

PLAN CHAPITRE 3 - IP

- Introduction : IP et un monde parfait
- ∘ 3.1 Le rôle d'IP
 - Objectif
 - Datagrammes
- 3.2 L'adressage IPv4
- 3.3 Le routage IP
- 3.4 Le format des messages

Introduction

- Les bases d'IP:
 - Un monde parfait!
- Et si ce n'était pas le cas?
 - Une réponse
 - o TANT PIS! Ce n'est pas mon problème!
- Qui s'en occupe?
 - En dessous:
 - les technologies sont assez fiables
 - Au dessus:
 - o Ajout d'un protocole qui s'en occupe de bout en bout

INTRODUCTION

o Un modèle en couches:

3.1 – LE RÔLE D'IP

- Objectifs:
 - Pouvoir communiquer entre toutes les équipements d'Internet
 - Clients
 - Serveurs
 - A travers un ensemble de moyens de communication hétérogènes

Interconnexion

- Message IP (Unité protocolaire = N-PDU)
 - Un paquet = Datagramme IP

Header

Payload

3.1 – LE RÔLE D'IP

- Comment?
 - Acheminer le paquet jusqu'au bon destinataire
 - Dans le bon réseau
 - Notion de hiérarchie
- Chaque paquet est traité indépendamment
- Chaque routeur décide seul

3.2 – L'ADRESSAGE IPV4 Le rôle

- o Représentation d'une entité de niveau 3
 - Unicité (gestion centralisée)
- o Toute entité de niveau 3 IP doit avoir au moins une adresse pour pouvoir communiquer
 - Question de l'unicité?
 - Adresse liée à une interface réseau
- Adresses du paquet IP
 - Source
 - Destination

3.2 – L'ADRESSAGE IPV4 ATTRIBUTION

- Comment les attribuer?
 - Statique ou dynamique
 - En fonction
 - o de l'administrateur
 - o de l'accès à Internet utilisé
 - o d'une plage d'adresses disponibles
 - o ...

o Différents types

- Privées ou publiques
 - o Non unicité des adresses privées
- Adresses spécifiques

3.2 – L'ADRESSAGE IPV4 LE FORMAT

- Formats: 4 Octets soit 32 bits
 - Exemple: 125.255.12.1
 - 2³² adresses possibles = 4, 29 Millions
- Deux parties distinctes
 - Partie réseau (network)
 - Partie machine (host)
 - Propose une forme de hiérarchie

• Mais où est la limite?

3.2 – L'ADRESSAGE IPV4 LES CLASSES

- Historiquement séparée en 3 classes principales
 - Séparer en réseaux de tailles différentes
 - A adresse réseau : 55.0.0.0

• B – adresse réseau : 155.221.0.0

• C – adresse réseau: 201.1.45.0

3.2 – L'ADRESSAGE IPV4 ADRESSES SPÉCIFIQUES

- o Adresses spécifiques d'un réseau
 - Bits machines à 0 → adresse réservée au réseau
 - Bits machines à 1 → adresse de diffusion du réseau
- 0.0.0.0
 - Adresse illégale en destination
 - Signifie sur une machine
 - toute interface
 - o le « par défaut »
- 255.255.255.255
 - Adresse de diffusion sur Internet
- o 127.0.0.1
 - Adresse de rebouclage (loopback)

3.2 – L'ADRESSAGE IPV4 Adresses Privées

- Non routables sur Internet
 - Non unicité
 - Usage à l'origine local ou expérimental
- Les plages d'adresses
 - 10.0.0.0
 - 172.16.0.0 172.31.0.0
 - 192.168.0.0 192.168.255.0

3.2 – L'ADRESSAGE IPV4 SOUS-RÉSEAUX ET MASQUE

• Besoin

- Un seul niveau de hiérarchie par les classes
- Hiérarchisation au sein d'une adresse de réseau

• Principe

• « Grignoter » une partie de l'adressage machine pour l'ajouter au réseau

• Comment? le masque

- Permet de différencier la partie réseau de la partie machine en appliquant:
 - o Un & binaire avec le masque pour obtenir l'adresse réseau
 - o Un & binaire avec le !(masque) pour obtenir l'adresse machine
- Le masque est une adresse IPv4 avec
 - o Tous les bits à 1 pour la partie réseau
 - o Tous les bits à 0 pour la partie hôte
- Autre notation: le préfixe
 - = /<nombre de bits du réseau>

3.2 – L'ADRESSAGE IPV4

Illustration des sous-réseaux

3.3 – LE ROUTAGE IP OBJECTIF ET DÉFINITION

- Objectif:
 - Acheminer les paquets d'un point A à B du réseau
 - Service au cœur d'IP
- Comment?
 - Trouver les chemins vers toute entité d'Internet
 → algorithme de routage (pas le rôle d'IP)
 - Aiguillage et relayage du datagramme sur une entité de niveau 3
 - → routage IP

3.3 – LE ROUTAGE IP *PRINCIPE*

• Machine source ou destination

• Routeur IP

- Interconnecte au moins deux réseaux différents
 - Appartient à différents réseaux
 - o Présente plusieurs interfaces IP
- Prend en charge des messages dont il n'est ni la source ni la destination
 - o Différence avec le fonctionnement classique d'une machine
 - Mode « forwarding »
- Illustration du principe

3.3 – LE ROUTAGE IP LES INFORMATIONS DE ROUTAGE

- Format
 - Un chemin = une route
 - Routes regroupées en un table de routage
- Illustration du fonctionnement d'une table de routage
 - Focus sur les intérêts d'une bonne hiérarchie

- Comment obtenir les routes?
 - Ce n'est pas le problème d'IP

3.3 – LE ROUTAGE IP ILLUSTRATION

Table de routage

145.20.47.1/24 3 145.20.1.20/24 145.20.45.1/24 145.20.45.1/24 2

145.20.45.6/24

3.4 – Le format des messages Vue d'ensemble

3.4 — Le format des messages En-tête

00 01 02 03	04 05 06	7 08 09	10 1	1 12	13 1	14 15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Version	IHL		ToS						Total Length													
Identification									MF	Fragment offset												
Т		Protocol					Header checksum															
Source IP address																						
Destination IP address																						

3.6 - ARP

3.7 - ICMP

BILAN SUR IP