1 Grundlagen

1.1 Trigometrie

$\sin\left(\alpha\right) = \frac{G}{H}$
$\cos(\alpha) = \frac{A}{H}$
$\tan (\alpha) = \frac{G}{A} = \frac{\sin (\alpha)}{\cos (\alpha)}$

	0°	30°	45°	60°	90°
$\sin(\alpha)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\alpha)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan(\alpha)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_

1.2 Vektorrechnung

Länge des Vektors: $|\vec{u}| = \sqrt{u_x^2 + u_y^2 + u_z^2}$

1.3 Ableitungen

Funktion	Ableitung
x^a	$a \cdot x^{a-1}$
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\frac{1}{\cos(2)^x}$

$$\frac{d}{dx}(f(x)\cdot g(x)) = f'(x)\cdot g(x) + f(x)\cdot g'(x)$$

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

1.3.1 Physikalische Grössen

Geschwindigkeit	v	-	m/s
Beschleunigung	a	1	m/s^2
Federkonstante	D	-	N/m
Frequenz	f	Hertz	1/s

Kraft	F	Newton	$\mathrm{kg}\cdot m/s^2$
Energie	E	Joule	$N \cdot m$
Arbeit = Δ Energie	W	Joule	$J=N\cdot m$
Leistung = Arbeit pro Zeit	P	Watt	J/s

* 4.19 Joule = 1 Cal, 1 Joule = 1 Watt/s => $3.6 \cdot 10^6 J = 1 \text{ kWh}$

1.3.2 Basisgrössen

Länge	l	Meter	m
Masse	m	Kilogramm	kg
Zeit	t	Sekunde	s

1.3.3 Abhängigkeit Weg Geschwindigkeit und Beschleunigung über die Zeit

Wegfunktion	s(t)
Geschwindigkeitsfunktion	$v(t) = \dot{s}(t)$
Beschleunigungsfunktion	$a(t)=\dot{v}(t)=\ddot{s}(t)$

1.3.4 Konstanten

(=:01==:00:00:00:00:00:00:00:00:00:00:00:00:0		
Fallbeschleunigung	g	$9.80665m/s^2$
Lichtgeschwindigkeit	c	$2.99792458 \cdot 10^8 m/s$
Gravitationskon- stante	G	$\frac{6.673 \cdot 10^{-11} N \cdot }{m^2/{\rm kg}^2}$

Konservative Kraft: Die Kraft ist konservativ, da sie nur $y = x \cdot \tan(\alpha_0) - \frac{g}{2v_0^2 \cos^2(\alpha_0)}$ von Ortskoordinaten abhängt, und da -F(x) als reell wertige Funktion einer Variable eine Stammfunktion besitzt. Das Hook'schen Gesetz beschreibt eine konservative Kraft, da sie nur von Ortskoordinaten abhängt, und da -F(x) als reellw- $y_{\text{max}} =$ ertige Funktion einer Variable eine Stammfunktion besitzt

2 Kinematik

Mittlere Geschwindigkeit: $\bar{v} = \frac{\Delta v}{\Delta s}$ Mittlere Beschleunigung: $\bar{a} = \frac{\overline{\Delta v}}{\Delta t}$

Gleichförmige Bewegung: $s = s_0 + v \cdot ta \Rightarrow \frac{s}{s} = t$

Geradlinige Bewegung: $\Delta s = \bar{v}\Delta t$ Gleichmässig beschleunigte Bewegung:

$$\begin{split} s &= s_0 + v_0 \cdot t + \frac{1}{2}at^2 \\ v &= v_0 + at \\ v^2 &= v_0^2 + 2a(s-s_0) \Rightarrow \text{wenn } v_0 = 0 \Rightarrow s = \frac{v^2}{2a} \\ \bar{v} &= \frac{v_1 + v_2}{2} \\ t &= \frac{v}{a} = \frac{v_0 - v}{a} \end{split}$$

2.1 Gleichfornige Kreisbewegung (ω = konst.)				
Umlaufzeit:	T	[T] = s		
Frequenz:	$f = \frac{1}{T}$	$[f]=s^{-1}=\mathrm{Hz}$		
Winkelkoordinate:	$\varphi = \frac{b}{r}$	$[\varphi] = \operatorname{rad} = \frac{m}{m}$		
Winkel-	$\omega = \Delta \frac{\varphi}{\Delta} t$	$[\omega] = \frac{\text{rad}}{s}$		
geschwindigkeit:	$=2\frac{\pi}{T}=2\pi f$	-		
Bahngeschwindigkeit:	v = r	ω		

