COS 445 - PSet 5, Problem 3

Odysseus

April 28, 2021

Problem 3: Bigger Badder Braess' Paradox

We wish to show two networks G_{ϵ} and G'_{ϵ} , cost functions $c_e(\cdot)$ for each edge, and \vec{r} where r_{ab} units of traffic want to travel from a to b for all nodes a, b such that all given conditions are met. We present the following networks:

We note that the nodes in G_{ϵ} and G'_{ϵ} are the same, that is they each contain the nodes s, a, b, and t. Additionally, all edges in G_{ϵ} are also present in G'_{ϵ} , with G'_{ϵ} only having one additional edge between nodes a and b. Each cost function on these edges is continuous, monotone non-decreasing, and non-negative.

We also observe that the unique equilibrium flow in G_{ϵ} has total cost at most $1+\epsilon$. For example, if $\epsilon=\frac{1}{2}$ the resulting cost (no matter which direction is taken from s) is equal to $1+\frac{\frac{1}{2}}{2}+(\frac{4}{(\frac{1}{2})^2})^{-\frac{1}{2}}$ or $1+\frac{1}{2}=1+\epsilon$.