信息学院本科生 2010-2011 学年第二学期 数据结构期末考试试卷 (A卷)答案

专	业:_		年级:	学号:	
姓ź	名:_		成绩:		
得	分	一、单项	选择题(每小题	[2分, 共30分)	
		1. 设n是	描述问题规模的	非负整数,下面程序片段的	的时间复杂度是。
		x = 2;	(x < n/2)		
			x < 17/2) $x = 2*x$;		
	Α. ($O(\log_2 n)$	B. O(n)	C. $O(n log_2 n$	D. $O(n^2)$
2.	元素	a, b, c, d, e	依次进入初始为	空的栈中,所有元素进村	浅且只进入一次, 允许进
	栈、	退栈操作交	替进行。栈空时	,在所有可能的出栈序	列中,以元素 d 开头的序
	列个	数是	o		
	A. 3	3	B. 4	C. 5	D. 6
3.	若元	素 a,b,c,d,e,	f 依次进栈,允	许进栈、退栈操作交替	进行。但不允许连续三次
	进行	退栈工作,	则不可能得到的]出栈序列是。	
	Α. σ	lcebfa	B. cbdaet	f C. abcdef	D. afedcb
4.	己知	循环队列存	储在一维数组A	[0n-1] 中,且队列非空	的 front 和 rear 分别指向
	队头	元素和队尾	元素。若初始时	队列为空,且要求第1~	个进入队列的元素存储在
	A[0]	处,则初始	时 front 和 rear i	的值分别是。	
	Α. (), 0	B. 0, n-1	C. n-1, 0	D. n-1, n-1
5.	若一	棵完全二叉	树有 768 个结点	(,则该二叉树中叶结点	的个数是。
	A. 2	257	B. 258	C. 384	D. 385
6.	在右	图所示的平	衡二叉树(AVI	之树)中插入关键字 48	(a)
	后得	到一棵新平	衡二叉树, 在新	f平衡二叉树中,关键字	
	37 月	听在结点的	左、右子结点。	中保存的关键字分别是	(13) (53)
		o			
	A. 1	13, 48	B. 24, 4	8	(37) (90)
	\mathbf{C}	04 53	D 24 0	0	

7.	若-	一棵二叉树的前序	遍圧	i 序列和后序遍历	序列	月分别为 1, 2, 3, 4	和 4,	3, 2, 1, 则该
	二万	叉树的中序遍历序	列不	会是。				
	A.	1, 2, 3, 4	В.	2, 3, 4, 1	C.	3, 2, 4, 1	D.	4, 3, 2, 1
8.	对一	于下列关键字序	列,	不可能构成某二	二叉	排序树中一条查		各径的序列是
		o						
	A.	95, 22, 91, 24, 94,	71		В.	92, 20, 91, 34, 8	8, 35	
	C.	21, 89, 77, 29, 36,	38		D.	12, 25, 71, 68, 3	3, 34	
9.	下列	前关于图的叙述中	, II	确的是	0			
	I.	回路是简单路径						
	II.	存储稀疏图,用	邻接	E 矩阵比邻接表更	省的	芝间		
	III.	若有向图中存在	拓扑	序列,则该图不	存在	三回路		
	A.	仅II	В.	仅I、II	C.	仅III	D.	仅I、III
10.	无	向图 G = (V, E)中 ⁻	含 7	个顶点,顶点间的	的边	是随机设置的,	为保证	正图 G 在任何
	情况	兄下都是连通的,	则需	要的最少边数是		o		
	A.	6	В.	15	C.	16	D.	21
11.	为	提高散列(Hash)	表	的查找效率,可以	(采	取的正确措施是_		o
	I.	增大装填(载)	因子					
	II.	设计冲突(碰撞) 기	〉的散列函数				
	III.	处理冲突(碰撞) 肘	避免产生聚集(堆积	?)现象		
	A.	仅I	В.	仅II	C.	仅L、II	D.	仅II、III
12.	采	用 Hash 技术,下	面搏	快作中性能不佳的	是_	o		
	A.	搜索给定关键字。						
	В.	按关键字升序排列	列输	出所有元素。				
	C.	删除给定关键字的	内元	素。				
	D.	输出关键字升序扩	非列	位于第 k 位的元素	素。			
13.	为	实现快速排序算法	生, /	寺排序序列宜采用	目的	存储方式是	0	
	A.	顺序存储	В.	散列存储	C.	链式存储	D.	索引存储
14.	己	知序列 25, 13, 10,	12,	9 是最大堆(大根	(堆)	,在序列尾部插	入新え	元素 18,将其
	再训	周整为大根堆,调	整过	程中元素之间进	行的	力比较次数是		.0
	A.	1	В.	2	C.	4	D.	5

