# Digital Signal Processing

# Gautam Singh

#### CONTENTS

| 1 | Software Installation | 1 |
|---|-----------------------|---|
| 2 | Digital Filter        | 1 |
| 3 | Difference Equation   | 1 |
| 4 | Z-transform           | 2 |
| 5 | Impulse Response      | 3 |
| 6 | DFT and FFT           | 5 |
| 7 | Exercises             | ć |

Abstract—This manual provides a simple introduction to digital signal processing.

### 1 Software Installation

Run the following commands (commands may change depending on Linux distro)

- \$ sudo apt update && sudo apt upgrade
- \$ sudo apt install libffi-dev libsndfile1 python3scipy python3-pip python3-numpy python3matplotlib
- \$ pip3 install cffi pysoundfile

#### 2 DIGITAL FILTER

- 2.1 Download the sound file using
  - \$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/ Assignment\_01/codes/Sound\_Noise.way
- 2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the

synthesizer key tones. Also, the key strokes are audible along with background noise.

1

2.3 Write the python code for removal of out of band noise and execute the code.

Solution: Download the source code using

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/ Assignment\_01/codes/2\_3.py

and execute it using

\$ python3 2\_3.py

2.4 The output of python script the Problem 2.3 is the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

**Solution:** The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.

3 Difference Equation

3.1 Let

$$x(n) = \left\{ 1, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n).

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$
  
$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

**Solution:** The following C code calculates y(n).

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/codes /3 2.c

Run it using

The following code plots Fig. (3.1).

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/codes /3 2.py

Execute it using

\$ python3 3\_2.py



Fig. 3.1: Plot of x(n) and y(n)

## 4 Z-TRANSFORM

## 4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

**Solution:** From (4.1),

$$Z\{x(n-k)\} = \sum_{n=-\infty}^{\infty} x(n-k)z^{-n}$$
 (4.4)  
=  $\sum_{n=-\infty}^{\infty} x(n)z^{-n-k}$  (4.5)

$$= z^{-k} \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$
 (4.6)

$$= z^{-k}X(z) \tag{4.7}$$

Putting k = 1 gives (4.2). For the given x(n), we have

$$X(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3}$$

$$+ 2z^{-4} + z^{-5}$$

$$+ 2z^{-1} + 2z^{-2} + 3z^{-3}$$

$$+ 4z^{-4} + 2z^{-5} + z^{-6}$$

$$= z^{-1}X(z)$$
(4.10)

4.2 Find

$$H(z) = \frac{Y(z)}{X(z)}$$
 (4.11)

from (3.2) assuming that the Z-transform is a linear operation.

**Solution:** Applying (4.7) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.12)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} \tag{4.13}$$

4.3 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.14)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.15)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1 \tag{4.16}$$

**Solution:** We see using (4.14) that

$$\mathcal{Z}\left\{\delta\left(n\right)\right\} = \delta\left(0\right) = 1\tag{4.17}$$

and from (4.15),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.18)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.19}$$

using the fomula for the sum of an infinite geometric progression.

4.4 Show that

$$a^{n}u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.20}$$

**Solution:** 

$$a^{n}u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \sum_{n=0}^{\infty} \left(az^{-1}\right)^{n} \tag{4.21}$$

$$= \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.22}$$

4.5 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.23)

Plot  $|H(e^{j\omega})|$ . Comment.  $H(e^{j\omega})$  is known as the *Discrete Time Fourier Transform* (DTFT) of x(n).

**Solution:** The following code plots Fig. (4.1).

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/ Assignment 01/codes/4 5.py

The figure can be generated using

Using (4.13), we observe that  $|H(e^{J\omega})|$  is given by

$$|H(e^{j\omega})| = \left| \frac{1 + e^{-2j\omega}}{1 + \frac{1}{2}e^{-j\omega}} \right|$$

$$= \sqrt{\frac{(1 + \cos 2\omega)^2 + (\sin 2\omega)^2}{\left(1 + \frac{1}{2}\cos \omega\right)^2 + \left(\frac{1}{2}\sin \omega\right)^2}}$$
(4.25)

$$=\sqrt{\frac{2(1+\cos 2\omega)}{\frac{5}{4}+\cos \omega}}\tag{4.26}$$

$$=\sqrt{\frac{2(2\cos^2\omega)}{\frac{5}{4}+\cos\omega}}\tag{4.27}$$

$$=\frac{4|\cos\omega|}{\sqrt{5+4\cos\omega}}\tag{4.28}$$

and so its fundamental period is  $2\pi$ .

## 5 IMPULSE RESPONSE

5.1 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z) \tag{5.1}$$

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse* response of the system defined by (3.2).



Fig. 4.1: Plot of  $|H(e^{j\omega})|$  against  $\omega$ 

**Solution:** From (4.13),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.2)

$$\implies h(n) = \left(-\frac{1}{2}\right)^{n} u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.3)

using (4.20) and (4.7).

5.2 Sketch h(n). Is it bounded? Convergent?

**Solution:** The following code plots Fig. (5.1).

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/ Assignment\_01/codes/5\_2.py

and execute it using

We see that h(n) is bounded. For large n, we see that

$$h(n) = \left(-\frac{1}{2}\right)^n + \left(-\frac{1}{2}\right)^{n-2} \tag{5.4}$$

$$= \left(-\frac{1}{2}\right)^n (4+1) = 5\left(-\frac{1}{2}\right)^n \tag{5.5}$$

$$\implies \left| \frac{h(n+1)}{h(n)} \right| = \frac{1}{2} \tag{5.6}$$

and therefore,  $\lim_{n\to\infty} \left| \frac{h(n+1)}{h(n)} \right| = \frac{1}{2} < 1$ . Hence, we see that h(n) converges.

5.3 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.7}$$



Fig. 5.1: h(n) as the inverse of H(z)

Is the system defined by (3.2) stable for the impulse response in (5.1)?

**Solution:** Note that

$$\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.8)

$$=2\left(\frac{1}{1+\frac{1}{2}}\right)=\frac{4}{3}\tag{5.9}$$

Thus, the given system is stable. The limit is verified at

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/ Assignment\_01/codes/5\_3.py

and the code can be run using

5.4 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2),$$
 (5.10)

This is the definition of h(n).

**Solution:** The following code plots Fig. (5.2). Note that this is the same as Fig. (5.1).

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/ Assignment 01/codes/5 4.py

and executed using

\$ python3 5 4.py



Fig. 5.2: h(n) as the inverse of H(z)

5.5 Compute

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.11)

Comment. The operation in (5.11) is known as *convolution*.

**Solution:** The following code plots Fig. (5.3). Note that this is the same as y(n) in Fig. (3.1).

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/ Assignment\_01/codes/5\_5.py

and executed using

We use Toeplitz matrices for convolution

$$\mathbf{y} = \mathbf{x} \circledast \mathbf{h}$$

$$\mathbf{y} = \begin{pmatrix} h_1 & 0 & . & . & . & 0 \\ h_2 & h_1 & . & . & . & 0 \\ h_3 & h_2 & h_1 & . & . & 0 \\ . & . & . & . & . & . & . \\ 0 & . & . & h_3 & h_2 & h_1 \\ 0 & . & . & . & h_2 & h_1 \\ 0 & . & . & . & 0 & h_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
(5.12)

5.6 Show that

$$y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$$
 (5.14)

**Solution:** From (5.11), we substitute k := n - k



Fig. 5.3: y(n) from the definition

to get

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$
 (5.15)

$$= \sum_{n-k=-\infty}^{\infty} x (n-k) h(k)$$
 (5.16)

$$=\sum_{k=-\infty}^{\infty}x(n-k)h(k)$$
 (5.17)

6 DFT AND FFT

# 6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(6.1)

and H(k) using h(n).

# 6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

#### 6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$

**Solution:** The following code plots Fig. (6.1) and computes X(k) and Y(k). Note that this is the same as y(n) in Fig. (3.1).

