341 Lec10

Andrew Claros

Birth ratios

• 6115 mothers, each has ≥ 13 children, but only consider the first 12 children. Count the number of boys for each mother.

# of Boys	0	1	2	3	4	5	6	7	8	9	10	11	12	total
X	3	24	104	206	670	1033	1343	1112	829	478	181	45	7	6115
Binom	1	12	72	259	628	1085	1367	1266	854	410	152	26	2	6115
BetaBin	2	23	105	311	656	1036	1258	1182	854	462	178	44	5	6115

Binomial

• Modeling this data (\mathcal{F}) is beyond the course. If the mother has a baby, what is the probability it will have a boy? $X \sim \text{Binomial}(12, 50\%)$ does not accurately capture the data. $\mathbb{P}(\text{boy}) \approx 51$.

Beta Binomial

• Solvining alpha and beta through maximum likelihood:

$$n = 12, \alpha_{MLE} = 34, \beta_{MLE} = 32 \rightarrow X \sim \text{BetaBinomial}(12, 34, 32), \mathbb{E}[X] = 12 \frac{34}{34 + 12} = 0.511 = 51\%$$

- The BetaBinomial fits better.
- $\mathbb{P}(\theta) = \text{Beta}(34, 32)$, Quantile $[\theta, 0.5\%] = 36\%$, Quantile $[\theta, 99.5\%] = 67\%$

Generalized:

- After seeing n bernoulli trials, what is the next future n_* trials not seen?
- Conside: $\mathbb{P}(x_*|X=x) \stackrel{?}{=} \text{Binomial}(n_*, \hat{\hat{\theta}}_{MLE})$ It is reasonable to use MLE but the problem is that $\hat{\hat{\theta}}_{MLE}$ is not θ
- With $\gg 0, \theta$ is approximately normally distributed.
- \bullet For small n we need Bayesian statistics

Posterior predictive distribution

• $\mathbb{P}(X_*|x) = \int_{\Theta} \mathbb{P}(X_*, \theta|x) d\theta = \int_{\Theta} \mathbb{P}(X_*|\theta, x) \mathbb{P}(\theta|x) d\theta \rightarrow \int_{\Theta} \mathbb{P}(X_*) \mathbb{P}(\theta|x) d\theta$ (a mixture/compound distribution)

1

- For \mathcal{F} : Bin (n, θ) : $\int \underbrace{\mathbb{P}(X_*|\theta)}_{\text{Bin}(n, \theta)} \underbrace{\underbrace{\mathbb{P}(\theta|x)}_{\text{Beta}(\alpha+x, \beta+n-x)}}_{\text{Beta}(\alpha+x, \beta+n-x)} d\theta = \text{BetaBinomial}(n_**, \alpha+x, \beta+n-x)$
- $\mathbb{P}(\theta) \xrightarrow{x} \mathbb{P}(\theta|x)$ and $\mathbb{P}(x_*) \xrightarrow{x} \mathbb{P}(X_*)|x$

Example:

• n = 10 at bats for a new baseball player and x = 6 hits assuming each at bat is $\stackrel{iid}{\sim}$ Bernoulli (θ) what is the probability he will hace $x_* = 17$ hits in the next $n_* = 32$ at bats? Assume uniform prior.

$$\mathbb{P}(X_*|x) = \text{BetaBinomial}(32, 7, 5), \mathbb{P}(X_* = 17|x = 6) = \frac{\binom{32}{17}}{\beta(7,5)}\beta(24, 20) = \text{dbetabinom}(17, 32, 7, 5)$$

Probability 17 or less hits on the next 32 at bats?

•
$$\mathbb{P}(X_* < 17 | x = 6) = \sum_{y=0}^{17} \frac{\binom{32}{y}}{\beta(7,5)} \beta y + 7,32 - y + 5 = \text{pbetabinom}(17,32,7,5)$$

Probability theory

- Let X, Y be continuous rv's where f_x, f_X ar known and y = t(X) where t is a known unvertible function. Derive f_Y using f_X and t
- $\mathbb{P}(x \in A) = \mathbb{P}(y \in B)$
- If A,B small $\mathbb{P}(x \in A) \approx f_x(x)|dx|, \mathbb{P}(y \in B) \approx f_y|dy| \Rightarrow f_x(x)|dx| \approx f_y|dy|_y(y) = f_x(x)|\frac{dx}{dy}|$

$$- f_y(y) \stackrel{y=t(x), x=t^{-1}(y)}{=} f_x(t^{-1}(y)) \left| \frac{d}{dy} [t^{-1}(y)] \right|$$