THE NUMBER OF HYPERPLANES SPANNED BY LINEAR INDEPENDENT ZERO-ONE **VECTORS**

Let $c \in \mathbb{R}^n$ and $T \in \mathbb{R}$. A Boolean threshold function $f: \{0,1\}^n \to \{0,1\}$ is a function defined by

$$f(x) = \begin{cases} 1, & \text{if } c^T x \ge T \\ 0, & \text{if } c^T x < T. \end{cases}$$

The hyperplane $\{x \in \mathbb{R}^n : c^T x = T\}$ divides the cube $[0,1]^n$ into two (possibly empty) polyhedra $S_1 :=$ $\{x \in [0,1]^n : c^T x \ge T\}$, and $S_2 := \{x \in [0,1]^n : c^T x < T\}$. Thus, f applied to any vertex of S_1 is 1 and applied to any vertex of S_2 is 0. We say that $\{x \in \mathbb{R}^n : c^T x = T\}$ is the **hyperplane induced by** f.

Consider the LP

for all
$$x \in S_1 : c^T x \ge 0$$
 and
for all $x \in S_2 : c^T x \le -1$

is a basis solution $v_1,...,v_i,v_{i+1},...,v_n$ where $v_1,...,v_i\in S_1$ and $v_{i+1},...,v_n\in S_2$ are linearly independent and, as basis solution they satisfy $c^Tv_j=0$ for all $j\in\{1,...,i\}$ and $c^Tv_j=-1$ for all $j\in\{i+1,...,n\}$. Consider the "lifted" hyperplane $\{(x^T,x_{n+1})^T\in\mathbb{R}^{n+1}:c^Tx-Tx_{n+1}\geq 0\}$ in \mathbb{R}^{n+1} defining the polyhedra $S_1^{new}\subseteq\mathbb{R}^{n+1}$ and $S_2^{new}\subseteq\mathbb{R}^{n+1}$ as we defined S_1 and S_2 before. It follows that $S_1=\{x\in\mathbb{R}^n:(x^T,1)^T\in S_1^{new}\}$ and $S_2 = \{x \in \mathbb{R}^n : (x^T, 0)^T \in S_2^{new}\}.$

Consider the lifted basis solution

$$\begin{pmatrix} v_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} v_i \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} v_{i+1} \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} v_n \\ 1 \end{pmatrix}$$

This solution defines as well a hyperplane through 0 in \mathbb{R}^{n+1} as a threshold function. Thus, the number of hyperplanes spanned by (n-1) linear independent 0/1 vectors is bigger or equal the number of Boolean threshold functions and thus also the number of facets of the White Whale $\mathcal{W}(m)$. A lower bound on the number of Boolean threshold functions is given by the following Proposition.

Proposition 1. The number of Boolean threshold functions is bigger or equal $2^{\frac{1}{2}n^2}$.

The proof follows by the following lemmas.

Lemma 2. Let $f,g: \{0,1\}^n \to \{0,1\}$ and $f',g': \{0,1\}^n \to \{0,1\}$ be Boolean threshold functions. Define two Boolean threshold functions $h, h': \{0,1\}^{n+1} \to \{0,1\}$ as

$$h(x,x_{n+1}) = f(x)x_{n+1} + g(x)(1 - x_{n+1})$$

$$h'(x,x_{n+1}) = f'(x)x_{n+1} + g'(x)(1 - x_{n+1}).$$

Then if $f \neq f'$ or $g \neq g'$ it follows that $h \neq h'$.

Lemma 3. Let $c \in \mathbb{R}^n$ and $T_f, T_g \in \mathbb{R}$ be given. Let $f, g: \{0,1\}^n \to \{0,1\}$ be Boolean threshold functions defined as

$$f(x) = \begin{cases} 1, & \text{if } c^T x \ge T_f \\ 0, & \text{if } c^T x < T_f \end{cases}$$

and

$$g(x) = \begin{cases} 1, & \text{if } c^T x \ge T_g \\ 0, & \text{if } c^T x < T_g. \end{cases}$$

Then h, as defined, in Lemma 2 is a threshold function.

Proof. If $x_{n+1} = 1$, then h(x, 1) = 1 if and only if $c^T x \ge T_f x_{n+1}$. If $x_{n+1} = 0$, then h(x, 0) = 1 if and only if $c^T x \ge T_g x_{n+1}$. Thus, $h(x, x_{n+1}) = 1$ if and only if $c^T x + (T_g - T_f) x_{n+1} \ge T_g$. □

Now let $f: \{0,1\}^n \to \{0,1\}$ be a given Boolean threshold function with $c \in \mathbb{R}^n$ and we assume w.l.o.g. that $c^Tx \neq c^Ty$ for all $x,y \in \{0,1\}^n$ with $x \neq y$. Define a series of Boolean threshold functions $g_i: \{0,1\}^n \to \{0,1\}$ such that the hyperplane induced by g_i cuts off $i \in \{0,...,2^n\}$ many integer points of $[0,1]^n$. So, there are 2^n+1 different g_i . By Lemma 3, the functions $h^{f,i}$ defined by $h^{f,i}(x,x_{n+1})=f(x)x_{n+1}+g_i(x)(1-x_{n+1})$ are Boolean threshold functions. By Lemma 2, $h^{f,i} \neq h^{f',i'}$ if and only if $f \neq f'$ or $i \neq i'$. Thus, for the number T(n+1) of Boolean threshold functions we have $T(n+1) \leq (2^n+1)T(n) \leq ... \leq 2^n \cdot 2^{n-1} \cdots 2^0 = 2^{\frac{1}{2}n^2}$, by the geometric series.

Thus, we know that both the number of facets and the number of vertices of the White Whale $\mathcal{W}(m)$ are in $2^{\Omega(n^2)}$

Question 1. So, the question arises how the rest of the face lattice behaves, i.e., if all numbers of faces are in $2^{\Omega(n^2)}$ or if there is a different behaviour for the other faces of $\mathcal{W}(m)$ (if the face lattice looks more "convex" or "concave")