tutoria	al #7	7 - sket	īch													
Monday, Oct	tober 30	0, 2017 8	8:14 PM													
				CTY	end.	A	Hac	cith	ms							
				<u> </u>	() ' ' '	7	orith		<u>></u>						
	+		•		11			1 .			11.					
			e choi									_		+++		
	•	mau	es loc									0۲ در	2W 12	1 60		
	+		ay	lopa.	lis	oper	mai	soli Lha	utic	<u>ຸ</u>		10			-, (
	•	does	s no}	alwa	ay s	proc	luce	the	op	, tin	nal	2012	, som	ie tim	162 11	doe
	-1.		C			D,	. _									
<u> </u>	Cti	Viey	Se	ect	NOI		001	em								
	+			-			5.1						1			
400	<u>: 1x</u>	Select	t max	SIE	E 51	Jbset	5 01	Mut	;Uall	9	COM	potib	ile a	cetivii	ties	
C	+-	231			+++			2.4			+ ,					
			ol act											.		
+++		and	thc	٧١	[wis]	b be	spour	e act	ivite	7	Ce ;	Starts	-			
- L	0	vant.	the	ma	x S	, er	51	muti	10110	j —'	com	pctib	le			
		acen	vities	i	رن	ر										
His	15	the	iat Si	et:	Con	toins	; U	u								
				A												
	<u></u>				-											
	ذ ر		~~~	au (\	~	/ 3									
		Si	, h		Su.	7										
(*	Lit	= '	Sin	1 60	ius (7 2	k i									
9.7					1											
11	i i f	=	Aiul	+ 11	+ ازباء	- \ (activ	ities								
Dyr	nam	vc y	perspe	ectiv	je:											
			ί, ί , ί													
-0	mu	s) e	examil	ne	all c	ictiv.	tics	١'n	Si	7						
C	يرتن,	- [i,	50)						il	Sis	= Ø				
			1	(· _	. 7	۰.	ר	2	•	_	. 2				

```
C[i,j] = \begin{cases} 0 & \text{if } Si_{s} = \emptyset \\ \max \{c[i,h] + c[h,s] + i\} & \text{if } Si_{s} \neq \emptyset \end{cases}
a_{k} \in S_{i,s}
     - have to fill our the table in a smiler
            Fashron to the longes, Common Sequence.
 Lets be greedy!
   · scient an activity to add to our optimal sol = w/o solving all the subproblems.
 - select activity that leaves resource available for
        as many other activities as possible
      Lo select as since they are sorted by finish time
  - all compatible activities muss start after a finishes
    all activities after an finishes: Sx = {ai e s: si = fu}
-oil we greedy select a, then Si remains only problem to solve
Thm 16.1: Consider any nonempty subproblem Sh
       and let am be an activity in Sh we the
       earliest finish time. Then am is included
        in some max-site subset of mutually
        composible activities of Sh
        · Repeatedly choose activity that finishes (52 · keep any autivities competible (no -overlap)
        · repeat until no activities remain
 Top down: put activity in optimal soin
              · solve what is lest over.
           Lo typical for greedy algs
  S: Start times acray
  f: finsh times
```

```
k: Sk subproblem
     n: size of original problem
   RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)
       m = k + 1
       while m \le n and s[m] < f[k] // find the first activity in S_k to finish
            m = m + 1
                                                  looking for Sm = fk
       if m \leq n
            return \{a_m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)
       else return Ø
    add as to solution, So is remaining set of activities.

    1
    2
    3
    4
    5
    6
    7
    8
    9

    1
    3
    0
    5
    3
    5
    6
    8
    8

    4
    5
    6
    7
    9
    9
    10
    11
    12

                                                                  12
                                                                  16
      (a, 3 U Rec-Act-Sel (s, f, 1, 11) S,
(a, a, 3 U Rec-Act-Sel (s, f, 4, 11) S4
       [a1, a4, a8) U Ree - Ach - Sel (5, 6, 8, 11) S8
       (a, a4, û8, a, 3 U Rec-Act-Sel (s, f, 11, 11) S11
                  Final answer = (a, a4, a8, a, 3
                                                              an
                                                      12 15
I terative Version:
```

edy Itct	Seled	-0/(>, })	-							
edy Act on = a	s-leng	l'h									
() =	ξα, 5)					`				
U =	m =	0 1			(-)(~)				
101	m =	\(\tag{t} \)	> N 3	,							
	i b	s[m]	2 F	u S	7						
		A :		la	m)						
		K	= M								
retu	rn A										