OpenNCC SDK API 2.0.x Interface Documentation

Version History

VCIOIOIIII	otor y		
Version	Date	Author	Description
1.0.0	2020/1/10	王新华	Initial version
1.0.1	2020/3/16	王洋	Optimized version
1.1.0	2020/4/7	左文平	Revised Interface, added python interface

1. C/C++ SDK Interface Description

The interface files are primarily contained in 3 files: sdk.h, cameraCtrl.h, and Fp16Convert.

OpenNCC SDK Video Processing Flowchart

1.1 Device Initialization Related Interfaces

1.1.1 Load Device Firmware

Interface Name	Interface Parameters	Description
	const char* bootExe	Path to USB boot program
load_fw()	const char* firmware	Path to firmware file

Example:

load_fw("./moviUsbBoot", "./fw/flicRefApp.mvcmd");

Returns:0 if successful, -1 otherwise

Description:

Automatically loads device firmware, device boots, host (PC) opens USB device.

1.1.2 Get Connected USB Information

Interface Name	Interface Parameters	Description
get_usb_version()	void	N/A

Example:

version = get_usb_version();

Returns:30 if USB 3.0, 20 if USB 2.0

Description:

Returns USB Version Information (Port and USB Cable) connected to the device.

1.1.3 Initializing Camera Parameters

Interface Name	Interface Parameters	Description
sdk_init()	vscRecvCb cb	Callback
_ "	void* param	Callback function parameters
	char *blob_path	Path to Al Model (.blob)
	CameraInfo *cam	Camera Configuration Parameters (See

	below)
int cam_Len	Camera Configuration Structure Length

There are two ways to get media and metadata. 1: Passively obtained through callback function, 2: Actively obtained through read_XXX_data() without setting the callback function and callback parameters.

```
typedef struct{
       int imageWidth;
                             //ImageWidth
       int imageHeight;
                             //ImageHeight
       int startX;
                           //AI Starting X Coordinate
                          //AI Starting Y Coordinate
       int startY;
                          //AI End X Coordinate
       int endX;
       int endY;
                          //AI End Y Coordinate
       int inputDimWidth; /* The model's input width after scaling. If <=0, length will be obtained from the
XML*/
       int inputDimHeight; /* The model's input height after scaling. If <=0, length will be obtained from the
XML */
        IMAGE FORMAT inputFormat; /* Model's input format (Only
RGB/RGB PLANAR/BGR/BGR PLANAR are supported)*/
                               /* If the input format is RGB:
       float meanValue[3];
                           R = (R-meanValue[0])/stdValue
                      G = (G-meanValue[0])/stdValue
                      B = (B-meanValue[0])/stdValue */
       float stdValue;
       int isOutputYUV;
                              //Switch 1 = open 0 = closed
       int isOutputH26X;
       int isOutputJPEG;
       encodeMode mode;
                                  // H264/H265
}
```

CameraInfo;

Example:

sdk init(NULL, NULL, (char*) "./blob/face-detection.blob", &cam info, sizeof(cam info));

Returns:0 if successful. -1 otherwise

Description:

Specifies the AI Vision model file and calculation parameters, initializes the device algorithm model, camera function switch selection, sets the video encoding parameters (if the function switch is turned on). Video output is controlled by camera_video_out().

1.1.4 Get Metadata Size

Interface Name	Interface Parameters	Description
get_meta_size()	void	N/A

Example:

Omitted

Returns: Size of the CNN calculation result's metadata.

Description:

Turn off the camera, reload the model, and call before changing the model.

1.1.5 Remove SDK

Interface Name	Interface Parameters	Description
sdk_uninit()	void	N/A

sdk_uninit();

Returns: N/A

Description:

Turn off the camera, reload the model, and call before changing the model.

1.1.6 Get SDK Version Information

Interface Name	Interface Parameters	Description
get_sdk_version()	char* version	Version Information

Example:

char version[100];
get_sdk_version(version);

Returns:void

Description:

Gets SDK version information.

1.2 Video Streaming Related Interfaces

1.2.1 Get YUV Data

Interface Name	Parameters	Description
read_yuv_data()	char* pbuf	Receive Buffer
	int * size	Input and output parameters. Input is the size of the input buffer
		area, output is the size of the returned video data.
	int blocked	0: If there is no data, return immediately.
		1: Wait until data is read to return.

