Exercice 1.

1. Justifier que pour tout réel x on $a: x^2 + x + 1 > 0$.

On considère la fonction f définie sur \mathbb{R} par : $f(x) = \ln(x^2 + x + 1)$. On note \mathscr{C} sa courbe dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

- **2.** Rappeler la valeur de $\lim_{x\to +\infty} \ln(x)$. Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$.
- **3.** Vérifier que $f(-\frac{1}{2}) = \ln(3) 2\ln(2)$.
- **4. a**) Justifier que pour tout réel x on $a: f'(x) = \frac{2x+1}{x^2+x+1}$.
- **b)** Dresser le tableau des variations de f sur \mathbb{R} en y faisant figurer les éléments obtenus aux questions $\mathbf{2}$ et $\mathbf{3}$.
- **5. a)** Montrer, en la résolvant, que l'équation f(x) = 0 d'inconnue x admet exactement deux solutions : -1 et 0.
- **b)** Justifier que la tangente à $\mathscr C$ au point d'abscisse 0 a pour équation y=x. Déterminer une équation de la tangente à $\mathscr C$ au point d'abscisse -1.
- **6. a)** Calculer la dérivée seconde de f et vérifier que pour tout réel x on a : $f''(x) = \frac{-2x^2 2x + 1}{(x^2 + x + 1)^2}$.
- **b)** Étudier la convexité de f sur \mathbb{R} . Vérifier que \mathscr{C} admet exactement deux points d'inflexions aux points d'abscisses $\frac{-1+\sqrt{3}}{2}$ et $\frac{-1-\sqrt{3}}{2}$.
- **7. a)** Justifier, sans la résoudre, que l'équation f(x) = 1 admet exactement une solution α dans $[0, +\infty[$.
 - **b)** On donne $ln(3) \simeq 1,1$. Vérifier que $\alpha \in [0,1]$.
 - c) Vérifier que $f(-1-\alpha)=1$.
- **d**) Recopier et compléter l'algorithme suivant afin qu'il permette de calculer puis afficher une valeur approchée de α à 10^{-3} près par dichotomie.

```
import numpy as np

def f(x):
    return ...

a = 0
b = ...
while b - a > 10**(-3)
    c = ...
    if f(c) < 1:
        a = ...
    else:
        b = ...
print(...)</pre>
```

e) On donne les valeurs suivantes : $\alpha \simeq 0.9$; $f\left(-\frac{1}{2}\right) \simeq -0.3$; $\frac{-1+\sqrt{3}}{2} \simeq 0.4$ et $\frac{-1-\sqrt{3}}{2} \simeq -1.4$. Tracer l'allure de la courbe $\mathscr C$ ainsi que les tangentes obtenues en **5.b**).