

Sardar Patel Institute of Technology
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Empowered Autonomous College Affiliated to University of Mumbai)

MID Semester Examination OCTOBER 2023

Max. Marks: 30

Class: M. Tech ELECTRONICS & TELECOMMUNICATION

Course Code: EC501

Name of the Course: Advanced Digital Signal Processing

Duration: 60 Min

Semester: 1

Branch: EXTC

Instruction:

(1) All questions are compulsory.

(2) Use of scientific calculator is allowed.

(3) Draw neat diagram.

(4) Assume suitable data if necessary, with justification.

		Max. Marks	CO
Q.1	Answer the Multiple-choice questions:		
	a) A signal x(n) is up sampled by a factor 3, then the output y(n) is	1	CO1
	i) $x(3n)$ ii) $x(n/3)$ iii) $x(n^3)$ iv) $x(n^{\frac{1}{3}})$		
	b) A signal x(n) is down sampled by a factor 2. The output y(n) is	1	CO1
	i) $x(2n)$ ii) $x(n/2)$ iii) $x(n^2)$ iv) $x(n^{\frac{1}{2}})$		
	 c) The aliasing due to down sampling a signal by a factor of M is about if and only if the signal x(n) is band limited to i) πM ii) ± π/M iii) ± π/2M iv) ± 2π/M 	1	CO1
	d) If the spectrum of a sequence x(n) is X(e ^{jw}), then the spectrum of a signal down sampled by a factor 2	1	CO1
	i) $X(e^{jw/2})/2$ ii) $X(e^{-jw/2})/2$ iii) $X(e^{-j2w})/2$ iv) $[X(e^{jw/2}) + X(e^{-jw/2})]/2$		
	e) The down sampler is a i) Time-invariant systems ii) Time-variant systems iii) Static systems iv) Non linear systems	1	CO1
Q.2	Obtain the Polyphase decomposition of the IIR system with Transfer function: $H(z) = \frac{1 - 4z^{-1}}{1 + 5z^{-1}}$	5	CO1
Q.3	Implement a two-stage decimator for the following specifications: Sampling rate of the input signal = 20,000 Hz M = 100	10	CO1
	Passband = 0 to 40 Hz		
	Transition band 40 to 50 Hz Passband ripple = 0.01		
	Stopband ripple = 0.002	7.	

Q.4	Design one-stage and two-stage interpolators to meet the following specifications: I=20	10	CO1
	Input sampling rate: 10,000 Hz Passband: $0 \le F \le 90$		
-	Transition band: $90 \le F \le 100$ Ripple: $\delta_1 = 10^{-2}$, $\delta_2 = 10^{-3}$		-