Example:

read_yuv_data(data_yuv,&size,1)

Returns:0 if successful, -1 otherwise

Description:

Gets a YUV data stream from the device.

1.2.2 Get H.264 or H.265 Data

Interface Name	Parameters	Description
read_26x_data()	char* pbuf	Receive Buffer
	int * size	Input and output parameters. Input is the size of the input buffer
		area, output is the size of the returned video data.
	int blocked	0: If there is no data, return immediately.
		1: Wait until data is read to return.

Example:

read_26x_data(data_26x,&size,1)

Returns:0 if successful, -1 otherwise

Description:

Gets a H.264 or H.265 data stream from the device.

1.2.3 Get JPEG data

Interface Name	Parameters	Description
interiace Hame	i aramotoro	Doddiption

read_jpg_data()	char* pbuf	Receive Buffer
	int * size	Input and output parameters. Input is the size of the input buffer
		area, output is the size of the returned video data.
	int blocked	0: If there is no data, return immediately.
		1: Wait until data is read to return.

read_jpg_data(yuv420p,&size,1)

Returns:0 if successful, -1 otherwise

Description:

Gets a JPEG data stream from the device.

1.2.4 Get the output of the Al Network algorithm

Interface Name	Parameters	Description	
read_meta_data()	char* pbuf	Receive Buffer	
	int * size	Input and output parameters. Input is the size of the input buffer	
		area, output is the size of the returned video data.	
	int blocked	0: If there is no data, return immediately.	
		1: Wait until data is read to return.	

Example:

read_meta_data(data_meta,&size,1)

Returns:0 if successful, -1 otherwise

Description:

Get the number of operations from the device's Al Network.

1.2.5 Get IR Data

Interface Name	Parameters	Description	
read_ir_data()	char* pbuf	Receive Buffer	
	int * size	Input and output parameters. Input is the size of the input buffer	
		area, output is the size of the returned video data.	
	int blocked	0: If there is no data, return immediately.	
		1: Wait until data is read to return.	

Example:

read_ir_data(yuv420p,&size,1)

Returns:0 if successful, -1 otherwise

Description:

Gets the infrared image data stream from the device. Only 3D cameras support this interface.

1.2.6 Get Depth Data

Interface Name	Parameters	Description	
read_depth_data()	char* pbuf	Receive Buffer	
	int * size	Input and output parameters. Input is the size of the input buffer area, output is the size of the returned video data.	
	int blocked	0: If there is no data, return immediately.	
		1: Wait until data is read to return.	

Example:

read_depth_data(data_depth,&size,1)

Returns:0 if successful, -1 otherwise

Description:

Gets the depth data stream from the device. Only 3D cameras support this interface.

1.3 Camera Control Related Interfaces

1.3.1 Obtain Camera Module Information

Interface Name	Parameters	Description
camera_control_get_features()	SensorModesConfig *	Device information structure
	_	pointer

Example:

SensorModesConfig cameraCfg; camera_control_get_features(&cameraCfg);

Returns:0 if successful, -1 otherwise

cameraCfg.moduleName: Camera Module Name

cameraCfg.camWidth: *Image Width* cameraCfg.camHeight: *Image Height* cameraCfg.camFps: *Camera Frame Rate*

cameraCfg.AFmode: Autofocus (1 if supported, 0 otherwise) cameraCfg.maxEXP: Maximum exposure time in microsecond (µs)

cameraCfg.minGain: Minimum Gain Multiplier cameraCfg.maxGain: Maximum Gain Multiplier

Description:

Obtain information about the mode of the camera. Some cameras will support multiple video modes, which can be selected through camera_select_sensor().

1.3.2 Select Module's Working Mode

Interface Name	Parameters	Description
camera_select_sensor()	int sensorid	camera_control_get_features()
		obtains the array of information of
		supported camera modes.
		sensorid is the serial number of
		the array.

Example:

camera_select_sensor(0);

Returns: 0 if successful, -1 otherwise

Description:

Sets the working mode of the camera's visible light module.

1.3.3 Control Camera's Video Output

Interface Name	Parameters	Description
camera_video_out()	int video_type	YUV Data output mode
	camera_ctrl_VIDEO_out mode	Disabled, Single (For photos),
		Continuous

```
typedef enum
{
    VIDEO_OUT_DISABLE, /* Output Disabled */
    VIDEO_OUT_SINGLE, /* Single Output */
    VIDEO_OUT_CONTINUOUS, /* Continuous Output */
}camera_ctrl_video_out;
```

Example:

camera video out(YUV420p,VIDEO OUT CONTINUOUS);

Returns:0 if successful, -1 otherwise

Description:

Sets the device to output video data. This works for YUV420p $,\,$ H26X $,\,$ JPEG. H26X does not support single output.

