1.1 Exercises

- **1.** The graph of a function f is given.
 - (a) State the value of f(-1).
 - (b) Estimate the value of f(2).
 - (c) For what values of x is f(x) = 2?
 - (d) Estimate the values of x such that f(x) = 0.
 - (e) State the domain and range of f.
 - (f) On what interval is f increasing?

- **2.** The graphs of f and g are given.
 - (a) State the values of f(-4) and g(3).
 - (b) For what values of x is f(x) = g(x)?
 - (c) Estimate the solution of the equation f(x) = -1.
 - (d) On what interval is f decreasing?
 - (e) State the domain and range of f.
 - (f) State the domain and range of g.

- **3.** Figures 1, 11, and 12 were recorded by an instrument operated by the California Department of Mines and Geology at the University Hospital of the University of Southern California in Los Angeles. Use them to estimate the ranges of the vertical, north-south, and east-west ground acceleration functions at USC during the Northridge earthquake.
- **4.** In this section we discussed examples of ordinary, everyday functions: Population is a function of time, postage cost is a function of weight, water temperature is a function of time. Give three other examples of functions from everyday life that are described verbally. What can you say about the domain and range of each of your functions? If possible, sketch a rough graph of each function.

5–8 IIII Determine whether the curve is the graph of a function of x. If it is, state the domain and range of the function.

9. The graph shown gives the weight of a certain person as a function of age. Describe in words how this person's weight varies over time. What do you think happened when this person was 30 years old?

10. The graph shown gives a salesman's distance from his home as a function of time on a certain day. Describe in words what the graph indicates about his travels on this day.

11. You put some ice cubes in a glass, fill the glass with cold water, and then let the glass sit on a table. Describe how the temperature of the water changes as time passes. Then sketch a rough graph of the temperature of the water as a function of the elapsed time.

- **12.** Sketch a rough graph of the number of hours of daylight as a function of the time of year.
- 13. Sketch a rough graph of the outdoor temperature as a function of time during a typical spring day.
- **14.** You place a frozen pie in an oven and bake it for an hour. Then you take it out and let it cool before eating it. Describe how the temperature of the pie changes as time passes. Then sketch a rough graph of the temperature of the pie as a function of time.
- **15.** A homeowner mows the lawn every Wednesday afternoon. Sketch a rough graph of the height of the grass as a function of time over the course of a four-week period.
- **16.** An airplane flies from an airport and lands an hour later at another airport, 400 miles away. If t represents the time in minutes since the plane has left the terminal building, let x(t) be the horizontal distance traveled and y(t) be the altitude of the plane.
 - (a) Sketch a possible graph of x(t).
 - (b) Sketch a possible graph of y(t).
 - (c) Sketch a possible graph of the ground speed.
 - (d) Sketch a possible graph of the vertical velocity.
- 17. The number N (in thousands) of cellular phone subscribers in Malaysia is shown in the table. (Midyear estimates are given.)

t	1991	1993	1995	1997
N	132	304	873	2461

- (a) Use the data to sketch a rough graph of N as a function of t.
- (b) Use your graph to estimate the number of cell-phone subscribers in Malaysia at midyear in 1994 and 1996.
- **18.** Temperature readings T (in °F) were recorded every two hours from midnight to 2:00 P.M. in Dallas on June 2, 2001. The time t was measured in hours from midnight.

t	0	2	4	6	8	10	12	14
T	73	73	70	69	72	81	88	91

- (a) Use the readings to sketch a rough graph of *T* as a function of *t*.
- (b) Use your graph to estimate the temperature at 11:00 A.M.
- **19.** If $f(x) = 3x^2 x + 2$, find f(2), f(-2), f(a), f(-a), f(a + 1), 2f(a), f(2a), $f(a^2)$, $[f(a)]^2$, and f(a + h).
- **20.** A spherical balloon with radius r inches has volume $V(r) = \frac{4}{3}\pi r^3$. Find a function that represents the amount of air required to inflate the balloon from a radius of r inches to a radius of r+1 inches.

21–22 IIII Find
$$f(2+h)$$
, $f(x+h)$, and $\frac{f(x+h)-f(x)}{h}$, where $h \neq 0$.

21.
$$f(x) = x - x^2$$
 22. $f(x) = \frac{x}{x+1}$

23-27 IIII Find the domain of the function.

23.
$$f(x) = \frac{x}{3x - 1}$$

24.
$$f(x) = \frac{5x+4}{x^2+3x+2}$$

25.
$$f(t) = \sqrt{t} + \sqrt[3]{t}$$

26.
$$q(u) = \sqrt{u} + \sqrt{4-u}$$

27.
$$h(x) = \frac{1}{\sqrt[4]{x^2 - 5x}}$$

28. Find the domain and range and sketch the graph of the function $h(x) = \sqrt{4 - x^2}$.

29-40 IIII Find the domain and sketch the graph of the function.

29.
$$f(x) = 5$$

30.
$$F(x) = \frac{1}{2}(x+3)$$

31.
$$f(t) = t^2 - 6t$$

32.
$$H(t) = \frac{4-t^2}{2-t}$$

33.
$$g(x) = \sqrt{x-5}$$

34.
$$F(x) = |2x + 1|$$

35.
$$G(x) = \frac{3x + |x|}{x}$$

36.
$$g(x) = \frac{|x|}{x^2}$$

37.
$$f(x) = \begin{cases} x & \text{if } x \le 0 \\ x+1 & \text{if } x > 0 \end{cases}$$

38.
$$f(x) = \begin{cases} 2x + 3 & \text{if } x < -1 \\ 3 - x & \text{if } x \ge -1 \end{cases}$$

39.
$$f(x) = \begin{cases} x+2 & \text{if } x \le -1 \\ x^2 & \text{if } x > -1 \end{cases}$$

40.
$$f(x) = \begin{cases} -1 & \text{if } x \le -1 \\ 3x + 2 & \text{if } |x| < 1 \\ 7 - 2x & \text{if } x \ge 1 \end{cases}$$

41–46 IIII Find an expression for the function whose graph is the given curve.

