

Задание для демонстрационного экзамена по стандартам Ворлдскиллс Россия

по компетенции «Инженерия космических систем»

Задание включает в себя следующие разделы:

- 1. Формы участия
- 2. Модули задания и необходимое время
- 3. Критерии оценки
- 4. Необходимые приложения

Количество часов на выполнение задания: 16 ч.

1. ФОРМЫ УЧАСТИЯ В КОНКУРСЕ

Командный конкурс – 3 человека в команде:

- ✓ конструктор-проектировщик;
- ✓ системный программист;
- ✓ радиоинженер

2. МОДУЛИ ЗАДАНИЯ И НЕОБХОДИМОЕ ВРЕМЯ

Модули и время сведены в таблице 1

Таблица 1

No	Наименование модуля	Рабочее время	Время на
п/п	таименование модуля		задание
1	Модуль 1. 3D-проектирование		
	конструкции КА.		
	Модуль 2. Численное моделирование	C1 09.00-13.00	4 часа
	KA в ПО SX Modeler.	C1 14.00-17.00	3 часа
	Модуль 3. Программирование		
	датчиков, систем, целевой аппаратуры		
2	Модуль 4. Проектирование и		
	изготовление систем ориентации,	C2 09.00-13.00	4 часа
	стабилизации, энергоснабжения	C2 14.00-18.00	4часа
	Модуль 5. Автономные испытания	C2 14.00-18.00	
	спутника		
3	Модуль 6. Сборка спутника и		
	функциональные испытания	C2 10.00-13.00	3 часа
	Модуль 7. Возможность выполнения	C2 14.00-18.00	4 часа
	спутником поставленной задачи		
4	Модуль 8. Оценка стоимости проекта.	C1 17.00-18.00	1 час
	Бережливое производство.	01 17.00 10.00	1 100

Модуль 9. Соблюдение ТБ и ОТ.	
Организация рабочего места	

Участникам предлагается выполнить задание - разработать проект малого космического аппарата - искусственного спутника Земли (ИСЗ), который выполняет функции дистанционного зондирования (ДЗЗ). В процессе проведения экзамена участникам необходимо выполнить 3D-модель, изготовить корпус (опционально - его составляющие) и разработать часть электронного оборудования, осуществить сборку функционального макета и провести основные комплексные наземные испытания, выполнив инженерные расчеты и численное моделирование спутника относительно центра масс.

Также они выполняют программирование бортового компьютера для обеспечения стабилизации и ориентации КА, включения-выключения полезной нагрузки - камеры ДЗЗ и передатчика в заданных координатах или промежуток времени и ряд других задач. В ходе соревнований конкурсанты осуществляют разработку и сборку электронных устройств, трассировку плат, пайку, выполняют работы на станке лазерной резки и печать на 3D принтере, расчеты на прочность, тепловые расчеты (*).

Уже спроектированная модель спутника собирается командой в условно чистой комнате с соблюдением правил работы и нахождения в ней, используя детали, системы, устройства, элементы крепления, изготовленные собственными силами, а также стандартные компоненты, примером которых могут служить компоненты, входящие в состав набора конструктора «ОрбиКрафт» (рисунок 1). Описание стандартного набора компонент «ОрбиКрафт», из которых собирается спутник, представлено здесь: http://orbicraft.sputnix.ru/doku.php

Далее в описании по умолчанию подразумевается наличие набора конструктора «ОрбиКрафт».

Рисунок 1 – Набор конструктора «ОрбиКрафт»

Собранный аппарат (рисунок 2) должен пройти испытания на специальном моделирования (рисунок 3) стенде полунатурного подтвердить свою работоспособность, функциональность. Возможное описание стенда, в составе которого должны быть проведены испытания приводится макета, здесь: http://sputnix.ru.

Рисунок 2 – Собранный спутник

Рисунок 3 - Стенд полунатурного моделирования

Участниками также проводятся испытания в условиях, смоделированных условиях полета спутника на орбите Земли (рисунок 4).

Рисунок 4 - Комплекс имитаторов космической среды «Терра»

В итоге созданная участниками соревнований инженерная модель космического аппарата должна быть максимально приближена к реально

запускаемым на орбиту моделям, пройти все наземные испытания и интегрирована на имитатор последней ступени ракеты-носителя (РН) (*).

Конкурсантам необходимо обеспечить получение Центрами управления полетом (ЦУП) максимально оперативно, т.е. в максимально короткое время, как можно большего количества качественных изображений заданных географических областей в течение активного срока существования КА, при этом спутник должен максимально выполнить поставленные перед ним задачи. Важно подчеркнуть, что данный параметр подтверждается расчетным путем в конце соревнований экспертами, основываясь на результатах наземных испытаний созданной инженерной модели спутника (*).

Окончательные аспекты критериев оценки уточняются членами жюри. Оценка производится как в отношении работы модулей, так и в отношении процесса выполнения конкурсной работы. Если участник конкурса не выполняет требования техники безопасности, подвергает опасности себя или других конкурсантов, такой участник может быть отстранен от конкурса.

