Tema 10: Métodos iterativos para resolver sistemas lineales Métodos Numéricos Avanzados en Ingeniería

Máster en Ingeniería Matemática y Computación

Alicia Cordero, Neus Garrido, Juan R. Torregrosa

Contenido

- Introducción
- 2 Métodos iterativos estacionarios
- Método de Jacobi
- Método de Gauss-Seidel
- 5 Resultados de convergencia
- Métodos de sobre-relajación

Sistemas lineales

El objetivo del tema es la resolución de un sistema de ecuaciones lineales

$$Ax = b$$
,

donde A es una matriz real $n \times n$ y b un vector de \mathbb{R}^n .

Métodos de resolución

- Métodos directos
 - Si A es invertible, $x = A^{-1}b$
 - Método de Cramer
 - ullet Método de eliminación de Gauss: pivotación parcial, factorización LU, ...
- Métodos iterativos x = Hx + d, H matriz $n \times n$, $d \in \mathbb{R}^n$
 - Métodos iterativos estacionarios: Jacobi, Gauss-Seidel, ...
 - Métodos de direcciones alternadas
 - Métodos de gradiente conjugado
- Precondicionadores

En numerosos problemas modelizados mediante sistemas lineales Ax=b, la matriz A tiene al menos dos características esenciales:

- Tamaño grande, n >>>
- Matriz dispersa, es decir, un n'umero de elementos no nulos, nnz(A), del orden nnz(A)=cn, con c independiente de n.

Estas características desaconsejan el uso de métodos directos, ya que

- El orden de magnitud del número de operaciones para calcular A^{-1} es $O(n^3)$, lo que en tiempo de ejecución pueden ser incluso años.
- Tanto el cálculo de A⁻¹ como el método de eliminación de Gauss hace perder el carácter disperso de la matriz A, lo que se traduce en un mayor número de operaciones y en el incremento del error de redondeo.

Debemos recurrir a los METODOS ITERATIVOS

 \bullet Un método iterativo obtiene una solución aproximada del sistema Ax=b construyendo una sucesión de vectores

$$x^{(1)}, x^{(2)}, \dots, x^{(k)}, \dots$$
 en \mathbb{R}^n

a partir de un vector arbitrario $x^{(0)}$ que se llama aproximación inicial.

• Un método iterativo se dice convergente si

$$\lim_{k \to \infty} x^{(k)} = \bar{x}.$$

• El vector error, en cada iteración, se define como

$$e_k = \bar{x} - x^{(k)}$$

• El vector residuo, en cada iteración, se define como

$$r_k = b - Ax^{(k)}.$$

Se cumple el siguiente resultado

$$\lim_{k \to \infty} x^{(k)} = \bar{x} \iff \lim_{k \to \infty} ||e_k|| = 0 \iff \lim_{k \to \infty} ||r_k|| = 0$$

- Los métodos directos téoricamente dan la solución exacta; pero en un ordenador se generan errores de redondeo.
- Un método iterativo nunca da la solución exacta incluso en precisión infinita.
- Hay que establecer un criterio de parada. Se da a priori una precisión para nuestra solución. Sea Tol el error máximo permitido.

$$\|e_k\| < Tol$$
 (error absoluto) ó $\frac{\|e_k\|}{\|\bar{x}\|} < Tol$ (error relativo)

- Pero \bar{x} y e_k no son conocidos, el criterio de parada no es útil.
- Debemos utilizar el criterio del residuo

$$\|r_k\| < Tol$$
 (error absoluto) ó $\frac{\|r_k\|}{\|b\|} < Tol$ (error relativo)

$$\|b - Ax^{(k)}\| < Tol ext{ (error absoluto)}$$
 ó $\frac{\|b - Ax^{(k)}\|}{\|b\|} < Tol ext{ (error relativo)}$

• La relación entre el error y el residuo es

$$r_k = b - Ax^{(k)} = A\bar{x} - Ax^{(k)} = Ae_k.$$

Usando normas matriciales:

$$||r_k|| \le ||A|| ||e_k||; \qquad ||e_k|| \le ||A^{-1}|| ||r_k||$$

Además,

$$\|\bar{x}\| \le \|A^{-1}\| \|b\|; \qquad \|b\| \le \|A\| \|A^{-1}b\| = \|A\| \|\bar{x}\|$$

Combinando estas desigualdades

$$\frac{1}{\|A\| \|A^{-1}\|} \frac{\|r_k\|}{\|b\|} \le \frac{\|e_k\|}{\|\bar{x}\|} \le \|A\| \|A^{-1}\| \frac{\|r_k\|}{\|b\|}$$

Teniendo en cuenta que $\mathcal{K}(A) = \|A\| \|A^{-1}\|$ es el número de condición de la matriz A, podemos concluir:

El test del residuo es fiable si $\mathcal{K}(A)$ no es muy grande, es decir, A es una matriz estable.

