Empathetic AI: Real-Time Multimodal Emotion Detection in CHATBOT

Presented By:

Syed Shakil Mahmud

ld: 22208019

Session: 2021-22

Department of CSE

Comilla University

Supervised By:

Dr. Mahamudul Hasan, SMIEEE Associate Professor Department of CSE Comilla University

Content Outlines

- **O** Introduction
- **Motivation**
- Objectives: The novelty of our developed system.
- Literature Review: Existing system limitations
- © Contribution: What Made Our Model Extraordinary?
- **Methodology**
- © Experimental Results
- © Conclusion and Future Work
- **©** References

Let's Introduce with Our System

Emotions play a critical role in human interaction.

Multimodal data (facial expressions, speech, gestures) conveys emotions.

Goal: Build an emotion recognition system using audio-visual data.

Integrate this system into a CHATBOT for real-time emotion detection.

Applications: Call centers, healthcare, marketing, education.

Motivation behind the Idea!

- > Traditional systems do not capture the complexity of emotions.
- > Improving customer service through emotion detection.
- Assist teachers in understanding students' engagement and feelings.

- Enhance healthcare by early detection of mental health conditions.
- Provide more empathetic and responsive human-computer interactions.
- Real-time emotion recognition for better decision-making.

The novelty of our developed system.

Necessary objectives of our System

Integrate the model into a CHATBOT system for real-time interaction.

Replace human agents and can perform general tasks by recognizing emotions.

Develop a multimodal emotion recognition model using audiovisual data.

Person Taking Suggestion from a AI-CHATBOT

Deploy in practical settings: call centers, education, healthcare.

Utilize the
IEMOCAP dataset
for training and
feature
extraction.

Provide Instant Support Automate Your Social Media Support Improve
Productivity of
Support Agents

Deliver a Better Experience

Stay Available 24×7

67% of consumers worldwide used a chatbot for customer support in the past year

source: https://www.revechat.com

Collect Real-time Feedback

Reduce the Number of Support Tickets

Ensure a
Seamless Hybrid
Support

Achieve Easy Scalability

Minimize
Customer
Support Costs

Literature Review

Existing system limitations.

Author	Domain Name	Solved Problem	Method	Limitations
[1] Almulla, M. A.	A MER system using deep	Recognizing emotions from	Deep convolution,	- Can recognize only 7 emotions
(2024)	convolution neural	audio, video and text data	Decision level fusion	- No deployment in real world
	networks			scenarios
[2] Zhang, S., Yang ,	MER based on audio and	Detect emotion through Audio	Hybrid	- Only used audio and text
Y., Chen, C., Liu, R.,	text by using hybrid	and text	attention networks	modalities.
Tao, X., Guo, W., &	attention networks			- Less modalities
Zhao , X . (2023)				- No real time deployment
[3] Bhat, A. A.,	Real Time Bimodal Emotion	This project tried to	PCA before training,	- Audio is not used
Kavitha, S.,	Recognition using	recognizing emotion using	Uses Deep Learning,	- Low accuracy
Satapathy, S. M., &	Hybridized Deep Learning	audio and video	Techniques. Hybrid	- No updated technology used
Kavipriya, J. (2024)	Techniques		CNN-LSTM is used	- No real time deployment
[4] Tan, Y., Sun, Z.,	A MER method based on	They focused on recognize	Fusion by HRI	- System applied in lab
Duan, F., Solé-	facial expressions &	emotion through image and	(Human Robot	- Need to adjust the system in
Casals, J., & Caiafa,	electroencephalography	electroencephalography	Interaction) system	daily life
C. F. (2021)				
[5] Praveen, R. G.,	Audio-Visual Fusion for ER	They focused on Emotion	Used Joint Cross-	- No real time integration with
Cardinal, P., &	in the Valence-Arousal	recognition in the valence	Attention model for	CHATBOT
Granger, E. (2023)	Space Using Joint Cross-	arousal space	A-V fusion	
	Attention			

What Made Our Model Extraordinary?

The Contribution of us that made the model unique!

Develop a reliable multimodal emotion recognition system using deep learning.

Use of the IEMOCAP dataset with emotion annotations across modalities.

Real-time integration with CHATBOTs for real-world applications.

Al chatbot replaced by Human

Enhanced model accuracy through the fusion of separate audio and video models.

Methodology(Cont.)

A. Data Collection

The Interactive Emotional Dyadic Motion Capture (IEMOCAP) database is an acted, multimodal and multispeaker database

It contains approximately 12 hours of audiovisual data, including video, speech, motion capture of face, text transcriptions.

☐ > ··· IEMOCAP full release >

Documentation

■ View ∨ •••

Date modified

8/25/2024 1:21 PM

Figure 1. Sample Dataset

Methodology(Cont.)

B. Overall Processing

What Are We Expecting In The Long Run?

Conclusion and Future Work

- > This project aims to develop an emotion recognition model integrated into a CHATBOT.
- > Real-time detection of emotions in practical settings (call centers, healthcare, etc.).
- > The CHATBOT will improve user interactions through empathy and responsiveness.

OUR NEXT STEP

We will make a dataset consisting of Bengali voices and shoot video faces with Bangla transcripts

<u>Timeline</u>

No	Activity / Task	1 st & 2 nd Semester											
	Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June
01	Meetings with												
	supervisor												
02	Topic search												
03	An in-depth												
	review of the												
	literature on												
	relevant		,										
	existing												
	algorithms												
04	Evaluation of			_									
	the designed												
	algorithms and												
	verifications												
05	Find an												
	optimum ML												
	algorithm and						•						
	model to												
	improve												
	consensus												
	components												
06	Refine the												
00	designed												
	algorithms for												
	the best fit if												
	necessary												
07	Implementatio										N		
37	n												
08	Result analysis								 		-		
00	& Evaluation												
09	Final thesis												
0.5	writing												

References

- [1] Almulla, M. A. (2024). A multimodal emotion recognition system using deep convolution neural networks. Journal of Engineering Research.
- [2] Zhang, S., Yang, Y., Chen, C., Liu, R., Tao, X., Guo, W., ... & Zhao, X. (2023). Multimodal emotion recognition based on audio and text by using hybrid attention networks. Biomedical Signal Processing and Control, 85, 105052.
- [3] Bhat, A. A., Kavitha, S., Satapathy, S. M., & Kavipriya, J. (2024). Real Time Bimodal Emotion Recognition using Hybridized Deep Learning Techniques. Procedia Computer Science, 235, 1772-1781.
- [4] Tan, Y., Sun, Z., Duan, F., Solé-Casals, J., & Caiafa, C. F. (2021). A multimodal emotion recognition method based on facial expressions and electroencephalography. Biomedical Signal Processing and Control, 70, 103029.
- [5] Praveen, R. G., Cardinal, P., & Granger, E. (2023). Audio-visual fusion for emotion recognition in the valence-arousal space using joint cross-attention. IEEE Transactions on Biometrics, Behavior, and Identity Science.
- [6] Dresvyanskiy, D., Markitantov, M., Yu, J., Kaya, H., & Karpov, A. (2024). Multi-modal Arousal and Valence Estimation under Noisy Conditions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4773-4783).

Thank You!

