

Cortex-M 离线编程器 II

用户手册

Rev2.01 2024年01月

声明

- ★ 小华半导体有限公司(以下简称: "XHSC")保留随时更改、更正、增强、修改小华半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。XHSC产品依据购销基本合同中载明的销售条款和条件进行销售。
- ★ 客户应针对您的应用选择合适的 XHSC 产品,并设计、验证和测试您的应用,以确保您的应用满足相应标准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。
- ★ XHSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ★ XHSC 产品的转售,若其条款与此处规定不同,XHSC 对此类产品的任何保修承诺无效。
- ★ 任何带有 "®"或 "™"标识的图形或字样是 XHSC 的商标。 所有其他在 XHSC 产品上显示的产品或服务名称均为其各自所有者的财产。
- ★ 本通知中的信息取代并替换先前版本中的信息。

©2024 小华半导体有限公司 保留所有权利

目 录

声	明	• • • • •		2
目	录			3
表了	刻			5
图第	刻			6
1	简介			7
	1.1	既览		7
	1.2 5	小观及接	₹□	9
	1.	2.1	离线编程器	9
	1.3	离线编程	段	.0
	1.	3.1	编程模式	.0
	1.	3.2	按键	.0
	1.	3.3	LED 指示灯	.0
	1.	3.4	XTAL 支持 1	.1
	1.	3.5	供电	.1
	1.	3.6	计数1	.1
	1.	3.7	安全1	.1
	1.	3.8	复位	.1
	1.	3.9	滚码功能	.2
	1.	3.10	片擦除/页擦除配置	.2
	1.	3.11	Flash 写保护	.2
	1.	3.12	固件自升级	.2
	1.4 †	带屏版本	5	.3
	1.	4.1	界面切换	.3
	1.	4.2	图标说明	.4
2	离线编	呈系统面	己置软件	.5
	2.1	驱动安装	₹ 1	.5
	2.2	配置软件	⊧介绍	.6
	2.3 1	操作步骤	₹	.8
	2.	3.1	双击打开 ConfigTool.exe 软件 1	.8
	2.	3.2	配置目标 MCU 型号 1	.8
	2.	3.3	配置硬件环境1	.8
	2.	3.4	设置波特率	.8
	2.	3.5	设置目标文件	9

	2.3.6	设置擦除方式19
	2.3.7	设置复位19
	2.3.8	设置计数功能19
	2.3.9	加密设置
	2.3.10	配置文件名设置20
	2.3.11	设置滚码功能26
	2.3.12	数据加密21
	2.3.13	设置 USART 半双工或全双工模式21
	2.3.14	设置蜂鸣器使能21
	2.3.15	设置低速模式21
	2.3.16	添加附加文件22
	2.3.17	确定22
3	离线编程器软件	‡及文件更新23
	3.1 文件拷贝	ري 23
	3.2 离线编程	呈器主板固件升级24
4	操作流程	
5	常见错误处理	
版团	x修订记录	

表索引

表 1-1	LED1 状态
表 1-2	LED2 状态
表 1-3	带屏版状态图标
表 1-4	带屏版配置信息图标
表 2-1	生成文件16
表 3-1	必须对 CM PGM 进行固件升级的操作24
表 3-2	LED 指示灯状态25
表 5-1	常见错误处理

图索引

冬	1-1	离线编程系统
冬	1-2	离线编程器外观
冬	1-3	编程接口引脚分配9
冬	1-4	切换程序13
冬	2-1	Framework 4.0
冬	2-2	配置软件目录结构
冬	2-3	软件界面
冬	2-4	选择芯片型号18
冬	2-5	配置硬件环境
冬	2-6	波特率设置18
冬	2-7	设置目标 Hex 文件
冬	2-8	擦除方式设置
冬	2-9	复位功能设置
冬	2-10	计数功能设置
冬	2-11	加密设置
冬	2-12	配置文件名设置 20
冬	2-13	配置滚码功能
冬	2-14	数据加密
冬	2-15	USART 半双工或全双工模式设置21
冬	2-16	蜂鸣器设置
冬	2-17	低速模式设置
冬	2-18	附加文件22
冬	3-1	标准版拷贝文件
冬	3-2	带屏版拷贝文件
冬	3-3	离线编程器升级界面 124
冬	3-4	离线编程器升级界面 2

1 简介

1.1 概览

CM PGM(Cortex-M Programmer)是为小华半导体(XHSC)的 Cortex-M 系列 MCU 提供的一款离线编程器,支持小华半导体旗下所有的 Cortex-M 系列 MCU 产品。目的是为用户提供一款小巧便携、安全可靠、操作简单的小批量离线编程工具和设计方案,目前提供标准版和带屏版两个版本供用户选择。

CM PGM 离线编程系统如图 1-1 所示,离线编程器由配置软件 ConfigTool.exe 和 PGM 主板组成。此版本只支持离线编程器型号 HCTL-01A、HCTL-01B。

图 1-1 离线编程系统

配置软件(ConfigTool.exe)生成配置文件、PGM 主板代码文件。

USB 接口对 PGM 主板供电,用户通过 USB 向 PGM 拷贝编程所需文件。

文件拷贝完成后,用户通过 PGM 主板的按键进行编程模式切换及启动编程功能。

离线编程器支持的功能如下:

- 编程模式(UART/SWD)可选择
- LED 灯和 OLED 屏(仅带屏版本支持)指示编程模式及编程状态
- 配置工具包含以下可配置功能:
 - 目标芯片外部晶振及内部时钟可配置(部分系列支持)
 - 计数功能
 - 目标芯片供电可选择功能
 - 文件加密功能
 - 目标芯片加密功能

- 复位功能(部分系列支持)
- 滚码功能
- 片擦除/页擦除配置
- Flash 写保护(部分系列支持)
- USART 全双工/半双工模式配置(部分系列支持)
- 蜂鸣器功能
- 速度选择
- 多文件选择及编程状态显示(仅带屏版本支持)
- 自升级
 - 自动检测固件版本升级
 - 按键实现主板固件强制升级

1.2 外观及接口

1.2.1 离线编程器

离线编程器外观及功能部件如图 1-2 所示:

USB接口采用标准 Type B接口。

编程接口与目标 MCU 连接,接口分配如下图所示:

V21:

图 1-3 编程接口引脚分配

1.3 离线编程器功能

1.3.1 编程模式

离线编程器支持两种编程模式: UART 编程模式和 SWD 编程模式。LED1 颜色指示当前编程模式,绿灯为 SWD 模式,橙色灯为 UART 模式。带屏版离线编程器同时在显示屏上显示当前编程模式,详情请参考带屏版本【图标说明】。

1.3.2 按键

离线编程器两个版本按键定义不同。

1. 标准版:

KEY1 为编程模式按键,短按(约 0.5 秒)KEY1 使 PGM 主板在 UART 模式和 SWD 模式之间切换。KEY2 为启动编程按键,短按(约 0.5 秒)KEY2 启动一次编程功能。

注意:

- 在剩余次数为 0 时和编程器正在编程时,按键均无效。

2. 带屏版:

KEY1 和 KEY2 在每个页面的功能由显示屏对应位置提示。

1.3.3 LED 指示灯

LED1 为编程模式指示灯,显示状态如表 1-1 所示:

表 1-1 LED1 状态

LED1 颜色	当前状态	
绿色	SWD 编程模式	
橙色	UART 编程模式(包括单线双线)	

LED2 为编程状态指示灯,各种颜色表示状态如表 1-2 所示:

表 1-2 LED2 状态

绿色	红色	橙色	离线编程器状态
快闪①	灭	灭	正在编程
亮	灭	灭	编程成功/空闲
慢闪②	灭	灭	空闲但剩余次编程次数已小于 50 次
灭	快闪	灭	编程剩余次数为 0
灭	灭	亮	编程失败
灭	亮	慢闪	编程失败且编程剩余次数小于 50 次

注①: 快闪,频率约 16Hz

注②:慢闪,频率 1Hz

1.3.4 XTAL 支持

HC32F14 和 HC32M14 系列目标板可采用不同的外部晶振或者内部 RC 进行编程。带屏版编程器在编程页面显示当前配置时钟频率,详情请参考带屏版本【图标说明】。

1.3.5供电

目标 MCU 系统可以选择外部供电或者使用 PGM 主板供电。

- 1. 配置供电功能,即 PGM 主板给目标芯片供电 PGM 主板对目标板可以提供 3.3V,最大 100mA 的供电。 带屏版编程器在编程页面显示当前供电配置,详情请参考带屏版本【图标说明】。
- 未配置供电功能,则需目标芯片系统外部供电 按照【编程模式】节的编程模式完成硬件连接,再对目标芯片进行供电。
 注意:
 - 无论选择供电还是不供电模式,Vext 脚都必须连接目标板。

1.3.6 计数

限制编程次数可配置功能。可以配置是否使用计数功能,最大可配置次数为4294967294次。当编程器计数功能使能,且次数不足和次数为 0 时,LED2 会有如表 3 所示相应提示信息。带屏版编程器在显示屏显示当前计数信息,详情请参考带屏版本【图标说明】。

1.3.7安全

提供文件加密和芯片加密等功能,详细说明如下:

- 1. 文件加密功能(所有系列支持) 使能后,离线编程系统配置软件 ConfigTool.exe 对目标二进制文件进行 AES(128 位、 ECB 模式)加密。
- 2. 芯片加密功能不同芯片有不同设置。具体参考芯片相关文档。
- 3. 带屏版编程器在编程页面显示当前文件加密及芯片加密配置情况,详情请参考带屏版本【图标说明】。

1.3.8复位

可以配置编程成功后,是否对目标 MCU 进行复位。带屏版编程器在编程页面显示当前复位配置情况, 详情请参考带屏版本【图标说明】。

注意:

- UART 模式下的复位功能无效。

1.3.9 滚码功能

提供滚码功能。可以设置滚码地址、初始滚码值、滚码步长。带屏版编程器在编程界面显示当前的滚码值,详情请参考带屏版本【图标说明】。

1.3.10 片擦除/页擦除配置

可以在界面选择编程前进行擦除的方式。选择片擦除时,采用全片擦除方式;选择页擦除时,编程器根据所编程的文件大小擦除相应区域。

注意:

如果同时使能滚码功能和页擦除功能,且滚码地址在代码文件地址范围外则滚码所在的页也有被擦除的风险。

1.3.11 Flash 写保护

部分芯片支持 flash 写保护功能设置。设置并编程成功后,下一次代码运行时所保护区域不能被擦写。

以上 $1.3.4 \pm 1.3.11$ 为离线编程器的可配置功能,其详细配置方法见【操作步骤】章节详细配置步骤。

1.3.12 固件自升级

提供 CM PGM 主板固件升级功能。

目前提供两种固件升级方式:

1. 固件自升级

将文件导入工具后,重新上电。系统会自动判定已有固件与文件中的固件镜像一致性。如果不一致, 将会将工具固件自动升级为文件中的固件镜像。

2. 强制升级

通过按键方式进入升级模式,工具里的固件将强制升级为文件中的固件镜像。

注意:

- 更改滚码、计数、加密 Key 等配置后,需采取强制升级。

1.4 带屏版本

1.4.1界面切换

图 1-4 切换程序

1.4.2 图标说明

除开机页面,屏幕右上角图标表示编程器状态如表 1-3 所示。

表 1-3 带屏版状态图标

♣	""表示未使能下载次数限制功能; 数字表示本编程器剩余下载次数。
	"S"表示当前选择 SWD 编程模式; "U"表示当前选择 UART 编程模式。
SN:	""表示未使能滚码功能; 数字表示当前滚码值。

编程页面屏幕左上角图标表示当前选择配置文件的配置信息如表 1-4 所示。

表 1-4 带屏版配置信息图标

$8M_{ au}$	表示选择时钟频率。
	表示芯片加密功能使能。
	表示目标二进制文件已进行 AES 加密。
*	表示目标板供电功能使能。
R	表示目标板复位功能使能。

2 离线编程系统配置软件

2.1 驱动安装

运行本软件需要 Microsoft.NET Framework v4.0。

请确认 "C:\Windows\Microsoft.NET\Framework64" 是否存在 Framework 4.0,如下图:

图 2-1 Framework 4.0

如果操作系统未安装,请去 Microsoft 官网进行下载,选择相应的版本进行下载。

2.2 配置软件介绍

本软件根目录为(EXE)XHSC Programmer Config Tool_VX.X,文件夹内容如图 2-2 所示。 其中 ConfigTool.exe 是可执行文件,Config 文件夹包含本软件的配置文件,PGMFile 文件 夹中是 CM PGM 固件,RamCode 文件夹里存放目标芯片的 RamCode,User Data 存放该配置软件生成的编程文件。

图 2-2 配置软件目录结构

用户运行完 ConfigTool.exe 后,文件夹 User Data 中可能生成文件如表 2-1 所示。

表 2-1 生成文件

文件名	描述	
PGMKEY.bin	转换后的 PGM 代码文件。工具升级完成后即可删除此文件	
***. config	配置文件,包含编程配置信息以及用户程序二进制文件	

双击 "ConfigTool.exe" 打开软件,软件界面如图 2-3 所示:

图 2-3 软件界面

芯片名称:设置目标 MCU 型号。

XTAL: 配置目标 MCU 外部晶振频率或内部高速时钟。

波特率: 配置 PGM 板与目标板的 UART 通信波特率。

计数:设置编程次数功能。

文件加密: 配置目标文件加密功能,如使能加密功能则需要设置密钥。

密钥: 输入文件加密的密钥。

芯片加密: 配置目标芯片加密功能。

供电:选择是否让 PGM 板对目标板进行供电。

片擦除/页擦除: 编程时 Flash 擦除方式配置。

复位: 选择编程成功后是否让目标 MCU 复位。

目标 Hex 文件:选择需要对目标板进行编程的文件。

MCU 信息:显示当前选择的 MCU 信息。

滚码功能: 配置目标芯片滚码功能。

选项字节设置/编程时写选项字节:特殊字节写功能,目前有某些系列的 Flash 写保护功能。

带屏版及配置文件名: 当使用带屏版离线编程器时,需要生成指定文件名的配置文件时的可选择功能。

低速模式: SWD 使用低速模式。

蜂鸣器提示使能: 使能蜂鸣器。

附加文件:可以附加一个 bin 文件一起烧录。

2.3 操作步骤

以下以 MCU 型号 HC32L136X8/ HC32L130X8 为例,配置软件操作步骤,其中 2.3.1 至 2.3.5、 2.3.15 为必要步骤, 2.3.6 至 2.3.14 为可选配置步骤。

2.3.1双击打开 ConfigTool.exe 软件

2.3.2 配置目标 MCU 型号

如选择 MCU 型号 HC32L136X8/ HC32L130X8, 右边 MCU 信息栏出现所选 MCU 信息, 如图 2-4 所示。

图 2-4 选择芯片型号

2.3.3配置硬件环境

HC32L136X8/ HC32L130X8 系列设置 XTAL 为 0M,与硬件环境无关。(除 HC32F14X 系列外 此项均默认为 0)

设置目标板是使用 PGM 主板给目标板供电,还是使用目标板的自供电。此样例选择 PGM 主板供电。

图 2-5 配置硬件环境

2.3.4设置波特率

设置通信波特率,此样例中设置为 1000000。在通讯情况良好的情况下,这里均建议选择最高波特率获得最佳性能。

图 2-6 波特率设置

2.3.5设置目标文件

选择需要对目标 MCU 编程的文件,目标文件支持的格式有.srec、hex、bin。bin 文件格式默认编程地址为 Flash 基地址。

图 2-7 设置目标 Hex 文件

2.3.6设置擦除方式

软件默认选择片擦除方式。如编程时仅需要擦除代码所在区域则选择页擦除方式。

图 2-8 擦除方式设置

2.3.7设置复位

如果编程成功后需要将目标板复位,则选择复位复选框。

□复 位

图 2-9 复位功能设置

2.3.8设置计数功能

如需次数限制功能,则选中"计数 (Dec)"复选框,并且设置一个小于等于 4294967294 的次数。

图 2-10 计数功能设置

2.3.9 加密设置

芯片加密对客户芯片的 Flash 中内容存取进行限制。不同系列的芯片有不同的加密设置。

PGM 工具还提供文件加密功能,防止文件传送被窃取。可以自我设置密钥并绑定指定编程器硬件。 选择"文件加密"功能后,"芯片加密"自动使能。

注意:

- 除 HC32F4XX 系列之外的芯片,加密之后,如果需要再次编程,必须使用 UART 模式。
- HC32X7X 和 HC32X9X 系列的芯片加密次数限制为 64 次。64 次之后将无法解密。
- 密钥支持长度 2~16 范围内的 ASCII 码字符串。

- 不同系列芯片芯片加密设置差别较大,具体情况建议一定要咨询我们 FAE 或其他技术接口。

图 2-11 加密设置

2.3.10 配置文件名设置

如果使用带屏版的离线编程器,可选择"带屏版"复选框,并且在"配置文件名"文本框中输入需要生成的配置文件名。

注意:

- 无屏版的编程器不要选择此项。

图 2-12 配置文件名设置

2.3.11 设置滚码功能

如果需要设置滚码功能,则选中"滚码功能"复选框,同时设置滚码参数。滚码参数包括滚码地址、滚码步长、滚码初始值,以分号隔开。这里设置的滚码地址为 0×1000 ,滚码步长为 1,滚码初始值为 0。

图 2-13 配置滚码功能

注意:

- 使用滚码功能时,仅限于一个配置文件。

 滚码参数中地址需为十六进制,步长可以有正负,滚码初始值为无符号数,范围 (0~4294967295)。

2.3.12 数据加密

如选择 HC32F460 系列芯片,则可以配置数据加密乱序功能。选择"数据加密",点击按钮"数据加密设置"设置需要数据加密的区域。

图 2-14 数据加密

2.3.13 设置 USART 半双工或全双工模式

有些系列芯片,可以配置 USART 半双工/全双工通信模式。如需使用 USART 半双工,则选中 "USART 半双工",如需使用 USART 全双工,则选中 "USART 全双工"。

图 2-15 USART 半双工或全双工模式设置

注意:

- 这是只选择 USART 的通讯方式,SWD 和 USART 的模式选择与这里无关,由工具来完成。

2.3.14 设置蜂鸣器使能

启动和关闭蜂鸣器。

图 2-16 蜂鸣器设置

2.3.15 设置低速模式

选中低速模式,可以降低 SWD 通讯速度。

- 这个只在通讯环境干扰严重或者硬件设计对通讯速度有影响的情况下选择。
- 这个选项只影响 SWD 通讯速度,不影响 Uart。

图 2-17 低速模式设置

2.3.16 添加附加文件

添加一个附加 bin 文件可以和烧写文件一起烧录。

- 这个文件可以留空不填,不影响烧录操作。

图 2-18 附加文件

2.3.17 确定

按照需要配置好各项功能后,点击"确定"按钮。

完成后,安装目录下 User Data 文件夹中会生成用户文件如下。

1. 未设置配置文件名

生成两个文件: PGMKEY.bin

pgm.config

2. 设置了配置文件名

生成两个文件: PGMKEY.bin

xxxx.config

3 离线编程器软件及文件更新

按照【操作步骤】章节步骤生成用户文件后,将生成的配置文件和 PGM 主板代码文件拷贝至离线编程器中,然后更新 PGM 固件。

3.1 文件拷贝

通过 USB 连接 PGM 与电脑,在电脑端识别到 U 盘设备后,拷贝文件步骤如下:

- 1. 格式化 U 盘;
- 拷贝 PGMKEY.bin 和***.config 到 U 盘中,标准版编程器拷贝文件如图 3-1 所示。带屏版可拷贝多个配置文件到 U 盘中,如图 3-2 所示。

图 3-1 标准版拷贝文件

图 3-2 带屏版拷贝文件

注意:

当拷贝多个配置文件到带屏版本离线编程器时,只有无需升级 PGM 固件时,多个配置文件才均能正常运行。

3.2 离线编程器主板固件升级

如果进行以下功能对应操作项中的任意一项操作,则必须对 CM PGM 进行固件升级:

表 3-1 必须对 CM PGM 进行固件升级的操作

功能	操作
文件加密	开启
文件加密	修改密钥
	开启
计数	关闭
	修改次数
	修改地址
滚码	修改步长
	修改起始值
读保护 1	开启
· 法体护 1	修改密钥
数据加密	开启
数括加 電	修改数据加密范围

PGM 主板固件升级步骤如下:

方法一(自动升级):

重新上电,如工具里的固件与拷贝的固件不一致,则会自动启动升级程序。

方法二 (手动强制升级):

- 1) 同时按下 KEY1 和 KEY2 按键;
- 2) 给 PGM 上电,标准版编程器的 LED1 和 LED2 均为绿色,带屏版编程器屏幕显示如图 3-3 所示:

图 3-3 离线编程器升级界面 1

3) 同时短按 KEY1 和 KEY2 按键,离线编程器开始升级主板固件,此时,LED1 灯为绿色常亮,LED2 灯绿色快闪,带屏版离线编程器屏幕显示如图 3-4 所示:

图 3-4 离线编程器升级界面 2

注意:

- 升级之前应确保离线编程器中已拷贝 PGMKEY.bin 和对应的***.config 文件,如遇异常情况,请重复升级步骤。
- 如果使用了文件加密功能,升级之后,需要删除 PGMKEY.bin 文件,以保证秘钥不会泄露。
- 只有更改滚码设置或者工具里固件损坏的情况下,需使用手动强制升级方式。
- 4) 升级成功后直接运行 PGM 代码。带屏版离线编程器屏幕跳转到开机界面。

升级过程中, LED1 和 LED2 灯颜色状态如表 3-2 所示:

表 3-2 LED 指示灯状态

LED1	LED2	当前状态	
绿色	绿色	UDISK,进入升级模式	
绿色	灭	从 UDISK 状态切换到 Upgrading 状态	
绿色	绿色快闪	Upgrading,开始升级	
绿色	红色快闪	升级失败,或无 PGMKEY.bin 文件	
绿色/橙色	绿色	开机界面,升级成功(LED1 颜色显示当前编程模式,详情如表 1-1 所示)	

4 操作流程

以对芯片 HC32L13XXX 编程/Flash 读为例, CM PGM 离线编程系统总体使用流程如下:

1. 软件配置

打开配置软件 ConfigTool.exe,按照【操作步骤】章节的详细步骤配置编程环境生成文件。 完成后 User Data 文件夹中生成 PGMKEY.bin 和***.config 文件。

2. 文件拷贝

通过 CM PGM 的 USB 接口与电脑相连接。若电脑未识别 U 盘,请参考【离线编程器主板固件升级】章节步骤使电脑识别到 U 盘。将文件拷贝到工具,工具重新上电升级。删除 PGMKEY.bin 文件(非必需,建议操作。如使用文件加密功能升级完毕后需删除此文件)。

3. 准备硬件连接

请参考【编程模式】章节,连接目标 MCU,如需外部供电则连接外部供电。

4. 切换编程模式

根据表 1-1 内容或者带屏版显示屏信息查看当前编程模式并选择。

5. 启动编程或 Flash 读

标准版短按编程键启动编程,根据表 1-2 内容查看编程状态和编程结果。

带屏版通过菜单选择编程文件或者读 Flash 并且通过菜单提示启动,根据表 1-2 内容或者屏幕显示查看编程状态和编程结果。

Flash 读的数据保存为 read.bin 文件,需要重新连接编程器后通过 PC 端获取。

5 常见错误处理

离线编程器出现故障时,可参照表 5-1 方法进行处理,如果仍然无法排除故障,请与代理商或者厂家联系。

表 5-1 常见错误处理

编号	错误类型	原因	解决方法	
1	上电后离线编程器 LED1 不亮	硬件损坏	建议返厂	
2	上电后 U 盘不显示,LED1 绿	离线编程器 bootloader	建议返厂	
	色,LED2 不亮	代码损坏		
3	上电后 U 盘不显示,LED1 绿	PGM 无固件代码	按照【离线编程器主板固件升级】章节步骤升级	
	色,LED2 呈红色快闪	1 0 1 7 2 2 1 1 7 2 2 2 2 2 2 2 2 2 2 2 2 2	固件代码	
4	同时按下 KEY1,KEY2,上电	bootloader 代码损坏	建议返厂	
T	后无法识别 U 盘	boot toader the just		
5	无屏版,KEY1 可以切换编程模	无 pgm.config 文件	拷贝 pgm.config 文件至 U 盘中	
J	式,KEY2 无反应	元 pgiii,coiii ig 文if		
6	 升级失败	无 PGMKEY.bin 文件或	 检查 PGMKEY.bin 文件正确性	
0	开级大败 	PGMKEY.bin 文件损坏	位直 FGMKET.DIII 文件证明日	
			• 检查接线方式与编程模式是否匹配	
	编程失败		• 检查目标芯片与配置信息是否匹配	
		• 硬件连接错误	• 检查晶振是否匹配	
_			 • 检查编程次数是否为 0	
7		• 配置信息错误	│ ・ 升级当前 config 文件对应的固件代码 │	
		• 目标芯片损坏	(PGMKEY.bin)	
			• 同时使能滚码功能和页擦除功能,且滚码	
			地址在代码文件地址范围外。	
8	 带屏版 , 屏幕不显示或显示不全		建议返厂	
J	中	灰下凹处	建以处 /	

版本修订记录

版本号	修订日期	修订内容
2020/02/19	Rev1.0	初版发布。
2020/12/10	Rev1.1	1.添加蜂鸣器,低速模式新功能描述;
		2.文件加密操作添加注意事项;
		3.增加支持系列;
		4.其他细节修正。
2021/12/31	Rev1.2	增加型号。
2022/08/01	Rev1.3	1.修改公司 logo;
		2.添加 008, 015 系列加密次数说明;
		3.功能模块说明方式改变;
		4.添加少量说明,修改部分表述方式。
2023/07/05	Rev2.0	优化原有芯片与编程器强耦合结构,去除芯片相关描述,改为芯片部分
		独立文件描述。
2024/01/31	Rev2.01	1.1 概览章节添加适用离线编程器型号 HCTL-01A、HCTL-01B 的描
		述。