111-2 Numerical Analysis Homework 5

Due Time: 22:00 , Tuesday, 04/04, 2023.

Instructor: Min-Hui Lo

· Regulation

1. NO PLAGIARISM and NO LATE ASSIGNMENTS.

Submission

- 1. Please write down your answers (including discussions and figures) in the same order as the problem sheet in the word/pdf file.
- 2. You should upload zip file, including code and pdf (or word) file via NTU COOL.
- 3. zip file name: "hw{hw number} g{group id}.zip" (e.g. hw01 g01.zip)

1. Iterative method

$$\begin{cases} 9x_1 - 2x_2 + 3x_3 + 2x_4 = 54.5 \\ 2x_1 + 8x_2 - 2x_3 + 3x_4 = -14 \\ -3x_1 + 2x_2 + 11x_3 - 4x_4 = 12.5 \\ -2x_1 + 3x_2 + 2x_3 + 10x_4 = -21 \end{cases}$$

1. Solve the system until the relative error (ϵ) falls below 5%.

$$\left| \frac{x_i^{k+1} - x_i^k}{x_i^k} \right| < \epsilon, i = 1, 2, ..., n \tag{1}$$

- (a) Use Gauss-Seidel iterative method
- (b) Use Jacobi iterative method
- 2. Plot the evolutions for each solution (X_1, X_2, X_3, X_4) for (a) and (b) (with each iteration step).
- 3. Discuss which one (a) or (b) is more efficient? Why?

2. Applied Linear Equations to solve diurnal cycle of soil temperature

When the surface is heated, the heat will diffuse through the soil. The diffusion can be represented by the equation:

$$\frac{\partial T}{\partial t} = \frac{\kappa}{C_v} \frac{\partial^2 T}{\partial z^2}$$

We can rewrite the system of equation by finite difference methods and boundary conditions in the form of:

$$\begin{bmatrix} 1 + 2M & -M & 0 & \cdots & \cdots & 0 \\ -M & 1 + 2M & -M & 0 & \cdots & \cdots & \vdots \\ 0 & -M & 1 + 2M & -M & \ddots & \cdots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & 0 & \vdots \\ \vdots & \dots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \dots & \dots & 0 & -M & 1 + 2M & -M \\ 0 & \dots & \dots & 0 & -M & 1 + M \end{bmatrix} \begin{bmatrix} T_1^{n+1} \\ T_2^{n+1} \\ \vdots \\ \vdots \\ T_{N-1}^{n+1} \\ T_N^{n+1} \end{bmatrix} = \begin{bmatrix} T_1^n + MT_N^{n+1} \\ T_2^n \\ \vdots \\ \vdots \\ \vdots \\ T_{N-1}^{n} \\ T_N^{n} \end{bmatrix}$$

where T_s^{n+1} denote the surface temperature when t=n+1, T_N^{n+1} denote the N^{th} -layer soil temperature when t=n+1 and $M=\frac{\kappa}{C_n}$. Assume $\frac{\kappa}{C_n}\approx 5\times 10^{-7}~m^2/s$

- 1. Given T_s and $T_1^0, T_2^0, ..., T_{N-1}^0, T_N^0$, which can be obtained from *Tsoil.nc* (or $T_ini.txt$ and $T_s.txt$). Solve the tridiagonal system of equations with $\Delta t = 60 \ s$ and $\Delta z = 0.05 \ m$ using
 - (a) Gauss-elimination method
 - (b) Jacobi method
 - (c) Gauss-Seidel method

and compare their differences. The result will look similar to:

Variables:

T_ini: the initial soil temperature at t = 0 (variant in z)

T_s: the surface temperature used for boundary conditions (variant in time)

File :

 $T_soil.nc$ contains T_ini and T_s . You can open the file by xarray package or netCDF4 package. If you do not know how to open no file, you can use txt file ($T_ini.txt$ and $T_s.txt$) instead.

Hint:

The tridiagonal system of equations can be abbreviated to $AT^{n+1} = B$. If you want to access the soil temperature at t = n + 1, you will need the soil temperature at t = n. You need to solve Ax=B totally 1439 times to get the diurnal cycle of soil temperature.

Note that A is invariant in timestep, while B is variant in timestep.

2. Complete the following table.

	Gauss-elimination	Jacobi method	Gauss-Seidel
	method		method
Numerical or Analytical			
method			
Whether initial conditions			
(I.C.s) are needed?			
Computational efficiency			
(please rank)			

Hint:

To rank the computational efficiency, you can use datetime or time package to get the process time. For example:

```
### Method 1
from time import process time
start = process_time()
Write your code here
      = process_time()
print(end-start)
### Method 2
import datetime
start = datetime.datetime.now()
Write your code here
end = datetime.datetime.now()
print(end-start)
```