Разработка программного обеспечения для моделирования взаимодействия пневматической шины и грунта

Руководитель: Белова И.М.

Дипломник: Горбачева О.В.

Цель работы

Разработка компьютерной программы для расчета параметров шины и грунта при проходе колесного автомобиля по мягким грунтовым поверхностям.

Зависимость деформации грунта от нормальной нагрузки

- q_s несущая способность грунта;
- z глубина колеи;

Влияние ширины штампа на характеристику деформации грунта

b — ширина штампа; $H_{ec{ec{I}}}$ — толщина мягкого слоя; $H_{ec{II}}$ — высота призмы выпирания;

Модель взаимодействия шины с мягким грунтом

$$q = \frac{E \cdot z}{0.5 \cdot a \cdot b \cdot arctg\left(\frac{H_{\Gamma} - z}{0.5 \cdot a \cdot b}\right) + \frac{2 \cdot I \cdot E \cdot z \cdot Q}{q_s}},$$

$$q_s = I_1 \cdot X_1 \cdot \rho \cdot b + I_2 \cdot X_2 \cdot c_0 + I_2 \cdot X_3 \cdot \rho \cdot z,$$

$$I = \frac{0,03 + \frac{l}{b}}{0,6 + 0,43 \cdot \frac{l}{b}}, \quad I_1 = \frac{1,4 \cdot l}{(l + 0,4 \cdot b)}, \quad I_2 = \frac{0,75 \cdot (l + b)}{(l + 0,5 \cdot b)},$$
$$a = 0,64 \cdot (1 + \frac{b}{H_{\Gamma}}), \qquad Q = \frac{\pi}{2} \operatorname{arctg} \frac{\pi}{2} \frac{H_{\Gamma} - z}{2b},$$

$$X_1 = \frac{\rho \cdot 1 - X^4}{X^6}, \quad X_2 = \frac{1, 3 \cdot c_0 \cdot X^2 + 1}{X^4}, \quad X_3 = \frac{\rho}{X^6}, \quad X = tg(\frac{\pi}{4} - \frac{\rho_0}{2})$$

Решение задачи сводится к решению системы 9 нелинейных уравнений

$$\begin{cases} P_{Z} = 0,25 \cdot \pi \cdot q_{uv} ((1 - \xi \cdot 0,5) \cdot 2 \cdot b \cdot \sqrt{D \cdot h - h^{2}} + \xi \cdot b_{k} \sqrt{D \cdot (h + z) - (h + z)^{2}}), \\ q_{o} = \frac{q_{uv}}{1 + \frac{\upsilon}{2 \cdot \varphi_{o} \cdot l}}, \\ b_{k} = b + h, \\ l = \sqrt{D \cdot h - h^{2}} + \sqrt{D \cdot (h + z) - (h + z)^{2}}, \\ I = \frac{0,03 \cdot (b + b_{k}) + 2 \cdot l}{0,6 \cdot (b + b_{k}) + 0,86 \cdot l}, \\ I_{1} = \frac{l}{l + 0,2 \cdot (b + b_{k})}, \\ I_{2} = \frac{l + b}{l + 0,5 \cdot b}, \\ q_{uv} = \frac{\pi \cdot h \cdot (p_{0} + p_{w})}{2 \cdot b} (\frac{B}{H} + \frac{3}{2} \frac{H}{B})(1 - \frac{h}{B}), \\ q_{o} = \frac{E \cdot z}{0,5 \cdot a \cdot (b + b_{k}) \cdot arctg} (\frac{H_{F} - z}{0,5 \cdot a \cdot (b + b_{k})}) + \frac{2 \cdot I \cdot E \cdot z \cdot arctg}{\pi (I_{1}X_{1}k_{\beta_{1}}b + I_{2}X_{2}k_{\beta_{2}}c_{0} + X_{3}z)} \end{cases}$$

Метод Ньютона

для решения системы нелинейных уравнений

Пусть дана система нелинейных уравнений

$$\begin{cases} f_1(x_1, x_2, x_3, ..., x_n) = 0, \\ f_2(x_1, x_2, x_3, ..., x_n) = 0, \\ ... \\ f_n(x_1, x_2, x_3, ..., x_n) = 0, \end{cases}$$
 или $\mathbf{f}(\mathbf{X}) = 0.$

Корень имеет вид:
$$\mathbf{x} = \mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}$$

$$f(\mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}) = f(\mathbf{x}^{(k)}) + f'(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)} = 0, \qquad f'(\mathbf{x}) = W(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_i}{\partial x_j} \\ \frac{\partial f_i}{\partial x_j} \end{bmatrix}_{i,j=1,2,\dots,n}.$$

$$W(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)} = -f(\mathbf{x}^{(k)}) \qquad (1)$$

Для решения уравнения (1) относительно $\Delta x^{(k)}$ можно воспользоваться LU-разложением.

Представляем исходную матрицу $W(\mathbf{x}^{(k)})$ в виде:

$$W(\mathbf{x}^{(k)}) = L \cdot U$$

Тогда $W(\mathbf{x}^{(k)})\Delta\mathbf{x}^{(k)} = -\mathbf{f}(\mathbf{x}^{(k)})$ примет вид:

$$(L \cdot U) \cdot \Delta \mathbf{x}^{(k)} = L \cdot \underbrace{(U \cdot \Delta \mathbf{x}^{(k)})}_{\mathbf{v}^{(k)}} = -\mathbf{f}(\mathbf{x}^{(k)})$$

Решаем первое уравнение относительно $y^{(k)}$:

$$L \cdot \mathbf{y}^{(k)} = -\mathbf{f}(\mathbf{x}^{(k)})$$

Затем второе относительно $\Delta x^{(k)}$:

$$U \cdot \Delta \mathbf{x}^{(k)} = \mathbf{y}^{(k)}$$

Тогда следующее приближение:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}$$
.

Результаты вычислений

Первый проход:

	H_{r}, M	E	,Па	$c_0, \Pi a$	$\rho_{\scriptscriptstyle C}$, \hbar	cг / м ³	$arphi_{\scriptscriptstyle 0}$, град	
	0,6	6,4	1·10 ⁶	10150	10	000	10,32	
$q_{u_{(1)}}$	$q_{\delta_{\!\scriptscriptstyle (1)}}$	$b_{k_{(1)}}$	$I_{(1)}$	$I_{1_{(1)}}$	$I_{2_{(1)}}$	l ₍₁₎	h ₍₁₎	Z ₍₁₎
88193	69716	0,43	1,54	0,87	1,13	0,91	0,15	0,22

Второй проход:

H_{r}, M	Е,Па	$c_0, \Pi a$	$\rho_{\rm C}$, κ z / ${\it M}^3$	$arphi_0$, град
0,35	7·10 ⁶	$10,8 \cdot 10^3$	1033	10,9

$q_{u_{(2)}}$	$q_{\delta_{(2)}}$	$b_{k_{(2)}}$	$I_{(2)}$	$I_{1_{(2)}}$	$I_{2_{(2)}}$	$l_{(2)}$	$h_{(2)}$	$Z_{(2)}$
89·10 ³	$70 \cdot 10^3$	0,46	1,48	0,86	1,14	0,86	0,18	0,027

Зависимость деформации шины и глубины колеи от внутреннего давления в шине

Выводы

- □ Разработана программа, которая рассчитывает параметры пневматической шины и грунта при проходе колесного автомобиля по мягкой грунтовой поверхности;
- □Реализованы два метода решения системы 9 нелинейных уравнений: метод простых итераций и метод Ньютона;
- □Программа учитывает количество проходов автомобиля, то есть количество колес, проходящих по одной и той же колее