第五章习题

5-1 一个 Mealy 型时序电路的状态图如习题 5-1 图, 试列出该时序电路的状态表。

习题 5-1 图

5-2 已知一 Moore 型时序电路的状态图如习题 5-2 图,试列出该时序电路的状态表。设初始状态为 000,触发器为上升沿起作用,画出工作波形图(不少于八个时钟脉冲)。

习题 5-2 图

5-3 环形计数器电路如习题 5-3 图所示,作出其状态表和状态图。设初始状态为 000,画工作波形图(不少于4个时钟周期)。

习题 5-3 图

5-4 分析习题 5-4 图所示 Mealy 型时序电路:求出其状态转移函数和输出函数, 列出状态表,画出其状态图,分析电路功能。

习题 5-4 图

状态表

X	Q0 Q.	Qo+	Qn+	2
0	0 0	0	0	0
٥	0	0	1	0
٥	10		1	0
0	i	1	0	0
1	0 0	1	1	0
1	0 1	1	0	0
(10	0	0	0
i	1	0	1	1

$$Q_{1}^{n+1} = Q_{0}\overline{Q}_{1} + \overline{Q}_{0}Q_{1}$$

$$= (\times \overline{Q}_{0} + \overline{X}Q_{0})\overline{Q}_{1} + (\times \overline{Q}_{0} + \overline{X}Q_{0})Q_{1}$$

$$(X=1), \quad \overline{Q}_{0}\overline{Q}_{1} + Q_{0}Q_{1} = Q_{0}\overline{Q}Q_{1}$$

$$(X=0), \quad \overline{Q}_{0}\overline{Q}_{1} + \overline{Q}_{0}Q_{1} = Q_{0}\overline{Q}Q_{1}$$

$$Z= \times Q_{0}Q_{1}$$

101

$$Q_0^{n+1} = J \overline{Q}_0 + k Q_0 = X \overline{Q}_0 + \overline{X} Q_0 = X$$

$$Q_1^{n+1} = Q_0 \overline{Q}_1 + Q_0 Q_1 = Q_0$$

$$Z = X Q_0 Q_1$$

习题 5-4 图

状态表

X	00	Q1	(20nt)	Q1+1	3 -
0	0	0	O	0	O
0	0	1	o	0	0
n	1	0	0	1	0
0	i	-	0	1	0
1	ე	0		0	0
i	0	1	1	0	0
1	1	0	1	(0
1	1			1	1

状态轻彩。

列出状态表, 画出其状态图, 分析电路功能。

习题 5-4 图

5-5 分析习题 5-5 图所示脉冲异步时序电路: 求出其状态转移函数和输出函数,列出状态表,画出状态图,分析电路功能。设初始状态为 000,画出其工作波形图 (不少于八个时钟脉冲)。

习题 5-5 图

- 5-6 将习题 5-6 表的原始状态表进行简化。
- 5-7 试用 D 触发器设计一个时序电路,该时序电路的状态转移规律由习题 5-7 表给出。

习题5-6表

- 47625 0.14					
$\setminus X$	$S^{^{n+1}}/Z$				
$S \setminus$	0	1			
A	A/0	E/0			
В	<i>E</i> /1	C/1			
C	A/1	<i>D</i> /1			
D	F/0	G/0			
E	<i>B</i> /1	<i>C</i> /1			
F	F/0	E/0			
G	A/1	<i>D</i> /1			

习题5-7表

$Q_2Q_1Q_0$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$
0 0 0	0 0 1
0 0 1	0 1 1
0 1 0	0 0 0
0 1 1	1 0 1
1 0 0	0 0 0
1 0 1	1 1 0
1 1 0	0 0 0
1 1 1	0 0 0

* 5-8 试用 JK 触发器设计一个时序电路,该电路的状态转移如习题 5-8 图所示。

表给出。

习题5.6基

一)巡3	-0衣				
$\setminus X$	S^{n+1}/Z				
S	0	1			
A	A/0	E/0			
В	<i>E</i> /1	<i>C</i> /1			
\boldsymbol{C}	A/1	<i>D</i> /1			
D	F/0	<i>G</i> /0			
\boldsymbol{E}	B/1	<i>C</i> /1			
F	F/0	E/0			
G	A/1	<i>D</i> /1			

_	and the second	
_	题5-7	7 =
-	元リラー	1

$Q_2Q_1Q_0$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$
0 0 0	0 0 1
0 0 1	0 1 1
0 1 0	0 0 0
0 1 1	1 0 1
1 0 0	0 0 0
1 0 1	1 1 0
1 1 0	0 0 0
1 1 1	0 0 0

10 Q2 1

&Q.	00	01	11	10
0	0	O	0	O
	0		0	

		0	U	ן ט	W
J2 =	Q,	QIDO	Ť	0,0	راراه

Qonti

%	00	01	11	10
0		Ø	0	0
	U		0	0

Qintl	O.O.	00	01	11	10	
	0	0	0	0	0	
	1		0	0	\mathbb{C}	
$Q_i^{\text{ntl}} = \overline{Q_i} Q_o$						

