ATM 651 Exam 1: vocabulary. Name_
50 rows, 2 points for each row. Fill in the white boxes, 2 per row. gray box: no response asked

Words	Symbol	<u>Units</u>	Definition math or words	Relevant sketch or extra space for more words
	$-\vec{\nabla}\cdot(q ho\vec{V})$		"	
Vertical velocity	w, ż		other answers accepted	like a humidity measure from another chapter
(name)			the layer of air in contact w/ the surface	
	One unit of vorticity plus one unit of deformation			Pure unit vorticity plus deformation1 10 0 75 50 -25 -30 -100 -100 -75 -50 -25 00 25 50 75 320
speed of wind whose components are u(x,y), v(x,y)		m s ⁻¹	$Speed = \sqrt{u^2 + v^2}$	
horizontal advection of specific humidity q	$- \vec{V} \cdot \vec{\nabla} q$	(units of q) s ⁻¹	< (kg _{water} /kg _{air})	is q "dimensionless"? formally yes, I suppose,
dot product of a force and velocity (explain letter you choose >	suggest W for work rate, or power P	(Nm) s ⁻¹ Joule s ⁻¹ Watts kg m ² s ⁻³	$ec{\pmb{F}}_{PGF} \cdot ec{\pmb{V}}$	took any rational MKS answer and of course any letter, explained. Few if any saw the energy = force*distance or work rate = force*velocity. That's physics, not math/vocab.
vector velocity of a baseball in x,y,z coordinates	V	m s ⁻¹	(use \dot{x} , \dot{y} , \dot{z}) $V = i \dot{x} + j \dot{y} + k \dot{z}$ $= \dot{x}i + \dot{y}j + \dot{z}k$	
		m s ⁻¹ (or knot)	10 knot southwesterly wind	from SW
planetary vorticity	f	s ⁻¹		
streamfunction $\psi(x, y)$ of a	$\psi(x,y)$	$m^2 s^{-1}$	sketch contours and a	

nondivergent 2D horizontal flow $(\vec{V} = \hat{k} \times \nabla \psi)$		$m^2 s^{-1}$	few velocity vectors>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
wavelength	λ	m	a number measuring something about a <i>spatial</i> sinusoid>	λ
amplitude	A	freebie	indicate on sketch above	(see above)
temperature anomaly	T'(t,x,y)	K or °C or °F	Deviation from time- averaged T	not "trend" or "tendency", not "change", not "variance",
Laplacian of $Z(x,y)$	divergence of the gradient of Z(x,y)	m ⁻¹	$ abla^2 Z$	
Circulation. What is it equal to (Stokes' theorem):	С	$m^2 s^{-1}$	area- integrated vorticity = ∫∫	
Coriolis force (per unit mass)	C _o f k x V	m s ⁻²		
del operator	∇	m ⁻¹	$i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y} + k\frac{\partial}{\partial z}$	< write i,j,k to the <i>left</i> , since things on the right of the derivative get <i>operated on</i> . A <i>sum</i> .
vector velocity field of pure divergence	$V_{div}(x,y)$	m s ⁻¹		750
distance north from origin	y (Cartesian coordinate used similar to the above)	meters	distance on a tangent plane, in the direction of the j unit vector	North Pole

M C1				
Mass of 1 cc = 1 ml of water	(<oops my="" td="" typo)<=""><td>1 g</td><td>$1cc = 10^{-6} \text{ m}^3$ mass 10^{-3} kg</td><td></td></oops>	1 g	$1cc = 10^{-6} \text{ m}^3$ mass 10^{-3} kg	
in MKS	typo)		mass to kg	
Energy flux			How much	
			(energy)	
		$\mathrm{W}~\mathrm{m}^{\text{-}2}$	passing	
		$(J m^{-2} s^{-1})$	through per	
		(6 111 5)	unit area per	
			second	
meridional			amount of	Positive for southwesterly wind,
flux of zonal			zonal	· · · · · · · · · · · · · · · · · · ·
				negative for northeasterly wind. See
momentum	ρυν	(momentum)	momentum	below.
	, ,	$m^{-2} s^{-1}$	passing	
	or just	or just	northward	
	uv	or just m ² s ⁻²	through a unit	
	u v	III 5	area in the x-z	
			plane, per	
			second	
Laplacian of			using p(x)	curvature. Smile-like is positive
p(x)			notation: d not	(slope increasing)
1 ()			∂ because <i>p is</i>	p
			a function of	
			one variable	
			only	
			Only	
			d^2n	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			$\frac{d^2p}{dx^2}$	<u> </u>
			dx^2	
vector velocity	V	m s ⁻¹	iu+jv+kw	
curl operator			(11)	Just the operator.
		m^{-1}	(use nabla)	It has units.
			$\nabla \times$	
Splat with a				Vorticity plus Divergence with U=2
twist	One unit of	poor ask		75
C17 150				50
	divergence	but it's a		2.5
	plus one unit	velocity		-25 - /////
	of vorticity	field,		-50-
		m s ⁻¹		-7.5
		2		-10.0 -155.0 -25. 00. 22. 75. 22.0
troposphere			the lowest	z
the layer of air			~10km of the	
that radiation				
cools, so that			atmosphere;	
surface solar			where most	
heating must			weather	
warm it with			occurs.	T
weather				_
motion			dT/dz < 0	
monon				

Gradient of			$\partial \Phi$ $\partial \Phi$	< use i,j,k (Cartesian unit vectors).
$\Phi(x,y,t)$		2	$i\frac{1}{2}+j\frac{1}{2}$	This is the <i>geopotential</i> .
$(\Phi = gZ)$		m s ⁻²	$+k\frac{\partial\Phi}{\partial z}$	3 1
vertical shear			$\partial u/\partial z$	=
of zonal wind		s ⁻¹	·	
		3		∯tr.
Flux of			How much	(quantity in parentheses)
specific momentum		(200/0)	momentum (per unit	per square meter per second
momentum		(m/s) m ⁻² s ⁻¹	mass) carried	
(that is, flux of			through a unit	
velocity)			area per	
A Class Cald			second	anna defermation for instance
A flow field with curvature	Remember,			pure deformation for instance
but not	arrows for		Practice	75
vorticity.	vectors apply at their tail		on the	55
Sketch it	point, and		back of	00
carefully as vectors at the	length is		page, then Just do it>	23
indicated	proportional		Just do It	-7.5
points.	to speed.			-100 -100 -15 -50 -25 00 25 50 75 300
local				Hey, don't I sometimes see some
(Eulerian)	да	(units of q)		subcript on \overrightarrow{V} or $\overrightarrow{\nabla}$?
tendency of q	$\frac{\partial q}{\partial t}$	s ⁻¹	"	Yes, like \vec{V}_h for horizontal wind, or
				$\vec{\nabla}_{p}$ for partial space derivatives
Local or				taken @constant p
Eulerian	∂T	** -1		
tendency of	$\left. \overline{\partial t} \right _{x,y}$	$K s^{-1}$		
T(x,y,t)				
one name:	f	s ⁻¹	$f = 2\Omega \sin(\varphi)$	another name:
Mass flux			How much	Mass flux out
		$(k\sigma)$	(mass)	$F_{x} - \frac{\partial F_{x}}{\partial x} \frac{\Delta x}{2}$ $\int_{\Delta z} F_{x} + \frac{\partial F_{x}}{\partial x} \frac{\Delta x}{2}$
	ho V	(kg) m ⁻² s ⁻¹	moving	$\frac{\partial \mathbf{x} \cdot \mathbf{z}}{\partial \mathbf{x}}$ \rightarrow $\frac{\partial \mathbf{x} \cdot \mathbf{z}}{\partial \mathbf{x}}$
	F '	2	through a unit	
			area per second	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Circulation,				-
the path				
integral around a	С		$\oint V_s ds$	
closed curve			loop	
of the <i>curve</i> -				
tangential				

component of the flow				irculation is defined as the line integral of the velocity around any closed curve of the property of the pro
vertical component of vector vorticity	ζ	s ⁻¹	$k \cdot (\nabla \times \mathbf{V})$	
	$\frac{dq}{dt}$	(units of q) s ⁻¹	"	"
latitude	φ (a scalar coordinate varying only in one spatial direction)	degrees (or radians)	Latitude is an angle from the center of the Earth. That's why we take its sine and cosine.	North Pole
Gradient of p(x,y) where p is pressure	∇р	Pa/m Kg m ⁻² s ⁻²	sketch some contours with H and L, & indicate vectors that illustrate> concept	
	(use nabla): $\nabla^2 T$	K m ⁻²		
PGF		m s ⁻²	$\frac{-1}{\rho} \nabla \mathbf{p}$ or $-\nabla \Phi$	
vertical advection of (meridional momentum per unit mass)	$-w\frac{\partial}{\partial z}(v)$	m s ⁻²	rate of change of v due to advection by vertical wind component	Get used to fluid dynamics presuming <i>per unit mass</i> .
Radius of earth in MKS units	a	m	$(10^7 \text{m}) / (\pi/2)$ = 6341 km	
confluence without convergence			sketch> carefully (streamlines and isotachs)	I

Temperature	T(x,y,t)	K or °C (accepted Joules)	a measure of the energy of molecular motion ("heat")	
omega	ω	Pa s ⁻¹	p, verticalvelocity of airin p coord.	draw vector for ω>0: downward motion
Local or Eulerian tendency of T(x,y,t)			Rate of change of T with time for a thermometer at a given location	T at a point Slope of T(t) curve
cause and effect			"correlation is not causation"	https://xkcd.com/552/ THE BOOK OF WHY THE NEW SCIENCE OF CAUSE AND EFFECT