MS P2

Q1. W23 QP 23 Q1

Question	Answer	Marks
1(a)	charge and power only ticked	B1
1(b)(i)	%D = 0.4% and %L = 0.6%	A1
1(b)(ii)	$\rho = (4 \times 0.247) / [\pi \times (26.2 \times 10^{-3})^2 \times 0.162]$	C1
	ho = 2.83 × 10 ³ kg m ⁻³	A1
1(b)(iii)	percentage uncertainty = $0.4 + (2 \times 0.4) + 0.6$	C1
	= 1.8%	A1

S24 QP 23 Q1(a)

Question	Answer	Marks
1(a)	units of F: kg m s ⁻²	C1
	units of r: m and units of v: m s ⁻¹	A1
	units of η : kg m s ⁻² /(m × m s ⁻¹) = kg m ⁻¹ s ⁻¹	

Q2. S24 QP 23 Q2

Question	Answer	Marks
2(a)	distance (from the point) in a straight line in a given direction	B1
2(b)(i)	distance = speed \times time = 6.0×0.71	A1
	= 4.3 m	
2(b)(ii)	$s = ut + \frac{1}{2}at^2$	C1
	$= \frac{1}{2} \times 9.81 \times 0.71^2$	
	= 2.5 m	A1
2(b)(iii)	$\tan \theta = 2.5/4.3$	C1
	or	
	hypotenuse = $\sqrt{(4.3^2 + 2.5^2)}$	
	(= 4.97 m)	
	$\cos \theta = 4.3/4.97$ or $\sin \theta = 2.5/4.97$	
	θ = 30°	A1

I UDLIVITED

Question	Answer	Marks
2(b)(iv)	displacement = $\sqrt{(4.3^2 + 2.5^2)}$	C1
	= 4.9 m or 5.0 m	A1
	or	
	displacement = 2.5 / sin 30°	(C1)
	or	
	displacement = 4.3 / cos 30°	
	= 5.0 m	(A1)
2(b)(v)	$KE = \frac{1}{2}mv^2$ or $GPE = mgh$	C1
	initial KE + loss in GPE = final KE	C1
	$(\frac{1}{2} \times m \times 6.0^2) + (m \times 9.81 \times 2.5) = (\frac{1}{2} \times m \times v^2)$	
8	$v = 9.2 \mathrm{m s^{-1}}$	A1

Q3 W24 QP 22 Q3

3(a)(i)	$E = \sigma / \varepsilon$ or $E = \text{gradient}$	C1
	$E = e.g. 12 \times 10^7 / 0.0050$	A1
	= 2.4 × 10 ¹⁰ Pa	
3(a)(ii)	cross drawn at (1.0%, 24 × 10 ⁷ Pa), labelled Q	B1
3(b)	resultant force (in any direction) is zero	B1
	resultant moment / torque (about any point) is zero	B1
3(c)(i)	(moment =) 33 × 0.65/2 or 1.5 × (0.65 – 0.12) or T sin 50° × (0.65/2)	C1
	sum of clockwise moments = sum of anticlockwise moments $33 \times (0.65/2) + 1.5 \times (0.65 - 0.12) = T \sin 50^{\circ} \times (0.65/2)$	C1
	tension = 46 N	A1
3(c)(ii)	σ = F/A	C1
	$\pi r^2 = 46 / (1.5 \times 10^7)$	A1
	r = 9.9 × 10 ⁻⁴ m	

Question	Answer	Marks
3(c)(iii)	elastic limit is not reached or (new) stress is less than (stress at) elastic limit or (new) strain is less than (strain at) elastic limit	M1
	(so the wire behaves) elastically	A1

Q4. W24 QP22 Q4

Question	Answer	Marks
4(a)	longitudinal waves have oscillations parallel to the (direction of) transfer of energy	B1
	transverse waves have oscillations perpendicular to the (direction of) transfer of energy	B1
4(b)(i)	A marked at the open end of the pipe	B1
4(b)(ii)	$f = v/\lambda$	C1
	$\lambda = 4 \times 4.5 \times 10^{-2}$	C1
	$f = 340 / (4 \times 4.5 \times 10^{-2})$	A1
	= 1900 Hz	

W24 QP23 Q5b

5(b)(i)	$f_{\rm o} = f_{\rm s} v / \left(v - v_{\rm s} \right)$	C1	
	$f_0 = (780 \times 320) / (320 - 39)$		
	maximum frequency = 890 Hz	A1	

Q5. W23QP23 Q5

Question	Answer	Marks
5(a)(i)	cross labelled Y drawn:	B1
	at any position where wavefronts cross or centrally in a 'diamond' shape formed between any adjacent wavefronts from A and B	
5(a)(ii)	cross labelled Z drawn on a wavefront from one source at a point midway between adjacent wavefronts from the other source	B1
5(b)(i)	$\lambda = ax/D$	C1
	$a = (2.9 \times 10^{-5} \times 140) / (1.2 \times 10^{-2})$	C1
	= 0.34 m	A1
5(b)(ii)	infrared	A1

Q6.W23 QP23 Q7

Question	Answer	Marks
7(a)	current (through a conductor is directly) proportional to potential difference (across the conductor) or vice versa	M1
	(provided that) temperature (of conductor remains) constant	A1
7(b)(i)	$R = \rho L/A$	C1
	$\rho = (18 \times 7.2 \times 10^{-8})/0.94$	A1
O SANTA Y L'ESCAL PROCESSON	$= 1.4 \times 10^{-6} \Omega \mathrm{m}$	10
7(b)(ii)	voltmeter reading = 3.1 V	A1
7(b)(iii)	current in the battery: increase	B1
	voltmeter reading: decrease	B1
7(b)(iv)	cross marked on the resistance wire to right of the arrowhead of S, but not touching the right-hand end of the resistance wire	В1
7(c)(i)	I = Anvq	C1
	$q = 0.93 / [(7.2 \times 10^{-8}) \times (9.0 \times 10^{28}) \times (1.3 \times 10^{-3})]$	
	$q = 1.1 \times 10^{-19} \mathrm{C}$	A1
7(c)(ii)	charge / q (value) is below 1.6 × 10 ⁻¹⁹ (C)	В1
	or charge cannot be below 1.6×10^{-19} (C)	
	or (the charge carriers $/q$) should have a charge of 1.6 \times 10 ⁻¹⁹ (C)	

Q7.M24 QP22 Q8

Question	Answer	Marks
8(a)	lepton(s)	B1
8(b)(i)	up or top or charm	B1
8(b)(ii)	meson(s)	B1
8(c)(i)	R- (particle) or electron	B1