# Density estimation via quantum adiabatic computing

Based on *arXiv*:2303.11346

Matteo Robbiati, Juan Manuel Cruz-Martinez, Stefano Carrazza 20 April 2023









# A screenshot of Quantum Machine Learning (QML)



# Introduction

**②** QML to tackle **Monte Carlo** Integration (MCI).

- QML to tackle **Monte Carlo** Integration (MCI).
- **•** Let's consider the integrand g(x) and a dataset  $\Omega$  sampled from a distribution  $\rho(x)$ . We are interested in calculating:

$$E[g(x)] = \int_{\Omega} g(x)\rho(x)dx. \tag{1}$$

- **QML** to tackle **Monte Carlo** Integration (MCI).
- **•** Let's consider the integrand g(x) and a dataset  $\Omega$  sampled from a distribution  $\rho(x)$ . We are interested in calculating:

$$E[g(x)] = \int_{\Omega} g(x)\rho(x)dx. \tag{1}$$

Thus we need:

- **QML** to tackle **Monte Carlo** Integration (MCI).
- **ullet** Let's consider the integrand g(x) and a dataset  $\Omega$  sampled from a distribution  $\rho(x)$ . We are interested in calculating:

$$E[g(x)] = \int_{\Omega} g(x)\rho(x)dx. \tag{1}$$

- Thus we need:
  - $\blacksquare$  a sample of data  $\Omega$  to be used for evaluating the integral;

- **Q**ML to tackle **Monte Carlo** Integration (MCI).
- **ullet** Let's consider the integrand g(x) and a dataset  $\Omega$  sampled from a distribution  $\rho(x)$ . We are interested in calculating:

$$E[g(x)] = \int_{\Omega} g(x)\rho(x)dx. \tag{1}$$

- Thus we need:
  - $\red$  a sample of data  $\Omega$  to be used for evaluating the integral;
- $\Phi$  a way for estimating the Probability Density Function (PDF) value for each given data  $\rho(x)$ .

- **Q**ML to tackle **Monte Carlo** Integration (MCI).
- **ullet** Let's consider the integrand g(x) and a dataset  $\Omega$  sampled from a distribution  $\rho(x)$ . We are interested in calculating:

$$E[g(x)] = \int_{\Omega} g(x)\rho(x)dx. \tag{1}$$

- Thus we need:
  - $\red$  a sample of data  $\Omega$  to be used for evaluating the integral;
- $\diamondsuit$  a way for estimating the Probability Density Function (PDF) value for each given data  $\rho(x)$ .

#### In this work

We focus on to find a density estimation strategy.

Several HEP deployments exist:

- Several HEP deployments exist:
  - \* Monte Carlo integration requires density estimation techniques;



- Several HEP deployments exist:
  - Monte Carlo integration requires density estimation techniques;
- Parton density function estimation (TH already worked on this<sup>1</sup>);





<sup>&</sup>lt;sup>1</sup>arXiv:2011.13934

- Several HEP deployments exist:
- Monte Carlo integration requires density estimation techniques;
- Parton density function estimation (TH already worked on this<sup>1</sup>);
- **Anomaly detection**: if a PDF is known and punctually evaluable we can use this for hypotesis testing.







<sup>&</sup>lt;sup>1</sup>arXiv:2011.13934

• We are going to follow these steps:

- We are going to follow these steps:
- $\square$  we target the **Cumulative Density Function** (CDF) of a sampled  $\Omega$ ;

и

- We are going to follow these steps:
- $\square$  we target the **Cumulative Density Function** (CDF) of a sampled  $\Omega$ ;
- we define a new **Quantum Adiabatic Machine Learning** (QAML) strategy for tackling 1d fitting problems;

и

- We are going to follow these steps:
- $\square$  we target the **Cumulative Density Function** (CDF) of a sampled  $\Omega$ ;
- we define a new **Quantum Adiabatic Machine Learning** (QAML) strategy for tackling 1d fitting problems;
- we fit the CDF via QAML;

и

- We are going to follow these steps:
- $\square$  we target the **Cumulative Density Function** (CDF) of a sampled  $\Omega$ ;
- we define a new **Quantum Adiabatic Machine Learning** (QAML) strategy for tackling 1d fitting problems;
- we fit the CDF via QAML;
- we use parameter-shift rules for calculating the PDF as derivative of the CDF;

- We are going to follow these steps:
- $\square$  we target the **Cumulative Density Function** (CDF) of a sampled  $\Omega$ ;
- we define a new **Quantum Adiabatic Machine Learning** (QAML) strategy for tackling 1d fitting problems;
- we fit the CDF via QAML;
- we use parameter-shift rules for calculating the PDF as derivative of the CDF;
- we validate the procedure on some test cases.

- We are going to follow these steps:
  - $\square$  we target the **Cumulative Density Function** (CDF) of a sampled  $\Omega$ ;
  - we define a new **Quantum Adiabatic Machine Learning** (QAML) strategy for tackling 1d fitting problems;
  - we fit the CDF via QAML;
  - we use parameter-shift rules for calculating the PDF as derivative of the CDF;
  - we validate the procedure on some test cases.

```
1 import qibo
2
3 # in some boxes like this
4 # we will show how to implement the QAML strategy

Code here: qiboteam/adiabatic-fit
```

# METHOD: CDF fit with a VQC

# Simple case: 1d data in $\mathcal{D} = [0, 1]$ .

**•** Each  $x \in \Omega$  can be labeled with its empirical CDF<sup>2</sup> value F(x), which is related to the PDF value via  $\rho(x) = \frac{dF(x)}{dx}$ .



<sup>&</sup>lt;sup>2</sup>Cumulative Density Function: after sorting the data, F(x) is calculated by counting how many elements are smaller then the target one.

 $\bullet$  It is great to use a VQC as model for estimating F:

 $\bullet$  It is great to use a VQC as model for estimating F:

$$\hat{F}(x;\theta) \equiv \langle \psi_i | \mathcal{C}^{\dagger}(x;\theta) \, \hat{\mathcal{O}} \, \mathcal{C}(x;\theta) | \psi_i \rangle \,, \tag{2}$$

where  $C(x; \theta)$ , O and  $\psi_i$  are the respectively the VQC, a target observable and the initial state on which we apply C.

 $\bullet$  It is great to use a VQC as model for estimating F:

$$\hat{F}(x;\theta) \equiv \langle \psi_i | \mathcal{C}^{\dagger}(x;\theta) \, \hat{\mathcal{O}} \, \mathcal{C}(x;\theta) | \psi_i \rangle \,, \tag{2}$$

where  $C(x; \theta)$ , O and  $\psi_i$  are the respectively the VQC, a target observable and the initial state on which we apply C.

• We know how to derivate circuits, *e.g.* using the Parameter Shift Rule (PSR)<sup>3</sup>, thanks to which we can calculate:

$$\partial_{\mu}\hat{F} = r[\hat{F}(\mu^{+}) - \hat{F}(\mu^{-})]. \tag{3}$$

<sup>3</sup>arXiv:1811 11184

 $\bullet$  It is great to use a VQC as model for estimating F:

$$\hat{F}(x;\boldsymbol{\theta}) \equiv \langle \psi_i | \mathcal{C}^{\dagger}(x;\boldsymbol{\theta}) \, \hat{\mathcal{O}} \, \mathcal{C}(x;\boldsymbol{\theta}) | \psi_i \rangle \,, \tag{2}$$

where  $C(x; \theta)$ , O and  $\psi_i$  are the respectively the VQC, a target observable and the initial state on which we apply C.

• We know how to derivate circuits, e.g. using the Parameter Shift Rule  $(PSR)^3$ , thanks to which we can calculate:

$$\partial_{\mu}\hat{F} = r[\hat{F}(\mu^{+}) - \hat{F}(\mu^{-})]. \tag{3}$$

• In case of rotational gates<sup>4</sup>  $\exp\left\{-i\mu\hat{\sigma}\right\}$  we have  $r=0.5, \ \mu^{\pm}=\mu\pm s$  and  $s=\pi/2$ .

