

Dans ce problème

- $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ une fonction, on note \tilde{f} l'application définie sur $\tilde{\Omega}$ par $\tilde{f}(x,y)=f(x+iy)$
- On pose $P:(x,y)\in \tilde{\Omega}\mapsto \Re ef(x+iy)$ et $Q:(x,y)\in \tilde{\Omega}\mapsto \Im f(x+iy)$.
- Pour tout $z_0 \in \mathbb{C}$ et $r \in \mathbb{R}^+ \cup \{+\infty\}$, on note : $D(z_0, r) = \{z \in \mathbb{C} \mid |z z_0| < r\}$

Partie I: Questions préliminaires

On considère l'application $\psi: \mathbb{R}^2 \longrightarrow \mathbb{C}$ définie par $\psi(x,y) = x + iy$

- 1. Vérifier que l'application ψ est une bijection continue et que ψ^{-1} est aussi continue.
- 2. Justifier que si Ω est un ouvert de \mathbb{C} alors $\tilde{\Omega} = \{(x,y) \in \mathbb{R}^2 \mid x+iy \in \Omega\}$ est un ouvert de \mathbb{R}^2

Dans toute la suite de problème Ω désigne un ouvert non vide de $\mathbb C$

Partie II: Fonctions holomorphes

Soit Ω est un ouvert non vide de \mathbb{C} , $f:\Omega\to\mathbb{C}$ une fonction, on note f l'application définie sur Ω par f(x,y)=f(x+iy). On pose $P:(x,y)\in \Omega \mapsto \Re ef(x+iy)$ et $Q:(x,y)\in \Omega \mapsto \Im mf(x+iy)$.

- **Définition 1** (Fonction \mathbb{C} -dérivable). On dit que f est \mathbb{C} -dérivable en $z_0 \in \Omega$ si $\lim_{z \to z_0} \frac{f(z) f(z_0)}{z z_0}$ existe dans \mathbb{C} . Auguel cas elle est notée $f'(z_0)$
- On dit que f est \mathbb{C} -dérivable sur Ω si elle \mathbb{C} -dérivable en tout point de Ω . La fonction $z \longmapsto f'(z)$ est appelée la dérivée de f, notée f'.
- On dit que f est holomorphe, si elle est \mathbb{C} -dérivable sur Ω et f' est continue sur Ω . On note $\mathcal{H}(\Omega)$ l'ensemble des fonctions holomorphes sur Ω .
- 1. Soit $\sum_{n=0}^{\infty} a_n z^n$ une série entière de rayon de convergence R>0 et de somme f .
 - (a) Montrer que f est holomorphe sur $\mathcal{D}(0,R)$ et on a $\forall z \in \mathcal{D}(0,R), f'(z) = \sum_{n=0}^{+\infty} na_n z^{n-1}$.
 - (b) Montrer que $z \mapsto \exp(z)$ est holomorphe sur \mathbb{C} et $\exp(z)' = \exp(z)$
- 2. La fonction $z \longmapsto \overline{z}$ est-elle \mathbb{C} -dérivable sur \mathbb{C}
- 3. Montrer que les trois assertions suivantes sont équivalentes
 - (i) Montrer que f est holomorphe sur Ω
 - (ii) \tilde{f} est de $\mathcal{C}^1\left(\tilde{\Omega},\mathbb{C}\right)$ et vérifie l'**équation d'Euler**

$$\forall (x,y) \in \tilde{\Omega}, \quad \frac{\partial \tilde{f}}{\partial y}(x,y) = i \frac{\partial \tilde{f}}{\partial x}(x,y)$$

(iii) P et Q sont $C^1\left(\tilde{\Omega},\mathbb{C}\right)$ et elles vérifient Les équations de Cauchy-Riemann

$$\forall (x,y) \in \tilde{\Omega}, \quad \frac{\partial P}{\partial x}(x,y) = \frac{\partial Q}{\partial y}(x,y) \quad \text{et} \quad \frac{\partial P}{\partial y}(x,y) = -\frac{\partial Q}{\partial x}(x,y)$$

4. Redémontrer que $z \longmapsto \exp(z)$ est holomorphe sur \mathbb{C}

5. Zéta de Riemann:

On pose $\Omega = \{z \in \mathbb{C} , \Re e(z) > 1\}$ et pour $z \in \Omega$ on pose

$$\zeta(z) = \sum_{n=1}^{+\infty} \frac{1}{n^z}$$

- (a) Montrer que ζ est définie sur Ω
- (b) Soit $x \in]1, +\infty[$, on définit $\zeta_x : y \longmapsto \sum_{n=1}^{+\infty} \frac{1}{n^{x+iy}}$. Montrer que ζ_x est de classe \mathcal{C}^1 sur \mathbb{R}
- (c) Soit $y \in \mathbb{R}$, on définit $\zeta_y : x \longmapsto \sum_{n=1}^{+\infty} \frac{1}{n^{x+iy}}$. Montrer que ζ_y est de classe \mathcal{C}^1 sur $]1, +\infty[$
- (d) Montrer que ζ est holomorphe sur Ω

6. Fonction Gamma d'Euler:

On pose $\Omega = \{z \in \mathbb{C} , \Re e(z) > 0\}$ et pour $z \in \Omega$ on pose

$$\Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} \, \mathrm{d}t$$

- (a) Montrer que Γ est définie sur Ω
- (b) Soit $x \in]0, +\infty[$, on définit $\Gamma_x : y \longmapsto \int_0^{+\infty} t^{x-1+iy} e^{-t} dt$. Montrer que Γ_x est de classe \mathcal{C}^1 sur \mathbb{R}
- (c) Soit $y \in \mathbb{R}$, on définit $\Gamma_y : x \longmapsto \int_0^{+\infty} t^{x-1+iy} e^{-t} dt$. Montrer que Γ_y est de classe \mathcal{C}^1 sur $]0, +\infty[$
- (d) Montrer que Γ est holomorphe sur Ω

Partie III: Fonctions analytiques

Définition 2 (Fonction analytique).

