Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER			CANI NUM	DIDATE BER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

February/March 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

A curve with equation $y = f(x)$ is such that $f'(x) = 2x^{-\frac{1}{3}} - x^{\frac{1}{3}}$. It is given that $f(8) = 5$.	
Find $f(x)$.	
	••
	••
	••
	• •
	•
	••
	•
	••
	••
	••
	••
	••
	••

Find	the set of val	lues of c for	which the	curve and	line interse	ct at two di	stinct point	s.
•••••	••••••	•••••	•••••	••••••	•••••	••••••	••••••	,
•••••		•••••	••••••	•••••		•••••	•••••	••••••
•••••	••••••	•••••	•••••	••••••		••••••	••••••	,
•••••			•••••					
••••••	•••••	••••••	••••••	••••••		••••••	••••••	
•••••								
•••••		•••••	•••••	•••••		•••••	••••••	
•••••		•		•		•		
•••••		•••••	•••••			•••••		
•••••	•••••	•••••	••••••	••••••	•••••	•••••	••••••	••••••
••••								
•••••								

(a)	$\left(3x + \frac{2}{x^2}\right)^6$	
		••••••
(b)	$\left(3x + \frac{2}{x^2}\right)^6 (1 - x^3)$	
(b)	$\left(3x + \frac{2}{x^2}\right)^6 (1 - x^3)$	
(b)		
(b)		
(b)		

The first term of a geometric progression and the first term of an arithmetic progression are both equal to a .
The third term of the geometric progression is equal to the second term of the arithmetic progression.
The fifth term of the geometric progression is equal to the sixth term of the arithmetic progression.
Given that the terms are all positive and not all equal, find the sum of the first twenty terms of the arithmetic progression in terms of a . [6]

a) l	Express $2x^2 - 8x + 14$ in the form $2[(x - a)^2 + b]$.	
•		
•		
•		
•		
1 6		
ne i		
	escribe fully a sequence of transformations that maps the graph of $y = f(x)$ onto the $g(x)$ making clear the order in which the transformations are applied.	
o) l	ons f and g are defined by $f(x) = x^2 \text{for } x \in \mathbb{R},$ $g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ ribe fully a sequence of transformations that maps the graph of $y = f(x)$ onto	ito the graph
))]	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$	nto the graph
o) 1 2	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ Describe fully a sequence of transformations that maps the graph of $y = f(x)$ or	nto the graph
o) l 2	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ Describe fully a sequence of transformations that maps the graph of $y = f(x)$ or	
o) 1 2	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ Describe fully a sequence of transformations that maps the graph of $y = f(x)$ or	nto the graph
)] 2	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ Describe fully a sequence of transformations that maps the graph of $y = f(x)$ or	
	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ Describe fully a sequence of transformations that maps the graph of $y = f(x)$ or	nto the graph
	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ Describe fully a sequence of transformations that maps the graph of $y = f(x)$ or	nto the graph
	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ Describe fully a sequence of transformations that maps the graph of $y = f(x)$ or	nto the graph
	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ Describe fully a sequence of transformations that maps the graph of $y = f(x)$ or	nto the graph
) 1 3 · · · · · · · · · · · · · · · · · ·	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ Describe fully a sequence of transformations that maps the graph of $y = f(x)$ or	nto the graph
	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ Describe fully a sequence of transformations that maps the graph of $y = f(x)$ or	
· · · · · · · · · · · · · · · · · · ·	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ Describe fully a sequence of transformations that maps the graph of $y = f(x)$ or	
	$g(x) = 2x^2 - 8x + 14 \text{for } x \in \mathbb{R}.$ Describe fully a sequence of transformations that maps the graph of $y = f(x)$ or	

The circle with equation $(x + 1)^2 + (y - 2)^2 = 85$ and the straight line with equation y = 3x - 20 are shown in the diagram. The line intersects the circle at A and B, and the centre of the circle is at C.

