Algebraic Theory I

Thomas Fleming

October 8, 2021

Contents

Lecture 19: Free Groups (2)

Wed 06 Oct 2021 11:33

Recall we had a set of letters $X=\{a,b,c,\ldots,a^{-1},b^{-1},c^{-1},\ldots,1\}$. Then, we define a word on the alphabet X to be a string $\omega=x_1^{\varepsilon_1}x_2^{\varepsilon_2}\ldots,x_s^{\varepsilon_s}$ where $x_1,x_2,\ldots,x_s\in X$ and $\varepsilon_i=\pm 1$. For example with $X=\{x_1,x_2,x_3\}$ we have a word $x_1x_1x_2x_1^{-1}x_1x_3$ for example. Then, define 1 to be the empty product, that being a string with no symbols. Now, we define an equivalence relation on the words to induce a group.

We say two words $\omega_1 \sim \omega_2$ if we can transform ω_1 into ω_2 with a finite sequence of the following operations

- Remove a sequential pair xx^{-1} or $x^{-1}x$ from the string.
- Insert a substring xx^{-1} or $x^{-1}x$ into the string.

So, we see $x_1x_2x_3^{-1}x_4 \sim x_1x_2x_3^{-1}x_2x_2^{-1}x_1^{-1}x_1x_4$ and so on. It is trivial to verify this to be an equivalence relation, so we omit the proof. Henceforth, we will denote the equivalence class of a word ω by $[\omega]$. So, we see if $\omega_1 \sim \omega_2$, we have $[\omega_1] = [\omega_2]$.

Now, let F(X) be the set of all equivalence classes on X and define $[\omega_1][\omega_2] := [\omega_1\omega_2]$ with $\omega_1\omega_2$ simply being the concatenation of the two words. First, we verify this to be well-defined. Suppose $w' \sim w$ and $v' \sim v$ are 4 words. Hence, there is a simple sequence taking $v \mapsto v'$ and $w \mapsto w'$. It is easy to see then, that the same operations applied to their respective parts will take $vw \mapsto v'w'$ and $wv \mapsto w'v'$, hence [vw] = [v'w'].

Next, we show this forms a group. We see $[w][1] = [w \cdot 1] = [w]$ and likewise [1][w] = [w], so 1 is the identity. Next,

$$[w] ([u] [v]) = [w] [uv]$$

$$= [w(uv)]$$

$$= [(wu) v]$$

$$= [wu] [v]$$

$$= ([w] [u]) [v]$$

.

Hence, F(X) is associative. Lastly, we show inverses exist. Let $w = x_1^{\varepsilon_1} \dots x_s^{\varepsilon_s}$, then let $w^{-1} = x_s^{-\varepsilon_s} \dots x_1^{-\varepsilon_1}$ and we see $ww^{-1} \sim 1$, so F(X) has inverses.

Definition 0.1 (Free Group). For an alphabet X, we define F(X) to be the **Free Group on** X. More generally, the free group F on X is a group F together with an injection $\sigma: X \hookrightarrow F$ such that any $\alpha: X \to G$, with G being an arbitrary group, extends to a unique homomorphism $\beta: F \to G$ such that $\beta \circ \sigma = \alpha$.

Figure 1: In this commutative diagram solid lines represent given maps and dotted lines represent maps that must then exist

Next, recall a homomprhism $\varphi: H \to G$ is determined by the images of generators of H. Let $H = \langle X \rangle$. Then for an arbitrary $h \in H$ with $h = x_1^{\varepsilon_1} \dots x_n^{\varepsilon_n}$ we find $\varphi(h) = \varphi(x_1)^{\varepsilon_1} \dots \varphi(x_n)^{\varepsilon_n}$ with $x_i \in X$ and $\varepsilon_i = \pm 1$. Now, let G be a group with $\alpha: X \to G$ being a map and $\sigma: X \hookrightarrow F$ be the inclusion map. Let $w = x_1^{\varepsilon_1} \dots x_n^{\varepsilon_n}$ and let $(w) = \alpha(x_1)^{\varepsilon_1} \dots \alpha(x_n)^{\varepsilon_n}$ with $x_i \in X$

Now, let G be a group with $\alpha: X \to G$ being a map and $\sigma: X \hookrightarrow F$ be the inclusion map. Let $w = x_1^{\varepsilon_1} \dots x_n^{\varepsilon_n}$ and let $(w) = \alpha \left(x_1\right)^{\varepsilon_1} \dots \alpha \left(x_n\right)^{\varepsilon_n}$ with $x_i \in X$ and $\varepsilon_i = \pm 1$. Then, we define $\beta\left([w]\right) = [\beta\left(w\right)]$. It is simple to check this is well defined as we may always insert or delete substrings of the form $\alpha \left(x_i\right)^{\varepsilon_i} \alpha \left(x_i\right)^{-\varepsilon_i}$ in order to induce an equivalence. We see β is also a homomorphism as

$$\beta([w][v]) = \beta([wv])$$

$$= \beta(wv)$$

$$= \beta(w)\beta(v)$$

$$= \beta([w])\beta([v]).$$

Lastly, we see the map β is unique as a homomorphism is completely characterized by where it sends the generators.

Lecture 20: Free Groups (3)

Fri 08 Oct 2021 11:26

Recall. F is a free group on the set X when there is an injection $\sigma: X \stackrel{F}{\hookrightarrow}$ such that for all maps $\alpha: X \to G$, there is a homomorphism $\beta: F \to G$ such

that $\beta \circ \sigma = \alpha$.

Remark. F is also a free group on $\sigma(X) \subseteq F$, using a similar inclusion map, so often we will assume $X \subseteq F$.

Theorem 0.1. If F_1 is free on X_1 and F_2 is free on X_2 and $|X_1| = |X_2|$, then $F_1 \simeq F_2$.

Proof. Since $|X_1|=|X_2|$ we find a bijection $\alpha:X_1\to X_2$ and we can assume WLOG that $X_1\subseteq F_1$ and $X_2\subseteq F_2$. Then, the free property of F_1 implies there is a unique homomorphism $\beta:F_1\to F_2$ such that $\beta(x)=\alpha(x)$ for all $x\in X_1$. Similarly, thee is a unique map $\gamma:F_2\to F_1$ extending $\alpha^{-1}:X_2\to X_1$ such that $\gamma(y)=\alpha^{-1}(y)$ for all $y\in X_2$. So, we see

$$\beta \mid_{X_1}: X_1 \longrightarrow X_2$$

$$x \longmapsto \beta(x) = \alpha(x)$$

and

$$\gamma \mid_{X_2} : X_2 \longrightarrow X_1$$

$$y \longmapsto \gamma(y) = \alpha^{-1}(y)$$

are inverses.

Hence, we have β and γ are a pair of inverse homomorphisms as X_1 generates F_1 and likewise X_2 generates F_2 .

Then, for an arbitrary element in F of the form $x=x_1^{\varepsilon_1}\dots x_\ell^{\varepsilon_\ell}$ with $\varepsilon_i\in\mathbb{Z}$ and $x_i\in X_1$, then we see $\gamma(\beta(x))=x$, hence this completes the proof.

Theorem 0.2. Let F be a free group with H,G being groups. Suppose $\alpha:F\to H$ is a homomorphism and $\beta:G\to H$ is a surjective homomorphism. Then, there is a $\gamma:F\to G$ such that $\beta\gamma=\alpha$.

Proof. Let F be free on $X \subseteq F$. Then, each $x \in X$ has $\alpha(x) \in H = \operatorname{Im}(\beta)$. Then, there is some $g_x \in G$ such that $\beta(g_x) = \alpha(x)$. By the universal mapping property of F, we have the map $X \to G, x \mapsto g_x$ extends to a homomorphism

$$\gamma: F \longrightarrow G$$

 $x \longmapsto \gamma(x) = g_x.$

Then, for $x \in X$ we see $\beta(\gamma(x)) = \beta(g_x) = \alpha(x)$, so $\beta \circ \gamma = \alpha$ on X which generates F, so $\beta \circ \gamma = \alpha$ on F as β, γ are homomorphisms.