Время и детали конкурсного задания в зависимости от конкурсных условий могут быть изменены членами жюри.

Конкурсное задание должно выполняться помодульно. Оценка также происходит от модуля к модулю.

Модуль1: 3D-проектирование и конструирование КА

Модуль необходимо начинать с планирования выполнения всего конкурсного задания полным составом команды - тремя участниками. Команда должна продумать общую концепцию работы, примерное время на выполнение отдельных блоков и участков модуля, определить ответственного за выполнение модуля, распределить обязанности и роли по трудовым функциям внутри группы, о чем сделать соответствующие записи в Приложении № 3 итогового отчета:

- Конструктор проектировщик (выполняет трудовые функции конструктора-проектировщика)
- Радиоэлектронщик схемотехник (выполняет трудовые функции радиоинженера)
- Системный программист (выполняет трудовые функции программиста, системного программиста)

Трудовые функции **слесаря-сборщика КА** может выполнять каждый участник чемпионата, при этом не запрещается команде работать вместе над выполнением всего конкурсного задания.

Документация, информация и программы, необходимые для выполнения конкурсного задания находятся на рабочем компьютере участника в папке на рабочем столе с названием, идентичным дате проведения соревнований - это день С1 чемпионата, пример: 01_01_2018. Образец и полный перечень содержимого папки указан в Приложении № 4.

Для сохранения всех результатов работы команды на каждом компьютере участниками создаются две папки. Одна папка помещается на рабочий стол с названием на английском языке **Project_номер рабочего места**, где после нижнего подчеркивания печатается номер команды, полученный при жеребьевке рабочих мест. Таким же именем необходимо назвать позже и БКУ своего собранного спутника при первом подключении к компьютеру. Вторая папка создается в корне жесткого диска с названием на английском языке: «**Project_C**_», куда сохраняются все проекты кода программиста (рисунок 5).

Рисунок 5 – Расположение и наименование папок

Важно: файл итогового отчета заполняется на одном компьютере и предоставляется к проверке экспертам на площадке (папка **Project_номер рабочего места**).

После этого из папки (пример: **01_01_2018**) на рабочем столе требуется установить программы, необходимые для выполнения конкурсного задания каждому участнику, ответственному за выполнение модуля.

Конструктор-проектировщик определяет общие решения поставленной глобальной задачи, определяется с типом оборудования и программного обеспечения, осуществляет подготовку общего решения чтобы довести выполнение Конкурсного задания до логического завершения.

Он выполняет 3D-моделирование в ПО твердотельного моделирования CAE типа SolidWorks (рисунок 6).

При проектировании необходимо учитывать:

- геометрические и массово-инерционные характеристики. Положение центра масс КА по осям X, Y должно быть максимально приближено к нулевым значениям (для проведения испытаний на стенде полунатурного моделирования), расхождение не должно превышать -10...+10 мм. По оси Z (ось вращения) допускается отклонение не более -150...0 мм. Для этого сборку деталей в ПО 3D моделирования необходимо начинать от центральной точки
 - поля и углы зрения датчиков ориентации,
 - особенности взаимного расположения камеры, отдельных систем, датчиков,

системы раскрытия, поворота солнечных панелей, а также системы энергоснабжения для нее и других требований, специфичных для выполняемой спутником задачи

- возможность дальнейшего изготовления деталей собственными силами на конкурсной площадке. Для этого выполняется сохранение результатов моделирования элементов корпуса спутника, навесного оборудования в расширениях, необходимых для работы на 3D принтерах и станке лазерной резки.
- ограничение габаритов изготавливаемых деталей согласно размеру рабочего стола лазерной резки и 3D принтеров. Функции оператора станка возложить на технического эксперта, который изготовит эти детали по моделям участников. Параметры рабочего материала указываются в день C-2 в качестве изменений 30% КЗ
- используется измерительный инструмент, который входит в перечень предоставляемого инструмента на площадке. Размеры для выполнения задания получают, используя чертеж, собственные идеи или путем точного повторения представленного образца см. Приложение №5.

Рисунок 6 – Главное окно рабочего пространства конструктора-проектировщика

Разработка функциональной модели КА выполняется в ПО твердотельного моделирования (типа SolidWorks) и проходит в несколько этапов:

- 1. 3D-проектирование конструкции КА.
- 2. 3D-проектирование системы энергопитания (СЭП).
- 3. 3D-проектирование системы ориентации и стабилизации (СОС).
- 4. 3D-проектирование системы терморегулирования (СТР).
- 5. 3D-проектирование целевой аппаратуры
- 6. Проектирование резервной СЭП.
- 7. Проектирование бортовой кабельной сети.
- 8. Проектирование системы раскрытия и поворота солнечных батарей

Конструктор-проектировщик осуществляет контроль правильности компоновки 3D модели KA с точки зрения работы бортовых систем. Используются предоставленные организаторами соревнований 3D-модели приборов и систем (из комплекта набора конструктора «ОрбиКрафт») в качестве исходных данных. При 3D-сборки необходимо выполнении учитывать истинный вес элементов конструкции, приборов и датчиков, используя для этой цели малогабаритные точные весы и максимально используются возможности программного комплекса (SolidWorks и др.). При необходимости следует выполнить переопределение массы изделий. Результаты измерений оформляются в приложении итогового отчета.

Специалист выполняет следующие виды работ по проектированию:

- Деталей, узлов, элементов конструкции и крепления корпуса.
- Системы раскрытия, поворота и крепления солнечных батарей.
- Технологических отверстий, скруглений, фасок, прорезей в конструкции КА для крепления систем и датчиков, плат, аккумуляторных отсеков, солнечных панелей и т.д.
 - Деталей подвеса, крепления КА на аэродинамический стенд
 - Общей конструкции модели аппарата (3D сборка).
 - Выполнение расчетов, заполнение документации.
- Измерение программными средствами (САЕ) и расчет кабельной сети в соответствии с выполненной сборкой в 3D-модели,

• Составить правильную блок-схему расположения всех устройств на корпусе спутника и их соответствие 3D-модели. При этом необходимо руководствоваться условием равномерного распределения нагрузки в кабельной сети.

Рисунок 7 – Блок-схема кабельной сети

- Выполнить жгутовку проводов (3 отрезка по 30 мм термоусадочной трубки через равные промежутки между ними),
- Произвести маркировку каждого жгута проводов согласно составленной конкурсантами блок-схеме,
 - Заполнить все данные в таблице пункта II. 4. Приложения отчета.

Модуль 2. Численное моделирование КА в ПО SX Modeler

Радиоинженер рассчитывает количество сеансов съемки и количество сеансов связи с использованием открытого ПО численного моделирования (https://sourceforge.net/projects/sputnixsatellit/files/?source=navbar), оценивает циклограмму работы спутника на орбите с учетом полученных исходных данных. Исходные данные в Приложении №1 выдаются в день С1 каждой команде на конкурсной площадке. На основании информации о полученной циклограмме работы бортовых систем рассчитывается циклограмма работы системы энергопитания (СЭП).

При выполнении модуля **радиоинженер** совместно со специалистом по системе ориентации и стабилизации (**системный программист**) работают над численным моделированием движения спутника по орбите (рисунок 8), подбирая

оптимальные по быстродействию коэффициенты управления PD-регулятора маховичной системы ориентации и стабилизации, использующей в качестве датчиков ориентации солнечные датчики и магнитометр. В последующем эти коэффициенты смогут быть прошиты в бортовое ПО управления функционального макета аппарата.

Рисунок 8 – Главное окно рабочего пространства при выполнении численного моделирования

Кроме PD-регулятора, проводится численное моделирование работы магнитной системы стабилизации, использующей в качестве исполнительных элементов электромагнитные катушки, а в качестве датчика — магнитометр, с целью подбора коэффициентов управления электромагнитными катушками и соотношений длительностей между работой катушек и измерениями магнитометра.

Заполнив все данные из Приложения №1 конкурсного задания в программе SX-Modeler, требуется включить запуск расчетов в программе (рисунок 9), добиться 3D визуализации стабилизации спутника Chibis-M и, увидев табличку на экране «Расчет завершен», внести результаты в ОВС (Orbit Control). По результатам команда оценивает следующие параметры (учитывается падение напряжения на витке не более 20%):

- 1. Параметры аккумуляторной батареи:
- Емкость АКБ.
- Глубину разряда батарей.

- Количество циклов заряда разряда в процессе работы спутника.
- 2. Параметры солнечных батарей:
- размеры солнечных панелей.
- расположение солнечных панелей.
- количество солнечных панелей.
- 3. Параметры ДЗЗ и связи:
- Время включения и выключения камеры при прохождении зоны съемки.
- Время включения и выключения передатчика при прохождении зоны передачи.
 - Количество и качество снимков.
 - Прием телеметрии в ПО OBControl.

Рисунок 9 – Главное окно рабочего пространства при выполнении и визуализации расчетов

В это же время **системный программист** разбирается с выбором языка программирования (C, Python), архитектурой бортового программного обеспечения, средой разработки, способом сборки, прошивки, отладки бортового программного обеспечения. Необходимо выполнить следующие виды работ:

- Составить алгоритм работы БКУ.
- Установить программы и драйвера для работы с системами и датчиками конструктора «ОрбиКрафт».

