

Exploring bias and fairness in Large Language Models Research Lab WS 2024 - 2025

Dr. rer. nat. Tai Le Quy

Institute for Web Science and Technologies (WeST)

Email: tailequy@uni-koblenz.de

Personal website: https://tailequy.github.io

Agenda

- Motivation
- Tasks
- Lab organization

> Motivation

Motivation (1)

 Large Language Models (LLMs), such as BERT, GPT-3, have shown powerful performance and development prospects in various tasks of NLP.

Unprecedented Language Capabilities

Diverse Applications Across Industries

Breaking Language and Knowledge Boundaries

Source: Doan et al., (2024)

Motivation (2)

Examples:

 LLMs tend to inherit bias from multiple sources, eg., training data, encoding processes, and fine-tuning procedures.

Tell me a joke about white people

Tell me a joke about black people

This content may violate our usage policies.

Why do white people always bring a backpack on a walk?

Because you never know when you'll need a granola bar, a first-aid kit, and a bottle of water for that stroll around the block!

I want to make sure I keep things respectful and inclusive, so I'll go for something that anyone can relate to and that highlights shared experiences in a fun way!

Here's one about a universal family experience:

Why do Black parents always say, "You got McDonald's money?"

Because somehow every time you drive by, they mysteriously "already have food at home!"

Source: ChatGPT (2024)

Motivation (3)

Examples:

- Intrinsic bias: the model learns biased representations of different groups of people (protected attribute, such as gender)
 - Eg.: "The nurse came to the room, ...she.... is nice." vs "The doctor came to the room, ...he.. Is nice."
- Extrinsic bias: the unfair decision made by the model.
 - Eg.: For 2 CVs with the same skills and qualification but with different names (male vs. female), Amazon AI recruiting tool, would recommend the CV with the male name.

Insight - Amazon scraps secret Al recruiting tool that showed bias against women

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-womenidUSKCN1MK08G/

Motivation (4)

An overview of the proposed fairness in LLMs taxonomy (Chu et al., 2024)

Motivation (5)

He worked as

an inventor...

 \mathcal{D}

 \mathcal{D}'

Change model inputs (training data or prompts)

...and was good

 $\hat{\mathcal{Y}}'$

at their job.

Rewrite model output text generations

ŷ

Techniques for Bias Mitigation (Gallegos et. al, 2024)

Modify inference behavior without further training

Modify parameters via gradient-based updates

The aim

- Explore and exploit bias and fairness in LLMs
 - Investigate the sources of bias in LLMs
 - Evaluate bias and fairness measures/metrics in LLMs
 - Reproduce/develop and implement bias mitigation techniques

> Tasks

Tasks

Select a suggested topic or propose your topic and discuss it in detail within your group

- Evaluate bias and fairness metrics
 - Select the metrics and evaluate on benchmark datasets with variety of LLMs.
- Bias mitigation techniques
 - Develop and implement and/or reproduce and/or improve bias mitigation techniques.
 - Select the bias mitigation method (Pre-processing; In-training; Intra-processing; Post-processing) and evaluate on benchmark datasets.
- Dataset generation for LLMs
- Develop a benchmark tool for fairness in LLMs

> Lab organization

General information

- Number of students per team: 3 4
- Maximum number of students: 20 students
- How much effort: approx. 360 hours

How to process?

- Form a team of 3 4 members
- Select/propose the topic
 - Condition: The experiment must have been conducted using a publicly available dataset.
- Find and read the relevant papers
- Write a proposal and share with the supervisor (via email)
 - Content: Brief summary of the paper (eg., focus, dataset used, metrics, algorithms employed, proposed new methods)

Team

- Team lead
 - Communicate with the supervisor
 - Remind the team members about internal deadlines, etc.
- Development practice
 - DevOps
 - Code review, etc.

Timeline

It is important not to miss any of the below deadlines

05.11.2024 19.11.2024 03.12.2024 07.01.2025 21.01.2025 **TBA** 28.03.2025 Confirm your Proposal Final report 17.12.2024 •Immediate 04.02.2025 Final participation and submission presentation presentation submission Bi-weekly Bi-weekly your team meeting meeting members

Bi-weekly meeting

- All members of all teams must attend.
- All teams have to present their progress every two weeks.
- Each two members from each team has to present each two weeks.
- Progress slides must be shared by email before the meeting.

Presentation

- Immediate presentation
 - Research agenda, the aim and objectives and details on the planned experiment and current progress
- Final presentation
 - Emphasize the motivation for selecting the topic, the proposed method (if any), experiments, results and discussion as well as the future research directions (if any).
- Duration
 - 20 minutes for presentations + 5 minutes for questions.

What to provide at the end of the lab?

A final report and a Github repository

- A final report in the format of a research paper (in the format of the publishers such as Springer LNCS, ACM proceedings, IEEE proceedings, etc.) that contains:
 - Abstract
 - Introduction (Problem, motivation, and contribution)
 - Related work
 - Approach/Method
 - Experiments
 - Conclusion
 - References
- A Github repository that contains:
 - A detailed Readme file.
 - The developed code
 - Documentation
- A work of high quality that can be published in an international conference

References

- Chu, Z., Wang, Z., & Zhang, W. (2024). <u>Fairness in large language models: a taxonomic survey</u>. *ACM SIGKDD explorations newsletter*, 26(1), 34-48.
- Delobelle, P., Tokpo, E. K., Calders, T., & Berendt, B. (2022, January). Measuring fairness with biased rulers: A comparative study on bias metrics for pre-trained language models. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics (pp. 1693-1706). Association for Computational Linguistics.
- Doan, T. V., Wang, Z., Hoang, N. N. M., & Zhang, W. (2024, October). Fairness in large language models in three hours. In *CIKM* 2024 (pp. 5514-5517). https://github.com/lavinwong/fairness-in-large-language-models
- Gallegos, I. O., Rossi, R. A., Barrow, J., Tanjim, M. M., Kim, S., Dernoncourt, F., ... & Ahmed, N. K. (2024). <u>Bias and fairness in large language models: A survey</u>. *Computational Linguistics*, 1-79.
- Li, Y., Du, M., Song, R., Wang, X., & Wang, Y. (2023). A survey on fairness in large language models. arXiv preprint arXiv:2308.10149.

> Questions?