- Input Offset Voltage Drift . . . Typically 0.1 μV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range:

0°C to 70°C . . . 3 V to 16 V -40°C to 85°C . . . 4 V to 16 V -55°C to 125°C . . . 5 V to 16 V

- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix and I-Suffix Types)
- Low Noise . . . 25 nV/√Hz Typically at f = 1 kHz (High-Bias Mode)
- Output Voltage Range Includes Negative Rail
- High Input Impedance . . . $10^{12} \Omega$ Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-In Latch-Up Immunity

description

The TLC271 operational amplifier combines a wide range of input offset voltage grades with low offset voltage drift and high input impedance. In addition, the TLC271 offers a bias-select mode

NC - No internal connection

that allows the user to select the best combination of power dissipation and ac performance for a particular application. These devices use Texas Instruments silicon-gate LinCMOS™ technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

AVAILABLE OPTIONS

	V may	PACKAGE							
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	PLASTIC DIP (P)				
0°C to 70°C	2 mV 5 mV 10 mV	TLC271BCD TLC271ACD TLC271CD	_	_	TLC271BCP TLC271ACP TLC271CP				
-40°C to 85°C	2 mV 5 mV 10 mV	TLC271BID TLC271AID TLC271ID	_	_	TLC271BIP TLC271AIP TLC271IP				
-55°C to 125°C	10 mV	TLC271MD	TLC271MFK	TLC271MJG	TLC271MP				

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC271BCDR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinCMOS is a trademark of Texas Instruments.

DEVICE FEATURES

DADAMETER	BIA	BIAS-SELECT MODE					
PARAMETERT	HIGH	MEDIUM	LOW	UNIT			
PD	3375	525	50	μW			
SR	3.6	0.4	0.03	V/μs			
v _n	25	32	68	nV/√ Hz			
B ₁	1.7	0.5	0.09	MHz			
AVD	23	170	480	V/mV			

[†] Typical at $V_{DD} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

description (continued)

Using the bias-select option, these cost-effective devices can be programmed to span a wide range of applications that previously required BiFET, NFET, or bipolar technology. Three offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC271 (10 mV) to the TLC271B (2 mV) low-offset version. The extremely high input impedance and low bias currents, in conjunction with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

In general, many features associated with bipolar technology are available in LinCMOS™ operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily designed with the TLC271. The devices also exhibit low-voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density system applications.

The device inputs and output are designed to withstand -100-mA surge currents without sustaining latch-up.

The TLC271 incorporates internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.

bias-select feature

The TLC271 offers a bias-select feature that allows the user to select any one of three bias levels depending on the level of performance desired. The tradeoffs between bias levels involve ac performance and power dissipation (see Table 1).

Table 1. Effect of Bias Selection on Performance

	TYPICAL PARAMETER VALUES		MODE						
	$T_A = 25^{\circ}C$, $V_{DD} = 5 \text{ V}$	HIGH BIAS $R_L = 10 \text{ k}\Omega$	MEDIUM BIAS $R_L = 100 \text{ k}\Omega$	LOW BIAS $R_L = 1 M\Omega$	UNIT				
P_{D}	Power dissipation	3.4	0.5	0.05	mW				
SR	Slew rate	3.6	0.4	0.03	V/μs				
٧n	Equivalent input noise voltage at f = 1 kHz	25	32	68	nV/√Hz				
B ₁	Unity-gain bandwidth	1.7	0.5	0.09	MHz				
φm	Phase margin	46°	40°	34°					
AVD	Large-signal differential voltage amplification	23	170	480	V/mV				

bias selection

Bias selection is achieved by connecting the bias select pin to one of three voltage levels (see Figure 1). For medium-bias applications, it is recommended that the bias select pin be connected to the midpoint between the supply rails. This procedure is simple in split-supply applications, since this point is ground. In single-supply applications, the medium-bias mode necessitates using a voltage divider as indicated in Figure 1. The use of large-value resistors in the voltage divider reduces the current drain of the divider from the supply line. However, large-value resistors used in conjunction with a large-value capacitor require significant time to charge up to the supply midpoint after the supply is switched on. A voltage other than the midpoint can be used if it is within the voltages specified in Figure 1.

Figure 1. Bias Selection for Single-Supply Applications

high-bias mode

In the high-bias mode, the TLC271 series features low offset voltage drift, high input impedance, and low noise. Speed in this mode approaches that of BiFET devices but at only a fraction of the power dissipation. Unity-gain bandwidth is typically greater than 1 MHz.

medium-bias mode

The TLC271 in the medium-bias mode features low offset voltage drift, high input impedance, and low noise. Speed in this mode is similar to general-purpose bipolar devices but power dissipation is only a fraction of that consumed by bipolar devices.

TLC271, TLC271A, TLC271B LinCMOS™ PROGRAMMABLE LOW-POWER **OPERATIONAL AMPLIFIERS**

SLOS090D - NOVEMBER 1987 - REVISED MARCH 2001

low-bias mode

In the low-bias mode, the TLC271 features low offset voltage drift, high input impedance, extremely low power consumption, and high differential voltage gain.

ORDER OF CONTENTS

TOPIC	BIAS MODE
schematic	all
absolute maximum ratings	all
recommended operating conditions	all
electrical characteristics operating characteristics typical characteristics	high (Figures 2 – 33)
electrical characteristics operating characteristics typical characteristics	medium (Figures 34 – 65)
electrical characteristics operating characteristics typical characteristics	low (Figures 66 – 97)
parameter measurement information	all
application information	all

equivalent schematic

TLC271, TLC271A, TLC271B LinCMOS™ PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS

SLOS090D - NOVEMBER 1987 - REVISED MARCH 2001

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	18 V
Differential input voltage, V _{ID} (see Note 2)	$\pm V_{DD}$
Input voltage range, V _I (any input)	
Input current, I ₁	±5 mA
Output current, IO	
Duration of short-circuit current at (or below) 25°C (see Note 3)	Unlimited
Continuous total dissipation	
Operating free-air temperature, T _A : C suffix	0°C to 70°C
I suffix	– 40°C to 85°C
M suffix	– 55°C to 125°C
Storage temperature range	– 65°C to 150°C
Case temperature for 60 seconds: FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D of	or P package 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG	package 300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section).

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	200 mW

recommended operating conditions

			C SUFFIX		FIX	M SUFFIX		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	ONIT	
Supply voltage, V _{DD}		3	16	4	16	5	16	V	
Common-mode input voltage, VIC	V _{DD} = 5 V	-0.2	3.5	-0.2	3.5	0	3.5	V	
Common-mode input voltage, VIC	V _{DD} = 10 V	-0.2	8.5	-0.2	8.5	0	8.5	V	
Operating free-air temperature, T _A		0	70	-40	85	-55	125	°C	

electrical characteristics at specified free-air temperature (unless otherwise noted)

			TEOT	TLC271C, TLC271AC, TLC271BC								
	PARAMETER		TEST CONDITIONS	T _A †	V	_{DD} = 5 \	<i>'</i>	٧ _C	D = 10	V	UNIT	
			CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX		
		TLC271C		25°C		1.1	10		1.1	10		
		TLC2/TC	V _O = 1.4 V,	Full range			12			12		
\/	lanut offeet voltege	TLC271AC	V _{IC} = 0 V,	25°C		0.9	5		0.9	5	\/	
VIO	Input offset voltage	TLC27 TAC	$R_S = 50 \Omega$	Full range			6.5			6.5	mV	
		TLC271BC	$R_L = 10 \text{ k}\Omega$	25°C		0.34	2		0.39	2		
		TLC2/TBC		Full range			3			3		
ανιο	Average temperature of input offset voltage	coefficient		25°C to 70°C		1.8			2		μV/°C	
l. a	Input offset current (se	o Noto 4)	$V_O = V_{DD}/2$,	25°C		0.1	60		0.1	60	nΛ	
liO	Input offset current (se	ee Note 4)	$V_{IC} = V_{DD}/2$	70°C		7	300		7	300	pΑ	
	Input bigg ourrest (age	Note 4)	$V_O = V_{DD}/2$,	25°C		0.6	60		0.7	60		
ΙΒ	Input bias current (see	e Note 4)	$V_{IC} = V_{DD}/2$	70°C		40	600		50	600	pΑ	
	Common-mode input voltage range (see Note 5)			25°C	-0.2 to 4	-0.3 to 4.2		-0.2 to 9	-0.3 to 9.2		V	
VICR				Full range	-0.2 to 3.5			-0.2 to 8.5			V	
				25°C	3.2	3.8		8	8.5			
∨он	High-level output volta	ige	$V_{ID} = 100 \text{ mV},$ $R_L = 10 \text{ k}\Omega$	0°C	3	3.8		7.8	8.5		V	
				70°C	3	3.8		7.8	8.4			
				25°C		0	50		0	50		
VOL	Low-level output volta	ge	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	0°C		0	50		0	50	mV	
			IOL = 0	70°C		0	50		0	50		
		,	2 4010	25°C	5	23		10	36			
A_{VD}	Large-signal differentiation	al	R_L = 10 kΩ, See Note 6	0°C	4	27		7.5	42		V/mV	
	voltago amplinoation		000 11010 0	70°C	4	20		7.5	32			
				25°C	65	80		65	85			
CMRR	Common-mode reject	on ratio	V _{IC} = V _{ICR} min	0°C	60	84		60	88		dB	
				70°C	60	85		60	88			
				25°C	65	95		65	95			
k _{SVR}	Supply-voltage rejection (ΔV _{DD} /ΔV _{IO})	on ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V}$ $V_{O} = 1.4 \text{ V}$	0°C	60	94		60	94		dB	
	(= 100/410/		.0 = v	70°C	60	96		60	96			
I _I (SEL)	Input current (BIAS SE	ELECT)	V _{I(SEL)} = 0	25°C		-1.4			-1.9		μΑ	
			$V_O = V_{DD}/2$,	25°C		675	1600		950	2000)	
I_{DD}	Supply current	Supply current	$V_{IC} = V_{DD}/2$,	0°C		775	1800		1125	2200		
	,		No load	70°C		575	1300		750	1700		

[†] Full range is 0°C to 70°C.

