Introduction to Statistical Learning

Gaurav Sood

Spring 2015

- Supervised Learning
 - When getting labels (predictions) is expensive

- Supervised Learning
 - When getting labels (predictions) is expensive
 - Get labels for a small set of data

- When getting labels (predictions) is expensive
- Get labels for a small set of data
- Estimate relationship between Y and X

- When getting labels (predictions) is expensive
- Get labels for a small set of data
- Estimate relationship between Y and X
- Predict labels of unseen data

- When getting labels (predictions) is expensive
- Get labels for a small set of data
- Estimate relationship between Y and X
- Predict labels of unseen data
- Labels and cost function supervise dimension reduction

Supervised Learning

- When getting labels (predictions) is expensive
- Get labels for a small set of data
- Estimate relationship between Y and X
- Predict labels of unseen data
- Labels and cost function supervise dimension reduction

Unsupervised Learning

Supervised Learning

- When getting labels (predictions) is expensive
- Get labels for a small set of data
- Estimate relationship between Y and X
- Predict labels of unseen data
- Labels and cost function supervise dimension reduction

Unsupervised Learning

Find vectors similar to each other, maximize differences across

Supervised Learning

- When getting labels (predictions) is expensive
- Get labels for a small set of data
- Estimate relationship between Y and X
- Predict labels of unseen data
- Labels and cost function supervise dimension reduction

Unsupervised Learning

- Find vectors similar to each other, maximize differences across
- Find rows similar to each other, maximize differences across

$$-Y = f(X) + \epsilon$$

$$-Y = f(X) + \epsilon$$

- How do we estimate f(X)?

$$-Y = f(X) + \epsilon$$

- How do we estimate f(X)?
- If similar x, similar y

$$-Y = f(X) + \epsilon$$

- How do we estimate f(X)?
- If similar x, similar y
- Function: value of y same as that of the nearest neighbor

$$-Y = f(X) + \epsilon$$

- How do we estimate f(X)?
- If similar x, similar y
- Function: value of y same as that of the nearest neighbor
- Question and a concern

$$-Y = f(X) + \epsilon$$

- How do we estimate f(X)?
- If similar x, similar y
- Function: value of y same as that of the nearest neighbor
- Question and a concern
 - What do we mean by nearest?

$$-Y = f(X) + \epsilon$$

- How do we estimate f(X)?
- If similar x, similar y
- Function: value of y same as that of the nearest neighbor
- Question and a concern
 - What do we mean by nearest?
 - Wouldn't it depend on what x are observed?

$$d_e(p, q) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}$$

Euclidean distance: If p and q are two n dimensional vectors

$$d_e(p, q) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}$$

- Some issues:

$$d_{e}(p, q) = \sqrt{\sum_{i=1}^{n} (q_{i} - p_{i})^{2}}$$

- Some issues:
 - Not all features on the same scale

$$d_e(p, q) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}$$

- Some issues:
 - Not all features on the same scale
 - Features may be correlated with each other

$$d_e(p, q) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}$$

- Some issues:
 - Not all features on the same scale
 - Features may be correlated with each other
- Mahalanobis distance between two vectors: Say S is the covariance matrix

Say S is the covariance matrix
$$d_m(\vec{p}, \vec{q}) = \sqrt{(\vec{p} - \vec{q})' S^{-1}(\vec{p} - \vec{q})}$$

Euclidean distance: If p and q are two n dimensional vectors

$$d_e(p, q) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}$$

- Some issues:
 - Not all features on the same scale
 - Features may be correlated with each other
- Mahalanobis distance between two vectors: Say S is the covariance matrix $d_m(\vec{p}, \vec{d}) = \sqrt{(\vec{p} - \vec{q})'S^{-1}(\vec{p} - \vec{q})}$

- For Boolean, Jaccard distance:
$$d_i(p,q) = \frac{|p \cup q| - |p \cap q|}{|p| |q|}$$

