Lexical Semantics

Lexicon vs. Vocabulary

LEXICON VERSUS VOCABULARY

LEXICON List of words along with its related knowledge on their linguistic significance and usage	VOCABULARY List of words a person knows of a particular language
Has a broader coverage on the linguistic significance and the usage of the words in a language	Defines the list of words a person knows of a language
Often used in a linguistic context	Used on a general context on daily use among people Visit www.PEDIAA.com

Definitions

Lexical Semantics

Lexical semantics looks at the meaning related connections among **lexical** items.

Lexical item

"lexical item" is just a fancy way of saying a "word"

Definitions

Lexical Semantics

Lexical semantics looks at the meaning related connections among **lexical** items.

Lexical item

"lexical item" is just a fancy way of saying a "word"

To identify the semantics of lexical items, we need to focus on the notion of **lexeme**, an individual entry in the lexicon.

Lexeme

Lexeme contains a pairing of a particular orthographic and phonological form with some sort of symbolic meaning representation (Sense).

Examples

Lexeme: RUN

Lexical item: run, runs, ran and running

Lexical Semantics

Example

noun

an edge or border: they came down to the verge of the lake.

- an extreme limit beyond which something specified will happen: I was on the verge of tears.
- · Brit.a grass edging such as that by the side of a road or path.
- · Architecture an edge of tiles projecting over a gable.

verb [no obj.] (verge on)

approach (something) closely; be close or similar to (something): despair verging on the suicidal.

ORIGIN late Middle English: via Old French from Latin virga 'rod.' The current verb sense dates from the late 18th cent.

noun

a wand or rod carried before a bishop or dean as an emblem of office.

ORIGIN late Middle English: from Latin virga 'rod.'

verge 3 | vərj |

verb [no obj.]

incline in a certain direction or toward a particular state: his style verged into the art nouveau school.

ORIGIN early 17th cent. (in the sense 'descend (to the horizon)'): from Latin vergere 'to bend, incline.'

Extracting senses from definitions

Definitions from the American Heritage Dictionary (Morris, 1985)

- right adj. located near the right hand esp. being on the right when facing the same direction as the observer
- left adj. located near to this side of the body than the right
- red n. the color of blood or a ruby
- blood n. the red liquid that circulates in the heart, arteries and veins of animals

Extracting senses from definitions

Definitions from the American Heritage Dictionary (Morris, 1985)

- right adj. located near the right hand esp. being on the right when facing the same direction as the observer
- left adj. located near to this side of the body than the right
- red n. the color of blood or a ruby
- blood n. the red liquid that circulates in the heart, arteries and veins of animals

Observations

- Define a sense through its relationship with other senses
- One sense of right and left represents some kind of alternation, or opposition, to one another.
- We can glean that red is a color, it can be applied to both blood and rubies, and that blood is a liquid.

Relations Between Senses

- Homonymy
- Polysemy
- Synonymy
- Antonymy
- Hypernymy
- Hyponymy
- Meronymy

Homonymy

Definition

Homonymy is defined as a relation that holds between words that have the same form (sound alike or are spelled alike) with unrelated senses.

- Bat (wooden stick-like thing) vs Bat (flying mammal thing)
- Bank (financial institution) vs Bank (riverside)

Homonymy

Definition

Homonymy is defined as a relation that holds between words that have the same form (sound alike or are spelled alike) with unrelated senses.

- Bat (wooden stick-like thing) vs Bat (flying mammal thing)
- Bank (financial institution) vs Bank (riverside)

Homophones and Homographs

Homophones are the words with the same pronunciation (different spellings) but different senses.

- write vs right
- piece vs peace

Homographs are the lexemes with the same orthographic form but different senses. Ex: Bass

Problems for NLP applications

Text-to-Speech

Same orthographic form but different phonological form

Information Retrieval

Different meaning but same orthographic form

Speech Recognition

to, two, too

Perfect homonyms are also problematic

Polysemy

Multiple **related** senses within a single lexeme.

- The bank was constructed in 1875 out of local red brick.
- I withdrew the money from the bank.

Polysemy

Multiple **related** senses within a single lexeme.

- The bank was constructed in 1875 out of local red brick.
- I withdrew the money from the bank.

Are those the same sense?

- Sense 1: "The building belonging to a financial institution"
- Sense 2: "A financial institution"

Another example

- Heavy snow caused the roof of the school to collapse. The
- school hired more teachers this year than ever before.

Polysemy: multiple related senses

Often, the relationships are systematic

E.g., building vs. organization school, university, hospital, church, supermarket

More examples:

- Author (Jane Austen wrote Emma) →Works of Author (I really love Jane Austen)
- Animal (The chicken was domesticated in Asia) → Meat (The chicken was overcooked)
- Tree (Plums have beautiful blossoms) ←Fruit (I ate a preserved plum yesterday)

Polysemy: multiple related meanings

Zeugma test

- Which of these flights serve breakfast?
- Does Midwest Express serve Philadelphia?

*Does Midwest Express serve breakfast and San Jose?

Combine two separate uses of a lexeme into a single example using conjunction

Since it sounds weird, we say that these are two different senses of serve.

Synonymy

Words that have the identical, or nearly identical sense

- couch / sofa
- big / large
- automobile / car
- vomit / throw up
- water / H₂O

Two lexemes are synonyms if they can be successfully substituted for each other in all situations.

Synonymy: A relation between senses

Consider the lexemes big and large.

Are they synonyms?

- How big is that plane?
- Would I be flying on a large or small plane?

Synonymy: A relation between senses

Consider the lexemes big and large.

Are they synonyms?

- How big is that plane?
- Would I be flying on a large or small plane?

How about here?

- Miss Nelson, for instance, became a kind of big sister to Benjamin.
- *Miss Nelson, for instance, became a kind of large sister to Benjamin.

Synonymy: A relation between senses

Consider the lexemes big and large.

Are they synonyms?

- How **big** is that plane?
- Would I be flying on a large or small plane?

How about here?

- Miss Nelson, for instance, became a kind of big sister to Benjamin.
- *Miss Nelson, for instance, became a kind of large sister to Benjamin.

Why?

- big has a sense that means being older, or grown up
- large lacks this sense

Synonyms

Shades of meaning

- What is the cheapest first class fare?
- *What is the cheapest first class price?

Collocational constraints

- We frustate 'em and frustate 'em, and pretty soon they make a big mistake.
- *We frustate 'em and frustate 'em, and pretty soon they make a large mistake.

Antonyms

- Senses that are opposites with respect to one feature of their meaning
- Otherwise, they are similar!
 - dark / light
 - short / long
 - hot / cold
 - up / down
 - in / out

More formally: antonyms can

- define a binary opposition or at opposite ends of a scale (long/short, fast/slow)
- Be reversives: rise/fall

Hyponymy and Hypernymy

Hyponymy

One sense is a hyponym of another if the first sense is more specific, denoting a subclass of the other

- car is a hyponym of vehicle
- dog is a hyponym of animal
- mango is a hyponym of fruit

Hyponymy and Hypernymy

Hyponymy

One sense is a hyponym of another if the first sense is more specific, denoting a subclass of the other

- car is a hyponym of vehicle
- dog is a hyponym of animal
- mango is a hyponym of fruit

Hypernymy

Conversely

- vehicle is a hypernym/superordinate of car
- animal is a hypernym of dog
- fruit is a hypernym of mango

Hyponymy more formally

Entailment

Sense A is a hyponym of sense B if being an A entails being a B.

Ex: dog, animal

Transitivity

A hypo B and B hypo C entails A hypo C

Meronyms and holonyms

Definition

Meronymy: an asymmetric, transitive relation between senses.

X is a **meronym** of Y if it denotes a part of Y.