Métodos iterativos

Sea A la matriz del sistema Ax=b. Podemos considerar la partición (también llamada splitting)

$$A = M - N$$

donde $M \neq A$ es una matriz invertible.

Construimos el proceso iterativo

$$x^{(k+1)} = M^{-1}Nx^{(k)} + M^{-1}b = Hx^{(k)} + q, \ k = 0, 1, \dots$$

donde H es la matriz de iteración y $x^{\left(0\right)}$ la aproximación inicial. Esto es equivalente a

$$x^{(k+1)} = x^{(k)} + M^{-1}(b - Ax^{(k)}) = x^{(k)} + M^{-1}r_k$$

Método estacionario

Se dice que un método iterativo es estacionario si la matriz de iteración ${\cal H}$ es constante en todo el proceso.

Método de Jacobi

Sea $A=(a_{ij})$ la matriz del sistema lineal tal que $a_{ii}\neq 0,\ i=1,2,\ldots,n$, y consideremos la partición de A de la forma

$$A = L + D + U,$$

donde

- ullet L es la parte estrictamente triangular inferior de A
- ullet D es la diagonal principal de A
- ullet U es la parte estrictamente triangular superior de A

El Método de Jacobi es un método estacionario en el que M=D y N=-(L+U), por lo que su expresión iterativa es

$$x^{(k+1)} = -D^{-1}(L+U)x^{(k)} + D^{-1}b, \quad k = 0, 1, \dots$$

Método de Jacobi

El sistema Ax = b

$$\begin{array}{rclcrcl} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = & b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & = & b_2 \\ & \vdots & & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n & = & b_n \end{array}$$

se transforma en uno equivalente despejando x_1 de la primera ecuación, x_2 de la segunda, y así sucesivamente. De esta forma, resulta

que coincide con la expresión

$$x = -D^{-1}(L+U)x + D^{-1}b,$$

siendo la expresión iterativa

$$x^{(k+1)} = -D^{-1}(L+U)x^{(k)} + D^{-1}b.$$

Método de Jacobi

Expresión escalar del proceso iterativo:

$$\begin{array}{lll} x_1^{(k+1)} & = & -\frac{a_{12}}{a_{11}} x_2^{(k)} - \frac{a_{13}}{a_{11}} x_3^{(k)} - \cdots - \frac{a_{1n}}{a_{11}} x_n^{(k)} + \frac{b_1}{a_{11}} \\ x_2^{(k+1)} & = & -\frac{a_{21}}{a_{22}} x_1^{(k)} - \frac{a_{23}}{a_{22}} x_3^{(k)} - \cdots - \frac{a_{2n}}{a_{22}} x_n^{(k)} + \frac{b_2}{a_{22}} \\ \vdots & \vdots & & \vdots \\ x_n^{(k+1)} & = & -\frac{a_{n1}}{a_{nn}} x_1^{(k)} - \frac{a_{n2}}{a_{nn}} x_2^{(k)} - \cdots - \frac{a_{nn-1}}{a_{nn}} x_{n-1}^{(k)} + \frac{b_n}{a_{nn}} \end{array} \right)$$

Ejemplo

Consideremos el sistema de tamaño 4×4

$$\begin{vmatrix}
 10x_1 & -x_2 & +2x_3 & = & 6 \\
 -x_1 & +11x_2 & -x_3 & +3x_4 & = & 25 \\
 2x_1 & -x_2 & +10x_3 & -x_4 & = & -11 \\
 & 3x_2 & -x_3 & +8x_4 & = & 15
 \end{vmatrix}$$

Aplicando el método de Jacobi y el criterio de parada

$$\frac{\|x^{(k+1)} - x^{(k)}\|_{\infty}}{\|x^{(k+1)}\|_{\infty}} < 10^{-3}$$

se obtienen los resultados

k	0	1	2	3	4	5	• • •	9	10
$x_1^{(k)}$	0.0000	0.0600	1.0473	0.9326	1.0152	0.9890		0.9997	1.0001
$x_2^{(k)}$	0.0000	2.2727	1.7159	2.0533	1.9537	2.0114		2.0004	1.9998
$x_3^{\overline{(k)}}$	0.0000	-1.1000	-0.8052	-1.0493	-0.9681	-1.0103		-1.0004	-0.9999
$\begin{bmatrix} x_3^{(k)} \\ x_4^{(k)} \end{bmatrix}$	0.0000	1.8750	0.8852	1.1309	0.9739	1.0214		1.0006	0.9999

Teniendo en cuenta que la solución exacta es $\bar{x}=(1,2,-1,1)^T$, obtenemos

$$||x^{(10)} - \bar{x}||_{\infty} = 0.0002.$$

Algoritmo del método de Jacobi

Entrada Tamaño n, matriz A, términos independientes b, aproximación inicial X0, tolerancia Tol, número máximo de iteraciones maxiter

Salida Solución aproximada o mensaje de fracaso

Paso 1 Tomar iter = 1

Paso 2 Mientras $iter \leq maxiter$

Paso 3 Tomar $x = -D^{-1}(L+U)X0 + D^{-1}b$

Paso 4 Si ||x - X0|| < Tol entonces Salida x. Parar.

