Worksheet 7 for October 13th and 15th

1. Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 8 & 2 \\ 1 & 2 & 5 \end{bmatrix}$$
.

- (a) Find an echelon form U of A. What are the column spaces Col(A), Col(U)? Are they equal?
- (b) Find a basis for Col(U) and a basis for Col(A).
- (c) What are the row spaces $Col(A^T)$, and $Col(U^T)$. Are they equal?
- (d) Find a basis for the row space of A, $Col(A^T)$.
- **2.** Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation with

$$T\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}5\\0\\1\end{bmatrix}, \quad T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}0\\1\\0\end{bmatrix}.$$

- (i) Consider the basis $\mathcal{B}_1 = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ of \mathbb{R}^2 and the basis $\mathcal{B}_2 = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ of \mathbb{R}^3 . Determine the matrix A which represents T with respect to the bases \mathcal{B}_1 and \mathcal{B}_2 . Do you have $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^2$?
- (ii) Consider the basis $C_1 := \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ of \mathbb{R}^2 and the basis $C_2 = \left\{ \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ of \mathbb{R}^3 . Determine the matrix B which represents T with respect to the bases C_1 and C_2 . Compute $T(\mathbf{v})$ where the coordinate vector of \mathbf{v} with respect to the basis C_1 is $\mathbf{v}_{C_1} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
 - **3.** In this problem we consider the bases $\mathcal{B} = \{1, t, t^2, t^3\}$ of \mathbb{P}_3 and $\mathcal{C} = \{1, t, t^2, t^3, t^4\}$ of \mathbb{P}_4 .
- (a) Let $I: \mathbb{P}_3 \to \mathbb{P}_4$ be the linear transformation that maps a polynomial p(t) to the polynomial

$$I(p(t)) := \int_0^t p(s)ds,$$

(e.g., $I(t^2+2t) = \int_0^t (s^2+2s)ds = [\frac{1}{3}s^3+s^2]_0^t = \frac{1}{3}t^3+t^2 \in \mathbb{P}_4$). Determine the matrix which represents I with respect to the bases \mathcal{B} and \mathcal{C} .

(b) Let $J: \mathbb{P}^3 \to \mathbb{P}^4$ be the linear transformation that maps a polynomial p(t) to the polynomial

$$J(p(t)) := tp(t) + p'(t).$$

Determine the matrix which represents J with respect to the bases $\mathcal B$ and $\mathcal C$.

- **4.** Let $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Find the length of \mathbf{v} . Find a vector \mathbf{u} in the direction of \mathbf{v} that has length 1. Find a vector \mathbf{w} that is orthogonal to \mathbf{v} .
- 5. True or False? Justify your answers.
 - (a) The map $T: \mathbb{R}^2 \to \mathbb{R}$ given by $T\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \sqrt{a^2 + b^2}$ is a linear transformation.
 - (b) The map $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} -b \\ a \end{bmatrix}$ is a linear transformation.
 - (c) If \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are such that $\mathbf{u} \cdot \mathbf{v} = 0$ then \mathbf{u} and \mathbf{v} are perpendicular (geometrically) to each other. (Hint: Plot \mathbf{u} and \mathbf{v} as rays coming out of the origin, and the "hypotenuse" $\mathbf{u} \mathbf{v}$. The Pythagorean theorem will hold if this is a right triangle.)
 - (d) Let V be a subspace of \mathbb{R}^n and \mathbf{u}, \mathbf{v} be two vectors in V, then $\mathbf{v} \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$ is orthogonal to \mathbf{u} .
 - (e) Let $T: V \to W$ be a linear transformation and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be vectors in V. If $T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n)$ are linearly independent then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are also linearly independent.
 - (f) Let $T: V \to W$ be a linear transformation and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be vectors in V. If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent then $T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n)$ are also linearly independent.

6. Let
$$\mathbf{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Find real numbers c_1, c_2 such that $\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2$.

7. Let
$$B = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
.

- (a) Find a basis for Nul(B).
- (b) Find two linear independent vectors that are orthogonal to Nul(B).
- (c) Is there a non-zero vector in \mathbb{R}^2 orthogonal to $\operatorname{Col}(B)$?
- 8. Consider the three vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}.$$

- (a) Check that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ form an orthogonal set of vectors and conclude that they form a basis for \mathbb{R}^3 .
- (b) Construct an orthonormal basis \mathcal{B} for \mathbb{R}^3 by normalizing the vectors in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- (c) Compute the coordinate vector $[\mathbf{v}]_{\mathcal{B}}$ for the following vectors (hint: use the fact that \mathcal{B} is an orthonormal basis):

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Definition. Two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are **orthogonal** if $\mathbf{v}^T \mathbf{w} = 0$ (where \mathbf{v}^T is the transpose of \mathbf{v} as an $n \times 1$ matrix).

Definition. A vector $\mathbf{v} \in \mathbb{R}^n$ is **orthogonal to a subspace** V of \mathbb{R}^n if \mathbf{v} is orthogonal to every $\mathbf{w} \in V$.

The following may be useful in the above problems: