### Hierarchical models

Dr. Jarad Niemi

STAT 544 - Iowa State University

February 9, 2024

### Outline

- Motivating example
  - Independent vs pooled estimates
- Hierarchical models
  - General structure
  - Posterior distribution
- Binomial hierarchial model
  - Posterior distribution
  - Prior distributions
- Stan analysis of binomial hierarchical model
  - informative prior
  - default prior
  - ullet integrating out heta
  - across seasons

# Andre Dawkin's three-point percentage

Suppose  $Y_i$  are the number 3-pointers Andre Dawkin's makes in season i, and assume

$$Y_i \stackrel{ind}{\sim} Bin(n_i, \theta_i)$$

#### where

- ullet  $n_i$  are the number of 3-pointers attempted and
- $\theta_i$  is the probability of making a 3-pointer in season i.

#### Do these models make sense?

- The 3-point percentage every season is the same, i.e.  $\theta_i = \theta$ .
- The 3-point percentage every season is independent of other seasons.
- The 3-point percentage a season should be similar to other seasons.

# Andre Dawkin's three-point percentage

Suppose  $Y_i$  are the number of 3-pointers Andre Dawkin's makes in game i, and assume

$$Y_i \stackrel{ind}{\sim} Bin(n_i, \theta_i)$$

#### where

- $n_i$  are the number of 3-pointers attempted in game i and
- $\theta_i$  is the probability of making a 3-pointer in game i.

#### Do these models make sense?

- The 3-point percentage every game is the same, i.e.  $\theta_i = \theta$ .
- The 3-point percentage every game is independent of other games.
- The 3-point percentage a game should be similar to other games.

# Andre Dawkin's 3-point percentage



# Andre Dawkin's 3-point percentage

| date       | opponent         | made | attempts | game |
|------------|------------------|------|----------|------|
| 2013-11-08 | davidson         | 0    | 0        | 1    |
| 2013-11-12 | kansas           | 0    | 0        | 2    |
| 2013-11-15 | florida atlantic | 5    | 8        | 3    |
| 2013-11-18 | unc asheville    | 3    | 6        | 4    |
| 2013-11-19 | east carolina    | 0    | 1        | 5    |
| 2013-11-24 | vermont          | 3    | 9        | 6    |
| 2013-11-27 | alabama          | 0    | 2        | 7    |
| 2013-11-29 | arizona          | 1    | 1        | 8    |
| 2013-12-03 | michigan         | 2    | 2        | 9    |
| 2013-12-16 | gardner-webb     | 4    | 8        | 10   |
| 2013-12-19 | ucla             | 1    | 5        | 11   |
| 2013-12-28 | eastern michigan | 6    | 10       | 12   |
| 2013-12-31 | elon             | 5    | 7        | 13   |
| 2014-01-04 | notre dame       | 1    | 4        | 14   |
| 2014-01-07 | georgia tech     | 1    | 5        | 15   |
| 2014-01-11 | clemson          | 0    | 4        | 16   |
| 2014-01-13 | virginia         | 1    | 1        | 17   |
| 2014-01-18 | nc state         | 3    | 7        | 18   |
| 2014-01-22 | miami            | 2    | 6        | 19   |
| 2014-01-25 | florida state    | 3    | 6        | 20   |
| 2014-01-27 | pitt             | 6    | 7        | 21   |
| 2014-02-01 | syracuse         | 4    | 9        | 22   |
| 2014-02-04 | wake forest      | 4    | 7        | 23   |
| 2014-02-08 | boston college   | 0    | 1        | 24   |

### Hierarchical models

#### Consider the following model

$$y_i \stackrel{ind}{\sim} p(y|\theta_i)$$

$$\theta_i \stackrel{ind}{\sim} p(\theta|\phi)$$

$$\phi \sim p(\phi)$$

#### where

- $y_i$  is observed,
- $\bullet$   $\theta = (\theta_1, \dots, \theta_n)$  and  $\phi$  are parameters, and
- only  $\phi$  has a prior that is set.

