高数 A 第 2 次作业

2025年9月21日

9.16 日作业

7.4

求极限: $\lim_{n\to\infty} (1+\frac{1}{n})^{-2n}$

解: 注意到 $\lim_{n\to\infty}(1+\frac{1}{n})^n=e$,所以

$$\lim_{n \to \infty} (1 + \frac{1}{n})^{-2n} = \lim_{n \to \infty} \frac{1}{(1 + \frac{1}{n})^{2n}} = \frac{1}{e^2}.$$

7.5

求极限: $\lim_{n\to\infty} (1-\frac{1}{n})^{n^2}$

解: 注意到 $\lim_{n\to\infty} (1-\frac{1}{n})^n \to \frac{1}{e}$,所以

$$\lim_{n \to \infty} (1 - \frac{1}{n})^{n^2} = \lim_{n \to \infty} \left((1 - \frac{1}{n})^n \right)^n = \left(\frac{1}{e} \right)^n = 0.$$

7.6

求极限: $\lim_{n\to\infty} (1+\frac{1}{n^2})^n$

解:

$$\lim_{n \to \infty} (1 + \frac{1}{n^2})^n = \lim_{n \to \infty} e^{n \ln(1 + \frac{1}{n^2})}.$$

等价无穷小替换:

$$\lim_{n \to \infty} e^{n \ln(1 + \frac{1}{n^2})} = \lim_{n \to \infty} e^{n \cdot \frac{1}{n^2}} = \lim_{n \to \infty} e^{\frac{1}{n}} = e^0 = 1.$$

8.1

利用单调有界序列有极限证明下列数列的极限存在:

$$x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}.$$

证明. 显然该数列单调递增, 并且我们有裂项如下:

$$x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 1 + \frac{1}{1 * 2} + \frac{1}{2 * 3} + \dots + \frac{1}{(n-1)*n} < 1 + 1 - \frac{1}{n} < 2.$$

因此该数列有上界 2, 单调有界数列必有极限。

8.4

$$x_n = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

证明. 显然该数列单调递增, 并注意到:

$$x_n = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} < 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} < 3.$$

因此该数列有上界 3, 单调有界数列必有极限。

9.10

证明:

$$\mathbf{e} = \lim_{n \to \infty} (1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}).$$

证明. $\diamondsuit S_n = \sum_{k=0}^n \frac{1}{k!} \perp e_n = \left(1 + \frac{1}{n}\right)^n$ 。

证明. e ≤ S

根据二项式定理展开 e_n :

$$e_n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = \sum_{k=0}^n \frac{n(n-1)\cdots(n-k+1)}{k!} \frac{1}{n^k}$$

$$= \sum_{k=0}^n \frac{n!}{k!(n-k)!} \frac{1}{n^k}$$

$$\leq \sum_{k=0}^n \frac{1}{k!} = S_n$$

对 $e_n \leq S_n$ 两边取极限,得 $e = \lim_{n \to \infty} e_n \leq \lim_{n \to \infty} S_n = S$ 。

证明. e ≥ S

对于任意固定的 m,我们有 $S_m = \frac{1}{0!} + \frac{1}{1!} + \cdots + \frac{1}{m!}$ 。 考虑 $\sum_{k=0}^n \frac{n!}{k!(n-k)!} \frac{1}{n^k}$ 的前 m+1 项,则有

$$e_n > 2 + \frac{n(n-1)}{2!n^2} + \dots + \frac{n(n-1)\cdots(n-m+1)}{m!n^m}$$

保持 m 固定,令 $n\to\infty$,则不等式右侧趋向于 $S_m=\sum_{k=0}^m\frac{1}{k!}$ 。因此 $e=\lim_{n\to\infty}e_n\geq S_m$ 。由于该式对任意 m 成立,令 $m\to\infty$,我们得到 $e\geq\lim_{m\to\infty}S_m=S$ 。

综上,我们有 $e \le S$ 且 $e \ge S$,因此 $e = S = \sum_{k=0}^{\infty} \frac{1}{k!}$ 。

9.18 日作业

定理 3 和定理 4

设函数 f(x) 及 g(x) 定义在点 a 的一个空心邻域内,且

$$\lim_{x \to a} f(x) = \ell_1, \quad \lim_{x \to a} g(x) = \ell_2.$$

若 $\ell_1 > \ell_2$,则存在 $\delta > 0$,使得当 $0 < |x - a| < \delta$ 时,有

$$f(x) > g(x)$$
.

证明. 由 $\lim_{x\to a} f(x) = \ell_1$,对 $\varepsilon = \frac{\ell_1 - \ell_2}{2} > 0$,存在 $\delta_1 > 0$,当 $0 < |x-a| < \delta_1$ 时,有 $|f(x) - \ell_1| < \varepsilon.$

即

$$\ell_1 - \varepsilon < f(x) < \ell_1 + \varepsilon.$$

同理,由 $\lim_{x\to a}g(x)=\ell_2$,对 $\varepsilon=\frac{\ell_1-\ell_2}{2}>0$,存在 $\delta_2>0$,当 $0<|x-a|<\delta_2$ 时,有 $|g(x)-\ell_2|<\varepsilon,$

即

$$\ell_2 - \varepsilon < g(x) < \ell_2 + \varepsilon.$$

取 $\delta = \min(\delta_1, \delta_2)$, 当 $0 < |x - a| < \delta$ 时,有

$$f(x) > \ell_1 - \varepsilon = \frac{\ell_1 + \ell_2}{2} > \ell_2 + \varepsilon > g(x).$$

