Cryptography and Security 2017

Solution Sheet 1

Solution 1 Element order

- 1,2 Check the document "Prerequisites for Cryptography & Security Course".
- 3. Assume that a has order k in G and a^{-1} has order k'. Then we have

$$a^k = e$$

and

$$(a^{-1})^{k'} = e,$$

where e is the neutral element in G.

The inverse of a^k is $(a^k)^{-1} = (a^{-1})^k$. But $a^k = e$ so $(a^{-1})^k = e^{-1} = e$. So k must divide k'. Similarly, the inverse of $(a^{-1})^{k'}$ is $a^{k'}$ and we must have $e = a^{k'}$, so k' divides k. Thus, k = k'.

Solution 2 Algebra

- 1. Check the document "Prerequisites for Cryptography & Security Course."
- 2. From the Little Fermat theorem we have that $a^{p-1} \equiv 1 \pmod{p}$, for a prime p and a coprime with p. In our case 7 is prime. Also $a^i \equiv (a \mod p)^i \pmod{p}$. Thus $i^6 \equiv 1 \pmod{7}$ for any i that is not a multiple of 7 and $i^6 \equiv 0 \pmod{7}$ for others. We have $\sum_{i=1}^{100} i^6 \pmod{7} \equiv 86 \pmod{7} \equiv 2 \pmod{7}$, as we have 14 multiples of 7 in the set $\{1, \ldots, 100\}$.

Solution 3 Fermat numbers

- 1. $F_m(F_m-2)=(2^{2^m}+1)(2^{2^m}-1)=2^{2^{m+1}}-1=F_{m+1}-2$. This can be seen as a recurrence relation. We deduce that $F_{m+1}-2=F_m(F_m-2)=F_mF_{m-1}(F_{m-1}-2)=\ldots=F_mF_{m-1}\cdots F_0$.
- 2. Assume by contradiction that $gcd(F_m, F_n) = d$ with d > 1. As all the Fermat numbers are odd, d must be odd. Writing the factorization of $d = p_1^{e_1} \cdots p_k^{e_k}$ we can deduce that $p_1|F_m$ and $p_1|F_n$. W.l.o.g. we assume that n < m. Using the previous results we have that

$$p_1|F_{m-1}\cdots F_n\cdots F_0+2$$

and

$$p_1|F_n$$
 and thus $p_1|F_{m-1}\cdots F_n\cdots F_0$.

This means that $p_1|2$. This is a contradiction as d cannot have 2 as a prime factor. Thus, $gcd(F_m, F_n) = 1$.

Solution 4 Random variables

1.

$$E[\sum_{i=1}^{n} iX_{i}] = \sum_{i=1}^{n} E[iX_{i}]$$

$$= \sum_{i=1}^{n} i \cdot E[X_{i}]$$

$$= \sum_{i=1}^{n} i \cdot (1 \cdot p + i \cdot (1 - p))$$

$$= p \cdot \sum_{i=1}^{n} i + (1 - p) \cdot \sum_{i=1}^{n} i^{2}$$

$$= p \frac{n(n+1)}{2} + (1 - p) \frac{n(n+1)(2n+1)}{6}$$

2.

$$\begin{split} Var[i \cdot X_i] &= i^2 \, Var[X_i] \\ &= i^2 (E[X_i^2] - E[X_i]^2) \\ &= i^2 \left((1^2 \cdot \frac{1}{2} + i^2 \frac{1}{2}) - (\frac{1}{2} + i \frac{1}{2})^2 \right) \\ &= i^2 (\frac{1}{2} + \frac{i^2}{2} - \frac{1}{4} - \frac{i^2}{4} - \frac{i}{2}) \\ &= i^2 (\frac{1}{2} - \frac{i}{2})^2 \end{split}$$

Solution 5 Expected complexity

- 1. We see that in every iteration, the algorithm terminates if $x \in \{5,6\}$. As x is obtained by a die-roll, this occurs with probability $\frac{2}{6} = \frac{1}{3}$. Since every iteration is independent, the number of iterations r is given by a sequence of r-1 unsuccessful rolls ($x \in \{1,2,3,4\}$) followed by a single successful roll ($x \in \{5,6\}$). This corresponds to geometric distribution with parameter $p = \frac{1}{3}$, and so E[r] = 1/(1/3) = 3.
- 2. If there were r iterations, N was incremented r-1 times. Each time, it was incremented by either 1, or by 2 with equal probability. This gives us

$$\begin{split} E[N|\ r\ \text{iterations}] &= \sum_{i=1}^{r-1} E[\text{increment in } i^{th}\ \text{iteration}\ | r\ \text{iterations}] \\ &= \sum_{i=1}^{r-1} (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 2) \\ &= (r-1) \cdot \frac{3}{2} \end{split}$$