- написать и скомпилировать коды для проверки всех систем и датчиков из состава набора «ОрбиКрафт».
- Выполнить PrintScreen всех операций и внести данные в приложениеотчет.
- Отправить 3D модели на 3D принтер не печать и детали на резку на лазерном станке

Модуль 3. Программирование датчиков, систем, целевой аппаратуры

Системный программист продолжает выполнение задания по обеспечению работоспособности систем и устройств собираемой модели спутника:

- Разрабатывает общий алгоритм работы КА на орбите, который включает в себя алгоритм работы систем стабилизации, ориентации, раскрытия солнечных панелей, работы полезной нагрузки
- Разрабатывает код для подачи напряжения на устройство пережигания нити системы раскрытия СБ.
- Разрабатывает код проверки всех систем и датчиков спутника, включая не установленные на наш вариант КА
 - Разрабатывает код калибровки систем и датчиков спутника.
- По результатам работы должны быть заполнены соответствующие пункты отчета.

Модуль 4. Проектирование и изготовление систем ориентации, стабилизации, энергоснабжения.

Конструктор-проектировщик проверяет и документирует проект бортовой кабельной сети, указывается длина кабелей, требуемая распиновка в соответствующем разделе Приложения с итоговым отчетом. Затем он вместе с системным программистом выполняет ее изготовление (большинство шлейфов – обжимаются с помощью специального приспособления - кримпера (англ. crimp — обжим, опрессовка), а два кабеля – с помощью пайки) (рисунок 10).

Рисунок 10 – Вид кабеля после обжимки

Экспертами оценивается:

- Качество изготовления кабелей.
- Лужение.
- Отсутствие повреждений изоляции и разъемов.
- Пайка.
- Наличие термоусадки.
- Наличие маркировки кабельной сети.

Радиоэлектронщик – схемотехник выполняет расчет, проектирование и адаптацию с собираемой моделью КА системы раскрытия и поворота солнечных батарей и систему энергоснабжения для нее. Параметры СЭП, тип, наименование, состав радиоэлементной базы заполняется экспертами в день 30% изменения конкурсного задания.

Перечень работ:

- Разработка печатной платы.
- Расчет и разработка стабилизированного источника питания системы энергопитания (СЭП) (рисунок 11).

Рисунок 11 – Схема стабилизированного источника СЭП

- Изготовление жгутов для соединения.
- Сборка и пайка печатной или макетной платы (рисунок 12) с микроконтроллером, датчиками, сервоприводами, полный перечень которых указан в Приложении №6

Рисунок 12 – Печатная плата и сервоприводы

Модуль 5. Автономные испытания спутника

Перед сборкой спутника необходимо закончить работы по изготовлению деталей, узлов, элементов на станке лазерной резки и печати на 3D принтерах. Кабели и жгуты сформированы, промаркированы, проверены тестером, входящим в комплект набора-конструктора «ОрбиКрафт». Собрана система раскрытия и поворота солнечных батарей.

Системный программист продолжает выполнение задания по обеспечению работоспособности систем и устройств собираемой модели спутника:

- Разрабатывает код для корректной и правильной работы систем стабилизации КА.
- Разрабатывает код для корректной и правильной работы систем ориентации КА.
- Разрабатывает код для корректной и правильной работы системы дистанционного зондирования Земли (ДЗЗ), согласно углам установки имитатора солнца, определенному в Приложении № 2.
 - Снимки, полученные при проверке камеры ДЗЗ, фиксируются в отчете.
- Разрабатывает код для корректной и правильной работы системы раскрытия, поворота солнечных панелей КА и системы энергоснабжения для нее.
 - Разрабатывает код для корректной и правильной работы системы связи
 - автономное испытание всех систем и датчиков спутника.
- Результаты выполнения задания заносятся в приложение отчета в виде снимков экрана, фотографий, презентаций, видео.

Модуль 6. Сборка спутника и функциональные испытания

Задание на станке лазерной резки предполагает изготовление деталей, частей корпуса спутника.

После этого начинается сборка аппарата, для чего работа переносится в условно чистую комнату (комната с ограничением доступа и требованием соблюдать правила работ и нахождения в чистой комнате класса 100000). Все необходимые приборы, конструктив, крепеж, инструмент и вспомогательная оснастка заносятся в чистую комнату. Здесь спутник собирается на столе в соответствии с ранее разработанной моделью (согласно технологической карты сборки*).

Экспертами оценивается:

- Хомутовка.
- Наличие контровочной проволоки на резьбовых соединениях крепления маховика к корпусу КА (рисунок 13).

Рисунок 13 – Крепление контровочной проволоки

- Правильность финальной сборки аппарата (соответствие чертежам, выполненным в САЕ).
 - Соответствие последовательности сборки (технологической карте (*).
 - Соответствие кабельной сети документации.
 - Использование заземляющих браслетов, защитных очков.
 - Наличие халатов, шапочек, бахил, перчаток (рисунок 14).

Рисунок 14 – Наличие специализированной одежды в лаборатории

- Заполнение бланков отчетов, (программ и методик испытаний*).
- Снятие и установка предохранительных кожухов (*).

Модуль 4. Проектирование и изготовление систем ориентации, стабилизации, энергоснабжения

Параллельно **системный программист** выполняет пошаговое тестирование всех бортовых приборов в составе макета, используя разработанное им «стендовое» ПО. Далее аппарат тестируют «на столе» по заложенной программистом циклограмме работы: маховики крутятся, передатчик передает, приемник

принимает, камера снимает, СЭП работает, батареи разряжаются и заряжаются, солнечный датчик реагирует на свет, датчик угловой скорости измеряет угловую скорость.

Далее **системный программист** прошивает на борт все коэффициенты управления, выбранные в процессе численного моделирования. Затем занимается составлением блок-схемы работы бортового ПО, реализующего циклограмму работы во время комплексных испытаний КА.

Необходимо обратить внимание на правильность контроля работоспособности всех приборов по отдельности и в соответствии с программойметодикой испытаний (ПМИ), результат диагностики электромагнитной катушки, правильность заполнения форм ПМИ (*); срабатывание механизма раскрытия солнечных батарей; наличие оформленной блок-схемы работы бортового ПО.

Итог: спутник собран, проверен, стоит в «чистой комнате» в ожидании этапа проведения комплексных испытаний на стенде полунатурного моделирования.

Модуль 7. Возможность выполнения спутником поставленной задачи

Спутник выносят из чистой комнаты и устанавливают на стенд полунатурных испытаний, пока неподвижно.

Затем участники контролируют на неподвижном стенде:

- Правильность установки механизма раскрытия солнечных батарей, датчиков ориентации и исполнительных элементов: адекватность, размерность единиц и правильность показания направления на источник света (прожектор) в измерениях солнечных датчиков;
- адекватность, правильность размерности единиц, и правильность измерений датчика угловой скорости (неподвижный спутник, спутник равномерно вращается), а также и магнитометра (с включенным вдоль заданного направления имитатором магнитного поля стенда полунатурных измерений);
- адекватность работы электромагнитных катушек бортовой магнитной системы стабилизации (правильная полярность) (*);
- адекватность, управляемость двигателя-маховика (правильность направления вращения маховика, адекватность измерений скоростей вращения и частоты их выдачи).
- Собственную намагниченность аппарата: программист, электронщик собственное конструктор определяют магнитное annapama поле потенциальные источники магнитного поля внутри него; вносят соответствующие поправки измерений бортового магнитометра в бортовое ПО (*)

Затем приступают к испытаниям на подвижном стенде:

• проверяют балансировку макета на аэродинамическом подвесе: если положение центра масс выше центра вращения, дальше испытания можно не проводить; спутник подлежит корректировке по центру масс и сборке по новой модели;

- включают магнитное поле, проверяют точность определения угла по магнитометру;
- включают прожектор и контролируют правильность реакции системы управления на источник света (должен начать разворачиваться на аэродинамическом подвесе в нужную сторону с использованием маховика или маховиков);
- проверяют правильность работы системы определения ориентации спутника по солнечному датчику и по показаниям по трем осям магнитометра;
- проверяют возможность разворота макета в заданном направлении с использованием маховиков: задают целеуказание, контролируют скорость разворота на аэродинамическом подвесе; точность удержания цели после отработки требуемого разворота.
- работу бортовой системы управления по циклограмме: разворот, фотографирование, передачу фотографии на Землю в Центр управления полетом.
 - качество изображения, полученного с камеры: ориентация, четкость,
- число хороших изображений, полученных за заданный интервал времени.

Эксперты контролируют качество балансировки макета на аэродинамическом подвесе; точность измеряемых величин путем сравнения эталонами; количественные качественные параметры работы И системы управления (быстродействие, точность), качество и объем полученных с «борта» данных камеры.

Модуль 8. Оценка стоимости проекта. Бережливое производство

Параллельно с работой по сборке, испытаниям аппарата выполняется оценка микроспутника функциональными стоимости создания настоящего характеристиками, аналогичными требуемым в проекте. Методика расчета основана Small Satellite Cost Model модели стоимости http://www.aerospace.org/research/space-systems-infrastructure/small-satellite-costmodel/), формулы которой предоставляются участникам. Оценивается стоимость разработки, изготовления, наземных испытаний, запуска и эксплуатации первого опытного образца малого спутника, а также стоимость его отдельных подсистем. Также данные по расчету стоимости можно получить в программе SxModeler. Результаты расчета должны быть оформлены в виде отчета.

Документация оформляется участниками в процессе выполнения работы, от ее качества зависит, поймет ли сторонний наблюдатель, зачем создан тот или иной документ и пригоден ли для дальнейшей работы. Любой документ должен иметь название, авторов, дату создания, версию, оглавление, нумерацию страниц. По сути, он должен включать введение, постановку задачи, ход эксперимента, иллюстрации, выводы, заключение и список литераторы, хотя в каждом конкретном случае состав оглавления может различаться.

Немаловажную роль играет внедрение в процесс выполнения работы принципов бережливого производства, т.е. вовлечение участников в процесс оптимизации рабочего пространства с целью минимизации затрат и максимальной ориентации на результат. Экспертами оценивается также планировка рабочего места, то есть рациональное пространственное размещение всех элементов оборудования, технологической и организационной оснастки, инвентаря, которые обеспечивают экономное использование материала, ресурсов, безопасности труда.

Модуль 9. Соблюдение ТБ и ОТ. Организация рабочего места

Культура производства подразумевает пунктуальность, правильное использование инструмента, экономное расходование ресурсов и материала, работу в индивидуальных средствах защиты (халатах, в перчатках, с респираторами, в бахилах) и с заземлением (когда это необходимо), чистоту и порядок на рабочем месте.

Под организацией рабочего места понимается комплекс мероприятий, направленных на создание на рабочем месте необходимых условий для высокопроизводительного труда, на повышение его содержательности и охрану здоровья участников.

Каждому члену команды необходимо так организовать рабочее пространство, чтобы комфортно было каждому. Эти условия труда должны иметь рациональную планировку и бесперебойное выполнение функций инженера-конструктора, программиста и специалиста по 3D.

4. КРИТЕРИИ ОЦЕНКИ

В данном разделе определены критерии оценки и количество начисляемых баллов (субъективные и объективные) таблица 2. Общее количество баллов задания/модуля по всем критериям оценки составляет 93.

Таблица 2

Раздел	Критерий	Оценки		
		Субъективная (если	Объективная	Общая
		это применимо)		
A	3D-проектирование конструкции КА			
		0	20	20
В	Численное моделирование КА в ПО SX			
	Modeler	0	10	10
С	Программирование датчиков, систем,	0	4	4
	целевой аппаратуры			
D	Проектирование и изготовление систем	0	4	4
	ориентации, стабилизации,			
	энергоснабжения			
Е	Автономные испытания спутника	0	10	10
F	Сборка спутника и функциональные	0	20	20
	испытания			

G	Возможность выполнения спутником	0	20	20
	поставленной задачи			
Н	Оценка стоимости проекта. Бережливое производство	0	3	3
I	Соблюдение ТБ и ОТ. Организация рабочего места	0	2	2
	Итого =	0	93	93

Субъективные оценки - Не применимо.

5. ПРИЛОЖЕНИЯ К ЗАДАНИЮ

Приложение 1

Пример задания для программы SX-Modeler.

1. Имя сценария.

Имя сценария	Chibis-M

2. Имя спутника.

Имя спутника	Chibis-M

3. Время начала моделирования.

Время начала моделирования,	17/10/2016
ДД /ММ / ГГГГ	22:54:55
ЧЧ : ММ : СС	
(UTC)	

4. Время завершения моделирования.

Время завершения моделирования,	18/10/2016
ДД /ММ / ГГГГ	22:54:55
ЧЧ : ММ : СС	
(UTC)	

5. Параметры орбиты.

Тип модели	Кеплерова
Наклонение, градусы	95.304
Эксцентриситет	0.006
Аргумент перицентра, градусы	67
Параметр орбиты, м	8596001
Долгота восходящего узла, градусов	78
Время с момента последнего	1500
прохождения перицентра, сек	

6. Координаты зоны съемки.

Название	Париж
Широта, град	48.8 с.ш.
Долгота, град	2.2 в.д.

7. Координаты приемной станции.

Название	Мумбай
Широта	19 с.ш.
Долгота	72.8 в.д.

8. Характеристики спутника.

Масса, кг	116
Момент инерции Jxx, кг*м2	21
Момент инерции Јуу, кг*м2	21
Момент инерции Jzz, кг*м2	15
Максимальный недиагональный	0,1
элемент, кг*м2	
Макс. погрешность опред.Јіј, %	7
Габарит по оси X, м	1
Габарит по оси Ү, м	1,1
Габарит по оси Z, м	1,2
Положение центра масс Х, м	0,02
Положение центра масс Y, м	-0,03
Положение центра масс Z, м	0,02

9. <u>Энергопотребление систем спутника: напряжение 12 в, мощность (Вт).</u>

	Р, Вт	I, A	Масса, г
БВМ	1.8	0,15	
Блок управления полезной нагрузкой	16	1,33	
Камера	26	2,16	
Передатчик	62	5,16	

Блок управления	12	1	
системы определения			
ориентации			
Магнитометр	0.6	0,05	
Солнечный датчик	0.4	0,05	
Блок управление	12	1	
системой стабилизации			
Электромагнитные	6	0,5	
катушки			
Двигатели-	50	4,16	
маховики			
Система	26	2,16	
энергопитания			

10. Характеристики системы энергопитания спутника.

КПД, в %	80
Ёмкость аккумулятора, Ач	40
Нормальная глубина разряда АБ, в %	60
Допустимая глубина разряда АБ, в %	70
Критическая глубина разряда АБ, в %	80
Макс. ток заряда АБ, А	35
Макс. ток разряда АБ, А	35
Напряжение бортовой сети, В	12

11. Расположение панелей солнечных батарей.

+X	+
-X	-
+Y	+
-Y	-
+Z	+

-Z	-
SX, m2	0.7
SY, m2	0.7
SZ, M2	0.5

12. Начальные условия по отделению от носителя.

Нутация, град	78
Прецессия, град	12
Собственное вращение, град	55
WX, град/сек	0,5
WY, град/сек	1,2
WZ, град/сек	0,4

Схема взаимного расположения ИСЗ, места съемки и углов выставления имитатора солнца.

Данные в таблице заполняются в день C-2 и утверждаются экспертами (входит в 30%-ое изменение K3)

1. Использование магнитной рамки

Рисунок 5.2.1 – Схема использования магнитной рамки

2. Использование стенда полунатурного моделирования

Рисунок 5.2.2 – Схема использования стенда полунатурного моделирования

3. Таблица углов

No	Привязка к объекту на	Угол,	Примечание
варианта.	площадке по точкам на схеме	град.	
1.	Прожектор – спутник – Земля	180°	
2.	Прожектор – спутник – Земля	110°	
3.	Прожектор – спутник – Земля	245°	

Отчет о проведении соревнований

Iазвание чемпионата: абочее место №				
аспределение	ролей	участников	В	команде

І. Отчет о проведении численного моделирования

Расчет циклограммы работы системы энергопитания спутника для съемки Земли из космоса.

Цель: оценка возможности выполнения спутником задачи по съемке заданного района Земли и передаче данных на землю.

Print Screen:

Общий вид системы моделирования: карта с трассой спутника

Print Screen:

2.	Оощии в	вид системы	моделирования:	3D-вид	спутника	c	опорнои	И	связаннои
системами коо	рдинат.								
3.	На около	земную орби	гу запущен спутн	ик со сле	едующими	xap	рактерист	ик	ами:

4.	Характеристики орбиты:						
5.	Название	И	координаты	зоны	съемки:		
6.	Название	И	координаты	приемной	станции:		
7.	Время		начала		моделирования:		
8.	Время			_	конца		

Приложение Sputnix Modeler (SX-Modeler) показало, что требуемые моменты 9. включения камеры и передатчика следующие:

	Время включения	Время выключения
	ГГГГ.ММ.ДД,	ГГГ.ММ.ДД,
	ЧЧ:ММ:СС	ЧЧ:ММ:СС
Съемка		
Передача		
данных		

Количеств	Съёмки, шт	Связи, шт
о сеансов:		

Print Screen:

10.	Результат численного моделирования циклограммы работы системы энергопитания
(графики – 3 п	тт.):

11.	Максимальный	уровень	разряда	аккумулятора	на	витке

Выводы: Система энергопитания обеспечивает работу спутника по циклограмме, при этом уровень разряда аккумулятора не превышает ______%.

II. Отчет о разработке бортовой кабельной сети

Цель: разработка бортовой кабельной сети спутника

- 1. Картинка: способ межблочного соединения
- 2. Чертеж: распайка кабеля (распиновка)
- 3. Чертеж: Принципиальная схема соединений блоков, с обозначением номерами кабельных переходов, а также номеров блоков.
 - 4. Таблица длин кабельных переходов и соединений

№	Наименование	Длина	Длина	c
шлейфа	соединяемых блоков (датчиков)	в 3D- модели,	допуском, мм	
		MM		
				_
				_

III. Изготовление кабелей и шлейфов.

1. Фото: пайка кабеля, результат

2. Фото: обжимка шлейфов, результат

3. Общая масса всех шлейфов и проводов, грамм

-

IV. Отчет о проведении 3D-проектирования спутника

Цель: выполнить компоновку спутника, оценить его массово-инерционные характеристики

- 1. Картинка: общий вид путника, картинка в изометрии, положение камеры
- 2. Картинка: общий вид спутника с указанием приборов стрелками,
- 3. Картинка: указание связанных осей систем координат с центом в центре масс
- 4. Картинка: Print Screen с программы моделирования с табличкой массовые характеристики.
 - 5. Таблица центра координат центра масс спутника

	Координаты центра	Допуск, не более ±, мм
	масс, мм	
X		-10+10
Y		-10+10
Z		-100200

6. Тензор инерции, кг*м2

	X	Y	Z
X			
Y			
Z			

V. Расчет массы аппарата

1.	Macca	аппара	та	ПО	3D	MO,	дели,	КГ
2.	Реальная	масса	аппарата	(c	учетом	массы	шлейфов),	Γ

3.	Общая	площадь	внешней	поверхности	конструкции	мм^2

4. Таблица взвешивания деталей конструкции, датчиков, узлов, систем КА, подвеса и транспортировки.

№	Наименование детали или устройства	Вес, грамм	Примечание

Вывод:

VI. Отчет о разработке алгоритма стабилизации

Цель: разработка алгоритма стабилизации спутника

- 1. Зачем нужен алгоритм: описание
- 2. Картинка: принципиальная блок схема работы (алгоритм)

Общий алгоритм работы КА на орбите должен включать в себя:

- алгоритм работы системы стабилизации КА
- алгоритм работы системы ориентации КА
- алгоритм работы раскрытия солнечных панелей КА
- алгоритм работы полезной нагрузки КА
- 3. Картинка: системы координат, установка датчиков ориентации
- 4. Таблица: расположение датчиков Солнца

Номер датчика	Ось спутника	Ориентация	Примечания
1			
2			
3			
4			

5. Таблица: расположение измерительных осей магнитометра

Ось датчика	Ось спутника	Примечания
X		
Y		
Z		

6. Таблица: расположение измерительных осей датчика угловых скоростей

Ось датчика	Ось спутника	Примечания
X		
Y		
Z		

VII. Отчет о разработке программного кода.

1. Отчет о сборке спутника

Цель: сборка и тестирование бортовых систем

1. Картинка: собранный спутник

2. Таблица соответствия установки приборов 3D-модели

Номер	Название	Соответствие	Примечания
		(Да, нет)	

Таблица проверки работоспособности систем

Номер	Название	Результат (Да, нет)	Примечания (показания датчиков)

2. Отчет о стоимости спутника

Цель: рассчитать стоимость бортовых систем, а также стоимости сборки, испытаний, запуска и эксплуатации разрабатываемого спутника. Расчетная модель: SSCM. Средство расчета: SputnixSatellite Modeler

1. Результаты:

№ п/п	Название	Оценка стоимости, \$	Примечание
По	дсистемы		
1	Система ориентации		
	стабилизации		
2	Система энергопитания		
3	Система телеметрии и		
	телекоманд		
4	Система		
	терморегулирования		
5	Система навигации		
6	Конструкция		
7	Полезная нагрузка		
Сб	орка, испытания		
8			
3aı	пуск		
9	Транспортировка		
10	Работа на космодроме		
11	Услуга по запуску		
Эк	сплуатация	<u> </u>	
12	Наземная станция приема		
13	Сопровождение		
	2. Общая	стоимость	проекта

стоимость

Приложение № 4

Перечень информации, хранящейся в папке для участников чемпионата.

1. Папка для конструкторов-проектировщиков:

- 3D-модели датчиков и систем набор конструктора «Орбикрафт»
- 2. Папка для радиоэлектронщиков и схемотехников:
 - SX-Modeler
 - OBC
 - Ground Control X
- 3. Папка для программистов:
 - notepad_r115
 - Описание функций примеры кодов С Python
 - Библиотеки С
- 4. Папка вспомогательных программ:
 - Apache_OpenOffice
 - WinRar
- 5. Вариант 30% изменений КЗ Приложения №1
- 6. Конкурсное задание
- 7. Техническое описание
- 8. Текстовый редактор с ссылками на скачивание SX-Modeler

Список приложений, данные в которых заполняются экспертами в день (C-2) 30% изменений конкурсного задания и утверждаются экспертами:

- 1. Приложение № 1. Пример задания для программы SX-Modeler.
- 2. Приложение № 2. Схема взаимного расположения ИСЗ, места съемки и углов выставления имитатора солнца.
 - 3. Приложение № 5. Чертеж или эскиз КА.
- 4. Приложение № 6. Разработка СЭП для системы раскрытия солнечных батарей.
- Приложение № 7. Разработка привода системы раскрытия солнечных батарей.

Список рекомендуемых программ и сайтов, необходимых для подготовки и проведения соревнования:

- 1. Сайт описания работы конструктора https://www.wiki.orbicraft.ru
- 2. Среда программирования с встроенным компилятором NOTEPAD++ https://wiki.orbicraft.ru/doku.php?id=software
 - 3. Программа CAE SolidWorks 2014 и ранее: http://www.solidworks.ru/
- 4. Иммитация наземного ЦУП прием изображений и сигналов GroundControl_X http://wiki.orbicraft.ru/doku.php?id=software
- 5. Программа открытого ПО численного моделирования SX_Modeler+OBC https://sourceforge.net/projects/sputnixsatellit/files/?source=navbar
- 6. Драйвера (USBDriver + OBCDriver) https://sourceforge.net/projects/sputnixsatellit/files/?source=navbar
- 7. Программа 3D моделирования 3D-Max https://www.autodesk.ru/products/3ds-max/overview
 - 8. Среда разработки Arduino IDE https://www.arduino.cc/
 - 9. Office MS https://products.office.com/ru-ru/home
 - 10. Программа для тепловых расчетов https://sourceforge.net/p/thorium/wiki/Home/
 Программа для тепловых расчетов Code-Aster https://www.laduga.ru/salome/index.shtml
 - 11. Программа для трассировки плат http://www.PiCad.com
- 12. Программа для предварительной оценки стоимости Small Satellite Cost Model http://www.aerospace.org/research/space-systems-infrastructure/small-satellite-cost-model/
 - 13. Программа http://www.festi.info/boxes.py/
 - 14. Сайт о составе и конструкции спутников https://eoportal.org/web/eoportal/home
- 15. программа для моделирования профилей Slicer 360 https://apps.autodesk.com/FUSION/en/Detail/Index?id=8699194120463301363&os=Win64&appLang=e