On dit que f est analytique sur Ω si pour tout $z_0 \in \Omega$ il existe r > 0 et une série entière $\sum_{n \geqslant 0} a_n z^n$ de rayon de convergence $R \geqslant r$ tels que

$$\forall z \in \mathcal{D}(z_0, r), f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$

On note $\mathcal{O}(\Omega)$ l'ensemble des fonctions analytiques sur Ω

1. Exemples

- (a) Montrer que toute fonction polynomiale sur $\mathbb C$ est analytique sur $\mathbb C$
- (b) Montrer que exp est analytique sur C
- 2. Soit f une fonction analytique sur Ω .
 - (a) Montrer que f est holomorphe sur Ω .
 - (b) Montrer que f est infiniment \mathbb{C} -dérivable sur Ω .
 - (c) Montrer que f admet un développement de Taylor au voisinage de tout point $z_0 \in \Omega$. Autrement dit,

$$\forall z_0 \in \Omega, \exists r > 0, \forall z \in \mathcal{D}(z_0, r), f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

- 3. Soit $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ une application définie par une série entière dont le rayon de convergence R est non nul. Soit z_0 un point de l'intérieur du disque de convergence de module r_0 et soit $r \in]0, R r_0[$. Soit $z \in D(z_0, r)$
 - (a) Montrer que la famille $\left(\frac{(p+q)!}{p!q!}a_{p+q}z_0^q(z-z_0)^p\right)_{(p,q)\in\mathbb{N}^2}$ est sommable
 - (b) Montrer que

$$\forall z \in \mathcal{D}(z_0, R - |z_0|), \quad f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

(c) Déduire que f est analytique sur D(0,R)

Partie IV: Analyticité des fonctions holomorphes

Soit f une fonction holomorphe sur $\Omega,\,z_0\in\Omega$ et R>0 tel que $D(z_0,R)\subset\Omega$

1. Soit
$$\varphi_n:]0, R[\longrightarrow \mathbb{C}$$
 définie par: $\varphi_n(r) = \frac{1}{2\pi r^n} \int_0^{2\pi} f\left(z_0 + re^{i\theta}\right) e^{-in\theta} d\theta$

- (a) Montrer que φ_n est de \mathcal{C}^1 sur]0, R[et expliciter φ'_n
- (b) Montrer que φ_n est constante sur]0, R[. On pose alors $a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f(z_0 + re^{i\theta}) e^{-in\theta} d\theta$
- 2. Quitte à considérer $z \mapsto f(z_0 + z)$, on suppose que $z_0 = 0$. Soit z un point du disque D de centre 0 et de rayon R tel que |z| < r < R. Considérons la fonction $g : [0;1] \longrightarrow \mathbb{C}$ définie par :

$$g(\lambda) = \int_0^{2\pi} \frac{f[(1-\lambda)z + \lambda re^{i\theta}] - f(z)}{re^{i\theta} - z} re^{i\theta} d\theta$$

- (a) Montrer que g est définie et dérivable sur [0,1], puis montrer que g est nulle sur [0,1]
- (b) Justifier l'égalité

$$f(z) \int_0^{2\pi} \frac{re^{i\theta}}{re^{i\theta} - z} d\theta = \int_0^{2\pi} \frac{re^{i\theta}}{re^{i\theta} - z} f\left(re^{i\theta}\right) d\theta$$

(c) En utilisant la somme d'une série géométrique, montrer que

$$2\pi f(z) = \int_0^{2\pi} \frac{re^{i\theta}}{re^{i\theta} - z} f\left(re^{i\theta}\right) d\theta = \sum_{n=0}^{+\infty} z^n \int_0^{2\pi} \frac{f(re^{i\theta})}{r^n e^{in\theta}} d\theta$$

(d) Déduire que f est analytique sur Ω

Partie V: Applications

1. Théorème de Liouville:

Soit f est une fonction holomorphe dans \mathbb{C} , on écrit $f(z) = \sum_{n=0}^{\infty} a_n z^n$

(a) Montrer que

$$\forall r \in \mathbb{R}_+^*, \quad |a_n| \leqslant \frac{M(r)}{r^n} \quad \text{ où } M(r) = \sup_{|z|=r} |f(z)|$$

(b) Montrer que si f est bornée, alors f est constante.

