National University of Computer and Emerging Sciences, Lahore Campus

Course:
Program:
Duration:
Paper Date:

Section:

Exam:

Artificial Intelligence BS(Computer Science)

20 min 21-03-17

Quiz 3

Course Code: Semester:

Total Marks:

CS401 Fall 2016 10 2%

Weight Page(s):

Reg. No

Instruction/Notes:

Given the training data what attribute will be chosen as root node? Using Gini as impurity measure.

Training Data

Instanc e #	Att1	Att2	Att3	Class
1	1	2	2	1
2	2	2	2	1
3	1	2	2	1
4	1	2	2	1
5	1	1	2	2
6	2	1	2	2
7	1	1	2	2
8	2	1	2	2

$$Gini(t) = 1 - \sum_{i=0}^{c-1} [p(i|t)]^2,$$
 (4.4)

Where C is number of classes, and P(i|t) is fraction of records that belong to class i at node t.

Question 2 Classify the following test instance using kNN and training data given in above table. Use K=3

2	1	2	2

Note: All the attributes are binary and symmetric

Attr 1 (44) Give (Aller 2) = 05 [Attr 2] [
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
[Attrz] [Aux (x) = 1-(4)^2-(9)^2=0 [x1 (x1) x1 (x2) = 0.5 - 10) - 10 = 0.5 [x1 (x1) x1 (x2) = 0.5 - 10) - 10 = 0.5 [x1 (x1) x1 (x2) = 0.5 - 10) - 10 = 0.5 [x1 (x1) x1 (x2) = 0.5 - 10) - 10 = 0.5 [x1 (x1) x1 (x2) = 0.5 - 10) - 10 = 0.5
Gin (x) = 1-(4) ² -(9) ² =0 Gin (x) = 1-(4) ² -(9) ² =0 Gam = (Aunz) = 0.5 - 40, 40 = 0.5 Gin (x) = 1-(9) ² -(9) ² =0 Gin (x) = 1-(9) ² -(9) ² = and yield Gin (z) = 1-(9) ² -(9) ² = o.5
Gain = $(4u^2) = 1 - \frac{1}{4} = \frac{1}{2} = 0$ Gain = $(4u^2) = 0.5 - \frac{10}{2} = \frac{2}{8} = 0.5$ Give $(2i) = 1 - \frac{14}{2} = 0.5$
Gam = (Alln2) = 0.5 - 10, $\frac{1}{8}(0) = 0.5$ Gin(21) = 1-(0) ² (0) ² = undyned Gin(21) = 1-(14)-(16) ² = 0.5
Gin(Z1) = 1-(0)2 (0) = undyined Gine (21) = 1-14 - (0)2 = 05
Gini(21) = 1-(0)2(0)2 = undyred Gini(21) = 1-(4)-(4)2=05
Gine (21) = 1-14 - (4) = 05
Gain (ADM) = undefined
and tool
as x, y >0 so gain (Affre) is
lights so it will be chosen as nost node

Instance #	Att1	Att2	Att3	Class	Similarty × 3 SMC Smilarly of
1	1	2	2	1	
2	2	2	2	1	2 test instance with
3	1	2	2	1	2 all trang
4	1	2	2	1	1 mstances.
5	1	1	2	2	2
6	2	1	2	2	3 /2
7	1	1	2	2	2 + 2 2 is the must
8	2	1	2	2	3 V2 free mut class
	ni(t) =	i=()			(4.4) So we will asking 2 to te tion of records that belong to class i at node to instance