$12a_{0690} (K12a_{0690})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{44} + u^{43} + \dots + 3u^2 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 44 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{44} + u^{43} + \dots + 3u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{12} - u^{10} - 3u^{8} - 2u^{6} + u^{2} + 1 \\ -u^{14} - 2u^{12} - 5u^{10} - 6u^{8} - 6u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{6} + u^{4} + 2u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{26} + 3u^{24} + \dots + 3u^{2} + 1 \\ u^{26} + 2u^{24} + \dots + u^{6} - u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{41} + 4u^{39} + \dots - 2u^{3} + u \\ u^{43} + 5u^{41} + \dots + 3u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{21} + 2u^{19} + 7u^{17} + 10u^{15} + 14u^{13} + 12u^{11} + 5u^{9} - 2u^{7} - 5u^{5} - 2u^{3} - u \\ u^{23} + 3u^{21} + \dots + 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{42} 4u^{41} + \cdots 12u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_8	$u^{44} + 9u^{43} + \dots + 6u + 1$
c_2, c_7	$u^{44} + u^{43} + \dots + 3u^2 + 1$
c_3, c_4, c_{10} c_{11}	$u^{44} - u^{43} + \dots + 2u + 1$
c_9, c_{12}	$u^{44} + 9u^{43} + \dots - 8u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_5,c_6 c_8	$y^{44} + 53y^{43} + \dots + 38y + 1$
c_2, c_7	$y^{44} + 9y^{43} + \dots + 6y + 1$
c_3, c_4, c_{10} c_{11}	$y^{44} + 49y^{43} + \dots + 6y + 1$
c_9, c_{12}	$y^{44} + 17y^{43} + \dots - 10y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.655099 + 0.751397I	10.47210 + 2.42057I	5.00512 - 3.50428I
u = 0.655099 - 0.751397I	10.47210 - 2.42057I	5.00512 + 3.50428I
u = 0.457290 + 0.880807I	-1.50378 + 2.68816I	-5.95162 - 3.22752I
u = 0.457290 - 0.880807I	-1.50378 - 2.68816I	-5.95162 + 3.22752I
u = -0.495314 + 0.905747I	-0.91674 - 6.42453I	-3.67057 + 9.87108I
u = -0.495314 - 0.905747I	-0.91674 + 6.42453I	-3.67057 - 9.87108I
u = -0.379628 + 0.881690I	4.48646 - 0.62493I	-2.71495 + 3.55329I
u = -0.379628 - 0.881690I	4.48646 + 0.62493I	-2.71495 - 3.55329I
u = 0.520660 + 0.926121I	6.20074 + 8.92581I	-0.06506 - 8.28337I
u = 0.520660 - 0.926121I	6.20074 - 8.92581I	-0.06506 + 8.28337I
u = -0.075736 + 0.916828I	2.88611 - 4.18901I	-5.84139 + 3.97616I
u = -0.075736 - 0.916828I	2.88611 + 4.18901I	-5.84139 - 3.97616I
u = -0.558233 + 0.724774I	2.78376 - 2.11026I	4.66535 + 4.95546I
u = -0.558233 - 0.724774I	2.78376 + 2.11026I	4.66535 - 4.95546I
u = 0.027533 + 0.895789I	-3.76094 + 1.84552I	-10.24133 - 4.26971I
u = 0.027533 - 0.895789I	-3.76094 - 1.84552I	-10.24133 + 4.26971I
u = 0.672800 + 0.488934I	7.59840 - 4.48618I	3.71469 + 2.30966I
u = 0.672800 - 0.488934I	7.59840 + 4.48618I	3.71469 - 2.30966I
u = -0.608827 + 0.473439I	0.43015 + 2.25708I	0.48990 - 3.95946I
u = -0.608827 - 0.473439I	0.43015 - 2.25708I	0.48990 + 3.95946I
u = 0.855723 + 0.916416I	11.73180 + 3.17974I	1.84300 - 2.50377I
u = 0.855723 - 0.916416I	11.73180 - 3.17974I	1.84300 + 2.50377I
u = -0.888935 + 0.892951I	6.98756 - 1.09197I	-1.86937 + 2.51379I
u = -0.888935 - 0.892951I	6.98756 + 1.09197I	-1.86937 - 2.51379I
u = 0.902652 + 0.887567I	8.07252 - 2.80136I	0. + 3.37397I
u = 0.902652 - 0.887567I	8.07252 + 2.80136I	0 3.37397I
u = -0.913567 + 0.886340I	15.5582 + 5.3967I	3.71419 - 2.08485I
u = -0.913567 - 0.886340I	15.5582 - 5.3967I	3.71419 + 2.08485I
u = 0.885790 + 0.925568I	11.28050 + 3.27174I	4.41927 - 2.54057I
u = 0.885790 - 0.925568I	11.28050 - 3.27174I	4.41927 + 2.54057I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.864280 + 0.949514I	6.80746 - 5.39327I	-2.17460 + 2.29017I
u = -0.864280 - 0.949514I	6.80746 + 5.39327I	-2.17460 - 2.29017I
u = 0.868528 + 0.961101I	7.83679 + 9.34211I	0 8.07187I
u = 0.868528 - 0.961101I	7.83679 - 9.34211I	0. + 8.07187I
u = -0.903374 + 0.934414I	-19.6382 - 3.3289I	5.91897 + 2.37042I
u = -0.903374 - 0.934414I	-19.6382 + 3.3289I	5.91897 - 2.37042I
u = -0.873373 + 0.968938I	15.2918 - 11.9872I	3.20276 + 6.75389I
u = -0.873373 - 0.968938I	15.2918 + 11.9872I	3.20276 - 6.75389I
u = 0.326627 + 0.532554I	-0.166341 + 0.920466I	-3.92535 - 6.51014I
u = 0.326627 - 0.532554I	-0.166341 - 0.920466I	-3.92535 + 6.51014I
u = -0.558336 + 0.208664I	6.42918 - 2.63981I	3.65305 + 2.69802I
u = -0.558336 - 0.208664I	6.42918 + 2.63981I	3.65305 - 2.69802I
u = 0.446901 + 0.368826I	-0.171380 + 0.972064I	-1.26603 - 5.13929I
u = 0.446901 - 0.368826I	-0.171380 - 0.972064I	-1.26603 + 5.13929I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_8	$u^{44} + 9u^{43} + \dots + 6u + 1$
c_2, c_7	$u^{44} + u^{43} + \dots + 3u^2 + 1$
c_3, c_4, c_{10} c_{11}	$u^{44} - u^{43} + \dots + 2u + 1$
c_9,c_{12}	$u^{44} + 9u^{43} + \dots - 8u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6 c_8	$y^{44} + 53y^{43} + \dots + 38y + 1$
c_{2}, c_{7}	$y^{44} + 9y^{43} + \dots + 6y + 1$
c_3, c_4, c_{10} c_{11}	$y^{44} + 49y^{43} + \dots + 6y + 1$
c_9, c_{12}	$y^{44} + 17y^{43} + \dots - 10y + 1$