2. Théorème de D'Alembert-Gauss:

Soit P un polynôme de $\mathbb{C}[X]$ de degré supérieur ou égal à 1. On suppose que P ne s'annule pas sur \mathbb{C}

- (a) Montrer que $\frac{1}{P}$ est holomorphe sur $\mathbb C$
- (b) Montrer que $\frac{1}{D}$ est bornée
- (c) Déduire

Partie I: Questions préliminaires

On considère l'application $\psi: \mathbb{R}^2 \longrightarrow \mathbb{C}$ définie par $\psi(x,y) = x + iy$

1. Pour tout $z \in \mathbb{C}$, il existe un unique $(x,y) \in \mathbb{R}^2$ tel que z = x + iy, donc ψ est bijective et

$$\psi^{-1}: \left\{ \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{R}^2 \\ z & \longmapsto & (\mathcal{R}e(z), \mathrm{Im}(z)) \end{array} \right.$$

 ψ et ψ^{-1} sont linéaires et \mathbb{C} et \mathbb{R}^2 sont des \mathbb{R} -espaces vectoriels de dimensions 2, donc elles sont continues

2. $\tilde{\Omega} = \psi^{-1}(\Omega)$ est l'image réciproque d'un ouvert par une application continue, donc il s'agit d'un ouvert de \mathbb{R}^2 Dans toute la suite de problème Ω désigne un ouvert non vide de \mathbb{C}

Partie II: Fonctions holomorphes

- 1. Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R>0 et de somme f .
 - (a) Soit $z \in \mathcal{D}(0,R)$. Le disque $\mathcal{D}(0,R)$ étant ouvert, donc $\exists r \in]0,R[$ tel que $z \in \mathcal{D}(0,r)$. Soit $h \in \mathbb{C}^*$ tel que $z + h \in \mathcal{D}(0,r)$. On a

$$f(z+h) - f(z) = \sum_{n=0}^{+\infty} a_n \left((z+h)^n - z^n \right) = h \sum_{n=1}^{+\infty} a_n \sum_{k=0}^{n-1} (z+h)^k z^{n-1-k}$$

donc

$$\frac{f(z+h) - f(z)}{h} = \sum_{n=1}^{+\infty} a_n \sum_{k=0}^{n-1} (z+h)^k z^{n-1-k}$$

Donc

$$\left| a_n \sum_{k=0}^{n-1} (z+h)^k z^{n-1-k} \right| \le |a_n| \sum_{k=0}^{n-1} |z+h|^k |z|^{n-1-k} \le n|a_n| r^{n-1}$$

Les deux séries entières $\sum_{n\geqslant 0}a_nz^n$ et $\sum_{n\geqslant 1}a_nz^{n-1}$ ont le même rayon de convergence R donc la série $\sum_{n\geqslant 1}|a_n|r^{n-1}$

converge, d'où la série $\sum_{n\geqslant 1} a_n \sum_{k=0}^{n-1} (z+h)^k z^{n-1-k}$ converge normalement sur $\mathcal{D}(0,r)$.

D'après le théorème d'interversion limite-somme on obtient

$$\lim_{h \to 0} \sum_{n=1}^{+\infty} a_n \sum_{k=0}^{n-1} (z+h)^k z^{n-1-k} = \sum_{n=1}^{+\infty} \lim_{h \to 0} \left(a_n \sum_{k=0}^{n-1} (z+h)^k z^{n-1-k} \right)$$

$$= \sum_{n=1}^{+\infty} \left(a_n \sum_{k=0}^{n-1} \lim_{h \to 0} (z+h)^k z^{n-1-k} \right)$$

$$= \sum_{n=1}^{+\infty} n a_n z^{n-1}$$

d'où f est holomorphe sur $\mathcal{D}(0,R)$ et on a $\forall z \in \mathcal{D}(0,R), f'(z) = \sum_{n=1}^{+\infty} n a_n z^{n-1}$.

(b) $z \mapsto \exp(z)$ est développable en série entière de rayon de convergence $R = +\infty$, donc elle est holomorphe sur $\mathbb C$ et pour tout $z \in \mathbb C$

$$\exp(z)' = \sum_{n=1}^{+\infty} \frac{1}{(n-1)!} z^{n-1} = \exp(z)$$

2. $\forall z_0 \in \mathbb{C}$, et pour tout réel $t \in \mathbb{R}^*$

$$\lim_{t \to 0} \frac{f(z_0 + t) - f(z_0)}{t} = 1 \quad \text{ et } \quad \lim_{t \to 0} \frac{f(z_0 + it) - f(z_0)}{it} = -1$$

Donc la fonction $z \longmapsto \overline{z}$ n'est pas \mathbb{C} -dérivable sur \mathbb{C}

3.

$$(i) \Rightarrow (ii)$$
 Soit $(h,k) \in \mathbb{R}^2$ tel que $(x_0 + h, y_0 + k) \in \tilde{\Omega}$. On a
$$\tilde{f}(x_0 + h, y_0 + k) = f(x_0 + h + i(y_0 + k))$$

$$= f(z_0 + (h + ik)) = f(z_0) + (h + ik)f'(z_0) + o(|h + ik|)$$

$$= \tilde{f}(x_0, y_0) + hf'(z_0) + ikf'(z_0) + o(||(h, k)||_2)$$

L'application $(h,k) \mapsto hf'(z_0) + if'(z_0)k$ est linéaire donc \tilde{f} est différentiable en (x,y) et on a

$$\frac{\partial \tilde{f}}{\partial x}(x_0, y_0) = f'(z_0) \text{ et } \frac{\partial \tilde{f}}{\partial y}(x_0, y_0) = if'(z_0).$$

Donc $\frac{\partial \tilde{f}}{\partial x}$ et $\frac{\partial \tilde{f}}{\partial y}$ existent et sont continues sur $\tilde{\Omega}$. En particulier

$$\frac{\partial \tilde{f}}{\partial x}(x_0, y_0) + i \frac{\partial \tilde{f}}{\partial y}(x_0, y_0) = 0$$

