密码学实验实验报告三

18374480-黄翔

2021年3月26日

1 实验目的

- 1. 通过本次实验,了解古典加密算法思想,掌握常见的古典密码
- 2. 学会应用古典密码以及针对部分古典密码的破译

2 实验环境

- python 3.9.1+
- \bullet python 2.7.18+ for Varnam Cipher

3 实验内容

3.1 仿射密码

3.1.1 算法流程

3.1.2 算法伪代码

Algorithm 1 仿射密码加密

Input: m, k, b

Output: c

1: **if** gcd(k, 26) is 1 **then**

2: $c \leftarrow k \times m + b \mod 26$

3: return c

4: **else**

5: 拒绝加密

6: end if

Algorithm 2 仿射密码解密

Input: $c, k, b, Function inverse_mod$

Output: m

1: **if** gcd(k, 26) is 1 **then**

 $inv_k = inverse_mod(k, 26)$

3: $m \leftarrow inv_k \times (c-b) \mod 26$

- 4: $\mathbf{return} \ m$
- 5: **else**
- 6: 解密失败, k 不符合要求
- 7: end if

3.1.3 测试样例及结果截图

```
the cypher of cryptography is yzwlneazklhw
the cypher of seeyoutomorrow is txxvjlcjrjkkjd
the plaintexe of thisisciphertext is tnumumeurnsftsvt be
Warning, check you k
the cypher of abcdef is bdfhjl
```

3.1.4 总结

只有当 gcd(k, 26) = 1 时,才能使加密过程为一一映射,从而确保能够成功解密

3.2 单表代替密码

3.2.1 算法流程

3.2.2 算法伪代码

Algorithm 3 单表代替密码加密

Input: m, tableOutput: c

1: for letterchinm do

ch = table.cypher[ch]

 $3: \qquad c + = ch$

4: end for

5: $\mathbf{return}\ c$

Algorithm 4 单表代替密码解密

Input: c, table

Output: m

1: **for** letterchinc **do**

ch = table.plain[ch]

 $3: \qquad m+=ch$

4: end for

5: return m

3.2.3 测试样例及结果截图

the cypher of doyouwannatodance is wbobmkqggqjbwqgzs the plaintext of youcanreallydance is pysibrjgbxxphbrig

3.2.4 总结

密码安全性 与仿射密码相比,单表代替密码的可能情况有 26 种,足够抵抗穷举攻击,但是由于字母——对应,仍然无法抵抗词频攻击

3.3 维吉尼亚密码

3.3.1 算法流程

3.3.2 算法伪代码

Algorithm 5 维吉尼亚密码加密

Input: m, k

Output: c

1: for $i \leftarrow 0$ to length(m) - 1 do

2: c+=(m[i]+k[i%length(k)])

3: end for

4: $\mathbf{return} \ c$

Algorithm 6 维吉尼亚密码加密解密

Input: c, k

Output: m

1: for $i \leftarrow 0$ to length(c) - 1 do

2: m+=(c[i]-k[i%length(k)])

3: end for

4: return m

3.3.3 测试样例及结果截图

the cypher of zhonghuaminzuweidafuxing is huhrxlmtuvthhpizhsyckovt the plaintext of kqjyhynruwnadzmk is jcsqusmddoauclvc

3.3.4 总结

密码安全性 维吉尼亚密码强度在于每个明文字母对应着多个密文字母,且 每个密文字母使用唯一的密钥字母,因此字母出现的频率信息被隐藏了,不 过并非所有的明文结构都隐藏了,依然可以使用频率分析攻击

3.4 弗纳姆密码

3.4.1 算法流程

3.4.2 算法伪代码

Algorithm 7 弗纳姆密码加密

Input: m, kOutput: c

ı: $m \rightarrow$ binary bit stream bit_m

2: $k \rightarrow \text{binary bit stream } bit_k$

- 3: for $i \leftarrow 0$ to $length(bit_m)$ do
- 4: $c+=bit_m[i] \oplus bit_k[i\%length(bit_k)]$
- 5: end for
- 6: return c

Algorithm 8 弗纳姆密码解密

Input: c, kOutput: m

- 1: $c \rightarrow \text{binary bit stream } bit_c$
- 2: $k \rightarrow$ binary bit stream bit_k
- 3: for $i \leftarrow 0$ to $length(bit_m)$ do
- 4: $m+=bit_c[i] \oplus bit_k[i\%length(bit_k)]$
- 5: end for
- 6: return m

3.4.3 测试样例及结果截图

3.4.4 总结

编程相关 注意到给定文件形式为 binary file, python 在读文件时需要使用 rb 形式, 否则输出会出现错误 (linux 系统会出现次问题, windows 下则不会出现)

读取方式	结果 (python2)	
'r'	abcdefghnj	
'rb'	abcdefghij	

表 1: 不同读文件方式结果

一次一密 使用与明文一样长且无重复的随机密钥加密,且密钥 i 只对一个明文加解密,之后丢弃不用。每个新消息需要一个与其等长的新密钥

3.5 栅栏密码

3.5.1 算法流程

3.5.2 测试样例及结果截图

the cypher of whateverisworthdoingisworthdoingwell is wtesrdnsrdneherwtogwtoglaviohiiohiwl the plaintext of hatimriprathnelhelhsoemotntawat is healthismoreimportantthanwealth

3.5.3 总结

栅栏密码当明文无法完全填充栅栏时,可以用一些标志字符补全。

3.6 Hill 密码

3.6.1 算法流程

3.6.2 函数调用图

3.6.3 算法伪代码

Algorithm 9 Hill 密码加密

Input: m, K, Function gcd

Output: c

1: if $gcd(det(K), 26) \neq 1$ then

2: refuse to encrypt

3: **else**

4: $m \to \text{Matrix } M$

```
5: C \leftarrow M \times K
6: C \rightarrow c
7: return c
8: end if
```

Algorithm 10 Hill 密码解密

```
Input: c, K, Function gcd, Matrix\_inv
```

Output: m

```
1: if gcd(det(K), 26) \neq 1 then
        for k \leftarrow 0 to 25 do
            m = D(c, k)
 3:
            caculate Frequence Table DT
 4:
            for chin\{a, b, \dots, z\} do
 5:
                \chi + = \frac{(DT[ch] - LT[ch])^2}{LT[ch]}
 6:
            end for
 7:
            Table[k] = \chi
 8:
        end for
 9:
        return Table
10:
        fail to decrypt
11:
12: else
        c \to \text{Matrix } C
13:
        M \leftarrow C \times Matric\_inv(K)
14:
        M \to m
15:
        {\bf return}\ m
16:
17: end if
```

3.6.4 测试样例及结果截图

the cypher of loveyourself is haryuazdcakz the plaintext of qweasdzxc is ysezymxvv

3.6.5 总结

密钥矩阵要求 密钥矩阵 K 需要在模 26 下可逆,即 $\gcd(\det(K), 26) = 1$,从而保证密钥矩阵 K 可逆

密码安全性 Hill 密码完全隐蔽了单字母频率特性。Hill 用的矩阵越大,隐藏的频率信息越多, 3×3 的 Hill 密码不仅隐藏了单字母的频率特性,还隐藏了双字母的频率特性。Hill 密码足以抵抗唯密文攻击,但是较易被已知明文攻击破解。

3.7 加法密码字母频率攻击

3.7.1 算法流程

3.7.2 算法伪代码

Algorithm 11 加法密码字母频率攻击

Input: c, Decrypt Function D, Letter Frequence Table LT

Output: Table: the k and its χ

1: for $k \leftarrow 0$ to 25 do

- $2: \qquad m = D(c, k)$
- $_{3:}$ caculate Frequence Table DT
- 4: **for** $chin\{a,b,\cdots,z\}$ **do**

5:
$$\chi + = \frac{(DT[ch] - LT[ch])^2}{LT[ch]}$$

- 6: end for
- 7: $Table[k] = \chi$
- 8: end for
- 9: return Table

3.7.3 测试样例及结果截图

3.7.4 总结

攻击可行性 加法密码并没有改变字母规律,无法抵抗字母频率攻击

结果评估 希望由电脑给出每个可能密钥的可能性大小,因此需要建立对 每个密钥解密结果的评估。通过与标准字母频率表求出卡方作为结果可能 性的评估,卡方值越小的结果密钥越可能正确。

