

N. Satimov, A. Azamov, L. A. Petrosyan, Structure of optimal strategies in one-dimensional pursuing games, *Upravliaemie systemy*, 1974, Issue 13, 65–68

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use

http://www.mathnet.ru/eng/agreement

Download details: IP: 92.63.204.87

November 23, 2024, 15:17:50

СТРУКТУРА ОПТИМАЛЬНЫХ СТРАТЕГИЙ В ОДНОВРЕМЕННЫХ ИГРАХ ПРЕСЛЕДОВАНИЯ Н.Сатимов, А.Азамов, Л.А.Петросян

Рассмотрим следующую игру. В n - мерном евклидовом пространстве R_n задано компактное множество $\mathcal C$. Игрок $\mathcal P$ выбирает точку $x \in \mathcal C$, игрок $\mathcal E$, не зная выбора игрока $\mathcal P$, выбирает точку $y \in \mathcal C$. Цель игрока $\mathcal P$ - минимизировать расстояние $\mathcal P(x,y)$ между точками $\mathcal X$ и $\mathcal Y$. Игрок $\mathcal E$ преследует противоположную цель [1]-[3].

Как известно, [I] -[3], в этой бесконечной антагонистической игре существует ситуация равновесия в смешанных стратегиях.

В настоящей заметке выяснена структура оптимальных стратегий в двух случаях сформулированной выше игры.

Обозначим через \mathcal{D}_{R} шар минимального радиуса, содержащий \mathcal{C} (из компактности \mathcal{C} следует существование и единственность шара \mathcal{D}_{R}). Пусть точка \mathcal{O} — центр этого шара, \mathcal{F} — выпуклая оболочка пересечения множества \mathcal{C} со сферой $\mathcal{S}=\left\{\mathcal{M}: \rho(\mathcal{O},\mathcal{M})=R\right\}$.

Лемма. Если $\mathcal C$ -выпуклый компакт, то $\mathcal O \epsilon \mathcal F$.

Доказательство. Предположим противное: $O \in \mathcal{F}$. . Тогда существует точка $M_0 \in \mathcal{F}$, наиболее близкая к O . В силу компактности \mathcal{F} , $\mathcal{P}(O,M_0) > O$. Через точку M_0 проведем гиперплоскость \mathcal{F} с нормалью $O \in \mathcal{F}$. (В дальнейшем через AB будем обозначать вектор с началом в точке A и концом в точке—B .) Очевидно, что \mathcal{F} будет опорной гиперплоскостью к \mathcal{F} . Пусть \mathcal{F}' — гиперплоскость, параллельная к \mathcal{F} и проходящая через середину отрезка $O \in \mathcal{F}_0$, а \mathcal{F}_0 — замкнутое полупространство, ограниченное гиперплоскостью \mathcal{F}' и содержащее \mathcal{O} . Тогда \mathcal{F} не пересекается с \mathcal{F} , поэтому для любой точки $\mathcal{M} \in \mathcal{F} \cap \mathcal{F}$ имеем $\mathcal{P}(O,M) < \mathcal{R}$. Отсюда в силу непрерывности $\mathcal{P}(O,M)$ и компактности $\mathcal{F}(O,M) < \mathcal{R}$. Отсюда в силу непрерывности $\mathcal{P}(O,M)$ и компактности $\mathcal{F}(O,M) < \mathcal{R}$. Отсюда в силу непрерывности $\mathcal{P}(O,M)$ и компактности $\mathcal{F}(O,M) < \mathcal{R}$. Отсюда в силу непрерывности $\mathcal{P}(O,M) < \mathcal{R}$.

Пусть θ' — такая точка, что $\theta' \in \mathcal{OM}$ ПЛ и $\rho(\theta,\theta') < \delta$. Тогда если $\mathcal{M} \in \mathcal{C} \cap \mathcal{I}$, то

$$\rho(O',M) < \rho(O',O) + \rho(O,M) < \delta + R - \delta = R.$$

Если же $M(C \setminus \Pi)$, то $\rho(O,M) < \rho(O,M) < R$, так как для $M(C \setminus \Pi)$ угол между векторами O'M и O'O больше $\frac{\pi}{2}$.

