Beyond $2^{c/2}$ Security in Sponge-Based Authenticated Encryption Modes

Philipp Jovanovic¹, Atul Luykx², and Bart Mennink²

¹ Universität Passau

² KU Leuven

DIAC — August 23, 2014

Authenticated Encryption

- Encryption and authentication in one
- Applications: SSH, IPsec, TLS, IEEE 802.11
- CAESAR competition

Authenticated Encryption

- Encryption and authentication in one
- Applications: SSH, IPsec, TLS, IEEE 802.11
- CAESAR competition

Authenticated Encryption

- Encryption and authentication in one
- Applications: SSH, IPsec, TLS, IEEE 802.11
- CAESAR competition

- Security goals: privacy + integrity
 - Nonce-dependent or security against nonce-reuse

- Bertoni, Daemen, Peeters, and Van Assche (2007)
- ullet Based on permutation p
- b = r + c

- Bertoni, Daemen, Peeters, and Van Assche (2007)
- ullet Based on permutation p
- \bullet b = r + c
- ullet MAC: Keyed sponge (secret key K prepended to M)

- Bertoni, Daemen, Peeters, and Van Assche (2007)
- ullet Based on permutation p
- $\bullet \ b = r + c$
- MAC: Keyed sponge (secret key K prepended to M)
- AE: SpongeWrap (duplexing mode)

 $2^{c/2}$ security

$$c={
m capacity} \qquad \kappa={
m key \ size} \qquad \tau={
m tag \ size}$$

Sponge (hash) $2^{c/2}$ security Keyed sponge (MAC) $\min\{2^{c-a}, 2^{\kappa}\}$ security (2^a offline compl.)

 $c = {\sf capacity} \qquad \kappa = {\sf key \ size} \qquad \tau = {\sf tag \ size}$

```
Sponge (hash) 2^{c/2} \text{ security} Keyed sponge (MAC) \min\{2^{c-a}, 2^{\kappa}\} \text{ security } (2^a \text{ offline compl.}) \approx \min\{2^{c/2}, 2^{\kappa}\} \text{ security}
```

$$c={
m capacity} \qquad \kappa={
m key \ size} \qquad \tau={
m tag \ size}$$

```
\begin{array}{lll} \textbf{Sponge (hash)} & 2^{c/2} \text{ security} \\ \textbf{Keyed sponge (MAC)} & \min\{2^{c-a}, 2^{\kappa}\} \text{ security } (2^a \text{ offline compl.}) \\ & \approx \min\{2^{c/2}, 2^{\kappa}\} \text{ security} \\ \textbf{SpongeWrap (AE)} & \min\{2^{c/2}, 2^{\kappa}\} \text{ security (privacy)} \\ & \min\{2^{c/2}, 2^{\kappa}, 2^{\tau}\} \text{ security (integrity)} \\ & c = \text{capacity} & \kappa = \text{key size} & \tau = \text{tag size} \\ \end{array}
```


Intermezzo – All CAESAR Contributors

Intermezzo – All CAESAR Contributors (10.000.000/capita)

Intermezzo – All CAESAR Contributors (no duplicate)

nonce-dependent	security against nonce-reuse
Artemia Ascon	$APE^{2,3}$
CBEAM/STRIBOB 1	
ICEPOLE Ketje	
Keyak	
NORX π -Cipher	
GIBBON/HANUMAN ²	

¹ CBEAM and STRIBOB use BLNK sponge mode

 $^{^{2}}$ PRIMATEs = {GIBBON, HANUMAN, APE}

 $^{^3}$ also used in submission Prøst

¹ CBEAM and STRIBOB use BLNK sponge mode

 $^{^{2}}$ PRIMATEs = {GIBBON, HANUMAN, APE}

³ also used in submission Prøst

based on

 $2^{c/2}$ and

 $(2^a, 2^{c-a})$

results

¹ CBEAM and STRIBOB use BLNK sponge mode

² PRIMATEs = {GIBBON, HANUMAN, APE}

³ also used in submission Prøst

based on

 $2^{c/2}$ and

 $(2^a, 2^{c-a})$

results

¹ CBEAM and STRIBOB use BLNK sponge mode

Nonce changes everything!

