19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11) N° de publication :

(à n'utiliser que pour les commandes de reproduction)

21 N° d'enregistrement national :

2 692 592

92 07493

(51) Int CI³: C 12 N 15/31, 1/21, C 12 P 21/02(C 12 N 15/31, C 12 R 1:36)

DEMANDE DE BREVET D'INVENTION

A1

- (22) Date de dépôt : 19.06.92.
- (30) Priorité :

(12)

- (71) Demandeur(s): PASTEUR MERIEUX Sérums et Vaccins société anonyme — FR et TRANSGENE (S.A.) société anonyme — FR.
- 43 Date de la mise à disposition du public de la demande : 24.12.93 Bulletin 93/51.
- (56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule.
- 60 Références à d'autres documents nationaux apparentés :
- (2) Inventeur(s): Jacobs Eric, Legrain Michèle, Mazarin Véronique, Bouchon-Theisen Bernadette, Shryvers Anthony B. et Bloch Marie-Aline.
- (73) Titulaire(s) :
- 74 Mandataire : Cabinet Lemoine et Bernasconi.
- 54 Fragments d'ADN codant pour les sous-unités du récepteur de la transferrine de Neisseria meningitidis et procédés les exprimant.
- C57 La présente invention a pour objet un fragment d'ADN codant pour une protéine capable d'être reconnue par un antisérum anti-récepteur de la transferrine de la souche de N. meningitidis IM2394 ou IM2169 ainsi d'un procédé d'obtention de ladite protéine par voie recombinante. A titre d'exemple, un tel fragment d'ADN code pour la sous-unité tbp1 de la souche IM2394 ou IM2169 ou pour la sous-unité tbp2 de la souche IM2394 ou IM2169.

La présente invention a pour objet des fragments d'ADN de Neisseria meningitidis codant pour les sous-unités du récepteur de la transferrine ainsi qu'un procédé de fabrication de chacune des sous-unités par voie recombinante.

5

D'une manière générale, les méningites sont soit d'origine virale, soit d'origine bactérienne. Les bactéries principalement responsables sont : N. meningitidis et Haemophilus influenzae, respectivement impliquées dans environ 40 et 50 % des cas de méningites bactériennes.

10 .

On dénombre en France, environ 600 à 800 cas par an de méningites à N. meningitidis. Aux Etats-Unis, le nombre de cas s'élève à environ 2 500 à 3 000 par an.

15

L'espèce N. meningitidis est subdivisée en sérogroupes selon la nature des polysaccharides capsulaires. Bien qu'il existe une douzaine de sérogroupes, 90 % des cas de méningites sont attribuables à 3 sérogroupes : A, B et C.

20

Il existe des vaccins efficaces à base de polysaccharides capsulaires pour prévenir les méningites à N. meningitidis sérogroupes A et C. Ces polysaccharides tels quels ne sont que peu ou pas immunogéniques chez les enfants de moins de 2 ans et n'induisent pas de mémoire immunitaire. Toutefois, ces inconvénients peuvent être surmontés en conjuguant ces polysaccharides à une protéine porteuse.

25

Par contre, le polysaccharide de N. meningitidis groupe B n'est pas ou peu immunogène chez l'homme, qu'il soit sous forme conjuguée ou non. Ainsi, il apparait hautement souhaitable de rechercher un vaccin à l'encontre des méningites induites par N. meningitidis notamment du sérogroupe B autre qu'un vaccin à base de polysaccharide.

30

A cette fin, différentes protéines de la membrane externe de N. meningitidis ont déjà été proposées. Il s'agit en particulier du récepteur membranaire de la transferrine humaine.

35

D'une manière générale, la grande majorité des bactéries ont besoin de fer pour leur croissance et elles ont développé des systèmes spécifiques d'acquisition de ce métal. En ce qui concerne notamment *N. meningitidis* qui est un pathogène strict de l'homme, le fer ne peut être prélevé qu'à partir de protéines humaines de transport du fer telles que la transferrine et la lactoferrine puisque la quantité de fer sous forme libre est négligeable chez l'homme (de l'ordre de 10⁻¹⁸ M), en tout cas insuffisante pour permettre la croissance bactérienne.

10

5

Ainsi, N. meningitidis possède un récepteur de la transferrine humaine et un récepteur de la lactoferrine humaine qui lui permettent de fixer ces protéines chélatrices du fer et de capter par la suite le fer nécessaire à sa croissance.

15

Le récepteur de la transferrine de la souche N. meningitidis B16B6 a été purifié par Schryvers et al (WO 90/12591) à partir d'un extrait membranaire. Cette protéine telle que purifiée apparait essentiellement constituée de 2 types de polypeptides : un polypeptide d'un poids moléculaire apparent élevé de 100 kD et un polypeptide d'un poids moléculaire apparent moindre d'environ 70 kD, telles que révélés après électrophorèse sur gel de de polyacrylamide en présence de SDS.

20

25

Le produit de la purification notamment mise en oeuvre par Schryvers est par définition arbitraire et pour les besoins de la présente demande de brevet, appelé récepteur de la transferrine et les polypeptides le constituant, des sous-unités. Dans la suite du texte, les sous-unités de poids moléculaire élevé et de poids moléculaire moindre sont respectivement appelées Tbp1 et Tbp2.

30

Toutefois, le procédé de purification décrit par Schryvers et al ne peut pas être utilisé pour la production à grande échelle du récepteur de la transferrine. La préparation industrielle de ce récepteur sous forme purifiée passe nécessairement par une étape de production à l'aide d'un système d'expression hétérologue.

5

10

15

20

25

30

A cette fin, l'invention se propose de fournir les fragments d'ADN codant pour les sous-unités du récepteur de la transferrine de N. meningitidis.

D'autre part, depuis les travaux pionniers de Schryvers et al, on a découvert qu'il existait en fait au moins 2 types de souches qui diffèrent par la constitution de leurs récepteurs de la transferrine respectifs. Ceci a été mis en évidence en étudiant des extraits membranaires de plusieurs dizaines de souches de N. meningitidis d'origines variées. Ces extraits membranaires ont tout d'abord été soumis à une électrophorèse sur gel de polyacrylamide en présence de SDS, puis électrotransférés sur feuilles de nitrocellulose. Ces feuilles de nitrocellulose ont été incubées :

- a) en présence d'un antisérum de lapin dirigé contre le récepteur de la transferrine purifié à partir de la souche N. meningitidis B16B6, aussi appelée IM2394;
- b) en présence d'un antisérum de lapin dirigé contre le récepteur de la transferrine purifié à partir de la souche N. meningitidis IM2169; ou
- c) en présence de la transferrine humaine conjuguée à la peroxydase.

En ce qui concerne a) et b), la reconnaissance des sous-unités du récepteur de la transferrine est révélée par addition d'un anticorps antiimmunoglobulines de lapin couplé à la peroxydase, puis par addition du substrat de cette enzyme.

Les tableaux I et II ci-dessous indiquent le profil de certaines souches représentatives tel qu'il apparait sur gel de polyacrylamide à 7,5 % après électrophorèse en présence de SDS; les bandes sont caractérisées par leur poids moléculaires apparents exprimés en kilodaltons (kD):

		Souches	S
Tableau I	2394 (B; 2a;P1.2:L2,3) 2228 (B; nd) 2170 (B; 2a:P1.2:L3)	2234 (Y;nd) 2154 (C; nd) 2448 (B; nd)	650 (C; 2a:) 179 (C; 2a:P1.2)
Détection avec	80	83	8
anti-récepteur 2394	89	69	69
Détection avec l'antisérum anti-récepteur 2169	S S	· 83	. 8
Détection avec la transferrine peroxydase	88	69	69

N.B.: Entre parenthèse sont indiqués dans l'ordre le sérogroupe, le sérotype, le sous-type et l'immunotype.

I

·		•		Sol	Souches				
Tableau II	2169 (B:9;P1.9)	1000 (B:nd)	1604 (B:nd)	132 1001 (C:15:P1.16) (A:4:P1.9)	1001 (A:4:P1.9)	876 (8:19:P1.6)	1951 (A:nd)	2449 (B:nd)	867 (B:2b:P1.2)
Détection avec l'antisérum anti-récepteur 2394	8	88	86	88	86	86	2 6	94	.66
Détection avec l'antisérum anti-récepteur 2169	96	86 98	83 83	81	98 79	88	94	2 8 8	88 85
Détection avec la transferrine- peroxydase	87	85	8		79	88	87	8	SS .

N.B.: Entre parenthèse sont indiqués dans l'ordre le sérogroupe, le sérotype, le sous-type et l'immunotype.

l

Les résultats répertoriés dans les 2 premières lignes des tableaux montrent qu'il existe 2 types de souches :

Le premier type (Tableau I) correspond à des souches qui possèdent un récepteur dont les 2 sous-unités dans les conditions expérimentales utilisées, sont reconnues par l'antisérum anti-récepteur IM2394 tandis que seule la sous-unité de haut poids moléculaire est reconnue par l'antisérum anti-récepteur IM2169.

10

5

Le second type (Tableau II) correspond à des souches qui possèdent un récepteur dont les 2 sous-unités dans les conditions expérimentales utilisées, sont reconnues par l'antisérum anti-récepteur IM2169 tandis que seule la sous-unité de haut poids moléculaire est reconnue par l'antisérum anti-récepteur IM2394.

15

En conséquence, il existe une diversité antigénique au niveau de la sous-unité de moindre poids moléculaire. Cette diversité est toutefois restreinte puisqu'elle se résout en 2 grands types, contrairement à ce qui est | suggéré par Griffiths et al, FEMS Microbiol. Lett. (1990) 69:31.

20

25

30

En vertu de ces constatations, on pouvait supposer qu'un vaccin efficace à l'encontre de toutes les infections à N. meningitidis pourrait être constitué de manière suffisante, de la sous-unité de haut poids moléculaire, quelle que soit la souche d'origine du récepteur, puisque cette dernière est reconnue par les 2 types d'antisérums. Toutefois, il semble que cela ne puisse être le cas dans la mesure où la sous-unité de haut poids moléculaire ne serait pas capable d'induire la production d'anticorps de type neutralisant. Seule la plus petite des 2 sous-unités du récepteur serait capable de remplir cette fonction. Puisque cette sous-unité de moindre poids moléculaire se caractérise par une variation antigénique significative du premier type au deuxième type de souche, un seul type de récepteur de la transferrine ne devrait pas être suffisant pour vacciner contre toutes les infections à N. meningitidis. Par conséquent, un vaccin devra contenir au moins la sous-unité de moindre poids moléculaire de chacune des souches IM2394 et IM2169 ou de leurs équivalents respectifs et, de manière optionnelle, la sous-unité de haut poids moléculaire d'au moins une souche de N. meningitidis.

35

C'est pourquoi l'invention fournit un fragment d'ADN isolé codant pour une protéine capable d'être reconnue par un antisérum anti-récepteur de la souche de N. meningitidis IM2394 ou IM2169.

5

25

30

35

24.

Un tel fragment d'ADN peut notamment comprendre une séquence nucléotidique codant pour une séquence d'acides aminés homologue à celle telle que montrée :

- dans l'identificateur de séquence (SEQ ID NO: 1) n° 1, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 579;
- dans le SEQ ID NO: 2, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 884;
 - dans le SEQ ID NO: 3, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 887; ou
- dans le SEQ ID NO: 4, commençant avec le résidu cystéine en position 1
 et finissant avec le résidu glutamine en position 691.

A titre indicatif, on précise qu'un fragment d'ADN selon l'invention peut en outre comprendre une séquence nucléotidique additionnelle codant pour n'importe quelle autre séquence d'acides aminés ; les deux séquences nucléotidiques considérées, formant un cadre ouvert de lecture de manière à coder pour une protéine hybride ou un précurseur.

De manière avantageuse, un fragment d'ADN selon l'invention peut être sélectionné parmi :

i) Un premier fragment d'ADN isolé, ayant une séquence nucléotidique codant pour une protéine ayant une séquence d'acides aminés homologue à celle tele que montrée dans le SEQ ID NO: 1, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 579.

- ii) Un deuxième fragment d'ADN isolé ayant une séquence nucléotidique codant pour une protéine ayant une séquence d'acides aminés à celle telle que montrée dans le SEQ ID NO: 2, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 884.
- iii) Un troisième fragment d'ADN isolé ayant une séquence nucléotidique codant pour une protéine ayant une séquence d'acides aminés à celle telle que montrée dans le SEQ ID NO: 3, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 887.
- iv) Un quatrième fragment d'ADN isolé ayant une séquence nucléotidique codant pour une protéine ayant une séquence d'acides aminés à celle telle que montrée dans le SEQ ID NO: 4, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 691.

Par "séquence d'acides aminés homologue", on entend une séquence présentant un degré d'homologie d'au moins 75 %, de manière avantageuse d'au moins 80 %, de manière préférée d'au moins 90 %, de manière tout à fait préférée de 100 %, avec la séquence d'acides aminés que l'on cite en référence. On notera que le terme "homologue" tel que défini inclut le cas particulier de l'identité.

25

30

5

10

15

20

Le degré d'homologie peut être aisément calculé en alignant les séquences de manière à obtenir le degré maximal d'homologie; pour ce faire, il peut être nécessaire d'introduire artificiellement des emplacements vacants, comme cela est illustré dans la figure 7. Une fois que l'alignement optimal est réalisé, le degré d'homologie est établi en comptabilisant toutes les positions dans lesquelles les acides aminés des deux séquences se retrouvent à l'identique, par rapport au nombre total de positions.

5

Il serait fastidieux de décrire des séquences homologues autrement que de manière générique, en raison du trop grand nombre de combinaisons. L'homme du métier connait toutefois les règles générales qui permettent de remplacer un acide aminé par un autre sans abolir la fonction biologique ou immunologique d'une protéine.

Un fragment d'ADN isolé et tout à fait préféré a une séquence nucléotidique codant pour :

- i) La sous-unité Tbp1 de la souche IM2394 dont la séquence en acides aminés est telle que montrée dans le SEQ ID NO: 2, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 884;
- ii) La sous-unité Tbp2 de la souche IM2394 dont la séquence en acides aminés est montrée dans le SEQ ID NO: 1, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 579;
- 20 iii) La sous-unité Tbp1 de la souche IM2169 dont la séquence en acides aminés est montrée dans le SEQ ID NO: 3, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 887; ou
- iv) La sous-unité Tbp2 de la souche IM2169 dont la séquence en acides aminés est montrée dans le SEQ ID NO : 4, commençant avec le résidu cystèine en position 1 et finissant avec le résidu glutamine en position 691.
- Le récepteur de la transferrine étant une protéine membranaire, chacune de ses sous-unités est initialement produite sous forme d'un précurseur constitué d'un peptide signal associé en position N-terminale, à la forme mature.

C'est pourquoi l'invention a aussi pour objet un bloc d'ADN isolé codant pour un peptide signal dont la séquence d'acides aminés présente un degré d'homologie d'au moins 80 %, de manière préférée de 100 %, avec la séquence montrée dans :

5

- i) le SEQ ID NO: 2, commençant avec le résidu méthionine en position 24 et finissant avec le résidu alanine en position 1;
- ii) le SEQ ID NO : 3, commençant avec le résidu méthionine en position 24 et finissant avec le résidu alanine en position 1; ou
 - iii) le SEQ ID NO : 4, commençant avec le résidu méthionine en position 20 et finissant avec le résidu alanine en position 1.

15

Un fragment d'ADN selon l'invention peut être aussi sélectionné parmi un cinquième, sixième, septième et huitième fragments d'ADN codant respectivement pour un précurseur dont la séquence d'acides aminés est homologue à la séquence présentée dans le SEQ ID NO: 1, 2, 3 ou 4.

20

Par "fragment ou bloc d'ADN isolé" on entend un fragment ou bloc d'ADN d'origine génomique qui est i) inséré dans un vecteur viral ou plasmidique ou ii) placé sous le contrôle d'un promoteur qui lui est hétérologue.

25

De plus, le bloc d'ADN codant pour le peptide signal selon l'invention est, en outre, considéré comme isolé lorsque ce bloc d'ADN est associé à un fragment d'ADN codant pour une protéine hétérologue au peptide signal; de manière à former un cadre de lecture ouvert codant pour un précurseur hybride.

.30

L'invention concerne aussi une cassette d'expression qui comprend au moins un fragment d'ADN selon l'invention, placé sous le contrôle d'éléments capables d'assurer son expression dans une cellule-hôte appropriée.

5

10

15

20

25

30

يدو

Dans la cassette d'expression, le premier, deuxième, troisième ou quatrième fragment d'ADN selon l'invention peut être ou non associé à un bloc d'ADN codant pour un peptide signal hétérologue à la protéine codée par ledit fragment d'ADN, selon que l'on recherche ou non la sécrétion de la protéine. De préférence, cette sécrétion sera recherchée.

Les éléments indispensables à l'expression d'un fragment d'ADN selon l'invention sont un promoteur de transcription, des codons de début et de fin de traduction et, de manière optionnelle, un terminateur de transcription. Le promoteur peut être constitutif ou inductible. On indique que le fragment d'ADN codant pour la sous-unité Tbp2 de la souche IM2394 semble être toxique pour une cellule hétérologue, notamment pour *E. coli*. Dans ce cas là, il pourrait être préférable d'utiliser un promoteur inductible.

Des éléments tels qu'un bloc d'ADN codant pour un peptide signal hétérologue (région signal) ou un promoteur existent déjà en assez grand nombre et sont connus de l'homme du métier. Ses compétences générales lui permettront de choisir une région signal ou un promoteur particulier qui peront adaptés à la cellule-hôte dans laquelle il envisage l'expression.

Enfin, l'invention fournit un procédé de fabrication d'un peptide, d'un polypeptide ou d'une protéine capables d'être reconnus par un antisérum anti-récepteur de la souche de N. meningitidis IM2394 ou IM2169 qui comprend l'acte de cultiver une cellule-hôte comportant une cassette d'expression selon l'invention; ainsi que le peptide, le polypeptide ou la protéine produit par ce procédé et les compositions vaccinales les contenant.

Aux fins du procédé selon l'invention, la cellule-hôte peut être une cellule de mammifère, une bactérie ou une levure ; ces deux dernières étant préférées. Là aussi, le choix d'une lignée particulière est à la portée de l'homme du métier.

Afin de déterminer l'objet de la présente invention, on précise que les souches de *N. meningitidis* IM2394 et IM2169 sont publiquement disponibles auprès de la Collection Nationale de Culture des Microorganismes (CNCM), Institut Pasteur, 25 rue du Dr Roux 75015 Paris sous les numéros d'enregistrement respectifs LNP N 1511 et LNP N 1520.

