Raju Shrestha Assignment -3 ROII NO. 48 1) What are the advantages of hyperspectral imaging? If the Spectral range of the 288 channels of the CASI (compact Airbo--rne spectrographic imager) is exactly 0.40 Am to 0.90 Am & each band covers a coavelength of 1.8 nanometers (nm), will there be any overlap between the bands? > Hyperspectral imaging is a new analytical technique based on spectroscopy. It collects hundreds of images at different Wavelengths for the same spatial area. The advantages of hyperspectral imaging are as follows: 1) Captures wide range of wavelengths for each pixel. 11) provides better defection & identification in complex envir-- onment. 111) capable of real-time assessment of dynamic processes. IV) Applicable in various fields such as agriculture, mine--ralogy, environmental monitoring a medical diagostics. v) Enables advanced image processing techniques, such as anomaly detection & pattern recognition. vi) Generates high-quality data that can be used for accurate modeling & analysis! Here, Total wavelength range variable will be 0.90-0.40 4m-0.50 Mm. If there are 288 channels of 1.8 nm each. NOW, 1.8nm = 1.8 x 10 m 1.8 x 10-9 x 288 = 0.0000005184m 0.0000005184m = 0.5184 Mm · O.S.184 Lim is greater than O.So. so, there will be some overlap between some or all of the 288 bands to fit into this o. solum range.

2.)	Differentiate between SAR & RAR. Explain why the use of synthetic aperture radar (SAR) is the only practical option for radar remote sensing from space.	
71017	The différence between SAR	SAR & RAR are:
	It stands for synthetic Aperture Radar.	1.) It stands for Real Aperature Radar.
11)	It provides higher resolu- tion.	11.) It provides lower resolution.
ını)	capable of coide area coverage with defail.	111.) Limited coverage are for high resolution.
14)	complex in data processing a interpretation.	iv) simple processing a interpretation.
1911 (V)	more expensive due to complex technology.	v.) Less expensive.
	used in satellites a	vI.) Used in some aircraft & ground based system.
	SAR is only practical option for radar remote sensing from space because of the following reasons:- It can achive high spatial resolution with relatively small antenna. SAR operates in microwave spectrum that helps	
	to ensure data acquist	ion regardless of weather

condition . 111) SAR can cover large area efficiently. Iv) SAR doesn't rely on sunlight & can operate in both day & night. 3.) What are the advantages of microcoave remote sensing ? Why is microwave remote sensing better suitred for monitoring tropical rain forests than optial remote sensing? > The advantages of microwave remote sensing are: 1) All coeather capability as it allocos data collection in any weather. 11) can operate independent of sunlight, enabling 24/7 data acquistion. in) Effective in identifying & monitoring the extent & changes of water bodies. in) Effective in creating high resolution 3D image of the Earth's surface osting sAR. v) useful in monitoring natural disasters & providing timely information of emergency response. vi) sub surface penetration. Microwave remote sensing is better suited for monito--ring tropical rain forest that optical remote sensing because it can penetrate through the dense cloud cover & heavy rainfall which is common in these regions. This all-weather capability ensures continuous data collection regardless of atmospheric conditions.

Date_____

- 4.) Outline the steps how RADAR works? Differentation that the between range resolution a azimuthalresolution of radar systems?
- > RADAR stands for radio detection & ranging.
 The steps of how RADAR works as;

1) Transmission:

The RADAR system generates & sends a radio frequency (RF) pulse through an antenna.

11) propagation:

The RF pulse travels through the air at the speed of light, spreading out over a wide area.

111) Reflection :.

The pulse encounter an object (target) & part of the energy is reflected back toward. the RADAR system.

IV.) Reception :-

The reflected RF signal (Echo) is received by RADAR antenna & directed to a receiver.

v.) Detection: -

The receiver processes the signal to detect the echo & measures the time delay to determine the targetis distance (range).

		Date_Page
VI.)	Processing: - The received signal is analysis, using signal proces - mation.	amplified a converted for sing to extract target infor-
VII.)	Display:- The processed data is displayed on a screen where it is interpreted to identify & track objects.	
	-tion are:	Resolution of Aximuthal Resolution
1,)	Range Resolution It is dependent on the wavelength a pulse width.	Aximuthal Resolution 1) It is dependent on beam width, which is function of the antenna Sixe & design.
11.)	can distinguish between two targets at different distances along the same line of sight.	11.) can distinguish between - two targets at same distance but at different angles from the vadar.
(11)	Equation, Rir = Y.C where, T = pulse length c = speed of light r = depression angle	Ra = S. A where, S = short range L = antenna length d = wave length