

Fakultät für Mathematik und Physik

Modulhandbuch

Master of Education - Erweiterungsfach im Fach Mathematik - Erw. 90 (Prüfungsordnungsversion 2021)

Inhaltsverzeichnis

Prolog	3
Fachwissenschaftliche Pflichtmodule	
Lineare Algebra	10
Analysis	17
Elementargeometrie	25
Einführung in die Algebra und Zahlentheorie	29
Numerik I	
Stochastik I	37
Fachwissenschaftliche Wahlpflichtmodule	41
Proseminar	42
Praktische Übung	44
Fachdidaktische Pflichtmodule	46
Fachdidaktik Mathematik	47
Fachdidaktik der mathematischen Teilgebiete	51
Fachdidaktische Wahlpflichtmodule	56
Fachdidaktische Entwicklung in der Mathematik	57
Fachdidaktische Forschung in der Mathematik	59
Masterarbeit	64
Enilog	66

Prolog

Es handelt sich hier um das Modulhandbuch des Master-of-Education-Studiengangs

Mathematik als Erweiterungsfach mit 90 ECTS-Punkten

(Ziell: Lehrbefähigung für die Sekundarstufe I)

1. Kenndaten des Teilstudiengangs

Fach	Mathematik	
Abschluss	Master of Education	
Prüfungsordnungsversion	2021	
Art des Studiengangs	grundständiger Erweiterungsstudiengang *	
Studienform	Vollzeit	
Regelstudienzeit	drei Semester	
Sprache	deutsch	
Studienbeginn	Wintersemester	
Hochschule	Albert-Ludwigs-Univeristät Freiburg	
Fakultät	Fakultät für Mathematik und Physik	
Institut	Mathematisches Institut	
Homepage des Instituts	www.math.uni-freiburg.de	
Webseite des Studiengangs	www.math.uni-freiburg.de/lehre/studien- gaenge/med-erweiterung-2021.html	

^(*) Eine Zulassung zu diesem Studiengang ist nur möglich, wenn man gleichzeitig in einem lehramtsbezogenen oder gleichwertigen Bachelor-Studiengang immatrikuliert ist und einen solchen Studiengang schon absolviert hat, jeweils in zwei anderen Fächern als Mathematik (siehe §3 Absatz 3 der Prüfungsordnung).

2. Profil und Ziele des Studiengangs

In Fachwissenschaft Mathematik beginnt der Studiengang mit grundlegenden Vorlesungen in Analysis und Linearer Algebra und führt dann in einige wichtige Teilgebiete der Mathematik ein. Ergänzend kommen ein Proseminar und eine Praktische Übung (Computerübung) hinzu. Das integrierte Fachdidaktik-Studium vertieft nach einer Einführung sowohl theoretische Konzepte als auch empirische Befunde der mathematikbezogenen Lehr-Lern-Forschung.

Zusammen mit einem Lehramtsstudium in zwei anderen Fächern und dessen Studienanteilen in Bildungswissenschaft und Schulpraxis qualifiziert der Studiengang zum Einstieg in den Vorbereitungsdienst für das Lehramt Mathematik in der Sekundarstufe I und vermittelt die dafür nötigen Kompetenzen.

Fachliche Qualifikationsziele:

Die Absolventinnen und Absolventen verfügen über grundlegende, für das Lehramt Sekundarstufe I relevante Kenntnisse in Analysis, Linearer Algebra, Algebra, Arithmetik, Geometrie, Stochastik sowie Angewandter Mathematik (Numerik), die in der RahmenVO-KM des Kultusministeriums Baden-Württemberg vom 6. Juli 2015 und dem Modulhandbuch des Studiengangs detailliert beschrieben sind. Sie kennen Zusammenhänge zwischen diesen Gebieten, können Erkenntnisse in anderen Teilgebieten der Mathematik und auf die Schulmathematik anwenden, sie verfügen über Abstraktionsvermögen und sind zu konzeptionellem, analytischem und logischem Denken in der Lage. Die Absolventinnen und Absolventen können mathematische Probleme identifizieren, analysieren und lösen und dazu geeignete mathematische Software verwenden. Sie kennen die Bedeutung des mathematischen Fachwissens für den Schulunterricht, verfügen über veritieftes mathematikdidaktisches Wissen und kennen die fundamentalen Konzepte für schulisches Mathematik-Lernen-und -Lehren auf der Basis fachdidaktischer Theorien und empirischer Befunde.

Überfachliche Qualifikationsziele:

Die Absolventinnen und Absolventen besitzen grundlegende Analyse-, Problemlöse- und Entscheidungskompetenzen unter Berücksichtigung fachlicher und gesellschaftlicher Aspekte und unter Bewertung und Reflektion der Grenzen mathematischer Modelle. Sie vermögen eigenständig zu arbeiten und können ihr Fachwissen und -verständnis auf den Schulalltag anwenden. Die Absolventinnen und Absolventen sind in der Lage, kritisch und wissenschaftlich zu denken, und können ihre mündliche und schriftliche Kommunikation an ein Zielpublikum anpassen. Sie sind team- und kooperationserfahren und besitzen die Fähigkeit zum Zeitmanagement und zur Selbstorganisation.

3. Zulassungsbedingungen

- erster Abschluss an einer deutschen Hochschule in einem lehramtsbezogenen Bachelor-Studiengang für einen Lehramtstyp der Rahmenvereinbarungen der Kultusministerkonferenz in zwei anderen Fächern als Mathematik oder in einem gleichwertigen mindestens dreijährigen Studiengang an einer deutschen oder ausländischen Hochschuleallgemeine Hochschulreife oder äguivalenter oder alternativer Hochschulzugang
- alternativ: Immatrikulation in einem solchen Studiengang
- Sprachkenntnisse: C1 in Deutsch

4. Gliederung des Studiengangs

Modul / Lehrveranstal- tung	Pflicht/Wahl- pflicht/Wahl	ECTS / Art der LV	mögliches Fachsemester / SWS	Studien-/Prü- fungsleistung
Analysis	Р	18	1. und 2. FS	PL: mündliche Prüfung
Analysis I: Vor- lesung	Р	V	4	SL: Klausur
Analysis I: Übung	Р	Ü	2	SL: Übungen
Analysis II: Vor- lesung	Р	V	4	

Analysis II: Übung	Р	Ü	2	SL: Übungen
Lineare Alge- bra	Р	15	1. und 2. FS	
Lineare Alge- bra I: Vorle- sung	P	V	4	SL: Klausur
Lineare Alge- bra I: Übung	Р	Ü	2	SL: Übungen
Lineare Alge- bra II: Vorle- sung	P	V	4	
Lineare Alge- bra II: Übung	Р	Ü	2	SL: Übungen
Numerik	Р	5	3. FS	PL: mündliche Prüfung
Numerik I: Vor- lesung	Р	V	2	
Numerik I: Übung	Р	Ü	1	SL: Übungen
Stochastik	Р	5	3. FS	PL: Klausur
Stochastik I: Vorlesung	Р	V	2	
Stochastik I: Übung	Р	Ü	1	SL: Übungen
Algebra und Zahlentheorie	Р	5	3. FS	PL: mündliche Prüfung
Algebra und Zahlentheorie: Vorlesung	Р	V	4	
Algebra und Zahlentheorie: Übung	Р	Ü	2	SL: Übungen
Elementargeo- metrie	Р	6	2. FS	PL: Klausur
Elementargeo- metrie: Vorle- sung	Р	V	2	
Elementargeo- metrie: Übung	Р	Ü	2	SL: Übungen
Proseminar	Р	3	2. FS	PL: Vortrag
ein Proseminar	WP	S	2	SL

Praktische Übung	P	3	2. FS	SL
eine Praktische Übung	WP	PÜ	ca. 2	
Fachdidaktik Mathematik	P	5	1. FS	SL: Klausur und Übungen
Einführung in die Fachdidak- tik der Mathe- matik	P	V+Ü+S	4	
Didaktik der mathemati- schen Teilge- biete	P	6	1. und 2. FS	PL: Klausur
Didaktik der Analysis und der Funktionen	Р	S+Ü	2	SL
Didaktik der Stochastik und der Algebra	Р	S+Ü	2	SL
Fachdidakti- sche Entwick- lung	WP	4	3. FS	SL
Fachdidaktikse- minar	WP	S	2	
Fachdidak- tische For- schung	WP	4	2. und 3. FS	SL
Fachdidakti- sche Entwick- lungsforschung zu ausgewähl- ten Schwer- punkten	Р	S	2	
Methoden der mathematikdi- daktischen For- schung	Р	S	1	
Entwicklung und Optimie- rung eines fachdidakti- schen For- schungspro- jekts	Р	S	1	

Master-Arbeit	Р	15	3. FS	PL: schriftli-
				che Arbeit

5. Studienverlaufsplan

Ein theoretischer Studienverlaufsplan für drei Semester findet sich auf <u>dieser Internetseite</u>. Es wird dringend empfohlen, den Studiengang begleitend zu Bachelor- und Master-Studiengang in den anderen beiden Fächern zu studieren und dadurch die Studienzeit zu strecken. Eine Komprimierung auf wenige Semester ist nicht sinnvoll.

6. Lehr- und Lernformen

Die wesentliche Veranstaltungsform in den fachwissenschaftlichen Veranstaltungen ist die Vorlesung mit begleitenden, in Tutoraten organisierten Übungen. Hinzu kommen verpflichtend ein Proseminar und eine Computerübung. Die Gruppengröße liegt für Vorlesungen zwischen 100 und 300, für Tutorate zu Übungen bei maximal 20 und für Proseminare bei maximal 15 im Winter- und 13 im Sommersemester. In der Fachdidaktik gibt es eine Vorlesung "Einführung in die Fachdidaktik der Mathematik" mit begleitenden und integrierten Seminar- und Übunganteilen. Die weiterführenden Fachdiedaktiveranstaltungen sind als Seminare konzipiert mit einer Gruppengröße von etwa 20 Studierenden. Master-Arbeiten werden stets individuell betreut.

7. Prüfungssystem

Die acht fachwissenschaftlichen Module haben einen Durchschnittsumfang von 7,5 ECTS-Punkten und schließen bis auf Lineare Algebra und die Praktische Übung mit jeweils einer Prüfung ab: zwei Klausuren, drei mündliche Prüfungen und ein Prüfungsvortrag. Die drei fachdidaktischen Module haben einen Durchschnittsumfang von 5 ECTS-Punkten, lediglich das Modul "Fachdidaktik der mathematischen Teilgebiete" schließt mit einer Prüfungsleistung ab. Hinzu kommt die Master-Arbeit mit 15 ECTS-Punkten. Somit liegt die Prüfungsbelastung bei durchschnittlich 2,7 Prüfungen pro Semester und im Verhältnis bei einer Prüfung pro 11,3 ECTS-Punkte. Allerdings gibt es zu den Veranstaltungen Analysis I, Lineare Algebra I und Einführung in die Fachdidaktik der Mathematik noch jeweils eine Klausur als Teil der Studienleistung.

