NT AND TRADEMARK OFFICE IN THE UNITED ST

In re application of

Hideo MATSUSHIRO et al.

Confirmation No. 7660

Serial No. 10/809,455

Attn: BOX MISSING PARTS

Filed March 26, 2004

Attorney Docket No.2004 0488A

AN INVERTER CONTROL DEVICE FOR DRIVING A MOTOR AND AN AIR

CONDITIONER

CLAIM OF PRIORITY UNDER 35 USC 119

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450 THE COMMISSIONER IS AUTHORIZED TO CHARGE ANY DEFICIENCY IN THE FEES FOR THIS PAPER TO DEPOSIT **ACCOUNT NO. 23-0975**

Sir:

Applicants in the above-entitled application hereby claim the date of priority under the International Convention of Japanese Patent Application No. 2003-091184, filed March 28, 2003, and Japanese Patent Application No. 2004-054292, filed February 27, 2004, as acknowledged in the Declaration of this application.

Certified copies of said Japanese Patent Applications are submitted herewith.

Respectfully submitted,

Hideo MATSUSHIRO et al.

sistration No. 41,471 Attorney for Applicants

JRF/fs Washington, D.C. 20006-1021 Telephone (202) 721-8200 Facsimile (202) 721-8250 June 30, 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 3月28日

出願番号 Application Number:

特願2003-091184

[ST. 10/C]:

[JP2003-091184]

出 願 人
Applicant(s):

松下電器産業株式会社

2004年 2月20日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願

【整理番号】 2583040217

【提出日】 平成15年 3月28日

【あて先】 特許庁長官殿

【国際特許分類】 H02M 7/48

H02M 7/523

H02P 7/00

H02P 7/622 302

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 松城 英夫

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 河地 光夫

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 杉本 智弘

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 中田 秀樹

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 植田 光男

ページ: 2/E

【特許出願人】

【識別番号】

000005821

【氏名又は名称】 松下電器産業株式会社

【代理人】

【識別番号】 100097445

【弁理士】

【氏名又は名称】 岩橋 文雄

【選任した代理人】

【識別番号】

100103355

【弁理士】

【氏名又は名称】 坂口 智康

【選任した代理人】

【識別番号】 100109667

【弁理士】

【氏名又は名称】 内藤 浩樹

【手数料の表示】

【予納台帳番号】 011305

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9809938

【書類名】 明細書

【発明の名称】 インダクションモータ駆動用インバータ制御装置および空気調和機

【特許請求の範囲】

【請求項1】 交流電源を入力とする整流回路と直流電力から交流電力に変換するインバータとインダクションモータとを含み、前記整流回路はダイオードブリッジと、前記ダイオードブリッジの交流入力側または直流出力側に接続される所定の小容量のリアクタで構成され、前記インバータの直流母線間には、前記インダクションモータの回生エネルギーを吸収するための所定の小容量のコンデンサを設け、外部から与えられるインダクションモータの速度指令値に基づき、前記インダクションモータの各相電圧指令値を作成するモータ電圧指令作成手段と、前記インバータの直流電圧値を検出するPN電圧検出手段と、予め設定された前記インバータの直流電圧基準値と前記PN電圧検出手段から得られる前記インバータの直流電圧機出値との比較からPN電圧補正係数を導出するPN電圧補正手段と、各相電圧指令値の補正を行う第1のモータ電圧指令補正手段と、前記第1のモータ電圧指令補正手段で補正された各相電圧指令値を再補正する第2のモータ電圧指令補正手段で補正された各相電圧指令値を再補正する第2のモータ電圧指令補正手段とを備えたことを特徴とするインダクションモータ駆動用インバータ制御装置。

【請求項2】 第1のモータ電圧指令補正手段はモータ電圧指令作成手段から得られる各相電圧指令値とPN電圧補正手段の出力値であるPN電圧補正係数とを乗算することにより各相電圧指令値の補正を行い、第2のモータ電圧指令補正手段は、前記第1のモータ電圧指令補正手段で補正された各相電圧指令値のいずれかが前記インバータの直流電圧値より大きい場合のみ、前記第1のモータ電圧指令補正手段で補正された各相電圧指令値に前記インバータの直流電圧値を乗算した後、前記第1のモータ電圧指令補正手段で補正された各相電圧指令値のうちの最大値で除算することにより前記第1のモータ電圧指令補正手段で補正された各相電圧指令値を再補正することを特徴とする、請求項1記載のインダクションモータ駆動用インバータ制御装置。

【請求項3】 交流電源を入力とする整流回路と直流電力から交流電力に変換

するインバータとインダクションモータとを含み、前記整流回路はダイオードブ リッジと、前記ダイオードブリッジの交流入力側または直流出力側に接続される 所定の小容量のリアクタで構成され、前記インバータの直流母線間には、前記イ ンダクションモータの回生エネルギーを吸収するための所定の小容量のコンデン サを設け、外部から与えられるインダクションモータの速度指令値に基づき、前 記インダクションモータの各相電圧指令値を作成するモータ電圧指令作成手段と 、前記インバータの直流電圧値を検出するPN電圧検出手段と、予め設定された 前記インバータの直流電圧基準値と前記PN電圧検出手段から得られる前記イン バータの直流電圧検出値との比較からPN電圧補正係数を導出するPN電圧補正 手段と、前記モータ電圧指令作成手段から得られる各相電圧指令値と前記PN電 圧補正手段の出力値であるPN電圧補正係数とを乗算することにより各相電圧指 令値の補正を行う第1のモータ電圧指令補正手段と、前記インバータの直流電圧 値に1以上の値を乗算した飽和電圧基準値を導出する飽和電圧演算手段と、前記 第1のモータ電圧指令補正手段で補正された各相電圧指令値のいずれかが前記飽 和電圧演算手段で演算された飽和電圧基準値より大きい場合のみ、前記第1のモ ータ電圧指令補正手段で補正された各相電圧指令値に前記飽和電圧演算手段で演 算された飽和電圧基準値を乗算した後、前記第1のモータ電圧指令補正手段で補 正された各相電圧指令値のうちの最大値で除算することにより前記第1のモータ 電圧指令補正手段で補正された各相電圧指令値を再補正する第2のモータ電圧指 令補正手段と、前記第2のモータ電圧指令補正手段で補正された各相電圧指令値 が前記インバータの直流電圧値より大きい場合、各相電圧指令値を前記インバー タの直流電圧値とするモータ電圧指令最大値規制手段とを備えたことを特徴とす るインダクションモータ駆動用インバータ制御装置。

【請求項4】 飽和電圧演算手段で得られる飽和電圧基準値は、外部から与えられるインダクションモータの速度指令値に応じて可変とすることを特徴とする、請求項3に記載のインダクションモータ駆動用インバータ制御装置。

【請求項5】 PN電圧補正手段は、直流電圧基準値を前記直流電圧検出値で 除算することにより前記PN電圧補正係数を導出し、直流電圧検出値がゼロ以下 の場合には前記PN電圧補正係数に予め設定されたPN電圧補正係数の最大値を 設定することを特徴とする、請求項1~4のいずれかにに記載のインダクション モータ駆動用インバータ制御装置。

【請求項6】 インバータ運転周波数が交流電源周波数の偶数倍となる共振周波数と、前記共振周波数を中心としてその前後に予め設定された周波数幅を持たせた周波数範囲内で前記インバータ運転周波数が定常的に固定されるのを回避することを特徴とする、請求項 $1\sim5$ のいずれかに記載のインダクションモータ駆動用インバータ制御装置。

【請求項7】 小容量リアクタと小容量コンデンサとの共振周波数を交流電源 周波数の40倍よりも大きくなるように前記小容量リアクタおよび前記小容量コ ンデンサの組み合わせを決定することを特徴とする、請求項1~6のいずれかに 記載のインダクションモータ駆動用インバータ制御装置。

【請求項8】 インバータが停止した際に上昇する直流電圧値の最大値が素子の耐圧よりも小さくなるように小容量コンデンサの容量を決定することを特徴とする、請求項1~7のいずれかに記載のインダクションモータ駆動用インバータ制御装置。

【請求項9】 予め設定された交流電源力率値を満足するようにインバータの キャリア周波数を決定することを特徴とする、請求項1~8のいずれかに記載の インダクションモータ駆動用インバータ制御装置。

【請求項10】 交流電力を直流電力に変換するコンバータ装置と、前記コンバータ装置で変換された直流電力を可変電圧・可変周波数の交流電力に変換して圧縮機駆動モータに供給するインバータ装置とを備えた空気調和機において、前記インバータ装置として請求項1~9のいずれかに記載のインダクションモータ駆動用インバータ制御装置を用いることを特徴とする空気調和機。

【発明の詳細な説明】

[00001]

【発明の属する技術分野】

本発明は、小容量リアクタおよび小容量コンデンサを用いたインダクションモータ駆動用インバータ制御装置に関するものである。

[00002]

【従来の技術】

汎用インバータなどで用いられている一般的なインダクションモータ駆動用インバータ制御装置として、図15に示すようなV/F制御方式のインダクションモータ駆動用インバータ制御装置がよく知られている(例えば、非特許文献1参照)。

[0003]

図15において、主回路は直流電源装置113と、インバータ3とインダクションモータ4とから構成されており、直流電源装置113については、交流電源1と、整流回路2と、インバータ3の直流電圧源のために電気エネルギーを蓄積する平滑コンデンサ112と、交流電源1の力率改善用リアクタ111から構成されている。

[0004]

一方、制御回路では、外部から与えられたインダクションモータ4の速度指令に基づいてインダクションモータ4に印加するモータ電圧値を決定するV/F制御パターン13と、V/F制御パターン13から決定されるモータ電圧値に基づいてインダクションモータ4の各相電圧指令値を作成するモータ電圧作成手段14と、モータ電圧作成手段14から作成された各相電圧指令値に基づいてインバータ3のPWM信号を生成するPWM制御手段18から構成されている。なお、一般的なV/F制御パターン13の一例を図16に示す。

[0005]

図16に示すように速度指令W*に対してインダクションモータ4に印加するモータ電圧値が一義的に決定するような構成となっている。一般的には、速度指令W*とモータ電圧値の値をテーブル値としてマイコン等の演算装置のメモリに記憶させ、テーブル値以外の速度指令W*に対してはテーブル値から線形補間することでモータ電圧値を導出している。

[0006]

ここで、交流電源 1 が 2 2 0 V (交流電源周波数 5 0 H z)、インバータ 3 の入力が 1 . 5 k W、平滑コンデンサ 1 1 2 が 1 5 0 0 μ F のとき、力率改善用リアクタ 1 1 1 が 5 m H および 2 0 m H の場合における交流電源電流の高調波成分

と交流電源周波数に対する次数との関係を図17に示す。図17はIEC(国際電気標準会議)規格と併せて示したもので、力率改善用リアクタ111が5mHの場合には特に第3高調波成分がIEC規格のそれを大きく上回っているが、20mHの場合には40次までの高調波成分においてIEC規格をクリアしていることがわかる。

[0007]

そのため特に高負荷時においてもIEC規格をクリアするためには力率改善用リアクタ111のインダクタンス値をさらに大きくするなどの対策を取る必要があり、インバータ装置の大型化や重量増加、さらにはコストUPを招くという不都合があった。

[0008]

そこで、力率改善用リアクタ111のインダクタンス値の増加を抑え、電源高調波成分の低減と高力率化を達成する直流電源装置として、例えば図18に示すような直流電源装置が提案されている(例えば、特許文献1参照)。

[0009]

図18において、交流電源1の交流電源電圧を、ダイオードD1~D4をブリッジ接続してなる全波整流回路の交流入力端子に印加し、その出力をリアクトルLinを介して中間コンデンサCに充電し、この中間コンデンサCの電荷を平滑コンデンサCDに放電して、負荷抵抗RLに直流電圧を供給する。この場合、リアクトルLinの負荷側と中間コンデンサCを接続する正負の直流電流経路にトランジスタQ1を接続し、このトランジスタQ1をベース駆動回路G1で駆動する構成となっている。

$[0\ 0\ 1\ 0]$

また、ベース駆動回路G1にパルス電圧を印加するパルス発生回路I1、I2 と、ダミー抵抗Rdmとをさらに備えており、パルス発生回路I1、I2は、それぞれ交流電源電圧のゼロクロス点を検出する回路と、ゼロクロス点の検出から 交流電源電圧の瞬時値が中間コンデンサCの両端電圧と等しくなるまでダミー抵 抗Rdmにパルス電流を流すパルス電流回路とで構成されている。

[0011]

ここで、パルス発生回路 I 1 は交流電源電圧の半サイクルの前半にてパルス電圧を発生させ、パルス発生 I 2 は交流電源電圧の半サイクルの後半にてパルス電圧を発生させるようになっている。

[0012]

なお、トランジスタQ1をオン状態にしてリアクトルLinに強制的に電流を流す場合、中間コンデンサCの電荷がトランジスタQ1を通して放電することのないように逆流防止用ダイオードD5が接続され、さらに、中間コンデンサCの電荷を平滑コンデンサCDに放電する経路に、逆流防止用ダイオードD6と、平滑効果を高めるリアクトルLdcが直列に接続されている。

[0013]

上記の構成によって、交流電源電圧の瞬時値が中間コンデンサCの両端電圧を超えない位相区間の一部または全部においてトランジスタQ1をオン状態にすることによって、装置の大型化を抑えたままで、高調波成分の低減と高力率化を達成することができる。

[0014]

【非特許文献1】

「インバータドライブハンドブック」の661~711頁を参照、インバータドライブハンドブック編集委員会編、1995年初版、日刊工業新聞社発行)

【特許文献1】

特開平9-266674号公報

$[0\ 0\ 1\ 5]$

【発明が解決しようとする課題】

しかしながら、上記従来の構成では、容量の大きな平滑用コンデンサCDとリアクトルLin(特許文献1では1500μF、6.2mH時のシミュレーション結果について記載されている)とを依然として有したままであり、さらに中間コンデンサCとトランジスタQ1とベース駆動回路G1とパルス発生回路I1、I2とダミー抵抗Rdmと逆流防止用ダイオードD5、D6と平滑効果を高めるリアクトルLdcとを具備することで、装置の大型化や部品点数の増加に伴なうコストUPを招くという課題を有していた。