15. 对一组数据(2, 12, 16, 88, 5, 10)进行排序,若前三趟排序结果如下

第一趟: 2, 12, 16, 5, 10, 88

第二趟: 2, 12, 5, 10, 16, 88

第三趟: 2, 5, 10, 12, 16, 88

则采用的排序方法可能是。

得 分

二、(本题 10 分) 在任意一棵非空二叉排序树(二叉搜索树, BST) T1 中, 删除某结点后又将其插入,则所得二叉排序树 T2 与原二叉排序树 T1 相比, 会有几种情况? 试证明你的结论。

删除的结点为 A。

分两种情况:

- 1 不变化: 删除的是叶结点。
- 2 有变化: 删除的不是叶结点。再分以下两种情况。

度为 1: 为其原孩子结点 B 的后代(子孙)结点。具体地, 若 B 是 A 的左孩子, 插入 到 B 的右子树中; 若 B 是 A 的右孩子, 插入到 B 的左子树中。

度为 2: 若使用 A 的直接前驱 C 替代, 插入到 C 的右子树中: 若使用 A 的直接后继 D 替代,插入到 D 的左子树中。

证略。

得 分

三、(本题8分)用一维数组存放的一棵二叉树如下图所示:

							İ
Α	В		\mathbf{C}				D
11	ב						1
							i

画出该二叉树,并分别写出先序、中序及后序遍历该二叉树时访问 结点的顺序。

先序: ABCD

中序: ACDB

后序: DCBA

得 分

四、(本题 12 分) 有以下 10 个关键字: 28, 72, 97, 63, 4, 53, 84, 32, 61, 52, 使用归并排序方法将所给关键字排成升序序列,给出排序过程。

初始: 28, 72, 97, 63, 4, 53, 84, 32, 61, 52

i=1: 28, 72, 63, 97, 4, 53, 32, 84, 52, 61

i=2: 28, 63, 72, 97, 4, 32, 53, 84, 52, 61

i=3: 4, 28, 32, 53, 63, 72, 84, 97, 52, 61

i=4: 4, 28, 32, 52, 53, 61, 63, 72, 84, 97

得 分

五、(本题 10 分)设一个哈希表的地址区间为 0-16,哈希函数为 H(K)=K mod 17。采用线性探测法处理冲突,请将关键字序列 19,14,23,01,68,20,84,27,55,11,10,79,12 依次存储到哈希表中,画出结果,并计算平均查找长度。

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
68	01	19	20	55		23				27	11	10	79	14	12	84
1	1	1	1	1		1				1	1	3	3	1	4	1
ASL=20/13																

得 分

六、(本题 15 分)对右面的带权图,回答下列问题。

- 1)给出每个顶点的度。
- 2) 画出图的邻接矩阵。
- 3)使用 Prim 算法求图的最小生成树。

顶点	a	b	c	d	e	f	50
度	3	3	3	6	3	3	3

邻接矩阵

得 分

七、(本题 15 分) 一个长度为 L (L \geq 1) 的升序序列 S, 处在第 $\begin{bmatrix} L/2 \end{bmatrix}$ 个位置的数称为 S 的中位数。例如,若序列 S₁=(11, 13, 15, 17, 19),则 S₁ 的中位数是 15。两个序列的中位数是含它们所有元素的升序序列的中位数。

例如,若 S_2 =(2, 4, 6, 8, 20),则 S_1 和 S_2 的中位数是 11。现有两个等长升序序列 A 和 B,试设计一个在时间和空间两方面都尽可能高效的算法,找出两个序列 A 和 B 的中位数。

```
}
          else
          { // 若元素为偶数个
             start1 = mid1 + 1; // 舍弃 A 的前半部分
             end2 = mid2; // 舍弃 B 的后半部分
          }
      }
      else
          if ( ( start1 + end1 ) % 2 == 0 )
          { // 若元素为奇数个
             end1 = mid1; // 舍弃 A 中间点以后的部分且保留中间点
             start2 = mid2; // 舍弃 B 中间点以前的部分且保留中间点
          }
          else
          { // 若元素为偶数个
             end1 = mid1; // 舍弃 A 的后半部分
             start2 = mid2+1; // 舍弃 B 的前半部分
          }
      }
   }
   return A[start1] < B[start2] ? A[start1] : B[start2];
}
```