State Table with unused states

from RS excitation table

		e notice re miss	e that	. W€ 0 →>	
We	are	missing	states	0, 6, 7	

(for both by a I and O transitions), which will become don't cares

> 0150 missing

					I	I		- 1		~ `						
	Pr	esen	t st	ate	Input	Ne	×+ ·	state		t	l;p -	Flop	hoo!	put	5	output
		A	В	C	×	A	B	С	4	SA	RA	56	RB	5,	Re	y
•	2	O	0	1	0	0	0	1		0	×	0	×	X	0	0
	3	0	0)	1	0	١	0		0	×	1	0	0	(0
	4	0	١	0	0	0	١	١		0	×	X	0	1	0	0
	5	0	١	0		١	0	0		1	0	0	١	0	×	0
	6	0	١	1	0	0	0	1		0	×	0)	×	0	0
	7	0	1	١	1	1	0	0			0	0	1	0	l	0
	8	ı	0	0	0	١	0	١		X	0	0	×	١	0	0
	9	1	0	0	١	١	0	0		×	0	0	×	0	×	1
	10	١	0	l	0	0	0	1		0	l	0	×	X	0	0
	11	١	0	[(1	0	0		X	0	0	×	0	l	1

SA	./					
AB	09 ×	01	ιı	10		
00	×	×				
01		I	1			
11	X	X	X	X		
lo	×	X	×			
SA = BX						

RA.						
ABC	× ×	0(lı	10		
00	X	×	×			
01	X			X		
(t	X	X	×	X		
10				$\backslash I$		
RA = CX,						

SB				
ABC	× 00	01	11	10
00	X	X		
٥١	×			
11	X	X	X	×
10				
	S	B =	A, B	Χ

RB				
ABC	× ×	01	11	10
00	X	X		X
01		1	$\overline{\wedge}$	
11	×	X	(X)	*
10	×	X	×	X
•	ρ	LB =	ßχ	+ B

* Is the circuit self correcting?

- A self-correcting circuit is one that, if it enters an unused or invalid state (due to noise, glitches, or other errors), can transition back to a valid state without external intervention.

eg: unused state 000:

$$\frac{ABC}{000} \times \frac{X}{I} = 0 \text{ Sa} = 0 \text{ Shange } S_{B} = 1 \text{ Sc} = 0 \text{ Sc$$

Set flipflop C to 1 000 0001

Set flip flop B to 1, Reset f/f C to 0 000 - 010

Synchronous Counters

A sequential circuit that goes through a predefined sequence of States upon application of input pulses is called a counter.

Counters are useful for generating timing sequences to control operations in a digital system. No external input, no external output.

eg. 1 > 2 > 3 -> 4 -> 5 -> 6 -> 7

Q(E) Present state	Q(t+1) Next state		
A B C	ABC	TA TB TC	* A T flip flop is
0 0 0	0 0 1	0 0 1	generally considered to be the better choice for building Synchronous
/ 0 0	0 1 0	0 1 1	Counters due to its
0 1 0	0 1	0 0 1	toggling behavior
0	1 0 0	1 1	
1 0 0	1 0 1	0 0 1	T=0 no change
101	1 0	0 1 1	T = I Q'(t)
1 1 0		0 0 [
1 1 1	0 0 0		