- 5. This range also applies to each input individually.
- 6. At V_{DD} = 5 V, V_{O} = 0.25 V to 2 V; at V_{DD} = 10 V, V_{O} = 1 V to 6 V.

electrical characteristics at specified free-air temperature (unless otherwise noted)

			TEST			TLC271	I, TLC271AI, TLC271BI					
	PARAMETER		TEST CONDITIONS	T _A †	V	_{DD} = 5 \	/	۷	OD = 10	٧	UNIT	
			CONDINIONS		MIN	TYP	MAX	MIN	TYP	MAX		
		TLC271I		25°C		1.1	10		1.1	10		
		TLC2/11	V _O = 1.4 V,	Full range			13			13		
V	lanut offeet valtage	TI C074 A I	V _{IC} = 0 V,	25°C		0.9	5		0.9	5	\ /	
VIO	Input offset voltage	TLC271AI	$R_S = 50 \Omega$,	Full range			7			7	mV	
		TLC271BI	$R_L = 10 \text{ k}\Omega$	25°C		0.34	2		0.39	2		
		TLC2/ IBI		Full range			3.5			3.5		
ανιο	Average temperature of input offset voltage	coefficient		25°C to 85°C		1.8			2		μV/°C	
l	Input offset current (se	o Noto 4)	$V_O = V_{DD}/2$,	25°C		0.1	60		0.1	60	60	
liO	input onset current (se	ee Note 4)	$V_{IC} = V_{DD}/2$	85°C		24	1000		26	1000	pΑ	
lin	Input bias current (see	Note 4)	$V_O = V_{DD}/2$,	25°C		0.6	60		0.7	60	60	
lВ	input bias current (see	i Note 4)	$V_{IC} = V_{DD}/2$	85°C		200	2000		220	2000	рA	
					-0.2	-0.3		-0.2	-0.3			
	•			25°C	to 4	to 4.2		to 9	to 9.2		V	
VICR	Common-mode input voltage range (see No	ite 5)				4.2			9.2			
	Tollago Tallgo (oco Tiolo o)			Full range	-0.2 to			-0.2 to			V	
					3.5			8.5				
	High-level output voltage			25°C	3.2	3.8		8	8.5			
Vон			$V_{ID} = 100 \text{ mV},$ $R_L = 10 \text{ k}\Omega$	−40°C	3	3.8		7.8	8.5		V	
				85°C	3	3.8		7.8	8.5			
				25°C		0	50		0	50		
VOL	Low-level output volta	ge	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	−40°C		0	50		0	50	mV	
			IOL = 0	85°C		0	50		0	50		
			2 4210	25°C	5	23		10	36			
A_{VD}	Large-signal differentiation	al	R_L = 10 kΩ, See Note 6	−40°C	3.5	32		7	46		V/mV	
	vokago ampimoation		000 11010 0	85°C	3.5	19		7	31			
				25°C	65	80		65	85			
CMRR	Common-mode rejecti	ion ratio	V _{IC} = V _{ICR} min	-40°C	60	81		60	87		dB	
				85°C	60	86		60	88			
	0			25°C	65	95		65	95			
ksvr	Supply-voltage rejection (ΔV _{DD} /ΔV _{IO})	on ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V}$ $V_{O} = 1.4 \text{ V}$	-40°C	60	92		60	92		dB	
	(= 1 DD / = 1 IO /			85°C	60	96		60	96			
l _(SEL)	Input current (BIAS SE	ELECT)	V _{I(SEL)} = 0	25°C		-1.4			-1.9		μΑ	
			$V_O = V_{DD}/2$,	25°C		675	1600		950	2000		
I_{DD}	Supply current		$V_{IC} = V_{DD}/2,$ -	-40°C		950	2200		1375	2500		
		Supply Surform		85°C		525	1200		725	1600	1 "``	

[†]Full range is –40°C to 85°C.

^{6.} At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

^{5.} This range also applies to each input individually.

electrical characteristics at specified free-air temperature (unless otherwise noted)

		TEOT				TLC2	71M			
	PARAMETER	TEST CONDITIONS	T _A †	V	_{DD} = 5 \	/	۷	_{OD} = 10 '	٧	UNIT
		CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
V _{IO}	Input offset voltage	V _O = 1.4 V, V _{IC} = 0 V,	25°C		1.1	10		1.1	10	mV
VIO	input onset voltage	$R_S = 50 \Omega$, $R_L = 10 k\Omega$	Full range			12			12	
αVIO	Average temperature coefficient of input offset voltage		25°C to 125°C		2.1			2.2		μV/°C
lio.	Input offset current (see Note 4)	$V_O = V_{DD}/2$,	25°C		0.1	60		0.1	60	pA
ΙΟ	input onset current (see Note 4)	$V_{IC} = V_{DD}/2$	125°C		1.4	15		1.8	15	nA
lin	Input bias current (see Note 4)	$V_O = V_{DD}/2$,	25°C		0.6	60		0.7	60	pA
İΙΒ	input bias current (see Note 4)	$V_{IC} = V_{DD}/2$	125°C		9	35		10	35	nA
VICR	Common-mode input voltage		25°C	0 to 4	-0.3 to 4.2		0 to 9	-0.3 to 9.2		V
	range (see Note 5)		Full range	0 to 3.5			0 to 8.5			V
		\/:= - 100 m\/	25°C	3.2	3.8		8	8.5		
Vон	High-level output voltage	$V_{ID} = 100 \text{ mV},$ $R_{I} = 10 \text{ k}\Omega$	−55°C	3	3.8		7.8	8.5		V
			125°C	3	3.8		7.8	8.4		
		.,	25°C		0	50		0	50	mV
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	−55°C		0	50	-	0	50	
		OL 1	125°C		0	50		0	50	
	Large-signal differential	R _L = 10 kΩ,	25°C	5	23		10	36		
AVD	voltage amplification	See Note 6	−55°C	3.5	35		7	50		V/mV
			125°C	3.5	16		7	27		
			25°C	65	80		65	85		
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min	−55°C	60	81		60	87		dB
			125°C	60	84		60	86		
	Supply-voltage rejection ratio	V _{DD} = 5 V to 10 V	25°C	65	95		65	95		
ksvr	(ΔV _{DD} /ΔV _{IO})	V _O D = 5 V to 10 V V _O = 1.4 V	−55°C	60	90		60	90		dB
		_	125°C	60	97		60	97		
I _I (SEL)	Input current (BIAS SELECT)	V _{I(SEL)} = 0	25°C		-1.4			-1.9		μΑ
		$V_O = V_{DD}/2$,	25°C		675	1600		950	2000	μΑ
IDD	Supply current	$V_{IC} = V_{DD}/2$,	−55°C		1000	2500		1475	3000	
+	'- FF00 to 40500	No load	125°C		475	1100		625	1400	

† Full range is -55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER		TEST CONDITIONS			TLC271C, TLC271AC, TLC271BC		
			_	TA	MIN	TYP	MAX	
				25°C		3.6		
	Observation		V _{I(PP)} = 1 V	0°C		4		
SR		$R_L = 10 \text{ k}\Omega$		70°C		3		\//uo
J SK	Slew rate at unity gain	C _L = 20 pF, See Figure 98		25°C		2.9		V/μs
			V _{I(PP)} = 2.5 V	0°C		3.1		
				70°C		2.5		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
				25°C		320		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	C _L = 20 pF, See Figure 98	0°C		340		kHz
		N_ = 10 K32,	Occ rigure 50	70°C		260		
				25°C		1.7		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 \text{ pF},$	0°C		2		MHz
		Occ riguic 100		70°C		1.3		
		V 40V	(5	25°C		46°		
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	t = B ₁ , See Figure 100	0°C		47°		
				70°C		44°		

	PARAMETER		TEST CONDITIONS			TLC271C, TLC271AC, TLC271BC		
				TA	MIN	TYP	MAX	
				25°C		5.3		
	Observation to series		V _{I(PP)} = 1 V	0°C		5.9		
SR		$R_L = 10 \text{ k}\Omega$		70°C		4.3		\//v.a
J SK	Slew rate at unity gain	C _L = 20 p F, See Figure 98	V _{I(PP)} = 5.5 V	25°C		4.6		V/μs
		3		0°C		5.1		
				70°C		3.8		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$	25°C		25		nV/√ Hz
				25°C		200		kHz
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	C _L = 20 pF,	0°C		220		
		10 132,	Coo rigure oo	70°C		140		
		., ,, ,,		25°C		2.2		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 \text{ pF},$	0°C		2.5		MHz
		Gee rigule 100		70°C		1.8		
		, D	\\	25°C		49°		
φm	Phase margin	f = B ₁ , C _L = 20 pF,	V _I = 10 mV, See Figure 100	0°C		50°		
				70°C		46°		