² PRIMATEs = {GIBBON, HANUMAN, APE}

³ also used in submission Prøst

	b	c	r	κ	security
Ascon	320	192	128	96	96
	320	256	64	128	128
CBEAM	256	190	66	128	128
ICEPOLE	1280	254	1026	128	128
	1280	318	962	256	256
Keyak	800	252	548	128	128
	1600	252	1348	128	128
NORX	512	192	320	128	128
	1024	384	640	256	256
GIBBON/ HANUMAN	200	159	41	80	80
	280	239	41	120	120
STRIBOB	512	254	258	192	192

NORX

- Submission by Aumasson, Jovanovic, and Neves
- ullet Initialization with K and unique N
- Header message trailer
- Parallelism $D \in \{0, \dots, 255\}$ (here, D = 2)

NORX: Mode Security

Privacy

 $\min\{2^{b/2},2^c,2^\kappa\}$ security

Integrity

 $\min\{2^{b/2},2^c,2^\kappa,2^\tau\}$ security

NORX: Mode Security

Privacy

 $\min\{2^{b/2},2^c,2^\kappa\}$ security

Integrity

 $\min\{2^{b/2},2^c,2^\kappa,2^ au\}$ security

Main Implication

putting $c=\kappa$ does not decrease mode security level

Generalization

- Generalizes to SpongeWrap and DuplexWrap
- Generalizes to CAESAR submission modes
 - Ascon
 - BLNK (used in CBEAM and STRIBOB)
 - ICEPOLE
 - Keyak
 - GIBBON and HANUMAN (two PRIMATEs)

Generalization

Ascon

BLNK (used in CBEAM and STRIBOB)

ICEPOLE

Generalization

 p_1

 p_4

 p_4

HANUMAN (PRIMATEs)

 p_1

 p_1

 p_1

 p_1

New Security Levels

	b	c	r	κ	security
Ascon	320	192	128	96	96
	320	256	64	128	128
CBEAM	256	190	66	128	128
ICEPOLE	1280	254	1026	128	128
	1280	318	962	256	256
Keyak	800	252	548	128	128
	1600	252	1348	128	128
NORX	512	192	320	128	128
	1024	384	640	256	256
GIBBON/ HANUMAN	200	159	41	80	80
	280	239	41	120	120
STRIBOB	512	254	258	192	192

New Security Levels

	b	c	r	$\frac{r}{r_{\mathrm{old}}}$	κ	security
Ascon	320	96	224	1.75	96	96
	320	128	192	3	128	128
СВЕАМ	256	190	66		128	128
	1280	254	1026		128	128
ICEPOLE	1280	318	962		256	256
Keyak	800	252	548		128	128
Neyak	1600	252	1348		128	128
NORX	512	192	320		128	128
	1024	384	640		256	256
GIBBON/ HANUMAN	200	159	41		80	80
	280	239	41		120	120
STRIBOB	512	254	258		192	192

New Security Levels

	b	c	r	$\frac{r}{r_{\mathrm{old}}}$	κ	security
Ascon	320	96	224	1.75	96	96
	320	128	192	3	128	128
CBEAM	256	128	128	1.94	128	128
ICEPOLE	1280	128	1152	1.12	128	128
	1280	256	1024	1.06	256	256
Keyak	800	128	672	1.23	128	128
	1600	128	1472	1.09	128	128
NORX	512	128	384	1.2	128	128
	1024	256	768	1.2	256	256
GIBBON/ HANUMAN	200	80	120	2.93	80	80
	280	120	160	3.90	120	120
STRIBOB	512	192	320	1.24	192	192

Conclusions

From
$$\min\{2^{c/2}, 2^{\kappa}\}\$$
to $\min\{2^{b/2}, 2^{c}, 2^{\kappa}\}\$

- Applies to
 - SpongeWrap and DuplexWrap
 - Modes of Ascon, CBEAM, ICEPOLE, Keyak, NORX, PRIMATEs, and STRIBOB

Conclusions

From
$$\min\{2^{c/2}, 2^{\kappa}\}\$$
to $\min\{2^{b/2}, 2^{c}, 2^{\kappa}\}\$

- Applies to
 - SpongeWrap and DuplexWrap
 - Modes of Ascon, CBEAM, ICEPOLE, Keyak, NORX, PRIMATEs, and STRIBOB
- Current parameter choices overly conservative
- Schemes can operate up to $4\times$ as fast without mode security degradation

Conclusions

From
$$\min\{2^{c/2}, 2^{\kappa}\}\$$
to $\min\{2^{b/2}, 2^{c}, 2^{\kappa}\}\$

- Applies to
 - SpongeWrap and DuplexWrap
 - Modes of Ascon, CBEAM, ICEPOLE, Keyak, NORX, PRIMATEs, and STRIBOB
- Current parameter choices overly conservative
- Schemes can operate up to $4\times$ as fast without mode security degradation

