Correction du devoir 1 d'informatique

Exercice 1

1. Notons $\mathcal{P}(k)$ l'assertion : $P_k = a^k$ et $i_k = k$ et montrons que ceci définit un invariant de boucle.

Comme $P_0 = 1$ et $i_0 = 0$, l'assertion $\mathcal{P}(0)$ est vraie.

Supposons que $\mathcal{P}(k)$ est vraie.

On a

$$P_{k+1} = P_k * a = a^k \times a = a^{k+1}$$

Puis

$$i_{k+1} = i_k + 1 = k + 1$$

Donc $\mathcal{P}(k+1)$ est vraie.

$$P_k = a^k$$
 et $i_k = k$ est un invariant de boucle.

2. On peut construire le tableau suivant.

k	0	1	2	3	4	 Dernière boucle
P_k	1	a	a^2	a^3	a^4	 a^n
i_k	0	1	2	3	5	 n

On souhaite que la fonction retourne a^n . On doit donc s'arrêter quand $P_k = a^n$. Compte-tenu de l'invariant de boucle, on a k = n. Donc la boucle doit s'arrêter quand $i_n = n$.

Exercice 2

1. a. Proposition de script :

$$\label{eq:def} \begin{split} \textbf{def} & \text{ factorielle(n):} \\ & p = 1 \\ & i = 1 \\ & \textbf{while} & i <= n: \\ & p = p*i \\ & i = i+1 \\ & \textbf{return} & p \end{split}$$

b. Terminaison

La suite (n-i) est une suite <u>d'entiers positifs</u> et <u>strictement décroissante</u>. Donc au bout d'un certain nombre de tours de boucle, on aura n-i < 0. Compte-tenu du test d'arrêt, ceci justifie la terminaison de l'algorithme.

c. Invariant de boucle

Notons p_k et i_k les valeurs prises par p et i après la k-iéme boucle, avec la convention que p_0 et i_0 sont les valeurs prises par p et i avant la première boucle.

On peut construire le tableau suivant.

k	0	1	2	3	4	 Dernière boucle
p_k	1	1	2	6	24	
i_k	1	2	3	4	5	 n+1

Notons $\mathcal{P}(k)$ l'assertion : $p_k = k!$ et $i_k = k+1$ et montrons que ceci définit un invariant de boucle.

Comme $p_0 = 1$ et $i_0 = 1$, l'assertion $\mathcal{P}(0)$ est vraie.

Supposons que $\mathcal{P}(k)$ est vraie.

On a

$$p_{k+1} = p_k * i_k = k! \times (k+1) = (k+1)!$$

Puis

$$i_{k+1} = i_k + 1 = k + 2$$

Donc $\mathcal{P}(k+1)$ est vraie.

Correction

Compte-tenu du test d'arrêt, la valeur prise par i_k à la dernière boucle est n+1. Donc à la sortie de la dernière boucle, on a $i_k=n+1$, donc k=n (on a donc n tours de boucle). Et à la sortie de la dernière boucle, on a $p_n=n!$. D'où la correction de l'algorithme.

2. Proposition de script :

def estdivisible(n):
 if factorielle(n)%(n+1)==0:
 return True
 else:
 return False

3. a. En notant s_k la valeur de s à la sortie de la k-ième boucle, et en notant factorielle(k) la valeur prise par la fonction factorielle pour l'entier k, on peut construire le tableau suivant.

k	1	2	3	4
factorielle(k)	1	2	6	24
s_k	0+1 = 1	1+2 = 3	3+6 = 9	9+24 = 33

Pour n = 4, on a k in range (1, 5), donc l'indice de boucle k varie entre 1 et 4, donc mystere (4) renvoie la valeur 33.

b. Quand on appelle mystere(n), on effectue n tours de boucle. À chaque tour de boucle, le nombre de multiplications est égale au nombre de multiplications pour effectuer factorielle(k).

Or à l'appel de factorielle(k), l'algorithe factorielle effectue k tours de boucle, et à chaque tour

de boucle 1 multiplication. Donc à l'appel de factorielle(k), on a k multiplications. Il s'ensuit que le nombre de multiplications qu'effectue mystere(n) est égal à : $\sum_{k=1}^n k = \frac{n \ (n+1)}{2}$.

Le nombre de multiplications est
$$\frac{n\ (n+1)}{2}$$
. La complexité est en $O(n^2)$.

c. Proposition de script :

def mystere(n):
 s=0
 p=1
 for k in range(1,n+1):

$$p = p*k$$
 $s = s + p$
 return s

On a en fait inclus le calcul de la factorielle dans l'algorithme.

Au début on a 2 affectations. Ensuite à chaque tour de boucle, on a 2 opérations et 2 affectations. Donc au total, comme on a n tours de boucle, le nombre d'opérations est égal à 2+4n. D'où la complexité linéaire.

Exercice 3

1. On obtient le tableau suivant :

i	0	1	2	3	4	5	6
p_i	1	2	2	2	2^{9}	2^{9}	2^{41}
A_i	2	2^2	2^{4}	2^{8}	2^{16}	2^{32}	2^{64}
k_i	41	20	10	5	2	1	0

2. Notons $\mathcal{P}(k)$ l'assertion : $p_i A_i^{k_i} = 2^n$ et montrons que ceci définit un invariant de boucle.

Comme $p_0 = 1$, $A_0 = 2$ et $k_0 = n$, l'assertion $\mathcal{P}(0)$ est vraie.

Supposons que $\mathcal{P}(k)$ est vraie.

On a deux cas suivant la parité de k_i .

• Si k_i est pair.