Un antisérum spécifique du récepteur de la transferrine de la souche de N. meningitidis IM2394 ou IM2169 peut être obtenu tel que décrit dans les exemples ci-après.

10

15

20

25

30

35

l'aide d'anticorps spécifiques.

5

L'invention est décrite plus en détails dans les exemples ci-après et par référence aux Figures 1 à 8.

La Figure 1 représente la structure du phage lambda ZAP II et schématise la méthodologie de clonage y afférent. Lambda ZAP II est un vecteur d'insertion équipé de sites de clonage multiples localisés dans la partie plasmidique (pBluescript SK). Cette partie plasmidique peut être excisée in vivo par co-infection avec un phage-helper et convertie en vecteur plasmidique. Si une séquence codante est fusionnée en phase à lacZ ou si un fragment d'ADN cloné comporte un promoteur fonctionnel dans E. coli, il peut y avoir production d'une protéine d'intérêt qui pourra être détectée à

La Figure 2 présente la structure du plasmide pTG1265. pTG1265 dérive du plasmide pGB2 (Churchward et al, Gene (1984) 31: 165) comme suit: pGB2 est digéré par *EcoRI* et *HindIII*, traité à la polymérase Klenow puis ligué au fragment *SspI - PvuII* de 1 kb issu de pT7T3 184 (Mead et al, Protein Engineering (1986) 1: 67; Pharmacia) qui comporte f1-ori, la séquence lacZ, les promoteurs T3 et T7 ainsi que des sites multiples de clonage.

La Figure 3 présente la carte génomique de la région d'ADN de la souche IM2394 comportant les séquences codant pour Tbp1 et Tbp2 ainsi que les différents fragments qui ont été clonés. B = BamH1; E = EcoRI; H = HincII; R = EcoRV; X = XbaI; C = ClaI.

La Figure 4 présente la carte génomique de la région d'ADN de la souche IM2169 comportant les séquences codant pour Tbp1 et Tbp2 ainsi que les différents fragments qui ont été clonés. C = ClaI; H = HincII; M = MluI; X = XbaI; ? = position imprécise.

5

La Figure 5 présente la structure du plasmide para13. para13 est un plasmide capable de se répliquer dans *E. coli* qui comporte le promoteur de l'opéron arabinose BAD (ParaB) de Salmonella typhimurium (modifié au niveau de la TATA box), ainsi que le gène AraC. En aval du promoteur ParaB se trouve des sites multiples d'insertion. La série des plasmides para est décrite par Cagnon et al, Prot. Eng. (1991) 4:843.

La Figure 6 représente la méthodologie qui a été mise en oeuvre pour construire le vecteur d'expression pTG3786.

15

10

La Figure 7 compare les séquences d'acides aminés prédites des sousunités Tbp1 des souches IM2394 et IM2169. Le degré d'homologie peut être estimé à environ 76 %.

20

25

La Figure 8 compare les séquences d'acides aminés prédites des sousunités Tbp2 des souches IM2394 et IM2169. Le degré d'homologie peut être estimé à environ 47 %.

La Figure 9 représente la méthodologie qui a été mise en oeuvre pour contruire le vecteur d'expression pTG3779.

EXEMPLE 1: Clonage des fragments d'ADN codant pour les sous-unités Tbp1 et Tbp2 du récepteur de la transferrine de la souche IM2394

5 1A - Culture de la souche et purification du récepteur de la transferrine

10

15

20

25

30

35

Un lyophilisat de la souche N. meningitidis IM2394 est repris dans environ 1 ml de bouillon Muller-Hinton (BMH, Difco). La suspension bactérienne est ensuite étalée sur le milieu solide Muller-Hinton contenant du sang cuit (5 %).

Après 24 hr d'incubation à 37°C dans une atmosphère contenant 10 % de CO_2 , la nappe bactérienne est recueillie pour ensemencer 150 ml de BMH pH 7.2, répartis en 3 erlens de 250 ml. L'incubation est poursuivie pendant 3 hr à 37°C sous agitation. Chacune des 3 cultures ainsi réalisées permet d'ensemencer 400 ml de BMH pH 7,2 supplémenté avec 30 μ m de Ethylènediamine - Di (O-Hydroxyphenyl - acetic acid (EDDA, Sigma), qui est un agent chélatant du fer sous forme libre.

Après 16 hr de culture à 37°C sous agitation, les cultures sont contrôlées pour leur pureté par observation au microscope après une coloration de Gram. La suspension est centrifugée, le culot contenant les germes est pesé et conservé à -20°C.

La purification est mise en oeuvre essentiellement selon la méthode décrite par Schryvers et al (supra), comme suit :

Le culot bactérien est décongelé, puis remis en suspension dans 200 ml de tampon Tris HCl 50 mM, pH 8.0 (tampon A). La suspension est centrifugée pendant 20 min à 15 000 xg à 4°C. Le culot est récupéré, puis remis en suspension dans du tampon A à la concentration finale de 150 g/l. Des fractions de 150 ml sont traitées pendant 8 min à 800 bars dans un lyseur de cellules travaillant sous haute pression (Rannie, modèle 8.30H). Le lysat cellulaire ainsi obtenu est centrifugé pendant 15 min à 4°C à 15 000 xg. Le surnageant est récupéré, puis centrifugé pendant 75 min à 4°C à 200 000 xg. Après élimination du surnageant, le culot est repris dans du tampon A et

1

après dosage de protéines selon Lowry, la concentration de la suspension est ajustée à 5 mg/ml.

A 1,4 ml de la suspension de membranes on ajoute 1,75 mg de transferrine humaine biotinylée selon le procédé décrit par Schryvers. La concentration finale de la fraction membranaire est de 4 mg/ml. Le mélange est incubé 1 heure à 37°C puis centrifugé à 100 000 xg pendant 75 minutes à 4°C. Le culot de membranes est repris par le tampon A contenant du NaCl 0,1M et incubé pendant 60 minutes à température ambiante.

10

5

Après solubilisation, on ajoute à cette suspension un certain volume de N-Lauroyl Sarkosine à 30 % (p/v) et d'EDTA 500 mM de façon que les concentrations finales en Sarkosyl et EDTA soient de 0,5 % et 5 mM respectivement. Après une incubation de 15 minutes à 37°C sous agitation, on ajoute 1 ml de résine strepavidine-agarose (Pierce) préalablement lavée en tampon A. La suspension est incubée 15 minutes à température ambiante puis centrifugée à 1 000 xg pendant 10 minutes. La résine est ensuite conditionnée dans une colonne et l'éluat direct est éliminé.

20

25

15

La résine est lavée par 3 volumes de colonne de tampon Tris-HCl 50 mM pH 8.0 contenant NaCl 1M, EDTA 10 mM Sarkosyl 0,5 % (tampon B) puis par un volume de colonne de tampon B contenant de la guanidine-HCl 750 mM. Le récepteur de la transferrine est ensuite élué par le tampon B contenant de la guanidine-HCl 2M. L'éluat est collecté en fractions, dans des tubes contenant un volume identique de Tris HCl 50 mM, pH 8.0, NaCl 1M. La densité optique à 280 nm de l'éluat est mesurée en sortie de colonne à l'aide d'un détecteur UV.

30

Les fractions correspondant au pic d'élution sont recueillies, dialysées contre du tampon phosphate 10 mM, pH 8,0 contenant du Sarkosyl 0,05 % et lyophilisées Le lyophilisat est repris dans de l'eau à une concentration 10 fois supérieure. La solution est dialysée une seconde fois contre du tampon phosphate 50 mM pH 8,0 contenant du Sarkosyl 0,05 % (tampon C) puis la solution est filtrée sur une membrane de porosité 0,22 μ m.

35

Le contenu en protéines est déterminé et ajusté à 1 mg/ml par

addition de tampon C, sous conditions aseptiques. Cette préparation est conservée à -70°C.

1B - Préparation d'un antisérum spécifique du récepteur de la transferrine

5

10

15

20

Des lapins néo-zélandais albinos reçoivent par voie sous-cutanée et intramusculaire 100 µg du récepteur IM2394 en présence d'adjuvant complet de Freund. 21 jours et 42 jours après la première injection, les lapins reçoivent à nouveau 100 µg du récepteur purifié mais ces fois-ci en présence d'adjuvant incomplet de Freund. 15 jours après la dernière injection, le sérum des animaux est prélevé, puis décomplémenté et filtré sur une membrane de porosité 0,45 µm. Le filtrat est par la suite épuisé par contact avec la souche IM2394 qui pour se faire, a été cultivée au préalable en présence de fer sous forme libre (dans ces conditions, la synthèse du récepteur de la transferrine est réprimée). Les modalités de contact sont comme suit : 10 ml du filtrat sont ajoutés à 10¹⁰ cfu (unités formant des colonies) d'une culture de la souche IM2394. L'adsorption est poursuivie une nuit à 4°C, sous agitation. Les bactéries sont ensuite éliminées par centrifugation. Le surnageant est récupéré puis soumis à nouveau à 2 opérations d'adsorption successives comme précédemment décrit.

. 1C - Détermination des séquences peptidiques permettant l'identification des fragments d'ADN.

25

Des fractions aliquotes du matériel obtenu en 1A sont séchées puis resolubilisées dans le tampon de Laemmli deux fois concentré (Tris 65mM, SDS 3 %, glycérol 10 %, 2-mercaptoéthanol 5 %). On ajoute un volume d'eau équivalent.

30

35

Après sonication, le matériel est chauffé à 90°C pendant 2 minutes, puis soumis à une électrophorèse sur gel de polyacrylamide. Les sous-unités ainsi séparées sont transférées sur membrane PVDF (Immobilon, Millipore) pendant 16 heures à 400 mA en tampon Tris borate 50 mM, pH 8,3. Les sous-unités électrotransférées sont colorées à l'amido black et les bandes correspondant à Tbp1 et Tbp2 sont récupérées et soumises au microséquençage de l'extrémité N-terminale.

Ceci est répété plusieurs fois pour établir les séquences consensus Nterminales suivantes :

Tbp1 IM2394: EXVQAEQAQEKQLDTIQV Tbp2 IM2394: XLXXXXSFDLDSVEXVQXMX

(X = acide aminé non-déterminé).

Afin de séquencer des régions internes de Tbp2, la protéine sur membrane PVDF est soumise à digestion par la trypsine en tampon Tris 0,1 M pH 8,2. Après 4 heures de réaction à 37°C, les peptides sont extraits par de l'acide formique 70 % puis par de l'acide trifluoroacétique (TFA) 0,1 %. Ces peptides sont ensuite séparés par HPLC.

Pour Tbp2 IM2394, les séquences internes qui ont été établies sont les suivantes :

S1122: NNIVLFGPDGYLYYK

S1125: YTIQA

S"770: DGENAAGPATEXVIDAYR

20 S"766: XQIDSFGDVK

5

10

S1126: AAFXXXI

S"769: XNXXXMFLQGVR

S"771: TPVSDVAAR

S"767: XSPAFT

25 S"762: NAIEMGGSFXFPGNAPEG(K)

S1128: XQPESQQDVSENX

1D - Préparation de l'ADN génomique.

Le culot bactérien obtenu en 1A est resuspendu dans environ 25 ml de solution A (Tris HCl 25 mM, pH 8 contenant 50 mM de glucose et 10 mM d'EDTA) additionnée de 10 mg de protéinase K. Le mélange est laissé 10 minutes à température ambiante.

Puis on ajoute 12,5 ml de solution A contenant 10 mg de lysosyme. Une nouvelle fois, le mélange est laissé 10 minutes à température ambiante. On complète alors par 0,5 ml de sarkosyl 10 %. Le mélange est incubé 10 minutes à +4°C.

5

10

15

20

25

On ajoute ensuite 2 mg de RNAse et on laisse l'incubation se poursuivre 90 minutes à 37°C. L'ADN est purifié par quatre extractions phénoliques successives. L'ADN présent dans la dernière phase aqueuse est précipité par l'éthanol. L'ADN de haut poids moléculaire est obtenu par séparation sur gradient de CsCl.

1E - Clonage.

Une première banque d'ADN a été réalisée dans le vecteur lambda ZAP (Figure 1), comme suit :

Une préparation d'ADN génomique a été fragmentée aux ultrasons. Les extrémités des fragments ainsi obtenus ont été rendues franches par traitement à la T₄ polymérase. Les fragments ont été méthylés. Après méthylation, les fragments ont été liés à des adaptateurs *EcoRI*, traités par *EcoRI* puis insérés dans le site *EcoRI* du phage lambda ZAP II (Stratagène).

La souche *E. coli* XL1-Blue (Stratagène) a été infectée avec la banque d'ADN ainsi préparée. Les plages de lyse blanches (présence de phages recombinants) ont été testées à l'aide d'un antisérum spécifique du récepteur de la transferrine de la souche IM2394 préparé tel que décrit en 1B. Ceci a permis d'identifier deux clones lambda ZAP II. Les plasmides pBluescript contenus dans ces clones ont été excisés par co-infection avec le phage-"helper" et ont été appelés pBMT1 et pBMT2.

30

Les plasmides pBMT1 et pBMT2 contiennent chacun un fragment EcoRI - EcoRI respectivement de 3,8 kb et 1,3 kb. Ils sont présentés dans la Figure 3.

35 .

Le séquençage de l'insert EcoRI - EcoRI de pBMT1 a été mis en oeuvre selon la méthode de shotgun (Bankier et Barrell, Biochemistry (1983)

B5: 508), comme suit:

L'insert *EcoRI* - *EcoRI* de pBMT1 a été purifié puis fragmenté aux ultra-sons. Les extrémités des fragments ainsi obtenus ont été rendues franches par traitement à la T4 polymérase. Les fragments ainsi traités ont été introduits dans un site du phage M13TG131 (décrit dans Kieny et al, Gene (1983) <u>26</u>: 91). Environ 200 clones issus de cette préparation ont été séquencés. L'analyse de ces séquences par ordinateur a permis de reconstituer la séquence complète de l'insert *EcoRI* - *EcoRI* de pBMT1.

10

15

5

La séquence codant pour l'extrémité N-terminale de Tbp1 a été localisée comme le montre la Figure 3. Compte tenu de la masse moléculaire de Tbp1, il était clair que cet insert ne comportait pas le fragment d'ADN complet codant pour Tbp1. En amont de l'extrémité 5' du gène tbp1, on a mis en évidence un cadre de lecture ouvert mais il n'a pas été possible d'identifier clairement une région codant pour l'extrémité N-terminale du gène tbp2.

20

Le microséquençage de régions internes de Tbp2 a donc été entrepris comme reporté précédemment en 1C. Les séquences internes qui étaient localisées vers l'extrémité C-terminale, correspondaient bien à la partie 3' du cadre de lecture ouvert en amont de tbp1.

25

D'autre part, l'ADN génomique de la souche IM2394, préalablement digéré par HincII a été analysé par Southern blot à l'aide d'une sonde d'ADN radioactive correspondant à la zone HincII - HincII de 1,5 kb de l'insert de 3,8 kb de pBMT1; deux bandes ont été ainsi révélées. Ceci a permis de démontrer que l'insert porté par pBMT1 résultait d'un assemblage artéfactuel de séquences issues de deux loci distincts. La séquence 5' de tbp2 était donc absente.

30

La banque d'ADN génomique en lambda ZAP précédemment décrite a été criblée de nouveau ; cette fois-ci en utilisant l'insert *EcoRI* - *EcoRI* de pBMT2 comme sonde. 29 candidats ont été retenus parmi environ 200 000 plages testées. Seul le plasmide dérivé pTG2749 semblait posséder un insert nouveau par rapport à pBMT1 et pBMT2. L'insert de pTG2749 est

35

tel que représenté dans la Figure 3. La région de l'insert en amont du site EcoRV (région EcoRV - EcoRI) a été sous-clonée dans M13TG131 et séquencée par la méthode de Sanger et al, PNAS (1977) 74 : 5463 à l'aide de primers synthétiques. La séquence correspondant à l'extrémité N-terminale de Tbp2 a été ainsi retrouvée.

La séquence du fragment d'ADN codant pour Tbp2 de la souche IM2394 est présentée dans le SEQ ID NO : 1 ainsi que la séquence d'acides aminés correspondante.

10

5

Juste en amont de la séquence codant pour Tbp2 mature, l'insert de pTG2749 comporte une région génomique distincte issue d'un autre locus. La aussi, il s'agit d'une artéfact de clonage analogue à celui mis en évidence dans le cas de pBMT1.

15

Compte tenu des réarrangements observés et de l'absence de séquences 3' de tbp1 et 5' de tbp2, la banque d'ADN génomique construite en lambda ZAP a été jugée inadaptée pour la poursuite du clonage.

20

Une deuxième banque d'ADN génomique a donc été construite dans un plasmide à faible nombre de copies, comme suit : une préparation d'ADN génomique a été partiellement digérée par Sau3A. Des fragments d'ADN d'environ 4 à 6 kb ont été purifiés après fractionnement en gradient de sucrose et insérés dans le site BamHI du plasmide pTG1265. Cette préparation plasmidique a servi à transformer la souche d'E. coli 5K. On a estimé que cette banque contenait environ 18 000 clones indépendants.

25

Environ 50 000 clones de la deuxième banque ont été testés à l'aide d'une sonde radioactive correspondant à l'insert *EcoRI* - *EcoRI* de pBMT2. Un seul clone a été révélé; soit le plasmide pTG2759 qui possède un insert de 1,8 kb. La taille de cette insert a été jugée insuffisante pour contenir le gène complet codant pour Tbp1.

35

30

Une troisième banque d'ADN a été construite selon la méthode décrite au paragraphe précédent à l'exception de la souche d'E. coli 5K qui a été remplacée par la souche d'E. coli SURE (Stratagène). On a estimé que

cette banque contenait environ 60 000 clones indépendants.

5

15

20

25

30

35

Environ 70 000 clones de la troisième banque d'ADN ont été testés à l'aide d'une sonde radioactive correspondant au fragment *MuI - HincII* de 2,4 kb issu de l'insert de pTG2754 décrit dans l'Exemple 2 ci-après et représenté dans la Figure 4. Deux clones ont été révélés, soient les plasmides pTG2780 et pTG2781, représentés dans la Figure 3.

La séquence des inserts de pTG2780 et pTG2781 a été établie selon la méthode de Sanger. Elle est présentée dans le SEQ ID NO : 2 ainsi que la séquence d'acides aminés correspondante.