- **41.** The line segment joining the points (-2, 1) and (4, -6)
- **42.** The line segment joining the points (-3, -2) and (6, 3)
- **43.** The bottom half of the parabola $x + (y 1)^2 = 0$
- **44.** The top half of the circle $(x-1)^2 + y^2 = 1$

47–51 IIII Find a formula for the described function and state its domain.

- **47.** A rectangle has perimeter 20 m. Express the area of the rectangle as a function of the length of one of its sides.
- **48.** A rectangle has area 16 m². Express the perimeter of the rectangle as a function of the length of one of its sides.
- **49.** Express the area of an equilateral triangle as a function of the length of a side.
- **50.** Express the surface area of a cube as a function of its volume.
- **51.** An open rectangular box with volume 2 m³ has a square base. Express the surface area of the box as a function of the length of a side of the base.

52. A Norman window has the shape of a rectangle surmounted by a semicircle. If the perimeter of the window is 30 ft, express the area *A* of the window as a function of the width *x* of the window.

53. A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 12 in. by 20 in. by cutting out equal squares of side *x* at each corner and then folding up the sides as in the figure. Express the volume *V* of the box as a function of *x*.

54. A taxi company charges two dollars for the first mile (or part of a mile) and 20 cents for each succeeding tenth of a mile (or part). Express the cost C (in dollars) of a ride as a function of the distance x traveled (in miles) for 0 < x < 2, and sketch the graph of this function.

- 55. In a certain country, income tax is assessed as follows. There is no tax on income up to \$10,000. Any income over \$10,000 is taxed at a rate of 10%, up to an income of \$20,000. Any income over \$20,000 is taxed at 15%.
 - (a) Sketch the graph of the tax rate *R* as a function of the income *I*.
 - (b) How much tax is assessed on an income of \$14,000? On \$26,000?
 - (c) Sketch the graph of the total assessed tax T as a function of the income I.
- **56.** The functions in Example 10 and Exercises 54 and 55(a) are called *step functions* because their graphs look like stairs. Give two other examples of step functions that arise in everyday life.

57–58 IIII Graphs of f and g are shown. Decide whether each function is even, odd, or neither. Explain your reasoning.

- **59.** (a) If the point (5, 3) is on the graph of an even function, what other point must also be on the graph?
 - (b) If the point (5, 3) is on the graph of an odd function, what other point must also be on the graph?
- **60.** A function f has domain [-5, 5] and a portion of its graph is shown.
 - (a) Complete the graph of f if it is known that f is even.
 - (b) Complete the graph of f if it is known that f is odd.

61–66 IIII Determine whether f is even, odd, or neither. If f is even or odd, use symmetry to sketch its graph.

61.
$$f(x) = x^{-2}$$

62.
$$f(x) = x^{-3}$$

63.
$$f(x) = x^2 + x$$

64.
$$f(x) = x^4 - 4x^2$$

65.
$$f(x) = x^3 - x$$

66.
$$f(x) = 3x^3 + 2x^2 + 1$$

The **logarithmic functions** $f(x) = \log_a x$, where the base a is a positive constant, are the inverse functions of the exponential functions. They will be studied in Section 1.6. Figure 21 shows the graphs of four logarithmic functions with various bases. In each case the domain is $(0, \infty)$, the range is $(-\infty, \infty)$, and the function increases slowly when x > 1.

FIGURE 21

Transcendental Functions

These are functions that are not algebraic. The set of transcendental functions includes the trigonometric, inverse trigonometric, exponential, and logarithmic functions, but it also includes a vast number of other functions that have never been named. In Chapter 11 we will study transcendental functions that are defined as sums of infinite series.

EXAMPLE 5 Classify the following functions as one of the types of functions that we have discussed.

(a)
$$f(x) = 5^x$$

(b)
$$q(x) = x^5$$

(c)
$$h(x) = \frac{1+x}{1-\sqrt{x}}$$

(d)
$$u(t) = 1 - t + 5t^4$$

SOLUTION

- (a) $f(x) = 5^x$ is an exponential function. (The x is the exponent.)
- (b) $g(x) = x^5$ is a power function. (The x is the base.) We could also consider it to be a polynomial of degree 5.
- (c) $h(x) = \frac{1+x}{1-\sqrt{x}}$ is an algebraic function.
- (d) $u(t) = 1 t + 5t^4$ is a polynomial of degree 4.

1.2 Exercises

1-2 IIII Classify each function as a power function, root function, polynomial (state its degree), rational function, algebraic function, trigonometric function, exponential function, or logarithmic function.

1. (a)
$$f(x) = \sqrt[5]{x}$$

(b)
$$g(x) = \sqrt{1 - x^2}$$

(c)
$$h(x) = x^9 + x^4$$

(d)
$$r(x) = \frac{x^2 + 1}{x^3 + x}$$

(e)
$$s(x) = \tan 2x$$

$$(f) t(x) = \log_{10} x$$

2. (a)
$$y = \frac{x-6}{x+6}$$

(b)
$$y = x + \frac{x^2}{\sqrt{x-1}}$$

(c)
$$y = 10^x$$

(d)
$$y = x^{10}$$

(e)
$$y = 2t^6 + t^4 - \pi$$

(f)
$$y = \cos \theta + \sin \theta$$

- **3–4** IIII Match each equation with its graph. Explain your choices. (Don't use a computer or graphing calculator.)
- 3. (a) $y = x^2$
- (b) $y = x^5$
- (c) $y = x^8$

- **4.** (a) y = 3x (c) $y = x^3$
- (b) $y = 3^x$
- $(d) \quad y = \sqrt[3]{x}$

- **5.** (a) Find an equation for the family of linear functions with slope 2 and sketch several members of the family.
 - (b) Find an equation for the family of linear functions such that f(2) = 1 and sketch several members of the family.
 - (c) Which function belongs to both families?
- **6.** What do all members of the family of linear functions f(x) = 1 + m(x + 3) have in common? Sketch several members of the family.
- **7.** What do all members of the family of linear functions f(x) = c x have in common? Sketch several members of the family.
- **8.** The manager of a weekend flea market knows from past experience that if he charges x dollars for a rental space at the flea market, then the number y of spaces he can rent is given by the equation y = 200 4x.
 - (a) Sketch a graph of this linear function. (Remember that the rental charge per space and the number of spaces rented can't be negative quantities.)

- (b) What do the slope, the *y*-intercept, and the *x*-intercept of the graph represent?
- **9.** The relationship between the Fahrenheit (*F*) and Celsius (*C*) temperature scales is given by the linear function $F = \frac{9}{5}C + 32$.
 - (a) Sketch a graph of this function.
 - (b) What is the slope of the graph and what does it represent? What is the *F*-intercept and what does it represent?
- **10.** Jason leaves Detroit at 2:00 P.M. and drives at a constant speed west along I-96. He passes Ann Arbor, 40 mi from Detroit, at 2:50 P.M.
 - (a) Express the distance traveled in terms of the time elapsed.
 - (b) Draw the graph of the equation in part (a).
 - (c) What is the slope of this line? What does it represent?
- 11. Biologists have noticed that the chirping rate of crickets of a certain species is related to temperature, and the relationship appears to be very nearly linear. A cricket produces 113 chirps per minute at 70°F and 173 chirps per minute at 80°F.
 - (a) Find a linear equation that models the temperature *T* as a function of the number of chirps per minute *N*.
 - (b) What is the slope of the graph? What does it represent?
 - (c) If the crickets are chirping at 150 chirps per minute, estimate the temperature.
- **12.** The manager of a furniture factory finds that it costs \$2200 to manufacture 100 chairs in one day and \$4800 to produce 300 chairs in one day.
 - (a) Express the cost as a function of the number of chairs produced, assuming that it is linear. Then sketch the graph.
 - (b) What is the slope of the graph and what does it represent?
 - (c) What is the *y*-intercept of the graph and what does it represent?
- 13. At the surface of the ocean, the water pressure is the same as the air pressure above the water, 15 lb/in². Below the surface, the water pressure increases by 4.34 lb/in² for every 10 ft of descent.
 - (a) Express the water pressure as a function of the depth below the ocean surface.
 - (b) At what depth is the pressure 100 lb/in²?
- **14.** The monthly cost of driving a car depends on the number of miles driven. Lynn found that in May it cost her \$380 to drive 480 mi and in June it cost her \$460 to drive 800 mi.
 - (a) Express the monthly cost C as a function of the distance driven d, assuming that a linear relationship gives a suitable model.
 - (b) Use part (a) to predict the cost of driving 1500 miles per month
 - (c) Draw the graph of the linear function. What does the slope represent?
 - (d) What does the y-intercept represent?
 - (e) Why does a linear function give a suitable model in this situation?

(b)
$$(g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = \sqrt{2 - \sqrt{x}}$$

If $0 \le a \le b$, then $a^2 \le b^2$.

For \sqrt{x} to be defined we must have $x \ge 0$. For $\sqrt{2 - \sqrt{x}}$ to be defined we must have $2 - \sqrt{x} \ge 0$, that is, $\sqrt{x} \le 2$, or $x \le 4$. Thus, we have $0 \le x \le 4$, so the domain of $g \circ f$ is the closed interval [0, 4].

(c)
$$(f \circ f)(x) = f(f(x)) = f(\sqrt{x}) = \sqrt{\sqrt{x}} = \sqrt[4]{x}$$

The domain of $f \circ f$ is $[0, \infty)$.

(d)
$$(q \circ q)(x) = q(q(x)) = q(\sqrt{2-x}) = \sqrt{2-\sqrt{2-x}}$$

This expression is defined when $2 - x \ge 0$, that is, $x \le 2$, and $2 - \sqrt{2 - x} \ge 0$. This latter inequality is equivalent to $\sqrt{2 - x} \le 2$, or $2 - x \le 4$, that is, $x \ge -2$. Thus, $-2 \le x \le 2$, so the domain of $g \circ g$ is the closed interval [-2, 2].

It is possible to take the composition of three or more functions. For instance, the composite function $f \circ g \circ h$ is found by first applying h, then g, and then f as follows:

$$(f \circ g \circ h)(x) = f(g(h(x)))$$

EXAMPLE 9 Find $f \circ g \circ h$ if f(x) = x/(x+1), $g(x) = x^{10}$, and h(x) = x+3.