Paso 5 Tomar iter = iter + 1

Paso 6 X0 = x

Paso 7 Salida ('Se necesitan más iteraciones'). Parar

Método de Gauss-Seidel

Volviendo a utilizar la partición de la matriz del sistema

$$A = L + D + U$$

y tomando M=D+L y N=-U, obtenemos el método de Gauss-Seidel cuya expresión iterativa es

$$x^{(k+1)} = -(D+L)^{-1}Ux^{(k)} + (D+L)^{-1}b, \quad k = 0, 1, \dots$$

- ullet En cada iteración debemos resolver el sistema $(D+L)x^{(k+1)}=b-Ux^{(k)}$
- \bullet En el método de Gauss-Seidel las componentes de $x^{(k+1)}$ que ya conocemos se utilizan en la propia iteración k+1

Ejemplo

$$\begin{vmatrix}
 10x_1 & -x_2 & +2x_3 & = & 6 \\
 -x_1 & +11x_2 & -x_3 & +3x_4 & = & 25 \\
 2x_1 & -x_2 & +10x_3 & -x_4 & = & -11 \\
 & 3x_2 & -x_3 & +8x_4 & = & 15
 \end{vmatrix}$$

Aplicando el método de Gauss-Seidel y el criterio de parada

$$\frac{\|x^{(k+1)} - x^{(k)}\|_{\infty}}{\|x^{(k+1)}\|_{\infty}} < 10^{-3}$$

se obtienen los resultados

k	0	1	2	3	4	5
$x_1^{(k)}$	0.0000	0.0600	1.0300	1.0065	1.0009	1.0001
$\begin{bmatrix} x_2^{(k)} \\ x_3^{(k)} \end{bmatrix}$	0.0000	2.3272	2.0370	2.0036	2.0003	2.0000
$x_3^{(k)}$	0.0000	-0.9873	-1.0140	-1.0025	-1.0003	-1.0000
$x_4^{(k)}$	0.0000	0.8789	0.9844	0.9983	0.9999	1.0000

Teniendo en cuenta que la solución exacta es $\bar{x}=(1,2,-1,1)^T$, obtenemos

$$||x^{(5)} - \bar{x}||_{\infty} = 0.00002.$$

Algoritmo del método de Gauss-Seidel

Entrada Tamaño n, matriz A, términos independientes b, aproximación inicial X0, tolerancia Tol, número máximo de iteraciones maxiter

Salida Solución aproximada o mensaje de fracaso

Paso 1 Tomar iter = 1

Paso 2 Mientras $iter \leq maxiter$

Paso 3 Tomar x solución del sistema (D+L)x=b-UX0

Paso 4 Si $\|x - X0\| < Tol$ entonces Salida x. Parar.

Paso 5 Tomar iter = iter + 1

Paso 6 X0 = x

Paso 7 Salida ('Se necesitan más iteraciones'). Parar

Convergencia

Teorema

Sea A una matriz invertible. Un método iterativo estacionario converge, para cualquier aproximación inicial $x^{(0)} \in \mathbb{R}^n$, a la solución exacta del sistema lineal, si y sólo si,

$$\rho(H) < 1,$$

es decir, el mayor valor propio en valor absoluto de la matriz de iteración es menor que la unidad.

Teorema

Si la matriz A es estrictamente diagonal dominante, entonces los métodos de Jacobi y de Gauss-Seidel son convergentes.

Una matriz $A=(a_{ij})$, de tamaño n imes n se dice que es estrictamente diagonal dominante si

$$|a_{ii}| > \sum_{i=1, i \neq i}^{n} |a_{ij}|$$
, para todo $i = 1, 2, \dots, n$.

