Coulomb Kanunu Uygulamaları

Coulomb Kanunu, elektrik yüklü cisimler arasındaki kuvveti tanımlayan temel bir fizik yasasıdır. Bu yasa, 1785 yılında Fransız fizikçi Charles-Augustin de Coulomb tarafından formüle edilmiştir. Coulomb Kanunu şu şekilde ifade edilir:

Matematiksel İfade

Coulomb Kanunu'nun matematiksel ifadesi şu şekildedir:

$$\mathbf{F} = k_e \frac{|q_1 \cdot q_2|}{d^2} \mathbf{a}_d$$

Burada:

- F: İki yük arasındaki elektriksel kuvvet (Newton cinsinden)
- k_e : Coulomb sabiti $(8.9875 \times 10^9 \,\mathrm{F/m})$
- q_1 ve q_2 : İki noktasal yük (Coulomb cinsinden)
- d: Yükler arasındaki mesafe (metre cinsinden)

Açıklama

- Coulomb Kanunu, iki elektrik yükü arasındaki kuvvetin büyüklüğünün, yüklerin çarpımının büyüklüğü ile doğru orantılı ve aralarındaki mesafenin karesi ile ters orantılı olduğunu belirtir.
- Kuvvet, yüklerin aynı işaretli olması durumunda itici, zıt işaretli olması durumunda çekici olur.
- Bu kuvvet, yüklerin bulunduğu ortamın dielektrik sabitine de bağlıdır.

Uygulamalar

Coulomb Kanunu, elektrik ve manyetizma alanında temel bir rol oynar ve elektriksel kuvvetlerin hesaplanmasında kullanılır. Elektrik alanı, potansiyel enerji ve diğer elektriksel fenomenlerin anlaşılmasında da kritik öneme sahiptir.

İki Noktasal Yük Arasındaki Kuvvetin Hesaplanması

Örnek olarak, iki noktasal yük arasındaki kuvveti hesaplayalım. Diyelim ki $q_1=2\times 10^{-6}\,\mathrm{C}$ ve $q_2=3\times 10^{-6}\,\mathrm{C}$ ve aralarındaki mesafe $d=0.05\,\mathrm{m}$ olsun. Coulomb Kanunu'nu kullanarak bu iki yük arasındaki kuvvetin genliğini hesaplayabiliriz:

$$F = k_e \frac{|q_1 \cdot q_2|}{d^2}$$

$$F = 8.9875 \times 10^9 \frac{|2 \times 10^{-6} \cdot 3 \times 10^{-6}|}{(0.05)^2}$$

$$F = 8.9875 \times 10^9 \frac{6 \times 10^{-12}}{0.0025}$$

$$F = 8.9875 \times 10^9 \cdot 2.4 \times 10^{-9}$$

$$F = 21.57 \,\text{N}$$

Birden Fazla Noktasal Yükün Etkileşimi

Birinci Örnek

Coulomb Kanunu, iki yük arasındaki kuvveti hesaplamanın yanı sıra birden fazla yükün etkileşimini de açıklar. Bir örnek ile açıklayalım:

(-2,0) ve (2,0) noktalarında yerleşik 3 C'luk' yüklerin (0,2) noktasında yerleşik 5 C'luk yüke uyguladıkları kuvveti hesaplayalım.

Çözüm yolu şu şekilde olacaktır:

1. (-2,0) noktasından (0,2) noktasına yönlenmiş vektörü hesaplayalım: $\mathbf{r}_1=(0-(-2))\mathbf{a}_x+(2-0)\mathbf{a}_y=2\mathbf{a}_x+2\mathbf{a}_y$

2. (2,0)noktasından (0,2)noktasına yönlenmiş vektörü hesaplayalım: ${\bf r}_2=(0-2){\bf a}_x+(2-0){\bf a}_y=-2{\bf a}_x+2{\bf a}_y$

 \boldsymbol{r}_1 ve \boldsymbol{r}_2 vektörlerini birim vektöre dönüştürelim:

$$\begin{aligned} \mathbf{a}_r &= \frac{\mathbf{r}}{|\mathbf{r}|} \\ r_1 &= \sqrt{2^2 + 2^2} = 2\sqrt{2} \\ r_2 &= \sqrt{(-2)^2 + 2^2} = 2\sqrt{2} \\ \mathbf{a}_{r1} &= \frac{2\mathbf{a}_x + 2\mathbf{a}_y}{2\sqrt{2}} = \frac{\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}} \\ \mathbf{a}_{r2} &= \frac{-2\mathbf{a}_x + 2\mathbf{a}_y}{2\sqrt{2}} = \frac{-\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}} \end{aligned}$$

