Oppgaver - Uke 1

Oppgave 1

- a) Hvis $P(x) = a_n x^n + \ldots + a_1 x + a_0 \in \mathbb{Z}[x]$ er et heltallspolynom, og r er et heltall slik at P(r) = 0, så må r dele a_0 . (Hvorfor er det slik?) Bruk dette til å finne faktoriseringen til $x^3 8x^2 + 33x 42$.
- b) Videre, dersom $r = \frac{p}{q} \in \mathbb{Q}$ er et rasjonalt tall slik at P(r) = 0, må p dele a_0 og q dele a_n . (Hvorfor er det slik?) Bruk dette til å finne faktoriseringen til $2x^3 + x^2 + x 1$.
- c) Kan $x^3 + x + 1$ faktoriseres til et produkt av to polynomer?

Oppgave 2

Løs likningen $x^3 - 6x + 9 = 0$ med Cardano's metode.

Oppgave 3

Gitt to reelle tall x, y slik at x + y = 14 og xy = 3. Hva er da $x^3 + y^3$? Hint: Tenk symmetriske polynomer her.

Oppgave 4 (Litt vanskeligere)

Gitt at a < b og c < d, løs likningsystemet

$$a^2 + b^2 = c^2 + d^2$$

 $a + b + c + d = 0$

Oppgave 5 (For de tøffe)

Finnes et polynom $P(x) \in \mathbb{Z}[x]$ slik at P(n) er et primtall for alle heltall n?