a)
$$\sqrt[n]{3^n + 2^n}$$
, b) $\sqrt[n]{10^n + 9^n + 8^n}$, c) $\sqrt[n]{\frac{2^n + 3^n}{3^n + 4^n}}$

$$\frac{3^n}{4^n}$$

Zad.6. Stosując **kryterium d'Alamberta** rozstrzygnąć, które poniższe szeregi są zbieżne:

(a)
$$\sum_{i=1}^{\infty} \frac{5^n}{n!}$$
, (b) $\sum_{i=1}^{\infty} \frac{n^2}{2^n}$, (c) $\sum_{i=1}^{\infty} \frac{n!}{n^n}$, (d) $\sum_{i=1}^{\infty} \frac{(n!)^2}{(2n)!}$, (e) $\sum_{i=1}^{\infty} \frac{(n!)^2}{2^{n^2}}$.

Zad. 7. Stosując **kryterium Cauchy'ego** rozstrzygnąć, które poniższe szeregi są zbieżne: (a) $\sum_{i=1}^{\infty} \frac{7^n}{n^7}$, (b) $\sum_{i=1}^{\infty} \frac{n^6}{6^n}$, (c) $\sum_{i=1}^{\infty} \frac{5}{2^{n+3n}}$, (d) $\sum_{i=1}^{\infty} \frac{2^{2n}}{3^n}$, (e) $\sum_{i=1}^{\infty} \frac{n^2}{(2+\frac{1}{n})^n}$. (f) $\sum_{n=1}^{\infty} \left(\frac{4n-1}{4n+1}\right)^{(3n+2)^2}$ **Zad. 2.** Obliczyć granice jednostronne oraz zbadać istnienie granicy funkcji f w punkcie x_{θ} :

a)
$$f(x) = \frac{4-x}{x^2}$$
, $x_0 = 0$; b) $f(x) = \frac{3x}{1-x}$, $x_0 = 1$; c) $f(x) = \frac{x+1}{9-x^2}$, $x_0 = \pm 3$; d) $f(x) = e^{\frac{1}{x}}$, $x_0 = 0$; e) $f(x) = \arctan \left(\frac{1}{x^2}\right)$, $x_0 = 0$; f) $f(x) = \frac{|x+1|-1}{x^2-4}$, $x_0 = \pm 2$.

Zad. 3. Obliczyć granice:

(a) $\lim_{x\to 0} \frac{x^2+x}{x^2-x}$, (b) $\lim_{x\to 1} \frac{x^4-1}{x^2-1}$, (c) $\lim_{x\to -1} \frac{x^4-1}{x^2-1}$, (d) $\lim_{x\to 2} \frac{x-2}{x^2-5x+6}$,

i) $\lim_{x\to 0^+} (\sqrt{x+1} - \sqrt{x-1})$, j) $\lim_{x\to 0^+} \frac{x^4 - x^2 + 1}{x^5 + x^3 + x}$, k) $\lim_{x\to \infty} \frac{2^x - 3^x}{3^x - 4^x}$ ii $\lim_{x\to \infty} (\sqrt{x^2 + 2x} - \sqrt{x^2 - x})$

(e) $\lim_{x\to 3} \frac{x^2 - 2x - 3}{x - 3}$, (f) $\lim_{x\to 2} \frac{x^3 - 8}{x - 2}$, (g) $\lim_{x\to \infty} \frac{x}{x + 1}$, (h) $\lim_{x\to -\infty} \frac{x}{x + 1}$,

 $\lim_{x \to 4} \frac{2 - \sqrt{x}}{3 - \sqrt{2x + 1}}$

 $\lim_{x \to \pm \infty} \frac{2^x + 3}{3^x + 2}$

 $\lim_{x \to 2} \frac{27 - x^3}{9 - x^2}$

Zad. 9. Zbadać asymptoty funkcji:

 $gf(x) = \frac{\sqrt{1-x^2}}{x} \quad \text{(a)} f(x) = \frac{x^2 + 3x - 5}{x+1} \quad \text{(b)} f(x) = \frac{x^3}{2(x-1)^2} \quad \text{(c)} f(x) = \frac{2x^3}{x^2 + 1}, \quad \text{(i)} f(x) = \frac{2x^3 + 3x^2}{x^2 - 1}$

d) $f(x) = (x+1)^2(x-1)$, (e) $f(x) = \frac{x^2}{x-2}$. (f) $\frac{\sin x}{1+\sin x}$,

(b)
$$f(x) = \frac{1}{x^4 + 2x^3 - 4x}$$
, (i) $f(x) = (x^3 + 1)\sqrt{x}$, (j) $f(x) = \frac{\sqrt[3]{x}}{1 + \sqrt[3]{x}}$, (g) $f(x) = \sqrt[3]{x^2} \tan^2 x$

$$f(x) = 2\sqrt[3]{x^2} + 2\sin x, \quad f(x) = 3\cos(x^2 + 4), \quad f(x) = \frac{3\cos^2 x}{\sin^3 x}, \quad f(x) = (\sin x)^x$$

$$\sin^3 x$$

$$f(x) = 3^x x^3, \quad \text{o} \quad f(x) = 3e^{\sin^2 x}, \quad \text{p)} \quad f(x) = x^x, \quad \text{r)} \quad f(x) = \arctan\left(x \arctan\left(\frac{1}{x}\right),\right)$$

n)
$$f(x) = 3^{x} x^{3}$$
, o) $f(x) = 3e^{\sin^{2} x}$, p) $f(x) = x^{x}$, r) $f(x) = \arctan\left(x \arctan \frac{1}{x}\right)$,
s) $f(x) = \ln \frac{3}{x+2}$, t) $f(x) = \frac{\ln(\sin(x))}{\ln(\cos x)}$, u) $f(x) = x^{x}$, w) $f(x) = 10x^{3x}$.

(a) $f(x) = 2x^5 + 3x + 5$, (b) $f(x) = \frac{1}{x^2}$, (c) f(x) = (x+1)(1-x), (d) $f(x) = \frac{1+x}{1-x}$,

(e) $f(x) = (x^2 + 2x + 4)^7$, (f) $f(x) = \sqrt{x^3 + 3x - 4}$, (g) $f(x) = \frac{1 + x - x^2}{1 - x + x^2}$, (x) $f(x) = \frac{x \sin x}{x + \cos x}$

Zad. 2. Obliczyć pochodne funkcji:

e) $\lim_{x\to 2^+} (x-2)^{x-2}$, f) $\lim_{x\to 2^+} \left(\frac{1}{x-2}\right)^{x-2}$, g) $\lim_{x\to \pi/4} \left(\frac{\ln(\operatorname{ctg} x)}{\operatorname{ctg} 2x}\right)$, h) $\lim_{x\to 1^-} \left(\frac{1}{x\sin x} - \frac{1}{x^2}\right)$.

$$\lim_{x \to 0} x \to \lim_{x \to 0} \ln(\sin 3x), \quad \lim_{x \to 0} \ln(\cot x) = \lim_{x \to 0} \ln(\cot x)$$

Zad 3. Wyznaczyć przedziały monotoniczności funkcji:

(a) $f(x) = x^3 - 6x^2 + 21x + 2$, (b) $f(x) = x^3(8 - x)$, (c) $f(x) = 3x - x^3$, (b) $f(x) = 4x + \frac{9}{x}$

(d) $f(x) = 2x - \sin x$, (e) $f(x) = \frac{\sqrt{x^2 + 1}}{x^2 + 2}$, f) $f(x) = \frac{1}{(x - 3)^2}$, (g) $f(x) = \frac{x^2 + 4x - 12}{(x - 1)^2}$. (i) $f(x) = x\sqrt{18 - x^2}$

$$= x^4 - 54x^2 + x$$

$$f(x) = x^{4} - 54x^{2} + x - 5, \quad \text{(b)} \ f(x) = 2x^{6} - 5x^{4} + 7x - 2, \quad \text{(c)} \ f(x) = \sin x, \quad \text{(d)} \ f(x) = \sin^{2} x.$$

$$f(x) = \frac{1}{1 + x^{2}} \quad \text{(e)} \ f(x) = \frac{1 + x}{1 + x^{2}}, \quad \text{(f)} \ f(x) = x \ln \frac{1}{x} \quad \text{(g)} \ f(x) = \frac{x^{2}}{(x - 1)^{3}}. \quad \text{(i)} \ f(x) = \ln \left(\frac{1}{x} - \frac{1}{6}\right)$$

(a)
$$f(x) = x^4 - 54x^2 + x - 5$$
, (b) $f(x) = 2x^6 - 5x^4 + 7x - 2$, (c) $f(x) = \sin x$, (d) $f(x) = \sin^2 x$,

Zad 6. Znaleźć wszystkie ekstrema funkcji: (a) $f(x) = 2x^3 - 15x^2 + 36x$, (b) $f(x) = \frac{x}{x^2 + 4}$, (c) $f(x) = x^2 \ln x$, (d) $f(x) = x - \sqrt[3]{x}$. **Zad 9.** Zbadać funkcje (dziedzina, granice, ciągłość, monotoniczność, wypukłość/wklęsłość, asymptoty, punkty przegięcia, ekstrema, wykres):

