The Worst Toolbox Documentation

Stephanie Tsuei

Version 0.1a

1 Introduction

This toolbox implements the algorithm described in:

J. E. Tierno, R. M. Murray, J. C. Doyle, and I. M. Gregory, "Numerically Efficient Robustness Analysis of Trajectory Tracking for Nonlinear Systems," *J. Guid. Control. Dyn.*, vol. 20, no. 4, pp. 640-647, Jul. 1997.

which uses theory presented in:

A. Bryson and Y. Ho, Applied optimal control: optimization, estimation, and control, vol. 59, no. 8. 1975.

1.1 The Robust Trajectory Tracking Problem

Consider the dynamical system pictured in Figure 1.1 with dynamics

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{U}(t), \mathbf{u}(t), \mathbf{v}(t), \boldsymbol{\delta})$$

and outputs

$$\mathbf{Y}(t) = g(\mathbf{x}(t), \mathbf{U}(t), \mathbf{u}(t), \mathbf{v}(t), \boldsymbol{\delta})$$
$$\mathbf{z}(t) = h(\mathbf{x}(t), \mathbf{U}(t), \mathbf{u}(t), \mathbf{v}(t), \boldsymbol{\delta})$$

where $\mathbf{x}(t)$ is the state, $\mathbf{U}(t)$ is a nominal input signal, $\mathbf{u}(t)$ is a disturbance signal, δ is a vector of uncertain parameters, Δ is an uncertain block of unit norm, and $\mathbf{v}(t)$ and $\mathbf{z}(t)$ are signals representing any possible unmodeled dynamics. Therefore, the nominal trajectory, is given by

$$\mathbf{Y}_n(t) = g(\mathbf{x}(t), \mathbf{U}(t), 0, 0, \boldsymbol{\delta}_n)$$

where $\boldsymbol{\delta}_n$ are the nominal values of the uncertain parameters and the quantity $\mathbf{y}(t) = \mathbf{Y}(t) - \mathbf{Y}_n(t)$ is the error signal.

We make the following assumptions:

- $\|\mathbf{v}(t)\| = \|\mathbf{z}(t)\|$
- $\mathbf{v}(t)$ and $\mathbf{z}(t)$ can be written in block form $\mathbf{v}(t) = \begin{bmatrix} \mathbf{v}_1(t) & \mathbf{v}_2(t) & \dots & \mathbf{v}_p(t) \end{bmatrix}^T$ and $\mathbf{z}(t) = \begin{bmatrix} \mathbf{z}_1(t) & \mathbf{z}_2(t) & \dots & \mathbf{z}_p(t) \end{bmatrix}^T$. The total number of blocks in $\mathbf{v}(t)$ and $\mathbf{z}(t)$ must be the same, but $\mathbf{v}_i(t)$ and $\mathbf{z}_i(t)$ can be of different dimensions.
- $\|\mathbf{u}(t)\|$ is a known constant scalar M if there is only one disturbance input. If there are multiple disturbance inputs $\mathbf{u}_1(t)$, $\mathbf{u}_2(t)$, then each disturbance input i has a known norm M_i .

Figure 1: A block diagram dipicting the robust trajectory generation problem.

- $\underline{\delta} \leq \delta_n \leq \bar{\delta}$ (elementwise) where $\underline{\delta}$ and $\bar{\delta}$ are known constants.
- We are only interested in the finite time interval (t_i, t_f) and for a vector-valued time signal $\mathbf{w}(t)$,

$$\|\mathbf{w}(t)\| = \left(\frac{1}{t_f - t_i} \int_{t_i}^{t_f} \mathbf{w}^T(t) \mathbf{w}(t) dt\right)^{\frac{1}{2}}$$

Given the information above, this toolbox computes the functions $\mathbf{u}(t)$, $\mathbf{v}(t)$ and the value of $\boldsymbol{\delta}(t)$ that maximizes the quantity below:

$$J = \|\mathbf{y}(t)\| = \left(\frac{1}{t_f - t_i} \int_{t_i}^{t_f} \mathbf{y}(t)^T \mathbf{y}(t) dt\right)^{\frac{1}{2}}$$

1.2 System Requirements

Requirements:

- Matlab R2012b or later
- Simulink

The toolbox may work on some earlier versions of Matlab and Simulink, but was developed on Matlab R2012b.

1.3 Install Instructions

To install the Worst Toolbox, place the folder worst/ anywhere on your local machine and add it (but not its subdirectories) to the Matlab path. This is equivalent to the running the command:

addpath('/path/to/robust/worst')

Figure 2: A model of Dubin's Car compiled into an S-function.

2 Using Worst

2.1 Simulink Model Configuration

The Worst toolbox makes some assumptions about the configuration of Simulink models:

Order of Inputs

The program assumes that models have up to four input signals and two output signals. Each of the signals may have arbitrary dimension to accommodate multiple inputs, disturbances, and feedback signals. The order assumed is:

- 1. Nominal inputs, $\mathbf{U}(t)$
- 2. Disturbance inputs, $\mathbf{u}(t)$
- 3. Unmodeled feedback inputs, $\mathbf{v}(t)$
- 4. Uncertain Parameters, δ

Order of Outputs

Models are allowed to have an arbitrary number of outputs. If the Simulink model has a total of r outputs, and the first $m \le r$ outputs are outputs included in computing the performance measure J, then the remaining r - m outputs are unmodeled feedback outputs; the coordinates of z.

2.2 Syntax of worst

2.3 Speeding up the Program

The program repeatedly calls linmod in order to build and simulate an adjoint system. This greatly slows down the program because Simulink will recompile the model with every call. To hasten computation, compile your Simulink model into an S-function before running the program, as shown in Figure 2.3. The more blocks in the original Simulink model, the greater the improvement in speed.

- 3 Examples
- 3.1 A Linear System
- 3.2 Dubin's Car
- 3.3 The Caltech Ducted Fan