Bases de données

DIU

Sofian MAABOUT

maabout@labri.fr

Au menu

- C'est quoi une Base de Données (BD) ?
- C'est quoi un Système de Gestion de Bases de Données (SGBD) ?
- Le cas particulier des BD's relationnelles
 - Structure
 - Interrogation
 - Algèbre relationnelle (langage théorique)
 - SQL (langage utilisé en pratique)
 - Aspects "avancés"
 - Mise à jour des données
 - Définition/création d'une BD
 - Contraintes sur les données
 - Accès concurrents à une BD

Au menu

- C'est quoi une Base de Données (BD) ?
- C'est quoi un Système de Gestion de Bases de Données (SGBD) ?
- Le cas particulier des BD's relationnelles
 - Structure
 - Interrogation
 - Algèbre relationnelle (langage théorique)
 - SQL (langage utilisé en pratique)
 - Aspects "avancés"
 - Mise à jour des données
 - Définition/création d'une BD
 - Contraintes sur les données
 - Accès concurrents à une BD

Base de données: que sa quo

- Pas de définition précise
- Tentative: une collection de données ayant une structure particulière
 - A la limite
 - Le système de fichiers d'un système d'exploitation est une BD: *Collection* de fichiers dans une *structure* arborescente
 - Le WEB: collection de sites avec une structure en réseau (graphe orienté)
 - Classeur Excel: collection de cellules structurées en Feuilles de calcul et tableaux
 - ...

Bases de données: que sa quo

- Communément et historiquement, on parle de bases de données dès lors que l'on définit:
 - Un modèle ou une structure de données
 - Un langage de manipulation de ces données
 - Interrogation et
 - mise à jour
- Les modèles les plus connus (ordre chronologique):
 - Modèles hiérachique et réseaux (60's): Codasyl, Socrates, Cobol
 - Modèle relationnel: 70's
 - Modèle orienté objet : Fin 80's, début 90's
 - Modèle déductif : Fin 80's, début 90's
 - Modèle semi-structuré: Mi-90's (XML, JSON, ...)
 - Modèles No-SQL: ~-05's.: objet-document, graphe, ...

Modèle relationnel

Modèle théorique proposé par Ted Codd (IBM) en 1970.

 Premier système de gestion de bases de données relationnel (SGBD) commercial en 1979 par Relational Software (Oracle)

• Dernière version d'Oracle: 19.c sortie en 2019

- Dans le Top 10 mondial des sociétés éditrices de logiciel:
 - IBM (DB2, ...), Oracle (Oracle), SAP (SAP)

Modèle relationnel: structure

- Une BD relationnelle est constituée d'un ensemble de relations (ou tables)
- Une relation est un tableau
 - qui a un nom
 - Où chaque colonne (appelé aussi attribut ou champ) et a un nom
 - Où chaque ligne est un enregistrement (ou tuple).
 - Deux relations dans la même BD ne peuvent pas avoir le même nom
 - Deux attributs dans la même relation ne peuvent pas avoir le même nom

Exemple: Relation « Livre »

Livre	N°Livre	Titre	NomAuteur	Editeur
	137 La peste		Camus	Gallimard
	11 Le monde selong Gar		Irving	Folio
	46 L'assomoire		Zola	Livre de Poche
	12	L'étranger	Camus	Gallimard

Exemple: Base de données « Bibliothèque »

- Livre(N°Livre, Titre, Auteur, Editeur)
- Exemplaire(N°Livre, N°Exemplaire, Disponible)
- Adhérent(N°Adhérent, Nom, Prénom, Adresse, Mail, Phone)
- Prêt (N°Livre, N°Exemplaire, N°Adhérent, DateEmprunt, DateRetour)

En fait, pourquoi l'appeler modèle « relationnel »?

- Basé sur la notion mathématique de relation.
- Soient A_1, ..., A_m des ensembles de valeurs
- $A_1 \times A_2 \times \cdots \times A_m$ désigne le produit cartésien de ces ensembles
- Une relation sur ces *m* ensembles est un sous-ensemble de leur produit cartésien
- Exemple:
 - N°Livre = { 11, 46, 137}, NomAuteur={Camus, Zola, Irving}, Titre={La Peste, Le monde selon Garp, L'assomoire, L'étranger}, Editeur={Gallimard, Poche, Folio}
 - La relation Livre est un sous-ensemble du produit de ces 4 ensembles
 - Produit : <u>toutes</u> les associations possibles
 - Relation: <u>seulement</u> les associations correctes
 - Une association est un quadruplet ou simplement un tuple ou bien encore enregistrement

Interrogation d'un BD relationnelle (BDR)

- A l'origine, 2 langages « théoriques » ont été proposés pour les BDR:
 - L'algèbre relationnelle
 - Le calcul relationnel
- Algèbre: basée sur un ensemble d'opérateurs
- Calcul: basé sur la logique de premier ordre (calcul de prédicats)

- Langage pratique: SQL
 - C'est le langage standard utilisé par tout SGBD relationnel

Algèbre relationnelle

- Opérateurs de base:
 - Projection
 - Sélection
 - Renommage
 - Union, Intersection, Différence
 - Produit cartésien
- Opérateurs supplémentaires:
 - Jointure (naturelle)
 - Jointure externe
 - Division
 - ...

Algèbre relationnelle: Projection

- Notation : $\pi_{Attributs}(relation)$
- Résultat: Seules les attributs de la relation qui sont mentionnés, sont retournés dans le résultat

R	Α	В	С
	a1	b1	c1
	a2	b2	c2
	a1	b3	c1
	a3	b2	c2

$$\pi_{A,C}(R) = egin{array}{c|c} A & C \ \hline a1 & c1 \ \hline a2 & c2 \ \hline a3 & c2 \ \hline \end{array}$$

- Le résultat est une relation « sans nom »
- Relation = ensemble donc pas de doublons: <a1, c1> n'apparaît qu'une seule fois
- $\pi_{NomAuteur}(Livre) = \{Zola, Irving, Camus\}$ Pas besoin d'afficher 2 fois Camus

Algèbre relationnelle: sélection

- Notation : $\sigma_{condition}(relation)$
- Résultat: Seuls les enregistrements de la relation qui satisfont la condition sont retournés dans le résultat

R	Α	В	С
	a1	b1	c1
	a2	b2	c2
	a1	b3	c1
	a3	b2	c2

$$\sigma_{C=c2}(R) = \begin{array}{c|cccc} A & B & C \\ \hline a2 & b2 & c2 \\ \hline a3 & b2 & c2 \end{array}$$

Les livres écrits par Camus : $\sigma_{NomAuteur=Camus}(Livre)$

Algèbre relationnelle: composition d'opérations

 Résultat d'une opération est une relation ⇒ On peut appliquer un opérateur à ce résultat

• Le titre des livres de Camus $\pi_{Titre}(\sigma_{NomAuteur=Camus}(Livre))$

L'algèbre est un langage fermé

• Grâce à la composition, on peut exprimer des requêtes plus ou moins sophistiquées

Algèbre relationnelle: Renommage

- Notation : $\rho_{Attribut \rightarrow Attribut}$, (relation)
- Résultat: Le contenu de la relation est retourné. Seul le nom d'un attribut est modifié $\rho_{Attribut \to Attribut}$, (relation)

R	Α	В	С
	a1	b1	c1
	a2	b2	c2
	a1	b3	c1
	a3	b2	c2

$$\rho_{A\to D}(R) =$$

R	D	В	С
	a1	b1	c1
	a2	b2	c2
	a1	b3	c1
	a3	b2	c2

Les titres de Camus: $\rho_{Titre \rightarrow TitreCamus}(\sigma_{NomAuteur=Camus}(Livre))$

Dans le résultat, on aura une colonne qui s'appellera « TitreCamus » et non pas « Titre »

Algèbre relationnelle: Union, Intersection, Différence

Opérations ensemblistes classiques

• Notations: R1 \cup R2, R1 \cap R2, R1 - R2

• Résultat: Les enregistrements qui sont dans R1 OU dans R2, ceux qui sont dans R1 ET R2, ceux qui sont dans R1 mais PAS dans R2

• Il faut que R1 et R2 aient le même schéma (mêmes attributs nommés de la même manière).

Algèbre relationnelle: Union, Intersection, Différence

R1	А	В	С
	a1	b1	c1
	a2	b2	c2
	a1	b3	c1
	a3	b2	c2

R2	А	В	С
	a1	b1	c1
	a2	b3	c2
	a1	b3	c1

$$R1 \cup R2 = \begin{array}{|c|c|c|c|}\hline A & B & C \\ \hline a1 & b1 & c1 \\ \hline a2 & b2 & c2 \\ \hline a1 & b3 & c1 \\ \hline a3 & b2 & c2 \\ \hline a2 & b3 & c2 \\ \hline \end{array}$$

$$R1 \cap R2 = \begin{vmatrix} A & B & C \\ a1 & b1 & c1 \\ a1 & b3 & c1 \end{vmatrix}$$

	Α	В	C
R1 - R2 =	a2	b2	c2
	a3	b2	c2

Algèbre relationnelle: Produit Cartésien

Notation: R1 × R2

• Résultat : chaque ligne de R1 est « composée » avec TOUTES les lignes de R2

• Condition: Il faut que les attributs de R1 soient distincts de ceux de R2

Les attributs dans le résultat sont ceux de R1 et ceux de R2

R1	Α	В	С
	a1	b1	c1
	a2	b2	c2

R2	D	Е
	d1	e1
	d2	e2
	d3	e3

$$R1 \times R2 =$$

А	В	С	D	Е
a1	b1	c1	d1	e1
a2	b2	c2	d1	e1
a1	b1	c1	d2	e2
a2	b2	c2	d2	e2
a1	b1	c1	d3	e3
a2	b2	c2	d3	e3

Algèbre relationnelle: exemple

- Prêt(N°Adhérent, N°Livre, ...) Livre(N°Livre, Titre, ...)
- Les titres des livres empruntés par l'adhérent 154.
 - On compose chaque Prêt à chaque livre: Prêt x Livre
 - Mais pas possible car on a N°Livre qui est attribut commun
 - On renomme d'abord le N°Livre dans une des deux relations
 - $\rho_{\text{N°Livre} \rightarrow \text{NL}}(\text{Livre})$
 - On compose le résultat avec Prêt : Prêt x $\rho_{N^{\circ}Livre \rightarrow NI}$ (Livre)
 - On ne garde que les prêts associés au livre qui les concèrne
 - $\sigma_{\text{N°Livre}=\text{NL}}(\text{Prêt x } \rho_{\text{N°Livre}\rightarrow\text{NL}}(\text{Livre}))$
 - On ne garde que les prêts qui concernent l'adhérent 154
 - $\sigma_{\text{N°Adh\'erent=154}}(\sigma_{\text{N°Livre=NL}}(\text{Pr\'et x }\rho_{\text{N°Livre}\rightarrow\text{NL}}(\text{Livre})))$
 - On ne retourne que l'attribut Titre dans le résultat
 - π_{Titre} ($\sigma_{\text{N°Adh\'erent=154}}$ ($\sigma_{\text{N°Livre=NL}}$ (Prêt x $\rho_{\text{N°Livre}\rightarrow\text{NL}}$ (Livre))))

Algèbre relationnelle: quelques remarques

- Les opérations ne sont généralement pas commutatives
 - π_A ($\sigma_{B=b1}$ (R)) n'est pas équivalente à : $\sigma_{B=b1}$ (π_A (R))
 - Observer qu'une fois qu'on a projeté sur A, il devient impossible de vérifier B=b1
- Pour une même requête, il peut exister plusieurs expressions équivalentes:
 - π_{Titre} ($\sigma_{\text{N°Adh\'erent=154}}$ ($\sigma_{\text{N°Livre=NL}}$ (Prêt x $\rho_{\text{N°Livre}\rightarrow\text{NL}}$ (Livre))))
 - $\pi_{\text{Titre}} (\sigma_{\text{N°Livre=NL}} (\sigma_{\text{N°Adh\'erent=154}} (\text{Pr\'et}) \times \rho_{\text{N°Livre} \rightarrow \text{NL}} (\text{Livre})))$
- Certains opérateurs sont unaires: projection, sélection et renommage, d'autres sont binaires: ensemblistes et produit cartésien.