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST CO	NDITIONS	TA	TLC271I, TLC271AI, TLC271BI			UNIT											
					MIN	TYP	MAX												
				25°C		3.6													
			V _{I(PP)} = 1 V	-40°C		4.5													
SR	Slow rate at unity gain	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$,		85°C		2.8		\//uo											
SK	Slew rate at unity gain	See Figure 98		25°C		TLC271BI TYP MAX 3.6 4.5 2.8 2.9 3.5 2.3 25 320 380 250 1.7 2.6 1.2 46° 49°		V/μs											
						−40°C		3.5											
				<u> </u>						 				` ´	85°C		2.3		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz											
				25°C		320													
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	CL = 20 pF,	CL = 20 pF, See Figure 98	-40°C		380		kHz										
		1 10 KS2,	See Figure 90	85°C		250													
				25°C		1.7													
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	-40°C		2.6		MHz											
		See rigule 100		85°C		1.2													
		V 40V	(5	25°C		46°													
φm	Phase margin	$V_I = 10 \text{ mV},$ $C_L = 20 \text{ pF},$	f = B ₁ , See Figure 100	−40°C		49°													
		20 20 pri,		85°C		43°													

	PARAMETER	TEST CO	NDITIONS	TA		•		UNIT							
					MIN	TYP	MAX								
				25°C		5.3									
			V _{I(PP)} = 1 V	-40°C		6.8									
SR	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$,		85°C		4		\//uo							
SK	Siew rate at utility gain	See Figure 98		25°C		5.3 6.8 4 4.6 5.8 3.5 25 200 260 130 2.2 3.1 1.7 49° 52°		V/μs							
			V _{I(PP)} = 5.5 V	−40°C		5.8									
											85°C		3.5		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz							
				25°C		200									
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	C _L = 20 pF,	CL = 20 pF, See Figure 98	-40°C		260		kHz						
		1\(\(\) = 10 \(\) \(\) (32,			85			130							
				25°C		2.2									
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	-40°C		3.1		MHz							
		Gee rigule 100		85°C		1.7									
)/ ₁ 40 m)/	4 D	25°C		49°									
φm	Phase margin		f= B ₁ , See Figure 100	-40°C		52°									
	Fliase margin	pi,	200guio 100	85°C		46°									

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	DADAMETED	TEOT 00	NDITIONS	I .	T	LC271M		LINUT
	PARAMETER	I IEST CO	NDITIONS	TA	MIN	TYP	MAX	UNIT
				25°C		3.6		
			V _{I(PP)} = 1 V	−55°C		4.7		
SR	Slow rate at unity gain	$R_L = 10 \text{ k}\Omega$		125°C		2.3		\//uo
J SK	Slew rate at unity gain	C _L = 20 pF, See Figure 98		25°C		2.9		V/μs
			$V_{I(PP)} = 2.5 \text{ V}$	125°C		3.7		
				125°C		2		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
				25°C		320		
ВОМ	Maximum output-swing bandwidth	VO = VOH, R _L = 10 kO	C _L = 20 pF, See Figure 98	−55°C		320 400	kHz	
		TC TO K22,		125°C		230		
		.,,		25°C		1.7		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	−55°C		2.9		MHz
		occ rigure 100		125°C		1.1		
		\/ 40 m\/	, D	25°C		46°		
φm	Phase margin		f = B ₁ , See Figure 100	−55°C	°C 49°			
		,		125°C		41°		

	DADAMETED	TEST CO	NDITIONS		T	LC271M		LINIT
	PARAMETER	IESI CO	NDITIONS	TA	MIN	TYP	MAX	UNIT
				25°C		5.3		
			V _{I(PP)} = 1 V	−55°C		7.1		
SR	Slow rate at unity gain	$R_L = 10 \text{ k}\Omega$		125°C		3.1		1//110
J SK	Slew rate at unity gain	C _L = 20 pF, See Figure 98		25°C		4.6		V/μs
			$V_{I(PP)} = 5.5 \text{ V}$	−55°C				
				125°C		2.7		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
				25°C		200		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	C _L = 20 pF, See Figure 98	−55°C		280		kHz
			occ rigure so	125°C		110		
				25°C		2.2		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	−55°C		3.4		MHz
		occ rigure 100		125°C		1.6		
		, ,	\/ 40 m\/	25°C		49°		
φm	Phase margin	$f = B_1,$ $C_1 = 20 pF,$	V _I = 10 mV, See Figure 100	−55°C		52°		
		-L P.,		125°C		44°		

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution	2, 3
ανιο	Temperature coefficient	Distribution	4, 5
Vон	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	6, 7 8 9
VOL	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	10, 11 12 13 14, 15
AVD	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	16 17 28, 29
I _{IB}	Input bias current	vs Free-air temperature	18
IIO	Input offset current	vs Free-air temperature	18
VIC	Common-mode input voltage	vs Supply voltage	19
IDD	Supply current	vs Supply voltage vs Free-air temperature	20 21
SR	Slew rate	vs Supply voltage vs Free-air temperature	22 23
	Bias-select current	vs Supply voltage	24
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	25
В1	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	26 27
A_{VD}	Large-signal differential voltage amplification	vs Frequency	28, 29
φm	Phase margin	vs Supply voltage vs Free-air temperature vs Capacitive load	30 31 32
٧n	Equivalent input noise voltage	vs Frequency	33
	Phase shift	vs Frequency	28, 29

Figure 2

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE

Figure 3

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

HIGH-LEVEL OUTPUT VOLTAGE vs SUPPLY VOLTAGE

Figure 8

HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

300

250 0

Figure 10

LOW-LEVEL OUTPUT VOLTAGE

Figure 12

Figure 11

2

LOW-LEVEL OUTPUT VOLTAGE

5 6

V_{IC} - Common-Mode Input Voltage - V

10

Figure 13

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 14

LOW-LEVEL OUTPUT VOLTAGE vs
LOW-LEVEL OUTPUT CURRENT

Figure 15

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs

Figure 17

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT

FREE-AIR TEMPERATURE

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

Figure 18

COMMON-MODE INPUT VOLTAGE (POSITIVE LIMIT)

SUPPLY VOLTAGE

Figure 19

SUPPLY CURRENT vs

Figure 20

SUPPLY CURRENT

VS

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 22

Figure 23

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SCALE DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

Figure 29

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)†

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

electrical characteristics at specified free-air temperature (unless otherwise noted)

Vical Input offset voltage TEST CONDITIONS TA TEST CONDITIONS TA TEST CONDITIONS TA TEST CONDITIONS TA TO TO TO TO TO TO TO						Т	LC271C	, TLC27	1AC, TL	C271BC		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		PARAMETER		TEST CONDITIONS	T _A †	V	_{DD} = 5 \	<i>'</i>	۷	OD = 10 \	/	UNIT
Vico Input offset voltage TLC271C TLC271AC TLC271AC TLC271AC TLC271BC T						MIN	TYP	MAX	MIN	TYP	MAX	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			TI C271C		25°C		1.1	10		1.1	10	
$ \begin{array}{c} v_{IO} \\ v_{IO} \\ \hline \\ v$			TLGZ/TG	Vo = 14 V	Full range			12			12	
R = 50 Ll ₂ Full range 6.5 6.5 6.5 Euclinating Full range 25°C 0.25 2 0.26 2 Euclination 3 3 3 3 3 3 3 3 3	1/10	Input offset voltage	TI C274 A C		25°C		0.9	5		0.9	5	m\/
TLC271BC Full range 3 3 3 3 3 3 3 3 3	VIO	input onset voitage	TLCZITAC		Full range			6.5			6.5	IIIV
Full range 3 3 3 3 3 3 3 3 3			TI C274BC	$R_{\parallel} = 100 \text{ k}\Omega$	25°C		0.25	2		0.26	2	
To Input offset voltage To C To To			TLOZITBO		Full range			3			3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ανιο						1.7			2.1		μV/°C
$I_{IB} I_{ID} I$	li o	Input offset current (saa Nota 4)	$V_O = V_{DD}/2$	25°C		0.1	60		0.1	60	ρ4
Input bias current (see Note 4) ViC = VDD/2 70°C	IIO	input onset current (see Note 4)	$V_{IC} = V_{DD}/2$	70°C		7	300		7	300	PΑ
V _{ICR} V _{ICR} V _{IC} V _{IC}	l.s	Input biog ourrent (o	oo Noto 4)	$V_O = V_{DD}/2$,	25°C		0.6	60		0.7	60	- Δ
$V_{ICR} = \begin{array}{c} Common-mode input \\ voltage range (see Note 5) \end{array} \\ \begin{array}{c} V_{ICR} = \begin{array}{c} Common-mode input \\ voltage range (see Note 5) \end{array} \\ \end{array} \\ \begin{array}{c} V_{ID} = 100 \text{ mV}, \\ R_{L} = 100 \text{ k}\Omega \end{array} \\ \begin{array}{c} V_{ID} = 100 \text{ mV}, \\ R_{L} = 100 \text{ k}\Omega \end{array} \\ \end{array} \\ \begin{array}{c} V_{ID} = 100 \text{ mV}, \\ R_{L} = 100 \text{ k}\Omega \end{array} \\ \end{array} \\ \begin{array}{c} V_{ID} = 100 \text{ mV}, \\ V_{ID} = -100 \text{ mV}, \\ V_{ID} = -100 \text{ mV}, \\ V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = -100 \text{ mV}, \\ V_{ID} = 0 \end{array} \\ \begin{array}{c} V_{ID} = 0$	ıВ	input bias current (s	ee Note 4)		70°C		40	600		50	600	PΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-0.2	-0.3		-0.2	-0.3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					25°C							V
$V_{OH} \text{High-level output voltage} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VICR	•					4.2			9.2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		voltage range (see Note 5)			Full range							V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					i uli range							V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					25°C	3.2	3.9		8	8.7		
$V_{OL} \text{Low-level output voltage} \begin{array}{c} R_L = 100 \text{ K}2 \\ \hline \\ V_{OL} \text{Low-level output voltage} \\ \hline \\ V_{OL} \text{Low-level output voltage} \\ \hline \\ V_{OL} \text{Low-level output voltage} \\ \hline \\ V_{ID} = -100 \text{ mV}, \\ I_{OL} = 0 \\ \hline \\ \hline \\ V_{ID} = -100 \text{ mV}, \\ I_{OL} = 0 \\ \hline \\ \hline \\ \hline \\ \hline \\ V_{ID} = -100 \text{ mV}, \\ I_{OC} 0 50 \\ \hline \\ $	VOH	High-level output vol	tage		0°C	3	3.9		7.8	8.7		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				RL = 100 KΩ	70°C	3	4		7.8	8.7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					25°C		0	50		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VOL	Low-level output vol	tage		0°C		0	50		0	50	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				IOL = 0	70°C		0	50		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_	25°C	25	170		25	275		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_{VD}				0°C	15	200		15	320		V/mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		voitage amplification	l	See Note o	70°C	15	140		15	230		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					25°C	65	91		65	94		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMRR	Common-mode reje	ction ratio	V _{IC} = V _{ICR} min	0°C	60	91		60	94		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					70°C	60	92		60	94		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					25°C	70	93		70	93		
Too C Figure Too C Too	kSVR		tion ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V}$	0°C	60	92		60	92		dB
V _O = V _{DD} /2, 25°C 105 280 143 300		(πνΩΩνπνΙΩ)		VO = 1. 4 V	70°C	60	94		60	94		
V _O = V _{DD} /2, 25°C 105 280 143 300	I(SEL)	Input current (BIAS	SELECT)	$V_{I(SEL)} = V_{DD}/2$	25°C		-130			-160		nA
				· · · · · ·	25°C		105	280		143	300	
	I _{DD}	Supply current		$V_{IC} = V_{DD}/2$,	0°C		125	320		173	400	μΑ
No load 70°C 85 220 110 280				No load	70°C		85	220		110	280	

[†] Full range is 0°C to 70°C.

- 5. This range also applies to each input individually.
- 6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

MEDIUM-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

			TEST			TLC271	I, TLC27	'1AI, TLO	271BI		
	PARAMETER		CONDITIONS	T _A †	V	DD = 5 \	/	۷	OD = 10	٧	UNIT
			CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
		TLC2711		25°C		1.1	10		1.1	10	
		TLC2/11	V _O = 1.4 V,	Full range			13			13	
\/. -	lanut offeet voltege	TLC271AI	$V_{IC} = 0 V$	25°C		0.9	5		0.9	5	\/
VIO	Input offset voltage	TLC2/TAI	$R_S = 50 \Omega$,	Full range			7			7	mV
		TLC271BI	$R_L = 100 \text{ k}\Omega$	25°C		0.25	2		0.26	2	
		TLC2/ IBI		Full range			3.5			3.5	
αVIO	Average temperature of input offset voltage	coefficient		25°C to 85°C		1.7			2.1		μV/°C
l. o	Input offcot current (co	no Noto 4)	$V_O = V_{DD}/2$	25°C		0.1	60		0.1	60	nΛ
ΙΟ	Input offset current (se	ee Note 4)	$V_{IC} = V_{DD}/2$	85°C		24	1000		26	1000	pА
1.5	Input bigg gurrent (gg	Note 4)	$V_O = V_{DD}/2$,	25°C		0.6	60		0.7	60	5 Λ
İΒ	Input bias current (see	e Note 4)	$V_{IC} = V_{DD}/2$	85°C		200	2000		220	2000	pА
					-0.2	-0.3		-0.2	-0.3		
				25°C	to	to		to	to		V
VICR	Common-mode input voltage range (see No	10 E)			4	4.2		9	9.2		
	voltage range (see NC	ne s)		Full range	-0.2 to			-0.2 to			V
				i un rango	3.5			8.5			,
				25°C	3.2	3.9		8	8.7		
Vон	High-level output volta	age	$V_{ID} = 100 \text{ mV},$	-40°C	3	3.9		7.8	8.7		V
			$R_L = 100 \text{ k}\Omega$	85°C	3	4		7.8	8.7		
				25°C		0	50		0	50	
VOL	Low-level output volta	ge	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	-40°C		0	50		0	50	mV
			IOL = 0	85°C		0	50		0	50	
				25°C	25	170		25	275		
A_{VD}	Large-signal differenti voltage amplification	al	R_L = 100 kΩ, See Note 6	-40°C	15	270		15	390		V/mV
	voltage amplification		See Note o	85°C	15	130		15	220		
				25°C	65	91		65	94		
CMRR	Common-mode reject	ion ratio	V _{IC} = V _{ICR} min	-40°C	60	90		60	93		dB
				85°C	60	90		60	94		
			.,	25°C	70	93		70	93		
ksvr	Supply-voltage rejecti (ΔV _{DD} /ΔV _{IO})	on ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V}$ $V_{O} = 1.4 \text{ V}$	-40°C	60	91		60	91		dB
	(4 V DD / 4 V D/		.0 = •	85°C	60	94		60	94		
I _I (SEL)	Input current (BIAS SI	ELECT)	$V_{I(SEL)} = V_{DD}/2$	25°C		-130			-160		nA
			$V_O = V_{DD}/2$,	25°C		105	280		143	300	
I_{DD}	Supply current		$V_{IC} = V_{DD}/2$,	-40°C		158	400		225	450	μΑ
		No load	85°C		80	200		103	260		

[†]Full range is –40°C to 85°C.

- 5. This range also applies to each input individually.
- 6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETER $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DD = 10 ' TYP 1.1	MAX 10	UNIT
$V_{O} = 1.4 \text{ V}, \\ V_{IC} = 0 \text{ V}, \\ R_{S} = 50 \Omega, \\ V_{O} = 1.4 \text{ V}, \\ P_{O} = 1.4 \text$	-		m)/
V_{IO} Input offset voltage $V_{IC} = 0 \text{ V},$ $R_S = 50 \Omega,$ Full range 12	1.1	10	m)/
$RS = 50 \Omega$, Full range 12			mV
112 122 132		12	
Average temperature coefficient of input offset voltage 25°C to 1.7	2.1		μV/°C
I _{IO} Input offset current (see Note 4) $V_O = V_{DD}/2$, $V_O = V_{DD}/2$	0.1	60	pА
Input offset current (see Note 4) $V_{IC} = V_{DD}/2$ 125°C 1.4 15	1.8	15	nA
I _{IB} Input bias current (see Note 4) $V_O = V_{DD}/2$, $V_O = V_{DD}/2$	0.7	60	pА
Input bias current (see Note 4) $V_{IC} = V_{DD}/2$ 125°C 9 35	10	35	nA
0 -0.3 0	-0.3		
25°C to to to	to		V
VICR Voltage renge (see Note 5)	9.2		
voltage range (see Note 5) Full range to to			V
3.5 8.5			ľ
25°C 3.2 3.9 8	8.7		
VOH High-level output voltage VID = 100 mV, -55°C 3 3.9 7.8	8.6		V
$R_L = 100 \text{ k}\Omega$ $R_L = 100 \text{ k}\Omega$ $R_L = 100 \text{ k}\Omega$ $R_L = 100 \text{ k}\Omega$ $R_L = 100 \text{ k}\Omega$ $R_L = 100 \text{ k}\Omega$	8.6		
25°C 0 50	0	50	
V _{OL} Low-level output voltage V _{ID} = -100 mV, -55°C 0 50	0	50	mV
IOL = 0 125°C 0 50	0	50	
25°C 25 170 25	275		
AVD Large-signal differential $R_L = 10 \text{ k}\Omega$ -55°C 15 290 15	420		V/mV
voltage amplification See Note 6 125°C 15 120 15	190		
25°C 65 91 65	94		
CMRR Common-mode rejection ratio $V_{IC} = V_{ICR}$ min -55° C 60 89 60	93		dB
125°C 60 91 60	93		
25°C 70 93 70	93		
Supply-voltage rejection ratio $V_{DD} = 5 \text{ V to } 10 \text{ V}$ -55°C 60 91 60	91		dB
$V_{O} = 1.4 \text{ V}$ V_{O	94		1
I _I (SEL) Input current (BIAS SELECT) V _I (SEL) = V _{DD} /2 25°C -130	-160		nA
$V_{O} = V_{DD}/2$, $25^{\circ}C$ 105 280	143	300	
$V_{O} = V_{DD}/2$, $V_{IC} =$	245	500	μΑ
No load 125°C 70 180	90	240	1

[†] Full range is –55°C to 125°C.

