

CPGE PTSI/PT - Sciences Industrielles de l'Ingénieur

 \mathbf{PT}

CINÉMATIQUE

QCM 1

CPGE

 $15~\mathrm{min}$ - $\mathrm{v}1.0$

Lycée Jean Zay - 21 rue Jean Zay - 63300 Thiers - Académie de Clermont-Ferrand

Nom et prénom : 0 1 2 3 4 5 6 7 8 9
1 Calcul vectoriel
Question 1
Projeter $\overrightarrow{z_1}$ dans b_2 :
Question 2 Sur la même figure, calculer $\overrightarrow{y_1} \cdot \overrightarrow{z_1}$:
Question 3 Sur la même figure, calculer $\overrightarrow{y_2} \wedge \overrightarrow{y_1}$:
Question 4 Sur la même figure, calculer $\overrightarrow{y_1} \wedge \overrightarrow{z_2}$:
Question 5 $\overrightarrow{z_{2}} \qquad \overrightarrow{z_{1}} \qquad \overrightarrow{z_{2}} \qquad \overrightarrow{z_{3}} \qquad \text{Projeter } \overrightarrow{x_{3}} \text{ dans } b_{1}: \\ \hline \cos \varphi.\overrightarrow{x_{1}} + \sin \varphi \sin \theta.\overrightarrow{y_{1}} - \sin \varphi \cos \theta.\overrightarrow{z_{1}} \\ \hline \cos \varphi.\overrightarrow{x_{1}} - \sin \varphi \sin \theta.\overrightarrow{y_{1}} - \sin \varphi \cos \theta.\overrightarrow{z_{1}} \\ \hline \cos \varphi.\overrightarrow{x_{1}} - \sin \varphi \sin \theta.\overrightarrow{y_{1}} - \sin \varphi \cos \theta.\overrightarrow{z_{1}} \\ \hline \cos \varphi.\overrightarrow{x_{1}} - \sin \varphi \sin \theta.\overrightarrow{y_{1}} + \sin \varphi \cos \theta.\overrightarrow{z_{1}} \\ \hline \cos \varphi.\overrightarrow{x_{1}} - \sin \varphi \sin \theta.\overrightarrow{y_{1}} + \sin \varphi \cos \theta.\overrightarrow{z_{1}} \\ \hline $
Question 6 Sur la même figure, calculer $\overrightarrow{z_3} \cdot \overrightarrow{z_1}$:

s2i.pinault-bigeard.com

Sur la même figure, calculer $\overrightarrow{y_2} \wedge \overrightarrow{x_3}$:

 $\cos \varphi \cos \theta . \overrightarrow{y_1}$

1 →		-
$\cos \varphi . \overline{x_2} + s$	sin (a	76
$-\cos\varphi.x_2+x_3$	3111 Ψ	. ~.2

Sur la même figure, calculer $\left[\frac{d\overrightarrow{y_2}}{dt}\right]_{b}$:

 $-\dot{\theta}.\overrightarrow{z_2}$

\sim
$\cos \theta . z_1$

 $\overrightarrow{\theta}.\overrightarrow{z_2}$

$$-\cos\theta.\overline{z}$$

Sur la même figure, calculer $\left[\frac{d\overrightarrow{z_3}}{dt}\right]_{b}$: Question 9

 $\dot{\varphi}.\overrightarrow{x_3}$

$\cdot \rightarrow \cdot$	· · ·	\rightarrow
$\dot{\varphi}.\overline{x_3}$ +	$\theta \sin \theta$	'. <i>Ų</i> 3

 $\overrightarrow{\varphi}.\overrightarrow{x_3} - \overrightarrow{\theta}\cos\varphi.\overrightarrow{y_3}$

$\overline{0}$

$$\dot{\varphi}(\overrightarrow{x_1} + \overrightarrow{y_1})$$

2 Cinématique

Question 10 4

	$\left \begin{array}{ccc} 0 & V_{M,2/1}^x \\ 0 & V_{M,2/1}^y \\ \omega_{2/1}^z & 0 \end{array} \right _b$	$\left(\begin{array}{ccc} \left\{\begin{array}{ccc} \omega_{2/1}^{x} & V_{A,2/1}^{x} \\ \omega_{2/1}^{y} & 0 \\ \omega_{2/1}^{z} & 0 \end{array}\right\}_{b}$	$\left\{ \begin{array}{ccc} \omega_{2/1}^{x} & 0 \\ \omega_{2/1}^{y} & 0 \\ \omega_{2/1}^{z} & 0 \end{array} \right\}_{b}$
Sphère/Cylindre?			
Sphérique?			
Appui plan?		10	

Parmi ces 4 propositions, une seule peut conclure la phrase suivante de manière cohérente. Laquelle? : « La trajectoire de C appartenant à ${\bf 5}$ par rapport à ${\bf 3}$ est... » :

...une translation \square ... une rotation d'axe $(H, \overrightarrow{z_1})$

un	$_{\rm cercle}$	$\mathrm{d}\mathrm{e}$	centre	H	et	de	rayon	[HC]

...une pivot d'axe $(H, \overrightarrow{z_1})$

Question 12 Le torseur cinématique d'une liaison linéaire rectiligne de droite de contact (A, \overrightarrow{x}) et de normale au plan \overrightarrow{z} est :

 $\square \left\{ \begin{array}{l} \omega_{2/1}^{x} & V_{A,2/1}^{x} \\ 0 & V_{A,2/1}^{y} \\ \omega_{2/1}^{z} & 0 \end{array} \right\}_{b}$ $\square \left\{ \begin{array}{l} \omega_{2/1}^{x} & 0 \\ 0 & V_{A,2/1}^{y} \\ \omega_{2/1}^{z} & 0 \end{array} \right\}_{b}$

$$\square \left\{ \begin{array}{ccc}
0 & V_{A,2/1}^{x} \\
\omega_{2/1}^{y} & V_{A,2/1}^{y} \\
\omega_{2/1}^{z} & 0
\end{array} \right\}_{b}$$

$$\square \left\{ \begin{array}{ccc}
0 & V_{A,2/1}^{x} \\
\omega_{2/1}^{y} & 0 \\
\omega_{2/1}^{z} & 0
\end{array} \right\}_{b}$$

Question 13 🌲 Dans un torseur cinématique, la résultante est :

de auto-multiple-choice.

un scalaire la colonne de gauche du torseur un vecteur dépendante du point considéré

une accélération
la deuxième ligne du torseur
1

une vitesse de rotation

Aucune de ces réponses n'est correcte.