202A-HW7

Jiayu Wu 2017/11/26

Estimation Error for Lasso Regression

```
library(LMjw)
# training data
set.seed(10086)
n <- 50; p <- 200
X <- matrix(rnorm(n * p), nrow = n)
beta <- c(1:5,rep(0,195))
Y <- 1+X %*% beta+rnorm(n)
# model fitting and plotting
lambda_all <- (100:1)*10
beta_all <- myLasso(X,Y,lambda_all)
library(ggplot2)
mse <- apply(beta_all, 2, function(b){mean((b-c(1,beta))^2)})
p_mse <- ggplot(data.frame(lambda=lambda_all,MSE=mse),aes(x=lambda,y=MSE))+geom_line()
p_mse <- p_mse+theme_classic()+ggtitle("Plot 1: Estimation Errors for Lasso Regression")
p_mse</pre>
```

Plot 1: Estimation Errors for Lasso Regression

Regression Analysis

Analyze datasets "mtcars" with my linear regression package "LMjw" to study the response variable mpg (Miles/gallon).

```
# data
library(knitr)
kable(head(mtcars), align = 'c',caption = "Dataset mtcars with 32 observations")
```

Table 1: Dataset mtcars with 32 observations

mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
18.1	6	225	105	2.76	3.460	20.22	1	0	3	1
	21.0 21.0 22.8 21.4 18.7	21.0 6 21.0 6 22.8 4 21.4 6 18.7 8	21.0 6 160 21.0 6 160 22.8 4 108 21.4 6 258 18.7 8 360	21.0 6 160 110 21.0 6 160 110 22.8 4 108 93 21.4 6 258 110 18.7 8 360 175	21.0 6 160 110 3.90 21.0 6 160 110 3.90 22.8 4 108 93 3.85 21.4 6 258 110 3.08 18.7 8 360 175 3.15	21.0 6 160 110 3.90 2.620 21.0 6 160 110 3.90 2.875 22.8 4 108 93 3.85 2.320 21.4 6 258 110 3.08 3.215 18.7 8 360 175 3.15 3.440	21.0 6 160 110 3.90 2.620 16.46 21.0 6 160 110 3.90 2.875 17.02 22.8 4 108 93 3.85 2.320 18.61 21.4 6 258 110 3.08 3.215 19.44 18.7 8 360 175 3.15 3.440 17.02	21.0 6 160 110 3.90 2.620 16.46 0 21.0 6 160 110 3.90 2.875 17.02 0 22.8 4 108 93 3.85 2.320 18.61 1 21.4 6 258 110 3.08 3.215 19.44 1 18.7 8 360 175 3.15 3.440 17.02 0	21.0 6 160 110 3.90 2.620 16.46 0 1 21.0 6 160 110 3.90 2.875 17.02 0 1 22.8 4 108 93 3.85 2.320 18.61 1 1 21.4 6 258 110 3.08 3.215 19.44 1 0 18.7 8 360 175 3.15 3.440 17.02 0 0	21.0 6 160 110 3.90 2.620 16.46 0 1 4 21.0 6 160 110 3.90 2.875 17.02 0 1 4 22.8 4 108 93 3.85 2.320 18.61 1 1 4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 18.7 8 360 175 3.15 3.440 17.02 0 0 3

Lasso Regression for variable selection

Scale the data, regress mpg on all the other five continuous variables: number of cylinders (cyl), horse power (hp), weight (wt: 1000lbs), speed (qsec: 1/4 mile time) and displacement (disp: cu.in.) with Lasso regularization, and plot the solution path.

0.0 variable cyl - disp -0.2· hp intercept qsec wt -0.4-0.60.0 0.3 0.6 1.2 0.9 |beta|

Plot 2: Lasso Solution Path for Variable Selection

According to the solution path, we can choose three variables that are firstly admitted: weight (wt: 1000lbs), horse power (hp) and number of cylinders (cyl). Thus, we get the following multiple linear model:

$$mpg = wt + hp + cyl + \epsilon$$

Least square estimation and Ridge shrinkage

With the above data, fit the model with ordinary least square powered by QR decomposition.

