UTT9101 Initiation to Scientific Writing

Amirouche Moktefi
amirouche.moktefi@taltech.ee

Who's who?

Organisation and Schedule

Lecture 1: Introduction (Amirouche Moktefi)

Lecture 2: Publishing (Marko Vendelin)

Lecture 3: Visualisation (Jeffrey Tuhtan)

Lecture 4: Authorship ethics (Maarja Kruusmaa)

Lecture 5: Popular Science (Krôot Nôges)

Practicalities

Language of the course: English

Credits: 3 ECTS

Contact: Preferred means of contact is by email: <u>amirouche.moktefi@taltech.ee</u>
Responses provided usually within 2-3 workdays.

Course's e-support: Course materials can be accessed via Moodle.

For a detailed description of the course, see the extended Syllabus on Moodle.

Assessment:

Each lecture has a homework which is evaluated (Pass/Fail) by the lecturer.

The deadline for all homeworks is: 13.11.2024.

Only students who passed all the homeworks are eligible for the exam.

The exam takes place in class on 27.11.2024, at 10.00-11.30.

To pass the course, a student needs to pass the exam.

Your article/dissertation

What is

a Scientific Text?

Knowledge

We have a problem.

We have a problem. We conjecture the hypothesis **H**.

We have a problem. We conjecture the hypothesis **H**.

We test the hypothesis **H** by performing an experiment:

We have a problem. We conjecture the hypothesis **H**.

We test the hypothesis **H** by performing an experiment:

From the hypothesis **H**, we infer an observational consequence **O**:

If H, then O

We have a problem. We conjecture the hypothesis **H**.

We test the hypothesis **H** by performing an experiment:

From the hypothesis \mathbf{H} , we infer an observational consequence \mathbf{O} :

If H, then O

If the consequence **O** is observed,

If the consequence **O** is not observed,

We have a problem. We conjecture the hypothesis **H**.

We test the hypothesis \mathbf{H} by performing an experiment:

From the hypothesis \mathbf{H} , we infer an observational consequence \mathbf{O} :

If H, then O

If the consequence **O** is observed, the hypothesis is **confirmed**

If the consequence O is not observed, the hypothesis is disconfirmed

We have a problem. We conjecture the hypothesis **H**.

We test the hypothesis \mathbf{H} by performing an experiment:

From the hypothesis \mathbf{H} , we infer an observational consequence \mathbf{O} :

If H, then O

If the consequence **O** is observed, the hypothesis is **confirmed**

(Probably) H.

If the consequence **O** is not observed, the hypothesis is **disconfirmed**

We have a problem. We conjecture the hypothesis **H**.

We test the hypothesis \mathbf{H} by performing an experiment:

From the hypothesis \mathbf{H} , we infer an observational consequence \mathbf{O} :

If H, then O

If the consequence **O** is observed, the hypothesis is **confirmed**

(Probably) H.

If the consequence **O** is not observed, the hypothesis is **disconfirmed**

From Research to Writing

We have a problem. We conjecture the hypothesis **H**.

Introduction

We test the hypothesis \mathbf{H} by performing an experiment:

From the hypothesis \mathbf{H} , we infer an observational consequence \mathbf{O} :

If H, then O

If the consequence **O** is observed, the hypothesis is **confirmed**

(Probably) H.

If the consequence **O** is not observed, the hypothesis is **disconfirmed**

We have a problem. We conjecture the hypothesis **H**.

We test the hypothesis **H** by performing an experiment:

From the hypothesis \mathbf{H} , we infer an observational consequence \mathbf{O} :

Method

If H, then O

If the consequence **O** is observed, the hypothesis is **confirmed**

(Probably) H.

If the consequence **O** is not observed, the hypothesis is **disconfirmed**

We have a problem. We conjecture the hypothesis **H**.

We test the hypothesis \mathbf{H} by performing an experiment:

From the hypothesis \mathbf{H} , we infer an observational consequence \mathbf{O} :

If H, then O

If the consequence O is observed, the hypothesis is confirmed

Results

(Probably) H.

