

GCC for openEuler 优化介绍及新特性前瞻

华为技术有限公司

Compiler SIG Maintainer 李彦成

- 1. GCC for openEuler整体介绍
- 2. 主要特性示例
- 3. 新特性前瞻

- 1. GCC for openEuler整体介绍
- 2. 主要特性示例
- 3. 新特性前瞻

GCC for openEuler: 使能多样算力,聚焦便捷易用、生态兼容和场景化性能增强

■ SPEC2017 INT性能**超 开源GCC 20%**

■ 使能多样算力, HPC内核函数性能 提升30% ■ 一键启用反馈优化, 数据库**性能提升18%**

■ 一套插件兼容不同编译框架,使能多样算力差异化编译诉求

GCC for openEuler使能多样算力,聚焦于便捷易用、生态兼容和场景化性能增强,并在以下四个方向实现主要突破。

基础

性能

使能

反馈

优化

插件

框架

- 基础性能:基于GCC开源版本构建竞争力,通过在openEuler社区推进鲲鹏特性的支持和短板的补齐,提升通用场景性能。
- **反馈优化**:整合业界领先的反馈优化技术,实现程序全流程和多模态 反馈优化,提升数据库等云原生场景重点应用性能。
- **芯片使能**: 使能多样算力指令集,围绕内存等硬件系统,发挥算力优势,提升HPC等场景化性能。
- **插件框架**: 使能多样算力差异化编译诉求,一套插件兼容不同编译框架,打通GCC和LLVM生态。

- 1. GCC for openEuler整体介绍
- 2. 主要特性示例
- 3. 新特性前瞻

内核反馈优化

特性进展

• 编译器软件插桩反馈优化(aka PGO、FDO)在 openEuler linux kernel上使能

适用场景

- 工作负载相对固定
- 期望最大化性能
- 接受重新编译内核

易用性提升

- A-FOT新模式: Kernel PGO
- 和以往一样:用户通过简单配置,使用A-FOT可一键自动完成整个优化流程,得到新的内核

Configure openEuler kernel with

- CONFIG_PGO_KERNEL=y
- CONFIG_GCOV_KERNEL=y
- CONFIG_ARCH_HAS_GCOV_PROFILE_ALL=y
- CONFIG_GCOV_PROFILE_ALL=y
- CONFIG_DEBUG_FS=y

优化效果

应用	内核反馈 优化	内核+应用反馈优 化
MySQL	+2~4%	+10~18%
Ceph	+5~7%	+7~10%
Nginx	+5~15%	+10~20%

插件框架

> 个性化编译的便捷开发

- 无需深入修改编译器内部逻辑,帮助开发者可以实现独立编译优化和编译工具的便捷开发
- 特性进展
- ① 能够覆盖80%的GIMPLE
- ② 支持LTO阶段使能插件
- ③ LLVM客户端原型 (https://gitee.com/openeuler/pin-llvm-client)
- ・ 欧洲开源峰会 (OSSEU23) 主题报告

The compiler plugin framework to facilitate customized compilation and development

恒安嘉新: GCC for openEuler加速核心业务性能

业务 逻辑 恶意程序 僵木蠕 SQL注入 XSS webshell 网站安全事 件

钓鱼网站 赌博网站 游戏私服

虚拟身份 轨迹、敏 感信息

基础解析 扫描引擎

高速正则 事件引擎 内容结构 监测引擎 异常行为 识别引擎 文件还原 研判引擎 流量回溯 引擎

应用协议识别解析

基础流量处理

基础平台

GCC for openEuler

Boostkit基础加速库

openEuler

鲲鹏920

恒安嘉新是一家数字应用智能化服务商,深耕网络安全领域,构建面向数字中国基础设施的数字安全保护屏障,包含金川(网络空间治理)、金御(大数据安全应用)、云河(SaaS服务)三大核心业务,与三大运营商合作,服务范围覆盖31省

业务挑战

- **大流量**: 单台设备吞吐量大于100Gbps, 并发连接数不少于1000万, 新建连接不低于每秒5万;
- 高准确:处置成功应不低于95%,协议识别准确率不低于90%

