

CHAPITRE 2: INTERPOLATION POLYNOMIALE ET APPROXIMATION

Introduction

3A & B

Exemple introductif

Exemple:

En relevant toutes les 10 secondes, la vitesse d'écoulement de l'eau dans une conduite cylindrique, on a obtenu

t (seconde)	0	10	20	30
V (m/s)	2	1.89	1.72	1.44

Question: Trouver une approximation de la vitesse V pour t=15 secondes en utilisant uniquement les vitesses associées à t=10 secondes et à t=20 secondes

Solution

Vu que 15 est la moyenne de 10 et 20, la vitesse V peut être considerée comme la moyenne des vitesses pour t=10 secondes et t=20 secondes. On obtient ainsi:

$$V \simeq \frac{1.89 + 1.72}{2} = 1.805 \, m/s$$

Solution

Vu que 15 est la moyenne de 10 et 20, la vitesse V peut être considerée comme la moyenne des vitesses pour t=10 secondes et t=20 secondes. On obtient ainsi:

$$V \simeq \frac{1.89 + 1.72}{2} = 1.805 \, m/s$$

La méthode utilisée pour déterminer la valeur obtenue est appelée interpolation linéaire (interpolation de deux points distincts): on cherche à déterminer l'expression d'un polynôme $P \in \mathbb{R}_1[X]$ (P de degré inférieur ou égal à 1) dont la courbe représentative passe par les deux points considérés.

Questions

f 2 Peut-on avoir une approximation de la vitesse pour t=17 secondes

Questions

- ① Peut-on avoir une approximation de la vitesse pour t=17 secondes
- 2 Peut-on avoir une autre apporoximation de la vitesse pour t=15 secondes en utilisant les vitesses associées à t=0 seconde, à t=10 secondes, à t=20 secondes et à t=30 secondes?

Questions

- ① Peut-on avoir une approximation de la vitesse pour $t=17~{
 m secondes}$
- 2 Peut-on avoir une autre apporoximation de la vitesse pour t=15 secondes en utilisant les vitesses associées à t=0 seconde, à t=10 secondes, à t=20 secondes et à t=30 secondes ?

- AA1: Interpolation polynomiale
- AA2: Approximation polynomiale

Interpolation polynomiale

Soient (n+1) points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ d'abscisses distinctes.

• L'interpolation polynomiale de ces points consiste à déterminer un polynôme $P \in \mathbb{R}_n[X]$ tel que

$$P(x_i) = y_i \quad \forall i \in \{0, \cdots, n\}.$$

- Les abscisses x_i ($i \in \{0, \dots n\}$) \longrightarrow Les points d'interpolation.
- Les ordonnées y_i ($i \in \{0, \dots n\}$) \longrightarrow Les valeurs d'interpolation.

Comment déterminer le polynôme P

Interpolation polynomiale

Soient (n+1) points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ d'abscisses distinctes.

• L'interpolation polynomiale de ces points consiste à déterminer un polynôme $P \in \mathbb{R}_n[X]$ tel que

$$P(x_i) = y_i \quad \forall i \in \{0, \cdots, n\}.$$

- Les abscisses x_i ($i \in \{0, \dots n\}$) \longrightarrow Les points d'interpolation.
- Les ordonnées y_i ($i \in \{0, \dots n\}$) \longrightarrow Les valeurs d'interpolation.

Comment déterminer le polynôme P

Méthode d'interpolation de Newton