

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/41
Paper 4 Mechanics	1 (M1)	Oc	ctober/November 2018
			1 hour 15 minutes
Candidates answer	on the Question Paper.		
Additional Materials	: List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value for the acceleration due to gravity is needed, use 10 m s⁻².

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

find the value	Of F.					
•••••	•••••		•••••	•••••		• • • • • • • • • • • • • • • • • • • •
	•••••	•••••	•••••	••••••		•
•••••		•••••	•••••			• • • • • • • • • • • • • • • • • • • •
				•••••		
••••••	••••••		••••••	••••••		• • • • • • • • • • • • • • • • • • • •
•••••	•••••	••••••	•••••	•••••		•••••
•••••	•••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
	•••••					
						•••••
	•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •

2

f 85	gh-speed train of mass $490000\mathrm{kg}$ is moving along a straight horizontal track at a constant $5\mathrm{ms^{-1}}$. The engines are supplying $4080\mathrm{kW}$ of power.
(i)	Show that the resistance force is 48 000 N.
ii)	The train comes to a hill inclined at an angle θ° above the horizontal, where $\sin \theta^{\circ} = \frac{1}{200}$. that the resistance force is unchanged, find the power required for the train to keep moving same constant speed of 85 m s ⁻¹ .

•••••			•••••				• • • • •
							. .
••••					••••		••••
•••••••••••••••••••••••••••••••••••••••	••••••	•••••	•••••	•••••		••••••	
							•
							••••
							· • • • • ·
							•
•••••			•••••		•••••	•••••	•••••
							••••
•••••					•••••		· • • • • •
							••••
•••••	•••••	••••••	•••••	••••••	••••••	••••••	••••
•••••					•••••		• • • • •
							,
							••••

4

ext	particles A and B, of masses $m \log$ and 0.3 kg respectively, are attached to the ends of a lightensible string. The string passes over a fixed smooth pulley and the particles hang freely below the system is released from rest, with both particles 0.8 m above horizontal ground. Particle are the ground with a speed of $0.6 \mathrm{ms^{-1}}$.
()	Find the tension in the string during the motion before <i>A</i> reaches the ground. [4]
)	Find the value of m .

Coplanar forces, of magnitudes 15 N, 25 N and 30 N, act at a point B on the line ABC in the directions shown in the diagram.

Find the magnitude and direction of the resultant force.	[6]

© UCLES 2018 9709/41/O/N/18

•••••									
•••••	••••••	•••••	•••••	••••••	•••••	••••••	•••••		•••••
			•••••	•••••	•••••	••••••	•••••		•••••
				•••••			•••••		
								•••••	
				••••					
• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	•••••	••••••	•••••		•••••
• • • • • • • • • • • • • • • • • • • •					•••••				•••••
•••••				•••••			•••••		
•••••				•••••			•••••		
• • • • • • • • • • • • • • • • • • • •				•••••					
• • • • • • • • • • • • • • • • • • • •									•••••
•	••••••		•	•••••	•••••	••••••	•••••		•••••
•••••	•••••	••••••	••••••	•••••	•••••	••••••	•••••		•••••
•••••									•••••
									•••••
•••••				•••••			•••••	, 	
				• • • • • • • • • • • • • • • • • • • •					

6

	Show that the decoloration of the most in it 2 m = 2 m in C in it.
	Show that the deceleration of the particle is $\frac{2}{3}$ m s ⁻² and hence find u , giving your answexact fraction.
•	

© UCLES 2018 9709/41/O/N/18

etween the particle and the plane.	[4

7	A particle moves in a straight line starting from rest from a point O. The acceleration of the particle
	at time t s after leaving O is $a \text{ m s}^{-2}$, where
	a = 5.4 - 1.62t.
	(i) Find the positive value of t at which the velocity of the particle is zero, giving your answer as an

(1)	exact fraction. [4]
(ii)	Find the velocity of the particle at $t = 10$ and sketch the velocity-time graph for the first ten seconds of the motion. [3]

© UCLES 2018 9709/41/O/N/18

	•••••
•••	 •
•••	 •••••
•••	•••••
•••	
•••	•••••
•••	 •••••
•••	•••••
•••	•••••
•••	•••••
•••	•••••
•••	
•••	•••••
•••	 •
•••	•••••

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.