PCT/EP+ 98 / 06 952

BUNDESREPUBLIK DEUTSCHLAND EASO

EPO - Munich

0 2 Dez. 1998

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Bescheinigung

Die Boehringer Mannheim GmbH in Mannheim/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Spezifisches und sensitives Nukleinsäurenachweisverfahren"

am 2. April 1998 beim Deutschen Patentamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patentamt vorläufig das Symbol C 12 Q 1/68 der Internationalen Patentklassifikation erhalten.

Münghen, den 3. November 1998

Der Präsident des Deutschen Patentamts

Aktenzeichen: <u>198 14 828.3</u>

 $\Lambda_{x_1,\beta_1,\ldots,\beta_{n-1}}^{\beta_1,\beta_2,\ldots,\beta_{n-1}}.$

BOEHRINGER MANNHEIM GMBH

Spezifisches und sensitives Nukleinsäurenachweisverfahren

Gegenstand der Erfindung ist ein Verfahren zum Nachweis von Nukleinsäuren, bei dem eine Amplifikation eines Teilstückes dieser Nukleinsäuren vorgenommen wird und wobei dieses Teilstück im Hinblick auf seine Basensequenz bestimmte Bedingungen erfüllen muß, sowie ein Reagenzkit enthaltend zwei Primer und eine Sonde, die dieses Teilstück definieren.

Eine der meist angewandten molekularbiologischen Techniken zum Nachweis von Nukleinsäuren ist Hybridisierung mit sequenzspezifischen Sonden zum Nachweis homologer Nukleinsäure-Sequenzen. Der Nachweis von Nukleinsäure-Sequenzen ist von Bedeutung im Grundlagenbereich, jedoch von besonderer Bedeutung in verschiedenen Anwendungsfeldern, z. B. in den Bereichen medizinische Diagnostik, forensische Diagnostik, Lebensmitteldiagnostik, Umweltdiagnostik, Pflanzenschutz und Tiermedizin.

Als Sonde werden dabei entweder kurze Oligonukleotide (DNA oder RNA) oder längere Polynukleotide (DNA oder RNA) verwendet. Dabei haben die kürzeren Sonden gegenüber den längeren Sonden den Vorteil größerer Sequenzselektivität, wegen des kürzeren Hybridisierungsbereichs aber den Nachteil geringerer Sensitivität. Eine verbesserte Sensitivität und Sequenzselektivität wird mit PNA-Sonden (Peptidnukleinsäuren, z. B. WO 92/20702) erreicht, da diese Sonden eine höhere Bindungsaffinität zu Nukleinsäuren haben (höherer Tm) und durch eine höhere Basendiskriminierung gekennzeichnet sind (ΔTm). Zusätzlich können Sonden zum Nukleinsäure-Nachweis Markierungsgruppen tragen, die entweder zum Fangen und/oder zur Detektion von Hybridkomplexen aus Sonde und nachzuweisender Nukleinsäure geeignet sind.

Zum Nukleinsäure-Nachweis durch Hybridisierung werden eine oder mehrere Sonden entweder zur Hybridisierung in Lösung oder auf festen Trägern verwendet. Bei Nukleinsäure-Nachweisen in Lösung spricht man von homogenen Nachweisformaten, bei Nachweis auf festen Trägern und/oder vermittelt durch feste Träger von heterogenen Nachweisformaten. Bei den heterogenen Nachweisverfahren kann die nachzuweisende Nukleinsäure auf dem festen Träger vorgebunden sein. Die Hybridisierung erfolgt durch Inkontaktbringen mit einer Lösung, die die Sonde enthält (z. B. dot blot). Umgekehrt kann die Sonde auf dem festen Träger vorgebunden sein. Die Hybridisierung erfolgt durch Inkontaktbringen der gebundenen Sonde mit einer Lösung, welche die nachzuweisende Nukleinsäure enthält (z. B. reverse dot blot). Alternativ dazu kann der Komplex aus nachzuweisender Nukleinsäure und Sonde erst in Lösung gebildet werden und die Bindung an den festen Träger erst anschließend erfolgen. Bei homogenen Testformaten werden z. B. Sondenpaare verwendet, die endständig energieübertragende Gruppen tragen und die über Co-Hybridisierung an die nachzuweisende Nukleinsäure in unmittelbaren Kontakt gebracht werden und dadurch ein Signal erzeugen. Alternativ dazu können auch Sonden verwendet werden, die nach Bindung an die nachzuweisende Nukleinsäure durch enzymatische 5'-Nukleaseaktivität in Lösung von einem gequenchten in einen ungequenchten Zustand überführt werden.

Der Nachweis von Nukleinsäuren durch alleinige Sonden-Hybridisierung hat nur begrenzte Sensitivität. So ist selbst mit empfindlichen Detektions-Markierungsgruppen wie 32P, Digoxigenin, Biotin, Fluorescein, Ruthenium-Chelate, Fluorescein, Rhodamin oder AMCA allein nur eine Sensitivität in pg- bis fg-Bereich möglich. Zum empfindlichen Nukleinsäure-Nachweis gerade im medizinisch-diagnostischen Bereich sind jedoch hohe Sensitivitäten im ag-Bereich und eine hohe Nachweisspezifität notwendig. Dies gilt sowohl für den Nachweis von körperfremden Nukleinsäuren z. B. in Form von Infektionserregern, als auch für den Nachweis von der An- oder Abwesenheit oder Veränderung körpereigener Nukleinsäuren. Hohe Nachweissensitivität und Nachweisspezifität ist aber auch in den anderen genannten Anwendungsbereichen von hoher Wichtigkeit.

So müssen Infektionserreger wie z. B. HCV, HIV und HBV schon in wenigen Kopien nachgewiesen werden, um frühzeitig erfolgreiche medizinische Interventionsmaßnahmen, z. B. durch frühzeitige Arzneimittelbehandlung, ansetzen zu können. Für solch frühzeitige Nachweise von Infektionserregen ist der Nachweis von Nukleinsäure-Sequenzen der Infektionserreger von Vorteil, da wegen der Verfügbarkeit von Nukleinsäure-Vervielfältigungstechniken (Nukleinsäure-Vermehrungsverfahren) ein empfindlicher Nachweis schon in einer frühen Infektionsphase (Latenzphase) möglich ist. Die Möglichkeit der gezielten Vermehrung des nachzuweisenden Agens gibt es nur im Fall von Nukleinsäuren, nicht aber im Fall von immunologischen Nachweisverfahren. Bei diesen Verfahren ist eine Steigerung der nachzuweisenden Infektionserreger-spezifischen Partikel nur über die humorale Immunantwort über Bildung von entsprechenden Infektionserreger-spezifischen Antikörpern

möglich; diese Immunantwort erfolgt jedoch erst nach Ablauf der Latenzzeit und ist eine Sekundärreaktion nach Infektion durch den Errger. Daher hat der Nachweis über Nukleinsäure-Hybridisierung den Vorteil, daß z. B. der Infektionserreger direkt nach Infektion und sehr empfindlich nachgewiesen werden kann.

Der Erfolg von medizinischen Interventionsmaßnahmen ist jedoch auch davon abhängig, daß der Infektionserreger nicht nur frühzeitig mit hoher Sensitivität, sondern auch sehr spezifisch nachgewiesen werden kann. Zur gezielten Behandlung ist daher eine Unterscheidung zwischen verschiedenen Infektionserregern, wie z. B. HAV, HBV, HCV, HIV, verschiedene Herpes-Viren, HPV, sowie die Unterscheidung einzelner Subtypen, wie z. B. HIV-1 und HIV-2, von Bedeutung. Dabei ist aber auch entscheidend, daß quantitative Aussagen gemacht werden können und keine falsch-positiven oder falsch-negativen Ergebnisse erhalten werden, da solche falschen Ergebnisse u.U. gravierende therapeutische Konsequenzen nach sich ziehen können. Dies setzt Richtigkeit und hohe Reproduzierbarkeit der Ergebnisse voraus. Daher muß der Nukleinsäure-Nachweis nicht nur sehr sensitiv, sondern auch sehr spezifisch und reproduzierbar sein. Der spezifische und sensitive Nukleinsäure-Nachweis muß auch rasch erfolgen, damit eine gezielte Therapie umgehend erfolgen kann.

Oftmals ist auch von Bedeutung, mehrere Infektionserreger wie z. B. HCV, HIV und HBV nebeneinander nachzuweisen, z. B. im Rahmen von Blutbanken-Screeningtests. Dies erfolgt bei derzeit gängigen Nukleinsäure-Nachweistests durch hintereinandergeschaltete Einzelbestimmungen der nachzuweisenden Infektionserreger. Dies hat den Nachteil, daß mehrere Bestimmungen hintereinander durchgeführt werden müssen, was gerade beim Screening von großen Specimen-Stückzahlen nachteilig ist. Im Rahmen dieser Nukleinsäure-Bestimmungen ist wünschenswert, sensitive und spezifische Testmöglichkeiten verfügbar zu haben, die z. B. eine rasche parallele Bestimmung mehrerer Infektionserreger nebeneinander in einer einzigen Probe ermöglichen (Multiplex-Bestimmung).

Beim Nachweis der An- oder Abwesenheit von körpereigener Nukleinsäure innerhalb bestimmter genomischer Loci und/oder deren Veränderungen, wie z. B. ererbte, spontane oder eine Mischung aus ererbten und spontanen Mutationen, Deletionen, Inversionen, Translokationen, Rearrangements oder Triplett-Expansionen in Form von spezifischen und/oder polymorphen Veränderungen, ist ebenfalls die Verfügbarkeit spezifischer und

sensitiver Nukleinsäure-Nachweisverfahren von Vorteil. Die Verfügbarkeit spezifischer und sensitiver Nukleinsäure-Nachweisverfahren ist jedoch nicht nur im medizinischen Sektor sondern auch in den anderen genannten Anwendungsbereichen von hoher Wichtigkeit.

Die bisherigen Testverfahren zum sensitiven und spezifischen Nachweis der An- oder Abwesenheit von Nukleinsäuren basieren auf der kombinierten Durchführung von Nukleinsäure-Vermehrungsreaktionen (Nukleinsäure-Vermehrung) und Nukleinsäure-Nachweisreaktionen (Detektion).

Die nachzuweisende Nukleinsäure wird dabei in einer für die Vermehrungsreaktionen zugänglichen Form eingesetzt, z. B. in Form von unbehandeltem oder behandeltem Probenmaterial und/oder Probenmaterial-Konzentrierung, z. B. durch Adsorption des unbehandelten oder behandelten Probenmaterials an die Oberfläche eines festen Trägers und anschließende Resorption von diesem festen Träger. Solche festen Träger sind z. B. feste Träger mit glashaltigen Oberflächen. Durch diese festen Träger erfolgt keine substantielle Reinigung und/oder Isolierung der nachzuweisenden Nukleinsäuren, sondern lediglich eine Probenmaterial-Konzentrierung und ggf. Inaktivierung und/oder Eliminierung von Inhibitoren für die darauffolgenden Nukleinsäure-Vermehrungs- und Nachweisreaktionen. Durch diese festen Träger ist auch die Bereitstellung mehrer nachzuweisender Nukleinsäuren, z. B. im Rahmen von Multiplex-Verfahren, in für die Nukleinsäure-Vermehrungs- und -Nachweis-Reaktionen zugänglichen Form möglich.

Andere Probenvorbereitungs-Verfahren enthalten gezielte Verfahrensschritte zur Nukleinsäure-spezifischen und/oder sequenzspezifischen Bindung der nachzuweisenden Nukleinsäure, z. B. die Verwendung von festen Trägern mit Nukleinsäure-spezifischen Bindungsgruppen und/oder Nukleinsäure-Fangsonden zur selektiven Bindung und Freisetzung der nachzuweisenden Nukleinsäure durch Nukleinsäure-spezifische Bindung und anschließende Dissoziation zwischen Bindungsgruppe und/oder trägergebundener Fangsonde und nachzuweisender Nukleinsäure. Bei dieser Art von festen Trägern sind Nukleinsäure-spezifische Bindungsgruppen und/oder Nukleinsäure-Fangsonden an der Oberfläche der festen Träger notwendig. Daher sind zur Bereitstellung mehrerer nachzuweisender Nukleinsäuren, z. B. im Rahmen von Multiplex-Verfahren, entweder mehrere feste Träger notwendig, was aufwendiger ist, oder feste Träger mit einer oder mehreren Bindungsgruppen und/oder mit

multiplen oder mehreren Fangsonden. Multiple Fangsonden enthalten mehrere Bindungssequenzen für mehrere nachzuweisende Nukleinsäuren. Diese Träger mit mehreren Bindungsgruppen und/oder mehreren und/oder multiplen Fangsonden sind jedoch aufwendiger herzustellen. Ebenfalls sind die Reaktionsbedingungen zur gezielten Bindung mehrerer nachzuweisender Nukleinsäuren an Träger mit mehreren Bindungsgruppen und/oder Fangsonden schwieriger einzustellen bzw. die Bindung mehrer nachzuweisender Nukleinsäure-spezifische Bindungsgruppe oder an eine Fangsonde mit mehreren komplementären Hybridisierungssequenzen schwieriger einzustellen.

Die Vermehrung und der Nachweis der bereitgestellten nachzuweisenden Nukleinsäuren erfolgt in heterogenen oder homogenen Nukleinsäure-Vermehrungs-Nachweisformaten. Die Nukleinsäure-Vermehrungsreaktionen und Detektionreaktionen können entweder hintereinander (heterogene Testverfahren) oder gleichzeitig (homogene Testverfahren) erfolgen. Als Vermehrungsreaktionen werden entweder targetspezifische Nukleinsäure-Vermehrungsreaktionen, targetabhängige Signal-Nukleinsäure-Vermehrungsreaktionen oder Signal-Nukleinsäure-Vermehrungsreaktionen verwendet. Die Verwendung von Detektionssystemen zum Nachweis der vermehrten Nukleinsäuren erfolgt entweder über den Einbau von Nukleotiden und/der die Verwendung von markierten Primern oder markierten Sonden. Die verwendeten Detektionssysteme enthalten entweder direkte oder indirekte Detektionsmarkierungen bzw. gekoppelte sekundäre und tertiäre Nachweiskomponenten. Die Detektion der vermehrten nachzuweisenden Nukleinsäuren kann jedoch auch durch spektroskopische oder pyhsikalische Methoden erfolgen.

Die bisherigen Nukleinsäure-Vermehrungs-Nachweisverfahren mit integrierten Signal-Nukleinsäure-Vermehrungsreaktionen haben den Nachteil geringer Sensitivität wegen der nicht-exponentiellen Signalvermehrung, erhöhten Störanfälligkeit durch stärkerer Tendenz zur Hintergrundbildung durch die Vielzahl der Sondenkomponenten und der Bildung unspezifischer Detektionssignale, da nicht die nachzuweisende Nukleinsäure selbst, sondern lediglich ein daran gekoppeltes Detektionssignal targetunabhängig vermehrt wird. Beispiele sind gekoppelte Signalkaskaden (z. B. SELF-Zyklus) oder signalgebende Sonden-Baumoder -Bürstenstrukturen (z. B. branched DNA).

Die bisherigen Nukleinsäure-Vermehrungs-Nachweisverfahren mit integrierten targetabhängigen Signal-Nukleinsäure-Vermehrungsreaktionen sind wegen der exponentiellen Signalvermehrung zwar sensitiver als die reinen Signal-Nukleinsäure-Vermehrungsverfahren, haben aber wiederum den Nachteil der Bildung unspezifischer Detektionssignale, da nicht die nachzuweisende Nukleinsäure selbst, sonden lediglich ein davon in einer einleitenden targetabhängigen Primärrektion abgeleitetes Detektionssignal in Form eines Nukleinsäure-Reportermoleküls Targetsequenz-unabhängig enzymatisch vermehrt wird. Beispiele sind die Qβ-Replikationsreaktion, bei der ein Qβ-Reportermolekül enzymatisch vermehrt wird, oder die Ligase-Kettenreaktion, bei der Teilstücke der Nukleinsäure-Reportermoleküle sequenzunabhängig enzymatisch verknüpft werden.

