SPECIAL COMPLEX ANALYSIS

Qualifying Exam for Khaled Al-Agha July 1, 1992 (Burckel)

In the following \mathbb{C} denotes the set of all complex numbers, \mathbb{D} the set $\{z \in \mathbb{C} : |z| < 1\}$ and $H(\mathbb{D})$ the set of all holomorphic functions on \mathbb{D} .

- 1. Show that if $g: \Omega \to \mathbb{C}$ is continuous and e^g is holomorphic, then g is holomorphic. (That is, a **continuous** logarithm of a holomorphic function is necessarily holomorphic.)
- 2. Show directly (without reference to the concept of simple-connectivity) that every zero-free function $f \in H(\mathbb{D})$ has a holomorphic logarithm; that is, $\exists g \in H(\mathbb{D})$ such that $f = e^g$.
- 3. Show directly (without reference to the concept of simple-connectivity) that the identity function, I(z) = z, in $\mathbb{C} \setminus \{0\}$ has no continuous logarithm. Hint: Problem 1 may be useful.
- 4. (a) f is continuous on $\overline{\mathbb{D}}$, holomorphic in \mathbb{D} . Show that f is uniformly approximable on $\overline{\mathbb{D}}$ by polynomials. Hint: First approximate f uniformly on $\overline{\mathbb{D}}$ by a function f_r which is holomorphic in D(0, 1/r), 0 < r < 1.
 - (b) State and prove the converse of (a).

5. State

- (a) the Maximum Modulus Principle for holomorphic functions,
- (b) the Open Map Theorem for holomorphic functions.
- (c) Show that (a) can be deduced from (b).
- **6.** Show that $\int_{\partial \mathbb{D}} \frac{e^{\pi z}}{4z^2 + 1} dz = \pi i$.

- 8. Let Ω be a bounded region in \mathbb{C} , $f:\overline{\Omega}\to\mathbb{C}$ a continuous non-constant function which is holomorphic in Ω and maps $\partial\Omega$ into \mathbb{T} .
 - (i) Show that $0 \in f(\Omega)$.
 - (ii) Show that $f(\Omega) = \mathbb{D}$.

Hint: To get "\(\times\)", apply (i) to $\phi \circ f$ for certain holomorphic maps ϕ of $\mathbb D$ into $\mathbb D$.

9. f is continuous on $\overline{\mathbb{D}}$, holomorphic in \mathbb{D} and diam $f(\mathbb{T}) \leq 1$. Show that diam $f(r\mathbb{T}) \leq r$ for each $0 \leq r \leq 1$.

Hint: diam $f(r\mathbb{T}) := \max\{|f(ru_1) - f(ru_2)| : u_1, u_2 \in \mathbb{T}\}$. If this is achieved at u_1, u_2 , consider the holomorphic function $F(z) := f(zu_1) - f(zu_2)$.

- 10. $h: \mathbb{C} \to \mathbb{R}$ is harmonic and non-constant.
 - (i) Prove that h is not bounded above.
 - (ii) Prove that h is not bounded below.
 - (iii) Prove that $h(\mathbb{C}) = \mathbb{R}$.