 $(ii) \Rightarrow (iii)$ \tilde{f} est de \mathcal{C}^1 sur $\tilde{\Omega}$ et $\tilde{f} = P + iQ$ donc P et Q sont de \mathcal{C}^1 sur $\tilde{\Omega}$ et on a

$$\frac{\partial \tilde{f}}{\partial x} = \frac{\partial P}{\partial x} + i \frac{\partial Q}{\partial x} \quad \text{et} \quad \frac{\partial \tilde{f}}{\partial y} = \frac{\partial P}{\partial y} + i \frac{\partial Q}{\partial y}$$

On a

$$\begin{array}{rcl} \frac{\partial \tilde{f}}{\partial x} + i \frac{\partial \tilde{f}}{\partial y} & = & \frac{\partial P}{\partial x} + i \frac{\partial Q}{\partial x} + i \frac{\partial P}{\partial y} - \frac{\partial Q}{\partial y} \\ & = & \frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} + i \left(\frac{\partial P}{\partial y} + \frac{\partial Q}{\partial x} \right) \end{array}$$

Avec $\frac{\partial \tilde{f}}{\partial x} + i \frac{\partial \tilde{f}}{\partial y} = 0$ on obtient

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial u}$$
 et $\frac{\partial P}{\partial u} = -\frac{\partial Q}{\partial x}$.

 $(iii) \Rightarrow (i) \quad \text{Soit } z_0 \in \Omega \text{ et } h+ik \in \mathbb{C} \text{ tel que } z_0+h+ik \in \Omega \text{ . On a}$

$$f(z_{0} + (h + ik)) = P(x_{0} + h, y_{0} + k) + iQ(x_{0} + h, y_{0} + k)$$

$$= P(x_{0}, y_{0}) + iQ(x_{0}, y_{0}) + h\frac{\partial P}{\partial x}(x_{0}, y_{0}) + k\frac{\partial P}{\partial y}(x_{0}, y_{0}) + i\left(h\frac{\partial Q}{\partial x}(x_{0}, y_{0}) + k\frac{\partial Q}{\partial y}(x_{0}, y_{0})\right) + o(\|(h, k)\|_{2})$$

$$= f(z_{0}) + h\frac{\partial P}{\partial x}(x_{0}, y_{0}) - k\frac{\partial Q}{\partial x}(x_{0}, y_{0}) + i\left(h\frac{\partial Q}{\partial x}(x_{0}, y_{0}) + k\frac{\partial P}{\partial x}(x_{0}, y_{0})\right) + o(\|(h, k)\|_{2})$$

$$= f(z_{0}) + (h + ik)\left(\frac{\partial P}{\partial x}(x_{0}, y_{0}) + i\frac{\partial Q}{\partial x}(x_{0}, y_{0})\right) + o(\|h + ik\|)$$

On déduit que f est \mathbb{C} -dérivable en z_0 et on a $f'(z_0) = \frac{\partial P}{\partial x}(x_0, y_0) + i\frac{\partial Q}{\partial x}(x_0, y_0)$. De cette égalité montre que

$$f' = \frac{\partial P}{\partial x} \circ \psi^{-1} + i \frac{\partial Q}{\partial x} \circ \psi^{-1}$$

est donc continue sur Ω

4. Les deux applications $P:(x,y) \mapsto \Re e(\exp(z)) = e^x \cos(y)$ et $Q:(x,y) \mapsto \Im m(\exp(z)) = e^x \sin(y)$ sont de \mathcal{C}^1 sur \mathbb{R}^2 et vérifient

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$$
 et $\frac{\partial P}{\partial y} = -\frac{\partial Q}{\partial x}$.

Donc $z \longmapsto \exp(z)$ est holomorphe sur \mathbb{C}

5. Zéta de Riemann:

On pose $\Omega = \{z \in \mathbb{C} , \Re e(z) > 1\}$ et pour $z \in \Omega$ on pose

$$\zeta(z) = \sum_{n=1}^{+\infty} \frac{1}{n^z}$$

(a) Soit $z \in \Omega$, alors $\Re e(z) > 1$ et pour tout $n \in \mathbb{N}^*$, on a $\left| \frac{1}{n^z} \right| = \frac{1}{n^{\Re e(z)}}$. Par comparaison avec la série de Riemann, la série $\sum_{n \geq 1} \frac{1}{n^z}$ est absolument convergente, donc elle converge. Ainsi ζ est définie sur Ω

(b) Soit $x \in]1, +\infty[$. On pose $f_n : y \longmapsto \frac{1}{n^{x+iy}}$

• Pour tout $n \in \mathbb{N}^*$, l'application f_n est de \mathcal{C}^1 sur \mathbb{R} et

$$\forall y \in \mathbb{R}, \quad f'_n(y) = \frac{-i \ln n}{n^{x+iy}}$$

• La série $\sum_{n\geqslant 1}f_n$ converge absolument sur \mathbb{R} , donc elle est simplement

• Soit $[a,b] \subset \mathbb{R}$, alors pour tout $y \in [a,b]$, on a:

$$|f'_n(y)| = \frac{\ln n}{n^x}$$
, donc $||f'_n||_{\infty} = \frac{\ln n}{n^x}$

et la série de Bertrand $\sum_{n\geq 1} \frac{\ln n}{n^x}$ converge car x>1

On conclut par le théorème de dérivation terme à terme que ζ_x est de \mathcal{C}^1 sur \mathbb{R} et

$$\forall y \in \mathbb{R}, \quad \zeta'_x(y) = -i \sum_{n=1}^{+\infty} \frac{\ln n}{n^{x+iy}}$$

(c) Soit $y \in \mathbb{R}$. On pose $g_n : x \longmapsto \frac{1}{n^{x+iy}}$

• Pour tout $n \in \mathbb{N}^*$, l'application g_n est de \mathcal{C}^1 sur $]1, +\infty[$ et

$$\forall x \in]1, +\infty[, \quad g'_n(x) = \frac{-\ln n}{n^{x+iy}}$$

• La série $\sum_{n\geq 1} g_n$ converge absolument sur $]1,+\infty[$, donc elle est simplement

• Soit $[a, b] \subset]1, +\infty[$, alors pour tout $x \in [a, b]$, on a:

$$|g'_n(x)| = \frac{\ln n}{n^x} \leqslant \frac{\ln n}{n^a}$$

et la série de Bertrand $\sum_{n\geqslant 1}\frac{\ln n}{n^a}$ converge car a>1, donc $\sum_{n\geqslant 1}g'_n$ converge normalement sur [a,b], donc elle converge uniformement

On conclut par le théorème de dérivation terme à terme que ζ_y est de \mathcal{C}^1 sur $]1, +\infty[$ et

$$\forall x \in]1, +\infty[, \quad \zeta_y'(x) = -\sum_{n=1}^{+\infty} \frac{\ln n}{n^{x+iy}}$$

(d) $\tilde{\zeta}$ est de \mathcal{C}^1 sur $\tilde{\Omega}$, car elle admet des dérivées partielles continues, avec

$$\forall (x,y) \in]1, +\infty[\times \mathbb{R}, \quad \begin{cases} \frac{\partial \tilde{\zeta}}{\partial x}(x,y) &= \zeta_y'(x) \\ \frac{\partial \zeta}{\partial y}(x,y) &= \zeta_x'(y) \end{cases} \text{ et } \frac{\partial \tilde{\zeta}}{\partial y} = i\frac{\partial \tilde{\zeta}}{\partial x}$$

Donc ζ est holomorphe sur Ω

6. Fonction Gamma d'Euler:

On pose $\Omega = \{z \in \mathbb{C} , \Re e(z) > 0\}$ et pour $z \in \Omega$ on pose

$$\Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} \, \mathrm{d}t$$

- (a) Soit $z \in \Omega$, alors $\Re e(z) > 0$. L'application $t \longmapsto t^{z-1}e^{-t}$ est continue sur $]0, +\infty[$

 - En 0: On a $\left|t^{z-1}e^{-t}\right| \sim \frac{1}{t^{1-\Re e(z)}}$ et $1-\Re e(z) < 1$, donc $t \longmapsto t^{z-1}e^{-t}$ est intégrable en 0 En $+\infty$: On a $\left|t^{2}t^{z-1}e^{-t}\right| = t^{\Re e(z)+1}e^{-t} \xrightarrow[t \to +\infty]{} 0$. Par comparaison avec l'intégrale de Riemann, la fonction considérée est intégrable en $+\infty$

Donc Γ est bien définie sur Γ

- (b) Soit $x \in]0, +\infty[$. On pose $f: (y,t) \in \mathbb{R} \times]0, +\infty[\longmapsto t^{x-1+iy}e^{-t}]$
 - Pour tout $y \in \mathbb{R}$, l'application $t \longmapsto t^{x-1+iy}e^{-t}$ est continue et intégrable sur $]0, +\infty[$
 - ullet L'application f admet une dérivée partielle par rapport à y et

$$\forall (y,t) \in \mathbb{R} \times]0, +\infty[, \quad \frac{\partial f}{\partial y}(y,t) = it^{x-1+iy} \ln(t)e^{-t}$$

En outre $(y,t) \longmapsto \frac{\partial f}{\partial y}(y,t)$ est continue par rapport à y et continue par morceaux rapport à t

• Soit $[a,b] \subset \mathbb{R}$, alors pour tout $y \in [a,b]$ et $t \in]0,+\infty[$, on a:

$$\left| \frac{\partial f}{\partial y}(y,t) \right| = \left| \ln(t) \right| t^{x-1} e^{-t} = \varphi(t)$$

L'application φ est continue

- En 0: On a $\varphi(t) = \circ \left(\frac{1}{t^a}\right)$ avec 0 < a < 1 x, donc $t \longmapsto \varphi(t)$ est intégrable en 0
- En $+\infty$: On a $\left|t^2\ln(t)\varphi(t)\right|=t^{x+1}\ln(t)e^{-t}\xrightarrow[t\to+\infty]{}$ 0. Par comparaison avec l'intégrale de Riemann, la fonction φ est intégrable en $+\infty$

On conclut par le théorème de dérivation sous-signe intégrale Γ_x est de \mathcal{C}^1 sur \mathbb{R} et

$$\forall y \in \mathbb{R}, \quad \Gamma'_x(y) = i \int_0^{+\infty} t^{x-1+iy} \ln(t) e^{-t} dt$$

