network *representations*

introduction to network analysis (ina)

Lovro Šubelj University of Ljubljana spring 2024/25

network *representations*

directed graph

 $\{1, 2\}$

edge list

(1, 2)

(2,3)(2,4)

edge list

^{*}adjacency list can also be implemented with maps or trees & edge list does not represent isolated nodes

network *representations*

- adjacency matrix for elegant analytical derivations most derivations based on matrix representation[†]
- adjacency list for efficient algorithms implementation ideal complexity since most algorithms only require incidence[†]
- edge list for efficient network storing/manipulation
 easy editing since each edge is stored only once

[†]some derivations can also be based on adjacency list & some algorithms require edge list

network *structures*

edge list edges data structure complexity

data structure	link manipulation	random node	random link
array	none	O(m)	O(1)
array list	addition	$\mathcal{O}(m)$	$\mathcal{O}(1)$
hash map	any	$\mathcal{O}(m)$	$\mathcal{O}(m)$

adjacency list nodes data structure complexity

data structure	node manipulation	random node	random link
array	none	$\mathcal{O}(1)$	O(m)
array list	addition	$\mathcal{O}(1)$	$\mathcal{O}(m)$
hash map	any	$\mathcal{O}(n)$	$\mathcal{O}(m)$

— adjacency list neighbors data structure complexity

data structure	link manipulation	node incidence	random neighbor
array	none	$\mathcal{O}(k)$	O(1)
array list	addition	$\mathcal{O}(k)$	$\mathcal{O}(1)$
hash map	any	$\approx \mathcal{O}(1)$	$\mathcal{O}(k)$
tree map	any	$\mathcal{O}(\log k)$	$\mathcal{O}(k)$

- hash maps for construction and arrays for analysis
- use directed adjacency list with undirected flag

Frandom link selection equivalent to random node selection by degree

network formats

 $^{\$}_{\text{ad-hoc}}$ edge list and Pajek format most popular & other formats include GML, GraphML and JSON

network data

- easily obtained from online sources
- already present in many standard datasets
- personal web pages of network researchers
- popular network repositories/collections
 - Network Catalogue and Repository [Netzschleuder]
 - Colorado Index of Complex Networks [ICON]
 - Stanford Network Analysis Project [SNAP]
 - Koblenz Network Collection [KONECT]
 - Open Graph Benchmark [OGB]
 - Network Repository [NetRepo]
 - Pajek datasets [Pajek]

network *software*

— most popular Python libraries

- igraph [https://igraph.org]
- NetworkX [https://networkx.org]
- graph-tool [https://graph-tool.skewed.de]
- Snap.py [https://snap.stanford.edu/snappy]
- Pajek [http://mrvar.fdv.uni-lj.si/pajek]

— most popular network software

- Gephi [https://gephi.org]
- visone [https://visone.ethz.ch]
- Pajek [http://mrvar.fdv.uni-lj.si/pajek]