[0016]

本発明はこのような従来の課題を解決するものであり、小型・軽量・低コストなインダクションモータ駆動用インバータ制御装置を提供することを目的とする

[0017]

【課題を解決するための手段】

上記課題を解決するために本発明は、交流電源を入力とする整流回路と直流電力から交流電力に変換するインバータとインダクションモータとを含み、前記整流回路はダイオードブリッジと、前記ダイオードブリッジの交流入力側または直流出力側に接続される所定の小容量のリアクタで構成され、前記インバータの直流母線間には、前記インダクションモータの回生エネルギーを吸収するための所定の小容量のコンデンサを設け、外部から与えられるインダクションモータの速度指令値に基づき、前記インダクションモータの各相電圧指令値を作成するモータ電圧指令作成手段と、前記インバータの直流電圧値を検出するPN電圧検出手段と、予め設定された前記インバータの直流電圧基準値と前記PN電圧検出手段から得られる前記インバータの直流電圧検出値との比較からPN電圧補正係数を導出するPN電圧補正手段と、各相電圧指令値の補正を行う第1のモータ電圧指令補正手段と、前記第1のモータ電圧指令補正手段で補正された各相電圧指令値を再補正する第2のモータ電圧指令補正手段とを備えたものである。

[0018]

また、交流電源を入力とする整流回路と直流電力から交流電力に変換するインバータとインダクションモータとを含み、整流回路はダイオードブリッジと、ダイオードブリッジの交流入力側または直流出力側に接続される所定の小容量のリアクタで構成され、インバータの直流母線間には、インダクションモータの回生エネルギーを吸収するための所定の小容量のコンデンサを設け、外部から与えられるインダクションモータの速度指令値に基づき、インダクションモータの各相電圧指令値を作成するモータ電圧指令作成手段と、インバータの直流電圧値を検出するPN電圧検出手段と、予め設定されたインバータの直流電圧基準値とPN電圧検出手段から得られるインバータの直流電圧検出値との比較からPN電圧補

正係数を導出するPN電圧補正手段と、モータ電圧指令作成手段から得られる各相電圧指令値とPN電圧補正手段の出力値であるPN電圧補正係数とを乗算することにより各相電圧指令値の補正を行う第1のモータ電圧指令補正手段と、第1のモータ電圧指令補正手段で補正された各相電圧指令値のいずれかがインバータの直流電圧値より大きい場合のみ、第1のモータ電圧指令補正手段で補正された各相電圧指令値にインバータの直流電圧値を乗算した後、第1のモータ電圧指令補正手段で補正された各相電圧指令値のうちの最大値で除算することにより第1のモータ電圧指令補正手段で補正された各相電圧指令値を再補正する第2のモータ電圧指令補正手段とを備えるものである。

[0019]

上記の構成によって、小容量コンデンサおよび小容量リアクタを用いることで小型・軽量・低コストなインダクションモータ駆動用インバータ制御装置を実現でき、インバータ直流電圧が大幅に変動してインダクションモータの駆動が困難あるいは不可能となる場合でも、インダクションモータに印加する電圧がほぼ一定となるようにインバータを動作させ、インダクションモータの駆動を維持することが可能であり、さらに交流電源電流の変動を抑制し、交流電源力率の改善と交流電源電流の高調波成分を抑制することが可能となる。

[0020]

また、交流電源を入力とする整流回路と直流電力から交流電力に変換するインバータとインダクションモータとを含み、整流回路はダイオードブリッジと、ダイオードブリッジの交流入力側または直流出力側に接続される所定の小容量のリアクタで構成され、インバータの直流母線間には、インダクションモータの回生エネルギーを吸収するための所定の小容量のコンデンサを設け、外部から与えられるインダクションモータの速度指令値に基づき、インダクションモータの各相電圧指令値を作成するモータ電圧指令作成手段と、インバータの直流電圧値を検出するPN電圧検出手段と、予め設定されたインバータの直流電圧基準値とPN電圧検出手段から得られるインバータの直流電圧検出値との比較からPN電圧補正係数を導出するPN電圧補正手段と、モータ電圧指令作成手段から得られる各相電圧指令値とPN電圧補正手段の出力値であるPN電圧補正係数とを乗算する

ことにより各相電圧指令値の補正を行う第1のモータ電圧指令補正手段と、インバータの直流電圧値に1以上の値を乗算した飽和電圧基準値を導出する飽和電圧演算手段と、第1のモータ電圧指令補正手段で補正された各相電圧指令値のいずれかが飽和電圧演算手段で演算された飽和電圧基準値より大きい場合のみ、第1のモータ電圧指令補正手段で補正された各相電圧指令値に飽和電圧演算手段で演算された飽和電圧基準値を乗算した後、第1のモータ電圧指令補正手段で補正された各相電圧指令値のうちの最大値で除算することにより第1のモータ電圧指令補正手段で補正された各相電圧指令値を再補正する第2のモータ電圧指令補正手段と、第2のモータ電圧指令補正手段で補正された各相電圧指令値がインバータの直流電圧値より大きい場合、電圧指令値をインバータの直流電圧値とするモータ電圧指令最大値規制手段とを備えるものである。

[0021]

上記の構成によって、交流電源力率の改善と交流電源電流の高調波成分抑制を維持しつつ、さらにインダクションモータの出力トルクの向上を図ることが可能となる。

$[0\ 0\ 2\ 2]$

また、飽和電圧演算手段で得られる飽和電圧基準値は、外部から与えられるインダクションモータの速度指令値に応じて可変とするものである。

[0023]

上記の構成によって、交流電源力率の改善と交流電源電流の高調波成分抑制を 確実に維持する駆動領域と、インダクションモータの出力トルクの大幅な向上を 図る駆動領域との両立が可能となる。

[0024]

また、PN電圧補正手段は、直流電圧基準値を直流電圧検出値で除算することによりPN電圧補正係数を導出し、直流電圧検出値がゼロ以下の場合にはPN電圧補正係数に予め設定されたPN電圧補正係数の最大値を設定するものである。

[0025]

上記の構成によって、インバータ直流電圧が大幅に変動しゼロ以下となるよう な場合にもインダクションモータの駆動を維持することが可能となる。

[0026]

また、インバータ運転周波数が交流電源周波数の偶数倍となる共振周波数と、 共振周波数を中心としてその前後に予め設定された周波数幅を持たせた周波数範 囲内でインバータ運転周波数が定常的に固定されるのを回避するものである。

[0027]

上記の構成によって、インバータ周波数と交流電源周波数との共振現象を回避 することでインダクションモータの不安定動作を防止し、安定した駆動を実現す ることが可能となる。

[0028]

また、小容量リアクタと小容量コンデンサとの共振周波数を交流電源周波数の40倍よりも大きくなるように小容量リアクタおよび小容量コンデンサの組み合わせを決定するものである。

[0029]

上記の構成によって、交流電源電流の高調波成分を抑制し、IEC規格をクリアすることが可能である。

[0030]

また、インバータが停止した際に上昇する直流電圧値の最大値が素子の耐圧よりも小さくなるように小容量コンデンサの容量を決定するものである。

[0031]

上記の構成によって、インバータ直流電圧の最大値を各駆動素子の耐圧よりも 小さくなるように小容量コンデンサの容量を決定することで周辺回路の破壊を防 止することが可能となる。

[0032]

また、予め設定された交流電源力率値を満足するようにインバータのキャリア 周波数を決定するものである。

[0033]

上記の構成によって、予め設定された交流電源力率値を満足することが可能となり、必要最小限のキャリア周波数を設定することにより、インバータ損失を必要最小限に抑制することが可能となる。

[0034]

【発明の実施の形態】

以下、本発明の実施の形態について図面を参照しながら説明する。

[0035]

(実施の形態1)

本発明の第1の実施形態を示すインダクションモータ駆動用インバータ制御装置のシステム構成図を図1に示す。図1において、主回路は交流電源1と、交流電力を直流電力に変換するダイオードブリッジ2と、2mH以下の小容量リアクタ11と、100μF以下の小容量コンデンサ12と、直流電力を交流電力に変換するインバータ3と、インバータ3により変換された交流電力により駆動するインダクションモータ4から構成されている。

[0036]

一方、制御回路では、外部から与えられたインダクションモータ4の速度指令 W*に基づいてインダクションモータ4に印加するモータ電圧値を決定するV/ F制御パターン13と、V/F制御パターン13から決定されるモータ電圧値に 基づいてインダクションモータ4の各相電圧指令値を作成するモータ電圧作成手 段14と、インバータ3の直流電圧値を検出するPN電圧検出手段15と、予め 設定されたインバータ3の直流電圧基準値とPN電圧検出手段15から得られる インバータ3の直流電圧検出値との比較からPN電圧補正係数を導出するPN電 圧補正手段16と、モータ電圧指令作成手段14から得られる各相電圧指令値と PN電圧補正手段16の出力値であるPN電圧補正係数とを乗算することにより 各相電圧指令値の電圧補正を行ないインダクションモータ4の第1モータ電圧指 令補正値を作成する第1のモータ電圧指令補正手段17と、第1のモータ電圧指令 補正手段17から作成された第1モータ電圧指令補正値のいずれかがインバータ 3の直流電圧値より大きい場合のみ、第1モータ電圧指令補正値にインバータ3 の直流電圧値を乗算した後、第1モータ電圧指令補正値のうちの最大値で除算す ることによりインダクションモータ4の第2モータ電圧指令補正値を作成する第 2のモータ電圧指令補正手段19と、第2のモータ電圧指令補正手段19から作 成された第2モータ電圧指令補正値に基づいてインバータ3のPWM信号を生成

するPWM制御手段18から構成されている。

[0037]

なお、V/F制御パターン13については、上述の従来の技術にて説明しているのでここでは説明を省略する。(図15のV/F制御方式のインダクションモータ駆動用インバータ制御装置)

以下では、具体的な方法について説明する。

[0038]

モータ電圧指令作成手段 14 では式(1)で表される演算により各相電圧指令値 v_{11}^* 、 v_{v}^* 、 v_{v}^* を作成する。

[0039]

【式1】

$$\begin{cases} V_{u}^{*} = V_{m} \sin \theta_{1} \\ V_{v}^{*} = V_{m} \sin(\theta_{1} - 2\pi/3) \\ V_{v}^{*} = V_{m} \sin(\theta_{1} + 2\pi/3) \end{cases}$$
 (1)

[0040]

ここで、 V_m はV/F制御パターン13から決定されるモータ電圧値であり、 θ_1 は式(2)で表されるように速度指令 W^* を時間積分することで導出する。

[0041]

【式2】

$$\theta_1 = \int W^* dt \qquad (2)$$

[0042]

また、図 2 は本発明に係る P N電圧補正手段 1 6 の第 1 の実施例を示した図で、 P N電圧補正手段 1 6 では予め設定されたインバータ 3 の直流電圧基準値 V_{pn} 0 と P N電圧検出手段 1 5 から得られるインバータ 3 の直流電圧検出値 v_{pn} を用いて式(3)のように P N電圧補正係数 k_{pn} を導出する。

[0043]

【式3】

$$k_{pn} = \frac{V_{pn0}}{V_{pn} + \delta_0} \tag{3}$$

[0044]

ここで、本発明では小容量コンデンサを用いているため、直流電圧検出値 v_{pn} がゼロとなる場合が生じるので、ゼロ割防止のための微小項 δ_0 を設定しておく必要がある。

[0045]

なお、式(3)の微小項 δ_0 の代わりに、直流電圧検出値 v_{pn} がゼロ以下の場合においてPN電圧補正係数 k_{pn} に予め設定されたPN電圧補正係数の最大値を設定することでゼロ割防止を図ることができる。

[0046]

即ち、式(4)のようにPN電圧補正係数kpnを導出しても良い。

[0047]

【式4】

$$k_{pn} = \begin{cases} K_{pn_{max}} & (v_{pn} \leq 0) \\ V_{pn0} / v_{pn} & (v_{pn} > 0) \end{cases}$$
 (4)

[0048]

ここで、 k_{pn-max} は予め設定されたPN電圧補正係数の最大値である。

[0049]

また、第1のモータ電圧指令補正手段 1 7では各相電圧指令値 v_u^* 、 v_v^* 、 v_w^* * v_v^* * v_v^* と v_v^* P N電圧補正係数 v_v^* k v_v^* pn を 用いて式(5)のように第 1 モータ電圧指令補正値 v_v^* v $v_$

[0050]

【式5】

$$\begin{cases} v_{uh1} * = k_{pn} * v_{u} * \\ v_{vh1} * = k_{pn} * v_{v} * \\ v_{wh1} * = k_{pn} * v_{w} * \end{cases}$$
 (5)

[0051]

以上により、小容量リアクタおよび小容量コンデンサを用いることで小型・軽量・低コストなインダクションモータ駆動用インバータ制御装置を実現でき、インバータ直流電圧が大幅に変動してインダクションモータの駆動が困難あるいは不可能となる場合でも、インダクションモータに印加する電圧がほぼ一定となるようにインバータを動作させ、インダクションモータの駆動を維持することが可能となる。

[0052]

さらに、第2のモータ電圧指令補正手段19では第1モータ電圧指令補正値 v_{uhl}^* 、 v_{vhl}^* 、 v_{whl}^* のうち例えば v_{uhl}^* が最大であり、かつ、 v_{uhl}^* がインバータ3の直流電圧検出値 v_{pn} を上回った場合のみ式(6)のように第2モータ電圧指令補正値 v_{uh2}^* 、 v_{vh2}^* を導出する。

[0053]

【式 6】

$$\begin{cases} v_{uh2}^* = v_{uh1}^* \cdot v_{pn} / v_{uh1}^* \\ v_{vh2}^* = v_{vh1}^* \cdot v_{pn} / v_{uh1}^* \\ v_{wh2}^* = v_{wh1}^* \cdot v_{pn} / v_{uh1}^* \end{cases}$$
(6)

[0054]

図3 (a), (b) は第1のモータ電圧指令補正手段17導出された第1モータ電圧指令補正値 v_{uh1}^* 、 v_{vh1}^* 、 v_{wh1}^* が最終的に第2モータ電圧指令補正値 v_{uh2}^* 、 v_{vh2}^* 、 v_{wh2}^* に補正される結果の一例を示したものである

図3 (a) のように第1モータ電圧指令補正値 v_{uhl}^* 、 v_{vhl}^* 、 v_{whl}^* 全でが直流電圧検出値 v_{pn} の240 Vを超えていない場合は、第2モータ電圧指令補正

値 v uh2*、 v vh2* は第1モータ電圧指令補正値 v uh1*、 v vh1*、 v wh1* と同値となる。

[0055]

また、図3(b)のように第1モータ電圧指令補正値 v_{uh1}^* 、 v_{vh1}^* 、 v_{wh1}^* のうち、 v_{uh1}^* が直流電圧検出値 v_{pn} の240Vを超えている場合は式(6)に従い、第2モータ電圧指令補正値 v_{uh2}^* 、 v_{vh2}^* 、 v_{wh2}^* はそれぞれ、240V, 144V, 07Vとなる。

[0056]

図4は第2のモータ電圧指令補正手段19での補正制御がない場合のインバータ直流電圧と交流電源電流の波形であり、図5は第2のモータ電圧指令補正手段19での補正制御がある場合のインバータ直流電圧と交流電源電流の波形であるが、この第2のモータ電圧指令補正手段19での補正により、インバータ直流電圧が大幅に落ち込んだ直後にインダクションモータに印加する電圧を過度に与えず、交流電源電流の変動を抑制し、交流電源力率の改善と交流電源電流の高調波成分を抑制している。

[0057]

なお、本発明は上述の実施例のようにV/F制御によるインダクションモータ 駆動用インバータ制御装置に限定されるものではなく、周知のベクトル制御によるインダクションモータ駆動用インバータ制御装置においても本発明は適用可能 である。

[0058]

なお、空気調和機における圧縮機駆動モータなどのようにパルスジェネレータ 等の速度センサを使用することができない場合や、サーボドライブなどのように 速度センサを具備することができる場合のどちらにおいても本発明は適用可能で ある。

[0059]

(実施の形態2)

本発明の第2の実施形態を示すインダクションモータ駆動用インバータ制御装置のシステム構成図を図6に示す。図6において、主回路は実施の形態1と同様

のものとした。

[0060]

一方、制御回路では、V/F制御パターン13と、モータ電圧作成手段14と、PN電圧検出手段15と、PN電圧補正手段16と、第1のモータ電圧指令補正手段17は実施の形態1と同様とし、インバータの直流電圧値に1以上の値を乗算した飽和電圧基準値を導出する飽和電圧演算手段20を加え、第1のモータ電圧指令補正手段17から作成された第1モータ電圧指令補正値のいずれかが飽和電圧演算手段20で演算された飽和電圧基準値より大きい場合のみ、第1モータ電圧指令補正値に飽和電圧演算手段20で演算された飽和電圧基準値を乗算した後、第1モータ電圧指令補正値のうちの最大値で除算することによりインダクションモータ4の第2モータ電圧指令補正値を作成する第2のモータ電圧指令補正手段19と、第2のモータ電圧指令補正手段19で補正された第2モータ電圧指令補正手段19で補正された第2モータ電圧指令補正値がインバータの直流電圧値より大きい場合、第2モータ電圧指令補正値をインバータの直流電圧値とする第3モータ電圧指令補正値を導出するモータ電圧指令最大値規制手段21と、モータ電圧指令最大値規制手段21から出力される第3モータ電圧指令補正値に基づいてインバータ3のPWM信号を生成するPWM制御手段18から構成されている。

 $[0\ 0\ 6\ 1]$

以下では、実施の形態 1 と異なる部分においてのみ具体的な方法について説明 する。

[0062]

飽和電圧演算手段 2 0 では式 (7) のように飽和電圧基準値 V_{pnl} を導出する

[0063]

【式7】

 $V_{pn1} = K \cdot v_{pn} \qquad (K \ge 1) \qquad (7)$

[0064]

この式(7)のKは電圧飽和率を表わし、概ね1~1.5の値を選択する。

また、第2のモータ電圧指令補正手段19では第1モータ電圧指令補正値 v_{uhl}^* 、 v_{vhl}^* 、 v_{whl}^* のうち例えば v_{uhl}^* が最大であり、かつ、 v_{uhl}^* が飽和電圧演算手段20で得られた飽和電圧基準値 v_{phl}^* を与しった場合のみ式(8)のように第2モータ電圧指令補正値 v_{uh2}^* 、 v_{vh2}^* 、 v_{wh2}^* を導出する。

[0065]

【式8】

$$\begin{cases} v_{uh2}^* = v_{uh1}^* \cdot v_{pn1} / v_{uh1}^* \\ v_{vh2}^* = v_{vh1}^* \cdot v_{pn1} / v_{uh1}^* \\ v_{wh2}^* = v_{wh1}^* \cdot v_{pn1} / v_{uh1}^* \end{cases}$$
(8)

[0066]

さらにモータ電圧指令最大値規制手段 2 1 においては、第 2 モータ電圧指令補正値 v_{uh2}^* 、 v_{vh2}^* が直流電圧検出値 v_{pn} より大きい場合、直流電圧検出値 v_{pn} にてMA X規制をかけた第 3 モータ電圧指令補正値 v_{uh3}^* 、 v_{vh3}^* 、 v_{vh3}^* が導出される。

[0067]

図7(a),(b)は飽和電圧演算手段20で用いられる電圧飽和率Kの値をを1.2とし、第1のモータ電圧指令補正手段17導出された第1モータ電圧指令補正値 v_{uh1}^* 、 v_{vh1}^* 、 v_{wh1}^* が最終的に第3モータ電圧指令補正値 v_{uh3}^* 、 v_{vh3}^* 、 v_{wh3}^* に補正される結果の一例を示したものである。

[0068]

図7(a)のように第1モータ電圧指令補正値 v_{uh1}^* 、 v_{vh1}^* 、 v_{wh1}^* 全てが直流電圧検出値 v_{pn} の240Vを超えていない場合は、第3モータ電圧指令補正値 v_{uh3}^* 、 v_{vh3}^* 、 v_{wh3}^* は第1モータ電圧指令補正値 v_{uh1}^* 、 v_{vh1}^* 、 v_{wh1}^* と同値となる。

[0069]

また、図7(b)のように第1モータ電圧指令補正値 v_{uh1}^* 、 v_{vh1}^* 、 v_{whl}^* のうち、 v_{uh1}^* が直流電圧検出値 v_{pn} の240Vを超えている場合は式(7)と式(8)に従い、第2モータ電圧指令補正値 v_{uh2}^* 、 v_{vh2}^* 、 v_{wh2}^* はそれぞれ

、288V, 172.8V, 0 Vとなり、最終的に第3モータ電圧指令補正値 v v_{vh3}^* 、 v_{vh3}^* はそれぞれ、240 V, 172.8 V, 0 Vとなる。

[0070]

ここで、実施の形態1で説明した具体例のうち図3 (b)と図7 (b)を比較すると、実施の形態2で最終的にV相に指令されるモータ電圧値が144Vから172.8Vに増加していることが分かる。

[0071]

このことは、インダクションモータの出力トルクの向上につながり、所望の交流電源力率や交流電源電流の高調波成分が規制値に対して余裕がある場合、上述の実施例がインダクションモータの限界負荷耐量を上げるのに非常に有効な手段になる。

[0072]

(実施の形態3)

図8は、飽和電圧演算手段20で飽和電圧基準値 V_{pnl} を導出する際に、式(7)の電圧飽和率Kを外部から与えられたインダクションモータ4の速度指令W*に応じて変化させた一例を示したものである。

[0073]

図8のような電圧飽和率Kの変化のさせ方をすると、速度指令 W^* が100H z 未満の時、飽和電圧基準値 V_{pnl} は直流電圧検出値 v_{pn} と同値となり実施の形態1で説明した制御となる。

[0074]

また、速度指令 W^* が100Hz以上の時、飽和電圧基準値 V_{pnl} は直流電圧検出値 V_{pn} の1.2倍となり実施の形態2で説明した制御となる。

[0075]

すなわち、速度指令 W^* が100Hz未満の時は交流電源力率の改善と交流電源電流の高調波成分抑制を確実に維持し、速度指令 W^* が100Hz以上の時はインダクションモータ4の出力トルクを充分に確保できることになる。

[0076]

この実施の形態によれば、インダクションモータの定常駆動領域では交流電源

力率の改善と交流電源電流の高調波成分抑制を行い、モータがトルクを必要とする高速駆動領域では限界負荷耐量を上げるといった、フレキシブルな制御が可能となる。

[0077]

なお、図9のように電圧飽和率Kを速度指令W*に応じてなだらかに変化させると急峻な出力トルクの変化を防ぎ、より安定した駆動を実現できる。

[0078]

(実施の形態4)

本発明に係るインバータ運転周波数の設定に関する具体的な方法について以下に説明する。

[0079]

本発明のインダクションモータ駆動用インバータ制御装置では小容量コンデンサを用いているため、図10のようにインバータ直流電圧は交流電源周波数 f_S の2倍の周波数で大きく脈動する。

[0080]

そのため、インバータ運転周波数 f_1 が交流電源周波数 f_S の偶数倍となる周波数では、インバータ直流電圧が脈動する周波数(交流電源周波数 f_S の 2 倍の周波数)と同期し共振現象が生じてしまう。

[0081]

図11はインバータ運転周波数 f_1 が交流電源周波数 f_S の 2 倍となる場合の動作結果で、インバータ直流電圧が脈動する周波数と同期して共振現象が生じ、モータ電流においては負の直流成分が重畳されていることがわかる。そのため、インダクションモータにはブレーキトルクが発生し、出力トルクの減少やモータ損失が増加するといった悪影響が生じてしまう。

[0082]

なお、このときの諸元としては、小容量リアクタのインダクタンス値は0.5mH、小容量コンデンサの容量は 10μ F、交流電源は220V(50Hz)、インバータ運転周波数は100Hz(ここではモータの極数は2極のため、インバータ運転周波数とモータ速度指令値は等しい)、インバータキャリア周波数は

5kHzである。

[0083]

そこで、インバータ運転周波数 f_1 の設定において、インバータ運転周波数 f_1 が式 (9) となるような場合で定常的に固定されるのを回避する必要がある。

[0084]

【式9】

$$f_1 = 2nf_s \pm \Delta f \qquad (9)$$

[0085]

ここで、n は整数、 $\triangle f$ は予め設定された周波数幅であり、周波数幅 $\triangle f$ に関しては基本的には上述の共振現象の影響が少なくなるように設定しておく。

[0086]

また、インバータ運転周波数 f_1 が式(9)で求められる共振周波数を越える場合には、加速あるいは減速といった過渡状態で一気にインバータ運転周波数 f_1 を変更させ、共振周波数で固定することを回避する。

[0087]

なお、周波数幅 \triangle f は必ずしも設定する必要はなく、運転状況(軽負荷時など)によっては設定しなくとも良い(この場合は \triangle f = 0 とすれば良い)。

[0088]

以上により、インバータ周波数と交流電源周波数との共振現象を回避することでインダクションモータの不安定動作を防止し、安定した駆動を実現することが可能となる。

[0089]

(実施の形態5)

本発明に係る小容量コンデンサおよび小容量リアクタの仕様決定に関する具体的な方法について以下に説明する。

[0090]

本発明のインダクションモータ駆動用インバータ制御装置では、交流電源電流の高調波成分を抑制してIEC規格をクリアするために、小容量コンデンサと小

容量リアクタとの共振周波数 f_{LC} (LC共振周波数) を交流電源周波数 f_{SO} 4 0 倍よりも大きくなるように小容量コンデンサと小容量リアクタの組み合わせを決定する。

[0091]

ここで、小容量コンデンサの容量をC[F]、小容量リアクタのインダクタンス値をL[H]とすると、LC共振周波数 f_{IC} は式(10)のように表される。

[0092]

【式10】

$$f_{LC} = \frac{1}{2\pi\sqrt{LC}} \tag{10}$$

[0093]

即ち、 $f_{LC}>40 f_{S}$ を満たすように小容量コンデンサと小容量リアクタの組み合わせを決定するものである(IEC規格では交流電源電流の高調波成分において第40次高調波まで規定されているため)。

[0094]

以上により、小容量コンデンサおよび小容量リアクタの組み合わせを決定することで、交流電源電流の高調波成分を抑制して、IEC規格をクリアすることが可能となる。

[0095]

次に、小容量コンデンサの容量の決定について以下に説明する。

[0096]

インバータが停止した際には、小容量コンデンサがインダクションモータの回生エネルギー(停止直前までインダクションモータのインダクタンス成分に蓄えられていた磁気エネルギー)を吸収してインバータの直流電圧値が上昇するため、そのときの直流電圧の最大値が素子の耐圧よりも小さくなるように小容量コンデンサの容量を決定する。

[0097]

上記の構成によって、インバータ直流電圧の最大値を各駆動素子の耐圧よりも 小さくなるように小容量コンデンサの容量を決定することで周辺回路の破壊を防

止することが可能となる。

[0098]

なお、小容量リアクタのインダクタンス値は上述の方法で自動的に決定することができる。

[0099]

(実施の形態6)

本発明に係るインバータキャリア周波数の設定に関する具体的な方法について 以下に説明する。

[0100]

本発明のインダクションモータ駆動用インバータ制御装置では、小容量コンデンサに蓄えられる電気エネルギーが小さいため、電気エネルギーが不足するような場合でもインダクションモータの駆動を維持するためには小容量リアクタの磁気エネルギーを併用するしかないため、リアクタ電流波形(ダイオードブリッジを通った後の電流で、概ね交流電源電流の絶対値をとった電流と等しい)はインバータのキャリア周波数(チョッピング)の影響を大きく受けてしまう。

[0101]

そのため、本発明のインダクションモータ駆動用インバータ制御装置では、予め設定された交流電源力率値を満足するようにインバータのキャリア周波数を設定する。

[0102]

ここで、本発明のインダクションモータ駆動用インバータ制御装置を動作させた場合の結果を図12~図14に示す。それぞれ図12はキャリア周波数が3.3kHz時、図13は5kHz時、図14は7.5kHz時の動作結果であり、リアクタ電流波形を比較すれば、リアクタ電流(もしくは交流電源電流)はキャリア周波数による依存性が大きいことがわかる。

[0103]

また、それぞれの交流電源力率値をディジタルパワーメータにて測定したところ、図12のキャリア周波数が3.3 k H z 時には0.878、図13の5 k H z 時には0.956、図14の7.5 k H z には0.962 となった。

$[0\ 1\ 0\ 4]$

なお、このときの諸元としては、小容量リアクタのインダクタンス値は0.5mH、小容量コンデンサの容量は 10μ F、交流電源は220V(50Hz)、インバータ運転周波数は57Hz(ここではモータの極数は2極のため、インバータ運転周波数とモータ速度指令値は等しい)、交流電源における入力電力は900Wである。

[0105]

ここで、例えば予め設定した交流電源力率値が0.9である場合には、キャリア周波数を $3.3kHz\sim5kHz$ の間に設定すれば良いことになり、最終的には予め設定した交流電源力率値(この場合は0.9)を満足しつつ、最もキャリア周波数が低くなるように決定する。

[0106]

以上により、予め設定された交流電源力率値を満足することが可能となり、必要最小限のキャリア周波数を設定することにより、インバータ損失を必要最小限に抑制することが可能となる。

[0107]

【発明の効果】

上記から明らかなように、本発明は、交流電源を入力とする整流回路と直流電力から交流電力に変換するインバータとインダクションモータとを含み、前記整流回路はダイオードブリッジと、前記ダイオードブリッジの交流入力側または直流出力側に接続される所定の小容量のリアクタで構成され、前記インバータの直流母線間には、前記インダクションモータの回生エネルギーを吸収するための所定の小容量のコンデンサを設け、外部から与えられるインダクションモータの速度指令値に基づき、前記インダクションモータの各相電圧指令値を作成するモータ電圧指令作成手段と、前記インバータの直流電圧値を検出するPN電圧検出手段と、予め設定された前記インバータの直流電圧基準値と前記PN電圧検出手段から得られる前記インバータの直流電圧検出値との比較からPN電圧補正係数を導出するPN電圧補正手段と、各相電圧指令値の補正を行う第1のモータ電圧指令補正手段と、前記第1のモータ電圧指令補正手段で補正された各相電圧指令値

を再補正する第2のモータ電圧指令補正手段とを備えたものである。

[0108]

さらに、交流電源を入力とする整流回路と直流電力から交流電力に変換するイ ンバータとインダクションモータとを含み、整流回路はダイオードブリッジと、 ダイオードブリッジの交流入力側または直流出力側に接続される所定の小容量の リアクタで構成され、インバータの直流母線間には、インダクションモータの回 生エネルギーを吸収するための所定の小容量のコンデンサを設け、外部から与え られるインダクションモータの速度指令値に基づき、インダクションモータの各 相電圧指令値を作成するモータ電圧指令作成手段と、インバータの直流電圧値を 検出するPN電圧検出手段と、予め設定されたインバータの直流電圧基準値とP N電圧検出手段から得られるインバータの直流電圧検出値との比較からPN電圧 補正係数を導出するPN電圧補正手段と、モータ電圧指令作成手段から得られる 各相電圧指令値とPN電圧補正手段の出力値であるPN電圧補正係数とを乗算す ることにより各相電圧指令値の補正を行う第1のモータ電圧指令補正手段と、第 1のモータ電圧指令補正手段で補正された各相電圧指令値のいずれかがインバー タの直流電圧値より大きい場合のみ、第1のモータ電圧指令補正手段で補正され た各相電圧指令値にインバータの直流電圧値を乗算した後、第1のモータ電圧指 令補正手段で補正された各相電圧指令値のうちの最大値で除算することにより第 1のモータ電圧指令補正手段で補正された各相電圧指令値を再補正する第2のモ ータ電圧指令補正手段とを備えるもので、この構成によれば、小容量コンデンサ および小容量リアクタを用いることで小型・軽量・低コストなインダクションモ ータ駆動用インバータ制御装置を実現でき、インバータ直流電圧が大幅に変動し てインダクションモータの駆動が困難あるいは不可能となる場合でも、インダク ションモータに印加する電圧がほぼ一定となるようにインバータを動作させ、イ ンダクションモータの駆動を維持することが可能であり、さらに交流電源電流の 変動を抑制し、交流電源力率の改善と交流電源電流の高調波成分を抑制できると いう効果を奏する。

[0109]

また、本発明は、交流電源を入力とする整流回路と直流電力から交流電力に変

換するインバータとインダクションモータとを含み、整流回路はダイオードブリ ッジと、ダイオードブリッジの交流入力側または直流出力側に接続される所定の 小容量のリアクタで構成され、インバータの直流母線間には、インダクションモ ータの回生エネルギーを吸収するための所定の小容量のコンデンサを設け、外部 から与えられるインダクションモータの速度指令値に基づき、インダクションモ ータの各相電圧指令値を作成するモータ電圧指令作成手段と、インバータの直流 電圧値を検出するPN電圧検出手段と、予め設定されたインバータの直流電圧基 準値とPN電圧検出手段から得られるインバータの直流電圧検出値との比較から PN電圧補正係数を導出するPN電圧補正手段と、モータ電圧指令作成手段から 得られる各相電圧指令値とPN電圧補正手段の出力値であるPN電圧補正係数と を乗算することにより各相電圧指令値の補正を行う第1のモータ電圧指令補正手 段と、インバータの直流電圧値に1以上の値を乗算した飽和電圧基準値を導出す る飽和電圧演算手段と、第1のモータ電圧指令補正手段で補正された各相電圧指 令値のいずれかが飽和電圧演算手段で演算された飽和電圧基準値より大きい場合 のみ、第1のモータ電圧指令補正手段で補正された各相電圧指令値に飽和電圧演 算手段で演算された飽和電圧基準値を乗算した後、第1のモータ電圧指令補正手 段で補正された各相電圧指令値のうちの最大値で除算することにより第1のモー 夕電圧指令補正手段で補正された各相電圧指令値を再補正する第2のモータ電圧 指令補正手段と、第2のモータ電圧指令補正手段で補正された各相電圧指令値が インバータの直流電圧値より大きい場合、電圧指令値をインバータの直流電圧値 とするモータ電圧指令最大値規制手段とを備えるもので、この構成によれば、小 型・軽量・低コストなインダクションモータ駆動用インバータ制御装置を実現で き、交流電源力率の改善と交流電源電流の高調波成分抑制を維持しつつ、さらに インダクションモータの出力トルクの向上が図れるという効果を奏する。

また、本発明は、飽和電圧演算手段で得られる飽和電圧基準値が、外部から与えられるインダクションモータの速度指令値に応じて可変とするもので、この構成によれば、インダクションモータの駆動領域に応じて交流電源力率の改善と交流電源電流の高調波成分抑制を確実に維持するのか、出力トルクの大幅な向上を図るのかの選択が可能になるという効果を奏する。

[0110]

また、本発明は、PN電圧補正手段は、直流電圧基準値を直流電圧検出値で除算することによりPN電圧補正係数を導出し、直流電圧検出値がゼロ以下の場合にはPN電圧補正係数に予め設定されたPN電圧補正係数の最大値を設定するもので、この構成によれば、インバータ直流電圧が大幅に変動しゼロ以下となるような場合にもインダクションモータの駆動を維持することが可能であるという効果を奏する。

[0111]

また、本発明は、インバータ運転周波数が交流電源周波数の偶数倍となる共振 周波数と、共振周波数を中心としてその前後に予め設定された周波数幅を持たせ た周波数範囲内でインバータ運転周波数が定常的に固定されるのを回避するもの で、この構成によれば、インバータ周波数と交流電源周波数との共振現象を回避 することでインダクションモータの不安定動作を防止し、安定した駆動を実現す ることが可能であるという効果を奏する。

[0112]

また、本発明は、小容量リアクタと小容量コンデンサとの共振周波数を交流電源周波数の40倍よりも大きくなるように小容量リアクタおよび小容量コンデンサの組み合わせを決定するもので、この構成によれば、交流電源電流の高調波成分を抑制し、IEC規格をクリアすることが可能であるという効果を奏する。

[0113]

また、本発明は、インバータが停止した際に上昇する直流電圧値の最大値が素子の耐圧よりも小さくなるように小容量コンデンサの容量を決定するもので、この構成によれば、インバータ直流電圧の最大値を各駆動素子の耐圧よりも小さくなるように小容量コンデンサの容量を決定することで周辺回路の破壊を防止することが可能であるという効果を奏する。

$[0\ 1\ 1\ 4]$

また、本発明は、予め設定された交流電源力率値を満足するようにインバータのキャリア周波数を決定するもので、この構成によれば、予め設定された交流電源力率値を満足することが可能となり、必要最小限のキャリア周波数を設定する

【図面の簡単な説明】

図1

本発明の第1の実施形態を示すインダクションモータ駆動用インバータ制御装置のシステム構成図

【図2】

本発明の第1の実施形態におけるPN電圧補正係数の特性図

【図3】

本発明の第1の実施形態におけるモータ電圧指令補正値の結果を示す図

【図4】

本発明の第1の実施形態におけるインダクションモータ駆動用インバータ制御 装置の第1の動作結果を示す図

【図5】

本発明の第1の実施形態におけるインダクションモータ駆動用インバータ制御 装置の第2の動作結果を示す図

【図6】

本発明の第2の実施形態を示すインダクションモータ駆動用インバータ制御装置のシステム構成図

【図7】

本発明の第2の実施形態におけるモータ電圧指令補正値の結果を示す図

【図8】

本発明の第3の実施形態における電圧飽和率の第1の特性図

【図9】

本発明の第3の実施形態における電圧飽和率の第2の特性を示す図

【図10】

本発明の第4の実施形態におけるインダクションモータ駆動用インバータ制御 装置の第1の動作結果を示す図

図11

【図12】

本発明の第6の実施形態におけるインダクションモータ駆動用インバータ制御 装置の第1の動作結果を示す図

【図13】

本発明の第6の実施形態におけるインダクションモータ駆動用インバータ制御 装置の第2の動作結果を示す図

【図14】

本発明の第6の実施形態におけるインダクションモータ駆動用インバータ制御 装置の第3の動作結果を示す図

【図15】

一般的なインダクションモータ駆動用インバータ制御装置のシステム構成図

【図16】

一般的なV/F制御パターンの一例を示す図

【図17】

図15のインダクションモータ駆動用インバータ装置における交流電源電流の高調波成分と交流電源周波数に対する次数との関係を示した線図

【図18】

従来の直流電源装置図

【符号の説明】

- 1 交流電源
- 2 整流回路
- 3 インバータ
- 4 インダクションモータ
- 11 小容量リアクタ
- 12 小容量コンデンサ
- 13 V/F制御パターン
- 14 モータ電圧指令作成手段

- 15 PN電圧検出手段
- 16 PN電圧補正手段
- 17 第1のモータ電圧指令補正手段
- 18 PWM制御手段
- 19 第2のモータ電圧指令補正手段
- 20 飽和電圧演算手段
- 21 モータ電圧指令最大値規制手段

【書類名】

図面

【図1】

【図2】

【図3】

直流電圧検出値		
Vpn	240V	

第1モータ電圧指令補正値	
V _{uh1} *	200V
V _{vh1} *	90V
V _{wh1} *	ov

第2天一9電圧指令補正値	
V _{uh2} *	200V
V _{vh2} *	90V
V _{wh2} *	ov

(a)

直流電圧検出値	
Vpn	240V

第1天-9電圧指令補正値	
V _{uh1} *	3007
V _{vh1} *	180V
V _{wh1} *	OV

第2モータ電圧指令補正値	
V _{uh2} *	240V
V _{vh2} *	144V
V _{wh2} *	ov

(b)

【図4】

【図5】

【図6】

【図7】

直流電	王検出値					
Vpn	240V					
電圧	抱和率					
к	1. 2					
第1天-9電圧指令補正値]	第2モータ電圧指令補正値		第3モータ電圧指令補正値	
V _{uh1} *	200V		V _{uh2} *	200V	V _{uh3} *	2007
V _{vh1} *	90V		V _{vh2} *	907	V _{vh3} *	90V
V _{wh1} *	٥٧		V _{wh2} *	ov	V _{wh3} *	OV
	_		(;	a)		

直流電	王検出値						
Vpn	240V]					
電圧的	包和率						
к	1. 2]					
第1天-9電圧指令補正値]	第2モータ電圧指令補正値			第3モータ電圧指令補正	
V _{uh1} *	300V	-	V _{uh2} *	288V	→	V _{uh3} *	240V
V _{vh1} *	180V		V _{vh2} *	172. 8V		V _{vh3} *	172. 8V
V _{wh1} *	OV		.V _{wh2} *	ov		V _{wh3} *	OV

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図16】

モータ電圧値[V]

【図17】

【書類名】 要約書

【要約】

【課題】 小型・軽量・低コストなインダクションモータ駆動用インバータ制御装置を提供する。

【解決手段】 インダクションモータの各相の電圧指令値とPN電圧補正係数とを乗算することにより各相電圧指令値の補正を行う第1のモータ電圧指令補正手段と、第1のモータ電圧指令補正手段で補正された各相電圧指令値のいずれかがインバータの直流電圧値より大きい場合のみ、補正された各相電圧指令値にインバータの直流電圧値を乗算した後、補正された各相電圧指令値のうちの最大値で除算することにより第1のモータ電圧指令補正手段で補正された各相電圧指令値を再補正する第2のモータ電圧指令補正手段とによって、インバータ直流電圧が大幅に変動していてもインダクションモータの安定駆動を維持しつつ、かつ交流電源力率の改善と交流電源電流の高調波成分の抑制をおこなう。

【選択図】 図1

特願2003-091184

願 人 履 歴 情 報 出

識別番号

[000005821]

1. 変更年月日

[変更理由]

新規登録

住 所

大阪府門真市大字門真1006番地

8月28日

氏 名 松下電器産業株式会社

1990年