$$\begin{pmatrix} \overline{z}_1 & \overline{z}_2 \\ -\overline{z}_2 & \overline{z}_1 \end{pmatrix} = \overline{z}_1 = \overline{z}_1 + \sqrt{-1} \underline{y}_1 \quad \overline{z}_2 = \alpha_2 + \sqrt{-1} \underline{y}_2$$

义書ける。ただし、 $|Z_i|^2 + |Z_i|^2 = \alpha_i^2 + \gamma_i^2 + \alpha_i^2 + \gamma_i^2 = 1$ である。このことからも $SU(2) \cong S^3$ がわかる。)

この特殊ユニタリ行列に、随伴表現で対応する 3次の回転行列は、

$$\begin{pmatrix}
\alpha_{1}^{2} + y_{1}^{2} - \alpha_{2}^{2} - y_{2}^{2} & q(-\alpha_{1}y_{2} + y_{1}x_{2}) & 2(\alpha_{1}\alpha_{2} + y_{1}y_{2}) \\
2(\alpha_{1}y_{2} + y_{1}x_{2}) & \alpha_{1}^{2} - y_{1}^{2} + \alpha_{2}^{2} - y_{2}^{2} & 2(-\alpha_{1}y_{1} + \alpha_{2}y_{2}) \\
2(-\alpha_{1}x_{2} + y_{1}y_{2}) & 2(\alpha_{1}y_{1} + \alpha_{2}y_{2}) & \alpha_{1}^{2} - y_{1}^{2} - \alpha_{2}^{2} + y_{2}^{2}
\end{pmatrix}$$

である.

例 3.13 (ユニタリ群 $U_{(m)}$) 複素 $m \times m$ 行列 $U(z_{ij})$ について、 $U^{*=}$ (国i) とおく。すなわち、 Uの各要素の複素共役をとり、同時に転置行列にしたものである。

$$(3.60)$$
 $UU^* = E$

を満たす複素 $m \times m$ を m 次の ユニタリ行列(unitary matrix)という。この定義から、ユニタリ行列 Uの行列式は、絶対値1の複素数である。: $|\det U|=1$. m 次の u=9リ行列の全体U(m) は 行列の積について、 Lie 群をなす。U(m) を m次の ユニタリ群(unitary group)という。

行がクトルの間の Hermite 内積を

と定義すれば、 ユニタリ行列の条件は、 $Q_i \cdot \overline{Q_i} = 1$ (i = 1, ..., m), $Q_i \cdot \overline{Q_j} = 0$ ($i \neq j$) と書き表すことができる。

第1行 Q_1 χ_1 Γ は C^m のなかの長さ 1 のベクトルを任意に選べる。 C^m は,実数の意味では 2m 次元 であるから、そのなかの単位球面の次元は 2m - 1 であり、 Q_1 の選択の自由度は,2m - 1 次元である。 Q_1 を決めると、 Q_2 は Q_1 に Q_2 Hermite 内積の意味で直交好る 複素 (m-1) 次元空間の長さ 1 のベクトル

が任意に選べ、この分が 2(m-1) -1 次元だけある。以下同様にすすむと、U(m)の 9様体と1.7の次元は、

$$(3.62) \quad \{2m-1\} + \{2(m-1)-1\} + \cdots + 3+1 = m^2$$