Guide to the MATLAB code for total variation-based deblurring with FISTA

Amir Beck and Marc Teboulle

August 11, 2008

1 Overview

The MATLAB codes in this package are aimed at solving denoising problems of the form

$$\min_{\mathbf{X}} \{ \|\mathbf{X} - \mathbf{B}\|^2 + 2\lambda \text{TV}(\mathbf{X}) : l \le X_{ij} \le u \},$$

$$\tag{1.1}$$

and deblurring problems of the form

$$\min_{\mathbf{X}} \{ \| \mathcal{A}(\mathbf{X}) - \mathbf{B} \|^2 + 2\lambda \text{TV}(\mathbf{X}) : l \le X_{ij} \le u \},$$
(1.2)

where

- $\mathbf{B} \in \mathbb{R}^{m \times n}$ is the observed blurred and noisy image of size $m \times n$.
- $\mathcal{A}: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ is the linear operator corresponding to a spatially invariant PSF of the blur operation.
- $TV(\mathbf{X}): \mathbb{R}^{m \times n} \to \mathbb{R}$ is a total variation function. Here we consider two possibilities: the isotropic TV function:

$$\mathbf{X} \in \mathbb{R}^{m \times n}, \quad \text{TV}_{I}(\mathbf{X}) = \sum_{i=1}^{m-1} \sum_{j=1}^{n-1} \sqrt{(X_{i,j} - X_{i+1,j})^{2} + (X_{i,j} - X_{i,j+1})^{2}} + \sum_{i=1}^{m-1} |X_{i,n} - X_{i+1,n}| + \sum_{j=1}^{n-1} |X_{m,j} - X_{m,j+1}|$$

and the l_1 -based TV function:

$$\mathbf{X} \in \mathbb{R}^{m \times n}, \quad \text{TV}_{l_1}(\mathbf{X}) = \sum_{i=1}^{m-1} \sum_{j=1}^{n-1} \left\{ |X_{i,j} - X_{i+1,j}| + |X_{i,j} - X_{i,j+1}| \right\} + \sum_{i=1}^{m-1} |X_{i,n} - X_{i+1,n}| + \sum_{j=1}^{n-1} |X_{m,j} - X_{m,j+1}|.$$

• λ - positive regularization parameter.

The functions are based on the paper

A. Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"

The package uses functions from the HNO package of Hansen, Nagy and O'leary available at

```
http://www2.imm.dtu.dk/~pch/HNO/
```

which is based on monograph [1]; thus the above package should be uploaded. The package contains overall 7 functions.

• The denoising function

```
denoise_bound.m
```

• The two deblurring functions

```
deblur_tv_fista.m
deblur_tv_fista_sep.m
```

• Four auxiliary functions

```
denoise_bound_init.
Lforward.m
Ltrans.m
tlv.m
```

2 Examples

2.1 Denoising

We begin by generating an artificial noisy image. For example, we can upload the camerman test image

```
>>X=double(imread('cameraman.pgm'));
>>X=X/255;
```

The second command is done for scaling reasons. The observed image is created by adding a white Gaussian noise with standard deviation 0.02.

```
>>randn('seed',314);
>>Bobs=X +2e-2*randn(size(X));
```

To see the original and noisy images we can write

Figure 1: original and noisy camraman

```
>> subplot(1,2,1)
```

The result can be seen in Figure 1.

To find the solution of (1.1) with $\lambda = 0.02$ and without constraints (that is, $l = -\infty, u = \infty$) we can invoke the function deblur_bound.m.

>>X_den=denoise_bound(Bobs,0.02,-Inf,Inf);

which gives the following output:

*Solving with FGP/FISTA**

#iteration	function-value relat	ive-difference
1	18033.3983075949	1.0000000000
2	18022.1438169810	0.0322767138
3	18017.8747709622	0.0124521604
4	18015.9814844837	0.0068134439
5	18014.9973032615	0.0044135443
6	18014.4157953842	0.0030907351
7	18014.0419606571	0.0023226418
8	18013.7874166548	0.0018098027
9	18013.6030199019	0.0014670563
10	18013.4638592325	0.0012121462
11	18013.3556857452	0.0010447397
12	18013.2689253970	0.0009272101
13	18013.1977138758	0.0008134316
14	18013.1385397451	0.0007347676
15	18013.0890506207	0.0006775458
16	18013.0473047887	0.0006232717
17	18013.0118160498	0.0005836780
18	18012.9817069677	0.0005283921
19	18012.9563792672	0.0005174258
20	18012.9350679263	0.0004878701
21	18012.9170103799	0.0004524497
22	18012.9017521611	0.0004209502
23	18012.8887621048	0.0004020105
24	18012.8775780455	0.0003725634
25	18012.8680448308	0.0003444192

