

#### **Advanced Microprocessors**

# INTRODUCTION

Dennis A. N. Gookyi





Course Organization and Syllabus





## **INSTRUCTOR**

- Instructor
  - Name: Dennis Agyemanh Nana Gookyi
  - □ Email: dennisgookyi@gmail.com
  - Phone: 0203493435
  - Research Portals:
    - https://www.researchgate.net/profile/Dennis-Gookyi
    - https://sites.google.com/view/eisedlab





#### **INSTRUCTOR**

#### Instructor

#### **Education**

- Ph.D. in Information and Communication Engineering, Hanbat National University,
  South Korea, 2021.
- M.Eng. in Information and Communication Engineering, Hanbat National University, South Korea, 2017.
- B.Sc. in Computer Engineering, Kwame Nkrumah University of Science and Technology, Ghana, 2009.

#### **Employment**

- Research Scientist, CSIR-INSTI, Ghana, 2022 Present.
- Researcher, Korea Electronics Technology Institute (KETI), South Korea, 2021 2022.
- Research and Teaching Assistant, SoC Design Lab, Hanbat National University, South Korea, 2014 - 2021.
- RTL Design Engineer, Future Systems, South Korea, 2015 2016.
- Teaching Assistant, Computer Engineering Department, Kwame Nkrumah University of Science and Technology, Ghana, 2013 – 2014.





#### **LEARNING OUTCOMES**

- Expected Learning Outcomes
  - Learn about an approach to lowering the cost of robotics by leveraging recent advances in edge machine learning (ML) using low-cost microcontrollers
  - Learn about how to enable modern ML-powered robotics stacks to run on ultra-low-cost microcontrollers
  - Learn to develop techniques to run sophisticated algorithms on ultra-low-cost microcontrollers





# PREREQUISITES AND GRADING

- Prerequisite
  - Inclination toward computer programming
  - Inclination towards Digital Systems Design
  - Engineering mindset
  - Inquisitive about the physical world
- Grading scheme: Homework (10%), Participation (5%), Project (15%), Exam (70%)
  - Homework: hybrid grading show your work in class
  - Participation: attendance, ask questions, answer questions, be active
  - Project: non-trivial implementation of something useful by applying knowledge including and beyond what's learned in class





## LEARNING APPROACH

- Learning approach:
  - □ Type up your own code, and make it work on your device
  - Learn from sample code, assimilate then modify, integrate, or extend
  - Be ready to show your work
  - Read manuals and product specification documents





# **COURSE OUTLINE**

#### Schedule

| Lecture | Topic                                                                                        |
|---------|----------------------------------------------------------------------------------------------|
| 01      | Course Overview                                                                              |
| 02      | Course Hardware and Software Toolchain Setup                                                 |
| 03      | Overview of Tiny Machine Learning for Microprocessors                                        |
| 04      | Overview Deep Learning for Microprocessors                                                   |
| 05      | Overview of Edge Impulse Platform for Microprocessors                                        |
| 06      | Hands-on Project: Creating a Voice Controlled Robotic Subsystem Using Arduino Microprocessor |
| 07      | Class Project: Advanced Anomaly Detection in Robotic Systems                                 |





## **TEXTBOOKS AND LINKS**

#### Textbook and Links

- https://www.tensorflow.org/lite
- https://www.edgeimpulse.com/
- https://micropython.org/
- https://www.adafruit.com/
- https://www.arduino.cc/
- https://tinyml.seas.harvard.edu/SciTinyML-24/
- https://tinyml.seas.harvard.edu/







