Basics of Rep. Theory

Jared Stewart Advised by Dr. Calin Chindris

> April 18, 2016 University of Missouri

Table of contents

Basics of Rep. Theory

- Basics of Rep. Theory
 - Motivation and Definitions
 - Examples of Representations
- Reducibility
 - Irreducible representations and complete reducibility
 - Maschke's Theorem
- Schur's Lemma
 - Vector Spaces of Linear Maps
 - Schur's Lemma
- Isotypical Decomp.
 - Isotypical decomposition
- Character Theory
 - Basics
 - Inner products of characters

Basics of Rep. Theory

Groups arise naturally as sets of symmetries of some object which are closed under composition and taking inverses. For example,

- The symmetric group of degree n, S_n , is the group of all symmetries of the set $\{1, \ldots, n\}$.
- ② The **dihedral group** of order 2n, D_n , is the group of all symmetries of the regular n-gon in the plane.

In these two examples, S_n acts on the set $\{1,\ldots,n\}$ and D_n acts on the regular n-gon in a natural manner. One may wonder more generally: Given an abstract group G, which objects X does G act on? This is the basic question of representation theory, which attempts to classify all such X up to isomorphism.

The Definition of a Representation

Definition

Basics of Rep. Theory

00000000

Let G be a group, let F be a field, and let V be a vector space over F. A **linear representation** of G is any group homomorphism

$$\rho \colon G \to GL(V)$$
.

Definition

The **dimension** of a representation $\rho \colon G \to GL(V)$ is the dimension of the vector space V.

Example

Basics of Rep. Theory

000000000

Let V be an n-dimensional vector space. The map $\rho\colon G\to GL(V)$ defined by $\rho(g)=\operatorname{Id}_V$ for all $g\in G$ is a representation of G called the **trival representation** of dimension n.

Example

If G is a finite group that acts on a finite set X, and F is any field, then there is an associated **permutation representation** on the vector space V over F with basis $\{e_x\colon x\in X\}$. We let G act on the basis elements by the permutation $g\cdot e_x=e_{gx}$ for all $x\in X$ and $g\in G$. This representation has dimension |X|.

The Regular Representation

Example

Basics of Rep. Theory

00000000

A special case of a permutation representation is that when a finite group acts on itself by left multiplication. We take the vector space V_{reg} which has a basis given by the formal symbols $\{e_a|g\in G\}$, and let $h\in G$ act by

$$\rho_{\mathsf{reg}}(h)(e_g) = e_{hg}.$$

This representation is called the **regular representation** of G, and has dimension |G|.

The Alternating Representation

Example

Basics of Rep. Theory

000000000

For any symmetric group S_n , the **alternating representation** on $\mathbb C$ is given by the map

$$\rho \colon S_n \to GL(\mathbb{C}) = \mathbb{C}^{\times}$$
$$\sigma \mapsto \operatorname{sgn}(\sigma).$$

More generally, for any group G with a subgroup H of index 2, we can define an **alternating representation** $\rho\colon G\to GL(\mathbb{C})$ by letting $\rho(g)=1$ if $g\in H$ and $\rho(g)=-1$ if $g\notin H$. (We recover our original example by taking $G=S_n$ and $H=A_n$.)

Basics of Rep. Theory

00000000

Definition

A **homomorphism** between two representations $\rho_1\colon G\to GL(V)$ and $\rho_2\colon G\to GL(W)$ is a linear map $\psi\colon V\to W$ that interwines with the action of G, i.e. such that

$$\psi \circ \rho_1(g) = \rho_2(g) \circ \psi \quad \forall g \in G.$$

In this case, we also refer to ψ as a G-linear map.

Definition

An **isomorphism** of representations is a G-linear map that is also invertible.