Таким образом, $\mathcal C$ содержится в открытом шаре радиуса $\mathcal R$. Но тогда $\mathcal C$ содержится и в некотором шаре меньшего радиуса, что противоречит минимальности $\mathcal R$. Лемма доказаны.

Из леммы следует, что существуют точки $M_i \in C \cap S$ и числа $\rho_i > 0$, $i=1,2,...,\kappa$, такие, что $\sum_{i=1}^{K} \rho_i = 1, \sum_{i=1}^{K} \rho_i \overrightarrow{OM}_i = 0,$

причем $K \le n+1$ (ср.[2], [3]).

Утверждение І. Если \mathcal{C} - выпуклый компакт, то значение игры равно \mathcal{R} . Для игрока \mathcal{P} оптимальна чистая стратегия \mathcal{O} . Для игрока \mathcal{E} оптимальна стратегия, состоящая из смеси чистых стратегий $\mathcal{N}_{\mathcal{C}}$ с вероятностями $\mathcal{P}_{\mathcal{C}}$, \mathcal{C} =1,2,..., \mathcal{K} .

Доказательство. При указанных в утверждении стратегиях ожидаемое расстояние будет

$$\sum_{i=1}^{K} p_i \cdot p(0, M_i) = R.$$

Пусть $M \in \mathcal{C}$ — произвольная чистая стратегия игрока \mathcal{E} . Из включения $\mathcal{C} \leftarrow \mathcal{D}_{\mathcal{R}}$ следует, что $\rho(\mathcal{O}, M) < \mathcal{R}$, поэтому ожидаемое расстояние не больше \mathcal{R} при любой стратегии \mathcal{E} [I], [2].

Пусть теперь $\mathcal E$ придерживается указанной в утверждении стратегии, а $\mathcal R$ выбирает произвольную чистую стратегию $\mathcal M \in \mathcal C$. Тогда ожидаемое расстояние равно

$$\varphi(M) = \sum_{i=1}^{K} \rho_i \, \rho(M, M_i).$$

В $\mathcal{R}_{_{\mathbf{M}}}$ введем декартову систему координат с началом в \mathcal{O} . Пусть

$$M = (x_1, x_2, ..., x_n), M_i = (a_i^i, a_2^i, ..., a_n^i), i = 1, 2, ..., \kappa.$$

Тогда

$$\varphi(M) = \varphi(x_1, x_2, ..., x_n) = \sum_{i=1}^{n} \rho_i \left[\sum_{j=1}^{n} (x_j - a_j^i)^2 \right]^{\frac{1}{2}}.$$

Кроме того

$$\sum_{j=1}^{K} (a_j^i)^2 = R^2, \quad i=1,2,...,K.$$
 /2/

Далее, в силу доказанной выше леммы

$$\sum_{i=1}^{n} p_i \ a_j^i = 0, \quad j=1,2,...,n.$$
 /3/

Из /2/ и /3/ следует, что

$$\frac{\partial \varphi(0,0,...,0)}{\partial x_{j}} = -\sum_{i=1}^{K} \rho_{i} a_{j}^{i} \left[\sum_{j=1}^{M} (a_{j}^{i})^{2} \right]_{=0, j=1, 2, ..., N}^{\frac{1}{2}},$$

т.е. θ - стационарная точка рункции $\varphi(\mathcal{M})$. Но $\varphi(\mathcal{M})$ выпукла как сумма выпуклых функций, поэтому θ является точкой минимума:

$$\varphi(M) \ge \varphi(0) = R$$

Из /4/, как и выше, следует, что ожидаемое расстояние не меньше R при любой стратегии P . Утверждение I доказано полностью.

Замечание I. Из доказательства видно, что для справедливости утверждения I достаточно компактности $\mathcal C$ и условия $\mathcal C\in\mathcal C$

Пусть $\mathcal C$ - кольцо в плоскости с декартовыми координатами x,y , $C = \{(x, y) : x^2 = x^2 + y^2 = R^2 \}$.

