

COMPLEX DISTANCE

Why

The identification of C with a plane leads C to naturally inherit R^2 's notion of distance.

Definition

The absolute value or modulus of $z = (x, y) \in \mathbf{C}$ is the distance of z to the origin. If $z \in \mathbf{C}$, then the modulus of z is

$$\sqrt{x^2+y^2}$$
.

In other words, the modulus of z is the distance (in \mathbf{R}^2 of z=(x,y) from the origin (0,0).

Notation

We denote the modulus of z by |z|.

Properties

Proposition 1 (Triangle Inequality). For all $z, w \in \mathbb{C}$,

$$|z+w| \le |z| + |w|.$$

Also, for all $z \in \mathbf{C}$, we have $|\operatorname{Re}(z)| \le |z|$ and $|\operatorname{Im}(z)| \le |z|$, and for all $z, w \in \mathbf{C}$,

$$||z| - |w|| \le |z - w|.$$

 $^{^{1}\}mathrm{This}$ follows from the triangle inequality. Future editions will include an account.