Für die mündlichen Prüfung zu Analysis gibt es aus didaktischen Gründen Zulassungsvoraussetzungen, die in den Modulbeschreibung erläutert sind. Diese Prüfung kann von den Studierenden in einem beliebigen Semester nach Erfüllung der Zulassungsvoraussetzungen abgelegt werden. Weitere Zulassungsvoraussetzungen gibt es nur zur Master-Arbeit. Anwesenheitspflicht herrscht in den Veranstaltungsteilen, in denen Präsentation und Austausch wesentliche Elemente des Lernerfolgs sind: Tutotate und Seminare.

Informationen zur Anmeldung von Prüfungen finden sich auf den <u>Informationsseiten des Prüfungsamts.</u>

8. Bemerkungen zu Modulverantwortlichen

Zum Zeitpunkt der Erstellung der Modulhandbuchs ist weder in der Studienakkreditierungsverordnung noch in anderen Dokumenten festgelegt, worin die Aufgaben von Modulverantwortlichen in dieser Funktion bestehen sollen. Die in diesem Modulhandbuch zugeordneten Personen sind daher lediglich erste Ansprechpersonen, falls sich Fragen in Zusammenhang mit einem
Modul ergeben. Sie sind weder für den Inhalt des Moduls, noch für das regelmäßige Angebot des
Moduls, noch für die Suche nach geeigneten Dozenten verantwortlich.

Name des Kontos	Nummer des Kontos
Fachwissenschaftliche Pflichtmodule	07LE23KT-MEB21-P-fw
Fachbereich / Fakultät	
Fakultät für Mathematik und Physik Mathematisches Institut-VB	

Pflicht/Wahlpflicht (P/WP)	Pflicht
Benotung	A- Berechnung 1 NachK

Name des Moduls	Nummer des Moduls
Lineare Algebra	07LE23MO-MEB21-P-LA
Verantwortliche/r	
PD Dr. Markus Junker	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	15,0
Empfohlenes Fachsemester	1
Moduldauer	zwei Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Präsenzstudium	ca. 180 Stunden
Selbststudium	ca. 360 Stunden
Workload	540 Stunden
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung

keine

Empfohlene Voraussetzung

Die Teilnahme an dem vom Mathematischen Institut Anfang Oktober angebotenen Vorkurs wird empfohlen.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	sws	Workload
Lineare Algebra I: Vorlesung	Vorlesung	Pflicht		4,0	
Lineare Algebra I: Übung	Übung	Pflicht		2,0	
Lineare Algebra II: Vorlesung	Vorlesung	Pflicht		4,0	
Lineare Algebra II: Übung	Übung	Pflicht		2,0	

Qualifikationsziel

- Die Studierenden lernen durch Vorlesung, Übung und selbständiges Nacharbeiten mathematische Inhalte zu erfassen. Sie kennen die Inhalte der beiden Vorlesungen insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie erfahren den systematischen Aufbau der Mathematik aus axiomatischen Grundlagen und können diesen nachvollziehen und erklären.
- Sie kennen und verstehen die grundlegende mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Linearen Algebra mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.

Sie nutzen im Laufe ihres Studiums Werkzeuge der Linearen Algebra zur Bearbeitung von Problemen verschiedener mathematischer Gebiete, insbesondere in Analysis II sowie zur Formulierung und Lösung geometrischer Probleme.

Zu erbringende Prüfungsleistung

- Ca. 30-minütige mündliche Prüfung in Form eines Prüfungsgesprächs über den Stoff der beiden Vorlesungen Lineare Algebra I und II.
- Keine Prüfungsleistung im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021).

Zu erbringende Studienleistung

- Bestehen der ein- bis dreistündigen Klausur zu Lineare Algebra I.
- Bestehen der Übungen zu Lineare Algebra I: Die genauen Anforderungen dafür werden semesterweise in den <u>aktuellen Ergänzungen der Modulhandbücher Mathematik</u> veröffentlicht; in der Regel regelmäßige Teilnahme am wöchentlichen Tutorat und Erreichen von mindestens fünfzig Prozent der insgesamt für die Bearbeitung der Übungsblätter vergebenen Punkte.
- Bestehen der Übungen zu Lineare Algebra II: Regelmäßige Teilnahme am wöchentlichen Tutorat und Erreichen von mindestens fünfzig Prozent der insgesamt für die Bearbeitung der Übungsblätter vergebenen Punkte.

Benotung

- Im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik geht die Modulnote mit 18/75 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 4/9 in die Gesamtnote eingeht bei Fächer-kombinationen mit einem künstlerischen Fach mit 6/17.
- Im B.Sc.-Studiengang Mathematik geht die Modulnote mit 18/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im M.Ed.-Studiengang "Mathematik als Erweiterungsfach" mit 120 ECTS-Punkten geht die Modulnote mit 18/95 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 6/7 in die Gesamtnote eingeht.

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studien- und Prüfungsleistungen.

Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin
- Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten
- Wöchentlich werden Übungsaufgaben ausgegeben, die die Studierenden schritlich bearbeiten und abgeben und die anschließend korrigiert werden.
- Die Übungsaufgaben werden in den begleitenden Tutoraten besprochen und Lösungen teils von den Studierenden, teils von den Tutor/inn/en präsentiert.
- Die Studierenden arbeiten den Veranstaltungsstoff erneut und im Gesamtzusammenhang bei der Vorbereitung der mündlichen Prüfung durch (im Selbststudium mit der Möglichkeit, sich mit Fragen an Dozent/ in bzw. Assistent/in zu wenden).

Bemerkung / Empfehlung

Im Zwei-Hauptfächer-Studiengang Mathematik gilt (§3 Absatz 2 Sätze 2 und 3 der Prüfungsordnung):

Mindestens eine der beiden in der Lehrveranstaltung Lineare Algebra I im Modul Lineare Algebra und in der Lehrveranstaltung Analysis I im Modul Analysis als Studienleistung zu absolvierenden Klausuren muss bis zum Ende des zweiten Fachsemesters bestanden sein. Ist nicht spätestens bis zum Ende des dritten Fachsemesters eine der beiden Klausuren bestanden, so erlischt der Prüfungsanspruch im Bachelorstudiengang im Fach Mathematik, es sei denn, der/die Studierende hat die Überschreitung der Frist nicht zu vertreten.

Im B.Sc.-Studiengang Mathematik gilt (§3 Absatz 2 Satz 2 der Prüfungsordnung):

■ In der Lehrveranstaltung Lineare Algebra I im Modul Lineare Algebra und in der Lehrveranstaltung Analysis I im Modul Analysis I+II ist als Studienleistung jeweils eine Klausur zu absolvieren; diese beiden Klausuren müssen spätestens bis zum Ende des dritten Fachsemesters bestanden sein.

Verwendbarkeit der Veranstaltung

- Pflichtmodul im B.Sc.-Studiengang Mathematik (PO 2021)
- Pflichtmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik (PO 2021)
- Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021)
- ohne Prüfungsleistung und mit 15 ECTS-Punkten: Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021)
- Wahlpflichtmodul im B.Sc.-Studiengang Informatik
- "Lineare Algebra I" ist Pflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012) und im B.Sc.-Studiengang Physik (PO 2020)
- "Lineare Algebra II" ist Pflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012)

1

Name des Moduls	Nummer des Moduls
Lineare Algebra	07LE23MO-MEB21-P-LA
Veranstaltung	
Lineare Algebra I: Vorlesung	
Veranstaltungsart	Nummer
Vorlesung	07LE23V-0-LA1
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	4,0
Empfohlenes Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

- Grundbegriffe, u.a. Grundbegriffe der Mengenlehre und Äquivalenzrelationen
- Gruppen, Körper, Vektorräume über beliebigen Körpern, Basis und Dimension, lineare Abbildungen und darstellende Matrix, Matrizenkalkül, lineare Gleichungssysteme, Gauß-Algorithmus, Linearformen, Dualraum, Quotientenvektorräume und Homomorphiesatz, Determinante, Eigenwerte, Polynome, charakteristisches Polynom, Diagonalisierbarkeit.
- Affine Räume
- Ideen- und mathematikgeschichtliche Hintergründe der mathematischen Inhalte werden erläutert.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Literatur

- S. Bosch: *Lineare Algebra*, Springer 2006.
- Th. Bröcker: Lineare Algebra und Analytische Geometrie, Birkhäuser 2004.
- K. Jänich: *Lineare Algebra*, Springer 2004.

Teilnahmevoraussetzung

keine

Empfohlene Voraussetzung

Die Teilnahme an dem vom Mathematischen Institut Anfang Oktober angebotenen Vorkurs wird empfohlen.

Name des Moduls	Nummer des Moduls
Lineare Algebra	07LE23MO-MEB21-P-LA
Veranstaltung	
Lineare Algebra I: Übung	
Veranstaltungsart	Nummer
Übung	07LE23Ü-0-LA1
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	2,0
Empfohlenes Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Teilnahmevoraussetzung

Teilnahme an der gleichnamigen Vorlesung.

Name des Moduls Nummer des Modul	
Lineare Algebra	07LE23MO-MEB21-P-LA
Veranstaltung	
Lineare Algebra II: Vorlesung	
Veranstaltungsart	Nummer
Vorlesung	07LE23V-0-LA2
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	4,0
Empfohlenes Fachsemester	2
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

- Hauptraumzerlegung, Jordan'sche Normalform.
- Symmetrische Bilinearformen: Orthogonalbasen, Sylvester'scher Trägheitssatz.
- Euklidische und Hermite'sche Vektorräume: Skalarprodukte, Kreuzprodukt und Gram'sche Determinante.
- Gram-Schmidt-Verfahren, orthogonale Transformationen, (selbst-)adjungierte Abbildungen, Spektralsatz, Hauptachsentransformation.
- Ideen- und mathematikgeschichtliche Hintergründe der mathematischen Inhalte werden erläutert

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Literatur

- S. Bosch: Lineare Algebra. Springer 2006
- Th. Bröcker: Lineare Algebra und Analytische Geometrie. Birkhäuser 2004
- K. Jänich: Lineare Algebra. Springer 2004

Teilnahmevoraussetzung

Notwendige Vorkenntnisse:

Lineare Algebra I

1

Name des Moduls	Nummer des Moduls
Lineare Algebra	07LE23MO-MEB21-P-LA
Veranstaltung	
Lineare Algebra II: Übung	
Veranstaltungsart	Nummer
Übung	07LE23Ü-0-LA2
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	2,0
Empfohlenes Fachsemester	2
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Teilnahmevoraussetzung

Teilnahme an der gleichnamigen Vorlesung.

Name des Moduls	Nummer des Moduls
Analysis	07LE23MO-MEB21-P-Ana
Verantwortliche/r	
PD Dr. Markus Junker	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	18,0
Empfohlenes Fachsemester	1
Moduldauer	zwei Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Präsenzstudium	ca. 180 Stunden
Selbststudium	ca. 360 Stunden
Workload	540 Stunden
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung

keine

Empfohlene Voraussetzung

Die Teilnahme an dem vom Mathematischen Institut Anfang Oktober angebotenen Vorkurs wird empfohlen.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	sws	Workload
Analysis I: Vorlesung	Vorlesung	Pflicht		4,0	
Analysis I: Übung	Übung	Pflicht		2,0	
Analysis II: Vorlesung	Vorlesung	Pflicht		4,0	
Analysis II: Übung	Übung	Pflicht		2,0	
Mündliche Prüfung Analysis	Prüfung	Pflicht			

Qualifikationsziel

- Die Studierenden lernen durch Vorlesung, Übung und selbständiges Nacharbeiten mathematische Inhalte zu erfassen. Sie kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie erfahren den systematischen Aufbau der Mathematik aus axiomatischen Grundlagen und können diesen nachvollziehen und erklären.
- Sie kennen und verstehen die grundlegende mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Analysis mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.

- Sie entdecken die höherdimensionale Differentiation als eine Verallgemeinerung des eindimensionalen Falls, vertiefen dadurch das Verständnis von Analysis I und erkennen den Sinn einer allgemeinen Heransgehensweise an eine Fragestellung.
- Sie nutzen im Laufe ihres Studiums Funktionen und analytische Methoden zur Bearbeitung von Problemen verschiedener mathematischer Gebiete, insbesondere zur Modellierung realer Phänomene. Sie erkennen Querverbindungen zur linearen Algebra und zur Physik und erhalten ein Grundverständnis für Probleme der Numerik. Durch die Linearisierung nichtlinearer Probleme erkennen sie die wichtige Rolle der linearen Algebra in der Analysis.

Zu erbringende Prüfungsleistung

Ca. 30-minütige mündliche Prüfung in Form eines Prüfungsgesprächs über den Stoff der beiden Vorlesungen Analysis I und II.

Zu erbringende Studienleistung

- Bestehen der ein- bis dreistündigen Klausur zu Analysis I.
- Bestehen der Übungen zu Analysis I.: Die genauen Anforderungen dafür werden semesterweise in den aktuellen Ergänzungen der Modulhandbücher Mathematik veröffentlicht; in der Regel regelmäßige Teilnahme am wöchentlichen Tutorat und Erreichen von mindestens fünfzig Prozent der insgesamt für die Bearbeitung der Übungsblätter vergebenen Punkte.
- Bestehen der Übungen zu Analysis II: Regelmäßige Teilnahme am wöchentlichen Tutorat und Erreichen von mindestens fünfzig Prozent der insgesamt für die Bearbeitung der Übungsblätter vergebenen Punkte.

Benotung

- Im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik geht die Modulnote mit 18/75 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 4/9 in die Gesamtnote eingeht bei Fächerkombinationen mit einem künstlerischen Fach mit 6/17.
- Im B.Sc.-Studiengang Mathematik geht die Modulnote mit 18/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" geht die Modulnote mit 18/95 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 6/7 in die Gesamtnote eingeht.
- Im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" geht die Modulnote mit 18/51 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 6/7 in die Gesamtnote eingeht.

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studien- und Prüfungsleistungen.

Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin
- Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten
- Wöchentlich werden Übungsaufgaben ausgegeben, die die Studierenden schritlich bearbeiten und abgeben und die anschließend korrigiert werden.
- Die Übungsaufgaben werden in den begleitenden Tutoraten besprochen und Lösungen teils von den Studierenden, teils von den Tutor/inn/en präsentiert.
- Die Studierenden arbeiten den Veranstaltungsstoff erneut und im Gesamtzusammenhang bei der Vorbereitung der mündlichen Prüfung zu Lineare Algebra II durch (im Selbststudium mit der Möglichkeit, sich mit Fragen an Dozent/in bzw. Assistent/in zu wenden).

Bemerkung / Empfehlung

Im Zwei-Hauptfächer-Studiengang Mathematik gilt (§3 Absatz 2 Sätze 2 und 3 der Prüfungsordnung):

Mindestens eine der beiden in der Lehrveranstaltung Lineare Algebra I im Modul Lineare Algebra und in der Lehrveranstaltung Analysis I im Modul Analysis als Studienleistung zu absolvierenden Klausuren muss bis zum Ende des zweiten Fachsemesters bestanden sein. Ist nicht spätestens bis zum Ende des dritten Fachsemesters eine der beiden Klausuren bestanden, so erlischt der Prüfungsanspruch im Bachelorstudiengang im Fach Mathematik, es sei denn, der/die Studierende hat die Überschreitung der Frist nicht zu vertreten.

Im B.Sc.-Studiengang Mathematik gilt (§3 Absatz 2 Satz 2 der Prüfungsordnung):

■ In der Lehrveranstaltung Lineare Algebra I im Modul Lineare Algebra und in der Lehrveranstaltung Analysis I im Modul Analysis I+II ist als Studienleistung jeweils eine Klausur zu absolvieren; diese beiden Klausuren müssen spätestens bis zum Ende des dritten Fachsemesters bestanden sein.

Verwendbarkeit der Veranstaltung

- Pflichtmodul im B.Sc.-Studiengang Mathematik (PO 2021)
- Pflichtmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik (PO 2021)
- Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021)
- Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021)
- Wahlpflichtmodul im B.Sc.-Studiengang Informatik
- "Analysis I" ist Pflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012) und im B.Sc.-Studiengang Physik (PO 2020)
- "Analysis II" ist Pflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012)

Name des Moduls	Nummer des Moduls
Analysis	07LE23MO-MEB21-P-Ana
Veranstaltung	
Analysis I: Vorlesung	
Veranstaltungsart	Nummer
Vorlesung	07LE23V-0-Ana1
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	4,0
Empfohlenes Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

- Grundbegriffe (u.a. Ordnungsrelationen)
- Beweisverfahren, insbesondere vollständige Induktion
- reelle und komplexe Zahlen, Euler-Formel
- Folgen und Reihen, Grenzwerte, Cauchy-Folgen und Konvergenzkriterien
- offene und abgeschlossene Mengen in R
- Funktionen einer reellen Veränderlichen: Stetigkeit, Differentiation und Ableitungsregeln, Extremwertprobleme, Integral und Integrationsregeln
- Potenzreihen, Taylor-Formel
- rationale Funktionen, Partialbruchzerlegung
- elementare Funktionen, trigonometrische und hyperbolische Funktionen

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Literatur

- O. Forster: Analysis 1, Vieweg 2006.
- H. Amann, J. Escher: *Analysis 1*, Birkhäuser 2005.
- K. Königsberger: *Analysis I*, Springer 2004.
- S. Hildebrandt: *Analysis I*, Springer 2006.
- W. Walter: Analysis 1, Springer 2004.
- M. Barner, F. Flohr: Analysis 1, Springer 2000.

Teilnahmevoraussetzung

keine

Empfohlene Voraussetzung

Die Teilnahme an dem vom Mathematischen Institut Anfang Oktober angebotenen Vorkurs wird empfohlen.

Name des Moduls	Nummer des Moduls
Analysis	07LE23MO-MEB21-P-Ana
Veranstaltung	
Analysis I: Übung	
Veranstaltungsart	Nummer
Übung	07LE23Ü-0-Ana1
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	2,0
Empfohlenes Fachsemester	1
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Teilnahmevoraussetzung

Teilnahme an der gleichnamigen Vorlesung.

Name des Moduls	Nummer des Moduls
Analysis	07LE23MO-MEB21-P-Ana
Veranstaltung	
Analysis II: Vorlesung	
Veranstaltungsart	Nummer
Vorlesung	07LE23V-0-Ana2
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	4,0
Empfohlenes Fachsemester	2
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

- Topologie des Rⁿ, Metriken und Normen
- Differentialrechnung in mehreren Veränderlichen, zweite Ableitung mit Anwendungen
- Satz über inverse und Satz über implizite Funktion
- Wegintegrale
- gewöhnliche Differentialgleichungen, Existenz und Eindeutigkeit von Lösungen, lineare Differentialgleichungen
- Ideen- und mathematikgeschichtliche Hintergründe der mathematischen Inhalte werden erläutert

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Literatur

- O. Forster: Analysis 2. Vieweg 2005.
- S. Hildebrandt: *Analysis* 2. Springer 2003.
- K. Königsberger: *Analysis 2*. Springer 2004.
- W. Walter: Analysis 2. Springer 2004.
- J. Dieudonne: Foundations of modern analysis. Read Books 2006.

Teilnahmevoraussetzung

Notwendige Vorkenntnisse: Analysis I, Lineare Algebra I

Name des Moduls	Nummer des Moduls		
Analysis	07LE23MO-MEB21-P-Ana		
Veranstaltung			
Analysis II: Übung			
Veranstaltungsart	Nummer		
Übung	07LE23Ü-0-Ana2		
Fachbereich / Fakultät			
Mathematisches Institut-VB			

ECTS-Punkte	
Semesterwochenstunden (SWS)	2,0
Empfohlenes Fachsemester	2
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Teilnahmevoraussetzung

Teilnahme an der gleichnamigen Vorlesung.

ne des Moduls Nummer des Moduls		
Analysis	07LE23MO-MEB21-P-Ana	
Name der Prüfungsleistung		
Mündliche Prüfung Analysis		
Leistungsart	Nummer	
Prüfung	07LE23PL-MEB21-P-Ana	
Verantwortliche/r		
Fachbereich / Fakultät		
Mathematisches Institut-VB		

Prüfungsform	mündliche Prüfung
Benotung	D-Noten (ganze um 0,3 verä)
Empfohlenes Fachsemester	2
Teilnahmepflicht	Pflicht
Prüfungssprache	deutsch

Kommentar

Voraussetzungen für die Zulassung zu dieser Prüfung sind (gemäß Prüfungsordnung):

- die bestandene Studienleistung in der Klausur zu Analysis I
- die bestandene Studienleistung in den Übungen zu Analysis II

Die Zulassungsvoraussetzungen wurde vorwiegend aus didaktischen Gründen eingeführt: Erst im Zusammenhang der beiden Veranstaltungen Analysis I und II und durch die Wiederholung in einem zeitlichen Abstand lässt sich darin vermittelte Mathematik tiefergehend verstehen. Als Nebeneffekt werden durch die Zulassungsbedingungen zudem die Durchfallquoten gesenkt.