On a alors

$$p_{i+1} = p_i, \ A_{i+1} = A_i^2 \quad \text{et} \quad k_i = 2 k_{i+1}$$

Donc

$$p_{i+1} A_{i+1}^{k_{i+1}} = p_i A_i^{2 k_{i+1}} = p_i A_i^{k_i} = 2^n$$

• Si k_i est impair.

On a alors

$$p_{i+1} = p_i A_i, A_{i+1} = A_i^2$$
 et $k_i = 2 k_{i+1} + 1$

Donc

$$p_{i+1} A_{i+1}^{k_{i+1}} = p_i A_i A_i^{2 k_{i+1}} = p_i A_i^{2 k_{i+1}+1} p_i A_i^{k_i} = 2^n$$

Donc $\mathcal{P}(k+1)$ est vraie.

$$p_i A_i^{k_i} = 2^n$$
 est un invariant de boucle.

3. La boucle s'arrête quand $k_i \le 0$. Comme c'est un entier, elle s'arrête quand $k_i = 0$. Donc, d'après l'invariant de boucle, la fonction retourne $p_i = 2^n$.

Cette fonction retourne 2^n .

4. Soit $n = a_0 + a_1 2 + a_2 2^2 + a_3 2^3 + \ldots + a_{r-1} 2^{r-1} + a_r 2^r$, où $a_i \in \{0, 1\}$ et $a_r \neq 0$. On a $k_0 = n$, puis $k_1 = a_1 + a_2 2 + a_3 2^2 + \ldots + a_{r-1} 2^{r-2} + a_r 2^{r-1}$, $k_2 = a_2 + a_3 2 + a_4 2^2 + \ldots + a_{r-1} 2^{r-3} + a_r 2^{r-2}$. On peut montrer par récurrence que

$$k_i = a_i + a_{i+1} + 2 + a_{i+2} + 2^2 + \dots + a_{r-1} + 2^{r-i-1} + a_r + 2^{r-i}$$

On a donc $k_r = a_r 2^{r-r} = a_r = 1$. La boucle s'arrête donc pour $k_{r+1} = 0$. On a donc r+1 tours de boucle.

Par exemple $41 = 1 + 0.2 + 0.2^2 + 1.2^3 + 0.2^4 + 1.2^5$, et on a 6 tours de boucle.

Comme $a_i \in \{0,1\}$ et $a_r \neq 0$, on a

$$2^r \le n \le 1 + 12 + 12^2 + 12^3 + \ldots + 12^{r-1} + 12^r$$

Soit

$$2^r \leqslant n \leqslant \frac{1 - 2^{r+1}}{1 - 2} = 2^{r+1} - 1 < 2^{r+1}$$

On en déduit que

$$r \ln 2 \leqslant \ln n \leqslant (r+1) \ln 2$$

Puis

$$\frac{\ln n}{\ln 2} - 1 \leqslant r \leqslant \frac{\ln n}{\ln 2}$$

Enfin

$$\frac{\ln n}{\ln 2} \leqslant r + 1 \leqslant \frac{\ln n}{\ln 2} + 1$$

Comme on a r + 1 tours de boucle, on en déduit que

la complexité de cet algorithme est en $O(\ln n)$.

Exercice 4

1. Proposition de script :

```
def nombreZeros(t,i):
    if t[i] == 1:
        return 0
    else:
        S = 0
        k = i
        while (k < len(t) and t[k] == 0):
        S = S+1
        k = k+1
    return S</pre>
```

Commentaires. Si on ne met pas la commande k < len(t), si on demande dans l'exemple de l'énoncé nombre Zeros (t1,16), on obtient un message d'erreur ' out of range '. En effet l'algorithme devra après le premier tour de boucle tester t1[17] qui n'existe pas.

2. Proposition de script :

3. Considérons d'abord la fonction nombreZeros.

Si t[i]=1 l'algorithme n'effectue qu'un seul test, donc la complexité dans le meilleur des cas est O(1).

Supposons que i=0 et que la liste ne contient que des 0. Notons n la taille de la liste. L'algorithme effectue un test, 2 affectations et puis 6 n affectations, test ou opérations. Donc au total 3 + 6n. Donc la complexité dans le pire des cas est O(n).

Considérons maintenant la fonction nombreZerosMax.

Si la liste ne contient que des 1, on a d'abord 2 affectations puis dans chaque boucle le calcul de nombre Zeros (t,i) et un test. Compte-tenu de la complexité O(1) de la fonction nombre Zeros dans ce cas, on aura une complexité en O(n).

Si la liste contient que des 0, on a d'abord 2 affectations puis dans chaque boucle le calcul de nombre Zeros (t,i) et un test et éventuellement une affectation. Comme il n'y a que des 0, à chaque tour de boucle la complexité de la fonction nombre Zeros sera en O(i). Au total on aura une complexité en $\sum_{i=0}^{n-1} O(i)$, ce qui donne une complexité en $O(n^2)$.

4. Proposition de script :

```
def nombreZerosMaxAmeliore(t,i):
    Max = 0
    i = 0
    while i < len(t):
        a = nombreZeros(t,i):
        if a > Max:
            Max = a
        if a == 0:
            i = i+1
        else:
            i = i+a
    return Max
```

Commentaires. Avec cet algorithme on ne parcourt la liste qu'une seule fois. En effet :

- Quand a=0 ce qui correspond à t [i] ==1, on passe de i à i+1.
- Quand pour un indice i, on passe de t[i-1] == 1 à t[i] == 0, alors a est égal au nombre de zéros consécutifs à partir de cet indice i et on passe alors de i à i+a, ce qui revient à passer " au dessus " des 0, et à reprendre la boucle au premier 1 qui suit les 0 successifs.

Cet algorithme sera donc linéaire.

On peut améliorer un peu l'algorithme en remplaçant i=i+a par i=i+a+1, ce qui évite de considérer le premier 1 après les 0 successifs.