The inverse relation is holonymy.

meronym	holonym
porch	house
wheel	car
leg	chair
nose	face

WordNet

https://wordnet.princeton.edu/wordnet/

- A hierarchically organized lexical database
- A machine-readable thesaurus, and aspects of a dictionary
- Versions for other languages are under development

part of speech	no. synsets
noun	82,115
verb	13,767
adjective	18,156
adverb	3,621

Synsets in WordNet

- A synset is a set of synonyms representing a sense
- Example: chump as a noun to mean 'a person who is gullible and easy to take advantage of'

```
\{\text{chump}^1, \text{fool}^2, \text{gull}^1, \text{mark}^9, \text{patsy}^1, \text{fall guy}^1, \text{sucker}^1, \text{soft touch}^1, \text{mug}^2\}
```

- Each of these senses share this same gloss.
- For WordNet, the meaning of this sense of chump is this list.

lemma vs. synsets

All relations in WordNet

```
searchtype is at least one of the following:
       -ants{n|v|a|r}
                                Antonyms
       -hype{n|v}
                                Hypernyms
       -hypo{n|v}, -tree{n|v} Hyponyms & Hyponym Tree
                                Verb Entailment
       -entay
       -syns{n|v|a|r}
                                Synonyms (ordered by estimated frequency)
                                Member of Holonyms
       -smemn
                                Substance of Holonyms
       -ssubn
       -sprtn
                                Part of Holonyms
       -membn
                                Has Member Meronyms
       -subsn
                                Has Substance Meronyms
       -partn
                                Has Part Meronyms
                                All Meronyms
       -meron
       -holon
                                All Holonyms
       -causy
                                Cause to
       -pert{a|r}
                                Pertainyms
       -attr{n|a}
                                Attributes
       -deri{n|v}
                                Derived Forms
       -domn{n|v|a|r}
                                Domain
       -domt{n|v|a|r}
                                Domain Terms
       -faml{n|v|a|r}
                                Familiarity & Polysemy Count
       -framy
                                Verb Frames
       -coor{nlv}
                                Coordinate Terms (sisters)
       -simsv
                                Synonyms (grouped by similarity of meaning)
                                Hierarchical Meronyms
       -hmern
       -hholn
                                Hierarchical Holonyms
       -grep{n|v|a|r}
                                List of Compound Words
       -over
                                Overview of Senses
```

Wordnet noun and verb relations

Relation	Also called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	$breakfast^1 \rightarrow meal^1$
Hyponym	Subordinate	From concepts to subtypes	$meal^1 \rightarrow lunch^1$
Member Meronym	Has-Member	From groups to their members	$faculty^2 \rightarrow professor^1$
Has-Instance		From concepts to instances of the concept	$composer^1 \rightarrow Bach^1$
Instance		From instances to their concepts	$Austen^1 \rightarrow author^1$
Member Holonym	Member-Of	From members to their groups	$copilot^1 \rightarrow crew^1$
Part Meronym	Has-Part	From wholes to parts	$table^2 \rightarrow leg^3$
Part Holonym	Part-Of	From parts to wholes	$course^7 \rightarrow meal^1$
Antonym		Opposites	$leader^1 \rightarrow follower^1$

Relation	Definition	Example
Hypernym	From events to superordinate events	$fly^9 \rightarrow travel^5$
Troponym	From a verb (event) to a specific manner elaboration of that verb	$walk^1 \rightarrow stroll^1$
Entails	From verbs (events) to the verbs (events) they entail	$snore^1 \rightarrow sleep^1$
Antonym	Opposites	$increase^1 \iff decrease^1$

WordNet Hierarchies

```
Synonyms/Hypernyms (Ordered by Estimated Frequency) of noun mouse
4 senses of mouse
Sense 1
mouse
      => rodent, gnawer
           => placental, placental mammal, eutherian, eutherian mammal
               => mammal. mammalian
                   => vertebrate, craniate
                       => chordate
                           => animal, animate being, beast, brute, creature, fauna
                               => organism, being
                                   => living thing, animate thing
                                       => whole, unit
                                           => object, physical object
                                               => physical entity
                                                   => entity
      Sense 4
      mouse, computer mouse
             => electronic device
                 => device
                     => instrumentality, instrumentation
                         => artifact, artefact
                             => whole, unit
                                 => object, physical object
                                     => physical entity
                                         => entity
```

