清华大学本科生考试试题专用纸

考证	式课程: 概率	论与数理统计		力	考试日期:	2020年6月	11 日上午	
班约	及	学号		名		任课教师姓名	F姓名	
试剂	登说明:							
1、	本试卷 共 12	道大题.						
2、	所有题目都到	要答在答题纸」	上,并且 <mark>每页</mark> 板	市明考生信息	(班级+学	送号+姓名) <mark>以</mark>	及题号.	
3、	考试结束时记	青将答卷拍照主	并合并成一个文	C件上传至网	络学堂作	业栏(限时 20)分钟).	
1.	假设 30%的	计算机用户使	用操作系统 M,	20%的计算机	机用户使用	月操作系统 L,	50%的计算	
	机用户使用	操作系统 W。E	己知某一种计算	፲ 机病毒感染	了 65%的 1	I 系统用户, 5	0%的 L 系统	

- (1) 随机选择一个计算机用户,其感染了该计算机病毒的概率是多少?
- (2) 若发现该用户感染了这个计算机病毒,那该用户是₩系统用户的概率是多少?
- 2. 按如下方式生成随机变量 X: 抛一枚均匀的硬币,若出现正面,令 X 服从(0,2)上的均匀分布;若出现反面,令 X 服从(2,4)的均匀分布,求 X 的期望和方差。
- 3. 将区间(0,1)随机分成三段,中间一段左端点坐标记为X,右端点坐标记为Y。
 - (1) 求X,Y的联合概率密度函数。
 - (2) 求Y的概率密度函数。

用户和82%的W系统用户。

- (3) 求X与Y-X的协方差。
- 4. 调查公司为了解市民对某项议题的看法,进行随机抽样调查。若想以不低于 99%的概率 得到绝对误差不超过 5%的民众支持率的估计,需要至少调查多少人? (需说明理由)
- 5. 假设总体 X 服从正态分布 $N(\mu,\sigma^2)$,参数 μ,σ^2 均未知,前 10 次独立观测记为 X_1,\cdots,X_{10} 。请基于前 10 次观测利用小样本方法给出下一次独立观测值的 95%置信的 双侧区间估计。
- 6. 假设总体 X 服从均匀分布 $U(0,\theta)$,参数 θ 未知, X_1,\cdots,X_n 为为其独立随机样本。
 - (1) 求参数 θ 的极大似然估计 θ^* 。

- (2) θ^* 是否是参数 θ 的无偏估计? (需说明理由)
- (3) θ^* 是否是参数 θ 的充分统计量? (需说明理由)
- 7. 假设总体服从正态分布 $N(\mu,\sigma^2)$,参数 σ^2 已知, X_1,\cdots,X_n 为其随机样本, μ 的先验分布为 $N(\mu_0,\sigma_0^2)$, μ_0,σ_0^2 为已知常数。求 μ 的最大后验估计。
- 8. 随机变量 X 的分布如下表前两行所示,其中 $p_i > 0$ ($i = 1, \dots, 6$) 未知,表中最后一行为实验员报告的 120 次观测结果统计。

X 值	1	2	3	4	5	6
概率	$p_{_1}$	p_{2}	p_3	$p_{_4}$	p_5	p_6
观测频数	23	19	21	21	18	18

- (1) 请在检验水平 $\alpha = 0.05$ 下利用似然比检验假设 $H_0: p_1 = \dots = p_6 = \frac{1}{6}$ 。
- (2) 你对实验员报告的观测数据有何评价? (需说明你的依据)
- 四种同类药品效用时间都服从正态分布,随机观测结果如右表所示,试在检验水平α=0.05下检验该四种产品效用时间是否有显著差异。

药品	持续	卖时	间 (」	单位:	小时)
A	8	6	4	2	
В	6	6	4	4	
С	8	9	9	8	11
D	10	9	8		

- 10. 下面是某品牌元件使用时间的调查数据(单位:年):
 - 3.6, 2.2, 2.9, 2.3, 2.0, 4.6, 3.8, 3.5, 3.3, 3.2, 2.7。
 - (1) 请在检验水平 $\alpha = 0.1$ 下利用符号检验判断该品牌汽车电瓶使用时间的中位数是否为 3.5 年。
 - (2) 考虑符号秩和检验,请计算相应的正秩和。
- 11. 设想学校正在调查对某项议题的意见,分别随机抽取了
 200 名学生、100 名教师和 100 名职员进行调查,调查结果如右表所示。请据此利用齐性检验判断不同群体对该议题的意见是否一致(取检验水平α=0.05)。

	学生	教师	职员
支持	83	47	30
反对	117	53	70

- 12. 假设总体服从正态分布 $N(\mu,9)$, X_1,\cdots,X_n 为其独立随机样本,考虑检验 $H_0:\mu=0$ vs $H_1:\mu=1$,取 \overline{X} 为检验统计量。
 - (1) 取检验水平 $\alpha = 0.05$,请给出临界值检验准则。

- (2) 求出(1)中检验准则在 H_1 下的势。
- (3) 证明: 当样本容量n 无限增大时,该势趋向于 1
- (4) 如果n=100,检验统计量的观测值为 $\bar{x}=0.6$,请计算其 P 值(精确到小数点后两位)。
- (5) 如果依据(4)中得到的 P 值拒绝原假设, 你知道自己出错的概率就等于该 P 值,这个说法是否正确? (需简要说明理由)

附录 1:标准正态累积分布函数 $\Phi(x)$

х	1.00	1.64	1.80	1. 96	2.05	2. 33	2. 58
$\Phi(x)$	0.841	0. 950	0. 964	0. 975	0. 980	0. 990	0. 995

附录 2: 记号约定: $0<\alpha<1$, 自由度为n 的 t 分布为t(n), 自由度为n 的卡方分布为 $\chi^2(n)$,

自由度为(m,n)的 F 分布为F(m,n),其上 α 分位点分别为 $t_{\alpha}(n)$, $\chi^2_{\alpha}(n)$, $F_{\alpha}(m,n)$.

$$t_{0.05}(9) = 1.83$$
 $t_{0.025}(9) = 2.26$ $t_{0.05}(10) = 1.81$ $t_{0.025}(10) = 2.21$

$$\chi_{0.975}^2(2) = 0.05$$
 $\chi_{0.95}^2(2) = 0.10$ $\chi_{0.05}^2(2) = 5.99$ $\chi_{0.025}^2(2) = 7.38$

$$\chi_{0.975}^2(5) = 0.83$$
 $\chi_{0.95}^2(5) = 1.15$ $\chi_{0.05}^2(5) = 11.07$ $\chi_{0.025}^2(5) = 12.83$

$$\chi^2_{0.975}(6) = 1.24$$
 $\chi^2_{0.95}(6) = 1.64$ $\chi^2_{0.05}(6) = 12.59$ $\chi^2_{0.025}(6) = 14.45$

$$F_{0.05}(3,12) = 3.49 \quad F_{0.05}(12,3) = 8.74 \quad F_{0.05}(4,15) = 3.06 \quad F_{0.05}(15,4) = 5.86$$

附录 3:

二项分布 B(10, 05)

X	0	1	2	3	4	5	6	7	8	9	10
概率	0.0010	0. 0098	0.0439	0. 1172	0. 2051	0. 2461	0. 2051	0. 1172	0.0439	0.0098	0.0010

二项分布 B(11, 05)

X	0	1	2	3	4	5	6	7	8	9	10	11
概率	0.0008	0.0054	0. 0268	0. 0806	0. 1611	0. 2256	0. 2256	0. 1611	0.0806	0.0268	0.0054	0.0005