Deep Learning-Based Autonomous Navigation

Mahi, Jordan, James, Bhavik, Ryan Wednesday May 15th, 2019 RSS 2019 Team 11

Motivation: Intelligent Autonomous Navigation

- Robust autonomous driving has massive societal implications:
 - Safer, more efficient transportation
 - Greater mobility
 - Increased productivity
- Autonomous driving requires robust ability to:
 - Understand the environment
 - Respond with well-developed controls

Our vision module informs our control module

We trained object detection CNN on custom datasets

YOLOv3 Architecture

- Deep Convolutional Neural Network
- Full Model: 252 layers
- Tiny Model: 44 layers

• Training:

- 1600 annotated custom images from Zed Camera
- Keras + Tensorflow environment on Amazon EC2 Instance
- 2-stage: first stage trains last 3 layers, second stage trains all layers

8 Custom Classes

- 4 signs: disabled parking, pedestrian, yield, and stop signs
- car, person, traffic light, soccer ball (obstacle)

The YOLO Pipeline

Real-time Object Detection

Detection of Disabled Parking Sign

Detection of Pedestrian Sign

Tiny vs Full YOLOv3 Validation Error

Vision: Lane Segmentation

Original Image

Perspective Warping

Segmentation

Contours Filtering

Clustering

Clustering

Lane Segmentation in Real Time

Controller: High Level

Three states:

- 1) **Autonomous Driving**: lane changing/following, turning, stopping, traffic rules, etc.
- 2) **TA car following**: PD control based on relative distance/location from TA car
- 3) **Parking**: valid parking space detection + PD control

Steering controller finds the best unobstructed lane

- 1) Check for obstacles in current lane
- 2) Best lane: smallest difference to lane of previous timestep (in ρ , θ space)

$$\rho = x \cos \theta + y \sin \theta$$

3) Angle calculation by Pure Pursuit

Limitations we faced, and our solutions

Problems		Our solutions
1	Once at an intersection, robot can no longer see the intersection due to the camera's limited field of view	Plan out turns in advanceHardcode drive action(Ideally: more cameras)
2	Object detection does not recognize objects in every frame	 Rely on detected objects in the last frame(s)
3	YOLO often fails to load and crashes other nodes	Wait many hoursStressful hours(Ideally: explore options)

TA car following uses PD controller

PD control on midpoint of bottom of bounding box

Desired distance: 1 meter

Parking controller uses color segmentation and YOLO

Color segment + bound orange cones

YOLO on disabled parking sign Stage 1: Find spot with front 3 cones

Stage 2: Move to midpoint of back 2 cones

Stage 3: Stop when < 2 cones

What We Learned

Object detection methods:

- YOLOv3 Deep Convolutional Neural Networks
- Color segmentation

Lane detection methods:

- Hough Transform
- Edge Detection
- Clustering

Applications of pure pursuit control:

- Parking
- Turning
- Lane following

Developing our own ROS package

What We Can Improve on

Object detection

- More data (e.g. lighting and placement variations) to decrease overfitting
- Other network architecture for higher inference speed

Lane detection

More robust algorithms, especially around the corners

Controller

Higher driving speed for greater practicality

MIT RSS Team 11

Jordan Docter	MIT '21	
Ryan Sander	MIT '20	
James Pruegsanusak	MIT '19	
Mahi Elango	MIT '20	
Bhavik Nagda	MIT '21	

With thanks to Marwa Abdulhai, Muyan Lin, Prof. Carlone, Prof. Karaman, and the rest of the RSS Staff!