- 5. This range also applies to each input individually.
- 6. At V_{DD} = 5 V, V_{O} = 0.25 V to 2 V; at V_{DD} = 10 V, V_{O} = 1 V to 6 V.

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST CO	NDITIONS	TA	TLC271C, TLC271AC, TLC271BC			UNIT
					MIN	TYP	MAX	
				25°C		0.43		
			V _{I(PP)} = 1 V	0°C		0.46		
SR	Slow rate of unity gain	$R_L = 100 \text{ k}\Omega$, $C_L = 20 \text{ pF}$,		70°C		0.36		\//uo
J SK	Slew rate at unity gain	See Figure 98		25°C		TLC271BC I TYP 0.43 0.46		V/μs
			$V_{I(PP)} = 2.5 V$	0°C		0.43		
				70°C		0.34		
٧n	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		32		nV/√ Hz
				25°C		55		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 100 \text{ k}\Omega$,	C _L = 20 pF, See Figure 98	0°C		60		kHz
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Gee i igure 90	70°C		50		
		.,,		25°C		525		
B ₁	Unity-gain bandwidth $V_{\parallel} = 10 \text{ mV},$ See Figure 100		$C_L = 20 pF$,	0°C		600		kHz
		See rigure 100		70°C		400		
		\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4 D	25°C		40°		
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 100	0°C	0°C 41°	11°		
		20 20 pri,	233garo 100	70°C		39°		

	PARAMETER	TEST CO	NDITIONS	TA	TLC271C, TLC271AC, TLC271BC			UNIT
					MIN	TYP	MAX	
				25°C		0.62		
			V _{I(PP)} = 1 V	0°C		0.67		
SR	Clausesta at units main	$R_L = 100 \text{ k}\Omega$		70°C		0.51		\//v.a
J SK	Slew rate at unity gain	C _L = 20 pF, See Figure 98		25°C		0.56		V/μs
		3	V _{I(PP)} = 5.5 V	0°C		0.61		
			70°C		0.46			
٧n	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		32		nV/√ Hz
			_	25°C		35		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 100 \text{ k}\Omega$,	C _L = 20 pF,	0°C		40		kHz
			See Figure 30	70°C		30		
		.,,		25°C		635		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	0°C		710		kHz
		See rigure 100		70°C		510		
		\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4 D	25°C		43°		
φm	Phase margin	$V_{\parallel} = 10 \text{ mV},$ $C_{\parallel} = 20 \text{ pF},$	f = B ₁ , See Figure 100	100 0°C	44°	44°		
	Tilaso maigiii	20 20 pri,	232garo 100	70°C		42°		

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST CO	NDITIONS	TA	TLC271I, TLC271AI, TLC271BI			UNIT								
					MIN	TYP	MAX									
				25°C		0.43										
			V _{I(PP)} = 1 V	−40°C		0.51										
SR	Slew rate at unity gain	R_L = 100 kΩ, C_L = 20 pF,		85°C		TLC271BI N TYP 0.43		V/μs								
J SIX	Siew rate at unity gain	See Figure 98		25°C				ν/μδ								
		Š	V _{I(PP)} = 2.5 V	−40°C		0.48										
												85°C		0.32		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		32		nV/√ Hz								
				25°C		55										
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 100 \text{ k}\Omega$,		−40°C		75		kHz								
				85°C		45										
		.,		25°C		525										
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 \text{ pF},$	-40°C		770		MHz								
		See rigule 100		85°C		370										
φ _m Phase ma		V 40 V	. D	25°C		40°										
	Phase margin	$V_{ } = 10 \text{ mV},$ $C_{ } = 20 \text{ pF},$	f = B ₁ , See Figure 100	-40°C		43°	43°									
		-L p.,		85°C		38°										

	PARAMETER	TEST CO	NDITIONS	TA	TLC271I, TLC271AI, TLC271BI			UNIT		
					MIN	TYP	MAX			
				25°C		0.62				
			V _{I(PP)} = 1 V	-40°C		0.77				
SR	Class rate at units agin	$R_L = 100 \text{ k}\Omega$		85°C		0.47		\//v.a		
SK	Slew rate at unity gain	C _L = 20 pF, See Figure 98		25°C		0.56		V/μs		
			V _{I(PP)} = 5.5 V	−40°C		0.70				
		f 4 kHz Da		85°C		0.44				
٧n	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		32		nV/√ Hz		
					25°C		35			
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH},3$ $R_I = 100 \text{ k}\Omega$				-40°C		45		kHz
				85°C		25				
				25°C		635				
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	-40°C		880		kHz		
		See rigule 100		85°C		480				
		\/ 40 m\/	4 D	25°C		43°				
φm	Phase margin	$V_{l} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 100	-40°C		46°				
		JE	200	85°C		41°				

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	DADAMETED	TEST CONDITIONS		TA	TLC271M			
	PARAMETER				MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$R_L = 100 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, See Figure 98	V _{I(PP)} = 1 V	25°C		0.43		V/μs
				−55°C		0.54		
				125°C		0.29		
			V _{I(PP)} = 2.5 V	25°C		0.40		
				−55°C		0.50		
				125°C		0.28		
٧n	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		32		nV/√ Hz
	Maximum output-swing bandwidth	$V_O = V_{OH},$ $R_L = 100 \text{ k}\Omega,$	C _L = 20 pF, See Figure 98	25°C		55		kHz
ВОМ				−55°C		80		
				125°C		40		
	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	C _L = 20 pF,	25°C		525		kHz
B ₁				−55°C		850		
				125°C		330		
	Phase margin	V _I = 10 mV, C _L = 20 pF,	f = B ₁ , See Figure 100	25°C		40°		
фm				−55°C		43°		
				125°C		36°		

DADAMETED		TEST COMPLIANC		T .	TLC271M			LINUT
	PARAMETER	TEST CONDITIONS		TA	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$R_L = 100 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, See Figure 98	V _{I(PP)} = 1 V	25°C		0.62		V/μs
				−55°C		0.81		
				125°C		0.38		
			V _{I(PP)} = 5.5 V	25°C		0.56		
				−55°C		0.73		
				125°C		0.35		
V _n	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		32		nV/√ Hz
	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 100 \text{ k}\Omega$,	C _L = 20 pF, See Figure 98	25°C		35		kHz
ВОМ				−55°C		50		
				125°C		20		
	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	C _L = 20 pF,	25°C		635		kHz
B ₁				−55°C		960		
				125°C		440		
	Phase margin	V _I = 10 mV, C _L = 20 pF,	f = B ₁ , See Figure 100	25°C		43°		
φm				−55°C		47°		
				125°C		39°		

Table of Graphs

			FIGURE	
۷ıO	Input offset voltage	Distribution	34, 35	
ανιο	Temperature coefficient	Distribution	36, 37	
Vон	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	38, 39 40 41	
VOL	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	42, 43 44 45 46, 47	
A _{VD}	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	48 49 60, 61	
I _{IB}	Input bias current	vs Free-air temperature	50	
lio	Input offset current	vs Free-air temperature	50	
VI	Maximum Input voltage	vs Supply voltage	51	
IDD	Supply current	vs Supply voltage vs Free-air temperature	52 53	
SR	Slew rate	vs Supply voltage vs Free-air temperature	54 55	
	Bias-select current	vs Supply voltage	56	
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	57	
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	58 59	
φm	Phase margin	vs Supply voltage vs Free-air temperature vs Capacitive load	62 63 64	
٧n	Equivalent input noise voltage	vs Frequency	65	
	Phase shift	vs Frequency	60, 61	

Figure 34

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE

Figure 35

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

Figure 37

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

HIGH-LEVEL OUTPUT CURRENT 16 $V_{ID} = 100 \text{ mV}$ T_A = 25°C 14 VoH - High-Level Output Voltage - V $V_{DD} = 16 V$ 12 10 8 V_{DD} = 10 V 6 2 0 -10 -15 -20 -25 -30 -35 -40 IOH - High-Level Output Current - mA

HIGH-LEVEL OUTPUT VOLTAGE

HIGH-LEVEL OUTPUT VOLTAGE SUPPLY VOLTAGE

Figure 40

HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

Figure 39

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LOW-LEVEL OUTPUT VOLTAGE

LOW-LEVEL OUTPUT VOLTAGE

VS

COMMON-MODE INPUT VOLTAGE

LOW-LEVEL OUTPUT VOLTAGE vs

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 49

LARGE-SIGNAL

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

A were determined mathematically. Figure 50

SUPPLY CURRENT

MAXIMUM INPUT VOLTAGE vs

Figure 51

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE **AMPLIFICATION AND PHASE SHIFT**

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)†

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

electrical characteristics at specified free-air temperature (unless otherwise noted)

