NMB - Oefenzitting 2:	
Conditie van kleinste kwadratenprobleem en	
stabiliteit van kleinste kwadratenalgoritmes	
Hendrik Speleers	
<□ > < □ > < □ > < Ē > < Ē > ○ Ē · ♡Q(°	
Overzicht	
	Nota's
Singuliere waarden ontbinding	
omganere waaraan ontomama	
QR	
Kleinste kwadratenprobleem	
Conditie / Stabiliteit	
Commission	
Complexiteit	

Nota's

Singuliere waarden ontbinding

 $A \in \mathbb{R}^{m \times n}, \quad m > n, \quad \text{rang } n$ $U \in \mathbb{R}^{m \times m}, \quad U_1 \in \mathbb{R}^{m \times n}, \quad U_2 \in \mathbb{R}^{m \times (m-n)}$ $\Sigma \in \mathbb{R}^{m \times n}, \quad \Sigma_1 = \text{diag}(\sigma_1, \dots, \sigma_n) \in \mathbb{R}^{n \times n}$ $V \in \mathbb{R}^{n \times n}$ $U^T U = I, \quad V^T V = I$

$$A = U\Sigma V^{T} = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \underline{\Sigma_1} \\ 0 \end{bmatrix} V^{T}$$

QR

 $A \in \mathbb{R}^{m \times n}, \quad m > n, \quad \mathrm{rang} \ n$ $Q \in \mathbb{R}^{m \times m}, \quad Q_1 \in \mathbb{R}^{m \times n}, \quad Q_2 \in \mathbb{R}^{m \times (m-n)}$ $R \in \mathbb{R}^{m \times n}, \quad R_1 \in \mathbb{R}^{n \times n}, \quad \mathrm{bovendriehoeks}$ $Q^T Q = I$

$$A = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$

Nota's			
lota's			

Kleinste kwadratenprobleem

► Gegeven : A, b

► Gevraagd : *x*

▶ zodat : $||Ax - b||_2$ minimaal

Bijvoorbeeld op te lossen met QR of SWO

$$x = R_1^{-1} Q_1^T b, \qquad x = V \Sigma_1^{-1} U_1^T b$$

Pseudoinverse van A

$$A^{+} = (A^{T}A)^{-1}A^{T} = R_{1}^{-1}Q_{1}^{T} = V\Sigma_{1}^{-1}U_{1}^{T}$$

Projectie van b op range A

$$y = A^+ x = Pb$$

Conditie van kleinste kwadratenprobleem

- ► Conditie van een probleem
- ► Stabiliteit van een algoritme voor een probleem

$$heta = \cos^{-1} rac{\|y\|}{\|b\|}, \quad \eta = rac{\|A\| \|x\|}{\|y\|}, \quad \kappa(A) = \|A\| \|A^+\|$$

$$\kappa_{KK(A,b)\to(x,y)}: \begin{array}{c|cccc} & y & x \\ \hline b & \frac{1}{\cos\theta} & \frac{\kappa(A)}{\eta\cos\theta} \\ A & \frac{\kappa(A)}{\cos\theta} & \kappa(A) + \frac{\kappa(A)^2\tan\theta}{\eta} \end{array}$$

Nota's		

Nota's

Stabiliteit van kleinste kwadratenalgoritmes

- ► Conditie van een probleem
- ► Stabiliteit van een algoritme voor een probleem
- ▶ NormaalvgIn : onstabiel als $\kappa(A) \gg 1$ en
 - $\tan \theta \approx 0$ of
 - $\eta \approx \kappa(A)$
- ► Gewijzigde GS QR : stabiel indien juist gebruikt
- ► Householder QR : stabiel
- ► SWO : stabiel

Complexiteit

Normaalvgln : $mn^2 + \frac{1}{3}n^3$

Gewijzigde GS: 2mn²

Householder: $2mn^2 - \frac{2}{3}n^3$

iota 5				
loto'o				
Nota's				
lota's				
Jota's				
lota's				
lota's				
Jota's				
Jota's				
Nota's				
lota's				
lota's				
Jota's				
Jota's				

Nota's