

Код Рида-Маллера

Введение

Кодировани

Свойства параметры кода

Конструкция Плоткина Минимальное

Декодирование

Код Рида-Маллера

Илья Коннов

Факультет компьютерных наук

Высшая Школа Экономики

11 февраля 2022 г.

Введение

Код Рида-Маллера

Введение

Кодирова

Свойства параметры кода

Конструкция Плоткина Минимальное расстояние

Декодировани

Описаны Дэвидом Маллером (автор идеи) и Ирвингом Ридом (автор метода декодирования) в сентябре 1954 года. Обозначаются как $\mathrm{RM}(r,m)$, где r — ранг, а 2^m — длина кода. Кодирует сообщения длиной $k=\sum_{i=0}^r C_m^i$ при помощи 2^m бит.

Традиционно, считается что коды бинарные и работают над битами, т.е. \mathbb{Z}_2 .

Соглашение: сложение векторов $u,v\in\mathbb{Z}_2^n$ будем обозначать как $u\oplus v=(u_1+v_1,u_2+v_2,...,u_n+v_n).$

Булевы функции и многочлен Жегалкина

Код Рида-Маллера

Введение

Кодирован

Своиства і параметрь кода

Конструкция Плоткина Минимальное расстояние

Декодировани

Всякую булеву функцию можно записать при помощи таблицы истинности

\boldsymbol{x}	y	f(x,y)
0	0	1
0	1	0
1	0	0
1	1	0

И при помощи многочлена Жегалкина:

$$f(x,y) = xy + x + y + 1$$

Многочлены Жегалкина

Кол Рида-Маллера

Введение

В общем случае, многочлены будут иметь следующий вид:

$$f(x_1,x_2,...,x_m) = \sum_{S\subseteq \{1,\ldots,m\}} c_S \prod_{i\in S} x_i$$

Например, для
$$m=2$$
: $f(x_1,x_2)=c_1\cdot x_1x_2+c_2\cdot x_1+c_3\cdot x_2+c_4\cdot 1$

Всего $n=2^m$ коэффициентов для описания каждой функции.

Функции небольшой степени

Код Рида-Маллера

Рассмотрим функции, степень многочленов которых не больше r:

$$\{f(x_1,x_2,...,x_m)\mid \deg f\leq r\}$$

Каждую можно записать следующим образом:

$$f(x_1,x_2,...,x_m) = \sum_{\substack{S \subseteq \{1,...,m\}\\|S| \leq r}} c_S \prod_{i \in S} x_i$$

В каждом произведении используется не больше rпеременных.

Сколько тогда всего коэффициентов используется?

$$k = C_m^0 + C_m^2 + \dots + C_m^r = \sum_{i=0}^r C_m^i$$

Введение

Идея кодирования

Код Рида-Маллера

Введен

Кодирование

Свойства параметрь кода

Конструкция Плоткина Минимальное расстояние

Декодировані

Пусть каждое сообщение (длины k) — коэффициенты некоторого многочлена от m переменных степени не больше r.

Тогда мы можем его представить при помощи 2^n бит, подставив все возможные комбинации переменных (ведь рассматриваем многочлены над \mathbb{Z}_2).

Таким образом получим таблицу истинности, из которой позднее сможем восстановить исходный многочлен, а вместе с ним и сообщение.

Пример

Код Рида-Маллера

Бведение

Кодирование

Свойства и параметры кода

Конструкция Плоткина Минимальное расстояние

Декодировани

- $oldsymbol{r}=1$ (степень многочлена), m=2 (переменных). Это $\mathrm{RM}(1,2).$
- lacktriangle Тогда наш многочлен: $f(x,y) = c_1 x + c_2 y + c_3$.
- lacktriangle Сообщение: 101, тогда f(x,y) = x + 0 + 1.
- Подставим всевозможные комбинации:

$$\begin{array}{c|cccc} x & y & f(x,y) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

Получили код: 1100.

Декодирование когда потерь нет

Код Рида-Маллера

Введе

Кодирование

Свойства и параметры кода

Конструкция Плоткина Минимальное расстояние

Декодировани

- Мы получили код: 1100
- Представим таблицу истинности.

$$\begin{array}{c|cccc} x & y & f(x,y) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

- Подстановками в $f(x,y) = c_1 x + c_2 y + c_3$ получим СЛАУ.
- $\begin{cases} & c_3 = 1 \\ & c_2 + c_3 = 1 \\ c_1 + & c_3 = 0 \\ c_1 + c_2 + c_3 = 0 \end{cases}$
- $c_1 = 1, c_2 = 0, c_3 = 1,$ исходное сообщение: 101.

Доказательство линейности

Код Рида-Маллера

Пусть C(x) кодирует сообщение $x\in\mathbb{Z}_2^k$ в код $C(x)\in\mathbb{Z}_2^m$.

$$C(x) = (p_x(a_i) \mid a_i \in \mathbb{Z}_2^m)$$

Колировани

Свойства и

параметры кода Конструкция Плоткина

Конструкция Плоткина Минимальное расстояние где $p_x(a_i)$ — соответствующий сообщению a_i многочлен. Перебирая все a_i получаем упорядоченный набор его значений. Это и будет кодом.

Причём p_x берёт в качестве своих коэффициентов биты из x. Поскольку многочлены степени не выше r образуют линейное пространство, то $p_{(x\oplus y)}=p_x+p_y$. Тогда:

$$C(x\oplus y)_i=p_{(x\oplus y)}(a_i)=p_x(a_i)+p_y(a_i)=C(x)_i+C(y)_i$$

т.е.
$$\forall x,y \quad C(x\oplus y)=C(x)+C(y)$$
, ч.т.д.

