Homework 5

Kyle Kazemini

October 5, 2020

2.5.1

Problem

Give an example of a nested sequence of bounded open intervals that does not have a point in its intersection.

Solution

Let $I_n=(0,\frac{1}{n})$ be a nested sequence of open bounded intervals. $I_{n+1}\subset I_n\ \forall\ n$. Any element of the intersection $\cap_n I_n$ must be strictly greater than 0 and strictly less than $\frac{1}{n}$ for all n. By the Archimedean Property, no such element can exist. Thus, this is an example of a nested sequence of bounded open intervals such that $\bigcap_n I_n=\varnothing$

2.5.6

Problem

For each of the following sequences $\{a_n\}$, find a subsequence which converges.

- (a) $a_n = (-1)^n$.
- (b) $a_n = \sin n\pi/4$.
- (c) $a_n = \frac{n}{2^{k_n}} 1$ with k_n the largest integer k so that $2^k \le n$.

Solution

(a) $\{1,1,1,...\}$ converges, but it is not a subsequence of a_n because by Definition 2.5.3, the sequence of natural numbers 1,1,1,... is not strictly increasing. Similarly, $\{-1,-1,-1,...\}$ converges, but it is not a

subsequence of a_n . Thus, there is no convergent subsequence for $a_n = (-1)^n$.

- (b) Let $b_k = \sin(n\pi/8)$. b_k is a subsequence of a_n because for all k = 2n, $b_k = a_n$. However b_k does not converge. There is no subsequence of a_n that converges because for any $x \in \mathbb{Q}$, $\sin x\pi$ does not converge.
- (c) Let $b_n = \frac{n}{2^n} 1$. b_n is a subsequence of a_n because b_n doesn't have the same restriction for k_n to be the largest integer such that $2^n \le n$. So we need to show that b_n converges to -1. That is, for any $\epsilon > 0$ there exists a real number N such that $|b_n| < \epsilon$ for any n > N. Take $N = \frac{\epsilon}{2}$. This gives:

$$\left|\frac{2^{\epsilon}}{\epsilon}\right| < \frac{\epsilon}{2}$$

This clearly holds for all n > N, so b_n converges to -1. Thus, it is a convergent subsequence of a_n .

2.5.9

Problem

Prove that a sequence which satisfies $|a_{n+1} - a_n| < 2^{-n}$ for all n is a Cauchy sequence.

Solution

By the definition of a Cauchy sequence, we need to show that for every $\epsilon > 0$, there is some real number N such that for all n > N

$$|a_{n+1} - a_n| < 2^{-n}$$

Take $N = -\log \epsilon$. This gives:

$$|a_{n+1} - a_n| < \epsilon$$

Since N is a real number and not a natural number, the definition of a Cauchy sequence holds for all $n \in \mathbb{N}$.

2.5.11

Problem

Let $s_n = \sum_{k=1}^n \frac{1}{k2^k}$ be the sequence of partial sums of the series $\sum_{k=1}^{\infty} \frac{1}{k2^k}$. Prove that $\{s_n\}$ converges. Hint: Show that it is a Cauchy sequence.

Solution

By Theorem 2.5.8, to show that s_n converges, it is sufficient to show that it is a Cauchy sequence. That is, if for every $\epsilon > 0$, there exists a real number N such that

$$|s_m - s_n| < \epsilon$$
 whenever $n, m > N$

For m > n, we have:

$$|s_m - s_n| = \left| \sum_{k=n+1}^m \frac{1}{k2^k} \right| \le \frac{1}{2^{n+1}(n+1)} \sum_{k=0}^\infty \frac{1}{2^k} = \frac{1}{2^n}$$

Since $\lim \frac{1}{2^n} = 0$, given $\epsilon > 0$, there is an N such that $\frac{1}{2^n} < \epsilon$ for all n > N. Hence $|s_m - s_n| < \epsilon$ for all n, m with m > n > N. Thus s_n is Cauchy and, hence, converges.

2.5.12

Problem

Given a series $\sum_{k=1}^{\infty} a_k$, set $s_n = \sum_{k=1}^{n} a_k$ and $t_n = \sum_{k=1}^{n} |a_k|$. Prove that $\{s_n\}$ converges if $\{t_n\}$ is bounded.