					Т	LC2710	, TLC27	1AC, TL	C271BC	;	
	PARAMETER		TEST CONDITIONS	T _A †	V	DD = 5 \	/	٧ _I	_{DD} = 10	V	UNIT
			CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
		TI C074C		25°C		1.1	10		1.1	10	
		TLC271C	V _O = 1.4 V,	Full range			12			12	
1/1.5	lanut offeet valtees	TLC271AC	V _{IC} = 0 V,	25°C		0.9	5		0.9	5	\/
VIO	Input offset voltage	TLC2/TAC	$R_S = 50 \Omega$,	Full range			6.5			6.5	mV
		TLC271BC	$R_{\parallel} = 1 M\Omega$	25°C		0.24	2		0.26	2	
		TLC2/TBC		Full range			3			3	
ανιο	Average temperature of input offset voltage	oefficient of		25°C to 70°C		1.1			1		μV/°C
l.o	Input offset current (see	o Noto 4)	$V_O = V_{DD}/2$	25°C		0.1	60		0.1	60	nΛ
lio	Input offset current (se	e Note 4)	$V_{IC} = V_{DD}/2$	70°C		7	300		8	300	pА
1.5	Input bigs ourrent (ass	Note 4)	$V_O = V_{DD}/2$,	25°C		0.6	60		0.7	60	5 A
ΙΒ	Input bias current (see	Note 4)	$V_{IC} = V_{DD}/2$	70°C		40	600		50	600	pА
					-0.2	-0.3		-0.2	-0.3		
				25°C	to 4	to 4.2		to 9	to 9.2		V
VICR	Common-mode input voltage range (see Not	e 5)			-0.2	4.2		-0.2	9.2		
	voltage range (see Note 3)			Full range	-0.2 to			-0.2 to			V
					3.5			8.5			
				25°C	3.2	4.1		8	8.9		
Vон	High-level output voltage	ge	V_{ID} = 100 mV, R _L = 1 M Ω	0°C	3	4.1		7.8	8.9		V
			11/2 1 1/122	70°C	3	4.2		7.8	8.9		
			.,	25°C		0	50		0	50	
VOL	Low-level output voltag	je	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	0°C		0	50		0	50	mV
			IOL = 0	70°C		0	50		0	50	
			5 4140	25°C	50	520		50	870		
A_{VD}	Large-signal differentia voltage amplification	l	$R_L = 1 M\Omega$, See Note 6	0°C	50	700		50	1030		V/mV
	voltago amplinoation		000 11010 0	70°C	50	380		50	660		
				25°C	65	94		65	97		
CMRR	Common-mode rejection	on ratio	V _{IC} = V _{ICR} min	0°C	60	95		60	97		dB
				70°C	60	95		60	97		
	0 1 1 1 1		51/. (51/	25°C	70	97		70	97		
ksvr	Supply-voltage rejectio (ΔV _{DD} /ΔV _{IO})	n ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V}$ $V_{O} = 1.4 \text{ V}$	0°C	60	97		60	97		dB
	(A • DD/A • IO/		VO = 1.5 V	70°C	60	98		60	98		
I _{I(SEL)}	Input current (BIAS SE	LECT)	V _{I(SEL)} = V _{DD}	25°C		65			95		nA
			$V_O = V_{DD}/2$,	25°C		10	17		14	23	
I _{DD}	Supply current		$V_{IC} = V_{DD}/2$,	0°C		12	21		18	33	μΑ
			No load	70°C		8	14		11	20	

† Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

LOW-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

			TEAT	TLC271I, TLC271AI, TLC271BI							
	PARAMETER		TEST CONDITIONS	T _A †	V	DD = 5 \	V	٧ _I	_{DD} = 10	V	UNIT
			CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
		TLC271I		25°C		1.1	10		1.1	10	
		TLO2711	V _O = 1.4 V,	Full range			13			13	
1,,,	Input offeet voltege	TLC271AI	V _{IC} = 0 V,	25°C		0.9	5		0.9	5	mV
VIO	Input offset voltage	TLCZ/TAI	$R_S = 50 \Omega$,	Full range			7			7	IIIV
		TLC271BI	$R_L = 1 M\Omega$	25°C		0.24	2		0.26	2	
		TLOZITBI		Full range			3.5			3.5	
ανιο	Average temperature of input offset voltage			25°C to 85°C		1.1			1		μV/°C
1	Input offset surrent (s	oo Noto 4)	$V_O = V_{DD}/2$	25°C		0.1	60		0.1	60	nΛ
ΙO	Input offset current (s	see Note 4)	$V_{IC} = V_{DD}/2$	85°C		24	1000		26	1000	pΑ
	lanut bigg gurrant (og	o Noto 4)	$V_O = V_{DD}/2$,	25°C		0.6	60		0.7	60	~ Λ
lΒ	Input bias current (se	e Note 4)	$V_{IC} = V_{DD}/2$	85°C		200	2000		220	2000	pΑ
				25°C	-0.2 to	-0.3 to		-0.2 to	-0.3 to		V
\/\cp	Common-mode input	İ			4	4.2		9	9.2		
VICR voltage range (see No		ote 5)		Full range	-0.2 to 3.5			-0.2 to 8.5			V
				25°C	3	4.1		8	8.9		
VOH	High-level output volt	age	$V_{ID} = 100 \text{ mV},$	-40°C	3	4.1		7.8	8.9		V
	0 1	· ·	$R_L=1 M\Omega$	85°C	3	4.2		7.8	8.9		
				25°C		0	50		0	50	
VOL	Low-level output volta	age	$V_{ID} = -100 \text{ mV},$	-40°C		0	50		0	50	mV
"-			I _{OL} = 0	85°C		0	50		0	50	
				25°C	50	520		50	870		
AVD	Large-signal different	tial	R_L = 1 MΩ See Note 6	-40°C	50	900		50	1550		V/mV
	voltage amplification		See Note 6	85°C	50	330		50	585		
				25°C	65	94		65	97		
CMRR	Common-mode rejec	tion ratio	V _{IC} = V _{ICR} min	-40°C	60	95		60	97		dB
				85°C	60	95		60	98		
	,			25°C	70	97		70	97		
ksvr	Supply-voltage reject	tion ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V}$	-40°C	60	97		60	97		dB
	$(\Delta V_{DD}/\Delta V_{IO})$		V _O = 1.4 V	85°C	60	98		60	98		
I _{I(SEL)}	Input current (BIAS S	SELECT)	V _{I(SEL)} = V _{DD}	25°C		65			95		nA
			$V_O = V_{DD}/2$,	25°C		10	17		14	23	
I _{DD}	Supply current		$V_{IC} = V_{DD}/2$,	-40°C		16	27		25	43	μΑ
			No load	85°C		17	13		10	18	

[†] Full range is –40 to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

^{6.} At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

^{5.} This range also applies to each input individually.

electrical characteristics at specified free-air temperature (unless otherwise noted)

						TLC2	71M			
1	PARAMETER	TEST CONDITIONS	T _A †	V	DD = 5 \	V	VI	DD = 10	٧	UNIT
		CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
VIO	Input offset voltage	V _O = 1.4 V, V _{IC} = 0 V,	25°C		1.1	10		1.1	10	mV
VIO	input onset voltage	$R_S = 50 \Omega$, $R_L = 1 M\Omega$	Full range			12			12	IIIV
αVIO	Average temperature coefficient of input offset voltage		25°C to 125°C		1.4			1.4		μV/°C
1.0	Input offset current (see Note 4)	$V_O = V_{DD}/2$,	25°C		0.1	60		0.1	60	pА
IIO	input onset current (see Note 4)	$V_{IC} = V_{DD}/2$	125°C		1.4	15		1.8	15	nA
	Input bias current (see Note 4)	$V_O = V_{DD}/2$,	25°C		0.6	60		0.7	60	pА
ΙΒ	input bias current (see Note 4)	$V_{IC} = V_{DD}/2$	125°C		9	35		10	35	nA
.,	Common-mode input		25°C	0 to 4	-0.3 to 4.2		0 to 9	-0.3 to 9.2		V
VICR	voltage range (see Note 5)		Full range	0 to 3.5			0 to 8.5			V
			25°C	3.2	4.1		8	8.9		
∨он	High-level output voltage	$V_{ID} = 100 \text{ mV},$ $R_{L} = 1 \text{ M}\Omega$	−55°C	3	4.1		7.8	8.8		V
		KL= 1 IVIS2	125°C	3	4.2		7.8	9		
			25°C		0	50		0	50	
V_{OL}	Low-level output voltage	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	−55°C		0	50		0	50	mV
		IOL = 0	125°C		0	50		0	50	
			25°C	50	520		50	870		
AVD	Large-signal differential voltage amplification	R_L = 1 MΩ, See Note 6	−55°C	25	1000		25	1775		V/mV
	voltage amplification	Occ Note o	125°C	25	200		25	380		
			25°C	65	94		65	97		
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min	−55°C	60	95		60	97		dB
			125°C	60	85		60	91		
	0 1 1 1 1 1	577. 4537	25°C	70	97		70	97		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V}$ $V_{O} = 1.4 \text{ V}$	−55°C	60	97		60	97		dB
	ישני-ישני-ישני-ישני-ישני-ישני-ישני-ישני		125°C	60	98		60	98		
I _{I(SEL)}	Input current (BIAS SELECT)	$V_{I(SEL)} = V_{DD}$	25°C		65			95		nA
		$V_O = V_{DD}/2$,	25°C		10	17		14	23	
I_{DD}	Supply current	$V_{IC} = V_{DD}/2$	−55°C		17	30		28	48	μΑ
		No load	125°C		7	12		9	15	

† Full range is -55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

- 5. This range also applies to each input individually.
- 6. At $V_{DD} = 5$ V, $V_{O} = 0.25$ V to 2 V; at $V_{DD} = 10$ V, $V_{O} = 1$ V to 6 V.

