上传报告

图 1 流程图

一. 事例产生

1. 衰变道分析

衰变道分析是整个过程最重要的一步。需要得到所有可能的衰变道,并大致绘制出费曼图。为下面的本底分析提供来源。

目前,具体衰变道还未开始着手。

2. 事例产生

图 2 B_s 介子的一些基本信息

目前,想到的两种产生 Bs 介子的可能方法:

- (1) 用两个产生子, e⁺ + e⁻ → bb⁻ 和 e⁺ + e⁻ → ss⁻ 。 在 /cefs/data/Fullsim 路径中仅找到纯 2-fermion 产生子。
- (2) 利用脚本产生,具体操作未知。

3. 事例选择

利用初末态例子的动量分布、B 和轻子不动质量和事例所含粒子数等,选择信号事例。 利用事例选择函数,可以大致筛选一部分事例。

二. 预筛选

预筛选大致步骤(杭州师范大学廖立波 2017):

- (1) 首先,通过蒙卡的真实信息得到信号与本底的一些可观测量分布,并寻找信号与本底分布的差别。其中可观测量必须能够体现事例的整体信息。
- (2) 通过显著差异的可观测量分布进行筛选。
- (3) 做完蒙卡真实信息的筛选之后,还需要在重建之后对筛选完的事例进行检验。

在预筛选时,缩小 ee-的不变质量为一个特定区间(在自然单位制下,c=hbar=1,以简化数值运算,因此能量、动量和质量量纲相同),以提高信号事例所占比例。

三. 本底分析和信号抽取

1. 本底分析

几种常用的本底扣除方法:

(1) 质量筛选

利用剩余粒子数进行筛选,如此过程选择 3-n(具体数值还未分析)个剩余末态粒子。

(2) 观察喷注

利用喷注的不变质量峰进行观察,推测可能形成喷注的例子。以 b 夸克喷注为例,利用现有真实 b 夸克喷注与数据进行对比,利用相似值 B-tag 进行筛选。

(3) 次级顶点

对于寿命较长的粒子,由于不会迅速衰变。因此会继续移动导致产生次峰,即次级顶点。 通过观察次级顶点,可以扣除一部分本底。

(4) 动量筛选

利用一些粒子的横向动量较小或较大,可以进行扣除。

2. 信号抽取

可能获得的效果如下(杭州师范大学廖立波 2017):

Liao Yipu

表 4-5 事例选择链

Cutchain	Signal(No Tau)	Higgs Background	SM Background
Total	23938	200280	21314314
Validation of Pre-selection	20405	143765	3166923
No. Total Particle > 20	19681	124112	537839
Btag < 0.9	19349	28857	477099
cos θ _{2jets} > 0.87	19298	28673	433563
$M_{Inv}^{tot2jet} > 50$	18621	14793	309919
$Y_{34} > 0.005$	15183	6919	122866
Combined invariant mass	9022	3075	38226

表 4-6 主要的剩余本底过程及事例数

衰变链	末态	事例数
$e^+e^- \rightarrow ZH \rightarrow \nu\nu gg$	2g, 2v	2028
$e^+e^- o ZH o \nu \nu c \bar{c}$	$2v$, $c\bar{c}$	192
$e^+e^- \rightarrow ZH \rightarrow \nu\nu b\bar{b}$	$2v, bar{b}$	352
$e^+e^- o ZH o ZZZ^* o \nu \nu qqqq$	4q, 2v	439
$e^+e^- o WW o au vqq$	τ, ν, qq	30398
$e^+e^- \rightarrow WW \rightarrow \mu\nu qq$	μ, ν, qq	277
$e^+e^- \rightarrow e\nu W \rightarrow e\nu qq$	e, v, qq	1398
$e^+e^- \rightarrow \nu\nu Z \rightarrow \nu\nu qq$	2v,qq	1838
$e^+e^- \rightarrow ZZ \rightarrow \nu\nu qq$	2v, qq	3115
$e^+e^- ightarrow { m ZZ} ightarrow au au qq$	$2\tau,qq$	910
$e^+e^- o qq$	99	262

经过本底扣除,信号事例数被一步步减少,最后得到我们所需要的 $B_s^0 \to \mu^+ + \mu^-$ 衰变道的信号事例。

3. 分支比计算

经过公式: $BR(B_s^0 \to \mu^+ + \mu^-) = \frac{N_{sig}}{N_{tot} \cdot \varepsilon}$ 得到该衰变道的分支比。

图 3 现有实验测得的 Bs 截面比

四. 误差分析

目前还未考虑误差分析。