

Fundamentos de Lógica

Aulas 02

Cristiane Loesch

Brasília 2024

Proposições

EXERCÍCIO 6:

Construa as seguintes tabelas verdade:

a)
$$p \vee (\sim q)$$

b) $p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$

р	q	~q	p v (~q)
٧	٧	F	٧
٧	F	V	٧
F	٧	F	F
F	F	٧	٧

Proposições

EXERCÍCIO 6:

Construa as seguintes tabelas verdade:

h`	nv	$(a \wedge r)$	\leftrightarrow	$(p \vee q)$	1	$(n \vee r)$	١
D,		(U / I		$\mathbf{u} \vee \mathbf{u}$		\cup	J

р	р	~q	p ∨ (~q)
V	٧	F	٧
V	F	٧	٧
F	٧	F	F
F	F	V	٧

р	q	r	q∧r	p v (q ^ r)	pvq	pvr	(p v q) ^ (p v r)	$p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$
٧	٧	٧	V	٧	٧	٧	V	V
٧	٧	F	F	٧	٧	٧	٧	V
٧	F	٧	F	٧	٧	٧	V	V
٧	F	F	F	٧	٧	٧	٧	V
F	٧	٧	٧	٧	٧	٧	V	V
F	٧	F	F	F	٧	F	F	V
F	F	٧	F	F	F	٧	F	V
F	F	F	F	F	F	F	F	V

Lógica Proposicional

EXERCÍCIO 1:

(Adaptada - VUNESP) Sejam três bolas X, Y, Z nas cores azul, branca e vermelha, não necessariamente nesta ordem, e as afirmações:

X é vermelha

Y não é vermelha

Z não é azul

Sabendo que apenas uma das afirmações é verdadeira, as outras são falsas, é possível afirmar que as cores de X, Y e Z são respectivamente:

- A. vermelha, azul e branca
- B. vermelha, branca e azul,
- C. azul, vermelha e branca
- D. azul, branca e vermelha
- E. branca, vermelha e azul

Lógica Proposicional

EXERCÍCIO 2:

Sabendo que os valores lógicos das proposições P, Q e R são respectivamente V, F e F, determine o valor lógico de cada uma das expressões abaixo:

- a) $p \longleftrightarrow p \rightarrow q \lor p \rightarrow r$
- b) $p \rightarrow \neg q \longleftrightarrow p \lor r \land q$
- c) $(q \longleftrightarrow (r \lor q)) \longleftrightarrow (p \land (\neg (\neg q)))$

Conectivos Lógicos: Proposições Compostas

Representação matemática:

Bicondicional

EXEMPLO:

* NEGAÇÃO DA CONJUNÇÃO

$$\neg (P \land Q) = \neg p \lor \neg q$$

EXEMPLO:

* NEGAÇÃO DA CONJUNÇÃO

$$\neg (P \land Q) = \neg p \lor \neg q$$

EXEMPLO:

P: Cristiane é professora e Cristiane sabe física.

EXEMPLO:

* NEGAÇÃO DA CONJUNÇÃO

$$\neg (P \land Q) = \neg p \lor \neg q$$

EXEMPLO:

Cristiane é professora e Cristiane sabe física.

Cristiane NÃO é professora OU Cristiane NÃO sabe física.

EXEMPLO:

$$\neg (P \land Q) = \neg p \lor \neg q$$

João é médico e Pedro é dentista

EXEMPLO:

$$\neg (P \land Q) = \neg p \lor \neg q$$

João é médico e Pedro é dentista

$$\neg(P \land Q)$$
 NÃO É VERDADE QUE João é médico e Pedro é dentista

EXEMPLO:

$$\neg (P \land Q) = \neg p \lor \neg q$$

João é médico e Pedro é dentista

$$\neg(P \land Q)$$
 NÃO É VERDADE QUE João é médico e Pedro é dentista

 $\neg p \lor \neg q$ João NÃO é médico OU Pedro NÃO é dentista

EXEMPLO:

* NEGAÇÃO DA DISJUNÇÃO

$$\neg (P \lor Q) = \neg p \land \neg q$$

EXEMPLO:

* NEGAÇÃO DA DISJUNÇÃO

$$\neg (P \lor Q) = \neg p \land \neg q$$

EXEMPLO:

1 + 1 = 2 ou 1 é par (no dominio dos numeros inteiros)

EXEMPLO:

* NEGAÇÃO DA DISJUNÇÃO

$$\neg (P \lor Q) = \neg p \land \neg q$$

EXEMPLO:

$$1 + 1 = 2$$
 ou 1 é par (no dominio dos numeros inteiros)

$$1 + 1 \neq 2$$
 e 1 não é par

$$1+1 \neq 2 e 1 é impar$$

EXEMPLO:

 $\neg (P \lor Q) = \neg p \land \neg q$

Pedro é dentista ou Paulo é engenheiro.