Als Nukleinsäure-Vermehrungsprodukte der bisher sensitivsten und spezifischsten exponentiellen targetspezifischen Nukleinsäure-Vermehrungsreaktionen wie z. B. PCR (US-A-4,683,202 bzw EP-B-0 202 362), RT-PCR, SDA, NASBA (EP-A-0 329 822) oder TAM (WO 91/01384), wurden bisher jeweils einzel- oder doppelsträngige Nukleinsäure-Vermehrungsprodukte durch targetsequenzabhängige thermozyklische oder isotherme enzymatische Elongation gegenläufige Primer, die sequenzpezifisch für die nachzuweisende Nukleinsäure sind und an die Enden der Nukleinsäure-Vermehrungseinheit (Amplikon) der nachzuweisenden Desoxyribo- oder Ribo-Nukleinsäuren oder deren Komplemente binden und somit die Nukleinsäure-Vermehrungsprodukte begrenzen, erzeugt. Bei diesen Elongationsreaktionen werden alle 4 Basenspezifitäten eingebaut.

Die genannten Nukleinsäure-Vermehrungs-Nachweisverfahren mit integrierter targetspezifischer Nukleinsäure-Vermehrungszyklen am spezifischsten. Während lineare targetspezifische Nukleinsäure-Vermehrungszyklen am spezifischsten. Während lineare targetspezifische Nukleinsäure-Vermehrungsreaktionen, wie z. B. die Cycling-Probe-Reaktion, nur zu begrenzter Sensitivität führen, ergeben exponentielle targetspezifische Nukleinsäure-Vermehrungsrektionen wie Elongations-basierte Reaktionen wie z. B. die Polymerase-Kettenreaktion (PCR, RT-PCR, SDA) oder Transkriptions-basierte Reaktionen wie z. B. Nucleic Acid Sequence Based Amplification (NASBA) oder Transcription Mediated Amplification (TAM) bisher die sensitivsten und spezifischsten Signale.

Mischformen zwischen targetabhängiger Signal-Nukleinsäure-Vermehrung und targetspezifischer Nukleinsäure-Vermehrung, wie z. B. die Gap-filling Ligase-Kettenreaktion (gap-filling LCR, WO 90/01069), haben zwar gegenüber der nicht-modifizierten LCR einen targetabhängigen Reaktionsschritt, dieser ist aber begrenzt auf limitierte Sequenzabschnitte bestehend aus lediglich 1 oder 2 Basenspezifitäten und damit limitierterer Target-Spezifität.

Für den Nachweis der entstandenen Nukleinsäure stehen verschiedene Verfahren zur Verfügung. Der Nachweis der gebildeten Nukleinsäure-Vermehrungsprodukte über Fragmentoder Sequenz-Gelanalyse ist zeitaufwendig und nicht quantitativ. Der Nachweis über
trägergebundene Dot-, Slot- oder Reverse-Dot-Blot-Verfahren ist ebenfalls zeitaufwendig
und nicht quantitativ.

Quantitative sensitive und spezifische Bestimmungen der nachzuweisenden Nukleinsäuren wurden bisher im Rahmen von heterogenen oder homogenen targetspezifischen exponentiellen Nukleinsäure-Vermehrungs-Reaktionsformaten möglich, bei denen das Nukleinsäure-Vermehrungsprodukt entweder durch eingebaute Label oder durch Hybridisierung mit einer für die nachzuweisende Nukleinsäure oder deren Komplement spezifischen Sonde in einem Teil des durch Elongation entstandenen Sequenzabschnitts abgefangen wird. Exponentielle Nukleinsäure-Vermehrungs-Reaktionsformate, bei denen eine Interkalation von Nukleinsäure-bindenden Farbstoffen erfolgt, sind zwar auch sensitiv, aber nicht sequenzspezifisch.

Bei den heterogenen Reaktionsformaten wird das Nukleinsäure-Vermehrungsprodukt z. B. entweder über eine Primer-Fangmodifikation oder durch eine immobilisierte Fangsonde, die komplementär zu einem internen Sequenzabschnitt des Nukleinsäure-Vermehrungsprodukts ist, auf einen festen Träger gebunden und über Einbau eines detektionsmarkierten Nukleotids, durch Hybridisierung mit einer detektionsmarkierten Sonde, die komplementär zu einem internen Sequenzabschnitt des Nukleinsäure-Vermehrungsprodukts ist, oder über eine Primer-Detektionsmodifikation nachgewiesen. In homogenen Reaktionsformaten erfolgte bisher der Nachweis z. B. über die Hybridisierung einer Sonde, die komplementär zu einem internen Sequenzabschnitt des Nukleinsäure-Vermehrungsprodukts ist und die einen gequenchten Fluoreszenz-Label trägt, wobei die Targetsequenz-abhängige enzymatische Aufhebung der Quenchung durch die Primer-Elongations-bedingte

Freisetzung des gequenchten Fluoreszenz-markierten Nukleotids erfolgt, oder über die Anlagerung und/oder Interkalation eines detektierbaren Moleküls oder Gruppe.

Bei allen bisherigen quantitativen sensitiven und spezifischen heterogenen und homogenen targetspezifischen exponentiellen Nukleinsäure-Vermehrungs-Reaktionsformaten wurden bisher Nukleinsäure-Vermehrungseinheiten (Amplikons) verwendet, die neben den spezifischen Primer- und Sonden-Bindungssequenzen zusätzliche Sequenzen variabler Länge zwischen den flankierenden Primer-Bindungssequenzen und der internen Sonden-Bindungssequenz enthichten. Diese fünfgeteilte Amplikonsstruktur resultierte in Amplikonlängen größer als die Summe der Sequenzlängen der beiden flankierenden Primer und der internen Sonde zwischen vorzugsweise 100 und 1000 Basen(paaren). Optimierungen der Nukleinsäure-Vermehrungsreaktion durch verbesserte Enzymmischungen gingen bisher vielmehr hauptsächlich in Richtung längere Nukleinsäure-Vermehrungsprodukte.

Kürzere Amplikonlängen wurden bisher lediglich zum Nachweis spezieller Sequenzen wie z. B. bei Triplett-Expansionen, für In-situ-Untersuchungen oder den Nachweis stark fragmentierter Nukleinsäuren im Rahmen der Altertumsforschung erzeugt. Diese kurzen Amplikon-Längen wurden jedoch in zeitaufwendigeren Gelformaten oder In-situ-Formaten detektiert, die durch mangelnde Sensitivität und/oder fehlende Quantifizierung gekennzeichnet sind. Andere spezielle kurze Sequenzen wie Short Tandem Repeats, Short Interspersed Repetitive Elements Microsatellite Sequences oder HLA-spezifische Sequenzen, wurden bisher lediglich als Primer- oder Sonden-Bindungssequenzen verwendet, bzw. in Kombination mit anderen Sequenzen.

Die fünfgeteilten Nukleinsäure-Vermehrungsprodukte haben den Nachteil, daß sie neben den spezifisch Primer und Sonde bindenden Sequenzen noch zusätzliche Sequenzen beinhalten, die das Amplikon verlängern, und die die Gesamtspezifität im Hinblick auf die Spezifitäts-generierenden Primer- und Sonden-Bindungsreaktionen reduzieren.

Die bisher verwendeten längeren fünsteiligen Nukleinsäure-Vermehrungsprodukte haben ferner den Nachteil längerer Primer-Elongationszeiten und damit längere Gesamt-Testzeiten. Die Sensitivität ist auch begrenzt durch Plateaueffekte der beteiligten Enzyme und Substrate, die bei längeren Amplikons früher erreicht werden. Ein weiterer Nachteil längerer Nukleinsäure-Vermehrungsprodukte ist eine zunehmende Kompetition zwischen Amplikon-

Gegenstrang und Detektor- oder Fangsonde und somit reduzierter Sensitivität. Ein weiterer Nachteil ist die erhöhte Möglichkeit der unspezifischen Bindung bedingt durch die zusätzlichen Sequenzen mit der Folge eines erhöhten Hintergrunds und dadurch geringerer Sensitivität (geringeres Signal-Rausch-Verhältnis). Ein weiterer Nachteil bei der Bindung des Nukleinsäure-Vermehrungsprodukts an trägergebundene Fangsonden ist die sterische und kinetische Hinderung längerer Nukleinsäure-Moleküle; daher werden Nukleinsäure-Vermehrungsprodukte bisheriger Länge vor der Bindung durch die Fangsonde vorzugsweise fragmentiert. Ein weiterer Nachteil ist die erhöhte Anfälligkeit gegenüber

Fragmentierung innerhalb der Amplikonsequenz und dadurch Zerstörung der Nukleinsäure-Vermehrungseinheit; dies führt zu geringerer Reproduzierbarkeit. Ein weiterer Nachteil ist, daß längere Nukleinsäure-Vermehrungsprodukte bei niedrigen Testtemperaturen von z. B. 37 °C, die bei gängigen Nukleinsäure-Analysegeräten vorgegeben sind, weniger spezifisch hybridisieren, da eine größere Differenz zur Schmelztemperatur besteht. Ein weiterer Nachteil von fünsteiligen Nukleinsäure-Vermehrungsprodukten ist beim Nachweis mehrerer verschiedener Nukleinsäure-Vermehrungsprodukte, daß unterschiedliche Nukleinsäure-Vermehrungsprodukten ist beim Nachweis mehrerer vermehrungslängen gebildet werden, die einen Multiplex-Nachweis erschweren.

Ziel der vorliegenden Erfindung war es, ein alternatives Nachweisverfahren für Nukleinsäuren bereitzustellen, welches Vorteile gegenüber den bisher beschriebenen Verfahren hat.

Eine spezielle Aufgabe der Erfindung bestand darin, ein targetabhängiges exponentielles Nukleinsäure-Vermehrungsverfahren zum hochsensitiven, hochspezifischen, reproduzierbaren und quantifizierbaren Nachweis einer oder mehrerer einzelsträngiger oder doppelsträngiger Nukleinsäuren bereitzustellen, welches insbesondere einen oder mehrere der genannten Nachteile vermeidet.

Eine weitere Aufgabe der Erfindung war, unter Erhalt der Gesamtspezifität die Auswahl der Primer- und Sondensequenzen so flexibel zu gestalten, daß eine Bestimmung mehrerer verschiedener nachzuweisender Nukleinsäuren in einem vereinheitlichten Reaktionsformat unter Verwendung von vorzugsweise teilweise gleichen Primer- oder Sonden-Sequenzen möglich ist.

Gegenstand der Erfindung ist ein Verfahren zur Herstellung einer Vielzahl von Amplifikaten eines Teilstücks dieser Nukleinsäure mit Hilfe zweier Primer, von denen einer an eine erste

Bindesequenz (A) eines Strangs der Nukleinsäure binden kann und von denen der andere an eine zweite Bindesequenz (C'), die zu einer mit A nicht überlappenden, in 3'-Richtung von A gelegenen Sequenz C im wesentlichen komplementär ist, binden kann, Inkontaktbringen der Amplifikate mit einer Sonde mit einer Bindesequenz D, welche an die zwischen den Sequenzen A und C gelegene dritte Sequenz (B) oder das Komplement (B') davon binden kann, und Nachweis der Bildung eines Hybrides aus einem Amplifikat und der Sonde, dadurch gekennzeichnet, daß die zwischen den Bindesequenzen A und C gelegene dritte Sequenz (B) oder das Komplement (B') davon keine Nukleotide enthält, die nicht dem aus der Bindesequenz D der Sonde und der hieran gebundenen Sequenz des Amplifikats gebildeten Sequenzbereich E zugehören.

Ebenfalls Gegenstand der Erfindung ist ein Reagenzkit zur Durchführung dieses Verfahrens.

In Fig. 1 ist schematisch die in der vorliegenden Beschreibung verwendete Bezeichnungsweise für die Bereiche auf der nachzuweisenden Nukleinsäure gezeigt.

In Fig. 2 ist die entsprechende Bezeichnungsweise für die intermediär gebildeten Verlängerungsprodukte der Primer sowie die Amplifikate (Amplikons) gezeigt. Ebenfalls ist gezeigt, daß die Amplifikate ein oder mehrere weitere Bereiche Y aufweisen können, die außerhalb des Bereiches liegen, der die von der nachzuweisenden Nukleinsäure stammende Sequenzinformation enthält.

In Fig. 3 ist schematisch gezeigt, wie im Falle der vorliegenden Erfindung die Bindesequenzen der Primer und Sonde angeordnet sind. Es ergeben sich verschiedene Alternativen I bis VI, je nachdem, ob und wie die Bindesequenzen überlappen. Es ist jeweils nur ein Strang des Amplifikats gezeigt. Dieselbe Anordnung (nur komplementär) kann für einen zweiten Strang des Amplifikats erstellt werden. Für die intermediär gebildeten Verlängerungsprodukte ergibt sich ein ähnliches Bild. Als Fall V und VI ist der Fall gezeigt, daß die Sonde neben der Bindesequenz D noch weitere, nicht mit dem Amplifikat Basenpaarungen ausbildende Bereiche X enthält, die gleich oder verschieden sein können. Zum Vergleich ist der Fall des Standes der Technik als VII gezeigt; die Sequenzen Z repräsentieren die zusätzlichen Sequenzen der fünfteiligen Amplikons.

In Fig. 4 sind Sequenzen der benutzten Bereiche eingezeichnet, nämlich A', B und C.

In Fig. 5 ist die Synthese von 5'-5'-verknüpsten Primern schematisch gezeigt.

In Fig. 6 sind die in Fig. 5 verwendeten Verbindungen gezeigt.

In Fig. 7 ist eine für die Durchführung des erfindungsgemäßen Verfahrens besonders geeignete Region des HCV-Genoms gezeigt sowie eine Sequenz, aus welcher die Primerund Sonden- Sequenzen bevorzugt ausgewählt werden. Diese zweite Sequenz ist dem nicht humanpathogenen Virus HGBV-B entnommen. Bei den hieraus gewählten Primer- und Sondensequenzen handelt es sich daher um nicht für HCV spezifische Sequenzen (J. Med.

Virol. 48: 60-67).

Nukleinsäuren, welche mit dem erfindungsgemäßen Verfahren nachgewiesen werden können, können beliebigen Ursprungs sein, beispielsweise Nukleinsäuren viroiden, viralen, bakteriellen oder zellulären Ursprungs oder von Hefen oder Pilzen. Proben, in denen die nachzuweisenden Nukleinsäuresequenzen oder deren Komplement enthalten sind, sind z. B. humane, tierische, bakterielle oder pflanzliche Flüssigkeiten, oder Flüssigkeiten aus Hefen oder Pilzen, Exkremente, Abstriche, Zellsuspensionen, Kulturen oder Gewebs-, Zell- oder Flüssigkeits-Punktionen. Bevorzugt liegen die Nukleinsäuren in Lösung vor. Damit das erfindungsgemäße Verfahren seine Vorteile voll entfalten kann, hat es sich als zweckmäßig erwiesen, wenn die nachzuweisende Nukleinsäure eine Größe von mindestens 40 bp aufweist. Die Nukleinsäure kann jedoch auch eine durch Klonierung, Amplifikation, in-vitround in-vivo-Vermehrung hergestellte Nukleinsäure sein.

Die nachzuweisende Nukleinsäure kann einzelsträngig (insbesondere bei RNA) oder doppelsträngig (insbesondere bei DNA) sein. Für den Fall doppelsträngiger Nukleinsäuren können beide Stränge vermehrt werden oder aber auch nur einer. Aus beiden Sorten von Nukleinsäuren können einzel- oder doppelsträngige Amplifikate gebildet werden, wovon einer oder beide zum weiteren Nachweis verwendet werden können. Entsprechend wird die Sequenz der Sonde oder der Sonden ausgewählt.

Der Probe oder einer Kontrollprobe können positive oder negative Kontrollnukleinsäuren oder Quantifizierungsstandards zugesetzt sein, die ähnlich oder gleich behandelt werden wie die nachzuweisenden Nukleinsäuren. Als Standards können beispielsweise interne oder externe heterologe oder homologe DNA- oder RNA-Standards, enthaltend Primer-Binde-

sequenzen homolog zu den Sequenzen der nachzuweisenden Nukleinsäuren und heterologen Sonden-Bindesequenzen, verwendet werden. Umgekehrt ist aber auch die Verwendung von besonders im 3'-Priming-Bereich heterologen Primer-Bindesequenzen und homologen Sonden-Bindesequenzen möglich. Als Negativ-Kontrollen werden bevorzugt analoge Specimen eingesetzt, welche die nachzuweisenden Nukleinsäuren oder deren Komplement nicht enthalten.

Vor der Vermehrung wird die Probe bevorzugt einem oder mehreren Vorbehandlungsschritten unterzogen, um die nachzuweisenden Nukleinsäuren in eine vermehrungsfähige
Form zu bringen. In einem ersten optionalen Schritt findet eine Vorbehandlung der Probe
(Specimen) statt, durch die die Probe in eine Form gebracht wird, aus der die nachzuweisende Nukleinsäure in eine für die Überführung der vorbehandelten Probe in eine für die Vermehrung geeignete Form gebracht wird.

Die Art der Vorbehandlung der Probe hängt von der Art der Probe und der Komplexität des biologischen Materials in der Probe ab. Bei humanen Körperflüssigkeiten wie z. B. Human-Blut erfolgt in einer bevorzugten Ausführungsform zunächst eine Abtrennung von Blutzellen bei der Erzeugung von Plasma, Serum oder Blutzellkonzentraten. Durch diesen Trennschritt wird durch die Probenvorbehandlung die Komplexität des biologischen Probenmaterials in den resultierenden Fraktionen deutlich reduziert, ohne daß eine substantielle Isolierung der nachzuweisenden Nukleinsäure erfolgt. Im Fall von Sputum oder Abstrichen erfolgt eine Probenvorbehandlung, z. B. durch Suspendieren des Sputums bzw. des Abstrichs, im Fall von Urin z. B. durch Zentrifugation und Weiterverarbeitung der erhaltenen Fraktionen. Im Fall von Gewebspunktionen erfolgt eine Probenvorbehandlung z. B. durch Suspendierung und Behandlung mit einem Zellverbands-auflösenden Agens. Bei Cerebrosidal-Flüssigkeit erfolgt die Probenvorbehandlung z. B. durch Zentrifugation und Weiterverarbeitung der erhaltenen Fraktionen. Auch in diesen Fällen erfolgt durch die Probenvorbehandlung eine Reduktion der Komplexität des biologischen Probenmaterials.

Danach kann sich ein Schritt anschließen, in dem die nachzuweisende Nukleinsäure aus der vorbehandelten Probe in eine für die Vermehrung zugängliche Form überführt wird. Bei der Überführung der nachzuweisenden Nukleinsäure aus der vorbehandelten Probe in eine für die Vermehrungsreaktion zugängliche Form werden bevorzugt bekannte Methoden

angewandt. In einer bevorzugten Ausführung erfolgt in einem ersten Reaktionsschritt eine Lysebehandlung der vorbehandelten Probe zur Freisetzung der nachzuweisenden Nukleinsäure, z. B. durch Proteinase K-Behandlung bei erhöhten Temperaturen oder bei Desoxyribonukleinsäuren durch Alkali. In einem zweiten Schritt wird die lysierte vorbehandelte Probe nach Zugabe von chaotropen Agentien, wie z. B. Guanidinium-Hydrochlorid oder Harnstoff, in An- oder Abwesenheit von löslichen Alkoholen, wie z. B. Isopropanol, an die Oberfläche eines festen Trägers und anschließende Resorption von diesem festen Träger konzentriert. Solche festen Träger sind z. B. feste Träger mit glashaltigen Oberflächen

(z. B. Magnetpartikel, Glasvließe mit glashaltigen Oberflächen, Partikel, Mikrotiterplatten, Reaktionsgefäße, Dip-sticks oder miniaturisierte Reaktionskammern, die wiederum auch Teil von intergrierten Reaktionschips sein können). Durch diesen festen Träger erfolgt bevorzugt keine substantielle sequenzspezifische Reinigung und/oder Isolierung der nachzuweisenden Nukleinsäuren, sondern lediglich eine Probenmaterial-(Nukleinsäuren-)Konzentrierung und ggf. Inaktivierung und/oder Eliminierung von Inhibitoren für die darauffolgenden Nukleinsäure-Vermehrungs- und Nachweisreaktionen. Durch diese festen Träger ist auch die Bereitstellung mehrerer nachzuweisender Nukleinsäure, z. B. im Rahmen von Multiplex-Verfahren, in für die Nukleinsäure-Vermehrungs- und -Nachweis-Reaktionen zugängliche Form möglich.

In einer anderen Ausführung kann die Überführung der nachzuweisenden Nukleinsäure aus der vorbehandelten Probe nach Nukleinsäure-Freisetzung in einem ersten Schritt durch z. B. Proteinase K-Behandlung bei erhöhten Temperaturen oder bei Desoxyribonukleinsäuren durch Alkali erfolgen. In einem zweiten Schritt wird die lysierte vorbehandelte Probe zur Bindung der nachzuweisenden Nukleinsäure mit festen Trägern in Kontakt gebracht, die z. B. mit Nukleinsäure-spezifischen Bindungsgruppen und/oder Fangsonden spezifisch für die nachzuweisende Nukleinsäure zur selektiven Bindung modifiziert sind, und anschließend die gebundene nachzuweisende Nukleinsäure durch Dissoziation zwischen Bindungsgruppe und/oder trägergebundener Fangsonde und nachzuweisender Nukleinsäure wieder eluiert. Beispiele für Nukleinsäure-spezifische Bindungsgruppen sind PNA-Homopyrimidin-Oligomere wie z. B. (T)7-PNA oder Nukleinsäure-bindende niedermolekulare Substanzen wie z. B. Nukleinsäure-Interkalatoren, Major groove-Binder oder Minor groove-Binder. Beispiele für Fangsonden spezifisch für die nachzuweisende Nukleinsäure sind

Nukleinsäure-Oligomere oder Nukleinsäure-Polymere mit Bindungssequenzen für eine oder mehrere nachzuweisende Nukleinsäuren. Weitere Beispiele für Fangsonden spezifisch für die nachzuweisende Nukleinsäure sind PNA-Oligomere mit Bindungssequenzen für eine oder mehrere nachzuweisende Nukleinsäuren. Die Bindung der Nukleinsäure-spezifischen Bindungsgruppen oder der Fangsonden an den festen Träger kann mit oder ohne Zwischenschaltung von Abstandshaltern (Spacern) entweder kovalent oder über Bindungspaare wie z. B. Biotin:Streptavidin oder Ni:Chelat erfolgen.

Die zur Vermehrung eingesetzten Nukleinsäurensequenzen konnen linear oder zirkular sein und können Sequenz-Modifikationen und/oder sonstige Modifikationen wie z. B. natürliche oder artifizielle Nukleotidanaloga oder Äquivalente davon oder Basen-Analoga oder Äquivalente davon oder methyliert, gecappt oder polyadenyliert oder in sonstiger Weise modifiziert sein. Die zur Vermehrung eingesetzten Nukleinsäuren oder deren Komplement können natürlichen Ursprungs sein, fragmentiert, modifiziert oder enzymatisch, z. B. mit dem Enzym Uracil-Deglykosylase (ung), oder physikalisch vorbehandelt, vorvermehrt, oder chemisch, photochemisch oder enzymatisch erzeugt sein, z. B. durch chemische Oligonukleotidsynthese oder in-vitro-Replikation, in-vitro-Reverse Transkription oder in-vitro-Transkription.

In dem ersten essentiellen Verfahrensschritt des erfindungsgemäßen Verfahrens wird ein Teilstück der nachzuweisenden Nukleinsäure amplifiziert. Im Folgenden wird dieses Teilstück auch Amplikon genannt. Dieses enthält zwingend den Sequenzbereich zwischen den äußeren Enden der Bindeseqenzen bzw. des Komplements davon der Primer (den Primerbindungsbereichen), und enthält den Bindebereich E der Sonde bzw. das Komplement davon. Gemäß der vorliegenden Erfindung ist das Amplikon (bevorzugt die Gesamtlänge der Sequenzen der Bereiche A, B und C) bevorzugt kürzer als 100 Nukleotide, besonders bevorzugt kürzer als 60 Nukleotide, jedoch bevorzugt länger als 40 Nukleotide. Dies bedeutet jedoch nicht, daß die Gesamtlänge der Amplifikate nicht doch größer sein kann, z. B. wenn die Primer zusätzlich Nukleotide aufweisen. Es werden solche Vermehrungsmethoden eingesetzt, die eine Vermehrung der nachzuweisenden Nukleinsäuresequenz oder deren Komplement erlauben, die in der Bildung von Tripartite-Mini-Nukleinsäure-Vermehrungsprodukten münden [Mini Chain Reaction (MCR)]. Hierfür stehen prinzipiell alle Nukleinsäureamplifikationsverfahren zur Verfügung, die im Stand der Technik bekannt sind. Bevor-

zugt werden targetspezifische Nukleinsäure-Vermehrungsreaktionen verwendet. Besonders bevorzugt werden theoretisch exponentielle targetspezifische Nukleinsäure-Vermehrungsreaktionen verwendet, bei denen eine antiparallele Replikation der nachzuweisenden Nukleinsäure oder deren Komplement erfolgt, wie z. B. Elongations-basierte Reaktionen wie z. B. die Polymerase-Kettenreaktion (PCR für Desoxyribonukleinsäuren, RT-PCR für Ribonukleinsäuren) oder Transkriptions-basierte Reaktionen wie z. B. Nucleic Acid Sequence Based Amplification (NASBA) oder Transcription Mediated Amplification (TAM). In besonderer Weise bevorzugt werden thermozyklische exponentielle Elongationsbasierte Nukleinsäure-Vermehrungsreaktionen wie z. B. die Polymerase-Kettenrektion verwendet. Die zur Vermehrung eingesetzten nachzuweisenden Nukleinsäuren oder deren Komplement können in Form von einzelsträngigen oder doppelsträngigen Desoxyribonukleinsäuren oder Ribonukleinsäuren vorliegen. Ziel der Vermehrungsreaktionen ist die Herstellung einer Vielzahl von Amplifikaten eines Teilstücks der nachzuweisenden Nukleinsäure. Unter einem Amplifikat wird daher jede unter Verwendung von Sequenzinformation der Nukleinsäure hergestellte Molekülspezies verstanden. Insbesondere handelt es sich um Nukleinsäuren. Der Begriff "Amplifikate" beinhaltet sowohl einzelsträngige als auch doppelsträngige Nukleinsäuren. Ein Amplifikat kann neben den die Sequenzinformationen der zugrunde liegenden Nukleinsäure enthaltenden Bereichen (Amplikon) außerhalb der voneinander wegweisenden Enden der Primerbindungsstellen noch weitere Bereiche enthalten, welche nicht in direkter Relation mit Sequenzen der zu amplifizierenden Nukleinsäure stehen. Bevorzugt kommen gerade solche Sequenzen einer Länge von mehr als 15 Nukleotiden nicht auf der nachzuweisenden Nukleinsäure oder ihrem Komplement vor und können mit dieser nicht durch direkte Basenpaarung hybridisieren. Amplifikate können somit entweder mit der nachzuweisenden Nukleinsäure selbst oder mit deren Komplement hybridisieren. Amplifikate sind beispielsweise auch die Produkte einer asymmetrischen Amplifikation, d. h. einer Amplifikation, bei der die beiden Stränge in unterschiedlicher Menge gebildet werden (z. B. durch Einsatz unterschiedlicher Mengen an Primern) oder einer der beiden Stränge wieder zerstört wird (z. B. durch RNase).

Unter einem Primer im Sinne der vorliegenden Erfindung wird ein Molekül verstanden, welches über Basenpaarungen an eine Nukleinsäure T oder deren Komplement binden kann und welches, bevorzugt enzymatisch, verlängert werden kann. Bevorzugt sind Oligo-

nukleotide, die an ihrem 3'-Ende unter Verwendung der nachzuweisenden Nukleinsäure oder einem Komplement hiervon als Templatnukleinsäure verlängert werden können. Als Primer können monovalente oder multivalente oder monofunktionelle oder multifunktionelle Agentien eingesetzt werden, die eine Nukleinsäure-abhängige Elongation zulassen. Diese Agentien können auch aus verschiedenen Molekülarten zusammengesetzt sein, z. B. Chimären aus PNA und Nukleotid(en) oder aus Protein/Peptid und Nukleotid(en). Bevorzugt können als Primer Oligomere oder Polymere einer Bindelänge von zwischen 9 und 30 nt, besonders bevorzugt zwischen 11 und 22 nt verwendet werden, die an die nachzuweisende Nukleinsäure T oder deren Komplement antiparallel binden und die als ein von mehreren Reaktionspartnern für eine enzymatische Replikation der nachzuweisenden Nukleinsäure oder deren Komplement wirken. Besonders bevorzugt werden als Primer Oligomere verwendet, die nach Zugabe eines Vermehrungsreagenzes durch Anlagerung zumindest eines Teils des Primers an die nachzuweisende Nukleinsäure oder deren Komplement eine gerichtete Replikation einer oder beider Stränge der nachzuweisenden Nukleinsäure oder deren Komplement initiiert. Ein Beispiel für einen besonders bevorzugten Primer ist ein Oligonukleotid mit einem freien 3'-Hydroxyl-Ende.

Die als Primer eingesetzten Agentien können eine oder mehrere Bindesequenzen für eine oder mehrere nachzuweisende Nukleinsäuren oder deren Komplement enthalten und können Sequenz-Modifikationen, endständige und/oder interne Sequenzergänzungen und/oder sonstige Modifikationen wie z. B. natürliche oder artifizielle Nukleotidanaloga oder Äquivalente davon, nicht funktionelle Nukleotidanaloga oder Äquivalente davon oder Basen-Analoga oder Äquivalente davon enthalten oder methyliert, gecappt oder polyadenyliert oder in sonstiger Weise modifiziert sein. Erforderlich ist nur, daß sie die geforderten Bindeeigenschaften zur nachzuweisenden Nukleinsäure bzw. ihrem Komplement haben und verlängerbar sind. Bevorzugte Nukleotid-Äquivalente sind PNA-Monomere bzw. PNA-Oligomere mit oder ohne positive und/oder negative Ladungen im Rückgrat und/oder im Abstandshalter. Die als Primer eingesetzten Agentien können Modifikationen tragen, die entweder direkt oder indirekt über ein weiteres Bindungspaar zur Detektion und/oder Bindung an einen festen Träger geeignet sind. Bevorzugte Primer-Modifikationen sind die Fluoreszenzfarbstoffe wie z. B. Fluorescein, Rhodamin, AMCA oder Derivate davon, Bindungspaare Biotin:(Strept-)Avidin, Digoxigenin:Anti-Digoxigenin, Digoxigenin:Anti-

Digoxigenin gekoppelt mit Äquorin, Fluorescein: Anti-Fluorescein oder Ruthenium- oder Rhenium-Chelat oder Äquorin. Eine besonders bevorzugte Primer-Modifikation ist Biotin als Fang- oder Detektions-Modifikation. Die Primer können weitere Sequenzbereiche Y enthalten, insbesondere an ihrem 5'-Ende (Fig. 2). Hier sind sowohl 5'-3'-Verknüpfungen als auch 5'-5'-Verknüpfungen und/oder 5'-2'-Verknüpfungen möglich. Außerdem können sie zusätzliche Strukturkomponenten, wie z. B. Abstandshalter, immobilisierbare Gruppen oder Löslichkeits-vermittelnde Molekülteile oder im Hinblick auf Primingaktivität aktivierbare Bereiche haben, wie z. B. AP-Stellen.

Unter einer Sonde wird ein Molekül verstanden, welches aufgrund von Basen-Basen-Wechselwirkungen mit Nukleinsäuren hybridisieren kann. Bevorzugte Sonden sind daher Oligonukleotide sowie basenhaltige Nukleinsäuremimetica, wie Peptidnukleinsäuren (PNA). Die Länge einer Sonde beträgt, bezogen auf die Bindesequenz D, bevorzugt zwischen 9 und 30 Basen.

PNA-Oligomer-Sonden mit oder ohne positive oder negative Ladungen im Rückgrat und/
oder Abstandshalter haben die zusätzlichen Vorteile, daß sie stabil sind gegenüber dem
Abbau von Nukleasen oder Proteasen wegen der verschiedenen Struktur des Rückgrats und
der H- bzw. NH₂-Enden, einen höheren Schmelzpunkt in Bindungskomplexen zwischen
Nukleinsäuren und PNA als zwischen zwei Nukleinsäure-Molekülen aufwiesen und der
Hybridkomplex dadurch stabiler ist, bei niedrigen Salzkonzentrationen anwendbar sind, eine
höhere Differenz der Schmelpunkte bei Fehlpaarungen aufwiesen und somit eine bessere
Fehlpaarungs-Diskriminierung möglich ist, Sequenzen mit Sekundärstrukturen bei niedrigen
Salzkonzentrationen zugänglicher sind, die Kompetition zwischen Amplikon-Gegenstrang
und Sonde geringer ist bei niedrigen Salzkonzentrationen und dadurch eine höhere Signalausbeute erreicht wird und das Potential zur Eliminierung des AmplikonDenaturierungsschritts bei niedrigen Salzkonzentrationen besteht.

Als Sonden können monovalente oder multivalente Agentien eingesetzt werden, die eine Bindung vermehrungsabhängiger Elongationsprodukte und/oder vermehrter Nukleinsäuresequenzen zulassen. Bevorzugt können als Sonden Oligomere oder Polymere verwendet werden, die an die nachzuweisende Nukleinsäure antiparallel binden. Besonders bevorzugt werden als Sonden Oligomere verwendet, die durch Anlagerung zumindest eines Teils der

Sonde an die nachzuweisende Nukleinsäure oder deren Komplement eine im Rahmen der Folgereaktionen stabile Bindung an einen oder beide Stränge der nachzuweisenden Nukleinsäure oder deren Komplement herbeiführen. Die Oligomere können sowohl 5′-3′-Verknüpfungen als auch 5′-5′-Verknüpfungen und/oder 5′-2′-Verknüpfungen sowie zusätzliche Strukturkomponenten, wie z. B. Abstandshalter oder Löslichkeits-vermittelnde Molekülteile, enthalten.

Unter einer Bindesequenz wird bevorzugt die Sequenz von Basen verstanden, die zwischen den äußersten, mit einer bestimmten Nukleinsaure, einem Primer oder einer Sonde über Basen-Basen-Wechselwirkung bindenden Basen einer bestimmten Nukleinsäure, einem Primer oder einer Sonde liegt, einschließlich dieser äußersten Basen.

Die als Sonde eingesetzten Agentien können eine oder mehrere Bindesequenzen D für eine oder mehrere nachzuweisende Nukleinsäuren oder deren Komplement, insbesondere jedoch für einen Strang des Amplifikats enthalten und können Sequenz-Modifikationen, endständige und/oder interne Sequenzergänzungen und/oder sonstige Modifikationen wie z. B. natürliche oder artifizielle Nukleotidanaloga oder Äquivalente davon, nicht funktionelle Nukleotidanaloga oder Äquivalente davon oder Basen-Analoga oder Äquivalente davon enthalten oder methyliert, gecappt oder polyadenyliert oder in sonstiger Weise modifiziert sein, solange die Bindung an einen Strang des Amplifikats möglich ist. Bevorzugte Nukleotid-Äquivalente sind PNA-Monomere bzw. PNA-Oligomere mit oder ohne positive und/oder negative Ladungen im Rückgrat und/oder Abstandshalter. Die als Sonden eingesetzten Agentien können Modifikationen tragen, die entweder direkt oder indirekt über ein weiteres Bindungspaar zur Detektion und/oder Bindung an einen festen Träger geeignet sind. Bevorzugte Sonden-Modifikationen (nachweisbare Gruppen L, immobilisierbare Gruppen I) sind die Fluoreszenzfarbstoffe wie z. B. Fluorescein, Rhodamin, AMCA oder Derivate davon, Bindungspaare Biotin: (Strept-) Avidin, Digoxigenin: Anti-Digoxigenin, Digoxigenin: Anti-Digoxigenin gekoppelt mit Äquorin, Fluorescein: Anti-Fluorescein oder Ruthenium-Chelat oder Äquorin. Besonders bevorzugte Sonden-Modifikation sind Biotin als Fang- oder Detektions-Modifikation, Digoxigenin, Ruthenium- oder Rhenium-Chelat oder Äquorin als Detektions-Modifikationen.

In der vorliegenden Erfindung wird das Teilstück der Nukleinsäure, von welchem eine Vielzahl von Amplifikaten hergestellt werden soll, so ausgewählt, daß es drei Bereiche A, B und C enthält. Die Bereiche A und C sind Bereiche, die so gewählt werden, daß der eine Primer die Sequenz A als Bindesequenz benutzen kann und das Komplement des Bereiches C als Bindesequenz für den anderen Primer dienen kann. Unter einem Komplement wird im Sinne der vorliegenden Erfindung eine zu einer bestimmten anderen Nukleinsäure, z. B. einem Sequenzbereich z. B. eines Amplifikats oder der nachzuweisenden Nukleinsäure im wesentlichen komplementäre Nukleinsäure oder Nukleinsäuresequenz verstanden.

Im wesentlichen komplementär bedeutet, daß die Basenpaarungen so gewählt sind, daß (für den Fall, daß eine Hybridisierung mit einer anderen Nukleinsäure, z. B. einer Sonde oder einem Primer) eine Hybridisierung unter den Testbedingungen noch erfolgen kann bzw. (für den Fall eines Verlängerungsprodukts eines Primers im Verhältnis zu dem eingesetzten Templat) die Nukleinsäure aufgrund einer Primerverlängerungsreaktion unter Verwendung der entsprechenden Nukleinsäure gebildet werden konnte. Im wesentlichen komplementär bedeutet daher oft, daß unter stringenten Bedingungen mehr als 90 % der Basen der betrachteten Nukleinsäure bzw. Sequenz mit der bestimmten Nukleinsäure bzw. Sequenz Basenpaarungen ausbilden.

Die Bereiche A und C sind erfindungsgemäß bevorzugt so lang, daß Bedingungen gefunden werden können, bei denen Primer einer entsprechenden Länge mit den Basen in diesen Bereichen hybridisieren können. Daher sind die Bereiche bevorzugt länger als 8, besonders bevorzugt länger als 12 Nukleotide. Auch bezüglich der Obergrenze der Länge der Bereiche A und C ergeben sich im Sinne der Erfindung bevorzugte Bereiche. Die Bereiche A und C sind jeweils bevorzugt kleiner als 30, besonders bevorzugt kleiner als 20 Nukleotide. Die Länge der Bereiche wird in einem besonderen Aspekt der Erfindung dadurch nach oben begrenzt, daß die Primer in für die nachzuweisende Nukleinsäure unspezifischer Weise daran hybridisieren können sollen. Daher ist die besonders bevorzugte Länge der Bindesequenzen A und C 12 bis 20 Nukleotide. Die Bereiche A und C auf der nachzuweisenden Nukleinsäure überlappen nicht miteinander.

Im Sinne der Erfindung enthalten das Teilstück der nachzuweisenden Nukleinsäure (welches dem Amplikon entspricht) und somit die hieraus gebildeten Amplifikate eine zwischen den

Bereichen A und C gelegene Sequenz B (Fig. 1 bis 3). Diese Sequenz hat eine Länge von ein oder mehr Nukleotiden, bevorzugt mehr als 4, besonders bevorzugt mehr als 8 Nukleotide. Nach oben hin ist die Länge der Sequenz B durch die geforderte Nichtanwesenheit von Nukleotiden, die nicht der Bindesequenz der Sonde zugehören, und in einem besonderen Aspekt der Erfindung durch die gewünschte Unspezifität der Sonde begrenzt. Bevorzugt ist die Sequenz B daher kleiner als 30, besonders bevorzugt kleiner als 15 Nukleotide. Die Sequenz B hat bevorzugt eine Länge von zwischen 4 und 30 Nukleotiden. Besonders bevorzugt ist die Länge der Sequenz B zwischen 8 und 15 Nukleotiden. Diese Sequenz oder das Komplement davon dienen im Sinne der Erfindung mit zur Bindung der Sonde. Die Länge der Sonde wird so gewählt, daß eine Hybridisierung mit dem Amplifikat möglich ist. Die Sequenz der Sonde wird so gewählt, daß sie eine Bindesequenz D enthält, welche durch die mit dem Amplikon Basen-Basen-Wechselwirkung ausbildenden Nukleotide der Sonde, insbesondere den zwischen den äußersten mit korrespondierenden Basen des Amplikons Basenwechselwirkung ausbildenden Nukleotide der Sonde definiert ist. Bevorzugt ist die Sonde im wesentlichen komplementär zu den Nukleotiden der Bindesequenz E des Amplifikats. Die Bindesequenz D bzw. D' kann zu dem Amplifikat zu 100 % komplementär sein, aber auch Mismatche zwischen den äußeren Enden der Bindesequenz aufweisen. Die Sonde kann neben der Bindesequenz weitere Gruppen oder Reste oder auch Nukleinsäurebindende Bereiche enthalten (Fig. 3, V, VI).

Abhängig von der Länge des Bereiches B und der Länge der Bindesequenz D bzw. D' lassen sich unterschiedliche Fallgestaltungen treffen. In einem ersten Fall ist die Bindesequenz D oder D' länger als der Bereich B bzw. B' des Amplikons. In diesem Fall reicht die Bindesequenz D bzw. D' in einen oder beide Bereiche A bzw. A' und C bzw. C' des Amplikons hinein. Diese Fälle sind in Fig. 3, II bis IV gezeigt. In diesen Fällen enthält das Amplifikat zwischen den voneinander wegweisenden Enden der Bereiche A und C keine Nukleotide, die nicht der Bindesequenz E oder den Bindesequenzen der Primer zugehören. Die Bindesequenz D der Sonde überlappt in Fig. 3, II und III mit einer der beiden Bindesequenzen der Primer.

In einem weiteren Fall entspricht die Länge des Bereiches B der Länge des Bereiches D, so daß die Bindesequenz der Sonde nicht mit den Bindesequenzen der Primer überlappt (Fig. 3, I).

Das erfindungsgemäße Verfahren beinhaltet in einer bevorzugten Ausführungsform die Bildung von dreiteiligen Mini-Amplikons (Tripartite-Mini-Amplikon), die neben den Primer und Sonde bindenden Sequenzen keine zusätzlichen Sequenzen aufweisen und somit die Nachteile bei Bildung von längeren Nukleinsäure-Vermehrungsprodukten vermeiden, wobei andererseits die Spezifität des gesamten Amplfikationsformats durch Bindung der Primer, durch Bindung der Sonde und durch Ablauf der targetabhängigen enzymatischen Elongationsreaktion mit allen 4 Nukleotid- bzw. Basenspezifitäten oder natürlicher oder artifizieller Analoga, Isomere oder Äquivalente davon aber sichergestellt wird. Das erfindungsgemäße Vermehrungsverfahren wird daher auch als Mini-Chain-Reaction (MCR) bezeichnet.

Die Vermehrung der nachzuweisenden Nukleinsäuresequenzen oder deren Komplement erfolgt, wenn im folgenden nichts anderes ausgesagt ist, unter Befolgung der dem Fachmann bekannten Reaktionsschritte und Reaktionsbedingungen. Ein Unterschied zu den herkömmlichen Verfahren ist der Einsatz der speziell ausgewählten Primer und Sondensequenzen, welche die Bildung und Vermehrung des Mini-Tripartite-Amplikons erlauben. Wesentlich im Sinne der Erfindung ist die Zugabe von einem oder mehrerer Primer, die an die Primer-Bindesequenzen der nachzuweisenden Nukleinsäure, des Tripartite-Mini-Amplikons beziehungsweise deren Komplemente binden.

Allgemein üblich ist die Zugabe zur Vermehrung befähigender Vermehrungsreagentien. Bevorzugt können als Vermehrungsreagentien enzymatisch aktive Komponenten (z. B. Enzyme) in Kombination mit Elongationssubstraten und geeignete Hilfsreagentien (wie Puffer) verwendet werden. Bevorzugte Elongationssubstrate sind Nukleinsäurebausteine oder natürliche oder artifizielle Analoga oder Isomere oder Äquivalente davon. Als Elongationssubstrate werden Agentien eingesetzt, die zum Aufbau eines Gegenstrangs der nachzuweisenden Nukleinsäure geeignet sind. Bevorzugt werden als Elongationssubstrate Nukleotide eingesetzt. Bevorzugte Nukleotide sind dATP, dGTP, dCTP, dTTP und/oder dUTP, dITP, iso-dGTP, iso-dCTP, deaza-dGTP und ATP, GTP, CTP, UTP und/oder ITP, deazaGTP, iso-GTP, iso-CTP. Äquivalente sind PNA-Monomere bzw. PNA-Oligomere mit oder ohne positive und/oder negative Ladung im Rückgrat und/ oder im Abstandshalter. Die Elongationssubstrate können Modifikationen tragen, die entweder direkt oder indirekt über ein weiteres Bindungspaar zur Detektion und/oder Bindung an einen festen Träger geeignet

sind. Bevorzugte Primer-Modifikationen sind die Fluoreszenzfarbstoffe wie z. B. Fluorescein, Rhodamin, AMCA oder Derivate davon, Bindungspaare Biotin:(Strept-)Avidin, Digoxigenin:Anti-Digoxigenin, Digoxigenein, Anti-Digoxigenin gekoppelt mit Äquorin, Fluorescein: Anti-Fluorescein oder Ruthenium-Chelat oder Äquorin. Besonders bevorzugte Elongationssubstrat-Modifikationen sind Ruthenium- oder Rhenium-Chelat, Digoxigenin, Biotin und/oder Äquorin als Fang- oder Detektions-Modifikation.

Besonders bevorzugt werden im Fall der PCR als Nukleinsäure-Vermehrungsreagentien Mischungen aus meta- oder thermostabilen enzymatischen DNA-Polymerase-Aktivitäten und Mischungen von Desoxyribo- und/oder Ribonukleotiden und geeignete Hilfsreagenzien verwendet, z. B. Taq-DNA Polymerase in Kombination mit dATP, dGTP, dCTP, dTTP und/oder dUTP und Hilfsreagentien wie z. B. Salze und ggf. Detergentien. Besonders bevorzugt werden im Fall der RT-PCR als Vermehrungsreagentien Mischungen, Komplexe oder Domänen aus thermostabilen enzymatischen Reverse Transkriptase- und DNA-Polymerase-Aktivitäten und Mischungen von Desoxyribo- und Ribonukleotiden und geeignete Hilfsreagentien verwendet, z. B. Mischungen aus AMV oder Mo-MLV-Reverse Transkriptase oder Tth-DNA Polymerase in Kombination mit dATP, dGTP, dCTP, dTTP und/oder dUTP und ATP, GTP, CTP, UTP und Hilfsreagentien wie z. B. Salze und ggf. Detergentien.

Bei den thermozyklischen Vermehrungsreaktionen (z. B. PCR, RT-PCR) werden 2- oder 3-phasige Zyklen durchgeführt, bevorzugt 2-phasige Zyklen. Bei den 2-phasigen Zyklen wird die Strangtrennung der Nukleinsäure-Vermehrungsprodukte bei hoher Temperatur, bevorzugt 85 °C - 95 °C, durchgeführt, das gemeinsame Primer-Annealing und Primer-Elongation bei Temperaturen nahe dem Schmelzpunkt zwischen Primer und Elongationsgegenstrang, bevorzugt zwischen 52 °C und 75 °C. Die Strangtrennung erfolgt durch Energiezufuhr und/oder enzymatisch, bevorzugt durch erhöhte Temperatur, Mikrowellen oder das Anlegen einer Spannung über eine Mikroelektrode, besonders bevorzugt durch erhöhte Temperatur. Es werden bis zu 60 Thermozyklen durchgeführt, bevorzugt 32 - 42 Zyklen. Bei den isothermen Vermehrungsreaktionen (z. B. SDA) wird eine kontinuierliche Inkubation bei einer mittleren Temperatur zwischen 30 °C und 70 °C durchgefürt, bevorzugt bei 37 °C - 45 °C mit Enzymmischungen, Komplexen oder

Domänen, bzw. 60 °C - 65 °C mit mesothermen Enzymmischungen, Komplexen oder Domänen, im Fall von SDA mit z. B. mesothermen Restinktionendonukleasen und DNA-Polyermasen, z. B. aus Bacillus stearothermophilus (z. B. BsoBl/Bst DNA-Pol exo); alternative Enyzme sind Ava I und Bca DNA-Pol exo. Es wird bis zu 2 Stunden inkubiert, bevorzugt 30 - 60 Minuten. Die Vermehrungsreaktion kann in Reaktionsgefäßen, Kapillaren oder miniaturisierten Reaktionskammern erfolgen, die auch Teil eines integrierten Reaktionschips sein können.