 $(f\circ g\circ h)(x)=f(g(h(x)))=f(g(x+3))$

$$= f((x+3)^{10}) = \frac{(x+3)^{10}}{(x+3)^{10}+1}$$

So far we have used composition to build complicated functions from simpler ones. But in calculus it is often useful to be able to decompose a complicated function into simpler ones, as in the following example.

EXAMPLE 10 Given $F(x) = \cos^2(x+9)$, find functions f, g, and h such that $F = f \circ g \circ h$.

SOLUTION Since $F(x) = [\cos(x+9)]^2$, the formula for F says: First add 9, then take the cosine of the result, and finally square. So we let

$$h(x) = x + 9 \qquad g(x) = \cos x \qquad f(x) = x^2$$

Then

$$(f \circ g \circ h)(x) = f(g(h(x))) = f(g(x+9)) = f(\cos(x+9))$$
$$= [\cos(x+9)]^2 = F(x)$$

1.3 Exercises

- 1. Suppose the graph of f is given. Write equations for the graphs that are obtained from the graph of f as follows.
 - (a) Shift 3 units upward.
 - (b) Shift 3 units downward.
 - (c) Shift 3 units to the right.

- (d) Shift 3 units to the left.
- (e) Reflect about the x-axis.
- (f) Reflect about the y-axis.
- (g) Stretch vertically by a factor of 3.
- (h) Shrink vertically by a factor of 3.

2. Explain how the following graphs are obtained from the graph of y = f(x).

(a)
$$y = 5f(x)$$

(b)
$$y = f(x - 5)$$

(c)
$$y = -f(x)$$

$$(d) y = -5f(x)$$

(e)
$$y = f(5x)$$

(d)
$$y = -5f(x)$$

(f) $y = 5f(x) - 3$

3. The graph of y = f(x) is given. Match each equation with its graph and give reasons for your choices.

(a)
$$y = f(x - 4)$$

(b)
$$y = f(x) + 3$$

(c)
$$y = \frac{1}{3}f(x)$$

(d)
$$y = -f(x+4)$$

(e)
$$y = 2f(x + 6)$$

4. The graph of f is given. Draw the graphs of the following functions.

(a)
$$y = f(x + 4)$$

(b)
$$y = f(x) + 4$$

(c)
$$y = 2f(x)$$

(d)
$$y = -\frac{1}{2}f(x) + 3$$

5. The graph of f is given. Use it to graph the following functions.

(a)
$$y = f(2x)$$

(b)
$$y = f(\frac{1}{2}x)$$

(c)
$$y = f(-x)$$

(d)
$$y = -f(-x)$$

6–7 IIII The graph of $y = \sqrt{3x - x^2}$ is given. Use transformations to create a function whose graph is as shown.

6.

- **8.** (a) How is the graph of $y = 2 \sin x$ related to the graph of $y = \sin x$? Use your answer and Figure 6 to sketch the graph of $y = 2 \sin x$.
 - (b) How is the graph of $y = 1 + \sqrt{x}$ related to the graph of $y = \sqrt{x}$? Use your answer and Figure 4(a) to sketch the graph of $y = 1 + \sqrt{x}$.
- 9-24 IIII Graph the function, not by plotting points, but by starting with the graph of one of the standard functions given in Section 1.2, and then applying the appropriate transformations.

9.
$$v = -x^3$$

10.
$$y = 1 - x^2$$

11.
$$y = (x + 1)^2$$

12.
$$y = x^2 - 4x + 3$$

13.
$$y = 1 + 2 \cos x$$

14.
$$y = 4 \sin 3x$$

15.
$$y = \sin(x/2)$$

16.
$$y = \frac{1}{x - 4}$$

17.
$$y = \sqrt{x+3}$$

$$x-4$$

19.
$$y = \frac{1}{2}(x^2 + 8x)$$

18.
$$y = (x+2)^4 + 3$$

20.
$$y = 1 + \sqrt[3]{x-1}$$

21.
$$y = \frac{2}{x+1}$$

22.
$$y = \frac{1}{4} \tan \left(x - \frac{\pi}{4} \right)$$

23.
$$y = |\sin x|$$

24.
$$y = |x^2 - 2x|$$

- 25. The city of New Orleans is located at latitude 30°N. Use Figure 9 to find a function that models the number of hours of daylight at New Orleans as a function of the time of year. Use the fact that on March 31 the Sun rises at 5:51 A.M. and sets at 6:18 P.M. in New Orleans to check the accuracy of your model.
- **26.** A variable star is one whose brightness alternately increases and decreases. For the most visible variable star, Delta Cephei, the time between periods of maximum brightness is 5.4 days, the average brightness (or magnitude) of the star is 4.0, and its brightness varies by ± 0.35 magnitude. Find a function that models the brightness of Delta Cephei as a function of time.

- 27. (a) How is the graph of y = f(|x|) related to the graph of f?
 - (b) Sketch the graph of $y = \sin |x|$.
 - (c) Sketch the graph of $y = \sqrt{|x|}$.
- **28.** Use the given graph of f to sketch the graph of y = 1/f(x). Which features of f are the most important in sketching y = 1/f(x)? Explain how they are used.

29–30 IIII Use graphical addition to sketch the graph of f + g.

30.

31–32 IIII Find f + g, f - g, fg, and f/g and state their domains.

31.
$$f(x) = x^3 + 2x^2$$
, $g(x) = 3x^2 - 1$

32.
$$f(x) = \sqrt{1+x}$$
, $g(x) = \sqrt{1-x}$

33-34 IIII Use the graphs of f and g and the method of graphical addition to sketch the graph of f + g.

