

Tel: 02-2875-7449

Date: 27 Aug 2020 1 of 10

Sample Information

Patient Name: 張夭雄 Gender: Male ID No.: L103318974 History No.: 22464002

Age: 66

Ordering Doctor: DOC3153J 黃煦晴

Ordering REQ.: 0AVGSSD Signing in Date: 2020/08/26

Path No.: \$109-99922 **MP No.:** F20065

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: \$109-25412A Percentage of tumor cells: 70%

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	2
Relevant Therapy Summary	4
Relevant Therapy Details	5

Report Highlights 2 Relevant Biomarkers 2 Therapies Available

2 Therapies Available 24 Clinical Trials

Relevant Non-Small Cell Lung Cancer Findings

Gene	Finding	Gene	Finding	
ALK	Not detected	NTRK1	Not detected	
BRAF	Not detected	NTRK2	Not detected	
EGFR	Not detected	NTRK3	Not detected	
ERBB2	Not detected	RET	Not detected	
KRAS	Not detected	ROS1	Not detected	
MET	MET exon 14 skipping			

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	MET exon 14 skipping MET proto-oncogene, receptor tyrosine kinase	capmatinib ¹ crizotinib	None	21

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Tel: 02-2875-7449

Date: 27 Aug 2020 2 of 10

Relevant Biomarkers (continued)

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	CDK4 amplification cyclin dependent kinase 4	None	None	7

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Variant Details

DNA	Sequence Varia	ants						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
JAK1	p.(=)	c.2199A>G		chr1:65310489	47.84%	NM_002227.3	synonymous	1990
ALK	p.(D1529E)	c.4587C>G		chr2:29416366	48.20%	NM_004304.4	missense	2000
ALK	p.(I1461V)	c.4381A>G		chr2:29416572	99.85%	NM_004304.4	missense	1999
ALK	p.(=)	c.3375C>A		chr2:29445458	47.72%	NM_004304.4	synonymous	1995
FGFR3	p.(=)	c.1953G>A		chr4:1807894	99.71%	NM_000142.4	synonymous	1727
PDGFRA	p.(=)	c.1701A>G		chr4:55141055	99.80%	NM_006206.5	synonymous	1997
KIT	p.(=)	c.1638A>G		chr4:55593481	32.42%	NM_000222.2	synonymous	1999
FGFR4	p.(P136L)	c.407C>T		chr5:176517797	99.00%	NM_213647.2	missense	2000
EGFR	p.(=)	c.2361G>A		chr7:55249063	58.08%	NM_005228.4	synonymous	1999
MET	p.(D1028N)	c.3082G>A		chr7:116412043	30.62%	NM_001127500.2	missense	1999

O	Fusions (
I-ABA	LICIANC	

Genes	Variant ID	Locus
MET-MET	MET-MET.M13M15	chr7:116411708 - chr7:116414935

Copy Number Variations

Gene	Locus	Copy Number
CDK4	chr12:58142052	5.53

Biomarker Descriptions

CDK4 (cyclin dependent kinase 4)

<u>Background</u>: The CDK4 gene encodes the cyclin-dependent kinase-4 protein, a homologue of CDK6. Both proteins are serine/threonine protein kinases that are involved in the regulation of the G1/S phase transition of the mitotic cell cycle^{1,2}. CDK4 kinase is activated by complex formation with D-type cyclins (e.g., CCND1, CCND2, or CCND3), which leads to the phosphorylation of retinoblastoma protein

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 27 Aug 2020 3 of 10

Biomarker Descriptions (continued)

(RB), followed by E2F activation, DNA replication, and cell-cycle progression³. Germline mutations in CDK4 are associated with familial melanoma^{4,5,6}.

Alterations and prevalence: Recurrent somatic mutations of CDK4 codon K22 and R24 are observed in melanoma (1-2%) and lung cancer (approximately 0.1%). Codons K22 and R24 are necessary for binding and inhibition by p16/CDKN2A^{7,8,9}. CDK4 is recurrently amplified in several cancer types, most notably in sarcomas (15-20%), glioma (10-15%), adrenocortical carcinoma (5%), lung adenocarcinoma (5%), and melanoma (3%)^{10,11,12,13}.

<u>Potential relevance:</u> Currently, no therapies are approved for CDK4 aberrations. Small molecule inhibitors targeting CDK4/6 including palbociclib (2015), abemaciclib (2017), and ribociclib (2017), are FDA approved in combination with an aromatase inhibitor or fulvestrant for the treatment of hormone receptor-positive, HER2-negative advanced or metastatic breast cancer.

