CS2109S

AY22/23 Sem 2

github.com/jasonqiu212

01. Introduction

- Agent Anything that can perceive its environment through sensors and acting upon that env. through actuators
- Agent Function Maps from percept histories to actions
- Rational Agent Chooses an action that is expected to maximize its performance measure, given by percept sequence and built-in knowledge
- Autonomous Agent If behavior is determined by its own expereince

Performance Measure of Function

Motivation: For an agent to do the right thing, need a measure of goodness

Defining the Problem: PEAS

- 1. Performance measure
- 2. Environment
- 3. Actuators
- 4. Sensors

Characterizing the Environment

- 1. Fully observable (vs. Partially) Agent's sensors can access complete state of env. all the time
- Deterministic (vs. Stochastic) Next state of env. is determined by current state and action executed by agent
 - Strategic If env. is deterministic except for actions of other agents
- 3. **Episodic** (vs. Sequential) Agent's experience is divided into atomic episodes, where each episode includes perceiving and an action, and action depends on episode itself
- 4. Static (vs. Dynamic) Env. is unchanged while agent is deciding
 - Semi Time does not affect env., but affects performance score
- 5. Discrete (vs. Continuous) Discrete num. of percepts and actions
- 6. Single Agent (vs. Multi-agent) Agent operating by itself in an env.

Implementing Agents (in ascending complexity)

- 1. Simple Reflex Agents Fixed conditional rules
- 2. Model-based Reflex Agents Stores percept history to make decisions about internal model of world with conditional rules. Eg. Roomba
- 3. Goal-based Agents Keep in mind a goal and action aims to achieve it
- 4. Utility-based Agents Find best way to achieve goal
- 5. Learning Agents Learn from previous experiences

Exploitation vs. Exploration

- Exploitation Maximize expected utility using current knowledge of world
- Exploration Learn more about the world to improve future gains. May not always maximize performance measure.

02. Uninformed Search

- Deterministic, fully observable
- Tree Search Can revisit nodes
- Graph Search Tracks visited (Tree Search + Memoization)
- Uninformed Search Uses only information available in problem definition $| \bullet |$ Space: O(bd)

Formulating the Problem

- 1. How to represent state in problem?
- 2. Initial state
- 3. Actions: Successor function
- 4. Goal test
- 5. Path cost
- Abstraction Function Maps abstracted representation to real world state
- Representation Invariant $I(c) = \text{True} \rightarrow \exists a \text{ s.t. } AF(c) = a$

Breadth-first Search

- Idea: Expand shallowest unexpanded node using queue
- Given: b: Branching factor and d: Depth of optimal solution
- Complete: Yes (if tree is finite)
- Time: $O(b^{d+1})$
- Space: $O(b^d)$
- Optimal: Yes (if cost = 1)
- BFS is Uniform-cost Search with same cost

Uniform-cost Search

- Idea: Expand least-cost unexpanded node using priority queue (Dijkstra's)
- Given: C*: Cost of optimal solution
- Complete: Yes (if step cost $\geq \epsilon$ where $\epsilon \geq 0$)
- Time: $O(b^{(C^*/\epsilon)})$ (C^*/ϵ is approx. number of layers)
- Space: $O(b^{(C^*/\epsilon)})$
- Optimal: Yes

Depth-first Search

- Idea: Expand deepest unexpanded node using stack
- Given: m: Maximum depth of tree
- Complete: No (fails with infinite depth or loops)
- Time: $O(b^m)$
- Space: O(bm) (better than BFS)
- Optimal: No

Depth-limited Search

- Motivation: How to handle infinite depth for DFS?
- Idea: DFS with depth limit I where nodes at depth I have no children
- Time: $b^0 + b^1 + ... + b^{(d-1)} + b^d = O(b^d)$

Iterative Deepening Search

- Motivation: How to determine depth limit? We don't.
- Idea: Try different depths for depth-limited search
- BFS pretending to be DFS to save space
- Complete: Yes
- Time: $(d+1)b^0 + db^1 + ... + b^d = O(b^d)$ (More overhead than DLS)

Summary

	BFS	Uniform Cost	DFS	DLS	IDS
Complete	Yes	Yes	No	No	Yes
Time	$O(b^d)$	$O(b^{C^*/\epsilon})$	$O(b^m)$	$O(b^l)$	$O(b^d)$
Space	$O(b^d)$	$O(b^{C^*/\epsilon})$	O(bm)	O(bl)	O(bd)
Optimal	Yes	Yes	No	No	No

Bidirectional Search

- Idea: Search both forwards from initial state and backwards from goal state. Stop when searches meet.
- Time: $O(2b^{d/2})$
- Operators must be reversible
- Can have many goal states
- How to check if node intersects with other half?

03. Informed Search

Heuristic

- Heuristic Estimated cost from n to goal
- Admissible h(n) is admissible if, for every node n, $h(n) < h^*(n)$ where h^* is the true cost
- if h is admissible, then A* using tree search is optimal
- Consistent h(n) is consistent if, for every node n and every successor n'of n generated by action a, $h(n) \le c(n, a, n') + h(n')$
- Triangle inequality
- If h is consistent, f(n) is non-decreasing along any path (f(n') > f(n))
- If h is consistent, then h is admissible
- if h is admissible, then A* using graph search is optimal

Dominance

- If $h_2(n) \geq h_1(n)$ for all n, then h_2 dominates h_1
- If h_2 dominates h_1 and both are admissible, then h_2 is better for search

How to invent admissible heuristic?

- Set fewer restrictions on actions
- E.g. Number of misplaced tiles, Total manhattan distance

Best-first Search

- Idea: Expand most desirable node using priority queue
- Evaluation Function: f(n) = h(n)
- Complete: No. Possible to be stuck in loop
- Time and space: $O(b^m)$
- Optimal: No

A* Search

- Idea: Take note of cost so far and heuristic
- Evaluation Function: f(n) = g(n) + h(n) where g(n) is cost to reach n
- Complete: Yes, unless non-increasing, since cost is factored in
- Time and space: Same as BFS
- Optimal: Yes, depending on the heuristic

Iterative Deepening A* Search (IDA*)

- Motivation: How can we save space?
- ullet Idea: Have a cutoff for f and remember the best f that exceeds cutoff
- Similar to IDS. Linear space complexity.
- Optimal and complete

Simplified Memory A* Search (SMA*)

- Motivation: How can we save space?
- Idea: Do normal A*. If memory is full, drop node with worst f.
- Lose completeness

Local Search

- Motivation: What if the goal state is the solution? The path is irrelevant.
- Idea: Keep single current state and try improving it
- Formulating the problem:
 - 1. Initial state
 - 2. Actions: Successor function
 - 3. Good heuristic
 - 4. Goal test

Hill-climbing

- Idea: Generate successors from current and pick the best using heuristic
- What if stuck into local minima?
- Introduce randomness
- Simulated Annealing Search Allow some bad moves and gradually decrease frequency
- Why only keep 1 best state?
- Beam Search Perform k hill-climbing searches in parallel
- How to generate successors?
- Genetic Algorithms Successsor is generated by combining 2 parent states

04. Adversarial Search

- Assumption: Opponents reacts rationally
- Formulating the problem:
- Initial state
- Successor function
- Terminal test
- Utility function: Measures how good the move is for a player

Minimax

- Idea: Choose move that yields highest minimax value using DFS
- Complete: Yes (if tree is finite)
- Time: $O(b^m)$
- ullet Space: O(bm)
- Optimal: Yes (against an optimal opponent)

Alpha-Beta Pruning

- Motivation: How to save time for Minimax?
- Idea: By tracking max. and min. values so far, can prune some paths that we would never choose
 - 1. α contains max. and β contains min.
 - 2. Initially, $\alpha = -\infty$ and $\beta = \infty$
 - 3. When going down, copy α and β
 - 4. Prune if $\alpha \geq \beta$
 - 5. When going up, depending on MIN/MAX level, update α or β
- ullet With perfect ordering, time complexity: $O(b^{m/2})$. Doubles search depth.