<sup>&</sup>lt;sup>3</sup>arXiv:1811.11184

<sup>&</sup>lt;sup>4</sup>arXiv:1803.00745

• We can upload x into a rotation angle and calculate  $\partial_x \hat{F}$ .

```
from gibo import models, gates, hamiltonians, derivative
  # here you define a parametric circuit c as explained during the tutorials
   # in which you upload x into the p-th rotation angle, as theta = x*PAR
  # then you define an observable
   h = hamiltonians.Z(ngubits=1)
   \# derivative with respect to x of < h >
   derivative = derivative.parameter_shift(
10
       circuit = c,
                                        # parametric circuit
11
       hamiltonian = h,
                                      # target observable
       parameter_index = p.
                                      # parameter index
       initial_state = initial_state , # initial state (before applying c)
       scale_factor = scale_factor) # in this case PAR
```

• We can upload x into a rotation angle and calculate  $\partial_x \hat{F}$ .

```
from gibo import models, gates, hamiltonians, derivative
   # here you define a parametric circuit c as explained during the tutorials
   # in which you upload x into the p-th rotation angle, as theta = x*PAR
  # then you define an observable
  h = hamiltonians.Z(ngubits=1)
   # derivative with respect to x of < h >
   derivative = derivative.parameter_shift(
10
       circuit = c.
                                       # parametric circuit
       hamiltonian = h,
                                      # target observable
       parameter_index = p.
                                     # parameter index
       initial_state = initial_state . # initial_state (before applying c)
       scale_factor = scale_factor) # in this case PAR
```

#### In a nutshell

We estimate the CDF using a VQC and we derivate it with the PSR for calculating the PDF.

### Two problems

- We tried to fit CDFs using a VQC as QML model, but we had two problems:
- by encoding x into the rotation angles, our results often did not retain a **strictly increasing monotony**.
- we need to fix  $\hat{F}(0) = 0$  and  $\hat{F}(1) = 1$ , so we need to manipulate  $\hat{F}$  in order to follow these constraints.
- These conditions are needed if we deal with CDFs.



METHOD: Quantum Adiabatic ML

Let's use an Adiabatic Evolution (AE) as model:

$$H_{ad} = H_0 [1 - s(\tau; \boldsymbol{\theta})] + s(\tau; \boldsymbol{\theta}) H_1, \tag{4}$$

 $oldsymbol{\circ}$  following a scheduling s, depending on the evolution time  $\tau \in [0,1]$  and on some variational parameters  $oldsymbol{\theta}$ .

g

Let's use an Adiabatic Evolution (AE) as model:

$$H_{ad} = H_0[1 - s(\tau; \boldsymbol{\theta})] + s(\tau; \boldsymbol{\theta})H_1, \tag{4}$$

 $oldsymbol{\bullet}$  following a scheduling s, depending on the evolution time  $\tau \in [0,1]$  and on some variational parameters  $oldsymbol{\theta}$ .

```
with gibo we can implement an Adiabatic Evolution via trotter formula
   from gibo import models, hamiltonians, callbacks
   # problem's parameters
  h0 = hamiltonians.X(ngubits)
   h1 = hamiltonians.Z(ngubits)
   target_observable = h1
  # we track the energy of h1 on the evolved ground state
   energies = callbacks. Energy (target_observable)
   evolution = models. Adiabatic Evolution (
       h0=h0, h1=h1, s = lambda t : t, dt=0.1, callbacks = [energies])
  # calculate the evolved final state at time t=final_time
16 evolved_state = evolution(final_time = final_time)
```

• We encode our problem into an AE by mapping (x, F) into  $(\tau, E)$ : evolution time  $\tau$  and target observable's energy E.

• We encode our problem into an AE by mapping (x, F) into  $(\tau, E)$ : evolution time  $\tau$  and target observable's energy E.

• An AE **naturally** solves the two problems:

• We encode our problem into an AE by mapping (x, F) into  $(\tau, E)$ : evolution time  $\tau$  and target observable's energy E.

An AE naturally solves the two problems:

the evolution is naturally monotonic.

- We encode our problem into an AE by mapping (x, F) into  $(\tau, E)$ : evolution time  $\tau$  and target observable's energy E.
- An AE **naturally** solves the two problems:
- the evolution is naturally monotonic.
- % we can fix  $\hat{F}(0) = 0$  and  $\hat{F}(1) = 1$  by chosing  $H_0$  and  $H_1$  such that their ground-state energies are zero and one.

#### Adiabatic Evolution (AE) as QML model

- We encode our problem into an AE by mapping (x, F) into  $(\tau, E)$ : evolution time  $\tau$  and target observable's energy E.
- An AE **naturally** solves the two problems:
- the evolution is naturally monotonic.
- % we can fix  $\hat{F}(0) = 0$  and  $\hat{F}(1) = 1$  by chosing  $H_0$  and  $H_1$  such that their ground-state energies are zero and one.
- We want to push the Energy of  $\mathcal{O}$  to approximate the target F value when  $\tau$  corresponds to the target variable x.

