COSYS - Linear Part M1 CORO EPICO

Lab - Second Part (simulation with Matlab or Octave)

Wednesday 6 October 2021

Deliverables format: PDF Document **Size:** Less than 8 pages

Type: Individual or group of 2 students report **Due date:** Wednesday 22 October 2021 (23:59)

1 Introduction of the second part of the LAB

Several dynamical systems have been explicitly or implicitly introduced in the first part of the Lab. Let us first do a review of them and introduce some notations.

1.1 Notation for the lab

The Open loop system: The first five sections were dedicated to the analysis of the open loop system. Let us denote (Σ) the quadruple (A, B, C, D = 0) or linear system

$$(\Sigma) \qquad \left\{ \begin{array}{ll} \dot{x} = Ax + Bu & x(0) = x_0 \\ y = Cx & \end{array} \right.$$

defined by

$$A = \left[\begin{array}{cc} -2 & 1 \\ 0 & -3 \end{array} \right] \quad B = \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \quad C = \left[\begin{array}{cc} 1 & 0 \end{array} \right] \quad D = \left[\begin{array}{cc} 0 \end{array} \right]$$

One can denote x_1 and x_2 the two components of its state, x_{01} and x_{02} the two components of its initial value.

The closed loop system with static state feedback: In section 6, with the calculation of the static state feedback, one implicitly introduced the closed loop system with static state feedback.

Figure 1: Closed loop with a static state feedback.

Let us denote (Σ_F) the quadruple $(A_F = A + BF, B, C, D = 0)$ or linear system

$$(\Sigma_F)$$

$$\begin{cases} \dot{x} = (A + BF)x + Bv & x(0) = x_0 \\ y = Cx \end{cases}$$

Denote x_{1_F} and x_{2_F} the two components of its state, x_{01_F} and x_{02_F} the two components of its initial value.

The closed loop system with observer and state feedback: In section 7, with the calculation of observer gain, one implicitly introduced the closed loop system with observer and state feedback (figure 2).

Let us denote (Σ_{FK}) the quadruple $(A_{FK}, B_{FK}, C_{FK}, D_{FK} = 0)$ or linear system

Figure 2: Closed loop with observer and state feedback.

$$(\Sigma_{FK}) \qquad \left\{ \begin{array}{c} \left[\begin{array}{c} \dot{x} \\ \dot{\hat{x}} \end{array} \right] = \left[\begin{array}{c} A & BF \\ KC & A - KC + BF \end{array} \right] \left[\begin{array}{c} x \\ \hat{x} \end{array} \right] + \left[\begin{array}{c} B \\ B \end{array} \right] v \\ y = \left[\begin{array}{cc} C & 0 \end{array} \right] \left[\begin{array}{c} x \\ \hat{x} \end{array} \right]$$

One can denote $x_{1_{FK}}$, $x_{2_{FK}}$, $\hat{x}_{1_{FK}}$, $\hat{x}_{2_{FK}}$ the four components of its state, and $x_{01_{FK}}$, $x_{02_{FK}}$, $\hat{x}_{01_{FK}}=0$, $\hat{x}_{02_{FK}}=0$ the four components of its initial value.

The following notation are used:

$$A_{FK} = \left[\begin{array}{cc} A & BF \\ KC & A - KC + BF \end{array} \right], \quad B_{FK} = \left[\begin{array}{c} B \\ B \end{array} \right], \quad C_{FK} = \left[\begin{array}{c} C & 0 \end{array} \right]$$

2 Open loop simulation

2.1 Checking the result of part1, subsection 5.2.1

In subsection 5.2.1 of part 1, you should have obtained that the theoretical expression of the free response is

$$x(t) = \begin{bmatrix} e^{-2t} (x_{01} + x_{02}) - e^{-3t} x_{02} \\ e^{-3t} x_{02} \end{bmatrix}$$

With Matlab (or Octave) the response due to initial condition x_0 can be obtained with the function "initial" (use help to understand how to use it).

Use this function to check that your expression is correct with $x_0 = [1; 10]$.

Using the "subplot" function of Matlab or Octave, give a figure with two axis and the following plots

$$x_1, xv_1$$

$$x_2, xv_2$$

where x_i is the plot of the component "i" of the theoretical expression and xv_i is the corresponding simulated component.

