The calculations in Example 5 have an interesting application to a Markov chain discussed in Section 4.9. Those who read that section may recognize that matrix A in Example 5 above is the same as the migration matrix M in Section 4.9, \mathbf{x}_0 is the initial population distribution between city and suburbs, and \mathbf{x}_k represents the population distribution after k years.

Theorem 18 in Section 4.9 stated that for a matrix such as A, the sequence \mathbf{x}_k tends to a steady-state vector. Now we know why the \mathbf{x}_k behave this way, at least for the migration matrix. The steady-state vector is $.125\mathbf{v}_1$, a multiple of the eigenvector \mathbf{v}_1 , and formula (5) for \mathbf{x}_k shows precisely why $\mathbf{x}_k \to .125\mathbf{v}_1$.

NUMERICAL NOTES -

- 1. Computer software such as Mathematica and Maple can use symbolic calculations to find the characteristic polynomial of a moderate-sized matrix. But there is no formula or finite algorithm to solve the characteristic equation of a general $n \times n$ matrix for $n \ge 5$.
- 2. The best numerical methods for finding eigenvalues avoid the characteristic polynomial entirely. In fact, MATLAB finds the characteristic polynomial of a matrix A by first computing the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A and then expanding the product $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$.
- **3.** Several common algorithms for estimating the eigenvalues of a matrix A are based on Theorem 4. The powerful QR algorithm is discussed in the exercises. Another technique, called Jacobi's method, works when $A = A^T$ and computes a sequence of matrices of the form

$$A_1 = A$$
 and $A_{k+1} = P_k^{-1} A_k P_k$ $(k = 1, 2, ...)$

Each matrix in the sequence is similar to A and so has the same eigenvalues as A. The nondiagonal entries of A_{k+1} tend to zero as k increases, and the diagonal entries tend to approach the eigenvalues of A.

4. Other methods of estimating eigenvalues are discussed in Section 5.8.

PRACTICE PROBLEM

Find the characteristic equation and eigenvalues of $A = \begin{bmatrix} 1 & -4 \\ 4 & 2 \end{bmatrix}$.

5.2 EXERCISES

Find the characteristic polynomial and the real eigenvalues of the matrices in Exercises 1–8.

1.
$$\begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix}$$

3. $\begin{bmatrix} -4 & 2 \\ 6 & 7 \end{bmatrix}$

2.
$$\begin{bmatrix} -4 & -1 \\ 6 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 5 \end{bmatrix}$$

4.
$$\begin{bmatrix} 8 & 2 \\ 3 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 3 \\ 4 & 4 \end{bmatrix}$$
 8. $\begin{bmatrix} -4 & 3 \\ 2 & 1 \end{bmatrix}$

Exercises 9–14 require techniques from Section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for 3×3 determinants described

prior to Exercises 15–18 in Section 3.1. [*Note*: Finding the characteristic polynomial of a 3×3 matrix is not easy to do with just row operations, because the variable λ is involved.]

9.
$$\begin{bmatrix} 4 & 0 & -1 \\ 0 & 4 & -1 \\ 1 & 0 & 2 \end{bmatrix}$$
10.
$$\begin{bmatrix} 3 & 1 & 1 \\ 0 & 5 & 0 \\ -2 & 0 & 7 \end{bmatrix}$$
11.
$$\begin{bmatrix} 3 & 0 & 0 \\ 2 & 1 & 4 \\ 1 & 0 & 4 \end{bmatrix}$$
12.
$$\begin{bmatrix} -1 & 0 & 2 \\ 3 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$
13.
$$\begin{bmatrix} 6 & -2 & 0 \\ -2 & 9 & 0 \\ 5 & 8 & 3 \end{bmatrix}$$
14.
$$\begin{bmatrix} 4 & 0 & -1 \\ -1 & 0 & 4 \\ 0 & 2 & 3 \end{bmatrix}$$

For the matrices in Exercises 15–17, list the real eigenvalues, repeated according to their multiplicities.