Physik Anwendung für Informatik / Felix Tran, Joshua Beny Hürzeler / 1

Zentripetalbeschleunigung: Tangentialgeschwindigkeit: Radialbeschleunigung/ Zentripetalbeschleunigung: Tangentialbeschleunigung: Kreisbewegung Funktion:

 $\begin{aligned} a_T &= \frac{v_1 - v_0}{t} \\ r(t) &= r \binom{\cos(wt + \varphi_0)}{\sin(wt + \varphi_0)} \end{aligned}$

 $a_z = \frac{v^2}{r} = r\omega^2$

Radialgeschwindigkeit:

2.2 Schiefer Wurf

Bewegungsgleichung: $\vec{r}(t) = \vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{g}t^2$ $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 0 \\ y_0 \end{pmatrix} + v_0 \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \end{pmatrix} \cdot t + \frac{1}{2} \begin{pmatrix} 0 \\ -g \end{pmatrix} t^2$

3 Messen und Messfehler

Systematische Fehler: z.B. Messen mit falsch kalibriertem Messgerät.

Berechnet sich der Wert einer Grösse z aus Messwerten der Grössen x und y.

$$z = f(x, y)$$

und wurden die Messgrössen x und y mit einem Fehler von Δx bzw. Δy bestimmt, so ist der Wert von z nur ungenau bestimmt. Für den prognostizierten Wert und den prognostizierten Messfehler gilt

$$\begin{split} z &= z_0 \pm \Delta z \\ z_0 &= f(x_0, y_0) \\ \Delta z &= \left| \frac{\partial}{\partial x} f(x_0, y_0) \right| \cdot \Delta x + \left| \frac{\partial}{\partial y} f(x_0, y_0) \right| \cdot \Delta y \end{split}$$

sofern die Grössen x und y, z.B. auf Grund von fehlerhaften Messinstrumenten, systematisch falsch bestimmt wurden. Kraft Die Fehlerabschätzung durch systematische Fehler ist eine «worst-case»-Abschätzung

Statistische Fehler: Bei mehrfach messen unterschiedliche Ergebnisse

⇒ Mehrmals messen und Mittelwert nehmen verkleinert den Hook`sches Gesetz Fehler Fehlerfortpflanzung für normalverteilte Fehler. Berech- Zentripetalkraft

net sich der Wert einer Grösse z aus Messwerten der Grössen x und y gemäss

$$z = f(x, y)$$

und wurden die Messgrössen x und v durch Mehrfachmessung (x n-fach gemessen, y m-fach gemessen) und ohne systematischen Fehler bestimmt, so darf von statistisch normalverteilten Fehlern ausgegangen werden. In diesem Fall errechnet sich die Standardunsicherheit der Messwerte von x und v gemäss

$$\Delta x = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{\sigma_x}{\sqrt{n}}$$

$$\Delta y = \sqrt{\frac{1}{m(m-1)} \sum_{i=1}^{m} (y_i - \bar{y})^2} = \frac{\sigma_y}{\sqrt{m}}$$

 $\sigma = \text{Standardabweichung}$

$$\bar{x} = \frac{1}{n} \sum_{i=n}^{n} x_i = \text{Mittelwert}$$

Es gilt also

$$x = \bar{x} \pm \Delta x$$
$$y = \bar{y} \pm \Delta y$$

Ausserdem ist der prognostizierte Wert und der statistische Fehler von z durch folgende Formeln berechenbar

$$z = z \pm \Delta z$$
$$\bar{z} = f(\bar{x}, \bar{y})$$

$$\Delta z = \sqrt{\left(\frac{\partial}{\partial x} f(x_0,y_0) \cdot \Delta x\right)^2 + \left(\frac{\partial}{\partial y} f(x_0,y_0) \cdot \Delta y\right)^2}$$

