Engineering an Efficient Boolean Functional Synthesis Engine

Priyanka Golia 1,2

Joint work with: Friedrich Slivovsky³, Subhajit Roy ¹, and Kuldeep S. Meel ²

¹ Indian Institute of Technology Kanpur ²National University of Singapore ³TU Wien

Corresponding Paper at ICCAD 2021

Synthesis – Example(I)

$$\phi(X,Y) = (y_1 \ge x_1) \land (y_1 \ge x_2) \land ((y_1 = x_1) \lor (y_1 = x_2)) \land (y_2 \le x_1) \land (y_2 \le x_2) \land ((y_2 = x_1) \lor (y_2 = x_2))$$

Synthesis – Example(I)

$$\varphi(X,Y) = (y_1 \ge x_1) \land (y_1 \ge x_2) \land ((y_1 = x_1) \lor (y_1 = x_2)) \land (y_2 \le x_1) \land (y_2 \le x_2) \land ((y_2 = x_1) \lor (y_2 = x_2))$$

Functional Synthesis

Given
$$\varphi(X, Y)$$
 over inputs $X = \{x_1, x_2, \dots, x_n\}$ and outputs $Y = \{y_1, y_2, \dots, y_m\}$.
Synthesize A function vector $F = \{f_1, f_2, \dots, f_m\}$, such that $y_i := f_i(x_1, \dots, x_n)$ such that:
$$\exists Y \varphi(X, Y) \equiv \varphi(X, F(X))$$

Each f_i is called Skolem function and F is called Skolem function vector.

Let
$$X = \{x_1, x_2\}, Y = \{y_1\}$$
 and $\varphi(X, Y) = x_1 \lor x_2 \lor y_1$

Let
$$X = \{x_1, x_2\}, Y = \{y_1\}$$
 and $\varphi(X, Y) = x_1 \lor x_2 \lor y_1$

Possible Skolem function: $f(x_1, x_2) := \neg(x_1 \lor x_2)$

Let
$$X = \{x_1, x_2\}$$
, $Y = \{y_1\}$ and $\varphi(X, Y) = x_1 \lor x_2 \lor y_1$

Possible Skolem function: $f(x_1, x_2) := \neg(x_1 \lor x_2)$

$$\varphi(X,F(X))=x_1\vee x_2\vee (\neg(x_1\vee x_2))$$

Χ	∃ Y φ()	X , Y)	$\varphi(X, F(X))$
$x_1 = 0, x_2 = 0$	$y_1 = 1$	True	True
$x_1 = 0, x_2 = 1$	$y_1 = 1$	True	True
$x_1 = 1, x_2 = 0$	$y_1 = 1$	True	True
$x_1 = 1, x_2 = 1$	$y_1 = 1$	True	True

Let
$$X = \{x_1, x_2\}, Y = \{y_1\} \text{ and } \phi(X, Y) = x_1 \lor x_2 \lor y_1$$

Possible Skolem function: $f(x_1, x_2) := \neg(x_1 \lor x_2)$

$$\varphi(X,F(X))=x_1\vee x_2\vee (\neg(x_1\vee x_2))$$

X	∃ <i>Y</i> φ(<i>)</i>	(, Y)	$\varphi(X, F(X))$	
$x_1 = 0, x_2 = 0$ $x_1 = 0, x_2 = 1$ $x_1 = 1, x_2 = 0$ $x_1 = 1, x_2 = 1$	$y_1 = 1$ $y_1 = 1$	True True True True	True True True True	$ \exists Y \varphi(X,Y) \equiv \varphi(X,F(X)) $

Other possible Skolem functions: $f_1(x_1, x_2) = \neg x_1$ $f_1(x_1, x_2) = \neg x_2$ $f_1(x_1, x_2) = 1$

Diverse Approaches

• From the proof of validity of $\forall X \exists Y \varphi(X, Y)$

```
(Bendetti et al., 2005)
(Jussilla et al., 2007)
(Heule et al., 2014)
```

Quantifier instantiation in SMT solvers

```
(Barrett et al., 2015)
(Bierre et al., 2017)
```

