<u>Hovedemnet</u> her er bestemmelsen af egenløsninger for en matrix A(nxn). Fokus er på de to problemer og tilhørende metoder a) og b):

- a) **Problem**: Givet A(nxn), bestem den numerisk største egenværdi λ_1 og dens egenvektor v_1 . **Metode**: Potensmetoden.
- b) **Problem**: Givet en symmetrisk $\mathbf{A}(nxn)$, bestem egenløsningerne $\{\lambda_k, \mathbf{v_k}\}$ hvor k=1, 2,..., n. **Metode**: Potensmetoden udvidet. Potensmetoden anvendes på de n matricer: $\mathbf{P_1}, \mathbf{P_2},..., \mathbf{P_n}$. Her er $\mathbf{P_k}$ dannet, så λ_k er den numerisk største egenværdi for $\mathbf{P_k}$ hvor k=1, 2, ..., n.

Potensmetoden, forudsætninger for konvergens af potensmetoden og algoritme

Givet matricen A(nxn) og vektoren $z_0(nx1)$, som er en brugervalgt startvektor for algoritmen. Potensmetoden vil finde egenløsningen $\{\lambda_1, v_1\}$ hvis følgende forudsætninger er opfyldt:

- 1. $\mathbf{A}(nxn)$ har egenløsningerne $\{\lambda_k, \mathbf{v_k}\}$ hvor k = 1, 2, 3, ..., n.
- 2. $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \dots, \mathbf{v_{n-1}}, \mathbf{v_n}\}$ er lineært uafhængige og er dermed en basis for \mathbb{R}^n
- 3. $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge |\lambda_4| \ge ... \ge |\lambda_{n-1}| \ge |\lambda_n|$. Bemærk den skarpe ulighed her: $|\lambda_1| > |\lambda_2|$. Dette skal forstås således:

Egenløsningerne er navngivet, så de numeriske værdier af egenværdierne er aftagende hen gennem sekvensen $\{\lambda_1, \mathbf{v}_1\}$, $\{\lambda_2, \mathbf{v}_2\}$,..., $\{\lambda_n, \mathbf{v}_n\}$. Og: Den numeriske værdi $|\lambda_1|$ af den numerisk største egenværdi λ_1 er *større end* den numeriske værdi $|\lambda_2|$ af den numerisk næststørste egenværdi λ_2 .

4. Opskrives $\mathbf{z_0}$ i basis $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \dots, \mathbf{v_{n-1}}, \mathbf{v_n}\}$: $\mathbf{z_0} = \alpha_1 \cdot \mathbf{v_1} + \alpha_2 \cdot \mathbf{v_2} + \alpha_3 \cdot \mathbf{v_3} + \dots + \alpha_{n-1} \cdot \mathbf{v_{n-1}} + \alpha_n \cdot \mathbf{v_n} \text{ skal følgende være opfyldt: } \alpha_1 \neq 0.$

Algoritme for potensmetoden

Initialisering

Vælg: $\mathbf{z_0}$ startvektoren for iterationen.

ε tolerancen for iterationens stopkriterium.

N den øvre grænse for antallet af tilladte iterationer. (Nødbremse!)

Sæt: i = 0 iterationstælleren 0-stilles.

Find: L_0 den numerisk største koordinat i $\mathbf{z_0}$

Beregn: $\mathbf{y_0} = \frac{1}{L_0} \mathbf{z_0}$

Iteration i = 1, 2, 3, ...

Givet: y_{i-1}

Beregn: $\mathbf{z_i} = \mathbf{A} \cdot \mathbf{y_{i-1}}$

Find: L_i den numerisk største koordinat i $\mathbf{z_i}$

Beregn: $\mathbf{y_i} = \frac{1}{L_i} \mathbf{z_i}$

Stopkriterium

Stop hvis: $|L_i - L_{i-1}| < \varepsilon \quad \lor \quad |\mathbf{y_i} - \mathbf{y_{i-1}}| < \varepsilon \quad \lor \quad i = N$

Løsningskriterium

Ved terminering: $i < N \implies \mathbf{y_i} \approx \mathbf{v_1} \quad \land \quad L_i \approx \lambda_1$

<u>Overvejelse</u> af stopkriteriet for potensmetoden. Formålet med overvejelsen er at bekræfte eller afkræfte formodningen om, at I er bedre end II:

- $\bullet \quad \text{I:} \quad \bar{\text{Stop hvis}} \qquad |\boldsymbol{y_i} \boldsymbol{y_{i-1}}| \leq \epsilon \quad \vee \quad \quad i = N$
- II: Stop hvis $|L_i L_{i-1}| < \varepsilon \lor |\mathbf{y_i} \mathbf{y_{i-1}}| \le \varepsilon \lor i = N$

Note 1. Potensmetoden i matematisk fremstilling.

Hvis de ovenstående betingelser 1, 2, 3 og 4 er opfyldt, anvend følgende

Algoritme:

Ud fra startvektoren

som normeres således:

Find: L_0 den numerisk største koordinat i **z**₀

Beregn:
$$\mathbf{y_0} = \frac{1}{L_0} \cdot \mathbf{z_0}$$

Udfør iterationerne i = 1, 2, 3, ...

Givet: y_{i-1}

Beregn: $\mathbf{z_i} = \mathbf{A} \cdot \mathbf{y_{i-1}}$ Find: L_i den numerisk største koordinat i $\mathbf{z_i}$

Beregn: $\mathbf{y_i} = \frac{1}{L_i} \mathbf{z_i}$

Da fås konvergenserne:

$$L_i \rightarrow \lambda_1 \quad \text{for} \quad i \rightarrow \infty$$

 $\mathbf{y_i} \rightarrow \mathbf{v_1} \quad \text{for} \quad i \rightarrow \infty$

Note 2. Vektornormering i potensmetoden udføres i ∞-normen og ikke i 2-normen.

Med
$$\mathbf{z_i} = \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}$$
 fås $L_i = 5$ og $\mathbf{y_i} = \frac{1}{L_i} \mathbf{z_i} = \begin{bmatrix} 1 \\ 0.2 \\ 0.4 \end{bmatrix}$. Bemærk: $\mathbf{y_i}^T \mathbf{y_i} = |\mathbf{y_i}|^2 \neq 1$

Med $\mathbf{z_i} = \begin{bmatrix} 4 \\ 0 \\ -5 \end{bmatrix}$ fås $L_i = -5$ og $\mathbf{y_i} = \frac{1}{L_i} \mathbf{z_i} = \begin{bmatrix} -0.8 \\ 0 \\ 1 \end{bmatrix}$. Bemærk: $\mathbf{y_i}^T \mathbf{y_i} = |\mathbf{y_i}|^2 \neq 1$

Med
$$\mathbf{z_i} = \begin{bmatrix} 4 \\ 0 \\ -5 \end{bmatrix}$$
 fås $L_i = -5$ og $\mathbf{y_i} = \frac{1}{L_i} \mathbf{z_i} = \begin{bmatrix} -0.8 \\ 0 \\ 1 \end{bmatrix}$. Bemærk: $\mathbf{y_i}^T \mathbf{y_i} = |\mathbf{y_i}|^2 \neq 1$

Note 3. Eksempel

$$\mathbf{A}_1 = \begin{bmatrix} 3 & 0.5 & 0 & 0.5 \\ 0.5 & 2 & 0.5 & 1 \\ 0 & 0.5 & 3 & 0.5 \\ 0.5 & 1 & 0.5 & 2 \end{bmatrix} \quad \text{har egenløsningerne}$$

$$\{\lambda_1 \ , \mathbf{v_1}\} = \{\ 4, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \} \ , \ \{\lambda_2 \ , \mathbf{v_2}\} = \{\ 3, \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} \} \ , \ \{\lambda_3 \ , \mathbf{v_3}\} = \{\ 2, \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} \} \ og \ \{\lambda_4 \ , \mathbf{v_4}\} = \{\ 1, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} \}$$

$$\text{Med } \mathbf{z_0} = \begin{bmatrix} 3 \\ 1 \\ 1 \\ -1 \end{bmatrix} \text{ fås konvergenserne: } L_i \rightarrow 4 \text{ for } \mathbf{i} \rightarrow \infty \qquad \text{og} \qquad \mathbf{y_i} \rightarrow \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \text{ for } \mathbf{i} \rightarrow \infty$$

Bemærk at betingelserne 1, 2, 3 og 4 for konvergens er opfyldt.

side 3

Vedr. konvergensforudsætning 4, her i to eksempler a) og b) begge med n = 4.

Med opskrivning af $\mathbf{z_0}$ i basis $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}\}$, dvs $\mathbf{z_0} = \alpha_1 \cdot \mathbf{v_1} + \alpha_2 \cdot \mathbf{v_2} + \alpha_3 \cdot \mathbf{v_3} + \alpha_4 \cdot \mathbf{v_4}$ gælder: Potensmetodens konvergens mod egenløsningen $\{\lambda_1, \mathbf{v_1}\}$ forudsætter/kræver $\alpha_1 \neq 0$.

Eksempel a)

Med
$$\mathbf{z_0} = \mathbf{v_1} + \mathbf{v_2} + \mathbf{v_3} + \mathbf{v_4} = \begin{bmatrix} 3 \\ 1 \\ 1 \\ -1 \end{bmatrix}$$
 hvor $\alpha_1 = 1$ er konvergensbetingelse 4 opfyldt.

Konvergens:
$$L_i \rightarrow \lambda_1 = 4$$
 for $i \rightarrow \infty$ og $\mathbf{y_i} \rightarrow \mathbf{v_1} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ for $i \rightarrow \infty$

Eksempel b)

Med
$$\mathbf{z_0} = \mathbf{v_2} + \mathbf{v_3} + \mathbf{v_4} = \begin{bmatrix} 2 \\ 0 \\ 0 \\ -2 \end{bmatrix}$$
 hvor $\alpha_1 = 0$ er konvergensbetingelse 4 ikke opfyldt.

Konvergens:
$$L_i \rightarrow \lambda_2 = 3$$
 for $i \rightarrow \infty$ og $\mathbf{y_i} \rightarrow \mathbf{v_2} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$ for $i \rightarrow \infty$

Fordi: $\mathbf{z_0} \in \operatorname{Span}(\mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}) = > A^i \mathbf{z_0} \in \operatorname{Span}(\mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4})$, og i *underrummet* $\operatorname{Span}(\mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4})$ er $\lambda_2 = 3$ den numerisk største egenværdi, som potensmetoden derfor vil konvergere imod.

Note 5. Eksempel

$$A_2 = \begin{bmatrix} 2.25 & 0.75 & 0.25 & 0.75 \\ 0.75 & 3.25 & 0.75 & -0.75 \\ 0.25 & 0.75 & 2.25 & 0.75 \\ 0.75 & -0.75 & 0.75 & 3.25 \end{bmatrix} \quad \text{har egenløsningerne}$$

$$\{\lambda_{1}, \mathbf{v_{1}}\} = \{4, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \}, \{\lambda_{2}, \mathbf{v_{2}}\} = \{4, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} \}, \{\lambda_{3}, \mathbf{v_{3}}\} = \{2, \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} \} \text{ og } \{\lambda_{4}, \mathbf{v_{4}}\} = \{1, \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} \}$$

Bemærk: $\lambda_1 = \lambda_2 = 4$ => Betingelse 3 for konvergens er ikke opfyldt.

Transformationer af egenværdispektret

Givet matricen A(nxn) med egenløsningerne $\{\lambda_k, v_k\}$ hvor k = 1, 2, ..., n. Lad c være en skalar m være et positivt heltal.

Dermed har vi f
ølgende transformationer:

Matrix $\mathbf{B_1} = c \cdot \mathbf{A}$ har egenløsningerne: $\{c \cdot \lambda_k, \mathbf{v_k}\}$ hvor k = 1, 2, ..., n.

Eksempel

Ovenfor er givet matricen $A_1(4x4)$ har egenløsningerne $\{\lambda_k, \mathbf{v_k}\}$ hvor k = 1, 2, 3, 4. Dan matrix $A_3 = A_1 - c \cdot \mathbf{I}$ med c = 6 og find således:

 $A_3 = A_1 - 6 \cdot I$ har egenløsningerne: $\{ \lambda_k - 6, \mathbf{v_k} \}$ hvor k = 1, 2, 3, 4.

$$\mathbf{A_1} = \begin{bmatrix} 3 & 0.5 & 0 & 0.5 \\ 0.5 & 2 & 0.5 & 1 \\ 0 & 0.5 & 3 & 0.5 \\ 0.5 & 1 & 0.5 & 2 \end{bmatrix} \implies \mathbf{A_3} = \mathbf{A_1} - 6 \cdot \mathbf{I} = \begin{bmatrix} -3 & 0.5 & 0 & 0.5 \\ 0.5 & -4 & 0.5 & 1 \\ 0 & 0.5 & -3 & 0.5 \\ 0.5 & 1 & 0.5 & -4 \end{bmatrix} \text{ som har egenløsningerne:}$$

$$\{\lambda_4 - 6, \mathbf{v_4}\} = \{-5, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}\}, \{\lambda_3 - 6, \mathbf{v_3}\} = \{-4, \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}\}, \{\lambda_2 - 6, \mathbf{v_2}\} = \{-3, \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}\} \text{ og } \{\lambda_1 - 6, \mathbf{v_1}\} = \{-2, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}\}$$

Anvendelse af potensmetoden:

$$\text{Med } \mathbf{z_0} = \begin{bmatrix} 3 \\ 1 \\ 1 \\ -1 \end{bmatrix} \text{ fås konvergenserne: } L_i \rightarrow -5 \text{ for } i \rightarrow \infty \quad \text{ og } \quad \mathbf{y_i} \rightarrow \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} \text{ for } i \rightarrow \infty$$

Bemærk at betingelserne 1, 2, 3 og 4 for konvergens er opfyldt.

Potensmetoden anvendt på en symmetrisk A(nxn) med n distinkte egenværdier.

Bestemmelse af egenløsningerne $\{\lambda_k, \mathbf{v}_k\}$ hvor k = 1, 2, ..., n til en symmetrisk matrix $\mathbf{A}(nxn)$. $\mathbf{A}(nxn)$ har dermed n reelle egenværdier λ_k og n ortogonale egenvektorer \mathbf{v}_k hvor k = 1, 2, ..., n. Det forudsættes her, at: $|\lambda_1| > |\lambda_2| > |\lambda_3| > |\lambda_4| > ... > |\lambda_{n-1}| > |\lambda_n|$.

Dermed er egenværdierne distinkte, dvs den algebraiske multiplicitet = 1 for samtlige λ_k k = 1, 2,..., n.

Metoden har udgangspunkt i spektralfremstillingen $\mathbf{A} = \mathbf{S} \cdot \boldsymbol{\Lambda} \cdot \mathbf{S}^{-1}$ hvor: Søjlerne i $\mathbf{S}(nxn)$ er de indbyrdes *ortogonale* egenvektorer $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \ldots, \mathbf{v}_{n-1}, \mathbf{v}_n$. Diagonalelementerne i diagonalmatricen $\boldsymbol{\Lambda}(nxn)$ er egenværdierne $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_{n-1}, \lambda_n$. Hvis egenvektorerne $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \ldots, \mathbf{v}_{n-1}, \mathbf{v}_n$ vælges som *enhedsvektorer* fås: $\mathbf{S}^{-1} = \mathbf{S}^T$ og dermed $\mathbf{A} = \mathbf{S} \cdot \boldsymbol{\Lambda} \cdot \mathbf{S}^{-1} = \mathbf{S} \cdot \boldsymbol{\Lambda} \cdot \mathbf{S}^T = \lambda_1 \mathbf{v}_1 \mathbf{v}_1^T + \lambda_2 \mathbf{v}_2 \mathbf{v}_2^T + \lambda_3 \mathbf{v}_3 \mathbf{v}_3^T + \ldots + \lambda_k \mathbf{v}_k \mathbf{v}_k^T + \ldots + \lambda_{n-1} \mathbf{v}_{n-1} \mathbf{v}_{n-1}^T + \lambda_n \mathbf{v}_n \mathbf{v}_n^T$

Potensmetoden bestemmer kun én egenløsning, nemlig matricens numerisk største egenværdi og dens tilhørende egenvektor.

Den følgende metode bestemmer samtlige egenløsninger $\{\lambda_k, v_k\}$ k = 1, 2, ..., n for A(nxn) ved at anvende potensmetoden på hver af de n matricer $P_1, P_2, P_3, P_4, ..., P_n$ som præsenteres nedenfor.

 $\begin{array}{ll} \textit{Metoden} \text{ har udgangspunkt i spektralfremstillingen, hvor } v_1, v_2, v_3, \ldots, v_{n-1}, v_n \text{ er} & \textit{ortho-normale} : \\ A = \lambda_l v_1 v_1^T + \lambda_2 v_2 v_2^T + \lambda_3 v_3 v_3^T + \ldots + \lambda_k v_k v_k^T + \ldots + \lambda_{n-1} v_{n-1} v_{n-1}^T + \lambda_n v_n v_n^T \\ \end{array}$

$$P_1 = A$$

$$\mathbf{P}_2 = \mathbf{A} - \lambda_1 \mathbf{v}_1 \mathbf{v}_1^{\mathrm{T}} ,$$

$$\mathbf{P}_3 = \mathbf{A} - (\lambda_1 \mathbf{v}_1 \mathbf{v}_1^{\mathrm{T}} + \lambda_2 \mathbf{v}_2 \mathbf{v}_2^{\mathrm{T}})$$

$$\begin{aligned} \mathbf{P}_2 &= \mathbf{A} - \lambda_1 \mathbf{v}_1 \mathbf{v}_1 \\ \mathbf{P}_3 &= \mathbf{A} - (\lambda_1 \mathbf{v}_1 \mathbf{v}_1^T + \lambda_2 \mathbf{v}_2 \mathbf{v}_2^T) , \\ \mathbf{P}_4 &= \mathbf{A} - (\lambda_1 \mathbf{v}_1 \mathbf{v}_1^T + \lambda_2 \mathbf{v}_2 \mathbf{v}_2^T + \lambda_3 \mathbf{v}_3 \mathbf{v}_3^T) , \end{aligned}$$

$$\mathbf{P_n} = \mathbf{A} - (\lambda_1 \mathbf{v_1} \mathbf{v_1}^T + \lambda_2 \mathbf{v_2} \mathbf{v_2}^T + \lambda_3 \mathbf{v_3} \mathbf{v_3}^T + \dots + \lambda_{n-1} \mathbf{v_{n-1}} \mathbf{v_{n-1}}^T)$$

Konklusion:

Anvendt på P_1 finder potensmetoden egenløsningen $\{\lambda_1, \mathbf{w}_1\}$. Her er $\mathbf{w}_1 = |\mathbf{w}_1| \cdot \mathbf{v}_1$ og $|\mathbf{w}_1| \neq 1$ Anvendt på **P**₂ finder potensmetoden egenløsningen $\{\lambda_2, \mathbf{w}_2\}$. Her er $\mathbf{w}_2 = |\mathbf{w}_2| \cdot \mathbf{v}_2$ og $|\mathbf{w}_2| \neq 1$ Anvendt på P3 finder potensmetoden egenløsningen $\{\lambda_3, \mathbf{w}_3\}$. Her er $\mathbf{w}_3 = |\mathbf{w}_3| \cdot \mathbf{v}_3$ og $|\mathbf{w}_3| \neq 1$

Anvendt på P_4 finder potensmetoden egenløsningen $\{\lambda_4, \mathbf{w}_4\}$. Her er $\mathbf{w}_4 = |\mathbf{w}_4| \cdot \mathbf{v}_4$ og $|\mathbf{w}_4| \neq 1$

Anvendt på P_n finder potensmetoden egenløsningen $\{\lambda_n, w_n\}$. Her er $w_n = |w_n| \cdot v_n$ og $|w_n| \neq 1$

Konsekvens: (Bemærk, \mathbf{w}_k er frembragt ved potensmetodenormering, dvs i ∞ – normen!) Hver gang potensmetoden finder en egenløsning $\{\lambda_k, \mathbf{w}_k\}$ skal \mathbf{v}_k beregnes ved at normere \mathbf{w}_k :

Principielt således:
$$\mathbf{v_k} = \frac{\mathbf{w_k}}{|\mathbf{w_k}|}$$
 => det *implementeres* således: $\lambda_k \mathbf{v_k} \mathbf{v_k}^T = \lambda_k \frac{1}{\mathbf{w_k^T w_k}} \mathbf{w_k} \mathbf{w_k}^T$

Eksempel:

$$A = \begin{bmatrix} 3 & 0.5 & 0 & 0.5 \\ 0.5 & 2 & 0.5 & 1 \\ 0 & 0.5 & 3 & 0.5 \\ 0.5 & 1 & 0.5 & 2 \end{bmatrix}$$
 har egenløsningerne

$$\{\lambda_{1}, \mathbf{w_{1}}\} = \{4, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \}, \{\lambda_{2}, \mathbf{w_{2}}\} = \{3, \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} \}, \{\lambda_{3}, \mathbf{w_{3}}\} = \{2, \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} \} \text{ og } \{\lambda_{4}, \mathbf{w_{4}}\} = \{1, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} \}$$

A = P₁ =
$$\begin{bmatrix} 3 & 0.5 & 0 & 0.5 \\ 0.5 & 2 & 0.5 & 1 \\ 0 & 0.5 & 3 & 0.5 \\ 0.5 & 1 & 0.5 & 2 \end{bmatrix}$$
 og potensmetoden finder: $\{\lambda_1, \mathbf{w}_1\} = \{4, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \}$

$$=> |\mathbf{w}_1| = 2 \implies \mathbf{v}_1 = \frac{1}{2} \cdot \mathbf{w}_1 \implies \lambda_1 \mathbf{v}_1 \mathbf{v}_1^T = \lambda_1 \frac{1}{\mathbf{w}_1^T \mathbf{w}_1} \mathbf{w}_1 \mathbf{w}_1^T = 4 \cdot \frac{1}{4} \cdot \mathbf{w}_1 \mathbf{w}_1^T \implies$$

$$\mathbf{P_2} = \begin{bmatrix} 2 & -0.5 & -1 & -0.5 \\ -0.5 & 1 & -0.5 & 0 \\ -1 & -0.5 & 2 & -0.5 \\ -0.5 & 0 & -0.5 & 1 \end{bmatrix} \text{ og potensmetoden finder: } \{\lambda_2, \mathbf{w_2}\} = \{3, \}$$

$$=> |\mathbf{w}_2| = \sqrt{2} => \mathbf{v}_2 = \frac{1}{\sqrt{2}} \cdot \mathbf{w}_2 => \lambda_2 \mathbf{v}_2 \mathbf{v}_2^{\mathrm{T}} = \lambda_2 \frac{1}{\mathbf{w}_2^{\mathrm{T}} \mathbf{w}_2} \mathbf{w}_2 \mathbf{w}_2^{\mathrm{T}} = 3 \cdot \frac{1}{2} \cdot \mathbf{w}_2 \mathbf{w}_2^{\mathrm{T}} =>$$

$$\mathbf{P}_3 = \mathbf{A} - (\lambda_1 \mathbf{v}_1 \mathbf{v}_1^T + \lambda_2 \mathbf{v}_2 \mathbf{v}_2^T) = \mathbf{P}_2 - \frac{3}{2} \cdot \mathbf{w}_2 \mathbf{w}_2^T$$

$$=\begin{bmatrix}2&-0.5&-1&-0.5\\-0.5&1&-0.5&0\\-1&-0.5&2&-0.5\\0.5&0&-0.5&1\end{bmatrix}-\frac{3}{2}\cdot\begin{bmatrix}1&0&-1&0\\0&0&0&0\\-1&0&1&0\\0&0&0&0\end{bmatrix}=\begin{bmatrix}0.5&-0.5&0.5&-0.5\\-0.5&1&-0.5&0\\0.5&-0.5&0.5&-0.5\\-0.5&0&-0.5&1\end{bmatrix}$$

$$\mathbf{P_3} = \begin{bmatrix} 0.5 & -0.5 & 0.5 & -0.5 \\ -0.5 & 1 & -0.5 & 0 \\ 0.5 & -0.5 & 0.5 & -0.5 \\ -0.5 & 0 & -0.5 & 1 \end{bmatrix} \text{ og potensmetoden finder } \{\lambda_3, \mathbf{w_3}\} = \{2, \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} \}$$

$$=> |\mathbf{w_3}| = 2 \quad => \quad \mathbf{v_3} = \frac{1}{2} \cdot \mathbf{w_3} \quad => \quad \lambda_3 \mathbf{v_3} \mathbf{v_3}^T = \lambda_3 \frac{1}{\mathbf{w_3^T w_3}} \mathbf{w_3} \mathbf{w_3}^T = 2 \cdot \frac{1}{4} \cdot \mathbf{w_3} \mathbf{w_3}^T \quad =>$$

$$\mathbf{P_4} = \mathbf{A} - (\lambda_1 \mathbf{v_1} \mathbf{v_1}^T + \lambda_2 \mathbf{v_2} \mathbf{v_2}^T + \lambda_3 \mathbf{v_3} \mathbf{v_3}^T) = \mathbf{P_3} - \frac{1}{2} \cdot \mathbf{w_3} \mathbf{w_3}^T$$

$$=\begin{bmatrix} 0.5 & -0.5 & 0.5 & -0.5 \\ -0.5 & 1 & -0.5 & 0 \\ 0.5 & -0.5 & 0.5 & -0.5 \\ -0.5 & 0 & -0.5 & 1 \end{bmatrix} - \frac{1}{2} \cdot \begin{bmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & -0.5 \\ 0 & 0 & 0 & 0 \\ 0 & -0.5 & 0 & 0.5 \end{bmatrix}$$

$$\mathbf{P_4} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & -0.5 \\ 0 & 0 & 0 & 0 \\ 0 & -0.5 & 0 & 0.5 \end{bmatrix} \text{ og potensmetoden finder } \{\lambda_4, \mathbf{w_4}\} = \{1, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} \}$$

Samlet oversigt over matricerne P₁, P₂, P₃, P₄ og deres respektive egenløsninger:

$$\mathbf{P_1} = \begin{bmatrix} 3 & 0.5 & 0 & 0.5 \\ 0.5 & 2 & 0.5 & 1 \\ 0 & 0.5 & 3 & 0.5 \\ 0.5 & 1 & 0.5 & 2 \end{bmatrix}$$
 $\{4, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \}$, $\{3, \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} \}$, $\{2, \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} \}$ og $\{1, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} \}$

$$\mathbf{P_2} = \begin{bmatrix} 2 & -0.5 & -1 & -0.5 \\ -0.5 & 1 & -0.5 & 0 \\ -1 & -0.5 & 2 & -0.5 \\ -0.5 & 0 & -0.5 & 1 \end{bmatrix} \qquad \{0, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \} , \{3, \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} \} , \{2, \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} \} \text{ og } \{1, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} \}$$

$$\mathbf{P_3} = \begin{bmatrix} 0.5 & -0.5 & 0.5 & -0.5 \\ -0.5 & 1 & -0.5 & 0 \\ 0.5 & -0.5 & 0.5 & -0.5 \\ -0.5 & 0 & -0.5 & 1 \end{bmatrix} \qquad \qquad \{0, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \} \ , \ \{0, \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} \} \ , \ \{2, \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} \} \ og \ \{1, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} \}$$

$$\mathbf{P_4} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & -0.5 \\ 0 & 0 & 0 & 0 \\ 0 & -0.5 & 0 & 0.5 \end{bmatrix} \qquad \{0, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}\} , \{0, \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}\} , \{0, \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}\} \text{ og } \{1, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}\}$$

Recall that the Gram-Schmidt orthogonalization process gave us QR factorization of \underline{A} (nxm) where nzm :

This QR-factorization is a so-called "thin" QR-factorization as opposed to a "full" QR factorization:

In the full factorization:

Methods computing the full factoritation:
$$A = aR$$
: $\left\{ \begin{array}{l} a = L_{a} & a_{s} \\ \end{array} \right\}$. Householder reflections Givens rotations

Methods computing the thin factorization: $A = aR$: $\left\{ \begin{array}{l} a = R \\ \end{array} \right\}$. $\left\{ \begin{array}{l} a = R$

A few important properties of orthogonal matrices:

454

is orthogonal _CΩII (=) orthogonal . 5 ପା 4

Overdetermined system
$$A_X = b$$

of linear equations

E < U

X(mxI)

(1 x U) q

\$(uxw)

Normal equations
$$LS-solution \times \times (solution to norm. eqs.)$$

$$A^{T}Ax = A^{T}b \begin{cases} A^{T}A(m \times m) \\ A^{T}b (m \times i) \end{cases}$$

$$x = (A^{T}A)^{-1}A^{T}b$$

Projection vector
$$\underline{b}_p$$
 (\underline{b}_p projected on column space of \underline{A}_p)

$$||\underline{e}||^{2} = |\underline{b} - \underline{A}|_{X}^{*}$$

$$||\underline{e}||^{2} = (|\underline{b} - \underline{A}|_{X}^{*})^{T} (|\underline{b} - \underline{A}|_{X}^{*})$$

$$= \min_{X} (|\underline{b} - \underline{A}|_{X})^{T} (|\underline{b} - \underline{A}|_{X}^{*})$$

Using "thin" aR-factorization: A = QR where Q = Q, R = R.

