EE6550 MACHINE LEARNING HW#1, REPORT OF MY PROGRAM

102061210 王尊玄

1. Objective:

Implement a consistent PAC-learning algorithm A for the concept class C of all axis-aligned rectangular areas in the plane. Input is given as a random sample $S=(x_1,x_2\dots x_m)$ of size m drawn i.i.d. according to a fixed but unknown probability distribution P over the input space \mathbf{R}^2 with labels $(c(x_1),c(x_2)\dots c(x_m))$, where c is a fixed but unknown concept. Output is a hypothesis $h_S=A(S:c,H)$, approximating unknown concept c. Let R be generalization error, our goal:

$$P(R(h_S) < \varepsilon) > 1 - \delta$$

2. Method:

 \diamond Probability distribution P: We assume that the unknown probability distribution to draw sample is a bivariate normal distribution over input space ${\bf R}^2$ with its pdf,

$$\frac{1}{2\pi\sigma_{x}\sigma_{y}\sqrt{1-r_{x,y}^{2}}}e^{-\frac{\frac{\left(x-\mu_{x}^{2}\right)^{2}}{\sigma_{x}^{2}}-2r_{x,y}\frac{\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)}{\sigma_{x}\sigma_{y}}+\frac{\left(y-\mu_{y}\right)^{2}}{\sigma_{y}^{2}}}{2\left(1-r_{x,y}^{2}\right)}}$$
where μ , σ^{2} and μ , σ^{2} are mean and variance

, where μ_x , σ_x^2 and μ_y , σ_y^2 are mean and variance of x-coordinate and y-coordinate respectively and $r_{x,y}=\frac{E(x-\mu_x)E(y-\mu_y)}{\sigma_x\sigma_y}$ is the correlation coefficient of x-coordinate and y-coordinate. Parameters that can be adjusted are specified,

$$MU = [\mu_x \, \mu_y]$$

$$SIGMA = \begin{bmatrix} \sigma_x^2 & r_{xy}\sigma_x\sigma_y \\ r_{xy}\sigma_x\sigma_y & \sigma_y^2 \end{bmatrix}$$

 \Rightarrow Concept c: Unknown concept c is selected such that $P(c) \geq 2\varepsilon$, where ε is the upper bound of generalization error guarantee. As it is not realistic to compute P(c), we use $\hat{p} = \sum_{i=1}^m c(x_i)$ as an estimator of P(c). By central limit theorem, we get with a probability at least 0.9999, we have $P(c) \geq \hat{p} - \varepsilon$. Thus, if we want to make $P(c) \geq 2\varepsilon$, then we find c satisfying $\hat{p} > 3\varepsilon$.

♦ PAC-learning algorithm A:

Algorithm A will generate a hypothesis h_S that encircles all positive points (c(x) = 1), and itself is an axis-aligned rectangle in \mathbf{R}^2 . Algorithm A will search through all positive points for smallest and largest value of x-coordinate and y-coordinate respectively.

\diamond Generalization error R(h_S):

Given a labeled sample of size $m=\frac{4}{\epsilon}\ln\frac{4}{\delta}$, we can get $P(R(h_S)<\epsilon)>1-\delta$. Since directly compute $R(h_S)$ is impractical, we use $\hat{q}=\frac{1}{m}\sum_{i=1}^m \Delta_S(x_i,c(x_i))$ as an estimator of $P(\Delta_S)=R(h_S)$. By central limit theorem, we get with a probability at least 0.9999, we have

$$\hat{q} - \frac{\varepsilon}{10} \le R(h_S) \le \hat{q} + \frac{\varepsilon}{10}$$

Thus, we can assert that $R(h_S) < \varepsilon$ if $\hat{q} < \frac{9\varepsilon}{10}$.

Also, if we want to make sure that with a probability at least $1-\delta$, $R(h_S)<\epsilon$ is true, then

we run algorithm A $\frac{10}{\delta}$ times to find a unknown but fixed concept c and show that no more than 10 out of $\frac{10}{\delta}$ h_S defies R(h_S) < ϵ .

3. Result:

♦ Input:

MU	r_{xy}	$\sigma_{\rm x}$	σ_{y}
[5 15]	0.4	0.1	0.15
3	δ	С	
0.1/0.01	0.01	4.7954 14.9089	5.3170 15.3026

♦ Output:

	$\epsilon = 0.1$	$\epsilon = 0.01$
h _S	4.8071 5.2812 14.9148 15.2852	4.8019 5.2883 14.9090 15.3026
\widehat{q}	0.0338	0.0021

$$0.0338 < \frac{9}{10} \times 0.1 \rightarrow R(h_S) < \varepsilon = 0.1$$

$$0.0021 < \frac{9}{10} \times 0.01 \rightarrow R(h_S) < \varepsilon = 0.01$$

2694	# of h_S s.t. $R(h_S) > \varepsilon$
$\epsilon = 0.1$	{2, 6, 9, 4, 7, 5, 3, 5, 4, 6}
$\epsilon = 0.08$	{3, 2, 2, 1, 5, 1, 1, 0, 2, 3}

$\epsilon = 0.05$	{0, 2, 0, 1, 2, 0, 2, 0, 3, 1}
$\epsilon = 0.01$	{0, 0, 0, 1, 0, 1, 0, 0, 0, 0}

I took 10 trials over $\frac{10}{\delta}$ times algorithm A, and none of them have more than 10 h_S such that $R(h_S) > \epsilon$. Also, I find that if we set ϵ smaller, we can have higher confidence over $R(h_S) > \epsilon$, i.e. $P(R(h_S) < \epsilon) > x$, where x may be bigger than $1 - \delta$.