MET (MET proto-oncogene, receptor tyrosine kinase)

Background: The MET proto-oncogene encodes a receptor tyrosine kinase for the hepatocyte growth factor (HGF) protein, which is expressed by mesenchymal cells. Ubiquitin-dependent proteolysis regulates the steady state level of the MET protein via recognition of the tyrosine phosphorylation site Y1003 in the MET Cbl-binding domain within the juxtamembrane region^{14,15,16}. Growth factor signaling leads to MET dimerization and subsequent initiation of downstream effectors including those involved in the RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways, which regulate cell migration, proliferation, and survival^{17,18}.

Alterations and prevalence: Recurrent somatic MET alterations include activating mutations, gene amplification, and translocations generating MET gene fusions. Recurrent somatic mutations fall into two classes, mutations in the MET kinase domain, which are uncommon, and splice-site mutations affecting exon 14. Recurrent kinase domain mutations are observed in papillary renal cell carcinoma (PRCC) (1-2%) and include M1250T, H1094Y, and V1070E. Mutation of the Y1003 phosphorylation site is reported in lung cancer but is uncommon (<1%)^{10,13}. In contrast, splice-site mutations flanking exon 14 are observed in 4% of non-small cell lung cancer (NSCLC). These mutations include canonical splice site mutations affecting exon 14 and deletions that extend into the splicing motifs within intron 13^{19,20}. Such mutations disrupt splicing leading to the formation of an alternative transcript that joins exon 13 directly to exon 15 and skips exon 14 entirely. The MET exon 14 skipping transcript lacks the juxtamembrane domain that contains the recognition motif for ubiquitin-dependent proteolysis and thus leads to a marked increase in steady-state level of the MET protein²¹. MET exon 14 skipping mutations act as oncogenic drivers in lung cancer mutually exclusive to activating mutations in EGFR and KRAS and other oncogenic fusions such as ALK and ROS1^{19,22,23}. MET is amplified in 2-5% of ovarian cancer, esophageal adenocarcinoma, stomach adenocarcinoma, glioblastoma, and lung adenocarcinoma^{10,13,24}. Recurrent MET fusions, although infrequent, are observed in adult and pediatric glioblastoma, papillary renal cell carcinoma, lung cancer, liver cancer, thyroid cancer, and melanoma^{25,26,27}. MET alterations are believed to be enriched in late-stage cancers where they drive tumor progression and metastasis^{28,29,30}.

Potential relevance: In 2020, the FDA granted accelerated approval to capmatinib³¹ for NSCLC harboring MET exon 14 skipping positive as detected by an FDA-approved test³². Tepotinib³³ has been granted FDA breakthrough designation (2019) for advanced MET exon 14 skipping NSCLC. MET exon 14 skipping mutations confer sensitivity to approved kinase inhibitors including crizotinib (2011), which is recommended for MET amplifications and exon 14 skipping mutations^{19,22,23,32}. Conversely, amplification of MET has been observed to mediate resistance to EGFR tyrosine kinase inhibitors (TKIs)^{34,35,36,37,38}. In a phase II trial testing the MET inhibitor savolitinib, patients with advanced PRCC exhibited median progression free survival (PFS) of 6.2 and 1.4 months for MET-driven and MET-independent PRCC, respectively³⁹.

Tel: 02-2875-7449

Date: 27 Aug 2020 4 of 10

Relevant Therapy Summary

In this cancer type In other cancer type

CDK4 amplification

In this cancer type and other cancer types

Contraindicated

A Both for use and contraindicated

X No evidence

MET exon 14 skipping					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
capmatinib			×	×	(II)
crizotinib	×	•	×	•	(II)
cabozantinib	×	×	×	×	(II)
capmatinib + nivolumab	×	×	×	×	(II)
savolitinib	×	×	×	×	(II)
bozitinib	×	×	×	×	(1/11)
glumetinib	×	×	×	×	(1/11)
REGN-5093	×	×	×	×	(1/11)
HLX55	×	×	×	×	(I)
JNJ-61186372	×	×	×	×	(I)
metatinib	×	×	×	×	(I)
TPX-0022	×	×	×	×	(I)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
abemaciclib	×	×	×	×	(II)
palbociclib	×	×	×	×	(II)
palbociclib, abemaciclib	×	×	×	×	(II)
siremadlin, ribociclib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 27 Aug 2020 5 of 10

Relevant Therapy Details

Current FDA Information

In this cancer type	O In other cancer type	In this cancer type and other cancer types	Ocontraindicated	Ont recommended	U	Resistanc
---------------------	------------------------	--	------------------	-----------------	---	-----------

FDA information is current as of 2020-05-26. For the most up-to-date information, search www.fda.gov.