We find:
$$A = b < 0.00$$
 $A = b < 0.00$
 $A = 0.00$

So:
$$x^*$$
 is the solution to $R_1 x = Q_1 b$
where $R_1(m \times m)$ is upper triangular so that the solution (only) requires backwards substitution.

. Using full QR- factorization:
$$A = QR$$
 where $Q = [Q_1 Q_2]$ where $Q(n \times n)$ is orthogonal.

0

With
$$b_p = q_1 q_1^T b$$
 the projection of b on the column space of b by $b = q_1 q_1^T b$ the projection of b on the null space of b

we will show that

This result is useful in the context of LS salution of an overaleter-mined system of linear equations:

End of proof

$$A \times = b \qquad \Rightarrow \qquad J \qquad A \times = bp$$

$$J \quad A \times = bp \qquad \langle z \rangle \qquad e \qquad = b - bp = b - A \times = bp$$

$$J \quad A \times = bp \qquad \langle z \rangle \qquad g \quad R \mid x = g \mid g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

$$\langle z \rangle \qquad g \quad R \mid x = g \mid b$$

Given the full QR factorization: A = QR

Given the full QR factorization:
$$A = QR = Q = \begin{bmatrix} a & a & b \\ a & a & b \end{bmatrix}$$

$$R = \begin{bmatrix} R & b & b \\ Q & b & b \end{bmatrix}$$

Find the LS solution to Ax= b as follows:

3 Solve:
$$\mathbb{R}_{|X} = \mathbb{Q}_1^T \underline{b}$$
 by backwards substitution 'Solution is: $\mathbb{X} = \mathbb{R}_1^{-1} \mathbb{Q}_1^T \underline{b}$ LS solution

3) Compute:
$$\underline{e} = \underline{q}_2 \underline{q}_1^T \underline{b}$$
 LS error $\|\underline{e}\|^2 = (\underline{q}_2^T \underline{b})^T (\underline{q}_2^T \underline{b})$

Notice: Computation of e does not require availability of x*

Example

Given:
$$A = \frac{1}{2} = \frac{1$$

Where

$$\frac{1}{2} = \frac{1}{2} - \frac{1}{2}$$

$$\frac{1}{2} = \frac{1}{2} - \frac{1}{$$

while

Let
$$b = 2q_1 - q_2 + 212q_3 - 12q_4 = Q_1 \begin{bmatrix} 21 \\ 1 \end{bmatrix} + Q_2 \begin{bmatrix} 212 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 - \frac{1}{2} + 2 - 0 \\ 1 + \frac{1}{2} + 0 - 1 \\ 1 - \frac{1}{2} - 2 - 0 \end{bmatrix} = \begin{bmatrix} 2.5 \\ 0.5 \end{bmatrix}$$

$$\begin{bmatrix} 1 - \frac{1}{2} + 2 - 0 \\ 1 + \frac{1}{2} + 0 + 1 \\ 1 + \frac{1}{2} + 0 + 1 \end{bmatrix} = \begin{bmatrix} 2.5 \\ -1.5 \\ 1 - 5 \end{bmatrix}$$

Solving the normal equations ATAX = ATE Now, find the LS-solution to Ax = b

$$\frac{A}{2} = \begin{bmatrix} k & 24 \\ 24 & 40 \end{bmatrix} \qquad A = \begin{bmatrix} 8 \\ \frac{1}{2} = \begin{bmatrix} 8 \\ 0 \end{bmatrix} \\
A = \begin{bmatrix} 24 & 40 \\ 4 = 1 \end{bmatrix} \quad A = \begin{bmatrix} 16 & 24 \\ 0 = 1 \end{bmatrix} \quad A = \begin{bmatrix} 16 & 24 \\ 24 \\ 24 \end{bmatrix} \quad A = \begin{bmatrix} 16 & 24 \\ 24 \\ 24 \end{bmatrix}$$

Using the factorization A = Q.R :

$$Q_{1}^{T} \underline{b} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
 $Q_{2}^{T} \underline{b} = \begin{bmatrix} \frac{4}{12} \\ -\frac{1}{12} \end{bmatrix} = \begin{bmatrix} 212 \\ -12 \end{bmatrix}$
(as expected since $\underline{b} = \underline{Q}_{1} \underline{Q}_{1}^{T} \underline{b} + \underline{Q}_{2} \underline{Q}_{2}^{T} \underline{b}$)
$$\overline{R}_{1} \times = \underline{Q}_{1}^{T} \underline{b} \quad \angle = > \begin{bmatrix} 4 & 6 & |^{2} \\ 0 & 2 & |^{-1} \end{bmatrix} \angle = > \times^{4} = \begin{bmatrix} 1.25 \\ -0.5 \end{bmatrix}$$

$$e = Q_2 Q_2^T b = Q_2 \begin{bmatrix} 2V2 \\ -\Gamma_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{pmatrix} e & 2V2 & 124 \end{pmatrix}$$

The thin QR-factorization by modified Gram-Schmidt orthogonalization

Status

2

where nsm and rank($\frac{A}{2}$) = m is full, A(nxm) Given: · Purpose

The columns of \underline{q} are \underline{q}_1 , \underline{q}_2 ,..., \underline{q}_m which is a set of mutually orthogonal unit vectors forming a basis of $Gol\{\underline{q}\}$ The columns of A are a, g, s, sm which is ortho-normal. Q (∩×m) Compute:

which is upper triangular. R (mxm)

₹II

is a thin QR-factorization of

So that:

The method is an algorithm which will construct of and R in m iterations. Q1 With the iteration index K=1,2,3,...,m-1,m results are-

column number k of FRI TOW NUMBER K OF On iteration k : Compute

Since each iteration will transform A We initialize prior to the iterations, \underline{A}_{j} by transformation of \underline{A}_{o} (columns 2,...,m) \underline{a}_{j} : \underline{a}_{j} $-(\underline{q}_{l}\cdot\underline{a}_{j})\cdot\underline{q}_{l}$ \underline{j} = 2,..., \underline{m} For k=o , let $\underline{A}_0=\underline{A}$ with columns \underline{q}_1 , \underline{q}_2 , \underline{q}_3 ..., \underline{q}_m $\frac{q}{2}_{I} = \frac{1}{r_{II}} \cdot \frac{q}{q}$ T = 11 a (18) # For k = 1, compute compute column-updates Proceed as follows:

are all orthogonal to \$100 gk

are set in A and:

is set in Ak

(k) = 7k · 4 (k) = 7k · 4 (k) (k) (k) (k)

rk . . . rm

j=2,..,m

Fi = 4, 4,

SAVE

3 (i) (o)

column-update (copy)