解决方案

- · 鲲鹏亲和优化: GCC for openEuler通过亲和鲲鹏920的流水线优化, ccmp等指令级优化,实现汇编指令鲲鹏亲和,核心业务性能提升5%
- **全局优化**: GCC for openEuler通过全局优化,实现跨文件函数内联,减小调用开销,跨文件函数常量传播,消除冗余代码,核心业务性能提升5%

客户收益

- **问题定位**: 联合GCC for openEuler团队快速定位解决CPU使用率不均衡、系统升级后业务系统严重丢包问题,保障客户DPI&协议解析平台业务稳定运行
- **迁移结果**: GCC for openEuler在恒安嘉新DPI&协议解析场景落地, 支撑XXX节点稳定运行,业务性能提升5%~10%

- 1.GCC for openEuler整体介绍
- 2. 主要特性示例
- 3. 新特性前瞻

基础性能: 编译优化能力持续增强

除此之外,还计划推出如下增强优化,期待大家的尝试与反馈:

- LLC Allocation optimization
- CRC32 optimization
- Indirect Call Promotion
- IPA prefetch
- ..

高级优化: LTO和Al4Compiler

LTO (link time optimization) openEuler by default

策略

- 与构建工程团队合作,默认所有包使能LTO
- 遇到无法解决的issue再单包disable

优势

- 更小的软件包体积
- 更优的性能 (开箱)

Al4compiler——编译选项自动调优 策略

- 与算法团队合作,实现对白盒内容的编码与代码结构特征识别
- 优化搜索算法与参数搜索空间

优势

- 白盒分析代码特征,缩短应用的调优时长
- 加速迁移对不同环境和硬件底座的调优

用户体验: GCC多版本支持

Compiler SIG

· GCC多版本工具链增强兼容性、易用性

工具链代码由三个层次演进构成:

- 上游软件包: GCC、binutils等上游社区正式分支

① GCC多版本软件包:增加bugfix、兼容性等补丁

② GCC多版本工具链:整合各软件包,提供切换工具

GCC多版本 版本规划

openEuler GCC多版本支持方案

・ 引入GCC14副版本工具链: gcctoolset-14

- 测试计划
- 默认版本的测试方案:基础功能测试、可靠性测试...
- 多版本兼容性测试(设计中,收集建议)

• 用户使用:提供两种切换方法

・ 兼容性说明

- · 场景:默认版本GCC的环境运行高版本GCC编译出的应用
- 问题:高版本GCC链接自带的高版本**GLIBCXX**,使用的高版本符号,在默认版本运行出现找不到符号错误
- 方案:拆分gcctoolset-14-gcc的libstdc++为两部分
 - 与系统默认GCC环境一致的shared.so文件
 - 高版本libstdc++增加的部分: non-shared.a文件
- 约束:仅保证当前多版本工具链和系统默认GCC版本兼容

devtoolset-14组件选型

组件	描述	建议选型	c7-dts10	c7-dts12	openEuler	最新版本	
GCC	编译器套件	14.x	10.2.1 (2020-7-23)	12.2.1 (2022-08-19)	12.3.1	13.2 (2023-07-27)	
binutils	二进制工具集	<mark>2.41</mark>	2.35 (2021-01-09)	2.36.1 (2021-02-06)	2.40-5 (2023-01-14)	2.41 (2023-07-30)	最新
gdb	命令行调试器	<mark>13.2</mark>	9.2 (2020-05-23)	11.2 (2022-01-16)	12.1-10 (2022-05-01)	14.1 (2023-11-03)	13.2 (23-05-27)
annobin	安全检查工具	12.22	9.23 (2020-07-01)	11.08 (2023-01-31)	8.92-1 (2019-12-06)	12.32 (2023-11-24)	12.22 (23-07-26)
elfutils	Elf工具集	0.190	0.182 (2020-10-31)	0.187 (2022-04-25)	0.189-3 (2023-05-03)	0.190 (2023-11-03)	最新

• 由于GCC 14暂未release, 其他相关组件参考GCC 13.2进行选型

Thank You.

Compiler SIG 专注于编译器领域技术交流探讨和分享,包括 GCC/LLVM/OpenJDK 以及其他的程序优化技术,聚集编 译技术领域的学者、专家、学术等同行,共同推进编译相关技术的发展。

毕昇编译公众号

Compiler 交流群小助手