Die Prüfung wird in jedem Semester in einem Prüfungszeitraum etwa drei Wochen vor und eine Woche nach Beginn der Vorlesungszeit angeboten.

Name des Moduls	Nummer des Moduls
Elementargeometrie	07LE23MO-MEB21-P-ElGeo
Verantwortliche/r	
Prof. Dr. Annette Huber-Klawitter	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	6,0
Empfohlenes Fachsemester	6
Moduldauer	ein Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Präsenzstudium	ca. 60 Stunden
Selbststudium	ca. 120 Stunden
Workload	180 Stunden
Angebotsfrequenz	nur im Sommersemester

Teilnahmevoraussetzung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Lineare Algebra I

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	sws	Workload
Elementargeometrie: Vorlesung	Vorlesung			2,0	
Elementargeometrie: Übung	Übung			2,0	

Qualifikationsziel

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die mathematische Fach- und Formelsprache der Elementargeometrie und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Elementargeometrie mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie kennen den axiomatischen und den analytischen Zugang zur Geometrie und können diese erläutern, Sie können geometrische Strukturen und Abbildungen mit algebraischen Mitteln sowie nach Invarianzund Symmetrieaspekten analysieren.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere die Anwendungen der Grundlagen aus der Linearen Algebra, die dadurch vertieft wird.

Zu erbringende Prüfungsleistung

Ein- bis dreistündige Klausur.

Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise in den <u>aktuellen Ergänzungen der Modulhandbücher Mathematik</u> veröffentlicht; in der Regel regelmäßige Teilnahme am wöchentlichen Tutorat und Erreichen von mindestens fünfzig Prozent der insgesamt für die Bearbeitung der Übungsblätter vergebenen Punkte.

Benotung

- Im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik geht die Modulnote mit 6/75 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 4/9 in die Gesamtnote eingeht bei Fächer-kombinationen mit einem künstlerischen Fach mit 6/17.
- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 6/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 6/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" geht die Modulnote mit 6/95 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 6/7 in die Gesamtnote eingeht.
- Im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" geht die Modulnote mit 6/51 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 6/7 in die Gesamtnote eingeht.

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studien- und Prüfungsleistungen.

Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

Bemerkung / Empfehlung

Das Modul kann im Zwei-Hauptfächer-Bachelor-Studiengang und im B.Scv.-Studiengang ab dem 2. Studiensemester absolviert werden.

Verwendbarkeit der Veranstaltung

- Pflichtmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik (PO 2021)
- Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012,PO 2021)
- Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021)
- Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021)

Name des Moduls	Nummer des Moduls
Elementargeometrie	07LE23MO-MEB21-P-ElGeo
Veranstaltung	
Elementargeometrie: Vorlesung	
Veranstaltungsart	Nummer
Vorlesung	07LE23V2-3-ElGeo
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	2,0
Empfohlenes Fachsemester	
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	
Lehrsprache	deutsch

- Axiomensysteme für die affine und die euklidische Geometrie.
- Der analytische Zugang zur Geometrie über Koordinaten.
- Nichteuklidische Geometrie ein Modell der hyperbolischen Ebene.
- Projektionen und projektive Geometrie.
- Isometriegruppen euklidischer Räume und platonische Körper, Euler'sche Polyederformel.
- Geometrie der Kegelschnitte.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Literatur

- M. Koecher, A. Krieg: Ebene Geometrie. Springer 1993.
- H. Knörrer: Geometrie. Vieweg 1996.
- J. G. Ratcliff: Foundations of Hyperbolic Manifolds. Springer 1994.
- A. Beutelspacher, U. Rosenbaum: Projektive Geometrie. Von den Grundlagen bis zu den Anwendungen.
 2. Auflage, Vieweg 2004.

Teilnahmevoraussetzung

Notwendige Vorkenntnisse: Lineare Algebra I

Empfohlene Voraussetzung

Nützliche Vorkenntnisse: Lineare Algebra II, Analysis I und II

Bemerkung / Empfehlung

Die Vorlesung ist ein Pflichtbestandteil des Moduls "Elementargeometrie".

me des Moduls Nummer des Moduls	
Elementargeometrie	07LE23MO-MEB21-P-ElGeo
Veranstaltung	
Elementargeometrie: Übung	
Veranstaltungsart	Nummer
Übung	07LE23Ü-3-Elgeo
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	2,0
Empfohlenes Fachsemester	
Angebotsfrequenz	nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	
Lehrsprache	deutsch

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Teilnahmevoraussetzung

Teilnahme an der gleichnamigen Vorlesung.

Bemerkung / Empfehlung

Die Übung ist ein Pflichtbestandteil des Moduls "Elementargeometrie".

Name des Moduls	Nummer des Moduls	
Einführung in die Algebra und Zahlentheorie	07LE23MO-MEB21-P-EAuZ	
Verantwortliche/r		
Prof. Dr. Wolfgang Soergel		
Fachbereich / Fakultät		
Mathematisches Institut-VB		

ECTS-Punkte	5,0
Empfohlenes Fachsemester	5
Moduldauer	ein halbes Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Präsenzstudium	ca. 90 Stunden
Selbststudium	ca. 180 Stunden
Workload	150 Stunden
Angebotsfrequenz	nur im Wintersemester

Teilnahmevoraussetzung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Lineare Algebra I und II.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	sws	Workload
Algebra und Zahlentheorie: Vorlesung	Vorlesung			4,0	
Algebra und Zahlentheorie: Übung	Übung			2,0	

Qualifikationsziel

- Die Studierenden kennen die Inhalte des ersten Teils der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die vermittelte mathematische Fach- und Formelsprache der Algebra und der Zahlentheorie und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der elementaren Algebra und Zahlentheorie mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie können die Struktur und Eigenschaften von Zahlbereichen im Zusammenhang erklären.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere mit den Grundlagen aus der linearen Algebra, die sie dadurch vertiefen, und können mathematische Situationen unter Verwendung algebraischer Strukturbegriffe analysieren.

Zu erbringende Prüfungsleistung

Mündliche Prüfung in Form eines ca. 30-minütigen Prüfungsgesprächs.

Zu erbringende Studienleistung

Bestehen der Übungen bis Weihnachten: Die genauen Anforderungen dafür werden semesterweise in den aktuellen Ergänzungen der Modulhandbücher Mathematik veröffentlicht; in der Regel regelmäßige Teilnahme am wöchentlichen Tutorat bis Weihnachten und Erreichen von mindestens fünfzig Prozent der insgesamt bis Weihnachten für die Bearbeitung der Übungsblätter vergebenen Punkte.

Benotung

Die Modulnote geht mit 5/51 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 6/7 in die Gesamtnote eingeht.

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studien- und Prüfungsleistungen.

Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur:
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

Studiengangschwerpunkte

Algebra

Verwendbarkeit der Veranstaltung

- Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021)
- Die vollständige Vorlesung mit Übung bildet ein Pflichtmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik (PO 2021) und im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021), ein Wahlpflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021), ein Wahlmodul im M.Sc.-Studiengang Mathematik (PO 2014) und kann im M.Sc.-Studiengang Mathematik (PO 2014) für das Modul "Reine Mathematik" verwendet werden.

Name des Moduls	Nummer des Moduls
Einführung in die Algebra und Zahlentheorie 07LE23MO-MEB21-	
Veranstaltung	
Algebra und Zahlentheorie: Vorlesung	
Veranstaltungsart	Nummer
Vorlesung	07LE23V-1-AuZ
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	4,0
Empfohlenes Fachsemester	
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	
Lehrsprache	deutsch

- Grundbegriffe der Gruppentheorie: Normalteiler, Homomorphiesatz, Gruppenwirkungen, Symmetriegruppen
- Grundbegriffe der Ringtheorie: Teilbarkeit, Ideale und Primfaktorzerlegung, vor allem die Beispiele **Z** und K[X], euklidischer Algorithmus, Restklassenringe, chinesischer Restsatz, kleiner Satz von Fermat
- Grundlagen der Körpertheorie: endliche und algebraische Erweiterungen, Konstruierbarkeit mit Zirkel und Lineal, endliche Körper
- Auflösbarkeit von Gleichungen durch Radikale, elementarsymmetrische Polynome, Galois-Theorie, quadratisches Reziprozitätsgesetz
- Zahlbereichserweiterungen
- $\,\blacksquare\,$ optional: Sylow-Sätze, Strukturtheorie endlicher Gruppen, endliche Symmetriegruppen des Raumes und platonische Körper, Transzendenz von π
- Ideen- und mathematikgeschichtliche Hintergründe der mathematischen Inhalte werden erläutert.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Literatur

- M. Artin: Algebra. Birkhäuser 1998.
- S. Lang: *Algebra*. 3. Auflage, Springer 2005.
- S. Bosch: Algebra. Springer Spektrum 2013.
- R. Schulze-Pillot: Einführung in die Algebra und Zahlentheorie. Springer 2008.

Teilnahmevoraussetzung

Notwendige Vorkenntnisse: Lineare Algebra I und II

Bemerkung / Empfehlung

Die Vorlesung ist ein Pflichtbestandteil des Moduls "Algebra und Zahlentheorie".

Name des Moduls	Nummer des Moduls
Einführung in die Algebra und Zahlentheorie	07LE23MO-MEB21-P-EAuZ
Veranstaltung	
Algebra und Zahlentheorie: Übung	
Veranstaltungsart	Nummer
Übung	07LE23Ü-1-AuZ
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	2,0
Empfohlenes Fachsemester	
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	
Lehrsprache	deutsch

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Teilnahmevoraussetzung

Teilnahme an der gleichnamigen Vorlesung.

Bemerkung / Empfehlung

Die Übung ist ein Pflichtbestandteil des Moduls "Algebra und Zahlentheorie".

Name des Moduls	Nummer des Moduls
Numerik I	07LE23MO-MEB21-P-Num1
Verantwortliche/r	
Prof. Dr. Sören Bartels	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	5,0
Empfohlenes Fachsemester	3
Moduldauer	ein Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Präsenzstudium	ca. 90 Stunden
Selbststudium	ca. 180 Stunden
Workload	150 Stunden
Angebotsfrequenz	nur im Wintersemester

Teilnahmevoraussetzung

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Lineare Algebra I

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	sws	Workload
Numerik I: Vorlesung	Vorlesung			2,0	
Numerik I: Übung	Übung			1,0	

Qualifikationsziel

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die mathematische Fach- und Formelsprache der Numerik und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der numerischen linearen Algebra mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen. Sie sind insbesondere mit typischen Schwierigkeiten algorithmischer Lösungen von Problemen wie Stabilität, Genauigkeit und Aufwand vertraut.
- Sie entwickeln und nutzen mathematische Modelle und bewerten sie hinsichtlich ihrer Grenzen.
- Sie erkennen die Zusammenhänge mit den Grundlagen aus Lineare Algebra I und vertiefen dadurch das Verständnis dieser Vorlesung.

Zu erbringende Prüfungsleistung

Mündliche Prüfung in Form eines ca. 30-minütigen Prüfungsgesprächs.

Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise in den <u>aktuellen Ergänzungen der Modulhandbücher Mathematik</u> veröffentlicht; in der Regel regelmäßige Teilnahme am zweiwöchentlichen Tutorat und Erreichen von mindestens fünfzig Prozent der insgesamt für die Bearbeitung der Übungsblätter vergebenen Punkte.

Benotung

Die Modulnote geht mit 5/51 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 6/7 in die Gesamtnote eingeht.

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studien- und Prüfungsleistungen.

Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der wöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur;
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

Verwendbarkeit der Veranstaltung

- Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021)
- Vorlesung und Übung "Numerik I" sind Teil der Pflichtmodule Numerik im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021), im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik (PO 2021) und im M.Edu.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021).

Name des Moduls	Nummer des Moduls	
Numerik I	07LE23MO-MEB21-P-Num1	
Veranstaltung		
Numerik I: Vorlesung		
Veranstaltungsart	Nummer	
Vorlesung	07LE23V2-5-Num1	
Fachbereich / Fakultät		
Mathematisches Institut-VB		

ECTS-Punkte	
Semesterwochenstunden (SWS)	2,0
Empfohlenes Fachsemester	3
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	
Lehrsprache	deutsch

- Grundlagen: Zahlendarstellung auf digitalen Rechnern, Matrixnormen, Banach'scher Fixpunktsatz, Fehleranalyse.
- Numerische Lösung linearer Gleichungssysteme: Gauß-Verfahren mit Pivotierung, LR-Zerlegung, iterative Verfahren, lineare Ausgleichsprobleme.
- Berechnung von Eigenwerten: Vektor-Iteration, QR- und Jacobi-Verfahren.
- Lineare Optimierung: Austauschsatz und Simplexverfahren, lineare Ungleichungen.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Literatur

- S. Bartels: Numerik 3x9, Springer-Spektrum 2016.
- J. Stoer, R. Bulirsch: *Numerische Mathematik 1*. 10. Auflage, Springer 2007.
- J. Stoer, R. Bulirsch: *Numerische Mathematik* 2. 6. Auflage, Springer 2011.
- G. Hämmerlin, K.-H. Hoffmann: *Numerische Mathematik*. Springer 1990.

Teilnahmevoraussetzung

Notwendige Vorkenntnisse: Lineare Algebra I

Empfohlene Voraussetzung

Empfohlene Vorkenntnisse: Lineare Algebra II und Analysis I (notwendige Vorkenntnisse für den zweiten Teil der Vorlesung)

Name des Moduls	Nummer des Moduls	
Numerik I	07LE23MO-MEB21-P-Num1	
Veranstaltung		
Numerik I: Übung		
Veranstaltungsart	Nummer	
Übung	07LE23Ü1-5-Num1	
Fachbereich / Fakultät		
Mathematisches Institut-VB		

ECTS-Punkte	
Semesterwochenstunden (SWS)	1,0
Empfohlenes Fachsemester	3
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	
Lehrsprache	deutsch

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Teilnahmevoraussetzung

Teilnahme an der gleichnamigen Vorlesung.

Name des Moduls	Nummer des Moduls
Stochastik I	07LE23MO-MEB21-P-Sto1
Verantwortliche/r	
Prof. Dr. Peter Pfaffelhuber	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	5,0
Empfohlenes Fachsemester	3
Moduldauer	ein Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Präsenzstudium	ca. 50 Stunden
Selbststudium	ca. 100 Stunden
Workload	150 Stunden
Angebotsfrequenz	nur im Wintersemester

Keine formale Voraussetzung.

Notwendige Vorkenntnisse: Lineare Algebra I und Analysis I und II, wobei Lineare Algebra I gleichzeitig gehört werden kann.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	sws	Workload
Stochastik I: Vorlesung	Vorlesung	Pflicht		2,0	
Stochastik I: Übung	Übung	Pflicht		1,0	

Qualifikationsziel

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die mathematische Fach- und Formelsprache der elementaren Stochastik und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der nicht-maßtheoretischen Wahrscheinlichkeitstheorie mit Hilfe der erlernten Konzepte analysieren, reale Fragestellungen in stochastische Modelle umsetzen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie k\u00f6nnen Wahrscheinlichkeitsaspekte unterscheiden und typische Verst\u00e4ndnisschwierigkeiten beschreiben
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik, insbesondere die Anwendung der Gundlagen aus Analysis I und II und Linearer Algebra I.

Zu erbringende Prüfungsleistung

Ein- bis zweistündige Klausur.

Zu erbringende Studienleistung

Bestehen der Übungen: Die genauen Anforderungen dafür werden semesterweise in den <u>aktuellen Ergänzungen der Modulhandbücher Mathematik</u> veröffentlicht; in der Regel regelmäßige Teilnahme am zweiwöchentlichen Tutorat und Erreichen von mindestens fünfzig Prozent der insgesamt für die Bearbeitung der Übungsblätter vergebenen Punkte.

Benotung

- Im B.Sc.-Studiengang Mathematik geht die Modulnote mit 5/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" geht die Modulnote mit 5/51 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 6/7 in die Gesamtnote eingeht.

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studien- und Prüfungsleistungen.

Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten;
- schriftliche Bearbeitung der zweiwöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur:
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten.

- Pflichtmodul im B.Sc.-Studiengang Mathematik (PO 2021)
- Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021)
- Vorlesung und Übung "Stochastik I" sind Teil der Pflichtmodule Stochastik im B.Sc.-Studiengang Mathematik (PO 2012), im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik (PO 2021) und im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021)

Name des Moduls	Nummer des Moduls
Stochastik I	07LE23MO-MEB21-P-Sto1
Veranstaltung	
Stochastik I: Vorlesung	
Veranstaltungsart	Nummer
Vorlesung	07LE23V2-6-Sto1
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	2,0
Empfohlenes Fachsemester	3
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Diskrete und stetige Zufallsvariablen, Wahrscheinlichkeitsräume und -maße, Kombinatorik, Erwartungswert, Varianz, Korrelation, erzeugende Funktionen, bedingte Wahrscheinlichkeit, Unabhängigkeit, Schwaches Gesetz der großen Zahlen, Zentraler Grenzwertsatz.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Literatur

- L. Dümbgen: Stochastik für Informatiker. Springer 2003.
- H.-O. Georgii: Stochastik. 4. Auflage, de Gruyter 2009.
- G. Kersting, A. Wakolbinger: *Elementare Stochastik.* 2. Auflage, Birkhäuser 2010.
- U. Krengel: Einführung in die Wahrscheinlichkeitstheorie und Statistik. 8. Auflage, Vieweg 2005 .

Teilnahmevoraussetzung

Notwendige Vorkenntnisse: Lineare Algebra I und Analysis I und II, wobei Lineare Algebra I gleichzeitig gehört werden kann.

Name des Moduls	Nummer des Moduls
Stochastik I	07LE23MO-MEB21-P-Sto1
Veranstaltung	
Stochastik I: Übung	
Veranstaltungsart	Nummer
Übung	07LE23Ü1-6-Sto1
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	1,0
Empfohlenes Fachsemester	3
Angebotsfrequenz	nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Teilnahmevoraussetzung

Teilnahme an der gleichnamigen Vorlesung.

Name des Kontos	Nummer des Kontos
Fachwissenschaftliche Wahlpflichtmodule	07LE23KT-MEB21-WP-fw
Fachbereich / Fakultät	
Fakultät für Mathematik und Physik Mathematisches Institut-VB	

Pflicht/Wahlpflicht (P/WP)	Pflicht
Benotung	A- Berechnung 1 NachK

Name des Moduls	Nummer des Moduls
Proseminar	07LE23MO-MEB21-WP-PSem
Verantwortliche/r	
PD Dr. Markus Junker	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	3,0
Empfohlenes Fachsemester	3
Moduldauer	ein Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Präsenzstudium	ca. 30 Stunden
Selbststudium	ca. 60 Stunden
Workload	90 Stunden
Angebotsfrequenz	in jedem Semester

Voraussetzung: Zuteilung eines Seminarplatzes bei der Vorbesprechung des konkret gewählten Proseminars.

Die notwendigen Vorkenntnisse hängen vom jeweilgen Proseminar ab und werden im Kommentierten Vorlesungsverzeichnis bekannt gegeben.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	sws	Workload

Inhalt

In einem Proseminar werden für Studierende im 2. Studienjahr zugängliche mathematische Themen durch angeleitete selbständige Lektüre von Fachliteratur erarbeitet und dann in Vorträgen präsentiert. Die konkreten Inhalte hängen vom gewählten Proseminar ab und werden semesterweise im Kommentierten Vorlesungsverzeichnis beschrieben.

Qualifikationsziel

- Die Studierenden können elementare mathematische Inhalte im Selbststudium unter Anleitung erarbeiten, didaktisch aufbereiten und in freiem Vortrag anschaulich, verständlich und fachlich korrekt vortragen.
- Sie können Fragen zum Vortragsthema beantworten und sich einer kritischen Diskussion stellen. Sie können fachliche Fragen zu Vorträgen formulieren und Vorträge konstruktiv-kritisch begleiten.

Zu erbringende Prüfungsleistung

Vortrag in Form der Gestaltung einer ganzen (90 Minuten) oder halben (45 Minuten) Seminarsitzung.

Zu erbringende Studienleistung

Die Anforderungen hängen vom gewählten Proseminar ab und werden semesterweise in den <u>aktuellen</u> <u>Ergänzungen der Modulhandbücher Mathematik</u> veröffentlicht; in der Regel regelmäßige Teilnahme am Proseminar.

Benotung

- Im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik geht die Modulnote mit 6/75 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 4/9 in die Gesamtnote eingeht bei Fächer-kombinationen mit einem künstlerischen Fach mit 6/17.
- Im B.Sc.-Studiengang Mathematik (PO 2021) geht die Modulnote mit 6/(N-1) in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im B.Sc.-Studiengang Mathematik (PO 2012) geht die Modulnote mit 6/N in die Gesamtnote ein, wobei N die Summe der ECTS-Punkte aller mit Prüfungsleistungen absolvierten Module ist.
- Im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" geht die Modulnote mit 6/95 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 6/7 in die Gesamtnote eingeht.
- Im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" geht die Modulnote mit 6/51 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 6/7 in die Gesamtnote eingeht.

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studien- und Prüfungsleistungen.

Lehrmethoden

Gemeinsame Erarbeitung eines mathematischen Themas durch studentische Vorträge mit Diskussion. Die Vorträge werden im begleiteten Selbststudium erstellt.

Bemerkung / Empfehlung

Das Proseminar kann ebenso gut im 4. oder 5. Fachsemester absolviert werden. Unabhängig von den für das gewählte Proseminar notwendigen Vorkenntnissen ist es günstig, Analysis I und II und Lineare Algebra I und II absolviert zu haben.

- Pflichtmodul im Zwei-Hauptfächer-Bachelor-Studiengang Mathematik (PO 2021)
- Pflichtmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021)
- Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021)
- Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021)

Name des Moduls	Nummer des Moduls
Praktische Übung	07LE23MO-MEB21-WP-PÜ
Verantwortliche/r	
PD Dr. Markus Junker	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	3,0
Empfohlenes Fachsemester	4
Moduldauer	je nach Wahl ein oder zwei Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Präsenzstudium	ca. 30–60 Stunden, je nach gewählter Veranstaltung
Selbststudium	ca. 30–60 Stunden, je nach gewählter Veranstaltung
Workload	90 Stunden
Angebotsfrequenz	in jedem Semester

Keine formale Voraussetzung.

Im Fall der "Praktischen Übung Numerik" und der "Praktischen Übung Stochastik" sollte die zugehörige Vorlesung mit Übung gleichzeitig gehört werden oder schon gehört worden sein.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Workload

Qualifikationsziel

Die Studierenden können geeignete einfache mathematische Fragestellungen in Algorithmen und diese in Programme umsetzen.

Zu erbringende Prüfungsleistung

keine

Zu erbringende Studienleistung

Die Anforderungen hängen von der gewählten Praktischen Übung ab und werden semesterweise in den aktuellen Ergänzungen der Modulhandbücher Mathematik veröffentlicht.

Benotung

Das Modul ist unbenotet.

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studienleistungen.

Lehrmethoden

Hängen von der gewählten Praktischen Übung ab, häufig

- Tafel- bzw. Beamervortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden:
- Bearbeitung der Programmieraufgaben durch die Studierenden und anschließende Korrektur bzw.
 Besprechung;
- Präsentation von Lösungen.

Bemerkung / Empfehlung

Für dieses Modul werden mehrere Veranstaltungen zur Wahl angeboten:

In jedem Sommersemester die Veranstaltung "Einführung in die Programmierung für Studierende der Naturwissenschaften", jährlich die zweisemestrige Veranstaltung "Praktische Übung Numerik" (die dann gleichzeitig mit dem Modul "Numerik" absolviert werden sollte) und mindestens jährlich, teilweise auch in jedem Semester die "Praktische Übung Stochastik".

Weitere geeignete Veranstaltungen, etwa praktische Übungen zur Algebra oder zur Geometrie, sind denkbar. Das Veranstaltungsangebot findet sich semesterweise im <u>Vorlesungsverzeichnis Mathematik</u>.

- mit 3 ECTS-Punkten: Verpflichtendes Modul (mit wählbarer Veranstaltung) im Zwei-Hauptfächer-Bachelor Mathematik (PO 2021)
- mit 3 ECTS-Punkten: Verpflichtendes Modul (mit wählbarer Veranstaltung) im M.Ed..Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021)
- mit 4 ECTS-Punkten: Verpflichtendes Modul (mit wählbarer Veranstaltung) im M.Ed..Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021)
- Die typischen für das Modul verwendbaren Veranstaltungen "Einführung in die Programmierung für Studierende der Naturwissenschaften", "Praktische Übung Numerik" und "Praktische Übung Stochastik" sind Pflicht- bzw. Wahlveranstaltung im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021) und können auch im M.Ed.-Studiengang Mathematik (PO 2018) für das Modul "Mathematische Ergänzung" gewählt werden.

Name des Kontos	Nummer des Kontos
Fachdidaktische Pflichtmodule	07LE23KT-MEB21-P-fd
Fachbereich / Fakultät	
Fakultät für Mathematik und Physik Mathematisches Institut-VB	

Pflicht/Wahlpflicht (P/WP)	Pflicht
Benotung	A- Berechnung 1 NachK

Name des Moduls	Nummer des Moduls
Fachdidaktik Mathematik	07LE23MO-MEB21-P-FM
Verantwortliche/r	
Prof. Dr. Ernst Kuwert	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	5,0
Empfohlenes Fachsemester	
Moduldauer	ein Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Präsenzstudium	ca. 50 Stunden
Selbststudium	ca. 100 Stunden
Workload	150 Stunden
Angebotsfrequenz	in jedem Semester

Teilnahmevoraussetzung
keine
Empfohlene Voraussetzung
Grundvorlesungen in Mathematik (analysis, Lineare Algebra)

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	sws	Workload
Einführung in die Fachdidaktik der Mathematik: Vorlesung	Vorlesung			2,0	
Einführung in die Fachdidaktik der Mathematik: Übung und Seminar	Übung	Pflicht		2,0	

Qualifikationsziel

- Konzepte für schulisches Mathematiklernen und –lehren auf der Basis fachdidaktischer Theorien und empirischer Befunde kennen, vergleichen und beurteilen können.
- Zu den Leitideen für die Sekundarstufe 1 verschiedene Zugangsweisen, Grundvorstellungen und paradigmatische Beispiele, typische Präkonzepte und Verstehenshürden sowie begriffliche Vernetzungen beschreiben können.
- Den allgemeinbildenden Gehalt mathematischer Inhalte und Methoden und die gesellschaftliche Bedeutung der Mathematik begründen und in den Zusammenhang mit Zielen und Inhalten des Mathematikunterrichts stellen können.

Zu erbringende Prüfungsleistung

keine

Zu erbringende Studienleistung

Die genauen Anforderungen dafür werden semesterweise in den <u>aktuellen Ergänzungen der Modulhandbücher Mathematik</u> veröffentlicht, in der Regel Haus- und Präsenzübungen und Bestehen der Abschlussklausur.

Benotung

Das Modul ist unbenotet.

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studienleistungen

Lehrmethoden

- Zweistündige Vorlesung mit integrierten Seminar-, Diskussions- und Übungsteilen
- Wöchentliche Übungen (sowohl Hausübungen als auch Präsenzübungen)

- verwendbar im Optionsbereich des Zwei-Hauptfächer-Studiengangs Mathematik (PO 2021): Pflichtmodul der Lehramtsoption
- verwendbar als anerkanntes Wahlmodul im B.Sc.-Studiengang Mathematik (PO 2012, PO 2021)

Name des Moduls	Nummer des Moduls
Fachdidaktik Mathematik	07LE23MO-MEB21-P-FM
Veranstaltung	
Einführung in die Fachdidaktik der Mathematik: Vorlesung	
Veranstaltungsart	Nummer
Vorlesung	07LE23V2-7-EFdMathe
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	2,0
Empfohlenes Fachsemester	
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	
Lehrsprache	deutsch

- Mathematikdidaktische Prinzipien sowie deren lerntheoretische Grundlagen und Möglichkeiten unterrichtlicher Umsetzung (auch z.B. mit Hilfe digitaler Medien).
- Theoretische Konzepte zu zentralen mathematischen Denkhandlungen wie Begriffsbilden, Modellieren, Problemlösen und Argumentieren.
- Mathematikdidaktische Konstrukte: Verstehenshürden, Präkonzepte, Grundvorstellungen, spezifische Schwierigkeiten zu ausgewählten mathematischen Inhalten.
- Konzepte für den Umgang mit Heterogenität unter Berücksichtigung fachspezifischer Besonderheiten (z.B. Rechenschwäche oder mathematische Hochbegabung).
- Stufen begrifflicher Strenge und Formalisierungen sowie deren altersgemäße Umsetzung.

Zu erbringende Prüfungsleistung

keine

Zu erbringende Studienleistung

[siehe beim Modul]

Teilnahmevoraussetzung

keine

Bemerkung / Empfehlung

Die Gesamtveranstaltung setzt sich zusammen aus Vorlesungsanteilrn und Anteilen mit Übungs- und Seminarcharakter. Die drei Lehrformen lassen sich dabei nicht völlig klar voneinander trennen. Alle Teile sind Pflichtbestandteile des Moduls "Fachdidaktik Mathematik".

Name des Moduls	Nummer des Moduls
Fachdidaktik Mathematik	07LE23MO-MEB21-P-FM
Veranstaltung	
Einführung in die Fachdidaktik der Mathematik: Übung und Seminar	
Veranstaltungsart	Nummer
Übung	07LE23Ü-7-EFdMathe
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	2,0
Empfohlenes Fachsemester	
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

Die Übung (mit Seminaranteilen) begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.

Zu erbringende Prüfungsleistung

keine

Zu erbringende Studienleistung

[siehe beim Modul]

Teilnahmevoraussetzung

Teilnahme an der gleichnamigen Vorlesung.

Bemerkung / Empfehlung

Die Gesamtveranstaltung setzt sich zusammen aus Vorlesungsanteilrn und Anteilen mit Übungs- und Seminarcharakter. Die drei Lehrformen lassen sich dabei nicht völlig klar voneinander trennen. Alle Teile sind Pflichtbestandteile des Moduls "Fachdidaktik Mathematik".

Name des Moduls	Nummer des Moduls	
Fachdidaktik der mathematischen Teilgebiete	07LE23MO-MEB21-P-FMT	
Verantwortliche/r		
Prof. Dr. Ernst Kuwert		
Fachbereich / Fakultät		
Mathematisches Institut-VB		

ECTS-Punkte	6,0
Empfohlenes Fachsemester	1
Moduldauer	zwei Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Workload	180 Stunden
Angebotsfrequenz	in jedem Semester

Nachweis der in den folgenden Modulen des polyvalenten Hauptfächer-Bachelor-Studiengangs vermittelten oder diesen gleichwertiger Kompetenzen:

- "Fachdidaktik Mathematik"
- "Analysis I" und "Numerik" (nur für den Modulteil "Didaktik der Funktionen und der Analysis")
- "Stochastik" und "Algebra und Zahlentheorie" (nur für den Modulteil "Didaktik der Stochastik und der Algebra")

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	sws	Workload
Didaktik der Funktionen und der Analysis	Seminar	Pflicht		3,0	
Didaktik der Stochastik und der Algebra	Seminar	Pflicht		3,0	
Fachdidaktik der mathematischen Teilgebiete: Klausur (M.Ed.+90 2021)	Prüfung	Pflicht			

Qualifikationsziel

- Die Studierenden kennen zu den Leitideen und zu den Inhaltsbereichen Funktionen und Analysis sowie Stochastik und Algebra verschiedene Zugangsweisen, Grundvorstellungen und paradigmatische Beispiele, typische Präkonzepte und Verstehenshürden sowie begriffliche Vernetzungen und können sie didaktisch bewerten.
- Die Studierenden können theoretische Konzepte und empirische Befunde der mathematikbezogenen Lehr-Lern-Forschung nutzen, um in Ansätzen Denkprozesse und Vorstellungen von Schülerinnen und Schülern zu analysieren.