 A_k by transformation of A_{k-1} (columns k+l,...,m) ($a_k^{(k-1)}$ is copied) A_2 by transformation of A_1 (columns $a_3...,m$) (column 2, copy) (column k, copy) are all orthogonal to g, and g. Ŧ j = k+1,...,m at-ī are all orthogonal to are set in A, and: are computed for R is computed for & is computed for & are computed for B Q! j = 3,..,m are computed for $\vec{a_j} = \vec{a_j} - (\frac{1}{2}, \vec{a_j}) \cdot \frac{1}{2}, \quad j \cdot \frac{1}{2}, \quad j \cdot 3,..,m$ $\vec{r_{2j}} = \vec{q_{2}} \cdot \vec{a_{j}}$ is computed for are set in Az $\frac{a_{j}}{a_{j}} = \frac{a_{j}}{a_{j}} - \left(\frac{1}{4}, \frac{a_{j}}{a_{j}}\right), \frac{a_{j}}{4}k$ $\frac{r_{j}}{k_{j}} = \frac{1}{4}, \frac{a_{j}'(k-1)}{a_{j}}$ is set in A is set in Az 14 = 1 (K-1) FK = 1 4 (K-1) $\frac{q}{1}_2 = \frac{l}{l_{12}} \cdot \frac{q}{4}$ $a_{2}^{(2)} = c_{22} \cdot \frac{q}{q_{2}}$ $a_{3}^{(2)} \cdot ... a_{m}^{(2)}$ 122, 123, .., 12m (k) = (k-1) = k = 4 $a_1 = r_1 \cdot \frac{4}{4}$, $a_2 = r_2 \cdot \frac{4}{4}$, $a_3 = r_3 \cdot \frac{4}{4}$, $a_4 = r_3 \cdot \frac{4}{4}$, $a_5 = r_3 \cdot \frac{4}{4}$ [22 = || a || η, τ. τ. ε. τη. (1) (1) (2) (2) (3) (4) 0+1 74 compute For k=2, compute column -updates Compute compute column-update (copy) column-updates Status column-update (copy) Status SOVE Save For any K, K=1,..,m-1

For
$$k = m$$
, compute $\Gamma_{mm} = \| a_m^{(m-1)} \|$ $\frac{4}{2m} = \frac{1}{\Gamma_{mm}} \cdot a_m^{(m-1)} = \frac{1}{2m} \cdot a_m^{(m-1)} = \frac{1}{2$

Structural notes

The columns of $\frac{A}{4}$: $\frac{a_1}{a_1}$, $\frac{a_2}{a_2}$, $\frac{a_3}{a_3}$,..., $\frac{a_m}{a_m}$ The columns of $\frac{A}{4m}$: $\frac{a_1}{a_1}$, $\frac{a_2}{a_2}$, $\frac{a_3}{a_3}$,..., $\frac{a_m}{a_m}$ The columns of $\frac{A}{4m}$: $\frac{a_1}{4m}$, $\frac{a_2}{4m}$, $\frac{a_2}{4m}$, $\frac{a_3}{4m}$, $\frac{a_3}{4m}$, $\frac{a_3}{4m}$

where (1) = $\frac{a_1}{a_2}$ = $\frac{a_1}{a_2}$ = $\frac{a_2}{a_3}$ = $\frac{a_2}{a_3}$ = $\frac{a_2}{a_3}$ = $\frac{a_2}{a_3}$ = $\frac{a_2}{a_3}$ = $\frac{a_2}{a_3}$ = $\frac{a_3}{a_4}$ = $\frac{a_4}{a_4}$ =

 $\langle = \rangle = \int_{12}^{11} \cdot \frac{q_1}{q_1} + \int_{22}^{12} \cdot \frac{q_2}{q_2}$ $= \int_{13}^{12} \cdot \frac{q_1}{q_1} + \int_{24}^{12} \cdot \frac{q_2}{q_2} + \int_{34}^{12} \cdot \frac{q_3}{q_3}$ $= \int_{13}^{12} \cdot \frac{q_1}{q_1} + \int_{24}^{12} \cdot \frac{q_2}{q_2} + \int_{34}^{12} \cdot \frac{q_3}{q_3} + \int_{44}^{12} \cdot \frac{q_4}{q_4}$ $= \int_{14}^{14} \cdot \frac{q_1}{q_1} + \int_{24}^{12} \cdot \frac{q_2}{q_2} + \int_{34}^{12} \cdot \frac{q_3}{q_3} + \int_{44}^{12} \cdot \frac{q_4}{q_4} + \dots + \int_{16}^{16} m_1 \cdot \frac{q_4}{q_4}$

" קיו אי

≪11

\II\

· The algorithm is iterative Implementation plan for QR-factorization by modified Gram-Schmidt Overwrites/updates columns k+1,..,m In R: set Fr in row k In R: set gr in col. K => In A: col.k is now Fr. gr In R: Remaining elements Try with j= k+1,..,m are set and performs iterations · On iteration k=1,..,m-1 ←・Here: From <u>Å</u>, select col, k and In A: columns a; with j=k+1,..., m are updated The projection of a; on gk is orthogonal to \$1,7.3 fm-1 In R set Faming set gm + Here: on exit from iteration k=m-1 the current am The updated aj is orthogonal to gk and thus to In @ : Sets column k columns 1,..., k-1 In A : Sets column k In &: Sets fmm In &: Sets 4m In &: No changes No change in 4, 1. . . 4 Well Cip = Fkj · 울k => In R : Sets row k KK 1 . . . KB On iteration K=m k=1,2,3,...,m κ. ' 1 κ ₫(n×m), n≥m, rank(₫)=m R(mxm), upper triangular Columns: a 1, a2,11, am Columns: 41, 12, 11, 9m ginam), ortho-normal Update/overwrite aj: 4j - 4j - Fj · fk al A Kj = 9 K . 4 j A = Q. rkk = || ak || 9m = 1mm 9m 1+0-1 Fmm = 11 am 11 **木 = 木 + |** -¥ Ē K = 0 E 1+0 ح Compute: So that: Given: 2 9 End

Computing the QR-Factorization by Gram-Schmidt orthogonalization

The objective is

 $\underline{A}(nxm)$ with $n \ge m$, $rank(\underline{A}) = m$, and columns $\underline{a}_1, \dots, \underline{a}_m$, $\underline{Q}(nxm)$ which is ortho-normal: $\underline{Q}^T\underline{Q} = \underline{\underline{I}}(mxm)$. Columns: $\underline{q}_1, \dots, \underline{q}_m$ Compute: Given:

R(mxm) which is upper triangular

A = QR So that:

$$K = 2$$
 $V_2 = \frac{a}{2} - \frac{a^T \cdot a_2}{2^T \cdot 2} \cdot \frac{a}{2}$

$$\frac{q}{4}_2 = \frac{1}{f_{22}} \cdot V_2$$
 with $f_{32} = \|V_2\|$

$$k = 3$$
 $\sqrt{3}$ $\frac{q}{3}$ $\frac{q}{4}$ $\frac{7}{3}$ $\frac{q}{4}$ $\frac{7}{3}$ $\frac{q}{4}$ $\frac{q}{4}$ $\frac{q}{4}$ $\frac{q}{4}$ $\frac{q}{4}$ $\frac{q}{4}$ $\frac{q}{4}$

$$\frac{2}{43} = \frac{1}{733} \cdot V_3$$
 with $r_{33} = ||V_3||$

$$k = m \qquad \bigvee_{m} = \frac{q}{qr_1} \frac{q}{q^2 \cdot q} \cdot \frac{q}{q^2} \cdot \frac{q}{q^2}$$

and Using a A A = 1 Now, with Fix = gj. &k

Implementation plan for QR-factorization by Gram-Schmidt orthogonalization

Given:
$$\frac{A(n \times m)}{A(n \times m)}, n \ge m, rank(\frac{A}{A}) = m$$

$$\frac{A(n \times m)}{Colomns} : \frac{a_1}{a_1}, \frac{a_2}{a_2}, \dots, \frac{a_m}{a_m}$$

$$\frac{A(n \times m)}{Compute} : \frac{A}{a_1}, \frac{a_2}{a_2}, \dots, \frac{a_m}{a_m}$$

$$\frac{A(n \times m)}{Colomns} : \frac{a_1}{a_1}, \frac{a_2}{a_2}, \dots, \frac{a_m}{a_m}$$

$$\frac{A}{a_1} : \frac{A}{a_2} : \dots, \frac{A}{a_m}$$

$$\frac{A}{a_1} : \frac{A}{a_2} : \dots, \frac{A}{a_m} : \dots,$$

 $\frac{q}{2}_k = \frac{t}{r_{kk}} \cdot \underline{V}$

rk = 1111

V = 9k

Copy:

Compute:

| | | |

K=K+1

Compute:
$$V = a_{k} - \sum_{j=1}^{k-1} \frac{a_{j}^{T} \cdot a_{k}}{a_{j}^{T} \cdot a_{j}} \cdot a_{j}^{T}$$

>1 = 2 = 1 = 1

Copy:

j = 0

$$V = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} +$$

+ =

Implementation, since:
$$V = \frac{k-1}{2} \cdot \int_{J=1}^{K-1} f_j k \cdot \frac{q_j}{2} \quad \text{and} \quad \frac{q_k - \frac{1}{L} \cdot V}{f_k \cdot K_k} \quad \text{then;}$$

 $\underline{V} = \underline{V} - \overline{\eta} \hat{K} \cdot \underline{q} \hat{J}$

1= k-1

Fix = 4j · 4k Compute, update

Compute:

Compute:
$$T_{jk} = \frac{1}{2} T_{jk}$$
Compute, update: $V_{jk} = V_{jk} T_{jk}$

Ckk = 1121

Compute:

yes End

ж п

are orthogonal:

Columns: ak where K=1,..,4

k = 1, 2k = 3, 4

19k = 14

columns: ak where k=1,..,8

In general A(nxm) with n>m is given and Q and R and found:)
has the ortho-normal-columns 41, 4m	- T
[q1, 1, qm] is an ortho-normal basis of Col[4]	
R(MxM) is upper triangular	
Here, We will	0
9	0 (
Enter M with n	7 0
Columns of	
e (K)	0 0 1
3 Compute A = QR	0 0 7
4s follows:	
Choose Jenter	- 6
t (n-m) x 1) where +	0
	0 0 1- 0 1
Compute & = ti - cm+1 + t2 · cm+2 + + tn.m, cn & Noll[A]}	0 - 0 - 0
Here: - C1, S2,, Cn are the n columns of An	0 0 0 0 7
-4	O - O
۵۱ ۱ ما	0 1 0 1-
Now: Ax = b has the L.S. solution x with e = b-Ax	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 1- 0 1 1 1
6.5	0 0
	0 0 7 0 7 1
2 Enter: R = [2 1]	. The following 3 matrices
3 Compute: A = Q.R => A = 1-1	D (4×4) with elements
ed , 	
4) Enter: x = 2 t = 3 =>> 6p = Ax = 1	where a K=1,
7	D (8x8) with elements
1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Where lak k=1,
[-2]	D (16x16) with elements
	where $ a_k k = 1$
$A \times = b \Rightarrow A \times = b \Rightarrow A \times = A $	
x ₁ [x ₁] [2]	. The following 3 matrices
1	

columns : ak

K = 5, -, 8

k = 3,4

000-0007

K=1,2

1ak = 18

k=1,...,16

10 1 = 16 K=1,2

10 K = 3,4

000000-00000007

0000-0000000000

K=5,...,8

1ak | = 14

1ªk | = 12

0000000

1.34 are the lengths of columns of Au

of the diagonal: dk = 1/1 K = 1,... 8

K=1,-.,4

of the diagonal: $d_k = \frac{1}{|a_k|}$

diagonal:

,.., 16 are the lengths of columns of All

A . D = 16

15 16

are ortho-normal:

j... 38 are the lengths of columns of A_8 of the diagonal: $d_k = \frac{1}{|a_k|} k = i_3..., 16$

where $X = [x_1 \ x_2 \cdots \hat{x}_n]$ and $f(\underline{x})$ is twice differentiable. Here $f(\underline{x})$ is a function of the multivariable input \underline{x}

The purpose of the class of iterative algorithms presented below:

- From a chosen initial: Xo

- Generate a sequence: Xo, XI) Xz, ..., Xk, Kk+1,..., XM
where the final XM: XM = X*

Here: x* is a local minimum of f(x)

The basic (shared) logic of the class of algorithms is:

the maximum number of allowed the initial xk a tolerance iterations ×ì wZ Initialization, choose

On iteration K = 0, 1, 2,...

the search direction vector SI compute given

f(xk + Kk. sk) = min f(xk + 4. sk) where |s = [where 8

compute

= xk + xk - 5k - K+1 Compute

Termination criterian

terminate if: |xk+1 - xk | < E v | Of(xk+1) | < E v k+1=N

. The individual algorithms of the class are characterized

1) The strategy for computation of Sk

2) The strategy for computation of dk

strategies for computation of Sk

. The steepest descent direction: $\frac{V}{2} = \frac{V}{2} f(\underline{x}_{k}) = 2K = \frac{1}{|Y|}$

. The Newton direction: $\underline{V} = -\left[\frac{\alpha}{2}^2f(\underline{x}_k)\right]^{-1}\cdot\underline{V}f(\underline{x}_k) => \frac{1}{2k}\cdot\underline{V}$

11 × 11 î · The BFGS direction : V = - HK · Of(xk) where,

(3+ +x) + + + + Initially: Ho = I (nxn) Hk update: $\frac{\partial}{\partial k} = \overline{V} f(\underline{x}_{k+1}) - \overline{V} f(\underline{x}_k)$ 1k = Xk+1 - Xk

9k= tk - Hk. 3k

[5 å, beregning • Strategi λ γ

Golden Section (det gyldne snits metode) er en iterativt intervalreducerende metode til bestemmelse af en tilnærmelse til x' hvor f(x) er et lokalt minimum for funktionen f(x).

Metoden forudsætter, at man kender intervallet [a,b] hvorom det gælder:

f(x) er unimodal over [a,b]
 x er et indre punkt i [a,b] - således at: a < x < b

Det gyldne snits konstant er: $c = \frac{\sqrt{5} - 1}{2} \approx 0.618 \implies 1 - c = \frac{3 - \sqrt{5}}{2} \approx 0.382$

Når de 4 værdier x_1,x_2 , x_3 og x_4 optræder i det følgende gælder det overalt at

1. $x_1 < x_2 < x_3 < x_4$ 0g

 $x_2 = x_1 + (1 - c)(x_4 - x_1)$ samt $x_3 = x_4 - (1 - c)(x_4 - x_1)$

Golden Section algoritmen

 $x_{2} = x_{1} + (1 - c)(x_{4} - x_{1})$ $x_{3} = x_{4} - (1 - c)(x_{4} - x_{1})$ $x_1 = a$ $x_4 = b$ Sæt

Vælg s som er tolerancen i stopkriteriet

Givet x_1 , x_2 , x_3 og x_4 Test $f(x_2) \ge f(x_3)$ Hvis ja, sæt $x_1 = x_2$ $x_2 = x_3$ Iteration k = I, 2, 3,...

