MEME15203 Statistical Inference

Assignment 5

UNIVERSITI TUNKU ABDUL RAHMAN

Faculty: FES Unit Code: MEME15203

Course: MAC Unit Title: Statistical Inference Year: 1,2 Lecturer: Dr Yong Chin Khian

Session: January 2024 Due by: 2/4/2024

Q1. Let $X_1, X_2, ..., X_{150}$ be a random sample from a Weibull distribution, $X \sim WEI(\theta, 5)$. Derive an equal tailed $100\gamma\%$ confidence interval for θ using a pivotal quantity.

(30 marks)

Q2. Consider a random sample of size 22 from a uniform distribution, $X_i \sim U(0, \theta)$, $\theta > 0$, and let $X_{n:n}$ be the largest order statistic. Find the constant c such that $(x_{n:n}, cx_{n:n})$ is a 99% confidence interval for θ .

(30 marks)

- Q3. Let X_1, \ldots, X_n , be a random sample from a gamma distribution with parameters $\alpha = 4$ and unknown θ .
 - (a) Find a pivotal quantity for the parameter θ based on the sufficient statistic.
 - (b)Derive an equal tail 98% confidence interval for θ based on the pivotal qualtity from part (a).

(15 marks)

Q4. You are given the following:

$$f(x|\theta) = \frac{5x^4}{\theta^5}, 0 < x < \theta.$$
$$\pi(\theta) = \frac{6}{\theta^7}, \theta > 1.$$

Three observations were observed: 500, 700, 1000. Find a 96% "HPD" credible set for θ .

(15 marks)

- Q5. Let X_1, \ldots, X_n , be a random sample from $N(\theta, 50)$. Assume that the prior distribution of Θ is N(60, 16).
 - (a) Derive the posterior distribution of Θ .
 - (b) Find a Bayesian interval of θ with confidence coefficient 1α .
 - (c) Find the corresponding non-Bayesian confidence interval of θ using pivotal quantity method.

(10 marks)