Applications: Recommender systems, finding similar

$$-Y = f(X) + e$$

$$-Y = f(X) + e$$

- Problem formulated as a regression function

$$-Y = f(X) + e$$

- Problem formulated as a regression function

$$-Y = f(X) + e$$

- Problem formulated as a regression function -E(Y|X)

$$-Y = f(X) + e$$

- Problem formulated as a regression function
 - E(Y|X)
 - f(x) = E(Y|x = x)

- Y = f(X) + e
- Problem formulated as a regression function
 - -E(Y|X)
 - -f(x) = E(Y|x=x)
- Nearest neighbour averaging $\hat{f}(x) = E[Y|X \in N(x)]$

- -Y = f(X) + e
- Problem formulated as a regression function
 - -E(Y|X)
 - -f(x) = E(Y|x=x)
- Nearest neighbour averaging $\hat{f}(x) = E[Y|X \in N(x)]$
- Great when small p, large N

$$-\hat{f}(x) = E[Y|X \in N(x)]$$

$$-\hat{f}(x) = E[Y|X \in N(x)]$$

 Define neighborhood too tightly, nothing in there.

- $-\hat{f}(x) = E[Y|X \in N(x)]$
- Define neighborhood too tightly, nothing in there.
- If we expand it, nearest neighbors can be far away

- $-\hat{f}(x) = E[Y|X \in N(x)]$
- Define neighborhood too tightly, nothing in there.
- If we expand it, nearest neighbors can be far away
- How do we solve the problem?

Curse of Dimensionality

- $-\hat{f}(x) = E[Y|X \in N(x)]$
- Define neighborhood too tightly, nothing in there.
- If we expand it, nearest neighbors can be far away
- How do we solve the problem?
- One way: parametric and structural models $f(x) = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2 + \dots, \beta_p * X_p$

- Simple polynomial transformations

- Simple polynomial transformations
- . . .

- Interactions

- Simple polynomial transformations
- Interactions
- Step functions. E.g. transform education into k dummy variables.

- Simple polynomial transformations
- Interactions
- Step functions. E.g. transform education into k dummy variables.
- More complicated basis functions:

- Simple polynomial transformations
- Interactions
- Step functions. E.g. transform education into k dummy variables.
- More complicated basis functions:
 - Piecewise polynomial: takes differential polynomial for different regions (split by knots)

- Simple polynomial transformations
- Interactions
- Step functions. E.g. transform education into k dummy variables.
- More complicated basis functions:
 - Piecewise polynomial: takes differential polynomial for different regions (split by knots)
 - Add constraint that there are no abrupt changes across regions.

- Simple polynomial transformations
- Interactions
- Step functions. E.g. transform education into k dummy variables.
- More complicated basis functions:
 - Piecewise polynomial: takes differential polynomial for different regions (split by knots)
 - Add constraint that there are no abrupt changes across regions.
 - Add constraint that first and second derivates are the same.
 (For cubic splines.)

- Simple polynomial transformations
- Interactions
- Step functions. E.g. transform education into k dummy variables.
- More complicated basis functions:
 - Piecewise polynomial: takes differential polynomial for different regions (split by knots)
 - Add constraint that there are no abrupt changes across regions.
 - Add constraint that first and second derivates are the same.
 (For cubic splines.)
 - Add boundary constraint: linear before 1st knot or after last knot. (Natural spline.)

