

WEST Search History

[Hide Items](#) [Restore](#) [Clear](#) [Cancel](#)

DATE: Tuesday, July 13, 2004

<u>Hide?</u>	<u>Set Name</u>	<u>Query</u>	<u>Hit Count</u>
<i>DB=PGPB,USPT,USOC,EPAB,JPAB,DWPI; PLUR=YES; OP=ADJ</i>			
<input type="checkbox"/>	L23	L22 AND human	33
<input type="checkbox"/>	L22	sodium-calcium exchanger	35
<input type="checkbox"/>	L21	L20 AND sodium-calcium exchanger	4
<input type="checkbox"/>	L20	536/23.1,23.5.CCLS.	17157
<input type="checkbox"/>	L19	L18 AND human sodium-calcium exchanger	0
<input type="checkbox"/>	L18	435/325.CCLS.	15274
<input type="checkbox"/>	L17	SLC8A3	1
<input type="checkbox"/>	L16	Carafoli.IN.	0
<input type="checkbox"/>	L15	Carafoli-E.IN.	0
<input type="checkbox"/>	L14	Danieli.IN.	194
<input type="checkbox"/>	L13	Danieli-G.IN.	7
<input type="checkbox"/>	L12	Danieli-G-.IN.	7
<input type="checkbox"/>	L11	Danieli-G-A.IN.	12
<input type="checkbox"/>	L10	Bortoluzzi.IN.	37
<input type="checkbox"/>	L9	Bortoluzzi-S.IN.	37
<input type="checkbox"/>	L8	Gabellini-N.IN.	0
<input type="checkbox"/>	L7	Gabellini.IN.	11
<input type="checkbox"/>	L6	Hilbun.IN.	69
<input type="checkbox"/>	L5	Hilbun-E.IN.	28
<input type="checkbox"/>	L4	Hilbun-Erin.IN.	35
<input type="checkbox"/>	L3	Friddle.IN.	103
<input type="checkbox"/>	L2	Friddle-C.IN.	0
<input type="checkbox"/>	L1	(Friddle-Carl.IN.)	0

END OF SEARCH HISTORY

National
Library
of Medicine

Entrez	PubMed	Nucleotide	Protein	Genome	Structure	OMM	PMC	Journals	Books
Search [PubMed]				for sodium calcium exchanger AND human			<input type="button" value="Go"/>	<input type="button" value="Clear"/>	
				Limits	Preview/Index	History	Clipboard	Details	

About Entrez

[Text Version](#)

Entrez PubMed

Overview

[Help | FAQ](#)

Tutorial

New/Noteworthy

E-Utilities

PubMed Services

Journals Database

MeSH Database

Single Citation Matcher

Batch Citation Matcher

Clinical Queries

LinkOut

Cubby

Related Resources

Order Documents

NLM Gateway

TOXNET

Consumer Health

Clinical Alerts

ClinicalTrials.gov

PubMed Central

Display Summary Show: 500 Sort Send to Text

Items 1-391 of 391

One page.

1: [Tintinger GR, Anderson R.](#) Related Articles, Links

Counteracting effects of NADPH oxidase and the Na+/Ca²⁺ exchanger on membrane repolarisation and store-operated uptake of Ca²⁺ by chemoattractant-activated human neutrophils.
Biochem Pharmacol. 2004 Jun 15;67(12):2263-71.
PMID: 15163557 [PubMed - indexed for MEDLINE]

2: [Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG.](#) Related Articles, Links

Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca²⁺ exchanger.
Proc Natl Acad Sci U S A. 2004 May 25;101(21):8168-73. Epub 2004 May 17.
PMID: 15148385 [PubMed - indexed for MEDLINE]

3: [El-Armouche A, Jaeckel E, Boheler KR, Boknik P, Hertle B, Neumann J, Eschenhagen T.](#) Related Articles, Links

Ouabain treatment is associated with upregulation of phosphatase inhibitor-1 and Na+/Ca(2+)-exchanger and beta-adrenergic sensitization in rat hearts.
Biochem Biophys Res Commun. 2004 May 21;318(1):219-26.
PMID: 15110776 [PubMed - indexed for MEDLINE]

4: [Palty R, Ohana E, Hershfinkel M, Volokita M, Elgazar V, Beharier O, Silverman WF, Argaman M, Sekler I.](#) Related Articles, Links

Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger.
J Biol Chem. 2004 Jun 11;279(24):25234-40. Epub 2004 Apr 01.
PMID: 15060069 [PubMed - indexed for MEDLINE]

5: [Osborne NN, Wood JP, Chidlow G, Casson R, DeSantis L, Schmidt KG.](#) Related Articles, Links

Effectiveness of levobetaxolol and timolol at blunting retinal ischaemia is related to their calcium and sodium blocking activities: relevance to glaucoma.
Brain Res Bull. 2004 Feb 15;62(6):525-8. Review.
PMID: 15036567 [PubMed - indexed for MEDLINE]

6: [Diaz-Horta O, Van Eylen F, Herchuelz A.](#) Related Articles, Links

Na/Ca exchanger overexpression induces endoplasmic reticulum stress, caspase-12 release, and apoptosis.
Ann N Y Acad Sci. 2003 Dec;1010:430-2.
PMID: 15033764 [PubMed - indexed for MEDLINE]

7: [Hegde M, Roscoe J, Cala P, Gorin F.](#) Related Articles, Links

Amiloride kills malignant glioma cells independent of its inhibition of the sodium-hydrogen exchanger.
J Pharmacol Exp Ther. 2004 Jul;310(1):67-74. Epub 2004 Mar 09.
PMID: 15010500 [PubMed - in process]

- 8: [Roberts DE, McNicol A, Bose R.](#) [Related Articles](#), [Links](#)
- Mechanism of collagen activation in human platelets.
J Biol Chem. 2004 May 7;279(19):19421-30. Epub 2004 Feb 23.
PMID: 14981087 [PubMed - indexed for MEDLINE]
- 9: [Yasumura Y, Takemura K, Sakamoto A, Kitakaze M, Miyatake K.](#) [Related Articles](#), [Links](#)
- Changes in myocardial gene expression associated with beta-blocker therapy in patients with chronic heart failure.
J Card Fail. 2003 Dec;9(6):469-74.
PMID: 14966788 [PubMed - indexed for MEDLINE]
- 10: [Seemann G, Sachse FB, Weiss DL, Dossel O.](#) [Related Articles](#), [Links](#)
- Quantitative reconstruction of cardiac electromechanics in human myocardium: regional heterogeneity.
J Cardiovasc Electrophysiol. 2003 Oct;14(10 Suppl):S219-28.
PMID: 14760927 [PubMed - indexed for MEDLINE]
- 11: [Varro A, Biliczki P, Jost N, Virág L, Hala O, Kovács P, Matyus P, Papp JG.](#) [Related Articles](#), [Links](#)
- Theoretical possibilities for the development of novel antiarrhythmic drugs.
Curr Med Chem. 2004 Jan;11(1):1-11. Review.
PMID: 14754422 [PubMed - indexed for MEDLINE]
- 12: [Ikeda M, Nagashima T, Bhattacharjee AK, Kondoh T, Kohmura E, Tamaki N.](#) [Related Articles](#), [Links](#)
- Quantitative analysis of hyperosmotic and hypothermic blood-brain barrier opening.
Acta Neurochir Suppl. 2003;86:559-63.
PMID: 14753506 [PubMed - indexed for MEDLINE]
- 13: [Rosker C, Graziani A, Lukas M, Eder P, Zhu MX, Romanin C, Groschner K.](#) [Related Articles](#), [Links](#)
- Ca(2+) signaling by TRPC3 involves Na(+) entry and local coupling to the Na(+)/Ca(2+) exchanger.
J Biol Chem. 2004 Apr 2;279(14):13696-704. Epub 2004 Jan 21.
PMID: 14736881 [PubMed - indexed for MEDLINE]
- 14: [Amran MS, Homma N, Hashimoto K.](#) [Related Articles](#), [Links](#)
- Pharmacology of KB-R7943: a Na+-Ca2+ exchange inhibitor.
Cardiovasc Drug Rev. 2003 Winter;21(4):255-76. Review.
PMID: 14647531 [PubMed - indexed for MEDLINE]
- 15: [Cai X, Lytton J.](#) [Related Articles](#), [Links](#)
- Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+ exchanger gene family, NCKX6.
J Biol Chem. 2004 Feb 13;279(7):5867-76. Epub 2003 Nov 18.
PMID: 14625281 [PubMed - indexed for MEDLINE]
- 16: [Rizzuto R.](#) [Related Articles](#), [Links](#)
- Calcium mobilization from mitochondria in synaptic transmitter release.
J Cell Biol. 2003 Nov 10;163(3):441-3. Review.
PMID: 14610050 [PubMed - indexed for MEDLINE]
- 17: [Hill JA.](#) [Related Articles](#), [Links](#)
- Electrical remodeling in cardiac hypertrophy.
Trends Cardiovasc Med. 2003 Nov;13(8):316-22. Review.
PMID: 14596946 [PubMed - indexed for MEDLINE]
- 18: [Reeves JP, Condrescu M.](#) [Related Articles](#), [Links](#)

- Allosteric activation of sodium-calcium exchange activity by calcium: persistence at low calcium concentrations.
J Gen Physiol. 2003 Nov;122(5):621-39.
PMID: 14581586 [PubMed - indexed for MEDLINE]
- 19: [Ohana E](#), [Segal D](#), [Palty R](#), [Ton-That D](#), [Moran A](#), [Sensi SL](#), [Weiss JH](#), [Hershfinkel M](#), [Sekler L](#). Related Articles, Links
A sodium zinc exchange mechanism is mediating extrusion of zinc in mammalian cells.
J Biol Chem. 2004 Feb 6;279(6):4278-84. Epub 2003 Oct 27.
PMID: 14581475 [PubMed - indexed for MEDLINE]
- 20: [Khan SA](#), [Hare JM](#). Related Articles, Links
The role of nitric oxide in the physiological regulation of Ca²⁺ cycling.
Curr Opin Drug Discov Devel. 2003 Sep;6(5):658-66. Review.
PMID: 14579515 [PubMed - indexed for MEDLINE]
- 21: [Weber CR](#), [Piacentino V](#), [3rd](#), [Houser SR](#), [Bers DM](#). Related Articles, Links
Dynamic regulation of sodium/calcium exchange function in human heart failure.
Circulation. 2003 Nov 4;108(18):2224-9. Epub 2003 Oct 13.
PMID: 14557358 [PubMed - indexed for MEDLINE]
- 22: [Sergeeva OA](#), [Amberger BT](#), [Eriksson KS](#), [Scherer A](#), [Haas HL](#). Related Articles, Links
Co-ordinated expression of 5-HT_{2C} receptors with the NCX1 Na⁺/Ca²⁺ exchanger in histaminergic neurones.
J Neurochem. 2003 Nov;87(3):657-64.
PMID: 14535948 [PubMed - indexed for MEDLINE]
- 23: [Bers DM](#), [Eisner DA](#), [Valdivia HH](#). Related Articles, Links
Sarcoplasmic reticulum Ca²⁺ and heart failure: roles of diastolic leak and Ca²⁺ transport.
Circ Res. 2003 Sep 19;93(6):487-90. No abstract available.
PMID: 14500331 [PubMed - indexed for MEDLINE]
- 24: [Bernecker OY](#), [del Monte F](#), [Hajjar RJ](#). Related Articles, Links
Gene therapy for the treatment of heart failure--calcium signaling.
Semin Thorac Cardiovasc Surg. 2003 Jul;15(3):268-76. Review.
PMID: 12973704 [PubMed - indexed for MEDLINE]
- 25: [Malli R](#), [Frieden M](#), [Osibow K](#), [Zoratti C](#), [Mayer M](#), [Demaurex N](#), [Graier WF](#). Related Articles, Links
Sustained Ca²⁺ transfer across mitochondria is Essential for mitochondrial Ca²⁺ buffering, store-operated Ca²⁺ entry, and Ca²⁺ store refilling.
J Biol Chem. 2003 Nov 7;278(45):44769-79. Epub 2003 Aug 26.
PMID: 12941956 [PubMed - indexed for MEDLINE]
- 26: [Schuh K](#), [Quaschning T](#), [Knauer S](#), [Hu K](#), [Kocak S](#), [Roethlein N](#), [Neyses L](#). Related Articles, Links
Regulation of vascular tone in animals overexpressing the sarcolemmal calcium pump.
J Biol Chem. 2003 Oct 17;278(42):41246-52. Epub 2003 Aug 04.
PMID: 12900399 [PubMed - indexed for MEDLINE]
- 27: [Kang K](#), [Schnetkamp PP](#). Related Articles, Links
Signal sequence cleavage and plasma membrane targeting of the retinal rod NCKX1 and cone NCKX2 Na⁺/Ca²⁺ - K⁺ exchangers.
Biochemistry. 2003 Aug 12;42(31):9438-45.
PMID: 12899631 [PubMed - indexed for MEDLINE]

- 28:** Gupta A, Gupta S, Tiwary AK. [Related Articles](#), [Links](#)
 Spermicidal efficacy of H₂-receptor antagonists and potentiation with 2', 4'-dichlorobenzamil hydrochloride: role of intrasperm Ca²⁺. *Contraception*. 2003 Jul;68(1):61-4.
 PMID: 12878289 [PubMed - indexed for MEDLINE]
- 29:** Kiang JG, McClain DE, Warke VG, Krishnan S, Tsokos GC. [Related Articles](#), [Links](#)
 Constitutive NO synthase regulates the Na⁺/Ca²⁺ exchanger in human T cells: role of [Ca²⁺]i and tyrosine phosphorylation. *J Cell Biochem*. 2003 Aug 1;89(5):1030-43.
 PMID: 12874836 [PubMed - indexed for MEDLINE]
- 30:** Doggrell SA, Hancox JC. [Related Articles](#), [Links](#)
 Is timing everything? Therapeutic potential of modulators of cardiac Na(+) transporters. *Expert Opin Investig Drugs*. 2003 Jul;12(7):1123-42. Review.
 PMID: 12831348 [PubMed - indexed for MEDLINE]
- 31:** Kawano S, Otsu K, Shoji S, Yamagata K, Hiraoka M. [Related Articles](#), [Links](#)
 Ca(2+) oscillations regulated by Na(+)–Ca(2+) exchanger and plasma membrane Ca(2+) pump induce fluctuations of membrane currents and potentials in human mesenchymal stem cells. *Cell Calcium*. 2003 Aug;34(2):145-56.
 PMID: 12810056 [PubMed - indexed for MEDLINE]
- 32:** Reddy HK, Wasson S, Koshy SK, Komatireddy R. [Related Articles](#), [Links](#)
 Structural correlates of electrical remodeling in ventricular hypertrophy. *Cardiovasc Res*. 2003 Jun 1;58(3):495-7. No abstract available.
 PMID: 12798420 [PubMed - indexed for MEDLINE]
- 33:** Moreau R, Daoud G, Masse A, Simoneau L, Lafond J. [Related Articles](#), [Links](#)
 Expression and role of calcium-ATPase pump and sodium-calcium exchanger in differentiated trophoblasts from human term placenta. *Mol Reprod Dev*. 2003 Jul;65(3):283-8.
 PMID: 12784250 [PubMed - indexed for MEDLINE]
- 34:** Blank ME, Elmke H. [Related Articles](#), [Links](#)
 Aquaporin-1 and HCO₃(-)–Cl⁻ transporter-mediated transport of CO₂ across the human erythrocyte membrane. *J Physiol*. 2003 Jul 15;550(Pt 2):419-29. Epub 2003 May 16.
 PMID: 12754312 [PubMed - indexed for MEDLINE]
- 35:** Wald FA, Figueroa Y, Oriolo AS, Salas PJ. [Related Articles](#), [Links](#)
 Membrane repolarization is delayed in proximal tubules after ischemia-reperfusion: possible role of microtubule-organizing centers. *Am J Physiol Renal Physiol*. 2003 Aug;285(2):F230-40. Epub 2003 Apr 22.
 PMID: 12709392 [PubMed - indexed for MEDLINE]
- 36:** Kang K, Bauer PJ, Kinjo TG, Szerencsei RT, Bonigk W, Winkfein RJ, Schnetkamp PP. [Related Articles](#), [Links](#)
 Assembly of retinal rod or cone Na(+)–Ca(2+)–K(+) exchanger oligomers with cGMP-gated channel subunits as probed with heterologously expressed cDNAs. *Biochemistry*. 2003 Apr 22;42(15):4593-600.
 PMID: 12693957 [PubMed - indexed for MEDLINE]
- 37:** Bolli R. [Related Articles](#), [Links](#)

- The role of sodium-hydrogen ion exchange in patients undergoing coronary artery bypass grafting.
J Card Surg. 2003 Jan-Feb;18 Suppl 1:21-6. Review.
PMID: 12691376 [PubMed - indexed for MEDLINE]
- 38: Schillinger W, Ohler A, Emami S, Muller F, Christians C, Janssen Related Articles, Links
PM, Kogler H, Teucher N, Pieske B, Seidler T, Hasenfuss G.
- The functional effect of adenoviral Na⁺/Ca²⁺ exchanger overexpression in rabbit myocytes depends on the activity of the Na⁺/K⁺-ATPase.
Cardiovasc Res. 2003 Mar 15;57(4):996-1003.
PMID: 12650877 [PubMed - indexed for MEDLINE]
- 39: Weisser-Thomas J, Piacentino V 3rd, Gaughan JP, Margulies K, Houser SR Related Articles, Links
- Calcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes.
Cardiovasc Res. 2003 Mar 15;57(4):974-85.
PMID: 12650875 [PubMed - indexed for MEDLINE]
- 40: Allen DG, Xiao XH. Related Articles, Links
- Role of the cardiac Na⁺/H⁺ exchanger during ischemia and reperfusion.
Cardiovasc Res. 2003 Mar 15;57(4):934-41. Review.
PMID: 12650871 [PubMed - indexed for MEDLINE]
- 41: Schillinger W, Fiolet JW, Schlotthauer K, Hasenfuss G. Related Articles, Links
- Relevance of Na⁺-Ca²⁺ exchange in heart failure.
Cardiovasc Res. 2003 Mar 15;57(4):921-33. Review. No abstract available.
PMID: 12650870 [PubMed - indexed for MEDLINE]
- 42: Piper HM, Meuter K, Schafer C. Related Articles, Links
- Cellular mechanisms of ischemia-reperfusion injury.
Ann Thorac Surg. 2003 Feb;75(2):S644-8. Review.
PMID: 12607706 [PubMed - indexed for MEDLINE]
- 43: Muller-Ehmsen J, Nickel J, Zobel C, Hirsch I, Bolek B, Brixius K, Swinger RH. Related Articles, Links
- Longer term effects of ouabain on the contractility of rat isolated cardiomyocytes and on the expression of Ca and Na regulating proteins.
Basic Res Cardiol. 2003 Mar;98(2):90-6.
PMID: 12607130 [PubMed - indexed for MEDLINE]
- 44: Piacentino V 3rd, Weber CR, Chen X, Weisser-Thomas J, Margulies KB, Bers DM, Houser SR. Related Articles, Links
- Cellular basis of abnormal calcium transients of failing human ventricular myocytes.
Circ Res. 2003 Apr 4;92(6):651-8. Epub 2003 Feb 20.
PMID: 12600875 [PubMed - indexed for MEDLINE]
- 45: Pogwizd SM. Related Articles, Links
- Clinical potential of sodium-calcium exchanger inhibitors as antiarrhythmic agents.
Drugs. 2003;63(5):439-52. Review.
PMID: 12600224 [PubMed - indexed for MEDLINE]
- 46: Kinjo TG, Szerencsei RT, Winkfein RJ, Kang K, Schnetkamp PP. Related Articles, Links
- Topology of the retinal cone NCKX2 Na/Ca-K exchanger.
Biochemistry. 2003 Mar 4;42(8):2485-91.
PMID: 12600216 [PubMed - indexed for MEDLINE]
- 47: Prinsen CF, Cooper CB, Szerencsei RT, Murthy SK, Demetrick Related Articles, Links

- [D.J. Schnetkamp PP.](#)
- [The retinal rod and cone Na⁺/Ca²⁺-K⁺ exchangers.](#)
Adv Exp Med Biol. 2002;514:237-51. Review.
PMID: 12596925 [PubMed - indexed for MEDLINE]
- 48:** [Lakatta EG, Maltsev VA, Bogdanov KY, Stern MD, Vinogradova TM.](#) [Related Articles](#), [Links](#)
- [Cyclic variation of intracellular calcium: a critical factor for cardiac pacemaker cell dominance.](#)
Circ Res. 2003 Feb 21;92(3):e45-50. Review.
PMID: 12595348 [PubMed - indexed for MEDLINE]
- 49:** [Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogne K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, Le Marec H, Bennett V.](#) [Related Articles](#), [Links](#)
- [Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death.](#)
Nature. 2003 Feb 6;421(6923):634-9.
PMID: 12571597 [PubMed - indexed for MEDLINE]
- 50:** [Nattel S.](#) [Related Articles](#), [Links](#)
- [Human genetics: Lost anchors cost lives.](#)
Nature. 2003 Feb 6;421(6923):587, 589-90. No abstract available.
PMID: 12571577 [PubMed - indexed for MEDLINE]
- 51:** [Gahellini N, Bortoluzzi S, Danieli GA, Carafoli E.](#) [Related Articles](#), [Links](#)
- [Control of the Na⁺/Ca²⁺ exchanger 3 promoter by cyclic adenosine monophosphate and Ca²⁺ in differentiating neurons.](#)
J Neurochem. 2003 Jan;84(2):282-93.
PMID: 12558991 [PubMed - indexed for MEDLINE]
- 52:** [Del Monte F, Johnson CM, Stepanek AC, Doye AA, Gwathmey JK.](#) [Related Articles](#), [Links](#)
- [Defects in calcium control.](#)
J Card Fail. 2002 Dec;8(6 Suppl):S421-31.
PMID: 12555155 [PubMed - indexed for MEDLINE]
- 53:** [Duan J, Zhang HY, Adkins SD, Ren BH, Norby FL, Zhang X, Benoit JN, Epstein PN, Ren J.](#) [Related Articles](#), [Links](#)
- [Impaired cardiac function and IGF-I response in myocytes from calmodulin-diabetic mice: role of Akt and RhoA.](#)
Am J Physiol Endocrinol Metab. 2003 Feb;284(2):E366-76.
PMID: 12531745 [PubMed - indexed for MEDLINE]
- 54:** [Abramov AY, Duchene MR.](#) [Related Articles](#), [Links](#)
- [Actions of ionomycin, 4-BrA23187 and a novel electrogenic Ca²⁺ ionophore on mitochondria in intact cells.](#)
Cell Calcium. 2003 Feb;33(2):101-12.
PMID: 12531186 [PubMed - indexed for MEDLINE]
- 55:** [Winkfein RJ, Szerencsei RT, Kinjo TG, Kang K, Perizzolo M, Eisner L, Schnetkamp PP.](#) [Related Articles](#), [Links](#)
- [Scanning mutagenesis of the alpha repeats and of the transmembrane acidic residues of the human retinal cone Na/Ca-K exchanger.](#)
Biochemistry. 2003 Jan 21;42(2):543-52.
PMID: 12525183 [PubMed - indexed for MEDLINE]
- 56:** [del Monte F, Hajjar RJ.](#) [Related Articles](#), [Links](#)
- [Targeting calcium cycling proteins in heart failure through gene transfer.](#)
J Physiol. 2003 Jan 1;546(Pt 1):49-61. Review.

PMID: 12509478 [PubMed - indexed for MEDLINE]

- 57: [Moreau R, Simoneau L, Lafond J.](#) [Related Articles](#), [Links](#)

 Calcium fluxes in human trophoblast (BeWo) cells: calcium channels, calcium-ATPase, and sodium-calcium exchanger expression.
Mol Reprod Dev. 2003 Feb;64(2):189-98.
PMID: 12506351 [PubMed - indexed for MEDLINE]

- 58: [Terracciano C.](#) [Related Articles](#), [Links](#)

 Functional consequences of Na/Ca exchanger overexpression in cardiac myocytes.
Ann N Y Acad Sci. 2002 Nov;976:520-7.
PMID: 12502606 [PubMed - indexed for MEDLINE]

- 59: [Bers DM, Weber CR.](#) [Related Articles](#), [Links](#)

 Na/Ca exchange function in intact ventricular myocytes.
Ann N Y Acad Sci. 2002 Nov;976:500-12.
PMID: 12502604 [PubMed - indexed for MEDLINE]

- 60: [Weber CR, Piacentino V 3rd, Margulies KB, Bers DM, Houser SR.](#) [Related Articles](#), [Links](#)

 Calcium influx via I(NCX) is favored in failing human ventricular myocytes.
Ann N Y Acad Sci. 2002 Nov;976:478-9. No abstract available.
PMID: 12502599 [PubMed - indexed for MEDLINE]

- 61: [Piacentino V 3rd, Margulies KB, Houser SR.](#) [Related Articles](#), [Links](#)

 Ca influx via the Na/Ca exchanger maintains sarcoplasmic reticulum Ca content in failing human myocytes.
Ann N Y Acad Sci. 2002 Nov;976:476-7. No abstract available.
PMID: 12502598 [PubMed - indexed for MEDLINE]

- 62: [Piacentino V 3rd, Weber CR, Gaughan JP, Margulies KB, Bers DM, Houser SR.](#) [Related Articles](#), [Links](#)

 Modulation of contractility in failing human myocytes by reverse-mode Na/Ca exchange.
Ann N Y Acad Sci. 2002 Nov;976:466-71. Review.
PMID: 12502596 [PubMed - indexed for MEDLINE]

- 63: [Sipido KR, Volders PG, Schoenmakers M, De Groot SH, Verdonck F, Vos MA.](#) [Related Articles](#), [Links](#)

 Role of the Na/Ca exchanger in arrhythmias in compensated hypertrophy.
Ann N Y Acad Sci. 2002 Nov;976:438-45. Review.
PMID: 12502593 [PubMed - indexed for MEDLINE]

- 64: [Murphy E, Cross HR, Steenbergen C.](#) [Related Articles](#), [Links](#)

 Is Na/Ca exchange during ischemia and reperfusion beneficial or detrimental?
Ann N Y Acad Sci. 2002 Nov;976:421-30. Review.
PMID: 12502591 [PubMed - indexed for MEDLINE]

- 65: [Tortiglione A, Pignataro G, Minale M, Secondo A, Scorziello A, Di Renzo GF, Amoroso S, Caliendo G, Santagada V, Annunziato L.](#) [Related Articles](#), [Links](#)

 Na⁺/Ca²⁺ exchanger in Na⁺ efflux-Ca²⁺ influx mode of operation exerts a neuroprotective role in cellular models of in vitro anoxia and in vivo cerebral ischemia.
Ann N Y Acad Sci. 2002 Nov;976:408-12. No abstract available.
PMID: 12502588 [PubMed - indexed for MEDLINE]

- 66:** [Lyton J, Li XF, Dong H, Kraev A.](#) [Related Articles](#), [Links](#)
K+-dependent Na+/Ca2+ exchangers in the brain.
Ann N Y Acad Sci. 2002 Nov;976:382-93.
PMID: 12502585 [PubMed - indexed for MEDLINE]
- 67:** [Bose R, Li Y, Roberts D.](#) [Related Articles](#), [Links](#)
Na+/Ca2+ exchange in activated and nonactivated human platelets.
Ann N Y Acad Sci. 2002 Nov;976:350-3. No abstract available.
PMID: 12502580 [PubMed - indexed for MEDLINE]
- 68:** [Roberts DE, Bose R.](#) [Related Articles](#), [Links](#)
Reverse mode Na+/Ca2+ exchange in the collagen activation of human platelets.
Ann N Y Acad Sci. 2002 Nov;976:345-9. No abstract available.
PMID: 12502579 [PubMed - indexed for MEDLINE]
- 69:** [Gabellini N, Borghesani S, Danieli GA, Catafani E](#) [Related Articles](#), [Links](#)
The gene promoter of human Na+/Ca2+ exchanger isoform 3 (SLC8A3) is controlled by cAMP and calcium.
Ann N Y Acad Sci. 2002 Nov;976:282-4. No abstract available.
PMID: 12502570 [PubMed - indexed for MEDLINE]
- 70:** [Jordan MC, Quednau BD, Roos KP, Ross RS, Philipson KD, Nicholas SB](#) [Related Articles](#), [Links](#)
Cyclosporin A regulates sodium-calcium exchanger (NCX1) gene expression in vitro and cardiac hypertrophy in NCX1 transgenic mice.
Ann N Y Acad Sci. 2002 Nov;976:259-67.
PMID: 12502568 [PubMed - indexed for MEDLINE]
- 71:** [Schulze DH, Polumuri SK, Gille T, Ruknudin A](#) [Related Articles](#), [Links](#)
Functional regulation of alternatively spliced Na+/Ca2+ exchanger (NCX1) isoforms.
Ann N Y Acad Sci. 2002 Nov;976:187-96. Review.
PMID: 12502560 [PubMed - indexed for MEDLINE]
- 72:** [Rahamimoff H, Ren X, Kimchi-Sarfaty C, Ambudkar S, Kasir J](#) [Related Articles](#), [Links](#)
NCX1 surface expression: a tool to identify structural elements of functional importance.
Ann N Y Acad Sci. 2002 Nov;976:176-86.
PMID: 12502559 [PubMed - indexed for MEDLINE]
- 73:** [Dong H, Dunn J, Lytton J](#) [Related Articles](#), [Links](#)
Electrophysiological studies of the cloned rat cardiac NCX1.1 in transfected HEK cells: a focus on the stoichiometry.
Ann N Y Acad Sci. 2002 Nov;976:159-65. No abstract available.
PMID: 12502557 [PubMed - indexed for MEDLINE]
- 74:** [Lytton J, Dong H](#) [Related Articles](#), [Links](#)
Rat heart NCX1.1 stoichiometry measured in a transfected cell system.
Ann N Y Acad Sci. 2002 Nov;976:137-41.
PMID: 12502552 [PubMed - indexed for MEDLINE]
- 75:** [Yoo SS, Leach S, Lytton J](#) [Related Articles](#), [Links](#)
Studies on the oligomeric state of the sodium/calcium + potassium exchanger NCKX2.
Ann N Y Acad Sci. 2002 Nov;976:94-6. No abstract available.
PMID: 12502543 [PubMed - indexed for MEDLINE]

- 76:** Cai X, Zhang K, Lytton J. [Related Articles](#), [Links](#)
Topological studies of the rat brain K+-dependent Na+/Ca2+ exchanger NCKX2.
Ann N Y Acad Sci. 2002 Nov;976:90-3. No abstract available.
PMID: 12502542 [PubMed - indexed for MEDLINE]
- 77:** Van Eylen F, Kamagata A, Herchuelz A. [Related Articles](#), [Links](#)
Characterization and functional activity of a truncated Na/Ca exchange isoform resulting from a new splicing pattern of NCX1.
Ann N Y Acad Sci. 2002 Nov;976:81-4. No abstract available.
PMID: 12502539 [PubMed - indexed for MEDLINE]
- 78:** Mejia-Elizondo R, Espinosa-Tanguma R, Saavedra-Alanis VM. [Related Articles](#), [Links](#)
Molecular identification of the NCX isoform expressed in tracheal smooth muscle of guinea pig.
Ann N Y Acad Sci. 2002 Nov;976:73-6. No abstract available.
PMID: 12502537 [PubMed - indexed for MEDLINE]
- 79:** Kraev A, MacLennan D. [Related Articles](#), [Links](#)
Toward comparative genomics of calcium transporters.
Ann N Y Acad Sci. 2002 Nov;976:53-9. Review. No abstract available.
PMID: 12502533 [PubMed - indexed for MEDLINE]
- 80:** Szerencsei RT, Winkfein RJ, Cooper CB, Prinsen C, Kinjo TG, Kang K, Schnetkamp PP. [Related Articles](#), [Links](#)
The Na/Ca-K exchanger gene family.
Ann N Y Acad Sci. 2002 Nov;976:41-52. Review.
PMID: 12502532 [PubMed - indexed for MEDLINE]
- 81:** Bers DM, Pogwizd SM, Schlotthauer K. [Related Articles](#), [Links](#)
Upregulated Na/Ca exchange is involved in both contractile dysfunction and arrhythmogenesis in heart failure.
Basic Res Cardiol. 2002;97 Suppl 1:I36-42. Review.
PMID: 12479232 [PubMed - indexed for MEDLINE]
- 82:** Reuter H, Philipson KD. [Related Articles](#), [Links](#)
Sodium-calcium exchanger overexpression in the heart--insights from a transgenic mouse model.
Basic Res Cardiol. 2002;97 Suppl 1:I31-5. Review.
PMID: 12479231 [PubMed - indexed for MEDLINE]
- 83:** McDonough AA, Velotta JB, Swinger RH, Philipson KD, Farley RA. [Related Articles](#), [Links](#)
The cardiac sodium pump: structure and function.
Basic Res Cardiol. 2002;97 Suppl 1:I19-24. Review.
PMID: 12479229 [PubMed - indexed for MEDLINE]
- 84:** Powis DA, Marley PD. [Related Articles](#), [Links](#)
Ions, channels, and receptors.
Ann N Y Acad Sci. 2002 Oct;971:95-9. Review.
PMID: 12438098 [PubMed - indexed for MEDLINE]
- 85:** Gabellai N, Bortoluzzi S, Danieli GA, Catafani E. [Related Articles](#), [Links](#)
The human SLC8A3 gene and the tissue-specific Na+/Ca2+ exchanger 3 isoforms.
Gene. 2002 Sep 18;298(1):1-7.
PMID: 12406570 [PubMed - indexed for MEDLINE]

- 86: Saksena S, Ammar MS, Tyagi S, Elsharydah A, Gill RK, Ramaswamy K, Dudeja PK. Related Articles, Links
Mechanisms of calcium transport in human colonic basolateral membrane vesicles.
Dig Dis Sci. 2002 Oct;47(10):2306-15.
PMID: 12395904 [PubMed - indexed for MEDLINE]
- 87: Petrova R, Yamamoto Y, Muraki K, Yonekura H, Sakurai S, Watanabe T, Li H, Takeuchi M, Makita Z, Kato I, Takasawa S, Okamoto H, Imaizumi Y, Yamamoto H. Related Articles, Links
Advanced glycation endproduct-induced calcium handling impairment in mouse cardiac myocytes.
J Mol Cell Cardiol. 2002 Oct;34(10):1425-31.
PMID: 12393002 [PubMed - indexed for MEDLINE]
- 88: Firlik K, Meder WP, Clusmann H, Gothert M. Related Articles, Links
Ca²⁺ entry via P/Q-type Ca²⁺ channels and the Na⁺/Ca²⁺ exchanger in rat and human neocortical synaptosomes.
Naunyn Schmiedebergs Arch Pharmacol. 2002 Nov;366(5):458-63. Epub 2002 Sep 06.
PMID: 12382075 [PubMed - indexed for MEDLINE]
- 89: Li XF, Kraev AS, Lytton J. Related Articles, Links
Molecular cloning of a fourth member of the potassium-dependent sodium-calcium exchanger gene family, NCKX4.
J Biol Chem. 2002 Dec 13;277(50):48410-7. Epub 2002 Oct 11.
PMID: 12379639 [PubMed - indexed for MEDLINE]
- 90: Cai X, Zhang K, Lytton J. Related Articles, Links
A novel topology and redox regulation of the rat brain K⁺-dependent Na⁺/Ca²⁺ exchanger, NCKX2.
J Biol Chem. 2002 Dec 13;277(50):48923-30. Epub 2002 Oct 10.
PMID: 12377762 [PubMed - indexed for MEDLINE]
- 91: Chu SL, Zhu DL, Xiong MM, Wang GL, Zhang WZ, Zhou HF, Shen D, Gao PJ, Zhan YM, Jin L. Related Articles, Links
Linkage analysis of twelve candidate gene loci regulating water and sodium metabolism and membrane ion transport in essential hypertension.
Hypertens Res. 2002 Jul;25(4):635-9.
PMID: 12358153 [PubMed - indexed for MEDLINE]
- 92: Kiedrowski L, Czyz A, Li XF, Lytton J. Related Articles, Links
Preferential expression of plasmalemmal K-dependent Na⁺/Ca²⁺ exchangers in neurons versus astrocytes.
Neuroreport. 2002 Aug 27;13(12):1529-32.
PMID: 12218699 [PubMed - indexed for MEDLINE]
- 93: Deval E, Levitsky DO, Marchand E, Cantereau A, Raymond G, Cognard C. Related Articles, Links
Na(+) / Ca(2+) exchange in human myotubes: intracellular calcium rises in response to external sodium depletion are enhanced in DMD.
Neuromuscul Disord. 2002 Oct;12(7-8):665-73.
PMID: 12207936 [PubMed - indexed for MEDLINE]
- 94: Lee SH, Kim MH, Park KH, Earm YE, Ho WK. Related Articles, Links
K⁺-dependent Na⁺/Ca²⁺ exchange is a major Ca²⁺ clearance mechanism in axon terminals of rat neurohypophysis.
J Neurosci. 2002 Aug 15;22(16):6891-9.
PMID: 12177187 [PubMed - indexed for MEDLINE]

- 95:** [Dillmann WH.](#) [Related Articles](#), [Links](#)
Cellular action of thyroid hormone on the heart.
Thyroid. 2002 Jun;12(6):447-52. Review.
 PMID: 12165105 [PubMed - indexed for MEDLINE]
- 96:** [Dunn J, Elias CL, Le HD, Omelchenko A, Hryshko I V, Lytton J.](#) [Related Articles](#), [Links](#)
The molecular determinants of ionic regulatory differences between brain and kidney Na⁺/Ca²⁺ exchanger (NCX1) isoforms.
J Biol Chem. 2002 Sep 13;277(37):33957-62. Epub 2002 Jul 12.
 PMID: 12118014 [PubMed - indexed for MEDLINE]
- 97:** [Muller JG, Thompson JT, Edmonson AM, Rackley MS, Kasahara H, Izumo S, McQuinn TC, Menick DR, O'Brien TX.](#) [Related Articles](#), [Links](#)
Differential regulation of the cardiac sodium calcium exchanger promoter in adult and neonatal cardiomyocytes by Nkx2.5 and serum response factor.
J Mol Cell Cardiol. 2002 Jul;34(7):807-21.
 PMID: 12099720 [PubMed - indexed for MEDLINE]
- 98:** [Bautista DM, Hoth M, Lewis RS.](#) [Related Articles](#), [Links](#)
Enhancement of calcium signalling dynamics and stability by delayed modulation of the plasma-membrane calcium-ATPase in human T cells.
J Physiol. 2002 Jun 15;541(Pt 3):877-94.
 PMID: 12068047 [PubMed - indexed for MEDLINE]
- 99:** [Mizuno S, Demura Y, Ameshima S, Okamura S, Miyamori I, Ishizaki T.](#) [Related Articles](#), [Links](#)
Alkalosis stimulates endothelial nitric oxide synthase in cultured human pulmonary arterial endothelial cells.
Am J Physiol Lung Cell Mol Physiol. 2002 Jul;283(1):L113-9.
 PMID: 12060567 [PubMed - indexed for MEDLINE]
- 100:** [Cullinane AB, Coca-Prados M, Harvey BJ.](#) [Related Articles](#), [Links](#)
Extracellular ATP effects on calcium signaling in cultured human non-pigmented ciliary body epithelium.
Curr Eye Res. 2001 Dec;23(6):448-54.
 PMID: 12045895 [PubMed - indexed for MEDLINE]
- 101:** [Sharon D, Yamamoto H, McGee TL, Rabe V, Szerenesei RT, Winkfein RJ, Prinsen CF, Barnes CS, Andreasson S, Fishman GA, Schnetkamp PP, Berson EL, Dryja TP.](#) [Related Articles](#), [Links](#)
Mutated alleles of the rod and cone Na⁺-Ca²⁺-exchanger genes in patients with retinal diseases.
Invest Ophthalmol Vis Sci. 2002 Jun;43(6):1971-9.
 PMID: 12037007 [PubMed - indexed for MEDLINE]
- 102:** [Diaz-Horta O, Kamagate A, Herchuelz A, Van Eylen F.](#) [Related Articles](#), [Links](#)
Na/Ca exchanger overexpression induces endoplasmic reticulum-related apoptosis and caspase-12 activation in insulin-releasing BRIN-BD11 cells.
Diabetes. 2002 Jun;51(6):1815-24.
 PMID: 12031969 [PubMed - indexed for MEDLINE]
- 103:** [Su YH, Vacquier VD.](#) [Related Articles](#), [Links](#)
A flagellar K(+)-dependent Na(+)/Ca(2+) exchanger keeps Ca(2+) low in sea urchin spermatozoa.
Proc Natl Acad Sci U S A. 2002 May 14;99(10):6743-8.
 PMID: 12011436 [PubMed - indexed for MEDLINE]

- 104:** Thayer SA, Usachev YM, Pottorf WJ. Related Articles, Links
 Modulating Ca²⁺ clearance from neurons.
Front Biosci. 2002 May 1;7:d1255-79. Review.
 PMID: 11991858 [PubMed - indexed for MEDLINE]
- 105:** Ranu HK, Terracciano CM, Davia K, Bernobich E, Chaudhri B, Robinson SE, Bin Kang Z, Hajjar RJ, MacLeod KT, Harding SE. Related Articles, Links
 Effects of Na(+) / Ca(2+)-exchanger overexpression on excitation-contraction coupling in adult rabbit ventricular myocytes.
J Mol Cell Cardiol. 2002 Apr;34(4):389-400.
 PMID: 11991729 [PubMed - indexed for MEDLINE]
- 106:** Bers DM. Related Articles, Links
 Cardiac Na/Ca exchange function in rabbit, mouse and man: what's the difference?
J Mol Cell Cardiol. 2002 Apr;34(4):369-73. No abstract available.
 PMID: 11991726 [PubMed - indexed for MEDLINE]
- 107:** Sipido KR, Volders PG, Vos MA, Verdonek F. Related Articles, Links
 Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: a new target for therapy?
Cardiovasc Res. 2002 Mar;53(4):782-805. Review.
 PMID: 11922890 [PubMed - indexed for MEDLINE]
- 108:** Dong H, Dunn J, Lytton J. Related Articles, Links
 Stoichiometry of the Cardiac Na+/Ca²⁺ exchanger NCX1.1 measured in transfected HEK cells.
Biophys J. 2002 Apr;82(4):1943-52.
 PMID: 11916852 [PubMed - indexed for MEDLINE]
- 109:** Billman GE. Related Articles, Links
 KB-R7943. Kanebo.
Curr Opin Investig Drugs. 2001 Dec;2(12):1740-5. Review.
 PMID: 11892938 [PubMed - indexed for MEDLINE]
- 110:** Kiyosue T. Related Articles, Links
 Removal of intracellular Mg(2+) activates cardiac Na(+) / Ca(2+)-exchanger.
Cardiovasc Res. 2002 Feb 1;53(2):290-1. No abstract available.
 PMID: 11827677 [PubMed - indexed for MEDLINE]
- 111:** Van Eylen F, Horta OD, Barez A, Kamagata A, Flatt PR, Macianskiene R, Mubagwa K, Herchuelz A. Related Articles, Links
 Overexpression of the Na/Ca exchanger shapes stimulus-induced cytosolic Ca(2+) oscillations in insulin-producing BRIN-BD11 cells.
Diabetes. 2002 Feb;51(2):366-75.
 PMID: 11812743 [PubMed - indexed for MEDLINE]
- 112:** Bose R, Li Y, Woo V. Related Articles, Links
 Sodium-calcium exchange in platelets of diabetics.
Proc West Pharmacol Soc. 2001;44:183-4. No abstract available.
 PMID: 11793976 [PubMed - indexed for MEDLINE]
- 113:** Berna N, Arnould T, Remacle J, Michiels C. Related Articles, Links
 Hypoxia-induced increase in intracellular calcium concentration in endothelial cells: role of the Na(+) - glucose cotransporter.
J Cell Biochem. 2001;84(1):115-31.
 PMID: 11746521 [PubMed - indexed for MEDLINE]

- 114:** Schotten U, Greiser M, Benke D, Buerkel K, Ehrenteit B, Stellbrink C, Vazquez-Jimenez JF, Schoendube F, Hanrath P, Allessie M. [Related Articles](#), [Links](#)
- Atrial fibrillation-induced atrial contractile dysfunction: a tachycardiomyopathy of a different sort. *Cardiovasc Res.* 2002 Jan;53(1):192-201.
PMID: 11744028 [PubMed - indexed for MEDLINE]
- 115:** Yamamura K, Tani M, Hasegawa H, Gen W. [Related Articles](#), [Links](#)
- Very low dose of the Na⁽⁺⁾/Ca⁽²⁺⁾ exchange inhibitor, KB-R7943, protects ischemic reperfused aged Fischer 344 rat hearts: considerable strain difference in the sensitivity to KB-R7943. *Cardiovasc Res.* 2001 Dec;52(3):397-406.
PMID: 11738056 [PubMed - indexed for MEDLINE]
- 116:** Zhu L, Yu Y, Chua BH, Ho YS, Kuo TH. [Related Articles](#), [Links](#)
- Regulation of sodium-calcium exchange and mitochondrial energetics by Bcl-2 in the heart of transgenic mice. *J Mol Cell Cardiol.* 2001 Dec;33(12):2135-44.
PMID: 11735260 [PubMed - indexed for MEDLINE]
- 117:** Van Wagoner DR, Bond M. [Related Articles](#), [Links](#)
- Reperfusion arrhythmias: new insights into the role of the Na⁽⁺⁾/Ca⁽²⁺⁾ exchanger. *J Mol Cell Cardiol.* 2001 Dec;33(12):2071-4. No abstract available.
PMID: 11735253 [PubMed - indexed for MEDLINE]
- 118:** Verkerk AO, Veldkamp MW, Baartscheer A, Schumacher CA, Klopping C, van Ginneken AC, Ravesloot JH. [Related Articles](#), [Links](#)
- Ionic mechanism of delayed afterdepolarizations in ventricular cells isolated from human end-stage failing hearts. *Circulation.* 2001 Nov 27;104(22):2728-33.
PMID: 11723027 [PubMed - indexed for MEDLINE]
- 119:** Campean V, Kricke J, Ellison D, Luft FC, Bachmann S. [Related Articles](#), [Links](#)
- Localization of thiazide-sensitive Na⁽⁺⁾-Cl⁽⁻⁾ cotransport and associated gene products in mouse DCT. *Am J Physiol Renal Physiol.* 2001 Dec;281(6):F1028-35.
PMID: 11704553 [PubMed - indexed for MEDLINE]
- 120:** Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B. [Related Articles](#), [Links](#)
- Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. *Am J Physiol Renal Physiol.* 2001 Dec;281(6):F1021-7.
PMID: 11704552 [PubMed - indexed for MEDLINE]
- 121:** Kimchi-Sarfaty C, Kasir J, Ambudkar SV, Rahamimoff R. [Related Articles](#), [Links](#)
- Transport activity and surface expression of the Na⁺-Ca²⁺ exchanger NCX1 are inhibited by the immunosuppressive agent cyclosporin A and by the nonimmunosuppressive agent PSC833. *J Biol Chem.* 2002 Jan 25;277(4):2505-10. Epub 2001 Nov 07.
PMID: 11700317 [PubMed - indexed for MEDLINE]
- 122:** McMillan DR, Kayes-Wandover KM, Richardson JA, White PC. [Related Articles](#), [Links](#)
- Very large G protein-coupled receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system. *J Biol Chem.* 2002 Jan 4;277(1):785-92. Epub 2001 Oct 17.

PMID: 11606593 [PubMed - indexed for MEDLINE]

- 123:** [Rogister F, Laeckmann D, Plasman P, Van Eylen F, Ghysen M, Maggetto C, Liegeois J, Geczy J, Herchuelz A, Delarge J, Mascreel B.](#) [Related Articles](#), [Links](#)

- Novel inhibitors of the sodium-calcium exchanger: benzene ring analogues of N-guanidino substituted amiloride derivatives.
Eur J Med Chem. 2001 Jul-Aug;36(7-8):597-614.
PMID: 11600230 [PubMed - indexed for MEDLINE]

- 124:** [Qiu Z, Chen J, Nicoll DA, Philipson KD.](#) [Related Articles](#), [Links](#)

- A disulfide bond is required for functional assembly of NCX1 from complementary fragments.
Biochem Biophys Res Commun. 2001 Oct 5;287(4):825-8.
PMID: 11573936 [PubMed - indexed for MEDLINE]

- 125:** [Aleksandrova EA.](#) [Related Articles](#), [Links](#)

- [Calcium-transporting systems and calcium regulation in cardiomyocytes]
Usp Fiziol Nauk. 2001 Jul-Sep;32(3):40-8. Review. Russian.
PMID: 11565424 [PubMed - indexed for MEDLINE]

- 126:** [Takuma K.](#) [Related Articles](#), [Links](#)

- [Delayed apoptosis and its regulation in astrocytes]
Yakugaku Zasshi. 2001 Sep;121(9):663-9. Review. Japanese.
PMID: 11558150 [PubMed - indexed for MEDLINE]

- 127:** [No authors listed] [Related Articles](#), [Links](#)

- Abstracts of the American Physiological Society Conferences. Cellular and Molecular Physiology of Sodium-Calcium Exchange, Banff, Alberta, Canada, October 10-14, 2001. Genome and Hormones: An Integrative Approach to Gender Differences in Physiology, Pittsburgh, Pennsylvania, USA, October 17-20, 2001.
Physiologist. 2001 Aug;44(4):219-86. No abstract available.
PMID: 11534550 [PubMed - indexed for MEDLINE]

- 128:** [Kubo H, Margulies KB, Piacentino V 3rd, Gaughan JP, Houser SR.](#) [Related Articles](#), [Links](#)

- Patients with end-stage congestive heart failure treated with beta-adrenergic receptor antagonists have improved ventricular myocyte calcium regulatory protein abundance.
Circulation. 2001 Aug 28;104(9):1012-8.
PMID: 11524394 [PubMed - indexed for MEDLINE]

- 129:** [Radvakova I, Mirossay A, Mojzis J, Mirossay L.](#) [Related Articles](#), [Links](#)

- The effect of 5'-(N,N-dimethyl)-amiloride on cytotoxic activity of doxorubicin and vincristine in CEM cell lines.
Physiol Res. 2001;50(3):283-7.
PMID: 11521739 [PubMed - indexed for MEDLINE]

- 130:** [Van Eylen F, Kamagata A, Herchuelz A.](#) [Related Articles](#), [Links](#)

- A new Na/Ca exchanger splicing pattern identified in situ leads to a functionally active 70kDa NH(2)-terminal protein.
Cell Calcium. 2001 Sep;30(3):191-8.
PMID: 11508998 [PubMed - indexed for MEDLINE]

- 131:** [Conway SJ, Koushik SV.](#) [Related Articles](#), [Links](#)

- Cardiac sodium-calcium exchanger: a double-edged sword.
Cardiovasc Res. 2001 Aug 1;51(2):194-7. Review. No abstract available.

PMID: 11470457 [PubMed - indexed for MEDLINE]

 132: [Balasubramanyam M, Balaji RA, Subashini B, Mohan V.](#) Related Articles, Links

 Evidence for mechanistic alterations of Ca²⁺ homeostasis in Type 2 diabetes mellitus.

Int J Exp Diabetes Res. 2001;1(4):275-87.

PMID: 11467418 [PubMed - indexed for MEDLINE]

 133: [Park SI, Park EJ, Kim NH, Baek WK, Lee YT, Lee CJ, Sub CK.](#) Related Articles, Links

 Hypoxia delays the intracellular Ca²⁺ clearance by Na⁺-Ca²⁺ exchanger in human adult cardiac myocytes.

Yonsei Med J. 2001 Jun;42(3):333-7.

PMID: 11456400 [PubMed - indexed for MEDLINE]

 134: [Lipsius SL, Huser J, Blatter LA.](#) Related Articles, Links

 Intracellular Ca²⁺ release sparks atrial pacemaker activity.

News Physiol Sci. 2001 Jun;16:101-6. Review.

PMID: 11443225 [PubMed - indexed for MEDLINE]

 135: [Houser SR, Piacentino V 3rd, Mattiello J, Weisser J, Gaughan JP.](#) Related Articles, Links

 Functional properties of failing human ventricular myocytes.

Trends Cardiovasc Med. 2000 Apr;10(3):101-7. Review.

PMID: 11427996 [PubMed - indexed for MEDLINE]

 136: [Lee VM, Halligan AW, Ng LL.](#) Related Articles, Links

 Leucocyte intracellular pH and Na⁺/H⁺ exchanger isoform-1 activity in

postpartum women with pre-eclampsia.

BJOG. 2001 Jun;108(6):615-22.

PMID: 11426897 [PubMed - indexed for MEDLINE]

 137: [Kawamoto T, Kimura H, Kusumoto K, Fukumoto S, Shiraishi M, Watanabe T, Sawada H.](#) Related Articles, Links

 Potent and selective inhibition of the human Na⁺/H⁺ exchanger isoform

NHE1 by a novel aminoguanidine derivative T-162559.

Eur J Pharmacol. 2001 May 18;420(1):1-8.

PMID: 11412833 [PubMed - indexed for MEDLINE]

 138: [Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM.](#) Related Articles, Links

 Arrhythmogenesis and contractile dysfunction in heart failure: Roles of

sodium-calcium exchange, inward rectifier potassium current, and

residual beta-adrenergic responsiveness.

Circ Res. 2001 Jun 8;88(11):1159-67.

PMID: 11397782 [PubMed - indexed for MEDLINE]

 139: [Adachi-Akahane S, Kurachi Y.](#) Related Articles, Links

 New era for translational research in cardiac arrhythmias.

Circ Res. 2001 Jun 8;88(11):1095-6. No abstract available.

PMID: 11397771 [PubMed - indexed for MEDLINE]

 140: [Li F, Hayes JK, Wong KC.](#) Related Articles, Links

 Gene therapy: a novel method for the treatment of myocardial ischemia and reperfusion injury--mini-review.

Acta Anaesthesiol Sin. 2000 Dec;38(4):207-15. Review.

PMID: 11392069 [PubMed - indexed for MEDLINE]

 141: [Morin D, Hauet T, Spedding M, Tillement J.](#) Related Articles, Links

 Mitochondria as target for antiischemic drugs.

Adv Drug Deliv Rev. 2001 Jul 2;49(1-2):151-74. Review.

PMID: 11377809 [PubMed - indexed for MEDLINE]

142: [Shigekawa M, Iwamoto T.](#) [Related Articles](#), [Links](#)

 Cardiac Na(+)–Ca(2+) exchange: molecular and pharmacological aspects. *Circ Res*. 2001 May 11;88(9):864-76. Review.
PMID: 11348995 [PubMed - indexed for MEDLINE]

143: [Muller-Ehmsen J, Wang J, Swinger RH, McDonough AA.](#) [Related Articles](#), [Links](#)

 Region specific regulation of sodium pump isoform and Na,Ca-exchanger expression in the failing human heart--right atrium vs left ventricle. *Cell Mol Biol (Noisy-le-grand)*. 2001 Mar;47(2):373-81.
PMID: 11357898 [PubMed - indexed for MEDLINE]

144: [Szerencsei RT, Prinsen CF, Schnetkamp PP.](#) [Related Articles](#), [Links](#)

 Stoichiometry of the retinal cone Na/Ca-K exchanger heterologously expressed in insect cells: comparison with the bovine heart Na/Ca exchanger. *Biochemistry*. 2001 May 22;40(20):6009-15.
PMID: 11352736 [PubMed - indexed for MEDLINE]

145: [Terraeciano CM, MacLeod KT.](#) [Related Articles](#), [Links](#)

 Overexpression of the Na/Ca exchanger and reduced SERCa function. *Cardiovasc Res*. 2001 Apr;50(1):167-9. No abstract available.
PMID: 11345943 [PubMed - indexed for MEDLINE]

146: [Reddy PR, Patni A, Sharma A, Gupta S, Tiwary AK.](#) [Related Articles](#), [Links](#)

 Effect of 2',4'-dichlorobenzamil hydrochloride, a Na(+)–Ca(2+) exchange inhibitor, on human spermatozoa. *Eur J Pharmacol*. 2001 Apr 20;418(1-2):153-5.
PMID: 11334878 [PubMed - indexed for MEDLINE]

147: [Bhattacharjee AK, Nagashima T, Kondoh T, Tamaki N.](#) [Related Articles](#), [Links](#)

 The effects of the Na(+)/Ca(++) exchange blocker on osmotic blood-brain barrier disruption. *Brain Res*. 2001 May 11;900(2):157-62.
PMID: 11334793 [PubMed - indexed for MEDLINE]

148: [Kraev A, Quednau BD, Leach S, Li XF, Dong H, Winkfein R, Perizzolo M, Cai X, Yang R, Philipson KD, Lytton J.](#) [Related Articles](#), [Links](#)

 Molecular cloning of a third member of the potassium-dependent sodium-calcium exchanger gene family, NCKX3. *J Biol Chem*. 2001 Jun 22;276(25):23161-72. Epub 2001 Apr 09.
PMID: 11294880 [PubMed - indexed for MEDLINE]

149: [Takano S, Kimura J, Ono T.](#) [Related Articles](#), [Links](#)

 Inhibition of aggregation of rabbit and human platelets induced by adrenaline and 5-hydroxytryptamine by KB-R7943, a Na(+)–Ca(2+) exchange inhibitor. *Br J Pharmacol*. 2001 Apr;132(7):1383-8.
PMID: 11264230 [PubMed - indexed for MEDLINE]

150: [Li Y, Woo V, Bose R.](#) [Related Articles](#), [Links](#)

 Platelet hyperactivity and abnormal Ca(2+) homeostasis in diabetes mellitus. *Am J Physiol Heart Circ Physiol*. 2001 Apr;280(4):H1480-9.
PMID: 11247757 [PubMed - indexed for MEDLINE]

151: [Van Eylen F, Bollen A, Herchuelz A.](#) [Related Articles](#), [Links](#)

- NCX1 Na/Ca exchanger splice variants in pancreatic islet cells.
J Endocrinol. 2001 Mar;168(3):517-26.
PMID: 11241183 [PubMed - indexed for MEDLINE]
- 152: [Kim JA, Kang YY, Lee YS.](#) [Related Articles](#), [Links](#)
- Activation of Na(+), K(+), Cl(-)-cotransport mediates intracellular Ca(2+) increase and apoptosis induced by Pinacidil in HepG2 human hepatoblastoma cells.
Biochem Biophys Res Commun. 2001 Feb 23;281(2):511-9.
PMID: 11181077 [PubMed - indexed for MEDLINE]
- 153: [Gabellini N.](#) [Related Articles](#), [Links](#)
- A polymorphic GT repeat from the human cardiac Na⁺/Ca²⁺ exchanger intron 2 activates splicing.
Eur J Biochem. 2001 Feb;268(4):1076-83.
PMID: 11179974 [PubMed - indexed for MEDLINE]
- 154: [Brown RE, Stevens DR, Haas HL.](#) [Related Articles](#), [Links](#)
- The physiology of brain histamine.
Prog Neurobiol. 2001 Apr;63(6):637-72. Review.
PMID: 11164999 [PubMed - indexed for MEDLINE]
- 155: [Poon S, Leach S, Li XF, Tucker JE, Schnetkamp PP, Lytton J.](#) [Related Articles](#), [Links](#)
- Alternatively spliced isoforms of the rat eye sodium/calcium+potassium exchanger NCKX1.
Am J Physiol Cell Physiol. 2000 Apr;278(4):C651-60.
PMID: 10751314 [PubMed - indexed for MEDLINE]
- 156: [Ren X, Kasir J, Rahamimoff H.](#) [Related Articles](#), [Links](#)
- The transport activity of the Na⁺-Ca²⁺ exchanger NCX1 expressed in HEK 293 cells is sensitive to covalent modification of intracellular cysteine residues by sulphydryl reagents.
J Biol Chem. 2001 Mar 23;276(12):9572-9. Epub 2000 Dec 27.
PMID: 11134012 [PubMed - indexed for MEDLINE]
- 157: [Isenberg G.](#) [Related Articles](#), [Links](#)
- How can overexpression of Na(+),Ca(2+)-exchanger compensate the negative inotropic effects of downregulated SERCA?
Cardiovasc Res. 2001 Jan;49(1):1-6. Review. No abstract available.
PMID: 11121788 [PubMed - indexed for MEDLINE]
- 158: [Nattel S.](#) [Related Articles](#), [Links](#)
- Acquired delayed rectifier channelopathies: how heart disease and antiarrhythmic drugs mimic potentially-lethal congenital cardiac disorders.
Cardiovasc Res. 2000 Nov;48(2):188-90. No abstract available.
PMID: 11054465 [PubMed - indexed for MEDLINE]
- 159: [Qiu Z, Nicoll DA, Philipson KD.](#) [Related Articles](#), [Links](#)
- Helix packing of functionally important regions of the cardiac Na(+)-Ca(2+) exchanger.
J Biol Chem. 2001 Jan 5;276(1):194-9.
PMID: 11035002 [PubMed - indexed for MEDLINE]
- 160: [Pogwizd SM.](#) [Related Articles](#), [Links](#)
- Increased Na(+)-Ca(2+) exchanger in the failing heart.
Circ Res. 2000 Oct 13;87(8):641-3. No abstract available.

PMID: 11029397 [PubMed - indexed for MEDLINE]

161: [Sheng JZ, Prinsen CF, Clark RB, Giles WR, Schnetkamp PP.](#) Related Articles, Links

 Na(+)–Ca(2+)-K(+) currents measured in insect cells transfected with the retinal cone or rod Na(+)–Ca(2+)-K(+) exchanger cDNA.
Biophys J. 2000 Oct;79(4):1945-53.
PMID: 11023899 [PubMed - indexed for MEDLINE]

162: [Piper C, Bilger J, Henrichs EM, Wudel E, Schultheiss HP, Horstkotte D, Dorner A.](#) Related Articles, Links

 [Is Na⁺-Ca⁽²⁺⁾ exchanger expression altered in the endomyocardium of patients with chronic heart valve diseases parallel to myocardial dysfunction?]
Z Kardiol. 2000 Aug;89(8):682-90. German.
PMID: 11013973 [PubMed - indexed for MEDLINE]

163: [Schillinger W, Janssen PM, Emami S, Henderson SA, Ross RS, Teucher N, Zeitz O, Philipson KD, Prestle J, Hasenfuss G.](#) Related Articles, Links

 Impaired contractile performance of cultured rabbit ventricular myocytes after adenoviral gene transfer of Na(+)–Ca(2+)-exchanger.
Circ Res. 2000 Sep 29;87(7):581-7.
PMID: 11009563 [PubMed - indexed for MEDLINE]

164: [Barry WH.](#) Related Articles, Links

 Na(+)–Ca(2+) exchange in failing myocardium: friend or foe?
Circ Res. 2000 Sep 29;87(7):529-31. No abstract available.
PMID: 11009553 [PubMed - indexed for MEDLINE]

165: [Kim JA, Kang YS, Lee SH, Lee YS.](#) Related Articles, Links

 Inhibitors of Na⁺/Ca²⁺ exchanger prevent oxidant-induced intracellular Ca²⁺ increase and apoptosis in a human hepatoma cell line.
Free Radic Res. 2000 Sep;33(3):267-77.
PMID: 10993480 [PubMed - indexed for MEDLINE]

166: [Stengl M, Pucelik P.](#) Related Articles, Links

 [Na⁺/Ca⁺ exchange: structure, mechanism, regulation and function]
Cesk Fysiol. 2000 May;49(2):73-90. Review. Czech.
PMID: 10953508 [PubMed - indexed for MEDLINE]

167: [Schaffer SW, Lombardini JB, Azuma J.](#) Related Articles, Links

 Interaction between the actions of taurine and angiotensin II.
Amino Acids. 2000;18(4):305-18. Review.
PMID: 10949914 [PubMed - indexed for MEDLINE]

168: [Burkhoff D, Holmes JW, Madigan J, Barbone A, Oz MC.](#) Related Articles, Links

 Left ventricular assist device-induced reverse ventricular remodeling.
Prog Cardiovasc Dis. 2000 Jul-Aug;43(1):19-26. Review.
PMID: 10935554 [PubMed - indexed for MEDLINE]

169: [McDonald RL, Colyer J, Harrison SM.](#) Related Articles, Links

 Quantitative analysis of Na⁺-Ca²⁺ exchanger expression in guinea-pig heart.
Eur J Biochem. 2000 Aug;267(16):5142-8.
PMID: 10931198 [PubMed - indexed for MEDLINE]

170: [Lundquist P, Lundgren T, Gritli-Linde A, Linde A.](#) Related Articles, Links

 Na⁺/Ca²⁺ exchanger isoforms of rat odontoblasts and osteoblasts.
Calcif Tissue Int. 2000 Jul;67(1):60-7.

PMID: 10908415 [PubMed - indexed for MEDLINE]

 171: [Adam-Vizi V.](#) [Related Articles](#), [Links](#)

 [Neuroprotective effect of sodium channel blockers in ischemia: the pathomechanism of early ischemic dysfunction]
Orv Hetil. 2000 Jun 4;141(23):1279-86. Review. Hungarian.
PMID: 10905082 [PubMed - indexed for MEDLINE]

 172: [Wakimoto K, Kuro-O M, Yanaka N, Omori K, Komuro I, Imai Y, Nabeshima Y.](#) [Related Articles](#), [Links](#)

 Isolation and characterization of Na⁺/Ca²⁺ exchanger gene and splicing isoforms in mice.
DNA Seq. 2000;11(1-2):75-81.
PMID: 10902911 [PubMed - indexed for MEDLINE]

 173: [Glendenning P, Ratajczak T, Dick IM, Prince RL.](#) [Related Articles](#), [Links](#)

 Calcitriol upregulates expression and activity of the 1b isoform of the plasma membrane calcium pump in immortalized distal kidney tubular cells.
Arch Biochem Biophys. 2000 Aug 1;380(1):126-32.
PMID: 10900141 [PubMed - indexed for MEDLINE]

 174: [Piper C, Bilger J, Henrichs EM, Schultheiss HP, Horstkotte D, Doerner A.](#) [Related Articles](#), [Links](#)

 Is myocardial Na⁺/Ca²⁺ exchanger transcription a marker for different stages of myocardial dysfunction? Quantitative polymerase chain reaction of the messenger RNA in endomyocardial biopsies of patients with heart failure.
J Am Coll Cardiol. 2000 Jul;36(1):233-41.
PMID: 10898440 [PubMed - indexed for MEDLINE]

 175: [Philipson KD, Nicoll DA.](#) [Related Articles](#), [Links](#)

 Sodium-calcium exchange: a molecular perspective.
Annu Rev Physiol. 2000;62:111-33. Review.
PMID: 10845086 [PubMed - indexed for MEDLINE]

 176: [Nofer JR, Junker R, Seedorf U, Assmann G, Zidek W, Tepel M.](#) [Related Articles](#), [Links](#)

 D609-phosphatidylcholine-specific phospholipase C inhibitor attenuates thapsigargin-induced sodium influx in human lymphocytes.
Cell Signal. 2000 May;12(5):289-96.
PMID: 10822169 [PubMed - indexed for MEDLINE]

 177: [Paltauf-Doburzynska J, Frieden M, Spitaler M, Graier WF.](#) [Related Articles](#), [Links](#)

 Histamine-induced Ca²⁺ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca²⁺-ATPase.
J Physiol. 2000 May 1;524 Pt 3:701-13.
PMID: 10790152 [PubMed - indexed for MEDLINE]

 178: [Seiler EP, Guerini D, Guidi F, Carafoli E.](#) [Related Articles](#), [Links](#)

 The N-terminal portion of the main cytosolic loop mediates K⁺ sensitivity in the retinal rod Na⁺/Ca²⁺-K⁺-exchanger.
Eur J Biochem. 2000 May;267(9):2461-72.
PMID: 10785365 [PubMed - indexed for MEDLINE]

 179: [Li L, Guerini D, Carafoli E.](#) [Related Articles](#), [Links](#)

 Calcineurin controls the transcription of Na⁺/Ca²⁺ exchanger isoforms in developing cerebellar neurons.

J Biol Chem. 2000 Jul 7;275(27):20903-10.
PMID: 10767288 [PubMed - indexed for MEDLINE]

- **180:** [Nakamura H, Kawasaki Y, Arakawa N, Sacki M, Maeda S, Koyama Y, Baba A, Matsuda T.](#) [Related Articles, Links](#)

 The Na⁺-Ca²⁺ exchange inhibitor KB-R7943 inhibits high K⁺-induced increases in intracellular Ca²⁺ concentration and [³H]noradrenaline release in the human neuroblastoma SH-SY5Y.
Neurochem Res. 2000 Mar;25(3):385-7.
PMID: 10761983 [PubMed - indexed for MEDLINE]

- **181:** [Qu Y, Ghatpande A, el-Sherif N, Boutjdir M.](#) [Related Articles, Links](#)

 Gene expression of Na⁺/Ca²⁺ exchanger during development in human heart.
Cardiovasc Res. 2000 Mar;45(4):866-73.
PMID: 10728412 [PubMed - indexed for MEDLINE]

- **182:** [Kurosawa M, Numazawa S, Tani Y, Yoshida T.](#) [Related Articles, Links](#)

 ERK signaling mediates the induction of inflammatory cytokines by bufalin in human monocytic cells.
Am J Physiol Cell Physiol. 2000 Mar;278(3):C500-8.
PMID: 10712238 [PubMed - indexed for MEDLINE]

- **183:** [Kiang JG, McClain DE.](#) [Related Articles, Links](#)

 N(omega)-nitro-L-arginine decreases resting cytosolic [Ca²⁺] and enhances heat stress-induced increase in cytosolic [Ca²⁺] in human colon carcinoma T84 cells.
Chin J Physiol. 1999 Sep 30;42(3):153-9.
PMID: 10707889 [PubMed - indexed for MEDLINE]

- **184:** [Bell PD, Mashburn N, Unlap MT.](#) [Related Articles, Links](#)

 Renal sodium/calcium exchange; a vasodilator that is defective in salt-sensitive hypertension.
Acta Physiol Scand. 2000 Jan;168(1):209-14. Review.
PMID: 10691802 [PubMed - indexed for MEDLINE]

- **185:** [Prinsen CF, Szerencsei RT, Schnetkamp PP.](#) [Related Articles, Links](#)

 Molecular cloning and functional expression of the potassium-dependent sodium-calcium exchanger from human and chicken retinal cone photoreceptors.
J Neurosci. 2000 Feb 15;20(4):1424-34.
PMID: 10662833 [PubMed - indexed for MEDLINE]

- **186:** [McKiernan CJ, Friedlander M.](#) [Related Articles, Links](#)

 The retinal rod Na⁽⁺⁾/Ca⁽²⁺⁾,K⁽⁺⁾ exchanger contains a noncleaved signal sequence required for translocation of the N terminus.
J Biol Chem. 1999 Dec 31;274(53):38177-82.
PMID: 10608890 [PubMed - indexed for MEDLINE]

- **187:** [Lehnart SE, Schillinger W, Pieske B, Prestle J, Just H, Hasenfuss G.](#) [Related Articles, Links](#)

 Sarcoplasmic reticulum proteins in heart failure.
Ann N Y Acad Sci. 1998 Sep 16;853:220-30. Review.
PMID: 10603950 [PubMed - indexed for MEDLINE]

- **188:** [Goldhaber JJ.](#) [Related Articles, Links](#)

 Sodium-calcium exchange: the phantom menace.
Circ Res. 1999 Nov 26;85(11):982-4. No abstract available.

PMID: 10571527 [PubMed - indexed for MEDLINE]

 189: [Prestle J, Dieterich S, Preuss M, Bielik U, Hasenfuss G.](#) [Related Articles](#), [Links](#)

 Heterogeneous transmural gene expression of calcium-handling proteins and natriuretic peptides in the failing human heart.
Cardiovasc Res. 1999 Aug 1;43(2):323-31.
PMID: 10536662 [PubMed - indexed for MEDLINE]

 190: [Brundel BJ, van Gelder IC, Henning RH, Tuinenburg AE, Deelman LE, Tielemans RG, Grandjean JG, van Gilst WH, Crijns HJ.](#) [Related Articles](#), [Links](#)

 Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation.
Cardiovasc Res. 1999 May;42(2):443-54.
PMID: 10533580 [PubMed - indexed for MEDLINE]

 191: [Zacikova L, Krizanova O.](#) [Related Articles](#), [Links](#)

 [Structure and function of selected Ca(2+) transport systems in cardiac cells]
Cesk Fysiol. 1999 May;48(2):62-76. Review. Slovak.
PMID: 10510560 [PubMed - indexed for MEDLINE]

 192: [Kimura M, Jeanclos EM, Donnelly RJ, Lytton J, Reeves JP, Aviv A.](#) [Related Articles](#), [Links](#)

 Physiological and molecular characterization of the Na+/Ca2+ exchanger in human platelets.
Am J Physiol. 1999 Sep;277(3 Pt 2):H911-7.
PMID: 10484410 [PubMed - indexed for MEDLINE]

 193: [Kasir J, Ren X, Furman I, Rahamimoff H.](#) [Related Articles](#), [Links](#)

 Truncation of the C terminus of the rat brain Na(+)-Ca(2+) exchanger RBE-1 (NCX1.4) impairs surface expression of the protein.
J Biol Chem. 1999 Aug 27;274(35):24873-80.
PMID: 10455160 [PubMed - indexed for MEDLINE]

 194: [Gaughan JP, Furukawa S, Jeevanandam V, Hefner CA, Kubo H, Margulies KB, McGowan BS, Mattiello JA, Dipla K, Piacentino V 3rd, Li S, Houser SR.](#) [Related Articles](#), [Links](#)

 Sodium/calcium exchange contributes to contraction and relaxation in failed human ventricular myocytes.
Am J Physiol. 1999 Aug;277(2 Pt 2):H714-24.
PMID: 10444498 [PubMed - indexed for MEDLINE]

 195: [Nofer JR, Pulawski E, Junker R, Seedorf U, Assmann G, Zidek W, Tepel M.](#) [Related Articles](#), [Links](#)

 Na(+)/Ca(2+) exchange inhibitors modulate thapsigargin-induced Ca(2+) and Na(+) influx in human lymphocytes.
Int J Clin Lab Res. 1999;29(2):89-92.
PMID: 10436268 [PubMed - indexed for MEDLINE]

 196: [Maixent JM, Lejeuvre L, Berrebi-Bertrand I.](#) [Related Articles](#), [Links](#)

 Mechanism underlying the strong positive inotropic effects of LND-623: specific inhibition of Na+, K+-ATPase isoforms and exclusion of cellular sites of contractile control.
Cardiovasc Drugs Ther. 1998 Dec;12(6):585-94.
PMID: 10410828 [PubMed - indexed for MEDLINE]

 197: [Blaustein MP, Lederer WJ.](#) [Related Articles](#), [Links](#)

Sodium/calcium exchange: its physiological implications.

- Physiol Rev. 1999 Jul;79(3):763-854. Review.
PMID: 10390518 [PubMed - indexed for MEDLINE]
- 198: Van Gelder IC, Brundel BJ, Henning RH, Tuinenburg AE, Tielemans RG, Deelman L, Grandjean JG, De Kam PJ, Van Gilst WH, Crijns HJ. [Related Articles](#), [Links](#)
- Alterations in gene expression of proteins involved in the calcium handling in patients with atrial fibrillation.
J Cardiovasc Electrophysiol. 1999 Apr;10(4):552-60.
PMID: 10355697 [PubMed - indexed for MEDLINE]
- 199: Su Z, Bridge JH, Philipson KD, Spitzer KW, Barry WH. [Related Articles](#), [Links](#)
- Quantitation of Na/Ca exchanger function in single ventricular myocytes.
J Mol Cell Cardiol. 1999 May;31(5):1125-35.
PMID: 10336850 [PubMed - indexed for MEDLINE]
- 200: Owen VJ, Burton PB, Michel MC, Zolk O, Bohm M, Pepper JR, Barton PJ, Yacoub MH, Harding SE. [Related Articles](#), [Links](#)
- Myocardial dysfunction in donor hearts. A possible etiology.
Circulation. 1999 May 18;99(19):2565-70.
PMID: 10330389 [PubMed - indexed for MEDLINE]
- 201: Egger M, Ruknudin A, Niggli E, Lederer WJ, Schulze DH. [Related Articles](#), [Links](#)
- Ni²⁺ transport by the human Na⁺/Ca²⁺ exchanger expressed in Sf9 cells.
Am J Physiol. 1999 May;276(5 Pt 1):C1184-92.
PMID: 10329968 [PubMed - indexed for MEDLINE]
- 202: Cooper CB, Winkfein RJ, Szerencsei RT, Schnetkamp PP. [Related Articles](#), [Links](#)
- cDNA cloning and functional expression of the dolphin retinal rod Na⁺-Ca²⁺ exchanger NCKX1: comparison with the functionally silent bovine NCKX1.
Biochemistry. 1999 May 11;38(19):6276-83.
PMID: 10320357 [PubMed - indexed for MEDLINE]
- 203: Swinger RH, Wang J, Frank K, Muller-Ehmsen J, Brixius K, McDonough AA, Erdmann E. [Related Articles](#), [Links](#)
- Reduced sodium pump alpha1, alpha3, and beta1-isoform protein levels and Na⁺,K⁺-ATPase activity but unchanged Na⁺-Ca²⁺ exchanger protein levels in human heart failure.
Circulation. 1999 Apr 27;99(16):2105-12.
PMID: 10217649 [PubMed - indexed for MEDLINE]
- 204: Jomot L, Maechler P, Wollheim CB, Junod AF. [Related Articles](#), [Links](#)
- Reactive oxygen metabolites increase mitochondrial calcium in endothelial cells: implication of the Ca²⁺/Na⁺ exchanger.
J Cell Sci. 1999 Apr;112 (Pt 7):1013-22.
PMID: 10198283 [PubMed - indexed for MEDLINE]
- 205: Egger M, Ruknudin A, Lipp P, Kofuji P, Lederer WJ, Schulze DH, Niggli E. [Related Articles](#), [Links](#)
- Functional expression of the human cardiac Na⁺/Ca²⁺ exchanger in Sf9 cells: rapid and specific Ni²⁺ transport.
Cell Calcium. 1999 Jan;25(1):9-17.
PMID: 10191956 [PubMed - indexed for MEDLINE]
- 206: Guerini D. [Related Articles](#), [Links](#)
- The Ca²⁺ pumps and the Na⁺/Ca²⁺ exchangers.
Biometals. 1998 Dec;11(4):319-30. Review.
PMID: 10191496 [PubMed - indexed for MEDLINE]

- 207: Iwamoto T, Nakamura TY, Pan Y, Uehara A, Imanaga I, Shigekawa M. Related Articles, Links
Unique topology of the internal repeats in the cardiac Na⁺/Ca²⁺ exchanger.
FEBS Lett. 1999 Mar 12;446(2-3):264-8.
PMID: 10100855 [PubMed - indexed for MEDLINE]
- 208: Kim HS, Lee JH, Suh YH. Related Articles, Links
C-terminal fragment of Alzheimer's amyloid precursor protein inhibits sodium/calcium exchanger activity in SK-N-SH cell.
Neuroreport. 1999 Jan 18;10(1):113-6.
PMID: 10094144 [PubMed - indexed for MEDLINE]
- 209: Mochizuki S, Jiang C. Related Articles, Links
Na⁺/Ca⁺⁺ exchanger and myocardial ischemia/reperfusion.
Jpn Heart J. 1998 Nov;39(6):707-14.
PMID: 10089932 [PubMed - indexed for MEDLINE]
- 210: Egger M, Niggli E. Related Articles, Links
Regulatory function of Na-Ca exchange in the heart: milestones and outlook.
J Membr Biol. 1999 Mar 15;168(2):107-30. Review. No abstract available.
PMID: 10089232 [PubMed - indexed for MEDLINE]
- 211: DiPolo R, Beauge L. Related Articles, Links
Metabolic pathways in the regulation of invertebrate and vertebrate Na⁺/Ca²⁺ exchange.
Biochim Biophys Acta. 1999 Feb 25;1422(1):57-71. Review. No abstract available.
PMID: 10082981 [PubMed - indexed for MEDLINE]
- 212: Winslow RL, Rice J, Jafri S, Marban E, O'Rourke B. Related Articles, Links
Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies.
Circ Res. 1999 Mar 19;84(5):571-86.
PMID: 10082479 [PubMed - indexed for MEDLINE]
- 213: O'Rourke B, Kass DA, Tomaselli GF, Kaab S, Tunin R, Marban E. Related Articles, Links
Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies.
Circ Res. 1999 Mar 19;84(5):562-70.
PMID: 10082478 [PubMed - indexed for MEDLINE]
- 214: Li XF, Lytton J. Related Articles, Links
A circularized sodium-calcium exchanger exon 2 transcript.
J Biol Chem. 1999 Mar 19;274(12):8153-60.
PMID: 10075718 [PubMed - indexed for MEDLINE]
- 215: Marin J, Encabo A, Briones A, Garcia-Cohen EC, Alonso MJ. Related Articles, Links
Mechanisms involved in the cellular calcium homeostasis in vascular smooth muscle: calcium pumps.
Life Sci. 1999;64(5):279-303. Review.
PMID: 10072189 [PubMed - indexed for MEDLINE]
- 216: Dipla K, Mattiello JA, Margulies KB, Jeevanandam V, Houser SR. Related Articles, Links
The sarcoplasmic reticulum and the Na⁺/Ca²⁺ exchanger both contribute to the Ca²⁺ transient of failing human ventricular myocytes.

Circ Res. 1999 Mar 5;84(4):435-44.
PMID: 10066678 [PubMed - indexed for MEDLINE]

- 217:** Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS, Prestle J, Minami K, Just H. [Related Articles](#), [Links](#)
Relationship between Na⁺-Ca²⁺-exchanger protein levels and diastolic function of failing human myocardium.
Circulation. 1999 Feb 9;99(5):641-8.
PMID: 9950661 [PubMed - indexed for MEDLINE]
- 218:** Loeffler KU, Mangini NJ. [Related Articles](#), [Links](#)
Immunohistochemical localization of Na⁺/Ca²⁺ exchanger in human retina and retinal pigment epithelium.
Graefes Arch Clin Exp Ophthalmol. 1998 Dec;236(12):929-33.
PMID: 9865624 [PubMed - indexed for MEDLINE]
- 219:** Tucker JE, Winkfein RJ, Murthy SK, Friedman JS, Walter MA, Demetrick DJ, Schnetkamp PP. [Related Articles](#), [Links](#)
Chromosomal localization and genomic organization of the human retinal rod Na-Ca⁺K exchanger.
Hum Genet. 1998 Oct;103(4):411-4.
PMID: 9856482 [PubMed - indexed for MEDLINE]
- 220:** Tomiyama Y, Shiraga M, Kinoshita S, Ambo H, Kurata Y, Matsuzawa Y, Kunicki TJ. [Related Articles](#), [Links](#)
A Glanzmann thrombasthenia-like phenotype caused by a defect in inside-out signaling through the integrin alpha(IIb)beta3.
Thromb Haemost. 1998 Nov;80(5):735-42.
PMID: 9843164 [PubMed - indexed for MEDLINE]
- 221:** Schillinger W, Lehnart SE, Prestle J, Preuss M, Pieske B, Maier LS, Meyer M, Just H, Hasenfuss G. [Related Articles](#), [Links](#)
Influence of SR Ca(2+)-ATPase and Na(+)–Ca(2+)-exchanger on the force-frequency relation.
Basic Res Cardiol. 1998;93 Suppl 1:38-45. Review.
PMID: 9833129 [PubMed - indexed for MEDLINE]
- 222:** Horiguchi M, Kimura M, Skurnick J, Aviv A. [Related Articles](#), [Links](#)
Parameters of lymphocyte Na⁺-Ca²⁺ regulation and blood pressure: the gender effect.
Hypertension. 1998 Nov;32(5):869-74.
PMID: 9822446 [PubMed - indexed for MEDLINE]
- 223:** Shiraga M, Tomiyama Y, Honda S, Suzuki H, Kosugi S, Tadokoro S, Kanakura Y, Tanoue K, Kurata Y, Matsuzawa Y. [Related Articles](#), [Links](#)
Involvement of Na⁺/Ca²⁺ exchanger in inside-out signaling through the platelet integrin IIbbeta3.
Blood. 1998 Nov 15;92(10):3710-20.
PMID: 9808565 [PubMed - indexed for MEDLINE]
- 224:** Foster RH, Prat H, Rothman I. [Related Articles](#), [Links](#)
Is ouabain produced by the adrenal gland?
Gen Pharmacol. 1998 Oct;31(4):499-501. Review.
PMID: 9792206 [PubMed - indexed for MEDLINE]
- 225:** Mikoshiba K. [Related Articles](#), [Links](#)
[Ca²⁺ mobilization and pumping out mechanism]
Tanpakushitsu Kakusan Koso. 1998 Sep;43(12 Suppl):1577-8. Review. Japanese. No abstract available.
PMID: 9788155 [PubMed - indexed for MEDLINE]

- 226: [Matsuoka S, Noma A.](#) [Related Articles](#), [Links](#)
[Na(+)-Ca²⁺ exchange]
Tanpakushitsu Kakusan Koso. 1998 Sep;43(12 Suppl):1555-60. Review. Japanese. No abstract available.
PMID: 9788152 [PubMed - indexed for MEDLINE]
- 227: [Winslow RL, Rice J, Jafri S.](#) [Related Articles](#), [Links](#)
Modeling the cellular basis of altered excitation-contraction coupling in heart failure.
Prog Biophys Mol Biol. 1998;69(2-3):497-514. Review.
PMID: 9785953 [PubMed - indexed for MEDLINE]
- 228: [Fukuba Y, Makino S, Takeda Y, Kawashima J, Murakami H, Miura A.](#) [Related Articles](#), [Links](#)
The effect of high-salt diet intake on muscular exercise ability in young Japanese women.
Appl Human Sci. 1998 Jul;17(4):145-8.
PMID: 9757602 [PubMed - indexed for MEDLINE]
- 229: [Fang Y, Rong M, He L, Zhou C.](#) [Related Articles](#), [Links](#)
Mode-actions of the Na(+)-Ca²⁺ exchanger: from genes to mechanisms to a new strategy in brain disorders.
Biomed Pharmacother. 1998;52(4):145-56.
PMID: 9755808 [PubMed - indexed for MEDLINE]
- 230: [Courtemanche M, Ramirez RJ, Nattel S.](#) [Related Articles](#), [Links](#)
Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model.
Am J Physiol. 1998 Jul;275(1 Pt 2):H301-21.
PMID: 9688927 [PubMed - indexed for MEDLINE]
- 231: [Iwamoto T, Shigekawa M.](#) [Related Articles](#), [Links](#)
Differential inhibition of Na⁺/Ca²⁺ exchanger isoforms by divalent cations and isothiourea derivative.
Am J Physiol. 1998 Aug;275(2 Pt 1):C423-30.
PMID: 9688596 [PubMed - indexed for MEDLINE]
- 232: [Pieske B.](#) [Related Articles](#), [Links](#)
[New aspects of the pathophysiology of heart failure]
Wien Med Wochenschr. 1998;148(5):108-20. Review. German.
PMID: 9654696 [PubMed - indexed for MEDLINE]
- 233: [Itoh T, Itoh A, Horiuchi K, Pleasure D.](#) [Related Articles](#), [Links](#)
AMPA receptor-mediated excitotoxicity in human NT2-N neurons results from loss of intracellular Ca²⁺ homeostasis following marked elevation of intracellular Na⁺.
J Neurochem. 1998 Jul;71(1):112-24.
PMID: 9648857 [PubMed - indexed for MEDLINE]
- 234: [Priebe L, Beuckelmann DJ.](#) [Related Articles](#), [Links](#)
Simulation study of cellular electric properties in heart failure.
Circ Res. 1998 Jun 15;82(11):1206-23.
PMID: 9633920 [PubMed - indexed for MEDLINE]
- 235: [Carrillo C, Cafferata EG, Genovese J, O'Reilly M, Roberts AB, Santa-Coloma TA.](#) [Related Articles](#), [Links](#)
TGF-beta1 up-regulates the mRNA for the Na⁺/Ca²⁺ exchanger in neonatal rat cardiac myocytes.

Cell Mol Biol (Noisy-le-grand). 1998 May;44(3):543-51.
PMID: 9620452 [PubMed - indexed for MEDLINE]

- 236: [Mattiello JA, Margulies KB, Jeevanandam V, Houser SR.](#) Related Articles, Links

Contribution of reverse-mode sodium-calcium exchange to contractions in failing human left ventricular myocytes.
Cardiovasc Res. 1998 Feb;37(2):424-31.
PMID: 9614497 [PubMed - indexed for MEDLINE]

- 237: [Cook O, Low W, Rahamimoff H.](#) Related Articles, Links

Membrane topology of the rat brain Na⁺-Ca²⁺ exchanger.
Biochim Biophys Acta. 1998 Apr 22;1371(1):40-52.
PMID: 9565655 [PubMed - indexed for MEDLINE]

- 238: [Endoh M.](#) Related Articles, Links

Changes in intracellular Ca²⁺ mobilization and Ca²⁺ sensitization as mechanisms of action of physiological interventions and inotropic agents in intact myocardial cells.
Jpn Heart J. 1998 Jan;39(1):1-44. Review.
PMID: 9601480 [PubMed - indexed for MEDLINE]

- 239: [Dyck C, Maxwell K, Buchko J, Trac M, Omelchenko A, Hnatowich M, Hryshko LV.](#) Related Articles, Links

Structure-function analysis of CALX1.1, a Na⁺-Ca²⁺ exchanger from Drosophila. Mutagenesis of ionic regulatory sites.
J Biol Chem. 1998 May 22;273(21):12981-7.
PMID: 9582332 [PubMed - indexed for MEDLINE]

- 240: [Kiang JG, Ding XZ, McClain DE.](#) Related Articles, Links

Overexpression of HSP-70 attenuates increases in [Ca²⁺]i and protects human epidermoid A-431 cells after chemical hypoxia.
Toxicol Appl Pharmacol. 1998 Apr;149(2):185-94.
PMID: 9571987 [PubMed - indexed for MEDLINE]

- 241: [Friedman PA.](#) Related Articles, Links

Codependence of renal calcium and sodium transport.
Annu Rev Physiol. 1998;60:179-97. Review.
PMID: 9558460 [PubMed - indexed for MEDLINE]

- 242: [Matsuda T, Baba A.](#) Related Articles, Links

[Response of Na⁺/Ca²⁺ antiporter to ischemia and glial/neuronal death]
Nippon Yakurigaku Zasshi. 1998 Jan;111(1):13-9. Review. Japanese.
PMID: 9551468 [PubMed - indexed for MEDLINE]

- 243: [Scheller T, Kraev A, Skinner S, Carafoli E.](#) Related Articles, Links

Cloning of the multipartite promoter of the sodium-calcium exchanger gene NCX1 and characterization of its activity in vascular smooth muscle cells.
J Biol Chem. 1998 Mar 27;273(13):7643-9.
PMID: 9516469 [PubMed - indexed for MEDLINE]

- 244: [Berberian G, Hidalgo C, DiPolo R, Beauge L.](#) Related Articles, Links

ATP stimulation of Na⁺/Ca²⁺ exchange in cardiac sarcolemmal vesicles.
Am J Physiol. 1998 Mar;274(3 Pt 1):C724-33.
PMID: 9530104 [PubMed - indexed for MEDLINE]

- 245: [Satoh H, Sperelakis N.](#) Related Articles, Links

Review of some actions of taurine on ion channels of cardiac muscle cells

- and others.
Gen Pharmacol. 1998 Apr;30(4):451-63. Review.
PMID: 9522160 [PubMed - indexed for MEDLINE]
- 246: [Watano T, Kimura J.](#) Related Articles, Links
- Calcium-dependent inhibition of the sodium-calcium exchange current by KB-R7943.
Can J Cardiol. 1998 Feb;14(2):259-62.
PMID: 9520863 [PubMed - indexed for MEDLINE]
- 247: [Tucker JE, Winkfein RJ, Cooper CB, Schnetkamp PP.](#) Related Articles, Links
- cDNA cloning of the human retinal rod Na-Ca + K exchanger:
comparison with a revised bovine sequence.
Invest Ophthalmol Vis Sci. 1998 Feb;39(2):435-40.
PMID: 9478004 [PubMed - indexed for MEDLINE]
- 248: [Mangini NJ, Haugh-Scheidt L, Valle JE, Cragoe EJ Jr, Ripps H, Kennedy BG.](#) Related Articles, Links
- Sodium-calcium exchanger in cultured human retinal pigment epithelium.
Exp Eye Res. 1997 Dec;65(6):821-34.
PMID: 9441706 [PubMed - indexed for MEDLINE]
- 249: [Aviv A.](#) Related Articles, Links
- Cellular calcium and sodium regulation, salt-sensitivity and essential
hypertension in African Americans.
Ethn Health. 1996 Sep;1(3):275-81. Review.
PMID: 9395572 [PubMed - indexed for MEDLINE]
- 250: [Schwinger RH, Brixius K, Bavendiek U, Hoischen S, Muller-Ehmsen J, Bolck B, Erdmann E.](#) Related Articles, Links
- Effect of cyclopiazonic acid on the force-frequency relationship in human
nonfailing myocardium.
J Pharmacol Exp Ther. 1997 Oct;283(1):286-92.
PMID: 9336335 [PubMed - indexed for MEDLINE]
- 251: [Morad M, Suzuki YJ.](#) Related Articles, Links
- Ca(2+)-signaling in cardiac myocytes: evidence from evolutionary and
transgenic models.
Adv Exp Med Biol. 1997;430:3-12. Review.
PMID: 9330714 [PubMed - indexed for MEDLINE]
- 252: [Wu A, Derrico CA, Hatem L, Colvin RA.](#) Related Articles, Links
- Alzheimer's amyloid-beta peptide inhibits sodium/calcium exchange
measured in rat and human brain plasma membrane vesicles.
Neuroscience. 1997 Oct;80(3):675-84.
PMID: 9276485 [PubMed - indexed for MEDLINE]
- 253: [Ruknudin A, Valdivia C, Kofuji P, Lederer WJ, Schulze DH.](#) Related Articles, Links
- Na+/Ca2+ exchanger in Drosophila: cloning, expression, and transport
differences.
Am J Physiol. 1997 Jul;273(1 Pt 1):C257-65.
PMID: 9252464 [PubMed - indexed for MEDLINE]
- 254: [Navanglone A, Rispoli G, Gabellini N, Carafoli E.](#) Related Articles, Links
- Electrophysiological characterization of ionic transport by the retinal
exchanger expressed in human embryonic kidney cells.
Biophys J. 1997 Jul;73(1):45-51.
PMID: 9199770 [PubMed - indexed for MEDLINE]

- 255: Levi AJ, Dalton GR, Hancox JC, Mitcheson JS, Issberner J, Bates. Related Articles, Links
J A, Evans SJ, Howarth FC, Hobai IA, Jones JV.
- Role of intracellular sodium overload in the genesis of cardiac arrhythmias.
J Cardiovasc Electrophysiol. 1997 Jun;8(6):700-21. Review.
PMID: 9209972 [PubMed - indexed for MEDLINE]
- 256: Matsuda T, Takuma K, Baba A. Related Articles, Links
- Na(+)-Ca²⁺ exchanger: physiology and pharmacology.
Jpn J Pharmacol. 1997 May;74(1):1-20. Review.
PMID: 9195292 [PubMed - indexed for MEDLINE]
- 257: Muller-Ehmsen J, Frank K, Brixius K, Schwinger RH. Related Articles, Links
- Increase in force of contraction by activation of the Na⁺/Ca⁽²⁺⁾-exchanger in human myocardium.
Br J Clin Pharmacol. 1997 Apr;43(4):399-405.
PMID: 9146852 [PubMed - indexed for MEDLINE]
- 258: LoPachin RM, Lehning EJ. Related Articles, Links
- Mechanism of calcium entry during axon injury and degeneration.
Toxicol Appl Pharmacol. 1997 Apr;143(2):233-44. Review.
PMID: 9144441 [PubMed - indexed for MEDLINE]
- 259: Resendes MC, Kalogeros GC, Dixon SJ, Philp RB. Related Articles, Links
- Nitrous oxide enhances Na⁺/Ca⁺⁺ exchange in the neuroblastoma cell line SK-N-SH.
J Pharmacol Exp Ther. 1997 Feb;280(2):795-801.
PMID: 9023293 [PubMed - indexed for MEDLINE]
- 260: Foye AD, Crawford A, Hall ND. Related Articles, Links
- Modulation of cytokine production by human mononuclear cells following impairment of Na, K-ATPase activity.
Biochim Biophys Acta. 1997 Jan 10;1355(1):43-9.
PMID: 9030200 [PubMed - indexed for MEDLINE]
- 261: Studer R, Reinecke H, Vetter R, Holtz J, Drexler H. Related Articles, Links
- Expression and function of the cardiac Na⁺/Ca²⁺ exchanger in postnatal development of the rat, in experimental-induced cardiac hypertrophy and in the failing human heart.
Basic Res Cardiol. 1997;92 Suppl 1:53-8. Review.
PMID: 9202844 [PubMed - indexed for MEDLINE]
- 262: Hryshko L V, Philipson K D. Related Articles, Links
- Sodium-calcium exchange: recent advances.
Basic Res Cardiol. 1997;92 Suppl 1:45-51. Review.
PMID: 9202843 [PubMed - indexed for MEDLINE]
- 263: Pitt A, Knox A J. Related Articles, Links
- Molecular characterization of the human airway smooth muscle Na⁺/Ca²⁺ exchanger.
Am J Respir Cell Mol Biol. 1996 Dec;15(6):726-30.
PMID: 8969266 [PubMed - indexed for MEDLINE]
- 264: Brandenburger Y, Kennedy ED, Python CP, Rossier MF, Vallotton MB, Wollheim CB, Capponi AM. Related Articles, Links
- Possible role for mitochondrial calcium in angiotensin II- and potassium-stimulated steroidogenesis in bovine adrenal glomerulosa cells.
Endocrinology. 1996 Dec;137(12):5544-51.

PMID: 8940382 [PubMed - indexed for MEDLINE]

- 265: [White KE, Gesek FA, Friedman PA.](#) [Related Articles](#), [Links](#)

- Na⁺/Ca²⁺ exchange in rat osteoblast-like UMR 106 cells.**
J Bone Miner Res. 1996 Nov;11(11):1666-75.
PMID: 8915774 [PubMed - indexed for MEDLINE]

- 266: [Kraev A, Chumakov I, Carafoli E.](#) [Related Articles](#), [Links](#)

- The organization of the human gene NCX1 encoding the sodium-calcium exchanger.**
Genomics. 1996 Oct 1;37(1):105-12.
PMID: 8921376 [PubMed - indexed for MEDLINE]

- 267: [Shiraga M, Tomiyama Y, Honda S, Kashiwagi H, Kosugi S, Handa M, Ikeda Y, Kanakura Y, Kurata Y, Matsuzawa Y.](#) [Related Articles](#), [Links](#)

- Affinity modulation of the platelet integrin alpha IIb beta 3 by alpha-chymotrypsin: a possible role for Na⁺/Ca²⁺ exchanger.**
Blood. 1996 Oct 1;88(7):2594-602.
PMID: 8839852 [PubMed - indexed for MEDLINE]

- 268: [Wang J, Schwinger RH, Frank K, Muller-Ehmsen J, Martin-Vasallo P, Pressley TA, Xiang A, Erdmann E, McDonough AA.](#) [Related Articles](#), [Links](#)

- Regional expression of sodium pump subunits isoforms and Na⁺-Ca⁺⁺ exchanger in the human heart.**
J Clin Invest. 1996 Oct 1;98(7):1650-8.
PMID: 8833915 [PubMed - indexed for MEDLINE]

- 269: [Benardeau A, Hatem SN, Rucker-Martin C, Le Grand B, Mace L, Dervanian P, Mercadier JJ, Coraboeuf E.](#) [Related Articles](#), [Links](#)

- Contribution of Na⁺/Ca²⁺ exchange to action potential of human atrial myocytes.**
Am J Physiol. 1996 Sep;271(3 Pt 2):H1151-61.
PMID: 8853354 [PubMed - indexed for MEDLINE]

- 270: [Flesch M, Schwinger RH, Schiffer F, Frank K, Sudkamp M, Kuhn-Regnier F, Arnold G, Bohm M.](#) [Related Articles](#), [Links](#)

- Evidence for functional relevance of an enhanced expression of the Na⁺-Ca²⁺ exchanger in failing human myocardium.**
Circulation. 1996 Sep 1;94(5):992-1002.
PMID: 8790037 [PubMed - indexed for MEDLINE]

- 271: [Gabellini N, Zatti A, Rispoli G, Navangione A, Carafoli E.](#) [Related Articles](#), [Links](#)

- Expression of an active Na⁺/Ca²⁺ exchanger isoform lacking the six C-terminal transmembrane segments.**
Eur J Biochem. 1996 Aug 1;239(3):897-904.
PMID: 8774741 [PubMed - indexed for MEDLINE]

- 272: [Janvier NC, Boyett MR.](#) [Related Articles](#), [Links](#)

- The role of Na-Ca exchange current in the cardiac action potential.**
Cardiovasc Res. 1996 Jul;32(1):69-84. Review.
PMID: 8776405 [PubMed - indexed for MEDLINE]

- 273: [Lederer WJ, He S, Luo S, duBell W, Kofuji P, Kieval R, Neubauer CF, Ruknudin A, Cheng H, Cannell MB, Rogers TB, Schulze DH.](#) [Related Articles](#), [Links](#)

- The molecular biology of the Na⁽⁺⁾-Ca²⁺ exchanger and its functional roles in heart, smooth muscle cells, neurons, glia, lymphocytes, and nonexcitable cells.**
Ann N Y Acad Sci. 1996 Apr 15;779:7-17. Review. No abstract available.
PMID: 8659882 [PubMed - indexed for MEDLINE]

- 274:** Reinecke H, Studer R, Vetter R, Just H, Holtz J, Drexler H. [Related Articles](#), [Links](#)
 Role of the cardiac sarcolemmal Na(+)–Ca²⁺ exchanger in end-stage human heart failure.
Ann N Y Acad Sci. 1996 Apr 15;779:543–5. No abstract available.
PMID: 8659875 [PubMed - indexed for MEDLINE]
- 275:** Flesch M, Putz F, Schwinger RH, Bohm M. [Related Articles](#), [Links](#)
 Functional relevance of an enhanced expression of the Na(+)–Ca²⁺ exchanger in the failing human heart.
Ann N Y Acad Sci. 1996 Apr 15;779:539–42. No abstract available.
PMID: 8659874 [PubMed - indexed for MEDLINE]
- 276:** Li GR, Nattel S. [Related Articles](#), [Links](#)
 Demonstration of an inward Na(+)–Ca²⁺ exchange current in adult human atrial myocytes.
Ann N Y Acad Sci. 1996 Apr 15;779:525–8. No abstract available.
PMID: 8659869 [PubMed - indexed for MEDLINE]
- 277:** Gardner JP, Balasubramanyam M. [Related Articles](#), [Links](#)
 Na–Ca exchange in circulating blood cells.
Ann N Y Acad Sci. 1996 Apr 15;779:502–14. Review.
PMID: 8659866 [PubMed - indexed for MEDLINE]
- 278:** Schulze DH, Kofuji P, Valdivia C, He S, Luo S, Ruknudin A, Wisel S, Kirby MS, duBell W, Lederer WJ. [Related Articles](#), [Links](#)
 Alternative splicing of the Na(+)–Ca²⁺ exchanger gene, NCX1.
Ann N Y Acad Sci. 1996 Apr 15;779:46–57. Review.
PMID: 8659862 [PubMed - indexed for MEDLINE]
- 279:** Langer GA, Peskoff A. [Related Articles](#), [Links](#)
 Calcium in the cardiac diadic cleft. Implications for sodium-calcium exchange.
Ann N Y Acad Sci. 1996 Apr 15;779:408–16. Review. No abstract available.
PMID: 8659857 [PubMed - indexed for MEDLINE]
- 280:** Rahamimoff H, Low W, Cook O, Furman I, Kasir J, Vatashski R. [Related Articles](#), [Links](#)
 The structural basis of Na(+)–Ca²⁺ exchange activity.
Ann N Y Acad Sci. 1996 Apr 15;779:29–36. Review. No abstract available.
PMID: 8659840 [PubMed - indexed for MEDLINE]
- 281:** Gabellini N, Iwata T, Carafoli E. [Related Articles](#), [Links](#)
 Expression of Na(+)–Ca²⁺ exchanger with modified C-terminal hydrophobic domains and enhanced activity.
Ann N Y Acad Sci. 1996 Apr 15;779:110–4. Review.
PMID: 8659816 [PubMed - indexed for MEDLINE]
- 282:** Kraev A, Chumakov I, Carafoli E. [Related Articles](#), [Links](#)
 Molecular biological studies of the cardiac sodium-calcium exchanger.
Ann N Y Acad Sci. 1996 Apr 15;779:103–9. Review.
PMID: 8659815 [PubMed - indexed for MEDLINE]
- 283:** [No authors listed]. [Related Articles](#), [Links](#)
 3rd International Conference on Sodium-Calcium Exchange. Woods Hole, Massachusetts, April 23–26, 1995. Proceedings.
Ann N Y Acad Sci. 1996 Apr 15;779:1–589. No abstract available.
PMID: 8659814 [PubMed - indexed for MEDLINE]
- 284:** Just H. [Related Articles](#), [Links](#)

- Pathophysiological targets for beta-blocker therapy in congestive heart failure.
Eur Heart J. 1996 Apr;17 Suppl B:2-7.
PMID: 8733064 [PubMed - indexed for MEDLINE]
- **285:** Colvin RA, Walker JP, Schummers J, Davis N. Related Articles, Links
 Aging does not affect steady-state expression of the Na⁺/Ca²⁺ exchanger in rat brain.
Cell Mol Neurobiol. 1996 Feb;16(1):11-9.
PMID: 8714556 [PubMed - indexed for MEDLINE]
- **286:** Drexler H. Related Articles, Links
 [Sympathetic nervous system in heart failure: effect of catecholamines and nitric oxide]
Z Kardiol. 1996;85 Suppl 6:247-52. Review. German.
PMID: 9064972 [PubMed - indexed for MEDLINE]
- **287:** Capponi AM. Related Articles, Links
 Distribution and signal transduction of angiotensin II AT1 and AT2 receptors.
Blood Press Suppl. 1996;2:41-6. Review.
PMID: 8913539 [PubMed - indexed for MEDLINE]
- **288:** Sham JS, Hatem SN, Morad M. Related Articles, Links
 Species differences in the activity of the Na(+)–Ca²⁺ exchanger in mammalian cardiac myocytes.
J Physiol. 1995 Nov 1;488 (Pt 3):623-31.
PMID: 8576853 [PubMed - indexed for MEDLINE]
- **289:** Loo TW, Ho C, Clarke DM. Related Articles, Links
 Expression of a functionally active human renal sodium-calcium exchanger lacking a signal sequence.
J Biol Chem. 1995 Aug 18;270(33):19345-50.
PMID: 7642612 [PubMed - indexed for MEDLINE]
- **290:** Furman I, Cook O, Kasir J, Low W, Rahamimoff H. Related Articles, Links
 The putative amino-terminal signal peptide of the cloned rat brain Na(+)–Ca²⁺ exchanger gene (RBE-1) is not mandatory for functional expression.
J Biol Chem. 1995 Aug 11;270(32):19120-7.
PMID: 7642578 [PubMed - indexed for MEDLINE]
- **291:** Lipp P, Schwaller B, Niggli E. Related Articles, Links
 Specific inhibition of Na-Ca exchange function by antisense oligodeoxynucleotides.
FEBS Lett. 1995 May 8;364(2):198-202. Erratum in: FEBS Lett 1995 Aug 21;370 (3):280.
PMID: 7750570 [PubMed - indexed for MEDLINE]
- **292:** Gabellini N, Iwata T, Carafoli E. Related Articles, Links
 An alternative splicing site modifies the carboxyl-terminal trans-membrane domains of the Na⁺/Ca²⁺ exchanger.
J Biol Chem. 1995 Mar 24;270(12):6917-24.
PMID: 7896841 [PubMed - indexed for MEDLINE]
- **293:** Kordeli E, Lambert S, Bennett V. Related Articles, Links
 AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier.

J Biol Chem. 1995 Feb 3;270(5):2352-9.
PMID: 7836469 [PubMed - indexed for MEDLINE]

- 294: [Gatto C, Hale CC, Xu W, Milanick MA.](#) [Related Articles](#), [Links](#)
 Eosin, a potent inhibitor of the plasma membrane Ca pump, does not inhibit the cardiac Na-Ca exchanger.
Biochemistry. 1995 Jan 24;34(3):965-72.
PMID: 7530047 [PubMed - indexed for MEDLINE]
- 295: [Morishita F, Kawarabayashi T, Sakamoto Y, Shirakawa K.](#) [Related Articles](#), [Links](#)
 Role of the sodium-calcium exchange mechanism and the effect of magnesium on sodium-free and high-potassium contractures in pregnant human myometrium.
Am J Obstet Gynecol. 1995 Jan;172(1 Pt 1):186-95.
PMID: 7847532 [PubMed - indexed for MEDLINE]
- 296: [Fisher DJ.](#) [Related Articles](#), [Links](#)
 Recent insights into the regulation of cardiac Ca²⁺ flux during perinatal development and in cardiac failure.
Curr Opin Cardiol. 1995 Jan;10(1):44-51. Review.
PMID: 7787264 [PubMed - indexed for MEDLINE]
- 297: [Michaelis ML.](#) [Related Articles](#), [Links](#)
 Ion transport systems and Ca²⁺ regulation in aging neurons.
Ann N Y Acad Sci. 1994 Dec 15;747:407-18. Review. No abstract available.
PMID: 7847687 [PubMed - indexed for MEDLINE]
- 298: [Colvin RA, Davis N, Wu A, Murphy CA, Levengood J.](#) [Related Articles](#), [Links](#)
 Studies of the mechanism underlying increased Na⁺/Ca²⁺ exchange activity in Alzheimer's disease brain.
Brain Res. 1994 Dec 5;665(2):192-200.
PMID: 7895054 [PubMed - indexed for MEDLINE]
- 299: [Wu A, Colvin RA.](#) [Related Articles](#), [Links](#)
 Characterization of exchange inhibitory peptide effects on Na⁺/Ca²⁺ exchange in rat and human brain plasma membrane vesicles.
J Neurochem. 1994 Dec;63(6):2136-43.
PMID: 7964733 [PubMed - indexed for MEDLINE]
- 300: [Suleiman MS.](#) [Related Articles](#), [Links](#)
 New concepts in the cardioprotective action of magnesium and taurine during the calcium paradox and ischaemia of the heart.
Magnes Res. 1994 Dec;7(3-4):295-312. Review.
PMID: 7786694 [PubMed - indexed for MEDLINE]
- 301: [Balasubramanyam M, Rohowsky-Kochan C, Reeves JP, Gardner JP.](#) [Related Articles](#), [Links](#)
 Na⁺/Ca²⁺ exchange-mediated calcium entry in human lymphocytes.
J Clin Invest. 1994 Nov;94(5):2002-8.
PMID: 7962546 [PubMed - indexed for MEDLINE]
- 302: [Reeves JP, Condrescu M, Chernaya G, Gardner JP.](#) [Related Articles](#), [Links](#)
 Na⁺/Ca²⁺ antiport in the mammalian heart.
J Exp Biol. 1994 Nov;196:375-88. Review.
PMID: 7823035 [PubMed - indexed for MEDLINE]
- 303: [Grinstein S, Wieczorek H.](#) [Related Articles](#), [Links](#)
Cation antiports of animal plasma membranes.

- J Exp Biol. 1994 Nov;196:307-18. Review. No abstract available.
PMID: 7823030 [PubMed - indexed for MEDLINE]
- 304: [Kim-Lee MH, Stokes BT, McDonald JS.](#) Related Articles, Links
 Procaine, lidocaine, and hypothermia inhibit calcium paradox in glial cells.
Anesth Analg. 1994 Oct;79(4):728-33.
PMID: 7943783 [PubMed - indexed for MEDLINE]
- 305: [Benders AA, Li J, Lock RA, Bindels RJ, Bonga SE, Veerkamp JH.](#) Related Articles, Links
 Copper toxicity in cultured human skeletal muscle cells: the involvement of Na⁺/K⁽⁺⁾-ATPase and the Na⁺/Ca⁽²⁺⁾-exchanger.
Pflugers Arch. 1994 Oct;428(5-6):461-7.
PMID: 7838667 [PubMed - indexed for MEDLINE]
- 306: [Atsma DE, Bastiaanse EM, Ince C, van der Laarse A.](#) Related Articles, Links
 A novel two-compartment culture dish allows microscopic evaluation of two different treatments in one cell culture simultaneously. Influence of external pH on Na⁺/Ca²⁺ exchanger activity in cultured rat cardiomyocytes.
Pflugers Arch. 1994 Oct;428(3-4):296-9.
PMID: 7816552 [PubMed - indexed for MEDLINE]
- 307: [Studer R, Reinecke H, Bilger J, Eschenhagen T, Bohm M, Hasenfuss G, Just H, Holtz J, Drexler H.](#) Related Articles, Links
 Gene expression of the cardiac Na⁽⁺⁾-Ca²⁺ exchanger in end-stage human heart failure.
Circ Res. 1994 Sep;75(3):443-53.
PMID: 8062418 [PubMed - indexed for MEDLINE]
- 308: [Harvey BJ.](#) Related Articles, Links
 Crosstalk and epithelial ion transport.
Curr Opin Nephrol Hypertens. 1994 Sep;3(5):523-8.
PMID: 7804751 [PubMed - indexed for MEDLINE]
- 309: [Kimura M, Cho JH, Reeves JP, Aviv A.](#) Related Articles, Links
 Inhibition of Ca²⁺ entry by Ca²⁺ overloading of intracellular Ca²⁺ stores in human platelets.
J Physiol. 1994 Aug 15;479 (Pt 1):1-10.
PMID: 7527459 [PubMed - indexed for MEDLINE]
- 310: [Lax D, Martinez-Zaguilan R, Gillies RJ.](#) Related Articles, Links
 Furazolidone increases thapsigargin-sensitive Ca⁽²⁺⁾-ATPase in chick cardiac myocytes.
Am J Physiol. 1994 Aug;267(2 Pt 2):H734-41.
PMID: 8067429 [PubMed - indexed for MEDLINE]
- 311: [Reithmeier RA.](#) Related Articles, Links
 Mammalian exchangers and co-transporters.
Curr Opin Cell Biol. 1994 Aug;6(4):583-94. Review.
PMID: 7986536 [PubMed - indexed for MEDLINE]
- 312: [Hoey A, Amos GJ, Ravens U.](#) Related Articles, Links
 Comparison of the action potential prolonging and positive inotropic activity of DPI 201-106 and BDF 9148 in human ventricular myocardium.
J Mol Cell Cardiol. 1994 Aug;26(8):985-94.
PMID: 7799453 [PubMed - indexed for MEDLINE]

- 313: Kiang JG, Smallridge RC. [Related Articles](#), [Links](#)
 Sodium cyanide increases cytosolic free calcium: evidence for activation of the reversed mode of the Na+/Ca²⁺ exchanger and Ca²⁺ mobilization from inositol trisphosphate-insensitive pools.
Toxicol Appl Pharmacol. 1994 Aug;127(2):173-81.
PMID: 7519371 [PubMed - indexed for MEDLINE]
- 314: Loo TW, Clarke DM. [Related Articles](#), [Links](#)
 Functional expression of human renal Na+/Ca²⁺ exchanger in insect cells.
Am J Physiol. 1994 Jul;267(1 Pt 2):F70-4.
PMID: 8048567 [PubMed - indexed for MEDLINE]
- 315: Li Z, Matsuoka S, Hryshko LV, Nicoll DA, Bersohn MM, Burke EP, Lifton RP, Philipson KD. [Related Articles](#), [Links](#)
 Cloning of the NCX2 isoform of the plasma membrane Na(+)-Ca²⁺ exchanger.
J Biol Chem. 1994 Jul 1;269(26):17434-9.
PMID: 8021246 [PubMed - indexed for MEDLINE]
- 316: Drexler H. [Related Articles](#), [Links](#)
 Heart failure: an update on pathophysiology.
Arch Mal Coeur Vaiss. 1994 Jun;87 Spec No 2:13-6.
PMID: 7864717 [PubMed - indexed for MEDLINE]
- 317: Macdonald RL, Weir BK. [Related Articles](#), [Links](#)
 Cerebral vasospasm and free radicals.
Free Radic Biol Med. 1994 May;16(5):633-43. Review.
PMID: 8026807 [PubMed - indexed for MEDLINE]
- 318: Kimura M, Cho JH, Lasker N, Aviv A. [Related Articles](#), [Links](#)
 Differences in platelet calcium regulation between African Americans and Caucasians: implications for the predisposition of African Americans to essential hypertension.
J Hypertens. 1994 Feb;12(2):199-207.
PMID: 8021471 [PubMed - indexed for MEDLINE]
- 319: Tepel M, Bauer S, Kegel M, Raffelsiefer A, Wischniowski H, Zidek W. [Related Articles](#), [Links](#)
 Increased cytosolic free sodium in platelets from patients with early-stage chronic renal failure.
Nephrol Dial Transplant. 1994;9(1):27-34.
PMID: 8177473 [PubMed - indexed for MEDLINE]
- 320: Levi AJ, Boyett MR, Lee CO. [Related Articles](#), [Links](#)
 The cellular actions of digitalis glycosides on the heart.
Prog Biophys Mol Biol. 1994;62(1):1-54. Review. No abstract available.
PMID: 8085015 [PubMed - indexed for MEDLINE]
- 321: Cox DA, Matlib MA. [Related Articles](#), [Links](#)
 Modulation of intramitochondrial free Ca²⁺ concentration by antagonists of Na(+)-Ca²⁺ exchange.
Trends Pharmacol Sci. 1993 Nov;14(11):408-13. Review.
PMID: 8296399 [PubMed - indexed for MEDLINE]
- 322: Schulze D, Kofuji P, Hadley R, Kirby MS, Kieval RS, Doering A, Niggli E, Lederer WJ. [Related Articles](#), [Links](#)
 Sodium/calcium exchanger in heart muscle: molecular biology, cellular function, and its special role in excitation-contraction coupling.

Cardiovasc Res. 1993 Oct;27(10):1726-34. Review.
PMID: 8275517 [PubMed - indexed for MEDLINE]

- 323:** [Noble D, Bett G.](#) [Related Articles](#), [Links](#)
- Reconstructing the heart: a challenge for integrative physiology.
Cardiovasc Res. 1993 Oct;27(10):1701-12. No abstract available.
PMID: 8275516 [PubMed - indexed for MEDLINE]
- 324:** [Ishida T, Matsuura H, Ishida-Kainouchi M, Ozono R, Watanabe M, Kajiyama G, Oshima T.](#) [Related Articles](#), [Links](#)
- Na⁽⁺⁾-Ca²⁺ exchange modulates Ca²⁺ handling of human platelets by altering intracellular Ca²⁺ store size.
J Hypertens. 1993 Oct;11(10):1089-95.
PMID: 8258673 [PubMed - indexed for MEDLINE]
- 325:** [Marlier LN, Zheng T, Tang J, Grayson DR.](#) [Related Articles](#), [Links](#)
- Regional distribution in the rat central nervous system of a mRNA encoding a portion of the cardiac sodium/calcium exchanger isolated from cerebellar granule neurons.
Brain Res Mol Brain Res. 1993 Oct;20(1-2):21-39.
PMID: 8255180 [PubMed - indexed for MEDLINE]
- 326:** [Donnadien E, Trautmann A.](#) [Related Articles](#), [Links](#)
- Is there a Na⁺/Ca²⁺ exchanger in macrophages and in lymphocytes?
Pflugers Arch. 1993 Sep;424(5-6):448-55.
PMID: 8255728 [PubMed - indexed for MEDLINE]
- 327:** [Mene P, Pugliese F, Cinotti GA.](#) [Related Articles](#), [Links](#)
- Cyclic nucleotides inhibit Na⁺/Ca²⁺ exchange in cultured human mesangial cells.
Exp Nephrol. 1993 Jul-Aug;1(4):245-52.
PMID: 7521769 [PubMed - indexed for MEDLINE]
- 328:** [Barry WH.](#) [Related Articles](#), [Links](#)
- Is "fuzzy space" necessary for Ca²⁺ extrusion on the Na⁽⁺⁾-Ca⁺ exchanger in cardiac myocytes?
J Mol Cell Cardiol. 1993 Jun;25(6):641-3; discussion 645-6. No abstract available.
PMID: 8411189 [PubMed - indexed for MEDLINE]
- 329:** [Langer GA, Peskoff A, Post JA.](#) [Related Articles](#), [Links](#)
- How does the Na⁽⁺⁾-Ca²⁺ exchanger work in the intact cardiac cell?
J Mol Cell Cardiol. 1993 Jun;25(6):637-9. No abstract available.
PMID: 8411188 [PubMed - indexed for MEDLINE]
- 330:** [Katnik C, Nelson DJ.](#) [Related Articles](#), [Links](#)
- Platelet activating factor-induced increase in cytosolic calcium and transmembrane current in human macrophages.
J Membr Biol. 1993 Jun;134(3):213-24.
PMID: 8411123 [PubMed - indexed for MEDLINE]
- 331:** [Barry WH, Bridge JH.](#) [Related Articles](#), [Links](#)
- Intracellular calcium homeostasis in cardiac myocytes.
Circulation. 1993 Jun;87(6):1806-15. Review.
PMID: 8389258 [PubMed - indexed for MEDLINE]
- 332:** [Kimura M, Aviv A, Reeves JP.](#) [Related Articles](#), [Links](#)
- K⁽⁺⁾-dependent Na⁺/Ca²⁺ exchange in human platelets.
J Biol Chem. 1993 Apr 5;268(10):6874-7.

PMID: 8463216 [PubMed - indexed for MEDLINE]

- 333: [Pijuan V, Zhuang Y, Smith L, Kroupis C, Condrescu M, Aceto JF, Reeves JP, Smith JB.](#) Related Articles, Links

 Stable expression of the cardiac sodium-calcium exchanger in CHO cells.
Am J Physiol. 1993 Apr;264(4 Pt 1):C1066-74.
PMID: 8476012 [PubMed - indexed for MEDLINE]

- 334: [Furman I, Cook O, Kasir J, Rahamimoff H.](#) Related Articles, Links

 Cloning of two isoforms of the rat brain Na⁽⁺⁾-Ca²⁺ exchanger gene and their functional expression in HeLa cells.
FEBS Lett. 1993 Mar 15;319(1-2):105-9.
PMID: 8454039 [PubMed - indexed for MEDLINE]

- 335: [Wacholtz MC, Cragoe EJ Jr, Lipsky PE.](#) Related Articles, Links

 Delineation of the role of a Na⁺/Ca²⁺ exchanger in regulating intracellular Ca²⁺ in T cells.
Cell Immunol. 1993 Mar;147(1):95-109.
PMID: 8462115 [PubMed - indexed for MEDLINE]

- 336: [Kimura M, Aviv A.](#) Related Articles, Links

 Regulation of the cytosolic pH set point for activation of the Na⁺/H⁺ antiport in human platelets: the roles of the Na⁺/Ca²⁺ exchange, the Na⁽⁺⁾-K⁽⁺⁾-2Cl⁻ cotransport and cellular volume.
Pflugers Arch. 1993 Mar;422(6):585-90.
PMID: 8385772 [PubMed - indexed for MEDLINE]

- 337: [Waxman SG, Ritchie JM.](#) Related Articles, Links

 Molecular dissection of the myelinated axon.
Ann Neurol. 1993 Feb;33(2):121-36. Review.
PMID: 7679565 [PubMed - indexed for MEDLINE]

- 338: [Low W, Kasir J, Rahamimoff H.](#) Related Articles, Links

 Cloning of the rat heart Na⁽⁺⁾-Ca²⁺ exchanger and its functional expression in HeLa cells.
FEBS Lett. 1993 Jan 18;316(1):63-7.
PMID: 8422940 [PubMed - indexed for MEDLINE]

- 339: [McDaniel LD, Lederer WJ, Kofuji P, Schulze DH, Kieval R, Schultz RA.](#) Related Articles, Links

 Mapping of the human cardiac Na⁺/Ca²⁺ exchanger gene (NCX1) by fluorescent in situ hybridization to chromosome region 2p22-->p23.
Cytogenet Cell Genet. 1993;63(3):192-3.
PMID: 8485996 [PubMed - indexed for MEDLINE]

- 340: [Ransom BR, Waxman SG, Stys PK.](#) Related Articles, Links

 Anoxic injury of central myelinated axons: ionic mechanisms and pharmacology.
Res Publ Assoc Res Nerv Ment Dis. 1993;71:121-51. Review. No abstract available.
PMID: 8417464 [PubMed - indexed for MEDLINE]

- 341: [Ponce-Hornos JE, Bonazzola P, Taquini AC.](#) Related Articles, Links

 [Energetics of ionic behavior in heart muscle contraction. Physiologic and physiopathologic aspects]
Medicina (B Aires). 1993;53(5):445-58. Review. Spanish.
PMID: 8201934 [PubMed - indexed for MEDLINE]

- 342: [Decollogne S, Bertrand IB, Ascensio M, Drubaix I, Lelievre LG.](#) Related Articles, Links

- Na⁺, K(+)-ATPase and Na⁺/Ca²⁺ exchange isoforms: physiological and physiopathological relevance.
J Cardiovasc Pharmacol. 1993;22 Suppl 2:S96-8. Review.
PMID: 7508043 [PubMed - indexed for MEDLINE]
- 343: [Kofuji P, Hadley RW, Kieval RS, Lederer WJ, Schulze DH.](#) Related Articles, Links
Expression of the Na-Ca exchanger in diverse tissues: a study using the cloned human cardiac Na-Ca exchanger.
Am J Physiol. 1992 Dec;263(6 Pt 1):C1241-9.
PMID: 1476165 [PubMed - indexed for MEDLINE]
- 344: [Valant PA, Adjei PN, Haynes DH.](#) Related Articles, Links
Rapid Ca²⁺ extrusion via the Na⁺/Ca²⁺ exchanger of the human platelet.
J Membr Biol. 1992 Oct;130(1):63-82.
PMID: 1469706 [PubMed - indexed for MEDLINE]
- 345: [Wacholtz MC, Cragoe EJ Jr, Lipsky PE.](#) Related Articles, Links
A Na(+) -dependent Ca²⁺ exchanger generates the sustained increase in intracellular Ca²⁺ required for T cell activation.
J Immunol. 1992 Sep 15;149(6):1912-20.
PMID: 1387665 [PubMed - indexed for MEDLINE]
- 346: [Varro A, Papp JG.](#) Related Articles, Links
The impact of single cell voltage clamp on the understanding of the cardiac ventricular action potential.
Cardioscience. 1992 Sep;3(3):131-44. Review.
PMID: 1384746 [PubMed - indexed for MEDLINE]
- 347: [Philipson KD, Nicoll DA.](#) Related Articles, Links
Sodium-calcium exchange.
Curr Opin Cell Biol. 1992 Aug;4(4):678-83. Review.
PMID: 1419049 [PubMed - indexed for MEDLINE]
- 348: [Kiang JG, Koenig ML, Smallridge RC.](#) Related Articles, Links
Heat shock increases cytosolic free Ca²⁺ concentration via Na(+) -Ca²⁺ exchange in human epidermoid A 431 cells.
Am J Physiol. 1992 Jul;263(1 Pt 1):C30-8.
PMID: 1636682 [PubMed - indexed for MEDLINE]
- 349: [Komuro I, Wenninger KE, Philipson KD, Izumo S.](#) Related Articles, Links
Molecular cloning and characterization of the human cardiac Na⁺/Ca²⁺ exchanger cDNA.
Proc Natl Acad Sci U S A. 1992 May 15;89(10):4769-73.
PMID: 1374913 [PubMed - indexed for MEDLINE]
- 350: [Smith TF, Sanchez-Legrand F, McKean LP, Kutner MH, Cragoe EJ Jr, Eaton DC.](#) Related Articles, Links
Role of sodium in mediator release from human basophils.
J Allergy Clin Immunol. 1992 May;89(5):978-86.
PMID: 1374773 [PubMed - indexed for MEDLINE]
- 351: [Shieh BH, Xia Y, Sparkes RS, Klisak J, Lusis AJ, Nicoll DA, Philipson KD.](#) Related Articles, Links
Mapping of the gene for the cardiac sarcolemmal Na(+) -Ca²⁺ exchanger to human chromosome 2p21-p23.
Genomics. 1992 Mar;12(3):616-7.
PMID: 1559714 [PubMed - indexed for MEDLINE]
- 352: [Kim-Lee MH, Stokes BT, Yates AJ.](#) Related Articles, Links

- Reperfusion paradox: a novel mode of glial cell injury.
Glia. 1992;5(1):56-64.
PMID: 1531810 [PubMed - indexed for MEDLINE]
- 353: Blaustein MP, Ambesi A, Bloch RJ, Goldman WF, Juhaszova M, Lindenmayer GE, Weiss DN. Related Articles, Links
Regulation of vascular smooth muscle contractility: roles of the sarcoplasmic reticulum (SR) and the sodium/calcium exchanger. Jpn J Pharmacol. 1992;58 Suppl 2:107P-114P. Review. No abstract available.
PMID: 1507528 [PubMed - indexed for MEDLINE]
- 354: Michaelis EK, Michaelis ML. Related Articles, Links
Molecular aspects of glutamate receptors and sodium-calcium exchange carriers in mammalian brain: implications for neuronal development and degeneration. Neurochem Res. 1992 Jan;17(1):29-34. Review.
PMID: 1371600 [PubMed - indexed for MEDLINE]
- 355: Holubarsch C. Related Articles, Links
[Biochemical changes and disorders of electromechanical coupling in chronic heart failure] Z Kardiol. 1992;81 Suppl 4:17-21. Review. German.
PMID: 1290294 [PubMed - indexed for MEDLINE]
- 356: Lafond J, Leclerc M, Brunette MG. Related Articles, Links
Characterization of calcium transport by basal plasma membranes from human placental syncytiotrophoblast. J Cell Physiol. 1991 Jul;148(1):17-23.
PMID: 1650372 [PubMed - indexed for MEDLINE]
- 357: Colvin RA, Bennett JW, Colvin SL, Allen RA, Martinez J, Miner GD. Related Articles, Links
Na⁺/Ca²⁺ exchange activity is increased in Alzheimer's disease brain tissues. Brain Res. 1991 Mar 8;543(1):139-47.
PMID: 1647256 [PubMed - indexed for MEDLINE]
- 358: Williams JM, Abramovich DR, Dacke CG, Mayhew TM, Page KR. Related Articles, Links
Inhibitor action on placental calcium transport. Calcif Tissue Int. 1991 Jan;48(1):7-12.
PMID: 1826093 [PubMed - indexed for MEDLINE]
- 359: Mullins LJ. Related Articles, Links
Is stoichiometry constant in Na-Ca exchange? Ann N Y Acad Sci. 1991;639:96-8. No abstract available.
PMID: 1785898 [PubMed - indexed for MEDLINE]
- 360: Khananshvili D. Related Articles, Links
Mechanism of partial reactions in the cardiac Na(+)-Ca²⁺ exchange system. Ann N Y Acad Sci. 1991;639:85-95. Review. No abstract available.
PMID: 1785897 [PubMed - indexed for MEDLINE]
- 361: Hoenig M, Culberson LH, Wheeler CA, Ferguson DC. Related Articles, Links
Characterization of Na(+)-Ca²⁺ exchange in the beta cell. Ann N Y Acad Sci. 1991;639:657-9. Review. No abstract available.
PMID: 1785893 [PubMed - indexed for MEDLINE]

- 362: [Herchuelz A, Plasman PO.](#) [Related Articles](#), [Links](#)
- Sodium-calcium exchange in the pancreatic B cell.
Ann N Y Acad Sci. 1991;639:642-56. Review. No abstract available.
PMID: 1785892 [PubMed - indexed for MEDLINE]
- 363: [Haynes DH, Valant PA, Adjei PN.](#) [Related Articles](#), [Links](#)
- Calcium extrusion by the sodium-calcium exchanger of the human platelet.
Ann N Y Acad Sci. 1991;639:592-603. No abstract available.
PMID: 1785888 [PubMed - indexed for MEDLINE]
- 364: [Windhager EE, Frindt G, Milovanovic S.](#) [Related Articles](#), [Links](#)
- The role of Na-Ca exchange in renal epithelia. An overview.
Ann N Y Acad Sci. 1991;639:577-91. Review. No abstract available.
PMID: 1785887 [PubMed - indexed for MEDLINE]
- 365: [Matlib MA.](#) [Related Articles](#), [Links](#)
- Role of sarcolemmal membrane sodium-calcium exchange in vascular smooth muscle tension.
Ann N Y Acad Sci. 1991;639:531-42. Review.
PMID: 1785880 [PubMed - indexed for MEDLINE]
- 366: [Aaronson PI, Poston L, Woolfson RG, Smirnov SV.](#) [Related Articles](#), [Links](#)
- Evidence for Na-Ca exchange in human resistance arteries.
Ann N Y Acad Sci. 1991;639:521-30. No abstract available.
PMID: 1785879 [PubMed - indexed for MEDLINE]
- 367: [Smith JB, Lyu RM, Smith L.](#) [Related Articles](#), [Links](#)
- Sodium-calcium exchange in aortic myocytes and renal epithelial cells. Dependence on metabolic energy and intracellular sodium.
Ann N Y Acad Sci. 1991;639:505-20. Review. No abstract available.
PMID: 1785878 [PubMed - indexed for MEDLINE]
- 368: [Colvin RA, Bennett JW, Colvin SL.](#) [Related Articles](#), [Links](#)
- Na⁽⁺⁾-Ca²⁺ exchange activity is increased in Alzheimer's disease brain tissues.
Ann N Y Acad Sci. 1991;639:325-7. No abstract available.
PMID: 1785858 [PubMed - indexed for MEDLINE]
- 369: [Mills J.R.](#) [Related Articles](#), [Links](#)
- Neuron-specific and state-specific differences in calcium regulation. Their role in the development of neuronal architecture.
Ann N Y Acad Sci. 1991;639:312-24. Review. No abstract available.
PMID: 1785857 [PubMed - indexed for MEDLINE]
- 370: [Yau KW, Nakatani K, Tamura T.](#) [Related Articles](#), [Links](#)
- Sodium-calcium exchange and phototransduction in retinal photoreceptors.
Ann N Y Acad Sci. 1991;639:275-84. Review. No abstract available.
PMID: 1785854 [PubMed - indexed for MEDLINE]
- 371: [DiPolo R, Beauge L.](#) [Related Articles](#), [Links](#)
- Regulation of Na-Ca exchange. An overview.
Ann N Y Acad Sci. 1991;639:100-11. Review. No abstract available.
PMID: 1785834 [PubMed - indexed for MEDLINE]
- 372: [Dale WE, Simchowitz L.](#) [Related Articles](#), [Links](#)

- The role of Na(+)–Ca²⁺ exchange in human neutrophil function.
Ann N Y Acad Sci. 1991;639:616-30. Review. No abstract available.
PMID: 1664709 [PubMed - indexed for MEDLINE]
- 373: Mene P, Pugliese F, Faraggiana T, Cinotti GA. Related Articles, Links
Identification and characteristics of a Na⁺/Ca²⁺ exchanger in cultured human mesangial cells.
Kidney Int. 1990 Dec;38(6):1199-205.
PMID: 2074662 [PubMed - indexed for MEDLINE]
- 374: Hoel G, Michaelis ML, Freed WJ, Kleinman JE. Related Articles, Links
Characterization of Na(+)–Ca²⁺ exchange activity in plasma membrane vesicles from postmortem human brain.
Neurochem Res. 1990 Sep;15(9):881-7.
PMID: 1703282 [PubMed - indexed for MEDLINE]
- 375: Strehler EE. Related Articles, Links
Plasma membrane Ca²⁺ pumps and Na⁺/Ca²⁺ exchangers.
Semin Cell Biol. 1990 Aug;1(4):283-95. Review.
PMID: 2151738 [PubMed - indexed for MEDLINE]
- 376: [No authors listed]. Related Articles, Links
Na(+)–Ca²⁺ exchanger and cardiac contraction.
Lancet. 1990 Jul 28;336(8709):219-20. No abstract available.
PMID: 1973777 [PubMed - indexed for MEDLINE]
- 377: Gruver CL, Katz AM, Messineo FC. Related Articles, Links
Canine cardiac sarcolemmal vesicles demonstrate rapid initial Na(+)–Ca²⁺ exchange activity.
Circ Res. 1990 May;66(5):1171-7.
PMID: 2335019 [PubMed - indexed for MEDLINE]
- 378: Chapman R. Related Articles, Links
A rise in intracellular sodium would seem to predispose the heart to the calcium paradox.
J Mol Cell Cardiol. 1990 May;22(5):503-5. No abstract available.
PMID: 2167385 [PubMed - indexed for MEDLINE]
- 379: Ruigrok TJ. Related Articles, Links
Is an increase of intracellular Na⁺ during Ca²⁺ depletion essential for the occurrence of the calcium paradox?
J Mol Cell Cardiol. 1990 May;22(5):499-501. No abstract available.
PMID: 2167384 [PubMed - indexed for MEDLINE]
- 380: Philipson KD. Related Articles, Links
The cardiac Na(+)–Ca²⁺ exchanger: dependence on membrane environment.
Cell Biol Int Rep. 1990 Apr;14(4):305-9. Review. No abstract available.
PMID: 2191788 [PubMed - indexed for MEDLINE]
- 381: Heilmann C, Spamer C, Gerok W. Related Articles, Links
Aspects of hepatic calcium metabolism.
Prog Liver Dis. 1990;9:261-79. Review. No abstract available.
PMID: 2156295 [PubMed - indexed for MEDLINE]
- 382: Smith JB, Zheng T, Smith L. Related Articles, Links
Relationship between cytosolic free Ca²⁺ and Na⁺–Ca²⁺ exchange in

aortic muscle cells.

Am J Physiol. 1989 Jan;256(1 Pt 1):C147-54.
PMID: 2912132 [PubMed - indexed for MEDLINE]

383: Parker JC.[Related Articles](#), [Links](#)

Sodium-calcium and sodium-proton exchangers in red blood cells.
Methods Enzymol. 1989;173:292-300. No abstract available.
PMID: 2550727 [PubMed - indexed for MEDLINE]

384: Rengasamy A, Feinberg H.[Related Articles](#), [Links](#)

Sodium-calcium exchange in platelet plasma membrane vesicles.
Adv Exp Med Biol. 1988;232:105-8. No abstract available.
PMID: 3213678 [PubMed - indexed for MEDLINE]

385: Hernsmeyer RK.[Related Articles](#), [Links](#)

Vascular muscle membrane cation mechanisms and total peripheral resistance.
Hypertension. 1987 Nov;10(5 Pt 2):I20-2. Review.
PMID: 2445679 [PubMed - indexed for MEDLINE]

386: Letarte M, Quackenbush EJ, Baurnal R, Michalak M.[Related Articles](#), [Links](#)

Correlations between the 44D7 antigenic complex and the plasma membrane Na⁺-Ca²⁺ exchanger.
Biochem Cell Biol. 1986 Nov;64(11):1160-9.
PMID: 3828108 [PubMed - indexed for MEDLINE]

387: Michalak M, Quackenbush EJ, Letarte M.[Related Articles](#), [Links](#)

Inhibition of Na⁺/Ca²⁺ exchanger activity in cardiac and skeletal muscle sarcolemmal vesicles by monoclonal antibody 44D7.
J Biol Chem. 1986 Jan 5;261(1):92-5.
PMID: 2416754 [PubMed - indexed for MEDLINE]

388: Carafoli E.[Related Articles](#), [Links](#)

The homeostasis of calcium in heart cells.
J Mol Cell Cardiol. 1985 Mar;17(3):203-12.
PMID: 2943901 [PubMed - indexed for MEDLINE]

389: Philipson KD.[Related Articles](#), [Links](#)

Sodium-calcium exchange in plasma membrane vesicles.
Annu Rev Physiol. 1985;47:561-71. Review. No abstract available.
PMID: 3888080 [PubMed - indexed for MEDLINE]

390: Garrick R, Ziyadeh FN, Jorkasky D, Goldfarb S.[Related Articles](#), [Links](#)

Bartter's syndrome: a unifying hypothesis.
Am J Nephrol. 1985;5(5):379-84. Review.
PMID: 2998188 [PubMed - indexed for MEDLINE]

391: Shamoo AE, Ambudkar IS.[Related Articles](#), [Links](#)

Regulation of calcium transport in cardiac cells.
Can J Physiol Pharmacol. 1984 Jan;62(1):9-22. Review.
PMID: 6143603 [PubMed - indexed for MEDLINE]

Display**Summary****Show:****500****Sort****Send to****Text**

Items 1-391 of 391

One page.

[Write to the Help Desk](#)[NCBI](#) | [NLM](#) | [NIH](#)[Department of Health & Human Services](#)

National
Library
of Medicine

Entrez PubMed Nucleotide Protein Genome Structure OMIM PMC Journals Book

Search for

[Limits](#) [Preview/Index](#) [History](#) [Clipboard](#) [Details](#)

[About Entrez](#)

[Text Version](#)

[Entrez PubMed](#)

[Overview](#)

[Help | FAQ](#)

[Tutorial](#)

[New/Noteworthy](#)

[E-Utilities](#)

[PubMed Services](#)

[Journals Database](#)

[MeSH Database](#)

[Single Citation Matcher](#)

[Batch Citation Matcher](#)

[Clinical Queries](#)

[LinkOut](#)

[Cubby](#)

[Related Resources](#)

[Order Documents](#)

[NLM Gateway](#)

[TOXNET](#)

[Consumer Health](#)

[Clinical Alerts](#)

[ClinicalTrials.gov](#)

[PubMed Central](#)

[Display](#) [Summary](#) Show: [Text](#) One page.

Items 1-4 of 4

1: [Gabellini N.](#) [Related Articles, Links](#)

[Transcriptional regulation by cAMP and Ca²⁺ links the na+/ca2+ exchanger 3 to memory and sensory pathways.](#)
Mol Neurobiol. 2004 Aug;30(1):91-116.
PMID: 15247490 [PubMed - in process]

2: [Gabellini N. Bortoluzzi S. Danieli GA. Carafoli E.](#) [Related Articles, Links](#)

[Control of the Na+/Ca²⁺ exchanger 3 promoter by cyclic adenosine monophosphate and Ca²⁺ in differentiating neurons.](#)
J Neurochem. 2003 Jan;84(2):282-93.
PMID: 12558991 [PubMed - indexed for MEDLINE]

3: [Gabellini N. Bortoluzzi S. Danieli GA. Carafoli E.](#) [Related Articles, Links](#)

[The gene promoter of human Na+/Ca²⁺ exchanger isoform 3 \(SLC8A3\) is controlled by cAMP and calcium.](#)
Ann N Y Acad Sci. 2002 Nov;976:282-4. No abstract available.
PMID: 12502570 [PubMed - indexed for MEDLINE]

4: [Gabellini N. Bortoluzzi S. Danieli GA. Carafoli E.](#) [Related Articles, Links](#)

[The human SLC8A3 gene and the tissue-specific Na+/Ca²⁺ exchanger 3 isoforms.](#)
Gene. 2002 Sep 18;298(1):1-7.
PMID: 12406570 [PubMed - indexed for MEDLINE]

[Write to the Help Desk](#)

[NCBI](#) | [NLM](#) | [NIH](#)

[Department of Health & Human Services](#)

[Privacy Statement](#) | [Freedom of Information Act](#) | [Disclaimer](#)

Jul 8 2004 06:42:02

National
Library
of Medicine

Entrez	PubMed	Nucleotide	Protein	Genome	Structure	OMIM	PMC	Journals	Book
Search	PubMed			for Gabellini AND 2002			Go	Clear	
			Limits	Preview/Index	History	Clipboard	Details		

About Entrez

Text Version

Entrez PubMed

Overview

Help | FAQ

Tutorial

New/Noteworthy

E-Utilities

PubMed Services

Journals Database

MeSH Database

Single Citation Matcher

Batch Citation Matcher

Clinical Queries

LinkOut

Cubby

Related Resources

Order Documents

NLM Gateway

TOXNET

Consumer Health

Clinical Alerts

ClinicalTrials.gov

PubMed Central

Display **Summary** Show: 20 Sort Send to Text

Items 1-10 of 10

One page.

1: [Viola G, Bressanini M, Gabellini N, Vedaldi D, Dall'Acqua F, Ihmels H](#) Related Articles, Links

Naphthoquinolizinium derivatives as a novel platform for DNA-binding and DNA-photodamaging chromophores.
Photochem Photobiol Sci. 2002 Nov;1(11):882-9.
PMID: 12659528 [PubMed - indexed for MEDLINE]

2: [Gabellini N, Bortoluzzi S, Danieli GA, Carafoli E](#) Related Articles, Links

The gene promoter of human Na+/Ca2+ exchanger isoform 3 (SLC8A3) is controlled by cAMP and calcium.
Ann N Y Acad Sci. 2002 Nov;976:282-4. No abstract available.
PMID: 12502570 [PubMed - indexed for MEDLINE]

3: [Gabellini N, Bortoluzzi S, Danieli GA, Carafoli E](#) Related Articles, Links

The human SLC8A3 gene and the tissue-specific Na+/Ca2+ exchanger 3 isoforms.
Gene. 2002 Sep 18;298(1):1-7.
PMID: 12406570 [PubMed - indexed for MEDLINE]

4: [Viola G, Dall'Acqua F, Gabellini N, Moro S, Vedaldi D, Ihmels H](#) Related Articles, Links

Indolo[2,3-b]-quinolizinium bromide: an efficient intercalator with DNA-photodamaging properties.
Chembiochem. 2002 Jun 3;3(6):550-8.
PMID: 12325011 [PubMed - indexed for MEDLINE]

5: [Gabellini D, Green MR, Tupler R](#) Related Articles, Links

Inappropriate gene activation in FSHD: a repressor complex binds a chromosomal repeat deleted in dystrophic muscle.
Cell. 2002 Aug 9;110(3):339-48.
PMID: 12176321 [PubMed - indexed for MEDLINE]

6: [Calado RT, Falcao RP, Garcia AB, Gabellini SM, Zago MA, Franco RF](#) Related Articles, Links

Influence of functional MDR1 gene polymorphisms on P-glycoprotein activity in CD34+ hematopoietic stem cells.
Haematologica. 2002 Jun;87(6):564-8.
PMID: 12031911 [PubMed - indexed for MEDLINE]

7: [Targa L, Conti G, Gabellini A, Bergamo S, Rossetto A, Corbara F](#) Related Articles, Links

[Carcinoid heart disease and primary ovarian tumor]
Ital Heart J. 2002 Apr;3(4 Suppl):450-3. Review. Italian.
PMID: 12025391 [PubMed - indexed for MEDLINE]

8: [Franco RF, Simoes BP, Tone LG, Gabellini SM, Zago MA, Falcao RP](#) Related Articles, Links

The methylenetetrahydrofolate reductase C677T gene polymorphism decreases the risk of childhood acute lymphocytic leukaemia.

Br J Haematol. 2001 Dec;115(3):616-8.
PMID: 11736945 [PubMed - indexed for MEDLINE]

9: [Anelli PL, Lattuada L, Gabellini M, Recanati P.](#) Related Articles, Links

DOTA tris(phenylmethyl) ester: a new useful synthon for the synthesis of DOTA monoamides containing acid-labile bonds.
Bioconjug Chem. 2001 Nov-Dec;12(6):1081-4.
PMID: 11716703 [PubMed - indexed for MEDLINE]

10: [Ihmels H, Faulhaber K, Sturm C, Bringmann G, Messer K, Gabellini N, Vedaldi D, Viola G.](#) Related Articles, Links

Acridizinium salts as a novel class of DNA-binding and site-selective DNA-photodamaging chromophores.
Photochem Photobiol. 2001 Oct;74(4):505-11.
PMID: 11683029 [PubMed - indexed for MEDLINE]

[Display](#) [Summary](#) Show: [20](#) [Sort](#) [Send to](#) [Text](#)

Items 1-10 of 10

One page

[Write to the Help Desk](#)

[NCBI](#) | [NLM](#) | [NIH](#)

[Department of Health & Human Services](#)

[Privacy Statement](#) | [Freedom of Information Act](#) | [Disclaimer](#)

Build S 2004 06:47:02

Welcome to STN International! Enter x:x
* * * * * * * * * * * * Welcome to STN International * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * STN Columbus * * * * * * * * * * * * * * * *

FILE 'HOME' ENTERED AT 14:48:45 ON 13 JUL 2004

=> file BIOSCIENCE

FILE 'DRUGMONOG' ACCESS NOT AUTHORIZED

FILE 'DRUGMONO' ACCESS NOT AUTHORIZED
FILE 'ADISCTI' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Adis Data Information BV

FILE 'ADISINSIGHT' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Adis Data Information BV

FILE 'ADISNEWS' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Adis Data Information BV

FILE 'AGRICOLA' ENTERED AT 14:48:54 ON 13 JUL 2004

FILE 'ANABSTR' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (c) 2004 THE ROYAL SOCIETY OF CHEMISTRY (RSC)

FILE 'AQUASCI' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT 2004 FAO (On behalf of the ASFA Advisory Board). All rights reserved.

FILE 'BIOBUSINESS' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Biological Abstracts, Inc. (BIOSIS)

FILE 'BIOCOMMERCE' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 BioCommerce Data Ltd. Richmond Surrey, United Kingdom. All rights reserved.

FILE 'BIOSIS' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 BIOLOGICAL ABSTRACTS INC. (R)

FILE 'BIOTECHABS' ACCESS NOT AUTHORIZED

FILE 'BIOTECHDS' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 THOMSON DERWENT AND INSTITUTE FOR SCIENTIFIC INFORMATION

FILE 'BIOTECHNO' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Elsevier Science B.V., Amsterdam. All rights reserved.

FILE 'CABA' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 CAB INTERNATIONAL (CABI)

FILE 'CANCERLIT' ENTERED AT 14:48:54 ON 13 JUL 2004

FILE 'CAPLUS' ENTERED AT 14:48:54 ON 13 JUL 2004
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'CEABA-VTB' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (c) 2004 DECHHEMA eV

FILE 'CEN' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 American Chemical Society (ACS)

FILE 'CIN' ENTERED AT 14:48:54 ON 13 JUL 2004
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2004 American Chemical Society (ACS)

FILE 'CONFSCI' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Cambridge Scientific Abstracts (CSA)

FILE 'CROPB' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 THOMSON DERWENT

FILE 'CROPU' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 THOMSON DERWENT

FILE 'DISSABS' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 ProQuest Information and Learning Company; All Rights Reserved

FILE 'DDFU' ACCESS NOT AUTHORIZED

FILE 'DGENE' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 THOMSON DERWENT

FILE 'DRUGB' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 THOMSON DERWENT

FILE 'DRUGMONOG2' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 IMSWORLD Publications Ltd

FILE 'IMSDRUGNEWS' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 IMSWORLD Publications Ltd

FILE 'DRUGU' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 THOMSON DERWENT

FILE 'IMSRESEARCH' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 IMSWORLD Publications Ltd

FILE 'EMBAL' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Elsevier Inc. All rights reserved.

FILE 'EMBASE' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Elsevier Inc. All rights reserved.

FILE 'ESBIOBASE' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Elsevier Science B.V., Amsterdam. All rights reserved.

FILE 'FEDRIP' ENTERED AT 14:48:54 ON 13 JUL 2004

FILE 'FOMAD' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Leatherhead Food Research Association

FILE 'FOREGE' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Leatherhead Food Research Association

FILE 'FROSTI' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Leatherhead Food Research Association

FILE 'FSTA' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 International Food Information Service

FILE 'GENBANK' ENTERED AT 14:48:54 ON 13 JUL 2004

FILE 'HEALSAFE' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Cambridge Scientific Abstracts (CSA)

FILE 'IFIPAT' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 IFI CLAIMS(R) Patent Services (IFI)

FILE 'IMSPRODUCT' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 IMSWORLD Publications Ltd

FILE 'JICST-EPLUS' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Japan Science and Technology Agency (JST)

FILE 'KOSMET' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 International Federation of the Societies of Cosmetics Chemis

FILE 'LIFESCI' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Cambridge Scientific Abstracts (CSA)

FILE 'MEDICONF' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (c) 2004 FAIRBASE Datenbank GmbH, Hannover, Germany

FILE 'MEDLINE' ENTERED AT 14:48:54 ON 13 JUL 2004

FILE 'NIOSHTIC' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 U.S. Secretary of Commerce on Behalf of the U.S. Government

FILE 'NTIS' ENTERED AT 14:48:54 ON 13 JUL 2004
Compiled and distributed by the NTIS, U.S. Department of Commerce.
It contains copyrighted material.

FILE 'NUTRACEUT' ENTERED AT 14:48:54 ON 13 JUL 2004
Copyright 2004 (c) MARKETLETTER Publications Ltd. All rights reserved.

FILE 'OCEAN' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Cambridge Scientific Abstracts (CSA)

FILE 'PASCAL' ENTERED AT 14:48:54 ON 13 JUL 2004
Any reproduction or dissemination in part or in full,
by means of any process and on any support whatsoever
is prohibited without the prior written agreement of INIST-CNRS.
COPYRIGHT (C) 2004 INIST-CNRS. All rights reserved.

FILE 'PCTGEN' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 WIPO

FILE 'PHAR' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 PJB Publications Ltd. (PJB)

FILE 'PHARMAML' ENTERED AT 14:48:54 ON 13 JUL 2004
Copyright 2004 (c) MARKETLETTER Publications Ltd. All rights reserved.

FILE 'PHIC' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 PJB Publications Ltd. (PJB)

FILE 'PHIN' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 PJB Publications Ltd. (PJB)

FILE 'PROMT' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Gale Group. All rights reserved.

FILE 'PROUSDDR' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Prous Science

FILE 'RDISCLOSURE' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Kenneth Mason Publications Ltd.

FILE 'SCISEARCH' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT 2004 THOMSON ISI

FILE 'SYNTHLINE' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 Prous Science

FILE 'TOXCENTER' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 ACS

FILE 'USPATFULL' ENTERED AT 14:48:54 ON 13 JUL 2004
CA INDEXING COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'USPAT2' ENTERED AT 14:48:54 ON 13 JUL 2004
CA INDEXING COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'VETB' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 THOMSON DERWENT

FILE 'VETU' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 THOMSON DERWENT

FILE 'WPIDS' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 THOMSON DERWENT

FILE 'WPIFV' ENTERED AT 14:48:54 ON 13 JUL 2004
COPYRIGHT (C) 2004 THOMSON DERWENT

FILE 'WPINDEX' ACCESS NOT AUTHORIZED

=> S sodium calcium exchanger
30 FILES SEARCHED...
60 FILES SEARCHED...
L1 5966 SODIUM CALCIUM EXCHANGER

=> S L1 AND human
19 FILES SEARCHED...
26 FILES SEARCHED...
49 FILES SEARCHED...

=> DUP REM L2
DUPLICATE IS NOT AVAILABLE IN 'ADISINSIGHT, ADISNEWS, BIOCOMMERCE, DGENE,
DRUGMONOG2, IMSRESEARCH, FEDRIP, FOREGE, GENBANK, IMSPRODUCT, KOSMET,
MEDICONF, NUTRACEUT, PCTGEN, PHAR, PHARMAMIL, PROUSDDR, RDISCLOSURE, SYNTHLINE'.
ANSWERS FROM THESE FILES WILL BE CONSIDERED UNIQUE
PROCESSING IS APPROXIMATELY 88% COMPLETE FOR L2
PROCESSING COMPLETED FOR L2
L3 775 DUP REM L2 (455 DUPLICATES REMOVED)

=> S L3 AND PY<=2001
'2001' NOT A VALID FIELD CODE
 6 FILES SEARCHED...
 9 FILES SEARCHED...
 12 FILES SEARCHED...
 17 FILES SEARCHED...
'2001' NOT A VALID FIELD CODE
 26 FILES SEARCHED...
 30 FILES SEARCHED...
'2001' NOT A VALID FIELD CODE
'2001' NOT A VALID FIELD CODE
 40 FILES SEARCHED...
'2001' NOT A VALID FIELD CODE
 44 FILES SEARCHED...
 49 FILES SEARCHED...
'2001' NOT A VALID FIELD CODE
 55 FILES SEARCHED...
'2001' NOT A VALID FIELD CODE
 60 FILES SEARCHED...
 65 FILES SEARCHED...
L4 473 L3 AND PY<=2001

=> D L4 1-473

L4 ANSWER 1 OF 473 ADISCTI COPYRIGHT (C) 2004 Adis Data Information BV on
STN
AN 1997:43605 ADISCTI
DN 800540795
TI Positive inotropic effect of the novel Na⁺ -channel modulator BDF 9198 on
human non-failing and failing myocardium.
ADIS TITLE: BDF 9148 vs BDF 9198: pharmacodynamics.
Positive inotropic effects
In vitro study.
AU Muller Ehmsen J; Frank K; Brixius K; Schwinger R H G.
CS Klinik III fur Innere Medizin der Universitat zu Koln, Germany.
SO 2nd International Meeting of the Working Group on Heart Failure (May 24,
1997), pp. 78
DT Study
RE Heart Failure
FS Summary
LA English
WC 242

L4 ANSWER 2 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2003:400914 BIOSIS
DN PREV200300400914
TI ***Human*** genes for K+-dependent Na/Ca-exchangers, NCKX1, NCKX2 and
NCKX3; genomic structure, comparative analysis of promoter regions and
expression patterns.
AU Reigo, A. [Reprint Author]; Metspalu, A. [Reprint Author]
CS Tartu University Institute of Molecular and Cell Biology, Tartu, Estonia
3pusa2susa@hot.ee; 3pusa2susa@hot.ee
SO European Journal of Human Genetics, (2001) Vol. 9, No. Supplement 1, pp.
P0756. print.
Meeting Info.: 10th International Congress of Human Genetics. Vienna,
Austria. May 15-19, 2001. International Federation of Human Genetics
Societies.
DT ISSN: 1018-4813.
Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 3 Sep 2003
Last Updated on STN: 3 Sep 2003

L4 ANSWER 3 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN

DN PREV200200288134
TI Changes in sarcolemmal Ca entry and sarcoplasmic reticulum (SR) Ca content in isolated ventricular myocytes from patients with end-stage heart failure following left ventricular assist device support.
AU Terracciano, Cesare Mn. [Reprint author]; Koban, Maren [Reprint author]; Harding, Sian E. [Reprint author]; Tansley, Patrick [Reprint author]; Birks, Emma J. [Reprint author]; Yacoub, Magdi H. [Reprint author]
CS Imperial Coll Sch of Med, London, UK
SO Circulation, (October 23, 2001) Vol. 104, No. 17 Supplement, pp. II.480-II.481. print.
Meeting Info.: Scientific Sessions 2001 of the American Heart Association. Anaheim, California, USA. November 11-14, 2001. American Heart Association.
CODEN: CIRCAZ. ISSN: 0009-7322.
DT Conference; (Meeting)
LA Conference; Abstract; (Meeting Abstract)
ED English
Entered STN: 15 May 2002
Last Updated on STN: 15 May 2002

L4 ANSWER 4 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2002:263668 BIOSIS
DN PREV200200263668
TI Calcium influx via INCX is favored in failing ***human*** ventricular myocytes.
AU Weber, Christopher R. [Reprint author]; Piacentino, Valentino; Margulies, Kenneth B.; Bers, Donald M.; Houser, Steven R.
CS Loyola Univ, Maywood, IL, USA
SO Circulation, (October 23, 2001) Vol. 104, No. 17 Supplement, pp. II.132. print.
Meeting Info.: Scientific Sessions 2001 of the American Heart Association. Anaheim, California, USA. November 11-14, 2001. American Heart Association.
CODEN: CIRCAZ. ISSN: 0009-7322.
DT Conference; (Meeting)
LA Conference; Abstract; (Meeting Abstract)
ED English
Entered STN: 1 May 2002
Last Updated on STN: 1 May 2002

L4 ANSWER 5 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2002:263284 BIOSIS
DN PREV200200263284
TI Annexin VI and the Na/Ca exchanger are residents of caveolae microdomains in the ***human*** heart.
AU Matteo, Rosalia G. [Reprint author]; Moravec, Christine S. [Reprint author]
CS Cleveland Clin Fdn, Cleveland, OH, USA
SO Circulation, (October 23, 2001) Vol. 104, No. 17 Supplement, pp. II.51. print.
Meeting Info.: Scientific Sessions 2001 of the American Heart Association. Anaheim, California, USA. November 11-14, 2001. American Heart Association.
CODEN: CIRCAZ. ISSN: 0009-7322.
DT Conference; (Meeting)
LA Conference; Abstract; (Meeting Abstract)
ED English
Entered STN: 1 May 2002
Last Updated on STN: 1 May 2002

L4 ANSWER 6 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2002:145004 BIOSIS
DN PREV200200145004
TI Very low dose of the Na⁺/Ca²⁺ exchange inhibitor, KB-R7943, protects ischemic reperfused aged Fischer 344 rat hearts: Considerable strain difference in the sensitivity to KB-R7943.
AU Yamamura, Ken [Reprint author]; Tani, Masato; Hasegawa, Hiroshi; Gen, Wen
CS Department of Geriatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
SO yamamura@sc.itc.keio.ac.jp
Cardiovascular Research, (December, 2001) Vol. 52, No. 3, pp. 397-406. print.
CODEN: CVREAU. ISSN: 0008-6363.
DT Article
LA English

Last Updated on STN: 26 Feb 2002

- L4 ANSWER 7 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2002:71595 BIOSIS
DN PREV200200071595
TI Novel inhibitors of the ***sodium*** - ***calcium***
exchanger : Benzene ring analogues of N-guanidino substituted
amiloride derivatives.
- AU Register, Francoise; Laeckmann, Didier; Plasman, Pierre-Olivier; Van
Eylen, Francoise; Ghyoot, Marianne; Maggetto, Carine; Liegeois,
Jean-Francois; Geczy, Joseph; Herchuelz, Andre; Delarge, Jacques;
Masereel, Bernard [Reprint author]
CS Department of Pharmacy, University of Namur, 61 Rue de Bruxelles, B-5000,
Namur, Belgium
bernard.masereel@fundp.ac.be
SO European Journal of Medicinal Chemistry, (July-August, 2001) Vol. 36, No.
7-8, pp. 597-614. print.
CODEN: EJMCA5. ISSN: 0223-5234.
- DT Article
LA English
ED Entered STN: 16 Jan 2002
Last Updated on STN: 25 Feb 2002
- L4 ANSWER 8 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2002:69723 BIOSIS
DN PREV200200069723
TI Chronic atrial fibrillation in ***humans*** is associated with reduced
SERCA2a expression and depressed force-frequency response.
AU Schmidt-Schweda, S. H. [Reprint author]; Schaller, C. [Reprint author];
Pieske, B. [Reprint author]
CS Kardiologie and Pneumologie, Universitaet Goettingen, Goettingen, Germany
SO European Heart Journal, (September, 2001) Vol. 22, No. Abstract
Supplement, pp. 37. print.
Meeting Info.: XXIII Congress of the European Society of Cardiology
together with the 36th Annual General Meeting of the Association for
European Paediatric Cardiology. Stockholm, Sweden. September 01-05, 2001.
CODEN: EHJODF. ISSN: 0195-668X.
- DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 16 Jan 2002
Last Updated on STN: 25 Feb 2002
- L4 ANSWER 9 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:558807 BIOSIS
DN PREV200100558807
TI Genome search for QTL controlling pulse pressure: A practical application
of the unified Haseman-Elston algorithm.
AU Li, J. [Reprint author]; Niu, T. [Reprint author]; Rogus, J.; Yang, J.;
Schork, N. [Reprint author]; Fang, Z.; Xu, X. [Reprint author]
CS Prog Population Genetics, Harvard Sch Public Health, Boston, MA, USA
SO American Journal of Human Genetics, (October, 2001) Vol. 69, No. 4
Supplement, pp. 510. print.
Meeting Info.: 51st Annual Meeting of the American Society of Human
Genetics. San Diego, California, USA. October 12-16, 2001.
CODEN: AJHGAG. ISSN: 0002-9297.
- DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 5 Dec 2001
Last Updated on STN: 25 Feb 2002
- L4 ANSWER 10 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:552622 BIOSIS
DN PREV200100552622
TI Gender influences (Ca^{2+})_i during metabolic inhibition in myocytes
overexpressing the Na^+ - Ca^{2+} exchanger.
AU Sugishita, Kazuro; Su, Zhi; Li, Fenghua; Philipson, Kenneth D.; Barry,
William H. [Reprint author]
CS Division of Cardiology, University of Utah Health Sciences Center, 50 N
Medical Dr, Salt Lake City, UT, 84132, USA
whbarry@med.utah.edu
SO Circulation, (October 23, 2001) Vol. 104, No. 17, pp. 2101-2106. print.
CODEN: CIRCAZ. ISSN: 0009-7322.

LA English
ED Entered STN: 21 Nov 2001
Last Updated on STN: 25 Feb 2002

L4 ANSWER 11 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:441286 BIOSIS
DN PREV200100441286
TI A new Na/Ca exchanger splicing pattern identified in situ leads to a functionally active 70 kDa NH₂-terminal protein.
AU Van Eylen, F.; Kamagata, A.; Herchuelz, A. [Reprint author]
CS Laboratoire de Pharmacodynamie et de Therapeutique, Faculte de Medecine, Universite Libre de Bruxelles, Route de Lennik, 808, Batiment GE, B-1070, Bruxelles, Belgium
herchu@ulb.ac.be
SO Cell Calcium, (September, 2001) Vol. 30, No. 3, pp. 191-198. print.
CODEN: CECADV. ISSN: 0143-4160.
DT Article
LA English
ED Entered STN: 19 Sep 2001
Last Updated on STN: 22 Feb 2002

L4 ANSWER 12 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:384901 BIOSIS
DN PREV200100384901
TI Molecular cloning of a third member of the potassium-dependent ***sodium*** - ***calcium*** ***exchanger*** gene family, NCKX3.
AU Kraev, Alexander; Quednau, Beate D.; Leach, Stephen; Li, Xiao-Fang; Dong, Hui; Winkfein, Robert; Perizzolo, Marco; Cai, Xinjiang; Yang, Ruomei; Philipson, Kenneth D.; Lytton, Jonathan [Reprint author]
CS University of Calgary Health Sciences Center, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
jlytton@ucalgary.ca
SO Journal of Biological Chemistry, (June 22, 2001) Vol. 276, No. 25, pp. 23161-23172. print.
CODEN: JBCHA3. ISSN: 0021-9258.
DT Article
LA English
OS Genbank-AF169257; Genbank-AF288087; Genbank-AF314821; Genbank-AF314822; Genbank-AY009158
ED Entered STN: 15 Aug 2001
Last Updated on STN: 23 Feb 2002

L4 ANSWER 13 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:358275 BIOSIS
DN PREV200100358275
TI ***Sodium*** - ***calcium*** ***exchanger*** (NCX-1) and calcium modulation: NCX protein expression patterns and regulation of early heart development.
AU Linask, Kersti K. [Reprint author]; Han, Ming-Da; Artman, Michael; Ludwig, Cheryl A.
CS Dept. of Cell Biology, UMDNJ-SOM, 2 Medical Center Drive, Stratford, NJ, 08084, USA
linaskkk@umdnj.edu
SO Developmental Dynamics, (July, 2001) Vol. 221, No. 3, pp. 249-264. print.
CODEN: DEDYEI. ISSN: 1058-8388.
DT Article
LA English
ED Entered STN: 2 Aug 2001
Last Updated on STN: 19 Feb 2002

L4 ANSWER 14 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:301835 BIOSIS
DN PREV200100301835
TI Region specific regulation of sodium pump isoform and Na,Ca-exchanger expression in the failing ***human*** heart: Right atrium vs left ventricle.
AU Mueller-Ehmsen, Jochen; Wang, Jiangnan; Schwinger, Robert H. G.; McDonough, Alicia A. [Reprint author]
CS Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, 1333 San Pablo Street, Los Angeles, CA, 90033, USA
mcdonoug@hsc.usc.edu
SO Cellular and Molecular Biology (Noisy-Le-Grand), (March, 2001) Vol. 47, No. 2, pp. 373-381. print.
CODEN: CMBID4. ISSN: 0145-5680.

LA English
ED Entered STN: 27 Jun 2001
Last Updated on STN: 19 Feb 2002

L4 ANSWER 15 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:299602 BIOSIS
DN PREV200100299602
TI Targeted inactivation of the ***sodium*** - ***calcium***
exchanger (Ncx1) results in the lack of a heartbeat and abnormal
myofibrillar organization.
AU Conway, Simon J. [Reprint author]; Koushik, Srinagesh [Reprint author];
Wang, Jian [Reprint author]; Rogers, Rhonda [Reprint author]; Creazzo,
Tony [Reprint author]
CS Medical College of Georgia, 1120 15th Street, Augusta, GA, 30912, USA
SO FASEB Journal, (March 7, 2001) Vol. 15, No. 4, pp. A377. print.
Meeting Info.: Annual Meeting of the Federation of American Societies for
Experimental Biology on Experimental Biology 2001. Orlando, Florida, USA.
March 31-April 04, 2001.
CODEN: FAJOC. ISSN: 0892-6638.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 20 Jun 2001
Last Updated on STN: 19 Feb 2002

L4 ANSWER 16 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:290988 BIOSIS
DN PREV200100290988
TI Stoichiometry of the retinal cone Na/Ca-K exchanger heterologously
expressed in insect cells: Comparison with the bovine heart Na/Ca
exchanger.
AU Szerencsei, Robert T.; Prinsen, Clemens F. M.; Schnetkamp, Paul P. M.
[Reprint author]
CS Department of Physiology and Biophysics, Faculty of Medicine, University
of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada
pschnetk@ucalgary.ca
SO Biochemistry, (May 22, 2001) Vol. 40, No. 20, pp. 6009-6015. print.
CODEN: BICHAW. ISSN: 0006-2960.
DT Article
LA English
ED Entered STN: 20 Jun 2001
Last Updated on STN: 19 Feb 2002

L4 ANSWER 17 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:242468 BIOSIS
DN PREV200100242468
TI Overexpression of the Na/Ca exchanger and reduced SERCa function.
AU Terracciano, Cesare M. N. [Reprint author]; MacLeod, Kenneth T.
CS Department of Cardiac Medicine, National Heart and Lung Institute,
Imperial College, Dovehouse Street, London, SW3 6LY, UK
SO Cardiovascular Research, (April, 2001) Vol. 50, No. 1, pp. 167-169. print.
CODEN: CVREAU. ISSN: 0008-6363.
DT Letter
LA English
ED Entered STN: 16 May 2001
Last Updated on STN: 19 Feb 2002

L4 ANSWER 18 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:189134 BIOSIS
DN PREV200100189134
TI NCX1 Na/Ca exchanger splice variants in pancreatic islet cells.
AU Van Eylen, F.; Bollen, A.; Herchuelz, A. [Reprint author]
CS Laboratoire de Pharmacodynamie et de Therapeutique, Faculte de Medecine,
Universite Libre de Bruxelles, Route de Lennik, 808-Batiment GE, B-1070,
Bruxelles, Belgium
herchu@ulb.ac.be
SO Journal of Endocrinology, (March, 2001) Vol. 168, No. 3, pp. 517-526.
print.
CODEN: JOENAK. ISSN: 0022-0795.
DT Article
LA English
ED Entered STN: 20 Apr 2001
Last Updated on STN: 18 Feb 2002

L4 ANSWER 19 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN

DN PREV200100172359
TI Is Na⁺Ca²⁺-exchanger-expression altered parallel to myocardial dysfunction in the endomyocardium of patients with valvular heart disease?
Original Title: Aendert sich die Na⁺Ca²⁺-Exchanger-Expression im Endomyokard von Patienten mit chronischen Herzklappenfehlern parallel zur Stoerung der myokardialen Pumpfunktion?
AU Piper, C. [Reprint author]; Bilger, J.; Henrichs, E.-M.; Wudel, E.; Schulteiss, H. P.; Horstkotte, D.; Doerner, A.
CS Kardiologische Klinik, Herzzentrum Nordrhein-Westfalen, Ruhr-Universitaet Bochum, Georgstr. 11, D-32545, Bad Oeynhausen, Germany
cpiper@hdz.nrw.ruhr-uni-bochum.de
SO Zeitschrift fuer Kardiologie, (August, 2000) Vol. 89, No. 8, pp. 682-690.
print.
CODEN: ZKRDAX. ISSN: 0300-5860.
DT Article
LA German
ED Entered STN: 4 Apr 2001
Last Updated on STN: 18 Feb 2002

L4 ANSWER 20 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:164162 BIOSIS
DN PREV200100164162
TI Activation of Na⁺, K⁺, Cl⁻-cotransport mediates intracellular Ca²⁺ increase and apoptosis induced by Pinacidil in HepG2 ***human*** hepatoblastoma cells.
AU Kim, Jung-Ae; Kang, Young Shin; Lee, Yong Soo [Reprint author]
CS Department of Physiology, College of Medicine, Kwandong University, Kangnung, 210-701, South Korea
yslee@mail.kwandong.ac.kr
SO Biochemical and Biophysical Research Communications, (February 23, 2001) Vol. 281, No. 2, pp. 511-519. print.
CODEN: BBRCA9. ISSN: 0006-291X.
DT Article
LA English
ED Entered STN: 4 Apr 2001
Last Updated on STN: 15 Feb 2002

L4 ANSWER 21 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:139518 BIOSIS
DN PREV200100139518
TI Stoichiometry of the rat brain K-dependent Na/Ca exchanger, NCKX2.
AU Lytton, Jonathan [Reprint author]; Dong, Hui [Reprint author]
CS University of Calgary, Calgary, AB, T2N 4N1, Canada
SO Biophysical Journal, (January, 2001) Vol. 80, No. 1 Part 2, pp. 18a.
print.
Meeting Info.: 45th Annual Meeting of the Biophysical Society. Boston, Massachusetts, USA. February 17-21, 2001. Biophysical Society.
CODEN: BIOJAU. ISSN: 0006-3495.
DT Conference; (Meeting)
LA Conference; Abstract; (Meeting Abstract)
ED English
Entered STN: 21 Mar 2001
Last Updated on STN: 15 Feb 2002

L4 ANSWER 22 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:128287 BIOSIS
DN PREV200100128287
TI Altered Ca²⁺ transport and signal transduction in diabetes mellitus.
AU Balasubramanyam, M. [Reprint author]; Premanand, C. [Reprint author]; Mohan, V. [Reprint author]
CS Madras Diabetes Research Foundation, Chennai, India
SO Cell Biology International, (2000) Vol. 24, No. 12, pp. 921. print.
Meeting Info.: 7th International Congress of Cell Biology. Gold Coast, Queensland, Australia. September 24-28, 2000. International Federation for Cell Biology; Australia and New Zealand Society for Cell and Developmental Biology.
ISSN: 1065-6995.
DT Conference; (Meeting)
LA Conference; Abstract; (Meeting Abstract)
ED English
Entered STN: 14 Mar 2001
Last Updated on STN: 15 Feb 2002

L4 ANSWER 23 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:124102 BIOSIS

TI Hiv-1 TAT transgenically targeted to ventricular cardiac myocytes alters mitochondrial structure as the mice age.
AU Raidel, Scott M. [Reprint author]; Haase, Chad P. [Reprint author];
Samarel, Allen M.; Lewis, William
CS Emory Univ Sch of Medicine, Atlanta, GA, USA
SO Circulation, (October 31, 2000) Vol. 102, No. 18 Supplement, pp. II.136.
print.
Meeting Info.: Abstracts from American Heart Association Scientific Sessions 2000. New Orleans, Louisiana, USA. November 12-15, 2000. American Heart Association.
CODEN: CIRCAZ. ISSN: 0009-7322.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 7 Mar 2001
Last Updated on STN: 15 Feb 2002

L4 ANSWER 24 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:112282 BIOSIS
DN PREV200100112282
TI Does Ca influx during the action potential plateau via reverse-mode Na/Ca exchange slow the decay of the Ca transient of failing ***human*** myocytes?.
AU Weisser, Jutta [Reprint author]; Piacentino, Valentino; Margulies, Kenneth B.; Houser, Steven R.
CS Temple Univ Sch of Medicine, Philadelphia, PA, USA
SO Circulation, (October 31, 2000) Vol. 102, No. 18 Supplement, pp. II.295.
print.
Meeting Info.: Abstracts from American Heart Association Scientific Sessions 2000. New Orleans, Louisiana, USA. November 12-15, 2000. American Heart Association.
CODEN: CIRCAZ. ISSN: 0009-7322.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 28 Feb 2001
Last Updated on STN: 15 Feb 2002

L4 ANSWER 25 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:110845 BIOSIS
DN PREV200100110845
TI Pharmacological regulation of mitochondrial permeability in cultured neuroblastoma cells.
AU Woollacott, A. J. [Reprint author]; Simpson, P. B. [Reprint author]
CS MSD, NRC, Terlings Park, Harlow, CM20 2QR, UK
SO Biochemical Society Transactions, (October, 2000) Vol. 28, No. 5, pp. A205. print.
Meeting Info.: 18th International Congress of Biochemistry and Molecular Biology. Birmingham, UK. July 16-20, 2000. International Union of Biochemistry and Molecular Biology; Federation of European Biochemical Societies; Biochemical Society.
CODEN: BCSTB5. ISSN: 0300-5127.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 28 Feb 2001
Last Updated on STN: 15 Feb 2002

L4 ANSWER 26 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:108240 BIOSIS
DN PREV200100108240
TI An orphan G-protein coupled receptor with multiple Na+/Ca2+ exchanger calcium binding domain repeats: NCGR-1.
AU Dietrich, P. S. [Reprint author]; Wisotzky, R.; Abel, K.; Johnson, C.; Catalano, S. M.; Ilnicka, M.; Sangameswaran, L.
CS Roche Bioscience, Palo Alto, CA, USA
SO Society for Neuroscience Abstracts, (2000) Vol. 26, No. 1-2, pp. Abstract No.-537.15. print.
Meeting Info.: 30th Annual Meeting of the Society of Neuroscience. New Orleans, LA, USA. November 04-09, 2000. Society for Neuroscience.
ISSN: 0190-5295.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 28 Feb 2001

L4 ANSWER 27 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2001:59764 BIOSIS
DN PREV200100059764

TI Gene expression analysis by transcriptional profiling in the left ventricle of patients pre- and post-LVAD support.

AU Rodrigue-Way, Amelie C. [Reprint author]; Pollman, Matthew J. [Reprint author]; Tang, Nga K. [Reprint author]; Jeyaseelan, Raju [Reprint author]; Rigotti, Attilio [Reprint author]; Golden, Serge [Reprint author]; Donoghue, Mary A. [Reprint author]; Houser, Steven R.; Marks, Andrew R.; Burkhoff, Daniel; Breitbart, Roger E.; Acton, Susan
CS Millennium Pharmaceuticals Inc, Cambridge, MA, USA
SO Circulation, (October 31, 2000) Vol. 102, No. 18 Supplement, pp. II.266.
print.

Meeting Info.: Abstracts from American Heart Association Scientific Sessions 2000. New Orleans, Louisiana, USA. November 12-15, 2000. American Heart Association.

CODEN: CIRCAZ. ISSN: 0009-7322.

DT Conference; (Meeting)
LA Conference; Abstract; (Meeting Abstract)

ED English

Entered STN: 31 Jan 2001

Last Updated on STN: 12 Feb 2002

L4 ANSWER 28 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2000:534982 BIOSIS
DN PREV200000534982

TI ***Human*** distal nephron: Distribution of transport proteins.
AU Lagger, H. [Reprint author]; Arpin-Bott, M. P.; Loffing-Cueni, D. [Reprint author]; Loffing, J. [Reprint author]; Knepper, M.; Kaissling, B. [Reprint author]

CS Anatomical Department, University Zurich, Zurich, Switzerland

SO Kidney and Blood Pressure Research, (2000) Vol. 23, No. 3-5, pp. 222.
print.

Meeting Info.: Congress of Nephrology 2000. Vienna, Austria. September 02-05, 2000. Gesellschaft fuer Nephrologie.

ISSN: 1420-4096.

DT Conference; (Meeting)
LA Conference; Abstract; (Meeting Abstract)

ED English

Entered STN: 13 Dec 2000

Last Updated on STN: 11 Jan 2002

L4 ANSWER 29 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2000:519978 BIOSIS
DN PREV200000519978

TI Activation of Na+/Ca²⁺ exchanger in kinin B1 receptor-stimulated ***human*** fibroblast is associated with collagen production.

AU Romero, Jose R. [Reprint author]; Ricupero, Dennis A.; Rivera, Alicia; Goldstein, Ronald H.; Conlin, Paul R.

CS Brigham and Women's Hosp, Harvard Medical Sch, Boston, MA, USA

SO Hypertension (Baltimore), (October, 2000) Vol. 36, No. 4, pp. 720. print.
Meeting Info.: 54th Annual Fall Conference and Scientific Sessions of the Council for High Blood Pressure Research. Washington, DC, USA. November 24-27, 2000.

CODEN: HPRTDN. ISSN: 0194-911X.

DT Conference; (Meeting)
LA Conference; Abstract; (Meeting Abstract)

ED Conference; (Meeting Poster)

English

Entered STN: 29 Nov 2000

Last Updated on STN: 11 Jan 2002

L4 ANSWER 30 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2000:501794 BIOSIS
DN PREV200000501915

TI Increased Na⁺-Ca²⁺ exchanger in the failing heart.

AU Pogwizd, Steven M. [Reprint author]

CS Department of Medicine, Section of Cardiology, University of Illinois at Chicago, 840 S Wood St, Chicago, IL, 60612-7323, USA
SO Circulation Research, (October 13, 2000) Vol. 87, No. 8, pp. 641-643.
print.

CODEN: CIRUAL. ISSN: 0009-7330.

DT Article

Editorial

ED Entered STN: 15 Nov 2000
Last Updated on STN: 11 Jan 2002

L4 ANSWER 31 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2000:456471 BIOSIS
DN PREV200000456471
TI Abnormalities of calcium cycling in the hypertrophied and failing heart.
AU Houser, Steven R. [Reprint author]; Piacentino, Valentino, III; Weisser,
Jutta
CS Temple University School of Medicine, 3400 North Broad Street,
Philadelphia, PA, 19140, USA
SO Journal of Molecular and Cellular Cardiology, (September, 2000) Vol. 32,
No. 9, pp. 1595-1607. print.
CODEN: JMCDAY. ISSN: 0022-2828.

DT Article
LA General Review; (Literature Review)
LA English
ED Entered STN: 25 Oct 2000
Last Updated on STN: 10 Jan 2002

L4 ANSWER 32 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2000:403066 BIOSIS
DN PREV200000403066
TI Calcineurin controls the transcription of Na+/Ca²⁺ exchanger isoforms in
developing cerebellar neurons.
AU Li, Lei; Guerini, Danilo; Carafoli, Ernesto [Reprint author]
CS Institute of Biochemistry, Swiss Federal Institute of Technology, 8092,
Zurich, Switzerland
SO Journal of Biological Chemistry, (July 7, 2000) Vol. 275, No. 27, pp.
20903-20910. print.
CODEN: JBCHA3. ISSN: 0021-9258.

DT Article
LA English
ED Entered STN: 20 Sep 2000
Last Updated on STN: 8 Jan 2002

L4 ANSWER 33 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2000:397751 BIOSIS
DN PREV200000397751
TI Quantitative analysis of Na+-Ca²⁺ exchanger expression in guinea-pig
heart.
AU McDonald, Ruth L.; Colyer, John; Harrison, Simon M. [Reprint author]
CS School of Biomedical Sciences, University of Leeds, Worsley Building,
Leeds, LS2 9NQ, UK
SO European Journal of Biochemistry, (August, 2000) Vol. 267, No. 16, pp.
5142-5148. print.
CODEN: EJBCAI. ISSN: 0014-2956.

DT Article
LA English
ED Entered STN: 20 Sep 2000
Last Updated on STN: 8 Jan 2002

L4 ANSWER 34 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 2000:361429 BIOSIS
DN PREV200000361429
TI Helix packing of the cardiac ***sodium*** - ***calcium***
exchanger : Proximity of transmembrane segments 2, 3, and 7.
AU Qiu, Zhiyong [Reprint author]; Nicoll, Debora A. [Reprint author];
Philipson, Kenneth D. [Reprint author]
CS Department of Physiology, University of California at Los Angeles, Los
Angeles, CA, USA
SO Journal of General Physiology, (July, 2000) Vol. 116, No. 1, pp. 17a.
print.
Meeting Info.: Fifty-fourth Annual Meeting of the Society of General
Physiologists. Woods Hole, Massachusetts, USA. September 07-09, 2000.
Society of General Physiologists.
CODEN: JGPLAD. ISSN: 0022-1295.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 23 Aug 2000
Last Updated on STN: 8 Jan 2002

L4 ANSWER 35 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN

DN PREV200000263063
TI Molecular cloning and functional expression of the potassium-dependent ***sodium*** - ***calcium*** ***exchanger*** from ***human*** and chicken retinal cone photoreceptors.
AU Prinsen, Clemens F. M.; Szerencsei, Robert T.; Schnetkamp, Paul P. M. [Reprint author]
CS Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB, T2N 4N1, Canada
SO Journal of Neuroscience, (Feb. 15, 2000) Vol. 20, No. 4, pp. 1424-1434. print.
CODEN: JNRSDS. ISSN: 0270-6474.
DT Article
LA English
ED Entered STN: 21 Jun 2000
Last Updated on STN: 5 Jan 2002

L4 ANSWER 36 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN 2000:181934 BIOSIS
AN PREV200000181934
TI Cardiac dysfunction occurs in the HIV-1 transgenic mouse treated with zidovudine.
AU Lewis, William [Reprint author]; Grupp, Ingrid L.; Grupp, Gunter; Hoit, Brian; Morris, Randal; Samarel, Allen M.; Bruggeman, Leslie; Klotman, Paul
CS Department of Pathology, Emory University School of Medicine ML 529, 1639 Pierce Drive, 7117 Woodruff Memorial Building, Atlanta, GA, 30322, USA
SO Laboratory Investigation, (Feb., 2000) Vol. 80, No. 2, pp. 187-197. print.
CODEN: LAINAW. ISSN: 0023-6837.
DT Article
LA English
ED Entered STN: 11 May 2000
Last Updated on STN: 4 Jan 2002

L4 ANSWER 37 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN 2000:137081 BIOSIS
AN PREV200000137081
TI Functional characterization of a "split" Na⁺-Ca²⁺ exchanger.
AU Ottolia, Michela [Reprint author]; Qiu, Zhiyong [Reprint author]; Philipson, Kenneth D. [Reprint author]
CS Dept. of Physiology, UCLA, Los Angeles, CA, USA
SO Biophysical Journal, (Jan., 2000) Vol. 78, No. 1 Part 2, pp. 54A. print.
Meeting Info.: 44th Annual Meeting of the Biophysical Society. New Orleans, Louisiana, USA. February 12-16, 2000.
CODEN: BIOJAU. ISSN: 0006-3495.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 19 Apr 2000
Last Updated on STN: 4 Jan 2002

L4 ANSWER 38 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN 2000:24570 BIOSIS
AN PREV200000024570
TI Molecular and ultrastructural features of cardiomyopathy occur in AIDS transgenic (TG) mice treated with zidovudine.
AU Lewis, William [Reprint author]; Samarel, Allen M.
CS Univ of Cincinnati Coll of Medicine, Cincinnati, OH, USA
SO Circulation, (Nov. 2, 1999) Vol. 100, No. 18 SUPPL., pp. I.269. print.
Meeting Info.: 72nd Scientific Sessions of the American Heart Association. Atlanta, Georgia, USA. November 7-10, 1999.
CODEN: CIRCAZ. ISSN: 0009-7322.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 29 Dec 1999
Last Updated on STN: 31 Dec 2001

L4 ANSWER 39 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN 1999:494502 BIOSIS
AN PREV199900494502
TI Physiological and molecular characterization of the Na⁺/Ca²⁺ exchanger in ***human*** platelets.
AU Kimura, Masayuki [Reprint author]; Jeanclos, Elisabeth M.; Donnelly, Robert J.; Lytton, Jonathan; Reeves, John P.; Aviv, Abraham
CS Hypertension Research Center, Univ. of Medicine and Dentistry of New Jersey, 185 South Orange Ave., MSB Rm. F-464, Newark, NJ, 07103, USA

H911-H917. print.
CODEN: AJPHAP. ISSN: 0002-9513.

DT Article
LA English
ED Entered STN: 16 Nov 1999
Last Updated on STN: 16 Nov 1999

L4 ANSWER 40 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:482343 BIOSIS
DN PREV199900482343

TI Exposure of N-formyl-L-methionyl-L-leucyl-L-phenylalanine-activated
human neutrophils to the *Pseudomonas aeruginosa*-derived pigment
1-hydroxyphenazine is associated with impaired calcium efflux and
potentiation of primary granule enzyme release.

AU Ramafi, Grace; Anderson, Ronald [Reprint author]; Theron, Annette;
Feldman, Charles; Taylor, Graham W.; Wilson, Robert; Cole, Peter J.

CS Institute for Pathology, Pretoria, South Africa

SO Infection and Immunity, (Oct., 1999) Vol. 67, No. 10, pp. 5157-5162.
print.

CODEN: INFIBR. ISSN: 0019-9567.

DT Article
LA English

ED Entered STN: 16 Nov 1999

Last Updated on STN: 16 Nov 1999

L4 ANSWER 41 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:479932 BIOSIS
DN PREV199900479932

TI Quantitative assessment of the myocardial Na+/Ca²⁺ exchanger transcription
in inflamed heart tissue.

AU Doerner, A. [Reprint author]; Bilger, J. [Reprint author]; Piper, C.
[Reprint author]; Henrichs, E. [Reprint author]; Kuehl, U. [Reprint
author]; Horstkotte, D. [Reprint author]; Schultheiss, H.-P. [Reprint
author]

CS Department of Cardiology, Benjamin Franklin Hospital, Free University of
Berlin, Berlin, Germany

SO European Heart Journal, (Aug., 1999) Vol. 20, No. ABSTR. SUPPL., pp. 620.
print.

Meeting Info.: XXIst Congress of the European Society of Cardiology.
Barcelona, Spain. August 28-September 1, 1999. European Society of
Cardiology.

CODEN: EHJODF. ISSN: 0195-668X.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)

LA Conference; (Meeting Poster)

English

ED Entered STN: 9 Nov 1999

Last Updated on STN: 9 Nov 1999

L4 ANSWER 42 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:479608 BIOSIS
DN PREV199900479608

TI Regional dependent differences in the activity of the Na+/Ca²⁺-exchanger
in ***human*** non-failing myocardium.

AU Diedrichs, H. [Reprint author]; Mueller-Ehmsen, J.; Zobel, C. [Reprint
author]; Mc Donough, A. A.; Swinger, R. H. G. [Reprint author]

CS Klinik III fuer Innere Medizin der Universitaet zu Cologne, Cologne,
Germany

SO European Heart Journal, (Aug., 1999) Vol. 20, No. ABSTR. SUPPL., pp. 44.
print.

Meeting Info.: XXIst Congress of the European Society of Cardiology.
Barcelona, Spain. August 28-September 1, 1999. European Society of
Cardiology.

CODEN: EHJODF. ISSN: 0195-668X.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)

LA Conference; (Meeting Poster)

English

ED Entered STN: 9 Nov 1999

Last Updated on STN: 9 Nov 1999

L4 ANSWER 43 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:472218 BIOSIS
DN PREV199900472218

TI Upregulation of the sarcolemmal Na+/Ca²⁺-exchanger in patients with

AU Schotten, U. [Reprint author]; van Helden, M.; Benke, D.; Stellbrink, C.;
CS Schoendube, F.; Hanrath, P.; Allessie, M.
SO Dept. of Cardiology, University Hospital Aachen, Aachen, Germany
European Heart Journal, (Aug., 1999) Vol. 20, No. ABSTR. SUPPL., pp. 573.
print.
Meeting Info.: XXIst Congress of the European Society of Cardiology.
Barcelona, Spain. August 28-September 1, 1999. European Society of
Cardiology.
CODEN: EHJODF. ISSN: 0195-668X.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 9 Nov 1999
Last Updated on STN: 9 Nov 1999

L4 ANSWER 44 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:458986 BIOSIS
DN PREV199900458986
TI Elevated plasma norepinephrine levels in endstage heart failure are
significantly correlated to upregulation of Na+/Ca2+ exchanger protein
levels.
AU Schillinger, W. [Reprint author]; Schneider, H.; El-Armouche, A.; Ferrari,
R.; Hasenfuss, G. [Reprint author]
CS Kardiologie und Pneumologie, Georg-August-Universitaet Goettingen,
Goettingen, Germany
SO European Heart Journal, (Aug., 1999) Vol. 20, No. ABSTR. SUPPL., pp. 323.
print.
Meeting Info.: XXIst Congress of the European Society of Cardiology.
Barcelona, Spain. August 28-September 1, 1999. European Society of
Cardiology.
CODEN: EHJODF. ISSN: 0195-668X.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 1 Nov 1999
Last Updated on STN: 3 May 2000

L4 ANSWER 45 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:442974 BIOSIS
DN PREV199900442974
TI Truncation of the C terminus of the rat brain Na+-Ca2+ exchanger RBE-1
(NCX1.4) impairs surface expression of the protein.
AU Kasir, Judith; Ren, Xiaoyan; Furman, Ian; Rahamimoff, Hannah [Reprint
author]
CS Department of Biochemistry, Hebrew University Hadassah Medical School
Jerusalem, 91120, Jerusalem, Israel
SO Journal of Biological Chemistry, (Aug. 27, 1999) Vol. 274, No. 35, pp.
24873-24880. print.
CODEN: JBCHA3. ISSN: 0021-9258.
DT Article
LA English
ED Entered STN: 26 Oct 1999
Last Updated on STN: 26 Oct 1999

L4 ANSWER 46 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:428012 BIOSIS
DN PREV199900428012
TI Sodium/calcium exchange contributes to contraction and relaxation in
failed ***human*** ventricular myocytes.
AU Gaughan, John P. [Reprint author]; Furukawa, Satoshi [Reprint author];
Jeevanandam, Valluvan [Reprint author]; Hefner, Colleen A. [Reprint
author]; Kubo, Hajime [Reprint author]; Margulies, Kenneth B. [Reprint
author]; McGowan, Brian S. [Reprint author]; Mattiello, Julian A. [Reprint
author]; Dipla, Konstantina [Reprint author]; Piacentino, Valentino, III
[Reprint author]; Li, Siyun [Reprint author]; Houser, Steven R. [Reprint
author]
CS Departments of Physiology and Cardio-Thoracic Surgery, Temple University
School of Medicine, Philadelphia, PA, 19140, USA
SO American Journal of Physiology, (Aug., 1999) Vol. 277, No. 2 PART 2, pp.
H714-H724. print.
CODEN: AJPHAP. ISSN: 0002-9513.
DT Article
LA English

Last Updated on STN: 18 Oct 1999

L4 ANSWER 47 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:406435 BIOSIS
DN PREV199900406435
TI Changes in Ca²⁺ transport proteins in ***human*** atrial fibrillation.
AU Schotten, Ulrich [Reprint author]; Stellbrink, Christoph; Hanrath, Peter;
Allessie, Maurits
CS University Hospital Aachen, Aachen, Germany
SO Journal of Molecular and Cellular Cardiology, (June, 1999) Vol. 31, No. 6,
pp. A63. print.
Meeting Info.: Abstracts of the XXth Meeting of the International Society
for Heart Research, European Section. Maastricht, The Netherlands. June
20-30, 1999.
CODEN: JMCDAY. ISSN: 0022-2828.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 8 Oct 1999
Last Updated on STN: 8 Oct 1999

L4 ANSWER 48 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:376958 BIOSIS
DN PREV199900376958
TI Ni²⁺ transport by the ***human*** Na⁺/Ca²⁺ exchanger expressed in SF9
cells.
AU Egger, M.; Ruknudin, A.; Niggli, E.; Lederer, W. J.; Schulze, D. H.
[Reprint author]
CS Dept. of Microbiology and Immunology, University of Maryland, 655 W.
Baltimore St., Baltimore, MD, 21201, USA
SO American Journal of Physiology, (May, 1999) Vol. 276, No. 5 PART 1, pp.
C1184-C1192. print.
CODEN: AJPHAP. ISSN: 0002-9513.
DT Article
LA English
ED Entered STN: 13 Sep 1999
Last Updated on STN: 13 Sep 1999

L4 ANSWER 49 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:305800 BIOSIS
DN PREV199900305800
TI C-terminal fragment of Alzheimer's amyloid precursor protein inhibits
sodium / ***calcium*** ***exchanger*** activity in SK-N-SH
cell.
AU Kim, Hye-Sun; Lee, Jun-Ho; Suh, Yoo-Hun [Reprint author]
CS Department of Pharmacology, College of Medicine and Department of
Molecular Pharmacology, Neuroscience Research Institute, Seoul National
University, Seoul, 110-799, South Korea
SO Neuroreport, (Jan. 18, 1999) Vol. 10, No. 1, pp. 113-116. print.
CODEN: NERPEZ. ISSN: 0959-4965.
DT Article
LA English
ED Entered STN: 12 Aug 1999
Last Updated on STN: 12 Aug 1999

L4 ANSWER 50 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:302785 BIOSIS
DN PREV199900302785
TI Gene expression of proteins influencing the calcium homeostasis in
patients with persistent and paroxysmal atrial fibrillation.
AU Brundel, Bianca J. J. M.; Van Gelder, Isabelle C. [Reprint author];
Henning, Robert H.; Tuinenburg, Anton E.; Deelman, Leo E.; Tielemans,
Robert G.; Grandjean, Jan G.; Van Gilst, Wiek H.; Crijns, Harry J. G. M.
CS Department of Cardiology, Thoraxcenter, University Hospital Groningen,
9700 RB, Groningen, Netherlands
SO Cardiovascular Research, (May, 1999) Vol. 42, No. 2, pp. 443-454. print.
CODEN: CVREAU. ISSN: 0008-6363.
DT Article
LA English
ED Entered STN: 12 Aug 1999
Last Updated on STN: 12 Aug 1999

L4 ANSWER 51 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:289153 BIOSIS
DN PREV199900289153

AU Su, Zhi; Bridge, John H.B.; Philipson, Kenneth D.; Spitzer, Kenneth W.;
Barry, William H. [Reprint author]
CS Division of Cardiology, University of Utah Health Sciences Center, 50
North Medical Drive, Salt Lake City, UT, 84132, USA
SO Journal of Molecular and Cellular Cardiology, (May, 1999) Vol. 31, No. 5,
pp. 1125-1135. print.
CODEN: JMCDAY. ISSN: 0022-2828.
DT Article
LA English
ED Entered STN: 5 Aug 1999
Last Updated on STN: 5 Aug 1999

L4 ANSWER 52 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:266056 BIOSIS
DN PREV199900266056
TI Myocardial dysfunction in donor hearts: A possible etiology.
AU Owen, Virginia J. [Reprint author]; Burton, Paul B. J.; Michel, Martin C.;
Zolk, Oliver; Boehm, Michael; Pepper, John R.; Barton, Paul J. R.; Yacoub,
Magdi H.; Harding, Sian E.
CS Cardiothoracic Surgery, National Heart and Lung Institute at Imperial
College School of Medicine, Dovehouse St, London, SW3 6LY, UK
SO Circulation, (May 18, 1999) Vol. 99, No. 19, pp. 2565-2570. print.
CODEN: CIRCAZ. ISSN: 0009-7322.
DT Article
LA English
ED Entered STN: 15 Jul 1999
Last Updated on STN: 15 Jul 1999

L4 ANSWER 53 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:265910 BIOSIS
DN PREV199900265910
TI Alterations in gene expression of proteins involved in the calcium
handling in patients with atrial fibrillation.
AU Van Gelder, Isabelle C. [Reprint author]; Brundel, Bianca J. J. M.;
Henning, Robert H.; Tuinenburg, Anton E.; Tielemans, Robert G.; Deelman,
Leo; Grandjean, Jan G.; De Kam, Pieter Jan; Van Gilst, Wiek H.; Crijns,
Harry J. G. M.
CS Department of Cardiology, Thoraxcenter, University Hospital Groningen,
9700 RB, Groningen, Netherlands
SO Journal of Cardiovascular Electrophysiology, (April, 1999) Vol. 10, No. 4,
pp. 552-560. print.
ISSN: 1045-3873.
DT Article
LA English
ED Entered STN: 15 Jul 1999
Last Updated on STN: 20 Aug 1999

L4 ANSWER 54 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:263444 BIOSIS
DN PREV199900263444
TI Na+/Ca²⁺ exchanger isoforms expressed in cultured ***human*** retinal
pigment epithelial cells.
AU Mangini, N. J. [Reprint author]; Chen, W. [Reprint author]; Kennedy, B.
G.; Wang, Q. [Reprint author]
CS Department of Ophthalmology and Visual Sciences, University Illinois at
Chicago College of Medicine, Chicago, IL, USA
SO IOVS, (March 15, 1999) Vol. 40, No. 4, pp. S925. print.
Meeting Info.: Annual Meeting of the Association for Research in Vision
and Ophthalmology. Fort Lauderdale, Florida, USA. May 9-14, 1999.
Association for Research in Vision and Ophthalmology.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 15 Jul 1999
Last Updated on STN: 15 Jul 1999

L4 ANSWER 55 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:219115 BIOSIS
DN PREV199900219115
TI A circularized ***sodium*** - ***calcium*** ***exchanger*** exon
2 transcript.
AU Li, Xiao-Fang; Lytton, Jonathan [Reprint author]
CS Dept. of Biochemistry and Molecular Biology, University of Calgary Health
Sciences Centre, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada

8153-8160. print.
CODEN: JBCHA3. ISSN: 0021-9258.
DT Article
LA English
ED Entered STN: 7 Jun 1999
Last Updated on STN: 7 Jun 1999

L4 ANSWER 56 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:217932 BIOSIS
DN PREV199900217932
TI Mechanisms of altered excitation-contraction coupling in canine
tachycardia-induced heart failure, II: Model studies.
AU Winslow, Raimond L. [Reprint author]; Rice, Jeremy; Jafri, Saleet; Marban,
Eduardo; O'Rourke, Brian
CS Department of Biomedical Engineering, Johns Hopkins University School of
Medicine, 720 Rutland Ave, 411 Traylor Research Bldg, Baltimore, MD,
21205, USA
SO Circulation Research, (March 19, 1999) Vol. 84, No. 5, pp. 571-586. print.
CODEN: CIRUAL. ISSN: 0009-7330.
DT Article
LA English
ED Entered STN: 26 May 1999
Last Updated on STN: 26 May 1999

L4 ANSWER 57 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:217931 BIOSIS
DN PREV199900217931
TI Mechanisms of altered excitation-contraction coupling in canine
tachycardia-induced heart failure, I: Experimental studies.
AU O'Rourke, Brian [Reprint author]; Kass, David A.; Tomaselli, Gordon F.;
Kaab, Stefan; Tunin, Richard; Marban, Eduardo
CS Division of Cardiology, Department of Medicine, Johns Hopkins University,
720 Rutland Avenue, 844 Ross Building, Baltimore, MD, 21205, USA
SO Circulation Research, (March 19, 1999) Vol. 84, No. 5, pp. 562-570. print.
CODEN: CIRUAL. ISSN: 0009-7330.
DT Article
LA English
ED Entered STN: 26 May 1999
Last Updated on STN: 26 May 1999

L4 ANSWER 58 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:194919 BIOSIS
DN PREV199900194919
TI Gene expression of Na/Ca exchanger during development in ***human***
fetal heart.
AU Qu, Y. [Reprint author]; Ghatpande, A. [Reprint author]; El-Sherif, N.
[Reprint author]; Boutjdir, M. [Reprint author]
CS V.A. Medical and SUNY/HS Centers, Brooklyn, NY, 11209, USA
SO Biophysical Journal, (Jan., 1999) Vol. 76, No. 1 PART 2, pp. A300. print.
Meeting Info.: Forty-third Annual Meeting of the Biophysical Society.
Baltimore, Maryland, USA. February 13-17, 1999.
CODEN: BIOJAU. ISSN: 0006-3495.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 25 May 1999
Last Updated on STN: 25 May 1999

L4 ANSWER 59 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:193611 BIOSIS
DN PREV199900193611
TI Helix packing of the cardiac Na+-Ca2+ exchanger: Proximity of TMS 3 and
TMS 8.
AU Qiu, Z. [Reprint author]; Nicoll, D. A. [Reprint author]; Philipson, K. D.
[Reprint author]
CS Dept. of Physiology, UCLA, Los Angeles, CA, USA
SO Biophysical Journal, (Jan., 1999) Vol. 76, No. 1 PART 2, pp. A252. print.
Meeting Info.: Forty-third Annual Meeting of the Biophysical Society.
Baltimore, Maryland, USA. February 13-17, 1999.
CODEN: BIOJAU. ISSN: 0006-3495.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English

Last Updated on STN: 25 May 1999

L4 ANSWER 60 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:192379 BIOSIS
DN PREV199900192379
TI Relaxation is a voltage-dependent process in failed ***human***
ventricular myocytes.
AU Gaughan, John P. [Reprint author]; Jeevanandam, Valluvan [Reprint author];
CS Houser, Steven R. [Reprint author]
Temple University School of Medicine, 3420 North Broad St., Philadelphia,
PA, 19140, USA
SO Biophysical Journal, (Jan., 1999) Vol. 76, No. 1 PART 2, pp. A366. print.
Meeting Info.: Forty-third Annual Meeting of the Biophysical Society.
Baltimore, Maryland, USA. February 13-17, 1999.
DT CODEN: BIOJAU. ISSN: 0006-3495.
Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 5 May 1999
Last Updated on STN: 5 May 1999

L4 ANSWER 61 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:123171 BIOSIS
DN PREV199900123171
TI Relationship between Na+-Ca2+-exchanger protein levels and diastolic
function of failing ***human*** myocardium.
AU Hasenfuss, Gerd [Reprint author]; Schillinger, Wolfgang; Lehnart, Stephan
E.; Preuss, Michael; Pieske, Burkert; Maier, Lars S.; Prestle, Juergen;
Minami, Kazutomo; Just, Hanjoerg
CS Universitaet Goettingen, Zentrum Innere Medizin, Abteilung Kardiologie
Pneumologie, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
SO Circulation, (Feb. 9, 1999) Vol. 99, No. 5, pp. 641-648. print.
DT CODEN: CIRCAZ. ISSN: 0009-7322.
Article
LA English
ED Entered STN: 12 Mar 1999
Last Updated on STN: 12 Mar 1999

L4 ANSWER 62 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:123039 BIOSIS
DN PREV199900123039
TI Characterization of a (Ca2+)i-dependent current in ***human*** atrial
and ventricular cardiomyocytes in the absence of Na+ and K+.
AU Koester, Olaf F. [Reprint author]; Szigeti, Gyula P.; Beuckelmann, Dirk J.
CS Dep. Internal Med. III, Univ. Cologne, Joseph-Stetzmann-Strasse 9, 50924
Cologne, Germany
SO Cardiovascular Research, (Jan., 1999) Vol. 41, No. 1, pp. 175-187. print.
DT CODEN: CVREAU. ISSN: 0008-6363.
Article
LA English
ED Entered STN: 12 Mar 1999
Last Updated on STN: 12 Mar 1999

L4 ANSWER 63 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:94560 BIOSIS
DN PREV199900094560
TI Sarcoplasmic reticulum proteins in heart failure.
AU Lehnart, Stephan E.; Schillinger, Wolfgang; Pieske, Burkert; Prestle,
Jurgen; Just, Hanjorg; Hasenfuss, Gerd [Reprint author]
CS Abteilung Kardiologie Pneumologie, Univ. Goettingen, Robert-Koch-Str. 40,
37075 Goettingen, Germany
SO Johnson, R. G., Jr. [Editor]; Kranias, E. G. [Editor]. Ann. N. Y. Acad.
Sci., (1998) pp. 220-230. Annals of the New York Academy of Sciences;
Cardiac sarcoplasmic reticulum function and regulation of contractility.
print.
Publisher: New York Academy of Sciences, 2 East 63rd Street, New York, New
York 10021, USA. Series: Annals of the New York Academy of Sciences.
Meeting Info.: Conference. Washington, D.C., USA. September 27-30, 1997.
New York Academy of Sciences.
DT CODEN: ANYAA9. ISSN: 0077-8923. ISBN: 1-57331-130-8 (paper), 1-57331-129-4
(cloth).
Book
Conference; (Meeting)
Book; (Book Chapter)

LA English
ED Entered STN: 1 Mar 1999
Last Updated on STN: 1 Mar 1999

L4 ANSWER 64 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:34332 BIOSIS
DN PREV199900034332
TI Parameters of lymphocyte Na+-Ca²⁺ regulation and blood pressure: The gender effect.
AU Horiguchi, Makoto; Kimura, Masayuki; Skurnick, Joan; Aviv, Abraham [Reprint author]
CS Hypertension Res. Cent., Univ. Med. Dent. NJ, New Jersey Med. Sch., 185 S Orange Avenue, Room F-464, Newark, NJ 07103, USA
SO Hypertension (Dallas), (Nov., 1998) Vol. 32, No. 5, pp. 869-874. print.
CODEN: HPRTDN. ISSN: 0194-911X.
DT Article
LA English
ED Entered STN: 3 Feb 1999
Last Updated on STN: 3 Feb 1999

L4 ANSWER 65 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:14766 BIOSIS
DN PREV199900014766
TI Influence of SR Ca²⁺-ATPase and Na+-Ca²⁺-exchanger on the force-frequency relation.
AU Schillinger, W.; Lehnart, S. E.; Prestle, J.; Preuss, M.; Pieske, B.; Maier, L. S.; Meyer, M.; Just, H.; Hasenfuss, G. [Reprint author]
CS Universitaetsklin. Goettingen, Zent. Innere Med. Kardiol. Pneumol., Robert-Koch-Str. 40, 37075 Goettingen, Germany
SO Basic Research in Cardiology, (1998) Vol. 93, No. SUPPL. 1, pp. 38-45. print.
CODEN: BRCAB7. ISSN: 0300-8428.
DT Article
LA English
ED Entered STN: 11 Jan 1999
Last Updated on STN: 11 Jan 1999

L4 ANSWER 66 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:14765 BIOSIS
DN PREV199900014765
TI Post-rest contraction amplitude in myocytes from failing ***human*** ventricle.
AU Davia, K.; Harding, S. E. [Reprint author]
CS Imperial Coll. Sci. Technol. Med., Royal Brompton Campus, Dovehouse St., London SW3 6LY, UK
SO Basic Research in Cardiology, (1998) Vol. 93, No. SUPPL. 1, pp. 33-37. print.
CODEN: BRCAB7. ISSN: 0300-8428.
DT Article
LA English
ED Entered STN: 11 Jan 1999
Last Updated on STN: 11 Jan 1999

L4 ANSWER 67 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:523863 BIOSIS
DN PREV199800523863
TI Decreased protein level and activity of the Na⁺, K⁺-ATPase but unchanged abundance and activity of the Na⁺, Ca²⁺-exchanger in the failing ***human*** myocardium.
AU Mueller-Ehmsen, J. H. [Reprint author]; Diedriches, H. [Reprint author]; Thompson, C. B.; Wang, J.; Frank, K.; McDonough, A. A.; Schwinger, R. H. G. [Reprint author]
CS Klinik II Innere Medizin Universitaet Koeln, Cologne, Germany
SO European Heart Journal, (Aug., 1998) Vol. 19, No. ABST. SUPPL., pp. 407. print.
Meeting Info.: XXth Congress of the European Society of Cardiology. Vienna, Austria. August 22-26, 1998. European Society of Cardiology.
CODEN: EHJODF. ISSN: 0195-668X.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 22 Dec 1998
Last Updated on STN: 22 Dec 1998

AN 1998:523860 BIOSIS
DN PREV199800523860
TI SR Ca²⁺-ATPase and Na⁺ Ca²⁺-exchange differently contribute to myocardial relaxation in end-stage failing compared to nonfailing ***human*** myocardium.
AU Maier, Lars S. [Reprint author]; Bers, Donald M.; Weber, Thomas [Reprint author]; Hasenfuss, Gerd [Reprint author]; Pieske, Burkert [Reprint author]
CS Medizinische Klinik III, Albert-Ludwigs-Universitaet, Freiburg, Germany
SO European Heart Journal, (Aug., 1998) Vol. 19, No. ABST. SUPPL., pp. 406. print.
Meeting Info.: XXth Congress of the European Society of Cardiology. Vienna, Austria. August 22-26, 1998. European Society of Cardiology.
CODEN: EHJODF. ISSN: 0195-668X.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 22 Dec 1998
Last Updated on STN: 22 Dec 1998

L4 ANSWER 69 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:481956 BIOSIS
DN PREV199800481956
TI The effect of high-salt diet intake on muscular exercise ability in young Japanese women.
AU Fukuba, Yoshiyuki [Reprint author]; Makino, Shiho; Takeda, Yuko; Kawashima, Junko; Murakami, Haruka; Miura, Akira
CS Dep. Exercise Sci. Physiol., Sch. Health Sci., Hiroshima Women's Univ., 1-1-7 Ujina-higashi, Minami-ku, Hiroshima 734-8558, Japan
SO Applied Human Science, (July, 1998) Vol. 17, No. 4, pp. 145-148. print.
ISSN: 1341-3473.
DT Article
LA English
ED Entered STN: 5 Nov 1998
Last Updated on STN: 5 Nov 1998

L4 ANSWER 70 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:420277 BIOSIS
DN PREV199800420277
TI SR and Na/Ca exchange contribute to the Ca²⁺ transient of failing ***human*** ventricular myocytes.
AU Dipla, Konstantina; Jeevanandam, Valluvan; Margulies, Kenneth B.; Houser, Steven R.
CS Dep. Physiol., Temple U. Sch. Med., Philadelphia, PA, USA
SO Journal of Molecular and Cellular Cardiology, (June, 1998) Vol. 30, No. 6, pp. A90. print.
Meeting Info.: XVI World Congress of the International Society for Heart Research: Cardiovascular Biology and Medicine into the 21st Century.
CODEN: JMCDAY. ISSN: 0022-2828.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 2 Oct 1998
Last Updated on STN: 5 Nov 1998

L4 ANSWER 71 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:415199 BIOSIS
DN PREV199800415199
TI Characterization of the plasma membrane calcium pump in T cells: Modulation and memory.
AU Bautista, Diana M.; Hoth, Markus; Lewis, Ricahrd S.
CS Dep. Molecular and Cellular Physiol., Stanford Univ., Stanford, CA, USA
SO Journal of General Physiology, (July, 1998) Vol. 112, No. 1, pp. 22A. print.
Meeting Info.: Fifty-second Annual Meeting of the Society of General Physiologists. Woods Hole, Massachusetts, USA. September 10-12, 1998.
CODEN: JGPLAD. ISSN: 0022-1295.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 2 Oct 1998
Last Updated on STN: 2 Oct 1998

L4 ANSWER 72 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:387930 BIOSIS

TI Summary of studies of changes in vascular reactivity caused by natriuretic hormones.
AU Purdy, R. E. [Reprint author]
CS Dep. Pharmacol., Univ. Calif. Irvine, Irvine, CA 92697-4625, USA
SO Clinical and Experimental Hypertension, (July-Aug., 1998) Vol. 20, No. 5-6, pp. 705-716. print.
ISSN: 1064-1963.

DT Article
LA English
ED Entered STN: 10 Sep 1998
Last Updated on STN: 10 Sep 1998

L4 ANSWER 73 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:350378 BIOSIS
DN PREV199800350378
TI AMPA receptor-mediated excitotoxicity in ***human*** NT2-N neurons results from loss of intracellular Ca²⁺ homeostasis following marked elevation of intracellular Na⁺.
AU Itoh, Takayuki; Itoh, Aki; Horiuchi, Kazumi; Pleasure, David [Reprint author]
CS Div. Neurol. Res., Child. Hosp. Phila., 34th St. and Civic Cent. Blvd., Philadelphia, PA 19104, USA
SO Journal of Neurochemistry, (July, 1998) Vol. 71, No. 1, pp. 112-124. print.
CODEN: JONRA9. ISSN: 0022-3042.

DT Article
LA English
ED Entered STN: 13 Aug 1998
Last Updated on STN: 10 Sep 1998

L4 ANSWER 74 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:334986 BIOSIS
DN PREV199800334986
TI Cloning and sequence analysis of a new, Na/Ca exchanger-related protein from ***human*** heart.
AU Quednau, B. D.; Philipson, K. D.
CS Cardiovascular Res. Lab., UCLA Sch. Med., Los Angeles, CA 90095-1760, USA
SO Biophysical Journal, (Feb., 1998) Vol. 74, No. 2 PART 2, pp. A197. print.
Meeting Info.: Forty-second Annual Meeting of the Biophysical Society. Kansas City, Missouri, USA. February 22-26, 1998.
CODEN: BIOJAU. ISSN: 0006-3495.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 12 Aug 1998
Last Updated on STN: 12 Aug 1998

L4 ANSWER 75 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:334958 BIOSIS
DN PREV199800334958
TI A circularized exon 2 transcript of the Na-Ca exchanger.
AU Li, X.-F.; Lytton, J.
CS Dep. Med. Biochem., Univ. Calgary, Calgary, AB T2N 4N1, Canada
SO Biophysical Journal, (Feb., 1998) Vol. 74, No. 2 PART 2, pp. A193. print.
Meeting Info.: Forty-second Annual Meeting of the Biophysical Society. Kansas City, Missouri, USA. February 22-26, 1998.
CODEN: BIOJAU. ISSN: 0006-3495.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 12 Aug 1998
Last Updated on STN: 10 Sep 1998

L4 ANSWER 76 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:260790 BIOSIS
DN PREV199800260790
TI Membrane topology of the rat brain Na⁺-Ca²⁺ exchanger.
AU Cook, Orna; Low, Walter; Rahamimoff, Hannah [Reprint author]
CS Dep. Biochem., Hebrew Univ.-Hadassah Med. Sch., Jerusalem, Israel
SO Biochimica et Biophysica Acta, (April 22, 1998) Vol. 1371, No. 1, pp. 40-52. print.
CODEN: BBACAQ. ISSN: 0006-3002.

DT Article

ED Entered STN: 9 Jun 1998
Last Updated on STN: 9 Jun 1998

L4 ANSWER 77 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:243845 BIOSIS
DN PREV199800243845
TI Immunohistochemical localization of the Na+/Ca²⁺ exchanger in
human retina and RPE.
AU Loeffler, K. U. [Reprint author]; Chen, W.; Mangini, N. J.
CS Dep. Ophthalmol., Bonn Univ., Bonn, Germany
SO IOVS, (March 15, 1998) Vol. 39, No. 4, pp. S1052. print.
Meeting Info.: Annual Meeting of the Association for Research in Vision
and Ophthalmology. Fort Lauderdale, Florida, USA. May 10-15, 1998.
Association for Research in Vision and Ophthalmology.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 4 Jun 1998
Last Updated on STN: 4 Jun 1998

L4 ANSWER 78 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:224375 BIOSIS
DN PREV199800224375
TI Cloning of the multipartite promoter of the ***sodium*** -
calcium ***exchanger*** gene NCX1 and characterization of its
activity in vascular smooth muscle cells.
AU Scheller, Timo; Kraev, Alexander; Skinner, Sven; Carafoli, Ernesto
[Reprint author]
CS Lab. Biochemistry III, Swiss Federal Inst. Technol., Universitaetsstrasse
16, CH-8092 Zurich, Switzerland
SO Journal of Biological Chemistry, (March 27, 1998) Vol. 273, No. 13, pp.
7643-7649. print.
CODEN: JBCHA3. ISSN: 0021-9258.
DT Article
LA English
OS Genbank-Y12878; Genbank-Y12885; Genbank-Y13032; Genbank-Y13033;
Genbank-Y13034; Genbank-Y13035; Genbank-Y13036; Genbank-Y13037
ED Entered STN: 20 May 1998
Last Updated on STN: 20 May 1998

L4 ANSWER 79 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:202509 BIOSIS
DN PREV199800202509
TI Contribution of sodium-calcium exchange to contraction and relaxation in
developing ***human*** cardiac myocytes.
AU Chin, T. [Reprint author]; Morgan, T.; Kasmarek, T.; Chen, Q.; Ward, K.
CS East Tenn. State Univ., Johnson City, TN 37614, USA
SO FASEB Journal, (March 20, 1998) Vol. 12, No. 5, pp. A710. print.
Meeting Info.: Annual Meeting of the Professional Research Scientists on
Experimental Biology 98, Part II. San Francisco, California, USA. April
18-22, 1998. Federation of American Societies for Experimental Biology.
CODEN: FAJOEC. ISSN: 0892-6638.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 4 May 1998
Last Updated on STN: 12 Aug 1998

L4 ANSWER 80 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:191065 BIOSIS
DN PREV199800191065
TI AMPA glutamate receptor-mediated toxicity in NT2-N neurons is primarily
caused by excessive sodium loading.
AU Itoh, Takayuki [Reprint author]; Itoh, Aki [Reprint author]; Horiuchi,
Kazumi; Pleasure, David [Reprint author]
CS Div. Neurology Res., Children's Hosp.-Phila., Philadelphia, PA 19104, USA
SO Journal of Neurochemistry, (1998) Vol. 70, No. SUPPL. 1, pp. S13. print.
Meeting Info.: 29th Annual Meeting of the American Society for
Neurochemistry. Denver, Colorado, USA. March 7-11, 1998. American Society
for Neurochemistry.
CODEN: JONRA9. ISSN: 0022-3042.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English

Last Updated on STN: 12 Aug 1998

L4 ANSWER 81 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:155097 BIOSIS
DN PREV199800155097
TI Transoesophageal echocardiographic assessment of cardiac donors -molecular
and cellular correlates.
AU Burton, P. B. J.; Owen, V. J.; Tadgkarimi, S.; Harding, S. E.; Yacoub, M.
H.
CS NHLI, Imperial Coll., London, UK
SO Journal of Heart and Lung Transplantation, (Jan., 1998) Vol. 17, No. 1,
pp. 46. print.
Meeting Info.: Eighteenth Annual Meeting and Scientific Sessions of the
International Society for Heart and Lung Transplantation. Chicago,
Illinois, USA. April 15-18, 1998. International Society for Heart and Lung
Transplantation.
ISSN: 1053-2498.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 31 Mar 1998
Last Updated on STN: 31 Mar 1998

L4 ANSWER 82 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:73451 BIOSIS
DN PREV199800073451
TI ***Sodium*** - ***calcium*** ***exchanger*** in cultured
human retinal pigment epithelium.
AU Mangini, Nancy J. [Reprint author]; Haugh-Scheidt, Laura; Valle, Jason E.;
Cragoe, Edward J., Jr.; Rippis, Harris; Kennedy, Brian G.
CS UIC, Dep. Ophthalmol. Visual Sci., 1855 W. Taylor St., Chicago, IL 60612,
USA
SO Experimental Eye Research, (Dec., 1997) Vol. 65, No. 6, pp. 821-834.
print.
CODEN: EXERA6. ISSN: 0014-4835.
DT Article
LA English
ED Entered STN: 24 Feb 1998
Last Updated on STN: 20 Mar 1998

L4 ANSWER 83 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:43653 BIOSIS
DN PREV199800043653
TI Correction of PREVIEWS 99606099. Alteration of excitation-contraction
coupling in the failing ***human*** heart. Correction of title from
Calcium handling proteins in the failing ***human*** heart. Erratum
published in Basic Research in Cardiology Vol. 92. Iss. 4. 1997. p. 287.
AU Hasenfuss, G. [Reprint author]; Meyer, M.; Schillinger, W.; Preuss, M.;
Pieske, B.; Just, H.
CS Medizinische Klinik III, Univ. Freiburg, Hugstetter Str. 55, 79106
Freiburg, Germany
SO Basic Research in Cardiology, (Aug., 1997) Vol. 92, No. 4, pp. 87-93.
print.
CODEN: BRCAB7. ISSN: 0300-8428.
DT Article
Errata
Errata
LA General Review; (Literature Review)
English
ED Entered STN: 27 Jan 1998
Last Updated on STN: 27 Jan 1998

L4 ANSWER 84 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:37437 BIOSIS
DN PREV199800037437
TI Molecular biology of calcium channels in the cardiovascular system.
AU Katz, Arnold M. [Reprint author]
CS Cardiol. Div., Univ. Connecticut Health Cent., 263 Farmington Ave.,
Farmington, CT 06030-1305, USA
SO American Journal of Cardiology, (Nov. 6, 1997) Vol. 80, No. 9A, pp.
17I-22I. print.
CODEN: AJCDAG. ISSN: 0002-9149.
DT Article
LA English
ED Entered STN: 14 Jan 1998

L4 ANSWER 85 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1998:16162 BIOSIS
DN PREV199800016162
TI Frequency-dependent changes in intracellular Na+-concentration in isolated
human myocardium.
AU Maier, Lars S.; Hasenfuss, Gerd; Pieske, Burkert [Reprint author]
CS Albert Ludwigs Univ., Freiburg, Germany
SO Circulation, (10/21/97) Vol. 96, No. 8 SUPPL., pp. I178. print.
Meeting Info.: 70th Scientific Sessions of the American Heart Association.
Orlando, Florida, USA. November 9-12, 1997.
CODEN: CIRCAZ. ISSN: 0009-7322.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 5 Jan 1998
Last Updated on STN: 24 Feb 1998

L4 ANSWER 86 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1997:480517 BIOSIS
DN PREV199799779720
TI Frequency-dependent changes of intracellular Na+-concentration in isolated
human myocardium.
AU Pieske, B. [Reprint author]; Maier, L. [Reprint author]; Minami, K.; Just,
H. [Reprint author]; Hasenfuss, G. [Reprint author]
CS Med. Klin. III, Albert-Ludwigs-Univ. Freiburg, Freiburg, Germany
SO European Heart Journal, (1997) Vol. 18, No. ABSTR. SUPPL., pp. 484.
Meeting Info.: XIXth Congress of the European Society of Cardiology
together with the 32nd Annual General Meeting of the Association of
European Paediatric Cardiologists (AEPC). Stockholm, Sweden. August 24-28,
1997.
CODEN: EHJODF. ISSN: 0195-668X.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 4 Nov 1997
Last Updated on STN: 10 Dec 1997

L4 ANSWER 87 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1997:467335 BIOSIS
DN PREV199799766538
TI ***Human*** brain does not express rat brain ***sodium*** -
calcium ***exchanger*** NCX2 homolog.
AU Yu, L.; Colvin, R. A.
CS Program Neurobiol., Dep. Biol. Sci., Ohio Univ. Coll. Osteopathic Med.,
Athens, OH 45701, USA
SO Society for Neuroscience Abstracts, (1997) Vol. 23, No. 1-2, pp. 136.
Meeting Info.: 27th Annual Meeting of the Society for Neuroscience, Part
1. New Orleans, Louisiana, USA. October 25-30, 1997.
ISSN: 0190-5295.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 4 Nov 1997
Last Updated on STN: 10 Dec 1997

L4 ANSWER 88 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1997:414485 BIOSIS
DN PREV199799706528
TI Na+/Ca-2+ exchanger in Drosophila: Cloning, expression and transport
differences.
AU Rukenudin, Abdul; Valdivia, Carmen; Kofuji, Paulo; Leiderer, W. J.;
Schulze, Dan H. [Reprint author]
CS Dep. Microbiol. Immunol., 655 W. Baltimore St., Baltimore, MD 21201, USA
SO American Journal of Physiology, (1997) Vol. 273, No. 1 PART 1, pp.
C257-C265.
CODEN: AJPHAP. ISSN: 0002-9513.
DT Article
LA English
ED Entered STN: 24 Sep 1997
Last Updated on STN: 24 Sep 1997

L4 ANSWER 89 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN

DN PREV199799606099
TI Calcium handling proteins in the failing ***human*** heart.
AU Hasenfuss, G. [Reprint author]; Meyer, M.; Schillinger, W.; Preuss, M.;
Pieske, B.; Just, H.
CS Medizinische Klinik III, Univ. Freiburg, Hugstetter Str. 55, 79106
Freiburg, Germany
SO Basic Research in Cardiology, (1997) Vol. 92, No. SUPPL. 1, pp. 87-93.
CODEN: BRCAB7. ISSN: 0300-8428.
DT Article
LA General Review; (Literature Review)
ED English
Entered STN: 26 Jul 1997
Last Updated on STN: 4 Sep 1997

L4 ANSWER 90 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1997:315608 BIOSIS
DN PREV199799606096
TI Expression and function of the cardiac Na+/Ca-2+ exchanger in postnatal
development of the rat, in experimental-induced cardiac hypertrophy and in
the failing ***human*** heart.
AU Studer, R. [Reprint author]; Reinecke, H.; Vetter, R.; Holtz, J.; Drexler,
H.
CS Hans Reinecke, Helmut Drexler Universitaetsklinik, Innere Medizin III,
Kardiologie und Angiologie, Breisacher Str. 33, 79106 Freiburg, Germany
SO Basic Research in Cardiology, (1997) Vol. 92, No. SUPPL. 1, pp. 53-58.
CODEN: BRCAB7. ISSN: 0300-8428.
DT Article
LA English
ED Entered STN: 26 Jul 1997
Last Updated on STN: 4 Sep 1997

L4 ANSWER 91 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1997:255100 BIOSIS
DN PREV199799554303
TI Increase in force of contraction by activation of the Na+/Ca-2+-exchanger
in ***human*** myocardium.
AU Mueller-Ehmsen, Jochen; Frank, Konrad; Brixius, Klara; Schwinger, Robert
H. G. [Reprint author]
CS Klinik III fuer Innere Medizin der Univ. zu Koeln, Joseph-Stelzmann-
Strasse 9, 50924 Koeln, Germany
SO British Journal of Clinical Pharmacology, (1997) Vol. 43, No. 4, pp.
399-405.
CODEN: BCPHBM. ISSN: 0306-5251.
DT Article
LA English
ED Entered STN: 13 Jun 1997
Last Updated on STN: 9 Jul 1997

L4 ANSWER 92 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1997:142474 BIOSIS
DN PREV199799441677
TI Novel functional difference between Drosophila and ***human***
Na+/Ca-2+ exchangers.
AU Ruknudin, A. [Reprint author]; Lederer, W. J.; Schulze, D. H. [Reprint
author]
CS Dep. Microbiol. and Immunol., Univ. Md. at Baltimore, MD 21201, USA
SO Biophysical Journal, (1997) Vol. 72, No. 2 PART 2, pp. A247.
Meeting Info.: 41st Annual Meeting of the Biophysical Society. New
Orleans, Louisiana, USA. March 2-6, 1997.
CODEN: BIOJAU. ISSN: 0006-3495.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 2 Apr 1997
Last Updated on STN: 2 May 1997

L4 ANSWER 93 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1997:142006 BIOSIS
DN PREV199799441209
TI Ni-2+ uptake mediated by the ***human*** cardiac Na-Ca exchanger.
AU Egger, M.; Ruknudin, A.; Niggli, E. [Reprint author]; Schulze, D. H.;
Lederer, W. J.
CS Dep. Physiol., Univ. Bern, Bern, Switzerland
SO Biophysical Journal, (1997) Vol. 72, No. 2 PART 2, pp. A164.
Meeting Info.: 41st Annual Meeting of the Biophysical Society. New

DT CODEN: BIOJAU. ISSN: 0006-3495.
Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 2 Apr 1997
Last Updated on STN: 2 May 1997

L4 ANSWER 94 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1997:141435 BIOSIS
DN PREV199799440638
TI Deletion of the alternatively spliced region of the Na+/Ca-2+ exchanger,
NCX1, reduces functional activity.
AU Luo, S. [Reprint author]; Neubauer, C. F.; Ruknudin, A. [Reprint author];
He, S. [Reprint author]; Lederer, W. J.; Schulze, D. H. [Reprint author]
CS Univ. Md., Dep. Microbiology Immunology, Baltimore, MD 21201, USA
SO Biophysical Journal, (1997) Vol. 72, No. 2 PART 2, pp. A64.
Meeting Info.: 41st Annual Meeting of the Biophysical Society. New
Orleans, Louisiana, USA. March 2-6, 1997.
CODEN: BIOJAU. ISSN: 0006-3495.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 2 Apr 1997
Last Updated on STN: 2 May 1997

L4 ANSWER 95 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1997:83448 BIOSIS
DN PREV199799375161
TI The sympathetic nervous system in heart failure: Modulation of cardiac
function.
AU Drexler, H.
CS Med. Hochschule Hannover, Konstanty-Gutschowstr. 8, 30625 Hannover,
Germany
SO Zeitschrift fuer Kardiologie, (1996) Vol. 85, No. SUPPL. 6, pp. 247-252.
CODEN: ZKRDAX. ISSN: 0300-5860.

DT Article
LA German
ED Entered STN: 26 Feb 1997
Last Updated on STN: 26 Feb 1997

L4 ANSWER 96 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1997:72869 BIOSIS
DN PREV199799372072
TI Molecular characterization of the ***human*** airway smooth muscle
Na+/Ca-2+ exchanger.
AU Pitt, Anthony [Reprint author]; Knox, Alan J.
CS Dep. Respiratory Med., City Hosp., Nottingham NG5 1PB, UK
SO American Journal of Respiratory Cell and Molecular Biology, (1996) Vol.
15, No. 6, pp. 726-730.
CODEN: AJRBEL. ISSN: 1044-1549.

DT Article
LA English
OS EMBL-X91815
ED Entered STN: 11 Feb 1997
Last Updated on STN: 25 Mar 1997

L4 ANSWER 97 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1997:4573 BIOSIS
DN PREV199799303776
TI Relationship between diastolic function and protein levels of
sodium - ***calcium*** - ***exchanger*** in end-stage failing
human hearts.
AU Hasenfuss, Gerd; Preuss, Michael; Lehnart, Stephan; Prestle, Juergen;
Meyer, Markus; Just, Hanjoerg
CS Univ. Freiburg, Freiburg, Germany
SO Circulation, (1996) Vol. 94, No. 8 SUPPL., pp. I433.
Meeting Info.: 69th Scientific Sessions of the American Heart Association.
New Orleans, Louisiana, USA. November 10-13, 1996.
CODEN: CIRCAZ. ISSN: 0009-7322.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 7 Jan 1997

L4 ANSWER 98 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1997:2187 BIOSIS
DN PREV199799301390

TI Increased sensitivity of ***human*** heart to inotropic stimulation
with Na channel activator or cardiac glycosides associated with decreased
expression of sodium pump isoforms.

AU McDonough, Alicia A. [Reprint author]; Wang, Jiangnan; Frank, Konrad;
Muller-Ehmsen, Jochen; Schwinger, Robert H. G.

CS Univ. Southern Calif., Los Angeles, CA, USA

SO Circulation, (1996) Vol. 94, No. 8 SUPPL., pp. I24.

Meeting Info.: 69th Scientific Sessions of the American Heart Association.
New Orleans, Louisiana, USA. November 10-13, 1996.

CODEN: CIRCAZ. ISSN: 0009-7322.

DT Conference; (Meeting)

LA Conference; Abstract; (Meeting Abstract)

ED English

Entered STN: 7 Jan 1997

Last Updated on STN: 7 Jan 1997

L4 ANSWER 99 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:520901 BIOSIS

DN PREV199699243257

TI Distribution and signal transduction of angiotensin II AT-1 and AT-2
receptors.

AU Capponi, Alessandro M.

CS Div. Endocrinol., Univ. Hosp., Rue Micheli-du-Crest 24, CH-1211 Geneva 14,
Switzerland

SO Blood Pressure, (1996) Vol. 5, No. SUPPL. 2, pp. 41-46.

ISSN: 0803-7051.

DT Article

LA General Review; (Literature Review)

ED English

Entered STN: 22 Nov 1996

Last Updated on STN: 23 Nov 1996

L4 ANSWER 100 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:520830 BIOSIS

DN PREV199699243186

TI Regional expression of sodium pump subunit isoforms and Na+-Ca++ exchanger
in the ***human*** heart.

AU Wang, Jiangnan; Schwinger, Robert H. G.; Frank, Konrad; Mueller-Ehmsen,
Jochen; Martin-Vasallo, Pablo; Pressley, Thomas A.; Xiang, Anny; Erdmann,
Erland; McDonough, Alicia A. [Reprint author]

CS Dep. Physiol. Biophysics, Univ. Southern California Sch. Med., 1333 San
Pablo St., Los Angeles, CA 90033, USA

SO Journal of Clinical Investigation, (1996) Vol. 98, No. 7, pp. 1650-1658.

CODEN: JCINAO. ISSN: 0021-9738.

DT Article

LA English

ED Entered STN: 22 Nov 1996

Last Updated on STN: 23 Jan 1997

L4 ANSWER 101 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:508833 BIOSIS

DN PREV199699231189

TI The organization of the ***human*** gene NCX1 encoding the
sodium - ***calcium*** ***exchanger***.

AU Kraev, Alexander; Chumakov, Ilya; Carafoli, Ernesto [Reprint author]
CS Lab. Biochem. III, Swiss Federal Inst. Technol., Universitaetsstr. 16,
CH-8092 Zurich, Switzerland

SO Genomics, (1996) Vol. 37, No. 1, pp. 105-112.

CODEN: GNMCEP. ISSN: 0888-7543.

DT Article

LA English

OS EMBL-X91213; EMBL-X91214; EMBL-X91215; EMBL-X91216; EMBL-X91217;
EMBL-X91221; EMBL-X91614; EMBL-X91647; EMBL-X91963; EMBL-X92368;

Genbank-X91213; Genbank-X91214; Genbank-X91215; Genbank-X91216;

Genbank-X91217; Genbank-X91221; Genbank-X91614; Genbank-X91647;

Genbank-X91963; Genbank-X92368

ED Entered STN: 14 Nov 1996

Last Updated on STN: 10 Dec 1996

L4 ANSWER 102 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:454219 BIOSIS

TI Hyperventilation induces two vasoconstrictory periods.
AU Wojtowicz, D. [Reprint author]; Engelmann, L.
CS Inst. Physiol. II, Univ. Jena, Teichgraben 8, 07743 Jena, Germany
SO Pfluegers Archiv European Journal of Physiology, (1996) Vol. 432, No. 3
SUPPL., pp. R132.
Meeting Info.: Carl-Ludwig-Symposium. Leipzig, Germany. May 18-20, 1995.
CODEN: PFLABK. ISSN: 0031-6768.

DT Conference; (Meeting)
LA Conference; Abstract; (Meeting Abstract)

ED Entered STN: 7 Oct 1996
Last Updated on STN: 5 Nov 1996

L4 ANSWER 103 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:409006 BIOSIS
DN PREV199699131362
TI Expression of an active Na+/Ca-2+ exchanger isoform lacking the six
C-terminal transmembrane segments.
AU Gabellini, Nadia [Reprint author]; Zatti, Alessandra; Rispoli, Giorgio;
Navangjione, Anacleto; Carafoli, Ernesto
CS Dipartimento di Chimica Biologica, Univ. degli studi di Padova, Via
Trieste, 75, I-35121 Padova, Italy
SO European Journal of Biochemistry, (1996) Vol. 239, No. 3, pp. 897-904.
CODEN: EJBCAI. ISSN: 0014-2956.

DT Article
LA English
ED Entered STN: 10 Sep 1996
Last Updated on STN: 10 Sep 1996

L4 ANSWER 104 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:391960 BIOSIS
DN PREV199699114316
TI Molecular biological studies of the cardiac ***sodium*** -
calcium ***exchanger***.
AU Kraev, Alexander; Chumakov, Ilya; Carafoli, Ernesto [Reprint author]
CS Lab. Biochem. III, Swiss Fed. Inst. Technol., Universitatsstr. 16, CH-8092
Zurich, Switzerland
SO Hilgemann, D. W. [Editor]; Philipson, K. D. [Editor]; Vassort, G.
[Editor]. Ann. N. Y. Acad. Sci., (1996) pp. 103-109. Annals of the New
York Academy of Sciences; Sodium-calcium exchange.
Publisher: New York Academy of Sciences, 2 East 63rd Street, New York, New
York 10021, USA. Series: Annals of the New York Academy of Sciences.
Meeting Info.: Third International Conference. Woods Hole, Massachusetts,
USA. April 23-26, 1995.
CODEN: ANYAA9. ISSN: 0077-8923. ISBN: 1-57331-001-8 (paper), 1-57331-000-X
(cloth).
DT Book
Conference; (Meeting)
Book; (Book Chapter)
LA Conference; (Meeting Paper)
ED English
Entered STN: 3 Sep 1996
Last Updated on STN: 11 Oct 1996

L4 ANSWER 105 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:343445 BIOSIS
DN PREV199699065801
TI Vascular smooth muscle.
AU Siegel, G.
CS Inst. Physiol., Freien Univ. Berlin, Fachbereich Natur
Sozialwissenschaftliche Grundlagenmedizin Med. Oekol., Arnimallee 22,
14195 Berlin, Germany
SO Greger, R. [Editor]; Windhorst, U. [Editor]. (1996) pp. 1941-1964.
Comprehensive human physiology: From cellular mechanisms to integration,
Vols. 1 and 2.
Publisher: Springer-Verlag, Heidelberger Platz 3, D-1000 Berlin, Germany;
Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, New York
10010, USA.
ISBN: 3-540-58109-X.
DT Book
Book; (Book Chapter)
LA English
ED Entered STN: 5 Aug 1996
Last Updated on STN: 26 Sep 1996

AN 1996:343442 BIOSIS
DN PREV199699065798
TI Calcium-mediated control of cardiac contractility at the cellular level.
AU Langer, G. A.
CS UCLA Sch. Med., Cardiovasc. Res. Lab., Dep. Physiol., Macdonald Res. Lab.
Build., 675 Circle Dr. S., Los Angeles, CA 90095, USA
SO Greger, R. [Editor]; Windhorst, U. [Editor]. (1996) pp. 1857-1864.
Comprehensive human physiology: From cellular mechanisms to integration,
Vols. 1 and 2.
Publisher: Springer-Verlag, Heidelberger Platz 3, D-1000 Berlin, Germany;
Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, New York
10010, USA.
ISBN: 3-540-58109-X.

DT Book
LA Book; (Book Chapter)
ED English
Entered STN: 5 Aug 1996
Last Updated on STN: 26 Sep 1996

L4 ANSWER 107 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:312577 BIOSIS
DN PREV199699034933
TI Pathophysiological targets for beta-blocker therapy in congestive heart
failure.
AU Just, H.
CS Med. Universitaetsklin. Freiburg im Breisgau, Abt. Innere Med.
III/Kardiol., Angiologie, 79016 Freiburg im Breisgau, Hugstetterstr. 55,
Germany
SO European Heart Journal, (1996) Vol. 17, No. SUPPL. B, pp. 2-7.
CODEN: EHJODF. ISSN: 0195-668X.

DT Article
LA English
ED Entered STN: 11 Jul 1996
Last Updated on STN: 11 Jul 1996

L4 ANSWER 108 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:239069 BIOSIS
DN PREV199698787198
TI Annexin VI overexpression targeted to heart alters cardiomyocyte function
in transgenic mice.
AU Guntzeski-Hamblin, Ann-Marie [Reprint author]; Song, Guojie; Walsh, Richard
A.; Frenzke, Marie; Boivin, Gregory P.; Dorn, Gerald W. II; Kaetzel,
Marcia A.; Horseman, Nelson D.; Dedman, John R.
CS Mol. Cellular Physiol., Univ. Cincinnati, PO Box 670576, Cincinnati, OH
45267-0576, USA
SO American Journal of Physiology, (1996) Vol. 270, No. 3 PART 2, pp.
H1091-H1100.
CODEN: AJPHAP. ISSN: 0002-9513.

DT Article
LA English
ED Entered STN: 28 May 1996
Last Updated on STN: 28 May 1996

L4 ANSWER 109 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:159600 BIOSIS
DN PREV199698731735
TI Aging does not affect steady-state expression of the Na⁺/Ca⁻²⁺ exchanger
in rat brain.
AU Colvin, Robert A. [Reprint author]; Walker, Jon P.; Schummers, James;
Davis, Nancy
CS Dep. Biol. Sci., Ohio Univ., Athens, OH 45701, USA
SO Cellular and Molecular Neurobiology, (1996) Vol. 16, No. 1, pp. 11-19.
CODEN: CMNEDI. ISSN: 0272-4340.

DT Article
LA English
ED Entered STN: 11 Apr 1996
Last Updated on STN: 11 Apr 1996

L4 ANSWER 110 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:141021 BIOSIS
DN PREV199698713156
TI Sodium/calcium exchange activities in cultured lymphocyte and monocyte
cell lines.
AU Balasubramanyam, M.; Condrescu, M.; Reeves, J. P.; Gardner, J. P.
CS UMDNJ-New Jersey Med. Sch., Newark, NJ 07103, USA

Meeting Info.: 40th Annual Meeting of the Biophysical Society. Baltimore, Maryland, USA. February 17-21, 1996.

CODEN: BIOJAU. ISSN: 0006-3495.

DT Conference; (Meeting)

LA Conference; Abstract; (Meeting Abstract)

ED English

Entered STN: 3 Apr 1996

Last Updated on STN: 2 May 1996

L4 ANSWER 111 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:141007 BIOSIS

DN PREV199698713142

TI Characterization and expression of the Drosophila Na+/Ca-2+ exchanger cDNA in Xenopus oocytes.

AU Ruknudin, A. [Reprint author]; Wisel, S.; Valdivia, C.; Kofuji, P.; Lederer, W. J.; Schulze, D. H.

CS Dep. Microbiol./Immunology, Univ. Maryland Sch. Med., Baltimore, MD 21201, USA

SO Biophysical Journal, (1996) Vol. 70, No. 2 PART 2, pp. A202.

Meeting Info.: 40th Annual Meeting of the Biophysical Society. Baltimore, Maryland, USA. February 17-21, 1996.

CODEN: BIOJAU. ISSN: 0006-3495.

DT Conference; (Meeting)

LA Conference; Abstract; (Meeting Abstract)

ED English

Entered STN: 3 Apr 1996

Last Updated on STN: 2 May 1996

L4 ANSWER 112 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:141000 BIOSIS

DN PREV199698713135

TI Functional analysis of the ***human*** cardiac Na/Ca exchanger expressed in SF9 cells.

AU Egger, M. [Reprint author]; Lipp, P. [Reprint author]; Schwaller, B.; Lederer, W. J.; Schulze, D. H.; Niggli, E. [Reprint author]

CS Dep. Physiol., Univ. Bern, Bern, Switzerland

SO Biophysical Journal, (1996) Vol. 70, No. 2 PART 2, pp. A201.

Meeting Info.: 40th Annual Meeting of the Biophysical Society. Baltimore, Maryland, USA. February 17-21, 1996.

CODEN: BIOJAU. ISSN: 0006-3495.

DT Conference; (Meeting)

LA Conference; Abstract; (Meeting Abstract)

ED English

Entered STN: 3 Apr 1996

Last Updated on STN: 2 May 1996

L4 ANSWER 113 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:138802 BIOSIS

DN PREV199698710937

TI NA-CA exchange in the chronically infarcted rabbit heart.

AU Litwin, S. E.

CS Salt Lake City Veterans Affairs Med. Cent., Salt Lake City, UT, USA

SO Journal of Investigative Medicine, (1996) Vol. 44, No. 1, pp. 147A.

Meeting Info.: Meeting of the American Federation for Clinical Research, Western Region. Carmel, California, USA. February 14-17, 1996.

ISSN: 1081-5589.

DT Conference; (Meeting)

LA Conference; Abstract; (Meeting Abstract)

ED English

Entered STN: 3 Apr 1996

Last Updated on STN: 2 May 1996

L4 ANSWER 114 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:13144 BIOSIS

DN PREV199698585279

TI Enhanced expression of the Na+-Ca-2+-exchanger alters the inotropic responsiveness in the failing ***human*** heart.

AU Flesch, Markus; Schwinger, Robert H. G.; Puetz, Frank; Suedkamp, Ferdinand; Mueller-Ehmsen, Jochen; Boehm, Michael

CS Univ. Cologne, Cologne, Germany

SO Circulation, (1995) Vol. 92, No. 8 SUPPL., pp. I588.

Meeting Info.: 68th Scientific Session of the American Heart Association. Anaheim, California, USA. November 13-16, 1995.

CODEN: CIRCAZ. ISSN: 0009-7322.

DT Conference; (Meeting)

LA English
ED Entered STN: 4 Jan 1996
Last Updated on STN: 28 Feb 1996

L4 ANSWER 115 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1996:9799 BIOSIS
DN PREV199698581934
TI Enhanced expression of the Na+-Ca²⁺-exchanger and its functional relevance in the failing ***human*** heart.
AU Flesch, M.; Swinger, R. H. G.; Mueller-Ehmsen, J.; Suedkamp, F.; Puetz, F.; Boehm, M.
CS Klinik III, Innere Med., Univ. Koeln, 50924 Koeln, Germany
SO European Heart Journal, (1995) Vol. 16, No. ABSTR. SUPPL., pp. 458.
Meeting Info.: XVIIth Congress of the European Society of Cardiology.
Amsterdam, Netherlands. August 20-24, 1995.
CODEN: EHJODF. ISSN: 0195-668X.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)

LA English
ED Entered STN: 4 Jan 1996
Last Updated on STN: 28 Feb 1996

L4 ANSWER 116 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1995:544905 BIOSIS
DN PREV199698559205
TI Calcium transport proteins in the nonfailing and failing heart: Gene expression and function.
AU Wankerl, M. [Reprint author]; Schwartz, K.
CS INSERM Unite 153, Pavillon Rambuteau, Hopital Pitie-Salpetriere, 47 Boulevard de l'Hopital, F-75651 Paris Cedex 13, France
SO Journal of Molecular Medicine (Berlin), (1995) Vol. 73, No. 10, pp. 487-496.
ISSN: 0946-2716.

DT Article
General Review; (Literature Review)

LA English
ED Entered STN: 31 Dec 1995
Last Updated on STN: 28 Feb 1996

L4 ANSWER 117 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1995:463046 BIOSIS
DN PREV199598477346
TI Expression of a functionally active ***human*** renal ***sodium*** - ***calcium*** ***exchanger*** lacking a signal sequence.
AU Loo, Tip W.; Ho, Cheryl; Clarke, David M. [Reprint author]
CS Dep. Med., Univ. Toronto, Room 7342, Med. Sci. Build., 1 King's College Circle, Toronto, ON M5S 1A8, Canada
SO Journal of Biological Chemistry, (1995) Vol. 270, No. 33, pp. 19345-19350.
CODEN: JBCHA3. ISSN: 0021-9258.

DT Article
LA English
ED Entered STN: 27 Oct 1995
Last Updated on STN: 14 Dec 1995

L4 ANSWER 118 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1995:326023 BIOSIS
DN PREV199598340323
TI Ca entry via Na/Ca exchange following intracellular store depletion in T lymphocytes.
AU Gardner, Jeffey P. [Reprint author]; Balasubramanyam, M.; Rohovsky-Kochan, Christine; Reeves, John R.
CS Dep. Pediatrics, UMD-New Jersey Med. Sch., Newark, NY 07103, USA
SO Journal of Cellular Biochemistry Supplement, (1995) Vol. 0, No. 21A, pp. 70.
Meeting Info.: Keystone Symposium on Control and Manipulation of the Immune Response. Taos, New Mexico, USA. March 16-22, 1995.
ISSN: 0733-1959.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)

LA English
ED Entered STN: 2 Aug 1995
Last Updated on STN: 13 Sep 1995

L4 ANSWER 119 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN

DN PREV199598256620
TI The organization of the ***human*** gene of the ***sodium*** -
calcium ***exchanger*** .
AU Kraev, A.; Carafoli, E.
CS Lab. Biochem. III, Swiss Federal Inst. Technol., CH-8092 Zurich,
Switzerland
SO Experientia (Basel), (1995) Vol. 51, No. ABSTR., pp. A55.
Meeting Info.: 27th Annual Meeting of the Swiss Societies for Experimental
Biology (USGEB/USSBE). Fribourg, Switzerland. March 30-31, 1995.
CODEN: EXPEAM. ISSN: 0014-4754.
DT Conference; (Meeting)
LA Conference; Abstract; (Meeting Abstract)
English
ED Entered STN: 9 Jun 1995
Last Updated on STN: 11 Jul 1995

L4 ANSWER 120 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1995:205816 BIOSIS
DN PREV199598220116
TI An alternative splicing site modifies the carboxyl-terminal trans-membrane
domains of the Na+/Ca-2+ exchanger.
AU Gabellini, Nadia [Reprint author]; Iwata, Tomoko; Carafoli, Ernesto
CS Dip. Chimica Biol., Univ. Studi Padova, Via Trieste 75, 35121 Padova,
Italy
SO Journal of Biological Chemistry, (1995) Vol. 270, No. 12, pp. 6917-6924.
CODEN: JBCHA3. ISSN: 0021-9258.
DT Article
LA English
ED Entered STN: 23 May 1995
Last Updated on STN: 23 May 1995

L4 ANSWER 121 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1995:203561 BIOSIS
DN PREV199598217861
TI Eosin, a Potent Inhibitor of the Plasma Membrane Ca Pump, Does Not Inhibit the
Cardiac Na-Ca Exchanger.
AU Gatto, Craig; Hale, Calvin C.; Xu, Wanyan; Milanick, Mark A. [Reprint
author]
CS MA415 Med. Sci. Building, Dep. Physiol., Univ. Missouri, Columbia, MO
65212, USA
SO Biochemistry, (1995) Vol. 34, No. 3, pp. 965-972.
CODEN: BICHAW. ISSN: 0006-2960.
DT Article
LA English
ED Entered STN: 23 May 1995
Last Updated on STN: 9 Jun 1995

L4 ANSWER 122 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1995:139802 BIOSIS
DN PREV199598154102
TI Alternative splicing modifies the C-terminal transmembrane domains of the
Na+/Ca-2+ exchanger.
AU Gabellini, N. [Reprint author]; Iwata, T.; Carafoli, E. [Reprint author]
CS Dep. Biol. Chem., Univ. Padova, 35121 Padova, Italy
SO Biophysical Journal, (1995) Vol. 68, No. 2 PART 2, pp. A412.
Meeting Info.: 39th Annual Meeting of the Biophysical Society. San
Francisco, California, USA. February 12-16, 1995.
CODEN: BIOJAU. ISSN: 0006-3495.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 3 Apr 1995
Last Updated on STN: 23 May 1995

L4 ANSWER 123 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1995:139794 BIOSIS
DN PREV199598154094
TI The autoinhibitory regions of the Ca pump (C28) and the Na/Ca exchanger
(XIP) bind to ***human*** erythrocyte ankyrin and band 3.
AU Xu, W.-Y.; Hale, C. C.; Milanick, M. A.
CS Physiol., Univ. Mo., Columbia, MO 65212, USA
SO Biophysical Journal, (1995) Vol. 68, No. 2 PART 2, pp. A411.
Meeting Info.: 39th Annual Meeting of the Biophysical Society. San
Francisco, California, USA. February 12-16, 1995.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 3 Apr 1995
Last Updated on STN: 23 May 1995

L4 ANSWER 124 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1995:139788 BIOSIS
DN PREV199598154088
TI Characterization of the Na/Ca exchanger cDNA in Drosophila.
AU Valdivia, C. [Reprint author]; Kofuji, P.; Lederer, W. J.; Schulze, D. H.
CS Dep. Physiol., Univ. Maryland Sch. Med., Baltimore, MD 21201, USA
SO Biophysical Journal, (1995) Vol. 68, No. 2 PART 2, pp. A410.
Meeting Info.: 39th Annual Meeting of the Biophysical Society. San
Francisco, California, USA. February 12-16, 1995.
CODEN: BIOJAU. ISSN: 0006-3495.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 3 Apr 1995
Last Updated on STN: 23 May 1995

L4 ANSWER 125 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1995:129869 BIOSIS
DN PREV199598144169
TI Ankyrin-G: A new ankyrin gene with neural-specific isoforms localized at
the axonal initial segment and node of Ranvier.
AU Kordeli, Ekaterini; Lambert, Stephen [Reprint author]; Bennett, Vann
CS Dep. Cell Biol., Duke Univ. Med. Cent., Durham, NC 27710, USA
SO Journal of Biological Chemistry, (1995) Vol. 270, No. 5, pp. 2352-2359.
CODEN: JBCHA3. ISSN: 0021-9258.

DT Article
LA English
ED Entered STN: 29 Mar 1995
Last Updated on STN: 29 Mar 1995

L4 ANSWER 126 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1995:28650 BIOSIS
DN PREV199598042950
TI Copper toxicity in cultured ***human*** skeletal muscle cells: The
involvement of Na+/K+-ATPase and the Na+/Ca-2+-exchanger.
AU Benders, Ad A. G. M.; Li, Jie; Lock, Robert A. C.; Bindels, Rene J. M.;
Bonga, Sjoerd E. Wendelaar; Veerkamp, Jacques H. [Reprint author]
CS Dep. Biochem., Fac. Med., University Nijmegen, PO Box 9101, NL-6500 HB,
Nijmegen, Netherlands
SO Pfluegers Archiv European Journal of Physiology, (1994) Vol. 428, No. 5-6,
pp. 461-467.
CODEN: PFLABK. ISSN: 0031-6768.

DT Article
LA English
ED Entered STN: 11 Jan 1995
Last Updated on STN: 23 Feb 1995

L4 ANSWER 127 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1995:12793 BIOSIS
DN PREV199598027093
TI Enhanced gene expression and function of the cardiac Na+/Ca-2+-exchanger
in end-stage ***human*** heart failure.
AU Reinecke, H. [Reprint author]; Studer, R. [Reprint author]; Vetter, R.;
Holtz, J.; Drexler, H. [Reprint author]
CS Medizinische Klinik III, Univ. Freiburg, Freiburg, Germany
SO European Heart Journal, (1994) Vol. 15, No. ABSTR. SUPPL., pp. 199.
Meeting Info.: Joint XIIth World Congress of Cardiology and the XVIth
Congress of the European Society of Cardiology. Berlin, Germany. September
10-14, 1994.
CODEN: EHJODF. ISSN: 0195-668X.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)
LA English
ED Entered STN: 5 Jan 1995
Last Updated on STN: 5 Jan 1995

AN 1994:424586 BIOSIS
DN PREV199497437586
TI The ***human*** cardiac ***sodium*** - ***calcium***
exchanger expressed in Sf9 cells.
AU Niggli, E. [Reprint author]; Lipp, P. [Reprint author]; Kofuji, P.;
Schulze, D. H.; Lederer, W. J.
CS Dep. Physiol., Univ. Bern, Bern, Switzerland
SO Journal of Physiology (Cambridge), (1994) Vol. 477P, No. 0, pp. 17P.
Meeting Info.: Scientific Meeting of the Physiological Society. Liverpool,
England, UK. April 11-13, 1994.
CODEN: JPHYA7. ISSN: 0022-3751.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 3 Oct 1994
Last Updated on STN: 10 Nov 1994

L4 ANSWER 129 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1994:420849 BIOSIS
DN PREV199497433849
TI Further analysis of the brain Na+/Ca-2+ exchanger in Alzheimer's disease.
AU Colvin, R. A.; Davis, N.; Wu, A.; Murphy, C. A.; Levengood, J.
CS Dep. Biol. Sci., Ohio Univ. Coll. Osteopathic Med., Athens, OH 45701, USA
SO Neurobiology of Aging, (1994) Vol. 15, No. SUPPL. 1, pp. S142-S143.
Meeting Info.: Fourth International Conference on Alzheimer's Disease and
Related Disorders. Minneapolis, Minnesota, USA. July 29-August 3, 1994.
CODEN: NEAGDO. ISSN: 0197-4580.
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 3 Oct 1994
Last Updated on STN: 4 Oct 1994

L4 ANSWER 130 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1994:345720 BIOSIS
DN PREV199497358720
TI Cloning of the NCX2 isoform of the plasma membrane Na+-Ca-2+ exchanger.
AU Li, Zhaoping; Matsuoka, Satoshi; Hryshko, Larry V.; Nicoll, Debora A.;
Bersohn, Malcolm M.; Burke, Edmund P.; Lifton, Richard P.; Philipson,
Kenneth D. [Reprint author]
CS Cardiovascular Research Lab., MRL 3-645, UCLA Sch. Med., Los Angeles, CA
90024-1760, USA
SO Journal of Biological Chemistry, (1994) Vol. 269, No. 26, pp. 17434-17439.
CODEN: JBCHA3. ISSN: 0021-9258.
DT Article
LA English
OS EMBL-U08141; Genbank-U08141
ED Entered STN: 8 Aug 1994
Last Updated on STN: 1 Sep 1994

L4 ANSWER 131 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1994:252520 BIOSIS
DN PREV199497265520
TI Cerebral vasospasm and free radicals.
AU MacDonald, R. Loch [Reprint author]; Weir, Bryce K.
CS Sect. Neurosurg., MC3026, Univ. Chicago Med. Cent., 5841 S. Maryland Ave.,
Chicago, IL 60637, USA
SO Free Radical Biology and Medicine, (1994) Vol. 16, No. 5, pp. 633-643.
CODEN: FRBMEH. ISSN: 0891-5849.
DT Article
General Review; (Literature Review)
LA English
ED Entered STN: 8 Jun 1994
Last Updated on STN: 9 Jun 1994

L4 ANSWER 132 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1994:54008 BIOSIS
DN PREV199497067008
TI Changes in the Na+/Ca-2+ exchanger gene expression in aging rat brain and
in ***human*** brains with Alzheimer's pathology.
AU Janapati, V.; Yu, L.; Colvin, R. A.
CS Dep. Biol. Sci., Ohio Univ. Coll. Osteopathic Med., Athens, OH 45701, USA
SO Society for Neuroscience Abstracts, (1993) Vol. 19, No. 1-3, pp. 1473.
Meeting Info.: 23rd Annual Meeting of the Society for Neuroscience.
Washington, D.C., USA. November 7-12, 1993.

DT Conference; (Meeting)
AN Conference; Abstract; (Meeting Abstract)
LA Conference; (Meeting Poster)
ED English
Entered STN: 3 Feb 1994
Last Updated on STN: 3 Feb 1994

L4 ANSWER 133 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1994:44022 BIOSIS
DN PREV199497057022
TI Functional consequences of altered expression of SR-Ca-2+-ATPase and Na⁺-Ca-2+-exchanger in failing ***human*** myocardium.
AU Hasenfuss, Gerd; Reinecke, Hans; Studer, Roland; Pieske, Burkert; Holtz, Juergen; Holubarsch, Christian; Just, Hanjoerg
CS Univ. Freiburg, Med. Klinik III, Freiburg, Germany
SO Circulation, (1993) Vol. 88, No. 4 PART 2, pp. I407.
Meeting Info.: 66th Scientific Sessions of the American Heart Association.
Atlanta, Georgia, USA. November 8-11, 1993.
CODEN: CIRCAZ. ISSN: 0009-7322.

DT Conference; (Meeting)
AN Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 3 Feb 1994
Last Updated on STN: 25 Mar 1994

L4 ANSWER 134 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1994:43951 BIOSIS
DN PREV199497056951
TI Enhanced expression and function of the cardiac Na⁺/Ca-2+-exchanger in end-stage ***human*** heart failure.
AU Reinecke, Hans [Reprint author]; Studer, Roland [Reprint author]; Vetter, Roland; Just, Hanjorg [Reprint author]; Holtz, Juergen; Drexler, Helmut
CS Div. Mol. Cardiol., Med. Clinic III, Univ. Freiburg, Freiburg, Germany
SO Circulation, (1993) Vol. 88, No. 4 PART 2, pp. I408.
Meeting Info.: 66th Scientific Sessions of the American Heart Association.
Atlanta, Georgia, USA. November 8-11, 1993.
CODEN: CIRCAZ. ISSN: 0009-7322.

DT Conference; (Meeting)
AN Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 3 Feb 1994
Last Updated on STN: 25 Mar 1994

L4 ANSWER 135 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1993:519165 BIOSIS
DN PREV199396132572
TI Is there a ***sodium*** - ***calcium*** ***exchanger*** in macrophages and in lymphocytes.
AU Donnadieu, Emmanuel; Trautmann, Alain [Reprint author]
CS Lab. Neurobiologie, CNRS URA 295, Ecole Normale Supérieure, 46 rue d'Ulm,
F-75005 Paris, France
SO Pfluegers Archiv European Journal of Physiology, (1993) Vol. 424, No. 5-6,
pp. 448-455.
CODEN: PFLABK. ISSN: 0031-6768.

DT Article
LA English
ED Entered STN: 19 Nov 1993
Last Updated on STN: 13 Jan 1994

L4 ANSWER 136 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1993:503074 BIOSIS
DN PREV199396127081
TI Regional distribution in the rat central nervous system of a mRNA encoding a portion of the cardiac ***sodium*** - ***calcium*** ***exchanger*** isolated from cerebellar granule neurons.
AU Marlier, Lionel N. J.-L.; Zheng, Tian [Reprint author]; Tang, Jian; Grayson, Dennis R.
CS Fidia-Georgetown Inst. Neurosci., Georgetown Univ., 3900 Reservoir Rd. NW, Washington, DC 20007, USA
SO Molecular Brain Research, (1993) Vol. 20, No. 1-2, pp. 21-39.
CODEN: MBREE4. ISSN: 0169-328X.

DT Article
LA English
ED Entered STN: 5 Nov 1993
Last Updated on STN: 13 Jan 1994

L4 ANSWER 137 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1993:343079 BIOSIS
DN PREV199396040079
TI Mapping of the ***human*** cardiac ***sodium*** / ***calcium***
exchanger gene (NCX1) by fluorescent in situ hybridization to
chromosome region 2p22 fwdarw p23.
AU McDaniel, L. D.; Lederer, W. J.; Kofuji, P.; Schulze, D. H.; Kieval, R.;
Schultz, Roger A. [Reprint author]
CS McDermott Cent., North Campus, Univ. Southwest Med. Cent., 6000 Harry
Hines Blvd., Room 10.118, Dallas, TX 75235-8591, USA
SO Cytogenetics and Cell Genetics, (1993) Vol. 63, No. 3, pp. 192-193.
CODEN: CGCGBR. ISSN: 0301-0171.
DT Article
LA English
ED Entered STN: 26 Jul 1993
Last Updated on STN: 27 Jul 1993

L4 ANSWER 138 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1993:331828 BIOSIS
DN PREV199345026553
TI Expression of the cardiac ***sodium*** - ***calcium*** -
exchanger by the vaccinia system.
AU Iwata, T.; Guerini, D.; Carafoli, E.
CS Lab. Biochem. III, ETH Zurich, Switzerland
SO Experientia (Basel), (1993) Vol. 49, No. ABSTR., pp. A49.
Meeting Info.: 25th Annual Meeting of the Swiss Society for Experimental
Biology. Lausanne, Switzerland. March 25-26, 1993.
CODEN: EXPEAM. ISSN: 0014-4754.
DT Conference; (Meeting)
LA English
ED Entered STN: 16 Jul 1993
Last Updated on STN: 31 Aug 1993

L4 ANSWER 139 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1993:295664 BIOSIS
DN PREV199396013889
TI Stable expression of the cardiac ***sodium*** - ***calcium***
exchanger in CHO cells.
AU Pijuan, Vivian [Reprint author]; Zhuang, Yingxin; Smith, Lucinda; Kroupis,
Chris; Condrescu, Madalina; Aceto, Joseph F.; Reeves, John P.; Smith,
Jeffrey Bingham
CS Dep. Pharmacol., Sch. Med., Univ. Ala., Birmingham, AL 35294, USA
SO American Journal of Physiology, (1993) Vol. 264, No. 4 PART 1, pp.
C1066-C1074.
CODEN: AJPHAP. ISSN: 0002-9513.
DT Article
LA English
ED Entered STN: 23 Jun 1993
Last Updated on STN: 8 Aug 1993

L4 ANSWER 140 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1993:289456 BIOSIS
DN PREV199345007581
TI Myocardial gene expression of ***sodium*** / ***calcium***
exchanger and sarcoplasmic reticulum calcium-ATPase in
human heart failure.
AU Reinecke, Hans [Reprint author]; Studer, Roland [Reprint author];
Philipson, Kenneth D.; Bilger, Johannes [Reprint author]; Eschenhagen,
Thomas; Boehm, Michael; Just, Hanjoerg [Reprint author]; Holtz, Juergen
[Reprint author]; Drexler, Helmut [Reprint author]
CS Arbeitsgruppe Mol.-Kardiol. Freiburg, Germany
SO Circulation, (1992) Vol. 86, No. 4 SUPPL. 1, pp. I860.
Meeting Info.: 65th Scientific Sessions of the American Heart Association.
New Orleans, Louisiana, USA. November 16-19, 1992.
CODEN: CIRCAZ. ISSN: 0009-7322.
DT Conference; (Meeting)
LA English
ED Entered STN: 17 Jun 1993
Last Updated on STN: 18 Jun 1993

L4 ANSWER 141 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1993:267796 BIOSIS
DN PREV199344129946
TI Physiological role of the ***sodium*** - ***calcium***
exchanger in modulating platelet intracellular calcium and

AU Li, Yun; Fyfe, Chris; Cragoe, Edward J.; Bose, Ratna
CS Dep. Pharmacol., Univ. Manitoba, Winnipeg, Can. R3E 0W3, canada
SO FASEB Journal, (1993) Vol. 7, No. 3-4, pp. A564.
Meeting Info.: Meeting of the Federation of American Societies for
Experimental Biology on Experimental Biology '93. New Orleans, Louisiana,
USA. March 28-April 1, 1993.
CODEN: FAJOEC. ISSN: 0892-6638.

DT Conference; (Meeting)
LA English
ED Entered STN: 27 May 1993
Last Updated on STN: 13 Jul 1993

L4 ANSWER 142 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1993:251565 BIOSIS
DN PREV199395130740
TI Cloning of two isoforms of the rat brain ***sodium*** - ***calcium***
exchanger gene and their functional expression in HeLa cells.
AU Furman, Ian; Cook, Orna; Kasir, Judith; Rahamimoff, Hannah [Reprint
author]
CS Dep. Biochem., Hebrew Univ.-Hadassah Med. Sch., PO Box 1172, Jerusalem
91010, Israel
SO FEBS (Federation of European Biochemical Societies) Letters, (1993) Vol.
319, No. 1-2, pp. 105-109.
CODEN: FEBLAL. ISSN: 0014-5793.

DT Article
LA English
OS Genbank-X68812; Genbank-X68813
ED Entered STN: 21 May 1993
Last Updated on STN: 13 Jul 1993

L4 ANSWER 143 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1993:248378 BIOSIS
DN PREV199395127553
TI Delineation of the role of a ***sodium***, ***calcium***
exchanger in regulating intracellular calcium in T cells.
AU Wacholtz, Mary C. [Reprint author]; Cragoe., Edward J., Jr.; Lipsky, Peter
E.
CS Harold C. Simmons Arthritis Res. Center, Dep. Internal Med., University
Texas Southwestern Med. Center Dallas, Dallas, TX 75235, USA
SO Cellular Immunology, (1993) Vol. 147, No. 1, pp. 95-109.
CODEN: CLIMB8. ISSN: 0008-8749.

DT Article
LA English
ED Entered STN: 21 May 1993
Last Updated on STN: 22 May 1993

L4 ANSWER 144 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1993:164433 BIOSIS
DN PREV199395085483
TI Cloning of the rat heart ***sodium*** - ***calcium***
exchanger and its functional expression in HeLa cells.
AU Low, Walter; Kasir, Judith; Rahamimoff, Hannah [Reprint author]
CS Dep. Biochem., Hebrew University-Hadassah Med. Sch., P.O. Box 1172,
Jerusalem, Israel
SO FEBS (Federation of European Biochemical Societies) Letters, (1993) Vol.
316, No. 1, pp. 63-67.
CODEN: FEBLAL. ISSN: 0014-5793.

DT Article
LA English
OS EMBL-X68191; Genbank-X68191
ED Entered STN: 31 Mar 1993
Last Updated on STN: 16 May 1993

L4 ANSWER 145 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1993:151597 BIOSIS
DN PREV199344070397
TI Rhodopsin and phototransduction.
AU Hargrave, Paul A.; McDowell, Hugh
CS Dep. Ophthalmology, Sch. Med., Univ. Fla., Gainesville, Fla. 32610, USA
SO Friedlander, M. [Editor]; Mueckler, M. [Editor]. Int. Rev. Cytol., (1992)
pp. 49-97. International Review of Cytology; Molecular biology of
receptors and transporters: Receptors.
Publisher: Academic Press, Inc., 1250 Sixth Ave., San Diego, California
92101, USA; Academic Press Ltd., 14 Belgrave Square, 24-28 Oval Road,
London NW1 7OX, England, UK. Series: International Review of Cytology.

DT Article
LA General Review; (Literature Review)
ED English
Entered STN: 19 Mar 1993
Last Updated on STN: 16 May 1993

L4 ANSWER 146 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1993:137976 BIOSIS
DN PREV199395070776
TI Expression of the ***sodium***, ***calcium*** ***exchanger***
in a diverse tissues: A study using the cloned ***human*** cardiac
sodium, ***calcium*** ***exchanger***
AU Kofuji, Paulo; Hadley, Robert W.; Kieval, Robert S.; Lederer, W. J.
[Reprint author]; Schulze, Dan H.
CS Dep. Physiology, Univ. Maryland Sch. Med., 660 W. Redwood Street,
Baltimore, MD 21201, USA
SO American Journal of Physiology, (1992) Vol. 263, No. 6 PART 1, pp.
C1241-C1249.
CODEN: AJPHAP. ISSN: 0002-9513.

DT Article
LA English
OS Genbank-M96368
ED Entered STN: 16 Mar 1993
Last Updated on STN: 16 May 1993

L4 ANSWER 147 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1993:24464 BIOSIS
DN PREV199395012664
TI Rapid calcium extrusion via the ***sodium***, ***calcium***
exchanger of the ***human*** platelet.
AU Valant, Peter A.; Adjei, Philip N.; Haynes, Duncan H.
CS Dep. Mol. Cellular Pharmacol., University Miami Sch. Med., Miami, Fla.
33101, USA
SO Journal of Membrane Biology, (1992) Vol. 130, No. 1, pp. 63-82.
CODEN: JMBBBO. ISSN: 0022-2631.

DT Article
LA English
ED Entered STN: 23 Dec 1992
Last Updated on STN: 24 Dec 1992

L4 ANSWER 148 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1992:513874 BIOSIS
DN PREV199243111324; BR43:111324
TI CALCIUM EXTRUSION BY THE ***SODIUM*** ***CALCIUM***
EXCHANGER OF THE ***HUMAN*** PLATELET.
AU HAYNES D H [Reprint author]; VALANT P A; ADJEI P N
CS DEP MOLECULAR AND CELLULAR PHARMACOL, UNIV MIAMI SCH MED, MIAMI, FLA
33101, USA
SO (1991) pp. 592-603. BLAUSTEIN, M. P., R. DIPOLO AND J. P. REEVES (ED.).
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, VOL. 639. SODIUM-CALCIUM
EXCHANGE; SECOND INTERNATIONAL CONFERENCE, BALTIMORE, MARYLAND, USA, APRIL
7-11, 1991. XIV+671P. NEW YORK ACADEMY OF SCIENCES: NEW YORK, NEW YORK,
USA. ILLUS.
Publisher: Series: Annals of the New York Academy of Sciences.
ISSN: 007-8923. ISBN: 0-89766-694-1(PAPER), 0-89766-693-3(CLOTH).
DT Book
FS Conference; (Meeting)
LA BR
ED ENGLISH
Entered STN: 11 Nov 1992
Last Updated on STN: 24 Dec 1992

L4 ANSWER 149 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1992:501661 BIOSIS
DN PREV199294120186; BA94:120186
TI GENETIC LINKAGE ANALYSIS IN FAMILIAL BENIGN HYPERCALCEMIA USING A
CANDIDATE GENE STRATEGY I. STUDIES IN FOUR FAMILIES.
AU HEATH H III [Reprint author]; LEPPERT M F; LIFTON R P; PENNISTON J T;
EDENS M; JEROMINSKI L; LAAKSO K J; NELSON L; OTTERUD B; ET AL
CS DIV ENDOCRINOL METABOLISM, UNIV UTAH MED CENT, 4C116 SOM, 50 NORTH MEDICAL
DRIVE, SALT LAKE CITY, UTAH 84132, USA
SO Journal of Clinical Endocrinology and Metabolism, (1992) Vol. 75, No. 3,
pp. 846-851.
CODEN: JCCEMAZ. ISSN: 0021-972X.
DT Article

LA ENGLISH
ED Entered STN: 9 Nov 1992
Last Updated on STN: 24 Dec 1992

L4 ANSWER 150 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1992:494878 BIOSIS
DN PREV199243104078; BR43:104078
TI MOLECULAR FUNCTION OF THE ***SODIUM*** ***CALCIUM***
EXCHANGER GUINEA-PIG RAT AND ***HUMAN***
AU LEDERER W J [Reprint author]; KOFUJI P; SCHULZE D; HADLEY R; KIEVAL R;
KIBRY M S; NIGGLI E
CS DEP PHYSIOLOGY, UNIV MD SCH MED, 660 W REDWOOD ST, BALTIMORE, MD 21201,
USA
SO Journal of Molecular and Cellular Cardiology, (1992) Vol. 24, No. SUPPL.
4, pp. S13.
Meeting Info.: 2ND INTERNATIONAL SYMPOSIUM ON THE MAMMALIAN MYOCARDIUM:
BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS UNDERLYING THE HEARTBEAT, LEEDS,
ENGLAND, UK, JULY 26-29, 1992. J MOL CELL CARDIOL.
CODEN: JMCDAY. ISSN: 0022-2828.

DT Conference; (Meeting)
FS BR
LA ENGLISH
ED Entered STN: 3 Nov 1992
Last Updated on STN: 4 Nov 1992

L4 ANSWER 151 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1992:339615 BIOSIS
DN PREV199243029165; BR43:29165
TI EVIDENCE FOR A BASOLATERAL ***SODIUM*** ***CALCIUM***
EXCHANGER IN PERFUSED ***HUMAN*** GASTRIC GLANDS USING
CONFOCAL AND VIDEO IMAGING MICROSCOPY.
AU GEIBEL J [Reprint author]; MODLIN I
CS SURGICAL GASTROINTESTINAL PATHOBIOLOGY RES GROUP, YALE UNIV SCH MED, NEW
HAVEN, CONN, USA
SO Gastroenterology, (1992) Vol. 102, No. 4 PART 2, pp. A73.
Meeting Info.: DIGESTIVE DISEASE WEEK AND THE 93RD ANNUAL MEETING OF THE
AMERICAN GASTROENTEROLOGICAL ASSOCIATION, SAN FRANCISCO, CALIFORNIA, USA,
MAY 9-15, 1992. GASTROENTEROLOGY.
CODEN: GASTAB. ISSN: 0016-5085.

DT Conference; (Meeting)
FS BR
LA ENGLISH
ED Entered STN: 16 Jul 1992
Last Updated on STN: 16 Jul 1992

L4 ANSWER 152 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1992:323583 BIOSIS
DN PREV199294025424; BA94:25424
TI MOLECULAR CLONING AND CHARACTERIZATION OF THE ***HUMAN*** CARDIAC
SODIUM ***CALCIUM*** ***EXCHANGER*** CDNA.
AU KOMURO I [Reprint author]; WENNINGER K E; PHILIPSON K D; IZUMO S
CS MOL MED UNIT, BETH ISRAEL HOSPITAL, BOSTON, MASS 02215, USA
SO Proceedings of the National Academy of Sciences of the United States of
America, (1992) Vol. 89, No. 10, pp. 4769-4773.
CODEN: PNASA6. ISSN: 0027-8424.

DT Article
FS BA
LA ENGLISH
ED Entered STN: 11 Jul 1992
Last Updated on STN: 11 Jul 1992

L4 ANSWER 153 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1992:277239 BIOSIS
DN PREV199294001889; BA94:1889
TI ACTIVATION OF A RELAXATION CASCADE IN ISOLATED CORONARY ARTERIES BY BRIEF
ELECTRICAL PULSES.
AU KALSNER S [Reprint author]
CS DEP PHYSIOL, CITY UNIV NEW YORK MED SCH, CITY COLL NEW YORK, 138TH ST AND
CONVENT AVE, NEW YORK, NY 10031, USA
SO Journal of Pharmacology and Experimental Therapeutics, (1992) Vol. 261,
No. 1, pp. 209-224.
CODEN: JPETAB. ISSN: 0022-3565.

DT Article
FS BA
LA ENGLISH

Last Updated on STN: 9 Aug 1992

L4 ANSWER 154 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1992:224571 BIOSIS
DN PREV199242106071; BR42:106071
TI THE ***HUMAN*** CARDIAC ***SODIUM*** ***CALCIUM***
EXCHANGER CLONING SEQUENCING AND EXPRESSION.
AU KOFUJI P [Reprint author]; LEDERER W J; SCHULZE D H
CS DEP PHARM AND EXP THER, UNIV MD, SCH MED, BALTIMORE, MD 21201, USA
SO Biophysical Journal, (1992) Vol. 61, No. 2 PART 2, pp. A387.
Meeting Info.: JOINT ANNUAL MEETING OF THE BIOPHYSICAL SOCIETY AND THE
AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, HOUSTON, TEXAS,
USA, FEBRUARY 9-13, 1992. BIOPHYS J.
CODEN: BIOJAU. ISSN: 0006-3495.
DT Conference; (Meeting)
FS BR
LA ENGLISH
ED Entered STN: 5 May 1992
Last Updated on STN: 6 May 1992

L4 ANSWER 155 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1992:188721 BIOSIS
DN PREV199293099671; BA93:99671
TI MAPPING OF THE GENE FOR THE CARDIAC SARCOLEMMAL ***SODIUM***
CALCIUM ***EXCHANGER*** TO ***HUMAN*** CHROMOSOME
2P21-P23.
AU SHIEH B-H [Reprint author]; XIA Y; SPARKES R S; KLISAK I; LUSIS A J;
NICOLL D A; PHILIPSON K D
CS DEP MEDICINE, MOLECULAR BIOLOGY INSTITUTE, UNIVERSITY CALIFORNIA, LOS
ANGELES, CALIF 90024, USA
SO Genomics, (1992) Vol. 12, No. 3, pp. 616-617.
CODEN: GNMCEP. ISSN: 0888-7543.
DT Article
FS BA
LA ENGLISH
ED Entered STN: 13 Apr 1992
Last Updated on STN: 14 Apr 1992

L4 ANSWER 156 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1992:177148 BIOSIS
DN PREV199242082148; BR42:82148
TI THE ***HUMAN*** CARDIAC ***SODIUM*** ***CALCIUM***
EXCHANGER CLONING SEQUENCING AND EXPRESSION.
AU KOFUJI P [Reprint author]; LEDERER W J; SCHULZE D H
CS DEP PHARM EXPER THER, UNIV MD SCH MED, BALTIMORE, MD 21201, USA
SO FASEB Journal, (1992) Vol. 6, No. 1, pp. A387.
Meeting Info.: JOINT MEETING OF THE AMERICAN SOCIETY FOR BIOCHEMISTRY AND
MOLECULAR BIOLOGY/BIOPHYSICAL SOCIETY, HOUSTON, TEXAS, USA, FEBRUARY 9-13,
1992. FASEB (FED AM SOC EXP BIOL) J.
CODEN: FAJOEC. ISSN: 0892-6638.
DT Conference; (Meeting)
FS BR
LA ENGLISH
ED Entered STN: 2 Apr 1992
Last Updated on STN: 3 Apr 1992

L4 ANSWER 157 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1992:63467 BIOSIS
DN PREV199242027367; BR42:27367
TI MOLECULAR CHARACTERIZATION OF THE ***HUMAN*** CARDIAC ***SODIUM***
CALCIUM ***EXCHANGER*** CDNA.
AU KOMURO I [Reprint author]; WENNIGER K; PHILIPSON K D; IZUMO S
CS BETH ISRAEL HOSP, HARVARD MED SCH, BOSTON, MASS, USA
SO Circulation, (1991) Vol. 84, No. 4 SUPPL. 2, pp. II338.
Meeting Info.: 64TH SCIENTIFIC SESSIONS OF THE AMERICAN HEART ASSOCIATION,
ANAHEIM, CALIFORNIA, USA, NOVEMBER 11-14, 1991. CIRCULATION.
CODEN: CIRCAZ. ISSN: 0009-7322.
DT Conference; (Meeting)
FS BR
LA ENGLISH
ED Entered STN: 21 Jan 1992
Last Updated on STN: 21 Jan 1992

L4 ANSWER 158 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1991:493686 BIOSIS

TI UNCHANGED EFFECTIVENESS OF THE SODIUM ION CHANNEL-ACTIVATOR BDF AND OUABAIN IN TERMINALLY FAILING COMPARED TO NONFAILING ***HUMAN*** MYOCARDIUM.
AU SCHWINGER R H G [Reprint author]; BOEHM M; SCHMIDT U; SCHULZ C; ERDMANN E
CS MED KLINIK I, KLINIKUM GROSSHADERN, MARCHIONINISTR 15, D-8000 MUENCHEN 70,
W GER
SO European Heart Journal, (1991) Vol. 12, No. ABSTR. SUPPL, pp. 54.
Meeting Info.: ABSTRACTS SELECTED FOR PRESENTATION AT THE XIIITH CONGRESS
OF THE EUROPEAN SOCIETY OF CARDIOLOGY, AMSTERDAM, NETHERLANDS, AUGUST
18-22, 1991. EUR HEART J.
CODEN: EHJODF. ISSN: 0195-668X.
DT Conference; (Meeting)
FS BR
LA ENGLISH
ED Entered STN: 3 Nov 1991
Last Updated on STN: 4 Nov 1991

L4 ANSWER 159 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1991:330254 BIOSIS
DN PREV199141026804; BR41:26804
TI EVIDENCE FOR THE ROLE OF A ***SODIUM*** ***CALCIUM***
EXCHANGER IN GENERATING THE MITOGEN INDUCED CALCIUM SIGNAL IN T
LYMPHOCYTES.
AU WACHOLTZ M C [Reprint author]; CRAGOE E J; LIPSKY P E
CS UNIV TEX SOUTHWESTERN MED CENT, DALLAS, TEX 75235, USA
SO FASEB Journal, (1991) Vol. 5, No. 5, pp. A1455.
Meeting Info.: 75TH ANNUAL MEETING OF THE FEDERATION OF AMERICAN SOCIETIES
FOR EXPERIMENTAL BIOLOGY, ATLANTA, GEORGIA, USA, APRIL 21-25, 1991. FASEB
(FED AM SOC EXP BIOL) J.
CODEN: FAJOEC. ISSN: 0892-6638.
DT Conference; (Meeting)
FS BR
LA ENGLISH
ED Entered STN: 20 Jul 1991
Last Updated on STN: 20 Jul 1991

L4 ANSWER 160 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1991:218091 BIOSIS
DN PREV199140103926; BR40:103926
TI EFFECT OF CYCLIC AMP CYCLIC GMP AND PROTEIN KINASE ACTIVATION ON RESTING
CYTOPLASMIC AND DENSE TUBULAR CALCIUM LEVELS IN THE ***HUMAN***
PLATELET.
AU JOHANSSON J [Reprint author]; TAO J; JY W; HAYNES D H
CS DEP MOL CELL PHARMACOL, UNIV MIAMI SCH MED, MIAMI, FLA 33101, USA
SO Biophysical Journal, (1991) Vol. 59, No. 2 PART 2, pp. 336A.
Meeting Info.: THIRTY-FIFTH ANNUAL MEETING OF THE BIOPHYSICAL SOCIETY, SAN
FRANCISCO, CALIFORNIA, USA, FEBRUARY 24-28, 1991. BIOPHYS J.
CODEN: BIOJAU. ISSN: 0006-3495.
DT Conference; (Meeting)
FS BR
LA ENGLISH
ED Entered STN: 5 May 1991
Last Updated on STN: 14 Jun 1991

L4 ANSWER 161 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1990:519135 BIOSIS
DN PREV199090136411; BA90:136411
TI A TETRODOTOXIN AND MANGANESE INSENSITIVE SODIUM CURRENT IN DUCHENNE
MUSCULAR DYSTROPHY.
AU BKAILY G [Reprint author]; JASMIN G; TAUTU C; PROCHEK L; YAMAMOTO T;
SCULPTOREANU A; PEYROW M; JACQUES D
CS DEP PHYSIOLOGY BIOPHYSICS, FAC MED, UNIVERSITY SHERBROOKE, SHERBROOKE,
QUEBEC, CANADA J1H 5N4
SO Muscle and Nerve, (1990) Vol. 13, No. 10, pp. 939-948.
CODEN: MUNEDE. ISSN: 0148-639X.
DT Article
FS BA
LA ENGLISH
ED Entered STN: 19 Nov 1990
Last Updated on STN: 20 Nov 1990

L4 ANSWER 162 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1989:128315 BIOSIS
DN PREV198987062968; BA87:62968
TI AMILORIDE ANTIARRHYTHMIC AND ELECTROPHYSIOLOGICAL ACTIVITY IN THE DOG.

CS DEP MED, UNIV CALGARY, HEALTH SCI CENTRE, 3330 HOSPITAL DRIVE NW, CALGARY,
SO ALBERTA T2N 4N1, CANADA
TI Circulation, (1988) Vol. 78, No. 6, pp. 1469-1477.
CODEN: CIRCAZ. ISSN: 0009-7322.

DT Article
FS BA
LA ENGLISH
ED Entered STN: 28 Feb 1989
Last Updated on STN: 28 Feb 1989

L4 ANSWER 163 OF 473 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
AN 1986:173060 BIOSIS
DN PREV198681083476; BA81:83476
TI INHIBITION OF ***SODIUM*** - ***CALCIUM*** ***EXCHANGER***
ACTIVITY IN CARDIAC AND SKELETAL MUSCLE SARCOLEMMAL VESICLES BY MONOCLONAL
ANTIBODY 44D-7.
AU MICHALAK M [Reprint author]; QUACKENBUSH E J; LETARTE M
CS DIV CARDIOLOGY, HOSPITAL SICK CHILDREN, UNIV TORONTO, TORONTO, ONTARIO,
CANADA
SO Journal of Biological Chemistry, (1986) Vol. 261, No. 1, pp. 92-95.
CODEN: JBCHA3. ISSN: 0021-9258.

DT Article
FS BA
LA ENGLISH
ED Entered STN: 26 Apr 1986
Last Updated on STN: 26 Apr 1986

L4 ANSWER 164 OF 473 BIOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN
AN 2001:32924645 BIOTECHNO
TI Identification and characterization of a ***sodium*** / ***calcium***
exchanger, NCX-1, in osteoclasts and its role in bone resorption
AU Moonga B.S.; Davidson R.; Sun L.; Adebanjo O.A.; Moser J.; Abedin M.;
Zaidi N.; Huang C.L.-H.; Zaidi M.
CS M. Zaidi, Mount Sinai Bone Program, Mount Sinai School of Medicine, One
Gustave Levy Place, New York, NY 10029, United States.
E-mail: mone.zaidi@mssm.edu
SO Biochemical and Biophysical Research Communications, (***2001***),
283/4 (770-775), 28 reference(s)
CODEN: BBRCA0 ISSN: 0006-291X

DT Journal; Article
CY United States
LA English
SL English

L4 ANSWER 165 OF 473 BIOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN
AN 2001:32695528 BIOTECHNO
TI Cardiac ***sodium*** - ***calcium*** ***exchanger*** : A
double-edged sword
AU Conway S.J.; Koushik S.V.
CS S.J. Conway, Inst. of Molec. Med. and Genetics, Department of Cell
Biology, Medical College of Georgia, 1120 15th Street, Augusta, GA
30912-2640, United States.
E-mail: sconway@mail.mcg.edu
SO Cardiovascular Research, (***2001***), 51/2 (194-197), 44
reference(s)
CODEN: CVREAU ISSN: 0008-6363

PUI S000863630100356X
DT Journal; Editorial
CY Netherlands
LA English

L4 ANSWER 166 OF 473 BIOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN
AN 1998:28103285 BIOTECHNO
TI Molecular cloning of a novel potassium-dependent ***sodium*** -
calcium ***exchanger*** from rat brain
AU Tsoi M.; Rhee K.-H.; Bungard D.; Li X.-F.; Lee S.-L.; Auer R.N.; Lytton
J.
CS J. Lytton, University of Calgary, Department of Medical Biochemistry,
Health Sciences Centre, 3330 Hospital Dr. NW, Calgary, Alta. T2N 4N1,
Canada.
E-mail: jlytton@acs.ucalgary.ca
SO Journal of Biological Chemistry, *** (13 FEB 1998)*** , 273/7
(4155-4162), 45 reference(s)
CODEN: JBCHA3 ISSN: 0021-9258

DT Journal; Article

LA English
SL English

L4 ANSWER 167 OF 473 BIOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN
AN 1996:26194636 BIOTECHNO
TI Molecular biological studies of the cardiac ***sodium*** -
calcium ***exchanger***
AU Kraev A.; Chumakov I.; Carafoli E.
CS Laboratory of Biochemistry III, Swiss Federal Institute Technology,
Universitatsstrasse 16, CH-8092 Zurich, Switzerland.
SO Annals of the New York Academy of Sciences, (***1996***), 779/-
(103-109)
CODEN: ANYAA0 ISSN: 0077-8923
DT Journal; Conference Article
CY United States
LA English
SL English

L4 ANSWER 168 OF 473 BIOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN
AN 1996:26125217 BIOTECHNO
TI Colocalization of the dihydropyridine receptor, the plasma-membrane
calcium ATPase isoform 31 and the ***sodium*** / ***calcium***
exchanger to the junctional-membrane domain of transverse tubule
of rabbit skeletal muscle
AU Sacchetto R.; Margreth A.; Pelosi M.; Carafoli E.
CS Institute of Biochemistry, Swiss Federal Inst Technology (ETH),
Universitatsstrasse, CH-8092 Zurich, Switzerland.
SO European Journal of Biochemistry, (***1996***), 237/2 (483-488)
CODEN: EJBCAI ISSN: 0014-2956
DT Journal; Article
CY Germany, Federal Republic of
LA English
SL English

L4 ANSWER 169 OF 473 BIOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN
AN 1993:23337863 BIOTECHNO
TI ***Sodium*** / ***calcium*** ***exchanger*** in heart muscle:
Molecular biology, cellular function, and its special role in
excitation-contraction coupling
AU Schulze D.; Kofuji P.; Hadley R.; Kirby M.S.; Kieval R.S.; Doering A.;
Niggli E.; Lederer W.J.
CS Department of Physiology, Univ. of Maryland School of Medicine, 660 W
Redwood Street, Baltimore, MD 21201, United States.
SO Cardiovascular Research, (***1993***), 27/10 (1726-1734)
CODEN: CVREAU ISSN: 0008-6363
DT Journal; Conference Article
CY United Kingdom
LA English
SL English

L4 ANSWER 170 OF 473 BIOTECHNO COPYRIGHT 2004 Elsevier Science B.V. on STN
AN 1993:23118131 BIOTECHNO
TI Stable expression of the cardiac ***sodium*** - ***calcium***
exchanger in CHO cells
AU Pijuan V.; Zhuang Y.; Smith L.; Kroupis C.; Condrescu M.; Aceto J.F.;
Reeves J.P.; Smith J.B.
CS Dept. of Pharmacology, Schools of Medicine and Dentistry, Univ. of
Alabama, Birmingham, AL 35294, United States.
SO American Journal of Physiology - Cell Physiology, (***1993***), 264/4
33-4 (C1066-C1074)
CODEN: AJPCDD ISSN: 0002-9513
DT Journal; Article
CY United States
LA English
SL English

L4 ANSWER 171 OF 473 CANCERLIT on STN
AN 2002133747 CANCERLIT
DN 21602175 PubMed ID: 11735260
TI Regulation of sodium-calcium exchange and mitochondrial energetics by
Bcl-2 in the heart of transgenic mice.
CM Comment in: J Mol Cell Cardiol. 2001 Dec;33(12):2079-82
AU Zhu L; Yu Y; Chua B H; Ho Y S; Kuo T H
CS Department of Pathology, Wayne State University School of Medicine,
Detroit, Michigan 48201, USA.

SO JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, *** (2001 Dec) *** 33 (12)
2135-44.
CY Journal code: 0262322. ISSN: 0022-2828.
DT England: United Kingdom
LA Journal; Article; (JOURNAL ARTICLE)
English
FS MEDLINE; Priority Journals
OS MEDLINE 2001692122
EM 200204
ED Entered STN: 20020726
Last Updated on STN: 20020726

L4 ANSWER 172 OF 473 CANCERLIT on STN
AN 2002110112 CANCERLIT
DN 21412509 PubMed ID: 11521739
TI The effect of 5'-(N,N-dimethyl)-amiloride on cytotoxic activity of doxorubicin and vincristine in CEM cell lines.
AU Radvakova I; Mirossay A; Mojzis J; Mirossay L
CS Department of Pharmacology, Faculty of Medicine, Safarik University, Kosice, Slovak Republic.
SO PHYSIOLOGICAL RESEARCH, *** (2001) *** 50 (3) 283-7.
Journal code: 9112413. ISSN: 0862-8408.
CY Czech Republic
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 2001478657
EM 200201
ED Entered STN: 20020726
Last Updated on STN: 20020726

L4 ANSWER 173 OF 473 CANCERLIT on STN
AN 2002039344 CANCERLIT
DN 21284070 PubMed ID: 11392069
TI Gene therapy: a novel method for the treatment of myocardial ischemia and reperfusion injury--mini-review.
AU Li F; Hayes J K; Wong K C
CS Department of Anesthesiology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
SO ACTA ANAESTHESIOLOGICA SINICA, *** (2000 Dec) *** 38 (4) 207-15. Ref: 73
Journal code: 9432542. ISSN: 0529-5769.
CY China (Republic: 1949-)
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 2001317800
EM 200106
ED Entered STN: 20020726
Last Updated on STN: 20020726

L4 ANSWER 174 OF 473 CANCERLIT on STN
AN 2000445576 CANCERLIT
DN 20445576 PubMed ID: 10993480
TI Inhibitors of Na⁺/Ca²⁺ exchanger prevent oxidant-induced intracellular Ca²⁺ increase and apoptosis in a ***human*** hepatoma cell line.
AU Kim J A; Kang Y S; Lee S H; Lee Y S
CS College of Pharmacy, Yeungnam University, Kyongsan, Korea.
SO FREE RADICAL RESEARCH, *** (2000 Sep) *** 33 (3) 267-77.
Journal code: 9423872. ISSN: 1071-5762.
CY Switzerland
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 2000443390
EM 200101
ED Entered STN: 20010423
Last Updated on STN: 20010423

L4 ANSWER 175 OF 473 CANCERLIT on STN
AN 2000380210 CANCERLIT
DN 20380210 PubMed ID: 10908415
TI Na⁺/Ca²⁺ exchanger isoforms of rat odontoblasts and osteoblasts.

CS Department of Oral Biochemistry, Goteborg University, Sweden.
SO CALCIFIED TISSUE INTERNATIONAL, ***(2000 Jul)*** 67 (1) 60-7.
Journal code: 7905481. ISSN: 0171-967X.

CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 2001030470
EM 200011
ED Entered STN: 20010423
Last Updated on STN: 20010423

L4 ANSWER 176 OF 473 CANCERLIT on STN
AN 2000251054 CANCERLIT
DN 20251054 PubMed ID: 10790152
TI Histamine-induced Ca²⁺ oscillations in a ***human*** endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca²⁺-ATPase.
AU Paltauf-Doburzynska J; Frieden M; Spitaler M; Graier W F
CS Department of Medical Biochemistry and Medical Molecular Biology,
Karl-Franzens University of Graz, Harrachgasse 21/III, A-8010 Graz,
Austria.
SO JOURNAL OF PHYSIOLOGY, ***(2000 May 1)*** 524 Pt 3 701-13.
Journal code: 0266262. ISSN: 0022-3751.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 2000251054
EM 200007
ED Entered STN: 20000811
Last Updated on STN: 20000811

L4 ANSWER 177 OF 473 CANCERLIT on STN
AN 2000222620 CANCERLIT
DN 20222620 PubMed ID: 10761983
TI The Na⁺-Ca²⁺ exchange inhibitor KB-R7943 inhibits high K⁺-induced increases in intracellular Ca²⁺ concentration and [3H]noradrenaline release in the ***human*** neuroblastoma SH-SY5Y.
AU Nakamura H; Kawasaki Y; Arakawa N; Saeki M; Maeda S; Koyama Y; Baba A;
Matsuda T
CS Laboratory of Molecular Neuropharmacology, Graduate School of
Pharmaceutical Sciences, Osaka University, Suita, Japan.
SO NEUROCHEMICAL RESEARCH, ***(2000 Mar)*** 25 (3) 385-7.
Journal code: 7613461. ISSN: 0364-3190.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 2000222620
EM 200005
ED Entered STN: 20000622
Last Updated on STN: 20000622

L4 ANSWER 178 OF 473 CANCERLIT on STN
AN 2000178144 CANCERLIT
DN 20178144 PubMed ID: 10712238
TI ERK signaling mediates the induction of inflammatory cytokines by bufalin in ***human*** monocytic cells.
AU Kurosawa M; Numazawa S; Tani Y; Yoshida T
CS Department of Biochemical Toxicology, School of Pharmaceutical Sciences,
Showa University, Tokyo 142-8555, Japan.. kuromasa@pharm.showa-u.ac.jp
SO AMERICAN JOURNAL OF PHYSIOLOGY. CELL PHYSIOLOGY, ***(2000 Mar)*** 278 (3) C500-8.
Journal code: 100901225. ISSN: 0363-6143.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 2000457119
EM 200009
ED Entered STN: 20001128
Last Updated on STN: 20001128

L4 ANSWER 179 OF 473 CANCERLIT on STN

DN 20170162 PubMed ID: 10707889
TI N(omega)-nitro-L-arginine decreases resting cytosolic [Ca²⁺] and enhances heat stress-induced increase in cytosolic [Ca²⁺] in ***human*** colon carcinoma T84 cells.
AU Kiang J G; McClain D E
CS Department of Cellular Injury, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA.. Dr. Julianne Kiang@WRSMTP-ccmail.army.mil
SO CHINESE JOURNAL OF PHYSIOLOGY, *** (1999 Sep 30) *** 42 (3) 153-9.
Journal code: 7804502. ISSN: 0304-4920.
CY CHINA (REPUBLIC: 1949-)
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 2000170162
EM 200003
ED Entered STN: 20000515
Last Updated on STN: 20000515

L4 ANSWER 180 OF 473 CANCERLIT on STN
AN 1999198954 CANCERLIT
DN 99198954 PubMed ID: 10100855
TI Unique topology of the internal repeats in the cardiac Na+/Ca²⁺ exchanger.
AU Iwamoto T; Nakamura T Y; Pan Y; Uehara A; Imanaga I; Shigekawa M
CS Department of Molecular Physiology, National Cardiovascular Center Research Institute, Suita, Osaka, Japan.
SO FEBS LETTERS, *** (1999 Mar 12) *** 446 (2-3) 264-8.
Journal code: 0155157. ISSN: 0014-5793.
CY Netherlands
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 1999198954
EM 199904
ED Entered STN: 19990519
Last Updated on STN: 19990519

L4 ANSWER 181 OF 473 CANCERLIT on STN
AN 1998281762 CANCERLIT
DN 98281762 PubMed ID: 9620452
TI TGF-beta1 up-regulates the mRNA for the Na+/Ca²⁺ exchanger in neonatal rat cardiac myocytes.
AU Carrillo C; Cafferata E G; Genovese J; O'Reilly M; Roberts A B; Santa-Coloma T A
CS Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires, Argentina.
SO CELLULAR AND MOLECULAR BIOLOGY, *** (1998 May) *** 44 (3) 543-51.
Journal code: 9216789. ISSN: 0145-5680.
CY France
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 1998281762
EM 199808
ED Entered STN: 19980910
Last Updated on STN: 19980910

L4 ANSWER 182 OF 473 CANCERLIT on STN
AN 1998233514 CANCERLIT
DN 98233514 PubMed ID: 9571987
TI Overexpression of HSP-70 attenuates increases in [Ca²⁺]i and protects ***human*** epidermoid A-431 cells after chemical hypoxia.
AU Kiang J G; Ding X Z; McClain D E
CS Department of Clinical Physiology, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA.
SO TOXICOLOGY AND APPLIED PHARMACOLOGY, *** (1998 Apr) *** 149 (2) 185-94.
Journal code: 0416575. ISSN: 0041-008X.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 1998233514
EM 199805
ED Entered STN: 19980610
Last Updated on STN: 19980610

AN 97182154 CANCERLIT
DN 97182154 PubMed ID: 9030200
TI Modulation of cytokine production by ***human*** mononuclear cells following impairment of Na₊ K-ATPase activity.
AU Foey A D; Crawford A; Hall N D
CS School of Pharmacy and Pharmacology, University of Bath. Bath Institute for Rheumatic Diseases, UK.
SO BIOCHIMICA ET BIOPHYSICA ACTA, *** (1997 Jan 10) *** 1355 (1) 43-9.
Journal code: 0217513. ISSN: 0006-3002.
CY Netherlands
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 97182154
EM 199703
ED Entered STN: 19970409
Last Updated on STN: 19970409

L4 ANSWER 184 OF 473 CANCERLIT on STN
AN 97175638 CANCERLIT
DN 97175638 PubMed ID: 9023293
TI Nitrous oxide enhances Na₊/Ca₊₊ exchange in the neuroblastoma cell line SK-N-SH.
AU Resendes M C; Kalogeros G C; Dixon S J; Philp R B
CS Department of Pharmacology, The University of Western Ontario, London, Canada.
SO JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, *** (1997 Feb) *** 280 (2) 795-801.
Journal code: 0376362. ISSN: 0022-3565.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 97175638
EM 199703
ED Entered STN: 19970409
Last Updated on STN: 19970509

L4 ANSWER 185 OF 473 CANCERLIT on STN
AN 97073026 CANCERLIT
DN 97073026 PubMed ID: 8915774
TI Na₊/Ca₂₊ exchange in rat osteoblast-like UMR 106 cells.
AU White K E; Gesek F A; Friedman P A
CS Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire, USA.
NC R01 ES-05860 (NIEHS)
R01 GM-34399 (NIGMS)
T32 DK-07301 (NIDDK)
SO JOURNAL OF BONE AND MINERAL RESEARCH, *** (1996 Nov) *** 11 (11) 1666-75.
Journal code: 8610640. ISSN: 0884-0431.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 97073026
EM 199703
ED Entered STN: 19970409
Last Updated on STN: 19970509

L4 ANSWER 186 OF 473 CANCERLIT on STN
AN 96250115 CANCERLIT
DN 96250115 PubMed ID: 8659866
TI Na-Ca exchange in circulating blood cells.
AU Gardner J P; Balasubramanyam M
CS Department of Pediatrics, University of Medicine and Dentistry-New Jersey Medical School, Newark 07103, USA.
SO ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, *** (1996 Apr 15) *** 779 502-14. Ref: 27
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English

OS MEDLINE 96250115
EM 199607
ED Entered STN: 19960911
Last Updated on STN: 19970509

L4 ANSWER 187 OF 473 CANCERLIT on STN
AN 95370232 CANCERLIT
DN 95370232 PubMed ID: 7642578
TI The putative amino-terminal signal peptide of the cloned rat brain Na(+) -Ca²⁺ exchanger gene (RBE-1) is not mandatory for functional expression.
AU Furman I; Cook O; Kasir J; Low W; Rahamimoff H
CS Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
SO JOURNAL OF BIOLOGICAL CHEMISTRY, *** (1995 Aug 11) *** 270 (32) 19120-7.
Journal code: 2985121R. ISSN: 0021-9258.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 95370232; GENBANK-X68812
EM 199509
ED Entered STN: 19951012
Last Updated on STN: 19970509

L4 ANSWER 188 OF 473 CANCERLIT on STN
AN 95030379 CANCERLIT
DN 95030379 PubMed ID: 7943783
TI Procaine, lidocaine, and hypothermia inhibit calcium paradox in glial cells.
AU Kim-Lee M H; Stokes B T; McDonald J S
CS Department of Physiology, Ohio State University, Columbus 43210.
NC NS10165 (NINDS)
SO ANESTHESIA AND ANALGESIA, *** (1994 Oct) *** 79 (4) 728-33.
Journal code: 1310650. ISSN: 0003-2999.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Abridged Index Medicus Journals; Priority Journals
OS MEDLINE 95030379
EM 199411
ED Entered STN: 19960517
Last Updated on STN: 19970509

L4 ANSWER 189 OF 473 CANCERLIT on STN
AN 94323970 CANCERLIT
DN 94323970 PubMed ID: 7519371
TI Sodium cyanide increases cytosolic free calcium: evidence for activation of the reversed mode of the Na⁺/Ca²⁺ exchanger and Ca²⁺ mobilization from inositol trisphosphate-insensitive pools.
AU Kiang J G; Smallridge R C
CS Department of Clinical Physiology, Walter Reed Army Institute of Research, Washington, DC 20307-5100.
SO TOXICOLOGY AND APPLIED PHARMACOLOGY, *** (1994 Aug) *** 127 (2) 173-81.
Journal code: 0416575. ISSN: 0041-008X.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 94323970
EM 199408
ED Entered STN: 19941107
Last Updated on STN: 19970509

L4 ANSWER 190 OF 473 CANCERLIT on STN
AN 92388658 CANCERLIT
DN 92388658 PubMed ID: 1387665
TI A Na(+) -dependent Ca²⁺ exchanger generates the sustained increase in intracellular Ca²⁺ required for T cell activation.
AU Wacholtz M C; Cragoe E J Jr; Lipsky P E
CS Harold C. Simmons Arthritis Research Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235.
NC AR09989 (NIAMS)
SO JOURNAL OF IMMUNOLOGY, *** (1992 Sep 15) *** 149 (6) 1912-20.
Journal code: 2985117R. ISSN: 0022-1767.

DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Abridged Index Medicus Journals; Priority Journals
OS MEDLINE 92388658
EM 199210
ED Entered STN: 19990618
Last Updated on STN: 19990618

L4 ANSWER 191 OF 473 CANCERLIT on STN
AN 92343724 CANCERLIT
DN 92343724 PubMed ID: 1636682
TI Heat shock increases cytosolic free Ca²⁺ concentration via Na(+) -Ca²⁺ exchange in ***human*** epidermoid A 431 cells.
AU Kiang J G; Koenig M L; Smallridge R C
CS Department of Clinical Physiology, Walter Reed Army Institute of Research, Washington, DC 20307-5100.
SO AMERICAN JOURNAL OF PHYSIOLOGY, *** (1992 Jul) *** 263 (1 Pt 1) C30-8.
Journal code: 0370511. ISSN: 0002-9513.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 92343724
EM 199208
ED Entered STN: 19941107
Last Updated on STN: 19970509

L4 ANSWER 192 OF 473 CANCERLIT on STN
AN 92175913 CANCERLIT
DN 92175913 PubMed ID: 1531810
TI Reperfusion paradox: a novel mode of glial cell injury.
AU Kim-Lee M H; Stokes B T; Yates A J
CS Department of Physiology, Ohio State University, Columbus 43210.
NC NS10165 (NINDS)
SO GLIA, *** (1992) *** 5 (1) 56-64.
Journal code: 8806785. ISSN: 0894-1491.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 92175913
EM 199204
ED Entered STN: 19941107
Last Updated on STN: 19970509

L4 ANSWER 193 OF 473 CANCERLIT on STN
AN 87157179 CANCERLIT
DN 87157179 PubMed ID: 3828108
TI Correlations between the 44D7 antigenic complex and the plasma membrane Na⁺-Ca²⁺ exchanger.
AU Letarte M; Quackenbush E J; Baumal R; Michalak M
SO BIOCHEMISTRY AND CELL BIOLOGY, *** (1986 Nov) *** 64 (11) 1160-9.
Journal code: 8606068. ISSN: 0829-8211.
CY Canada
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS MEDLINE; Priority Journals
OS MEDLINE 87157179
EM 198705
ED Entered STN: 19941107
Last Updated on STN: 19970509

L4 ANSWER 194 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 2001:816901 CAPLUS
DN 135:353862
TI Protein and cDNA sequences of ***human*** sodium-calcium exchanger protein sequence homolog, and uses thereof in therapy, diagnosis, and drug screening
IN Wilm, Claudia
PA Merck Patent G.m.b.H., Germany
SO PCT Int. Appl., 41 pp.
CODEN: PIXXD2
DT Patent
LA English
FAN CNT 1

PI WO 2001083744 A2 20011108 WO 2001-EP4886 20010430 <--
WO 2001083744 A3 20020418
W: CA, JP, US
RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE, TR
EP 1282706 A2 20030212 EP 2001-949305 20010430
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
IE, FI, CY, TR
JP 2003531611 T2 20031028 JP 2001-580351 20010430
US 2003096312 A1 20030522 US 2002-275116 20021101
PRAI EP 2000-109080 A 20000502
WO 2001-EP4886 W 20010430

L4 ANSWER 195 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 2001:587549 CAPLUS
DN 135:301474
TI Targeted inactivation of the ***sodium*** - ***calcium***
exchanger (Ncx1) results in the lack of a heartbeat and abnormal
myofibrillar organization
AU Koushik, Srinagesh V.; Wang, Jian; Rogers, Rhonda; Moskophidis, Demetrios;
Lambert, Nevin A.; Creazzo, Tony L.; Conway, Simon J.
CS Institute of Molecular Medicine and Genetics, Medical College of Georgia,
Augusta, GA, USA
SO FASEB Journal (***2001***), 15(7), 1209-1211, 10.1096/fj.00-0696fje
CODEN: FAJOEC; ISSN: 0892-6638
PB Federation of American Societies for Experimental Biology
DT Journal
LA English
RE.CNT 34 THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 196 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 2001:194433 CAPLUS
DN 135:135328
TI Functional properties of failing ***human*** ventricular myocytes
AU Houser, Steven R.; Piacentino, Valentino, III; Mattiello, Julian; Weisser,
Jutta; Gaughan, John P.
CS Cardiovascular Research Group, Temple University School of Medicine,
Philadelphia, PA, 19140, USA
SO Trends in Cardiovascular Medicine (***2001***), Volume Date 2000,
10(3), 101-107
CODEN: TCMDEQ; ISSN: 1050-1738
PB Elsevier Science Inc.
DT Journal; General Review
LA English
RE.CNT 28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 197 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 2001:160000 CAPLUS
DN 135:253329
TI A polymorphic GT repeat from the ***human*** cardiac Na+Ca2+ exchanger
intron 2 activates splicing
AU Gabellini, Nadia
CS Department of Biological Chemistry, University of Padova, Padua, 35121,
Italy
SO European Journal of Biochemistry (***2001***), 268(4), 1076-1083
CODEN: EJBCAI; ISSN: 0014-2956
PB Blackwell Science Ltd.
DT Journal
LA English
RE.CNT 38 THERE ARE 38 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 198 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 2001:105893 CAPLUS
DN 135:148088
TI Isolation and characterization of Na+/Ca2+ exchanger gene and splicing
isoforms in mice
AU Wakimoto, Koji; Kuro-o, Makoto; Yanaka, Noriyuki; Omori, Kenji; Komuro,
Issei; Imai, Yuji; Nabeshima, Yo-Ichi
CS Advanced Medical Research Department, Tanabe Seiyaku Co. Ltd., Osaka,
532-8505, Japan
SO DNA Sequence (***2000***), 11(1-2), 75-81

PB Harwood Academic Publishers

DT Journal

LA English

RE.CNT 22 THERE ARE 22 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 199 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 2000:744138 CAPLUS

DN 135:71985

TI Transcriptional control of the Na+/Ca²⁺ exchanger

AU Gabellini, Nadia; Zatti, Alessandra; Carafoli, Ernesto

CS Department of Biological Chemistry, Padua, 5121, Italy

SO International Congress Series (***2000***), 1208(Control and Diseases of Sodium Dependent Transport Proteins and Ion Channels), 69-72

CODEN: EXMDA4; ISSN: 0531-5131

PB Elsevier Science B.V.

DT Journal

LA English

RE.CNT 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 200 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 2000:744129 CAPLUS

DN 134:39966

TI The mechanism of induction of THP-1 cell differentiation by bufalin, a potent Na⁺,K⁺-ATPase inhibitor

AU Kurosawa, Masahiro; Tani, Yoshihiro; Numazawa, Satoshi; Yoshida, Takemi

CS Department of Biochemical Toxicology, School of Pharmaceutical Sciences, Shōwa University, Tokyo, 142-8555, Japan

SO International Congress Series (***2000***), 1208(Control and Diseases of Sodium Dependent Transport Proteins and Ion Channels), 35-37

CODEN: EXMDA4; ISSN: 0531-5131

PB Elsevier Science B.V.

DT Journal

LA English

RE.CNT 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 201 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 2000:727998 CAPLUS

DN 134:16007

TI Impaired contractile performance of cultured rabbit ventricular myocytes after adenoviral gene transfer of Na⁺-Ca²⁺ exchanger

AU Schillinger, Wolfgang; Janssen, Paul M. L.; Emami, Shahriyar; Henderson, Scott A.; Ross, Robert S.; Teucher, Nils; Zeitz, Oliver; Philipson, Kenneth D.; Prestle, Jurgen; Hasenfuss, Gerd

CS Zentrum Innere Medizin, Abteilung Kardiologie und Pneumologie, Universitat Gottingen, Gottingen, 37075, Germany

SO Circulation Research (***2000***), 87(7), 581-587

CODEN: CIRUAL; ISSN: 0009-7330

PB Lippincott Williams & Wilkins

DT Journal

LA English

RE.CNT 23 THERE ARE 23 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 202 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 2000:555324 CAPLUS

DN 134:40417

TI Is myocardial Na⁺/Ca²⁺ exchanger transcription a marker for different stages of myocardial dysfunction? Quantitative PCR of the messenger RNA in endomyocardial biopsies of patients with heart failure

AU Piper, Cornelia; Bilger, Johannes; Henrichs, Eva-Maria; Schultheiss, Heinz-Peter; Horstkotte, Dieter; Doerner, Andrea

CS Department of Cardiology, Heart Center North Rhine-Westphalia, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany

SO Journal of the American College of Cardiology (***2000***), 36(1), 233-241

CODEN: JACCDI; ISSN: 0735-1097

PB Elsevier Science Inc.

DT Journal

LA English

RE.CNT 40 THERE ARE 40 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

AN 2000:112627 CAPLUS
DN 132:291544
TI Gene expression of Na+/Ca²⁺ exchanger during development in ***human*** heart
AU Qu, Y.; Ghatpande, A.; El-Sherif, N.; Boutjdir, M.
CS Department of Medicine, Cardiology Division, V.A. Medical Center and SUNY Health Science Center, Brooklyn, NY, USA
SO Cardiovascular Research (***2000***), 45(4), 866-873
CODEN: CVREAU; ISSN: 0008-6363
PB Elsevier Science B.V.
DT Journal
LA English
RE.CNT 39 THERE ARE 39 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 204 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1999:172048 CAPLUS
DN 130:279658
TI Functional expression of the ***human*** cardiac Na+/Ca²⁺ exchanger in Sf9 cells: rapid and specific Ni²⁺ transport
AU Egger, M.; Ruknudin, A.; Lipp, P.; Kofuji, P.; Lederer, W. J.; Schulze, D. H.; Niggli, E.
CS Department of Physiology, University of Bern, Bern, CH-3012, Switz.
SO Cell Calcium (***1999***), 25(1), 9-17
CODEN: CECADV; ISSN: 0143-4160
PB Churchill Livingstone
DT Journal
LA English
RE.CNT 36 THERE ARE 36 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 205 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1999:169628 CAPLUS
DN 130:309994
TI The sarcoplasmic reticulum and the Na+/Ca²⁺ exchanger both contribute to the Ca²⁺ transient of failing ***human*** ventricular myocytes
AU Dipla, Konstantina; Mattiello, Julian A.; Margulies, Kenneth B.; Jeevanandam, Valluvan; Houser, Steven R.
CS Temple University School of Medicine Department of Physiology, Philadelphia, PA, 19140, USA
SO Circulation Research (***1999***), 84(4), 435-444
CODEN: CIRUAL; ISSN: 0009-7330
PB Lippincott Williams & Wilkins
DT Journal
LA English
RE.CNT 37 THERE ARE 37 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 206 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1998:492909 CAPLUS
DN 129:200994
TI Ionic mechanisms underlying ***human*** atrial action potential properties: insights from a mathematical model
AU Courtemanche, Marc; Ramirez, Rafael J.; Nattel, Stanley
CS Research Center, Montreal Heart Institute, Montreal, QC, H1T 1C8, Can.
SO American Journal of Physiology (***1998***), 275(1, Pt. 2), H301-H321
CODEN: AJPHAP; ISSN: 0002-9513
PB American Physiological Society
DT Journal
LA English
RE.CNT 64 THERE ARE 64 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 207 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1997:704016 CAPLUS
DN 127:344428
TI Molecular cloning of the ***human*** brain Na+/Ca(2+) exchanger and study of its isoform expression in rat brain, normal ***human*** brain, and ***human*** brain with Alzheimer's pathology (***sodium*** / ***calcium*** ***exchanger***)
AU Yu, Li
CS Ohio Univ., Athens, OH, USA
SO (***1997***) 154 pp. Avail.: UMI, Order No. DA9736912
From: Diss. Abstr. Int., B 1997, 58(6), 2894
DT Dissertation

- L4 ANSWER 208 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1997:567680 CAPLUS
DN 127:246561
TI Alzheimer's amyloid-beta peptide inhibits sodium/calcium exchange measured in rat and ***human*** brain plasma membrane vesicles
AU Wu, A.; Derrico, C. A.; Hatem, L.; Colvin, R. A.
CS Department of Biological Sciences, Program in Neurobiology, Ohio University College of Osteopathic Medicine, Athens, OH, 45701, USA
SO Neuroscience (Oxford) (***1997***), 80(3), 675-684
CODEN: NRSCDN; ISSN: 0306-4522
PB Elsevier
DT Journal
LA English
- L4 ANSWER 209 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1996:432909 CAPLUS
DN 125:138943
TI Role of the cardiac sarcolemmal Na⁺-Ca²⁺ exchanger in end-stage ***human*** heart failure
AU Reinecke, Hans; Studer, Roland; Vetter, Roland; Just, Hanjoerg; Holtz, Juergen; Drexler, Helmut
CS Cardiology and Angiology Internal Medicine III, University of Freiburg, Freiburg, D-79106, Germany
SO Annals of the New York Academy of Sciences (***1996***), 779(Sodium-Calcium Exchange), 543-545
CODEN: ANYAA9; ISSN: 0077-8923
PB New York Academy of Sciences
DT Journal
LA English
- L4 ANSWER 210 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1996:432906 CAPLUS
DN 125:111719
TI Functional relevance of an enhanced expression of the Na⁺-Ca²⁺ exchanger in the failing ***human*** heart
AU Flesch, M.; Puetz, F.; Schwinger, R. H. G.; Boehm, M.
CS Clinic III for Internal Medicine, University of Cologne, Cologne, 50924, Germany
SO Annals of the New York Academy of Sciences (***1996***), 779(Sodium-Calcium Exchange), 539-542
CODEN: ANYAA9; ISSN: 0077-8923
PB New York Academy of Sciences
DT Journal
LA English
- L4 ANSWER 211 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1996:276654 CAPLUS
DN 124:339337
TI Relationship between myocardial function and expression of calcium cycling proteins in nonfailing and failing ***human*** myocardium
AU Hasenfuss, Gerd; Reinecke, Hans; Studer, Roland; Pieske, Burkert; Meyer, Markus; Holtz, Juergen; Holubarsch, Christian; Drexler, Helmut; Just, Hanjoerg
CS Medizinische Klinik III, Universitat Freiburg, Freiburg/Br., 79106, Germany
SO Developments in Cardiovascular Medicine (***1995***), 169(Heart Hypertrophy and Failure), 103-116
CODEN: DCMEDM; ISSN: 0166-9842
PB Kluwer
DT Journal; General Review
LA English
- L4 ANSWER 212 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1996:209265 CAPLUS
DN 124:257323
TI Cardiac Na⁺/Ca²⁺ exchange activity in patients with end-stage heart failure
AU Reinecke, Hans; Studer, Roland; Vetter, Roland; Holtz, Juergen; Drexler, Helmut
CS Innere Medizin III, Kardiologie und Angiologie, Universitätsklinik Freiburg, Freiburg, 79106, Germany
SO Cardiovascular Research (***1996***), 31(1), 48-54
CODEN: CVREAU; ISSN: 0008-6363
PB Elsevier

LA English

L4 ANSWER 213 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1995:450999 CAPLUS
DN 122:210972
TI The mode of action of exogenous gangliosides on cytosolic calcium of cultured ***human*** hepatoma cells
AU Cui, Wen; Liu, Yinkun; Zhang, Xiaying; Song, Jiaxi; Chen, Ruiqun
CS Sch. Basic Med. SCI., Shanghai Med. Univ., Shanghai, 200032, Peop. Rep. China
SO Shengwu Huaxue Yu Shengwu Wuli Xuebao (***1994***), 26(5), 499-503
CODEN: SHWPAU; ISSN: 0582-9879
PB Shanghai Kexue Jishu Chubanshe
DT Journal
LA Chinese

L4 ANSWER 214 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1994:530939 CAPLUS
DN 121:130939
TI Functional expression of ***human*** renal Na+/Ca²⁺ exchanger in insect cells
AU Loo, Tip W.; Clarke, David M.
CS Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Can.
SO American Journal of Physiology (***1994***), 267(1, Pt. 2), F70-F74
CODEN: AJPHAP; ISSN: 0002-9513
DT Journal
LA English

L4 ANSWER 215 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1994:2857 CAPLUS
DN 120:2857
TI Molecular and cellular biology of plasma membrane calcium ATPase
AU Carafoli, Ernesto; Guerini, Danilo
CS Inst. Biochem., Swiss Fed. Institute of Technology, Zurich, CH-8092, Switz.
SO Trends in Cardiovascular Medicine (***1993***), 3(5), 177-84
CODEN: TCMDEQ; ISSN: 1050-1738
DT Journal; General Review
LA English

L4 ANSWER 216 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1993:210050 CAPLUS
DN 118:210050
TI Potassium-dependent sodium/calcium exchange in ***human*** platelets
AU Kimura, Masayuki; Aviv, Abraham; Reeves, John P.
CS New Jersey Med. Sch., Univ. Med. Dent. New Jersey, Newark, NJ, 07103, USA
SO Journal of Biological Chemistry (***1993***), 268(10), 6874-7
CODEN: JBCHA3; ISSN: 0021-9258
DT Journal
LA English

L4 ANSWER 217 OF 473 CAPLUS COPYRIGHT 2004 ACS on STN
AN 1992:211743 CAPLUS
DN 116:211743
TI Calcium extrusion by the ***sodium*** - ***calcium*** ***exchanger*** of the ***human*** platelet
AU Haynes, Duncan H.; Valant, Peter A.; Adjei, Philip N.
CS Sch. Med., Univ. Miami, Miami, FL, 33101, USA
SO Annals of the New York Academy of Sciences (***1991***), 639(Sodium-Calcium Exch.), 592-603
CODEN: ANYAA9; ISSN: 0077-8923
DT Journal
LA English

L4 ANSWER 218 OF 473 DISSABS COPYRIGHT (C) 2004 ProQuest Information and Learning Company; All Rights Reserved on STN
AN 2001:56264 DISSABS Order Number: AAI3004657
TI Role of annexin V and VI in the ***human*** heart
AU Matteo D'Avenia, Rosalia Gerarda [Ph.D.]; Moravec, Christine S. [adviser]
CS Cleveland State University (0466)
SO Dissertation Abstracts International, (***2001***) Vol. 62, No. 2B, p. 703. Order No.: AAI3004657. 114 pages.
ISBN: 0-493-13605-3.
DT Dissertation
FS DAI

L4 ANSWER 219 OF 473 DISSABS COPYRIGHT (C) 2004 ProQuest Information and Learning Company; All Rights Reserved on STN
AN 97:71556 DISSABS Order Number: AAR9736912
TI MOLECULAR CLONING OF THE ***HUMAN*** BRAIN NA+/CA(2+) EXCHANGER AND STUDY OF ITS ISOFORM EXPRESSION IN RAT BRAIN, NORMAL ***HUMAN*** BRAIN, AND ***HUMAN*** BRAIN WITH ALZHEIMER'S PATHOLOGY (***SODIUM*** / ***CALCIUM*** ***EXCHANGER***)
AU YU, LI [PH.D.]; COLVIN, ROBERT ALAN [advisor]
CS OHIO UNIVERSITY (0167)
SO Dissertation Abstracts International, (***1997***) Vol. 58, No. 6B, p. 2894. Order No.: AAR9736912. 154 pages.
DT Dissertation
FS DAI
LA English
ED Entered STN: 19971104
Last Updated on STN: 19971104

L4 ANSWER 220 OF 473 DISSABS COPYRIGHT (C) 2004 ProQuest Information and Learning Company; All Rights Reserved on STN
AN 94:9773 DISSABS Order Number: AAR9406113
TI MOLECULAR CHARACTERIZATION OF THE PLASMA MEMBRANE ***SODIUM*** / ***CALCIUM*** ***EXCHANGER*** (***SODIUM*** ***CALCIUM*** ***EXCHANGER***)
AU KOFUJI, PAULO [PH.D.]; LEDERER, W. J. [advisor]
CS UNIVERSITY OF MARYLAND AT BALTIMORE (0373)
SO Dissertation Abstracts International, (***1993***) Vol. 54, No. 9B, p. 4548. Order No.: AAR9406113. 154 pages.
DT Dissertation
FS DAI
LA English
ED Entered STN: 19940218
Last Updated on STN: 19940218

L4 ANSWER 221 OF 473 DRUGU COPYRIGHT 2004 THOMSON DERWENT on STN
AN 2000-27947 DRUGU P
TI Inotropic effects of propofol on ***human*** right atrial trabeculae.
AU de Ruijter W; van Klarenbosch J; Stienen G J; de Lange J J
CS Univ.Amsterdam-Free
LO Amsterdam, Neth.
SO Anesth.Analg. (90, No. 2, Suppl., S398, 2000)
CODEN: AACRAT ISSN: 0003-2999
AV University Hospital Vrije Universiteit, Amsterdam, Netherlands.
LA English
DT Journal
FA AB; LA; CT
FS Literature

L4 ANSWER 222 OF 473 DRUGU COPYRIGHT 2004 THOMSON DERWENT on STN
AN 1996-47681 DRUGU T
TI Increased sensitivity of ***human*** heart to inotropic stimulation with Na channel activator or cardiac glycosides associated with decreased expression of sodium pump isoforms.
AU McDonough A A; Wang J; Frank K; Muller Ehmsen J; Schwinger R H G
CS Univ.Southern-California; Univ.Cologne
LO Los Angeles, Cal., USA; Cologne, Ger.
SO Circulation (94, No. 8, Suppl., I24, 1996)
CODEN: CIRCAZ ISSN: 0009-7322
AV University of Southern California, Los Angeles, CA, U.S.A.
LA English
DT Journal
FA AB; LA; CT
FS Literature

L4 ANSWER 223 OF 473 DRUGU COPYRIGHT 2004 THOMSON DERWENT on STN
AN 1995-14132 DRUGU T P
TI Clinical and in vivo antiarrhythmic potential of sodium-hydrogen exchange inhibitors.
AU Duff H J
CS Univ.Calgary
LO Calgary, Alb., Can.
SO Cardiovasc.Res. (29, No. 2, 189-93, 1995) 2 Tab. 46 Ref.
CODEN: CVREAU ISSN: 0008-6363
AV Cardiovascular Research Group, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1.

