

Advanced SOC Design

Lab Plan

Jiin Lai

Lab List

Mandatory

- 1. fsic-sim FSIC Simulation Environment
 - 1. **fsic-sim** (individual)
 - 2. fsic-plus FSIC Improvement (team)
- 2. catapult-hls Catapult HLS tool setup / HLS
 - catapult-fir (individual)
 - catapult-edgedetect (team)
- snp-flow Synopsys Front end and Back-end (team)
- 4. fsic-fpga Caravel-FSIC + FPGA-FSIC + DMA (team)
- 5. hls-ap HLS Application Accelerator Kernel (team)
- fsic-final FSIC Final Project FPGA & ASIC flow (team)

Optional

```
snp-lp – lower power design
snp-dft – design for testing
```


Sign-up IC Lab Account

Apply for Synopsys University Program
Fill-in the form below
https://docs.google.com/forms/d/e/1FAIpQLSeRX3jhYx
EQuej5rRBainVW56eZKPLk2Mo1KrrtODhPkrVdDA/viewform?usp=sharing

FPGA - KV260

- KV260 Embedded System
 - Vivado HLS C-sim, Co-sim, IP-generation
 - Vivado Design Suite IP integration, block-design, generate bit-stream
 - Download to PYNQ and run Jupyter Notebook
- Note: KV260 is twice of PYNQ-Z2 FPGA capacity

Build your Lab work on KV260

Tools

- Vitis/Vivado/Vitis HLS Software 2022.1
- Simens/Mentor Catapult/QuestaSim Access from ICLab
- Synopsys Access from ICLab
 - Design Compiler
 - ICC2
 - IC-Validator
 - Star-RC
 - Primetime

Online FPGA

- FPGA design software (Xilinx Vitis HLS) installed on student's computer
- Use Jupyter Notebook to access remote FPGA
- Locally compiled, simulated, and upload FPGA binary to remote FPGA
- Result of experiments shown in Jupyter Notebook
- Lab facilities
 - Cluster of Pynq-Z2/KV260 boards
 - Automate the FPGA board management (Demo)

Online FPGA Access

User Manual: (PYNQ-Z2/KV260)

• https://drive.google.com/file/d/1Vx0e3m9EviOuqPVhowYVbgVunZxD828i/view

Advanced SOC Lab – Application Accelerator System

- Design an application accelerator system using HLS (Catapult) including
 - Kernel Implemented in Caravel User Project Area (Catapult HLS)
 - IOP (Memory Subsystem) Implemented in Xilinx KV260 (Vitis-HLS)
 - Firmware Run on Caravel RISC-V
 - Application & Driver runs on KV260/PS ARM
- FPGA Validation
- Synopsys Signoff Flow

Selected final project for Chip tapeout

FSIC – Full-Stack IC System

Lab-fsic-sim – FSIC Simulation Environment

Target Goal

- Build up FSIC simulation environment
- Learn to integrate user project with FSIC

Implementation

- Integrate FIR (from SOC design course) into FSIC
- Develop Testbench
- Verify FIR in FSIC simulation environment

- Github: https://github.com/bol-edu/fsic fpga/tree/main
- Reference: https://hackmd.io/@TonyHo/rk6Siw0k6

User Project Wrapper

FSIC module testbench in fsic_tony

Lab – fsic-plus – Improve FSIC Design

- Each team choose a different topic
 - 6 topics: CC, AA, AS, IS, LA, testbench
- Improvement area
 - Better coding style
 - Area reduction
 - Cycle transaction latency reduction
 - Integration and verification using FIR
- Report
 - Design document data/control path
 - Compare the resource usage
 - cycle transaction latency reduction
 - Show code before and after
- Code review in Class

Lab - catapult-hls

Target Goal

- Learn Catapult HLS Tool
- Learn to design an accelerator with HLS & integrate with FSIC

Lab - catapult-fir (individual)

• Build up tool, and try out Catapult flow - there is no design effort

Lab - catapult-edgedetect (team)

- Based on 01_edgedetect/hls_c code, add the following
 - 1. Unroll to allow compute 4 pixels in a cycle
 - 2. Remove angle compute
 - 3. Edge magnitude changes from square root to sum of absolute difference. And compute its accuracy
 - 4. Perform crc32 generation for output stream, and crc32 checking for input stream.
 - 5. Output stream optionally selects bypass input stream or edge magnitude.
- Integrate with FSIC
- Integrate with Caravel SOC

Submission

Synopsys Training Course

- 1. 中文教學影片(Jumpstart Training by TW AEs)
 - 平台: Synopsys Taiwan Webinar
 - 網址: https://webinars.synopsys.com.tw/snpsdigitaldesign
- 2. 英文教學影片(完整教學by新思總部的客戶訓練團隊)
 - 平台: Synopsys Learning Center
 - 網址:https://training.synopsys.com/learn

Synopsys Training Course

No	Video Title	Duratio n	Video Link
1	Design Compiler NXT - RTL Synthesis - Jumpstart	130 mine	https://training.synopsys.com/learn/course/internal/view/elearning/509/design-compiler-nxt-rtl-synthesis-jumpstart
2	Design Compiler NXT - RTL Synthesis - Foundation	I III nre	https://training.synopsys.com/learn/course/internal/view/elearning/507/design-compiler-nxt-rtl-synthesis
3	IC Compiler II - Block Level Implementation - Jumpstart		https://training.synopsys.com/learn/course/internal/view/elearning/519/ic-compiler-ii-block-level-implementation-jumpstart
4	IC Compiler II - Block Level Implementation - Foundation	1 / 1 1115 1	https://training.synopsys.com/learn/course/557/ic-compiler-ii-block-level-implementation
6	StarRC Foundation		https://training.synopsys.com/learn/course/internal/view/elearning/568/starrc-foundation
8	PrimeTime: Foundation		https://training.synopsys.com/learn/course/internal/view/elearning/1194/primetime
9	PrimeTime: Jumpstart (Chinese)	1 hr	https://training.synopsys.com/learn/course/1287/play/6756/primet ime-jumpstart-chinese
10	PrimeTime: Foundation (Chinese)	1 1116	https://training.synopsys.com/learn/course/internal/view/elearning/1948/primetime-foundation-chinese
11	IC Validator: DRC Runset	l bnr i	https://training.synopsys.com/learn/course/1682/ic-validator- drc-runset

Synopsys Flow Study

- Reference
 - Online courses
 - Tool documents
 - Lab scripts & flow
- Key topics Each group assigned one of the following topics
 - 1. Design-compiler
 - 2. ICC2 Floorplan
 - 3. ICC2 Placement & Clock Tree Synthesis
 - 4. ICC2 Routing & Finishing
 - 5. ICC2 Multi-Voltage
 - 6. StartRC
 - 7. ICValidator
 - 8. PrimeTime

Lab - snp-flow : Synopsys IC flow

Target Goal: Learn IC frond-end and back-end design flow, including

- lab-synthesis
- lab1_planning
- lab2_pnr
- lab_startRC
- lab_pt
- lab_finishing
- lab_icv_drc
- lab_icv_lvs
- Lab_formal
- Implementation
 - Use FSIC-FIR to go through the flow
- Submission

Lab fsic-fpga — Caravel+FSIC FPGA System

- Target goal
 - Implement complete Caravel-FSIC, FPGA-FSIC and HLS-DMA
 - Use for Caravel Chip pre-tapeout validation
- Implementation
 - Replicate and study the Github implementation
 - Caravel-FSIC FPGA Simulation
 - Caravel-FSIC FPGA Validation
 - Integrate FIR design into user project
 - Add User-DMA for FIR in FPGA
 - System validation with Python

Caravel-FSIC + FPGA-FSIC

Caravel-FSIC FPGA Simulation Block Design

Lab hls-ap – HLS Application Accelerator

Target Goal

Develop an application accelerator and its DMA

Implementation

- Develop an application accelerator with axilite + axis interface using Catapult HLS
- Verify AP in FSIC-SIM environment
- Integrate AP + Caravel SOC and verify in simulation

Reference: Provide list of references

/home/raid7_4/raid1_1/linux/mentor/Catapult/2023.2/Mgc_home/shared/examples

Lab fsic-final — FSIC Final Project

Implementation

- Integrate AP into Caravel-FSIC FPGA (as in lab fsic-fpga)
- FPGA validation (lab fsic-fpga)
- Go through Synopsys IC flow (lab snps-flow)

Lab snps-dft – Design for Test (Optional)

- Refer to Design for test tutorial lab
- Implementation
 - Use FSIC+FIR design
 - DFT synthesis with Design Compiler
 - ATPG generation
- Detail pending on Synopsys AE

Lab snps-lp — Low Power Design (optional)

- Refer to Ipmm lab
- Use FSIC + FIR (lab fsic-sim) to exercise
 - Clock_gating
 - Multi_voltage
 - multi_vt
 - Power_gating (power-gate FIR module)
- Detail pending on Synopsys AE

