BIL 362 Mikroişlemciler

M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü

Genel Bilgiler

Öğretim üyesi : Doç.Dr.M.Ali Akcayol

Ofis: Başkent Ünv., Bilgisayar Mühendisliği Bölümü

E-Posta: akcayol@gazi.edu.tr
Ofis saatleri: Pzt 16:00-18:00

Ders asistanı : Arş.Gör.Mehmet Dikmen

Ofis: Başkent Ünv., Bilgisayar Mühendisliği Bölümü

E-Posta:

Dersin web sayfası : http://w3.gazi.edu.tr/~akcayol

(\dersler\mikroi\slemciler)

Derslik: Lab:

Değerlendirme

Arasınav: 25% Lab: 25%

Haftalık ödevler : 10% Derse katılım : 5%

Final: 35%

Temel ders kitabı

Barry B. Brey, The Intel Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Pentium Pro, Pentium II, Penium III, Penium 4 Architecture, Programming and Interfacing (7th edition), Prentice Hall, 2006.

Yardımcı ders kitabı

Walter A. Triebel, Avtar Singh, The 8088 and 8086 Microprocessors: Programming, Interfacing, Software, Hardware and Applications (4th edition), Prentice Hall, 2002.

Genel Bilgiler

Ders konuları

- (1) Mikroişlemcilere giriş ve Intel mikroişlemcilerin gelişimi
- (2) 8086 ve 8088 mikroişlemci yapıları: Registers, Stack, Fiziksel ve Mantıksal adresleme
- (3) Assembly diliyle program geliştirme
- (4) Adresleme modları
- (5) Data transfer, aritmetik ve mantık komutları
- (6) Akış kontrol, altyordam çağırma ve string komutları
- (7) 8086 programlama
- (8) 8086 hafıza arayüzleri
- (9) 8086 temel giriş/çıkış arayüzleri
- (10) Kesmeler ve türleri
- (11) 80386, 80486 ve Pentium işlemcilere giriş

Mekanik çağ

- MÖ 500 yılında ilk mekanik hesap makinesi olan abacus babilliler tarafından gelistirilmiştir.
- 1642 yılında Blaise Pascal dişliler ve tekerleklerden oluşan bir hesap makinesi geliştirdi.
- Her dişlide 10 diş bulunmaktadır. Bir tur atıldığında diğeri bir diş atlayarak hesap yapmaktadır.
- 1947 yılında Charles Babbage Analytical Engine isimli bir hesap makinesi geliştirmeye başlamıştır. Augusta Ada Byren'ın yardımıyla geliştirdiği bu makine punch card kullanmaktaydı.

Tarihsel Gelişim

Elektrik çağı

- 1800'lü yıllarda elektrik motorlarındaki gelişmelerin sonucunda Pascal tarafından mekanik olarak geliştirilen hesap makinesi motorlar tarafından çalıştırılır hale gelmiştir.
- 1970'li yıllara kadar işyerlerinde yaygın olarak kullanılmıştır.
- 1970'li yıllarda el hesap makinesi Bomar Brain geliştirilmiştir.
- Konrad Zuse 1936 yılında mekanik ve 1941 yılında ise elektromekanik hesap makinesini geliştirmiştir.
- 1940'lı yıllarda Konrad Zuse Z3 isimli ilk modern bilgisayarı geliştirmiştir.
- Z3 5.33 Hz clock frekansına sahipti.
- 1943 yılında Alan Turing tarafından vakum tüplerle Colossus isimli elektronik hesap makinesi geliştirilmiştir.
- Colossus yeniden programlanamamaktadır ve özel amaçlı (special-purpose) bilgisayar olarak adlandırılmaktadır.

İlk jenerasyon: Vakum tüpleri

- ENIAC (Electronic Numerical Integrator and Computer) ilk genel amaçlı elektronik bilgisayardır.
- ENIAC 1946 yılında tamamlanmıştır. 30 ton ağırlığında yaklaşık 1500 m² ve 17000 adet vakum tüpten oluşmaktaydı.
- ENIAC 140 kW gücünde ve saniyede 5000 toplama işlemi yapabiliyordu.
- John von Neumann 1945 yılında hem datanın hem de programın hafızada saklanması fikrini ortaya atmış ve EDVAC (Electronic Discrete Variable Computer) isimli bilgisayarı geliştirmiştir. (stored-program)
- Daha sonraki yıllarda UNIVAC (Universal Automatic Computer) gibi ticari bilgisayarlar geliştirilmiştir.