DT Journal
FA AB; LA; CT
FS Literature

L4 ANSWER 224 OF 473 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED. on STN
AN 2001046987 EMBASE
TI Functional properties of failing ***human*** ventricular myocytes.
AU Houser S.R.; Piacentino III V.; Mattiello J.; Weisser J.; Gaughan J.P.
CS Prof. S.R. Houser, Cardiovascular Research Group, Molecular/Cellular Cardiology Lab., Temple University School of Medicine, 3400 North Broad Street, Philadelphia, PA 19140, United States. srhouser@unix.temple.edu
SO Trends in Cardiovascular Medicine, (2000) 10/3 (101-107).
Refs: 29
ISSN: 1050-1738 CODEN: TCMDEQ
PUI S 1050-1738(00)00057-8
CY United States
DT Journal; General Review
FS 018 Cardiovascular Diseases and Cardiovascular Surgery
021 Developmental Biology and Teratology
022 Human Genetics
029 Clinical Biochemistry
037 Drug Literature Index
005 General Pathology and Pathological Anatomy
LA English
SL English

L4 ANSWER 225 OF 473 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED. on STN
AN 2000226411 EMBASE
TI Mechanisms of hydrogen peroxide-induced calcium dysregulation in PC12 cells.
AU Wang H.; Joseph J.A.
CS Dr. H. Wang, Department of Neurology, Children's Hospital, Enders 3, 300 Longwood Avenue, Boston, MA 02115, United States
SO Free Radical Biology and Medicine, (15 Apr 2000) 28/8 (1222-1231).
Refs: 50
ISSN: 0891-5849 CODEN: FRBMEH
PUI S 0891-5849(00)00241-0
CY United States
DT Journal; Article
FS 029 Clinical Biochemistry
030 Pharmacology
037 Drug Literature Index
005 General Pathology and Pathological Anatomy
008 Neurology and Neurosurgery
LA English
SL English

L4 ANSWER 226 OF 473 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED. on STN
AN 1998160329 EMBASE
TI Calcium channels in cardiac hypertrophy and heart failure.
AU Shorofsky S.R.; Balke C.W.; Gwathmey J.K.
CS S.R. Shorofsky, Univ. of Maryland School of Medicine, Division of Cardiology, 22 South Greene Street, Baltimore, MD 21201, United States
SO Heart Failure Reviews, (1998) 2/3 (163-171).
Refs: 104
ISSN: 1382-4147 CODEN: HFREFC
CY Netherlands
DT Journal; General Review
FS 018 Cardiovascular Diseases and Cardiovascular Surgery
LA English
SL English

L4 ANSWER 227 OF 473 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED. on STN
AN 94169689 EMBASE
DN 1994169689
TI Sodium-calcium exchange in neonatal myocardium: Reversible inhibition by halothane.
AU Baum V.C.; Wetzel G.T.
CS Department of Anesthesiology, UCLA Medical Center, Los Angeles, CA 90024-1778, United States
SO Anesthesia and Analgesia, (1994) 78/6 (1105-1109).

CY United States
DT Journal; Article
FS 024 Anesthesiology
030 Pharmacology
037 Drug Literature Index
LA English
SL English

L4 ANSWER 228 OF 473 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED. on STN
AN 93034622 EMBASE
DN 1993034622
TI [Biochemical alterations and disturbances of the excitation-contraction coupling in congestive heart failure].
BIOCHEMISCHE VERÄNDERUNGEN UND STORUNGEN DER ELEKTROMECHANISCHEN KOPPLUNG BEI DER CHRONISCHEN HERZINSUFFIZIENZ.
AU Holubarsch C.
CS Medizinische Universitätsklinik, Hugstetter Strasse 55, W-7800 Freiburg, Germany
SO Zeitschrift fur Kardiologie, (1992) 81/SUPPL. 4 (17-21).
ISSN: 0300-5860 CODEN: ZKRDAX
CY Germany
DT Journal; Conference Article
FS 006 Internal Medicine
018 Cardiovascular Diseases and Cardiovascular Surgery
037 Drug Literature Index
LA German
SL English; German

L4 ANSWER 229 OF 473 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED. on STN
AN 85205701 EMBASE
DN 1985205701
TI Bartter's syndrome: A unifying hypothesis.
AU Garrick R.; Ziyadeh F.N.; Jorkasky D.; Goldfarb S.
CS Renal-Electrolyte Section, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, United States
SO American Journal of Nephrology, (1985) 5/5 (379-384).
CODEN: AJNED
CY United States
DT Journal
FS 028 Urology and Nephrology
003 Endocrinology
005 General Pathology and Pathological Anatomy
LA English

L4 ANSWER 230 OF 473 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED. on STN
AN 84094778 EMBASE
DN 1984094778
TI Regulation of calcium transport in cardiac cells.
AU Shamu A.E.; Ambudkar I.S.
CS Membrane Biochemistry Research Laboratory, Department of Biological Chemistry, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
SO Canadian Journal of Physiology and Pharmacology, (1984) 62/1 (9-22).
CODEN: CJPPA3
CY Canada
DT Journal
FS 037 Drug Literature Index
002 Physiology
030 Pharmacology
018 Cardiovascular Diseases and Cardiovascular Surgery
029 Clinical Biochemistry
LA English
SL French

L4 ANSWER 231 OF 473 Elsevier BIOBASE COPYRIGHT 2004 Elsevier Science B.V. on STN
AN 1999203438 ESBIOBASE
TI Sodium/calcium exchange contributes to contraction and relaxation in failed ***human*** ventricular myocytes
AU Gaughan J.P.; Furukawa S.; Jeevanandam V.; Hefner C.A.; Kubo H.; Margulies K.B.; McGowan B.S.; Mattiello J.A.; Dipla K.; Piacentino III V.; Li S.; Houser S.R.

3420 North Broad Street, Philadelphia, PA 19140, United States.

E-mail: jgaughan@debjohn@pond.com

SO American Journal of Physiology - Heart and Circulatory Physiology, (***1999***), 277/2 46-2 (H714-H724), 30 reference(s)

CODEN: AJPPDI ISSN: 0363-6135

DT Journal; Article

CY United States

LA English

SL English

L4 ANSWER 232 OF 473 Elsevier BIOBASE COPYRIGHT 2004 Elsevier Science B.V.
on STN

AN 1998189833 ESBIOBASE

TI Ionic mechanisms underlying ***human*** atrial action potential
properties: Insights from a mathematical model

AU Courtemanche M.; Ramirez R.J.; Nattel S.

CS M. Courtemanche, Research Center, Montreal Heart Institute, 5000 E.
Belanger St., Montreal, Que. H1T 1C8, Canada.

SO American Journal of Physiology - Heart and Circulatory Physiology, (***1998***), 275/1 44-1 (H301-H321), 62 reference(s)

CODEN: AJPPDI ISSN: 0363-6135

DT Journal; Article

CY United States

LA English

SL English

L4 ANSWER 233 OF 473 Elsevier BIOBASE COPYRIGHT 2004 Elsevier Science B.V.
on STN

AN 1997180450 ESBIOBASE

TI Na⁺/Ca²⁺ exchanger in Drosophila: Cloning, expression, and
transport differences

AU Ruknudin A.; Valdivia C.; Kofuji P.; Lederer W.J.; Schulze D.H.

CS D.H. Schulze, Dept. of Microbiology and Immunology, 655 W. Baltimore St.,
Baltimore, MD 21201, United States.

SO American Journal of Physiology - Cell Physiology, (***1997***), 273/1
42-1 (C257-C265), 34 reference(s)

CODEN: AJPCDD ISSN: 0363-6143

DT Journal; Article

CY United States

LA English

SL English

L4 ANSWER 234 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC): AL627278 GenBank (R)

GenBank ACC. NO. (GBN): AL627278 AL513382

GenBank VERSION (VER): AL627278.1 GI:16504263

CAS REGISTRY NO. (RN): 365924-97-6

SEQUENCE LENGTH (SQL): 258050

MOLECULE TYPE (CI): DNA; linear

DIVISION CODE (CI): Bacteria

DATE (DATE): 4 Jul 2003

DEFINITION (DEF): *Salmonella enterica* serovar Typhi (*Salmonella typhi*)
strain CT18, complete chromosome; segment 14/20.

SOURCE: *Salmonella enterica* subsp. *enterica* serovar Typhi
Salmonella enterica subsp. *enterica* serovar Typhi

Bacteria; Proteobacteria; Gammaproteobacteria;
Enterobacteriales; Enterobacteriaceae; *Salmonella*

NUCLEIC ACID COUNT (NA): 61275 a 71182 c 65531 g 60062 t

COMMENT:

E-mail: parkhill@sanger.ac.uk

Notes:

Details of *S. typhi* sequencing at the Sanger Centre are available
on the World Wide Web.

(URL, http://www.sanger.ac.uk/Projects/S_typhi/).

REFERENCE: 1 (bases 1 to 258050)

AUTHOR (AU): Parkhill,J.; Dougan,G.; James,K.D.; Thomson,N.R.;

Pickard,D.; Wain,J.; Churcher,C.; Mungall,K.L.;

Bentley,S.D.; Holden,M.T.G.; Sebaihia,M.; Baker,S.;

Basham,D.; Brooks,K.; Chillingworth,T.; Connerton,P.;

Cronin,A.; Davis,P.; Davies,R.M.; Dowd,L.; White,N.;

Farrar,J.; Feltwell,T.; Hamlin,N.; Haque,A.; Hien,T.T.;

Holroyd,S.; Jagels,K.; Krogh,A.; Larsen,T.S.;

Leather,S.; Moule,S.; O'Gaora,P.; Parry,C.; Quail,M.;

Rutherford,K.; Simmonds,M.; Skelton,J.; Stevens,K.;

TITLE (TI): Complete genome sequence of a multiple drug resistant
 Salmonella enterica serovar Typhi CT18
 JOURNAL (SO): Nature, 413 (6858), 848-852 (***2001***)
 OTHER SOURCE (OS): CA 136:15814
 REFERENCE:
 AUTHOR (AU): Parkhill, J.
 TITLE (TI): Direct Submission
 JOURNAL (SO): Submitted (25-OCT-2001) Submitted on behalf of the
 Salmonalla sequencing team, Sanger Centre, Wellcome
 Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|------------|--|
| source | 1..258050 | /organism="Salmonella enterica
subsp. enterica serovar Typhi"
/mol-type="genomic DNA"
/strain="CT18"
/db-xref="taxon:90370"
/gene="tolC"
/note="synonym: STY3364"
/gene="tolC" |
| gene | 69..1544 | |
| CDS | 69..1544 | /note="Similar to Salmonella
enteritidis outer membrane protein
TolC precursor tolC SW:TOLC-SALEN
(Q54001) (491 aa) fasta scores:
E(): 0, 99.0% id in 491 aa, and to
Escherichia coli outer membrane
protein tolC precursor tolC or
mtcb or muka or refI SW:TOLC-ECOLI
(P02930) (495 aa) fasta scores:
E(): 0, 89.7% id in 495 aa
Orthologue of E. coli tolC
(TOLC-ECOLI); Fasta hit to
TOLC-ECOLI (495 aa), 90% identity
in 495 aa overlap"
/codon-start=1
/transl-table=11
/product="outer membrane protein
TolC precursor"
/protein-id="CAD07712.1"
/db-xref="GI:16504264"
/db-xref="GOA:Q8Z3N8"
/db-xref="SPTREMBL:Q8Z3N8"
/translation="MQMKLLPILIGLSSLGFST
LSQAENLMQVYQQARLSNPELRKS
AADRDAAFEKINEARSPLLPQLGLGADYTYSNGY
RDANGINSNETSASLQLTQTLFDM
SKWRGLTLQEKAAGIQDVTYQTDQQLTLILNTANA
YFKVLNAIDVLSYTQAQKEAIYRQ
LDQTTQRFNVGLVAITDVQNARAQYDTVLANEV
ARNNLNDNAVEELRQVTGNYYPELA
SLNVEHFKTDKPKAVNALLKEAENRNLSLLQARL
SQDLAREQIRQAQDGHLPTLNLT
STGISDTSYSGSKTNQAQYDDSNMGQNKIGLNFS
LPLYQGGMVNSQVKQAAQYNFVGAS
EQLESAHRSVVQTVRSSFNNINASISSINAYKQA
VVSAQSSLDAMEAGYSGVTRTIVD
VLDATTLYDAKQQLANARYTYLINQLNIKYALG
TLNEQDLLALNSTLGKPIPTSPES
VAPETPEQDAAADGYNAHSAAPAVQPTAACRANS
NGNPFRH"
/gene="STY3365"
/gene="STY3365" |
| gene | 1757..2428 | |
| CDS | 1757..2428 | /note="Orthologue of E. coli ygiB
(YGIB-ECOLI); Fasta hit to
YGIB-ECOLI (234 aa), 97% identity
in 223 aa overlap. Contains a
possible N-terminal signal
sequence."
/codon-start=1
/transl-table=11
/product="possible lipoprotein"
/protein-id="CAD07713.1"
/db-xref="GI:16504265" |

/translation="MKRTKSIHHASFRKSW SARH
LTPVALAVTAVFMLAGCEKSDE TV
SLYQNADD CSAANPGKSAECTTAYNNALKEAERT
APKYATREDCVAEFGEGQCCQ QAPA
QAGMAPENQQAQQSSGSFWMPLMAGYMMGRLMG
GGAGFAQQPLFSSKNPASPAYGKY
TDAAGKNYGAQPGRTMTVPKTAMAPKPATT TV
TRGGFGESVAKQSTMQRSAAGTST RSMGG"
/gene="STY3365"
/note="PS00013 Prokaryotic
membrane lipoprotein lipid
attachment site"
/gene="STY3366"
/gene="STY3366"
/note="Fasta hit to YJFC-ECOLI
(387 aa), 50% identity in 392 aa
overlap Orthologue of E. coli ygiC
(YGIC-ECOLI); Fasta hit to
YGIC-ECOLI (386 aa), 94% identity
in 386 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07714.1"
/db-xref="GI:16504266"
/db-xref="SPTREMBL:Q8XFP6"
/translation="MERVSITERPDWRDKATEYG
FNFHTMYGEPYWCEDAYYKLT LAQ
VEKLEDVT AELHQ MCLKVVERVIASDELMTKFRI
PKHTWGFVRQ SWQTQQPSLYSRLD
LAWDGIGEPKLLENNADTP TSLYEAAFFQWIWLE
DQINAGNLPEGSDQFNSLQEKLIE
RFAELREQYGFQLLHLTCRDTVEDRGTIQYLQD
CAAEAEIA TEFLYIDDIGLGEKGQ
FTDLQDQVIANLFKLYPWFMLREM FSTKLEDAG
VRWLEPAWKSIIISNKALLPLLWEM
FPDH PNLLPAYFAEDEHPPMDKYVVVKPIFSREGA
NVSIIENGK TIESVEGPYGEEGMI
VQQFYPLPKFGDSYTLIGSWLINDQPAGIGIRED
RALITQDLSRFYPHIFVEG"
/gene="STY3367"
/gene="STY3367"
/note="Orthologue of E. coli ygiD
(YGID-ECOLI); Fasta hit to
YGID-ECOLI (271 aa), 87% identity
in 266 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07715.1"
/db-xref="GI:16504267"
/db-xref="GOA:Q8Z3N7"
/db-xref="SPTREMBL:Q8Z3N7"
/translation="MVMLTKCLSCKD NIMSLTCM
PALFLGHGSPMNVLDDNDYTRAWR
RLGEALPRPQAI VVVAH WYTRGTGV TAMER PQT
LHDFFGGFPQALYDMHYPAPGSPAL
AQRLVELLAPVPVALDKEAWGFDHGSGWGV LIKMY
PNADI PMVQLSVDSTKPAAWH FEM
GRKLATLRD EGVMLVASGNV VHNLRTV RWHGDNI
PYPWAAS FND FVKANLTWQGPVEQ
HPLV NYLQHEGGALSNP TPEHFLPLLYV LGAWDG
KEPITIPVDG IEMGSISMLS VQVG "
/gene="STY3368"
/gene="STY3368"
/note="Orthologue of E. coli ygiE
(YGIE-ECOLI); Fasta hit to
YGIE-ECOLI (257 aa), 93% identity
in 257 aa overlap. Contains
multiple possible membrane
spanning hydrophobic domains"
/codon-start=1
/transl-table=11

protein"
/protein-id="CAD07716.1"
/db-xref="GI:16504268"
/db-xref="GOA:Q8XGR4"
/db-xref="SWISS-PROT:Q8XGR4"
/translation="MSVPLILTLAGAATFIGAF
LGVLGQKPSNRVLAFSLGFAAGIM
LLISLMEMLPAALDTEGMSPVLYGMFIIGLLGY
FGLDRLLPHAHQPQLVQKRQQPLP
GSIKRTAILLTLGISLHNFPREGIATFVTASSNLE
LGFGLALAVLHNIPEGLAGAVAGPV
YAATGSKRTAIFWAGISGMAEILGGVLAWLILGS
LVSPIVMAAIMAAVAGIMVALSVD
ELMPLAKEIDPNNNPSYGVLCGMSIMGLSLVILQ
TIGIG"
/gene="STY3370"
/note="synonym: assT"
/gene="STY3370"
/note="Similar to Klebsiella
pneumoniae arylsulfate
sulfotransferase assT TR:P97036
(EMBL:U32616) (598 aa) fasta
scores: E(): 0, 86.8% id in 598
aa"
/codon-start=1
/transl-table=11
/product="probable arylsulfate
sulfotransferase"
/protein-id="CAD07717.1"
/db-xref="GI:16504269"
/db-xref="GOA:Q8Z3N6"
/db-xref="SPTREMBL:Q8Z3N6"
/translation="MFDQYRKTILAGAVALTCGL
TAASTFAAGFQPAQPAKGKLGAVVV
DPYGNAPLTALVELDSHIISDVKVTVHGKEKGV
PVTVGKESLEYDGIPIFGFLYQ
KFANNVTVEYKENGKAMKDDYVVQTSIAVNHYMD
NRSISDLQQTKVIKVAPGFEDRLY
LVNTHTFTPQGAEFHWGEKDKNAGILDAGPAGG
ALPFDIAPYTFVVDTQGEYRWLD
QDTFYNGHDMNINKRGYLMGIRETPRGFTAVQG
QHWYEFDMMGQILADHKLPRGFED
ASHESIETVNGTVLLRVGKRDYRKEDGIHVHTIR
DQIEEVDKSGRVDVWDLTKILD
MRDALLGALDAGAVCVNVDLAHAGQQAKLEPDTP
YGDALGVGAGRWNWAHVNSIAYDAK
DDSIIILSSRHQGIVKIGRDQKVWILAPSKGWNK
QLASKLLKPVDDHGPPLTCDENKG
CKTDDFDFTYTQHTAWLSSKGTLTVFDNGDGRGL
EQPALPTMKYSRFVEYKIDEKKGT
VQQVWEYGKERGYDFYSPITSVVEYQKDRDTMFG
FGGSINLFDVGKPTVGKLNEIDYK
TKEVKVEIDVLSDKPNQTHYRALLVHPTQMFK"
/gene="dsbA"
/note="synonym: STY3371"
/gene="dsbA"
/note="Similar to Enterobacter
amnigenus disulfide isomerase dsbA
TR:Q9XDP1 (EMBL:AF012826) (222 aa)
fasta scores: E(): 0, 90.1% id in
222 aa"
/codon-start=1
/transl-table=11
/product="disulfide isomerase"
/protein-id="CAD07718.1"
/db-xref="GI:16504270"
/db-xref="GOA:Q8Z3N5"
/db-xref="SPTREMBL:Q8Z3N5"
/translation="MSSKWITSLFKSVVLTAALV
TPFAASAFTEGTDYMLKEPKIPNA
DKTLIKVF SYACPF CYKYDKAVTGPVSDKVADLV
TFTPFHLET KGEY GKQASEVFAVL
IAKDKAAGISLFDAKSQFKKAKFAWYTAYHDKKE
RWSDGKDPAAFIKTGLDAAGMSQA
DFFEAALKDPAVQETLEKWAAYDVAKIQGVPAYV

misc-feature 7847..8488
 /gene="dsbA"
 /note="Pfam match to entry PF01323
 DSBA, DSBA oxidoreductase, score
 12.90, E-value 1.9e-07"
 /gene="dsbB"
 /note="synonym: STY3372"
 /gene="dsbB"
 /note="Similar to Enterobacter
 amnigenus disulfide isomerase dsbB
 TR:Q9XDP0 (EMBL:AF012826) (221 aa)
 fasta scores: E(): 0, 89.2% id in
 158 aa. The Enterobacter amnigenus
 gene appears to contain a
 frameshift after codon 161; this
 gene is the same as the S.
 typhimurium gene"
 /codon-start=1
 /transl-table=11
 /product="disulfide isomerase"
 /protein-id="CAD07719.1"
 /db-xref="GI:16504271"
 /db-xref="GOA:Q8XEKO"
 /db-xref="SWISS-PROT:Q8XEKO"
 /translation="MDFIKGLWRDLRARPVDTLV
 RWQEQRFLWLLMAIAMGGLIILAH
 SFFQIYLYMAPCEQCVCYIRYAMFVMVIGGVIAAI
 NPKNIVLKLIGCIAAFYGSIMGIK
 FSIKLNGIHHAHNADPDLSLFGVQGCSTDPTFPF
 NLPLAEWAPEWFKPTGDCGYDAP
 VPDGVTLSSVQQWFVDLYQQSEGWYLLPPWHFMN
 MAQACMLAFLGLCLILLLVMSGAWA LKLARGK"
 gene complement (9354..10007)
 CDS complement (9354..10007)
 /gene="STY3373"
 /note="synonym: ribB"
 /gene="STY3373"
 /note="Orthologue of E. coli ribB
 (RIBB-ECOLI); Fasta hit to
 RIBB-ECOLI (217 aa), 97% identity
 in 217 aa overlap"
 /codon-start=1
 /transl-table=11
 /product="3,4-dihydroxy-2-butanone
 4-phosphate synthase"
 /protein-id="CAD07720.1"
 /db-xref="GI:16504272"
 /db-xref="GOA:Q8XES0"
 /db-xref="SPTREMBL:Q8XES0"
 /translation="MNQTLLSSFGTPFERVELAL
 DALREGRGVMVLDDEDRENEGDMI
 FPAETMTVEQMALTIRHGSGIVCLCITEDRRKQL
 DLPMMVENNTSAYGTGFTVTIEAA
 EGVTTGVSAADRVTVRRAIKDGAKPSDLNRPGH
 VFPLRAQAGGVLTREGGTEATIDL
 MTLAGFKPAGVLCELTNDDGTMARAPECIAFAGQ
 HNMAVVTIEDLVAQRQAHERKAS"
 misc-feature complement (9375..9923)
 /gene="STY3373"
 /note="Pfam match to entry PF00926
 DHBP-synthase,
 3,4-dihydroxy-2-butanone
 4-phosphate synthase, score
 395.00, E-value 7.2e-115"
 gene 10384..10740
 CDS 10384..10740
 /gene="STY3375"
 /gene="STY3375"
 /note="Similar to Escherichia coli
 hypothetical 13.8 kDa protein in
 ribb-glgs intergenic region yqiC
 SW:YQIC-ECOLI (Q46868) (116 aa)
 fasta scores: E(): 1.3e-28, 80.7%
 id in 114 aa Orthologue of E. coli
 YQIC-ECOLI; Fasta hit to
 YQIC-ECOLI (116 aa), 81% identity
 in 114 aa overlap"
 /codon-start=1
 /transl-table=11
 /product="conserved hypothetical
 protein"

/db-xref="GI:16504273"
/db-xref="SPTRREMBL:Q8Z3N4"
/translation="MASTYRTTIRANTYQFRETT
MIDPKKIEQIARQVHESMPKGIRE
FGEDIEKKIRQTLQLSQLTRLRDLVSRREEFDVQTQV
LLRTREKLALLEQRLSELEARDKP
EEVKPAPAIAPPVDPQE"
gene complement(10815..11018 /gene="STY3376"
)
CDS complement(10815..11018 /gene="STY3376"
)
/note="synonym: glgS"
/note="Orthologue of E. coli glgS
(GLGS-ECOLI); Fasta hit to
GLGS-ECOLI (66 aa), 79% identity
in 65 aa overlap"
/codon-start=1
/transl-table=11
/product="glycogen synthesis
protein GlgS"
/protein-id="CAD07722.1"
/db-xref="GI:16504274"
/db-xref="GOA:P58615"
/db-xref="SWISS-PROT:P58615"
/translation="MNNNNVYSLNNFDLARSFA
RMQAEGRPVDIQAVTGNMDEEHRD
WFCKRYALYCQQATQAKKLELEH"
/gene="STY3377"
/gene="STY3377"
/note="Orthologue of E. coli
P76657; Fasta hit to P76657 (209
aa), 72% identity in 201 aa
overlap. Contains multiple
possible membrane spanning
hydrophobic domains and a possible
N-terminal signal sequence."
/codon-start=1
/transl-table=11
/product="putative membrane
protein"
/protein-id="CAD07723.1"
/db-xref="GI:16504275"
/db-xref="SPTRREMBL:Q8Z3N3"
/translation="MTLFAEYNSPYLFAIAFVFF
IGVLEMISLIFGHFLSGALDAHLD
HYDALSSGPAGQALHYLNIGRVPALVVLCLLAGY
FGLFGILIQHGGIMLWQAPLSNLL
LVPLSIVLSVFAVHYSEKILAPWLPRDESSALRE
EEFIGGMAIITGHAAVAGTPCEGK
FTDKFGQIHYLLLEPEKGKEFKKGDKVLIVCRLS
ATRYLAERTFYV"
/gene="STY3378"
/gene="STY3378"
/note="Orthologue of E. coli
YQIK-ECOLI; Fasta hit to
YQIK-ECOLI (553 aa), 93% identity
in 549 aa overlap. Contains a
possible N-terminal signal
sequence and a possible
coiled-coil region between
residues 345..446"
/codon-start=1
/transl-table=11
/product="putative exported
protein"
/protein-id="CAD07724.1"
/db-xref="GI:16504276"
/db-xref="SPTRREMBL:Q8Z3N2"
/translation="MDDVFGILPSWMFTAIVAVI
VLLIIGIIIFARLYRRASAEQAFVR
TGLGGQKVMSGGAIIVMPIFHEIIIPINMNTLKLE
VSRATVDSLITKDRMRVDVVVAFF
VRVKPSEGVIATSAQTLGQRTLSPEDLRMLVEDK
FVDALRATAAQMTMHELQDTRENF
VQGVQNTVAEDELSKNGLELESVSLTNFNQTSKEH

ERNEVEQDVEVAVREKNRDALERKLEIEQQEAFM
TLEQEQQVKTRTAEQNAKIAAFEA
ERHREAEQTRILAERQIQETEIERRREQAVRSRKVE
AEREVRIKEIEQQQVTEIANQTKS
IAIAAKSEQQSQAEARANDALADAVRAQQNVETT
RQTAEADRAKQVALIAAAQDAETK
AVELTVRAKAEKEAAELQAAAIIELAEAARKKGL
AEAEAQRALNDAINVLSDEQTSLK
FKLALLQSLPAVIEKSVEPMKSIDGIKIIQVDGL
NRGATAGDVAAGGANGGNLAEQAL
SAALTYRTQAPLIDSLLNEIGIAGGSLKALTTP
VSSATDEINREATIKEQ"
/gene="rfaE"
/note="synonym: STY3379"
complement(14060..15493)
/gene="rfaE"
/note="Highly similar to
Escherichia coli ADP-heptose
synthase RfaE SW:RFAE-ECOLI
(P76658) (477 aa) fasta scores:
E(): 0, 93.5% id in 476 aa and to
Salmonella enterica RfaE TR:Q9RFY8
(EMBL:AF163661) (477 aa) fasta
scores: E(): 0, 99.4% id in 477
aa"
/codon-start=1
/transl-table=11
/product="ADP-heptose synthase"
/protein-id="CAD07725.1"
/db-xref="GI:16504277"
/db-xref="GOA:Q8XEW9"
/db-xref="SPTREMBL:Q8XEW9"
/translation="MKVNLPafferagvmvvgdvm
ldrywygptcrispeappvkvn
tveerpggaanvamniaslganarlvgltgidda
aralsktlaevnvkcdfvsvpthp
titklrvlsrnqqlirldfeegfegvdqplher
inqalgsigalvlsdyakgaltsv
qtmislarqagvpvlidpkgtdferyrgatlltp
nlsefeavagkcksedelvergmk
liadydlsallvtrseqgmtllqpnkaplhmpq
aqevydtvgagdtvigvlaatlaa
gntleeacyfanaaagvvvgkltstvspiele
avrgradtgfgvmtHEELRQAVAS
arkrgekvvmtnvgvdilhaghvsvlanarkld
rlivavnsdastkrlkgesrpvnp
leqrmivlgalesvdwvvsfeedtpqrliagilp
dllvkggdykpeeiaagseevwang
gevmvlnfedgcsttniikkiqtesek"
/gene="rfaE"
/note="Pfam match to entry PF01467
Cytidyltransferase, score
139.30, E-value 7e-38"
complement(15173..15343)
/gene="rfaE"
/note="Pfam match to entry PF00294
pfkB, pfkB family carbohydrate
kinase, score 20.00, E-value
2.3e-05"
complement(15272..15343)
/gene="rfaE"
/note="PS00583 pfkB family of
carbohydrate kinases signature 1"
complement(15541..18384)
/gene="STY3380"
/note="synonym: glnE"
complement(15541..18384)
/gene="STY3380"
/note="Orthologue of E. coli glnE
(GLNE-ECOLI); Fasta hit to
GLNE-ECOLI (946 aa), 88% identity"

/codon-start=1
/transl-table=11
/product="adenyl-transferase"
/protein-id="CAD07726.1"
/db-xref="GI:16504278"
/db-xref="GOA:Q8Z3N1"
/db-xref="SPTREMBL:Q8Z3N1"
/translation="MTPLSSPLSQYWQTVERLP
EGFTETSLSAQAKSVLTFSDFA
SVAIAHPEWLAELAESASPQA
DEWRHYAGWLQEALA
GVCDDASLMRELRLFRRRIMVRIA
WAQTLISLVDDETILQQQLSHLAETLIVGARDWLYA
ACCREWGTPCNPQGVQPQLLILGM
GKLGGGELNFSSDIDLIFAWPEHGETRGGRRELD
NAQFTRLGQRLIKALDQPTMDGF
VYRVDMRLRPFGDSGPLVLSFA
ALEDYYQEGRD
WERYAMVKARLMGDNDAAWSRELR
AMLRPFVFRYYIDFSVIQSLRNMKGMIAREVRRR
GLKDNINKLGAGGI
REIEIFIVQVFQ
LIRGGREPSIQSRSLLPTLDA
IAALHLLPENDVA
QLRVAYLFLRRLLENLLQSIN
DEQT
QTLPA
DDLNRARLAWGMKAENWPQLVGELTDHMA
NVRRVFNE
LIGDDEADTPQEEERS
EPWREVWQDALQEDDSTPVLA
HLA
DEDRRQVLTL
IADFRKELDKRPIGPRGRQVLDQL
MPHLLADVC
SREDAAVTLSRITPLL
LAGIVTRTTY
LELLSEFP
GALKH
LIMLCAASPMI
ASQLARYPL
LLDELLDPGTLYQOPTATDAYRDEL
QYLLRVPEE
EQQLEALRQFKQA
QLLRIA
ADIAGTLPVMKVSDH
LTWLA
EAMIDAV
VQQAWTQM
VARYGQPA
HLDERQGR
GFAVVG
GYGKLG
GWELGYSS
DLDFL
HDCPM
DVMTNG
EREIDG
RQFYLR
LAQRIM
HFL
STR
TSSG
ILYEV
DARLR
PSGAAG
MLV
TSADAF
AD
YQQHEAW
TWEHQAL
V
R
V
YGD
P
QLTSQFD
DAVR
RTIM
TTARD
GKT
LQTE
VREM
REKM
RAH
LGN
K
HRD
RFDI
KA
DEGG
ITDI
EFIAQY
LVL
RYA
HEK
PKL
TRW
SDN
V
R
ILE
LLAQN
GIM
DEHEA
QAL
TVAY
TTLR
DELHH
LALQ
ELPGH
VA
QTC
FSK
ERALV
QAS
WRK
WL
VAV"
misc-feature complement(16387..16416 /gene="STY3380"
)
/note="PS00904 Protein
prenyltransferases alpha subunit
repeat signature"
gene complement(18502..19803 /gene="STY3381"
)
CDS complement(18502..19803 /gene="STY3381"
)
/note="Orthologue of E. coli ygiF
(YGIF-ECOLI); Fasta hit to
YGIF-ECOLI (433 aa), 85% identity
in 433 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07727.1"
/db-xref="GI:16504279"
/db-xref="SPTREMBL:Q8Z3N0"
/translation="MAQEIELKFIVNH
DAVDALRN
NHLHTLGGEH
HAPS
OLLNIYF
ETP
DNWLRRH
DMGLR
IRG
ENG
RYEM
TMKIAG
RVTG
GL
HQR
PEYN
VAL
SEPV
LDLT
QLPAEV
WP
DG
NL
PD
GLASS
VQPLF
STD
FYRE
KWCL
DVDG
S
RIE
IAL
DLG
DV
KAGE
FA
EP
ICE
LE
LL
LRG
DT
RAV
L
K
L
A
K
Q
L
S
QT
GLR
QGS
LS
KA
AR
GY
H
LA
Q
G
N
A
P
R
E
N
P
T
A
I
L
R
T
A
A
K
AT
VE
Q
GLE
A
S
L
D
L
A
S
Q
W
Q
Y
H
E
E
L
W
L
R
G
D
E
S
A
K
M
A
K
S
A
H
L
R
D
L
L
T
Q
A
E
A
T
M
T
S
A
V
S
A
T
A
V
Y
S
T
Q
T
A
M
A
K
L
A
T
E
W
L
V
T
K
A
W
Q
P
F
L
D
A
K
Q
A
K
M
A
D
S
F
K
R
F
A
D
I
H
L
S
R
H
A
A
E
L
K
K
V
F
G
Q
P
L
G
D
K
Y
R
D
Q
A
W
L
E
N
W
Q
G
L
R
H
A
I
I
T
G
Q
R
I
E
I
E
H
F
R
N
E
A
I
N
Q
Q

gene 20045..20659 /gene="STY3382"
CDS 20045..20659 /gene="STY3382"
/note="Orthologue of E. coli ygiM
(YGIM-ECOLI); Fasta hit to
YGIM-ECOLI (206 aa), 91% identity
in 206 aa overlap. Contains a
possible membrane spanning
hydrophobic domain"
/codon-start=1
/transl-table=11
/product="putative membrane
protein"
/protein-id="CAD07728.1"
/db-xref="GI:16504280"
/db-xref="SPTREMBL:Q8XFH7"
/translation="MPKLRLIGLTLLALSATAVS
HAEETRYVSDELNTWVRSGPGDNY
RLVGTVNAGEEVTLQLQSDANYGQIKDSSGRTAWI
PLKELNTTPSLRTRVPDLENQVKT
LTDKLNNIDTWNQRTADMQQKVAQSDSVINGLK
EENQKLKNELIVAQKKVSAANLQL
DDKQRTIIMQWFMYGGGVLGIGLLLGLVPHMIP
SRKRKDRWMN"
gene 20722..21963 /gene="STY3383"
CDS 20722..21963 /note="synonym: cca"
/gene="STY3383"
/EC-number="2.7.7.25"
/note="Similar to Escherichia coli
tRNA nucleotidyltransferase cca
SW:CCA-ECOLI (P06961) (412 aa)
fasta scores: E(): 0, 89.5% id in
411 aa"
/codon-start=1
/transl-table=11
/product="tRNA
nucleotidyltransferase"
/protein-id="CAD07729.1"
/db-xref="GI:16504281"
/db-xref="GOA:Q8Z3M9"
/db-xref="SPTREMBL:Q8Z3M9"
/translation="MKIYLVGGAVRDALLGLPVK
DKDWVVVGATPOEMLDAGYQQVGR
DFPVFLHPQTHEEYALARTEKSGSGYTGFTCYA
APDVTLEADLQRRLTINALARD
DGQIIDPYHGRRDLEARLLRHVSPAFGEDPLRVL
RVARFAARYAHLSFRIADETTLIM
REMTAAGELEHLTPERVWKETENALTTRNPQVYF
QLRDCGALRVLFPEIDALFGVPA
PAKWHPEIDTGVHTLMTLSMAAMLSPQLDVRFAT
LCHDVKGKGLTPKNLWPRHHGHGPV
GVKLVEQLCQLRLVPNDLRLDAKLVAAYHDLIHT
FPILOPKTIVKLFDAIDAWRKPQR
VEQIALTSEADVRGRTGFEASDYPQGRWLREAWQ
VAQAVPTKEVVEAGFKGIEIREEL
TKRRIAAVANWKEKRCNPAS"
misc-feature 20893..21369 /gene="STY3383"
/note="Pfam match to entry PF01743
PolyA-pol, Poly A polymerase
family, score 216.30, E-value
4.6e-61"
misc-feature 21403..21708 /gene="STY3383"
/note="Pfam match to entry PF01966
HD, HD domain, score 85.90,
E-value 8.3e-22"
gene complement(22068..22889 /gene="STY3384"
)
/note="synonym: bacA"
CDS complement(22068..22889 /gene="STY3384"
)
/note="Orthologue of E. coli bacA
(BACA-ECOLI); Fasta hit to
BACA-ECOLI (273 aa), 97% identity
in 273 aa overlap"
/codon-start=1
/transl-table=11

protein (putative undecaprenol kinase)"
/protein-id="CAD07730.1"
/db-xref="GI:16504282"
/db-xref="GOA:Q8ZLY3"
/db-xref="SWISS-PROT:Q8ZLY3"
/translation="MSDMHSLLIAAILGVVVEGLTEFLPVSVSTGHMIVGHLGGFEGDTAKTFEVVIQLGSILAVVVVMFWRRLFGLIGIHFGRPLQREGESKGRLTLIHILLGMIAPA
VVLGLVFHDTIKSLFNPINVMYALVVGGLLIAAECLKPKEPRAPGLDDMTYRQAFMI
GCFQCLALWPGFSRSGATISGGMLMGVSRYAASE
FSFLLA
VPMFMMGATVLDLYKWSWF
LTAADIPMF
FAVGFTAFVVALIAIKTFLQLIKRISFIPFAIYRFVVAAAVYVVFF"
gene complement(22987..23349 /gene="folB")
/note="synonym: STY3385"
CDS complement(22987..23349 /gene="folB")
/EC-number="4.1.2.25"
/note="Similar to Escherichia coli dihydroneopterin aldolase folB
SW: FOLB-ECOLI (P31055; P76659)
(122 aa) fasta scores: E(): 0,
93.3% id in 119 aa"
/codon-start=1
/transl-table=11
/product="dihydronopterin aldolase"
/protein-id="CAD07731.1"
/db-xref="GI:16504283"
/db-xref="GOA:Q8Z3M7"
/db-xref="SPTREMBL:Q8Z3M7"
/translation="MMDIVFIEQLSVITTINGVYD
WEQTIEQKLVFDIEMAWDNRKS
SDDVADCLS
YADIADTVINHVEGGRFALVERVAE
EVADLLLSRFN
SPWVRIKLSKPSA
VARAANVGVI
IERGNNLK"
misc-feature complement(22999..23337 /gene="folB")
/note="Pfam match to entry PF02152
FolB, Dihydronopterin aldolase,
score 176.60, E-value 5.7e-50"
gene 23453..24064 /gene="STY3386"
CDS 23453..24064 /gene="STY3386"
/note="Orthologue of E. coli ygiH
(YGIH-ECOLI); Fasta hit to
YGIH-ECOLI (205 aa), 95% identity
in 203 aa overlap. Contains
multiple possible membrane
spanning hydrophobic domains"
/codon-start=1
/transl-table=11
/product="putative membrane protein"
/protein-id="CAD07732.1"
/db-xref="GI:16504284"
/db-xref="GOA:Q8XGX7"
/db-xref="SWISS-PROT:Q8XGX7"
/translation="MSAIAPGMILFAYLCGSISS
AILVCR
IAGLPDPRESGSGNPGAT
NVLRIGGKGAA
AVAVLIFD
ILKGMLPVWGAYALGV
TPFWLGLIA
IAACLGHIWPVFFGF
KGGKG
VATAFGAI
APIGWDLTGV
MAGT
WLLTVLL
SGYSSLGA
IVSALIA
APIFY
VWWFKP
QFTFPV
SMLSC
LILLRH
HDNI
QRLWRR
QETKIWT
KLKKKRQKD"
gene complement(24314..25327 /gene="STY3387")
CDS complement(24314..25327 /gene="STY3387")
/note="Highly similar to
Pasteurella haemolytica"

gcp SW:GCP-PASHA (P36175) (325 aa)
 fasta scores: E(): 0, 78.1% id in
 319 aa and to *Escherichia coli*
 probable O-sialoglycoprotein
 endopeptidase SW:GCP-ECOLI () (337
 aa) fasta scores: E(): 0, 95.0% id
 in 337 aa"
 /codon-start=1
 /transl-table=11
 /product="possible glycoprotease"
 /protein-id="CAD07733.1"
 /db-xref="GI:16504285"
 /db-xref="GOA:Q8Z3M6"
 /db-xref="SPTREMBL:Q8Z3M6"
 /translation="MRVLGIETSCDETGIAIYDD
 KKGLLANQLYSQVKLHADYGGVVP
 ELASRDHVRKTVPLIQALKEAALTASDIDAVAY
 TAGPGGLVGALLVGATVGRSLAFAW
 NVPAIPVHHMEGHLLAPMLEDNPPDFPFVALLVS
 GGHTQLISVTGIGQYELIGESIDD
 AAGEAFDKTAKLLGLDYPGGPMLSKMASQGTAGR
 FVFPRPMTDRPGLDFSFSGLKTFA
 ANTIRSNGDDEQTRADIARAFEDAVVDTLMIKCK
 RALESTGFKRIVMAGGVSANRTL
 AKLAEMMQKRRGEVFYARPEFCTDNGAMIAYAGM
 VRFKAGVTADLGTVRPRWPLAEL PAA"
 /gene="STY3387"
 /note="Pfam match to entry PF00814
 Peptidase-M22, Glycoprotease
 family, score 670.50, E-value
 8.3e-198"
 misc-feature complement (24980..25042 /gene="STY3387"
)
 /note="PS01016 Glycoprotease
 family signature"
 /gene="STY3388"
 /note="synonym: rpsU"
 /gene="STY3388"
 /note="Orthologue of *E. coli* rpsU
 (RS21-ECOLI); Fasta hit to
 RS21-ECOLI (70 aa), 100% identity
 in 70 aa overlap"
 /codon-start=1
 /transl-table=11
 /product="30S ribosomal subunit
 protein S21"
 /protein-id="CAD07734.1"
 /db-xref="GI:16504286"
 /db-xref="GOA:P02379"
 /db-xref="SWISS-PROT:P02379"
 /translation="MPVIKVRENEPFDVALRRFK
 RSCEKAGVLAEVRRREFYEKPTTE
 RKRAKASAVKRHAKKLARENARRTRLY"
 /gene="STY3388"
 /note="Pfam match to entry PF01165
 Ribosomal-S21, Ribosomal protein
 S21, score 127.90, E-value
 1.9e-34"
 misc-feature 25558..25719 /gene="STY3388"
 /note="PS01181 Ribosomal protein
 S21 signature"
 /gene="STY3389"
 /note="synonym: dnaG"
 /gene="STY3389"
 /note="Orthologue of *E. coli* dnaG
 (PRIM-ECOLI); Fasta hit to
 PRIM-ECOLI (581 aa), 86% identity
 in 581 aa overlap"
 /codon-start=1
 /transl-table=11
 /product="DNA primase"
 /protein-id="CAD07735.1"
 /db-xref="GI:16504287"
 /db-xref="GOA:Q8Z3M5"

/translation="MAGRIPRVFINDLLARTDIV
DLIDVRVKKQGKNYHACCPFH
EKTPSFTVNGEKFQFYHCFGCGAHCNAIDFLMNYD
KLEFVETVEELAAMHNLEIPIYEAG
TGLSQIERHQONLYQLMNGLNDFYQQSLTHPAA
KPARDYLQKRGSAEIIQRFAIGF
APPGWDNALKRFGNNSDNKALLLAGMLVNNEQG
STYDRFRNRVMFPIRDKGRVIGF
GGRVLGNNDTPKYLNSPETDIFHKGRQLYGLYEAQ
QYSAEPQRLLVVEGYMDVVALAQY
DINYAVASLGTTADHMMLFRATNNVICCYDG
DRAGRDAAWRALETAMPYMTDGRO
VRFMFILPDGEDPPDTLVRKEGKAAFEARMEQAQPL
STFLFNSSLPPQVDLSSPDGSTQLA
ALALPLINQVPGDTHRQLRQTLGLKLGIFFDSQ
LDRLVPKQAESGVSRPAPQQLKRTT
MRILIGLLVQNPDLAPLVPPLDALDQNKLPGGL
FKELVKTCLAQPLTGTQLLER
GTNDAATLEKLSMWDDIADKAIAEKTFDSLNM
FDSSLQLRQEELIARDRTHGLSSE
ERRELWTLNQELARK"
/gene="STY3389"
/note="Pfam match to entry PF01807
zf-CHC2, CHC2 zinc finger, score
146.10, E-value 6.2e-40"
/gene="STY3389"
/note="Pfam match to entry PF01751
Toprim, Toprim domain, score
91.80, E-value 1.4e-23"
/gene="STY3390"
/note="synonym: rpoD"
/gene="STY3390"
/note="Orthologue of E. coli rpoD
(RPSD-ECOLI); Fasta hit to
RPSD-ECOLI (613 aa), 98% identity
in 615 aa overlap"
/codon-start=1
/transl-table=11
/product="RNA polymerase sigma-70
factor"
/protein-id="CAD07736.1"
/db-xref="GI:16504288"
/db-xref="GOA:Q8Z3M4"
/db-xref="SPTREMBL:Q8Z3M4"
/translation="MPHIVREAPDSRSERQRPKY
KYALALNVDSYTVDTNQTNKCGYR
LMEQNPQLSQLKLLVTRGKEQGYLTYAEVNDHLPE
DIVDSQIEDIQMINDMGIQVME
EAPDADDLLAENTTSTDDEDAEEAAAQVLSSVES
EIGRTTDPVRYMMREMGTVELLTR
EGEIDIAKRIEDGINQVQCSVAEYPEAITYLLEQ
YDRVEAEEARLSDLITGFVDPNAE
EEMAPTATHVGSELSQEDLDDDEDEDEEDGDDDA
ADDDNSIDPELAREKFAELRAQYV
VTRDTIKAGRSHAAAQEEILKLSEVFQKQFRLVP
KQFDYLVNSMRVMMDRVRTQERLI
MKLCVEQCKMPKKNFITLFTGNETSETWFNAIA
MNKPWSEKLHDVAEEVQRCQKLIR
QIEEETGLTIEQVKDINRRMSIGEAKARRAKKEM
VEANLRLVISIAKKYTNRGLQFLD
LIQEGNIGLMKAVDKFEYRRGYKFSTYATWWIIRQ
AITRSIADQARTIRIPVHMIETIN
KLNRIISRQMLQEMGREPTPEELAERMLMPEDKIR
KVLKIAKEPISMETPIGDDEDSHL
GDFIEDTTLEPLLDSATTESLRAATHDVLAGLTA
REAKVLRMRFGIDMNTDHTLEEVG
KQFDVTTRERIRQIEAKALRKLHRPSRSEVLRSL
DD"
/gene="STY3390"
/note="Pfam match to entry PF00140
sigma70, Sigma-70 factor, score
462.50, E-value 3.5e-135"
/gene="STY3390"
/note="PS00715 Sigma-70 factors
family signature 1"

gene complement(29872..30378
)
 CDS complement(29872..30378
)
 /note="PS00716 Sigma-70 factors
 family signature 2"
 /gene="mug"
 /note="synonym: STY3391"
 /gene="mug"
 /EC-number="3.2.2.-"
 /note="Similar to Escherichia coli
 G/U mismatch-specific DNA
 glycosylase Mug SW:MUG-ECOLI
 (P43342) (168 aa) fasta scores:
 E(): 0, 80.8% id in 167 aa
 Orthologue of E. coli MUG-ECOLI;
 Fasta hit to MUG-ECOLI (168 aa),
 81% identity in 167 aa overlap"
 /codon-start=1
 /transl-table=11
 /product="G/U mismatch-specific
 DNA glycosylase"
 /protein-id="CAD07737.1"
 /db-xref="GI:16504289"
 /db-xref="GOA:Q8XFG2"
 /db-xref="SPTREMBL:Q8XFG2"
 /translation="MVKDILAPGLRVVFCGINPG
 LSSANTGFPFAHPANRFWKVIHLA
 GFTDRQLKPEEAKEKLLDFRCGVTKLVDRPTVQAT
 EVKLHELRSGGRNLIEKIEDYQPA
 ALAVLGKQAFEQGFSQRGIAWGKQKIAIGATMVW
 VLPNPSGLNRIKTEKLVEAYRELD QALIMRGL"
 misc-feature complement(29953..30369
)
 /note="Pfam match to entry PF02299
 DNA-glycosylase, G:T/U
 mismatch-specific DNA glycosylase,
 score 285.30, E-value 7.6e-82"
 /product="tRNA-Met"
 /note="tRNA Met anticodon CAT,
 Cove score 93.86"
 /gene="STY3392"
 tRNA 30504..30579
 gene complement(30659..31426
)
 CDS complement(30659..31426
)
 /note="Orthologue of E. coli
 YQJH-ECOLI; Fasta hit to
 YQJH-ECOLI (254 aa), 72% identity
 in 253 aa overlap"
 /codon-start=1
 /transl-table=11
 /product="conserved hypothetical
 protein"
 /protein-id="CAD07738.1"
 /db-xref="GI:16504290"
 /db-xref="SPTREMBL:Q8Z3M3"
 /translation="MTTSSARYPQRVRNELRFRE
 LTVLRVERISAGFQRIVLGGEALD
 GFTSLGFDDHTKFFFPEPGCRFTPPTVTEEGIIW
 GEGVRPVSRDYTPLYDEAHRELAL
 DFFIHGGVASRWAMEAREGDTLTIGGPRGSLVV
 PEDYACQVYVCDESGMPALRRRL
 SLSRLPAPAVTALVISIQDAAYRDYLAHLDITV
 EYVVGDEQAMQTRLSQLAIPESD
 YFIWITGEGKTVKRLSQCFEKGFDPHLVRAAAYW
 HRK"
 gene 31661..32305
 CDS 31661..32305
 /note="Orthologue of E. coli
 YQJI-ECOLI; Fasta hit to
 YQJI-ECOLI (207 aa), 69% identity
 in 215 aa overlap. Note
 hydrophylic N-terminus rich in the
 amino acid His."
 /codon-start=1
 /transl-table=11
 /product="conserved hypothetical

/protein-id="CAD07739.1"
/db-xref="GI:16504291"
/db-xref="SPTRREMBL:Q8Z3M2"
/translation="MQNQHEGCCNQDHKHDGCC
KDREHQHEGCHSAHQHENASCGGE
HRHGHGCRHGQGGGRQRFFGHGELRLVILDIL
TRDASHGYELIKAIENLTGGGYTP
SAGVIYPTLDFLQDQQFITISDEEGGRKKIAITA
NGAQWL DENREHLTHIQARLKARC
VGMELRKNPQMKA RDNFKA VLDLRINHSDINDA
QIKRIIGVIDRAALEIAELD"
gene complement(32302..33870) /gene="cheM"
CDS complement(32302..33870) /gene="cheM"
/note="synonym: STY3394"
/note="Similar to many including:
Escherichia coli methyl-accepting
chemotaxis protein II Tar or CheM
SW:MCP2-ECOLI (P07017; P76301)
(553 aa) fasta scores: E(): 0,
34.7% id in 519 aa Fasta hit to
MCP3-ECOLI (546 aa), 35% identity
in 524 aa overlap Fasta hit to
MCP4-ECOLI (533 aa), 33% identity
in 525 aa overlap Fasta hit to
MCP1-ECOLI (551 aa), 37% identity
in 531 aa overlap Parologue of E.
coli tar (MCP2-ECOLI); Fasta hit
to MCP2-ECOLI (553 aa), 35%
identity in 519 aa overlap"
/codon-start=1
/transl-table=11
/product="methyl-accepting
chemotaxis protein II"
/protein-id="CAD07740.1"
/db-xref="GI:16504292"
/db-xref="GOA:Q8Z3M1"
/db-xref="SPTRREMBL:Q8Z3M1"
/translation="MFLHN KIRSKLFMAFGLFI
VLMVVSSALSLSLDRANTGMQDI
ITNDYPTTVKANLLIDNFNDFIIAQQLMLLDEEG
RWSQS SQKELSEISQRISALLDEL
SREN SHDADS QKII INEIREAR QQYLESRFRILKD
IQSN NRQAA IQEMMTRTVQVQKVY
KDKVQELIAVQD ALMHEASVQVKEDFKNMRTLLI
TLALISIAAGGVIGWYIVRSITRP
LDDAVRFAEAIADGDLTRHITTDYKDETGVLLQA
LMAMKTRLL DIVQEVQNGSESIST
AAAQIVAGNQDLAARTEEQASSVEETAASMEQIT
ATVKNTADHTSEATKLSAGAASVV
KNNGEMMNQVTQKMRVINDTANRMSDIINIIDS
AFQTNLALNAAVEAARAGEHGRG
FAVVAGEVRQLAQKSASSASEIRNLIEDSTSQTQ
EGMH LVEKASALINGMV DNVEEMD
VILREIGQASRE QTDGISQINSAIGLIDAATQQN
SCLVEESVAAAASLNEQALHLKEL
VN VFRVREEDTQPA"
misc-feature complement(32617..32799) /gene="cheM"
/note="Pfam match to entry PF00015
MCPsignal, Methyl-accepting
chemotaxis protein (MCP) signaling
domain, score 125.70, E-value
1.7e-34"
misc-feature complement(33085..33294) /gene="cheM"
/note="Pfam match to entry PF00672
DUF5, HAMP domain, score 59.90,
E-value 5.4e-14"
gene complement(34258..35778) /gene="STY3395"
CDS complement(34258..35778) /note="synonyms: aer, air"
/gene="STY3395"

(AER-ECOLI); Fasta hit to
AER-ECOLI (506 aa), 84% identity
in 506 aa overlap"
/codon-start=1
/transl-table=11
/product="aerotaxis receptor
protein"
/protein-id="CAD07741.1"
/db-xref="GI:16504293"
/db-xref="GOA:Q8Z3M0"
/db-xref="SPTREMBL:Q8Z3M0"
/translation="MSSHPYVSQLNTPLDDDTTL
MSTTDLEYITHANDTFVQVSGYQ
LNELLARPHNLVRHPDMPKAFAADMWYTLKQGEP
WSGIVKNRRKNGDHYWRANAVPM
IREGRVTGYMSIRTRATDDEIAAVEPLYQALNEG
RCSKRHKGLVVRQGLLGKLPAMP
VRWRVRSIMGLMAVMLALALFGTDASWQALLGA
LAMLAGTALFEWQIVRPIENVATQ
ALKVATGERNSVQHNRNRSDELGLTLRAVGQLGLM
CRWLINDVSSQVSSVRNGSERLAK
GNNDLNEHTRQTVENVQETVTMMQMAESVKLNS
ETASAADKLSMAASSAAATQGGEAM
DTVIKTMDIAHSTQRIGTTTINDIAFQTNIL
ALNAAVEAARAGEQGKGFAVVAGE
VRHLASRSANAANDIRKLIDASATKVQSGSEQVH
AAGRTMDDIVAQVQNVTLIARIS
QSTQEQTDGLSSLTRAVDELNRITQKNAALVEES
AQVSAMVKHRASRLEDAVTVLH"
/gene="STY3395"

misc-feature complement(34546..34728)
/note="Pfam match to entry PF00015
MCPsignal, Methyl-accepting
chemotaxis protein (MCP) signaling
domain, score 123.40, E-value
7.9e-34"
/gene="STY3395"

misc-feature complement(35014..35223)
/note="Pfam match to entry PF00672
DUF5, HAMP domain, score 28.80,
E-value 0.00013"
/gene="STY3395"

misc-feature complement(35416..35541)
/note="Pfam match to entry PF00785
PAC, PAC motif, score 33.70,
E-value 5.6e-08"
/gene="STY3396"
/gene="STY3396"
/note="Fasta hit to ARGM-ECOLI
(406 aa), 35% identity in 373 aa
overlap Fasta hit to ARGD-ECOLI
(405 aa), 34% identity in 372 aa
overlap Fasta hit to GOAG-ECOLI
(421 aa), 35% identity in 405 aa
overlap Fasta hit to GABT-ECOLI
(426 aa), 34% identity in 379 aa
overlap Orthologue of *E. coli* ygjG
(OAT-ECOLI); Fasta hit to
OAT-ECOLI (429 aa), 95% identity
in 428 aa overlap"
/codon-start=1
/transl-table=11
/product="probable
aminotransferase"
/protein-id="CAD07742.1"
/db-xref="GI:16504294"
/db-xref="GOA:Q8Z3L9"
/db-xref="SPTREMBL:Q8Z3L9"
/translation="MKALNREVIDYFKEHVNPFGF
LEYRKSVTAGGDYGAVEQAGSLN
TLVDTQGQEFIDCLGGFGIFNVGHRNPVVSAVQ
NQLAKQPLHSQELLDPLRAMLAKT
LAALTPGKLKYSSFCNSGTESVEAALKLAKAYQS
PRGKFTFIATSGAFHGKSLGALSA
TAKSTFRRPFMPLLPGFRHVPGNIDAMSMFSE
/gene="STY3396"

misc-feature 36415..37500
 misc-feature 37009..37122
 gene 37758..39775
 CDS 37758..39775
 misc-feature 37770..38750
 gene complement(39856..40992
)
 CDS complement(39856..40992
)
 misc-feature complement(40069..40089
)

```

PPQGYLTEVRKLCDEFGALMILDEVQTGMGRGK
MFACEHENVQPDILCLAKALGGGV
MPIGATIATEEVFSVLFDNPFLHTTFGGNPLAC
AAALATINVLLEQNLPAQAEQKGD
TLLDGFRQLAREYPNLVHEARGKGLMAIEFVDN
ETGYRFASEMFRQRLVAGTLNNA
KTIRIEPPLTLTIELCEQVLKSARNALAAMQVSVEV"
/gene="STY3396"
/note="Pfam match to entry PF00202
aminotran-3, Aminotransferases
class-III pyridoxal-phosphate,
score 603.60, E-value 2.1e-209"
/gene="STY3396"
/note="PS00600 Aminotransferases
class-III pyridoxal-phosphate
attachment site"
/gene="STY3397"
/pseudo
/gene="STY3397"
/note="Highly similar to
Escherichia coli 2,4-dienoyl-coa
reductase [NADPH] fadH
SW:FADH-ECOLI (P42593) (671 aa)
fasta scores: E(): 0, 87.6% id in
355 aa. Contains a framehift
mutation after codon 356 and a
stop codon within the CDS. The
sequence has been checked and is
believed to be correct"
/pseudo
/codon-start=1
/transl-table=11
/product="probable oxidoreductase
(pseudogene)."
/gene="STY3397"
/note="Pfam match to entry PF00724
oxidored-FMN, NADH:flavin
oxidoreductase / NADH oxidase
family, score 490.90, E-value
9.8e-144"
/pseudo
/gene="STY3400"
/note="synonym: ygjO"
/gene="STY3400"
/note="Orthologue of E. coli ygjO
(YGJ0-ECOLI); Fasta hit to
YGJ0-ECOLI (388 aa), 91% identity
in 378 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07744.1"
/db-xref="GI:16504295"
/db-xref="GOA:Q8Z3L8"
/db-xref="SPTREMBL:Q8Z3L8"
/translation="MSHVDDGFRSLTLKRFQTD
DVNPILLAWEAADYEYLLQQLDTEI
RGPVLILNDTGF GALSCALAEHSPYSIGDSYLSSEL
GTRENLRHNGIAESSVTFLDSTAD
YPQAPGVVLIKVPKTLALLEQQQLRALRKVVTAQT
RIIAGAKARDIHTSTLELFKEVLG
PTTTTLAWKKARLINCTFSHPQLANAPQTL SWKL
EDTGWTIHNHANVFSRTGLDIGAR
FFMQHLPENL DGEIVDLGCGNGVIGLSLLAKNPQ
ANVVFVDESPMAVDSSRLNVETNL
PEAFERCEFMNNALSGVEPFRFNAVFCNPPFHQ
KHALTDNIAWEMFHHARRCLKING
ELYIVANRHLDYFHKLKKIFGNCATIATNNKFVI
LKAVKQGRRR"
/gene="STY3400"

```

gene 41078..41575
 CDS 41078..41575

Adenine-specific DNA methylases
 signature"
 /gene="STY3401"
 /gene="STY3401"
 /note="Orthologue of *E. coli* ygjP
 (YGJP-ECOLI); Fasta hit to
 YGJP-ECOLI (179 aa), 88% identity
 in 162 aa overlap"
 /codon-start=1
 /transl-table=11
 /product="conserved hypothetical
 protein"
 /protein-id="CAD07745.1"
 /db-xref="GI:16504296"
 /db-xref="GOA:Q8XF71"
 /db-xref="SPTREMBL:Q8XF71"
 /translation="MTSLTYLQGYPEHLLAQVRA
 LIAEQRLGAVLEKRYPGAHDYATD
 KALYHYTQELKSQFLRNAPPINKVMYDSKIHVLK
 NALGLHTAVSRVQGGKLAKAER
 VATVFRNAPEPFLRMIVVHELAHLKEKDHNKAFY
 QLCCHMEPQYHQLEFDTRLWLTHQ ALSAQ"
 /gene="STY3402"
 /note="synonym: ygjQ"
 /gene="STY3402"
 /note="Fasta hit to SANA-ECOLI
 (239 aa), 39% identity in 219 aa
 overlap Orthologue of *E. coli* ygjQ
 (YGJQ-ECOLI); Fasta hit to
 YGJQ-ECOLI (230 aa), 74% identity
 in 230 aa overlap"
 /codon-start=1
 /transl-table=11
 /product="conserved hypothetical
 protein"
 /protein-id="CAD07746.1"
 /db-xref="GI:16504297"
 /db-xref="SPTREMBL:Q8Z3L7"
 /translation="MLSQCARFIIRRLCFTRRALT
 VACFLLVAAGVALFYSNWLVNAS
 QHLTWNDIQTVPARNVGLVLGAKPGNRYFTRRIN
 TAAALYHAGKVWLLVSGDNGKKE
 YDEPSAMQQALIAKGVPPEAAIFCDYAGFSTLDSV
 VRARKVFGESRITIISQAFHNQRA
 IWLAQQYGINDAIGVNAPDLNKRHGTYTRLREKLA
 RVSAVLDAKILHRQPKYLGAGVTI
 GADSAHGCPQRQ"
 /gene="STY3403"
 /gene="STY3403"
 /note="Similar to *Escherichia coli*
 hypothetical protein YgjR
 SW: YGJR-ECOLI (P42599; P42600;
 P76661) (328 aa) fasta scores:
 E(): 0, 83.1% id in 326 aa and to
 Sus scrofa (Pig) dimeric
 dihydrodiol dehydrogenase Sus2dD
 TR: Q9TV69 (EMBL:AB021929) (335 aa)
 fasta scores: E(): 2.9e-15, 25.4%
 id in 346 aa"
 /codon-start=1
 /transl-table=11
 /product="possible oxidoreductase"
 /protein-id="CAD07747.1"
 /db-xref="GI:16504298"
 /db-xref="GOA:Q8Z3L6"
 /db-xref="SPTREMBL:Q8Z3L6"
 /translation="MTKIPFWSPLOMIRFAVIG
 TNWITRQFVDAAHETGKFRLAAVY
 SRRLEQAQS FANDY PVEHLFTSLEAMAQSDAIEA
 VYIASPNSLHFSQTQRFLQHKKKHV
 MCEKPLASNLAEVDAAIACARDNQRVLFEAFKTA
 CLPNFLLLRESLPKIGRMHKALLN
 YCQYSSRYQRYLNGENPNTFNPAFSNGSIMDIGY
 YCLASAI ALWGEPRSVQASANLLE
 SGVDAHGVVVMDYGDFTLQHSKVSDSVLASEI"

misc-feature 42510..43151

gene 43773..44741
CDS 43773..44741

gene 44996..46240
CDS 44996..46240

ALMQDLTQPQHINTMLYEAGAFAQLIENHAVEHP
GLSLSRATAKWLTEIRRQTGVIFP
ADDLTHPPTA"
/gene="STY3403"
/note="Pfam match to entry PF01408
GFO-IDH-MoCA, Oxidoreductase
family, score 177.50, E-value
2.2e-49"
/gene="STY3404"
/gene="STY3404"
/note="Similar to Escherichia coli
hypothetical protein YgjT
SW:YGJT-ECOLI (P42601) (321 aa)
fasta scores: E(): 0, 86.9% id in
321 aa and to Alcaligenes sp
tellurium resistance protein TerC
SW:TERC-ALCSP (P18780) (346 aa)
fasta scores: E(): 3.5e-12, 34.8%
id in 325 aa. Contains multiple
possible membrane spanning
hydrophobic domains and a possible
N-terminal signal sequence.
Orthologue of E. coli ygjT
(YGJT-ECOLI); Fasta hit to
YGJT-ECOLI (321 aa), 87% identity
in 321 aa overlap"
/codon-start=1
/transl-table=11
/product="possible drug efflux
protein"
/protein-id="CAD07748.1"
/db-xref="GI:16504299"
/db-xref="GOA:Q8Z3L5"
/db-xref="SPTREMBL:Q8Z3L5"
/translation="MNTVGTPLLWGGFAVVVVIM
LSIDLQQGRGAHAMSMKQAAAGW
SILWVTLSSLFNAAFWWYLAETQGREVADPQALA
FLTGYLIEKSLAVDNVFVWLMFLS
YFSVPPALQRRLVYGVGLGAIVLRTIMIFAGTWL
ITQFEWLLYVFGAFLFTGVKMA
AKEDESGIGEKPMVRWLRGHLRMTDTIENEHFFV
RKNGLLYATPLLLVLIMVEFSDVI
FAVDsipAifAVTTDPFIVLTSNLFAILGLRAMY
FLLSGVAERFSMLKYGLAVILVFI
GIKMLIVDFYHIPIAISLGVVFGILTITLVINTW
VNHQQRDKKLRAQ"
/gene="STY3405"
/gene="STY3405"
/note="Similar to Escherichia coli
hypothetical protein SW:YGJU-ECOLI
() (414 aa) fasta scores: E(): 0,
93.2% id in 414 aa, and to
Neisseria meningitidis MC58
sodium/dicarboxylate symporter
family protein TR:AAF42441
(EMBL:AE002561) (409 aa) fasta
scores: E(): 0, 68.5% id in 394
aa. Contains possible membrane
spanning hydrophobic domains.
Orthologue of E. coli ygjU
(YGJU-ECOLI); Fasta hit to
YGJU-ECOLI (414 aa), 93% identity
in 414 aa overlap"
/codon-start=1
/transl-table=11
/product="probable membrane
transport protein"
/protein-id="CAD07749.1"
/db-xref="GI:16504300"
/db-xref="GOA:Q8Z3L4"
/db-xref="SPTREMBL:Q8Z3L4"
/translation="MATQRASGLLQRLAQGSLVK
QILVGLVLGILLAWISKPVAEAVG
LLGTLFVGALKAVAPVILVMLVMASIANHQHGQK
TNIRPILFLYLLGTFSAALAAVVF

VSNPIDALLNANYIGILVWAVGLG
FALRHGNETTKNLVNDMSNAVTFMVKLVIRFAPV
GIFGLVSSTLATTGFSTLWGYAHL
LVVLIGCMLLVALVVNPLLVFWKIRRNPyPLVFA
CLRESGVYAFFTRSSAANIPVNMA
LCEKLNLDRDTYSVSIPLGATINMAGAAITITVL
TLAAVHTLGVPVDLPTALLLSVVA
SLCACGASGVAGGSLLLIPPLACNMFGIPNDIAMQ
VVAVGFIIGVLQDSCETALNSSTD
VLFTAACQAEDERLANNALRS"
/gene="STY3405"
/note="Pfam match to entry PF00375
SDF, Sodium:dicarboxylate
symporter family, score 582.00,
E-value 3.8e-171"
/gene="STY3406"
/gene="STY3406"
/note="Fasta hit to YGHB-ECOLI
(219 aa), 63% identity in 216 aa
overlap Fasta hit to DEDA-ECOLI
(219 aa), 30% identity in 223 aa
overlap Orthologue of E. coli
YQJA-ECOLI; Fasta hit to
YQJA-ECOLI (220 aa), 95% identity
in 220 aa overlap. Contains
multiple possible membrane
spanning hydrophobic domains"
/codon-start=1
/transl-table=11
/product="putative membrane
protein"
/protein-id="CAD07750.1"
/db-xref="GI:16504301"
/db-xref="GOA:Q8Z3L3"
/db-xref="SPTREMBL:Q8Z3L3"
/translation="MELLTQLLNALWAQDFETLA
NPSMIGMLYFVLFAMILFLENGLLP
AAFLPGDSLLILVGVLIAKGAMGFPQTILLTVA
ASLGCWVSYIQGRWLGNTRTVQNW
LSHLPAHYHQRAHHLFHKHGLSALLIGRFIAFVR
TLLPTIAGISGLNNARFQFFNWMS
GLLWVLIITSLGYLLGKTPVFMKYEDQLMSCML
LPVVLLFFGLAGSLVMLWKKKYGS RG"
/gene="STY3406"
/note="Pfam match to entry PF00597
DedA, DedA family, score 230.50,
E-value 2.4e-65"
/gene="STY3407"
/gene="STY3407"
/note="Orthologue of E. coli yqjB
(YQJB-ECOLI); Fasta hit to
YQJB-ECOLI (127 aa), 68% identity
in 127 aa overlap. Contains a
possible N-terminal signal
sequence."
/codon-start=1
/transl-table=11
/product="putative exported
protein"
/protein-id="CAD07751.1"
/db-xref="GI:16504302"
/db-xref="SPTREMBL:Q8XF92"
/translation="MLKPRITARQLIWISAFLLM
LTILMMTWSTLRQQESTLAIARAVN
QGASMPDGFSVLHLDANGIHFKSITPKNDMLLI
TFDSPAQSAAKTVLDQTLPHGYV
VAQQDDDDNETVQWLSRLRESSHHRFG"
/gene="STY3408"
/gene="STY3408"
/note="Orthologue of E. coli yqjC
(YQJC-ECOLI); Fasta hit to
YQJC-ECOLI (127 aa), 84% identity
in 122 aa overlap. Contains a
possible N-terminal signal
sequence and possible coiled-coils"

gene
CDS 48294..48599
48294..48599

/codon-start=1
/transl-table=11
/product="putative exported protein"
/protein-id="CAD07752.1"
/db-xref="GI:16504303"
/db-xref="SPTREMBL:Q8XF23"
/translation="MKYRIALAITLFTLSAGSYA
NSLCQEKEQDIQKEISYAEKHNNQ
RRIEGLNKALSEVRANCTDSKLAEHQKKIAEQQ
EEVAERQRDLAEAKAKGDADKIDK
RERKLAEAQDELKKLEARDY"
/gene="STY3409"
/gene="STY3409"
/note="Fasta hit to YGAM-ECOLI
(113 aa), 41% identity in 99 aa
overlap Fasta hit to ELAB-ECOLI
(101 aa), 44% identity in 101 aa
overlap Fasta hit to HNS-ECOLI
(136 aa), 31% identity in 110 aa
overlap Orthologue of E. coli yqqD
(YQJD-ECOLI); Fasta hit to
YQJD-ECOLI (101 aa), 90% identity
in 101 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical protein"
/protein-id="CAD07753.1"
/db-xref="GI:16504304"
/db-xref="SPTREMBL:Q8XEQ1"
/translation="MSKDNTTEHLRAELKSLTDT
LEEVLSSSGEKSKEELSKIRSKAE
RALKESRYRLGETGDIVAKQTRVAAARADDYVRE
NPWTGVGIGAAVGLVLGVLTRR"
/gene="STY3410"
/gene="STY3410"
/note="Orthologue of E. coli yqqE
(YQJE-ECOLI); Fasta hit to
YQJE-ECOLI (134 aa), 89% identity
in 130 aa overlap. Contains
possible membrane spanning
hydrophobic domains."
/codon-start=1
/transl-table=11
/product="putative membrane protein"
/protein-id="CAD07754.1"
/db-xref="GI:16504305"
/db-xref="SPTREMBL:Q8XFR8"
/translation="MADSRQAQGPGKSVLGIGQR
IVTIIVEMVETRLRLAVVELEEK
ANLFQLLLMVGLMLFAAGLMSLMVLVIWAIDP
QYRLNAMIATTVVLLVIALIGGIW
TLRKARQSTLLRHTRHELANDRQILEDDQS"
/gene="STY3411"
/gene="STY3411"
/note="Orthologue of E. coli
YQJK-ECOLI; Fasta hit to
YQJK-ECOLI (99 aa), 88% identity
in 99 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical protein"
/protein-id="CAD07755.1"
/db-xref="GI:16504306"
/db-xref="SPTREMBL:Q8XGR1"
/translation="MSSKGEREKRKALLSQIQQQ
QRLLDSASRRDWLETTGAYDRGWN
TVLSLRSWALVGSSVMAIWTIRHPNMLVRWAKRG
LGIWSAWRLVKTTLRQQQLRG"
/gene="STY3412"
/gene="STY3412"
/note="Fasta hit to YPHA-ECOLI"

gene
CDS 48602..49000
48602..49000

gene
CDS 48997..49296
48997..49296

gene
CDS 49451..49936
49451..49936

overlap Orthologue of E. coli yqjF
 (YQJF-ECOLI); Fasta hit to
 YQJF-ECOLI (160 aa), 81% identity
 in 161 aa overlap. Contains
 possible membrane spanning
 hydrophobic domains."

```

/codon-start=1
/transl-table=11
/product="putative membrane
protein"
/protein-id="CAD07756.1"
/db-xref="GI:16504307"
/db-xref="GOA:Q8Z3L2"
/db-xref="SPTREMBL:Q8Z3L2"
/translation="MILSSDNNDALNRAIAHENS
SSRRIGLLENKMKKLEDIVLIA
ILMPVLFITAGWKGKISGYAGTQQYMEAMGVPGFL
LPLTLEFGGLAILLGFLTRTT
ALFTAGFTLLTALIFHSNFAEGVNLSMFKNLTI
AGGFLLLALTGPGAFSLDRLLNKK W"
/gene="STY3413"
/gene="STY3413"
/note="Orthologue of E. coli yqjG
(YQJG-ECOLI); Fasta hit to
YQJG-ECOLI (328 aa), 93% identity
in 328 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07757.1"
/db-xref="GI:16504308"
/db-xref="SPTREMBL:Q8Z3L1"
/translation="MGQLIDGVWHDTWYDTKSSG
GKFQRSASAFAFRNWLTADGAPGPG
EGGFAAEKDRYHLYVSLACPWAHRTLIFRKLKGL
EPFIPVSVNPNMLENGWTFDDTF
PAATGDTLYQHEFLYQQLYLHADPHYSGRVTVPVL
WDKKNHTIVSNESAEIIRMFNSAF
DGLGAKAGDYYPALQSKIDELNGWIYDNVNNGV
YKAGFATSQQAYDEAVEKVFTALA
RLEQILGQHRYLTGNQLTeadirlwttlvrfdpv
YVTHFKCDKYRISDYLNLGYFLRD
IYQIPGIAETVNMDFHIRHYFRSHKTINPTGIIS
VGPWQDLLEPHGHGDVRFG"
/gene="STY3413"
/note="Pfam match to entry PF00043
GST, Glutathione S-transferases.,
score 20.40, E-value 3.5e-05"
/gene="STY3414"
/gene="STY3414"
/note="Fasta hit to YHAI-ECOLI
(118 aa), 52% identity in 118 aa
overlap Orthologue of E. coli yhah
(YHAH-ECOLI); Fasta hit to
YHAH-ECOLI (121 aa), 90% identity
in 118 aa overlap. Contains
possible membrane spanning
hydrophobic domains."
/codon-start=1
/transl-table=11
/product="putative membrane
protein"
/protein-id="CAD07758.1"
/db-xref="GI:16504309"
/db-xref="SPTREMBL:Q8XG14"
/translation="MDWYLKVLKNYLGFGGRARR
KEYWMFILVNIIFTFVLGLLDAML
GWQRAGGEGVLLTIYGVLIFLPWWAVQFRLHDT
DRSAWWLLLLIPIIIGWLIIIIFN
CQNGTPGDNRFGPDPKRFS"
/gene="STY3415"
)
complement(51518..52414 /gene="STY3415"
)
complement(51518..52414 /gene="STY3415"
)

```

(316 aa), 37% identity in 286 aa overlap Orthologue of *E. coli* yhaJ (YHAJ-ECOLI); Fasta hit to YHAJ-ECOLI (298 aa), 97% identity in 298 aa overlap"

/codon-start=1
/transl-table=11
/product="possible LysR-family transcriptional regulator"
/protein-id="CAD07759.1"
/db-xref="GI:16504310"
/db-xref="GOA:Q8Z3L0"
/db-xref="SPTREMBL:Q8Z3L0"
/translation="MAKERALTLEALRVMDAIDR RGSFAAAADELGRVPSALSYTQMOK LEEEELDVLFDRSGHRTKFTNVGRMLLERGRVLL EAADKLTTDAEALARGWETHLTIV TEALVPTPAFFPLIDRLAAKNTQLSLITEVLAG AWERLEQGRADIVIAAPDMHFRSS EINSRKLYTLMNVYVAAPDHSIHQEPEPLSEVTR VKYRGVAVADTARERPVLTVQILL KQPRLTVSTIEDKRQALLAGLVATMPYSMVEQD IAEGRLRVVSPESTSEIDIIMAWR RDSMGEAKAWCLREIPKLFAGK"

misc-feature complement(51965..52390 /gene="STY3415")
/note="Pfam match to entry PF00126 HTH-1, Bacterial regulatory helix-turn-helix protein, lysR family, score 124.80, E-value 1.6e-33"

misc-feature complement(52256..52348 /gene="STY3415")
/note="PS00044 Bacterial regulatory proteins, lysR family signature"

gene 52519..53220
CDS 52519..53220
/note="Fasta hit to YHHW-ECOLI (231 aa), 35% identity in 237 aa overlap Orthologue of *E. coli* yhaK (YHAK-ECOLI); Fasta hit to YHAK-ECOLI (233 aa), 85% identity in 233 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical protein"
/protein-id="CAD07760.1"
/db-xref="GI:16504311"
/db-xref="SPTREMBL:Q8Z3K9"
/translation="MITTRTAKQCGQADYGWLQA RYTFSGHYFDPTLLGYASLRVNL QEVILPGASFQPRTPKVDILNLILDGEAEYRDS DGNHVQAKAGEALLLAAQPGISYS EHNLSKVKPLTRMQLWLDACPERENALVQKIPLS TAQQQLLASPDGEQNSLQLRQQVW VHHITLEKGESLNFGQLHGPRAYLQSIHGTFHAMT HNEEREALTCGDGAFIRDEPNITL VADTPLRALLVLDLPV"
/gene="STY3416"
/gene="STY3416"
/note="Orthologue of *E. coli* yhaL (YHAL-ECOLI); Fasta hit to YHAL-ECOLI (56 aa), 71% identity in 55 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical protein"
/protein-id="CAD07761.1"
/db-xref="GI:16504312"
/db-xref="SPTREMBL:Q8XFT9"
/translation="MSKKSAKKRQPVVKPAVQEA MSAAVPLGYEEMLTELEAIVADAE"

```
gene complement(53521..54831 /gene="STY3418"
)
complement(53521..54831 /gene="STY3418"
)
/note="The N-terminus is highly
similar to Escherichia coli
hypothetical protein YhaN
SW:YHAN-ECOLI (P42627) (187 aa)
fasta scores: E(): 0, 77.7% id in
184 aa and the C-terminus of this
proteins is highly similar to
Escherichia coli hypothetical
protein YhaM SW:YHAM-ECOLI () (188
aa) fasta scores: E(): 0, 92.0% id
in 187 aa"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07762.1"
/db-xref="GI:16504313"
/db-xref="SPTREMBL:Q8Z3K8"
/translation="MFESKINPLWQSFILEAQEE
VKPALGCTEPISLALAAAAAAEL
DTGVERIDAWSPNLMKNGMGTVPGTGMVGLPI
AAALGALGGDAKAGLEVLKDASAK
AVADAKAMLAAGHVAVMLQEPCNDILFSRAKVYS
GDSWACVTIVGDHTNIVRIETDKG
VVFTQADNAQEEEKTSPLGVLSTSLEEILAFVN
AVPFDAIRFILDAARLNGALSQEG
LRGSWGLHIGSTLAKQCDRGLLAKDLTAILIRT
SAASDARMGGATLPAMSNSGSGNQ
GITATVPVMVVAEHVGADDECLARALMLSHLSAI
YIHQLPRLSALCAATTAAAMGAAA
GMAWLIDGRYDTIAMAISSSMIGDVSGMICDGASN
SCAMKVTSASAASKAVLMLDDT
AVTGNEGIVAHNVEQSIISNLCSLACRSMQQTDKQ
IIEIMASKAH"
gene complement(54857..56124 /gene="STY3421"
)
/pseudo
complement(54857..56124 /gene="STY3421"
)
/note="Similar to Escherichia coli
hypothetical protein YhaO
SW:YHAO-ECOLI (P42628) (425 aa).
Contains and in-frame stop at
codon 38 and a frameshift after
codon 237 The sequence has been
checked and is believed to be
correct"
/pseudo
/codon-start=1
/transl-table=11
/product="conserved hypothetical
transport protein (pseudogene)"
/gene="tdcG"
gene complement(56502..57866 /gene="tdcG"
)
/pseudo
complement(56502..57866 /gene="tdcG"
)
/note="synonym: STY3422"
/EC-number="4.2.1.13"
/note="Similar to Escherichia coli
L-serine dehydratase TdcG
SW:TDCG-ECOLI () (454 aa) fasta
scores: E(): 0, 86.6% id in 454
aa"
/codon-start=1
/transl-table=11
/product="L-serine dehydratase"
/protein-id="CAD07764.1"
/db-xref="GI:16504314"
/db-xref="GOA:Q8Z3K7"
/db-xref="SPTREMBL:Q8Z3K7"
/translation="MISAFDIFKIGIGPSSHTV
```

ITVDLYGSLSLTGKGHATDTAIIMGLAGNTPQDV
NIDSIPAFIQEVARSSRLSVAGGA
HVVDFPVADSILFHAETLARHENGMRITAWHGQT
PLLHKTYYSIGGGFIVEEERFGQS
HDVEKSVPYDFHSASELLTLCERQGLSVGLMMQ
NELALRSKEQIDAGFARIWQVMAT
GIERGMNTEGVLPGPLNVPRRAVALRRLLVSSDN
LSRDPMNVIDWINMFALAVSEENA
AGGRVVTALTNGACGIIIPAVLAYYDKFRRPVNAN
SIARYLLSAGAIGMLYKMNASISG
AEVGCGEVGVACCSMAAGLTELLGGSPAQCIA
AEIAMEHNLGLTCDPVAGQVQIPC
IERNAINAVKAVNAARMALRRTSEPRVSLDKVIE
TMYETGKDMNDKYRETSRGGLAIK VVCG"

gene complement (57936..60230) /gene="tdcE"
CDS complement (57936..60230) /note="synonym: STY3423"
/gene="tdcE"
/note="Fasta hit to PFLB-ECOLI
(759 aa), 79% identity in 752 aa
overlap Orthologue of E. coli yhaS
(TDCE-ECOLI); Fasta hit to
TDCE-ECOLI (746 aa), 93% identity
in 741 aa overlap"
/codon-start=1
/transl-table=11
/product="probable formate
acetyltransferase"
/protein-id="CAD07765.1"
/db-xref="GI:16504315"
/db-xref="GOA:Q8Z3K6"
/db-xref="SPTREMBL:Q8Z3K6"
/translation="MKVNIDTSMDLYAEAWRDFK
GTDWKEEINVCDFIQHNYTPYEGD
ESFLADATPATTALWEKVMAGIRIENATHAPVDF
DTNIATTITAHADGYIEKELEKIV
GLQTDKPLKRALHPFGGVNMIKSSFHAYGREMDA
DFEYTFDTLRLKTHNQGVFDVYSPD
MLRCRKSSVLTGLPDGYGRGRIIGDYRRVALYGI
RYLVRERELQFADLQSNLERGQNL
EATIRLREELAEHRRALLQMQUEAKYGYDISRP
ARNAQEAVQWLYFAYLAAVKSQNG
GAMSLGRTASFLDIYIERDFNAGLLTEQQAQELI
DHFIMKIRMVRFRLRTPEFDLSLFSG
DPIWATEVIGGMGLDGRTLVTKNSFRYLHTLHTM
GPAPENLTLIWSEALPVAFKKYA
AQVSIVTSSLQYENDDLMRTDFNSDDYAIACCVS
PMVIGKQMQFFGARANLAKTLLYA
INGGVDEKLKIQVGPKTAPLTDEVLDYDAVMESL
DHFMWDLAVQYISALNIIHYMHDK
YSYEASLMLHDRDVYRTMACGIAGLSVAADSLS
AIRYAQVKPIRDENGIAIDFAIEG
EYPQYGNNDERVDSIACDLVKRFMQKISVLPTYR
NAVPTQSILTTTSNVVYQKGTGN
PDGRRAGTPFAPGANPMHGRDRKGAVASLTSVAK
LPFTYAKDGISYTFSIVPAALGKE
DAVRKTNLVGLLDGYFHHEAQVEGGQHLNVNVMN
REMlldiaeHpenypnltirvsgy
AVRFNALTREQQQDVISRTFTQAM"
/gene="tdcE"
misc-feature complement (57993..58331)
/note="Pfam match to entry PF01228
Gly-radical, Glycine radical,
score 233.10, E-value 4e-66"
/gene="tdcE"
misc-feature complement (58005..58031)
/note="PS00850 Glycine radical
signature"
/gene="tdcE"
gene complement (60264..61472) /gene="tdcD"
CDS complement (60264..61472) /note="synonym: STY3424"
/gene="tdcD"
/EC-number="2.7.2.-"

propionate kinase TdcD
SW:TDCD-ECOLI (P11868; P76666)
(402 aa) fasta scores: E(): 0,
82.1% id in 402 aa Fasta hit to
ACKA-ECOLI (400 aa), 41% identity
in 396 aa overlap"
/codon-start=1
/transl-table=11
/product="propionate kinase"
/protein-id="CAD07766.1"
/db-xref="GI:16504316"
/db-xref="GOA:Q8Z3K5"
/db-xref="SWISS-PROT:Q8Z3K5"
/translation="MNEFPVVLVINCGSSSIKFS
VLDVATCDVLMAGIADGMNTENAF
LSINGDKPINLSHSNYEDALKIAFELEKRDLTD
SVALIGHRIAHGELFTQSVIITD
EIIDNIRRVSPLAGHNYANLSGIDAARRLFPAV
RQAVAVFDTSFHQTLAPEAYLYGLP
WEYFSSLGVRRYGFHGTSRHYVSRRAYELLDLDE
KNSGLIVAHLGNGASICAACVRNGQS
VDTSMGMTPLEGLMMGTRSGDVDFGAMAWIAKET
GQTLSDLERVVNKESGLLGISGLS
SDLRVLEKAWHEGHARLAIKTFVHRIARHIAG
HAASLHRLDGIFTGGIGENSVLI
RQLVIEHLGVLGLTLDVDEMNKQPNSHGERIISVN
PSQVICAVIPTNEEKMIALDAIHL
GNVKAPVEFA"

misc-feature complement(60312..61457 /gene="tdcD"
)
/note="Pfam match to entry PF00871
Acetate-kinase, Acetokinase
family, score 732.00, E-value
2.6e-216"

misc-feature complement(60825..60878 /gene="tdcD"
)
/note="PS01076 Acetate and
butyrate kinases family signature
2"

misc-feature complement(61419..61454 /gene="tdcD"
)
/note="PS01075 Acetate and
butyrate kinases family signature
1"

gene complement(61539..62869 /gene="tdcC"
)
/note="synonym: STY3426"
/pseudo

CDS complement(61539..62869 /gene="tdcC"
)
/note="Similar to Escherichia coli
threonine/serine transporter TdcC
SW:TDC2-ECOLI (P11867) (443 aa)
fasta scores: E(): 0, 95.0% id in
259 aa. Contains a frameshift
after codon 260. The sequence has
been checked and is believed to be
correct"
/pseudo
/codon-start=1
/transl-table=11
/product="threonine/serine
transporter (pseudogene)"

gene complement(62890..63879 /gene="STY3427"
)
/note="synonym: tdcB"

CDS complement(62890..63879 /gene="STY3427"
)
/note="Orthologue of E. coli tdcB
(THD2-ECOLI); Fasta hit to
THD2-ECOLI (329 aa), 95% identity
in 329 aa overlap"
/codon-start=1
/transl-table=11
/product="catabolic threonine

FISWFPMLLLIGVWIFFMRQMGGGGKGAMSFGK
SKARMLTEDQIKTTFADVAGCDEA
KEEVAELVEYLREPSRFQKLGGKIPKGVLMVGPP
GTGKTLLAKAIAGEAKVPFFTISG
SDFVEMFVGVGASRVDRMFEQAKKAAPCIIFIDE
IDAVGRQRGAGLGGGHDEREQTLN
QMLVEMDGFEGLNEGIIIVIAATNRPDVLDPALLRP
GRFDROVVVGLPDVRGREQILKWH
MRRVPLATDIDAAIIARGTPGSGADLANLVNEA
ALFAARGNKRVVSVMVEFEKAKDKI
MMGAERRSMVMTEAQKESTAYHEAGHAIIGRLVP
EHDPVHKVTIIIPRGRALGVTFFLP
EGDAISASRQKLESQISTLYGGRLAEEIIYGVEH
VSTGASNDIKVATNLARNMVTQWG
FSEKLGPLLTAEEEDEVFLGRSRVAKAKHMSDETA
RIIDQEVKALIERNYNRQILTD
NMDILHAMKDALKYETIDAPQIDDLMARREVRP
PAGWEDPNNGTNNSDSNGTPQAPRP
VDEPRTPNPGNTMSEQLGDK"
/gene="STY3474"
/note="Pfam match to entry PF01434
Peptidase-M41, Peptidase family
M41, score 443.90, E-value
1.4e-129"
/gene="STY3474"
/note="Pfam match to entry PF00004
AAA, ATPases associated with
various cellular activities (AAA),
score 352.20, E-value 5.4e-102"
/gene="STY3474"
/note="PS00674 AAA-protein family
signature"
/gene="STY3474"
/note="PS00017 ATP/GTP-binding
site motif A (P-loop)"
/gene="STY3474"
/note="PS00017 ATP/GTP-binding
site motif A (P-loop)"
/gene="STY3475"
/note="synonym: ftsJ"
/gene="STY3475"
/note="Orthologue of E. coli ftsJ
(FTSJ-ECOLI); Fasta hit to
FTSJ-ECOLI (209 aa), 100% identity
in 208 aa overlap"
/codon-start=1
/transl-table=11
/product="cell division protein"
/protein-id="CAD07814.1"
/db-xref="GI:16504362"
/db-xref="GOA:Q8Z3H3"
/db-xref="SPTREMBL:Q8Z3H3"
/translation="MTGKKRSASSSRWLQEHFSD
KYVQQAQKKGLRSRAWFKLDEIQQ
SDKLFKPGMTVVDLGAAPGGWSQYVVTQIGGKGR
IIACDLLPMDPIVGVDLQGDFRD
ELVMKALLERVGDSKVQVMSMAPNMSGTPAVD
IPRAMYLVELALDMCRDVLAPGGS
FVVKFQGEGFDEYLREIRSLFTKVKVRKPDSR
ARSREVYIVATGRK"
/gene="STY3475"
/note="Pfam match to entry PF01728
FtsJ, FtsJ cell division protein,
score 367.20, E-value 1.7e-106"
/gene="STY3476"
/gene="STY3476"
/note="Orthologue of E. coli yhbY"

YHBY-ECOLI (97 aa), 96% identity in 97 aa overlap. Note codon 14 offers an alternative translational start site."
/codon-start=1
/transl-table=11
/product="conserved hypothetical protein"
/protein-id="CAD07815.1"
/db-xref="GI:16504363"
/db-xref="GOA:Q8XG58"
/db-xref="SPTREMBL:Q8XG58"
/translation="MTRFQSQRKQKYTMNLSTKQ
KQHLKGLAHPLKPVVMLGNNGLTE
GVLAELIEQALEHHELIKVKIASEDRETKTLIVDA
IVRETGACNVQVIGKTIVLYRPTK ERKISLPR"
/gene="STY3476"
/note="PS01301 Uncharacterized protein family UPF0044 signature"
/gene="STY3476"
/note="Pfam match to entry PF01985 UPF0044, Uncharacterised protein family UPF0044, score 27.60, E-value 0.00026"
gene complement(116453..1169 29) /gene="STY3477"
CDS complement(116453..1169 29) /note="synonym: greA"
/gene="STY3477"
/note="Fasta hit to GREB-ECOLI (158 aa), 35% identity in 155 aa overlap Orthologue of E. coli greA (GREB-ECOLI); Fasta hit to GREB-ECOLI (158 aa), 97% identity in 158 aa overlap"
/codon-start=1
/transl-table=11
/product="transcription elongation factor"
/protein-id="CAD07816.1"
/db-xref="GI:16504364"
/db-xref="GOA:Q8XGQ9"
/db-xref="SWISS-PROT:Q8XGQ9"
/translation="MQAIPMTLRAEKLREELDF
LKSVRPPIAAIAEAREHGDLKE
NAEYHAAREQQGFCEGRIKDIKEAKLSNAQVIDVT
KMPNNGRVIFGATVTVLNLDTDEE
QTYRIVGDDEADFKQNLISVNNSPIARGLIGKEQD
DVVVIKTPGGDVEYEVLKVEYL"
misc-feature complement(116456..1169 29) /gene="STY3477"
/note="Pfam match to entry PF01272 GreA-GreB, Prokaryotic transcription elongation factor, GreA/GreB, score 365.40, E-value 5.8e-106"
misc-feature complement(116519..1165 69) /gene="STY3477"
/note="PS00830 Prokaryotic transcription elongation factors signature 2"
misc-feature complement(116786..1169 11) /gene="STY3477"
/note="PS00829 Prokaryotic transcription elongation factors signature 1"
gene 117177..118610 /gene="STY3479"
CDS 117177..118610 /gene="STY3479"
/note="Orthologue of E. coli dacB (PBP4-ECOLI); Fasta hit to PBP4-ECOLI (477 aa), 94% identity in 477 aa overlap"
/codon-start=1
/transl-table=11
/product="Penicillin-binding

carboxypeptidase)"
/protein-id="CAD07817.1"
/db-xref="GI:16504365"
/db-xref="GOA:Q8Z3H2"
/db-xref="SPTREMBL:Q8Z3H2"
/translation="MRFSRFIIGLTTIAFSVQA
ANIDEYIKQLPAGANLALMVQKIG
APAPAIDYHSQQMALPASTQKVITALAALIQLGP
DFRFTTLETKGVDNGILKGDLI
ARFGGDPTLRRQDIRNMVATLKSGVTQIDGNVL
IDTSIFASHDKAPGWPWNDLTQCF
SAPPAAAIVDRNCFSVSLYSAQKPNDLAFIRVAS
YYPVTMFSQVRTLPRGSADAQYCE
LDVVPGLNRQYTLTGCLPQRADPLPLAFAIQDGA
SYAGAILKQELKEAGITYRGTLR
QTQVNEPGTIVASKQASPLHDLLKIMLKSDNMI
ADTVFRMIGHVRFNVPGTWAGSD
AVRQILRQQAGIDIGNTIADGSGLSRHNLIAPA
TMMQVLQYIAQHDNELNFISMLPL
AGYDGSLQYRAGLHQAGVDGKVSAKTGSLOGVYN
LAGFITTASGQRMAFVQYLSGYAV
PPADQRNRRIPLVRFESRLYKDIYQNN"
/gene="STY3479"
/note="Pfam match to entry PF02113
Peptidase-S13, D-Ala-D-Ala
carboxypeptidase 3 (S13) family,
score 713.90, E-value 7.3e-211"
misc-feature 117354..118514
gene complement(118741..1199
13)
CDS complement(118741..1199
13) /gene="STY3480"
/note="Orthologue of E. coli yhbZ
(YHBZ-ECOLI); Fasta hit to
YHBZ-ECOLI (390 aa), 96% identity
in 390 aa overlap"
/codon-start=1
/transl-table=11
/product="probable GTP-binding
protein"
/protein-id="CAD07818.1"
/db-xref="GI:16504366"
/db-xref="SPTREMBL:Q8Z3H1"
/translation="MKFVDEASILVVAGDGGNGC
VSFREKYIPKGGPDGGDGGDGG
VWMEADENLNTLIDYRFEKSFRAERGQNGASRDC
TGKRGKDVTIKPVGTRVIDQGTG
ETMGMGDTKHGQRLLVAKGGWHGLGNTRFKSSVNR
TPRKQTNGTPGDKRDLLLELMLLA
DVGMLGMPNAGKSTFIRAVSAAKPKVADYPFTTL
VPSLGVVRMDSEKSFVVADIPGLI
EGAAEGAGLGIIRFLKHLERCRVLLHLIDIDPIDG
SDPVENARIIGELEKYSQDLAAK
PRWLVFNKIDLMDKSEAEAKAKAIAEALGWEGKY
YLISAASQLGVVKDLCWDVMTFIE
NPIAQEEAKQPEKVEFMWDDYHRQQLAEVEEDA
DDDWDWWDEDDDEEGVEFIYKR"
/gene="STY3480"
misc-feature complement(118759..1198
68) /note="Pfam match to entry PF01018
GTP1-OBG, GTP1/OBG family, score
603.10, E-value 1.7e-177"
misc-feature complement(119236..1192
77) /gene="STY3480"
/note="PS00905 GTP1/OBG family
signature"
misc-feature complement(119395..1194
18) /gene="STY3480"
/note="PS00017 ATP/GTP-binding
site motif A (P-loop)"
gene complement(119929..1208
94) /gene="STY3481"
CDS complement(119929..1208
94) /note="Orthologue of E. coli yhbE
(YHBE-ECOLI); Fasta hit to

in 321 aa overlap. Contains multiple possible membrane spanning hydrophobic domains."

/codon-start=1
/transl-table=11
/product="putative membrane protein"
/protein-id="CAD07819.1"
/db-xref="GI:16504367"
/db-xref="GOA:Q8Z3H0"
/db-xref="SPTREMBL:Q8Z3H0"
/translation="MKQQAGIGILLALTTAMCWG
ALPIAMKQVLEVMEPSTIVFYRFL
MASIGLGAILAVKRKLPPPLRIFRKPRWLVLLAIA
TCGLFGNFILESSSLQYLSPTASQ
VIGQLSPVGMMVASVFILEIFKEKMRGTQVIGALMLL
SGLVMFFNTSLIEIFTRLTDYTWG
VIFGVGAAMVWVSYGVAQKVLLRRLASQQILFLL
YTLCTIALLPLAKPMVIAQLSDWQ
LACLIFCGLNTLVGYGALAEAMARWQAAQVSAII
TLLTPLFTLLFSDLLSMAWPDF FAR
PMLNLLGYLGFVVVAGAMYSAGHRIWGGLRKH
ETVVSQPRS GE"

misc-feature complement(120019..1203
90) /gene="STY3481"
/note="Pfam match to entry PF00892
DUF6, Integral membrane protein
DUF6, score 55.10, E-value
1.5e-12"

misc-feature complement(120463..1208
46) /gene="STY3481"
/note="Pfam match to entry PF00892
DUF6, Integral membrane protein
DUF6, score 98.80, E-value
1.1e-25"

gene complement(121024..1212
81) /gene="STY3482"
/note="synonym: rpmA"

CDS complement(121024..1212
81) /gene="STY3482"
/note="Orthologue of E. coli rpmA
(RL27-ECOLI); Fasta hit to
RL27-ECOLI (84 aa), 95% identity
in 84 aa overlap"
/codon-start=1
/transl-table=11
/product="50S ribosomal subunit
protein L27"
/protein-id="CAD07820.1"
/db-xref="GI:16504368"
/db-xref="GOA:Q8XGK4"
/db-xref="SWISS-PROT:Q8XGK4"
/translation="MAHKKAGGSTRNGRDSEAKR
LGVKRGGEAVLAGSIIVRQRGK
FHAGTNVGCGRDHTLFAKADGKVKF EVKGPKNRK
YISIVAE"

misc-feature complement(121033..1212
78) /gene="STY3482"
/note="Pfam match to entry PF01016
Ribosomal-L27, Ribosomal L27
protein, score 201.00, E-value
1.8e-56"

misc-feature complement(121138..1211
82) /gene="STY3482"
/note="PS00831 Ribosomal protein
L27 signature"

gene complement(121301..1216
12) /gene="STY3483"
/note="synonym: rplU"

CDS complement(121301..1216
12) /gene="STY3483"
/note="Orthologue of E. coli rplU
(RL21-ECOLI); Fasta hit to
RL21-ECOLI (103 aa), 99% identity
in 103 aa overlap"

/transl-table=11
/product="50S ribosomal subunit
protein L21"
/protein-id="CAD07821.1"
/db-xref="GI:16504369"
/db-xref="GOA:Q8XGA0"
/db-xref="SPTREMBL:Q8XGA0"
/translation="MYAVFQSGGKQHRVSEGQTV
RLEKLDIATGETIEFAEVLMIANG
EEVKIGVPFVDGGVIKAEEVVAHGRGEKVKIVKFR
RRKHYRKQQGHRQWFTDVKITGIS A"

misc-feature complement(121325..1216
12) /gene="STY3483"
/note="Pfam match to entry PF00829
Ribosomal-L21p, Ribosomal
prokaryotic L21 protein, score
202.30, E-value 7.6e-57"

misc-feature complement(121331..1213
99) /gene="STY3483"
/note="PS01169 Ribosomal protein
L21 signature"
/gene="STY3484"
/note="synonym: ispB"
/gene="STY3484"
/note="Orthologue of E. coli ispB
(ISPB-ECOLI); Fasta hit to
ISPB-ECOLI (323 aa), 96% identity
in 323 aa overlap"
/codon-start=1
/transl-table=11
/product="octaprenyl-diphosphate
synthase"
/protein-id="CAD07822.1"
/db-xref="GI:16504370"
/db-xref="GOA:Q8XFR7"
/db-xref="SPTREMBL:Q8XFR7"
/translation="MNLEKINELTAQDMAGVNAT
ILEQLNSDVQLINQLGYYIISGGG
KRIRPMIAVLAARAVGYQGNNAHVTIAALIEFIHT
ATLLHDDVVDESDMRRGKATANAA
FGNAASVLVGDFIYTRAFQMMTSLGSLKVLEVMS
EAVNVAEGEVILQLMVNDPDITE
ENYMRVIYSKTARLFEEAACQCSGILAGCTPEQEKS
GLQDYGRYLGTFQLIDDDLYSA
DGEHLGKNVGDDLNEGKPTLPLLHAMRHGTPEQS
AMIRTAIEQGNGRHLLEPVLEAMT
TCGSLEWTRQRRAEEEADKAISALQILPDTPWREA
LIGLAHIAVQRDR"
/gene="STY3484"
/note="Pfam match to entry PF00348
polyprenyl-synt, Polyprenyl
synthetases, score 433.30, E-value
2.2e-126"
/gene="STY3484"
/note="PS00723 Polyprenyl
synthetases signature 1"
/gene="STY3484"
/note="PS00444 Polyprenyl
synthetases signature 2"
/gene="STY3485"
/note="synonym: nlp"
/gene="STY3485"
/note="Orthologue of E. coli
Ner-like protein (Nlp) involved in
the regulation of sugar metabolism
(NLP-ECOLI); Fasta hit to
NLP-ECOLI (92 aa), 87% identity in
92 aa overlap"
/codon-start=1
/transl-table=11
/product="Ner-like regulatory
protein"
/protein-id="CAD07823.1"
/db-xref="GI:16504371"
/db-xref="SPTREMBL:Q8Z3G9"

gene 121871..122842
CDS 121871..122842

misc-feature 121961..122725

misc-feature 122111..122155

misc-feature 122477..122515

gene 123075..123362
CDS 123075..123362

SDDVEMMLEANRIGGRHGLGMSDQIENRIIEAKS
RGIFYAPGMALLHIAYERLLTGII
NEDTIEQYHSHGRQLGKLLYQGRWFDSQALMLRD
GLQRWVASQITGEVTLELRRGNDY
SILNTVSDNLTYKAERLTMEKGESVFSPDDRIGQ
LTMRNLDITDTREKLFGYAKAGLL
TASSATGLPQVENLENKAK"
/gene="STY3470"
/note="Pfam match to entry PF00764
Arginosuc-synth, Arginosuccinate
synthase, score 755.20, E-value
3.5e-237"
/gene="STY3470"
/note="PS00564 Argininosuccinate
synthase signature 1"
/gene="STY3470"
/note="PS00565 Argininosuccinate
synthase signature 2"
/product="tRNA-Leu"
/note="tRNA Leu anticodon GAG,
Cove score 67.81"
/gene="secG"
/note="synonym: STY3471"
/gene="secG"
/note="Similar to Escherichia coli
protein-export membrane protein
SecG secG SW:SECG-ECOLI (P33582)
(110 aa) fasta scores: E(): 0,
98.2% id in 109 aa"
/codon-start=1
/transl-table=11
/product="protein-export membrane
protein"
/protein-id="CAD07810.1"
/db-xref="GI:16504358"
/db-xref="GOA:Q8XGE4"
/db-xref="SPTREMBL:Q8XGE4"
/translation="MYEALLVVFLIVAIGLVGLI
MLQQGKGADM GASFGAGASATLFG
SSSGGNFMTRMTAVLATLFFIISLVLGNINSNKT
NKGSEWE NLSAPAKTEQTQPAAPA QPTSDIPR"
/gene="STY3472"
complement(110930..1122 67)
/gene="STY3472"
/note="Similar to Escherichia coli
MrsA protein a phosphoglucomutase
(PGM) /phosphomannomutase(PMM)
-family protein SW:MRSA-ECOLI
(P31120) (445 aa) fasta scores:
E(): 0, 96.0% id in 445 aa"
/codon-start=1
/transl-table=11
/product="PGM/PMM-family protein"
/protein-id="CAD07811.1"
/db-xref="GI:16504359"
/db-xref="GOA:Q8XF81"
/db-xref="SPTREMBL:Q8XF81"
/translation="MSNRKYF GTDGIRGRVGNAP
ITPDFVLKLGWAAGKV LARHGSRK
IIIGKDTRISGYMLES ALEAGLAAAGLSASFTGP
MPTPAVAYLRTFRAEAGIVISAS
HNPFYDNGIKFFSIDGT KLPDDVEEAIEAEMEKE
ITCVDSAELGKASR IVD AAGRYIE
FCKGTFPNELSLNGLKVV VDCANGATYHIAPNVL
RELGATVIAIGCEPNGVNINEEVG
ATDVRALQARVLA EKADLGIALGDGDRVIMVDH
EGNKVDGDQIMYIIAREGLRQGQL
RGGAVGTLMSNMGLELALKQ LGI P FARA KVGD RY
VLEKLQEKGWRIGAENS GHVILL D
KTTTGDGIVAGLQV LAAMVRN HML HDLC SGM KM
FPQILVNVR YTAGSGD PLENE AVK

misc-feature complement(110972..1122 /gene="STY3472"
61) /note="Pfam match to entry PF00408
PGM-PMM,
Phosphoglucomutase/phosphomannomutase, score 653.70, E-value
9.4e-193"

misc-feature complement(111938..1119 /gene="STY3472"
82) /note="PS00710 Phosphoglucomutase
and phosphomannomutase
phosphoserine signature"

gene complement(112260..1131 /gene="STY3473"
08) /note="synonym: folP"

CDS complement(112260..1131 /gene="STY3473"
08) /note="Orthologue of E. coli folP
(DHPS-ECOLI); Fasta hit to
DHPS-ECOLI (282 aa), 92% identity
in 282 aa overlap"
/codon-start=1
/transl-table=11
/product="dihydropteroate
synthase"
/protein-id="CAD07812.1"
/db-xref="GI:16504360"
/db-xref="GOA:Q8Z3H4"
/db-xref="SPTREMBL:Q8Z3H4"
/translation="MKLFAQGATLDLTHPHVMGI
LNVT PDSFSDGGAHNTLIEAVKHA
NLMVNNTGATI IDVGGESTRPGAAEVSVEEELDRV
IPVLEAIAQRFEVWISVDTSKPEV
IREAA RAGAH IINDVRSLS EPGALEAAAETGLPV
SLMHMQGNPKTMQEAPKYDDVFAE
VNRYFIEQIARCEKAGIAKEKLLDPGF GFGKNL
SHNYTILLARLGEFHHFNLP LLVG M
SRKTMVGQLLN VGP SDR LNGSLACAVIAAMQGAQ
IIRVHDVKETVEAMRVVEATLSAK GNKRYE"
/gene="STY3473"

misc-feature complement(112296..1130 /note="Pfam match to entry PF00809
57) DHPS, Dihydropteroate synthase,
score 525.00, E-value 5.5e-154"
/gene="STY3473"

misc-feature complement(112917..1129 /note="PS00793 Dihydropteroate
58) synthase signature 2"
/gene="STY3473"

misc-feature complement(113013..1130 /note="PS00792 Dihydropteroate
60) synthase signature 1"
/gene="STY3473"

gene complement(113213..1151 /note="synonym: ftsH"
47) /gene="STY3474"

CDS complement(113213..1151 /note="Orthologue of E. coli
47) (FTSH-ECOLI); Fasta hit to
FTSH-ECOLI (644 aa), 98% identity
in 644 aa overlap. Contains a
possible membrane spanning
hydrophobic domain and a possible
N-terminal signal sequence."
/codon-start=1
/transl-table=11
/product="cell division protein"
/protein-id="CAD07813.1"
/db-xref="GI:16504361"
/db-xref="GOA:Q8XGY2"
/db-xref="SWISS-PROT:Q8XGY2"
/translation="MAKNLILWLVIAVV LMSVFQ
SFGPSESN GRKV DYSTFL QEVNQD
QV REARING REIN VT KKD SNRY TT YIP IN DP KLL

/protein-id="CAD07768.1"
/db-xref="GI:16504317"
/db-xref="GOA:Q8Z3K4"
/db-xref="SPTREMBL:Q8Z3K4"
/translation="MHITYDLPVAIEDILEAKKR
LAGKIYKTGMPRSNYFSERCKGEI
FLKFENMQRTGSFKIRGAFNKLSSLTEAEKRKGV
VACSTGNHAQGVSLSCAMLGIDGK
VVMPKGAPKSVAATCDYSAEVVLHGDNFNDTIA
KVSEIVETEGRIFIPPYDDPKVIA
GQGTIGLEIMEDLYDVDNVIVPIGGGLIAGIAI
AIKSINPTIKVIGVQAENVHGMMA
SYYAGEITAHTTGTLADGCDVSRPGNLTYEIVR
ELVDDIVLVSEDEIRNSMIALIQR
NKVITEGAGALACAALLSGKLD SHIQNRKTVSII
SGGNIDLRSRVSQITGLVDA"

misc-feature complement(62941..63819)
/gene="STY3427"
/note="Pfam match to entry PF00291
PALP, Pyridoxal-phosphate
dependent enzyme, score 314.00,
E-value 1.8e-90"

misc-feature complement(63694..63735)
/gene="STY3427"
/note="PS00165 Serine/threonine
dehydratases pyridoxal-phosphate
attachment site"

gene complement(63977..64915)
/gene="STY3428"
/note="synonym: tdcA"

CDS complement(63977..64915)
/note="Orthologue of E. coli tdcA
(TDCA-ECOLI); Fasta hit to
TDCA-ECOLI (312 aa), 89% identity
in 311 aa overlap"
/codon-start=1
/transl-table=11
/product="TDC operon
transcriptional activator"
/protein-id="CAD07769.1"
/db-xref="GI:16504318"
/db-xref="GOA:Q8Z3K3"
/db-xref="SPTREMBL:Q8Z3K3"
/translation="MNTLVLPKTQHLVVFQE VIR
SGSIGSAAKSLGLTQPAVSKIISD
VEAYFGVELIVRKNTGVTLTEAGQVLLSSESIT
REMKNMINEMNSMTCTNVVDVSFG
FPSLIGFTFMSDMIHKFKEVFPKAQVSMYEAQLS
SFLPALRDGRDFAIGTLSNEMQL
QDLHVEPLFESEFVLVASKSRTCTGTITLESLKD
EQWALPQTNMGYYSSELLTTLQRNG
ISIENIVKTDVVTIYNLVLNADFLTVIPCDMTT
PFGSNQFITIPIKDTLPVARYAAV
WSKNYRIKKAAASVLVELAKQYSSYNGCRRQLIE
IE"

misc-feature complement(64463..64891)
/gene="STY3428"
/note="Pfam match to entry PF00126
HTH-1, Bacterial regulatory
helix-turn-helix protein, lysR
family, score 128.50, E-value
1.2e-34"

misc-feature complement(64757..64849)
/gene="STY3428"
/note="PS00044 Bacterial
regulatory proteins, lysR family
signature"

gene complement(65959..66334)
/gene="rnpB"

misc-RNA complement(65959..66334)
/note="hit to rnpB M1 RNA
component of ribonuclease P 1..377
score: 1818 percent id: 98.67"

CDS complement(66367..67512 /gene="STY3429")
/note="Fasta hit to YBBZ-ECOLI
(381 aa), 56% identity in 376 aa
overlap Orthologue of E. coli yhaD
(YHAD-ECOLI); Fasta hit to
YHAD-ECOLI (381 aa), 86% identity
in 381 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07770.1"
/db-xref="GI:16504319"
/db-xref="GOA:Q8Z3K2"
/db-xref="SPTREMBL:Q8Z3K2"
/translation="MKIVIAPDSYKESLSAAEVA
QAIEKGFREIFPDAQYVSVPVADG
GEGTVEAMIAATQGVERAATGPLGEKVACWG
MSGDGKTAIFIEMAAASGLALVPPE
KRNPLITTSRGTEGELILQALESGASNIIIGIGGS
ATNDGGAGMMQALGAKLRDANGAD
IGYGGGSLHCLSNIDISELDPRLKLCAIRVACDV
SNPLIGDNGASRIFGPQKGATEEN
IVEELDRNLAHYADI1KKSLNDVKAAPGAGAAGG
MGAALMAFLGAELRSGIEIVTAAL
NLEEHHDCTLVVTGEGRIDSQSIRGKVPIGVAN
VAKKYHKPVIGIAGSLHDVGIVH
HYGIDAVFSVLTRIVTLEAFRGAFDNIYRASRN
VAAALAIGMRSAG"

misc-feature complement(67258..67281 /gene="STY3429")
/note="PS00017 ATP/GTP-binding
site motif A (P-loop)"

gene complement(67610..68494 /gene="garR")
/note="synonym: STY3430"

CDS complement(67610..68494 /gene="garR")
/EC-number="1.1.1.60"
/note="Similar to Escherichia coli
2-hydroxy-3-oxopropionate
reductase GarR or B3125
SW:GARR-ECOLI (P23523) (294 aa)
fasta scores: E(): 0, 96.9% id in
294 aa Fasta hit to YIHU-ECOLI
(298 aa), 37% identity in 280 aa
overlap Fasta hit to YGBJ-ECOLI
(302 aa), 35% identity in 280 aa
overlap Fasta hit to YBBQ-ECOLI
(292 aa), 44% identity in 289 aa
overlap Orthologue of E. coli yhaE
(YHAE-ECOLI); Fasta hit to
YHAE-ECOLI (294 aa), 97% identity
in 294 aa overlap"
/codon-start=1
/transl-table=11
/product="2-hydroxy-3-oxopropionate
reductase"
/protein-id="CAD07771.1"
/db-xref="GI:16504320"
/db-xref="GOA:Q8Z3K1"
/db-xref="SPTREMBL:Q8Z3K1"
/translation="MKVGFIGLIMGKPM SKNLL
KAGYSLVVSDRNPEAIADVIAAGA
ETASTAKAIAEQCDAIITMLPNSPHVKEVALGEN
GIIEGAKPGTVLIDMSSIAPLASR
EISDALAKGVEMLDAPVSGGEPKAIDGTL SVMV
GGDKAIFDKYYDLMKAMAGSVVHT
GDIGAGNVTKLANQVIVALNIAAMSEALTLATKA
GVNPDLVYQAIRGGLAGSTVLDAK
APMVMDRNFKPGFRIDLHIKDLANALDTSHGVGA
QLPLTAAVMEMMOALRADGHGNDD
HSALACYYEKLAKVEVTR"

)
/note="PS00895
3-hydroxyisobutyrate dehydrogenase
signature"
gene complement(68526..69296 /gene="garL"
)
CDS complement(68526..69296 /gene="garL"
)
/EC-number="4.1.2.-"
/note="Similar to Escherichia coli
5-keto-4-deoxy-D-glucarate
aldolase GarL SW:GARL-ECOLI
(P23522) (256 aa) fasta scores:
E(): 0, 90.6% id in 256 aa Fasta
hit to P76469 (267 aa), 45%
identity in 256 aa overlap"
/codon-start=1
/transl-table=11
/product="5-keto-4-deoxy-D-glucara
te aldolase"
/protein-id="CAD07772.1"
/db-xref="GI:16504321"
/db-xref="GOA:Q8XGF9"
/db-xref="SPTREMBL:Q8XGF9"
/translation="MNNAIFPNKFKAALAAQQVQ
IGCWSALASPIITTEVLGLAGFDWL
VLDGEHAPNDVTTLIPQLMALKGSASAPVVRVPT
NEPVIIKRLIDIGFYNFLIPFVET
QEEAARAVASTRYPPEGIRGVSVSHRANMFGTVP
DYFAQSNKNITIIVQIESQLGVDN
VDAIAATEGVVDGIFVGPSDAAALGHLGNASHPD
VQQTIQHIFARAKAHGKPCGILAP
VEADARRYLEWGATFVAVGSDLGAFRASTQKLAD
TFKK"
gene 69827..71398
CDS 69827..71398
/gene="gard"
/note="synonym: STY3432"
/gene="gard"
/EC-number="4.2.1.42"
/note="Similar to Escherichia coli
D-galactarate dehydratase gard or
b3128 SW:GARD-ECOLI (P39829) (523
aa) fasta scores: E(): 0, 93.5% id
in 523 aa Fasta hit to UXAA-ECOLI
(495 aa), 33% identity in 511 aa
overlap"
/codon-start=1
/transl-table=11
/product="D-galactarate
dehydratase"
/protein-id="CAD07773.1"
/db-xref="GI:16504322"
/db-xref="GOA:Q8Z3K0"
/db-xref="SPTREMBL:Q8Z3K0"
/translation="MANIEIRQESPSAFYIKVHE
TDNVAIIVNNDHGLKAGTRFPDGLE
LTEHIPQGHKVVALTDIPAHGEIIRYGEVIGYAVR
DIPRGSWIDESLVELPKAPPLNTL
PLATKVPEPLPLEGYTFEGYRNADGSVGTKNLL
GITTSHCVAGVVVDYVVVKVIERDL
LPKYPNVGDGVVGLNHLYGCGVAINAPAAVPIRT
IHNIALNPNGGEVMVIIGLCEKL
QPERLLEGTEDVPAIAVENASIVRLQDEQHVGFK
SMVDDILRVAERHLTKLNRQRRET
CPASELVVGMQCGGSDAFSGVTANPAVGYASDLL
VRCGATVMFSEVTEVRDAIHLLTP
RAINEAVGKRLLDEMAWYDNYLDMGKTDRSANPS
PGNKKGGLANVVEKALGSIAKSGK
SAIVEVLSPGQRPTKRGGLIYAATPASDFVCVGTQQ
VASGITVQVFTTGRGTPYGLMAVP
VIKMATRTELANRWYDLMIDINAGTIATGEETIED
VGWKLHFILDVASGRKKTFSDQW
GLHNQLAVFNPAVPT"
gene complement(71638..72585 /gene="STY3433"
)

) /note="Similar to several Eukaryotic carbohydrate kinases e.g. Lycopersicon esculentum fructokinase fk or frk2 TR:Q42896 (EMBL:U62329) (328 aa) fasta scores: E(): 2.2e-22, 29.0% id in 317 aa"
/codon-start=1
/transl-table=11
/product="possible carbohydrate kinase"
/protein-id="CAD07774.1"
/db-xref="GI:16504323"
/db-xref="GOA:Q8Z3J9"
/db-xref="SPTREMBL:Q8Z3J9"
/translation="MNINITIATLSELLVEFLAKKE
NQGFSSPGFWGPYPSGAPAIFAD
QVAKLGFRSLLFSCVGNDAGVMNITRLSRDGVN
VQGISVLPNATTGSAFVSYRSQAQ
RDFIFNMMPDSACGLLSADHLDETLLRQYRHFHIM
GSSLFSFRLIDAVRKAIISIVKENG
GTISFDPNIRKEMLKIREMSQAFYEILDYTDFFL
PSDGELDYFGLSKSRDEEKIVARL
HKRGIAHVI IKRGARGASYYSKDEQHHVAGYPVK
VVDPTGAGDCFGATFVSLFLAGYS
VPDALAHANAAGSLAISARGPMEGTSTLAQIKEL
MRQQN"
misc-feature complement(71788..71991 /gene="STY3433")
/note="Pfam match to entry PF00294 pfkB, pfkB family carbohydrate kinase, score 67.30, E-value 3.5e-20"
misc-feature complement(72076..72480 /gene="STY3433")
/note="Pfam match to entry PF00294 pfkB, pfkB family carbohydrate kinase, score 27.00, E-value 1.5e-07"
misc-feature complement(73103..73399 /note="Pfam match to entry PF00455 deoR, Bacterial regulatory proteins, deoR family, score 61.40, E-value 2.6e-16"
misc-feature complement(73295..73399 /note="PS00894 Bacterial regulatory proteins, deoR family signature"
gene 73763..74617 /gene="STY3435"
CDS 73763..74617 /note="synonym: gaty"
/gene="STY3435"
/note="Fasta hit to AGAY-ECOLI (286 aa), 64% identity in 284 aa overlap Fasta hit to P77704 (278 aa), 40% identity in 277 aa overlap Orthologue of E. coli gaty (GATY-ECOLI); Fasta hit to GATY-ECOLI (286 aa), 65% identity in 283 aa overlap"
/codon-start=1
/transl-table=11
/product="tagatose-bisphosphate aldolase"
/protein-id="CAD07775.1"
/db-xref="GI:16504324"
/db-xref="GOA:Q8XGZ9"
/db-xref="SPTREMBL:Q8XGZ9"
/translation="MFIISSKNMLQKAQHAGYAV
PAFNIIHNLETLQVVVETAAEMRSP
LIVAGTPGTFSYAGMGNIVAIAGDLAREYNLPLA
IHLDHESLADIESKVMAGIRSVM
IDGSHFPFEENVALVKSVVDFCHRYDTSVEAELG
RLGGIEDDLVVDSDKDALYTNPQQA
REFVARTGIDS LAVAGTAHGMYAAEPKLDFERL
AEIRALVDIPLVLHGASGLPESDI
RQAISLGVCKVN VATELKIAFSDLKEYFLQNPK

misc-feature 73766..74614 /gene="STY3435"
/note="Pfam match to entry PF01116
F-bP-alcohol dehydrogenase,
Fructose-bisphosphate aldolase
class-II, score 494.60, E-value
7.4e-145"
/gene="STY3435"
/note="PS00602
Fructose-bisphosphate aldolase
class-II signature 1"
/gene="STY3435"
/note="PS00806
Fructose-bisphosphate aldolase
class-II signature 2"
/gene="STY3436"
/gene="STY3436"
/note="Similar to *Bacillus*
subtilis 1-phosphofructokinase
fruk or *fruB* SW:K1PF-BACSU
(O31714) (303 aa) fasta scores:
E(): 9.9e-28, 31.8% id in 305 aa"
/codon-start=1
/transl-table=11
/product="possible carbohydrate
kinase"
/protein-id="CAD07776.1"
/db-xref="GI:16504325"
/db-xref="GOA:Q8Z3J8"
/db-xref="SPTREMBL:Q8Z3J8"
/translation="MIYTTLNSAIDMNIFSDPL
QPNIVNRTHTEFCPNGKGVNVAL
VLDHFQIPAHLGIFGGFTGHYIVESLRTRKMPV
TPAWVEPTRINIFIHDGKQEYKL
VNPGSYIPDECKKQIITIISQLPDAEYLVISGSL
PQGIESRFYAEIMHICQQKNIGVI
LDISHPSLRLQQLLEFKPLLKPNDEEVKAIFGLTV
SDDNDAKNTLTTLHALGAQNVL
LGAKGMYFSNGIDYWFCAPTVDLVSSACAGDAA
LAAFLSQWLSTGEVEYALSASAT
GADVASSAGLGQLAAIETLLSQIHVRKL"
/gene="STY3436"
/note="Pfam match to entry PF00294
pfkB, pfkB family carbohydrate
kinase, score 67.00, E-value
4.2e-20"
/gene="STY3437"
/gene="STY3437"
/note="Similar to *Escherichia coli*
PTS system, fructose-like-1 IIBC
component FrvB SW:PTVB-ECOLI
(P32154) (485 aa) fasta scores:
E(): 0, 32.4% id in 475 aa. Note,
like the example given, the
predicted product of this CDS
contains only one hydrophilic IIB
domain. Contains possible membrane
spanning hydrophobic domains.
Fasta hit to PTVB-ECOLI (485 aa),
32% identity in 474 aa overlap
Paralogue of *E. coli* fruA
(PTFB-ECOLI); Fasta hit to
PTFB-ECOLI (563 aa), 42% identity
in 471 aa overlap"
/codon-start=1
/transl-table=11
/product="PTS system, sugar
phosphotransferase enzyme IIBC
component"
/protein-id="CAD07777.1"
/db-xref="GI:16504326"
/db-xref="GOA:Q8Z3J7"
/db-xref="SPTREMBL:Q8Z3J7"
/translation="MKKIIAVTGCPTGIAHTFMA
EEALKNAAKKLSVEIKVETNGASG
VENAIQPADLVDIAGVIIAADKDVLPDFNGLPV

PIRGESTTSTEIIKEKESLGRQIYKHLMSGVSNM
LPFVVAGGILIAVSLLWGIYSADP
NSAEYNATAAMLMKIGQQAFSIMVPVFTAYIAFS
ISGRPGMVAGFGVGGLLANTTGAGF
LGGIIAGFAAGYLMWLWKNRLEGGLPRQYEGLKSI
FIMPLIGVLVIGVLMSSLGQPVAA
INNSMMNWLASLQEANPILLGIVVGAMCSFDFFG
PVNKAAYVTGTLLLGQGNFYFMAG
VSAACITPPLVIALATTFPKGFSEEERAAGMVN
YILGCTHITEGAIPFAAKDPLRVI
PMMMIASSISAVLSYSLRIQVPAPHGGFLILPLV
SQPLAWVLCILAGSACGAMMLGLW
RLWAVRKNSVNTTPVAKAGGQNAAL"
/gene="STY3438"
/gene="STY3438"
/note="This CDS is similar to the phosphotransferase enzyme II A and HPr (phosphoryl carrier protein) domains of PTF family sugar transport proteins , e.g. the N-terminus of Xanthomonas campestris multiphosphoryl transfer protein FruB
SW:PTF1-XANCP (P45597) (837 aa)
fasta scores: E(): 2.9e-22, 36.0%
id in 225 aa Paralogue of E. coli fruB (PTFA-ECOLI); Fasta hit to PTFA-ECOLI (376 aa), 36% identity in 372 aa overlap"
/codon-start=1
/transl-table=11
/product="PTS-transport family phosphoryl transfer protein"
/protein-id="CAD07778.1"
/db-xref="GI:16504327"
/db-xref="GOA:Q8Z3J6"
/db-xref="SPTREMBL:Q8Z3J6"
/translation="MQLCEHDIFISDERLDKVTA
LHRVVEKLSAAGNTTPDYLRGMLD
REAQISTYLGNGIAIPHGTPESRDAVLQTGVKVI
VFRHGVDWGDGNTAYLVTGIAARS
NEHLEILRQLTRVLSDDAILQALAKAESPSQVLA
LLTGSTTNTPAAMELHEGEQATFV
IHNPGLHARPSAVLVFKIKQFQSHITVENLDNA
SGPVDGKNLMRVVS LGAKKGHRL
FRAQGEDAQQA LREIGELIASGAGEMITPVPTPP
PEVMQPKRWSRLFN"
/gene="STY3438"
/note="Pfam match to entry PF00359 PTS-EIIA-2, phosphoenolpyruvate-dependent sugar phosphotransferase system, EIIA 2, score 79.50, E-value 6.1e-21"
/gene="STY3438"
/note="PS00372 PTS EIIA domains phosphorylation site signature 2"
/gene="STY3438"
/note="Pfam match to entry PF00381 PTS-HPr, PTS HPr component phosphorylation sites, score 115.00, E-value 1.5e-30"
/gene="STY3438"
/note="PS00369 PTS HPr component histidine phosphorylation site signature"
/gene="STY3439"
/pseudo
/gene="STY3439"
/note="Similar to Escherichia coli putative tagatose 6-phosphate kinase gatz SW:GATZ-ECOLI () (420 aa) fasta scores: E(): 0, 76.1% id in 331 aa. Note contains a stop codon after codon 331. The

believed to be correct"
/pseudo
/codon-start=1
/transl-table=11
/product="putative sugar kinase
(pseudogene)"
/gene="STY3441"
/note="synonym: gatA"
/gene="STY3441"
/note="Orthologue of E. coli gatA
(PTKA-ECOLI); Fasta hit to
PTKA-ECOLI (150 aa), 63% identity
in 150 aa overlap"
/codon-start=1
/transl-table=11
/product="PTS system,
galactitol-specific IIA component"
/protein-id="CAD07780.1"
/db-xref="GI:16504328"
/db-xref="GOA:Q8Z3J5"
/db-xref="SPTREMBL:Q8Z3J5"
/translation="MSQLFVRTGITFDSSQQALA
HIGKEMLAKGVVHDSYPQALVERE
ASFPTGIALERHAVAIIPHCEAVHAKSPAIALIRP
DKPVMFQQADDDEEIAVSLIIALI
VENPAAQLKLRRRLFGALQIPDTIEALLSAPDAE
LASCFEHKVLTAEQCVQV"
/gene="STY3442"
/note="synonym: gatB"
/gene="STY3442"
/note="Orthologue of E. coli gatB
(PTKB-ECOLI); Fasta hit to
PTKB-ECOLI (94 aa), 79% identity
in 94 aa overlap"
/codon-start=1
/transl-table=11
/product="PTS system,
galactitol-specific IIB component"
/protein-id="CAD07781.1"
/db-xref="GI:16504329"
/db-xref="GOA:Q8Z3J4"
/db-xref="SPTREMBL:Q8Z3J4"
/translation="MKRKVIVACGGAVATSTMAA
EEIKELCDANHIELDLVQCRVTEI
ETYMDGADLICTTARVDRAFGDIPVVHGMPFVSG
VGIEALQQKILSILMG"
/gene="STY3443"
/note="synonym: gatC"
/gene="STY3443"
/note="Fasta hit to SGCC-ECOLI
(437 aa), 43% identity in 432 aa
overlap Orthologue of E. coli gatC
(PTKC-ECOLI); Fasta hit to
PTKC-ECOLI (451 aa), 85% identity
in 446 aa overlap. Contains
possible membrane spanning
hydrophobic domains."
/codon-start=1
/transl-table=11
/product="PTS system,
galactitol-specific IIC component"
/protein-id="CAD07782.1"
/db-xref="GI:16504330"
/db-xref="GOA:Q8Z3J3"
/db-xref="SPTREMBL:Q8Z3J3"
/translation="MFSEIMRYILDLGPTVMLPL
VIIVFSKLLGMKLGDCFKSGLHIG
IGFGVGIGLVIGLM LDSIGPAAKAMAEHFQINLHV
IDVGWPGSSPMTWASQIALVAIPV
AIGVNVLMLVTRMTRVVNVDIWNIWHMTFTGAML
HLATGSYWLGLGILGVVVHAAFYVKL
GDWFAKDTRDYFGLEGIAIPHGSAYLSPVAVLV
DTIIEKIPGLNRIHFSADDVQKRF
GPFGEPPVTGVFVMGLVIGVLAGYDTKAVLQLAVK
TAAVMLLMPRVIKPIMDGLTPIAK

LIFIPLTILIAVLVPGNQVLPFGD
LATIGFFIAMAVAVHQGNLFRTLISGVIIIMGITL
WIATQTIGLHTQLAANAGALKAGA
QVASLDQGGSPITWLLIQLFTWQNIVGFAVIAII
YLAGVLLTWRRARQFVAAEKATAL QQSQIAS"
/gene="STY3444"
/note="synonym: gatD"
/gene="STY3444"
/note="Fasta hit to YDJJ-ECOLI
(347 aa), 32% identity in 338 aa
overlap Orthologue of E. coli gatD
(GATD-ECOLI); Fasta hit to
GATD-ECOLI (346 aa), 68% identity
in 344 aa overlap"
/codon-start=1
/transl-table=11
/product="galactitol-1-phosphate
dehydrogenase"
/protein-id="CAD07783.1"
/db-xref="GI:16504331"
/db-xref="GOA:Q8Z3J2"
/db-xref="SPTREMBL:Q8Z3J2"
/translation="MKS VVIHAEGDVRVEERPLP
QLQAEDDV LVKVVSSGLCGSDIPR
IFAQGAHYYPITLGHEFSGYVESYGTGVTDMQPG
DAVACVPLLPCFHCPQCERGYFSL
CKQYQFVGSRSEGGNAEYVVVKRANLFRLPSDMP
IEDGAFIEPITVGLHAFHLAQGCE
GKNVIIVGAGTIGLLALQCARELGARSVTAIDIN
PKLELAKALGATHTCNSREMTAD
DIQTALSDIQFDQLVLETAGTPQTVSLAIDITGP
RAQLALVGTIHHDLTLTTRTFGLI
LRKELTLLGSMNYSAPWPGEEWETAARLLAEKR
LQLTPLIAHRGDAESFAEAVKALN
GAPMQGKILLQLS"
/gene="STY3444"
/note="Pfam match to entry PF00107
adh-zinc, Zinc-binding
dehydrogenases, score 285.90,
E-value 5.2e-82"
/gene="STY3444"
/note="PS00059 Zinc-containing
alcohol dehydrogenases signature"
/gene="STY3445"
/note="synonym: gatR"
/gene="STY3445"
/note="Fasta hit to SRLR-ECOLI
(257 aa), 37% identity in 257 aa
overlap Fasta hit to YGBI-ECOLI
(265 aa), 32% identity in 253 aa
overlap Fasta hit to YCIT-ECOLI
(249 aa), 31% identity in 261 aa
overlap Fasta hit to AGAR-ECOLI
(269 aa), 36% identity in 254 aa
overlap Fasta hit to FUCR-ECOLI
(243 aa), 31% identity in 236 aa
overlap Fasta hit to GLPR-ECOLI
(252 aa), 32% identity in 241 aa
overlap Orthologue of E. coli
gatR-2 (GATR-ECOLI); Fasta hit to
GATR-ECOLI (259 aa), 73% identity
in 257 aa overlap"
/codon-start=1
/transl-table=11
/product="galactitol utilization
operon repressor"
/protein-id="CAD07784.1"
/db-xref="GI:16504332"
/db-xref="GOA:Q8Z3J1"
/db-xref="SPTREMBL:Q8Z3J1"
/translation="MNSFERRNKIVDLDINTQGSV
LVMDLSNTFGISEVTIRADLRLLE
EKGLVTRFHGGAAKPGSHLAEGDNQEVIDEDRYQ
LASDPKKRIAQAAAAMVEEGMTII
LDSGSTTLLIAEALARKSNITVITNSLPAAFTLS

misc-feature 82642..83334
IAERSLHGISADVMFVGADGIDATNGITTFNEY
SISGVMAAAAHKVIAVLDATKFNR
RGFNQVLPMKDICKCVITDDTISKQDKAALAKTGV
ELMIV"
/gene="STY3445"
/note="Pfam match to entry PF00455
deoR, Bacterial regulatory
proteins, deoR family, score
255.80, E-value 5.8e-73"
/gene="STY3445"
/note="PS00894 Bacterial
regulatory proteins, deoR family
signature"
gene complement(83558..84421 /gene="STY3446"
CDS)
complement(83558..84421 /gene="STY3446"
)
/note="Orthologue of E. coli yraL
(YRAL-ECOLI); Fasta hit to
YRAL-ECOLI (286 aa), 97% identity
in 285 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07785.1"
/db-xref="GI:16504333"
/db-xref="GOA:Q8Z3J0"
/db-xref="SPTRREMBL:Q8Z3J0"
/translation="MKQNESADNSQGQLFIVPTP
IGNLADITQRALLEVQAVDLIAAE
DTRHTGLLLQHFGINARLFALHDHNEQQKAETLV
AKLKEGQNIALVSDAGTPLINDPG
YHLVRTCREAGIRVVPLPGPCAAITALSAAGLPS
DRFCYEGFLPAKSKGRDALKAIE
AEPRTLIFYESTHRLLLSLEDMVAVWGESRYVVL
ARELTKTWETIHGAPVGELLAWVK
EDENRRKGEMVLIVEGHKAQEDDLPADALRTLAL
LQAELPLKAAALAAEIHGVKKNA
LYKYALAQQEE"
misc-feature complement(83780..84385 /gene="STY3446"
)
/note="Pfam match to entry PF00590
TP-methylase, Tetrapyrrole
(Corrin/Porphyrin) Methylases.,
score 239.80, E-value 3.8e-68"
misc-feature complement(84116..84151 /gene="STY3446"
)
/note="PS01296 Uncharacterized
protein family UPF0011 signature"
gene 84485..86536 /gene="STY3447"
CDS 84485..86536 /gene="STY3447"
/note="Orthologue of E. coli yraM
(YRAM-ECOLI); Fasta hit to
YRAM-ECOLI (678 aa), 79% identity
in 684 aa overlap. Contains a
possible N-terminal signal
sequence."
/codon-start=1
/transl-table=11
/product="possible exported
protein"
/protein-id="CAD07786.1"
/db-xref="GI:16504334"
/db-xref="SPTRREMBL:Q8Z3I9"
/translation="MVPSTFSRLNAARALPVVLA
ALLFAGCGTQAPDQSAAYMQGSAQ
ADSAFYLHQMQQSADDTSKTNWQLLAIHALLKEGK
SQQAVERLFNQPPQNLNDTQRREQS
LLAVEIKLAQKVAGAQALLDKLKPADFAPHQQA
RYWQAQIVASQGRPSLTLRLIA
QEPLLAKEKQKNIDATWQALSAMTPDQARTLVI
NADENVLQGWLDLQRWFDNRNDP
DMLKAGIADWQKRYPQNPAGAKMLPTQLNVNQRFK
PASTSKIALLLPLNGQAAVFGRTI

QPQMTNGVASPSQASVRDLTDDAP
SQSATPVSAPQTPPAQPATASAPADPSAELKIYD
TSSQPLDQVLAQVQODGASIVVGP
LLKNNVEALMKSNTPLNVLALNQPETVRSFPNIC
YFALSPEDEARDAHHIYEQGKQS
PLLLIPRSALGDRVANAAFTQEWFQKLGGGIVLQQK
FGSVAELKMGVNGGAGIALTGSPV
AASVPAQPGVTIGGLTIPAPPTDAQITGGGRVDA
VYILATPEEIGFIKPMIAMRNGTQ
SGATLYASSRSAQGTSGPDFRLEMEGLQYSEIPM
LAGGNTPLMQQALSAVHNDYSLAR
MYAMGVDAWTIANHFSQMRQVQGFINGNTGALT
ASPDCCVINRKLSWLKYQQGEIVPA S"
/gene="STY3447"
/note="PS00017 ATP/GTP-binding
site motif A (P-loop)"
/gene="yraN"
/note="synonym: STY3448"
/gene="yraN"
/note="Similar to Escherichia coli
hypothetical 14.8 kDa protein in
agai-mtr intergenic region yraN
SW:YRAN-ECOLI (P45465) (131 aa)
fasta scores: E(): 0, 82.4% id in
131 aa, and to Haemophilus
influenzae hypothetical protein
Hi1656 hi1656 SW:YRAN-HAEIN
(P45300) (119 aa) fasta scores:
E(): 4e-19, 53.2% id in 109 aa,
and to Xylella fastidiosa
hypothetical protein Xf0554 xf0554
TR:Q9PFV3 (EMBL:AE003902) (121 aa)
fasta scores: E(): 3.9e-17, 49.1%
id in 116 aa Similar to the
C-terminal of E. coli
SW:YRAN-ECOLI"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07787.1"
/db-xref="GI:16504335"
/db-xref="SWISS-PROT:Q8Z3I8"
/translation="MAQIPARGDCSRQLTRKQAG
DAWEAAARLWLESKGLRFIAANVR
ERGGEIDLIMRDGKTTVFVEVRYRRSGLYGGAAA
SVTRSKQHKLLHTARLWLARQNGS
FDTVDCRFDVLAFTGNEIEWFRDAFNDHS"
/gene="yraN"
/note="Pfam match to entry PF02021
UPF0102, Uncharacterised protein
family UPF0102, score 192.20,
E-value 8.1e-54"
/gene="STY3449"
/gene="STY3449"
/note="Similar to Methanococcus
jannaschii probable phosphoheptose
isomerase lpcA or gmha or mj1335
SW:LPCA-METJA (Q58731) (187 aa)
fasta scores: E(): 3.3e-27, 42.5%
id in 186 aa Fasta hit to
LPCA-ECOLI (192 aa), 42% identity
in 166 aa overlap Orthologue of E.
coli yraO (YRAO-ECOLI); Fasta hit
to YRAO-ECOLI (196 aa), 98%
identity in 194 aa overlap"
/codon-start=1
/transl-table=11
/product="probable phosphoheptose
isomerase"
/protein-id="CAD07788.1"
/db-xref="GI:16504336"
/db-xref="GOA:Q8Z3I7"
/db-xref="SPTREMBL:Q8Z3I7"
/translation="MLERIKVCFFTESIQTQIAAA

LCCGNGTSAANAQHFAASMINRFETERPSLPAIA
LNTDNVVLTAIANDRLHDEVYAKQ
VRALGHAGDVLLAISTRGNSRDIVKAVEAAVTRD
MTIVALTGVDGGELAGLLGPQDVE
IRIPSHHSARIQEMHMLTVNCLCGLIDNTLFPHQ
DD"
/gene="STY3449"
/note="Pfam match to entry PF01380
SIS, SIS domain, score 157.10,
E-value 3.1e-43"
/gene="STY3450"
/gene="STY3450"
/note="Fasta hit to OSMY-ECOLI
(201 aa), 32% identity in 183 aa
overlap Orthologue of E. coli yraP
(YRAP-ECOLI); Fasta hit to
YRAP-ECOLI (191 aa), 93% identity
in 191 aa overlap. Contains a
possible N-terminal signal
sequence."
/codon-start=1
/transl-table=11
/product="possible lipoprotein"
/protein-id="CAD07789.1"
/db-xref="GI:16504337"
/db-xref="SPTREMBL:Q8XG47"
/translation="MKAFSPLAVLISALLQGCV
AAAVVGTAAVGTTKAATDPRSVGTQ
VDDGTLELRVSSALSKDEQIKKETRINVTAQGK
VLLVGQSPNSELSSARAKQIAMGVE
GTTEVYNEIRQQPIGLGTASNDTWITTKVRSQ
LTSDQVKSSNVKTENGEVFLLG
LVTEREGKAAADIASRVSGVKRVTTAFTYIK"
/gene="STY3450"
/note="PS00013 Prokaryotic
membrane lipoprotein lipid
attachment site"
misc-feature 87535..87567
gene complement(88153..88788 /gene="STY3451"
)
CDS complement(88153..88788 /gene="STY3451"
)
/note="Orthologue of E. coli yraR
(YRAR-ECOLI); Fasta hit to
YRAR-ECOLI (226 aa), 88% identity
in 210 aa overlap. Note lacks the
N-terminal 15 amino acids of the
E. coli orthologue."
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07790.1"
/db-xref="GI:16504338"
/db-xref="SPTREMBL:Q8Z3I6"
/translation="MSQVLITGATGLVGGHLLRM
LINTPQVSAIAAPTRRPLTDIVGV
YNPHDPQLTDALAQTDPDIVFCCLGTTRREAG
SKAAFIHADYTLVVDTALTGRRLG
AQHMLVVSAMGANAHSPFFYNRVKGEMEEALIAQ
NWPRLTIAARPSMILLGDRTTRRVNE
TLFAPLFRLLPGNWKSIDARDVARAMLAEALEPA
QEGVTILTSSSQLREKAG"
/gene="STY3452"
/gene="STY3452"
/note="Similar to several
including: Bacillus subtilis
general stress protein 18 yfkM
SW:GS18-BACSU (P80876) (171 aa)
fasta scores: E(): 0, 64.9% id in
168 aa, and to Pyrococcus furiosus
protease I pfpi SW:PFPI-PYRFU
(Q51732) (166 aa) fasta scores:
E(): 6.5e-24, 47.9% id in 167 aa
Orthologue of E. coli yhbO
(YHBO-ECOLI); Fasta hit to

in 172 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical protein"
/protein-id="CAD07791.1"
/db-xref="GI:16504339"
/db-xref="SPTRREMBL:Q8XH07"
/translation="MSKKIAVLITDEFEDSEFTS
PAAEFRQAGHEVITIEKEAGKTVK
GKKGEASVTIDKAIDDVRPDEFDALLLPGGHSPD
YLRGDSRFVDFTRDFVNNSGKPVFA
ICHGPQLLISADVIAGRKLITAVKPIIIDVKNAGA
EFYDQEVVVDKDQLVTSRTPDDLP
AFNREALRLLG"
/gene="STY3452"
/note="Pfam match to entry PF01965
ThiJ, ThiJ/PfpI family, score
296.00, E-value 4.8e-85"
/gene="STY3453"
/note="Orthologue of E. coli yhbP
(YHBP-ECOLI); Fasta hit to
YHBP-ECOLI (147 aa), 84% identity
in 147 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical protein"
/protein-id="CAD07792.1"
/db-xref="GI:16504340"
/db-xref="SPTRREMBL:Q8XEW3"
/translation="MDTLTAIGRWLAKQHVVTWC
VHHEGELWCANAFYLFDQAQNVALY
LLTDDKTRHAQMSGACAPVAGTVNGQPKTVARIR
GVQFKGEIRRLEGQESDAARKAYL
RRFPVARVLPAPVWEIRLDEIKFTDNTLGFGKKL
HWLRDSRAQQA"
/gene="STY3454"
/note="Orthologue of E. coli yhbQ
(YHBQ-ECOLI); Fasta hit to
YHBQ-ECOLI (100 aa), 81% identity
in 100 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical protein"
/protein-id="CAD07793.1"
/db-xref="GI:16504341"
/db-xref="GOA:Q8XGW2"
/db-xref="SWISS-PROT:Q8XGW2"
/translation="MLMATMTPWYLYLIRTADNA
LYTGITTDAVARRYRQHQTGKGAKA
LRKGELTLAFAAQVGDRSLALRIEYRIKQLTKR
QKERLVTEREAFFEALLSSLQTPVL KND"
/gene="STY3455"
/note="Similar to Escherichia coli
hypothetical protein YhbS
SW:YHBS-ECOLI (P45473) (167 aa)
fasta scores: E(): 0, 96.4% id in
167 aa and to Streptomyces
coelicolor putative
acetyltransferase SCF56.14C
TR:Q9RD52 (EMBL:AL133424) (173 aa)
fasta scores: E(): 7.7e-07, 30.9%
id in 165 aa Orthologue of E. coli
YHBS-ECOLI; Fasta hit to
YHBS-ECOLI (167 aa), 96% identity
in 167 aa overlap"

/transl-table=11
/product="putative
acetyltransferase"
/protein-id="CAD07794.1"
/db-xref="GI:16504342"
/db-xref="GOA:Q8XF87"
/db-xref="SPTREMBL:Q8XF87"
/translation="MLIRVEIPIDAPGIDALLRR
SFESDAEAKLVHDLREDGFLTLGL
VATDDEGVVGYVAFSPDVQGEDLQWVGMAPLA
VDEKYRGQGLARQLVYEGLDSLNE
FGYAAVVTLGDPAlysRFGFELAAHYDLHCRWPG
TESAFQVHRLAEDALEGVTLVNEY HDHFNRF"
misc-feature complement(90337..90561)
/gene="STY3455"
/note="Pfam match to entry PF00583
Acetyltransf, Acetyltransferase
(GNAT) family, score 57.20,
E-value 3.6e-13"
gene complement(90699..91223)
/gene="STY3456"
CDS complement(90699..91223)
/note="Orthologue of E. coli yhbT
(YHBT-ECOLI); Fasta hit to
YHBT-ECOLI (174 aa), 91% identity
in 174 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07795.1"
/db-xref="GI:16504343"
/db-xref="GOA:Q8Z3I5"
/db-xref="SPTREMBL:Q8Z3I5"
/translation="MLDKLRSRLVHAGPSLMSVP
VKLTPFALKRQVLEQVLSWQFRQA
LADGELEFLEGWRWLISIVRDIIDLKWYTTVENEKL
IVSQQQADADVSFSADASDLLMIAA
RKQDPDTLFFQRRLVIEGDTELGLYVKNLMDAIE
LEQMPKALRIMLLQLADFVEAGMK
NSPETKQTSVGEPC"
misc-feature complement(90816..91136)
/gene="STY3456"
/note="Pfam match to entry PF02036
SCP2, SCP-2 sterol transfer
family, score 101.00, E-value
2.3e-26"
gene 91440..92435
CDS 91440..92435
/gene="STY3457"
/note="Orthologue of E. coli yhbU
(YHBU-ECOLI); Fasta hit to
YHBU-ECOLI (331 aa), 97% identity
in 331 aa overlap"
/codon-start=1
/transl-table=11
/product="putative protease"
/protein-id="CAD07796.1"
/db-xref="GI:16504344"
/db-xref="GOA:Q8XEV5"
/db-xref="SPTREMBL:Q8XEV5"
/translation="MELLCPAGNLPALKAAIENG
ADAVYIGLKDDTNARHFAGLNFT
KKLQEAVSFVHQHRRKLHIAINTFAHPDGYARWQ
RAVDMAAQLGADALILADLAMLEY
AAERYPHIERHVSQVASATNEEAIRFYHRNFDVH
RVVLPRVLSIHQVKQLARVTPVPL
EVFAFGSLCIMAEGRCYLSSYLTGESPNTVGACS
PARFVRWQQTPOQGLESRNLNDVLID
RYQDGENAGYPTLCKGRYLVDRGERYHALEEPTSL
NTLELLPELMAANIASVKIEGRQR
SPAYVSQVAKVWRQAIDRCKAAPQNFPQRDWME
TLGAMSEGTQTTLGAYHRKWQ"
misc-feature 91659..92432
/gene="STY3457"
/note="Pfam match to entry PF01136"

misc-feature 91920..91976
 gene 92444..93322
 CDS 92444..93322
 U32, score 519.00, E-value
 $3.4e-152$
 /gene="STY3457"
 /note="PS01276 Peptidase family
 U32 signature"
 /gene="STY3458"
 /note="synonym: yhbv"
 /gene="STY3458"
 /note="Orthologue of *E. coli* yhbv
 (YHBV-ECOLI); Fasta hit to
 YHBV-ECOLI (298 aa), 91% identity
 in 292 aa overlap"
 /codon-start=1
 /transl-table=11
 /product="conserved hypothetical
 protein"
 /protein-id="CAD07797.1"
 /db-xref="GI:16504345"
 /db-xref="SPTREMBL:Q8Z3I4"
 /translation="MKYSLGPVLYYWPKETLEDF
 YQQAAKSSADIIYLGEAVCSKRRA
 TKVGDWLEMAKS LAASGKQVALSTLALVQASSEL
 SELKRYVDNGDFLLEASDLGVNL
 CAERKLPFVAGHALNCYNAVTLRLLKEGMVRWC
 MPVELSRDWLVNLLNQCDELGIRN
 QFEVEVLSYGHPLAYSARCFTARSED RP KDECE
 TCCIKYPNGRDVLSQENQQVFVNL
 GIQTMSGYVYVNLGNELTSMQGLVDIVRLSPLGTE
 TFAMLD AFRANENGGAPLPLAAHS
 DCNGYWKRLAGLELQA"
 /gene="STY3459"
 /gene="STY3459"
 /note="Similar to *Escherichia coli*
 hypothetical protein YhbW
 SW:YHBW-ECOLI (P45529) (335 aa)
 fasta scores: E(): 0, 94.9% id in
 335 aa and to the N-terminus of
 several monooxygenases e.g.
 Photobacterium leiognathi alkanal
 monooxygenase beta chain luxB
 SW:LXB2-PHOLE (P29239) (326 aa)
 fasta scores: E(): 4.1e-05, 26.4%
 id in 193 aa Orthologue of *E. coli*
 yhbW (YHBW-ECOLI); Fasta hit to
 YHBW-ECOLI (335 aa), 95% identity
 in 335 aa overlap"
 /codon-start=1
 /transl-table=11
 /product="possible monooxygenase"
 /protein-id="CAD07798.1"
 /db-xref="GI:16504346"
 /db-xref="GOA:Q8Z3I3"
 /db-xref="SPTREMBL:Q8Z3I3"
 /translation="MTDKTIPFSVLDLAPIPEGS
 SAKEAFTHSLLD LARLA EKRGYHRY
 WLAEHHNMTG IASAAT SVLIGYLAANTT LHLGS
 GGVMLPNHSPLVIAEQFGTLNTLY
 PGRIDLGLGRAPGSDQPTM RALRRHMSGDIDNFP
 RDVAELVDWFDARDP NPHVRPVPG
 YGEKIP IWL LGSSL YSAQ LAAQ LGLPFA FASHFT
 PDMLFQALH LYRTQFKPSAR LEKP
 YAMVCINI IAADS NRDAEFLFTSMQ QAFV KLRRG
 ETGQLPPP IENMETFWSPSEQYGV
 QQALSMSLVGDAKV RHGLV S ILRET QADEIMVN
 GQIFDHQARLHSF DLA MDV KQELL G"
 /gene="STY3459"
 /note="Pfam match to entry PF00296
 bac-luciferase, Bacterial
 luciferase, score 7.20, E-value
 0.1"
 gene complement (94598..95842 /gene="STY3460"
)
 complement (94598..95842 /gene="STY3460"
)
 /note="Fasta hit to TNAB-ECOLI"

overlap Fasta hit to TYRP-ECOLI
(403 aa), 35% identity in 401 aa
overlap Orthologue of E. coli mtr
(MTR-ECOLI); Fasta hit to
MTR-ECOLI (414 aa), 95% identity
in 414 aa overlap"
/codon-start=1
/transl-table=11
/product="probable amino acid
permease"
/protein-id="CAD07799.1"
/db-xref="GI:16504347"
/db-xref="GOA:Q8Z3I2"
/db-xref="SPTREMBL:Q8Z3I2"
/translation="MATLTTTQTSPSLLGGVVII
GGTIIAGAGMFSLPVVMSGAWFFWS
MAALVFTWFCMLHSGLMILEANLNRYIGSSFDTI
TKDLLGKGWNVNGISIAFVLYIL
TYAYISASGSILHHTFAEMSLNVPARAAGFAFAL
LVAFVVWLSTKAVSRMTAIVLGAK
VITFFLTFGSLLGHVQPTTLFNVAESHASYTPYL
LMTLPFCLASFGYHGNVPSLMKYY
GKDPRIVKCLYGTLLALALYSVWLLGTMGNIP
RPEFIGIAQKGGNIDVLVQALSGV
LNSRSLLLVFSNFAVASSFLGVTLGLFDYLA
DLFGFDDSAMGRFKTALLTFLPPM
IGGLLYPNGFLYAIGYAGLAATIWAIAIVPALLAR
KSRERFGSPKFRVWGGKPMIALIL
VFGVGNaviHILSSFNLLPVYQ"
/gene="STY3460"
)
/note="PS00594 Aromatic amino
acids permeases signature"
complement(95996..97936 /gene="STY3461"
)
complement(95996..97936 /gene="STY3461"
)
/note="Similar to Escherichia coli
ATP-dependent RNA helicase
cold-shock dead-box protein A
SW:DEAD-ECOLI () (646 aa) fasta
scores: E(): 0, 97.7% id in 646
aa"
/codon-start=1
/transl-table=11
/product="ATP-dependent RNA
helicase (dead-box protein)"
/protein-id="CAD07800.1"
/db-xref="GI:16504348"
/db-xref="GOA:Q8Z3I1"
/db-xref="SPTREMBL:Q8Z3I1"
/translation="MMSYVDWPLLRLHRTYYMAE
FETTFADLGLKAPILEALTDLGYE
KPSPIQAECIPHLLGGRDVLGMAQTGSGKTAAFS
LPLLNNLDPELKAPQILVILAPTR
LAVQVAEAMTDFSKHMRGVNVVALYGGQRYDVQL
RALRQGPQIVVGTGPRLLDHLKRG
TLDLSKLSGLVLDDEADEMLRMGFIEDVETIMAQI
PEGHQTAFLSATMPEAIRRITRRF
MKEPQEVRIQSSVTTRPDISQSYWTWGMRKNEA
LVRFLEAEDFDAIIIFVRTKNATL
EVAEALERNGYNSAALNGDMNQALREQTLERLKD
GRLDILIATDVAARGLDVERISLV
VNYDIPMDSESYVHRIGRTGRAGRAGRALLFVEN
RERRLLRNIEERTMKLTIPVEELPN
AELLGKRRLEKFAAKVQQQLESSDLDQYRALLAK
IQPSAEGEELDLETAAALLKMAQ
GERPLILPPDAPMPRKREFRDRDDRGPRDRNDRG
PRGDREERPRRERRDVGDMQLYRI
EVGRDDGVEVRHIVGAIANEGRDISSRYIGNIKLF
ASHSTIELPKGMPGEVLQHFTRTR
ILNKPMNMQLLGDAVPHAGGERGGGRSFSGERR
EGGRNFSGERREGGRGDGRFSGE
RRESRGPRRDDSTGRRRFGGDA"
/gene="STY3461"

misc-feature complement(95720..95770

gene complement(95996..97936

CDS complement(95996..97936

misc-feature complement(96866..97111

/note="Pfam match to entry PF00271
helicase-C, Helicases conserved
C-terminal domain, score 125.60,
E-value 9.5e-34"
misc-feature complement(97217..97831 /gene="STY3461"
)
/note="Pfam match to entry PF00270
DEAD, DEAD/DEAH box helicase,
score 232.80, E-value 1.1e-72"
misc-feature complement(97400..97426 /gene="STY3461"
)
/note="PS00039 DEAD-box subfamily
ATP-dependent helicases signature"
misc-feature complement(97715..97738 /gene="STY3461"
)
/note="PS00017 ATP/GTP-binding
site motif A (P-loop)"
gene complement(98064..98948 /gene="STY3462"
)
CDS complement(98064..98948 /gene="STY3462"
)
/note="Orthologue of E. coli yhbM
(YHBM-ECOLI); Fasta hit to
YHBM-ECOLI (294 aa), 97% identity
in 294 aa overlap. Contains 3x
PFAM hits to TPR repeat domain."
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07801.1"
/db-xref="GI:16504349"
/db-xref="GOA:Q8XG77"
/db-xref="SPTREMBL:Q8XG77"
/translation="MKPFLRWCFVATALTLAGCS
NSAWRKSEVLAVPLQOPTLQQEVIL
ARMEQILASRALTDERRAQQLLYERGVLYDSLGLR
ALARNDFSQALAIRPDMPEVFNYL
GIYLTTQAGNFDAAYEAFDSVLELDPTYNAYHLNR
GIALYYGGRDKLAQDDLLAFYQDD
PNDPYRSLSLWLYLVEQKLNEKQAKEALKARFEKSD
KEQWGWNIIVEFYLGDISETALMER
LKADATDNTSLAEHLSETNFYLGKYYLSLGDLDS
ATALFKLAVANNVHNFVEHRYALL
ELSLLGQDQDDLAESDQQ"
misc-feature complement(98148..98249 /gene="STY3462"
)
/note="Pfam match to entry PF00515
TPR, TPR Domain, score 11.30,
E-value 2.9"
misc-feature complement(98562..98663 /gene="STY3462"
)
/note="Pfam match to entry PF00515
TPR, TPR Domain, score 32.70,
E-value 8.3e-06"
misc-feature complement(98664..98765 /gene="STY3462"
)
/note="Pfam match to entry PF00515
TPR, TPR Domain, score 26.00,
E-value 0.00088"
gene complement(99058..10119 /gene="STY3463"
3)
/note="synonym: pnp"
CDS complement(99058..10119 /gene="STY3463"
3)
/note="Orthologue of E. coli pnp
(PNP-ECOLI); Fasta hit to
PNP-ECOLI (711 aa), 97% identity
in 711 aa overlap"
/codon-start=1
/transl-table=11
/product="polynucleotide
phosphorylase"
/protein-id="CAD07802.1"
/db-xref="GI:16504350"

/db-xref="SPTREMBL:Q8Z3I0"
/translation="MLNPIVREFQYGQHTVTLET
GMMARQATAAVMVSMDTAVFVT
VGQKKAKPGQDFPPLTVNYQERTYAAGRIPGSFF
RREGRPSEGETLIARLIDRPRVPL
FPEGFVNEVQVIATVSVNPQVNPDIVAMIGASA
ALSLSGIPFNGPIGAARVGYINDQ
YVLNPTQDELKESKLDLVVAGTEAAVLMVESEAE
LLSEDTMLGAVVFGHEQQQVVIQA
INDLVKEAGKPRWDWQPEAVNDALNARVAALAES
RLSDAYRITDKQERYAQVDVIKSE
TIEQLIAEDETILDANEGLGEILHAIKNVVRSRVL
AGEPRIDGREKDMIRGLDVRTGVL
PRTHGSALFTRGETQALVTATLGATARDAQVLDEL
MGERTDSFLFHYNFPPYSVGETGM
VGSPKRREIGHGRLAKRGVLAVMPDMDKFPYT
VVSEITESNGSSMASVCGASLAL
MDAGVPIKAAVAGIANGLVLKEGDNYVVLSDILGD
EDHLDMDFKVAGSRDGISALQMD
IKIEGITKEIMQVALNQAKGARLHILGVMEQAIN
APRGDISEFAPRHTIKISTDKIK
DVIGKGGSVIRALTEETGTTIEEDDGTVKIAAT
DGEKAKYAIRRIEEITAEIEVGRI
YNSKVTRIVDFGAFVAIGGGKEGLVHISQIADKR
VEKVTDYLQMGQEVPVKLEVDRQ
GRVRLSIKEATEQSQPAAAPEAPASEQAE"

misc-feature complement(99124..99342 /gene="STY3463"
)
/note="Pfam match to entry PF00575
S1, S1 RNA binding domain, score
92.80, E-value 5.2e-24"

misc-feature complement(99385..99525 /gene="STY3463"
)
/note="Pfam match to entry PF00013
KH-domain, KH domain, score 47.50,
E-value 3e-10"

misc-feature complement(99607..10025 /gene="STY3463"
1)
/note="Pfam match to entry PF01138
RNase-PH, 3' exoribonuclease
family, score 301.50, E-value
1e-86"

misc-feature complement(100561..1011 /gene="STY3463"
84)
/note="Pfam match to entry PF01138
RNase-PH, 3' exoribonuclease
family, score 239.00, E-value
6.6e-68"

gene complement(101435..1017 /gene="STY3464"
04)
/note="synonym: rpsO"

CDS complement(101435..1017 /gene="STY3464"
04)
/note="Orthologue of E. coli rpsO
(RS15-ECOLI); Fasta hit to
RS15-ECOLI (88 aa), 98% identity
in 88 aa overlap"
/codon-start=1
/transl-table=11
/product="30S ribosomal subunit
protein S15"
/protein-id="CAD07803.1"
/db-xref="GI:16504351"
/db-xref="GOA:Q8XFF9"
/db-xref="SWISS-PROT:Q8XFF9"
/translation="MSLSTEATAKIVSEFGRDAN
DTGSTDVQVALLTAQINHLQGHFA
EHKKDHHSRRGLLRMVSQRRKLLDYLKRKDVAR
TALIERLGLRR"

misc-feature complement(101441..1016 /gene="STY3464"
38)
/note="Pfam match to entry PF00312
Ribosomal-S15, Ribosomal protein
S15, score 133.80, E-value
1.7e-36"

90) /note="PS00362 Ribosomal protein
S15 signature"
gene complement(101855..1027 /gene="STY3465"
99) /note="synonym: truB"
CDS complement(101855..1027 /gene="STY3465"
99) /note="Orthologue of E. coli truB
(TRUB-ECOLI); Fasta hit to
TRUB-ECOLI (314 aa), 94% identity
in 314 aa overlap"
/codon-start=1
/transl-table=11
/product="tRNA pseudouridine 55
synthase (psi55 synthase) (p35
protein)"
/protein-id="CAD07804.1"
/db-xref="GI:16504352"
/db-xref="GOA:Q8Z3H9"
/db-xref="SPTREMBL:Q8Z3H9"
/translation="MSRPRRGRDIHGVLLLDKP
QGMSSNDVLQKVRIYNANRAGHT
GALDPLATGMLPICLGEATKFSQYLLSDKRYRV
IARLGQRTDTDADGQIVQERPVT
FSAEQLASALETFRGDIEQIPSMYSALKYQGRKL
YEYARQGIEVPREARPITVYELLF
IRHEGNELELEVHCSKGTYIRTIIDDLGEKLGCG
AHVTYLRRLTVSKYPVDRMVTLEH
LQTLVAQAEQQGVPAQQLLDPILLMPMDSPASDYP
VVNLPLTSSVYFKNGNPVRTTGAP
LKGLVRVTEGEDDKFIGMGEIDDEGRVAPRRLVV
EYPA"
misc-feature complement(102260..1027 /gene="STY3465"
12) /note="Pfam match to entry PF01509
TruB-N, TruB family
pseudouridylate synthase (N
terminal domain), score 326.70,
E-value 2.7e-94"
gene complement(102799..1032 /gene="STY3466"
00) /note="synonym: rbfA"
CDS complement(102799..1032 /gene="STY3466"
00) /note="Orthologue of E. coli rbfA
(RBFA-ECOLI); Fasta hit to
RBFA-ECOLI (132 aa), 96% identity
in 132 aa overlap"
/codon-start=1
/transl-table=11
/product="ribosome-binding factor
A (P15B protein)"
/protein-id="CAD07805.1"
/db-xref="GI:16504353"
/db-xref="GOA:Q8Z3H8"
/db-xref="SWISS-PROT:Q8Z3H8"
/translation="MAKEFGRPQRVAQEMQKEIA
LILQREIKDPRVGMMTTVSGVEMS
RDLAYAKVFVTFLNDQDEAAVKNGIKALQEASGF
IRSLLGKAMRLRIVPELTFFYDNS
LVEGMRMSNLVTNVVKHDEERRVNPDDSKED"
misc-feature complement(102862..1031 /gene="STY3466"
82) /note="Pfam match to entry PF02033
RBFA, Ribosome-binding factor A,
score 222.50, E-value 6.4e-63"
misc-feature complement(102901..1029 /gene="STY3466"
66) /note="PS01319 Ribosome-binding
factor A signature"
gene complement(103421..1060 /gene="STY3467"
99) /note="synonym: infB"
CDS complement(103421..1060 /gene="STY3467"

/note="Orthologue of E. coli infB (IF2-ECOLI); Fasta hit to IF2-ECOLI (890 aa), 96% identity in 892 aa overlap"
/codon-start=1
/transl-table=11
/product="protein chain initiation factor 2"
/protein-id="CAD07806.1"
/db-xref="GI:16504354"
/db-xref="GOA:Q8Z3H7"
/db-xref="SWISS-PROT:Q8Z3H7"
/translation="MTDLTLKALAAERQVSVDRL
VQQFADAGIRKSADDVSAQEKT
LLAHLNREAVSGPDKLQLRKTRSTLNIPGTGGK
SKSVQIEVRKRTFVKRDPQEAE
LAAEQAQREAEQARAEAEQAKREAQQKAERE
AAEQAKREAAEKREAAEAKDVKV
NQQTDDMTKTAQAEKARRENEAAELKRKAEEEAR
RKLEEEARRVAEEARRMAEENKWT
ATPEPVEDTSYHVTTSQHARQAEDENDREVEGG
RGRGRNAKAARPDKKGKHAESKAD
REEARAARVGGKGGKRGKGSLLQQGFQKPAQAVNR
DVVIGETITVGETLANKMAVKGSQV
IKAMMKLGAMATINQVIDQETAQLVAEEMGHKV
LRRENELEEAVMSDRDTGAAAEP
APVVTIMGHVDHGKTSLLDYIRSTKVASGEAGGI
TQHIGAYHVTDNGMITFLDTPGH
AAFTSMRARGAQATDIVVLVVAADDGVMPQTIEA
IQHAKAAGVPVVAVVNKIDKPEAD
PDRVKNELSQYGLPEWGGESQFVHVSAGTG
IDEELLDAILLQAEVLELKAVRKGM
ASGAVIDESFLDKGRGPVATVLVREGTLHKGDIVL
CGFEYGRVRAQRNLQEVLEAGP
SIPVEILGLSGVPAAGDEVTVRDEKKAREVALY
RQGKFREVKLARQQSKLENMFVN
MTEGEVHEVNIVLKADVQGSVEAISDSLLKLSTD
EVVKVIIGSGVGGITETDATLAAA
SNAILVGFNVRADASARKVIESSESLDLRYYSVIY
NLIDEVKAAMSGMLSPELKQQIIG
LAEVRDVFKSPKFGIAIGCMVTEGTIKRHNPPIRV
LRDNVVIYEGERLESLRRFKDDVNE
VRNGMECGIGVKNYNDVRVGDMIEVFEIIIEIQRST
IA"

misc-feature complement(103451..103852) /gene="STY3467"
/note="Pfam match to entry PF02131 IF2, Initiation factor 2, score 311.60, E-value 9e-90"

misc-feature complement(103508..103576) /gene="STY3467"
/note="PS001176 Initiation factor 2 signature"

misc-feature complement(103898..104929) /gene="STY3467"
/note="Pfam match to entry PF00009 GTP-EFTU, Elongation factor Tu family, score 262.10, E-value 5.5e-77"

misc-feature complement(104879..104902) /gene="STY3467"
/note="PS00017 ATP/GTP-binding site motif A (P-loop)"

gene complement(106124..107626) /gene="STY3468"
/note="synonym: nusA"

CDS complement(106124..107626) /note="Orthologue of E. coli nusA (NUSA-ECOLI); Fasta hit to NUSA-ECOLI (495 aa), 94% identity in 500 aa overlap"
/codon-start=1
/transl-table=11
/product="L factor"

/db-xref="GI:16504355"
/db-xref="GOA:Q8Z3H6"
/db-xref="SPTRREMBL:Q8Z3H6"
/translation="MNKEILAVVEAVSNEKALPR
EKIFEALESLATALTKKKYEQEID
VRVEIDRKSGDFDTFRRLIVEEVTMPTKEITLE
AARFEDESLNVGDYVEDQIESVTF
DRITTQTAQKVIVQKVREAERAMVVDQFRDQEGER
IVTGVVKVKVN RDNISLEIKSEGM
GNAEAVILREDMLPRENRPGDRIRGVLYAVRPE
ARGAQLFVTRSKP EMLIELFRIEV
PEIGEEVIEKAAARDPGSRAKIAVKTNDKRIDP
VGACVGMRGARVQAVSTELGGERI
DIVLWDDNPAQFVINAMAPADVASIVVDEDKHTM
DIAVEAGNLQAQAI GRNGQNVHLAS
QLSGWELNVMTVDDLQAKHQAEAHAAIEIFTKYL
DIDEFATVLVEEGFSTLEELAYV
PMKELLEIDGLDEPTVEALRERAKNALATLAQDQ
EASLGDNKPADDLLNLEG LDRDMA
FKLAARGVCTLEDLADQGIDDLADIEGLTDEKAG
ELIMAARNICWFGDEA"

misc-feature complement(107018..1072
36) /gene="STY3468"
/note="Pfam match to entry PF00575
S1, S1 RNA binding domain, score
32.60, E-value 2.2e-07"
/gene="STY3469"
/note="Orthologue of E. coli yhbC
(YHBC-ECOLI); Fasta hit to
YHBC-ECOLI (140 aa), 95% identity
in 140 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07808.1"
/db-xref="GI:16504356"
/db-xref="SPTRREMBL:Q8XFC7"
/translation="MITAPVEALGYELVGIEFIR
GRTSTLRIYIDSEGINVDDCADV
SHQVSAVLDVEDPISVAYNLEVSSPGLDRPMFTA
DHYARFQGEEVALVLRMAVQNRRK
WQGIKI AVDGEMITVTVEKGDEVFALSNIQKANL
VPHF"
/product="tRNA-Met"
/note="tRNA Met anticodon CAT,
Cove score 86.07"
/gene="STY3470"
/note="synonym: argG"
/gene="STY3470"
/note="Orthologue of E. coli argG
(ASSY-ECOLI); Fasta hit to
ASSY-ECOLI (446 aa), 96% identity
in 446 aa overlap"
/codon-start=1
/transl-table=11
/product="argininosuccinate
synthetase"
/protein-id="CAD07809.1"
/db-xref="GI:16504357"
/db-xref="GOA:Q8Z3H5"
/db-xref="SWISS-PROT:Q8Z3H5"
/translation="MHKNALKQKPI SL SVNQAGE
YSMTTILKHL PAGQRIGIAFSGGL
DTSAALLWMRQKGAVPYAYTANLGQPDEDDYDAI
P RAMEYGAENARLIDCRKQLVAE
GIAAIQCGAFHNTTGGLT YFNTTPLGRAVGTML
VAAMKEDGVNIWGDGSTYKGNDIE
RFYRYGLLTNAELQIYKPWL DTFIDE LGGRHEM
SEFMIACGF DYKMSVEKAYSTD SN
MLGATHEAKDLEFLNSSVKIVNPIMGVKFWD ESV

```

GTSMAAESRRNRGLSSSTLANALTR
PWPKGELIIAKALGTEPWVIWPSRYHDPRTHEFI
DRTRLMRARNKDQVNVE"
gene complement(123421..1246 /gene="STY3486"
80) /note="synonym: murA"
CDS complement(123421..1246 /gene="STY3486"
80) /note="Orthologue of E. coli murA
(MURA-ECOLI); Fasta hit to
MURA-ECOLI (419 aa), 97% identity
in 419 aa overlap"
/codon-start=1
/transl-table=11
/product="UDP-N-acetylglucosamine
1-carboxyvinyltransferase"
/protein-id="CAD07824.1"
/db-xref="GI:16504372"
/db-xref="GOA:Q8XF63"
/db-xref="SWISS-PROT:Q8XF63"
/translation="MDKFRVQGPPTTLQGEVTISG
AKNAALPILFAALLAEEPVEIQNV
PKLKDVDTSMKLLSQLGAKVERNGSVHIDASQVN
VFCAPYDLVKTMRASIWALGPLVA
RFGQQGVSLPGGCTIGARPVDLHITGLEQLGATI
KLEEGYVKASVEGRLKGAHIVMDK
VSGATVTIMCAATLAEGTTIIENAAREPEIVDT
ANFLVTLGAKIAQGQTDRTIIEGV
ERLGGGVYRVLPDFRIETGTFLVAAAISRKGKILCR
NAQPDTLDAVLAKLRLDAGADIEVG
EDWISLDMHGKRPKAVNVRTAPHPAFPTDMQAQF
TLLNLVAEGTGFITETVFENRFMH
VPELSRMGARAEIESNTVICHGVTLSGAQVMAT
DLRASASLVLAGCIAEGTTIVDRI
YHIDRGYERIEDKLRLGANIERVKGE"
/misc-feature complement(123463..1246 /gene="STY3486"
65) /note="Pfam match to entry PF00275
EPSP-synthase, EPSP synthase
(3-phosphoshikimate
1-carboxyvinyltransferase), score
617.60, E-value 7.1e-182"
gene complement(124734..1250 /gene="STY3487"
27)
CDS complement(124734..1250 /gene="STY3487"
27) /note="Similar to Escherichia coli
protein YrbA SW:YRBA-ECOLI
(P43781; P76672) (84 aa) fasta
scores: E(): 0, 97.6% id in 84 aa.
Weakly similar to several
BolA-like proteins involved in the
general stress response e.g. and to
Pseudomonas fluorescens BolA
protein TR:Q9XAV4 (EMBL:AJ243174)
(99 aa) fasta scores: E():
1.3e-07, 37.5% id in 72 aa. Note
codon 14 offers an alternative
translational start site."
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07825.1"
/db-xref="GI:16504373"
/db-xref="GOA:Q8XFL8"
/db-xref="SPTREMBL:Q8XFL8"
/translation="MLGCFHYLTNKEPMENHEIQ
SVLMNALSQEYHVSGDGSHFQVI
AVGEMFDGMSRVKKQQTVYGPLMEYIADNRIHAV
SIKAYTPAEPWARDRKLNGF"
/misc-feature complement(124764..1249 /gene="STY3487"
88) /note="Pfam match to entry PF01722
BolA, BolA-like protein, score

```

gene complement(125176..1254 /gene="STY3488"
72)
CDS complement(125176..1254 /gene="STY3488"
72) /note="Similar to the C-terminus
of Escherichia coli hypothetical
14.4 kDa protein in YrbB
SW:YRBB-ECOLI (P45389) (129 aa)
fasta scores: E(): 1.3e-25, 69.1%
id in 97 aa. Also similar to
several anti-sigma factor
antagonists e.g. Listeria
monocytogenes anti-sigma B factor
antagonist RsbV SW:RSBV-LISMO
(O85016) (114 aa) fasta scores:
E(): 0.38, 25.6% id in 90 aa"
/codon-start=1
/transl-table=11
/product="possible anti-sigma
factor antagonist"
/protein-id="CAD07826.1"
/db-xref="GI:16504374"
/db-xref="SPTREMBL:Q8XGD1"
/translation="MTPQLTWTRADTLVLAGEL
DQDVLAFLWDARVEAMNGVTRIDL
SQISRVDTGGALLAHHLVNVQAKQGNAVSLSGVN
DKVYALALQLYNLPEDVLPRM"

misc-feature complement(125179..1254 /gene="STY3488"
63) /note="Pfam match to entry PF01740
STAS, STAS domain, score 29.50,
E-value 7.6e-05"
gene complement(125472..1261 /gene="STY3489"
07)
CDS complement(125472..1261 /gene="STY3489"
07) /note="Orthologue of E. coli yrbC
(YRBC-ECOLI); Fasta hit to
YRBC-ECOLI (211 aa), 94% identity
in 211 aa overlap. Contains a
possible N-terminal signal
sequence"
/codon-start=1
/transl-table=11
/product="possible exported
protein"
/protein-id="CAD07827.1"
/db-xref="GI:16504375"
/db-xref="SPTREMBL:Q8XF31"
/translation="MFKRLMMVALVIAPLSAAT
AADQSNPYKLMNEAAQKTFDRLKN
EQPKIRANPDYL RDVVDQELLPPYVQVKYAGALVL
GRYYKEATPAQREAYFAAFREYLK
QAYGQALAMYHGQTYQIAPEQPLGDATIVPIRVT
IIDPNGRPPVRLLDFQWRKNTQTGN
WQAYDMIAEGVSMITTKQNEWSDLLRTKGIDGLT
AQLKSISQQKITLDEKQ"

gene complement(126126..1266 /gene="STY3490"
77)
CDS complement(126126..1266 /gene="STY3490"
77) /note="Orthologue of E. coli
YRBD-ECOLI; Fasta hit to
YRBD-ECOLI (183 aa), 87% identity
in 183 aa overlap. Contains a
possible N-terminal signal
sequence"
/codon-start=1
/transl-table=11
/product="possible exported
protein"
/protein-id="CAD07828.1"
/db-xref="GI:16504376"
/db-xref="SPTREMBL:Q8XG30"
/translation="MQTKKNEIWVGVFLLVALLA

TFDNIGGLKVRSPVРИGGVVVGRVEDISLDPKTY
LPRVTLDIEERYNHIPDTSSLSIR
TSGLLGEQYLALNVGFEDPELGTSLIKDGSTIQD
TKSAMVLEDMIGQFLYNSKGDDNK
NSGDAPAATEGHTEATTPAGETK"
/gene="STY3491"

gene complement (126682..1274
64) /gene="STY3491"
CDS complement (126682..1274
64)
/note="Orthologue of E. coli yrbE
(YRBE-ECOLI); Fasta hit to
YRBE-ECOLI (260 aa), 96% identity
in 260 aa overlap. Contains
possible membrane spanning
hydrophobic domains."
/codon-start=1
/transl-table=11
/product="putative membrane
protein"
/protein-id="CAD07829.1"
/db-xref="GI:16504377"
/db-xref="SPTREMBL:Q8XFR5"
/translation="MLLNALAALGHSGIKTVRTF
GRAGLMLFNIAIGKPEFRKHAPLL
VRQLYNVGVLSQLIIIVSGVFIGMVLGLQGYLVL
TTYSAETSLGMLVALSLLRELGPV
VAALLFAGRAGSALTAEIGLMRATEQLSSMEMMA
VDPLRRVISPRFWAGVISLPLLTI
IFVAVGIWGGSLVGVSWKIDAGFFWSAMQNAVD
WRMDLVNCLIKSVVFAITVTWIAL
FNGYDAIPTSAGISRATTRTVVHASLAVLGLDFV
LTALMFGN"
/gene="STY3492"
gene complement (127472..1282
84) /gene="STY3492"
CDS complement (127472..1282
84)
/note="Fasta hit to ARTP-ECOLI
(242 aa), 30% identity in 234 aa
overlap Fasta hit to YHBG-ECOLI
(240 aa), 33% identity in 228 aa
overlap Fasta hit to GLTL-ECOLI
(241 aa), 30% identity in 242 aa
overlap Fasta hit to TAUB-ECOLI
(255 aa), 31% identity in 228 aa
overlap Fasta hit to YECC-ECOLI
(250 aa), 34% identity in 229 aa
overlap Fasta hit to GLNQ-ECOLI
(240 aa), 32% identity in 245 aa
overlap Fasta hit to PSTB-ECOLI
(257 aa), 31% identity in 256 aa
overlap Orthologue of E. coli
YRBF-ECOLI; Fasta hit to
YRBF-ECOLI (269 aa), 95% identity
in 266 aa overlap"
/codon-start=1
/transl-table=11
/product="possible ABC-transport
protein, ATP-binding component"
/protein-id="CAD07830.1"
/db-xref="GI:16504378"
/db-xref="GOA:Q8Z3G8"
/db-xref="SPTREMBL:Q8Z3G8"
/translation="MGQSAANLVDMRDVSFCRGE
RCIFDNISLTVPGRKITAIMGPSG
IGKTTLLRLIGGQIIPPDKGEILFDGENVPAMSRS
RLYTVRKRMMSMLFOSGALFTDMNV
FDNVAYPLREHTNLPAPLLKSVVMMKLEAVGLRG
AAKLMPSSELGGMARRALARAIA
LEPDLMIFDEPFVGQDPITMGVLVKLISELNSAL
GVTCVVVSHDVPEVLSIADHAWIM
ADKKIVAHGSAQALQENTDPRVRQFLDGIADGPV
PFRYPAGDYHLDLLETGS"
/gene="STY3492"
misc-feature complement (127622..1281
85) /gene="STY3492"
/note="Pfam match to entry PF00005

misc-feature complement(127808..127852) 195.10, E-value 1.1e-54"
/gene="STY3492"
/note="PS00211 ABC transporters family signature"
misc-feature complement(128141..128164) /gene="STY3492"
/note="PS00017 ATP/GTP-binding site motif A (P-loop)"
/gene="STY3493"
/gene="STY3493"
/note="Similar to Escherichia coli hypothetical protein YrbG SW:YRBG-ECOLI (P45394) (325 aa) fasta scores: E(): 0, 87.3% id in 324 aa. Also similar in parts to Eukaryotic sodium/calcium exchange proteins e.g. Drosophila melanogaster potassium-dependent sodium/calcium exchanger TR:Q9U6A0 (EMBL:AF190455) (856 aa) fasta scores: E(): 9.2e-07, 30.1% id in 153 aa. Contains multiple possible membrane spanning hydrophobic domains Orthologue of E. coli yrbG (YRBG-ECOLI); Fasta hit to YRBG-ECOLI (325 aa), 87% identity in 324 aa overlap"
/codon-start=1
/transl-table=11
/product="putative membrane protein"
/protein-id="CAD07831.1"
/db-xref="GI:16504379"
/db-xref="GOA:Q8Z3G7"
/db-xref="SPTREMBL:Q8Z3G7"
/translation="MLLAMALLIIIGLLL VAYGAD RLVFAASILCRTFGI PPLIIGMTV VSIGTSLPEIIVSVAASLHGQLDLAVGAALGSNI TNILLI GLAALVRPFTVHSDVLR RELPLMLFVS VAGSVLHDGQLSRSDGIF LLLLA VLWLLFIVK IARLAERQGNDSLTR EQLAELPREDGLPVAFLWLGI ALVIMPMA TRMVI DNATVL ANYFAMSEL TLGLTVIAV GTSLPELATAIAGVRKGENDIAVG NLI GANIFNL AIVLGLP ALIAPGEINPLAFGRDY SVMLLV SVVFALLCWRHPRQIGRGAGI LLTGGFI VWLAMLYWLSPLL VG"
/gene="STY3493"
/note="Pfam match to entry PF01699 Na-Ca-Ex, Sodium/calcium exchanger protein, score 171.70, E-value 1.2e-47"
misc-feature 128533..128949 /gene="STY3493"
/note="Pfam match to entry PF01699 Na-Ca-Ex, Sodium/calcium exchanger protein, score 163.10, E-value 4.9e-45"
gene CDS 129488..130474 129488..130474 /gene="STY3494"
/gene="STY3494"
/note="Fasta hit to GUTQ-ECOLI (308 aa), 46% identity in 308 aa overlap Orthologue of E. coli yrbH (YRBH-ECOLI); Fasta hit to YRBH-ECOLI (328 aa), 92% identity in 328 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical protein"
/protein-id="CAD07832.1"
/db-xref="GI:16504380"
/db-xref="GOA:Q8Z3G6"
/db-xref="SPTREMBL:Q8Z3G6"
/translation="MSHLALQPGFDQQAGKEVL"

MFNCTGKVVVMGMGKSGHIGRKMAATFASTGTSS
FFVHPGEAAHGDLMVTPQDVIA
ISNSGESSEIAALIPVLKRLHVPLICITGRPESS
MARAADVHLCVKVPKEACPLGLAP
TSSTTATLVMGDAVALLKARGFTAEDFALSHP
GGALGRKLLLRLVSDIMHTGDEIPH
VNKHATLRDALLEITRKNLGMTVICDESMKIDGI
FTDGDLRRMFDMGGDMRQLGIAEV
MTPGGIRVRPGILAVDALNLMQSRHITSVLVADG
DQLLGVLHMHDLLRAGVV"
/gene="STY3494"
/note="Pfam match to entry PF01380
SIS, SIS domain, score 155.90,
E-value 7.1e-43"
/gene="STY3494"
/note="Pfam match to entry PF00571
CBS, CBS domain, score 38.80,
E-value 1.2e-07"
/gene="STY3494"
/note="Pfam match to entry PF00571
CBS, CBS domain, score 38.20,
E-value 1.9e-07"
/gene="STY3495"
/gene="STY3495"
/note="Orthologue of E. coli yrbI
(YRBI-ECOLI); Fasta hit to
YRBI-ECOLI (188 aa), 96% identity
in 188 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07833.1"
/db-xref="GI:16504381"
/db-xref="GOA:Q8Z3G5"
/db-xref="SPTRREMBL:Q8Z3G5"
/translation="MSKAGASLATCYGPVSTHVM
TKAENIRLLILDVDGVLSDGLIYM
GNNGEELKAFNVRDGYGIRCALTNSNIEVAIITGR
KAKLVEDRCATLGIVHLYQGQSNK
LIAFSDLLEKLAIAPENVAYVGDDLIDWPVMEKV
GLSVAVADAHPLLIPRADYVTHIA
GGRGAVREVCDLLLLAQGKLDEAKGQSI"
/gene="STY3496"
/gene="STY3496"
/note="Orthologue of E. coli yrbK
(YRBK-ECOLI); Fasta hit to
YRBK-ECOLI (191 aa), 91% identity
in 191 aa overlap. Contains a
possible N-terminal signal
sequence"
/codon-start=1
/transl-table=11
/product="possible exported
protein"
/protein-id="CAD07834.1"
/db-xref="GI:16504382"
/db-xref="SPTRREMBL:Q8XGY6"
/translation="MSKTRRWVIILLSLAILVLI
GINLADKDDPAAMVNSNDPTYKS
EHTDTVVSPEGALSYRLIAQHVEYFSDQAVSWF
TQPVLTTFDKDKVPTWSIKADKAK
LTNDRMLYLGHVEVNALVPDAQLRRITTDNAQI
NLVTQDVTSNDLVLYGTTFNSSG
LKMRGNLRSKNAELIEKVRTSYEIQNKTQPM"
/gene="STY3497"
/gene="STY3497"
/note="Orthologue of E. coli yhbN
(YHBN-ECOLI); Fasta hit to
YHBN-ECOLI (185 aa), 92% identity
in 185 aa overlap. Due to the
overlap, lacks the very N-terminal
12 aa of the E. coli orthologue."
/codon-start=1
/transl-table=11

protein"
/protein-id="CAD07835.1"
/db-xref="GI:16504383"
/db-xref="SPTREMBL:Q8Z3G4"
/translation="MLAGSLLAASIPAFAVTGDT
EQPIHIDSQQSLDMQGNVVTFTG
NVVMTQGTIKINADKVVVTRPGGEQGKEVIDGYG
NPATFYQMQDNGKPVKGHASHMHY
ELAKDFVVLTGNAYLEQLDSNITGDKITYLVKEQ
KMQAFSEKGKRVTTVLVPSQLQDK
NKGQTPAQKKSNS"
/gene="STY3498"
/gene="STY3498"
/note="Fasta hit to ARTP-ECOLI
(242 aa), 30% identity in 212 aa
overlap Fasta hit to YCFV-ECOLI
(233 aa), 30% identity in 203 aa
overlap Fasta hit to ZNUC-ECOLI
(251 aa), 33% identity in 233 aa
overlap Fasta hit to LIVF-ECOLI
(237 aa), 35% identity in 229 aa
overlap Fasta hit to FECE-ECOLI
(255 aa), 31% identity in 237 aa
overlap Fasta hit to TAUB-ECOLI
(255 aa), 32% identity in 238 aa
overlap Fasta hit to LIVG-ECOLI
(255 aa), 32% identity in 249 aa
overlap Fasta hit to FTSE-ECOLI
(222 aa), 30% identity in 216 aa
overlap Fasta hit to BTUD-ECOLI
(249 aa), 31% identity in 231 aa
overlap Fasta hit to PHNC-ECOLI
(262 aa), 31% identity in 249 aa
overlap Fasta hit to YECC-ECOLI
(250 aa), 31% identity in 239 aa
overlap Fasta hit to P76909 (246
aa), 33% identity in 204 aa
overlap Fasta hit to YRBF-ECOLI
(269 aa), 34% identity in 228 aa
overlap Fasta hit to YABJ-ECOLI
(232 aa), 30% identity in 215 aa
overlap Fasta hit to YHDZ-ECOLI
(252 aa), 31% identity in 237 aa
overlap Orthologue of E. coli yhbG
(YHBG-ECOLI); Fasta hit to
YHBG-ECOLI (240 aa), 97% identity
in 240 aa overlap"
/codon-start=1
/transl-table=11
/product="probable ABC transport
protein, ATP-binding component"
/protein-id="CAD07836.1"
/db-xref="GI:16504384"
/db-xref="GOA:Q8XFR6"
/db-xref="SPTREMBL:Q8XFR6"
/translation="MATLTAKNLAKAYKGRRVVE
DVSLTVNSGEIVGLLGPNGAGKTT
TFYMVVGIVPRDAGNIIIDDEDISLLPLHARARR
GIGYLPQEASIFRRLSVFDNLMAV
LQIRDDLTAEQREDRANELMEEFHIEHLRDSMGQ
ALSGGERRRVEIARALAANPKFIL
LDEPFAGVDPISVIDIKRIIEHLRDSGLGVLI
HNVRETLAVCERAYIVSQGHLIAH
GTPTEILQDEHVKRVYLGEDFRL"
/gene="STY3498"
/note="Pfam match to entry PF00005
ABC-tran, ABC transporter, score
219.90, E-value 3.7e-62"
/gene="STY3498"
/note="PS00017 ATP/GTP-binding
site motif A (P-loop)"
/gene="STY3498"
/note="PS00211 ABC transporters
family signature"
/gene="STY3499"

CDS 132936..134369 /gene="STY3499"
/note="Orthologue of E. coli rpoN
(RP54-ECOLI); Fasta hit to
RP54-ECOLI (477 aa), 94% identity
in 477 aa overlap"
/codon-start=1
/transl-table=11
/product="RNA polymerase sigma-54
factor (sigma-N)"
/protein-id="CAD07837.1"
/db-xref="GI:16504385"
/db-xref="GOA:Q8Z3G3"
/db-xref="SPTREMBL:Q8Z3G3"
/translation="MKQGLQLRLSQQLAMTPQLQ
QAIRLLQLSTLELQQELOQALENN
PLLEQTDLHDEIDTQQPQDDDPPLDTADALEQKEM
PEELPLDASWDEIYTAGTPSGPSG
DYIDDELVPVYQGETTSQLQDYLWQVELTPFSDT
DRAIAATSIVDAVDDTGYLTVSLDE
IRESMGDVEVDLDEVEAVLKRIQRFDPPGVVAAKD
LRDCCLLIQLSQFDKSTPWLEEARL
IICDHLDLLANHDFRTRLMRVTRLKEEVLKEAVNL
IQSLDP RPGQSIQTGEPEYVIPDV
LVRKHNGRWTVELNSDSIPRLQINQHYAACNSA
RNDADSQFIRSNLQDAKWLIKSLE
SRNDTLLRVSRCIVEQQQAFFEQGEEYMKPMVLA
DIAQAVEMHESTISRVTTQKYLHS
PRGIFELKYFFSSHVNTTEGGGEASSTAIRALVKK
LIAAENPAKPLSDSKLTSLLSEQG
IMVARRTVAKYRESLSIPPSNQRKQLV"
/gene="STY3499"
/note="Pfam match to entry PF00309
Sigma54-factors, Sigma-54 factors
family, score 938.70, E-value
1.5e-278"
/gene="STY3499"
/note="PS00717 Sigma-54 factors
family signature 1"
/gene="STY3499"
/note="PS00718 Sigma-54 factors
family signature 2"
/gene="STY3500"
/gene="STY3500"
/note="Orthologue of E. coli yhbH
(RP5M-ECOLI); Fasta hit to
RP5M-ECOLI (95 aa), 95% identity
in 95 aa overlap"
/codon-start=1
/transl-table=11
/product="probable sigma(54)
modulation protein"
/protein-id="CAD07838.1"
/db-xref="GI:16504386"
/db-xref="SPTREMBL:Q8Z3G2"
/translation="MQLNITGHNVEITEALREFV
TTKFAKLEQYFERINQVYVVLKVE
KVTHISDATLHVNGGEIHASAEGQDMYAAIDGLI
DKLARQLTKHKDKLKQY"
/gene="ptsN"
/note="synonym: STY3501"
/gene="ptsN"
/EC-number="2.7.1.69"
/note="Similar to Escherichia coli
nitrogen regulatory IIA protein
PtsN or RpoP SW:PTSN-ECOLI
(P31222) (163 aa) fasta scores:
E(): 0, 95.1% id in 163 aa"
/codon-start=1
/transl-table=11
/product="nitrogen regulatory IIA
protein"
/protein-id="CAD07839.1"
/db-xref="GI:16504387"
/db-xref="GOA:Q8XEZ0"
/db-xref="SPTREMBL:Q8XEZ0"

misc-feature 132936..134360

misc-feature 134025..134084

misc-feature 134298..134321

gene 134392..134679
CDS 134392..134679

gene 134797..135288
CDS 134797..135288

SGVHCQSKKRALEIISELAAKQLS
LPPQVVFEAILTREKMGSTGIGNGIAIPHGLEE
DTLRAVGVFVQOLETPIAFDAIDNQ
PVDLLFALLVPADQTKTHLHTLSLVAKRLADKTI
CRRLRAALNDEELYQIITDTEGEQ NEA"
/gene="ptsN"
/note="Pfam match to entry PF00359
PTS-EIIA-2,
phosphoenolpyruvate-dependent
sugar phosphotransferase system,
EIIA 2, score 97.50, E-value
5e-26"
/gene="ptsN"
/note="PS00372 PTS EIIA domains
phosphorylation site signature 2"
/gene="STY3502"
/gene="STY3502"
/note="Orthologue of E. coli
YHBJ-ECOLI; Fasta hit to
YHBJ-ECOLI (284 aa), 99% identity
in 283 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07840.1"
/db-xref="GI:16504388"
/db-xref="GOA:Q8Z3G1"
/db-xref="SWISS-PROT:Q8Z3G1"
/translation="MVLIVSGRSGSGKSVALRA
LEDMGFYCVNDLPVLLPDLARTL
ADRQISAAVSIDVRNIPESPEIFEQAMNNLPGAF
SPQLLFDADRNTLIRYSDSLRTTLL
HPLSSKNLSSLESADKESDLLEPLRSRADLIVDT
SEMSVHelaemLRTRLLGKREREL
TMVFESFGFKHGIPIDADYVFDVRFPLPNPHWDPK
LRPMTGLDKPVAAFLLDRHTEVHN
IYQTRSYLELWLPMLETNNRSYLTVAIGCTGGKH
RSVYIAEQLADYFRSRGKNVQSRH RTLEKRKT"
/gene="STY3502"
/note="PS00017 ATP/GTP-binding
site motif A (P-loop)"
/gene="STY3503"
/note="synonym: ptsO"
/gene="STY3503"
/note="Fasta hit to PTHP-ECOLI (85
aa), 30% identity in 79 aa overlap
Orthologue of E. coli ptsO
(PTSO-ECOLI); Fasta hit to
PTSO-ECOLI (90 aa), 97% identity
in 90 aa overlap"
/codon-start=1
/transl-table=11
/product="phosphocarrier protein
(nitrogen related hpr)"
/protein-id="CAD07841.1"
/db-xref="GI:16504389"
/db-xref="GOA:Q8XGX0"
/db-xref="SPTREMBL:Q8XGX0"
/translation="MTVKQTVEVTNKLGMHARPA
MKLFELMQGFDAEVLLRNDEGTEA
EANSVIALMLDSAKGRQIEIEATGPQEVEALAA
VIALFNSGFDED"
/gene="STY3503"
/note="Pfam match to entry PF00381
PTS-HPr, PTS HPr component
phosphorylation sites, score
138.00, E-value 1.7e-37"
/gene="STY3503"
/note="PS00369 PTS HPr component
histidine phosphorylation site
signature"
/gene="STY3503"
/note="PS00589 PTS HPr component
serine phosphorylation site

misc-feature 136564..136714 /note="region of low G+C (27%) and multiple short homopolymeric base sequences"
gene 136702..137334 /gene="STY3504"
CDS 136702..137334 /gene="STY3504"
/note="Orthologue of E. coli YRBL-ECOLI; Fasta hit to YRBL-ECOLI (210 aa), 77% identity in 210 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical protein"
/protein-id="CAD07842.1"
/db-xref="GI:16504390"
/db-xref="SPTREMBL:Q8XFU2"
/translation="MILLSKQTPLGAGRHRKCYT
HPDNARRCIKVYIYNRDHGGDKEIR
RELSYYAHLSRYLTDWSAIPRYYGTVETDCGTGY
VYDMITDFNGAPSITLTEFAAQCR
YEEDVAVLRLKLKRYLLDNHIVTMSLKPQNI
LCQRRISESEVVPPVCDNLGESTFI
PLATWSTWCCERKLERVWQRFIAQPALAVALERD
AQPKDKKRLALTSHEA"
gene complement (137409..1381 /gene="mtgA"
37) /note="synonym: STY3505"
CDS complement (137409..1381 /gene="mtgA"
37) /EC-number="2.4.2.-"
/note="Similar to Escherichia coli monofunctional biosynthetic peptidoglycan transglycosylase mtgA SW:MTGA-ECOLI (P46022) (242 aa) fasta scores: E(): 0, 83.9% id in 242 aa"
/codon-start=1
/transl-table=11
/product="monofunctional biosynthetic peptidoglycan transglycosylase"
/protein-id="CAD07843.1"
/db-xref="GI:16504391"
/db-xref="GOA:Q8Z3G0"
/db-xref="SPTREMBL:Q8Z3G0"
/translation="MSKRRRIAPLTFLRLLLRLIL
AALAVFWGGGIALFSVVPVPSAV
MAERQISAWLGGEFGYVAHSDWVSMADISPWMGL
AVIAAEQDFQFPEHWGFDVPAIEKA
LAHNERNESRIRGASTLSQQTAKNLFLWDGRSWV
RKGLEAGLTLGIETVWSKKRILTV
YLNIAEFGDGIFGVAAAQRYFHKPASRLSVSEA
ALLAAVLPNPLRYKANAPSGYVRS
RQAWIMRQMRLQGGESFMTRNQLN"
misc-feature complement (137499..1380 /gene="mtgA"
05) /note="Pfam match to entry PF00912 Transglycosyl, Transglycosylase, score 300.60, E-value 1.9e-86"
gene complement (138134..1387 /gene="STY3506"
87)
CDS complement (138134..1387 /gene="STY3506"
87) /note="Similar to Escherichia coli sigma cross-reacting protein 27A to which antibodies against region 2.2 peptide of RNA polymerase sigma subunit bind, Yhbl SW:S27A-ECOLI (P26428; P76673) (217 aa) fasta scores: E(): 0, 88.9% id in 217 aa. Also significantly similar to the C-terminus of Homo sapiens ES1 proteins: SW:ES1-HUMAN () (268 aa) fasta scores: E(): 4.8e-32, 45.3%"

/codon-start=1
/transl-table=11
/product="conserved hypothetical protein"
/protein-id="CAD07844.1"
/db-xref="GI:16504392"
/db-xref="SPTRREMBL:Q8Z3F9"
/translation="MKKIGVVLSGCGVYDGTEIH
EAVLTLLAIARSGAQAAICFAPDKP
QADVNHLTGEAMAETRNVLIEAARITRGDIRPL
SQAQPEELDALIVPGGFGAAKNLS
NFASKGSECRVSDVVALAKAMHQSGKPLGFICI
APAMLPKIFDFPLRLTIGTDIDTA
EVLEEMGAEHVPCPVDDIVVDEDNKVVTTPAYML
AQDIAQAASGIDKLVSRLVLAE"
gene complement (139014..1413 50) /gene="STY3507"
CDS complement (139014..1413 50) /note="synonym: arcB"
/gene="STY3507"
/note="Orthologue of E. coli arcB (ARCB-ECOLI); Fasta hit to ARCB-ECOLI (776 aa), 94% identity in 778 aa overlap"
/codon-start=1
/transl-table=11
/product="aerobic respiration control sensor protein"
/protein-id="CAD07845.1"
/db-xref="GI:16504393"
/db-xref="GOA:Q8Z3F8"
/db-xref="SPTRREMBL:Q8Z3F8"
/translation="MKQIRMLAQYYVDLMMKLGL
VRFSMILLALALAVVLAIVVQMAVTM
VLHGQVESIDVIRSIFFGLLITPWAVYFLSVVVE
QLEESRQLSRLVQKLEEMRERDL
KLNVQLKDNIQLNQEIAADREKAEAEELQETFEQL
KVEIKEREEAQIQLQQSSFLRSF
LDASPDLVFYRNEDKEFSGCNRAMELLTGKSEKQ
LVHLKPEDVYSPEAAKVIETDEK
VFRHNVSLLTYEQWLDYPDGRKACFEIRKVPYYDR
VGKRHGLMGFRDITERKRYQDAL
ERASRDKTTFISTISHELRTPLNGIVGLSRILLD
TDLTAEQEKYLKTIHVSAVTLGNI
FNDIIDMDKMERRKVQLDNQPVDFTSFMADLENL
SGLQAQQKGLRFVLEPTLPLPHKV
ITDGTRLRQILWNLISNAVKFTQQGQVTVRARYD
EGDMHLHFEDSGIGIPQDEQDKI
FAMYQQVKDSHGGKPATGTGIGLAVSRRLAKNMG
GDITVSSLPGKGSTFTLTVAHAPAV
AEEVEDAFDEDDMPLPALHVLLVEDIELNVIVAR
SVLEKLGNSVDVAMTGKALEMFA
PGEYDLVLLDIQLPDMTGLDIARELRRHTREDL
PPLVALTANVLKDKKEYLDAGMDD
VLSKPLSVPALTAMIKKFWDATDKEESTVTPEES
DKAQALLDIPMLEQYIELVGPKLI
TDGLAVFEKMMGLGYLSVLESNLTARDKKGVVEEG
HKIKGAAGSVGLRHLQQLGQQIQS
PDLPAWEDNVVEWIEEMKQEWQHDVAVLKAWVAN
AEKK"
misc-feature complement (139434..1397 75) /gene="STY3507"
/note="Pfam match to entry PF00072 response-reg, Response regulator receiver domain, score 118.80, E-value 1.1e-31"
misc-feature complement (139839..1404 77) /gene="STY3507"
/note="Pfam match to entry PF00512 signal, Histidine kinase, score 266.70, E-value 3e-76"
misc-feature complement (140694..1408 88) /gene="STY3507"
/note="Pfam match to entry PF00989 PAS, PAS domain, score 47.70,"

gene complement(141443..1423 /gene="STY3508"
72)
CDS complement(141443..1423 /gene="STY3508"
72) /note="Orthologue of E. coli yhcC
(YHCC-ECOLI); Fasta hit to
YHCC-ECOLI (309 aa), 95% identity
in 307 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07846.1"
/db-xref="GI:16504394"
/db-xref="SPTRREMBL:Q8XFV9"
/translation="MQLQKLVNMFGDLLRRYQG
KVHKLTLHGGFSCPNDGTIGRGG
CTFCNVASFADAEQQHHSIAEQLAHQAHLVNRAK
RYLAYFQAYTSTFAEVQVLRSMYQ
QAVSQASIVGLCVGTRPDCVPQAVVDLLCEYKDQ
GYEVWLELGLQTAHDKTLRRINRG
HDFACYQRTTRIARERGLKVC AHL I VGLPGEQQA
ECLQTMERVVETGVDGIKLHPLHI
VKGSTMKAWEAGRLNGIELDDYTLTAGEMIRHT
PPEVIYHRISASARRPTLLAPLWC
ENRWTGMVELDKYLNEHGVQGSALAR PWIPPPVA"
/gene="STY3510"
/note="synonym: gltB"
/gene="STY3510"
/EC-number="1.4.1.13"
/note="Similar to Escherichia coli
glutamate synthase [NADPH] large
chain precursor GltB SW:GLTB-ECOLI
(P09831) (1517 aa) fasta scores:
E(): 0, 95.4% id in 1486 aa and to
Pseudomonas aeruginosa glutamate
synthase large subunit GltB
TR:P95456 (EMBL:U81261) (1482 aa)
fasta scores: E(): 0, 60.9% id in
1476 aa"
/codon-start=1
/transl-table=11
/product="glutamate synthase
[NADPH] large chain precursor"
/protein-id="CAD07847.1"
/db-xref="GI:16504395"
/db-xref="GOA:Q8Z3F7"
/db-xref="SPTRREMBL:Q8Z3F7"
/translation="MLYDKSLEKDNCGFGLIAHI
EGEP SHK VV R TAI HAL ARM QH RGA
ILADGKTGDGC GLLLQK PDR FFRIV AEE RG WRLA
KNYAVGMIFLN KDP E LAA S R H IV
EEELQQETLSIVGWRDVPTNEGVLGEIALSSLPR
IEQI FVNAPAGWR PRDMERRLFIA
RRRIEKRLQDDKDFYVCSLSNLVNIYKGLCMPAD
LPRFYLDLADLRLES AICLFHQRF
STNTVPRWPLAQPFYLAHNGEINTITGNRQWAR
ARTYKFQTPLIPDLQSAAPFVN
GSDSSSLDNMLELLL LAGGMDIIRAMRLLVPPAWQ
NNPDMDQDLRAFFDFNSMHMEPWD
GPAGIVMSDGRFAACNLDRNGLRPARYVITDKL
ITCASEVGIWDYQPDEVVEKGRVG
PGELMVIDTRGGRILHSAETDDDLKSRHPYKAWM
EKNVRRLVPFEELPDEEVGSRELD
DDLLASYQKQFNYSAEELDSVIRVLGENGQEAVG
SMGDDTPFAVLSSQPRIIYDYFRQ
QFAQVTNPPIDPLREAHVMSL SIGREMNVFCE
AEGQAHRLSFKSPILLYSDFKQLT
TMSEHHYRADWLDITFDVTETTL DATVKALCDKA
EQMVRNGTVLLVLSDRNIGKNRLP
VPAPMAVGAVQTRLVDQSLRC DANIIVETGSARD
PHHFAVLLGF GATAI YPYL AYETL
GRLIDTQAIAKNYRTVMQNYRNGINKGLYKIMSK
MGISTIASYRCSKLFEAVGLHDDV
VNLCFQGVVSRIGGASFDDFQD LNL SKRAWLA

VVRTLQQAVQSGEYS DYQEYAKLVNERPAATLRD
LLAIHPDGEAVTIDEVEPASELFK
RFDTAAMSIGALSPEAHEALAEAMNSLGGNSNSG
EGGEDPARYGTNKVSRIKVQVASGR
FGVTPAYLVNADVIQIKVAQGAKPGEGGQLPGDK
VTPYIAKLRYSVPGVTLISPPPHH
DIYSIEDLAQLIFDLQVNPKAMISVKLVSEPGV
GTIATGVAKAYADLITIAGYDGTT
GASPLSSVKYAGCPWELGLVETQQALVANGLRHK
IRLQVDGGLKTGVDDIIKAAILGAE
SFGFGTGPVALGCKYLICHNNCATGVATQDE
KLRKNHYHGLPFKVTVNYFEFIARE
VRELMASLGVTTRLVLDLIGRTDLLKELEGFTAKQQ
KLALSRLLETAEPHPGKALYCTEN
NPPFDNGVLNAQOLLQQAKPFDARQSKTFWFDIR
NTDRSGVASLSGYIAQTHGDQGLA
SDPIKAHFGTAGQSFVGWNAGGVELYLTGDAND
YVGKGMAGGLAIRPPVGSFLSH
KASIIGNTCLYGATGRRLYAAGRAGERFGVRNSG
AITVVEGIGDNGCEYMTGGIVCVL
GKTGVNFAGAGMTGGFAYVLDEDGEFRKRVNPELV
EVLDVDSLAIHEEHLRGLITEHVQ
HTGSQRGEEILSRWSSFSTQFALVK
PKSSDVKALLGHRSRSAAELRVQAQ"
/gene="STY3510"
/note="PS00017 ATP/GTP-binding
site motif A (P-loop)"
/gene="STY3510"
/note="Pfam match to entry PF01645
Glu-synthase, Conserved region in
glutamate synthase, score 820.90,
E-value 4.4e-243"
/gene="STY3510"
/note="Pfam match to entry PF01493
DUF14, Domain of unknown function
DUF14, score 360.20, E-value
2.1e-104"
/gene="STY3511"
/note="synonym: gltD"
/gene="STY3511"
/note="Fasta hit to P76440 (412
aa), 33% identity in 443 aa
overlap Orthologue of E. coli gltD
(GLTD-ECOLI); Fasta hit to
GLTD-ECOLI (471 aa), 95% identity
in 471 aa overlap"
/codon-start=1
/transl-table=11
/product="glutamate synthase
(NADPH) small chain"
/protein-id="CAD07848.1"
/db-xref="GI:16504396"
/db-xref="GOA:Q8Z3F6"
/db-xref="SPTRREMBL:Q8Z3F6"
/translation="MSQN VYQFIDLQRVDPPKKP
LKLRKIEFVEIYEPFSEGQAKAQA
DRCLSCGNPYCEWKCPVHNYIPNW LKLANEGRIF
EAAELSHOTNTLPEVCGRVCPQDR
LCEGSCTLHDEFGA VTIGNIERYINDKAFEMGWR
PD MTGV RQ TD KRV AII GAGPAGLA
CADVLTRNGVKAVFDRHPEIGLLTFGIPAFKL
EKEVMTRRREIFTGMGIEFKLNTE
VGRDVQLEDLLKD YDAVFLGVGTYQSMRGGLENE
DADGVFDALPFLIANTKQIMGFGE
TSDEPYVSMEGKRVVVLGGDTAMDCVRTSIRQG
ATHVTCA YRR DEENMPGSRREVKN
AREEGVEFQFNVQPLGIEVNANGKVSGVKMVRTE
MGE PDAKGR RRAEIVAGSEHVVPA
DAVVMAFGFRPHSMEWLAKHSVELDSQGRIIAPE
RSDNAFQTSNPKIFAGGDIVRGSD
LVVTAIAEGRKAADGIMNYLEV"
/gene="STY3511"
/note="Pfam match to entry PF00070
pyr-redox, Pyridine
nucleotide-disulphide

gene 149140..150243
CDS 149140..150243

E-value 2e-33"
/gene="STY3512"
/gene="STY3512"
/note="Orthologue of E. coli yhcG
(YHCG-ECOLI); Fasta hit to
YHCG-ECOLI (375 aa), 77% identity
in 363 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07849.1"
/db-xref="GI:16504397"
/db-xref="SPTREMBL:Q8Z3F5"
/translation="MTNPTLAPQSDEYQQIHDGI
IRLVDTARTETVRSINAIMTATYW
EIGRRIVEFEQGGEARAAYGTQLIERLSVDLSQR
YKRGFSNRNLWQIRTFYLCFQHIE
IPQTLSAESSNLIPLAKTFPLPWSAYVRLLSVKD
NDARTFYEKETLRNGWSVRQLDRQ
IATQFYERTLLSHDKSAMLQQQPAPAEPNVLPPEQA
IRDPFILEFLNLKDEYESDLEDA
LLSHLMDFMLELGDDFAFVGRQRRLRIDDSWFRV
DLLFFHRRRLRCLLVLVDLKVGKFGY
ADAGQMNMMLNYAKEHWTMPGENPPVGLVLCAGK
GAGEAHYALTGLPNTIMASEYKVQ
LPDEKLLTDELIRSQTMLLETQLTRGGSLTTEKN"
/gene="STY3513"
/note="synonym: codB"
/gene="STY3513"
/note="Similar to Escherichia coli
cytosine permease codB
SW:CODB-ECOLI (P25525) (419 aa)
fasta scores: E(): 0, 82.5% id in
416 aa"
/codon-start=1
/transl-table=11
/product="cytosine permease"
/protein-id="CAD07850.1"
/db-xref="GI:16504398"
/db-xref="GOA:Q8Z3F4"
/db-xref="SPTREMBL:Q8Z3F4"
/translation="MSQDNNNYSQGPVPQAARKGV
IPLTFVMLGLTFFSASMWTGGTLG
TGLTYHDFFLAVFFGNLLGIYTAFLGYIGAKTG
LSTHLLARYSGVKGWSWLPSSL
STQVGWFGVGVAMFAIPVSKATGIDANILIAVSG
LLM TLTIFFGISA
LTSVWLA
SALALVVGSFVSAGTLTADFVRF
RHAKSAVLIAMVAFFLGNNSLMFIFGAAGAAAVGQ
ADISDV MIAQGLLPAIVV LGLNI
WT TNDNA LYASGLGFANITGLSSRTLSVNGIIG
TVCALWLYNNFVGWLTFLSSAIPP
IGGVIIADYL VNRRRYADFNTVRFIPVNWI AILS
VALGIAAGHYVPGI VPVNAVLGGV
FSYILLNPLFNRS LAKSPEVSHAEQ"
/gene="STY3513"
/note="Pfam match to entry PF02133
Transp-cyt-pur, Permeases for
cytosine/purines, uracil,
thiamine, allantoin, score 322.90,
E-value 3.6e-93"
/gene="STY3514"
/note="synonym: codA"
/gene="STY3514"
/note="Orthologue of E. coli codA
(CODA-ECOLI); Fasta hit to
CODA-ECOLI (426 aa), 84% identity
in 426 aa overlap"
/codon-start=1
/transl-table=11
/product="cytosine deaminase"
/protein-id="CAD07851.1"
/db-xref="GI:16504399"

/translation="MQNNNITIIRQTRLQGHEGLW
QITIENGRFSRIEPQEATSLPQGE
VLDAEGGLAIPPFVEPHIHLDDTQTAGEPSWNQS
GTLFEGIERWAERKAMLTHEDEVKA
RAMQTLKWQMANGIQYVRTHVDVSDPTLTALKAM
LEVQEVAPWVDLQIVAFPQEGIL
SYPNGEALLEEAVRLGADVGAIPIHFEFTREYGV
ESLHKTFALAQKYDRLIDVHCDEI
DDEQSRFVETVAALAHARDGMGARVTASHTAMHS
YNGAYASRLFRLKMSGINFVANP
LVNIHLQGRFDTPKRGGVTRVKEMLEAGINVCF
GHDDVFDPWYPLGTANMLQVLHMG
LHVCQLMGYGQINDGLNLITTHSAKTLHLQDYGL
SVGNAANLVLILPAENGFDAVRRQT
PARYSIRHRRVIAETVPSQTTLHLTQPEAVTFKR
"
gene complement(152962..1534 /gene="STY3515"
29)
CDS complement(152962..1534 /gene="STY3515"
29) /note="Fasta hit to YJGK-ECOLI
(150 aa), 32% identity in 148 aa
overlap Orthologue of E. coli
YHCH-ECOLI; Fasta hit to
YHCH-ECOLI (154 aa), 81% identity
in 154 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07852.1"
/db-xref="GI:16504400"
/db-xref="GOA:Q8Z3F2"
/db-xref="SPTREMBL:Q8Z3F2"
/translation="MMMGEVQSLPSCGLHPRLLD
ALTLALAARPQEKAQGRYELQGDN
IFMNVMQLTTQMPAGKKAELHEQYIDIQLLLTGV
ERIAFGMSGAARQCEEMHVEEDYQ
LCSQIADEQTITLQAGMFAVFMPGEHKPGCAVG
EPDDIKVVVKVRASLLAA"
gene complement(153426..1543 /gene="STY3516"
01)
CDS complement(153426..1543 /gene="STY3516"
01) /note="Similar to several
including: Escherichia coli
hypothetical protein YhcI
SW:YHCI-ECOLI (P45425) (291 aa)
fasta scores: E(): 0, 74.9% id in
291 aa and toseveral kinases e.g.
Streptomyces coelicolor
glucokinase SW:GLK-STRCO () (317
aa) fasta scores: E(): 8.1e-18,
31.8% id in 314 aa Fasta hit to
YCFX-ECOLI (303 aa), 30% identity
in 306 aa overlap Orthologue of E.
coli yhcI (YHCI-ECOLI); Fasta hit
to YHCI-ECOLI (291 aa), 75%
identity in 291 aa overlap"
/codon-start=1
/transl-table=11
/product="possible kinase"
/protein-id="CAD07853.1"
/db-xref="GI:16504401"
/db-xref="GOA:Q8Z3F1"
/db-xref="SWISS-PROT:Q8Z3F1"
/translation="MTTLAIDIGGTKLAAALIDN
NLRISQRRELPTPASKTPDALREA
LKALVÉPLRAEARQVAIASTGIIQEGMLLALNPH
NLGGLLHFPLVQTLETIAGLPTLA
VNDAQAAAWEAYHALPDDIRDMVFITVSTGVGGG
VVCDGKLLTGKGGLAGHHLGHTLAD
PHGPVCGCGRVGCVEAIASGRGMAAAARDDLAC
DAKTLFIRAGEGHQQARHLVSQSA
QVIARMIADVKAITDCQCVCVIGGSVGLAEGYLEQ

AGLLGAALLAQGDTL"

misc-feature complement(153753..1542 89) /gene="STY3516"
/note="Pfam match to entry PF00480
ROK, ROK family, score 236.10,
E-value 3.8e-69"

misc-feature complement(153834..1539 17) /gene="STY3516"
/note="PS01125 ROK family
signature"

gene complement(154298..1549 77) /gene="STY3518"

CDS complement(154298..1549 77) /pseudo
/note="Similar to several
including: Escherichia coli
hypothetical protein YhcJ
SW:YHCJ-ECOLI (P45426) (229 aa)
fasta scores: E(): 9e-28, 72.5% id
in 109 aa and to Clostridium
perfringens putative
N-acetylmannosamine-6-p epimerase
nanE TR:Q9S4L0 (EMBL:AF130859)
(221 aa) fasta scores: E():
8.5e-11, 48.8% id in 80 aa.
Contains a frameshift mutation
following codon 96."
/pseudo
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein (pseudogene)"

gene complement(155024..1565 14) /gene="STY3519"
/note="synonym: nanT"

CDS complement(155024..1565 14) /gene="STY3519"
/note="Fasta hit to YJHB-ECOLI
(405 aa), 35% identity in 452 aa
overlap Orthologue of E. coli nanT
(NANT-ECOLI); Fasta hit to
NANT-ECOLI (496 aa), 95% identity
in 496 aa overlap"
/codon-start=1
/transl-table=11
/product="putative sialic acid
transporter"
/protein-id="CAD07855.1"
/db-xref="GI:16504402"
/db-xref="GOA:Q8XFJ3"
/db-xref="SPTREMBL:Q8XFJ3"
/translation="MSTSTQNIPWYRHLNRAQWR
AFSAAWLGYLLDGFDVFLIALVLT
EVQSEFGLTTVQAASLISAAFISRWFGGLLLGAM
GDRYGRRLAMVSSIILFSVGTIAC
GFAPGYTTMFIARLVIGMGMAGEYGSSATYVIES
WPKHLRNKASGFLISGFSVGAVVA
AQVYSLVVPVWGRALFFIGILPIIFALWLRKNI
PEAEDWKEKHAGKAPVRTMVDILY
RGEHRIINILMTFAAAAALWFCFAGNLQNAIAVA
GLGLLCAVIFISFMVQSSGKRWP
GVMLMLVVLFAFLYSWPIQALLPTYLKTELAYDP
HTVANVLFFSGFGAAVGCCVGGFL
GDWLGTRKAYVCSSLASQILIIPVFAIGGTNVWV
LGLLLFFQOMLGQGIAIGILPKLIG
GYFDTDQRAAGLGFTYNVGALGGALAPILGALIA
QRLDLGTALASLSFSLTFVVILLI
GLDMPSRVQRWLRPEALRTHDAIDDKPFSGAVPL
GSGKGAFVKTKS"
/gene="STY3519"

misc-feature complement(155114..1564 57) /gene="STY3519"
/note="Pfam match to entry PF00083
sugar-tr, Sugar (and other)
transporter, score 41.30, E-value

gene complement(156630..1575 /gene="STY3520"
23)
/note="synonym: nanA"
CDS complement(156630..1575 /gene="STY3520"
23)
/note="Orthologue of E. coli nanA
(NPL-ECOLI); Fasta hit to
NPL-ECOLI (296 aa), 91% identity
in 295 aa overlap"
/codon-start=1
/transl-table=11
/product="N-acetylneuraminate
lyase"
/protein-id="CAD07856.1"
/db-xref="GI:16504403"
/db-xref="GOA:Q8Z3F0"
/db-xref="SWISS-PROT:Q8Z3F0"
/translation="MAKALQGVMALLTPFDHQQLDSESLRRLVRFNIGQQIDGLYV
GGSTGEAFVQSLAEREQVLEIVAAEAKGKITLIA
HVGTVSTAESQQLASAAKRYGFDA
VSAVTPFYYPPSFEEHCDHYRAIIDSADGLPMVV
YNIPALSGVKLTLDQINTLVTLPGVNALKQTSGDLFQMEQIRRAHPDLVLYNGYDEIF
ASGLLAGADGGIGSTYNIMGWRYQ
GIVQALREGDVAKAQRLLQTECNKVIDLLIKTGVFRGLKTVLHYMDVVSVP
RALKPFPAPVDEKYL PALKALAQQLMEEKA"
misc-feature complement(156693..1574 /gene="STY3520"
51)
/note="Pfam match to entry PF00701
DHDPS, Dihydridopicolinate
synthetase family, score 441.70,
E-value 6.3e-129"
misc-feature complement(157023..1571 /gene="STY3520"
15)
/note="PS00666 Dihydridopicolinate
synthetase signature 2"
misc-feature complement(157350..1574 /gene="STY3520"
03)
/note="PS00665 Dihydridopicolinate
synthetase signature 1"
gene complement(157658..1584 /gene="STY3521"
49)
CDS complement(157658..1584 /gene="STY3521"
49)
/note="Similar to several proposed
regulatory proteins e.g.
Escherichia coli hypothetical
transcriptional regulator Yhck
SW:YHCK-ECOLI (P45427) (263 aa)
fasta scores: E(): 0, 87.5% id in
263 aa and to Streptomyces
coelicolor putative
transcriptional regulator SCF55.06
TR:Q9RJQ8 (EMBL:AL132991) (253 aa)
fasta scores: E(): 6.6e-11, 27.2%
id in 254 aa"
/codon-start=1
/transl-table=11
/product="putative GntR-family
transcriptional regulator"
/protein-id="CAD07857.1"
/db-xref="GI:16504404"
/db-xref="GOA:Q8XFH8"
/db-xref="SWISS-PROT:Q8XFH8"
/translation="MDVMNAFDSSQAEDSPTSLGR
SLRRRPLARKKLSEMVEEELEQMI
RRHEFGEGEQLP SERELMAFFNVGRPSVREALAA
LKRKGLVQININGERARVSRPSADTIISELSGM
AKDFLTHPGGIAHFSQLRLFFESSLV
RYAAEHATDEQI ALLTKALEINSQ
SLDDNALFIRSDVEFHRLV LAEIPGNPIFMAIHVA
LLDWLIAARPSPVDRELHEHNNVS
YQQHIVIVDAIRQRDPDKADRALQTHLNSVSATW

misc-feature complement(158165..1583 /gene="STY3521"
44)
/note="Pfam match to entry PF00392
gntR, Bacterial regulatory
proteins, gntR family, score
94.50, E-value 1.1e-27"

misc-feature complement(158213..1582 /gene="STY3521"
87)
/note="PS00043 Bacterial
regulatory proteins, gntR family
signature"

gene complement(158558..1590 /gene="STY3522"
58)
/note="synonym: sspB"

CDS complement(158558..1590 /gene="STY3522"
58)
/note="Orthologue of E. coli sspB
(SSPB-ECOLI); Fasta hit to
SSPB-ECOLI (165 aa), 89% identity
in 167 aa overlap"
/codon-start=1
/transl-table=11
/product="stringent starvation
protein B"
/protein-id="CAD07858.1"
/db-xref="GI:16504405"
/db-xref="SPTREMBL:Q8XGT9"
/translation="MDLSQLTPRRPYLLRAFYEW
LLDNQLTPHLVVDMPLPGVHVPME
YARDGQIVLNIAPIRAVGNGLELSNDEVRFNARFGG
VPRQVSVPVLAALIYARENGAGT
MFEPEAAAYDEDVVSVLNDDDDNTAGAESETVMSVID
GDKPDHDDDSSPDDEPPPGRGGP ALRVVK"

gene complement(159064..1597 /gene="STY3523"
02)
/note="synonym: sspA"

CDS complement(159064..1597 /gene="STY3523"
02)
/note="Orthologue of E. coli sspA
(SSPA-ECOLI); Fasta hit to
SSPA-ECOLI (211 aa), 98% identity
in 210 aa overlap"
/codon-start=1
/transl-table=11
/product="stringent starvation
protein A"
/protein-id="CAD07859.1"
/db-xref="GI:16504406"
/db-xref="SPTREMBL:Q8Z3E9"
/translation="MAVAANKRSVMTLFSGPTDI
YSHQVRIVLAEKGVSFEIEHVEKD
NPPQDLIDLNPQSVPTLVDRRTLWESRIIMEY
LDERFPHPPLMPVYPVARGESRLY
MHRIEKDWYTLMNIVVNGSASEVDSARKQLREEL
LAIAPVFGQKPYFLSDEFSLVDCY
LAPLLWRLPQLGIEFSGAGAKELKGYMTRVFERD
SFLASLTEAEREMRLGRG"

misc-feature complement(159121..1596 /gene="STY3523"
72)
/note="Pfam match to entry PF00043
GST, Glutathione S-transferases.,
score 166.00, E-value 1.9e-49"

gene complement(160017..1604 /gene="STY3524"
09)
/note="synonym: rpsI"

CDS complement(160017..1604 /gene="STY3524"
09)
/note="Orthologue of E. coli rpsI
(RS9-ECOLI); Fasta hit to
RS9-ECOLI (129 aa), 99% identity
in 129 aa overlap"
/codon-start=1
/transl-table=11
/product="30S ribosomal subunit
protein S9"

/db-xref="GI:16504407"
/db-xref="GOA:Q8XFX5"
/db-xref="SWISS-PROT:Q8XFX5"
/translation="MAENQYYGTGRRKSSAARVF
IKPGNGKIVINQRSLEQYFGRETA
RMVVRQPLELVDMVEKLDLYITVKGGGISQAGA
IRHGITALMEYDESLRGELRKAG
FVTNDARQVERKKVGLRKARRRPQFSKR"
/gene="STY3524"
/note="Pfam match to entry PF00380
Ribosomal-S9, Ribosomal protein
S9/S16, score 249.10, E-value
7.2e-77"
misc-feature complement(160020..1603
82)
/gene="STY3524"
/note="PS00360 Ribosomal protein
S9 signature"
/gene="STY3525"
gene complement(160425..1608
53)
/gene="STY3525"
CDS complement(160425..1608
53)
/note="synonym: rplM"
/gene="STY3525"
/note="Orthologue of E. coli rplM
(RL13-ECOLI); Fasta hit to
RL13-ECOLI (142 aa), 100% identity
in 142 aa overlap"
/codon-start=1
/transl-table=11
/product="50S ribosomal subunit
protein L13"
/protein-id="CAD07861.1"
/db-xref="GI:16504408"
/db-xref="GOA:P02410"
/db-xref="SWISS-PROT:P02410"
/translation="MKTFTAKPETVKRDWYVVDA
TGKTLGRLATELARRLRGKHKA
TPHVDTGDYIIVLNADKVAVTGNKRTDKVYYHHT
GHIGGIKQATFEEMIARRPERVIE
IAVKGMLPKGPLGRAMFRKLKVYAGNEHNHAAQQ
PQVLDI"
misc-feature complement(160428..1608
11)
/gene="STY3525"
/note="Pfam match to entry PF00572
Ribosomal-L13, Ribosomal protein
L13, score 305.00, E-value
9.2e-88"
misc-feature complement(160473..1605
41)
/gene="STY3525"
/note="PS00783 Ribosomal protein
L13 signature"
/gene="STY3526"
gene complement(161154..1622
78)
/gene="STY3526"
CDS complement(161154..1622
78)
/note="Orthologue of E. coli yhcM
(YHCM-ECOLI); Fasta hit to
YHCM-ECOLI (375 aa), 85% identity
in 373 aa overlap"
/codon-start=1
/transl-table=11
/product="putative ATP/GTP-binding
protein"
/protein-id="CAD07862.1"
/db-xref="GI:16504409"
/db-xref="SPTRREMBL:Q8Z3E8"
/translation="MQSLSPTRSYLQALNEGTHQ
PDDVQKEAVDRLETLYQALTAKKS
SATPPGGLIARLGKLLGKNEPDAQIPVRGLYMWG
GVGRGKTWLMDLFYHSLPGERKLR
LHFHRFMLRVHEELTALQGQIDPLDIIADRKFTE
TDVLCFDEFFVTDITDAMLLGGLM
KALFARGITLVATSNIPPEELYRNGLQRARFLPA
IDAIIKQHCDIMNVDAVGVDYRLRTL
TQAHLWLTPLNDETRRQMDKLWLALAGAAREHAP

TLCVEARSQHDYIALSRLFHTVLLFDVPVMTPLM
ENEARRFIALVDEFYERHVKLVVS
AAAPLYEIQYQGERLKFEFQRCLSLQEMQSAEYL
KREHMP"

misc-feature complement (162024..162047) /gene="STY3526"
/note="PS00017 ATP/GTP-binding site motif A (P-loop)"
/gene="STY3527"
/gene="STY3527"
/note="Orthologue of E. coli yhcB (YHC-B-ECOLI); Fasta hit to YHC-B-ECOLI (134 aa), 96% identity in 132 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical protein"
/protein-id="CAD07863.1"
/db-xref="GI:16504410"
/db-xref="SPTRREMBL:Q8Z3E7"
/translation="MFMTWEYALIGLVGIIIGAVAMRGNRKLRQQQALQYELEKKNKAELEEYREELVSHFARSAELLDTMAHDYRQLYQYMAKSSSSLPEMSAESNPFRNRLA
ESEASNDQAPVQMPRDYSEGASGLLRSGAKRD"
/gene="degQ"
/note="synonym: STY3528"
/gene="degQ"
/EC-number="3.4.21.-"
/note="Similar to Escherichia coli protease DegQ SW:DEGQ-ECOLI (P39099) (455 aa) fasta scores: E(): 0, 90.1% id in 455 aa"
/codon-start=1
/transl-table=11
/product="serine protease"
/protein-id="CAD07864.1"
/db-xref="GI:16504411"
/db-xref="GOA:Q8Z3E6"
/db-xref="SPTRREMBL:Q8Z3E6"
/translation="MKKHTQLLSALALSVGLTLSAPFPALASIPGQVPGQATLPSLAPMLEKVLPAVSVKVEGTATQSQKVPEEFKKFFGEDLPDQPSQPFEGLGSGVIIDAAKGYVLTNHHVINQAQKISIQLNDGREFDAKLIGGDDQSDIALLQIQNQPSKLTQIAIADSDKLRVGDFAVAVGNPFGLGQTATSGIISALGRSGLNLEGLENFIQTDASINRGNSGGALLNLNQELIGINTAILAPGGGSIGIGFAIPSNMAQTLAQQLIQFGEIKRGLLGIKGTEM
TADIAKAFKLNVQRGAFVSEVLPNGSAKAGVKS
GDVIISLNGKPLNSFAELRSRIAT
TEPGTKVKLGLLRDGKPLEVEVTLDSNTSSASA
EMIAPALQGATLSDGQLKDGTKGV
KVDSVEKSSPAAQAGLQKDDVIIGVNRDRRISSIA
EMRKVMAAKPSIIALQVVRGNENI YLLR"
/gene="degQ"
/note="Pfam match to entry PF00089 trypsin, Trypsin, score 75.70, E-value 3.5e-23"
/gene="degQ"
/note="Pfam match to entry PF00595 PDZ, PDZ domain (Also known as DHR or GLGF) ., score 79.80, E-value 5.5e-20"
/gene="degQ"
/note="Pfam match to entry PF00595 PDZ, PDZ domain (Also known as DHR or GLGF) ., score 54.40, E-value 2.5e-12"
/gene="degQ"
/note="PS00017 ATP/GTP-binding site motif A (P-loop)"
/gene="degs"

CDS

164486..165556

/gene="degs"
/EC-number="3.4.21.-"
/note="Similar to Escherichia coli
protease degs precursor degs or
hhob or htrH SW:DEGS-ECOLI
(P31137) (355 aa) fasta scores:
E(): 0, 91.6% id in 356 aa"
/codon-start=1
/transl-table=11
/product="serine protease"
/protein-id="CAD07865.1"
/db-xref="GI:16504412"
/db-xref="GOA:Q8XEX3"
/db-xref="SPTREMBL:Q8XEX3"
/translation="MFVKLLRSVAIGLIVGAILL
AVMPSLRKINPIAVPQFDSTDETP
ASYNFAVRRAAPAVVNVNRSMNSTAHNQLEIRT
LGSGVIMDQRGYIITNKHVINDAD
QIIVALQDGRVFEALLVGSDSLTDLAVLKINATG
GLPTIPINTKRTPHIGDVVLALIGN
PYNLGQTITQGIISATGRIGLNPTGRQNFLQTD
SINHGNSGGALVNSLGEMLMGINTL
SFDKSNDGETPEGGLGFAIPFQLATKIMDKLIRDG
RVIRGYIGIGGREIAPLHAQQGSG
MDPIQGIVVNEVTPNGPAALAGIQVNDLIISVNN
KPAVSALETMDQVAEIRPGSVIPV
VVMRDDKQLTFQVTVQEYPASN"

misc-feature

164669..165217

/gene="degs"
/note="Pfam match to entry PF00089
trypsin, Trypsin, score 92.90,
E-value 1.2e-28"

misc-feature

165227..165502

/gene="degs"
/note="Pfam match to entry PF00595
PDZ, PDZ domain (Also known as DHR
or GLGF) ., score 64.60, E-value
2.1e-15"

repeat-unit
gene

166341..169683

/note="repeat element rep12"

complement(166342..1676

/gene="oadB"

43)

/note="synonym: STY3531"

CDS

complement(166342..1676

/gene="oadB"

43)

/EC-number="4.1.1.3"
/note="Similar to Salmonella
typhimurium oxaloacetate
decarboxylase beta chain OadB
SW:DCOB-SALTY (Q03031) (433 aa)
fasta scores: E(): 0, 98.2% id in
433 aa"
/codon-start=1
/transl-table=11
/product="oxaloacetate
decarboxylase beta chain"
/protein-id="CAD07866.1"
/db-xref="GI:16504413"
/db-xref="GOA:Q8Z3E5"
/db-xref="SPTREMBL:Q8Z3E5"
/translation="MESLNALLQGMGLMHLGAGQ
AIMLLVSLLLLWLAIKKFEPLL
LPIGFGLLSNIPEAGMALTALESLLAHHDAGQL
AVIAAKLNACPDVHAIKEALALAL
PSVQNQMENTLAVDMGYTPGVLAFLFYKVAIGSGVA
PLVI FMGVGAMTDFGPILLANPRTL
LLGAAQAQFGIFATVLGALTNYFGLIAFTLPQAA
AIGIIGGADGPTAIYLGSKLAPEL
LGAIAVAAYSYMLVPLIQPPIMRALTSEKERKI
RMVQLRTVSKREKILFPVVLLL
ALLLPDAAPLLGMFCFGNLMRESGVVERLSDTVQ
NGLINIVTIFLGLSVGAKLVADKF
LQPQTLGILLLGVIAFGIGTAAGVLMAKLLNLCS
KNKINPLIGSAGVSAVPMAARVSN
KVGLESNPQNFLMHAMGPNVAGVIGSAIAAGVM
LKYVLAM"

gene

complement(167656..1694
31)

/gene="oadA"

CDS complement(167656..1694 /gene="oadA"
31)
/EC-number="4.1.1.3"
/note="Similar to *Salmonella*
typhimurium oxaloacetate
decarboxylase alpha chain OadA
SW:DCOA-SALTY (Q03030) (590 aa)
fasta scores: E(): 0, 98.6% id in
590 aa"
/codon-start=1
/transl-table=11
/product="oxaloacetate
decarboxylase alpha chain"
/protein-id="CAD07867.1"
/db-xref="GI:16504414"
/db-xref="GOA:Q8XGX8"
/db-xref="SPTREMBL:Q8XGX8"
/translation="MTIAITDVVLRDAHQSLFAT
RLRLDDMLPIAAQLDDVGYGSLEC
WGGATFDACIRFLGEDPWLRLLRELKKAMPKTPLQ
MLLRGQNLLGYRHYADDVVERFVE
RAVKNGMDVFRVFDAMNDPRNMKAALQAVRSHGA
HAQGTLSYTTPAHTLQTWLDT
QLLETGVDSIAIKDMSGILTPMAAFELVSEIKKR
FEVRLHLHCHATTGMAEMALLKAI
EAGVDGVDTAISMSATYGHPATEALVATLAGTE
HDTGLDILKLENIAAYFREVRKKY
HAFEGQLKGYSRILVAQVPGGMLTNLESQLKQQ
NAADRLDQVLAELIPRVEDLGFIP
LVTPTSQIVGTQAVLNVLGERYKTIAKETAGIL
KGEYGHPTPVNAALQARVLEGS
PVTCRPADLLKPELAELAEADVRQQAQEKGITLAG
NAIDDVLTVALFPQIGLKFLNRH
NPAAFEPLPQAEAAQPVAKAEKPAASGIYTVEVE
GKAFVVRVSDGGDISQLTTAVPAA
SSAPVQAAAPAGAGTPVTAPLAGNIWKVIATEGQ
SVAEGDVLLILEAMKMETEIRAAQ
AGTVRGIAVKSGDAVSVGDTLMTLA"
misc-feature complement(167662..1678 /gene="oadA"
65)
/note="Pfam match to entry PF00364
biotin-lipoyl, Biotin-requiring
enzymes, score 101.10, E-value
2.2e-26"
misc-feature complement(167740..1677 /gene="oadA"
93)
/note="PS00188 Biotin-requiring
enzymes attachment site"
misc-feature complement(168577..1694 /gene="oadA"
07)
/note="Pfam match to entry PF00682
HMGL-like, HMGL-like, score
326.40, E-value 3.4e-94"
gene complement(169447..1696 /gene="oadG"
89)
/note="synonym: STY3533"
CDS complement(169447..1696 /gene="oadG"
89)
/EC-number="4.1.1.3"
/note="Similar to *Salmonella*
typhimurium oxaloacetate
decarboxylase gamma chain oadG
SW:DCOG-SALTY (Q03032) (83 aa)
fasta scores: E(): 3.7e-22, 85.5%
id in 83 aa."
/codon-start=1
/transl-table=11
/product="oxaloacetate
decarboxylase gamma chain"
/protein-id="CAD07868.1"
/db-xref="GI:16504415"
/db-xref="GOA:Q8Z3E4"
/db-xref="SWISS-PROT:Q8Z3E4"
/translation="MTNAALLGEGFTLMLLGMG
FVLAFLFLLIFAIRGMSAVITRFF

gene complement (169845..1704
62) /gene="STY3534"
CDS complement (169845..1704
62) /note="synonym: ttdB"
/gene="STY3534"
/note="Orthologue of E. coli ttdB
(TTDB-ECOLI); Fasta hit to
TTDB-ECOLI (201 aa), 67% identity
in 203 aa overlap"
/codon-start=1
/transl-table=11
/product="tartrate dehydratase"
/protein-id="CAD07869.1"
/db-xref="GI:16504416"
/db-xref="GOA:Q8XEV4"
/db-xref="SPTRREMBL:Q8XEV4"
/translation="MTKKILTPPIKDEDLADIKAGDIIYLNGHIVTCRDVAHRRLLIEG
GRELPVDVRGGAILHAGPIVRPIKGEDDKFEMVS
VGPTTSMRMEKFEKEFIAQTVKL
IVGKGGMGKGTEEGCAEHKALHCVFPAGCAVVA
VCVEEIEDAQWRDLGMPETLWVCR
VKEFGPLIVSIDTHGNNLFEQNKKIIFNQRKEIVA
DEICQNVSFIAK"
gene complement (170462..1713
61) /gene="STY3535"
CDS complement (170462..1713
61) /note="synonym: ttdA"
/gene="STY3535"
/note="Orthologue of E. coli ttdA
(TTDA-ECOLI); Fasta hit to
TTDA-ECOLI (303 aa), 54% identity
in 294 aa overlap"
/codon-start=1
/transl-table=11
/product="tartrate dehydratase"
/protein-id="CAD07870.1"
/db-xref="GI:16504417"
/db-xref="GOA:Q8XFJ9"
/db-xref="SPTRREMBL:Q8XFJ9"
/translation="MSKSEQISHMTDVMMAKFVGY
TGKVLPPDDVTAKLEDLHKKETS
ADVIFTTMENQRLAKELDRPSCQDTGVVIQFLVE
CGTNFPLIGEALLREAVIKATV
DSPLRHNSVETFDEYNTGKNVKGKPTVFW
NSDQCSIYTYMAGGGCSLPGKAMV
LMPGAGYEGVTRFVLDVMTSYGLNACPPLLGVGV
VATSVETAALLSKKALMRPIGSHN
ENERAASLEKMLEDGINKIGLGPQGMMSGNTSVMG
VNIENTARHPSTIGVAVNVGCWSH
RKGHIVFDKDLNYTITSHSGVNF"
gene complement (171394..1727
46) /gene="STY3536"
CDS complement (171394..1727
46) /note="Similar to Methanobacterium
thermoautotrophicum
sodium/dicarboxylate or sulfate
cotransporter mth788 TR:O26881
(EMBL:AE000857) (443 aa) fasta
scores: E(): 2.1e-31, 29.9% id in
428 aa. Contains multiple possible
membrane spanning hydrophobic
domains"
/codon-start=1
/transl-table=11
/product="possible membrane
transport protein"
/protein-id="CAD07871.1"
/db-xref="GI:16504418"
/db-xref="GOA:Q8Z3E3"
/db-xref="SPTRREMBL:Q8Z3E3"
/translation="MTYFLYGNFSSSILD
TISYIIDWIIIINMEPITLTLCLLVFAIV

FIDTNVILFVAMFIVGGALFETGM
ANKVGGVITRFAKTEKQLIFTIMVVGLMSGVLS
NTGTAAVLIPVIVGVAAKSGFSRS
RLLMPPLVFAAALGGNLSLIGAPGNLIAQSALQNI
GGGFVFFEYAKIGLPMILICGILYF
LTIGYRFLPNATGGEVGVSVEORDYSHVPQWKQ
RLSLVVLIAITLGMIFEKKIGVSL
AVTGCIGALVIVVSGVLTTEKQAYKAIDSQTIFIF
GGTLALAKALEMTGAGKLVADYVI
GMLGQNSSPFMILLIAVFLSVMNTNFMSNTATTA
LLVPVSLSLIAAGMGADPRAVLMAT
VIGGSCAYATPIGMPANMMVLSAGGYKFVDYAKA
GIPLIIVSTIVSLILLPILFPFHP "

misc-feature complement(171424..1718
31) /gene="STY3536"
/note="Pfam match to entry PF00939
Na-sulph-symp, Sodium:sulfate
symporter transmembrane region,
score 29.30, E-value 1.1e-07"
misc-feature complement(172444..1726
41) /gene="STY3536"
/note="Pfam match to entry PF00939
Na-sulph-symp, Sodium:sulfate
symporter transmembrane region,
score 7.40, E-value 0.19"
gene complement(172873..1734
78) /gene="STY3537"
CDS complement(172873..1734
78) /gene="STY3537"
/note="Similar to Streptomyces
coelicolor putative GntR-family
transcriptional regulator
scgd3.11C TR:Q9XA67
(EMBL:AL096822) (216 aa) fasta
scores: E(): 7.4e-11, 33.2% id in
189 aa"
/codon-start=1
/transl-table=11
/product="possible transcriptional
regulator"
/protein-id="CAD07872.1"
/db-xref="GI:16504419"
/db-xref="SPTREMBL:Q8Z3E2"
/translation="MLRKAILSRELVEGQEITLE
GIAGMVGVSMPVREAFQILAADG
LIKVRPNKGAVVLGINEQTIKEHYEIRALLESEA
VAKASRPGTDISRIAEVHYAAEKA
LAENNSAEYSDLNQAFHMEIWNVAGNEKMKMLLC
NMWNGLSMGHKVTEEEYAVISIQE
HKSILQALELHDETALARQRMREHIIRSMENMLTR
YVGDPSPA"
gene complement(173525..1741
54) /gene="STY3538"
CDS complement(173525..1741
54) /gene="STY3538"
/note="Similar to the DNA-binding
domains of several regulatory
proteins e.g. Pseudomonas putida
VanR protein vanR TR:Q9R9S9
(EMBL:AJ252091) (237 aa) fasta
scores: E(): 9.7e-06, 46.4% id in
69 aa"
/codon-start=1
/transl-table=11
/product="possible GntR-family
transcriptional regulator"
/protein-id="CAD07873.1"
/db-xref="GI:16504420"
/db-xref="GOA:Q8Z3E1"
/db-xref="SPTREMBL:Q8Z3E1"
/translation="MKKIORTQTRDHITQMLRYE
ILSGNIKAGEELAQGSIAEQLGLS
RMPVREALQSLEQEGFLIRLPNRHMQVAHLEADR
VSHIFRVIAAMAAEMFSLIPSEVG
DALLIRAQALAVAEDKSCLECHAMLISYVNNRY

QESAQLFAELADVISRQGRRDEIGQVMQRYFLSLA
EIMRQHMKDWESEA"

misc-feature complement(173960..1741
18) /gene="STY3538"
/note="Pfam match to entry PF00392
gntR, Bacterial regulatory
proteins, gntR family, score
44.90, E-value 2.5e-12"

gene complement(174274..1752
12) /gene="STY3539"
/note="synonym: mdh"

CDS complement(174274..1752
12) /gene="STY3539"
/note="Orthologue of E. coli mdh
(MDH-ECOLI); Fasta hit to
MDH-ECOLI (312 aa), 95% identity
in 312 aa overlap"
/codon-start=1
/transl-table=11
/product="malate dehydrogenase"
/protein-id="CAD07874.1"
/db-xref="GI:16504421"
/db-xref="GOA:Q8Z3E0"
/db-xref="SPTREMBL:Q8Z3E0"
/translation="MKVAVLGAAGGGIGQALALLL
KNQLPSGSELSLYDIAPVTGVA
DLISHIPTAVKIKGFSGEDATPALEGADVVLISAG
VARKPGMDRSDLFNVNAGIVKNLV
QQIAKTCPKACVGIITNPVNTTVAIAAEVLKKAG
VYDKNKLFGVTTLDIIRSNTFVAE
LKGKLPTEVEVPVIGHSGVTILPLLSQIPGVSF
TEQEAAELTKRIQNAGTEVVEAKA
GGGSATLSMGQAAARFGLSLVRALQGEKGVVECA
YVEGDGQYARFFSQPLL LGKNGVE
ERKSIGTLSTFEQHSLDAMLDTLKKDIQLGEDFI
NK"

misc-feature complement(174292..1752
09) /gene="STY3539"
/note="Pfam match to entry PF00056
ldh, lactate/malate dehydrogenase,
score 474.50, E-value 8.5e-139"

misc-feature complement(174739..1747
77) /gene="STY3539"
/note="PS00068 Malate
dehydrogenase active site
signature"

gene 175626..176096 /gene="argR"
/note="synonym: STY3540"

CDS 175626..176096 /gene="argR"
/note="Similar to Salmonella
typhimurium arginine repressor
argR SW:ARGR-SALTY (P37170) (156
aa) fasta scores: E(): 0, 100.0%
id in 156 aa, and to Escherichia
coli arginine repressor argr or
xerA SW:ARGR-ECOLI (P15282) (156
aa) fasta scores: E(): 0, 94.9% id
in 156 aa Orthologue of E. coli
argR (ARGR-ECOLI); Fasta hit to
ARGR-ECOLI (156 aa), 95% identity
in 156 aa overlap"
/codon-start=1
/transl-table=11
/product="arginine repressor"
/protein-id="CAD07875.1"
/db-xref="GI:16504422"
/db-xref="GOA:P37170"
/db-xref="SWISS-PROT:P37170"
/translation="MRSSAKQEEELVRAFKALLKE
EKFSSQGEIVLALQDQGFENINQS
KVSRMLTKFGAVRTRNAKMEMVYCLPAELGVPTT
SSPLKNLVLDIDYNDAVVIHTSP
GAAQLIARLLDSLGAEGILGTIAGDDTIFTTPA
SGFSVRDLYEAILELFEQEL"

misc-feature 175641..176093 /gene="argR"

gene 176461..176724 /gene="STY3542"
CDS 176461..176724

Arg-repressor, Arginine repressor,
score 391.80, E-value 6.7e-114"
/gene="STY3542"
/note="Fasta hit to YCFR-ECOLI (85
aa), 34% identity in 88 aa overlap
Fasta hit to YJFN-ECOLI (100 aa),
34% identity in 93 aa overlap
Fasta hit to YAHO-ECOLI (91 aa),
31% identity in 91 aa overlap
Fasta hit to YJFY-ECOLI (91 aa),
33% identity in 87 aa overlap
Fasta hit to YBIJ-ECOLI (86 aa),
47% identity in 88 aa overlap
Orthologue of *E. coli* YHCN-ECOLI;
Fasta hit to YHCN-ECOLI (87 aa),
78% identity in 87 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07876.1"
/db-xref="GI:16504423"
/db-xref="SPTREMBL:Q8Z3D9"
/translation="MKIKTTVATLSILSVLSFGA
FAAEPIISAEQAQNREAIESVSVA
IGSSPMDMNAMLSKKADEQGATAHYITEARSGSN
WHATAELYK"
/gene="STY3543"
/gene="STY3543"
/note="Fasta hit to YCFR-ECOLI (85
aa), 34% identity in 89 aa overlap
Fasta hit to YJFN-ECOLI (100 aa),
34% identity in 93 aa overlap
Fasta hit to YJFY-ECOLI (91 aa),
30% identity in 86 aa overlap
Fasta hit to YKGI-ECOLI (83 aa),
35% identity in 80 aa overlap
Fasta hit to YBIJ-ECOLI (86 aa),
37% identity in 90 aa overlap
Paralogue of *E. coli* YHCN-ECOLI;
Fasta hit to YHCN-ECOLI (87 aa),
53% identity in 88 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07877.1"
/db-xref="GI:16504424"
/db-xref="SPTREMBL:Q8XEN2"
/translation="MKTGYIIASLGLATLLSFGA
NAAVHQVNAEQAQNLOPMGTISVS
QIGSTPMDMRQEIVAKAEKAGANSYRIIELKEGD
NWWHATAEKYK"
gene complement(177154..1774 /gene="STY3544"
26)
CDS complement(177154..1774 /gene="STY3544"
26)
/note="Orthologue of *E. coli*
YHCO-ECOLI; Fasta hit to
YHCO-ECOLI (90 aa), 77% identity
in 90 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07878.1"
/db-xref="GI:16504425"
/db-xref="SPTREMBL:Q8XFF0"
/translation="MNVTDFNDIKNQSDFYRE
FTQTFGLASEKVSDLDTLWDAVMS
DILPLPLEIEFVHLPDKLRRRYGALILLFDEAEE
ELEGRRLRFNVRH"
gene complement(177598..1795 /gene="STY3545"
65)

CDS

complement(177598..1795 /gene="STY3545"
65)
/note="Orthologue of E. coli yhcP
(YHCP-ECOLI); Fasta hit to
YHCP-ECOLI (655 aa), 92% identity
in 655 aa overlap. Contains
multiple possible membrane
spanning hydrophobic domains and a
possible N-terminal signal
sequence."
/codon-start=1
/transl-table=11
/product="putative membrane
protein"
/protein-id="CAD07879.1"
/db-xref="GI:16504426"
/db-xref="SPTREMBL:Q8Z3D8"
/translation="MGIFSIANQHIRFAVKLACA
IVLALFIGFHQLETPRWAVLTAAC
IVAAGPAFAAGGEPEYSGAIRYRGMLRIIGTFIGC
IAALIIIIISMRAPLLMILVCCW
AGFCTWISSLVRIENSYAWGLSGYTALIIVITIQ
TEPLLTPQFALERCSEIVIGIGCA
ILADLLFSPRSIKQEVDRELDCLLVAQYQLMQLC
IKHGDSEEVDNAWGDLRRTAALE
GMRSNLNMESSSRWVRANRRLKALNTLSLTLITQS
CETYLIQNTRPELITDTFRELLET
PVETVQDVHRQLKRMRRVIVWTGERETPVTLYSW
VGAATTRYLLLKRGVISNTKISATE
EEILQGEPVVKVESAAERHHAMVNFWRTTLSCLG
TLFWLWTGWTSGNGAMVIAVVT
LAMRLPNPRMVCIDFYGTLAALPLGLLYFLVII
PNTQQSMLLLCLSLAVLGFFIGIE
VQKRRLGSMGALASTINIIVLDNPMTFHFIQFLD
SALGQIVVGCMALAFIVILLVRDKSK
DRTGRVLLNQFVSAAVSAMTTNVRRKENRLPAL
YQQLFLLMNKFPGDLPKFRALATM
IIAHQQLRDAPIPVNEDLSVFHRQLRRTADHV
AGSDDKRRRYFGQLLDELDIYQEK
LRIWEAPPQVTEPVKRLTGMLHKYQNALTDS"

gene

complement(179571..1805 /gene="STY3546"
03)

/note="synonym: yhcQ"

CDS

complement(179571..1805 /gene="STY3546"
03)

/note="Fasta hit to YDHJ-ECOLI
(299 aa), 39% identity in 286 aa
overlap Fasta hit to YJCR-ECOLI
(343 aa), 30% identity in 337 aa
overlap Orthologue of E. coli yhcQ
(YHCQ-ECOLI); Fasta hit to
YHCQ-ECOLI (310 aa), 93% identity
in 310 aa overlap. Contains a
possible N-terminal signal
sequence."
/codon-start=1
/transl-table=11
/product="possible exported
protein"
/protein-id="CAD07880.1"
/db-xref="GI:16504427"
/db-xref="GOA:Q8XF83"
/db-xref="SPTREMBL:Q8XF83"
/translation="MKTLTRKLSRTAITLVLVIL
AFIAIFRAWVYYTESPWTRDARFS
ADVVAIAPDVAGLITHVNVDHDNQLVKKDQVLFTI
DQPRYQKALAEAEADVAYYQVLAQ
EKRQEAGRNNRLGVQAMSREEIDQANNVLQTVLH
QLAKAQATRDLAKLDSLERTVIRAP
ADGWVTLNLYAGEFITRGSTAVALVKKNSFYVQ
AYMEETKLEGVRPGYRAEITPLGS
NRVLKGTVDSVAAGVTNASSTS DAKGMATIDSNL
EWVRLAQRVPVRIRLDEQQGNLWP
AGTTATVVITGKQDRDASQDSFFRKLAHRLREFG
"

```

/note="Pfam match to entry PF00529
HlyD, HlyD family secretion
protein, score 135.20, E-value
1.2e-36"
gene complement(180511..1807 /gene="STY3546a"
14)
CDS complement(180511..1807 /gene="STY3546a"
14)
/gene="STY3546a"
/note="Similar to Escherichia coli
hypothetical protein YhcR
SW:YHCR-ECOLI (P46478) (90 aa)
fasta scores: E(): 5.6e-29, 98.5%
id in 67 aa"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07881.1"
/db-xref="GI:16504428"
/db-xref="SPTREMBL:Q8XEK3"
/translation="MSLFPVIVVFGLSFPPIFFE
LLLSLAIFWLVRRMLVPTGIYDFV
WHPALFNTALYCCLFYLISRLFV"
/gene="STY3547"
/gene="STY3547"
/overlap="Fasta hit to YHJC-ECOLI
(299 aa), 31% identity in 293 aa
overlap Fasta hit to YAFC-ECOLI
(304 aa), 31% identity in 290 aa
overlap Fasta hit to YEAT-ECOLI
(307 aa), 30% identity in 293 aa
overlap Orthologue of E. coli
YHCS-ECOLI; Fasta hit to
YHCS-ECOLI (309 aa), 95% identity
in 309 aa overlap"
/codon-start=1
/transl-table=11
/product="probable LysR-family
transcriptional regulator"
/protein-id="CAD07882.1"
/db-xref="GI:16504429"
/db-xref="GOA:Q8XFH1"
/db-xref="SPTREMBL:Q8XFH1"
/translation="MERLKRMSSVFAKVVEFGSFT
AAARQLQMSVSSISQTVAKLEDEL
QVKLLNRSTRSIGLTAEAGKIYYQGCRRMLHEVQD
VHEQLYAFNNTPIGTLRIGCSSTM
AQNVLAGLTAKLLKEYPGLAVNLVTGIPAPDLIA
DGLDVVIRVGALQDSSLFSRRLGA
MPMVVCAAKPYLAQYGVPEKPADLSSHSLWLEYSV
RPDNEFELIAPEGISTRLIPOQGRF
VTNDPMTLVRWLTAGTGIAYVPLMWVIDEINRGD
LEILLPRYQSDPRPVYALYTEKDK
LPLKVQVVINALTDYFVDVAHLFQGMHGRGKEK"
/gene="STY3547"
/overlap="Pfam match to entry PF00126
HTH-1, Bacterial regulatory
helix-turn-helix protein, lysR
family, score 170.30, E-value
3.1e-47"
/gene="STY3547"
/overlap="PS00044 Bacterial
regulatory proteins, lysR family
signature"
gene complement(181948..1833 /gene="tldD"
93)
CDS complement(181948..1833 /gene="tldD"
93)
/gene="tldD"
/overlap="synonym: STY3548"
/gene="tldD"
/overlap="Similar to Escherichia coli
protein TldD which suppresses the
inhibitory activity of the carbon
storage regulator CsrA
SW:TLDD-ECOLI (P46473) (481 aa)

```

481 aa"
/codon-start=1
/transl-table=11
/product="TldD protein"
/protein-id="CAD07883.1"
/db-xref="GI:16504430"
/db-xref="SPTREMBL:Q8XFQ3"
/translation="MSLNLVSEQLLAANGLNHQDLFAILGQLAERRLDYGDLYFQSSYHESWVLEDRIIKDGSYNIDQGVGVRAISGEKTGFAYADQISLLALEQSAQAARTIVRENNEGKVKTLAAVAHQPLYTTLDPLQSMSREEKLDILRRVDKAAREADKRVQEVNASLTGVYELVLAATDGTLAADVRPLVRLSVSVQEEDGKRERGASGGGGRFGYEFYFLADLDGEVRADAWAKEAVRMALVNLSAVAAPAGTLPVVLGAGWPGVLLHEAVGHGLEGDFNRRGTSVFSGQIGEQVASALCTVVDDGTMMNRRGSVAIDDEGTPGQYNVLIENGVLKGYMQDKLNARLMGAAPTGNGRRESYAHLPMPRMTNTYMLAGQSTPQEIIIESVEYGIYAPNFGGGQVDITSGKFVFSTSEAYLIENGKVTPVKGATLIGSGIETMQQISMVGNDLKLDNGVGVCGKEQSLPVGVGQPTLKVDNLTVGGTA"
misc-feature complement(182398..1832 /gene="tldD"
94)
/note="Pfam match to entry PF01523 PmbA-TldD, Putative modulator of DNA gyrase, score 385.30, E-value 6.3e-112"
gene complement(183538..1873 /gene="STY3549"
38)
CDS complement(183538..1873 /gene="STY3549"
38)
/note="This CDS is similar to two adjoining E. coli hypothetical proteins. The N-terminus is similar to yhdR SW:YHDR-ECOLI (P46476) (282 aa) fasta scores: E(): 0, 82.0% id in 272 aa and the C-terminus is similar to yhdP SW:YHDP-ECOLI (P46474; P76676; P46475) (986 aa) fasta scores: E(): 0, 79.9% id in 987 aa. Contains a possible N-terminal signal sequence."
/codon-start=1
/transl-table=11
/product="possible exported protein"
/protein-id="CAD07884.1"
/db-xref="GI:16504431"
/db-xref="SPTREMBL:Q8Z3D7"
/translation="MRLPGILLTGAAALIVIAALLVSGRLRALPHLDWRPAIINKIESVTGPVAASQLSASWQNGPTEAHNIHAALKDGGELSIKRTVLALDVWQSLLHMRWQFRDLTFWQLNFRNTPLQSSDGEIGETSRLSDLFLRQFDHFDLRDSQISFLTLSQRAELAIQLTWLNGKERHRAEGEVSLSSLTGQHVMQVRMDLRDDDGLLNNGRVLQADDIDVKPWLGKWMQDNVALQTARFSLEGWMTLSKGEIAGGDVWLKQGGASWLGDNNTHTTLSVDNLTAQISREQPGWQFYIPDTRITLDGKPWPSGALTVAWLPQQDVGGENHTRSDELRIRASNLELAGLEARPLAAKLSPVLGEIWQATQPSGKIAITLALDIPLQATEKTRFQASWENLAWKQWKLLPGAEHFSGTLAGSVEDGQMKVAMQQAKMPYETVFRAPLEIENGVATLWLKNENGFQLDGRDIDVKAKAVHARGGFRYLQPTGDEPWLGILAGISTDDGSQAWRYFPENLMGKALVDYLSGAIQGGEADNATL VYGGNPHLFPYKHNEGQFEVLVPLRNATFAFQPDWPALKNLNIELDFLNDGLWMRSDSVLLGGVKASKLAAAIPDYSKEKLLID

DVNARLHLDIPLDGEQVTAEGDVS
 LRRNSLFIKPLNSTLKNLNGKSFVNGALKSGPL
 TANWFNQPLNLDFTSTTEGAKAYQV
 AVNLNGNWQPTRMGVLPPQLNDALSGSVTWNGKV
 GIDLPHADTTYHIELNGDLRNVS
 SHLPSPLNKPAGEAI PVNIQADGNLKSFALTGSA
 GSKNHFNSRWLLNQKLTLDRAIWT
 TDSRTIPPLPAQQGVELNLPALDGAQWLALFQKG
 AADNVSSSAEFPQRVTLRTPALSL
 GGQQWNNLSSVVSAPSINGTKIEAQGREVNATLLM
 RNHAPWLANIKLYYNNPGVAKTHA
 SSPTPTSPLASANTISFRGWPDLQLRCEECWLWG
 QKYGRIDGDFAIKGNTTLT LANGLI
 DTGFARLKANGEWVNAPGNERTSLKGSLHGSNLD
 TAAGFFGISTPIQNASFNVDYDLH
 WRNPPCQPEEATLNGILRTRLGKGEFTDLSSGHA
 GQLLRLLSFDALLRKLRFDFRDTF
 SEGFFYFDIHSTAWIKDGVLHTDDTLVDGLEADI
 AMKGSDLVRRRLDMEA VVAAEIS
 ATVGVAAAFAVNPIVGA AVFAASKV LGPLWSKVS
 ILRYRITGPVDAPQINEVLRQPRK ESQQ"

gene complement(187449..1889 /gene="rnG"
 18) /note="synonym: STY3550"
CDS complement(187449..1889 /gene="rnG"
 18) /EC-number="3.1.4.-"
 /note="Similar to Escherichia coli
 ribonuclease G cafA r rnG
 SW:RNG-ECOLI (P25537; P76677) (488
 aa) fasta scores: E(): 0, 96.7% id
 in 488 aa"
 /codon-start=1
 /transl-table=11
 /product="ribonuclease G"
 /protein-id="CAD07885.1"
 /db-xref="GI:16504432"
 /db-xref="GOA:Q8XGR0"
 /db-xref="SPTREMBL:Q8XGR0"
 /translation="MTAELLVNVT PSETRVAYID
 GGILQEIHIEREARRGIVGNIYKG
 RVSRLVPGMQAAFV DIGLDKAFLHASDIMPHE
 CVAGDEQKQFTVRDI SELVRQGQD
 LMVQVVKDPLGTKGARLT DITLPSRYLVFMPGA
 SHVGVSQRIESE SERERLKKVVAE
 YCDEQGGFIIRTA AEGVCEEDLASDAAYLKRVWT
 KVMERKKRPQTRYQMYGELALAQR
 VL RD FADA QLDR IRVDSRLTYESL LEFTAEYIPE
 MTSKLEHYSGHQPIFDLYDVENEI
 QRALERKVELKSGGYLI IDQTEAMTTVDINTGAF
 VGH RNLDDTI FNTNIEATQAIARQ
 LRLRNLLGGII IDFIDMNNE DHRRRVLHSLEQAL
 SKDRVKT SINGFSPLGLVEMTRKR
 TRESVEHVL CNECPTCHGRGTVKTVETVCYEIMR
 EIVRVHHAYDSDRFLVYASPAVAE
 ALKGEESHALAEVEIFVGKQVKVQVEPLYNQE QF
 DVMM"

misc-feature complement(188553..1888 /gene="rnG"
 16) /note="Pfam match to entry PF00575
 S1, S1 RNA binding domain, score
 68.20, E-value 3.3e-17"

gene complement(188908..1895 /gene="STY3551"
 01) /note="synonym: yhdE"
CDS complement(188908..1895 /gene="STY3551"
 01) /note="Fasta hit to YCEF-ECOLI
 (207 aa), 38% identity in 185 aa
 overlap Orthologue of E. coli yhdE
 (YHDE-ECOLI); Fasta hit to
 YHDE-ECOLI (197 aa), 85% identity
 in 197 aa overlap"
 /codon-start=1
 /transl-table=11

protein"
/protein-id="CAD07886.1"
/db-xref="GI:16504433"
/db-xref="SWISS-PROT:P58631"
/translation="MTTLYLASGSPRRQELLIQL
GFSFEQVPGIEEQRVQESAQQY
VVRLLAREKAQAGVALVPRDLPVLGADTIVVLNGE
VLEKPRDAAHAAEMRLLSGNTHQ
VMTAVALADSQQTLDCLVVTEVTFRTLSAQDITG
YVASGEPLDKAGAYGIQGRGGCFV
RKINGSYHAVVGLPLVETYELLSHFNALRDKRDK
HDG"

gene complement (189510..1900 /gene="STY3552"
01)

CDS complement (189510..1900 /gene="STY3552"
01)
/note="synonym: mreD"
/note="Orthologue of E. coli mreD
(MRED-ECOLI); Fasta hit to
MRED-ECOLI (162 aa), 94% identity
in 162 aa overlap"
/codon-start=1
/transl-table=11
/product="rod shape-determining
protein"
/protein-id="CAD07887.1"
/db-xref="GI:16504434"
/db-xref="SPTREMBL:Q8XGG6"
/translation="MVASYRSQGRWIVLFLIA
LLLQIMPWPDDIVFPRPNWLLIL
LYWILALPHRVNVGTGFVMGAIILDLISGSTLGVR
ALSMSIVAYLVALKFQLFRNLALW
QQALVVMLLSLAVDIIVFWAEFLVINVSFRPEVF
WSSVVNGVLWPWLFLLMRKVRQQF AVQ"

gene complement (190001..1910 /gene="STY3553"
53)

CDS complement (190001..1910 /gene="STY3553"
53)
/note="synonym: mreC"
/note="Orthologue of E. coli mreC
(MREC-ECOLI); Fasta hit to
MREC-ECOLI (367 aa), 91% identity
in 349 aa overlap"
/codon-start=1
/transl-table=11
/product="rod shape-determining
protein"
/protein-id="CAD07888.1"
/db-xref="GI:16504435"
/db-xref="SPTREMBL:Q8Z3D6"
/translation="MKPIFSRGPSLQIRLILAVL
VALGVIIADSRLGTFSQIRTYMDT
AVSPFYFISNGPRELLDSVSQTLASRDQLELENR
ALRQELLLKNSDLLMLGQYKQENA
RLRELLGSPLRQDEQKMQVTQVISTVNDPYSQDV
IDKGSVNGVYEGQPVISDKGVVGQ
VVAVAKLTSRVLLICDATHALPIQVLRNDIRVIA
AGNGCTDDLQLEHLPANTDIRVGD
VLVTSGLGGRFPEGYPVAVVSSVKLDTQRAYTVI
QARPTAGLQRLRYLLLLWGADRNG
ANPMTPEEVHRVANERLMQMMPQVLPSPDAMGPP
APVPDPATGITQPSAGQTTPVSTQ
SSPSGATTPSARAPGG"

gene complement (191118..1921 /gene="mreB"
61)

CDS complement (191118..1921 /gene="mreB"
61)
/note="synonym: STY3554"
/note="Similar to Escherichia coli
rod shape-determining protein MreB
mreb SW:MREB-ECOLI (P13519;
P76678) (347 aa) fasta scores:
E(): 0, 100.0% id in 347 aa"
/codon-start=1
/transl-table=11

```
protein"
/protein-id="CAD07889.1"
/db-xref="GI:16504436"
/db-xref="GOA:P13519"
/db-xref="SWISS-PROT:P13519"
/translation="MLKKFRGMFSNDLSIDLGTA
NTLIYVKQGIVLNEPSVVAIRQD
RAGSPKSVAAVGHDAKQMLGRTPGNIAIRPMKD
GVIADFFVTEKMLQHFIKVHSNS
FMRPSPRVLVCVPVGATQVERRAIRESAQGAGAR
EVFLIEEPMAAAIGAGLPSEATG
SMVVDIGGGTTEAVISLNGVYSSSVRIGGDRF
DEAIINYVRNYGSLIGEATAERI
KHEIGSAYPGDEVREIEVGRGRNLAEGVPRGFTLN
SNEILEALQEPLTGIVSAVMVALE
QCPPELASDISERGMVLGGALLRNLDRLMEE
TGIPVVVAEDPLTCVARGGGKALE
MIDMHGGDLFSEE"
gene complement(192469..1944 /gene="STY3555"
09)
/CDS complement(192469..1944 /gene="STY3555"
09)
/note="synonym: yhdA"
/note="Orthologue of E. coli yhdA
(YHDA-ECOLI); Fasta hit to
YHDA-ECOLI (646 aa), 84% identity
in 646 aa overlap. Contains a
possible N-terminal signal
sequence."
/codon-start=1
/transl-table=11
/product="putative lipoprotein"
/protein-id="CAD07890.1"
/db-xref="GI:16504437"
/db-xref="GOA:Q8Z3D5"
/db-xref="SPTREMBL:Q8Z3D5"
/translation="MRLTTKFSAFITLLTGLTIF
VTЛИGCSLSFYNAVQYKYVSRVQA
TATAIDTHLVTHDIVSLTPQIDELMIASDIVRVD
LLQGERSVYSHSRARGYRPAGTSD
MYRELVVPLIKHPGMSLRLVYQDPMGNYFHSLIT
TAPLT LAIGFIVLILFLSVRWLQR
QLSGQELLEIRSTRILNGERGANVRGSVYEWPAR
TSSALDVLLSEIQFAHEQRSRLDT
LIRSYAAQDTKTGLGNRLFFDNQLATLLEDQEKV
GVHGVVMMIRLPDFNLLRDSLGGN
QAEEQMFLIKEINLLSTFIMRPGSILLARYHRSDFA
VLLPHRTLKEAESIAGQLLKAVDA
LPANKMLDRDDMVHIGICAWRSGQSTDQVMEHAE
AAARNAALQGGNSWAIYDDTLPEK
GRGNVRWRTLIEQMLNRGGPRLYQKPAVTREGRV
HHRELMCRIYDGKEEVSSAEYMPM
VLQFGLSEYDRLQISRLITLLGYWPDENLAMQL
TVESLIRPRFQRWLRDTLMQCEKS
QRNR IIIELAEADVQCQHISRLQPIRLVNALGVR
VAVTQAGLTLVSTSWIKALNVELL
KLHPSLVRNIEKR TENQLLVQSLVEACAGTPTQV
YATGVRSRGEWQTLTKRGVAGGQG
DFFASSQLLDTNVKKYSQRYSV"
misc-feature complement(192505..1932 /gene="STY3555"
27)
/note="Pfam match to entry PF00563
DUF2, Domain of unknown function
2, score 392.30, E-value 4.6e-114"
misc-feature complement(193267..1937 /gene="STY3555"
61)
/note="Pfam match to entry PF00990
DUF9, Domain of unknown function
DUF9, score 109.70, E-value
5.7e-29"
misc-feature complement(194332..1943 /gene="STY3555"
64)
/note="PS00013 Prokaryotic
membrane lipoprotein lipid
attachment site"
```

CDS

194613..195587

/note="synonym: yhdH"
/gene="STY3556"
/note="Orthologue of *E. coli* yhdH
(YHDH-ECOLI); Fasta hit to
YHDH-ECOLI (324 aa), 89% identity
in 323 aa overlap"
/codon-start=1
/transl-table=11
/product="possible oxidoreductase"
/protein-id="CAD07891.1"
/db-xref="GI:16504438"
/db-xref="GOA:Q8XG63"
/db-xref="SPTREMBL:Q8XG63"
/translation="MQALILEQQDGKTLASVQHL
EESQLPAGDVTVDVHWSSLNYKDA
LAITGKGKIIIRHFPMIPGIDFAGTVHASEDPRFH
AGQEVLILTGWGVGENHWGLAERA
RVKGDWLVALPAGLSSRNAMIIGTAGFTAMLCVM
ALEDAGIRPQDGEVVVTGASGGVG
STAVALLHKLGYQVAAVSGRESTHGYLKSLGANR
ILSRDEFAESRPLEKQLWAGAIDT
VGDKVLAQMVYGGCVAACGLAGGFALPTTV
MPFILRNVRQLQGVDSVMTPPARRA
EAWARLVKDLPESFYQAQATEITLADAPKFADAI
INNQVQGRRTLVKIK"
/gene="STY3556"
/note="Pfam match to entry PF00107
adh-zinc, Zinc-binding
dehydrogenases, score 118.50,
E-value 1.2e-31"
/gene="STY3556"
/note="PS00038 Myc-type,
'helix-loop-helix' dimerization
domain signature"
/gene="STY3557"
/gene="STY3557"
/note="Orthologue of *E. coli*
P76342; Fasta hit to P76342 (334
aa), 88% identity in 334 aa
overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07892.1"
/db-xref="GI:16504439"
/db-xref="GOA:Q8XES1"
/db-xref="SWISS-PROT:Q8XES1"
/translation="MKKIRPLTEADVTAESAFFM
QRQQVLIKALGISAAALSLPSTAQA
DLFSWFKGNDRPKAPAGKPLEFSQPAAWRSDLAL
TPEDKVTGYNNFYEFGLDKADPAA
NAGSLKTEPWTLKISGEVAKPFTLDYDDLTHRFP
LEERIYRMRCVEAWSMVPWIGFP
LYKLLAQAAQPTSHAKYVAFETLYAPDDMPGQKDR
FIGGGLKYPYVEGLRLDEAMHPLT
LMTVGVYKGALPPQNGAPIRLIVPWKYGFKGIKS
IVSIKLTRERPPTTWNLSAPNEYG
FYANVNPHVDHPRWSQATERFIGSGGILDVQRQP
TLLFNGYANEVASLYRGLNLRENF "
/gene="STY3558"
/gene="STY3558"
/note="Orthologue of *E. coli*
P76343; Fasta hit to P76343 (211
aa), 85% identity in 195 aa
overlap"
/codon-start=1
/transl-table=11
/product="putative membrane
protein"
/protein-id="CAD07893.1"
/db-xref="GI:16504440"
/db-xref="GOA:Q8Z3D4"
/db-xref="SWISS-PROT:Q8Z3D4"
/translation="MRLTVKQITWLKVCLHLAGF

misc-feature 194652..195581

misc-feature 194964..195011

gene 195700..196704
CDS 195700..196704

gene 196705..197304
CDS 196705..197304

HFTGRTALKFILLATLLVSPLARYAKQPLLIRTRR
LLGLWCFVWATLHLTSYALLELGI
HNLALLGSELISRPYLTLCIISWLVLALLTST
QFAQRKLGKRQTLHNVVYLVAIL
APIHYLWSVKILSPQPVIYAALALALLALRYRKF
RQWWR"
/gene="STY3559"
/note="synonym: accB"
/gene="STY3559"
/note="Orthologue of *E. coli* accB
(BCCP-ECOLI); Fasta hit to
BCCP-ECOLI (156 aa), 93% identity
in 156 aa overlap"
/codon-start=1
/transl-table=11
/product="biotin carboxyl carrier
protein"
/protein-id="CAD07894.1"
/db-xref="GI:16504441"
/db-xref="GOA:Q8XGD9"
/db-xref="SPTREMBL:Q8XGD9"
/translation="MDIRKIKKLIELVEESGISE
LEISEGEESVRISRTTANAGFPVM
QQAYAAPMMQQPALSNAVAPAATPAMEAPAAAEI
SGHIVRSPMVGTFYRTPSPDAKAF
IEVGQKVNVGDTLCIVEAMKMMNQIEADKAGTVK
AILVESGQPVEFDEPLVVIE"
/gene="STY3559"
/note="Pfam match to entry PF00364
biotin-lipoyl, Biotin-requiring
enzymes, score 131.30, E-value
1.7e-35"
/gene="STY3559"
/note="PS00188 Biotin-requiring
enzymes attachment site"
/gene="STY3560"
/note="synonym: accC"
/gene="STY3560"
/note="Orthologue of *E. coli* accC
(ACCC-ECOLI); Fasta hit to
ACCC-ECOLI (449 aa), 97% identity
in 449 aa overlap"
/codon-start=1
/transl-table=11
/product="biotin carboxylase"
/protein-id="CAD07895.1"
/db-xref="GI:16504442"
/db-xref="GOA:Q8XF58"
/db-xref="SPTREMBL:Q8XF58"
/translation="MLDKIVIANRGEIALRILRA
CKELGIKTVAVHSSADRDLKHVLL
ADETVCIGPAPSVKSYLNIPAIISAAEITGAVAI
HPGYGFLSEANFAEQVERSGFIF
IGPKADTIRLMGDKVSAITAMKKAGVPTVPGSDG
PLGDDMNANRAHAKRIGYPVIKA
SGGGGGRGMRVVRSDAELAQSIISMTKAEAKAAFS
NDMVYMEKYLENPRHIEIQVLADG
QGNIAIYLAERDCSMQRRHQKVVEEAPAPGITPEL
RRYIGERCAKACVDIGYRGAGTFE
FLFENGEFYFIEMNTRIQTVEHPVTEMITGVDLIK
EQLRIAAGQPLSITQDEVVVRGHA
VECRINAEDPNTFLPSPGKITRFHAPGGFGVRWE
SHIYAGYTVPPYYDSMIGKLICYG
ENRDVAIARMKNALQELIIDGIKTNIDLQTRIMN
DEHFQHGGTNIHYLEKKLGLQEK"
/gene="STY3560"
/note="Pfam match to entry PF00289
CPSase-L-chain,
Carbamoyl-phosphate synthase
(CPSase), score 710.50, E-value
7.6e-210"
/gene="STY3560"
/note="PS00866 Carbamoyl-phosphate
synthase subdomain signature 1"
/gene="STY3560"

gene 199637..199879
CDS 199637..199879

synthase subdomain signature 2"
/gene="STY3561"
/gene="STY3561"
/note="Similar to Escherichia coli hypothetical protein Yhdt
SW:YHDT-ECOLI (P45566) (80 aa)
fasta scores: E(): 5.2e-30, 85.0%
id in 80 aa, and to Haemophilus influenzae hypothetical protein HI0974.1 SW:YHDT-HAEIN (P46455)
(85 aa) fasta scores: E():
9.1e-12, 41.0% id in 78 aa"
/codon-start=1
/transl-table=11
/product="conserved hypothetical protein"
/protein-id="CAD07896.1"
/db-xref="GI:16504443"
/db-xref="SPTREMBL:Q8Z3D3"
/translation="MDARFVQAHKEARWALWLTL
CYLAALWVAAYLSGDSPGITGLPH
WFEMACLLTPLVFILLCWAMVKFIYRDIPLEDDDAA"
/gene="STY3562"
/note="synonym: panF"
/gene="STY3562"
/note="Orthologue of E. coli panF (PANF-ECOLI); Fasta hit to PANF-ECOLI (483 aa), 94% identity in 483 aa overlap"
/codon-start=1
/transl-table=11
/product="sodium/pantothenate symporter (pantothenate permease)"
/protein-id="CAD07897.1"
/db-xref="GI:16504444"
/db-xref="GOA:Q8Z3D2"
/db-xref="SPTREMBL:Q8Z3D2"
/translation="MQLEVILPLVAYLVVVFGVS
IYAMRKRTAGTFLNEYFLGSRSMG
GIVLAMLTATYISASSFIGGPGAAKYGLGWVL
LAMIQLPAVWLSLGILGKKFAILA
RRYNAVTLNMDLFARYQSRLLVWLASLSLLVAFI
GAMTVQFIGGARLLETAAGIPYET
GLLIFGVSIALLYTAFGGFRASVLNDTLQGLVMLV
GTIVLLVGVVHAAGGLHQAVDTLH
ALDPKLVTPOGADDILSPAFMTSFWVLVCFGVIG
LPHTAVRCISYKDSKAHRGIIIG
TIVVAILMFGMHLAGALGRAVLPDLTVPDLVIPT
LMVKVLPFFAAGIFLAAPMAAIMS
TINAQLLQSSATTIKDLYLNLRPDQMNEIRLKR
MSAAITLLLGGALLLLAAWKPPPEMI
IWLNLLAFGGLEAVFLWPLVLGLYWERANAAGAL
SAMIVGGVLYALLATFNIQYLGFFH
PIVPALLLSLLAFLIGNRGSSASQATVLSTDK"
/gene="STY3562"
/note="Pfam match to entry PF00474 SSF, Sodium:solute symporter family, score 663.00, E-value 1.5e-195"
/gene="STY3562"
/note="PS00456 Sodium:solute symporter family signature 1"
/gene="STY3562"
/note="PS00457 Sodium:solute symporter family signature 2"
/gene="STY3563"
/note="synonym: prmA"
/gene="STY3563"
/note="Orthologue of E. coli prmA (PRMA-ECOLI); Fasta hit to PRMA-ECOLI (293 aa), 96% identity in 292 aa overlap"
/codon-start=1
/transl-table=11

gene 199869..201320
CDS 199869..201320

misc-feature 199974..201164

misc-feature 200331..200408

misc-feature 201108..201170

gene 201332..202213
CDS 201332..202213

methyltransferase"
/protein-id="CAD07898.1"
/db-xref="GI:16504445"
/db-xref="GOA:Q8XGI2"
/db-xref="SPTREMBL:Q8XGI2"
/translation="MPWIQLKLNTTGANAEELSD
ALMEAGAVSITFQDTHDTPVFEPL
PGETRLWGDTDVIGLFDAETDMKDVAILEQHPL
LGAGFAHKIEQLEDKDWEREWMDN
FHPMRGERLWICPSWRDIPDENAVNVMLDPGLA
FGTGTHPTTSCLCLOWLDGLDLNGK
TVIDFGCGSGILATAALKLGAAKAIGIDIDPQAI
QASRDNAERNGVSDRLELYLPKDQ
PEAMKADVANILAGPLRELAPLISVLPVEGGL
LGLSGILASQAESVCDAYAELFTL
DPVVEKEWCRTGRKK"
/gene="STY3564"
/note="synonym: yhdG"
/gene="STY3564"
/note="Fasta hit to YOHI-ECOLI
(315 aa), 31% identity in 255 aa
overlap Orthologue of E. coli yhdG
(YHDG-ECOLI); Fasta hit to
YHDG-ECOLI (321 aa), 96% identity
in 281 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07899.1"
/db-xref="GI:16504446"
/db-xref="GOA:Q8Z3D1"
/db-xref="SPTREMBL:Q8Z3D1"
/translation="MMSSNPQVWESDKSRLRMVH
VDEPGIRTVQIAGSDPVEAMAAR
INVESGAIIIDINMGCPAKVKNRKLAGSALLQYP
DLVKSILIGVVNAVDPVTLKIRT
GWAPEHRNCVIEAQLAEDCGIQALTIHGRTRACL
FNGEAEYDSIRAVKQKVSIPIIAN
GDITNPKARAVLDYTGADALMIGRAAQGRPWF
REIQHYLDTGELLPPLPLAEVKRL
LCTHVRELHDFYQAKGYRIARKHVSWYLQEHAP
DDQFRRTFNAIEDASEQLEALEAY FENFA"
/gene="STY3564"
/note="Pfam match to entry PF01207
UPF0034, Uncharacterized protein
family UPF0034, score 416.60,
E-value 2.4e-121"
/gene="STY3564"
/note="PS01136 Uncharacterized
protein family UPF0034 signature"
/gene="STY3565"
/note="synonym: fis"
/gene="STY3565"
/note="Orthologue of E. coli fis
involved in regulation and
activation of upstream rRNA
promoters and Hin-mediated DNA
inversion (FIS-ECOLI); Fasta hit
to FIS-ECOLI (98 aa), 100%
identity in 98 aa overlap"
/codon-start=1
/transl-table=11
/product="Fis DNA-binding protein"
/protein-id="CAD07900.1"
/db-xref="GI:16504447"
/db-xref="GOA:P11028"
/db-xref="SWISS-PROT:P11028"
/translation="MFEQRVNSDVLTVSTVNSQD
QVTQKPLRDSVKQALKNYFAQLNG
QDVNDLYELVLAEEVEQPLLDMVMQYTRGNQTRAA
LMMGINRGTLRKKLKKYGMN"
/gene="STY3566"
/note="synonym: yhdJ"
/gene="STY3566"

(YHDJ-ECOLI); Fasta hit to
YHDJ-ECOLI (294 aa), 80% identity
in 283 aa overlap"
/codon-start=1
/transl-table=11
/product="putative
adenine-specific DNA-modification
methylase"
/protein-id="CAD07901.1"
/db-xref="GI:16504448"
/db-xref="GOA:Q8XF74"
/db-xref="SPTREMBL:Q8XF74"
/translation="MKAEC EPOQYFGDESKKIIHG
DALTEKKLPSESIDLIFADPPYN
IGKDFDGMVESWDEASFLAWLYECIDECHRVLK
HGTMYIMNSTENMPYIDLKCRTL
TIKS RIVWSYDSSGVQAKKYFGSMYEPI LMMVKN
PKSYTFNRDAILVETTGAKRALI
DYRK NPPQPYNQKKVPGNVWSFPRVRYLMDEYEN
HPTQKPSALLKRIILASSNPSDTV
LDPFAGSFTTGA VAAASGRKFFIGIELNNEYVKMG
LRLS VTS HYSENELAKVKKRKTQ
NLSKKQRNVGINALSSEK"
/gene="STY3566"
/note="PS00092 N-6
Adenine-specific DNA methylases
signature"
/gene="STY3566"
/note="Pfam match to entry PF01555
N6-N4-Mtase, DNA methylase, score
203.70, E-value 2.9e-57"
/gene="STY3568"
/gene="STY3568"
/note="Similar in parts to several
e.g. *Synechocystis* sp nitrogen
fixation positive activator
protein nifL TR:P72843
(EMBL:D90901) (840 aa) fasta
scores: E(): 0, 44.1% id in 279
aa. Contains multiple possible
membrane spanning hydrophobic
domains and a possible N-terminal
signal sequence. Contains
C-terminal deletion relative to *S.*
typhimurium"
/codon-start=1
/transl-table=11
/product="putative exported
protein"
/protein-id="CAD07902.1"
/db-xref="GI:16504449"
/db-xref="GOA:Q8Z3D0"
/db-xref="SPTREMBL:Q8Z3D0"
/translation="MPVSEYNHILVA VSF A VAI F
ASYTALNMAGR VAG SARS NARI WL
MGGGF ALGV GVI WEMH FVGML AMDHAM NMR FDPFL
TGLSMLIAIGSSLF ALWL VSAEKL
RLRLLPGALVMGLG ISAMHYTGMAALQFASIIV
WNSAWVALSII I ALLASC GALWL T
FRLRNEGTDVALRRAGAA VLMGIAIAGM HYAGMK
AAHFPQNWPMEHRGVDSNWLAVLV
SVVALT ILGIT LLVSLFDARL QART ALLASSLAQ
ANQELAQLALHDTLTRLPNRVLL
DRLEQAIS KANRESTSF ALLFMDLDGF KAVNDAY
GHDIGDKLLVAVTHRLNQPLSGQF
TLARIGGDEFVLLAEVSAPDEAASLASALVHSID
APFTIDPYELVVTL SGVIALYPLD
GKNERELMFNADAAMYHTKHTGRNGYHFFQPSMN
MLAQ TQLQ LMNDLWL ALERQEL RL
VYQPKFQAPAGPIVGFE ALLRWYHPKQGVLNPDQ
FLPLAEKTGLIVTIGSWVIDEACR
QLREWHLQGYALWSVAVTGNKGWSGLPD"
/gene="STY3568"
/note="Pfam match to entry PF00990
DUF9, Domain of unknown function"

gene 207104..207529
CDS 207104..207529

gene 207541..210655
CDS 207541..210655

misc-feature 207541..210258

misc-feature 210290..210628

gene 210892..211113
CDS 210892..211113

8.2e-59"
/gene="acrE"
/note="synonym: STY3569"
/pseudo
/gene="acrE"
/note="This CDS appears to be a gene remnant which is highly similar to the very C-terminus of Escherichia coli acriflavin resistance protein E precursor acrE or envC SW:ACRE-ECOLI (P24180) (385 aa) fasta scores: E(): 0, 88.8% id in 134 aa"
/pseudo
/codon-start=1
/transl-table=11
/product="acriflavin resistance protein E (pseudogene)"
/db-xref="PSEUDO:CAD07903.1"
/db-xref="REMTREMBL:CAD07903"
/gene="acrF"
/note="synonym: STY3570"
/pseudo
/gene="acrF"
/note="Similar to Escherichia coli acriflavin resistance protein f acrF or envD SW:ACRF-ECOLI (P24181) (1034 aa) fasta scores: E(): 0, 89.7% id in 906 aa. There is a frameshift mutation after codon 906. The sequence has been checked and is believed to be correct Fasta hit to ACRB-ECOLI (1049 aa), 80% identity in 907 aa overlap Fasta hit to YHIV-ECOLI (1037 aa), 70% identity in 906 aa overlap Fasta hit to ACRD-ECOLI (1037 aa), 63% identity in 907 aa overlap Paralogue of E. coli acrF (ACRF-ECOLI); Fasta hit to ACRF-ECOLI (1034 aa), 90% identity in 906 aa overlap"
/pseudo
/codon-start=1
/transl-table=11
/product="acriflavin resistance protein F (pseudogene)"
/gene="acrF"
/note="Pfam match to entry PF00873 ACR-tran, AcrB/AcrD/AcrF family, score 1760.20, E-value 0"
/pseudo
/gene="acrF"
/note="Pfam match to entry PF00873 ACR-tran, AcrB/AcrD/AcrF family, score 232.80, E-value 4.8e-66"
/pseudo
/gene="STY3572"
/note="synonym: yhdV"
/gene="STY3572"
/note="Orthologue of E. coli yhdV (YHDV-ECOLI); Fasta hit to YHDV-ECOLI (73 aa), 99% identity in 73 aa overlap. Contains a possible N-terminal signal sequence"
/codon-start=1
/transl-table=11
/product="possible lipoprotein"
/protein-id="CAD07905.1"
/db-xref="GI:16504450"
/db-xref="SPTREMBL:Q8XG38"
/translation="MKRLIPVALLTLLAGCAHD SPCVPVYDDQGRLVHTNTCMKGTT QDNWETAGAIAGGAAAVAGLTMGIIALSK"

/note="PS00013 Prokaryotic membrane lipoprotein lipid attachment site"
gene complement(211939..2120
58) /gene="5S-rRNA"
rRNA complement(211939..2120
58) /note="hit to 5S-rRNA 1..120
score: 573 percent id: 97.50"
tRNA complement(212096..2121
71) /product="tRNA-Thr"
gene complement(212320..2124
39) /note="tRNA Thr anticodon GGT,
Cove score 88.70"
rRNA complement(212320..2124
39) /gene="5S-rRNA"
gene complement(212540..2155
45) /note="hit to 5S-rRNA 1..120
score: 582 percent id: 98.33"
rRNA complement(212540..2155
45) /gene="23S-rRNA"
tRNA complement(215739..2158
14) /note="hit to 23S-rRNA 487..2904
score: 11323 percent id: 96.73 hit
to 23S-rRNA 1..540 score: 2601
percent id: 97.96" /product="tRNA-Glu"
gene complement(215900..2174
41) /note="tRNA Glu anticodon TTC,
Cove score 59.80"
rRNA complement(215900..2174
41) /gene="16S-rRNA"
gene complement(217822..2183
67) /note="hit to 16S-rRNA 1..1542
score: 7406 percent id: 97.92"
CDS complement(217822..2183
67) /note="synonym: hemG"
/gene="STY3573"
/note="Orthologue of E. coli
HEMG-ECOLI; Fasta hit to
HEMG-ECOLI (181 aa), 88% identity
in 181 aa overlap"
/codon-start=1
/transl-table=11
/product="protoporphyrinogen
oxidase"
/protein-id="CAD07906.1"
/db-xref="GI:16504451"
/db-xref="GOA:Q8Z3C9"
/db-xref="SPTRREMBL:Q8Z3C9"
/translation="MKTLLFLSTRDGQTREIASY
LASELKEMGIWADVNLHRAEEDP
WDSYDRVVIGASIRYGHYHSAFQEfvKKYATRLN
GMPSAFYSVNLVARKAEKRTPQTN
SYARKFLMSSPWRPDYCAVIAGALRYPRYRKYDR
LMIKLIMKMSGGETDTSKEVYTD
WEQVAHFARIAHLTNKSSAK"
misc-feature complement(218200..2183
64) /note="Pfam match to entry PF00258
flavodoxin, Flavodoxins, score
23.70, E-value 2.6e-05"
/gene="STY3573"
misc-feature complement(218305..2183
55) /note="PS00201 Flavodoxin
signature"
gene complement(218379..2198
30) /gene="trkH"
CDS complement(218379..2198
30) /note="synonym: STY3574"
/gene="trkH"

trk system potassium uptake protein TrkH SW:TRKH-ECOLI (P21166; P76769) (483 aa) fasta scores: E(): 0, 97.1% id in 483 aa Fasta hit to TRKG-ECOLI (485 aa), 41% identity in 481 aa overlap" /codon-start=1 /transl-table=11 /product="trk system potassium uptake protein" /protein-id="CAD07907.1" /db-xref="GI:16504452" /db-xref="GOA:Q8Z3C8" /db-xref="SPTREMBL:Q8Z3C8" /translation="MHFRAITRIVGLLVLFSGT MILPGLVALIYRDGAGGAFTQTFF VALAIGSILWWPNRREKGELKSREGFLIVVLFWT VLGSVGALPFIFSESPNLITDAF FESFSGLTTGATTLVGLDSLPHAILFYRQMLQW FGGMGIIIVLAVAILPVLGVGGMQL YRAEMPGPLKDNKMRPRIAETAKTLWLIYVLLTV ACALALWFAGMPAFDAIGHSFSTI AIGGFSTHDASVGYFDSPTINTIIIAIFLLISGCN YGLHFSLLSGRSLKVYWRDPEFRM FIGVQLTLVVICTLVLWFHNHYDSALTTLNQAFF QVVSMATTAGFTTDISIARWPLFLP VLLLCSAFIGGCAGSTGGGLKVIRILLFKQGNR ELKRLVHPNAVYSIKLGNRALPER ILEAVWGFFSAYALVFIVSMLAIATGVDDFSAF ASVVAATLNNLGPGLGVVADNFASM NPVAKWILIANMLFGRLEVFTLLVLFTPTFWRE"

gene complement (219869..2204 83) /gene="STY3575"

CDS complement (219869..2204 83) /note="synonym: yigZ" /gene="STY3575" /note="Orthologue of E. coli yigZ (YIGZ-ECOLI); Fasta hit to YIGZ-ECOLI (205 aa), 91% identity in 204 aa overlap" /codon-start=1 /transl-table=11 /product="conserved hypothetical protein" /protein-id="CAD07908.1" /db-xref="GI:16504453" /db-xref="GOA:Q8Z3C7" /db-xref="SPTREMBL:Q8Z3C7" /translation="MDSWLIPAAPVTVVEEIKKS RFITLLAHTDGVEAAKAFVELVRA EHPDARHHCAA WVAGAPDDSQQQLGFSDDGEPAGT AGKPMLAQLMGSGVGEITAVVVR YGGILLGTTGGLVKAYGGGVNQALRQLATQRKTPL TEYTLQCEYQLAGIEALLGQFAG KIVSSDYQASVRLRVALPFAHVNAFSTKLADFSR GSLQLLAIEE"

misc-feature complement (219872..2204 11) /gene="STY3575" /note="Pfam match to entry PF01205 UPF0029, Uncharacterized protein family UPF0029, score 326.60, E-value 2.9e-94"

misc-feature complement (220157..2202 46) /note="PS00910 Uncharacterized protein family UPF0029 signature"

gene complement (220483..2218 14) /gene="STY3576" /note="synonym: pepQ"

CDS complement (220483..2218 14) /note="Orthologue of E. coli pepQ (PEPQ-ECOLI); Fasta hit to PEPQ-ECOLI (443 aa), 96% identity in 443 aa overlap"

/transl-table=11
/product="proline dipeptidase"
/protein-id="CAD07909.1"
/db-xref="GI:16504454"
/db-xref="GOA:Q9L6L4"
/db-xref="SPTREMBL:Q9L6L4"
/translation="MESLAALYKNHIVTLQERTR
DVLARFKLDALLIHSGEFLNVFLD
DHPYPFKVNPQFKAWVPVTQVPCWLLVDGVNKP
KLWFYLPVDYWHNVEPLPTSFWTE
EVEVVALPKADGIGSQLPAARGNIGYIGPVPERA
LQLDIAASNINPKGVIDYLHYRA
YKTDYELACMREAQKMAVSQHRAAEAFRSGMSE
FDINLAYLTATGHRTDVPSNIV
ALNEHAAVLHYTKLDHQAPSEMRSFLLDAGAEYN
GYAADLRTTWSAKSDNDYAHLVKD
VNDEQLALIATMKAGVSYVDYHIQFHQRIAKLLR
KHQIITDMSEEAMVENDLTGPMP
HGIGHPLGLQVHDVAGFMQDDSGTHLAAPSKYPY
LRCTRVLQPRMVLTIEPGIYFIES
LLAPWREGPFSKHFNWQKIEALKPFGGIRIEDNV
VIHENGVENMTRDLKLA"

misc-feature complement(220513..2213
37) /gene="STY3576"
/note="Pfam match to entry PF00557
Peptidase-M24, metallopeptidase
family M24, score 346.70, E-value
2.6e-100"

misc-feature complement(220774..2208
12) /gene="STY3576"
/note="PS00491 Aminopeptidase P
and proline dipeptidase signature"
/gene="STY3577"
/note="synonym: fadB"
/gene="STY3577"
/note="Fasta hit to YFCX-ECOLI
(714 aa), 36% identity in 684 aa
overlap Orthologue of E. coli fadB
(FADB-ECOLI); Fasta hit to
FADB-ECOLI (729 aa), 95% identity
in 729 aa overlap"
/codon-start=1
/transl-table=11
/product="large (alpha) subunit of
the fatty acid-oxidizing
multienzyme complex"
/protein-id="CAD07910.1"
/db-xref="GI:16504455"
/db-xref="GOA:Q8Z3C6"
/db-xref="SWISS-PROT:Q8Z3C6"
/translation="MLYKGDTLYLDWLEDGIAEL
VFDAPGSVKLDTATVASLGQALE
VLEKQHDLKGLLRSNKAAFIVGADITEFLSLFL
VPEEQLSQWLHFANSVNRLEDLP
VPTLAAVNGYALGGGCECVLATDYRLATPDLRIG
LPETKLGIMPGFGGSVRLPRMLGA
DSALEIIAAGKDVGAEHALKIGLVDGVVKQEKKLI
EGAIAVLQAITGDDWRAKRQPK
LEPLKLSKIEAAMSFTIAGMVAQTAGKHYPAPM
TAVKTIEAAARFGREEALNLENKS
FVPLAHTNEARALVGIFLNDQYVKGAKKLTKDI
ETPKQAAVLGAGIMGGGIAYQSAW
KGVPVIMKDINDKSLNLGMTEAAKLLNKQLERGK
IDGLKLAGVISTIHPTLDYAGFDR
VDVVVEAVVENPKVKKAVLAETEQQKVRPETVLAS
NTSTIPIGELASALERPENFCGMH
FFNPVHRMPLVEIIRGEKSSDETIAKVVAWASKM
GKTPIVVNNCPGFVNRLFPYFA
GFSQLLRGADFRKVDKVMEKQFGWPMGPAYLLD
VVGIDTAHQAQAVMAAGFPQRMQK
EYRDAIDALFDASRGQKNGLGFWRKYKEDSKGKP
KKEEDAAVDDLLASVSQTKRDFSD
DELIARMMIIPMINEVVRCLLEEGIIASPAAEADMAL
VYGLGFPPFHGGAFRWLDTQGSAK
YLDMAQQYQHLGPLYEVPEGLRDKTRHNEPYYP

misc-feature 222055..222570 /gene="STY3577"
/note="Pfam match to entry PF00378
ECH, Enoyl-CoA hydratase/isomerase
family, score 300.70, E-value
1.7e-86"
/gene="STY3577"
/note="PS00166 Enoyl-CoA
hydratase/isomerase signature"
/gene="STY3577"
/note="PS00013 Prokaryotic
membrane lipoprotein lipid
attachment site"
/gene="STY3577"
/note="Pfam match to entry PF00725
3HCDH, 3-hydroxyacyl-CoA
dehydrogenase, score 579.90,
E-value 1.6e-170"
/gene="STY3577"
/note="PS00067 3-hydroxyacyl-CoA
dehydrogenase signature"
/gene="STY3578"
/note="synonym: fadA"
/gene="STY3578"
/note="Fasta hit to ATOB-ECOLI
(394 aa), 44% identity in 401 aa
overlap Fasta hit to YQEF-ECOLI
(393 aa), 41% identity in 401 aa
overlap Fasta hit to P77525 (401
aa), 46% identity in 404 aa
overlap Fasta hit to YFCY-ECOLI
(436 aa), 35% identity in 428 aa
overlap Orthologue of E. coli fadA
(THIK-ECOLI); Fasta hit to
THIK-ECOLI (387 aa), 95% identity
in 387 aa overlap"
/codon-start=1
/transl-table=11
/product="small (beta) subunit of
the fatty acid-oxidizing
multienzyme complex"
/protein-id="CAD07911.1"
/db-xref="GI:16504456"
/db-xref="GOA:Q9L6L6"
/db-xref="SWISS-PROT:Q9L6L6"
/translation="MEQVVIVDAIRTPMGRSKGG
AFRNVRAEDLSAHLMRSLARNPS
LTAATLDDIYWGCVQQTLEQGFNIARNAALLAEI
PHSVPAVTVNRLCGSSMQLHDAA
RMIMTGDQAQVCLVGGVEHMGHVPMSHGVDFHPGL
SRNVAKAAGMMGLTAEMLSRLHGI
SREMQDQFAARSHARAATQSGAFKTEIIPTGG
HDADGVLKQFNYDEVIRPETTVEA
LSTLRPAFDPVSGTVTAGTSSALSDGAAAMLVMS
ESRARELGLKPRARIRSMAVVGCD
PSIMGYGPVPASKLALKKAGLSASDIDVFEMNEA
FAAQILPCIKDLGLMEQIDEKINL
NGGAIALGHPLGCSGARISTTLINLMERKDAQFG
LATMCIGLGQGIATVFERV"
/gene="STY3578"
/note="Pfam match to entry PF00108
thiolase, Thiolase, score 770.20,
E-value 8.1e-228"
/gene="STY3578"
/note="PS00098 Thiolases
acyl-enzyme intermediate
signature"
/gene="STY3578"
/note="PS00737 Thiolases signature
2"
/gene="STY3578"
/note="PS00099 Thiolases active
site"
gene complement (225563..2273 /gene="STY3579"
86)
CDS complement (225563..2273 /gene="STY3579"

/note="Similar to *Campylobacter jejuni* arylsulfatase *atsA*
TR:Q46098 (EMBL:U38280) (620 aa)
fasta scores: E(): 0, 59.4% id in
613 aa"
/codon-start=1
/transl-table=11
/product="possible transferase"
/protein-id="CAD07912.1"
/db-xref="GI:16504457"
/db-xref="GOA:Q8Z3C5"
/db-xref="SPREMBL:Q8Z3C5"
/translation="MKFKYALTSLALSAILSSV
PSTAFAIGGASGAKVDYQVQGKIG
EVVMNPYDIAPLTAVIRNGGYQLRDVHVRIVPKE
NGQEIAVKNNKYLLTYGGIPVFG
LYPDYVNTVEVEYTRIQQSKTENIKESYKMYAPP
AYSESAGTKEEQSALFTIDVKKVS
PEFKDRLLNNTKDKSGNGTRTVWNNTGGALE
WNFTTANAIIDTSGDIRWFMPSS
IYDLKSIYRAGVMMGFQQNQDGALSWGYGQRYVK
YDIMGREIFNRRLPDNYNDFSHSM
DNAPNGHYFLRVASSNYKRPDGKNVRTVRDVIAE
VDQNGVVVDEWRLFDILDPLYRDVI
MKTLDQGAVCLNIDASQSGHTLSEEDLAALDSSD
KFGDIVGSGAGRWNWAHVNSVDYDS
EDDSIIISFRHQSAIIKIGRDKKVWLGTTPAGW
KAPFNAAILTPVDSKGQKISCOES
GCEGDFDWWTQHTAFKIDS SKGDILYLSAFDN
GDGRGLEOPAMQSMKYSRSVVIYKI
DQKNKTVQQIWQYKGKERGNEWFSPVTSITEYQTD
KNSVFVYSATAGGEFDLSVGAFTS
LPNPYLEEFRWGEKEPAVEMQIHGARGYQAMPFS
LTKALTE"

| | | |
|--------------|---------------------------------|---|
| gene | complement (227640..2283
41) | /note="synonym: ubiB"
/gene="STY3580" |
| CDS | complement (227640..2283
41) | /note="Orthologue of <i>E. coli</i> ubiB
(UBIB-ECOLI); Fasta hit to
UBIB-ECOLI (232 aa), 91% identity
in 232 aa overlap"
/codon-start=1
/transl-table=11
/product="flavin reductase"
/protein-id="CAD07913.1"
/db-xref="GI:16504458"
/db-xref="GOA:Q8Z3C4"
/db-xref="SPREMBL:Q8Z3C4"
/translation="MTTLSCKVTSVEAITDTVYR
VRLVPDAAFSFRAGQYLMVVMDER
DKRPFSMASTPDEKGFIELHIGASELNLYAMAVM
DRILKDREIVVDIPHGDawlRDE
ERPLILIAAGGTGSYARSILLTALARNPARDVTI
YWGGREEKHLYDLSELEALSVNHP
NLRIEPVVEQPEEGWRGRTGTVLTAVLQDYGTLA
GHDIVIAGRFE MAKIARDLFCHER
NAREDRLFGDAFAFI"
/gene="STY3580" |
| misc-feature | complement (227703..2280
35) | /note="Pfam match to entry PF00175
oxidored-fad, Oxidoreductase
FAD/NAD-binding domain, score
130.20, E-value 3.9e-35"
/gene="STY3580" |
| gene | complement (228427..2299
05) | /note="synonym: yigC"
/gene="STY3581" |
| CDS | complement (228427..2299
05) | /note="Orthologue of <i>E. coli</i> yigC
(YIGC-ECOLI); Fasta hit to
YIGC-ECOLI (497 aa), 96% identity
in 491 aa overlap"
/codon-start=1 |

/product="conserved hypothetical protein"
/protein-id="CAD07914.1"
/db-xref="GI:16504459"
/db-xref="SPTRREMBL:Q8Z3C3"
/translation="MDAMKYHDLRDFLTLLQQG
ELKRITLPVDPHLEITEIADRTLR
AGGPALLFENPKGYAMPVLCNLFGTPKRVAMGMG
QDDVSALREVGKLLAFLKEPEPPK
GFRDLFDKLQPQFKQVLMPTKRLRGAPCQQKIAS
GDDVDLTRLPVMTCPDDAAPLIT
WGLTVTRGPHKERQNLGIYRQQLIGKNKLIMRWL
SHRGGAQDFQEWLAAARPGERFPVS
VALGADPATILGAVTPVPDTLSEYAFAGLLRGTK
TEVVVKCLSNNDLEVTPASAEIILEGY
IEPGEMAPEGPYGDHTGYYNEVDNFPVFTVTHIT
QREDAIYHSTYTGRPPDEPAVLGV
ALNEVFVPILOKQKFPEIVDFYLPEGCSYRLAVV
TMKKQYAGHAKRVMGVWSFLRQF
MYTKFVIVCDDDVNARDWNDVIWAITTRMDPARD
TTLVENTPIDYLDFAASPVSGLGSK
MGLDATNKWPGETQREWGRPIVKDPEVTARIDAI
WDELAIFK"
misc-feature complement (228595..2298
69) /gene="STY3581"
/note="Pfam match to entry PF01977
UPF0096, Protein of unknown
function UPF0096, score 829.90,
E-value 8.6e-246"
/gene="STY3582"
/note="synonym: rfaH"
/gene="STY3582"
/note="Orthologue of E. coli rfaH
(RFAH-ECOLI); Fasta hit to
RFAH-ECOLI (162 aa), 88% identity
in 162 aa overlap"
/codon-start=1
/transl-table=11
/product="transcriptional
activator"
/protein-id="CAD07915.1"
/db-xref="GI:16504460"
/db-xref="SPTRREMBL:Q8Z3C2"
/translation="MQSWYLLYCKRGQLQRAQEHLERQAVSCLTPMITLEKMVRGKRT
FVSEPLFPNYLFVEFDPEVIHTTTINATRGVSHF
VRFGAHPAIVPSSVIHQLSIYKPE
GVVDPETPYPGDSVIITEGAFEGLKAIFTEPDGE
TRSMLLNLLNKEVKQSVKNTGFR KI"
gene complement (230587..2313
69) /gene="tatD"
/note="synonym: STY3583"
CDS complement (230587..2313
69) /gene="tatD"
/note="Similar to Escherichia coli
deoxyribonuclease TatD
SW:TATD-ECOLI () (264 aa) fasta
scores: E(): 0, 81.9% id in 260
aa"
/codon-start=1
/transl-table=11
/product="putative
deoxyribonuclease"
/protein-id="CAD07916.1"
/db-xref="GI:16504461"
/db-xref="SPTRREMBL:Q8Z3C1"
/translation="MFDIGVNLTSSQFAKDRDDV
VARAFAAGVKGMLLTGTNIHESQQ
ALKLARRYPHCWSTAGVHPHDSSQWSSASEDAII
ALANQPEVVAIGECGLDFNRFNST
PQEGERAFQAQLQIAAEQMP1FMHCRAHERFL
ALLDPWLDSLPGAILHCFTGSRQQ
MQACVDRGLYIGITGWVCDERRGLELRELLPFIP
AEKLLIETDAPYLLPRDLTPKPTS
RRNEPAYLPHILERIALWRGEDPQWLAAMTDANA

misc-feature complement(230599..2313 /gene="tatD"
54)
/note="Pfam match to entry PF01026
UPF0006, Metalloenzyme of unknown
function UPF0006, score 375.20,
E-value 6.5e-109"

misc-feature complement(230755..2308 /gene="tatD"
05)
/note="PS01091 Uncharacterized
protein family UPF0006 signature
3"

misc-feature complement(230971..2310 /gene="tatD"
03)
/note="PS01090 Uncharacterized
protein family UPF0006 signature
2"

gene complement(231411..2321 /gene="tatC"
90)
/note="synonym: STY3584"

CDS complement(231411..2321 /gene="tatC"
90)
/note="Similar to Escherichia coli
sec-independent protein
translocase protein TatC
SW:TATC-ECOLI () (258 aa) fasta
scores: E(): 0, 90.0% id in 259
aa"
/codon-start=1
/transl-table=11
/product="sec-independent protein
translocase protein"
/protein-id="CAD07917.1"
/db-xref="GI:16504462"
/db-xref="SPTREMBL:Q9L6M3"
/translation="MAVEDTQPLITHLIELRKRL
LNCIVAVLLIFLALIYFANDIYHL
VAAPLIKQMPQGATMIATDVASPFTPIKLTFMV
SLILSAPVILYQVWAFIAPALYKH
ERRLVVPLLVSLLFYIGMAFAYFVVFPLAFGF
LTHTAPEGVQVSTDIASYLSFVMA
LFMAFGVAFEVPPVAIVLLCWMGITTTPEDLRKKRP
YILVGAFIVGMLLTPPDVFSQTLL
AIPMYCLFEIGVFCRSFYVGKRRTRDEDNEAETE
KAEHTED"

misc-feature complement(231528..2321 /gene="tatC"
39)
/note="Pfam match to entry PF00902
UPF0032, MttB family UPF0032,
score 351.60, E-value 8.6e-102"

misc-feature complement(231672..2317 /gene="tatC"
31)
/note="PS01218 Uncharacterized
protein family UPF0032 signature"

gene complement(232193..2327 /gene="tatB"
41)
/note="synonym: STY3585"

CDS complement(232193..2327 /gene="tatB"
41)
/note="Similar to Escherichia coli
sec-independent protein
translocase protein TatB or MttA2
TR:069415 (EMBL:AJ005830) (171 aa)
fasta scores: E(): 0, 81.9% id in
182 aa Orthologue of E. coli
O87926; Fasta hit to O87926 (145
aa), 80% identity in 156 aa
overlap"
/codon-start=1
/transl-table=11
/product="sec-independent protein
translocase protein"
/protein-id="CAD07918.1"
/db-xref="GI:16504463"
/db-xref="GOA:Q8Z3C0"
/db-xref="SWISS-PROT:Q8Z3C0"

GPQRLLPVAVKTVAGWIRALRSLAT
TVQNELTQELKLQEFQDSLKKVEKASLENLTPEL
KASMDELRQAAESMKRTYSANDPE
QASDEAHTIHNPVVKGNETQHEGVTPAAAETQAS
APEQKPEPVKANPESTETASVAA
IDAEKKSAAPVVESSPSSSDKP"
/gene="tatA"

gene complement (232745..2329
99) /note="synonym: STY3586"
CDS complement (232745..2329
99) /note="Similar to Escherichia coli
sec-independent protein
translocase TatA or MttA1
TR:065938 (EMBL:AJ005830) (103 aa)
fasta scores: E(): 1.2e-23, 84.3%
id in 89 aa Fasta hit to
YBEC-ECOLI (67 aa), 60% identity
in 68 aa overlap Orthologue of E.
coli O65938; Fasta hit to O65938
(103 aa), 84% identity in 89 aa
overlap"
/codon-start=1
/transl-table=11
/product="sec-independent protein
translocase protein"
/protein-id="CAD07919.1"
/db-xref="GI:16504464"
/db-xref="GOA:P57045"
/db-xref="SWISS-PROT:P57045"
/translation="MGGISIWQLLIVAVIVVLLF
GKKLGSIGSDLGASIKGFKKAMS
DDDAKQDKTSQDADFTAKSIADKQGEAKKEDAKS
QDKEQV"
/gene="aarF"

gene complement (233205..2348
45) /note="synonym: STY3587"
CDS complement (233205..2348
45) /note="Similar to Escherichia coli
ubiquinone biosynthesis protein
AarF aarF SW:AARF-ECOLI (P27854;
P27855; P76764; P27853) (546 aa)
fasta scores: E(): 0, 94.3% id in
546 aa"
/codon-start=1
/transl-table=11
/product="ubiquinone biosynthesis
protein"
/protein-id="CAD07920.1"
/db-xref="GI:16504465"
/db-xref="GOA:Q9L6M4"
/db-xref="SWISS-PROT:Q9L6M4"
/translation="MTPGEVRRLYFIIRTFLSYG
LDELI PRMRLT LPLRLW RYSL FW
PNRH KDKLLGER LRL ALQ EL GPV WIK FG QML STR
RD LFPP QI ADQ L ALL QD KV AP FD G
RL AKA QIEE AM GGL PVE AW FDD FDI QP LAS ASIA
QV H T A R L K S NG KE VVI K V I R P D I L
P V I Q A D L K L I Y R L A R W V P R L L P D G R R L R P T E V V R
EYE KTL IDE L N L L R E S A N A I Q L R R
N F E N S P M L Y I P E V Y S D Y C S Q N M M V M E R I Y G I P V S
D V A A L E K N G T N M K L L A E R G V K V F F
T Q V F R D S F F H A D M H P G N I F V S H E H P E N P Q Y I G I D
C G I V G S L N K E D K R Y L A E N F I A F F N
R D Y R K V A E L H V D S G W V P P D T N V E D F E F A I R T V C E
P I F E K P L A E I S F G H V L L N L F N T A R
R F N M E V Q P Q L V L L Q K T L L Y V E G V G R Q L Y P Q L D L W
K T A K P F L E S W I K D Q V G I P A L T R A L
K E K A P F W V E K M P E I P E L V Y D S L R Q G K Y L Q H S V D K
I A R E L Q V N H V R Q S Q S R Y L L G I G A T
L L L S G S F L L V N R P E W G L M P G W L M V G G V V V W L V G W
R K T R "
/gene="STY3588"

gene complement (234842..2354
47) /gene="STY3588"

CDS complement (234842..2354 /gene="STY3588"
47)
/note="Orthologue of *E. coli* yigP
(YIGP-ECOLI); Fasta hit to
YIGP-ECOLI (201 aa), 87% identity
in 201 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07921.1"
/db-xref="GI:16504466"
/db-xref="SPTRREMBL:Q8Z3B9"
/translation="MPFKPLVTAGIEGLLNTFLY
RSPALKSARTRLQGKVLCVKLG
STPLVLVFSERQVDVLGAWEGEADCTVITQASVL
PKLRDRQQLAALIRSGELEVQGDI
QVVQNFVALADLAELFDPAELLAPYTGDIAAESIG
KVVRGGAKFLRHGFQRQRYAAEA
ITEEWRMAPGPLEVAWFAEETAAVERAVDSLTT
LEKLGAK"
gene complement (235457..2362 /gene="ubiE"
12)
/note="synonym: STY3589"
CDS complement (235457..2362 /gene="ubiE"
12)
/EC-number="2.1.1.-"
/note="Similar to *Escherichia coli*
ubiquinone/menaquinone
biosynthesis methyltransferase
UbiE ubiE SW:UBIE-ECOLI (P27851)
(251 aa) fasta scores: E(): 0,
95.6% id in 251 aa"
/codon-start=1
/transl-table=11
/product="ubiquinone/menaquinone
biosynthesis methyltransferase
UbiE"
/protein-id="CAD07922.1"
/db-xref="GI:16504467"
/db-xref="GOA:Q9L6M6"
/db-xref="SWISS-PROT:Q9L6M6"
/translation="MVEDSQETTHFGFQTVAKEQ
KADMVAHFHSVASKYDVMNDLMS
FGIHRLWKRTIDCSGVRRGQTVLDLAGGTGDLT
AKFSRMVGETGKVILADINDSMLK
MGREKLRNIGVIGNVEYVQANAELPFPDNTFDC
ITISFGLRNTEKEKALRSMFRLV
KPGGRLLVLEFSKPIIEPLSKAYDAYSFHILPRI
GSMVANDADSRYLAESIRMHPDQ
DTLKAMMQDAGFESVDYYNLTAGVVALHRGYKF"
misc-feature complement (235463..2361 /gene="ubiE"
73)
/note="Pfam match to entry PF01209
Ubie-methyltran, ubiE/COQ5
methyltransferase family, score
588.50, E-value 4.1e-173"
misc-feature complement (236060..2361 /gene="ubiE"
07)
/note="PS01183 ubiE/COQ5
methyltransferase family signature
1"
gene complement (236308..2377 /gene="STY3590"
38)
/note="synonym: yigN"
CDS complement (236308..2377 /gene="STY3590"
38)
/note="Orthologue of *E. coli* yigN
(YIGN-ECOLI); Fasta hit to
YIGN-ECOLI (475 aa), 87% identity
in 475 aa overlap. Contains a
possible N-terminal signal
sequence and a possible
coiled-coil region between
residues 65..124"

/transl-table=11
/product="putative membrane protein"
/protein-id="CAD07923.1"
/db-xref="GI:16504468"
/db-xref="GOA:Q9L6M7"
/db-xref="SWISS-PROT:Q9L6M7"
/translation="MDITLMISAVVALAAGAVIG
WLATAKAHQDQIRADLIEERRELDI
ELSAARQQLAQEAHWRSECELLNNELRSLHSINT
SLEADLREVTTTRLEATQQHAEDKI
RQMINSEQRLLSEQFENLANRIFEHSNRRVDEQNR
QSLNSLLTPLREQLDGFRQQVQES
FGKEAQRHTLAHEIRNLQQLNAQMAQEAINLTR
ALKGDNKAQGNWGEVVLARVLEAS
GLREGYEYETQVSIEANDARSQPDVIVRLPQGK
DVVIDAKMTLVAYERYFNAEDDYT
REAALQEHIASVRNHIRLLGRKDYQQLPGLRSLD
YVLMFIPVEPAFLALLDKQPELIT
EALKNNIMLVSPPTLLVALRTIANLWRYEHQSRN
AQHIADRASKLYDKMRLFVDDMSA
IGQSLDKAQNDRQAMKKLASGRGNVLAQAEAFR
GLGVEIKREINPDLAEQAVTQDEE
YRLRSIPEGRQDEHYPNDERVKQQLS"
/gene="udp"
/note="synonym: STY3591"
/gene="udp"
/EC-number="2.4.2.3"
/note="Similar to Escherichia coli
uridine phosphorylase UDP
SW:UDP-ECOLI (P12758) (252 aa)
fasta scores: E(): 0, 97.2% id in
252 aa and to Salmonella
typhimurium uridine phosphorylase
SW:UDP-SALTY () (252 aa) fasta
scores: E(): 0, 99.2% id in 252
aa"
/codon-start=1
/transl-table=11
/product="uridine phosphorylase"
/protein-id="CAD07924.1"
/db-xref="GI:16504469"
/db-xref="GOA:O33808"
/db-xref="SWISS-PROT:O33808"
/translation="MSKSDVFHLGLTKNDLQGAQ
LAIVPGDPERVEKIAALMDKPVKL
ASHREFTSWRAELDGKAVICSTGIGGPSTSIAV
EELAQLGIRTFLRIGHTGAIQPHI
NVGDVLVTTASVRLDGASLHFAPMEFPNAVDFAC
TTALVEAAKSIGATTHVGVTASSD
TFYPGQERYDTYSGRVVRFRFKGSMEEWQAMGVMN
YEMESATLLTMCASQGLRAGMVAG
VIVNRTQQEIPNAETMKQTESHAVKIVVEAARRL
L"
/gene="udp"
/note="Pfam match to entry PF01048
PNP-UDP-1, Phosphorylase family,
score 375.00, E-value 7.6e-109"
/gene="udp"
/note="PS01232 Purine and other
phosphorylases family 1 signature"
/gene="STY3592"
/note="synonym: ysgA"
/gene="STY3592"
/note="Similar to Escherichia coli
putative
carboxymethylenebutenolidase YsgA
SW:DLSH-ECOLI (P56262) (258 aa)
fasta scores: E(): 0, 90.6% id in
255 aa Orthologue of E. coli
DLHH-ECOLI; Fasta hit to

in 255 aa overlap"
/codon-start=1
/transl-table=11
/product="putative hydrolase"
/protein-id="CAD07925.1"
/db-xref="GI:16504470"
/db-xref="GOA:Q8Z3B8"
/db-xref="SWISS-PROT:Q8Z3B8"
/translation="MTTHPSGFAPAASPLAPTM
IHTPDGAISAGITSIPSQGDDMPA
YYARPKASDGALPVIVVQEIEFGVHEHIRDICRR
LALEGYLAIAPELYFREGDPNDFA
DIPTLLSGLVAKVPSQVLADLDHVASRNGG
DAHRLMITGFCWGGRITWLYAAHN
PQLKAAVAWYGKLVGDTSLNSPKHPVDIATDLNA
PVLGLYSQDTSIPQESVETMRQA
LRAANAKAEIVVYPDAGHAFNADYRPGYHEASAK
DGWQRMLEWFAQYGGKKG"
/gene="STY3592"
/note="Pfam match to entry PF01738
DLH, Dienelactone hydrolase
family, score 352.40, E-value
4.7e-102"

misc-feature 239021..239695

gene complement (239786..2411 /gene="STY3593"
 32)
CDS complement (239786..2411 /gene="STY3593"
 32)
 /note="Fasta hit to YDEM-ECOLI
(385 aa), 42% identity in 390 aa
overlap Orthologue of E. coli asLB
(ASLB-ECOLI); Fasta hit to
ASLB-ECOLI (411 aa), 48% identity
in 393 aa overlap"
/codon-start=1
/transl-table=11
/product="putative regulatory
protein"
/protein-id="CAD07926.1"
/db-xref="GI:16504471"
/db-xref="SPTRREMBL:Q8Z3B7"
/translation="MSHGAGEPYFLTEMSDMAVA
GCHVMAPGGAI CNIDCTYCFYLE
KEALYPERNKNWRMSDETLEQFIROHQIAAQSGDR
IDFAWQCPEPTMMGLPFFRRVAL
CEKYGDGRKITHALQTNGILVNDEWARFFAEQHF
LIGLSIDGPASLHNHYRLNRAGKG
THEQVVAAMARLKAHHDFNTLTVVGVKHNVGHAA
DVYEFLLAAGSRFIQFIPVERMS
TDNSSVNLVMPGEASA KLA PWTVP SWQYGEFLN
QIFDIWVRRDVDRVYVQMF DVALA
AWTAQQPVLCVHSETCGHAFALESNGDLYNCDFH
VYPEHLLGNIHQHSIKTLNN SERA
IAFGEAKRET LTADCRRCDYRFACHGGCPKHRFA
VSPSGHPAHNYLCTGYKHFFQHVT
PYMNWRELLA QGYPMASIMRWLAQDARKDTGAV
SRNHLCPCGSGKKYKNAVVKHS"

misc-feature complement (240203..2408 /gene="STY3593"
 95)
 /note="Pfam match to entry PF01444
MoaA-NifB-PqqE, moaA / nifB / pqqE
family, score -26.10, E-value
0.0081"

gene complement (241467..2437 /gene="STY3594"
 31)
 /note="synonym: metE"
CDS complement (241467..2437 /gene="STY3594"
 31)
 /note="Orthologue of E. coli metE
(METE-ECOLI); Fasta hit to
METE-ECOLI (752 aa), 94% identity
in 751 aa overlap"
/codon-start=1
/transl-table=11
/product="5-methyltetrahydropteroyl
triglutamate- homocysteine"

/protein-id="CAD07927.1"
/db-xref="GI:16504472"
/db-xref="GOA:Q8Z3B6"
/db-xref="SWISS-PROT:Q8Z3B6"
/translation="MTILTHLGFPRVGLRRELK
KAQESYWAGNTTREALLAVGRELR
ARHWEQQKQAGIDLLPVGDFAWYDHVLTTSLLG
NVPARHQNNNDGSVDIDTLFRIGRG
RAPTGEAAAAEMTKWFNTNYHYIVPEFSKGQQF
RLTWTQLLEEVDEALALGHKIKPV
LLGPVTYLWLGKVKGEPFDRLTLLKDILPVYQHV
LAELAKRGVEWVQIDEPALVLELP
QAWLDAFKPAYDALAGQVKLLLTTYFEGVTPNLD
TIVLPVQGLHVDLIHGKDDVVEL
HQRLPVDWLLSAGLINGRNVWRADLTEKYAQINA
IVGKRALWVASSCSSLHSPIDLSV
ETRLDTEVKSWFAFALQKCSELALLRDALNSGET
AALEEWSPVIQARRSHRVHNAAV
EKRLAAITAQDSQRENPYEVRAEAQRARFKLPAW
PTTIGSFQOTTEIRGLRLDFKKG
NLDANNYRTGIAEHIKQAIIEQERLGLDVLVHGE
AERNDMVEYFGEHLDGFVFTQNGW
VQSYGSRCKPPVIGDISRPAPITVEWAKYAQS
LTDKPVKGMLTGPVTILCWSPRE
DVTRETIAKQIALALRDEVADLEAAGIGIIQIDE
PALREGLPLRRSDWDAYLEWGVEA
FRINAAVAKDETQIINTHMCYCEFNDIMDSIAALD
ADVITIETSRSRSDMELLESFEAFDY
PNEIGPGVYDIHSPNVPSPVWIEALLKAAQRIP
AQLWLWVNPDGKTRGWPETRAAL
ANMVKAHHNLRQAK"
/gene="STY3594"

misc-feature complement (241485..2424
56) /note="Pfam match to entry PF01717
Methionine-synt, Methionine
synthase, vitamin-B12 independent,
score 775.00, E-value 3.1e-229"
/gene="STY3595"
/note="synonym: metR"
/gene="STY3595"
/note="Orthologue of E. coli metR
(METR-ECOLI); Fasta hit to
METR-ECOLI (317 aa), 92% identity
in 317 aa overlap"
/codon-start=1
/transl-table=11
/product="trans-activator of metE
and metH"
/protein-id="CAD07928.1"
/db-xref="GI:16504473"
/db-xref="GOA:P05984"
/db-xref="SWISS-PROT:P05984"
/translation="MIEIKHLKTLQALRNSGSLA
AAAAVLHQTSALSHQFSDLEQRL
GFLRLFVRKSQPLRFTPQGEVLLQLANQVLPQISR
ALQACNEPQQTRLRIAIECHSCIQ
WLTPALENFRASWPQVEMDFTSGVTFPQPALQQ
GELDLVMTSDILPRSGLHYSPMFD
FEVRLVLAPDHPLASKTQITPEDLASETLLIYPV
QRSRLDVWRHFLQPAGISPLLKSV
DNTLLLIQMVAARMGIAALPHWVVESVERQGLVV
TKTLGDGLWSRLYAAVRDGDQRQA
VTEAFIRSTRDHACDHLFPVRSAERPIFDAPTA
PGSQPRL"
/gene="STY3595"
/note="Pfam match to entry PF00126
HTH-1, Bacterial regulatory
helix-turn-helix protein, lysR
family, score 156.20, E-value
5.7e-43"
/gene="STY3595"
/note="PS00044 Bacterial
regulatory proteins, lysR family
signature"
/gene="STY3596"

gene
CDS
gene
misc-feature
misc-feature
gene

CDS

complement (244821..2457 20) /note="synonym: yigM"
 /gene="STY3596"
 /note="Orthologue of *E. coli* yigM (YIGM-ECOLI); Fasta hit to YIGM-ECOLI (288 aa), 89% identity in 291 aa overlap. Contains multiple possible membrane spanning hydrophobic domains. Note the large overlap with the downstream CDS."
 /codon-start=1
 /transl-table=11
 /product="putative membrane protein"
 /protein-id="CAD07929.1"
 /db-xref="GI:16504474"
 /db-xref="GOA:Q9L6N3"
 /db-xref="SWISS-PROT:Q9L6N3"
 /translation="MALLIITTLWAFFSFSLFGE
 YLAGHVDSYFAVLIIRVGLAALVFL
 PFLRTRGHNLKTISLYMLVGAMQLGIMYMLSFHA
 YLYLTVSELLLFTVLTPLYITLIY
 DVMSQRRLRWGYAFSALLAVIGAGIIRYDRVTDH
 FWVGLLLVLQSNISFAIGMVGYKR
 LMETRPMPQHNAFAWFYLGAFLVAAVAWSLLGNA
 QKLPETTLQWSILVFLGVVASGIG
 YFMWNYGATQVDAGTLGIMNNMHVPAGLLVNLA
 WHQQPHWPSFITGAVALASLWVH
 RKWVAPRSAQTADDRRDPASSE"
 misc-feature complement (244890..2452 76) /gene="STY3596"
 /note="Pfam match to entry PF00892 DUF6, Integral membrane protein DUF6, score 37.10, E-value 4e-07"
 gene complement (245801..2466 01) /gene="yigL"
 /note="synonym: STY3597"
 CDS complement (245801..2466 01) /gene="yigL"
 /note="Similar to *Salmonella typhimurium* LT2 YigL protein yigL TR:AAF33430 (EMBL:UNNKOWN ACCESSION) (266 aa) fasta scores: E(): 0, 100.0% id in 266 aa, and to *Escherichia coli* hypothetical 29.8 kDa protein in pldb-metr intergenic region. hypothetical 29.8 kda protein in pldb-metr intergenic region SW:YIGL-ECOLI (P27848) (265 aa) fasta scores: E(): 0, 84.5% id in 265 aa Fasta hit to COF-ECOLI (272 aa), 39% identity in 260 aa overlap Orthologue of *E. coli* yigL (YIGL-ECOLI); Fasta hit to YIGL-ECOLI (265 aa), 85% identity in 265 aa overlap"
 /codon-start=1
 /transl-table=11
 /product="conserved hypothetical protein"
 /protein-id="CAD07930.1"
 /db-xref="GI:16504475"
 /db-xref="GOA:Q9L6N4"
 /db-xref="SPTREMBL:Q9L6N4"
 /translation="MYQVVASDLDGTLLSPDHTL
 SPYAKETLKLLTARGIHVFATGR
 HHVDVGQIRDNLLEIKSYIMITSNGARVHDTDGNLV
 FTHNLDSDIASDLFGVVNANPDIV
 TNVYRDDEWMNRHPDEMRRFFKEAVFNYSLFEP
 ALLEPEGVSKVFFTSDTHEKLLPL
 EQAINARWGDRVNVSFSTLTCLEVMAGGVSKGHA
 LEAVAQAMGYSLKECIAFGDGMND
 AEMLTMAGKGCIMGNAHQRLKDLYPELEVGINA"

misc-feature complement(245849..2465 /gene="yigL"
92)
/note="Pfam match to entry PF00592
DUF3, Cof family DUF3, score
373.60, E-value 2e-108"

misc-feature complement(245900..2459 /gene="yigL"
68)
/note="PS01229 Hypothetical cof
family signature 2"

misc-feature complement(246557..2465 /gene="yigL"
92)
/note="PS01228 Hypothetical cof
family signature 1"

gene complement(246617..2476 /gene="STY3598"
33)
/note="synonym: pldB"

CDS complement(246617..2476 /gene="STY3598"
33)
/note="Orthologue of E. coli pldB
(PLDB-ECOLI); Fasta hit to
PLDB-ECOLI (340 aa), 82% identity
in 336 aa overlap"
/codon-start=1
/transl-table=11
/product="lysophospholipase L2"
/protein-id="CAD07931.1"
/db-xref="GI:16504476"
/db-xref="GOA:Q8Z3B5"
/db-xref="SPTREMBL:Q8Z3B5"
/translation="MFQQQNDWETRENAFAAFAM
GPLTDFWRQREEAEFIGVDNIPVR
FVRFRNDSNDRTIVICPGRIESYVKYAELEYDLF
HLGFDIFIDHRGQGRSGRMLSDP
HRGHVDHFNDYVEDLAAFWQQEIEPGSWRKRYIL
AHSMGGAIATLFLQRHRVRCDAIA
LTAPMFGIVIRLPSFMVRHILDWAEGHQRIREDY
AIGTGQWRALPFGMNALTHSRQRY
QRNLRFYADEPQLRVGGPTWHWVREGILAGEQLV
AGASDDTTPTLLIQAEERVVNDR
THDRFCEIRAAAGYPCEGGKPLVIKGAYHEILFE
KDAMRSVALNAIVEFFNKPNLSSG NRFA"

misc-feature complement(246665..2473 /gene="STY3598"
90)
/note="Pfam match to entry PF00561
abhydrolase, alpha/beta hydrolase
fold, score 111.50, E-value
1.6e-29"

gene 247744..248364 /gene="rhtB"
/note="synonym: STY3599"

CDS 247744..248364 /gene="rhtB"
/note="Similar to Escherichia coli
homoserine/homoserine lactone
efflux protein RhtB SW:RHTB-ECOLI
(P27847) (206 aa) fasta scores:
E(): 0, 89.3% id in 206 aa"
/codon-start=1
/transl-table=11
/product="homoserine/homoserine
lactone efflux protein"
/protein-id="CAD07932.1"
/db-xref="GI:16504477"
/db-xref="GOA:Q8Z3B4"
/db-xref="SWISS-PROT:Q8Z3B4"
/translation="MTFEWWFAYLLTSTLLSLSP
GSGAINTMTTSINHGYRGAAASIA
GLQTGLGIHIVLVGVGLGTLFSRSILIAFEILKWA
GAAYLIWLGIQWRAAGAIDLHTL
AQTOQSRGRFLFKRAIFVNLTNPKSIVFLAALFPQF
IMPQQPQLAQYLILGVTTIVVDMI
VMTGYATLAQRIAIAWIKGPQMKALNKAFLGSLFM
LVGALLASARHA"
/gene="rhtB"

misc-feature 247948..248262 /note="Pfam match to entry PF01810
LysE, LysE type translocator,
score 127.60, E-value 2.2e-34"

CDS

24) complement (248404..2490
24) /note="synonym: STY3600"
/gene="rhtC"
/note="Similar to Escherichia coli
threonine efflux protein rhtC
SW:RHTC-ECOLI (P27846) (206 aa)
fasta scores: E(): 0, 91.3% id in
206 aa"
/codon-start=1
/transl-table=11
/product="threonine efflux
protein"
/protein-id="CAD07933.1"
/db-xref="GI:16504478"
/db-xref="GOA:Q8Z3B3"
/db-xref="SWISS-PROT:Q8Z3B3"
/translation="MLMLFFTVAMVHIVALMSPG
PDFFFVSQLAVSRSRKEAMMGVLG
ITCGVMWAGVALLGLHLIEKMAWLHTIIMVGG
GLYLCWMGYQMLRGALKQDAAAS
SPHIELAQSGRSFLKGLLTNLSNPKAIYFGSVF
SLFVGDNVGAARWGIFALITLET
LAWFTVVASFALPKMRRGYQRLAKWIDGFAGAL
FAGFGIHLIISR"

misc-feature

complement (248497..2488
23) /gene="rhtC"
/note="Pfam match to entry PF01810
LysE, LysE type translocator,
score 145.70, E-value 8e-40"

gene

complement (249088..2509
17) /gene="recQ"

CDS

complement (249088..2509
17) /note="synonym: STY3601"
/gene="recQ"
/EC-number="3.6.1.-"
/note="Similar to Escherichia coli
ATP-dependent DNA helicase RecQ
SW:RECQ-ECOLI (P15043; P76762)
(607 aa) fasta scores: E(): 0,
94.6% id in 608 aa"
/codon-start=1
/transl-table=11
/product="ATP-dependent DNA
helicase"
/protein-id="CAD07934.1"
/db-xref="GI:16504479"
/db-xref="GOA:Q8Z3B2"
/db-xref="SPTREMBL:Q8Z3B2"
/translation="MAQAEVLNLESGAKQVQLQET
FGYQQFRPGQEAIIDTALSGRDCL
VVMPTGGGKSLCYQIPALLLDGLTVVVSPLISLM
KDQVDQLLANGVAAACLNSTQSRE
QQLEVMAGCRTGQIRLLYIAPERLMLDNFLDHLA
HWNPVLLAVDEAHCISQWGHDFRP
EYAALGQLRQRFPALPFMALTATADDTRQDIIR
LLGLNDPLIQISSLFDRPNIRYMLM
EKFKPLDQLMRYVQEQRGKSGIIYCNSRAKVEDT
AARLQSRGISAAAYHAGLENAIRA
DVQEKFQRDDLQIVVATVAFGMGINKPNVRVVF
FDIPRNIESYYQETGRAGRDRGLPA
EAMLFYDPADMAWLRRCLEEKPAGQLQDIERHKL
NAMGAFAEAQTCRRLVLLNYFGE
RQEPCGNCDICLDPKQYDGLNDAQIALSTIGRV
NQRFGMGVVEVIRGANNQRIRDF
GHDKLKVYGMGREKSHEHWVSVIRQLIHLGLVMQ
NIAQHSALQLTDAARPVLRGDVPL
KLAVERVALKPRVMQKSFGNYDRKLFAKLRKL
RKAIAADEENIPPYVVFNATLIEM
AEQMPVSAEMLSNGVGMRKLERFGKEFMALIR
AHVDGDDEE"
complement (249091..2493
33) /gene="recQ"
/note="Pfam match to entry PF00570
HRDC, HRDC domain, score 130.40,"

misc-feature

misc-feature complement(249925..2501 /gene="recQ"
70)
/note="Pfam match to entry PF00271
helicase-C, Helicases conserved
C-terminal domain, score 98.50,
E-value 1.3e-25"

misc-feature complement(250303..2508 /gene="recQ"
72)
/note="Pfam match to entry PF00270
DEAD, DEAD/DEAH box helicase,
score 121.60, E-value 1.5e-37"

gene complement(251001..2518 /gene="STY3602"
70)
/note="synonym: pldA"

CDS complement(251001..2518 /gene="STY3602"
70)
/note="Orthologue of *E. coli* pldA
(PA1-ECOLI); Fasta hit to
PA1-ECOLI (289 aa), 92% identity
in 289 aa overlap"
/codon-start=1
/transl-table=11
/product="detergent-resistant
phospholipase A"
/protein-id="CAD07935.1"
/db-xref="GI:16504480"
/db-xref="GOA:P37442"
/db-xref="SWISS-PROT:P37442"
/translation="MRAILRGLLPATLLPLAAYA
QEATIKEVHDAPAVRGSIIANMLQ
EHDNPFTLPPYDTNYLIYTNTSDLNKEAISTYNW
SENARKDEVKFQLSLAFPLWRGIL
GPNSVLGASYTQKSWWQLSNSKESSPFRETNYEP
QLFLGFATDYRFAGWTLRDVEMGY
NHDSNGRSDPTSRSWNRLYTRLMAENGNWLVVK
PWYVIGSTDNDPDIRTKYMGYYQLK
IGYHLGEAVLSAKGQYNWNTGYGGAEVGLSYPT
KHVRLYTQVYSGYGESLIDYNFNQ
TRVGVGVMNDIF"

misc-feature complement(251013..2518 /gene="STY3602"
07)
/note="Pfam match to entry PF02253
PLA1, Phospholipase A1, score
584.10, E-value 9e-172"
/gene="STY3603"
/note="synonym: yigi"
/gene="STY3603"
/note="Orthologue of *E. coli* yigi
(YIGI-ECOLI); Fasta hit to
YIGI-ECOLI (155 aa), 97% identity
in 155 aa overlap"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07936.1"
/db-xref="GI:16504481"
/db-xref="GOA:P40725"
/db-xref="SWISS-PROT:P40725"
/translation="MSAVLTAEQALKLVGEMFVY
HMPFNRALGLELERYEKAFAQLAF
NNQPMMVGNWAQSILHGGVIASALDVAAGLVCVG
STLTRHETISEDELRQRLSRMGTI
DLRVDYLRPGGRGNRFTATSSLRAGNKVAVARVE
LHNEDQLYIASATATYMGV"
/gene="STY3604"
/gene="STY3604"
/note="Similar to *Escherichia coli*
chloramphenicol-sensitive protein
RarD SW:RARD-ECOLI (P27844) (296
aa) fasta scores: E(): 0, 90.4% id
in 293 aa and to *Pseudomonas*
aeruginosa
chloramphenicol-sensitive protein
RarD SW:RARD-PSEAE (O68827) (299

gene 252035..252502
CDS 252035..252502

gene 252546..253430
CDS 252546..253430

31.3% id in 291 aa. Contains multiple possible membrane spanning hydrophobic domains."

/codon-start=1
/transl-table=11
/product="chloramphenicol-sensitiv e protein RarD"
/protein-id="CAD07937.1"
/db-xref="GI:16504482"
/db-xref="GOA:Q8Z3B1"
/db-xref="SWISS-PROT:Q8Z3B1"
/translation="MDAKQTRQGVLLALAAYFIW
GIAPAYFKLIYVPADEILTHRVI
WSFFFMVALLSVSRQWRQVKRLLKTPKKIFLLAL
SAVLVGGNWLLFIWAVNNHHMLEA
SLGYFINPLVNILLGMIFLGERFRRMQWLAVILA
VCGVLVQLWTFGSLPIIALGLAFS
FAFYGLVRKKIAVEAQTGMLVETLWLLPVAAIYL
FSIADSATSHMGQNALSLNLLMA
AGVVTTIPLLCFTGAATRLRLSTLGFFQYIGPTL
MFLLAVTFYGEVPGADKMVTFAFI
WVALAIFVMDAIYTQRKK"
/gene="STY3604"
/note="Pfam match to entry PF00892
DUF6, Integral membrane protein
DUF6, score 53.20, E-value
5.9e-12"
/gene="STY3605"
/gene="STY3605"
/note="Identical to *Salmonella*
typhimurium LT2 Yigg protein
TR:Q9L6P2 (EMBL:AF233324) (152 aa)
fasta scores: E(): 0, 100.0% id in
152 aa, and to *Escherichia coli*
hypothetical 15.8 kDa protein in
corA-rarD intergenic region Yigg
SW:YIGG-ECOLI (P27843) (138 aa)
fasta scores: E(): 8.1e-27, 58.6%
id in 128 aa"
/codon-start=1
/transl-table=11
/product="conserved hypothetical
protein"
/protein-id="CAD07938.1"
/db-xref="GI:16504483"
/db-xref="SPTREMBL:Q9L6P2"
/translation="MPPLVRGVAYCHANDVTQHM
DVKLMLSVFIPSSERCVSRCRYLL
SFALINIIIFSILVGVLLYLSFVILAILFTILLHY
LVINLNCRFRDSGFEYIKFYVWG
TLVIYIASFVIMVAEDFACDGFGMPLFLIWYFAT
FSLLLLAPPDSNSLNK"
/gene="STY3606"
/note="synonym: yigF"
/gene="STY3606"
/note="Orthologue of *E. coli* yigF
(YIGF-ECOLI); Fasta hit to
YIGF-ECOLI (126 aa), 84% identity
in 126 aa overlap. Contains a
possible membrane spanning
hydrophobic domain."
/codon-start=1
/transl-table=11
/product="putative membrane
protein"
/protein-id="CAD07939.1"
/db-xref="GI:16504484"
/db-xref="SWISS-PROT:P31139"
/translation="MDKDYINDGSLSEKWKYRFS
FYDQHGFPGFWKVSPYEKQAFKAL
KPRQRLLTIQINFIAFFFWSWIYLFVGLWLWKKAIIV
ILLGIVAIFIGALIGVNILGLVVA
AYVGVNTNKWFYKEVKGINTWSL"
/gene="STY3607"
gene complement (254368..2553
CDS 18)

CDS

complement (254368..2553 /gene="STY3607"
18)
/note="Similar to *Salmonella typhimurium* magnesium and cobalt transport protein corA. magnesium and cobalt transport protein corA SW:CORA-SALTY (P31138) (316 aa) fasta scores: E(): 0, 100.0% id in 316 aa, and to *Escherichia coli* magnesium and cobalt transport protein CorA corA SW:CORA-ECOLI (P27841) (316 aa) fasta scores: E(): 0, 97.5% id in 316 aa Orthologue of *E. coli* corA (CORA-ECOLI); Fasta hit to CORA-ECOLI (316 aa), 98% identity in 316 aa overlap"
/codon-start=1
/transl-table=11
/product="magnesium and cobalt transport protein"
/protein-id="CAD07940.1"
/db-xref="GI:16504485"
/db-xref="GOA:P31138"
/db-xref="SWISS-PROT:P31138"
/translation="MLSAFQLEKNRLTRLEVEES
QLSIDAVVVDLVEPDDEERLRVQS
ELGQSLATRPELEDIEASARFFEDEDGLHIHSFF
FFEDAEHDAGNSTVAFTIRDGRFLF
TLRERELPAFRLYRMARSQAMVDGNAYELLLDL
FETKIEQLADEIENIYSDELEKLSR
VIMEGHQGDEYDEALSTLAELEDIGWKVRLCLMD
TQRALNFLVRKARLPGGQLEQARE
ILRDIESLLPHNESLFQKVNFLMQAAMGFINIEQ
NRIIKIFSVSVVFLPPTLVASSY
GMNFEFMPPELKWSFGYPGAIIFMILAGLAPLYF
KRKNWL"

misc-feature

complement (254371..2552 /gene="STY3607"
58)
/note="Pfam match to entry PF01544 CorA, CorA-like Mg²⁺ transporter protein, score 423.90, E-value 1.5e-123"

gene

complement (255790..2579 /gene="STY3608"
52)

/note="synonym: uvrD"

CDS

complement (255790..2579 /gene="STY3608"
52)
/note="Fasta hit to REP-ECOLI (673 aa), 38% identity in 666 aa overlap Orthologue of *E. coli* uvrD (UVRD-ECOLI); Fasta hit to UVRD-ECOLI (720 aa), 98% identity in 720 aa overlap"
/codon-start=1
/transl-table=11
/product="DNA helicase II"
/protein-id="CAD07941.1"
/db-xref="GI:16504486"
/db-xref="GOA:Q8Z3B0"
/db-xref="SPTREMBL:Q8Z3B0"
/translation="MDVSYLLDSLNDKQREAVAA
PRSNMLVLAGAGSGKTRVLVHRIA
WLLSVENNNSPYSIMAVTFTNKAAAEMRHRIGQLM
GTSQGGMWVGTFHGLAHRLRAHH
MDANLPQDFQILDSEDQMRLLKRLIKAMNLDEKQ
WPPRQAMWYINSQKDEGLRPHHIQ
SYGNPVEQTWQKVYQAYQEACDRAGLVDFAELLL
RAHELWLNLKPHILQHYRERFTNIL
VDEFQDTNNIQYAWVRLLAGDTGKVMIVGDDQSI
IYGWRGAQVENIQRFLNDPFGAQT
IRLEQNYRSTSNTLISVANALIENNNNGRLGKKLWT
DGVDGEPISLYCAFNLDEARFVV
NRIKTWQDNGGALAQCAILYRSNAQSRVLEEALL
QASMPYRIYGGMRRFFERQEIKDAL

misc-feature complement (256483..2579
 25) /gene="STY3608"
 /note="Pfam match to entry PF00580
 UvrD-helicase, UvrD/REP helicase,
 score 769.70, E-value 1.2e-227"
 misc-feature complement (257845..2578
 68) /gene="STY3608"
 /note="PS00017 ATP/GTP-binding
 site motif A (P-loop)"

SEQUENCE (SEQ):

1 ggattctgct agaatcagca attattttta caaattgatc agcgctaaat actgcttcac
 61 aacaaggaat gcaaataaag aaattgtcc ccatccttat cggcctgagc ctgtcgqggt
 121 tcagcacact aaggcaggca gagaacctga tgcaagttt tcagcaagca cgcctgagca
 181 acccggaaatt gcgtaaatcc gctgccgatc gcgatgctgc attcgaaaaa attaacgaag
 241 cacgtatgcc tttactgccc caactgggtt taggtgccga ctacacctac agcaacggtt
 301 atcgcgatgc gaacggatc aactccaatg aaaccagcgc ttctctgcaa ttaacgcaga
 361 cgctatttga tatgtcgaaa tggcggtggc tcaccctgca agaaaaagca gcaggcattc
 421 agatgtcacat ctagcagacc gatcagcaga cgctgatcct caataccgcg aacgcgttatt
 481 ttaaggattt gaacgctatt gatgtgctt cctataccca ggcgcaaaaaa gaggctatct
 541 accgtcaggat agatcaaaacg acgcaacggtt ttaacgtggg tctgtcgcc attaccgacg
 601 tgcaaaaacgc cggcgcgaa tatgataccg tactgcgaa tgaagtgacc gcccgcacaa
 661 acctggataa cgggttagaa gagctgcgc cggtaaccgg caattttac cggagctgg
 721 cgtcgcttaa cgtcgagcat tttaaaacccg acaaacccaa agctgttaat ggcgtgttgg
 781 aggaagcggaa aaccgttaac ctgtcgctgt tgcaggcgcg ttaaagttag gatctggcgc
 841 gcgagcaaat ccgtcaggcg caggatggtc atctggcgcac gctgaattta acggcctcaa
 901 ccggcatttc tgataccttct tatacggtt ctaaaacccaa ctccgccttgc tacgacgata
 961 gcaacatggg gcagaataaaa atcgccctga acttctccct gccgctgtat caaggcggga
 1021 tggttaactc gcaggtaaaa caggcgcagt ataacttcgt cggcgcacgc gaacagctgg
 1081 aaagcgcga ccgtagcgtg gtgcagaccg tacgttcttcc ctttaacaat attaacgcct
 1141 ccatcagcag catcaacgcg tataaacagg cagtcgtttc cgcgcacaaatgt tctttggatg
 1201 caatggaaagc cggtaactcg gtcggtacac gtaccattgt tgacgtactg gatgccacca
 1261 ccactctgtt tgatgccaag cagcaactgg ccaacgcgc ttataccat ttgattaatc
 1321 agttaaatat caaatatgcg ctcggtaacgc tgaacgagca ggtatctgc ggcgttaaca
 1381 gtacgttggg taaacctatc cgcacgtcgc cggaaacgcgt acgcgcggaa acgcccagac
 1441 agatgtcgc cgcagacggc tataatgccc atagcgcgc gccggcagta cagccgaccg
 1501 ccgctcgccg caacagcaat aacggcaatc cattccggca ttgataagtt attcgctggc
 1561 gctcggttta tcagacccat gcccctgttag gtctggtaag cgcggcgcta cctgtcataa
 1621 agccgcgcgtt gaacgtaaag caacgttacgc atcctgtat tccggccat tctcgccctt
 1681 ttcgccttca atttcgacca gtcatcctctt attcgtaaacg catgtttagt ttaccactgg
 1741 gtcctggaaag acaaataatga aacggacaaa atccatccat cacgcacat ttgcacaaag
 1801 ctggagcgcgc cggcatttaa cggcggtcgc cctggcggtt acggctgttt ttatgctggc
 1861 tggctgtgaa aaaagcgatg aaaccgtatc gctgtatcaa aacgctgtatg actgttcagc
 1921 ggcgaatccg ggcaaaaagcg cggaatgtac aaccgcgtat aacaatgcgc tgaaagaggc
 1981 cgaacgtact ggcctaagt acgctacacgc cgaagattgc gtcgctgagt ttggcgaagg
 2041 ccagtgcgcg caagcgcccc cacaggctgg catggcgccg gaaaatcagg cgcaggccca
 2101 acaatccagc ggcagtttct ggtatccgc tatggcaggat tacatgatgg ggcgtctgat
 2161 gggggcggc gcaggcttt cgcaacagcc gctgtttagc tcgaaaaacc cggccagccc
 2221 tgcatacggc aaatataccg atgcggcagg taaaaactac gggggcggcgc aaccggggcg
 2281 gacaatgacc gtaccggaaa cccgcgttgc gccgaaaccc gccaccacaa caaccgttac
 2341 ccgcggcggt tttggcgaat ccgtcgccaa acagagcact atgcagcgtat ggcgtcgccg
 2401 tacttcaaca cgttcgatgg gcccgtataa cgcgttgc ggtttaatt ttcacactat gtatggtaa
 2461 ccggactggc gcgataaaagc gactgaatac 2521 ccgtactgtt gtgaagacgc ttattacaag
 2521 ccgtactgtt gtgaagacgc ttattacaag ttaacgctcg cccaggtgga aaaactggaa
 2581 gacgttaccc cccgcgttgc ccagatgtgc 2701 tggcaaaacgc aacaaccgtt actctattcc
 2641 gatgagctga tgacgaaaggc tcgttattcc 2761 gaggcttaaagc tgctcgaaaa taatggcgc
 2701 tggcaaaacgc aacaaccgtt actctattcc 2761 gaggcttaaagc tgctcgaaaa taatggcgc
 2761 gaggcttaaagc tgctcgaaaa taatggcgc 2821 tttcgttgcg tttggctggaa agatcagatc
 2881 cagtttaataa gcctcgaggaa aaagctgatt 2881 cagtttaataa gcctcgaggaa aaagctgatt
 2941 ggttttcagt tgctgcattt cacctgctgt 2941 ggttttcagt tgctgcattt cacctgctgt
 3001 cagtatttac aggattgcgc ggccgaagcg 3001 cagtatttac aggattgcgc ggccgaagcg
 3061 gatattggtc tggggggaaaa aggtcaattt 3061 gatattggtc tggggggaaaa aggtcaattt
 3121 ctgttcaagc tctatccgtt ggaattttagt 3121 ctgttcaagc tctatccgtt ggaattttagt

3241 ttgccgcgtg tttgggagat gttcccgac catccgaatc tttgcctgc gtatttcgac
3301 gaagacgaac atccgccaat ggataaatat gtcgtaaac cgatcttctc ccgcgaagg
3361 gcgaacgtat cgattattga gaacggtaaa acgatcgat cctgttgcg aattccggca
3421 gaagagggtt tgatcggtc acagtttat cccgtccaa aattccggca
3481 ctgattggta gctggctgt taacgatcaa cccggcgaa ttgtatccg
3541 gcactgatca cccaggatct cccccgttc tatccgcata ttttgcgaa
3601 ttcctgtaa cccgatgcgc gtaggcatt cgggcaatca agatagatt
3661 accccacctg caccgacaac atacttatac tgcccatctc
3721 tgatagggtc cttgcgtcc caggcgccaa gtacatacag aataccgtcg
3781 gcgtcggtt cgataaggcg ccccttcat gttcagata aaggatagatt
3841 ctaccggcc ctgccacgtc aggttagtt tcacaaagt
3901 gatacggtt attgtcaccc tgccaaacgca cagtcgcag
3961 tagccaccag catcacgc tcgtcacgc gcgtcgccag
4021 gccatcccgc cggttggta ctatcaacac taagtcgcac
4081 ggtacatctt gatcaatacg ccccaggagc cgtgatcaaa
4141 ggcgcacggg aacgggagcc aacagttcaa ccagacgtc
4201 gggccggata atgcatgtca tacagcgct gcgaaaaacc
4261 gccgccttc catcgctgt acgcccgtcc cacgggtata
4321 ctatcgctg tggtcgctgt agggcttccc ccaatcgccg
4381 tatcgccag cacgttcattt gggctgccc gccccaaaaa
4441 aagacatgtat gttatccta cagggaaagac attttgtaa
4501 acagagggaa aactcagata actatgtat agatcatcag
4561 ggacggcaaa ttgataagga gtaatggatg tcagtaccac
4621 ggcgcgtcca ccttattgg cgcgttctt ggcgttctt
4681 gtgcgtggctt ttcgcgtgg cttgcgcga gggatcatgc
4741 atgcgtcccg cgcgttaga taccgagggg atgtcgctg
4801 attatcggtt tggcgtgtc cttcggctg gatcgctgc
4861 gatctgggtc aaaaaaggca gcagccgtt cccggctcg
4921 ttgacgctcg gcattagcct gcacaactt ccggaaaggaa
4981 agcagcaatc ttgaacttggg ttcgcgcato
5041 gaagggtctgg cggttgcgg cccgtttat gctcaaaacg
5101 tttggggccg gtatctccgg catggcggaa
5161 tttggcagcc tggtttacc gatcggtt gcggtatca
5221 atggtgccgc tctccgtcg tgaactgtat
5281 aaccccgact atggtggtc ttgcgtatg
5341 cagacgatag gtatcggtt agagcaacgt
5401 catccggctg cccgtcaagg atatcgcta
5461 gctcgctgg cgaaaacgtt tcgttcgcgc
5521 cgctctgcaa taacgcttca tatggcaat
5581 tatccaatac caggcaataa acatccttt
5641 taacgttaaa attttacata cccttatttt
5701 acaaataaaat gatttgatc atataaatca
5761 aagcagaaaaa caatgtcgat aagatcacac
5821 tcacactcct actatcgact cactcaggca
5881 aaaataagaat acagcatcat gacttatatt
5941 tcataaaaac atagtatatt cagaagtatt
6001 tccatgtttt accaataccg gaaaacaata
6061 ctcaccgcag ccagtacgt tgccgcagg
6121 ggcgcagtcg ttgtcgatcc ttacgttatt
6181 agccatattt tttcagacgt taaagttat
6241 gttacttata ccgttgggaa agagtctta
6301 ctttatcaga aatttgccaa caacgtcacg
6361 aaggatgact atgtggtgc gacgtccgc
6421 atttcagatc tccagcaaac gaaagttatt
6481 tatctggtaa ataccatata ctttacgccc
6541 aaagataaaa atgcgggcatt tcttgcgttgc
6601 atcgccccctt atacgtttgt ggtcgacacc
6661 gataccttct acaacggcca cgatatgaat
6721 cgtaaaacgc ctcgcggcac ctttacgccc
6781 atgatggggc aaattcttgc cgatcataaa
6841 gaatccatcg aaaccgtgaa cggtaccgt
6901 aaagaagacg gcatacatgt tcatactatt
6961 ggcgcgttag tagacgtttt ggatttaacc
7021 ctcggcgccg tggatgcggg cgcagtatgc
7081 caggcgaaac tgcgaccggc tacggcgtat
7141 aactgggcgc acgtcaactc ttcgtttat
7201 tcccgccatc agggtattgt aaaaatttgt
7261 cccgtctaaag gcttggataaa gcagctagcc
7321 ggtaaaggcg tgcacgtgtc cggaaacggc
7381 tatacccaac atacggcatg gcttccagc
7441 gatggtcggc gcctggagca accggctcta
7501 tataagatcg atgagaagaa aggacccgt
7561 ggatatgatt tctatagtcc tattacctcg
7621 atgttcggct ttggcggttc tattaacctg
7681 ctgaatgaga ttgactataa aacgaaagaa

7801 atcacggaa ggaattaata tgtcatctaa atggattacc tctttatTTTA aaagcgtagt
7861 attaaccgcg gcattggtca ctccTTTTC gcacagatta
7921 tatggttctg gagaaaccaa ttccCTAATGC tatttagcta
7981 cgccTgcct ttctgctaca aatATGACAA ggataaaacg
8041 cggcgatctc gttacgttca ccccTTCCA agccgtAACa
8101 ggccAGCgaa gtatttgCAG tcctgatcgc Cctggaaaca
8161 tgaTgctaaa tcacaATTCA aaaaAGCgaa caaAgataAA
8221 gaaAGAGCgC tggtcagatg ggaAAGATCC gttcgcCTGG
8281 cgaggcAtg agccaggCtg atttGAAGC ggcggcATTt
8341 tctggaaaaa tgaaaAGCAG CCTATGACGT
8401 cgtcaacggc aagtacCTTA tctacacCAA
8461 actcgTTcgg gaactTggcca ctaaaaaATA
8521 ggattatggc gagacCTACg cgcaAGACCA
8581 cgtttctgt ggctgttaat ggccatcgc
8641 ttcttccaaa tctacCTCTA catggcAccG
8701 atgtttgtga tggtaATTGG cggggTgatt
8761 aagctgattg gctgcATCGC ggcgttttat
8821 aagcttaatg gtatccatca tgcggTACAT
8881 caaggatgtt cgactgACCC gaccTTCT
8941 gagtggTTA aacctaccgg agactgcggT
9001 acgctcAgta gcgtacAGCA gtggTTTGTc
9061 ctgcttccgc cctggcactt tatgaACATG
9121 tgctgattc tgctgCTGgt gatgagcggc
9181 taacctgaat agataAAACCA aagcAGAGGT
9241 aattttacca ttcaGCTTAT tcgtcgttCT
9301 tacaaaaaaAG ccgatgagat gtcatcggt
9361 gcttgcgtc catgcgcctg gcggtAAgCC
9421 ttatgctggc ctgcaAAACGC gatacactCC
9481 gtcAactcgc acagtacACC tgcaggTTA
9541 gcTCCGtAT gaccGCCGCG cgtcagcAcG
9601 tgccccggac gtttaAGATC ggacggTTT
9661 gtacacAGGT cagcggcggA aacggcggTg
9721 gtaaaaaACGG tgcctgtaggc gctggTgttG
9781 ttacggcgtat cttcaGtaat acacaggAA
9841 gccatctgtt ctacggTcat tgcTCTGCG
9901 tcttcATCAT caagcACCAT cacACCGCgt
9961 acacgttcaa aaggcgtacc AAAAGAGGAA
10021 cattaacatt atggTTacca gaatcAGGGC
10081 aataacgtga gcggtccat gcccactgg
10141 cgtcgcccc ggaattacac cggatctgct
10201 gggcttcaa cctgctctcc gcgttccgtc
10261 catcgctgat ttaccGCCGG tgggaaATT
10321 ataacgctat tgattacCTT catcaACGCC
10381 tttatggcgt ccacatATCG cactACAATA
10441 acaatgattt acccgAAAAA aattgagCAA
10501 aaaggTattt gcgagttcgg ggaAGATATC
10561 cagctgacgc gtctcgatct ggtgagcgc
10621 ctgcgcacCC gggAAAAct ggcgtgtc
10681 gacaAGCCTG aagaAGTAAA acctgcGCC
10741 aaacgtgaaC gggcTgcAcG gcccgtCAT
10801 taagggagCC tgcattAGt ttctAAATTCT
10861 taaAGCgcgt aacgcttgca aaaccAGTC
10921 gcctggatAT caacaggACG CCCCTCCGC
10981 tcgaaattat ttaatgaata gacgttattG
11041 attctgttaa ggctatatgc tttttCTAAT
11101 tatacataac gtgcgcAAAT ttaatgcgcA
11161 gataaatcgc ttttCGGACT taaggAGATA
11221 taacaAGCAT gaaaATTATC acgcgaACAT
11281 tatgacCTTA ttgcggAGt ataACAGCCC
11341 tATCGGCGTg ctggagatga ttTCTCTGAT
11401 cggccatctc gatcattatg atgcCTGTc
11461 tctgaatatt ggacgcgttC cccgcctAGt
11521 cctcttcggT atcctcatcc agcatggcgg
11581 tctgctgctg gtcccgttAA gcattgtc
11641 aatcctcgcg ccctggctac ccAGAGATGA
11701 cggcggcatg gcgattatta CGGGCACGC
11761 atttaccgt aagtccggc agattcactA
11821 attaaaaaaa ggagacaagg tgctgattgt
11881 tgagcgtacc ttctatgtt aattgagagg
11941 attgcccata tggatgttA ccgcCATGt
12001 cattttgtt cgcctttatC gccgcgcAtC
12061 tggcgggcaa aaagtggtga tgacggcgg
12121 tattccgatc aatATGAATA ccctaAAACT
12181 gatcaccAAA gatcgtatgc gcgttgcgt
12241 ctctgttGAA ggtattgcca cctccgcaca
aacgcttggc

12361 gatgacgatg catgagctac aggatacgcg taaaaacttc gttcaggcg taacaaaacac
12421 cgttgcggaa gatttgcga aaaacggct ggagctggaa agcgtctcat taaccaactt
12481 taaccaaacg tccaaagagc atttcaatcc ttgtatgccg aaggctgac aaggctgac
12541 gaaactgacg caggaaaccg aacgcccggc tcgtqaacgt aatqaagtgg aacaggatgt
12601 ggaagtggcg gtgcgcgaaa agaaccgcga cgcgcttgcg aaatcgagca aatcgagca
12661 acaagaagcc tttatgactc tggagcagga gcacaggtt cgcggcaaca aacaggatgt
12721 aaacgc当地 cttgcgcctt ttgaggccga gcccattgt aatcgac
12781 tcttgcgttag cggcagatcc aggagacgga gatcgaacgt gagcaagc
12841 gaaagtttag gccgagctg aagtacgtat taaagagatc gagc
12901 aatcgccaac cagacgaaat ctatcgccat tgccgcca
12961 ggaagcgcgc gccaacgacg cgctggccga tgccgttgcg
13021 caccgc当地 accgccc当地 cggatcgc当地 caagc
13081 ggatgc当地 accaaagcgg tcgaactgac cgttccgg
13141 agaattgcaa gccgccc当地 tcatcgaact ggc当地
13201 ggaagccgaa ggc当地 acgggg
13261 cagc当地 cttaaactag cgcttaca atcgttgc
13321 tgaaccgatg aatccatcg acggcattaa gattattca
13381 cgc当地 cggc当地 ggc当地 acggc
13441 gttatctgcc gcgctcacct atcgta
13501 gattggc当地 gccggc当地 cgtta
13561 ggatgagatt aatcgcaag caacgataaa gaga
13621 tccctggcca taaggccggg gattttta
13681 tatgaccagc aggccattt
13741 cttgc当地 gacaggcc
13801 aagccctcc
13861 actgattgtt
13921 agatccctc
13981 agatacgc
14041 aacgc当地
14101 tcgtggaaca
14161 cttcgctg
14221 gaatacc
14281 actcc
14341 cttc
14401 tgc当地
14461 tcatg
14521 cgg
14581 ggg
14641 aac
14701 t
14761 c
14821 g
14881 t
14941 g
15001 aa
15061 c
15121 ag
15181 ta
15241 t
15301 ct
15361 t
15421 a
15481 g
15541 t
15601 ac
15661 c
15721 c
15781 ag
15841 ag
15901 c
15961 g
16021 ca
16081 t
16141 a
16201 a
16261 c
16321 a
16381 c
16441 t
16501 c
16561 t
16621 ct
16681 g
16741 t
16801 cc

21481 tgtcatgatg tggccaagg cttaaccccg aaaaacctct ggccgcgcac tcacggccac
21541 gccccgtgg gcgtgaaact gtcgaacag ttatgccagc gtttgcgcgt ccccaatgac
21601 ctgcgtgatt tagctaaact gtcgcccgg taccacgatc tgattcacac cttccgata
21661 ctccagccga aaacgatcgt taagctgtt gacgccattt atgcatggcg taaaccgcag
21721 cgcgtcgagc agattgcgct gaccagcgag gccgatgtcc gtggacgtac cggcttgaa
21781 gcgtcgatt acccgcaagg gcgctggcg cgcgaagcct ggcaggtggc ccaagcggta
21841 ccaacgaaag aggtggtgg aGCCGGGATT aagggcattt agattcgcga ggagctgacg
21901 aagcgaacgaa ttgcagcggt cgccaaactgg aaagagaagc gctgcccga cccgcgcag
21961 taaacgcccatt cggcacgat aaattgcctg atggcgctgc gcttatcaga ccgacaaaac
22021 tggtaggccc gacaaggcgg tacggccca tcggcacgg tcaatcatca gaagaagaca
22081 acgtaaacgg cagccgcac cacaaagcgg taatcgcaa acggaataaa cgagatacgc
22141 ttaatcagtgc gaggaagggt cttatgcgcg atcagcgcca ccacaaacgc cgtcacaag
22201 cccaccgcga acattggat atccgcgtc gtcaggaatg accaactttt gtagagatcc
22261 agaaccgttgc cgcccatcat catggcaca gccagtaaga acgagaactt ggaggcggcg
22321 taacgctga cgcccatcg catccacccg gaaatggtcg ctccgaaacg cggacgata cgtcatatca
22381 ggccacagcg cccagactg gaaacagcca atcataaaacg cggcggcaat cagcaacaga
22441 tccaggcccc ggcgcgcgg ttcttcggc ttcaggcact atcggatgtg aatcaacgtt
22501 ccgcctacca ccagcgcata catcacgtt atcgggttaa atagcactt gatcgtgtca
22561 taaaaagacta accccagcac caccggcggg atcatgccc gcaaggatgtg aatcaacgtt
22621 aatcgacctt tactttcacc ttcacgcgtt agcgggcggc caaagtgaat accgatgaga
22681 ccaaacaacc gccgcacgaa catcaccacg accgcacgaa tagatccaag ttgaatcacc
22741 acttcgaatg tcttggccgt atgccttca aacccacgca gatgaccac aataatcata
22801 tggccgtgc tggataccgg caaaaactcc gtcaatcctt cgaccacacc caaaattgcc
22861 gctatcagca gcgagtgcatt atgcgtcatt aataaaccgg taaaatgaaa aacactgcaa
22921 aatggatct cgcgttaaga ccccatatat aaccgtttgg tttaaaaaat ataaaattat
22981 ttatttttat ttcagattat tgccacgctc aataattacc cctacgttcg ccgcgcgcgc
23041 gacggcgcta ggcttgcgtca gtttgcgtc aacccacgca gaattgaatc ggcttaagcag
23101 tagatccgccc acctcttccg ccacacgctc gaccagagca aaacgcggc cttcaacatg
23161 atttatcacc gtgtcgccga tatccgcgtt acttagacaa tctgcgacat catcgcttt
23221 cgccgacttgc cggttatccc atgcatttc gatatcgaa accagtttt gctcgatagt
23281 ctgttcccgat tcgtaaacac cgatagttgt gattaccgg aatataatcactt
23341 atccatcacc acctgcgtc ttttggctt acccgatatt cacttcgatc gaaatgtgcg
23401 tattatccac agaaatagta aataaaacga cacttcattt acggaacacg ttatgatgtc
23461 aatcgccctt ggaatgtacc ttttcgcgtt cctctgcggc tcaatttcca gtgcattct
23521 gtttgcgc gtttgcgtca tgcccgatcc gcgagaaagc ggctccggca acccgccgc
23581 gacgaacgtt gacgatcgatcgtt gtcggcaaggg agcggctgtc gcggtactta ttttgcacat
23641 ccttaaaggc atgttgcggc tctggggcgc gtatgcgtt ggcgttaccc ctttctggct
23701 ggggcatttac gctatcgccg cctgtcttggg acatatctgg ccggctttt ttggctttaa
23761 aggccggaaa ggcgttagcaa cccgcgttgg cgccatttgcg cccatcggt gggatttaac
23821 cggcgcatg gcaggcacct ggctgtgtac ggttctgtt aagcggttatt catcgtagg
23881 ggcgattgtc agcgccttga ttgcgcgtt ttacgtctgg tggttaaac cgcaagttcac
23941 tttccgggtg tcgatgcgtt catgtctcat tttgcgtcgc catcatgaca acatccagcg
24001 tctgtggcgt cgccaggaga cggaaatctg gacgaagctg aaaaagaaac gccagaaaga
24061 ttgagctggat actgcgtctg gaagaggccc tcaaccgtct gggatcgcc ccacaagggt
24121 tgaccggcaa tagctcggtt ataggcgtac atatcgaaatc cgcgcgcgt cacccttcca
24181 ccattggcgt gtttaggcgc gattttcgcc tgcattttcc tggctgtcgt gatgtctcc
24241 aggctgttgt ggtgccttgcgtt cttatccgtt taatccgtt gggccggcat gatgtcgccc
24301 ccttttccg cttttacgc gccggcagct cggccagcgg ccagcgggaa cgtaccgtt
24361 cgccaagatc cgccgtAAC cccgccttaa accgcaccaat tccggcatag ggcgcacatcg
24421 cccctgtgc ggtacaaaat tccggccgcg catagaacac ttgcgcgcgg cggttttgc
24481 tcatttcggc aagcttcgca cgcagcgtgc gtttagcgtt gacgcgc cccatgcaca
24541 gacgcttaaa accgtgtctt tccagcgcgc gcttgcactt gatcatcagc gtatccacga
24601 ccgcacatctt aaaagcgcgc gcgatatcag cgcgagtttgc ttctgcgtcg ccattactac
24661 gaatgggttt agcggcaaaag gttttcagac cgaaaaaaact aaaaatccagc cccggccgat
24721 cggtcatcggt ggcggaaaag acaaaacgc ggcgcgc ctcgcgc attttcgaca
24781 gcatcgccgccc gccaggataa tccagccccca acaatttggc ggttttatca aacgcttcac
24841 cggcgccatc gtcaatcgac tctcccagca gttcgtactg accgattccg gtcacgctaa
24901 tgagctgcgt atgtccgcg gagaccagca ggcgcacaaa cggaaatcc ggggttat
24961 cttccagcat tggcgccagc agatgacatt ccatatggt tacaggaatg gctggcacat
25021 tccaggcaaa tgccagcgaa cggccgcacgg ttgcgcgc gacgcgc cccatgcaca
25081 ccggccctgc ggtataaggcc accgcgtcga tatcgctcgc gtcacgac gcttcttta
25141 atgcccctg aatcagcgcc acggttttac gcacatgatc gcgccgc gcttccaa
25201 ctacggccgc gtaatcagca tggtaatttca cctgactata caattgggtt gctaacagac
25261 ctttttgcgtc tgcgttaataa gcgatgcgcg tttcatcgca agatgtttca atacccagta
25321 cacgcacatgac ttgttttacc tgcgtctaat accgcgc gtcacgac gtcacgctaa
25381 tgtataaccct cagtcggcgc ttcgtgtata cttccctccca ttataaaatg cccttccaa
25441 aaaggccgcg tgcgtttaca aagcagcgcg aattgcgtt aaaaatccgc ccattttgaa
25501 ataagctggc tgcgtatgc gcccggaaacc gacgcgc gtcacgac gtcacgctaa
25561 gtaattaaag tacgtgaaaaa cgagccgttc gacgttagctc tgcgtcgctt caagcggttcc
25621 tgcgaaaaaaag cagggttctt gcgccgaaatt cgtcgctcg agttctatga aaaaccgacg
25681 accgaacgtt accgcgcgtt agcgttgcgc gtcggaaacgca acgcaagaa actggctcgc
25741 gaaaacgcac gccgtactcg tctgtactaa tcttttgcgtt gcccggctgtt ctcaattcag
25801 atcgagttgtt atacacaaaaa tcattcatgc tacgtccagg cggcaagaga gcaagtcccc
25861 gcatttagcat caagtcaacgcg acagggttgcg gcaaacgttgc ccaacactac ggcagcctgaa

26041 cctgctggcg agaaccgata tcgtcgatct gatcgacgtg cgcgtaaaac tcaagaaaaca
26101 gggcaagaac tatcacgcgt gttgtccatt ccataatgag aaaacccctt cttdcaccgt
26161 aaacggtgaa aaacagttt atcaactgctt tggatgcggc gcgcatgca atgcgatcga
26221 cttttgatg aattacgaca agctcgaaat tgcgaaacc gtcgaagaat tagcggccat
26281 gcataaacctg gaaattccct atgaagcagg caccggctt gtcgaatgac agccagatag
26341 acggcaaaac ctctatcagt tgatgaatgg tctgaatgac ttttatcagc agtcgcttac
26401 ccatcctgcg gcaaaacctg cgcgtacta tctgcaaaag cgcggctgca gcgctgaaat
26461 tattcagcgt ttcgccattg gcttcgcgccc gcctgggtgg gataacgcgt taaagcgctt
26521 cggtaataac agcgataaca aggattgtt gctggatgcc ggaatgtcgg tcaataacga
26581 gcagggcagc acttacgatc gtttgcgtaa tcgggtcatg ttccctattc gggacaaacg
26641 cggcagggtt attggtttg cgggtcgag tctgggaaac gacacgcgca aatacctaa
26701 ctctccggaa acggacatt tccataaagg cggccagcta tatggcttt atgaggctca
26761 gcaatatagt gctgaaccgc aacgcttgct tgggtcgaa gtttatatgg atgtcgctc
26821 actagcgaa tacgacatta actatgcgt cgcctcgct gttacctaa ccacggcaga
26881 ccatatgcat atgttattcc gggcgcgaa acacgttaatt tgcgtttagc acggcaccg
26941 ggctggccgt gatgccgcct ggagagcgct gggaaacacga atgccttata tgaccgacgg
27001 tcggcaggta cgcttatgt tttacctga aagcgcggat cggcgaagac cggatacgc tggtcgtaa
27061 agaaggcaag gcggctttt aaggcggat gggcgcgaa cggccgtct ctagcttct
27121 gttaatagc ctccgtccgc aggtggatt ttaatcaggta acacgtcccg gatggcagca
27181 cgcgctggcg ctgcccgtca taggcatttt ggatctcgcg acgcaccgtt ttcagctcg
27241 ccagacgttg gggctgaagt tttccgcggc tgcaaaatcc tggcttattt aagaatattt
27301 aaaacaggcg gaaagcggcg tgccttgcgg tgcctggact ctaccggaca ctctaccgt
27361 tatactgata ggattactgg tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
27421 cgcgctggat cagaataagc tggcttattt ggatctcgcg cagcttgcattt tgtagtgc
27481 tttggctcag ccaggcttta tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
27541 tgctgcgacc cttaaaaat tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
27601 aaagaccttt accgactcac tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
27661 agagctgatc gctcgcgatc tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
27721 gacgttaaac caggagctgg tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
27781 cgggaagccc cgcacagccg tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
27841 ttaaatgtcg acagctatac tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
27901 atggagcaaa acccgcgtc tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
27961 tatctgacct atgctgagg tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28021 attgaagata tcatccaaat tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28081 gatgccgtg atctgctgct tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28141 gctgctgcac aagtctgtc tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28201 cgcatgtata tgcgtgaaat tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28261 atcgctaaac gtatcgaaaga tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28321 gaagccatta cctatctgct tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28381 tccgatctta tcaccggctt tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28441 actcacgtcg gttctgaaact tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28501 gaagacggcg acgatgacgc tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28561 gaaaaattcg ctgaactgcg tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28621 ggcgcagcc atgctgcccgc tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28681 ttccgtctgg taccgaagca tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28741 cgcgtcgta ctcaggaacg tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28801 aagaagaact ttatcacgt tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28861 gctatcgca tgaacaaacc tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28921 cgctgcctgc aaaaactcgat tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
28981 aaagacatca accgtcgcat tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29041 atggttgaag cgaacttgcg tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29101 ctgcagttcc tcgatctgat tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29161 ttcaatacc gtcgtggta tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29221 atcaccggct ctatcgccga tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29281 accatcaaca agctcaaccg tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29341 acgccggaaag agctggctga tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29401 aaaatcgcca aagagcctat tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29461 ctgggtgatt tcgatcgagg tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29521 agctcgcgcc cgcgcactca tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29581 ctgcgtatgc gttcggtat tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29641 cagttcgacg ttaccgcga tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29701 cgccacccta gccgttctga tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29761 gtataaacgc cgccgcagg tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29821 gcctgcagaa tctctacaca tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29881 acgcataatg agcgcttgat tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
29941 tcggttaag cgcgtggat tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
30001 ttgtttacc caggcgatac tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
30061 caccggcagc gcccgggct tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
30121 acgttaattca tgcgacttca tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
30181 taccggcag cggaaatccaa tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
30241 gaaacggcc aatgaaataa tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
30301 ggtattcgcc gaggagagtc tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
30361 cagtagtgc ttaaccatta tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
30421 tgaaaaacaca ttgttataa tggcttattt ggatctcgcg cagcttgcattt gtttagtgc
30481 gttacattat aatccaccgc tggcttattt ggatctcgcg cagcttgcattt gtttagtgc

30601 taattaagcc actctaaaga gtggctttt tgggttcgtac agggctcgcc ccataccgct
30661 attacgatg ccaataggct gcccacgta ccagggtgtgg atcaaaccaccc ttcaaaggc
30721 actgacttaa acgtttacc gtttgcctt cgccagtaat ccagataaa tagtctgatt
30781 ctgttattgc cagctgcgac aggcgcttt gcattgcctg ttcatcgccg ccaacaacat
30841 attccacagt aatatccgtc aaatgggcga gataatcgcg atatgcggca tcctgaatgc
30901 tcaccagcgc ggtaaccgca gggcgccgag gcagacggct aagcgattcc agacgacgac
30961 gtagcgcagg cataccggac tcatcgacata cataaaacctg acaagcataa tcttccggca
31021 ccaccagcga accgcgcggc cgcacaatcg tcagtgtatc gccttcacgg gcttccattg
31081 cccaacggct ggctacgccc ccatcggtga taaagaaatc cagcgcacgc tcgcgatgc
31141 cctcgtcata cagcggcgtg taatccctgg agaccggacg aacgcctcc cccagataa
31201 tgccctccct agtgaactgtc gggggcgtaa agcgcacagcc tggctcaggg aaaaaaactt
31261 tcgtgtgatc gtcaaaagccc atacgttcta aaccgtccag cgcctcgccg ccaagtgacga
31321 tccgctgaaa tcctgcgtca ggatgcgtg cggatgtatc cccgcagaac ggtcagtcg
31381 gttcattacg aacacgtgt taaaatctaa taaaatgtt cgtcatttt tgattgttaa tca
31441 aagtaatacgt atataatctaa attaaatgtt cgcgttagtaa actataaacct taagataaaa
31501 tgcaactgtt ttttgatagt gttctggcaa ggctttacc cttgctaaaa cccatcattt
31561 cttataaat taatagatta tagcaaaaat ggagacaatg atgcaaaatc aacatgaagg
31621 agatataaat tagatataatc taaataagca cggctgctgt aaagatcgag aacatcagca
31681 gtgtgcaaa aaccaggatc ataaggacacga gacgcctatc acgccaagcg ctggcgttat
31741 tgaaggctgc catagcgcgc atcagcatga gAACGCCAGT TGCAGCGCG
31801 cggacacggc tgggtcgct atggacaggg cgggtggtcgg cgtcagcgat ttttggcca
31861 cggggactt cggctggtca ttcttgatat cctgaccggg gacgcctatc acggctatga
31921 actgattaaa gcgatagaaa acctgacggg gggcggtat acgcatttac acgattagcg
31981 ctaccctacg ctggatttt tacaggatca gcaatttac gggcgccaa tggcttgatg
32041 cggcgaaaaa aaaatcgca catattcagg cgccgtaaaaa agcccgttgt gttggcatgg
32101 acatctgacg atgaagcggg cgctggataa cttcaaggcc gtcgtggatc tgcggataaa
32161 aaatcctcag atcaacgacg cgcaaatcaa acgcatttac ggcgtgattt atcgcgcggc
32221 ccacagcgat atcaacgacg attaagcggg ctgcgtgtcc tcttcgcgg
32281 gctggaaatc gccgaactgg tttttaaat gtaacccctg ttcttcgcgg
32341 gttaaaccagc aggaggatc ataccgtcgt ttgttcgcgt
32401 ctcttccaca ataccgtcgt ttgttcgcgt
32461 aatctgcgaa ataccgtcgt ttgttcgcgt
32521 atccatctct tcgacgttgc ccaccatggc
32581 gtgcattccct tcctgagtct gactggttga
32641 cgacgaggcg ctctttgcg ccaactggcg
32701 cccatgttcg cccgcgcgcg ccgctcaac
32761 aaaggcaatg gaatcaatga tattgtat
32821 gacgcgcatt ttctgcgtca cttgattcat
32881 ggcccgagca gagagtttg
32941 ggtaatctgt tccatcgacg
33001 cgccgccaaa tcctggttac
33061 accgtttgc acttcctgt
33121 cagtagtacg cctgtttcat
33181 ggcataatcgcc tcggcaaagc
33241 ataccatcct attacgcctc
33301 tcgattattt taaaatccct
33361 aacagcgata agttctgg
33421 catcatctcc tgaatggccg
33481 tctggactcc aggtattgt
33541 cgcatcgta ctatttccc
33601 ctcactgagt tcttctgcg
33661 ctgctgcgcg atgatgaaat
33721 gggataatca ttggtaataa
33781 agacagagcg gaactcacca
33841 tgaacgtatt ttaatgttat
33901 caggaagatt tatcgcaat
33961 gaacattatt agtaattat
34021 ttggcactaa taatgaaaga
34081 gttataacet attaataagg
34141 tcacaggcca ctggactct
34201 cggtaagct tggcttacc
34261 atgcagtacc gtgaccgc
34321 ttgtgcgtc tcttccacca
34381 ggcgcgagtc aggctggaaa
34441 gataaggcagg gtgacatttt
34501 gtgaacctgc tcggagcctg
34561 atcggtcgcc gcgtagcgc
34621 aaacccttcc cctgtctcgc
34681 attcgctctga aaagcgatatt
34741 gtgagcgata tcatccatcg
34801 cgcgctactg gccggcatgg
34861 cacggactcc gccatctgg
34921 acgggtgtgt tcgttcagat
34981 gctggacacc tgacttgata
35041 cacggccctc agcgtcagcc
35101 cccatcgatc cccatcgatc
35161 tttttttttt tttttttttt
35221 tttttttttt tttttttttt
35281 tttttttttt tttttttttt
35341 tttttttttt tttttttttt
35401 tttttttttt tttttttttt
35461 tttttttttt tttttttttt
35521 tttttttttt tttttttttt
35581 tttttttttt tttttttttt
35641 tttttttttt tttttttttt
35701 tttttttttt tttttttttt
35761 tttttttttt tttttttttt
35821 tttttttttt tttttttttt
35881 tttttttttt tttttttttt
35941 tttttttttt tttttttttt
36001 tttttttttt tttttttttt
36061 tttttttttt tttttttttt
36121 tttttttttt tttttttttt
36181 tttttttttt tttttttttt
36241 tttttttttt tttttttttt
36301 tttttttttt tttttttttt
36361 tttttttttt tttttttttt
36421 tttttttttt tttttttttt
36481 tttttttttt tttttttttt
36541 tttttttttt tttttttttt
36601 tttttttttt tttttttttt
36661 tttttttttt tttttttttt
36721 tttttttttt tttttttttt
36781 tttttttttt tttttttttt
36841 tttttttttt tttttttttt
36901 tttttttttt tttttttttt
36961 tttttttttt tttttttttt
37021 tttttttttt tttttttttt
37081 tttttttttt tttttttttt
37141 tttttttttt tttttttttt
37201 tttttttttt tttttttttt
37261 tttttttttt tttttttttt
37321 tttttttttt tttttttttt
37381 tttttttttt tttttttttt
37441 tttttttttt tttttttttt
37501 tttttttttt tttttttttt
37561 tttttttttt tttttttttt
37621 tttttttttt tttttttttt
37681 tttttttttt tttttttttt
37741 tttttttttt tttttttttt
37801 tttttttttt tttttttttt
37861 tttttttttt tttttttttt
37921 tttttttttt tttttttttt
37981 tttttttttt tttttttttt
38041 tttttttttt tttttttttt
38101 tttttttttt tttttttttt
38161 tttttttttt tttttttttt
38221 tttttttttt tttttttttt
38281 tttttttttt tttttttttt
38341 tttttttttt tttttttttt
38401 tttttttttt tttttttttt
38461 tttttttttt tttttttttt
38521 tttttttttt tttttttttt
38581 tttttttttt tttttttttt
38641 tttttttttt tttttttttt
38701 tttttttttt tttttttttt
38761 tttttttttt tttttttttt
38821 tttttttttt tttttttttt
38881 tttttttttt tttttttttt
38941 tttttttttt tttttttttt
39001 tttttttttt tttttttttt
39061 tttttttttt tttttttttt
39121 tttttttttt tttttttttt
39181 tttttttttt tttttttttt
39241 tttttttttt tttttttttt
39301 tttttttttt tttttttttt
39361 tttttttttt tttttttttt
39421 tttttttttt tttttttttt
39481 tttttttttt tttttttttt
39541 tttttttttt tttttttttt
39601 tttttttttt tttttttttt
39661 tttttttttt tttttttttt
39721 tttttttttt tttttttttt
39781 tttttttttt tttttttttt
39841 tttttttttt tttttttttt
39901 tttttttttt tttttttttt
39961 tttttttttt tttttttttt
40021 tttttttttt tttttttttt
40081 tttttttttt tttttttttt
40141 tttttttttt tttttttttt
40201 tttttttttt tttttttttt
40261 tttttttttt tttttttttt
40321 tttttttttt tttttttttt
40381 tttttttttt tttttttttt
40441 tttttttttt tttttttttt
40501 tttttttttt tttttttttt
40561 tttttttttt tttttttttt
40621 tttttttttt tttttttttt
40681 tttttttttt tttttttttt
40741 tttttttttt tttttttttt
40801 tttttttttt tttttttttt
40861 tttttttttt tttttttttt
40921 tttttttttt tttttttttt
40981 tttttttttt tttttttttt
41041 tttttttttt tttttttttt
41101 tttttttttt tttttttttt
41161 tttttttttt tttttttttt
41221 tttttttttt tttttttttt
41281 tttttttttt tttttttttt
41341 tttttttttt tttttttttt
41401 tttttttttt tttttttttt
41461 tttttttttt tttttttttt
41521 tttttttttt tttttttttt
41581 tttttttttt tttttttttt
41641 tttttttttt tttttttttt
41701 tttttttttt tttttttttt
41761 tttttttttt tttttttttt
41821 tttttttttt tttttttttt
41881 tttttttttt tttttttttt
41941 tttttttttt tttttttttt
42001 tttttttttt tttttttttt
42061 tttttttttt tttttttttt
42121 tttttttttt tttttttttt
42181 tttttttttt tttttttttt
42241 tttttttttt tttttttttt
42301 tttttttttt tttttttttt
42361 tttttttttt tttttttttt
42421 tttttttttt tttttttttt
42481 tttttttttt tttttttttt
42541 tttttttttt tttttttttt
42601 tttttttttt tttttttttt
42661 tttttttttt tttttttttt
42721 tttttttttt tttttttttt
42781 tttttttttt tttttttttt
42841 tttttttttt tttttttttt
42901 tttttttttt tttttttttt
42961 tttttttttt tttttttttt
43021 tttttttttt tttttttttt
43081 tttttttttt tttttttttt
43141 tttttttttt tttttttttt
43201 tttttttttt tttttttttt
43261 tttttttttt tttttttttt
43321 tttttttttt tttttttttt
43381 tttttttttt tttttttttt
43441 tttttttttt tttttttttt
43501 tttttttttt tttttttttt
43561 tttttttttt tttttttttt
43621 tttttttttt tttttttttt
43681 tttttttttt tttttttttt
43741 tttttttttt tttttttttt
43801 tttttttttt tttttttttt
43861 tttttttttt tttttttttt
43921 tttttttttt tttttttttt
43981 tttttttttt tttttttttt
44041 tttttttttt tttttttttt
44101 tttttttttt tttttttttt
44161 tttttttttt tttttttttt
44221 tttttttttt tttttttttt
44281 tttttttttt tttttttttt
44341 tttttttttt tttttttttt
44401 tttttttttt tttttttttt
44461 tttttttttt tttttttttt
44521 tttttttttt tttttttttt
44581 tttttttttt tttttttttt
44641 tttttttttt tttttttttt
44701 tttttttttt tttttttttt
44761 tttttttttt tttttttttt
44821 tttttttttt tttttttttt
44881 tttttttttt tttttttttt
44941 tttttttttt tttttttttt
45001 tttttttttt tttttttttt
45061 tttttttttt tttttttttt
45121 tttttttttt tttttttttt
45181 tttttttttt tttttttttt
45241 tttttttttt tttttttttt
45301 tttttttttt tttttttttt
45361 tttttttttt tttttttttt
45421 tttttttttt tttttttttt
45481 tttttttttt tttttttttt
45541 tttttttttt tttttttttt
45601 tttttttttt tttttttttt
45661 tttttttttt tttttttttt
45721 tttttttttt tttttttttt
45781 tttttttttt tttttttttt
45841 tttttttttt tttttttttt
45901 tttttttttt tttttttttt
45961 tttttttttt tttttttttt
46021 tttttttttt tttttttttt
46081 tttttttttt tttttttttt
46141 tttttttttt tttttttttt
46201 tttttttttt tttttttttt
46261 tttttttttt tttttttttt
46321 tttttttttt tttttttttt
46381 tttttttttt tttttttttt
46441 tttttttttt tttttttttt
46501 tttttttttt tttttttttt
46561 tttttttttt tttttttttt
46621 tttttttttt tttttttttt
46681 tttttttttt tttttttttt
46741 tttttttttt tttttttttt
46801 tttttttttt tttttttttt
46861 tttttttttt tttttttttt
46921 tttttttttt tttttttttt
46981 tttttttttt tttttttttt
47041 tttttttttt tttttttttt
47101 tttttttttt tttttttttt
47161 tttttttttt tttttttttt
47221 tttttttttt tttttttttt
47281 tttttttttt tttttttttt
47341 tttttttttt tttttttttt
47401 tttttttttt tttttttttt
47461 tttttttttt tttttttttt
47521 tttttttttt tttttttttt
47581 tttttttttt tttttttttt
47641 tttttttttt tttttttttt
47701 tttttttttt tttttttttt
47761 tttttttttt tttttttttt
47821 tttttttttt tttttttttt
47881 tttttttttt tttttttttt
47941 tttttttttt tttttttttt
48001 tttttttttt tttttttttt
48061 tttttttttt tttttttttt
48121 tttttttttt tttttttttt
48181 tttttttttt tttttttttt
48241 tttttttttt tttttttttt
48301 tttttttttt tttttttttt
48361 tttttttttt tttttttttt
48421 tttttttttt tttttttttt
48481 tttttttttt tttttttttt
48541 tttttttttt tttttttttt
48601 tttttttttt tttttttttt
48661 tttttttttt tttttttttt
48721 tttttttttt tttttttttt
48781 tttttttttt tttttttttt
48841 tttttttttt tttttttttt
48901 tttttttttt tttttttttt
48961 tttttttttt tttttttttt
49021 tttttttttt tttttttttt
49081 tttttttttt tttttttttt
49141 tttttttttt tttttttttt
49201 tttttttttt tttttttttt
49261 tttttttttt tttttttttt
49321 tttttttttt tttttttttt
49381 tttttttttt tttttttttt
49441 tttttttttt tttttttttt
49501 tttttttttt tttttttttt
49561 tttttttttt tttttttttt
49621 tttttttttt tttttttttt
49681 tttttttttt tttttttttt
49741 tttttttttt tttttttttt
49801 tttttttttt tttttttttt
49861 tttttttttt tttttttttt
49921 tttttttttt tttttttttt
49981 tttttttttt tttttttttt
50041 tttttttttt tttttttttt

35161 ccattcaaat agcggccgtac ctgccagcat cgccaacgcg cccaaacaaca acgcctgcc
35221 tgaggccatcc gtaccgaaca gcgccaaacgc cagcattacg gccattagcc ccataatgct
35281 acgactcgc cagcgaacag gcatcgccgg cagtttccc agcaaggcct gacgaaccac
35341 caggcctta tgaatacgtt tactacaccg cccttcattt agcgcctgat ataaaaggctc
35401 gacggcggca atctcatcat ccgtggcgcg ggtacggatc gacatatatc ccgtcacacg
35461 cccttcacgt atcatcggtt ccgcgttggc ccgcacccaa taatgatcgc cgtttttag
35521 ccggttttc acaatgccgc tccacggttc gcccctgttt agggtgtacc acatatctgc
35581 gaaggcagct ttcggcatat ccggatgacg caccagatta tgtggccgcg ccagtaactc
35641 gtttaactga tagccgctca cctggacaaa agtgtcattt gcgtgagtg tatagcttc
35701 caggtcggtc gtagacatca gagtggtatc atcatccagc ggggtattt gctggctgac
35761 gttagggatga gaagacatga tagcgtctg tgcaggttat ctggatgtta attttcgct
35821 cagatgttat ttcggcgcta atcttattat ctttagttgt taaaattgtt ctggatcgca
35881 atttgcatt aatccctaat atttgtacga ttttccattt atcctgcgcc ttatattcat
35941 tatgaaattt ttagctgtgg acaacccctt tctttaaat ctgcctggc tcacctttt
36001 ctcacgccc cgttaacgca acacaccgtt aaccgtaaaa caagatctgc tcaaaaatgca
36061 tccaattgtt aacgtataac attaaatgtt gtgtaaatgtt gattattctt ggttttata
36121 ccgattttca ctatgggctt agacccccgc taatccctgc aataacttaat tcagtatcat
36181 gtgatacacg gccccttgga gctcattttg aacaggttac cttccagcgc atcggctttg
36241 gcctgttagcg cgcacgcact gaatctcatc gagaagcgaat cgctaaacca tgaggaaatg
36301 aaagcactaa accgagaggt cattgactac tttaaagagc atgtaaatcc aggtttctg
36361 gaataccgga aatctgttac cgccggcggtt gattacggag ccgtagagtg gcaagcgggc
36421 agtttgaata cgcttgcga caccaggggg caggagttt tcgattgtct tggggggttt
36481 ggcatttttta acgtggggca ccgtaatctt gttgtgtat ccgcgttcca gaatcaactc
36541 gcaaaaacaac ctctccacag ccaggagttt cttgaccctt tgccggcgat gctggcaaaa
36601 acgctggcg cgttaacacc ggggaaactc aagtacagct ttttctgtaa cagcggcacc
36661 gaatccgtcg aagcggcgct aaaactggca aaagcgtatc agtcggcgat cgcaagttt
36721 acctttatcg ccaccagcggtt cgcatttcac ggcaaatcat tggcgcgc tccgcacag
36781 gccaaatcca cttccgcag accctttatcg gcttactgc cgggcttccg ccatgtgcg
36841 tttggcaata tcgacgcgtat gagcatggca tttagcgaag gcaaaaaaac gggcgcag
36901 atagcagccg tgattcttggaa gccttattcag ggtgaaggcg gctgtatcc gccgcgcag
36961 ggtatctga cagaggtacg taactctgt gcttgcgcgtat gatgaatttcg ggcgcgtat
37021 gaagtacaaa cggcatggg gcttgcgcgt aagatgtttt cctgcgagca cggaaatgtg
37081 cagcctgata ttctgtgtt ggcggaaagcc ttttcgcgcgtat gctgtatcc aattggcgcc
37141 accatcgca ctgaggaggt gtttcgggtt ctgttcgaca atcccttcct gcataaccacc
37201 acttttggcg gtaaccggct ggcttgcgt gccgcgcgtt cgaccattaa cgtccttgaa
37261 gaacaaaacc tcccggccca ggcggaaacaa aaaggcgata cgctccttgaa tggtttgcg
37321 caacttgcgc gtgaatatcc caatctggta cacgaggcgc gggcaaaagg tatgttgatg
37381 gccattgaat ttgtcgataa gcaaaacggc taccgttttgcg gctgtatccgc gtcgcgttca
37441 cgcgtctgg tcgctggtac gctgaataat gcaaaaacaa ttcgtatcga gccaccgctc
37501 acgctaacc ttgaactgtg cgaacaggta ttgaaatcag cgcgtatcgc gctggcggca
37561 atgcaggtga gcttgcgtt ggtttaaaaaa cgatgcggat tggcgcgttgc cttatccggc
37621 ctgtttccc cgggtcgccgg ccttttttgcg gatcccatc acaatcacca cattccctt
37681 ttccctttta cctcgacgc gctacagtag taactcatcc gaccacataa caataatttt
37741 acatacttggc tacgttattatc agctaccgtt cgcgtttcgc cccgctcgat ctggcgttta
37801 ctactctcag aaaccgtgtt ctgtatggat cgtatgcacac ggttctggaa gaacatcctg
37861 atggcgctga ggcgttgcgg cgttattatc gcatttatc accgtttat ggcacacggc
37921 tcgtcaccgg cggatttgcg cccgtttccct aaccccttgcgt gatgaccggc ggcgcgtatgc
37981 tgaacgtgc cagccagttt aaccccttgcgt gcttgcgttgc gatgcgcgtt catgcgcga
38041 gcggtttttt cgcgttgcgtt atctgcaca cggacgttgc gactatcgc cgcacccctgg
38101 tcgcggcgtc ggcggatccatc ggcggatccatc accgtttat gccacatgaa ctgacgcatg
38161 atggaaatctt gcaatccatc gacgacttcg caccatggcgc gcaatggcg gggaaagcag
38221 gctacgacgg cgttagaggtt gacgaatggg gcccggacta taccatgttgc ttttcacgc
38281 ggcgaactaa ccatcgacgc gacgaatggg gcccggacta gatgttgcgt atgcgttgc
38341 cgggttggat agtacgcgcgtt gtcgcgcgc ggtttagggaa cgcattttatc attatctatc
38401 gcctgtcgat gtcgtatctg gttggaaaatg gccgcacgtt cgacgaaacg gtacaactgg
38461 cgcaaggccat tgaaggccgc ggcgcacgc taattaaatc cggcatttgcg tggcatgagg
38521 cgcgaatccc gaccatcgcc acgccagtc cgcgtggcgc ctttagctgg gtgacacgg
38581 aactcaaagg tcatgtgtcg gttccgttgc tcgcgcacca tcgcattaa gatcccgagg
38641 tcggcgagac gatccgtacgc cgcggcgatg ccgatatgtt gtcgttgcg cgtcccttcc
38701 ttggcgatgc tgaatttctg actaaagcgc aatccggacg cgcagatgag atcaataacct
38761 gtatcggtc taatcaggcc tgcgttgcgtt ggtatcttcat cggcaaaatgt acctcctgtc
38821 tggtgaccca cgcgttgcgtt acgaaacccca catgcccata acgcccggcca tacgaaaaaa
38881 gaatctggcc gttgtcgccg caggccggc ggggttgcg ttcgcgatc acgcccgtc
38941 ggcggccat catgtcaccgc tgggttgcgc ccagagtgaa attggcggtc agtttactat
39001 cgcaggccat atcccggtt aagaagagtt ttacgaaacg ctgcgtactt accgtcgaat
39061 gatcgatgtt actggcggtt cgcgtaaactt gacccaacgg gtaacgcgc aggtatcttca
39121 gccgtttgcg aagcgatcc tcgcgttgcgtt atatgtacgc cgcggccgcg cgtatagacgg
39181 tatcgatcat cccaaatgt tgacgttgcgtt ggggttgcg cgcgatataag cgcgggttgg
39241 taagcgatgtt gcgatcatcg gctgcggcgg gatcggtttt gacacggca tgcgtatctgag
39301 ccagcacggc gaatccacca gccaaaatatt tgctgaattt tgcgttgcgtt gggaaattga
39361 taccagcgtc caacaggcag gccgttgcgtt cccggaaaggc cgcgcgttgc cgcgtatc
39421 acggcaaattc gtcgtatctg aacgcaaaacg cagcaaggcg ggcgaagggt taggtaaaac
39481 caccggctgg atccatcgcc cgcgttactt ggcgcgcggc gtcgttgcgtt tcccgccgg
39541 cagttactat aagatcgacg acgacggattt acatcttgcg gtcgttgcgtt aaccgcagtt
39601 gcttggaaatg gatcatgttgcg tgcgttgcgtt cggacaggaa cccggccgtg aactggcgaa

39721 actggatgcc cgacgggcga ttgcccaggg caccggactg ggcgtggaga tttaacgact
39781 ttgcctgatg gcgctgcgct tatcgggcct atgcgtcat accggttta taggcccgtt
39841 tgatgcttga gtgccttatac gacggcgctcc ctgcttcacc gcttcagaa taacaaattt
39901 attgttggtt gctatcgctg cgcaattacc gaaaatttc ttcagcttgt ggaaatagtc
39961 cagatggcgg ttcgccccaa tatacagttc gccgttattt ttcaggcagc ggcgggcatt
40021 atggAACATC tcccaggcga tattatccgt cagcgcatgt ttctggtgg aacggcgatt
40081 gcagaacacc gcgttaaaac ggaacgctc cacggcgag agcgcgttgt tgatcataaa
40141 ttgcagcgt tcgaacgctt ccggcagggtt cgtttctaca tcaaacgcgc tggaatctac
40201 cgccatcgcc gattcatcga caaataccac gttcgccctgc ggattttcg ccagtaagct
40261 cagggcaatc accccattgc cgcagccgag atcgacaatc tccccgtcga gttttccgg
40321 caaatgctgc ataaagaagc ggcgcgcgt atccaatccg gtacgagaaa acacattcgc
40381 gtgggtgtga atcgccaggc ctgtatcttc cagtttccag cttagcgtt ggcgcgcgtt
40441 ggccagtgc ggtactga aggtacagt aatcaggcgc gtttcttc acggccagcgt
40501 cgtcggtgg tggccagca cttttccaaa cagttccagc gttagaggat gaatatcagc
40561 cgcttcgcg ccggcgataa tacgcgttgc cgccgtaaac acctacgca aagcgcgtaa
40621 ctgctgttcc agcaacgcga gtgtttcgg tacttttaat aataccacgc ccgtgccttg
40681 cgggttagtca gcggtactgt cgagaaaacgt tacgctgac tccgcgtatc cgttatggcg
40741 taaattctct cgcgtaccca gttcgcttaa atatgaatcg ccaatactgt atggcgaatag
40801 ctccgcgcgc gcacagctt ggcgcctaaa cgtatcattc aggtacgca ccgggcgcgc
40861 aattccgtc tcatccaact gttcagcag atactcatcg gccgcctccc acggcagaag
40921 cgggttaaca tcatccgtt gcgaaaaacg ttcagcgtc agtgaacgaa aaccgtcgcc
40981 tacgtggctc attaggcctc ctgaatggta aaattgcggc gtatccctg aaaagggtgc
41041 gtgagtatac acttttatac ggcaacatgg agctttagt acctcactaa cttaccttca
41101 ggggtatccg gaacatctcc ttgcccaggt ggcgcctta atcgcgcgac agcgcctggg
41161 ggcgtgtcg gaaaaacgtt atcccggcgc gcatgattac gctactgaca aagcgtata
41221 tcactatact caggaactga aaagtcaattt tctgcgtcaat gcgcgcggca tcaataaagt
41281 gatgtatgac agcaagatcc ggcggcaagg tcaaggccaa ggcggagatc cgcgtcgcca
41341 gcgcgttcag ggcggcattc tacgaatgtat tgcgttgc acgttgcata ccgtgtttcg
41401 caacgccccg gagccatttctt ggcggatc tgcgttgc acgttgcata ccgtgtttcg
41461 gaaagatcat aacaaacgcgt tttatcagct gatcgcgc tgcgttgc acgttgcata
41521 actggaaattt cttcccccgc atctttttaa cggcggtggc ataaaatcga cgcgttccaa
41581 gaaaatgcgg tgcgttgc acgttgcata tgcgttgc acgttgcata ccgtgtttcg
41641 ttcgctcat gaaaccgcga acaaccatgc ttcacaaatg tgcgttgc acgttgcata
41701 accgccaacg tgcgttgc acgttgcata tgcgttgc acgttgcata ccgtgtttcg
41761 tctgtttac acgcggggcg ttaacagtgg cttatcgtca acgcctcaca gcatctgaca
41821 cgctttcta tccggcccgc aatgtcggtt gtttatttgc gcatctgaca tggaaatgaca
41881 ttcagaccgt gcggttataat actgcggccg cttatcgtca acgcctcaca gcatctgaca
41941 attttacccg cggcgataac ggcaaaaaaaag cttatcgtca acgcctcaca gcatctgaca
42001 tggtagtcag cgtcgatagc gaaagggtgt ccggaaagcgg cttatcgtca acgcctcaca
42061 cgctgatagc cggttgcgc gacttgcgttcc gcccggaaag cttatcgtca acgcctcaca
42121 cgctggactc tcataatcaa cggcgatct gtttggcga aagccgcatt acgattatct
42181 cgcaagcatt tcggcgtaa cgcgcggat ctgataaaaa cttatcgtca acgcctcaca
42241 tcggcgtaa ggttagcgca ggtgttgatg gtttggcga aagccgcatt acgattatct
42301 agctggcgcg cgtcactatt ggggctgata gtttggcga aagccgcatt acgattatct
42361 tggcgctgg atgcccaggat gacttgcgttcc gcccggaaag gtttggcga aagccgcatt
42421 atgcccaggat ggttgcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
42481 tcccttctg gacttgcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
42541 tcacgcgca gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
42601 actcccgtag gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
42661 ttacccgtt cgttcc gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
42721 cgaattccct gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
42781 gcgaaaagcc gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
42841 ataatcagcg gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
42901 tgcggaaatc gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
42961 acttttcacg gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43021 tctccaatgg gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43081 gggcgagcc gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43141 acggcgctgt gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43201 gcgactcggt gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43261 tggcgaaatg gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43321 agcctcagca gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43381 accacgcccgt gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43441 aaatacgcgg gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43501 cgtaaaatta gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43561 ttgttacgcg gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43621 aaccacatcc gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43681 taagtggagac gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43741 gcattagccg gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43801 ggggtggatt gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43861 gccgtggcgc gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43921 cgcttcgcgt gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
43981 aagttgctga cccgcaggca gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
44041 ccgtagataa gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
44101 tgcaacgcgc gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag
44161 ttttcgcgg gtttggcgttcc gtttggcga aacccggcaaaatggcgttcc gcccggaaag

44281 aaaaaccgat ggtgcgttgg ctgcgcgggc atctgcgcac gactgatacg atcagaac
44341 agcactttt cgtacgtaaa aacggccctgc tatatgccac gccgctgctg
44401 ttatggttga gttcagcgat gtgatctcg ccgttacag tattccggcg
44461 tcaccaccga cccgttcatc gtactgacct ctaaccttgt tgccatctta
44521 cgatgtactt cctgctgtcc ggcgtggcgg aacgcttctc gatgtgaaa
44581 cggtcattct ggtcttatac ggcattaaga tgctgatcg
44641 tcgcgatttc gctggcgta gtgttgca ttctgaccat
44701 gggtaaacca tcagcgcgat aagaaactac gagcgcataa
44761 tgccccatca aaaacccccg gcagcgtaca cctgcccggc
44821 aatactgtta atataaaagtt ataaaaacatg atcacagcaa
44881 tcccgaacct tcaactttcc ttatactcaa ccaggcaaa
44941 atgcgccgta agagcgtgca ggggatgacc agcaacacaa
45001 tacgcaacga gcatcagggc tactgcagcg tttagcgc
45061 tttagtgggt ctggtaactgg ggattttact ggcattggatt
45121 ggttggcttgc ctggcacccc tgttcgtcgg
45181 gctgatgctg gtaatggcct cgatcgccaa
45241 ccctattctc tttcttacc tgctaggcac
45301 cagcttcgccc ttcccttcaa
45361 gtccggattc gtagaagtcc
45421 cgcactgctg aacgctaact
45481 cctcgctcat ggcataataaa
45541 ctttatggtg aaactggtga
45601 aacgcttgca accaccggct
45661 gattggctgt atgctgttgg
45721 tcgtcgcaac ctttatccgc
45781 ctttacccgc agttctgcgc
45841 tctggacagg gatacttact
45901 cgcggcaatt accattacgg
45961 gnatctgcct acagcgtgca
46021 cggcgtggca ggcgggtcat
46081 gaacgatatc gcgatgcagg
46141 gtgtgaaacg gcgctgaact
46201 agaggacgaa cgtctggcga
46261 ggcgtgcca tccggcgtga
46321 agcgaattga tgttcacgcg
46381 gcagcgctcg gtcagcgtaa
46441 ccttgcgt aagcaaaatc
46501 accttggta caatttagat
46561 acttaacaag gaataggta
46621 caactctgtt gcccgcgtc
46681 gaatactgaa tggaaact
46741 acactggcca atccttccat
46801 ctggaaaatg ggctgcctcc
46861 ggcgtgctga tcgccaaagg
46921 gcgccagcc tgggttgctg
46981 accgtgcaga attggctctc
47041 ttccataaaac acggcctgtc
47101 ctgctaccca ccattggcgg
47161 tggatgagtg gcttggttgt
47221 acgcccgtct ttatgaagta
47281 gtgctgctct ttttggcct
47341 agccggggat aactttagct
47401 gctttctgc tgatgctgac
47461 tcgacgctgg ccattcgcc
47521 ctgcatcatc tggatgcgaa
47581 ttgctcatta cttcgattc
47641 acgttaccac acggttatgt
47701 ttgtcccgct tacggggaaag
47761 tcactcactt tgggtatttc
47821 acccgcttat tattcggttgc
47881 ggaatgaaat accgcattcgc
47941 gctaattcgc tttgtcagga
48001 aagcacaaca atcagcgc
48061 aattgtactg acagcaagct
48121 gaggtagccg aacgccaac
48181 atagacaaac gtgaacgtaa
48241 agagactact aaattaacgc
48301 aagataaacac tacggaaacat
48361 aagtgtcgag ctcttcgggc
48421 ccgagcgcgc gctgaaagag
48481 aacagactcg cgtcgcgc
48541 gcgtaggcat tggcgcgc
48601 tatggcggac tctcgacagg
48661 gattgtcacc attatcggt
48721 ggaagaagag aaagcgaacc

48841 ccgtttgaac gcgatgatcg ctaccacagt tgtactgtta gtgcttgcgc taatcggcgg
48901 catctggact ttgcgcaaag cgcgtcagtc cacgctattt cgcacatacg ggcacgaact
48961 ggctaaccat cggcaattt tggaggacga tcagtcgtga gcagcaaagg cgaacgcgaa
49021 aaacgtaaag cgctgttct cagtcagatc cagcagcaac ggctggatct gtcggccagc
49081 cgtcgcact ggctggagac caccggcgcg tacgatcgcg gctggaatac ggtgttaagc
49141 ctgcgtcct gggcgcttgt cggtagcagc gtaatggca tctggaccat ccgtcatcct
49201 aatatgttgg tacgctggc gaaacgcggc ctgggtatct ggagcgcctg gcccctggta
49261 aaaactaccc tccgtcaaca acagctccgc gttaatatc tttctttt tagcatcgcg
49321 ccatcagggt atcacccgat tacaccttgt ggcgcgatac ttttatgcat atcgtctctt
49381 tatcaatcac tcaaatttt tgaaaaaatt tggcaattt cttgctaaac aattcctgtaa
49441 cgccacgtt atgattctt ccagcgataa caatgacgcg ctaaaccgcg ccattgctca
49501 tgaaaatagc agcagccgc gaatcgccct cttggagaat aaaatgaaaa aattagaaga
49561 tattgttga ctgatagcgc gtatttaat gccagttctg ttattaccg cagatgggg
49621 aaaaattagc ggctatgcgg gcacacagca gatatacgaa gcatggggc taccaggatt
49681 cctgtcccg ctcaccatac tgcttgagtt cggcggcggt ctggcgattc tgctgggtt
49741 cctcaccgc accactgcgc tttcaccgc ttgttttacg ttgtgacgg cattgatctt
49801 ccatagcaat ttgcagaag gtgtaaactc gctgatgtt atgaaaaacc tgaccattgc
49861 cggaggattc ttattactgg cgttaaccgg gcctggcgcg ttcaagctt accgtctgct
49921 gaataaaaaag tggtaagcaa tctataactca attaaaaaa cgagggataa gcccctcgct
49981 ttgttatct gaaggagaga gacatggac aactgatcga tggcgtctgg cacgataacct
50041 ggtatgacac caaatcttc gggggggaaat ttcagcggtc agcgtcggt ttccgcaact
50101 ggcttaccgc tgacggcgcg cccggacett cggcgaagg cgattcgcc gcagaaaaag
50161 atcgttacca tctgtacgtt tcccttgctt gcccctggc gatcgaccc ctcatttcc
50221 gtaaactgaa aggtctggag ccgtttattc cggtttctgt cgtaatcca ttgatgctgg
50281 aaaacggctg gacgtttagt gatactttc gggcggcac cgcgatacc ctctatcagc
50341 atgaatttct ctaccagtt tatctgcacg ccgatccaca ctacagcgcc cgcgtcaccg
50401 tgccgtctt atggataaa aaaaatcata tctatgtcag caacgatcc gccaaatca
50461 ttcgtatgtt taactccgtt ttcgatggc tggcgctaa agccgggat tactatcccc
50521 ccgcgctgca aagcaaaatt gacgagttaa acggctggat ttatgacaac gttataaaacg
50581 gcgttataa agcaggctt gccactagcc agcaagcgta ttagaagcg gtagaaaaagg
50641 tgttactgc gctggcgccg ctggaaacaga ttctcgac gacccgtt gacccgtt
50701 accagttgac cgaggcggt atccgctt gacacgaccc ggtacgtt gatccgggtt
50761 acgtgactca tttcaatgc gacaaatacc gatcggcga ttatctgtt ctatctgtt
50821 tcctgcgcga tatctatcaa ataccggca ttgctgaaac ggtatcattt gaccatattc
50881 gtcaccacta tttccgttagc cataaaacga ttaacccac cttggctaa ttccaggcgt
50941 cgtggcagga tctgctcgaa cctcacggc acgacgtcg cagcattca ttccgagcta
51001 cctccgggac gccttattaa taaatgccac aatattttac tattgaggcg aaaaatggatt
51061 ttcttagttt gattacttta aaaacaatgt gattggcg gccgcccgtc cgcaaaagagt
51121 ggtatTTaaa ggtttaaaaa aattatctgg aatatcatct ttaccttgt gttggccctg
51181 actggatgtt tattctggc aatatcatct gcggtctgac caccattac ctggacgcca
51241 tgctggctg gcaacgcgcc ggggtgaag atcccttata tgcactgtac ggttcaact
51301 tcttttacc gtgggggcc gtcagttcc atcccatta tcggctggc tccgaaacgt tttcctgag
51361 ggtggctact gttgtactt tacaccggc gacaaccgct tcggcccgaa caccattac
51421 gccagaatgg cggccgtttt aaagcgccgc gcgctattt tttccggcg aatagcttag
51481 ggcggcgcgg caggcaccag gctttgcct cccccatact gtcgcccgc caggccataa
51541 gtatTTcccg ttgcgtggc gattccggc tgactacgcg tagccgcct tcggcaatatt
51601 taatatcgat catgaatat ggcatcgtc cgacgccaag cccggccagc aggcctgac
51661 cctgttccac aatcggtttt accgtcagac gtggctgtt atccagcgt tgaccgtt
51721 gtttatcttcc ataccggccg ctcgcgcgc tcctgatgaa tagagtggc gggatttta
51781 ataccggccg cggctccggc atacaactt cgggagttaa tttccgacga aggcgcggc
51841 cttccgaaag atacaactt gatatccgc cgtccctgct caagccgctc ccatgcgcca
51901 tcattaaacgt gataagctgc gtattggctt tagcggccag ccatgcgatc agccggaaaaa
51961 gggcgataac cggtaatcaa aaggcagggt cgttcaactt gtcgttcc cagcaatacc
52021 cggtaatcaa aaggcagggt cgttcaactt gtttccgtt ccggccgtt tcgaacagta
52081 aaggcagggt ccaacgcttc agcatccgtc gtttccgtt ccggccgtt cagcaatacc
52141 ccaacgcttc ccagcagcat acgtccgacg ctcttcttcc agcttctgca cggccgtt
52201 ccagcagcat caacgtccaa ccaactcatc agccgtcgcc gcaaaaactgc cccggccgtt
52261 caacgtccaa atgcttcaag atgcttcaag cgtcagcgct ctctctttag ccataacgtt
52321 ccaactcatc ataccggccg gaatacttgc gatatacttgc gtcgttcc ccttaacat
52381 atgcttcaag gatatacttgc taataacgt gattacgacc gtaaccgcca aacaatgtgg
52441 ataccggccg gatatacttgc tacaggcccc agccgtcgcc gcaaaaactgc aatggcgttcc
52501 aaagagaggt tacggatggc cgtcgttgcg gtttccgtt ccggccgtt ctcattcagg
52561 tacggatggc ctatccgtt cgtactgaac cggggaaaacg cgttccgtt ccctacactg
52621 ctggctacg cttatccaa ggtggatatt tttttttttt ttttggacgg cggccgtt
52681 cagcctcgaa ggtggatatt tttttttttt ttttggacgg cggccgtt
52741 taccgcgaca ggcacggcaa ccatgtacag gctaaagcg gcaaggcg
52801 ggcgcagccgg gcattagcta cagcgaacat aatctcagca aatctcagca
52861 atgcaactgt ggcttgcgc ctgttccgtaa cggggaaaacg aatctcagca
52921 ctctcgacgg cgcaacaaca gtttccgttcc tccggccgac gcaaggcg
52981 ctgcgccaac aggtctgggt acatcatatt acgctggaga aaggcgaatc
53041 cagttcacg ggcgcgcgc ctatccgtc tgatttcacg gtcgttcc
53101 cacaacgaag aacgcgaggc gtttccgtc gggggggggc gtcgttcc
53161 aacattacgc tgggtccga tacggccgtc cggccattac ctttattcg
53221 ccagccagaa aaggagtcgc aagatgagca aaaaatccggc tggtagatt
53281 taaaacctgc cgtacaggag gcgatgagcg cggctgtgcc gctgggtat
53281 taaaacctgc cgtacaggag gcgatgagcg cggctgtgcc gctgggtat

62521 cgccataaaat ccacagcgcg ggacaaatcg ccaaagaatga aaggaacgtg ataaactaccc
62581 cgccccgttt accaaagtgc tcttcgaccg ttcccgtaat attgcggac ggatttagacc
62641 cggataaaaca cagacgcgcc agcgcgggt gacaatagaa cgcaatggga taagctaaaa
62701 ccagcatcag cagaatgggg ataagcccgc caaaccggc gcggtatagg aagaacagca
62761 ccccgccgc gatggcggtt ccaaataaac ccagcgtcca cgtcgtgtcc gatttacgccc
62821 atgacgactg tttgcctgg ctggatacaat tgctatcagt agtactcata tccttatc
62881 acgaaaagat taagcgtcaa ctaaaccgt aatttgtat acacgagaaa gatcgatatt
62941 gccgcccagaa ataatactga ccgttttct gttctgaata tggctatcta atttcccgct
63001 taatagtgcg ggcaggcca gtgcgccagc gccttcagta ataaccttat tgcgctgaat
63061 taaagcgatc atgctgttac gaatttcatc ttcgctaacc agaacaatgt catcgactaa
63121 ttcacgaaca attcatagg ttaaattacc cggggggag acatcacaac catccggcag
63181 ggtccggtc gttcggtgcg cggttatttc gccagcgtaa taagacgccc ccataccgtg
63241 aacattttcg gcctgtacgc cgataactt aatggtcggg ttaatcgatt taatcgcaat
63301 ggcaataacct gcaattaaac cgccggccg aataggcacg atgacattat cgacatcgta
63361 cagatcttcc ataatttcca gaccatagt accctggcc gcaatgactt ttggatcgtc
63421 gtaaggcggaa ataaaaatgc ggccttcggg ttcgacattt tagcaatggt
63481 gtcattgaag ttgtcaccgt ggagcaccac ttccggcggaa taatcacagg tggccggcac
63541 tttgactttt ggcgcgcct tcggcatcac gactttgcgg tcaataccca gcattgcgc
63601 agaaaagagaa acgcctgtg catgattacc tgtggAACAG ctttacgttt
63661 ttccgcctcc gttAACGAGC taagttgtt aaaagcggca cgaattttaa atgaacccgt
63721 acgctgcata tttcaaact tgagaatata ttcgccttt tgacgttccac
63781 agagcgaggc attcccgtt tatatatctt cccggccagt cttttttcg
63841 atcttcaatt gcaaccggga gatcgatgtt aatgtgcatt atacacttctt
63901 ttaaaaataa gttaccgtt cccactgtt cccactgtt aacactgggt
63961 atatgtttat tccatatacat tcaatttcta ttaactgcct
64021 atgaatattt cttagccaat tctactaata ctgactgcgc
64081 tagaccatac cgccgcataa cgtgcacgg gtaatgtgtc
64141 attgattaga gccaaaaggc gtggtcatat cgcaggaaat
64201 tgagaacaag attatataatt gtgacaacagg aatctgttt
64261 tgccatttcg tttagaggtg gtgagtaatt cgctgttaga
64321 acgcctactg ttctgcctt aacgattcca gtgtgtatgg
64381 tgctggctac caggacaaac tctgattcaa acagcggctc
64441 gcatttcatt actgagcgtt ccgatagcaa agtccagcc
64501 ggaatgaaga gagctgggt tcgtacatgg atacctgcgc
64561 acttatgaat catatcgacg atgaaggtaa agccaatcag
64621 cgtcgacaac ggtattgcac gtcatactgt tcatctcg
64681 gggtgataga tttagacccg gaaagcgtt cctgtccgc
64741 tatttttgcg tacaatttgc tcaacgccaa aataggcctc
64801 tgacggcggtt ttgggttaac cctaacgatt ttgcggcaga
64861 tgacttcctg aaagaccacc aaatgtgtt ttttagggag
64921 ccgctctgaa ataacattgt gAACGGCAGG aagtgttagca
64981 gtgcgaccac tcacaaatta acttaccgc attttacat
65041 aacctattac ttcaatgagt tacaaaaaca agacagtaac
65101 aaaaatggtc gggataacga tatattatgg cgataaccag
65161 cgacatccca tgaagacgtt atttcaatca attacggac
65221 gttaaattt aaacgttatt tctcaaattt aagtataaac
65281 aaccgttacg cgtcacattt tttacctt tttgtttgt
65341 ttaacaaaaa tatttcatac attaattt catttgcac
65401 ttgtgtttt tcaggatgtt atttgtgaa agaaatcgat
65461 aagagcgcac tccatagcgt tttgttttc tcatcacaa
65521 cacggctgtc aattaattgc cggatggta cactggcgtc
65581 tcaccggcct gataagcaaa aacccggcga agcggattt
65641 gataagccgc ttttttcgg gtatagcgtc gtggacagtc
65701 aaagcaaaaaa cccgcccagct tacactgacg gggttatga
65761 agccgcttcc tttgggtat agtgggtgg acagtcatc
65821 caaaaacccg ccgaaggcggtt ttttatgaag aagtgtaaact
65881 ttgggtatag cgtcgtggac agtatttcatt cctggccccc
65941 gaagcgggtt ttatgaagaa gtgaaaactga ccgataagcc
66001 attcatcttag gccagcaatc gctactggc tcaagcagcc
66061 cgtaccttat gaacccctat ttggccttgc tccgggtgg
66121 ttaccagccg cgcggcgtgc tcttaccgc ccttttcc
66181 tggccatcg gcggtttgtc ctctgttgc ctggcgttgg
66241 cctggcaccc tgccctatgg agccggact ttccctcc
66301 acgacgacga agcggcgtact gtctggtcag ctccggcg
66361 actttgtcac cctgcgtgtc gcattccat cgccagagcg
66421 ccgataaaata ttgtcaaaaag cgcggcaaa agcctcc
66481 tacgtctaaag acagcgtcga tgccataatg atgtactatt
66541 gccggcaatg ccaatcactg gcttatgata tttttcgcc
66601 cactttaccg cgaatgtttt ggcttcaat cgcggcttct
66661 gtcgtggata tgctcctcca gttcagtgc cggcgtgaca
66721 ttccgcaccg agaaaagcca ttaacggcgc cccatacc
66781 cgccgcctt acgtcgacat tcagcgatt ttttatgatg
66841 cctgtccagc tcaacaatgt tcttttcgtt cgcgccttc
66901 tgccgcattt tcgcccataa gaggattgga gacatcgaa
66961 ttttaaacgg ggatcgagct ctgaaaatatac aatgttgctt

67081 ccctgcgccc ccgtcatttgc tcgcgctgcc gccaatgcct ataatgata
67141 gctttccagc gcctgcaata tcagctcccc cgcccccgcc gaggtgat
67201 gcgttttctt ggcggAACCA ggcggcagtcc gctggccgccc gccatttcaa
67261 ttaccatcc cggacatttccc cccaggcaggc tttcacttttc tcacccaa
67321 ccatgcggcg cgttcaacgc cctgcgtcgc ggcaatcatg gcttcgacc
67381 gccatcgcca accggAACAG agacatatttgc cgcatcgggg
67441 ttctatcgcc tgcgctacctt cggcggcaga aaggcttctt
67501 tacgattttc atagtggtag cctgttacttgc cacaacgcgc
67561 gcctgaaattt caggccccggc tcgctacacgc ccattccggc
67621 cttccactttt cggcagttttc tcgtagtagc acgcccagcgc
67681 gtccatccgc gcttaacgcgc tgcatcatttccataacgcgc
67741 cggccaaacgc gttggaggtt tccacgcgc
67801 gggaaacctgg cttaaagtttt ctgtccatga
67861 tgccagccag accggccacga atcgcctgtat
67921 tcgcccagcgt cagcgttca
67981 ccagttttgt gacgttgcct
68041 ctttcatcag tgcgttagtac
68101 gcgtgccatc aatgccttc
68161 ccttcgcctt cagcgcatcg
68221 caatcaatac ggttccggc
68281 ctttcacatg cggagaggtt
68341 ctttcgcctt agaggccgtt
68401 tacgatcgga caccaccaggc
68461 ccatgatgcc taagccaata
68521 caggattatt tttaaaggtt
68581 tcgctgccaa cggcgacaaa
68641 accggcgcca gaatgcgc
68701 atcgtctgtt gcaacgtcagg
68761 tcgcttagggc cgacaaaaat
68821 tcgacaccca actggctt
68881 aagtaatcag
68941 ctttcgcctt ggtaacgcgt
69001 aaggggatca ggaagttata
69061 ttgggtggca cacgtaccac
69121 attaagggtgg tcacatcg
69181 gccagaccga gtacttcgg
69241 acctgttgcg cggccagcgc
69301 tataccttcg ctatttctt
69361 acgacaataa aaatgttt
69421 gtacacatcc ttagcacaa
69481 tgatattttc aaataactcg
69541 gtcggataat cattgtgc
69601 catacgccca tgatactggg
69661 aaatttcata atttgcgg
69721 atttcattat gcatgaactt
69781 aatagataat cctatttcta
69841 aattcgccag
69901 aattattgtt aatgaccac
69961 gactgaacat attccgc
70021 aatcatccgt tatggcgaag
70081 gatcgacgag tcgctgg
70141 gaccaaagta cggaaaccgc
70201 cgccgatggc agcgtcgg
70261 ggccggcgtg
70321 gaatgtcgat
70381 gcccggcg
70441 cggcgaagt
70501 aggcaccc
70561 cgagcag
70621 tctgac
70681 gatgc
70741 tgcttcc
70801 ggc
70861 act
70921 taacc
70981 ctctat
71041 cacc
71101 gcagg
71161 gct
71221 tgact
71281 ggg
71341 agat
71401 tatt
71461 act
71521 att
71581 ccc
71641 gat
71701 ttt
71761 gat
71821 ttt
71881 gat
71941 ttt
72001 gat
72061 ttt
72121 gat
72181 ttt
72241 gat
72301 ttt
72361 gat
72421 ttt
72481 gat
72541 ttt
72601 gat
72661 ttt
72721 gat
72781 ttt
72841 gat
72901 ttt
72961 gat
73021 ttt
73081 gat
73141 ttt
73201 gat
73261 ttt
73321 gat
73381 ttt
73441 gat
73501 ttt
73561 gat
73621 ttt
73681 gat
73741 ttt
73801 gat
73861 ttt
73921 gat
73981 ttt
74041 gat
74101 ttt
74161 gat
74221 ttt
74281 gat
74341 ttt
74401 gat
74461 ttt
74521 gat
74581 ttt
74641 gat
74701 ttt
74761 gat
74821 ttt
74881 gat
74941 ttt
75001 gat
75061 ttt
75121 gat
75181 ttt
75241 gat
75301 ttt
75361 gat
75421 ttt
75481 gat
75541 ttt
75601 gat
75661 ttt
75721 gat
75781 ttt
75841 gat
75901 ttt
75961 gat
76021 ttt
76081 gat
76141 ttt
76201 gat
76261 ttt
76321 gat
76381 ttt
76441 gat
76501 ttt
76561 gat
76621 ttt
76681 gat
76741 ttt
76801 gat
76861 ttt
76921 gat
76981 ttt
77041 gat
77101 ttt
77161 gat
77221 ttt
77281 gat
77341 ttt
77401 gat
77461 ttt
77521 gat
77581 ttt
77641 gat
77701 ttt
77761 gat
77821 ttt
77881 gat
77941 ttt
77981 gat
78041 ttt
78101 gat
78161 ttt
78221 gat
78281 ttt
78341 gat
78401 ttt
78461 gat
78521 ttt
78581 gat
78641 ttt
78701 gat
78761 ttt
78821 gat
78881 ttt
78941 gat
78981 ttt
79041 gat
79101 ttt
79161 gat
79221 ttt
79281 gat
79341 ttt
79401 gat
79461 ttt
79521 gat
79581 ttt
79641 gat
79701 ttt
79761 gat
79821 ttt
79881 gat
79941 ttt
79981 gat
80041 ttt
80101 gat
80161 ttt
80221 gat
80281 ttt
80341 gat
80401 ttt
80461 gat
80521 ttt
80581 gat
80641 ttt
80701 gat
80761 ttt
80821 gat
80881 ttt
80941 gat
80981 ttt
81041 gat
81101 ttt
81161 gat
81221 ttt
81281 gat
81341 ttt
81401 gat
81461 ttt
81521 gat
81581 ttt
81641 gat
81701 ttt
81761 gat
81821 ttt
81881 gat
81941 ttt
81981 gat
82041 ttt
82101 gat
82161 ttt
82221 gat
82281 ttt
82341 gat
82401 ttt
82461 gat
82521 ttt
82581 gat
82641 ttt
82701 gat
82761 ttt
82821 gat
82881 ttt
82941 gat
82981 ttt
83041 gat
83101 ttt
83161 gat
83221 ttt
83281 gat
83341 ttt
83401 gat
83461 ttt
83521 gat
83581 ttt
83641 gat
83701 ttt
83761 gat
83821 ttt
83881 gat
83941 ttt
83981 gat
84041 ttt
84101 gat
84161 ttt
84221 gat
84281 ttt
84341 gat
84401 ttt
84461 gat
84521 ttt
84581 gat
84641 ttt
84701 gat
84761 ttt
84821 gat
84881 ttt
84941 gat
84981 ttt
85041 gat
85101 ttt
85161 gat
85221 ttt
85281 gat
85341 ttt
85401 gat
85461 ttt
85521 gat
85581 ttt
85641 gat
85701 ttt
85761 gat
85821 ttt
85881 gat
85941 ttt
85981 gat
86041 ttt
86101 gat
86161 ttt
86221 gat
86281 ttt
86341 gat
86401 ttt
86461 gat
86521 ttt
86581 gat
86641 ttt
86701 gat
86761 ttt
86821 gat
86881 ttt
86941 gat
86981 ttt
87041 gat
87101 ttt
87161 gat
87221 ttt
87281 gat
87341 ttt
87401 gat
87461 ttt
87521 gat
87581 ttt
87641 gat
87701 ttt
87761 gat
87821 ttt
87881 gat
87941 ttt
87981 gat
88041 ttt
88101 gat
88161 ttt
88221 gat
88281 ttt
88341 gat
88401 ttt
88461 gat
88521 ttt
88581 gat
88641 ttt
88701 gat
88761 ttt
88821 gat
88881 ttt
88941 gat
88981 ttt
89041 gat
89101 ttt
89161 gat
89221 ttt
89281 gat
89341 ttt
89401 gat
89461 ttt
89521 gat
89581 ttt
89641 gat
89701 ttt
89761 gat
89821 ttt
89881 gat
89941 ttt
89981 gat
90041 ttt
90101 gat
90161 ttt
90221 gat
90281 ttt
90341 gat
90401 ttt
90461 gat
90521 ttt
90581 gat
90641 ttt
90701 gat
90761 ttt
90821 gat
90881 ttt
90941 gat
90981 ttt
91041 gat
91101 ttt
91161 gat
91221 ttt
91281 gat
91341 ttt
91401 gat
91461 ttt
91521 gat
91581 ttt
91641 gat
91701 ttt
91761 gat
91821 ttt
91881 gat
91941 ttt
91981 gat
92041 ttt
92101 gat
92161 ttt
92221 gat
92281 ttt
92341 gat
92401 ttt
92461 gat
92521 ttt
92581 gat
92641 ttt
92701 gat
92761 ttt
92821 gat
92881 ttt
92941 gat
92981 ttt
93041 gat
93101 ttt
93161 gat
93221 ttt
93281 gat
93341 ttt
93401 gat
93461 ttt
93521 gat
93581 ttt
93641 gat
93701 ttt
93761 gat
93821 ttt
93881 gat
93941 ttt
93981 gat
94041 ttt
94101 gat
94161 ttt
94221 gat
94281 ttt
94341 gat
94401 ttt
94461 gat
94521 ttt
94581 gat
94641 ttt
94701 gat
94761 ttt
94821 gat
94881 ttt
94941 gat
94981 ttt
95041 gat
95101 ttt
95161 gat
95221 ttt
95281 gat
95341 ttt
95401 gat
95461 ttt
95521 gat
95581 ttt
95641 gat
95701 ttt
95761 gat
95821 ttt
95881 gat
95941 ttt
95981 gat
96041 ttt
96101 gat
96161 ttt
96221 gat
96281 ttt
96341 gat
96401 ttt
96461 gat
96521 ttt
96581 gat
96641 ttt
96701 gat
96761 ttt
96821 gat
96881 ttt
96941 gat
96981 ttt
97041 gat
97101 ttt
97161 gat
97221 ttt
97281 gat
97341 ttt
97401 gat
97461 ttt
97521 gat
97581 ttt
97641 gat
97701 ttt
97761 gat
97821 ttt
97881 gat
97941 ttt
97981 gat
98041 ttt
98101 gat
98161 ttt
98221 gat
98281 ttt
98341 gat
98401 ttt
98461 gat
98521 ttt
98581 gat
98641 ttt
98701 gat
98761 ttt
98821 gat
98881 ttt
98941 gat
98981 ttt
99041 gat
99101 ttt
99161 gat
99221 ttt
99281 gat
99341 ttt
99401 gat
99461 ttt
99521 gat
99581 ttt
99641 gat
99701 ttt
99761 gat
99821 ttt
99881 gat
99941 ttt
99981 gat

76201 aaatactacc ggagcaggat ttctcggtgg gataattgcc ggattcgccg ccggttacct
76261 gatgttatgg gtaaagaatc gactcgaaagg cttaccgcgt cagtatgaag gcctgaaatc
76321 gatttttatt atgcccgtca ttggcgtaact gtttattggc gtgttgatgt cgctgcttgg
76381 gcaacctgtc gcagctatca ataatacgat gatgaactgg ctggcatcgc tacaggaagc
76441 gaatccaata ttgctgggtt ttgtgggtgg tgcaatgtgc tctttgact ttggggccc
76501 ggtaaacaaa gccgctttag tcaccggcac gctttactg gcccaggca acttctactt
76561 tatggcttgt gtgtctggc catgtattac tccaccactg gtaattgctc tggcgaccac
76621 cttcttcca aaaggttta gcgaggaaga acgtcgccga ggcattgttactatatcct
76681 cggtgtaca cacatcactg aaggcgcat tccttcgcgcgaaatccttgcgttgcgt
76741 catcccgatg atgatgattt cttccagcat ttcgcagta aattttacat tttgcgttat
76801 tcaggttccg gtcctcacg gggccttctt aattttacat ttggtgatgt agccgctggc
76861 ctgggtgtta tgtatccctg cggatctgc atggtgtcg atgtgttgcg
76921 attgtgggct gtgcgcaaaa attcagtcaa cacaactccat ttggtgatgt gtagcaaagg
76981 gaatgcagct ctgtgaacac gatattttt aattttacat ttggtgatgt ggcgcgtat
77041 ctctgcaccg cgtgggtggaa aagttatctg cggctggcaa taccacgcct
77101 gcccgttgc gatcgcaaa gCACAGATT ccacttatcttggaaatgg
77161 cacacgtac gccagaatct cgcgtcgcc tattacaaac cggtgtaaag
77221 ttcgcccacgg ctttgactgg ggtgacggca ataccgcgtatcgc
77281 cgcgctccaa tgaacatctt gagattttgc gccaactgac tcgcgtgc
77341 ctattctgca agcactgct aaagccgaat cccccagtcg gtttttagcg
77401 gctcgacgc caatacgcca gcaagccatgg agttgcacga gggtgagcag
77461 tcatccataa tccgcatggt ttacatgcga gaccaggatgc ggtactggt
77521 aacagttca aagccacatt acggtagaaa atctggataa cgcctccggc
77581 gaaaaaacct gatgcgagtg gtgtcgctcg gcgcaaaaaa ggggcattcgc
77641 gggcgcaggg cgaagatgca cagcaggcac tacgtgaaat cggggagctt
77701 gtgcaggcga gatgatcacc gttccgtta ccccaccacc
77761 gcagttggct atctcgattt ttaatttagc acagacatta
77821 gggtaggtt tttcatgaca aagtgaagtt
77881 cattttctt cgcaacttcc atttatcaga
77941 tataaattct ttcgaagaat aaaaacgaaa
78001 tgctcgcat aaagcaggag
78061 ggttatcgaa tcagctctgc
78121 cacatccaat caggtgaatc
78181 tgattttatt tatggcattt
78241 tggcgatcat tttagggccta
78301 gtcgggttag ttaataaaaag
78361 gtcgatgtcc tgcgtgac
78421 cggcgtgctt tggaaagcag
78481 ttatgtcattc ggcacggaaag
78541 tcatgtcacc cgcgagggtcg
78601 tgaatcaggt ctggaaagaag
78661 tgaatttgat catacccaga
78721 atggatcaaa gaaacgccc
78781 ggcctaccgc gccctcggt
78841 ttcgcctctg cgcgaaggca
78901 ggaacaacgt agccgcgtga
78961 ctggaaaaag tactaccggc
79021 gtctgaccgt attcgctatt
79081 aatcgccaat ctgaaataacg
79141 acagttgaa cgcctgtctg
79201 caaaattcag gatgttctgc
79261 agtggagaat ttatgagcca
79321 caggcgctgg cgcacatgg
79381 cgcgaggcac tggtggaacg
79441 gccgtcgcta tccctcatttgc
79501 cgtccagata agccggcat
79561 ttaatcatcg ctttaatcg
79621 ttcggggcat tacaatccc
79681 ctggcgctgt gctttgagca
79741 taaattgata ataatgagga
79801 gcggttgcaa cctcaacgt
79861 attgagctcg acttagtgca
79921 gatcttatct gtaccactgc
79981 ggtatgcctt tggttccgg
80041 ctcatgggtt aacgtatgtt
80101 gtgatgttgc ctctgttgt
80161 tgtttaaat cgggtttgca
80221 ctgatgttgc attctatcgg
80281 ctccacgtt ttgacgttgc
80341 gcgctgttgc cgtatccctgt
80401 acccgctgg tgaatgtcga
80461 ctgcattctgg cgaccgggtt
80521 ttgttctaca aactggggga
80581 gggattgtcta tcccacacgg
80641 accattatcg agaaaattcc
gggtctcaat

gggtgtactgg caggctacga caccaaagcc gttctgcaac tggcagtcaa
80821 gtatgctgc ttatgccacg cgtcattaaa cctattatgg atggccta
80881 aaacatgcgc gtaaacgtct acaggccaaa tttggcgggc aggagttc
80941 gatccagcgc tactgctcggt tcataacctt gttgtctccg cgagcctgat
81001 ctgaccatcc tgattgcccgt cttagtagcc gggAACcagg tgctccgtt
81061 gccaccatcg gtttcttat tgcatggcg gttcggtac accaggc
81121 acgctgattt caggtgtcat tattatgggt atcaccc
81181 ggcctgcata cccaactggc tgccaatgcc ggagcgctaa
81241 tcgctggatc agggcggttc tcccatcacc tggctgctga
81301 aatatcgctg gcttcggcgt cattgcccatt ttcaacttt
81361 cgtcgccccc gacagtttg cggcgctgag aaagccacgg
81421 gcctcttaat tttaggggag caatcgctcc cctcaccc
81481 agtggttatt cacgctgagg gagacgtgcg cgttgaagaa
81541 agccgaggac gatgtgttgg tcaaagtctg tagctc
81601 gcgtatttc gcgcaggcg cccattatta ccattac
81661 ctacgttcaa tcctacggca caggcgtaac gatatgc
81721 tgcctccgtt cttcccttgtc ttactgtcc gcaatgc
81781 caaacagttt cagtttttag gatcgccag cgaaggcggt
81841 caaacggggcc aatctttcc gcttgcgtc tgatatgc
81901 cgaaccgatt accgtgggct tacacgc
81961 cgttaattatc gtcggggccg ggacaatttg
82021 gggcgccgca agcgtaacgg cgattgat
82081 gctcgccgca acgcataacct gtaatagccg
82141 gttgtccgac attcagttt atcaacttgt
82201 ctcgctggct atcgatata
82261 tcacgatctc accctgacga
82321 ctcgcccagt tggatgaact
82381 ggcctgttg gctaaaaac
82441 gggaaagctt
82501 acttcaactt
82561 atttagcggt
82621 atcaatatga
82681 agcgtgctgg
82741 gacctgcgtc
82801 cgggaaagtc
82861 ctcgcccagcg
82921 atgaccatca
82981 aaaagcaata
83041 aaagatctca
83101 ggcacgattt
83161 gatggcattt
83221 gtcatggcg
83281 cgcggctta
83341 atcagcaaaac
83401 aaaggagtcg
83461 ctatcaccgc
83521 gtatggcga
83581 catacttata
83641 tttcagcg
83701 cgtctcttq
83761 catcttctt
83821 ttttgtcag
83881 cttccaggct
83941 cttcaatggc
84001 aacaaaaacg
84061 ctggtagcg
84121 ggtcattaat
84181 gtttcgcgc
84241 gggcattaat
84301 ttaaatcaac
84361 taggagttag
84421 ttgtgtcg
84481 cagtaggt
84541 ggctgcgt
84601 gcagggttca
84661 tgatagcaag
84721 ccagcaggcc
84781 cgaacaatct
84841 ggccttgctg
84901 gcaggcg
84961 cggccaggaa
85021 ggcgcctcc
85081 ttttgtcag
85141 catgctgaaa
85201 aatqctqccq

85321 tttcgaagcc gcgaaaaacc tcggcaccca ggcgggtggaa atgcagcctg tcgcccgc
85381 tgacgcgccc gtcgaaccaa gcgtggagga gacgcaacca caaatgacca acggcgctcg
85441 cagtccgtcg caggcctcgg tgagagatct gactgatgac gtcccatccc agtctgctac
85501 gccagtcagc gcgccacaaa ctccccctgc gcagcctgct acagcaagcg cgccggcgga
85561 tccctccgct gaattaaaaa tctacgatac ctcttcccag ccgttggatc aggtgctcg
85621 tcaggttcag caagacggcg ccagtatcgt ggtcgggccc ctgttggaaa acaatgtgga
85681 agcgctgatg aaaagcaaca cgcgcctcaa cgtgctggcg ctcaaccagg cgaaaacggt
85741 acgttagcttc cctaataatct gctatttcgc gctctctcca gaagatgaag cccgtgacgc
85801 ggcgcattcat atttatgagc agggcaagca gtcgcccgtg ctgttggatcc cacgcagcgc
85861 gcttggcgat cgcgtggcga atgccttcac ccaggagtgg caaaaactgg gcccggcat
85921 cgtttacag caaaaattcg gctccgttagc egagctgaaa atggcgtaga acggcggcgc
85981 gggtatcgcg ttgacgggca gtccggcgcg cgcagcggt cctgacgcg cggcggttac
86041 cattggcggt ctgaccatcc ctgcgcgcg gaccgacgcg caaatcaccg gcccgggacg
86101 ctagacgcg aacggcaccc agagcggcgc gacgctgtat ggcttataca aaccgatgat
86161 cgcgcgtt aaggacactcc ggcctgact tccgtctgga gatggaaagg ttgcaataca
86221 catgtggca ggcggcaata gcccgttgc acgcccattgg aggggttga gatcaatggt
86281 ctattctctg ggcggatgt cgtcaaggc aggggttga acaggaagtt atcatggct
86341 ttcgcagatg cgtcaaggc aggggttga acaggaagtt taaacaggct
86401 cagccggat tgtgtgatta acaggaagtt gatcaatggt
86461 tggccggcc agctaacacg taaacaggct
86521 tggctggaaa gcaaaggact gcggttatac
86581 atcgatctga tcatgcgcga
86641 tccgggctt atggcggcgc
86701 catactgccc gcttgggct
86761 ttcgtgtgt tagccttcac
86881 cactcataat tgaagattt
86941 gaaagcattc aaactcaaatt
87001 gccatgacgc tggttcattc
87061 acgtccgcgg ccaacgcaca
87121 cgacccagtt taccggccat
87181 aacgatgcgc tgcacgatga
87241 gatgtttat tggcgatctc
87301 gcagccgtca cacgtgacat
87361 gcccggactat tagggccgca
87421 attcaggaaa tgcatatgct
87481 tttcctcacc aggatgatta
87541 atttctgcgt tgctattgca
87601 ggcaccaaag ccgcaaccga
87661 gaactcggtg tcagcagcgc
87721 aatgtcactg cttatcaggg
87781 tccgcacgcg cgaaacagat
87841 attcgccagg gtcagcctat
87901 aaagttcgtct cacagctact
87961 accgagaatg gcgaaatgtt
88021 gcagacatcg ccagccgggt
88081 aagtaaccgg tggccggggt
88141 catccggctt cgctaccccg
88201 ttcttgtgtc ggctccagcg
88261 cgatttccag tttcttggca
88321 ccgcgttgtt ctgtcgccga
88381 ttgcgcgatt aacgcctcct
88441 cgcgttgct cccattgcgc
88501 cagcgcggta tcaaccacca
88561 ttacgcggg gtcgtcccc
88621 taacgcgtcg gtaagtcgtcg
88681 gcgacgcgtt ggcggggcga
88741 atgtccgccc accagtccgg
88801 acagatttgt ccaccttgca
88861 agtacccatc attgtggaaa
88921 gagtaagaaa attggcggtt
88981 ggctgcagaa ttccgtcagg
89041 aacggtgaaa ggaaaaaaag
89101 tcgtccgcac gagttcgacg
89161 cggcgacago cgtttcggt
89221 tgccatttgc cacggccgc
89281 cacggcggtg aaaccgatta
89341 ggaagtgcgc gtcgataaag
89401 atttaaccgc gaggcgtac
89461 taccacccacc cagcgtttgt
89521 gcgcgtggcag caccctggcg
89581 tctcctgccc ctccagacgg
89641 ccgtttcggt ctgaccattg
89701 catggcggtt tttatcatcc
89761 aaaacgcatt ggccgaccac

94441 cgaccaccag gcacgcctgc attcggttga tttagcgatg gatgtgaagc aggaattgtt
94501 gggtagcgc attgtttgc cccggggcgc ttgccttacc gggcctacag catcaagtag
94561 gccggataag gtcaaccgc catccggcac aataacgtta ctggtacacc ggcagcaa
94621 taaagctcg aagaatatgg ataaccgcgt tgccgacacc gaagaccaga atcagggca
94681 tcatacggtt accgccccag acgcgaaatt ttgggctgcc gaaacgttcg cgagattgc
94741 gcgccaacag cgcaggcaca atggccgccc agatagtgc agctaaacct gcatagccaa
94801 tggcgtaacag aaaaccgtt gggtacagca ggcaccaat catcgccggc aggaaagtca
94861 gcagcgccgt tttaaaacgt cccattgccc agtcatcaaa accaaacaga tccgcccagat
94921 agtcaaacag ccccagcgtc acgccaagg aggaactggc gaccgcaaag ttagagaaca
94981 ccaccagcag cagatccagg ctgcggctgt tcagcacgcc gctcaacgcc tgtaccagca
95041 catcaatatt gccgccttc tgccaatgc cgataaattc cgacgtggg atgttgccca
95101 tcgtccccag cagccagacg gaatagagcg ccagccagg taacgtccca taaatcaggc
95161 atttcacgt ggtgcgcega ttttgcgtt aatatttcgt caggtcggt acgttaccgt
95221 gataaccaaa agagccaga caaatggca gcgtcatcg caggtacggc gtatatgacg
95281 cgtggcttc agccacgtt aacaacgtgg tcggctgaac gtgccttaac aggctgcca
95341 aggtcaggaa gaaagtaatc actttcgccg ccagcacaat cggctgtc cggctgaccg
95401 ctttcgtact cagccacacg acaaacgcca ccagcagcgc aaaggcaaaa cctgcccgtc
95461 gcgccggaac gttcagcgtc attcagccaa aggtatgtt cagaatttag cgcgtcccg
95521 agatataggc gtaagtcaagg atgttagagca caaaggcaat agagatgcca tttaccacgt
95581 tccagcctt ccccaacaga ttttggta tgggtcgaa actcgaacca atgcggtagt
95641 taaggtagc ttcaggatc atcagcccg agtgcagcat acaaaccag gtaaagacca
95701 gcgccgcat cgaccagaag aaccacgccc cgacatgac caccggcagg gagaacatcc
95761 ccgcccaat gatggtgcgg ccgataatca ccacgccc aagcagcga ggtgacggtt
95821 gggtgtgtt aagtgttgc attcagctt ctctccagtc atttatagt tgactatctc
95881 tcaatacggt gcactgtacc agtacacgag taaaaaagaa ataaaaaaag ccccgattgt
95941 gacgatcggtt gctgtatatt ttacttacg ctgtgaatgc gcaggtcagc gtgagttacg
96001 catcaccgc gaaacgacgg cgaccgttag agtcatcagc acgcggacca cggctttcac
96061 gacgttcgccc gctgaaggcga cgaccatcac cacgaccacc ttcacgacgt tcgcccgt
96121 aattacgacc gccttcacga cttcgccac tgaagctacg accaccgccc cgacgttcgc
96181 cgcccgctg cggAACCGCA tcacccaaca gctgcattt ctcggcggc ttcagaatgc
96241 gagtagcgcgt gaagtgtctgg agcaattcgc ccggcatacc ttccggcagg tcgatggtgg
96301 agtgagacgc gaacagctt atgttaccaa tgtaacggcgt gctaattgtcg cttcggttag
96361 cgatagcgcc cacgatatacg cgaacttcaa cgcgtc caccgttccatc tcaatcggt
96421 ataactcgcat atcgccaaacg tcacgacgtt caccacgcgg acgttctca cgatcgccac
96481 gcgggcccacg gtcattacg tcgcgcggac cacggtcgtc acggtcacgg aattcacgct
96541 taggacgcac cggcgcatcc ggcggcagaaa tcagcggacg ctcgcccgtc gccattttca
96601 gcagtgcggc ggcagcggtt tcgagatcca gcttttccacc ttccgcagac ggctggattt
96661 tcgcccagcag cgcacggtagt tgcattccatc cgctgcttcc cagttgtcgc tgaactttcg
96721 cggcgaattt ttccagacgg cgtttaccatc gcaatttctgc gttcggcagt tccacttctg
96781 gaatggtcag cttcatggt cgttcgtatgt tgccgcacg acgacgctcg cggttctcaa
96841 cgaacacgc gcgccgaccg ggcgcacccg cacgaccggg acgaccgata cggtaacgt
96901 aggactcgga gtccatcgga atatcgtagt tcaccaccag gctgatacg tcaacgtcca
96961 gaccacgtgc cgcaacatcg gtggcgatca ggtgtccag acgaccatct ttcaggcggt
97021 ccagagtctg ctcacgcgc gcttgcgttca tatcgccatt caacgcggc ctgttgcgt
97081 cgttacgttc cagcgcttct gctacttcca ggttgcgtt tttgtacgt acgaagataa
97141 tcgcccgcattc aaagtcttcc gtttccaggaa aacgcaccag tgctcgttt ttacgcatac
97201 cccagacagt ccagtagctc tggctgtatgt caggacgggt agtacgcgt gactgaatgc
97261 gcacttctg cggcttcttc ataaagcggc ggttaatgcg acgaatcgct tccggcatgg
97321 tggcggagaa cagacgggtt tgatgaccct ccggatctg cgcacataata gttcaacgt
97381 cttcgatgaa gccccatacg agcatttctg cgggttccatc cagcaccaga ccactcagtt
97441 tagagaggc gagggtgcgg cgttttaagt gatcaacgcg acgtcccggc gtaccgacaa
97501 cgatctgcgg cccctgacgc agggcgcgtt actgcacgtc ataacgcgt tccgcgtaca
97561 gggcaaccac gtttacgcgg cgcattgtttt tagagaattt cgtcatggct tcggcaaccc
97621 gtaccgcggc ttcgcgggtt ggcgcggcaca ccagaatctg aggtgccttc agctcaggat
97681 caagatgtt gaggcgggtt aaagagaacg ctgcgtttttt ggcgttaccg gtctggcca
97741 tgcccagcac gtcgcgaccg cccagcagat gccaatgtca ctctgcctgg attggagatg
97801 gttttcgtt acccagatcg gtaagggtttt caaggatagg agccttcagc cccagatctg
97861 caaaaatgtt ttcqattca gccatgttagt acgtgtgcct caaaaattaat ggcggccagt
97921 ctacataact catcatgaaa ttgatctgca attttcattt aaaaatgtga accggctcaa
97981 agtaggtgtt ttaacgaaaca acaacgcctt caccgcgaa ggtgatggca atcaaaaaaga
98041 ttacgggctg atatgttctg cagctattgc tggccgatt ctgcgcggc atcttggtcc
98101 tggcccagga gcgataattc caacaatgcg ttcgggtctt caacaaatgtt atgaacgttg
98161 ttggccaccg ccagtttggaa cagagccgtt ggcgtgttcca aatccccccag acttaggtaa
98221 tacttaccta aatagaagtt gtttactg agatgctcag cgagcgaggt gttatccgtt
98281 gcgtccgcct tgaggcttcc catcagcgtt gcttcgttcaa tgccgtttccatc
98341 acaatgttcc atccccattt ctcttgcattt gattttgcg agcgtgttt taacgttct
98401 ttgcgttgcgt tctcattaaag ctctgtctca acaagataca gccacaggct
98461 tcattgggtt cgtctgtata aacgcggcgc agatcatctt ggcgtactt
98521 cctgataaca atgcgatacc gccgtttaag tgccgtatgt tgtaagtgg
98581 agtacagaat caaaacgttcc ataggcagca tcaaaaatgc ctgcgtcg
98641 cctaagtaat tgaatacttc aggcataatcc ggtctgatgg cccagcgctt
98701 tttcgcgcta atgccttcaa accaagacta tcatacaaca ctccgcgtc
98761 tgtgcgcgtt cgtcatcggt taaagcccgaa ctggcaagaa tctgttccat
98821 atcaacttcc tgcgttaagt cggttgcattt ggtactgcga ggacttact
98881 gcgaaattac tgcatccgtc aagcgtaagt gctgtcgcaa cggaaacacca
98881 gcgaaattac tgcatccgtc aagcgtaagt gctgtcgcaa cggaaacacca

99001 aacaaggcgt ccagccaggt ctaaagcccc ccgcactgcg gaggggcaaaa ggctaccc
99061 ctcggcctgt tcgctcgccg gagttccgg cgcaagccga ggtttagact gctcggttgc
99121 ttctttaatg ctcagacgta cacggccctg gcgtaact tccagaacct taaccggac
99181 ttccctgaccc atctgcagat aatcggtcac ttctctaca cgcttatccg cgatttgaga
99241 gatgtgaacc agaccttctt taccgccccc gatggcaaca aacgcgcca agtcaacgat
99301 acgggtcact ttactattgt agatacggcc gacttcgatc tctcggtga tctcttcgat
99361 acgacggata gcgtatttcg cttttcacc gtccgtcgcc gcatgttca gcatcttcgat
99421 atcttcaatt tcgatggtgg tccggtctc ttcaagtccg gtcggatca cagtaccgtc
99481 tttaccgatc acgtcttga tcttgcgg gctgatcttg gtcggatca cagaaccqcc
99541 aaattcagag atatcgccgc gcccgcgtt gatcgctgt aacgcgcca agtcaacgat
99601 cagacgcgca ctttagct gttcaacgc aacctgcata tctcggtga tctcttcgat
99661 aattttgata tccatctgca ggcagagat accgtcgccg gaaccgcga cttgaagtc
99721 catatcgccc aggtgatctt cgtgcccag aatgtcagac agtacaacgt atggatgg
99781 ttctttcacc agaccatag cgatacctgc tacggcggt ttaattggca agtgcgccc
99841 catcagcgcc agagaagcgc cgacacacga aacccatagaa gaagaaccgt tggtac
99901 gatttcagac accacgcgaa cggtgtacgg gaaatttatcc atgtccggca tcactgc
99961 cacgcccgcg ttcgcccagac gaccgtgacc aatttcacga cgcttcggag aaccgaccat
00021 gccggtttcg cttacggagt acggagggaa gtttagtgg aacaggaagc tgca
00081 ctcgcccattc agttcatcaa gacactgcgc gtcacgggca
00141 cagcgcctgc gtttaccac ggttaaacag agccgaacc
00201 agtgcgcacg tccagaccac gatcatgtc ttttacgg
00261 tgccagtagc cggctacgt ccaacgttcc tctcgatgg
00321 gttagcatcc agagttcat ctctgcata
00381 gtcacactga gcatagcgct ctgtttatc
00441 ttcagccagc gtagcaacac ggcgttcaa
00501 ccaacgcggt ttaccggctt cttcaccag
00561 ctgctcgta cgaataccat cgcgttgc
00621 ggattccacc atcagcacag
00681 tttcagctcg tcctgggtcg
00741 cgcggcatt gggccgttga
00801 catcgccacg atatccgggt
00861 cacttcgtt acaa
00921 gatcagggtt
00981 accagcagcg taggtacgt
01041 cttggcttt ttctggcga
01101 aacagcggca gtggcctgac
01161 gtactggaat tcacgaacga
01221 cacaatacgc ggcgtcgta
01281 ctaaccctga tatggtaaa
01341 ttcatagcaa caatacatta
01401 catgaaggcc cccctttct
01461 tcagcgcgtt gtagctgca
01521 gagaaaccat acgcagcaga
01581 gaccctgcgat gtggtaatc
01641 tgcgtttgc gtcacgacc
01701 acattttaaa actccaaat
01761 ccagtgtacg cgcgttaac
01821 tcgcagcgct ctcttatcgc
01881 gacgaggcgc gacacggcc
01941 cacctccgt cacacgaacc
02001 cattttgaa gtataccgaa
02061 gactatccat tggcatcaat
02121 cgcctgtgc taccagcgta
02181 tgctgaccgt cagacgacgc
02241 aatcatcaat aatagtgcga
02301 cgttacccat atggcgaata
02361 gcacttcgat accctggcg
02421 aatacatcga gggaatctgt
02481 gtcagcgct gaaagtccacc
02541 ctgtgcgtt ccccgagacgg
02601 gcgaaaattt tgcgtctcg
02661 ggcgcgcgt atggccggcg
02721 cattgtcgga cattaccctgc
02781 gacgacgagg acgactcatc
02841 gtcatgttc accacgttag
02901 atcgtagaaag aaggttagt
02961 gcgatgaaaa ctagacgctt
03021 ctgatcggtt aggaacgtca
03081 acccgatatacg gtggcatca
03141 cgcgttctt ttctgcata
03201 aataaattct ctagataaaa
03261 cgggtggcgc ttcgcttacc
03321 acaaggcggc aagctcgtaa
03381 agcgcagcca acgcgcgtgc
03441 tctcgataat ctcqaacact

103561 gggattccag ctcgccttca tagataacca cgttgcgcg cagtacgcgg attggattat
103621 ggcgttaat tgtaccttcg gtaaccatac agcccgcgat cgccgcgaat ttcggcgatt
103681 tgaacacatc gcgcacttca gccagaccga tgatctgctg ttcagttcc ggagacagca
103741 tgcgcgtcat cgccgcttcc acttcgtcga tcaagttata gatgacggag tagtaacgc
103801 gatccagact ttccgattca atcaacttac gcgcagaagc atcagcacga acgttgaagc
103861 ccaccagaat cgcttgac gccgcagcca gggtcgcgtc gtttcgggt ataccaccta
103921 cgccagaacc gatgatcttc actttcaactt cgtcggtaga cagttcagc aaggagtccg
103981 agatcgcttc cacggaaccc tgtacgtcag ctttcagcac gatgttcaact tcgtgaactt
104041 cgccttcggt catgtgacg aacatgttct cgagtttaga tttctgtca cgagccagtt
104101 taacttcacg gaatttaccc tgacgataca gagcaacttc acgcgttcc ttctcgctgc
104161 gaaccacggt cacttcgtca cccgcagccg gaacgcggg caggccgagg attccaccg
104221 gaatggacgg acccgcttcc agcaacttct gaccaggatc gtacgcata gcaacgcacgc
104281 ggcgttattc gaagccacac agcagatata cgccttatg cagctttaga ttcgttccgc
104341 gaacggtagc caccggacca acgaaccgtt ttcagttcca gaacttcggc ctgcagcagg
104401 ccatacctt acgaaccgtt gataccgggt cccgcttcc acagttcgaa ctcacacacg
104461 gcagtcgtc gataccgggtt cccgcttcc acagttcgaa ctcacacacg tccggatccg
104521 cccactcttc cggcagaatg cccgtactggg acagttcgaa ctcacacacg tccggatccg
104581 cttccggctt atcgattttg ttcaccccaa ccacgaccgg cacacctgcc gcttcggct
104641 gctggatagc ttcgatagtc tgccgtcatca ccacgagcac tgctgcaaca atagcgtcaa
104701 cgatatccgt tgccgtgagca ccacgagcac qcatggaggt aaacgcggcq ctctcgccgc
104761 tgtccaggaa ggtgatcatc ccgttgcag tttcaacgtg gtaaggaccg atgtgtggg
104821 taatgccacc cgcttcgcca gaggccactt tcgtggaaacg aatgttagtcc agcagagagg
104881 ttttaccgtg gtcaacgtgg cccatgatgg tcacaaccgg tgccgcggc tcagccgcag
104941 cgcgggtatc acggtcgtcc attaccgctt cttccagttt gtttacacg cgcaggataa
105001 ctttgtggcc catctttcg gcaaccagct gtgcggttt cttgtcgatg acctgggtga
105061 tggtgccat ggcgcccgac ttcatcatcg cttgtatgac ctgagaaccttccaccgcca
105121 tcttgttcgc cagttcgccg acggtgatgg tttcaccgat caccacgtca cggtaacgg
105181 cctgagcggg cttcttggaa ccttgcgtgt aagaagaccc ttacgcgttccggct
105241 cgcggcgaac cgcagcacgc gcttgcgtc gatcggtttt ggattcggtca ttttgcgtt
105301 ttttcggccg acgcggccgtt tttgcattac ggccacgacc acgaccaccc tctacttcac
105361 gategttttgc gtcttcggcc tggcgcgtt gctgagaagt ggtgacatgaa tagtcaacttgg
105421 tgttcttac tggctcaggc gttgcgggtt attgttttgc ttccgcgtt cggcggagctt
105481 ctttcgtctac acgacgcgtt cttcttcgtca gttgcgacg tgcttcttcc
105541 gcttcagctc tgcaacgttca ttctcacggc gggcttttgc ggcctggcg gtttggtca
105601 tatcgtcagt ctgttgcattt ctcactttgt ttttgcgttccgc agcttcacgttcc
105661 cagcggcttc acgcttagct ttttgcgttccgc agctttttgt tgccctcgcc
105721 gtttggcctg ttcttcgtcc tcacgacggg cttgcgttccgc agcttcacgc tgccctcg
105781 cttccgcggc caggcggtca gcctcttgcg gatcggtttt cacaagggtg cgcttcgt
105841 ggacttcgat ttgttacccgtt ttacttttgc caccgggtacc aggaatattc agggtgctgc
105901 gcgttttacg ctgcagcgtc aatttacccgtt ggcacaaaac cgcttcgcgg ttcagggtcg
105961 ccagtaaaagt ctgtttttct ttttgcggaca cagagtgcgtc agcagatttc cggataacctg
106021 catcagcaaa ctgtgttacc ctgttccttcc aggcgtatcca cggaaacactg tctcttcgt
106081 ttagggttaa atctgtcatg gccataatca atgccttgc gtcgtacacttgc
106141 accagcaaat attacgggca cagatcatca atgccttgc gtcgtacacttgc
106201 cgatatcagc cagatcatca atgccttgc gtcgtacacttgc
106261 gagccggccag tttgaaagcc atacccgttcc ttttgcgttcc
106321 ccggtttgcg atacccgttcc ttttgcgttcc
106381 tagcacgctc ggcgtacgtct tcaacgggtc
106441 ctttcattgg cacataggcc agttcttcgt
106501 tcgcgaactc ttcatataa tcaagatatt
106561 cagcctgatg tttagcctgc
106621 attgcgaagc caagtggacg
106681 cttcaacggc gatattccatg
106741 cggcgccat cgcatataatg
106801 tacgctcacc gcccagggtc
106861 aagcggcgac cggatcgata
106921 ccggatcgcg agccggccgt
106981 tgcggaaacag ctgcgtacgc
107041 gcgcgtccgg gcgaaacagca
107101 cgcgcggcag catatctca
107161 atttaatttc caaagagata
107221 cgccttcctg gtcgcggaaac
107281 gcacgataac ctgtttcgca
107341 gatcttcaac atagtcggcg
107401 taatttcctt cgtcggtcatg
107461 aatcaccgtc ttacgatcg
107521 ttgttgcgtt cgccacgc
107581 ttccgttggc gacggcttca
107641 ctcatccaga ctgttaaaag
107701 acacttcatc ttgcgttcc
107761 tgcctcgcca ctgcgtacgg
107821 cctggaaacg cgcatataatg
107881 cttcaagggtt gtaagccacg
107941 ggctcacatc agcacaatca
108001 gtgtggatgt gcgaccgcga
ataaaattcga

112681 ccctgcatgt gcataagact gaccggcaag ccgggttccg ctggcgcttc caacgcgccg
112741 gtttcggaga gtgaacggac atcattgata atatgcgcgc cccgccttgc cgcttcacgg
112801 atcacctcggt gtttagaggt atccacagaa atccacactt caaaaacgttg cgcgattgtct
112861 tccagtaccg gaataacgcg atccagctct tcttccacgc tcacttctgc cgcgccttgt
112921 cgcgttggatt cccccccac atcaataatt gtcgccccgg tattcaccat taaattcgca
112981 tggttcacccg cctcaatcag cgtgttatgc gcgcccccgt cggagaacga atccggcggt
113041 acgttcagga tccccataac atgcggatga gtgagatcga gcgtggcgcc ctgagcgaag
113101 agtttcatgg tcaaaatccc tggtttattt atggtgagtt aaaaaaagaa aaaccccggg
113161 gcaaggccca gggttcggg gaggcgtaaa cataatgttg taaaacaat gtttatttgt
113221 cggccagctg ctctgacatc gtgtgcccgg gtttcggcgt gcgtgggtca tcaaccggac
113281 gcccgcctg aggcttacca ttgctgtcag agttattgtt gccgttggga tcttcccagc
113341 ccccaggccg accgacttca cgacgcgcca tcagggtcattc gatctcgcc gcatcgatgg
113401 tttcatattt catcagcgca tcttcatcg cgtgcagaat atccatattt tcagtcagg
113461 tctgacgagc gcgattgttag ttacgttcaa tcagcgtt cacttcctgg tcgatgatac
113521 ggcgcgttcc atcagacata tggttcgtc ttgcgacgct acggccgagg aacacttcgc
113581 cctcttcttc cgctacagc aacggaccga gtttccga gtttccga aatctcgcc
113641 tggtacgcgc cagttagtc gcgactttaa tgcgttgcga gaaagcccccac tgggtgacca
113701 caacgcgtt gataatctct tccgcgcagac ggccggcgtt gaaacatgtct
113761 ccagcttctg acggctggcg ctgatcggtt cgccttcagg cagaagaag gtcacgcaca
113821 ggcgcacgacc acggggata atcgtaactt tggtcaccgg atcggttcc
113881 gaccgataat cgcgtggccc gtttcgtgtt acgcgggtcga ctcttcttc gcttccgtca
113941 tcaccatgga ggcacgttc ggcgccttca tgatttgtc tttcgcttca
114001 ccatcgacac tacgcgtt gtcgcgtt cggcaaacag ttcgcgtt
114061 tcgcccaggc cgcacccgg aagccggcg taccgcgcgc atcgatcgcc
114121 ccgtcgctaa cggtacgca cgcatatgc cttcagaat ctgctcagca
114181 cccggcaggcc taccaccacc tgacggtaaa aacggccagg
114241 ggcacgtccgg acggttagtt gcggcgataa cgcgcac
114301 ccatctcaac cagcatctgg ttcaacgtt cgcacgtt
114361 cagcgcacg ctggcgacct acggcggtca tttcatcgat
114421 ctttcttggc ttgttgcgaa atgtcgcgc
114481 ccacaaggc agaaccggaa atcgtaaaga atgcac
114541 ttgcgcaggc ggttttaccc gtaccggcg
114601 taccgcggcc cttctggaaa cggctcggtt
114661 cttctttcgc ttctgcacaa cccgcaacgt
114721 tcagcatacg cgccttgc
114781 tctgacgcac gaaagagatc
114841 agatagaagc cagcaggctt
114901 tcagcagggtt atcaagcagc
114961 tatctttctt ggttaacgttg
115021 gattgaccc ttcgcaggaa
115081 caaagctctg gaatactgac
115141 tcgcccatttc actcaaggga
115201 tactctatat ccagtttctt
115261 cccgtcgcta caatgtacac
115321 ttaaccttcg taaacaggga
115381 aacacccatca ctacaaaact
115441 agctccacca gatacatggc
115501 gccatattcc acatgacaaac
115561 atgacaaggat catcagcaaa
115621 ggtaaaagat cacaaggat
115681 gaccaccctc ctggcgac
115741 tcactttgtc gtatttcattc
115801 gcctgttggaa catatttac
115861 cgcttttac ctgtcattta
115921 atttctacac gccttattgg
115981 cccaacgtaa gcaaaaataat
116041 gtcggcaca tccgtcaag
116101 tactggccga gattgaacaa
116161 cggaaagatcg cggaaacaaaa
116221 gtaacgtaca ggtcatcggt
116281 tctcgctgcc gcgttaaggaa
116341 tttccacga gcaggagagc
116401 ggcttttcc cttctttac
116461 attcactt aagcacttcg
116521 catcctgctc tttgcataatc
116581 gcttaaaatc cgctctatca
116641 ggttcagcac cgtgacggta
116701 cgtcaatcac ctgcgcattc
116761 aaccctgctg ttccgtgc
116821 gcgcgttgc gatacgccgg
116881 ctgcgcgcag ttttcggct
116941 ctgaacatt cctgttaggg
117001 atgcataacc aggtcagaa
117061 tacaatttcc tctttgataa
117121 ttttagggcgt tgccgcgtag

117241 atattgacga atacatcaaa cagcttccgg ccggcgccaa cctcgcgtcg atggtgc当地
117301 agattggcgc gcccgcgcg gctattgatt atcatagtca gcagatggcg cttccgc当地
117361 gtacccaaaa ggtgattacc gcgctggcgg cgctgattca actcggcccc gatttc当地
117421 ttacgaccac gctggagact aaaggcaacg tcgataacgg catcctgaaa ggtgacttaa
117481 ttgcgcgatt cggtgccat ccaacgctaa gacgtcagga tattcgcaat atggtc当地
117541 cgctgaaaaaa gtcaggcgtc acgcaaatcg acggcaatgt gtttatcgac acgtcg当地
117601 tcgccagcca cgataaagcg ccaggctggc cgttgaacga cctgacgcag tggtc当地
117661 cgctcccgcc cgccgcccatt gttgaccgca actgttttc tgtgtcgct tatagc当地
117721 aaaaacccaaa cgatttagct tttattcgcg tggcctcta ttatccgta acgatgt当地
117781 gccaggtacg gactctgccc cgcggtcgg cagacgc当地
117841 tgccctggcga tttgaaccgt tatacgctt ccggctgttt gattgc当地
117901 tgccgctggc cttgtctatt caggacggcg ccagctacgc gggcgcgatc ctc当地
117961 aactgaaaaga ggccgggata acttacccgcg gcacgctgct ggc当地
118021 agcccgaaac gatcgccgca agtaaacatg cggccgact gacgatctg ctaagatta
118081 tgctgaaaaaa gtcagacaac atgatcgccg atactgttt cggatgatt ggtcatgt当地
118141 ggttaacgt gcctggcacc tggcgggccc gatcgatgc ttgc当地
118201 aacaggcgccg aattgatatac ggc当地
118261 ataacctgat cgctcccgcc acgatgatgc aggtgctgca atatatcgcc caacacgata
118321 acgagctgaa ctttatctct atgctgccc tggcgggcta gtaagggttcc ggc当地
118381 ggc当地
118441 agggcgtgta caacctggcg ggcttattt ccaccgcaag ctgccgatca gctactgc当地
118501 tacagtattt gtccggctac cgc当地
118561 tggtagctt cgagagtc当地
118621 gccggatggc ggc当地
118681 caaatgcggc ccgttggctt ttgttaggccc gataaggc当地
118741 ttaacgtttt tagatgaact cgc当地
118801 gtc当地
118861 gaactcgact tttccggct gtttgc当地
118921 aaaggtcatc acatcccagc agagatctt caccctagc tgc当地
118981 atagtatttc cttcccagc ccaacgc当地
119041 ggatttatcc atcagatcgatc tcttgc当地
119101 ctggctgtat tttccagtt cggcaataat gatacgggccc gatcggaacc
119161 atcgatcgga tgc当地
119221 gaagcgaatc cccaggccccg tggccatagc tggccatccg atcaacc
119281 caccacaaaaa ctctttcgc tgc当地
119341 aaacggatag tccgc当地
119401 accggcattt ggc当地
119461 gtc当地
119521 ttaaaaacgg gtattgc当地
119581 gtgttggc atgtgc当地
119641 cggactttt atggtaacgt acgattttcc tttcttgc当地
119701 ctgaccacgt tcagc当地
119761 ttcatcggt tccatccaga ggc当地
119821 tttcgggata tattttcgc gaccaactt ttttgc当地
119881 gaccagaatc gatgc当地
119941 gc当地
120001 ggc当地
120061 catcggtctg gcaagaaaat ttttgc当地
120121 aaatagcggt gtaagcgtga ttttgc当地
120181 ttccgcccagg ggc当地
120241 ctgc当地
120301 acataaagtg tacagtaaaa cttaccatcg attagccg
120361 ttgc当地
120421 ggttagtgc gtc当地
120481 cccgctcaat aacatcagcg cttaccatcg attagccg
120541 aaagacgctg gcgaccatca ttttgc当地
120601 tggcttaaa tattgcaggg acaggatctg ttttgc当地
120661 cgctatcgcc aataaacacca cccacaccat gatc当地
120721 tcttttact gccagtatcg ttttgc当地
120781 aatgggtgaa ggctccatca cttaccatcg attagccg
120841 gcacatcgcc gtagtgagcg ttttgc当地
120901 ttccctgcaa agaccgtt acggcattca cacagccaca
120961 atcgaatgta aaaagccccg caacagggtgc ggggcttca
121021 aacttactca gcaacgatgc tgatgttattt
121081 cactttaccg tctgctttag
121141 agcgtggaaat ttagtaccac
121201 gccaaagcgtt ttatcgccca
121261 gccaggctt ttatgtgc当地
121321 ttttccatc agtgaaccac
121381 gaaacttaac gatgtttaact
121441 cggcccatc aacgaaagga
121501 cttcagcgaa ctcgatagtt
121561 gaccttcgct tactcggtgt
121621 cgc当地
121681 cgaatattac gcaaattgca cggcttgc当地

121801 ttcttaaccat aaaccctacg ttacacctatt cagacatggg ataatcgagg cgataagccc
121861 ggctttgcg atgaatttag aaaaaatcaa cgagtttaacc ggcgaagata tggcgggtgt
121921 caatgcaca atccttgaac agcttaattc cgacgttcaa ctgattaatc agctaggata
121981 ttacattatt agcggccgcg tatcagggta acgcgcacgt gactatcgcc attgccgttc ttgccgcgc
122041 tgcgtgggt ctgtacatg atgatgtggt gatgaaatct gatatgcgtc gcggcaaaagc
122101 cacgcgcacg gccgcttcg gtaatgccgc cagcgtttt gtcggcgact ttatctatac
122161 gacgcaaat ccgcgccttc cagatgatga ccagcctcgg ctcgttaaaa gtgctggaa tgatgtcgga
122221 agcgtcaat gtgattgcag aaggcgaagt gctgcaattt atgaacgtga atgacccgga
122281 cattaccgaa gaaaattaca tgccgggtat ttacagtaaa acggcccg tcgtcaagc
122341 cgccgcagg tgctccggta ttcttgcggg ttgtacgcct gagcaagaga aagggttgca
122401 ggactatggc cgctacattt gtaggcgttt ccagcttattt gacgatctgc tggattacag
122521 tgccgacggc gagcatctcg gtaaaaatgt ggggtatgac ctaatgagg gcaaacc tac
122581 cttaccgtt cttcacgcca caaggtatg gccgtcatct tctggaaaccg gtctggaa tgatccgtac
122641 cgctattgaa ctggatggaa atattggccg ataccccatg tccatgcgtc cgtgaccac
122701 ctggggctcg cgcgttgcag atattggccg gatgccccatc ttgcctgtct ttctgtat tcatatacg
122761 cgcgttgcag cgcgttgcag aataactcc agatacccta ttgcctgtct ttctgtat tcatatacg
122821 attaagttct cttcccttgg catattctga atattggccgc cacttacatg aacttttag aacattcctt
122941 cacgaagcg tatagtatcg aacgtcgctg gttgttaaa accgtaaatg attaatctaa
123001 gggatgtgg atgtatggaa agcaagctt ttgactggca tccggccat atcattgccc
123061 gactacgtaa aaaaggact tcaatggccg ctgagtcacg ccgaaatgga ttgagttcat
123121 ccacgctggc caatgcatta acgcgcccgt gcccggaaagg agagttgatt atcgcgaaag
123181 cattgggaac ggaaccctgg gttatttggc catcgcttac tCACGATCCG CGCACGCATG
123301 agtttatcga cagaacgcgg cttatgagag cgcgttaataa agacaaacag aatgttagat
123361 aagtgcctgt aaaacaaccc ccgcaatcgc gttcgcggg gtattcagc gtacagaagg
123421 ttatcgcct ttcacgcgtt caatattcgc gcttagcgcg cgcagtttgc ttcgcgtac
123481 ctcataaccg cgatcgatgt gataaatgcg atccacaatc gtcgtgcctt ccgcaatacaca
123541 gcccgcgcg accaggctcg cagatgcggc cagatctgtc gcatgacact ggggcgcaga
123601 gagcgtttct acgccatggc atatgacggc attcgtttca attccgcac ggcgcgcac
123661 gcggctgagt tcaggcacgt gcataaaaacg gtttcaag acgggttcag tgataaagcc
123721 cgtcccttcc cccacaggat gtcgcaactt ctcgtatccg tgcataatcg tcgggaatgc
123781 cgggtgcggc aatccagtcg tcgcccactt cttcggtcgt ttccgtgca tgcgtccagact
123841 123901 gtccagagt gtcgttgcg gttacaggca cgcgttccg gaggatttg ccgcgagaga
123961 caccaggaaa gtcggcggtt cgatacagatc cggcagcaca cgataaacgc cgccgcggca
124021 acgctctacg ccctcgatcg taatacagatc ggtgccttc gtaatatgt aatcaaccgg
124081 cgtaacttagg aagttagcgg tgcgacaaat ttccggctcg ccgcgcgtt ttcaatgtat
124141 ggtcgccct tccgcgcgcg tagcggcgca cataatggtg acggtcgccg cgacgctgac
124201 cttatccatc acgatatgcg ccccttaag acgtccttc acggaggcct ttacgtagcc
124261 ctcttctacg ttgatggtcg caccctaggat tccagaccg gtaatatgt aatcaaccgg
124321 acgcgcgcgg atagtacagc cccccggcag tcgaggcgcc agagacttgt ccgtgaccaa
124381 cagcggcccc agcgcccata acctggctgg cgtcaatgtc catggtcttta accagatcat
124441 gaacacgttc aggagcttca tcgacgtatc taccgatcca ttgcgttcca agtttggaa
124501 taatggctc ctctaccggc tcttctgcgc gcagagcgcc gacaggatc cgcgcgcgg
124561 gccggaaatt gtgacttcgc cctggagcgt cttggcccc tgcgttccaa attatccat
124621 tattttatc tcagtttaagc attcatctcc gctaccggca gtttacccgt agctaaat
124681 ccgttaagtg ctcgtatccg cggccatcc gccccggat atgtttgtat cgatacggca
124741 tggatacggt tgcgttgcattt catctcgccc acggccataaa agaccgttgc
124801 acccggtca tgcgttgcattt acggccataaa acggcaataaa cctgaaatgt
124861 ccggagacgt ggcattcctg gggggagagg gcatatca cgcacactctg aatttcatga
124921 tttccatgg gttcttattt cgtcaatatacg taaaacacgc ccaacatctt agagcaaag
124981 cgcggcgtct taaataagca aaagattacg ctgataaaatc agcgcggtaa aatgtccgg
125041 tgggtgtgt aacgcaattt atccggctt cggggatcat gcaaggatcat ggcggataa
125101 accatccggc attcattaca tacggggaaatc tacgtcttca ggcaggatcat
125161 cagcgcgtaa accttgcgt taacgcacacg gcatgttcc gatgtccact
125221 ctgggtcaca aggtgcgcac cattcatcgc cggccagcac cagagtgtcc
125281 caggcgata cgggttaacgc tccagcttc acgttgcgtt ctcgtccaaat
125341 cacgtcctga ttggcggtc attactgtt ctcgtccaaat
125401 ttggcggtc ggcgtcgat ggcgtttaga cgcagcagat
125461 ggcgtcgat tgctgacgcc ttccgcataatc atgtcatacg
125521 tgggtgtca ggcgtcgat ttccgcataatc
125581 gtgggtatca ggcgtcgat ttccgcataatc
125641 gtgttttgc ggcactggaa atccaggcgt
125701 gttacacggc taggcacaat ggtgcgtatcg
125761 gtcgtggccgt ggtacatcgc cagcgcctga
125821 gtcgtggccgt aggcttcacg ctgcgcgggg
125881 agcgcgcggc catattttac ctgcacgtac
125941 aggttaatccg gattggcacg aattttcgcc
126001 tgcggccgcg cgttcatcag ttataaagga
126061 aatggcgcaa tgaccagcg ggccacacatc
126121 tgagattatt tcgttgcgc cgcggcggtt
126181 ggcgcacatcg cagaattctt attgtcgctg
126241 atatcttcca gcaccattgc agacttggtg
126241