This is a hierarchical or multilevel model.

### Posterior distribution for hierarchical models

The joint posterior distribution of interest in hierarchical models is

$$p(\theta,\phi|y) \propto p(y|\theta,\phi)p(\theta,\phi) = p(y|\theta)p(\theta|\phi)p(\phi) = \Big[\prod_{i=1}^n p(y_i|\theta_i)p(\theta_i|\phi)\Big]p(\phi).$$

The joint posterior distribution can be decomposed via

$$p(\theta, \phi|y) = p(\theta|\phi, y)p(\phi|y)$$

where

$$p(\theta|\phi,y) \propto p(y|\theta)p(\theta|\phi) = \prod_{i=1}^{n} p(y_{i}|\theta_{i})p(\theta_{i}|\phi) \propto \prod_{i=1}^{n} p(\theta_{i}|\phi,y_{i})$$

$$p(\phi|y) \propto p(y|\phi)p(\phi)$$

$$p(y|\phi) = \int p(y|\theta)p(\theta|\phi)d\theta$$

$$= \int \cdots \int \prod_{i=1}^{n} [p(y_{i}|\theta_{i})p(\theta_{i}|\phi)] d\theta_{1} \cdots d\theta_{n}$$

$$= \prod_{i=1}^{n} \int p(y_{i}|\theta_{i})p(\theta_{i}|\phi)d\theta_{i}$$

$$= \prod_{i=1}^{n} p(y_{i}|\phi)$$

# Three-pointer example

#### Our statistical model

$$Y_i \stackrel{ind}{\sim} Bin(n_i, \theta_i)$$
  
 $\theta_i \stackrel{ind}{\sim} Be(\alpha, \beta)$   
 $\alpha, \beta \sim p(\alpha, \beta)$ 

In this example,

- $\phi = (\alpha, \beta)$
- $Be(\alpha, \beta)$  describes the variability in 3-point percentage across games, and
- we are going to learn about this variability.

## Decomposed posterior

$$Y_i \stackrel{ind}{\sim} Bin(n_i, \theta_i) \quad \theta_i \stackrel{ind}{\sim} Be(\alpha, \beta) \quad \alpha, \beta \sim p(\alpha, \beta)$$

Conditional posterior for  $\theta$ :

$$p(\theta|\alpha,\beta,y) = \prod_{i=1}^{n} p(\theta_i|\alpha,\beta,y_i) = \prod_{i=1}^{n} Be(\theta_i|\alpha+y_i,\beta+n_i-y_i)$$

Marginal posterior for  $(\alpha, \beta)$ :

$$\begin{array}{ll} p(\alpha,\beta|y) & \propto p(y|\alpha,\beta)p(\alpha,\beta) \\ p(y|\alpha,\beta) & = \prod_{i=1}^n p(y_i|\alpha,\beta) = \prod_{i=1}^n \int\limits_{i=1}^n p(y_i|\theta_i)p(\theta_i|\alpha,\beta)d\theta_i \\ & = \prod_{i=1}^n \binom{n_i}{y_i} \frac{B(\alpha+y_i,\beta+n_i-y_i)}{B(\alpha,\beta)} \end{array}$$

Thus  $y_i | \alpha, \beta \stackrel{ind}{\sim} \text{Beta-binomial}(n_i, \alpha, \beta)$ .

# A prior distribution for $\alpha$ and $\beta$

#### Recall the interpretation:

- ullet  $\alpha$ : prior successes
- $\beta$ : prior failures

#### A more natural parameterization is

- prior expectation:  $\mu = \frac{\alpha}{\alpha + \beta}$
- prior sample size:  $\eta = \alpha + \beta$

#### Place priors on these parameters or transformed to the real line:

- logit  $\mu = \log(\mu/[1-\mu]) = \log(\alpha/\beta)$
- $\log \eta$

# A prior distribution for $\alpha$ and $\beta$

It seems reasonable to assume the mean  $(\mu)$  and size  $(\eta)$  are independent a priori:

$$p(\mu, \eta) = p(\mu)p(\eta)$$

Let's construct a prior that has

- $P(0.1 < \mu < 0.5) \approx 0.95$  since most college basketball players have a three-point percentage between 10% and 50% and
- ullet is somewhat diffuse for  $\eta$  but has more mass for smaller values.

Let's assume an informative prior for  $\mu$  and  $\eta$  perhaps

- $\mu \sim Be(6, 14)$
- $\eta \sim Exp(0.05)$

```
a = 6
b = 14
e = 1/20
```

### Prior draws

```
n <- 1e4
prior_draws <- data.frame(mu = rbeta(n, a, b),</pre>
                        eta = rexp(n, e) %>%
  mutate(alpha = eta* mu.
        beta = eta*(1-mu))
prior draws %>%
  tidyr::gather(parameter, value) %>%
  group by(parameter) %>%
  summarize(lower95 = quantile(value, prob = 0.025),
           median = quantile(value, prob = 0.5),
           upper95 = quantile(value, prob = 0.975))
# A tibble: 4 v 4
  parameter lower95 median upper95
 <chr>
             <dbl> <dbl> <dbl> <dbl>
             0.129 3.87
1 alpha
                          23.9
             0.359 9.61
2 heta
                          51.4
       0.514 13.8 72.4
3 eta
4 m11
             0.124 0.292 0.511
cor(prior_draws$alpha, prior_draws$beta)
[1] 0.7951507
```

```
model_informative_prior = "
data
  int<lower=0> N: // data
  int<lower=0> n[N]:
  int<lower=0> y[N];
  real<lower=0> a; // prior
  real<lower=0> b;
  real<lower=0> e:
parameters {
  real<lower=0,upper=1> mu;
  real<lower=0> eta:
  real<lower=0,upper=1> theta[N];
transformed parameters {
  real<lower=0> alpha;
  real<lower=0> beta:
  alpha = eta* mu :
  beta = eta*(1-mu):
model
        ~ beta(a,b):
  m11
       ~ exponential(e);
  eta
  // implicit joint distributions
  theta beta(alpha, beta);
        ~ binomial(n.theta):
```

### Stan

r

Inference for Stan model: anon\_model.
4 chains, each with iter=10000; warmup=5000; thin=1;

post-warmup draws per chain=5000, total post-warmup draws=20000.

|           | mean  | se_mean | sd    | 2.5% | 25%   | 50%   | 75%   | 97.5% | n_eff | Rhat |
|-----------|-------|---------|-------|------|-------|-------|-------|-------|-------|------|
| mu        | 0.44  | 0.00    | 0.05  | 0.34 | 0.41  | 0.44  | 0.47  | 0.53  | 5429  | 1    |
| eta       | 28.37 | 0.44    | 21.02 | 5.28 | 13.63 | 22.59 | 36.84 | 83.82 | 2315  | 1    |
| alpha     | 12.55 | 0.20    | 9.54  | 2.18 | 5.86  | 9.92  | 16.31 | 38.22 | 2318  | 1    |
| beta      | 15.82 | 0.24    | 11.73 | 3.02 | 7.62  | 12.60 | 20.47 | 46.71 | 2356  | 1    |
| theta[1]  | 0.44  | 0.00    | 0.12  | 0.19 | 0.36  | 0.44  | 0.52  | 0.70  | 14481 | 1    |
| theta[2]  | 0.44  | 0.00    | 0.12  | 0.19 | 0.36  | 0.44  | 0.51  | 0.69  | 14333 | 1    |
| theta[3]  | 0.49  | 0.00    | 0.10  | 0.31 | 0.43  | 0.49  | 0.56  | 0.70  | 14108 | 1    |
| theta[4]  | 0.45  | 0.00    | 0.10  | 0.26 | 0.39  | 0.45  | 0.52  | 0.66  | 17874 | 1    |
| theta[5]  | 0.42  | 0.00    | 0.12  | 0.17 | 0.34  | 0.42  | 0.49  | 0.65  | 12842 | 1    |
| theta[6]  | 0.41  | 0.00    | 0.10  | 0.22 | 0.34  | 0.41  | 0.47  | 0.60  | 13657 | 1    |
| theta[7]  | 0.40  | 0.00    | 0.12  | 0.15 | 0.32  | 0.40  | 0.47  | 0.62  | 10358 | 1    |
| theta[8]  | 0.47  | 0.00    | 0.12  | 0.24 | 0.39  | 0.47  | 0.54  | 0.73  | 15136 | 1    |
| theta[9]  | 0.49  | 0.00    | 0.12  | 0.28 | 0.41  | 0.49  | 0.57  | 0.76  | 11804 | 1    |
| theta[10] | 0.46  | 0.00    | 0.10  | 0.27 | 0.39  | 0.46  | 0.52  | 0.66  | 16617 | 1    |
| theta[11] | 0.39  | 0.00    | 0.11  | 0.17 | 0.32  | 0.39  | 0.46  | 0.59  | 9644  | 1    |
| theta[12] | 0.49  | 0.00    | 0.10  | 0.31 | 0.43  | 0.49  | 0.55  | 0.69  | 14221 | 1    |
| theta[13] | 0.51  | 0.00    | 0.11  | 0.32 | 0.44  | 0.51  | 0.58  | 0.74  | 11588 | 1    |
| theta[14] | 0.41  | 0.00    | 0.11  | 0.18 | 0.34  | 0.41  | 0.48  | 0.62  | 11585 | 1    |
| theta[15] | 0.39  | 0.00    | 0.11  | 0.17 | 0.32  | 0.39  | 0.46  | 0.59  | 10164 | 1    |
| theta[16] | 0.36  | 0.00    | 0.11  | 0.12 | 0.29  | 0.37  | 0.44  | 0.57  | 6682  | 1    |
| theta[17] | 0.47  | 0.00    | 0.12  | 0.24 | 0.39  | 0.47  | 0.54  | 0.73  | 15593 | 1    |
| theta[18] | 0.44  | 0.00    | 0.10  | 0.24 | 0.37  | 0.44  | 0.50  | 0.64  | 15963 | 1    |
| theta[19] | 0.41  | 0.00    | 0.10  | 0.21 | 0.35  | 0.42  | 0.48  | 0.61  | 14077 | 1    |
| theta[20] | 0.45  | 0.00    | 0.10  | 0.26 | 0.39  | 0.45  | 0.52  | 0.66  | 17013 | 1    |
| theta[21] | 0.55  | 0.00    | 0.11  | 0.35 | 0.47  | 0.54  | 0.62  | 0.79  | 7677  | 1    |
| theta[22] | 0 44  | 0.00    | 0.10  | 0.26 | 0.38  | 0.44  | 0.50  | 0.63  | 18378 | 1    |

#### stan

```
plot(r, pars=c('eta', 'alpha', 'beta'))
ci_level: 0.8 (80% intervals)
outer_level: 0.95 (95% intervals)
```



### stan

plot(r, pars=c('mu','theta'))



# Comparing independent and hierarchical models



# A prior distribution for $\alpha$ and $\beta$

In Bayesian Data Analysis (3rd ed) page 110, several priors are discussed

- $(\log(\alpha/\beta), \log(\alpha+\beta)) \propto 1$  leads to an improper posterior.
- $(\log(\alpha/\beta), \log(\alpha+\beta)) \sim Unif([-10^{10}, 10^{10}] \times [-10^{10}, 10^{10}])$  while proper and seemingly vague is a very informative prior.
- $(\log(\alpha/\beta), \log(\alpha+\beta)) \propto \alpha\beta(\alpha+\beta)^{-5/2}$  which leads to a proper posterior and is equivalent to  $p(\alpha, \beta) \propto (\alpha+\beta)^{-5/2}$ .

