From Newton's Laws to Modelling Black Holes The Power of Numerical Methods

Wenkang Xin

April 24, 2024

Introduction

What is the **greatest** achievement of science?

Quantum mechanics? General relativity? The standard model?

Introduction

What is the **greatest** achievement of science?

Ability to predict the future,

using, for example, Newton's laws.

Contents

Newton's Laws

Numerical Methods

Foraging to Black Holes

Exciting Science

Concluding Remarks

Newton's Laws

If all the co-ordinates and velocities (of a system) are simultaneously specified, it is known from experience that the state of the system is completely determined and that its subsequent motion can, in principle, be calculated.

Newton's Laws

In principle, we can predict the future using Newton's second law:

$$\mathbf{F} = m\mathbf{a} = m\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} \tag{1}$$

Once we know the force, we can solve the differential equation.

Newton's Laws

Imagine you are a rocket moving in space towards Mother Earth. Your dynamics is a constant updating of the state vector:

$$\begin{pmatrix} x \\ v \end{pmatrix} \xrightarrow{\delta t} \begin{pmatrix} x + v\delta t \\ v + a\delta t \end{pmatrix} \tag{2}$$

How do we know the acceleration a?

What we just did is called the **Euler's method**.

It is a general method of solving ordinary differential equations.

⁰Leonhard Euler (1707-1783).

Consider the following differential equation:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -15y \quad y(0) = 1 \tag{3}$$

We know the solution is:

$$y(t) = e^{-15t} \tag{4}$$

Let's see how Euler's method performs with different step sizes.

There are at least two problems with the naive Euler's method:

- 1. It is (very) inaccurate for large step sizes.
- 2. It becomes (very) **slow** for small step sizes.

Numerical Methods - Go to Higher Orders

The Euler's method is naive in a sense that it is too 'local'.

We could have 'scouted' ahead a bit and use the average of acceleration there and our current position.

Numerical Methods - Go to Higher Orders

Let us go as far as four steps ahead!

Runge-Kutta methods are a family of numerical methods for ODEs.

The most famous is the RK4 method.

Numerical Methods - Adapt Your Step

The Euler's method is also too 'dumb' because it only knows a **fixed step size**.

Numerical Methods - Adapt Your Step

To know when and how to adapt the step size, we require a rough estimate of the error.

RK(F)45 method is a viable choice, which uses both 4th and 5th order results to estimate the error.

Instead of a rocket, what if we are photons travelling towards a black hole?

What even is a black hole?

John Michell first to proposed the existence of 'black holes'.

Alas, he was too far ahead of his time.

Scientists then did not have the tools to investigate his ideas.

Albert Einstein published the general theory of relativity in 1915 along with his field equations.

Karl Schwarzschild found the first solution to the equations in 1916.

From his solutions, the concept of a black hole emerged.

⁰Karl Schwarzschild (1873-1916).

It was soon realised that BHs are very simple objects with only three properties:

- 1. Mass M
- 2. Charge Q (theorised to be zero)
- 3. Spin *J*

BHs are often found in binary systems and a process called **accretion** occurs to give rise to **accretion disks**.

These disks get so hot ($\sim 10^7 K$) that they emit some of the most energetic radiation in the universe.

Foraging to Black Holes - Some GR

You have probably heard of mass 'bending' space in GR. How do we quantify this effect? Using a metric!

$$\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} -\left(1 - \frac{r_s}{r}\right) & 0 & 0 & 0 \\ 0 & \frac{1}{\left(1 - \frac{r_s}{r}\right)} & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$$

Foraging to Black Holes - Some GR

The motion of a photon is governed by the geodesic equation:

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\lambda^2} + \Gamma^{\mu}_{\nu\sigma} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\sigma}}{\mathrm{d}\lambda} = 0$$

This can be numerically integrated!

Exciting Science - Ray Tracing

We can use C++ (for its speed) to **simulate** how photons from an accretion disk travel to an observer.

 $^{^{0}}$ spin = 0.95, inclination = 20 deg

Exciting Science - Actual Value

Besides simulating a BH on your PC, the algorithm also gives us a **spectrum** that contains key information about the BH.

Concluding Remarks

What have we learnt?

Concluding Remarks

Similar mathematical ideas arise from distinct physical principles.

Concluding Remarks

In tackling the most difficult questions, human ingenuity prevails over computational brute force.

Thank you!

```
import time
   3 start = time.time()
   4 for i in range(100000):
          euler method(f, y0, 0.01, T) # Test 1000 times
     end = time.time()
   7 print('Time used for dt = 0.01:', end - start)
     start = time.time()
  10 for i in range(100000):
         euler method(f, y0, 0.1, T) # Test 1000 times
     end = time.time()
     print('Time used for dt = 0.1:', end - start)
  15 start = time.time()
  16 for i in range(100000):
         euler_method(f, y0, 1/8, T) # Test 1000 times
     end = time.time()
  19 print('Time used for dt = 1/8:', end - start)
                                                                         Python
Time used for dt = 0.01: 3.7898566722869873
Time used for dt = 0.1: 0.4230952262878418
Time used for dt = 1/8: 0.35508084297180176
```


 $-\frac{\left\{a^{2}+r\;\left(-2\,M+r\right)\;\right)\;\left(a^{4}\,M+3\;a^{4}\;r-4\;a^{2}\,M\;r^{2}+8\;a^{2}\,r^{3}+8\;r^{5}+4\;a^{2}\;r\;\left(a^{2}+r\;\left(M+2\,r\right)\right)\;Cos\left[2\,theta\right]-a^{4}\;\left(M-r\right)\;Cos\left[4\,theta\right]\right)\;Sin\left[theta\right]^{2}}{\left(a^{2}+2\;r^{2}+a^{2}\;Cos\left[2\,theta\right]\right)^{3}}$

 $^{^{0}}$ spin = 0.5, inclination = 20 deg

 $^{^{0}}$ spin = 0.5, inclination = 45 deg

 $^{^{0}}$ spin = 0.75, inclination = 20 deg

 $^{^{0}}$ spin = 0.75, inclination = 45 deg

 $^{^{0}}$ spin = 0.95, inclination = 20 deg

 $^{^{0}}$ spin = 0.95, inclination = 45 deg