- Reducible error: $Var(\hat{f}) + [Bias(E[\hat{f}(x) - f(x)])]^2$

- Reducible error: $Var(\hat{f}) + [Bias(E[\hat{f}(x) - f(x)])]^2$
- Bias-Variance tradeoff

- Reducible error: $Var(\hat{f}) + [Bias(E[\hat{f}(x) - f(x)])]^2$
- Bias-Variance tradeoff
- As flexibility increases, $Var(\hat{f})$ increases Model goes after each wrinkle in the training data

- Reducible error: $Var(\hat{f}) + [Bias(E[\hat{f}(x) - f(x)])]^2$
- Bias-Variance tradeoff
- As flexibility increases, $Var(\hat{f})$ increases Model goes after each wrinkle in the training data
- Say we have estimated the ideal function $\hat{f}(X)$

- Reducible error: $Var(\hat{f}) + [Bias(E[\hat{f}(x) - f(x)])]^2$
- Bias-Variance tradeoff
- As flexibility increases, $Var(\hat{f})$ increases Model goes after each wrinkle in the training data
- Say we have estimated the ideal function $\hat{f}(X)$
- Ideal w.r.t a loss function, e.g., average squared error: $(Y \hat{Y})^2$

- Reducible error: $Var(\hat{f}) + [Bias(E[\hat{f}(x) - f(x)])]^2$
- Bias-Variance tradeoff
- As flexibility increases, $Var(\hat{f})$ increases Model goes after each wrinkle in the training data
- Say we have estimated the ideal function $\hat{f}(X)$
- Ideal w.r.t a loss function, e.g., average squared error: $(Y \hat{Y})^2$
- Ideal still leaves some error (irreducible error): - $\epsilon = Y - \hat{f}(x)$

- Reducible error: $Var(\hat{f}) + [Bias(E[\hat{f}(x) - f(x)])]^2$
- Bias-Variance tradeoff
- As flexibility increases, $Var(\hat{f})$ increases Model goes after each wrinkle in the training data
- Say we have estimated the ideal function $\hat{f}(X)$
- Ideal w.r.t a loss function, e.g., average squared error: $(Y \hat{Y})^2$
- Ideal still leaves some error (irreducible error):

$$-\epsilon = Y - \hat{f}(x) - E[(Y - \hat{f}(X)^2 | X = x)] = (f(x) - \hat{f}(X))^2 + Var(\epsilon)$$

- Deviance
 - Deviance \propto -Log-Likelihood

- Deviance \propto -Log-Likelihood
- Likelihood: $p(y_1|x_1)xp(y_2|x_2)x...xp(y_n|x_n)$

- Deviance ∝ Log-Likelihood
- Likelihood: $p(y_1|x_1)xp(y_2|x_2)x...xp(y_n|x_n)$
- $-\hat{\beta}$ maximize Likelihood (or minimize Deviance)

- Deviance ∝ Log-Likelihood
- Likelihood: $p(y_1|x_1)xp(y_2|x_2)x...xp(y_n|x_n)$
- $-\hat{\beta}$ maximize Likelihood (or minimize Deviance)
- $-R^2 = \frac{\text{Deviance of Fitted Model}}{\text{Deviance of Null Model}}$

- Deviance ∝ Log-Likelihood
- Likelihood: $p(y_1|x_1)xp(y_2|x_2)x...xp(y_n|x_n)$
- $-\hat{\beta}$ maximize Likelihood (or minimize Deviance)
- $-R^2 = \frac{\text{Deviance of Fitted Model}}{\text{Deviance of Null Model}}$
- AIC

Deviance

- Deviance ∝ Log-Likelihood
- Likelihood: $p(y_1|x_1)xp(y_2|x_2)x...xp(y_n|x_n)$
- $-\hat{\beta}$ maximize Likelihood (or minimize Deviance)
- $-R^2 = \frac{\text{Deviance of Fitted Model}}{\text{Deviance of Null Model}}$

- AIC

- Deviance +2*df

Deviance

- Likelihood: $p(y_1|x_1)xp(y_2|x_2)x...xp(y_n|x_n)$
- $-\hat{\beta}$ maximize Likelihood (or minimize Deviance)
- $-R^2 = \frac{\text{Deviance of Fitted Model}}{\text{Deviance of Null Model}}$