Thank you for your attention!

http://eprint.iacr.org/2014/373

Supporting Slides

SUPPORTING SLIDES

NORX: Privacy

 $\min\{2^{b/2},2^c,2^\kappa\}$ security

NORX: Privacy

$$\min\{2^{b/2}, 2^c, 2^\kappa\}$$
 security

Security Model

- Adversary tries to distinguish (p, \mathcal{E}_K^p) from (p, \$)
 - Random permutation p, key K, and AE \$
 - Define m= total complexity $=q+\sigma_{\mathcal{E}}$

$$\min\{2^{b/2},2^c,2^\kappa\}$$
 security

Security Model

- Adversary tries to distinguish (p, \mathcal{E}_K^p) from (p, \$)
 - Random permutation p, key K, and AE \$
 - Define m= total complexity $=q+\sigma_{\mathcal{E}}$

Simplified Proof Idea

Everything "fine" as long as no collision or key guess

$$\min\{2^{b/2},2^c,2^\kappa\}$$
 security

Security Model

- Adversary tries to distinguish (p, \mathcal{E}_K^p) from (p, \$)
 - Random permutation p, key K, and AE \$
 - Define m= total complexity $=q+\sigma_{\mathcal{E}}$

- Everything "fine" as long as no collision or key guess
- Colliding ${\mathcal E}$ -state with ${\mathcal E}$ -state $\longrightarrow \sigma_{{\mathcal E}}^2/2^b$ (unique nonce)

$$\min\{2^{b/2},2^c,2^\kappa\}$$
 security

Security Model

- Adversary tries to distinguish (p, \mathcal{E}_K^p) from (p, \$)
 - Random permutation p, key K, and AE \$
 - Define m= total complexity $=q+\sigma_{\mathcal{E}}$

- Everything "fine" as long as no collision or key guess
- Colliding \mathcal{E} -state with \mathcal{E} -state $\longrightarrow \sigma_{\mathcal{E}}^2/2^b$ (unique nonce)
- ullet Colliding ${\mathcal E}$ -state with p-query $\longrightarrow \sigma_{\mathcal E} q/2^c$ (naive)

$$\min\{2^{b/2},2^c,2^\kappa\}$$
 security

Security Model

- Adversary tries to distinguish (p, \mathcal{E}_K^p) from (p, \$)
 - Random permutation p, key K, and AE \$
 - Define m= total complexity $=q+\sigma_{\mathcal{E}}$

- Everything "fine" as long as no collision or key guess
- Colliding \mathcal{E} -state with \mathcal{E} -state $\longrightarrow \sigma_{\mathcal{E}}^2/2^b$ (unique nonce)
- Colliding \mathcal{E} -state with p-query $\longrightarrow \sigma_{\mathcal{E}}q/2^c$ (naive)
 - ullet p-query fixes rate part of ${\cal E}$ -state

$$\min\{2^{b/2},2^c,2^\kappa\}$$
 security

Security Model

- Adversary tries to distinguish (p, \mathcal{E}_K^p) from (p, \$)
 - Random permutation p, key K, and AE \$
 - Define m= total complexity $=q+\sigma_{\mathcal{E}}$

- Everything "fine" as long as no collision or key guess
- Colliding \mathcal{E} -state with \mathcal{E} -state $\longrightarrow \sigma_{\mathcal{E}}^2/2^b$ (unique nonce)
- Colliding ${\cal E}$ -state with p-query $\longrightarrow \sigma_{\cal E} q/2^c$ (naive)
 - ullet p-query fixes rate part of ${\mathcal E}$ -state
 - $\#\{\text{relevant }\mathcal{E}\text{-states}\}=:
 ho$

$$\min\{2^{b/2},2^c,2^\kappa\}$$
 security

Security Model

- Adversary tries to distinguish (p, \mathcal{E}_K^p) from (p, \$)
 - Random permutation p, key K, and AE \$
 - Define m= total complexity $=q+\sigma_{\mathcal{E}}$

- Everything "fine" as long as no collision or key guess
- Colliding ${\mathcal E}$ -state with ${\mathcal E}$ -state $\longrightarrow \sigma_{{\mathcal E}}^2/2^b$ (unique nonce)
- Colliding \mathcal{E} -state with p-query $\longrightarrow \overline{\rho q/2^c}$ (naive) $\longrightarrow \rho q/2^c$ (multiplicity)
 - ullet p-query fixes rate part of ${\cal E}$ -state
 - $\#\{\text{relevant }\mathcal{E}\text{-states}\}=:\rho$

$$\min\{2^{b/2},2^c,2^\kappa\}$$
 security

Security Model

- Adversary tries to distinguish (p, \mathcal{E}_K^p) from (p, \$)
 - Random permutation p, key K, and AE \$
 - Define m= total complexity $=q+\sigma_{\mathcal{E}}$

- Everything "fine" as long as no collision or key guess
- Colliding ${\mathcal E}$ -state with ${\mathcal E}$ -state $\longrightarrow \sigma_{{\mathcal E}}^2/2^b$ (unique nonce)
- Colliding \mathcal{E} -state with p-query $\longrightarrow \overline{\rho q/2^c}$ (naive) $\longrightarrow \rho q/2^c$ (multiplicity)
 - ullet p-query fixes rate part of ${\mathcal E}$ -state
 - $\#\{\text{relevant }\mathcal{E}\text{-states}\} =: \rho \leq \max\left\{r, \left(\frac{\sigma_{\mathcal{E}}2^c}{q2^r}\right)^{1/2}\right\}$

 $\min\{2^{b/2},2^c,2^\kappa,2^\tau\}$ security

$$\min\{2^{b/2},2^c,2^\kappa,2^ au\}$$
 security

Security Model

- ullet Adversary with access to $(p,\mathcal{E}^p_K,\mathcal{D}^p_K)$ aims to forge
 - ullet Random permutation p and key K
 - Define m= total complexity $=q+\sigma_{\mathcal{E}}+\sigma_{\mathcal{D}}$
- Technical issue: adversary can re-use nonce!

$$\min\{2^{b/2},2^c,2^\kappa,2^\tau\}$$
 security

Security Model

- ullet Adversary with access to $(p,\mathcal{E}^p_K,\mathcal{D}^p_K)$ aims to forge
 - ullet Random permutation p and key K
 - Define m= total complexity $=q+\sigma_{\mathcal{E}}+\sigma_{\mathcal{D}}$
- Technical issue: adversary can re-use nonce!

Simplified Proof Idea

• Collisions not involving \mathcal{D} -state $\longrightarrow \sigma_{\mathcal{E}}^2/2^b + \rho q/2^c$

$$\min\{2^{b/2},2^c,2^\kappa,2^\tau\}$$
 security

Security Model

- Adversary with access to $(p, \mathcal{E}^p_K, \mathcal{D}^p_K)$ aims to forge
 - ullet Random permutation p and key K
 - Define m= total complexity $=q+\sigma_{\mathcal{E}}+\sigma_{\mathcal{D}}$
- Technical issue: adversary can re-use nonce!

- Collisions not involving \mathcal{D} -state $\longrightarrow \sigma_{\mathcal{E}}^2/2^b + \rho q/2^c$
- ullet Collisions involving ${\mathcal D}$ -state $\longrightarrow m\sigma_D/2^c$ (nonce re-use)

$$\min\{2^{b/2},2^c,2^\kappa,2^ au\}$$
 security

Security Model

- Adversary with access to $(p, \mathcal{E}^p_K, \mathcal{D}^p_K)$ aims to forge
 - ullet Random permutation p and key K
 - Define m= total complexity $=q+\sigma_{\mathcal{E}}+\sigma_{\mathcal{D}}$
- Technical issue: adversary can re-use nonce!

Simplified Proof Idea

- Collisions not involving \mathcal{D} -state $\longrightarrow \sigma_{\mathcal{E}}^2/2^b + \rho q/2^c$
- ullet Collisions involving ${\mathcal D}$ -state $\longrightarrow m\sigma_D/2^c$ (nonce re-use)

 $\sigma_{\mathcal{D}}$ relatively small

$$\min\{2^{b/2},2^c,2^\kappa,2^\tau\}$$
 security

Security Model

- Adversary with access to $(p, \mathcal{E}^p_K, \mathcal{D}^p_K)$ aims to forge
 - ullet Random permutation p and key K
 - Define m= total complexity $=q+\sigma_{\mathcal{E}}+\sigma_{\mathcal{D}}$
- Technical issue: adversary can re-use nonce!

Simplified Proof Idea

- Collisions not involving \mathcal{D} -state $\longrightarrow \sigma_{\mathcal{E}}^2/2^b + \rho q/2^c$
- ullet Collisions involving ${\mathcal D}$ -state $\longrightarrow m\sigma_D/2^c$ (nonce re-use)

 $\sigma_{\mathcal{D}}$ relatively small

• As long as no collisions, forgery $o \sigma_{\mathcal{D}}/2^{ au}$