Assignment 2

Doug Shi-Dong 26046662 MATH-578 Numerical Analysis

October 8, 2015

Additional Problem 1

When x_0 is chosen to be -1, the starting point is relatively far from the solution. Additionally, the first derivative of approximately -0.16 causes a big change in the next iteration. Once the fixed point is in the neighbourhood of the solution, it starts converging quadratically.

Iteration	x_i	f(x)
0	-1.000000000000000000	1.5403023058681398
1	8.7162169587795688	9.4755160367702089
2	2.9760606550969122	3.9623914888656024
3	-0.4257846886852303	1.3364995977405378
4	1.8511838177311790	2.1279118458102908
5	0.7660395196449308	0.0453774576567640
6	0.7392410674960820	0.0002609824734986
7	0.7390851385832758	0.00000000089841422
8	0.7390851332151607	0.00000000000000000

Table 1: Fixed Point Iterations. Starting point $x_0 = -1$

When the starting point is in the neighbourhood of the solution, the solution converges very quickly. After 3 iterations, the computed solution has 16 digits of accuracy.

Iteration	x_i	f(x)
0	0.7853981633974483	0.0782913822109007
1	0.7395361335152383	0.0007548746825027
2	0.7390851781060102	0.0000000751298664
3	0.7390851332151611	0.00000000000000008

Table 2: Fixed Point Iterations. Starting point $x_0 = \pi/4$

Additional Problem 2

The algorithm converges in 4 iterations.

Iteration	x_i	f(x)
0	1.000000	2.236068
	1.000000	
1	0.611111	0.428289
	0.833333	
2	0.503659	0.045328
	0.852494	
3	0.499964	0.000143
	0.866046	
4	0.500000	0.000000
	0.866025	

Table 3: Fixed Point Iterations. Starting point $x_0 = -1$

Newton's Method 1D

```
#!/usr/bin/env python
1
2
3
    import numpy as np
4
    import matplotlib.pyplot as plt
5
6
    fx = lambda x: np.cos(x) - x
7
8
    dfdx = lambda x: -np.sin(x) - 1
9
10
    maxit = 20
11
    tol = 2e-15
12
    x = np.empty(maxit)
13
    f = np.empty(maxit)
14
    # Starting Point x0
15
    x[0] = np.pi/4
16
    for i in range (maxit):
17
18
         f[i] = fx(x[i])
         if(abs(f[i]) < tol):
19
20
             break
21
         x[i+1] = x[i] - f[i] / dfdx(x[i])
22
23
24
    for ii in range (i+1):
25
         print '%d & %.16f & %.16f \\\\' % (ii, x[ii], abs(f[ii]))
```

Newton's Method 2D

```
1 \#!/usr/bin/env python
2 import numpy as np
3
4 \operatorname{def} \operatorname{fun}(x):
5
       y = np.array([
6
           3 * x[0]**2 - x[1]**2,
           3 * x[0] * x[1]**2 - x[0]**3 - 1,
7
8
9
       return y
10
11 def Jac(x):
       J = np.empty((2,2))
12
13
       J[0][0] = 6 * x[0]
14
       J[0][1] = -2 * x[1]
       J[1][0] = 3 * x[1]**2 - 3 * x[0]**2
15
       J[1][1] = 6 * x[0] * x[1]
16
17
       return J
18
19
20 \text{ maxit} = 10
21 \text{ tol} = 1e-6
22 x = np.zeros(shape=(maxit,2), dtype=np.float64)
23 err = np.zeros(maxit, dtype=np.float64)
24\ x\,[\,0\,]\ =\ [\,1\,.\,\,,1\,.\,]
25 print('x0:\n', x[0])
26 for i in range (maxit):
27
28
       fx = fun(x[i,:])
29
30
       err[i] = np.linalg.norm(fx,2)
31
       if(err[i] < tol):
32
            break
33
34
       J = Jac(x[i,:])
35
36
       J = np.linalg.inv(J)
37
       x[i+1,:] = x[i,:] - np.dot(J, fx)
38
39
40
41 for ii in range(i+1):
42
       print '%d & %.6f & %.6f \\\\' % (ii, x[ii,0], err[ii])
       print ' & %.6f & \\\\' ' % (x[ii,1])
43
```