- AIC

- Deviance + 2 * df
- In-sample Out of sample Deviance ~ 2 * df

Deviance

- Likelihood: $p(y_1|x_1)xp(y_2|x_2)x...xp(y_n|x_n)$
- $-\hat{\beta}$ maximize Likelihood (or minimize Deviance)
- $-R^2 = \frac{\text{Deviance of Fitted Model}}{\text{Deviance of Null Model}}$

- AIC

- Deviance +2 * df
- In-sample Out of sample Deviance ~ 2 * df
- AIC ∼ Out of sample Deviance

Deviance

- Likelihood: $p(y_1|x_1)xp(y_2|x_2)x...xp(y_n|x_n)$
- $-\hat{\beta}$ maximize Likelihood (or minimize Deviance)
- $-R^2 = \frac{\text{Deviance of Fitted Model}}{\text{Deviance of Null Model}}$

AIC

- Deviance +2 * df
- In-sample Out of sample Deviance $\sim 2 * df$
- − AIC ~ Out of sample Deviance
- AIC overfits in high dimensions (df \sim n).

Deviance

- Deviance \propto -Log-Likelihood
- Likelihood: $p(y_1|x_1)xp(y_2|x_2)x...xp(y_n|x_n)$
- $-\hat{\beta}$ maximize Likelihood (or minimize Deviance)
- $-R^2 = \frac{\text{Deviance of Fitted Model}}{\text{Deviance of Null Model}}$

AIC

- Deviance +2 * df
- In-sample Out of sample Deviance $\sim 2 * df$
- − AIC ~ Out of sample Deviance
- AIC overfits in high dimensions (df \sim n).
- AlCc = Deviance + 2 * df * $\frac{n}{n-df-1}$

Deviance

- Deviance \propto -Log-Likelihood
- Likelihood: $p(y_1|x_1)xp(y_2|x_2)x...xp(y_n|x_n)$
- $-\hat{\beta}$ maximize Likelihood (or minimize Deviance)
- $-R^2 = \frac{\text{Deviance of Fitted Model}}{\text{Deviance of Null Model}}$

AIC

- Deviance +2*df
- In-sample Out of sample Deviance ~ 2 * df
- AIC ∼ Out of sample Deviance
- AIC overfits in high dimensions (df \sim n).
- AlCc = Deviance + 2 * df * $\frac{n}{n-df-1}$
- BIC = Deviance + df * log(n)
- BIC underfits when large n.

		Observed	
		true	false
Predicted	true	true positive	false positive
	false	false negative	true negative

		Observed	
		true	false
Predicted	true	true positive	false positive
	false	false negative	true negative

- Confusion matrix, $c^2 - c$ total possible errors

		Observed	
		true	false
Predicted	true	true positive	false positive
	false	false negative	true negative

- Confusion matrix, $c^2 c$ total possible errors
- Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$

		Observed	
		true	false
Predicted	true	true positive	false positive
	false	false negative	true negative

- Confusion matrix, $c^2 c$ total possible errors
- Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$
- Error Rate: $\frac{FP+FN}{TP+TN+FP+FN}$

		Observed	
		true	false
Predicted	true	true positive	false positive
	false	false negative	true negative

- Confusion matrix, $c^2 c$ total possible errors
- Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$
- Error Rate: $\frac{FP+FN}{TP+TN+FP+FN}$
- Sensitivity, TPR: $\frac{TP}{TP+FN}$

		Observed	
		true	false
Predicted	true	true positive	false positive
	false	false negative	true negative

- Confusion matrix, $c^2 c$ total possible errors
- Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$
- Error Rate: $\frac{FP+FN}{TP+TN+FP+FN}$
- Sensitivity, TPR: $\frac{TP}{TP+FN}$
- Specificity, FPR: $\frac{TN}{FP+TN}$

		Observed	
		true	false
Predicted	true	true positive	false positive
	false	false negative	true negative