 $x_3 = x_4 - (1 - c)(x_4 - x_1)$ His nej, sæt $x_i = x_j$

 $x_3=x_2$

 $x_2 = x_1 + (1 - c)(x_4 - x_1)$ Stop hvis $|x_i - x_j| < \varepsilon$

Stopkriterium

 $x = 1/2(x_d + x_I)$ Sæt

Ved terminering

<u>Indkredsningssalgoritme</u> Formål: Frembringelse af et startinterval [a,b] for Golden Section algoritmen. X, 1 Givet:

hvor $f(x_i) < \theta$ og hvor $d > \theta$ er en brugervalgt start-steplængde

Algoritme

while $f(x_2) \ge f(x_1)$ $x_2 = x_1 + d$ $d = 0.1 \cdot d$ p + ix = zxend

while $f(x_d) > f(x_d)$ $x_3 = x_2 + d$ $d = 2 \cdot d$

 $x_2 = x_3$ $d = 2 \cdot d$ $x_1 = x_2$

end

 $x_3 = x_2 + d$

 $a = x_1$ $b = x_3$

Indkredsning af Startinterval til

Golden Section

>> xk = [4 3]; >> sk = [-0.8 -0.6]; >> tmax = 4: >> d = 0.25; >> PlotCrossSectionP4(xk, sk, tmax) >> tInt = GSIntervalP4(xk, sk, d)

tint =

3.7500 0.7500 >> eps = 0.000000001; >> tk = GoldenSectionP4(tInt, xk, sk, eps)

ξķ

1.3744

xy - x1 = 0.6180

•
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 is the vector of variables:

The functional expression

$$f(\underline{x}) = f(x_1, x_2) = (x_1^2 + x_2 - 1)^2 + (x_1 + x_2 - 7)^2$$

The partial derivatives of order !

$$\frac{\partial f}{\partial x_1} = 2 \cdot (x_1^2 + x_2 - II) \cdot 2x_1 + 2 \cdot (x_1 + x_2^2 - 7) \cdot I$$

$$= 4x_1^3 + 4x_1x_2 - 44x_1 + 2x_1 + 2x_2 - I4$$

$$= 4x_1^3 + 4x_1x_2 + 2x_2^2 - 42x_1 - I4$$

$$\frac{\partial f}{\partial x_2} = 2 \cdot (x_1^2 + x_2 - II) \cdot I + 2 \cdot (x_1 + x_2^2 - 7) \cdot 2x_2$$

$$= 2x_1^2 + 2x_2 - 22 + 4x_1x_2 + 4x_2^3 - 28 x_2$$

$$= 4x_2^2 + 4x_1x_2 + 2x_1^2 - 26x_2 - 22$$

The gradient vector

$$\frac{Qf(x)}{\partial x_2} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 4x_1^3 + 4x_1x_2 + 2x_2 - 42x_1 - 14 \\ 4x_2^3 + 4x_1x_2 + 2x_1^2 - 26x_2 - 22 \end{bmatrix}$$

The partial derivatives of order 2

$$\frac{\partial^{2} f}{\partial x_{1}^{2}} = 12x_{1}^{2} + 4x_{2} - 42 \qquad \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} = 4x_{1} + 4x_{2}$$

$$\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} = 4x_{2} + 4x_{1} \qquad \frac{\partial^{2} f}{\partial x_{2}} = 12x_{2}^{2} + 4x_{1} - 26$$

· The Hessian matrix

$$\frac{2}{2} f(\underline{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_2} \\ \frac{\partial^2 f}{\partial x_2^2} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 12x_1^2 + 4x_2 - 42 & 4x_1 + 4x_2 \\ 4x_1 + 4x_2 & 4x_1 - 26 \end{bmatrix}$$

Analysis of $f(\underline{x})$ in the neighbourhood of the location $P_{o}(x_{1},x_{2})=(4,3)$

26

The location vector:
$$X_0 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

The value of $f(\underline{x})$: $f(\underline{x}_0) = f(4,3) = 100$
The gradient: $\overline{\nabla} f(\underline{x}_0) = \begin{bmatrix} 140 \\ 88 \end{bmatrix}$
The Hessian: $\overline{\nabla}^2 f(\underline{x}_0) = \begin{bmatrix} 162 & 28 \\ 28 & 98 \end{bmatrix}$

The tangent plane:
$$Z = 140 \cdot (x_1 - 4) + 8\beta \cdot (x_2 - 3) + 100$$

The contour: $(x_1^2 + x_2 - 1)^2 + (x_1 + x_2^2 - 7)^2 = 100$

Contour plot:
$$3 \le x_i \le 5 \land 2 \le x_2 \le 4$$
 (see figures)

Cross-section: plot of $(t, f(x_0 + t \cdot U))$ (see figures)

Cross-section: protein to the protein of the protein with
$$u = \begin{bmatrix} 0.6 \\ 0.8 \end{bmatrix}$$
 and $-1 \pm t \pm 1$.

The directional derivative: With $u = \begin{bmatrix} 0.6 \\ 0.8 \end{bmatrix}$

$$D_u f(x_0) = v f(x_0) \cdot v$$

$$= [140.88] \begin{bmatrix} 0.6 \\ 0.8 \end{bmatrix} = 154.4$$

Taylor approximations of $f(\underline{x})$ with expansion point $\underline{x} = \underline{x}_o$

To conder
$$n=0$$
 (horizontal plane):
 $T_o(\underline{x}) = f(\underline{x}_o) \implies Z = 100$

Order
$$\eta = 1$$
 (tangent plane):
$$T_{1}(\underline{x}) = f(\underline{x}_{0}) + \nabla f(\underline{x}_{0}) \cdot (\underline{x} - \underline{x}_{0})$$

$$Z = 100 + [140 881] \begin{bmatrix} x_{1} - 4 \\ x_{2} - 3 \end{bmatrix}$$

• Order
$$\eta = 2$$
 (quadratic form) :
$$\overline{\Gamma_{L}}(\underline{x}) = f(\underline{x}_{0}) + \underline{\nabla} f(\underline{x}_{0}) \cdot (\underline{x} - \underline{x}_{0}) + \underline{2} (\underline{x} - \underline{x}_{0}) \cdot \underline{\nabla}^{2} f(\underline{x}_{0}) \cdot (\underline{x} - \underline{x}_{0}) = >$$

$$Z = 100 + [140 88] \cdot \begin{bmatrix} x_{1} - 4 \\ x_{2} - 3 \end{bmatrix} + \underbrace{2 \cdot [(x_{1} - 4) (x_{2} - 3)]} \cdot \begin{bmatrix} 162 & 28 \\ 28 & 98 \end{bmatrix} \cdot \begin{bmatrix} x_{1} - 4 \\ x_{2} - 3 \end{bmatrix}$$

Enter your starting-vector for the iteration here: $x0 = \{4\ 3\}$ Enter your termination criterion tolerance here: eps = 0.000000001 Enter your initial displacement for a G-S interval here: d = 0.25 Enter your displacement for partial derivatives here: h = 0.00001 Enter your the max. number of allowed iterations here: N = 1000Enter the starting-vector x0 as follows: Enter $\{2\ -5\}$ to initialize the iteration with x0 = $\{2\ -5\}$ MATLAB Command Window >> [xmin, k, xkMat] = MinimizeP4() 21-12-11 00:07

2.09099999999963

= utmx

11

xkMat =

>> PlotIterationsP4(xkMat,1,4)
>> PlotIterationsP4(xkMat,4,7)
>> PlotIterationsP4(xkMat,7,10)
>> PlotIterationsP4(xkMat,10,13)
>> PlotIterationsP4(xkMat,10,13)

Partial derivatives By expressions (analytical)