1.3.4 Set Camera's Focus Mode

Interface Name	Parameters	Description
camera_control_af_mode()	camera_ctrl_af_mode	CAMERA_CONTROLAF_MODE_OFF :Manual
	at_mode	Focus
		CAMERA_CONTROLAF_MODE_AUTO:Automatic
		Focus

Example:

camera_control_af_mode(CAMERA_CONTROL__AF_MODE_OFF); Returns:0 if successful, -1 otherwise

Description:

Sets the camera to manual focus. Using camera_control_get_features() one can check if the camera supports manual focusing (cameraCfg.AFmode). If not supported, the setting is invalid and the camera defaults to automatic.

1.3.5 Set Camera's Lens Distance

Interface Name	Parameters	Description
camera_control_lens_move()	uint32_t lens_position	Range of distances (1-100)

Example:

camera_control_lens_move(10);

Returns:0 if successful, -1 otherwise

Description:

Used when focusing manually, greater value is a greater distance.

1.3.6 Trigger Single Focus

Interface Name	Parameters	Description
camera_control_focus_trigger()	void	N/A

Example:

camera_control_focus_trigger();

Returns:0 if successful, -1 otherwise

Description:

Focuses the camera once

1.3.7 Set Camera's Exposure Mode

Interface Name	Parameters	Description
camera_control_ae_mode()	camera_ctrl_ae_mode flash_mode	Manual or Automatic

Example:

camera control ae mode(CAMERA CONTROL AE AUTO FLASH MODE AUTO);

Returns: 0 if successful, -1 otherwise

Description:

Sets exposure mode.

1.3.8 Set Exposure Time

Interface Name	Parameters	Description	
----------------	------------	-------------	--

camera_control_ae_set_exp()	uint32_t exp_compensation	Exposure duration in microsecond
		(µs) range (1-1 / fps)

camera_control_ae_set_exp(20000);

Returns: 0 if successful, -1 otherwise

Description:

Sets the exposure time for the manual exposure mode.

1.3.9 Set Camera Gain

Interface Name	erface Name Parameters	
camera control ae set gain ()	uint32_t iso_val	Gain value

Example:

camera_control_ae_set_gain(100);

Returns: 0 if successful, -1 otherwise

Description:

Sets the gain in manual exposure mode. Min/max gain values can be retrieved through camera_control_get_features() and set manually.

1.3.10 Set Camera White Balance Mode

Interface Name	Parameters	Description
camera_control_awb_mode()	camera_ctrl_awb_mode	Manual or Auto
	awb mode	

Example:

camera_control_awb_mode(CAMERA_CONTROL_AWB_MODE_AUTO);

Returns: 0 if successful, -1 otherwise

Description:

Sets camera to automatic white balance mode.

1.3.11 Float Conversion

Interface Name	Parameters	Description
f16Tof32()	unsigned int x	16-bit Data

Example:

Float f=f16Tof32(100);

Returns: Float

Description:

Converts 16-bit short data to a floating point number. Used for metadata calculations and analysis.

2. Python SDK Interface Documentation

Starting from version 2.0.X onwards, the API will support Python. The SDK Interface can be found in the openncc.py file. To use the module, import it using: import openncc as ncc

2.1 Device Initialization Related Interfaces

2.1.1 Get SDK Version

Interface Name	Parameters	Description
get_sdk_version()	void	N/A

print("get usb %d sdk versin %s" % (ncc.get_usb_version() ,ncc.get_sdk_version()))
Returns:SDK Version

Description:

Gets the SDK version.

2.1.2 Get Version of Connected USB Device

Interface Name	Parameters	Description
get usb version()	void	N/A

Example:

print("get usb %d sdk versin %s" % (ncc.get_usb_version() ,ncc.get_sdk_version())) Returns:30 if USB 3.0, 20 if USB 2.0

Description:

Returns USB Version Information (Port and USB Cable) connected to the device

2.1.3 Load Device Firmware

Parameters	Description
bootExe	
	Path to USB boot program
firmware	
	Path to firmware file
	bootExe

Example:

Description:

Automatically loads device firmware, device boots, host (PC) opens USB device.

2.1.4 Initializing Camera Parameters

Interface Name	Parameters	Description
sdk_init()	vscRecvCb cb	Callback
	param	Callback function parameters
	blob_path	Path to Al Model (.blob)
	cam	Camera Configuration Parameters
		(See below)
	Cam_len	Camera configuration structure
		length

There are two ways to get Media and Metadata. 1: Passively obtained through callback function, 2: Actively obtained through read_XXX_data() without setting the callback function and callback parameters.

Example:

```
cam_info=ncc.CameraInfo()
cam_info.inputFormat=ncc.IMG_FORMAT_BGR_PLANAR
cam_info.stdValue=1

cam_info.isOutputYUV=1
cam_info.isOutputH26X=1
cam_info.isOutputJPEG=1
```

```
cam info.imageWidth = cameraCfg.camWidth
       cam info.imageHeight = cameraCfg.camHeight
       cam info.startX
                          = 0
                          = 0
       cam_info.startY
       cam info.endX
                          = cameraCfg.camWidth
       cam info.endY
                           = cameraCfg.camHeight
       cam info.inputDimWidth =0
       cam info.inputDimHeight =0
       ncc.SetMeanValue(cam_info,0.0,0.0,0.0)
       ret = ncc.sdk_init(None, None, "./blob/face-detection-retail-0004-fp16.blob",cam_info,
struct.calcsize("13I4f"))
        print("xlink_init ret=%d " % ret)
       if (ret<0):
               return
```

Description:

Specifies the Al Vision model file and calculation parameters, initializes the device algorithm model, camera function switch selection, sets the video encoding parameters (if the function switch is turned on). Video output is controlled by camera_video_out().

2.1.5 get meta data size

Interface Name	Parameters	Description
get_meta_size()	void	N/A

Example:

```
metasize=ncc.get_meta_size()
print("xlink_init ret=%d %d" % (ret,metasize))
Returns:meta data size
```

Description:

Turn off the camera, reload the model, and call before changing the model.

2.1.6 Uninitialize SDK

Interface Name	Parameters	Description
sdk_uninit()	void	N/A

Example:

sdk_uninit();

Returns:N/A

Description:

Turn off the camera, reload the model, and call before changing the model.

2.2Video Streaming Related Interfaces

2.2.1 Get YUV Data

Interface Name	Parameters	Description
GetYuvData()	yuvbuf	Bytearray receive buffer

Example:

```
metasize=ncc.get_meta_size()
offset=struct.calcsize(media_head)
yuvsize=cameraCfg.camWidth*cameraCfg.camHeight*2
yuvbuf = bytearray(yuvsize+offset)
```

metabuf = bytearray(metasize+offset) size = ncc.GetYuvData(yuvbuf)

Returns: Size of the YUV data.

Description:

Gets a YUV data stream from the device.

2.2.2 Get H.264 or H.265 Data

Interface Name	Parameters	Description
GetH26xData()	databuf	Bytearray receive buffer

Example:

Same as 2.2.1.

Description:

Gets a H.264 or H.265 data stream from the device.

2.2.3 Get JPEG data

Interface Name	Parameters	Description
GetJpegData()	databuf	Bytearray receive buffer

Example:

Same as 2.2.1

Description:

Gets a JPEG data stream from the device.

2.2.4Get the results of the Al Network inference

Interface Name	Parameters	Description
GetMetaData()	databuf	Bytearray receive buffer

Example:

Same as 2.2.1

Description:

Get the number of operations from the device's Al Network.

2.3 Camera Control Related Interfaces

2.3.1 Obtain Camera Module Information

Interface Name	Parameters	Description
CameraSensor Class	GetFirstSensor()	
	GetNextSensor()	

Example:

```
sensors=ncc.CameraSensor()
       sensor1 = ncc.SensorModesConfig()
       if sensors.GetFirstSensor(sensor1)==0:
                            print("camera: %s, %dX%d@%dfps, AFmode:%d,
maxEXP:%dus,gain[%d, %d]\n" % (
         sensor1.moduleName, sensor1.camWidth, sensor1.camHeight, sensor1.camFps,
         sensor1.AFmode, sensor1.maxEXP, sensor1.minGain, sensor1.maxGain))
       sensor2 = ncc.SensorModesConfig()
       while sensors.GetNextSensor(sensor2)==0:
                            print("camera: %s, %dX%d@%dfps, AFmode:%d,
maxEXP:%dus,gain[%d, %d]\n" % (
```

sensor2.moduleName, sensor2.camWidth, sensor2.camHeight, sensor2.camFps,

sensor2.AFmode, sensor2.maxEXP, sensor2.minGain, sensor2.maxGain))

Description:

Obtains information about the mode of the camera (获取相机可见光模组模式信息). Some cameras will support multiple video modes, which can be selected through camera_select_sensor().