Algèbre relationnelle: Jointure

- Opération qui simplifie l'écriture de requêtes nécessitant un renommage, un produit et une sélection:
- Notation : R1 ⋈ R2
- Résultat : chaque tuple de R1 est composé à tout tuple de R2 avec qui il partage les mêmes valeurs sur les attributs communs aux deux tables

Algèbre relationnelle: jointure

R1	А	В	С
	a1	b1	c1
	a2	b2	c2

R2	C	D
	c1	d1
	c1	d2
	c3	d2

R1 ⋈ R2 =

Α	В	С	D
a1	b1	c1	d1
a1	b1	c1	d2

Prêt(N°Adhérent, N°Livre, ...) Livre(N°Livre, Titre, ...) Les titres des livres empruntés par l'adhérent 154. π_{Titre} ($\sigma_{\text{N°Adhérent=154}}$ (Livre \bowtie Prêt))

Algèbre relationnelle: jointure

• En pratique, la jointure est une opération très fréquemment utilisée dès lors que l'on a besoin de combiner 2 ou plusieurs tables

• Le produit cartésien est quant à lui rarement utilisé

 Si les deux tables qu'on veut joindre n'ont aucun attribut commun, alors la jointure revient à réaliser leur produit

Algèbre relationnelle: remarques générales

- Trouver l'expression d'une requêtes en algèbre revient à
- Identifier les tables qu'on doit mettre en jeu
 - Soit parce qu'elles contiennent des attributs qu'on veut afficher
 - Soit parce qu'elles contiennent des attributs sur lesquels on veut exprimer des conditions
 - Soit parce qu'elles permettent d'établir des liens entre tables
- Faire attention à l'enchainement des opérations

Algèbre relationnelle: table de liaison

- Adhérent(N°Adhérent, Nom, ...),
- Afficher le titre des livres empruntés par un adhérent dont le nom est « Dupont »
 - On utilisera Livre car c'est elle qui contient l'attribut Titre qu'on doit afficher (retourner)
 - On utilisera Adhérent car on doit poser une condition sur le nom.
 - Il n'y a pas de lien direct entre ces deux tables permettant de dire que tel adhérent a emprunté tel livre.
 - Pour établir le lien entre Livre et Adhérent, on utilise la table Prêt.
 - π_{Titre} ($\sigma_{\text{NomAdh\'erent=Dupont}}$ (Livre \bowtie Prêt) \bowtie Adhérent)

Algèbre relationnelle

- Malgré la simplicité de ses opérations, l'algèbre permet d'exprimer des requêtes plus ou moins sophistiquées
- Même si on n'utilise jamais l'algèbre en pratique, il est important de la comprendre car cela est très utile pour exprimer les requêtes en SQL
- Certaines requêtes simples inexprimables en algèbre: afficher le nombre total de livres
- La puissance d'expression de l'algèbre est équivalente à celle du Calcul relationnel (pas vu). Ex: Nom et prénom des adhérents ayant emprunté un livre
 - {(N, P)| \(\preceq\) x1, x2, x3, x4, x5, x6, x7, x8 \(\text{Prêt}\) (x1, x2, x3, x4, x5) \(\text{AND Adhérent}(x1, N, P, x6, x7, x8)\)}

Conclusion

- Quoi retenir ?
 - Structure d'une BD relationnelle
 - Expression de requêtes en algèbre
- Généralement, 2 types d'exos:
 - Requête en français à exprimer en algèbre
 - Requête en algèbre et
 - Donner son résultat étant donnée une instance de BD (petit jeu de données)
 - Donner ce qu'elle exprime en français.