Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ingeniería en Ciencias y Sistemas Arquitectura de Computadores y Ensambladores 1 Segundo Semestre 2024

Sección: B

Catedrático: Ing. Otto Rene Escobar Leiva

Tutor académico: Jorge Mario Castañeda Cragua

PRÁCTICA 3 CALCULADORA EN ASEMBLER

Matthew Emmanuel Reyes Melgar 202202233

INTRODUCCIÓN

Este documento describe los pasos y detalles técnicos para crear y ejecutar una calculadora en consola escrita en Assembly para AArch64, utilizando Ubuntu 24.04 en un contenedor WSL. La calculadora realiza operaciones aritméticas básicas como suma, resta, multiplicación y división.

La aplicación está desarrollada utilizando el lenguaje ensamblador específico para la arquitectura ARM64 y emplea un enfoque modular, con énfasis en la gestión de errores y validación de entradas por parte del usuario. Todas las operaciones son con enteros y están optimizadas para ejecutarse eficientemente en sistemas ARM64.

OBJETIVOS

General

 Aplicar el conocimiento adquirido sobre la Raspberry Pi y el Internet de las Cosas (IoT) para desarrollar un prototipo funcional que solucione los problemas de monitorización y control de dispositivos electrónicos en la casa inteligente

Específicos

- Diseñar un circuito eléctrico en Proteus que represente dispositivos de automatización del hogar, como sensores y actuadores.
- Configurar la Raspberry Pi para comunicarse con los dispositivos electrónicos a través de interfaces como GPIO, I2C, y SPI.
- Aprender a utilizar Python para el control de los pines GPIO y la gestión de la comunicación con distintos componentes electrónicos.
- Implementar un flujo de control en los sensores para la toma de decisiones automatizada.
- Implementar tecnologías y protocolos IoT para la recolección y transmisión de datos, mejorando la eficiencia y la capacidad de respuesta del sistema.

MARCO TEÓRICO

Descripción del Sistema

Antes de comenzar el desarrollo de la calculadora en ensamblador, asegúrate de contar con lo siguiente:

- Entorno basado en AArch64: Configura WSL con un contenedor de Ubuntu 24.04.
- Compilador y ensamblador: gcc-aarch64-linux-gnu para compilar y ensamblar el código.
- Depurador: gdb-multiarch para depuración de código ensamblador ARM64.

Para instalar los paquetes necesarios, ejecuta los siguientes comandos:

sudo apt update sudo apt install gcc-aarch64-linux-gnu gdb-multiarch make

Estructura del Proyecto

El código de la calculadora está dividido en distintos archivos, con cada operación aritmética implementada en una subrutina independiente para facilitar el mantenimiento y la claridad del código.

Pantallazo de directorios

Menú

Al iniciar la aplicación, se presenta un menú con las siguientes opciones:

- 1. Suma: Suma dos números enteros.
- 2. Resta: Resta dos números enteros.
- 3. Multiplicación: Multiplica dos números enteros.
- 4. División: Divide dos números enteros.
- 5. Cálculo con Memoria: Realiza operaciones consecutivas usando el resultado anterior.
- 6. Salir: Finaliza la calculadora.

El programa se ejecuta en la terminal y el usuario selecciona la opción deseada introduciendo el número correspondiente a la operación que desea realizar.

MODOS DE OPERACIÓN

Suma

- Solicita al usuario ingresar dos números para sumarlos.
- La operación se realiza a nivel de registros utilizando instrucciones ARM64 (ADD).

Resta

- Solicita al usuario ingresar dos números para restarlos.
- La operación se realiza a nivel de registros utilizando la instrucción ARM64 (SUB).
- Se verifica que el resultado no sea negativo, de lo contrario se muestra un mensaje de error.

Multiplicación

- Solicita al usuario ingresar dos números para multiplicarlos.
- La operación utiliza la instrucción MUL de ARM64 para realizar la multiplicación en registros.

División

- Solicita al usuario ingresar dos números para dividir el primero por el segundo.
- La división entera se realiza utilizando SDIV en ARM64, que devuelve solo la parte entera de la división.
- Se valida que el divisor no sea cero, de lo contrario se muestra un mensaje de error.

Cálculo con Memoria

Esta opción permite realizar operaciones consecutivas, utilizando el resultado anterior como el primer operando de la siguiente operación.

Errores y Validaciones

El programa incluye las siguientes validaciones y manejo de errores:

- Validación de entradas no numéricas: El programa verifica que el usuario introduzca solo valores enteros.
- Prevención de división por cero: Antes de realizar una división, se valida que el divisor no sea 0, y se muestra un mensaje de error en caso de que lo sea.

Una vez que el código ha sido ensamblado y enlazado, la aplicación se ejecuta utilizando el siguiente comando:

El usuario interactuará con la calculadora a través de la terminal, seleccionando las opciones del menú para realizar las operaciones deseadas.

Ejecución del programa:

Encabezado:

Menú de operaciones:

```
|| ------|
|| 1. Suma
|| 2. Resta
|| 3. Multiplicacion
|| 4. Division
|| 5. Calculo con memoria
|| 6. Finalizar calculadora
||
```

Operaciones:

```
|| > Selecciona una opcion: 1
|| -------|
|| 1. Separados por Coma
|| 2. Ingresar Numero por numero
|| -------|
|| > Ingrese respuesta: 1
|| >Ingrese valores separados por coma: 20,9
|| La suma es: 29
```

Operación con memoria:

```
|| > Selecciona una opcion: 5

|| >El resultado es:
0

10+20
|| >El resultado es:
30

30-15
|| >El resultado es:
15

15/5
|| >El resultado es:
3

202202233-exit
|| Presiona Enter para continuar...
```

CONCLUSIÓN

Este manual técnico detalla el proceso de desarrollo de una calculadora en consola escrita en Assembly para AArch64. La calculadora está diseñada para manejar operaciones aritméticas básicas con validación y manejo de errores, proporcionando una interacción amigable a través de la consola.