Beispiel Systematischer Fehler: Ein Gewicht unbekannter Masse wird auf einer schiefen Ebene mit dem Neigungswinkel α platziert, auf der es reibungsfrei gleiten kann. Die Hangabtriebskraft und der Neigungswinkel α werden experimentell bestimmt. Die Werte sind $\alpha = (30^{\circ} \pm 2^{\circ}), F_H =$ $(10 \pm 0.3)N$. Aus Tabelle $g = (9.81 \pm 0.03)$

$$F_H = mg \cdot \sin(\alpha) \Rightarrow m = \frac{F_H}{g \cdot \sin(\alpha)}$$

$$m = \frac{10N}{9.81m/s^2 \cdot \sin(30^\circ)} = 2.0387$$

→ Partielle Ableitungen:

$$\begin{split} \frac{\partial m}{\partial g} \left(\frac{F_H}{g \cdot \sin(\alpha)} \right) &= -\frac{F_H}{g^2 \cdot \sin(\alpha)} \\ \frac{\partial m}{\partial \alpha} \left(\frac{F_H}{g \cdot \sin(\alpha)} \right) &= -\frac{F_H \cdot \cos(\alpha)}{g \cdot \sin^{2^\circ}(F_H)} \\ \Delta m &= \left| -\frac{F_H}{g^2 \cdot \sin(\alpha)} \cdot \Delta g \right| + \left| -\frac{F_H \cdot \cos(\alpha)}{g \cdot \sin^2(F_H)} \cdot \Delta \alpha \right| \\ + \left| \frac{1}{g \cdot \sin(\alpha)} \cdot \Delta F_H \right| &= 0.191 \text{kg} \\ m &= (2.04 \pm 0.19) \text{kg} \end{split}$$

Achtung $\Delta \alpha$ muss in Bogenmass sein!

Gradmass in Bogenmass $x = \frac{\alpha}{180} \cdot \pi$

Bogenmass in Gradmass $\alpha = \frac{x}{2} \cdot 180$

4 Kraft

 $\vec{F}_{
m res} = m \vec{a}$ $F_G = mg$ $F_F = Dy$ D = Federkonst.Gewichtskraft Federkraft $y = |l - l_0|$

 $\Delta F = D \cdot \Delta y$ $F_{7} = \frac{mv^{2}}{}$

 $F_G = mg$

Normalkraft: $F_N = mq \cdot \cos(\alpha)$

Hangabtriebskraft: $F_H = mg \cdot \sin(\alpha)$

Haftreibungskraft: $F_{\rm HR} = \mu \cdot F_N$

4.1 Kraft Statik

In der Statik beewegen sich die Objekte nicht. Dort gilt also: $\sum F = 0, v(t) = 0m/s, a(t) = 0m/s^2$

X)
$$F_s \cdot \cos(18^\circ) - \mu \cdot F_N - F_G \cdot \sin(35^\circ) = 0$$

Ein Gewicht der Masse m=10kg wird entsprechend der obigen Skizze durch Seile an einer Wand befestigt. Welche Kräfte wirken im linken und rechten Seil?

1. Methode:

$$\frac{F_L}{\sqrt{3^2 + 4^2}} \binom{-3}{4} + \frac{F_R}{\sqrt{8^2 + 6^2}} \binom{8}{6} + mg \binom{0}{-1} = 0$$

2. Methode

$$F_L\begin{pmatrix} -\cos(\alpha) \\ \sin(\alpha) \end{pmatrix} + F_R\begin{pmatrix} \cos(\beta) \\ \sin(\beta) \end{pmatrix} + mg\begin{pmatrix} 0 \\ -1 \end{pmatrix} = 0$$

5 Energie E

Kinetische Energie

$$E_k = \frac{1}{2} m v^2$$

Potenzielle Energie

 $E_n = mgh$

Spannenergie einer Feder

$$E_F = \frac{1}{2} D y^2$$

Energieerhaltungssatz

$$E_{\text{tot}} = \sum_{i} E_{i} = \text{konst.}$$

 $E_{
m tot}$: Gesamtenergie im abgeschlossenen System

Energieerhaltung potenzielle Energie => Feder: $mq(h+y) = \frac{1}{2}Dy^2$

6 Arbeit W

Beziehung zwischen Arbeit und Energie:

 $\Delta E = W_{AB}$ ΔE : Energieänderung eines offenen Systems W_{AB} : Arbeit, einer äusseren Kraft an diesem

System
$$W = F_s s$$

$$W = F \cdot s \cdot \cos(\alpha) = \vec{F} \cdot \vec{s}$$

$$\vec{F_s}$$

Arbeit auf der scheifen Ebene mit Reibung:

 $W = (\sin(\alpha) + \mu_R \cdot \cos(\alpha)) \cdot F_G \cdot s$

7 Leistung P

mittlere Leistung
$$\bar{P} = \frac{W_{\mathrm{AB}}}{\Delta t} = \frac{\Delta E}{\Delta t}$$

momentane Leistung

$$\frac{dW}{dt} = \vec{F} \cdot \vec{v}$$

Wirkungsgrad

 W_1P_1 : aufgenommene Leistung bzw. Ar- W_2P_2 : nutzbare Leistung bzw. Ar-

beit

Vortriebskraft

$$F = \frac{1}{v}$$

$$\mu = \frac{P}{v}$$

Reibungskoeffizient

$$\frac{P}{P}$$

Steigleistung

Welche Wassermenge pro Zeiteinheit fördert eine 4-kW-Pumpe in ein 45 m höher liegendes Reservoir?

$$\frac{dV}{dt} = \frac{P}{\varrho g h}$$

Leistung auf der Schiefen Ebene in Abhängigkeit von s und h:

$$W = \left(h + \mu_R \sqrt{s^2 - h^2}\right) mg$$

8 Kosmologie

Umkreisung in geringer Höhe: Gravitationskraft zwischen Satelliten und Erde F_G ist gerade das Gewicht mg des Satelliten, welches es er auch auf der Erde hätte

$$mg = \frac{mv^2}{r}$$

Daraus folgt die Formel für di

Baraus roigt die Former für die		
Geschwindigkeit	Umlaufzeit	
$v = \sqrt{gr}$	$T = 2\pi \sqrt{\frac{r}{g}}$	

Physik Anwendung für Informatik / Felix Tran, Joshua Beny Hürzeler / 2

Geostationär: Geostationär bedeutet, dass der Satellit gleiche Umlaufzeit T wie die Erde hat. (Umlaufzeit Erde = T = $24 \cdot 3600s = 86400s$)

Gravitation:

Gravitationskraft zweier Massenpunkte

$$F_G = G \frac{m_1 m_2}{r^2}$$

Potenzielle Energie

Kreisbahngeschwindigkeit

Fluchtgeschwindigkeit

potenzielle Energie eines Objekts im Gravitationsfeld eines anderen:

$$E_p = \frac{GM_Em}{r}$$

9 Fadenpendel

10 Mehrdimensionale Analysis

Linearisierung:

$$f(x) \underset{x \approx x_0}{\approx} f'(x_0)(x - x_0) + f(x_0)$$

Häufig mit Funktionen mehrerer Variablen zu tun, die weitere Funktionen beinhalten.

$$f(x,y) = x^{2} \cdot \sin(y)$$
$$x(t) = \sin(t)$$
$$y(t) = t^{3}$$

Partielle Ableitung:

Nach x und y getrennt ableiten.

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} (x^2 \cdot \sin(y)) = 2x \cdot \sin(y)$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial y} (x^2 \cdot \sin(y)) = x^2 \cdot \cos(y)$$

x(t) und y(t) in f(x,y) einsetzen und dann ableiten.

$$\frac{df}{dt}(x(t), y(t)) = \frac{d}{dt}\left(\sin(t)^2 \cdot \sin(t^3)\right)$$

$$= 2\sin(t) \cdot \cos(t) \cdot \sin(t^3) + \sin(t)^2 \cdot \cos(t^3) \cdot 3t^2$$

Altenativ mit mehrdimensionale Kettenregel möglich. Bei dieser werden die partiellen Ableitungen mit der Ableitung der Funktion multipliziert und addiert.

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$$

11 Weiteres

11.1 Taschenrechner

- Menu \rightarrow 3 \rightarrow 1 für solve()
- Menu \rightarrow 3 \rightarrow 7 \rightarrow 1 für Gleichungsystem lösen
- $doc \rightarrow 7 \rightarrow 2$ für Umstellung von Grad auf Rad
- Menu \rightarrow 4 \rightarrow 1 für Ableitungen

11.2 Fundamentum Mathematik und Physik Inhalt

- Trigometrie: Seite 26
- Ableitungen: Seite 60
- Kinematik: Seite 81
- Kräfte: Seite 83
- · Energie: Seite 85