3.8 矩阵密码

3.8.1 算法流程

3.8.2 测试样例及结果截图

the cypher of tobeornottobethatisaquestion is reaootaebttseoitobsitohuntqn the plaintext of obestdnfhhmoeaaohleywsdloreb is ohehtworhaldsbemaendebooyfls

3.8.3 总结

与普通的栅栏密码相比,矩阵密码的破解更加复杂。可以通过多次矩阵 密码加密提高安全性

3.9 Hill 密码已知明文攻击

3.9.1 算法流程

3.9.2 函数调用

3.9.3 算法伪代码

Algorithm 12 Hill 密码已知明文攻击

Input: m, c, n, Function gcd, $Matrix_inv$

Output: k

- 1: for $m[x \times n, (x+1) \times n]$ in m do
- 2: $M \leftarrow m[x \times n, (x+1) \times n]$
- 3: $C \leftarrow c[x \times n, (x+1) \times n]$
- 4: **if** then $gcd(det(M), 26) \neq 1$
- 5: Continue
- 6: **else**
- 7: **return** $K \leftarrow Matrix inv(M) \times C$
- 8: end if
- 9: end for

3.9.4 测试样例及结果截图

```
from plaintext youarepretty and cypher kqoimjvdbokn we crack the key:
[
2, 3
1, 22
]
from plaintext youaresocute and cypher ywwpcwsogfuk we crack the key:
Oops!!Fail to crack with plain youaresocute and cypher ywwpcwsogfuk
```

3.9.5 总结

- 1. Hill 密码不能抵抗已知明文攻击
- 2. 不是所有明密文对都可以破解出密钥,需要可以找到明文矩阵 M 可 $\dot{\mathbf{u}}$
- 3. 当密钥矩阵大小 n 未知时,如果其不太大,可以通过遍历猜测,如果得到的密钥对其他明密文对也生效,则认为破解出 n 以及密钥

3.10 单表代替密码字母频率攻击

3.10.1 算法流程

3.10.2 函数调用

3.10.3 算法伪代码

Algorithm 13 Main Function

Input: c, traintext

Output: k

- 1: get 3Gram frequency from traintext
- 2: randomly initialize poputation
- 3: for $i \leftarrow 1$ to 1000 do
- 4: caculate the fitness and the sort
- 5: select the Elitism individual and pass them to next poputation
- 6: **while** nextpoputation size **do**
- 7: select individual, hold tournament, and then get parents
- 8: crossover between parents and get two children
- 9: mutation
- add the two children to the next poputation
- 11: end while
- 12: end for

3.10.4 测试样例及结果截图

3.10.5 总结

算法准确度 算法的准确性在文件大小超过 5kB 后基本可以得到唯一正确密钥。

图 1: 结果截图

大小	结果	fitness 情况	正确密钥
1192 byte	${\it qazws} xedcrfvtgbypnujmikloh$	存在多个相同 fitness	qazwsxedcrfvtgbyhnujmiklop
1047 byte	wz aqs xedcltv fg by rjunmikhop	存在多个相同 fitness	wz aqs xedcrtvfg by hjunmik pol
681 byte	${\it egflwcyoprmxnbuqdjzvaiktsh}$	存在多个相同 fitness	${\it egflwcyopdmxnbuqhjzvaiktsr}$
6592 byte	az w q exs dtr cv fg by hjunmik pol	唯一最高 fitness	az w q exs dtr cv fg by hjunmik pol

表 2: 破解结果

适应度函数 选择 $log_2(trainFre) \times decryptFre$ 作为适应度函数,去除低概率三元字节的影响,从而让算法在较小文本时仍能保持正确性

不足 在对较大的文本,如几百 Kb 的文本,普通频率分析算法已经有一定的准确度,且速度优于遗传算法

4 总结

通过本次实验,了解了古典加密算法思想,掌握了常见的古典密码,并 且学会应用古典密码。同时对单表代替密码保留词频规律导致易受频率攻 击的缺点有了进一步的理解,从而进一步体会到设计密码时扩散的重要性。