Toegepaste Informatica

MBI07a

2022-2023

Computer Systems

Memory & Memory Management

Jeroen Jean, Rudi Swennen, Tiebe Van Nieuwenhove, Fréderic Vogels Memory

Nut van memory

Memory architecture

Memory management OS

Nut van memory

- Uitvoerbare code van elk proces zit in memory (of toch een deel)
- Variabelen worden in memory geplaatst.

- Programma starten duurt even
 - Deel van programma wordt gekopieerd naar RAM
 - Dan pas kan CPU het gebruiken (cfr Week 7: CPU)

loading...

Nut van memory

- Snelheid:
 - SSD: +/- 50 microseconden om te lezen/schrijven
 - RAM: +/- 17 nanoseconden om te lezen of te schrijven

RAM = 3000 keer sneller dan SDD

Met RAM

Zonder RAM

- SDRAM (Synchronous Dynamic Random Access Memory)
- DIMM (Dual Inline Memory Module):
 - 288 'pins' (verdeeld over beide zijden = dual)
 - Data
 - Control

F

- Address
- 4 of 8 IC's (Integrated Circuits)

- SODIMM (Small-Outline Dual Inline Memory Module):
 - 260 'pins'
 - Vooral voor laptops en notebooks

- Elke IC is opgebouwd uit verschillende bankgroepen met hetzelfde aantal banks
- Bank = Matrix (rijen en kolommen)
 - Aantal kolommen blijft steeds hetzelfde
 - Aantal rijen kan veranderen:
 - Afhankelijk van de totale opslagruimte van IC

Waar wordt de eigenlijke data bewaard?

- Kruising lijn en kolom = 1 bit
 - dmv transistor:
 - 0 V = binaire 0
 - 1,2 V = binaire 1

Memory architecture: communication

- MC (Memory Controler) gebruikt 2 registers:
 - MAR: Memory Address Register
 - Voor fysiek adres van geheugen
 - MDR: Memory Data Register
 - Lees of schrijf data

- Verloop lees/schrijf opdracht:
 - CPU vraag logisch adres aan MC
 - MC berekent correct physisch adres
 - Stuurt adres naar DIMM(s)
 - Bits worden teruggestuurd naar MC (lezen)
 of
 - Bits worden bewaard in transistors (schrijven)

Memory controler: HW

- Adres bestaat steeds uit aantal delen:
 - Bankgroep
 - Banknummer
 - Rijnummer
 - Kolomnummer
- Hoe wordt correcte DIMM gekozen?
 - Aparte controle lijn, om correct DIMM te activeren

- Elke IC, heeft zijn eigen data lijnen (8 bit/IC).
- Zelfde adres wordt naar elk IC gestuurd
- Vanaf kolomnr x worden 8 rijen verbonden met data uitgang IC

Memory architecture: single channel

Memory architecture: dual channel

- DDR5:
 - Per Channel, 2 channelgroups
 - Apart aanspreekbaar
 - 32 bit per channelgroup
 - Veel hogere bandbreedte
 - = Sneller op alle vlakken

Memory architecture: Perf Gain

• DDR5 biedt heel wat performance upgrades.

Features	DDR4	DDR5	DDR5 Advantages
Speed	1.6 to 3.2 GT/s	4.8 to 8.4 GT/s	Higher bandwidth
	0.8 to 1.6 GHz clock	1.6 to 4.2 GHz clock	righer bandwidth
IO Voltage	1.2 V	1.1 V	Lower power
Power Management	On motherboard	On DIMM PMIC	Better power efficiency Better scalability
Channel Architecture	72-bit data channel (64 data + 8 ECC)	40-bit data channel (32 data + 8 ECC)	Higher memory efficiency
	1 channel per DIMM	2 channels per DIMM	Lower latency
Burst Length	BC4, BL8	BC8, BL16	Higher memory efficiency
Max. Die Density	16Gb	64Gb	Higher capacity DIMMs
More Intelligence	SPD (I ² C)	SPD Hub & Temperature Sensors (I ^a C)	Enhanced system management Greater telemetry for thermal management

Refresh

Transistor verliest beetje stroom.
 ==> Zelfs onder spanning, lekt er stroom

- Elke 64ms alle transistor refreshen
- 3ms/refresh = 5 nanoseconden per rij

- 16 refresh / seconden
- 4000 4800 miljoen R/W opdrachten / seconden

" DRAM is very powerfull "

- OS gebruikt enkel logische adressen.
 - Van byte 0 tot byte ? (cfr LBA)
- Progamma's mogen voorbepaalde logische adressen niet gebruiken.

- Voor elk programma wordt één byte in het geheugen gekozen als beginpunt.
 - Absoluut adres van beginpunt = basis.

- Bytes voorbij de basis: aanduiden met hun verplaatsing t.o.v. de basis:
 - adres = basis + verplaatsing

- Elk programma in uitvoering krijgt een segment van het geheugen:
 - Code segment
 - Data segment
 - ...
- OS houdt tabel bij (descriptortabel):
 - Basisadres van elk segment van programma

```
Werkgeheugen
      Descriptorentabel
       (segmentselector: inhoud)
0000: ...
02AB: ...
02AC: CD xx xx 2F A0 80 xx xx
02AD: ...
1FFF: ...
```

- Nadeel:
 - 1. Fragmentatie
 - 2. Volledig segment in geheugen, enkel maar deeltje nodig voor uitvoering.

Memory management: Paging

Paging: oplossing voor nadeel 2

- Verdeel programma in gelijke "pagina's":
 - Pagina = Deel van programma met vaste grootte vb 4KB
- Verdeel geheugen in gelijke "frames":
 - Frame = Deel van geheugen met vaste grootte (= grootte pagina)

Memory management: Paging

- Per proces een paginatabel:
 - Mapping pagina --> frame

- Verwijzing naar correcte paginatabel tijdens uitvoering:
 - Specifiek register
 - Veranderd steeds bij context switch

Memory management: Virtual memory

- Deel van SSD/HDD dat aangeboden wordt als Memory
- OS krijgt totale ruimte (RAM + Virtual memory) ter zijner beschikking.
- MC doet vertaling van virtueel adres naar correct fysiek adres
 - Ofwel naar RAM adres
 - Ofwel naar SSD/HDD adres

Memory management: On demand paging

- Niet alle pages zijn nodig tijdens uitvoering
- Optimalisatie: Enkel pages inladen die effectief gebruikt worden.
- Page table krijgt extra bit
 - Aanwezig in geheugen = True or False

Memory management: Swapping

 Nieuwe page inladen, maar geheugen is vol?

==> Swapping

- Verwijder page uit geheugen:
 - NIET deleten

maar

- Verplaats naar specifiek deel van SDD/HDD (later terug nodig):
 - Swap file (Windows)
 - Swap partitie (Linux)

Memory Management: Swapping algoritmes

- Welke page(s) moet even weg?
- Verschillende algoritmes:
 - FIFO (First in First out)
 - Oudste pagina eerst
 - Optimal Page Replacement
 - Vervang de pagina die in de toekomst het minste zal gebruikt worden.
 - LRU (Least Recently Used)
 - Pagina die het langste niet meer gebruikt is.

Memory management: Swapping

Swapping vertraagd computer

OS zal swapping enkel gebruiken indien echt nodig.