- Confusion matrix, $c^2 c$ total possible errors
- Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$
- Error Rate: $\frac{FP+FN}{TP+TN+FP+FN}$
- Sensitivity, TPR: $\frac{TP}{TP+FN}$
- Specificity, FPR: $\frac{TN}{FP+TN}$
- BER: $\frac{1}{2}(TPR + TNR)$

- ROC: TPR Vs. FPR

- ROC: TPR Vs. FPR
- Precision: fraction of retrieved instances that are relevant

 $\frac{TP}{TP+FP}$

- ROC: TPR Vs. FPR
- Precision: fraction of retrieved instances that are relevant
 TP TP+FP

- ROC: TPR Vs. FPR
- Precision: fraction of retrieved instances that are relevant $\frac{TP}{TP+FP}$
- Recall: fraction of relevant instances that are retrieved $\frac{TP}{TP+FN}$
- $-F_1$: $2\frac{\text{precision*recall}}{\text{precision} + \text{recall}}$

- ROC: TPR Vs. FPR
- Precision: fraction of retrieved instances that are relevant $\frac{TP}{TP+FP}$
- $-F_1$: $2\frac{\text{precision*recall}}{\text{precision} + \text{recall}}$
- $-F_{\beta}$: $(1+\beta^2)\frac{\text{precision*recall}}{\beta^2 \text{precision} + \text{recall}}$

- Another way to assess model error

- Another way to assess model error
- $-R^2$ always increases with more covariates.

- Another way to assess model error
- $-R^2$ always increases with more covariates.
- Or: As model complexity increases, training error goes down.

- Another way to assess model error
- $-R^2$ always increases with more covariates.
- Or: As model complexity increases, training error goes down.
- But out of sample error goes down and then up.

- Another way to assess model error
- $-R^2$ always increases with more covariates.
- Or: As model complexity increases, training error goes down.
- But out of sample error goes down and then up.
- Out of sample R^2 can be worse than \bar{y} .

- Another way to assess model error
- $-R^2$ always increases with more covariates.
- Or: As model complexity increases, training error goes down.
- But out of sample error goes down and then up.
- Out of sample R^2 can be worse than \bar{y} .
- Use of out of sample error to prevent overfitting

- Another way to assess model error
- $-R^2$ always increases with more covariates.
- Or: As model complexity increases, training error goes down.
- But out of sample error goes down and then up.
- Out of sample R^2 can be worse than \bar{y} .
- Use of out of sample error to prevent overfitting
- Net prediction error on test set can vary a lot.

A Clarification

- In sciences, 'data mining' is a dirty 'phrase'

– Jealousy?

In sciences, 'data mining' is a dirty 'phrase'

- In sciences, 'data mining' is a dirty 'phrase'
- Jealousy?
- Evokes concerns about false positives . . .

- In sciences, 'data mining' is a dirty 'phrase'
- Jealousy?
- Evokes concerns about false positives . . .
- But 'mining' is by definition 'the extraction of valuable [stuff]'

- In sciences, 'data mining' is a dirty 'phrase'
- Jealousy?
- Evokes concerns about false positives . . .
- But 'mining' is by definition 'the extraction of valuable [stuff]'
- − So − is more data worse?

- In sciences, 'data mining' is a dirty 'phrase'
- Jealousy?
- Evokes concerns about false positives . . .
- But 'mining' is by definition 'the extraction of valuable [stuff]'
- So is more data worse?
- Not quite

- In sciences, 'data mining' is a dirty 'phrase'
- Jealousy?
- Evokes concerns about false positives . . .
- But 'mining' is by definition 'the extraction of valuable [stuff]'
- So is more data worse?
- Not quite
- Larger *n* allows for more precise estimation of relationship

– Significance testing:

- Significance testing:
 - Say .05, 5% false positive rate

- Significance testing:
 - Say .05, 5% false positive rate
 - Assume independence, 1 of 20 false positive

– Significance testing:

- Say 05, 5% false positive rate
- Assume independence, 1 of 20 false positive
- Say 100 vars, 5 true positives, all sig., 5% of 95 \sim 5. So 50% false discovery rate.