例 10

求极限

• $\Re \lim_{x\to\infty} \frac{x^{10}}{a^x} (a>1)$

解: 已知整数形式下存在极限 $\lim_{n\to\infty}\frac{n^{10}}{a^n}=0$,我们设 x=n+t,其中 $n=\lfloor x\rfloor$, $t=x-\lfloor x\rfloor$,则 $t\in [0,1)$ 。

$$\lim_{x \to \infty} \frac{x^{10}}{a^x} = \lim_{n \to \infty} \frac{(n+t)^{10}}{a^{n+t}} \le \lim_{n \to \infty} \frac{(n+1)^{10}}{a^n} = 0.$$

同时,我们有

$$\lim_{x \to \infty} \frac{x^{10}}{a^x} = \lim_{n \to \infty} \frac{(n+t)^{10}}{a^{n+t}} \ge \lim_{n \to \infty} \frac{n^{10}}{a^{n+1}} = 0.$$

因此, $\lim_{x\to\infty} \frac{x^{10}}{a^x} = 0$ 。

• $\Re \lim_{x \to \infty} \frac{(\ln x)^{10}}{x^{\beta}} (\beta > 0)$

解: 取 $x = e^y$,则 $y = \ln x$, 当 $x \to \infty$ 时, $y \to \infty$ 。

$$\lim_{x \to \infty} \frac{(\ln x)^{10}}{x^{\beta}} = \lim_{y \to \infty} \frac{y^{10}}{\mathbf{e}^{\beta y}}.$$

由 (1) 可知, $\lim_{y\to\infty}\frac{y^{10}}{\mathrm{e}^{\beta y}}=0$,因此 $\lim_{x\to\infty}\frac{(\ln x)^{10}}{x^{\beta}}=0$ 。

习题 1.2

用 $\varepsilon - \delta$ 语言证明下列极限:

$$\lim_{x \to a} x^2 = a^2.$$

证明. 对于任意 $\varepsilon > 0$,当 $0 < |x-a| < \delta$ 时,有

$$|x^2 - a^2| = |x - a||x + a| < \delta(2|a| + \delta) \le \varepsilon,$$

只需有 $\delta^2 + 2|a|\delta - \varepsilon \le 0$,即 $\delta \le \sqrt{a^2 + \varepsilon} - |a|$ 。因此, $\lim_{x \to a} x^2 = a^2$ 。

习题 3.2

求极限:

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

解:

$$1 - \cos x = 1 - \left(1 - \frac{x^2}{2} + o(x^2)\right) = \frac{x^2}{2} - o(x^2).$$

因此,

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\frac{x^2}{2} - o(x^2)}{x^2} = \lim_{x \to 0} \left(\frac{1}{2} - \frac{o(x^2)}{x^2}\right) = \frac{1}{2}.$$

习题 3.7

求极限:

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

解:

$$\sqrt{1+x} - \sqrt{1-x} = (1 + \frac{x}{2} + o(x)) - (1 - \frac{x}{2} + o(x)) = x + o(x).$$

因此,

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \lim_{x \to 0} \frac{x + o(x)}{x} = \lim_{x \to 0} (1 + \frac{o(x)}{x}) = 1.$$

利用 $\lim_{x\to 0} \frac{\sin x}{x} = 1 \lim_{x\to +\infty} (1+\frac{1}{x})^x = e$ 求下列极限:

习题 4.5

$$\lim_{x \to a} \frac{\sin x - \sin a}{x - a}$$

 \mathbf{m} : 置 y = x - a, 则当 $x \to a$ 时, $y \to 0$ 。

$$\lim_{x \to a} \frac{\sin x - \sin a}{x - a} = \lim_{y \to 0} \frac{\sin(a + y) - \sin a}{y} = \lim_{y \to 0} \frac{\sin a \cos y + \cos a \sin y - \sin a}{y}.$$

$$\lim_{x \to a} \frac{\sin a \cos y - \sin a}{x - a} = \lim_{y \to 0} \frac{\sin a \cos y - \cos a \sin y}{y}.$$

$$= \lim_{y \to 0} \frac{\sin a(\cos y - 1) + \cos a \sin y}{y} = \lim_{y \to 0} \left(\sin a \cdot \frac{\cos y - 1}{y} + \cos a \cdot \frac{\sin y}{y} \right).$$

注意到 $\lim_{y\to 0} \frac{\sin y}{y} = 1$,且

$$\lim_{y \to 0} \frac{\cos y - 1}{y} = \lim_{y \to 0} \frac{1 - \frac{y^2}{2} + o(y^2) - 1}{y} = 0$$

所以

$$\lim_{x \to a} \frac{\sin x - \sin a}{x - a} = \sin a \cdot 0 + \cos a \cdot 1 = \cos a.$$

习题 4.7

$$\lim_{y\to 0} (1-5y)^{\frac{1}{y}}$$

解: 置
$$x = \frac{1}{-5y}$$
,则当 $y \to 0$ 时, $x \to \infty$ 。

$$\lim_{y \to 0} (1 - 5y)^{\frac{1}{y}} = \lim_{x \to \infty} (1 + \frac{1}{x})^{-5x} = e^{-5}.$$