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST CC	ONDITIONS	TA	TLC271BC			UNIT
					MIN TYP MAX 0.03 0.04 0.03 0.03 0.03 0.02 68 n 5 6 4.5 85 100 65 34°			
				25°C		0.03		
			V _{I(PP)} = 1 V	0°C		0.04		
SR	Clay rate at unity gain	$R_L = 1 M\Omega$, $C_L = 20 pF$,		70°C		0.03		\//uo
SK	Slew rate at unity gain	See Figure 98		25°C		0.03		V/μs
			$V_{I(PP)} = 2.5 V$	0°C		0.03		
				70°C		0.02		
٧n	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		68		nV/√ Hz
				25°C		5		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 1 M\Omega$,	C _L = 20 pF,	0°C		6		kHz
			Gee rigure 90	70°C		4.5		
		.,,		25°C		85		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF,$	0°C		100		kHz
		occ rigare 100		70°C		65		
		\\. 10 m\\	4 D	25°C		34°		
φm	Phase margin	$V_{\parallel} = 10 \text{ mV},$ $C_{\parallel} = 20 \text{ pF},$	f = B ₁ , See Figure 100	0°C		36°		
		,		70°C		30°		

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER	TEST CC	ONDITIONS	TA	TLC271		UNIT	
					MIN	TYP	MAX	
				25°C		0.05		
			V _{I(PP)} = 1 V	0°C		0.05		
SR	Slew rate at unity gain	$R_L = 1 M\Omega$, $C_L = 20 pF$,		70°C		0.04		1////
SK	Siew rate at unity gain	See Figure 98		25°C		0.04		V/μs
		J	V _{I(PP)} = 5.5 V	0°C		0.05		
				70°C		0.04		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		68		nV/√ Hz
				25°C		1		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 1 M\Omega$,	C _L = 20 pF,	0°C		1.3		kHz
		1 1 10122,	Occ rigure 30	70°C		0.9		
		V 40V		25°C		110		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	0°C		125		kHz
		See Figure 100		70°C		90		
		V 40 V	<u> </u>	25°C		38°		
φm	Phase margin		f = B ₁ , See Figure 100	0°C		40°		
		- 25 ρι,	255garo 100	70°C		34°		

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST CO	NDITIONS	TA	TLC27		UNIT	
					MIN	TYP	MAX	
				25°C		0.03		
			V _{I(PP)} = 1 V	-40°C		0.04		V/μs
CD.	Slew rate at unity gain	$R_L = 1 M\Omega$, $C_L = 20 pF$,		85°C		0.03		
SR	Siew rate at unity gain	See Figure 98		25°C		0.03		
			$V_{I(PP)} = 2.5 V$	-40°C		0.04		
				85°C		0.02		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		68		nV/√ Hz
				25°C		5		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 1 M\Omega$,	C _L = 20 pF, See Figure 98	-40°C		7		kHz
		TYL = T 10122,	Gee rigule 90	85°C		4		
		.,,		25°C		85		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF,$	-40°C		130		MHz
		See rigule 100		85°C		55		
		V 40 mV	4 D	25°C		34°		
φm	Phase margin		f = B ₁ , See Figure 100	-40°C		38°		
		- 20 μ,	255 : .9310 100	85°C		28°	·	

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER	TEST CO	NDITIONS	TA	TLC2710 TL		UNIT	
					MIN	TYP	MAX	
				25°C		0.05		
			V _{I(PP)} = 1 V	-40°C		0.06		
SR	Slew rate at unity gain	$R_L = 1 M\Omega$, $C_L = 20 pF$,		85°C		0.03		\ \//··-=
	Siew rate at unity gain	See Figure 98		25°C		0.04		V/μs
			V _{I(PP)} = 5.5 V	-40°C		0.05		
				85°C		0.03		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		68		nV/√ Hz
				25°C		1		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_I = 1 M\Omega$,	C _L = 20 pF, See Figure 98	-40°C		1.4		kHz
			See rigule 30	85°C		0.8		
				25°C		110		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF,$	-40°C		155		MHz
		See rigule 100		85°C		80		
		V 40 VI	4 D	25°C		38°		
φm	Phase margin	$V_{l} = 10 \text{ mV,l}$ $C_{L} = 20 \text{ pF,}$	f = B ₁ , See Figure 100	-40°C		42°		
		- 20 ρι ,		85°C		32°		

operating characteristics at specified free-air temperature, V_{DD} = 5 V

	DADAMETED	TEST OF	NOTIONS		Т	LC271M		LINUT
	PARAMETER	TEST CC	NDITIONS	TA	MIN	TYP	MAX	UNIT
				25°C		0.03		
			V _{I(PP)} = 1 V	−55°C		0.04		
SR	Clay rate at unity gain	$R_L = 1 M\Omega$, $C_L = 20 pF$,		125°C		0.02		\//uo
J SK	Slew rate at unity gain	See Figure 98		25°C		0.03		V/μs
		J	$V_{I(PP)} = 2.5 \text{ V}$	−55°C		0.04		
				125°C		0.02		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		68		nV/√ Hz
				25°C		5		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 1 M\Omega$,	C _L = 20 pF, See Figure 98	−55°C		8		kHz
			See Figure 90	125°C		3		
				25°C		85		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 \text{ pF},$	−55°C		140		kHz
		See rigure 100		125°C		45		
		V 40V	, ,	25°C		34°		
φm	Phase margin		f = B ₁ , See Figure 100	−55°C		39°		
		- 23 μι,	555 1 igaio 100	125°C		25°		

operating characteristics at specified free-air temperature, $V_{DD} = 10 \text{ V}$

	DADAMETED	TEST OF	NDITIONS		Т	LC271M		LINUT
	PARAMETER	TEST CC	NDITIONS	TA	MIN	TYP	MAX	UNIT
				25°C		0.05		
			V _{I(PP)} = 1 V	−55°C		0.06		
SR	Slew rate at unity gain	$R_L = 1 M\Omega$, $C_L = 20 pF$,		125°C		0.03		V/μs
J SK	Siew rate at unity gain	See Figure 98		25°C		0.04		ν/μδ
		J	$V_{I(PP)} = 5.5 V$	−55°C		0.06		
				125°C		0.03		
٧n	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		68		nV/√ Hz
				25°C		1		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 1 M\Omega$,	C _L = 20 pF,	−55°C		1.5		kHz
			See Figure 90	125°C		0.7		
				25°C		110		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 \text{ pF},$	−55°C		165		kHz
		Gee rigure 100		125°C		70		
		V 40V	, p	25°C		38°		
φm	Phase margin	$V_I = 10 \text{ mV},$ $C_L = 20 \text{ pF},$	f = B ₁ , See Figure 100	−55°C		43°		
		- 20 pr,	200 i iguio 100	125°C		29°		

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution	66, 67
ανιο	Temperature coefficient	Distribution	68, 69
Vон	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	70, 71 72 73
VOL	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	74, 75 76 77 78, 79
A _{VD}	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	80 81 92, 93
I _{IB}	Input bias current	vs Free-air temperature	82
lιο	Input offset current	vs Free-air temperature	82
VI	Maximum input voltage	vs Supply voltage	83
IDD	Supply current	vs Supply voltage vs Free-air temperature	84 85
SR	Slew rate	vs Supply voltage vs Free-air temperature	86 87
	Bias-select current	vs Supply voltage	88
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	89
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	90 91
φm	Phase margin	vs Supply voltage vs Free-air temperature vs Capacitive load	94 95 96
٧ _n	Equivalent input noise voltage	vs Frequency	97
	Phase shift	vs Frequency	92, 93

Figure 66

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE 70 905 Amplifiers Tested From 6 Wafer Lots $V_{DD} = 10 V$ 60 $T_A = 25^{\circ}C$ P Package Percentage of Units – % 50 40 30 20 10 0 -5 -3 -2 -1 02 4 5 -4 V_{IO} - Input Offset Voltage - mV

Figure 67

Figure 69

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

HIGH-LEVEL OUTPUT VOLTAGE SUPPLY VOLTAGE

HIGH-LEVEL OUTPUT VOLTAGE

Figure 71

Figure 73

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

T_A - Free-Air Temperature - °C

Figure 77

TYPICAL CHARACTERISTICS (LOW-BIAS MODE)†

V_{ID} - Differential Input Voltage - V

Figure 76

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT

vs FREE-AIR TEMPERATURE

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

Figure 82

SUPPLY CURRENT

MAXIMUM INPUT VOLTAGE

Figure 83

SUPPLY CURRENT

VS FREE-AIR TEMPERATURE

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

BIAS-SELECT CURRENT vs

Figure 88

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

Figure 92

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE **AMPLIFICATION AND PHASE SHIFT**

Figure 93

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS (LOW-BIAS MODE)†

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits

Because the TLC271 is optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.

Figure 98. Unity-Gain Amplifier

Figure 99. Noise-Test Circuit

Figure 100. Gain-of-100 Inverting Amplifier

PARAMETER MEASUREMENT INFORMATION

input bias current

Because of the high input impedance of the TLC271 operational amplifiers, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements:

- 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 101). Leakages that would otherwise flow to the inputs are shunted away.
- Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers us the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method.

Figure 101. Isolation Metal Around Device inputs (JG and P packages)

low-level output voltage

To obtain low-supply-voltage operation, some compromise is necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to the Typical Characteristics section of this data sheet.

input offset voltage temperature coefficient

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error.

