Standard sets of strings

Definition of A^n , A^+ and A^*

Let A be an alphabet

- A^n = the set of all strings over A with length n
- A^+ = the set of all strings over A with length greater than 0
- A^* = the set of all strings over A
- $A^0 = \{\epsilon\}$
- $A^+ = \bigcup_{n>0} A^n$
- $A^* = \bigcup_{n>0} A^n = A^0 \cup A^+$

Formal language: syntactic notion of language

Definition

A language L over an alphabet A is a subset of A^*

Example

The set L_{id} of all identifiers

- $A = \{'a', ..., 'z'\} \cup \{'A', ..., 'Z'\} \cup \{'0', ..., '9'\}$
- $L_{id} = \{$ "a", "b", ..., "a0", "a1", ... $\}$

Problem

Is it possible to define *L* in a finite way?

Solution: define \boldsymbol{L} as the composition of simpler languages

Composition operators between languages

- concatenation: $L_1 \cdot L_2 = \{u \cdot w \mid u \in L_1, w \in L_2\}$
- union: $L_1 \cup L_2$

Intuition

Union

 $L = L_1 \cup L_2$: any string of L is either a string of L_1 or a string of L_2

Example:

$$\mathit{L}' = \{ \text{ "a"}, \ldots, \text{ "z"} \} \cup \{ \text{ "A"}, \ldots, \text{ "Z"} \}$$

Concatenation

 $L = L_1 \cdot L_2$: any string of L is a string of L_1 followed by a string of L_2

Examples:

- $\bullet \ \{\text{"a","ab"}\} \cdot \{\epsilon,\text{"1"}\} = \{\text{"a","ab","a1","ab1"}\}$
- $L_{id} = L' \cdot A^*$ with $A = \{'a', ..., 'z'\} \cup \{'A', ..., 'Z'\} \cup \{'0', ..., '9'\}$

3/6

BRIS LPO 2019-20

More on languages

Monoids and languages

- concatenation is associative, but not commutative
- $A^0(=\{\epsilon\})$ is the identity element

Iteration of concatenation

 L^n defined by induction on n (natural number):

- $L^0 = A^0 (= \{\epsilon\})$
- $\bullet L^{n+1} = L \cdot L^n$

Intuition: L^n is L concatenated with itself n times

+ and * operators

- $L^+ = \bigcup_{n>0} L^n$
- $L^* = \bigcup_{n>0} L^n$ (* is called the Kleene star)
- equivalently, $L^* = L^0 \cup L^+$

◆ロ → ◆ 日 → ◆ 目 → ● ◆ 9 Q ®

DIBRIS LPO 2019-20

Intuition

1+

Any string of L^+ is obtained by concatenating one of more strings of L

L*

Any string of L^* is obtained by concatenating zero of more strings of L

Example: ${ "0", "1" }^* = { \epsilon, "0", "1", "00", "01", "10", "11", ... }$ Remark 1: concatenating zero strings means the empty string

Remark 2: $L^+ = L \cdot L^*$

Regular expressions

A commonly used formalism for defining simple languages (=syntax)

What are regular expressions?

Inductive definition of regular expressions over an alphabet A

- base cases:
 - Ø is a regular expression over A
 - ϵ is a regular expression over A
 - for all $\sigma \in A$, σ is a regular expression over A
- inductive cases:
 - if e_1 and e_2 are regular expression over A, then $e_1|e_2$ is a regular expression over A
 - if e_1 and e_2 are regular expression over A, then e_1 e_2 is a regular expression over A
 - if e is a regular expression over A, then e^* is a regular expression over A
 - if e is a regular expression over A, then (e) is a regular expression over A