Find, by calculation, the coordinates of A and B.	[4]

y = 3x - 20 i						
	•••••					•••••
••••••	•••••	•		••••••	•••••	•••••
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
	••••					
••••••	••••••	••••••••••	•••••••	•••••••	••••••	••••••
•••••	•••••					•••••
	•••••					•••••
•••••	•••••			•••••	•••••	
	•••••					
•••••				• • • • • • • • • • • • • • • • • • • •	•••••	•••••
	•••••					
••••••	•••••		•	•••••••	••••••	•••••

7	(-)	C1 414	$\sin \theta + 2\cos \theta$	$\sin \theta - 2\cos \theta$	4	F.47
7	(a)	Snow that	$\frac{1}{\cos\theta - 2\sin\theta}$	$\frac{\sin\theta - 2\cos\theta}{\cos\theta + 2\sin\theta} \equiv$	$\frac{1}{5\cos^2\theta-4}$.	[4]
		•••••	••••••	•••••	••••••	
				•••••		
		•••••				
				•••••	•••••	
		•••••	••••••	••••••	•••••	
		•••••	••••••	•••••	•••••	
		•••••	•••••		•••••	
				•••••		
		•••••	••••••	••••••	•••••	
		•••••				

	$\sin \theta +$	$2\cos\theta$	$\sin \theta$ –	$2\cos\theta$			
Hence solve the equation	$\cos \theta$	$-2\sin\theta$	$\cos \theta$ +	$\frac{1}{2\sin\theta}$	$= 5 \text{ for } 0^{\circ} < \theta$	< 180°.	[3]
	•••••						
				••••			

(a)

The diagram shows the circle with equation $(x-2)^2 + y^2 = 8$. The chord AB of the circle intersects the positive y-axis at A and is parallel to the x-axis.

Find, by calculation, the coordinates of A and B .	[3]

71 D , 13 10	tated throug	gii 300 at	out the s	ı-axıs.						
						•••••			•••••	••••
									••••••	••••
										••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	••••••	•••••	•••••	••••••	••••••	••••
•••••	•••••	•••••	•••••	•••••	••••••	•••••		•••••	•••••	••••
•••••				•••••	••••••	•••••		•••••	•••••	••••
			,	,			,			
				•••••	•••••					••••
•••••	••••••	••••••	•••••	••••••	••••••	•••••	•••••	••••••	•••••	••••
••••••	••••••	••••••	•••••	••••••	••••••	•••••	•••••	•••••	••••••	••••
••••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	••••
•••••	•••••	•••••	•••••	•••••	••••••	•••••		•••••	•••••	••••
•••••			•••••	•••••	••••••	•••••		••••••	••••••	••••
•••••									•••••	••••
••••••									••••••	••••

9 Functions f, g and h are defined as follows:

f:
$$x \mapsto x - 4x^{\frac{1}{2}} + 1$$
 for $x \ge 0$,
g: $x \mapsto mx^2 + n$ for $x \ge -2$, where m and n are constants,
h: $x \mapsto x^{\frac{1}{2}} - 2$ for $x \ge 0$.

(a)	Solve the equation $f(x) = 0$, giving your solutions in the form $x = a + b\sqrt{c}$, where a , b and c are integers.

	•••••
	•••••
	••••••
	•••••
	•••••
	•••••
	•••••
	•••••

The diagram shows a circle with centre A of radius 5 cm and a circle with centre B of radius 8 cm. The circles touch at the point C so that ACB is a straight line. The tangent at the point D on the smaller circle intersects the larger circle at E and passes through B.

Find the perimeter of the snaded region.	[5]

(b)	Find the area of the shaded region.	[3]

)	Find, in terms of k , the values of x at which there is a stationary point.	
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••
		••••••
		•••••
		•••••

The function f has a stationary value at x = a and is defined by

$$f(x) = 4(3x - 4)^{-1} + 3x$$
 for $x \ge \frac{3}{2}$.

	•••••
The function g is defined by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$.	
The function g is defined by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$. Determine, making your reasoning clear, whether g is an increasing	
The function g is defined by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$. Determine, making your reasoning clear, whether g is an increasing	
The function g is defined by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$. Determine, making your reasoning clear, whether g is an increasing	
The function g is defined by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$. Determine, making your reasoning clear, whether g is an increasing	
The function g is defined by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$. Determine, making your reasoning clear, whether g is an increasing	
The function g is defined by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$. Determine, making your reasoning clear, whether g is an increasing	
The function g is defined by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$. Determine, making your reasoning clear, whether g is an increasing	
The function g is defined by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$. Determine, making your reasoning clear, whether g is an increasing	
The function g is defined by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$. Determine, making your reasoning clear, whether g is an increasing	
The function g is defined by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$. Determine, making your reasoning clear, whether g is an increasing	
The function g is defined by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$. Determine, making your reasoning clear, whether g is an increasing	

Additional Page

must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.