SEQUENCE LISTING

< 110)>	Sode	, Ko	ji											
<120)>	Fructosylamine Oxidase													
<140)>	PCT/JP2004/003587													
<150)>	JP 2003-116348													
<15 1	>	2003-	-03-	17											
<160)>	15													
<170)>	Pate	ntIn	ver	sion	3.1									
<210)>	1													
<21 1	>	427													
<212	?>	PRT													
<21 3	3>	Pich	ia sp	o.											
<400)>	1													
Met	Glu	Ser	lle	lle	lle	Val	Gly	Ala	Gly	Thr	Phe	Gly	Leu	Ser	Thr
1				5					10					15	
Ala	Leu	GIn	Leu	Ala	Arg	Asp	Gly	Tyr	Lys	Asn	lle	Lys	Cys	Phe	Asp
			20					25					30		
Lys	Phe	Pro	Val	Pro	Ser	Glu	He	Ala	Ala	Gly	Asn	Asp	Ser	Asn	Lys
		35					40					45			
lle	Phe	His	Tyr	Asp	Tyr	Val	Ala	Pro	Leu	Ala	Lys	Pro	Asn	Ser	Lys
	50					55					60				
Glu	Arg	Leu	Ser	Leu	Glu	Ala	Leu	His	Leu	Trp	Lys	Thr	Asp	Pro	Val
65					70					75					80
Tyr	Lys	Pro	Tyr	Tyr	His	Pro	Val	Gly	Phe	lle	Leu	Ala	Ala	Ser	Ser
				85					90					95	
Asp	Ala	Pro	Leu	Leu	His	Asp	Lys	Glu	Tyr	Tyr	Glu	Glu	Leu	GIn	Lys
			100					105					110		
Asn	Gly	Leu	Arg	Asn	Tyr	Arg	Tyr	lle	Ser	Thr	Pro	Glu	Glu	Phe	Arg
		115					120					125			
Glu	Tyr	Leu	Pro	He	Leu	Lys	Gly	Pro	Leu	Pro	Asn	Trp	Arg	Gly	Tyr

	130					135					140				
Val	Leu	Asp	Gly	Asp	Asn	Gly	Trp	Leu	His	Ala	Arg	Asp	Ser	Leu	Lys
145					150					155					160
Ser	Ala	Tyr	Glu	Glu	Cys	Lys	Arg	Leu	Gly	Val	Glu	Phe	Val	Phe	Gly
				165					170					175	
Asp	Asp	Gly	Glu	He	Val	Glu	Leu	Leu	Asn	Glu	Asn	Gly	Lys	Leu	Thr
			180					185					190		
Gly	He	Arg	Ala	Arg	Ser	Gly	Ala	He	Phe	Ser	Ala	GIn	Lys	Tyr	Val
		195					200					205			
Leu	Ser	Ser	Gly	Ala	Asn	Ala	Val	Thr	Leu	Leu	Asn	Phe	GIn	Arg	GIn
	210					215					220				
Leu	Glu	Gly	Lys	Cys	Phe	Thr	Leu	Ala	His	Phe	Lys	Val	Thr	Asp	Glu
225					230					235					240
Glu	Ala	Lys	Ala	Phe	Lys	Ser	Leu	Pro	Val	Leu	Phe	Asn	Ala	Glu	Lys
				245					250					255	
Gly	Phe	Phe	Phe	Glu	Ala	Asp	Glu	Asn	Asn	Glu	lle	Lys	lle	Cys	Asn
			260					265					270		
Glu	Tyr	Pro	Gly	Phe	Thr	His	Thr	Asn	Glu	Ser	Gly	Glu	Ser	He	Pro
		275					280					285			
Leu	Tyr	Arg	Met	Glu	lle	Pro	Leu	Glu	Ser	Ala	Leu	Glu	lle	Arg	GIn
	290					295					300				
Tyr	Leu	Lys	Glu	Thr	Met	Pro	GIn	Phe	Ala	Asp	Arg	Pro	Phe	Thr	Lys
305					310					315					320
Thr	Arg	lle	Cys	Trp	Cys	Thr	Asp	Ser	Pro	Asp	Met	GIn	Leu	He	Leu
				325					330					335	
Cys	Thr	His	Pro	Glu	Tyr	Thr	Asn	Leu	He	Val	Ala	Ser	Gly	Asp	Ser
			340					345					350		
Gly	Asn	Ser	Phe	Lys	He	Met	Pro	lle	He	Gly	Lys	Tyr	Val	Ser	Lys
		355					360					365			
Val	Val	Thr	Lys	Gly	Asp	Lys	Gly	Leu	Asp	Pro	Glu	Asp	Lys	Glu	Cys

Trp Lys Trp Arg Pro Glu Thr Trp Asp Lys Arg Gly Gln Val Arg Trp 385 390 400
Gly Gly Arg Tyr Arg Val Ala Asp Leu Asn Glu IIe Glu Glu Trp Val 405 415

Ser Val Glu Asn Pro Thr Pro His Lys Leu Glu
420 425

<210> 2

<211> 1284

<212> DNA

<213> Pichia sp.

<400> 2

60 atggagtcga taattatagt tggtgccggt acttttgggc tttccacagc cttacagctt 120 gccagagatg gatacaagaa cataaaatgt tttgacaagt ttccggttcc atctgagata 180 gctgctggaa acgacagtaa caagattttt cactacgatt atgttgctcc cctggctaaa 240 cccaattcaa aagaacggtt gagtctcgaa gcattacacc tttggaagac agatccggtg 300 tacaaaccgt actatcatcc ggtaggattt atcctggctg caagttccga tgctccatta 360 ctgcatgata aggaatacta tgaagagttg caaaaaaacg gacttcgcaa ttatcgttat 420 atttcaactc ccgaggagtt tcgtgagtat ttgcccattt taaagggccc gttacccaac 480 tggagaggat atgttctcga cggagataac ggatggttgc atgctcgaga ctcattgaaa agtgcatacg aagaatgcaa acgattggga gtggaatttg tgtttggaga cgatggggaa 540 600 attgtcgaat tacttaacga aaatggaaag ttgacgggaa ttagggccag atctggtgcc 660 atattctcgg cacaaaaata tgttctcagc tctggtgcaa atgcagtaac gttgttaaat 720 ttccagagac agctagaagg taaatgtttc actttggcac atttcaaagt gacggatgaa 780 gaagctaaag catttaaaag cttgccggtc cttttcaatg ccgaaaaagg gtttttttc 840 gaggctgatg aaaataacga aatcaaaatt tgcaacgagt accctggatt tacccacaca 900 aatgaatccg gagagtctat cccactctac cggatggaga ttccactcga gtcagcactt 960 gaaattagac aatacttgaa agaaaccatg cctcagtttg ctgatagacc tttcaccaag 1020 acaagaattt gttggtgtac cgactctccc gacatgcaat tgatcttgtg tactcaccca 1080 gaatacacca accttattgt agcatcgggt gactctggaa attcgttcaa gatcatgcca

```
atcattggca aatatgtcag caaggttgtt accaaaggtg ataaaggatt ggatccggaa
                                                                    1140
gataaagaat gctggaaatg gcgtcctgag acttgggaca agcgggggca ggtccgctgg
                                                                    1200
ggtggtcgat accgtgttgc ggatttgaac gaaattgaag aatgggtttc tgttgaaaat
                                                                    1260
cccacaccac acaaactaga ataa
                                                                    1284
<210> 3
<211> 13
<212> PRT
<213> Pichia sp.
<400> 3
Gly Phe Phe Glu Ala Asp Glu Asn Asn Glu lle Lys
               5
                                    10
<210> 4
<211> 17
<212>
      PRT
<213> Pichia sp.
<400> 4
Phe His Tyr Asp Tyr Val Ala Pro Leu Ala Lys Pro Asn Ser Lys Glu
                                    10
                                                       15
Arg
<210> 5
<211> 27
<212> PRT
<213> Pichia sp.
<400> 5
Asp Ala Pro Leu Leu His Asp Lys Glu Tyr Tyr Glu Glu Leu Gln Lys
               5
                                    10
                                                       15
Asn Gly Leu Arg Asn Tyr Arg Tyr Ile Ser Thr
           20
                               25
<210> 6
```

```
<211> 12
<212> PRT
<213> Pichia sp.
<400> 6
Thr Lys Gly Asp Lys Gly Leu Asp Pro Glu Asp Lys
                5
                                     10
<210> 7
<211> 13
<212>
      PRT
<213> Pichia sp.
<400> 7
Trp Val Ser Val Glu Asn Pro Thr Pro His Lys Leu Glu
                 5
                                     10
<210> 8
<211> 29
<212>
       DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<220>
<221> variation
<222> 3
\langle 223 \rangle n is a, g, c or t
<220>
<221> variation
<222> 6
\langle 223 \rangle n is a, g, c or t
<220>
<221> variation
```

<222> 12

```
\langle 223 \rangle n is a, g, c or t
<220>
<221> variation
<222> 15
\langle 223 \rangle n is a, g, c or t
<220>
<221> variation
<222> 18
\langle 223 \rangle n is a, g, c or t
<220>
<221> variation
<222> 21
\langle 223 \rangle n is a, g, c or t
<220>
<221> variation
<222> 24
\langle 223 \rangle n is a, g, c or t
<220>
<221> variation
<222> 27
\langle 223 \rangle n is a, g, c or t
<400> 8
ggnacntggg gnwsnwsnac ngcnytnca
<210> 9
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
```

<220>

29

```
<221> variation
<222> 9
\langle 223 \rangle n is a, g, c or t
<220>
<221> variation
<222> 24
\langle 223 \rangle n is a, g, c or t
<400> 9
                                                                           26
tcytcrtyng gytcvawraa raancc
<210> 10
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 10
atttcaaagt gacggatgaa gaagctaaag
                                                                       30
<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 11
cgcagttttc ccagtcacga c
                                                                       21
<210> 12
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
```

<223>	PCR primer	
<400>	12	
gtgcat	acga agaatgcaaa cgattgggag tgg	33
<210>	13	
⟨211⟩	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	13	
ccatcc	gtta tctccgtcga gaacatatcc tc	32
<210>	14	
<211>	29	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	14	
atcacc	atgg agtcgataat tatagttgg	29
<210>	15	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	15	
ttgatt	ctag acatgtatgt tgtaatcttg	30