Universidad de la República Facultad de Ingeniería - IMERL

Geometría y Álgebra Lineal 2 Segundo Semestre 2019

Sábado 21 de septiembre de 2019

Nro de Parcial	Cédula	Apellido y nombre			

- El puntaje total es 40 puntos.
- La duración del parcial es tres horas.

Notación: En el parcial se usa la siguiente notación:

- $\mathcal{M}_{m \times n}$ es el espacio de las matrices reales de tamaño $m \times n$.
- \mathcal{P}_n es el conjunto de los polinomios reales de grado menor o igual que n.
- N(T) e Im(T) denotan respectivamente el núcleo y la imagen de una transformación lineal T.

(I) Verdadero Falso. Total: 10 puntos

Puntajes: 1 punto si la respuesta es correcta, -1 punto si la respuesta es incorrecta, 0 punto por no contestar. Indique sus respuestas (V/F) en los casilleros correspondientes.

Ej 1	Ej 2	Еј 3	Ej 4	Ej 5	Ej 6	Ej 7	Ej 8	Ej 9	Ej 10
\mathbf{F}	V	F	\mathbf{F}	\mathbf{V}	V	F	\mathbf{F}	\mathbf{V}	F

Ejercicio 1:

Las matrices
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 y $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ son semejantes.

Ejercicio 2:

Considere un operador lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ con valores propios λ y μ ($\lambda \neq \mu$). Si $ma(\lambda) = 2$ entonces $mg(\mu) = 1$.

Ejercicio 3:

Sea $V = \mathcal{P}_2$, el conjunto de polinomios con coeficientes reales de grado menor o igual que 2. Considere la función $\langle , \rangle : \mathcal{P}_2 \times \mathcal{P}_2 \to \mathbb{R}$ definida por $\langle p, q \rangle = p(0)q(0) + p(1)q(1)$. Entonces \langle , \rangle es un producto interno.

Ejercicio 4:

Sea V un espacio vectorial y $T:V\to V$ una transformación lineal. Si $W\subset V$ es un subespacio invariante bajo T y dim(W)=2 entonces W es un subespacio propio de T (esto es, existe λ valor propio de T tal que $W=S_{\lambda}$).

Ejercicio 5:

Si $A \in \mathcal{M}_{3\times 3}$ es una matriz con valores propios -1, 0 y 1, entonces A^2 es diagonalizable y sus valores propios son 0 y 1.

Ejercicio 6:

Considere una matriz $A \in \mathcal{M}_{3\times 3}$ sobre el cuerpo \mathbb{K} y sean C_1 , C_2 y C_3 los círculos de Gershgorin. Si $C_i \cap C_j = \emptyset$ para todo $i \neq j$ entonces A es diagonalizable.

Ejercicio 7:

Sea V un espacio vectorial con producto interno y $S \subset V$. Entonces S es un conjunto ortonormal si y sólo si S es un conjunto linealmente independiente.

Ejercicio 8:

Sea V un espacio vectorial con producto interno, dim(V) = n, y $T: V \to V$ una transformación lineal tal que 0 es valor propio de T. Si S = N(T) entonces $dim(S^{\perp}) = n - 1$.

Ejercicio 9:

Sea V un espacio vectorial con producto interno. Considere un subespacio $S \subset V$, $S \neq \{0\}$, y sea P_S la proyección ortogonal sobre S. Entonces existe $v \in V$, $v \neq 0$, tal que $P_S(v) = v$.

Ejercicio 10:

Sea $T: V \to V$ una transformación lineal y λ un valor propio de T. Entonces $dim(N(T - \lambda I)) = ma(\lambda)$.

(II) Múltiple opción. Total: 30 puntos

Puntajes: 6 puntos si la respuesta es correcta, -2 puntos si la respuesta es incorrecta, 0 punto por no contestar. Indique sus respuestas en los casilleros correspondientes.

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4	Ejercicio 5
В	A	A	D	В

Ejercicio 1

Considere el operador lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por $T(x, y, z) = (x, 2x + 3y + \alpha z, \beta x + 3z)$, donde $\alpha, \beta \in \mathbb{R}$. Indique la opción correcta:

- A) T es diagonalizable para todos los valores de α y β .
- B) T es diagonalizable para un único valor de α y para todo valor de β .
- C) T es diagonalizable para un único valor de β y para todo valor de α .
- D) T es diagonalizable si y sólo si $\alpha \neq \beta$.

Ejercicio 2

Considere \mathbb{R}^3 con el producto interno habitual y el subespacio S = [(1, 1, 1), (0, 1, 1)]. Una base ortonormal de S es:

A)
$$\left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(-\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right) \right\}$$
.

B)
$$\left\{ \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right), \left(-1, \frac{1}{2}, \frac{1}{2}\right) \right\}$$
.

C)
$$\left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(\frac{3}{\sqrt{10}}, \frac{-1}{\sqrt{10}}, \frac{3}{\sqrt{10}} \right) \right\}$$
.

D)
$$\left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right) \right\}$$
.

Ejercicio 3

Considere la matriz

$$A = \begin{pmatrix} -2 & 1/2 & 1/4 & -1/4 \\ -1/8 & -4+i & 1/8 & -1/4 \\ -1/4 & -1/4 & -(4+i) & 1/8 \\ 0 & 1/7 & 6/7 & 2 \end{pmatrix}.$$

Indique la opción correcta:

- A) A es invertible y diagonalizable.
- B) A es invertible pero no diagonalizable.
- C) A no es invertible pero sí es diagonalizable.
- D) A no es invertible ni diagonalizable.

Ejercicio 4

Considere $V = \mathcal{P}_2$, el conjunto de polinomios con coeficientes reales de grado menor o igual que 2, con el producto interno $\langle p,q\rangle=\int_{-1}^1 p(t)q(t)dt$. Sea $S=[t^2,t]$.

Indique la opción correcta:

- A) Una base de S^{\perp} es $\{5t^2-3\}$ y la proyección ortogonal del polinomio q(t)=t+1 sobre el subespacio S^{\perp} es el polinomio $r(t)=-\frac{8}{3}(5t^2-3)$.
- B) Una base de S^{\perp} es $\{1\}$ y la proyección ortogonal del polinomio q(t)=t+1 sobre el subespacio S^{\perp} es el polinomio r(t)=2.
- C) Una base de S^{\perp} es $\{t^2+t+1\}$ y la proyección ortogonal del polinomio q(t)=t+1 sobre el subespacio S^{\perp} es el polinomio $r(t)=t^2+t+1$.
- D) Una base de S^{\perp} es $\{5t^2-3\}$ y la proyección ortogonal del polinomio q(t)=t+1 sobre el subespacio S^{\perp} es el polinomio $r(t)=-\frac{5}{3}t^2+1$.

Ejercicio 5

Considere un espacio vectorial real con dim(V) = 5. Sea $T: V \to V$ un operador lineal que cumple las siguientes condiciones:

- \blacksquare T no es invertible.
- $\bullet \ dim(N(T+4I))=2.$
- \bullet dim(Im(T-I)) = 3.

Se denota A a la matriz asociadad a T en una base cualquiera de V. Indique la opción correcta:

- A) A es diagonalizable y traza(A) = -3.
- B) A es diagonalizable y traza(A) = -6.
- C) A es diagonalizable y traza(A) = -5.
- D) A no es diagonalizable y traza(A) = 0.