Pivot rule polytope of cyclic polytopes

Aenne Benjes¹, **Germain Poullot**², Raman Sanyal^{1,3}

- ¹ Institut für Mathematik, Goethe-Universität Frankfurt, Germany
- ² Institut de Mathématiques de Jussieu Paris Rive Gauche, Sorbonne Université, Paris, France
- ³ Institut für Mathematik, Freie Universität Berlin, Germany

benjes@math.uni-frankfurt.de
 germain.poullot@imj-prg.fr
sanyal@math.uni-frankfurt.de

Shadow vertex rule

Linear program (P,c): how to choose next vertex in simplex method?

Shadow vertex: for ω , project in plane (c, ω) , take the neighbor with the best slope:

 $A^{\omega}(v) = \operatorname{argmax} \left\{ \frac{\langle \omega, u - v \rangle}{\langle c, u - v \rangle} ; u \text{ improving } \right\}$

Pivot rule polytope

Coherent arborescence: monotone arborescence arising from shadow vertex rule

Pivot rule fan: $\omega \sim \omega'$ iff same arborescence

Pivot rule polytope $\Pi_c(P)$: dual to pivot rule fan $\operatorname{Vert}(\Pi_c(P))\longleftrightarrow c$ -coherent arborescences Resemble Billera–Sturmfels' fiber polytopes

Pivot rule polytope of Δ_n

THM. [BLLS23+] for all c, $\Pi_c(\Delta_n) \simeq \mathsf{Asso}_{n-2}$ Vert $(\Pi_c(\Delta_n))$ = non-crossing arbor. (Catalan)

Projections of associahedra

CORO. for $d \ge 4$, as Graph(Cyc_d(t)) complete, then $\Pi_c(\text{Cyc}_d(t)) = \text{projection of Asso}_{n-1}$

Degrees of non-crossing arborescences

A is captured by P on t: best slopes between $(t_i, P(t_i))$ are edges of A \Leftrightarrow vertex of $\Pi_{e_1}(\mathsf{Cyc}_d(t))$

Degree $\mu(A, t) = \min\{d : A \text{ captured by } P \in \mathbb{R}_d[X] \text{ on } t\}$

Intrinsic degree $\mu(A) = \min_t \mu(A, t)$

Immediate leaves $\mathbb{L}(A)$: i leaf with A(i) = i + 1 (above), interior if $\neq 1, n-1$

THM. $\mu(A) = |\mathbb{L}(A)| + |\mathbb{L}^{\text{interior}}(A)| + 1$

2 arborescences with $\mu(A) = 2$; $2^{n-2} + n - 5$ arborescences with $\mu(A) = 3$

Realization sets and universal arborescences

Realization set $T_d^{\circ}(A) = \{t : A \text{ captured by } P \in \mathbb{R}_d[X] \text{ on } t\}$ Universal: $T_{u(A)}^{\circ}(A) = \{t_1 < \dots < t_n\}$, i.e. if possible then everyone possible

Complete symmetric homogeneous poly. $h_{\ell}(X, Y, Z) = \sum_{p+q+s=\ell} X^p Y^q Z^s$

 $\mathsf{P}_{d}^{f}(A, t) = \mathsf{conv}\{(h_{\ell}(t_{i}, t_{j}, t_{k}))_{\ell \leq d-2}\}_{\mathsf{fwd}} \; ; \; \mathsf{P}_{d}^{b}(A, t) = \mathsf{conv}\{(h_{\ell}(t_{a}, t_{b}, t_{c}))_{\ell \leq d-2}\}_{\mathsf{bwd}}$

THM. $t \in \mathcal{T}_d^{\circ}(A)$ iff $\mathsf{P}_d^f(A,t) \cap \mathsf{P}_d^b(A,t) = \emptyset$.

Full study for d = 3, *i.e.* 2-dimensional case, but not $\Pi_{e_1}(\text{Cyc}_3(t))$ $T_3^{\circ}(A)$ are (open) polyhedral cones (we have facet description)

 $t_3 + t_4 + t_5 = t_2 + t_5 + t_6$

 $t_3 + t_4 + t_5 = t_1 + t_5 + t_6$

 $t_2 + t_4 + t_5 = t_1 + t_5 + t_6$

 $t_2 + t_3 + t_4 = t_1 + t_5 + t_6$

 $t_2 + t_3 + t_4 = t_1 + t_4 + t_5$

 \sim

 $\langle \dots \rangle$

THM. For almost all t, $|\{A: t \in \mathcal{T}_3^{\circ}(A)\}| = \binom{n}{2} - 1$ (indep. t)

 \sim

 \sim

 \sim

 \sim

 \mathcal{M}

 \sim

 $\langle m \rangle$

Green node: $\mu(A) = 2$

Blue nodes: $\mu(A) = 3$ universal

Others switch label along graph edges