Resource Limits

- ullet In reality, search space for games can be very large. α - β pruning also not fast enough.
- Solution: Limit depth (Only see a finite moves ahead) and determine best move using evaluation function to estimate desirability of position (Heuristic)
- Other hacks:
- Transpoisitions Memoize equivalent states
- Pre-computation of opening/closing moves

05. Introduction to Machine Learning

A machine learns if it improves performance P on task T based on experience E. Where T must be fixed, P must be measurable, E must exist

Types of Feedback

- Supervised Correct answer given for each example
- Regression Predict results within continuous output
- Classification Predict results in discrete output
- Unsupervised No answers given
- Weakly supervised Answer given, but not precise
- Reinforcement Occasional rewards given

Decision Trees

- DT can express any function of input attributes, if data is consistent
- Goal: Make DT compact. How?

Information Theory

- Idea: Choose attribute that splits examples into subsets that are ideally 'all positive' or 'all negative'
- Entropy Measure of randomness in set of data

$$I(P(v_1), ..., P(v_n)) = -\sum_{i=1}^{n} P(v_i) \log_2 P(v_i)$$

ullet For data with p positive examples and n negative examples:

$$I(\frac{p}{p+n}, \frac{n}{p+n}) =$$
$$-\frac{p}{p+n} \log_2 \frac{p}{p+n}$$

$$-\frac{n}{p+n}\log_2\frac{n}{p+n}$$

- Information Gain (IG) Reduction in entropy from attribute test
- Goal: Choose attribute with largest information gain
- Intuition: IG = Entropy of this node Entropy of children nodes
- ullet Given chosen attribute A with v distinct values:

$$\begin{aligned} \text{remainder}(A) &= \sum_{i=1}^v \frac{p_i + n_i}{p+n} I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}) \\ &IG(A) = I(\frac{p}{p+n}, \frac{n}{p+n}) - \text{remainder}(A) \end{aligned}$$

- Decision Tree Learning Recursively choose attributes with highest IG
- IG is not the only way. Can use whatever objective function that achieves the criteria we want.

Performance Measurement

- Correctness Correct if $\hat{y} = y$
- Accuracy $-\frac{1}{m}\sum_{j=1}^{m}(\hat{y_j}=y_j)$
- Confusion Matrix:

		Actual	Actual Label		
		+ve	-ve		
Predicted Label	+ve	TP True Positive	FP False Positive		
	-ve	FN False Negative	TN True Negative		

- Accuracy = $\frac{TP+TN}{TP+FN+FP+TN}$
- **Precision** $\frac{TP}{TP+FP}$ How precise are positive predictions?
- Recall $\frac{TP}{TP+FN}$ How many actual positives are predicted?
- F1 Score $\frac{2}{1/P+1/R}$ Harmonic mean of precision and recall
- Type I Error: FP, Type II Error: FN
- FP Rate = $\frac{FP}{FP+TN}$ TP Rate = $\frac{TP}{TP+FN}$

Pruning

- Motivation: DT overfits to training set, but performs poorly on test set
- Occam's Razor: Simple hypothesis preferred
- Pruning Ignores outliers, which reduces overfitting
- \bullet Idea: Go with the majority of T/Fs
- E.g. Min-sample, Max-depth

06. Linear Regression

Notation

- ullet m= Number of training examples
- \bullet n =Number of features
- $ullet x_i^{(i)} = \text{Input feature } j \text{ of } i \text{th training example}$
- \bullet y =Output variables

Hypothesis

$$h_w(x): w_0 + w_1 x$$

Cost Function (Square Error Function)

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2$$

- Goal: Minimize cost function. Thus, hypothesis is close to training samples
- Why squared error? Convenience, since we need to differentiate later

Gradient Descent

- 1. Start at some (w_0, w_1) . Pick nearby point that reduces $J(w_0, w_1)$.
- 2. Repeat until convergence:

$$w_j := w_j - \alpha \frac{dJ(w_0, w_1, \dots)}{dw_j}$$

- All updates done at end
- ullet How to do $rac{dJ(w_0,w_1)}{dw_j}$? Partial derivative: Hold everything else constant

•
$$\frac{dJ(w_0, w_1)}{dw_i} = \frac{d}{dw_i} (\frac{1}{2m} \sum_{i=1}^m (w_0 + w_1 x^{(i)} - y^{(i)})^2)$$

- ullet $\frac{dJ(w_0,w_1)}{dw_0}=rac{1}{m}\sum_{i=1}^m(w_0+w_1x^{(i)}-y^{(i)})$ (Note: Chain rule)
- $\bullet \frac{dJ(w_0, w_1)}{dw_1} = \frac{1}{m} \sum_{i=1}^{m} (w_0 + w_1 x^{(i)} y^{(i)}) x^{(i)}$
- Time complexity: O(kmn) where k is number of iterations

Learning Rate

- If α too small, then descent is too slow. If α too big, then might overshoot.
- ullet Given constant lpha, descent will grow smaller as we approach minimum

Variants of Gradient Descent

- Batch gradient descent: Consider all training examples when updating
- Stochastic gradient descent: Consider 1 random data point at a time (Cheaper and more randomness)
- Mini-batch gradient descent

Using Matrices

• Given:
$$w = \begin{pmatrix} w_0 \\ \vdots \\ w_n \end{pmatrix}$$
 and $x = \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ x_n \end{pmatrix}$

 \bullet $h_w(x): w^T x$

Feature Scaling

- Motivation: Gradient descent does not work well if features have different scales
- Mean Normalization $x_i \leftarrow \frac{x_i \mu_i}{\sigma}$

Normal Equation

$$w = (X^T X)^{-1} X^T Y$$

- ullet No need to choose lpha and feature scaling
- X^TX needs to be invertible
- Time complexity: $O(n^3)$. Slow if n is big

07. Logistic Regression

- Motivation: Classification with continuous input values.
- Idea: Come up with a decision boundary to separate data points. $h_w(x_1,x_2)=1$, if $w_0+w_1x_1+w_2x_2>0$, or 0, otherwise

Sigmoid Function

• Motivation: Step function is discontinuous and not differentiable

$$h_w(x) = g(w^T x)$$

$$g(z) = \frac{1}{1 + e^-}$$

Hypothesis

$$h_w(x): \frac{1}{1+e^{-w^T x}}$$

• Interpretation: Estimated probability that y = 1 given input x

Cost Function

- Problem: Least square error gives non-convex cost function, which is bad for G.D.
- Solution: Use *log*

- \bullet If y=1, let cost be $-log(h_w(x))$
- $h_w(x) \to 0, J(w) \to \infty$
- $h_w(x) \to 1, J(w) \to 0$

- $igl| \bullet \mbox{ If } y = 0, \mbox{ let cost be } -log(1 h_w(x))$
- $h_w(x) \to 0, J(w) \to 0$
- $h_w(x) \to 1, J(w) \to \infty$

$$J(w) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} log h_w(x^{(i)}) + (1 - y^{(i)}) log (1 - h_w(x^{(i)}))$$

Gradient Descent

- Same algorithm as linear regression
- $\frac{dJ(w)}{dw_j} = \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) y^{(i)}) x_n^{(i)}$ (Same as linear regression)

Multi-class Classification

- 1. Train binary classifier $h_w^{(i)}(x)$ for each class i to predict y=i
- 2. For each input x, pick class i is greatest (i.e. $\max_i h_w^{(i)}(x)$)

08. Model Evaluation and Selection

Linear Regression

$$J_{\mathsf{test}}(w) = \frac{1}{2m_{\mathsf{test}}} \sum_{i=1}^{m_{\mathsf{test}}} (h_w(x_{\mathsf{test}}^{(i)}) - y_{\mathsf{test}}^{(i)})^2$$

Logistic Regression

$$\operatorname{error}(h_w(x), y) = \begin{cases} 1 & \text{if misclassification} \\ 0 & \text{otherwise} \end{cases}$$

$$\text{Test Error} = \frac{1}{m_{\text{test}}} \sum_{i=1}^{m_{\text{test}}} \operatorname{error}(h_w(x_{\text{test}}^{(i)}), y_{\text{test}}^{(i)})$$

Model Selection

- How to choose model? (i.e. x^2 , x^3 , etc. for hypothesis)
 - 1. Split data into 3 sets: Training set, validation set, and test set
 - 2. Train each model using training set
 - 3. Compute $J_{cv}(w)$ for each model and pick model with lowest $J_{cv}(w)$
 - 4. Use $J_{\text{test}}(w)$ to estimate performance on unseen samples

Bias and Variance

- High bias Underfit, High variance Overfit
- As degree of polynomial increases:

Impact of *m*: High Bias

Impact of *m*: High Variance

- ullet Observation: If high bias, J_{cv} and J_{train} are equally bad (Small gap). If high variance, more samples does not help close the gap.
- How do we address overfitting?
- Reduce number of features
- Regularization Keep features, but reduce respective weights

09. Regularization

- ullet Idea: Include w inside J(w) to minimize weights and get simpler hypothesis
- What if λ is too large? Weights tend to 0, resulting in straight line

 $J_{cv}(w)$

- How to choose λ ? Use validation set
- Small λ : $J_{\text{train}}(w)$ low and $J_{cv}(w)$ high (Overfit)
- Large λ : $J_{\text{train}}(w)$ high and $J_{cv}(w)$ high (Underfit)

Linear Regression with Regularization

$$J(w) = \frac{1}{2m} \left(\sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{i=1}^{n} w_i^2 \right)$$

$$w_n := w_n - \frac{\alpha}{m} \sum_{i=1}^m ((h_w(x^{(i)}) - y^{(i)}) x_n^{(i)}) - \frac{\alpha \lambda}{m} w_n$$

Logistic Regression with Regularization

$$J(w) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} log(h_w(x^{(i)})) + (1 - y^{(i)}) log(1 - h_w(x^{(i)})) + \frac{\lambda}{2m} \sum_{i=1}^{n} w_i^2$$

$$w_n := w_n - \frac{\alpha}{m} \sum_{i=1}^m ((h_w(x^{(i)}) - y^{(i)}) x_n^{(i)}) - \frac{\alpha \lambda}{m} w_n$$

$$w = (X^T X + \lambda I)^{-1} X^T Y$$
 where I 's first column is 0

• X^TX can be non-invertible

10. Support Vector Machine

• Idea: Maximize margin between positive and negative samples

Decision Rule

$$w \cdot x \geq c \rightarrow \mathsf{Positive}; w \cdot x < c \rightarrow \mathsf{Negative}$$

- Dot product: $u \cdot v = u^T v = p||v||$ (By law of cosine)
- Intuition: Decision boundary \bot Weight vector. $w \cdot x = p||w||$. Sample a is on decision boundary if $w \cdot a = c$
- Constraints: Let b = -c
- $w \cdot x + b > 1$ if y = 1
- $w \cdot x + b < -1$ if y = 0
- Combined: Let $\hat{y}^{(i)}=1$ or -1 for pos. and neg. samples respectively $\hat{y}^{(i)}(w\cdot x^{(i)}+b)>1$
- If x is inside margin, then $w \cdot x + b = 1$ or -1 respectively
- Why add these constraints? Mathematical convenience for hinge loss

Margin

$$\mathsf{Margin\ width} = \frac{2}{||w||}$$

- Let x^+ and x^- be closest positive and negative samples
- Margin width $=(x^+-x^-)\cdot \frac{w}{||w||}$ (i.e. Length of projection of x^+-x^- on weight vector) $=\frac{1-b+1+b}{||w||}$ (since x^+ and x^- are inside margin) $=\frac{2}{||w||}$

Objective Function for Hard-Margin

$$\min \frac{1}{2} ||w||^2$$
 s.t. $\hat{y}^{(i)}(w \cdot x + b \ge 1)$

- 1. Maximize margin: $\max \frac{2}{||w||} = \min ||w|| = \min \frac{1}{2} ||w||^2$
- 2. Classify correctly
- Hard-Margin No samples inside margin
- Before, we assume hard margin. What if there exists outliers that causes SVM to overfit?

Objective Function for Soft-Margin

$$h_w(x) = \begin{cases} 1 & \text{if } w^T x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

- Slack Variable (ξ) Loss of misclassified point
- ullet Goal: Maximize margin and allow misclassification by tweaking C
- Large C overfits (Basically hard-margin). Small C underfits.
- i.e. $\min(\frac{1}{2}||w||^2 + C\sum_i \xi^{(i)})$ s.t. $\forall i, \xi^{(i)} \geq 0$ and $\hat{y}^{(i)}(w \cdot x^+b) \geq 1 \xi^{(i)} \rightarrow J(w) = C\sum_i \max(0, 1 \hat{y}^{(i)}(w^Tx^{(i)})) + \frac{1}{2}\sum_{i=1}^n w_i^2$

• Hard-margin: Must follow constraint. Soft-margin: Constraint is flexible with slack variable, so can define cost function to minimize.

$$J(w) = C \sum_{i}^{m} y^{(i)} \mathsf{cost}_1(w^T x^{(i)}) + (1 - y^{(i)}) \mathsf{cost}_0(w^T x^{(i)}) + \frac{1}{2} \sum_{i=1}^{n} w_i^2$$

- Hinge Loss
- $\bullet \, \mathsf{cost}_1(z) = \max(0, 1-z)$
- $\bullet \ \mathsf{cost}_0(z) = \max(0, 1+z)$

Kernel

- Motivation: What if data is not linearly separable?
- Idea: Map features to higher dimensions (i.e. $\phi(x)$). High dim. is slow.
- Kernel Function Dot product between two points in transformed dim.

$$K(u, v) = \phi(u) \cdot \phi(v)$$

- Property: Getting K(u,v) does not need $\phi(u)$ and $\phi(v)$
- Linear Kernel $K(u, v) = u \cdot v$
- Polynomial Kernel $K(u, v) = (u \cdot v)^d$
- Gaussian Kernel $K(u,v) = e^{-||u-v||^2/2\sigma^2}$ (Note: $\phi(u)$ can map to infinite dimensions)

Kernel Trick

- ullet By manipulating SVM objective func. and decision rule, $x^{(i)} \cdot x^{(j)}$ emerges
- If we map features (i.e. $\phi(x)$), can replace above term with kernel (K(u,v))
- Trick: No need to compute transformed features explicitly

Similarity Features

- Idea: Compute new features based on proximity to landmarks
- Given example x. $f_i = sim(x, l^{(i)}) = K(x, l^{(i)})$ where K is gaussian kernel
- Transformed x: $f = [f_0, f_1, \dots, f_m]^T$. Plug into obj. function.
- Do feature scaling, else similarity value may be dominated by some features
- Large σ underfits (Smoother features). Small σ overfits.
- Not all similarity functions get valid kernels. Need to satisfy Mercer's Thm.

11. Neural Networks

• Idea: Models after human brain (Perceptron)

- $\hat{y} = g(\sum_{i=0}^{n} w_i x_i)$ where $x_0 = 1$
- Activation Function (g) Nonlinear function (e.g. Step func. sgn(x), $\sigma(x)$, tanh(x), max(0,x))
- Supports both classification and regression. Depends on activation func.
- If activation function is linear, then regression

Perceptron Learning Algorithm (PLA)

- 1. Initialize weights w
- 2. Select misclassified sample and update w. Repeat until convergence.

$$w \leftarrow w + \eta(y - \hat{y})x$$

- Why this works? Each update gets closer to correct classification
- Different from GD!
- Ends when no more misclassification. Thus, can select any linear model
- Cannot converge on non-linear data

Single-Layer Neural Network

- Basically logistic regression, if activation function is $\sigma(x)$
- How to determine weights? Gradient descent
- Many ways to calculate error. e.g. MSE $(J(w) = \frac{1}{2}(\hat{y} y)^2)$.
- Given $\hat{y} = g(f(x)); f(x) = w^T x$, $\frac{dJ(w)}{dw_i} = \frac{dJ}{\hat{d}\hat{y}} \frac{d\hat{y}}{df} \frac{df}{dw_i} = (\hat{y} y)g'(f)x_i$

$$w_i := w_i - \eta(\hat{y} - y)q'(f)x_i$$

• If activation function $g = \sigma(x)$, then $g'(x) = \sigma'(x) = \sigma(x)(1 - \sigma(x))$

$$w_i := w_i - \eta(\hat{y} - y)\hat{y}(1 - \hat{y})x_i$$

Forward Propagation

- How to fit non-linear data? Have many layers. 1 layer computes more complex features as next layer's input
- Given layer *l*:
- Vector: Bolded, lower case, Matrix: Bolded, upper case

$$\mathbf{a}^{[l]} = \mathbf{g}^{[l]}(\mathbf{f}^{[l]})$$

$$\mathbf{f}^{[l]} = (\mathbf{W}^{[l]})^T \mathbf{a}^{[l-1]}$$

Backpropagation

- Big idea: Gradient descent with lots of chain rules
- Goal: How to get $\frac{d\epsilon}{d\mathbf{w}}$?
- ullet E.g. $rac{d\epsilon}{dw_2}=rac{d\epsilon}{d\hat{y}}rac{d\hat{y}}{dw_2}$ and $rac{d\epsilon}{dw_1}=rac{d\epsilon}{d\hat{y}}rac{d\hat{y}}{da_1}rac{da_1}{dw_1}$
- But, very costly to do this for many layers. Can we vectorize it?

$$\hat{y}'(\mathbf{W}^{[l]}) = \frac{d\mathbf{f}^{[l]}}{d\mathbf{W}^{[l]}} (\delta^{[l]})^T = \mathbf{a}^{[l-1]} (\delta^{[l]})^T$$

$$\delta^{[l]} = \frac{dg^{[l]}}{d\mathbf{f}^{[l]}} \frac{d\mathbf{f}^{[l+1]}}{da^{[l]}} \delta^{[l+1]} = g'^{[l]}(\mathbf{f}^{[l]}) \mathbf{W}^{[l+1]} \delta^{[l+1]}$$

12. Deep Learning

Convolutional Neural Network

- Idea: Exploit **spatial structure**. Map pixels using kernel to capture pixels as a group.
- Kernel: Like a filter

- Padding Add blank pixels at the side to avoid losing edge pixels
- Stride Skip some pixels by some number of steps for faster computation
- ullet Let $\mathbf{W}^{[l]}$ be kernels, which is a 3D matrix since we apply lots of kernels

$$\mathbf{A}^{[l]} = g^{[l]}(\mathbf{W}^{[l]} * \mathbf{A}^{[l-1]})$$

- Each layer has many kernels (3D matrix)
- Kernel input: 3D matrix of features maps (Each depth is from diff. kernel)
- Kernel output: 2D matrix feature map
- Pooling Reduces dimensionality of feature maps to avoid number of layers exploding (E.g. Max-Pool, Average-Pool, Sum-Pool)
- Softmax Gets distribution of probabilities to make final classification by taking max. (Similar to multi-class classification)

$$P(y = j) = \frac{e^{x_j}}{\sum_{i=0}^{k} e^{x_i}}$$

Recurrent Neural Network

- Idea: Exploit temporal structure by tracking past values
- Not limited to time. As long as there exists a recurring relationship.
- Try 1: Have many perceptrons running in parallel for each moment

• Try 2: Use past perceptron in new one

Problems with Deep Learning

- 1. Overfitting
- Drop out Randomly set some activations to 0
- ullet Early stopping Stop training when J_{test} and J_{train} diverge
- 2. Vanishing/Exploding Gradient
- ullet Vanishing Gradient If many gradients pprox 0 in backpropagation, then weights won't change
- Exploding Gradient Gradients keep getting larger, causing GD to diverge
- Solutions:
- Proper weight initialization
- Use other activation functions (E.g. ReLU)
- Batch normalization (Feature scaling)
- Gradient clipping