PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-250135

(43) Date of publication of application: 27.09.1996

(51)Int.CI.

H01M 8/02

4/86 HO1M

HO1M 8/12

(21)Application number : 07-083197

(71)Applicant: TOHO GAS CO LTD

(22)Date of filing:

14.03.1995

(72)Inventor: TAMURA MORITOSHI

MIZUTANI YASUNOBU KAWAI MASAYUKI

NOMURA KAZUHIRO

(54) SOLID ELECTROLYTIC FUEL CELL, AND MANUFACTURE OF ITS CELL

(57)Abstract:

PURPOSE: To improve the long time durability and reliability of a solid electrolytic fuel cell(SOFC), and reduce the manufacturing cost of a cell by a cosintering method.

CONSTITUTION: A lanthanum strontium manganate air electrode material is provided integrally with zirconia solid electrolyte material. It is made stabilizationtreatment by scandia, and is blended with alumina. Solid solution of a manganese ion in the air electrode material into a grain boundary is restrained by preferential reaction to alumina existing in the grain boundary of the solid electrolytic material.

LEGAL STATUS

[Date of request for examination]

02.07.2001

Date of sending the examiner's decision of

02.04.2004

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3573519

[Date of registration]

09.07.2004

[Number of appeal against examiner's decision

2004-08675

of rejection]

EXPRESS MAIL LABEL NO.: EV 480 463 178 US

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-250135

(43)公開日 平成8年(1996)9月27日

(51) Int.Cl.*		識別記号	庁内整理番号	FΙ			技術表示箇所		
H01M	8/02			H01M	8/02		E		
							K		
	4/86				4/86		T		
	8/12				8/12				
				審査請求	未請求	請求項の数2	FD	(全 9	頁)
(21)出願番号	}	特願平7-83197	-	(71)出願人	000221834				
						听株式会社			
(22)出顧日		平成7年(1995)3	愛知県名古屋市熱田区桜田町19番18号			}			
			•	(72)発明者		•			
特許法第30条第1項適用申請有り 1994年12月19日 S				愛知県東海市新宝町507-2 東邦瓦斯株					
OFC研究会発行の「第3回SOFC研究発表会講演要				式会社総合技術研究所内					
旨集」に発表				(72)発明者 水谷 安伸					
						東海市新宝町50		東邦瓦	斩株
					式会社	総合技術研究所	内		
				(72)発明者					
						東海市新宝町50		東邦瓦	斯株
					式会社	险合技術研究所	内		
				(74)代理人	. 弁理士	上野登(外2名)	
							;	最終頁に	続く

(54) 【発明の名称】 固体電解質型燃料電池及びその電池セルの製造方法

(57)【要約】

【目的】 固体電解質型燃料電池(SOFC)の長期耐 久性と信頼性の向上を図り、また電池セルの共焼結法に よる製造コストの削減を図る。

【構成】 ジルコニア系固体電解質材料に、ランタンス トロンチウムマンガネート系空気極材料が一体的に設け られ、前記ジルコニア系固体電解質材料はスカンジアに より安定化処理がなされ、かつアルミナが配合されてお り、空気極材料中のマンガンイオンは固体電解質材料の 粒界に存在するアルミナとの優先反応により粒界への固 溶拡散が抑制されている。

【特許請求の範囲】

【請求項1】 ジルコニア系固体電解質材料に、ランタ ンストロンチウムマンガネート系空気極材料が一体的に 設けられ、前記ジルコニア系固体電解質材料はスカンジ アにより安定化処理がなされると共にアルミナが配合さ れ、空気極材料中のマンガンイオンがその固体電解質材 料中の粒界に存在するアルミナと優先的に反応し、マン ガンイオンの固体電解質材料への固溶拡散が抑制されて なることを特徴とする固体電解質型燃料電池。

【請求項2】 アルミナが配合されたスカンジア安定化 10 ジルコニア系材料による固体電解質板の片側面にNiサ ーメット材料のような燃料極材料を塗布すると共に、前 記固体電解質板の反対側面には、ランタンストロンチウ ムマンガネート系空気極材料を塗布し、該空気極材料と 前記燃料極材料とを共通の焼成温度により前記固体電解 質板の表面に共焼結するようにしたことを特徴とする固 体電解質型燃料電池セルの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池 20 んとするものである。 (以下、「SOFC」と略称する。) に関し、さらに詳 しくは、固体電解質と空気極との界面における反応生成 物の抑制により電池性能を改善したSOFC及びその燃 料電池セルの製造方法に関するものである。