>> imshow(X,[])

>> subplot(1,2,2)

>> imshow(Bobs,[])

26	18012.8598393359	0.0003335878
27	18012.8527732187	0.0003018124
28	18012.8466713236	0.0002872779
29	18012.8413712468	0.0002664523
30	18012.8367365647	0.0002504271
31	18012.8327273928	0.0002307838
32	18012.8292705867	0.0002235472
33	18012.8262661373	0.0002099719
34	18012.8236516003	0.0001995483
35	18012.8213494920	0.0001824696
36	18012.8193160973	0.0001727765
37	18012.8175257967	0.0001587713
38	18012.8159643619	0.0001516038
39	18012.8145778856	0.0001478936
40	18012.8133372617	0.0001356132
41	18012.8122184607	0.0001266768
42	18012.8112147532	0.0001182781
43	18012.8103143747	0.0001120542
44	18012.8095051710	0.0001036115
45	18012.8087901836	0.0000977979
46	18012.8081557185	0.0000971996
47	18012.8075824940	0.0000899283
48	18012.8070711273	0.0000861907
49	18012.8066086322	0.0000836632

The first column is the iteration number, the second is the function value at the corresponding iteration and the last column is the relative difference between subsequent iterations. The default stopping criteria of the function is that it either reaches 100 iterations or the relative difference in 5 subsequent iterations is no more than 10^{-4} . The denoised image can be seen in Figure 2

If we wish to solve the constrained problem (1.1) with l = 0.2, u = 0.6 (doesn't make much sense of course...), then one should write

>>X_den=denoise_bound(Bobs,0.02,0.2,0.6);

If the goal is to solve the denoising problem with nonnegativity constraints: $X_{ij} \geq 0$, then the appropriate command should be

>>X_den=denoise_bound(Bobs,0.02,0,Inf);

It is also possible to control different parameters of the algorithm by using a parameter structure. The parameters are

• MAXITER - maximum number of iterations. The default value is 100.

Figure 2: denoised camerman

- epsilon tolerance parameter for the stopping criteria. The default value is 10⁻⁴. If in 5 subsequent iteration the relative difference of the iterations is less than epsilon, the algorithm is terminated.
- **print** If 1 then information on each iteration is given, otherwise, if 0, this information is suppressed.
- ullet tv type of tv regularizer. Either 'iso' for isotropic (default) or 'l1' for anisotropic regularizer.

Suppose that we wish to run the algorithm for no more than 10 iterations with l_1 -based total variation regularizer. This is done by writing

```
clear pars
pars.MAXITER=10;
pars.tv='l1';
X_den=denoise_bound(Bobs,0.02,-Inf,Inf,pars);
```

2.2 Deblurring

Now we wish find a solution of problem (1.2) with \mathcal{A} representing a blurring operation that we employed and \mathbf{B} is the observed image Bobs. In this demonstration the regularization parameter λ is chosen to be 10^{-4} . We begin by defining a PSF array. For example, we can choose a uniform 3×3 blur:

```
>>P=1/9*ones(3,3);
>>center=[2,2];
```

The blurred and noisy image is constructed by the commands

```
>>randn('seed',314);
>>Bobs=imfilter(X,P,'symmetric')+1e-4*randn(size(X));
```

Note that here we used reflexive boundary conditions in the blurring operation. The function deblur_tv_fista.m solves problem (1.2) when the BC are either reflexive or periodic. In the case of reflexive BC, the PSF is assumed to be doubly symmetric (as is the case in the above example). The deblurring is made by writing

```
>>X_deblur=deblur_tv_fista(Bobs,P,center,0.001,-Inf,Inf);
```

The first argument is the observed image; the second and third arguments are the PSF and its center. The regularization parameter λ is the fourth argument. Finally, the fifth and sixth arguments are the lower and upper bounds on the pixels' values. In this example, the problem is unconstrained. The output is

#iter	fun-val	tv 	denoise-iter	relative-dif
1	12.36849	1959.45247	10	0.01759
2	9.92596	2057.89663	10	0.00903
3	8.45815	2144.33237	10	0.00786
4	7.53438	2216.88941	10	0.00691
5	6.92154	2275.74416	10	0.00616
6	6.49816	2322.18490	10	0.00556
7	6.19813	2357.74397	10	0.00505
8	5.98170	2383.70700	10	0.00460
9	5.82386	2401.63869	10	0.00419
10	5.70793	2413.35300	10	0.00381
:	:	:	:	:
95	5.30148	2394.46241	6	0.00007
96	5.30147	2394.45419	6	0.00007
97	5.30147	2394.44667	6	0.00006
98	5.30147	2394.43952	6	0.00006
99	5.30147	2394.43348	6	0.00006
100	5.30147	2394.42835	6	0.00006

The first column is the iteration number, the second column is the function value at the current iteration. The third column is the value of the total variation, the fourth column is the number of denoising iterations performed at each deblurring step and the fifth column is the relative difference of the current and previous iterations. The output X_deblur is the deblurred image. The blurred and deblurred image are seen in Figure 3.

The default number of iterations is 100. If we want the function to execute a different number of iterations, say 20, we can change this parameter by defining a parameter structure

Figure 3: blurred and deblurred cameraman

```
>>clear pars
>>pars.MAXITER=20;
```

and then run the function with the pars argument

```
>>X_deblur=deblur_tv_fista(Bobs,P,center,0.001,-Inf,Inf,pars);
```

It is also possible to obtain an array containing all function values by adding a second output argument:

```
>>[X_deblur,fun]=deblur_tv_fista(Bobs,P,center,0.001,-Inf,Inf,pars);
```

There are many parameters that can be manipulated through the parameter structure (see also 'help deblur_tv_fista_sep'):

- MAXITER number of iterations of the FISTA method (default=100).
- fig when this parameter is set to 1 (default), the image at each iteration is shown in Figure 314. If the value is 0, the visualization is suppressed.
- BC boundary conditions. Either 'reflexive' (default) or 'periodic'. If the boundary conditions are reflexive, then the PSF is assumed to be doubly symmetric.
- **tv** type of total variation regularizer. Either 'iso' for isotropic (default) or 'l1' for anisotropic.
- mon when set to 1 (default) the monotone version of FISTA, namely MFISTA, is used. Otherwise, when mon=0, the "standard" nonmonotone version of FISTA is used.
- denoiseiter maximum number of denoising iterations used at each iteration of the method (the actual number might be smaller if a stopping criteria is reached). Default is 10.

For example, if we want to invoke 13 iterations of the nonmonotone version of FISTA with at most 5 denoising steps at each iteration and with the l_1 -based total variation regularizer, we can write

```
>>clear pars
>>pars.mon=0;
>>pars.MAXITER=13;
>>pars.tv='11';
>>pars.denoiseiter=5;
>>X_deblur=deblur_tv_fista(Bobs,P,center,0.001,-Inf,Inf,pars);
```

Choosing the wrong BC might produce very poor quality reconstructions. For instance, the current example can be solved using periodic BC, although it was constructed assuming reflexive BC:

Figure 4: deblurring using periodic boundary conditions

```
>>clear pars
>>pars.BC='periodic'
>>pars.MAXITER=20;
>>X_deblur=deblur_tv_fista(Bobs,P,center,0.001,-Inf,Inf,pars);
```

The result is shown in Figure 4.

Another deblurring function in the package is deblur_tv_fista_sep.m which has the exact same interface as deblur_tv_fista.m. This function is dedicated to separable PSFs. Therefore, the second argument in the input of deblur_tv_fista_sep.m should be a separable PSF. If it is not, the function will use a rank one approximation. An important difference between the separable and non-separable functions is that in the former it is also possible to use zero boundary conditions and that in the reflexive BC case, the PSF does not necessarily has to be doubly symmetric.

References

[1] P. C. Hansen, J. G. Nagy, and D. P. O'Leary. *Deblurring images*, volume 3 of *Fundamentals of Algorithms*. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006. Matrices, spectra, and filtering.