School of Computer Science CS 2614: Computer Organization Spring 2025 Homework 3

Due: Feb 9, 2025 Quiz: Feb 11, 2025

Submission: Upload to Canvas

Textbook problems:

- 1. Problem 1-3 (a, b, c, d)
- 2. Problem 1-5 (a, b)
- 3. Problem 1-7 (a, b, c, d, e)

Boolean functions calculation:

- 4. Simplify the following Boolean functions:
 - a. F=AB+BC+B'C
 - b. F = A + A'B
 - c. F = A'B'C + A'BC + AB'
 - d. F = AB + (AC)' + AB'C(AB + C)
 - e. F = ((XY' + XYZ)' + X(Y + XY'))'
- 5. Obtain the sum of product form of the following functions using Minterms:
 - a. F(A, B, C) = A + BC
 - b. F(A, B, C, D) = AB + ACD
- 6. Obtain the product of sums form of the following functions using Maxterms:
 - a. F(A, B, C) = A + B'C

Boolean algebra:

- 7. Find the complement of each of the functions by applying DeMorgan's theorem as many times, as necessary:
 - a. F1 = X'YZ' + X'Y'Z
 - b. F2 = X(Y'Z' + YZ)
- 8. Simplify the following expression using Boolean algebra:
 - a. A'BC + AB'C + ABC' + ABC
 - b. (A' + B)' + B(A' + AC) + ABC'
- 9. Construct a logic diagram for the given Boolean expressions:
 - a. AB + BC (B + C)
 - b. ABC + A(B' + C')
- 10. Find the dual of the function, F = xyz + x'yz' + y'z
- 11. Find the dual of the function, F = AB (C + (DL'G(B' + A + E))) (H + (J'A'B))

Logic Circuit Implementation:

12. Implement the function of the following truth table using Sum-of-Products form:

Α	В	С	Output	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

13. Implement the function of the following truth table (Output is z) using Sum-of-Products form:

а	b	С	d	z
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

14. Show the behavior of the following circuit using a truth table:

15. Show the behavior of the following circuit using a truth table:

