Performance and Stability Analysis of the Task Assignment based on Guessing Size Routing Policy

Josu Doncel

University of the Basque Country, UPV/EHU joint work with E. Bachmat and H. Sarfati (Ben-Gurion University)

October 22, 2019

Parallel-Server Systems

K homogeneous FIFO queues Poisson arrivals

Question?

How to balance the load optimally?

Application

Heavy-tailed distribution

A small fraction of jobs make up the half of the load

Heavy-tailed distribution

A small fraction of jobs make up the half of the load

Heavy-tailed distribution

A small fraction of jobs make up the half of the load

Example: Bounded Pareto $(1,r,\alpha)$

$$f(s) = \frac{\alpha s^{-\alpha - 1}}{1 - r^{-\alpha}}.$$

Known optimality results

JSQ: each incoming job is sent to the server with less number of jobs

Po2: pick d servers at random \Rightarrow JSQ

Disadvantage

Many observations \Rightarrow Not practical

Open-loop Routing Policies

Heavy-tailed: bad performance

- Round-Robin
- Random Splitting

Open-loop Routing Policies

Heavy-tailed: bad performance

- Round-Robin
- Random Splitting

Heavy-tailed: good performance

SITA: job duration knowledge

Open-loop Routing Policies

Heavy-tailed: bad performance

- Round-Robin
- Random Splitting

Heavy-tailed: good performance

- SITA: job duration knowledge
- Task Assignment with Guesing Size (TAGS)

TAGS Policy1

¹M. Harchol-Balter. Task assignment with unknown duration. J. of the ACM, 2002. A Company of the ACM, 2002.

¹M. Harchol-Balter. Task assignment with unknown duration. J. of the ACM, 2002. A Company of the ACM, 2002.

¹M. Harchol-Balter. Task assignment with unknown duration. J. of the ACM, 2002.

¹M. Harchol-Balter. Task assignment with unknown duration. J. of the ACM, 2002.

¹M. Harchol-Balter. Task assignment with unknown duration. J. of the ACM, 2002.

¹M. Harchol-Balter. Task assignment with unknown duration. J. of the ACM, 2002, a c

¹M. Harchol-Balter. Task assignment with unknown duration. J. of the ACM, 2002.

Waiting time: W₁

Waiting time: $W_1 + 3 + W_2 + 5 + W_3$

¹M. Harchol-Balter. Task assignment with unknown duration. J. of the ACM, 2002.

Advantages

- No signaling
- Heavy-tail: good performance
- Durations unknown

Advantages

- No signaling
- Heavy-tail: good performance
- Durations unknown

Summary of contributions

- Stability
- Optimal performance
- (Bounded) Pareto distribution
 - Comparison with SITA
 - Optimal performance analysis

¹M. Harchol-Balter. Task assignment with unknown duration. J. of the ACM, 2002.

TAGS Policy

Advantages

- No signaling
- Heavy-tail: good performance
- Durations unknown

Summary of contributions

- Stability
- Optimal performance
- (Bounded) Pareto distribution
 - Comparison with SITA
 - Optimal performance analysis

Stability

Proposition

Let $\rho = \lambda \mathbb{E}[X]$. The TAGS system is stable if and only if

$$\rho < \frac{\mathbb{E}[X]}{M(X)}$$

where $M(X) = \sup_s s(1 - F(s))$.

 \Rightarrow Critical load $\rho_{crit}(X)$

Stability

Proposition

Let $\rho = \lambda \mathbb{E}[X]$. The TAGS system is stable if and only if

$$\rho < \frac{\mathbb{E}[X]}{M(X)}$$

where $M(X) = \sup_s s(1 - F(s))$.

 \Rightarrow Critical load $\rho_{crit}(X)$

Proposition

Let X be a distribution in [1, r]

$$\rho_{crit}(X) \leq 1 + \log r.$$

Critical load

Bounded Pareto $(1,r,\alpha)$

If
$$\alpha \neq 1$$
,

$$\rho_{crit} = (1 - r^{\alpha - 1})(1 - \alpha)^{-1/\alpha}.$$

If
$$\alpha = 1$$

$$\rho_{\mathit{crit}} = \frac{r \log r}{r - 1}.$$

Critical load

Bounded Pareto $(1,r,\alpha)$

If
$$\alpha \neq 1$$
,

$$\rho_{crit} = (1 - r^{\alpha - 1})(1 - \alpha)^{-1/\alpha}.$$

If
$$\alpha = 1$$

$$\rho_{\mathit{crit}} = \frac{r \log r}{r - 1}.$$

Tight distribution

$$f(x) = 1/x^2$$
, for $x \in [1, r]$

 \Rightarrow Dirac delta at r with mass r^{-1}

TAGS Policy

Advantages

- No signaling
- Heavy-tail: good performance
- Durations unknown

Summary of contributions

- Stability
- Optimal performance
- (Bounded) Pareto distribution
 - Comparison with SITA
 - Optimal performance analysis

Bound of the Optimal Performance

Proposition

Let s^{que} be the vector of cutoffs that minimizes the maximum mean queue length of the servers. Then, in a system with h hosts,

$$\mathbb{E}[W(s^{que})] \le h\mathbb{E}[W^*] + \mathbb{E}[X](h-1)$$

 \Rightarrow Upper-bound of $\mathbb{E}[W(s^{que})]$.

TAGS Policy

Advantages

- No signaling
- Heavy-tail: good performance
- Durations unknown

Summary of contributions

- Stability
- Optimal performance
- (Bounded) Pareto distribution
 - Comparison with SITA
 - Optimal performance analysis

Assumption

Poisson arrivals to all the servers

 \Rightarrow Accuracy validation (over-estimation) numerically

Assumption

Poisson arrivals to all the servers

⇒ Accuracy validation (over-estimation) numerically

Let $\rho = \lambda \mathbb{E}[X]$. When $r \to \infty$ and $\rho < 1$

Proposition

The mean waiting time in a TAGS system with optimal cutoffs is at most two times larger than the mean waiting time of a SITA system with optimal cutoffs.

Let $\rho = \lambda \mathbb{E}[X]$. When $r \to \infty$ and $\rho < 1$

Proposition

The mean waiting time in a TAGS system with optimal cutoffs is at most two times larger than the mean waiting time of a SITA system with optimal cutoffs.

Let $\rho = \lambda \mathbb{E}[X]$. When $r \to \infty$ and $\rho < 1$

Proposition

The mean waiting time in a TAGS system with optimal cutoffs is at most two times larger than the mean waiting time of a SITA system with optimal cutoffs.

Penalty for not knowing the duration of the jobs is at most 2

Bounded Pareto (1,r, α) when $\rho > 1$

Big performance difference (stable?)

Bounded Pareto (1,r, α) when $\rho > 1$

Big performance difference (stable?)

 $\tilde{h} = h - i + 1$: number of spare servers \Rightarrow i: minimum number of servers for stability

Bounded Pareto (1,r, α) when $\rho > 1$

Big performance difference (stable?)

 $\tilde{h} = h - i + 1$: number of spare servers \Rightarrow i: minimum number of servers for stability

Proposition

When $r \to \infty$ and $\rho > 1$, the order of magnitude of the optimal mean waiting time of TAGS depends on \tilde{h} and not on h.

T+W Policy

Numerical Experiments with $r < \infty$ and $\rho = 0.5$

Advantages of TAGS

- No signaling
- Heavy-tail: good performance
- Durations knowledge not required

Our contributions

- Stability
- Optimal performance
- (Bounded) Pareto distribution
 - Comparison with SITA
 - Optimal performance analysis

Advantages of TAGS

- No signaling
- Heavy-tail: good performance
- Durations knowledge not required

Summary of contributions

- Stability ⇒ Critical load
- Optimal performance
- (Bounded) Pareto distribution
 - Comparison with SITA
 - Optimal performance analysis

Advantages of TAGS

- No signaling
- Heavy-tail: good performance
- Durations knowledge not required

Our contributions

- Stability ⇒ Critical load
- ② Optimal performance ⇒ Bounds
- (Bounded) Pareto distribution
 - Comparison with SITA
 - Optimal performance analysis

Advantages of TAGS

- No signaling
- Heavy-tail: good performance
- Durations knowledge not required

Our contributions

- Stability ⇒ Critical load
- ② Optimal performance ⇒ Bounds
- (Bounded) Pareto distribution
 - \bullet Comparison with SITA \Rightarrow when $\rho < 1$
 - ullet Optimal performance analysis \Rightarrow when ho>1

Future Research

TODOs in our model

Non-asymptotic analysis and comparison with other policies

Future Research

TODOs in our model

Non-asymptotic analysis and comparison with other policies

Extensions to energy networks

EPN

On-off servers

Future Research

TODOs in our model

Non-asymptotic analysis and comparison with other policies

Extensions to energy networks

EPN

On-off servers

THANKS