#### Adiabatic Evolution (AE) as QML model

- We encode our problem into an AE by mapping (x, F) into  $(\tau, E)$ : evolution time  $\tau$  and target observable's energy E.
- An AE naturally solves the two problems:
- the evolution is naturally monotonic.
- **%** we can fix  $\hat{F}(0) = 0$  and  $\hat{F}(1) = 1$  by chosing  $H_0$  and  $H_1$  such that their ground-state energies are zero and one.
- $oldsymbol{\circ}$  We want to push the Energy of  $\mathcal O$  to approximate the target F value when  $\tau$  corresponds to the target variable x.

#### Optimizing the AE

The task becomes to optimize the scheduling parameters in order to let the AE pass through the training points.

METHOD: Optimizing the AE

# Optimizing the AE - ansatz and optimizer

• We use a **CMA-ES**<sup>5</sup> genetic algorithm and the following loss function:

$$J_{\text{MSE}} = \frac{1}{N_{\text{train}}} \sum_{k=1}^{N_{\text{train}}} \left[ F(x_k) - E_k(\theta) \right]^2.$$
 (5)

<sup>&</sup>lt;sup>5</sup>arXiv:1604.00772

# Optimizing the AE - ansatz and optimizer

• We use a **CMA-ES**<sup>5</sup> genetic algorithm and the following loss function:

$$J_{\text{MSE}} = \frac{1}{N_{\text{train}}} \sum_{k=1}^{N_{\text{train}}} \left[ F(x_k) - E_k(\boldsymbol{\theta}) \right]^2.$$
 (5)

• Thus we evolve the system using a **polynomial scheduling** function<sup>6</sup>:

$$s(t;\theta) = \frac{1}{\eta} \sum_{i=1}^{p} \theta_i x^i, \quad \text{with} \quad \eta = \sum_{i=1}^{p} \theta_i, \quad (6)$$

<sup>&</sup>lt;sup>5</sup>arXiv:1604.00772

 $<sup>^6</sup>$ One is free to set a custom anstatz, e.g. a neural network. With qibo an s function is required such as s(0)=0 and s(1)=1.

# Optimizing the AE - ansatz and optimizer

• We use a **CMA-ES**<sup>5</sup> genetic algorithm and the following loss function:

$$J_{\text{MSE}} = \frac{1}{N_{\text{train}}} \sum_{k=1}^{N_{\text{train}}} \left[ F(x_k) - E_k(\boldsymbol{\theta}) \right]^2.$$
 (5)

• Thus we evolve the system using a **polynomial scheduling** function<sup>6</sup>:

$$s(t;\theta) = \frac{1}{\eta} \sum_{i=1}^{p} \theta_i x^i, \quad \text{with} \quad \eta = \sum_{i=1}^{p} \theta_i, \quad (6)$$

#### In each optimization step

We execute the evolution collecting  $\{E_k\}$ , thanks to which we evaluate  $J_{\text{MSE}}$ . Then, we update  $\theta$  according to the chosen technique.

<sup>&</sup>lt;sup>5</sup>arXiv:1604.00772

 $<sup>^6</sup>$ One is free to set a custom anstatz, e.g. a neural network. With qibo an s function is required such as s(0)=0 and s(1)=1.

The optimization step is performed using qibo:

```
import gibo
  # before we define a loss_evaluation function as J_MSE
   def loss_evaluation(parameters): {...}
   # then we use the cma optimizer provided by qibo
   def optimize(force_positive=False, method="cma"):
       """ Use gibo to optimize the parameters of the schedule function'
8
10
       options = {
11
          "ftarget": target.
                                           # Target loss function
           "maxiter": max_iterations. # Maximum number of iterations
13
           "maxfeval": max_evals,
                                           # Maximum number of function evaluations
14
15
16
       # forcing the parameters to be positive: unused in this case.
17
       if force_positive:
18
           options ["bounds"] = [0, 1e5]
19
20
       result = qibo.optimizers.optimize(loss_evaluation, parameters, method=method,
         options=options)
21
       return result
```

#### A toy example with nqubits=1 - starting point

• nparams=20, dt=0.1, final\_time=50 , target\_loss=None



#### A toy example - until $J_{\rm MSE}=10^{-1}$

• nparams=20, dt=0.1, final\_time=50 , target\_loss=1e-1



#### A toy example - until $J_{\rm MSE}=10^{-2}$

• nparams=20, dt=0.1, final\_time=50 , target\_loss=1e-2



#### A toy example - ending at $J_{\rm MSE}=10^{-4}$

• nparams=20, dt=0.1, final\_time=50 , target\_loss=1e-4



DERIVATION: from  $\{H_j\}$  to a circuit

• As previously said, we want to apply some **derivation rules**.

- As previously said, we want to apply some **derivation rules**.
- lacktriangle During an nsteps-AE, we get nsteps "local time" adiabatic hamiltonians  $\{H_j\}$ .

- As previously said, we want to apply some **derivation rules**.
- During an nsteps-AE, we get nsteps "local time" adiabatic hamiltonians  $\{H_j\}$ .
- **②** Each of these can be associated with an **instantaneous** time evolution operator  $U_j$ , which at  $\tau_j = j \, dt$  should be applied on to the state obtained in  $\tau_{j-1}$ .

- As previously said, we want to apply some **derivation rules**.
- During an nsteps-AE, we get nsteps "local time" adiabatic hamiltonians  $\{H_i\}$ .
- **②** Each of these can be associated with an **instantaneous** time evolution operator  $U_j$ , which at  $\tau_j = j \, dt$  should be applied on to the state obtained in  $\tau_{j-1}$ .
- $\bullet$  The time-evolved state  $\tau_n$  is obtained as follows:

$$|\psi(\tau_n)\rangle = \prod_{j=0}^n U(\tau_j) |\psi(\tau_0)\rangle, \qquad (7)$$

where the initial state is the ground state of  $H_0$  by construction.

**②** To calculate the derivative of (7) is not trivial, is better to have a **single unitary**  $C(\tau)$  which sums up all the sequence needed to get the evolved state at  $\tau$ .

**②** To calculate the derivative of (7) is not trivial, is better to have a **single unitary**  $C(\tau)$  which sums up all the sequence needed to get the evolved state at  $\tau$ .

For doing this:

**②** To calculate the derivative of (7) is not trivial, is better to have a **single unitary**  $C(\tau)$  which sums up all the sequence needed to get the evolved state at  $\tau$ .

For doing this:

1. we noticed that each  $U_j = \exp\{-iH_j d\tau\}$  can be diagonalized;

**②** To calculate the derivative of (7) is not trivial, is better to have a **single unitary**  $C(\tau)$  which sums up all the sequence needed to get the evolved state at  $\tau$ .

For doing this:

- 1. we noticed that each  $U_i = \exp\{-iH_i d\tau\}$  can be diagonalized;
- 2. once diagonalized  $\forall j$ , we consider the limit such that  $d\tau \to 0$ ;

• To calculate the derivative of (7) is not trivial, is better to have a **single unitary**  $C(\tau)$  which sums up all the sequence needed to get the evolved state at  $\tau$ .

For doing this:

- 1. we noticed that each  $U_i = \exp\{-iH_i d\tau\}$  can be diagonalized;
- 2. once diagonalized  $\forall j$ , we consider the limit such that  $d\tau \rightarrow 0$ ;
- 3. thanks to which the diagonalizing element  $P_j P_{j-1}^{-1} o I$  and we get:

$$C(\tau) = \Lambda_{t0} P_t \exp\left\{-it \int_0^t \hat{D}(t) dt\right\} P_0^{-1}, \tag{8}$$

Where the  $\Lambda$  factor is is used to make the determinant of P be one and  $\hat{D}$  is the diagonalized hamiltonian.

• To calculate the derivative of (7) is not trivial, is better to have a **single unitary**  $C(\tau)$  which sums up all the sequence needed to get the evolved state at  $\tau$ .

For doing this:

- 1. we noticed that each  $U_i = \exp\{-iH_i d\tau\}$  can be diagonalized;
- 2. once diagonalized  $\forall j$ , we consider the limit such that  $d\tau \to 0$ ;
- 3. thanks to which the diagonalizing element  $P_j P_{j-1}^{-1} \to I$  and we get:

$$C(\tau) = \Lambda_{t0} P_t \exp\left\{-it \int_0^t \hat{D}(t) dt\right\} P_0^{-1}, \tag{8}$$

Where the  $\Lambda$  factor is is used to make the determinant of P be one and  $\hat{D}$  is the diagonalized hamiltonian.

4. Now we have a circuit C after which evaluate  $\hat{Z}$ .

# From $\mathcal C$ to a 3-rotations circuit $\mathcal C_R$

 $oldsymbol{\odot}$  We have a unitary  $\mathcal{C}$ , of which we can calculate the elements  $c_{ij}$ .

#### From C to a 3-rotations circuit $C_R$

- lacktriangle We have a unitary  $\mathcal{C}$ , of which we can calculate the elements  $c_{ij}$ .
- The final step is to re-write this unitary in a form on which we can use the **parameter shift rule**.

#### From C to a 3-rotations circuit $C_R$

- lacktriangle We have a unitary C, of which we can calculate the elements  $c_{ij}$ .
- The final step is to re-write this unitary in a form on which we can use the **parameter shift rule**.
- **©** Each unitary  $C \in SU(2)$  can be written as sequence of **three rotations** using the Euler angles:

$$C \equiv R_z(\phi)R_x(\theta)R_z(\psi), \tag{9}$$

# From $\mathcal C$ to a 3-rotations circuit $\mathcal C_R$

- lacktriangle We have a unitary C, of which we can calculate the elements  $c_{ij}$ .
- The final step is to re-write this unitary in a form on which we can use the **parameter shift rule**.
- **©** Each unitary  $C \in SU(2)$  can be written as sequence of **three rotations** using the Euler angles:

$$C \equiv R_z(\phi)R_x(\theta)R_z(\psi), \tag{9}$$

in which the relationships between the angles and the elements of  ${\cal C}$  are:

$$\begin{cases} \phi = \pi/2 - \arg(c_{01}) - \arg(c_{00}) \\ \theta = -2\arccos(|c_{00}|) \\ \psi = \arg(c_{01}) - \pi/2 - \arg(c_{00}). \end{cases}$$
(10)

# From C to a 3-rotations circuit $C_R$

- lacktriangle We have a unitary C, of which we can calculate the elements  $c_{ij}$ .
- The final step is to re-write this unitary in a form on which we can use the **parameter shift rule**.
- **②** Each unitary  $C \in SU(2)$  can be written as sequence of **three rotations** using the Euler angles:

$$C \equiv R_z(\phi)R_x(\theta)R_z(\psi), \tag{9}$$

in which the relationships between the angles and the elements of  ${\cal C}$  are:

$$\begin{cases} \phi = \pi/2 - \arg(c_{01}) - \arg(c_{00}) \\ \theta = -2\arccos(|c_{00}|) \\ \psi = \arg(c_{01}) - \pi/2 - \arg(c_{00}). \end{cases}$$
(10)

Now we can derivate with respect to the rotation angles!

# DERIVATION: derivating $\mathcal{C}_R$ via PSR

#### Derivating $C_R$ to get the PDF

lacktriangle I we call heta one of the three angles, we get  $\partial_{ au}\hat{F}$  by calculating:

$$\partial_{\tau}\hat{F}(\tau;\boldsymbol{\theta}) = \sum_{i=1}^{3} \frac{\partial \hat{F}}{\partial \theta_{i}} \frac{\partial \theta_{i}}{\partial s} \frac{\partial s}{\partial \tau}, \tag{11}$$

#### Derivating $C_R$ to get the PDF

 $oldsymbol{\Theta}$  I we call  $\theta$  one of the three angles, we get  $\partial_{\tau}\hat{F}$  by calculating:

$$\partial_{\tau} \hat{F}(\tau; \boldsymbol{\theta}) = \sum_{i=1}^{3} \frac{\partial \hat{F}}{\partial \theta_{i}} \frac{\partial \theta_{i}}{\partial s} \frac{\partial s}{\partial \tau}, \tag{11}$$

• where the first term is calculated via parameter shift rule, and the remaining twos can be obtained **analytically** if we use an analytical ansatz for s.

#### Derivating $C_R$ to get the PDF

 $\bullet$  I we call  $\theta$  one of the three angles, we get  $\partial_{\tau}\hat{F}$  by calculating:

$$\partial_{\tau}\hat{F}(\tau;\boldsymbol{\theta}) = \sum_{i=1}^{3} \frac{\partial \hat{F}}{\partial \theta_{i}} \frac{\partial \theta_{i}}{\partial s} \frac{\partial s}{\partial \tau}, \tag{11}$$

• where the first term is calculated via parameter shift rule, and the remaining twos can be obtained **analytically** if we use an analytical ansatz for *s*.

#### Summary

- >\_ We fit the eCDF via QAML;
- $\rightarrow$  we translate  $\{H_j\}$  into  $\mathcal{C}_R$ ;
- >\_ we derivate the result via chain rule.





- We performed the QAML strategy to some test cases.
- We did it by simulating circuits both in ideal<sup>7</sup> and shot-noisy<sup>8</sup> way.

<sup>&</sup>lt;sup>7</sup>Exact state vector simulation

 $<sup>^8\</sup>mathsf{Sampling}$  the frequencies from the simulated state

- We performed the QAML strategy to some test cases.
- We did it by simulating circuits both in ideal<sup>7</sup> and shot-noisy<sup>8</sup> way.
- **②** In the following table we collect realistic results in which we used  $N_{\rm shots} = 2 \cdot 10^5$  shots for evaluating  $\hat{F}$ .

| Fit function | $N_{\mathrm{sample}}$ | р  | $J_f$                | $N_{ m ratio}$ | $\chi^2$             |
|--------------|-----------------------|----|----------------------|----------------|----------------------|
| Gamma        | $5 \cdot 10^{4}$      | 25 | $2.9 \cdot 10^{-6}$  | 31             | $2.2 \cdot 10^{-4}$  |
| Gaussian mix | $2 \cdot 10^5$        | 30 | $2.75 \cdot 10^{-5}$ | 31             | $4.39 \cdot 10^{-3}$ |
| t            | $5 \cdot 10^4$        | 20 | $2.1\cdot 10^{-6}$   | 34             | $3.4 \cdot 10^{-4}$  |
| S            | $5 \cdot 10^4$        | 20 | $7.9 \cdot 10^{-6}$  | 34             | $1.20 \cdot 10^{-3}$ |
| У            | 5 · 10 <sup>4</sup>   | 8  | $3.7 \cdot 10^{-6}$  | 34             | $1.45 \cdot 10^{-3}$ |

Table 1: Summary.  $N_{\rm shots} = 5 \cdot 10^4$ .

<sup>&</sup>lt;sup>7</sup>Exact state vector simulation

<sup>&</sup>lt;sup>8</sup>Sampling the frequencies from the simulated state

- We performed the QAML strategy to some test cases.
- We did it by simulating circuits both in ideal<sup>7</sup> and shot-noisy<sup>8</sup> way.
- In the following table we collect realistic results in which we used  $N_{\rm shots} = 2 \cdot 10^5$  shots for evaluating  $\hat{F}$ .

| Fit function | $N_{\mathrm{sample}}$ | р  | $J_f$                | $N_{ m ratio}$ | $\chi^2$             |
|--------------|-----------------------|----|----------------------|----------------|----------------------|
| Gamma        | $5 \cdot 10^{4}$      | 25 | $2.9 \cdot 10^{-6}$  | 31             | $2.2 \cdot 10^{-4}$  |
| Gaussian mix | $2 \cdot 10^5$        | 30 | $2.75 \cdot 10^{-5}$ | 31             | $4.39 \cdot 10^{-3}$ |
| t            | $5 \cdot 10^4$        | 20 | $2.1\cdot 10^{-6}$   | 34             | $3.4 \cdot 10^{-4}$  |
| S            | $5 \cdot 10^4$        | 20 | $7.9 \cdot 10^{-6}$  | 34             | $1.20 \cdot 10^{-3}$ |
| У            | $5 \cdot 10^4$        | 8  | $3.7 \cdot 10^{-6}$  | 34             | $1.45 \cdot 10^{-3}$ |

**Table 1:** Summary.  $N_{\rm shots} = 5 \cdot 10^4$ .

lacktriangle The last three elements in the table refers to a pp o t ar t production.

<sup>&</sup>lt;sup>7</sup>Exact state vector simulation

<sup>&</sup>lt;sup>8</sup>Sampling the frequencies from the simulated state

## Test 1: Gamma CDF



Figure 1: We show the sample (grey hist), ideal (red line) and realistic (blue line) simulation, theoretical CDF of the gamma distribution (dashed black line).

### Test 1: Gamma PDF





Figure 2: Above: data (grey hist), ideal (red) and realistic (blue) simulation, theoretical PDF law (dashed black line). Below: same quantities but normalized with respect to the true law with the addition of a second realistic simulation (yellow) line.

# Test 2: gaussian mixture CDF



Figure 3: We show the sample (grey hist), ideal (red line) and realistic (blue line) simulation, theoretical CDF of the gamma distribution (dashed black line).

# Test 2: gaussian mixture PDF





Figure 4: Above: data (grey hist), ideal (red) and realistic (blue) simulation, theoretical PDF law (dashed black line). Below: same quantities but normalized with respect to the true law with the addition of a second realistic simulation (yellow) line.

# Test 3: quantum generation of pp o t ar t



<sup>&</sup>lt;sup>9</sup>arXiv:2110.06933

<sup>&</sup>lt;sup>10</sup>s and t Mandelstam variables, y rapidity.

# HEP 1: y CDF



Figure 5: We show the sample (grey hist), ideal (red line) and realistic (blue line) simulation, quantum GAN eCDF (yellow).

# HEP 1: y PDF

#### PDF estimation - y in $pp \rightarrow t\bar{t}$ decay



Figure 6: Above: data (grey hist), ideal (red) and realistic (blue) simulation. Below: same quantities but normalized with respect to the true law with the addition of a second realistic simulation (yellow) line.

### HEP 2: t CDF



Figure 7: We show the sample (grey hist), ideal (red line) and realistic (blue line) simulation, quantum GAN eCDF (yellow).

# HEP 2: t PDF

#### PDF estimation - t in $pp \rightarrow t\bar{t}$ decay



Figure 8: Above: data (grey hist), ideal (red) and realistic (blue) simulation. Below: same quantities but normalized with respect to the true law with the addition of a second realistic simulation (yellow) line.

### HEP 3: s CDF



Figure 9: We show the sample (grey hist), ideal (red line) and realistic (blue line) simulation, quantum GAN eCDF (yellow).

# HEP 3: s PDF

#### PDF estimation - s in $pp \rightarrow t\bar{t}$ decay



Figure 10: Above: data (grey hist), ideal (red) and realistic (blue) simulation. Below: same quantities but normalized with respect to the true law with the addition of a second realistic simulation (yellow) line.



Open roads:

Open roads:

improve QAML validation: try more general scheduling functions (e.g. ANNs), benchmarking with other density estimation techniques;

 $<sup>^{11}</sup>$ In case of  $\it{iid}$  random variables this model can be used individually for each dimension.

- Open roads:
- improve QAML validation: try more general scheduling functions (e.g. ANNs), benchmarking with other density estimation techniques;
- ☐ hardware deployment: can a NISQ device be used for this? what is the speed-up advantage when running the QAML on annealers?
- multi-dimensional 11 PDFs: how to preserve correlations? how to exploit multi-qubits hamiltonians?

 $<sup>^{11}</sup>$ In case of iid random variables this model can be used individually for each dimension.

- Open roads:
- improve QAML validation: try more general scheduling functions (e.g. ANNs), benchmarking with other density estimation techniques;
- ☐ hardware deployment: can a NISQ device be used for this? what is the speed-up advantage when running the QAML on annealers?
- multi-dimensional PDFs: how to preserve correlations? how to exploit multi-qubits hamiltonians?
- use the QAML strategy for integrating, *e.g.* deploying of a new NNPDF feature;

 $<sup>^{11}</sup>$ In case of iid random variables this model can be used individually for each dimension.

- Open roads:
- improve QAML validation: try more general scheduling functions (e.g. ANNs), benchmarking with other density estimation techniques;
- ☐ hardware deployment: can a NISQ device be used for this? what is the speed-up advantage when running the QAML on annealers?
- multi-dimensional PDFs: how to preserve correlations? how to exploit multi-qubits hamiltonians?
- ☑ use the QAML strategy for integrating, *e.g.* deploying of a new NNPDF feature:
- anomaly detection applications of the QAML algorithm.

 $<sup>^{11}</sup>$ In case of *iid* random variables this model can be used individually for each dimension.

#### Some references

- We leave some references and links thanks to which you can use our codes and read more about the project:
- </> open-access codes for personal 
   coding or contributing:
  - the qibo package;
  - the qibolab package;
  - the qibocal package;

- our official webpage, with the following documentations:
  - the qibo docs;
  - the qibolab docs;
  - the qibocal docs;

The code is open-source and available here!