15.
$$\begin{bmatrix} 5 & 5 & 0 & 2 \\ 0 & 2 & -3 & 6 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$
16.
$$\begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ 6 & 2 & 0 & 0 \\ 0 & 3 & 6 & 0 \\ 2 & 3 & 3 & -5 \end{bmatrix}$$
17.
$$\begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 & 0 \\ 3 & 8 & 0 & 0 & 0 \\ 0 & -7 & 2 & 1 & 0 \\ -4 & 1 & 9 & -2 & 3 \end{bmatrix}$$

18. It can be shown that the algebraic multiplicity of an eigenvalue λ is always greater than or equal to the dimension of the eigenspace corresponding to λ . Find h in the matrix A below such that the eigenspace for $\lambda = 4$ is two-dimensional:

$$A = \begin{bmatrix} 4 & 2 & 3 & 3 \\ 0 & 2 & h & 3 \\ 0 & 0 & 4 & 14 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

19. Let *A* be an $n \times n$ matrix, and suppose *A* has *n* real eigenvalues, $\lambda_1, \ldots, \lambda_n$, repeated according to multiplicities, so that

$$\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$$

Explain why det A is the product of the n eigenvalues of A. (This result is true for any square matrix when complex eigenvalues are considered.)

20. Use a property of determinants to show that A and A^T have the same characteristic polynomial.

In Exercises 21 and 22, A and B are $n \times n$ matrices. Mark each statement True or False. Justify each answer.

21. a. The determinant of *A* is the product of the diagonal entries in *A*.

 An elementary row operation on A does not change the determinant.

c. $(\det A)(\det B) = \det AB$

d. If $\lambda + 5$ is a factor of the characteristic polynomial of A, then 5 is an eigenvalue of A.

22. a. If A is 3×3 , with columns \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , then det A equals the volume of the parallelepiped determined by \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 .

b. $\det A^{T} = (-1) \det A$.

c. The multiplicity of a root r of the characteristic equation of A is called the algebraic multiplicity of r as an eigenvalue of A.

d. A row replacement operation on A does not change the eigenvalues.

A widely used method for estimating eigenvalues of a general matrix A is the QR algorithm. Under suitable conditions, this algorithm produces a sequence of matrices, all similar to A, that become almost upper triangular, with diagonal entries that approach the eigenvalues of A. The main idea is to factor A (or another matrix similar to A) in the form $A = Q_1 R_1$, where $Q_1^T = Q_1^{-1}$ and R_1 is upper triangular. The factors are interchanged to form $A_1 = R_1 Q_1$, which is again factored as $A_1 = Q_2 R_2$; then to form $A_2 = R_2 Q_2$, and so on. The similarity of A, A_1, \ldots follows from the more general result in Exercise 23.

23. Show that if A = QR with Q invertible, then A is similar to $A_1 = RQ$.

24. Show that if A and B are similar, then det $A = \det B$.

25. Let $A = \begin{bmatrix} .6 & .3 \\ .4 & .7 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 3/7 \\ 4/7 \end{bmatrix}$, and $\mathbf{x}_0 = \begin{bmatrix} .5 \\ .5 \end{bmatrix}$. [*Note:* A is the stochastic matrix studied in Example 5 in Section 4.9.]

a. Find a basis for \mathbb{R}^2 consisting of \mathbf{v}_1 and another eigenvector \mathbf{v}_2 of A.

b. Verify that \mathbf{x}_0 may be written in the form $\mathbf{x}_0 = \mathbf{v}_1 + c\mathbf{v}_2$.

c. For $k=1,2,\ldots$, define $\mathbf{x}_k=A^k\mathbf{x}_0$. Compute \mathbf{x}_1 and \mathbf{x}_2 , and write a formula for \mathbf{x}_k . Then show that $\mathbf{x}_k\to\mathbf{v}_1$ as k increases.

26. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Use formula (1) for a determinant (given before Example 2) to show that det A = ad - bc. Consider two cases: $a \neq 0$ and a = 0.

27. Let
$$A = \begin{bmatrix} .5 & .2 & .3 \\ .3 & .8 & .3 \\ .2 & 0 & .4 \end{bmatrix}$$
, $\mathbf{v}_1 = \begin{bmatrix} .3 \\ .6 \\ .1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

a. Show that \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are eigenvectors of *A*. [*Note*: *A* is the stochastic matrix studied in Example 3 of Section 4.9.]

b. Let \mathbf{x}_0 be any vector in \mathbb{R}^3 with nonnegative entries whose sum is 1. (In Section 4.9, \mathbf{x}_0 was called a probability vector.) Explain why there are constants c_1 , c_2 , c_3 such that $\mathbf{x}_0 = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3$. Compute $\mathbf{w}^T\mathbf{x}_0$, and deduce that $c_1 = 1$.

c. For k = 1, 2, ..., define $\mathbf{x}_k = A^k \mathbf{x}_0$, with \mathbf{x}_0 as in part (b). Show that $\mathbf{x}_k \to \mathbf{v}_1$ as k increases.

