FIT5201 - Data analysis algorithms

Module 2: Linear Models for Regression

Part B:

Bias-Variance Analysis

Module 2: Linear Models for Regression

- ☐ Module Objectives
 - □ Provide a deep understanding of linear regression models

□ Part B (Week 4):

- Bias-Variance Analysis (Understanding)
- Bias-Variance in Regression (**Tutorial**)

Part B

Bias-Variance Analysis

http://scott.fortmann-roe.com/docs/BiasVariance.html

Bias and Variance

☐ How to understand Bias and Variance in machine learning Bias: indicate the accuracy of the models Variance: indicate how consistent the models are ■Why do we need to understand Bias and Variance? Diagnose model performance ☐ Avoid the mistakes of over-fitting & under-fitting Regularization?

Bias and Variance

Conceptual Definition

Conceptual Definition: Bias

Bias Error

Difference between the expected (or average) prediction of our model and the correct value of the true model (one we are trying to predict)

Why "expected" or "average" prediction of our model?

Recall the management of "uncertainty" for frequentists:

you need to repeat your model learning process many times:

- oEach time you create a new model with new training set.
- You will have N different models whose predictions are various.

Bootstrap for Quantifying Uncertainty

Imagine

- o We only have D, and our goal is to fit a model with parameter w to the given dataset.
- o We found w that maximises the probability of observation D.
- o We wonder if w would change if we have an alternate dataset D'
- o If we do this exercise for several alternate datasets, then we will a *distribution* over estimates for w.
- o If this distribution is higher, the more uncertainty on w.

Now, the problem is how to get the alternate datasets?

Bootstrap Example

- □ A bootstrap sample is a random sample conducted with replacement
 - 1. Randomly select an observation from the original data
 - Write it down
 - 3. Put it back (i.e. Any observation can be selected more than once)

Repeat these steps 1-3 N times; N is the number of observations in the original sample

Conceptual Definition: Bias

Bias Error

Difference between the expected (or average) prediction of our model and the correct value of the true model (one we are trying to predict)

Why "expected" or "average" prediction of our model?

Recall the management of "uncertainty" for frequentists: you need to repeat your model learning process many times:

- oEach time you create a new model with new training set.
- OYou will have N different models whose predictions are various.

What does Bias measure?

How far off in general multiple models' predictions are from the correct value. (the tendency to consistently learn the same wrong thing)

Conceptual Definition: Variance

Variance Error

Variability of a model prediction for a given data point.

What does Variance measure?

Again, imagine you repeat your model learning process many times.

The variance is how inconsistent are the predictions from one another, over different training sets, not whether they are accurate or not.

Bias and Variance

Graphical Definition

Graphical Definition: Bias & Variance

roe.com/docs/BiasVariance.html)

12

Graphical Definition: Bias & Variance

The prediction errors are characterised by the combination of Bias & Variance

Bias and Variance

Model Complexity vs Bias-Variance

Settings

A training set $D := \{(x_n, t_n)\}_{n=1}^N$

p(x): the input data points x are generated according to this distribution

h(x): the target value t are generated according to this function

y(x): linear basis function model we learned from D

Generalization Error

$$\varepsilon_{h,p}(y) \coloneqq \int [y(x) - h(x)]^2 p(x) dx$$

If can be computed, done!

But we do not know h(x) and p(x)

Settings

A training set $D := \{(x_n, t_n)\}_{n=1}^N$

p(x): the input data points x are generated according to this distribution

h(x): the target value t are generated according to this function

y(x): linear basis function model we learned from D

Generalization Error

$$\varepsilon_{h,p}(y) \coloneqq \int [y(x) - h(x)]^2 p(x) dx$$

If can be computed, done!

