Lexical alignment: IBM models 1 and 2 MLE via EM for categorical distributions

Miguel Rios

April 3, 2019

Translation data

Let's assume we are confronted with a new language and luckily we managed to obtain some sentence-aligned data

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

Translation data

Let's assume we are confronted with a new language and luckily we managed to obtain some sentence-aligned data

Is there anything we could say about this language?

the black dog $\square \otimes$ the nice dog $\square \cup$ the black cat $\square \otimes$ a dog chasing a cat $\square \triangleleft \square$

A few hypotheses:

▶ □ ⇐⇒ dog

the black dog $\square \circledast$ the nice dog $\square \cup$ the black cat $\square \circledast$ a dog chasing a cat $\square \triangleleft \square$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ←⇒ cat
- ▶ ⊛ ⇔ black

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat
- ▶ (*) ⇔ black
- nouns seem to preceed adjectives

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat
- ▶ * ⇔ black
- nouns seem to preceed adjectives
- determines are probably not expressed

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat
- ▶ ⊛ ⇔ black
- nouns seem to preceed adjectives
- determines are probably not expressed
- chasing may be expressed by and perhaps this language is OVS

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat
- ▶ * ⇔ black
- nouns seem to preceed adjectives
- determines are probably not expressed
- ► chasing may be expressed by < and perhaps this language is OVS</p>
- or perhaps chasing is realised by a verb with swapped arguments

Probabilistic lexical alignment models

This lecture is about operationalising this intuition

- through a probabilistic learning algorithm
- for a non-probabilistic approach see for example[?]

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Remarks

Imagine you are given a text

the black dog the nice dog the black cat

el perro negro el perro bonito el gato negro a dog chasing a cat | un perro presiguiendo a un gato

Now imagine the French words were replaced by placeholders

the black dog	$F_1 F_2 F_3$
the nice dog	$F_1 F_2 F_3$
the black cat	$F_1 F_2 F_3$
dog chasing a cat	F_1 F_2 F_3 F_4 F_5

Now imagine the French words were replaced by placeholders

and suppose our task is to have a model explain the original data

Now imagine the French words were replaced by placeholders

$$\begin{array}{c|cccc} \text{the black dog} & F_1 \ F_2 \ F_3 \\ \text{the nice dog} & F_1 \ F_2 \ F_3 \\ \text{the black cat} & F_1 \ F_2 \ F_3 \\ \text{a dog chasing a cat} & F_1 \ F_2 \ F_3 \ F_4 \ F_5 \end{array}$$

and suppose our task is to have a model explain the original data by generating each French word from exactly one English word

Generative story

For each sentence pair independently,

- 1. observe an English sentence e_1, \dots, e_m and a French sentence length n
- 2. for each French word position j from 1 to n
 - 2.1 select an English position a_j
 - 2.2 conditioned on the English word e_{a_j} , generate f_j

Generative story

For each sentence pair independently,

- 1. observe an English sentence e_1, \dots, e_m and a French sentence length n
- 2. for each French word position j from 1 to n
 - 2.1 select an English position a_j
 - 2.2 conditioned on the English word e_{a_j} , generate f_j

We have introduced an alignment which is not directly visible in the data

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog $| (A_1, E_{A_1} \to F_1) (A_2, E_{A_2} \to F_2) (A_3, E_{A_3} \to F_3)$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog $| (1, E_{A_1} \to F_1) (A_2, E_{A_2} \to F_2) (A_3, E_{A_3} \to F_3)$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog $\mid (1, \text{the} \rightarrow \text{el}) \ (A_2, E_{A_2} \rightarrow F_2) \ (A_3, E_{A_3} \rightarrow F_3)$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog \mid $(1, {\rm the} \to {\rm el})$ $(3, E_{A_2} \to F_2)$ $(A_3, E_{A_3} \to F_3)$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog \mid $(1, \text{the} \rightarrow \text{el})$ $(3, \text{dog} \rightarrow \text{perro})$ $(A_3, E_{A_3} \rightarrow F_3)$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog $\mid (1, \mathsf{the} \to \mathsf{el}) \ (3, \mathsf{dog} \to \mathsf{perro}) \ (2, E_{A_3} \to F_3)$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog \mid $(1, \mathsf{the} \to \mathsf{el})$ $(3, \mathsf{dog} \to \mathsf{perro})$ $(2, \mathsf{black} \to \mathsf{negro})$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog \mid $(1, \mathsf{the} \to \mathsf{el}) \ (3, \mathsf{dog} \to \mathsf{perro}) \ (2, \mathsf{black} \to \mathsf{negro})$