Une quatrième banque a été construite. Le DNA génomique a été digéré par Sau3A et une fraction contenant des fragments d'environ 7 kb a été purifiée sur gradient de sucrose. Cette fraction contenait un fragment correspondant au locus tbp1,2 car elle était reconnue par une sonde d'ADN spécifique de tbp2. Après digestion par EcoRV et XbaI et ligation à pTG1265 digéré par SmaI et XbaI, E coli 5K a été transformée. Un criblage des clones à l'aide d'une sonde spécifique de tbp2 a été réalisé. Parmi une série de clones positifs, le plasmide pTG3791 a été étudié en particulier et s'est avéré contenir des séquences 5' tbp2 incluant la séquence codant pour le peptide signal putatif de Tbp2.

EXEMPLE 2: Clonage des fragments d'ADN codant pour les sous-unités Tbp1 et Tbp2 du récepteur de la transferrine de la souche IM2169.

2A - La culture de la souche IM2169 et la purification du récepteur de la transferrine ont été effectuées dans des conditions identiques à celles décrites dans l'Exemple 1A.

2B - La préparation d'un antisérum anti-récepteur de la souche IM2169 a été réalisée selon le protocole décrit dans l'Exemple 1B.

2C - Les séquences peptidiques permettant l'identification des fragments d'ADN ont été déterminées selon la méthode reportée dans l'Exemple 1C.

Les microséquences qui ont été établies sont les suivantes.

Séquence consensus de l'extrémité N-terminale de Tbp1 : ENVQAGQAQEKQLXXIQVX

5

Séquences des peptides internes de Tbp1:

S1031: XLS(E,W)NAGXVLXPADX

S1032: QLDTIQVK

S1033: TAGSSGAINEIEYENXX

10 S1034: YVTWENVDXXXXXX

Séquence consensus de l'extrémité N-terminale de Tbp2 : SLVXAXSFDLXSV

Séquences des peptides internes de Tbp2:

S1037: XXDNLSNAX

S1035: XGDDGYIFYXGEKPX

S1036: XQGXYGFAMX

S1040: XQATGHENFQYVYSGXFYK

20

2D - La préparation de l'ADN génomique de la souche IM2169 a été réalisée selon le protocole décrit dans l'Exemple 1D.

2E - Clonage

25

(···

Une première banque d'ADN génomique (fragments d'ADN Sau3A partiel; pTG1265; E. coli 5K) a été construite comme précédemment décrit dans l'Exemple 1. On a estimé que cette banque contenait environ 40 000 clones indépendants, dont environ 70 % possédaient un insert de 4-6 kb.

30

35

130 000 clones de cette banque ont été testés à l'aide d'une sonde radioactive correspondant à l'insert *EcoRI* - *EcoRI* de pBMT2. 42 clones ont été analysés, parmi lesquels 2 ont été retenus : les plasmides pTG2753 et pTG2754 qui sont tels que montrés dans la Figure 4. Les analyses en Southern blot ont montré que les cartes de restriction des inserts de pTG2753 et pTG2754 correspondaient à la carte de restriction de l'ADN

génomique.

La détermination des séquences nucléotidiques et la recherche des régions codant pour les extrémités N-terminales et les régions internes ont démontré que :

- l'insert de 1,9 kb de pTG2753 contient la partie 3' du gène tbp2 et la partie 5' du gène tbp1; et
- 10 l'insert de pTG2754 contient la partie 3' du gène tbp2 et les parties 5' et 3' du gène tbp1, en rupture de phase.

Cette première banque n'a donc pas permis de cloner des fragments d'ADN complets codant pour Tbp1 ou Tbp2.

15

5

Une deuxième banque génomique a été construite comme précédemment mais à partir d'ADN génomique digéré par XbaI. Les fragments d'ADN ont été purifiés après fractionnement en gradient de sucrose. Chaque fraction (d'environ 500 μ l) a été testée par Southern blot avec une sonde radioactive correspondant à l'extrémité 3' de tbpI (fragment de l'insert de pTG2754). La fraction présentant une réaction d'hybridation et contenant des fragments d'environ 6 kb a été clonée dans pTG1265. La souche E. coli 5K a été transformée.

2.5

20

Environ 2 400 clones de cette banque ont été testés à l'aide d'une sonde radioactive correspondant au fragment *HincII - MluI* de 0,6 kb issu de pTG2754. Cinq clones ont été caractérisés, parmi lesquels 2 ont été retenus : soient pTG3720 et pTG3721, tels que montrés dans la Figure 4, qui contiennent tous deux les gènes *tbp1* et *tbp2*.

30

35

Afin de compléter la séquence nucléotidique codant pour Tbp1, l'insert de pTG3720 a été séquencé dans la région où se situait la rupture de phase découverte dans l'insert de pTG2754. Ce séquençage a permis de mettre en évidence que la rupture de phase de l'insert de pTG2754 était due à une délétion de 22 bp. La séquence complète du fragment d'ADN est telle que montrée dans le SEQ ID NO : 3.

Le séquençage de l'insert de pTG3720 a été poursuivi pour établir la séquence de tbp2. Celle-ci a bien été identifiée; mais là aussi une rupture de phase a été constatée.

Finalement la séquence de tbp2 a été déterminée à partir du plasmide pTG3721. Elle est telle que montrée dans le SEQ ID NO : 4.

EXEMPLE 3: Expression du fragment d'ADN codant pour la sous-unité Tbp2 de la souche IM2394.

3A. Construction du vecteur d'expression pTG3786.

5

15

30

22-

٠.

Le site SphI du plasmide para13 (Figure 5 ; Cagnon et al, Prot. Eng. (1991) 4 : 843) a été détruit par traitement à la polymérase Klenow, pour donner le plasmide pTG3704. pTG3704 a été linéarisé par coupure NcoI, traité à la polymérase Klenow pour rendre les extrémités franches, puis digéré par HindIII.

D'autre part, on a synthétisé les oligonucléotides OTG4015 et 20 OTG4016 que l'on a appariés.

OTG4015:5' AAATACCTATTGCCTACGGCAGCCGCTGGACTGTTATTACT
CGCTGCCCAACCAGCGATGGCATGCTTTCCCACGCGTTTTCCCA 3'

25 OTG4016:5'AGCTTGGGAAAACGCGTGGGAAAGCATGCCATCGCTGGTTGGGCA GCGAGTAATAACAGTCCAGCGGCTGCCGTAGGCAATAGGTATTT 3'

Le fragment d'ADN double brin OTG4015/OTG4016 a été inséré dans para13 traité comme précédemment décrit, pour donner le plasmide pTG3717 dans lequel on avait reconstitué la séquence codant pour la partie N-terminale du précurseur de la protéine PelB d'Erwinia carotovora (Lei et al, J. Bact. (1987) 169: 4379); Soit:

Met Lys Tyr Leu Leu Pro Thr Ala Ala Gly Leu

SphI

TTA TTA CTC GCT GCC CAA CCA GCG ATG GCA TGCTTT Leu Leu Leu Ala Ala Gln Pro Ala Met Ala

5 MluI HindIII
CCCACGCGTTTTCCCA AGCTT.....

(en souligné, aparaissent les extrémités de pTG3704)

A partir du plasmide pTG2749, on a généré par PCR à l'aide des amorces OTG4011 et OTG 4012, un fragment incluant la région codant pour la partie N-terminale de Tbp2, jusqu'au site MluI interne, tel que montré dans la Figure 6.

15 OTG4011:

BamHI SphI

5' AAAAAGGATCC/GCA TGC CTG GGT GGC GGC AGT TTC 3'
Cys Leu Gly

20 OTG4012:

30

35

•

BamHI

MluI

5' AAAAGGATCCG AAT GGT GTA ACG CGT AGT TTT TAT 3'

Le fragment généré par PCR a été digéré par BamHI, puis inséré dans le site BamHI du phage M13TG131, pour donner M13TG3724. La séquence de ce fragment a été vérifiée par séquençage.

A partir de M13TG3724, on a récupéré la région codant pour la partie N-terminale de Tbp2 sous forme d'un fragment SphI - MluI que l'on insert dans pTG3717 préalablement digéré par SphI et MluI, pour donner le plasmide pTG3743.

A partir du plasmide pBMT1, on a récupéré la région codant pour la partie C-terminale de Tbp2 sous forme d'un fragment *MluI-BanI* dont l'extrémité cohésive *BanI* avait été rendue franche par traitement à la polymérase Klenow. On a inséré ce fragment dans pTG3743 préalablement

digéré par HindIII, traité à la polymérase Klenow et finalement digéré par MluI. On obtient ainsi le plasmide pTG3786.

3B. Production de la sous-unité Tbp2.

5

10

15

E. coli MC1061 (Casadaban & Cohen, J. Mol. Biol. (1980) 138: 179) est transformée par pTG3786 puis mise en culture à 37°C, en milieu LB supplémenté avec 2 g/l de glycérol. A la culture est en phase exponentielle, on ajoute 0,2 g/l d'arabinose. L'incubation a été poursuivie durant 6 hr supplémentaires. L'expression a été observée moins d'une heure après l'addition d'arabinose.

L'électrophorèse sur gel d'acrylamide d'un échantillon du lysat cellulaire total a mis en évidence la présence d'une protéine d'environ 70 kD qui est capable de fixer la transferrine humaine marquée à la peroxydase.

EXEMPLE 4: Expression du fragment d'ADN codant pour la sous-unité tbp1 de la souche IM2169.

20 4A. Construction du vecteur d'expression pTG37796.

Un fragment synthétique constitué des oligonucléotides OTG4038 et OTG4039 préalablement appariés, a été inséré dans le plasmide pTG3704 digéré par NcoI et HindIII, générant ainsi le plasmide pTG3756.

25

30

OTG4038:

5' CATGGCTGCAGGRACCACGCGTGAATTCCCCGGGTCTAGA 3'

OTG4039:

5' AGCTTCTAGACCCGGGGAATTCACGCGTGGTACCTGCAGC 3'

A partir du plasmide pTG2754, on a généré par PCR à l'aide des amorces OTG4037 et OTG4014 un fragment incluant la région codant pour l'extrémité N-terminale du précurseur de Tbp1 jusqu'au site MluI.

OTG4037:

5' TTTCCCGGATCCGC ATG CAA CAG CAA CAT TTG TTC CGA TTA 3
BamHI SphI

Met Gln Gln Gln...

5

25

35

 ℓ_i

OTG4014:

5' AAAAGGATCCGGGGTCGTAACGCGTCAGGTCGCGG 3'

BamHI

MluI

10 Ce fragment PCR a été digéré par BamHI et cloné dans le site BamHI de M13TG131 pour générer M13TG3738. La séquence de ce fragment a été vérifiée.

M13TG3738 a ensuite été linéarisé par SphI, traité à la T4 DNA polymérase pour rendre les extrémités franches, puis digéré par MluI afin d'isoler le fragment porteur de la région codant pour l'extrémité N-terminale du précurseur de Tbp1.

Ce fragment a été inséré dans pTG3756 digéré par NcoI, traité à la T4

20 DNA polymérase puis digéré par MluI, pour générer le plasmide pTG3778.

La séquence de la jonction NcoI / SphI a été vérifiée.

Le fragment MuI - XbaI de pTG3720 codant pour la majeure partie de Tbp1 (3'tbp1) a été inséré dans le plasmide pTG3778. Le plasmide final ainsi obtenu est le plasmide pTG3779.

4B. Production de la sous-unité Tbp1.

E. coli MC1061 a été transformé par pTG3779 puis mise en culture à 37°C en milieu LB. A la culture en phase exponentielle, on a ajouté 0,2 g/l d'arabinose. L'incubation a été poursuivie durant 4 heures.

L'électrophorèse sur gel d'acrylamide d'un échantillon du lysat cellulaire total a mis en évidence la présence d'une protéine d'environ 100 Kd qui est capable de fixer la transferrine humaine marquée à la peroxydase.

SEO ID NO: 1

Objet: Séquence de l'ADN génomique de la souche de N. meningitidis IM2394 codant pour la sous unité Tbp2 et séquence protéique déduite. En gras sont indiqués le peptide signal et le site MluI

				~ -		 AAC Asn		15
			GTG Val					60
			AGT Ser					 105
			AAA Lys					130
			GAT Asp					195
			CTA Leu					240
		Lys	CAC His					285
			GAA Glu					330
			GGT Gly			 	 	 375
			CGT Arg					420
			GTT Val					465
			CTT Leu					510

1.

	TAT Tyr	AAA Lys	GGG Gly	AAA Lys	GAA Glu 155	CCT Pro	TCC Ser	AAG Lys	Glu	CTG Leu 160	CCA Pro	TCG Ser	GAA Glu	AAG Lyb	ATA Ile 165		555
	ACT Thr	TAT Tyr	AAA Lys	GCT	ACT Thr 170	TGG Trp	GAT Asp	TAT Tyr	GTT Val	ACT Thr 175	GAT Asp	GCT Ala	ATG Met	GAA Glu	AAA Lys 180		600
	CAA Gln	AGG Arg	TTT Phe	GAA Glu	GGA Gly 185	TTG Leu	GGT Gly	AGT Ser	GCA Ala	GCA Ala 190	GGA Gly	GGA Gly	GAT Asp	AAA Lys	TCG Ser 195		645
	GGG	GCG Ala	TTG Leu	TCT Ser	GCA Ala 200	TTA Leu	GAA Glu	GAA Glu	GGG Gly	GTA Val 205	TTG Leu	CGT Arg	AAT Asn	CAG Gln	GCA Ala 210		690
	GAG Glu	GCA Ala	TCA Ser	TCC Ser	GGT Gly 215	CAT His	ACC Thr	GAT Asp	TTT Phe	GGT Gly 220	ATG Met	ACT Thr	AGT Ser	GAG Glu	TTT Phe 225	,	735
	GAG Glu	GTT Val	GAT Asp	TTT Phe	TCT Ser 230	GAT Asp	AAA Lys	ACA Thr	ATA Ile	AAG Lys 235	GIY	ACA Thr	CTT Leu	TAT	CGT Arg 240		780
-	AAC Asn	AAC Asn	CGT Arg	ATT Ile	ACT Thr 245	CAA Gln	AAT Asn	AAT Asn	AGT Ser	GAA Glu 250	AAC Asn	AAA Lys	CAA Gln	ATA Ile	AAA Lys 255		825
	ACT Thr	ACG Thr	CGT	TAC Tyr	ACC Thr 260	ATT	CAA Gln	GCA Ala	ACT THE	CTT Leu 265	HIB	GCC	AAC Aan	CGT	TTC Phe 270		870
	AAA Lys	GGT Gly	AAG	GCG Ala	TTG Leu 275	Ala	GCA Ala	Aap	AAA Lys	GGT Gly 280	ALA	ACA Thr	TAA neA	GGA Gly	AGT Ser 285		915
	CAT His	CCC	TTT Phe	ATT	TCC Ser 290	yab	TCC Ser	Aap	AGT Ser	TTG Leu 295	GLU	GGC	GGA Gly	TTI Phe	TAC Tyr 300		960
	GGG	CCG	AAA Lye	GGC Gly	GAG Glu 305	Glu	CTT Leu	GCC Ala	GGT Gly	AAA Lys 310	Pue	TTG Leu	AGC Ser	AAC Asr	GAC Asp 315		1005
	AAC Asn	AAA Lys	GTI Val	GCA Ala	GCG Ala 320	. Val	TTT Phe	GGT	GCG Ala	Lys 325	GID	Lys	GAI Asp	AAG Lys	AAG Lys 330		1050
	GAT Asp	GGG Gly	GAP Glu	AAC Aan	GCG Ala 335	Ala	GCG	· CCT	GCA Ala	Thr 340	GLu	ACC Thr	GTG Val	ATA L Ile	A GAT Asp 345		1095
	GCA Ala	TAC Tyr	C CGT	T ATT	ACC Thr 350	Gly	GAG Glu	GAG Glu	TTI Phe	AAG Lys 355	TAE	GAC Glu	CAI	ATI 1 Ile	A GAC B Asp 360		1140
	AGT Ser	TTT	r GGI e Gly	A GAI	GTG Val 365	Lys	AAG Lys	CTG Lev	CTC	GT1 Val 370	r wai	GGI	A GTO	G GAG	G CTT Leu 375		1185
	TC? Ser	CTC	G CTO	G CCG	TCT Ser 380	Glu	GGC Gly	AAI ABI	AAC Lys	38!	4 WIS	A TT:	r CAC e Gl	G CA	C GAG 8 Glu 390		1230

								GCA Ala									1275
	GAT Asp	TAC Tyr	ATG Met	AGT Ser	TTT Phe 410	ely eeg	AAG Lys	CTG Leu	TCA Ser	AAA Lys 415	GAA Gku	TAA Asn	ГЛа УУУ	GAC Asp	GAT Asp 420		1320
								ACT Thr									1365
								TAT								٠	1410
								AGC Ser									1455
								GAC Asp									1500
r.								AAA Lys									1545
								GAC Asp									1590
								GCG Ala									1635
								GAA Glu									1680
								ATG Het									1725
								CAA Gln									1770
								GTG Val		<u>TAA</u>	GCAC	:GGC1	2				1808

SEO ID NO: 2

Objet:

Séquence de l'ADN génomique de la souche de N. meningitidis IM2394 codant pour le précurseur de la sous-unité Tbp1 du récepteur de la transferrine et séquence protéique déduite. Le peptide signal est indiqué en caractères gras.