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/ Assignment\_01/codes/6\_3.py

and executed using

# \$ python3 6\_3.py



Fig. 6.1: y(n) from the DFT

6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT. **Solution:** Download the code from

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/ Assignment 01/codes/6 4.py

and execute it using

\$ python3 6 4.py

Observe that Fig. (6.2) is the same as y(n) in Fig. (3.1).

6.5 Wherever possible, express all the above equations as matrix equations.

**Solution:** We use the DFT Matrix, where  $\omega = e^{-\frac{j2k\pi}{N}}$ , which is given by

$$\mathbf{W} = \begin{pmatrix} \omega^0 & \omega^0 & \dots & \omega^0 \\ \omega^0 & \omega^1 & \dots & \omega^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ \omega^0 & \omega^{N-1} & \dots & \omega^{(N-1)(N-1)} \end{pmatrix}$$
(6.4)

i.e.  $W_{jk} = \omega^{jk}$ ,  $0 \le j, k < N$ . Hence, we can write any DFT equation as

$$\mathbf{X} = \mathbf{W}\mathbf{x} = \mathbf{x}\mathbf{W} \tag{6.5}$$



Fig. 6.2: y(n) using FFT and IFFT

where

$$\mathbf{x} = \begin{pmatrix} x(0) \\ x(1) \\ \vdots \\ x(n-1) \end{pmatrix}$$
 (6.6)

Using (6.3), the inverse Fourier Transform is given by

$$\mathbf{x} = \mathcal{F}^{-1}(\mathbf{X}) = \mathbf{W}^{-1}\mathbf{X} = \frac{1}{N}\mathbf{W}^{\mathbf{H}}\mathbf{X} = \frac{1}{N}\mathbf{X}\mathbf{W}^{\mathbf{H}}$$
(6.7)

$$\implies \mathbf{W}^{-1} = \frac{1}{N} \mathbf{W}^{\mathbf{H}} \tag{6.8}$$

where H denotes hermitian operator. We can rewrite (6.2) using the element-wise multiplication operator as

$$\mathbf{Y} = \mathbf{H} \cdot \mathbf{X} = (\mathbf{W}\mathbf{h}) \cdot (\mathbf{W}\mathbf{x}) \tag{6.9}$$

The plot of y(n) using the DFT matrix in Fig. (6.3) is the same as y(n) in Fig. (3.1). Download the code using

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/ Assignment\_01/codes/6\_5.py

and run it using

#### 7 Exercises

Answer the following questions by looking at the python code in Problem 2.3.



Fig. 6.3: y(n) using the DFT matrix

7.1 The command

in Problem 2.3 is executed through the following difference equation

$$\sum_{m=0}^{M} a(m) y(n-m) = \sum_{k=0}^{N} b(k) x(n-k) \quad (7.1)$$

where the input signal is x(n) and the output signal is y(n) with initial values all 0. Replace **signal.filtfilt** with your own routine and verify. **Solution:** The implementation is at

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/ Assignment\_01/codes/7\_1.py

and can be run using

7.2 Repeat all the exercises in the previous sections for the above *a* and *b*.

**Solution:** The filter frequency response is plotted at

To plot the impulse response function h(n), we rewrite H(z) using partial fractions to take the

inverse z-transform.

$$H(z) = \sum_{i} \frac{r_i}{1 - p_i z^{-1}} + \sum_{j} k_j z^{-j}$$
 (7.2)

The impulse response function is plotted at

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/ Assignment\_01/codes/7\_2\_2.py

We see that h(n) is bounded and convergent. Also, since 1 is not a pole of the transfer function, the system is stable. The codes can be run all at once by typing



Fig. 7.1: Filter frequency response



Fig. 7.2: Plot of h(n)

7.3 What is the sampling frequency of the input signal?

**Solution:** Sampling frequency  $f_s = 44.1$  kHZ.

7.4 What is type, order and cutoff frequency of the above Butterworth filter?

**Solution:** The given Butterworth filter is low pass with order 4 and cutoff frequency 4 kHz.

7.5 Modifying the code with different input parameters and to get the best possible output.

**Solution:** A better filtering was found on setting the order of the filter to be 7.