Lab Report

Name of the Experiment	i
Your Name	;
Your ID#	ÿ.
Name of the Lab Partner	ii.
Date	9 <u>.</u>

Instructor's comments:

Data Tables:

Vernier Constant (V.C.) of the slide calipers,

$$V.C = \frac{The \ value \ of \ one \ smallest \ division \ of \ the \ main \ scale}{Total \ number \ of \ divisions \ in \ the \ vernier \ scale}$$

Least Count (L.C.) of the Screw Gauge

$$L.C. = \frac{Pitch}{Total \ number \ of \ divisions \ in \ the \ circular \ scale}$$

Table-1: Data for the radius of the cylinder

No. of obs.	Main scale reading, x (cm)	Vernier scale division,	Vernier constant V _C (cm)	Diameter $y = x + V_c \times d$ (cm)	Mean diameter, D (cm)	Radius, $a = \frac{D}{2}$ (cm)
1						
2				3	1	
3				2		
4						
5						

Table-2: Data for the radius of the wire

No. of obs.	Linear scale reading, x (cm)	Circular scale division,	Least count, Lc (cm)	$\begin{aligned} & \text{Diameter} \\ & y = x + d \times \\ & L_c \\ & \text{(cm)} \end{aligned}$	Mean diameter, D (cm)	Instru- mental error (cm)	Correcte d diameter, D (cm)	Radius $r = \frac{D}{2}$ (cm)
1								
2				-,				
3								
4								
5		10			-			

Table-3: Data for the time period

No. of obs.	Time for 10 oscillations, t (sec)	Time period, $T=t/10$ (sec)	Mean T (sec)
1			
2			
3			
4			
5			

Length of the wire, l: (i)cn	ı (ii)	cm	(iii)	cm
Average length of the wire, $l = $	cm			
Mass of the cylinder, M=	kg			

Calculations:

Moment of Inertia of the cylinder, $I = \frac{1}{2}Ma^2 =$

Modulus of rigidity of the wire, $\eta = \frac{8\pi I I}{T^2 r^4}$ (SI unit)

Error Calculation:

Standard value of the modulus of rigidity of the material of the wire = 7.7×10^{10} SI Unit.

Percentage error =
$$\frac{Standard\ value \sim Experimental\ value}{Standard\ value} \ge 100$$

= _____

Results:

Questions:
1. How will the period of oscillation be affected if the cylindrical mass of the pendulum be made heavy?
3.Discuss about the sensitivity of the calculation of the radius of the wire and hence its effect on the resultant modulus of the rigidity.

Discussion: