Semaine du 28/09 au 02/10

1 Cours

Complexes

Corps des nombres complexes Partie réelle, partie imaginaire, module, conjugué et interprétation géométrique.

Groupe \mathbb{U} des nombres complexes de module 1 Définition, notation $e^{i\theta}$, relations d'Euler et formule de Moivre, argument et interprétation géométrique, racines $n^{\text{èmes}}$ de l'unité et d'un complexe non nul.

Equations du second degré Racines carrées d'un complexe, résolution d'une équation du second degré à coefficients complexes, somme et produit des racines.

Trigonométrie Linéarisation. Développement. Sommes trigonométriques.

Exponentielle complexe Définition et propriétés. Module et argument de e^z .

Géométrie Interprétation géométrique de l'argument de $\frac{c-a}{b-a}$ pour $(a,b,c) \in \mathbb{C}^3$. Conditions d'alignement et de perpendicularité. Interprétation géométrique des applications $z \in \mathbb{C} \mapsto az + b$.

2 Méthodes à maîtriser

- $ightharpoonup z \in \mathbb{U} \iff \overline{z} = \frac{1}{z}.$
- $\blacktriangleright \ z \in \mathbb{R} \iff \arg z \equiv 0[\pi], \ z \in \mathfrak{i}\mathbb{R} \iff \arg z \equiv \frac{\pi}{2}[\pi].$
- \blacktriangleright Extraction de racines $n^{\rm èmes}$ par méthode trigonométrique.
- ▶ Extraction de racines carrées, résolution d'équations du second degré à coefficients dans C.
- ▶ Linéariser $\cos^k \theta$ ou $\sin^k \theta$, développer $\cos k\theta$ et $\sin k\theta$ pour $(k, \theta) \in \mathbb{N} \times \mathbb{R}$.
- ▶ Résoudre dans \mathbb{C} une équation du type $e^z = \mathfrak{a}$.

3 Questions de cours

- ▶ On pose $\omega = e^{\frac{2i\pi}{5}}$ et $\alpha = \omega + \omega^{-1}$. En considérant une équation du second degré vérifiée par α , calculer $\cos \frac{2\pi}{5}$ et $\sin \frac{2\pi}{5}$.
- ▶ Soit $(\theta, \phi) \in \mathbb{R}^2$. Calculer $\sum_{k=0}^n \cos(k\theta + \phi)$ et $\sum_{k=0}^n \sin(k\theta + \phi)$.
- $\blacktriangleright \ \, \mathrm{Soit} \,\, \mathfrak{n} \in \mathbb{N}^*. \,\, \mathrm{Montrer \,\, par \,\, double \,\, inclusion \,\, que \,\,} \mathbb{U}_{\mathfrak{n}} = \Big\{ e^{\frac{2\,\mathrm{i}\, k\,\pi}{\mathfrak{n}}}, \,\, k \in \mathbb{Z} \Big\}.$
- ▶ Résoudre une équation du second degré à coefficients dans ℂ au choix de l'examinateur.