MobileNet(v1、v2)网络详解与模型的搭建

首先给出三个链接:

- 1. MobileNet (v1, v2) 网络详解视频
- 2. 使用pytorch搭建mobilenet v2并基于迁移学习训练视频
- 3. 使用tensorflow2搭建mobilenet v2并基于迁移学习训练视频

在之前的文章中讲的AlexNet、VGG、GoogLeNet以及ResNet网络,它们都是传统卷积神经网络(都是使用的传统卷积层),缺点在于内存需求大、运算量大 导致无法在移动设备以及嵌入式设备上运行。而本文要讲的MobileNet网络就是专门为移动端,嵌入式端而设计。

MobileNet v1

MobileNet网络是由google团队在2017年提出的,专注于移动端或者嵌入式设备中的轻量级CNN网络。相比传统卷积神经网络,在准确率小幅降低的前提下大大 减少模型参数与运算量。(相比VGG16准确率减少了0.9%,但模型参数只有VGG的1/32)。

要说MobileNet网络的优点,无疑是其中的Depthwise Convolution结构(大大减少运算量和参数数量)。下图展示了传统卷积与DW卷积的差异,在传统卷积中, 每个卷积核的channel与输入特征矩阵的channel相等(每个卷积核都会与输入特征矩阵的每一个维度进行卷积运算)。而在DW卷积中,每个卷积核的channel 都是等于1的(每个卷积核只负责输入特征矩阵的一个channel,故卷积核的个数必须等于输入特征矩阵的channel数,从而使得输出特征矩阵的channel数也等 于输入特征矩阵的channel数)

MobileNet详解

- 卷积核channel=输入特征矩阵channel
- ➤ 输出特征矩阵channel=卷积核个数

DW卷积 Depthwise Conv

- 卷积核channel=1
- 输入特征矩阵channel=卷积核个数=输出特 征矩阵channel

刚刚说了使用DW卷积后输出特征矩阵的channel是与输入特征矩阵的channel相等的,如果想改变/自定义输出特征矩阵的channel,那只需要在DW卷积后接上 一个PW卷积即可,如下图所示,其实PW卷积就是普通的卷积而已(只不过卷积核大小为1)。通常DW卷积和PW卷积是放在一起使用的,一起叫做Depthwise Separable Convolution (深度可分卷积)。

MobileNet详解

那Depthwise Separable Convolution(深度可分卷积)与传统的卷积相比有到底能节省多少计算量呢,下图对比了这两个卷积方式的计算量,其中Df是输入特征矩阵的宽高(这里假设宽和高相等),Dk是卷积核的大小,M是输入特征矩阵的channel,N是输出特征矩阵的channel,卷积计算量近似等于卷积核的高 x 卷积核的宽 x 卷积核的channel x 输入特征矩阵的高 x 输入特征矩阵的宽(这里假设stride等于1),在我们mobilenet网络中DW卷积都是是使用3x3大小的卷积核。所以理论上普通卷积计算量是DW+PW卷积的8到9倍(公式来源于原论文):

MobileNet详解

在了解完Depthwise Separable Convolution(深度可分卷积)后在看下mobilenet v1的网络结构,左侧的表格是mobileNetv1的网络结构,表中标Conv的表示普通卷积,Conv dw代表刚刚说的DW卷积,s表示步距,根据表格信息就能很容易的搭建出mobileNet v1网络。在mobilenetv1原论文中,还提出了两个超参数,一个是α一个是β。α参数是一个倍率因子,用来调整卷积核的个数,β是控制输入网络的图像尺寸参数,下图右侧给出了使用不同α和β网络的分类准确率,计算量以及模型参数:

MobileNet详解

Table	 MobileNet 	Body A	Architecture
Table .	I. IVIOUIICIACI	DOUY I	Memiceture

Table 1. Mobile (et Body Atenitecture					
Type / Stride	Filter Shape	Input Size			
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$			
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$			
Conv/s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$			
Conv dw / s2	$3 \times 3 \times 64 \text{ dw}$	$112 \times 112 \times 64$			
Conv/s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$			
Conv dw / s1	$3 \times 3 \times 128 \mathrm{dw}$	$56 \times 56 \times 128$			
Conv/s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$			
Conv dw / s2	$3 \times 3 \times 128 \mathrm{dw}$	$56 \times 56 \times 128$			
Conv/s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$			
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$			
Conv/s1	$1\times1\times256\times256$	$28 \times 28 \times 256$			
Conv dw / s2	$3 \times 3 \times 256 \mathrm{dw}$	$28 \times 28 \times 256$			
Conv/s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$			
5× Conv dw / s1	$3 \times 3 \times 512 \mathrm{dw}$	$14 \times 14 \times 512$			
Onv/s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$			
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$			
Conv/s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$			
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$			
Conv/s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$			
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$			
FC/s1	1024×1000	$1 \times 1 \times 1024$			
Softmax / s1	Classifier	$1 \times 1 \times 1000$			

