-1)$ $V''(i)=-V'(i)$

Codage utilisé dans le réseau Ethernet

Techniques de Transmission (4)

Techniques de Transmission (5)

- Numérisation d'un signal analogique par la technique MIC ou PCM:
 - Echantillonnage;
 - Quantification;
 - Codage;

Avantages:

- Compatibilité;
- Fiabilité (répéteurs);
- Algorithmes numériques de compression et de cryptage;

- ...

Multiplexage (1)

- Partage d'un Support de Transmission / Rassemblement de plusieurs voies sur un support unique pour des raisons essentiellement économiques (câbles/fibres optiques) ou par nécessité (voies hertziennes)
- Plusieurs Types de Multiplexage:
 - fréquentiel (partage de la Bande Passante);
 - temporel (partage de l'utilisation du canal):
 - * synchrone;
 - * asynchrone
 - hybride (fréquentiel/temporel);

Multiplexage (2)

Multiplexage Fréquentiel (MRF ou FDM)
Partage de la Bande Passante en Canaux de Fréquence:

```
* Hiérarchie Réseau Téléphonique:
Une voie = bande de 4000 Hz;
Un Groupe Primaire = 12 voies;
Un Groupe Secondaire = 5 GP (60 voies)
Un Groupe Tertiaire = 5 GS (300 voies)
Un Groupe Quaternaire = 3 GT (900 voies)
```

Multiplexage (3)

- Multiplexage Temporel Synchrone (MTS ou STM) (ex. RNIS):
 - Temps découpé en trames successives, contigües et de durée constante;
 - Trame découpée en IT (Intervalles de Temps) ou slots, chacun des slots étant numéroté et réservé à la communication qui le demande;
 - Bande passante fixe;
 - Temps de latence constant
 - Réservation Utilisation

Multiplexage (4)

- Multiplexage Temporel Asynchrone (MTA ou ATD ou ATM) (ex. X.25, IP, Ethernet...):
 - Trames acycliques n'ayant plus aucun synchronisme entre elles;
 - Meilleure utilisation du support;
 - Taille fixe ou variable;
 - Chaque trame doit être correctement identifiée par une étiquette de voie;
 - Complexité plus grande pour le commutateur mais Souplesse accrue et traitement de débits quelconques;
 - Temps de latence non constant;