- Significance testing:
 - Say .05, 5% false positive rate
 - Assume independence, 1 of 20 false positive
 - Say 100 vars, 5 true positives, all sig., 5% of 95 \sim 5. So 50% false discovery rate.
- Fixes:

– Significance testing:

- Say .05, 5% false positive rate
- Assume independence, 1 of 20 false positive
- Say 100 vars, 5 true positives, all sig., 5% of 95 \sim 5. So 50% false discovery rate.

- Fixes:

Familywise error rate (Bonferroni)

– Significance testing:

- Say 05, 5% false positive rate
- Assume independence, 1 of 20 false positive
- Say 100 vars, 5 true positives, all sig., 5% of 95 \sim 5. So 50% false discovery rate.

– Fixes:

- Familywise error rate (Bonferroni)
- Optimization can be done w.r.t. to cost of false positive and negative
 - e.g. Increase cut-off marks in exams, Breast Cancer

– Significance testing:

- Say 05, 5% false positive rate
- Assume independence, 1 of 20 false positive
- Say 100 vars, 5 true positives, all sig., 5% of 95 \sim 5. So 50% false discovery rate.

– Fixes:

- Familywise error rate (Bonferroni)
- Optimization can be done w.r.t. to cost of false positive and negative
 - e.g. Increase cut-off marks in exams, Breast Cancer
- False Discovery Rate

False discovery Proportion = $\frac{\text{\# of FP}}{\text{\# of Sig. Results}}$

False discovery Proportion =
$$\frac{\text{\# of FP}}{\text{\# of Sig. Results}}$$

- Can't be known but we can produce cutoffs so E(FDP) < q

False discovery Proportion =
$$\frac{\text{\# of FP}}{\text{\# of Sig. Results}}$$

- Can't be known but we can produce cutoffs so E(FDP) < q
- Benjamini and Hochberg (1995):

False discovery Proportion =
$$\frac{\text{\# of FP}}{\text{\# of Sig. Results}}$$

- Can't be known but we can produce cutoffs so E(FDP) < q
- Benjamini and Hochberg (1995):
 - Rank the *n p*-values, smallest to largest, $p_1 \dots p_n$.

False discovery Proportion =
$$\frac{\text{\# of FP}}{\text{\# of Sig. Results}}$$

- Can't be known but we can produce cutoffs so E(FDP) < q
- Benjamini and Hochberg (1995):
 - Rank the *n p*-values, smallest to largest, $p_1 \dots p_n$.
 - p-value cut-off = max $(p_k : p_k \le \frac{qk}{n})$

False discovery Proportion =
$$\frac{\# \text{ of FP}}{\# \text{ of Sig. Results}}$$

- Can't be known but we can produce cutoffs so E(FDP) < q
- Benjamini and Hochberg (1995):
 - Rank the *n p*-values, smallest to largest, $p_1 \dots p_n$.
 - p-value cut-off = max $(p_k : p_k \le \frac{qk}{n})$
 - All p-values below that accepted

False discovery Proportion =
$$\frac{\text{\# of FP}}{\text{\# of Sig. Results}}$$

- Can't be known but we can produce cutoffs so E(FDP) < q
- Benjamini and Hochberg (1995):
 - Rank the *n p*-values, smallest to largest, $p_1 \dots p_n$.
 - p-value cut-off = max $(p_k : p_k \le \frac{qk}{n})$
 - All p-values below that accepted
 - Caveat: Assumes independence

Sampling

- Sampling
- Changing data generating process over time

- Sampling
- Changing data generating process over time
- Confounding variables ('data leakage')

- Sampling
- Changing data generating process over time
- Confounding variables ('data leakage')
- Coding and computational errors