

Flow modelling and Cellular Automata

Shaun Schreiber (16715128)

March 26, 2014

Outline

- 1 Lattice gas cellular automata
- 2 LGCA in flow modelling
- 3 HPP
- 4 Applications
- 5 Bibliography

Lattice gas cellular automata

Difference

What is the difference between lattice gas cellular automata (LGCA) and CA?

Figure: Here is an example of a single cell with 4 velocity vectors and 4 empty sites.

LGCA in flow modelling

Lattices Models

- HPP
- FHP
- LBM

Why?

Why was LGCA developed?

HPP

History

- Developed in 1973.
- By Hardy, de Pazzis and Pomeau.
- Fail Navier-Stokes.

Figure: Here is an example of a single cell with 4 velocity vectors and 4 empty sites.

HPP Propagation Phase

HPP Mass and Momentum densities

The Igca can be fully describe by the boolean fields $n_i(t, \mathbf{r}_j)$, where $i \in \{0, 1, 2, 3\}$, \mathbf{r} is the position of the cell and \mathbf{t} is the discrete time. $n_i(t, \mathbf{r}_j)$ means the boolean value of the ith site at position \mathbf{r} at time \mathbf{t} . Before calculating the mass and momentum densities we require the mean occupation numbers. The mean occupation number for site i at position \mathbf{x} , is the average of $n_i(t, \mathbf{r}_j)$ where \mathbf{r}_j are the the positions of the neighbours of \mathbf{x}

$$N_i(t,\mathbf{x}) = \frac{\sum_{j=0}^3 n_i(t,\mathbf{r}_j)}{4}.$$

The mass density for time t and position x is defined as follow:

$$\rho(t,\mathbf{x}) = \sum_{i=0}^{3} N_i(t,\mathbf{x}).$$

HPP Mass and Momentum densities continued

The momentum densities for time t and position \mathbf{x} is defined as follow:

$$\mathbf{j}(t,\mathbf{x}) = \rho \mathbf{u} = \sum_{i=0}^{3} \mathbf{c}_{i} N_{i}(t,\mathbf{x}).$$

Given ρ and \mathbf{j} the mass and momentum densities we can calculate N_i assuming a linear relationship

$$N_i = \xi \rho + \eta \mathbf{c}_i \mathbf{j}.$$

We get: $\xi = \frac{1}{4}$; and $\eta = \frac{1}{2}$ thus

$$N_i = \frac{1}{4}\rho + \frac{1}{2}\mathbf{c}_i\mathbf{j}.$$

FHP

History

- Developed in 1986.
- By Frisch, Hasslacher and Pomeau.
- Navier-Stokes success.
- pauli exclusion principle.
- FHP-I, FHP-II and FHP-III.

History

Figure: Here is an example of a single hexagonal cell with 6 velocity vectors and 6 empty sites.

FHP Propagation Phase

FHP Propagation Phase

After collision phase and before propagation phase.

After collision phase and before propagation

FHP Propagation Phase

Applications

Applications

- Simulating rain in games.
- Simulating rivers in games.
- 2D fluid simulations.
- Network congestion simulation.

Bibliography

Wolf-Gladrow, D. A. 2000. Lattice-gas cellular automata and lattice Boltzmann models. New York: Springer.