				CT	CCGI	ATG (CCGT	TGA	AA GO	GAA 0	ATT	GG(AAAC	CACT	40
ATG Met -24	CAA Gln	CAG Gln	CAA Gln	CAT His -20	TTG Leu	TTC Phe	CGA Ar g	TTA Leu	AAT Asn -15	ATT Ile	TTA Leu	TGC Cys	CTG Leu	TCT Ser -10	85
TTA Leu	ATG Met	ACC Thr	GCG Ala	CTG Leu -5	CCC Pro	GTT Val	TAT Tyr	GCA Ala -1	GAA Glu 1	AAT Asn	GTG Val	CAA Gln	GCC Ala 5	GAA Glu	130
CAA Gln	GCA Ala	CAG Gln	GAA Glu 10	AAA Lys	CAG Gln	TTG Leu	GAT Asp	ACC Thr 15	ATA Ile	CAG Gln	GTA Val	TÅ8 TY8	GCC Ala 20	AAA Lys	175 ·
AAA Lys	CAG Gln	Lys	ACC Thr 25	CGC Arg	CGC Arg	GAT Asp	AAC Asn	GAA Glu 30	GTA Val	ACC Thr	Gly GCG	CTG Leu	GGC Gly 35	AAG Lys	220
Leu	Val	ГÄа	Ser 40	Ser	Asp	Thr	Leu	Ser 45	Lys	Glu	CAG Gln	Val	Leu 50	Asn	265
Ile	Arg	Asp	Leu 55	Thr	Arg	Tyr	yab.	Pro 60	Gly	Ile	GCC Ala	Val	Val 65	Glu	310
CAG Glń	GGT Gly	CGG	GGC Gly 70	GCA Ala	AGT Ser	TCC Ser	GLY	TAT Tyr 75	TCA Ser	ATA Ile	CGC Arg	GGC	ATG Met 80	yab	355
AAA Lys	AAC Asn	CGC Arg	GTT Val 85	TCC Ser	TTA Leu	ACG Thr	GTA Val	GAC Asp 90	GGC	GTT Val	TCG Ser	CAA Gln	ATA Ile 95	CAG Gln	400
Ser	Tyr	Thr	Ala 100	Gln	Ala	Ala	Leu	Gly 105	Gly	Thr	AGG Arg	Thr	Ala 110	Gly	445
Ser	Ser	Gly	Ala 115	Ile	Asn	Glu	Ile	Glu 120	Tyr	Glu	AAC Asn	Val	Lys 125	Ala	490
Val	Glu	Ile	Ser 130	Lys	Gly	Ser	Asn	Ser 135	Ser	Glu	TAC Tyr	Gly	Asn 140	Gly	535
GCA Ala	TTG Leu	GCA Ala	GGT Gly 145	TCG Ser	GTC Val	GCA Ala	TTT	CAA Gln 150	ACC Thr	Lys	ACC Thr	GCA Ala	GCC Ala 155	GAC Asp	580

_ ~

				GAG Glu 160												625
				AAA Lys 175												670
				GGC Gly 190												715
				GAA Glu 205												760
				AAC Asn 220												805
	GGC Gly	AGT Ser	CAG Gln	TAC Tyr 235	AGA Arg	TAT Tyr	TTC Phe	ATT Ile	GTC Val 240	GAA Glu	GAA Glu	GAA Glu	TGC Cyb	CAC His 245	AAT Asn	850
à.				GCC Ala 250												895
				CGC Arg 265												940
				CTT Leu 280												985
				CCG Pro 295												1030
				GAA Glu 310												1075
	ACT Thr	GTT Val	CCT Pro	GCC Ala 325	TAT Tyr	TTT Phe	ACC Thr	AGT Ser	GAA Glu 330	GAT Asp	TAT Tyr	GTA Val	CCC Pro	GGT Gly 335	TCG Ser	1120
J				CTT Leu 340				Ser								1165
				CAG Gln 355												1210
				GTG Val 370												1255
	GGG Gly	GTC Val	GAA Glu	TAT Tyr 385	GTT Val	TAC Tyr	CAT His	AAT Asn	GCT Ala 390	GAT Asp	TAB TAB	GAT Asp	ACC Thr	TGG Trp 395	GCC Ala	1300

AMC COT TTG CAG CAG ACG CAT TGC TCT CAG CAC GOT TCG GAT AAA ASAN Arg Leu Gin Gin Thr His Cys Ser His Asp Gly Ser Asp Lys AAT TGC CGT CCC GAC GGC AAT AAA CCG TAT TCT TTG TAT AAA TCC AND CYS Arg PTD Asp Gly Ash Lys PtD Tyr Ser Phe Tyr Lys Ser 400 GAC CGG ATG ATT TAT GAA GAA AAC CGA AAC CTG TTC CAA GCA GTA AND Arg Met 11e Tyr Glu Glu Ser Arg Ash Leu Phe Gin Ala Val 445 TTT AAA AAG GCA TTT GAT ACG CGC AAA ACC CGA ACC CAC ATT TG AGT Phe Lys Lys Ala Phe Amp Thr Ala Lys 11e Arg His Ash Leu Ser 460 ATC AAT CTA GGG TAC GAC CGC TTT AAG TCG CAA TTG CAA GCC Ile Ash Leu Gly Tyr Amp Arg Phe Lys Ser Gin Leu Ser His Ser 475 \$\frac{1}{4}\$ GAT TAT TAT CTT CAA AAC CGC ATT CAC CAA TTG CAC AGC Ile Ash Leu Gly Tyr Amp Arg Phe Lys Ser Gin Leu Ser His Ser 475 \$\frac{1}{4}\$ GAT TAT TAT CTC CAA AAC CGC CTT AAG TCG CAA TTG CAT ATA ACC AAG TTT Leu Gin Ama Ala Val Gin Ala Tyr Amp Leu 11e Thr 500 CCG AAA AAG CCT CCG TTT CAC AAC GGA ACC AAA GAC AAC CCC TAT AMP TY Tyr Leu Gin Ama Ala Val Gin Ala Tyr Amp Leu 11e Thr 500 CCG AAA AAG CCT CCG TTT CAC AAC GGA ACC AAA GAC AAC CCC TAT ACG GGG GTG TCT AAC GCC ATA ACC GTC AAT ACC CCC ATA ATG Val Ser Ile Gly Lys Thr Thr Val Amn Thr Ser Pro 11e Cys 510 CGT TTC GGC AAT AAC ACC TAT ACA GAC TCC ACC CAA TTCC ACG GAA AAC AAC ACC TAT ACA GAC TCC ACC CAA AT TCC ACT TTC GGC AAT AAC ACC TAT ACA GAC TCC ACC CAG AAT ATC ACT PRO Gly Amn Amn Thr Tyr Thr Amp Cys Thr Pro Arg Amn Tic Arg Phe Gly Amn Amn Thr Tyr Thr Amp Cys Thr Pro Arg Amn Tic CGC GCC ACC GCT TAT TAT CAC GCC GTT CAA GAC TCC CCC TTC ACC GLY Amn Amn Thr Tyr Thr Amp Amn Val Arg Leu 560 GCC GCC ACC GCT TAT TAT CAC GCC GTT CAA GAC TCC CAC CCC ATA TCC GCT TTC GCC AAC GCT TAT TAT GCA GCC GTT CAA GAC TCC CAC CAC CAC CAC CAT TCC GAA GAT CCC TCC CAC ACC CAC CAC CAC CAC CAT TCC GAA GAT CTC GCA GCC GTT CAT CCC GAT TAC CCC AMA GCC TTC TCC GAA GAT CTC TCA CAC CCC Ser Thr His Ser Glu Amp Lys Ser Val Ser Thr Gly Thr Bis Arg 580 AAC CTT TCT TCG AAC GCC GCC GTT CTC TCA CAC CCC ACC CAC CAC CAC CAC CAT TCC CAA GAC CAC GCC GTT CTC TAA CCT TCC Amn Leu Ser Tph Am			GAT Asp	TAC Tyr	GCC Ala	CGA Arg 400	CTT Leu	TCT Ser	TAT Tyr	Asp GAC	CGG Arg 405	CAA Gln	GGT Gly	ATA Ile	wah	TTG Leu 410	Asp Asp	1345	
ART TGC CGT CCC GAC GGC ARD ARD LY ARD CLY Ser Phe Tyr Lys Ser Asn Cys Arg Pro Asp Cly Asn Lys Pro Tyr Ser Phe Tyr Lys Ser 430 GAC CGG ATG ATT TAT GAA GAA GAC CGA AAC CTG TTC CAA GCA GTA Asp Arg Met Ile Tyr Glu Glu Ser Arg Asn Leu Phe Gln Ala Val 445 TTT AAA AAG GCA TTT GAT ACG GCC AAA ATC CGT CAC AAT TTG AGT Phe Lys Lys Ala Phe Asp Thr Ala Lys Ile Arg His Asn Leu Ser 466 ATC AAT CTA GGG TAC GAC CGC TTT AAG TGC CAA ATTG TCC CAC AGC Ile Asn Leu Cly Tyr Asp Arg Phe Lys Ser Gln Leu Ser His Ser 475 ATC AAT CTA CGG TAC GAC CGC TTT AAG TGC GCA TAT GAT TTG ATA ACC Ile Asn Leu Cly Tyr Asp Arg Phe Lys Ser Gln Leu Ser His Ser 475 CAT TAT TAT CTT CAA AAC GCA GTT CAG GCA TAT GAT TTG ATA ACC Ile Asn Tyr Tyr Leu Gln Asn Ala Val Gln Ala Tyr Asp Leu Ile Thr 490 CCG AAA AAG CCT CCG TTT CCC AAC GGA AGA AAA GAC AAC CGC TAT FOO Lys Lys Pro Pro Phe Pro Asn Gly Ser Lys Asp Asn Pro Tyr Sis AGG GTG TCT ATC GGC AAG ACC ACG GTC AAT ACA TGC CGC TAT TGC Arg Val Ser Ile Gly Lys Thr Thr Val Asn Thr Ser Pro Ile Cys 530 CCT TTC GGC AAT AAC ACC TAT ACA GAC TGC ACA CGC AGG AAT ATC Arg Phe Cly Asn Asn Thr Tyr Thr Asp Cys Thr Pro Arg Asn Ile 535 GCC GGC AAC GGT TAT TAT GCA GCC GTT CAA GAC AAT GCT TTG GLY Asn Asn Thr Tyr Thr Asp Cys Thr Pro Arg Asn Ile 550 GCC GGC AAC GGT TAT TAT GCA GCC GTT CAA GAC AAT GCT CTT TG GLY Asn Asn Thr Tyr Thr Asp Cys Thr Pro Arg Asn Ile 555 GCC GGC AAC GGT TAT TAT GCA GCC GTT CAA GAC AAT GCT CTT TG GLY Asn Asn Thr Tyr Tyr Ala Ala Val Gln Asp Asn Val Arg Leu Sis 550 GCC AGG TGG GCC GAT GTC GGA GAC ATA CGT TAC GAT TAC CGC GLY Arg Trp Ala Asp Val Gly Ala Cly Ile Arg Tyr Asp Tyr Arg 556 ACC ACG CAT TCC GAA GAT AAG ACT TCT CTT ACC GCC ATC CCC 1840 AAC CTT TCT TCG GAA GAT AAG ACT TCT CTT ACC GCC ATC CCC TCG AND ACC CTT TTG ASN ALG Gly Val Val Leu Lys Pro Phe Thr Trp Asn Ala Gly Val Val Leu Lys Pro Phe Thr Trp Asn Ala Gly Val Val Leu Lys Pro Phe Thr Trp Asn Ala Gly Val Val Leu Lys Pro Phe Thr Trp Gly Thr Arg Ala Ser Thr Gly Phe Arg Leu Lys Thr Sar Gat TTG GCC GAA GCC GGC GGC GGC GGC TCT CTG CCT TCG GCC TCG GCC T			AAC Aan	CGT Arg	TTG Leu	Gln	CAG Gln	ACG Thr	CAT His	TGC Cys	Ser	CAC His	yab GYC	GGT Gly	TCG Ser	vəb	TA8 TYY	1390	
ASP Arg Met 11e Tyr Glu Glu Ser Arg And Leu Phe Gln Ala Val 445 TTT AAA AAG GCA TTT GAT ACG GCC AAA ATC CGT CAC AAT TTG AGT Phe Lys Lys Ala Phe Asp Thr Ala Lys 11e Arg His Asn Leu Ser 460 ATC AAT CTA GGG TAC GAC CGC TTT AAG TGC CAA TTG TGC CAC AGC 11570 ATC AAT CTA GGG TAC GAC CGC TTT AAG TGC CAA TTG TGC CAC AGC 11570 Ile Asn Leu Gly Tyr Asp Arg Phe Lys Ser Gln Leu Ser His Ser 485 GAT TAT TAT CTT CAA AAC GCA GTT CAC GCA TAT GAT TTC ATA ACC 1615 Asp Tyr Tyr Leu Gln Asn Ala Val Gln Ala Tyr Asp Leu 11e Thr 490 CGC AAA AAG CCT CCG TTT CCC AAC GGA AGC AAA GAC AAC CCC TAT 1660 Pro Lys Lys Pro Pro Phe Pro Asn Gly Ser Lys Asp Asn Pro Tyr 515 AGG GTG TCT ATC GGC AAG ACC ACG GTC AAT ACA TCC CGA ATA TGC Arg Val Ser 11e Gly Lys Thr Thr Val Asn Thr Ser Pro 11e Cys 520 CGT TTC GGC AAT AAC ACC TAT ACA GAC TGC ACA CCC AGC AAT ATC Arg Phe Gly Asn Asn Thr Tyr Thr Asp Cys Thr Pro Arg Asn 11e 545 GGC GGC AAC GGT TAT TAT GCA GCC GTT CAA GAC AAT GTC CCT TTG Gly Gly Asn Gly Tyr Tyr Ala Ala Val Gln Asp Asn Val Arg Leu 550 GGC AGG TGC GGC GAT GTC GGA GCA GGC ATA CGT TAC GAT TAC GCC Gly Arg Trp Ala Asp Val Gly Ala Gly 11e Arg Tyr Asp Tyr Arg 565 AGC ACG CAT TCG GAA GAT AAC ACT GTC TCT ACC GGC ATT CAC CGC GC ACT CAC CGC GC ASA CTT TTG GCC GAN ASP Val Gly Ala Gly Thr His Ser Glu Asp Lys Ser Val Ser Thr Gly Thr His Arg 550 AAC CTT TCT TG AAC GCC GTA GTC CTC AAA CTC TTC CAC CCC ASA CTC CAC CCC CAC CAC CCC CAC CAC CCC ASA CTC TTC TTC TTC GAA CAC CTT TCT TTC GCC GAAT CTC TTC TTC GCC GTC TTC TTC TTC TTC GCC GAAT CTC TTC TTC GCC GTC TTC TTC TTC GCC GTC TTC T			AAT Asn	TGC Cys	CGT Arg	Pro	GAC Asp	GGC	AAT Asn	AAA Lys	Pro	TAT Tyr	TCT Ser	TTC Phe	TAT Tyr	TAB	TCC Ser	1435	
TIT AAA AAG GCA TIT GAT AGG GCA AAA ACG GCG GCA AAA ACG GCG GCA AAA ACG GCA AAA ACG GCA GCC AAA ACG GCA AAA ACG AAA ACG GCA AAA ACG AAA AAA			GAC Asp	CGG Arg	ATG Met	Ile	TAT Tyr	GAA Glu	GAA Glu	·AGC Ser	Arg	AAC Asn	CTG Leu	TTC Phe	CAA Gln	VIT	GTA Val	1480	
ATC AAT CTA GGG TAC GGT TAT AND AGG AGT CAG GAT ATG CAG AAA AAC CCG TAT GAT TAT TAT CTC CAAA AAC GCA GTT CAG GCA TAT GAT TTG ATA ACC AGG GTA TAG AAA AAC CCG TAT GAT TAG AGG AGG AGG AGG AGG AAA AAC CCG TAT GAT TAG AGG AGG AGG AGG AGG AGG AAA AAC CCG TAT AGG GTA TAG AAC CCG TAT AGG GTA TAG AGG AGG AGG AGG AGG AAA GAC CCG TAT AGG AGG AGG AGG AGG AAA GAC CCG TAT AGG AGG AGG AGG AGG AGG AAA AGG ACC CCG TAT AGG AGG AGG AGG AGG AGG AGG AGG AG			TTT Phe	ГÅв УУУ	AAG Lys	Ala	TTT Phe	GAT Asp	ACG Thr	GCC Ala	LÄB	ATC Ile	CGT Arg	CAC His	AAT Asn	Dea	AGT Ser	1525	
CCG AAA AAG CCT CCG TTT CCC AAC GGA AGC AAA GAC CCT TTT CAA AAC GCC AAC GGA AGC AAA GAC CCT TTT CCC AAC GGA AGC AAA GAC CCC TAT TCC CAAC GGA AGC AAA GAC CCC TAT TCC CAAC GGC AAT ACA TCC CCG ATA TGC CCG ATA TAC CCT TTC GGC AAT AAC ACC TTT CAAC AGC TTT CAAC ACC CTC AAT ACA TCC CCG ATA TCC CCG ATA TAC CCT TTC ACC GGC AAC ACC GTC AAT ACA TCC CCG ATA TCC CCG ATA TAC ACC TTT CACC ACC CCG ATA TCC CCG ATA TAC ACC TAT ACA GAC TGC ACA CCG AGG AAT ATC ACC TTC ACC ACC CCG ATA TCC CCG ATA TAC ACC TAT ACA GAC TCC ACA CCC AGG AAT ATC ACC TTC ACC ACC CCG ATA TCC CCG ATA TCC CCG ATA TCC ACC CCG ATA TCC CCG ATA TCC CCG ATA TCC CCG ACC CCG ACC CCG ACC ACC CCG ACC ACC			ATC Ile	AAT Asn	CTA Leu	Gly	TAC Tyr	GAC Asp	cgc Arg	TTT Phe	Lys	Ser	CAA Gln	TTG Leu	TCC Ser	UTS	AGC Ser	1570	
CCG AAA AAG CCT CCG TTT CCC AAC GCC ACC ACC ACC ACC ACC ACC ACC		块。	GAT Asp	TAT Tyr	TAT Tyr	Leu	CAA Gln	AAC Asn	GCA Ala	GTT Val	GIn	GCA Ala	TAT Tyr	GAT	TTG Leu	116	ACC Thr	1615	
AGG GTG TCT ATC GGC AAG ACC ACG GTC ATC GGC AAG ACC ACG GGC AAT ACC GGC ACG ACG ACG ACG ACG ACG ACG ACG			CCG Pro	Lys	AAG Lys	Pro	CCG Pro	TTT Phe	CCC Pro	AAC Asn	GIA	AGC Ser	ГÄB	GAC Asp	AAC Asn	110	TAT Tyr	1660	
Arg Phe Gly Asn Asn Thr Tyr Thr Asp Cys Thr Pro Arg Asn Ile 535 GGC GGC AAC GGT TAT TAT GCA GCC GTT CAA GAC AAT GTC CGT TTG Gly Gly Asn Gly Tyr Tyr Ala Ala Val Gln Asp Asn Val Arg Leu 550 GGC AGG TGG GCC GAT GTC GGA GCA GGC ATA CGT TAC GAT TAC CGC Gly Arg Trp Ala Asp Val Gly Ala Gly Ile Arg Tyr Asp Tyr Arg 565 AGC ACG CAT TCC GAA GAT AAG AGT GTC TCT ACC GGC ACT CAC CGC Ser Thr His Ser Glu Asp Lys Ser Val Ser Thr Gly Thr His Arg 580 AAC CTT TCT TGG AAC GCG GGC GTA GTC CTC AAA CCT TTC ACC TGG Asn Leu Ser Trp Asn Ala Gly Val Val Leu Lys Pro Phe Thr Trp 605 ATG GAT TTG ACT TAT CGC GCT TCT ACG GGC TTC CGT CCG TCG Met Asp Leu Thr Tyr Arg Ala Ser Thr Gly Phe Arg Leu Pro Ser 610 TTT GCC GAA ATG TAT GGC TGG AGA GCC GGG GAG TCT TTC AAA ACG Phe Ala Glu Met Tyr Gly Trp Arg Ala Gly Glu Ser Leu Lys Thr 613 CSS TTT TTC AAA ACG CTT TTC AAA ACG CTT TCT AAA ACCG CTT TCT AAA ACG CTT TCT AAA ACG CTT TCT AAA ACG CTT TCT AAA AC	-		AGG Arg	GTG Val	TCT Ser	Ile	Gly	AAG Lys	ACC Thr	ACG Thr	Val	AAT Asn	ACA Thr	TCG Ser	CCG Pro	110	TGC	1705	
GGC GGC AAC GGT TAT TAT GCA GCC GT CAA GAN AND Val Arg Leu 550 GGC AGG TGG GCG GAT GTC GGA GCA GGC ATA CGT TAC GAT TAC CGC GC Arg Trp Ala Asp Val Gly Ala Gly Ile Arg Trp Asp 575 AGC ACG CAT TCG GAA GAT AAG AGT GTC TCT ACC GGC ACT CAC CGC 1885 Ser Thr His Ser Glu Asp Lys Ser Val Ser Thr Gly Thr His Arg 590 AAC CTT TCT TGG AAC GCG GGC GTA GTC CTC AAA CCT TTC ACC TGG 1930 ATG GAT TTG ACT TAT CGC GCT TCT ACG GGC TTC CGT CTG TCF CCG TCG Met Asp Leu Thr Tyr Arg Ala Ser Thr Gly Phe Arg Leu Pro Ser 610 TTT GCC GAA ATG TAT GGC TGG AGA GCC GGG GAG TCT TTG AAA ACG Phe Ala Glu Met Tyr Gly Trp Arg Ala Gly Glu Ser Leu Lys Thr 635			CGT Arg	TTC Phe	GGC	yau	Asn	ACC	TAT Tyr	ACA Thr	Asp	СУЗ	ACA Thr	CCG Pro	AGG Arg	No.		1750	
GGC AGG TGG GCG GAT GTC GGA GCA GGC ATA CGT TAC GGT TTG ACC GGC ACT CAC CGC Ser Thr His Ser Glu Asp Lys Ser Val Ser Thr Gly Thr His Arg 580 AGC CTT TCT TGG AAC GCG GGC GTA GTC CTC AAA CCT TTC ACC TGG Ser Trp Ash Ala Gly Val Leu Lys Pro Phe Thr Trp 605 ATG GAT TTG ACT TAT CGC GCT TCT ACG GGC TTC CGT CTG CCG TCG Met Asp Leu Thr Tyr Arg Ala Ser Thr Gly Phe Arg Leu Pro Ser 615 TTT GCC GAA ATG TAT GGC TGG AGA GCC GGG GAG TCT TTG AAA ACG Phe Ala Glu Met Tyr Gly Trp Arg Ala Gly Glu Ser Leu Lys Thr 635	()		GGC Gly	GCC	AAC Asn	Gly	TY	TAT Tyr	GCA Ala	GCC	. vaı	GIN	GAC Asp	AAT Asn	GTC Val	. ALY	, 200	1795	
Ser Thr His Ser Glu Asp Lys Ser Val Ser Thr Gly Fro Fro Fro Fro Ser Ser Try Asn Ala Gly Val Val Leu Lys Fro Fro Fro Fro Fro Ser Met Asp Leu Thr Tyr Arg Ala Ser Thr Gly Fro Fro Ser Glo Fro Gly Fro Ana Acg Fro Fro Ser Glo Fro Ala Glu Met Tyr Gly Trp Arg Ala Gly Glu Ser Leu Lys Thr Gly Thr Arg Ala Gly Glu Ser Leu Lys Thr Gly Th			GTA	Arg	TGG Trp	Ala	Asp	GTC Val	GGA Gly	GCA Ala	r Gra	TTe	CGT	TAC	GAT Tag	1-	9	1840	
AAC CTT TCT TGG AAC GCG GGC GTA GTC CTC AAA CTC Asn Leu Ser Trp Asn Ala Gly Val Val Leu Lys Pro Phe Thr Trp 595 ATG GAT TTG ACT TAT CGC GCT TCT ACG GGC TTC CGT CTG CCG TCG Met Asp Leu Thr Tyr Arg Ala Ser Thr Gly Phe Arg Leu Pro Ser 610 TTT GCC GAA ATG TAT GGC TGG AGA GCC GGG GAG TCT TTG AAA ACG Phe Ala Glu Met Tyr Gly Trp Arg Ala Gly Glu Ser Leu Lys Thr 635			AGC Ser	ACC Thr	CAI His	s Ser	Glu	GAT Asp	AAC Lys	AG1 Ser	. var	. Ser	ACC	GGC Gly	ACT Thi			1885	
ATG GAT TTG ACT TAT CGC GCT TCT ACG GGC TTC CGC GGC TCC ACG GGC TCC CGC GGC TCC ACG GGC GGC GGC GGC GGC GGC GGC GGC G			AAC 18A	CT Lev	TCT 1 Sei	: Tr	Asr	GCG Ala	GGC Gly	C GTA Val	Lvai	Lev	AAA Lys	CCI Pro	TTO Pho	3 7111		1930	
TTT GCC GAA ATG TAT GGC TGG AGA GCC GGG GAG ICT ITG INT Phe Ala Glu Met Tyr Gly Trp Arg Ala Gly Glu Ser Leu Lys Thr 635			ATC Met	GA:	r TTC p Lei	ı Thi	Ty:	CGC	GC: J Ala	r TC: a Sei	r Thi	GT	Phe	c cg:	r CT	L EL	- 50-	1975	
			TT: Pho	r GC(e Ala	C GAI	u Met	Ty:	r GG(c Gly	C TGG	G AG	g Ale	T GT	G GAG	G TC	r TT r Le	u -1		2020	

GGC AGG TGG GCG GAT GTC GGA GCA GGC ATA GGT TAC GAT TAC CGC Gly Arg Trp Ala Asp Val Gly Ala Gly Ile Arg Tyr Asp Tyr Arg 565 AGC ACG CAT TCG GAA GAT AAG AGT GTC TCT ACC GGC ACT CAC GGC Ser Thr His Ser Glu Asp Lys Ser Val Ser Thr Gly Thr His Arg 590 AAC CTT TCT TGG AAC GCG GGC GTA GTC CTC AAA CCT TCC ACC GGC AGA GAT CAC GGC GAT LEU SER TTP Ash Ala Gly Val Val Leu Lys Pro Phe Thr Trp 600 ATG GAT TTG ACT TAT GGC GGT TCT ACG GGC TTC CGT CTG CCG TCG Met Asp Leu Thr Tyr Arg Ala Ser Thr Gly Phe Arg Leu Pro Ser 615 TTT GCC GAA ATG TAT GGC TGC AGA GCC GGG GAG TCT TTG AAA ACG Phe Ala GH Het Tyr Gly Trp Arg Ala Gly Glu Ser Leu Lys Thr 635 TTG GAT CTG AAA CCG GAA AAA TCC TTT AAT AGA GAG GA GAG GAT TT GAT GAT TTG GAT CTG AAA ACC GAA AAA TCC TTT AAA ACG GAT ATT TAT AGA GAG GAG GAG GAG TCT TTG AAA ACG AAT TTT AAA GGG GAC TTT TTG AAC GAT TTT AAA GGG GAC TAT TTC AAC GAT TTT AAA GGG GAC TTT TTG GAT CGC GAC AAT TTG GAA AAC GAG GAG GAG GAG GAG GAG GAG GA		GGC Gly	GGC GLY	AAC Asn	GGT Gly 550	TAT Tyr	TAT Tyr	GCA Ala	ATA	GTT Val 555	CAA Gln	GAC Asp	TAA neA	GTC Val	CGT Arg 560	TTG Leu		1795
Ser Thr His Ser Glu Asp Lys Ser Val Ser Int Gly The Ser Int Ser Int Gly The Ser Int Se		GGC Gly	AGG Arg	TGG Trp	Ala	Asp GAT·	GTC Val	GGA Gly	GCA Ala	GTÄ	ATA Ile	CGT Arg	TAC Tyr	GAT Asp	TYL	CGC Arg		1840
ASD Leu Ser Trp AsD Ala Gly Val ATC GAT TTG ACT TAT CGC GCT TCT ACG GGC TTC CGT CTG CCG TCG Met Asp Leu Thr Tyr Arg Ala Ser 610 TTT GCC GAA ATC TAT GGC TGG AGA GCC GGG GAG TCT TTG AAA ACG Phe Ala Glu Het Tyr Gly Trp Arg Ala Gly Glu Ser Leu Lys Thr 625 TTG GAT CTG AAA CCG GAA AAA TCC TTT AAT AGA GAG GCA GGT ATT Leu Asp Leu Lys Pro Glu Lys Ser Phe Asn Arg Glu Ala Gly Ile 640 GTA TTT AAA GGG GAC TTC GGC AAT TTG GAA GCC AGC TAT TTC AAC Val Phe Lys Gly Asp Phe Gly Asn Leu Glu Ala Ser Tyr Phe Asn 655 AAT GCC TAT CGC GAC CTG ATT GCA TTC GGT TAT GAA ACC GAA AAC GGG CAA ACT TCG GCT TCT GGC GAC CCC GGA TAC ABN Ala Tyr Arg Asp Leu Ile Ala Phe Gly Tyr Glu Thr Arg Thr 680 GCC CAA AAT GCA CGG ATA GCC GGT ATC AGC GAC CCC GGA TAC CAA AAC GGG CAA ACT TCG GCT TCT GGC GAC CCC GGA TAC GCC AAAT GCA CGG ATA GCC GGT ATC AAT ATT TTG GGT TAT TCC ABP Trp His Gly Val Trp Gly Gly Leu Pro Asp Gly Leu Tyr Ser 715 ACG CTT GCC TAT AAC CGT ATC AAG GTC AAA GAT GCC GAT ATA CCC ABP Trp His Gly Val Trp Gly Gly Leu Pro Asp Gly Leu Tyr Ser 716 GCC GAC AGG ACC TTT GTA ACT TCA TAT CTC TTT GAT GCC GTC CAA AAT GCC TTT GAT TCC TTT GAT GCC GTC TAT TCC AAG CTT GCC TAT AAC CGT ATC AAG GTC AAA GAT GCC GAT ATA CCC ABP Trp His GLY Val Trp Gly Gly Leu Pro Asp Gly Leu Tyr Ser 715 ACG CTT GCC TAT AAC CGT ATC AAG GTC AAA GAT GCC GAT ATA CGC TTC Leu Ala Tyr Asn Arg Ile Lys Val Lys Asp Ala Asp Ile Arg 735 CCC GAC AGG ACC TTT GTA ACT TCA TAT CTC TTT GAT GCC GTC CAA ALA ASP Arg Thr Phe Val Thr Ser Tyr Leu Phe Asp Ala Val Gln 755 CCT TCA CGA TAT GTA TTG GGT TTG GGT TAC CAA GAC CAT CCT GAC ATA TGG GGC ATC AAT ATC TTA TCC TTT GAT CCC GAC ATA TGG GGC ATC AAT ACC ATC TTT ACT TAT TCC AAG GCA AAA TCT Ile Trp Gly Ile Asn Thr Met Phe Thr Tyr Ser Lys Ala Lys Ser		AGC Ser	ACG Thr	CAT His	Ser	GAA Glu	GAT Asp	AAG Lys	AGT Ser	vai	TCT Ser	ACC Thr	GGC	ACT Thr	1120	CGC Arg		1885
Met Asp Leu Thr Tyr Arg Ala Ser Thr Gly File Alg Set 520 TTT GCC GAA ATC TAT GGC TGG AGA GCC GGG GAG TCT TTG AAA ACG Phe Ala Glu Met Tyr Gly Trp Arg Ala Gly Glu Ser Leu Lys Thr 625 TTG GAT CTG AAA CCG GAA AAA TCC TTT AAT AGA GAG GCA GGT ATT Leu Asp Leu Lys Pro Glu Lys Ser Phe Asn Arg Glu Ala Gly Ile 640 GTA TTT AAA GGG GAC TTC GGC AAT TTG GAA GCC AGC TAT TTC AAC Val Phe Lys Gly Asp Phe Gly Asn Leu Glu Ala Ser Tyr Phe Asn Ala Tyr Arg Asp Leu Ile Ala Phe Gly Tyr Glu Thr Arg Thr 670 CAA AAC GGC CAA ACT TCG GCT TCT GGC GAC CCC GGA TAC GAA ACT Ann Ala Tyr Arg Asp Leu Ile Ala Phe Gly Tyr Glu Thr Arg Thr 680 GCC CAA AAT GCA CGG ATA GCC GGT ATC GGC GAC CCC GGA TAC GAA AAT Ann Ala Arg Ile Ala Gly Ile Asn Ile Leu Gly Lys Ile 700 GAT TGG CAC GGC GTA TGG GGC GGG TTG CCG GAC GGG TTG TAT TCC Asp Trp His Gly Val Trp Gly Gly Leu Pro Asp Gly Leu Tyr Ser 715 ACG CTT GCC TAT AAC CGT ATC AAG GTC AAA GAT GCC GAC GAC GAC TAT TCC GAT TCC GAT TCC GAT TCC GAT TAT TCC Asp Asp Arg Thr Phe Val Thr Ser TTG GAT ACT TCT TCT GCC GAC GAC GGG TTG TAT TCC Asp Arg Trp His Gly Cal Trp Gly Gly Leu Pro Asp Gly Leu Tyr Ser 730 GCC GAC AGG ACG TTT GTA ACT TCA TAT CTC TTT GAT GCC GTC CAA Ala Asp Arg Thr Phe Val Thr Ser Tyr Leu Phe Asp Ala Asp Tat GCC TTC TCA CGA TAT GTA TCC TCT TCA GAC CAT CCT GAC GAC TTT TAT TCC TTT GAT GCC GTC CAA Ala Asp Arg Thr Phe Val Thr Ser Tyr Leu Phe Asp Ala Val Gln 755 CCT TCA CGA TAT GTA TTG GGT TTG GGT TAC GAC CAT CCT GAC GAC ATA TTG GCT TTT GAT GCC GTC CAA Ala TTG GGT TTG GGT TAC GAC CAT CCT GAC GAC ATA TTG GGT TTG GGT TAC GAC CAT CCT GAC GAA TTT TCC TTT GGT TAC GAC CAT CCT GAC GAA TTT TTT GGT TTT ACT TTT ACT TTT ASP His Pro Asp Gly Try Asp His Pro Asp Gly Try Tat TCC TTT GGT TTT TTT TTT TTT TTT TTT TTT		AAC Asn	CTT Leu	TCT Ser	Trp	AAC Asn	GCG Ala	GGC Gly	GTA Val	Val	CTC Leu	AAA Lys	CCT Pro	TTC Phe		TGG Trp		1930
TTG GAT CTG AAA CCG GAA AAA TCC TTT AAT AGA GAG GCA GGT ATT Leu Asp Leu Lys Pro Glu Lys Ser Phe Asn Arg Glu Ala Gly Ile 640 GTA TTT AAA GGG GAC TTC GGC AAT TTG GAA GCC AGC TAT TTC AAC Val Phe Lys Gly Asp Phe Gly Asn Leu Glu Ala Ser Tyr Phe Asn Ala Tyr Arg Asp Leu Ile Ala Phe Gly Tyr Glu Thr Arg Arg Asp And TCC GGT TAT GAA ACC CGA ACT Asn Ala Tyr Arg Asp Leu Ile Ala Phe Gly Tyr Glu Thr Arg Arg Thr 670 CAA AAC GGG CAA ACT TCG GCT TCT GGC GAC CCC GGA TAT TAT GAA ACC CGA AAT Gln Asn Gly Gln Thr Ser Ala Ser Gly Asp Pro Gly Tyr Arg Asn 685 GCC CAA AAT GCA CGG ATA GCC GGT ATC AAT ATT TTG GGT AAA ATC Ala Gln Asn Ala Arg Ile Ala Gly Ile Asn Ile Leu Gly Lys Ile 700 GAT TGG CAC GGC GTA TGG GGC GGG TTG CCG GAC GGG TTG TAT TCC Asp Trp His Gly Val Trp Gly Gly Glu Pro Asp Gly Leu Tyr Ser 725 ACG CTT GCC TAT AAC CGT ATC AAG GTC AAA GAT GCC GAT ATA CGC Ala Asp Arg Thr Phe Val Thr Ser Tyr Leu Phe Asp Ala Asp Ile Arg 730 GCC GAC AGG ACG TTT GTA ACT TCA TAT CTC TTT GAT GCC GAC GAC Ala Asp Arg Thr Phe Val Thr Ser Tyr Leu Phe Asp Ala Val Gln 750 CCT TCA CGA TAT GTA TTG GGT TTG GGT TAC GAC CAT CCT CAA GGC ATC TCA CGA ATA TTG GGT TAC GAC CAT CTA CAA GAT GTT TAT TCC GAC GAC GGA GGA GGA GAC TTT GTA TTG GGT TAC GAC CAT CCT GAC GGA GGA GGA GGA GGA GGA ATA TAC GCC TTCA CGA TAT GTA TTG GGT TAC GAC CAT CCT GAC GAC GGA GGA GGA GGA GGA GGA GGA GGA		ATG Met	GAT Asp	TTG Leu	Thr	TAT Tyr	CGC Arg	GCT Ala	TCT Ser	Thr	GTA	TTC Phe	CGT Arg	CTG Leu	FLO	TCG		1975
Leu Asp Leu Lys Pro Glu Lys Ser Phe Ash Arg Glu Ala GSO GSO GSO GSO GGG TAT TTC AAC Val Phe Lys Gly Asp Phe Gly Ash Leu Glu Ala Ser Tyr Phe Ash Acc GGC AAT GCC TAT GCC GAC CTG ATT GCA TTC GGT TAT GAA ACC CGA ACT Ash Ala Tyr Arg Asp Leu Ile Ala Phe Gly Tyr Glu Thr Arg Thr G80 G75 CAA AAC GGG CAA ACT TCG GCT TCT GGC GAC CCC GGA TAC GBN Ash Gly Gln Thr Ser Ala Ser Gly Asp Pro Gly Tyr Asg Ash G85 GCC CAA AAT GCA CGG ATA GCC GGT ATC ASh Ile Leu Gly Lys Ile Ash Ile Leu Gly Lys Ile Ash Trp His Gly Val Trp Gly Gly Leu Pro Asp Gly Leu Tyr Ser Acc CTT GCC TAT AAC CGT ATC AAG GTC AAA GAT GCC GAC GGC TTG TAT TCC TTC Leu Ala Tyr Ash Arg Ile Lys Val Lys Asp Ala Asp Ile Arg 730 GCC GAC AGG ACG TTT GTA ACT TCA TAT CTC TTT GAT GCC GTA ATA CGC AAA ASp Trp His GTA TCT TAT TCC TTT GAT GCC GAC GGC TTC TAT TCC TTT GAT GCC GAC AAA ASP Trp His GTA TCT TCA TAT TCT TTT GAT GCC GAC AAA ASP Trp His GTA TCT TCA TAT TCC TTT GAT GCC GAC AAA ASP Trp		TTT Phe	GCC	GAA Glu	Met	TAT Tyr	GC	TGG Trp	AGA Arg	ALA	GJY	GAG Glu	TCT Ser	TTG Leu	272	ACG Thr		2020
AAT GCC TAT CGC GAC CTG ATT GCA TTC GGT TAT GAA ACC CGA ACT Ass Ala Tyr Ass Can Act TCG GGT TCT GGC GAC CCC GGA TAC CGA AAT GCA Ass Cln Ass Gly Gln Thr Ser Ala Ser Gly Ass Pro Gly Tyr Arg Ass G95 GCC CAA AAT GCA CGG ATA GCC GGT ATC AAT ATT TTG GGT AAA ATC Ass Trp His Gly Val Trp Gly Gly Cly Ass Ass Arg Cly Ass Ass Ala Ass Cly Tyr Ass Cly Ala Lys Ser Cly	ь.	TTG Leu	GAT Asp	CTG Leu	Lys	Pro	GAA Glu	AAA Lys	TCC Ser	Pne	Asn	AGA Arg	GAG Glu	GCA	GLY	ATT Ile	-	2065
Asn Ala Tyr Arg Asp Leu Ile Ala Phe Cly Tyr Gru Ass G80 CAA AAC GGG CAA ACT TCG GCT TCT GGC GAC CCC GGA TAC CGA AAT Gln Asn Gly Gln Thr Ser Ala Ser Gly Asp Pro Gly Tyr Arg Asn 695 GCC CAA AAT GCA CGG ATA GCC GGT ATC AAT ATT TTG GGT AAA ATC Ala Gln Asn Ala Arg Ile Ala Gly Ile Asn Ile Leu Gly Lys Ile 705 GAT TGG CAC GGC GTA TGG GGC GGG TTG CCG GAC GGG TTG TAT TCC Asp Trp His Gly Val Trp Gly Gly Leu Pro Asp Gly Leu Tyr Ser 725 ACG CTT GCC TAT AAC CGT ATC AAG GTC AAA GAT GCC GAT ATA CGC Thr Leu Ala Tyr Asn Arg Ile Lys Val Lys Asp Ala Asp Ile Arg 730 GCC GAC AGG ACG TTT GTA ACT TCA TAT CTC TTT GAT GCC GTC CAA Ala Asp Arg Thr Phe Val Thr Ser Tyr Leu Phe Asp Ala Val Gln 755 CCT TCA CGA TAT GTA TTG GGT TTG GGT TAC GAC CAT CCT GAC GGA APA TCT Ile Trp Gly Ile Asn Thr Met Phe Thr Tyr Ser Lys Ala Lys Ser Ile Trp Gly Ile Asn Thr Met Phe Thr Tyr Ser Lys Ala Lys Ser		GTA Val	TTT Phe	AAA Lys	Gly	yab	TTC Phe	GGC Gly	AAT Asn	ren	GIU	GCC	AGC Ser	TAT Tyr	2 110			2110
Gln Asn Gly Gln Thr Ser Ala Ser Gly Asp Pro Gly Tyr 695 GCC CAA AAT GCA CGG ATA GCC GGT ATC AAT ATT TTG GGT AAA ATC Ala Gln Asn Ala Arg Ile Ala Gly Ile Asn Ile Leu Gly Lys Ile 700 GAT TGG CAC GGC GTA TGG GGC GGG TTG CCG GAC GGG TTG TAT TCC ASp Trp His Gly Val Trp Gly Gly Leu Pro Asp Gly Leu Tyr Ser 715 ACG CTT GCC TAT AAC CGT ATC AAG GTC AAA GAT GCC GAT ATA CGC Thr Leu Ala Tyr Asn Arg Ile Lys Val Lys Asp Ala Asp Ile Arg 730 GCC GAC AGG ACG TTT GTA ACT TCA TAT CTC TTT GAT GCC GTC CAA Ala Asp Arg Thr Phe Val Thr Ser Tyr Leu Phe Asp Ala Val Gln 755 CCT TCA CGA TAT GTA TTG GGT TTG GGT TAC GAC CAT CCT GAC GGA Pro Ser Arg Tyr Val Leu Gly Leu Gly Tyr Asp His Pro Asp Gly 770 ATA TGG GGC ATC AAT ACG ATG TTT ACT TAT TCC AAG GCA AAA TCT Ile Trp Gly Ile Asn Thr Met Phe Thr Tyr Ser Lys Ala Lys Ser		AAT Asn	GCC	TAT	: Arg	Asp	CTG Leu	ATT Ile	GCA Ala	Pne	GTA	TAT	GAA Glu	ACC Thr	9			2155
Ala Gln Asn Ala Arg Ile Ala Gly 116 Ash Ile Bet Gly 710 GAT TGG CAC GGC GTA TGG GGC GGG TTG CCG GAC GGG TTG TAT TCC Asp Trp His Gly Val Trp Gly Gly Leu Pro Asp Gly Leu Tyr Ser 725 ACG CTT GCC TAT AAC CGT ATC AAG GTC AAA GAT GCC GAT ATA CGC Thr Leu Ala Tyr Asn Arg Ile Lys Val Lys Asp Ala Asp Ile Arg 730 GCC GAC AGG ACG TTT GTA ACT TCA TAT CTC TTT GAT GCC GTC CAA Ala Asp Arg Thr Phe Val Thr Ser Tyr Leu Phe Asp Ala Val Gln 755 CCT TCA CGA TAT GTA TTG GGT TTG GGT TAC GAC CAT CCT GAC GGA Pro Ser Arg Tyr Val Leu Gly Leu Gly Tyr Asp His Pro Asp Gly 760 ATA TGG GGC ATC AAT ACG ATG TTT ACT TAT TCC AAG GCA AAA TCT Ile Trp Gly Ile Asn Thr Met Phe Thr Tyr Ser Lys Ala Lys Ser		CAA Gln	AAC Asr	GGG Gly	Gln	Thr	TCG Ser	GCT Ala	TCT Ser	GTÄ	. ABE	Pro	GGA Gly	TAC Ty		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2200
Asp Trp His Gly Val Trp Gly Gly Leu Pro Asp Gly Leu 1725 ACG CTT GCC TAT AAC CGT ATC AAG GTC AAA GAT GCC GAT ATA CGC Thr Leu Ala Tyr Asn Arg Ile Lys Val Lys Asp Ala Asp Ile Arg 730 GCC GAC AGG ACG TTT GTA ACT TCA TAT CTC TTT GAT GCC GTC CAA Ala Asp Arg Thr Phe Val Thr Ser Tyr Leu Phe Asp Ala Val Gln 755 CCT TCA CGA TAT GTA TTG GGT TTG GGT TAC GAC CAT CCT GAC GGA Pro Ser Arg Tyr Val Leu Gly Leu Gly Tyr Asp His Pro Asp Gly 760 ATA TGG GGC ATC AAT ACG ATG TTT ACT TAT TCC AAG GCA AAA TCT Ile Trp Gly Ile Asn Thr Met Phe Thr Tyr Ser Lys Ala Lys Ser		GCC Ala	CAF Glr	AA A 1 Asi	a Ala	Arg	ATA	GCC Ala	GGT Gly	TTE	ABI	ATT Lle	TTC Lev	GG' Gly	, my			2245
Thr Leu Ala Tyr Asn Arg Ile Lys Val Lys Asp Ala Rap 176 1730 730 735 740 735 740 736 735 740 730 735 740 730 735 740 740 730 735 740 740 740 740 750 750 750 750 750 750 750 750 750 75		gat Asp	TGC Tr	G CAC	s Gly	[Val	TGG Trp	GGC Gly	GGG Gly	Len	PEC	GAC	G GGC	TTO Y Le	u 131			2290
Ala Asp Arg Thr Phe Val Thr Ser Tyr Leu File Asp Ara Val Can 745 750 755 CCT TCA CGA TAT GTA TTG GGT TTG GGT TAC GAC CAT CCT GAC GGA Pro Ser Arg Tyr Val Leu Gly Leu Gly Tyr Asp His Pro Asp Gly 760 765 770 ATA TGG GGC ATC AAT ACG ATG TTT ACT TAT TCC AAG GCA AAA TCT Ile Trp Gly Ile Asn Thr Met Phe Thr Tyr Ser Lys Ala Lys Ser		ACC Thr	CT.	r GCG u Ala	а Туг	Ası	C CGI	TATO	AAG Lys	s val	гъй	A GAT	r GCG p Ala	C GA	2			2335
Pro Ser Arg Tyr Val Leu Gly Leu Gly Tyr Asp MIS 175 Asp 677 770 765 770 ATA TGG GGC ATC AAT ACG ATG TTT ACT TAT TCC AAG GCA AAA TCT Ile Trp Gly Ile Asn Thr Met Phe Thr Tyr Ser Lys Ala Lys Ser		GCC Ala	C GA	C AG	g Thi	e Pho	r GTA a Val	A ACT	r TCI c Sei	c TA1	r Le	C TT	r GAS	T GC p Al	a va			2380
The Trp Gly He Asn Thr Met Phe Thr Tyl Ser Lys Alt 270		Pro	r TC o Se	A CG r Ar	g Ty	r Va	A TTO	G GG:	r TT y Le	n GT	Ā TĂ	C GA	c ca p Hi	T CC s Pr	U 112	F 0-1		2425
775 /80		ATI	A TG e Tr	G GG p Gl	y Il	e As	T AC	G AIV	G TT t Ph	T AC E Th	E TÀ	T TC r Se	C AA r Ly	G GC	A AA a Ly 78	A TCT s Ser 5	!	2470