126361 agccccggaag tacgaatact caacgagctg gtatcggaa tatggttata acgctttcg
126421 atgtcgagcg ttacgcgcgg caggtatgtt ttcggatcaa gcgagatatc ttcaaccgc
126481 ccgacaacca ccccggcgat gcgtaccggg gaacgcactt tcagaccgcc gatgttatcg
126541 aaggctcgcat aaaccttata ggtcggtcc gtgcgcatacg aggtcacatt tgccgccttc
126601 aggcaaacaa acagcgccgc cagcaacgct accagaaaaaa aaacgcctac ccaaatttca
126661 tttttttcgt tttgcataaa ctcaattccc aaacatcagt gggtcagca caaaatccag
126721 ccccagaacg gccaacgatg cgtgaaccac ggtacgcgtc gttgcccggc taatcccggc
126781 agaagtcggt attgcgtcat aaccgttcaa aacgcataatc catgttacccg taatggcgaa
126841 caccacgctc tttatcagac agttcaccag gtcgcatacg cttccagctt cattctgc
126901 cgccgaccag aagaaccggc cgtcgattcc cttccagctt acgcccacca gcgagccg
126961 ccagataccg accggccacaa agataatggt cagtagccgc aatgaaatca cgcccgcccc
127021 aaagcgccgc gaaatcaccg ggcgcataatgg atcgaccggc atcatctcca tactggagag
127081 ctgctccgtc gcccgcataa ggccgatattc cgccgtcaac gccgaccggc cccgccccggc
127141 aaacagcaac gccgcgacca cccggcccccag ctcgcgcacg agcggaaagcg ccactaacat
127201 gccaagactg gtctccgcgc tgtaagtggt cagaaccaga tagccttgca gcccagcac
127261 cataccgatg aatacgcggc agacaataat gataagcatc gacaagacgc ccacattata
127321 aagctggcgc accagcagcg ggcgcataatgg gcgaaactcc ggcttaccga taatcgcat
127381 gaataaacatt aaccggcgc gcccgaacgt cctgacgggtt ttgatcccg ttgttccgag
127441 tgctgccagc gcatttaaca gcatgagttt ctaactccc tggatcgatc aaatcaaggt
127501 gatagtcgcc cgccggatag cggaaacggaa cggcccccgtc ggcataaccg tcaaggaact
127561 gacgcacgcf cggtccgtaa ttctcctgca acgcctgagc gctaccgtga gcgacgatt
127621 tttgtccgc catgatccag gcgatgttcc caataactgag cacctctggc acatcatgc
127681 agaccaccac gcaggtcacf cccagcgcgc tttcaattt tgaatcagc ttcaccagaa
127741 cgcccatggt aatcggtcc tggcaacaaa acggctcatc gAACATGAT agatccggtt
127801 ccagagcgat ggcgcgcgc aacgcggcgc ggcgcgcatt cccaccggag agctcggaag
127861 gcatcagttt tgccgcgcgc cgcagccgaa ttgtgtgtctt tttcatcattt acgcacgctt
127921 ttagcagccgg cgccggtaaa cggccgcgcgc gaaacagcat ataggccaca ttgtcaaaaca
127981 cgttcatgtc gtaaacacgc gctcccgact atccatcgcc actcatacgt ttacggacgg
128041 tgttagagccg cgaacgggac gatctgtccg ccaatcaggc gcaacagcgt atcaaataag
128101 tatccggcgg gatctgtccg cgcgtatcgg ttcccggcgc gCACCGTCAG ggttttaccc
128161 gccccatgtat cggccgtatc acggcaaaag ctgacgtcgc gcatatcgac gaaatattt
128221 agcgttcggc ccattgtattt ttgccttgcg taaatttggc tggcgttgc gcaactgtac
128281 ccattgtattt aattacagaa gcataaaatgc aaaatttagga cttcgatcgg gtttagcgt
128341 gtttcgacat gtttttagcc ggtataacctt gagaagaaagga ctttagatgc ttttagcgt
128401 ggggaccggc tgcttctggt tgcttctaccc ggcgtacggc ggcgtatcgtt ggcctctatt
128461 ataattgggtt cattcggtat tcccccgctg cggccgttgc atcatcgga tgacggtcgt
128521 ttatgccgtt cggaaattat tggcgatgtt ttctaacatc ggcgtatcgtc tacacggtca
128581 ttatgccgtt cggaaattat tggcgatgtt ttctaacatc ggcgtatcgtc tacacggtca
128641 acctcgctgc cggccgttgc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc gctcgattt
128701 gccgtcgccg cggccgttgc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc gctcgattt
128761 gcgctgggtc gtccattttac cgtgcattcc gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
128821 ttatttggta cggccgttgc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
128881 ggtatcttc cggccgttgc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
128941 ctggccgaac cggccgttgc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129001 gaagacgggc gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129061 gcgacgcgc gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129121 ttaacgctcg gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129181 attggccggc gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129241 atttttaatc cggccgttgc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129301 cggctggcgt gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129361 ctttgcgtgc gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129421 tttatcgat gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129481 acggattatg tgcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129541 ggtctggaa gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129601 cacgcgtggcc gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129661 gaaatccggc catatcgac gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgt
129721 ctttttggta gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129781 tgtggttatc gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129841 gcttaaacgg gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129901 gctgtcgccg gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
129961 ggcgcctacc gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
130021 gttaaaagcg gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
130081 gggacgtaag gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
130141 tgttaataaa gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
130201 tatgaccgtc gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
130261 acgtcgcatg gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
130321 gccaggggggc gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
130381 gtcccgccat gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
130441 tatgcatgt gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
130501 aaagcagggt gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
130561 gccggagaata tccgcgttgc gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgt
130621 tatatggca gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
130681 cgctgtgctt gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
130741 gtagaagatc gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt
130801 ctgatcgctt gtcgtatcgtc ttcttgcgtt gtcgtatcgtc ggcgtatcgtc ggcgtatcgt

130921 gcggatgcgc atccgctgct gatccccgc gctgactatg tgacgcacat tgccggcggg
130981 cgcggcgccc tacgtgagggt gtgcgatttg ctgctgtgg cgcaaggcaa gctggatgag
131041 gccaaggcgc aatcgatatg agtaaaaacca gacgttgggt tatttcata ctgtcgctgg
131101 ctattctggt actgatttgt atcaatctgg cggataaaga cgttcgttgc gccgtatgg
131161 tcaacagcaa cgatcccacg tataaaagcg agcacacgga taccgtcgtg tacagtccgg
131221 aaggcgcgtt gagctatcgt ctgatcgccg agcacgttga atattttcc gatcaggcgg
131281 tctcatgggt tacgcaaccg gtattaaacca ccttgataaa ggataaaagtg ccgacatgg
131341 cgatcaaggc cgataaagcc aaattgacta acgatcgat gctctatctg tatggccatg
131401 ttgaagtcaa cgcctgggt cctgacgctc aattacgcag aattaccacc gataacgcgc
131461 agattaatct ggtgacgcag gatgttaccc cgaacgatct ggtgacgta tacggcacaa
131521 cattaactc cagcggactg aaaatgcgcg gtaacttacg cagcaagaac gccgagctga
131581 ttgaaaaggt tagaacctct tatgaatttca aaaacaaca aactcagct taatcttatg
131641 ctggccggct cgctgtggc atatttactc ggcacgatt cggccttcg ccgtcacgg cgataccgaa
131701 cagcttattc acgtgttaat gacccaggc acgatthaaga tcaacgcca taaagtctgt
131761 tttacgggca ctggccggca agatgcagga caacggtaag cgggtgaaag gccacgcttc
131821 gttacccgcc ctggccggca agatgcagga caacggtaag cgggtgaaag gccacgcttc
131881 accttctacc cggcgacaa aatcacctac ctggtgaaag agcagaaaat gcaggccttc
131941 tacgagctgg cggcgacaa gcaacgcgt caccacggtt ctggtgccgt cgcagttgca
132001 agcaacatta cggcgacaa gcaacgcgtt cggcgttgcgtt aactaattcg ttatggcaac
132061 agcgagaaag cggcgacaa gcaacgcgtt cggcgttgcgtt aactaattcg attaactgca
132121 aaaggccaga cggcgacaa gcaacgcgtt cggcgttgcgtt aactaattcg ttatggcaac
132181 aagaatctgg cggcgacaa gcaacgcgtt cggcgttgcgtt aactaattcg attaactgca
132241 aactccgggg tttatgggtcg tcggtatctc gcccaggc acgatthaaga tcatcatcga
132301 tttatgggtcg tcggtatctc gcccaggc acgatthaaga tcatcatcga tttatgggtcg
132361 atcagtcgtc tccggcgct cggcgttgcgtt aactaattcg ttatggcaac attaactgca
132421 gcctctattt tccggcgct cggcgttgcgtt aactaattcg ttatggcaac attaactgca
132481 gacgatttga cggcagaaca gtcgacacag catggacacag gtcgttgcgtt aactaattcg
132541 atcgagcatc tggcgacacag gtcgacacag catggacacag gtcgttgcgtt aactaattcg
132601 gaaatagccc ggcgttggc gtcgacacag catggacacag gtcgttgcgtt aactaattcg
132661 ggcgtcgacc gtcgacacag catggacacag gtcgttgcgtt aactaattcg accctttgccc
132721 gggctcgccg tggcgatcac tggcgacacag gtcgacacag gtcgttgcgtt aactaattcg
132781 gcctatatacg tggcgacacag gtcgacacag catggacacag gtcgttgcgtt aactaattcg
132841 gacgaacacg tggcgacacag gtcgacacag catggacacag gtcgttgcgtt aactaattcg
132901 ctatgtctgt ctggcgag actggcgatg acttcacacg gtcgacacag gtcgttgcgtt aactaattcg
132961 ttagccaaca ctacgctggaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133021 ctacgctggaa tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133081 aaaccgatct cggccgacgc gtcgacacaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133141 cggccgacgc gtcgacacaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133201 atgaaattta caccggggg tcatggcgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133261 tgccgtcta tcatggcgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133321 agctaacgccc tttctcgac tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133381 atgataccgg tttctcgac tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133441 aggtggatct cggccgacgc gtcgacacaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133501 gcgtcgccgc aaaagatctt cggccgacgc gtcgacacaa tcatgacgaa tcatgacgaa gtcgacacag
133561 ccacgcccgt gtcgacacaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133621 accacgattt cggccgacgc gtcgacacaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133681 cggtaaacct tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133741 cggagtagct tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133801 ttaatagcga tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133861 ggcgcgcaca tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133921 tgataaaaaag ctttggcgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
133981 agcaacagca gtcgacacaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134041 atatcgcccc tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134101 atttgcacag ctttggcgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134161 ccgaaggcgg tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134221 cggccggaaaa ctttggcgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134281 aaggtagatcat tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134341 cgtcaaaccg tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134401 aatatcaccg tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134461 ttccggaaac tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134521 gagaaggctca ctttggcgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134581 agcgcggaaag tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134641 cagtaacca tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134701 gcaggacggc tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134761 ccatcaacct tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134821 caactgagca tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134881 aaacgcgcgc tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
134941 gtcgttgcgtt aaggccattt ctttggcgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
135001 atcgccatcc cggccggaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
135061 cagctcgaaa cggccgttgcgtt tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
135121 gctctgtctgg tggccggca tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
135181 aaacgtctgg cggataaaaac tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
135241 ctgtatcaaa tcatgacgaa tcatgacgaa tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
135301 atttatttct gtcgttgcgtt gggaaaacgg tcatgacgaa tcatgacgaa gtcgacacag gtcgttgcgtt
135361 tccggatcag gtaaatctgt cgctctgcgc gtcgttgcgtt gggaaaacgg tcatgacgaa tcatgacgaa

135481 tccggccgccc tcagcattga tgtgcgcaat atacctgaat cacctgagat ttttgaacag
135541 gcgatgaata atctgcctgg cgcttctcg cgcattgc tggttcttga tgccgaccgc
135601 aataccttga ttccggcgcta cagcagacacg cgccgttgc atccgcttc cagaaaaat
135661 ctttcttgg agagtgcgt cgataaagag agtgacttgc tggagccgtt acgctcacgt
135721 gcgatctga tcgtcgacac ttccagaatg tccgtccatg agctggcgga gatgctgcgt
135781 acccggttat tggccaaacg cgagcgcgaa ctgacgatgg tattttagt cttcggctt
135841 aaacatggta tcccatttgc tgccgactat gtgtttgtat tccgcttct gcccaaccca
135901 cactgggacc caaaaactgcg ccccatgacc gggcttgata agccggtagc cgcttctt
135961 gaccgacaca cagaagttca caattttatc tatcagactc gcagctatct tgagctatgg
136021 ttaccatgtc tggagaccaa caaccgcagc taccttaccg tcgctatcgg ttgtaccggc
136081 gggaaacacc gttcggtgtat tatttcaggaa cagctggcag actacttccg ctcgcgcgt
136141 aaaaatgtcc agtctcgcca tcgcacgcgt gaaaaacgcg aAACATGACC gtaaagcaaa
136201 ctgttgaagt cacaataag ctgggcgtgc atgccccggc tgccatgaag ctttgcgaac
136261 tgatgcaggg ttttgcggcc gaggtgtat tacgcaatga cgaaggcacc gaagcggaaag
136321 caaacagcgt catcgctcg ttaatgtcg actccggca agggcgtcag atcgaatttg
136381 aaggccacgg cccgcaagaa gttgaagcgc tggcggcggt tATCGCTG tcaatttccg
136441 gcttgacga agactaaacc tccccctcta tacccttattt accccaacgcg cgtccggta
136501 ttgtatggca gtccccccaa aaccggacgt gttacgcgtc cctcttgc cgcagcccc
136561 ccccttcgtt aggttgtac atttcgtcg cttaattat gcataaaaaac attaagaaaa
136621 ccttaaaaaaa ttctgttttag gtttattta agttcttgt ccataactaaa ttatgtgaa
136681 taaaattttc caggacttgc catgatcctt ttttccaaac agactccgct gggcgctggt
136741 cgacatcgta aatgtatac gcatccggat aatgccccggc gttgcataaa agttatttac
136801 aaccgtgacc acggcggtga taaagagatt cggcgtgaac ttagctacta tgcgcattcg
136861 tcccgctacc tgacggactg gagcgtatc ccccggtatt acggcacggg agaaaccgat
136921 tgcggcaccg gctatgtcta cgacatgatt accgattca acggcgcgcg ctctattacc
136981 ctgaccgagt tcgcgcgcga atgtcggtat gaagagatg tgcgtgtcct gggcggtcta
137041 ctgaaaaaac tgaaacgtt aaccatattt aaccatatttgc gctgaagccg
137101 caaaatatcc ttttgcagcg tatcagcgag tcagaagtgg ttccgggtgt ttcgcacaat
137161 ctgggggaaa gtacctttat cccgctggcg acctggtcaa catggtgcgt tgaacgcaaa
137221 ctggagagag ttttgcgcgt gtttattcgcc cggcctgcgc tggccgttgc cctggagagg
137281 gacgcgcagc caaaagacaa gaaacggctg ggccttactt ctcacgaagc ttaatggct
137341 gtgttatac ggcctggacg acacagatcg caggccggat aaggcgtcgcg cccgcacaaat
137401 cggaaaaattt aattaagctg gttgcgcgt ataaaaagatt cccgcggcgg tggcgcacatc
137461 tggcgataa tccacgcctg cggctacgc acataggccg aaggcgcattt cgccttatacg
137521 cgttaacggat ttggcaatac cggccggcagc aacgcgcgtt cagacacactt caagcgactg
137581 gcaggtttat gaaaataccg ttgtggcgcgc gcctccacgc caaaaatacc atcgccaaac
137641 tcccgatata tcagataaac cgtgaggatg cgtttttgc tccagacagt tcaatgcacc
137701 agcgtagcc cggctccag accttgcgc acccaactgc gtccatccca taaaaagaga
137761 ttttcgccc ttttgcgcga aagcgtagag ggcgcgcgaa tacggctctc attccgctca
137821 ttatgcgcca ggccttttc aatcgccgga acatcaaagc cccagtgc tccaggacttcc
137881 tggctttccg cgcattac cgcagcccc atccacggcgc agatatccgc catactgacc
137941 cagtcagaat gcgcacata accgaactct cgcgcgagcc aggcgctaatt ctggcggttcc
138001 gccatcaccc cggaaaaagg caccggaaacc acgctaaaca ggcgcatttgc ggcgcggccaa
138061 aagacggcga gcgcagcaag gatacgtaaa gtagacggc gcaaaaaacgt taacggcg
138121 atgcgtcgtt tgctatttcc gccagaacca gcacgcgcga cactaattt tcaatgcgc
138181 ttggcgctg ggcgatattcc aacgatatac tgcgcgcgcgca tataggcagg ggtggtcacg
138241 cctcgccac aacgatatac tccgtcccta tccgtcgacg aaggtacgta accttgttac
138301 gtacttcagc ggtatcaat atacagatga atcccgacgg ttagggccccc atctcttcaa
138361 tcgcaacat tgcggcgccg tcgtatcc cccggcattt aaggtacgtg tagcggaag
138421 cctcgccag cgcgcgcgcg cgcgcgcgcgca atacagatgc ttcggccgcg ttttcccttgc
138481 tactcagggtt ctcgcgcgcg ccggaaaccac cggcgcataat gtcgcgcgcgcatcc
138541 gctgagcctg ggacagagga cgaatatcgcc cccgcgtaat agtcgcgcgcgcgc
138601 cgttacgcgt ttccgcata gcttcgcgg tcaggtgatt aataacatcc tcaatcaga
138661 tatccggcgcg gaagcagata gcttcgcgcgc gcttcgcggcgcg aatggccaaac
138721 cggcctcatg aatttcgggt ctgcatttgc ccgtcataga cgttgcgcgcgcgc
138781 ttttcatggt gaacatccctc ctgcatttgc atgattcatg taacaaatca
138841 gctacgctt acacatttaa ggcatttgc gtttgcattca ttaataattt
138901 ctgcgtgcgg cctggaaaca ggcatttgc gtttgcattca ttaataataag
138961 ccacgattt cctgggtttt ggcatttgc ggcatttgc gtttgcattca
139021 tttccgcgt ttgcacccca ggcatttgc ggcatttgc gtttgcattca
139081 atctcttcaa tccattccac gacattatct ggcatttgc gtttgcattca
139141 tgctggccaa gttttgcagc atgacgcgc ggcatttgc gtttgcattca
139201 tgcccttcct caacgacgc ggcatttgc ggcatttgc gtttgcattca
139261 aaatacgccaa gcatcatttt ggcatttgc ggcatttgc gtttgcattca
139321 accaactcga ttttgcatttgc gacatttgc ggcatttgc gtttgcattca
139381 tcttcaggcg tcacggact ggcatttgc ggcatttgc gtttgcattca
139441 gcggttaagg ctggcaccga aacgttagcc gtttgcatttgc ggcatttgc gtttgcattca
139501 tactttttt tatctttgc gacgggtcg ggcatttgc gtttgcattca
139561 cgcgtgtggc gacgggtcg ttctctggca atatccagac cgcatttgc gtttgcattca
139621 atatccagta agaccagggtc atatccgcct ggcgcgaaaca ttttccatgc
139681 gtcatcgca catccacgc gttcccgat ctttccatgc ggcatttgc gtttgcattca
139741 ttcaaggcgt ttttgcatttgc cgcatttgc ggcatttgc gtttgcattca
139801 tcaaaggcgt cctccaccc ggcatttgc ggcatttgc gtttgcattca
139861 gatcccttgc cggcagact ggcatttgc ggcatttgc gtttgcattca
139921 cggagaccg ccagcccat ggcatttgc ggcatttgc gtttgcattca

| | | | | | | |
|--------|-------------|-------------|-------------|--------------|-------------|--------------|
| 140041 | tctttcactt | caaagtgcag | catgtcgcc | tcatcatagc | gcgcccgcac | cgtaaccctgg |
| 140101 | ccctgctgag | taaacttcac | cgcattgctg | atcaaattcc | ataaaatctg | gcgcagacgc |
| 140161 | gttccgtcgg | taatgacttt | gtgcggcagc | ggcagcgtcg | aaaacgttagc | aaaacgttagc |
| 140221 | ccttttgct | gcccctgcaa | accqgaaagg | tttccagat | cqqccataaa | gctgggtgaaa |
| 140281 | tcaaccgggt | ggttatcaag | ctgaacctta | cgccgctcca | tcttatccat | atcaatgata |
| 140341 | tcattgaaaa | tattgcctaa | cgtcacggcg | gagacatgga | ttgtcttaag | gtatffffcc |
| 140401 | tgttcggcgg | taagatcggt | atccagcagg | atgcggctt | aaccgacgat | accgttaagc |
| 140461 | gggggtgcgc | gctcatgact | gatggtagag | ataaatgtgg | tcttgcgcg | actggcgcgc |
| 140521 | tccagcgcgt | cctgataacg | cttacggtcg | gtaatatcac | gaccAAatcc | catcaggcca |
| 140581 | tgacgtttac | cgacacggc | gtaataaggc | actttacaa | tttcaaagca | ggecttgcgt |
| 140641 | ccgtccggat | aatccagcca | ctgttcgtag | gtcagggaga | cgttatggcg | gaataacttt |
| 140701 | tcatcggtt | caatgacttt | ctccgcccgt | tcgggagagt | acacatcttc | cggcttcaaa |
| 140761 | tgcaccagct | gttttcgct | cttgccgggt | agcaattcca | ttgcgcggtt | acagccggaa |
| 140821 | aactctttat | cctcattacg | ataaaaaacc | aatcccgcg | aggcgtccag | aaaggagcgc |
| 140881 | agaaaagagg | attgctgtt | tagctggatt | tgcgccttct | cacgctctt | aatttctact |
| 140941 | tttagctgtt | caaatgtctc | ttgcagctcc | gttcccgctt | tttcgcgatc | ggaatttcc |
| 141001 | tgattaagct | gggcaattt | gtccttcaac | tgtagttaa | gctttagatc | gctgcgcgc |
| 141061 | atctccttca | gctttgcac | cagacgcgc | agtcgtcc | ttgactcttc | cagttgttca |
| 141121 | acaacaacgg | ataagaaata | gaccgcccag | gkgtaatta | acaggccaaa | aaagatggaa |
| 141181 | cgaataaacgt | cgtactttc | aacctgacca | tgcagcacca | tgtcaccgc | catctgcacg |
| 141241 | acaatcgcca | gcaccaccaa | tgccaaacgcc | aggagcatgg | aaaagcgcac | cagacccaaat |
| 141301 | ttcatcatca | ggtcgacata | gtattgcgc | agcatacaga | tttgcttcat | agaggattcc |
| 141361 | ttcaccacaa | cttcgcacat | aatacccaat | tatgggaacc | gcgttgaata | tttgtcgaaa |
| 141421 | tatgcgttagc | cccctcatca | cgctacgcta | caggtggtat | ccagggacgg | gccagcgcag |
| 141481 | agccctgac | gccatgctca | ttcaggtatt | tgccagctc | aaccatcccc | gtccagcgt |
| 141541 | tctcgacca | cagcggggca | agcagcgtcg | gacggcgagc | gctggctgaa | attcgggtat |
| 141601 | aaattacctc | cggcggcgt | tgacgaatca | tctcacctgc | cgttagcgtg | tagtgcgtca |
| 141661 | gttcgatgcc | gttcagccgc | cccgttccc | aggcttggc | catcgactg | cctttcacaa |
| 141721 | tatgcagcgg | atgcagttt | ataccgtcaa | cgcccgcttc | caccacacgc | tccatggttt |
| 141781 | gcagggcattc | tgccctgccc | tctccggca | gccccacaat | cagatgcgcg | cacacttca |
| 141841 | gcccgcgtc | ccgggcaatc | cggtgtgtac | gctgatagca | ggcgaagtca | tgcccgcgt |
| 141901 | taattcggcg | cagggttta | tcgtgcgcgg | tttgcatacc | cagttccagc | cacacctcgt |
| 141961 | agccttgcac | tttatattca | cacagtaaat | ctactactgc | ctgcgggacg | caatccggac |
| 142021 | gcgttaccgac | gcataacccg | acgataactgg | cctggctgac | cgccgttga | tacatggAAC |
| 142081 | gcagcacctg | cacttctgca | aagggtgtgg | tgtaggcctg | gaaataggcc | agatagcggt |
| 142141 | tagcgcgggtt | caccagatgc | gcctgatgcg | caagctgctc | ggcaatcgaa | tgtgctgtc |
| 142201 | gcccctcatc | ggcaaaagag | gcpacattac | agaagggtca | accgcccacgc | ccgatgggtc |
| 142261 | cgtcgcgatt | aggcgacgta | aaacggccat | gaagcgtcag | cgccgttga | tttgcccat |
| 142321 | accgacgtaa | aagtagccca | ccaaacatat | tgtactaattt | cttatgaacc | ataatctgtat |
| 142381 | agaccgcctc | ttaaaaagag | gccaiaagct | gcatatttttta | ctgtaactgc | gcatgtacccat |
| 142441 | ggatcaatcg | tcccggaaagg | cttttatcca | ttgcataatc | gtctccctt | tttgcccat |
| 142501 | cattataat | cccgctgatg | attttcctg | atattccct | aagcaaaaata | aacgatattt |
| 142561 | gtcatcgata | aaaacagtag | cattcaatgc | tgttcacgct | ctttttttag | cgtctgctgg |
| 142621 | agattttga | aaaagcaagg | tcagataact | cctggcgagc | taaaaacagca | taaaatgcca |
| 142681 | tcacaggctt | tctgcccctc | cgtatttagca | accactctat | ggcttctata | gtgagacaga |
| 142741 | tagattaaaa | aagttatctg | tgctacagca | cacttttgc | aaaaaaacctt | ttaatttcaaa |
| 142801 | cctgggtgtg | gattcccgt | aagttgggga | tccgctgaa | taaatcagtt | tgccattttga |
| 142861 | gctcatcata | tttatgcagt | aatttaggatt | ccctcttaac | gctttctgaa | tgagccgtct |
| 142921 | ggacacaaaag | agggcgaatg | cgaggttaagc | cgatgtatgc | aatgcccacaa | aatgcccacaa |
| 142981 | ttgctgtgcc | cgcgcgcccgt | cggttgggag | agcgtccctgt | cgccatgtctc | cgccatgtctc |
| 143041 | gatatgtgt | acgataaaatc | ccttggagaag | gataactgtg | gttccggcct | gatcgcccac |
| 143101 | atagaaggcg | aacctagcca | caaggttagt | cgtaccgcca | tacacgcgt | ggcccggatg |
| 143161 | cagcaccgtg | gcgcgatcct | tgccgacgg | aaaaccggcg | acggttgcgg | cttgcgttta |
| 143221 | caaaaacctg | accgtttctt | tcgcacatcg | gccgaagagc | gcccgtggcg | cttagccaaa |
| 143281 | aactacgccc | tcgggatgtat | ctttttgaat | aaagatctg | aactggccgc | cgcgtcacgc |
| 143341 | catattgtcg | aagaagaatt | acagcaggaa | accctgtcga | ttgtcggtcg | gcccgtatgt |
| 143401 | ccaaaccaatg | aaggcgtgct | cggtaaaatc | ccctctctct | ccctggccgcg | tattgagcag |
| 143461 | atttttgtca | acgctccggc | gggtctggcg | ccgcgcgcata | tggagcgcgc | tctgttatac |
| 143521 | gcccggcgcac | gcattgaaaaa | acgttcgcag | gacgacaaaag | atttctacgt | atcgacgcgt |
| 143581 | tcgaacctgg | tcaacattta | taaagggtctg | tttatgcctg | cgatctgc | gcccgttctac |
| 143641 | ctggatcttgc | cggatctg | tctggaatcg | gcatctgc | gcccgttccac | gcccgttttcc |
| 143701 | actaacaccg | tgccgcgtt | gccgctggcg | cagccgttcc | gctacctg | gcataacggc |
| 143761 | gagattaaca | ccatcaccgg | caaccggccag | ttggcgccg | cccgtaacca | taaattccag |
| 143821 | acgcccgtga | tcccggattt | acaatccgct | gcccgttcc | ttaacgaaac | cggttcggat |
| 143881 | tccagtcgc | tggacaacat | gcttggactg | ctgctggcag | gccccatgg | cattatccgc |
| 143941 | gccatgcgc | tgttggtgc | gcccgcttgg | cagaacaacc | ccgatatagg | ccaggatctg |
| 144001 | cgcgccttct | ttgactttaa | ctccatgc | atggagccgt | gggacgggtcc | ggcaggacatc |
| 144061 | gtgatgtccg | acgggcgtt | cgccgcctgt | aaccttgacc | gtaacggcct | gcccggcgcac |
| 144121 | cgctatgtca | ttaccaaaga | taagctgatc | acctgcgcct | cgaaagtccg | tatctgggac |
| 144181 | tatcagccgg | atgaagtgtt | cgagaaaggc | cgcgtcgccc | caggcgagct | gatgggtgatc |
| 144241 | gacacccgcg | gcggacgtat | tctgcattcc | gcggaaaccg | atgacgatct | gaaaagccgc |
| 144301 | catccgtata | aagcgtggat | ggaaaagaat | gttgcgcgtc | tggtgcgtt | tgaagagtt |
| 144361 | ccagatgaag | aagtccgttag | ccgcgaactg | gacgatgacc | tgctcgccag | ctatcagaaa |
| 144421 | cagtttaact | acagcgcgcg | agagctggac | tccgttaccc | gctgttgggg | cgaaaacggc |
| 144481 | caggaagccg | tcgggttcaat | gggcgacgat | accccttgg | ccgtgtctc | cagccagccg |

144601 ccgctgcggg aagcgcacgt catgtcgctc gccaccagca tcggtcgca aatgaacgtc
144661 ttctgcgaag cgaaaggta caccatgagc gaggcatact accgcgcgg aatcgccaa tctgctgtac
144721 tccgatttca aacagctcac aaccacactg gacgcgacgg ttaaggcgct ctggcttgac
144781 attaccttg atgtcaccga cggcaccgtg ctgctggcc tctcgatcg gtgcgataaa
144841 gcggAACAGA tggtgccaa cgcgcgcgtg gacgcgacgg caatatcggt
144901 aagaatcgcc tgccggtccc cgcgcgcgtg gacgcgacgg tcgtctggtc
144961 gatcaaagcc tgcgctgcga cgcgcgcgtg gacgcgacgg cgcgcgtcc
145021 catcactttg cggtaactgct cggcttggc gcaacggcca tctatccgta cctggctac
145081 gaaacgctgg ggcgtctgat tgatacccg gccatcgcta aaaactaccg taccgtgatg
145141 cagaactacc gtaacggcat caacaagggg ctgtacaaga ttatgtccaa aatgggcatt
145201 tcgaccattg cctcttaccg ctgctccaaa ctgtttgaag cggtcgggct gacgatgat
145261 gtggtaaaccc tgtgttcca gggcgtggc agccgtatcg gcccgcgag ctttgcgtac
145321 ttccagcagg atctgtcaa cgtccacggc ggcgaatata acccattagc
145381 ccggcggcc tgctgaagta ggtacagagc ggcgagtaca acgcctataa cccggatgtc
145441 gtgcgttaccc tgcaacaggc ggctgcacag ctgcgcgatc gcatatcgcc
145501 aaactggtca atgagcgatc gggcgtggc agccgtatcg gggcgcgag gaaatacgcc
145561 ggcgaggcgg tgactatcgat cggagtttag cccggccatcg acgctttaa acgcttgcgtac
145621 accgcagcca tgtctatcgat cgcattaagt cggaaagcgc ggcgaagaccc ggcgcgtac
145681 atgaacagcc tcggcggcaa aagtgtcgat ctccaaactcc ggcgaaggcg ggcgcgtac
145741 ggcaccaata aagtgtcgat tatcaagcgat gtggcttccg ggcgttttg cgtgacgcca
145801 gcgtacctgg tcaatgccga tggatttcgat cgcaccac gcaatcccg gaaaccgggc
145861 gaaggcggtc agttgccggg ggataaagtc actccgtata tcgctaaact ggcgttgcgtac
145921 gtgcggggcg tgacgttgcgat ctccccggc ggcaccac gatatttactc tattcgaggac
145981 tttagcgcagc tcattttcgat cctcaaaacag gtcaaccccg aggcatgtat ctcgttgcgtac
146041 ctgggttccg aaccgggcgt cggcaccatc ggcaccggcg tggcgaaagc ctatgcagac
146101 ctcatcacca tcgctggcta cgcacggcgat actaggactt tccgttgcgtac
146161 tacgtcgatc gcccgtggat cgcacggcgat gttgaaaccc ggcgttgcgtac
146221 ggtctgcgtc acaagattcg tctgcaggatc gacggcgatc taaaacccgg ggtcgccaaac
146281 atcaaagcgg cgatttcgat tgcagaaatc catttgcat ctcgttgcgtac
146341 ctgggtctgtat aataacctcgat gaaaccatcgat gttgaaatccgg
146401 caggatgaaa aactcgatcaa tgcggcgatc gtcgcgcgat gtcgttgcgtac
146461 ttgtatcgat tggccgcgat cgcacggcgat tggcgaaatccgg
146521 gtggatcgat cagaagctgg cgctgtctcg tctactcgatc gtcgttgcgtac
146581 cagaagctgg tactgcaccc agaataaccc ggcgtttcgat taaagcgcac
146641 caggcgaacg cgttttcgat cgcaccccg tgcgcgcgcg aacgggttgc
146701 accgatcgat ccgtgggtgc tgcgtttccg gtttacatcg tgcgttgcgtac
146761 gggctggctt ccgatccgat taaagcgcac ttcagcgatc taaagcgcgtac
146821 gtgttgcgtat cggggcgatc ggagttatcgat ctgactcgatc taaagcgcgtac
146881 cggggcgatc cggggcgatc gatcgccatc agaccacccg tgcgttgcgtac
146941 aaaggatcgat cggggcgatc caacaccccg ctgtatcgatc taaagcgcgtac
147001 cataaaagcca gcatcatcgat cgcaccccg tgcgttgcgtac taaagcgcgtac
147061 gcggcggggc ggcgcggcgat acgtttcgatc ttcagcgatc taaagcgcgtac
147121 gagggcatcg ggcacaacccg tgcgttgcgtatc taaagcgcgtac taaagcgcgtac
147181 aaaacccggcg ttaacttcgat cgcggggatcgat taaagcgcgtac taaagcgcgtac
147241 gatggcgaat tccgtaaacccg cgtgtaccccg taaacttcgatc taaagcgcgtac
147301 ctggctatcc acgaagagcg tgcgtcgcgcg taaagcgcgtac taaagcgcgtac
147361 tcgcaacgcgcg ggcgcggatcgat cgcggggatcgat taaagcgcgtac taaagcgcgtac
147421 gttaagccca agtccacgcgat tgcgttgcgtatc taaagcgcgtac taaagcgcgtac
147481 gaattgcgcg tgcaggcgatc gtaaggatcgat taaagcgcgtac taaagcgcgtac
147541 gacctgcgcg gctttatcgatc taaagcgcgtac taaagcgcgtac taaagcgcgtac
147601 gaaatctcgat aaccgttttc taaagcgcgtatc taaagcgcgtac taaagcgcgtac
147661 tgcgggaacc cctactcgatc taaagcgcgtatc taaagcgcgtac taaagcgcgtac
147721 aaactggcta acgaaggcgatc taaagcgcgtatc taaagcgcgtac taaagcgcgtac
147781 ctgcggaaag tggcgatccg taaagcgcgtatc taaagcgcgtac taaagcgcgtac
147841 ctgcacgatc agttccgcgcg taaagcgcgtatc taaagcgcgtac taaagcgcgtac
147901 gcgttcgaaa tggcgatccg taaagcgcgtatc taaagcgcgtac taaagcgcgtac
147961 gcgattatcg tggcgatccg taaagcgcgtatc taaagcgcgtac taaagcgcgtac
148021 gtgaaggcgatc tggcgatccg taaagcgcgtatc taaagcgcgtac taaagcgcgtac
148081 ccagctttca aactggaaaa taaatcgatc taaagcgcgtatc taaagcgcgtac
148141 ggtattcgatc tcaaacttac taaagcgcgtatc taaagcgcgtac taaagcgcgtac
148201 aaagattacg atgcgttac taaagcgcgtatc taaagcgcgtac taaagcgcgtac
148261 gaaaatgaag atgcggacgg taaatcgatc taaagcgcgtatc taaagcgcgtac
148321 cagatcatgg gtttgcgcg taaatcgatc taaagcgcgtatc taaagcgcgtac
148381 gtgggtgtgc tggcgatccg taaatcgatc taaagcgcgtatc taaagcgcgtac
148441 ggcgcacgcg acgttaccccg taaatcgatc taaagcgcgtatc taaagcgcgtac
148501 cgcgcgtatc aaaaccccg taaatcgatc taaagcgcgtatc taaagcgcgtac
148561 ggcatttgcgat tcaatcgatc taaatcgatc taaagcgcgtatc taaagcgcgtac
148621 ggcgcacccgg atgcggatccg taaatcgatc taaagcgcgtatc taaagcgcgtac
148681 gttccggctgat atgcggatccg taaatcgatc taaagcgcgtatc taaagcgcgtac
148741 gcgaaacaca gctgttgcgtatc taaatcgatc taaagcgcgtatc taaagcgcgtac
148801 aatgtttccg agaccaccccg taaatcgatc taaagcgcgtatc taaagcgcgtac
148861 gatctggatc tgacggcgatc taaatcgatc taaagcgcgtatc taaagcgcgtac
148921 ctcgaatgtt aacccttcgatc taaatcgatc taaagcgcgtatc taaagcgcgtac
148981 atattctctt cctcaatatc taaatcgatc taaagcgcgtatc taaagcgcgtac
149041 taatgcgcgtatc taaatcgatc taaagcgcgtatc taaagcgcgtatc taaagcgcgtac

149221 ccacagtctg atgaatatca gcaaattcat gacggtatta ttcgctcgtt cgatacggca
149281 cgtaccgaga ccgtgcgcag catcaatgcc attatgactg ccacctaactg gaaaattggc
149341 cgacgtattg tcgaatttgat acaggaggaa gaagcgcgag cggcttatgg caccagactt
149401 atcgaacgat tatcggtaga ttaaagttagt ttaaagttagt cgctataagc ggggttttc
149461 ctatggcaaa ttcgtacatt ttatcttgc cataccgctc gaaagataac gatgcccga
149521 tctgcggaat cttcaaatct gaaagataac tccctcttcc
149581 tatgtgcgtc tgctgtcggt
149641 ctacgtaacg gctggccgt
149701 cgaacgctac tgtcccacga
149761 aacgtttgc cggagcaagc
149821 gacgagtatt cccaatcaga
149881 ctggagctcg gtgacgattt
149941 agctggttcc gctgtcgatct
150001 gacctgaagg taggcaatt
150061 tatgccaaag agcactggac
150061 gcagggaaag ggcggggga
150121 gcgagcgagt acaaagtgc
150181 tcgcaaacca tgctggaaac
150241 tagcgaacca ttaatgcccc
150301 ttattcttag aactgtat
150361 tgcgcggaga caacaattt
150421 ttccactgac gtttgcatt
150481 ggacactcg gaccggctt
150541 tcctcctcg
150601 cccacctcct
150661 taggcagtac tcaagtggc
150721 gtaaagcgac gggcattgat
150781 tgaccattt ttcggcatc
150841 tcgttattct gggcagctac
150901 attaaaaaac gatagtgc
150961 tgggctcg
151021 ccaaaagcgc
151081 tcttcggcgc
151141 cgcaggggct
151201 ataacgcgc
151261 cgctgtcggt
151321 ttgtcggctg
151381 ccgactatct
151441 ttaactggat
151501 gtattgtgcc
151561 tttcaaccg
151621 attcgtcaga
151681 cgcttagcc
151741 gccgaaggcg
151801 caaacggcgg
151861 tggcagaac
151921 ctgaaaatggc
151981 cctacgctca
152041 gacctacaaa
152101 ctgttagagg
152161 ttacgcggg
152221 gatcgcttga
152281 acggtcgcgg
152341 acggctatgc
152401 tcgggatta
152461 acttacccga
152521 gtctgcttgc
152581 ctgcaggtgc
152641 gacgggttaa
152701 ctgagcgtcg
152761 gtacgtcgcc
152821 gtggcgacc
152881 cccgtcatac
152941 aagactgctc
153001 tttcttgatg
153061 aaacacagca
153121 aagctggtaa
153181 aaacgcataa
153241 ttccgcttgc
153301 gtcgcctgc
153361 agtcaaggca
153421 catcatcata
153481 cgatagcgag
153541 cgaacctgct
153601 caqtcqqtaa

153721 catcccgcca gatcgtcccc cgccgcccgc gccatccctc gtccggaggc gatggcctct
153781 acacaaccaa cgcgtccaca gccgcatacg gccccgtgtg ggtccgccaag ggtgtgtccc
153841 aggtggccqg ccagaccqcc ttttcggtta agagacttgc cgtcgacagac aacggccgccc
153901 ccaacgcccgg ttgaaacggg gataaatacc atatcgcgaa tattcatcagg gagcgcgtga
153961 tactccgccc aggccgcccgc ctgcgcgtcg ttacccgcca gcgtcggcag gccagcgatc
154021 gtttccagtg tttgtactaa cggaaagtgt agcaagccgc ccagattatg ggggtttagc
154081 gccagcagca tcccttcctg aatgatcccgt tagaaagcta tcgctacctg acgcgcctct
154141 gcccgttagt gttcaaccag cgccttaat gcttcacgta acgcatccgg cggtttgtctc
154201 gcgggggtcg gtagctcgcg acgctggta atgcgcaagt tggtgtcgat gagcgcggcg
154261 gcaagtttag taccgccaat atcgattgt aacgtagtca tgacgcccgc ttttttaatg
154321 cgtcggtata ccatccacag atatgttcca gacgggtaat ggcggacccc accgtcaccg
154381 cccatgcgcc atagcgatc gcctccggc ccaagtctgg gggatgtatag cgcccttcgg
154441 ctattacccg gcatccggcg tcatgcaacg ctttgactaa gggcagatcg ggttccctcg
154501 gcgtatcggg ggtgtgttag cggacatttgcgtgatc aatgtccgcg cccaaccgtt
154561 ggcaggcgag accatgtcc acggatgagc agtggccat cgcaggataga tggtgggtat
154621 gaatgcgcg caacaacggc tcaacggcta cggccgttg ccgagcgggtt ccatcaacgg
154681 cgataatagc tgcgccagcg catctacatc gtcgagaaaa gggtaatgc gcactggaga
154741 gtcgtccaga tcgcgtttga taatgcccgt aatgggtacc gaaacgagcg aacggccac
154801 ggcagggtt tctatgcctt caatacgcac cgcaggccgc cccgcctgtt ccgcgcgg
154861 cgccattgcc gctacaatct ccggcttatac cagcggactg cccggAACGG gctggcagga
154921 gacaatcagg cggccagaag cggcaatatt ttatccagt tgttcaagta acgacatact
154981 actcccttac aaatattgcc cggttgaaaa cggggcaagc ggattaactt ttcgtttta
155041 caaaggcacc tttaccactg ccaagcgtta cggctccgt gaaacggttt tcgtcgatag
155101 catcatgggt gcgtaacgct tccggacgta gcaacgcgt gacatcgatc ggcataatcaa
155161 gccaataaag caggatcacg acaaacgtca ggtgaaaaga gaggatgcgcc agcgcagtgc
155221 ccagatccag acgttgagcg atcagcgtc ccaggatcg tgccagcgcg ccgcgcgg
155281 cgccgacgtt ataagtaaaag cccagccccg cgcgcgtcg atcggtatcg aagtaaccgc
155341 cgatcagtt cggcagaatc ccggcaatcc cctgccccaa catctgttgg aaaaacagta
155401 gcagacccag aaccaggacg tttgtgcgcg acatatgttt tacgcgttcc ccaagaaaaac
155461 gcgaggccag caggctacag acaaccaccg cccgcgccaa atccgtaaa gaacaggaca
155521 cgcctacgca tatgcggatc gtaggccagc tgggtttca gataagttagg taatagcgc
155581 155641 aagaatagag gaaaggaaac tggccatccaa agtaccacca gatcagcat ggcgcagg
155701 taccgtgtt ctgcaccata aagctgataa aggttaccgg agataaccgc gcacagtagt
155761 155821 ccacaatcgc agcattttgt aaaaatgttgc atgatacgtat ctcaccccg
155881 tgcgtaccgg cgcttaccc gctgtttttt cttccagtc ttccgcttcc ggaatgttt
155941 tccgcagcca gagggcgaag caccaccagg ctgtacacct gaaatgtttt gggccagctt
156001 cccagacagg aaaaccactg gctttattgc gtaaatgtttt tcaatcacat
156061 cgaaatcag aggtcgcgct ggaaccatata tcgcccggca tggccatacc aatcaccat
156121 156181 acatgggtt gtaaccggc gcttgttacc gcaaaacccgc aggcagggt tccaccgaa
156241 tgctgtgac catcgccaga gcgagagata aaagccgcag cgcgttccat catcgccccc
156301 cgccgaacca gcgagagata tcagtcagta gcaagacaat tggccctgt
156361 gcccaaattc gcttgttacc tcccaaccag gcaaggaaaaa aatcaggt
156421 caagcagata gatgttctgg gatggccgtt cgccttatac tggccctgt
156481 gataccacgg aatggccgtt cgccttatac tggccctgt
156541 cgttatgccc gatggccgtt cgccttatac tggccctgt
156601 gcaaggctag cggccccggc attatgtgt tggccatccat
156661 agcgccttga ggcaccgata ccacgttccat atattttca tcaacaggcg
156721 ttaatcgtat aatcaataac aatatgcagg cttattgcac
156781 tcgcctcac gcaatgcctg aacaatcccc tcggtttca
156841 ctggccatac cgccgtccgc gcccggccagc agaccggaa
156901 ttgtacagca ccagatccgg atgcgcgcgg
156961 gaggtttgct tcagcgcgtt cacgccccgt
157021 gtaagttta cggccgtttaa cggccggaaat
157081 gaatcaatga ttggccgata atggtcacag
157201 ggcgtcaccg cagagaccgc atcaaaaaccg
157261 ctttctgcgg tgcttactgt cccgacatgg
157321 tcggcgacaa tctccagttac ctgcgtcttt
157381 gtggAACGC cAACGTACAG cccgtcgata
157441 cgcaggctt cgctatccag ttgctgttgc
157501 acgccttgcg atgctttgc catacctacc
157561 cttttatacc tggatatacc gatcaaataa
157621 gatctgcttc actaaaccgg gatcgagggt
157681 taccgagcgc tggccaggta gggaaacgc
157741 ctttatcggg atctcgctgg cgaatggcat
157801 cgttattatg ttcatgcgc tcaacgtcg
157861 ccagcagagc aacatgaaata gccataaaga
157921 ggtgaaactc gacatccgaa cgaataaaca
157981 tttccagcgc ttgcgttaac aacgcgtatct
158041 gtaccaggct ggttcaaaag aaaagccgt
158101 gagtaagaaa atcttcgccc ataccgcaca
158161 gcgagacgca ggcgcgttcg cggttattga

158281 acggtagctg ttctccctcg ccaaactcat gacggcggat catctgtcc agctttct
158341 caaccatttc agacagttt ttacgcggca gcgggcggcg gcgcaaacta cgcccgaggg
158401 atgtcggtga atcttcgtct tgcaaatcaa atqcggttcat aacqgtccatt catgagtgg
158461 cggtgccaaa taatagaacaa cttatcgtaa cacagcttca aaagcagggt gaaccgcga
158521 ggagaccaaa caaaacaggc cttcagggc ctgttggata tttactacg cgcaagccgg
158581 gacgtccgccc acgcggcggg ggcggctcg catcaggact actgtcgta tcgtggtcgg
158641 gcttatcgcc atcaatgacg gacatcacgg tctcgcttc cgccgcgtcg gtattgtcat
158701 catcatttaa gctgacaacg tcttcatcat aggccgcttc aggtcaaac atggtgctcg
158761 cgccgtttc acgggcgtaa atcgccagca ccgcagccaa aggacagaa acctgacggg
158821 gaacgccccc gaagcgcgca taaaacgca ctcatcatt agacagctcc agattaccta
158881 cggcccgccg cgcaatattg aggacgattt gccatcgcg cgcatttcc atagggacat
158941 gcacgccagg cagcatcaca tccaccacca gatgcgggtt caactggta tccagcaacc
159001 actcgtagaa agcacgcaac agatagggac gacgcggcgtt caactgtgac aaatccatac
159061 aggttaaccc cgaccggaggc gcatttcacg tttagctcg gttaaagaag ccagggaaaga
159121 atcacgttca aagacgcggg tcatatagcc tttagctct ttcggccctg cgccgctgaa
159181 ttgcataccc aactgcggta ctcaggaaat acggtttctg accaaatacc ggcgcatacg
159241 gaattcgctg tggtaacccatcg tggtaacccatcg cagagtgcac ctcggaaagca
159301 ttcacgcgt taccatgtttt tttcaatacg gtgcatgtac agacggctt caccgcgc
159361 catcagcgta accggcatca gcccggatg gggaaacgc tcatccagat attccataat
159421 gaccggataa gatgcgagat tcccacaggg tcaagtcacg atccaccagt gtcggAACGC
159481 gttgaggtca atcagatcct gaggtggatt gtcctttcc acatgttca tctcaaaaact
159541 aacaccctt tcagccaaca caatgcggac ctgatggcta tagatgtcag taggaccaga
159601 aaacagcgtc attaccqaac gtttgttggc agcacaqcc atgaaaacct ccaggtatat
159661 tcagaatttt tactgttacc agccacaatg tgaccagcca gatgttatgt caccaggc
159721 gaaaaaaagcc atcattgttc atgatagttt accagattt gtacccctt acattcccc
159781 gaaaaaattgg gagacaacaa tccgcattt atgtgacag tggtgagtcg attctggaaat
159841 tggggaaaaaa aaagcgggtt tttcgctaa caaaaaaaaatg ataaatgcat tgccataaa
159901 aaaacccgccc aagcgggtt actgcggacg acgacgtgct ttagcggcggc
159961 cgtttggaga cacgagtaac gaggccagct gataccgtga ttacgcggc
160021 tcaggacggc gggcaatcat ttttggcagc ttacgcggc
160081 tgacgagcgt gggcaatcat ttttggcagc ttacgcggc
160141 tactccatca gaggcgggtt gataccgtga ttacgcggc
160201 ccacccttaa cttgtgttacc cttgtgttacc ttacgcggc
160261 tgacgaaacta ccatgcgggc ttttggcagc ttacgcggc
160321 ataacgattt taccgttgc ttttggcagc ttacgcggc
160381 ccagtccgt agtatttgc ttttggcagc ttacgcggc
160441 tgcgggtgct gttgtgttacc ttttggcagc ttacgcggc
160501 atagcacgac ccagcgggccc ttttggcagc ttacgcggc
160561 tcaggacggc gggcaatcat ttttggcagc ttacgcggc
160621 gtgtgggtat agtacacttt ttttggcagc ttacgcggc
160681 ttcaaaacaa ttttggcagc ttacgcggc
160741 ccgcgcaggc gacgagccag ttttggcagc ttacgcggc
160801 acaacatacc agtcgcgtt ttttggcagc ttacgcggc
160861 ttacccaaat aaataagttt ttttggcagc ttacgcggc
160921 acacgacaaa gtccggtaaa ttttggcagc ttacgcggc
160981 tggggaaaaaa ctctctgtt ttttggcagc ttacgcggc
161041 tcgaccctt ttttggcagc ttacgcggc
161101 gaggttgacac agatataata ttttggcagc ttacgcggc
161161 atatgtccc gcttgagata ttttggcagc ttacgcggc
161221 tgaatttcaa acttgatgtc ttttggcagc ttacgcggc
161281 accaccagct taacgtggcg ttttggcagc ttacgcggc
161341 tcgttctcca tcagcggcgt ttttggcagc ttacgcggc
161401 cttgagagcg caatgttacc ttttggcagc ttacgcggc
161461 gcccctaacc ttttggtttcc aacgcccagg ttttggcagc ttacgcggc
161521 gtcggagcat gttctcgac ttttggcagc ttacgcggc
161581 cgggttcat cattaagcgg ttttggcagc ttacgcggc
161641 taatcgacgc cggcgccccac ttttggcagc ttacgcggc
161701 ggcagaaagc gggcgcggtt ttttggcagc ttacgcggc
161761 gtcgcgacca gctgtatgcc ttttggcagc ttacgcggc
161821 gctcggtaa tatcggtgac ttttggcagc ttacgcggc
161881 aaccgatcgg caataatgtc ttttggcagc ttacgcggc
161941 tgcacgcgca gcataaaccg atgaaaatgc ttttggcagc ttacgcggc
162001 tggtagaaga gatccatgag ttttggcagc ttacgcggc
162061 ccgcgaaccg gtatttgcgc ttttggcagc ttacgcggc
162121 atcagaccgc cgggtggcgt ttttggcagc ttacgcggc
162181 tccagacggc tgaccgcctc ttttggcagc ttacgcggc
162241 gcctggagat aacgcgtatgt ttttggcagc ttacgcggc
162301 aatcgatgtg ccgtcggtca ttttggcagc ttacgcggc
162361 ctgtcggtat tccacttcta ttttggcagc ttacgcggc
162421 ggagcctgga gccaacaccc ttttggcagc ttacgcggc
162481 aatattcgctt aattggatta ttttggcagc ttacgcggc
162541 gtaatcgtaa gttacgtcaa ttttggcagc ttacgcggc
162601 agctgaaaga gtaccgtgaa ttttggcagc ttacgcggc
162661 ataccatggc gcatgattac ttttggcagc ttacgcggc
162721 tgctggcggaa aatgtctgctt ttttggcagc ttacgcggc

62841 tggtaacgtag cggcgcaaag cgcgattaat cgacacgccc taagaattt atcgggcgca
62901 tcgcttcgc cctctctta tctttctgt cccagctatt atcattgtta ccaggctgaa
62961 aattcaataa catcaatctg tttgaattt tctatccgtt cattcaaggt acgagagcag
63021 catccatgaa aaaacacacc cagctgttaa gtgcattagc gttaaagtgt ggattaactc
63081 tttcggcacc gttccagcc ctgcattcga taccaggcca ggtgccaggc caggcgacgc
63141 tgccaagct tgcccctatg ctggagaaag tgctgcctgc tgtcgtcagc gtaaaagtctg
63201 aggaaaccgc caccaggagc caaaaagtgc cggaggagtt taaaaaattt ttggcgagg
63261 atctgcccaga ccagccgtcc cagccgttg aaggactcg ttcgggggtg attatcgatg
63321 cgcgaaagg ctatgtatta accaataatc atgtgattaa tcagggcacag aagatcagca
63381 ttcaactgaa tgacggacgc gaattcgacg cgaagctgtat cggccggcgc gaccagagcg
63441 atatcgctct gttacaattt cagaatccca gcaagttaac gcaatttgc atcgccgatt
63501 cgcacaaaact ccgcgtcggc gatttcggc tggcggttg taatccgtt gccttggac
63561 aaaccggccac ctccgggatt atttcagcgc tggacgcag cggcttaat ctggaaaggc
63621 ttgagaactt tattcaaaacc gatgcctta ttaaccgcgg caactccggc ggcgcgtc
63681 ttaacctgaa cggcgagctg atcgggattt ataccgcaat cctcgccca gggggcggg
63741 gcatcgccat tggctttgtc attcccttca atatggcga gacgctggc cagcagttga
63801 ttcagttcgg cggaaatctt cgcggatttc tggaaattaa aggactgaa atgaccgctg
63861 atatcgctaa ggcattttttt ctgaacgttc agcgtggcgc ttttgtcagc gaggtttac
63921 ccaattcagg ttcggcgaag gccgggggtg aatccggaga cgttattatc agtcttaacg
63981 gtaagccgct gaatagctt gccgaactgc gttcacgtat cgccaccacc gaaccggca
64041 cggaaagtgaa gctgggcctg ctgcgcgatg gtaagccgct ggaggtggaa gtcacgctgg
64101 attccaatac ctcttcttcc gccagcgcg aatatgtcgc cccggcgtt gaggcgcga
64161 cgtttagcga cggccagctg aaagacggg aataggcgat ttttgttgcg agcgtcgaaa
64221 aaagcagtcc tggcgccag gccgggttgc aaaaagatga ttttatcatc ggcgttaatc
64281 gcgatcgcat cagttctatc gccgaaatgc gcaaagtgtat ggcggcaaaa ccgtccatca
64341 ttgccttca ggtgtacgc ggcaacgaga acatttatct attgtcgcc taatcctgtc
64401 ttaaaccggg catcagcctg cgatgtgatg tccggttacatc tcatggat tgcgtccgt
64461 tccctttttt aacgacgcct ccatcatgtt tggtaagctc ttacgttcgg tgcgaatagg
64521 ttaatttgcg ggcgctattt tggcgccgt tgcgccttct ttcgcggaaa ttatccttat
64581 cggcgcccg caattcgaca gtaccgatg gacgcgcg gacgttataattt ttgcgggtcg
64641 cccgcgcg cctgcgtcg tcaatgtcta taaccgcgtt atgaaacagta cgcgcataaa
64701 tcaacttggg atccgcacgc tgggtccgg cgtgtatcatc gatcaacgcg gttatattat
64761 taccacaacag cacgttgcgaa agatgcggc ttcggttacc gtcgcgttac aggatggccg
64821 cgttggaa caacggccact ggcgggtcgc ctaccatccc gatgttgcg gacgttac
64881 cgacgtcgta ctggctatcg gcaacccata taatctggg gatgttgcg gcatattgg
65001 catcagcgca acgggtcgta tcggcctgaa cccgacgggg cgcacgaaattt ttctccagac
65061 cgacgcctcg attaaccacg gtaattccgg cggcgcgtt gtcacactcg taggcgaact
65121 gatgggatc aacaccctct ctttgataa gagaatcgat ggcgaaacgc cggaaaggct
65181 tggtttgcg attcccttcc agctagccac gaaaattatg gataagctta tccgcgacgg
65241 tcgcgtgatt cgccgtata tcggtattgg cgacgagaa atcgcgcgcg tgcacgcgca
65301 gcagggttagc ggcattggacc cgattcaggg cattgtcggtt aatgaagtaa cgccaaacgg
65361 ccccgctcg cttgccccgtt ttcaggttta tgatttgcattt attcggtca ataataaacc
65421 cggcggtc cgcgtggaga cgatggatca ggtggggaa attcggccgg gctccgtcat
65481 tccggctgtg gtaatgcggg atgataagca gtcacgttca caggtgacgg tgccaggaata
65541 cccggcgtca aactaaaacg acgcagctt tgcctgcgtc gttcgcacggc tagtcaataa
65601 agactggccc tggcgaaaaa tgccggcaggaa aactcgtaa gattagcaga gggggaaac
65661 tcttttcccc gacggctct tcacgcagcg ccttatcgat gtcataataag ccagactcgc
65721 tccctttccc cagaatgcgg cccatccaga gcatgttgcg cgcctgttgc cgcgcataact
65781 gcatcgccg tttccaggcg accagatgc gcaacgtttt taacagcagg acccgagacg
65841 cgtgaccatc cgttggtaat cgcctgaataa cggtaatgc aataactacgc accgtcgaga
65901 aaccgtcgc cgcctccccca tcaatcgccg ataaaaccaac agccgcctgt ttgacgaaat
65961 cgcataaccc attgtgtgtt aatggccgct cgcctgcgtc catataaccct gcccggaaac
66021 agagtaaccc gataccctga gccaatcggt tcgatggcag aatcccctgc ggaacattcg
66081 gtggcgcgtt ctgtcgccgca caaagccctt cgtcgtaaca ctgtgcaaaaa ctgtgctcat
66141 atattgtca gttgacgccc gaccacggca gaaaatgcag cgctggctca agctcagtt
66201 tctgattcac cgtctcaaca acataacgcg agatggttt tctggatggc atggatgtac
66261 ctggccgaaa cgcaaccatt tcactcatta ctgtgtcctc attttgcggg agcataatca
66321 ctgctcccgta ttagaatttgg attacattgc cagcacgtac ttcagcatca cgcccgccgc
66381 aatggccgaa cgcataaccc cggccacgtt cggccccatc cggtgcatca gcaggaagtt
66441 ctgcgggttc gactccaggc ccaccttggt cgacaccctg gtcgcacatcg gcactgccc
66501 caccggcgtt gAACCTATCA GCGGGTTGAT TTTGTTCTTA CTGCACAGGT
66561 cggccatcagc accccggccg ccgtcccgat accaaaggca atcaccggcc gcaacggaaat
66621 gcccagcgtc tgccgtcgca ggaacttatac cgcgaccagg ttccgcggccca
66681 gagaaaaatg gtcacgatata taaatcagacc gttctgcacc gtgtcgctca
66741 caccggcgtt tcacgcatca gattggccaa gcaagacatc cccagcagcg
66801 cggcagcagc agggccacca gcagtaacag caccacggg aagaggattt ttcccgctt
66861 actcaccgtg cgcagctgca ccatgcggat ttccgcgtct tcagcgccgc
66921 cataatcgcc ggctggattt acggcaccat cgcacatatac gagtagggcc
66981 gccccccagc agctccgggt ccagcttgc cgcacatatac atgcgcgtcg
67041 gcccggata atggcgatgg cgcggccctg cggcgggggtt
67101 gttcagcgtc agcggcccccgtt gtcacgggtt gaaagatgcgg
67161 cagcagggtg cgcggattgg ccagcagcgg gccgaagtcg
67221 aaagatgacc agcggcgccg cgcggagcc aatcgccact ttatagaaca
67281 ccccgcggtg tagccatgt ccaccgcacccatttccatc tggttcttgg
67281 ccccgcggtg tagccatgt ccaccgcacccatttccatc tggttcttgg

167401 aatcacccgccc agctgccccgg cgtcgatgcgg ggccagcagg ctctccagcg cggtcagcgc
167461 catgccccgct tccgggatgt tggagagcag gcccggaaag cctatcgca gcagcagtaa
167521 cgggtcgaaac ttttcgcta tcgccaagcc cagaacacgc aggctgacca gcagcatgat
167581 ggcttggccc ggc当地gggt gcatcagccc catgccctga agcagggcg tcaagacttc
167641 catttcagtt ctccgttacg ccagcgtcat cagggtgtcg cccacggaga cggcgtcccc
167701 ggacttcacc gcgataccgc ggacggtgcc ggc当地ggcg ggc当地ggattt cggtttccat
167761 cttcatggct tccagaatca gcagcacgtc gc当地ggcc acgctctggc cttcggtggc
167821 aatcacccctc cagatgttgc cggccagcgg cgccgtgacc ggggtgcgg cgccgtccgg
167881 ggc当地ggcc tgaaccgggt cggaaagaggc cggccgaaaca gccgttagaa gctggctgat
167941 atcggccccc tc当地ggaccc tc当地ggacaaa ggcttgcct tccacttcca cgtgttagat
168001 accggaggcg gc当地ggcttc ct当地ggtgc caccggctgc gc当地ggcc cctgcggcag
168061 tggctcaaacc gccggccggg tatggcgggt ct当地ggaaat ttgaggccga tt当地ggggaa
168121 cagcggccacg gtgagcacgt ct当地ggatggc gttcccgcc agagtaatcc cttctcccg
168181 cgc当地ggccg ct当地ggatccg ct当地ggatccg agccagatcc ggcttcagca ggtccggccg
168241 ggc当地ggtc accggagcgc tcccttccag cacgcgggcc ttaacccggg ctttaaccgg
168301 caccgggggt tgccgttacg cgc当地ggcc aatgcggccg gtttcttcg cgtatggttt
168361 gtagcggtcg cccggcaggaa ct当地ggccgac cggccgggtg cccgacaatct gcgaggtcg
168421 ggtgaccaggc gggataaaagc ct当地ggatggc tctgctgctt cagctggctt tc当地ggatccc
168481 gtccagccctg tccggccgcgt gaatacggct gtc当地ggcctt ttcagctggc cttcaaaaggc
168541 gccc当地ggacc tgccggaccga cgc当地ggata cgc当地ggcata tttccagct tc当地ggatatc
168601 atggtaacttt ttgc当地ggacc tacctgccaa cgtcgccacc agcgc当地ggcc tgccgggggt
168661 cagccgggtg tc当地ggatccg acgaaatccg cgtgtccacg cgtcaacac ccgc当地ggat
168721 gccgtaggtg gcgatcatgg cccgatccccc ggtggggcg tgacagtgc ggtgcaggcg
168781 agccttcagc agggccatct tt当地ggatccg cagctccaaat ttc当地ggcgc cttcaaaaggc
168841 caccctaaaaa cgtttttgtaa caatcgatgc aacgc当地ggcc tctaacaact gttc当地ggat
168901 gccggacata tc当地ggatgg tggccatggc cgc当地ggccgg gctgggggtg taggagagcg
168961 gtccagccag gtctgcagggt cc当地ggatccg ggc当地ggccgg atattgcgc ggtc当地ggat
169021 gtgc当地ggccg tggctgcgcga acatccatggc catccatggc gtttccacc ggc当地ggcc
169081 ggc当地ggaaacg acgc当地ggccaaat tt当地ggatccg gggccatcg gctgagatcc
169141 caccacatca tc当地ggatgg tggccatggc tggccatggc ggc当地ggccgg gtc当地ggat
169201 cagccgggggt tt当地ggatccg atacaggcg tggccatggc ggc当地ggccgg cgc当地ggcc
169261 gagaaaacacg atacaggcg tggccatggc caatcgatccg cactccagcg agccgttagcc
169321 cacgtcgccg agctgagccgg cggccatggc ggc当地ggccgg ggc当地ggccgg
169381 cagagactgg tggccatggc gcaatcgatccg ggc当地ggccgg ggc当地ggccgg
169441 cgggaattaa gcttgcagggt ggtgatggc aatggccggc gcaatccacg gtc当地ggat
169501 ggtgaaatcg tccacggccgg gaaacggccgg acatccatggc ggc当地ggccgg
169561 gaagcgagta atcacggccgg gggccatggc aatggccaaat gtc当地ggat
169621 cagcacgaat cccatggccga ggagcatccg agtgaagccct tc当地ggat
169681 attagtctata aaatagccct caggcaggag gc当地ggataat gggctattt
169741 aataataagg gtggatttcc ct当地ggatccg cc当地ggccag
169801 cataaacgtat taccaccatt atcgtcaat tt当地ggatcc
169861 acgttctggc atatttcatac agc当地ggatcc tcttccat
169921 tggtcaaaca gattattccccc atgggtatca atagaaacaa
169981 acccgacaga cccacagcgt ttccggccatc
170041 tcttccacgc acacggccgg tacaaccgc
170101 ttgtgttcag cacagccctc
170161 ttcaacggcc tctgc当地ggat
170221 gggccaaacgg agaccatcc
170281 ccagcgttta aaatagccgg
170341 aaacggcgat gggctacgtc
170401 ccagccttaa tattccgtta
170461 atcagaaatt cactccgt
170521 tggtccctt acggtgccgc
170581 gacgtgcggg gtttcaatg
170641 gccc当地ggcc aattttgtta
170701 cattctcggt atgc当地ggcc
170761 ttcaacaga ggtgc当地ggat
170821 agctggatcat cacatccgt
170881 gcaccatcgc tttccccggc
170941 actgatcgga attggaaacg
171001 taccgggtt gtattcatca
171061 ttgcttgcgtt caccggccatc
171121 tcccgccactc caccaaaaac
171181 ctttcgcccag acgctgggtc
171241 tctcttctt atgcaaatct
171301 tatatcccac aaacttggcc
171361 taaaatgtcc tttagtcagaa
171421 cagcaggatc aagctgacaa
171481 gtc当地ggccaaat ttatagccac
171541 agttgcgtat ggc当地ggcc
171601 ccccatccatct gggccatgg
171661 ggacataaaag ttggcatca
171721 tgaggagttt tgccc当地ggcc
171781 cattcccagc gctttgcctt
171841 aatggcttta taggc当地ggcc

185641 attgcgttagc ggcaccagca cttcaaactg accttcgtta tgcttatagg gaaagagggtg
185701 cggttacca ccgtaaacca acgtggcggt atccgcctcg ccgcctgaa tcgcggcgct
185761 aaggtaatcg actagcgctt tgcccattcg gtttccgaa aaatagcgcc acgcctgaga
185821 tccatcatcg gtactgattc cggccagaat acccagccac gttcgtcgc ccgtcggttg
185881 cagatagcgg aaccggccgc ggcgtatgtc cgccttgcg ttgacgtcaa tgtcgcggcc
185941 atcaagctga aagccttct cattcttcaa ccagctaagc gtcgcgacgc cgtttcaat
186001 ttccagcggc ggcgaaaaaa cggttccata gggcatctta gctgtctgca tcgcaacctt
186061 catctgcccgc tcttctacgc ttcccggcag cgtaccggaa aaatgttccg cgccggca
186121 cagcttccac tgggtccagg caagatttc ccacgatgcc taaaacacgct tttttcggt
186181 cgcctgtac ggaatatcca ggcgcagtgt ggcgatctt ccgctcggt gcgtacgtcg
186241 ccatatttcg cccagcacag ggcacagtt ggcgcggcc agccgcctg cttccagcccc
186301 cgccagttca agattactgg cgcgaatgcg tagctcatcg ctacgtgtt gattctcgcc
186361 gccgacgtcc tgctgcggga gccaggccac gttaaaggct ccgctcggtt aggtttgccc
186421 atcaagcgta atccgtgtgt cggaaatata aactgcgcg cccggctgt cgccgctaat
186481 ctgcggcgtc aggttatcga cagacaactgt atgcgtcggt ttacgtccca gccagcttgc
186541 gccggctgt ttcagccaga cgtccctcc cggcatttcg ctttactga gcgtcatcc
186601 gcctccaga ctgaaacgcg cgtctggag cggccatatta tcttgcattcc atttgcggca
186661 ccacggcttg acgtcaatat cgtaaatcca tccgcacctg taaccagact ctgcccatt
186721 gtcgtatcg cttttatcga tccgtgccc cttttggccg ttagccagg taagggtgg
186781 gaggctgacc tccgcgcgtt tccctgaaag gtcagaaaaaa ctgatttgcg tattcgcgc
186841 gatgcgcgtt tcgaactgcc ctttggaaag gtcgttgggt gggaaatttgcgatcc
186901 atcgaaatga ctttggaaag cgtgttgggt gcaacaggct tggccagac tccagcgcca
186961 gccgtcgctg ctttggaaag ctttggaaag gtcgttgggt gggaaatttgcgatcc
187021 gcgaaactgc ctttggaaag ctttggaaag gtcgttgggt gggaaatttgcgatcc
187081 ttttatcgac agctgcgcgc ctttggaaag ctttggaaag gtcgttgggt gggaaatttgcgatcc
187141 agggccaaaaa ttttggccagc ttttggaaag gtcgttgggt gggaaatttgcgatcc
187201 ggactcaatt ttattcagga accagcagcg ctttggaaag gtcgttgggt gggaaatttgcgatcc
187261 cagcccgcta ctttggaaag gtcgttgggt gggaaatttgcgatcc
187321 ccccgcaat ctttggaaag gtcgttgggt gggaaatttgcgatcc
187381 gagggtataat ctttggaaag gtcgttgggt gggaaatttgcgatcc
187441 ttactcaattt ctttggaaag gtcgttgggt gggaaatttgcgatcc
187501 acttaaacctt ctttggaaag gtcgttgggt gggaaatttgcgatcc
187561 ttccagcgctt ctttggaaag gtcgttgggt gggaaatttgcgatcc
187621 tgatgaacac ctttggaaag gtcgttgggt gggaaatttgcgatcc
187681 gtcccgccgc ctttggaaag gtcgttgggt gggaaatttgcgatcc
187741 gtccgtttac ctttggaaag gtcgttgggt gggaaatttgcgatcc
187801 acgcgtatct ctttggaaag gtcgttgggt gggaaatttgcgatcc
187861 ttattcatgt ctttggaaag gtcgttgggt gggaaatttgcgatcc
187921 cgggcaatgg ctttggaaag gtcgttgggt gggaaatttgcgatcc
187981 tgcgttgggt ctttggaaag gtcgttgggt gggaaatttgcgatcc
188041 atcagataac ctttggaaag gtcgttgggt gggaaatttgcgatcc
188101 tccacgtcat ctttggaaag gtcgttgggt gggaaatttgcgatcc
188161 atttccggga ctttggaaag gtcgttgggt gggaaatttgcgatcc
188221 acgcaattt ctttggaaag gtcgttgggt gggaaatttgcgatcc
188281 agttcgccat ctttggaaag gtcgttgggt gggaaatttgcgatcc
188341 cagacgcgcgt ctttggaaag gtcgttgggt gggaaatttgcgatcc
188401 gcgggtacggc ctttggaaag gtcgttgggt gggaaatttgcgatcc
188461 cgctcggtt ctttggaaag gtcgttgggt gggaaatttgcgatcc
188521 ataaaaacaa ctttggaaag gtcgttgggt gggaaatttgcgatcc
188581 ccgagcgggt ctttggaaag gtcgttgggt gggaaatttgcgatcc
188641 atatcgccat ctttggaaag gtcgttgggt gggaaatttgcgatcc
188701 atgtcggaag ctttggaaag gtcgttgggt gggaaatttgcgatcc
188761 atacctggaa ctttggaaag gtcgttgggt gggaaatttgcgatcc
188821 gcttcgcccgt ctttggaaag gtcgttgggt gggaaatttgcgatcc
188881 tccgatggcg ctttggaaag gtcgttgggt gggaaatttgcgatcc
188941 tgcgttgggt ctttggaaag gtcgttgggt gggaaatttgcgatcc
189001 atagctgcca tttatcttcc tgacaaacca gccacccgc cctgtatgc
189061 tgcttatctt aaaggctcgc cgctggcgac atagccagta atatcctgcg
189121 gcggaaagtc acctccgtt acgttccatcc gaccccgaca atccagcgtc
189181 aacagcagtc atcaccgtat cgttccatcc gaccccgaca atccagcgtc
189241 agcggcgtcg cgcggcttt cgttccatcc gaccccgaca atccagcgtc
189301 caacaccggc agatcacggg cgttccatcc gaccccgaca atccagcgtc
189361 ccgaacaaca tactgctcg cgttccatcc gaccccgaca atccagcgtc
189421 gacctgctcg aatgaaaatc cgttccatcc gaccccgaca atccagcgtc
189481 agcaagatac aggttgcgtt cgttccatcc gaccccgaca atccagcgtc
189541 cgcgtatcgca aaaagagcca gggccacagc acgttccatcc
189601 tccgtctga aagagacgtt gatcactaa actcgcccc
189661 gccagtggaa gcaacattac caccagcgcc tgctccaga
189721 tggaaattca gaggcaccag ataggcgaca tattgcacag
189781 gtggaaaccgc tgatgagatc aagtatggca cccatcaca
189841 cggtgccggca gggccagaat ccgtacatgt
189901 acaatgtatgt cgtccggcca gggcatgatt
189961 cagataaccc agcgccctg gctacgatag
190021 cagacggcgt ggtcgccccc
190081 cagatggctg agtaatcccc

90201 cctttccgg cgtcatcgga ttggcgcgt tacgatcgcc tccccacaac agcagcagat
90261 agcgtaaacg ctgcaaaccg gcggttggac gaccctgaat gacggtatag ggcgcgttag
90321 tgtccagctt gacggaggag accaccgcca ccggataaccc ttccggaaa cgcccaccaa
90381 gtccggacgt taccagcaca tcgccaacgc gaatatcggt attggcgggc agatgttcaa
90441 gctgaagatc gtcagtgcag ccgttacccg cggcaatcac gcggatgtca ttgcgttaga
90501 cctgaatcg gagacatga gtcgcacgc aaatcagcaa tacgcggctg gtcagttcg
90561 ccacggcgac aacctgcctt acgacaccc ttgtcgcta gaccggttga ccttcatata
90621 cgccattaaac gtcgccttta tcgataacga cctgatcgct gtaaggatcg ttaaccgttg
90681 aaataacctg cgtcaccatt ttctgctcg cctgacgcag cggcggaccc agcagtcgc
90741 gcaaccgcgc gttctccctgt ttgtactgcc ccagcatcag caggtcgctg ttttttagca
90801 gtaattccctg ggcgcagcgcc cggtttcca gctcaagctg gtcgcgagaa gccagcggtt
90861 ggcacacgcgt gtcgagcagt tacaggggc cggttgaardaaaatagaaa ggactgacgg
90921 cagtgtccat gtacgttccg atttgactga acgtccccag gcccgtgtcg gcaatgataa
90981 cgccgagcgc caccaggacc gccagaataa ggcgaatctg tagcgcacggg ccacggctaa
91041 aaattggctt cataggctt gcttattctc gctcgaggaa ggcaggacaa tccaggata
91101 atcctggccg tatccaacta ctcttcgcgt aacaggtcgc cggcggtcat atcgatcatt
91161 tccagcgcct tgccgcgcgc ggcgcgcaca cagtcagcg gatcttcagc aaccacgaca
91221 ggaatgccc gtccttcatt taacagacgg tcaaggttac gcagcagcgc gccgcgcgc
91281 gtgagcacca taccgcgtc ggagatgtct gacgcgcgt ccggcgacatctg
91341 gcccattaa cccgcgtgac gataccggc aacggttccct gcaacgcctc cagaatctcg
91401 tttgagttca gggtaaaagcc gcttggaaacg cttccgcaca gtttacggcc acgcacttcg
91461 atctcgccga ctgcgtcgcc cggataagcg gatccgattt cgtgttataatcggttgc
91521 gtggcttcac caatcagaga accgttagtt cgacgaacgt aattaatgtat ggtttcg
91581 aagcggtcac caccaatacg gacagaagaa gataaaacca cggcggttag gtagatcacg
91641 gcaacttcag tggtaccacc accgatattcc acaaccattt aaccgggttgc ttcagaaact
91701 ggcagacctg cggcgatcgcc ggccgcgcata ggcttctcg tcaaaaaagac ttcacggcg
91761 cctgcgcgcct gagcggttcc acgaatcgcg cggcggttcta cctgcgtcgcc
91821 acgcatacca gtacgcgcgg gtttggcgcc ataaagctgt tgctgtgcac ttgtttaata
91881 aagtgcgtga gcattttttcc ggtcacaag aagttagcgcg taacgcgcata
91941 cggatcgccag cgatatttgc cggcgtagcc cccagcatct gcttcgcac atgaccgact
92001 gcagccacgc ttttcggcga accggcaca gtcgtacgaa tggccacaac ggaaggctca
92061 ttcaatacga tgccttgtcc ttttacataa atagggtat tgcgggtacc
92121 gacaggcat tggaaaacat gccacgaaat ttttcaaca tactaaggga
92181 agctggcg gaaaacaaaaa tccgcttaat ttaccaacca cacgcagcag
92241 caaaaatcat ctgctacggt gaaaattagt gcaatcggtt tccttgcgtt
92301 cctgagtcgg tcagggtcga aaaaatcagc agcaatccctc
92361 aaaggtcatt cacgtcata tttgctgcaa caatctggcg
92421 tgaggcgccag cgcgcgttat tctacgtgaa aacaaattaa acggcagggtt
92481 tctttgcgaa tatttttca cgtttgtgtc aagtagttgg gaggaggca
92541 ctgcgcgcgc ggcacgcgc gtttgcgtc cgtctgcac
92601 cgtcgctaa acctgcgtag gcttgcgcgc
92661 ctggtttcc gttcgcttct caatgttttct gaccagactc
92721 cacattgagc gtttaatcc agctcggt
92781 caccgcAACG ccaagcgcat tgactaagcg aaggatgggt
92841 acaaacatct gcctccgcga gtcataataat tatgcgattt
92901 cattaacgtt tcgcgcaccc agcgtgaaa acgcggacga
92961 ctgcatttgc agattttcat cggccagta gcccagca
93021 taatctgtca tactttccg ataaacaaaa ttgcaacacc
93081 gtcacctct tctttacccgt catagatcg
93141 ttctcgctg accggccgtt tttgataaag
93201 aatcaatgtg cggcagcgca cattggccgc
93261 agcccaagcta tttccccctt gcaaggcgcc
93321 cacctgatcg gtggactgtc cgcgtgcaca
93381 acgatcgagc attttgttag cccgttagcgc
93441 actttccgct tctttcagcg ttgcgtgcgg
93501 acgcgcgcagc agcgagctg gtaacgcata
93561 aaacatctgc tcttccgcct gattgcctcc
93621 caagcggatc atcatcacca
93681 cgccagctgg ttatcaaaga acagacgg
93741 gtaggaggca atgagggtgt ccaggcgact
93801 aagcaataca tcaagcgcc
93861 attcgccccg cgttcgcgt
93921 ggaaagctgc cgctgcagcc
93981 cgccagcgtc agcgccgcgc
94041 ataaaccaga cgtagcgaca
94101 catgtcgctg gtggcggtc
94161 ctccccctgc acagatcg
94221 cggcgctcagc gagacaatatt
94281 ctgcacacgg ctgacataact
94341 cagagtccag aagatcgat
94401 taatcgatc
94461 gcgaaattcg ccacggcgcc
94521 atttattgcg ttgcacatcg
94581 ttccaatcta ccatgtaaag
94641 acggtaaaac ctcgcacatc

194761 aaggaaaaat tatccgtcat tttccgatga ttccctggtat tgatttcgccc ggcaccgttc
194821 acgcaagcga agatccctcg cttcatgcag gccaggaagt actactgact ggctggggcg
194881 tggcgaaaaa ccactggggc ggcctggccg aacgcgcacg cgtaaaggc gactggctgg
194941 tcgcgctgcc tgcgggactg agcagccgta acgccatgat catcgccacc gccggttta
195001 cgcgcattgt gtgcgtcatg gcgcttgaag atgcaggtat tcgccccaa gacggtgagg
195061 ttgtcgtcac cggcgccagc ggcggtgtgg gcagcactgc cgttgacca ctgcataaagc
195121 tgggctatca ggttgcagca gtatcaggac gtgaaagcac ccacggctat cttaagagcc
195181 tgggagctaa cctgtattctc agccgcgatg agtttgcga atctcgccc ttggaaaaaac
195241 agctgtggc cggtcaatt gataccgtt gcgataaagt gctggcgaaa gtcctggcac
195301 agatgaacta tggcggttgc gtggccgcct gggccctggc gggcgcttc ggcgtgccga
195361 ccaccgttat gccatttatt ctgcgtaaatg tgcgtttgca agggttggac tcggtgatga
195421 ccccacccggc acgtcgccca ggacgcctgg cgcgttggtaaaggatccgttccgt
195481 tctatgtca ggcgcgccca gagattacgc tggcggatgc gccgaagttc gccgatgcca
195541 tcataataaa tcagggtcag ggcgtacgc tggtaagat aaaataaacgt cacgtataaa
195601 aaaatttaca ctttaattacc tattttatcc tacacattga cacactccct attatattca
195661 ctacacgcca tggtgtgggt ggttagaccgg gagtctgtga taaaaaaagat acgtccatta
195721 acagaagccg atgtgactgc ggaatcggt tttttatgc agcgccgaca ggtgctaaaaa
195781 gcattaggca tcagcgccgc cgccttattcc ttaccctcaa cgccgcaggc cgatctttc
195841 agttggttt aaggcaacga tcgtccgaaa ggcctgcgc gtaaaccgcg tgagtttagt
195901 cagcgtccgc cctggcgaag cgatttagcg ttaacgcgg aagataaggt gacgggctac
195961 aacaatttct atgagtttgg ctttgataaa ggcgaccgg cgccaatgc cggaagtcg
196021 aaaaccgaac cgtggacgtt gaaaatcagc ggggaagtcg cggccatcg tacgctggat
196081 tacgacgatt taacacatcg tttccattt gaagagcgta tctatcgaa ggcgtgcgtc
196141 gaagcgttgt ccatggtcgt gccgtggatt gtttccctt tatataagct actcgccgag
196201 gcacagccca ccagccacgc taaatatgtg gattcgaaa cactatacgc gccggatgat
196261 atgcccaggac agaaagatcg ctttattggc ggccgactga aatacccta tgcgtggat
196321 ctacgtctgg acgaagccat gcatccgctg acgctgatga cgcgttggcgat
196381 gcgttacccc cgcaaaacgg cgcccccatt cgcctcatcg ttccatggaa gttatgggg
196441 aaaggattta aatctattgt tagcattaaa ttcaccgcg aacgtccgc aaccacctgg
196501 aatttgcgg ctcccaacga atatggttt tatgccaatg tgaaccgcg tggatcat
196561 ccacgctgg ctcaggctac cgaacgcctt atggttcag gccgtatcc tgcgttgcgt
196621 aggcaaggc aaggcgttgtt taacggctac gccaatgaag aacagataac gttatgggg
196681 ctcaatttgc gggagaattt atcttgcgg tttttgcg atccaacact ttaccggtag
196741 gtttgtctgc ggcgcagaccc ggtaaaggat cgcctggcgc gctacgctaa aaccgcgctc
196801 ggtggactca tcgcccaccc tctggttca gtttaggatta tgggtttcg ttgggcgcac
196861 aaattttgc cacgcgcctt ctttgcgtt gactgggata cataacctgg cgctgtttagg
196921 ttgatacgca ctcggccctt ctttgcgtt gcttgggatc attagctggc tgggttttatt
196981 accagctatg ctttgcgtt gcttgggatc ttgggcaaac gctggcaaaactgcgtt
197041 atttcacgccc ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197101 ttgacctaattt ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197161 gtcgtctatc ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197221 tcaccgcaac ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197281 aagtttcgccc ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197341 caggtaatgt ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197401 ctgccaattt ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197461 gttcgcaatgt ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197521 ggcagaagat ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197581 ataacaggca ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197641 agacggccgt ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197701 gatattcgta ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197761 gaaatttctg ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197821 cgggtgatgc ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197881 gtcgcgcccag ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
197941 atcgatcgct ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198001 ttcatcgaaat ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198061 aaaatgtatg ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198121 agtggtcaac ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198181 gttggataaa ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198241 taaagaactc ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198301 cgtattgtcg ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198361 gaacatcccg ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198421 ttacggcttc ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198481 ctttatcgcc ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198541 cgcgtatggaa ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198601 tatgaatgcg ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198661 cggcgccggc ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198721 catctccatg ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198781 aaaataccgt ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198841 cgctatctat ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198901 agaagccccg ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
198961 gaaaggctgtc ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
199021 cggcgagttc ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
199081 aatgattacc ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
199141 gtcgtatcaca ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt
199201 cgaagatccg ctttgcgtt gcaatgttgc ctttgcgtt gctggcaaaactgcgtt

199321 tgattccatg atcggcaaac tcatctgcta cggtaaaaac cgcgacgtgg cgattccccg
199381 tataaaaaat gcccgcagg aactgattat cgatggtataa aaaaccaata tcgatctgca
199441 gaccgcacat atgaatgacg agcaattcca gcacggtgga accaacaatcc actatctgga
199501 gaaaaaaactc ggttttcagg aaaagtaatc gcacgtaat ctc当地agggc accaacaatcc actatctgga
199561 ggcctttttt atttctgggg atagcgatgc cccatcatgt ctc当地agggc accaacaatcc actatctgga
199621 ccataaggga caaaaaatgg acgctcgat tttcaggcc cataaaagagg cggcgtggc
199681 gctgtggctg accctttgct atctggcgcc atggtagtg gctgctact tatctggaga
199741 ctcggccggga attaccggtc tgccgcactg gttcgagatg gcctgcttat tgacgccc
199801 ggttttatt ttgctgtgct gggcgatgg gaaattcatt tatkcgata ttccgcttgc
199861 ggatgacgat gcagcttgag gtcattctac cgctggtagc ctatctggc gtggcttgc
199921 gggctcgat ttacgctatg cgcaagcgta cccgcggcac cttttaaac gaggattttc
199981 tttggcagtcg ttcgatgggc gggatcgatc tc当地atcgac gctgaccgc acctatata
200041 ggcgcaggatc atttacggc ggtccggcg cggctataa atatggtctg ggctgggtct
200101 tgctggcgat gatccagttt cccggctct ggcttcaact ttc当地atcgatc ggtttaaaaat
200161 tcgctatcct ggccgtcgat tataatggcg tcaatcgatc gatatcgatc ttc当地atcgatc
200221 accaaagccg cctgctgggt tggttagcaa ggatcgatc gctgaccgc acctatata
200281 caatgaccgt acaatttatac ggcggcgcc gactactgga aaccgcggcg ggaattccct
200341 acgaaaccgg cctgctaata tttggcgtca gtatcgact ctatacgccg tttggcggct
200401 ttccgcggccat cgtacttaac gatacgctac gatgctggtc gatgctggc ggcacgatag
200461 tgctgctggt gggcgatggg catgcggcg gcggttaca tcaggccgtt gacacgctgc
200521 acgctctcgat ccccaaactg gtaaocgcgc agggcgccg tgacataactt tctcccgctt
200581 ttatgaccctc ttttgggtt ctggctgtt ttggcgatc catacgccg tggcctggc
200641 tgcgctgcata ttcttataaa gacagtaaag cggatccatc gggcattatt atcggtacga
200701 ttgtcgatggc gatTTTATG ttcgggatgc accttgcggg cgcgctgggt
200761 ttccggatct gacgggtggc gatctggatc tcccaaactg aatggtggaaa gttttggcgc
200821 cgttgcgcgc cggatcttc cttgtcgcc caatggcgcc gatcatgtca acaattaacg
200881 cccaactgtc gcaaagtcc gcgacgatca ttaaagatct ctatctcaac ctgcgtcccg
200941 atcagatgca aaatgagatc cggctgaagc gtatgtcgcc agcgattaca ttactgttag
201001 ggcgcgtgtt gctgtggcc gctggaaac cggatccatc gatcatgtt gtc当地acctgc
201061 tggcggttgg cggctggaa gctgggttct tatggccgtt ggtactggc ctttacttgg
201121 agcggggcaaa cggcgaggc gctgttaagcg ccatgatcgatc gggcggcgtt
201181 tgcttgcac attaatatt cagtagtgc gcttcatcc gattgtgccc gcttactgt
201241 taagtttatt ggctttctg atcgaaatcg gatcgatc gtc当地atcgatc
201301 tattgtctac tgataaataa agagtttgc catgccatgg atccaatttgc
201361 caccggcgcc aatgctgaag agctaagtga tgcgtatgc
201421 tacctttcag gatacacacg atacggcgatc ttttggccg
201481 gttggggcgat accgatgtga tcggctgtt
201541 cgcgattctg gggcaacatc cactgctggg
201601 ggaagataaaa gactgggaaac gcgaaatggat
201661 gctgtgtgg atttgcggca gctggcgatc
201721 gctcgaccatc ggactggcgatc
201781 atggctggac gggctcgatc
201841 cattctggcg atttgcggcc
201901 tccgcaagct attcaggcca
201961 ggagctgtac ctggcgaaag
202021 catcctggca ggcccattac
202081 cggctctgcgt gggctttcag
202141 cggcgagctt ttactctcg
202201 ccgtaaagaaa taattcttgc
202261 ctaacgcct tttaggcacc
202321 ttctttgtca ctatccgtct
202381 tcaacggccc gcaagccatcg
202441 atccgctaac gcttttttgc
202501 aaagcgcatc tggcaccatc
202561 tgatcttgc tggaaacgaa
202621 aagcagatca ttccgcttac
202681 ttgtaaagcg gtaaaaaacc
202741 ttatatttgc tggttttaaq
202801 ggcctttcat ctggcaccatc
202861 atttcttaac tcatgcgcac
202921 atggctggca ttactgacag
202981 acagtatccg agatgtatgc
203041 cggatggtgc acgttgcata
203101 gttgagatgg cggatgcgc
203161 aatatggggt gcccggcgaa
203221 tacccggatt tagtgcacat
203281 actctcaaga ttgcaccatc
203341 ctggcgtgaag atttgcgtt
203401 ttcaacggag aagctgatc
203461 attatcgca atggcgatc
203521 gggcgatc ccgtatgc
203581 atccagcatt atctggacac
203641 cgcttgcatt gcacgcatt
203701 cgaatcgccg gtaaacacat
203761 cgccgcacat tcaacgcatt
199321 tgattccatg atcggcaaac tcatctgcta cggtaaaaac cgcgacgtgg cgattccccg
199381 tataaaaaat gcccgcagg aactgattat cgatggtataa aaaaccaata tcgatctgca
199441 gaccgcacat atgaatgacg agcaattcca gcacggtgga accaacaatcc actatctgga
199501 gaaaaaaactc ggttttcagg aaaagtaatc gcacgtaat ctc当地agggc accaacaatcc actatctgga
199561 ggcctttttt atttctgggg atagcgatgc cccatcatgt ctc当地atcgac gctgaccgc acctatata
199621 ccataaggga caaaaaatgg acgctcgat tttcaggcc cataaaagagg cggcgtggc
199681 gctgtggctg accctttgct atctggcgcc atggtagtg gctgctact tatctggaga
199741 ctcggccggga attaccggtc tgccgcactg gttcgagatg gcctgcttat tgacgccc
199801 ggttttatt ttgctgtgct gggcgatgg gaaattcatt tatkcgata ttccgcttgc
199861 ggatgacgat gcagcttgag gtcattctac cgctggtagc ctatctggc gtggcttgc
199921 gggctcgat ttacgctatg cgcaagcgta cccgcggcac cttttaaac gaggattttc
199981 tttggcagtcg ttcgatgggc gggatcgatc tc当地atcgac gctgaccgc acctatata
200041 ggcgcaggatc atttacggc ggtccggcg cggctataa atatggtctg ggctgggtct
200101 tgctggcgat gatccagttt cccggctct ggcttcaact ttc当地atcgatc ggtttaaaaat
200161 tcgctatcct ggccgtcgat tataatggcg tcaatcgatc gatatcgatc ttc当地atcgatc
200221 accaaagccg cctgctgggt tggttagcaa ggatcgatc gctgaccgc acctatata
200281 caatgaccgt acaatttatac ggcggcgcc gactactgga aaccgcggcg ggaattccct
200341 acgaaaccgg cctgctaata tttggcgtca gtatcgact ctatacgccg tttggcggct
200401 ttccgcggccat cgtacttaac gatacgctac gatgctggtc gatgctggc ggcacgatag
200461 tgctgctggt gggcgatggg catgcggcg gcggttaca tcaggccgtt gacacgctgc
200521 acgctctcgat ccccaaactg gtaaocgcgc agggcgccg tgacataactt tctcccgctt
200581 ttatgaccctc ttttgggtt ctggctgtt ttggcgatc catacgccg tggcctggc
200641 tgcgctgcata ttcttataaa gacagtaaag cggatccatc gggcattatt atcggtacga
200701 ttgtcgatggc gatTTTATG ttcgggatgc accttgcggg cgcgctgggt
200761 ttccggatct gacgggtggc gatctggatc tcccaaactg aatggtggaaa gttttggcgc
200821 cgttgcgcgc cggatcttc cttgtcgcc caatggcgcc gatcatgtca acaattaacg
200881 cccaactgtc gcaaagtcc gcgacgatca ttaaagatct ctatctcaac ctgcgtcccg
200941 atcagatgca aaatgagatc cggctgaagc gtatgtcgcc agcgattaca ttactgttag
201001 ggcgcgtgtt gctgtggcc gctggaaac cggatccatc gatcatgtt gtc当地acctgc
201061 tggcggttgg cggctggaa gctgggttct tatggccgtt ggtactggc ctttacttgg
201121 agcggggcaaa cggcgaggc gctgttaagcg ccatgatcgatc gggcggcgtt
201181 tgcttgcac attaatatt cagtagtgc gcttcatcc gattgtgccc gcttactgt
201241 taagtttatt ggctttctg atcgaaatcg atcgatc gtc当地atcgatc
201301 tattgtctac tgataaataa agagtttgc catgccatgg atccaatttgc
201361 caccggcgcc aatgctgaag agctaagtga tgcgtatgc
201421 tacctttcag gatacacacg atacggcgatc ttttggccg
201481 gttggggcgat accgatgtga tcggctgtt
201541 cgcgattctg gggcaacatc cactgctggg
201601 ggaagataaaa gactgggaaac gcgaaatggat
201661 gctgtgtgg atttgcggca gctggcgatc
201721 gctcgaccatc ggactggcgatc
201781 atggctggac gggctcgatc
201841 cattctggcg atttgcggcc
201901 tccgcaagct attcaggcca
201961 ggagctgtac ctggcgaaag
202021 catcctggca ggcccattac
202081 cggctctgcgt gggctttcag
202141 cggcgagctt ttactctcg
202201 ccgtaaagaaa taattcttgc
202261 ctaacgcct tttaggcacc
202321 ttctttgtca ctatccgtct
202381 tcaacggccc gcaagccatcg
202441 atccgctaac gcttttttgc
202501 aaagcgcatc tggcaccatc
202561 tgatcttgc tggaaacgaa
202621 aagcagatca ttccgcttac
202681 ttgtaaagcg gtaaaaaacc
202741 ttatatttgc tggttttaaq
202801 ggcctttcat ctggcaccatc
202861 atttcttaac tcatgcgcac
202921 atggctggca ttactgacag
202981 acagtatccg agatgtatgc
203041 cggatggtgc acgttgcata
203101 gttgagatgg cggatgcgc
203161 aatatggggt gcccggcgaa
203221 tacccggatt tagtgcacat
203281 actctcaaga ttgcaccatc
203341 ctggcgtgaag atttgcgtt
203401 ttcaacggag aagctgatc
203461 attatcgca atggcgatc
203521 gggcgatc ccgtatgc
203581 atccagcatt atctggacac
203641 cgcttgcatt gcacgcatt
203701 cgaatcgccg gtaaacacat
203761 cgccgcacat tcaacgcatt

203881 aaattctgac gtactgaccg tttctaccgt taactctcag gatcaggtaa cccaaaaaacc
203941 cctgcgtgac tcggtaaaac aggcaactgaa gaactattt gctcaactga atggtcagga
204001 cgtaatgac ctgtatgagc tggtaactggc tgaagtagaa cagcccctgt tgacatgggt
204061 gatgcaatac acccggtgta accagaccgg tgcgtctg atgatggca tcaaccgtgg
204121 tacgctgcgt aaaaaattaa aaaaatacgg catgaactaa ttgcatttag ctaactgctt
204181 gtttaaaaag gcgctactcg gcatgggaa gacactcagt tatacgatt acatggaaatt
204241 tggtcataaa acgggaatgt gaacctcagt acttggcga tgaatcgaag aagattattc
204301 acggtgacgc gctaacagaa cttaaaaaac tgccttcga aagcattgac ttaatttttg
204361 ccgatccgccc ttacaatatac ggaaaagatt tcgacggat ggtgaatcc tggacgaag
204421 cgtctttctt ggcctggctg gtacatcatg aatagcacag ccacccgcta ctgaagaaac
204481 acggcaccat taccatcaaa agccgtatcg tctggctcta gtatatcgat ctcaaattcc
204541 gaacgctttt tctggtcatt cttgggttct taaccgtgac gatcctgat ggggtgcagg
204601 cgaaaaaata tggacccttt tcgaaaaaaac gcatgggaaat tgcgtatcc gatggtaaaa
204661 gctatacctt tcgaaaaaaac gcatgggaaat tgcgtatcc gatggtaaaa
204721 taatcgatta tcctcgctta cttgggttct taaccgtgac gatcctgat ggggtgcagg
204781 tctggtcatt cttgggttct taaccgtgac gatcctgat ggggtgcagg
204841 agcccagcgc gctgttaaaa cggatcatac tggccttc gatccgtatcc
204901 tggacccttt cggggcagt ttcaccacag gcgctgtcgc agcggcgtca ggtcgtaagt
204961 ttatcggtat tgaactcaat aatgagtagc tggagaccac tacgggcgt
205021 cttcgcatta ttcagaaaaat gaaacttgc aataatatgcc gatccgtatcc
205081 ccaaaaagca gcgaaatgtc cttgggttct tggatgaaata ggggtgcagg
205141 agtccgctt cttgggttct tggatgaaata ggggtgcagg
205201 caggatttga ctttttgcatt cttgggttct tggatgaaata ggggtgcagg
205261 ctttttgcatt cttgggttct tggatgaaata ggggtgcagg
205321 cggaaacatgg attcgggttca ttttttgcatt tggatgaaata ggggtgcagg
205381 atcgggcgtat ttaacctatg aacacgttga ggataaaaaga gatccgtatcc
205441 agggaaattaa aacacgttga caatgagcta atgatacatg ctttttgcatt
205501 cctgcataac ttgctgtcgc ttttttgcatt tggatgaaata ggggtgcagg
205561 gcggggttcat gctgttttag gcaatggatc tggatgaaata ggggtgcagg
205621 gtagccggaa ggcggcgtatc ttttttgcatt tggatgaaata ggggtgcagg
205681 ggcgtcggta atccgttctt gctgttttag gcaatggatc tggatgaaata ggggtgcagg
205741 atgcgcttcg gctgttttag gcaatggatc tggatgaaata ggggtgcagg
205801 tttgcgctat gctgttttag gcaatggatc tggatgaaata ggggtgcagg
205861 ctgggtatgg ttaacctatg aacacgttga ggataaaaaga gatccgtatcc
205921 gcttccatta ttttttgcatt tggatgaaata ggggtgcagg
205981 gcgtcctgcg ttttttgcatt tggatgaaata ggggtgcagg
206041 ctgaggcgag ttttttgcatt tggatgaaata ggggtgcagg
206101 ggcatgaagg cggcgtatc ttttttgcatt tggatgaaata ggggtgcagg
206161 aactggctgg ttttttgcatt tggatgaaata ggggtgcagg
206221 gtttcttat ttttttgcatt tggatgaaata ggggtgcagg
206281 caggcgaacc ttttttgcatt tggatgaaata ggggtgcagg
206341 cgggtactcc ttttttgcatt tggatgaaata ggggtgcagg
206401 tcttcgcgc ttttttgcatt tggatgaaata ggggtgcagg
206461 catgatattt gctgttttag gctgttttag gcaatggatc tggatgaaata ggggtgcagg
206521 gggcagttt ctttttgcatt tggatgaaata ggggtgcagg
206581 ggcctgtacg aacggcttc ttttttgcatt tggatgaaata ggggtgcagg
206641 acgatagatc cgtacgaact ttttttgcatt tggatgaaata ggggtgcagg
206701 gacggaaaaaa acgaacggga actgatgttc ggtttaaaag gatccgtatcc
206761 catacggggc ctaacggata ccatttctt gtcacgcata ctttttgcatt
206821 caacttcagc taatqaatga cctgtggctg gacgaatttg gatccgtatcc
206881 tatcagccta aatttcaggc cctgtggctg gcgctggatc ttttttgcatt
206941 tggtatcatc caaaacaagg cctgtggctg gacgaatttg gatccgtatcc
207001 acgggtctta tcgtcaactat cctgtggctg gacgaatttg gatccgtatcc
207061 gagtggcact tacaggata cctgtggctg gacgaatttg gatccgtatcc
207121 tcaggtctac ccgattaaag cctgtggctg gacgaatttg gatccgtatcc
207181 cggctctatc acgctcaggg cctgtggctg gacgaatttg gatccgtatcc
207241 gtttgcgtc gcccgcata ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
207301 gggcgtgacc cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
207361 ggtcgaagcc cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
207421 agggtaaaa cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
207481 ccagggtgaa cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
207541 atggccaaact cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
207601 atggctggcg cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
207661 ccagcgggtt cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
207721 gttactcagg cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
207781 accagcgact cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
207841 gatatcgcgc cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
207901 gaagtccagc cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
207961 gggttcgtct cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
208021 aacattaagg cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
208081 cagtacgcca cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
208141 gttgacgtca cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
208201 ggtacgcccag cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
208261 aaagatccgg cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc
208321 catctcaaag cgcacgcgc ttttttgcatt cctgtggctg gacgaatttg gatccgtatcc

208441 gataccgcaa ccgcaatcaa agcgaaactg gcggaaactgc agcctttctt ccctcaggga
208501 atgaaggtgg tttatccta tgacactacg cccttcgtaa aaatatctat ccacgaagtg
208561 gtaaaaacgc tatttgagc gattattctg gtgttcctgg taatgtatct gttcttacag
208621 aatatccggg caaccctgat tcctaccatc gctgttcctg tcgtgttgct aggcacttt
208681 gcggtactcg ccgccttgg ctattccatc aataccctga cgatgttcgg catggtaactg
208741 gcgataggc tgctggttga cggtgcgata gtggtcgtag aaaacgttga acgtgtaatg
208801 atggaggata accttctcc cagagaggcg acggaaaaat ccatgtcgca gatccaggga
208861 gcgcgtgtcg gtatcgcgat ggtactgtct gcggtattta tcccgtatggc ctttttggc
208921 ggctcgaccg gggcaattta tcgcccgttc tctattacta ttgtttcagc aatggcgcta
208981 tccgttctgg ttgcgttgat tctgacgcca ggcgtatgcg ctacgctgct taaaccgta
209041 tctgtgtaac atcacgagaa aaaaagcgc ttctttggct ggttcaatac caggtttgac
209101 cacacggtt accactatac taacagcgta agcggtatcg tgcgttaatac gggtcgctat
209161 ctcatatct atctacttat tgcgtcgga atggcgggtc tggttttacg cctcccgacc
209221 tccttcgtgc cggaagaaga tcagggggtt ttctgtacta tgattcagct cccctctggc
209281 gctacgcaag aacgtacgca gaaagtgcgt gatcaagtca ctcattacta cctgaataat
209341 gaaaaaagcga acgtcggaaag cgtgttacc gtaaaacggct ttagctttag cggtcaggga
209401 caaaaactcag ggtatggcatt tgcagccctt aaaccctggg aagagcgtaa cggtgaagaaa
209461 aatagcgtcg aagccgttat gcccgcaatt gtcgagttag gtaccgcgac aggttcgac
209521 ttggtgttcc cttcaacat aggactcggt catgatgcgt taacaaaagc gctaatcaa
209581 ttcaactgta ttgatcaggg gcatcctgat ctattagtgc gctacgcccc gaacgggctg
209641 ctccggta tggcgcgaa gctggatgtc gatcaagaaa aacacagggc gctcggcgtt
209701 gaagacacgc cacagttcaa atatcaacga aaccatctcc gccgcgttgg gcccgtatta
209761 tcgctgtctg gtcgttggc aaccatctcc tacqttcagg ctgacgctca gttccgtatq
209821 tttatcgatc gcgacgagt gaaaaaaagta tctttatgtt cgcagcgcca atggcgagat
209881 ctgcggaaag atatcaacaa gtggatttat gttcgccac gcctggaaacg
209941 tctacctta gtcagcacg cggtaagca ggcggccggac
210001 atgcgtcaa tggaaactgct ttcacagctg ccaaacggta
210061 tcgttaatgg aaaacctggc atgtcgatc
210121 atgtcgatc aggaacggtt
210181 attgtcggtt tcctctgcct
210241 atgtggtcg taccgctccg
210301 gaataatgac gtttactcc
210361 cgccatcctg attgttgatg
210421 tgaagcgacg ctggaaagcat
210481 ctttattctc ggggtatgc
210541 cgcagtaggc acaggggtt
210601 cgtgccgta ttcttcgttgc
210661 aaacagaggc gtcttcggac
210721 tctccgctta cctctgcatt
210781 tcatgtcago catttttct
210841 cagcatttac gttgtgtac
210901 ctaattccag ttgcattgtc
210961 gtaccgttt atgacgatca
211021 acgcaggata actgggagac
211081 ttgacgatgg gtatcattgc
211141 ttcaactata atataaagg
211201 cgaagttaa cacgataaaa
211261 ctattccttg tccgtatgc
211321 acaggctta tacagtaaga
211381 tggatataaa ccggaaacata
211441 aactggcaaa taaaatagcc
211501 gcttattaga ggcgtaaatg
211561 atggttcagg cggatataatg
211621 acgaagatgt tatataccca
211681 cccaggagca tagataacta
211741 aaacgtcgcg tgcacggcc
211801 ccaacacata agcacttga
211861 cattatccga taacttttc
211921 ggcctttgc tttatttgc
211981 taccatcgcc gctacggcg
212041 cgctactgccc gccagacaaa
212101 ctgataccca gagtcgaaact
212161 gccatatacg cacactaaat
212221 ttcggccgt tgcttcgaa
212281 gtgaactgccc ccgaaagtt
212341 tcgcattgggg agacccacaa
212401 tggggtcagg tgggaccacc
212461 tcttttatct ttcgttcccg
212521 aaaacatctt cggcgttgc
212581 gcatcgctgc gtttacacac
212641 gacctaaagt ctcagggaga
212701 acttatcttccgcattta
212761 gtgtatcgatc cactccggc
212821 cacggcagat agggaccgaa
212881 aaatggcgaa cagccataacc

213001 ggagtacacctt ttatccgttg agcgatggcc cttccattca gaaccaccgg atactatga
213061 cctgctttcg cacctgctcg cgccgtcacg ctcgcagtc agctggctta tgccattgca
213121 ctaacacctt gatgtccgac caggattagc caaccattcg gctcctccgt tactcttag
213181 gaggagaccg ccccagtcaa actaccacc agacactgtc cgaacccgg atcacgggtc
213241 cacgttagaa catcaaacat taaagggtgg tatttcaagg tcggctccat gcagactggc
213301 gtccacactt caaaggctcc cacatatcct acacatcaag gctaataat cagtgtcaag
213361 ctatagtaaa gtttcacggg gtcttccgt cttgccgccc gtacactgca tcttcacagc
213421 gagttcaatt tcactgagtc tcgggtggag acagcctggc catcattacg ccattcgtgc
213481 aggtcggaac ttaccgaca aggaatttcg ctaccttagg accgttatag ttacggccgc
213541 cgtttacccgg ggcttcgatc aggagcttcg cttgcgctga cccatcaat taacctccg
213601 gcaccgggca ggcgtcacac cgtatacgtc cactttcgta tttgcacagt gctgtgttt
213661 taataaacag ttgcagccag ctggtatctt cggctgactt cagctccgt agtaaatcac
213721 ttcacacctg tgtcagcgta cttctcccg aagttacggc accatttgc ctagttcctt
213781 caccggagt ctctcaagcg ctttggatt ctctacctga ccacctgtgt cggttgggg
213841 tacgttaga tgttacctga tgcttagagg ctttctgg aagcaggca tttttgtctt
213901 cagcaccgta gtgcctcgta gtcacggcctc agtgttaaag tgaaccggat ttacctggaa
213961 cacataccctt cagcattaaa ccgggacaac cgtcgcccg ccaacatagc ctttcgc
214021 cccccctcgc cttaggggtc gactcaccct gccccgatta ttatcggttac acgttgac
214081 tcggcctcgc gaggggctt ttcaccggc ttatcggttac ttatgtcagc ggaaccctt
214141 gtcttccggc cagcatgcct cacagcacac cttcacaggc ttacagaacg ctcccttacc
214201 ctgataccctc cgggtcgct gccgcagctt cggtgcatgg ttagccccg ttacatcttc
214261 caacaacaca gactcgacca gtgagctatt acgcttttt taaatgtatgg ctgcttctaa
214321 cgcgaggcc gccaacatcc tggctgtctg ggccttccca catcgttcc cacttaacca
214381 accttagctg gcggtctggg ttgttccct cttcagcagc gacattagca cccgcgtgt
214501 gtctcccgta ataacattct cgggtatttc ctctacccccc cgggttggta agccggatg
214561 gcccccttagc cggaaacagtg gagaaccaggc tatctcccg ttagatggc ctaccta
214621 agcttcggg gagaaccaggc atttttcaac attagtcgtt ctttccccc agttatgtt
214681 tcatccgcta cgtcgcttcc gtcgttccca ctttccccc gacattagca acccaaccc
214741 caacctgccc atggcttagat caccgggttt ggctccctta tacagttaac cctgtca
214801 ttaagactcg gtttccctcc ggttccctta gttcccttcc cttgtacag aatataagtc
214861 gctgaccat tataaaaaag gtacgcgtc accccaccac taagccccct ctgcttctt
214921 tgagggtgaa cgtcgcttcc gtcgttccca ctttccccc agcaaaggat gctatgtgg
214981 agttcaccac tggcttagt ccctcgccgg gtttccccc ctttccccc acgtacacgg
215041 ttttctactc gtttccccc gtttccccc gtttccccc ctttccccc ttacatcatc
215101 ggtcagttag gtttccccc ctttccccc gtttccccc atattcagac aggataccac
215161 gtgtcccgcc ctactcatcg agctcacaggc atatgcgtt ttgtgtacgg ggctgtcacc
215221 ctgtatcgcg cgccttcca tcgctcgccg ctactggggg aatctcggtt gatttctt
215281 tcctcccgta ctagttcccc ctagttcccc ctttccccc tggattcagt taatgtatgt
215341 cttagatgtt ctagttcccc ctttccccc ctttccccc ctttccccc tttataacgg
215401 gtgacgaaat cttaccggcg cttatcgag ctttccccc ctttccccc ctttccccc
215461 accgtgtacg cttagtcgtc taacctcaca ctttccccc ctttccccc ctttccccc
215521 accctgtta cggccgtgaa aattttagag actcacgaac ctttccccc ctttccccc
215581 gtgtcgaa gattttaaa gagcaaataat ctttccccc ctttccccc ctttccccc
215641 gcttgatcca caacgcctt ctttccccc ctttccccc ctttccccc ctttccccc
215701 atactgatgg cggccgtgaa aatggcggtgt taacctcaca ctttccccc ctttccccc
215761 accctgtta ctttccccc ctttccccc ctttccccc ctttccccc ctttccccc
215821 gtctgcttcg ctttccccc ctttccccc ctttccccc ctttccccc ctttccccc
215881 aaagtacgct tctttaaggc ctttccccc ctttccccc ctttccccc ctttccccc
215941 gttacgact ctttccccc ctttccccc ctttccccc ctttccccc ctttccccc
216001 tacctacttc ttttgcAAC ctttccccc ctttccccc ctttccccc ctttccccc
216061 aacgtattca cctgtggatt ctttccccc ctttccccc ctttccccc ctttccccc
216121 agttcagac tccaatccgg ttttgcACG ctttccccc ctttccccc ctttccccc
216181 tcgcttctct ttttgcAGC ctttccccc ctttccccc ctttccccc ctttccccc
216241 tgacttgacg tcatccccac ctttccccc ctttccccc ctttccccc ctttccccc
216301 ggccggaccg ctggcaacaa aggataaggg ttgcgtctgt tgcgggactt aacccaacat
216361 ttcacaacac gagctgacga cagccatgca gcacctgtct ctttccccc ctttccccc
216421 atccatctct gggaaagttt ctttccccc ctttccccc ctttccccc ctttccccc
216481 aattaaacca catgctccac ctttccccc ctttccccc ctttccccc ctttccccc
216541 ttgcggccgt actccccagg ctttccccc ctttccccc ctttccccc ctttccccc
216601 gggcacaacc tccaagtaga ctttccccc ctttccccc ctttccccc ctttccccc
216661 ttgctccccca cgtttcgca ctttccccc ctttccccc ctttccccc ctttccccc
216721 cggatttcct ccagatctt ctttccccc ctttccccc ctttccccc ctttccccc
216781 caagactcaa gcctgcccgt agaccggctg ctttccccc ctttccccc ctttccccc
216841 ccgacttgac accggccctg ctttccccc ctttccccc ctttccccc ctttccccc
216901 cctccgtatt accggccctg ctttccccc ctttccccc ctttccccc ctttccccc
216961 caattgtgc gtttattaac ctttccccc ctttccccc ctttccccc ctttccccc
217021 aaggccttct tcatacacgc ggcgtggctg catcaggctt gcccatttgc
217081 cccactgtg ctttcccgta gactgtggac ctttccccc ctttccccc ctttccccc
217141 ctctcagacc agcttagggat ctttccccc ctttccccc ctttccccc ctttccccc
217201 ccatctgggc acatctgtat tagccacccgt ctttccccc ctttccccc ctttccccc
217261 tatgcgttat tagccacccgt ctttccccc ctttccccc ctttccccc ctttccccc
217321 attactcacc cgtccgccc ctttccccc ctttccccc ctttccccc ctttccccc
217381 cttgcgtgtg ttaggcctgc ctttccccc ctttccccc ctttccccc ctttccccc
217441 taaaagttt atgctaaag aattaaactt ctttccccc ctttccccc ctttccccc

217561 ttgtctgata aattgttaaa gaggcagggtgc gacgcggctt tcagtcacc gtcgcgaggt
217621 ggcgttatatt acgcttccc gcttcagagt caagcgutta ttttcgctt tctccgtggg
217681 attctggctc gaaccccgct gaccggcgg cctgtgtgcc gtgttccgt gtcagtggtg
217741 gcgcattata gggagttatt tctgcctgac aagagggaaat taaaataat ttcttgagtg
217801 cgcactttt attcttgcg tttattttgc cgacgattt ggtgtacacc acttcttac tggtatccgt
217861 acgggcaaag tgcgcaactt gctccagtc ggtgtacacc gatcatcaga cggtcatacc agcgatagcg
217921 ttcggccccc gacatcttca taataagctt gacatcaga gatcatcaga cggtcatacc agcgatagcg
217981 gggatagcga taaaaactta cgcgcgttagc tgtagtctg cggcgccgt tttcagctt tacgcgcac
218041 caggttaacg gaataaaagg cgctcgcat ccgttcaac cgctggcat attcttaac
218101 aaactcctga aaggcgctgt ggtaatgacc ataacgaata gacgcgcca tcactacgcg
218161 atcatagcta tcccagtcg tttagttcag aagccagata agaggcaatt tcgcgcgtt gtcgtcccg
218221 ccccatctc ccaggtttagt aagatcaatg ccagcaaagt gataacttcc agacgaccaa atagcatgtt ggcgtatgat
218281 tttagttcag aagatcaatg ccagcaaagt gataacttcc agacgaccaa atagcatgtt ggcgtatgat
218341 ggtagagaaa ccagcaaagt gataacttcc agacgaccaa atagcatgtt ggcgtatgat
218401 gtaaaaaagta caacccgatt taagcgtagc cactaccgag gggaaagccg agaaatcattc tacgcctgt
218461 atccatttcg cccaggttat ccagcatact gacgataaaat accagcgcgt aggcaaaaaa gaatccccag
218521 cccagggtat gcgataatgg ccagcatact gacgataaaat accagcgcgt aggcaaaaaa gaatccccag
218581 gcgataatgg ccagcatact gacgataaaat accagcgcgt aggcaaaaaa gaatccccag
218641 acggcttcca ccagacgttt gagttcgccg ttcccctgtt taaataacaa cagaataacgg
218701 ttcggatgca ccagacgttt gagttcgccg ttcccctgtt taaataacaa cagaataacgg
218761 atgacctta acccccgcc cgttgcaccc ggcgaaccgc caataaacgc ggaacatagc
218821 agcaagacgg gcaaaaacag cgcccgacgc gcaatgcgtt cctgggttaccc gcttaataact gtaaacggca
218881 gtcgccatcg acacaacctg gacgttgcaccc gttttttttt tttttttttt
218941 atattatgga accacagttac cttttttttt tttttttttt
219001 aacatgcgga attccggatc ggcgcgttat accttcaggc tacgcccgt taataaagag
219061 aaatgcaggc catagttaca accggagatc acggaaaaaa tagcgatgtt ggtattaata
219121 gtgggactat caaaatagcc tacgctggcg tcatgcgtt agaagccggc gatagcgata
219181 gtggagaagc tgtgtccgat agcgtcaaac gcccggatcc ctgcaaacca tagcgccagc
219241 ggcgcaggctc ccgttagcaa gacatagata gacccacagcg ttttcggcgt ctcggcaata
219301 cgccggcgca ttttgttata ttttagccggc cccggcattt ctggccgata gagctgcac
219361 ccccccacgc cgaggacagg gagaatcgcc accggccagca caatgatccc cataccgcca
219421 aaccattgca gcatctgacg ataaaagaga atggcgtcg gtaatgaatc cagccccacc
219481 agcgttagtgg cggccgttgg gtttacccg gagaacgtt cccggccatc atcggtaatgg
219541 gtgagggttg ggcttccga gaaaataaaac ggccggcac ccaacgctggc cagcacggc
219601 cagaacagca ccacgataaaatcccg cgggatttca gctgcctt ttccttacga
219661 tttggccacc acgtatgga accgatcgcc agcgcgacaa aaaaggctcg cgtgaacgct
219721 cctctgcgc catcacgata tattagcgct accagtcccg ggagaatcat tttttttttt
219781 aataagataa ccagtagtcc aacgattcgg gtaatggcgc gaaaatgcatttctgc
219841 tccttattt taaaaatga ggtgggatt attcttcaat cgctaacaat tgcaatgaac
219901 cacggctaaa atccggcagt tttgtggaaa atgcatttccat atgagaaaaa ggaagcgcca
219961 ccctgagccg aacagacgccc tgataatcgc tggaaacgat ctcccggca aactgtctta
220021 ataatgcttc gattccggcc aactgaccgt actcacactg caaagtataat tcggttaatg
220081 gcgtcttgcg ttgtgtggca agctgacgta atgcctgatt cacccgcgc ccataaggctt
220141 ttaccagccc gcccgtaccc agcagaatac caccatagta ggcacgcacg acggcagtaa
220201 tttctccgac gccgctgccc atcaatttgcg caagcatcggtt ctgcctgtt gttttttttt
220261 gctcgccgtc gtctggaaaat cccagttgtt gtgagtcgtc cggcgacccc gccacccacg
220321 ccgcacaatg gtggcgcgca tcagggtgtc cagctctgac taactcaaca aacgctttcg
220381 ccgcctctac gccatcggtt tgcccaata gcttaataaaa gcccgtttt ttgatctctt
220441 caacaacggt gaccggcgat gcaagggtt accaactgtc cattacgcca gttttaaatc
220501 ccgcgtcatg tttccacgc cgttttgcg gatgaccacg ttatcttcaa tgcaatacc
220561 gccggaaaggc tttagcgctt caattttgcg ccagttgaag tgcttgcgtt atggcccttc
220621 ggcgcacggc gctaacagcg attcgatgaa gtaatcccc gtttcgatgg tcaacaccat
220681 tcgcccgtgt aacacacgctg tgccagcgat atacgggtat ttggacggcg cggcgagatg
220741 cgtaccggaa tcatctgcgca taaaccggc cacatcggtt acctgcagac ccaacggatg
220801 accaataccg tgcggcataa acggcccgat gagatcattt tccaccatcg cctcttact
220861 catgtcggtt atgatttgat gcttacgcgat cagcttgcg atgcgtctgat ggaactgaat
220921 atgataatcc acatagctaa cgcccgctt catggtagcg atcagcgcca actgttcgtc
220981 gttaacatct ttcaccaggat gggcgtagtc gttatcgctt ttccggqacc aggtccggcgt
221041 cagatccgccc gcgttagccgt ttttcgttgc gcccgcattcc agcaggaaac tgccatatttc
221101 agacggtgcc tgatgatcca gtttcgttgc gtcgcgttcc gcccgttgcgtt cgttcagcg
221161 cacaatgttg ctgtacggaa catcggtatc gctgttgcgttcc gcccgttgcgtt cgttcagcg
221221 gttgatgtca aactcgctca tgccggaaacg gatggccttcc tccggccccc gatgaccgct
221281 caccggcatt ttctgcgttgc cgccatataa gggcgatcc gcccgttgcgttcc agcaggaaac tgccatatttc
221341 gtagtaatgc agatagtcgat taacacctt ccgggttgcgtt gtcgcgttcc gcccgttgcgtt cgttcagcg
221401 ttgttagcgcg cgctcaggaa ccggggccgtt atagccgata ttggccacgcg cggcaggaag
221461 ttggctgccc atgccatccg ctttcgttgc ggcgcacgacc tgacttctt ctgtccagaa
221521 tgacgttggc agcggttcaat cgttgcgttgc gtaatcgacc gtcacttctt ccgtccagaa
221581 gggtttgttgc acgccatcgat ccaggcggccat gcaatggtaa ataaagggtga cggcgatcc
221641 cgctttaaac tgccggatgg ctttaaaacgg gtaacgcgtt cagcttaaaag cggccggatcc
221701 aagctcgccg gaatgaataa aaggtaacaa tttttttttt atagagcgcc gccagtgattt
221761 ccgttcttgc ttttgaccc caagtttccg catcggttccat tttttttttt
221821 atctctgccc agcgtgatca cacttcgttccat tttttttttt
221881 acaaaataca cacttcgttccat tttttttttt
221941 gacatgcttccat tttttttttt
222001 gacatgcttccat tttttttttt

222121 ggccaggcgctt gaggtgctggaaaagcaa caccattaa aagggctgctgctcgct
222181 aataaagcgg cctttattgtcgcgccggac atcaccgaat ttcttcacttttcactgtc
222241 cccgaagagc agttaaagccatggctgcataatggctcatatcgtaataa gctgttttaa
222301 gatttacccgtt accgacccttgccggtaaacggctatg cgctggggcggtggtaa
222361 tgcgtgtggcgaccgatgggttcgatggctccgttgcgatccgtatcggtatcggt
222421 actaaaactgg gcatcatgccatggtttcggttgcgtccgtatcggttatcggt
222481 gcggacagcgccgtggagatatatcgccggatataatcgccggatgttgcgt
222541 aaaatcgcccttggacggcggtggtaaaatcgatctcaatcgatccggatggat
222601 gtgttacgcccggccattacggcgatctcaatcgatccggatggat
222661 gaaccgttgaactcagcaaaatcgatccggatggat
222721 gtcgcacaaaatcgatccggatggat
222781 gccgcccgcgttgggtcgatggat
222841 ctggcgcatatcgatccggatggat
222901 aaaggttaaagccaaaaaagctggat
222961 ggcgcgggcaatggggcgatggat
223021 atcatgaaagatatacaacgatggat
223081 ctgaacaaacatcgatccggatggat
223141 accatccaccatcgatccggatggat
223201 gtatcgaaaatccgaaatggat
223261 ccagaaaccgttgcgtccgtatggat
223321 ctggAACGTCcgaaacttggat
223381 ctgggtgaaaatcgatccggatggat
223441 tgggccagcaaatggggcaatggat
223501 aaccgcgtgttccctatggat
223561 ttccgcaaaatcgatccggatggat
223621 ctgctcgacgttgggttatggat
223681 ttcccacaacggatgcagaaatggat
223741 cgttttggcggatggat
223801 ccgaagaaatcgatccggatggat
223861 cgcgacttcaatcgatccggatggat
223921 gttcgctgtcgttggaaatggat
223981 tacggcctggatggatccctccatggat
224041 agcgcgaaatatcgatccggatggat
224101 ccgaaaggcgttgcgtatggat
224161 gcccgtccggatggatctctggat
224221 gtcgatgccaatcgatccggatggat
224281 gcagaagatcttcggccatggat
224341 gcggcgaccatcgatccggatggat
224401 aacattgccccatcgatccggatggat
224461 gtcaaccgtcttgcgtatggat
224521 accggcgatqcgcaggatggat
224581 agccacggcgatggat
224641 atggggctaaatcgatccggatggat
224701 cagttcgccgttgcgtatggat
224761 acggagatattccgactggatggat
224821 gatgaagtgttccggatggat
224881 gatccggatggatggcacggatggat
224941 gccatgtgttgcgtatggat
225001 attcgctcaatggcgtatggat
225061 gctgtcaaaatggcgttgaaatggat
225121 atgaacgaaatcgatccggatggat
225181 cagatagacgagaagatcaatggat
225241 tgctccggatggatcacgtatggat
225301 tttggtctggatggat
225361 gtttaattaaatcgatccggatggat
225421 aatccccgggaaatcgatccggatggat
225481 cagcgtgagttatcgatccggatggat
225541 tttttcaccgttgcgtccgtatggat
225601 cctgatataatcgatccggatggat
225661 tgaactcttcagatccggatggat
225721 caccacctgcgttgcgtatggat
225781 tagaggttacgggctaaacatggat
225841 ggactgttcttggatggat
225901 gcatagcaggatggat
225961 tatcgctttacttactatggat
226021 agtacccctcactcgacttgcgtatggat
226081 tcagaatttgcgttgcgtatggat
226141 ctttcttataatcgatccggatggat
226201 aatcatcttcactgtatggat
226261 taccacatgttgcgtatggat
226321 acgtatggccgttgcgtatggat
226381 tcattatcactacgtatggat
226441 cgccgttctgttgcgtatggat
226501 gacgttataatcgatccggatggat
226561 ttgagtgtgaaaaatcgatccggatggat

226681 gtttaaagcc catcataacg ccagcacat aaattgactt taaatcataa attgaaacttg
226741 gattcataaa ccaacgaata tcaccggagg tgtcgataat agcgtagt gtagtgaagt
226801 tccattctaa tgccacccca gtaggggtgt tccagacagt acgcgttcca ttcccagact
226861 tatctttcg attattcaaa agataacaagc gatcttaaa ttctggggaa accttttaa
226921 catcgatagt aaagagtgt gattgttctt ctttgtacc cgctgattca ctataagcag
226981 gcggtgcata catttatag ctttcttta tattttcggt ttactaccc tggattctt
227041 tatattcaac ttcaacgta ttgacataat cgggtaaag accaaagacg ggaataccgc
227101 catacgtaa aaggatttaa ttatttaact tatacgcgt ctcctggcca tttctttgg
227161 gtacaatccg cacatgcacg tcacgtaact ggttaaccgcc attacgaata acggcggtt
227221 gcggcgcgat atcatagggg ttcataacaa cttcgccaat tttccctgg acctgatagt
227281 ccactttagc gccgctggcg cggccgatgg cgaaagcagt agaaggtaact gatgacaaaa
227341 ttgcaacaga taatgcgaga gaagttaaag catatttaa tttcataaca ctctccatct
227401 tataaataaa taactaactt tccattttat gtttcttta taaaataaa tgaagcatat
227461 ataattaact attttattt atagcctcag gacataat tacttaattt attacacgca
227521 atacaaagcc ttagatatt caatatcata agttttata gttgacgatt aattaatatt
227581 taagaggact ttaggttagg ttaacgtaaa aagggacgct actgcgtccc ataaaatagt
227641 taaataaatg cgaacgcattc gccaaacaga cgatcttccc ggcatttacg ctcatgacag
227701 aacagatcgc gggcgattt cgccatctca aaacgtccgg caatataat atcgtgcccc
227761 gccagcgtac cataatcctg caataccgcc gtaagtaccg ttcctgtacg tccacgccc
227821 ccttcttccg gctgctcgt aacagggtca atacgcaat taggatgggt aacagagagt
227881 gcttcagct cagagagatc atagagggtgc ttttcttgc gaccgccccca gtaatggta
227941 acatcgccgg ccgggttgcg cgctaacgccc gtcaacagga tggagcgtgc ataagaaaag
228001 cccgtaccgc ccgcgatcag aatcaacgga cgcttccat cgtcacgtag ccaggcgtcg
228061 ccatgcccga taticgacac gatttccgg tcttccagaa ttcgatccat gaccgcccattc
228121 gcatacagat tgagctcgga agcgccatg tggtaattcaa taaaccctt ctcgtccggc
228181 gttgaggcca tcgaaaacgg gctgtttgtca cgctcgttca ttacgaccat caaataactga
228241 ccagcgcgga atgaaaacgc cgctgtccgg actaaacgaa cccgatatac ggtatcggt
228301 atagcttcta ccgagggtcac tttacagctt aaggttgtca tgcgctccct ctgtcggt
228361 tcgggtcaat accgacattt ttcaagccga gtcgcccgcag cctgaaatgt cgatgtccgc
228421 tttcagttat taaaagatag ccagctcatc ccaaatcgcg tcaataacgcg cggtaacttc
228481 aggatctta acaataggac cccatttttgc aaccgcggc gcttgggtt tggcccggtc
228541 ggcattccgc tttcaacca gcacgtatc ggagacccggc gaggcaaat ccaggtagtc
228601 aatcgccgt ccatttcact tcattccagt aacgtcatca tccatacggy tggtaatcgc
228661 ccagatcaca aactggcgca ttttcatcg aaaacgacca gacacccatc tcgaaacgca
228721 cgtatacata acggtactgc ttttcatcg tcactaccgc caggcggtaa gaacaccctt
228781 agcgtactgc acgatttccg gaaactgttt ttgcagaata ggcacgaaga cttcatttgc
228841 ataaaagtgc aataccgcg aataccgcg gctcatcgccc cgacgccccg gtataagggtt
228901 cgccacccct aataccgcg cgctcgtaa tatgcgtgac ggtaaagacc gaaaagttat
228961 ggcattctca gtatgatcgc catacggtcc ttccggcgcc atctctcccg gctcaatgt
229021 ataataagccc accttcaagg ataatctcg cgctggcagg cacttccaga tcgttagaaa
229081 accttcaagg cacttcagtt ttcgtgccgc gcagcaggcc cgcaaaaggca tactccgaca
229141 aacaggagtc acggcgccaa cccggacgcg cggttaacca cttcctgaaaa cccaatgcga
229201 gaaacgttca ggcataatca gcttattttt acctatcaac tgcgtacgat cgccgcgggt
229261 agacagccag tctttgtcg gGCCACGCGT taccgtcaatc ccccaggtaa aaatcgacat
229321 cttaaactgc ggcagcttgc aataatttac ccacttcccg taaggcggya ctcgtacat
229381 cttttgtcg ggcacacagg tcatgacagg aagacgcgtt gtcggcatat tcagcacttgc
229441 ggcgtcgcc ggcacacagg tgctggcaag ggcgcggcg taaccgttca caggtt
229501 cgcgattttc ggcagcttgc caaacagatc gcaaaaggct ttcggcggtc
229561 aataatttac aataatttac ggcacccacc ggcacgcgc acatcatcc
229621 cagaaacgcg cttttgtcg ggcacacagg tgccaaacgg gtcggcatat
229681 catcgccacg cttttgtcg aacagcaacg ccgttccacc ggcacgcgc
229741 aggatttca tgaggatcca caggtagcgt gatgcgttt gtcggcatat
229801 gatttccaga tagcgtcagg aagtgcgtta aatcgtgata ttcatggcg
229861 agcgtcagg tatacggcgt tcatcatcg gatgcgttat tttgttaaa ttagcgt
229921 agcgtcatcat caacgctaatt ccagataacgg cttaaaggat gaagtgtata
229981 ctctggcaac ttgctatgct tgcgccccga acaagcgat aagagt
230041 cgcatggctt gtactgcaaa cgcgggcaac ttcaagcgtgc tcaggaacac
230101 ggtattttact ttgcctgaca ccgtatgatca ccctggaaaa aatggtacgc
230161 aaggcgtaag cgaaccgct tttcctaatt atctgttgc tttgttgc
230221 ctttcgtcag tacataccac tacaatcaac gccacgcgc tttgttgc
230281 atccctgcgt cgtccttcc acgttatttcc atcagcttgc
230341 ttgtcgatcc tggaaacccca tatcccggcg atagcgtcat
230401 aaggcgtaag agcgattttt accgaacccg atggcgaaac
230461 attactcaa taaagaagtg aagcagacg taaaaaacac
230521 aatacgacct aatacgacct caaataaaggt tctggcattt
230581 gatcggtcag tcttcaccac gccatagcgc tatgcgtcc
230641 ccattgcgga ggtcggttgc tgggttgcg cgtaaagatcg
230701 gggctcggtt cgtcggtacg ttcccgatgg aataaaacgg
230761 gtcgggttct atcagtagct ttcggcgatgg aataaaacgg
230821 cccgcgtcgt tcgtcgaaat cccacccggt aataaccgat
230881 ggcctgcatt tgctggcgta aaccggtaaa gcagtgcagt
230941 cagccaggga tcaagcaatg ccagaaatcg ctcatgcgc
231001 tggcatctgc aattcggcgg caatttgcgt ctgcgcctga
231061 cggcggtgaa aaattgcgt tgaaatccag cccgcactca
231121 ctgggtcgcc agcgcaataa tggcgcttc agacgcagat

231241 ctgactttca tggatgttcg ttccggtcag tagcataacct tttactcctg ccgcaaacgc
231301 acgggcgacc acatcatcac gatctttgc aaactggcta ctggtaaat taacgccaat
231361 atcaaacatg cttccccca tatgacaacc gcccggcg gcggttgcgt ttagtcttca
231421 gtgtgctcg cctttcggt ctcggcctcg ttatcttcgt cgccgcgtccg tcgcttaccg
231481 acataaaaagc gtgagcagaa aacgccaatt tcaaacaggc agtacatcgg tatacgccagc
231541 aacgtttgcg agaagacatc tggccgcgt agcagcatcc ccacaatgaa tgccccgacc
231601 aggatataag gccgttttt acgcaaatct tctggcgtgg tgatgccat ccagcacagc
231661 aacacaatcg ccaccggcac ctcaaaggct acgccaaagg ccataaaaag cgccatgaca
231721 aagctcagat agctggcgat atctgtcgaa acctgtaccc cttccggcgc cgtatcgctc
231781 agggaaaccaa aggccaaagg gaatacgaca aaataggcga aggccatacc aatgtaaaaa
231841 agcagcgaac tggataccag cagcggtacg accagacgac gctcgtgtt atacagcgcc
231901 ggggcgataa aggccaaac ctggtacaaa atgacaggcg cggataagat caaagacacc
231961 atgaagggtga gtttgatagg ctggggggaa gattcgacaa cggcggcgc catccgtcgc
232021 gccccttgcg gcattgttt tatcagcggt gcccggacta aatgataat atcattggcg
232081 aaataaaatta acgcaggaaa actgcacgaa tgcggacgc tgcaagggtt caggcgctt
232141 cgcgaactcg tcaagatgcgt gataaggcg tggatgcgc tgatgtatctt
232201 tattcaactcg cgagggggaa gattcgacaa caggcgcagg ggatttctt tcggcgtcta
232261 tcgcggctac ggaagcggtt tccgtcact caggcaggtt agctttaacg ggctccggct
232321 tttgttccgg cgcgtcgcc tggatgcgtt cggcggcagg ggtgacgccc tcattgcgc
232381 tttcggtccc ttttaccacc ggattatgga tggatgcgc ttcattgcgc gcttgttccg
232441 gatcggttagc gctgttaggtg ctggggggaa agattttcca actccggccgc ctgacgcagt
232501 atgctttcag ttccggagtc tccgtcact agttctcgat ggctcgccct ttcgacttt
232561 cctggaaactc ctgaagttt cttttaccacc ttttaccgc tcaattgcgtt
232621 agcgcaacgc gcgaatccag cccgttaccgc ttttaccgc ttttaccgc
232681 ccaacacaat gaggccgata acgaacacta acagcagttt
232741 cggattatac ctgtctttt tcttggcttt
232801 tatccgcgtt agatttagcg gtaaaatcag
232861 catcatcgct catggccttt ttaaaggcctt
232921 aaccgagttt tttggtgccg aacagcagta
232981 aaataactgtat accaccata catgttcctc
233041 ttatacacat tatttttcgc gctgctt
233101 tacttttaca tacgaccggg acgacattga
233161 atatgtaccc gctgtacaca accggcggtt
233221 cagccaaacca gccagaccac tacggcccg
233281 tcagggcggt tgacgagtaa gaatgaccgc
233341 aaataacgag actgacttt ggcacatgg
233401 acactgtgct gtaaaatattt gcccggccgc
233461 ggcatttttt cgaccaggaa cggcgcttt
233521 cccacctgtat ctggatcca ggactcaaga
233581 tgaggataaa gttggccccc aacccttca
233641 agttcggtct ggacttccat gttaaatcga
233701 tgaccaaacg agattccgc gagcggctt
233761 gcaaactcaa aatcttcaac gttggtatct
233821 tccgcccaccc ttccgttaatc gcgattaaaa
233881 ttatcttctt tgtagcgtt cccgacgata
233941 tcaggggtgtt catgactgac aaaaatattt
234001 tcgcccggaaa cctgggtgaa gaaaacttta
234061 gtgcgttct tttccagcgc gcccacatcc
234121 accatcatgt tctggctaca gtaatcgag
234181 tttcaaaatcgt tgacgttacatc
234241 tcgatcagcg ttttctata ctcacgcacc
234301 ggcaacaggc gtggtaccca gcgagcaagg
234361 accggcaaaa tatccggcg aatgaccta
234421 cgcgcggtat gtacccggc gattgacgccc
234481 aaccaggctt cgacaggtag cccccccatc
234541 ccatcgaaatg gcgacttt atcctggagc
234601 aacagggtac ggcgcgtggc gagcatctga
234661 tgcaacgcctt gtcttaatcg ttcacccagc
234721 aacagcgaaat agcgccataa tcggagtgcc
234781 tcaaggccgt agcttagaaa cgtgcggatg
234841 gtcatttggc cccagttt tccagccgt
234901 cccgggtttc ttccggcaaaatc
234961 cagtgtatcg ttcagccggc taacgctgt
235021 cccggccacg cacgacccatc ccgataactt
235081 acagctccgc aggatcgaa tccggcgt
235141 gaatatcgcc ctgcacttcc agttcgccgc
235201 cgcgtatgtt tggccaaaacg ctgcgttgc
235261 atgccccccatc cacatcaacc tggcggt
235321 ccttttagttt cacacacgtt actttccct
235381 gcaacgcata cagaaacgtt ttgaggagac
235441 aaggcattcc accctcttag aatttataac
235501 gattgtatata atccacgcctc tcaaattccgg
235561 gatcggtatgc catacggtat gattccgc
235621 ccatcgagcc aatacgccgt aaaatatgaa
235681 gctcaatgtatcaggatggaa aattcaagca

235801 taatgcaatc aaacgttatta tcagggaaag gcagagcttc ggcattcgcc
235861 ctacgttgcc gatcacgccc atattacgc gcttctcact ccccatttg
235921 cattaataatc cgccaggata actttgccag tttccccgac catacgtgaa
235981 taagatcgcc cgtccgccc gctaaatcg aacgggttgc tgacattaaa
236041 aatcaatggt gaagcgcttc cacaaacgat gaatgccaat cccatcgcc
236101 catcgtaact tgacgccaca gaatgaaaaa cgtggccac tgacattaaa
236161 tagcgacggt ctgaaagcca aagtgcgtcg tttcttgcga catgtcact
236221 ctgcttatcg ataaaaatgt tcaagaagtq taacagattq atcttccacc
236281 cgccaggact aaactactcc gtatgggta acttaactgc ggccaatttq
236341 gggataatgt tcatctgcc gcccttcagg gatcgatcg aacgatatt
236401 cgtaacggcc tgttccgcta aatccgatt aatctcgctt ttgatttcca
236461 ccggaaggcc tccgcctgcp caaaaacggt cccacgcccc gacgcaagtt
236521 ctggcggtag ttatctcgq ctttatccag ctctgaccg atcgctgaca
236581 gaacaaccgc attttatcg tcatagcgcc agagcttact ggctctgtct
236641 gctctgggtg acgataatgt acaggtggc tattttcag gattgtccgt
236701 ggggcttacc agggaaacgq ttttagcg tgcctcggtt aacgcccacca
236761 taacgcccgc aggaaacgg agctgttgtt gataaaacatc atcagttcg
236821 gaggccggga ttttatcg tcttgcgtt ccccaactg agaacaatagt
236881 ggcgtatgtc actaacgtca tccggctgca gatggccatc ccagcgagcg
236941 ctctgtaggcg gacgtatgaca ctttcacgc gtcggatgc tggccatc
237001 gtcggatgaca ttatctcg ttttagcg tccgcgacg ctttcacgc
237061 gtattctgtg ccattttctt gtcggatgc gtcggatgc tggccatc
237121 ccaggatgtc gctttaagct gtcggatgc ttttagcg tccagc
237181 cgccatttgc ttggccaaac gtcggatgc gtcggatgc tggccatc
237241 ctgcgttctt agcaggctat atacggttcg ccaggatttc tggccatc
237301 cagcggcgtc gtgtcaaaag cggatttgt cttccgcgtt tggccatc
237361 gtgtcaaaag gatcatctga tcggcttcca gagaggatt aactgtcg
237421 gatcatctga ttatccacaa cattcaactgc tccaggctt tggccatc
237481 ttacacgaga ctcggatgc gtcggatgc ttttagcg tccagc
237541 aagtaactcg aatgttcg ctcggatgc gtcggatgc tggccatc
237601 aagttcaata ctcggatgc gtcggatgc ttttagcg tccagc
237661 cgcttcgtc gtcggatgc gtcggatgc ttttagcg tccagc
237721 cataagagta ttggccaaac gtcggatgc gtcggatgc tggccatc
237781 tgtgtgtat aacgtccag ctcggatgc gtcggatgc tggccatc
237841 aggccgaacg tttcaccgcg acggtaacg ttttagcg tccagc
237901 ccacgacaat ttccaccgcg taacagcgta gtcggatgc tggccatc
237961 cttgttgggt acggtaacg gtcggatgc ttttagcg tccagc
238021 cgcacatggt aacgtccag ctcggatgc gtcggatgc tggccatc
238081 actctccat ctcggatgc gtcggatgc ttttagcg tccagc
238141 ctcgaccggg ttcaccgcg acggtaacg ttttagcg tccagc
238201 tcgatttcgc gtcggatgc gtcggatgc ttttagcg tccagc
238261 ccatcgccgc aaaaatcgagg gtcggatgc ttttagcg tccagc
238321 cgtcgccgac gttgatgtgc ttgcggcagt gtcggatgc tggccatc
238381 gaatacccgat gataactgct cttaccgcg ttcaccatcca
238441 tagagcaaac cttaccgcg gataactgct ttcaccatcca
238501 gagatgcccgg cttaccgcg gataactgct ttcaccatcca
238561 cgccaggggac gatggcgagc ttcaccgcg ttcaccatcca
238621 aaacatcaga cttggacata acctaaggca ttcaccatcca
238681 aagacacttt gttaccatt aaaaatgtat gtcaccatcaca
238741 aattgcactc aaaagatagc ctatttta aggtacgga
238801 agcattgcac ttcaccatcca gacttgccttca
238861 taagattgcg gtcggatccc tcccctctca
238921 cttgcaccc ttcaccatcca
238981 tagcgccggg ataacgtcg
239041 accaaaggca agcgacggcg
239101 acatgaacac attcgcgata
239161 gccggagctc tatttccgcg
239221 gagccccgtg gtggctaaag
239281 cagtggggct tcgcaacg
239341 gggaggccgg attacctggc
239401 gtggtagccg aagctgttg
239461 cgccaccgat cttaacgcgc
239521 acaggagac gtggaaacca
239581 cgtggtctat cccgatgcag
239641 agcctcagcg aaagacggct
239701 aaaaggctaa ccacagcgca
239761 ggctcaacaa atcgcatcg
239821 tgccgctgcc gcagggacag
239881 cctgcgcccag ccagcgcatg
239941 agacattcat atacggcgta
240001 tatgcgcagg atgacccggac
240061 acgcaaaggcg gtgtcacaag
240121 caaacgcaat agccgctcg
240181 ccagcagatg ctccgggtag
240241 acgcaaggc atqtccacaa

240361 agatatacggaa gatctgggttgc agaaattcgccatattgcca cgacggtaaccgtcc
240421 ccagctttgc cgcgccttcgc cccggcatca ccagattaaggatccatggcg
240481 tcattcgctc taccagcggttgcataaaactgaa taaaacgcgatccatggcg
240541 cgttagacgtc tgctgcattgc cgcacgttat gtttcccacgacggtaaggatccatggcg
240601 caacatggtg cgcttaagc cgcgcattgc tgcgacgacgacggtaaggatccatggcg
240661 cagcgcgatt aagccgatagggttgtat acgacgcggatccatggcg
240721 tgagaaaaatgc ctgttcagcgaaaaaagcgcgc cccactcgcttgcacacaatgc
240781 tctgttaacgc atgagtgattttcgcccatcgccgtacttgcacacaatgc
240841 ggccggaaaaaa tggcagccccatcatggtcg gttcgccgcaatcgccaggca
240901 ggtcgccact ctgcgcggcaatatgctggcgtatggccatcgccaggca
240961 ttgcgcaggattttattgcgttccgggtaca ggcctctttgcgttgcacacaatgc
241021 tgcaatcaat attgcagatcgcgcccggatcatggtcg gttggccatcgccaggca
241081 ccatgtcaga catctccgttgcggaaatcatggtcg gttcaccagcgcgttgcacacaatgc
241141 ttatcgctcgc cagggaacatgcggaaatcatggtcg gtttgcgtatggccatcgccaggca
241201 ggcgcgtatcgcgacggaaaaaaatcatggtcg ggcataaaaaatgcgttgcacacaatgc
241261 gacgctatccgcctgggttgcattcatacgatgcgacggccatcgccaggca
241321 tagccagatcctgaaaaagaatgcggcgaaatcatggtcg gtttgcgtatggccatcgccaggca
241381 ggcgtgttaatcaggtcagaatgcggcgatgcgggttatgcgttgcacacaatgc
241441 cggataaaacgcggcgtatgcggatgcgggttatgcgttgcacacaatgc
241501 accatgttcgcctaaccgcgcgcgggttccgcggccaccgcgcgttgcacacaatgc
241561 ggattcacccacaggcggttgcgggaataatgcgttgcacacaatgc
241621 atccactcgaatgcggcgcacgttgcggagatgcgttgcacacaatgc
241681 ttccggtagtcgaaacgcgttgcggactccatgcgttgcacacaatgc
241741 atggtgatcatcccgcgatgcggcgatgcgttgcacacaatgc
241801 taacacatgtgggtgtggatctgggttcaatgcgttgcacacaatgc
241861 gcttcacacccattccagataggcgttgcgttgcacacaatgc
241921 cgcagcgcgcgttgcgtatgcgttgcacacaatgc
241981 tcatacgcgcgcgcggcggatgcgttgcacacaatgc
242041 gggaaatgaccatgcggaaatgcgttgcacacaatgc
242101 gtcagcgaactggcatatttcgcgttgcacacaatgc
242161 ccaatactacatgcggcggttgcgttgcacacaatgc
242221 gtaaaagacgatgcggcgatgcgttgcacacaatgc
242281 tccgcgttgcgcgcgttgcgttgcacacaatgc
242341 tgccggcgatgcgggttgcgttgcacacaatgc
242401 cgcaggccgcgcgttgcgttgcacacaatgc
242461 ggaagtttaatgcgggcgcgcgttgcgttgcacacaatgc
242521 ctgtcctgcgcgttgcgttgcacacaatgc
242581 gagtgacgacatgcggctgaatgcgttgcacacaatgc
242641 ttcagcgcataatgcggcagcaaatgcgttgcacacaatgc
242701 ctttttacttccgtatgcgttgcacacaatgc
242761 gagcaggaggatgcgttgcacacaatgc
242821 tttcggtcaatgcggcgatgcgttgcacacaatgc
242881 cagtcgaccatgcggatgcgttgcacacaatgc
242941 acatgttagccatgcgttgcacacaatgc
243001 aaataggtcgatgcgttgcacacaatgc
243061 gcatccagccatgcgttgcacacaatgc
243121 tcaacaccacatgcgttgcacacaatgc
243181 agcaacgtcaatgcgggtcaatgcgttgcacacaatgc
243241 ggccccagcatgcgttgcacacaatgc
243301 acaactgtgtccaggatgcgttgcacacaatgc
243361 tgatagttatgcgttgcacacaatgc
243421 ggcgcaccatgcgttgcacacaatgc
243481 tgacgagccatgcgttgcacacaatgc
243541 aagtgcctcatgcgttgcacacaatgc
243601 cgcagttcgcgcgttgcacacaatgc
243661 tcttgcgccttgcgttgcacacaatgc
243721 aatattgtcatgcgttgcacacaatgc
243781 ttccggcttgcgcgttgcacacaatgc
243841 tggggtaagcatgcgttgcacacaatgc
243901 ggatgtttacatccatataatgcgttgcacacaatgc
243961 ggcgaagtgaatgcgttgcacacaatgc
244021 gaatagtggatgcgttgcacacaatgc
244081 tcatacgttcatgcgttgcacacaatgc
244141 gcccgtgcgcgttgcacacaatgc
244201 gcaaatcagcatgcgttgcacacaatgc
244261 tattgaatgtatgcgttgcacacaatgc
244321 ctggccgcgcgttgcgttgcacacaatgc
244381 gtagaaaaatggatgcgttgcacacaatgc
244441 ttattcgccatgcgttgcacacaatgc
244501 cagaaaaacgcgttgcacacaatgc
244561 gcagcgcgcgttgcgttgcacacaatgc
244621 gctgaaaaatgcgttgcacacaatgc
244681 tgccgcctgcgttgcacacaatgc
244741 aaccctgggcgttgcgttgcacacaatgc
244801 tcaggcggttgcgttgcacacaatgc

249481 cagatgaatg agctggcgaa tcacgctcac ccagtgtca tggctcttt cgcgccccat
249541 gccataaaacc ttgagggttgc catgaccgaa atcgcggatg cgttggttat tcgcgcgcgc
249601 gatcacctcg acaaactgac ccatgccaaa acgctggta acccgaccaa tggtagaaag
249661 cgcaatctgg gcatcggttgc agccatcata ttgttgggc ggatcgagac agatatcgca
249721 gttgccgcac gtttctgtc ggccttcgc aaagtaatta cgcacatcg attcagcttgc tgccgttcaa
249781 gtttgcgtc tcggcaaaaag cgcacatcg attcagcttgc tgccgttcaa tattcctgaag
249841 ctgtccggct gtttctttc cagacaacg acgttagccag gccatatcg ccggatcgta
249901 aaatagcatg gttcccgac tatcgaaatg cacgacgaaa gcccgttt cctgatagta
249961 ggattcaata ttacgcggga tcgcccacc acgttagccag gtttgcgtt gttgtttat
250021 gcccattcca aaagcgacgg cgtttccag ccccgatcg taaggccgc gaaattttc
250081 ctgcacatcg ggcgaatag cgttatccag ccccgatcg taggcccgcg cgctaattgcc
250141 gcgactttgc aagcgccggg cggtatctt cacttcgcg cgcactgttc agtagatgat
250201 acccgatttg cgcgttgc cctgaacata ggcattagc tggtcgagcg gcttaaactt
250261 ctcatcgac atgtacgcg tattcggtc gtcaaaagctt ctgatctgg ttaacggatc
250321 gttaaagccca agcagacgaa taatatctg ggcgtggg tgcgtggg tggcggtcaa
250381 tgccataaac ggcggaaacg gaaaacgtg ggcggagccg catattccgg
250441 acggaaatca tgcgttccat cgcggatata caagaagtt gtgcgttca tccaccgg
250501 attccagtgc gccagatgat tacggcaccc cgcgttccgc aggcgttccg
250561 cagcagacga atctgtccgg cccgttccgc tcaagctgt gctcgccgt
250621 ttgagtggag ttcagacagg cgcggccac agtagctgt
250681 tttcatcaac gagatcaggg gcaacacgac cgcggccgt
250741 gatttgatag cacagagatt tgcgttccgt ggcggccgt
250801 ggagagcgca gtatcaataa cccctgattt cgcggccgt
250861 ttcctgcaaa acctgtttgg cggatcgatc
250921 aaccgggttc accataaaatc aaaaacaggcg ctatttcag
250981 atgttaaaa cacaatccaa tcagaagata tgcgttca
251041 gtctgattaa aattatagtc gatcggatcg
251101 agccggacat gtttagtgcg cggatagctt
251161 ttccagttgt actggcttt ggcgttca
251221 agctgttaat aaccatata tttgtgtat
251281 taccatgggt tgacccatc
251341 cgggtccagc tacgcggatg
251401 tctacgtcgc gcagcgtcca
251461 tgcgttctgt agttgtttc
251521 caggatttct gcgtatagga
251581 agcgaaaaacg ccaggctcaa
251641 ttgttaggtac ttatggctc
251701 gtgtcataag ggttaaagcgt
251761 cttcccgta ctgcaggcgc
251821 gctaatggca gtacgtggc
251881 ctcctgacga agtattttca
251941 cacatagccg ttatgttatcc
252001 aacatttcat taaccaatgg
252061 agctctgaaa ttatgggtg
252121 gctggagctg gaacgctatg
252181 gatgtcgcc aactggcgcc
252241 tgcgtccgcggc ggactgttat
252301 agatgaacta cgcacgcgc
252361 gcgtccgggc agaggcaacc
252421 agtggccgtc gcccggcgtgg
252481 cgctacttat atgggtggat
252541 tccggatgga cgcaaaacaa
252601 tttggggat cgcggccgc
252661 tgacgcaccg cgtgatttgg
252721 agtggcgaca gtttaagcgt
252781 ccgcgtact ggtcgccggt
252841 tgctggaggc cagcctgggt
252901 ttttcttgg cgaacgcttc
252961 gcgtgctggt gcaactctgg
253021 ttagttttgc gtttacggc
253081 tgctggtcga aacgctatgg
253141 atagcgccac cagccatatg
253201 cgggtgtggt cactacgatt
253261 tttctacact gggcttttc
253321 cgtttatgg cgaagtgcgc
253381 cgctggcgat tttcgatgc
253441 attctaaata taatctgaaa
253501 gctaaccgacg taacccaaca
253561 tctgagatgt gtttccag
253621 ttttccattt tggttgggt
253681 acaattttac tacattatct
253741 tttgaatata taaaattcta
253801 ataatggttg ctgaagattt
253861 tatttgcaat cttttctct
253921 taatattaatg gagttacat
ggacaaggat tatattaatg atggttcgat

54041 ccagaatata aacaggcatt taaagcatta aagccccgac aacggttgac tattcaaata
54101 aactttatttgc ctttttctt ctcatggatt tatttgttg tactgggtct gtggaaaaaa
54161 gcaattatag ttatttattt agggatcggt gcaatattta ttggagcatt aatccggcg
54221 aacataacttgc gacttgttgc cgcaagttat gtccggcgtca atacaataaa gtggttctat
54281 gaaaaagagg ttaaaggatc caatacttgg agcctgtaac ttgcgttgcgtt ggttcagccg
54341 cagctgaatc accctggcct taatgtctt cagccagttc ttgcgttcaa agtacagata
54401 cggcgaaggccc cccggccagaa tcataaaagat aatcgccct ggataaccaa agctccactt
54461 cagttccggc ataaaactcga agttcatccc atagctggaa gcgaccagcg tcggccggcag
54521 gaacaccacg gaaaccacccg agaagattt gataatgcgg ttctgttcaa tggtgatgaa
54581 acccatcgcc gcctgcatca ggaagttcac cttctggAAC agcgattcat tggtcggttag
54641 cagagattcg atatcgccg gatatctcgc cgctgtcc agctgtccgc ccggtaagcg
54701 cgccttgcc accaggaagt tcagcgcgcg ctgggtatcc atcagacaca ggcgtaccc
54761 ccagccgata tcttccaggat ccggccaggt ggagagcgct tcgtgttccat catcgccctg
54821 atgcccatttca ataatgacgc ggctcagttt ttccagatcg ctgttagatgt ttcgatttc
54881 atccgccaac tggtaatattt tggttcgaa cagatcgagt agtagttcg aagcattacc
54941 atcgaccatc ggctggctgc gggcgcgcgt acgatacaaa cggaaaggcgg gcagttcg
55001 ttcacgcagc gtaaacaagac ggccatcgcc aatagtgaat gccaccgtag agttaccggc
55061 atgatcttcc gcatcttgcg agaagaagaa ggagtggata tgcagtccgt ctgcgttcc
55121 aaagaagcgc gggatgttt cgtatcttc cagttcagga cgcgtcgcca gactctggcc
55181 cagctcagat tggtacgccgca atcgctcgcc gtctccgggt tcgacccaaat cgaccatac
55241 ggcataatc aggctttgtg actcctcgac ttccagccgg gtcagtcgggt tttttccag
55301 ttgaaatgcg ctcagcatga ccgggactcc caatgcgtaa aatatcgga cagttcagat
55361 gggcacacag aaacaaattt ggttcagac cattaaacag cctgactcaa cgcgacgggaa
55421 aaaaatgaaa ggtcgctgac aaccgctaag gctatcagca aaaaggata gccttaggag
55481 ttgatcctgg atgacaggat aatgagccag tatctactgg gtgtgtccaa ggcgaatgtc
55541 ctcttagcgt aatcgctggc gcatgttacg ccagaaaaaa tttggcgtca acacgcaacg
55601 aaacgcgaaa aagcaataat ttccccttat gcagaaaggt tagcagagtg agagtattt
55661 tctatgattt cagaatatta acatcaatat atcgcggat ggcggcttc ccttatccgg
55721 cctacaaatc aaaatgttag ccagcgcgtt ggcggataa gaggtgccat ccggcaatat
55781 gagagccggc caaacccgtt ccagcttcgc atacgcggca accaggcatt tgatcccttg
55841 cccctgaaaaa gcccactgca accggctatg ttccggctgt ccctccagggt tgacaatagt
55901 tccctcgccg aacttcgcattt ggcgcacgcg ttggccgagt ttgtagctg tgcgttttc
55961 cgccagccgc gttcccatc gtgtatggc caccggacgaa ctgacgggtgg cgccgacgacg
56021 gaccttttcc acgcacttcc ccggcaactc gccatgaaa gtcagttct gatgataaac
56081 ctctttacca tacagacggc gagttcggc atagtttagt gcatggcacg catccagcga
56141 ggttaaccccg acgtaggcca gacgacgctc ctcttccaa cgcacgcata aacacctcg
56201 catctggctg gggAACatcc cctttccat cccgacgata ggaactccag ggaactccag
56261 cccttggcc gagtgacgcg tcatcagctg taccgcattcc tgccaggtat ccgcctgccc
56321 ctgcggcgt tccagccggc cgtgagagag gaaggcctgc aatggcatta aatcttcatc
56381 ttcgtagttt tagctgaact gccgcgttgc cgtcaccagt tcctctaagt ttcgatgcg
56441 cgtctggcct ttctcgccct tttcttgctc atacatggtg cgcaggccgg aatcttgat
56501 caccggtaa gtctgcacat gcagcggcat gtccgggtt tcctgcgcca gggcgtcgat
56561 cagttccata aagcgttgc ggcgcgttgc cgcacgccc gccagggtt tttctgtaa
56621 caattcacgg cacgcctgccc acaatgttag ctggcgatcg cgcgaggtct ggcgcaccac
56681 gtccaggcg cggtcggcgtt taccgcgtt ggggtattt accacgcgtt caaaggccgc
56741 atcatcggtt cgattggcaaa tcaaacgcag ataaagagac gcacgttgc tctccctggcg
56801 ttgcagaagaa cgcataccgc cgtaaatgcg gtacggcata ctggcgttgc ataacgcctt
56861 ttccagcgcg cgcgacttgg cgttgcgtcg ataaaggatg ggcgttgcg caagcgcgc
56921 gccgttgtcc tgccagggtt tgatacgatt aaccacaaag cgagttcat ccagttcg
56981 gaaaggccgcg tacagcgata tgggttcggc gtcaacccgcg tcagtcaca gcttttgcc
57041 cagacggcccg ttgttgtttt caatcaggggc gttgcacag ctaagaatgt tgctggcga
57101 gcggtaattt tgctccagac gaatggctg cgcgcggggg aaatcattga ggaagcgtt
57161 gatgttctt acctggggccc cgcgcacgcg gtagatcgac ttgtcatcg cgcgcacaat
57221 catcaacttta ccggtatcgcc cgcacgcgtt acgaaacccag gcgactgaa ttttttggt
57281 atcctggaaat tcgtccacca gaatgttagt aaaccgcgtt cgatagtgtt gcaggatgt
57341 cggcttggtc agccatagtt catgagcgcg cagcagtagc tcggcgttcc ccaccagacc
57401 agcgcgatcg cacgcttcc gataggcctg atacacccgc tgccaggctc gttccaccgg
57461 attgcctatcg tttggatatt ggtgcggggc tagcccttcg tcttctggc tattgtatgt
57521 ccacatcgcc tgacgcggcg gecactgcgtt ctcatcaaga ttcatcgcc taatcaggcg
57581 tttaagcaaa cgcatactgtat ttgcgttgc gagaatctgg aaatcctgcg gcaaattagc
57641 gtccatatga tggcgccgcg gcaaggcggtt cgccagaccg tggAACgtcc ctaccacat
57701 tccgccttgg ctggccccca tcaactggcc aatacgttgc cgcattccg ccggccgttt
57761 gttggtaaaag gtcacccgcca tgatggagta tggcgagttt ttttctacgc tcagtaacca
57821 ggcgatacgg tgcacccagca cgcgggttt cccgcttccccc ggcggccgcg gcaccagcat
57881 gttgctacgt ggcgcggccca ccgccttcgcg ctgtttatca ttaaggctgt cgagcaggta
57941 agaaaacgtcc attggcaccgc ccgcgtaaaa acatgaaaac taaaacgcgc cggtggcgct
58001 tcgcttacccg gggctactta tcgttagggcg gataagcata ggcgcattccg

4 ANSWER 235 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC) : AF288087 GenBank (R)
GenBank ACC. NO. (GBN) : AF288087
GenBank VERSION (VER) : AF288087.1 GI:14531292
TAS REGISTRY NO. (RN) : 343439-44-1
SEQUENCE LENGTH (SQL) : 3905

DIVISION CODE (CI): Primates
 DATE (DATE): 24 Jun 2001
 DEFINITION (DEF): Homo sapiens skeletal muscle potassium-dependent
 sodium / ***calcium*** ***exchanger***
 SOURCE: NCKX3 mRNA sequence.
 ORGANISM (ORGN): ***human***
 Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo
 NUCLEIC ACID COUNT (NA): 867 a 1024 c 1057 g 957 t
 REFERENCE:
 AUTHOR (AU): Kraev,A.; Quednau,B.D.; Leach,S.; Li,X.F.; Dong,H.;
 Winkfein,R.; Perizzolo,M.; Cai,X.; Yang,R.;
 Philipson,K.D.; Lytton,J.
 TITLE (TI): Molecular cloning of a third member of the
 potassium-dependent ***sodium*** - ***calcium***
 exchanger gene family, NCKX3
 JOURNAL (SO): J. Biol. Chem., 276 (25), 23161-23172 (***2001***)
 OTHER SOURCE (OS): CA 136:145918
 REFERENCE:
 AUTHOR (AU): Quednau,B.D.; Philipson,K.D.
 TITLE (TI): Direct Submission
 JOURNAL (SO): Submitted (17-JUL-2000) Physiology, UCLA School of
 Medicine, 675 Charles Young Drive, MRL Bldg., Rm.
 3-645, Los Angeles, CA 90095, USA

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|--------------|----------|---|
| source | 1..3905 | /organism="Homo sapiens"
/db-xref="taxon:9606" |
| misc-feature | 1..3905 | /note="contains skeletal muscle
potassium-dependent sodium/calcium
exchanger NCKX3 coding sequence;
coding region spans not yet
determined" |

SEQUENCE (SEQ):

