Primeira Prova de Cálculo III – 08/05/2023 Prof. Rafael B. de R. Borges

Nome:		
1 vollic.		

Instruções para a prova:

- Só escreva nesta capa o que foi pedido acima.
- Você pode resolver as questões na ordem que quiser.
- Resolva as questões a lápis e escreva a caneta apenas a resposta final.
- Faça uma prova organizada. Há folhas de sobra para você fazer as questões. E, caso falte, é só pedir que eu grampeio mais.
- Parênteses são muito importantes. Use-os. Exemplos:
 - "x vezes -6" é $x \cdot (-6)$, não $x \cdot -6$, ou, pior, x 6.

•
$$x - \frac{1}{y+2}$$
 é $\frac{x \cdot (y+2) - 1}{y+2}$, não $\frac{x \cdot y + 2 - 1}{y+2}$.

- Manipulações algébricas absurdas serão (muito) descontadas. As crianças do nosso Brasil dependem de que você saiba Matemática!
- Lembre-se: é melhor não simplificar, do que tentar e se complicar!
- Mas você tem que saber o valor de expressões básicas como sen 0, $\cos \pi$, ln 1, e^0 etc.
- São proibidos: folha própria de rascunho, calculadora, e celular. Guarde-os na mochila, que deve ser guardada na frente da sala.
- Não serão aceitas respostas sem desenvolvimento. Mostre que você sabe o que está fazendo.
- Não desgrampeie o caderno de provas.

 ${f 1}.$ Marque com um X a alternativa que corresponde à parametrização da curva ilustrada abaixo. Justifique sua escolha.

A.
$$\vec{r}(t) = (t^2 \cos t, t^3 \sin t), 0 \le t \le 2\pi$$

B.
$$\vec{r}(t) = (t^2 + 1, t^3), 0 \le t \le 2\pi$$

C.
$$\vec{r}(t) = (t \cos t, t \sin t), 0 \le t \le 2\pi$$

D.
$$\vec{r}(t) = \left(\frac{4t}{t+1}, \frac{2}{t+2}\right), 0 \le t \le 2\pi$$

E.
$$\vec{r}(t) = (t^2, t^3), 0 \le t \le 2\pi$$

 ${\bf 2}.$ Calcule o comprimento de arco da curva C parametrizada por

$$\vec{r}(t) = \left(\frac{4}{\sqrt{t}}, \ln t, \frac{2}{t}\right), \qquad 1 \le t \le 2.$$

3. Seja

$$\vec{r}(t) = (2t, 2e^t, e^{-t}).$$

Determine o vetor tangente unitário $\vec{T}(t)$, o vetor normal unitário principal $\vec{N}(t)$ e o vetor binormal $\vec{B}(t)$.

- 4. Seja f(x,y)=2x+y e considere C o segmento de reta que vai de (1,2) a (2,-4). Calcule a integral de linha $\int_C f(x,y) \, ds$.
- 5. Seja $\vec{F}(x,y)=(2x+y^2,2xy)$ e considere C a curva parametrizada por $\vec{r}(t)=(t^2+2,\,t-3), \qquad 0\leq t\leq 1.$

Calcule a integral de linha $\int_C \vec{F} \cdot d\vec{r}$:

- a) Diretamente.
- b) Usando o Teorema Fundamental das Integrais de Linha.