Input-Output Separation

```
(Chakraborty et al., 2018)
```

Knowledge representation

```
(Kukula et al., 2000)
(Trivedi et al., 2003)
(Jiang, 2009)
(Kuncak et al., 2010)
(Balabanov and Jiang, 2011)
(John et al., 2015)
(Fried, Tabajara, Vardi, 2016,2017)
(Akshay et al., 2017,2018)
(Chakraborty et al., 2019)
```

Incremental determinization

```
(Rabe et al., 2015, 2018, 2019)
```

Diverse Approaches

• From the proof of validity of $\forall X \exists Y \varphi(X, Y)$

```
(Bendetti et al., 2005)
(Jussilla et al., 2007)
(Heule et al., 2014)
```

Quantifier instantiation in SMT solvers

```
(Barrett et al., 2015)
(Bierre et al., 2017)
```

Input-Output Separation

```
(Chakraborty et al., 2018)
```

Knowledge representation

```
(Kukula et al., 2000)
(Trivedi et al., 2003)
(Jiang, 2009)
(Kuncak et al., 2010)
(Balabanov and Jiang, 2011)
(John et al., 2015)
(Fried, Tabajara, Vardi, 2016,2017)
(Akshay et al., 2017,2018)
(Chakraborty et al., 2019)
```

Incremental determinization

```
(Rabe et al., 2015, 2018, 2019)
```

Data-Driven Approach (Golia, Roy, Meel, 2020)

A Data-Driven Approach for Boolean Functional Synthesis

Manthan

Manthan

Data Generation

Learn Candidate Functions

Repair of Approximations

Manthan to Manthan2

Address scalability barriers faced by Manthan.

- Unique function extraction.
- Retention of Determined features.
- Clustering-based Multi-Classification.

Let
$$X = \{x_1, x_2\}, Y = \{y_1\} \text{ and } \phi(X, Y) = x_1 \lor x_2 \lor y_1$$

<i>X</i> ₁	<i>X</i> ₂	<i>y</i> ₁
0	0	1
0	1	0/1
1	0	0/1
1	1	0/1

Let
$$X = \{x_1, x_2\}$$
, $Y = \{y_1\}$ and $\varphi(X, Y) = x_1 \lor x_2 \lor y_1$

<i>x</i> ₁	<i>X</i> ₂	<i>y</i> ₁
0	0	1
0	1	0/1
1	0	0/1
1	1	0/1

 y_1 is not uniquely defined.

Let
$$X = \{x_1, x_2\}, Y = \{y_1\} \text{ and } \phi(X, Y) = ((x_1 \lor x_2) \leftrightarrow y_1))$$

<i>x</i> ₁	<i>X</i> ₂	<i>y</i> ₁
0	0	0
0	1	1
1	0	1
1	1	1

Let
$$X = \{x_1, x_2\}, Y = \{y_1\} \text{ and } \phi(X, Y) = ((x_1 \lor x_2) \leftrightarrow y_1))$$

<i>X</i> ₁	<i>X</i> ₂	<i>y</i> ₁
0	0	0
0	1	1
1	0	1
1	1	1

 y_1 is uniquely defined.

Let
$$X = \{x_1, x_2\}, Y = \{y_1\} \text{ and } \phi(X, Y) = ((x_1 \lor x_2) \leftrightarrow y_1))$$

<i>X</i> ₁	<i>X</i> ₂	<i>y</i> ₁
0	0	0
0	1	1
1	0	1
1	1	1

 y_1 is uniquely defined.

 y_i is uniquely defined: for a fixed valuation of X, valuation of y_i is fixed.

• Extract the Skolem function f_i using interpolation-based method.

Unique function extraction reduces the number of candidate functions to learn.

Determined features: Set of uniquely defined Y variables.

Determined features: Set of uniquely defined Y variables.

Let
$$X = \{x_1, x_2\}, Y = \{y_1, y_2\}$$
 and $\varphi(X, Y) = ((x_1 \lor x_2) \leftrightarrow y_1)) \land (y_1 \lor y_2)$

Determined features: Set of uniquely defined Y variables.

Let
$$X = \{x_1, x_2\}, Y = \{y_1, y_2\}$$
 and $\varphi(X, Y) = ((x_1 \lor x_2) \leftrightarrow y_1)) \land (y_1 \lor y_2)$

• y_1 has unique function. $f_1 = (x_1 \lor x_2)$.