EXEMPLO:

$$\neg (P \lor Q) = \neg p \land \neg q$$

Pedro é dentista ou Paulo é engenheiro.

 $\neg(P \lor Q)$ NÃO É VERDADE QUE Pedro é dentista ou Paulo é engenheiro.

EXEMPLO:

$$\neg (P \lor Q) = \neg p \land \neg q$$

Pedro é dentista ou Paulo é engenheiro.

- $\neg(P \lor Q)$ NÃO É VERDADE QUE Pedro é dentista ou Paulo é engenheiro.
- $\neg p \land \neg q$ Pedro NÃO é dentista E Paulo NÃO é engenheiro.

EXEMPLO:

* NEGAÇÃO DA CONDICIONAL

$$\neg (P \rightarrow Q) = p \land \neg q$$

EXEMPLO:

* NEGAÇÃO DA CONDICIONAL

$$\neg (P \rightarrow Q) = p \land \neg q$$

EXEMPLO:

Se Ana vai à piscina então Ana se molha.

EXEMPLO:

* NEGAÇÃO DA CONDICIONAL

$$\neg (P \rightarrow Q) = p \land \neg q$$

EXEMPLO:

Se Ana vai à piscina então Ana se molha.

Ana vai à piscina e Ana não se molha

EXEMPLO:

* NEGAÇÃO DA CONDICIONAL

$$\neg (P \rightarrow Q) = p \land \neg q$$

EXEMPLO: CONTRA-POSITIVA (INVERSÃO DA EQUIVALÊNCIA)

Se 2 é par então 2 +1 é ímpar

$$P \rightarrow Q = \neg q \rightarrow \neg p$$

EXEMPLO:

* NEGAÇÃO DA CONDICIONAL

$$\neg (P \rightarrow Q) = p \land \neg q$$

EXEMPLO: CONTRA-POSITIVA (INVERSÃO DA EQUIVALÊNCIA)

Se 2 é par então 2 +1 é ímpar

Se 2+1 não é ímpar então 2 não é par.

$$P \rightarrow Q = \neg q \rightarrow \neg p$$

Se 2+1 é par então 2 não é par.

$$\neg(P \rightarrow Q) = p \land \neg q$$

EXEMPLO: $P \Rightarrow Q = \neg q \Rightarrow \neg p$

A negação da afirmação condicional "se estiver chovendo, eu levo o guarda-chuva" é:

- A. se não estiver chovendo, eu levo o guarda-chuva.
- B. não está chovendo e eu levo o guarda-chuva.
- C. não está chovendo e eu não levo o guarda-chuva.
- D. se estiver chovendo, eu não levo o guarda-chuva.
- E. está chovendo e eu não levo o guarda-chuva.

$\neg (P \rightarrow Q) = p \land \neg q$

A negação da afirmação condicional "se estiver chovendo, eu levo o guarda-chuva" é:

- A. se não estiver chovendo, eu levo o guarda-chuva.
- B. não está chovendo e eu levo o guarda-chuva.

EXEMPLO:

- C. não está chovendo e eu não levo o guarda-chuva.
- D. se estiver chovendo, eu não levo o guarda-chuva.
- está chovendo e eu não levo o guarda-chuva.

EXERCÍCIO 3:

CIO 3: $P \rightarrow Q = \neg q \rightarrow \neg p$

- A negação da afirmação condicional "se estiver chovendo, eu levo o guarda-chuva" é:
- A. se não estiver chovendo, eu levo o guarda-chuva.
- B. não está chovendo e eu levo o guarda-chuva.
- C. não está chovendo e eu não levo o guarda-chuva.
- D. se estiver chovendo, eu não levo o guarda-chuva.
- está chovendo e eu não levo o guarda-chuva.

Outra opção: Se não levo o guarda-chuva então não está chovendo.

