

LII Olimpiada Matemática Española Fase nacional 2016, Barcelona Viernes, 1 de abril PRIMERA SESIÓN

Problema 1

Se tienen dos progresiones de números reales, una aritmética $(a_n)_{n\in\mathbb{N}}$ y otra geométrica $(g_n)_{n\in\mathbb{N}}$ no constante. Se verifica que $a_1=g_1\neq 0$, $a_2=g_2$ y $a_{10}=g_3$. Estudiar si para cada entero positivo p, existe un entero positivo m, tal que $g_p=a_m$.

Problema 2

Sea p un número primo positivo dado. Demostrar que existe un entero α tal que $\alpha(\alpha - 1) + 3$ es divisible por p si y sólo si existe un entero β tal que $\beta(\beta - 1) + 25$ es divisible por p.

Problema 3

Sea A_I el punto diametralmente opuesto al vértice A del triángulo ABC en la circunferencia circunscrita, y sea A' el punto en el que la recta AA_I corta al lado BC. La perpendicular a AA' trazada por A' corta a los lados AB y AC (o a sus prolongaciones) en M y N, respectivamente. Demostrar que los puntos A, M, A_I y N están en una circunferencia cuyo centro se encuentra en la altura desde A en el triángulo ABC.

No está permitido el uso de calculadoras. Cada problema se puntúa sobre siete puntos. El tiempo de cada sesión es de tres horas y media.

LII Olimpiada Matemática Española Fase nacional 2016, Barcelona Sábado, 2 de abril SEGUNDA SESIÓN

Problema 4

Sean $m \ge 1$ un entero positivo, a y b enteros positivos distintos tales que $m^2 < a, b < m^2 + m$. Hallar todos los enteros c, tales que c divida al producto ab y $m^2 < c < m^2 + m$.

Problema 5

Se consideran todas las permutaciones $P_n(a_1, a_2, ..., a_n)$ del conjunto $\{1, 2, ..., n\}, (n \ge 1, \text{ entero})$ tales que $2(a_1 + a_2 + \cdots + a_m)$ es divisible por m, para cada $m, 1 \le m \le n$. Calcular el número total de estas permutaciones P_n .

Problema 6

Sea $n \geq 2$ entero. Determinar el menor número real positivo γ de modo que para cualesquiera números reales positivos $x_1, x_2 \dots, x_n$ y cualesquiera números reales $y_1, y_2 \dots, y_n$, con $0 \leq y_1, y_2 \dots, y_n \leq \frac{1}{2}$, verificando $x_1 + x_2 + \dots + x_n = y_1 + y_2 + \dots, + y_n = 1$, se tiene que $x_1x_2 \dots x_n \leq \gamma(x_1y_1 + x_2y_2 + \dots + x_ny_n)$.

No está permitido el uso de calculadoras. Cada problema se puntúa sobre siete puntos. El tiempo de cada sesión es de tres horas y media.