Universidade Tecnológica Federal do Paraná - UTFPR Engenharia da Computação (aluno de Engenharia Eletrônica) EEX21 S72 Oficina de Integração 1 - 2023/1

Projeto ED-209 Kid

Aluno:	Felipe Camargo de Pauli RA: 1718789 fpauli@alunos.utfpr.edu.br (41) 9 9950-1851			
Orientadores:	Prof. Dr.	Eduardo Nunes dos Santos Juliano Mourão Vieira Ronnier Frates Rohrich		
Conteúdo				
1 Introdução			2	
2 Descrição			2	

5

7

8

9

9

3 Objetivos

5 Software

6 Hardware

7 Referências Bibliográficas

4 Gantt

1 Introdução

Este trabalho tem como objetivo criar um projeto eletrônico que combina software e hardware para controlar uma arma que dispara projéteis NERF. A ideia é utilizar técnicas de aprendizado de máquina e visão computacional para identificar e acertar alvos estáticos de formas e dimensões conhecidas. O sistema será capaz de direcionar automaticamente a arma e disparar, usando os parâmetros corretos para atingir o alvo.

2 Descrição

O projeto "ED-209 Kid" é uma arma de disparo de dardos Nerf (figura 2) controlada via conexão sem fio, que é operado através de um programa instalado num PC. A arma utiliza dois servomotores (2) para controlar os movimentos de inclinação e rotação, sendo ambos gerenciados por um Raspberry Pi(1). Um alvo de dimensões conhecidas e fixo (6), que esteja dentro do campo de visão da câmera (3), é identificado e os parâmetros de direção da arma são calculados. Um comando é enviado para os dardos que são lançados por rolos impulsionados por dois pequenos motores DC (5), enquanto um servo empurra os dardos reservas para o cano de disparo(4). O carregador tem capacidade para armazenar até sete dardos. Ele tem como referência o projeto do Instructables[1].

Figura 1: Arma ED-209 Kid

Figura 2: Projéteis NERF

Para identificar o alvo, será necessário desenvolver três módulos distintos:

- i. um módulo de controle da câmera e envio de frames para o computador;
- ii. um módulo de processamento de imagens para identificar o alvo;

iii. um módulo de controle da arma para direcionar e disparar.

Figura 3: Arquitetura Básica

Os três módulos são projetados para suportar todo o processo de identificação do alvo e disparo. Eles estão representados na figura 3. Funcionam da seguinte maneira:

O módulo da câmera é desenvolvido em C++, Python ou Javascript (Node.js) e gerencia uma câmera conectada ao Raspeberry Pi. Ele atua como um servidor de imagens, fornecendo um fluxo contínuo de frames oriundos da câmera.

O Raspberry Pi e o computador estão conectados, permitindo que o módulo cliente, desenvolvido em Python e instalado no computador, se conecte ao servidor de streaming de frames.

Depois que o alvo é identificado e os parâmetros de direção são calculados, o módulo cliente envia um comando para o módulo de controle da arma. Este módulo, em seguida, aciona os servos e motores para direcionar e disparar a arma.

A figura 4 mostra um fluxograma separando as ações que ocorrem no Raspberry e no computador.

Figura 4: Visao geral

É possível verificar na figura 4 que existe um subprocesso no momento que o cliente entra no estado *Connected*. É ali que o processo do cliente entra no seu momento principal.

Toda vez que o programa cliente é rodado, ele começa solicitando conexão ao servidor. Ele recebe a permissão e os dados da sua sessão. Quando chega ao state Connected, ele roda duas threads que realizam duas ações diferentes. É possível ver isso no diagrama da figura 5.

Uma thread recebe os frames ininterruptamente do servidor e os apresenta numa tela. A outra fica disponível para o pipeline de visão computacional quando há um comando de disparo.

Figura 5: Máquina de Estados

3 Objetivos

Com base nos requisitos do projeto, os objetivos a serem alcançados podem ser divididos da seguinte maneira:

1. Desenvolver um módulo para gestão de câmera:

- (a) Integrar a câmera ao Raspberry[2] e configurá-la para capturar imagens em tempo real.
- (b) Implementar funções para controle e ajuste dos parâmetros da câmera, conforme necessário.

2. Desenvolver um módulo para servir frames:

- (a) Implementar um servidor de imagens em C++ no Raspberry para fazer o streaming de frames capturados pela câmera[3].
- (b) Garantir que o servidor seja capaz de lidar com múltiplas conexões e requisições de frames simultaneamente.
- (c) Otimizar o servidor para garantir baixa latência e bom desempenho no envio dos frames.

3. Desenvolver um módulo de conexão e comunicação entre cliente e servidor:

- (a) Implementar um protocolo de comunicação eficiente e confiável entre o programa cliente Python e o servidor de imagens no Arduino.
- (b) Estabelecer conexão e troca de informações entre cliente e servidor, incluindo o envio de comandos e o recebimento de frames.

4. Desenvolver um módulo para receber frames no cliente:

- (a) Implementar um módulo no programa cliente Python para requisitar e receber frames do servidor de imagens no Arduino.
- (b) Exibir os frames recebidos em uma página web em tempo real.

5. Desenvolver um módulo para processar frames no cliente:

- (a) Implementar um pipeline de visão computacional no programa cliente Python para identificar a localização do alvo nos frames recebidos.
- (b) Calcular os parâmetros de direção da arma com base na localização do alvo identificado.
- (c) Enviar comandos para o Arduino controlar os atuadores eletrônicos (servos, motores de passo e motor DC) e ajustar a posição da torre para acertar o alvo.

6. Desenvolver um módulo para controlar os atuadores eletrônicos:

- (a) Implementar um módulo no Arduino para controlar os servos e motores de passo para ajustar a posição da torre.
- (b) Criar um módulo para controlar o motor DC para disparar a arma.

Desenvolver as peças e placas para estrutura do projeto:

- (a) Desenvolver uma placa impressa auxiliar para conectar peças, se necessário.
- (b) Modelar todas as peças em modelos 3D e imprimi-las em impressora 3d.

Além desses objetivos específicos, o projeto também tem como objetivo geral aplicar e aprimorar os conhecimentos adquiridos ao longo do curso de Engenharia de Computação, desenvolver habilidades multidisciplinares e aprofundar o entendimento dos alunos sobre o funcionamento de sistemas integrados.

4 Gantt

M01.T01 Configurar e testar a câmera com Raspberry (Objetivo 1) M01.T02 Implementar e testar o servidor de imagens no Raspberry (Objetivo 2) Desenvolver e testar o módulo de M01.T03 conexão e comunicação entre cliente e servidor (Objetivo 3)	
M01.T01 Raspberry (Objetivo 1) M01.T02 Implementar e testar o servidor de imagens no Raspberry (Objetivo 2) Desenvolver e testar o módulo de M01.T03 conexão e comunicação entre cliente e servidor (Objetivo 3)	
Raspberry (Objetivo 1) M01.T02 Implementar e testar o servidor de imagens no Raspberry (Objetivo 2) Desenvolver e testar o módulo de M01.T03 conexão e comunicação entre cliente e servidor (Objetivo 3)	
imagens no Raspberry (Objetivo 2) Desenvolver e testar o módulo de M01.T03 conexão e comunicação entre cliente e servidor (Objetivo 3)	
Desenvolver e testar o módulo de M01.T03 conexão e comunicação entre cliente e servidor (Objetivo 3)	
M01.T03 conexão e comunicação entre cliente e servidor (Objetivo 3)	
servidor (Objetivo 3)	
M01.T04 Modelagem de circuitos e peças.	
Demonstrar a conexão bem-sucedida	
entre o cliente e o servidor e a	
Entrega transmissão de imagens da câmera,	
assim como a apresentação de todos os	
componentes que serão impressos.	
M02 - Identificação de alvos	
M02.T01 Implementar e testar o módulo para	
receber frames no cliente (Objetivo 4)	
M02.T02 Implementar e testar o módulo para	
processar frames no cliente (Objetivo 5)	
M02.T03 Impressão de peças e criação de	
estruturas.	
Demonstrar a identificação bem-	
sucedida do alvo nos frames recebidos e Entrega a exibição dos resultados na página web	
Entrega a exibição dos resultados na página web	
e todos os componentes 3D e estruturas	
rígidas prontas.	
	Х
M03.T01 Calcular os parâmetros de direção da arma e controlar os atuadores (Objetivo	
Montagem de todos os componentes	
M03.T02 eletrônicos à estrutura e à placa.	
Integrar e testar o sistema completo	
M03.T03 (Objetivo 7)	
Demonstrar o sistema completo em	
funcionamento incluindo a deteccão do	_
Entrega alvo, o cálculo dos parâmetros de	02/06
direção e o controle dos atuadores para	S
acertar o alvo.	
Apresentar o FD-209 Kid propto e	
Entrega funcionando.	х

Figura 6: Diagrama de Gantt

5 Software

Software	Uso	Licença	Custo
VSCode	Programação	MIT	Gratuito
CMake	Compilar código para Raspberry	LGPL/GPL	Gratuito
Solidworks	Modelagem de objetos 3D	Proprietária	Pago
Python	Programação de algoritmos de visão computacional	Python Software Foundation License	Gratuito
Node.js/C++	Servidor de imagens	MIT/GPL	Gratuito
Draw.io	Criação de diagramas	Apache 2.0	Gratuito
Overleaf	Editor LaTeX online	Gratuito	Gratuito
GitHub	Versionamento e compartilhamento de códigos	Gratuito	Gratuito
Git	Gerenciamento de código	GNU GPL	Gratuito
CircuitMaker	Criação de placas impressas	GPL	Gratuito
Fritzing	Diagramas de Arduino mais visuais	GNU GPL	Gratuito

Tabela 1: Lista de softwares, usos, licenças e custos

6 Hardware

Componente	Descrição	Possui?	Preço
Raspberry Pi 4 Model B 4GB	Microcontrolador	Comprado	R\$500,00
Módulo de câmera	Câmera para capturar	Não	R\$150,00
compatível com o Raspberry	imagens		
Pi 4 Model B			
Dois servomotores para	Controlar a direção da	Não	Valor
movimento de inclinação e	arma		
panorâmica			
Dois motores DC pequenos	Acionar o mecanismo de	Não	Valor
para rolos de disparo	disparo		
Um servo adicional para	Alimentação dos dardos	Não	Valor
empurrar os dardos nos			
rolos			
Módulo Wifi para	Conexão sem fio entre o	Não	Valor
comunicação sem fio	Arduino e o computador		
Fonte de alimentação	Energia para o sistema	Não	Valor
adequada para os			
componentes eletrônicos			
(por exemplo, baterias,			
adaptadores AC-DC)			
Protoboard, cabos e	Montagem do circuito em	Não	Valor
conectores	fase de homologação		
Placa impressa	Suporte aos componentes	Não	Valor
	eletrônicos do protótipo		
Arma de dardos Nerf e	Arma e munição	Não	Valor
dardos compatíveis			
Estrutura de suporte à	Impressa em 3D ou	Não	Valor
arma e as NERFs	construída manualmente		

Tabela 2: Lista de componentes de hardware, descrição, disponibilidade e preço

7 Referências Bibliográficas

Referências

[1] Instructables

https://www.instructables.com/Arduino-Controled-Nerf-Vulcan/, Acesso em 25 de março de 2023.

[2] Raspberry Camera v2

 $\label{lem:https://www.raspberrypi.com/products/camera-module-v2/, Acesso em 25 de março de 2023.$

[3] Socket TCP/IP

https://gist.github.com/Tryptich/2a15909e384b582c51b5, Acesso em 25 de março de 2023.

[4] 3d Maker

https://www.youtube.com/watch?v=SZ3yw21vQUg, Acesso em 25 de março de 2023.

[5] Instructables

https://www.instructables.com/Nerf-Vulcan-Sentry-Gun/, Acesso em 25 de março de 2023.

[6] SCHERZ, P, MONK. S. Practical Electronics for Invetors. 4a Ed. New York, Mc Graw Hill Eductaion.