MAT 141 Homework 4

Lucas Vas

December 3, 2023

Section 9.2 Question 28	Grade:
These are nested for loops in a language that I don't personally know (looks like Lua?) but I assume the logic follows the same. The total number of times that this loop will iterate is found by doing $(a - b + 1) * (c - d + 1)$. The reason we add the "+1" is because the bounds are inclusive of the values of b and d .	Faculty Comments

Section 9.4 Question 8	Grade:
To solve this problem, we can create a set of sets that sum to 10 using the original numbers that we're given. That would look like this: $S = \{\{1,9\}, \{2,8\}, \{3,7\}, \{4,6\}, \{5\}\}$	Faculty Comments
If we were to pick 5 values from this set, where those values are the first value in every pair, then we can see that there isn't necessarily a sum of any 2 values that would result in 10. If we chose 6, then we would be guaranteed a sum of 10.	

Section 9.5 Question 17

Grade:

For some reason, I just cannot visualize this problem and I don't know why that is.

Faculty Comments

- (a) The straight lines can be found by doing $\binom{10}{2}$ This is equivalent to 45. This is because every line is a combination of 2 points, and there are 10 points in total.
- (b) The number of straight lines that do not pass through A is found similarly you're simply reducing the number of points that can be chosen from. This would be $\binom{9}{2}$, which is equivalent to 36.
- (c) The number of triangles that are present in this figure is found by doing $\binom{10}{3}$, which is equivalent to 120. Triangles, by definition, have 3 points that are connected by straight lines, so we choose 3 points from the 10 that are possible.
- (d) The number of triangles that do not pass through A is found similarly to the previous problem you're simply reducing the number of points that can be chosen from. This would be $\binom{9}{3}$, which is equivalent to 84.

Grade:

Section 9.7 Question 16

Faculty Comments

The problem that we're supposed to prove looks very similar to the binomial theorem. I noticed that the first section looks like the total number of combinations that are possible from the addition of sets m and n, where you choose r elements, where $r \leq m \vee n$. This looks like the same issue that's solved with the binomial theorem, as your coefficient from $(m+n)^x$ where $m^r n^{s-r}$ will yield the same answer. The equation that's presented in the problem deals with iterating through the value r so that you can choose r values from m+n. The first iteration will choose r values from m, which leaves no choices for n. The second iteration will choose r-1 values from m, which leaves a single choice for set n, and so on. This will eventually result in r values being chosen from n, which would sum to all combinations of $\binom{m+n}{r}$.

(BONUS) Section 9.3 Question 26

Grade:

Using the set of all strings of a's, b's and c's:

Faculty Comments

(a) The list of all strings of lengths 0 through 3 that don't contain aa is:

 s_0 : \emptyset - the empty string.

 s_1 : a, b, c

 s_2 : ab, ac, ba, bb, bc, ca, cb, cc

 s_3 : aba, abb, abc, aca, acb, acc, bab, bac, bba, bbb, bbc, bca, bcb, bcc, cab, cac, cba, cbb, cbc, cca, ccb, ccc

(b) For all $n \geq 0$, the number of strings of length n that don't contain aa is:

 s_0 : 1 - just the empty string.

 $s_1: \ 3$

 s_2 : 8 = 2(3) + 2(1)

 s_3 : 22 = 2(8) + 2(3)

(c) The recurrence relation for the number of strings of length n that don't contain aa is:

$$s_n = 2s_{n-1} + 2s_{n-2}$$

(d) Using this relation, the number of strings that exist (without aa) of length 4 is:

$$s_4 = 2(22) + 2(8)$$

= $44 + 16$
= 60