Market Segmentation and EV Type Report

1. Data Sources

- **Dataset Provided:** A real-world dataset containing customer-level data on income and age.
- Data Points Used:
 - Salary (Annual Income)
 - o Age

2. Data Preprocessing

Libraries Used:

```
python
CopyEdit
pandas, numpy, seaborn, matplotlib, sklearn, statsmodels
```

Steps Performed:

- 1. Loaded the dataset using pandas.
- 2. Cleaned the salary column:
 - o Removed non-numeric characters (e.g., ₹, ,).
 - o Converted to numeric and handled missing values.
- 3. Removed salary outliers using IQR method.
- 4. Standardized numeric columns using StandardScaler.

```
Code Snippet:
```

```
df['Salary'] = df['Salary'].astype(str).str.replace(r'[^\d.]', '', regex=True)
df['Salary'] = pd.to_numeric(df['Salary'], errors='coerce')
df = df.dropna(subset=['Salary'])
```

3. Segment Extraction (ML Techniques Used)

We applied **KMeans clustering** to segment customers based on their salary, age, and family size.

- Elbow Method was used to find optimal cluster count.
- **Principal Component Analysis** (PCA) was used for dimensionality reduction and visualization.
- Label Encoding was used for converting EV type into numerical form.

Clustering Method:

from sklearn.cluster import KMeans

from sklearn.decomposition import PCA

Classification Report:					
	precision	recall	f1-score	support	
2-wheeler	1.00	1.00	1.00	16	
3-wheeler	1.00	1.00	1.00	15	
4-wheeler	0.00	0.00	0.00	0	
accuracy			1.00	31	
macro avg	0.67	0.67	0.67	31	
weighted avg	1.00	1.00	1.00	31	

4.Profiling and Describing Potential Segments

After clustering, segments were profiled as:

Cluster	Salary Range	Likely EV Type
0	<₹3,00,000	2-wheeler
1	₹3,00,000–₹8,00,000	3-wheeler
2	> ₹8,00,000	4-wheeler

5. Selection of Target Segment

Based on the frequency distribution of clusters and EV types, we identified the **3-wheeler market** (**middle-income**) as the optimal segment:

- **Population is higher** than high-income group.
- **Purchasing power** is adequate.
- Lower risk with significant profit margin.

6. Customizing the Marketing Mix

Element Strategy

Product Promote 3-wheeler EVs with family-friendly features

Price Mid-range pricing ₹3–5 lakh

Place Urban & tier-2 cities with growing income

Promotion Digital campaigns, EMI offers

People Young professionals, middle-income families

Process Partner with financing platforms

Physical Evidence Customer testimonials, showroom trials

7. Potential Market and Profit Estimation

Assuming 20% of the dataset falls under the mid-income segment:

- **Total Target Customers:** 20% of 10,000 users = 2,000
- **Target Price Range:** ₹3,50,000
- **Potential Revenue:** 2,000 * ₹3,50,000 = ₹70,00,00,000

8. Most Optimal Market Segments

Based on our analysis:

- **Primary Target:** Mid-income (3-wheeler) group
- **Secondary Focus:** Low-income (2-wheeler) group in rural areas
- **Avoid:** High-income 4-wheeler segment due to limited base in dataset