Lexical Semantics

- Synonymy is a binary relation
 - Two words are either synonymous or not

- Synonymy is a binary relation
 - Two words are either synonymous or not
- We want a looser metric
 - Word similarity or
 - Word distance

- Synonymy is a binary relation
 - Two words are either synonymous or not
- We want a looser metric
 - Word similarity or
 - Word distance
- Two words are more similar
 - If they share more features of meaning

- Synonymy is a binary relation
 - Two words are either synonymous or not
- We want a looser metric
 - Word similarity or
 - Word distance
- Two words are more similar
 - If they share more features of meaning
- Actually these are really relations between senses:
 - Instead of saying "bank is like fund"
 - We say
 - Bank^I is similar to fund³
 - Bank² is similar to slope⁵

Word Similarity

- Synonymy is a binary relation
 - Two words are either synonymous or not
- We want a looser metric
 - Word similarity or
 - Word distance
- Two words are more similar
 - If they share more features of meaning
- Actually these are really relations between senses:
 - Instead of saying "bank is like fund"
 - We say
 - Bank^I is similar to fund³
 - Bank² is similar to slope⁵
- We will compute similarity over both words and senses

Two classes of algorithms

Distributional algorithms

By comparing words based on their distributional context in the corpora

Thesaurus-based algorithms

Based on whether words are "nearby" in WordNet

Thesaurus-based Word Similarity

- We could use anything in the thesaurus:
 - Meronymy, hyponymy, troponymy
 - Glosses and example sentences
- In practice, "thesaurus-based" methods usually use:
 - the is-a/subsumption/hypernymy hierarchy
 - and sometimes the glosses too
- Word similarity vs. word relatedness
 - Similar words are near-synonyms
 - Related words could be related any way
 - car, gasoline : related, but nor similar
 - car, bicycle: similar

Basic Idea

■ Two words are similar if they are nearby in the hypernym graph

Basic Idea

- Two words are similar if they are nearby in the hypernym graph
- pathlen(c_1, c_2) = number of edges in shortest path (in hypernym graph) between senses c_1 and c_2

Basic Idea

- Two words are similar if they are nearby in the hypernym graph
- pathlen(c_1, c_2) = number of edges in shortest path (in hypernym graph) between senses c_1 and c_2
- $= sim_{path}(c_1, c_2) = \frac{1}{1 + pathlen(c_1, c_2)}$

Basic Idea

- Two words are similar if they are nearby in the hypernym graph
- pathlen(c_1, c_2) = number of edges in shortest path (in hypernym graph) between senses c_1 and c_2
- $sim_{path}(c_1, c_2) = \frac{1}{1 + pathlen(c_1, c_2)}$
- $sim(w_1, w_2) = max_{c_1 \in senses(w_1), c_2 \in senses(w_2)} sim(c_1, c_2)$

Shortest path in the hierarchy

Leacock-Chodorow (L-C) Similarity

L-C similarity

$$sim_{LC}(c_1, c_2) = -log(pathlen(c_1, c_2)/2d)$$

d: maximum depth of the hierarchy

Problems with L-C similarity

- Assumes each edge represents a uniform distance
- 'nickel-money' seems closer than 'nickel-standard'
- We want a metric which lets us assign different "lengths" to different edges - but how?

Concept probability models

Cencept probabilities

For each concept (synset) c, let P(c) be the probability that a randomly selected word in a corpus is an instance (hyponym) of c

Concept probability models

Cencept probabilities

- For each concept (synset) c, let P(c) be the probability that a randomly selected word in a corpus is an instance (hyponym) of c
- P(ROOT) = 1
- The lower a node in the hierarchy, the lower its probability

Concept probability models

Cencept probabilities

- For each concept (synset) c, let P(c) be the probability that a randomly selected word in a corpus is an instance (hyponym) of c
- P(ROOT) = 1
- The lower a node in the hierarchy, the lower its probability

Estimating concept probabilities

- Train by counting "concept activations" in a corpus
- Each occurrence of dime also increments counts for coin, currency, standard, etc.