Последствия линейности

Код Рида-Маллера

введение

Кодирован

Свойства и параметры кода

Конструкция Плоткина Минимальное расстояние

Леколировани

1 Существует порождающая матрица G.

$$C(x) = x_{1 \times k} G_{k \times n} = c_{1 \times n}$$

Минимальное растояние будет равно минимальному весу Хемминга среди всех кодов.

$$d = \min_{\substack{c \in C \\ c \neq 0}} w(c)$$

Корректирующая способность:

$$t = \left| \frac{d-1}{2} \right|$$

Конструкция Плоткина: многочлены

Код Рида-Маллера

Введени

Свойства

параметрь кода

Плоткина
Минимальное расстояние

Декодировани

Хотим понять как выглядят кодовые слова.

- Код таблица истинности функции $f(x_1,...,x_m) \in \mathrm{RM}(r,m) \text{, причём } \deg f \leq r.$
- \blacksquare Разделим функцию по x_1 : $f(x_1,...,x_m) = g(x_2,...,x_m) + x_1 h(x_2,...,x_m).$
- $lacksymbol{\blacksquare}$ Заметим, что $\deg f \leq r$, а значит $\deg g \leq r$ и $\deg h \leq r-1$.

Конструкция Плоткина: таблица истинности

Код Рида-Маллера

Бведение

Кодировані

Свойства і параметрь кода

> Конструкция Плоткина Минимальное расстояние

Леколировани

Ранее: $f(x_1,...,x_m) = g(x_2,...,x_m) + x_1h(x_2,...,x_m)$.

■ Заметим, что таблица истинности f состоит из двух частей: при $x_1 = 0$ и при $x_1 = 1$.

$$\operatorname{Eval}(f) = \left(\frac{\operatorname{Eval}^{[x_1=0]}(f)}{\operatorname{Eval}^{[x_1=1]}(f)}\right)$$

- Причём $\operatorname{Eval}^{[x_1=0]}(f) = \operatorname{Eval}(g)$, а $\operatorname{Eval}^{[x_1=0]}(f) \oplus \operatorname{Eval}^{[x_1=1]}(f) = \operatorname{Eval}(h)$.
- \blacksquare Таким образом, $\mathrm{Eval}(f) = (\mathrm{Eval}(g) \mid \mathrm{Eval}(g) \oplus \mathrm{Eval}(h))$

Конструкция Плоткина: вывод

Код Рида-Маллера

Содировані

зойства и раметры да

Конструкция Плоткина Минимальное расстояние

Минимальное расстояние Декодирова

Если дана $f(x_1,...,x_m)$, причём $\deg f \leq r$, то можно её разделить:

$$f(x_1,...,x_m) = g(x_2,...,x_m) + x_1 h(x_2,...,x_m)$$

Также известно, что

 $\operatorname{Eval}(f) = (\operatorname{Eval}(g) \mid \operatorname{Eval}(g) \oplus \operatorname{Eval}(h)).$

Заметим, что $\operatorname{Eval}(f)$ – кодовое слово (как и для g,h). Тогда:

$$c = \operatorname{Eval}(f) \in \operatorname{RM}(r,m)$$
 (т.к. $\deg f \leq r$) $u = \operatorname{Eval}(g) \in \operatorname{RM}(r,m-1)$ (т.к. $\deg g \leq r$)

$$v = \operatorname{Eval}(h) \in \operatorname{RM}(r-1, m-1)$$
 (т.к. $\deg h \le r-1$)

Утверждение: Для всякого кодового слова $c\in \mathrm{RM}(r,m)$ можно найти $u\in \mathrm{RM}(r,m-1)$ и $v\in \mathrm{RM}(r-1,m-1)$, такие что $c=(u\mid u+v)$.

Минимальное расстояние

Код Рида-Маллера

Хотим найти минимальное расстояние для кода $\mathrm{RM}(r,m)$

$$d = \min_{c \in C, c \neq 0} w(c)$$

Кодировани

Свойства и

Конструкция Плоткина Минимальное расстояние

Декодировани

Предположим, что $d=2^{m-r}$ и докажем по индукции.

База: $\mathrm{RM}(0,m)$ — единственный бит потворён 2^m раз.

Очевидно, $w(\underbrace{11...1}_{2m}) = 2^m = 2^{m-0} \ge 2^{m-r}$.

Гипотеза: Если $v \in \mathrm{RM}(r-1,m-1)$, то $w(v) \geq 2^{m-r}$.

Шаг: Хотим доказать для $c \in RM(r,m)$.

$$\begin{split} w(c) &= w((u \mid u \oplus v)) \overset{(1)}{=} w(u) + w(u \oplus v) \geq \\ &\overset{(2)}{\geq} w(u) + (w(v) - w(u)) = w(v) \overset{IH}{\geq} 2^{m-r} \blacksquare \end{split}$$

Свойства и параметры

Код Рида-Маллера

Введение

Кодирован

Свойства і параметрь кода

Конструкция Плоткина Минимальное расстояние

Леколировани

Для бинарного кода RM(r, m):

- $r \leq m$
- Длина кода: 2^m
- lacksquare Длина сообщения: $k = \sum_{i=0}^r C_m^i$
- Минимальное расстояние: $d = 2^{m-r}$
- Корректирующая способность: $t = 2^{m-r-1} 1$
- lacktriangle Существует порождающая матрица G для кодирования

Если потери есть

Код Рида-Маллера

Введение

Колировані

Свойства параметры кола

Конструкция Плоткина Минимальное

Декодирование

Этот код является линейным, к нему применимы все обычные (и неэффективные методы):