2. a) Exprimer en fonction de n la partie réelle x_n et la partie imaginaire y_n de U_n et calculer les limites des suites (x_n) et (y_n) . b) Soit A_n le point d'affixe U_n . Montrer que les points A_n sont alignés.

Chapitre 5 : SUITES NUMERIQUES

1.1. RESUME DU COURS

Soit (U_n) une suite numérique définie sur E, une partie de \mathbb{N} .

Suites monotones

- \triangleright (U_n) est croissante ssi $U_{n+1} U_n \ge 0, \forall n \in E$.
- \triangleright (U_n) est décroissante ssi U_{n+1} $U_n \le 0$, $\forall n \in E$.
- $ightharpoonup (U_n)$ est constante ssi U_{n+1} $U_n = 0$, $\forall n \in E$.

Suites bornées

- \triangleright (U_n) est majorée s'il existe un nombre réel M,
- $U_n \leq M, \forall n \in E.$
 - \triangleright (U_n) est minorée s'il existe un nombre réel m,
- $U_n \geq m, \forall n \in E$.
 - \triangleright (U_n) est bornée si elle est à la fois majorée et minorée.

Suites convergentes

- \succ (U_n) est convergente si elle admet une limite réelle (quand n tend vers $+\infty$).
 - \triangleright (U_n) est divergente si elle n'est pas convergente.

- > Toute suite croissante et majorée est convergente.
- > Toute suite décroissante et minorée est convergente.
- Soit (U_n) une suite définie par $U_{n+1} = f(U_n)$ où f est une fonction continue. Si (U_n) converge vers L $(L \in \mathbb{R})$, alors L est une solution de l'équation f(x) = x.

Théorèmes de comparaison (voir chapitre 1)

Suites arithmétiques – suites géométriques

- **Définition** :
- (U_n) est arithmétique ssi U_{n+1} U_n = constante ; cette constante est la raison de la suite et elle est en général notée r.
- (U_n) est géométrique s'il existe une constante q telle que $U_{n+1} = qU_n$, q est la raison de la suite.

Propriétés

Soit (U_n) une suite de premier terme U_0 de raison r ou q selon que la suite est arithmétique ou géométrique.

	Suite arithmétique	Suite géométrique
Relation	$U_n = U_0 + \text{n.r}$	$U_n = U_0 \cdot q^n$
entre les	$U_n = U_p + (n-p).r$	$U_n = U_p . q^{n-p}$
termes	n p · · · · · ·	n p:
Somme de		
termes	$\frac{(nb\ de\ t)(1^{er}\ t+dern.t)}{2}$	$(1^{er}t)\begin{bmatrix}1-q^{nb} & de t\\ 0 & 1\end{bmatrix}$ $q \neq 1$
consécutifs	2	(1 0) $1-q$ $1, q-1$
Limite	-Si r > 0, $\lim U_n = +\infty$	- Si -1 $< q < 1$ alors
	-Si r < 0, $\lim U_n$ = -∞	$\lim_{n} q^{n} = 0$
		- Si $q > 1$ alors $\lim_{n \to \infty} q^n = +\infty$
		- Si $q = 1$ alors $\lim_{n \to \infty} q^n = 1$
		- Si q≤-1 alors $\lim q^n$ n'existe
		pas

Remarques:

• « $1^{er} t$ » signifie premier terme et « dern.t » signifie

dernier terme .

- « nb de t » signifie nombre de termes et nb de t = indice du dern.t indice du $1^{er} t + 1$.
- a, b, c dans cet ordre sont en progression arithmétique ssi a + c = 2b.
- a, b, c dans cet ordre sont en progression géométrique ssi $ac = b^2$.

Démonstration par récurrence

Pour montrer qu'une propriété (P_n) est vraie pour tout entier naturel $n \ge n_0$, on procède par étapes :

- On vérifie que la propriété est vraie au premier rang n_0 .
- On suppose que la propriété est vraie à un rang $p \ge n_0$.
- On montre que la propriété est vraie au rang p+1 (en utilisant le plus souvent la supposition appelée hypothèse de récurrence).