If the consequence O is not observed, the hypothesis is disconfirmed

We have a problem. We conjecture the hypothesis **H**.

We test the hypothesis \mathbf{H} by performing an experiment:

From the hypothesis \mathbf{H} , we infer an observational consequence \mathbf{O} :

If H, then O

If the consequence **O** is observed, the hypothesis is **confirmed**

(Probably) H.

If the consequence O is not observed, the hypothesis is disconfirmed

Discussion

We have a problem. We conjecture the hypothesis **H**.

Introduction

We test the hypothesis \mathbf{H} by performing an experiment:

From the hypothesis **H**, we infer an observational consequence **O**:

Method

If H, then O

If the consequence **O** is observed, the hypothesis is **confirmed**

Results

(Probably) H.

If the consequence **O** is not observed, the hypothesis is **disconfirmed**

(Certainly?) not-H.

Discussion

Method

Results

and

Discussion

Method

Results

and

Discussion

Introduction: What is the problem?

Method: How do you address it?

Results: What did you find?

and

Discussion: What does it mean?

Method

Results

and

Discussion

Background/Motivation of the research

State of the art

Research gap

Research question(s)

Statement of novelty

Statement of significance

Structure of the dissertation

Definitions

Method

Results

and

Discussion

Description of the method

Justification of the method

Data collection

Data analysis

Limitations?

Transparency to allow replication

Method

Results

and

Discussion

Note: There are variations!

Description of the Sample/Data?

Main Finding (without discussion)

Secondary findings

Use of tables and figures

Quotations

(Almost) no use of references

"Table/Figure show..."

'Interviewee X stated that...'

Method

Results

and

Discussion

Summary of the (main) findings

Commentary

Connection to past research

Connection to conceptual framework

'Findings suggest/indicate...'

Method

Results

and

Discussion

- Cor

- Complete after the dissertation.

- Use mini-IMRaD.

Abstract:

Method

Results

and

Discussion

Abstract:

- Complete after the dissertation.
- Use mini-IMRaD.

Literature review
Conceptual framework
Case study

Before or after the method?

Method

Results

and

Discussion

Note: There are variations!

Abstract:

- Complete after the dissertation.
- Use mini-IMRaD.

Literature review
Conceptual framework
Case study

Before or after the method?

Conclusion

- Summary + answers to the RQ(s)
- Limitations? Implication? Future research?
- Policy recommendations?

'Argument!' helping students understand what essay writing is about Ursula Wingate*

DEVELOPING AN ARGUMENT

- T-

Selecting and using relevant information from sources

-]]-

Establishing your own position

-]]][-

Presenting your position in a coherent manner

Premise(s)

Inference

Conclusion

Evaluating Arguments

Evaluating an argument requires answering two main questions:

1- Are the premises true?

2- Is the inference correct?

Validity and Soundness

Validity:

- If the premises are all true, then the conclusion is necessarily true.
- The validity of an argument does not garantee the truth of its conclusion.

Soundness:

- An argument is Sound if it is valid and has true premises.
- The soundness of an argument guarantees the truth of its conclusion.

Sentences

- Short subject, go fast to the verb '... is shown in table X' 'Table x shows that...'
- Express main actions as verbs

 'There is disagreement among scholars about ...'

 'Scholars disagree about...'

Cohesion (local flow)

- Go from old information to new information

'Digital divide produces inequality. Public participation is affected by this inequality'.

'Digital divide produces inequality. This (inequality) affects public participation'.

Cohesion (local flow)

- Go from old information to new information

'Digital divide produces inequality. Public participation is affected by this inequality'.

'Digital divide produces inequality. This (inequality) affects public participation'.

Coherence (global flow)

- Connect ideas to make the big picture

'Digital divide produces inequality. Inequality is indesirable in sports. Doing sport improves people's health. My health is a primary concern of mine'.

UTT9101 Initiation to Scientific Writing

Amirouche Moktefi
amirouche.moktefi@taltech.ee