Übungsblatt 6 zur Algebra I

Abgabe bis 27. Mai 2013, 17:00 Uhr

Aufgabe 1. Anwendungen der Diskriminante

- a) Sei $X^3+pX+q=0$ eine reduzierte kubische Gleichung mit ganzzahligen Koeffizienten p und q. Zeige, dass die Gleichung drei verschiedene Lösungen (in den komplexen Zahlen) besitzt, wenn q ungerade ist.
- b) Sei $X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0 = 0$ eine normierte Polynomgleichung mit rationalen Koeffizienten. Zeige, dass sie mindestens eine nicht reelle Nullstelle besitzt, wenn ihre Diskriminante negativ ist.

Aufgabe 2. Diskriminanten allgemeiner kubischer Gleichungen

- a) Berechne die Diskriminante der allgemeinen kubischen Gleichung $X^3 + aX^2 + bX + c = 0$.
- b) Zeige, dass $X^3 5X^2 + 3X + 9 = 0$ höchstens zwei verschiedene Lösungen hat.

Aufgabe 3. Die Resultante zweier Polynome

- a) Seien f(X) und g(X) zwei normierte Polynome mit Nullstellen (mit Vielfachheiten) x_1, \ldots, x_n bzw. y_1, \ldots, y_m . Zeige, dass der Ausdruck $R := \prod_{i,j} (x_i y_j)$ ein Polynom in den elementarsymmetrischen Funktionen der Koeffizienten von f(X) und den elementarsymmetrischen Funktionen der Koeffizienten von g(X) ist.
- b) Seien $X^2 + aX + b = 0$ und $X^2 + cX + d = 0$ zwei quadratische Gleichungen. Gib einen in a, b, c und d polynomiellen Ausdruck an, der genau dann verschwindet, wenn die beiden Gleichungen eine gemeinsame Lösung besitzen.

Aufgabe 4. Transzendente Zahlen

- a) Sei (z_n) eine konvergente komplexe Zahlenfolge mit Grenzwert z und seien alle Folgenglieder z_n algebraisch. Ist dann auch z algebraisch?
- b) Ist $\sqrt[3]{\pi}$ eine algebraische Zahl? Ist π^3 algebraisch?
- c) Finde eine Folge paarweise verschiedener transzendenter Zahlen.

Aufgabe 5. Triangulatur des Kreises

Ist folgendes Problem lösbar? Gegeben ein Kreis. Konstruiere nur mit Zirkel und Lineal ein gleichseitiges Dreieck mit demselben Flächeninhalt.

Nicht verpassen: Gauß-Vorlesung über Muster bei Primzahlen am 28. Mai ab 17:00 Uhr im Parktheater Göggingen, mehr Informationen auf http://xrl.us/gauss2013.