Travaux pratiques de Synthèse des régulateurs Numériques analogiques

_	_				
-	1	7	r	-	
	1		B.	,	- 1

Réglage d'un PID par :(ZieglerNichols, CohenCoon, pulsation critique)

Outils: matlab

Enseignant : ben abdallah .A

Nom : Abderrahim

Problème

<u>Partie 1</u>: (10 points)

Soit un procédé décrit par la fonction de transfert suivante : $H(s) = \frac{2}{(s+1)^3}$

Sachant que ce procédé peut être approximer par : $\frac{k}{(1+T_s)}e^{-x}$

- 1/Tracer la réponse indicielle du système calculer les paramètres : (k, T, τ)
- 2/ En utilisant la méthode de zeiglernichols :
- 2.1/ Déterminer les coefficients du régulateur PID (k_p, T_i, T_d) en vous servant de la réponse indicielle. (Méthode de la réponse indicielle) :

11 num=2: 1 den = [1 3 3 1]: syst = H (num, den)

step (num, den)

prid

2/1/ Methode de Zeiplenniehols: PID: kp = 1,2×T = 2,7

Ti = 27 = 1,6: TJ = 0,5x T = 0,45.

2.2. Déterminer les coefficients du régulateur PID (k_p, T_i, T_d) en vous servant du gain critique et de pulsation critique. (Méthode de pompage) :

 $H_{BF} = \frac{2k}{(1+5)^{3}} = 2k = 2k = 2k$ $\frac{1+2k}{(1+5)^{3}} = (1+5)^{3} + 2k = 1+35+35^{2}+3^{3}+2k = 5^{3}+35^{2}+35+(1+2k)$

on brace la table de Routh prin: 53,352, 35 + 1 + 2/c.

 $\Rightarrow \frac{-2k}{3} \Rightarrow \frac{-8}{3} \Rightarrow k \Rightarrow k = 4$

P = 153 + 3* 5^2 + 3* 5 + 9 = 0 5 = solve (9).

Tc = (2 pi)/1,732.

D'après se tobleau de Zeigler Nichols base mu le limite de stabilité $k\rho = 0.6 \times kc = 0.6 \times y = 2.4$ $T_0 = \frac{7}{9} = \frac{3.6277}{8} = 0.453$. => Tc = 3,6277.

8

3/ En utilisant la méthode cohen coon :

3.1/ Déterminer les coefficients du régulateur PID (k_p, T_i, T_d) en vous servant de la réponse indicielle. (Méthode de la réponse indicielle) k = 2, T = 3.2, T = 9.8

 $\frac{12 \times 7 \times (16 \times 3, 2 + 3 \times 98)}{12 \times 2 \times 3, 2 \times 9, 3} = 2,833.$ $7: = 7 \left(\frac{32 + 6 \times 5}{7} \right) = 4.3891$

4/Remplir le tableau comparatife suivants

Coefficients Méthode	kp kp	Ti	Td
Ziegler-nicols	2,7	1,6	0,4
Cohen-coon	2,833	1,789	923
Pulsation critique	2,4	1,813	0,453.

Tableau 1

4 / Tracer les réponses du système en boucle fermée corrigée par les trois régulateurs synthétisés sur le même graphique et comparer les performances.

4.1/Tracer l'allure de la réponse du système corrigé en boucle fermée pour chaque cas :

Figure 1

II .2.

4.2/ Comparer les performances de trois régulateurs synthétisés, interpréter les résultats.

Méthode	Temps de montée	Marge de phase	Erreur statique
Ziegler-nicols			
Cohen-coon			
Pulsation critique			-

Tableau 2	

* * * * * * * * * * * * * * * * * * * *	

1.0	
Note:/10	
11016 / 10	

Partie 2: (8points)

2.1/ En vous servant du régulateur offrant les meilleures performances (calculé en 4/ partie 1)

Câblez le schéma suivant sur **simulink**, tracer la réponse du système ainsi que la commande en boucle fermée corrigée pour :

v(t)=0, b(t)=0. Temps de simulation :20s

Figure 2. Structure de correction avec PID

	T		
	 -	 	
	-		

Figure 3

	Kt	
PI	0.97	3.31
	Kτ	0.57
PID	1.2 <i>T</i>	27
	Kτ	Aliabals
Table	eau 1. Réglage de	Ziegler Nicriois

AU : 2021-2022 --- Ecole nationale d'ingénieurs de gabes-Département de génie électrique - Travaux pratiques srna

2.2/ Appliquer à présent un bruit blanc (amplitude 0.1) sur l'entrée (v(t)=0.1), la perturbation sur la sortie étant nulle (b(t) = 0) à l'instant t=10s. Tracer les signaux de commande et de sortie dans les deux cas de poursuite et de régulation.

	1					T	
					1		
					-		
					1		
	+			-	-		
		1			1		
					-		
	1			1			
					-		
	1				1		
	1						
1						1	
						1	
		1					
	1						
	1	1	1	1			

Figure.4

2.3/ Ajouter dans ce qui suit un échelon de perturbation sur la sortie (b(t) =0.05) à l'instant t=10s (v(t) étant nulle), Tracer les signaux de commande et de sortie dans les deux cas de poursuite et de régulation

	110			

2.1/interpréter les résultats

Note:.../8