33.
$$f(x) = x$$
, $g(x) = 1/x$

33.
$$f(x) = x$$
, $g(x) = 1/x$ **34.** $f(x) = x^3$, $g(x) = -x^2$

35–40 IIII Find the functions $f \circ g$, $g \circ f$, $f \circ f$, and $g \circ g$ and their domains.

35.
$$f(x) = 2x^2 - x$$
, $g(x) = 3x + 2$

36.
$$f(x) = 1 - x^3$$
, $g(x) = 1/x$

37.
$$f(x) = \sin x$$
, $q(x) = 1 - \sqrt{x}$

38.
$$f(x) = 1 - 3x$$
, $g(x) = 5x^2 + 3x + 2$

39.
$$f(x) = x + \frac{1}{x}$$
, $g(x) = \frac{x+1}{x+2}$

40.
$$f(x) = \sqrt{2x+3}$$
, $g(x) = x^2 + 1$

41–44 IIII Find
$$f \circ g \circ h$$
.

41.
$$f(x) = x + 1$$
, $g(x) = 2x$, $h(x) = x - 1$

42.
$$f(x) = 2x - 1$$
, $g(x) = x^2$, $h(x) = 1 - x$

43.
$$f(x) = \sqrt{x-1}$$
, $g(x) = x^2 + 2$, $h(x) = x + 3$

44.
$$f(x) = \frac{2}{x+1}$$
, $g(x) = \cos x$, $h(x) = \sqrt{x+3}$

45–50 IIII Express the function in the form $f \circ g$.

45.
$$F(x) = (x^2 + 1)^{10}$$

46.
$$F(x) = \sin(\sqrt{x})$$

47.
$$G(x) = \frac{x^2}{x^2 + 4}$$

48.
$$G(x) = \frac{1}{x+3}$$

49.
$$u(t) = \sqrt{\cos t}$$

$$\mathbf{50.} \ u(t) = \frac{\tan t}{1 + \tan t}$$

51–53 IIII Express the function in the form $f \circ g \circ h$.

51.
$$H(x) = 1 - 3^{x^2}$$

52.
$$H(x) = \sqrt[3]{\sqrt{x} - 1}$$

53.
$$H(x) = \sec^4(\sqrt{x})$$

54. Use the table to evaluate each expression.

(a)
$$f(g(1))$$

(b)
$$g(f(1))$$

(c)
$$f(f(1))$$

(d)
$$g(g(1))$$

(e)
$$(g \circ f)(3)$$

(f)
$$(f \circ g)(6)$$

х	1	2	3	4	5	6
f(x)	3	1	4	2	2	5
g(x)	6	3	2	1	2	3

55. Use the given graphs of f and g to evaluate each expression, or explain why it is undefined.

(a)
$$f(g(2))$$

(b)
$$g(f(0))$$

(c)
$$(f \circ g)(0)$$

(d)
$$(g \circ f)(6)$$

(e)
$$(g \circ g)(-2)$$

(f)
$$(f \circ f)(4)$$

1.5 Exercises

- **1.** (a) Write an equation that defines the exponential function with base a > 0.
 - (b) What is the domain of this function?
 - (c) If $a \neq 1$, what is the range of this function?
 - (d) Sketch the general shape of the graph of the exponential function for each of the following cases.
 - (i) a > 1
- (ii) a = 1
- (iii) 0 < a < 1
- **2.** (a) How is the number e defined?
 - (b) What is an approximate value for e?
 - (c) What is the natural exponential function?
- 3-6 IIII Graph the given functions on a common screen. How are these graphs related?

3.
$$y = 2^x$$
, $y = e^x$, $y = 5^x$, $y = 20^x$

4.
$$y = e^x$$
, $y = e^{-x}$, $y = 8^x$, $y = 8^{-x}$

5.
$$y = 3^x$$
, $y = 10^x$, $y = \left(\frac{1}{3}\right)^x$, $y = \left(\frac{1}{10}\right)^x$

if necessary, the transformations of Section 1.3.

6.
$$y = 0.9^x$$
, $y = 0.6^x$, $y = 0.3^x$, $y = 0.1^x$

7-12 IIII Make a rough sketch of the graph of the function. Do not use a calculator. Just use the graphs given in Figures 3 and 14 and,

7.
$$y = 4^x - 3$$

8.
$$y = 4^{x-3}$$

9.
$$y = -2^{-x}$$

10.
$$y = 1 + 2e^x$$

11.
$$y = 3 - e^x$$

12.
$$y = 2 + 5(1 - e^{-x})$$

13. Starting with the graph of $y = e^x$, write the equation of the

- graph that results from
 (a) shifting 2 units downward
- (b) shifting 2 units to the right
- (c) reflecting about the x-axis
- (d) reflecting about the y-axis
- (e) reflecting about the x-axis and then about the y-axis

14. Starting with the graph of $y = e^x$, find the equation of the graph that results from

- (a) reflecting about the line y = 4
- (b) reflecting about the line x = 2

15-16 IIII Find the domain of each function.

15. (a)
$$f(x) = \frac{1}{1 + e^x}$$

(b)
$$f(x) = \frac{1}{1 - e^x}$$

16. (a)
$$g(t) = \sin(e^{-t})$$

(b)
$$g(t) = \sqrt{1 - 2^t}$$

17–18 IIII Find the exponential function $f(x) = Ca^x$ whose graph is given.