Table 8. MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million	
	Accuracy	Mult-Adds	Parameters	Multiply-Add
1.0 MobileNet-224	70.6%	569	4.2	· /
GoogleNet	69.8%	1550	6.8	计算量
VGG 16	71.5%	15300	138	

Table 6	MahilaNat	Width	Multiplion	
Table 6.	MobileNet	wiath	Multiplier	

Width Multiplier	ImageNet	Million	Million	
	Accuracy	Mult-Adds	Parameters	lpha
1.0 MobileNet-224	70.6%	569	4.2	
0.75 MobileNet-224	68.4%	325	2.6	Width Multiplier
0.5 MobileNet-224	63.7%	149	1.3	width widitipher
0.25 MobileNet-224	50.6%	41	0.5	

ier

depthwise部分的卷积核容易费掉,即卷积核参数大部分为零。

MobileNet v2

在MobileNet v1的网络结构表中能够发现,网络的结构就像VGG一样是个直筒型的,不像ResNet网络有shorcut之类的连接方式。而且有人反映说MobileNet v1 网络中的DW卷积很容易训练废掉,效果并没有那么理想。所以我们接着看下MobileNet v2网络。

MobileNet v2网络是由google团队在2018年提出的,相比MobileNet V1网络,准确率更高,模型更小。刚刚说了MobileNet v1网络中的亮点是DW卷积,那么在 MobileNet v2中的亮点就是Inverted residual block(倒残差结构),如下下图所示,左侧是ResNet网络中的残差结构,右侧就是MobileNet v2中的到残差结构。在残差结构中是1x1卷积降维->3x3卷积->1x1卷积升维,在倒残差结构中正好相反,是1x1卷积升维->3x3DW卷积->1x1卷积降维。为什么要这样做,原文的解释是高维信息通过ReLU激活函数后丢失的信息更少(注意倒残差结构中基本使用的都是ReLU6激活函数,但是最后一个1x1的卷积层使用的是线性激活函数)。

MobileNet详解

- ① 1x1 卷积降维
- ② 3x3 卷积
- ③ 1x1 卷积升维

- ① 1x1 卷积升维
- ② 3x3 卷积
- ③ 1x1 卷积降维

(a) Residual block

(b) Inverted residual block

在使用倒残差结构时需要注意下,并不是所有的倒残差结构都有shortcut连接,只有当stride=1且输入特征矩阵与输出特征矩阵shape相同时才有shortcut连接 (只有当shape相同时,两个矩阵才能做加法运算,当stride=1时并不能保证输入特征矩阵的channel与输出特征矩阵的channel相同)。

MobileNet详解

Input	Operator	Output	
$h \times w \times k$ $h \times w \times tk$ $\frac{h}{s} \times \frac{w}{s} \times tk$	1x1 conv2d, ReLU6 3x3 dwise s=s, ReLU6 linear 1x1 conv2d	$\begin{array}{ c } h \times w \times (tk) \\ \frac{h}{s} \times \frac{w}{s} \times (tk) \\ \frac{h}{s} \times \frac{w}{s} \times k' \end{array}$	

Table 1: Bottleneck residual block transforming from k to k' channels, with stride s, and expansion factor t.

当stride=1且输入特征矩阵与输出特征 矩阵shape相同时才有shortcut连接

(d) Mobilenet V2

下图是MobileNet v2网络的结构表,其中t代表的是扩展因子(倒残差结构中第一个1x1卷积的扩展因子),c代表输出特征矩阵的channel,n代表倒残差结构重复的次数,s代表步距(注意:这里的步距只是针对重复n次的第一层倒残差结构,后面的都默认为1)。

MobileNet详解

Input	Operator		c	$\mid n \mid$	s
$224^{2} \times 3$	conv2d	-	32	1	2
$112^{2} \times 32$	bottleneck	1	16	1	1
$112^{2} \times 16$	bottleneck	6	24	2	2
$56^{2} \times 24$	bottleneck	6	32	3	2
$28^{2} \times 32$	bottleneck	6	64	4	2
$14^{2} \times 64$	bottleneck	6	96	3	1
$14^{2} \times 96$	bottleneck	6	160	3	2
$7^2 \times 160$	bottleneck	6	320	-1	1
$7^2 \times 320$	conv2d 1x1	-	1280	1	1
$7^2 \times 1280$	avgpool 7x7	-	-	1	-
$1\times1\times1280$	conv2d 1x1	-	k	-	

- □ t是扩展因子
- □ c是输出特征矩阵深度channel
- □ n是bottleneck的重复次数
- □ s是步距(针对第一层,其他为1)

https://blog.csdn.net/qq_3754109

关于MobileNet V2模型的搭建与训练代码放在我的github中,大家可自行下载使用:

https://github.com/WZMIAOMIAO/deep-learning-for-image-processing

pytorch版本在pytorch_learning文件夹中, tensorflow版本在tensorflow_learning文件夹中.

相关推荐