(a)
$$f(x) = x^3 - 3x^2 + 2$$
, (b) $f(x) = \frac{x^2}{x - 2}$, (c) $f(x) = \frac{x^3}{x^2 - 1}$, (d) $f(x) = \frac{3x}{(x^2 - 1)^2}$,

e)
$$f(x) = \frac{\ln x}{x}$$
, f) $f(x) = xe^x$, g) $f(x) = xe^{-x}$, h) $f(x) = x^2e^{x-1}$. i) $f(x) = \frac{x}{\ln x}$

(a)
$$f(x,y) = x^3 + 4xy^2 - y^3$$
, (b) $f(x,y) = \frac{x}{y}$, (c) $f(x,y) = \left(\frac{1}{3}\right)^{\overline{y}}$, (d) $f(x,y) = \frac{x}{y} + \frac{y}{x}$,

(e) $f(x, y) = \ln(x^2 + y^2)$, (f) $f(x, y) = x^y$, (g) $f(x, y) = e^{x(x+y)}$, (h) $f(x, y) = \sin(x\cos y)$, (i) $f(x,y) = x\sqrt{y} + \frac{y}{\sqrt[3]{x'}}$, (j) $f(x,y) = arctg(x-y)^2$.

Zad. 5. Obliczyć pochodne cząstkowe pierwszego rzędu funkcji:

Zad. 1. Obliczyć gradienty (kierunki najszybszego wzrostu) funkcji we wskazanych punktach:

(a)
$$f(x,y) = x^3 + y^3$$
, $(x_0, y_0) = (-1,1)$, (b) $f(x,y,z) = \frac{xy^2}{z^2}$, $(x_0, y_0, z_0) = (16, -3,2)$,

Zad. 2. Obliczyć, pochodne funkcji w punkcie (1,1) w kierunku $\left[\frac{4}{5}, \frac{3}{5}\right]$:

a) $f(x,y) = x^2 - y^2$, b) $f(x,y) = \sqrt{xy}$, c) $f(x,y) - \sin(x-y)$.

c) $f(x,y) = xe^{x^2}$, d) $f(x,y) = (x^2 + y)e^{\frac{y}{2}}$, e) $f(x,y) = \sin x + \sin y + \sin(x + y)$, $f(x,y,z) = x^2 + y^2 + z^2, \quad g(x,y,z) = x^2 + y^2 + z^2 - xy + x + 2z,$

(a) $f(x,y) = x^3 + 8y^3 - 6xy + 5$, (b) $f(x,y) = (x-y)^2 + (y-1)^3$,

Zad. 7. Wyznaczyć, jeżeli istnieją, ekstrema funkcji:

h) $f(x, y, z) = \sin x + \sin y + \sin z$. i) $f(x, y) = xy + \frac{2}{x} + \frac{4}{y}$

$$\mathbf{a)} \int x(x-1)(x-2)dx,$$

Zad. 1. Obliczyć całki:

b)
$$\int (x^2 - x + 1)^2 dx$$
,

$$\int \frac{\sqrt{x} - \sqrt[3]{x}}{x} dx$$

$$\int x$$

$$\int x^2 + 1$$

$$\int \operatorname{tg}^2 x \, dx$$

(k)
$$\int \frac{\operatorname{tg} x}{\cos^2 x} dx$$
 (a)
$$\int 3x^2 (x^3 + 5)^9 dx$$
 (podstawienie $t = x^3 + 5$), (b)
$$\int \frac{dx}{\sqrt{2x - 3}}$$
 (podstawienie $t = \sqrt{2x - 3}$),

$$3x^2(x^3+5)^9a$$

$$3x^{2}(x^{3} + 5)^{9} dx$$

$$(a) \int 3x^2(x^3+5)^9 dx$$

$$3x^2(x^3+5)^9 dx$$

c)
$$\int xe^{x^2} dx$$
 (podstawienie $t = x^2$), d) $\int x \sin x^2 dx$ (podstawienie $t = x^2$),

$$x\sqrt{x-3}dx$$
,

$$\int x \sin x dx,$$

 n^*) $\int \frac{dx}{(x^2+1)^2}$ i) $\int (2x^2-1)\cdot e^x dx$, j) $\int x\cdot \ln x dx$,

$$\int x \sin x dx,$$

$$c\sin x dx$$
, **b**

$$\mathbf{j}$$
 $\int \frac{1}{\sqrt{2}}$

$$1 \qquad dx$$

Zad. 1. Obliczyć całki oznaczone: (a) $\int_{-\pi/2}^{3} (4x^2 - 3x + 4) dx$, (b) $\int_{-\pi/2}^{2} \frac{1}{x^2} dx$, (c) $\int_{-\pi/2}^{1} 3x^2 e^{x^3 - 1} dx$, (d) $\int_{-\pi/2}^{e} x \ln x dx$, (e) $\int_{-\pi/2}^{\pi} \sin^5 x dx$ (f) $\int_{-\pi/2}^{1} x (x + 1)^2 dx$ **Zad. 3.** Obliczyć długości krzywych:

(a)
$$y = x^2, -1 \le x \le 3$$
, (b) $y = \ln x, \sqrt{3} \le x \le \sqrt{8}$, (c) $y = \frac{x^5}{10} + \frac{1}{6x^3}$, $1 \le x \le 3$,

(d)
$$y = \ln(1 - x^2)$$
, $0 \le x \le \frac{1}{2}$. (e) $y = \ln \frac{e^x + 1}{e^x - 1}$, $2 \le x \le 3$.

Zad. 4. Wyznaczyć pole obszaru pomiędzy krzywą, a osią współrzędnych na odcinku [a; b]

a)
$$y = 4 - x^2$$
, $a = -2$, $b = 2$; b) $y = \sqrt{x+2}$, $a = -2$, $b = 2$;

c)
$$y = 9x - x^2$$
, $a = 0$, $b = 3$; d) $y = 3x^{\frac{1}{3}}$, $a = 1$, $b = 8$.

Zad. 5. Obliczyć pole obszaru ograniczonego wykresami:

- (a) parabolą $y = x^2$ oraz prostą y = x,
- b) parabola $y = 2x x^2$ oraz prosta x + y = 0,
- (c) krzywą $y = e^x$, prostymi x=0 i x=1 oraz osią OX,
- d) parabolą $y = x^2 + x 6$, prostymi x=-1 i x=1 oraz osią OX,
- (e) parabolami $y = x^2$, $y = 2x^2$ oraz prostą y = 8 ($x \ge 0$),
- f) krzywą $y = x^2 \ln x$, prostymi x=e i $x=e^2$ oraz osią OX,
- (g) hiperbolą $y = \frac{2}{x} + 1$, prostymi x=1 i x=2 oraz osią OX, hkrzywymi $y = \ln x, x = e, y = -1$

Zad. 4. Obliczyć objętość bryły powstałej przez obrót wokół osi OX trapezu krzywoliniowego ograniczonego przez wykres funkcji f(x), proste x = a i x = b:

a)
$$y = 2\sqrt{x}$$
, $a = 0$, $b = 1$,
b) $y = x^2 + 1$, $a = -1$, $b = 1$
c) $y = x^3$, $a = 0$, $b = 1$,
d) $y = \sin x$, $a = 0$, $b = \pi$,
e) $y = e^x$, $a = 1$, $b = 2$.

b)
$$y = x^2 + 1$$
, $a = -1$, $b = 1$

$$y = x^3$$
, $a = 0$, $b = 1$,

$$y = \sin x, \ a = 0, \ b = \pi$$

$$y = e^x, a = 1, b = 2.$$

Zad. 5. Obliczyć pole powierzchni powstałej w wyniku obrotu wokół osi OX krzywej y = f(x).

(a)
$$y = 2\sqrt{x}, x \in [0,1],$$

b
$$y = \frac{1}{2}x + 1, x \in [1,3],$$

(c)
$$y = \cos x, \ x \in [-\pi/2, \pi/2].$$

a) $\iint_{\mathbb{R}} x^2 (2+4y) dx dy$, gdy prostokąt P opisany jest nierównościami: $0 \le x \le 3$, $1 \le y \le 2$.

Zad. 1. Obliczyć całki podwójne (w prostokacie):

b)
$$\iint_D (x-y)e^{x+y}dxdy$$
, gdy prostokąt D opisany jest nierównościami: $0 \le x \le 1$, $-1 \le y \le 1$.

a)
$$\iint_D \frac{x^2}{y^2} dxdy$$
, gdzie *D* jest obszarem ograniczonym krzywymi: $x = 2$, $y = x$, $xy = 1$.

$$\frac{d}{d} \iint_{D: x+y=0, x=y^2} \frac{dx \, dy}{(x+1)^2}$$
b)
$$\iint_{D} (x^3 + 4y) dx dy, \text{ gdzie } D \text{ jest obszarem ograniczonym krzywymi: } y = x^2, y = 2x.$$

$$\iint_D (x - 1y) dx dy, \text{ gdzie } D \text{ jest obszarem ogramezonym krzywym. } y = x^*, y = 2x.$$

$$0) \iint_D (sinxcosy) dx dy, \text{ gdzie obszar całkowania } D \text{ jest trójkątem o wierzchołkach:}$$

$$(0,0), (1,1), (0,2).$$