MET exon 14 skipping

capmatinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2020-05-06 Variant class: MET exon 14 skipping

Indications and usage:

TABRECTA™ is a kinase inhibitor indicated for the treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors have a mutation that leads to mesenchymal-epithelial transition (MET) exon 14 skipping as detected by an FDA-approved test.

This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trial(s).

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213591s000lbl.pdf

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 27 Aug 2020 6 of 10

Current NCCN Information

In this cancer type and other cancer types

Contraindicated

Not recommended Resistance

NCCN information is current as of 2020-05-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

MET exon 14 skipping

capmatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: MET exon 14 skipping

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Adenocarcinoma, Large Cell, Non-Small Cell Lung Cancer (NOS), Squamous Cell Carcinoma; Advanced or metastatic disease; MET exon 14 skipping mutation discovered prior to or during first-line systemic therapy (First-line therapy) (Preferred)
- Adenocarcinoma, Large Cell, Non-Small Cell Lung Cancer (NOS), Squamous Cell Carcinoma; Advanced or metastatic disease; Progression after first-line systemic therapy (Subsequent therapy) (Preferred)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

crizotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: MET exon 14 skipping

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Adenocarcinoma, Large Cell, Non-Small Cell Lung Cancer (NOS), Squamous Cell Carcinoma; Advanced or metastatic disease; MET exon 14 skipping mutation discovered prior to or during first-line systemic therapy (First-line therapy) (Useful in Certain Circumstances)
- Adenocarcinoma, Large Cell, Non-Small Cell Lung Cancer (NOS), Squamous Cell Carcinoma; Advanced or metastatic disease; Progression after first-line systemic therapy (Subsequent therapy) (Useful in Certain Circumstances)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

atezolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: MET exon 14 skipping

Other criteria: CD274 overexpression

Summary:

NCCN Guidelines® include the following supporting statement(s):

"In addition, those with METex14 mutations and high PD-L1 expression do not respond to immunotherapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

Tel: 02-2875-7449

Date: 27 Aug 2020 7 of 10

MET exon 14 skipping (continued)

durvalumab

Cancer type: Non-Small Cell Lung Cancer Variant class: MET exon 14 skipping

Other criteria: CD274 overexpression

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "In addition, those with METex14 mutations and high PD-L1 expression do not respond to immunotherapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

nivolumab

Cancer type: Non-Small Cell Lung Cancer Variant class: MET exon 14 skipping

Other criteria: CD274 overexpression

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "In addition, those with METex14 mutations and high PD-L1 expression do not respond to immunotherapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: MET exon 14 skipping

Other criteria: CD274 overexpression

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "In addition, those with METex14 mutations and high PD-L1 expression do not respond to immunotherapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 27 Aug 2020 8 of 10 **Current ESMO Information** In this cancer type In other cancer type Contraindicated Not recommended Resistance In this cancer type and other cancer types ESMO information is current as of 2020-05-01. For the most up-to-date information, search www.esmo.org. MET exon 14 skipping crizotinib Cancer type: Non-Small Cell Lung Cancer Variant class: MET exon 14 skipping ESMO Level of Evidence/Grade of Recommendation: III / C Population segment (Line of therapy): Demonstrated potential clinical efficacy that needs to be confirmed (Not specified) Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Ann Oncol (2018) 29 (suppl 4): iv192-iv237; https://www.esmo.org/Guidelines/Lung-and-Chest-Tumours/Metastatic-Non-Small-Cell-Lung-Cancer] **Signatures Testing Personnel: Laboratory Supervisor:** Pathologist:

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 27 Aug 2020 9 of 10

References

- 1. Malumbres et al. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer. 2009 Mar;9(3):153-66. PMID: 19238148
- 2. Sherr et al. Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Discov. 2016 Apr;6(4):353-67. PMID: 26658964
- 3. Weinberg. The retinoblastoma protein and cell cycle control. Cell. 1995 May 5;81(3):323-30. PMID: 7736585
- 4. Rane et al. Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence. Mol. Cell. Biol. 2002 Jan;22(2):644-56. PMID: 11756559
- 5. Zuo et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat. Genet. 1996 Jan;12(1):97-9. PMID: 8528263
- 6. Molven et al. A large Norwegian family with inherited malignant melanoma, multiple atypical nevi, and CDK4 mutation. Genes Chromosomes Cancer. 2005 Sep;44(1):10-8. PMID: 15880589
- 7. Ceha et al. Several noncontiguous domains of CDK4 are involved in binding to the P16 tumor suppressor protein. Biochem. Biophys. Res. Commun. 1998 Aug 19;249(2):550-5. PMID: 9712735
- 8. Tsao et al. Novel mutations in the p16/CDKN2A binding region of the cyclin-dependent kinase-4 gene. Cancer Res. 1998 Jan 1;58(1):109-13. PMID: 9426066
- 9. Sotillo et al. Invasive melanoma in Cdk4-targeted mice. Proc. Natl. Acad. Sci. U.S.A. 2001 Nov 6;98(23):13312-7. PMID: 11606789
- 10. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 11. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 12. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 13. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 14. Peschard et al. A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/ Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J. Biol. Chem. 2004 Jul 9;279(28):29565-71. PMID: 15123609
- 15. Peschard et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol. Cell. 2001 Nov;8(5):995-1004. PMID: 11741535
- 16. Abella et al. Met/Hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. Mol. Cell. Biol. 2005 Nov;25(21):9632-45. PMID: 16227611
- 17. Sierra et al. c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol. 2011 Nov;3(1 Suppl):S21-35. PMID: 22128285
- 18. Mo et al. Targeting MET in cancer therapy. Chronic Dis Transl Med. 2017 Sep;3(3):148-153. PMID: 29063069
- 19. Frampton et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015 Aug;5(8):850-9. PMID: 25971938
- 20. Schrock et al. Characterization of 298 Patients with Lung Cancer Harboring MET Exon 14 Skipping Alterations. J Thorac Oncol. 2016 Sep;11(9):1493-502. PMID: 27343443
- 21. Pilotto et al. MET exon 14 juxtamembrane splicing mutations: clinical and therapeutical perspectives for cancer therapy. Ann Transl Med. 2017 Jan;5(1):2. doi: 10.21037/atm.2016.12.33. PMID: 28164087
- 22. Reungwetwattana et al. The race to target MET exon 14 skipping alterations in non-small cell lung cancer: The Why, the How, the Who, the Unknown, and the Inevitable. Lung Cancer. 2017 Jan;103:27-37. PMID: 28024693
- 23. Saffroy et al. MET exon 14 mutations as targets in routine molecular analysis of primary sarcomatoid carcinoma of the lung. Oncotarget. 2017 Jun 27;8(26):42428-42437. PMID: 28418914
- 24. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014 Sep 11;513(7517):202-9. doi: 10.1038/nature13480. Epub 2014 Jul 23. PMID: 25079317
- 25. Yeh et al. Activating MET kinase rearrangements in melanoma and Spitz tumours. Nat Commun. 2015 May 27;6:7174. doi: 10.1038/ncomms8174. PMID: 26013381

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 27 Aug 2020 10 of 10

References (continued)

- 26. Bao et al. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Res. 2014 Nov;24(11):1765-73. PMID: 25135958
- 27. International Cancer Genome Consortium PedBrain Tumor Project. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat. Med. 2016 Nov;22(11):1314-1320. PMID: 27748748
- 28. Zeng et al. c-Met gene amplification is associated with advanced stage colorectal cancer and liver metastases. Cancer Lett. 2008 Jul 8;265(2):258-69. PMID: 18395971
- 29. Tsugawa et al. Amplification of the c-met, c-erbB-2 and epidermal growth factor receptor gene in human gastric cancers: correlation to clinical features. Oncology. 1998 Sep-Oct;55(5):475-81. PMID: 9732228
- 30. Di et al. Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin. Cancer Res. 1995 Feb;1(2):147-54. PMID: 9815967
- 31. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213591s000lbl.pdf
- 32. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 4.2020]
- 33. https://www.emdgroup.com/en/news/tepotinib-breakthrough-therapy-designation-11-09-2019.html
- 34. Bean et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci. U.S.A. 2007 Dec 26;104(52):20932-7. PMID: 18093943
- 35. Chen et al. Clinicopathologic and molecular features of epidermal growth factor receptor T790M mutation and c-MET amplification in tyrosine kinase inhibitor-resistant Chinese non-small cell lung cancer. Pathol Oncol Res. 2009 Dec;15(4):651-8. doi: 10.1007/s12253-009-9167-8. Epub 2009 Apr 21. PMID: 19381876
- 36. Suda et al. Reciprocal and complementary role of MET amplification and EGFR T790M mutation in acquired resistance to kinase inhibitors in lung cancer. Clin. Cancer Res. 2010 Nov 15;16(22):5489-98. PMID: 21062933
- 37. Zhang et al. Current mechanism of acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors and updated therapy strategies in human nonsmall cell lung cancer. J Cancer Res Ther. 2016 Dec;12(Supplement):C131-C137. PMID: 28230005
- 38. Nguyen et al. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway. Clin Lung Cancer. 2009 Jul;10(4):281-9. PMID: 19632948
- 39. Choueiri et al. Biomarker-Based Phase II Trial of Savolitinib in Patients With Advanced Papillary Renal Cell Cancer. J. Clin. Oncol. 2017 Sep 10;35(26):2993-3001. PMID: 28644771