- (c) Soit $y \in \mathbb{R}$. On pose $g:(x,t) \in]0,+\infty[^2 \longmapsto t^{x-1+iy}e^{-t}$
 - Pour tout $x \in]0, +\infty[$, l'application $t \longmapsto t^{x-1+iy}e^{-t}$ est continue et intégrable sur $]0, +\infty[$
 - ullet L'application g admet une dérivée partielle par rapport à x et

$$\forall (x,t) \in \left]0,+\infty\right[^2, \quad \frac{\partial g}{\partial x}(x,t) = t^{x-1+iy}\ln(t)e^{-t}$$

En outre $(x,t) \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue par rapport à x et continue par morceaux rapport à t

• Soit $[a, b] \subset]0, +\infty[$, alors pour tout $x \in [a, b]$ et $t] 0, +\infty[$, on a:

$$\left| \frac{\partial g}{\partial x}(x,t) \right| = \left| \ln(t) \right| t^{x-1} e^{-t} \leqslant \Phi(t)$$

Avec
$$\Phi(t) = \begin{cases} |\ln(t)| t^{a-1} e^{-t} & \text{ si } t \leq 1 \\ |\ln(t)| t^{b-1} e^{-t} & \text{ si } t \geqslant 1 \end{cases}$$
 est continue

- En 0: On a
$$\Phi(t) = o\left(\frac{1}{t^{\alpha}}\right)$$
 avec $0 < \alpha < 1 - a$, donc $t \longmapsto \Phi(t)$ est intégrable en 0

- **En** +
$$\infty$$
: On a $|t^2 \ln(t) \dot{\Phi}(t)| = t^{b+1} \ln(t) e^{-t} \xrightarrow[t \to +\infty]{} 0$. Par comparaison avec l'intégrale de Riemann, la fonction Φ est intégrable en + ∞

On conclut par le théorème de dérivation sous-signe intégrale Γ_y est de \mathcal{C}^1 sur $]0, +\infty[$ et

$$\forall x \in]0, +\infty[, \quad \Gamma_y'(x) = \int_0^{+\infty} t^{x-1+iy} \ln(t) e^{-t} dt$$

(d) $\tilde{\Gamma}$ est de \mathcal{C}^1 sur $\tilde{\Omega}$, car elle admet des dérivées partielles continues, avec

$$\forall (x,y) \in \left]1,+\infty\right[^2, \quad \begin{cases} \frac{\partial \tilde{\Gamma}}{\partial x}(x,y) &= \Gamma_y'(x) \\ \frac{\partial \Gamma}{\partial y}(x,y) &= \Gamma_x'(y) \end{cases} \text{ et } \frac{\partial \tilde{\Gamma}}{\partial y} = i\frac{\partial \tilde{\Gamma}}{\partial x}$$

Donc Γ est holomorphe sur Ω

Partie III: Fonctions analytiques

1. Exemples

(a) Soit P un polynôme de $\mathbb{C}[X]$. Par la formule de Taylor

$$\forall z_0, z \in \mathbb{C}^2, \quad P(z) = \sum_{n=0}^{+\infty} \frac{P^n(z_0)}{n!} (z - z_0)^n$$

La série $\sum_{n\geqslant 0} \frac{P^n(z_0)}{n!} z^n$ est de rayon infini car son terme général s'annule à partir d'un certain rang, donc P est analytique sur $\mathbb C$

(b) On sait que $\mathcal{R}c\left(\sum_{n\geqslant 0}\frac{z^n}{n!}\right)=+\infty$. Alors pour $z_0\in\mathbb{C},$ on a pour tout $z\in\mathbb{C},$

$$\exp(z) = \exp(z_0) \exp(z - z_0) = \sum_{n=0}^{+\infty} \frac{\exp(z_0)}{n!} (z - z_0)^n$$

Ce qui montre que exp est analytique sur $\mathbb C$

- 2. Soit f une fonction analytique sur Ω .
 - (a) Soit $z_0 \in \Omega$. Par hypothèse l'application $F: h \longmapsto f(z_0 + h)$ est développable en série entière sur un voisinage V de 0 dans \mathbb{C} , soit

$$F(h) = \sum_{n=0}^{+\infty} a_n h^n$$

pour $h \in D(0,r)$. Donc F est indéfiniment dérivable et vérifie

$$F^{(n)}(0) = n!a_n$$
:

Par translation on en déduit que f est indéfiniment \mathbb{C} -dérivable sur un voisinage de z_0 et que

$$f^{(n)}(z_0) = F^{(n)}(0) = n!a_n$$

- (b) D'après la question précédente f est infiniment \mathbb{C} -dérivable sur Ω .
- (c) Les a_n sont donnés dans la question ??
- 3. Soit $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ une application définie par une série entière dont le rayon de convergence R est non nul. Soit z_0 un point de l'intérieur du disque de convergence de module r_0 et soit $r \in]0, R r_0[$. Soit $z \in D(z_0, r)$
 - (a) Soit $n \in \mathbb{N}$, on a

$$\sum_{\substack{(p,q)\in\mathbb{N}^2\\p+q=n}} \left| \frac{(p+q)!}{p!q!} a_{p+q} z_0^q (z-z_0)^p \right| \leq \sum_{\substack{(p,q)\in\mathbb{N}^2\\p+q=n}} \frac{(p+q)!}{p!q!} |a_{p+q}| r_0^q r^p$$

$$\leq |a_n| (r+r_0)^n$$

La série $\sum_{n\geqslant 0}a_nz^n$ est de rayon de convergence R et $r+r_0< R$, donc la série $\sum_{n\geqslant 0}a_n(r+r_0)^n$ est absolument convergente. Par le critère suffisant de sommabilité, la famille $\left(\frac{(p+q)!}{p!q!}a_{p+q}z_0^q(z-z_0)^p\right)_{(p,q)\in\mathbb{N}^2}$ est donc sommable

(b) Pour $p \in \mathbb{N}$, on a:

$$f^{(p)}(z_0) = \sum_{q=0}^{+\infty} \frac{(p+q)!}{q!} a_{p+q} z_0^q$$

$$f(z) = \sum_{n=0}^{+\infty} a_n z^n = \sum_{n=0}^{+\infty} a_n (z - z_0 + z_0)^n$$

$$= \sum_{n=0}^{+\infty} a_n \sum_{p+q=n} \frac{(p+q)!}{p!q!} z_0^p (z - z_0)^q$$

$$= \sum_{n=0}^{+\infty} \sum_{p+q=n} \frac{(p+q)!}{p!q!} a_{p+q} z_0^p (z - z_0)^q$$

La famille $\left(\frac{(p+q)!}{p!q!}a_{p+q}z_0^q(z-z_0)^p\right)_{(p,q)\in\mathbb{N}^2}$ est sommable, alors par le théorème de Fubini

$$f(z) = \sum_{n=0}^{+\infty} \sum_{p+q=n} \frac{(p+q)!}{p!q!} a_{p+q} z_0^p (z-z_0)^q$$

$$= \sum_{p=0}^{+\infty} \frac{(z-z_0)^p}{p!} \sum_{q=0}^{+\infty} \frac{(p+q)!}{q!} a_{p+q} z_0^q$$

$$= \sum_{p=0}^{+\infty} \frac{(z-z_0)^p}{p!} f^{(p)}(z_0)$$

$$\forall z \in \mathcal{D}(z_0, R - |z_0|), \quad f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

(c) Pour tout $z_0 \in \mathcal{D}(0, R)$, le rayon de convergence de la série $\sum_{p \geqslant 0} \frac{f^{(p)}(z_0)}{p!} z^p$ est supérieur ou égal à $R - |z_0|$ et $\forall z \in \mathcal{D}(z_0, R - |z_0|)$, $f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$. Donc f est analytique sur D(0, R)

Partie IV: Analyticité des fonctions holomorphes

1. Soit
$$\varphi_n:]0, R[\longrightarrow \mathbb{C}$$
 définie par: $\varphi_n(r) = \frac{1}{2\pi r^n} \int_0^{2\pi} f\left(z_0 + re^{i\theta}\right) e^{-in\theta} d\theta$

- (a) Soit $h_n: (r, \theta) \in]0, R[\times [0, 2\pi] \longmapsto f(z_0 + re^{i\theta}) e^{-in\theta}$
 - Pour tout $r \in]0, R[$, l'application $\theta \longmapsto f(z_0 + re^{i\theta}) e^{-in\theta}$ est continue sur le segment $[0, 2\pi]$, donc elle est intégrable
 - h_n admet une dérivée selon r et

$$\frac{\partial h_n}{\partial r}(r,\theta) = f'\left(z_0 + re^{i\theta}\right)e^{i(1-n)\theta}$$

Qui est continue sur $]0, R[\times [0, 2\pi]]$

• Soit $[a,b] \subset]0,R[$, alors pour tout $r \in [a,b]$ et $\theta \in [0,2\pi]$, on a:

$$\left| \frac{\partial h_n}{\partial r}(r,\theta) \right| \leqslant M$$

Avec $M\max_{|z| \le b} |f'(z)|$. En outre l'application constante $\theta \longmapsto M$ est intégrable sur le segment $[0, 2\pi]$

Donc par le théorème de dérivation sous signe intégrale $r \mapsto \int_0^{2\pi} f(z_0 + re^{i\theta}) e^{-in\theta} d\theta$ est de \mathcal{C}^1 sur]0, R[et, par suite, φ_n est de \mathcal{C}^1 sur]0, R[comme produit de deux fonctions de \mathcal{C}^1 et

$$\varphi'_{n}(r) = \frac{-n}{2\pi r^{n+1}} \int_{0}^{2\pi} f(z_{0} + re^{i\theta}) e^{-in\theta} d\theta + \frac{1}{2\pi r^{n}} \int_{0}^{2\pi} f'(z_{0} + re^{i\theta}) e^{i(1-n)\theta} d\theta$$

(b) Par une intégration par parties effectuée à la deuxième intégrale du second membre donne

$$\int_{0}^{2\pi} f'(z_{0} + re^{i\theta}) e^{i(1-n)\theta} d\theta = \frac{-i}{2\pi r^{n+1}} \int_{0}^{2\pi} \left[f(z_{0} + re^{i\theta}) \right]' e^{-in\theta} d\theta
= \left[f(z_{0} + re^{i\theta}) e^{-in\theta} \right]_{0}^{2\pi} + \frac{i}{2\pi r^{n+1}} \int_{0}^{2\pi} f(z_{0} + re^{i\theta}) (-in)e^{-in\theta} d\theta
= \frac{n}{2\pi r^{n+1}} \int_{0}^{2\pi} f(z_{0} + re^{i\theta}) e^{-in\theta} d\theta$$

Ce qui fournit $\varphi'_n(r) = 0$, puis φ_n est constante sur]0, R[.

