AI1110 - Assignment 1

Kushagra Gupta CS21BTECH11033

ICSE 2018 Grade 10

Q10-c: The angle of elevation from a point P of the top of a tower QR, 50m high is 60° and that of the tower PT from a point Q is 30°. Find the height of tower PT, correct to the nearest metre.

The various parameters involved in this question are listed in Table (I)

Parameter	Symbol	Value
QR	h	50
Angle QPR	α	60°
Angle PQT	β	30°
Base PQ	d	???
PT	h_2	???

TABLE I

Solution: In $\triangle PQR$, using basic trigonometric equation in a right-angled triangle, we know that,

$$\tan(\theta) = \frac{\text{perpendicular}}{\text{base}}$$
(1)
$$\Rightarrow \tan(\alpha) = \frac{h}{d}$$
(2)

$$\Rightarrow \tan(\alpha) = \frac{h}{d} \tag{2}$$

$$\Rightarrow d = \frac{h}{\tan(\alpha)} \tag{3}$$

$$\Rightarrow d = \frac{50}{\tan(60^\circ)} m \tag{4}$$

$$[:: \alpha = 60^{\circ} \& h = 50m]$$
 (5)

$$\Rightarrow d = \frac{50}{\sqrt{3}} m \tag{6}$$

Now in ΔPQT , $\beta = 30^{\circ}$.

$$\therefore \tan(\beta) = \frac{h_2}{d} \tag{7}$$

$$\Rightarrow h_2 = d \times \tan(\beta) \tag{8}$$

$$\Rightarrow h_2 = d \times \tan(30^\circ) \tag{9}$$

$$\Rightarrow h_2 = \frac{50}{\sqrt{3}} \times \tan(30^\circ) \, m \, [using(6)] \quad (10)$$

$$\Rightarrow h_2 = \frac{50}{3} m \tag{11}$$

 $h_2(PT) \approx 17$ metres after rounding off.

This can be verified by plotting h, α and β and approximating the length of h_2 .

Output: The Output of the program used to verify the answer is given in fig. 1:

Fig. 1. Plot of the figure and calculated length