Supplemental materials for: How is experience transformed into memory?

Andrew C. Heusser, Paxton C. Fitzpatrick, and Jeremy R. Manning Department of Psychological and Brain Sciences Dartmouth College, Hanover, NH 03755, USA Corresponding author: jeremy.r.manning@dartmouth.edu

August 30, 2018

Naturalistic extensions of classic list-learning analyses

Just like in a traditional free recall list-learning experiment where participants view a list of words and then verbally recall them, our video-recall matching analysis approach affords us the ability to analyze memory in the same way. The recalled events can be treated as "items" analogous to words recalled in a list-learning study. Here, we sought to characterize memory performance/dynamics by extending classic analyses originally designed for list-learning experiments to more naturalistic settings.

First, we asked whether the estimated number of recall events (k) by participant was related to hand-annotated accuracy as published in Chen et al. (2017). We found a strong positive correlation where participants with a greater number of recall events also had better overall memory performance (Pearson's r(16) = 0.67, p = 0.003). Then, we considered how participants initiated the recall sequence (known in the literature as the 'probability of first recall' or 'PFR'). We found that participants tended to initiate their recall sequences with the first few events (Supp. Fig. S4A), which is qualitatively very similar to previously published list learning experiments (Howard and Kahana, 1999). Next, we considered another well-studied memory measure in the list-learning literature, the lag conditional response probability curve (or lag-CRP) (Kahana, 1996). The result suggests a strong bias to transition sequentially events in the forward direction (Supp. Fig. S4B). Finally, we assessed memory performance for each event in the video as a function of its serial position during encoding (Supp. Fig. S4C). We did not observe the classic "primacy" and "recency" pattern which is prevalent in the literature (Murdock, 1962). We also considered two additional across-participant measures of recall that characterize memory organization: temporal clustering and semantic clustering. We found that participants who clustered in time also recalled a greater number of events (Pearson's r(16) = 0.62, p = 0.007). Next, we assessed semantic clustering. We found that the semantic clustering score was related to memory performance across participants (Pearson's r(16) = 0.55, p = 0.02). Thus, participants who organized their recalls with respect to the semantic information contained in the scene had better memory performance.

Figure S1: Recall model correlation matrices and event segmentation fits. Each participant's timepoint-by-timepoint recall correlation matrix. The yellow boxes represent "events" identified by a hidden Markov model.

Figure S2: Video-recall event model correlation matrices. Each participant's video event by recall event correlation matrix. The yellow boxes represent the maximum correlation in each column.

Figure S3: Impact of individual features on topic modeling analysis. A. Contribution of each feature to model structure. Bars represent the correlation of a video model trained in the absence of a given feature to the model trained on all features. **B.** Contribution of each feature to video model/recall model relationship. The leftmost bar represents the across-participants mean correlation between the video model and recall models trained on all features. Subsequent bars represent the same relationship between video and recall models trained in the absence of a given feature. Error bars are the standard error of the mean across participants. **C.** Individual feature trajectory similarity matrix. The first row/column is the topic trajectory the full video model. Each subsequent row/column is that of a single feature. Shading corresponds to the value of the correlation coefficient (Pearson's *r*).

Additional measures of naturalistic memory

To quantify the similarity between the video model and individual recall models, we considered a number of novel metrics. First, we tested whether each participant's recall model matched the video model in a general sense. To do this, for each participant we filtered the video model to only include the events that the participant remembered and computed the root mean squared difference (RMSD) between the video model and the recall model. As an example, if the participant remembered all the events in order (with perfect precision), the expected distance value would be 0. However, if they remembered a subset of events, events out of order, or with low precision, the expected distance would be greater than 0. To assess significance, we performed a permutation test where we circularly shifted the recall model (10000 times) and recomputed the RMSD. The recall model significantly matched the video model for nine of the participants (p < 0.05, participants: 3-4,8-13,17 and the p-value for the rest of the participants was less than .25). Furthermore, the RMSD values were significantly correlated to hand annotated memory performance across participants (Pearson's r(16) = -.57, p = 0.016). Thus, a closer match between the video and recall event models was related to better recall performance.

Next, we tested whether participants who recalled more events were also more precise in their recollections. For each participant, we computed the correlation between each recall event and its matching video event (only for the events which they recalled). This resulted in a single number for each recalled event indexing how similar the recall event was to its matching video event (i.e the "precision" of the recall). We then averaged the correlations within participant. In line with our prediction, there was a strong correlation between hand annotated memory performance and precision suggesting that participants who remembered more events also remembered them more veridically (Pearson's r(16) = 0.74, p = 0.0006).

Then, we considered the distinctiveness of each recall event. That is, how uniquely a recall

Figure S4: Naturalistic extensions of classic list-learning memory analyses. A). The probability of first recall as a function of the serial position of the event during encoding. B). A lag-conditional response probability curve. Given recall of event i, the probability that the next recalled item will be from serial position i +/- lag. C). Proportion of events recalled as a function of serial position. All error bars are the standard error of the mean derived from a bootstrap resampling procedure.

event matched a given video event compared to all other video events. We hypothesized that participants with high memory performance might describe each event in a more distinctive way (relative to those with lower memory performance who might describe events in a more general way). To this end, we computed a 'distinctiveness' score for each participant (i.e., 1 - the correlation between a recall event and all non-matching video events). Then, we averaged this measure over recall events within participant. We found that participants with higher hand annotated memory performance also had higher distinctiveness scores (Pearson's r(16) = 0.8, p = 0.0001).

Lastly, we tested whether participants with better memory performance were also more likely to remember the events in order. For each participant, we computed the Spearman rank correlation between the order of events that the participant recalled and the actual order of events (filtering events that were actually recalled). We found that participants who recalled more events also recalled more of them in order (Pearson's r(16) = 0.5, p = 0.04). In summary, we found that better memory performance was associated with more precise, distinctive and ordered recalls.

Supplemental Methods

Quantifying the importance of features

To determine the contribution of each feature to the structure of the video model, we examined the similarity between the temporal structure of models trained in the absence of a single feature and that of our original (i.e., full) model (Supp. Fig. S3A). First, we iteratively removed one transcribed feature from the scene descriptions and constructed a timepoints (1976) by topis (100) matrix using a topic model fit to the remaining features. We then represented the original model as well as the new model's temporal structure as a timepoints-by-timepoints correlation matrix. Finally, we vectorized these correlation matrices and correlated them to each other resulting in a single number (for each feature removed from the model) representing the similarity of the "feature-removed" models to the full model.

In order to ascertain which features were important in relating the recall models to the video

model, we similarly compared to the temporal structures of video and recall models deprived of a single feature at a time (Supp. Fig. S3B). For each feature removed, we transformed each participant's recall transcript using a model trained on the feature-deprived video text windows (of 50 scene segments), and resampled the recall timeseries to match the shape of the video model (1976 timepoints). We then represented the temporal structures of each participant's recall model as timepoints-by-timepoints correlation matrices and computed the average correlation with the temporal structure of the video model (across participants).

The two prior analyses examine information (about either the video model structure or the video/recall model relationship) lost in the absence of each feature. However, they do not consider redundancy in the information each feature contributes (e.g., how much unique information does "Character speaking" provide that "Character in focus" does not?). As a measure of information overlap between features, we computed the similarity between the topic trajectories of each individual annotated feature in addition to the full feature set. First, we singularly transformed the text of each feature using a model trained on the collection of all features. We then represented the single feature's model's temporal structure as a timepoints-by-timepoints correlation matrix, and compared the temporal structures pairwise by constructing a features-by-features correlation matrix ((Supp. Fig. S3C). We additionally computed the correlation between the individual features' temporal structures and that of the full video model as a measure of the proportion of information discernible from that feature alone.