Representations as matrices

Example

Given any representation (ρ,V) , where V is a vector space of dimension n over the field K, we can fix a basis for V to obtain an isomorphism of vector spaces $\psi\colon V\to K^n$. This yields a representation ϕ of G on K^n by defining

$$\phi(g) = \psi \circ \rho(g) \circ \psi^{-1}$$

for all $g \in G$. This representation is isomorphic to our original representation (ρ,V) . In particular, we can always choose to view complex n-dimensional representations of G as representations on \mathbb{C}^n , where each $\phi(g)$ is given by an invertible $n \times n$ matrix with entries in \mathbb{C} .

Representations as matrices

Example

Let $G = \{(1), (123), (132)\} \leq S_3$. Let $V = \mathbb{C}^3$. Then G acts on the standard basis by $g \cdot e_i = e_{gi}$. Thus, the permutation representation of G (with respect to the standard basis) is given by:

$$\rho((1)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\rho((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\rho((132)) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Example

Let $G = C_2 \times C_2 = \langle \sigma, \tau | \sigma^2 = \tau^2 = e, \sigma\tau = \tau\sigma \rangle$ be the Klein four-group. Let V be the vector space with basis $\{b_e, b_\sigma, b_\tau, b_{\sigma\tau}\}$. Left multiplication by σ gives a permutation

$$b_e \mapsto b_{\sigma}$$

$$b_{\sigma} \mapsto b_e$$

$$b_{\tau} \mapsto b_{\sigma\tau}$$

$$b_{\sigma\tau} \mapsto b_{\tau}.$$

We can similarly compute $\rho_{\rm reg}(\tau)$. Thus, in our basis, the regular representation $\rho_{\rm reg}\colon G\to GL(V)$ is given by the matrices

$$\rho_{\mathsf{reg}}(\sigma) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \rho_{\mathsf{reg}}(\tau) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Let $G=D_4=\langle \sigma,\tau|\sigma^4=\tau^2=e,\tau\sigma\tau^{-1}=\sigma^{-1}\rangle$ be the symmetry group of the square.

Let $G = D_4 = \langle \sigma, \tau | \sigma^4 = \tau^2 = e, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$ be the symmetry group of the square. Consider a square in the plane with vertices at (1,1), (1,-1), (-1,-1), and (-1,1).

Let $G=D_4=\langle \sigma,\tau|\sigma^4=\tau^2=e,\tau\sigma\tau^{-1}=\sigma^{-1}\rangle$ be the symmetry group of the square. Consider a square in the plane with vertices at (1,1),(1,-1),(-1,-1), and (-1,1). We let σ act on the square as a rotation by $\frac{\pi}{2}$, and let τ act by reflection over the x-axis. This naturally gives rise to a linear action of G on all of \mathbb{C}^2 .

 $\rho(\sigma^2) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

 $\rho(\sigma^3) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

Let $G = D_4 = \langle \sigma, \tau | \sigma^4 = \tau^2 = e, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$ be the symmetry group of the square. Consider a square in the plane with vertices at (1,1), (1,-1), (-1,-1), and (-1,1). We let σ act on the square as a rotation by $\frac{\pi}{2}$, and let τ act by reflection over the

group of the square. Consider a square in the plane with vertices at
$$(1,1),(1,-1),(-1,-1),$$
 and $(-1,1).$ We let σ act on the square as a rotation by $\frac{\pi}{2}$, and let τ act by reflection over the x -axis. This naturally gives rise to a linear action of G on all of \mathbb{C}^2 . Under the standard basis, we get the matrices:
$$\rho(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \rho(\tau) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\rho(\sigma\tau) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

group of the square. Consider a square in the plane with vertices at
$$(1,1),(1,-1),(-1,-1),$$
 and $(-1,1).$ We let σ act on the square as a rotation by $\frac{\pi}{2}$, and let τ act by reflection over the x -axis. This naturally gives rise to a linear action of G on all of \mathbb{C}^2 . Under the standard basis, we get the matrices:
$$\rho(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \rho(\tau) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\rho(\sigma\tau) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

 $\rho(\sigma^2 \tau) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

 $\rho(\sigma^3 \tau) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$

Definition

Basics of Rep. Theory

Let V and W be representations of G. Then $V \oplus W$ admits a natural representation of G, called the **direct sum representation** of V and W, which we define by

$$\rho_{V \oplus W} \colon G \to GL(V \oplus W)$$
$$\rho_{V \oplus W}(g) \colon (x, y) \mapsto (\rho_V(g)(x), \rho_W(g)(y)).$$

Irreducible representations and complete reducibility

Definition

A subrepresentation of V is a G-invariant subspace $W\subseteq V$; that is, a subspace $W\subseteq V$ with the property that $\rho(g)(w)\in W$ for all $g\in G$ and $w\in W$. Note that W itself is a representation of G under the action $\rho(g)\upharpoonright_W$.

Definition

A representation is said to be **irreducible** if it has no subrepresentations other than the trivial subrepresentations $0 \subset V$ and $V \subset V$. A representation is called **completely reducible** if it decomposes into a direct sum of irreducible representations. We sometimes write **irrep** as shorthand for irreducible representation.

Example (A 2-dimensional irrep)

Basics of Rep. Theory

Let $G=D_3=\langle \sigma,\tau|\sigma^3=\tau^2=e,\tau\sigma\tau^{-1}=\sigma^{-1}\rangle$. (Note that $D_3\cong S_3$). Consider the regular triangle centered at the origin with vertices

$$(1,0), (-\frac{1}{2}, \frac{\sqrt{3}}{2}), (-\frac{1}{2}, -\frac{\sqrt{3}}{2}).$$

We can let σ act as rotation by $\frac{2\pi}{3}$ and let τ act as reflection over the x-axis to obtain an action of G on \mathbb{C}^2 given (under the standard basis) by the matrices

$$\rho(\sigma) = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$
$$\rho(\tau) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Basics of Rep. Theory

Suppose ρ has a non-trivial subrepresentation W. We must have dim W=1. Since W is invariant under the action of both $\rho(\sigma)$ and $\rho(\tau)$, there must be some mutual eigenvector for $\rho(\sigma)$ and $\rho(\tau)$ that spans W. The eigenvectors of $\rho(\sigma)$ are

$$\begin{bmatrix} 1 \\ -i \end{bmatrix} \quad (\lambda_1 = e^{\frac{2\pi i}{3}}) \quad \text{and} \quad \begin{bmatrix} 1 \\ i \end{bmatrix} \quad (\lambda_2 = e^{-\frac{2\pi i}{3}}).$$

The eigenvectors of $\rho(\tau)$ are

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad (\lambda_1 = 1) \quad \text{and} \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad (\lambda_2 = -1).$$

Thus we see that there is no such W, and our representation is irreducible.

Representations of finite abelian groups

Theorem

If A_1, A_2, \ldots, A_r are linear operators on V and each A_i is diagonalizable, then $\{A_i\}$ are simultaneously diagonalizable if and only if they commute.

$\mathsf{Theorem}$

Basics of Rep. Theory

Every complex representation of a finite abelian group is completely reducible into irreducible representations of dimension 1.

Proof.

Take an arbitrary element $q \in G$. Since G is finite, we can find an integer n such that $g^n = 1$ and $\rho(g)^n = Id$. The minimal polynomial of $\rho(q)$ divides x^n-1 , which has n distinct roots over \mathbb{C} , so it factors into linear factors only over \mathbb{C} , i.e. $\rho(g)$ is diagonalizable. Now, given any two elements $g_1, g_2 \in G$ we have $\rho(q_1)\rho(q_2) = \rho(q_2)\rho(q_1)$. Since the matrices $\{\rho(q)\}$ commute, $\{\rho(q)\}\$ are simultaneously diagonalizable, say with respect to basis $\{e_1,...,e_k\}$. Then we have $V=\mathbb{C}e_1\oplus\mathbb{C}e_2\oplus\ldots\oplus\mathbb{C}e_k$, with each subspace $\mathbb{C}e_i$ invariant under the action of G, since e_i is an eigenvector for every $\rho(q)$.

Basics of Rep. Theory

Let W be a subspace of V. A **linear projection** V onto W is a linear map $f\colon V\to W$ such that $f\upharpoonright_W=\operatorname{Id}_W$. If W is a subrepresentation of V and the map f is G-invariant, then we say that f is a G-linear projection.

Lemma

Let $\rho\colon G\to GL(V)$ be a representation, and $W\subset V$ be a subrepresentation. Suppose we have a G-linear projection

$$f\colon V\to W$$
.

Then Ker(f) is a complementary subrepresentation to W, i.e. Ker(f) is a G-invariant subspace of V such that

$$V = \mathit{Ker}(f) \oplus W$$

Theorem (Maschke's Theorem)

Let G be a finite group and let F be a field such that $\operatorname{char}(F) \nmid |G|$. If V is any finite dimensional representation of G over F, and $W \subset V$ is a subrepresentation of V, then there exists a complementary subrepresentation $U \subset V$ to W, i.e. there is a G-invariant subspace $U \subset V$ such that

$$V = W \oplus U$$
.

Proof.

Basics of Rep. Theory

It will suffice to find a G-linear projection from V onto W. Fix a basis $\{b_1,\ldots,b_m\}$ for W and extend it to a basis $\{b_1,\ldots,b_m,b_{m+1},\ldots,b_n\}$ for V. Let $U=\langle b_{m+1},\ldots,b_n\rangle$. Then U is certainly a complementary subspace to W, and we have a natural projection $f\colon W\oplus U\to W$ of V onto W with kernel U. There is no reason to think that f should be G-linear, but we can fix this by averaging over G. Define $\widetilde{f}\colon V\to V$ by

$$\widetilde{f}(x) = \frac{1}{|G|} \sum_{g \in G} (\rho(g) \circ f \circ \rho(g^{-1}))(x).$$

We claim that \widetilde{f} is a G-linear projection from V onto W.

Proof.

Basics of Rep. Theory

First we check that $\operatorname{Im}(\tilde{f}) \subset W$. If $x \in V$ and $g \in G$, then

$$f(\rho(g^{-1})(x)) \in W$$

and so

$$\rho(g)(f(\rho(g^{-1})(x))) \in W$$

since W is G-invariant. Thus

$$\widetilde{f}(x) = \frac{1}{|G|} \sum_{g \in G} (\rho(g) \circ f \circ \rho(g^{-1}))(x) \in W.$$

Proof.

Basics of Rep. Theory

Next we check that $\widetilde{f} \upharpoonright_W = \operatorname{Id}_W$. Let $y \in W$. For any $g \in G$, we know that $\rho(g^{-1})(y)$ is also in W, so $f(\rho(g^{-1})(y)) = \rho(g^{-1})(y)$. Then

$$\widetilde{f}(y) = \frac{1}{|G|} \sum_{g \in G} \rho(g) (f(\rho(g^{-1})(y)))$$

$$= \frac{1}{|G|} \sum_{g \in G} \rho(g) (\rho(g^{-1})(y))$$

$$= \frac{1}{|G|} \sum_{g \in G} (y) = \frac{|G|y}{|G|} = y$$

so indeed \widetilde{f} is a linear projection of V onto W.

Proof.

Finally, we check that \widetilde{f} is G-linear. If $x \in V$ and $h \in G$, then

$$(\widetilde{f} \circ \rho(h))(x) = \frac{1}{|G|} \sum_{g \in G} (\rho(g) \circ f \circ \rho(g^{-1}) \circ \rho(h))(x)$$

$$= \frac{1}{|G|} \sum_{g \in G} (\rho(g) \circ f \circ \rho(g^{-1}h))(x)$$

$$= \frac{1}{|G|} \sum_{g \in G} (\rho(hg) \circ f \circ \rho(g^{-1}))(x) \quad (g \mapsto hg)$$

$$= (\rho(h) \circ \widetilde{f})(x).$$

Basics of Rep. Theory

Let G be a finite group and let F be a field such that $char(F) \nmid |G|$. Then any finite-dimensional representation of G over F is completely reducible.

Proof.

Let V be a representation of G over F of dimension n. If V is irreducible, then V is, in particular, completely reducible. If not, then V contains a proper subrepresentation $W \subset V$. From Maschke's Theorem, we know there exists a subrepresentation $U \subset V$ such that

$$V = W \oplus U. \tag{1}$$

Both W and U have dimension less than n, so by induction we know that W and U are completely reducible. We deduce that Vis completely reducible.

Example

Basics of Rep. Theory

Recall that for $G = C_2$, we found a 1-dim subrepresentation

$$W = \left\langle \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\rangle \subset V_{\mathsf{reg}} = \mathbb{C}^2.$$

We know a complementary subrepresentation to W exists by Machke's Theorem, so let's try to find one. Consider

$$U = \left\langle \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\rangle \subset V_{\text{reg}}.$$

Then

$$\rho_{\mathsf{reg}}(\tau) \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = - \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

so U is G-invariant. We see that $V = W \oplus U$, since $W \cap U = \{0\}$ and dim $U + \dim W = 2 = \dim V$. (Note U is isomorphic to the alternating representation ρ_{sgn} .)

Proposition

Suppose we have representations $\rho_V\colon G\to GL(V)$ and $\rho_W\colon G\to GL(W)$ of G. Then there is a natural representation of G on the vector space $\operatorname{Hom}(V,W)$ given for all $g\in G$ by

$$ho_{\operatorname{Hom}(V,W)}(g) \colon \operatorname{Hom}(V,W) o \operatorname{Hom}(V,W)$$

$$f \mapsto \rho_W(g) \circ f \circ \rho_V(g^{-1}).$$

Definition

Let V and W be two representations of G. The set of G-linear maps from V to W forms a subspace of $\operatorname{Hom}(V,W)$, which we denote by $\operatorname{Hom}_{\mathbf{G}}(\mathbf{V},\mathbf{W})$. In other words, $\operatorname{Hom}_{G}(V,W)$ is the vector space consisting of all homomorphisms of representations between V and W.

Definition

Let $\rho\colon G\to GL(V)$ be a representation. We define the invariant subrepresentation $V^G\subset V$ to be the set

$$\{v \in V \mid \rho(g)(v) = v, \quad \forall g \in G\}.$$

If V is an irreducible representation of G over \mathbb{C} , then $End_G(V) = \{\lambda Id_v | \lambda \in \mathbb{C}\}.$

Proof.

Basics of Rep. Theory

Let $\phi \colon V \to V$ be a G-linear endomorphism of G, and let λ be an eigenvalue of ϕ . Observe that the eigenspace E_{λ} is G-invariant: If $v \in E_{\lambda}$, then $\phi(v) = \lambda v$. This implies that $\phi(gv) = g\phi(v) = g(\lambda v) = \lambda(gv)$, i.e. $gv \in E_{\lambda}$. Since g was arbitrary, E_{λ} is indeed G-invariant. Now $E_{\lambda} \neq 0$, so since V is irreducible, $E_{\lambda} = V$. Thus $\phi = \lambda Id$.

Basics of Rep. Theory

Suppose V and W are irreducible. The space $Hom_G(V, W)$ is 1-dimensional if the representations are isomorphic, and in this case any non-zero map is an isomorphism. Otherwise, $\text{Hom}_G(V, W) = \{0\}.$

Proof.

Suppose $\operatorname{\mathsf{Hom}}_G(V,W)\neq\{0\}$ and let $\phi\in\operatorname{\mathsf{Hom}}_G(V,W)$ be a nonzero G-linear map. Since $ker(\phi)$ and $im(\phi)$ are both G-invariant, irreducibility yields (ker $(\phi) = 0$ or V) and (im $(\phi) = 0$ or W) as the only possibilities. Since $\phi \neq 0$, then $\ker(\phi) = 0$, $\operatorname{im}(\phi) = W$, and ϕ is an isomorphism. Let ψ be another nonzero G-linear map from V to W. Then $\phi^{-1} \circ \psi \in \text{Hom}_G(V, V)$. We can apply Schur's Lemma over $\mathbb C$ to see that $\phi^{-1} \circ \psi = \lambda \operatorname{Id}$, hence $\psi = \lambda \phi$. So ϕ spans $\text{Hom}_G(V, W)$.

Proposition

Basics of Rep. Theory

Let V and W be irreducible representations of G. Then

$$\dim \operatorname{Hom}_G(V,W) = \begin{cases} 1 & \text{if } V \text{ and } W \text{ are isomorphic} \\ 0 & \text{if } V \text{ and } W \text{ are not isomorphic} \end{cases}$$

Proposition

Let $\rho \colon G \to GL(V)$ be a representation, let

$$V = U_1 \oplus \ldots \oplus U_s$$

be a decomposition of V into irreps, and let W be any irrep of G. Then the number of irreps in the set $\{U_1, \ldots, U_s\}$ which are isomorphic to W equals the dimension of $\operatorname{Hom}_G(V, W)$.

Proof.

Basics of Rep. Theory

Have:

$$\operatorname{Hom}_G(V,W) = \bigoplus_{i=1}^s \operatorname{Hom}_G(U_i,W),$$

so taking the dimension of both sides yields

$$\dim \, \operatorname{Hom}_G(V,W) = \sum_{i=1}^s \dim \, \operatorname{Hom}_G(U_i,W).$$

By previous Proposition, this sum is exactly the # of irreps in $\{U_1,\ldots,U_s\}$ which are isomorphic to W.

Theorem (Uniqueness of decomposition into irreducibles.)

Let $\rho \colon G \to GL(V)$ be a representation, and let

$$V = U_1 \oplus \ldots \oplus U_s$$

$$V = \widetilde{U_1} \oplus \ldots \oplus \widetilde{U_r}$$

be two decompositions of V into irreducible subrepresentations. Then s=r, and (after reordering if necessary) U_i and \widetilde{U}_i are isomorphic for every $i \in \{1, \ldots, s\}$.

Proof.

For any irrep W of G, the number of irreps in either decomposition that are isomorphic to W is equal to dim $\operatorname{Hom}_G(V,W)$. So the two decompositions contain the same number of factors isomorphic to W for any irrep W of G.

Definition

Basics of Rep. Theory

The **character** of a representation $\rho \colon G \to GL(V)$ is the function

$$\chi_V \colon G \to \mathbb{C}$$

defined by

$$\chi_V(g) = \mathsf{Tr}(\rho(g)).$$

Note

The character of a representation is not a homomorphism in general, since $\operatorname{Tr}(MN) \neq \operatorname{Tr}(M)\operatorname{Tr}(N)$ in general.

Basic properties of Characters

Proposition

Basics of Rep. Theory

Let V be a representation of G.

- χ_V is conjugation invariant: $\chi_V(hqh^{-1}) = \chi_V(q) \quad \forall q, h \in G$.
- $\chi_V(e) = \dim V$.
- $\chi_V(g^{-1}) = \overline{\chi_V(g)} \quad \forall g \in G.$
- $\chi_{V^*}(g) = \chi_V(g) \quad \forall g \in G.$

Proposition

Let V and W be representations of G.

- $\bullet \chi_{V \oplus W} = \chi_V + \chi_W.$
- $\bullet \ \chi_{V \otimes W} = \chi_V \cdot \chi_W.$

Proposition

Isomorphic representations have the same character.

Proof.

Isomorphic representations can be described by the same set of matrices with the right choice of bases. Thus each $\rho(g)$ has the same trace.

