- 1. Read about the general operation of the following search strategies for both tree search and graph search
 - 1. Depth first search
 - 2. Breadth First Search
 - 3. Uniform cost search
 - 4. Greedy search
 - 5. A* search

Answers

1. Depth First Search

Operation:

It explores as far as possible along a branch before backtracking.

Tree Search:

In a tree search, DFS uses stacks data structure to keep track of nodes to visit.

Graph Search:

In graph search, DFS maintains a set of visited nodes to avoid revisiting and pushing unvisited neighbors onto the stack.

2. Breadth First Search

Operation:

It explores neighbors at a current depth level before moving to the next level.

Tree Search:

In a tree search, BFS uses queues data structure to visit node in a level-wise manner.

Graph Search:

In graph search, BFS maintains a set of visited nodes to avoid revisiting and enqueue unvisited neighbors.

3. Uniform Cost Search

Operation:

It selects the path with the lowest cost.

Tree Search:

In a tree search, UCS uses priority queue or min-heap based on cumulative path cost.

Graph Search:

In graph search, UCS maintains a set of visited nodes and updates the cost of a lower-cost path till a visited node is found.

4. Greedy Search

Operation:

It selects the path that appears to be the best based on a heuristic while ignoring the path cost.

Tree Search:

In a tree search, Greedy search uses priority queue based on the heuristic estimate.

Graph Search:

In graph search, Greedy search operates like in tree search but maintains a set of visited nodes to avoid loops.

5. A* Search

Operation:

A* combines the cost so far and heuristic to select the most promising path.

Tree Search:

In a tree search, A* search uses a priority queue based on the sum of the cost and heuristic estimate.

Graph Search:

In graph search, A* search operates similar to tree search but maintains a set of visited nodes and updates the cost if a lower-cost path is found