2. Quitte à considérer $z \mapsto f(z_0 + z)$, on suppose que $z_0 = 0$. Soit z un point du disque D de centre 0 et de rayon R tel que |z| < r < R. Considérons la fonction $g : [0;1] \longrightarrow \mathbb{C}$ définie par :

$$g(\lambda) = \int_0^{2\pi} \frac{f[(1-\lambda)z + \lambda re^{i\theta}] - f(z)}{re^{i\theta} - z} re^{i\theta} d\theta$$

(a) La fonction $(\lambda,t) \longmapsto \frac{f[(1-\lambda)z + \lambda re^{it}] - f(z)}{re^{it} - z}re^{it}$ étant continue et dérivable par rapport à λ (z est fixé et le dénominateur ne s'annule pas) donc g est continue, dérivable et sa dérivée est donnée par :

$$g'(\lambda) = \int_0^{2\pi} f'[(1-\lambda)z + \lambda re^{it}]re^{it} dt$$

mais

$$\int_0^{2\pi} f'[(1-\lambda)z + \lambda re^{it}]re^{it} dt = \left[\frac{f[(1-\lambda)z + \lambda re^{it}]}{i\lambda}\right]_0^{2\pi} = 0$$

Donc g est constante sur [0,1] et comme g(0)=0, la fonction g est nulle sur [0,1]

www.elamdaoui.com

FONCTIONS HOLOMORPHES

(b) Comme g(1) = 0, alors

$$\int_{0}^{2\pi} \frac{f\left(re^{it}\right) - f(z)}{re^{it} - z} re^{it} \, \mathrm{d}t = 0$$

ou encore

$$f(z) \int_0^{2\pi} \frac{re^{it}}{re^{it} - z} dt = \int_0^{2\pi} \frac{re^{it}}{re^{it} - z} f\left(re^{it}\right) dt$$

(c) pour r > |z|, on a :

$$\frac{re^{it}}{re^{it} - z} = 1 + \sum_{n=1}^{+\infty} \left(\frac{z}{re^{it}}\right)^n$$

et cette série converge normalement pour tout $t \in \mathbb{R}$. On peut donc l'intégrer terme à terme, ce qui donne

$$\int_0^{2\pi} \frac{re^{it}}{re^{it} - z} \, \mathrm{d}t = 2\pi$$

Enfin, la fonction $t \mapsto f\left(re^{it}\right)$ est bornée, donc on peut intégrer terme à terme la série

$$\frac{re^{it}}{re^{it} - z} f\left(re^{it}\right) = f\left(re^{it}\right) + \sum_{n=1}^{+\infty} \left(\frac{z}{re^{it}}\right)^n f\left(re^{it}\right)$$

On obtient ainsi l'égalité :

$$2\pi f(z) = \int_0^{2\pi} \frac{re^{it}}{re^{it} - z} f\left(re^{it}\right) dt = \sum_{n=0}^{+\infty} z^n \int_0^{2\pi} \frac{f(re^{it})}{r^n e^{int}} dt$$

(d) L'égalité précédente donne

$$f(z) = \sum_{n=0}^{+\infty} z^n \frac{1}{2\pi} \int_0^{2\pi} \frac{f(re^{it})}{r^n e^{int}} dt$$

On sait d'après une question précédente que $a_n = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(re^{it})}{r^n e^{int}} dt$ est indépendante de r. On déduit donc que f est analytique sur Ω

Partie V: Applications

1. Théorème de Liouville:

Soit f est une fonction holomorphe dans \mathbb{C} , on écrit $f(z) = \sum_{n=0}^{\infty} a_n z^n$

(a) Soit $r \in \mathbb{R}_+^*$, on a

$$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f\left(re^{i\theta}\right) e^{-in\theta} d\theta$$

Donc

$$|a_n| \leqslant \frac{1}{2\pi r^n} \int_0^{2\pi} |f\left(re^{i\theta}\right)| d\theta \leqslant \frac{M(r)}{r^n}$$
 où $M(r) = \sup_{|z|=r} |f(z)|$

(b) Pour $n \ge 1$, on a $|a_n| \le \frac{M}{r^n}$ où M un majorant de f. En faisant tendre r vers $+\infty$, on obtient $a_n = 0$, ce qui montre que $f = a_0$ est constante.

2. Théorème de D'Alembert-Gauss:

Soit P un polynôme de $\mathbb{C}[X]$ de degré supérieur ou égal à 1. On suppose que P ne s'annule pas sur \mathbb{C}

(a)
$$\frac{1}{P}$$
 est \mathbb{C} -dérivable sur \mathbb{C} et $\left(\frac{1}{P}\right)' = -\frac{P'}{P^2}$ qui est continue sur \mathbb{C} , donc $\frac{1}{P}$ est holomorphe sur \mathbb{C}

- (b) $|P(z)| \xrightarrow{|z| \to +\infty} +\infty$, donc $\left|\frac{1}{P(z)}\right| \xrightarrow{|z| \to +\infty} 0$. Par définition, il existe R > 0 tel que $\forall z \in \mathbb{C}$ tel que |z| > R on a $\left|\frac{1}{P(z)}\right| \leqslant 1$. La fonction $\frac{1}{P}$ est continue sur le compact $\overline{D}(0,R)$, donc elle est bornée et soit m un majorant de $\left|\frac{1}{P}\right|$ sur le compact $\overline{D}(0,R)$. En fin soit $M = \max(1,m)$. On a bien $\left|\frac{1}{P}\right| \leqslant M$, donc elle est bornée
- (c) Par le théorème de Liouville $\frac{1}{P}$ est constante, ce qui est absurde