PARAMETER MEASUREMENT INFORMATION

full-power response

Full-power response, the frequency above which the amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is generally measuredby monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 98. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 102). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached.

Figure 102. Full-Power-Response Output Signal

test time

Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices, and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures.

APPLICATION INFORMATION

single-supply operation

While the TLC271 performs well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This includes an input common mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.

Figure 103. Inverting Amplifier With Voltage Reference

APPLICATION INFORMATION

single-supply operation (continued)

Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 103). The low input bias current consumption of the TLC271 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption.

The TLC271 works well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended:

- 1. Power the linear devices from separate bypassed supply lines (see Figure 104); otherwise, the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.
- 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, RC decoupling may be necessary in high-frequency applications.

Figure 104. Common Versus Separate Supply Rails

APPLICATION INFORMATION

input offset voltage nulling

The TLC271 offers external input offset null control. Nulling of the input off set voltage may be achieved by adjusting a 25-k Ω potentiometer connected between the offset null terminals with the wiper Connected as shown in Figure 105. The amount of nulling range varies with the bias selection. In the high-bias mode, the nulling range allows the maximum offset voltage specified to be trimmed to zero. In low-bias and medium-bias modes, total nulling may not be possible.

Figure 105. Input Offset Voltage Null Circuit

bias selection

Bias selection is achieved by connecting the bias select pin to one of the three voltage levels (see Figure 106). For medium-bias applications, R is recommended that the bias select pin be connected to the mid-point between the supply rails. This is a simple procedure in split-supply applications, since this point is ground. In single-supply applications, the medium-bias mode necessitates using a voltage divider as indicated. The use of large-value resistors in the voltage divider reduces the current drain of the divider from the supply line. However, large-value resistors used in conjunction with a large-value capacitor requires significant time to charge up to the supply midpoint after the supply is switched on. A voltage other than the midpoint may be used if it is within the voltages specified in the table of Figure 106.

Figure 106. Bias Selection for Single-Supply Applications

APPLICATION INFORMATION

input characteristics

The TLC271 is specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at $V_{DD} - 1$ V at $T_A = 25$ °C and at $V_{DD} - 1.5$ V at all other temperatures.

The use of the polysilicon-gate process and the careful input circuit design gives the TLC271 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of operation.

Because of the extremely high input impedance and resulting low bias current requirements, the TLC271 is well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 101 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 107).

The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.

noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC271 results in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k Ω , since bipolar devices exhibit greater noise currents.

Figure 107. Guard-Ring Schemes

APPLICATION INFORMATION

feedback

Operational amplifier circuits almost always employ feedback, and since feedback is the first prerequisite for oscillation, a little caution is appropriate. Most oscillation problems result from driving capacitive loads and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 108). The value of this capacitor is optimized empirically.

Figure 108. Compensation for Input Capacitance

electrostatic discharge protection

The TLC271 incorporates an internal electrostatic-discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode.

latch-up

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC271 inputs and output were designed to withstand -100-mA surge currents without sustaining latchup; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not by design be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 μ F typical) located across the supply rails as close to the device as possible.

The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.

output characteristics

The output stage of the TLC271 is designed to sink and source relatively high amounts of current (see Typical Characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage.

Figure 109. Test Circuit for Output Characteristics

APPLICATION INFORMATION

output characteristics (continued)

All operating characteristics of the TLC271 were measured using a 20-pF load. The devices drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figures 110, 111, and 112). In many cases, adding some compensation in the form of a series resistor in the feedback loop alleviates the problem.

Figure 110. Effect of Capacitive Loads in High-Bias Mode

Figure 111. Effect of Capacitive Loads in Medium-Bias Mode

Figure 112. Effect of Capacitive Loads in Low-Bias Mode

APPLICATION INFORMATION

output characteristics (continued)

Although the TLC271 possesses excellent high-level output voltage and current capability, methods are available for boosting this capability, if needed. The simplest method involves the use of a pullup resistor (R_P) connected from the output to the positive supply rail (see Figure 113). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor, N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately 60 Ω and 180 Ω , depending on how hard the operational amplifier input is driven. With very low values of R_P , a voltage offset from 0 V at the output occurs. Secondly, pullup resistor RP acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.

Figure 113. Resistive Pullup to Increase VOH

NOTE B: d = damping factor, I/O

Figure 114. State-Variable Filter

APPLICATION INFORMATION

output characteristics (continued)

NOTES: A. $V_{O(PP)} = 8 \text{ V}$ B. $V_{O(PP)} = 4 \text{ V}$

Figure 115. Single-Supply Function Generator

APPLICATION INFORMATION (HIGH-BIAS MODE)

NOTE A: CMRR adjustment must be noninductive.

Figure 116. Low-Power Instrumentation Amplifier

Figure 117. Single-Supply Twin-T Notch Filter

APPLICATION INFORMATION (HIGH-BIAS MODE)

NOTES: A. $V_I = 3.5$ to 15 V B. $V_O = 2.0$ V, 0 to 1 A

Figure 118. Logic-Array Power Supply

Figure 119. Positive-Peak Detector

APPLICATION INFORMATION (MEDIUM-BIAS MODE)

NOTES: A.
$$V_{O(PP)} = 2 V$$
 B. $f_{O} = \frac{1}{2\pi \sqrt{R1R2C1C2}}$

Figure 120. Wein Oscillator

Figure 121. Single-Supply AC Amplifier

APPLICATION INFORMATION (MEDIUM-BIAS MODE)

NOTE A: Low to medium impedance dynamic mike

Figure 122. Microphone Preamplifier

NOTES: A. NOTES: V_{DD} = 4 V to 15 V B. V_{ref} = 0 V to V_{DD} -2 V

Figure 123. Photo-Diode Amplifier With Ambient Light Rejection

Figure 124. Precision Low-Current Sink

APPLICATION INFORMATION (LOW-BIAS MODE)

NOTE A: $V_{DD} = 5 \text{ V to } 12 \text{ V}$

Figure 125. Amplifier With Digital Gain Selection

Figure 126. Multivibrator

APPLICATION INFORMATION (LOW-BIAS MODE)

NOTE A: $V_{DD} = 5 \text{ V to } 16 \text{ V}$

Figure 127. Full-Wave Rectifier

NOTE A: $V_{DD} = 5 \text{ V to } 16 \text{ V}$

Figure 128. Set/Reset Flip-Flop

NOTE A: Normalized to FC = 1 kHz and RL = 10 k Ω

Figure 129. Two-Pole Low-Pass Butterworth Filter

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLC271ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	271AC	Samples
TLC271ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	271AC	Samples
TLC271ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	271AC	Samples
TLC271ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	271AC	Samples
TLC271ACP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC271ACP	Samples
TLC271ACPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P271A	Samples
TLC271AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	271AI	Samples
TLC271AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	271AI	Samples
TLC271AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	271AI	Samples
TLC271AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	271AI	Samples
TLC271AIP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC271AIP	Samples
TLC271AIPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC271AIP	Samples
TLC271BCD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	271BC	Samples
TLC271BCDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	271BC	Samples
TLC271BCDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	271BC	Samples
TLC271BCDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	271BC	Samples
TLC271BCP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC271BCP	Samples

www.ti.com

10-Jun-2014

Orderable Device	Status	Package Type		Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLC271BID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	271BI	Samples
TLC271BIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	271BI	Samples
TLC271BIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	271BI	Samples
TLC271BIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	271BI	Samples
TLC271BIP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC271BIP	Samples
TLC271CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	271C	Samples
TLC271CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	271C	Samples
TLC271CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	271C	Samples
TLC271CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	271C	Samples
TLC271CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC271CP	Samples
TLC271CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P271	Samples
TLC271CPSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P271	Samples
TLC271CPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P271	Samples
TLC271CPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	0 to 70		
TLC271CPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P271	Samples
TLC271CPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P271	Samples
TLC271ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2711	Samples
TLC271IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2711	Samples

www.ti.com

PACKAGE OPTION ADDENDUM

10-Jun-2014

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLC271IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2711	Samples
TLC271IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2711	Samples
TLC271IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC271IP	Samples
TLC271MDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	271M	Samples
TLC271MDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	271M	Samples
TLC271MJG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI	-55 to 125		

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

10-Jun-2014

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 8-Jul-2013

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC271ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC271ACPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
TLC271AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC271BCDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC271BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC271CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC271CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLC271IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC271MDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 8-Jul-2013

*All dimensions are nominal

Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TLC271ACDR	.C271ACDR SOIC		8	2500	340.5	338.1	20.6	
TLC271ACPSR	TLC271ACPSR SO		8	2000	367.0	367.0	38.0	
TLC271AIDR	SOIC	D	8	2500	340.5	338.1	20.6	
TLC271BCDR	SOIC	D	8	2500	340.5	338.1	20.6	
TLC271BIDR	SOIC	D	8	2500	340.5	338.1	20.6	
TLC271CDR	SOIC	D	8	2500	340.5	338.1	20.6	
TLC271CPWR	TSSOP	PW	8	2000	367.0	367.0	35.0	
TLC271IDR	TLC271IDR SOIC		8	2500	340.5	338.1	20.6	
TLC271MDR	SOIC	D	8	2500	367.0	367.0	35.0	

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

power.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

Power Mgmt

OMAP Applications Processors www.ti.com/omap **TI E2E Community** e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity