The last part of Proposition 28.1 shows that the Cartan–Dieudonné is salvaged, since we can send u to v by a sequence of two Hermitian reflections when $u \neq v$ and ||u|| = ||v||, and since the inverse of a Hermitian reflection is a Hermitian reflection. Actually, because we are over the complex field, a linear map always have (complex) eigenvalues, and we can get a slightly improved result.

Theorem 28.2. Let E be a Hermitian space of dimension $n \geq 1$. Every isometry $f \in \mathbf{U}(E)$ is the composition $f = \rho_n \circ \rho_{n-1} \circ \cdots \circ \rho_1$ of n isometries ρ_j , where each ρ_j is either the identity or a Hermitian reflection (possibly a standard hyperplane reflection). When $n \geq 2$, the identity is the composition of any hyperplane reflection with itself.

Proof. We prove by induction on n that there is an orthonormal basis of eigenvectors (u_1, \ldots, u_n) of f such that

$$f(u_j) = e^{i\theta_j} u_j,$$

where $e^{i\theta_j}$ is an eigenvalue associated with u_i , for all $j, 1 \leq j \leq n$.

When n = 1, every isometry $f \in \mathbf{U}(E)$ is either the identity or a Hermitian reflection ρ_{θ} , since for any nonnull vector u, we have $f(u) = e^{i\theta}u$ for some θ . We let u_1 be any nonnull unit vector.

Let us now consider the case where $n \geq 2$. Since \mathbb{C} is algebraically closed, the characteristic polynomial $\det(f - \lambda \mathrm{id})$ of f has n complex roots which must be the form $e^{i\theta}$, since they have absolute value 1. Pick any such eigenvalue $e^{i\theta_1}$, and pick any eigenvector $u_1 \neq 0$ of f for $e^{i\theta_1}$ of unit length. If $F = \mathbb{C}u_1$ is the subspace spanned by u_1 , we have f(F) = F, since $f(u_1) = e^{i\theta_1}u_1$. Since f(F) = F and f is an isometry, it is easy to see that $f(F^{\perp}) \subseteq F^{\perp}$, and by Proposition 14.13, we have $E = F \oplus F^{\perp}$. Furthermore, it is obvious that the restriction of f to F^{\perp} is unitary. Since $\dim(F^{\perp}) = n - 1$, we can apply the induction hypothesis to F^{\perp} , and we get an orthonormal basis of eigenvectors (u_2, \ldots, u_n) for F^{\perp} such that

$$f(u_j) = e^{i\theta_j} u_j,$$

where $e^{i\theta_j}$ is an eigenvalue associated with u_j , for all j, $2 \leq j \leq n$ Since $E = F \oplus F^{\perp}$ and $F = \mathbb{C}u_1$, the claim is proved. But then, if ρ_j is the Hermitian reflection about the hyperplane H_j orthogonal to u_j and of angle θ_j , it is obvious that

$$f = \rho_{\theta_n} \circ \dots \circ \rho_{\theta_1}.$$

When $n \geq 2$, we have id = $s \circ s$ for every reflection s.

Remarks:

(1) Any isometry $f \in \mathbf{U}(n)$ can be express as $f = \rho_{\theta} \circ g$, where $g \in \mathbf{SU}(n)$ is a rotation, and ρ_{θ} is a Hermitian reflection. Indeed, by the above theorem, with respect to the basis (u_1, \ldots, u_n) , $\det(f) = e^{i(\theta_1 + \cdots + \theta_n)}$, and letting $\theta = \theta_1 + \cdots + \theta_n$ and ρ_{θ} be the Hermitian