the black dog $\mid (A_1,\mathsf{the} \to \mathsf{el}) \ (A_1,\mathsf{the} \to \mathsf{perro}) \ (A_1,\mathsf{the} \to \mathsf{negro})$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog \mid $(1, \mathsf{the} \to \mathsf{el}) \ (3, \mathsf{dog} \to \mathsf{perro}) \ (2, \mathsf{black} \to \mathsf{negro})$

the black dog
$$\mid (A_1, {\sf the} \to {\sf el}) \; (A_1, {\sf the} \to {\sf perro}) \; (A_1, {\sf the} \to {\sf negro})$$
 the black dog $\mid (a_1, e_{a_1} \to f_1) \; (a_2, e_{a_2} \to f_2) \; (a_3, e_{a_3} \to f_3)$

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Remarks

Mixture models: generative story

- c mixture components
- lacktriangle each defines a distribution over the same data space ${\mathcal X}$
- plus a distribution over components themselves

Mixture models: generative story

- c mixture components
- lacktriangle each defines a distribution over the same data space ${\mathcal X}$
- plus a distribution over components themselves

Generative story

- 1. select a mixture component $y \sim p(y)$
- 2. generate an observation from it $x \sim p(x|y)$

Mixture models: likelihood

Incomplete-data likelihood

$$p(x_1^m) = \prod_{i=1}^m p(x_i)$$
 (1)

$$= \prod_{i=1}^{m} \sum_{y=1}^{c} \underbrace{p(x_i, y)}_{\text{complete data likelihood}} \tag{2}$$

$$=\prod_{i=1}^{m}\sum_{j=1}^{c}p(z)p(x_{i}|y)$$
(3)

Interpretation

Missing data

- lacksquare Let y take one of c mixture components
- Assume data consists of pairs (x, y)
- x is always observed
- ightharpoonup y is always missing

Interpretation

Missing data

- Let y take one of c mixture components
- ▶ Assume data consists of pairs (x, y)
- x is always observed
- y is always missing

Inference: posterior distribution over possible \boldsymbol{y} for each \boldsymbol{x}

$$p(y|x) = \frac{p(y,x)}{\sum_{y'=1}^{c} p(y',x)}$$
 (4)

$$= \frac{p(y)p(x|y)}{\sum_{y'=1}^{c} p(y')p(x|y')}$$
 (5)

Non-identifiability

Different parameter settings, same distribution

Suppose
$$\mathcal{X} = \{a,b\}$$
 and $c=2$ and let $p(y=1) = p(y=2) = 0.5$

y	x = a	x = b
1	0.2	0.8
2	0.7	0.3
p(x)	0.45	0.55

y	x = a	x = b
1	0.7	0.3
2	0.2	0.8
p(x)	0.45	0.55

Non-identifiability

Different parameter settings, same distribution

Suppose
$$\mathcal{X}=\{a,b\}$$
 and $c=2$ and let $p(y=1)=p(y=2)=0.5$

y	x = a	x = b
1	0.2	0.8
2	0.7	0.3
p(x)	0.45	0.55

y	x = a	x = b
1	0.7	0.3
2	0.2	0.8
p(x)	0.45	0.55

Problem for parameter estimation by hillclimbing

Suppose a dataset
$$\mathcal{D} = \{x^{(1)}, x^{(2)}, \cdots, x^{(m)}\}$$

Suppose a dataset $\mathcal{D}=\{x^{(1)},x^{(2)},\cdots,x^{(m)}\}$ Suppose p(x) is one of a parametric family with parameters θ

Suppose a dataset $\mathcal{D}=\{x^{(1)},x^{(2)},\cdots,x^{(m)}\}$ Suppose p(x) is one of a parametric family with parameters θ Likelihood of iid observations

$$p(\mathcal{D}) = \prod_{i=1}^{m} p_{\theta}(x^{(i)})$$

Suppose a dataset $\mathcal{D}=\{x^{(1)},x^{(2)},\cdots,x^{(m)}\}$ Suppose p(x) is one of a parametric family with parameters θ Likelihood of iid observations

$$p(\mathcal{D}) = \prod_{i=1}^{m} p_{\theta}(x^{(i)})$$

the score function is

$$l(\theta) = \sum_{i=1}^{m} \log p_{\theta}(x^{(i)})$$

Suppose a dataset $\mathcal{D}=\{x^{(1)},x^{(2)},\cdots,x^{(m)}\}$ Suppose p(x) is one of a parametric family with parameters θ Likelihood of iid observations

$$p(\mathcal{D}) = \prod_{i=1}^{m} p_{\theta}(x^{(i)})$$

the score function is

$$l(\theta) = \sum_{i=1}^{m} \log p_{\theta}(x^{(i)})$$

then we choose

$$\theta^* = \arg\max_{\theta} l(\theta)$$

MLE for categorical: estimation from fully observed data

Suppose we have complete data

 $ightharpoonup \mathcal{D}_{\mathsf{complete}} = \{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$

MLE for categorical: estimation from fully observed data

Suppose we have complete data

 $ightharpoonup \mathcal{D}_{\mathsf{complete}} = \{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$

Then, for a categorical distribution

$$p(x|y) = \theta_{y,x}$$

and $n(y, x | \mathcal{D}_{complete}) = count \ of \ (y, x) \ in \ \mathcal{D}_{complete}$

MLE solution:

$$\theta_{y,x} = \frac{n(y, x | \mathcal{D}_{\mathsf{complete}})}{\sum_{x'} n(y, x' | \mathcal{D}_{\mathsf{complete}})}$$

MLE for categorical: estimation from incomplete data

Expectation-Maximisation algorithm

[?]

E-step:

• for every observation x, imagine that every possible latent assignment y happened with probability $p_{\theta}(y|x)$

$$\mathcal{D}_{\mathsf{completed}} = \{(x, y = 1), \dots, (x, y = c) : x \in \mathcal{D}\}\$$

MLE for categorical: estimation from incomplete data

Expectation-Maximisation algorithm

[?]

M-step:

- ightharpoonup reestimate θ as to climb the likelihood surface
- $\begin{array}{l} \bullet \ \ \text{for categorical distributions} \ p(x|y) = \theta_{y,x} \\ y \ \ \text{and} \ \ x \ \ \text{are categorical} \\ 0 \leq \theta_{y,x} \leq 1 \quad \text{and} \quad \sum_{x \in X} \theta_{y,x} = 1 \end{array}$

$$\theta_{y,x} = \frac{\mathbb{E}[n(y \to x | \mathcal{D}_{completed})]}{\sum_{x'} \mathbb{E}[n(y \to x' | \mathcal{D}_{completed})]}$$
(6)

$$= \frac{\sum_{i=1}^{m} \sum_{y'} p(y'|x^{(i)}) \mathbb{1}_{y}(y') \mathbb{1}_{x}(x^{(i)})}{\sum_{i=1}^{m} \sum_{x'} \sum_{y'} p(y'|x^{(i)}) \mathbb{1}_{y}(y') \mathbb{1}_{x'}(x^{(i)})}$$
(7)

$$= \frac{\sum_{i=1}^{m} p(y|x^{(i)}) \mathbb{1}_{x}(x^{(i)})}{\sum_{i=1}^{m} \sum_{x'} p(y|x^{(i)}) \mathbb{1}_{x'}(x^{(i)})}$$
(8)

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Remarks

Constrained mixture model

Constrained mixture model

mixture components are English words

Constrained mixture model

- mixture components are English words
- but only English words that appear in the English sentence can be assigned

Constrained mixture model

- mixture components are English words
- but only English words that appear in the English sentence can be assigned
- a_j acts as an indicator for the mixture component that generates French word f_j
- e₀ is occupied by a special NULL component

Parameterisation

Alignment distribution: uniform

$$p(a|m,n) = \frac{1}{m+1} \tag{9}$$

Lexical distribution: categorical

$$p(f|e) = \operatorname{Cat}(f|\theta_e) \tag{10}$$

- where $\theta_e \in \mathbb{R}^{v_F}$
- \bullet $0 \le \theta_{e,f} \le 1$
- $\blacktriangleright \sum_{f} \theta_{e,f} = 1$

