Problem Statement 2 (Predict expected revenue from a customer)

The CRM team of a retail store wants to:

- 1. Understand which factors influence the revenue generated by the customers
- 2. Predict the revenue "Amount" for a given customer is likely to generate

```
# Importing libraries
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from sklearn.linear_model import LinearRegression
from sklearn.model selection import train test split
from sklearn.metrics import mean_absolute_error
    /usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning:
       import pandas.util.testing as tm
# Reading the dataset
data=pd.read csv("RetailCustomerRevenue.csv")
# Obtaining the column names
data.columns
    Index(['PersonID', 'Amount', 'FamilySize', 'Distance', 'Duration',
            'DirectVisits', 'OnlineVisits', 'Quantity', 'NumberofFrequentItems',
            'TransactionMode', 'Area', 'Occupation'],
           dtype='object')
# Reading the first few rows of data
data.head()
 С→
```

	PersonID	Amount	FamilySize	Distance	Duration	DirectVisits	OnlineVisits	Quanti
0	C1104	3125	2	6	261	11	9	3
1	C1111	5298	2	5	323	9	9	2
2	C1117	4375	2	6	355	11	11	13
3	C1128	9700	5	7	418	51	41	29
4	C1132	3625	2	7	290	9	9	12

Obtaining the dimensions

data.shape

[→ (2938, 12)

Obtaining the data types

data.dtypes

₽	PersonID	object
_	Amount	int64
	FamilySize	int64
	Distance	int64
	Duration	int64
	DirectVisits	int64
	OnlineVisits	int64
	Quantity	int64
	NumberofFrequentItems	int64
	TransactionMode	int64
	Area	object
	Occupation	int64
	dtype: object	

Summary Statistics

data.describe(include='all')

₽

	PersonID	Amount	FamilySize	Distance	Duration	DirectVisits	Onl:
count	2938	2938.000000	2938.000000	2938.000000	2938.000000	2938.000000	29
unique	2938	NaN	NaN	NaN	NaN	NaN	
top	C3960	NaN	NaN	NaN	NaN	NaN	
freq	1	NaN	NaN	NaN	NaN	NaN	

Obtaining the variables having unique values less than 10

```
ins=[]
for a in data.columns:
  if(data[a].nunique()<10):</pre>
    ins.append(a)
    print(a,data[a].nunique())
    print(data[a].unique())
 TransactionMode 2
     [2 1]
     Area 2
     ['Area1' 'Area2']
     Occupation 3
     [2 1 3]
ins
    ['TransactionMode', 'Area', 'Occupation']
# Checking for missing values
data.isna().sum()
 PersonID
                               0
     Amount
                               0
     FamilySize
                               0
     Distance
                               0
     Duration
     DirectVisits
                               0
     OnlineVisits
                               0
     Quantity
                               0
     NumberofFrequentItems
                               0
     TransactionMode
                               0
     Area
                               0
     Occupation
     dtype: int64
```

for col in ['TransactionMode', 'Area', 'Occupation', 'PersonID']:

```
data[col]=data[col].astype('category')
```

Converting required data types into categorical

Checking to see if type has been converted

```
data.dtypes
```

```
PersonID
                          category
Amount
                             int64
FamilySize
                             int64
Distance
                             int64
Duration
                             int64
DirectVisits
                             int64
OnlineVisits
                             int64
Quantity
                             int64
NumberofFrequentItems
                             int64
TransactionMode
                          category
Area
                          category
Occupation
                          category
dtype: object
```

```
# Dropping duplicate values
```

```
data=data.drop_duplicates(keep='first')
```

Dimensions of dataset

data.shape

```
[→ (2938, 12)
```

There are no duplicate values as the dimensions have not changed.

```
\# Obtaining the correlation between each of the attributes
```

```
data.corr()
```

С→

Amount FamilySize Distance Duration DirectVisits OnlineV

taking dependent variable "Amount" into y

y=np.array(data['Amount'])

Obtaining Scatter plots between each attribute with y

plt.scatter(data['PersonID'],y)

plt.scatter(data['FamilySize'],y)

<matplotlib.collections.PathCollection at 0x7fe01fa3ecf8>

plt.scatter(data['Distance'],y)

 \Box

<matplotlib.collections.PathCollection at 0x7fe02006c748>

plt.scatter(data['Duration'],y)

plt.scatter(data['DirectVisits'],y)

cmatplotlib.collections.PathCollection at 0x7fe01fa10978>

plt.scatter(data['OnlineVisits'],y)

 \Box

<matplotlib.collections.PathCollection at 0x7fe020388a90>

plt.scatter(data['Quantity'],y)

plt.scatter(data['TransactionMode'],y)

plt.scatter(data['Area'],y)

₽

<matplotlib.collections.PathCollection at 0x7fe020333c18>

plt.scatter(data['Occupation'],y)

According to the scatter plots, "TransactionMode", " Area" and "Occupation" are categorical.

```
# Splitting into train and test data
```

train_data,test_data=train_test_split(data,test_size=0.2,random_state=123)

Printing the dimensions of the train and test data

print(train_data.shape)
print(test_data.shape)

[→ (2350, 12) (588, 12)

Creating dummy variables

train_dum=pd.get_dummies(columns=['TransactionMode','Area', 'Occupation'],data=train_data)
test_dum=pd.get_dummies(columns=['TransactionMode','Area', 'Occupation'],data=test_data)

```
# Printing the columns of the data after creating the dummy variables
print(train dum.columns)
print(test_dum.columns)
    Index(['PersonID', 'Amount', 'FamilySize', 'Distance', 'Duration',
            'DirectVisits', 'OnlineVisits', 'Quantity', 'NumberofFrequentItems',
            'TransactionMode_1', 'TransactionMode_2', 'Area_Area1', 'Area_Area2',
            'Occupation_1', 'Occupation_2', 'Occupation_3'],
           dtype='object')
     Index(['PersonID', 'Amount', 'FamilySize', 'Distance', 'Duration',
            'DirectVisits', 'OnlineVisits', 'Quantity', 'NumberofFrequentItems',
            'TransactionMode_1', 'TransactionMode_2', 'Area_Area1', 'Area_Area2',
            'Occupation 1', 'Occupation 2', 'Occupation 3'],
           dtype='object')
train data1=train dum
test data1=test dum
# Dropping "PersonID" attribute
train_data1=train_dum.drop('PersonID',axis=1)
test data1=test dum.drop('PersonID',axis=1)
print(train data1.columns)
print(test data1.columns)
    Index(['Amount', 'FamilySize', 'Distance', 'Duration', 'DirectVisits',
            'OnlineVisits', 'Quantity', 'NumberofFrequentItems',
            'TransactionMode 1', 'TransactionMode 2', 'Area Area1', 'Area Area2',
            'Occupation_1', 'Occupation_2', 'Occupation_3'],
           dtype='object')
     Index(['Amount', 'FamilySize', 'Distance', 'Duration', 'DirectVisits',
            'OnlineVisits', 'Quantity', 'NumberofFrequentItems',
            'TransactionMode 1', 'TransactionMode 2', 'Area Area1', 'Area Area2',
            'Occupation 1', 'Occupation 2', 'Occupation 3'],
           dtype='object')
# Placing the independent variables into ind atr
ind atr=list(set(train data1.columns)-set(['Amount']))
ind_atr
 С→
```

```
['Occupation 3',
      'Duration',
      'OnlineVisits',
      'Area Area1',
      'FamilySize',
      'Area_Area2',
      'DirectVisits',
      'Occupation 1',
      'TransactionMode 1',
      'Quantity',
      'Occupation 2',
# Fitting LinearRegression model
linreg=LinearRegression()
res_sklearn=linreg.fit(train_data1[ind_atr],train_data1['Amount'])
# Predicting train and test values from the model
pres_train_skleran=res_sklearn.predict(train_data1[ind_atr])
pres test skleran=res sklearn.predict(test data1[ind atr])
# Printing the coefficients
res sklearn.coef

Array([-1.37942112e+01, -5.25526037e-01, 2.32211345e+02, -1.51619314e+02,
             4.71029449e+01, 1.51619314e+02, 2.62546923e+02, -1.82477056e+00,
            -1.32104193e+02, 3.84743602e-02, 1.56189818e+01, -9.47350161e+00,
            -2.91464118e+02, 1.32104193e+02])
# Finding mean absolute error for train data
mean absolute error(np.array(train data1['Amount']),pres train skleran)
    793.2396053830885
# Finding mean absolute error for test data
mean absolute error(np.array(test data1['Amount']),pres test skleran)
   778.8292727155123
Amount depends on 'FamilySize', 'Distance', 'Duration', 'DirectVisits', 'OnlineVisits', 'Quantity',
```

'NumberofFrequentItems', 'TransactionMode', 'Area', 'Occupation'

Stats model

```
PROJECT2.ipynb - Colaboratory
ind_atr1=list(set(data.columns)-set(['Amount','PersonID']))
ind_atr1
    ['Occupation',
      'Duration',
      'OnlineVisits',
      'FamilySize',
      'Area',
      'DirectVisits',
      'TransactionMode',
      'Quantity',
      'Distance',
      'NumberofFrequentItems']
#Creating the formula
x='+'.join(ind_atr1)
     'Occupation+Duration+OnlineVisits+FamilySize+Area+DirectVisits+TransactionMode+Quantit
     v+Distance+NumberofFrequentItems'
formula="~".join(('Amount',x))
print(formula)
    Amount~Occupation+Duration+OnlineVisits+FamilySize+Area+DirectVisits+TransactionMode+Qu
from statsmodels.formula.api import ols
#Model fit and summary
lm mod=ols(formula=formula,data=data)
result=lm_mod.fit()
print(result.summary2())
 C→
```

Results: Ordinary least squares

======================================						
Model:	OLS		Adi. R	-squared	d:	0.716
Dependent Variable:	Amount		AIC:			49518.8936
Date:	2020-07-15 11:09		BIC:			49590.7194
No. Observations:	2938		Log-Li	Log-Likelihood:		
Df Model:	11		F-statistic:			673.3
Df Residuals:	2926		<pre>Prob (F-statistic):</pre>			0.00
R-squared:	0.717		Scale:			1.2179e+06
	Coef.	Std.Err.	t	P> t	[0.025	0.975]
Intercept	621.3437	120.6836		0.0000	384.7103	857.9771
Occupation[T.2]	4.6484	50.9386	0.0913	0.9273	-95.2308	3 104.5276
Occupation[T.3]	-13.7002	49.8891	-0.2746	0.7836	-111.521	84.1212
Area[T.Area2]	267.0128	66.3723	4.0230	0.0001	136.871	397.1540
TransactionMode[T.2]	299.4014	55.5814	5.3867	0.0000	190.4188	3 408.3841
Duration	-0.5462	0.2379	-2.2961	0.0217	-1.0126	-0.0798
OnlineVisits	232.7890	8.3187	27.9837	0.0000	216.4778	3 249.1001
- '1 6'	34 7605	22 4244	4446	^ 4	40 000	. 75 7000
ERVATION						

OBSE

Distance _/ 1675 7 6506 _0 5///7 0 5860 _19 1686

The R-Squared error is 0.717. If R-squared value r > 0.7 this value is generally considered strong effect size.

1100(011111111113).	0.000	Jaique Dela (JD).	0210.00
~1		- ' /'	

^{*} The condition number is large (2e+04). This might indicate

strong multicollinearity or other numerical problems.