Ejercicio 8 de la colección de problemas

Enunciado:

Del circuito de la figura se sabe que tiene una secuencia de fases directa ABC

El amperímetro indica 5 A, el voltímetro 400 V, y los vatímetros W_a y W_c muestran una lectura idéntica

Se pide:

- 1. Valor de la impedancia Z en forma compleja
- 2. Expresión fasorial de todas las intensidades del circuito
- 3. Lecturas de los vatímetros W_a y W_c

Dato: $\overline{Z}_L = 1 + j\Omega$

Solución:

Al ser un circuito equilibrado, las intensidades de fase, que circulan por las impedancias del triángulo, tienen un valor de $I_f = 5/\sqrt{3}$ V. La impedancia Z tendrá un módulo de valor:

$$Z = \frac{U_L}{I_f} = \frac{400}{5/\sqrt{3}} = 80\sqrt{3}\,\Omega$$

Los vatímetros W_a y W_c están conectados según el montaje de Aron. Dado que indican el mismo valor, el circuito tiene característica resistiva pura.

Por tanto, la potencia reactiva consumida por la reactancia inductiva de las líneas será igual pero de tipo contrario que la potencia reactiva aportada por la reactancia capacitiva de la impedancia Z:

$$Q_{\rm linea}=3\cdot Q_{Z_L}=3\cdot I_L^2\cdot X_L=3\cdot 5^2\cdot 1=75\,{\rm VAr}$$

$$Q_Z=-75\,{\rm VAr}\quad \rightarrow\quad X_Z=\frac{Q_Z}{3\cdot I_f^2}=3\,\Omega$$

Por tanto:

$$R_Z = \sqrt{Z^2 - X_Z^2} = 138.5 \,\Omega \quad \rightarrow \quad \overline{Z} = 138.5 - j \,3 \,\Omega$$

Tomando como referencia las tensiones de secuencia directa ABC en el triángulo de impedancias Z, se obtienen las siguientes intensidades de fase:

$$\overline{I}_{AB} = \frac{\overline{U}_{AB}}{\overline{Z}} = \frac{400/120^{\circ}}{138,5 - j3} = 2,89/121,24^{\circ} = \frac{5\sqrt{3}}{3}/121,24^{\circ} A$$

$$\overline{I}_{BC} = \frac{\overline{U}_{BC}}{\overline{Z}} = \frac{400/0^{\circ}}{138,5 - j3} = 2,89/1,24^{\circ} = \frac{5\sqrt{3}}{3}/1,24^{\circ} A$$

$$\overline{I}_{CA} = \frac{\overline{U}_{CA}}{\overline{Z}} = \frac{400/-120^{\circ}}{138,5 - j3} = 2,89/-118,76^{\circ} = \frac{5\sqrt{3}}{3}/-118,76^{\circ} A$$

A partir de estas corrientes de fase, se obtienen las corrientes de línea aplicando 1LK:

$$\overline{I}_A = \overline{I}_{AB} - \overline{I}_{CA} = 5/91,24^{\circ} \text{ A}$$

$$\overline{I}_B = \overline{I}_{BC} - \overline{I}_{AB} = 5/-28,76^{\circ} \text{ A}$$

$$\overline{I}_C = \overline{I}_{CA} - \overline{I}_{BC} = 5/-148,76^{\circ} \text{ A}$$

Dado que ambos vatímetros marcan el mismo valor, el circuito es de carácter resistivo. Este valor se corresponde con la mitad de la potencia activa total consumida por el circuito.

Calculamos esta potencia con Boucherot:

$$P_{Z_L} = 3 \cdot I_L^2 \cdot R_L = 3 \cdot 5^2 \cdot 1$$

 $P_Z = 3 \cdot I_f^2 \cdot R = 3 \cdot \left(\frac{5}{\sqrt{3}}\right)^2 \cdot 138,5$
 $P = P_{Z_L} + P_Z = 3537,5 \text{ W}$
 $W_a = W_c = \frac{1}{2} P = 1768,8 \text{ W}$