[0002]

【従来の技術】従来、この種の燃料電池において、固体 電解質型燃料電池(SOFC)が、種類の異なるリン酸 型燃料電池や溶融炭酸塩型燃料電池に比べて発電効率が 高く、また高温廃熱を利用してガスターピン発電等と組 合せるととにより、公害問題の生じない環境性の高いオ 30 ンサイト用コージェネレーションシステムへの適用など が期待されている。

【0003】ととろで、とのSOFCの固体電解質材料 としては、従来電気特性(特に導電率特性)に優れ、か つ作動温度(約1150℃)での結晶構造の安定が図れ るものとしてイットリア安定化ジルコニア材料(以下、 「YSZ材料」と略称する。)が用いられてきた。

【0004】そして、このYSZ材料による固体電解質 板の片側面にNiサーメット材料による燃料極を設け、 固体電解質板の反対側面にはランタンストロンチウムマ 40 ンガネート(La(Sr)MnO₃) 材料による空気極 を設けた単一電池セルを構成したものが一般的に知られ ている。

[0005]

【発明が解決しようとする課題】しかしながら、とのよ うな電池セル構造のSOFCによれば、空気極材料であ るLaSrMnO,がYSZ固体電解質材料であるY,O ,-ZrO,と長時間の髙温雰囲気において反応し、その 界面においてLa,Zr,O,が生成する。そして、この La,Zr,O, は絶縁性を有するため、電極と電解質と 50

の界面に生成されると、電池性能に大きく影響を及ぼ し、長期的に電池の信頼性が低下する原因となってい

【0006】また、上述した構成の電池セルによれば、 固体電解質板や燃料極の焼成温度は1400~1500 *Cであるのに対して、空気極の焼成温度はその空気極材 料の固体電解質材料への拡散を回避するため1150℃ 前後としており、電気的な密着性や製造工程の簡素化の ためには固体電解質板に燃料極材料と空気材料とをそれ ぞれスラリーコーティングにより塗布し、一度に焼成す る共焼結が望ましいにもかかわらず、現在は電解質の焼 成、電極の電解質への焼き付けは別工程で行われざるを 得なかった。

【0007】本発明は、このような問題点を解決するた めになされたものであり、その目的とするところは、長 時間安定して電池性能を維持できて電池としての信頼性 の高いSOFCを提供することにある。また、本発明の 別の目的は、固体電解質と電極との共焼結法による電池 セルの製造の実現により製造コストの低廉化をも達成せ

[0008]

【課題を解決するための手段】とのような目的を達成す るため本発明の固体電解質型燃料電池(SOFC)は、 ジルコニア系固体電解質材料に、ランタンストロンチウ ムマンガネート系空気極材料が一体的に設けられ、前記 ジルコニア系固体電解質材料はスカンジアにより安定化 処理がなされると共にアルミナが配合され、空気極材料 中のマンガンイオンがその固体電解質材料中の粒界に存 在するアルミナと優先的に反応し、マンガンイオンの固 体電解質材料への固溶拡散が抑制されてなることを要旨 とするものである。

【0009】また本発明の二つ目は、アルミナが配合さ れたスカンジア安定化ジルコニア系材料による固体電解 質板の片側面にNiサーメット材料のような燃料極材料 を塗布すると共に、前記固体電解質板の反対側面には、 ランタンストロンチウムマンガネート系空気極材料を塗 布し、該空気極材料と前記燃料極材料とを共通の焼成温 度により、前記固体電解質板の表面に共焼結することに よりSOFCの燃料電池セルを製造することを要旨とす るものである。

[0010]

【実施例】初めに、実験方法について説明し、次に実験 結果並びに考察について説明する。

(実験方法) 本発明の固体電解質材料であるスカンジア 安定化ジルコニアScSZ原料粉末は、Sc,〇,原子レ ベルで均一に混合することを目的として、ゾルゲル法 (蟻酸法) により調製した。はじめに、Sc,〇,(9 9. 9%、三津和化学)を加熱した濃硝酸に溶解させ、 蒸留水で希釈したのち2rO(NO,)2H,O (99 %、三津和化学)を加えた。この溶液に蟻酸とポリエチ 10

