

Image and Sound Processing Lab

Brass instruments simulation

Mirco Pezzoli

Wind instruments

According to their acoustical input characteristics, wind instruments can be roughly divided in two categories:

- Low input impedance instruments
- High input impedance instruments

- Low input impedance instruments:
 - Flute, organ pipes, recorder
- High input impedance instruments:
 - Clarinet, saxophone, trumpet (both wood and brass)

- Sound waves are generated in the air column inside the instruments
- Air vibration is caused by buzzing lips → lip-reed instruments
- Actually, not necessarily made of brass
- High input impedance instruments:
 - Impedance governs the sound generation
 - Interaction with player

Acoustic impedance is a measure of resistance to putting a pressure wave through the tube

- Pressure wave is reflected at the bell
- Reflected pressure "informs" the player → easier note to play

Brass instruments: parts

- Lips: blowing through lips in tension causes oscillation of sound pressure injected into the instrument. Experienced players have a detailed control of the sound generation
- Mouthpiece: composed of a cup and a narrow throat where high acoustic pressure is generated.
 - Comfortable sit for the lips
 - Modify the resonances of the instrument:
 - Louder sound (large cup and wider throat)
 - Easier to play and more high end (small cup and narrow throat)

Brass instruments: parts

Tube:

- It can produce only "fixed" tones i.e., the eigenfrequencies
- Acts as a selector for the final produced sounds

Bell:

- it modifies the tube with a conical section that varies the overtones
- Improves radiation of higher frequencies → bright and louder sound

Simple free-vibration musical instrument model

- Common model for percussive-like instruments
- Excitation is "impulsive" (hammer, finger, stick etc.)
- The resonator generates sound and then fades out

Closed-loop musical instrument model

- Valid for wind and bowed instrument
- Auto-oscillation given by retroaction
- Continuous excitation
 - Resonator acts on the excitator through feedback loop

More difficult to control

Source filter model:input impedance

How can we quantify retroaction?

Acoustic impedance:

$$Z(\omega) = \frac{P(\omega)}{U(\omega)}$$

- Describes the effect of retroaction to the input
- Represent a linear approximation of the resonator
- Can be measured/simulated

Source filter model:input impedance

- Resonator "works" at specific frequencies
 - Air column in the tube
- Inspecting input impedance we can find "playable" notes
 - Located at impedance peaks
 - Musician can play one of the available notes
- Important aspects:
 - Tuning: frequency location
 - Amplitude: playing difficulty

Source filter model:Resonator

- We have to model the resonator in order to obtain the desired behavior
- Most important parameter: Geometry
- Long/short tube → low/high notes
- Shape influence:
 - Cylindrical instrument $f_1 \approx \frac{c}{4L}$, L is the tube length
 - Conical instruments $f_1 \approx \frac{c}{2L}$
- Maker ability:
 - Find the optimal shape for well-tuned instrument

Source filter model: Design

Source filter model: Design

Raised resonance frequencies

Improved radiation Smoothed high frequencies impedance

Source filter model: Design

Input impedance

Added mouthpiece resonance

Improved impedance in the "middle range"

1.2

1.4

Bibliography

Campbell, M., Gilbert, J. & Myers, A. "The Science of Brass Instruments" ISBN: 978-3-030-55684-6 (Springer-Verlag, 2021)

Freour, V. "Seminar on Brass instruments", Musical Acoustics Course, 2020, available at:

https://politecnicomilano.webex.com/politecnicomilano/ldr.php?RCID=7133bc0 ff3f945e2a4e070ecd9a7a511

Comsol simulation

- We want to implement simulation of brass instrument (trumpet)
- Take advantage of 2D axisymmetric simulation
 - Reduced complexity
 - Reduced computation time
- The physics involves acoustic pressure
- We are interested in the input impedance: $Z(\omega) = \frac{P(\omega)}{U(\omega)}$
 - Hence a frequency domain study is used
- Start from simple geometry: tube
- Progressively add components (bell and mouthpiece)

Simple tube model

- Study the input impedance of a tube.
- Frequency study from minimum frequency f_{\min} to maximum frequency f_{\max} .
- Use a 2D axisymmetric geometry
- Tube is surrounded by air to simulate free field
- We impose a given pressure at the input

Simple tube model

- Study the input impedance of a tube.
- Frequency study from minimum frequency f_{\min} to maximum frequency f_{\max} .
- Use a 2D axisymmetric geometry
- Tube is surrounded by air to simulate free field
- We impose a given pressure at the input

Tube with bell model

- Frequency study from minimum frequency f_{\min} to maximum frequency f_{\max} .
- Use a 2D axisymmetric geometry
- Modify the tube geometry with a bell at the end of the tube
- We impose a given pressure at the input

Mouthpiece

- Frequency study from minimum frequency f_{\min} to maximum frequency f_{\max} .
- Use a 2D axisymmetric geometry
- We impose a given pressure at the input

Complete trumpet model

- Frequency study from minimum frequency f_{\min} to maximum frequency f_{\max} .
- Combine the previous geometries to get the model of the trumpet
- We impose a given pressure at the input