But we do not know h(x) and p(x)

Any idea? Removing these unknown items

Bootstrap Idea

- \triangleright Remove p(x)
- \rightarrow y(x) is actually y(x, w)
- Frequentist: estimate w based on D, which is independently drawn from the underlying distribution p(x).
- \triangleright Bootstrap: simulate p(x) using one data set D
- > Suppose that we had a large number of data sets, for any given data set D, we can learn a model y(x, D)

Generalization Error on one data set

$$[y(x,D) - h(x)]^2$$

Take expectations over the ensemble of data sets

$$\begin{split} &E_D[\{y(x;D)-h(x)\}^2] \\ &= E_D[\{y(x;D)-E_D[y(x;D)]+E_D[y(x;D)]-h(x)\}^2] \\ &= E_D[\{y(x;D)-E_D[y(x;D)]\}^2+\{E_D[y(x;D)]-h(x)\}^2\\ &= E_D[\{y(x;D)-E_D[y(x;D)]\}^2]^2+E_D[\{E_D[y(x;D)]-h(x)\}^2] \\ &= E_D[\{y(x;D)-E_D[y(x;D)]\}^2]^2+\{E_D[y(x;D)]-h(x)\}^2\\ &= E_D[\{y(x;D)-E_D[y(x;D)]\}^2]^2+\{E_D[y(x;D)]-h(x)\}^2\\ &= E_D[\{y(x;D)-E_D[y(x;D)]\}^2]^2+\{E_D[y(x;D)]-h(x)\}^2\\ \end{split}$$

 $generalisation\ error = bias^2 + variance$

Bias-Variance & Model Complexity

 $generalisation\ error = bias^2 + variance$

Our goal: minimize the generalization error

Trade-off: very flexible models having low bias and high variance, and

relatively rigid models having high bias and low variance

Bias and Variance

Examples of Model Complexity

Model complexity: controlled by regularization parameter

Underlying function: $h = \sin(2\pi x)$

Number of datasets: 100 (indexed by *l*)

Size of each dataset: 25

Model: 24 Gaussian basis functions

Regularization function: Ridge

smaller value of regularization parameter

- -> smaller weight on penalizing complexity of model
- -> model more complex
- -> smaller bias and larger variance

Quantitative analysis

$$\begin{split} \bar{y}(x) &:= \frac{1}{L} \sum_{l=1}^{L} y^{(l)}(x) \\ \text{bias}^2 &:= \frac{1}{N} \sum_{n=1}^{N} \left[\bar{y}(x_n) - h(x_n) \right]^2 \\ \text{variance} &:= \frac{1}{N} \sum_{n=1}^{N} \frac{1}{L} \sum_{l=1}^{L} \left[y^{(l)}(x_n) - \bar{y}(x_n) \right]^2 \\ \text{test error} &:= \frac{1}{L} \sum_{l=1}^{L} \frac{1}{N} \sum_{n=1}^{N} \left[y^{(l)}(x_n) - h(x_n) \right]^2 \end{split}$$

Quantitative analysis

$$\bar{y}(x) := \textstyle\frac{1}{L} \textstyle\sum_{l=1}^L y^{(l)}(x)$$

$$\text{bias}^2 := \frac{1}{N} \sum_{n=1}^{N} \left[\bar{y}(x_n) - h(x_n) \right]^2$$

$$\text{variance} := \frac{1}{N} \sum_{n=1}^{N} \frac{1}{L} \sum_{l=1}^{L} \left[y^{(l)}(x_n) - \bar{y}(x_n) \right]^2$$

test error :=
$$\frac{1}{L} \sum_{l=1}^{L} \frac{1}{N} \sum_{n=1}^{N} [y^{(l)}(x_n) - h(x_n)]^2$$

Explanations about what happened when lambda became larger?

Quantitative analysis

$$\begin{split} \bar{y}(x) &:= \frac{1}{L} \sum_{l=1}^{L} y^{(l)}(x) \\ \text{bias}^2 &:= \frac{1}{N} \sum_{n=1}^{N} \left[\bar{y}(x_n) - h(x_n) \right]^2 \\ \text{variance} &:= \frac{1}{N} \sum_{n=1}^{N} \frac{1}{L} \sum_{l=1}^{L} \left[y^{(l)}(x_n) - \bar{y}(x_n) \right]^2 \\ \text{test error} &:= \frac{1}{L} \sum_{l=1}^{L} \frac{1}{N} \sum_{n=1}^{N} \left[y^{(l)}(x_n) - h(x_n) \right]^2 \end{split}$$