2.3.2 Select Module's Working Mode

Interface Name	Parameters	Description
camera_select_sensor()	sensorid	camera_control_get_features() obtains the array of information of supported camera modes. sensorid is the serial number of the array.

Example:

ncc.camera_select_sensor(0)
Returns:0 if successful, -1 otherwise

Description:

Sets the working mode of the camera's visible light module.

2.3.3 Control the Camera's Video Output

Interface Name	Parameters	Description
camera_video_out()	video_type	Video data type
	out mode	Disabled, Single (For photos), or
		Continuous

Example:

ncc.camera_video_out(ncc.YUV420p,ncc.VIDEO_OUT_CONTINUOUS)
Returns:0 if successfuk, -1 otherwise

Description:

Sets the device to output video data. This works for YUV420p $_{7}$ H26X $_{7}$ JPEG. H26X does not support single output.

2.3.4 Set Camera's Focus Mode

Interface Name	Parameters	Description
camera_control_af_mode()	camera_ctrl_af_mode	CAMERA_CONTROLAF_MODE_OFF: Manual
	af_mode	Focus
		CAMERA_CONTROLAF_MODE_AUTO:Automatic
		Focus

Example:

ncc.camera_control_af_mode(ncc.CAMERA_CONTROL__AF_MODE_AUTO);

Returns:0 if successful, -1 otherwise

Description:

Sets the camera to manual focus. Using camera_control_get_features() one can check if the camera supports manual focusing (cameraCfg.AFmode). If not supported, the setting is invalid and the camera defaults to automatic focusing.

2.3.5 Set the Camera's Lens Distance

Interface Name	Parameters	Description
camera_control_lens_move()	lens_position	Range of distances (1-100)

Example:

ncc.camera_control_lens_move(10);

Returns:0 if successful, -1 otherwise

Description:

Used when focusing manually, greater value is a greater distance.

2.3.6 Trigger Single Focus

Interface Name	Parameters	Description
camera_control_focus_trigger()	void	N/A

Example:

camera_control_focus_trigger();

Returns:0 if successful, -1 otherwise

Description:

Focuses the camera once.

2.3.7 Set Camera's Exposure Mode

Interface Name	Parameters	Description
camera_control_ae_mode()	camera_ctrl_ae_mode	Manual or Automatic
	flash mode	

Example:

ncc.camera_control_ae_mode(ncc.CAMERA_CONTROL__AE_AUTO__FLASH_MODE__AUTO);

Returns:0 if successful, -1 otherwise

Description:

Sets exposure mode.

2.3.8 Set Exposure Time

Interface Name	Parameters	Description
camera_control_ae_set_exp()	exp_compensation	Exposure duration in microsecond
		(µs) range (1-1 / fps)

Example:

ncc.camera_control_ae_set_exp(20000);

Returns:0 if successful, -1 otherwise

Description:

Sets the exposure time for the manual exposure mode.

2.3.9 Set Camera Gain

Interface Name	Parameters	Description
camera_control_ae_set_gain ()	iso_val	Gain value

Example:

ncc.camera_control_lens_move(100);

Returns:0 if successful, -1 otherwise

Description:

Sets the gain in manual exposure mode. Min/max gain values can be retrieved through camera_control_get_features() and set manually.

2.3.10 Set Camera White Balance Mode

Interface Name	Parameters	Description
camera_control_awb_mode()	camera_ctrl_awb_mode awb_mode	Manual or Automatic

ncc.camera_control_awb_mode(ncc.CAMERA_CONTROL__AWB_MODE__AUTO); Returns:0 if successful, -1 otherwise

Description:

Sets camera to automatic white balance mode.

2.3.11 Float Conversion

Interface Name	Parameters	Description
f16Tof32()	x	16-bit Data

Example:

f=f16Tof32(100); Returns:Float

Description:

Converts 16-bit short data to a floating point number. Used for metadata calculations and analysis.