2023年清华大学微积分A (2) 期末考试试题

(重整理)

一、填空题 (每题3分)

4. 设 u(x,y) 为 $e^x[e^y(x-y+2)+y]dx+e^x[e^y(x-y)+1]dy=0$ 的 原 函 数 ,且 满 足 $u(1,1)=e^2+e+5$,则 u(0,0)= 。

二、单选题 (每题3分)

A. $\int_{1}^{4} dy \int_{2-u}^{\sqrt{y}} f(x, y) dx$

B. $\int_0^1 dy \int_{\sqrt{y}}^{2-y} f(x,y) dx + \int_1^4 dy \int_{2-y}^{\sqrt{y}} f(x,y) dx$

C. $\int_0^1 dy \int_{-\sqrt{y}}^{\sqrt{y}} f(x,y) dx + \int_1^4 dy \int_{-\sqrt{y}}^{2-y} f(x,y) dx$

D. $\int_1^4 dy \int_{\sqrt{y}}^{2-y} f(x,y) dx$

2. 向量场 $\mathbf{V} = (x+y+z)\mathbf{i} + (x^2+y^2+z^2)\mathbf{j} + (x^3+y^3+z^3)\mathbf{k}$ 在(0,0,0)处的旋度为_____。

A. j + k

B. $\mathbf{i} + \mathbf{k}$

C. j - k

D. i - k

3. 级数 $\sum\limits_{n=1}^{\infty}(\sqrt{1+rac{(-1)^{n}}{n^{p}}}-1)$ 收敛当且仅当参数p满足_____。

A. $p > \frac{1}{2}$

B. $p \geq 2$

C. $p \geq 1$

D. p > 1

4. 已知 $\sum\limits_{n=0}^{\infty}a_{n}(x-1)^{n}$ 在x=-1处条件收敛,则级数 $\sum\limits_{n=0}^{\infty}a_{n}$ _____。

A. 不能确定

B. 绝对收敛

C. 条件收敛

- D. 发散
- 5. 比较三个积分 $J_i=\iint\limits_{D_i}(x-y)^{1/3}dxdy~(i=1,2,3)$ 的大小,其中

$$D_1 = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\}$$

$$D_2 = \{(x, y) | 0 \le x \le 1, 0 \le y \le \sqrt{x}\}$$

$$D_3 = \{(x,y) | 0 \le x \le 1, x^2 \le y \le 1\}$$

则____。

A.
$$J_2 < J_1 < J_3$$

B.
$$J_1 < J_2 < J_3$$

C.
$$J_3 < J_1 < J_2$$

D.
$$J_2 < J_3 < J_1$$

- 6. 以下四个选项中,正确的选项是。
 - A. 存在可微向量场 $\mathbf{V}(x,y,z)$ 使得 $rot\mathbf{V}(x,y,z)=(x,z^2,siny)$
 - B. 存在可微函数f使得grad f(x,y,z) = (y,-x-2z,2y)
 - C. 对 \mathbb{R}^3 中的每个线性向量场 $\mathbf{V}(x,y,z) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$,都存在可微函数f以及可微向量场 \mathbf{W} 使得

 $\mathbf{V} = gradf + rot\mathbf{W}$

- D. 这四个选项中, 其他三个选项都不对
- 7. 关于幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$,以下陈述中正确的是_____。
 - A. 对任意 $0 < \delta < 1$,该幂级数在任何区间 $[-1, 1 \delta]$ 上一致收敛
 - B. 对任意 $0<\delta<1$,该幂级数在任何区间 $[-1+\delta,1-\delta]$ 上一致收敛,但在区间 $[1-\delta,1)$ 和 $(-1,-1+\delta)$ 上都不是一致收敛的
 - C. 该幂级数在区间[-1,1)上一致收敛
 - D. 对任意 $0<\delta<1$,该幂级数在任何区间 $[-1+\delta,1)$ 上一致收敛,但在区间 $(-1,-1+\delta]$ 上不是一致收敛的

三、解答题 (每题11分)

- 1. 设D为由不等式组 $x>0,1\leq xy\leq 3,x\leq 2y\leq 2x$ 确定的平面区域。求 $\iint\limits_{D}x^{2}dxdy$ 。
- 2. 记 Σ_1 为圆柱面 $x^2+y^2=2x$ 被上半球面 $x^2+y^2+z^2=4$ $(z\geq 0)$ 和平面z=0所截得的部分,记 Σ_2 为上半球面 $x^2+y^2+z^2=4$ $(z\geq 0)$ 位于区域 $x^2+y^2\leq 2x$ 内部的部分。求 Σ_1,Σ_2 的面积。

- 3. 设 S^+ 为 椭 球 面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, a, b, c > 0$, 正 向 朝 外 。 计 算 第 二 型 曲 面 积 分 $\iint_{S^+} xy^2 dy \wedge dz + yz^2 dz \wedge dx + zx^2 dx \wedge dy$ 。
- 4. (1) 求微分方程 $\begin{cases} (1-x^2)S^n=xS' \\ S(0)=0, S'(0)=1 \end{cases}$ 的幂级数解 $S(x)=\sum\limits_{n=0}^{\infty}a_nx^n$,并求这个幂级数的收敛半径;
 - (2) 求数项级数 $\sum_{n=0}^{\infty} a_n (\frac{1}{2})^n$ 的值。
- 5. 已知 2π 周期函数f在区间 $(-\pi,\pi]$ 上的表达式为 $f(x)=egin{cases} 1, & 0\leq x\leq\pi; \\ -1, & -\pi< x<0. \end{cases}$
 - (1) 求f的傅里叶级数;
 - (2) 利用Parseval等式和(1)中的级数,证明 $\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{\pi^2}{8}$;
 - (3) 求积分 $\int_0^1 \frac{ln(1+x) ln(1-x)}{x} dx$ 的值。