2012-2013学年第二学期 大学物理 I 期末试题A卷 信二学生会学习部整理

填空题	选择题	计算1	计算 2	计算3	计算 4	计算 5	总 分

	常量 R=8	.31 J·mol ⁻¹ · 5.67 × 10 ⁻¹¹		// /	曼常量 k = 均半径 R _E		
一、填空	题(共 40 ;	分,请将答	案写在卷	面指定的植	黄线上):		
1. (4分)	一质点质量	量为 1kg,	其运动方程	星为 $\vec{r} = 3t\vec{i}$	$-4t^2\vec{j}$ (S	SI),则质	点运动的轨道方
程为			,速度	为 v̄ =			,对坐标原点
的角动量之	为 <u>L</u> =			•			
2. (4分)	一个以恒知	定角加速度	转动的圆	盘,如果在	E某一时刻	的角速度	为 $\omega_{\rm l} = 20\pi{\rm rad/s}$,
再转 60 转 所需的时间	后角速度 • Δ <i>t</i> =	为 $\omega_2 = 30\pi$	rad /s,则 。	角加速度 <i>[</i>] 引学生:	<u>,</u>	转过上述 60 转
3. (4分) 平轴在竖置 为 <i>m</i> ,长度	直平面内从 夏为 <i>L</i> 。细	水平位置3 棒从水平位	开始自由转	表动。细棒的 动时的角力	的质量 加速度	0	m, L
角速度是_			o			1	
4. (4分):	2g 氢气与	2g 氦气分别	別装在两个	容积相同	的封闭容器	器内,温度	相同(氢气分子
视为刚性邓	双原子分子)。那么,给	氢分子与多	意分子的平	均平动动能	能之比为_	;
氢气与氦气	压强之比	为	;	氢气与氦	(气内能之	比为	٥

二、选择题(每题3分,共15分,请将答案写在卷面指定的方括号内):

- 1. 对质点系统有以下几种说法:
 - (1) 质点系统总动量的改变与内力无关。
 - (2) 质点系统总动能的改变与内力无关。
- (3) 质点系统机械能的改变与保守内力无关。 在上述说法中:
 - (A) 只有(1)是正确的。
- (B) (2)、(3)是正确的。
- (C) (1)、(2)是正确的。
- (D) (1)、(3)是正确的。

[]

2. 如图所示,一水平刚性轻杆,质量不计,杆长 l = 20 cm,其上穿有两个小球. 初始时,两小球相对杆中心 O 对称放置,与 O 的距离 d = 5 cm,二者之间用细线拉紧. 现在让细杆绕通过中心 O 的竖直固定轴作匀角速的转动,转速为 ω_0 ,再烧断细线让两球向杆的两端滑动. 不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为

(A) $2\omega_0$

(B)
$$\omega_0$$
 (C) $\frac{1}{2}\omega_0$

$$(C) \frac{1}{2} \omega_0 \qquad (D) \frac{1}{4} \omega_0$$

3. 一个质点作简谐振动,振幅为A,在起始时刻质点的位移为A/2,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为

- 4. 当机械波在媒质中传播时,一媒质质元的最大变形量发生在
 - (A) 媒质质元离开其平衡位置最大位移处。
 - (B) 媒质质元离开其平衡位置($\sqrt{2}A/2$) 处(A 是振动振幅)。
 - (C) 媒质质元在其平衡位置处。
 - (D) 媒质质元离开其平衡位置 A/2 处(A 是振动振幅)。

1

Γ

- 5. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是
 - (A) 使屏靠近双缝。
 - (B) 使两缝的间距变小。
 - (C) 把两个缝的宽度稍微调窄。
 - (D) 改用波长较小的单色光源。

三、计算题(共45分):

1.(10分)一质量均匀分布的圆盘,质量为M,半径为R,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为 μ),圆盘可绕通过其中心O的竖直固定光滑轴转动. 开始时,圆盘静止,一质量为m的子弹以水平速度 v_0 垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求

- (1) 子弹击中圆盘后,盘所获得的角速度。
- (2) 粗糙水平面对圆盘的摩擦阻力矩(忽略子弹重力造成的摩擦阻力矩)。
- (3) 经过多少时间后,圆盘停止转动。
- 2. (10 分)理想气体热机经历如图所示热循环, 其中 bc 和 da 为绝热过程。已知 T_c = 300K, T_b = 400K, 求热机的效率。

- 3. (10 分)(1) 折射率为 1.50 的两平板玻璃之间形成一个 θ =10 4 rad 的空气劈尖,若用 λ = 600nm 的单色光垂直照射,求第 15 条明纹到劈尖棱边的距离。
- (2) 波长 $\lambda = 589$ nm 的平行光垂直照射到宽度 a = 0.40mm 的单缝上,缝后放一焦距 f = 1.0m 的凸透镜,在透镜焦平面处的屏上形成衍射条纹。求第一级明纹到中央明纹中心的距离。
- 4. (10 分) 波长 λ = 600nm (1nm = 10^{-9} m) 的单色光垂直入射到一光栅上,测得第 4 级主极大的衍射角为 30°,且第 3 级是缺级。
- (1) 光栅常数(a+b)等于多少?
- (2) 透光缝可能的最小宽度 a 等于多少?
- (3) 在选定了上述(a+b)和 a之后,在衍射角 $-90^{\circ} < \varphi < 90^{\circ}$ 范围内可能观察到的全部主极大的级次.
- 5. (5分)图为氢气和氧气在常温下的麦克斯韦速率分布曲线,根据图中数据以及相关的力学、热学原理,分析为什么地球大气主要包含氮气和氧气,而宇宙中最常见的氢气和氦气在地球大气中的含量却很少。

课程代号: PHY17016

北京理工大学 2012-2013 学年第二学期

大学物理I期末试题A卷答案

一、填空题(共40分):

- 1. (4分) $4x^2 \div 9y = 0$ (1分); $\vec{v} = 3\vec{i} 8t\vec{j}$ (1分) , $\vec{L} = -12t^2\vec{k}$ (2分
- 2. (4分) 6.54 rad/s², 4.8 s (各2分)
- 3. (4分) $\frac{3g}{2I}$, $\sqrt{\frac{3g}{L}}$ (各2分)
- 4. (4分) 1:1 (1分), 2:1 (1分), 10:3 (2分)
- 5. (4分) 500, 0.05 (各2分)
- 6. (4分) 等压, 等压 (各2分)
- 7. (4 分) $y = A\cos\left[2\pi\sqrt{t-\frac{x}{u}} \frac{\pi}{2}\right]$, $y = A\cos\left[2\pi\sqrt{t+\frac{x}{u}} \frac{\pi}{2}\right]$ (各 2 分)
- 8. (3分) $\int_{0}^{\varepsilon} Nf(v) dv$, $\int_{\varepsilon}^{\varepsilon} vf(v) dv / \int_{\varepsilon}^{\varepsilon} f(v) dv$, $\int_{\varepsilon}^{\varepsilon} f(v) dv$ (各1分)
- 9. (3分) 5/3
- 10. (3分) 4:1
- 11. (3分) 60° 或 π/3

二、选择题(每题 3 分, 共 15 分):

(D) (D) (B) (C) (B)

三、计算题

- 1. (1) $mv_0/(1/2M+m)R$ (2) (2/3) μMgR (3) $3mv_0/(2\mu Mg)$
- 2.25%
- 3. (1) 4.35×10^{-2} m (2) 2.21×10^{-3} m
- 4. (1) 4800nm (2) 1600nm (3) k=0, ±1, ±2, ±4, ±5, ±7 级明纹