# TRANSFER LEARNING

Dr. Brian Mc Ginley



#### INTRODUCTION TO TRANSFER LEARNING

- Transfer learning is a machine learning technique where a model trained on one task is reused as a starting point for a model on a different task.
- Instead of starting the learning process from scratch, transfer learning allows us to leverage knowledge gained from solving one problem to solve a different but related problem.
- Humans use transferrable skills all the time



### WHY TRANSFER LEARNING?

- Data Efficiency: Transfer learning enables effective learning with smaller datasets by leveraging knowledge from larger datasets.
- Faster Training: Starting with pre-trained weights reduces training time significantly.
- Improved Performance: Transfer learning often leads to better performance, especially in domains where labelled data is scarce.



#### HOW TRANSFER LEARNING WORKS

- Step 1: Pre-train a model on a large dataset with a source task.
- Step 2: Fine-tune the pre-trained model on a smaller dataset with a target task.
- Step 3: Optionally, adapt the model architecture or add new layers for the target task.



# ADDITIONAL RESOURCES

- Keras Documentation:
  - https://keras.io/guides/transfer\_learning/
- TensorFlow Tutorials:
  - https://www.tensorflow.org/tutorials/images/transfer\_learning



# STEPS





- Keras pre-trained models:
- There are more than two dozen pretrained models available from Keras.
  - https://keras.io/api/applications/

| Model             | Size<br>(MB) | Top-1<br>Accuracy | Top-5<br>Accuracy | Parameters | Depth | Time (ms) per<br>inference step<br>(CPU) | Time (ms) per<br>inference step<br>(GPU) |
|-------------------|--------------|-------------------|-------------------|------------|-------|------------------------------------------|------------------------------------------|
| Xception          | 88           | 79.0%             | 94.5%             | 22.9M      | 81    | 109.4                                    | 8.1                                      |
| VGG16             | 528          | 71.3%             | 90.1%             | 138.4M     | 16    | 69.5                                     | 4.2                                      |
| VGG19             | 549          | 71.3%             | 90.0%             | 143.7M     | 19    | 84.8                                     | 4.4                                      |
| ResNet50          | 98           | 74.9%             | 92.1%             | 25.6M      | 107   | 58.2                                     | 4.6                                      |
| ResNet50V2        | 98           | 76.0%             | 93.0%             | 25.6M      | 103   | 45.6                                     | 4.4                                      |
| ResNet101         | 171          | 76.4%             | 92.8%             | 44.7M      | 209   | 89.6                                     | 5.2                                      |
| ResNet101V2       | 171          | 77.2%             | 93.8%             | 44.7M      | 205   | 72.7                                     | 5.4                                      |
| ResNet152         | 232          | 76.6%             | 93.1%             | 60.4M      | 311   | 127.4                                    | 6.5                                      |
| ResNet152V2       | 232          | 78.0%             | 94.2%             | 60.4M      | 307   | 107.5                                    | 6.6                                      |
| InceptionV3       | 92           | 77.9%             | 93.7%             | 23.9M      | 189   | 42.2                                     | 6.9                                      |
| InceptionResNetV2 | 215          | 80.3%             | 95.3%             | 55.9M      | 449   | 130.2                                    | 10.0                                     |
| MobileNet         | 16           | 70.4%             | 89.5%             | 4.3M       | 55    | 22.6                                     | 3.4                                      |
| MobileNetV2       | 14           | 71.3%             | 90.1%             | 3.5M       | 105   | 25.9                                     | 3.8                                      |
| DenseNet121       | 33           | 75.0%             | 92.3%             | 8.1M       | 242   | 77.1                                     | 5.4                                      |
| DenseNet169       | 57           | 76.2%             | 93.2%             | 14.3M      | 338   | 96.4                                     | 6.3                                      |

- Keras pre-trained models:
- There are more than two dozen pretrained models available from Keras.
  - https://keras.io/api/applications/
- Mobile Net Example
  - That's with default values. include top means: include the fully-connected layers - often we want this as False.
  - Weights are the initial weights. If you do not use imagenet, then it will use random weights and you will need to train all these layers.

```
model = tf.keras.applications.MobileNet(
    input_shape=None,
    alpha=1.0,
    depth_multiplier=1,
    dropout=0.001,
    include_top=True,
    weights="imagenet",
    input_tensor=None,
    pooling=None,
    classes=1000,
    classifier_activation="softmax",
)
```



You can also use models from TensorFlow Hub - <a href="https://www.tensorflow.org/hub">https://www.tensorflow.org/hub</a>



- You can also use models from TensorFlow Hub https://www.tensorflow.org/hub
- There are pretrained word-embeddings available, e.g. Google's word2vec
  - https://code.google.com/archive/p/word2vec/
- And for text-processing tasks there are pretrained models at
  - https://github.com/huggingface
  - Stanza another option <a href="https://github.com/stanfordnlp/stanza/">https://github.com/stanfordnlp/stanza/</a>
- Lots of pre-trained models also at: <a href="https://www.kaggle.com/models">https://www.kaggle.com/models</a>
  - Inception
  - VGG
  - ResNet
  - EfficientNet
  - MobileNet
  - YOLO etc.



## CREATE BASE MODEL

- You instantiate the base model with pre-trained weights.
- The base model will usually have more units in the final output layer than you require so you have to at least remove the final output layer.
- Later on, you will add a final output layer that is compatible with your problem.





#### FREEZING LAYERS

- You need to freeze the layers from the pre-trained.
- If you do not, the weights will be retrained which defeats the whole purpose of transfer learning!

```
base_model.trainable = False
```

You can also do it individually by layer(s)

```
for layer in base_model.layers:
    layer.trainable = False
```



# TRAIN NEW LAYERS

- You will add some new dense layers (another hyperparameter)
- Most importantly, a final dense layer with units corresponding to the number of outputs expected by your model.
- These new layer weights are the ones you will be training.
- Make sure the output from your base model will work as the input for your new layers.
- Compile and train, you now will have a model that can make predictions on your dataset.





## FINE TUNING

- Optionally, you can improve its performance through fine-tuning.
- Fine-tuning is done by unfreezing the base model or part of it and training the entire model again on the whole dataset at a very low learning rate.





#### IMPORTANT THINGS TO THINK OF

- Always pay close attention to the base model's structure and know what it is supposed to do.
- Make sure the inputs you will be sending to the base model match what is expected.
- Are the image sizes 224x224? Or something else? Or is the model flexible enough to do something else?
- Does the model expect data to be normalised to [0,1] or [-1,1] or something else.
   Often the keras application will have a preprocess input function so read the manual.



# IMPORTANT THINGS TO THINK OF

• Data Augmentation often is helpful. You may want to do this to your dataset, or you can build it into your model as before.

```
data_augmentation = tf.keras.Sequential([
   keras.layers.preprocessing.RandomFlip("horizontal"),
   keras.layers.preprocessing.RandomRotation(0.1),
])
```



- This is taken from <a href="https://keras.io/guides/transfer learning/">https://keras.io/guides/transfer learning/</a>, using the Xception model and some of my own alterations that I thought may help
- Instantiate the base model

```
base_model = tf.keras.applications.Xception(
weights='imagenet',
input_shape=(150, 150, 3),
include_top=False) # Do not include the ImageNet classifier at the top
```

Freeze the base model

```
base model.trainable = False
```



Create a new model on top, first let's set the size of the input images

```
inputs = tf.keras.Input(shape=(150, 150, 3))
```

• If you want to include data augmentation as part of the model you can do it here, <a href="https://www.tensorflow.org/guide/keras/transfer learning">https://www.tensorflow.org/guide/keras/transfer learning</a> includes it as part of the model while the tutorial I'm following does not.

```
x = data_augmentation(inputs)
```



 Make sure the data has been normalised as expected [-1,1] or [0,1] etc, use the function to aid you

```
# If you did not have the above data augmentation step
x = tf.keras.applications.xception.preprocess_input(inputs)
# If you did
x = tf.keras.applications.xception.preprocess_input(x)
```

Alternatively, you can use a rescaling layer, for Xception

```
scale_layer = keras.layers.Rescaling(scale=1/127.5, offset=1)
x = scale_layer(inputs)
```



- Ensure that the base model is running in inference mode so that batch normalization layers are not updated during the fine-tuning stage (set 'training=False')
- Convert features from the base model to vectors, using 'GlobalAveragePooling2D' (a Flatten layer may work here too)
- Add whatever Dense layers, most importantly the final dense layer this can have a softmax activation function
- We could add Dropout here too
- Finally put the model together



```
# We make sure that the base model is running in inference mode here,
# by passing `training=False`. This is important for fine-tuning
x = base_model(x, training=False)

# Convert features of shape `base_model.output_shape[1:]` to vectors
x = tf.keras.layers.GlobalAveragePooling2D()(x)

# A Dense classifier with 10 units
outputs = tf.keras.layers.Dense(10, activation='softmax')(x)

model = tf.keras.Model(inputs, outputs)
```



• The previous needs to compile and fit (as done previously). Now after doing that we want to fine-tune the model we then do:

```
base model.trainable = True
```

Sets base model now to trainable, that's all layers. You could do individual layers by

```
freeze_layers_up_to = 10
for layer in base_model.layers[freeze_layers_up_to:]:
    layer.trainable = True
```

You need to compile the model again, this time with a low learning rate

```
model.compile(
    optimizer=keras.optimizers.Adam(1e-5), # Low learning rate
    loss=keras.losses.CategoricalCrossentropy(from_logits=False),
    metrics=['accuracy'],
)
```