Zu erbringende Prüfungsleistung

ein- bis dreistündige Klausur

Zu erbringende Studienleistung

Die genauen Anforderungen dafür werden semesterweise in den <u>aktuellen Ergänzungen des Modulhandbuch</u> veröffentlicht. Typischerweise werden Lektüren und Hausübungen, ein Seminarvortrag mit praktischem und theoretischem Teil sowie die regelmäßige Teilnahme am Tutorat gefordert.

Benotung

- Im M.Ed.-Studiengang geht die Modulnote mit 6/20 = 30% in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 2/7 in die Gesamtnote eingeht.
- Im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" geht die Modulnote mit 6/95 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 6/7 in die Gesamtnote eingeht.
- Im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" geht die Modulnote mit 6/51 in die Abschlussnote des Fachs Mathematik ein, die wiederum mit 6/7 in die Gesamtnote eingeht.

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studien- und Prüfungsleistungen.

Lehrmethoden

Seminar mit Übungen.

- Pflichtmodul im M.Ed..-Studiengang Mathematik (PO 2018)
- Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021)
- Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021)
- mit Abschlussklausur als Studien- statt als Prüfungsleistung: Wahlmodul im B.Sc. Mathematik (PO 2012, PO 2021)

Name des Moduls	Nummer des Moduls	
Fachdidaktik der mathematischen Teilgebiete	07LE23MO-MEB21-P-FMT	
Veranstaltung		
Didaktik der Funktionen und der Analysis		
Veranstaltungsart	Nummer	
Seminar	07LE23S-7-DidFunkAna	
Fachbereich / Fakultät		
Mathematisches Institut-VB		

ECTS-Punkte	
Semesterwochenstunden (SWS)	3,0
Empfohlenes Fachsemester	
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

- Exemplarische Umsetzungen der theoretischen Konzepte zu zentralen mathematischen Denkhandlungen wie Begriffsbilden, Modellieren, Problemlösen und Argumentieren für die Inhaltsbereiche Funktionen und Analysis.
- Verstehenshürden, Präkonzepte, Grundvorstellungen, spezifische Schwierigkeiten zu den Inhaltsbereichen Funktionen und Analysis.
- Grundlegende Möglichkeiten und Grenzen von Medien, insbesondere von computergestützten mathematischen Werkzeugen und deren Anwendung für die Inhaltsbereiche Funktionen und Analysis.
- Analyse Individueller mathematischer Lernprozesse und Fehler sowie Entwicklung individueller Fördermaßnahmen zu den Inhaltsbereichen Funktionen und Analysis.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Literatur

- Dankwerts, R. & Vogel, D. (2006). Analysis verständlich unterrichten. Heidelberg: Spektrum.
- Greefrath, G., Oldenburg, R., Siller, H.-S., Ulm, V. & Weigand, H.-G. (2016). Didaktik der Analysis. Aspekte und Grundvorstellungen zentraler Begriffe. Berlin, Heidelberg: Springer.

Teilnahmevoraussetzung

Nachweis der in den folgenden Modulen des polyvalenten Hauptfächer-Bachelor-Studiengangs vermittelten oder diesen gleichwertiger Kompetenzen:

■ "Fachdidaktik Mathematik", "Analysis I" und "Numerik"

Name des Moduls	Nummer des Moduls	
Fachdidaktik der mathematischen Teilgebiete	07LE23MO-MEB21-P-FMT	
Veranstaltung		
Didaktik der Stochastik und der Algebra		
Veranstaltungsart	Nummer	
Seminar	07LE23S-7-DidStoAlg	
Fachbereich / Fakultät		
Mathematisches Institut-VB		

ECTS-Punkte	
Semesterwochenstunden (SWS)	3,0
Empfohlenes Fachsemester	
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	deutsch

- Exemplarische Umsetzungen der theoretischen Konzepte zu zentralen mathematischen Denkhandlungen wie Begriffsbilden, Modellieren, Problemlösen und Argumentieren für die Inhaltsbereiche Stochastik und Algebra.
- Verstehenshürden, Präkonzepte, Grundvorstellungen, spezifische Schwierigkeiten zu den Inhaltsbereichen Stochastik und Algebra.
- Grundlegende Möglichkeiten und Grenzen von Medien, insbesondere von computergestützten mathematischen Werkzeugen und deren Anwendung für die Inhaltsbereiche Stochastik und Algebra.
- Analyse Individueller mathematischer Lernprozesse und Fehler sowie Entwicklung individueller Fördermaßnahmen zu den Inhaltsbereichen Stochastik und Algebra.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Literatur

- Malle, G. (1993). Didaktische Probleme der elementaren Algebra. Braunschweig, Wiesbaden: Vieweg.
- Eichler, A. & Vogel, M. (2009). Leitidee Daten und Zufall. Von konkreten Beispielen zur Didaktik der Stochastik. Wiesbaden: Vieweg.

Teilnahmevoraussetzung

Nachweis der in den folgenden Modulen des polyvalenten Hauptfächer-Bachelor-Studiengangs vermittelten oder diesen gleichwertiger Kompetenzen:

■ "Fachdidaktik Mathematik", "StochastiK" und "Algebra und Zahlentheorie"

Name des Moduls	Nummer des Moduls
Fachdidaktik der mathematischen Teilgebiete	07LE23MO-MEB21-P-FMT
Name der Prüfungsleistung	
Fachdidaktik der mathematischen Teilgebiete: Klausur (M.Ed.+90 2021)	
Leistungsart	Nummer
Prüfung	07LE23PL-MEB21-P-FMT
Verantwortliche/r	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

Prüfungsform	Klausur
Benotung	D-Noten (ganze um 0,3 verä)
Empfohlenes Fachsemester	2
Teilnahmepflicht	Pflicht
Prüfungssprache	deutsch

Name des Kontos	Nummer des Kontos
Fachdidaktische Wahlpflichtmodule	07LE23KT-MEB21-WP-fd
Fachbereich / Fakultät	
Fakultät für Mathematik und Physik Mathematisches Institut-VB	

Pflicht/Wahlpflicht (P/WP)	Pflicht
Benotung	A- Berechnung 1 NachK

Name des Moduls	Nummer des Moduls
Fachdidaktische Entwicklung in der Mathematik	07LE23MO-MEB21-WP-FE
Verantwortliche/r	
Prof. Dr. Ernst Kuwert	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	4,0
Empfohlenes Fachsemester	4
Moduldauer	ein Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Präsenzstudium	hängt von der gewählten Veranstaltung ab, meist ca. 30 Stunden
Selbststudium	hängt von der gewählten Veranstaltung ab, meist ca. 90 Stunden
Workload	120 Stunden
Angebotsfrequenz	in jedem Semester

keine

Die für die gewählte Veranstaltung vorausgesetzten Vorkenntnisse sind semesterweise im <u>Kommentierten Vorlesungsverzeichnis</u> beschrieben.

Empfohlene Voraussetzung

Kenntnisse aus einem einführenden Fachdidaktikmodul wie z.B. das Modul "Fachdidaktik Mathematik des polyvalenten Zwei-Hauptfächer-Bachelor-Studiengangs Mathematik.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	sws	Workload

Inhalt

Die Inhalte des Moduls hängen von der gewählten Veranstaltung ab. Die Inhalte der wählbaren Veranstaltungen sind im Kommentierten Vorlesungsverzeichnis des Mathematischen Instituts beschrieben.

Qualifikationsziel

Die Studierenden vertiefen die allgemeinen fachdidaktischen Qualifikationsziele des Studiengangs, z.B.:

- Die Studierenden können theoretische Konzepte und empirische Befunde der mathematikbezogenen Lehr-Lern-Forschung nutzen, um in Ansätzen Denkprozesse und Vorstellungen von Schülerinnen und Schülern zu analysieren.
- Die Studierenden kennen Konzepte für schulisches Mathematiklernen und –lehren auf der Basis fachdidaktischer Theorien und empirischer Befunde und können sie vergleichen und beurteilen.

Zu erbringende Prüfungsleistung

keine

Zu erbringende Studienleistung

Die Anforderungen hängen von der gewählten Veranstaltung ab und werden semesterweise in den <u>aktuellen Ergänzungen des Modulhandbuch</u> veröffentlicht.

Benotung

Das Modul ist unbenotet.

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studienleistungen

Lehrmethoden

Hängen von der gewählten Veranstaltung ab; in der Regel Seminar mit Übungen.

Zielgruppe

Studierende, die keine fachdidaktische Master-Arbeit in Mathematik schreiben wollen.

- Wahlpflichtmodul im M.Ed..-Studiengang Mathematik (PO 2018)
- Wahlpflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021)
- Wahlpflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021)
- mit Abschlussklausur als Studien- statt als Prüfungsleistung: Wahlmodul im B.Sc. Mathematik (PO 2012, PO 2021)

Name des Moduls Nummer des Moduls	
Fachdidaktische Forschung in der Mathematik	07LE23MO-MEB21-WP-FF
Verantwortliche/r	
Prof. Dr. Timo Leuders	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	4,0
Empfohlenes Fachsemester	2
Moduldauer	zwei bis drei Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Präsenzstudium	60 Stunden
Selbststudium	60 Stunden
Workload	120 Stunden
Angebotsfrequenz	nur im Sommersemester

Teilnahme im Rahmen der Betreuungskapazitäten der Pädagogischen Hochschule: Anmeldung des Teilnahmewunsches bis Ende des Vorsemesters bei der Abteilung für Didaktik der Mathematik des Mathematischen Instituts der Universität Freiburg.

Zusammensetzung des Moduls

Das Modul setzt sich aus drei, im Idealfall in der angegebenen Reihenfolge zu absolvierenden Teilen zusammen:

- "Fachdidaktische Entwicklungsforschung zu ausgewählten Schwerpunkten" (im Sommersemester)
- "Methoden der mathematikdidaktischen Forschung" (Blockveranstaltung im Anschluss an das Praxissemester)
- "Entwicklung und Optimierung eines fachdidaktischen Forschungsprojekts" (Begleitseminar zur Master-Arbeit im Sommersemester)

Alle drei Veranstaltungsteile werden von der Pädagogischen Hochschule Freiburg angeboten. Teil 1 und 2 können auch im gleichen Semester absolviert werden.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	sws	Workload
Fachdidaktische Entwicklungsforschung zu ausgewählten Schwerpunkten	Seminar	Wahlpflicht			
Methoden mathematikdidaktischer Forschung	Seminar	Wahlpflicht			
Entwicklung und Optimierung eines fachdidaktischen Forschungsprojekts	Seminar	Wahlpflicht			

Qualifikationsziel

- Die Studierenden kennen die relevanten Schritte in einem empirischen fachdidaktischen Forschungsprojekt und können sie in der Praxis anwenden; sie sind mit dem Wissenschaft-Praxis-Transfer, Methoden der Bildungsforschung, der Genese von Forschungsfragen, Literaturrecherche, dem Lesen wissenschaftlicher Texte und dem Darstellen wissenschaftlicher Ergebnisse vertraut.
- Die Studierenden kennen grundlegende Methoden zur Erforschung von mathematikbezogenen Lernprozessen und können Lernprozesse in umrissenen Feldern exemplarisch erforschen.
- Die Studierenden kennen Verfahren qualitativer und quantitativer empirischer Unterrichtsforschung, können sie anwenden, und können Ergebnisse der Unterrichtsforschung bei der Gestaltung von fachlichen Lernprozessen in verschiedener Weise berücksichtigen.
- Die Studierenden verfügen über die methodischen und die wissenschaftstheoretischen Voraussetzungen zur evidenzbasierten Weiterbildung.

Zu erbringende Prüfungsleistung

keine

Zu erbringende Studienleistung

Studienleistung in allen drei Modulteilen:

- Regelmäßige Teilnahme.
- Lektüre von Forschungsartikeln, Planung und Diskussion von empirischen Projekten.

Im Begleitseminar zur Master-Arbeit "Entwicklung und Optimierung eines fachdidaktischen Forschungsprojekts" zusätzlich:

■ Präsentation der Master-Arbeit.

Benotung

Das Modul ist unbenotet.

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen aller geforderten Studienleistungen

Lehrmethoden

Seminar und Übung in Zusammenhang mit der zu schreibenden Masterarbeit

Zielgruppe

Studierende, die eine fachdidaktische Master-Arbeit in Mathematik schreiben

- Wahlpflichtmodul im M.Ed..-Studiengang Mathematik (PO 2018)
- Wahlpflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021)
- Wahlpflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021)
- Die Modulteile sind auch im M.Ed.-Studiengang der Pädagogischen Hochschule Freiburg verwendbar.

Name des Moduls	Nummer des Moduls
Fachdidaktische Forschung in der Mathematik	07LE23MO-MEB21-WP-FF
Veranstaltung	
Fachdidaktische Entwicklungsforschung zu ausgewählten Schwerpunkten	
Veranstaltungsart	Nummer
Seminar	07LE23S-SmÜ-7-FF_1Entw
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	
Empfohlenes Fachsemester	
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht

In Einzelsitzungen erarbeiten sich die Studierenden sukzessiv notwendige Kompetenzen entlang des empirischen Forschungszyklus. Dem Prinzip "Engagement in Research" (Borg 2010) folgend werden dabei der Wissenschaft-Praxis-Transfer, Methoden der Bildungsforschung, die Genese von Forschungsfragen, Literaturrecherche, das Lesen wissenschaftlicher Texte und das Darstellen wissenschaftlicher Ergebnisse aktiv erarbeitet. Damit erwerben sie einen Überblick über die relevanten Schritte in einem Forschungsprojekt als Voraussetzung eine mögliche empirische Masterarbeit (unabhängig davon, ob sie tatsächlich eine durchführen).

Zudem verfügen die Studierenden in ihrer zukünftigen Tätigkeit als Lehrkraft über die wissenschaftstheoretischen Voraussetzungen zur evidenzbasierten Weiterbildung, nach dem Prinzip des "Engagement with research". Grundlage dafür sind ausgewählte zentrale und aktuelle Forschungsartikel aus mathematikdidaktischen Journals. Anhand laufender Forschungs- und Entwicklungsprojekte am Institut für Mathematische Bildung (IMBF) der Pädagogischen Hochschule Freiburg werden die Studierenden in den tagesaktuellen wissenschaftlichen Betrieb eingeführt und erhalten somit einen fundierten Überblick über die Forschung am IMBF.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Teilnahmevoraussetzung

Kenntnisse und vermittelte Kompetenzen des Moduls "Fachdidaktik Mathematik" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematuik.

Zuteilung eines Studienplatzes im Seminar: Dazu einmalige Anmeldung des Wunsches der Teilnahme am Modul bis Ende des Vorsemesters bei der Abteilung für Didaktik der Mathematik des Mathematischen Instituts der Universität Freiburg.

Name des Moduls	Nummer des Moduls
Fachdidaktische Forschung in der Mathematik	07LE23MO-MEB21-WP-FF
Veranstaltung	
Methoden mathematikdidaktischer Forschung	
Veranstaltungsart	Nummer
Seminar	07LE23S-SmÜ-7-FF_2Meth
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	
Empfohlenes Fachsemester	
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht

Auf der Basis eines realen und erfolgreich abgeschlossenen Forschungsprojektes werden generische Schritte im Zyklus (quantitativer und qualitativer) Forschungsprozesse durchlaufen. In den Sitzungen erarbeiten die Studierenden sich sukzessive einzelne Meilensteine des abgeschlossenen Forschungsprojektes selbst. Dem Prinzip "Engagement in Research" folgend bilden die Studierenden dabei Kompetenzen in den Bereichen Grounded Theory, Qualitative Inhaltsanalyse, Hypothesentesten sowie experimentellen Designs aus, um in ihrer zukünftigen Tätigkeit als Lehrkraft über die methodischen Voraussetzungen zur evidenzbasierten Weiterbildung zu verfügen.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Teilnahmevoraussetzung

Kenntnisse und vermittelte Kompetenzen des Moduls "Fachdidaktik Mathematik" des Zwei-Hauptfächer-Bachelor-Studiengangs Mathematuik.

Zuteilung eines Studienplatzes im Seminar: Dazu einmalige Anmeldung des Wunsches der Teilnahme am Modul bis Ende des Vorsemesters bei der Abteilung für Didaktik der Mathematik des Mathematischen Instituts der Universität Freiburg.

Empfohlene Voraussetzung

Es wird empfohlen, zunächst den ersten Teil des Moduls, "Fachdidaktische Entwicklungsforschung zu ausgewählten Schwerpunkten", zu absolvieren. Beide Teile können aber auch im gleichen Semester absolviert werden.

Name des Moduls	Nummer des Moduls
Fachdidaktische Forschung in der Mathematik	07LE23MO-MEB21-WP-FF
Veranstaltung	
Entwicklung und Optimierung eines fachdidaktischen Forschungsprojekts	
Veranstaltungsart	Nummer
Seminar	07LE23S-SmÜ-7-FF_3Sem
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	
Semesterwochenstunden (SWS)	
Empfohlenes Fachsemester	
Angebotsfrequenz	in jedem Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht

In enger Betreuung durch die Betreuerin bzw. den Betreuer der fachdidaktischen Master-Arbeit erarbeiten sich die Studierenden einen Einblick in jeweils ein ausgewähltes – semesterweise wechselndes – aktuelles Forschungsprojekt am Institut für Mathematische Bildung (IMBF) der Pädagogischen Hochschule Freiburg, unter dem Motto "Engagement in Research".

Nach Fixierung des Themas der eigenen Masterarbeit mit Passung an das Projekt werden die Studierenden in dieser Veranstaltung bei der Durchführung ihrer Studie und dem Verfassen ihrer Masterarbeit begleitet.

Zu erbringende Prüfungsleistung

[siehe beim Modul]

Zu erbringende Studienleistung

[siehe beim Modul]

Teilnahmevoraussetzung

Schreiben einer fachdidaktischen Master-Arebeit in Mathematik unter Betreuung einer Dozentin/eines Dozentend er Pädagogischen Hochschule Freiburg.

Erfolgreiche Teilname an den ersten beiden Teiles des Moduls.

Name des Moduls	Nummer des Moduls
Masterarbeit	07LE23MO-8000-MEd-105- EF90-2021
Verantwortliche/r	
PD Dr. Markus Junker	
Fachbereich / Fakultät	
Fakultät für Mathematik und Physik Mathematisches Institut-VB	

ECTS-Punkte	15,0
Empfohlenes Fachsemester	
Moduldauer	vier Monate
Pflicht/Wahlpflicht (P/WP)	Pflicht
Präsenzstudium	0 Stunden
Selbststudium	450 Stunden
Workload	450 Stunden
Angebotsfrequenz	in jedem Semester

- Im Master-of-Education-Studiengang (auch als Erweiterungsfach mit 90 oder 120 ECTS-Punkten) müssen bereits mindestens 60 ECTS-Punkte erworben sein.
- Eine Master-Arbeit über ein fachdidaktisches Thema in Mathematik setzt die Teilnahme am Modul "Fachdidaktische Forschung" voraus.

Empfohlene Voraussetzung

Für eine Master-Arbeit über ein fachwissenschaftliches Thema in Mathematik wird in den Studiengängen "M.Ed. Mathematik" (PO 2018) und "M.Ed. Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021) die Teilnahme am Modul "Wissenschaftliches Arbeiten" empfohlen, in dem gezielt die Grundlagen für die Arbeit gelegt werden können.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Workload

Inhalt

Hängen vom Thema der Master-Arbeit ab.

Qualifikationsziel

Die Studierenden sind in der Lage, ein fachwissenschaftliches oder fachdidaktisches mathematisches Thema selbständig nach wissenschaftlichen Methoden zu bearbeiten und die Ergebnisse sachgerecht darzustellen.

Zu erbringende Prüfungsleistung

Schriftliche Abschlussarbeit

Zu erbringende Studienleistung

keine

Benotung

Die Note der Master-Arbeit geht in allen drei M.Ed.-Studiengängen mit 1/7 in die Gesamtnote ein.

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen der Abschlussarbeit.

Lehrmethoden

Begleitetes Selbststudium.

Bemerkung / Empfehlung

Im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021) ist eine rein fachdidaktische Master-Arbeit nicht erlaubt; der fachwissenschaftliche Anteil muss mindestens 5 ECTS-Punkte entsprechen.

- Pflichtmodul im M.Ed..-Studiengang Mathematik (PO 2018)
- Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 120 ECTS-Punkten" (PO 2021)
- Pflichtmodul im M.Ed.-Studiengang "Mathematik als Erweiterungsfach mit 90 ECTS-Punkten" (PO 2021)

Epilog

Die aktuelle Version des Modulhandbuchs wurde von der Studienkommission Mathematik im März 2022 verabschiedet und im Mai 2022 um einige Punkte ergänzt.