- **28.** [M] Construct a random integer-valued 4×4 matrix A, and verify that A and A^T have the same characteristic polynomial (the same eigenvalues with the same multiplicities). Do A and A^T have the same eigenvectors? Make the same analysis of a 5×5 matrix. Report the matrices and your conclusions.
- **29.** [M] Construct a random integer-valued 4×4 matrix A.
 - a. Reduce A to echelon form U with no row scaling, and use U in formula (1) (before Example 2) to compute det A. (If A happens to be singular, start over with a new random matrix.)
 - b. Compute the eigenvalues of *A* and the product of these eigenvalues (as accurately as possible).

c. List the matrix A, and, to four decimal places, list the pivots in U and the eigenvalues of A. Compute det A with your matrix program, and compare it with the products you found in (a) and (b).

30. [M] Let
$$A = \begin{bmatrix} -6 & 28 & 21 \\ 4 & -15 & -12 \\ -8 & a & 25 \end{bmatrix}$$
. For each value of a in

the set $\{32, 31.9, 31.8, 32.1, 32.2\}$, compute the characteristic polynomial of A and the eigenvalues. In each case, create a graph of the characteristic polynomial $p(t) = \det (A - tI)$ for $0 \le t \le 3$. If possible, construct all graphs on one coordinate system. Describe how the graphs reveal the changes in the eigenvalues as a changes.

SOLUTION TO PRACTICE PROBLEM

The characteristic equation is

$$0 = \det(A - \lambda I) = \det\begin{bmatrix} 1 - \lambda & -4 \\ 4 & 2 - \lambda \end{bmatrix}$$
$$= (1 - \lambda)(2 - \lambda) - (-4)(4) = \lambda^2 - 3\lambda + 18$$

From the quadratic formula,

$$\lambda = \frac{3 \pm \sqrt{(-3)^2 - 4(18)}}{2} = \frac{3 \pm \sqrt{-63}}{2}$$

It is clear that the characteristic equation has no real solutions, so A has no real eigenvalues. The matrix A is acting on the real vector space \mathbb{R}^2 , and there is no nonzero vector \mathbf{v} in \mathbb{R}^2 such that $A\mathbf{v} = \lambda \mathbf{v}$ for some scalar λ .

5.3 DIAGONALIZATION

In many cases, the eigenvalue–eigenvector information contained within a matrix A can be displayed in a useful factorization of the form $A = PDP^{-1}$ where D is a diagonal matrix. In this section, the factorization enables us to compute A^k quickly for large values of k, a fundamental idea in several applications of linear algebra. Later, in Sections 5.6 and 5.7, the factorization will be used to analyze (and decouple) dynamical systems.

The following example illustrates that powers of a diagonal matrix are easy to compute.

EXAMPLE 1 If
$$D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$
, then $D^2 = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5^2 & 0 \\ 0 & 3^2 \end{bmatrix}$

and

$$D^{3} = DD^{2} = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 5^{2} & 0 \\ 0 & 3^{2} \end{bmatrix} = \begin{bmatrix} 5^{3} & 0 \\ 0 & 3^{3} \end{bmatrix}$$

In general,

$$D^k = \begin{bmatrix} 5^k & 0 \\ 0 & 3^k \end{bmatrix} \quad \text{for } k \ge 1$$

If $A = PDP^{-1}$ for some invertible P and diagonal D, then A^k is also easy to compute, as the next example shows.

SOLUTION Since A is a triangular matrix, the eigenvalues are 5 and -3, each with multiplicity 2. Using the method in Section 5.1, we find a basis for each eigenspace.

