Review

- Linear: v = 0 has $S_{px}(z) = S_{px,0}$ great prediction. Fit \vec{u} for $v \neq 0$ as well, though not $S_{px}(z)$ yet (Updated!).
- In nonlinear, review: expect deposited flux $\Delta S_{px} = S_{px,0}$ incident/generated flux.
- Instead, observe $\Delta S_{px} < S_{px,0}$, and moreover S_{px} far from critical layer changing over time!

• Last week: defined some

$$\delta u_z = \frac{u_z - u_{z,0} - \langle u_z \rangle_x}{|u_{z,0}|}, \quad (1)$$

deviation (new: subtracting mean flow too), computed RMS. Found higher RMS for lower ν .

- Could it be $\langle ... \rangle_x$ vs $\langle ... \rangle_t$?
- Objective: understand "reflection"?

Overview

- Understand exactly how much flux is being absorbed at the critical layer:
 - Can the decreased flux absorption be explained by viscous dissipation before the critical alyer alone?
 - Compare predictions of $\frac{\partial z_c}{\partial t}$ to the observed ΔS_{px} at the critical layer.
- Understand nature of "reflection", why cannot see in certain simulations.

Linear

Had great u_z fits including viscosity (error $\sim 3-5\%$), but did not show great $S_{px}(z;v)$ fits last week. Here they are!

Mean Flow and Flux

- Last week: Evolution of $\langle u_x \rangle_x(t), \langle S_{px} \rangle_x(t)$ at different times. Note flux seems to decrease over time throughout domain.
- Bottom panel, solid lines are time slices, dotted lines indicate averaging over $\sim \frac{2\pi}{\omega}$ one period (6 times), thick line is linear viscous prediction.
- Shaded grey indicates one vertical wavelength.

Mean Flow and Flux

- More damped for comparison $(v \rightarrow 7v/3)$.
- Note that S_{px} does not change much over time, general trend matches viscous linear decrease.

Absorbed Flux and Front Propagation

- Three different ΔS_{px} :
 - LinVisc extrapolate $S_{px,0}$.
 - $\Delta S_{px;S}$ (z-avg).
 - $\Delta S_{nx:U}$ (z-avg too).

- FIXED z_c(t) for different incident fluxes, even more models:
 - Solid lines are three ways of extracting from data.
 - Dotted lines use $\frac{\partial z_c}{\partial t}(\Delta S_{px})$ model for three values of S_{px} :
 - Average ΔS_{px} .
 - v-extrapolated $S_{px,0}$.
 - Full $S_{px,0}$.

Takeaway: strongly inconsistent with $S_{px,0}$ being completly absorbed! In fact, most are $\sim 0.5S_{px}$ being absorbed.

Absorbed Flux and Front Propagation

- Overdamped for comparison.
- Absorbed flux is in good agreement w/ linear viscous extrapolation of $S_{px,0}$, seems to imply full absorption.

Residual Flow Properties

- FT of $\delta \vec{u}$ slightly below the critical layer. Red line denotes where $2vk_x^2 = \omega$, "viscous wavenumber"?
- Note that we've chosen $vk_x^2 \lesssim u_x k_x \sim \frac{\omega}{k_{0x}} k_x$, our previous viscous wavenumber already.

Residual Flow Properties

Figure: Overdamped for comparison, not power law!

Figure: Linear for comparison; taken just below damping zone.

Useful Plots

Residuals

Figure: Residuals for not overdamped.

Figure: Residuals for overdamped.