İkinci jenerasyon: Transistörler (10.000 transistörden oluşan bilgisayar)

- Elektronik bilgisayarlardaki en büyük değişim vakum tüplerin yerine transistörlerin kullanılmaya başlanmasıdır.
- Transistör 1947 yılında Bell laboratuarlarında bulunmuştur.
- 1950'li yılların sonlarında komple transistörlerden oluşan bilgisayarlar üretilmiştir.

Üçüncü jenerasyon : Entegre devreler

 Entegre devreler çok sayıda discrete eleman'dan (transistör) oluşmaktadır. Small/Medium Scale Integration olarak adlandırılır.

Dördüncü jenerasyon

Large Scale Integration (bir chip içinde 1.000 transistör)

Beşinci jenerasyon

Very Large Scale Integration (bir chip içinde 10.000 transistör)

Altıncı jenerasyon

Ultra Large Scale Integration (bir chip içinde 1 milyondan çok transistör)

Tarihsel Gelişim Bilgisayar jenerasyonları Approximate Dates **Typical Speed** (operations per second) Technology Generation 40,000 1946-1957 Vacuum tube 200,000 1958-1964 Transistor 1,000,000 1965-1971 Small and medium scale integration 10,000,000 1972-1977 Large scale integration 100,000,000 1978-1991 Very large scale integration 1,000,000,000 1991-Ultra large scale integration

Mikroişlemci çağı

- Intel 1971 yılında ilk mikroişlemci olan 4004 'ü geliştirdi.
 - 4096 hafıza alanı adresleme kapasitesine sahiptir.
 - Her adres alanı 4 bit (nibble) genişliğindedir.
 - 4004 mikroişlemci komut kümesinde toplam 45 komut vardır.
 - Saniyede 50 KIPs (kilo-instructions per seconds) hızındadır.
 - 1946 yılında geliştirilen 30 ton ağırlığındaki ENIAC bilgisayar 100 KIPs hızındadır.
 - 4004 daha yavaştır ancak çok daha hafiftir.
- Intel 1972 yılında 8008 mikroişlemciyi geliştirdi.
 - 4004 mikroişlemcinin 8-bit versiyonudur.
 - 8008 16 KByte adresleme kapasitesine sahiptir.
 - 8008 komut seti toplam 48 komut vardır.

Tarihsel Gelişim

Mikroişlemci çağı (devam)

- Intel 1974 yılında 8080 'i geliştirdi.
 - 64 KByte hafıza alanı adresleme kapasitesine sahiptir.
 - 8008'den 10 kat daha hızlıdır (500 KIPs)
 - MITS Altair 8800 bilgisayarda kullanılmıştır.
 - MITS Altair 8800 için BASIC dili yorumlayıcısı 1975 yılında Bill Gates ve Paul Allen tarafından geliştirilmiştir.
 - MITS Altair 8800 için assembler programı Digital research Corporation tarafından geliştirilmiştir.
- Intel 1977 yılında 8085 mikroişlemciyi geliştirdi.
 - 64 KByte hafıza alanı adresleme kapasitesine sahiptir.
 - Intel'in son 8-bit mikroişlemcidir.
 - Yaklaşık 769 KIPs hızındadır.

Modern mikroişlemciler

- Intel 1978 yılında 8086 ve bir yıl sonra 8088'i geliştirdi.
 - 16 bit mikroişlemcilerdir.
 - 1 MByte hafıza alanı adresleme kapasitesine sahiptirler (8085'ten 16 kat fazla).
 - 2.5 MIPs hizindadir (bir instruction 400ns).
 - 8086/8088 işlemcilerde ilk defa 4-6 byte cache kullanılmıştır ve bazı instruction'lar prefetch yapılmıştır.
- Intel 1983 yılında 80286 mikroişlemciyi geliştirdi.
 - 16-bit mikroişlemcidir.
 - 16 MByte adresleme kapasitesine sahiptir.
 - 4 MIPs hizindadir.

Tarihsel Gelişim

Modern mikroişlemciler(devam)

- Intel 1986 yılında 80386 mikroişlemciyi geliştirdi.
 - Intel'in ilk 32 bit mikroislemcilerdir.
 - 32 bit data bus ve 32 bit adres bus'a sahiptir.
 - 2³² = 4 GByte adresleme kapasitesine sahiptir.
- Intel 1989 yılında 80486 mikroişlemciyi geliştirdi.
 - 32-bit mikroişlemcidir.
 - 8 KByte cache'i içinde bulundurur.
 - 50 MIPs hizindadir.
- Intel 1993 yılında Pentium mikroişlemciyi geliştirdi.
 - 32-bit mikroişlemcidir.
 - 4 GByte adresleme kapasitesine sahiptir.
 - 16 KByte split cache vardır (8 KB instruction, 8 KB data).
 - 110 MIPs veya 150 MIPs hızlarında versiyonları vardır.
 - En büyük yenilik 2 adet integer işlemciye sahip olmasıdır.

