2011-(04)apr-12: dag 22

Lite till

Primtalitetstest

Fermattest

Pseudoprimtal, Carmichaeltal

Miller-Rabins test

Lite satslogik och boolesk algebra

Satslogik

Atomära sentenser

Konnektiven \neg , Λ , \forall , \rightarrow , \leftrightarrow

Sanningsvärdestabeller

Logisk ekvivalens

Boolesk algebra

Räkneregler

Booleska funktioner

Disjunktiv och konjunktiv normalform

Minimering, Karnaughdiagram

Primtalstest

Är (det stora) talet N ett primtal?

Fermattest (bas b, 1 < b < N):

Nej: N är sammansatt. Ja: Vet inte.

Pseudoprimtal, bas b:

Sammansatt, klarar Fermaltestet, bas b.

Exempel: $341 = 11 \cdot 31$, bas 2

Mer om primalitetstest

Problematiska för Fermattestet:

Carmichaeltal:

Klarar alla Fermattest med bas b med sgd(b, N) = 1.

Exempel:

$$N = 561 = 3.11.17, 560 = 24.5.7$$

N är ett Carmichaeltal omm det är kvadratfritt och p | N \Rightarrow p⁻¹ | N - 1.

Det finns oändligt många sådana

1105, 1729, 2465, ...

Starkare test:

Förfinning av Fermattestet:

$$N - 1 = n \cdot 2^r$$
, n udda, $r \ge 1$ (N udda)

M-R:

bⁿ (mod N)

$$(b^n)^2 \pmod{N}$$

$$\left(\left(b^{n}\right)^{2}\right)^{2} = b^{n \cdot 2^{2}} \pmod{N}$$
:

$$b^{n \cdot 2^r} \equiv 1 \pmod{N}$$

Om N klarar Fermattestet, bas b.

Om N är ett primtal

$$b^n \equiv 1 \pmod{N}$$

eller

$$(b^n)^{2^i} \equiv -1 \pmod{N}$$
, något i, $0 \le i < r$.

Exempel: N = 561, bas = 2

$$N-1=560=35\cdot 2^4$$
 $2^{35}\equiv 263 \qquad (mod 561)$
 $2^{70}\equiv 263^2\equiv 166 \qquad (mod 561)$
 $2^{140}\equiv 116^2\equiv 67 \qquad (mod 561)$
 $2^{280}\equiv 67^2\equiv 1 \qquad (mod 561)$
 $2^{56}\equiv 1 \qquad (mod 561)$

561 är inte ett primtal, ty detta är inte -1.

$$561 = 3.11.17$$

Om -1 på alla rader så så primtal.

mod 3 11 17 Faktorer

-1 -1 10

1 1 13

 $1 \quad 1 \quad -1$

1 1 1 Vi är klara

Lite om satslogik

Studerar påstående "matematiskt".

Exempel:

"Lisa läser diskret matematik." : A

"Det regnar." : B

¬A: "Lisa läser inte diskret matematik."

A Λ ¬B: "Lisa läser diskret matematik och det regnar inte."

C → A v B: "Om det är onsdag så läser Lisa diskret matematik eller så regnar det (eller båda)."

Säger man "antingen A eller B" så menar man, men "eller", "A, B, eller både A och B".

Operationerna för sammansatta påståenden kallas konnektiv.

¬ negation "inte"

Λ konjunktion "och", "men"

(skillnaden får inte i den här analysen)

v disjunktion "eller", "minst en av"

→ implikation "om ... så ...", "bara om"

Deras betydelse ges av sanningsvärdestabeller:

р	¬р	
1	0	1 = sant 0 = falskt

р	q	рлф	рvq	$p \rightarrow q$	p ↔ q
1	1	1	1	1	1
1	0	0	1	0	0
0	1	0	1	1	0
0	0	0	0	1	1

p Λ q: 1 omm båda 1 »båda sanna»

p v q: 0 omm båda 0 »någon sann»

 $p \rightarrow q$: 0 omm (1, 0) »q minst lika sann som p»

p ↔ q: 1 omm lika »p och q lika sanna»

Sanningsvärdestabeller för "större" sentenser

АВС	$C \to (A \land \neg B)$ $C \to A \land \neg B$	(C → A) ∧ ¬(B ∧ C)	
1 1 1 1 1 0	0 0 0 1 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 0 1 1 0 0	1 1 1 1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
0 1 1 0 1 0	0 0 0 1 0 0	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
0 0 1 0 0 0	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
		$C \rightarrow A \qquad B \wedge C$	(1)
	A Λ ¬B	¬(B ∧ C)	(2)
	hela	hela	(3)

Observera att i exemplet får båda sentenserna samma sanningsvärden i alla tolkningar (alla rader). Vi säger att sentenserna är logiskt ekvivalenta.

$$C \rightarrow A \land \neg B \equiv (C \rightarrow A) \land \neg (B \land C)$$

$$(\Leftrightarrow i boken)$$

Exempel:

$$p \rightarrow q \equiv \neg p \rightarrow \neg q$$
 (kontraposition)
 $p \rightarrow q \not\equiv q \rightarrow p$ (omvändning)

Alla logiska ekvivalenser kan fås med några enkla "tankelagar" (algebraiska).

Boolesk algebra, enkla logiska ekvivalenser

$$\neg \neg p \equiv p$$
 involution
 $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ \leftrightarrow uttryckt
 $p \rightarrow q \equiv \neg p \lor q$ \rightarrow uttryckt
 $\neg p \equiv p \rightarrow \bot$ \neg uttryckt

$$p \land \neg p \equiv \bot$$
 komplementaritet
 $p \land \bot \equiv \bot$ Alltid falsk (falsum)
Alltid sann (verum)

Annat skrivsätt (x·y skrivs oftast xy)

$$\overline{\overline{p}} = p$$
 involution

$$p \cdot \overline{p} = 0$$
 komplementaritet
 $p \cdot 0 = 0$
 $p \cdot 1 = p$

Notera att $\overline{x}\overline{y} \neq \overline{x}\overline{y}$ och $\overline{x}\overline{y} \neq \overline{x}\overline{y}$

(Det som stod på förra sidan)

```
p \wedge q \equiv q \wedge p
                                                      p v q \equiv q v p
                                                                                               kommutativitet
(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)
                                                (p v q) v r \equiv p v (q v r)
                                                                                                associativitet
p \Lambda (q V r) \equiv (p \Lambda q) V (p \Lambda r)
                                                p v(q \wedge r) \equiv (p v q) \wedge (p v r)
                                                                                               ditrivutivitet
 \neg(p \land q) \equiv \neg p \lor \neg q
                                                                                               De Morgan
                                                 \neg (p \lor q) \equiv \neg p \land \neg q
                                                                                               idempotens
       p \wedge p \equiv p
                                                      p v p \equiv p
                                                                                               absorption
p \Lambda (p V q) \equiv p
                                               p v (p \wedge q) \equiv p
```

$$\neg \neg p \equiv p$$
 involution

$$p \land \neg p \equiv \bot$$
 komplementaritet
 $p \land \bot \equiv \bot$
 $p \land \top \equiv p$

Motsvarande i mängdlära

 $A^{c c} \equiv A$ involution

 $A \cap A^{c} \equiv \emptyset$ komplementaritet $A \cap \emptyset \equiv \emptyset$

 $A \cap \mathcal{U} \equiv A$

Exempel med "resonemang" (att förenkla logiska uttryck) med boolesk algebra.

Militärt reglement:

$$x \rightarrow y = \bar{x} + y$$

slips skall bäras a:

b: vapenrock skall bäras ytterrock skall bäras c:

Reglementet:

Så förenklingen:

- Slips skall bäras. 1)
- Om ytterrock bäres, skall vapenrock bäras. 2)