Tema 2

Exercițiul 1¹

Fie U_1 , U_2 două variabile aleatoare independente repartizate uniform $\mathcal{U}([0,1])$. Arătați că variabilele

$$X_1 = \cos(2\pi U_1)\sqrt{-2\log(U_2)}, \quad X_2 = \sin(2\pi U_1)\sqrt{-2\log(U_2)}$$

sunt variabile aleatoare independente repartizate normal $\mathcal{N}(0,1)$.

Exercițiul 2

Fie X_1, X_2, \ldots, X_n variabile aleatoare i.i.d. repartizate $\mathcal{U}([0, 1])$.

- a) Determinați funcția de repartiție și densitatea variabilelor m_n și M_n , unde $m_n = \min(X_1, X_2, \dots, X_n)$ iar $M_n = \max(X_1, X_2, \dots, X_n)$.
- b) Fie $Z_n = n(1 M_n)$. Arătați că $Z_n \stackrel{d}{\to} Z$, unde Z este o variabilă aleatoare a cărei funcție de repartiție este $F_Z(z) = 1 e^{-z}$.

Exercițiul 3

Fie $U_{i1}, U_{i2}, V_i, i \in \{1, 2, ..., n\}$, variabile aleatoare independente repartizate unifom $\mathcal{U}([0, 1])$. Definim variabile aleatoare

$$X_i = \begin{cases} 1, & U_{i1}^2 + U_{i2}^2 < 1 \\ 0, & \text{altfel} \end{cases} \quad \text{si} \quad Y_i = \sqrt{1 - V_i^2}, \quad i \in \{1, 2, \dots, n\}$$

Considerăm variabilele aleatoare $\hat{\pi}_1 = \frac{4}{n} \sum_{i=1}^n X_i$ și $\hat{\pi}_2 = \frac{4}{n} \sum_{i=1}^n Y_i$. Calculați media și varianța acestor variabile și stabiliți care este mai eficientă² în estimarea lui π .

Exercițiul 4

Fie U_1, U_2, \ldots, U_n variabile aleatoare independente și repartizate $\mathcal{U}([0,1])$ și $S_n = \sum_{i=1}^n U_i$. Dacă variabila aleatoare N este definită prin

$$N = \min\{k \mid S_k > 1\}$$

atunci:

- a) Arătați că dacă $0 \le t \le 1$ atunci $\mathbb{P}(S_k \le t) = \frac{t^k}{k!}$.
- b) Determinați $\mathbb{E}[N]$ și Var[N].

 $^{^1\}mathrm{Metoda}$ de simulare prezentată în acest exercițiu se numește metoda Box-Muller

²Spunem că un estimator nedeplasat este mai eficient decat un altul dacă varianța lui este mai mică

Exercițiul 5

Fie $(E_n)_{n\geq 1}$ un șir de variabile aleatoare independente, repartizate $Exp(\lambda)$, $S_n = \sum_{i=1}^n E_i$ pentru $n\geq 1$ și fie variabile aleatoare

$$N = \max\{n \ge 1 \mid S_n \le 1\}.$$

- a) Determinați repartiția lui $S_n, n \geq 1$.
- b) Arătați că variabila aleatoare N este repartizată $Pois(\lambda)$.

Exercițiul 6

Fie $(X_n)_{n\geq 1}$ un șir de variabile aleatoare pozitive și independente cu $\mathbb{E}[X_n]=c\in(0,1)$ pentru orice n. Dacă $Y_n=X_1X_2\cdots X_n$ atunci ară tați că $Y_n\stackrel{P}{\to}0$.

Grupele: 301, 311, 321 Pagina 2