## Stan - default prior

```
model default prior <- "
data
  int<lower=0> N;
  int<lower=0> n[N]:
  int<lower=0> v[N];
parameters {
  real<lower=0> alpha;
  real<lower=0> beta;
  real<lower=0.upper=1> theta[N]:
model
  // default prior
  target += -5*log(alpha+beta)/2:
  // implicit joint distributions
  theta ~ beta(alpha.beta);
        ~ binomial(n,theta);
m2 <- stan_model(model_code = model_default_prior)</pre>
r2 <- sampling(m2, dat, c("alpha", "beta", "theta"), iter = 10000,
               control = list(adapt delta = 0.9))
Warning: There were 738 divergent transitions after warmup. See
https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
```

# Marginal posterior for $\alpha, \beta$

An alternative to jointly sampling  $\theta, \alpha, \beta$  is to

- 1. sample  $\alpha, \beta \sim p(\alpha, \beta|y)$ , and then
- 2. sample  $\theta_i \overset{ind}{\sim} p(\theta_i | \alpha, \beta, y_i) \overset{d}{=} Be(\alpha + y_i, \beta + n_i y_i)$ .

The maginal posterior for  $\alpha, \beta$  is

$$p(\alpha,\beta|y) \propto p(y|\alpha,\beta)p(\alpha,\beta) = \left[\prod_{i=1}^n \mathsf{Beta-binomial}(y_i|n_i,\alpha,\beta)\right]p(\alpha,\beta)$$

### Stan - beta-binomial

```
# Marginalized (integrated) theta out of the model
model_marginalized <- "
data
  int<lower=0> N:
  int<lower=0> n[N]:
  int<lower=0> y[N];
parameters {
  real<lower=0> alpha;
  real<lower=0> beta:
model
  target += -5*log(alpha+beta)/2:
        ~ beta_binomial(n,alpha,beta);
generated quantities
  real<lower=0,upper=1> theta[N];
  for (i in 1:N)
    theta[i] = beta rng(alpha+v[i].beta+n[i]-v[i]);
m3 <- stan_model(model_code = model_marginalized)</pre>
r3 <- sampling(m3, dat, iter = 10000)
```

beta-binomial

### Stan - beta-binomial

Inference for Stan model: anon\_model. 4 chains, each with iter=10000; warmup=5000; thin=1; post-warmup draws per chain=5000, total post-warmup draws=20000.