Bei Verwendung von dUTP anstelle von oder in Ergänzung zu dTTP wird durch die DNAPolymerase-Aktivität dUMP anstelle von dTMP in die vermehrte Nukleinsäuresequenz oder
deren Komplement eingebaut. Dies erlaubt durch Inkubation mit der Enzymaktivität UracilDeglycosylase, bevorzugt mit einer thermolabilen Ausführungsform der Enzymaktivität, bei
der die Renaturierung nach thermischer Denaturierung der Enzymaktivität langsamer
erfolgt, die Fragmentierung des Vermehrungsprodukts und somit seiner Eigenschaft als
Nukleinsäure-Vermehrungseinheit. Die Inkubation des UMP-haltigen Vermehrungsprodukts
kann im Anschluß an die Nukleinsäure-Vermehrungs- und Nachweisreaktion (Sterilisierung)
und/oder vor einer erneuten Nukleinsäure-Vermehrungsreaktion (Carry over-Prävention)
erfolgen.

Alternativ können auch Psoralen und/oder Isopsoralen und Derivate davon und Bestrahlung mit UV-Licht zur funktionellen Inaktivierung des Nukleinsäure-Vermehrungsprodukts verwendet werden.

Im Fall von NASBA und TMA können als Nukleinsäure-Vermehrungsreagentien bevorzugt Mischungen, Komplexe oder Domänen aus enzymatischen Reverse Transkriptase-, DNA-Polymerase, RNase H und RNA-Polymerase und Mischungen von Desoxyribo- und Ribonukleotiden und geeignete Hilfsreagentien verwendet werden, z. B. eine Mischung aus AMV oder Mo-MLV-Reverse Transkriptase, ggf. E. coli DNA-Polymerase, ggf. E. coli RNase H und T7-, T3- oder SP6-codierte RNA-Polymerase oder Mo-MLV Reverse Transkriptase und T7-, T3- oder SP6-RNA-Polymerase oder entsprechende mesostabile Enzyme, z. B. aus Bacillus stearothermophilus in Kombination mit dATP, dGTP, dCTP, dTTP und/oder dUTP und ATP, GTP, CTP, UTP, und Hilfsreagentien wie z. B. Salze und

ggf. Detergentien. Der Reaktionsverlauf der Vermehrungsreaktion bei NASBA, TMA ist isotherm.

Der Nachweis der Bildung der Amplifikate erfolgt mit der Sonde, die an die Bindesequenz B des Amplikons zu einem Hybrid bindet. Die Sonde kann als Fang- oder Detektionssonde fungieren. Die Enden der Bindesequenz der Sonde liegen zwischen den äußeren Enden der Primer-Bindesequenzen. Die Sonde ist somit hybridisierbar mit einem Strang des Amplifikats.

Die Bindung der Sonde kann unter Benutzung bekannter Bedingungen geschehen. Denn bei dem erfindungsgemäßen Verfahren handelt es sich um eine spezielle Ausführungsform der sogenannten Hybridisierungstests, die in ihren Grundzügen dem Fachmann auf dem Gebiet der Nukleinsäurediagnostik bekannt sind. Soweit experimentelle Details im Folgenden nicht ausgeführt sind, wird dazu vollinhaltlich auf "Nucleic acid hybridisation", Herausgeber B.D. Hames und S.J. Higgins, IRL Press, 1986, z. B. in den Kapiteln 1 (Hybridisation Strategy), 3 (Quantitative Analysis of Solution Hybridisation) und 4 (Quantitative Filter Hybridisation), Current Protocols in Molecular Biology, Ed. F.M. Ausubel et al., J. Wiley and Son, 1987, und Molecular Cloning, Ed. J. Sambrook et al., CSH, 1989, Bezug genommen. Zu den bekannten Methoden gehört auch die chemische Synthese von modifizierten und unmodifizierten Oligonukleotiden und die Auswahl von Hybridisierungsbedingungen, durch welche eine Spezifität erreicht werden kann, die unter anderem vom Ausmaß der Homologie zwischen den zu hybridisierenden Nukleinsäuren, deren GC-Gehalt und deren Länge abhängt.

Hierzu wird, wenn die Fangsonde (in geschützter Form) nicht schon vorher zugegeben wurde, die Sonde zu der Reaktionsmischung nach der Vermehrungsreaktion, bevorzugt in Form einer Lösung, zugegeben. Dabei werden Reagenzbedingungen eingestellt, die eine Hybridisierung der Sonde mit einem Amplifikat erlauben.

Die Bindung zwischen der vermehrten Nukleinsäuresequenz des Amplikons und/oder dessen Komplement und der Sonde erfolgt bevorzugt bei einer konstanten Temperatur zwischen 20 °C und 75 °C, bevorzugt 0 °C - 30 °C, besonders bevorzugt um 0 °C - 15 °C unterhalb der Schmelztemperatur des Bindekomplexes. Die Inkubationszeit beträgt bis zu 4 Stunden, bevorzugt 15 - 120 Minuten, besonders bevorzugt 30 - 60 Minuten. Die Bin-

dung mit dem Amplifikat und/oder dessen Komplement erfolgt mit oder ohne vorausgehenden Denaturierungsschritt. Die Reaktionsführung ohne vorausgehenden Denaturierungsschritt erfolgt bevorzugt mit PNA-Oligomeren mit oder ohne negative und/oder positive Ladungen im Rückgrat und/oder im Abstandshalter bei niedrigen Salzkonzentrationen.

Bei Verwendung mehrerer Sonden oder multifunktionaler Sonden oder Sonden, die mehrere Bindesequenzen für Amplifikate verschiedener nachzuweisenden Nukleinsäuren oder deren Komplemente aufweisen, können mehrere unterschiedliche Amplifikate oder deren Komplemente gebunden werden. Dabei erlaubt die Bildung von Tripartite-Mini-Amplikons bevorzugt ähnlicher Länge, besonders bevorzugt solcher Tripartite-Mini-Amplikons gleicher Länge, bei der Nukleinsäurevermehrung die Einstellung vereinheitlichter Inkubationsbedingungen für die Bildung der unterschiedlichen Bindekomplexe. Dies erlaubt den parallelen und/oder sequentiellen Nachweis mehrerer Nukleinsäuresequenzen im Rahmen von Multiplex-Verfahren. Unter einem Multiplex-Amplifikationsverfahren wird meist ein Verfahren verstanden, bei dem entweder unterschiedliche Sequenzen auf einer Nukleinsäure (z. B. unterschiedliche Regionen eines Gens) oder aber unterschiedliche Sequenzen auf unterschiedlichen Nukleinsäuren, z. B. aus unterschiedlichen Organismen, z. B. unterschiedlichen Viren, gleichzeitig in einer Amplifikationsmischung vermehrt werden. Solche Verfahren stellen hohe Anforderungen an die Reaktionsbedingungen, da für eine zuverlässige Auswertung die Amplifikationen für die unterschiedlichen Sequenzen eine ähnliche Amplifikations-Effizienz haben müssen. Einen der Einflußfaktoren für unterschiedliche Effizienz auszuräumen, ist Gegenstand der vorligenden Erfindung. Dazu unterscheiden sich die Ampliconlängen bevorzugt um nicht mehr als 20 %, besonders bevorzugt um nicht mehr als 5 Nukleotide.

In einer besonderen Ausführungsform des erfindungsgemäßen Multiplexverfahrens werden Amplicons der verschiedenen Sequenzen hergestellt und anschließend die Summe der gebildeten Amplicons bestimmt. Dabei wird bevorzugt ein Nachweisverfahren eingesetzt, bei dem eine Markierung für alle Nachweise verwendet werden kann; so können beispielsweise alle Sonden für die einzelnen Amplifikate gleich markiert sein, z. B. mit dem gleichen Ruthenium-Komplex. Dieses Vorgehen ist insbesondere für Tests in Proben aus Blutbanken vorteilhaft, da es bei der weiteren Verwendbarkeit der Proben für Blutspenden nicht auf die Art einer Infektion ankommt, sondern die Probe schon dann nicht mehr als Blutspende-

material in Frage kommt, wenn irgendeine getestete Infektion (z. B. HIV oder HBV) vorliegt.

Bei den Multiplex-Amplifikationsverfahren unterscheidet man zwischen echten und unechten Multiplex-Verfahren. Bei unechten Verfahren werden die Primer aus stark konservierten Regionen der Analytnukleinsäuren ausgewählt, derart, daß mit dem einen Set von
(2) Primern alle nachzuweisenden Nukleinsäuresequenzen amplifiziert werden. Bei echten
Multiplex-Verfahren wird ein Gemisch von mehr als 2 Primern eingesetzt, von denen
mindestens 2 eine unterschiedliche Selektivität haben. Einer oder mehrere der Primer
können für alle oder ein Unterset von nachzuweisenden Nukleinsäuren spezifisch sein.
Dieses Verfahren ist insbesondere dann vorzuziehen, wenn wenig verwandte Sequenzen
nebeneinander amplifiziert werden sollen.

Mit Multiplex-Verfahren können verschiedenste Kombinationen von nachzuweisenden Nukleinsäuresequenzen nebeneinander amplifiziert werden, z. B. verschiedene Subtypen eines Virus oder Bakterien verschiedener Genera oder Spezies.

Der Nachweis des gebildeten Bindekomplexes zwischen Amplifikat und Sonde kann in für den Fachmann bekannten Verfahren, insbesondere in verschiedenen Ausführungsformen erfolgen, nämlich direkten Nachweisverfahren, wie z. B. mit spektroskopischen oder physikalischen Methoden, durch Sequenzierung oder durch heterogene oder homogene Nachweisformate.

Direkte spektroskopische oder physikalische Verfahren sind z. B. Schmelztemperaturbestimmungen, Anlagerung von interkalierenden oder Nukleinsäure-bindenden Farbstoffen oder Metallatomen oder -partikeln, Massenspektroskopie, Oberflächen-Plasmonresonanz oder Fluoreszenz-gekoppelte Oberflächen-Plasmonresonanz, oder E-wave-Messungen.

Die Sequenzierung des gebundenen Tripartite-Mini-Amplikons kann über Bindung des Primers und anschließende enzymatische Sequenzierung nach Sanger erfolgen. Zur Detektion der Sequenzierungsprodukte ist bevorzugt entweder der Primer markiert oder die Kettenabbruchreagentien. Die Sequenzierungsprodukte können auch über Massenspektroskopie nachgewiesen werden. Bei Zugabe lediglich limitierter Nukleotidarten ent-

sprechend den flankierenden Nukleotiden am Primerende ist eine Minisequenzierung möglich, was besonders für die Analyse von Polymorphismen von Vorteil ist.

Bei den heterogenen Nachweisverfahren kann die Sonde abhängig von der angebrachten Modifikation entweder als Fangsonde oder als Detektorsonde verwendet werden. Bei Verwendung mehrerer Sonden sind Multiplexformate realisierbar.

Bei Verwendung der Sonde als Fangsonde kann die Sonde entweder an dem festen Träger kovalent oder über ein Bindungspaar vorgebunden sein und die Bildung des Binde-

komplexes zwischen Amplifikat und der Sonde erfolgt auf dem festen Träger. Bei dieser Ausführungsform können neben festen Trägern, die eine Sondenart enthalten, auch feste Träger realisiert werden, die mehrere bzw. eine Vielzahl von Sondenarten enthalten, wie z. B. Sonden-Perlen bzw. Partikeln (sogenannte beads), Sonden-Teststreifen, Sonden-Panels oder Sonden-Arrays auf festen Trägern oder miniaturisierte Chips, die wiederum auch Teil von integrierten Reaktionschips sein können. Diese trägergebundenen Nachweissysteme sind besonders geeignet für Multiplexformate. In einer bevorzugten Ausführungsform wird der Komplex zwischen Amplifikat und Fangsonde in Lösung erst vorgebildet und anschließend auf den festen Träger aufgebracht. Hierzu enthält das Amplikon bevorzugt eine immobilisierbare Gruppe I, die an eine an einer Festphase befindlichen Gruppe R binden kann.

Die Art der Festphase richtet sich nach der zur Immobilisierung befähigenden Gruppe I. Bevorzugt weist sie eine immobilisierende Gruppe R auf, die eine bindende Wechselwirkung mit I eingehen kann. Ist die immobilisierbare Gruppe beispielsweise ein Hapten, dann kann eine Festphase verwendet werden, die an ihrer Oberfläche Antikörper gegen dieses Hapten aufweist. Ist die immobilisierbare Gruppe ein Vitamin, wie z. B. Biotin, dann kann die Festphase bindende Proteine wie Avidin oder Streptavidin immobilisiert enthalten. Besonders bevorzugte Reste I und R sind Biotin und Streptavidin. Die Immobilisierung über eine Gruppe an der modifizierten Nukleinsäure ist besonders vorteilhaft, da sie unter milderen Bedingungen stattfinden kann als beispielsweise Hybridisierungsreaktionen. Bevorzugt wird zur Immobilisierung der gebildeten Nukleinsäuren die Reaktionsmischung vor, während oder nach Bildung der Nukleinsäurehybride in ein Gefäß gefüllt, welches an seiner Oberfläche mit der immobilisierbaren Gruppe reagieren kann. Es ist möglich, eine Festphase

verwenden, auf welche die Reaktionsmischung aufgegeben wird. Ebenso ist die Verwendung von Perlen, sogenannten beads - z. B. Magnetpartikeln oder Latex-Partikeln - möglich. Das Gefäß ist bevorzugt eine Küvette, ein Röhrchen oder eine Mikrotiterplatte. Die feste Phase sollte mindestens so viele Bindungsstellen für die immobilisierbare Gruppe der Sonde haben wie Nukleinsäurehybride und damit nachzuweisende Nukleinsäuren vorhanden sind. Die Herstellung einer bevorzugten festen Phase ist in der EP-A- 0 344 578 beschrieben, auf welche vollinhaltlich Bezug genommen wird.

Für die heterogenen Nachweisreaktionen wird nach der Inkubationszeit, während der die Immobilisierungsreaktion stattfindet, die flüssige Phase aus dem Gefäß, dem porösen Material oder den pelletierten beads entfernt. Die Festphase kann anschließend mit einem geeigneten Puffer gewaschen werden, da die Bindung der Hybride an der Festphase sehr effizient ist. Die Detektion der gebundenen Bindekomplexe kann über die während der Nukleinsäuresequenz-Vermehrungsreaktion eingebaute Detektionsmodifikation im Primer und/oder Nukleotid mit Hilfe von bekannten direkten oder indirekten Nachweisarten für diese Modifikationen nach dem Stand der Technik erfolgen.

Bei direkt nachweisbaren Gruppen, beispielsweise Fluoreszenzlabeln, kann die Menge an Markierung fluorometrisch bestimmt werden. Ist die nachweisbare Gruppe indirekt nachweisbar z. B. ein Hapten, so wird die modifizierte Nukleinsäure bevorzugt mit einem markierten Antikörper gegen das Hapten umgesetzt, wie analog in der EP-A-0 324 474 beschrieben. Die Markierung am Antikörper kann beispielsweise eine Farb- oder Fluoreszenzmarkierung oder bevorzugt eine Enzymmarkierung, wie β-Galactosidase, alkalische Phosphatase oder Peroxidase, sein. Im Falle der Enzymmarkierung wird die Menge an Nukleinsäure über die meist photometrische, chemoluminometrische oder fluorometrische Verfolgung einer Reaktion des Enzyms mit einem chromogenen, chemoluminogenen oder fluorogenen Substrat gemessen. Das Meßsignal ist ein Maß für die Menge ursprünglich vorhandener nachzuweisender Nukleinsäure und somit ggf. an nachzuweisenden Organismen.

In einer bevorzugten Ausführungsform werden die vermehrten Tripartite-Mini-Amplikons durch Nukleinsäure-Fangsonden oder PNA-Fangsonden gebunden, die kovalent auf Mikro-

titerplatten oder Magnetpartikeln immobilisiert sind. Die Detektion erfolgt in dieser bevorzugten Ausführungsform nach Bildung des Bindekomplexes und Waschen über eine Biotin-Modifikation eines oder beider Primer im Amplifikat durch Anlagerung von Avidin-Meerrettich-Peroxydase und einer Mischung aus TMB/TMF-Farbsubstraten.

In einer weiteren bevorzugten Ausführungsform erfolgt der Einbau einer Digoxigenin-Detektionsmarkierung über eines der Nukleotide der Nukleinsäure-Vermehrungsreaktion. Der Bindekomplex zwischen Amplifikat und einer Biotin-markierten Nukleinsäure-Fangsonde oder PNA-Fangsonde wird auf die Oberfläche eines Streptavidin-beschichteten Reaktionsgefäßes gebunden. Nach Waschen erfolgt Anlagerung von Anti-Digoxigenin-Meerettich-Peroxidase-Antikörperkonjugaten und Farbnachweis mit dem Farbsubstrat ABTS.

In einer weiteren bevorzugten Ausführungsform erfolgt der Nachweis einer oder mehrerer Amplifikate nach Bindung durch eine oder mehrere verschiedene kovalent (z. B. Anthrachinon: UV-Licht-Kopplung oder Gold-Oberfläche: SH-Kopplung) oder koordinativ (z. B. Biotin: Streptavidin) gebundene Fangsonden, durch Waschen und durch Detektion eines Fluoreszenz- oder Chemilumineszenz-Signals, das entweder direkt durch Primärlicht oder über Oberflächenplasmonresonanz oder E-wave angeregt wurde, mit Hilfe von z. B. CCD-Kameras oder konfokalen Fluoreszenz-Scannern.

Bei Verwendung der Sonde als Detektionssonde kann die Sonde entweder gleichzeitig, vor oder nach Bindung des Amplifikats an die feste Phase binden. In diesem Fall erfolgt die Bindung des Amplifikats an die feste Phase über Modifikationen, die über einen oder beide Primer oder über die eingebauten Nukleotide eingebaut wurden. Anschließend wird gewaschen und detektiert.

In einer weiteren Ausführungsform wird der Komplex zwischen Amplifikat und Detektionssonde in Lösung erst vorgebildet und anschließend auf den festen Träger aufgebracht und gewaschen. Die Detektion der Festphase-gebundenen Bindekomplexe zwischen Amplifikat und Detektionssonde erfolgt über die Detektionsmodifikation der Sonde mit Hilfe von bekannten direkten oder indirekten Nachweisarten für diese Modifikationen nach dem Stand der Technik.

In einer bevorzugten Ausführungsform werden an die Amplifikate, die über einen oder beide Primer Biotin-Modifikationen enthalten, Ruthenium-Chelat-haltige Detektionssonden gebunden. Die Detektionssonden sind entweder Ruthenium-markierte Oligonukleotide oder Ruthenium-markierte PNA-Oligomere. Nach Bildung des Bindekomplexes zwischen Ruthenium-markierter Detektionssonde und Biotin-markiertem Amplifikat erfolgt Bindung des Komplexes an Streptavidin-beschichtete Magnetpartikel, Transfer in eine Meßzelle, Anlagerung an eine Elektrode innerhalb der Meßzelle und Erzeugung und Messung eines Elektochemilumineszenz-Signals.

In einer weiteren bevorzugten Ausführungsform ist die Detektions-Sonde mit Digoxigenin markiert. Nach Bildung des Bindekomplexes zwischen Digoxigenin-markierter Detektionssonde und Biotin-markiertem Amplifikat erfolgt die Bindung des Komplexes durch eine Fangsonde, die kovalent auf einer Mikrotiterplatte oder auf Magnetpartikeln immobilisiert ist. Die Detektion erfolgt in dieser bevorzugten Ausführungsform nach Bildung des Bindekomplexes und Waschen über eine Biotin-Modifikation eines oder beider Primer im Tripartite-Mini-Amplikon durch Anlagerung von Avidin-Meerrettich-Peroxidase und einer Mischung aus TMB/TMF-Farbsubstraten.

Bei der Verwendung von homogenen Reaktionsformaten werden Detektionssonden verwendet, die entweder gequenchte Fluoreszenzmarkierungen, interne Basensubstitutionen mit Doppelstrang-Komplex-aktivierbaren Fluoreszenzfarbstoffen oder endständige Energie-Donatoren oder -Akzeptoren (in Kombination mit entsprechenden Energie-Donatoren oder -Akzeptoren an benachbarten Primer- oder -E-Sondenenden: Energy-Transfer-Komplexe) tragen. In diesen Fällen wird die Detektionssonde schon während der Nukleinsäure-Vermehrung zugegeben. Im Fall der gequenchten Fluoreszenzmarkierungen erfolgt eine Fluoreszenzaktivierung durch Dequenching nach Bindung der Detektions-Sonde an das entstehende Tripartite-Mini-Amplikon und exonukleolytischer Abbau und Freisetzung des Fluoreszenzfarbstoff-modifizierten Nukleotids. Im Fall der internen Basensubstitutionen erfolgt die Erzeugung des Fluoreszenzsignals durch Ausbildung des Bindekomplexes zwischen Detektionssonde und dem sich bildenden Tripartite-Mini-Amplikon. Im Fall der Energie-Transfer-Komplexe erfolgt die Bildung eines Fluoreszenzsignals durch benachbarte Anlagerung des markierten Primers und der markierten Sonde. Die Messung der resultierenden Fluoreszenzsignale erfolgt jeweils bevorzugt durch Real time-Messungen.

In einer besonderen Ausführungsform werden bei den gequenchten Detektorsonden Fluorescein und Rhodamin oder Derivate davon als Fluoreszenz- und Quencher-Komponenten verwendet. In einer weiteren Ausführungsform werden bei den gequenchten Detektorsonden Ruthenium- oder Rhenium-Chelate und Quinone oder Derivate davon als Elektrochemilumineszenz- und Quencher-Komponenten verwendet. In einer weiteren besonderen Ausführungsform werden als interne Basensubstituenten der Detektorsonde Anthrachinon oder Derivate davon verwendet. In einer weiteren Ausführungsform werden Cy-5 und Fluorescein oder Derivate davon als Energie-Transfer-Komponenten verwendet. In einer speziellen Ausführungsform werden Cyanin-Farbstoffe wie z. B. SYBR Green oder Acridin-Farbstoffe verwendet.

Besonders bevorzugt im Sinne dieses ersten Aspekts der Erfindung sind solche Ausführungsformen, bei denen mindestens eine der Bindesequenzen der Primer und der Sonde nicht für die nachzuweisende Nukleinsäure spezifisch ist. Spezifisch im Sinne der Erfindung ist eine Sequenz dann, wenn sie aufgrund einer fortlaufenden Sequenz von Nukleobasen prinzipiell in der Lage wäre, unter stringenten Bedingungen nur mit einer Sequenz auf der nachzuweisenden Nukleinsäure, nicht jedoch mit Nukleinsäuren anderer, nicht nachzuweisender Organismen oder Spezies oder Gruppen von Organismen zu binden. Bevorzugt ist eine Sequenz dann nicht für eine Sequenz spezifisch, wenn sie unter den Bedingungen, welche für die Durchführung des Nachweises eingestellt werden, mit anderen Nukleinsäuren hybridisiert.

Unabhängig von dem bisher beschriebenen ersten Aspekt der Erfindung ist ein übergeordneter Gegenstand der Erfindung ein Verfahren zum spezifischen Nachweis einer Nukleinsäure umfassend die Schritte Herstellung einer Vielzahl von Amplifikaten eines Teilstücks dieser Nukleinsäure mit Hilfe mindestens zweier Primer, Inkontaktbringen der Amplifikate mit einer Sonde, welche an das Amplifikat binden kann, und Nachweis der Bildung eines Hybrides aus dem Strang des Amplifikates und der Sonde, dadurch gekennzeichnet, daß mindestens einer der Primer nicht für die nachzuweisende Nukleinsäure spezifisch ist. In diesem Fall kann der Bereich B Nukleotide enthalten, welche nicht der Bindesequenz E zugehören. Auch hier sind jedoch Überlappungen der Bindesequenzen der Primer und der Sonde möglich.

Homologien zu anderen Genomen (Sequenzen) lassen sich mit Hilfe einer definierten Ausgangssequenz identifizieren. Verwendet wird eine z. B. über das Internet für jeden zugängliche Suchmaschine mit Namen "BLAST" (Basis Local Alignment Search Tool) (Homepage-Addresse: >http://www.ncbi.nlm.nih.gov/BLAST/<).

Diese ermöglicht den Zugriff auf diverse andere Sequenz- und Proteindatenbanken, von denen als am wesentlichsten zu benennen sind:

GenBank, EMBL, DDJB, PDB, PIR und Swiss-Prot.

Es werden auch BLASTN-Verfahren gemäß Altschul et al. (1990) J. Mol. Biol. 215: 403-410 im Rahmen von UWGCG Suchverfahren verwendet.

Die Suchverfahren werden auch auf Sequenzdatenbanken wie z. B. die EMBL-Sequenzdatenbanken, bevorzugt auch virale Sequenzdatenbanken wie z. B. em-vrl angewandt.

Das Blast-Programm bietet dem Anwender zahlreiche Anpassungsmöglichkeiten, um eine individuelle Suche ausführen zu können, d. h. solche Sequenzen zu identifizieren, die für einen oder mehrere Analyten spezifisch sind, oder die eben nicht spezifisch sind, d. h. auch in anderen Organismen vorkommen oder nicht. Hierzu wird auch verwiesen auf Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers, David J. Lipman (1990). Basic local alignment search tool. J. Mol. Biol. 403-410. Erstaunlicherweise ergibt sich nämlich die Selektivität des Nachweisverfahrens nicht allein aus der Selektivität der einzelnen Primer für ein spezifisches Target, sondern aus der kumulierten Selektivität des Gesamtsystems. So können sogar zwei Primer oder zwei Primer und eine Sonde, einzeln völlig unselektiv sein, d. h. einzeln mit einer Vielzahl von Targets hybridisieren; dadurch, daß sich die Selektivitäten der einzelnen Primer und Sonde (nur) in der nachzuweisenden Nukleinsäure überlagern, ist eine Gesamtspezifität gegeben. Dadurch, daß man auf die Selektivität der Primer aber bei der Auswahl der zu amplifizierenden und nachzuweisenden Nukleinsäure nicht so sehr festgelegt ist, ist es viel besser möglich, für unterschiedliche Targets kurze Amplicons zu lokalisieren, die in ihrer Länge vollständig oder weitgehend (d. h. über 95 %) übereinstimmen. Dies macht Simultan-Amplifikationen und -Hybridisierungen (wie im Falle von Nukleinsäuresondenarrays) besser realisierbar und reproduzierbar.

Ebenfalls Gegenstand der Erfindung ist ein Reagenzkit zur Durchführung dieses Verfahrens. Dieses enthält die Primer und bevorzugt auch eine Nachweissonde. Es kann jedoch auch weitere Reagenzien, wie Puffer und Enzyme, z. B. eine Polymerase, enthalten.

In einer weiteren Ausführungsform enthalten die Primer an ihrem 5'-Ende weitere Sequenzen. Diese Sequenzen sind zwischen 1 und 100, besonders bevorzugt zwischen 5 und 80 Nukleotide lang. Bislang war es nicht üblich, Oligonukleotide mit einer Länge von mehr als 40 nt als Primer zu wählen. In einer Ausführungsform werden diese Sequenzen so gewählt, daß sie gerade nicht mit den an die Primerbindungsstelle auf der nachzuweisenden, abereiner anderen, nicht nachzuweisenden, Nukleinsäure hybridisieren können. Es ist sogar möglich, diese so zu wählen, daß sie komplementär zu den Sequenzen sind, die an die Bindungsstelle desselben Primers auf einer nicht nachzuweisenden Nukleinsäure anschließen. Wenn also der Primer auch an ein humanes Genom binden kann, können die Sequenzen auch human sein. Es ist möglich, einen, aber auch beide der Primer entsprechend zu modifizieren. Die zusätzlichen Sequenzen sind nicht so lang, daß sie eine Hybridisierung der Primer mit den Bindesequenzen auf dem HCV-Genom verhindern. Die zusätzlichen Sequenzen können auch so gewählt werden, daß sie fester mit kurzen Teilsequenzen der Primer in der Primerbindungsstelle hybridisieren, als diese mit anderen Sequenzen in der Primerbindungsstelle binden. So können Sekundärstrukturen innerhalb der Primer aufgelöst und die Bindefähigkeit der Primer mit der nachzuweisenden Nukleinsäure verbessert werden.

In einer weiteren Ausführungsform sind das 5'-Ende des einen Primers und das 5'-Ende des anderen Primers miteinander kovalent verknüpft.

Hierbei sind zwei unterschiedliche Ausführungsformen denkbar. In einer ersten Ausführungsform sind der forward- und der reverse-Primer für die Amplifikation des gleichen Analyten miteinander verknüpft. Das Ergebnis der Amplifikation sind somit eine Vielzahl von Konstrukten, bei denen zwei unterschiedliche Amplifikatstränge miteinander kovalent verknüpft sind. Als Nebenprodukt, welches jedoch ebenfalls Grundlage des Nachweises sein kann, werden Produkte gebildet, bei denen nur einer der beiden Primer(teile) verlängert ist.

In einer zweiten Ausführungsform sind die beiden miteinander verknüpften Primer für die Amplifikation unterschiedlicher nachzuweisender Nukleinsäuren (z. B. einer für HBV, der

andere für HGV) bestimmt. Zur Amplifikation müssen dann noch die entsprechenden reverse- bzw. forward-Primer zugesetzt werden. Dabei können die 5'-Enden der Primersequenzen direkt oder über einen Linker miteinander verknüpft sein. Als Linker kommt jede Art von Molekül in Frage, da es auf die Einhaltung eines bestimmten, auf den Abstand der Basen auf einer nachzuweisenden Nukleinsäure nicht ankommt. Der Linker ist jedoch bevorzugt nicht so hydrophob, daß die Löslichkeit des Konjugats zu sehr beeinträchtigt wird. Bevorzugt enthält der Linker einen oder mehrere Nukleotidsequenzen, die nicht direkt mit den korrespondierenen oder anderen Sequenzen auf der den nachzuweisenden Nukleinsäure(n) komplementär sind. Besonders bevorzugt ist mindestens eine der Sequenzen eine, welche die Bedingungen für die zusätzlichen Sequenzen der oben beschriebenen (monofunktionellen) Primer erfüllen.

Auch diese (bifunktionellen) Primerkonjugate eignen sich also für multiple (mindestens Duplex) Bestimmungen von Analytnukleinsäuren. Diese Konjugate können prinzipiell auf bekannte Weise hergestellt werden, wenngleich es bevorzugt ist, zunächst die noch geschützten Einzelsequenzen chemisch zu synthetitsieren, dann eines der Enden der einen Einzelsequenz zu aktivieren und eines der Enden der anderen Einzelsequenz zu entschützen. Die Kopplungsreaktion kann durch die Aktivierungsgruppe relativ selbsttätit ablaufen oder durch Aktivierungsreagenzien beschleunigt werden.

Besonders bevorzugt wird das Konjugat aber durch durchgehende sequentielle Verlängerung an einer Festphase, ohne zwischenzeitliche Ablösung hiervon, chemisch synthetisiert. Dazu kann zunächst die erste Teilsequenz wie üblich mit 3'-Phosphoramiditen synthetisiert werden. Ab der Verknüpfungsstelle (5'-5'-Link) wird anstelle des 3'-Phosphoramidits ein 5'-Phosphoramidit eingesetzt. Dies führt zu einer Umkehr der Polarität innerhalb des Konjugats. Die Reaktionssequenz ist beispielhaft in FIG 5, die zugehörigen Reagenzien in FIG 6 gezeigt.

Bevorzugt binden die Primer an die Bindesequenzen A bzw C', wie oben beschrieben, und die Sonde an einen zwischen den Enden der Bindesequenzen A und C' gelegenen Bereich B oder das Komplement davon.

Auch bei der Verwendung von mindestens einer Sequenz aus den 3 Sequenzbereichen der beiden Primer und der Sonde, die nicht spezifisch für die nachzuweisende Nukleinsäure ist,

bleibt die Gesamtspezifität des Nachweisverfahrens erhalten. Ist eine der Primersequenzen nicht spezifisch für die nachzuweisende Nukleinsäure, sondern bindet auch an andere Nukleinsäuren, kann kein spezifisches Nukleinsäure-Vermehrungsprodukt auf der anderen Nukleinsäure gebildet werden, da die zweite Primerbindungssequenz fehlt. Unspezifische Nukleinsäure-Vermehrungsprodukte auf der anderen Nukleinsäure werden nicht detektiert, da die spezifische Bindungssequenz für die Sonde fehlt. Ist auch die zweite Primersequenz nicht spezifisch für die nachzuweisende Nukleinsäure, kann nur dann ein spezifisches Nukleinsäure-Vermehrungsprodukt auf der anderen Nukleinsäure gebildet werden, wenn beide Primerbindungssequenzen in der gleichen Nukleinsäure-Vermehrungseinheit sind. Dieses Nukleinsäure-Vermehrungsprodukt wird ebenfalls nicht detektiert, da die spezifische Bindungssequenz für die Sonde fehlt. Ist die Sondensequenz nicht spezifisch für die nachzuweisende Nukleinsäure, jedoch die beiden Primer spezifisch, werden keine Nukleinsäure-Vermehrungsprodukte der anderen Nukleinsäure gebildet. Ist zusätzlich zur Sondensequenz auch eine der beiden Primersequenzen nicht spezifisch für die nachzuweisende Nukleinsäure, kann wiederum kein spezifisches Nukleinsäure-Vermehrungsprodukt der anderen Nukleinsäure gebildet werden. Unspezifische Nukleinsäure-Vermehrungsprodukte der anderen Nukleinsäure, die möglicherweise gebildet werden, enthalten andere Sequenzen im Sondenbindungsbereich und werden daher nicht detektiert. Sind alle drei Bindungssequenzen für die beiden Primer und die Sonde nicht spezifisch für die nachzuweisende Nukleinsäure, wird kein Nukleinsäure-Vermehrungsprodukt gebildet, wenn mindestens eine der beiden Primersequenzen nicht in einer Nukleinsäure-Vermehrungseinheit der anderen Nukleinsäure liegt. Liegt die Sondensequenz nicht in der Nukleinsäure-Vermehrungseinheit der beiden Primersequenzen für die andere Nukleinsäure, kann zwar ein spezifisches Nukleinsäure-Vermehrungsprodukt der anderen Nukleinsäure gebildet, aber nicht detektiert werden. Der einzige Fall, daß ein spezifisches Nukleinsäure-Vermehrungsprodukt der anderen Nukleinsäure gebildet und detektiert werden kann, ist, wenn alle drei Sequenzen innerhalb eines Nukleinsäure-Vermehrungsbereichs liegen. Dies kann jedoch durch entsprechende Sequenzauswahl der Nukleinsäure-Vermehrungseinheit vermieden werden, z. B. indem die Primerhybridisierungsstellen nicht gleichzeitig aus demselben Locus desselben nicht nachzuweisenden Organismus gewählt werden.

In einer weiteren Ausführungsform findet die Herstellung der Amplifikate unter Einsatz von Nukleotiden, besonders bevorzugt Mononukleotiden, welche jeweils zu A, G, C und/oder T komplementär sind, statt. Bevorzugt enthält der Bereich B bzw. B' der nachzuweisenden Nukleinsäure alle 4 natürlichen Nukleobasen.

In einer weiteren Ausführungsform des neuartigen Verfahrens können Teilkomponenten (Primer oder Sonden) der verschiedenen Primer-Sonden-Kombinationen für die verschiedenen nachzuweisenden Nukleinsäuren identisch sein. Hierdurch wird die Bestimmung mehrerer Nukleinsäuretargets, z. B. für unterschiedliche Viren wie HBV, HIV und HCV mit einer einzigen Amplifikationsreaktion möglich (Multiplex-Amplifikation). Ein technischer Vorteil des erfindungsgemäßen Verfahrens ist, daß bei Mehrfachbestimmungen einer Probe ein hoher Grad an Übereinstimmung der Meßwerte erreicht wird.

Im Folgenden sollen die beiden Aspekte der vorliegenden Erfindung anhand eines Nachweises für HCV beschrieben werden. Die Nukleinsäuresequenz von HCV ist beispielsweise in EP-B-0 318 216 beschrieben. Die Sequenzen der beteiligten Komponenten sind in Figur 4 gezeigt. Das erfindungsgemäße Verfahren ermöglicht den hochspezifischen und hochsensitiven Nachweis von Virus-Nukleinsäuren wie z. B. HCV-RNA aus der 5'-nichttranslatierten Region des HCV-Genoms in einer Kopienzahl von 10 Kopien pro Test mit einem dynamischen Bereich von 10 5' bedingt durch ein verbessertes Signal-Rausch-Verhältnis. Dies ist insofern überraschend, da bei dem Test Primer und Sonden einsetzbar sind, die ein für den Fachmann nicht bevorzugtes Primer/Sonden-Design aufweisen, nämlich z. B. Sequenzabschnitte, die zur Primer-Dimer-Bildung neigen, oder Basenfehlpaarungen nahe dem 3'-Ende. Die kurze Sonde hat einen Schmelzpunkt nahe der Testtemperatur, so daß der Fachmann keine stabile Bindung der Sonde an das Nukleinsäure-Vermehrungsprodukt erwartet hätte. Bei den bisherigen Tests mit den längeren, fünfteiligen Nukleinsäure-Vermehrungsprodukten wurde eine Spezifitäts- und Sensitivitätserhöhung bisher nicht über eine Verkürzung, sondern vielmehr eher über eine Verlängerung der Primer-Sonden-Sequenzen und/oder des Nukleinsäure-Vermehrungsprodukts mit den signalgebenden Komponenten versucht.

Der Nachweis von HCV-RNA ist überraschenderweise trotz der kurzen vermehrten Sequenz der nachzuweisenden Nukleinsäure auch spezifisch und reproduzierbar in positiven HCV-Plasmaproben möglich, in denen die HCV-RNA nicht sequenzspezifisch vorgereinigt wurde, sondern direkt aus lysierten und über Glasoberflächen aufkonzentrierten Plasmaproben eingesetzt wurde. HCV-negative Plasmaproben ergeben kein Signal. Dies ist insofern überraschend, da das HCV-RNA-Genom sehr labil ist gegenüber Fragmentierung in Plasma-Lysaten. Mit z. B. HIV-Plasmaproben, HBV-Serumproben, Chlamydiaproben aus Urin oder Human-DNA-Proben aus Vollblut, die ebenfalls über Glasoberflächen aufkonzentriert wurden, wird mit den eingesetzten Primern und Sonden ebenfalls kein Signal erhalten.

Das erfindungsgemäße Verfahren kann verwendet werden, um einen oder mehrere der für den Stand der Technik geschilderten Nachteile zu vermeiden oder um einen oder mehrere der folgenden Vorteile zu realisieren. Die PCR-Zyklen können sehr viel kürzer sein. Die Gesamtzeit der Nachweisverfahren kann dadurch verkürzt werden. Die Sensitivität des Nachweises kann erhöht werden, da weniger Kompetition/Verdrängung zwischen dem kurzen Gegenstrang des Amplikons und der Detektorsonde stattfinden kann. Die Spezifität des Nachweises wird erhöht, da der relative Anteil der internen Detektorregion gegenüber der gesamten Amplikonlänge erhöht wird. Die Differenzierbarkeit von Subtypen kann erhöht werden. Der Nachweishintergrund kann gesenkt werden, da kurze Amplika weniger Potential für unspezifische Hybridisierung mit sich bringen. Aus diesem Grund kann das Signal-Rausch-Verhältnis erhöht werden. Die Reproduzierbarkeit der Ergebnisse kann erhöht werden, da kleinere Targetregionen auf RNA-Genomen weniger sensitiv für RNA-Abbau sind. Die Möglichkeiten zur Ausbildung von Sekundärstrukturen werden reduziert.

Die Erfindung wird durch die folgenden Beispiele näher erläutert:

Allgemeines

Alle verwendeten Oligonukleotide sind linear und einzelsträngig.

Beispiel 1

Nachweis von HCV aus menschlichem Blut

a) Probenvorbereitung:

Die RNA-Isolierung aus Plasma erfolgte anhand folgenden Probenvorbereitungsprotokolls:

- 1. Plasma (420 μl) mit 80 μl Proteinase K (25 mg/ml) mischen und einige Sekunden vortexen
- Zugabe von 500 μl Lysepuffer (inkl. 1 μg Carrier-RNA (polyA)/ml): 5,4 M
 Guanidinium-Thiocyanat; 10 mM Harnstoff; 10 mM Tris-HCl; 20 %
 Triton X 100; pH 4,4
- 3. vortexen und anschließend 10 min bei RT schütteln
- 4. Zugabe von 500 μl Isopropanol-MGP (6 mg magnetische Glaspartikel in Isopropanol)
- 5. vortexen und anschließend 20 min bei RT schütteln
- 6. Magnetseparation der MGPs
- 7. Überstand abnehmen und verwerfen
- Zugabe von 750 μl Waschpuffer: 20 mM NaCl; 20 mM Tris-HCl pH 7,5;
 70 % Ethanol
- 9. MGPs auf Vortex resuspendieren und erneute Magnetseparation
- 10. Waschvorgang insgesamt 5mal wiederholen
- 11. Zugabe von 100 µl DEMC-Wasser zur Elution
- 12. 15 min bei 80 °C schütteln
- 13. Magnetseparation

14. 10 µl des Eluats in die RT-PCR einsetzen

b) Klonierung und Präparation des RNA-Standards:

Der Wildtypstandard "pHCV-wt" wurde zunächst durch Amplifikation eines Abschnitts des HCV-Genoms mit den Primern KY80 (5'-gcagaaagcgtctagccatggcgt-3', SEQ.ID.NO.1) und KY78 (5'-ctcgcaagcaccctatcaggcagt-3', SEQ.ID.NO.2) gewonnen und das Amplikon anschließend über eine sog. "blunt-end"-Klonierung in den Vektor pBluescript SK+ kloniert. Nach Vermehrung der bakteriellen Zellen wurde das Plasmid isoliert, durch restriktionsenzymatischen Verdau linearisiert und über eine in-vitro-Transkription das entsprechende RNA-Fragment gewonnen und aufgereinigt.

Die Quantifizierung der RNA erfolgte über photometrische Messung der Absorption bei 260 nm.

Alle hier beschriebenen molekularbiologischen Verfahren können einschlägigen Methodik-Büchern entnommen werden (e.g. Maniatis et al.; Ausubel et al.).

c) RT-PCR assay:

Die Amplifikation erfolgte mit den u.g. Reagentien und nach u.g. Cyclerprotokoll:

Reagentien	Endkonzentration im Mastermix
5 x RT-PCR-Puffer	1 x
MnOAc	2,5 mM
Tth-Polym.	10 u
dNTP-Mix	200 μM (dATP, dCTP, dGTP) / 600 μM (dUTP)
UNG	2u
Primer forw. HC2F	0.3 μM (5'-agtatgtgtgtgtgtgcagcc-3', SEQ.ID.NO.3)
Primer rev. HC1F-bio	0.3 μM (5'biotggctctcccgggagtgg-3', SEQ.ID.NO.4)
	· ·

Die Amplifikation wurde nach folgendem Cyclerprotokoll durchgeführt:

10 min	37 °C	Dekontamination durch UNG
30 min	60 °C	reverse Transkription
1 min	95 °C	Denaturierung

Reagentien		Endkonzentration im Mastermix		
35 Zyklen:		_ • · · · · · · · · · · · · · · · · · ·		
	15 sec	94 °C	Denaturierung	
	20 sec	56 °C	Primer-Annealing und Elongation	
	7 min	72 °C	Elongation	
	hold	50 °C		

d) Detektion:

Die gesamte Detektionreaktion erfolgte vollautomatisiert an einem Elecsys® 1010-Analyse-Automaten (Boehringer Mannheim GmbH). Kurzbeschreibung:

- Entnahme von 10 μl Amplifikat und 35 μl Denaturierungslösung (BM-Id-No. 1469053)
- 2. Inkubation in einem Reaktionsgefäß für 5 min bei 37 °C
- Zugabe von 130 μl Hybridisierungslösung BM-Id-No. 146 9045 versetzt mit
 25 ng/ml Ruthenium-markierter Sonde
- 4. Inkubation für 30 min bei 37 °C
- 5. Zugabe von 35 μl einer Elecsys® SA Magnetbeadlsg. (BM-Id-No. 171 9556)
- 6. Inkubation für 10 min bei 37 °C
- Messung der Elektrochemilumineszenz von 120 μl des Reaktionsgemisches in der Elecsys® 1010-Meßzelle

Zur Hybridisierung wurden zwei unterschiedliche Ruthenium-gelabelte Sonden verwendet:

PNA-Sonde: Ru-(Ser)₂-TCCAGGACCC-Ser-Gly

DNA-Sonde: 5'-Ru-CTCCAGGACCCC-3', SEQ.ID.NO.5

Ermittlung der analytischen Sensitivität anhand einer RNA-Standard-Verdünnungsreihe

Amplifiziert wurden in Doppelbestimmungen 10¹, 10², 10³, 10⁴ und 10⁵ Kopien HCV-RNA-Standard. Als Kontrollen dienten ein HCV-negatives Plasma, ein HCV-positives Plasma (nach Probenvorbereitung) und Wasser. Nach Amplifikation wurden alle Proben gemessen (ECL-Detektion, Elecsys® 1010).

Ergebnis (Einheiten x 100):

Template	PNA-	Sonde	DNA-Sonde	
	1.Best	2.Best.	1.Best	2.Best.
RNA-Std. 10 ⁵ Kopien	30608	30186	16791	15772
RNA-Std. 10 ⁴ Kopien	17895	15737	8977	7718
RNA-Std. 10 ³ Kopien	4137	4345	1911	1931
RNA-Std. 10 ² Kopien	280	163	146	86
RNA-Std. 10 ¹ Kopien	95	76	47	37
HCV-positives Plasma	26658	26262	14996	14552
HCV-negatives Plasma	93	98	49	48
Wasser	61	45	19	15

- Die Verwendung der Primer HC2F/HC1F-bio führt zu einer sehr guten Amplifikation in der RT-PCR, gemessen an dem Signalniveau: Hierbei wird der gesamte Detektionsbereich des Elecsys® ausgenutzt (ca. 5 log-Stufen).
- Es erfolgt eine sehr gute Signalabstufung innerhalb der Verdünnungsreihe
- Der Background, gemessen an HCV-negativem Plasma und Wasser, ist relativ gering
- Es ist sowohl die Verwendung von PNA als auch DNA als Sonde möglich

Überprüfung der HCV-Assay-Spezifität

Hierzu wurden unterschiedliche Ausgangsnukleinsäuren (human-genomische DNA; HIV-RNA, HBV-DNA, Chlamydia-DNA) mit den o.g. Primern und Sonden getestet. Als Positiv-Kontrolle diente HCV-Plasma und als Negativ-Kontrolle HCV-Negativ-Plasma sowie Wasser.

Ergebnis (Einheiten x 100):

Template	PNA-Sonde		DNA-Sonde	
	1.Best	2.Best.	1.Best	2.Best.
Human-genomische DNA aus Vollblut	52	45	41	56
HIV-positives Plasma	43	60	39	33
HBV-positives Plasma	53	40	25	27
Chlamydia-positiver Urin	43	34	19	17
HCV-positives Plasma	11543	10644	6900	6348
HCV-negatives Plasma	65	67	45	40
Wasser	29	25	15	15

 Beide verwendeten Sonden (PNA, DNA) ergeben nur mit ihrem zugehörigen Analyten ein Signal in der ECL-Messung. Das bedeutet: Keine detektierbaren unspezifischen Amplifikationen mit den verwendeten Primern und Sonden.

Überprüfung der Sonden-Spezifität

Für dieses Experiment wurden unterschiedliche Amplifikate anderer Analyten mit den jeweiligen spezifischen Primern hergestellt und dann gegen die o.g. PNA- und DNA-Sonden hybridisiert. Die Kontrolle der erfolgten Amplifikationen erfolgte mit der jeweiligen zugehörigen Analyt-Sonde.

Ergebnis (Einhelten x 100): (jeweils Mittelwert aus Doppelbestimmung)

Template	PNA-Sonde für	DNA-Sonde	HIV-Sonde	HBV-	Chlamydia-
	HCV	für HCV		Sonde	Sonde
HIV	13	6	11908	nd	nd
HBV	13	13	nd	1384	nd
Chlamydia	10	10	nd	nd	3842
HCV	10132	9345	nd	nd	nd
Wasser	13	9	nd	nd	nd

- Die Kontrollreaktionen (HIV, HBV, Chlamydia) ergeben den deutlichen Nachweis von Amplifikat mit der entsprechenden Sonde.
- Die verwendeten PNA- sowie DNA-Sonden ergeben nur mit HCV ein spezifisches Signal.
- Es treten keine unspezifischen Hybridisierungen der PNA/DNA-Sonden mit anderen Amplifikaten auf.

Synthese eines 5'-5'-verknüpften Oligonukleotids (3'-(Primer-1)-5'-5'-(Primer-2)-3'

Die Synthese des 5'-5'-verknüpften Oligonukleotids erfolgt an einem DNA Synthesizer

Modell 394A der Fa. Applied Biosystems mit dem von Applied Biosystems empfohlenen Standard 1 µmol Synthesecyclus. Es wird eine Synthesesäule, die 1 µmol eines mit dem entsprechenden 5'-O-DMT geschützten Startnukleosid funktionalisierten Trägermaterials (1) (erhältlich von der Fa. Applied Biosystems) enthält sowie 5'-O-DMT-3'-Phosphoramidite (2) (erhältlich von der Fa. Applied Biosystems) für die Primer-1-Sequenz und 3'-O-DMT-5'-Phosphoramidite (3) (erhältlich von der Fa. Eurogentec/Glen Research) für die Primer-2-Sequenz verwendet. Der Synthesizer wird mit im ABI Manual empfohlenen Synthesereagenzien (bottle #1-4 = 5'-O-DMT-3'-Phosphoramidite 2 (0,1 M in MeCN), #5-8 = 3'-O-DMT-5'-Phosphoramidite 3 (0,1 M in MeCN), #9 Aktivator: Tetrazol (0,5 M in MeCN), #10 konz. Ammoniak p.A., #11 Cap A: Ac2O/Pyridin/THF, #12 Cap B: N-Methylimidazol/THF, #14, TCA in DCM (2%), #15 Oxidationsreagenz: I₂/H₂O/Pyridin/THF, #18 MeCN, #19 DCM) (alle erhältlich von der Fa. Applied Biosystems) bestückt. Der Verlauf der Synthese wird über regelmäßige Tritylwert-Bestimmungen am Synthesizer (Autoanalysis) detektiert. Nach abgeschlossenem Synthesecyclus schließt sich die automatische Trägerabspaltung mit konz. Ammoniak an. Die Abspaltlösung wird in ein spezielles Abspaltgefäß am Synthesizer geleitet. Diese wird dann noch 5 h im Wasserbad bei 56°C erwärmt, um alle Schutzgruppen abzuspalten. Nach Abkühlen wird die Lösung am Rotationsverdampfer einrotiert. Reinigung des Oligonukleotids erfolgt durch präparative Anionenaustausch-HPLC an einer Protein-Pak DEAE 8 HR 10 x 100 mm Säule (Waters) mit 25 mM Tris/HCl, 1 mM EDTA, 0-0.6 M NaCl, pH 8,5 als Elutionspuffer. Die Analytik erfolgt über eine Gen-Pak FAX 1,6 x 100 mm Anionenaustauscher-HPLC-Säule der Fa. Waters. Die Produktfraktionen werden durch Dialyse (MWCO 1000 der Fa. Spectrapore) entsalzt. Die entsalzte Oligonukleotid-Lösung wird einrotiert, in sterilem Wasser gelöst, durch einen sterilen 0,2 µm Filter filtriert und die Konzentration durch UV-Spektroskopie bei 260 nm bestimmt. Ausbeute: 75 OD

Beispiel 6: Alternative Primer und Sonden Kombinationen

Alternativ können Primer und Sonden aus folgenden Primer- und Sonden-Regionen verwendet werden:

Forward Primer: ausgewählt aus der Sequenz zwischen den Positionen 390 und 417,

reverse Primer: ausgewählt aus der Sequenz zwischen den Positionen 421 und 448, Sonde: ausgewählt aus der Sequenz zwischen den Positionen 391 und 440, alle bezogen auf die HGBV-B Sequenz aus der Sequenz HG22304 erhältlich aus der EMBL-Datenbank emvrl, oder aus Proc. Natl. Acad. Sci USA 1995, 92, 3401-3405 und/oder aus J. Virol. 69: 5621-5630. Die in Figur 7 gezeigte Sequenz entspricht den Positionen 390 bis 448 dieser Sequenz, so daß die Primer- und Sondenpositionen direkt umrechenbar sind.

Bevorzugte Primer-/Sonden-Kombinationen ergeben sich folgendermaßen:

- forward-Primer ausgewählt aus einer der Sequenzen: 390-406, 390-408, 391-406, 391-408, 392-406, und 392-408,
- reverse Primer ausgewählt aus einer der Sequenzen: 427-448, 427-447, 427-446, 428-448, 428-447, 428-446, 429-448 und 429-447,
- Sonde ausgewählt aus einer der Sequenzen: 402-412, 401-413, 400-414, 399-415, 398-415, 397-415, 396-415, 395-415, 394-415, 393-415, 392-415, 391-415, 408-436, 408-435, 408-434, 408-433, 408-432, 408-431, 408-430, 408-429, 408-428, 409-436, 409-435, 409-434, 409-433, 409-432, 409-431, 409-430, 409-429, 409-428, 410-436, 410-435, 410-434, 410-433, 410-432, 410-431, 410-430, 410-429, und 410-428, oder, bevorzugt:
- forward-Primer: Sequenz von 390-406, 390-408, 391-406, 391-408, 392-406, und 392-408,
- reverse Primer: ausgewählt aus einer der Sequenzen: 423-448, 423-447, 423-446, 423-445, 423-444,
- Sonde: ausgewählt aus einer der Sequenzen: 402-412, 401-413, 400-414, 399-415, 398-415, 397-415, 396-415, 395-415, 394-415, 393-415, 392-415, 391-415, 409-433, 409-432, 409-431, 410-433, 410-432, , 410-431, 410-430, 410-429, 410-428, 409-

430, 409-429, 409-428, 408-433, 408-432, 408-431, 408-430, 408-429, und 408-428 oder, besonders bevorzugt:

forward Primer: Sequenz von 390-406, 391-406, und 392-406,

reverse Primer ausgewählt aus einer der Sequenzen: 423-448, 423-447, 423-446, 423-445, 423-444,

Sonde: ausgewählt aus einer der Sequenzen: 402-412, 401-413, 400-414, 399-415, 398-415, 398-415, 398-415, 397-415, 396-415, 395-415, 394-415, 393-415, 392-415, 391-415, 409-433, 409-432, 409-431, 410-433, 410-432, , 410-431, 410-430, 410-429, 410-428, 409-430, 409-429, 409-428, 408-433, 408-432, 408-431, 408-430, 408-429, und 408-428.

Alle diese Sequenzen sind dem HGBV-B Genom entnommen und hybridisieren daher nicht selektiv mit HCV.

SEQUENZPROTOKOLL

- (1) ALLGEMEINE ANGABEN:
 - (i) ANMELDER:
 - (A) NAME: Boehringer Mannheim GmbH
 - (B) STRASSE: Sandhoferstr. 116
 - (C) ORT: Mannheim
 - (E) LAND: DE
 - (F) POSTLEITZAIIL: 68305
 - (G) TELEFON: 0621 759 4348
 - (H) TELEFAX: 0621 759 4457
 - (ii) BEZEICHNUNG DER ERFINDUNG: Spezifisches und sensitives Nukleinsäurenachweisverfahren
 - (iii) ANZAHL DER SEQUENZEN: 5
 - (iv) COMPUTER-LESBARE FASSUNG:
 - (A) DATENTRÄGER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)
- (2) ANGABEN ZU SEQ ID NO: 1:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 24 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Sonstige Nukleinsäure
 - (A) BESCHREIBUNG: /desc = "Oligodeoxyribonukleotid"
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

GCAGAAAGCG TCTAGCCATG GCGT

(2) ANGABEN ZU SEQ ID NO: 2:

	(i)	SEQUENZKENNZEICHEN:	
		(A) LÄNGE: 24 Basenpaare	
		(B) ART: Nucleotid	
		(C) STRANGFORM: Einzelstrang	
		(D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKÜLS: Sonstige Nukleinsäure	
		(A) BESCHREIBUNG: /desc = "Oligodeoxyribonukleotid"	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 2:	
СТО	CGC	AAGCA CCCTATCAGG CAGT	24
(2)	AN	IGABEN ZU SEQ ID NO: 3:	
	(i)	SEQUENZKENNZEICHEN:	
		(A) LÄNGE: 21 Basenpaare	
		(B) ART: Nucleotid	
		(C) STRANGFORM: Einzelstrang	
		(D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKÜLS: Sonstige Nukleinsäure	
		(A) BESCHREIBUNG: /desc = "Oligodeoxyribonukleotid"	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 3:	
AG	TTA	TGTGT GTCGTGCAGC C	21
(2)	AN	IGABEN ZU SEQ ID NO: 4:	
	(i)	SEQUENZKENNZEICHEN:	
		(A) LÄNGE: 18 Basenpaare	
		(B) ART: Nucleotid	
		(C) STRANGFORM: Einzelstrang	
		(D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKÜLS: Sonstige Nukleinsäure	
		(A) BESCHREIBUNG: /desc = "Oligodeoxyribonukleotid"	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:	

TGGCTCTCCC GGGAGTGG

18

- (2) ANGABEN ZU SEQ ID NO: 5:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Sonstige Nukleinsäure
 - (A) BESCHREIBUNG: /desc = "Oligodeoxyribonukleotid"
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

CTCCAGGACC CC

12

Patentansprüche

- 1. Verfahren zum Nachweis einer Nukleinsäure umfassend die Schritte
 - Herstellung einer Vielzahl von Amplifikaten eines Teilstücks dieser Nukleinsäure mit Hilfe zweier Primer, von denen einer an eine Bindesequenz (A) eines Stranges der Nukleinsäure binden kann und von denen der andere an eine Bindesequenz C', die zu einer mit A nicht überlappenden, in 3'-Richtung von A gelegenen Sequenz C im wesentlichen komplementär ist, binden kann,
 - Inkontaktbringen der Amplifikate mit einer Sonde mit einer Bindesequenz D, welche an die zwischen den Sequenzen A und C gelegene Sequenz B oder das Komplement davon binden kann, und
 - Nachweis der Bildung eines Hybrides aus einem Amplifikat und der Sonde,

dadurch gekennzeichnet, daß die zwischen den Bindesequenzen A und C gelegene Sequenz keine Nukleotide enthält, die nicht dem aus der Bindesequenz D der Sonde und der hiervon gebundenen Sequenz des Amplifikats gebildeten Sequenzbereich E zugehören.

- Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Bindesequenz D der Sonde mit einer oder beiden Bindesequenzen der Primer überlappt.
- Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß mindestens einer der Primer an seinem nicht verlängerbaren Teil Nukleotide aufweist, die nicht direkt mit der nachzuweisenden Nukleinsäure oder ihrem Komplement hybridisieren.
- Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet daß mindestens eine der Bindesequenzen nicht für die nachzuweisende Nukleinsäure spezifisch ist.
- 5. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Gesamtlänge der Bindesequenzen von dem von der Bindesequenz der Sonde wegweisenden Teil der Bindesequenz des einen Primers bis zu dem ebenfalls von der

Bindesequenz der Probe wegweisenden Teil des anderen Primers kleiner ist als 100 Nukleotide.

- 6. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß mindestens einer der Primer immobilisierbar und die Sonde nachweisbar markiert ist.
- Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß
 mindestens einer der Primer nachweisbar und die Sonde immobilisierbar markiert oder
 immobilisiert ist.
- Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß
 die Sonde sowohl durch einen Fluoreszenzquencher als auch einen Fluoreszenzfarbstoff markiert ist.
- Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß einer der Primer durch eine erste Energietransferkomponente und die Sonde durch eine zweite, davon verschiedene Energietransferkomponente markiert ist.
- 10. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Amplifikat durch physikalische und/oder spektroskopische Methoden detektiert wird.
- 11. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß mindestens einer der Primer nicht für die nachzuweisende Nukleinsäure spezifisch ist.
- 12. Verfahren gemäß Anspruch 11, dadurch gekennzeichnet, daß zwei der Primer nicht für die nachzuweisende Nukleinsäure spezifisch sind.
- 13. Verfahren gemäß einem der Ansprüche 11 und 12, dadurch gekennzeichnet, daß die Sonde nicht spezifisch ist für die nachzuweisende Nukleinsäure.
- 14. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß in der Amplifikation jeweils zu A, G, C und T komplementäre Nukleotide eingesetzt werden.
- 15. Verfahren zum Nachweis einer Nukleinsäure umfassend die Schritte

- Herstellung einer Vielzahl von Amplifikaten eines Teilstücks dieser Nukleinsäure mit Hilfe zweier Primer, von denen einer an eine Bindesequenz A der Nukleinsäure binden kann und von denen der andere an eine Bindesequenz C', die zu einer mit A nicht überlappenden, in 3'-Richtung von A gelegenen Sequenz C komplementär ist, binden kann, und Nachweis der Amplifikate mittels Massenspektroskopie.
- 16. Verfahren zum spezifischen Nachweis einer Nukleinsäure umfassend die Schritte
 - Herstellung einer Vielzahl von Amplifikaten eines Teilstücks dieser Nukleinsäure mit Hilfe mindestens zweier Primer,
 - Inkontaktbringen der Amplifikate mit einer Sonde, welche an das Amplifikat binden kann, und
 - Nachweis der Bildung eines Hybrides aus dem Amplifikat und der Sonde, dadurch gekennzeichnet, daß mindestens einer der Primer nicht für die nachzuweisende Nukleinsäure spezifisch ist.
- 17. Verfahren gemäß Anspruch 16, dadurch gekennzeichnet, daß zwei der Primer nicht für die nachzuweisende Nukleinsäure spezifisch sind.
- 18. Verfahren gemäß einem der Ansprüche 16 und 17, dadurch gekennzeichnet, daß die Sonde nicht spezifisch ist für die nachzuweisende Nukleinsäure.
- 19. Verfahren gemäß einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß in der Amplifikation jeweils zu A, G, C und T komplementäre Nukleotide eingesetzt werden.
- Verfahren zur gleichzeitigen Herstellung von Amplifikaten von Teilen von Nukleinsäuren, bei dem Primer eingesetzt werden, die eine Amplifikation dieser Teile mit den unterschiedlichen Sequenzen erlauben, dadurch gekennzeichnet, daß die Primer so ausgewählt werden, daß die gebildeten Amplifikate in ihrer Länge um nicht mehr als 20 % unterscheiden und nicht länger als 100 Nukleotide sind.

- Verfahren gemäß Anspruch 20, dadurch gekennzeichnet, daß gleichzeitig Amplifikate von Nukleinsäuren von HIV, HBV und HCV hergestellt werden.
- Verfahren zum Nachweis von HCV, dadurch gekennzeichnet, daß Primer und Sonden verwendet werden, deren Sequenzen aus Sequenzen von fortlaufenden Basen der HGBV-Sequenzen aus Fig. 7 hierzu komplementären Sequenzen oder Sequenzen mit mehr als 80% Identität zu diesen Sequenzen entnommen sind.

Zusammenfassung

Verfahren zum Nachweis einer Nukleinsäure umfassend die Herstellung einer Vielzahl von Amplifikaten eines Teilstücks dieser Nukleinsäure mit Hilfe zweier Primer, von denen einer an eine Bindesequenz A der Nukleinsäure binden kann und von denen der andere an eine Bindesequenz C', die zu einer mit A nicht überlappenden, in 3'-Richtung von A gelegenen Sequenz C komplementär ist, binden kann, Inkontaktbringen der Amplifikate mit einer Sonde mit einer Bindesequenz D, welche an eine zwischen den Sequenzen A und C gelegene Sequenz B oder das Komplement davon hinden kann, und Nachweis der Bildung eines Hybrides aus dem Amplifikat und der Sonde, wobei die zwischen den Bindesequenzen A und C gelegene Sequenz keine Nukleotide enthält, die nicht der Bindesequenz D der Sonde oder ihrem Komplement D' zugehören.

Fig. 1

Fig. 2

, Fig. 3

.

Fig. 4

HCV

AGTATGAGTGTCGTGCAGCCTCCAGGACCCCCCCTCCCGGGAGAGCCA

HUMAN

 ${\tt AGTATG\underline{T}GTGTGCAGCCTCCAGGACCCCC\underline{A}CTCCCGGGAGAGCCCA}$

Fig. 7

HCV:

-GTACTGCCTG ATAGGGTGCT TGCGAGTGCC CCGGGAGGTC TCGTAGACCG GCACCATG-3'

HGBV-B:

5'- GTACTGCCTG ATAGGGTCCT TGCGAGGGGA TCTGGGAGTC TCGTAGACCG TAGCACATG-3'

FIG 5

 $1 + (n-1) \times 2 + m \times 3$

- n+m Synthesecyclen
 konz. Ammoniak

FIG 6

DMT-O

B = Ade(Bz), Cyt(Bz), Gua(i-Bu), Thy

O

LCAA-CPG

1

6

B = Ade(Bz), Cyt(Bz), Gua(i-Bu), Thy

3