IBM1: incomplete-data likelihood

Incomplete-data likelihood

$$p(f_1^n|e_0^m) = \sum_{a_1=0}^m \cdots \sum_{a_n=0}^m p(f_1^n, a_1^n|e_{a_j})$$

$$= \sum_{a_1=0}^m \cdots \sum_{a_n=0}^m \prod_{j=1}^n p(a_j|m, n) p(f_j|e_{a_j})$$

$$= \prod_{j=1}^n \sum_{a_j=0}^m p(a_j|m, n) p(f_j|e_{a_j})$$
(13)

IBM1: posterior

Posterior

$$p(a_1^n|f_1^n, e_0^m) = \frac{p(f_1^n, a_1^n|e_0^m)}{p(f_1^n|e_0^m)}$$
(14)

Factorised

$$p(a_j|f_1^n, e_0^m) = \frac{p(a_j|m, n)p(f_j|e_{a_j})}{\sum_{i=0}^m p(i|m, n)p(f_j|e_i)}$$
(15)

MLE via EM

E-step:

$$\mathbb{E}[n(\mathsf{e} \to \mathsf{f}|a_1^n)] = \sum_{a_1=0}^m \cdots \sum_{a_n=0}^m p(a_1^n|f_1^n, e_0^m) n(\mathsf{e} \to \mathsf{f}|A_1^n)$$

$$= \sum_{a_1=0}^m \cdots \sum_{a_n=0}^m \prod_{j=1}^n p(a_j|f_1^n, e_0^m) \mathbb{1}_{\mathsf{e}}(e_{a_j}) \mathbb{1}_{\mathsf{f}}(f_j)$$

$$= \prod_{j=1}^n \sum_{i=0}^m p(a_j = i|f_1^n, e_0^m) \mathbb{1}_{\mathsf{e}}(e_i) \mathbb{1}_{\mathsf{f}}(f_j)$$
(18)

M-step:

$$\theta_{e,f} = \frac{\mathbb{E}[n(e \to f|a_1^n)]}{\sum_{f'} \mathbb{E}[n(e \to f'|a_1^n)]} \tag{19}$$

EM algorithm

Repeat until convergence to a local optimum

- 1. For each sentence pair
 - 1.1 compute posterior per alignment link
 - 1.2 accumulate fractional counts
- 2. Normalise counts for each English word

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Remarks

Alignment distribution

Positional distribution

$$p(a_j|m,n) = \operatorname{Cat}(a|\lambda_{j,m,n})$$

- lacktriangle one distribution for each tuple (j, m, n)
- support must include length of longest English sentence
- extremely over-parameterised!

Alignment distribution

Positional distribution

$$p(a_j|m,n) = \operatorname{Cat}(a|\lambda_{j,m,n})$$

- one distribution for each tuple (j, m, n)
- support must include length of longest English sentence
- extremely over-parameterised!

Jump distribution

[?]

- ▶ define a jump function $\delta(a_j, j, m, n) = a_j \left\lfloor j \frac{m}{n} \right\rfloor$
- $p(a_j|m,n) = \operatorname{Cat}(\Delta|\lambda)$
- lackbox Δ takes values from -longest to +longest

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Remarks

Note on terminology: source/target vs French/English

From an alignment model perspective all that matters is

- we condition on one language and generate the other
- ▶ in IBM models terminology, we condition on *English* and generate *French*

From a noisy channel perspective, where we want to translate a source sentence f_1^n into some target sentence e_1^m

- \blacktriangleright Bayes rule decomposes $p(e_1^m|f_1^n) \propto p(f_1^n|e_1^m)p(e_1^m)$
- lacktriangle train $p(e_1^m)$ and $p(f_1^n|e_1^m)$ independently
- ▶ language model: $p(e_1^m)$
- ▶ alignment model: $p(f_1^n|e_1^m)$
- note that the alignment model conditions on the target sentence (English) and generates the source sentence (French)

Limitations of IBM1-2

- too strong independence assumptions
- categorical parameterisation suffers from data sparsity
- EM suffers from local optima

Extensions

Fertility, distortion, and concepts [?]

Dirichlet priors and posterior inference [?]

- ► + no Null words [?]
- + HMM and efficient sampler [?]

Log-linear distortion parameters and variational Bayes [?]

First-order dependency (HMM) [?]

E-step requires dynamic programming[?]

References I