ACA TTT AGC TTG GAA ATG AAG TTT $\underline{\text{TAA}}$ ACGTCCAAAC GCCGCAAATG Thr Phe Ser Leu Glu Met Lys Phe 880 2787 CCGTCTGAAA GGCT

2801

 \cdot

SEO ID NO: 3

Objet:

Séquence de l'ADN génomique de la souche de N. meningitidis IM2169 codant pour le précurseur de la sous-unité Tbp1 et séquence protéique déduite. Le peptide signal est indiqué en caractères gras.

									Pa	CAAC	AATA	AGG	CTTC	AGA		20
	CGG	CATO	CT	CCTI	CCGA	TA C	CGT	TGAA	A GC	GAAG	ATTA	GGG	AAAC	ATT	٠	70
ATG Met -24	CAA Gln	CAG Gln	CAA Gln	CAT His -20	TTG Leu	TTC Phe	CGA Arg	TTA Leu	AAT Asn -15	ATT Ile	TTA Leu	TGC Cys	CTG Leu	TCG ser -10		115
CTG Leu	ATG Met	ACT Thr	GCG Ala	CTG Leu -5	CCT Pro	GCT Ala	TAT Tyr	GCA Ala -1	GAA Glu 1	AAT Asn	GTG Val	CAA Gln	GCC Ala 5	Gly		160
CAA Gln	GCA Ala	CAG Gln	GAA Glu 10	AAA Lys	CAG Gln	TTG Leu	GAT Asp	ACC Thr 15	ATA Ile	CAG Gln	GTA Val	Lys AAA	GCC Ala 20	rya Yyy		205
AAA Lys	CAG Gln	AAA Lys	ACC Thr 25	CGC Arg	CGC Arg	GAT Asp	AAC Asn	GAA Glu 30	GTA Val	ACC Thr	GGT Gly	CTG Leu	GGC Gly 35	ГАВ		250
TTG Leu	GTC Val	AAA Lys	ACC Thr 40	GCC Ala	GAC Asp	ACC Thr	CTC Leu	AGC Ser 45	AAG Lys	GAA Glu	CAG Gln	GTA Val	CTC Leu 50	GAT Asp		295
ATC Ile	CGC Arg	GAC Asp	CTG Leu 55	ACG Thr	CGT Arg	TAC Tyr	GAC Asp	CCC Pro 60	GGC Gly	ATC Ile	GCC Ala	GTG Val	GTC Val 65	GAA Glu		340
CAG Gln	GCG	CGC Arg	GGC Gly 70	GCA Ala	AGT Ser	TCG Ser	GGC Gly	TAC Tyr 75	TCG Ser	ATA Ile	CGC	GGT Gly	ATG Het 80	GAC Asp		385
Lys	AAC Asn	CGC Arg	GTT Val 85	TCC Ser	TTG Leu	ACG Thr	GTG Val	Aap 90	GGC	TTG Leu	GCG Ala	CAA Gln	ATA Ile 95	CAG Gln		430
TCC Ser	TAC Tyr	ACC	GCG Ala 100	CAG Gln	GCG Ala	GCA Ala	TTG Leu	GGC Gly 105	Gly	ACG Thr	AGG Arg	ACG Thr	GCG Ala 110	GGC Gly		475
AGC Ser	AGC Ser	GGC	GCA Ala 115	ATC Ile	AAT Asn	GAA Glu	ATC	GAG Glu 120	Tyr	GAA Glu	AAC Asn	GTC Val	AAA Lys 125	ALA		520
GTC Val	ĞAA Glu	ATC Ile	AGC Ser 130	Lys	GCC	TCA Ser	AAC Asn	TCG Ser 135	Val	GAA Glu	CAA Gln	GCC	AGC Ser 140	GGC		565

~ ~

GCA Ala	TTG Leu	GCG Ala	GGT Gly 145	TCG Ser	GTC Val	GCA Ala	TTT Phe	CAA Gln 150	acc Tyr	AAA Lys	ACC Thr	GCC Ala	GAC Asp 155	GAT Asp		600
GTT Val	ATC Ile	GGG Gly	GAA Glu 160	eja ecc.	AGG Arg	CAG Gln	TGG Trp	GGC Gly 165	ATT Ile	CAG Gln	AGT Ser	AAA Lys	ACC Thr 170	ALA		645
TAT Tyr	TCC Ser	GGC Gly	AAA Lys 175	AAC Aan	CGG Arg	GGG Gly	CTT Leu	ACC Thr 180	CAA Gln	TCC Ser	ATC Ile	GCG Ala	CTG Leu 185	GCG ·		690
GGG	CGC Arg	ATC Ile	GGC Gly 190	GGT Gly	GCG Ala	GAG Glu	GCT Ala	TTG Leu 195	CTG Leu	ATC Ile	CAC His	ACC Thr	GGG Gly 200	CGG Arg		735
CGC	GCG Ala	GTA	GAA Glu 205	ATC Ile	CGC Arg	GCA Ala	CAC His	GAA Glu 210	GAT Asp	GCC Ala	GGA Gly	CGC Arg	GGC Gly 215	GTT Val		780
CAG Gln	AGC Ser	TTT Phe	AAC Asn 220	AGG Arg	CTG Leu	GTG Val	CCG Pro	GTT Val 225	GAA Glu	yab	AGC Ser	AGC Ser	GAA Glu 230	TAC Tyr		825
GCC Ala	TAT Tyr	TTC Phe	ATC Ile 235	GTT Val	GAA Glu	GAT Asp	GAA Glu	TGC Cys 240	GAA Glu	GGC	Lys	TAA Asn	TAC Tyr 245	GAA Glu		870
ACG	TGT Cys	AAA Lys	AGC Ser 250	ГÅа УУУ	CCG Pro	Lys	Lys	GAT ASp 255	GTT Val	GTC Val	GLY	LYa YYY	GAC Asp 260		٠.	915
CGT Arg	CAA Gln	ACG Thr	GTT Val 265	TCC Ser	ACC Thr	CGA Arg	GAC Asp	TAC Tyr 270	Thr	GGC	CCC Pro	AAC Asn	Arg 275	TTC Phe		960
CTC Leu	GCC Ala	GAT Asp	CCG Pro 280	CTT Leu	TCA Ser	TAC	GAA Glu	AGC Ser 285	Arg	TCG Ser	TGG Trp	CTG Lev	Phe 290	cgc Arg		1005
CCG Pro	GGT Gly	TTT	CGT Arg 295	TTT	GAA Glu	AAC Asn	AAA Lys	CGG Arg 300	His	TAC	ATC : Ile	GGC Gly	GGC Gly 305	: ATA : Ile		1050
CTC Leu	GAA Glu	CAC His	ACG Thr 310	Gln	CAA Gln	ACT Thr	TTC	GAC Asp 315	Thr	Arg	g Aar	ATC Met	Thr 320	GTT Val		1095
Pro	GCA Ala	TTC Phe	CTG Leu 325	Thr	Lys	GCG Ala	GTI Val	TT1 Phe 330	. val	GCA Ala	raa <i>l</i> rea i	TCI Sei	Lys 33!	A CAG B Gln		1140
GCG Ala	GGT Gly	TCI Ser	TTG Lev 340	Pro	GGC Gly	AAC Asn	GGC Gly	Lye 345	Туг	GCC Ala	GGC Gly	AA S	CAC Hii 350	C AAA B Lys O		1185
TAC Tyr	GGC Gly	GGF Gly	CTG Lev 355	ı Phe	ACC Thr	AA : Aar	GGC Gly	GA7 Glu 360	i Asi	GGT Gly	r GCC y Ala	CTO	3 GTC 1 Va: 36	GGC Gly		1230
GCC Ala	GAA Glu	TAC Tyr	GG7 Gly 370	Thi	GGC Gly	GTC Val	TT:	TAC Ty:	ASI	GA(G ACC	G CA	Th:	C AAA C AAA		1275

	AGC Ser	CGC Arg	TAC Tyr	GGT Gly 385	TTG Leu	GAA Glu	TAT Tyr	GTC Val	TAT Tyr 390	ACC Thr	AAT Asn	GCC Ala	GAT Asp	AAA Lys 395	Asp ·	1320
	ACT Thr	TGG Trp	GCG Ala	GAT Asp 400	TAT. Tyr	GCC Ala	CGC Arg	CTC Leu	TCT Ser 405	TAC Tyr	GAC Asp	CGG Arg	CAG Gln	GGC Gly 410	ATC Ile	1365
	GGT Gly	TTG Leu	GAC Asp	AAT Asn 415	CAT His	TTT Phe	CAG Gln	CAG Gln	ACG Thr 420	CAC His	TGT Cys	TCT Ser	GCC Ala	GAC Asp 425	GGT Gly	1410
•	TCG Ser	GAC Asp	LY8 YYY	TAT Tyr 430	CAR LCC	CGC Arg	CCG Pro	AGT Ser	GCC Ala 435	GAC Asp	TAB TAB	CCG Pro	TTT Phe	TCC Ser 440	TAT Tyr	1455
0	TAC Tyr	AAA Lys	TCC Ser	GAC Asp 445	CGC Arg	GTG Val	ATT Ile	TAC Tyr	GGG Gly 450	GAA Glu	AGC Ser	CAC His	AGG Arg	CTC Leu 455	TTG Leu	1500
	CAG Gln	GCG Ala	.GCA Ala	TTC Phe 460	Lys Lys	AAA Lys	TCC Ser	TTC Phe	GAT Asp 465	ACC Thr	GCC Ala	AAA Lys	ATC Ile	CGC Arg 470	CAC His	1545
iās	AAC Asn	CTG Leu	AGC Ser	GTG Val 475	AAT Asn	CTC Leu	GJY	TTT Phe	GAC Asp 480	CGC Arg	TTT Phe	GAC Asp	TCT Ser	AAT Asn 485	CTC Leu	1590
	CGC Arg	CAT His	CAG Gln	GAT Asp 490	TAT Tyr	TAT Tyr	TAT Tyr	CAA Gln	CAT His 495	GCC Ala	AAC Asn	CGC Arg	GCC Ala	TAT Tyr 500	TCG Ser	1635
•	TCG Ser	ГАв Ууу	ACG Thr	CCC Pro 505	CCT Pro	AAA Lys	ACC Thr	GCC Ala	AAC Asn 510	CCC Pro	AAC Asn	GGC Gly	GAC Asp	AAG Lys 515	AGC Ser	1680
	AAA Lys	CCC Pro	TAT Tyr	TGG Trp 520	GTC Val	AGC Ser	ATA Ile	GGC Gly	GGG Gly 525	GGA Gly	AAT Aan	GTG Val	GTT Val	ACG Thr 530	GCG	1725
()	CAA Gln	ATC Ile	TGC Cys	CTC Leu 535	TTT Phe	GLY	AAC Asn	AAT Asn	ACT Thr 540	TAT Tyr	ACG Thr	GAC Asp	TGC Cys	ACG Thr 545	CCG Pro	1770
	cgc	AGC Ser	ATC Ile	AAC Asn 550	GGC	AAA Lys	AGC Ser	TAT Tyr	TAC Tyr 555	GCG Ala	GCA Ala	GTT Val	CGG Arg	GAC Asp 560	AAT Asn	1815
	GTC Val	CGT Arg	TTG Leu	GGC Gly 565	AGG Arg	TGG Trp	GCG Ala	GAT Asp	GTC Val 570	GGC Gly	GCG Ala	GGG Gly	TTG Leu	CGC Arg 575	TAC Tyr	1860
	GAC Asp	TAC Tyr	CGC Arg	AGC Ser 580	ACG Thr	CAT His	TCG Ser	GAC Asp	GAC Asp 585	GCC	AGC Ser	GTT Val	TCC Ser	ACC Thr 590	GGC Gly	1905
	ACG Thr	CAC His	CGC Arg	ACC Thr 595	CTG Leu	TCC Ser	TGG Trp	AAC Asn	GCC Ala 600	GGC Gly	ATC Ile	GTC Val	CTC Leu	AAA Lys 605	CCT Pro	1950
	GCC Ala	GAC	TGG Trp	CTG Leu 610	GAT Asp	TTG Leu	ACT Thr	TAC Tyr	CGC Arg 615	ACT Thr	TCA Ser	ACC	GJA GGC	TTC Phe 620	CGC Arg	1995

CTG Leu	CCC Pro	TCG Ser	TTT Phe 625	GCG Ala	GAA Glu	ATG Met	TAC Tyr	GGC Gly 630	TGG Trp	CGG Arg	TCG Ser	GGT Gly	GTT Val 635	CAA Gln	2040
AGC Ser	Lys DAA	GCG Ala	GTC Val 640	AAA Lys	ATC Ile	GAT Asp	CCG Pro	GAA Glu 645	AAA Lys	TCG Ser	TTC Phe	AAC Asn	AAA Lys 650	GAA Glu	2095
GCC Ala	GGC	ATC Ile	GTG Val 655	TTT Phe	Lys	GGC Gly	Asp CAT	TTC Phe 660	GGC Gly	AAC Asn	TTG Leu	GAG Glu	GCA Ala 665	AGT Ser	2130
TGG Trp	TTC Phe	AAC Aun	AAT Asn 670	GCC Ala	TAC Tyr	cgc Arg	GAT Asp	TTG Leu 675	ATT Ile	GTC Val	CGG Arg	GGT Gly	TAT Tyr 680	GAA Glu	2175
GCG Ala	CAA Gln	ATT Ile	AAA Lys 685	AAC Asn	GGC Gly	TAY TAY	GAA Glu	GAA Glu 690	GCC Ala	AAA Lys	GGC Gly	GAC Asp	CCG Pro 695	GCT Ala	2220
TAC Tyr	CTC Leu	AAT Asn	GCC Ala 700	CAA Gln	AGC Ser	GCG Ala	CGG Arg	ATT Ile 705	ACC Thr	Gly	ATC Ile	Aan	ATT Ile 710	TTG Leu	2265
GGC	Lys AAA	ATC Ile	GAT Asp 715	TGG Trp	AAC Asn	GGC	GTA Val	TGG Trp 720	GAT Asp	AAA Lys	TTG Leu	CCC Pro	GAA Glu 725	GGT Gly	2310
TGG Trp	TAT Tyr	TCT Ser	ACA Thr 730	TTT	GCC Ala	TAT Tyr	AAT Asn	CGT Arg 735	GTC Val	CAT His	GTC Val	CGC Arg	GAC Asp 740	ATC Ile	2355
AAA Lys	AAA Lys	CGC Arg	GCA Ala 745	GAC Asp	CGC Arg	ACC	GAT Asp	ATT Ile 750	CAA Gln	TCA Ser	CAC	CTG Leu	TTT Phe 755	Asp	2400
GCC Ala	ATC Ile	CAA Gln	CCC Pro 760	Ser	CGC	TAT Tyr	GTC Val	GTC Val 765	Gly	TTG Leu	GLY	TAT Tyr	GAC Asp 770	Gln	2445
CCG Pro	GAA Glu	GLY	AAA Lys 775	Trp	GGT Gly	GTG Val	AAC	GGT Gly 780	Met	CTG	ACT Thr	TAT	TCC Ser 785	FÅ8	2490
GCC	AAG Lys	GAA Glu	ATC Ile 790	Thr	GAG Glu	TTG Leu	TIG	GGC Gly 795	Ser	CGG	GCT Ala	TTG Leu	Leu 800	AAC Asn	2535
GGC	AAC	AGC Ser	CGC Arg 805	Asn	ACA Thr	. TAa . yyy	GCC Ala	ACC Thr 810	Ala	CGC Arg	CGT Arg	ACC	CGC Arg 815	Pro	2580 _.
TGG Trp	TAT Tyr	ATT	GTG Val 820	. Asp	GTG Val	TCC Ser	GGT Gly	TAI Tyr 825	Tyr	ACC Thr	ATT	LYE	Lys 830	A CAC	2625
TTC Phe	ACC Thr	CTC	CGI Arg 835	Ala	GGC GLY	GTG Val	TAC	AAC ABI 840	Lev	CTC Lev	AAC 1 ABr	TAC Tyx	CGC Arg 84!	TAT Tyr	2670
GT7 Val	ACI Thr	Tr	GA Glu 850	ı Ası	GTO Val	CGG Arg	Glr Glr	ACT Tha	: Ala	GG(G GGG	GCI Ala	4 GT(4 Va. 86	C AAC L Äsn D	2715

CAA Gln	CAC His	AAA Lys	AAT Asn 865	GTC Val	GCC	GTT Val	TAC Tyr	AAC Asn 870	Arg	TAT Tyr	GCC Ala	GCC Ala	CCC Pro 875	GCC	27	760
CGA Arg											<u>TAA</u>	ACG			27	799

SEQ ID NO: 4

Objet : Sequence de l'ADN génomique de la souche de N. meningitidis IM2169 codant pour le précurseur de la sous-unité Tbp2 et séquence protéique déduite.

Le peptide signal est indiqué en caractère gras.

ATTI	GTTA	A A	ATA	ATAA	AAI	'AATA	atc	CTTA	TCAT	TC I	TTAA	TTGA	A TT	GGGTT	TAT	59
		220	CCA	ጥጥር	GTD.	ТАА	CAG	GCT	GCT	ATG	GTG Val	CTG	CCT	GTG		104
TTT Phe -5	TTG Leu	TTG Leu	AGT Ser	GCC Ala -1	TGT Cys 1	CTG Leu	GGC Gly	GGC Gly	GGC Gly 5	GGC Gly	AGT Ser	TTC Phe	GAT Asp	CTT Leu 10		149
GAT Asp	TCT Ser	GTC Val	GAT Asp	ACC Thr 15	GAA Glu	GCC Ala	CCG Pro	CGT Arg	CCC Pro 20	GCG Ala	CCA Pro	AAG Lys	TAT Tyr	CAA Gln 25		194
GAT Asp	GTT Val	TCT Ser	TCC Ser	GAA Glu 30	Lys	CCG Pro	CAA Gln	GCC Ala	CAA Gln 35	AAA Lys	GAC Asp	CAA Gln	Gly	GGA Gly 40		239
TAC Tyr	GGT Gly	TTT Phe	GCG Ala	ATG Met 45	AGG Arg	TTG Leu	AAA Lys	CGG Arg	AGG Arg 50	TAA Asn	TGG Trp	TAT Tyr	CCG Pro	GGG Gly 55		284
GCA Ala	GAA Glu	GAA Glu	AGC Ser	GAG Glu 60	Val	AAA Lys	CTG Leu	AAC Asn	GAG Glu 65	Ser	GAT	TGG Trp	GAG Glu	GCG Ala 70		329
ACG Thr	GGA Gly	TTG Leu	CCG	ACA Thr	Lys	CCC	AAG Lys	GAA Glu	CTT Leu 80	Pro	Lys	CGG Arg	CAA Gln	AAA Lys 85	·	374
TCG Ser	GTT Val	ATI Ile	GAA Glu	AAA Lys 90	Val	GAA Glu	ACA Thr	GAC	GGC Gly 95	Ast	: AGC Ser	GAT	ATT	TAT Tyr 100		419
TCT Ser	TCC Ser	CCC	TAI	CTC Leu 105	Thr	CCA Pro	TCA	AAC Asn	CAT His	GLI	AAC ABD	GGC	AGC Ser	GCT Ala 115		464
GGC Gly	AAC Asr	GL3	GTA Val	AAT Asn 120	Glr	CCI Pro	AAA Lys	AAT ABD	CAG Gln 125	AL	A ACA	GGI Gly	CAC His	GAA Glu 130		509
LAA 18A	TTC Phe	CAA	A TAT	GT1 Val	LTyx	TCC Ser	GGT Gly	TGG Tri	TTT Phe 140	Ty	r AAA	CAT His	GCA Ala	GCG Ala 145		554
AG1 Sea	GAZ Glu	A AAI 1 Ly:	A GA?	TTC Phe 150	e Sei	AA ? rea :	Ly:	A AAI E Lys	ATT Ile 15	з гХі	G TC? S Sei	GGC Gly	C GAC	CAT Asp 160		599

	GGT Gly	TAT Tyr	ATC Ile	TTC Phe	TAT Tyr 165	CAC His	GGT Gly	GAA Glu	AAA Lys	CCT Pro 170	TCC Ser	CGA Arg	CAA Gln	CTT Leu	CCT Pro 175		644
	GCT Ala	TCT Ser	GGA Gly	TÀ8 TYB	GTT Val 180	ATC Ile	TAC Tyr	FAB FYF	GGT Gly	GTG Val 185	TGG Trp	CAT His	TTT Phe	GTA Val	ACC Thr 190		689
	GAT Asp	ACA Thr	AAA Lys	AAG Lys	GGT Gly 195	CAA Gln	GAT Asp	TTT Phe	CGT Arg	GAA Glu 200	ATT Ile	ATC Ile	CAG Gln	CCT Pro	TCA Ser 205		734
	AAA Lys	AAA Lys	CAA Gln	GC	GAC Asp 210	AGG Arg	TAT Tyr	AGC Ser	GGA Gly	TTT Phe 215	TCT Ser	GGT Gly	yab	GGC Gly	AGC Ser 220		779
	GAA Glu	GAA Glu	TAT Tyr	TCC Ser	AAC Asn 225	AAA Lys	AAC Asn	GAA Glu	TCC Ser	ACG Thr 230	CTG Leu	AAA Lys	Aap	GAT Asp	CAC His 235		824
	GAG Glu	GGT Gly	TAT Tyr	GGT Gly	TTT Phe 240	ACC Thr	TCG Ser	AAT Asn	TTA Leu	GAA Glu 245	GTG Val	GAT Asp	TTC Phe	GC	AAT Asn 250		869
r,	FÅa YYG	AAA Lys	TTG Leu	ACG Thr	GGT Gly 255	ГЛа	TTA Leu	ATA Ile	CGC Arg	AAT Asn 260	AAT Asn	GCG Ala	AGC Ser	CTA Leu	AAT Asn 265		914
	AAT Asn	AAT Asn	ACT Thr	TAA Asn	AAT Asn 270	GAC Asp	AAA Lys	CAT His	ACC Thr	ACC Thr 275	CAA Gln	TAC Tyr	TAC Tyr	AGC Ser	CTT Leu 280		959
	yab Gy1	GCA Ala	CAA Gln	ATA Ile	ACA Thr 285	GGC	AAC Asn	CGC Arg	TTC Phe	AAC Asn 290	GLY	ACG Thr	GCA Ala	ÁCG Thr	GCA Ala 295		1004
	ACT Thr	Asp	AAA Lys	Lys LAA	GAG Glu 300	AAT Asn	GAA Glu	ACC Thr	Lys	CTA Leu 305	CAT His	CCC Pro	TTT Phe	GTT Val	TCC Ser 310		1049
	yab GyC	TCG Ser	·TCT Ser	TCT Ser	TTG Leu 315	AGC Ser	GCC	GGC	TTT Phe	TTC Phe 320	GGC	CCG Pro	CAG Gln	GGT Gly	GAG Glu 325		1094
	GAA Glu	TTG Leu	GGT Gly	TTC Phe	CGC Arg 330	TTT Phe	TTG Leu	AGC Ser	GAC Asp	Asp 335	CAA Gln	ГÅа УУУ	GTT Val	GCC Ala	GTT Val 340		1139
	GTC Val	GGC Gly	AGC Ser	GCG Ala	ААА Lyв 345	ACC Thr	ГÀВ	Yab GYC	AAA Lys	CTG Leu 350	GAA Glu	AAT Asn	GGC	GCG Ala	GCG Ala 355		1184
	GCT Ala	TCA Ser	GCC	AGC Ser	ACA Thr 360	GGT Gly	GCG Ala	GCA Ala	GCA	TCG Ser 365	GGC	GGT Gly	GCG Ala	GCA Ala	GGC Gly 370	·	1229
	ACG Thr	TCG	TCT Ser	GAA Glu	AAC Asn 375	AGT Ser	AAG Lys	CTG Leu	ACC	ACG Thr 380	Val	TTG Leu	GAT Asp	GCG Ala	Val 385		1274
	GAA Glu	TTG Leu	ACA Thr	CTA Leu	AAC Asn 390	deK	AAG Lys	Lys	ATC Ile	AAA Lys 395	Asn	CTC Leu	GAC Asp	AAC	Phe 400		1319

AGC AAS	r GCC n Ala	Ala	CAA (Gln) 405	CTG (Leu '	GTT (Val	GTC Val	vah	GGC Gly 410	ATT Ile	ATG Met	ATT Ile	CCG Pro	CTC Leu 415	1364
CTG CC	C AAG o Lys	Asp	TCC Ser 420	GAA Glu	AGC Ser	GJÄ GGG	AAC ABD	ACT Thr 425	CAG Gln	GCA Ala	GAT Asp	TÄR	GGT Gly 430	1409
AAA AA	c GGC n Gly	GGA Gly	ACA Thr 435	GAA Glu	TTT Phe	ACC Thr	CGC	AAA Lys 440	TTT Phe	GAA Glu	CAC His	ACG Thr	CCG Pro 445	1454
GAA AG Glu Se	T GAT	Lys	AAA Lys 450	GAC Asp	GCC Ala	CAA Gln	GCA Ala	GGT Gly 455	ACG Thr	CAG Gln	ACG Thr	TAA Asn	GGG Gly 460	1499
GCG CA Ala Gl	A ACC n Thr	GCT Ala	TCA Ser 465	AAT Asn	ACG Thr	GCA Ala	GGT Gly	GAT Asp 470	ACC Thr	AAT	GGC	AAA Lys	ACA Thr 475	1544
AAA AC Lys Th	C TAT	GAA Glu	GTC Val 480	GAA Glu	GTC Val	TGC Cys	TGT Cys	TCC Ser 485	AAC Aan	CTC Leu	AAT	TAT	CTG Leu 490	1589
AAA TI Lys Ty	AC GGP yr Gly	ATG Met	TTG Leu 495	ACG Thr	CGC Arg	TAa	AAC Asn	AGC Ser 500	nl 9	TCC	GCG Ala	ATG Met	CAG Gln 505	1634
GCA GG Ala G	GA GGI ly Gl	A AAC Y Asn	AGT Ser 510	AGT Ser	CAA Gln	GCT	GAT Asp	GCT Ala 515	Lyo	ACG Thr	GAI Glu	CAA Gln	Val 520	1679
GAA C	AA AGʻ ln Se	r ATG r Met	TTC Phe 525	CTC	CAA Gln	GC	GAG Glu	CGT Arg 530	1111	CAD ReA	GAZ Glv	A AAA 1 Lys	GAG Glu 535	1724
ATT C	CA AC ro Th	r Asp	CAA Gln 540	Asn	GTC Val	GTI Val	TAT L Tyx	CGG Arg 545	9-1	TC: Sei	r TG	TAC p Ty	GGG Gly 550	1769
CAT A	TT GC	c aac	GGC Gly 555	Thr	AGC Ser	TC(AGC Sea	C GGC C Gly 560	110.	r GC n Al	r TC a Se	T GAS	Lys 565	1814
GAG G Glu G	GC GG	A yei	AGG Arg 570	l YTS	GAI a Glu	A TT	r ac'	r GTC r Val 57	, AS	r TT n Ph	T GC e Al	C GA	580 F Lya	1859
AAA A	ATT AC	C GG ir Gl	C AAC Y Lyi 585	a re	A AC	C GC	T GA	A AAG u Aag 59		G CA g Gl	G GC n Al	G CA a Gl	A ACC n Thr 595	1904
TTT I	ACC AT	TT GA	G GG u Gl 600	A we.	G AT t Il	T CA e Gl	G GG n Gl	60 C AA		C TI Y Ph	T GA	A GG .u Gl	T ACG Y Thr 610	1949
GCG A	AAA A(Lys Ti	CT GC hr Al	T GA a Gl 61	u se	A GG r Gl	T TI Y Ph	T GA le As	T CT p Le 62	- AL-	AT CF	la Al	ia al	T ACC in Thr 625	1994
ACC Thr	CGC A	CG CC hr Pr	T AA O Ly 63	8 AT	A TA a Ty	T AT	C AC Le Th	A GA ir As 63	F	C Al La Ly	AG G	ra Al al Ly	GGC B'Gly 640	2039

GGT TTT TAC GGG CCT AAA GCC GAA GAG TTG GGC GGA TGG TTT GCC Gly Phe Tyr Gly Pro Lys Ala Glu Glu Leu Gly Gly Trp Phe Ala 645 650 655	2084
TAT CCG GGC GAT AAA CAA ACG GAA AAG GCA ACA GCT ACA TCC AGC Tyr Pro Gly Asp Lys Gln Thr Glu Lys Ala Thr Ala Thr Ser Ser 660 665 670	2129
GAT GGA AAT TCA GCA AGC AGC GCG ACC GTG GTA TTC GGT GCG AAA Asp Gly Asn Ser Ala Ser Ser Ala Thr Val Val Phe Gly Ala Lys 675 680 685	2174
CGC CAA CAG CCT GTG CAA <u>TAA</u> GCACGGTTGC CGAACAATCA AGAATAAGGC Arg Gln Gln Pro Val Gln 690	2225
TTCAG	2230

٠.