List-learning analyses

Overall Accuracy. To get an overall measure of the quantity of information recalled, we computed the proportion of sucessfully recalled events by counting the number of unique recall events identified by the HMM model and dividing by the total number of video events. We performed this analysis for each participant separately.

Probability of first recall (PFR). The (PFR) analysis represents the probability that an item will be recalled first as a function of its serial position during encoding. We initialized a # of participants (17) by # of video events (34) matrix. Then for each participant, we found the index of the video event that was recalled first and filled in that index in the matrix with a 1. Finally, we averaged over the rows of the matrix, resulting in a 1 by 34 array representing the proportion of participant that recalled an event as a function of serial position during encoding.

Lag conditional probability curve (lag-CRP). The lag-CRP represents the probability that the next item recalled will be of lag i from the just recalled item. For each recall transition, we computed the lag between the current recall event and the next recall event, normalizing by the total number of possible transitions. This resulted in a # of participants (17) by lags (-33:+33) matrix. We averaged over the rows of this matrix to get a group-averaged lag-CRP.

Serial position curve (SPC). The SPC represents the proportion of participants that remember an item as a function of its serial position during encoding. We initialized a # of participants (17) by # of video events (34) matrix. Then, for each recall event (and each participant), we found the index of the video event that was recalled and filled it in with a 1. This resulted in a matrix where 1s indicate the successful recall of an event in serial position n and zeros indicate the lack of recall for that event. Lastly, we averaged over the rows of the matrix to get a 1 by 34 array representing the proportion of participants that recalled an event as a function of its serial position.

Temporal clustering. Temporal clustering measures the extent to which participants group their recall responses according to encoding position (Polyn et al., 2009). For instance, if the

participant recalled each item in the presentation order, this would result in a score of 1. If the participant recalled randomly with respect to presentation order, this would result in a score of .5. For each event transition (and separately for each participant), we computed the rank similarity (euclidean distance) between the presentation position of the current and next recall events. The scores were then averaged within participant to get a single number representing the extent of temporal clustering exhibited by a given participant.

Semantic clustering. Similar to temporal clustering, semantic clustering measures the extent to which participants group their recall responses according to semantic similarity (Polyn et al., 2009). Here, we are using the topic vectors for each event as a proxy for its semantic content. Thus, similarity between the semantic content for two events can be computed by correlating their respective topic vectors. For instance, if each consecutive recall was the next most similar event (in terms of its s), this would result in a score of 1. If the participant recalled randomly with respect to semantic similarity, this would result in a score of .5. For each event transition (and separately for each participant), we computed the rank similarity (correlation distance) between the current recall event and the next recall event. The scores were then averaged within participant to get a single number representing the extent of semantic clustering exhibited by a given participant.

Additional measures of naturalistic memory

Precision. This measure gives us an indication of the specific match between a video event and recall event, where values approaching 1 are highly precise and lower values are inprecise. We defined "precision" as the correlation between a recall event and its matching (i.e., argmax) video event.

Distinctiveness. Distinctiveness quantifies how similar a recall event is to all non-matching video events. It provides a metric of how uniquely a particular recall event describes a particular video event. To compute it, a given recall event is correlated to all video events, the argmax is removed and the rest of the values are averaged. The resulting value is subtracted from 1 such that larger values indicate a more distinctive recall event.

Supplemental references

Howard, M. W. and Kahana, M. J. (1999). Contextual variability and serial position effects in free recall. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 25:923–941.

Kahana, M. J. (1996). Associative retrieval processes in free recall. *Memory & Cognition*, 24:103–109.

Murdock, B. B. (1962). The serial position effect of free recall. *Journal of Experimental Psychology*, 64:482–488.

Polyn, S. M., Norman, K. A., and Kahana, M. J. (2009). A context maintenance and retrieval model of organizational processes in free recall. *Psychological Review*, 116(1):129–156.