1 gcgacgagga gggcgacgac gaggagacgg gcagcggcga ggaggaggaa gaggaggcgg
 61 aggccgcggc cggtgggag cgcagcggg acgcgcgct gctgcgcgca gggctgcctc
 121 ctgcgcgtgt ccccggcg gcccggcg acaggagcgg ccggccgccc cggaggccgc
 181 cgccggccg cccgaggatg cggccgtccg gcgcgcgaga ccgcgcgcgt cgccggccgc
 241 gcccggccg cggaggggac cttctgtga gccagctctg cttctggcc tcgtggcgc
 301 tgctgtctg gtgcgtgtcg agcctgcgag agcagaagga gcttgaccctc atgacactca
 361 tagggaaaga cagaaagtgg atgatggcga gaaagctgtat gcaggtaac gacactctga
 421 ctcccgaaaga tgccggactc cggAACAGCA agaactgcac cgaaccagcc ctgcatgaat
 481 tccccatga catcttcaca aacgaggata gaagacaagg tgcgggtggc ctccatgtgc
 541 tctgtgccat atacatgttc tatgcgtctg ccattgtgt tgatgacttc ttcttcctt
 601 ctttggaaaa gatctgttag cgcgtcgacc tcagtgaaga tggctgtgg gccacattca
 661 tggcagcggg aagttcagcc ccagagctgt tcacatcggt cataggggtc ttcatcacca
 721 aaggcgatgt gggaggtagc accatcgtag gtcagcggt attcaacatc ctgtgcatca
 781 ttggtgtctg tggctcttt gctggcagg ttgtggctct ttcttcctgg tgctactga
 841 gggattctat ctactacacg ctgtctgtga tcgcgcctat cgttattat tatgatgaaa
 901 aagttcctg gtgggagttt ttagtcctt tgctgtatgtc tcttatctac attgtcatca
 961 taaaatataa cgcttgcata catcagtgtc ttgagaggag gacaaaagg gccggaaaca
 1021 tggtaaacgg attggccaac aatgctgaaa ttgatgacag cagcaactgc gacgcaactg
 1081 tggtgctact taagaaaagca aatttcacc ccaaagcatc atgtatcatg gtagacgagc
 1141 tgctgtcagc ctaccacac cagcttcct tctctgaggc tggcttcga atcatgataa
 1201 ccagccactt tcccccaag acccggtct ccatggccag tcgcgtt atcaatgaga
 1261 gacaaagatt gataaacagc agggctata ccaacgggaa atctgagg gccatcaaaa
 1321 tcccaattaa gcacaccgtg gagaatgggaa cagggcccg cagtgcggc gacagggcgc
 1381 tgaatgggac acggaggac gatgttgtgg ctgaggctgg caacgaaaca gagaatgaaa
 1441 atgaggacaa tgagaatgt gaggaggaag aggaggacga ggtatgtat gaaggaccgt
 1501 acacaccatt cgacacccccc tcggtaaac tggaaacagt gaaatgggca ttccacctggc
 1561 cgctgagtt cgtcttatac ttcaactgtc ccaactgca caagccgcg tggagaaat
 1621 ggttcatggt gacgtttgt tcctccacgc tggatgcgc acgcttc tacatgatgg
 1681 tgtggatggt cacaatcatt gtttacacc tcgggatcc tgacgtcatc atggggatca
 1741 cttctctggc tgctggacc agcgtgcgt actgcgttgc cagccttcatc gtggccagac
 1801 aaggatggg ggacatggct gtgtccaaact ccattgggag caacgtt gacatcctga
 1861 ttggcctcgg tctccctgg gctctgcaga ccctggctgt ggttacgga tcctacatcc
 1921 ggctgaatag caggggctg atctactccg taggcttgct cttggctct gttttgtca
 1981 cggtgttcgg cgtccaccc aacaagtggc agctggacaa gaagctggc tgggggtgccc
 2041 tccttcgttgc tggtggttgc ccatcatgac tgagttcaac gtgttacact
 2101 ttgtgaacct gcccacact gagccgcgg gggaccact gtcgcacag aggtcagct

2221 cacggcggttc gtctctcctg tgctgtcctc aggcccccgc tcctgttttgc gtggccagg
 2281 ctctccccctg acccatcctc gctccccac ctccttggtt catgcccacc cacccttcc
 2341 tgcttcctcc gtgtgaagac atccaacatc cacgtactt ttccagctcc atttttgaac
 2401 agtgactgag attctagaaa aactggctgc taactggcct gagccaggca acactgattc
 2461 caatccctcc tccttttta agttatttga tggaaagactc acctaatttgc tgacctgaaa
 2521 ctgttgaaga aatagagagg agggggcccg ttgattacag agagcatttgc gatTTTGT
 2581 tggTTTggag atgatgccta ggTTactggg ttgggggga ttgtttctt ttgggggcct
 2641 tccccttttca ctcctttct tccagagatc aagagcttctt cttgcattt cttccactgg
 2701 gctctggatt aatcaatttac ccaaaggctg cacctgcccgt gttgtctggg cttgcatttcc
 2761 agatgtgtt gatgtatgc gatgttagtgc ttTTTtagag gagccactgg gcaaggccac
 2821 caagaacaaa tgcattgcata ttatagccaa aggacgcctc gctaaagtct tatgggcgtc
 2881 ccctgggggtt gggggggcac aaggTTTGG aggaagaaga caactccctt cattccatca
 2941 tcaccatctc ttTCTCacta gttttttctt agtttcaag caatagtttctt agcctgcctt
 3001 ggacaagggg gcccagttt aacaaactac ccattccatga gctgccaggc agtcaaaaaac
 3061 agaagcttcc ccgacttgcg agtccctgag atgtgttctt gttgttggc atttgggttgc
 3121 acaggagtg acccagaggc caccactgttttcatgcag gagttacaga cactgggttcc
 3181 ttggaaaatg gagagaagcg cacttgcac agacgtcgtc aattaagtcc caatttgc
 3241 ctgggttattt gatcacactgg accctgacca ctggctctt ggcaaacgtc cttcctc
 3301 gggcgcctcc gccaagccgg cccagctgca cccctccctt cctggaggga tggccaggga
 3361 aggagaaaac agagaactga caccTTGAA accacagaat gtgttacatg cagactcgct
 3421 caagggcata agttatttgc aacgttttgc ccaatcactg ctcaacagcc ctgctagatt
 3481 ttgtatgtt ctgattttt atgcagacta attccaccca gttgagacac accatgc
 3541 ttcaacttgc tttatttgcgatc ttgtggattt ttgcccgtc tgccttgcatttactt
 3601 agactgtatc acttatttattt cattcggtat gttttccctt gttcttgcata catttctt
 3661 tätgaattt taaaataac ctgtacaaa ttgggttgaat gtttcttgcatttgcgaa
 3721 ccagcattaa cgatggggc acgtgc
 3781 gggctctcag agctaagaca cacttatttgc ttcgttgcata catttgcac tggTTtatgg
 3841 cgattgtttt ctggacggatgttgcataaa taaacttctt tggTTctaa aaaaaaaaaaaaa
 3901 aaaaa

L4 ANSWER 236 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC) : AF169257 GenBank (R)
GenBank ACC. NO. (GBN) : AF169257
GenBank VERSION (VER) : AF169257.2 GI:10334989
CAS REGISTRY NO. (RN) : 289465-69-6
SEQUENCE LENGTH (SQL) : 3637
MOLECULE TYPE (CI) : mRNA; linear
DIVISION CODE (CI) : Primates
DATE (DATE) : 13 Jul 2001
DEFINITION (DEF) : Homo sapiens potassium-dependent Na/Ca exchanger NCKX3
 (SLC24A3) mRNA, partial cds.
SOURCE:
ORGANISM (ORGN) : ***human***
 Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo
NUCLEIC ACID COUNT (NA) : 818 a 928 c 943 g 948 t
COMMENT:
 On Sep 28, 2000 this sequence version replaced gi:10119909.
REFERENCE:
AUTHOR (AU) : Kraev,A.; Quednau,B.D.; Leach,S.; Li,X.F.; Dong,H.;
 Winkfein,R.; Perizzolo,M.; Cai,X.; Yang,R.;
 Philipson,K.D.; Lytton,J.
TITLE (TI) : Molecular cloning of a third member of the
 potassium-dependent ***sodium*** - ***calcium***
 exchanger gene family, NCKX3
JOURNAL (SO) : J. Biol. Chem., 276 (25), 23161-23172 (***2001***)
OTHER SOURCE (OS) : CA 136:145918
REFERENCE:
AUTHOR (AU) : Kraev,A.S.
TITLE (TI) : Direct Submission
JOURNAL (SO) : Submitted (15-JUL-1999) Banting and Best Department of
 Medical Research, University of Toronto, 112 College
 Street, Toronto, ON M5G 1L6, Canada
REFERENCE:
AUTHOR (AU) : Kraev,A.S.
TITLE (TI) : Direct Submission
JOURNAL (SO) : Submitted (28-SEP-2000) Banting and Best Department of
 Medical Research, University of Toronto, 112 College
 Street, Toronto, ON M5G 1L6, Canada
REFERENCE:
AUTHOR (AU) : Kraev,A.S.
TITLE (TI) : Direct Submission
JOURNAL (SO) : Submitted (13-JUL-2001) Banting and Best Department of

FEATURES (FEAT) :

| Feature | Key | Location | Qualifier |
|---------|-----|----------|--|
| source | | 1..3637 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="20"
/map="20p13"
/clone="HFBDW45"
/tissue-type="brain"
/clone-lib="Stratagene catalog
#936206"
/dev-stage="fetus"
/gene="SLC24A3"
/note="solute carrier family 24
(sodium/potassium/calcium
exchanger), member 3; same gene as
in GenBank Accession Number
AF288087" |
| gene | | <1..3637 | |
| CDS | | <1..1878 | /gene="SLC24A3"
/function="ion transporter"
/note="similar to Mus musculus
protein in GenBank Accession
Number AF314821 and to Rattus
norvegicus protein in GenBank
Accession Number AY009158"
/codon-start=1
/product="potassium-dependent
Na/Ca exchanger NCKX3"
/protein-id="AAG12988.2"
/db-xref="GI:14717396"
/translation="RDLLSQLCFLASVALLWS
LSSLREQKEELDLMVLGEDRKWMM
ARKLMQVNDTLTSEDAGLRNSKNCTEPALHEFPN
DIFTNEDRRQGAVALHVLCAIYMF
YALAIVCDDFFVPSLEKICERLHLSEDVAGATFM
AAGSSAPELFTSVIGVFITKGDVG
VGTIVGSAVFNILCIIGVCGLFAGQVVALSSWCL
LRDSIYYTLSVIALIVFIYDEKVS
WWESLVLVLMYLIYIVIMKYNACIHQCERRTKG
AGNMVNGLANNAEIDDSSNCATV
VLLKKANFHRKASVIMVDELLSAYPHQLSFSEAG
LRIMITSHFPPKTRLSMSARMLIN
ERQRQLINSRAYTNGESEVAIKIPIKHTVENGTGP
SSAPDRGVNGTRRDDVVAEAGNET
ENENEDNENDEEEEEEDEDDEGGPYTPFDTPSGKL
ETVKWAFTWPLSFVLYFTVPNCNK
PRWEKWFMVTFASSTLWIAFSYMMVWMVTIIGY
TLGIPDVIMGITFLAAGTSVPCDM
ASLIVARQGMGDMAVSNISGSNVDILIGLGLPW
ALQTLAVDYGSYIRLNSRGLIYSV
GLLLASFVTVFGVHLNKWQLDKKLGCGLLLY
VFLCFSIMTEFNFTFVNLPMCGD H" |

SEQUENCE (SEQ) :

| | | | | | | |
|------|-------------|------------|-------------|------------|------------|-------------|
| 1 | aggcaccttc | tgctgagcca | gctctgcttc | ctggcctcg | tggcgctgct | gctctggtcg |
| 61 | ctgtcgagcc | tgcgagagca | gaaggagctt | gacctcatgg | acctcgtagg | ggaagacaga |
| 121 | aagtggatga | tggcgaggaa | gctgtatgcag | gtgaacgaca | ctctgacttc | cgaagatgcc |
| 181 | ggactccgga | acagcaagaa | ctgcaccgaa | ccagccctgc | atgaattccc | caatgacatc |
| 241 | ttcacaaacg | aggatagaag | acaaggtgcg | gtggtcctcc | atgtgctctg | tgc当地atac |
| 301 | atgttctatg | cgctggccat | tgtgtgtat | gacttcttcg | tcccttcctt | ggaaaagatc |
| 361 | tgtgagcgcc | tgcacccat | tgaagatgtg | gctggggcca | cattcatggc | agcggaaagt |
| 421 | tcaaaaaaaaa | agctgttac | atcggtcata | ggggcttca | tcaccaaagg | cgatgtggga |
| 481 | gttggcacca | tcgtgggctc | agcggatttc | aacatccgt | gcatcattgg | tgtctgtggg |
| 541 | ctctttgtc | ggcagggtgt | ggctctttcc | tcctgggcc | tgctgaggga | ttctattttac |
| 601 | tacacgtgt | ctgtgatcgc | gctcatcg | tttatttatg | ataaaaaagt | ttcctggtg |
| 661 | gagtctttag | tccttgtc | gatgtatctt | atctacattt | tcatcatgaa | atataaacgt |
| 721 | tgcatacatc | agtgtttga | gaggaggaca | aaagggtccg | ggaacatgtt | caacggattt |
| 781 | gccaacaatg | ctgaaattga | tgacagcagc | aactgcacg | caactgtgtt | gtacttaag |
| 841 | aaagcaaatt | tccacccgca | agcatcg | atcatgttag | agcagctgt | gtcagcctac |
| 901 | ccacaccagg | tttccttctc | tgaggctggc | cttcgaatca | tgataaccag | ccactttccc |
| 961 | cccaagaccc | ggctctccat | ggccagtcgc | atgttgcata | atgagagaca | aagattgata |
| 1021 | aacagcagg | cttataccaa | cgggaaatct | gaggtggcca | tcaaaatccc | aattaagcac |
| 1081 | accgtggaga | atggacagg | gccccagact | gccccagaca | ggggcgtgaa | tgggacacgg |

1201 aatgatgagg aggaagagga ggacgaggat gatgatgaag gaccgtacac accattcgac
 1261 accccctcggt gtaaaactggaa aacagtggaaa tgggcgttca cctggccgct gagtttcgtc
 1321 ttatacttca ctgtacccaa ctgcaacaag ccgcqctggg agaaatggtt catggtgacq
 1381 tttgcttcct ccacgctgtg gatcgagcc ttctcctaca tgatgggtg gatggtcaca
 1441 atcattgggtt acaccctggg gattcctgac gtcatcatgg ggatcacctt cctggctgct
 1501 gggaccagcg tgcctgactg catggccagc ctcattgtgg ccagacaagg gatgggggac
 1561 atggctgtgt ccaactccat tgggagcaac gtgttgaca tcctgattgg cctcggtctc
 1621 ccctgggctc tgcagaccct ggctgtggat tacggatcct acatccggct gaatagcagg
 1681 gggctgatct actccgttagg cttgctcctg gcctctgtt ttgtcacggg gttcggcgctc
 1741 cacctgaaca agtggcagct ggacaagaag ctgggctgtg ggtgcctcct cctgtatggt
 1801 gtgttcctgt gcttccat catgactgag ttcaacgtgt tcaccttgg gaacctgccc
 1861 atgtgcgggg accactgagc cgccgggtgc ccacagaggc tcagtcctt ctttctgtg
 1921 caatacgaga cccggccgca ccccgagtc cacaggcccc cggggccacg gcgttcgtct
 1981 ctcctgtgt gtcctcaggc ctcctgtcct gtttgggtgg cccaggctt cccctgcccc
 2041 atcctcgctc cccacccatc ttgggtcatg cccacccacc ctttcctgcc tcctccgtgt
 2101 gaagacatcc aacatccacg tgacttttc agctccattt taaaacagtg actgagattc
 2161 tagaaaaact ggctgctaac tggcctgagc caggcaacac tgattccaat ccctcctcct
 2221 ttttaagtt atttgatgga agactcacct aatttgtgac ctgaaactgt tgaagaaaata
 2281 gagaggaggg gcccgttga ttacagagag catttggat tttgtttgg gggccttccc ctttactcc
 2341 tgcttaggtt actgggtttg gggggattgt tttctttgg gggccttccc ctttactcc
 2401 ttttcttcca gagatcaaga gcttcttgc catcttcttc cactgggctc tggattaatc
 2461 aattacccaa aggctgcacc tgccgttgc tctgggcttgc catcccagat gtgtggagt
 2521 atgcatggat gtagtgctt ttagaggagc cactgggcaa ggccaccaag aacaatgca
 2581 tgacatttta tagccaagga cgcctcgcta aagtcttatg ggcgtccctt ggggttgggg
 2641 gggcacaagg tttggagga agaagacaac ttccctcatt ccatcatcac catctcttcc
 2701 tcacttaggtt ctttcttagtt ttcagcaat agttctagcc tgccttggac aaaaaaaaaaaaa
 2761 cagttaaaca aactacccat ccatgaggtg ccaggcagtc aaaaacagaa gcttccccga
 2821 cttgtgagtc cctgagatgt gctcttgc tttggcattt ggggtgacag ggagtgaccc
 2881 agaggccacc actgctttc atgcaggagt tacagacact gtttcttgg aaaaatggaga
 2941 gaagcgcact ttgcacagac gtcgtcaatt aagtcccaat ttgccacttg gtattgagta
 3001 cactggaccc tgaccactgg ctcttggca aacgtccctc ctcacggggc gcctccgcca
 3061 agccggccca gctgcacccccc tcccttcgt gaggatggc cagggaaagga gaaaacagag
 3121 aactgacacc ttgtaaacca cagaatgtt tacatgcaga ctcgctcaag ggcataagtt
 3181 attgtgaacg tttttccaa tcactgctca acagccctgc tagattttg atgatgctga
 3241 attattatgc agactaattc caccctgttgc agacacacca tgctgttca cttgtattta
 3301 ttgaaaactgt ggattttgc ccgtgtgtc cttgttattt actttaagca ctgatcactt
 3361 atcattcatt cggtatgggtt ttccctgtcc cttgtacaca ttctggatg aattgtaaa
 3421 aataaacctgc tacaaattgg ttgaatgttt ctgtctgtgg tgcgaaccag cattaacggg
 3481 tggggcacgt gcccaactga ggaacaggag aagaaatcac caatttgggc tctcagagct
 3541 aagacacact tattgattct gttgcacatt ttgcactggg ttatggcgat tggttcttgc
 3601 gacggatagt gtaaaaataaa cttctctgtt ctctatc

L4 ANSWER 237 OF 473

GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC): AF177987 GenBank (R)
 GenBank ACC. NO. (GBN): AF177987
 GenBank VERSION (VER): AF177987.1 GI:6708126
 CAS REGISTRY NO. (RN): 253164-31-7
 SEQUENCE LENGTH (SQL): 2170
 MOLECULE TYPE (CI): mRNA; linear
 DIVISION CODE (CI): Primates
 DATE (DATE): 11 Feb 2000
 DEFINITION (DEF): Homo sapiens cone sodium-calcium potassium exchanger
 splice variant (NCKX) mRNA, complete cds.
 human
 SOURCE:
 ORGANISM (ORGN): Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo
 NUCLEIC ACID COUNT (NA): 550 a 539 c 506 g 575 t
 REFERENCE:
 AUTHOR (AU): Prinsen,C.F.; Szerencsei,R.T.; Schnetkamp,P.P.
 TITLE (TI): Molecular cloning and functional expression of the
 potassium-dependent ***sodium*** - ***calcium***
 exchanger from ***human*** and chicken
 retinal cone photoreceptors
 J. Neurosci., 20 (4), 1424-1434 (***2000***)
 OTHER SOURCE (OS): CA 132:332359
 REFERENCE:
 AUTHOR (AU): Prinsen,C.F.M.; Schnetkamp,P.P.M.
 TITLE (TI): Direct Submission
 JOURNAL (SO): Submitted (17-AUG-1999) Physiology and Biophysics,
 University of Calgary, 3330 Hospital Drive NW, Calgary,
 ab T2N4N1, Canada

| Feature Key | Location | Qualifier |
|-------------|----------|---|
| source | 1..2170 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/tissue-type="retina" |
| gene | 1..2170 | /gene="NCKX" |
| CDS | 63..1997 | /gene="NCKX"
/codon-start=1
/product="cone sodium-calcium
potassium exchanger splice
variant"
/protein-id="AAF25811.1"
/db-xref="GI:6708127"
/translation="MDLQQSTTITSLEKWCLDES
LSGCRRHYSVKKKLKLIRVLGLFM
GLVAISTVSFSISAFSETDTQSTGEASVVSGPRV
AQGYHQRTLDDNDKILDYTPQPP
LSKEGESENSTDHAQGDYPKDIIFSLERRKGAI
LHVIGMIYMFIALAIVCDEFFVPS
LTVITEKLGISDDVAGATFMAAGGSAPELFTSLI
GVFIAHSNVGIGTIVGSAVNILF
VIGMCALFSREILNLTWPLFRDVSFYIVDLIML
IIFFLDNVIMWWESLLLLTAYFCY
VVFMKFNVQVEKWVKQMINRNKVVKVTAPEAQAK
PSAARDKDEPTLPKPRQLQRGGSS
ASLHNSLMRNSIFQLMIHTLDPLAEGRFREKASI
LHKIAKKKCHVDENERQNGAANHV
EKIELPNSTSTDVEMTPSSDASEPVQNGNLSHNI
EGAEAQTADEEEDQPLSLAWPSET
RKQVTFLIVFPVFLWITLPDVRKPSSRKFFPI
TFFGSITWIAVFSYLMVWAHQVG
ETIGISEEIMGLTILAAGTSIPDLITSVIVARKG
LGDMAVSSSVGSNIFDITVGLPLP
WLLYTVIHRFQPVAVSSNGLFCAIVLLFIMLLFV
ILSIALCKWRMNKILGFIMFGLYF
VFLVVSVLLEDRLTCPVSI" |

SEQUENCE (SEQ) :

| | | | | | | | |
|------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--|
| 1 | t gaaagaacc | a tctggttga | g tctaaagtt | g gaaagatcac | c atatccacc | a gaagaccca | |
| 61 | g gatggatct | g caacaaagc | acc accatca | c ttccctaga | g a aatggtgt | t tggatgagt | |
| 121 | cactgtctgg | ctgcagaaga | cattatagtg | t caaaaaaa | a ctgaagttt | a ttcgagtct | |
| 181 | taggcctttt | catgggtctg | gtagccatta | g cactgtctc | at tttcaatc | a gtgcctttt | |
| 241 | ctgagacaga | tacacagagc | acaggagagg | cc agt gttgt | a a gttggcct | aggtagcac | |
| 301 | agggttacca | t cagagaact | ctcttagatt | t aaatgacaa | g attctggat | tatactccac | |
| 361 | agccacctct | t tctaaggaa | ggcgagtctg | a gaatagtac | agatcacgcc | caaggagact | |
| 421 | acccgaaaga | catctttcc | ctt gaggaga | g a aaaaagg | t tcgcatt | ctgcatgtca | |
| 481 | tt ggaatgtat | ctacatgttc | at agccctttag | ccat t gttct | t gatgagttc | ttt gttcctt | |
| 541 | c tttgactgt | catcaactaa | aa actgggca | t ctctgtatga | t gtggcttga | gccacccatca | |
| 601 | t ggctgcagg | agg t cagcc | ccagaactt | t acatctct | c ataggggta | ttt atcgctc | |
| 661 | acagcaacgt | t ggcataaggc | acaattttag | g tt cagcagt | at tcaacatc | c tctttgtta | |
| 721 | tt ggcatgtg | t gctctgtt | t cttagagaaa | t cttaaacct | g acatggtgg | ccgctt tttc | |
| 781 | gagatgtgtc | t ttctacatt | g tt gacttga | t catgctat | c atatttttc | ctggataatg | |
| 841 | t catcatgtg | g tgggaaagc | t tgcttctct | t aacagctt | t ttttgctat | gtggtttca | |
| 901 | t gaaattcaa | c g tccaagta | g aaaaatggg | t g aagcaa at | gataaaaccgc | aataagg t c | |
| 961 | t caagg t gac | a g caccagaa | g cccaa gca | a g ccatctgc | agccagg gac | a aggatgaa | |
| 1021 | c gactctacc | g g ctaagccg | c g tccca g | g aggtggaa | c tctgccttcc | c tccacaaca | |
| 1081 | g tctcatgag | g a a t gcatc | t t ccaactca | t gatacaca | c cttgaccca | c tgc cccgaa | |
| 1141 | g gaggttcag | agaaaaggct | t c aatttctc | a caagatcgc | ca aqaaqaaa | t gtcatgtgg | |
| 1201 | a t gagaacga | g cggcagaat | g gggctgca | a ccacgttga | aaa aatttgg | c ttccaaaca | |
| 1261 | g caccagcac | a gatgttga | a t gacaccat | c c a g t g a t | c tt cagaacct | gtacaaaatg | |
| 1321 | g a a t c t c t | c c a c a a c a t | g a a g g t c a g | a a g c c a g a c | c g c t g a t g a g | g a g g a g g a c | |
| 1381 | a g c t c t c a g | c c t t g c t t g | c c t t c t g a a a | c c c g c a a g c a | a g t c a c g t t | c t g a t t g t t | |
| 1441 | t c c c c a t a g t | g t t t c c t c t c | t g g a t t a c g t | t a c c t g a c g t | t c g c a a a c c t | t c a t c g a g g a | |
| 1501 | a g t t t t t c c | c a t c a c g t t c | t t t g g c t c c a | t t a c c t g g a t | t g c a g t a t t c | t c t t a c t t g a | |
| 1561 | t g g t c t g g t | g g c g a c c a g | g t t g g a g a g a | c a a t t g g c a t | c a g t g a a g a g | a t t a t g g g c c | |
| 1621 | t g a c c a t c t | g g c t g c t g g | a c c t c c a t c | c t g a t c t t a t | c a c c a g t g t c | a t a g t g g c c c | |
| 1681 | g g a a g g g g t | aggggacatg | g c t g t c c a | g c t c t g t g g | a a g c a a c a t | t t t g a c a t c a | |
| 1741 | c t g t a g g g c t | c c c a c t g c c c | t g g c t c c t g | a c a c c g t c a t | t c a c a g a t t c | c a g c c a g t g g | |
| 1801 | c t g t c a g c a g | c a a t t g c c t t | t t c t g t c c a | t c g t c c t t c t | c t t c a t c a t g | c t g c t c t t c g | |
| 1861 | t c a t c t c t c | t a t c c c c t c | t g c a a g t g g c | g a a t g a a c a a | a a t c c t g g g c | t t c a t c a t g t | |
| 1921 | t t g g c t c t a | c t t t g t g t t c | c t g g t g t g a | g c g t t c t c t | a g a a g a c a g a | a t t c t t a c a t | |
| 1981 | g c c c c g t c t c | c a t c t a g c a g | g a a a g c c a t | a t c t t g c a c c | a g c a g c a t g a | a t g g t c c c t c | |
| 2041 | c a c a c t c t g g | g c t c t g g g c t | c c t t g a c c t c | t t g a g a a g a g | g c a g c t g g c a | c a c a g c c t c | |
| 2101 | g g t g c c a a g t | g t c c c t c c t t | g g t g a a t t g | g g a g a g a t g | g a t t c a c a c t | g g g c c c a t t c | |
| 2161 | a c t t c a c a g g | | | | | | |

LOCUS (LOC) : AF177986 GenBank (R)
 GenBank ACC. NO. (GBN) : AF177986
 GenBank VERSION (VER) : AF177986.1 GI:6708124
 CAS REGISTRY NO. (RN) : 253164-30-6
 SEQUENCE LENGTH (SQL) : 2182
 MOLECULE TYPE (CI) : mRNA; linear
 DIVISION CODE (CI) : Other vertebrates
 DATE (DATE) : 11 Feb 2000
 DEFINITION (DEF) : Gallus gallus clone dt3111 cone potassium-dependent
 sodium - ***calcium*** ***exchanger***
 (NCKX) mRNA, complete cds.
 chicken.
 SOURCE:
 ORGANISM (ORGN) : Gallus gallus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Archosauria; Aves; Neognathae;
 Galliformes; Phasianidae; Phasianinae; Gallus
 NUCLEIC ACID COUNT (NA) : 637 a 449 c 500 g 596 t
 REFERENCE:
 AUTHOR (AU) : Prinsen,C.F.; Szerencsei,R.T.; Schnetkamp,P.P.
 TITLE (TI) : Molecular cloning and functional expression of the
 potassium-dependent ***sodium*** - ***calcium***
 exchanger from ***human*** and chicken
 retinal cone photoreceptors
 JOURNAL (SO) : J. Neurosci., 20 (4), 1424-1434 (***2000***)
 OTHER SOURCE (OS) : CA 132:332359
 REFERENCE:
 AUTHOR (AU) : Prinsen,C.F.M.; Schnetkamp,P.P.M.
 TITLE (TI) : Direct Submission
 JOURNAL (SO) : Submitted (17-AUG-1999) Physiology and Biophysics,
 University of Calgary, 3330 Hospital Drive NW, Calgary,
 ab T2N4N1, Canada

FEATURES (FEAT) :

| Feature Key | Location | Qualifier |
|-------------|----------------------|--|
| source | 1..2182 | /organism="Gallus gallus"
/db-xref="taxon:9031"
/clone="dt3111"
/tissue-type="retina" |
| gene
CDS | 1..2182
135..2039 | /gene="NCKX"
/gene="NCKX"
/codon-start=1
/product="cone potassium-dependent
sodium-calcium exchanger"
/protein-id="AAF25810.1"
/db-xref="GI:6708125"
/translation="MALCKKTVGSVLEEWCLNEP
LFGCKRHQNVRKKLRLIRIIGLLV
SVVAISTFSLSISAFFKMETHSTVLASSLESQKL
VHGHQRTLLDFMEQNEGSTPDSPT
SMKHEAEHDNATEEHSKGEYPEDLFSLEERRKGA
VILHVIGMIYMFIALAIVCDEFFV
PSLTVITEKLSISDDVAGATFMAAGGSAPELFTS
LIGVFISHSNVGIGTIVGSAVFNI
LFVIGMCALFSREILNLTTWWPLFRDVSYIVDLI
LLIIFFLDNLIMNWESLTLLTAYF
CYVTFMKFNVQVEEWVKVVLNRNKVEATTGDAE
GKSPTAGDKDDQTLLTKPRLQRGG
SSASLHNSLMRNSIFQLMIHTLDPLAEGKFKERA
SILHKIAKKCQVEDSERQNGAA
HEKGAKVEAVTPPSDGPVQNGIAHNVDEENEE
DEDQPLSLAWPDTPRKQLTYLLVL
PIVFPLWVSLPDVRNPRSRKFFPITFFGSISWIA
FFSYLMVWAHQVGETIGISEEIM
GLTILAAGTSIPDLITSIVARKGLGDMAVSSV
GSNIFDITVGLPLPWLLYAVINNF
SPVTVSSNGLFCAIVLLFIMLLFVILSIAFCKWR
MNKFLGFLMFGLYFVFLIVSVLE
DKVIQCPVSI" |

SEQUENCE (SEQ) :

1 cgaggagaat acttcctatg aagaataaaa gtacttggtg gaagaaccct taaagcacct
 61 ttaccttcaa agctgaagaa aagtatgaag gaacaatcca tctaactccc tcagcatctc

181 gtttgaacga accactgttt gggtgcaaac ggcaccagaa tggtagaaaa aaactgagac
 241 tgataaggat aataggggctt cttgtcagt tagtggccat tagtacttc tctcttcaa
 301 ttatgtgcctt tttcaagatg gaaacacata gcacgggttt ggccagcagc ctagaaagcc
 361 aaaagcttgt gcacgggcac caaagaactc tggtgattt catggAACAG aatgaaggca
 421 gcactccaga ttcacactcg tctatgaaac atgaagctga acatgacaat gcaacagaag
 481 agcattccaa gggagagtac ccagaggacc tttctctct tgaagaaa agaaaagggtg
 541 cggtgatact ccatgttaatt ggaatgattt acatgttcat agccttagcc atagtctgcg
 601 atgagttctt cgttccttcc ttgactgtca tcactgaaaa gctgagcata tctgatgatg
 661 tggcaggggc aacccatg gctgctggg gctcagcccc agaactttc acttctttaa
 721 taggagtgtt tatatcccac agcaatgtcg gcatgggac aatagtgggaa tctgctgtgt
 781 ttaatatcct gttcggtatt ggaatgtgtg ctttatttc tagagaaaatc ttgaatctta
 841 cttgggtggcc actctttcga atcatgtgtt gggaaagctt aacactcctg acagcatact
 901 tctttttctt ggataactt aagttcaatg ttcaagttaga agatgggtg aaaaaagttt
 961 tttgctatgt gacttcatg aaggcttacaa caggagacgc tgaagaaaatg tcacctactg
 1021 taaacaggaa caagggttag aactgtacga ccaagccacg gtcggcagg ggagggaaactg
 1081 ctggcgacaa ggtgaccaa ctgatgagga acagcatctt ccagctcatg attcacacac
 1141 ctgcatctct ccacaacagt aaattcaagg agagggcctc aattctgcat aagatcgcca
 1201 ttgaccgcct tgcagaaggaa gacagtggaa ggcagaatgg agctgctaatt catgagaaag
 1261 aaaagaagtg ccaggttagaa gtaacaccac caagtgactc aggaccatgt cagaatggaa
 1321 gtgaaaagt ggaagttgca gagaatgaaag aggacgagga ccagccgctc agcctggcct
 1381 ttgctataa tggatgaa cagctcacct accttcttgc actgcccatt gtttccctt
 1441 ggctgacac cccacggaa gtcagaaatc ctaggtcaag aaaattttt cctatcacat
 1501 tgtgggtttc actcccgat attgcattct tttcttactt gatggtctgg tggcacatc
 1561 ttttggctc aatcagttgg attagtgaag aaatcatggg ttgactatt ttagctgctg
 1621 aggttggaga aaccattggg attaccagtg ttattgttagc acgcaaaggt ctgggggaca
 1681 gcacatccat tcctgacctt cagttctgtc ggaagcaaca tatttgacat cacagtggc cttcctctcc
 1741 tggctgtatc attaacaact tctcccccgt gactgtcagc agcaatggc
 1801 cgtggctcct gtatgtgtg ctcttcatca tgctgcttt tgcatccct tccatcgctt
 1861 tggctgtgc aatcgccctc aaattccctgg gcttctcat gtttgggctt tatttcgtgt
 1921 tctgcaagtg gaggatgaac ctggaggata aagtgtatcca gtgtccctgtc tccatctagt
 1981 tcctgattgt cagcgccctc gaaaaaaaaa aagtataga tggtaaaaaaaaaa aaaaaggaaaa
 2041 gggaaagtgtc gatttttgaaat gggtaaaaaaaaaa aaaaaggaaaa aaaaaggaaaa
 2101 atatatatat atatcgaaat gggtaaaaaaaaaa aaaaaggaaaa aaaaaggaaaa
 2161 aaaaacagaa aaaaaaaaaaa aa

L4 ANSWER 239 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC): AF177985 GenBank (R)
GenBank ACC. NO. (GBN): AF177985
GenBank VERSION (VER): AF177985.1 GI:6708122
CAS REGISTRY NO. (RN): 253164-29-3
SEQUENCE LENGTH (SQL): 2120
MOLECULE TYPE (CI): mRNA; linear
DIVISION CODE (CI): Other vertebrates
DATE (DATE): 11 Feb 2000
DEFINITION (DEF): Gallus gallus clone dt53 cone potassium-dependent
 sodium - ***calcium*** ***exchanger***
 (NCKX) mRNA, complete cds.
SOURCE:
ORGANISM (ORGN): chicken.
Gallus gallus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Archosauria; Aves; Neognathae;
 Galliformes; Phasianidae; Phasianinae; Gallus
NUCLEIC ACID COUNT (NA): 605 a 438 c 489 g 588 t
REFERENCE:
AUTHOR (AU): Prinsen,C.F.; Szerencsei,R.T.; Schnetkamp,P.P.
TITLE (TI): Molecular cloning and functional expression of the
 potassium-dependent ***sodium*** - ***calcium***
 exchanger from ***human*** and chicken
 retinal cone photoreceptors
 J. Neurosci., 20 (4), 1424-1434 (***2000***)
OTHER SOURCE (OS): CA 132:332359
REFERENCE:
AUTHOR (AU): Prinsen,C.F.M.; Schnetkamp,P.P.M.
TITLE (TI): Direct Submission
JOURNAL (SO): Submitted (17-AUG-1999) Physiology and Biophysics,
 University of Calgary, 3330 Hospital Drive NW, Calgary,
 ab T2N4N1, Canada
FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|----------|---|
| source | 1..2120 | /organism="Gallus gallus"
/db-xref="taxon:9031"
/clone="dt53" |

gene
CDS

1..2120
39..1994

/gene="NCKX"
/gene="NCKX"
/codon-start=1
/product="cone potassium-dependent
sodium-calcium exchanger"
/protein-id="AAF25809.1"
/db-xref="GI:6708123"
/translation="MALCKKTVGSVLEEWCLNEP
LFGCKRHQNRKKLRLIRIIGLLV
SVAIASTFSLSISAFFKMETHSTVLASSLESQKL
VHGHQRTLLDFMEQNEGSTPDSPT
SMKHEAEHDNATEEEHSKGEYPEDLFSLEERRKGA
VILHVGIMIYMFIALAIVCDEFFV
PSLTIVITEKLSISDDVAGATFMAAGGSAPELFTS
LIGVFISHSNVGIGTIVGSAVFNI
LFVIGMICALFSREILNLWWPLFRDVSFYIVDLI
LLIIFFLDNLIMWWESLTLTAYF
CYVTFMKFNVQVEEWVKVILRNKVEKATTGDAE
GKSPTAGDKDDQTLTTKPRLQRGG
SSASLHNNSMRNSIFOLMIHTLDPLAELGSYGN
LKYYDTMTEEGKFKERASILHKIA
KKKCQVEDSERQNGAANHEKGAKVEVAVTPPSDS
GPVQNGIAHNVDEENEDEDQPLS
LAWPDTPRKQLTYLLVLPIVFPLWVSLPDVRNPR
SRKFFPITFFGSISWIAFFSYLMV
WWAHQVGETIGISEEIMGLTILAAGTSIPDLITS
VIVARKGLGDMAVSSSVGSNIFDI
TVGLPLPWLLYAVINNFSPVTVSSNGLFCAIVLL
FIMLLFVILSIAFCKWRMNKFLGF
LMFGLYFVFLIVSVLLEDKVIQCPVSI"

SEQUENCE (SEQ) :

1 cggatctaac tccctcagca ttcacacag gactcacaat ggctctttgc aaaaaaaactg
61 ttggtagtgt ctggaaagag tggtgtttga acgaaccact gtttgggtgc aaacggcacc
121 agaatgttag gaaaaaaactg agactgataa ggataatagg gtttcttgc agtgtagtgg
181 ccatttagtac tttctcttca tcaatttagtgc ctttttcaaa gatggaaaca catagcacgg
241 tggggccag cagcctagaa agccaaaagc tggtgcacgg gcaccaaaga actctgttgg
301 atttcatgga acagaatgaa ggcagcaactc cagattcacc tacgtctatg aaacatgaag
361 ctgaacatga caatgcaaca gaagagcatt ccaagggaga gtacccagag gacctttct
421 ctcttgaaga aagaagaaag ggtgcggta tactccatgt aatttgaatg atttacatgt
481 tcatacgctt agccatagtc tgcatgatgat tcttcgttcc ttcccttgcact gtcactactg
541 aaaagctgag catatctgat gatgtggcag gggcaacctt catggctgct ggtggctcag
601 ccccaagaact tttcaacttct ttaataggag tggttatatacc acagcaat gtcggcattt
661 ggacaatagt gggatctgct gtgtttaata cttacttggt ggccactctt tcgagatgtg tcctttaca
721 tttcttagaga aatcttgaat atcatctttt ttctggataa cttaatcatg tggtgggaaa
781 tcgttgactt gatcttgctg tacttttgc atgtgactt catgaagttc aatgttcaag
841 gcttaacact cctgacagca ggtgaaaaaa gttttaaaca ggaacaaggt tgagaaggct acaacaggag
901 tagaagagtg ggtgaaaaaa aagtctcacct actgctggcg acaaggatga ccaaacaactg acgaccaagc
961 acgctgaagg cacgggttca gccccggagga agctctgcat ctctccacaa cagtctgatg aggaacagca
1021 tcttccagct catgattcac acatggacc cgcttgcaga agagcttggaa tcatatggaa
1081 acctaaaata ttatgacaca atgactgaag aaggaaaatt caaggagagg gcctaattc
1141 acctaaaata cgccaaaaag aagtgccagg tagaagacag taaaaggcg aatggagctg
1201 tgcataagat gaaagggtgca aagtggaaat ttgcagtaac accaccaagt gattcaggac
1261 ctaatcatga cagtgcagaa tggaaattgct cataatgttgc atgaagagaa tgaagaggac gaggaccagc
1321 cgctcagcct ggcctggcct gacacccac ggaagcagct cacctacctt cttgtactgc
1381 ccattgtttt ccctttgtgg gtttccctcc cagatgtcag aatccttagg tcaagaaaat
1441 tgggccttcc cacattttt ggctcaatca gttggattgc attctttct tacttcatgg
1501 tttttcstat acatcgatgg ggagaaacca ttggatttag tgaagaaatc atgggcttga
1561 tctggtgggc acatcgatgg tggatggcaca tccattcctg accttattac cagtgttatt gtagcacgca
1621 ctattttagc tgctggcaca gacatggct gtatccagtt ctgtcgaaag caacatattt gacatcacag
1681 aaggcttggg ggacatggct gatccatgtt ctgtcgaaatc caacttctcc ccgtgtactg
1741 tgggccttcc tctcccgtgg ctcctgtatg ctgtgattaa caacttctcc tctttgtca
1801 tcagcagcaa tggctgttc tgtcaatcg tcctccttcc catcatgctg ctctttgtca
1861 tcctctccat cgctttctgc aagtggagga tgaacaaatt cctgggctt ctcatgttt
1921 ggcttattt cgtgttcctg attgtcagcg tcctccttgc ggataaaatg atccagtgtc
1981 ctgtctccat ctagtgaaaa gtgctgattc ttgaggaaaa aaaaaaaaaaag ttatagatgt
2041 ttatttattt agtatataata tatataataata tcgaaatgaa atgaaatggt aaaaaaaaaaaa
2101 aaggaaaaaa aaaaaaaaaaaa

MOLECULE TYPE (CI): mRNA; linear
 DIVISION CODE (CI): Other vertebrates
 DATE (DATE): 9 Feb 2000
 DEFINITION (DEF): Gallus gallus clone rp31 potassium-dependent
 sodium - ***calcium*** ***exchanger***
 SOURCE: NCKX1 (NCKX) mRNA, complete cds.
 ORGANISM (ORGN): chicken.
 Gallus gallus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Archosauria; Aves; Neognathae;
 Galliformes; Phasianidae; Phasianinae; Gallus
 NUCLEIC ACID COUNT (NA): 635 a 517 c 506 g 601 t
 REFERENCE:
 AUTHOR (AU): Prinsen, C.F.; Szerencsei, R.T.; Schnetkamp, P.P.
 TITLE (TI): Molecular cloning and functional expression of the
 potassium-dependent ***sodium*** - ***calcium***
 exchanger from ***human*** and chicken
 retinal cone photoreceptors
 JOURNAL (SO): J. Neurosci., 20 (4), 1424-1434 (***2000***)
 OTHER SOURCE (OS): CA 132:332359
 REFERENCE:
 AUTHOR (AU): Prinsen, C.F.M.; Schnetkamp, P.P.M.
 TITLE (TI): Direct Submission
 JOURNAL (SO): Submitted (17-AUG-1999) Physiology and Biophysics,
 University of Calgary, 3330 Hospital Drive NW, Calgary,
 ab T2N4N1, Canada

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|----------|--|
| source | 1..2259 | /organism="Gallus gallus"
/db-xref="taxon:9031"
/clone="rp31"
/tissue-type="retina rod
photoreceptors"
/gene="NCKX"
/gene="NCKX"
/codon-start=1
/product="potassium-dependent
sodium-calcium exchanger NCKX1"
/protein-id="AAF25808.1"
/db-xref="GI:6708121"
/translation="MHLPRRRRLQRNRRIFFFLAV
VSLLSVYQLQFSPSAIPALLTAHQ
HEDPVKVTREPFRNKTSTGNVTAAPKIRHCYV
IDPEPTVPITASEDTTQRENVNES
YPDEKPVYESKGEYPQDLFSVEERRQGWVVLHIF
GMMYVFVALAIVCDEYFVPALGVI
TEKLQISEDVAGATFMAAGGSAPELFTSLIGVFI
SHSNVGIGTIVGSAVNILFVIGT
CALFSREILHLTWWPLFRDISFYIVDLLMLILFF
LDSVIDWWESLLLLTAYATYVFTM
KHNVSLEQWVKEELSKKLNAVQAASAEHMRKKSS
VAVAEDGTPADGKKLQPTTALQR
GTSSASLHNSQMRSTIFQLMIHTLDPLAGAKFKD
RVDILSNIAKVKADSLTGQGTKPE
AEEEQASQNTVQVTPASDSEPSDKQKEDTPQD
GQPPSDSDNSEDSSDSEDDSDDD
STDDEENDEPLSLEWPETRKQAIYLFLFPIVFP
LWSTIPDVRNPDSKKFFVITFFGS
IIWIAAFSYLMVWWAHQVGETIGISEEIMGLTIL
AAGTSIPDLITSIVARKGLGMDA
VSSSVGSNIFDITVGLPVPWFLYSVFNGFSPVAV
SSNGLFCIAIVLLFLMILLFVIISIA
LCKWKMNKILGVTMFALYFVFLIIISVMLEDRIIS
CPVSV" |
| gene | 1..2259 | |
| CDS | 66..2057 | |

SEQUENCE (SEQ):
 1 cgggctgatc aagagaagtcc ttca gatggc tctggacacg gatttgattt ttgaaccttt
 61 aggaaatgca ttaccacgg agaagacggc tacaacggaa cagaatctt ttcttccttg
 121 ctgttagtgc gctcctctct gtctatcagc tccaatttcag cccctctgcc attccagcac
 181 ttctcactgc acaccaacat gaggaccctg tgaaagtgc ctccaggag ccttccgca
 241 acaagacttc caaaaacaggc aatgtc acatcg cagcacccaa aataaggcac tgtgtgtata
 301 ttgatcctga gccaactgtg cccatcactg catcagagga tacaacacag cgagaaaatg
 361 tcaatgaaag ctacccagat gaaaagccag tgtatgaatc caaaggagaa tatccccagg

481 tgtatgtatt tgtggccttg gccatagtgt gtgatgagta ttttgcctt gctttggag
 541 tgatcacaga gaaggcgcag atctctgaag atgtggcagg agccaccc tc atggcagcag
 601 gtggatccgc accagaactc ttcacccccc tcataggtgt cttcatctca cacagcaatg
 661 tggcatcggtt accattgtg ggctcagcag ttttaatat cctcttgc attggcac
 721 gtgcctctt ctcaagggag atactacacc tgacatggc gcctttattt agagacatct
 781 cattctacat tgttagactt ctgatgtca tcctgtttt cctagacagc gtcattgatt
 841 ggtggaaag cctccttta ctgactgcct atgccacata tttgttcaat atgaaacaca
 901 atgtgtctctt agaacaatgg gtgaaggagg agctgagcaa gaagctaaat gctgtcagg
 961 cagcatcaggc agagcatatg cgaaagaaaaa gcaatgtggc agttgcggag gatgaaacaa
 1021 agccagcaga tggaaagaag ctgcagccaa caacaggcctt acagcgagga accagctcag
 1081 cccctctgca caactctcaa atgcgcagca ccatcttcca actcatgatc cacacgttgg
 1141 accccctggc aggagcaaaa tttaagaca gggttgatat cctgagaat atggccaagg
 1201 tcaaggctgca ctctctgact gggcaaggaa caaaaccaga agcagaagag gagaagcagg
 1261 catcacaaaaa caccgtccag gtaactcctg ccagcgactc tgaacccagc aaagacaaaac
 1321 agaaggaaaga cacaccacaa gatgggcagc ccccttcaga cagtataac tcagaagaca
 1381 gcagctctgca cagcggaggat gacagtatg atgacagcac tttgtatgaa gaaaacgatg
 1441 aaccattatc tcttgaatgg ccagaaacga gggatccatgca tacctgtatg ctttgcctt
 1501 ttccatcgatc ttccctctg tggagactt tcatcttgcattt gtttgcattt gtttgcac
 1561 aattcttgcattt catcacatgg ttcggatcca caattggat atcagaggaa attatgggt
 1621 tgggtgggtt ggctcatcg gttgggaaa ctgacccttat caccagtgtc attgttgac
 1681 taaccatact ggcagcagga acatcgatcc gttctgttagg cagcaatatc ttgcataatca
 1741 ggaaaggctt aggtgacatg gctgtctcca attcagtctt caatggattt agtccgttg
 1801 ctgttggtt gccagttctt tggtttctt ttgttctgct tttcctcatg ctttatttg
 1861 cagttagttagt taatggttt tttgtgcaatc aatgaaacaa aattctaggc gtcacgatg
 1921 ttatcatctc aattgtttt tttgttgcattt gtttgcattt gtttgcac
 1981 tcgctctcta ctttgtgttt ttgttgcattt gtttgcattt gtttgcac
 2041 gcccagtatc tgttgacat ctgggtgctc caatgtgtgtt gtttgcattt gtttgcac
 2101 caaaaggcatt tcaaggtagc ttttgcattt gtttgcattt gtttgcac
 2161 cttccctgagg ttaaagtatc ttttgcattt gtttgcattt gtttgcac
 2221 tggttctact gttgtgttt ttttgcattt gtttgcattt gtttgcac

L4 ANSWER 241 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC): AF097366 GenBank (R)
GenBank ACC. NO. (GBN): AF097366
GenBank VERSION (VER): AF097366.1 GI:6650378
CAS REGISTRY NO. (RN): 252170-99-3
SEQUENCE LENGTH (SQL): 2221
MOLECULE TYPE (CI): mRNA; linear
DIVISION CODE (CI): Primates
DATE (DATE): 11 Feb 2000
DEFINITION (DEF): Homo sapiens cone sodium-calcium potassium exchanger (NCKX2) mRNA, complete cds.
SOURCE:
ORGANISM (ORGN): ***human***
Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
Hominidae; Homo
NUCLEIC ACID COUNT (NA): 574 a 545 c 515 g 587 t
REFERENCE:
AUTHOR (AU): Prinsen, C.F.; Szerencsei, R.T.; Schnetkamp, P.P.
TITLE (TI): Molecular cloning and functional expression of the potassium-dependent ***sodium*** - ***calcium*** ***exchanger*** from ***human*** and chicken retinal cone photoreceptors
JOURNAL (SO): J. Neurosci., 20 (4), 1424-1434 (***2000***)
OTHER SOURCE (OS): CA 132:332359
REFERENCE:
AUTHOR (AU): Prinsen, C.F.M.; Szerencsei, R.T.; Schnetkamp, P.P.M.
TITLE (TI): Direct Submission
JOURNAL (SO): Submitted (05-OCT-1998) Physiology and Biophysics, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB T2N 4N1, Canada

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|----------|--|
| source | 1..2221 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="9"
/map="9p13-p22"
/tissue-type="retina"
/gene="NCKX2"
/note="NCKX family member;" |
| gene | 1..2221 | |
| CDS | 63..2048 | |

brain and retina"
 /codon-start=1
 /product="cone sodium-calcium
 potassium exchanger"
 /protein-id="AAF21810.1"
 /db-xref="GI:6650379"
 /translation="MDLQQSTTITSLEKWCLDES
 LSGCRRHYSVKKKLKLIRVLGLFM
 GLVAI1STVSFSISAFSETDTQSTGEASVVGPRV
 AQGYHQRTLLDLNDKILDYTPQPP
 LSKEGESENSTDHAQGDYPKDI1FSLEERRKGAI
 LHVI1GMIYMFI1AIVCDEFFVPS
 LTVITEKLG1SDDVAGATFMAAGGSAP1ELFTSLI
 GVFI1AHSNVGIGTIVGSAVN1LF
 VIGMCALFSREILNLTWWPLFRDVSFYIVDLIML
 I1FFLDNVIMWWESLLLTA1FCY
 VVFMKFNVQVEKWKQMINRNKVVKVT1PEAQAK
 PSAARDKDEPTLPK1PRLQRGGSS
 ASLHN1SLMRNS1FQLM1HLDPLAEELGSY1GKLK
 YYDTMTEEGRFREKAS1LHKIAKK
 KCHVDENERQNGAANHVEK1ELPNSTSTDVEMTP
 SSDASEP1VQNGNLSHNIEGAEAQ1
 ADEEE1DQPLSLAWPSETRKQVTF1IVFPIVFLW
 ITLPDV1RKPSSRKFFP1TFFGSI
 WIAVFSYLMVWAHQVGETIG1SEE1MGLT1LAA
 GTS1PDL1TSV1VAR1KGLGDMAVS
 SSVGSN1FDITVGLPLPWLYTV1HRFQPVAVSS
 NGLFCA1VLLF1M1LLFV1LS1ALC
 KWRMN1K1LGFI1MFGLYFVFLVVSVLLEDRI1TCP
 VSI"

SEQUENCE (SEQ) :

| | | | | | | | |
|------|-------------|-------------|-------------|----|-------------|-------------|-------------|
| 1 | tgaaagaacc | atctggttga | gtctaaagt | tt | ggaagatcac | catatccacc | agaagaccca |
| 61 | ggatggatct | gcaacaaaggc | accaccatca | | cttccttaga | gaaatggtgt | ttggatgagt |
| 121 | cactgtctgg | ctgcagaaga | cattatagtg | | tcaagaaaaa | actgaagtta | attcgagttc |
| 181 | taggcctttt | catgggtctg | gtagccatta | | gcactgtctc | attttcaatc | agtgcctttt |
| 241 | ctgagacaga | tacacagagc | acaggagagg | | ccagttgtgt | aagtggccct | agggttagcac |
| 301 | agggttacca | tcaagagaact | ctcttagatt | | taaatgacaa | gattctggat | tatactccac |
| 361 | agccacacct | ttctaaaggaa | ggcgagtc | | agaatagtac | agatca1gc | caaggagact |
| 421 | acccgaaaga | catctttcc | cttgaggaga | | gaagaaaagg | tgcgatcatt | ctgcatgtca |
| 481 | ttggaatgtat | ctacatgttc | atgccttag | | ccattgtctg | tgtatgagttc | tttggccctt |
| 541 | cttgactgt | catca1gtgaa | aaactggca | | tctctgatga | tgtggctgga | gccac1ttca |
| 601 | tggctgcagg | agg1tcagcc | ccagaacttt | | tcacatctct | catagggtta | tttatcgctc |
| 661 | acagcaacgt | tggcataggc | acaattgtag | | gttcagcgt | attcaacatc | ctctttgtta |
| 721 | ttggcatgtg | tgctctgtt | tctagagaaa | | tcttaaacct | gacatgg1tgg | ccgctcttcc |
| 781 | gagatgtgtc | tttctacatt | gttgacttga | | tcatgctgat | catattttc | ctggataatg |
| 841 | tcatcatgtg | gtgggaa1agc | ttgcttctct | | taacagctta | tttttgc1tat | gtgg1tttca |
| 901 | tgaaattcaa | cgtcca1agt | gaaaatggg | | tgaagcaat | gataaaccgc | aataagg1cg |
| 961 | tcaagg1gtac | agcaccaggaa | gccc1aagcaa | | agccatctgc | agccagg1gac | aaggatgaac |
| 1021 | c1gacttacc | ggcta1agccg | cgttcc1cagc | | gaggtggaa | ctctgcetcc | ctccacaaca |
| 1081 | gtctcatgag | gaatagcatc | ttccaactca | | tttgcc1acac | ctcgcc1gaag | |
| 1141 | aacttggatc | atatggaaaa | ctaaaatatt | | tgatcacac | gactgaagaa | gggaggttca |
| 1201 | gagaaaaggc | ttcaattctc | cacaagatcg | | atgacacaat | atgtcatgt | gatgagaacg |
| 1261 | agcggcagaa | tgggctgccc | aaccacgtgg | | gcaagaagaa | gcttccaaac | agcaccagca |
| 1321 | cagatgttga | aatgacacca | tcc1agtgtat | | aaaaaaattga | tgtacaaaat | ggaaatctct |
| 1381 | cccacaacat | tgaagg1gtca | gaagcccaga | | tttc1agaacc | ggaggaggac | cagcctctca |
| 1441 | gccttgcctg | gccttctgaa | acc1gc1aagc | | ccgctgtatga | tctgattgtt | ttccccatag |
| 1501 | tgtt1cctct | ctggattacg | ttac1ctgacg | | ttc1gcaacc | ttcatcgagg | aagtttttc |
| 1561 | ccatcacgtt | cttggctcc | attac1ctgg | | ttgc1agtatt | ctcttacttg | atgg1ctggt |
| 1621 | ggcgc1acca | ggttggagag | acaattggca | | tc1agtgaaga | gattatggc | ctgaccatct |
| 1681 | tggctgtgg | gac1tccatc | cctgatctt | | tcacc1agtgt | catagtggcc | cggaagg1gt |
| 1741 | tagggacat | ggctgtgtcc | agctctgttg | | gaagcaacat | ttttgacatc | actgtagg1gc |
| 1801 | tcccactgccc | ctggctc1tgc | tacaccgtca | | ttc1acagatt | ccagcc1agt | gctgtcagca |
| 1861 | gcaatggcct | tttctgtgccc | atcg1cc1tgc | | tcttcatcat | gctgcttcc | gtcatcc1ct |
| 1921 | ctatcgccct | ctgca1agtgg | cgaatgaaca | | tttcatcatg | tttggcc1ct | |
| 1981 | actttgtgtt | cctgg1gtgg | agcgttctcc | | ta1gaagacag | aattcttaca | tgccccgtct |
| 2041 | ccatctagca | ggaaaaggca | tatcttgcac | | cagc1agcatg | aatgg1ccct | ccacactctg |
| 2101 | ggctctggc | tcctt1gacct | cttgagaaga | | ggc1agctggc | acacagccct | gggtgccaag |
| 2161 | tgtccctcct | tgg1tgaattt | gaggagagat | | ggattcacac | tg1ggcc1att | cacttcacag |
| 2221 | g | | | | | | |

CAS REGISTRY NO. (RN) : 392106-41-1
 SEQUENCE LENGTH (SQL) : 2814
 MOLECULE TYPE (CI) : mRNA; linear
 DIVISION CODE (CI) : Primates
 DATE (DATE) : 13 Mar 2001
 DEFINITION (DEF) : Homo sapiens ***sodium*** / ***calcium***
 exchanger isoform NaCa3 (NCX1) mRNA, complete
 cds.
 SOURCE: ***human***
 ORGANISM (ORGN) : Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo
 NUCLEIC ACID COUNT (NA) : 754 a 579 c 718 g 763 t
 REFERENCE:
 AUTHOR (AU) : Van Eylen,F.; Bollen,A.; Herchuelz,A.
 TITLE (TI) : NCX1 Na/Ca exchanger splice variants in pancreatic
 islet cells
 JOURNAL (SO) : J. Endocrinol., 168 (3), 517-526 (***2001***)
 OTHER SOURCE (OS) : CA 134:351070
 REFERENCE:
 AUTHOR (AU) : Van Eylen,F.; Bollen,A.; Herchuelz,A.
 TITLE (TI) : Direct Submission
 JOURNAL (SO) : Submitted (23-NOV-1998) Pharmacodynamie, Brussels Free
 University, Route de Lennik 808, C.P. 617, Brussels
 1070, Belgium

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|----------|---|
| source | 1..2814 | /organism="Homo sapiens"
/db-xref="taxon:9606" |
| gene | 1..2814 | /gene="NCX1"
/gene="NCX1"
/note="isoform NCX1.3"
/codon-start=1
/product="sodium/calcium exchanger
isoform NaCa3"
/protein-id="AAF08988.1"
/db-xref="GI:6453729"
/translation="MYNMRRLSLSPTFSMGFHLL
VTVSLLFSHVDAEAEVMEGEGN
ETGECTGSYYCKGVILPIWEQDPSFGDKIARA
TVYFVAMVYMLGVSIIAADFMRMSS
IEVITSQEKEITIKKPNGETTKTTVRIWNETVSN
LTLMALGSSAPEILLSVIEVCGHN
FTAGDLGPSTIVGSAAFNMFIIALCVVVPDGE
TRKIKHLRVFFVTAAWSIFAYTWL
YIILSVISPGVVEVWEGLLTFFFPICSVFAWVA
DRRLLFYKYVVKRYRAGKQRGMI
EHEGDRPSSKTEIEMDGKVNVSHVENFLDGALVL
EVDERDQDEEARREMARILKELK
QKHPDKEIEQLIELANYQVLSQQQKSRAFYRIQA
TRLMTGAGNILKRHAADQARKAVS
MHEVNTEVTENDPVSKIFFEQGTYQCLENCGTVA
LTIIRRGGDLNTVFDFTEDGT
ANAGSDYEFTEGTVVFKPQDTQKEIRVGIIDDDI
FEEDENFLVHLSNVKVSSEASED
ILEANHVSTLACLGSPSTATVTIFDDDHAGIFT
EEPVTHVSESIGIMEVKVLRSGA
RGNVIVPYKTIEGTARGGGEDFEDTCGELEFQND
EIVKIITIRIFDREYEKECSFSL
VLEEPKWIRRGMGGFTITDEYDDKQPLTSKEEE
ERRIAEMGRPILGEHTKLEVIE
SYEFKSTVDKLICKTNALVVGTNSWREQFIEAI
TVSAGEDDDDECGEEKLPSCFDY
VMHFLTVFWKVLFAFPVPPTEYWNWGACFIVSILM
IGLLTAFIGDLASHFGCTIGLKDS
VTAVVVALGTSVPDTFASKVAATQDQYADASIG
NVTGSNAVNVFLGIGVAWSIAAIY
HAANGEQFKVSPGTLAFSVTLFTIFAFINVGVLL
YRRRPEIGGELGGPRTAKLLTSCL
FVLLWLLYIFFSSLEAYCHIKGF" |
| CDS | 1..2814 | |

SEQUENCE (SEQ) :

61 gttactgtga gtctttatt ttcccatgtg gaccatgtaa ttgctgagac agaaaatggaa
 121 ggagaaggaa atgaaactgg tgaatgtact gatatcatatt actgtaaagaa aggggtgatt
 181 ttgccttatt gggAACCCCA agacccttct ttggggaca aaattgctag agctactgtq
 241 tattttgtgg ccatgtctta catgtttctt ggagtctcta tcatacgta tcggttcatt
 301 tcctctatag aagtcatcac atctcaagaa aaagaataaa ccataaagaa accaatgg
 361 gagaccacca agacaactgt gaggatctgg aatgaaacag ttcttaacct gacccatgt
 421 gcccggat cttctgtcc tgagattctc cttagtggaa ttgaagtgtg tggccataac
 481 ttcactgcag gagacctcg tccttagcacc atcgtggaa gtgcgtcatt caatatgttc
 541 atcattattg cactctgtgt ttatgtggg cctgacggag agacaaggaa gattaagcat
 601 ttgcgtgtct tctttgtgac agcagctgg agcatcttg cctacacctg gctttacatt
 661 atttgtctg tcataatctcc tgggtgtgt gaggctctgg aagggttgc tacatttctc
 721 ttcttcca tctgtgttgt gttcgcttgg ttagcggata gtagacttct gtttacaag
 781 tatgtctaca agaggtatcg agctggcaag cagaggggaa tgattattga acatgaagga
 841 gacaggccat cttctaagac taaaaatgaa atggacgggaa aagtggtcaa ttctcatgtt
 901 gaaaatttct tagatggtgc tctgggtctg gagggtggat agaggacca agatgtgaa
 961 gaagcttaggc gagaatggc taggatctg aaggaactt aacgagaagc tccagataaa
 1021 gaaatagagc aattaataga attagctaac taccatgtcc taagtccgca gcaaaaaagt
 1081 agagcatttt atcgcatca agctactcgc ctcatgactg gagctggcaa cattttaaag
 1141 aggcatgcag ctgaccaagc aaggaaggct gtcagcatgc acgaggtcaa cactgaagtg
 1201 actgaaaatg accctgttag taagatcttc tttgaacaag ggacatataca gtgtctggag
 1261 aactgtggta ctgtggccct taccattatc cgccaggggtg gtgatttgc taacactgtg
 1321 tttgttgact tcagaaacaga ggtatggcaca gcaaatgctg ggtctgat tgaatttact
 1381 gaaggaactg tgggtttaa gcctgggtat acccagaagg aaatcagagt gggatcata
 1441 gatgatgata tcttgagga ggtatggaaat ttccttgatc atctcagcaa tgtcaaagta
 1501 tcttctgaag cttcagaaga tggcataactg gaagccaatc atgtttctac acttgcttgc
 1561 ctcggatctc cttccactgc cactgttaact atttttgtatc atgaccacgc aggattttt
 1621 acttttgagg aacctgtgac tcatgtgagt gagagcattt gcatcatgaa ggtgaaagta
 1681 ttgagaacat ctggagctcg aggaaatgtt atcgttccat ataaaaccat cgaaggact
 1741 gccagagggtg gaggggagga tttttagggac acttgtggag agctcgattt ccagaatgat
 1801 gaaattgtga agatcattac cattaaataa tttgaccgtg aggaatatga gaaagagtgc
 1861 agtttctccc ttgtgttgc ggaacaaaaa tggataagaa gggatgaa aggtggcttc
 1921 acaataaacag acgaatatga tgacaagcag ccactgacca gcaaagagga agaggagagg
 1981 cgcattgcag aaatggggcg cccatctgc ggagacaca ccaagttgaa agtgcattt
 2041 gaaagaaatcct atgaattcaa ggtactgtg gacaaactca ttaagaagac aaacctggcc
 2101 cttgtggttg ggactaacag ctggagagaa cagttcattt aagatctac tgctcgtct
 2161 gggaaagatg atgacgacga tgaatgtggg gaagagaagc tgccttcctg tttcgattac
 2221 gtgatgcact ttctgactgt gttctggaaat gtcctgttttgc cttctgtccc ccctactgaa
 2281 tactggaaatg gctggcgatc tttcatgtc tccatcctca tgattggct actgacagct
 2341 ttcattggag acctggcttc ccactttggc tgcaccattt gcctgaaaga ttctgtgact
 2401 gcagtcgtgt tcgtcgact tggaaacatca gtgccagaca catttgcac caaagtggca
 2461 gccacccagg accatgtgc agacgcctcc ataggtaacg tcacgggcag caacgcgggt
 2521 aatgtcttcc tggaaatcg tggccttgc tccatcgctg ccatctacca cgcagccaaat
 2581 gggaaacagt tcaaagtgtc ccctggcaca ctatcttct ctgtcactt cttcaccatt
 2641 tttgtttca tcaatgtggg ggtgctgtt gatcgccgaa ggcagaaat cggaggtgag
 2701 ctgggtggc cccggactgc caagctcctc acatcctgccc tctttgtgt cctatggctc
 2761 ttgtacattt tcttcctcctc cctggaggccc tactggccaca taaaaggctt cttaa

L4 ANSWER 243 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC) : AF108388 GenBank (R)
GenBank ACC. NO. (GBN) : AF108388
GenBank VERSION (VER) : AF108388.1 GI:6453726
CAS REGISTRY NO. (RN) : 248898-86-4
SEQUENCE LENGTH (SQL) : 2883
MOLECULE TYPE (CI) : mRNA; linear
DIVISION CODE (CI) : Primates
DATE (DATE) : 13 Mar 2001
DEFINITION (DEF) : Homo sapiens ***sodium*** / ***calcium***
 exchanger isoform NaCa7 (NCX1) mRNA, complete
 cds.
 human .
SOURCE:
ORGANISM (ORGN) : Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo
NUCLEIC ACID COUNT (NA) : 772 a 598 c 731 g 782 t
REFERENCE:
AUTHOR (AU) : Van Eylen,F.; Bollen,A.; Herchuelz,A.
TITLE (TI) : NCX1 Na/Ca exchanger splice variants in pancreatic
 islet cells
JOURNAL (SO) : J. Endocrinol., 168 (3), 517-526 (***2001***)
OTHER SOURCE (OS) : CA 134:351070
REFERENCE:
AUTHOR (AU) : Van Eylen,F.; Bollen,A.; Herchuelz,A.
TITLE (TI) : Direct Submission

FEATURES (FEAT) :

| Feature Key | Location | Qualifier |
|-------------|----------|---|
| source | 1..2883 | /organism="Homo sapiens"
/db-xref="taxon:9606" |
| gene | 1..2883 | /gene="NCX1" |
| CDS | 1..2883 | /gene="NCX1"
/note="isoform NCX1.7"
/codon-start=1
/product="sodium/calcium exchanger
isoform NaCa7"
/protein-id="AAF08987.1"
/db-xref="GI:6453727"
/translation="MYNMRRILSLSPTFSMGFHLL
VTVSLLFSHVDHVIAETEMEGERN
ETGECTGSYYCKKGVLPIWEQDPSFGDKIARA
TVYFVAMVYMFGLGVSIIDARFMSS
IEVITSQEKEITIKKPNGETTKTTVRIWNETVSN
LTLMALGSSAPEILLSVIEVCGHN
FTAGDLGPSTIVGSAAFNMFIIDALCVYVVPDGE
TRKIKHLRVFFVTAWSIFAYTWL
YIILSVISPGVVEWEGLLTFFFFPICVVFAWVA
DRRLLFYKYVKRYRAGKQRGMI
EHEGDRPSSKTEIEMDGKVNVSHVENFLDGALVL
EVDERDQDDEEARREMARILKELK
OKHPDKEIEQLIELANYQVLSQQQKSRAFYRIQA
TRLMTGAGNILRKRAADQARKAVS
MHEVNTEVTENDPVSKIFFEQGTYQCLENCGTVA
LTIIIRGGDLNTVFDFTEDGT
ANAGSDYEFTEGTVVFKPGDTQKEIRVGIIIDDI
FEEDENFLVHLSNVKVSSEASEDG
ILEANHVSTLACLGPSTATVTIFDDDHAGIFTF
EEPVTHVSESIGIMEVKVLRSGA
RGNVIVPYKTIEGTARGGEDFEDTCGELEFQND
EIVKIITIRIFDREEYEKECSFSL
VLEEPKWIRRGMKGFTITGQPVFRKVHAREHPI
LSTVITIADYEYDDKQPLTSKEEEE
RRIAEMGRPILGEHTKLEVIEESYEFKSTVDKL
IKKTNLALVVGTNSWREQFIEAIT
VSAGEDDDDDECGEEKLPSCFDYVMHFLTVFWKV
LFAFPVPTEYWNWGACFIVSILMI
GLLTAFIGDLASHFGCTIGLKDSVTAVVFVALGT
SVPDTASKVAATQDQYADASIGN
VTGSNAVNVLGIGVAWSIAAIYHAANGEQFKVS
PGTLAFSVTLFTIFAFINVGVLLY
RRRPEIGGELGGPRTAKLLTSCLFVLLWLLYIFF
SSLEAYCHIKGF" |

SEQUENCE (SEQ) :

```

1 atgtacaaca tgcggcgatt aagtcttca cccaccttt caatggatt tcatactgtta
 61 gttactgtga gtcttttatt ttccccatgtg gaccatgtaa ttgctgagac agaaatggaa
121 ggagaaggaa atgaaaactgg tgaatgtact ggatcatatt actgtaaaaa aggggtgatt
181 ttgcccattt gggAACCCCA agacccttct tttggggaca aaattgtctag agctactgtg
241 tattttgtgg ccatggtcta catgtttctt ggagtctcta tcatactgtc tcgggttcatg
301 tcctctatag aagtcatcac atctcaagaa aaagaaaataa ccataaaagaa acccaatggaa
361 gagaccacca agacaactgt gaggatctgg aatgaaaacag tttctaacct gaccttgatg
421 gccctggat cttctgtcc tgagattctc ctttcagtaa ttgaagtgtg tggccataac
481 ttcactgcag gagacctcgg tccttagcacc atcgtggaa gtgctgcatt caatatgttc
541 atcattattg cactctgtgt ttatgtggtg cctgacggag agacaaggaa gattaagcat
601 ttgcgtgtct tctttgtgac agcagctgg agcatcttg cctacacctg gctttacatt
661 attttgtctg tcataatctcc tggtgttgg gaggctctgg aagggttgcg tactttcttc
721 ttctttccca tctgtgttgt gttcgcttgg gtagcggata ggagacttct gtttacaag
781 tatgtctaca agaggatcg agctggcaag cagaggggaa tgattattga acatgaagga
841 gacaggccat cttctaaagac tggaaatgaa atggacggaa aagtggtcaa ttctcatgtt
901 gaaaatttct tagatggtgc tctgggtctg gaggtggatg agagggacca agatgatgaa
961 gaagcttaggc gagaatggc taggatctg aaggaaactt agcagaagca tccagataaa
1021 gaaatagacg aattaataga attagctaac taccaacttcc taagtccgca gaaaaaaagt
1081 agagcatttt atcgcatc agctactcgc ctcatgactg gagctggcaa catttaaag
1141 aggcatgcag ctgaccaagc aaggaaggct gtcagcatgc acgagggtcaa cactgaagtg
1201 actgaaaatg accctgttag taagatctt tttgaacaag ggacatatca gtgtctggag
1261 aactgtggta ctgtggccct taccattatc cgccagggatg gtgatttgc taacactgtg
1321 tttgttgcact tcagaacaga ggtggcaca gcaaatgtg ggtctgatta tgaatttact

```

1441 gatgatgata tctttgagga ggatgaaaat ttcccttgc atctcagcaa tgtcaaagta
 1501 tcttcgtaaag cttcagaaga tggcatactg gaagccaatc atgtttctac acttgcttgc
 1561 ctcggatctc cctccactgc cactgtaact attttgcgt atgaccacgc aggcatttt
 1621 actttgagg aacctgtgac tcattgtgagt gagagcattg gcatcatgga ggtaaaagta
 1681 ttgagaacat ctggagctg agggaaatgtt atcggtccat ataaaaccat cgaaggact
 1741 gccagaggtg gaggggagga ttttgcggac acttgcgtg agctcgaatt ccagaatgat
 1801 gaaattgtga agatcattac cattagaata ttgcgttgc aggaatatga gaaagagtgc
 1861 agtttctccc ttgtgttgc ggaaccaaaa tggataagaa gagaaatgaa aggtggcttc
 1921 acaataaacag gcacaacctgt cttaggaag gttcatgcta gagaacatcc gattctctc
 1981 actgtaatca ccattgcaga cgaatatgtat gacaagcgc cactgaccag caaagaggaa
 2041 gaggagagggc gcattgcaga aatggggcgc cccatcctgg gagagcacac caagttggaa
 2101 gtgtatcattg aagaatccta tgaattcaag agtactgtgg acaaactcat taagaagaca
 2161 aacctggccc ttgtgttgg gactaacagc tggagagaac agttcattga agctatcact
 2221 gtcagtgtg gggaaagatga tgacgacat gaatgtgggg aagagaaggt gccctcctgt
 2281 ttgcattac tgatgcact tctgactgtt ttctgttgc cttcgatccc gattggccta
 2341 cctactgaat actggaaatgg ctggcggtt ccattgttgc gcaccattgg cctgaaaagat
 2401 ctgacagctt tcattggaga cctggcttcc cacttggct tgccagacac atttgccagc
 2461 tctgtactg cagtcgtgt cgtcgcactt ggaacatcgat tagttaacgt cacgggcagc
 2521 aaagtggcag ccaccaggaa ccagtatgca gacgcctcca ccatcgctgc catctaccac
 2581 aacgcggta atgttccctt gggaaatcggt gtggcctgg tagcttctc tgtaactctc
 2641 gcagccaatg gggaaacagtt caaagtgtcc cctggcacac tagcttctc atcggcggag
 2701 ttcaccattt ttgtttcat caatgtgggg gtgtgttgtt atcggcggag gcccagaaatc
 2761 ggaggtgagc tgggtggcc ccggactgca aagctcctca catcctgcct ctttgtgctc
 2821 ctatggctct tgatcatttt ttctcctcc ctggaggcct actgccacat aaaaggcttc
 2881 taa

L4 ANSWER 244 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC) : HSY13035 GenBank (R)
 GenBank ACC. NO. (GBN) : Y13035
 GenBank VERSION (VER) : Y13035.1 GI:2463217
 CAS REGISTRY NO. (RN) : 197682-66-9
 SEQUENCE LENGTH (SQL) : 830
 MOLECULE TYPE (CI) : DNA; linear
 DIVISION CODE (CI) : Primates
 DATE (DATE) : 27 Oct 2000
 DEFINITION (DEF) : Homo sapiens ncx1 gene, exon 1e.
 SOURCE:
 human
 ORGANISM (ORGN) : Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo
 NUCLEIC ACID COUNT (NA) : 269 a 151 c 192 g 218 t
 REFERENCE:
 AUTHOR (AU) : Scheller,T.; Kraev,A.; Skinner,S.; Carafoli,E.
 TITLE (TI) : Cloning of the multipartite promoter of the
 sodium - ***calcium*** ***exchanger***
 gene NCX1 and characterization of its activity in
 vascular smooth muscle cells
 J. Biol. Chem., 273 (13), 7643-7649 (***1998***)
 CA 129:1331
 2 (bases 1 to 830)
 REFERENCE:
 AUTHOR (AU) : Kraev,A.S.
 TITLE (TI) : Direct Submission
 JOURNAL (SO) : Submitted (06-MAY-1997) A.S. Kraev, Swiss Federal
 OTHER SOURCE (OS) : Institute of Technology, Laboratory of Biochemistry
 REFERENCE:
 AUTHOR (AU) : Kraev,A.S.
 TITLE (TI) : Direct Submission
 JOURNAL (SO) : Submitted (06-MAY-1997) A.S. Kraev, Swiss Federal
 Institute of Technology, Laboratory of Biochemistry
 III, Universitaetstr. 16, Zurich, CH-8092, SWITZERLAND

FEATURES (FEAT) :

| Feature Key | Location | Qualifier |
|-------------|----------|---|
| source | 1..830 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p22.3-p23.1"
/clone="202E10A"
/clone-lib="CEPH BAC"
/dev-stage="adult" |
| gene | 347..580 | /gene="ncx1" |
| exon | 347..580 | /gene="ncx1"
/note="number 1e" |

SEQUENCE (SEQ) :

1 aaacaaggta gtgattcagc aatttacttc aaccaaatta tgatatttat ggagcattca
 61 gtgtatacaa ggcctgtgc ttggcttttc aaagaatgca gatgatgaag aaaaggtagt

181 ctcattggat gcttatgagt attctgcagg acaaggaagc atcattttc tgacttaagg
 241 atgaagacta tggttcagtg aaataacttg ggccaagggc taacaagtaa tggtaataa
 301 ggaaggctct ccaaaagcca tgctctacac tggtctctgt tcccagggat gtcatggct
 361 agaacaccta tgctgaagta caaggctgag caagaagat cactccactg caactgagca
 421 aagtgcgtaa ggagttgaaa ggaagaagag aacattggac gtggttcac ggaggagggaa
 481 gcattttaat ttattcagaa agagtggaaa ggattttgaa agcaaataag gctagccact
 541 tttgaaacat gtcaaagagc cccagcttat ttacgacaag gtaaccgtgg agaaatgtta
 601 gggcagttc tagaccctt cattccgttc tgtgtccag tcaggaccat gccacagaaa
 661 caggatctga aacaaataac aacataagcc attgtacaaa tgcattttat acttgacacc
 721 aaaatgttagg atgaacttcc agcatcgct tggaggagag aggctatacc agtcagaggt
 781 gaggcaagag acagaccact tgctaacttg tcctttatta aaggtgatga

L4 ANSWER 245 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC): HSY13034 GenBank (R)
GenBank ACC. NO. (GBN): Y13034
GenBank VERSION (VER): Y13034.1 GI:2463216
CAS REGISTRY NO. (RN): 197682-65-8
SEQUENCE LENGTH (SQL): 5282
MOLECULE TYPE (CI): DNA; linear
DIVISION CODE (CI): Primates
DATE (DATE): 27 Oct 2000
DEFINITION (DEF): Homo sapiens ncx1 gene, exon 1a, 1b and 1c.
SOURCE: ***human***
ORGANISM (ORGN): Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
Hominidae; Homo
NUCLEIC ACID COUNT (NA): 1403 a 1205 c 1341 g 1333 t
COMMENT:
Related sequences: L06438, U04934, L35846, U67073, T29777, X92368,
X68812, U04935.
REFERENCE: 1 (bases 1 to 5282)
AUTHOR (AU): Scheller,T.; Kraev,A.; Skinner,S.; Carafoli,E.
TITLE (TI): Cloning of the multipartite promoter of the
sodium - ***calcium*** ***exchanger***
gene NCX1 and characterization of its activity in
vascular smooth muscle cells
JOURNAL (SO): J. Biol. Chem., 273 (13), 7643-7649 (***1998***)
OTHER SOURCE (OS): CA 129:1331
REFERENCE: 2 (bases 1 to 5282)
AUTHOR (AU): Kraev,A.S.
TITLE (TI): Direct Submission
JOURNAL (SO): Submitted (06-MAY-1997) A.S. Kraev, Swiss Federal
Institute of Technology, Laboratory of Biochemistry
III, Universitaetstr. 16, Zurich, CH-8092, SWITZERLAND

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|------------|---|
| source | 1..5282 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p22.3-p23.1"
/clone="202E10A"
/clone-lib="CEPH BAC"
/dev-stage="adult" |
| exon | 2260..2537 | /gene="ncx1"
/note="number 1c" |
| gene | 2260..4020 | /gene="ncx1" |
| exon | 2840..3163 | /gene="ncx1"
/note="number 1b" |
| exon | 3690..3794 | /gene="ncx1"
/note="number 1a" |
| STS | 3857..4020 | /gene="ncx1"
/note="D2S2328" |

SEQUENCE (SEQ):

1 aaagcaaaga accctggatc tactcatcag caaagaaaaac ctaaagaaca aaactggaa
 61 ccaatggttc acctgagatt ctttaggtatg gaaaaatggc taattctaag ctccactcac
 121 tggccaggct aggggttatt atgtataaaat attttcttat gtagaaatca ctatgaaact
 181 gagcctgtga ctgaacagat aggtgattag tgaaggctgg cagagtaaga aatgaggtga
 241 gggacgacta agactgtatt aacatatttc agaagccga agcaatggaa gagacaatag
 301 aggtacctct gatttatgtt attcaaagta aaaatgaaag gaatttaaac agagtattgt
 361 gcttgttttc cctatgtga aaacatattg agtactttag taaagtatata aatattttta

481 ctaattcaca atatttacac ttggctcgaa aatgagtttg ctaacagatc ccctgaagggt
541 ttccttaggaa atagtttgtg aacatcgaaa catcttcga atatatcaaa tcttagtgat
601 atccctgtgg agtcccctga atggttgtgt cgtattgctt tggtagata acagtggaga
661 cccggtgact cttaatcca agtccagagg aaagaatggc aatcaatatg gaagagtgc
721 attaagaaac attactgcta ttagaatgta aattaccacc ttccctccatt caacatgtct
781 tcttccaaa gccacagact gcagcgcctt cactttcc tttcttagag ccatagtctt
841 cctcagcctt gtgcctgtga tgcagcctt gataattctc gcaataaaaaa ctcactcatg
901 tatgacattt aggagggagc aaaaggttt gattgcctt gggccctgga accattataa
961 aaatgcctt aaagagaaat gaaaggcaaa gaaaattagg ggctcagaaa ctgactgaac
1021 caaaaaggat gccaaatcac taggcactag gctgccttc caatagttt agataaaacag
1081 aagaccattt aatattttt tttcccaag aatccaaatc agtctaaaag cagtttcgat
1141 tggaaaagag gaagaatcaa gtggccaaga tgtgcctt cagttcaat ggtcaaagca
1201 aaaaaaaaaa aaaaaaaagt ttaagacaga ctttggcat cactggaata taaacattta
1261 aagaacaggg ttcttgcac tccatgtcac aaacatgcct aaaaatttcaa gaaaatctca
1321 gcttcacta agcggccgt catagaata agaggctaca ctcttccac aaaatctatt
1381 ccagtgaard atggccact cacatttca ttagcttc tttggttcc ttcatattggc
1441 tgtgttctat ttccatttga gtggagtctt tagttataag ctttccttag tgttatTTAG
1501 aaggcagcca cttttcttc caagccctt gactctaagt aatttttgt tgagccaaat atctgctact
1561 cacactgcct taaattcagg gactctttt cattctgttt atatccacta gtaagtgtag
1621 gacagtgacc ttctgtctc ccccacaggt aagtagcttca aagaaaatt taacttataag caaggaaaga
1681 tctaaccaaag ttgggtgtgga cgattcctgc tccaaagactg aatttttgtt agaggacata ttctaaaaga
1741 aaaatgttct taggcaagaa tccaaagactg aatTTTTGTG tgagccaaat atctgctact
1801 tgtcctctac aaagccagta agcatcactt ctttggccca ctttccttag tgttatTTAG
1861 gtcctcattt agacggcctc caacacttgc ctttggccca ctttccttag tgttatTTAG
1921 gtctattgaa aaagaatctg caatccccat gtgattcata tcattgcaca taggaatcaa
1981 gtattggcct agagcagtgg ttcatttgc aatTTTTGTG tgagccaaat atctgctact
2041 taaaacaaa ttaaggctgt gatTTTTGTG tgcaaaagttt gagattctga ggtgcaaggaa
2101 gggtgtggcc taagcactgg gatTTTTGTG aacggccca gaggctattt cttccatttcc
2161 gggtgtgagag ccacttggcac gggggcagaa gggggcagaa tcagaatcta tcagtcgtgg
2221 tggcgggag ggaaacttgc gggacgtctc cccaccccttcc ccaagtagct gtccttgacc
2281 gtttgcactg taagtatggg gggggcagaa aactaactt cttccatttcc
2341 ctctgcagggt cccttgcattt gggggcagaa aacttgcatttcc
2401 ctttggccaa cggacccagg gggggcagaa aacttgcatttcc
2461 cccatttgc gacctacaac gggggcagaa aacttgcatttcc
2521 tctgactaca ttcccagggt gggggcagaa aacttgcatttcc
2581 cagtaggtct agcatttgc gggggcagaa aacttgcatttcc
2641 tcaagagagg aaaggcctgg gggggcagaa aacttgcatttcc
2701 ggcaatgata atgcttctc tggaaaggc aagaaatggt tcgtcgattt
2761 tttttccca ctcaacctt aatgctcgct tttacttctc actgttagtt
2821 cgccttcac acgaaacaga ctctgggtct ttattccag gtgaaacgc
2881 aaataccaaac acagagactc tggccagggtt ctttggccgg
2941 ctctgtttgc ttgtgtcagc atcttagtgc caacgtatag
3001 gaaaaacaca gggtgaggat taaaaaaa agaaggcag
3061 aaaagaaagc ttccatttgc agaaggcag
3121 caaagtccaga ggtgagaaac gggtaggcga
3181 gaagaagagg gttcaaaaaga aaagttcag
3241 ggtgcgagag acacagctag cgcgcggcca
3301 aaatcgaaaa agtgcgtcgc cggcagaggc
3361 ggtgcgtccag aaacgcgcgg gcttgcggcc
3421 cgcaggggcc cccggggcgc cccggcagccg
3481 aggctgcggg cggcggggcgg gcgagtgtc
3541 cgggccccgg ccctcccccagc ctcccggct
3601 tgccgctgcc gcggtcccg ctcgcggcc
3661 cctgctttgt gcttccaca gaagatgg
3721 aaggagggag tgcgcgtat tttctactag
3781 actcccaaa ccaggtaggt tctttagatg
3841 agaactattt tccatttgc gctcataagg
3901 ggcttctaaa tttgtgtgtg tttgtgtgt
3961 gtggtgtgtg cgcgcctgca cattttctg
4021 cgggctgggag cgtctggcg tgagggtgc
4081 aagaaaaggc tgctaaggag agatgtcga
4141 gggcgcgaag agctaagtcc accccgaatg
4201 ccactggact cctctcccg cgcgcctgca
4261 gcccacattt ccgagccccc tttttccag
4321 gcggagagga gggaggtgtg cggggacaga
4381 aggagggtggg ctgcggggcgc cactgtctgc
4441 ctgcacacac aggcatctt ccccaagaga
4501 gcctctggga gctttgtgt gcttgcgg
4561 atatcccttt tggctccctt ttaatgaga
4621 caaagaaacc aaatccggcc aggcgtatgt
4681 ttctttaat ccacccctg catcacc
4741 ggattctgtt gctgtttgtat gaatggctt
4801 tggtagtggg tgagttgaga acagggggtga
4861 gcaatgtgca tggttacgc agtcatgg
4921 aagccccgaa acctggctt cctgaagccg

5041 aaaaaaaagga tatacgatggg aggtgttagtg gaagaagctt tttaaaaaat gacagatgtg
5101 gtgaagacag tacaacgcgc ctgatcatgg aggagcctct agctgagtag gtggagatatt
5161 ctgatcagat ctggtaaaag gcattgctgg agtatctcca gatatgagca gttgaacatg
5221 cacaatctga gacttgtcg aagatttccc aaggaaaaga gggagccacc aggagagaat
5281 tc

L4 ANSWER 246 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC): HSY13033 GenBank (R)
GenBank ACC. NO. (GBN): Y13033
GenBank VERSION (VER): Y13033.1 GI:2463214
CAS REGISTRY NO. (RN): 197682-64-7
SEQUENCE LENGTH (SQL): 563
MOLECULE TYPE (CI): mRNA; linear
DIVISION CODE (CI): Primates
DATE (DATE): 27 Oct 2000
DEFINITION (DEF): Homo sapiens NCX1 mRNA alternative 5'end, exon 1c and 2.
SOURCE: ***human***
ORGANISM (ORGN): Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
Hominidae; Homo
NUCLEIC ACID COUNT (NA): 142 a 134 c 129 g 158 t
COMMENT:
Related sequences: M91368, X91213.
REFERENCE:
AUTHOR (AU): Scheller,T.; Kraev,A.; Skinner,S.; Carafoli,E.
TITLE (TI): Cloning of the multipartite promoter of the ***sodium*** - ***calcium*** ***exchanger*** gene NCX1 and characterization of its activity in vascular smooth muscle cells
JOURNAL (SO): J. Biol. Chem., 273 (13), 7643-7649 (***1998***)
OTHER SOURCE (OS): CA 129:1331
REFERENCE:
AUTHOR (AU): Kraev,A.S.
TITLE (TI): Direct Submission
JOURNAL (SO): Submitted (06-MAY-1997) A.S. Kraev, Swiss Federal Institute of Technology, Laboratory of Biochemistry III, Universitaetstr. 16, Zurich, CH-8092, SWITZERLAND

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|-----------|---|
| source | 1..563 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p22.3-p23.1"
/tissue-type="heart"
/dev-stage="adult"
/note="number 1c" |
| exon | 1..278 | /number=2 |
| exon | 278..>563 | /gene="ncx1" |
| gene | 312..563 | /gene="ncx1"
/codon-start=1
/protein-id="CAA73478.1"
/db-xref="GI:2463215"
/translation="MRRLSLSPTFSMGFHLLTVT
SLLFSHVHDHVIAETEMEGEGNETG
ECTGSYYCKKGVLPIWEWPQDPSFGDKIARATVY
FVAMVY" |
| CDS | 312..>563 | |

SEQUENCE (SEQ):

1 atcagtctgt gtgactgcc tggttgcact gtaagtatgg ggggacgtct ccacgaaaaa
61 aaactaactt tctgccttgt gctctgcagg tccctcccttc tcccacccctc cccaaggtagc
121 tgctcctgac ccccccacac accttggcaa acgacaccag tggccgatag caactggtgt
181 tttaaaaata ctaatttgaa gccccattt agacctacaa cgggagagtc tgcatcagat
241 tcggcctcag attctacagc atctgactac attcccaactt ggttgtgaca gttggaaagtg
301 tcatgtacaa catgcggcga ttaagtcttt cacccacctt ttcaatggga tttcatctgt
361 tagttactgt gagtcttta ttttcccattt tgccatgt aattgctgag acagaaaatgg
421 aaggagaagg aaatgaaaact ggtgaatgtt ctggatcata ttactgtaaag aaagggtgt
481 ttttgcccat ttggaaaccc caagaccctt cttttgggaa caaaattgtt agagctactg
541 tgtatTTGT ggccatggc tac

L4 ANSWER 247 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC): HSY13032 GenBank (R)
 GenBank ACC. NO. (GBN): Y13032
 GenBank VERSION (VER): Y13032.1 GI:2463212
 CAS REGISTRY NO. (RN): 197682-63-6
 SEQUENCE LENGTH (SQL): 583
 MOLECULE TYPE (CI): mRNA; linear
 DIVISION CODE (CI): Primates
 DATE (DATE): 27 Oct 2000
 DEFINITION (DEF): Homo sapiens NCX1 mRNA alternative 5'end, exon 1a, 1e and 2.
 SOURCE: ***human***
 ORGANISM (ORGN): Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo
 NUCLEIC ACID COUNT (NA): 178 a 107 c 151 g 147 t
 COMMENT:
 Related sequences: M91368, X91213.
 REFERENCE:
 AUTHOR (AU): Scheller,T.; Kraev,A.; Skinner,S.; Carafoli,E.
 TITLE (TI): Cloning of the multipartite promoter of the ***sodium*** - ***calcium*** ***exchanger*** gene NCX1 and characterization of its activity in vascular smooth muscle cells
 JOURNAL (SO): J. Biol. Chem., 273 (13), 7643-7649 (***1998***)
 OTHER SOURCE (OS): CA 129:1331
 REFERENCE:
 AUTHOR (AU): Kraev,A.S.
 TITLE (TI): Direct Submission
 JOURNAL (SO): Submitted (06-MAY-1997) A.S. Kraev, Swiss Federal Institute of Technology, Laboratory of Biochemistry III, Universitaetstr. 16, Zurich, CH-8092, SWITZERLAND

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|-----------|---|
| source | 1..583 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p22.3-p23.1"
/tissue-type="heart"
/dev-stage="adult"
/note="number 1a"
/replace="a" |
| exon | 1..105 | |
| variation | 104 | |
| exon | 106..339 | |
| exon | 339..>583 | |
| gene | 373..583 | |
| CDS | 373..>583 | /gene="ncx1"
/gene="ncx1"
/codon-start=1
/protein-id="CAA73477.1"
/db-xref="GI:2463213"
/translation="MRRSLSLSPTFSMGFHLLVTV
SLLFSHVVDHVIATEMEGEGNETG
ECTGSYYCKKGVLPIWEQPQDPSFGD" |

SEQUENCE (SEQ):

```

1 agcgacctct tcctgatcgg gagctgttta aaaggagggaa gtgcgccgtt ttttctacta
 61 gcgtggagga acggaggaag aatccattca cactccccaa accggggatg tcatggctca
 121 gaacacctat gctgaagtac aaggctgagc aagaaagatc actccactgc aactgagcaa
 181 agtgctgaag gagttgaaag gaagaagaga acatcggacg tggtttcacg gaggaggaag
 241 cattttaatt tattcagaaa gagtggaaag gattttgaaa gcaaataagg ctagccactt
 301 ttgaaacatcg tcaaagagcc ccagcttatt tacgacaagt aggttgtgac agttggaaagt
 361 gtcatgtaca acatcgccgc attaagtctt tcacccacct tttcaatggg atttcatctg
 421 ttagttactg tgagtctctt atttccat gtggaccatg taattgctga gacagaaaatg
 481 gaaggagaag gaaatgaaac tggtaatgt actggatcat attactgtaa gaaaggggtg
 541 atttgcctt tttggaaacc ccaagaccct tctttgggg aca

```

L4 ANSWER 248 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC): HSY12885 GenBank (R)
 GenBank ACC. NO. (GBN): Y12885
 GenBank VERSION (VER): Y12885.1 GI:2463210
 CAS REGISTRY NO. (RN): 197682-62-5
 SEQUENCE LENGTH (SQL): 328
 MOLECULE TYPE (CI): mRNA; linear

DATE (DATE) : 27 Oct 2000
 DEFINITION (DEF) : Homo sapiens NCX1 mRNA alternative 5'end, exon 1d and 2.
 SOURCE: ***human*** .
 ORGANISM (ORGN) : Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo
 NUCLEIC ACID COUNT (NA): 90 a 61 c 82 g 95 t
 COMMENT:
 Related sequences: M91368, X91213.
 REFERENCE:
 AUTHOR (AU): Scheller,T.; Kraev,A.; Skinner,S.; Carafoli,E.
 TITLE (TI): Cloning of the multipartite promoter of the ***sodium*** - ***calcium*** ***exchanger*** gene NCX1 and characterization of its activity in vascular smooth muscle cells
 JOURNAL (SO): J. Biol. Chem., 273 (13), 7643-7649 (***1998***)
 OTHER SOURCE (OS): CA 129:1331
 REFERENCE:
 AUTHOR (AU): Kraev,A.S.
 TITLE (TI): Direct Submission
 JOURNAL (SO): Submitted (01-MAY-1997) A.S. Kraev, Swiss Federal Institute of Technology, Laboratory of Biochemistry III, Universitaetstr. 16, Zurich, CH-8092, SWITZERLAND

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|-----------|--|
| source | 1..328 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p22.3-p23.1"
/tissue-type="heart"
/dev-stage="adult"
/note="number 1d"
/number=2
/gene="ncx1"
/gene="ncx1"
/codon-start=1
/protein-id="CAA73386.1"
/db-xref="GI:2463211"
/translation="MRRRLSLSPTFSMGFHLVTV
SLLFSHVHDVIAETEMEGEGNETG
ECTGSYYCKKGVLPIWEQDPSFGD" |
| exon | 1..84 | |
| exon | 85..>328 | |
| gene | 118..328 | |
| CDS | 118..>328 | |

SEQUENCE (SEQ):
 1 gctggtaaat ttagagaagg catcatactg ggatctttt tcacatccag cccatgcggaa
 61 ctgagcagcc aaagcttgac agagtaggtt gtgacagttt gaagtgtcat gtacaacatcg
 121 cggcgattaa gtcttcacc cacctttca atgggatttc atctgttagt tactgtgatg
 181 ctcttatttt cccatgtgga ccatgttaatt gctgagacag aaatggaagg agaagggaaat
 241 gaaactggtg aatgtactgg atcatattac tgtaagaaa gggtgatttt gcccatttgg
 301 gaaccccaag acccttcttt tggggaca

L4 ANSWER 249 OF 473 GENBANK.RTM. COPYRIGHT 2004 ON STN

LOCUS (LOC): HSY12878 GenBank (R)
 GenBank ACC. NO. (GBN): Y12878
 GenBank VERSION (VER): Y12878.1 GI:2463208
 CAS REGISTRY NO. (RN): 197683-37-7
 SEQUENCE LENGTH (SQL): 558
 MOLECULE TYPE (CI): mRNA; linear
 DIVISION CODE (CI): Primates
 DATE (DATE): 27 Oct 2000
 DEFINITION (DEF): Homo sapiens NCX1 mRNA alternative 5'end, exon 1d, 1c and 2.
 SOURCE: ***human*** .
 ORGANISM (ORGN): Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo
 NUCLEIC ACID COUNT (NA): 146 a 132 c 126 g 154 t
 COMMENT:
 Related sequences: M91368, X91213.
 REFERENCE:
 1 (bases 1 to 558)

TITLE (TI): Cloning of the multipartite promoter of the ***sodium*** - ***calcium*** ***exchanger*** gene NCX1 and characterization of its activity in vascular smooth muscle cells
 JOURNAL (SO): J. Biol. Chem., 273 (13), 7643-7649 (***1998***)
 OTHER SOURCE (OS): CA 129:1331
 REFERENCE:
 AUTHOR (AU): Kraev, A.S.
 TITLE (TI): Direct Submission
 JOURNAL (SO): Submitted (01-MAY-1997) A.S. Kraev, Swiss Federal Institute of Technology, Laboratory of Biochemistry III, Universitaetstr. 16, Zurich, CH-8092, SWITZERLAND

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|-----------|--|
| source | 1..558 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p22.3-p23.1"
/tissue-type="heart"
/dev-stage="adult"
/note="number 1d"
/note="number 1c"
/number=2
/gene="ncx1"
/gene="ncx1"
/codon-start=1
/protein-id="CAA73378.1"
/db-xref="GI: 2463209"
/translation="MRRRLSLSPTFSMGFHLLVTV
SLLFSHVDHVIAETEMEGEGNETG
ECTGSYCKKGVLPIWEQPQDPSFGDKIARATVY
FVAMVY" |
| exon | 1..84 | |
| exon | 85..273 | |
| exon | 273..>558 | |
| gene | 307..558 | |
| CDS | 307..>558 | |

SEQUENCE (SEQ):

```

1 gctggtaaat ttagagaagg catcatactg ggatctttt tcacatccag cccatgcgg
 61 ctgagcagcc aaagcttgac agaggtccct ccttcctcca cttccccaa gtagctgctc
121 ctgaccccc cacacacctt ggcaaacgac accagtggcc gatagcaact ggtgtttaa
181 aaatactaatttggagcccc atttgagacc tacaacggga gagtctgcat cagattcggc
241 ctcagattct acagcatctg actacattcc cagtaggtt tgacagttgg aagtgtcatg
301 tacaacatgc ggcgattaag tcttcaccc acctttcaa tgggatttca tctgttagtt
361 actgtgagtc tcttattttc ccatgtggac catgtaattt ctgagacaga aatggaaagga
421 gaaggaaatg aaactggtga atgtactgga tcatattact gtaagaaaagg ggtgattttg
481 cccatttggg aaccccaaga cccttctttt ggggacaaaa ttgctagagc tactgtgtat
541 ttgttggcca ttgtctac

```

L4 ANSWER 250 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC): RNU53420 GenBank (R)
 GenBank ACC. NO. (GBN): U53420
 GenBank VERSION (VER): U53420.1 GI:1552525
 CAS REGISTRY NO. (RN): 181290-29-9
 SEQUENCE LENGTH (SQL): 4854
 MOLECULE TYPE (CI): mRNA; linear
 DIVISION CODE (CI): Rodents
 DATE (DATE): 4 Oct 1996
 DEFINITION (DEF): Rattus norvegicus ***sodium*** - ***calcium*** ***exchanger*** form 3 (NCX3) mRNA, complete cds.

SOURCE: Norway rat.
 ORGANISM (ORGN): Rattus norvegicus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Rodentia;
 Sciurognathi; Muridae; Murinae; Rattus

NUCLEIC ACID COUNT (NA): 1162 a 1216 c 1267 g 1209 t
 REFERENCE:

AUTHOR (AU): Nicoll,D.A.; Quednau,B.D.; Qui,Z.; Xia,Y.R.; Lusis,A.J.; Philipson,K.D.

TITLE (TI): Cloning of a third mammalian Na+-Ca²⁺ exchanger, NCX3
 JOURNAL (SO): J. Biol. Chem., 271 (40), 24914-24921 (***1996***)
 OTHER SOURCE (OS): CA 125:267098
 REFERENCE:
 AUTHOR (AU): Nicoll,D.A.; Philipson,K.D.
 TITLE (TI): Direct Submission
 JOURNAL (SO): Submitted (02-APR-1996) Physiology, University of

FEATURES (FEAT) :

| Feature | Key | Location | Qualifier |
|---------|-----|-----------|---|
| source | | 1..4854 | /organism="Rattus norvegicus"
/strain="Sprague-Dawley"
/db-xref="taxon:10116"
/map="tightly linked to D12Ucl3"
/note="maps to chromosome 12 in mouse and 14q21-31 in human"
/gene="NCX3"
/gene="NCX3"
/note="similar to human ncx2 product encoded by GenBank Accession Number X93017"
/codon-start=1
/product="sodium-calcium exchanger form 3"
/protein-id="AAC52817.1"
/db-xref="GI:1552526"
/translation="MAWLRLQPLTSAFLHFGLVT FVLFLNGLRAEAGDLRDVPSAGQN NESCSGSSDCKEGVILPIWYPENPSLGDKiarvi VYFVALIYMFLGVSIIADRFMASI EVITSQEREVTIKKPNGETSTTIRVWNETVSNL TLMALGSSAPEILLSLIEVCGHGF IAGDLGPSTIVGSAAFNMFIIGICVYVIPGET RKIKHLRVFFVTAWSVFAYIWLY MILAVFSPGVVQVWEGLLTLFFFPCVLLAWVAD KRLLFYKYMHKRYRTDKHRGIIIE TEGEHPKGIEDGKMMNSHFLDGMLIPLEGKEVD ESRREMIRILKDLQKHPKDLDQ LVEMANYYALSHQQKSRAFYRIQATRMMTGAGNI LKKHAAEQAKKTASMSEVHTDEPE DFASKVFFDPCSYQCLENCGAVLLTVVRKGDDIS KTMYVDYKTEDGSANAGADYEFT E GTVVLKPGETQKEFSVGIIDDDIFEEDEHFFVRL SNVRVEEEQLEEGMTPAILNSLPL PRAVLASPCVATVTILDDDHAIGIFTFECDTIHVS ESIGVMEVKVLRRTSGARGTVIVPF RTVEGTAKGGGEDFEDTYGELEFKNDETVKTIRV KIVDEEYERQENFFIALGEPKWM ERGISALLSPEVTDRKLTMEEEAKRIAEMGKP VLGEHPKLEVIIIESYEFKSTVDK LIKKTNLALVVGTHSWRDQFMEDIAITVSAAGDEEE DESGEERLPSCFDYVMHFLTWFVWK VLFAVCVPPTEYCHGWACFVVSILIIGMLTAIGD LASHFGCTIGLKDSVTAVVFAFG TSVPDTFASKAALQDVYADASIGNVTGSNAVNV FLGIGI LAWSVAIAIYWAMQGQEFHV SAGTLAFSVTLFTIFAFVCLSVELYRRRPHLGGE LGGPRGCKLATTWLFVSLWLLYVL FATLEACYIKGF" |
| gene | | 1..4854 | |
| CDS | | 834..3617 | |

SEQUENCE (SEQ) :

1 gaattcggca cgagcaacaa gccaggccta ttacacccta gacacccctt gggacttccc
 61 agtcaaccca qaagcaattt tatatgaaaa caaacagatt gcagagtttt agaaaaagatg
 121 tcctatgttt aatgtgtgaa cagaagagag gaggataagg tgactggct ttaagatcga
 181 atgcatttga aactgaactg aacaaggctca tcattgtgaca cctgcggcag tggatgggt
 241 ttaggttta gaacgaatag attaatagcc atctttgggg atgaatgtgc ctctctctga
 301 aaaagactca cgctgtgggt caacatggca gtatatacac aagagatgca ctcagcta
 361 acctcaggat ttaatgtgct caattccaaac ttaagtattt caaagacaag tttagcttcat
 421 gaaactgccc catgtcaat ccacttaaca ctcaaccggg ccttgctga gccactcagg
 481 cagtccttgc ttcttggctg ggtggcgagg gtccgtacaa cccgcctgc tccctggccc
 541 cagcgatcga gctccagatg cgctgcctgg tagccccctg acagctgcta gcccacgagc
 601 tccggccggc agccgcggcg gactgtcatc ccctggacgc cgctgcagcc ggcccgac
 661 ccgcgggggc gatgagccgc tgcggccgg gaggagccgg gccgcggcgg catcgac
 721 cttcttagcc cgccttactt gcccatttag ctctggaaac taagggaaat cggtctcagg
 781 cctgtcgaaa agaccattgg tgctgtggg gggccagagc ctaagtctt gttatggcgt
 841 ggttacggct gcagcctctc acctctgcct tcctccattt cgggtgggtt acttttgtc
 901 tcttcctgaa tggcttcga gcagaggctg gtgacttgag ggatgtgccc agtgcaggac
 961 agaacaatga gtcctgtca gggtcatcact actgcaagga ggggtgtcatc ttgccaatct
 1021 ggtatccaga gaacccttcc cttggggaca agattgcaag ggtcattgtc tattttgtgg
 1081 ccctgatata catgtttctt ggagtgtcta tcattgtga ccgattcatg gcatctattg

1201 caactacaat tcgggttatgg aatgaaaactg tctccaacct gaccctgatg gcccttaggct
 1261 cttctgctcc ggagattctc ctgtctttaa ttgagggttg tggtcacggg ttcatcgct
 1321 gtgatttggg accgtctacc attgtcggca gtgcagcctt caacatgttc atcatcattg
 1381 gcatctgtgt ctagtgatc ccagatgggg agactcgcaa gatcaagcac ctgcagtc
 1441 tcttgtcac ggctgcttgg agcgtcttgc cctatattt gctctacatg atcctggcag
 1501 tcttcctcc tggtggttc caggttggg aaggcctcct tactctcttc ttcttccag
 1561 tgtgtgtcct gctggcttgg gtggcagata agcgactgct cttctacaaa tacatgcaca
 1621 aaagataccg cacagataaa caccgaggaa ttatcatgaa gacagagggt gaacacccta
 1681 agggcattga gatggatggg aaaatgatga attctcaatt cctggatggg aaccttatac
 1741 ccttggaaagg aaaggaggtt gatgaatctc gcagggaaat gatccgaatt cttaaggatc
 1801 tgaagcaaaa acaccagaa aaagacttag atcagctgtt ggagatggcc aattactatg
 1861 ctcttccca ccaacagaag agccgtctt tctaccgcatt ccaagccacc cgatgtatg
 1921 ctggtgcaagg caataactt aagaacatg cagcagacca agccaagaag accgccagca
 1981 tgagtggatgt gcatactgtat gggcctggag aactgtggag ctgtcctct gactgtgttgg
 2041 gcttttacca gtcctggag tacgtggact acaaaaacaga ggacggctt gccaatgcag
 2101 gagatatac caagactatg gaaggcactg tggttctgaa gccaggagag acccagaagg
 2161 gggctgacta tgagttcaca gatgatgaca tttttgaaga ggtgaacac ttcttcgtga
 2221 agttctccgt gggcatcatc gaagaggagc agctggaaaga gggatgacc cccccatcc
 2281 gactgagcaa tgcctgtt cgggctgtcc tggcttcccc ttgtgtggcc acagtaacca
 2341 tcaatagtct tccttgccca ggaattttca cttttgaatg tgataccatt catgtcagt
 2401 tcttggatga tgaccatgca gtcaagggtt tgaggacatc ggggtcccg ggcacagtca
 2461 aaagtattgg ttttatggaa aagagaatag cagagatggg aaagccagta ttgggtgaac
 2521 tcgtccctt taggacagta gaaggaacag ccaagggtgg tggtagggac ttgaagata
 2581 cttatgggaa gctggagtt aagaatgatg aaacgggtgaa aaccataagg gtaaaatag
 2641 tagatgagga ggagtacgaa aggcaagaga atttcttcat ggccttggg gaaccgaaat
 2701 gnatgaaacg tggaaatatca aagagaatag cagagatggg ggtgacagac aggaagctg
 2761 ctatggagga agaggaggcc attgaagagt cctatgagtt caagagtaca gtggataaac
 2821 accctaaact agaggtcatc gcattgtttg tggggaccca ttctggg gaccaattca
 2881 tgatcaagaa gacaaacctg gcacggaggatgaggatggg ggtctttgg aagtgctct
 2941 tggaaaggccat cactgttagt tatgtcatgc acttcttgac ggtcttgg gtcctcatcc
 3001 ggctccatc atgctttgac gaggacttgc atggctggc ctgcttgc ggtccatcc
 3061 ttgcctgtt gccccccaca gactacttgc gggaccttgc ctctcactt ggctgcacca
 3121 tcatacatcg catgtcacc acagctgtt gctccctgc aggatgttgc attcggcacc
 3181 tcgggctcaa ggattcggtc gtaatgtct tcctgggtat tggggcc tctgtgccc
 3241 atacatttgc cagaaagct gttctgaacc cagggacagg agttccatgt gtcgcttgc
 3301 atgtcaccgg cagtaatgtc gtcaatgtct tcctgggtat tggggcc tggccgtc
 3361 ccgcacatcta ctggggccatg caccatcgatc atcttgcatt ttgtctgcct cagtgtg
 3421 tctcggtcac tcttttacc gacggggccatc gagcttggag gtccctgtgg ctgcaagct
 3481 ggcggcccca cctggccggg ctcccttgccttgc tctcttgc accgttgc ggcacaacgt
 3541 ggctctttgt gaggctgtgg caccatcgatc ttttgc accgttgc gctactgct
 3601 acatcaaggg gttctgaacc accagaacaa gacccatcgatc gggcaggctt aggacttctc
 3661 ttgagagaaa ggcgtttctt caccatcgatc atccatcgatc ttgtctgcct cagtgtg
 3721 tcgagacctg agccccagga ccaatccaaat ggaatggaga cgtatccac tgcacttgc
 3781 caaaaacttaa ccaatccaaat cccatcgatc tcccccattc tgcacttgc
 3841 aaacaaacca acaacagcaa cccatcgatc tcccccattc tgcacttgc
 3901 cctcccccttc tattctacca cccatcgatc tcccccattc tgcacttgc
 3961 tctccccctgc ctccagcaaa atgcatcaag cccatcgatc tcccccattc tgcacttgc
 4021 atgagccgtc tggcaatgg cccatcgatc tcccccattc tgcacttgc
 4081 catcattgtt gtcattttt cccatcgatc tcccccattc tgcacttgc
 4141 ctgaagttt tagaaaggatc cccatcgatc tcccccattc tgcacttgc
 4201 gctctcatca ggctgtgtt cccatcgatc tcccccattc tgcacttgc
 4261 ctgcgtgcatt gacatcaaa cccatcgatc tcccccattc tgcacttgc
 4321 attctatgtc tctgtgtgtt cccatcgatc tcccccattc tgcacttgc
 4381 agcagaaaata acagcatttc cccatcgatc tcccccattc tgcacttgc
 4441 ctccaaatgtt tgggtctgatc cccatcgatc tcccccattc tgcacttgc
 4501 ggagtggggcc atatttaaag agtcgtgtt tggggaaatg cccatcgatc
 4561 aggctgtatgt gccataactca gaggggccaaatc gagggtggctt taaatgtatgt
 4621 aggctgttaa gataacaggg gctttcttcc cccatcgatc accttcaggc
 4681 agcatgttca taagatagga actggaaatcc ttcatttc ccaacacccc
 4741 gcctgtttt aaacccatca aagctctctg ttcccagact gtggggattt
 4801 tgcccccaag ggttccaaatc caccatcgatc ccaaggggcc aagccttcata
 gcct

L4 ANSWER 251 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC): OSTA136 GenBank (R)
 GenBank ACC. NO. (GBN): X91807
 GenBank VERSION (VER): X91807.1 GI:1136121
 CAS REGISTRY NO. (RN): 172012-10-1
 SEQUENCE LENGTH (SQL): 1677
 MOLECULE TYPE (CI): mRNA; linear
 DIVISION CODE (CI): Plants, fungi, algae
 DATE (DATE): 3 Nov 2000
 DEFINITION (DEF): O.sativa mRNA for alpha-tubulin (clone OSTA-136).
 SOURCE: Oryza sativa (japonica cultivar-group).
 ORGANISM (ORGN): Oryza sativa (japonica cultivar-group)

Tracheophyta; Spermatophyta; Magnoliophyta; Liliopsida;
Poales; Poaceae; Ehrhartoideae; Oryzeae; Oryza

NUCLEIC ACID COUNT (NA): 310 a 507 c 471 g 389 t

COMMENT:

Overlaps with Z11931.

REFERENCE: 1 (bases 1 to 1677)
AUTHOR (AU): Kraev,A.; Chumakov,I.; Carafoli,E.
TITLE (TI): The organization of the ***human*** gene NCX1
encoding the ***sodium*** - ***calcium***
 exchanger
JOURNAL (SO): Genomics, 37 (1), 105-112 (***1996***)
OTHER SOURCE (OS): CA 125:267114
REFERENCE: 2 (bases 1 to 1677)
AUTHOR (AU): Maestroni,A.; Giani,S.; Breviario,D.
TITLE (TI): Rice alpha-tubulin cDNAs
JOURNAL (SO): Unpublished
REFERENCE: 3 (bases 1 to 1677)
AUTHOR (AU): Breviario,D.
TITLE (TI): Direct Submission
JOURNAL (SO): Submitted (25-SEP-1995) D. Breviario, Instituto
Biosintesi Vegetali CNR, Via Bassini n 15, I-20133
Milano, ITALY

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|----------|---|
| source | 1..1677 | /organism="Oryza sativa (japonica
cultivar-group)"
/cultivar="Arborio"
/db-xref="taxon:39947"
/clone="OSTA-136"
/tissue-type="coleoptile"
/clone-lib="lambda zapII"
/dev-stage="3 days old seedling"
/gene="tubA"
/gene="tubA"
/codon-start=1 |
| gene | 82..1437 | /product="alfa-tubulin"
/protein-id="CAA62917.1"
/db-xref="GI:1136122"
/db-xref="SPTREMBL:Q43606"
/translation="MRECISIHIHQAGIQVGNAC
WELYCLEHGIQPDGQMPGDKTVGG
GDDAFNTFSETGAGKHVPRAVFDLEPTMIDEV
RTGDYRQLFHPEQVISGKEDAANN
FARGHYTIGKEIVDLCLDRIRKLADNCTGLQGFL
VFNAVGGGTGSGLGSLLERLSVD
YGKKSKLGFTVYPSPQVSTSVVEPYNSVLSTHSL
LEHTDVAVLLDNEAIYDICRRLSD
IERPTYTNRNRLLSQVISSLTASLRFDGALNVDV
NEFQTNLVPYPRIHFMLSSYAPAI
SAEKAYHEQLSVAEITNSAFEPSSMMAKCDPRHG
KYMACCLMYRGDVVKDVNAAVAT
IKTKRTIQFVWDWCPTGFKGGINYQPPSVVPGGDL
AKVQRAVCMIISNTSVVEVFSRID
IKFDLMSKRAFVHWYVGEGMEEGEFSEAREDIA
ALEKDYEEVGSEFDDGDEGDEGDE Y" |
| CDS | 82..1437 | |

SEQUENCE (SEQ):

1 ggcgtttcg tactcgcc tc tcccgccg ctcctccg cc ggcgtcgcc ggcgttcgtc
61 tccggcccca ccgcccggc catgaggagg tgcatctcg a tccacatcg gg caggccgg
121 atccaggtcg ggaacgcgtg ctggagactc tattgcctcg agcatggcat ccagcctgat
181 ggacagatgc ccggtgacaa gaccgttggg ggagggtatg atgc tt aa caccttctc
241 agtgagactg gtgctggaa gcatgtcccc cgtgctgtct tcgtcgatct tgaggctacc
301 atgattgtatg aggtgaggac tggtgactac cggcagctct tccaccctga gcaggcatc
361 agtggcaagg aggatgcagc caacaactt gcccgtggc actacaccat tggcaaggag
421 attgttgatc tggcccttga ccgcattcagg aagcttggcc acaactgcac tggtctccag
481 ggcttccttg tggtaaacgc tggggagg ggaacgggg ccggctctcg ttcccttctc
541 cttgagcgtc tctctgtggc ctatggcaag aagtccaaag tcgggttccat cgtgtacccg
601 tcccctcagg tctccaccc tgggggttag cccataacaatc gtgtcccttc caccactcc
661 ctcccttgagc acaccgtgt cgctgtccct ctcgacaatg aggccatcta tgacatctgc
721 cggcgatct tcgacattga ggcggcaacc tacaccaacc gcaacaggct tggatcccag
781 gtcatctcct cactgactgc ctccctgagg ttcgatggg ctctgaatgt ggatgtcaac
841 gagttccaga ccaacctggt ggcctacccg aggatccact tcatgcttc ctcctacgcc
901 cggcgatct cggccgagaa ggcctaccac gagcagctct ccgtggcgaa gatcaccaac

1021 gcgtgctgcc tgatgtaccg cggcgacgtg gtccccaagg acgtgaacgc cgccgtggcc
 1081 accatcaaga cgaagcgcac catccagttc gtggactggt gccccacggg gttcaagtgc
 1141 ggcataact accaagccgcc cagcgtcgtc ccggggggag acctggccaa ggtcagagg
 1201 gccgtgtca tgatctccaa ctccaccagg gtcgtcgagg tttctcccg catcgacatc
 1261 aagttcgacc tcatgtactc caagcgcgc ttctgtccact ggtacgtcg cgagggcatg
 1321 gaggaggggg agttctccga ggcccgcag gacctcgccg cgctggagaa ggactacgag
 1381 gaggtcggtc ccgagttcga cgatggtgac gagggtgatg agggtgacga gtactagaga
 1441 gtttcagggt tcttcctgg tgccttgca atgcttgatt actgctgcta tcctatgatc
 1501 tgtccgtgtg ggcttctatc tatcagttt tttgtctgg tttgaaaaac atttgcttt
 1561 cgattatgca gggtttgctt gtagcttcg ctgctgtgac ctgttgtt tatgtgaacc
 1621 ttctttgtg catcttaat atccaagttc gtggttgtc gaaaaaaaaaaaaaaa

L4 ANSWER 252 OF 473

GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC): HSNCX22 GenBank (R)
GenBank ACC. NO. (GBN): X93017
GenBank VERSION (VER): X93017.1 GI:1067133
CAS REGISTRY NO. (RN): 170817-51-3
SEQUENCE LENGTH (SQL): 2534
MOLECULE TYPE (CI): DNA; linear
DIVISION CODE (CI): Primates
DATE (DATE): 12 Nov 2000
DEFINITION (DEF): Homo sapiens partial SCL8A3 gene for solute carrier family 8 (***sodium*** / ***calcium*** ***exchanger***), member 3 (SCL8A3), exon 2. ***human***
SOURCE:
ORGANISM (ORGN): Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo
NUCLEIC ACID COUNT (NA): 602 a 595 c 644 g 693 t
COMMENT:
 Similar to X91213.
REFERENCE:
AUTHOR (AU): Kraev,A.; Chumakov,I.; Carafoli,E.
TITLE (TI): The organization of the ***human*** gene NCX1 encoding the ***sodium*** - ***calcium*** ***exchanger***
JOURNAL (SO): Genomics, 37 (1), 105-112 (***1996***)
OTHER SOURCE (OS): CA 125:267114
REFERENCE:
AUTHOR (AU): Kraev,A.S.
TITLE (TI): Direct Submission
JOURNAL (SO): Submitted (14-NOV-1995) A.S. Kraev, Swiss Federal Institute of Technology, Laboratory of Biochemistry III, Universitaetstr. 16, Zurich, CH-8092, SWITZERLAND

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|-----------|---|
| source | 1..2534 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="14"
/map="q24.1"
/cell-line="WI38"
/cell-type="fibroblast"
/tissue-type="lung"
/clone-lib="Stratagene genomic #946204"
/gene="SLC8A3"
/gene="SLC8A3"
/number=2
/product="solute carrier family 8 (sodium/calcium exchanger), member 3" |
| gene | 281..2126 | |
| exon | 281..2126 | |

SEQUENCE (SEQ):

1 ccagtttggg agacaggact tgaaggctat tgctgcattt ccatccccag tattcccaagc
 61 tatttcaagc cattttcaa cggagtcctcc accagatggt ttggaggaca gagcagctat
 121 ttgtgcctcc cattgacatc tattttcca agtgagagac tgccccatat gtttagtgcaa
 181 tatgtcactg gaggtgaagc atcagggtta ttgggtggaa cctgcccgtt gctgtccct
 241 tttcctcat gcctttcct gcctctctga tctttcttag gtctctggcc tatcaggagg
 301 acaactgggt ctgcaataga agcccaagtggc taagtctcgt gtatggcgtg gtaagggttg
 361 cagcctctca cctctgcctt cctccatattt gggctggta ctttgggtt ctccctgaat
 421 ggtttcgag cagaggctgg tggctcaggg gacgtgccaa gcacaggcga gaacaatgag

541 aacccttccc ttggggacaa gattgccagg gtcattgtct attttgtggc cctgatatac
 601 atgttccttg ggggtgtccat cattgctgac cgcttcatgg catctattga agtcatcacc
 661 tctcaagaga gggaggtgac aattaagaaa cccaatggag aaaccagcac aaccactatt
 721 cgggtctgga atgaaactgt ctccaacctg acccttatgg ccctgggtc ctctgctcct
 781 gagatactcc tctcttaat tgaggtgtgt ggtcatgggt tcattgctgg tgatctggga
 841 ccttctacca tttagggag tgcagcctt aacatgttca tcatttgc catctgtgtc
 901 tacgtgatcc cagacggaga gactcgcaag atcaagcatc tacgagtctt cttcatcacc
 961 gctgcttggaa gtatcttgc ctacatctgg ctctatatga ttctggcagt cttctccct
 1021 ggtgtggtcc aggtttggga aggccctcctc actctcttct ttcttccagt gtgtgtccct
 1081 ctggcctggg tggcagataa acgactgctc ttctacaaat acatgcacaa aaagtaccgc
 1141 acagacaac accgaggaat tatcatagag acagagggtg accaccccaa gggcattgag
 1201 atggatggga aaatgtatgaa ttcccatttt cttagatggga acctgggtcc cctggaaagg
 1261 aaggaagtgg atgagtcccg cagagagatg atccggattc tcaaggatct gaagcaaaaa
 1321 caccagaga aggacttaga tcagctgggt gagatggcca attactatgc tctttccac
 1381 caacagaaga gccgcgcctt ctaccgtatc caagccactc gtatgtgac tggtgcaagg
 1441 aatatcctga agaaacatgc agcagaacaa gccaagaagg cctccagcat gagcgaggtg
 1501 cacaccgtg agcctgagga ctttatttcc aaggcttct ttgacccatg ttcttaccag
 1561 tgcctggaga actgtggggc tgtactcctg acagtggtaa ggaagggggg agacatgtca
 1621 aagaccatgt atgtggacta caaaacagag gatggttctg ccaatgcagg ggctgactat
 1681 gagttcacag agggcacggg ggttctgaag ccaggagaga cccagaagga gttctcgtg
 1741 ggcataattt gatgacgacat tttttagggag gatgaacact tctttgttaag gttgagcaat
 1801 gtccgcatacg aggaggagca gccagaggag gggatgcctc cagcaatatt caacagtctt
 1861 cccttgcctc gggctgtcct agcctccct tttgtggcca cagttaccat cttggatgat
 1921 gaccatgcag gcatcttcac ttttaatgt gatactattc atgtcaatgt gagtattgg
 1981 gttatggagg tcaagggttct gcggacatca ggtgcccggg gtacagtcat cgtccccctt
 2041 aggacagtag aaggcacgc caagggtggc ggtgaggact ttgaagacac atatggggag
 2101 ttggaattca agaatgtatga aactgtgtaa gtaaccttcc ttttgcattc cccatccctga
 2161 ccccatctt tgccatctct ttctgtctt ctgtactgca ctttacaaca tttccctgtg
 2221 tttgtgttaa tgtcaaactt tggttccatc acaggtatgc aggatcagca gacaccactg
 2281 gacaggttct gcttccaaac tcttcttcag ttttcttcact ttaaattgtt tctggcaag
 2341 gaatcctgtg acaagagacta aggacacaaa acattttctt ctctgaaaca caaaatgata
 2401 gctgggtggag ctgtggatg acagaagttt tgtatatac gattttggag aattctgtg
 2461 actaagaagg actagagaac tgcttggcc tcttttcct cccttcctca tatgaagggt
 2521 atctatgagc tttt

L4 ANSWER 253 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC) : HSNCX19 GenBank (R)
 GenBank ACC. NO. (GBN) : X91216
 GenBank VERSION (VER) : X91216.1 GI:1061138
 CAS REGISTRY NO. (RN) : 170612-18-7
 SEQUENCE LENGTH (SQL) : 431
 MOLECULE TYPE (CI) : DNA; linear
 DIVISION CODE (CI) : Primates
 DATE (DATE) : 24 Nov 2000
 DEFINITION (DEF) : *H.sapiens ncx1 gene (exon 9).*
 SOURCE: ***human*** .
 ORGANISM (ORGN) : Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo
 NUCLEIC ACID COUNT (NA) : 127 a 95 c 108 g 101 t
 REFERENCE:
 AUTHOR (AU) : Kraev,A.; Chumakov,I.; Carafoli,E.
 TITLE (TI) : The organization of the ***human*** gene NCX1
 encoding the ***sodium*** - ***calcium***
 exchanger
 JOURNAL (SO) : Genomics, 37 (1), 105-112 (***1996***)
 OTHER SOURCE (OS) : CA 125:267114
 REFERENCE:
 AUTHOR (AU) : Kraev,A.S.
 TITLE (TI) : Direct Submission
 JOURNAL (SO) : Submitted (07-SEP-1995) A.S. Kraev, Swiss Federal
 Institute of Technology, Laboratory of Biochemistry
 III, Universitaetstr. 16, Zurich, CH-8092, SWITZERLAND

FEATURES (FEAT) :

| Feature Key | Location | Qualifier |
|-------------|----------|---|
| source | 1..431 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p21-23"
/cell-line="WI38"
/cell-type="fibroblast" |

gene 112..242 /clone-lib="Stratagene #946204"
 exon 112..242 /gene="ncx1"
 /gene="ncx1"
 /number=9
 /usedin=X92368:RNA
 /label=ex9

SEQUENCE (SEQ) :

```

1 ctttagtaggt cattaggct tccttcctcc ttggcttct tatggcagga tccaggatt
61 tccaaattaa acagaacaca gtgctcact tctgatactt ccgtttcaca gacgaatatg
121 atgacaagca gccactgacc agcaaagagg aagaggagag ggcattgca gaaatgggc
181 gccccatcct ggagagcac accaagttgg aagtatcat taaaatcc tatgaattca
241 aggtatgctc accaacaactg cccaccaggaa gccagtctca cttgggaca gaaactgttc
301 atagggttgg ccaaagctt agatccaccc gaaaagagta gtagatgtaa tttcaggAAC
361 tggcttgta attgagagcc tttggggcca aatttggatt atagatgtaa tcaggaac
421 aggagtctcg t
  
```

L4 ANSWER 254 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC) : HSNCX11 GenBank (R)
GenBank ACC. NO. (GBN) : X92368
GenBank VERSION (VER) : X92368.1 GI:1061130
CAS REGISTRY NO. (RN) : 170612-17-6
SEQUENCE LENGTH (SQL) : 390
MOLECULE TYPE (CI) : DNA; linear
DIVISION CODE (CI) : Primates
DATE (DATE) : 24 Nov 2000
DEFINITION (DEF) : H.sapiens ncx1 gene (exon 1).
SOURCE: ***human***.
ORGANISM (ORGN) : Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
Hominidae; Homo
NUCLEIC ACID COUNT (NA) : 73 a 85 c 121 g 111 t
REFERENCE:
 1 AUTHOR (AU): Kraev,A.; Chumakov,I.; Carafoli,E.
 TITLE (TI): Molecular biological studies of the cardiac
 sodium - ***calcium*** ***exchanger***
 JOURNAL (SO): Ann. N. Y. Acad. Sci., 779, 103-109 (***1996***)
 OTHER SOURCE (OS): CA 125:134211
REFERENCE:
 2 (bases 1 to 390) AUTHOR (AU): Kraev,A.; Chumakov,I.; Carafoli,E.
 TITLE (TI): The organization of the ***human*** gene NCX1
 encoding the ***sodium*** - ***calcium***
 exchanger
 JOURNAL (SO): Genomics, 37 (1), 105-112 (***1996***)
 OTHER SOURCE (OS): CA 125:267114
REFERENCE:
 3 (bases 1 to 390) AUTHOR (AU): Kraev,A.S.
 TITLE (TI): Direct Submission
 JOURNAL (SO): Submitted (13-OCT-1995) A.S. Kraev, Swiss Federal
 Institute of Technology, Laboratory of Biochemistry
 III, Universitaetstr. 16, Zurich, CH-8092, Switzerland
 OTHER SOURCE (OS): CA 125:267114

FEATURES (FEAT) :

| Feature Key | Location | Qualifier |
|-------------|---|--|
| source | 1..390 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p21-23"
/clone="809 b 6"
/clone-lib="CEPH megaYAC"
/gene="ncx1" |
| gene | join(1..128,
X91213.1:108..1936,
X91614.1:205..311,
X91614.1:839..942,
X91214.1:38..58,
X91214.1:478..495,
X91214.1:600..614,
X91215.1:201..270,
X91216.1:112..242,
X91217.1:154..253,
X91963.1:115..390, | |

mRNA join(1..128, /gene="ncx1"
X91213.1:108..1936,
X91614.1:205..311,
X91614.1:839..942,
X91214.1:38..58,
X91214.1:478..495,
X91214.1:600..614,
X91215.1:201..270,
X91216.1:112..242,
X91217.1:154..253,
X91963.1:115..390,
X91647.1:58..3536)
/exon 1..128 /product="sodium-calcium
exchanger" /label=RNA
/gene="ncx1" /number=1
/label=ex1

SEQUENCE (SEQ) :

| | | | | | | |
|-----|-------------|------------|-------------|------------|------------|------------|
| 1 | gcttcccaca | gaagatggga | gcgacccctt | cctgatcggg | agctgtttaa | aaggaggag |
| 61 | tgcgccgtat | tttctactag | cgtggaggaa | cggaggaaga | atccattcac | actccccaaa |
| 121 | ccaggttaggt | tcttatgtat | gcaggcagaa | ggcatttagt | cagagaccaa | gaactattt |
| 181 | ccatttgctg | ctcataaggc | tacacttccc | tctgcttgg | caaacgagcg | gcttctaaat |
| 241 | tttgtgtgt | gtgtgtgtgt | gtgtgtgtgt | gtgtgtgtgt | gtgatgtgg | gtgtgcgcgc |
| 301 | ctgcacat | ttctgggtgt | ccgcgttcc | cagagtgaaa | ttgctcgggc | tggtgcgtct |
| 361 | ggcggtgagg | gtgcgtgcct | gcctgcccagt | | | |

L4 ANSWER 255 OF 473 GENBANK.RTM. COPYRIGHT 2004 ON STN

LOCUS (LOC) : HSNCX18 GenBank (R)
GenBank ACC. NO. (GBN) : X91215
GenBank VERSION (VER) : X91215.1 GI:1061137
CAS REGISTRY NO. (RN) : 170612-16-5
SEQUENCE LENGTH (SQL) : 381
MOLECULE TYPE (CI) : DNA; linear
DIVISION CODE (CI) : Primates
DATE (DATE) : 24 Nov 2000
DEFINITION (DEF) : H.sapiens ncx1 gene (exon 8).
SOURCE:
human
ORGANISM (ORGN) : Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
Hominidae; Homo
NUCLEIC ACID COUNT (NA) : 94 a 98 c 66 g 123 t
REFERENCE:
AUTHOR (AU) : Kraev,A.; Chumakov,I.; Carafoli,E.
TITLE (TI) : The organization of the ***human*** gene NCX1
encoding the ***sodium*** - ***calcium***
exchanger
JOURNAL (SO) : Genomics, 37 (1), 105-112 (***1996***)
OTHER SOURCE (OS) : CA 125:267114
REFERENCE:
AUTHOR (AU) : Kraev,A.S.
TITLE (TI) : Direct Submission
JOURNAL (SO) : Submitted (07-SEP-1995) A.S. Kraev, Swiss Federal
Institute of Technology, Laboratory of Biochemistry
III, Universitaetstr. 16, Zurich, CH-8092, SWITZERLAND

FEATURES (FEAT) :

| Feature Key | Location | Qualifier |
|-------------|----------|--|
| source | 1..381 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p21-23"
/cell-line="WI38"
/cell-type="fibroblast"
/tissue-type="lung"
/clone-lib="Stratagene #946204"
/gene="ncx1"
/gene="ncx1"
/number=8
/usedin=X92368:RNA
/label=ex8 |
| gene | 201..270 | |
| exon | 201..270 | |

SEQUENCE (SEQ) :

```

1 agtgatcctc catca gtaac cttccaccag agtccttct gtgaccc tgggggtgac
61 ctatgatcat tgaatcccc aactaacgtt gcttgtatg tgcatactg ggtgtatgt
121 ttagcttact aattccacaa agctctgata gcaa atcatg caatccattc tgctgattt
181 tctgcctgtt ctttgctag gccaacctgt cttcaggaa gttcatgcta gagaacatcc
241 gattctctct actgtaatca ccattgccag gtactcattt catcatgatc cttgaaaacc
301 acagcctccc agagttctt aatgttagag acattacagt catgcattt gccctctctc
361 tgtaaacatt gctaataatgc t

```

L4 ANSWER 256 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC) : HSNCX1567 GenBank (R)

GenBank ACC. NO. (GBN) : X91214

GenBank VERSION (VER) : X91214.1 GI:1061136

CAS REGISTRY NO. (RN) : 170612-15-4

SEQUENCE LENGTH (SQL) : 800

MOLECULE TYPE (CI) : DNA; linear

DIVISION CODE (CI) : Primates

DATE (DATE) : 24 Nov 2000

DEFINITION (DEF) : H.sapiens ncx1 gene (exons 5, 6 and 7).

SOURCE: ***human*** .

ORGANISM (ORGN) : Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
Hominidae; Homo

NUCLEIC ACID COUNT (NA) : 206 a 125 c 126 g 343 t

REFERENCE:

AUTHOR (AU) : Kraev,A.; Chumakov,I.; Carafoli,E.

TITLE (TI) : The organization of the ***human*** gene NCX1
encoding the ***sodium*** - ***calcium***
exchanger

JOURNAL (SO) : Genomics, 37 (1), 105-112 (***1996***)

OTHER SOURCE (OS) : CA 125:267114

REFERENCE:

AUTHOR (AU) : Kraev,A.S.

TITLE (TI) : Direct Submission

JOURNAL (SO) : Submitted (07-SEP-1995) A.S. Kraev, Swiss Federal
Institute of Technology, Laboratory of Biochemistry
III, Universitaetstr. 16, Zurich, CH-8092, SWITZERLAND

FEATURES (FEAT) :

| Feature Key | Location | Qualifier |
|-------------|----------|--|
| source | 1..800 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p21-23"
/cell-line="WI38"
/cell-type="fibroblast"
/tissue-type="lung"
/clone-lib="Statagene #946204" |
| gene | 38..614 | /gene="ncx1" |
| exon | 38..58 | /gene="ncx1"
/number=5
/usedin=X92368:RNA
/label=ex5 |
| exon | 478..495 | /gene="ncx1"
/number=6
/usedin=X92368:RNA
/label=ex6 |
| exon | 600..614 | /gene="ncx1"
/number=7
/usedin=X92368:RNA
/label=ex7 |

SEQUENCE (SEQ) :

```

1 ttaattctgt gtttgtctt gtctgtttcc ttcacagccc tgttattgaa tgagcttgg
61 aagcattca tttcttgcatttccat tttttcttca ttatatttccat ttcccgatcg
121 gtgatcactg agctctgtat ctttttatttc tcttgacttg ctggcaatgt tgggttttag
181 ggcttattgtac ctcattttgtt caaggtaaa tagtttatgt tcatttttta atttagtaca
241 accttttggaa aaatccgttca tttctttaggt atgcacaaga attaaatgt tgcatatata
301 ctcataatct taaaagaacg attatgttattt cagtcataa cattttccat gtcttcttta
361 ttgttaaatat aatttggcaat gtaccttggg tgggttgtca ggcagtcgtatgtcactgtt
421 atttggatgt tagagtgtca aattataaca tttgttgttgc ttttttttcc ttttttaggt
481 gcttcacaat aacaggtatg aattttcaatgtt atcttaacttt tactgtctgt

```

601 aaaatacctg tttggtaaga cttatTTTT taatgttcct tATTTTCCC caaataccct
661 taaccatcaa tcCAAACCTA catcttatgt aacttgcatt aatattaac tGTCGACAT
721 ggtgtcgctc tgctggTTT acacattaa CGTTTACAA attaataatg tGtGtGtGt
781 gtgttataa gctgttcata

L4 ANSWER 257 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC) : HSNCX134 GenBank (R)
GenBank ACC. NO. (GBN) : X91614
GenBank VERSION (VER) : X91614.1 GI:1061135
CAS REGISTRY NO. (RN) : 170612-14-3
SEQUENCE LENGTH (SQL) : 1468
MOLECULE TYPE (CI) : DNA; linear
DIVISION CODE (CI) : Primates
DATE (DATE) : 24 Nov 2000
DEFINITION (DEF) : H.sapiens ncx1 gene (exons 3 & 4).
SOURCE:
ORGANISM (ORGN) : Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
Hominidae; Homo
NUCLEIC ACID COUNT (NA) : 440 a 335 c 279 g 414 t
REFERENCE:
AUTHOR (AU) : Kraev,A.; Chumakov,I.; Carafoli,E.
TITLE (TI) : The organization of the ***human*** gene NCX1
encoding the ***sodium*** - ***calcium***
exchanger
JOURNAL (SO) : Genomics, 37 (1), 105-112 (***1996***)
OTHER SOURCE (OS) : CA 125:267114
REFERENCE:
AUTHOR (AU) : Kraev,A.S.
TITLE (TI) : Direct Submission
JOURNAL (SO) : Submitted (17-SEP-1995) A.S. Kraev, Swiss Federal
Institute of Technology, Laboratory of Biochemistry
III, Universitaetsstr. 16, Zurich, CH-8092, SWITZERLAND
OTHER SOURCE (OS) : CA 125:267114

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|----------|---|
| source | 1..1468 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p21-23"
/cell-line="WI38"
/cell-type="fibroblast"
/tissue-type="lung"
/clone-lib="Stratagene #946204"
/gene="ncx1"
/gene="ncx1"
/number=3
/usedin=X92368:RNA
/label=ex3
/gene="ncx1"
/number=4
/usedin=X92368:RNA
/label=ex4 |
| gene | 205..942 | |
| exon | 205..311 | |
| exon | 839..942 | |

SEQUENCE (SEQ):

1 cagggagct atgcattggg tgaatctct gatcttcatt acctatctga tacccattct
61 tgaagaaaaa actcacagta cagaagtttc tcgattactg ttgtctgaa agtgcagctg
121 gttaacacctg ctttcctctt ctctatgttc cttctcttct cttcctctt ccccttgttc
181 gtcaatttctt attctctgtt tcagcaaaac aatatcagtc aaggtaattg atgatgagga
241 gtatgagaaa aacaagacct tcttccttga gattggagag cccgcctgg tggagatgag
301 tgagaagaaa ggtggggggag ctgctccagg gctgagccaa cagttctgc tggcctgtgc
361 cacccttgga tgcctgcact cttcagaaca tgacttacaa tgcacacatc cctccaccta
421 tgtaacaggg cacagatctc atgctgagcc acagtaggca ggcctgtac tacatcagcc
481 agcgttaggt ggcgtgcatt aacgtctgag agatattt tcagggcagt caatcaagca
541 tccatattctg ggaaagtgc tgcagatgcc atgcaatgcc atgccaaat accccaaat
601 gggtacactac tgactgctaa ctgaagcggg aataattctgt gaaagtgtata aatttagcaaa
661 gaaaacttaa tggggggccag ccaagatgtac ccaagatgcc cttttacata cttcaggagg
721 cccatgtgct gccagttctc cctccataac atcacagtaa cattcagctt ggtggacacc
781 aagagcatga gcgtgtgact ccaaccattt gtttgccctt tgcgtgtgt tcccacagga
841 agatcattac cattagaata tttgaccgtg aggaatatga gaaagatgtc agtttctccc
901 ttgtgcttga ggaaccaaaa tggataagaa gaggaatgaa aggtgtgaga gtaaacaag

1021 ctctcctctt cctcggtttc caagtactat acttcattgc ctttgaagct ttagcaattt
 1081 cattccctt ccctaattca caagtcaac aggcaacgcc cacttcttc agaaaatgcc
 1141 aactaacctt gattgcaacc agattnata acactgaaag ggatttctgt aattcagaaa
 1201 tgattacata aaagaatgtg ttttagttt cactactcac ggtttattct aaaatgtcac
 1261 tccaattatt aaatcttccc taaaattta gtgataaaga cgacttaata cctcatcaat
 1321 catacctcaa taaagctgga aaaaagaaac tgcttaatac ctattagtt tagtagatga
 1381 ccctaattggc aactaacagg aaacttcaga attcaaataa tttaggcttct ttggagaaca
 1441 cagttaaaaa atattnata agaaca

L4 ANSWER 258 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC) : HSNCX12 GenBank (R)
GenBank ACC. NO. (GBN) : X91213
GenBank VERSION (VER) : X91213.1 GI:1061134
CAS REGISTRY NO. (RN) : 170612-13-2
SEQUENCE LENGTH (SQL) : 2129
MOLECULE TYPE (CI) : DNA; linear
DIVISION CODE (CI) : Primates
DATE (DATE) : 24 Nov 2000
DEFINITION (DEF) : H.sapiens ncx1 gene (exon 2).
SOURCE: ***human*** .
ORGANISM (ORGN) : Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
Hominidae; Homo
NUCLEIC ACID COUNT (NA) : 590 a 381 c 523 g 635 t
REFERENCE:
AUTHOR (AU) : Kraev,A.; Chumakov,I.; Carafoli,E.
TITLE (TI) : The organization of the ***human*** gene NCX1
encoding the ***sodium*** - ***calcium***
exchanger
JOURNAL (SO) : Genomics, 37 (1), 105-112 (***1996***)
OTHER SOURCE (OS) : CA 125:267114
REFERENCE:
AUTHOR (AU) : Kraev,A.S.
TITLE (TI) : Direct Submission
JOURNAL (SO) : Submitted (07-SEP-1995) A.S. Kraev, Swiss Federal
Institute of Technology, Laboratory of Biochemistry
III, Universitaetstr. 16, Zurich, CH-8092, SWITZERLAND

FEATURES (FEAT) :

| Feature | Key | Location | Qualifier |
|---------|-----|-----------|---|
| source | | 1..2129 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p21-23"
/cell-line="WI38"
/cell-type="fibroblast"
/tissue-type="lung"
/clone-lib="Stratagene #946204" |
| gene | | 108..1936 | /gene="ncx1" |
| exon | | 108..1936 | /gene="ncx1"
/number=2
/usedin=X92368:RNA
/label=ex2 |

SEQUENCE (SEQ) :

1 aaatttttgt aagagtaata aaaataagta attagtaatg ctttggctgc agctctaattg
 61 acatgactt tttctgccc tctccccat cttatttta ccagtaggtt gtgacagttt
 121 gaagtgtcat gtacaacatg cggcgattaa gtcttcacc cacctttca atgggatttc
 181 atctgttagt tactgtgagt ctcttatttt cccatgtgga ccatgttaatt gctgagacag
 241 aaatggaaagg agaaggaaat gaaactgttg aatgtactgg atcatattac tgtaagaaag
 301 gggtgattt gccattttgg gaaccccaag acccttctt tggggacaaa attgcttagag
 361 ctactgtgta tttgtggcc atggcttaca tgtttcttgg agtctctatc atagctgatc
 421 gttcatgtc ctctatagaa gtcatcacat ctcaagaaaa agaaataacc ataaagaaac
 481 ccaatggaga gaccaccaag acaactgtga ggtatggaa tgaaacagt tctaacctga
 541 cctgtatggc cctggatct tctgtctctg agattctct ttcaatggaa aggtgtgt
 601 gccataactt cactgcagga gacctcggtc ctagcaccat cgtggaaat gctgcattca
 661 atatgttcat cattattgca ctctgtgtt atgtgtgccc tgacggagag acaaggaaga
 721 ttaagcatt gctgtcttc tttgtgacag cagcctggag catcttgc tacacctggc
 781 ttacattat tttgtctgtc atatctcctg gtgttgttgg ggtctggaa gtttgctt
 841 ctttcttctt cttccatc tgtgtgtgt tcgcttgggt agcggatagg agacttctgt
 901 ttacaagta tgtctacaag aggtatcgag ctggcaagca gagggggatg attattgaac
 961 atgaaggaga cagccatct tctaagactg aaattgaaat ggacggaaa gtggtaatt

1081 atgatgaaga agctaggcga gaaatggcta ggattctgaa ggaacttaag cagaagcatc
 1141 cagataaaaga aatagagcaa ttaatagaat tagctaacta ccaagtccta agtcagcgc
 1201 aaaaaaagtag agcattttat cgcattcaag ctactcgcc catgactqga gctggcaaca
 1261 ttttaaagag gcatgcagct gaccaagcga ggaaggctgt cagcatgcac gaggtcaaca
 1321 ctgaagtgcac tgaaaatgac cctgttagta agatcttct tgaacaaggg acatatcagt
 1381 gtctggagaa ctgtggtaact gtggccctt ccattatccg cagaggtgg gatttgacta
 1441 acactgtgtt tggacttc agaacagagg atggcacagc aaatgctggg tctgattatg
 1501 aatttactga aggaactgtg gtgttaagc ctggtgatac ccagaaggaa atcagagtgg
 1561 gtatcataga tgaatgatatc tttgaggagg atgaaaattt ccttgcat ctcagcaatg
 1621 tcaaagtatc ttctgaagct tcagaagatg gcataactgga agccaatcat gtttctacac
 1681 ttgcttgcc cggatctccc tccactgcca ctgttaactat tttgatgat gaccacgcag
 1741 gcattttac tttgaggaa cctgtgactc atgtgagtga gagcattggc atcatggagg
 1801 tgaaaagtatt gagaacatct ggagctcgag gaaatgttat cgttccatat aaaaccatcg
 1861 aaggactgc cagaggtgga ggggaggatt ttgaggacac ttgtggagag ctgcattcc
 1921 agaatgatga aattgtgtaa gttcttatatt atatatgtt gtgtgtgt gtgtgtgt
 1981 gtttcagtgt gtttatgaa gtgagtcgt gcattttttt ttaaattaaa tagcatcaa
 2041 gaaatggaat agctttata caagatccct ttcaagatat cagtcttgc ttgggtgcca
 2101 gttatcaata tgctctgcac acagagatc

L4 ANSWER 259 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC): HSNCX112 **GenBank (R)**
GenBank ACC. NO. (GBN): X91647
GenBank VERSION (VER): X91647.1 GI:1061133
CAS REGISTRY NO. (RN): 170612-12-1
SEQUENCE LENGTH (SQL): 3777
MOLECULE TYPE (CI): DNA; linear
DIVISION CODE (CI): Primates
DATE (DATE): 24 Nov 2000
DEFINITION (DEF): H.sapiens ncx1 gene (exon 12).
SOURCE: ***human***
ORGANISM (ORGN): Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
Hominidae; Homo
NUCLEIC ACID COUNT (NA): 1078 a 753 c 726 g 1220 t
REFERENCE:
AUTHOR (AU): Kraev,A.; Chumakov,I.; Carafoli,E.
TITLE (TI): The organization of the ***human*** gene NCX1
encoding the ***sodium*** - ***calcium***
exchanger
JOURNAL (SO): Genomics, 37 (1), 105-112 (***1996***)
OTHER SOURCE (OS): CA 125:267114
REFERENCE:
AUTHOR (AU): Kraev,A.S.
TITLE (TI): Direct Submission
JOURNAL (SO): Submitted (19-SEP-1995) A.S. Kraev, Swiss Federal
Institute of Technology, Laboratory of Biochemistry
III, Universitaetsstr. 16, Zurich, CH-8092, SWITZERLAND

| FEATURES (FEAT): | | | |
|------------------|------------|---|--|
| Feature Key | Location | Qualifier | |
| source | 1..3777 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p21-23"
/cell-line="WI38"
/cell-type="fibroblast"
/tissue-type="lung"
/clone-lib="Stratagene #946204"
/gene="ncx1" | |
| gene | 58..3536 | /gene="ncx1" | |
| exon | 58..3536 | /gene="ncx1"
/number=12
/usedin=X92368:RNA
/label=ex12 | |
| variation | 2718 | /gene="ncx1" | |
| variation | 3012..3013 | /replace="c"
/gene="ncx1" | |
| variation | 3129 | /replace="t"
/gene="ncx1" | |
| polyA-signal | 3519..3524 | /replace="t"
/gene="ncx1" | |
| polyA-site | 3537 | | |
| variation | 3589..3591 | /replace="ta" | |

SEQUENCE (SEQ):

1 ctccaaagac atctctaaaa gattgagtgt cattgactt ctcttcttcc tctgcagaca
 61 catttgcag caaatggca gccaccagg accagtatgc agacgctcc ataggttaacg
 121 tcacggcag caacgcgtg aatgtcttc tggaaatcg tggcgtctgg tccatcgctg
 181 ccatctacca cgcaagccaaat gggaaacagt tcaaagtgtc ccctggcaca ctagcttct
 241 ctgtcactt cttcaccatt tttgcttca tcaatgtgg ggtgctgctg tatcgccgga
 301 gcccagaat cgaggtgag ctgggtggc cccggactgc caagctcctc acatcctgcc
 361 tcttgcgtc cctatggctc ttgtacatt tcttcctc cctggaggcc tactgccaca
 421 taaaaggcct ctaaaggaac tatcagatat agtaaattta tatataataca tatataataca
 481 taaaattat gtataatggc cagaggaaac tgacatttg catgttcact tacctgctga
 541 tggaatccag cttcaagagc atactctgtc ctagggccga agtaaaaaac catcaccc
 601 cattccagg ggcattcatca tgttcaacaa ggcattggagg cagggcatttca
 661 gtcagaagg gtcactct ctccagggtt ataaatcctt aaggcttga tttgtttgt
 721 ttttggttt gttttagt gggggatc ggttagttat gtttggctt attttggta
 781 ttttggttt gttttagt gggggatc cagggttggt gctttctt gtggaaagtq
 841 aaaccatcca aatgttaatg gtttggta aaaatttaaa tcatttagat tccccctc
 901 cttcccaat cactaaaaaa tattttggat taagaaaaat ctggcatgg aagaagaaag
 961 aagcatgtct tcattgtt accaaagtgc atgcttatct atgggtctg
 1021 aagctgcctc caagaagaag cataaaagtgc gaatggagcc agggaaatccg
 1081 aaatagtctg atatttaaac atgtgatacc tggcagtctc gtttaacagg
 1141 acgtgcctag attcccaaggc acatgcaaaaa tccttctt
 1201 ctgtgattgg caaggcctt cttccagcat tcagcccagc
 1261 cccaaccctg ttccctctgt ccacctgcca tcccctatgc
 1321 ttcaaaaagc acatcatcgt ttccatttg cattaacatg
 1381 gttgcttggg attgtctgtc agtttattt tcaaaggcat
 1441 ttccagtcat gactgaacat ttgctcctt
 1501 tacctgttac acagtgcattt gtaaaaaaca
 1561 agtagagtt agtacataact gttctccat
 1621 aagttagtt tctttcacc tgagttgtt
 1681 actaggataa aaaggagaaaa atggattatt
 1741 agcaataact gtcatgtgg gagaagttaa
 1801 aagatcttca tggaaaattt gccatgtgga
 1861 taattcagga aggccaaggaa gaaaggccct
 1921 ggcttcaga gccaccctt ccacaacacc
 1981 cactgtctgg cacagatggt agatagtgt
 2041 ggctatttt agccctgtt ctttactgt
 2101 gttgctgagt aagaaagaag ccagggtgac
 2161 acttatgtc aaagagaagg caattaaata
 2221 gnatatttt aaccctttaa aaagaatagc
 2281 gataaaccac acattccaaa gtagtgagtc
 2341 ggtcaaccc tcggagactt ctgtgtctat
 2401 cctctgtatt gattaaaaaa tactaataa
 2461 tgtcaactcg taaccatgat cttcctcat
 2521 taaaatgtcg gttacccact taatgtgcca
 2581 atgaacaaaaa cagtctagat ccctgccc
 2641 ttcatgagta aaagtgaaga aagccatatg
 2701 ttatgaaact ctttaagat aaacacactg
 2761 atttatacc aagaatttct ttaactaaga
 2821 ctcttatac ttgaccggct tgcagataaa
 2881 aatcatgtt gtatccaga tcactgagaa
 2941 tgcaatgga actttctat gcccacact
 3001 tcccatcctt attttttttt ttttgagaa
 3061 caagtaaata tattcaagga atataagtg
 3121 ttttagcag tatttagaat gtcaataatc
 3181 aaattcttc atggtcgat ttcaatttga
 3241 ttcatgttct agggaaactat gatttggtt
 3301 aaattttttt attttgtgt tatttgac
 3361 tgcgtcttc ttatataatg gtacatatta
 3421 ttctgattt atcactagtg atacagcata
 3481 tgtcatctac ttcatttttt gtttcatgt
 3541 ttgtgcaact ggtatcatca tccaaagaaa
 3601 aaacgtcaac cttcggtca tgcaatgtt
 3661 cagaatattt gtctgtccta cagtgtc
 3721 atttttttta cggtgcttag tatgactcta

L4 ANSWER 260 OF 473 GENBANK.RTM. COPYRIGHT 2004 ON STN

LOCUS (LOC): HSNCX111 GenBank (R)
 GenBank ACC. NO. (GBN): X91963
 GenBank VERSION (VER): X91963.1 GI:1061132
 CAS REGISTRY NO. (RN): 170612-11-0
 SEQUENCE LENGTH (SQL): 399
 MOLECULE TYPE (CI): DNA; linear
 DIVISION CODE (CI): Primates
 DATE (DATE): 24 Nov 2000

SOURCE: ***human***
 ORGANISM (ORGN): Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo
 NUCLEIC ACID COUNT (NA): 87 a 93 c 109 g 110 t
 REFERENCE:
 AUTHOR (AU): Kraev,A.; Chumakov,I.; Carafoli,E.
 TITLE (TI): The organization of the ***human*** gene NCX1
 encoding the ***sodium*** - ***calcium***
 exchanger
 JOURNAL (SO): Genomics, 37 (1), 105-112 (***1996***)
 OTHER SOURCE (OS): CA 125:267114
 REFERENCE:
 AUTHOR (AU): Kraev,A.S.
 TITLE (TI): Direct Submission
 JOURNAL (SO): Submitted (04-OCT-1995) A.S. Kraev, Swiss Federal
 Institute of Technology, Laboratory of Biochemistry
 III, Universitaetsstr. 16, Zurich, CH-8092, SWITZERLAND
 OTHER SOURCE (OS): CA 125:267114

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|----------|--|
| source | 1..399 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p21-23"
/clone="809 b 6"
/clone-lib="CEPH megaYAC" |
| gene | 115..390 | /gene="ncx1" |
| exon | 115..390 | /gene="ncx1"
/number=11
/usedin=X92368:RNA
/label=ex11 |

SEQUENCE (SEQ):
 1 atggcctcct gtcacagagt ggagggatga ccgacctaga taggagagat tgagagagag
 61 gaagaccggg caacacaggt tgtgatgaaa tgtgcttcct tccattctct ctagggaaag
 121 atgatgacga cgatgaatgt ggggaagaga agctgcctc ctgtttcgat tacgtgatgc
 181 actttctgac tgtgttctgg aaggtcctgt ttgccttcgt cccccctact gaatactqqa
 241 atggctggc gtgtttcatt gtctccatcc tcattgattgg cctactgaca gctttcattg
 301 gagacctggc ttcccacttt ggctgcacca ttggcctgaa agattctgtg actgcagtcg
 361 tgttcgtcgc acttggaca tcagtgccag gtacaaatt

L4 ANSWER 261 OF 473 GENBANK.RTM. COPYRIGHT 2004 ON STN

LOCUS (LOC): HSNCX110 GenBank (R)
 GenBank ACC. NO. (GBN): X91217
 GenBank VERSION (VER): X91217.1 GI:1061131
 CAS REGISTRY NO. (RN): 170612-10-9
 SEQUENCE LENGTH (SQL): 602
 MOLECULE TYPE (CI): DNA; linear
 DIVISION CODE (CI): Primates
 DATE (DATE): 24 Nov 2000
 DEFINITION (DEF): H.sapiens ncx1 gene (exon 10).
 SOURCE:
 ORGANISM (ORGN): ***human***
 Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo
 NUCLEIC ACID COUNT (NA): 184 a 115 c 112 g 191 t
 REFERENCE:
 AUTHOR (AU): Kraev,A.; Chumakov,I.; Carafoli,E.
 TITLE (TI): The organization of the ***human*** gene NCX1
 encoding the ***sodium*** - ***calcium***
 exchanger
 JOURNAL (SO): Genomics, 37 (1), 105-112 (***1996***)
 OTHER SOURCE (OS): CA 125:267114
 REFERENCE:
 AUTHOR (AU): Kraev,A.S.
 TITLE (TI): Direct Submission
 JOURNAL (SO): Submitted (07-SEP-1995) A.S. Kraev, Swiss Federal
 Institute of Technology, Laboratory of Biochemistry
 III, Universitaetstr. 16, Zurich, CH-8092, SWITZERLAND

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|----------|--|
| source | 1..602 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/chromosome="2"
/map="p21-23"
/cell-line="WI38"
/cell-type="fibroblast"
/tissue-type="lung"
/clone-lib="Statagene #946204" |
| gene | 154..253 | /gene="ncx1" |
| exon | 154..253 | /gene="ncx1"
/number=10
/usedin=X92368:RNA
/label=ex10 |

SEQUENCE (SEQ):

```

1 ataatcataa cagtgtttga tgtcaatact attattttga gcctaacatc tgctaccctt
 61 atataactct ggaggttcaa aatcaacaag gtcttgaggatt tcctgaggcc ttagcgaaacc
121 cagcatttat attttcttt tcaacatttc tagagtactg tggacaaact cattaagaag
181 acaaaccctgg cccttgggtt tggactaac agctggagag aacagttcat tgaagctatc
241 actgtcagtg ctgggtgagtg cctttctctg catattataa attaaaatttgc cccaatctga
301 gctgagttt cctactgtgg ctacttggtc tatggcaaag caccaaagggtt cttccatggc
361 aaaattaagg gagaaataag tttatttggt aatgtatgca cattttaaagg actaaatttga
421 ctatctagat gaagcaaatg tcttcacaca tgacattttc ctccatctat attgcattt
481 tctggaaata gacaagataa atttaaagcg ttttgtgtct ctaattcagc aatagccat
541 cactaggctt tgtctggaaa attccctgtt agcagcacaa aggtggccaa gtcaagggtca
601 ag

```

L4 ANSWER 262 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC): CENACAEX GenBank (R)
 GenBank ACC. NO. (GBN): X91803
 GenBank VERSION (VER): X91803.1 GI:2826758
 CAS REGISTRY NO. (RN): 169791-31-5
 SEQUENCE LENGTH (SQL): 2844
 MOLECULE TYPE (CI): mRNA; linear
 DIVISION CODE (CI): Invertebrates
 DATE (DATE): 3 Nov 2000
 DEFINITION (DEF): C.elegans mRNA for protein similar to vertebrate Na/Ca exchanger (CE-NCX1).
 SOURCE: Caenorhabditis elegans.
 ORGANISM (ORGN): Caenorhabditis elegans
 Eukaryota; Metazoa; Nematoda; Chromadorea; Rhabditida;
 Rhabditoidea; Rhabditidae; Peloderinae; Caenorhabditis
 NUCLEIC ACID COUNT (NA): 777 a 606 c 675 g 786 t
 COMMENT:
 On Jan 31, 1998 this sequence version replaced gi:1009383.
 REFERENCE:
 AUTHOR (AU): Kraev,A.; Chumakov,I.; Carafoli,E.
 TITLE (TI): Molecular biological studies of the cardiac ***sodium*** - ***calcium*** ***exchanger***
 JOURNAL (SO): Ann. N. Y. Acad. Sci., 779, 103-109 (***1996***)
 OTHER SOURCE (OS): CA 125:134211
 REFERENCE:
 AUTHOR (AU): Kraev,A.; Chumakov,I.; Carafoli,E.
 TITLE (TI): The organization of the ***human*** gene NCX1 encoding the ***sodium*** - ***calcium*** ***exchanger***
 JOURNAL (SO): Genomics, 37 (1), 105-112 (***1996***)
 OTHER SOURCE (OS): CA 125:134211
 REFERENCE:
 AUTHOR (AU): Kraev,A.S.
 TITLE (TI): Direct Submission
 JOURNAL (SO): Submitted (25-SEP-1995) A.S. Kraev, Swiss Federal Institute of Technology, Laboratory of Biochemistry III, Universitaetstr. 16, Zurich, CH-8092, SWITZERLAND

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|----------|---|
| source | 1..2844 | /organism="Caenorhabditis elegans"
/strain="Bristol N2"
/db-xref="taxon:6239" |

CDS

40..2682

/clone="yk24h3 (406-2844)"
/cell-type="whole organism"
/clone-lib="Y.Kohara cDNA"
/note="RACE product, 1-405;
trans-spliced leader SL-1,1-22"
/codon-start=1
/product="sodium-calcium
exchanger"
/protein-id="CAA62913.1"
/db-xref="GI:2826759"
/db-xref="SPREMBL:Q21609"
/translation="MTKLKIYLFLVVSLTLGQY
AAEPQNGEIIHVSSQRIPGPEPAC
APAKPCSPGVIVPVWQPSENLSCEKIFRAIVYL
IALAYLFFGVSVADRFMASIEVI
TSQQKSVMKKITGEHTIMVRVWNETVSNLTLM
ALGSSAPEILLSVIEICGNNFEAG
ELGPSTIVGSAAFNLIIIAVCIMAIPNGETRRV
QHNGVFWVTVVWSTFAYWLIL
SVFSPGEVEVWEGVLTVFFFPLTVGSAYFADAHA
GQFGQRLISGPLSSFVRRSPRRSP
SKKTRENVENGAAGLPGDATQNLIGGDADALAFEI
HRRHYLDIFKQLRSEHPDAPVVEL
EKHAMEKVVGQEKKSRAYRIQTTRKMIGSGDIQ
KKLKKSNKLEPMVVQKTMATVEFD
PPHYTCLENVDVYLTVKCDRGSPEDTTVTVHY
RTIADTAQAESDFVHTEGTITFEP
GQTEQKIKVGIVDNDIYEDDEQFMVRLSQVRAFR
SEHFSSVPARLGLAATATVIVDD
DHAGSGFGLSEKFCKTESCGSFVAEVIRSRGARG
KVSIPYKTDGAAKSPQDYEHQEG
VLKFADEQSKAEIYIPIVNDDEYEKHEDFYIELG
EPIWHRELADDEEGIEGKPILGFS
RCKVVITEDREFKNFMDRALVTANTSIMVGTSSW
KQQFTEAWTLEPEEEDGEVTMKEK
VMHYIALPWKLLFALIPPTDYFNGWLCFVVAIAM
IGLLTAFIDIAAAFGCTVGLKDS
VTALTLVAMGTSLPDTFASRTAAVGQWADGSIG
NVTGSNAVNVLGIGIAMIACV
HAYRGTKFLVATGSLAFSFTMFLIGSVVCVALLQ
YRRFNRKVNNGELGGPMGWRRIISAG
IFVSVWLLYILLSTLEAYCIIKGF"

SEQUENCE (SEQ):

| | | | | | | |
|------|-------------|-------------|-------------|-------------|-------------|-------------|
| 1 | ggtttaatta | cccaagtttg | agagacaact | acaaatgcga | tgaccaagtt | aaaaatctac |
| 61 | ttgttccttg | ttgtctcggt | gactacactt | ggcaatacg | cagctgagcc | gcaaaatgga |
| 121 | gaaataattc | acgtatcttc | ccaaacgtata | cccgggcctg | agccggcttg | tgctccggct |
| 181 | aagccatgtt | ccccggagt | tatcgatcca | gttggcagc | catcgaaaaa | cctgtcagaa |
| 241 | tgccaaaat | gttccgtgc | aattgtctat | ttaatcgat | tggcatttat | attcttttgt |
| 301 | gtctcaattt | tggccgatcg | attcatggcg | tctatttggaa | tgtatcaccc | tcagcagaaa |
| 361 | tctgtgaaaa | tgaagaagat | aaccgggtgaa | catttcacaa | taatggtacg | tgtctggaa |
| 421 | gaaacagtca | gtaacctgac | gctaattggct | ctcgatcct | cagccccgaa | gattttgctc |
| 481 | tcgttcattt | aaatttgcgg | aaataatttc | gaagctggag | agctgggacc | atcgacaatt |
| 541 | gttggatcag | ctgtttttaa | cctattcatt | attattgcag | tctgttattat | ggctattcca |
| 601 | aacggcgaga | cccgtcgagt | acaacataat | ggtgtttct | gggttactgt | agtttggct |
| 661 | acatttgcatt | acgtctggct | ttacctaattc | ctgagtgtgt | ttagtccggg | agaagttgaa |
| 721 | gtatgggagg | gtgtgtcac | ttttgtttaa | ttcccgctaa | ctgtgggag | tgcctacttt |
| 781 | gccatgcac | atgctgggca | attcgatcag | aqactaatct | ccggaccct | ctccctcgatc |
| 841 | gtaaggaggt | caccacgccc | ttctccgtcc | aaaaaaaccc | gggaaaacgt | ggaaaatgga |
| 901 | gcccggactcc | caggggatgc | aactcaaaat | ttgataggag | gagacgcccga | cggccctggca |
| 961 | tttggaaattc | acagacgtca | ctacctggat | atttcaaacc | aatttgagatc | ggagcatcca |
| 1021 | gatgtccag | tcgttgaact | tgagaagcat | gccatggaga | aagtgtcgg | agagcagaag |
| 1081 | aaatcaagag | ctttttatag | aattcagaca | actaggaaaa | tgtatcggt | tgagatatt |
| 1141 | cagaaaaaaat | tgaagaaaag | taataaactg | gagccaatgg | ttgttcaaaa | aaccatggcc |
| 1201 | accgtggagt | tcgaccctcc | tcactatata | tgtctggaga | atgttggtga | cgtgtaccta |
| 1261 | accgtcaaat | gtgaccggagg | atccgtatca | gaggatacc | cagttacgg | acattataga |
| 1321 | actattgtc | ataccgtctca | agctgaatcc | gactttgtc | acaccgaaagg | aacaatcact |
| 1381 | tttggccag | gacagactga | acaaaaaaatc | aaagtccggaa | ttgtggacaa | cgacatctac |
| 1441 | gaggacgacg | agcagttcat | ggccggctc | tcacaagtcc | gagcccttccg | ttcagagcac |
| 1501 | tttccagtg | tgccggctcg | gctgggtctc | gcagcgcacag | ctaccgtaat | cattgtggac |
| 1561 | gatgtatcat | ctggaaagtg | tggcttcttg | tccggaaaaat | tcaaattgcac | agagtcatgt |
| 1621 | ggctcatttg | tggcagaagt | tatacggtca | cgtggagccc | gtggtaaggt | gtcaattct |
| 1681 | tataagactg | ttgatggagc | cgccaaatcg | ccacagact | atgagcatca | ggagggtgt |
| 1741 | ctgaagttt | ccgatgagca | gtctaaagcc | gaaatctaca | ttccgattgt | caacgatgat |
| 1801 | gaatatgaaa | aacacgaaaga | tttctatatt | gagctcggt | agcccatttg | gcacaggaa |

1921 gtagtgatca cagaagaccg agaattcaag aattttatgg atagaggcatt ggtaacagcg
 1981 aataacctcg ttatggtcgg aacttcgagt tggaaagcaac aattcactga agcctggact
 2041 ttggagccgg aggaggagga cggagaagtc acgactatgg aaaaagttat gcattatatt
 2101 gcattaccat ggaagctact gtttgcctg attccaccga ctgactattt taatggttgg
 2161 ctatgtttt tggttcaat tgcatgtatt ggactattaa ccgcatttat tggatatac
 2221 gctgcagctt ttgggtgtac agttgggcta aaggactctg tgaccgcct cacctggc
 2281 gcaatggaa cttcttcc agacacattt gcgtcccgca ccgcccgcagt tggagatcaa
 2341 tgggctgacg gatcgattgg taatgtgact ggaagtaatg ctgttaatgt attctgggt
 2401 atttggaaattt cctggatgtat tgctgcctgt gtacatgcct accggggtaac caagtttt
 2461 gtcgccacag gtccttggc cttctcgta acaatgttcc taattggctc agtcgtatgt
 2521 gtcgccttac tccaatatcg tcgttcaat cgaaaaagtca acggagagtt aggccgtcca
 2581 atgggctggc ggatcattt cggcggaaatt ttcgttccg ttggctttt gtatatccct
 2641 ctcagcacac tagggccta ttgttatttt aagggattct aatttttaatt ttttctttaa
 2701 tttttcaaaa atttcttaat ttctcaaaa gccataattt cccaaattttt cacctaaaaaa
 2761 tcaaagaatc aatactacaa actacattcc cgttctttt acttttatac atcaatcaat
 2821 caatcaataa ataataaaaac attt

L4 ANSWER 263 OF 473 GENBANK.RTM. COPYRIGHT 2004 ON STN

LOCUS (LOC): HSNCX1 GenBank (R)
GenBank ACC. NO. (GBN): X91221
GenBank VERSION (VER): X91221.1 GI:987078
CAS REGISTRY NO. (RN): 168878-73-7
SEQUENCE LENGTH (SQL): 591
MOLECULE TYPE (CI): mRNA; linear
DIVISION CODE (CI): Primates
DATE (DATE): 24 Nov 2000
DEFINITION (DEF): H.sapiens mRNA for NCX1 protein 3'UTR.
SOURCE: ***human***
ORGANISM (ORGN): Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
Hominidae; Homo
NUCLEIC ACID COUNT (NA): 168 a 86 c 96 g 241 t
REFERENCE:
AUTHOR (AU): Kraev,A.; Chumakov,I.; Carafoli,E.
TITLE (TI): The organization of the ***human*** gene NCX1
encoding the ***sodium*** - ***calcium***
exchanger
JOURNAL (SO): Genomics, 37 (1), 105-112 (***1996***)
OTHER SOURCE (OS): CA 125:267114
REFERENCE:
AUTHOR (AU): Kraev,A.S.
TITLE (TI): Direct Submission
JOURNAL (SO): Submitted (31-AUG-1995) A.S. Kraev, Swiss Federal
Institute of Technology, Laboratory of Biochemistry
III, Universitaetstr. 16, Zurich, CH-8092, SWITZERLAND
OTHER SOURCE (OS): CA 125:267114

| FEATURE (FEAT): | Feature Key | Location | Qualifier |
|-----------------|-------------|----------|--|
| source | 1..591 | | /organism="Homo sapiens"
/db-xref="taxon:9606"
/map="2p22-p23"
/clone="141435"
/tissue-type="placenta"
/clone-lib="Soares Placenta Nb2HP" |
| gene | 1..591 | | /gene="NCX1" |
| 3'UTR | 1..591 | | /gene="NCX1" |
| polyA-signal | 574..579 | | /gene="NCX1" |

SEQUENCE (SEQ):
 1 tggaaactttt ctatggccca cactttacaa ttctttgtca ttctaaccca tccttccat
 61 ccttattttt tttttttttt agaattgcta aatggaaagc tagcctagaa gcaccaagta
 121 aatatattca aggaatataa gttgtttaaa cattagaaaa atttttgcac tcattttta
 181 gctgtattag gaatgtcaat aatccgttag caaattttca cagagaacctt taagaaattc
 241 ttgcatttgtt cgatttcaat ttgaaagctt tttgggttgc ttgctttta aattttcatg
 301 ttcttaggaaa ctatgattct ggttgcattt gattgttattt attatagttt tgtaaaaattt
 361 ttttattttt ttttgcattt gtcacagctt gggggggggc gggaaatgca ctaattgtgc
 421 tcttcctttaa aatggtaca tattactgac acagacaaat aaagtttcta attgtttctt
 481 atttaatcac tagtgataca gcatattctg tatgaaatgt tttcttcattt ctcattgtca
 541 tctacttcat tttttgtttt catgttttga agaaataaaa accaaaatgg t

L4 ANSWER 264 OF 473 GENBANK.RTM. COPYRIGHT 2004 ON STN

LOCUS (LOC): T19755 GenBank (R)
 GenBank ACC. NO. (GBN): T19755
 GenBank VERSION (VER): T19755.1 GI:597500
 CAS REGISTRY NO. (RN): 160365-54-8
 SEQUENCE LENGTH (SQL): 211
 MOLECULE TYPE (CI): mRNA; linear
 DIVISION CODE (CI): Expressed sequence tag
 DATE (DATE): 28 Nov 1994
 DEFINITION (DEF): 957R Heart Homo sapiens cDNA clone 957 similar to ***Sodium*** / ***calcium*** ***exchanger***
 mRNA sequence.
 SOURCE:
 ORGANISM (ORGN): Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo
 NUCLEIC ACID COUNT (NA): 41 a 54 c 66 g 49 t 1 others
 COMMENT:
 Other ESTs: 957F
 Contact: Liew CC
 Brigham and Women's Hospital
 Harvard Medical School
 75 Francis St. Boston, MA 02115, USA
 Tel: 6177328915
 Fax: 6179750995
 Email: cliew@rics.bwh.harvard.edu
 Seq primer: GACACCAGACCAACTGGTAATG.
 REFERENCE:
 AUTHOR (AU): 1 (bases 1 to 211) Liew,C.C.; Hwang,D.M.; Fung,Y.W.; Laurensen,C.; Cukerman,E.; Tsui,S.Y.; Lee,C.Y.
 TITLE (TI): A catalogue of genes in the cardiovascular system as identified by expressed sequence tags
 JOURNAL (SO): Proc. Natl. Acad. Sci. U.S.A., 91, 10645-10649 (***1994***)
 OTHER SOURCE (OS): CA 122:2521

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|----------|---|
| source | 1..211 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/clone="957"
/clone-lib="Heart"
/lab-host="E.coli Y1090"
/note="Vector: Lambda gt11;
Site-1: EcoRI; Site-2: EcoRI" |

SEQUENCE (SEQ):
 1 cgagagaaaag ctagtgtgcc agggacact ttgaastgtt ccccattggc tgcgtggtag
 61 atggcagcga tggccaggc cacaccgatt cccaggaaga cattcacccgc gttgctgccc
 121 gtgacgttac ctatggaggc gtctgcatac tggcctggg tggctgccac tttgctggca
 181 aatgtgtctg gcactgtatgt tccaaagtgcg a

L4 ANSWER 265 OF 473 GENBANK.RTM. COPYRIGHT 2004 on STN

LOCUS (LOC): T19754 GenBank (R)
 GenBank ACC. NO. (GBN): T19754
 GenBank VERSION (VER): T19754.1 GI:597499
 CAS REGISTRY NO. (RN): 160365-53-7
 SEQUENCE LENGTH (SQL): 261
 MOLECULE TYPE (CI): mRNA; linear
 DIVISION CODE (CI): Expressed sequence tag
 DATE (DATE): 28 Nov 1994
 DEFINITION (DEF): 957F Heart Homo sapiens cDNA clone 957 similar to ***Sodium*** / ***calcium*** ***exchanger***
 mRNA sequence.
 SOURCE:
 ORGANISM (ORGN): Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini;
 Hominidae; Homo
 NUCLEIC ACID COUNT (NA): 68 a 53 c 68 g 71 t 1 others
 COMMENT:
 Other ESTs: 957R
 Contact: Liew CC

Harvard Medical School
75 Francis St. Boston, MA 02115, USA
Tel: 6177328915
Fax: 6179750995
Email: clew@rics.bwh.harvard.edu
Seq primer: GGTGGCGACGACTCCTGGAGCC.

