

HEXFET® Power MOSFET

Applications

- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

V _{DSS}	150V
R _{DS(on)} typ.	9.3m Ω
max.	11m Ω
I _D (Silicon Limited)	104A

Benefits

- Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead Free
- RoHS Compliant, Halogen-Free

G	D	s
Gate	Drain	Source

Base Part Number	Package Type	Standar	d Pack	Orderable Part Number
base i art itambei	r dokage rype	Form	Quantity	Orderable Fait Namber
IRFB4115PbF	TO-220	Tube	50	IRFB4115PbF

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	104	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	74	A
I _{DM}	Pulsed Drain Current ①	420	
P _D @T _C = 25°C	Maximum Power Dissipation	380	W
	Linear Derating Factor	2.5	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery ③	18	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		∘c
	Soldering Temperature, for 10 seconds	300	
	(1.6mm from case)		
	Mounting torque, 6-32 or M3 screw	10lb·in (1.1N·m)	

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ②	830	mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case ®		0.40	
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface	0.50		°C/W
$R_{ hetaJA}$	Junction-to-Ambient ⑦®		62	

Static @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	150			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.18		V/°C	Reference to 25°C, I _D = 3.5mA①
R _{DS(on)}	Static Drain-to-Source On-Resistance		9.3	11	mΩ	$V_{GS} = 10V, I_D = 62A$ ④
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current	_		20	μA	$V_{DS} = 150V, V_{GS} = 0V$
			_	250		$V_{DS} = 150V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I_{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -20V$
R _G	Internal Gate Resistance		2.3		Ω	

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	97			S	$V_{DS} = 50V, I_{D} = 62A$
Q_g	Total Gate Charge		77	120	nC	$I_D = 62A$
Q_{gs}	Gate-to-Source Charge		28			$V_{DS} = 75V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		26			V _{GS} = 10V ⊕
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		51			$I_D = 62A, V_{DS} = 0V, V_{GS} = 10V$
t _{d(on)}	Turn-On Delay Time		18		ns	$V_{DD} = 98V$
t _r	Rise Time		73			$I_D = 62A$
t _{d(off)}	Turn-Off Delay Time		41			$R_G = 2.2\Omega$
t _f	Fall Time		39			V _{GS} = 10V ⊕
C _{iss}	Input Capacitance	_	5270	_	pF	$V_{GS} = 0V$
C _{oss}	Output Capacitance		490			$V_{DS} = 50V$
C_{rss}	Reverse Transfer Capacitance		105			f = 1.0 MHz, See Fig. 5
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related)		460			$V_{GS} = 0V$, $V_{DS} = 0V$ to 120V $©$, See Fig. 11
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)		530]	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 120V $

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			104	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			420	Α	integral reverse
	(Body Diode) ②					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 62A, V_{GS} = 0V \oplus$
t _{rr}	Reverse Recovery Time		86		ns	$T_J = 25^{\circ}C$ $V_R = 130V$,
			110			$T_J = 125^{\circ}C$ $I_F = 62A$
Q _{rr}	Reverse Recovery Charge	_	300		nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s ④
			450			$T_J = 125^{\circ}C$
I _{RRM}	Reverse Recovery Current		6.5		Α	$T_J = 25^{\circ}C$
t _{on}	Forward Turn-On Time	Intrinsi	c turn-	on time	is negl	igible (turn-on is dominated by LS+LD)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Recommended max EAS limit, starting $T_J = 25$ °C, L = 0.17mH, $R_G = 25\Omega$, $I_{AS} = 100$ A, $V_{GS} = 15$ V.
- $\label{eq:local_special} \ensuremath{\Im} \ I_{SD} \leq 62A, \ di/dt \leq 1040A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C.$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.

- $\ \ \,$ C $_{oss}$ eff. (ER) is a fixed capacitance that gives the same energy as C $_{oss}$ while V $_{DS}$ is rising from 0 to 80% V $_{DSS}.$
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- $\$ R_{θ} is measured at T_J approximately 90°C.

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case Temperature

 $\label{eq:VDS} V_{DS,} \mbox{ Drain-to-Source Voltage (V)} \\ \mbox{ Fig 11. Typical C_{OSS} Stored Energy}$

Fig 8. Maximum Safe Operating Area

Fig 10. Drain-to-Source Breakdown Voltage

Fig 12. Threshold Voltage vs. Temperature

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14. Typical Avalanche Current vs. Pulsewidth

Fig 15. - Typical Recovery Current vs. dif/dt

Fig 17. - Typical Stored Charge vs. di_f/dt

Fig 16. - Typical Recovery Current vs. dif/dt

Fig 18. - Typical Stored Charge vs. dif/dt

Fig 19. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 20a. Unclamped Inductive Test Circuit

Fig 21a. Switching Time Test Circuit

Fig 22a. Gate Charge Test Circuit

Fig 20b. Unclamped Inductive Waveforms

Fig 21b. Switching Time Waveforms

Fig 22b. Gate Charge Waveform

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.
- 2.- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].
- 3.- LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.
- 4.— DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 5. DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- 6.- CONTROLLING DIMENSION: INCHES.
- 7.- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- 8.- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- 9.— OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

SYMBOL	MILLIM	MILLIMETERS		INCHES		
	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	3,56	4,83	,140	.190		
A1	1,14	1.40	.045	.055		
A2	2.03	2.92	.080	.115		
b	0.38	1.01	.015	.040		
b1	0.38	0.97	.015	.038	5	
b2	1,14	1,78	.045	.070		
b3	1,14	1,73	.045	.068	5	
С	0,36	0.61	.014	.024		
c1	0.36	0.56	.014	.022	5	
D	14.22	16.51	.560	.650	4	
D1	8.38	9.02	.330	.355		
D2	11.68	12.88	.460	.507	7	
E	9,65	10.67	.380	.420	4,7	
E1	6.86	8.89	.270	.350	7	
E2	-	0.76	-	.030	8	
е	2.54		.100	BSC		
e1	5.08	BSC	.200	BSC		
H1	5.84	6.86	.230	.270	7,8	
L	12.70	14,73	.500	.580		
L1	3.56	4.06	.140	.160	3	
ØΡ	3.54	4.08	.139	.161		
Q	2.54	3.42	.100	.135		

LEAD ASSIGNMENTS

<u>HEXFET</u>

1.- GATE 2.- DRAIN 3.- SOURCE

IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER

3.- EMITTER

DIODES

1.- ANODE 2.- CATHODE 3.- ANODE

TO-220AB Part Marking Information

TO-220AB packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Qualification information[†]

Qualification level	Industrial [†]				
Qualification level	(per JEDEC JESD47F ^{††} guidelines)				
Moisture Sensitivity Level	TO-220 N/A				
RoHS compliant		Yes			

[†] Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/

Revision History

Date	Comment
	Updated data sheet with new IR corporate template.
4/28/2014	Updated package outline & part marking on page 7.
4/20/2014	Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.
	• Updated typo on the Fig.16 and Fig.17, unit of Y-axis from "A" to "nC" on page 5.
11/6/2014	Added Fig 14 - Typical Avalanche Current vs Pulsewidth on page 5.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/

^{††} Applicable version of JEDEC standard at the time of product release.

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.