Basis for
$$\lambda = 5$$
: $\mathbf{v}_1 = \begin{bmatrix} -8 \\ 4 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -16 \\ 4 \\ 0 \\ 1 \end{bmatrix}$
Basis for $\lambda = -3$: $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

The set $\{\mathbf{v}_1, \dots, \mathbf{v}_4\}$ is linearly independent, by Theorem 7. So the matrix $P = [\mathbf{v}_1 \cdots \mathbf{v}_4]$ is invertible, and $A = PDP^{-1}$, where

$$P = \begin{bmatrix} -8 & -16 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

PRACTICE PROBLEMS

- **1.** Compute A^8 , where $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$.
- **2.** Let $A = \begin{bmatrix} -3 & 12 \\ -2 & 7 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Suppose you are told that \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of A. Use this information to diagonalize A.
- 3. Let A be a 4×4 matrix with eigenvalues 5, 3, and -2, and suppose you know that the eigenspace for $\lambda = 3$ is two-dimensional. Do you have enough information to determine if A is diagonalizable?

5.3 EXERCISES

WEB

In Exercises 1 and 2, let $A = PDP^{-1}$ and compute A^4 .

1.
$$P = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

2.
$$P = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

In Exercises 3 and 4, use the factorization $A = PDP^{-1}$ to compute A^k , where k represents an arbitrary positive integer.

3.
$$\begin{bmatrix} a & 0 \\ 2(a-b) & b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

4.
$$\begin{bmatrix} 1 & -6 \\ 2 & -6 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}$$

In Exercises 5 and 6, the matrix A is factored in the form PDP^{-1} . Use the Diagonalization Theorem to find the eigenvalues of A and a basis for each eigenspace.

5.
$$A = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 4 & 1 \\ -1 & -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & 0 \end{bmatrix}$$

6.
$$A = \begin{bmatrix} 3 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 0 & -1 \\ 0 & 1 & -3 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ -3 & 1 & 9 \\ -1 & 0 & 3 \end{bmatrix}$$

Diagonalize the matrices in Exercises 7–20, if possible. The real eigenvalues for Exercises 11–16 and 18 are included below the matrix.

7.
$$\begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$$

8.
$$\begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix}$$

9.
$$\begin{bmatrix} 2 & -1 \\ 1 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$$

$$10. \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$$

11.
$$\begin{bmatrix} 0 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 2 \end{bmatrix}$$
$$\lambda = -1, 5$$

12.
$$\begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$
$$\lambda = 2, 5$$

13.
$$\begin{bmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{bmatrix}$$
$$\lambda = 1, 5$$

14.
$$\begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$
$$\lambda = 2, 3$$

15.
$$\begin{bmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$
$$\lambda = 0, 1$$

16.
$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & 5 & -2 \\ 1 & 3 & 1 \end{bmatrix}$$
$$\lambda = 0$$

17.
$$\begin{bmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2 \end{bmatrix}$$

18.
$$\begin{bmatrix} 2 & -2 & -2 \\ 3 & -3 & -2 \\ 2 & -2 & -2 \end{bmatrix}$$
$$\lambda = -2 - 1.0$$

$$\mathbf{19.} \begin{bmatrix} 5 & -3 & 0 & 9 \\ 0 & 3 & 1 & -2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

$$\mathbf{20.} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 \end{bmatrix}$$

In Exercises 21 and 22, A, B, P, and D are $n \times n$ matrices. Mark each statement True or False. Justify each answer. (Study Theorems 5 and 6 and the examples in this section carefully before you try these exercises.)

- **21.** a. *A* is diagonalizable if $A = PDP^{-1}$ for some matrix *D* and some invertible matrix *P*.
 - b. If \mathbb{R}^n has a basis of eigenvectors of A, then A is diagonalizable.
 - c. *A* is diagonalizable if and only if *A* has *n* eigenvalues, counting multiplicities.
 - d. If A is diagonalizable, then A is invertible.
- **22.** a. A is diagonalizable if A has n eigenvectors.
 - b. If A is diagonalizable, then A has n distinct eigenvalues.
 - c. If AP = PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
 - d. If A is invertible, then A is diagonalizable.
- 23. A is a 5×5 matrix with two eigenvalues. One eigenspace is three-dimensional, and the other eigenspace is two-dimensional. Is A diagonalizable? Why?
- **24.** A is a 3×3 matrix with two eigenvalues. Each eigenspace is one-dimensional. Is A diagonalizable? Why?