19. If $f(x) = 5^x$, show that

$$\frac{f(x+h) - f(x)}{h} = 5^x \left(\frac{5^h - 1}{h}\right)$$

- **20.** Suppose you are offered a job that lasts one month. Which of the following methods of payment do you prefer?
 - I. One million dollars at the end of the month.
 - II. One cent on the first day of the month, two cents on the second day, four cents on the third day, and, in general, 2^{n-1} cents on the *n*th day.
- **21.** Suppose the graphs of $f(x) = x^2$ and $g(x) = 2^x$ are drawn on a coordinate grid where the unit of measurement is 1 inch. Show that, at a distance 2 ft to the right of the origin, the height of the graph of f is 48 ft but the height of the graph of g is about 265 mi.
- **22.** Compare the functions $f(x) = x^5$ and $g(x) = 5^x$ by graphing both functions in several viewing rectangles. Find all points of intersection of the graphs correct to one decimal place. Which function grows more rapidly when x is large?
- 23. Compare the functions $f(x) = x^{10}$ and $g(x) = e^x$ by graphing both f and g in several viewing rectangles. When does the graph of g finally surpass the graph of f?
- **24.** Use a graph to estimate the values of x such that $e^x > 1,000,000,000$.
 - **25.** Under ideal conditions a certain bacteria population is known to double every three hours. Suppose that there are initially 100 bacteria.
 - (a) What is the size of the population after 15 hours?
 - (b) What is the size of the population after t hours?

EXAMPLE 14 Simplify the expression $\cos(\tan^{-1}x)$.

SOLUTION 1 Let $y = \tan^{-1}x$. Then $\tan y = x$ and $-\pi/2 < y < \pi/2$. We want to find $\cos y$ but, since $\tan y$ is known, it is easier to find $\sec y$ first:

$$\sec^2 y = 1 + \tan^2 y = 1 + x^2$$

 $\sec y = \sqrt{1 + x^2}$ (since $\sec y > 0$ for $-\pi/2 < y < \pi/2$)

SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is perhaps easier to use a diagram. If $y = \tan^{-1}x$, then $\tan y = x$, and we can read from Figure 24 (which illustrates the case y > 0) that

$$\cos(\tan^{-1}x) = \cos y = \frac{1}{\sqrt{1+x^2}}$$

The inverse tangent function, $\tan^{-1} = \arctan$, has domain \mathbb{R} and range $(-\pi/2, \pi/2)$. Its graph is shown in Figure 25.

We know that the lines $x = \pm \pi/2$ are vertical asymptotes of the graph of tan. Since the graph of \tan^{-1} is obtained by reflecting the graph of the restricted tangent function about the line y = x, it follows that the lines $y = \pi/2$ and $y = -\pi/2$ are horizontal asymptotes of the graph of \tan^{-1} .

The remaining inverse trigonometric functions are not used as frequently and are summarized here.

III
$$y = \csc^{-1}x \ (|x| \ge 1) \iff \csc y = x \text{ and } y \in (0, \pi/2] \cup (\pi, 3\pi/2]$$

$$y = \sec^{-1}x \ (|x| \ge 1) \iff \sec y = x \text{ and } y \in [0, \pi/2) \cup [\pi, 3\pi/2]$$

$$y = \cot^{-1}x \ (x \in \mathbb{R}) \iff \cot y = x \text{ and } y \in (0, \pi)$$

The choice of intervals for y in the definitions of \csc^{-1} and \sec^{-1} is not universally agreed upon. For instance, some authors use $y \in [0, \pi/2) \cup (\pi/2, \pi]$ in the definition of \sec^{-1} . [You can see from the graph of the secant function in Figure 26 that both this choice and the one in (11) will work.]

FIGURE 24

FIGURE 25 $y = \tan^{-1} x = \arctan x$

FIGURE 26 $y = \sec x$

1.6 Exercises

- **1.** (a) What is a one-to-one function?
 - (b) How can you tell from the graph of a function whether it is one-to-one?
- **2.** (a) Suppose f is a one-to-one function with domain A and range B. How is the inverse function f^{-1} defined? What is the domain of f^{-1} ? What is the range of f^{-1} ?
 - (b) If you are given a formula for f, how do you find a formula for f^{-1} ?

(c) If you are given the graph of f, how do you find the graph of f^{-1} ?

3–14 IIII A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

3.	х	1	2	3	4	5	6
	f(x)	1.5	2.0	3.6	5.3	2.8	2.0

_							
4.	X	1	2	3	4	5	6
	f(x)	1	2	4	8	16	32

9.
$$f(x) = \frac{1}{2}(x+5)$$

10.
$$f(x) = 1 + 4x - x^2$$

11.
$$g(x) = |x|$$

12.
$$g(x) = \sqrt{x}$$

13. f(t) is the height of a football t seconds after kickoff.

14. f(t) is your height at age t.

15-16 IIII Use a graph to decide whether f is one-to-one.

15.
$$f(x) = x^3 - x$$

16.
$$f(x) = x^3 + x$$

17. If f is a one-to-one function such that f(2) = 9, what

is $f^{-1}(9)$?

18. Let $f(x) = 3 + x^2 + \tan(\pi x/2)$, where -1 < x < 1.

- (a) Find $f^{-1}(3)$.
- (b) Find $f(f^{-1}(5))$.

19. If $g(x) = 3 + x + e^x$, find $g^{-1}(4)$.

20. The graph of f is given.

- (a) Why is f one-to-one?
- (b) State the domain and range of f^{-1} .
- (c) Estimate the value of $f^{-1}(1)$.

21. The formula $C = \frac{5}{9}(F - 32)$, where $F \ge -459.67$, expresses the Celsius temperature C as a function of the Fahrenheit temperature F. Find a formula for the inverse function and interpret it. What is the domain of the inverse function?

22. In the theory of relativity, the mass of a particle with speed v

$$m = f(v) = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

where m_0 is the rest mass of the particle and c is the speed of light in a vacuum. Find the inverse function of f and explain its meaning.

23-28 || Find a formula for the inverse of the function.

23.
$$f(x) = \sqrt{10 - 3x}$$

24.
$$f(x) = \frac{4x-1}{2x+3}$$

25.
$$f(x) = e^{x^3}$$

26.
$$y = 2x^3 + 3$$

27.
$$y = \ln(x + 3)$$

28.
$$y = \frac{1 + e^x}{1 - e^x}$$

29–30 III Find an explicit formula for f^{-1} and use it to graph f^{-1} , f, and the line y = x on the same screen. To check your work, see whether the graphs of f and f^{-1} are reflections about the line.

29.
$$f(x) = 1 - 2/x^2$$
, $x > 0$ **30.** $f(x) = \sqrt{x^2 + 1}$

30.
$$f(x) = \sqrt{x^2 + 2x}, \quad x > 0$$

31. Use the given graph of f to sketch the graph of f^{-1} .

32. Use the given graph of f to sketch the graphs of f^{-1} and 1/f.

33. (a) How is the logarithmic function $y = \log_a x$ defined?

- (b) What is the domain of this function?
- (c) What is the range of this function?

(d) Sketch the general shape of the graph of the function $y = \log_a x$ if a > 1.

- **34.** (a) What is the natural logarithm?
 - (b) What is the common logarithm?
 - (c) Sketch the graphs of the natural logarithm function and the natural exponential function with a common set of axes.

35-38 IIII Find the exact value of each expression.

(b)
$$\log_{6} \frac{1}{36}$$

36. (a)
$$\log_8 2$$

(b)
$$\ln e^{\sqrt{2}}$$

37. (a)
$$\log_{10} 1.25 + \log_{10} 80$$

(b)
$$\log_5 10 + \log_5 20 - 3 \log_5 2$$

38. (a)
$$2^{(\log_2 3 + \log_2 5)}$$

(b)
$$e^{3 \ln 2}$$

39-41 IIII Express the given quantity as a single logarithm.

39.
$$2 \ln 4 - \ln 2$$

40.
$$\ln x + a \ln y - b \ln z$$

41.
$$\ln(1+x^2) + \frac{1}{2} \ln x - \ln \sin x$$

42. Use Formula 10 to evaluate each logarithm correct to six decimal places.

(a)
$$\log_{12} 10$$

(b)
$$\log_2 8.4$$

43-44 III Use Formula 10 to graph the given functions on a common screen. How are these graphs related?

43.
$$y = \log_{1.5} x$$
, $y = \ln x$, $y = \log_{10} x$, $y = \log_{50} x$

44.
$$y = \ln x$$
, $y = \log_{10} x$, $y = e^x$, $y = 10^x$

45. Suppose that the graph of $y = \log_2 x$ is drawn on a coordinate grid where the unit of measurement is an inch. How many miles to the right of the origin do we have to move before the height of the curve reaches 3 ft?

 $\not\vdash$ **46.** Compare the functions $f(x) = x^{0.1}$ and $g(x) = \ln x$ by graphing both f and g in several viewing rectangles. When does the graph of f finally surpass the graph of g?

47-48 IIII Make a rough sketch of the graph of each function. Do not use a calculator. Just use the graphs given in Figures 12 and 13 and, if necessary, the transformations of Section 1.3.

47. (a)
$$y = \log_{10}(x + 5)$$

(b)
$$y = -\ln x$$

48. (a)
$$y = \ln(-x)$$

(b)
$$y = \ln |x|$$

49–52 IIII Solve each equation for x.

49. (a)
$$2 \ln x = 1$$

(b)
$$e^{-x} = 5$$

50. (a)
$$e^{2x+3} - 7 = 0$$

(b)
$$ln(5 - 2x) = -3$$

51. (a)
$$2^{x-5} = 3$$

(b)
$$\ln x + \ln(x - 1) = 1$$

52. (a)
$$\ln(\ln x) = 1$$

(b)
$$e^{ax} = Ce^{bx}$$
, where $a \neq b$

53–54 IIII Solve each inequality for x.

53. (a)
$$e^x < 10$$

(b)
$$\ln x > -1$$

54. (a)
$$2 < \ln x < 9$$

(b)
$$e^{2-3x} > 4$$

(b)
$$e^{2-3x} > 4$$

55–56 IIII Find (a) the domain of f and (b) f^{-1} and its domain.

55.
$$f(x) = \sqrt{3 - e^{2x}}$$

56.
$$f(x) = \ln(2 + \ln x)$$

[AS] **57.** Graph the function
$$f(x) = \sqrt{x^3 + x^2 + x + 1}$$
 and explain why it is one-to-one. Then use a computer algebra system to find an explicit expression for $f^{-1}(x)$. (Your CAS will produce

three possible expressions. Explain why two of them are irrelevant in this context.)

- [AS] **58.** (a) If $g(x) = x^6 + x^4$, $x \ge 0$, use a computer algebra system to find an expression for $q^{-1}(x)$.
 - (b) Use the expression in part (a) to graph y = g(x), y = x, and $y = g^{-1}(x)$ on the same screen.
 - 59. If a bacteria population starts with 100 bacteria and doubles every three hours, then the number of bacteria after t hours is $n = f(t) = 100 \cdot 2^{t/3}$. (See Exercise 25 in Section 1.5.)
 - (a) Find the inverse of this function and explain its meaning.
 - (b) When will the population reach 50,000?
 - **60.** When a camera flash goes off, the batteries immediately begin to recharge the flash's capacitor, which stores electric charge given by

$$Q(t) = Q_0(1 - e^{-t/a})$$

(The maximum charge capacity is Q_0 and t is measured in seconds.)

- (a) Find the inverse of this function and explain its meaning.
- (b) How long does it take to recharge the capacitor to 90% of capacity if a = 2?
- **61.** Starting with the graph of $y = \ln x$, find the equation of the graph that results from
 - (a) shifting 3 units upward
 - (b) shifting 3 units to the left
 - (c) reflecting about the x-axis
 - (d) reflecting about the y-axis
 - (e) reflecting about the line y = x
 - (f) reflecting about the x-axis and then about the line y = x
 - (g) reflecting about the y-axis and then about the line y = x
 - (h) shifting 3 units to the left and then reflecting about the line y = x
- **62.** (a) If we shift a curve to the left, what happens to its reflection about the line y = x? In view of this geometric principle, find an expression for the inverse of g(x) = f(x + c), where f is a one-to-one function.
 - (b) Find an expression for the inverse of h(x) = f(cx), where $c \neq 0$.

63-68 IIII Find the exact value of each expression.

63. (a)
$$\sin^{-1}(\sqrt{3}/2)$$

(b)
$$\cos^{-1}(-1)$$

64. (a)
$$\arctan(-1)$$

(b)
$$\csc^{-1} 2$$

65. (a)
$$\tan^{-1}\sqrt{3}$$

(b)
$$\arcsin(-1/\sqrt{2})$$

66. (a)
$$\sec^{-1}\sqrt{2}$$

(b)
$$\tan^{-1} \left(\tan \frac{4\pi}{3} \right)$$

(b)
$$\cos(2\sin^{-1}(\frac{5}{13}))$$

69. Prove that
$$\cos(\sin^{-1}x) = \sqrt{1 - x^2}$$
.

70–72 IIII Simplify the expression.

70.
$$tan(sin^{-1}x)$$

- **71.** $\sin(\tan^{-1}x)$
- **72.** $\sin(2\cos^{-1}x)$

D D

73.
$$y = \sin x$$
, $-\pi/2 \le x \le \pi/2$; $y = \sin^{-1}x$; $y = x$

74.
$$y = \tan x$$
, $-\pi/2 < x < \pi/2$; $y = \tan^{-1}x$; $y = x$

$$g(x) = \sin^{-1}(3x+1)$$

- **76.** (a) Graph the function $f(x) = \sin(\sin^{-1}x)$ and explain the appearance of the graph.
 - (b) Graph the function $q(x) = \sin^{-1}(\sin x)$. How do you explain the appearance of this graph?

Review

- 1. (a) What is a function? What are its domain and range? (b) What is the graph of a function?
 - (c) How can you tell whether a given curve is the graph of a function?
- 2. Discuss four ways of representing a function. Illustrate your discussion with examples.
- **3.** (a) What is an even function? How can you tell if a function is even by looking at its graph?
 - (b) What is an odd function? How can you tell if a function is odd by looking at its graph?
- **4.** What is an increasing function?
- **5.** What is a mathematical model?
- 6. Give an example of each type of function.
 - (a) Linear function
- (b) Power function
- (c) Exponential function
- (d) Quadratic function
- (e) Polynomial of degree 5
- (f) Rational function
- 7. Sketch by hand, on the same axes, the graphs of the following functions.
 - (a) f(x) = x
- (b) $g(x) = x^2$ (d) $j(x) = x^4$
- (c) $h(x) = x^3$
- 8. Draw, by hand, a rough sketch of the graph of each function.
 - (a) $y = \sin x$
- (b) $y = \tan x$
- (c) $y = e^x$
- (d) $y = \ln x$
- (e) y = 1/x
- (f) y = |x|
- (g) $y = \sqrt{x}$
- (h) $y = \tan^{-1} x$
- **9.** Suppose that f has domain A and g has domain B.
 - (a) What is the domain of f + g?

(b) What is the domain of fq?

□ CONCEPT CHECK □

- (c) What is the domain of f/q?
- **10.** How is the composite function $f \circ g$ defined? What is its domain?
- 11. Suppose the graph of f is given. Write an equation for each of

the graphs that are obtained from the graph of f as follows.

- (a) Shift 2 units upward.
- (b) Shift 2 units downward.
- (c) Shift 2 units to the right.
- (d) Shift 2 units to the left.
- (e) Reflect about the x-axis.
- (f) Reflect about the y-axis.
- (g) Stretch vertically by a factor of 2.
- (h) Shrink vertically by a factor of 2.
- (i) Stretch horizontally by a factor of 2.
- (j) Shrink horizontally by a factor of 2.
- 12. (a) What is a one-to-one function? How can you tell if a function is one-to-one by looking at its graph?
 - (b) If f is a one-to-one function, how is its inverse function f^{-1} defined? How do you obtain the graph of f^{-1} from the graph of f?
- **13.** (a) How is the inverse sine function $f(x) = \sin^{-1}x$ defined? What are its domain and range?
 - (b) How is the inverse cosine function $f(x) = \cos^{-1}x$ defined? What are its domain and range?
 - (c) How is the inverse tangent function $f(x) = \tan^{-1}x$ defined? What are its domain and range?