3.320 Lecture 18 (4/12/05)

Monte Carlo Simulation II and free energies

Figure by MIT OCW.

References

General Statistical Mechanics

- D. Chandler, "Introduction to Modern Statistical Mechanics"
- D.A. McQuarrie, "Statistical Thermodynamics" OR "Statistical Mechanics"

Monte Carlo

D. Frenkel and B. Smit, "Understanding Molecular Simulation", Academic Press.

Fairly recent book. Very good background and theory on MD, MC and Stat Mech. Applications are mainly on molecular systems.

M.E.J. Newman and G.T. Barkema, "Monte Carlo Methods in Statistical Physics"

K. Binder and D.W. Heerman, "Monte Carlo Simulation in Statistical Physics"

Monte Carlo is Efficient Sampling of Ensemble

Simple Sampling

Pick states v randomly and weigh their property proportional to P_v

$$\langle A \rangle = \sum_{\nu=1}^{M} P(A_{\nu}) \qquad P_{\nu} = \frac{\exp(-\beta H_{\nu})}{\sum_{\nu=1}^{M} \exp(-\beta H_{\nu})}$$

Importance Sampling

Pick states with a frequency proportional to their probability P_v

Metropolis Algorithm

Put it all together: The Metropolis Monte Carlo Algorithm

- 1. Start with some configuration
- 2. Choose perturbation of the system
- 3. Compute energy for that perturbation
 - 4. If $\Delta E < 0$ —> accept perturbation If $\Delta E > 0$ —> accept perturbation, probability $\exp\left[\frac{-\Delta E}{kT}\right]$

5. Choose next perturbation

accept perturbation with

Property will be average over these states

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller, The Journal of Chemical Physics, **21**, 1087 (1953).

Ising Model

But first, a model system: The Ising Model

Which perturbation? Pick spin and flip over

- 1. Start with some spin configuration
- 2. Randomly pick a site and consider flipping the spin over on that site
- 3. Compute energy for that perturbation
- 4. If $\Delta E < 0$ —> accept perturbation If $\Delta E > 0$ —> accept perturbation, accept perturbation with probability $\exp\left[\frac{-\Delta E}{kT}\right]$ 5. Go back to 2

Implemented by random numbers

Random Numbers

Most random number generators generate integers between 0 and 2^N - 1

The probability that "0" is given for the random number is 1/2N

When rand = 0, any excitation occurs, since exp (- $\beta \Delta E$) > 0, for any ΔE

What exactly is the quantity in the exponential?

E.g. Ising Model

If average spin of system is not conserved, then probability need to be

weighted by
$$\exp\left[-\beta\left(-\frac{1}{2}\sum_{i,j}J\sigma_{i}\sigma_{j} + \mu_{i}\sum_{i}\sigma_{i}\right)\right]$$

Legendre Transform of Energy and Entropy

Energy formulation

$$dU = TdS + (-pdV) + \mu dN + \dots$$
 Legendre
$$\begin{cases} F = U - TS \\ G = U - TS + pV \end{cases}$$
 Different variables F(V,N,T), G(P,N,T)

Entropy formulation

$$dS = \frac{1}{T}dU + (-\frac{p}{T}dV) + \frac{\mu}{T}dN + \dots$$

$$A(\frac{1}{T}, V, N) = S - \frac{1}{T}U$$

$$K(\frac{1}{T}, \frac{p}{T}, N) = S - \frac{1}{T}U + \frac{p}{T}V$$
These are the form of the Hamiltonians!
$$L(\frac{1}{T}, V, \frac{\mu}{T}) = S - \frac{1}{T}U - \frac{\mu}{T}N$$

Lab problem: H adsorption phase diagram on Pd (100)

Simple transformation to a lattice model -> spin can be used to indicate whether a lattice site is occupied or not. E.g. Adsorption on surface sites

$$H = \frac{1}{2} \sum_{i,j} W_i p_i p_j + E_a \sum_i p_i$$

 $p_i = 1$ when site is occupied by H, =0 when not

Can be transformed to:

$$H = \frac{1}{2} \sum_{i,j} V_1 \sigma_i \sigma_j + \mu_i \sum_i \sigma_i \quad \text{with}$$

$$V_i = \sum_{i,j} V_1 \sigma_i \sigma_j + \mu_i \sum_i \sigma_i \quad \text{with}$$

Can use canonical or grand-canonical ensemble to get H/Pd(100) phase diagram

Why work grand canonical instead of canonical?

Accuracy of Monte Carlo to obtain Ensemble Properties

Not worry about accuracy of model or Hamiltonian. Only ask question: Given H, how good is Monte Carlo sampling to get properties of ensemble?

