CS390 Computational Game Theory and Mechanism Design

Lecture 1, Part 1:Normal form games

July 1, 2013

Scribed by Qizhe Xie and Yiding Feng

Game Theory: Game Analysis, Mechanism Design

Definition 1 Normal-formal game:

- A normal-form game(or a strategic game) is a triple(N, S, u).
- *N* is the set of players. $N = \{1, 2, ..., n\}$.
- $S = S_1 \times S_2 \times ... \times S_n$
- S_i is the pure strategy set of i. We only discuss finite set here.
- $(S_1, S_2, ..., S_n) \in S$ is a 'strategy profile'.
- $u = (u_1, u_2, ..., u_n), u_i : S \to \mathbb{R}$ utility of i under S.

The game is simultaneously played: players don't know other players' option. Common knowledge of the game: all know the rules and all know other players know them(the rules).

Example 1

1/2	Н	T
Н	1, -1	-1, 1
Τ	-1, 1	1, -1

Table 1: Matching Pennies

Example 2

1/2	R	Р	S
R	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

Table 2: Rock-Paper-Scissors

Example 3

1/2	С	Н
С	1,1	0,2
Н	2,0	-1,-1

Table 3: Chicken or Hawk

Example 4

1/2	В	S
В	2,1	0,0
S	0,0	1,2

Table 4: BoS(Ballet or Soccer, Bach or Stravinsky, Battle of the sexes)

Example 5

1/2	don't confess	confess
don't confess	3,3	-1,4
confess	4,-1	0,0

Table 5: Prisoners' Dilemma(PD)

Assumption: Players are rational.

Definition 2 A player i is rational if given $s_{-i} \in S_{-i} = S_1 \times ... \times S_{i-1} \times S_{i+1} \times ... \times S_n$ i choose

$$s_{i} \in \underset{s_{i}' \in S_{i}}{argmax} \ u_{i}(s_{i}', s_{-i})$$

Definition 3 A strategy s_i strictly dominates $s_i^{'}$ if

$$\forall s_{-i} \in S_{-i} \quad u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$$

We also can say $s_i^{'}$ is strictly dominated by s_i s_i is strictly dominated if it is strictly dominated by $s_i^{'}$, $\forall s_i^{'} \neq s_i$

Definition 4 $s \in S$ is a pure Nash equilibrium if

$$\forall i \quad s_{i} \in B_{i}(s_{-i}) \triangleq \{s_{i}^{'} : u_{i}(s_{i}^{'}, s_{-i}) = \max_{s_{i}^{''}} u_{i}(s_{i}^{''}, s_{-i})\}$$

The NEs are marked by () below.

Example 6

1/2	С	Н
С	1,1	(0,2)
Н	(2,0)	-1,-1

Table 6: Chicken or Hawk

Example 7

1/2	В	\mathbf{S}
В	(2,1)	0,0
S	0,0	(1,2)

Table 7: BoS(Ballet or Soccer, Bach or Stravinsky, Battle of the sexes)

Example 8

1/2	don't confess	confess
don't confess	3,3	-1,4
confess	4,-1	(0,0)

Table 8: Prisoners' Dilemma(PD)

Definition 5 A mixed strategy: $\sigma_i \in \Delta(S_i)$ (all the probability distribution of choices)

$$\sum_{s_i} \sigma_i(s_i) = 1 \quad \sigma_i(s_i) \ge 0$$

A mixed strategy profile $\sigma \in \Delta(S_1) \times ... \times \Delta(S_n)$

$$u_i(\sigma_1, ..., \sigma_n) = \sum_s \sigma(s)u_i(s)$$

 σ is a mixed NE if

$$\sigma_i \in \underset{\sigma_i' \in \Delta(S_i)}{\operatorname{argmax}} u_i(\sigma_i', \sigma_{-i})$$

e.g.
$$\Delta(A, B) = \{(p, 1-p) \mid p \in [0, 1]\}$$

 $S_1 = \{L, R\} \ S_2 = \{U, D\}$
 $\sigma = (\frac{L}{2} + \frac{R}{2}) \times (\frac{U}{2} + \frac{D}{2})$

Theorem 1 (Nash): Any finite normal-form game has a NE.

Proof. Kakutoni's fixed point theorem. See reference[1] page 33 proposition 33.1

scribers: These notes are wrote by Qizhe Xie and inspected by Yiding Feng.

References

- [1] M. J. Osborne and A. Rubinstein. A course in game theory. MIT Press, 1994.
- [2] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani (eds). *Algorithmic game theory*. Cambridge University Press, 2007. (Available at http://www.cambridge.org/journals/nisan/downloads/Nisan_Non-printable.pdf.)