EXEMPLO:

* NEGAÇÃO DA BICONDICIONAL

1^a)

$$\neg (P \longleftrightarrow Q) = p \lor q$$

EXEMPLO:

* NEGAÇÃO DA BICONDICIONAL

1^a)

$$\neg (P \longleftrightarrow Q) = p \veebar q$$

EXEMPLO:

Cristiane é paulista se e somente se 1 não é primo.

EXEMPLO:

* NEGAÇÃO DA BICONDICIONAL

1^a)

$$\neg (P \longleftrightarrow Q) = p \veebar q$$

EXEMPLO:

Cristiane é paulista se e somente se 1 não é primo.

Ou Cristiane não é paulista ou 1 não é primo.

EXEMPLO:

* NEGAÇÃO DA BICONDICIONAL

$$\neg (P \longleftrightarrow Q) = (p \land \neg q) \lor (q \land \neg p)$$

EXEMPLO:

* NEGAÇÃO DA BICONDICIONAL

2^a)

$$\neg (P \longleftrightarrow Q) = (p \land \neg q) \lor (q \land \neg p)$$

EXEMPLO:

Cristiane é paulista se e somente se 1 não é primo.

EXEMPLO:

* NEGAÇÃO DA BICONDICIONAL

2^a)

$$\neg (P \longleftrightarrow Q) = (p \land \neg q) \lor (q \land \neg p)$$

EXEMPLO:

Cristiane é paulista se e somente se 1 não é primo.

Cristiane é paulista e 1 é primo ou 1 não é primo e Cristiane não é paulista.

* NEGAÇÃO DA CONJUNÇÃO
$$\neg (P \land Q) = \neg p \lor \neg q$$

* NEGAÇÃO DA DISJUNÇÃO
$$\neg (P \lor Q) = \neg p \land \neg q$$

* NEGAÇÃO DA CONDICIONAL
$$\neg (P \rightarrow Q) = p \land \neg q$$

* NEGAÇÃO DA BICONDICIONAL
$$\neg(P \longleftrightarrow Q) = p \veebar q$$
 $\neg(P \longleftrightarrow Q) = (p \land \neg q) \lor (q \land \neg p)$

TABELAS-VERDADES

NEGAÇÃO: PROPOSIÇÃO SIMPLES

р	~p
V	F
F	V

CONJUNÇÃO

p	q	p ^ q
V	V	V
V	F	F
F	V	F
F	F	F

DISJUNÇÃO INCLUSIVA

p	q	$\mathbf{p} \vee \mathbf{q}$
V	V	V
V	F	V
F	V	V
F	F	F

DISJUNÇÃO EXCLUSIVA

P	q	p <u>v</u> q
V	V	F
V	F	V
F	V	V
F	F	F

CONDICIONAL

p	q	$\mathbf{p} \rightarrow \mathbf{q}$
V	V	V
V	F	F
F	V	V
F	F	V

BICONDICIONAL

p	q	p⊶q
V	V	V
V	F	F
F	V	F
F	F	V

TABELAS-VERDADES

NEGAÇÃO DA CONJUNÇÃO

P	q	p ^ q	~(p ^ q)	~ p	~ q	~p v ~q

TABELAS-VERDADES

NEGAÇÃO DA CONJUNÇÃO

p	q	p ^ q	~(p ^ q)	~ p	~ q	~p v ~q
V	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V

NEGAÇÃO DA DISJUNÇÃO

p	q	$\mathbf{p} \vee \mathbf{q}$	~(p v q)	~ p	~ q	~p ^ ~q

NEGAÇÃO DA DISJUNÇÃO

p	q	p v q	~(p v q)	~p	~ q	~p ^~q
V	V	V	F	F	F	F
V	F	V	F	F	V	F
F	V	V	F	V	F	F
F	F	F	V	V	V	V

NEGAÇÃO DA CONDICIONAL

p	q	p → q	~(p → q)	~ q	p ^ ~q

NEGAÇÃO DA CONDICIONAL

P	q	p → q	~(p → q)	~q	p ^ ~q
V	V	V	F	F	F
V	F	F	V	V	V
F	V	V	F	F	F
F	F	V	F	V	F

NEGAÇÃO DA BICONDICIONAL

p	q	рq	~(pq)	p⊻q

NEGAÇÃO DA BICONDICIONAL

p	q	рq	~(pq)	p⊻q
V	V	V	F	F
V	F	F	V	V
F	V	F	V	V
F	F	V	F	F

Lógica Proposicional

EXERCÍCIO 4:

Fazer a tabela verdade de:

- A. $(p \rightarrow q) \longleftrightarrow (\neg q \rightarrow \neg p)$
- B. $(p \lor \neg p) \rightarrow (q \land \neg q)$
- C. $(p \lor q) \rightarrow (p \land q)$
- D. $p \longleftrightarrow q \longleftrightarrow (p \rightarrow q) \land (q \rightarrow p)$

■ TAUTOLOGIA

- proposição composta sempre VERDADEIRA quaisquer que sejam os valores assumidos pelas proposições que a compõem
- Proposições conhecidas como Leis Lógicas

■ TAUTOLOGIA

- proposição composta sempre VERDADEIRA quaisquer que sejam os valores assumidos pelas proposições que a compõem
- Proposições conhecidas como Leis Lógicas

■ CONTRADIÇÃO

- Proposição composta sempre FALSA, qualquer que sejam os valoresverdade das proposições que a compõem
- Intrinsicamente falsa pela sua própria estrutura
- Negação de uma Tautologia (e vice versa)

■ TAUTOLOGIA

- proposição composta sempre VERDADEIRA quaisquer que sejam os valores assumidos pelas proposições que a compõem
- Proposições conhecidas como Leis Lógicas

■ CONTRADIÇÃO

- Proposição composta sempre FALSA, qualquer que sejam os valoresverdade das proposições que a compõem
- Intrinsicamente falsa pela sua própria estrutura
- Negação de uma Tautologia (e vice versa)

■ CONTINGÊNCIA

- Proposição composta NÃO É tautologia e NÃO É contradição.
- Proposição cuja última coluna de sua tabela-verdade contenha V e F, cada uma, pelo menos uma vez.

EXERCÍCIO 5:

Determine se a expressão abaixo é uma tautologia, contradição ou contingência:

Se o HD estiver com problema e o monitor estiver funcionando, então o HD estará com problema se e somente se o monitor estiver funcionando

- → ARGUMENTAÇÃO MATEMÁTICA
 - Substituição de uma proposição por outra com mesmo valor verdade

- → Proposições logicamente equivalentes
 - Proposição composta tem o mesmo valor verdade em todos os casos possíveis

$$p \Leftrightarrow q$$

• Uma proposição P é sempre logicamente equivalente, ou apenas equivalente, a uma proposição Q, se as tabelas-verdade das duas são idênticas

EXEMPLOS:

 $p \land p \Leftrightarrow p$ André é inocente e inocente \Leftrightarrow André é inocente

$$p \land p \Leftrightarrow p$$
 André é inocente e inocente \Leftrightarrow André é inocente $p \lor p \Leftrightarrow p$ Ana estudou ou estudou \Leftrightarrow Ana estudou

$$p \land p \Leftrightarrow p$$
 André é inocente e inocente \Leftrightarrow André é inocente $p \lor p \Leftrightarrow p$ Ana estudou ou estudou \Leftrightarrow Ana estudou $p \land q \Leftrightarrow q \land p$ O carro é bonito e caro \Leftrightarrow O carro é caro e bonito

$$p \land p \Leftrightarrow p$$
 André é inocente e inocente \Leftrightarrow André é inocente $p \lor p \Leftrightarrow p$ Ana estudou ou estudou \Leftrightarrow Ana estudou $p \land q \Leftrightarrow q \land p$ O carro é bonito e caro \Leftrightarrow O carro é caro e bonito $p \lor q \Leftrightarrow q \lor p$ A casa é grande ou azul \Leftrightarrow A casa é azul ou grande

$$p \land p \Leftrightarrow p$$
 André é inocente e inocente \Leftrightarrow André é inocente $p \lor p \Leftrightarrow p$ Ana estudou ou estudou \Leftrightarrow Ana estudou $p \land q \Leftrightarrow q \land p$ O carro é bonito e caro \Leftrightarrow O carro é caro e bonito $p \lor q \Leftrightarrow q \lor p$ A casa é grande ou azul \Leftrightarrow A casa é azul ou grande $p \longleftrightarrow q \Leftrightarrow q \longleftrightarrow p$ Gosto se e somente se é belo \Leftrightarrow É belo se e somente se gosto.

→ Negação de conjunções ou disjunções

$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$