

纳米光子学及其应用

第9讲: 局域表面等离激元

兰长勇

光电科学与工程学院

四顾

$$ho$$
 SPP的激发:相位匹配 $k_{x,\mathrm{d}} = eta = k_0 \sqrt{rac{arepsilon_{\mathrm{m}} arepsilon_{\mathrm{d}}}{arepsilon_{\mathrm{m}} + arepsilon_{\mathrm{d}}}}$

由于
$$\beta > \sqrt{\varepsilon_{\rm d}} k_0 = n_{\rm d} k_0, \ k_{z,{
m d}} = \sqrt{n_{
m d}^2 k_0^2 - k_{x,{
m d}}^2} = {
m i} \, \kappa$$

与金属接触介质中的波必须是<mark>倏逝波</mark>才能激发SPP

倏逝波:传播方向波数大于对应介质中的波数 $(k_x > k)$

产生SPP的方法:全内反射棱镜耦合、光栅耦合、散射激发等等。

▶ SPP的表征

原理: 泄漏辐射、散射作用、荧光成像

纳米级缺陷、 纳米级光学探针

等离子体光学

- 金属光学与体积等离激元
- ▶ 表面等离子体激元
- ▶ 表面等离子体激元的激发与表征
- ▶ 局域表面等离子体
- ▶ 等离子体集成电路

本讲内容

- 引言: 光与小尺寸物体的相互作用
- ▶ 金属纳米粒子的局域表面等离子体(Localized Surface Plasmon, LSPs)
 - ▶ LSP与SPP的差异
 - 金属纳米粒子的色彩效果
 - ▶ 各种金属纳米粒子
- ▶ LSP的共振条件_(d<<λ)
 - ▶ 偶极辐射问题
 - ▶ LSP的纳米粒子(准静态近似)
 - ▶ LSPR的大小和形状依赖性(Mie理论)
 - ▶ LSP的纳米棒
- ▶ LSP粒子之间的耦合
- ▶ LSP的复杂纳米结构-球壳
- ▶ 体积等离子体、SPP和LSP的比较

0 引言

光与小尺寸物体的相互作用: 散射

- 分子: 光场驱动下的偶极辐射
- 纳米颗粒 —— 偶极子近似
 - 绝缘体: 瑞利散射
 - 半导体:光谱大于能隙对应共振吸收、发光(尺寸依赖)
 - 金属:在表面等离子体频率处共振吸收——局域表面等离子体
- 微米颗粒
 - 同波长同量级或大于波长

绝缘体(介质)小颗粒偶极子近似

- 光场驱动介质中的束缚电子做简谐振动
 - 束缚电子——洛伦兹模型

γ: 阻尼频率

K: 回复力常数

$$\omega_0 = \sqrt{K/m}$$

电偶极矩:

$$\mathbf{p} = \frac{e^2}{m} \frac{1}{\omega_0^2 - \omega^2 - i\gamma\omega} \mathbf{E}_L$$

驱动的振荡电场

- 振动电荷对外辐射电磁波
 - 辐射的电磁波即为散射光

偶极辐射!

偶极子振荡产生电磁波

偶极子产生电磁辐射的过程:

电场线从正电荷出 发,终止于负电荷

几个周期后,辐射方向与 电荷振动方向大致垂直

电荷靠近,电场线闭合 (电场线不能相交)

开始向外辐射电磁波

辐射电磁波与物体尺度关系

颗粒尺寸 d << λ

- 颗粒尺寸 $d \approx \lambda$
 - 向前散射强度更大

- 颗粒尺寸 d≈ 2λ
 - 很强的向前散射
 - 不同波长的光散射强度相当(白云)
 - 不同波长的光散射强度极值方向不同

散射强度计算

• 偶极辐射强度:

$$I = \frac{p^2 \omega^4}{32\pi^2 \varepsilon_0 c^3 r^2} \sin^2 \theta$$

• 洛伦兹模型——电偶极矩:

$$\mathbf{p} = \frac{e^2}{m} \frac{1}{\omega_0^2 - \omega^2 - i\gamma\omega} \mathbf{E}_L$$

• 洛伦兹模型偶极辐射强度:

$$I_{S} = \frac{e^{4}\omega^{4}}{32\pi^{2}m^{2}\varepsilon_{0}c^{3}r^{2}} \left(\frac{1}{\omega_{0}^{2} - \omega^{2} - i\gamma\omega}\right)^{2} E_{L}^{2}\sin^{2}\theta$$
Incoming intensity

- 结论
 - 谐振处(固有频率)散射最强
 - 频率越高(波长越短),散射越强
 - 同时存在向前散射和向后散射

1. LSPs: SPPs与LSPs的区别

- SPPs: 在金属-电介质延展界面上的SP<u>传输</u>(光子耦合为SP)
- LSPs(Localized Surface Plasmons局域表面等离子体): 在金属纳米粒子/纳米空腔的封闭表面上<u>不传播</u>的SPs

• LSP的激发将影响透过纳米粒子的光的

消光(=吸收+散射)→色彩效果

消光比 = (吸收 + 散射)/入射

LSP效应-金属纳米粒子的色彩效果

历史中

现代纳米光子学

各种金属纳米粒子

夏幼南(Younan Xia) @GIT

胶体纳米晶及自组装

2. LSP共振条件

•当金属纳米球足够小($d << \lambda$),它可以被看作一个有效电偶极子

时谐电场驱动自由电子的简谐振荡

振荡偶极子辐射 (光散射)

开始振荡

产生电磁波

几个周期后

纳米球的LSP

- •如果粒子足够小($2a << \lambda$)
- →看做电偶极子
- 准静态近似:整个颗粒体的等相位

$$E_{inc}(r,t) = E_0 e^{i(k \cdot r - \omega t)}$$

- 大颗粒
- 不同位置相位不同

$$E_{inc}(r,t) = E_0 e^{-i\omega t}$$

- 小颗粒
- 不同位置相位几乎相同

求解

- •入射:均匀静电场 $E_{inc} = E_0 \hat{z}$
- 球内电场 (E_{in}) 和球外电场 (E_{out}) 可以通过标势 Φ , 准静态下可利用 $E=-\nabla\Phi$ 得到

• 电势满足Laplace's方程: $\nabla^2 \Phi = 0$ 设球内标势为 $\Phi_{\rm in}$,球外标势为 $\Phi_{\rm out}$

作用场

- 边界条件: $\left. \Phi_{ ext{in}} \right|_{r=a} = \Phi_{ ext{out}} |_{r=a}, \; arepsilon_0 arepsilon_m \left. rac{\partial \Phi_{ ext{in}}}{\partial r} \right|_{r=a} = arepsilon_0 \, arepsilon \left. rac{\partial \Phi_{ ext{out}}}{\partial r} \right|_{r=a}, \; \lim_{r o \infty} \! \Phi_{ ext{out}} = E_0 z$
- 方程的解:

$$\Phi_{ ext{in}} = -rac{E_0 r \cos heta}{arepsilon_m + 2arepsilon} \cdot rac{arepsilon_m - arepsilon}{arepsilon_m + 2arepsilon} \cdot E_0 r \cos heta = -rac{3arepsilon}{arepsilon_m + 2arepsilon} E_0 r \cos heta$$

$$\Phi_{ ext{out}} = -\frac{E_0 r \cos heta}{t} + a^3 \cdot \frac{arepsilon_m - arepsilon}{arepsilon_m + 2arepsilon} \cdot E_0 \cdot \frac{\cos heta}{r^2}$$

球心处有效偶极子

LSP共振

• 球内的电场为:
$$m{E}_{ ext{in}} = -
abla \Phi_{ ext{in}} = rac{3arepsilon}{arepsilon_m + 2arepsilon} m{E}_0$$
 常数

• 球内的电位移: (考虑偶极子位于介电常数为 ε 的介质中)

$$m{D} = arepsilon_0 arepsilon_m m{E}_{
m in} = arepsilon_0 m{E}_{
m in} + m{P}_arepsilon + m{P} = arepsilon_0 arepsilon m{E}_{
m in} + m{P}$$

• 偶极子对应电极化强度:

$$m{\phi} = m{e} = arepsilon_0 (arepsilon_m - arepsilon) m{E} = 3arepsilon_0 arepsilon rac{arepsilon_m - arepsilon}{arepsilon_m + 2arepsilon} m{E}_0$$

• 球对应的电偶极矩:

$$oldsymbol{p} = oldsymbol{P}V = rac{arepsilon_m - arepsilon}{arepsilon_m + 2arepsilon} 4\pi arepsilon_0 arepsilon a^3 oldsymbol{E}_0$$

总的电势:

$$\Phi_{ ext{out}} = -\frac{E_0 r \cos heta}{\epsilon_m + 2 \varepsilon} \cdot E_0 \cdot \frac{\cos heta}{r^2}$$