Modern mikroişlemciler(devam)

- Intel 1995 yılında Pentium Pro mikroişlemciyi geliştirdi.
 - Intel'in ilk 64 bit mikroişlemcilerdir.
 - 3 tane integer unit ve 1 adet floating-point unit vardır.
 - 2³⁶ = 64 GByte adresleme kapasitesine sahiptir. (adres bus = 36 bit)
 - 16 KB (8K data + 8K instruction) on-chip L1 cache ve 256 KB L2 cache vardır.
- Intel 1997 yılında Pentium II mikroişlemciyi geliştirdi.
 - 64-bit mikroişlemcidir.
 - L2 cache Pentium işlemcide 60-66Mhz system bus ile çalışır.
 - Pentium II ve L2 cache ayrı bir board üzerindedir ve L2 cache 133 MHz hızla çalışır ve 512 KB boyutundadır.
 - Pentium II Xeon 32 KB L1 cache ve 512 KB, 1 MB, 2M L2 cache'e sahiptir.

Tarihsel Gelişim

Modern mikroişlemciler(devam)

- Intel 1999 yılında Pentium III mikroişlemciyi geliştirdi.
 - 64 bit mikroişlemcidir.
 - 1 GHz clock frekansla çalışır.
 - 2³⁶ = 64 GByte adresleme kapasitesine sahiptir. (adres bus = 36 bit)
 - 512 KB veya 256 KB cache vardır.
 - Memory bus speed 100 MHz' dir.
 - Celeron işlemciler 66 MHz memory bus clock hızına sahiptir.
- Intel 2000 yılında Pentium 4 mikroişlemciyi geliştirdi.
 - 64-bit mikroişlemcidir.
 - 3.2 GHz clock frekansla çalışır.
 - L1 cache 8-32 KB, L2 cache 256-512 KB.

Taribaal	Caliaim			
rarinsei	Gelişim			
nikroişlemcile	rin golicimi i	(dovam)		
liki dişterilet		(c) 1990s Processor	s	
	486TM SX	Pentium	Pentium Pro	Pentium II
Introduced	1991	1993	1995	1997
Clock speeds	16 MHz-33 MHz	60 MHz-166 MHz,	150 MHz-200 MHz	200 MHz-300 MHz
Bus width	32 bits	32 bits	64 bits	64 bits
Number of transistors	1.185 million	3.1 million	5.5 million	7.5 million
Feature size (µm)	1	0.8	0.6	0.35
Addressable memory	4 gigabytes	4 gigabytes	64 gigabytes	64 gigabytes
Virtual memory	64 terabytes	64 terabytes	64 terabytes	64 terabytes
		d) Recent Processo	rs	
	Pentium III	Pentium 4	Itanium	Itanium 2
Introduced	1999	2000	2001	2002
Clock Speeds	450-660 MH:	z 1.3-1.8 GHz	733-800 MHz	900 MHz-1 GH
Bus Width	64 bits	64 bits	64 bits	64 bits
Number of Transistors	9.5 million	42 million	25 million	220 million
Feature size (µm)	0.25	0.18	0.18	0.18
Addressable Memory	64 gigabytes	64 gigabytes	64 gigabytes	64 gigabytes
Virtual Memory	64 terabytes	64 terabytes	64 terabytes	64 terabytes

laril	nsel Gelişim		
el ve Motoro	la mikroişlemciler (de	evam)	
	Pentium II	64	64G + 32K L1 cache + 256K L2 cache
	Pentium III	64	64G + 32K L1 cache + 256K L2 cache
	Pentium 4	64	64G + 8K L1 cache + 512K L2 cache (or larger)
Motorola	6800	8	64K
	6805	8	2K
	6809	8	64K
	68000	16	16M
	68008D	8	4M
	68008Q	8	1M
	68010	16	16M
	68020	32	4G
	68030	32	4G + 256 cache
	68040	32	4G + 8K cache
	68050	32	Proposed, but never released
	68060	64	4G + 16K cache
	PowerPC	64	4G + 32K cache

 Mikroişlemcilerin performans testleri ve ilgili test yazılımlarıyla ilgili bir rapor hazırlayınız.