レングリコールを加え、攪拌しながら加熱固化して前駆体を得た。つぎに、得られた前駆体を800℃で12時間仮焼し、ScSZ原料粉末とした。

【0011】また、空気極材料であるランタンストロンチウムマンガネート(Lao,,Sro,,MnO,)(以下、「LSM」と略称する。)の原料は、 La,(NO,),3H,O(特級、キシダ化学)、Sr(NO,),(特級、キシダ化学)、(NH,),C,O,H,O(特級、キシダ化学)、MnC,O,2H,O(特級、キシダ化学)を用いた。

【0012】そしてこれらとA1.0,粉末(99.99%、大明化学)とを所定の混合比に混ぜ合わせた後、ビーカー中にてバーナでNOxがでなくなるまで加熱し、その後成形して500℃で12時間仮焼、粉砕成形した後950℃で12時間焼成した。比較に用いた従来の固体電解質材料である8 mole%YSZ原料粉末は東ソー製のTZ-8Yを用いた。

【0013】またX線解析用の試料については、本発明品の場合11mole%ScSZ原料粉末、A1,O,粉末、およびLSM粉末をそれぞれ所定量を計り取り、エチル 20アルコールで24時間ボールミルで湿式混合し乾燥した後、混合粉末を1000Kg/cm²で一軸成形した。つぎに成形体を1300~1500℃で5時間焼成して試料を得た。X線回折はPHILIPS製PW1792型を用い、CuKα線で測定した。内部標準としてはSi粉末を用いた。

【0014】また比較試料としての8 mole% YSZ(A1,O,配合せず)、A1,O,配合8 mole% YSZ、11 mole% ScSZ(A1,O,配合せず)についても同様の調整方法により LSM粉末を配合して X線解析用の試料 30を作成した。ただ焼成温度については 1000~1500°Cの範囲で若干の条件の違いがあるので、後述の実験結果(データ)を参照願いたい。

【0015】一方、EPMA用のScSZ-A1,O,複合材料は、ドクターブレード法によるグリーンシートを1700℃15時間焼成して試料を得た。LSM粉末をポリエチレングリコールで溶かし、ScSZ-A1,O,板に塗布して1150~1350℃の雰囲気で5時間焼き付けた。EPMAは島津製作所製EPMA1400を用いて測定した。

【0016】(実験結果および考察)図1に20mole% A1,O,-80mole%11ScSZ(以下、「11ScSZ20A」と略称する。)にLSM粉末を混合し焼成した試料のX線回折結果を示した。11ScSZ20A粉末とLSM粉末との混合比率は、同量(50:50)とする。焼成温度は、1300℃、1400℃、1500℃の3条件としている。また図2には、従来の8YSZ(A1,O,配合なし)にLSM粉末を混合し焼成した試料のX線回折結果を示した。8YSZ粉末とLSM粉末との混合比率は、やはり同量(50:50)とする。

ただ焼成温度は、1000℃、1200℃、1400℃ の3条件としている。

【0017】との図1と図2の比較によれば、8YSZ粉末とLSM粉末との混合焼成物では1200℃以上で反応物であるLa,Zr,O,を生成しており、1400℃でもLa,Zr,O,の生成が認められる。これに対して11ScSZ20A粉末とLSM粉末との混合焼成物では、1300℃以上でLa,Zr,O,の生成物は認められない。

【0018】このことから、11ScSZ20A粉末とLSM粉末との混合焼成物の方が8YSZ粉末とLSM粉末との混合焼成物よりもLSM中のMnイオン(Mnが)の固体電解質材料中への拡散が遅いことが想起される。そして固体電解質材料として11ScSZ20Aを用いれば、従来の8YSZを用いた場合よりも高い焼成温度(1300 C以上)で焼成しても電池特性を損なうようなLa、2r、0、0 生成が認められず、かかる高い焼成温度での焼成が可能であると言える。

【0019】図3は、さらに8YSZ粉末にA1,O₃粉末を配合したものとLSM粉末との混合焼成物、すなわち、20mole%A1,O₃-80mole%8YSZ(以下、「8YSZ20A」と略称する。)にLSM粉末を混合し焼成した試料のX線回折結果を示した。8YSZ20A粉末とLSM粉末との混合比率は同量(50:50)とする。焼成温度は1300℃、1400℃、1500℃の3条件としている。

【0020】との図3に示した試料、すなわち、8 Y S Z20 A 粉末とL S M 粉末との混合焼成物でもアルミナ ($A1_2O_3$)を配合しない試料(図2 参照)と同様、 La_2 Zr_2O_3 の生成が認められた。したがって8 Y S Z 固体電解質材料にアルミナ ($A1_3O_3$)を配合することにより La_3 Zr_2O_3 の生成を抑制するという効果はほとんど認められない。

【0021】図4は、さらにA1,O,を配合しない11 ScSZ粉末とLSM粉末との混合焼成物、すなわち、 11ScSZ粉末にLSM粉末を混合し焼成した試料の X線回折結果を示している。11ScSZ粉末とLSM 粉末との混合比率は、やはり同量(50:50)として いる。焼成温度は、図1に示した本発明品のA1,O,配 合したものとの比較のため同一の温度、すなわち130 0℃を採用している。

【0022】 この図1と図4との比較から、A1,O,を配合しない11ScSZの方にはLa,Zr,O,が生成しているのに対し、A1,O,を配合した11ScSZ20Aの方は生じなかった。LSMとA1,O,の回折パターンが見られなかったことから、それらが反応したためLa,Zr,O,が生成しなかったのだと考えられる。

【0023】図5は、空気極と11ScSZ-A1₂O, 複合材料の界面のMn元素の存在を示したEPMAの解 50 析結果(電顕写真)を示したものである。固体電解質材 ・料中のA 1, 0, の配合比率は、前述の試料と同様、A 1 20,20mole%に対して11ScSZ80mole%として いる。また焼成温度は、1150℃、1250℃、13 50℃の3段階を採用している。この結果、1150 ℃、1250℃ではほとんどMnが電解質内部には拡散 していないが、1350℃では拡散していることがわか る。

【0024】また図6は、同様の試料を1350℃で焼 成した場合に、界面付近を拡大してMn、Al、La元 素の存在をEPMAを使って示している。Laはほとん 10 にさらされた使用によっても燃料電池としての長期耐久 ど電解質に拡散していないのに対し、Mnは電解質内部 まで拡散していた。YSZとLSMの反応と同様、Sc SZの場合にもMn3・が電解質に拡散し、界面に残存し たLa³*がZrO, と反応しLa,Zr,O, が生成する ものと考えられる。

【0025】図からわかるようにMnの分布とAlの分 布が一致しており、Mnが電解質に拡散してAlと反応 している。Al,O,はZrO,にほとんど固溶しないた めScSZの粒界に存在するが、Mnの分布からScS 乙にはMnはほとんど分布せず、Al,O,の分布に一致 20 していることはMnの拡散が粒界を通って生じるものと 考えられる。

【0026】以上各種の実験結果を説明したが、これら を要約すると、固体電解質 Y, O, - Z r O, (YSZ) 材料とLaSrMnO,(LSM)空気極材料との反応 メカニズムは、次のように考えられる。すなわち、第一 にLSM空気極材料のMnイオンがYSZ固体電解質の ZrO、に固溶しLSM空気極材料成分が分解する。次 に残ったLaイオンがZrO,と反応しLa,Zr,O,が 生成する。したがって、ZrO、にMnイオンが固溶し やすく、Laイオンと反応しやすいものほど反応成生物 であるLa,Zr,O,が生じやすいものと言える。

【0027】これに対して、空気極材料La。。。Sr 。.,,MnO,とScSZ-Al,O,固体電解質との反応 は、SOFC電解質材料として従来よく用いられている 8 Y S Z 固体電解質に比べ反応性が低い。 これは固体電 解質材料の2r0、にA1、0。を添加した複合材料で は、Al,O,がZrO, にほとんど固溶しないため、 A1,O,は固体電解質ZrO,の粒界にそのまま存在す

【0028】そして、空気極材料であるLSMはZrO スよりA1スO,と反応しやすく、A1スOォ添加複合材料 ではA1,O,との反応物が生じる。したがって、空気極 材料中のMnイオン (Mn³+) はScSZ-Al,O,の 固体電解質材料中へ拡散するが、そのMnイオンの拡散 はYSZ固体電解質の場合よりも遅く、しかも拡散して もそれは電解質の粒界に沿ってA 1,O,と反応しつつ拡 散するものであって、Mn イオンがScSZ 固体電解質 の粒内に固溶拡散することはない。

【0029】そしてこのことから次のようなことが言え 50 【図4】アルミナを配合しない11ScSZ原料粉末と

る。すなわち、固体電解質材料中のA 1,O,は元来絶縁 体であるが、それはもっぱら粒界に存在するため空気極 材料との反応物が生じても、その反応生成物は固体電解 質材料の粒界に存在するだけで粒内にまで存在し得ず、 電池自体の性能は変化しない。したがって、固体電解質 材料としてアルミナ配合のスカンジア安定化ジルコニア 材料(ScSZ材料)を採用し、これに空気極材料とし てランタンストロンチウムマンガネート材料(LaSr MnO,)を採用することにより、長期間髙温度雰囲気 性、信頼性の向上が期待されるものである。

【0030】また空気極材料の焼成温度も、従来はYS 2固体電解質材料への空気極材料の拡散反応によるLa ,Zr,O,の生成を懸念して1150℃前後の低い温度 とせざるを得なかったが、本発明のように空気極材料が ScSZ固体電解質材料の粒界に存在するアルミナと反 応するのみで粒内には拡散しにくいことを考慮すれば、 1300℃以上の高温度での焼成も可能である。したが って、固体電解質板と空気極材料並びに一般的に用いら れるNiサーメットのような燃料極材料とを共焼結によ り一度に焼成することが実現されるものである。

[0031]

【発明の効果】以上各種の実験結果からも明らかなよう に、本発明に係る固体電解質型燃料電池(SOFC)に よれば、固体電解質材料として従来から一般的に知られ ているイットリア安定化ジルコニア(YSZ)電解質材 料に代えてアルミナ配合のスカンジア安定化ジルコニア (ScSZ) 材料を用い、このScSZ-Al,O,固体 電解質材料にランタンストロンチウムマンガネート(L SM)の空気極材料が設けられているものであるから、 従来のように長期間の高温度雰囲気での使用によっても 空気極材料はもっぱらその固体電解質材料中の粒界に存 在するアルミナと反応するのみで、その反応生成物が粒 内には生成されないため、燃料電池としての長期耐久性 並びに信頼性は極しく向上するものである。また固体電 解質板と空気極材料及び燃料極材料を共焼結により一度 に焼成できることは、製造工程の簡略化、製造コストの・ 低廉化にも寄与するものであり、その産業上の有益性は 極めて大きいものである。

【図面の簡単な説明】

【図1】本発明の固体電解質材料であるアルミナ(A1 ,O,) 配合の11ScSZ原料粉末とLSM粉末の混合 焼成物のX線回折の結果を示した図である。

【図2】従来の固体電解質材料8YSZ原料粉末とLS M粉末の混合焼成物のX線回折の結果を示した図であ

【図3】従来の固体電解質材料8YSZにアルミナ(A 1,0,)を配合したものとLSM粉末との混合焼成物の X線回折の結果を示した図である。

LSM粉末との混合焼成物のX線回折の結果を示した図である。

【図5】本発明の固体電解質材料A1,O,-11ScS ZとLSM空気極材料との界面におけるMnの拡散状態 を説明するために示したEPMA電子顕微鏡写真であ * *** る。**

【図6】本発明の固体電解質材料A1,O,-11ScS ZとLSM空気極材料との界面におけるA1、Mn、L aの拡散結合状態を説明するために示したEPMA電子 顕微鏡写真である。

8

【図1】

20mole%Al2Os-80mole%11ScSZ粉末と LSM粉末との混合焼成物のX較回折データ

【図3】

2 Omole%AlzOs~8 Omole%BYSZ粉末と LSM粉末との混合体成物のX側回折データ

【図4】

11SoSZ粉末とLSM粉末との混合焼成物のX較回折データ

【図2】

8YSZ粉末とLSM粉末との混合焼成物のX線回折データ

【図5】

Al₂O₃-11ScSZ固体電解質とLSM空気極の界面における Mnの拡散状態を示した電子顕微鏡写真

【図6】

N1:01-113652固体電解質とLSM型気極の界面における N1, Nn, Laの拡散状態を示した電子顕微鏡写真 (1350℃)

フロントページの続き

(72)発明者 野村 和宏

愛知県東海市新宝町507-2 東邦瓦斯株 式会社総合技術研究所内