Solution

 $m \le t_n \le p$ for some m, p because t_n is bounded. Then for every $\epsilon > 0$ there exists N such that for $n > N, |s_n - a| < \epsilon$. That is:

$$|\sum_{k=1}^{n} a_k - a| < \epsilon$$

Take $\epsilon = p - m \ge 0$. Then it's easy to see that $|\sum_{k=1}^n a_k - a| < \epsilon$ for all n > N because ϵ is strictly greater than 0 and $p - m \ge 0$. Thus if t_n is bounded, s_n converges to some value a.

2.6.1

Problem

Find $\limsup a_n$ and $\liminf a_n$ for the following sequences:

- (a) $a_n = (-1)^n$;
- (b) $a_n = (-1/n)^n$;
- (c) $a_n = \sin n\pi/3$.

Solution

(a) $\liminf a_n = \lim i_n$ where $i_n = \inf \{a_k : k \ge n\}$. In this case, $i_n = -1$ so $\lim i_n = -1$. Thus $\liminf a_n = -1$.

 $\limsup a_n = \lim s_n$ where $s_n = \sup \{a_k \colon k \ge n\}$. In this case, $s_n = 1$ so $\lim s_n = 1$ also. Thus $\limsup a_n = 1$.

(b) $\liminf a_n = \lim i_n$ where $i_n = \inf \{a_k : k \ge n\}$. In this case, $i_n = -1$ so $\lim i_n = -1$. Thus $\liminf a_n = -1$.

 $\limsup a_n = \lim s_n$ where $s_n = \sup \{a_k \colon k \ge n\}$. In this case, $s_n = \infty$ so $\lim s_n = \infty$ as well. Thus $\limsup a_n = \infty$.

(c) $\liminf a_n = \lim i_n$ where $i_n = \inf \{a_k : k \ge n\}$. In this case, $i_n = \sin \pi/3 = 0$ so $\lim i_n = 0$. Thus $\liminf a_n = 0$.

 $\limsup a_n = \lim s_n$ where $s_n = \sup \{a_k \colon k \ge n\}$. In this case, $s_n = \infty$ so $\lim s_n = \infty$ as well. Thus $\limsup a_n = \infty$.

2.6.2

Problem

Find \limsup for the sequence of Exercise 2.5.6(c).

Solution

lim inf $a_n = \lim i_n$ where $i_n = \inf \{a_k : k \ge n\}$. a_n is bounded below by 0, thus $i_n = 0$ and $\lim \inf a_n = 0$ (this is equivalent to the justification given in Exercise 2.6.1)

 $\limsup a_n = \lim s_n$ where $s_n = \sup \{a_k : k \ge n\}$. In this case, $s_n = 0$ so $\lim s_n = 0$ as well. Thus, $\limsup a_n = 0$.

Note: by Theorem 2.6.6, this is equivalent to $\lim a_n = 0$.

2.6.4

Problem

If $\limsup a_n$ and $\limsup b_n$ are finite, prove that

$$\limsup (a_n + b_n) \le \limsup a_n + \limsup b_n.$$

Solution

Let $C = \limsup (a_n + b_n)$, $A = \limsup a_n$, and $B = \limsup b_n$. Suppose FSOC that C > A + B and suppose that $\exists \epsilon > 0$ such that $C - \epsilon > A + B + \epsilon$. Because A and B are finite, by the definition of A and B, for some real number N, $\exists n > N$ such that

$$a_n + b_n > C - \epsilon$$

By that same logic, for some real number N_1 , $\exists n > N_1$ such that

$$a_n < A + \frac{\epsilon}{2}$$

Similarly, for some real number $N_2,\ \exists\ n>N_2$ such that

$$b_n < B + \frac{\epsilon}{2}$$

Now if we take $N = max(N_1, N_2)$, then this gives:

$$a_n + b_n < A + B + \frac{\epsilon}{2} + \frac{\epsilon}{2} < C - \epsilon$$

Thus, contradicting the earlier statement:

$$a_n + b_n > C - \epsilon$$

So by contradiction, we've shown that $\limsup (a_n + b_n) \le \limsup a_n + \limsup b_n$