Compression isotherme d'une vapeur d'eau

Un récipient de volume initial $V_i = 3.0$ L contient seulement m = 1.0 g d'eau à la température $t_0 = 100$ °C. On donne la pression de vapeur saturante à t_0 , $P_v = 1.0$ atm, l'enthalpie massique de vaporisation $\Delta h_{\rm vap} = 2.26 \times 10^3 \, {\rm J \cdot g^{-1}}$ à la température t_0 . On considère la vapeur d'eau sèche comme un gaz parfait.

Par déplacement réversible d'un piston, on réalise sur ce système une compression isotherme réversible jusqu'au volume final $V_f=1.0\,\mathrm{L}$.

On donne

$$R = 8.314 \,\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1} \quad ; \quad M_{\mathrm{eau}} = 18 \,\mathrm{g} \cdot \mathrm{mol}^{-1}$$

- 1. Préciser la composition du système dans les états initial et final.
- 2. Calculer le travail W et le transfert thermique Q reçus par le système.

${ m I} \mid { m Un}$ glaçon et de la vapeur d'eau

On considère une enceinte calorifugée et maintenue à pression constante $P_0 = 1,0$ bar. Initialement l'enceinte contient une masse $(1 - \alpha)m$ de vapeur d'eau à la température d'ébullition de l'eau sous la pression P_0 , soit $T_{\rm eb} = 373\,\rm K$. On introduit dans l'enceinte un glaçon de masse αm dont la température initiale est la température de fusion de l'eau solide sous la pression P_0 , soit $T_{\rm fus} = 273\,\rm K$. La masse totale d'eau dans l'enceinte est donc égale à m.

- 1. Expliquer qualitativement ce qui va se passer dans l'enceinte. On pourra s'aider d'un schéma.
- 2. Déterminer la composition du système dans l'état final lorsque la température finale est égale à $T_{\rm fus}$. Montrer qu'un tel état final n'est possible que si α est supérieur à une valeur minimale $\alpha_{\rm min}$ à préciser.
- 3. Déterminer la composition du système dans l'état final lorsque la température finale est égale cette fois à $T_{\rm eb}$. Montrer qu'un tel état final n'est possible que si α est inférieur à une valeur maximale $\alpha_{\rm max}$ à préciser.
- 4. Déterminer la température finale T du système dans l'état final lorsque $\alpha_{\min} < \alpha < \alpha_{\max}$.
- 5. La valeur numérique pour $\alpha=0.8$ de la température finale est 339,89 K. Que pouvez-vus en conclure ?

Données.

- * enthalpie de vaporisation $l_{\rm vap} = 2.3 \times 10^6 \,\mathrm{J/kg}$,
- * enthalpie de fusion $l_{\text{fus}} = 330 \cdot \text{kJ/kg}$,
- * capacité thermique de l'eau liquide $c = 4.18 \,\mathrm{kJ \cdot kg^{-1} \cdot K^{-1}}$.

I | Cuisson des frites $(\star\star)$

On plonge 300 g de frites (de pommes de terre ou de plantains selon les goûts) à température $T_{F0} = 0$ °C dans un bain d'huile de 2,00 L à la température initiale $T_{H0} = 180$ °C.

Données. $c_{\text{huile}} = 4,80 \, \text{kJ} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$, $c_{\text{frite}} \approx c_{\text{eau}} = 4,20 \, \text{kJ} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$, $\rho_{\text{huile}} = 920 \, \text{g/L}$. Dans un premier temps, la température de l'ensemble s'homogénéise jusqu'à la valeur T_1 . On néglige les transferts thermiques avec l'extérieur durant cette transformation.

- 1. Déterminer l'expression de T_1 et effectuer l'application numérique.
- 2. Déterminer et calculer l'entropie créée durant cette étape.

Afin d'assurer la cuisson, la résistance électrique de la friteuse se remet à chauffer avec une puissance $P = 1500 \,\mathrm{W}$, elle s'éteint dès que la température atteint T_{H0} . On suppose que la température de la résistance est égale à celle de l'huile T_{H0} .

- 3. Déterminer la capacité thermique de l'ensemble { huile + frites }.
- 4. Combien de temps la friteuse va-t-elle rester allumée ?
- 5. Déterminer et calculer l'entropie créée durant cette étape.

Pompe à chaleur d'un gaz parfait

Une pompe à chaleur effectue le cycle de Joule inversé suivant. L'air pris dans l'état A à la température T_0 et de pression P_0 est comprimé suivant une adiabatique réversible jusqu'au point B où il atteint la pression P_1 . L'air est ensuite refroidi à pression constante et atteint la température finale de la source chaude T_1 correspondant à l'état C. L'air est encore refroidi dans une turbine suivant une détente adiabatique réversible pour atteindre l'état D de pression P_0 . Il se réchauffe enfin à pression constante au contact de la source froide et retrouve son état initial. L'air est considéré comme un gaz parfait de rapport des capacités thermiques $\gamma = 1,4$ indépendant de la température. On pose $\beta = 1 - \frac{1}{\gamma}$ et $\alpha = \frac{P_1}{P_0}$. On prendre $T_0 = 283$ K, $T_1 = 298$ K, $\alpha = 5$ et $T_2 = 8,31$ J·K⁻¹mol⁻¹.

- 1. Représenter le cycle parcouru par les gaz dans un diagramme (P,v).
- 2. Rappeler les conditions nécessaires pour assurer la validité des lois de Laplace. Donner la loi de Laplace relative à la pression et la température, et la réécrire en fonction de β .
- 3. En déduire l'expression des températures T_B et T_D des états B et D en fonction de T_0 , T_1 , α et β .
- 4. Exprimer l'efficacité e de la pompe à chaleur en fonction des transferts thermiques.
- 5. En déduire l'expression de e en fonction de α et β . Donner sa valeur numérique.

Moteur ditherme fonctionnant avec des pseudo-sources

Soit un moteur réversible fonctionnant entre deux sources de même capacité thermique, $C = 4.0 \times 10^5 \,\mathrm{J\cdot K^{-1}}$, dont les températures initiales respectives sont $T_{f,0} = 10 \,\mathrm{^{\circ}C}$ et $T_{c,0} = 100 \,\mathrm{^{\circ}C}$. Ces températures ne sont pas maintenues constantes.

- 1. Donner le schéma de principe de ce moteur au cours d'un cycle en indiquant par des flèches le sens des échanges de chaleur et de travail. On désignera par T_c la température de la source chaude et par T_f celle de la source froide. On définira des échanges énergétiques élémentaires δQ_c , δQ_f et δW . On pourra supposer les températures des sources constantes au cours d'un cycle.
- 2. Exprimer la température T des deux sources quand le moteur s'arrête de fonctionner en fonction de $T_{f,0}$ et $T_{c,0}$. Il sera utile d'appliquer le second principe au système subissant N cycles jusqu'à l'arrêt du moteur. Calculer T.
- 3. Exprimer le travail reçu W par ce moteur jusqu'à son arrêt en fonction de C, T, $T_{f,0}$ et $T_{c,0}$. Calculer W et interpréter le signe.
- 4. Exprimer, puis calculer le rendement global η . Comparer avec le rendement théorique maximal que l'on pourrait obtenir si les températures initiales des deux sources restaient constantes.