|           | mean     | se_mean  | sd         | 2.5% | 25%  | 50%   | 75%   | 97.5%   | n_eff | Rhat |
|-----------|----------|----------|------------|------|------|-------|-------|---------|-------|------|
| alpha     | 58295.72 | 51485.17 | 3477234.28 | 1.78 | 5.99 | 15.38 | 65.33 | 6133.35 | 4561  | 1    |
| beta      | 62847.25 | 55417.85 | 3738352.85 | 2.09 | 6.83 | 17.14 | 72.76 | 6733.73 | 4551  | 1    |
| theta[1]  | 0.47     | 0.00     | 0.12       | 0.21 | 0.41 | 0.47  | 0.53  | 0.73    | 19529 | 1    |
| theta[2]  | 0.47     | 0.00     | 0.12       | 0.21 | 0.41 | 0.47  | 0.53  | 0.73    | 19621 | 1    |
| theta[3]  | 0.51     | 0.00     | 0.10       | 0.34 | 0.45 | 0.50  | 0.56  | 0.73    | 13439 | 1    |
| theta[4]  | 0.48     | 0.00     | 0.10       | 0.28 | 0.42 | 0.48  | 0.53  | 0.68    | 20449 | 1    |
| theta[5]  | 0.45     | 0.00     | 0.12       | 0.17 | 0.39 | 0.46  | 0.52  | 0.67    | 14666 | 1    |
| theta[6]  | 0.44     | 0.00     | 0.09       | 0.22 | 0.38 | 0.45  | 0.50  | 0.61    | 10707 | 1    |
| theta[7]  | 0.43     | 0.00     | 0.12       | 0.15 | 0.37 | 0.44  | 0.50  | 0.63    | 10231 | 1    |
| theta[8]  | 0.50     | 0.00     | 0.12       | 0.27 | 0.43 | 0.49  | 0.55  | 0.77    | 17006 | 1    |
| theta[9]  | 0.52     | 0.00     | 0.12       | 0.32 | 0.44 | 0.50  | 0.57  | 0.80    | 10585 | 1    |
| theta[10] | 0.48     | 0.00     | 0.09       | 0.29 | 0.42 | 0.48  | 0.53  | 0.67    | 18896 | 1    |
| theta[11] | 0.42     | 0.00     | 0.11       | 0.17 | 0.36 | 0.44  | 0.50  | 0.61    | 8847  | 1    |
| theta[12] | 0.51     | 0.00     | 0.09       | 0.34 | 0.45 | 0.50  | 0.56  | 0.71    | 13045 | 1    |
| theta[13] | 0.52     | 0.00     | 0.10       | 0.35 | 0.46 | 0.51  | 0.58  | 0.76    | 9459  | 1    |
| theta[14] | 0.44     | 0.00     | 0.11       | 0.19 | 0.38 | 0.45  | 0.50  | 0.63    | 11839 | 1    |
| theta[15] | 0.42     | 0.00     | 0.11       | 0.17 | 0.36 | 0.44  | 0.50  | 0.61    | 8515  | 1    |
| theta[16] | 0.40     | 0.00     | 0.12       | 0.12 | 0.33 | 0.42  | 0.48  | 0.59    | 6249  | 1    |
| theta[17] | 0.50     | 0.00     | 0.12       | 0.27 | 0.43 | 0.49  | 0.55  | 0.77    | 15434 | 1    |
| theta[18] | 0.46     | 0.00     | 0.09       | 0.26 | 0.41 | 0.47  | 0.52  | 0.65    | 18879 | 1    |
| theta[19] | 0.44     | 0.00     | 0.10       | 0.22 | 0.39 | 0.45  | 0.51  | 0.63    | 13001 | 1    |
| theta[20] | 0.48     | 0.00     | 0.10       | 0.27 | 0.42 | 0.47  | 0.53  | 0.68    | 19991 | 1    |
| theta[21] | 0.56     | 0.00     | 0.12       | 0.38 | 0.47 | 0.53  | 0.62  | 0.83    | 5628  | 1    |
|           |          |          |            |      |      |       |       |         |       |      |

### Posterior samples for $\alpha$ and $\beta$



## Comparing all models





# Posterior sample for $\theta_{22}$

```
game <- 22
theta22 <- extract(r3, "theta")$theta[,game]
hist(theta22, 100,
    main=paste("Posterior for game against", d$opponent[game], "on", d$date[game]),
    xlab="3-point probability",
    ylab="Posterior")</pre>
```

### Posterior for game against syracuse on 2014-02-01



# $\theta$ s are not independent in the posterior



### 3-point percentage across seasons

An alternative to modeling game-specific 3-point percentage is to model 3-point percentage in a season. The model is exactly the same, but the data changes.

| season | У  | n   |
|--------|----|-----|
| 1      | 36 | 95  |
| 2      | 64 | 150 |
| 3      | 67 | 171 |
| 4      | 64 | 152 |

Due to the low number of seasons (observations), we will use an informative prior for  $\alpha$  and  $\beta$ .

