Problem 1. On an open set $U \subset \mathbb{R}^{\ltimes}$ show that the exterior derivative d is the only operator $d: \Omega^p(U) \to \Omega^{p+1}(U)$ satisfying:

(a)
$$d(\omega + \eta) = d\omega + \eta$$

(b)
$$\omega \in \Omega^p(U), \eta \in \Omega^q(U) \Rightarrow d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^p \omega \wedge d\eta$$

(c)
$$f \in \Omega^0(U) \Rightarrow dfX) = X(f)$$

(d)
$$f \in \Omega^0(U) \Rightarrow d(df) = 0$$

Deduce that d is independent of the coordinate system used to define it.

 \square

Problem 2. On the unit circle S^1 in the plane, let $\theta = \arctan(y/x)$ be the usual polar coordinate. Show that $d\theta$ makes sense on S^1 and is a closed 1-form which is not exact.

 \square

Problem 3. For $\omega \in \Omega^1(M)$, verify the special case $d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y])$ of the invariant formula mentioned above Definition 2.4.

Proof.