CSCI 401 Test 1

Dr. Keith Evan Schubert

- 1. You are the project lead at Micro Performance. The company wants you to select which option would be best for their new Micro Speed processor.
 - (a) Speed up clock

Type	Original	Fast Clock	Percent
Arithmetic	1	1	40%
Branch	2	2	20%
Memory	4	8	40%
Clock	1.8GHz	$3.6 \mathrm{GHz}$	

(b) Speed up memory.

If you keep the clock the same and add a high performance bus and larger multilevel cache you can improve memory performance by 4 times.

Justify your answer and specify the performance increase over the original by:

- i Calculate the speedup of the fast clock system over the original.
- ii Calculate the fraction of time spent in memory instructions for the original system.
- iii Calculate the speedup of the fast memory system over the original.
- iv Clearly state your choice.

You don't need a calculator to do the computations, they work out nicely.

$$P_{a} = \frac{.4 * 1 + .2 * 2 + .4 * 4}{.4 * 1 + .2 * 2 + .4 * 8} \frac{3.6GHz}{1.8GHz}$$

$$= \frac{.4 + .4 + 1.6}{.4 + .4 + 3.2} 2$$
(2)

$$= \frac{.4 + .4 + 1.6}{4 + 4 + 3.2} 2 \tag{2}$$

$$= \frac{2.4}{4}2\tag{3}$$

$$= \frac{4.8}{4} \tag{4}$$

$$= 1.2 \tag{5}$$

$$f = \frac{.4*4}{4*1+2*2+4*4} \tag{6}$$

$$f = \frac{.4*4}{.4*1 + .2*2 + .4*4}$$

$$= \frac{1.6}{2.4}$$

$$= \frac{2}{3}$$
(8)

$$= \frac{2}{3} \tag{8}$$

$$P_b = \frac{1}{1/3 + \frac{2/3}{4}}$$

$$= \frac{1}{1/3 + \frac{1}{6}}$$

$$= \frac{1}{\frac{1}{2}}$$
(10)
$$= \frac{1}{(12)}$$

$$= \frac{1}{1/3 + \frac{1}{6}} \tag{10}$$

$$= \frac{1}{\frac{1}{2}} \tag{11}$$

$$= 2 \tag{12}$$

Improve the memory system for the next processor.

2. Write the MIPS assembly code for the following function. Assume the array a has been defined as size n. The following registers are to be used to pass the values:

```
pointer to a
                  $a0
                  $a1
\mathbf{n}
                  $v0
sum
```

You do not need to write the code to call the function.

```
int sum(int* a, int n){
  int sum;
  sum=0;
  for(int i=0;i<n;i++){</pre>
    sum+=a[i]}
  return sum;}
sum:
  add $v0, $zero, $zero
                          # sum=0
  sll $a1, $a1, 2
                          # 4*n
  add $a1, $a1, $a0
                          # one element after last in array
  ble $a1, $a0, sum_done # array empty
sum_loop:
 lw $t0, 0($a0)
                          # get element
  addi $a0, $a0, 4
                          # increment pointer
  add $v0, $v0, $t0
                          # add element to sum
  bne $a0, $a1, sum_loop # check if more elements
sum_done:
  jr $ra
                           # return
```

3. Perform the indicated calculations by the algorithm requested showing all steps. Show how you get the number.

(a) 3+5 by conditional sum for 4 bit numbers. Assuming the numbers are 2's complement, does overflow occur.

-				
0	0	1	1	
0	1	0	1	
(01,00)	(10,01)	(10,01)	(11,10)	
	/		/	
(010,001)		(101,100)		
\	Y	/		
(01001, 01000)				

Since this was addition we take the one on the right and get a carry out of zero (leftmost bit), and an answer of $1000_{2's\ comp} = -8_{10}$. Since we added two positives and got a negative, there was overflow.

(b) 7×-7 by booth's algorithm for 4 bit numbers.

U	V	X	x_{-1}	Comment
0000	0000	0111	0	Setup
0111				subtract -7
0011	1000	1011	1	shift right
0001	1100	1101	1	shift right
0000	1110	1110	1	shift right
1001				add -7
1100	1111	0111	0	shift right and finish

Check: $11001111_{2's\ comp} = -00110001_2 = -49_{10}$.

(c) Convert 19.03125 to single precision floating point.

 $10011.00001 = 1.001100001 \times 2^4$

sign = 0

 $exponent = 127 + 4 = 131 = 10000011_2$

0 10000011 00110000100000000000000