Example: concept count

Example: concept probabilities

Information content

Information content

- Information content: IC(c) = -logP(c)
- Lowest common subsumer : $LCS(c_1, c_2)$: the lowest node in the hierarchy that subsumes (is a hypernym of) both c_1 and c_2
- We are now ready to see how to use information content (IC) as a similarity metric.

Example: Information content

Resnik Similarity

Resnik Similarity

- Intuition: how similar two words are depends on how much they have in common
- It measures the commonality by the information content of the lowest common subsumer

Example: Resnik similarity

Lin similarity

Proportion of shared information

- It's not just about commonalities it's also about differences!
- **Resnik:** The more information content they share, the more similar they are
- Lin: The more information content they don't share, the less similar they are
- Not the absolute quantity of shared information but the proportion of shared information

$$sim_{Lin}(c_1, c_2) = \frac{2logP(LCS(c_1, c_2))}{logP(c_1) + logP(c_2)}$$

The information content common to c_1 and c_2 , normalized by their average information content.

Example: Lin similarity

Jiang-Conrath distance

JC similarity

We can use IC to assign lengths to graph edges:

$$dist_{JC}(c, hypernym(c)) = IC(c) - IC(hypernym(c))$$

$$dist_{JC}(c_1, c_2) = dist_{JC}(c_1, LCS(c_1, c_2)) + dist_{JC}(c_2, LCS(c_1, c_2))$$

$$= IC(c_1) - IC(LCS(c_1, c_2)) + IC(c_2) - IC(LCS(c_1, c_2))$$

$$= IC(c_1) + IC(c_2) - 2 \times IC(LCS(c_1, c_2))$$

$$sim_{JC}(c_1, c_2) = \frac{1}{IC(c_1) + IC(c_2) - 2 \times IC(LCS(c_1, c_2))}$$

Example: Jiang-Conrath distance

Example:

Consider the hypothetical WordNet noun taxonomy with their information content as shown in fig

1. What is Resnik similarity between "Bicycle" and "Fork"?

Resnik Similarity:

$$-\log P(LCS(c_1,c_2))$$

Ans: 3.53

2. What is the Lin Similarity between "Vehicle" and "Table ware"?

Lin Similarity:

$$\frac{2\log P(LCS(c_1, c_2))}{\log P(c_1) + \log P(c_2)}$$
= (2*3.53)/(8.30 + 9.34) = 0.40

3. What is the Jiang – Conrath distance between "Car" and "Article"?

$$\left(IC(c_1) + IC(c_2) - 2 \times IC(LCS(c_1, c_2))\right)^{-1}$$

Ans: 1/((10.57+5.26) - 2*3.53) = 0.114

The (extended) Lesk Algorithm

- Two concepts are similar if their glosses contain similar words
 - Drawing paper: paper that is specially prepared for use in drafting
 - Decal: the art of transferring designs from specially prepared paper to a wood or glass or metal surface

The (extended) Lesk Algorithm

- Two concepts are similar if their glosses contain similar words
 - Drawing paper: paper that is specially prepared for use in drafting
 - Decal: the art of transferring designs from specially prepared paper to a wood or glass or metal surface
- For each n-word phrase that occurs in both glosses, add a score of n^2

The (extended) Lesk Algorithm

- Two concepts are similar if their glosses contain similar words
 - Drawing paper: paper that is specially prepared for use in drafting
 - Decal: the art of transferring designs from specially prepared paper to a wood or glass or metal surface
- For each n-word phrase that occurs in both glosses, add a score of n^2
- **paper** and specially prepared $\rightarrow 1 + 4 = 5$

A wordnet of Indian languages

http://www.cfilt.iitb.ac.in/indowordnet/