Note: the answer to this question is given in the M-file: TP_epico_student.m

3 Closed loop simulation

3.1 Checking the static feedback F and observer gain K of part1

In part1 of the exercise, a static feedback F and a output injection K were calculated such that $\sigma^d_{(A+BF)} = \{-5, -5\}$ and $\sigma^d_{(A-KC)} = \{-10, -10\}$. You can check your result using the acker or place functions of Matlab (or Octave).

Note: remember that the conventions of the course imply that one should use: F=-acker(A,B,pf) (where "pf" is the vector which defined the desired eigenvalues for A+BF). And that one should use: K=acker(A.',C.',pk).' (where "pk" is the vector which defined the desired eigenvalues for A-KC).

A new feedback gain and two new Observer gains for simulations

In the first chapter of the course, it is explain that when a A matrix has multiple equal eigenvalues, the matrix A could be not diagonalizable. In order to avoid this case. The desired eigenvalues for A + BF and A - KCwill be changed for the rest of the lab.

3.2.1 A new feedback gain

With Matlab (or Octave), compute the feedback gain F such that $\sigma^d_{(A+BF)} = \{-5.0, -5.1\}$. Define the system (Σ_F) corresponding to the quadruple $(A_F = A + BF, B, I_2, D = 0)$.

Note: you can use the following code AF=A+B*F; Gss_AF=ss(AF, B, eye(2), D); Remark that in the proposed code the output matrix is the identity $(I_2, eye(2))$ with Matlab or Octave). This will give the possibility, in the simulation to visualize x_{1_F} and x_{2_F} .

3.2.2 Two new observer gains

One aim of the Lab will be to illustrate the difference in the use of a slow observer and a fast observer. It is proposed here to define two observer gains.

Compute the observer gain K_1 such that $\sigma^d_{(A-K_1C)} = \{-5.2, -5.3\}.$

Compute the feedback gain K_2 such that $\sigma_{(A-K_2C)}^d = \{-10.0, -10.1\}$.

Define the system (Σ_{FK_1}) corresponding to the quadruple $(A_{FK_1}, B_{FK_1}, I_4, D_{FK_1} = 0)$.

Define the system (Σ_{FK_2}) corresponding to the quadruple $(A_{FK_2}, B_{FK_2}, I_4, D_{FK_2} = 0)$.

Note: Remark that in the proposed code the output matrix is the identity $(I_4, eye(4))$ with Matlab or Octave). This will give the possibility, in the simulation to visualize $x_{1_{FK_1}}$, $x_{2_{FK_1}}$, $\hat{x}_{1_{FK_1}}$, $\hat{x}_{2_{FK_1}}$.

3.3 Closed loop simulation with the first observer

Simulate the free response (v=0) of the closed loop of figure 2, using the system (Σ_{FK_1}) with $x_{0_{FK_1}}=$ $[x_{01_{FK_1}};x_{02_{FK_1}}] = [1;10] \text{ and } \hat{x}_{0_{FK_1}} = [\hat{x}_{01_{FK_1}};\hat{x}_{02_{FK_1}}] = [0;0].$

Check that $\hat{x}_{1_{FK_1}} \to x_{1_{FK_1}}$ and $\hat{x}_{2_{FK_1}} \to x_{2_{FK_1}}$ when $t \to \infty$, or equivalently that $\tilde{x}_{1_{FK_1}} = x_1 - \hat{x}_{1_{FK_1}} \to 0$ and $\tilde{x}_{2_{FK_1}} = x_{2_{FK_1}} - \hat{x}_{2_{FK_1}} \to 0$ when $t \to \infty$.

Plot the results on a figure with 4 axis with the plots arrange in the following way,

$x_{1_{FK_1}}, \hat{x}_{1_{FK_1}}$	$x_{2_{FK_1}}, \hat{x}_{2_{FK_1}}$
$ ilde{x}_{1_{FK_1}}$	$\tilde{x}_{2_{FK_1}}$

For these simulations, it is proposed to use the following time vector: t = [0:0.01:3];

Give the values of $x_{1_{FK_1}}$, $\hat{x}_{1_{FK_1}}$ and $\tilde{x}_{1_{FK_1}}$ for t=2.8 and t=2.95.