2° D解发器特征函数:

$$Q^{n+1} = D$$

対比得 $\{D_2 = \overline{Q}, Q_1 \overline{Q}_0 + Q_2 \overline{Q}_1 Q_0\}$
 $D_1 = \overline{Q}_1 Q_0$
 $D_0 = \overline{Q}_2 \overline{Q}_1 + \overline{Q}_2 Q_0$

30自房动检查

习题 5-8 图

5-9 设计一个时序逻辑序电路,该时序电路的时序波形如习题 5-9 图所示。

- 5-10 试用 D 触发器设计一个余 3 码 BCD 计数器。
- 5-12 用 T 触发器(将 JK 触发器的 JK 端连接在一起)设计一个模五可逆计数器。
- 5-13 建立序列检测器的原始状态图, 该检测器有一串行输入 X, 一个输出 Z,
 - (1) 当检测到 01001 时输出为 1。输入序列 X 和输出 Z 满足径迹关系:

X: 0 0 0 1 0 0 1 0 1 0 0 1 1 0

Z: 0 0 0 0 0 0 1 0 0 0 0 1 0 0

(2) 当检测到 1001 时输出为 1。输入序列 X 和输出 Z 满足径迹关系:

X: 0 0 0 1 0 0 1 1 1 0 0 1 0 0

Z: 0 0 0 0 0 0 0 1 0 0 0 0 1 0

5-14 建立一个时序电路的原始状态图,它有二个输入 X_1 和 X_0 ,一个输出Z。

5-14 建立一个时序电路的原始状态图。它有二个输入 X_1 和 X_0 ,一个输出Z。只有当 X_1 输入三个(或三个以上)1后, X_0 再输入一个1时,输出Z为 1,

而在同一时刻二个输入不同时为1,一旦Z=1,电路就回到初始状态。这

里, X_1 输入三个 1并不要求连续,只要其间没有 $X_0 = 1$ 插入即可。

状态: <u>X,01</u>, <u>X,14</u>, <u>X,24</u>, <u>X,341</u>, <u>4模</u>,

只有当 X_1 输入三个(或三个以上)1后, X_0 再输入一个1时,输出Z为1, 而在同一时刻二个输入不同时为1,一旦Z=1,电路就回到初始状态。这 里, X_1 输入三个1并不要求连续,只要其间没有 X_0 =1插入即可。

- 5-15 试用 74160 分别构成模 9 计数器。要求用两种方案实现,画出相应的逻辑电路。
- 5-16 试用 74160 设计一个模 24 小时计数器。画出相应的逻辑电路并简单述说工作原理。
- 5-17 试用 74161 分别构成模 10 计数器。要求每种模值用两种方案实现。画出相应的逻辑电路。
- 5-18 试用 74161 构成模 150 计数器, 画出两种方案的逻辑电路。
- 5-19 试分析习题 5-19 图所示计数器,指出计数器的模值M = ?。

习题 5-19 图

- 5-20 习题 5-20 图为可编程计数器。
 - (1)指出其模值 M = ?; 若要求模值 M = 30, 指出计数器的预置值如何确定?
- (2)用该电路实现对 CLK 的分频,如果 CLK 的频率为 10MHz,要求输出频率为 500KHz,其模值 M=? 计数器的预置值如何确定?指出频率输出位置?

习题 5-20 图

- 5-21 试用一片 74194 分别构成模 6、9 移位型计数器。
- 5-22 由 74194 构成的时序电路如习题 5-22 图所示,分析该电路,列出状态转移表,指出电路的逻辑功能。

习题 5-22 图

- 5-23 设计一个序列为 10111010 的序列信号检测器。
 - (1) 试用 74194 和 SSI 门实现电路。
 - (2) 试用 74164 和 SSI 实现电路。
- 5-24 序列信号检测器如习题 5-24 图所示,分析电路检测的序列为什么?

习题 5-24 图

5-25 设计一个输出序列为 00011101 的序列信号发生器,给出 74194、74161、 八选一数据选择器和 SSI 门,试分别用反馈移位型和计数型两种方案实现 电路。 5-26 用 74161、74138(3-8 译码器)和 SSI 门, 试设计双序列码发生器电路, 要求其输出波形如习题 5-26 图所示。

习题 5-26 图

- 5-27 用 74161、8 选 1 数选器和 SSI 门,设计电路实现受 X 控制的序列码发生器,当 X=0 时输出序列 Z: 01001101,当 X=1 时输出序列 Z: 01100110。
- 5-28 选用 MSI 和 SSI 器件设计一个实用的小时计数器,X 为控制端。要求: 当 X = 0 时,为 12 小时制,当 X = 1 时,为 24 小时制。
- 5-29 选择器件设计一个三点平滑滤波器。
- 5-30 选择器件设计一个数字系统,其表达式为

$$Y(n) = Y(n-2) + Y(n-1) + X(n)$$