Linguistic Knowledge in Neural Networks

Chris Dyer

What is linguistics?

- How do human languages represent meaning?
- How does the mind/brain process and generate language?
- What are the possible/impossible human languages?
- How do children learn language from a very small sample of data?

An important insight

Sentences are hierarchical

- (1) a. The talk I gave did not appeal to anybody.
 - b. *The talk I gave appealed to anybody.

Generalization hypothesis: not must come before anybody

(2) *The talk I did not give appealed to anybody.

Language is hierarchical

Generalization: not must "structurally precede" anybody

- the psychological reality of structural sensitivty is not empirically controversial
 - many different theories of the details of structure
- hypothesis: kids learn language easily because they don't consider many "obvious" structurally insensitive hypotheses

Examples adapted from Everaert et al. (TICS 2015)

Recurrent neural networks

A good model of language?

- Recurrent neural networks are incredibly powerful models of sequences (e.g., of words)
 - In fact, RNNs are Turing complete! (Siegelmann, 1995)
- But do they make good generalizations from finite samples of data?
 - What inductive biases do they have?
 - What assumptions about representations do models that use them make?

Recurrent neural networks Inductive bias

- Understanding the biases of neural networks is tricky
 - We have enough trouble understanding the representations they learn in specific cases, much less general cases!
- But, there is lots of evidence RNNs prefer sequential recency
 - Evidence 1: Gradients become attenuated across time
 - Analysis; experiments with synthetic datasets (yes, LSTMs help but they have limits)
 - Evidence 2: Training regimes like reversing sequences in seq2seq learning
 - Evidence 3: Modeling enhancements to use attention (direct connections back in remote time)
- Chomsky (to crudely paraphrase 60 years of work):
 sequential recency is not the right bias for effective learning of human language.

Topics

- Recursive neural networks for sentence representation
- Recurrent neural network grammars and parsing
- Word representations by looking inside words (words have structure too!)
- Analysis of neural networks with linguistic concepts

Input sentence:

this film is hardly a treat

Task: Classify this sentence as having either positive or negative sentiment.

Why might this sentence pose a problem for interpretation?

Bag of words:

Recurrent neural network

How do languages express meaning?

- Principle of compositionality: the meaning of a complex expression is determined by the meanings of its constituent expressions and the rules that combine them.
- Syntax and parsing
 - Syntax is the study of how words fit together to form phrases and ultimately sentences
 - We can use syntactic parsing to decompose sentences into constituent expressions and rules that were used to construct them out of more primitive expressions (and ultimately individual words)

Syntax as Trees

Recursive Neural Network

Socher et al. (ICML 2011), et passim

Recursive Neural Network

"Syntactic untying"

Representing Sentences

- Bag of words/n-grams
- Convolutional neural network
- Recurrent neural network
- Recursive neural network
- In all of these, we can train by backpropagating through the "composition function"

Stanford Sentiment Treebank

Socher et al. (2013, EMNLP)

Internal Supervision

Some Results

	all	"not good"	"not terrible"
Bigram Naive Bayes	83.1	19.0	27.3
RecNN (RNTN form)	85.4	71.4	81.8

$$\begin{aligned} \mathbf{h} &= \tanh \left(\mathbf{V} \mathrm{vec}([\boldsymbol{\ell}; \mathbf{r}] \otimes [\boldsymbol{\ell}; \mathbf{r}]) + \mathbf{W}[\boldsymbol{\ell}; \mathbf{r}] + \mathbf{b} \right) \\ \uparrow \\ \text{Outer product} \end{aligned}$$

Some Predictions

Predictions by RNTN variant of RecNN.

Many Extensions

- · Various cell definitions, e.g., (matrix, vector) pairs, higher order tensors
- Improved gradient dynamics using tree cells defined in terms of LSTM updates with gating instead of RNN. Exercise: generalize the definition of a sequential LSTM to the tree case. Check the paper.
- n-ary children
- "Inside outside" networks provide an analogue to bidirectional RNNs (lecture from a few weeks ago)
- Dependency syntax rather than "phrase structure" syntax
- Applications to programming languages, visual scene analysis anywhere you can get trees, you can apply RecNNs

Recursive vs. Recurrent

Advantages

- Meaning decomposes roughly according to the syntax of a sentence (and we have good tools for obtaining syntax trees for sentences) — better inductive bias
- Shorter gradient paths on average (log₂(n) in the best case)
- Internal supervision of the node representations ("auxiliary objectives") is sometimes available

Disadvantages

- · We need parse trees
- Trees tend to be right-branching—gradients still have a long way to go!
- More difficult to batch than RNNs

Topics

- Recursive neural networks for sentence representation
- Recurrent neural network grammars and parsing
- Word representations by looking inside words (words have structure too!)
- Analysis of neural networks with linguistic concepts

Where do trees come from?