Sample half of the observations (16) from the dataset for testing, and plot training/testing error to find a reasonable λ_{qoal} through cross-validation. Then fit the model with ridge regression penalized by λ_{qoal} .

```
library(LMjw)
X <- as.matrix(mtcars[,c("hp","wt","cyl")])</pre>
Y <- as.matrix(mtcars[,c("mpg")])</pre>
# least square regression
ls \leftarrow myLM(X,Y)
# ridge regression
set.seed(1)
train <- sample(32,16)
lambda \leftarrow seq(0.1, 6.1, 0.1)
train_er <- apply(t(lambda),2,function(lambda){</pre>
       beta<-myRidge(X[train,],Y[train,],lambda)</pre>
       mean(((Y[train,]-cbind(rep(1,16),X[train,])%*%beta))^2)
       })
test_er<-apply(t(lambda),2,function(lambda){</pre>
       beta<-myRidge(X[train,],Y[train,],lambda)</pre>
       mean(((Y[-train,]-cbind(rep(1,16),X[-train,])%*%beta))^2)})
```

Plot 3: Training and Testing Errors for Ridge Regression


```
ridge <- myRidge(X,Y,lambda_goal)
t<-rbind(ls$beta_ls,t(ridge))
rownames(t)<-c("OLS","Ridge(lambda=2)")
colnames(t)<-c("intercept","hp","wt","cyl")
library(knitr)
kable(t, align = 'c',caption = "Regression Coefficients")</pre>
```

Table 2: Regression Coefficients

	intercept	hp	wt	cyl
OLS	38.75179	-0.0180381	-3.166973	-0.9416168
Ridge(lambda=2)	38.30987	-0.0196643	-2.762324	-1.0420453

According to Plot 3, we use $\lambda_{goal} = 2$ to penalize overfitting in ridge regression. The regression result is compared with least square in Table 2. Ridge regression shrinks the largest coefficient in OLS regression towards 0 to avoid overfitting.

The regrssion indiates negative correlations between dependent variable and independent variables. In general, the car with bigger weights, more cylinders and bigger horsepower tend to consume more oil in the same mileage.

Principal Component Analysis

With scaled data, we conduct PCA on the design matrix consists of cyl, hp, wt, qsec and disp based on eigen decomposition.

```
library(LMjw)
X <- as.matrix(mtcars[,c("cyl","hp","wt","qsec","disp")])
X <- scale(X)
# PCA
pca<-myEigen_QR(var(X))
t<-rbind(pca$D,sqrt(pca$D)/sum(sqrt(pca$D))*100)
rownames(t) <- c("eigen_value", "proportion of variance")
colnames(t) <- c("Comp_1","Comp_2","Comp_3","Comp_4","Comp_5")
library(knitr)
kable(t, align = 'c',caption = "Principal Component Analysis Result")</pre>
```

Table 3: Principal Component Analysis Result

	Comp_1	Comp_2	Comp_3	Comp_4	Comp_5
eigen_value	3.766095	0.9240209	0.1541901	0.0906482	0.0650454
proportion of variance	50.397252	24.9633056	10.1974008	7.8188141	6.6232274

```
C <- X%*%pca$V[,1:2]
colnames(C)<-c("Comp_1","Comp_2")
save(C,file="C.RData")</pre>
```

According to Table 4, after orthogonal transformation the first two components explain 75% of the total variance, so they reserve the main information in the original data. Thus, we reduce the dimension of the data from five to two, and the two vectors have the nice property of being perpendicular.

The transformed data is obtained by multiply design matrix X and eigen vector, and reserved for further logistic regression analysis.

Logistic Regression

The median of mpg equals to 19.2. Therefore, we regard a car with mpg lower than 19.2 as high-mileage and marked with 1, otherwise a car is low-mileage and marked with 0. With the first two components from PCA, we can conduct logistic regression.

```
library(LMjw)
load("C.RData")
Y <- as.matrix(mtcars[,c("mpg")])
# test logistic Regression
m <- median(Y)
YL <- ifelse(Y<m,1,0)
set.seed(1)
train <- sample(32,26)
lgt<-myLogistic(C[train,],YL[train,])
(C[-train,]%*%lgt$beta>0)==YL[-train,]
```

```
[,1]
##
## Mazda RX4
                     TRUE
## Merc 280
                     TRUE
## Toyota Corona
                     TRUE
## Dodge Challenger TRUE
## Fiat X1-9
                     TRUE
## Ferrari Dino
                     TRUE
lgt<-myLogistic(C,YL)</pre>
t <- rbind(t(lgt$beta),lgt$se)
rownames(t)<-c("coefficient", "standard_error")</pre>
colnames(t)<-c("Comp_1","Comp_2")</pre>
library(knitr)
kable(t, align = 'c',caption = "Logistic Regression Result")
```

Table 4: Logistic Regression Result

	Comp_1	Comp_2
coefficient	-1.8337544	1.131034
standard_error	0.6190652	0.814886

Firstly randomly sample 6 observations as testing data for cross-validation, after fitting the model, all 6 is classfied right. Then we conduct logistic regression on the whole dataset, and the result is reported in table 5.