утверждение 2. В случае кольца с оптимальной стратегией игрока P (игрока E) является равномерное распределение на окружности $x^2 + y^2 = v^2$ (соответственно на $x^2 + y^2 = R^2$).

Доказательство. При указанных стратегиях ожидаемое расстояние равно (ср. [4], [5])

$$\frac{1}{4\pi^{2}} \int_{0.2\pi}^{2\pi} \int_{0}^{\sqrt{R^{2}+r^{2}-2Rr\cos(\varphi-\psi)}} d\varphi d\psi =$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \sqrt{R^{2}+r^{2}-2Rr\cos\xi} d\xi = \Re(r,R),$$

где $oldsymbol{arphi}$ и $oldsymbol{\psi}$ -полярные углы чистых стратегий игроков $oldsymbol{\mathcal{P}}$ и $oldsymbol{\mathcal{E}}$ соответственно. Если игрок $\mathcal E$ выбирает точку $\mathcal M$ с полярными координатами ho , ψ , то ожидаемое расстояние (ho придерживается указанной в утверждении стратегии)

$$\mathcal{P}(z,\rho) = \frac{1}{2\pi} \int_{0}^{2\pi} \sqrt{z^2 + \rho^2 - 2z\rho\cos\xi} \ d\xi \ .$$

Легко видеть, что при $t < \rho < R$ функция $\varphi(\rho) = \rho^2 t^2 - 2t \rho \cos \xi$ монотонно возрастает. В частности, $\varphi(\rho) < \varphi(R)$ при $z < \rho < R$. Отсюда $\varphi(z,\rho) < \varphi(z,R)$. Поэтому при любой стратегии \mathcal{E} ожидаемое расстояние не больше $\mathcal{P}(z,\mathcal{R})$.

Пусть теперь точку $^{\mathcal{M}}$ выбирает игр $_{f o}$ к $^{\mathcal{P}}$. Тогда ожидаемое расстояние равно

$$\varphi(\rho,R) = \frac{1}{2\pi} \int_{0}^{2\pi} \sqrt{R^2 + \rho^2 - 2R\rho\cos\xi} \ d\xi.$$

Применив правило Лейбница, можно убедиться, что

$$\frac{\partial \Psi(0,R)}{\partial \rho} = 0, \qquad \frac{\partial^2 \Psi(\rho,R)}{\partial \rho^2} > 0, \quad z < \rho < R.$$

 $\frac{\partial \Psi(\varrho,R)}{\partial \rho} = \varrho \,, \qquad \frac{\partial^2 \Psi(\varrho,R)}{\partial \varrho^2} > \varrho \,, \qquad z < \varrho < R \,\,.$ Отсюда следует, что $\Psi(\varrho,R)$ монотонно возрастает по $\varrho \,$, поэтому $\mathcal{P}(z,\mathcal{R}) \leqslant \mathcal{P}(
ho,\mathcal{R})$. Таким образом, ожидаемое расстояние при любой стратегии игрока $^{
ho}$ не меньше ${\cal P}(z,R)$. Утверждение 2 доказано полностью.

Замечание 2. Значение игры равно интегралу

$$\frac{1}{2\pi}\int_{0}^{2\pi}\sqrt{R^2+z^2-2Rz\cos\xi}\ d\xi=\varphi(z,R).$$

Например, если $\mathcal C$ - окружность радиуса $\mathcal R$, то значение игры равно 4 R.

Замечание З. Утверждение 2 остается справедливым и для множества \mathcal{C} , содержащего окружности x^2+y^2 z^2 , $x^2+y^2R^2$ и лежащего между ними.

Литература.

- I. Дж. Фон Нейман. О.Моргенштерн. Теория игр и экономическое поведение. М., "Наука", 1970.
- 2. С.Карлин. Математические методы в теории игр, программировании и экономике. М., "Мир", 1964.
- 3. Бесконечные антагонистические игры. Под ред. Н.Н.Воробьева. М., Физматгиз, 1963.
- 4. М.Кендал, П.Моран. Геометрические вероятности, М., "Наука", 1972.
- 5. D. Fairthorne. The distans between random points in two concentric circls. Biometriks, 5I (1964), 275-277.