An alternative to RNN LMs Recurrent Neural Net Grammars

- Generate symbols sequentially using an RNN
- Add some control symbols to rewrite the history occasionally
 - Occasionally compress a sequence into a constituent
 - RNN predicts next terminal/control symbol based on the history of compressed elements and non-compressed terminals
- This is a top-down, left-to-right generation of a tree+sequence

Example derivation

The hungry cat meows loudly

action	probability
NT(S)	$p(NT(S) \mid TOP)$
NT(NP)	$p(NT(NP) \mid (S)$
GEN(The)	$p(GEN(The) \mid (S, (NP))$
GEN(hungry)	$p(GEN(hungry) \mid (S, (NP, I))$
GEN(cat)	$p(\text{GEN}(cat) \mid \dots) \qquad The)$
REDUCE	$p(\text{REDUCE} \mid \ldots)$
NT(VP)	$p(NT(VP) \mid (S, VP, T' \mid I))$
GEN(meows)	(NP The hungry cat)
REDUCE	
GEN(.)	
REDUCE	
	NT(S) NT(NP) GEN(The) GEN(hungry) GEN(cat) REDUCE NT(VP) GEN(meows) REDUCE GEN(.)

Some things you can (easily) prove

- Valid (tree, string) pairs are in bijection to valid sequences of actions (specifically, the DFS, left-to-right traversal of the trees)
- Every stack configuration perfectly encodes the complete history of actions.
- Therefore, the probability decomposition is justified by the chain rule, i.e.

$$p(\mathbf{x}, \mathbf{y}) = p(actions(\mathbf{x}, \mathbf{y}))$$
 (prop 1)
 $p(actions(\mathbf{x}, \mathbf{y})) = \prod_{i} p(a_i \mid \mathbf{a}_{< i})$ (chain rule)
 $= \prod_{i} p(a_i \mid stack(\mathbf{a}_{< i}))$ (prop 2)

Modeling the next action

1. unbounded depth

1. Unbounded depth → recurrent neural nets

Modeling the next action

2. arbitrarily complex trees

- 1. Unbounded depth → recurrent neural nets
- 2. Arbitrarily complex trees → recursive neural nets

Syntactic composition

Need representation for: (NP *The hungry cat*)

What head type?

Syntactic composition

Need representation for: (NP *The hungry cat*)

Syntactic composition

Need representation for: (NP *The hungry cat*)

Syntactic composition **Recursion**

Need representation for: (NP The hungry cat) (NP The (ADJP very hungry) cat)

Modeling the next action

- 1. Unbounded depth → recurrent neural nets
- 2. Arbitrarily complex trees → recursive neural nets

Modeling the next action

```
p(a_i \mid \text{(S (NP \textit{The hungry cat)}} \mid \text{(VP meows)}) \sim \text{REDUCE} p(a_{i+1} \mid \text{(S (NP \textit{The hungry cat)}} \mid \text{(VP meows)})
```

3. limited updates

- 1. Unbounded depth → recurrent neural nets
- 2. Arbitrarily complex trees → recursive neural nets
- 3. Limited updates to state → stack RNNs

Stack RNNs

Operation

- Augment RNN with a stack pointer
- Two constant-time operations
 - Push read input, add to top of stack
 - Pop move stack pointer back
- A summary of stack contents is obtained by accessing the output of the RNN at location of the stack pointer

Stack RNNs Operation

RNNGs

Inductive bias?

- What inductive biases do RNNGs exhibit?
- If we accept the following two propositions
 - · RNNs have recency biases
 - Syntactic composition learns to represent trees by their heads
- Then we can say that they have a bias for syntactic recency rather than sequential recency
- Not a perfect model, but maybe a better model

Parameter estimation

Generative

- Jointly model sentence x and its tree y
- Trained using gold standard trees (here: from a tree bank) to minimize cross-entropy
- We call this joint distribution p(x,y)

To parse (find a tree for x): we need to compute

$$\begin{split} \boldsymbol{y}^* &= \arg\max_{\boldsymbol{y} \in \mathcal{Y}_{\boldsymbol{x}}} p(\boldsymbol{y} \mid \boldsymbol{x}) \\ &= \arg\max_{\boldsymbol{y} \in \mathcal{Y}_{\boldsymbol{x}}} \frac{p(\boldsymbol{x}, \boldsymbol{y})}{p(\boldsymbol{x})} \quad \text{def. conditional prob.} \\ &= \arg\max_{\boldsymbol{y} \in \mathcal{Y}_{\boldsymbol{x}}} p(\boldsymbol{x}, \boldsymbol{y}) \quad \text{denominator is constant} \end{split}$$

Parameter estimation

Generative

- Jointly model sentence x and its tree y
- Trained using gold standard trees (here: from a tree bank) to minimize cross-entropy
- We call this joint distribution p(x,y)

Discriminative

- Given a sentence x, predict the sequence to of actions y necessary to build its parse tree - the full sentence x is observable
- Instead of GEN, use SHIFT
- We call this conditional distribution $q(\mathbf{y} \mid \mathbf{x})$

To parse: simply use beam search to find the best sequence.

English PTB (Parsing)

	Туре	F1
Petrov and Klein (2007)	Gen	90.1
Shindo et al (2012) Single model	Gen	91.1
Vinyals et al (2015) PTB only	Disc	90.5
Shindo et al (2012) Ensemble	Gen	92.4
Vinyals et al (2015) Semisupervised	Disc+SemiS up	92.8
<i>Discriminative</i> PTB only	Disc	91.7
Generative PTB only	Gen	93.6

English Language Modeling

	Perplexity
5-gram IKN	169.3
LSTM + Dropout	113.4
Generative (approx.)	102.4

$$p(\boldsymbol{x}) = \sum_{\boldsymbol{y} \in \mathcal{Y}_{\boldsymbol{x}}} p(\boldsymbol{x}, \boldsymbol{y})$$

Transition-based parsing

- Build trees by pushing words ("shift") onto a stack and combing elements at the top of the stack into a syntactic constituent ("reduce")
- Given current stack and buffer of unprocessed words, what action should the algorithm take?
- · Widely used
 - Good accuracy
 - *O*(*n*) runtime [much faster than other parsing algos]

Topics

- Recursive neural networks for sentence representation
- Recurrent neural network grammars and parsing
- Word representations by looking inside words (words have structure too!)
- Analysis of neural networks with linguistic concepts

Word representation

ARBITRARINESS (de Saussure, 1916)

Is it reasonable to compose characters into "meanings"?

Word representation

ARBITRARINESS

(de Saussure, 1916)

OPPORTUNITY

cool I cooooool I cooooooool

Words as structured objects

Words as structured objects

- 1. Normal word vector
- 2. Morphological word vector
- 3. Character-based word vector

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_{m} p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_{m} p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_{m} p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_{m} p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

Instead let's model

- $p(w_t \mid h_t) = \sum p(w_t \mid h_t, m) \ p(m \mid h_t)$
- where *m* loops over three "generation modes":

- Normally we model $p(w_t \mid h_t)$ directly.
- Instead let's model

$$p(w_t \mid h_t) = \sum_{m} p(w_t \mid h_t, m) \ p(m \mid h_t)$$

- words
- morphemes
- characters

Putting it all together

Language modeling results

Lower is better.

Columns:

- RNN predicts language as a sequences of characters
- Compositional character model only
- Character+morpheme model
- Character+word embedding model
- Character+morpheme+word embedding model

Topics

- Recursive neural networks for sentence representation
- Recurrent neural network grammars and parsing
- Word representations by looking inside words (words have structure too!)
- Analysis of neural networks with linguistic concepts

What do Neural Nets Learn about Linguistics?

Linzen, Dupoux, and Goldberg (2017, TACL)

Experiment 1: Can a RNN learn syntax?

Linzen, Dupoux, and Goldberg (2017, TACL)

Experiment 1: Can a RNN learn syntax?

Linzen, Dupoux, and Goldberg (2017, TACL)

Experiment 1: Can a RNN learn syntax?

- This is a great set up!
 - To generate training data, we just need to be able to tag present tense verbs in a corpus
 - Authors used ~1.4M sentences from Wikipedia
 - To analyze, we might want a bit more of information about the sentences to know when the model gets it right and when it gets it wrong

Experiment 1 Results

Experiment 1 Results

Experiment 1 Results

Experimental Variants

	Training signal	Evaluation Task
The keys to the cabinet	{SINGULAR, PLURAL }	P(PL) > P(SG)?
The keys to the cabinet is/are	{SINGULAR, PLURAL }	P(PL) > P(SG)?
The keys to the cabinet are here	{GRAMMATICAL, UNGRAMMATICAL}	P(GRAMMATICAL) > P(UNGRAMMATICAL)?
The keys to the cabinet	{are, is, cat, dog, the,}	P(are) > P(is)?

More Results

Summary

- RNN Language Models are not learning the correct generalizations about syntax
- Open questions
 - If RNNs are trained jointly to predict "singular/plural" and the next word, would they do better? [Auxiliary objective]
 - Would RNNGs do a better job on this task?
- Other experimental variants
 - Is there a "simple" function $f(\mathbf{h}_t) \to \{\mathrm{SG}, \mathrm{PL}\}$?
 - Is there a single dimension corresponding to "number"?

Linguistics in DL

- Two benefits:
 - Help us design better models based on knowledge about nature
 - Help us interrogate our models to see if they behave like they should
- Any questions?