Convergencia

Teorema

Si $\|H\| < 1$ para cualquier norma matricial, entonces la sucesión $\{x^{(k)}\}$ obtenida por un método iterativo estacionario converge a la solución del sistema, para cualquier $x^{(0)}$ inicial, y se satisfacen las cotas de error:

$$\|\bar{x} - x^{(k)}\| \le \|H\|^k \|\bar{x} - x^{(0)}\|,$$

$$\|\bar{x} - x^{(k)}\| \le \frac{\|H\|^k}{1 - \|H\|} \|x^{(1)} - x^{(0)}\|.$$

Métodos SOR

En los métodos de relajación interviene un parámetro \boldsymbol{w} del que depende, en gran medida, la convergencia del método

Método de Jacobi relajado, JSOR, tiene como expresión iterativa

$$x^{(k+1)} = x^{(k)} + wD^{-1}r^{(k)},$$

donde $r^{(k)} = b - Ax^{(k)}$ es Vector residual de Jacobi Se cumple que si el método de Jacobi converge, entonces el método JSOR converge si 0 < w < 1.

• Método SOR1 (successive over relaxation)

$$(D+wL)x^{(k+1)} = (-wU + (1-w)D)x^{(k)} + wb$$

Método SOR2

$$(D+wU)x^{(k+1)} = (-wL + (1-w)D)x^{(k)} + wb$$

Método SOR1

$$\begin{array}{lll} x_1^{(k+1)} & = & (1-w)x_1^{(k)} + w\left(-\frac{a_{12}}{a_{11}}x_2^{(k)} - \frac{a_{13}}{a_{11}}x_3^{(k)} - \cdots - \frac{a_{1n}}{a_{11}}x_n^{(k)} + \frac{b_1}{a_{11}}\right) \\ x_2^{(k+1)} & = & (1-w)x_2^{(k)} + w\left(-\frac{a_{21}}{a_{22}}x_1^{(k+1)} - \frac{a_{23}}{a_{22}}x_3^{(k)} - \cdots - \frac{a_{2n}}{a_{22}}x_n^{(k)} + \frac{b_2}{a_{22}}\right) \\ \vdots & \vdots & & \vdots \\ x_n^{(k+1)} & = & (1-w)x_n^{(k)} + w\left(-\frac{a_{n1}}{a_{nn}}x_1^{(k+1)} - \frac{a_{n2}}{a_{nn}}x_2^{(k+1)} - \cdots - \frac{a_{nn-1}}{a_{nn}}x_{n-1}^{(k+1)} + \frac{b_n}{a_{nn}}\right) \end{array}$$

Si $\bar{x}^{(k+1)}$ denota el iterado k+1 del método de Gauss-Seidel, la expresión iterativa vectorial del método SOR1 se puede escribir de la forma:

Expresión vectorial

$$x^{(k+1)} = (1-w)x^{(k)} + w\bar{x}^{(k+1)}, \quad k = 0, 1, 2, \dots$$

Convergencia

Teorema

Si A es una matriz definida positiva y 0 < w < 2, entonces el método SOR1 converge para cualquier elección de la aproximación inicial $x^{(0)}$

Teorema

Si A es definida positiva y tridiagonal, entonces $\rho(H_{GS})=(\rho(H_J))^2<1$. Además, la elección óptima de w para el método SOR1 es:

$$w = \frac{2}{1 + \sqrt{1 - (\rho(H_J))^2}}.$$

Ejemplo

Consideremos el sistema

$$\begin{cases}
 4x_1 & +3x_2 & = & 24 \\
 3x_1 & +4x_2 & -x_3 & = & 30 \\
 & -x_2 & +4x_3 & = & -24
 \end{cases}$$

que tiene como solución exacta $\bar{x}=(3,4,-5)^T.$ Aplicando el método de Gauss-Seidel y el criterio de parada

$$||x^{(k+1)} - x^{(k)}||_{\infty} < 10^{-7},$$

se obtienen los resultados

k	0	1	2	3	4	5	6	7
$x_1^{(k)}$	1.0000	5.2500	3.1406	3.0878	3.0549	3.0343	3.0214	3.0134
$x_2^{(k)}$	1.0000	3.8125	3.8828	3.9267	3.9542	3.9713	3.9821	3.9888
$x_3^{(k)}$	1.0000	-5.0468	-5.0292	-5.0183	-5.0114	-5.0071	-5.0044	-5.0027

Para que se cumpla el criterio de parada necesitamos 34 iteraciones.

Ejemplo

Aplicamos el método SOR1 con $w=1.25\ \mathrm{y}$ el criterio de parada

$$||x^{(k+1)} - x^{(k)}||_{\infty} < 10^{-7}.$$

Los resultados obtenidos son:

k	0	1	2	3	4	5	6	7
$x_1^{(k)}$	1.0000	6.3125	2.6223	3.1330	2.9570	3.0037	2.9963	3.0000
$x_2^{(k)}$	1.0000	3.5195	3.9585	4.0102	4.0074	4.0029	4.0009	4.0002
$x_3^{(k)}$	1.0000	-6.6501	-4.6004	-5.0966	-4.9734	-5.0037	-4.9982	-5.0003

Para que se cumpla el criterio de parada necesitamos 14 iteraciones.