Review of the LIFE method and final projects

Sean McQuade

April 17, 2018

Steps of LIFE

- Define stoichiometric matrix S(x) from Graph.
- Find basis for nullspace of S(x), $\mathcal{N}(S(x))$.
- Sample from nullspace using appropriate parameters.
- Solve the system with a stiff ODE solver, such as ode15s in matlab

For this project, you must determine the sources and sinks that connect the two submodels you are given.

Generalized Graph of Metabolic Network

$$\dot{X} = S(f)X$$
 $S(f)$ is a 6 × 6 matrix

Linear-In-Flux-Expressions (LIFE) Method

$$\dot{X} = S(X) \cdot f$$

$$\dot{X} = \begin{pmatrix} 1 & 0 & 0 & -x_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -x_2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -x_3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & x_2 & x_3 & -x_4 & -x_4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & x_4 & 0 & -x_5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & x_4 & x_5 & -x_6 \end{pmatrix} \cdot \begin{pmatrix} f1 \\ f2 \\ f3 \\ f4 \\ f5 \\ f6 \\ f7 \\ f8 \\ f9 \\ f10 \end{pmatrix}$$

$$S(x)$$
 is a 6×10 matrix $\operatorname{rank} S(x) = 6$

LIFE cont'd

flux $f \subset \ker S(x)$ if $S(x) \cdot f = 0$

LIFE cont'd

flux $f \subset \ker S(x)$ if $S(x) \cdot f = 0$

LIFE cont'd

flux $f \subset \ker S(x)$ if $S(x) \cdot f = 0$

$$\begin{pmatrix}
a_1x_6 - a_3x_3 - a_4x_2 \\
a_4 \cdot x_2 \\
a_3 \cdot x_3 \\
\frac{a_1x_6}{x_1} - \frac{a_3x_3}{x_1} - \frac{a_4x_2}{x_1} \\
a_4 \\
a_3 \\
\frac{a_2x_5}{x_4} \\
\frac{a_1x_6}{x_4} - \frac{a_2x_2}{x_4} \\
a_2
\end{pmatrix}$$

 a_1

Flux values for different classes of Virtual Patient

Process	Parameter	VP0	VP1	VP2	VP3	VP4	Unit	Reference/calculation
Rate of bile salt entering GI	Bile_acid_chol_secretion_rate_k	0.0143	0.01235	0.0135	0.011	0.017	1/h	Adjusted to achieve desired baseline LDL
Hepatic cholesterol synthesis	Chol_ic_H_production_rate_k	70000	100000	40000	70000	40000	nmol/h	Adjusted to represent high or low cholesterol synthesis
Hepatic unbound LDL-R degradation rate	LDL-R_en_H_degradation_rate_k	0.035	0.035	0.035	0.02	0.08	1/h	Estimated from LDL-R turnover rate
Peripheral unbound LDL-R degradation rate	LDL-R_en_P_degradation_rate_k	0.035	0.035	0.035	0.02	0.08	1/h	Estimated from LDL-R turnover rate
LDL-R synthesis rate, hepatocytes	LDL-R_ic_H_production_rate_k	2	2.9	1.8	2.4	1.56	nmol/h	Calculated to balance LDL-R turnover rate
LDL-R synthesis rate, peripheral	LDL-R_ic_P_production_rate_k	0.7	0.9	0.6	0.8	0.5	nmol/h	Calculated to balance LDL-R turnover rate
PCSK9 synthesis	PCSK9_ic_H_production_rate_k	3.5	3.5	3.5	3.1	5	nmol/h	Based on clearance and steady-state amount in plasma, (Konrad, Troutt, and Cao 2011)
Affinity of PCSK9 for LDL-R at acidic pH	PCSK9_LDL-R_en_Kd	10	10	10	5	20	nM	(Cunningham et al. 2007, Piper et al. 2007)
Affinity of PCSK9 for LDL-R at neutral pH	PCSK9_LDL-R_pl_Kd	350	350	350	175	700	nM	(Cunningham et al. 2007, Piper et al. 2007)
PCSK9 clearance	PCSK9_pl_clearance_rate_k	0.1	0.1	0.1	0.05	0.3	1/h	Adjusted to achieve desired PCSK9 level
Transfer of cholesterol from HDL to VLDL	HDL_to_VLDL_exchange_rate_k	0.0158	0.0238	0.0238	0.0238	0.0238	1/h	Calculated based on Giugliano et al., 2012 McAuley et al., 2012
Transfer of cholesterol from HDL to LDL	HDL_to_LDL_exchange_rate_k	0.0017	0.0026	0.0026	0.0026	0.0026	1/h	Calculated based on Giugliano et al., 2012; McAuley et al., 2012
Hill coefficient for SREBP-2- regulated PCSK9 synthesis	SREBP_PCSK9_nh	4	2	4	4	4	Unitless	Adjusted to provide varying degrees of response to SREBP-2 activation
Hill coefficient for SREBP-2- regulated LDL-R synthesis	SREBP_LDL-R_nh	4	4	3	4	4	Unitless	Adjusted to provide varying degrees of response to SREBP-2 activation

Virtual Patients as Parameterizations of the Model

Sample a_1, \ldots, a_4 and plug in baseline metabolites x_1, \ldots, x_6 . Then we have a single virtual patient.

$$\begin{pmatrix} a_{1}x_{6} - a_{3}x_{3} - a_{4}x_{2} \\ a_{4} \cdot x_{2} \\ a_{3} \cdot x_{3} \\ \frac{a_{1}x_{6}}{x_{1}} - \frac{a_{3}x_{3}}{x_{1}} - \frac{a_{4}x_{2}}{x_{1}} \\ a_{4} \\ a_{3} \\ \frac{a_{2}x_{5}}{x_{4}} - \frac{a_{2}x_{2}}{x_{4}} \\ a_{2} \\ a_{1} \end{pmatrix} = \begin{pmatrix} f1 \\ f2 \\ f3 \\ f4 \\ f5 \\ f6 \\ f7 \\ f8 \\ f9 \\ f10 \end{pmatrix}$$

$$(1)$$

Classes of virtual patient are defined by the distribution from which we sample a_1, \ldots, a_4 . In the past, we have used lognormal distributions with various mean and standard deviation matching clinical data.

Cholesterol network

Hepatic subsystem

Team a: Nate, Ravi, Linlin.

Peripheral subsystem

Team α : Zheming, Heather, Dan.

Analysis of subnetworks

For the final project, teams must:

- Understand the connections between the two submodels. Teams must identify those metabolites which are present in both networks, such as LDL_pl and PCSK9_pl.
- Identify levels of sources for equilibria.
- Run the program for the assigned submodel with the appropriate sources and sinks resulting from the network being split.
- Apply the life method to identify all equilibria.
- Run the simulation with a new dosing regimen for the pcsk9 antibody therapy.

Plot of LDL_pl over time:

