10.2E

Question 6

Part (c)

1	$(\exists x)(\exists y)(Fxy \lor Fyx)$	A
2		$A/\exists E$
3		$A/\exists E$
4		$\mathrm{A}/\mathrm{\vee E}$
5	$ \qquad \qquad (\exists y) Fay$	$4,\;\exists \mathrm{I}$
6	$ \qquad (\exists x)(\exists y)Fxy $	5, ∃I
7	$ig \ \ \ \ \ \ \ \ \ \$	$\mathrm{A}/\mathrm{\vee E}$
8	$\boxed{ (\exists y) Fby}$	$7, \; \exists \mathrm{I}$
9	$ \qquad (\exists x)(\exists y)Fxy $	8, ∃I
10	$ (\exists x)(\exists y)Fxy$	$3, 4-6, 7-9, \vee E$
11	$(\exists x)(\exists y)Fxy$	$2,3\text{-}10,\exists \mathbf{E}$
12	$(\exists x)(\exists y)Fxy$	$1,\ 2\text{-}11,\ \exists \mathbf{E}$

Question 7

Part (d)

Part (j)

1	$(\exists x)(\forall y)Hxy$	$A/{\supset}I$
2		$A/\exists E$
3	Hab	$2,\!\forall \mathrm{E}$
4	$(\exists x)Hxb$	$3, \exists I$
5	$(\forall y)(\exists x)Hxy$	$4,\forall I$
6	$(\forall y)(\exists x)Hxy$	$1,2\text{-}5,\exists \mathbf{E}$
7	$(\exists x)(\forall y)Hxy\supset (\forall y)(\exists x)Hxy$	1-6, ⊃I

Question 8

Part (c)

First, I derive ' $(\exists x)(\forall y)(Fx\supset Hxy)$ ' from ' $(\exists x)[Fx\supset (\forall y)Hxy]$ '.

1	$ (\exists x)[Fx \supset (\forall y)Hxy] $	A
2		$A/\exists E$
3		$A/{\supset}I$
4		$2,3,\supset\!\! E$
5	ig ig Hab	$4,\forall \mathbf{E}$
6	$Fa \supset Hab$	$3\text{-}5,\supset I$
7	$(\forall y)(Fa\supset Hay)$	$6, \forall I$
8	$ (\exists x)(\forall y)(Fx \supset Hxy) $	7, ∃I
9	$(\exists x)(\forall y)(Fx\supset Hxy)$	$1,2\text{-}8,\exists \mathbf{E}$

Now I derive ' $(\exists x)[Fx \supset (\forall y)Hxy]$ ' from ' $(\exists x)(\forall y)(Fx \supset Hxy)$ '.

1	$(\exists x)(\forall y)(Fx\supset Hxy)$	A
2		$A/\exists E$
3	$Fa \supset Hab$	$2,\forall \mathbf{E}$
4	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	$A/{\supset}I$
5	Hab	$3,4,\supset\!\!E$
6	$(\forall y) Hay$	$5, \forall I$
7	$Fa\supset (\forall y)Hay$	4-6, ⊃I
8	$(\exists x)[Fx\supset (\forall y)Hxy]$	7, ∃I
9	$(\exists x)[Fx\supset (\forall y)Hxy]$	$1,2\text{-}8,\exists \mathbf{E}$

The Final Derivation

This is a little tricky.

I wouldn't be surprised if there is a more efficient way to do this then the one below.

```
1
           (\forall x)(\exists y)(\sim y = a \& (\forall w)(Rwy \equiv x = w))
                                                                                         Α
            \sim (\exists x)(\exists y)(\exists z)(\sim x = y \& (\sim x = z \& \sim y = z))
 2
                                                                                         Α
           (\exists y)(\sim y = a \& (\forall w)(Rwy \equiv a = w))
 3
                                                                                         1, \forall E
           (\exists y)(\sim y = a \& (\forall w)(Rwy \equiv b = w))
 4
                                                                                         1, \forall E
              \sim b = a \& (\forall w)(Rwb \equiv a = w)
                                                                                         A/\exists E
 5
              \sim b = a
 6
                                                                                         5, &E
 7
               (\forall w)(Rwb \equiv a = w)
                                                                                         5, &E
 8
                  \sim c = a \& (\forall w)(Rwc \equiv b = w)
                                                                                         A/\exists E
                                                                                         8, &E
 9
                  \sim c = a
                  (\forall w)(Rwc \equiv b = c)
                                                                                         8, &E
10
                     b = c
                                                                                         A/\sim I
11
                     Rcc \equiv b = c
                                                                                         10, \forall E
12
13
                     Rcc
                                                                                         11, 12, \equiv E
                     Rbb
                                                                                         11, 13, =E
14
                     Rbb \equiv a = b
                                                                                         7, \forall E
15
16
                     a = b
                                                                                         14, 15, \equiv E
                                                                                         16, 16 = E
17
                     a = a
                     \sim a = a
                                                                                         6, 16, =E
18
                  \sim b = c
                                                                                         11-18, \simI
19
                  \sim b = a \& \sim c = a
                                                                                         6, 9 &I
20
                  \sim b = c \& (\sim b = a \& \sim c = a)
21
                                                                                         19, 20, &I
                  (\exists z)(\sim b = c \& (\sim b = z \& \sim c = z))
22
                                                                                         21, ∃I
                  (\exists y)(\exists z)(\sim b = y \& (\sim b = z \& \sim y = z))
23
                                                                                         22, ∃I
                  (\exists x)(\exists y)(\exists z)(\sim x = y \& (\sim x = z \& \sim y = z))
24
                                                                                         23, ∃I
25
              (\exists x)(\exists y)(\exists z)(\sim x = y \& (\sim x = z \& \sim y = z))
                                                                                         4, 8-24, \exists E
           (\exists x)(\exists y)(\exists z)(\sim x = y \& (\sim x = z \& \sim y = z))
26
                                                                                         3, 5-25, \exists E
           \sim (\exists x)(\exists y)(\exists z)(\sim x = y \& (\sim x = z \& \sim y = z))
                                                                                         2, R
27
```

MIT OpenCourseWare http://ocw.mit.edu

24.241 Logic I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.