### Stan - beta-binomial

```
model seasons <- "
data
  int<lower=0> N; int<lower=0> n[N]; int<lower=0> y[N];
  real<lower=0> a; real<lower=0> b; real<lower=0> e;
parameters {
  real<lower=0,upper=1> mu;
  real<lower=0> eta;
transformed parameters {
  real<lower=0> alpha:
  real<lower=0> beta:
  alpha = eta * mu;
  beta = eta * (1-mu);
model
     " beta(a,b);
  eta ~ exponential(e):
  v ~ beta binomial(n.alpha.beta):
generated quantities
  real<lower=0,upper=1> theta[N];
  for (i in 1:N) theta[i] = beta_rng(alpha+y[i], beta+n[i]-y[i]);
```

#### Run stan

#### Stan - hierarchical model for seasons

```
Inference for Stan model: anon_model.
4 chains, each with iter=10000; warmup=5000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=20000.
```

|          | mean    | se_mean | sd   | 2.5%    | 25%     | 50%     | 75%     | 97.5%   | n_eff | Rhat |
|----------|---------|---------|------|---------|---------|---------|---------|---------|-------|------|
| alpha    | 4.90    | 0.03    | 3.10 | 0.93    | 2.63    | 4.23    | 6.45    | 12.73   | 11470 | 1    |
| beta     | 7.99    | 0.04    | 4.69 | 1.77    | 4.59    | 7.01    | 10.37   | 19.53   | 12285 | 1    |
| mu       | 0.38    | 0.00    | 0.06 | 0.25    | 0.33    | 0.38    | 0.42    | 0.50    | 11466 | 1    |
| eta      | 12.90   | 0.07    | 7.62 | 2.82    | 7.34    | 11.25   | 16.80   | 31.75   | 11838 | 1    |
| theta[1] | 0.38    | 0.00    | 0.05 | 0.29    | 0.35    | 0.38    | 0.41    | 0.47    | 19470 | 1    |
| theta[2] | 0.42    | 0.00    | 0.04 | 0.35    | 0.40    | 0.42    | 0.45    | 0.50    | 18697 | 1    |
| theta[3] | 0.39    | 0.00    | 0.04 | 0.32    | 0.37    | 0.39    | 0.42    | 0.46    | 19297 | 1    |
| theta[4] | 0.42    | 0.00    | 0.04 | 0.34    | 0.39    | 0.42    | 0.44    | 0.50    | 20269 | 1    |
| lp       | -402.07 | 0.01    | 1.05 | -404.91 | -402.49 | -401.76 | -401.32 | -401.02 | 7091  | 1    |

Samples were drawn using NUTS(diag\_e) at Fri Feb 9 15:23:14 2024. For each parameter, n\_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

### Stan - hierarchical model for seasons



#### Stan - hierarchical model for seasons

Probabilities that 3-point percentage is greater in season 4 than in the other seasons:

```
theta = extract(r_seasons, "theta")[[1]]
mean(theta[,4] > theta[,1])

[1] 0.73465
mean(theta[,4] > theta[,2])

[1] 0.45475
mean(theta[,4] > theta[,3])

[1] 0.699
```

## Summary - hierarchical models

Two-level hierarchical model:

$$y_i \stackrel{ind}{\sim} p(y|\theta_i) \qquad \theta_i \stackrel{ind}{\sim} p(\theta|\phi) \qquad \phi \sim p(\phi)$$

### Conditional independencies:

- $y_i \perp \!\!\! \perp y_j | \theta$  for  $i \neq j$
- $\theta_i \perp \!\!\! \perp \theta_j | \phi$  for  $i \neq j$
- $y \perp \!\!\! \perp \phi | \theta$
- $y_i \perp \!\!\! \perp y_j | \phi$  for  $i \neq j$
- $\theta_i \perp \!\!\! \perp \theta_i | \phi, y$  for  $i \neq j$

### Summary - extension to more levels

Three-level hierarchical model:

$$y \sim p(y|\theta)$$
  $\theta \sim p(\theta|\phi)$   $\phi \sim p(\phi|\psi)$   $\psi \sim p(\psi)$ 

When deriving posteriors, remember the conditional independence structure, e.g.

$$p(\theta, \phi, \psi|y) \propto p(y|\theta)p(\theta|\phi)p(\phi|\psi)p(\psi)$$