Revendications

- Un fragment d'ADN isolé codant pour un peptide, un polypeptide ou une protéine capables d'être reconnus par un antisérum anti-récepteur de la transferrine de la souche de N. meningitidis IM2394 ou IM2169.
- 2. Un fragment d'ADN selon la revendication 1, qui comprend une séquence nucléotidique codant pour une séquence d'acides aminés homologue à celle telle que montrée :
 - dans le SEQ ID NO: 1, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 579;
 - dans le SEQ ID NO: 2, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 884;
 - dans le SEQ ID NO: 3, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 887; ou
 - dans le SEQ ID NO: 4, commençant avec le résidu cystéine en position
 1 et finissant avec le résidu glutamine en position 691.
 - 3. Un fragment d'ADN selon la revendication 2, qui comprend une séquence nucléotidique codant pour une séquence d'acides aminés telle que montrée :
 - dans le SEQ ID NO: 1, commençant avec le résidu cystéine en position
 1 et finissant avec le résidu glutamine en position 579;
 - dans le SEQ ID NO : 2, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 884;
 - dans le SEQ ID NO: 3, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 887; ou

- dans le SEQ ID NO: 4, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 691.
- 4. Un fragment d'ADN selon la revendication 2, qui a une séquence nucléotidique codant pour une protéine ayant une séquence d'acides aminés homologue à celle telle que montrée :
 - dans le SEQ ID NO: 1, commençant avec le résidu cystéine en position
 1 et finissant avec le résidu glutamine en position 579;
 - dans le SEQ ID NO: 2, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 884;
 - dans le SEQ ID NO : 3, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 887;
 ou
 - dans le SEQ ID NO: 4, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 691.
- 5. Un fragment d'ADN selon la revendication 4, qui a une séquence nucléotidique codant pour :
 - i) la sous-unité Tbp1 de la souche IM2394 dont la séquence en acides aminés est montrée dans le SEQ ID NO: 2, commençant avec le résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 884;
 - ii) la sous-unité Tbp2 de la souche IM2394 dont la séquence en acides aminés est montrée dans le SEQ ID NO: 1, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 579;
 - iii) la sous-unité Tbp1 de la souche IM2169 dont la séquence en acides aminés est montrée dans le SEQ ID NO : 3, commençant avec le

résidu acide glutamique en position 1 et finissant avec le résidu phénylalanine en position 887; ou

- iv) la sous-unité Tbp2 de la souche IM2169 dont la séquence en acides aminés est montrée dans le SEQ ID NO : 4, commençant avec le résidu cystéine en position 1 et finissant avec le résidu glutamine en position 691.
- 6. Un fragment d'ADN selon la revendication 2, qui a une séquence nucléotidique codant pour un précurseur ayant une séquence d'acides aminés homologue à celle telle que montrée :
 - dans le SEQ ID NO: 1, commençant avec le résidu méthionine en position -20 et finissant avec le résidu glutamine en position 579;
 - dans le SEQ ID NO : 2, commençant avec le résidu méthionine en position -24 et finissant avec le résidu phénylalanine en position 884;
 - dans le SEQ ID NO: 3, commençant avec le résidu méthionine en position -24 et finissant avec le résidu phénylalanine en position 887;
 ou
 - dans le SEQ ID NO: 4, commençant avec le résidu méthionine en position -20 et finissant avec le résidu glutamine en position 691.
- 7. Un fragment d'ADN selon l'une des revendications 1 et 2, qui a une séquence nucléotidique codant pour :
 - i) Le précurseur de la sous-unité Tbp1 de la souche IM2394 dont la séquence en acides aminés est montrée dans le SEQ ID NO: 2, commençant avec le résidu méthionine en position -24 et finissant avec le résidu phénylalanine en position 884;
 - ii) Le précurseur de la sous-unité Tbp2 de la souche IM2394 dont la séquence en acides aminés est montrée dans le SEQ ID NO: 1, commençant avec le résidu méthionine en position -20 et finissant

avec le résidu glutamine en position 579;

- iii) Le précurseur de la sous-unité Tbp1 de la souche IM2169 dont la séquence en acides aminés est montrée dans le SEQ ID NO : 3, commençant avec le résidu méthionine en position -24 et finissant avec le résidu phénylalanine en position 887; ou
- iv) Le précurseur de la sous-unité Tbp2 de la souche IM2169 dont la séquence en acides aminés est montrée dans le SEQ ID NO: 4, commençant avec le résidu méthionine en position -20 et finissant avec le résidu glutamine en position 691.
- 8. Une cassette d'expression destinée à la production d'une protéine capable d'être reconnue par un antisérum anti-récepteur de la transferrine de la souche de N. meningitidis IM2394 ou IM2169, qui comprend un fragment d'ADN selon l'une des revendications 1 à 7, placé sous le contrôle des éléments nécessaires à son expression.
- 9. Une cellule-hôte transformée par une cassette d'expression selon la revendication 8.
- 10. Un procédé de production d'une protéine capable d'être reconnue par un antisérum anti-récepteur de la transferrine de la souche de N. meningitidis IM2394 ou IM2169, qui comprend l'acte de cultiver une cellule-hôte selon la revendication 9.
- 11. Un bloc d'ADN isolé codant pour un peptide signal ayant une séquence d'acides aminés homologue à celle telle que montrée dans :
 - le SEQ ID NO : 2, commençant avec le résidu méthionine en position 24 et finissant avec le résidu en position 1.
 - le SEQ ID NO : 3, commençant avec le résidu méthionine en position 24 et finissant avec le résidu alanine en position 1; et
 - le SEQ ID NO : 4, commençant avec le résidu méthionine en

position - 20 et finissant avec le résidu alanine en position - 1.

- 12. Un bloc d'ADN isolé codant pour un peptide signal ayant une séquence d'acides aminés telle que montrée dans :
 - le SEQ ID NO: 2, commençant avec le résidu méthionine en position 24 et finissant avec le résidu en position 1;
 - le SEQ ID NO: 3, commençant avec le résidu méthionine en position 24 et finissant avec le résidu alanine en position 1; et
 - le SEQ ID NO: 4, commençant avec le résidu méthionine en position 20 et finissant avec le résidu alanine en position 1.

FIG.2

두.구

FIG.5

7/10

Tbp1-2394	MQQQHLFRLNILCLSLMTALPVYAENVQAEQAQEXQLDTIQVKAKKQKTRRDNEVTGLGK
Tbp1-2169	MQQQHLFRLNILCLSLMTALPAYAENVQAGQAQEXQLDTIQVKAKKQKTRRDNEVTGLGK
Tbp1-2394	LVKSSDTLSKEQVLNIRDLTRYDPGIAVVEQGRGASSGYSIRGMDKNRVSLTVDGVSQIQ
Tbp1-2169	LVKTADTLSKEQVLDIRDLTRYDPGIAVVEQGRGASSGYSIRGMDKNRVSLTVDGLAQIQ
Tbp1-2394	SYTAQAALGGTRTAGSSGAINEIEYENVKAVEISKGSNSSEYGNGALAGSVAFQTKTAAD
Tbp1-2169	SYTAQAALGGTRTAGSSGAINEIEYENVKAVEISKGSNSVEQGSGALAGSVAFQTKTADD
Tbp1-2394	IIGEGKOWGIQSKTAYSGKDHALTOSLALAGRSGGAEALLIYTKRRGREIHAHKDAGKGV
Tbp1-2169	VIGEGROWGIQSKTAYSGKNRGLTOSIALAGRIGGAEALLIHTGRRAGEIRAHEDAGRGV
Tbp1-2394	QSFNRLVLDEDKKEGGSQYRYFIVEEECH-NGYAACKNKLKEDASVKDERKTVSTQDYTG
Tbp1-2169	QSFNRLV?VEDSSEYAYFIVEDECEGKNYETCKSKPKKDVVGKDERQTVSTRDYTG
Tbp1 –2394	SNRLLANPLEYGSQSWLFRPGWHLDN-RHYVGAVLERTQQTFDTRDMTVPAYFTSEDYVP
Tbp1 –2169	PNRFLADPLSYESRSWLFRPGFRFENKRHYIGGILEHTQQTFDTRDMTVPAFLTKAVFDA
Tbp1-2394	GSLXGLGKYSGDNKAERLFVQGEGSTLQGIGYGTGVFYDERHTKNRYGVEYVYHN
Tbp1-2169	NSKQAGSLPGNGKYAGNHKYGGLFTNGENGALVGAEYGTGVFYDETHTKSRYGLEYVYTN
Tbp1-2394	ADKDTWADYARLSYDROGIDLDNRLQQTHCSHDGSDKNCRPDGNKPYSFYKSDRMIYEES
Tbp1-2169	ADKDTWADYARLSYDROGIGLDNHFQQTHCSADGSDKYCRPSADKPFSYYKSDRVIYGES
Tbp1-2394	RNLFQAVFKKAFOTAKIRHNLSINLGYDRFKSQLSHSDYYLQNAVQAYDLITPKKPPFPN
Tbp1-2169	HRLLQAAFKKSFDTAKIRHNLSVNLGFDRFDSNLRHQDYYYQHANRAYSSKTPPKTANPN
Tbp1-2394	GSKDNPYRVSIGKTTVNTSPICRFGNNTYTDCTPRNIGGNGYYAAVQDNVRLGRWADVGA
Tbp1-2169	GDKSKPYWVSIGGGNVVTCQICLFGNNTYTDCTPRSINGKSYYAAVRDNVRLGRWADVGA

8/10

Tbp1-2394	GIRYDYRSTHSEDKSVSTGTHRNLSWNAGVVLKPFTWMDLTYRASTGERLPSFAEMIGHR
Tbp1-2169	GLRYDYRSTHSDDGSVSTGTHRTLSWNAGIVLKPADWLDLTYRTSTGFRLPSFAEMYGWR
Tbp1-2394 Tbp1-2169	AGESLKTLDLKPEKSFNREAGIVFKGDFGNLEASYFNNAYRDLIAFGYETRTQNGQTSAS SGVQSKAVKIDPEKSFNKEAGIVFKGDFGNLEASWFNNAYRDLIVRGYEAQIKNGKEEAK
	* * * * * * * * * * * * * * * * * * * *
Tbp1-2394	GDPGYRNAQNARIAGINILGKIDWHGVWGGLPDGLYSTLAYNRIKVKDADIRADRTFVTS
Tbp1-2169	GDPAYLNAQSARITGINILGKIDHNGVWDKLPEGWYSTFAYNRVHVRDIKKRADRTDIQS
T5p1-2394	YLFDAVQPSRYVLGLGYDHPOGIWGINTWFTYSKAKSVDELLGSQALLNGNANAKKAASR
Tbp1-2169	HLFDAIQPSRYVVGLGYDQPEGKWGVNGMLTYSKAKEITELLGSRALLNGNSRNTKATAR
Tbp1-2394	RTRPWYVTDVSGYYNIKKHLTLRAGVYNLLNYRYVTWENVRQTAGGAVNOHKNVGVYNRY
Tbp1-2169	RTRPWYIVDVSGYYTIKKHFTLRAGVYNLLNYRYVTWENVRQTAGGAVNQHXNVGVYNRY
Tbp1-2394	AAPGRNYTFSLEMKF
Tbp1-2169	AAPGRNYTFSLEKKF

= acide amıné identique=changement conservatıf

FIG. 7 (suite)

9/10

Tbp2-2394	CLGGGGSFDLDSVETVQDMHSK7KYEDEKSQ-PESQQDVSENSGAAYGFAVKLPRRNAHF
Tbp2-2169	CLGGGGSFDLDSVDT-EAPRPAPKYQDVSSEKPQAQKDQG-GYGFAMRLKRRNW
Tbp2-2394	NPKYKEKHKPLGSMDWKKLQ-RGEPNSFSERDELEKKRGSSE-LIESKWED
Tbp2-2169	YPGAEESEVKLNESDWEATGLPTKPKELPKRQKSVIEKVETDGDSDIYSSPYLTPSNHQN
Tbp2-2394 Tbp2-2169	GQSRVVGYTNFTYVRSGYVYLNK-NNIDIKNNIVLFGPDGYLYYKGKEPSK GSAGNGVNQPKNQATGHENFQYVYSGWFYKHAASEKDFSNKKIKSGDDGYIFYHGEKPSR
T5p2-2394 T5p2-2169	ELP-SEKITYKGTWDYVTDAMEKQRF-EGGSAAGGDKSGALSALEEGVLRNQAEASQLPASGKVIYKGVWHEVTDTKKGQDEREIIQPSKKQGDRYSGFSGDGSEEYSNKNESTLK
Tbp2-2394	SGHTDFGMTSEFEVDFSDKTIKGTLYRNNRITQNNSENKQIKTTRYTIQATLHGNRFKGK
Tbp2-2169	DDHEGYGFTSNLEVDFGNKKLTGKLIRNNASLNNNTNNDKHTTQYYSLDAQITGNRFNGT
Tbp2-2394	ALAADKGATNGS-HPFISDSDSLEGGFYGPKGZELAGKFLSNDNKVAAVFGAKQKDKKDG
Tbp2-2169	ATATDKKENETKLHPFVSDSSSLSGGFFGPQGZELGFRFLSDQQKVAVVGSAKTKDKLEN
Tbp2-2394	ENAAGPATETVIDAYRITGEEFKKEQIDSFGDVKKLLVDGVE
Tbp2-2169	GAAASGSTGAAASGGAAGTSSENSKLTTVLDAVELTLNDKKIKNLDNFSNAAQLVVDGIM
Tbp2-2394 Tbp2-2169	LSLLPSEGNKAAFQHEIEQNGVKAT
Tbp2-2394 Tbp2-2169	GKTKTYEVEVCCSNLNYLKYGNLTRKNSKSAMQAGGNSSQADAKTEQVEQSMFLQGERTD
Tbp2-2394	VSDVAARTEANAKYRGTWYGYIANGTSWSGEASNQEGGNRAEFDVDFSTKKISGTLTAKD
Tbp2-2169	EKEIPTDQNVVYRGSWYGHIANGTSWSGNASDKEGGNRAEFTVNFADKKITGKLTAEN
Tbp2-2394	RTSPAFTITAMIKDNGFSGVAKTGENGFALDPQNTGNSHYTHI-EATVSGGFYGKNAIEM
Tbp2-2169	RQAQTFTIEGMIQGNGFEGTAKTAESGFDLDQKNTTRTPKAYITDAKVKGGFYGPKAEEI
Tbp2-2394	GGSFSFPGNAPEGKQEKASVVFGAKRQQLVQ
Tbp2-2169	GGWFAYPGDKQTEKATATSSDGNSASSATVVFGAKRQQPVQ

⁼ acide aminé identique= changement conservatif

FIG.8

REPUBLIQUE FRANÇAISE

INSTITUT NATIONAL

RAPPORT DE RECHERCHE

Nº d'enregistrement national

de la

PROPRIETE INDUSTRIELLE

établi sur la base des dernières revendications déposées avant le commencement de la recherche FR 9207493 FA 474262

DUCL	JMENTS CONSIDERES COMME P		
atégorie	Citation du document avec indication, en cas de des parties pertinentes	besoin, examinée	26
K	INFECTION AND IMMUNITY vol. 60, no. 6, Juin 1992, pages 2391 - 2396 Stevenson P; Williams P; Griffi 'Common antigenic domains in tr -binding protein 2 of Neisseria -Meningitidis Neisseria -Gonorh Haemophilus-Influenzae Type B.' * le document en entier *	ansferrin oeane and	
о,х	WO-A-9 012 591 (UNIVERSITY TECH INTERNATIONA, INC.; US) 1 Novembre 1990 * le document en entier *	NOLOGIES 1	
1	WO-A-9 203 467 (THE UNIVERSITY CAROLINA, US) 5 Mars 1992 * revendications 1-17; figure 2		2
		·	DOMAINES TECHNIQUES
			RECHERCHES (Int. Cl.5)
٠			C12N C07K
			-9
	Date of achivement	d da la pochercha	Exeminator
		IER 1993	S.A. NAUCHE
X : part Y : part autr	CATEGORIE DES DOCUMENTS CITES iculièrement pertinent à lui seul iculièrement pertinent en combinaison avec un ocoment de la même catégorie neut à l'encontre d'an muins une revendication	T: théorie ou principe à la base d E: document de brevet bénéfician à la date de dépôt et qui n'a é de dépôt ou qu'à une date pos D: cité dans la demande L: cité pour d'autres raisons	t d'une date antérieure té publié qu'à cette date

2

2 (PO41.3)

O : divulgation non-écrite
P : document intercalaire

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потить.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.