- **25.** *A* is a 4 × 4 matrix with three eigenvalues. One eigenspace is one-dimensional, and one of the other eigenspaces is two-dimensional. Is it possible that *A* is *not* diagonalizable? Justify your answer.
- **26.** *A* is a 7 × 7 matrix with three eigenvalues. One eigenspace is two-dimensional, and one of the other eigenspaces is three-dimensional. Is it possible that *A* is *not* diagonalizable? Justify your answer.
- **27.** Show that if A is both diagonalizable and invertible, then so is A^{-1} .
- **28.** Show that if A has n linearly independent eigenvectors, then so does A^T . [*Hint*: Use the Diagonalization Theorem.]
- **29.** A factorization $A = PDP^{-1}$ is not unique. Demonstrate this for the matrix A in Example 2. With $D_1 = \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$, use the information in Example 2 to find a matrix P_1 such that $A = P_1D_1P_1^{-1}$.
- **30.** With *A* and *D* as in Example 2, find an invertible P_2 unequal to the *P* in Example 2, such that $A = P_2 D P_2^{-1}$.
- 31. Construct a nonzero 2×2 matrix that is invertible but not diagonalizable.
- **32.** Construct a nondiagonal 2×2 matrix that is diagonalizable but not invertible.
- [M] Diagonalize the matrices in Exercises 33–36. Use your matrix program's eigenvalue command to find the eigenvalues, and then compute bases for the eigenspaces as in Section 5.1.

33.
$$\begin{bmatrix} 9 & -4 & -2 & -4 \\ -56 & 32 & -28 & 44 \\ -14 & -14 & 6 & -14 \\ 42 & -33 & 21 & -45 \end{bmatrix}$$

34.
$$\begin{bmatrix} 4 & -9 & -7 & 8 & 2 \\ -7 & -9 & 0 & 7 & 14 \\ 5 & 10 & 5 & -5 & -10 \\ -2 & 3 & 7 & 0 & 4 \\ -3 & -13 & -7 & 10 & 11 \end{bmatrix}$$

35.
$$\begin{bmatrix} 13 & -12 & 9 & -15 & 9 \\ 6 & -5 & 9 & -15 & 9 \\ 6 & -12 & -5 & 6 & 9 \\ 6 & -12 & 9 & -8 & 9 \\ -6 & 12 & 12 & -6 & -2 \end{bmatrix}$$

NUMERICAL NOTE -

An efficient way to compute a \mathcal{B} -matrix $P^{-1}AP$ is to compute AP and then to row reduce the augmented matrix $[P \ AP]$ to $[I \ P^{-1}AP]$. A separate computation of P^{-1} is unnecessary. See Exercise 15 in Section 2.2.

PRACTICE PROBLEMS

1. Find $T(a_0 + a_1t + a_2t^2)$, if T is the linear transformation from \mathbb{P}_2 to \mathbb{P}_2 whose matrix relative to $\mathcal{B} = \{1, t, t^2\}$ is

$$[T]_{\mathcal{B}} = \begin{bmatrix} 3 & 4 & 0 \\ 0 & 5 & -1 \\ 1 & -2 & 7 \end{bmatrix}$$

- **2.** Let A, B, and C be $n \times n$ matrices. The text has shown that if A is similar to B, then B is similar to A. This property, together with the statements below, shows that "similar to" is an equivalence relation. (Row equivalence is another example of an equivalence relation.) Verify parts (a) and (b).
 - a. A is similar to A.
 - b. If A is similar to B and B is similar to C, then A is similar to C.

5.4 EXERCISES

1. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ and $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2\}$ be bases for vector spaces V and W, respectively. Let $T: V \to W$ be a linear transformation with the property that

$$T(\mathbf{b}_1) = 3\mathbf{d}_1 - 5\mathbf{d}_2, \ T(\mathbf{b}_2) = -\mathbf{d}_1 + 6\mathbf{d}_2, \ T(\mathbf{b}_3) = 4\mathbf{d}_2$$

Find the matrix for T relative to \mathcal{B} and \mathcal{D} .

2. Let $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2\}$ and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ be bases for vector spaces V and W, respectively. Let $T: V \to W$ be a linear transformation with the property that

$$T(\mathbf{d}_1) = 3\mathbf{b}_1 - 3\mathbf{b}_2, \ T(\mathbf{d}_2) = -2\mathbf{b}_1 + 5\mathbf{b}_2$$

Find the matrix for T relative to \mathcal{D} and \mathcal{B} .

3. Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis for \mathbb{R}^3 , let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be a basis for a vector space V, and let $T: \mathbb{R}^3 \to V$ be a linear transformation with the property that

$$T(x_1, x_2, x_3) = (2x_3 - x_2)\mathbf{b}_1 - (2x_2)\mathbf{b}_2 + (x_1 + 3x_3)\mathbf{b}_3$$

- a. Compute $T(\mathbf{e}_1)$, $T(\mathbf{e}_2)$, and $T(\mathbf{e}_3)$.
- b. Compute $[T(\mathbf{e}_1)]_{\mathcal{B}}$, $[T(\mathbf{e}_2)]_{\mathcal{B}}$, and $[T(\mathbf{e}_3)]_{\mathcal{B}}$.
- c. Find the matrix for T relative to \mathcal{E} and \mathcal{B} .
- **4.** Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be a basis for a vector space V and let $T: V \to \mathbb{R}^2$ be a linear transformation with the property that

$$T(x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + x_3\mathbf{b}_3) = \begin{bmatrix} 2x_1 - 3x_2 + x_3 \\ -2x_1 + 5x_3 \end{bmatrix}$$

Find the matrix for T relative to \mathcal{B} and the standard basis for

- **5.** Let $T: \mathbb{P}_2 \to \mathbb{P}_3$ be the transformation that maps a polynomial $\mathbf{p}(t)$ into the polynomial $(t+3)\mathbf{p}(t)$.
 - a. Find the image of $\mathbf{p}(t) = 3 2t + t^2$.
 - b. Show that T is a linear transformation.
 - c. Find the matrix for T relative to the bases $\{1, t, t^2\}$ and $\{1, t, t^2, t^3\}.$
- **6.** Let $T: \mathbb{P}_2 \to \mathbb{P}_4$ be the transformation that maps a polynomial $\mathbf{p}(t)$ into the polynomial $\mathbf{p}(t) + 2t^2\mathbf{p}(t)$.
 - a. Find the image of $\mathbf{p}(t) = 3 2t + t^2$.
 - b. Show that T is a linear transformation.
 - c. Find the matrix for T relative to the bases $\{1, t, t^2\}$ and $\{1, t, t^2, t^3, t^4\}.$
- 7. Assume the mapping $T: \mathbb{P}_2 \to \mathbb{P}_2$ defined by

$$T(a_0 + a_1t + a_2t^2) = 3a_0 + (5a_0 - 2a_1)t + (4a_1 + a_2)t^2$$

is linear. Find the matrix representation of T relative to the basis $\mathcal{B} = \{1, t, t^2\}.$

8. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be a basis for a vector space V. Find $T(4\mathbf{b}_1 - 3\mathbf{b}_2)$ when T is a linear transformation from V to V whose matrix relative to \mathcal{B} is

$$[T]_{\mathcal{B}} = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 1 & -2 \\ 1 & 3 & 1 \end{bmatrix}$$

- 9. Define $T: \mathbb{P}_2 \to \mathbb{R}^3$ by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(-1) \\ \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix}$.
 - a. Find the image under T of $\mathbf{p}(t) = 5 + 3t$.
 - b. Show that T is a linear transformation.
 - c. Find the matrix for T relative to the basis $\{1, t, t^2\}$ for \mathbb{P}_2 and the standard basis for \mathbb{R}^3 .
- **10.** Define $T: \mathbb{P}_3 \to \mathbb{R}^4$ by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(3) \\ \mathbf{p}(1) \\ \end{bmatrix}$.
 - a. Show that T is a linear transformation.
 - b. Find the matrix for T relative to the basis $\{1, t, t^2, t^3\}$ for \mathbb{P}_3 and the standard basis for \mathbb{R}^4 .

In Exercises 11 and 12, find the \mathcal{B} -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$, where $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$.

11.
$$A = \begin{bmatrix} -4 & -1 \\ 6 & 1 \end{bmatrix}$$
, $\mathbf{b}_1 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

12.
$$A = \begin{bmatrix} -6 & -2 \\ 4 & 0 \end{bmatrix}$$
, $\mathbf{b}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

In Exercises 13–16, define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$. Find a basis \mathcal{B} for \mathbb{R}^2 with the property that $[T]_{\mathcal{B}}$ is diagonal.

