MATH 105: Homework 8

William Guss 26793499 wguss@berkeley.edu

April 7, 2016

43.

Theorem 1. Let $g(y) = \int_0^\infty e^{-x} \sin(x+y) dx$. The function is differentiable with respect to g(y).

Proof. Labesgue Dominated Convergance theorem. Consider the following construction.

$$\lim_{h \to 0} \frac{g(y) + g(h+y)}{h} = \frac{1}{h} \int \gamma(y) + \int \gamma(h+y)$$

$$= \int \frac{e^{-x} \sin(x+y) + e^{-x} \sin(x+y+h)}{h} dx$$

$$= \int f_h d\mu(x).$$
(1)

where μ is Lebesgue regular measure. We would like to use the dominated convergence theorem to show that this sequence of integrals converges to a limit. First we must show that f_h converges to f almost everywhere. We know from Math 1B that the limit of f_h is the derivative of γ , and γ is clearly a differentiable function. So it is obviouse that $f_h \to f$.

Furthermore we know that $\gamma(x)$ is dominated by e^-x . Observe that $e^{-x} \ge f_h(x)$ almost everywhere since $\sin(x+y+h) \le 1$.

Therefore by the dominated convergence thereom $f_h \to f(x)$ is integrable with respect to the measure μ , and $\int f_h \to \int f = L$ is the derivative of g(y) at y. Since we did this for abitrary y g is differentiable everywhere. :)

46.

Theorem 2.

Office Hours: We know that f is rieman integrable since it has one point of fiscontinuity. Therefore we can use calculus. Consider the integratipon by parts. We have

$$\int_0^1 \frac{\pi}{x} \sin \frac{\pi}{x} \, dx = x \cos \frac{\pi}{x} \Big|_a^1 - \int_a^1 \cos \frac{\pi}{x} \, dx. \tag{2}$$

Clearly the right hand side converges to 0 since it is enveloped by x. The right hand side can be considered as follows. Look at the intervals [1/(k+1), 1/k]. In this case, f we can bound the integral along this interval by the rectangle of area

$$B_k = \frac{1}{k} - \frac{1}{k+1} = \frac{1}{(k+1)k}. (3)$$

Accounting for the negative oscilation of the $\cos(\pi/k)$ we get that for k even

$$\int_{\frac{1}{k+2}}^{\frac{1}{k}} \cos \frac{\pi}{x} \, dx \le \frac{2}{(k+2)(k+1)k}. \tag{4}$$

This is obvious since

$$\int_{\frac{1}{k+2}}^{\frac{1}{k+1}} \cos \frac{\pi}{x} \, dx \le \sum_{\frac{1}{k+2}}^{\frac{1}{k+1}} -1 \qquad \int_{\frac{1}{k+1}}^{\frac{1}{k}} \cos \frac{\pi}{x} \, dx \le \sum_{\frac{1}{k+1}}^{\frac{1}{k}} 1 \tag{5}$$

and we take the sum of the bound and get the same inequality. Essentially we are given a very nice bound

$$0 \le \int_{\frac{1}{k+2}}^{\frac{1}{k}} \cos \frac{\pi}{x} \, dx \le \frac{2}{(k+2)(k+1)k}. \tag{6}$$

We then know that the difference of k = m and k = n decreases at least cubically and so the series of summing the integrals is cauchy and bounded by the series

$$a = \sum_{k=0}^{\infty} \frac{2}{(k+2)(k+1)k}.$$
 (7)

So the function itself is Riemann integrable (improperly)!

Now look at the Labesgue integrability condition. It must be that |f| has finite integrable. The absolute value of f however has area lowerbounded by $\sum 1/100k$ which diverges, therefore it could not be that the area under |f| be finite and so the function is not Labesgue integrable.

- 48. The set S_A is where J' is greatert than a we can cover the S_A with intervals x, x + h using a vitali covering. WE can extract disjoint guys who effectively do the covering and whoe total length is approximately the total measure of S_A .
- 50. Recall Theorem 66 from the book.

Theorem 3. The circle or equivalently [0,1), splits into two nonmeasurable disjoint subset, that each has inner measure zero and outer measure one.

We then set out to prove the following theorem.

Theorem 4. Every measurable $E \subset \mathbb{R}$ with mE > 0 contains a nonmeasurable set N with $m^*N = mE$, $m_*N = 0$ and for each $E' \subset E$ we have $m(E') = m^*(N \cap E')$.

Proof. Since E is measurable it is the union of an open set F and a zeroset Z. Since $F \subset \mathbb{R}$ it is the countable union of disjoint open intervals

$$F = \bigsqcup_{i=1}^{\eta \in \mathbb{Z} \cup \{\infty\}} I_i. \tag{8}$$

Let T_i be the rigid transformation which maps $(0,1) \to I_i$ with absolute determinant $m(I_i)$. Then take doppleganger set of $(0,1), N_{(0,1)}$ and consider the new set

$$N = \bigsqcup_{i=1}^{\eta} T_i(N_{(0,1)}) \tag{9}$$

with η as before. This set has inner measure 0 and outer measure $\sum_i m(I_i) = m(E)$ and so is not measurable!

Now take any measurable subset of E, say E'. In the same sense that we constructed N, $N \cap E'$ is also not measurable. It furthermore follows that $m^*(N \cap E') = m^*(E')$ since we construct E as a disjoint union of open intervals all of which are strict subsets of the respective I_i forming E.

To complete this statement, we must show that the outer measure of these subsets, say I'_i intersect $T_i(N_{(0,1)})$ have measure $m(I'_i)$. Outer measure is importantly additive, therefore

$$m^{*}(I_{i}) = m^{*}(I'_{i}) + m^{*}(I'^{c}_{i} \cap I_{i}) = m^{*}(T_{i}(N_{(0,1)}))$$

$$= m^{*}((T(N_{(0,1)}) \cap I'_{i})^{c} \cap I_{i}) + m^{*}(I'_{i}) \qquad (10)$$

$$\implies m^{*}(I'_{i}) = m^{*}(T(N_{(0,1)}) \cap I'_{i})$$

using Lemma 20. This completes the proof.

52. Show the following theorem.

Theorem 5. If f is a measurable function then

$$(dp(\mathcal{U}f) \cap \mathcal{U}f)^y = dp(\mathcal{U}f^y) \cap \mathcal{U}f^y. \tag{11}$$

Proof. W must show that every $x \in (dp(\mathcal{U}f) \cap \mathcal{U}f)^y = dp(\mathcal{U}f^y)$ is also a member of $dp(\mathcal{U}f^y) \cap \mathcal{U}f^y$. If $x \in (dp(\mathcal{U}f) \cap \mathcal{U}f)^y$ then equivalently we have

$$x \in \{p = (\rho, \gamma) \mid \gamma = y \land p \in \mathcal{U}f \land p \text{ density point of } \mathcal{U}f\}$$
 (12)

By Theorem 49, we have that ρ is a density point of $\mathcal{U}f^y$. Next we must show that if $\gamma = y$ and $p \in \mathcal{U}f$ then $x \in \mathcal{U}f^y$ This however is the definitions of $\mathcal{U}f^y$. So it must be that $x \in dp(\mathcal{U}f^y) \cap \mathcal{U}f^y$..

In the opposite direction we can again use the same logic. Theorem 49 puts $x \in \mathcal{U}f^y$ in $(\mathcal{U}f)^y$. Applying the same under graph logic as before the proof is complete.

43, 46, 48, 50, 52