Give the values of $x_{2_{FK_1}}$, $\hat{x}_{2_{FK_1}}$ and $\tilde{x}_{2_{FK_1}}$ for t=2.8 and t=2.95.

3.4 Closed loop simulation with the second observer

Simulate the free response (v=0) of the closed loop of figure 2, using the system (Σ_{FK_2}) with $x_{0_{FK_2}}$

 $[x_{01_{FK_2}}; x_{02_{FK_2}}] = [\hat{1}; 10] \text{ and } \hat{x}_{0_{FK_2}} = [\hat{x}_{01_{FK_2}}; \hat{x}_{02_{FK_2}}] = [0; 0].$ Check that $\hat{x}_{1_{FK_2}} \to x_{1_{FK_2}}$ and $\hat{x}_{2_{FK_2}} \to x_{2_{FK_2}}$ when $t \to \infty$, or equivalently that $\tilde{x}_{1_{FK_2}} = x_1 - \hat{x}_{1_{FK_2}} \to 0$ and $\tilde{x}_{2_{FK_2}} = x_{2_{FK_2}}^2 - \hat{x}_{2_{FK_2}}^2 \to 0$ when $t \to \infty$.

Plot the results on a figure with 4 axis with the plots arrange in the following way,

$x_{1_{FK_2}}, \hat{x}_{1_{FK_2}}$	$x_{2_{FK_2}}, \hat{x}_{2_{FK_2}}$
$\tilde{x}_{1_{FK_2}}$	$ ilde{x}_{2_{FK_2}}$

For these simulations, it is proposed to use the following time vector : t=[0:0.01:3]; Give the values of $x_{1_{FK_2}}$, $\hat{x}_{1_{FK_2}}$ and $\tilde{x}_{1_{FK_2}}$ for t=2.8 and t=2.95. Give the values of $x_{2_{FK_2}}$, $\hat{x}_{2_{FK_2}}$ and $\tilde{x}_{2_{FK_2}}$ for t=2.8 and t=2.95.

3.5 Which observer is the faster observer

Plot the previous results on a figure with 4 axis where the plots are arranged in the following way, (use adequate colors and the possibility to use dotted plot)

$x_{1_{FK_1}}, \hat{x}_{1_{FK_1}}, x_{1_{FK_2}}, \hat{x}_{1_{FK_2}}$	$x_{2_{FK_1}}, \hat{x}_{2_{FK_1}}, x_{2_{FK_2}}, \hat{x}_{2_{FK_2}}$
$\tilde{x}_{1_{FK_1}}, \tilde{x}_{1_{FK_2}}$	$\tilde{x}_{2_{FK_1}}, \tilde{x}_{2_{FK_2}}$

Which observer is the faster one?

Clearly detail your answer (not just the first or the second one, use a zoom, indicators like the previously obtained values ...).

3.6 Comparison of the free response of (Σ) , (Σ_F) , (Σ_{FK_1}) and (Σ_{FK_2})

From the values of the eigenvalues of the modes of the different systems could you predict a classification of the convergence to zero of the four free responses?

3.6.1 Simulation with initial condition $x_0 = [1; 10]$

Compare, with $x_0 = x_{0_F} = x_{0_{FK_i}} = [1; 10]$ and $\hat{x}_{0_{FK_i}} = [0; 0]$, the free responses of the states components of (Σ) , (Σ_F) , (Σ_{FK_1}) and (Σ_{FK_2}) , on a figure with two axis like below.

$$x_1, x_{1_F}, x_{1_{FK_1}}, x_{1_{FK_2}}$$
 $x_2, x_{2_F}, x_{2_{FK_1}}, x_{2_{FK_2}}$

Which response converge the faster to zero? does this correspond to your prediction? Once again, clearly detail your answer (not just the first or the second one).

3.6.2 Simulation with initial condition $x_0 = [2; 4]$

Do the same comparison but with $x_0=x_{0_F}=x_{0_{FK_i}}=[2;4]$ and $\hat{x}_{0_{FK_i}}=[0;0]$.

$$x_1, x_{1_F}, x_{1_{FK_1}}, x_{1_{FK_2}}$$
 $x_2, x_{2_F}, x_{2_{FK_1}}, x_{2_{FK_2}}$

Is it the same classification result? Give an explanation.