As good as you want!

Sources of error: Finite sample (time in MC); Finite Size (Periodic Andrews)

Sampling Error

But sample is correlated

States in Markov chain are not independent. State is obtained from previous state through some perturbation mechanism!

Convergence is not as good as random sampling formula would indicate.

Correlation Time

Correlation function
$$C_A(\tau) = \left(\lim_{t\to\infty} \frac{1}{t} \int_0^t \frac{(A(t)-) < A>) (A(t+\tau)- < A>)}{< A^2> - < A>^2} dt \right)$$

e.g. velocity in harmonic oscillator

Correlation time

$$\tau_A = \int_0^\infty C_A(\tau) d\tau$$

Quality of average gets diluted by correlation time

$$\sigma_{av}^2 = \frac{\langle A^2 \rangle - \langle A \rangle^2}{m} (1 + 2\tau_A)$$

Correlation time in Ising models

Size effects

Only important near second order transitions and for phases to "fit" within the periodic boundary conditions

It is your move!

"Dynamics" in Monte Carlo is not real, hence you can pick any "perturbations" that satisfy the criterion of detailed balance and a priori probabilities.

e.g. mixing of A and B atoms on a lattice (cfr. regular and ideal solution in thermodynamics)

Could pick nearest neighbor A-B interchanges ("like" diffusion)

-> Glauber dynamics

Could "exchange" A for B

-> Kawasaki dynamics

For Kawasaki dynamics Hamiltonian needs to reflect fact that number of A and B atoms can change (but A+B number remains the same) -> add chemical potential term in the Hamiltonian

$$H = \frac{1}{2} \sum_{i,j} (V^{AB} (p_i^A p_j^B + p_i^B p_j^A) + V^{AA} p_i^A p_j^A + V^{BB} p_i^B p_j^B) + (\mu_A - \mu_B) \sum_i p_i^A$$

With more difficult system, algorithms that can easily access the low energy states are most efficient

Example: Heisenberg Model: continuously rotating magnetic moment

$$\vec{S}_i = S_i^x \hat{e}_x + S_i^y \hat{e}_y + S_i^z \hat{e}_z. \qquad \qquad \hat{H}_{\text{Heisenberg}} = -\frac{1}{2} \sum_{i \neq j} J_{ij} \vec{S}_i \cdot \vec{S}_j - \sum_i \vec{H} \cdot \vec{S}_i.$$

Should I pick θ and ϕ randomly ?

Proper distribution of θ and ϕ

Random distribution of θ and ϕ does not give random distribution of vector orientation in space. For small θ , all ϕ give spin oriented along the z-axis

Sampling variables that are not homogeneously distributed in phase space

Low Temperature Spin Waves

More efficient to perturb spins slightly by picking their new orientation from a narrow cone around the old orientation

Long chain molecules

Fixed dihedral angle, but still rotation possible

Sample configuration space by sampling possible values of free rotations. Often only small perturbations possible

Polymers on a lattice

Possible algorithms?

Non-Boltzmann sampling and Umbrella sampling

Simple Sampling

Importance Sampling

Sample randomly

$$\langle A \rangle = \sum_{\nu=1}^{M} \frac{\exp(-\beta H_{\nu})}{\sum_{\nu=1}^{M} \exp(-\beta H_{\nu})} A_{\nu}$$

Sample with Boltzmann weight

$$\langle A \rangle = \sum_{\nu=1}^{M} A_{\nu}$$

Non Boltzmann Sampling

Sample with some Hamiltonian Ho

$$\langle A \rangle = \frac{\sum_{v=1}^{M} \exp(-\beta(H_v - H_v^o)) A_v}{\sum_{v=1}^{M} \exp(-\beta(H_v - H_v^o))}$$

$$\Delta H = H - H^{\circ}$$

[end of this day's lecture...to be continued next lecture.]

Monte Carlo

Advantages

- Conceptually simple
- Easy to implement
- Can Equilibrate any degree of freedom/No Dynamics needed
- Accurate Statistical Mechanics

Disadvantages

- No Kinetic Information
- Requires many Energy Evaluations
- Stochastic nature gives noise in data
- Not easy to get entropy/free energy

References

D. Frenkel and B. Smit, "Understanding Molecular Simulation", Academic Press.

Fairly recent book. Very good background and theory on MD, MC and Stat Mech. Applications are mainly on molecular systems.

M.E.J. Newman and G.T. Barkema, "Monte Carlo Methods in Statistical Physics"

K. Binder and D.W. Heerman, "Monte Carlo Simulation in Statistical Physics"