Şimdi, q_1 ve q_2 yüklerinin (0,2)noktasındaki yüke uyguladıkları kuvveti hesaplayabiliriz:

$$\begin{split} \mathbf{F}_1 &= k_e \frac{|q_1 \cdot q_3|}{r_1^2} \mathbf{a}_{r1} \\ \mathbf{F}_2 &= k_e \frac{|q_2 \cdot q_3|}{r_2^2} \mathbf{a}_{r2} \\ \\ \mathbf{F}_1 &= 8.9875 \times 10^9 \frac{|3 \cdot 5|}{(2\sqrt{2})^2} \frac{\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}} \\ \\ \mathbf{F}_2 &= 8.9875 \times 10^9 \frac{|3 \cdot 5|}{(2\sqrt{2})^2} \frac{-\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}} \\ \\ \mathbf{F}_1 &= 8.9875 \times 10^9 \frac{15}{8} \frac{\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}} \\ \\ \mathbf{F}_2 &= 8.9875 \times 10^9 \frac{15}{8} \frac{-\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}} \\ \\ \mathbf{F}_1 &= 1.685 \times 10^{10} \frac{\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}} \, \mathbf{N} \\ \\ \mathbf{F}_2 &= 1.685 \times 10^{10} \frac{-\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}} \, \mathbf{N} \end{split}$$

1.685 değeri hatalı olabilir. Tekrar hesaplayalım:

$$\mathbf{F}_1 = 8.9875 \times 10^9 \frac{15}{8} \frac{\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}}$$

 $\mathbf{F}_1 = 1.685 \times 10^{10} \frac{\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}}$

Bu şekilde, q_1 ve q_2 yüklerinin (0,2) noktasındaki 5 C'luk yüke uyguladıkları kuvvetler hesaplanmış olur. Toplam kuvvet, bu iki kuvvetin vektörel toplamıdır.

$$\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2$$

ve değer olarak aşağıdaki gibi bulunur:

$$\mathbf{F} = 1.685 \times 10^{10} \frac{\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}} + 1.685 \times 10^{10} \frac{-\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}}$$

$$\mathbf{F} = 1.685 \times 10^{10} \frac{2\mathbf{a}_y}{\sqrt{2}}$$

$$\mathbf{F} = 2.38 \times 10^{10} \mathbf{a}_y \, \text{N}$$

Bu şekilde, (-2,0) ve (2,0) noktalarında yerleşik 3 C'luk yüklerin (0,2) noktasında yerleşik 5 C'luk yüke uyguladıkları kuvveti hesaplamış oluruz.

Aşağıda bu hesaplamaları yapan bir Python kodu bulunmaktadır:

```
import numpy as np

q_1 = 3
q_2 = 3
q_3 = 5

r_1 = np.array([2,0,0])
r_2 = np.array([-2,0,0])
r_3 = np.array([0,2,0])

k_e = 8.9875e9

# Kuvvet vektörlerini hesapla
r_13 = r_3 - r_1
r_23 = r_3 - r_2

F_1_magnitude = k_e * q_1 * q_3 / np.linalg.norm(r_13)**2
```

```
F_2_magnitude = k_e * q_2 * q_3 / np.linalg.norm(r_23)**2

F_1_direction = r_13 / np.linalg.norm(r_13)
F_2_direction = r_23 / np.linalg.norm(r_23)

F_1 = F_1_magnitude * F_1_direction
F_2 = F_2_magnitude * F_2_direction

F_net = F_1 + F_2

print("F_1:", F_1, "N")
print("F_2:", F_2, "N")
print("F_net:", F_net, "N")
```

İkinci Örnek

Bir diğer örnek olarak, $q_1=2\times 10^{-6}$, C, $q_2=-3\times 10^{-6}$, C ve $q_3=4\times 10^{-6}$, C yüklerinin (0,0),(0,2) ve (2,0) noktalarında yerleşik olduğunu varsayalım. Bu durumda, (2,2) noktasında yerleşik 5, C'luk yüke uygulanan kuvveti hesaplayalım.

Çözüm yolu şu şekilde olacaktır:

 $(0,0),\,(0,2)$ ve (2,0)noktalarından (2,2)noktasına yönlenmiş vektörleri hesaplayalım: ${\bf r}_1=2{\bf a}_x+2{\bf a}_y,\,{\bf r}_2=2{\bf a}_x$ ve ${\bf r}_3=2{\bf a}_y$

 $r_1,\,r_2$ ve r_3 vektörlerine ait birim vektörleri hesaplayalım:

$$\mathbf{a}_{r1}=rac{\mathbf{r}_1}{|\mathbf{r}1|},\,\mathbf{a}r2=rac{\mathbf{r}_2}{|\mathbf{r}2|}$$
 ve $\mathbf{a}r3=rac{\mathbf{r}_3}{|\mathbf{r}_3|}$

Açık olarak hesaplanacak olan birim vektörler:

$$\mathbf{a}_{r1} = \frac{\mathbf{a}_x + \mathbf{a}y}{\sqrt{2}}, \, \mathbf{a}r2 = \mathbf{a}x \text{ ve } \mathbf{a}r3 = \mathbf{a}_y$$

Şimdi, q_1 , q_2 ve q_3 yüklerinin (2,2) noktasındaki 5, C'luk yüke uyguladıkları kuvveti hesaplayabiliriz:

$$\mathbf{F}1 = k_e \frac{q_1 \cdot q_4}{r_1^2} \mathbf{a} r 1$$

$$\mathbf{F}2 = k_e \frac{q_2 \cdot q_4}{r_2^2} \mathbf{a} r 2$$

$$\begin{aligned} \mathbf{F}3 &= k_e \frac{q_3 \cdot q_4}{r_3^2} \mathbf{a} r 3 \\ \mathbf{F}_1 &= 8.9875 \times 10^9 \frac{2 \times 10^{-6} \cdot 5}{(2\sqrt{2})^2} \frac{\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}} \\ \mathbf{F}_2 &= 8.9875 \times 10^9 \frac{-3 \times 10^{-6} \cdot 5}{2^2} \mathbf{a}_x \\ \mathbf{F}_3 &= 8.9875 \times 10^9 \frac{4 \times 10^{-6} \cdot 5}{2^2} \mathbf{a}_y \\ \mathbf{F}_1 &= 8.9875 \times 10^9 \frac{10 \times 10^{-6}}{8} \frac{\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}} \\ \mathbf{F}_2 &= 8.9875 \times 10^9 \frac{-15 \times 10^{-6}}{4} \mathbf{a}_x \\ \mathbf{F}_3 &= 8.9875 \times 10^9 \frac{20 \times 10^{-6}}{4} \mathbf{a}_y \\ \mathbf{F}_1 &= 7943.90274489 \frac{\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}}, \mathbf{N} \\ \mathbf{F}_2 &= -33703.125 \mathbf{a}_x, \mathbf{N} \\ \mathbf{F}_3 &= 44937.5 \mathbf{a}_y, \mathbf{N} \end{aligned}$$

Son olarak bulunan bu üç vektörün toplamı aşağıdaki şekilde hesaplanır:

$$\begin{split} \mathbf{F} &= \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 \\ \mathbf{F} &= 7943.90274489 \frac{\mathbf{a}_x + \mathbf{a}_y}{\sqrt{2}} - 33703.125 \mathbf{a}_x + 44937.5 \mathbf{a}_y \\ \mathbf{F} &= 7943.90274489 \frac{\mathbf{a}_x}{\sqrt{2}} + 7943.90274489 \frac{\mathbf{a}_y}{\sqrt{2}} - 33703.125 \mathbf{a}_x + 44937.5 \mathbf{a}_y \\ \mathbf{F} &= 5617.90274489 \mathbf{a}_x + 52881.40274489 \mathbf{a}_y, \mathrm{N} \end{split}$$

Bu şekilde, $q_1=2\times 10^{-6}$, C
, $q_2=-3\times 10^{-6}$, C ve $q_3=4\times 10^{-6}$, C yüklerinin (0,0), (0,2) ve
 (2,0) noktalarında yerleşik olduğu durumda, (2,2) noktasında yerleşik 5, C'luk yüke uygulanan kuvveti hesaplamış oluruz.

Aşağıda bu hesaplamaları yapan bir Python kodu bulunmaktadır:

```
import numpy as np
# Yükler (Coulomb cinsinden)
q_1 = 2e-6
q_2 = -3e-6
q_3 = 4e-6
q_4 = 5
# Konum vektörleri (metre cinsinden)
r 1 = np.array([0, 0])
r_2 = np.array([0, 2])
r_3 = np.array([2, 0])
r_4 = np.array([2, 2])
# Coulomb sabiti (N \cdot m^2/C^2)
k_e = 8.9875e9
# Kuvvet vektörlerini hesapla
r_14 = r_4 - r_1
r_24 = r_4 - r_2
r_34 = r_4 - r_3
F_1_{magnitude} = k_e * q_1 * q_4 / np.linalg.norm(r_14)**2
F_2_{magnitude} = k_e * q_2 * q_4 / np.linalg.norm(r_24)**2
F_3_magnitude = k_e * q_3 * q_4 / np.linalg.norm(<math>r_34)**2
F_1_direction = r_14 / np.linalg.norm(r_14)
F_2_direction = r_24 / np.linalg.norm(r_24)
F_3_direction = r_34 / np.linalg.norm(r_34)
F_1 = F_1_magnitude * F_1_direction
F_2 = F_2_magnitude * F_2_direction
F_3 = F_3_magnitude * F_3_direction
F_{net} = F_1 + F_2 + F_3
print("F_1:", F_1, "N")
print("F_2:", F_2, "N")
print("F_3:", F_3, "N")
print("F_net:", F_net, "N")
```

F_1: [7943.90274489 7943.90274489] N

F_2: [-33703.125 -0.] N

F_3: [0. 44937.5] N

F_net: [-25759.22225511 52881.40274489] N