

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

biochemica
Vol. 18, No. 1, pp. 101-106, 1975
© 1975 by Marcel Dekker, Inc.
Printed in the United States of America

Fig. 5.

bioassay of H_2O_2 by H_2O_2 - catalase system

Fig. 7.

Fig. 6.

Fig. 8.

PROTEIN SEQUENCE OF ELASTASE INHIBITOR

DIRECT SEQUENCE

X = UNIDENTIFIED T = TRYPTIC FRAGMENTS C = CHYMOTRYPTIC FRAGMENTS

Fig. 9.

Fig. 10.

CAM ELASTASE INHIBITOR
PEAK 1(33 - 34), 33 - 35
CHYMOTRYPTIC DIGEST
C18 0.2AU

Fig. 11.

Fig. 12.

Fig. 13.

AlaGlnGluProValLysGlyProValSerThr

1 → ELI1
AATT CGAGCTCGGTACCATACCTGCATATGCTCAAGAACCGAGTTAAAGGT CCTGTGTCTACT
GCTCGAGCCATGGTATGGACGTATCGAGTTCTGGTCAATTCCAGGACACAGATGA

LysProGlySerCysProIleIleLeuIleArgCysAlaMetLeuAsnProProAsnArg

63 → ELI3
AAGCCAGGTTCTTGTCCATTATCTTGATT CGTT GCGCTATGTTAAACCCACCTAACCGT
TTCGGTCCAAGAACAGGATAATAGAAACTAAGCAACGCGATACAATTGGGTGGATTGGCA
ELI2 ←

CysLeuLysAspThrAspCysProGlyIleLysLysCysCysGluGlySerCysGlyMet

123 → ELI5
TGTTTGAAGGACACTGATT GTCCAGGTATCAAAAAGT GCTGTGAAGGTT CCTGCGGTATG
ACAAA ACTT CCTGTGACTAACAGGTCCATAGTTTCACGACACTTCCAAGGACGCCATAC
ELI4 ←

AlaCysPheValProGlnEndEnd

183 GCTTGTT CGTT CCACAATAATAG

CGAACAAAGCAAGGTGTTATTATCCTAG 210

ELI6 ←

Fig. 14.

Ala Gln Glu Pro Val Lys Gly Pro Val Ser Thr Lys Pro Gly Ser Cys
GCG CAA GAG CCA GTC AAA GGT CCA GTC TCC ACT AAG CCT GGC TCC TGC

5' DNA

Sequence

Pro Ile Ile Leu Ile Arg Cys Ala Met Leu Asn Pro Pro Asn Arg Cys
CCC ATT ATC TTG ATC CGG TGC GCC ATG TTG AAT CCC CCT AAC CGC TGC

Leu Lys Asp Thr Asp Cys Pro Gly Ile Lys Lys Cys Cys Glu Gly Ser

TTG AAA GAT ACT GAC TGC CCA GGA ATZ AAG AAP TGC TGT GAA GGC TCT

Cys Gly Met Ala Cys Phe Val Pro Gln

TGC GGG ATG GCC TGT TTC GTT CCC CAG

Z = T, C or A

P = A or G

Fig. 19.

Fig. 15.

Ala Gln Glu Pro Val Lys Gly Pro Val Ser Thr Lys Pro Gly Ser Cys
GCG CAA GAG CCA GTC AAA GGT CCA GTC TCC ACT AAG CCT GGC TCC TGC

5' DNA

Sequence

Pro Ile Ile Leu Ile Arg Cys Ala Met Leu Asn Pro Pro Asn Arg Cys
CCC ATT ATC TTG ATC CGG TGC GCC ATG TTG AAT CCC CCT AAC CGC TGC

Leu Lys Asp Thr Asp Cys Pro Gly Ile Lys Lys Cys Cys Glu Gly Ser

TTG AAA GAT ACT GAC TGC CCA GGA ATZ AAG AAP TGC TGT GAA GGC TCT

Cys Gly Met Ala Cys Phe Val Pro Gln

TGC GGG ATG GCC TGT TTC GTT CCC CAG TAG GAGGGAGCCGGTCCTTGCTGCACCTGT

GCCGTCCCCAGAGCTACAGGGCCCCATCTGGTCCTAAGTCCCTGCTGCCCTTCCCACACTGTCCA
TTCTTCCTCCCATTCAAGGATGCCAACGGCTGGAGCTGCCTCTCATCCACTTCCAATAAAAGAGTTCCG
GAATTC

Poly A 3'

signal

Z = T, C or A

P = A or G

Fig. 16.

Fig. 16 (cont.)

190

210

230

AGTCTCCACTAACGCCTGGCTCCTGCCCAATTATCTTGATCCGGTGC GCCATGTTGAATCC
oValSerThrLysProGlySerCysProIleIleLeuIleArgCysAlaMetLeuAsnPr

250

270

290

CCCTAACCGCTGCTTGAAAGATACTGACTGCCAGGAATCAAGAAGTGCTGTGAAGGCTC
oProAsnArgCysLeuLysAspThrAspCysProGlyIleLysLysCysCysGluGlySe

310

330

350

TTGCAGGGATGGCCTGTTGTTCCCCAGTGAGAGGGAGCCGGTCCTGCTGCACCTGTGC
rCysGlyMetAlaCysPheValProGlnEnd

370

390

410

CGTCCCCAGAGCTACAGGCCCATCTGGTCTTAAGTCCCTGCTGCCCTCCCTCCCAC

430

450

470

ACTGTCCATTCTCCTCCCATTCAAGGATGCCACGGCTGGAGCTGCCTCTCTCATCCACT

490

TTCCAATAAGAGTTCCGGAATTC

Poly A

signal

EcoRI

Fig. 17.

pUEX2 EcoRI SmaI BamHI SalI PstI
 | | | | |
 GAA TTC CCG GGG ATC CGT CGA CCT GCA GCC AAG CTT GCT GAT TGA
 Glu Phe Pro Gly Ile Arg Arg Pro Ala Ala Lys Leu Ala Asp ***

Fig. 18.

