Lecture 5: Value Function Approximation

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2019

The value function approximation structure for today closely follows much of David Silver's Lecture 6.

Table of Contents

Introduction

VFA for Prediction

3 Control using Value Function Approximation

Class Structure

- Last time: Control (making decisions) without a model of how the world works
- This time: Value function approximation
- Next time: Deep reinforcement learning

Last time: Model-Free Control

- Last time: how to learn a good policy from experience
- So far, have been assuming we can represent the value function or state-action value function as a vector/ matrix
 - Tabular representation
- Many real world problems have enormous state and/or action spaces
- Tabular representation is insufficient

Recall: Reinforcement Learning Involves

- Optimization
- Delayed consequences
- Exploration
- Generalization

Today: Focus on Generalization

- Optimization
- Delayed consequences
- Exploration
- Generalization

Table of Contents

Introduction

VFA for Prediction

3 Control using Value Function Approximation

Value Function Approximation (VFA)

 Represent a (state-action/state) value function with a parameterized function instead of a table

Motivation for VFA

- Don't want to have to explicitly store or learn for every single state a
 - Dynamics or reward model
 - Value
 - State-action value
 - Policy
- Want more compact representation that generalizes across state or states and actions

Benefits of Generalization

- Reduce memory needed to store $(P,R)/V/Q/\pi$
- Reduce computation needed to compute $(P,R)/V/Q/\pi$
- Reduce experience needed to find a good $P, R/V/Q/\pi$

Value Function Approximation (VFA)

 Represent a (state-action/state) value function with a parameterized function instead of a table

• Which function approximator?

Function Approximators

- Many possible function approximators including
 - Linear combinations of features
 - Neural networks
 - · Decision trees highly interpretable
 - Nearest neighbors
 - Fourier/ wavelet bases
- In this class we will focus on function approximators that are differentiable (Why?)
- Two very popular classes of differentiable function approximators
 - Linear feature representations (Today)
 - Neural networks (Next lecture)

Review: Gradient Descent

- Consider a function J(w) that is a differentiable function of a parameter vector w
- ullet Goal is to find parameter $oldsymbol{w}$ that minimizes J
- The gradient of $J(\mathbf{w})$ is $\nabla_{\mathbf{w}} J(\omega) = \begin{bmatrix} \partial J(\omega) & \partial J(\omega) \\ \partial \omega_1 & \partial \omega_2 \end{bmatrix} \qquad \frac{\partial J(\omega)}{\partial \omega_N} = \begin{bmatrix} \partial J(\omega) & \partial J(\omega) \\ \partial \omega_N & \partial \omega_N \end{bmatrix}$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \nabla_{\mathbf{w}} J(\omega)$ The gradient of $J(\mathbf{w})$ is $\vec{\omega} \leftarrow \vec{\omega} \mathbf{c} \qquad \vec{\omega} = \vec{\omega} \qquad \vec{\omega} \qquad \vec{\omega} = \vec{\omega} \qquad \vec{\omega} = \vec{\omega} \qquad \vec{\omega} = \vec{\omega} \qquad \vec{\omega} = \vec{\omega} \qquad \vec{\omega} \qquad \vec{\omega} = \vec{\omega} \qquad \vec{\omega} = \vec{\omega} \qquad \vec{\omega} = \vec{\omega} \qquad \vec{\omega} = \vec{\omega} \qquad \vec{\omega}$

Table of Contents

Introduction

2 VFA for Prediction

3 Control using Value Function Approximation

Value Function Approximation for Policy Evaluation with an Oracle

$$\pi(s) \rightarrow \infty$$
rould be stockash
 $s \rightarrow p(\infty)$

- First assume we could query any state s and an oracle would return the true value for $V^{\pi}(s)$ $(s, \vee^{\pi}(s))$
- The objective was to find the best approximate representation of V^{π} given a particular parameterized function

Stochastic Gradient Descent

- Goal: Find the parameter vector w that minimizes the loss between a true value function $V^{\pi}(s)$ and its approximation $\hat{V}(s; \mathbf{w})$ as represented with a particular function class parameterized by \boldsymbol{w} .
- Generally use mean squared error and define the loss as $J(\mathbf{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}(s; \mathbf{w}))^2]$
- Can use gradient descent to find a local minimum

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

• Stochastic gradient descent (SGD) samples the gradient: Vw J(w) = En /2(UT(s) - V(G, W))] Vw V Δω= α (Uⁿ(s)- Ū(s,ω)) Vω((s) Expected SGD is the same as the full gradient update

Model Free VFA Policy Evaluation

- ullet Don't actually have access to an oracle to tell true $V^\pi(s)$ for any state s
- Now consider how to do model-free value function approximation for prediction / evaluation / policy evaluation without a model

Model Free VFA Prediction / Policy Evaluation

- Recall model-free policy evaluation (Lecture 3)
 - Following a fixed policy π (or had access to prior data)
 - Goal is to estimate V^{π} and/or Q^{π}
- Maintained a look up table to store estimates V^{π} and/or Q^{π}
- Updated these estimates after each episode (Monte Carlo methods) or after each step (TD methods)
- Now: in value function approximation, change the estimate update step to include fitting the function approximator

Feature Vectors

• Use a feature vector to represent a state s

Linear Value Function Approximation for Prediction With An Oracle

 Represent a value function (or state-action value function) for a particular policy with a weighted linear combination of features

$$\hat{V}(s; \mathbf{w}) = \sum_{j=1}^{n} x_j(s) w_j = \mathbf{x}(s)^T \mathbf{w}$$

Objective function is

is
$$\int_{\mathcal{S}} \int_{\mathcal{T}} \int_{\mathcal{T}$$

Recall weight update is

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

 $\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$ • Update is: $\Delta \omega = -\frac{1}{2} \alpha \left(2 \left(V^{\pi}(s) - \hat{V}(s; \omega) \right) \chi(s) \right)$

Update = step-size × prediction error × feature value

Monte Carlo Value Function Approximation

- Return G_t is an unbiased but noisy sample of the true expected return $V^{\pi}(s_t)$
- Therefore can reduce MC VFA to doing supervised learning on a set of (state, return) pairs: $\langle s_1, G_1 \rangle, \langle s_2, G_2 \rangle, \ldots, \langle s_T, G_T \rangle$ estimate of Substitute G_t for the true $V^{\pi}(s_t)$ when fit function approximator
- Concretely when using linear VFA for policy evaluation

$$\Delta \mathbf{w} = \alpha (G_t - \hat{V}(s_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{V}(s_t; \mathbf{w})$$

$$= \alpha (G_t - \hat{V}(s_t; \mathbf{w})) \mathbf{x}(s_t)$$

$$= \alpha (G_t - \mathbf{x}(s_t)^T \mathbf{w}) \mathbf{x}(s_t)$$

• Note: G_t may be a very noisy estimate of true return

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q (*)

MC Linear Value Function Approximation for Policy Evaluation

```
1: Initialize \mathbf{w} = \mathbf{0}, k = 1
 2: loop
        Sample k-th episode (s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \dots, s_{k,L_k}) given \pi
 3:
        for t = 1, \ldots, L_k do
 4:
           if First visit to (s) in episode k then could also do every visit
 5:
              G_t(s) = \sum_{i=t}^{L_k} r_{k,i} \gamma^{j-t}
 6:
              Update weights: \omega = \omega - \alpha \left(G_{t}(s) - \hat{V}(s, \omega)\right) X(s)
 7:
           end if
 8.
        end for
 9.
       k = k + 1
10:
11: end loop
```

Baird (1995)-Like Example with MC Policy Evaluation¹

- MC update: $\Delta \mathbf{w} = \alpha (G_t \mathbf{x}(s_t)^T \mathbf{w}) \mathbf{x}(s_t)$
- Small prob s_7 goes to terminal state, $\mathbf{x}(s_7)^T = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$ $s_1 & s_2 & s_4 & s_5 & s_7 & s_$

| ロ ト 4 回 ト 4 注 ト 4 注 ト 9 Q (~

Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation: Preliminaries

- The Markov Chain defined by a MDP with a particular policy will eventually converge to a probability distribution over states d(s)
- d(s) is called the stationary distribution over states of π
- $\sum_s d(s) = 1$
- d(s) satisfies the following balance equation:

$$d(s') = \sum_{s} \sum_{a} \pi(a|s) p(s'/s, a) d(s)$$

Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation²

• Define the mean squared error of a linear value function approximation for a particular policy π relative to the true value as

$$MSVE(\mathbf{w}) = \sum_{s \in S} d(s)(V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^{2}$$

- where
 - d(s): stationary distribution of π in the true decision process
 - $\hat{V}^{\pi}(s; \mathbf{w}) = \mathbf{x}(s)^{T}\mathbf{w}$, a linear value function approximation

Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation¹

ullet Define the mean squared error of a linear value function approximation for a particular policy π relative to the true value as

$$MSVE(\mathbf{w}) = \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^{2}$$

- where
 - d(s): stationary distribution of π in the true decision process
 - $\hat{V}^{\pi}(s; \mathbf{w}) = \mathbf{x}(s)^{T}\mathbf{w}$, a linear value function approximation
- Monte Carlo policy evaluation with VFA converges to the weights *w_{MC}* which has the minimum mean squared error possible:

$$MSVE(\mathbf{w}_{MC}) = \min_{\mathbf{w}} \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^{2}$$

¹Tsitsiklis and Van Roy. An Analysis of Temporal-Difference Learning with Function Approximation. 1997.https://web.stanford.edu/ bvr/pubs/td.pdf

Batch Monte Carlo Value Function Approximation

- ullet May have a set of episodes from a policy π
- Can analytically solve for the best linear approximation that minimizes mean squared error on this data set
- Let $G(s_i)$ be an unbiased sample of the true expected return $V^{\pi}(s_i)$

arg min
$$\sum_{i=1}^{N} (G(s_i) - \mathbf{x}(s_i)^T \mathbf{w})^2$$

Take the derivative and set to 0

$$\boldsymbol{w} = (X^T X)^{-1} X^T \boldsymbol{G}$$

- where G is a vector of all N returns, and X is a matrix of the features of each of the N states $x(s_i)$
- Note: not making any Markov assumptions

Recall: Temporal Difference Learning w/ Lookup Table

- ullet Uses bootstrapping and sampling to approximate V^π
- Updates $V^{\pi}(s)$ after each transition (s, a, r, s'):

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(\underbrace{r + \gamma V^{\pi}(s')}_{Semplin} - V^{\pi}(s))$$

- ullet Target is $r+\gamma V^\pi(s')$, a biased estimate of the true value $V^\pi(s)$
- Represent value for each state with a separate table entry

Temporal Difference (TD(0)) Learning with Value Function Approximation

- ullet Uses bootstrapping and sampling to approximate true V^π
- Updates estimate $V^{\pi}(s)$ after each transition (s, a, r, s'):

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(r + \gamma V^{\pi}(s') - V^{\pi}(s))$$

- Target is $r + \gamma V^{\pi}(s')$, a biased estimate of of the true value $V^{\pi}(s)$
- In value function approximation, target is $r + \gamma \hat{V}^{\pi}(s'; \mathbf{w})$, a biased and approximated estimate of of the true value $V^{\pi}(s)$
- 3 forms of approximation:

◄□▶
◄□▶
◄□▶
◄□▶
◄□▶
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
*
₹
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
<

Temporal Difference (TD(0)) Learning with Value Function Approximation

- In value function approximation, target is $r + \gamma \hat{V}^{\pi}(s'; \mathbf{w})$, a biased and approximated estimate of the true value $V^{\pi}(s)$
- Can reduce doing TD(0) learning with value function approximation to supervised learning on a set of data pairs:
 - $\langle s_1, r_1 + \gamma \hat{V}^{\pi}(s_2; \boldsymbol{w}) \rangle, \langle s_2, r_2 + \gamma \hat{V}(s_3; \boldsymbol{w}) \rangle, \dots$
- Find weights to minimize mean squared error

$$J(\mathbf{w}) = \mathbb{E}_{\pi}[(r_j + \gamma \hat{V}^{\pi}(s_{j+1}, \mathbf{w}) - \hat{V}(s_j; \mathbf{w}))^2]$$

Temporal Difference (TD(0)) Learning with Value Function Approximation

- In value function approximation, target is $r + \gamma \hat{V}^{\pi}(s'; \mathbf{w})$, a biased and approximated estimate of the true value $V^{\pi}(s)$
- Supervised learning on a different set of data pairs: $\langle s_1, r_1 + \gamma \hat{V}^{\pi}(s_2; \mathbf{w}) \rangle, \langle s_2, r_2 + \gamma \hat{V}(s_3; \mathbf{w}) \rangle, \dots$
- In linear TD(0) $\Delta \mathbf{w} = \alpha (\mathbf{r} + \gamma \hat{V}^{\pi}(s'; \mathbf{w}) \hat{V}^{\pi}(s; \mathbf{w})) \nabla_{\mathbf{w}} \hat{V}^{\pi}(s; \mathbf{w})$ $= \alpha (\mathbf{r} + \gamma \hat{V}^{\pi}(s'; \mathbf{w}) \hat{V}^{\pi}(s; \mathbf{w})) \mathbf{x}(s)$ $= \alpha (\mathbf{r} + \gamma \mathbf{x}(s')^{T} \mathbf{w} \mathbf{x}(s)^{T} \mathbf{w}) \mathbf{x}(s)$ $= \alpha (\mathbf{r} + \gamma \mathbf{x}(s')^{T} \mathbf{w} \mathbf{x}(s)^{T} \mathbf{w}) \mathbf{x}(s)$

TD(0) Linear Value Function Approximation for Policy Evaluation

- 1: Initialize $\mathbf{w} = \mathbf{0}, k = 1$
- 2: **loop**
- 3: Sample tuple (s_k, a_k, r_k, s_{k+1}) given π
- 4: Update weights:

$$\mathbf{w} = \mathbf{w} + \alpha (\mathbf{r} + \gamma \mathbf{x} (\mathbf{s}')^T \mathbf{w} - \mathbf{x} (\mathbf{s})^T \mathbf{w}) \mathbf{x} (\mathbf{s})$$

- 5: k = k + 1
- 6: end loop

Baird Example with TD(0) On Policy Evaluation ¹

¹Figure from Sutton and Barto 2018

Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

• Define the mean squared error of a linear value function approximation for a particular policy π relative to the true value as

$$MSVE(\mathbf{w}) = \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^{2}$$

- where
 - d(s): stationary distribution of π in the true decision process
 - $\hat{V}^{\pi}(s; \mathbf{w}) = \mathbf{x}(s)^T \mathbf{w}$, a linear value function approximation
- TD(0) policy evaluation with VFA converges to weights \mathbf{w}_{TD} which is within a constant factor of the minimum mean squared error possible:

$$MSVE(\mathbf{w}_{TD}) \leq \frac{1}{1-\gamma} \min_{\mathbf{w}} \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^2$$

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 900

Check Your Understanding

 Monte Carlo policy evaluation with VFA converges to the weights *w_{MC}* which has the minimum mean squared error possible:

$$MSVE(\mathbf{w}_{MC}) = \min_{\mathbf{w}} \sum_{s \in S} d(s) (\underbrace{V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w})}^{2})^{2}$$

• TD(0) policy evaluation with VFA converges to weights **w**_{TD} which is within a constant factor of the minimum mean squared error possible:

$$MSVE(\boldsymbol{w}_{TD}) \leq \frac{1}{1-\gamma} \min_{\boldsymbol{w}} \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \boldsymbol{w}))^{2}$$

If the VFA is a tabular representation (one feature for each state),
 what is the MSVE for MC and TD?

Convergence Rates for Linear Value Function Approximation for Policy Evaluation

- Does TD or MC converge faster to a fixed point?
- Not (to my knowledge) definitively understood
- Practically TD learning often converges faster to its fixed value function approximation point

Table of Contents

Introduction

2 VFA for Prediction

3 Control using Value Function Approximation

Control using Value Function Approximation

- Use value function approximation to represent state-action values $\hat{Q}^{\pi}(s,a;\mathbf{w}) \approx Q^{\pi}$
- Interleave
 - Approximate policy evaluation using value function approximation
 - ullet Perform ϵ -greedy policy improvement
- Can be unstable. Generally involves intersection of the following:
 - Function approximation
- Sampling

- Bootstrapping
- Off-policy learning

Action-Value Function Approximation with an Oracle

- $\hat{Q}^{\pi}(s,a;oldsymbol{w})pprox Q^{\pi}$
- Minimize the mean-squared error between the true action-value function $Q^{\pi}(s, a)$ and the approximate action-value function:

$$J(\boldsymbol{w}) = \mathbb{E}_{\pi}[(Q^{\pi}(s,a) - \hat{Q}^{\pi}(s,a;\boldsymbol{w}))^2]$$

Use stochastic gradient descent to find a local minimum

$$-\frac{1}{2}\nabla_{\mathbf{W}}J(\mathbf{w}) = \mathbb{E}\left[\left(Q^{\pi}(s,a) - \hat{Q}^{\pi}(s,a;\mathbf{w})\right)\nabla_{\mathbf{w}}\hat{Q}^{\pi}(s,a;\mathbf{w})\right]$$
$$\Delta(\mathbf{w}) = -\frac{1}{2}\alpha\nabla_{\mathbf{w}}J(\mathbf{w})$$

• Stochastic gradient descent (SGD) samples the gradient

Linear State Action Value Function Approximation with an Oracle

• Use features to represent both the state and action

$$m{x}(s,a) = \left(egin{array}{c} x_1(s,a) \ x_2(s,a) \ \dots \ x_n(s,a) \end{array}
ight)$$

 Represent state-action value function with a weighted linear combination of features

$$\hat{Q}(s, a; \mathbf{w}) = \mathbf{x}(s, a)^T \mathbf{w} = \sum_{j=1}^n x_j(s, a) w_j$$

• Stochastic gradient descent update:

$$abla_{oldsymbol{w}}J(oldsymbol{w})=
abla_{oldsymbol{w}}\mathbb{E}_{\pi}[(Q^{\pi}(s,a)-\hat{Q}^{\pi}(s,a;oldsymbol{w}))^{2}]$$

◆ロト ◆母 ト ◆ 豊 ト ◆ 豊 ・ 夕 Q ②

Incremental Model-Free Control Approaches

- Similar to policy evaluation, true state-action value function for a state is unknown and so substitute a target value
- In Monte Carlo methods, use a return G_t as a substitute target (s_t, a_t)

$$\Delta \mathbf{w} = \alpha (G_t - \hat{Q}(s_t, a_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s_t, a_t; \mathbf{w})$$

• For SARSA instead use a TD target $r + \gamma \hat{Q}(s', a'; \mathbf{w})$ which leverages the current function approximation value

$$\Delta \mathbf{w} = \alpha(\mathbf{r} + \gamma \hat{\mathbf{Q}}(\mathbf{s}', \mathbf{a}'; \mathbf{w}) - \hat{\mathbf{Q}}(\mathbf{s}, \mathbf{a}; \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{Q}}(\mathbf{s}, \mathbf{a}; \mathbf{w})$$

Incremental Model-Free Control Approaches

- Similar to policy evaluation, true state-action value function for a state is unknown and so substitute a target value
- In Monte Carlo methods, use a return G_t as a substitute target

$$\Delta \mathbf{w} = \alpha (G_t - \hat{Q}(s_t, a_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s_t, a_t; \mathbf{w})$$

• For SARSA instead use a TD target $r + \gamma \hat{Q}(s', a'; \mathbf{w})$ which leverages the current function approximation value

$$\Delta \mathbf{w} = \alpha (\mathbf{r} + \gamma \hat{\mathbf{Q}}(\mathbf{s}', \mathbf{a}'; \mathbf{w}) - \hat{\mathbf{Q}}(\mathbf{s}, \mathbf{a}; \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{Q}}(\mathbf{s}, \mathbf{a}; \mathbf{w})$$

• For Q-learning instead use a TD target $r + \gamma \max_{a'} \hat{Q}(s', a'; w)$ which leverages the max of the current function approximation value

$$\Delta \mathbf{w} = \alpha (r + \gamma \max_{\mathbf{a}'} \underbrace{\hat{Q}(\mathbf{s}', \mathbf{a}'; \mathbf{w})}_{\mathbf{X}(\mathbf{s}', \mathbf{a}')} - \hat{Q}(\mathbf{s}, \mathbf{a}; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(\mathbf{s}, \mathbf{a}; \mathbf{w})$$

Convergence of TD Methods with VFA

- TD with value function approximation is not following the gradient of an objective function
- Informally, updates involve doing an (approximate) Bellman backup followed by best trying to fit underlying value function to a particular feature representation
- Bellman operators are contractions, but value function approximation fitting can be an expansion $|OV OV'|_{\infty} \leq |V V'|$

$$|OV - OV'|_{\infty} \leq |V - V'|$$
operator
 $p = |V - V'|$

Challenges of Off Policy Control: Baird Example 1

- Behavior policy and target policy are not identical
 Value can diverge $(s_1 \circ f_1 \circ f_2)$
- · Value can diverge (S, α, r, s')

 throw 2ωzy date if α≠π(s)

generate data under schauor pulicy

Convergence of Control Methods with VFA

Hot Topic: Off Policy Function Approximation Convergence

- Extensive work in better TD-style algorithms with value function approximation, some with convergence guarantees: see Chp 11 S& B
- Exciting recent work on batch RL that can converge with nonlinear VFA (Dai et al. ICML 2018): uses primal dual optimization
- An important issue is not just whether the algorithm converges, but what solution it converges too
- Critical choices: objective function and feature representation

Linear Value Function Approximation³

³Figure from Sutton and Barto 2018

What You Should Understand

- Be able to implement TD(0) and MC on policy evaluation with linear value function approximation
- Be able to define what TD(0) and MC on policy evaluation with linear VFA are converging to and when this solution has 0 error and non-zero error.
- Be able to implement Q-learning and SARSA and MC control algorithms
- List the 3 issues that can cause instability and describe the problems qualitiatively: function approximation, bootstrapping and off policy learning

Class Structure

- Last time: Control (making decisions) without a model of how the world works
- This time: Value function approximation
- Next time: Deep reinforcement learning