Determined features: Set of uniquely defined Y variables.

Let
$$X = \{x_1, x_2\}, Y = \{y_1, y_2\}$$
 and $\varphi(X, Y) = ((x_1 \lor x_2) \leftrightarrow y_1)) \land (y_1 \lor y_2)$

- y_1 has unique function. $f_1 = (x_1 \lor x_2)$.
- Variable Elimination (suggested in Akshay et al., 2017,2018) $\phi(X,Y) = ((x_1 \lor x_2) \leftrightarrow (x_1 \lor x_2)) \land ((x_1 \lor x_2) \lor y_2)$

$$\varphi(X,Y)=((x_1\vee x_2)\vee y_2)$$

• Possible Skolem function $f_2 = \neg(x_1 \lor x_2)$.

Determined features: Set of uniquely defined Y variables.

Let
$$X = \{x_1, x_2\}, Y = \{y_1, y_2\}$$
 and $\varphi(X, Y) = ((x_1 \lor x_2) \leftrightarrow y_1)) \land (y_1 \lor y_2)$

- y_1 has unique function. $f_1 = (x_1 \lor x_2)$.
- Variable Retention

$$\varphi(X,Y) = ((x_1 \vee x_2) \leftrightarrow y_1) \wedge (y_1 \vee y_2)$$

• Possible Skolem function $f_2 = \neg(y_1)$.

Retention of determined features helps to learn simpler candidate functions.

Can we learn functions for y_1 and y_2 together to save candidate learning time?

$$\begin{array}{ll} p_1 := (\neg x_1 \wedge \neg x_2), & p_1 := (\neg x_1 \wedge x_2), \\ p_2 := (x_1 \wedge \neg x_2) & p_2 := (x_1 \wedge \neg x_2), \\ f_1 = \text{if } p_1 \text{ then 1} & elif \ p_2 \text{ then 1} \\ & else \ 0 & else \ 0 \end{array}$$

- Partition *Y* variables with disjoint subsets.
- Use a multi-classifier to learn candidates for each partition.

- Partition Y variables with disjoint subsets.
- Use a multi-classifier to learn candidates for each partition.

How should the variable partitioning be driven?

- Partition Y variables with disjoint subsets.
- Use a multi-classifier to learn candidates for each partition.

How should the variable partitioning be driven?

Learn related variables together — lead to smaller decision tree.

- Partition Y variables with disjoint subsets.
- Use a multi-classifier to learn candidates for each partition.

How should the variable partitioning be driven?

- Learn related variables together lead to smaller decision tree.
- Use edge(hop) distance in primal graph to cluster Y variables into disjoint subsets.

Experimental Evaluations

- 609 Benchmarks from:
 - QBFEval competition
 - Arithmetic
 - Disjunctive decomposition
 - Factorization
- Compared Manthan2 with State-of-the-art tools: Manthan (Golia et al., 2020), CADET (Rabe et al., 2019), BFSS (Akshay et al., 2018), C2Syn (Chakraborty et al., 2019).
- Timeout: 7200 seconds.

Experimental Evaluations

C2Syn	BFSS	CADET	Manthan
206	247	280	356

Experimental Evaluations

C2Syn	BFSS	CADET	Manthan	Manthan2
206	247	280	356	509

An increase of 153 benchmarks.

Impact of Individual Contribution

Manthan	Manthan Function Extraction
356	477
6374.39	3523.28

Impact of Individual Contribution

6374.39 3523.28 3227.11	Manthan 356 6374.39	Manthan _{FunctionExtraction} 477 3523.28	Manthan _{VariableRetention} 502 3227.11
--------------------------------	---------------------------	---	--

Impact of Individual Contribution

Manthan 356	Manthan _{FunctionExtraction} 477	Manthan Variable Retention 502	Manthan _{MultiClassification} 509
6374.39	3523.28	3227.11	2858.61

Conclusion

Engineering an Efficient Boolean Functional Synthesis Engine

Vniqu

Unique function extraction

+ Variable Retention.

Constrained Sampling

Multi-Class Classifier

https://github.com/meelgroup/manthan