REFERENCE: 1 (bases 1 to 261)
AUTHOR (AU): Liew,C.C.; Hwang,D.M.; Fung,Y.W.; Laurensen,C.;
Cukerman,E.; Tsui,S.Y.; Lee,C.Y.
TITLE (TI): A catalogue of genes in the cardiovascular system as
identified by expressed sequence tags
JOURNAL (SO): Proc. Natl. Acad. Sci. U.S.A., 91, 10645-10649 (****1994****)
OTHER SOURCE (OS): CA 122:2521

FEATURES (FEAT):

| Feature Key | Location | Qualifier |
|-------------|----------|---|
| source | 1..261 | /organism="Homo sapiens"
/db-xref="taxon:9606"
/clone="957"
/clone-lib="Heart"
/lab-host="E.coli Y1090"
/note="Vector: Lambda gt11;
Site-1: EcoRI; Site-2: EcoRI" |

SEQUENCE (SEQ):

1 atcattgaag aatcctatga attcaagagt actgtggaca aactcattaa gaagacaaac
61 ctggcccttg tggggggac taacagctgg agagaacagt tcattgaagc tatcactgtc
121 agtvctgggg aagatgtatga cgacgatgaa tgtggggaa agaagctgcc ctccctgtttc
181 gattacgtga tgcaacttct gactgtgttc tggaagggtcc tgtttgcctt cgtccccccc
241 acttaatact ggaatggctg g

L4 ANSWER 266 OF 473 MEDLINE on STN
AN 2002303597 MEDLINE
DN PubMed ID: 12045895
TI Extracellular ATP effects on calcium signaling in cultured ***human***
non-pigmented ciliary body epithelium.
AU Cullinane A B; Coca-Prados M; Harvey B J
CS Wellcome Trust Cellular Physiology Research Unit, Department of
Physiology, National University of Ireland, Cork, Ireland..
abcullinane@hotmail.com
NC EY-04873 (NEI)
SO Current eye research, *** (2001 Dec) *** 23 (6) 448-54.
Journal code: 8104312. ISSN: 0271-3683.
CY England: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200207
ED Entered STN: 20020605
Last Updated on STN: 20020709
Entered Medline: 20020708

L4 ANSWER 267 OF 473 MEDLINE on STN
AN 2002161303 MEDLINE
DN PubMed ID: 11892938
TI KB-R7943. Kanebo.
AU Billman G E
CS Ohio State University, Columbus 43210, USA.. billman.1@pop.service.ohio-state.edu
SO Current opinion in investigational drugs (London, England : 2000),
*** (2001 Dec) *** 2 (12) 1740-5. Ref: 40
Journal code: 100965718. ISSN: 1472-4472.
CY England: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 200208
ED Entered STN: 20020315
Last Updated on STN: 20020830
Entered Medline: 20020829

AN 2002066545 MEDLINE
DN PubMed ID: 11793976
TI Sodium-calcium exchange in platelets of diabetics.
AU Bose R; Li Y; Woo V
CS Dept. of Pharmacology, Dept. of Internal Medicine, University of Manitoba,
Winnipeg, Manitoba R3W 0W3, Canada.
SO Proceedings of the Western Pharmacology Society, *** (2001) *** 44
183-4.
Journal code: 7505899. ISSN: 0083-8969.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200207
ED Entered STN: 20020125
Last Updated on STN: 20020703
Entered Medline: 20020702

L4 ANSWER 269 OF 473 MEDLINE on STN
AN 2002005301 MEDLINE
DN PubMed ID: 11121788
TI How can overexpression of Na(+),Ca(2+)-exchanger compensate the negative
inotropic effects of downregulated SERCA?
CM Comment on: Cardiovasc Res. 2001 Jan;49(1):38-47. PubMed ID: 11121794
Comment in: Cardiovasc Res. 2001 Apr;50(1):167-9. PubMed ID: 11345943
AU Isenberg G
SO Cardiovascular research, *** (2001 Jan) *** 49 (1) 1-6. Ref: 14
Journal code: 0077427. ISSN: 0008-6363.
CY Netherlands
DT Commentary
Editorial
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 200203
ED Entered STN: 20020121
Last Updated on STN: 20020313
Entered Medline: 20020312

L4 ANSWER 270 OF 473 MEDLINE on STN
AN 2001697034 MEDLINE
DN PubMed ID: 11746521
TI Hypoxia-induced increase in intracellular calcium concentration in
endothelial cells: role of the Na(+) -glucose cotransporter.
AU Berna N; Arnould T; Remacle J; Michiels C
CS Laboratoire de Biochimie et Biologie Cellulaire, Facultes Universitaires
Notre-Dame de la Paix, 61, rue de Bruxelles, B-5000 Namur, Belgium.
SO Journal of cellular biochemistry, *** (2001) *** 84 (1) 115-31.
Journal code: 8205768. ISSN: 0730-2312.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200203
ED Entered STN: 20011218
Last Updated on STN: 20020314
Entered Medline: 20020313

L4 ANSWER 271 OF 473 MEDLINE on STN
AN 2001692115 MEDLINE
DN PubMed ID: 11735253
TI Reperfusion arrhythmias: new insights into the role of the Na(+) /Ca(2+)
exchanger.
CM Comment on: J Mol Cell Cardiol. 2001 Oct;33(10):1861-9. PubMed ID:
11603927
AU Van Wagoner D R; Bond M
SO Journal of molecular and cellular cardiology, *** (2001 Dec) *** 33 (12)
2071-4.
Journal code: 0262322. ISSN: 0022-2828.
CY England: United Kingdom
DT Commentary
Editorial
LA English
FS Priority Journals

ED Entered STN: 20011213
Last Updated on STN: 20020413
Entered Medline: 20020412

L4 ANSWER 272 OF 473 MEDLINE on STN
AN 2001680091 MEDLINE
DN PubMed ID: 11723027
TI Ionic mechanism of delayed afterdepolarizations in ventricular cells isolated from ***human*** end-stage failing hearts.
AU Verkerk A O; Veldkamp M W; Baartscheer A; Schumacher C A; Klopping C; van Ginneken A C; Ravesloot J H
CS Department of Physiology, Experimental and Molecular Cardiology Group, Academic Medical Center, University of Amsterdam, The Netherlands..
a.o.verkerk@amc.uva.nl
SO Circulation, *** (2001 Nov 27) *** 104 (22) 2728-33.
Journal code: 0147763. ISSN: 1524-4539.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 200201
ED Entered STN: 20011203
Last Updated on STN: 20020201
Entered Medline: 20020131

L4 ANSWER 273 OF 473 MEDLINE on STN
AN 2001652037 MEDLINE
DN PubMed ID: 11704553
TI Localization of thiazide-sensitive Na(+) -Cl(-) cotransport and associated gene products in mouse DCT.
CM Comment in: Am J Physiol Renal Physiol. 2001 Dec;281(6):F1019-20. PubMed ID: 11704551
AU Campean V; Kricke J; Ellison D; Luft F C; Bachmann S
CS Department of Anatomy, Medical Faculty of the Charite, Humboldt University, 13353 Berlin, Germany.
SO American journal of physiology. Renal physiology, *** (2001 Dec) *** 281 (6) F1028-35.
Journal code: 100901990. ISSN: 0363-6127.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200112
ED Entered STN: 20011114
Last Updated on STN: 20020123
Entered Medline: 20011227

L4 ANSWER 274 OF 473 MEDLINE on STN
AN 2001652036 MEDLINE
DN PubMed ID: 11704552
TI Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron.
CM Comment in: Am J Physiol Renal Physiol. 2001 Dec;281(6):F1019-20. PubMed ID: 11704551
AU Loffing J; Loffing-Cueni D; Valderrabano V; Klausli L; Hebert S C; Rossier B C; Hoenderop J G; Bindels R J; Kaissling B
CS Institute of Anatomy, University of Zurich, CH-8057 Zurich..
jloffing@anatom.unizh.ch
SO American journal of physiology. Renal physiology, *** (2001 Dec) *** 281 (6) F1021-7.
Journal code: 100901990. ISSN: 0363-6127.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200112
ED Entered STN: 20011114
Last Updated on STN: 20020123
Entered Medline: 20011227

L4 ANSWER 275 OF 473 MEDLINE on STN
AN 2001528012 MEDLINE
DN PubMed ID: 11573936
TI A disulfide bond is required for functional assembly of NCX1 from complementary fragments.

CS Department of Physiology, UCLA School of Medicine, Los Angeles, CA
NC 90095-1760, USA.
SO HL49101 (NHLBI)
CY Biochemical and biophysical research communications, *** (2001 Oct 5) ***
DT 287 (4) 825-8.
LA Journal code: 0372516. ISSN: 0006-291X.
FS United States
EM Journal; Article; (JOURNAL ARTICLE)
ED English
Priority Journals
200112
Entered STN: 20011001
Last Updated on STN: 20020122
Entered Medline: 20011204

L4 ANSWER 276 OF 473 MEDLINE on STN
AN 2001518213 MEDLINE
DN PubMed ID: 11565424
TI [Calcium-transporting systems and calcium regulation in cardiomyocytes].
AU Kal'tsitransportiruiushchie sistemy i reguliatsia kontsentratsii
CS kal'tsia v kardiomiotsitakh.
SO Aleksandrova E A
CY Volgograd State Pedagogical University.
DT Uspekhi fiziologicheskikh nauk, *** (2001 Jul-Sep) *** 32 (3) 40-8.
LA Ref: 100
FS Journal code: 0310750. ISSN: 0301-1798.
EM Russia: Russian Federation
ED Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
Russian
Priority Journals
200112
Entered STN: 20010924
Last Updated on STN: 20020122
Entered Medline: 20011204

L4 ANSWER 277 OF 473 MEDLINE on STN
AN 2001511177 MEDLINE
DN PubMed ID: 11558150
TI Delayed apoptosis and its regulation in astrocytes.
AU Takuma K
CS Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences,
Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180,
Japan.
SO Yakugaku zasshi. Journal of the Pharmaceutical Society of Japan,
*** (2001 Sep) *** 121 (9) 663-9. Ref: 49
CY Journal code: 0413613. ISSN: 0031-6903.
DT Japan
LA Journal; Article; (JOURNAL ARTICLE)
FS General Review; (REVIEW)
EM (REVIEW, TUTORIAL)
ED Japanese
Priority Journals
200112
Entered STN: 20010918
Last Updated on STN: 20020122
Entered Medline: 20011204

L4 ANSWER 278 OF 473 MEDLINE on STN
AN 2001492633 MEDLINE
DN PubMed ID: 11534550
TI Abstracts of the American Physiological Society Conferences. Cellular and
Molecular Physiology of Sodium-Calcium Exchange, Banff, Alberta, Canada,
October 10-14, 2001. Genome and Hormones: An Integrative Approach to
Gender Differences in Physiology, Pittsburgh, Pennsylvania, USA, October
17-20, 2001.
AU Anonymous
SO Physiologist, *** (2001 Aug) *** 44 (4) 219-86.
CY Journal code: 0401143. ISSN: 0031-9376.
LA United States
FS Conference; Conference Article; (CONGRESSES)
(OVERALL)
English
Priority Journals

ED Entered STN: 20010906
Last Updated on STN: 20010910
Entered Medline: 20010906

L4 ANSWER 279 OF 473 MEDLINE on STN
AN 2001480930 MEDLINE
DN PubMed ID: 11524394
TI Patients with end-stage congestive heart failure treated with beta-adrenergic receptor antagonists have improved ventricular myocyte calcium regulatory protein abundance.

AU Kubo H; Margulies K B; Piacentino V 3rd; Gaughan J P; Houser S R
CS Cardiovascular Research Group, Department of Physiology and Section of Cardiology, Temple University School of Medicine, Philadelphia, PA 19140, USA.

NC AG-17022 (NIA)
HL-03560 (NHLBI)
HL-33921 (NHLBI)
HL-61495 (NHLBI)

SO Circulation, *** (2001 Aug 28) *** 104 (9) 1012-8.
Journal code: 0147763. ISSN: 1524-4539.

CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 200109
ED Entered STN: 20010830
Last Updated on STN: 20010917
Entered Medline: 20010913

L4 ANSWER 280 OF 473 MEDLINE on STN
AN 2001444431 MEDLINE
DN PubMed ID: 11054465
TI Acquired delayed rectifier channelopathies: how heart disease and antiarrhythmic drugs mimic potentially-lethal congenital cardiac disorders.

CM Comment on: Cardiovasc Res. 2000 Nov;48(2):300-9. PubMed ID: 11054476
AU Nattel S
SO Cardiovascular research, *** (2000 Nov) *** 48 (2) 188-90.
Journal code: 0077427. ISSN: 0008-6363.

CY Netherlands
DT Commentary
LA Editorial
FS English
EM Priority Journals
200109
ED Entered STN: 20010813
Last Updated on STN: 20011001
Entered Medline: 20010927

L4 ANSWER 281 OF 473 MEDLINE on STN
AN 2001420888 MEDLINE
DN PubMed ID: 11470457
TI Cardiac ***sodium*** - ***calcium*** ***exchanger*** : a double-edged sword.
CM Comment on: Cardiovasc Res. 2001 Aug 1;51(2):241-50. PubMed ID: 11470463
AU Conway S J; Koushik S V
SO Cardiovascular research, *** (2001 Aug 1) *** 51 (2) 194-7. Ref: 44
Journal code: 0077427. ISSN: 0008-6363.

CY Netherlands
DT Commentary
Editorial
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 200109
ED Entered STN: 20011001
Last Updated on STN: 20011001
Entered Medline: 20010927

L4 ANSWER 282 OF 473 MEDLINE on STN
AN 2001419684 MEDLINE
DN PubMed ID: 11467418
TI Evidence for mechanistic alterations of Ca²⁺ homeostasis in Type 2 diabetes mellitus.

CS Center for Biotechnology, Anna University, Chennai, India.
SO International journal of experimental diabetes research, *** (2001) ***
1 (4) 275-87.
Journal code: 100962067. ISSN: 1560-4284.

CY Netherlands
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200108
ED Entered STN: 20010813
Last Updated on STN: 20010813
Entered Medline: 20010809

L4 ANSWER 283 OF 473 MEDLINE on STN
AN 2001405677 MEDLINE
DN PubMed ID: 11456400
TI Hypoxia delays the intracellular Ca²⁺ clearance by Na⁺-Ca²⁺ exchanger in ***human*** adult cardiac myocytes.
AU Park S I; Park E J; Kim N H; Baek W K; Lee Y T; Lee C J; Suh C K
CS Department of Physiology and Biophysics, Inha University College of Medicine, Inchon, Korea.
SO Yonsei medical journal, *** (2001 Jun) *** 42 (3) 333-7.
Journal code: 0414003. ISSN: 0513-5796.

CY Korea (South)
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200108
ED Entered STN: 20010820
Last Updated on STN: 20010820
Entered Medline: 20010816

L4 ANSWER 284 OF 473 MEDLINE on STN
AN 2001387548 MEDLINE
DN PubMed ID: 11443225
TI Intracellular Ca²⁺ release sparks atrial pacemaker activity.
AU Lipsius S L; Huser J; Blatter L A
CS Department of Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA.
SO News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society, *** (2001 Jun) *** 16 101-6. Ref: 20
Journal code: 8609378. ISSN: 0886-1714.

CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 200107
ED Entered STN: 20010730
Last Updated on STN: 20010730
Entered Medline: 20010726

L4 ANSWER 285 OF 473 MEDLINE on STN
AN 2001366257 MEDLINE
DN PubMed ID: 11426897
TI Leucocyte intracellular pH and Na⁺/H⁺ exchanger isoform-1 activity in postpartum women with pre-eclampsia.
AU Lee V M; Halligan A W; Ng L L
CS Department of Medicine and Therapeutics, Leicester Royal Infirmary, UK.
SO BJOG : an international journal of obstetrics and gynaecology, *** (2001* Jun) *** 108 (6) 615-22.
Journal code: 100935741. ISSN: 1470-0328.

CY England: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 200107
ED Entered STN: 20010730
Last Updated on STN: 20030304
Entered Medline: 20010726

L4 ANSWER 286 OF 473 MEDLINE on STN

DN PubMed ID: 11412833
TI Potent and selective inhibition of the ***human*** Na⁺/H⁺ exchanger isoform NHE1 by a novel aminoguanidine derivative T-162559.
AU Kawamoto T; Kimura H; Kusumoto K; Fukumoto S; Shiraishi M; Watanabe T; Sawada H
CS Discovery Research Laboratories IV, Pharmaceutical Discovery Research Division, Takeda Chemical Industries, Ltd., 17-85, Jusohonmachi 2-chome, Yodogawa-ku, 532-8686, Osaka, Japan.. Kawamoto_Tomohiro@takeda.co.jp
SO European journal of pharmacology, *** (2001 May 18) *** 420 (1) 1-8.
Journal code: 1254354. ISSN: 0014-2999.
CY Netherlands
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200108
ED Entered STN: 20010903
Last Updated on STN: 20010903
Entered Medline: 20010830

L4 ANSWER 287 OF 473 MEDLINE on STN
AN 2001338297 MEDLINE
DN PubMed ID: 11164999
TI The physiology of brain histamine.
AU Brown R E; Stevens D R; Haas H L
CS Institut fur Neurophysiologie, Heinrich-Heine-Universitat, D-40001, Dusseldorf, Germany.. brown@uni-duesseldorf.de
SO Progress in neurobiology, *** (2001 Apr) *** 63 (6) 637-72. Ref: 340
Journal code: 0370121. ISSN: 0301-0082.
CY England: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, ACADEMIC)
LA English
FS Priority Journals
EM 200106
ED Entered STN: 20010618
Last Updated on STN: 20010618
Entered Medline: 20010614

L4 ANSWER 288 OF 473 MEDLINE on STN
AN 2001329720 MEDLINE
DN PubMed ID: 11397782
TI Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness.
CM Comment in: Circ Res. 2001 Jun 8;88(11):1095-6. PubMed ID: 11397771
AU Pogwizd S M; Schlotthauer K; Li L; Yuan W; Bers D M
CS Department of Medicine, University of Illinois, Chicago, IL, USA.
NC HL-30077 (NHLBI)
HL-46929 (NHLBI)
HL-64724 (NHLBI)
SO Circulation research, *** (2001 Jun 8) *** 88 (11) 1159-67.
Journal code: 0047103. ISSN: 1524-4571.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200107
ED Entered STN: 20010716
Last Updated on STN: 20010716
Entered Medline: 20010712

L4 ANSWER 289 OF 473 MEDLINE on STN
AN 2001329709 MEDLINE
DN PubMed ID: 11397771
TI New era for translational research in cardiac arrhythmias.
CM Comment on: Circ Res. 2001 Jun 8;88(11):1159-67. PubMed ID: 11397782
AU Adachi-Akahane S; Kurachi Y
SO Circulation research, *** (2001 Jun 8) *** 88 (11) 1095-6.
Journal code: 0047103. ISSN: 1524-4571.
CY United States
DT Commentary
Editorial
LA English
FS Priority Journals

ED Entered STN: 20010716
Last Updated on STN: 20010730
Entered Medline: 20010712

L4 ANSWER 290 OF 473 MEDLINE on STN
AN 2001296967 MEDLINE
DN PubMed ID: 11377809
TI Mitochondria as target for antiischemic drugs.
AU Morin D; Hauet T; Spedding M; Tillement J
CS Laboratoire de Pharmacologie and Centre National de La Recherche Scientifique, Faculte de Medecine de Paris XII, 8 rue du General Sarrail, F-94010 Creteil, France.. morin@univ-paris12.fr
SO Advanced drug delivery reviews, *** (2001 Jul 2) *** 49 (1-2) 151-74.
Ref: 229
Journal code: 8710523. ISSN: 0169-409X.

CY Netherlands
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW LITERATURE)
LA English
FS Priority Journals
EM 200108
ED Entered STN: 20010806
Last Updated on STN: 20010806
Entered Medline: 20010802

L4 ANSWER 291 OF 473 MEDLINE on STN
AN 2001290066 MEDLINE
DN PubMed ID: 11348995
TI Cardiac Na(+) - Ca(2+) exchange: molecular and pharmacological aspects.
AU Shigekawa M; Iwamoto T
CS Department of Molecular Physiology, National Cardiovascular Center Research Institute, Suita, Osaka, Japan.. shigekaw@ri.ncvc.go.jp
SO Circulation research, *** (2001 May 11) *** 88 (9) 864-76. Ref: 139
Journal code: 0047103. ISSN: 1524-4571.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 200106
ED Entered STN: 20010702
Last Updated on STN: 20010702
Entered Medline: 20010628

L4 ANSWER 292 OF 473 MEDLINE on STN
AN 2001285835 MEDLINE
DN PubMed ID: 11243417
TI KB-R7943, a selective Na+/Ca2+ exchange inhibitor, protects against ischemic acute renal failure in mice by inhibiting renal endothelin-1 overproduction.
AU Yamashita J; Ogata M; Takaoka M; Matsumura Y
CS Department of Pharmacology, Osaka University, of Pharmaceutical Sciences, Takatsuki, Japan.
SO Journal of cardiovascular pharmacology, *** (2001 Mar) *** 37 (3) 271-9.
Journal code: 7902492. ISSN: 0160-2446.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200105
ED Entered STN: 20010529
Last Updated on STN: 20010529
Entered Medline: 20010524

L4 ANSWER 293 OF 473 MEDLINE on STN
AN 2001239912 MEDLINE
DN PubMed ID: 11334878
TI Effect of 2',4'-dichlorobenzamil hydrochloride, a Na(+) - Ca(2+) exchange inhibitor, on ***human*** spermatozoa.
AU Reddy P R; Patni A; Sharma A; Gupta S; Tiwary A K
CS Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147 002, Patiala, India.
NC N01MH30003 (NIMH)

CY Journal code: 1254354. ISSN: 0014-2999.

DT Netherlands

LA Journal; Article; (JOURNAL ARTICLE)

FS English

EM Priority Journals

ED 200109

Entered STN: 20011001

Last Updated on STN: 20011001

Entered Medline: 20010927

L4 ANSWER 294 OF 473 MEDLINE on STN

AN 2001239739 MEDLINE

DN PubMed ID: 11334793

TI The effects of the Na(+)/Ca(++) exchange blocker on osmotic blood-brain barrier disruption.

AU Bhattacharjee A K; Nagashima T; Kondoh T; Tamaki N

CS Department of Neurosurgery, Kobe University School of Medicine, 7-5-1

Kusunoki Cho, Chuo-Ku, 650-0017, Kobe, Japan.

SO Brain research, *** (2001 May 11) *** 900 (2) 157-62.

Journal code: 0045503. ISSN: 0006-8993.

CY Netherlands

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Priority Journals

EM 200109

ED Entered STN: 20010910

Last Updated on STN: 20010910

Entered Medline: 20010906

L4 ANSWER 295 OF 473 MEDLINE on STN

AN 2001236342 MEDLINE

DN PubMed ID: 11264230

TI Inhibition of aggregation of rabbit and ***human*** platelets induced by adrenaline and 5-hydroxytryptamine by KB-R7943, a Na(+)/Ca(2+) exchange inhibitor.

AU Takano S; Kimura J; Ono T

CS Department of Pharmacology, School of Medicine, Fukushima Medical University, Hikari-ga-oka 1, Fukushima 960-1295, Japan..

SO s-takano@cc.fmu.ac.jp British journal of pharmacology, *** (2001 Apr) *** 132 (7) 1383-8.

Journal code: 7502536. ISSN: 0007-1188.

CY England: United Kingdom

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Priority Journals

EM 200105

ED Entered STN: 20010521

Last Updated on STN: 20010521

Entered Medline: 20010517

L4 ANSWER 296 OF 473 MEDLINE on STN

AN 2001236215 MEDLINE

DN PubMed ID: 11134012

TI The transport activity of the Na+-Ca2+ exchanger NCX1 expressed in HEK 293 cells is sensitive to covalent modification of intracellular cysteine residues by sulfhydryl reagents.

AU Ren X; Kasir J; Rahamimoff H

CS Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.

SO Journal of biological chemistry, *** (2001 Mar 23) *** 276 (12) 9572-9.

Journal code: 2985121R. ISSN: 0021-9258.

CY United States

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Priority Journals

EM 200105

ED Entered STN: 20010517

Last Updated on STN: 20030105

Entered Medline: 20010503

L4 ANSWER 297 OF 473 MEDLINE on STN

AN 2001216796 MEDLINE

DN PubMed ID: 11247757

TI Platelet hyperactivity and abnormal Ca(2+) homeostasis in diabetes mellitus.

CS Department of Pharmacology and Therapeutics, University of Manitoba,
Winnipeg R3E OW3, Canada.
SO American journal of physiology. Heart and circulatory physiology,
*** (2001 Apr) *** 280 (4) H1480-9.
Journal code: 100901228. ISSN: 0363-6135.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200104
ED Entered STN: 20010425
Last Updated on STN: 20010425
Entered Medline: 20010419

L4 ANSWER 298 OF 473 MEDLINE on STN
AN 2001112639 MEDLINE
DN PubMed ID: 11035002
TI Helix packing of functionally important regions of the cardiac
Na(+) - Ca(2+) exchanger.
AU Qiu Z; Nicoll D A; Philipson K D
CS Department of Physiology, UCLA School of Medicine, Los Angeles, California
90095-1760, USA.
NC HL49101 (NHLBI)
SO Journal of biological chemistry, *** (2001 Jan 5) *** 276 (1) 194-9.
Journal code: 2985121R. ISSN: 0021-9258.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200102
ED Entered STN: 20010322
Last Updated on STN: 20010322
Entered Medline: 20010208

L4 ANSWER 299 OF 473 MEDLINE on STN
AN 2001034525 MEDLINE
DN PubMed ID: 10949914
TI Interaction between the actions of taurine and angiotensin II.
AU Schaffer S W; Lombardini J B; Azuma J
CS Department of Pharmacology, School of Medicine, University of South
Alabama, Mobile 36688, USA.
SO Amino acids, *** (2000) *** 18 (4) 305-18. Ref: 81
Journal code: 9200312. ISSN: 0939-4451.
CY Austria
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 200011
ED Entered STN: 20010322
Last Updated on STN: 20010322
Entered Medline: 20001130

L4 ANSWER 300 OF 473 MEDLINE on STN
AN 2001025369 MEDLINE
DN PubMed ID: 11029397
TI Increased Na(+) - Ca(2+) exchanger in the failing heart.
CM Comment on: Circ Res. 2000 Oct 13; 87(8):690-8. PubMed ID: 11029405
AU Pogwizd S M
SO Circulation research, *** (2000 Oct 13) *** 87 (8) 641-3.
Journal code: 0047103. ISSN: 1524-4571.
CY United States
DT Commentary
Editorial
LA English
FS Priority Journals
EM 200011
ED Entered STN: 20010322
Last Updated on STN: 20010521
Entered Medline: 20001113

L4 ANSWER 301 OF 473 MEDLINE on STN
AN 2001012611 MEDLINE
DN PubMed ID: 11009553

CM Comment on: Circ Res. 2000 Sep 29;87(7):588-95. PubMed ID: 11009564
AU Barry W H
SO Circulation research, *** (2000 Sep 29) *** 87 (7) 529-31.
Journal code: 0047103. ISSN: 1524-4571.
CY United States
DT Commentary
LA Editorial
FS English
EM Priority Journals
200010
ED Entered STN: 20010322
Last Updated on STN: 20010521
Entered Medline: 20001030

L4 ANSWER 302 OF 473 MEDLINE on STN
AN 2001010239 MEDLINE
DN PubMed ID: 10953508
TI [Na⁺/Ca⁺ exchange: structure, mechanism, regulation and function].
Na⁺/Ca²⁺ vymena: struktura, mechanismus, regulace a funkce.
AU Stengl M; Pucelik P
CS Fyziologicky ustav LF UK, Plzen.. stengl@lfp.cuni.cz
SO Ceskoslovenska fysiologie / Ustredni ustav biologicky, *** (2000 May) ***
49 (2) 73-90. Ref: 166
Journal code: 2984710R. ISSN: 1210-6313.
CY Czech Republic
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, ACADEMIC)
LA Czech
FS Priority Journals
EM 200010
ED Entered STN: 20010322
Last Updated on STN: 20010322
Entered Medline: 20001026

L4 ANSWER 303 OF 473 MEDLINE on STN
AN 2000479346 MEDLINE
DN PubMed ID: 11023899
TI Na⁽⁺⁾-Ca⁽²⁺⁾-K⁽⁺⁾ currents measured in insect cells transfected with the
retinal cone or rod Na⁽⁺⁾-Ca⁽²⁺⁾-K⁽⁺⁾ exchanger cDNA.
AU Sheng J Z; Prinsen C F; Clark R B; Giles W R; Schnetkamp P P
CS Department of Physiology and Biophysics and the MRC Group on Ion
Channels/Transporters, Faculty of Medicine, University of Calgary,
Calgary, Alberta T2N 4N1, Canada.
SO Biophysical journal, *** (2000 Oct) *** 79 (4) 1945-53.
Journal code: 0370626. ISSN: 0006-3495.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200011
ED Entered STN: 20010322
Last Updated on STN: 20010322
Entered Medline: 20001113

L4 ANSWER 304 OF 473 MEDLINE on STN
AN 2000441615 MEDLINE
DN PubMed ID: 10845086
TI Sodium-calcium exchange: a molecular perspective.
AU Philipson K D; Nicoll D A
CS Department of Physiology, UCLA School of Medicine 90095-1760, USA..
kphilipson@mednet.ucla.edu
SO Annual review of physiology, *** (2000) *** 62 111-33. Ref: 11
Journal code: 0370600. ISSN: 0066-4278.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 200009
ED Entered STN: 20000928
Last Updated on STN: 20000928
Entered Medline: 20000918

AN 2000439723 MEDLINE
DN PubMed ID: 10905082
TI [Neuroprotective effect of sodium channel blockers in ischemia: the pathomechanism of early ischemic dysfunction].
A Na(+) -csatorna-gatlok neuroprotektiv hatása ischaemiában: az ischaemia patomechanizmusának elmeleti alapjai.
AU Adam-Vizi V
CS Semmelweis Egyetem, Altalanos Orvostudomanyi Kar, Orvosi Biokemia Intezet, Budapest.
SO Orvosi hetilap, *** (2000 Jun 4) *** 141 (23) 1279-86. Ref: 95
Journal code: 0376412. ISSN: 0030-6002.
CY Hungary
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA Hungarian
FS Priority Journals
EM 200009
ED Entered STN: 20000928
Last Updated on STN: 20000928
Entered Medline: 20000919

L4 ANSWER 306 OF 473 MEDLINE on STN
AN 2000424106 MEDLINE
DN PubMed ID: 10900141
TI Calcitriol upregulates expression and activity of the 1b isoform of the plasma membrane calcium pump in immortalized distal kidney tubular cells.
AU Glendenning P; Ratajczak T; Dick I M; Prince R L
CS Department of Medicine, University of Western Australia, Nedlands, Western Australia, 6009, Australia.. paulglen@cyllene.uwa.edu.au
SO Archives of biochemistry and biophysics, *** (2000 Aug 1) *** 380 (1) 126-32.
Journal code: 0372430. ISSN: 0003-9861.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200009
ED Entered STN: 20000915
Last Updated on STN: 20000915
Entered Medline: 20000907

L4 ANSWER 307 OF 473 MEDLINE on STN
AN 2000407127 MEDLINE
DN PubMed ID: 10935554
TI Left ventricular assist device-induced reverse ventricular remodeling.
AU Burkhoff D; Holmes J W; Madigan J; Barbone A; Oz M C
CS Department of Medicine, Columbia University, New York, NY 10032, USA.. db59@columbia.edu
SO Progress in cardiovascular diseases, *** (2000 Jul-Aug) *** 43 (1) 19-26. Ref: 22
Journal code: 0376442. ISSN: 0033-0620.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 200008
ED Entered STN: 20000901
Last Updated on STN: 20000901
Entered Medline: 20000822

L4 ANSWER 308 OF 473 MEDLINE on STN
AN 2000400859 MEDLINE
DN PubMed ID: 10822169
TI D609-phosphatidylcholine-specific phospholipase C inhibitor attenuates thapsigargin-induced sodium influx in ***human*** lymphocytes.
AU Nofer J R; Junker R; Seedorf U; Assmann G; Zidek W; Tepel M
CS Institut fur Klinische Chemie und Laboratoriumsmedizin, Zentrallaboratorium, Westfälische Wilhelms-Universität, A. Schweitzer Str 33, 48-149, Münster, Germany.. nofer@uni-muenster.de
SO Cellular signalling, *** (2000 May) *** 12 (5) 289-96.
Journal code: 8904683. ISSN: 0898-6568.
CY ENGLAND: United Kingdom

LA English
FS Priority Journals
EM 200008
ED Entered STN: 20000901
Last Updated on STN: 20000901
Entered Medline: 20000824

L4 ANSWER 309 OF 473 MEDLINE on STN
AN 2000247144 MEDLINE
DN PubMed ID: 10785365
TI The N-terminal portion of the main cytosolic loop mediates K+ sensitivity in the retinal rod Na+/Ca²⁺-K+-exchanger.
AU Seiler E P; Guerini D; Guidi F; Carafoli E
CS Department of Biochemistry III, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
SO European journal of biochemistry / FEBS, *** (2000 May) *** 267 (9)
2461-72.
Journal code: 0107600. ISSN: 0014-2956.
CY GERMANY: Germany, Federal Republic of
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200006
ED Entered STN: 20000622
Last Updated on STN: 20000622
Entered Medline: 20000615

L4 ANSWER 310 OF 473 MEDLINE on STN
AN 2000217335 MEDLINE
DN PubMed ID: 10751314
TI Alternatively spliced isoforms of the rat eye sodium/calcium+potassium exchanger NCKX1.
AU Poon S; Leach S; Li X F; Tucker J E; Schnetkamp P P; Lytton J
CS Department of Biochemistry and Molecular Biology and Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
SO American journal of physiology. Cell physiology, *** (2000 Apr) *** 278 (4) C651-60.
Journal code: 100901225. ISSN: 0363-6143.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200004
ED Entered STN: 20000505
Last Updated on STN: 20000505
Entered Medline: 20000427

L4 ANSWER 311 OF 473 MEDLINE on STN
AN 2000155916 MEDLINE
DN PubMed ID: 10691802
TI Renal sodium/calcium exchange; a vasodilator that is defective in salt-sensitive hypertension.
AU Bell P D; Mashburn N; Unlap M T
CS Nephrology Research and Training Center, Departments of Medicine and Physiology, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
NC 3R01DK32032 (NIDDK)
HL50163 (NHLBI)
SO Acta physiologica Scandinavica, *** (2000 Jan) *** 168 (1) 209-14. Ref: 35
Journal code: 0370362. ISSN: 0001-6772.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 200003
ED Entered STN: 20000407
Last Updated on STN: 20000407
Entered Medline: 20000327

L4 ANSWER 312 OF 473 MEDLINE on STN
AN 2000076496 MEDLINE

TI The retinal rod Na(+)/Ca(2+),K(+) exchanger contains a noncleaved signal sequence required for translocation of the N terminus.
AU McKiernan C J; Friedlander M
CS Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
NC 5F32 EY06820 (NEI)
SO Journal of biological chemistry, *** (1999 Dec 31)*** 274 (53)
38177-82.
Journal code: 2985121R. ISSN: 0021-9258.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200002
ED Entered STN: 20000218
Last Updated on STN: 20000218
Entered Medline: 20000208

L4 ANSWER 313 OF 473 MEDLINE on STN
AN 2000071617 MEDLINE
DN PubMed ID: 10603950
TI Sarcoplasmic reticulum proteins in heart failure.
AU Lehnart S E; Schillinger W; Pieske B; Prestle J; Just H; Hasenfuss G
CS Medizinische Klinik III, Universitat Freiburg, Germany.
SO Annals of the New York Academy of Sciences, *** (1998 Sep 16)*** 853
220-30. Ref: 52
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 200001
ED Entered STN: 20000124
Last Updated on STN: 20000124
Entered Medline: 20000107

L4 ANSWER 314 OF 473 MEDLINE on STN
AN 2000040157 MEDLINE
DN PubMed ID: 10571527
TI Sodium-calcium exchange: the phantom menace.
CM Comment on: Circ Res. 1999 Nov 26;85(11):1009-19. PubMed ID: 10571531
AU Goldhaber J I
SO Circulation research, *** (1999 Nov 26)*** 85 (11) 982-4.
Journal code: 0047103. ISSN: 0009-7330.
CY United States
DT Commentary
Editorial
LA English
FS Priority Journals
EM 200001
ED Entered STN: 20000114
Last Updated on STN: 20000114
Entered Medline: 20000105

L4 ANSWER 315 OF 473 MEDLINE on STN
AN 2000006744 MEDLINE
DN PubMed ID: 10536662
TI Heterogeneous transmural gene expression of calcium-handling proteins and natriuretic peptides in the failing ***human*** heart.
CM Comment in: Cardiovasc Res. 1999 Aug 1;43(2):279-81. PubMed ID: 10536655
AU Prestle J; Dieterich S; Preuss M; Bieligk U; Hasenfuss G
CS Abteilung Kardiologie und Pneumologie, Georg-August-Universitat Gottingen, Germany.. jprestle@mdv.gwdg.de
SO Cardiovascular research, *** (1999 Aug 1)*** 43 (2) 323-31.
Journal code: 0077427. ISSN: 0008-6363.
CY Netherlands
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199911
ED Entered STN: 20000111
Last Updated on STN: 20000229
Entered Medline: 19991108

L4 ANSWER 316 OF 473 MEDLINE on STN
AN 1999440255 MEDLINE
DN PubMed ID: 10510560
TI [Structure and function of selected Ca(2+) transport systems in cardiac cells].
Struktura a funkcia vybranych Ca(2+)-transportnych systemov v srdcovych bunkach.
AU Zacicova L; Krizanova O
CS Ustav molekularnej fyziologie a genetiky Slovenskej akademie vied,
Bratislava.
SO Ceskoslovenska fysiologie / Ustredni ustav biologicky, *** (1999 May) ***
48 (2) 62-76. Ref: 148
Journal code: 2984710R. ISSN: 1210-6313.
CY Czech Republic
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, ACADEMIC)
LA Slovak
FS Priority Journals
EM 199910
ED Entered STN: 19991101
Last Updated on STN: 19991101
Entered Medline: 19991021

L4 ANSWER 317 OF 473 MEDLINE on STN
AN 1999367311 MEDLINE
DN PubMed ID: 10436268
TI Na(+) /Ca(2+) exchange inhibitors modulate thapsigargin-induced Ca(2+) and
Na(+) influx in ***human*** lymphocytes.
AU Nofer J R; Pulawski E; Junker R; Seedorf U; Assmann G; Zidek W; Tepel M
CS Institut fur Klinische Chemie und Laboratoriumsmedizin,
Zentrallaboratorium, Westfälische Wilhelms-Universität, Albert Schweizer
Strasse 33, D-48149 Munster, Germany.
SO International journal of clinical & laboratory research, *** (1999) ***
29 (2) 89-92.
Journal code: 9206491. ISSN: 0940-5437.
CY GERMANY: Germany, Federal Republic of
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199910
ED Entered STN: 19991026
Last Updated on STN: 20021210
Entered Medline: 19991012

L4 ANSWER 318 OF 473 MEDLINE on STN
AN 1999339017 MEDLINE
DN PubMed ID: 10410828
TI Mechanism underlying the strong positive inotropic effects of LND-623:
specific inhibition of Na, K-ATPase isoforms and exclusion of cellular
sites of contractile control.
AU Maixent J M; Lelievre L; Berrebi-Bertrand I
CS Laboratoire de Recherche Cardiologique, Faculte de Medecine, Universite de
la Mediterranee, Marseille, France.
SO Cardiovascular drugs and therapy / sponsored by the International Society
of Cardiovascular Pharmacotherapy, *** (1998 Dec) *** 12 (6) 585-94.
Journal code: 8712220. ISSN: 0920-3206.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199909
ED Entered STN: 19990925
Last Updated on STN: 19990925
Entered Medline: 19990914

L4 ANSWER 319 OF 473 MEDLINE on STN
AN 1999322472 MEDLINE
DN PubMed ID: 10390518
TI Sodium/calcium exchange: its physiological implications.
AU Blaustein M P; Lederer W J
CS Departments of Physiology, University of Maryland School of Medicine,
Baltimore, USA.
NC HL-25675 (NHLBI)
HL-45215 (NHLBI)

SO Physiological reviews, *** (1999 Jul)*** 79 (3) 763-854. Ref: 1010
Journal code: 0231714. ISSN: 0031-9333.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199907
ED Entered STN: 19990806
Last Updated on STN: 19990806
Entered Medline: 19990723

L4 ANSWER 320 OF 473 MEDLINE on STN
AN 1999255385 MEDLINE
DN PubMed ID: 10320357
TI CDNA cloning and functional expression of the dolphin retinal rod Na⁺-Ca²⁺ exchanger NCKX1: comparison with the functionally silent bovine NCKX1.
AU Cooper C B; Winkfein R J; Szerencsei R T; Schnetkamp P P
CS Departments of Physiology & Biophysics and of Biochemistry & Molecular Biology, and MRC Group on Ion Channels and Transporters, The University of Calgary, 3330 Hospital Drive, N.W., Calgary, Alberta, T2N 4N1 Canada.
SO Biochemistry, *** (1999 May 11)*** 38 (19) 6276-83.
Journal code: 0370623. ISSN: 0006-2960.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199906
ED Entered STN: 19990618
Last Updated on STN: 19990618
Entered Medline: 19990607

L4 ANSWER 321 OF 473 MEDLINE on STN
AN 1999233987 MEDLINE
DN PubMed ID: 10217649
TI Reduced sodium pump alpha1, alpha3, and beta1-isoform protein levels and Na⁺, K⁺-ATPase activity but unchanged Na⁺-Ca²⁺ exchanger protein levels in ***human*** heart failure.
AU Schwingen R H; Wang J; Frank K; Muller-Ehmsen J; Brixius K; McDonough A A; Erdmann E
CS Klinik III fur Innere Medizin der Universitat zu Koln (Germany)..
Robert.Schwingen@medizin.uni-koeln.de
NC DK34316 (NIDDK)
SO Circulation, *** (1999 Apr 27)*** 99 (16) 2105-12.
Journal code: 0147763. ISSN: 1524-4539.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 199905
ED Entered STN: 19990601
Last Updated on STN: 20010521
Entered Medline: 19990517

L4 ANSWER 322 OF 473 MEDLINE on STN
AN 1999216483 MEDLINE
DN PubMed ID: 10198283
TI Reactive oxygen metabolites increase mitochondrial calcium in endothelial cells: implication of the Ca²⁺/Na⁺ exchanger.
AU Jorntot L; Maechler P; Wollheim C B; Junod A F
CS Respiratory Division and Division of Clinical Biochemistry, Department of Internal Medicine, University Hospital, Switzerland..
lan.h.jorntot@hcuge.ch
SO Journal of cell science, *** (1999 Apr)*** 112 (Pt 7) 1013-22.
Journal code: 0052457. ISSN: 0021-9533.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199907
ED Entered STN: 19990727
Last Updated on STN: 19990727
Entered Medline: 19990709

AN 1999207220 MEDLINE
DN PubMed ID: 10191496
TI The Ca²⁺ pumps and the Na⁺/Ca²⁺ exchangers.
AU Guerini D
CS Institute of Biochemistry, Swiss Federal Institute of Technology (ETH),
Zurich, Switzerland.. guerini@bc.biol.ethz.ch
SO Biometals : an international journal on the role of metal ions in biology,
biochemistry, and medicine, *** (1998 Dec) *** 11 (4) 319-30. Ref: 116
Journal code: 9208478. ISSN: 0966-0844.
CY Netherlands
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, ACADEMIC)
LA English
FS Priority Journals
EM 199904
ED Entered STN: 19990511
Last Updated on STN: 20000303
Entered Medline: 19990426

L4 ANSWER 324 OF 473 MEDLINE on STN
AN 1999190721 MEDLINE
DN PubMed ID: 10089232
TI Regulatory function of Na-Ca exchange in the heart: milestones and
outlook.
AU Egger M; Niggli E
CS Department of Physiology, University of Bern, Buhlplatz 5, CH-3012 Bern,
Switzerland.
SO Journal of membrane biology, *** (1999 Mar 15) *** 168 (2) 107-30. Ref:
208
Journal code: 0211301. ISSN: 0022-2631.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, ACADEMIC)
LA English
FS Priority Journals
EM 199905
ED Entered STN: 19990607
Last Updated on STN: 19990607
Entered Medline: 19990527

L4 ANSWER 325 OF 473 MEDLINE on STN
AN 1999189802 MEDLINE
DN PubMed ID: 10089932
TI Na⁺/Ca⁺⁺ exchanger and myocardial ischemia/reperfusion.
AU Mochizuki S; Jiang C
CS Department of Medicine, Jikei University, School of Medicine, Tokyo,
Japan.
SO Japanese heart journal, *** (1998 Nov) *** 39 (6) 707-14.
Journal code: 0401175. ISSN: 0021-4868.
CY Japan
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199904
ED Entered STN: 19990420
Last Updated on STN: 19990420
Entered Medline: 19990407

L4 ANSWER 326 OF 473 MEDLINE on STN
AN 1999184735 MEDLINE
DN PubMed ID: 10082981
TI Metabolic pathways in the regulation of invertebrate and vertebrate
Na⁺/Ca²⁺ exchange.
AU DiPolo R; Beauge L
CS Laboratorio de Permeabilidad Ionica, Centro de Biofisica y Bioquimica,
IVIC, Apartado 21827, Caracas 1020-A, Venezuela.. ridipolo@cbb.ivic.ve
SO Biochimica et biophysica acta, *** (1999 Feb 25) *** 1422 (1) 57-71.
Ref: 82
Journal code: 0217513. ISSN: 0006-3002.
CY Netherlands
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)

FS Priority Journals
EM 199904
ED Entered STN: 19990511
Last Updated on STN: 19990511
Entered Medline: 19990427

L4 ANSWER 327 OF 473 MEDLINE on STN
AN 1999170405 MEDLINE
DN PubMed ID: 10072189
TI Mechanisms involved in the cellular calcium homeostasis in vascular smooth muscle: calcium pumps.
AU Marin J; Encabo A; Briones A; Garcia-Cohen E C; Alonso M J
CS Departamento de Farmacologia y Terapeutica, Facultad de Medicina,
Universidad Autonoma de Madrid, Spain.. Jesus.Marin@uam.es
SO Life sciences, *** (1999) *** 64 (5) 279-303. Ref: 253
Journal code: 0375521. ISSN: 0024-3205.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, ACADEMIC)
LA English
FS Priority Journals
EM 199903
ED Entered STN: 19990402
Last Updated on STN: 19990402
Entered Medline: 19990323

L4 ANSWER 328 OF 473 MEDLINE on STN
AN 1999081222 MEDLINE
DN PubMed ID: 9865624
TI Immunohistochemical localization of Na+/Ca²⁺ exchanger in ***human*** retina and retinal pigment epithelium.
AU Loeffler K U; Mangini N J
CS Universitats-Augenklinik, Bonn, Germany.. karinloeffler@compuserve.com
NC EY01792 (NEI)
EY11308 (NEI)
SO Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
*** (1998 Dec) *** 236 (12) 929-33.
Journal code: 8205248. ISSN: 0721-832X.
CY GERMANY: Germany, Federal Republic of
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199903
ED Entered STN: 19990326
Last Updated on STN: 19990326
Entered Medline: 19990316

L4 ANSWER 329 OF 473 MEDLINE on STN
AN 1999072302 MEDLINE
DN PubMed ID: 9856482
TI Chromosomal localization and genomic organization of the ***human*** retinal rod Na⁺-Ca²⁺ exchanger.
AU Tucker J E; Winkfein R J; Murthy S K; Friedman J S; Walter M A; Demetrick D J; Schnetkamp P P
CS Department of Biochemistry & Molecular Biology, and the MRC Group on Ion Channels/Transporters, Faculty of Medicine, University of Calgary, Canada.
SO Human genetics, *** (1998 Oct) *** 103 (4) 411-4.
Journal code: 7613873. ISSN: 0340-6717.
CY GERMANY: Germany, Federal Republic of
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
OS GENBANK-AF062922; GENBANK-AF062923; GENBANK-AF076932; GENBANK-AF076933;
GENBANK-AF076934; GENBANK-AF076935; GENBANK-AF076936; GENBANK-AF076937;
GENBANK-AF076938; GENBANK-AF076939; GENBANK-AF076940; GENBANK-AF076941;
GENBANK-AF076942; GENBANK-AF076943; GENBANK-AF076944; GENBANK-AF076945;
GENBANK-AF076946; GENBANK-AF076947; GENBANK-AF076948; GENBANK-AF076949;
EM 199812
ED Entered STN: 19990115
Last Updated on STN: 20000303
Entered Medline: 19981223

L4 ANSWER 330 OF 473 MEDLINE on STN

DN PubMed ID: 9843164
TI A Glanzmann thrombasthenia-like phenotype caused by a defect in inside-out signaling through the integrin alpha(IIb)beta3.
AU Tomiyama Y; Shiraga M; Kinoshita S; Ambo H; Kurata Y; Matsuzawa Y; Kunicki T J
CS Second Department of Internal Medicine, Osaka University Medical School, Suita, Japan.
NC ROIHL46979 (NHLBI)
SO Thrombosis and haemostasis, *** (1998 Nov) *** 80 (5) 735-42.
Journal code: 7608063. ISSN: 0340-6245.
CY GERMANY: Germany, Federal Republic of
DT (CASE REPORTS)
LA Journal; Article; (JOURNAL ARTICLE)
English
FS Priority Journals
EM 199903
ED Entered STN: 19990413
Last Updated on STN: 19990413
Entered Medline: 19990330

L4 ANSWER 331 OF 473 MEDLINE on STN
AN 1999025945 MEDLINE
DN PubMed ID: 9808565
TI Involvement of Na+/Ca²⁺ exchanger in inside-out signaling through the platelet integrin IIb^{beta}3.
AU Shiraga M; Tomiyama Y; Honda S; Suzuki H; Kosugi S; Tadokoro S; Kanakura Y; Tanoue K; Kurata Y; Matsuzawa Y
CS Second Department of Internal Medicine, Osaka University Medical School and Department of Blood Transfusion, Osaka University Hospital, Osaka, Japan, USA.
SO Blood, *** (1998 Nov 15) *** 92 (10) 3710-20.
Journal code: 7603509. ISSN: 0006-4971.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 199812
ED Entered STN: 19990115
Last Updated on STN: 19990115
Entered Medline: 19981221

L4 ANSWER 332 OF 473 MEDLINE on STN
AN 1999006692 MEDLINE
DN PubMed ID: 9792206
TI Is ouabain produced by the adrenal gland?.
AU Foster R H; Prat H; Rothman I
CS Department of Physiology and Biophysics, Faculty of Medicine, University of Chile, Santiago.
SO General pharmacology, *** (1998 Oct) *** 31 (4) 499-501. Ref: 35
Journal code: 7602417. ISSN: 0306-3623.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199901
ED Entered STN: 19990202
Last Updated on STN: 19990202
Entered Medline: 19990120

L4 ANSWER 333 OF 473 MEDLINE on STN
AN 1999004452 MEDLINE
DN PubMed ID: 9788155
TI Ca²⁺ mobilization and pumping out mechanism.
AU Mikoshiba K
CS Department of Molecular Neurobiology, University of Tokyo, Japan.
SO Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, *** (1998***
Sep) *** 43 (12 Suppl) 1577-8. Ref: 0
Journal code: 0413762. ISSN: 0039-9450.
CY Japan
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA Japanese

EM 199902
ED Entered STN: 19990216
Last Updated on STN: 19990216
Entered Medline: 19990203

L4 ANSWER 334 OF 473 MEDLINE on STN
AN 1999004449 MEDLINE
DN PubMed ID: 9788152
TI Na(+) -Ca²⁺ exchange.
AU Matsuoka S; Noma A
CS Department of Physiology, Faculty of Medicine, Kyoto University, Japan.
SO TanpakuShitsu kakusan koso. Protein, nucleic acid, enzyme, *** (1998)**
*** Sep) *** 43 (12 Suppl) 1555-60. Ref: 49
Journal code: 0413762. ISSN: 0039-9450.

CY Japan
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA Japanese
FS Priority Journals
EM 199902
ED Entered STN: 19990216
Last Updated on STN: 19990216
Entered Medline: 19990203

L4 ANSWER 335 OF 473 MEDLINE on STN
AN 1999002133 MEDLINE
DN PubMed ID: 9785953
TI Modeling the cellular basis of altered excitation-contraction coupling in heart failure.
AU Winslow R L; Rice J; Jafri S
CS Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.. rwinslow@bme.jhu.edu
NC HL60133 (NHLBI)
SO Progress in biophysics and molecular biology, *** (1998)*** 69 (2-3)
497-514. Ref: 45
Journal code: 0401233. ISSN: 0079-6107.

CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199811
ED Entered STN: 19990106
Last Updated on STN: 19990106
Entered Medline: 19981116

L4 ANSWER 336 OF 473 MEDLINE on STN
AN 1998428557 MEDLINE
DN PubMed ID: 9755808
TI Mode-actions of the Na(+) -Ca²⁺ exchanger: from genes to mechanisms to a new strategy in brain disorders.
AU Fang Y; Rong M; He L; Zhou C
CS Department of Anesthesiology, Zhong Shan Hospital, Shanghai Medical University, China.
SO Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
*** (1998)*** 52 (4) 145-56.
Journal code: 8213295. ISSN: 0753-3322.

CY France
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199810
ED Entered STN: 19981029
Last Updated on STN: 20000303
Entered Medline: 19981021

L4 ANSWER 337 OF 473 MEDLINE on STN
AN 1998365285 MEDLINE
DN PubMed ID: 9688596
TI Differential inhibition of Na⁺/Ca²⁺ exchanger isoforms by divalent cations and isothiourea derivative.
AU Iwamoto T; Shigekawa M
CS Department of Molecular Physiology, National Cardiovascular Center

SO American journal of physiology, *** (1998 Aug) *** 275 (2 Pt 1) C423-30.
Journal code: 0370511. ISSN: 0002-9513.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199809
ED Entered STN: 19980925
Last Updated on STN: 19980925
Entered Medline: 19980916

L4 ANSWER 338 OF 473 MEDLINE on STN
AN 1998318765 MEDLINE
DN PubMed ID: 9654696
TI [New aspects of the pathophysiology of heart failure].
Neue Aspekte zur Pathophysiologie der Herzinsuffizienz.
AU Pieske B
CS Abteilung fur Kardiologie und Pneumologie, Zentrums Innere Medizin,
Georg-August-Universitat Gottingen, Deutschland.
SO Wiener medizinische Wochenschrift (1946), *** (1998) *** 148 (5) 108-20.
Ref: 168
Journal code: 8708475. ISSN: 0043-5341.
CY Austria
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA German
FS Priority Journals
EM 199808
ED Entered STN: 19980910
Last Updated on STN: 19980910
Entered Medline: 19980828

L4 ANSWER 339 OF 473 MEDLINE on STN
AN 1998295677 MEDLINE
DN PubMed ID: 9633920
TI Simulation study of cellular electric properties in heart failure.
AU Priebe L; Beuckelmann D J
CS Department of Medicine III, University of Cologne, Germany.
SO Circulation research, *** (1998 Jun 15) *** 82 (11) 1206-23.
Journal code: 0047103. ISSN: 0009-7330.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199807
ED Entered STN: 19980716
Last Updated on STN: 19980716
Entered Medline: 19980702

L4 ANSWER 340 OF 473 MEDLINE on STN
AN 1998276681 MEDLINE
DN PubMed ID: 9614497
TI Contribution of reverse-mode sodium-calcium exchange to contractions in failing ***human*** left ventricular myocytes.
AU Mattiello J A; Margulies K B; Jeevanandam V; Houser S R
CS Department of Physiology, Temple University School of Medicine,
Philadelphia, PA 19140, USA.
SO Cardiovascular research, *** (1998 Feb) *** 37 (2) 424-31.
Journal code: 0077427. ISSN: 0008-6363.
CY Netherlands
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199806
ED Entered STN: 19980625
Last Updated on STN: 19980625
Entered Medline: 19980615

L4 ANSWER 341 OF 473 MEDLINE on STN
AN 1998263786 MEDLINE
DN PubMed ID: 9601480
TI Changes in intracellular Ca²⁺ mobilization and Ca²⁺ sensitization as mechanisms of action of physiological interventions and inotropic agents in intact myocardial cells.

CS Department of Pharmacology, Yamagata University School of Medicine, Japan.
SO Japanese heart journal, *** (1998 Jan) *** 39 (1) 1-44. Ref: 272
Journal code: 0401175. ISSN: 0021-4868.

CY Japan

DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)

LA English

FS Priority Journals
199806

EM ED Entered STN: 19980611

Last Updated on STN: 19980611

Entered Medline: 19980601

L4 ANSWER 342 OF 473 MEDLINE on STN

AN 1998250746 MEDLINE

DN PubMed ID: 9582332

TI Structure-function analysis of CALX1.1, a Na⁺-Ca²⁺ exchanger from Drosophila. Mutagenesis of ionic regulatory sites.

AU Dyck C; Maxwell K; Buchko J; Trac M; Omelchenko A; Hnatowich M; Hryshko L V

CS Institute of Cardiovascular Sciences, Department of Physiology, Faculty of Medicine, University of Manitoba, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba R2H 2A6, Canada.

SO Journal of biological chemistry, *** (1998 May 22) *** 273 (21) 12981-7.
Journal code: 2985121R. ISSN: 0021-9258.

CY United States

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Priority Journals
199806

EM ED Entered STN: 19980708

Last Updated on STN: 20021210

Entered Medline: 19980625

L4 ANSWER 343 OF 473 MEDLINE on STN

AN 1998219151 MEDLINE

DN PubMed ID: 9558460

TI Codependence of renal calcium and sodium transport.

AU Friedman P A

CS Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.. PAF@Dartmouth.Edu

NC GM 34399 (NIGMS)

SO Annual review of physiology, *** (1998) *** 60 179-97. Ref: 125
Journal code: 0370600. ISSN: 0066-4278.

CY United States

DT Journal; Article; (JOURNAL ARTICLE)

General Review; (REVIEW)
(REVIEW, ACADEMIC)

LA English

FS Priority Journals
199806

EM ED Entered STN: 19980625

Last Updated on STN: 19980625

Entered Medline: 19980612

L4 ANSWER 344 OF 473 MEDLINE on STN

AN 1998212832 MEDLINE

DN PubMed ID: 9551468

TI Response of Na⁺/Ca²⁺ antiporter to ischemia and glial/neuronal death.

AU Matsuda T; Baba A

CS Department of Pharmacology, Faculty of Pharmaceutical Sciences, Osaka University, Japan.

SO Nippon yakurigaku zasshi. Japanese journal of pharmacology, *** (1998***
*** Jan) *** 111 (1) 13-9. Ref: 52

Journal code: 0420550. ISSN: 0015-5691.

CY Japan

DT Journal; Article; (JOURNAL ARTICLE)

General Review; (REVIEW)
(REVIEW, TUTORIAL)

LA Japanese

FS Priority Journals
199806

EM ED Entered STN: 19980625

Last Updated on STN: 20000303

L4 ANSWER 345 OF 473 MEDLINE on STN
AN 1998191135 MEDLINE
DN PubMed ID: 9530104
TI ATP stimulation of Na+/Ca²⁺ exchange in cardiac sarcolemmal vesicles.
AU Berberian G; Hidalgo C; DiPolo R; Beauge L
CS Instituto de Investigacion Medica Mercedes y Martin Ferreyra, Cordoba,
Argentina.
SO American journal of physiology, *** (1998 Mar) *** 274 (3 Pt 1) C724-33.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199804
ED Entered STN: 19980507
Last Updated on STN: 19980507
Entered Medline: 19980424

L4 ANSWER 346 OF 473 MEDLINE on STN
AN 1998182628 MEDLINE
DN PubMed ID: 9522160
TI Review of some actions of taurine on ion channels of cardiac muscle cells
and others.
AU Satoh H; Sperelakis N
CS Department of Pharmacology, Nara Medical University, Japan.
SO General pharmacology, *** (1998 Apr) *** 30 (4) 451-63. Ref: 106
Journal code: 7602417. ISSN: 0306-3623.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199805
ED Entered STN: 19980520
Last Updated on STN: 19980520
Entered Medline: 19980512

L4 ANSWER 347 OF 473 MEDLINE on STN
AN 1998181480 MEDLINE
DN PubMed ID: 9520863
TI Calcium-dependent inhibition of the sodium-calcium exchange current by
KB-R7943.
AU Watano T; Kimura J
CS Department of Pharmacology, Fukushima Medical College, Japan.
SO Canadian journal of cardiology, *** (1998 Feb) *** 14 (2) 259-62.
Journal code: 8510280. ISSN: 0828-282X.
CY Canada
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199804
ED Entered STN: 19980416
Last Updated on STN: 19980416
Entered Medline: 19980406

L4 ANSWER 348 OF 473 MEDLINE on STN
AN 1998138491 MEDLINE
DN PubMed ID: 9478004
TI cDNA cloning of the ***human*** retinal rod Na-Ca + K exchanger:
comparison with a revised bovine sequence.
AU Tucker J E; Winkfein R J; Cooper C B; Schnetkamp P P
CS Department of Medical Biochemistry, Faculty of Medicine, University of
Calgary, Canada.
SO Investigative ophthalmology & visual science, *** (1998 Feb) *** 39 (2)
435-40.
Journal code: 7703701. ISSN: 0146-0404.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
OS GENBANK-AF025480
EM 199803
ED Entered STN: 19980312

Entered Medline: 19980302

L4 ANSWER 349 OF 473 MEDLINE on STN
AN 1998051754 MEDLINE
DN PubMed ID: 9395572
TI Cellular calcium and sodium regulation, salt-sensitivity and essential hypertension in African Americans.
AU Aviv A
CS Hypertension Research Program, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark 07103-2714, USA.
NC HL34807 (NHLBI)
HL42856 (NHLBI)
SO Ethnicity & health, *** (1996 Sep) *** 1 (3) 275-81. Ref: 32
Journal code: 9608374. ISSN: 1355-7858.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199712
ED Entered STN: 19980122
Last Updated on STN: 19980122
Entered Medline: 19971231

L4 ANSWER 350 OF 473 MEDLINE on STN
AN 97476084 MEDLINE
DN PubMed ID: 9336335
TI Effect of cyclopiazonic acid on the force-frequency relationship in ***human*** nonfailing myocardium.
AU Schwingen R H; Brixius K; Bavendiek U; Hoischen S; Muller-Ehmsen J; Bolck B; Erdmann E
CS Klinik III fur Innere Medizin der Universitat zu Koln, Germany.
SO Journal of pharmacology and experimental therapeutics, *** (1997 Oct) ***
283 (1) 286-92.
Journal code: 0376362. ISSN: 0022-3565.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199711
ED Entered STN: 19971224
Last Updated on STN: 19971224
Entered Medline: 19971103

L4 ANSWER 351 OF 473 MEDLINE on STN
AN 97471773 MEDLINE
DN PubMed ID: 9330714
TI Ca(2+)-signaling in cardiac myocytes: evidence from evolutionary and transgenic models.
AU Morad M; Suzuki Y J
CS Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20007-2197, USA.
NC RO1-16152
SO Advances in experimental medicine and biology, *** (1997) *** 430 3-12.
Ref: 13
Journal code: 0121103. ISSN: 0065-2598.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199711
ED Entered STN: 19971224
Last Updated on STN: 19971224
Entered Medline: 19971119

L4 ANSWER 352 OF 473 MEDLINE on STN
AN 97353731 MEDLINE
DN PubMed ID: 9209972
TI Role of intracellular sodium overload in the genesis of cardiac arrhythmias.
AU Levi A J; Dalton G R; Hancox J C; Mitcheson J S; Issberner J; Bates J A; Evans S J; Howarth F C; Hobai I A; Jones J V

SO Bristol, United Kingdom.. allan.levi@bristol.ac.uk
Journal of cardiovascular electrophysiology, *** (1997 Jun) *** 8 (6)
700-21. Ref: 209
Journal code: 9010756. ISSN: 1045-3873.

CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, ACADEMIC)

LA English
FS Priority Journals
EM 199708

ED Entered STN: 19970902
Last Updated on STN: 19980206
Entered Medline: 19970815

L4 ANSWER 353 OF 473 MEDLINE on STN
AN 97346426 MEDLINE
DN PubMed ID: 9202843
TI Sodium-calcium exchange: recent advances.
AU Hryshko L V; Philipson K D
CS Division of Cardiovascular Sciences, St. Boniface General Hospital,
Winnipeg, Manitoba, Canada.
SO Basic research in cardiology, *** (1997) *** 92 Suppl 1 45-51. Ref: 90
Journal code: 0360342. ISSN: 0300-8428.

CY GERMANY: Germany, Federal Republic of
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)

LA English
FS Priority Journals
EM 199708

ED Entered STN: 19970908
Last Updated on STN: 19980206
Entered Medline: 19970827

L4 ANSWER 354 OF 473 MEDLINE on STN
AN 97343141 MEDLINE
DN PubMed ID: 9199770
TI Electrophysiological characterization of ionic transport by the retinal
exchanger expressed in ***human*** embryonic kidney cells.
AU Navanglone A; Rispoli G; Gabellini N; Carafoli E
CS Istituto Nazionale per la Fisica della Materia (INFM), Dipartimento di
Biologia dell'Universita, Ferrara, Italy.
SO Biophysical journal, *** (1997 Jul) *** 73 (1) 45-51.
Journal code: 0370626. ISSN: 0006-3495.

CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199708

ED Entered STN: 19970908
Last Updated on STN: 19970908
Entered Medline: 19970827

L4 ANSWER 355 OF 473 MEDLINE on STN
AN 97338732 MEDLINE
DN PubMed ID: 9195292
TI Na(+) -Ca2+ exchanger: physiology and pharmacology.
AU Matsuda T; Takuma K; Baba A
CS Department of Pharmacology, Faculty of Pharmaceutical Sciences, Osaka
University, Japan.
SO Japanese journal of pharmacology, *** (1997 May) *** 74 (1) 1-20. Ref:
277
Journal code: 2983305R. ISSN: 0021-5198.

CY Japan
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, ACADEMIC)

LA English
FS Priority Journals
EM 199708

ED Entered STN: 19970813
Last Updated on STN: 19980206
Entered Medline: 19970805

AN 97289536 MEDLINE
DN PubMed ID: 9144441
TI Mechanism of calcium entry during axon injury and degeneration.
AU LoPachin R M; Lehning E J
CS Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10467, USA.
SO Toxicology and applied pharmacology, *** (1997 Apr) *** 143 (2) 233-44.
Ref: 108
Journal code: 0416575. ISSN: 0041-008X.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199706
ED Entered STN: 19970612
Last Updated on STN: 19980206
Entered Medline: 19970602

L4 ANSWER 357 OF 473 MEDLINE on STN
AN 97094294 MEDLINE
DN PubMed ID: 8940382
TI Possible role for mitochondrial calcium in angiotensin II- and potassium-stimulated steroidogenesis in bovine adrenal glomerulosa cells.
AU Brandenburger Y; Kennedy E D; Python C P; Rossier M F; Vallotton M B;
Wollheim C B; Capponi A M
CS Division of Endocrinology and Diabetology, Faculty of Medicine, Geneva, Switzerland.
SO Endocrinology, *** (1996 Dec) *** 137 (12) 5544-51.
Journal code: 0375040. ISSN: 0013-7227.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 199701
ED Entered STN: 19970219
Last Updated on STN: 19980206
Entered Medline: 19970123

L4 ANSWER 358 OF 473 MEDLINE on STN
AN 97070613 MEDLINE
DN PubMed ID: 8913539
TI Distribution and signal transduction of angiotensin II AT1 and AT2 receptors.
AU Capponi A M
CS Division of Endocrinology, University Hospital, Geneva, Switzerland.
SO Blood pressure. Supplement, *** (1996) *** 2 41-6. Ref: 55
Journal code: 9300787. ISSN: 0803-8023.
CY Norway
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199703
ED Entered STN: 19970313
Last Updated on STN: 19970313
Entered Medline: 19970303

L4 ANSWER 359 OF 473 MEDLINE on STN
AN 97006060 MEDLINE
DN PubMed ID: 8853354
TI Contribution of Na⁺/Ca²⁺ exchange to action potential of ***human*** atrial myocytes.
AU Benardeau A; Hatem S N; Rucker-Martin C; Le Grand B; Mace L; Dervanian P; Mercadier J J; Corabœuf E
CS Laboratoire de Cardiologie Moléculaire et Cellulaire, Université de Paris XI-Centre National de la Recherche Scientifique Unité de Recherche Associee 1159, Hôpital Marie Lannelongue, Le Plessis Robinson, France.
SO American journal of physiology, *** (1996 Sep) *** 271 (3 Pt 2) H1151-61.
Journal code: 0370511. ISSN: 0002-9513.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)

FS Priority Journals
EM 199612
ED Entered STN: 19970128
Last Updated on STN: 19980206
Entered Medline: 19961205

L4 ANSWER 360 OF 473 MEDLINE on STN
AN 96437036 MEDLINE
DN PubMed ID: 8839852
TI Affinity modulation of the platelet integrin alpha IIb beta 3 by alpha-chymotrypsin: a possible role for Na+/Ca2+ exchanger.
AU Shiraga M; Tomiyama Y; Honda S; Kashiwagi H; Kosugi S; Handa M; Ikeda Y; Kanakura Y; Kurata Y; Matsuzawa Y
CS Second Department of Internal Medicine, Osaka University Medical School, Japan.
SO Blood, *** (1996 Oct 1) *** 88 (7) 2594-602.
Journal code: 7603509. ISSN: 0006-4971.

CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 199611
ED Entered STN: 19961219
Last Updated on STN: 19980206
Entered Medline: 19961107

L4 ANSWER 361 OF 473 MEDLINE on STN
AN 96382173 MEDLINE
DN PubMed ID: 8790037
TI Evidence for functional relevance of an enhanced expression of the Na(+) - Ca2+ exchanger in failing ***human*** myocardium.
AU Flesch M; Schwinger R H; Schiffer F; Frank K; Sudkamp M; Kuhn-Regnier F; Arnold G; Bohm M
CS Klinik III fur Innere Medizin Universitat zu Koln, FRG.
SO Circulation, *** (1996 Sep 1) *** 94 (5) 992-1002.
Journal code: 0147763. ISSN: 0009-7322.

CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 199610
ED Entered STN: 19961025
Last Updated on STN: 19980206
Entered Medline: 19961017

L4 ANSWER 362 OF 473 MEDLINE on STN
AN 96372590 MEDLINE
DN PubMed ID: 8776405
TI The role of Na-Ca exchange current in the cardiac action potential.
AU Janvier N C; Boyett M R
CS Department of Physiology, University of Leeds, UK.
SO Cardiovascular research, *** (1996 Jul) *** 32 (1) 69-84. Ref: 74
Journal code: 0077427. ISSN: 0008-6363.

CY Netherlands
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, ACADEMIC)
LA English
FS Priority Journals
EM 199610
ED Entered STN: 19961106
Last Updated on STN: 19980206
Entered Medline: 19961024

L4 ANSWER 363 OF 473 MEDLINE on STN
AN 96285996 MEDLINE
DN PubMed ID: 8659814
TI 3rd International Conference on Sodium-Calcium Exchange. Woods Hole, Massachusetts, April 23-26, 1995. Proceedings.
AU Anonymous
SO Annals of the New York Academy of Sciences, *** (1996 Apr 15) *** 779 1-589.
Journal code: 7506858. ISSN: 0077-8923.

CY United States
DT Conference; Conference Article; (CONGRESSES)

LA English
FS Priority Journals
EM 199607
ED Entered STN: 19960808
Last Updated on STN: 19990129
Entered Medline: 19960726

L4 ANSWER 364 OF 473 MEDLINE on STN
AN 96250118 MEDLINE
DN PubMed ID: 8659869
TI Demonstration of an inward Na(+) -Ca²⁺ exchange current in adult ***human*** atrial myocytes.
AU Li G R; Nattel S
CS Research Center, Montreal Heart Institute, Quebec, Canada.
SO Annals of the New York Academy of Sciences, *** (1996 Apr 15) *** 779
525-8.
CY Journal code: 7506858. ISSN: 0077-8923.
DT United States
LA Journal; Article; (JOURNAL ARTICLE)
FS English
EM Priority Journals
199607
ED Entered STN: 19960808
Last Updated on STN: 19980206
Entered Medline: 19960726

L4 ANSWER 365 OF 473 MEDLINE on STN
AN 96250107 MEDLINE
DN PubMed ID: 8659857
TI Calcium in the cardiac diadic cleft. Implications for sodium-calcium exchange.
AU Langer G A; Peskoff A
CS Department of Medicine, University of California, Los Angeles School of Medicine 90095, USA.
SO Annals of the New York Academy of Sciences, *** (1996 Apr 15) *** 779
408-16. Ref: 24
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199607
ED Entered STN: 19960808
Last Updated on STN: 19980206
Entered Medline: 19960726

L4 ANSWER 366 OF 473 MEDLINE on STN
AN 96250066 MEDLINE
DN PubMed ID: 8659816
TI Expression of Na(+) -Ca²⁺ exchanger with modified C-terminal hydrophobic domains and enhanced activity.
AU Gabellini N; Iwata T; Carafoli E
CS Department of Biological Chemistry University of Padova, Italy.
SO Annals of the New York Academy of Sciences, *** (1996 Apr 15) *** 779
110-4. Ref: 9
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
OS GENBANK-Z49266
EM 199607
ED Entered STN: 19960808
Last Updated on STN: 19980206
Entered Medline: 19960726

L4 ANSWER 367 OF 473 MEDLINE on STN
AN 96250060 MEDLINE
DN PubMed ID: 8659862
TI Alternative splicing of the Na(+) -Ca²⁺ exchanger gene, NCX1.
AU Schulze D H; Kofuji P; Valdivia C; He S; Luo S; Ruknudin A; Wisel S; Kirby

CS Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore 21201, USA.
SO Annals of the New York Academy of Sciences, *** (1996 Apr 15) *** 779
46-57. Ref: 32
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
OS GENBANK-L39835
EM 199607
ED Entered STN: 19960808
Last Updated on STN: 19980206
Entered Medline: 19960726

L4 ANSWER 368 OF 473 MEDLINE on STN
AN 96250058 MEDLINE
DN PubMed ID: 8659840
TI The structural basis of Na(+) -Ca2+ exchange activity.
AU Rahamimoff H; Low W; Cook O; Furman I; Kasir J; Vatashski R
CS Department of Biochemistry Hebrew University-Hadassah Medical School Jerusalem, Israel.
SO Annals of the New York Academy of Sciences, *** (1996 Apr 15) *** 779
29-36. Ref: 16
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199607
ED Entered STN: 19960808
Last Updated on STN: 19980206
Entered Medline: 19960726

L4 ANSWER 369 OF 473 MEDLINE on STN
AN 96250056 MEDLINE
DN PubMed ID: 8659882
TI The molecular biology of the Na(+) -Ca2+ exchanger and its functional roles in heart, smooth muscle cells, neurons, glia, lymphocytes, and nonexcitable cells.
AU Lederer W J; He S; Luo S; duBell W; Kofuji P; Kieval R; Neubauer C F; Rukenudin A; Cheng H; Cannell M B; Rogers T B; Schulze D H
CS Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
SO Annals of the New York Academy of Sciences, *** (1996 Apr 15) *** 779
7-17. Ref: 60
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199607
ED Entered STN: 19960808
Last Updated on STN: 19980206
Entered Medline: 19960726

L4 ANSWER 370 OF 473 MEDLINE on STN
AN 96162572 MEDLINE
DN PubMed ID: 8576853
TI Species differences in the activity of the Na(+) -Ca2+ exchanger in mammalian cardiac myocytes.
AU Sham J S; Hatem S N; Morad M
CS Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20007, USA.
NC RO1-HL16152 (NHLBI)
SO Journal of physiology, *** (1995 Nov 1) *** 488 (Pt 3) 623-31.
Journal code: 0266262. ISSN: 0022-3751.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)

FS Priority Journals
EM 199603
ED Entered STN: 19960321
Last Updated on STN: 19980206
Entered Medline: 19960312

L4 ANSWER 371 OF 473 MEDLINE on STN
AN 95306881 MEDLINE
DN PubMed ID: 7787264
TI Recent insights into the regulation of cardiac Ca²⁺ flux during perinatal development and in cardiac failure.
AU Fisher D J
CS Texas Children's Hospital, Houston, USA.
SO Current opinion in cardiology, *** (1995 Jan) *** 10 (1) 44-51. Ref: 75
Journal code: 8608087. ISSN: 0268-4705.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199507
ED Entered STN: 19950807
Last Updated on STN: 19980206
Entered Medline: 19950727

L4 ANSWER 372 OF 473 MEDLINE on STN
AN 95306268 MEDLINE
DN PubMed ID: 7786694
TI New concepts in the cardioprotective action of magnesium and taurine during the calcium paradox and ischaemia of the heart.
AU Suleiman M S
CS Department of Physiology, University of Bristol, UK.
SO Magnesium research : official organ of the International Society for the Development of Research on Magnesium, *** (1994 Dec) *** 7 (3-4) 295-312. Ref: 138
Journal code: 8900948. ISSN: 0953-1424.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, ACADEMIC)
LA English
FS Priority Journals
EM 199507
ED Entered STN: 19950807
Last Updated on STN: 19980206
Entered Medline: 19950724

L4 ANSWER 373 OF 473 MEDLINE on STN
AN 95269801 MEDLINE
DN PubMed ID: 7750570
TI Specific inhibition of Na-Ca exchange function by antisense oligodeoxynucleotides.
CM Erratum in: FEBS Lett 1995 Aug 21;370(3):280
AU Lipp P; Schwaller B; Niggli E
CS Department of Physiology, University of Bern, Switzerland.
SO FEBS letters, *** (1995 May 8) *** 364 (2) 198-202.
Journal code: 0155157. ISSN: 0014-5793.
CY Netherlands
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199506
ED Entered STN: 19950629
Last Updated on STN: 19980206
Entered Medline: 19950622

L4 ANSWER 374 OF 473 MEDLINE on STN
AN 95202443 MEDLINE
DN PubMed ID: 7895054
TI Studies of the mechanism underlying increased Na⁺/Ca²⁺ exchange activity in Alzheimer's disease brain.
AU Colvin R A; Davis N; Wu A; Murphy C A; Levengood J
CS Department of Biological Sciences, Ohio University College of Osteopathic Medicine, Athens 45701.

SO Brain research, *** (1994 Dec 5) *** 665 (2) 192-200.
Journal code: 0045503. ISSN: 0006-8993.
CY Netherlands
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199504
ED Entered STN: 19950504
Last Updated on STN: 19980206
Entered Medline: 19950425

L4 ANSWER 375 OF 473 MEDLINE on STN
AN 95168956 MEDLINE
DN PubMed ID: 7864717
TI Heart failure: an update on pathophysiology.
AU Drexler H
CS Medizinische Klinik III, University of Freiburg, Germany.
SO Archives des maladies du coeur et des vaisseaux, *** (1994 Jun) *** 87
Spec No 2 13-6.
Journal code: 0406011. ISSN: 0003-9683.

CY France
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199503
ED Entered STN: 19950404
Last Updated on STN: 20000303
Entered Medline: 19950323

L4 ANSWER 376 OF 473 MEDLINE on STN
AN 95150354 MEDLINE
DN PubMed ID: 7847687
TI Ion transport systems and Ca²⁺ regulation in aging neurons.
AU Michaelis M L
CS Department of Pharmacology, University of Kansas, Lawrence 66045.
SO Annals of the New York Academy of Sciences, *** (1994 Dec 15) *** 747
407-18. Ref: 52
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199503
ED Entered STN: 19950316
Last Updated on STN: 19980206
Entered Medline: 19950308

L4 ANSWER 377 OF 473 MEDLINE on STN
AN 95150189 MEDLINE
DN PubMed ID: 7847532
TI Role of the sodium-calcium exchange mechanism and the effect of magnesium
on sodium-free and high-potassium contractures in pregnant ***human***
myometrium.
AU Morishita F; Kawarabayashi T; Sakamoto Y; Shirakawa K
CS Department of Obstetrics and Gynecology, School of Medicine, Fukuoka
University, Japan.
SO American journal of obstetrics and gynecology, *** (1995 Jan) *** 172 (1
Pt 1) 186-95.
Journal code: 0370476. ISSN: 0002-9378.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 199503
ED Entered STN: 19950316
Last Updated on STN: 19980206
Entered Medline: 19950309

L4 ANSWER 378 OF 473 MEDLINE on STN
AN 95123339 MEDLINE
DN PubMed ID: 7823035
TI Na⁺/Ca²⁺ antiport in the mammalian heart.
AU Reeves J P; Condrescu M; Chernaya G; Gardner J P

SO Medical School, Newark 07103.
Journal of experimental biology, *** (1994 Nov) *** 196 375-88. Ref: 40
CY Journal code: 0243705. ISSN: 0022-0949.
DT ENGLAND: United Kingdom
Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199502
ED Entered STN: 19950223
Last Updated on STN: 19980206
Entered Medline: 19950216

L4 ANSWER 379 OF 473 MEDLINE on STN
AN 95123334 MEDLINE
DN PubMed ID: 7823030
TI Cation antiports of animal plasma membranes.
AU Grinstein S; Wieczorek H
CS Division of Cell Biology, Hospital for Sick Children, Toronto, Canada.
SO Journal of experimental biology, *** (1994 Nov) *** 196 307-18. Ref: 41
Journal code: 0243705. ISSN: 0022-0949.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199502
ED Entered STN: 19950223
Last Updated on STN: 19980206
Entered Medline: 19950216

L4 ANSWER 380 OF 473 MEDLINE on STN
AN 95116246 MEDLINE
DN PubMed ID: 7816552
TI A novel two-compartment culture dish allows microscopic evaluation of two different treatments in one cell culture simultaneously. Influence of external pH on Na⁺/Ca²⁺ exchanger activity in cultured rat cardiomyocytes.
AU Atsma D E; Bastiaanse E M; Ince C; van der Laarse A
CS Department of Cardiology, University Hospital, Leiden, The Netherlands.
SO Pflugers Archiv : European journal of physiology, *** (1994 Oct) *** 428 (3-4) 296-9.
Journal code: 0154720. ISSN: 0031-6768.
CY GERMANY: Germany, Federal Republic of
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199502
ED Entered STN: 19950217
Last Updated on STN: 19980206
Entered Medline: 19950208

L4 ANSWER 381 OF 473 MEDLINE on STN
AN 95103184 MEDLINE
DN PubMed ID: 7804751
TI Crosstalk and epithelial ion transport.
AU Harvey B J
CS Department of Physiology, University College Cork, Ireland.
SO Current opinion in nephrology and hypertension, *** (1994 Sep) *** 3 (5) 523-8.
Journal code: 9303753. ISSN: 1062-4821.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199502
ED Entered STN: 19950215
Last Updated on STN: 19980206
Entered Medline: 19950202

L4 ANSWER 382 OF 473 MEDLINE on STN
AN 95097406 MEDLINE
DN PubMed ID: 7799453
TI Comparison of the action potential prolonging and positive inotropic

AU myocardium.
AU Hoey A; Amos G J; Ravens U
CS Department of Pharmacology, University of Essen, Germany.
SO Journal of molecular and cellular cardiology, *** (1994 Aug) *** 26 (8)
985-94.
Journal code: 0262322. ISSN: 0022-2828.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199501
ED Entered STN: 19950215
Last Updated on STN: 19980206
Entered Medline: 19950125

L4 ANSWER 383 OF 473 MEDLINE on STN
AN 95081902 MEDLINE
DN PubMed ID: 7527459
TI Inhibition of Ca²⁺ entry by Ca²⁺ overloading of intracellular Ca²⁺ stores
in ***human*** platelets.
AU Kimura M; Cho J H; Reeves J P; Aviv A
CS Hypertension Research Center, University of Medicine and Dentistry of New
Jersey, New Jersey Medical School, Newark 07103-2714.
NC HL34807 (NHLBI)
HL42856 (NHLBI)
HL49932 (NHLBI)
SO Journal of physiology, *** (1994 Aug 15) *** 479 (Pt 1) 1-10.
Journal code: 0266262. ISSN: 0022-3751.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199501
ED Entered STN: 19950124
Last Updated on STN: 19980206
Entered Medline: 19950111

L4 ANSWER 384 OF 473 MEDLINE on STN
AN 95077943 MEDLINE
DN PubMed ID: 7986536
TI Mammalian exchangers and co-transporters.
AU Reithmeier R A
CS Department of Medicine, University of Toronto, Canada.
SO Current opinion in cell biology, *** (1994 Aug) *** 6 (4) 583-94. Ref:
106
Journal code: 8913428. ISSN: 0955-0674.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, ACADEMIC)
LA English
FS Priority Journals
EM 199501
ED Entered STN: 19950124
Last Updated on STN: 19980206
Entered Medline: 19950111

L4 ANSWER 385 OF 473 MEDLINE on STN
AN 95054028 MEDLINE
DN PubMed ID: 7964733
TI Characterization of exchange inhibitory peptide effects on Na⁺/Ca²⁺
exchange in rat and ***human*** brain plasma membrane vesicles.
AU Wu A; Colvin R A
CS Department of Biological Sciences, Ohio University College of Osteopathic
Medicine, Athens 45701.
NC NS30384 (NINDS)
SO Journal of neurochemistry, *** (1994 Dec) *** 63 (6) 2136-43.
Journal code: 2985190R. ISSN: 0022-3042.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199412
ED Entered STN: 19950110
Last Updated on STN: 19980206

L4 ANSWER 386 OF 473 MEDLINE on STN
AN 95051546 MEDLINE
DN PubMed ID: 7962546
TI Na+/Ca²⁺ exchange-mediated calcium entry in ***human*** lymphocytes.
AU Balasubramanyam M; Rohovsky-Kochan C; Reeves J P; Gardner J P
CS Hypertension Research Center, University of Medicine and Dentistry-New Jersey Medical School, Newark 07103.
NC HL44196 (NHLBI)
HL49932 (NHLBI)
SO Journal of clinical investigation, *** (1994 Nov) *** 94 (5) 2002-8.
Journal code: 7802877. ISSN: 0021-9738.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 199412
ED Entered STN: 19950110
Last Updated on STN: 19980206
Entered Medline: 19941202

L4 ANSWER 387 OF 473 MEDLINE on STN
AN 94367220 MEDLINE
DN PubMed ID: 8085015
TI The cellular actions of digitalis glycosides on the heart.
AU Levi A J; Boyett M R; Lee C O
CS Department of Physiology, School of Medical Sciences, University of Bristol, University Walk, U.K.
SO Progress in biophysics and molecular biology, *** (1994) *** 62 (1) 1-54. Ref: 228
Journal code: 0401233. ISSN: 0079-6107.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, ACADEMIC)
LA English
FS Priority Journals
EM 199410
ED Entered STN: 19941021
Last Updated on STN: 19980206
Entered Medline: 19941010

L4 ANSWER 388 OF 473 MEDLINE on STN
AN 94363504 MEDLINE
DN PubMed ID: 7521769
TI Cyclic nucleotides inhibit Na+/Ca²⁺ exchange in cultured ***human*** mesangial cells.
AU Mene P; Pugliese F; Cinotti G A
CS Chair of Nephrology, University of Rome La Sapienza, Italy.
SO Experimental nephrology, *** (1993 Jul-Aug) *** 1 (4) 245-52.
Journal code: 9302239. ISSN: 1018-7782.
CY Switzerland
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199410
ED Entered STN: 19941021
Last Updated on STN: 19980206
Entered Medline: 19941013

L4 ANSWER 389 OF 473 MEDLINE on STN
AN 94346468 MEDLINE
DN PubMed ID: 8067429
TI Furazolidone increases thapsigargin-sensitive Ca(2+)-ATPase in chick cardiac myocytes.
AU Lax D; Martinez-Zaguilan R; Gillies R J
CS Department of Pediatrics, Steele Memorial Children's Research Center, Tucson, Arizona.
SO American journal of physiology, *** (1994 Aug) *** 267 (2 Pt 2) H734-41.
Journal code: 0370511. ISSN: 0002-9513.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199409

Last Updated on STN: 19980206
Entered Medline: 19940921

L4 ANSWER 390 OF 473 MEDLINE on STN
AN 94340771 MEDLINE
DN PubMed ID: 8062418
TI Gene expression of the cardiac Na(+) -Ca²⁺ exchanger in end-stage
human heart failure.
AU Studer R; Reinecke H; Bilger J; Eschenhagen T; Bohm M; Hasenfuss G; Just
H; Holtz J; Drexler H
CS Arbeitsgruppe Molekulare Kardiologie, Universitat Freiburg, Germany.
SO Circulation research, *** (1994 Sep) *** 75 (3) 443-53.
Journal code: 0047103. ISSN: 0009-7330.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199409
ED Entered STN: 19941005
Last Updated on STN: 19980206
Entered Medline: 19940920

L4 ANSWER 391 OF 473 MEDLINE on STN
AN 94292759 MEDLINE
DN PubMed ID: 8021471
TI Differences in platelet calcium regulation between African Americans and
Caucasians: implications for the predisposition of African Americans to
essential hypertension.
AU Kimura M; Cho J H; Lasker N; Aviv A
CS Hypertension Research Center, University of Medicine and Dentistry of New
Jersey, New Jersey Medical School, Newark 07103-2714.
NC HL34807 (NHLBI)
HL42856 (NHLBI)
SO Journal of hypertension, *** (1994 Feb) *** 12 (2) 199-207.
Journal code: 8306882. ISSN: 0263-6352.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199407
ED Entered STN: 19940815
Last Updated on STN: 19980206
Entered Medline: 19940729

L4 ANSWER 392 OF 473 MEDLINE on STN
AN 94260944 MEDLINE
DN PubMed ID: 8201934
TI [Energetics of ionic behavior in heart muscle contraction. Physiologic and
physiopathologic aspects].
Energetica del comportamiento ionico en la contraccion muscular cardiaca.
Aspectos fisiologicos y fisiopatologicos.
AU Ponce-Hornos J E; Bonazzola P; Taquini A C
CS Instituto de Investigaciones Cardiologicas, Facultad de Medicina,
Universidad de Buenos Aires.
SO Medicina, *** (1993) *** 53 (5) 445-58. Ref: 52
Journal code: 0204271. ISSN: 0025-7680.
CY Argentina
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA Spanish
FS Priority Journals
EM 199407
ED Entered STN: 19940714
Last Updated on STN: 19940714
Entered Medline: 19940705

L4 ANSWER 393 OF 473 MEDLINE on STN
AN 94232511 MEDLINE
DN PubMed ID: 8177473
TI Increased cytosolic free sodium in platelets from patients with
early-stage chronic renal failure.
AU Tepel M; Bauer S; Kegel M; Raffelsiefer A; Wischniowski H; Zidek W
CS Medizinische Universitats-Poliklinik, University of Munster, Germany.
SO Nephrology, dialysis, transplantation : official publication of the

*** (1994) *** 9 (1) 27-34.

CY Journal code: 8706402. ISSN: 0931-0509.
DT ENGLAND: United Kingdom
LA Journal; Article; (JOURNAL ARTICLE)
FS English
EM Priority Journals
ED 199406
Entered STN: 19940620
Last Updated on STN: 19980206
Entered Medline: 19940606

L4 ANSWER 394 OF 473 MEDLINE on STN
AN 94133698 MEDLINE
DN PubMed ID: 7508043
TI Na⁺, K(+)-ATPase and Na⁺/Ca²⁺ exchange isoforms: physiological and
pathophysiological relevance.
AU Decollogne S; Bertrand I B; Ascensio M; Drubaix I; Lelievre L G
CS Laboratoire de Pharmacologie des Transports Ioniques Membranaires,
Universite Paris 7, France.
SO Journal of cardiovascular pharmacology, *** (1993) *** 22 Suppl 2 S96-8.
Ref: 29

CY Journal code: 7902492. ISSN: 0160-2446.
United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199403
ED Entered STN: 19940318
Last Updated on STN: 20000303
Entered Medline: 19940310

L4 ANSWER 395 OF 473 MEDLINE on STN
AN 94126946 MEDLINE
DN PubMed ID: 8296399
TI Modulation of intramitochondrial free Ca²⁺ concentration by antagonists of
Na(+) - Ca²⁺ exchange.
AU Cox D A; Matlib M A
CS Lilly Research Laboratories, Indianapolis, IN 46285.
NC T32-HL07382 (NHLBI)
SO Trends in pharmacological sciences, *** (1993 Nov) *** 14 (11) 408-13.
Ref: 39

CY Journal code: 7906158. ISSN: 0165-6147.
ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199403
ED Entered STN: 19940314
Last Updated on STN: 19980206
Entered Medline: 19940303

L4 ANSWER 396 OF 473 MEDLINE on STN
AN 94101659 MEDLINE
DN PubMed ID: 8275516
TI Reconstructing the heart: a challenge for integrative physiology.
AU Noble D; Bett G
CS University Laboratory of Physiology, Oxford, United Kingdom.
SO Cardiovascular research, *** (1993 Oct) *** 27 (10) 1701-12.
Journal code: 0077427. ISSN: 0008-6363.

CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199402
ED Entered STN: 19940218
Last Updated on STN: 19980206
Entered Medline: 19940204

L4 ANSWER 397 OF 473 MEDLINE on STN
AN 94091534 MEDLINE
DN PubMed ID: 8267157

AU main pulmonary artery.
AU Abdalla S S; Laravuso R B; Will J A
CS Department of Animal Health, University of Wisconsin, Madison 53706.
SO Anesthesia and analgesia, *** (1994 Jan) *** 78 (1) 17-22.
Journal code: 1310650. ISSN: 0003-2999.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 199401
ED Entered STN: 19940209
Last Updated on STN: 19980206
Entered Medline: 19940125

L4 ANSWER 398 OF 473 MEDLINE on STN
AN 94081304 MEDLINE
DN PubMed ID: 8258673
TI Na(+) - Ca²⁺ exchange modulates Ca²⁺ handling of ***human*** platelets by altering intracellular Ca²⁺ store size.
AU Ishida T; Matsuura H; Ishida-Kainouchi M; Ozono R; Watanabe M; Kajiyama G; Oshima T
CS First Department of Internal Medicine, Hiroshima University School of Medicine, Japan.
SO Journal of hypertension, *** (1993 Oct) *** 11 (10) 1089-95.
Journal code: 8306882. ISSN: 0263-6352.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199401
ED Entered STN: 19940203
Last Updated on STN: 19980206
Entered Medline: 19940119

L4 ANSWER 399 OF 473 MEDLINE on STN
AN 94016601 MEDLINE
DN PubMed ID: 8411189
TI Is "fuzzy space" necessary for Ca²⁺ extrusion on the Na(+) - Ca²⁺ exchanger in cardiac myocytes?
CM Comment on: J Mol Cell Cardiol. 1993 Jun; 25(6):637-9. PubMed ID: 8411188
AU Barry W H
NC HL30478 (NHLBI)
HL42535 (NHLBI)
SO Journal of molecular and cellular cardiology, *** (1993 Jun) *** 25 (6) 641-3; discussion 645-6.
Journal code: 0262322. ISSN: 0022-2828.
CY ENGLAND: United Kingdom
DT Commentary
Editorial
LA English
FS Priority Journals
EM 199311
ED Entered STN: 19940117
Last Updated on STN: 20030114
Entered Medline: 19931104

L4 ANSWER 400 OF 473 MEDLINE on STN
AN 94016600 MEDLINE
DN PubMed ID: 8411188
TI How does the Na(+) - Ca²⁺ exchanger work in the intact cardiac cell?
CM Comment in: J Mol Cell Cardiol. 1993 Jun; 25(6):641-3; discussion 645-6.
PubMed ID: 8411189
AU Langer G A; Peskoff A; Post J A
NC HL 28539-10 (NHLBI)
SO Journal of molecular and cellular cardiology, *** (1993 Jun) *** 25 (6) 637-9.
Journal code: 0262322. ISSN: 0022-2828.
CY ENGLAND: United Kingdom
DT Editorial
LA English
FS Priority Journals
EM 199311
ED Entered STN: 19940117
Last Updated on STN: 20030114
Entered Medline: 19931104

L4 ANSWER 401 OF 473 MEDLINE on STN
AN 94016522 MEDLINE
DN PubMed ID: 8411123
TI Platelet activating factor-induced increase in cytosolic calcium and transmembrane current in ***human*** macrophages.
AU Katnik C; Nelson D J
CS University of Chicago, Dept. of Neurology, Illinois 60637.
SO Journal of membrane biology, *** (1993 Jun) *** 134 (3) 213-24.
Journal code: 0211301. ISSN: 0022-2631.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199310
ED Entered STN: 19940117
Last Updated on STN: 19980206
Entered Medline: 19931022

L4 ANSWER 402 OF 473 MEDLINE on STN
AN 93278803 MEDLINE
DN PubMed ID: 8389258
TI Intracellular calcium homeostasis in cardiac myocytes.
AU Barry W H; Bridge J H
CS Division of Cardiology, University of Utah School of Medicine, Salt Lake City.
SO Circulation, *** (1993 Jun) *** 87 (6) 1806-15. Ref: 87
Journal code: 0147763. ISSN: 0009-7322.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 199307
ED Entered STN: 19930716
Last Updated on STN: 19980206
Entered Medline: 19930702

L4 ANSWER 403 OF 473 MEDLINE on STN
AN 93226470 MEDLINE
DN PubMed ID: 8385772
TI Regulation of the cytosolic pH set point for activation of the Na+/H⁺ antiport in ***human*** platelets: the roles of the Na+/Ca²⁺ exchange, the Na(+) -K(+) -2Cl⁻ cotransport and cellular volume.
AU Kimura M; Aviv A
CS Hypertension Research Center, University of Medicine and Dentistry of NJ-NJ Medical School, Newark 07103-2714.
NC HL34807 (NHLBI)
HL42856 (NHLBI)
SO Pflugers Archiv : European journal of physiology, *** (1993 Mar) *** 422 (6) 585-90.
Journal code: 0154720. ISSN: 0031-6768.
CY GERMANY: Germany, Federal Republic of
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199305
ED Entered STN: 19930521
Last Updated on STN: 19980206
Entered Medline: 19930507

L4 ANSWER 404 OF 473 MEDLINE on STN
AN 93167758 MEDLINE
DN PubMed ID: 7679565
TI Molecular dissection of the myelinated axon.
AU Waxman S G; Ritchie J M
CS Department of Neurology, Yale University School of Medicine, New Haven, CT.
SO Annals of neurology, *** (1993 Feb) *** 33 (2) 121-36. Ref: 172
Journal code: 7707449. ISSN: 0364-5134.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English

EM 199303
ED Entered STN: 19930402
Last Updated on STN: 19980206
Entered Medline: 19930316

L4 ANSWER 405 OF 473 MEDLINE on STN
AN 93110167 MEDLINE
DN PubMed ID: 8417464
TI Anoxic injury of central myelinated axons: ionic mechanisms and pharmacology.
AU Ransom B R; Waxman S G; Stys P K
CS Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510.
SO Research publications - Association for Research in Nervous and Mental Disease, *** (1993) *** 71 121-51. Ref: 91
Journal code: 7505942. ISSN: 0091-7443.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199301
ED Entered STN: 19930212
Last Updated on STN: 19980206
Entered Medline: 19930126

L4 ANSWER 406 OF 473 MEDLINE on STN
AN 93042766 MEDLINE
DN PubMed ID: 1384746
TI The impact of single cell voltage clamp on the understanding of the cardiac ventricular action potential.
AU Varro A; Papp J G
CS Department of Pharmacology, Albert Szent-Gyorgyi Medical University, Szeged, Hungary.
SO Cardioscience, *** (1992 Sep) *** 3 (3) 131-44. Ref: 139
Journal code: 9014943. ISSN: 1015-5007.
CY Italy
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199212
ED Entered STN: 19930122
Last Updated on STN: 19980206
Entered Medline: 19921222

L4 ANSWER 407 OF 473 MEDLINE on STN
AN 93040297 MEDLINE
DN PubMed ID: 1419049
TI Sodium-calcium exchange.
AU Philipson K D; Nicoll D A
CS University of California, Los Angeles.
SO Current opinion in cell biology, *** (1992 Aug) *** 4 (4) 678-83. Ref:
45
Journal code: 8913428. ISSN: 0955-0674.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199212
ED Entered STN: 19930122
Last Updated on STN: 19980206
Entered Medline: 19921204

L4 ANSWER 408 OF 473 MEDLINE on STN
AN 92374100 MEDLINE
DN PubMed ID: 1507528
TI Regulation of vascular smooth muscle contractility: roles of the sarcoplasmic reticulum (SR) and the ***sodium*** / ***calcium***
exchanger
AU Blaustein M P; Ambesi A; Bloch R J; Goldman W F; Juhaszova M; Lindenmayer

CS Department of Physiology, University of Maryland School of Medicine,
Baltimore 21201.
NC HL-42040 (NHLBI)
HL-43091 (NHLBI)
HL-45215 (NHLBI)
+
SO Japanese journal of pharmacology, *** (1992) *** 58 Suppl 2 107P-114P.
Ref: 42
Journal code: 2983305R. ISSN: 0021-5198.
CY Japan
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199209
ED Entered STN: 19921009
Last Updated on STN: 19980206
Entered Medline: 19920918

L4 ANSWER 409 OF 473 MEDLINE on STN
AN 92259790 MEDLINE
DN PubMed ID: 1374773
TI Role of sodium in mediator release from ***human*** basophils.
AU Smith T F; Sanchez-Legrand F; McKean L P; Kutner M H; Cragoe E J Jr; Eaton
D C
CS Division of Allergy, Immunology, Emory University School of Medicine,
Atlanta, Ga.
NC AI21072 (NIAID)
SO Journal of allergy and clinical immunology, *** (1992 May) *** 89 (5)
978-86.
Journal code: 1275002. ISSN: 0091-6749.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 199206
ED Entered STN: 19920626
Last Updated on STN: 19980206
Entered Medline: 19920616

L4 ANSWER 410 OF 473 MEDLINE on STN
AN 92168293 MEDLINE
DN PubMed ID: 1371600
TI Molecular aspects of glutamate receptors and sodium-calcium exchange
carriers in mammalian brain: implications for neuronal development and
degeneration.
AU Michaelis E K; Michaelis M L
CS Department of Pharmacology and Toxicology, University of Kansas, Lawrence
66047.
NC AA 04732 (NIAAA)
AG 04762 (NIA)
SO Neurochemical research, *** (1992 Jan) *** 17 (1) 29-34. Ref: 36
Journal code: 7613461. ISSN: 0364-3190.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199204
ED Entered STN: 19920417
Last Updated on STN: 19980206
Entered Medline: 19920402

L4 ANSWER 411 OF 473 MEDLINE on STN
AN 92152801 MEDLINE
DN PubMed ID: 1785898
TI Is stoichiometry constant in Na-Ca exchange?.
AU Mullins L J
CS Department of Biophysics, University of Maryland School of Medicine,
Baltimore 21201.
SO Annals of the New York Academy of Sciences, *** (1991) *** 639 96-8.
Journal code: 7506858. ISSN: 0077-8923.

DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199203
ED Entered STN: 19920405
Last Updated on STN: 19980206
Entered Medline: 19920317

L4 ANSWER 412 OF 473 MEDLINE on STN
AN 92152800 MEDLINE
DN PubMed ID: 1785897
TI Mechanism of partial reactions in the cardiac Na(+) -Ca2+ exchange system.
AU Khananshvili D
CS Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel.
SO Annals of the New York Academy of Sciences, *** (1991) *** 639 85-95.
Ref: 26
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199203
ED Entered STN: 19920405
Last Updated on STN: 19980206
Entered Medline: 19920317

L4 ANSWER 413 OF 473 MEDLINE on STN
AN 92152795 MEDLINE
DN PubMed ID: 1785893
TI Characterization of Na(+) -Ca2+ exchange in the beta cell.
AU Hoenig M; Culberson L H; Wheeler C A; Ferguson D C
CS Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens 30602.
SO Annals of the New York Academy of Sciences, *** (1991) *** 639 657-9.
Ref: 11
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199203
ED Entered STN: 19920405
Last Updated on STN: 19980206
Entered Medline: 19920317

L4 ANSWER 414 OF 473 MEDLINE on STN
AN 92152794 MEDLINE
DN PubMed ID: 1785892
TI Sodium-calcium exchange in the pancreatic B cell.
AU Herchuelz A; Plasman P O
CS Laboratoire de Pharmacodynamie et de Therapeutique, Universite Libre de Bruxelles, Faculte de Medecine, Belgium.
SO Annals of the New York Academy of Sciences, *** (1991) *** 639 642-56.
Ref: 77
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199203
ED Entered STN: 19920405
Last Updated on STN: 19980206
Entered Medline: 19920317

L4 ANSWER 415 OF 473 MEDLINE on STN
AN 92152792 MEDLINE
DN PubMed ID: 1664709
TI The role of Na(+) -Ca2+ exchange in ***human*** neutrophil function.

CS Department of Medicine, Veterans Administration Medical Center, St. Louis, Missouri 63106.
NC GM-38094 (NIGMS)
SO Annals of the New York Academy of Sciences, *** (1991) *** 639 616-30.
Ref: 40
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199203
ED Entered STN: 19920405
Last Updated on STN: 19980206
Entered Medline: 19920317

L4 ANSWER 416 OF 473 MEDLINE on STN
AN 92152788 MEDLINE
DN PubMed ID: 1785887
TI The role of Na-Ca exchange in renal epithelia. An overview.
AU Windhager E E; Frindt G; Milovanovic S
CS Department of Physiology and Biophysics, Cornell University Medical College, New York, New York 10021.
SO Annals of the New York Academy of Sciences, *** (1991) *** 639 577-91.
Ref: 49
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199203
ED Entered STN: 19920405
Last Updated on STN: 19980206
Entered Medline: 19920317

L4 ANSWER 417 OF 473 MEDLINE on STN
AN 92152779 MEDLINE
DN PubMed ID: 1785880
TI Role of sarcolemmal membrane sodium-calcium exchange in vascular smooth muscle tension.
AU Mattlib M A
CS Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Ohio 45267-0575.
NC RO1-HL34664 (NHLBI)
SO Annals of the New York Academy of Sciences, *** (1991) *** 639 531-42.
Ref: 80
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199203
ED Entered STN: 19920405
Last Updated on STN: 19980206
Entered Medline: 19920317

L4 ANSWER 418 OF 473 MEDLINE on STN
AN 92152778 MEDLINE
DN PubMed ID: 1785879
TI Evidence for Na-Ca exchange in ***human*** resistance arteries.
AU Aaronson P I; Poston L; Woolfson R G; Smirnov S V
CS United Medical School, St. Thomas' Hospital, London, United Kingdom.
SO Annals of the New York Academy of Sciences, *** (1991) *** 639 521-30.
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199203
ED Entered STN: 19920405

Entered Medline: 19920317

L4 ANSWER 419 OF 473 MEDLINE on STN
AN 92152777 MEDLINE
DN PubMed ID: 1785878
TI Sodium-calcium exchange in aortic myocytes and renal epithelial cells.
Dependence on metabolic energy and intracellular sodium.
AU Smith J B; Lyu R M; Smith L
CS Department of Pharmacology, School of Medicine, University of Alabama,
Birmingham 35294.
NC DK39258 (NIDDK)
HL44408 (NHLBI)
SO Annals of the New York Academy of Sciences, *** (1991) *** 639 505-20.
Ref: 42
Journal code: 7506858. ISSN: 0077-8923.

CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)

LA English
FS Priority Journals
EM 199203

ED Entered STN: 19920405
Last Updated on STN: 19980206
Entered Medline: 19920317

L4 ANSWER 420 OF 473 MEDLINE on STN
AN 92152753 MEDLINE
DN PubMed ID: 1785858
TI Na(+) - Ca²⁺ exchange activity is increased in Alzheimer's disease brain tissues.
AU Colvin R A; Bennett J W; Colvin S L
CS Department of Zoological and Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens 45701.
SO Annals of the New York Academy of Sciences, *** (1991) *** 639 325-7.
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199203
ED Entered STN: 19920405
Last Updated on STN: 19980206
Entered Medline: 19920317

L4 ANSWER 421 OF 473 MEDLINE on STN
AN 92152752 MEDLINE
DN PubMed ID: 1785857
TI Neuron-specific and state-specific differences in calcium regulation.
Their role in the development of neuronal architecture.
AU Mills L R
CS Playfair Neuroscience Unit, University of Toronto, Ontario, Canada.
NC NS15350 (NINDS)
NS24683 (NINDS)
SO Annals of the New York Academy of Sciences, *** (1991) *** 639 312-24.
Ref: 48
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199203
ED Entered STN: 19920405
Last Updated on STN: 19980206
Entered Medline: 19920317

L4 ANSWER 422 OF 473 MEDLINE on STN
AN 92152749 MEDLINE
DN PubMed ID: 1785854
TI Sodium-calcium exchange and phototransduction in retinal photoreceptors.
AU Yau K W; Nakatani K; Tamura T
CS Howard Hughes Medical Institute, Baltimore, Maryland.
NC EY 06837 (NEI)

Ref: 36
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199203
ED Entered STN: 19920405
Last Updated on STN: 19980206
Entered Medline: 19920317

L4 ANSWER 423 OF 473 MEDLINE on STN
AN 92152727 MEDLINE
DN PubMed ID: 1785834
TI Regulation of Na-Ca exchange. An overview.
AU DiPolo R; Beauge L
CS Centro de Biofisica y Bioquimica, IVIC, Caracas, Venezuela.
NC R01 HL-39243-03 (NHLBI)
SO Annals of the New York Academy of Sciences, *** (1991) *** 639 100-11.
Ref: 26
Journal code: 7506858. ISSN: 0077-8923.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199203
ED Entered STN: 19920405
Last Updated on STN: 19980206
Entered Medline: 19920317

L4 ANSWER 424 OF 473 MEDLINE on STN
AN 91355993 MEDLINE
DN PubMed ID: 2151738
TI Plasma membrane Ca²⁺ pumps and Na⁺/Ca²⁺ exchangers.
AU Strehler E E
CS Laboratory for Biochemistry, Swiss Federal Institute of Technology,
Zurich.
SO Seminars in cell biology, *** (1990 Aug) *** 1 (4) 283-95. Ref: 104
Journal code: 9007587. ISSN: 1043-4682.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199110
ED Entered STN: 19911027
Last Updated on STN: 19980206
Entered Medline: 19911008

L4 ANSWER 425 OF 473 MEDLINE on STN
AN 91317885 MEDLINE
DN PubMed ID: 1650372
TI Characterization of calcium transport by basal plasma membranes from
human placental syncytiotrophoblast.
AU Lafond J; Leclerc M; Brunette M G
CS Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.
SO Journal of cellular physiology, *** (1991 Jul) *** 148 (1) 17-23.
Journal code: 0050222. ISSN: 0021-9541.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199109
ED Entered STN: 19910922
Last Updated on STN: 19980206
Entered Medline: 19910905

L4 ANSWER 426 OF 473 MEDLINE on STN
AN 91274932 MEDLINE
DN PubMed ID: 1647256

AU tissues.
AU Colvin R A; Bennett J W; Colvin S L; Allen R A; Martinez J; Miner G D
CS Department of Zoological and Biomedical Sciences, Ohio University College
of Osteopathic Medicine, Athens 45701.
SO Brain research, *** (1991 Mar 8)*** 543 (1) 139-47.
Journal code: 0045503. ISSN: 0006-8993.
CY Netherlands
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199108
ED Entered STN: 19910818
Last Updated on STN: 19980206
Entered Medline: 19910801

L4 ANSWER 427 OF 473 MEDLINE on STN
AN 91176440 MEDLINE
DN PubMed ID: 1826093
TI Inhibitor action on placental calcium transport.
AU Williams J M; Abramovich D R; Dacke C G; Mayhew T M; Page K R
CS Department of Anatomy, University of Aberdeen, Marischal College, United
Kingdom.
SO Calcified tissue international, *** (1991 Jan)*** 48 (1) 7-12.
Journal code: 7905481. ISSN: 0171-967X.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199104
ED Entered STN: 19910519
Last Updated on STN: 19980206
Entered Medline: 19910426

L4 ANSWER 428 OF 473 MEDLINE on STN
AN 91162935 MEDLINE
DN PubMed ID: 2074662
TI Identification and characteristics of a Na+/Ca²⁺ exchanger in cultured
human mesangial cells.
AU Mene P; Pugliese F; Faraggiana T; Cinotti G A
CS Cattedra di Nefrologia Medica, University of Rome La Sapienza, Italy.
SO Kidney international, *** (1990 Dec)*** 38 (6) 1199-205.
Journal code: 0323470. ISSN: 0085-2538.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199104
ED Entered STN: 19910505
Last Updated on STN: 19980206
Entered Medline: 19910418

L4 ANSWER 429 OF 473 MEDLINE on STN
AN 91109877 MEDLINE
DN PubMed ID: 1703282
TI Characterization of Na(+) -Ca²⁺ exchange activity in plasma membrane
vesicles from postmortem ***human*** brain.
AU Hoel G; Michaelis M L; Freed W J; Kleinman J E
CS Department of Pharmacology and Toxicology, University of Kansas, Lawrence
66047.
NC AA 04732 (NIAAA)
AG04762 (NIA)
SO Neurochemical research, *** (1990 Sep)*** 15 (9) 881-7.
Journal code: 7613461. ISSN: 0364-3190.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199102
ED Entered STN: 19910329
Last Updated on STN: 19980206
Entered Medline: 19910228

L4 ANSWER 430 OF 473 MEDLINE on STN
AN 90355219 MEDLINE
DN PubMed ID: 2167385

CM calcium paradox.
AU Comment on: J Mol Cell Cardiol. 1990 May;22(5):499-501. PubMed ID: 2167384
CS Chapman R a
SO British Heart Foundation Research Group in Cellular Cardiology, Department of Physiology, School of Veterinary Science, Bristol, England.
Journal of molecular and cellular cardiology, *** (1990 May) *** 22 (5)
503-5.
Journal code: 0262322. ISSN: 0022-2828.
CY ENGLAND: United Kingdom
DT Commentary
LA Journal; Article; (JOURNAL ARTICLE)
English
FS Priority Journals
EM 199009
ED Entered STN: 19901026
Last Updated on STN: 19980206
Entered Medline: 19900927

L4 ANSWER 431 OF 473 MEDLINE on STN
AN 90355218 MEDLINE
DN PubMed ID: 2167384
TI Is an increase of intracellular Na⁺ during Ca²⁺ depletion essential for the occurrence of the calcium paradox?
CM Comment in: J Mol Cell Cardiol. 1990 May;22(5):503-5. PubMed ID: 2167385
AU Ruigrok T J
CS Department of Cardiology, University Hospital, Utrecht, The Netherlands.
SO Journal of molecular and cellular cardiology, *** (1990 May) *** 22 (5)
499-501.
Journal code: 0262322. ISSN: 0022-2828.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199009
ED Entered STN: 19901026
Last Updated on STN: 19980206
Entered Medline: 19900927

L4 ANSWER 432 OF 473 MEDLINE on STN
AN 90325890 MEDLINE
DN PubMed ID: 1973777
TI Na(+) -Ca²⁺ exchanger and cardiac contraction.
AU Anonymous
SO Lancet, *** (1990 Jul 28) *** 336 (8709) 219-20.
Journal code: 2985213R. ISSN: 0140-6736.
CY ENGLAND: United Kingdom
DT Editorial
LA English
FS Abridged Index Medicus Journals; Priority Journals
EM 199008
ED Entered STN: 19901012
Last Updated on STN: 19980206
Entered Medline: 19900827

L4 ANSWER 433 OF 473 MEDLINE on STN
AN 90284028 MEDLINE
DN PubMed ID: 2191788
TI The cardiac Na(+) -Ca²⁺ exchanger: dependence on membrane environment.
AU Philipson K D
CS Department of Medicine, UCLA School of Medicine 90024-1760.
SO Cell biology international reports, *** (1990 Apr) *** 14 (4) 305-9.
Ref: 20
Journal code: 7708050. ISSN: 0309-1651.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 199007
ED Entered STN: 19900824
Last Updated on STN: 19980206
Entered Medline: 19900726

L4 ANSWER 434 OF 473 MEDLINE on STN

DN PubMed ID: 2335019
TI Canine cardiac sarcolemmal vesicles demonstrate rapid initial Na(+) - Ca²⁺ exchange activity.
AU Gruver C L; Katz A M; Messineo F C
CS Department of Medicine, University of Connecticut Health Center, Farmington 06032.
NC HL-07420 (NHLBI)
HL-33026 (NHLBI)
SO Circulation research, *** (1990 May) *** 66 (5) 1171-7.
Journal code: 0047103. ISSN: 0009-7330.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199006
ED Entered STN: 19900706
Last Updated on STN: 19980206
Entered Medline: 19900611

L4 ANSWER 435 OF 473 MEDLINE on STN
AN 90193175 MEDLINE
DN PubMed ID: 2156295
TI Aspects of hepatic calcium metabolism.
AU Heilmann C; Spamer C; Gerok W
SO Progress in liver diseases, *** (1990) *** 9 261-79. Ref: 159
Journal code: 0376447. ISSN: 1060-913X.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, ACADEMIC)
LA English
FS Priority Journals
EM 199004
ED Entered STN: 19900601
Last Updated on STN: 19980206
Entered Medline: 19900419

L4 ANSWER 436 OF 473 MEDLINE on STN
AN 89384166 MEDLINE
DN PubMed ID: 2550727
TI Sodium-calcium and sodium-proton exchangers in red blood cells.
AU Parker J C
NC AM 11357 (NIADDK)
SO Methods in enzymology, *** (1989) *** 173 292-300.
Journal code: 0212271. ISSN: 0076-6879.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 198910
ED Entered STN: 19900309
Last Updated on STN: 19980206
Entered Medline: 19891026

L4 ANSWER 437 OF 473 MEDLINE on STN
AN 89103446 MEDLINE
DN PubMed ID: 2912132
TI Relationship between cytosolic free Ca²⁺ and Na⁺-Ca²⁺ exchange in aortic muscle cells.
AU Smith J B; Zheng T; Smith L
CS Department of Pharmacology, University of Alabama, Birmingham 35294.
NC DK-39258 (NIDDK)
HL-01671 (NHLBI)
SO American journal of physiology, *** (1989 Jan) *** 256 (1 Pt 1) C147-54.
Journal code: 0370511. ISSN: 0002-9513.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 198902
ED Entered STN: 19900308
Last Updated on STN: 19980206
Entered Medline: 19890221

L4 ANSWER 438 OF 473 MEDLINE on STN

DN PubMed ID: 3213678
TI Sodium-calcium exchange in platelet plasma membrane vesicles.
AU Rengasamy A; Feinberg H
CS Department of Pharmacology, University of Illinois College of Medicine, Chicago.
SO Advances in experimental medicine and biology, *** (1988) *** 232 105-8.
Journal code: 0121103. ISSN: 0065-2598.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 198902
ED Entered STN: 19900308
Last Updated on STN: 19980206
Entered Medline: 19890216

L4 ANSWER 439 OF 473 MEDLINE on STN
AN 88057421 MEDLINE
DN PubMed ID: 2445679
TI Vascular muscle membrane cation mechanisms and total peripheral resistance.
AU Hermsmeyer R K
CS Department of Pharmacology, University of Iowa, Iowa City.
NC HL 14388 (NHLBI)
HL 16328 (NHLBI)
SO Hypertension, *** (1987 Nov) *** 10 (5 Pt 2) I20-2. Ref: 28
Journal code: 7906255. ISSN: 0194-911X.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LA English
FS Priority Journals
EM 198801
ED Entered STN: 19900305
Last Updated on STN: 19980206
Entered Medline: 19880104

L4 ANSWER 440 OF 473 MEDLINE on STN
AN 86308026 MEDLINE
DN PubMed ID: 2943901
TI The homeostasis of calcium in heart cells.
AU Carafoli E
SO Journal of molecular and cellular cardiology, *** (1985 Mar) *** 17 (3) 203-12.
Journal code: 0262322. ISSN: 0022-2828.
CY ENGLAND: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 198610
ED Entered STN: 19900321
Last Updated on STN: 19980206
Entered Medline: 19861023

L4 ANSWER 441 OF 473 MEDLINE on STN
AN 85197812 MEDLINE
DN PubMed ID: 3888080
TI Sodium-calcium exchange in plasma membrane vesicles.
AU Philipson K D
SO Annual review of physiology, *** (1985) *** 47 561-71. Ref: 56
Journal code: 0370600. ISSN: 0066-4278.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
LA English
FS Priority Journals
EM 198505
ED Entered STN: 19900320
Last Updated on STN: 19980206
Entered Medline: 19850528

L4 ANSWER 442 OF 473 PASCAL COPYRIGHT 2004 INIST-CNRS. ALL RIGHTS
RESERVED. on STN
AN 1999-0448929 PASCAL

TIEN Sodium/calcium exchange contributes to contraction and relaxation in failed ***human*** ventricular myocytes
AU GAUGHAN J. P.; FURUKAWA S.; JEEVANANDAM V.; HEFNER C. A.; KUBO H.; MARGULIES K. B.; MCGOWAN B. S.; MATTIELLO J. A.; DIPLA K.; PIACENTINO V. III; SIYUN LI; HOUSER S. R.
CS Departments of Physiology and Cardio-Thoracic Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
SO American journal of physiology. Heart and circulatory physiology, *** (1999) ***, 46(2), H714-H724, 30 refs.
ISSN: 0363-6135 CODEN: AJPPDI
DT Journal
BL Analytic
CY United States
LA English
AV INIST-670D, 354000089395720340

L4 ANSWER 443 OF 473 PASCAL COPYRIGHT 2004 INIST-CNRS. ALL RIGHTS RESERVED. on STN
AN 1998-0057087 PASCAL
CP Copyright .COPYRGT. 1998 INIST-CNRS. All rights reserved.
TIEN Molecular biology of calcium channels in the cardiovascular system
AU KATZ A. M.
DZAU Victor J. (ed.)
CS Cardiology Division, University of Connecticut Health Center, Farmington, Connecticut, United States
Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States; Harvard Medical School, Boston, Massachusetts, United States
SO The American journal of cardiology, *** (1997) ***, 80 (9A), 17I-22I, 25 refs.
Conference: New Approaches to Cardiovascular Therapy. Symposium, Anaheim, California (United States), 15 Mar 1997
ISSN: 0002-9149 CODEN: AJCDAG
DT Journal; Conference
BL Analytic
CY United States
LA English
AV INIST-8674, 354000079384920030

L4 ANSWER 444 OF 473 PASCAL COPYRIGHT 2004 INIST-CNRS. ALL RIGHTS RESERVED. on STN
AN 1996-0272799 PASCAL
CP Copyright .COPYRGT. 1996 INIST-CNRS. All rights reserved.
TIEN Pathophysiological targets for beta-blocker therapy in congestive heart failure
AU JUST H.
TAYLOR S. H. (ed.)
CS Medizinische Universitaetsklinik Freiburg im Breisgau Abteilung Innere Medizin III/Kardiologie, Angiologie, Germany, Federal Republic of University Department of Cardiovascular Studies, Department of Medical Cardiology, The General Infirmary, Leeds, United Kingdom
SO European Society of Cardiology. Drug Therapy Working Group, EUR (patr.) European heart journal, *** (1996) ***, 17 (APR, SUPB), 1-7 [6 p.], 5 refs.
Conference: Beta-blockers in heart failure -- myths and realities. Satellite symposium, Berlin (Germany, Federal Republic of), 13 Sep 1994
ISSN: 0195-668X
DT Journal; Conference
BL Analytic
CY United Kingdom
LA English
AV INIST-18785, 354000043212540010

L4 ANSWER 445 OF 473 PHIN COPYRIGHT 2004 PJB on STN
AN 1998:4227 PHIN
DN B00570226
DED 1 Feb 1998
TI Physiome Sciences Inc.: Matters of the Heart
SO Bioventure-View (***1998***) No. 1302 p14
DT Newsletter
FS FULL

L4 ANSWER 446 OF 473 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN
AN 2001:704332 SCISEARCH

TI Patients with end-stage congestive heart failure treated with beta-adrenergic receptor antagonists have improved ventricular myocyte calcium regulatory protein abundance

AU Kubo H; Margulies K B; Piacentino V; Gaughan J P; Houser S R (Reprint)

CS Temple Univ, Sch Med, Dept Physiol, Cardiovasc Res Grp, 3400 N Broad St, Philadelphia, PA 19140 USA (Reprint); Temple Univ, Sch Med, Dept Physiol, Cardiovasc Res Grp, Philadelphia, PA 19140 USA; Temple Univ, Sch Med, Cardiol Sect, Philadelphia, PA 19140 USA

CY A USA

SO CIRCULATION, (***28 AUG 2001***) Vol. 104, No. 9, pp. 1012-1018.

Publisher: LIPPINCOTT WILLIAMS & WILKINS, 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA.

ISSN: 0009-7322.

DT Article; Journal

LA English

REC Reference Count: 35

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

L4 ANSWER 447 OF 473 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN

AN 2000:743512 SCISEARCH

GA The Genuine Article (R) Number: 358FK

TI Na⁺-K⁺-ATPase alpha 2-isoform expression in guinea pig hearts during transition from compensation to decompensation

AU Trouve P; Carre F; Belikova I; Leclercq C; Dakhli T; Soufir L; Coquard I; RamirezGil J; Charlemagne D (Reprint)

CS UNIV DENIS DIDEROT, IFR CIRCULAT LARIBOISIERE, INSERM, U127, 41 BLVD CHAPELLE, F-75475 PARIS, FRANCE (Reprint); UNIV DENIS DIDEROT, IFR CIRCULAT LARIBOISIERE, INSERM, U127, F-75475 PARIS, FRANCE; CTR HOSP REG & UNIV RENNES, F-35033 RENNES, FRANCE

CY A FRANCE

SO AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, (***OCT-
*** 2000***) Vol. 279, No. 4, pp. H1972-H1981.

Publisher: AMER PHYSIOLOGICAL SOC, 9650 ROCKVILLE PIKE, BETHESDA, MD 20814.

ISSN: 0363-6135.

DT Article; Journal

FS LIFE

LA English

REC Reference Count: 49

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

L4 ANSWER 448 OF 473 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN

AN 1999:698408 SCISEARCH

GA The Genuine Article (R) Number: 233YJ

TI Increased expression of the Na⁺/Ca²⁺ exchanger in the rat heart after immobilization stress is not induced by cortisol

AU Zacikova L; Kvetnansky R; Krizanova O (Reprint)

CS SLOVAK ACAD SCI, INST MOL PHYSIOL & GENET, VLARSKA 5, BRATISLAVA 83334, SLOVAKIA (Reprint); SLOVAK ACAD SCI, INST MOL PHYSIOL & GENET, BRATISLAVA 83334, SLOVAKIA; SLOVAK ACAD SCI, INST EXPT ENDOCRINOL, BRATISLAVA, SLOVAKIA

CY A SLOVAKIA

SO FEBS LETTERS, (***3 SEP 1999***) Vol. 457, No. 3, pp. 423-428.

Publisher: ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS.

ISSN: 0014-5793.

DT Article; Journal

FS LIFE

LA English

REC Reference Count: 41

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

L4 ANSWER 449 OF 473 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN

AN 1999:682827 SCISEARCH

GA The Genuine Article (R) Number: 231YE

TI Physiological and molecular characterization of the Na⁺/Ca²⁺ exchanger in ***human*** platelets

AU Kimura M (Reprint); Jeanclos E M; Donnelly R J; Lytton J; Reeves J P; Aviv A

CS UNIV MED & DENT NEW JERSEY, HYPERTENS RES CTR, NEW JERSEY MED SCH, MSB RM F-464, 185 S ORANGE AVE, NEWARK, NJ 07103 (Reprint); UNIV MED & DENT NEW JERSEY, MOL RESOURCE FACIL, NEW JERSEY MED SCH, NEWARK, NJ 07103; UNIV MED & DENT NEW JERSEY, DEPT PHARMACOL & PHYSIOL, NEW JERSEY MED SCH, NEWARK, NJ 07103; UNIV CALGARY, HLTH SCI CTR, DEPT BIOCHEM & MOL BIOL, CALGARY, AB T2N 4N1, CANADA

SO AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, (***SEP:
*** 1999***) Vol. 46, No. 3, pp. H911-H917.
Publisher: AMER PHYSIOLOGICAL SOC, 9650 ROCKVILLE PIKE, BETHESDA, MD
20814.
ISSN: 0363-6135.

DT Article; Journal
FS LIFE
LA English
REC Reference Count: 31
ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

L4 ANSWER 450 OF 473 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN
AN 1999:621920 SCISEARCH
GA The Genuine Article (R) Number: 223XA
TI Sodium/calcium exchange contributes to contraction and relaxation in failed ***human*** ventricular myocytes
AU Gaughan J P (Reprint); Furukawa S; Jeevanandam V; Hefner C A; Kubo H; Margulies K B; McGowan B S; Mattiello J A; Dipla K; Piacentino V; Li S Y; Houser S R
CS TEMPLE UNIV, SCH MED, DEPT PHYSIOL, 3420 N BROAD ST, PHILADELPHIA, PA 19140 (Reprint); TEMPLE UNIV, SCH MED, DEPT CARDIOTHORAC SURG, PHILADELPHIA, PA 19140
CYA USA
SO AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, (***AUG:
*** 1999***) Vol. 46, No. 2, pp. H714-H724.
Publisher: AMER PHYSIOLOGICAL SOC, 9650 ROCKVILLE PIKE, BETHESDA, MD 20814.
ISSN: 0363-6135.

DT Article; Journal
FS LIFE
LA English
REC Reference Count: 30
ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

L4 ANSWER 451 OF 473 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN
AN 1999:337223 SCISEARCH
GA The Genuine Article (R) Number: 189VE
TI Transmembrane regulation of intracellular calcium by a plasma membrane ***sodium*** / ***calcium*** ***exchanger*** in mouse ova
AU Pepperell J R (Reprint); Kommineni K; Buradagunta S; Smith P J S; Keefe D L
CS BROWN UNIV, WOMEN & INFANTS HOSP, DEPT OBSTET & GYNECOL, 101 DUDLEY ST, PROVIDENCE, RI 02905 (Reprint); WOODS HOLE OCEANOGRAPHIC INST, BIOL MARINE LAB, WOODS HOLE, MA 02543
CYA USA
SO BIOLOGY OF REPRODUCTION, (***MAY 1999***) Vol. 60, No. 5, pp. 1137-1143.
Publisher: SOC STUDY REPRODUCTION, 1603 MONROE ST, MADISON, WI 53711-2021.
ISSN: 0006-3363.

DT Article; Journal
FS LIFE
LA English
REC Reference Count: 40
ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

L4 ANSWER 452 OF 473 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN
AN 1998:516471 SCISEARCH
GA The Genuine Article (R) Number: ZX213
TI Ionic mechanisms underlying ***human*** atrial action potential properties: insights from a mathematical model
AU Courtemanche M (Reprint); Ramirez R J; Nattel S
CS MONTREAL HEART INST, RES CTR, 5000 E BELANGER ST, MONTREAL, PQ H1T 1C8, CANADA (Reprint); UNIV MONTREAL, DEPT PHYSIOL, MONTREAL, PQ H3C 3J7, CANADA; UNIV MONTREAL, DEPT MED, MONTREAL, PQ H3C 3J7, CANADA; MCGILL UNIV, DEPT PHARMACOL, MONTREAL, PQ H3G 1Y6, CANADA
CYA CANADA
SO AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, (***JUL:
*** 1998***) Vol. 44, No. 1, pp. H301-H321.
Publisher: AMER PHYSIOLOGICAL SOC, 9650 ROCKVILLE PIKE, BETHESDA, MD 20814.
ISSN: 0363-6135.

DT Article; Journal
FS LIFE
LA English
REC Reference Count: 64

L4 ANSWER 453 OF 473 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN
AN 97:543597 SCISEARCH
GA The Genuine Article (R) Number: XK487
TI Na⁺/Ca²⁺ exchanger in Drosophila: Cloning, expression, and transport
differences
AU Ruknudin A; Valdivia C; Kofuji P; Lederer W J; Schulze D H (Reprint)
CS UNIV MARYLAND, SCH MED, DEPT MICROBIOL & IMMUNOL, 655 W BALTIMORE ST,
BALTIMORE, MD 21201 (Reprint); UNIV MARYLAND, SCH MED, DEPT MICROBIOL &
IMMUNOL, BALTIMORE, MD 21201; UNIV MARYLAND, SCH MED, DEPT PHYSIOL,
BALTIMORE, MD 21201; UNIV MARYLAND, SCH MED, DEPT PHARMACOL & EXPT
THERAPEUT, BALTIMORE, MD 21201; CTR MED BIOTECHNOL, BALTIMORE, MD 21201
CYA USA
SO AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, (***JUL 1997***) Vol.
42, No. 1, pp. C257-C265.
Publisher: AMER PHYSIOLOGICAL SOC, 9650 ROCKVILLE PIKE, BETHESDA, MD
20814.
ISSN: 0363-6143.
DT Article; Journal
FS LIFE
LA English
REC Reference Count: 34
ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

L4 ANSWER 454 OF 473 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN
AN 96:798258 SCISEARCH
GA The Genuine Article (R) Number: VN119
TI RELATIONSHIP BETWEEN DIASTOLIC FUNCTION AND PROTEIN-LEVELS OF
SODIUM - ***CALCIUM*** - ***EXCHANGER*** IN END-STAGE FAILING
HUMAN HEARTS
AU HASENFUSS G (Reprint); PREUSS M; LEHNART S; PRESTLE J; MEYER M; JUST H
CS UNIV FREIBURG, D-7800 FREIBURG, GERMANY
CYA GERMANY
SO CIRCULATION, (***15 OCT 1996***) Vol. 94, No. 8, Supp. S, pp. 2527.
ISSN: 0009-7322.
DT Conference; Journal
FS LIFE; CLIN
LA ENGLISH
REC No References

L4 ANSWER 455 OF 473 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN
AN 94:471364 SCISEARCH
GA The Genuine Article (R) Number: NX999
TI THE ***HUMAN*** CARDIAC ***SODIUM*** - ***CALCIUM***
EXCHANGER EXPRESSED IN SF9 CELLS
AU NIGGLI E (Reprint); LIPP P; KOFUJI P; SCHULZE D H; LEDERER W J
CS UNIV BERN, DEPT PHYSIOL, CH-3012 BERN, SWITZERLAND; UNIV MARYLAND, DEPT
PHYSIOL, BALTIMORE, MD, 21201; UNIV MARYLAND, DEPT MICROBIOL, BALTIMORE,
MD, 21201
CYA SWITZERLAND; USA
SO JOURNAL OF PHYSIOLOGY-LONDON, (***JUN 1994***) Vol. 477P, pp. P17.
ISSN: 0022-3751.
DT Conference; Journal
FS LIFE
LA ENGLISH
REC Reference Count: 4

L4 ANSWER 456 OF 473 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN
AN 93:558095 SCISEARCH
GA The Genuine Article (R) Number: LW031
TI KINETICS OF CALCIUM-TRANSPORT ACROSS THE LYMPHOCYTE PLASMA-MEMBRANE
AU BALASUBRAMANYAM M; KIMURA M; AVIV A; GARDNER J P (Reprint)
CS UNIV MED & DENT NEW JERSEY, NEW JERSEY MED SCH, HYPERTENS RES CTR, 185 S
ORANGE AVE, NEWARK, NJ, 07103; UNIV MED & DENT NEW JERSEY, NEW JERSEY MED
SCH, DEPT PHYSIOL, NEWARK, NJ, 07103; UNIV MED & DENT NEW JERSEY, NEW
JERSEY MED SCH, DEPT PEDIAT, NEWARK, NJ, 07103
CYA USA
SO AMERICAN JOURNAL OF PHYSIOLOGY, (***AUG 1993***) Vol. 265, No. 2, Part
1, pp. C321-C327.
ISSN: 0002-9513.
DT Article; Journal
FS LIFE
LA ENGLISH
REC Reference Count: 32
ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

L4 ANSWER 457 OF 473 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN
AN 92:44626 SCISEARCH
GA The Genuine Article (R) Number: GY960
TI THE GUANINE NUCLEOTIDE-BINDING PROTEIN-GS ACTIVATES A NOVEL CALCIUM
TRANSPORTER IN XENOPUS OOCYTES
AU MURPHY P M (Reprint); McDERMOTT D
CS NIAID, HOST DEF LAB, BLDG 10, RM 11N113, BETHESDA, MD, 20892 (Reprint)
CYA USA
SO JOURNAL OF BIOLOGICAL CHEMISTRY, (***15 JAN 1992***) Vol. 267, No. 2,
pp. 883-888.
ISSN: 0021-9258.
DT Article; Journal
FS LIFE
LA ENGLISH
REC Reference Count: 39
ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

L4 ANSWER 458 OF 473 USPATFULL on STN
AN 2001:221067 USPATFULL
TI Inhibition of noninactivating Na channels of mammalian optic nerve as a
means of preventing optic nerve degeneration associated with glaucoma
IN Adorante, Joseph S., Irvine, CA, United States
PA Allergan Sales, Inc., Irvine, CA, United States (U.S. corporation)
PI US 6326389 B1 20011204 <--
AI US 1999-273832 19990322 (9)
RLI Continuation-in-part of Ser. No. US 1997-827194, filed on 27 Mar 1997,
now patented, Pat. No. US 5922746
DT Utility
FS GRANTED
LN.CNT 387
INCL INCLM: 514/373.000
INCLS: 514/912.000
NCL NCLM: 514/373.000
NCLS: 514/912.000
IC [7]
ICM: A61K031-425
EXF 514/373; 514/912
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 459 OF 473 USPATFULL on STN
AN 2001:67794 USPATFULL
TI ***Human*** respiratory syncytial virus peptides with antifusogenic
and antiviral activities
IN Barney, Shawn O'Lin, Cary, NC, United States
Lambert, Dennis Michael, Cary, NC, United States
Petteway, Stephen Robert, Cary, NC, United States
PA Trimeris, Inc., Durham, NC, United States (U.S. corporation)
PI US 6228983 B1 20010508 <--
AI US 1995-485264 19950607 (8)
RLI Division of Ser. No. US 1995-470896, filed on 6 Jun 1995
Continuation-in-part of Ser. No. US 1994-360107, filed on 20 Dec 1994
Continuation-in-part of Ser. No. US 1994-255208, filed on 7 Jun 1994
Continuation-in-part of Ser. No. US 1993-73028, filed on 7 Jun 1993, now
patented, Pat. No. US 5464933
DT Utility
FS Granted
LN.CNT 32166
INCL INCLM: 530/300.000
INCLS: 530/324.000; 530/325.000; 530/326.000; 424/211.100; 424/186.100
NCL NCLM: 530/300.000
NCLS: 424/186.100; 424/211.100; 530/324.000; 530/325.000; 530/326.000
IC [7]
ICM: A61K038-00
EXF 530/350; 530/324-329; 530/300; 424/211.1
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 460 OF 473 USPATFULL on STN
AN 2001:52073 USPATFULL
TI Use of nicorandil in treatment of sexual dysfunction or for enhancement
of sexual function in mammals including ***humans***
IN Saxena, Ajit, Uttar Pradesh, IN, United States
Bakhle, Dhananjay Sadashiv, Mumbai, IN, United States
PA Lupin Laboratories Limited, Mumbai, India (non-U.S. corporation)
PI US 6214849 B1 20010410 <--
AI US 1999-326052 19990604 (9)

DT Utility
FS Granted
LN.CNT 1169
INCL INCLM: 514/355.000
INCLS: 514/906.000
NCL NCLM: 514/355.000
NCLS: 514/906.000
IC [7]
ICM: A61P015-10
ICS: A61K031-4406
EXF 514/355; 514/906; 514/356
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 461 OF 473 USPATFULL on STN
AN 2000:28005 USPATFULL
TI Method for protection of heart by limiting metabolic and ionic abnormalities developed during ischemia following ischemia or resulting from ischemia
IN Ramasamy, Ravichandran, Davis, CA, United States
Schaefer, Saul, Davis, CA, United States
PA The Regents of the University of California, Oakland, CA, United States (U.S. corporation)
PI US 6034109 20000307 <--
AI US 1998-118521 19980717 (9)
RLI Division of Ser. No. US 1995-574899, filed on 19 Dec 1995, now patented, Pat. No. US 5834466 which is a continuation-in-part of Ser. No. US 1994-362400, filed on 22 Dec 1994, now abandoned
DT Utility
FS Granted
LN.CNT 1591
INCL INCLM: 514/345.000
INCLS: 514/429.000; 514/471.000; 514/646.000
NCL NCLM: 514/345.000
NCLS: 514/429.000; 514/471.000; 514/646.000
IC [7]
ICM: A61K031-44
ICS: A61K031-40; A61K031-34; A61K031-135
EXF 514/471; 514/429; 514/646; 514/345
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 462 OF 473 USPATFULL on STN
AN 1999:155719 USPATFULL
TI Method of inhibiting proliferation of cells by administering an aminosterol compound
IN Zasloff, Michael, Merion Station, PA, United States
Shinnar, Ann, Teaneck, NJ, United States
Kinney, William, Churchville, PA, United States
Rao, Meena, Horsham, PA, United States
PA Magainin Pharmaceuticals Inc., Plymouth Meeting, PA, United States (U.S. corporation)
PI US 5994336 19991130 <--
AI US 1995-479455 19950607 (8)
DT Utility
FS Granted
LN.CNT 3505
INCL INCLM: 514/182.000
NCL NCLM: 514/182.000
IC [6]
ICM: A61K031-575
EXF 514/182
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 463 OF 473 USPATFULL on STN
AN 1999:78751 USPATFULL
TI Inhibition of noninactivating Na channels of mammalian optic nerve as a means of preventing optic nerve degeneration associated with glaucoma
IN Adorante, Joseph S., Irvine, CA, United States
PA Allergan, Waco, TX, United States (U.S. corporation)
PI US 5922746 19990713 <--
AI US 1997-827194 19970327 (8)
DT Utility
FS Granted
LN.CNT 424
INCL INCLM: 514/373.000
INCLS: 514/912.000

NCLS: 514/912.000

IC [6]

ICM: A61K031-425

EXF 514/373; 514/912

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 464 OF 473 USPATFULL on STN

AN 1999:24813 USPATFULL

TI Certain aminosterol compounds and pharmaceutical compositions including these compounds

IN Jones, Steven, West Chester, PA, United States

PA Magainin Pharmaceuticals, Inc., Plymouth Meeting, PA, United States (U.S. corporation)

PI US 5874597 19990223

AI US 1995-476855 19950607 (8) <--

DT Utility

FS Granted

LN.CNT 3435

INCL INCLM: 552/521.000

NCL NCLM: 552/521.000

IC [6]

ICM: C07J041-00

EXF 552/521; 514/182

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 465 OF 473 USPATFULL on STN

AN 1998:154470 USPATFULL

TI Certain aminosterol compounds and pharmaceutical compositions including these compounds

IN Zasloff, Michael, Merion Station, PA, United States

Shinnar, Ann, Teaneck, NJ, United States

Kinney, William, Churchville, PA, United States

Jones, Steven, West Chester, PA, United States

PA Magainin Pharmaceuticals Inc., Plymouth Meeting, PA, United States (U.S. corporation)

PI US 5847172 19981208

AI US 1995-487443 19950607 (8) <--

DT Utility

FS Granted

LN.CNT 3533

INCL INCLM: 552/521.000

NCL NCLM: 552/521.000

IC [6]

ICM: C07J041-00

EXF 552/521

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 466 OF 473 USPATFULL on STN

AN 1998:147645 USPATFULL

TI Aminosterol compounds useful as inhibitors of the sodium/proton exchanger (NHE)

IN Zasloff, Michael, Merion Station, PA, United States

Shinnar, Ann, Teaneck, NJ, United States

Rao, Meena, Horsham, PA, United States

Kinney, William, Churchville, PA, United States

PA Magainin Pharmaceuticals Inc., Plymouth Meeting, PA, United States (U.S. corporation)

PI US 5840936 19981124

AI US 1995-475572 19950607 (8) <--

DT Utility

FS Granted

LN.CNT 3497

INCL INCLM: 552/521.000

INCLS: 558/029.000

NCL NCLM: 552/521.000

NCLS: 558/029.000

IC [6]

ICM: C07C305-12

ICS: C07J041-00

EXF 552/521; 558/29

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 467 OF 473 USPATFULL on STN

AN 1998:147455 USPATFULL

TI Aminosterol compounds and a method of treating infection using the

IN Zasloff, Michael, Merion Station, PA, United States
Shinnar, Ann, Teaneck, NJ, United States
Kinney, William, Churchville, PA, United States
Rao, Meena, Horsham, PA, United States
PA Magainin Pharmaceuticals Inc., Plymouth Meeting, PA, United States (U.S.
corporation)
PI US 5840740 19981124 <--
AI US 1995-483059 19950607 (8)
DT Utility
FS Granted
LN.CNT 3513
INCL INCLM: 514/182.000
INCLS: 552/521.000
NCL NCLM: 514/182.000
NCLS: 552/521.000
IC [6]
ICM: A01K031-575
ICS: A07J041-00
EXF 552/521; 514/182
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 468 OF 473 USPATFULL on STN
AN 1998:138899 USPATFULL
TI Method for protecting of heart by limiting metabolic and ionic
abnormalities developed during ischemia, following ischemia or resulting
from ischemia
IN Ramasamy, Ravichandran, Davis, CA, United States
Schaefer, Saul, Davis, CA, United States
PA The Regents of the University of California, Oakland, CA, United States
(U.S. corporation)
PI US 5834466 19981110 <--
AI US 1995-574899 19951219 (8)
RLI Continuation-in-part of Ser. No. US 1994-362400, filed on 22 Dec 1994,
now abandoned
DT Utility
FS Granted
LN.CNT 1609
INCL INCLM: 514/227.500
INCLS: 514/248.000; 514/356.000
NCL NCLM: 514/227.500
NCLS: 514/248.000; 514/356.000
IC [6]
ICM: A61K031-54
ICS: A61K031-495; A61K031-44
EXF 514/356; 514/227.5; 514/248
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 469 OF 473 USPATFULL on STN
AN 1998:98909 USPATFULL
TI Method of inhibiting proliferation of cells by administering an
aminosterol compound
IN Zasloff, Michael, Merion Station, PA, United States
Shinnar, Ann, Teaneck, NJ, United States
Kinney, William, Churchville, PA, United States
Anderson, Mark, Norristown, PA, United States
Williams, Jon, Robbinsville, NJ, United States
McLane, Michael, Lansdale, PA, United States
PA Magainin Pharmaceuticals Inc., Plymouth Meeting, PA, United States (U.S.
corporation)
PI US 5795885 19980818 <--
AI US 1995-483057 19950607 (8)
DT Utility
FS Granted
LN.CNT 3513
INCL INCLM: 514/182.000
NCL NCLM: 514/182.000
IC [6]
ICM: A61K031-56
EXF 514/182
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 470 OF 473 USPATFULL on STN
AN 1998:95412 USPATFULL
TI Method of inhibiting the sodium/proton exchanger NHE3 and method of
inhibiting growth by administering squalamine

PA Magainin Pharmaceuticals, Inc., Plymouth Meeting, PA, United States
(U.S. corporation)

PI US 5792635 19980811 <--

AI US 1995-474799 19950607 (8)

DT Utility

FS Granted

LN.CNT 3485

INCL INCLM: 435/184.000

INCLS: 514/182.000; 552/521.000

NCL NCLM: 435/184.000

NCLS: 514/182.000; 552/521.000

IC [6]

ICM: C12N009-99

ICS: A61K031-56

EXF 435/184; 514/182; 552/521

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 471 OF 473 USPATFULL on STN

AN 1998:65213 USPATFULL

TI Method of treating a viral infection by administering a steroid compound

IN Zasloff, Michael, Merion Station, PA, United States

PA Magainin Pharmaceuticals Inc., Plymouth Meeting, PA, United States (U.S. corporation)

PI US 5763430 19980609 <--

AI US 1995-479457 19950607 (8)

DT Utility

FS Granted

LN.CNT 3495

INCL INCLM: 514/169.000

INCLS: 514/170.000; 514/171.000; 514/172.000; 514/173.000; 514/174.000;
514/175.000; 514/176.000; 514/177.000; 514/178.000; 514/179.000;

514/180.000; 514/181.000; 514/182.000

NCL NCLM: 514/169.000

NCLS: 514/170.000; 514/171.000; 514/172.000; 514/173.000; 514/174.000;
514/175.000; 514/176.000; 514/177.000; 514/178.000; 514/179.000;

514/180.000; 514/181.000; 514/182.000

IC [6]

ICM: A61K031-56

ICS: A61K031-565; A61K031-57; A61K031-58

EXF 514/169; 514/170; 514/171; 514/172; 514/173; 514/174; 514/175; 514/176;
514/177; 514/178; 514/179; 514/180; 514/181; 514/182

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 472 OF 473 USPATFULL on STN

AN 97:109916 USPATFULL

TI Compounds having both potent calcium antagonist and antioxidant activity and use thereof as cytoprotective agents

IN Hellberg, Mark R., Arlington, TX, United States

Barnes, George, Arlington, TX, United States

Collier, Jr., Robert J., Arlington, TX, United States

PA Alcon Laboratories, Inc., Fort Worth, TX, United States (U.S. corporation)

PI US 5691360 19971125 <--

AI US 1995-471550 19950606 (8)

RLI Division of Ser. No. US 1993-164267, filed on 8 Dec 1993, now patented,
Pat. No. US 5424321

DT Utility

FS Granted

LN.CNT 765

INCL INCLM: 514/337.000

INCLS: 514/338.000

NCL NCLM: 514/337.000

NCLS: 514/338.000

IC [6]

ICM: A61K031-44

EXF 514/337; 514/338

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L4 ANSWER 473 OF 473 USPATFULL on STN

AN 97:59207 USPATFULL

TI Compounds having both potent calcium antagonist and antioxidant activity and use thereof as cytoprotective agents

IN Hellberg, Mark R., Arlington, TX, United States

Barnes, George, Arlington, TX, United States

Collier, Jr., Robert J., Arlington, TX, United States

PI corporation) US 5646149 19970708 <--
AI US 1995-472685 19950607 (8)
RLI Continuation of Ser. No. US 1993-163980, filed on 8 Dec 1993, now
abandoned
DT Utility
FS Granted
LN.CNT 1610
INCL INCLM: 514/253.000
INCLS: 514/255.000; 514/292.000; 514/317.000; 514/320.000; 514/323.000;
514/324.000; 514/331.000; 544/361.000; 544/372.000; 544/376.000;
544/377.000; 544/396.000; 546/086.000; 546/192.000; 546/197.000;
546/200.000; 546/202.000; 546/230.000; 546/240.000
NCL NCLM: 514/254.110
NCLS: 514/292.000; 514/317.000; 514/320.000; 514/323.000; 514/324.000;
514/331.000; 544/361.000; 544/372.000; 544/376.000; 544/377.000;
544/396.000; 546/086.000; 546/192.000; 546/197.000; 546/200.000;
546/202.000; 546/230.000; 546/240.000
IC [6]
ICM: A61K031-495
ICS: A61K031-445; C07D405-06; C07D411-06
EXF 544/376; 544/377; 514/253
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

=> S SLC8A
53 FILES SEARCHED...
L5 1 SLC8A

=> D L5

L5 ANSWER 1 OF 1 USPATFULL on STN
AN 2003:206874 USPATFULL
TI Methods and compositions for the treatment and diagnosis of pain
disorders using 57749
IN Silos-Santiago, Inmaculada, Jamaica Plain, MA, UNITED STATES
PA Millennium Pharmaceuticals, Inc. (U.S. corporation)
PI US 2003143231 A1 20030731
AI US 2002-281868 A1 20021028 (10)
PRAI US 2001-335046P 20011031 (60)
DT Utility
FS APPLICATION
LN.CNT 2876
INCL INCLM: 424/146.100
INCLS: 514/001.000; 514/044.000; 435/006.000; 435/007.200
NCL NCLM: 424/146.100
NCLS: 514/001.000; 514/044.000; 435/006.000; 435/007.200
IC [7]
ICM: A61K039-395
ICS: A61K031-00; C12Q001-68; G01N033-53; G01N033-567; A61K048-00
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
STN INTERNATIONAL LOGOFF AT 15:23:05 ON 13 JUL 2004