Sockets

Bruno Pereira

Universidade Federal de Minas Gerais bruno.ps@live.com

13 de maio de 2025

Roteiro

- Introdução
 - Entendendo Sockets
- 2 Programação
 - Cliente e Servidor
- 3 Extra

Introdução

Histórico

- Década de 1980 ARPA^a, deu à Berkeley a tarefa de criar um SO que desse suporte a ARPAnet
- Unix BSD (Berkeley Software Distribution)
- A Berkeley Sockets Interface é a base para a maioria das interfaces entre protocolos de internet TCP/IP existentes.
- ^aAdvanced Research Projects Agency of the Department of Defense

Introdução

Histórico

- Década de 1980 ARPA^a, deu à Berkeley a tarefa de criar um SO que desse suporte a ARPAnet
- Unix BSD (Berkeley Software Distribution)
- A Berkeley Sockets Interface é a base para a maioria das interfaces entre protocolos de internet TCP/IP existentes.
- ^aAdvanced Research Projects Agency of the Department of Defense

Introdução

Histórico

- Década de 1980 ARPA^a, deu à Berkeley a tarefa de criar um SO que desse suporte a ARPAnet
- Unix BSD (Berkeley Software Distribution)
- A Berkeley Sockets Interface é a base para a maioria das interfaces entre protocolos de internet TCP/IP existentes.

^aAdvanced Research Projects Agency of the Department of Defense

Sockets

- Sockets é uma maneira de falar com outros programas remotos usando arquivos descritores do Unix
- O que são arquivos descritores?
 - "...Ok—you may have heard some Unix hacker state, 'Jeez everything in Unix is a file!' ..."
 - É um inteiro associado a um arquivo FIFO, pipe, terminal, leitura do disco, conexão

^aBeej's Guide to Network Programming

Sockets

- Sockets é uma maneira de falar com outros programas remotos usando arquivos descritores do Unix
- O que são arquivos descritores?
 - "...Ok—you may have heard some Unix hacker state, 'Jeez, everything in Unix is a file!' ..."
 - É um inteiro associado a um arquivo FIFO, pipe, terminal, leitura do disco, conexão

^aBeej's Guide to Network Programming

Scokets

- Como fazer para criar um descritor para uma conexão?
- Os OS possuem algumas rotinas para esta finalidade
- socket(...) vai retornar um descritor para uma conexão ^a
 - send(...)
 - recv(...)

^acomando: man socket, send, recv

Scokets

- Como fazer para criar um descritor para uma conexão?
- Os OS possuem algumas rotinas para esta finalidade

```
socket(...) - vai retornar um descritor para uma conexão a send(...)
```

acomando: man socket send recy

Scokets

- Como fazer para criar um descritor para uma conexão?
- Os OS possuem algumas rotinas para esta finalidade
- socket(...) vai retornar um descritor para uma conexão a
 - send(...)
 - recv(...)

^acomando: man socket, send, recv

- Existe uma nomenclatura para cada um dos "lados" da comunicação
- Servidor
 - Espera por conexões de entrada
 - Fornece certos tipos de serviços para a outra parte
- Cliente
 - Solicita uma conexão ao servidor
 - Faz requisições de serviços
- Não é o computador quem decide quem é cliente ou quem é servidor, mas sim a forma como o programa usa os sockets.

- Existe uma nomenclatura para cada um dos "lados" da comunicação
- Servidor
 - Espera por conexões de entrada
 - Fornece certos tipos de serviços para a outra parte
- Cliente
 - Solicita uma conexão ao servidor
 - Faz requisições de serviços
- Não é o computador quem decide quem é cliente ou quem é servidor, mas sim a forma como o programa usa os sockets.

- Existe uma nomenclatura para cada um dos "lados" da comunicação
- Servidor
 - Espera por conexões de entrada
 - Fornece certos tipos de serviços para a outra parte
- Cliente
 - Solicita uma conexão ao servidor
 - Faz requisições de serviços
- Não é o computador quem decide quem é cliente ou quem é servidor, mas sim a forma como o programa usa os sockets.

- Existe uma nomenclatura para cada um dos "lados" da comunicação
- Servidor
 - Espera por conexões de entrada
 - Fornece certos tipos de serviços para a outra parte
- Cliente
 - Solicita uma conexão ao servidor
 - Faz requisições de serviços
- Não é o computador quem decide quem é cliente ou quem é servidor, mas sim a forma como o programa usa os sockets.

Scokets - Tipos

- Stream Sockets SOCK_STREAM
 - Usa o protocolo TCP/IP ^a
 - Mantém uma conexão confiável
 - Os dados vão em ordem
 - Livre de erros

^aThe Transmission Control Protocol RFC 2001[6]. Internet Protocol address.

Scokets - Tipos

- Datagram Sockets SOCK_DGRAM
 - Usa o protocolo UDP/IP ^a
 - Não mantém uma conexão confiável
 - Não garante a chegada em ordem dos dados

^aUser Datagram Protocol RFC 768[5].

Scokets - Tipos

- Datagram Sockets SOCK_DGRAM
 - Usa o protocolo UDP/IP ^a
 - Não mantém uma conexão confiável
 - Não garante a chegada em ordem dos dados

^aUser Datagram Protocol RFC 768[5].

Scokets - Porta

- Como saber qual aplicação devo enviar os dados?
- Cada aplicação vai ter uma porta associada
 Comando: less /etc/services

Scokets - Porta

- Como saber qual aplicação devo enviar os dados?
- Cada aplicação vai ter uma porta associada
 - Comando: less /etc/services
 - netstat -antp

Example

Servidor.c

- Veja o código Servidor.c [3]
- Comando: nc <endereco> <porta>
- Comando: nc localhost 5050

Example

Cliente.c

Example

Servidor.c

- Veja o código Servidor.c [3]
- Comando: nc <endereço> <porta>
 - Comando: nc localhost 5050

Example

Cliente.d

Example

Servidor.c

- Veja o código Servidor.c [3]
- Comando: nc <endereço> <porta>
 - Comando: nc localhost 5050

Example

Cliente.c

- Veja o código Cliente.c [3]
- Execute uma instância do servidor e uma do cliente

Example

Servidor.c

- Veja o código Servidor.c [3]
- Comando: nc <endereço> <porta>
 - Comando: nc localhost 5050

Example

Cliente.c

- Veja o código Cliente.c [3]
- Execute uma instância do servidor e uma do cliente

Brian "Beej Jorgensen" Hall.

Beej's Guide to Network Programming. http://beej.us/guide/bgnet/output/html/multipage/index.html.

Bruno Pereira.

Apresentação. UFMG, 2014. https://copy.com/94BD03mWisUf.

Bruno Pereira.

Códigos das aplicações apresentadas e extras. *UFMG*. 2014.

https://copy.com/r1XTNWP4H3aM.

Larry L Peterson and Bruce S Davie.

Computer networks: a systems approach. Elsevier, 2007.

Lisevici, 2001

Jon Postel.

User datagram protocol. *Isi.* 1980.

http://tools.ietf.org/html/rfc768.

W Richard Stevens.

Tcp slow start, congestion avoidance, fast retransmit, and fast recovery algorithms.

http://tools.ietf.org/html/rfc2001.

Extras

Example

ShowIP.c

- Veja o código ShowIP.c [3]
- Comando: ping <endereco>

Example

client_beej.c e server_beej.d

Extras

Example

ShowIP.c

- Veja o código ShowIP.c [3]
- Comando: ping <endereço>

Example

client_beei.c e server_beei.d

Extras

Example

ShowIP.c

- Veja o código ShowIP.c [3]
- Comando: ping <endereço>

Example

client_beej.c e server_beej.c

- Versão com mais detalhes
- Execute uma instância do servidor e uma do cliente