Let \mathbb{C}^G denote the vector space of all functions from G to \mathbb{C} . A basis for \mathbb{C}^G is given by the set of functions

$$\{\delta_g|g\in G\}$$

defined by

$$\delta_g \colon h \mapsto \begin{cases} 1 & \text{if } h = g \\ 0 & \text{if } h \neq g. \end{cases}$$

Definition

Let $\varphi, \psi \in \mathbb{C}^G$. We define a hermetian inner product on \mathbb{C}^G by

$$\langle \varphi | \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \varphi(g) \overline{\psi(g)}.$$

Inner product of Characters

$\mathsf{Theorem}$

Let $\rho_V \colon G \to GL(V)$ and $\rho_W \colon G \to GL(W)$ be representations of G, and let χ_V, χ_W be their characters. Then

$$\langle \chi_W | \chi_V \rangle = \dim \operatorname{Hom}_G(V, W).$$

Let χ_1, \ldots, χ_r be characters of pairwise non-isomorphic irreducible representations of G. Then

$$\langle \chi_i | \chi_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Proof.

Let χ_i and χ_j be the characters of the irreducible representations $U_i, U_j.$ Then

$$\langle \chi_i | \chi_j \rangle = \dim \ \mathrm{Hom}_G(U_j, U_i) = \begin{cases} 1 & \text{if } U_i, U_j \text{ are isomorphic} \\ 0 & \text{if } U_i, U_j \text{ are not isomorphic.} \end{cases}$$

Let χ be any character of G. Then χ is irreducible if and only if

$$\langle \chi | \chi \rangle = 1$$

Proof.

Write χ as a linear combination of irreducible characters

$$\chi = m_1 \chi_1 + \ldots + m_k \chi_k$$

where each m_i is a non-negative integer. Then

$$\langle \chi | \chi \rangle = \sum_{i,j \in [1,k]} m_i m_j \langle \chi_i | \chi_j \rangle$$

= $m_1^2 + \ldots + m_k^2$.

So $\langle \chi | \chi \rangle = 1$ if and only if exactly one of the $m_i = 1$ and the rest are 0.

Let $G = D_4 = \langle \sigma, \tau | \sigma^4 = \tau^2 = e, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$. Recall the two dimensional representation W of D_4 given earlier. We compute the character of this representation by taking the trace of the matrices from that example:

$$\chi_W(e) = 2 \qquad \qquad \chi_W(\tau) = 0$$

$$\chi_W(\sigma) = 0 \qquad \qquad \chi_W(\sigma\tau) = 0$$

$$\chi_W(\sigma^2) = -2 \qquad \qquad \chi_W(\sigma^2\tau) = 0$$

$$\chi_W(\sigma^3) = 0 \qquad \qquad \chi_W(\sigma^3\tau) = 0.$$

Then

$$\langle \chi_W | \chi_W \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_W(g) \overline{\chi_W(g)} = \frac{1}{8} (4+4) = 1$$

so we conclude that W is irreducible.

Corollary

Let V and W be representations of G. Then V and W are isomorphic if and only if $\chi_V = \chi_W$.

Proof.

Suppose $\chi_V = \chi_W$. We can find non-negative integers m_i and l_j such that

$$V = U_1^{m_1} \oplus \ldots \oplus U_r^{m_r} \quad \text{ and } \quad W = U_1^{l_1} \oplus \ldots \oplus U_r^{l_r}$$

where U_1, \ldots, U_r are distinct irreps of G. Then

$$\chi_V = m_1 \chi_1 + \ldots + m_r \chi_r$$
 and $\chi_W = l_1 \chi_1 + \ldots + l_r \chi_r$.

It follows that

$$m_i = \langle \chi_V | \chi_i \rangle = \langle \chi_W | \chi_i \rangle = l_i$$

for all $i \in \{1, \ldots, r\}$ since $\chi_V = \chi_W$.

$$\chi_{\text{reg}}(g) = \begin{cases} |G| & \text{if } g = e \\ 0 & \text{if } g \neq e \end{cases}$$

Proposition

The multiplicity of any irreducible representation in the regular representation equals its dimension.

Proof.

Let V be an irreducible representation of G. Then

$$\begin{split} \langle \chi_{\mathrm{reg}}, \chi_V \rangle &= \frac{1}{|G|} \chi_{\mathrm{reg}}(e) \overline{\chi_V(e)} \\ &= \frac{1}{|G|} |G| (\dim \, V) = \dim \, V. \end{split}$$

Corollary

There are finitely many irreducible representations of G, up to isomorphism.

Corollary

Let U_1, \ldots, U_r be the irreducible representations of G with degrees d_1, \ldots, d_r . Then

$$|G| = \sum_{i=1}^{n} d_i^2$$

Definition

We define the character table of G to be the table of complex numbers whose:

- rows are index by the isomorphism classes of irreducible representations of G,
- \bullet columns are indexed by the conjugacy classes of G,
- \bullet i, j entry is given by value of the character corresponding to row i evaluated at the conjugacy class corresponding to column j.

Note

To find the inner product of χ_V and χ_W , we just need to calculate χ once on each conjugacy class, i.e.

$$\begin{split} \langle \chi_V | \chi_W \rangle &= \frac{1}{|G|} \sum_{g \in G} \rho_V(g) \overline{\rho_W(g)} \\ &= \frac{1}{|G|} \sum_{g \in G} |[g]| \rho_V(g) \overline{\rho_W(g)} \end{split}$$

Character table of D_3

Example

Basics of Rep. Theory

Consider $G = D_3 = \langle \sigma, \tau | \sigma^3 = \tau^2 = e, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$. We have seen three irreducible representations of D_3 , namely the 1-dimensional trivial representation, the 1-dimensional alternating representation, and the 2-dimensional irreducible representation Wconstructed geometrically. Observe that

$$|D_3| = 6 = 1^2 + 1^2 + 2^2$$

so these are all of the irreducible representations of D_3 up to isomorphism.

Character table of D_3

Example

Basics of Rep. Theory

The conjugacy classes of D_3 are $\{e\}$, $\{\sigma, \sigma^2\}$, and $\{\tau, \tau\sigma, \tau\sigma^2\}$.

Thus, the character table of D_3 is given by

Character table of D_3							
Conjugacy class representative $[g]$	[e]	$[\tau]$	$[\sigma]$				
χ_1 (1-d trivial reprn)	1	1	1				
χ_{sgn} (1-d sign reprn)	1	-1	1				
χ_W (2-d reprn obtained geometrically)	2	0	-1				

Character Table of D_4

Example

Basics of Rep. Theory

Let $G=D_4$. Let U_1,\ldots,U_r be the irreducible representations of D_4 , with dimensions d_1,\ldots,d_r respectively, and let U_1 be the 1-dimensional trivial representation. Then

$$d_2^2 + \ldots + d_r^2 = |G| - d_1^2 = 8 - 1 = 7.$$

There are two possibilities:

- 1. r = 8, and $d_i = 1$ for all $1 \le i \le 8$.
- 2. or r = 5, and $d_2 = d_3 = d_4 = 1$, $d_5 = 2$.

We saw earlier that G has a two-dimensional irreducible representation, so in fact (2) holds.

Character Table of D_4

Example

Basics of Rep. Theory

The remaining 1-dimensional representations are easy to find, since they must satisfy the relations $\rho(\sigma)^2=1$ and $\rho(\tau)^2=1$. Thus the character table for D_4 is as follows:

Character table of D_4							
Conjugacy class	{1}	$\{\sigma,\sigma^3\}$	$\{\sigma^2\}$	$\{\tau,\sigma^2\tau\}$	$\{\sigma\tau,\sigma^3\tau\}$		
χ_1	1	1	1	1	1		
χ_2	1	1	1	-1	-1		
χ_3	1	-1	1	1	-1		
χ_4	1	-1	1	-1	1		
χ_W (2-d reprn)	2	0	-2	0	0		