Podstawowe Metody Klasyfikacji

Wojciech Kosztyła, Wojciech Węgrzynek

Aby uzyskać zbiór danych do klasyfikacji połączyliśmy zbiór danych o hrabstwach z amerykańskiego censusu 2015 z danymi o wynikach wyborów prezydenckich 2016. Klasami były wówczas *Trump* i *Clinton* w zależności od tego który kandydat uzyskał większość głosów w danym hrabstwie.

Z naszego datasetu musieliśmy więc usunąć hrabstwa z Alaski (gdzie wybory prezydenckie są prowadzone w granicach różnych od hrabstw) oraz Puerto Rico (gdzie wybory prezydenckie nie odbywają się).

Cechy zostały znormalizowane.

Regresja logistyczna

Przeprowadziliśmy wpierw klasyfikację logistyczną, najpierw na wszystkich dostępnych cechach (później będziemy nazywać ten model modelem 1), a następnie na tych, które można było uznać za istotne (co najmniej ".") na podstawie tej pierwszej (ten model nazwiemy modelem 2).

Na wszystkich cechach osiągnęliśmy dewiację 1055.3 (AIC: 1119.3) gdzie dla zerowego modelu mamy dewiację 2699.7. Z kolei w przypadku ograniczenia się do cech uznanych za istotne otrzymaliśmy dewiację na poziomie 1415.7 (AIC: 1433.7). W obu przypadkach dostaliśmy więc wyraźne polepszenie. Ciekawa jest dosyć spora różnica pomiędzy modelami, być może wskazuje ona na to, że odrzucone dane są mimo wszystko w jakiś sposób ważne.

W obu przypadkach klasa 1 odpowiada hrabstwom gdzie wygrał Donald Trump, a więc dodatnie wartości współczynników oznaczają większe prawdopodobieństwo takiego hrabstwa.

Przez ~0 rozumiem wartości poniżej 10^-6.

Istotne Dane:

- White:
 - o Opis: Procent populacji identyfikujący się jako biały.
 - \circ Model 1, P(>|z|)= \sim 0.002
 - \circ Model 2, P(>|z|)=~0.0
 - Współczynnik: w obu modelach dodatni, ~19 dla modelu 1, ~12.5 dla modelu 2. Jedna z najbardziej wpływowych cech.
- Pacific:
 - o Opis: Procent ludności o etniczności pacyficznej.
 - \circ Model 1, P(>|z|)=~0.06

- Model 2, P(>|z|)=~0.0003
- Współczynnik: W obu przypadkach ujemny, ~-8.5 dla modelu 1, ~-13 dla modelu 2, najbardziej wpływowa cecha w modelu 2.

Citizen:

- o Opis: Procent populacji posiadający obywatelstwo amerykańskie.
- Model 1, P(>|z|)=~0.00002
- o Model 2, P(>|z|)=~0
- Współczynnik: w obu modelach ujemny, ~-5 dla modelu 1, -7 dla modelu
 2.

• Income:

- o Opis: Mediana dochodu gospodarstwa domowego.
- \circ Model 1, P(>|z|)=~0.05
- Model 2, P(>|z|)=~0.015
- Współczynnik: W obu przypadkach dodatni, ~4 dla modelu 1, ~3.5 dla modelu 2.

IncomePerCap:

- o Opis: Zarobki per capita.
- \circ Model 1, P(>|z|)=~0.007
- Model 2, P(>|z|)=~0
- Współczynnik: W obu przypadkach ujemny, ~-6.5 dla modelu 1, ~-1129 dla modelu 2.

MeanCommute:

- Opis: Średni czas dojazdu do pracy.
- \circ Model 1, P(>|z|)=~0.08
- Model 2, P(>|z|)=~0.33 (nieistotny)
- Współczynnik: ~-1.3 dla modelu 1, ~0.5 dla modelu 2.

Employed:

- Opis: Procent ludności, który stanowią osoby po 16 roku życia i są zatrudnione.
- o Model 1, P(>|z|)=~0
- o Model 2, P(>|z|)=~0
- Współczynnik: W obu przypadkach ujemny, ~-6.5 dla modelu 1, ~-11 dla modelu 2.

Unemployment:

- o Opis: Współczynnik bezrobocia.
- Model 1, P(>|z|)=~0
- o Model 2, P(>|z|)=~0
- Współczynnik: W obu przypadkach ujemny, ~-6.5 dla modelu 1, ~-11 dla modelu 2.

Obserwacje:

MeanCommute wyglądało w modelu 1 jakby miało szansę być istotne ("."), ale w modelu 2 zupełnie straciło na wiarygodności. Z kolei Pacific wyglądało podobnie w modelu 1, ale w modelu 2 znacząco zyskało na wiarygodności.

Potencjalnie silnie skorelowane cechy (Unemployment i Employed oraz Income i IncomePerCap) nie wpływają na model zgodnie z taką korelacją, ale raczej wspólnie modelują bardziej złożone zależności.

Porównanie modeli regresji

Aby porównać modele regresji podzieliliśmy nasz dataset na zestaw "train" i "test" w proporcjach 80% do 20%.

Modele: "regresja logistyczna", "LDA", "QDA" i "kNN" były uczone na zbiorze "train", a zbiór "test" był wykorzystywany do sprawdzania wyników.

W przypadku uczenia modelu "kNN" wymagane było podanie wartości parametru "k". Dobór tego parametru jest nietrywialny, więc napisaliśmy skrypt sprawdzający wartość "accuracy" wyniku dla różnych wartości "k" i wybraliśmy w ten sposób najlepiej sprawdzającą się wartość (Best accuracy: 0.929373996789727 Best k: 9).

Zebrane wyniki wszystkich czterech modeli:

```
Regresja logistyczna accuracy = 0.905296950240771

LDA accuracy = 0.906902086677368

QDA accuracy = 0.874799357945425

kNN k=9 accuracy = 0.929373996789727
```

Własność "accuracy" tych czterech modeli nie odbiega znacząco od siebie, jednak najlepiej poradził sobie model "kNN", a najgorzej "QDA".

Deviance Residuals:

Min Median 30 Max 10 -3.6696 0.0387 0.1022 0.2489 3.8914

```
Coefficients: (1 not defined because of singularities)
              Estimate Std. Error z value Pr(>|z|)
(Intercept)
              249.9080
                          169.8553
                                     1.471 0.14121
TotalPop
               -0.5835
                            3.5789
                                    -0.163
                                            0.87049
Men
               -1.5579
                            1.3568
                                    -1.148
                                            0.25086
Women
                    NΑ
                                NA
                                        NA
                                                  NA
                            5.9402
                                     1.066
                                            0.28638
Hispanic
                6.3327
White
               18.9854
                            6.1831
                                     3.071
                                            0.00214 **
Black
                5.0260
                            5.1924
                                     0.968
                                            0.33307
Native
                            5.9116
                                     1.382
                                            0.16705
                8.1684
Asian
               -0.1018
                            3.9146 -0.026
                                            0.97925
                                            0.06021 .
Pacific
               -8.4599
                            4.5016
                                    -1.879
                                   -4.214 2.51e-05 ***
Citizen
               -5.7104
                            1.3551
Income
                4.3566
                            2.2037
                                     1.977
                                            0.04805 *
IncomePerCap
               -6.5571
                            2.4283
                                    -2.700
                                            0.00693 **
                            1.8481 -1.044
                                            0.29671
Poverty
               -1.9285
ChildPoverty
               -0.3715
                            1.5454 -0.240
                                            0.81002
Professional
                                    -0.005
               -0.3504
                           77.4107
                                            0.99639
Service
               -2.6792
                           40.4424
                                    -0.066
                                            0.94718
Office
                           40.0178
                                     0.147
                5.8746
                                            0.88329
Construction
                           49.3605
                                     0.190
                9.3563
                                            0.84966
Production
                           52.3368
                                     0.080
                                            0.93660
                4.1628
Drive
             -115.7742
                          102.9358 -1.125
                                            0.26071
Carpool
              -38.8318
                           34.8005
                                    -1.116
                                            0.26449
              -97.2830
Transit
                           71.7736
                                    -1.355
                                            0.17529
Walk
              -48.1789
                           36.8955
                                    -1.306
                                            0.19161
OtherTransp
              -27.4421
                           23.1231
                                    -1.187
                                            0.23531
WorkAtHome
              -51.1187
                           43.2702
                                    -1.181
                                            0.23745
MeanCommute
               -1.3333
                            0.7667
                                    -1.739
                                             0.08204 .
Employed
              -10.1350
             -121.0363
                                    -1.433
PrivateWork
                           84.4753
                                             0.15191
PublicWork
             -119.5489
                           86.7235
                                    -1.379
                                            0.16805
SelfEmployed -72.6070
                           52.5523
                                    -1.382
                                            0.16709
              -11.3885
FamilyWork
                           14.2118
                                    -0.801
                                            0.42293
                            1.0478 -5.367 8.02e-08 ***
Unemployment
               -5.6234
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
(Dispersion parameter for binomial family taken to be 1)
```

Null deviance: 2699.7 on 3110 degrees of freedom Residual deviance: 1055.3 on 3079 degrees of freedom

```
Call:
glm(formula = Victor ~ White + Citizen + Income + IncomePerCap +
   Employed + Unemployment + Pacific + MeanCommute, family = binomial,
   data = data for classification)
Deviance Residuals:
   Min
             10
                Median
                              30
                                      Max
-3.7146 0.0736
                0.1749 0.3509
                                   2.6331
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                        0.7745 11.129 < 2e-16 ***
(Intercept)
             8.6193
                        0.6349 19.666 < 2e-16 ***
White
             12.4859
Citizen
             -7.1397
                        0.8649 -8.255 < 2e-16 ***
Income
             3.4163
                        1.4267 2.395 0.016638 *
IncomePerCap -11.2904
                        1.6938 -6.666 2.64e-11 ***
                        1.0572 -10.843 < 2e-16 ***
Employed
           -11.4631
Unemployment -8.0903
                        0.8595 -9.413 < 2e-16 ***
Pacific
         -13.0576
                        3.6476 -3.580 0.000344 ***
MeanCommute
             0.5043
                        0.5224 0.965 0.334317
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2699.7 on 3110 degrees of freedom
Residual deviance: 1415.7 on 3102 degrees of freedom
```

Number of Fisher Scoring iterations: 6

AIC: 1433.7

(1 observation deleted due to missingness)