FEATURES LEARNING FOR DEEP LEARNING MODELS

Autoencoder & Stacked Autoencoder

Ahmed Hani, Ibrahim Sharaf, Abdelrahman Hamdy

August 1, 2017

FCIS'17 Machine Learning Course

TODAY'S OBJECTIVES

Learning

- · Deep Learning Pipeline
- · Transforming Raw Data to Features
- Autoencoder Powerful Features Learning and Dimensionality Reduction model

To Do

- · Implement a simple Autoencoder using Tensorflow
- · Build end-to-end Model for MNIST Dataset
- · Getting started with Keras High Level Deep Learning Framework

WHY DEEP LEARNING?

WHY DEEP LEARNING? (CONT.)

- · Performance Issues with very Deep Neural Networks
- Vanishing/Exploding Gradient of Backpropagation over the network layers
- · Slow Training Process

DEEP LEARNING PIPELINE

FEATURES LEARNING

FEATURES LEARNING (CONT.)

FEATURES LEARNING (CONT.)

- · Discover the representations needed for feature detection or classification from raw data
- The generated features are considered to be the **lower dimension** representation of the original features
- The generated features could or couldn't have the same original data statistical distribution
- Generative Model Examples: Restricted Boltzmann Machines (RBMs) and Deep Belief Networks (DBNs)
- · Input-Reconstruction Model Examples: Vanilla Autoencoders (AEs) and Stacked Autoencoders (SAEs)

VANILLA AUTOENCODER MODEL

VANILLA AUTOENCODER MODEL (CONT.)

DEEP VANILLA AUTOENCODER MODEL

STACKED AUTOENCODER MODEL

AUTOENCODER NOTES

- · Regularly, **Sigmoid** is always used as the hidden layer(s) activation function
- · Mean Squared Error is used as the output layer loss function
- · Backpropagation is used as the optimization algorithm, like any other Neural Network