13.
$$A = \begin{bmatrix} 0 & 1 \\ -3 & 4 \end{bmatrix}$$

14.
$$A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$$

15.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$$

13.
$$A = \begin{bmatrix} 0 & 1 \\ -3 & 4 \end{bmatrix}$$
 14. $A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$ **15.** $A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$ **16.** $A = \begin{bmatrix} 4 & -2 \\ -1 & 5 \end{bmatrix}$

17. Let
$$A = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$$
 and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$, for $\mathbf{b}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$,

$$\mathbf{b}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
. Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$.

- a. Verify that \mathbf{b}_1 is an eigenvector of A but that A is not diagonalizable.
- b. Find the \mathcal{B} -matrix for T.
- **18.** Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$, where A is a 3×3 matrix with eigenvalues 5, 5, and -2. Does there exist a basis \mathcal{B} for \mathbb{R}^3 such that the \mathcal{B} -matrix for T is a diagonal matrix? Discuss.

Verify the statements in Exercises 19–24. The matrices are square.

- **19.** If A is invertible and similar to B, then B is invertible and A^{-1} is similar to B^{-1} . [Hint: $P^{-1}AP = B$ for some invertible P. Explain why B is invertible. Then find an invertible Q such that $Q^{-1}A^{-1}Q = B^{-1}$.]
- **20.** If A is similar to B, then A^2 is similar to B^2 .
- **21.** If B is similar to A and C is similar to A, then B is similar to *C* .

- **22.** If A is diagonalizable and B is similar to A, then B is also diagonalizable.
- 23. If $B = P^{-1}AP$ and x is an eigenvector of A corresponding to an eigenvalue λ , then $P^{-1}\mathbf{x}$ is an eigenvector of B corresponding also to λ .
- **24.** If A and B are similar, then they have the same rank. [Hint: Refer to Supplementary Exercises 13 and 14 in Chapter 4.]
- The trace of a square matrix A is the sum of the diagonal entries in A and is denoted by tr A. It can be verified that tr(FG) = tr(GF) for any two $n \times n$ matrices F and G. Show that if A and B are similar, then tr A = tr B.
- **26.** It can be shown that the trace of a matrix A equals the sum of the eigenvalues of A. Verify this statement for the case when A is diagonalizable.
- **27.** Let V be \mathbb{R}^n with a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$; let W be \mathbb{R}^n with the standard basis, denoted here by \mathcal{E} ; and consider the identity transformation $I: \mathbb{R}^n \to \mathbb{R}^n$, where $I(\mathbf{x}) = \mathbf{x}$. Find the matrix for I relative to \mathcal{B} and \mathcal{E} . What was this matrix called in Section 4.4?
- **28.** Let V be a vector space with a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, let W be the same space V with a basis $C = \{c_1, \dots, c_n\}$, and let I be the identity transformation $I: V \to W$. Find the matrix for I relative to \mathcal{B} and \mathcal{C} . What was this matrix called in Section 4.7?
- **29.** Let V be a vector space with a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$. Find the \mathcal{B} -matrix for the identity transformation $I: V \to V$.

[M] In Exercises 30 and 31, find the \mathcal{B} -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$ where $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$.

30.
$$A = \begin{bmatrix} 6 & -2 & -2 \\ 3 & 1 & -2 \\ 2 & -2 & 2 \end{bmatrix},$$

$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \mathbf{b}_3 = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}$$

31.
$$A = \begin{bmatrix} -7 & -48 & -16 \\ 1 & 14 & 6 \\ -3 & -45 & -19 \end{bmatrix}$$
, $\mathbf{b}_1 = \begin{bmatrix} -3 \\ 1 \\ -3 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}$

32. [M] Let T be the transformation whose standard matrix is given below. Find a basis for \mathbb{R}^4 with the property that $[T]_{\mathcal{B}}$ is diagonal.

$$A = \begin{bmatrix} -6 & 4 & 0 & 9 \\ -3 & 0 & 1 & 6 \\ -1 & -2 & 1 & 0 \\ -4 & 4 & 0 & 7 \end{bmatrix}$$