- 1. As lambda becomes larger (model becomes simpler), bias increases while variance decreases
- The generalization error derived from frequentist view is quit similar to the test error

Quantitative analysis

$$ar{y}(x) := rac{1}{L} \sum_{l=1}^L y^{(l)}(x)$$

$$\text{bias}^2 := \frac{1}{N} \sum_{n=1}^{N} \left[\bar{y}(x_n) - h(x_n) \right]^2$$

$$\text{variance} := \frac{1}{N} \sum_{n=1}^{N} \frac{1}{L} \sum_{l=1}^{L} \left[y^{(l)}(x_n) - \bar{y}(x_n) \right]^2$$

test error :=
$$\frac{1}{L} \sum_{l=1}^{L} \frac{1}{N} \sum_{n=1}^{N} [y^{(l)}(x_n) - h(x_n)]^2$$

How to find the "sweet spot"?

Quantitative analysis

$$\bar{y}(x) := \frac{1}{L} \sum_{l=1}^{L} y^{(l)}(x)$$

$$\text{bias}^2 := \frac{1}{N} \sum_{n=1}^{N} \left[\bar{y}(x_n) - h(x_n) \right]^2$$

$$\text{variance} := \frac{1}{N} \sum_{n=1}^{N} \frac{1}{L} \sum_{l=1}^{L} \left[y^{(l)}(x_n) - \bar{y}(x_n) \right]^2$$

test error :=
$$\frac{1}{L} \sum_{l=1}^{L} \frac{1}{N} \sum_{n=1}^{N} [y^{(l)}(x_n) - h(x_n)]^2$$

An indication of overfitting and underfitting?

□ Prediction goal - learn the function:

$$h(x) = \sin(2\pi x) + \epsilon,$$

□ Training data:

100 sampled data points generated by the function h

□ Prediction Models: 3 modes

o 0-order polynomial: $y = w_0$

o 1-order polynomial: $y = w_0 + w_1 x$

o 3-order polynomial: $y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x^3$

o 15-order polynomial: $y = w_0 + w_1 x_1 + \cdots + w_{15} x^{15}$

☐ 100 training data points

□ The true function and its curve: $h(x) = \sin(2\pi x) + \epsilon$

☐ The 0-degree polynomial model: $y = w_0$ (red line)

☐ The 1-degree polynomial model: $y = w_0 + w_1x$ (blue line)

☐ The 3-degree polynomial model: $y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$ (orange curve)

☐ The 15-degree polynomial model: $y = w_0 + w_1 x + \cdots + w_{15} x^{15}$ (green curve)

Bias? Variance?

- \Box Estimate the bias and variance at the point x = 0.3
- 100-time experiments: 0-order polynomial

- \Box Estimate the bias and variance at the point x = 0.3
- 100-time experiments: 1-order polynomial model

- \Box Estimate the bias and variance at the point x = 0.3
- 100-time experiments: 3-order polynomial model

- \Box Estimate the bias and variance at the point x = 0.3
- 100-time experiments: 15-order polynomial model

Comparison: controlled by number of parameters (quantitative)

Model	Bias	Variance	MSE
0-order Poly	0.9117	0.0052	1.0361
1-order Poly	0.3353	0.0039	0.4539
3-order Poly	0.0039	0.0028	0.1032
15-order Poly	0.0008	0.0121	0.1069

Worst=Blue, Best=Red

Useful Guidance in Practice

Key things to think about when managing Bias and Variance

My model has a high error on a test set. Do I need to train my model on a larger dataset?

- □When your model has a high variance, you can try this.
- ☐But if your model has a high bias, it will not fix the problem.

Useful Guidance in Practice

Key things to think about when managing Bias and Variance

Do I need to train my model with smaller sets of features (i.e. predictors)?

□When your model has a high variance, you can try this.

□But if your model has a high bias, it will not fix the problem.

Do I need to obtain new features?

□When your model has a high bias, usually this way works well.

Tutorial (Week 4)

Bias and Variance in Regression.

What will we learn in Week 5

- □ Part A in Module 3
 - □Linear Models for Classification
- □ Online quiz has been released