LSP共振

• 极化率(α)的定义为: $p = \varepsilon_0 \varepsilon \alpha E_0$

$$egin{aligned} oldsymbol{arphi} & oldsymbol{p} = rac{arepsilon_m - arepsilon}{arepsilon_m + 2arepsilon} 4\pi arepsilon_0 arepsilon a^3 oldsymbol{E}_0 \end{aligned}$$

$$\therefore \qquad \alpha = 4\pi a^3 \cdot \frac{\varepsilon_m - \varepsilon}{\varepsilon_m + 2\varepsilon}$$
 $\varepsilon_m = \varepsilon_1(\omega) + \mathrm{i}\,\varepsilon_2(\omega)$ ε 背景介质的介电常数 金属的介电常数

•谐振增强条件:

• 理想Drude金属:

$$arepsilon_m(\omega) = 1 - rac{\omega_{
m p}^2}{\omega^2}$$
 一 可以用于传

LSP共振

• 电场可以通过 $E = -\nabla \Phi$ 得到:

$$m{E}_{ ext{in}} = rac{3arepsilon}{arepsilon_m + 2arepsilon} m{E}_{ ext{out}} = m{E}_0 + rac{3m{n} (m{n} \cdot m{p}) - m{p}}{4\piarepsilon_0 arepsilon} \cdot rac{1}{r^3} \qquad \left(\mbox{\sharp p} : \ m{n} = rac{m{r}}{r}
ight)$$

60nm Au sphere in water, 532nm

- 共振时, 消光比(散射+吸收)较大 消光比=(散射光+吸收光)/入射光
- 近场增强→有许多重要应用,如传感,表面增强拉曼散射, 非线性增强,数据存储,...

偶极子辐射

- $a << \lambda$ 准静态下,小球等效为理想偶极子
- 在时变电场作用下, 电场感应出振荡偶极矩:

$$\boldsymbol{p}(t) = \varepsilon_0 \varepsilon \alpha \boldsymbol{E}_0 \boldsymbol{e}^{-\mathrm{i}\omega t}$$

- 偶极辐射 → 对电磁波的散射

散射电磁波:
$$\boldsymbol{H}(t) = \boldsymbol{H}e^{-\mathrm{i}\omega t}, \ \boldsymbol{E}(t) = \boldsymbol{E}e^{-\mathrm{i}\omega t}$$

(其中: $\boldsymbol{n} = \frac{\boldsymbol{r}}{r}$)

其中:

其中:
$$k = \frac{2\pi}{\lambda}$$

$$oldsymbol{E} = rac{1}{4\piarepsilon_0arepsilon} \left\{ \! k^2 (oldsymbol{n}\! imesoldsymbol{p})\! imesoldsymbol{n} rac{e^{\mathrm{i}kr}}{r} \!+\! \left[3oldsymbol{n} (oldsymbol{n}\!\cdotoldsymbol{p}) \!-\!oldsymbol{p}
ight] \left(\!rac{1}{r^3} - rac{\mathrm{i}\,k}{r^2} \!
ight) \! e^{\mathrm{i}kr}
ight\}$$

辐射区: kr >> 1

$$m{H} = rac{ck^2}{4\pi} (m{n} imes m{p}) rac{m{e}^{\hspace{1pt}\mathrm{i} k r}}{r}$$
 球面波

$$oldsymbol{H} = rac{\mathrm{i}\,\omega}{4\pi} \left(oldsymbol{n} imesoldsymbol{p}
ight)rac{1}{r^2}$$

$$m{E} = \sqrt{rac{\mu_0}{arepsilon_0 m{arepsilon}}} \, m{H} imes m{n}$$
 行波场: $m{E} oldsymbol{\perp} m{n}$, $m{H} oldsymbol{\perp} m{n}$

行波场:
$$E \perp n$$
, $H \perp n$

$$oldsymbol{E} = rac{3oldsymbol{n}(oldsymbol{n}\cdotoldsymbol{p}) - oldsymbol{p}}{4\piarepsilon_0arepsilon}rac{1}{r^3}$$

偶极子辐射

近场区域: kr << 1

$$m{H} = rac{\mathrm{i}\,\omega}{4\pi} (m{n} imes m{p}) rac{1}{r^2}$$

仅有横向分量 $(H \perp n)$, 虚数

$$\left($$
其中: $n=\frac{r}{r}\right)$

$$\boldsymbol{E} = \frac{3\boldsymbol{n}(\boldsymbol{n} \cdot \boldsymbol{p}) - \boldsymbol{p}}{4\pi\varepsilon_0\varepsilon} \frac{1}{r^3}$$

电场远大于磁场,准静态下,磁场消失

近场类似于纯电场!

纵向
$$E_r = rac{1}{2\piarepsilon_0arepsilon}rac{p\cos heta}{r^3}$$

横向
$$E_{_{ heta}}\!=\!-rac{1}{4\piarepsilon_{0}arepsilon}rac{p\sin heta}{r^{3}}$$

忽略时谐因子 $\exp(-i\omega t)$,近场区电场表达式同偶极子电场表达式一致,<mark>准静电场</mark>

辐射能流密度:
$$\bar{\mathbf{S}} = \frac{1}{2} \operatorname{Re}(\mathbf{E}^* \times \mathbf{H}) = 0$$

近场不辐射能量, 远场辐射。

近场是一种隐失场 角谱丰富

光照射在纳米颗粒上可以激发隐失场,如果颗粒位于金属-介质界面,便可以激发表面等离激元;反过来,表面等离激元可以在纳米颗粒中激发偶极辐射,从而实现束缚电磁场向辐射电磁场的转换。

LSP共振应用实例——单分子检测

改变周围介质折射率

McFarland and Duyne, Nano Lett. 3, 1057(2003).

应用实例——太阳能电池

在太阳能电池中通过金属纳米粒子集光:散射增强光进入活性介质的量; 局域场增强,增强光与活性介质相互作用

应用实例——拉曼增强光谱

表面增强拉曼光谱(SERS)

使被测定物的拉曼散射产生极大的增强效应。其增强因子可达10³~10⁷

metal colloid

molecule

LSPR的尺寸和形状相关性

- 准静态近似仅对在可见光和近红外光频段尺寸小于100nm纳米粒子有效, 无法捕捉尺寸的相关性。
- •对纳米球的严格分析-Mie理论

Mie theory (1908): 尺寸相关 形状相关
$$E(\lambda) = \frac{24\pi^2 N a^3 \varepsilon_d^{3/2}}{\lambda \ln(10)} \left[\frac{\varepsilon_i}{\left(\varepsilon_r + \chi \varepsilon_d\right)^2 + \varepsilon_i^2} \right]$$

 $E(\lambda)$ = Extinction spectrum = absorption + scattering χ = shape factor (2 for sphere, > 2 for spheroid) ε_d = external dielectric constant ε_r = real metal dielectric constant ε_i = imaginary metal dielectric constant

Mie, Ann. Phys. 1908, 24, 377

Au颗粒的消光与颗粒大小、环境的关联

https://nanocomposix.com/pages/gold-nanoparticles-optical-properties#target

尺寸相关性

定性地理解尺寸的依赖性:

纳米球尺寸↑⇒电荷距离↑⇒回复力↓ ⇒共振频率ω ↓⇒ 共振波长↑

形状相关性

• 纳米椭球/纳米棒的响应 - Gans 理论 (Mie理论的扩展)

$$\sigma_{
m ext} = rac{2\pi V arepsilon_{
m med}^{3/2}}{3\lambda} \sum_{j} rac{rac{1}{P_{j}^{2}}arepsilon''}{\left(arepsilon' + rac{1 - P_{j}}{P_{j}}arepsilon_{
m med}
ight)^{2} + \left(arepsilon''
ight)^{2}} \hspace{0.5cm} (A > B = C)$$

去极化因子:
$$P_A = \frac{1-e^2}{e^2} \left[\frac{1}{2e} \ln \left(\frac{1+e}{1-e} \right) - 1 \right]$$

$$P_B = P_C = rac{1 - P_A}{2}$$

$$e = \sqrt{1 - \left(\frac{B}{A}\right)^2}$$

纵横比:

$$R = \frac{A}{B}$$

Link et al., J. Phys. Chem. B 103, 3073 (1999).

形状相关性

消光比光谱中有两个极大值,对应的两个谐振模式:

- -<mark>纵模</mark>(偶极振荡沿长轴方向)
- -横模(偶极振荡沿短轴方向)

Gold nanorods show two absorption peaks;

Visible region: 520-530 nm, Transverse Mode

Near-infrared region: 700-1500 nm, Longitudinal Mode

金纳米棒的横模和纵模

不同形状金属纳米颗粒的散射光谱

Mock et al., J. Chem. Phys. 116, 6755 (2002).

Kuwata et al., APL 83, 4625 (2003).

Ag纳米颗粒

颗粒形状变化时LSPR的范围

Lal et al., Nature Photon. 1, 641 (2007).

3. 纳米颗粒间的LSP耦合

对单纳米粒子:

一个孤立的球是对称的,所以极化方向并不重要。

紧密排列的纳米粒子-近场相互耦合:

横向:

与邻近的耦合使回复力<mark>增大</mark> →谐振峰向高频(短波)移动

纵向:

与邻近的耦合使回复力减小

→谐振峰向<mark>低频(长波</mark>)移动

3. 纳米颗粒间的LSP耦合

增加回复力 更高频率(蓝移)

减小回复力 更低频率(红移)

另一个结果:缝隙中近场增强(纵模)

3. 纳米颗粒间的LSP耦合

Maier et al., *Phys. Rev. B*, 65, 193408 (2002).

Maier et al., Appl. Phys. Lett., 81, 1714 (2002).

4. LSPs的复杂纳米结构-纳米壳

首先考虑纳米球 vs. 纳米空腔:

极化率
$$lpha=4\pi a^3\Big(rac{arepsilon_m-arepsilon}{arepsilon_m+2arepsilon}\Big)$$

Fröhlich条件
$$\operatorname{Re}[\varepsilon_m] = -2\varepsilon$$

Drude金属
$$\omega_{lsp}$$
 $\omega_{lsp}=rac{\omega_{
m p}}{\sqrt{1+2arepsilon}}\stackrel{ ext{in air}}{=}rac{\omega_{
m p}}{\sqrt{3}}$

$$lpha = 4\pi a^3 igg(rac{arepsilon - arepsilon_m}{arepsilon + 2arepsilon_m}igg)$$

$$\mathrm{Re}\left[arepsilon_{m}
ight]\!=\!-rac{1}{2}arepsilon$$

$$\omega_{
m lsp} = rac{\omega_{
m p}}{\sqrt{1+rac{1}{2}arepsilon}} \stackrel{ ext{in air}}{=} \sqrt{rac{2}{3}}\,\omega_{
m p}$$

纳米壳—等离子体复合

$$\omega_{l,\,\pm}^{2}\!=\!rac{\omega_{p}^{2}}{2}igg[1\!\pm\!rac{1}{2l\!+\!1}\sqrt{1\!+\!4l\,(l\!+\!1)igg(\!rac{a^{2l+1}}{b}\!igg)}igg]$$

(1: 球谐函数阶数)

- 纳米壳模式=球模式+空腔模式
 - →反键合 ω ⁺模式
 - →键合 ω ⁻模式
- 结果
 - →共振频率移向近红外
 - →使共振线宽变窄
 - 常用于传感和生物医学应用 (例如,肿瘤的治疗)

 $|\omega_{+}\rangle$

Prodan et al., Science 302, 419(2003).

纳米壳-应用

Alexandria Journal of Medicine

Volume 47, Issue 1, March 2011, Pages 1-9

Review Article

Plasmonic photo-thermal therapy (PPTT)

Xiaohua Huang^a, Mostafa A. El-Sayed^{b,} 🎍

将金包裹的Si纳米颗粒植入 到肿瘤细胞中,通过近红外 光照射,利用LSP的共振效 应,吸收近红外光并转换为 热,杀死肿瘤细胞

肿瘤治疗

5. VP(体积等离子体)、SPPs和LSPs的比较

	Volume plasmons	SPPs	LSPs (nanosphere)
原理图	+ + +	k +V-V+	† † † † † † † † † † † † † † † † † † †
模式性质	金属体内的电 荷的集体振荡	金属表面的 传播模式	不传播 束缚模式
波的性质	纵向	横向&纵向	
特征频率	$\omega_p = \sqrt{\frac{Ne^2}{arepsilon_0 m}}$	$\omega_{sp} = \frac{\omega_p}{\sqrt{1 + \varepsilon_d}}$	$\omega_{lsp} = \frac{\omega_p}{\sqrt{1 + 2\varepsilon_d}}$
与光的相互作员	不相互作用 (non-EM wave)	与光子耦合 产生谐振	谐振消光 (散射+吸收)

小结

- ▶ 局域表面等离子体(LSP)
 - ▶ LSP: 限制在纳米粒子/微腔中的非传播SP
- > LSP共振条件
 - > 金属纳米粒子作为有效电偶极子
 - ▶ 准静态近似, Frohlich条件, 大小和形状的依赖(Mie理论), 纳米棒的LSP, LSP的传感和生物医学应用
- > 纳米粒子之间的LSP耦合
 - > 横向和纵向模式, 间隙中的近场增强
- > 复杂纳米结构——球壳的LSP
 - > 纳米球和纳米谐振腔的LSP, 纳米壳中的等离子混合
- ▶ 体积等离子体, SPP和LSP的比较