3.0_dcj_explore_antarctic_profiles

July 9, 2021

1 Examine Antarctic profiles

Here, we take the output of the "whole domain" classification notebook (2.0) and look for classes within the Antarctic group of profiles.

1.1 Initial setup

1.1.1 Load modules

```
[1]: #import scikit-learn
     from sklearn import mixture
     from sklearn import preprocessing
     from sklearn.decomposition import PCA
     # import matplotlib
     import matplotlib.colors as colors
     import matplotlib.pyplot as plt
     import matplotlib.cm as cmx
     import matplotlib as mpl
     # pandas for just a couple things
     import pandas as pd
     # for label map
     import cartopy
     import cartopy.crs as ccrs
     import cartopy.feature as cfeature
     # pyxpcm, xarray, dask
     import numpy as np
     import xarray as xr
     import datetime as dt
     import random
     # import dask
     from dask.distributed import Client
     import dask
     # for 3D plotting
     from mpl_toolkits.mplot3d import Axes3D
     import matplotlib.cm as cm
     import seaborn as sns
```

1.1.2 Start Dask client

```
[2]: client = Client(n_workers=2, threads_per_worker=2, memory_limit='3GB')
client
```

[2]: <Client: 'tcp://127.0.0.1:61952' processes=2 threads=4, memory=6.00 GB>

1.1.3 Select subsetting parameters

Check for consistency with the input file

```
[3]: # plotting subset
subset = range(1000,2000,1)

lon_min = -80
lon_max = 80
lat_min = -85
lat_max = -30

# depth range
zmin = 100.0
zmax = 900.0
```

1.1.4 Import data

```
[4]: profiles = xr.open_dataset('processed_data/

→profiles_80W-80E_85-30S_100-900_labeled.nc')

profiles
```

```
[4]: <xarray.Dataset>
                          (CLASS: 5, depth: 15, profile: 185612)
     Dimensions:
     Coordinates:
       * profile
                          (profile) int64 0 1 2 3 4 ... 185608 185609 185610 185611
         lon
                          (profile) float64 ...
                          (profile) float64 ...
         lat
                          (depth) float64 100.0 120.0 140.0 160.0 ... 640.0 730.0 820.0
       * depth
                          (profile) datetime64[ns] ...
         time
       * CLASS
                          (CLASS) int64 0 1 2 3 4
     Data variables:
         prof_date
                          (profile) float64 ...
         prof_YYYYMMDD
                         (profile) float64 ...
         prof_HHMMSS
                          (profile) float64 ...
         prof_T
                          (profile, depth) float64 ...
                          (profile, depth) float64 ...
         prof_S
                          (profile) int64 ...
         label
                          (profile, CLASS) float64 ...
         posteriors
```

1.1.5 Select Antarctic profiles

Check for consistency with notebook 2.0

```
[5]: profiles antarctic = profiles.where(profiles.label==int(4)).dropna('profile')
    profiles_antarctic
[5]: <xarray.Dataset>
    Dimensions:
                       (CLASS: 5, depth: 15, profile: 35709)
    Coordinates:
                       (profile) int64 14 15 16 17 ... 185602 185603 185609 185610
      * profile
                       (profile) float64 -26.44 -22.37 -17.38 ... 51.89 64.79 35.28
        lon
        lat
                       (profile) float64 -55.98 -56.81 -57.51 ... -58.72 -60.98
      * depth
                       (depth) float64 100.0 120.0 140.0 160.0 ... 640.0 730.0 820.0
        time
                       (profile) datetime64[ns] 1973-01-11T12:00:00 ... 2017-08-2...
      * CLASS
                       (CLASS) int64 0 1 2 3 4
    Data variables:
                       (profile) float64 7.206e+05 7.206e+05 ... 7.369e+05 7.369e+05
        prof_date
                       (profile) float64 1.973e+07 1.973e+07 ... 2.017e+07 2.017e+07
        prof_YYYYMMDD
        prof_HHMMSS
                       (profile) float64 1.2e+05 1.2e+05 1.2e+05 ... 8.4e+04 1.4e+04
                       (profile, depth) float64 -1.228 -0.9877 ... 1.167 1.067
        prof_T
        prof_S
                       (profile, depth) float64 34.2 34.25 34.33 ... 34.73 34.72
        label
                       (profile, CLASS) float64 1.969e-45 3.878e-168 ... 1.0
        posteriors
```

1.2 Data visualization and exploration

1.2.1 Plot temperature profiles

```
[6]: fig, ax = plt.subplots(figsize=(15,10))
profiles_antarctic.prof_T.plot(y='depth', yincrease=False)
```

[6]: <matplotlib.collections.QuadMesh at 0x7fa89bc44690>

1.2.2 Plot salinity profiles

```
[7]: fig, ax = plt.subplots(figsize=(15,10))
profiles_antarctic.prof_S.plot(y='depth', yincrease=False)
```

[7]: <matplotlib.collections.QuadMesh at 0x7fa89d0e1310>

1.2.3 Plot temperature histogram

1.2.4 Plot salinity histogram

1.2.5 Apply unsupervised classification method

1.2.6 Preprocessing, scaling, and dimensionality reduction

```
[10]: # scale salinity
X = profiles_antarctic.prof_S
scaled_S = preprocessing.scale(X)
scaled_S.shape

# scale temperature
X = profiles_antarctic.prof_T
scaled_T = preprocessing.scale(X)
scaled_T.shape

# concatenate
Xscaled = np.concatenate((scaled_T,scaled_S),axis=1)

# create PCA object
pca = PCA(n_components=8)

# fit PCA model
pca.fit(Xscaled)
```

```
# transform input data into PCA representation
Xpca = pca.transform(Xscaled)

# add PCA values to the profiles Dataset
PCA1 = xr.DataArray(Xpca[:,0],dims='profile')
PCA2 = xr.DataArray(Xpca[:,1],dims='profile')
PCA3 = xr.DataArray(Xpca[:,2],dims='profile')

# calculated total variance explained
total_variance_explained_ = np.sum(pca.explained_variance_ratio_)
total_variance_explained_
```

[10]: 0.9848536571195076

1.2.7 Use BIC to inform number of classes

```
[11]: # select parameters
      max_N = 20  # the maximum number of classes to try
      max bic iter = 20 # the maximum number of iterations for BIC
      # for the BIC step, try using a subset of the profiles
      # you can change this 1000 value for different subsets
      \#Xpca\_for\_BIC = Xpca[::1000]
      # initialise, declare variables
      lowest_bic = np.infty
      bic_scores = np.zeros((2,max_bic_iter))
      # loop through the maximum number of classes, estimate BIC
      n_components_range = range(2, max_N)
      bic_iter_range = range(0,max_bic_iter)
      # iterate through all the covariance types (just 'full' for now)
      cv_types = ['full']
      for cv type in cv types:
          # iterate over all the possible numbers of components
          for n_components in n_components_range:
              bic one = []
              # repeat the BIC step for better statistics
              for bic_iter in bic_iter_range:
                  # select a new random subset
                  rows_id = random.sample(range(0, Xpca.shape[0]-1), 1000)
                  Xpca_for_BIC = Xpca[rows_id,:]
                  # fit a Gaussian mixture model
                  gmm = mixture.GaussianMixture(n_components=n_components,
                                                covariance_type=cv_type,
                                                random_state=42)
```

```
# uncomment for 'rapid' BIC fitting
            gmm.fit(Xpca_for_BIC)
            # uncomment for 'full' BIC fitting
            #qmm.fit(Xpca)
            # append this BIC score to the list
            bic_one.append(gmm.bic(Xpca_for_BIC))
            Xpca_for_BIC = []
        # stack the bic scores into a single 2D structure
       bic_scores = np.vstack((bic_scores, np.asarray(bic_one)))
# the first two rows are not needed; they were only placeholders
bic_scores = bic_scores[2:,:]
# mean values for BIC
bic_mean = np.mean(bic_scores, axis=1)
# standard deviation for BIC
bic_std = np.std(bic_scores, axis=1)
# examine the mean bic values
#bic_mean
```

```
[12]: # plot the BIC scores
plt.figure(figsize=(20, 8))
plt.style.use('seaborn-darkgrid')
spl = plt.subplot(2, 1, 1)
plt.plot(n_components_range, bic_mean-bic_std, '--')
plt.plot(n_components_range, bic_mean, '-')
plt.plot(n_components_range, bic_mean+bic_std, '--')
plt.xticks(n_components_range)
#plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()])
plt.title('BIC score per model', fontsize=18)
spl.set_xlabel('Number of components',fontsize=18)
spl.set_ylabel('BIC score',fontsize=18)
#plt.show()
```

[12]: Text(0, 0.5, 'BIC score')

Interestingly, there is a minimum between 5-9. We'll opt for the smaller number for ease of interpretation.

1.2.8 Apply selected GMM

```
[13]: # set variables
      n_components_selected = 5
      # establish qmm
      best_gmm = mixture.GaussianMixture(n_components=n_components_selected,
                                         covariance_type='full',
                                         random_state=42)
      # fit this GMM
      best_gmm.fit(Xpca)
      # check to make sure that n comp is as expected
      n_comp = gmm.n_components
      # select colormap
      colormap = plt.get_cmap('tab10', n_comp)
      # assign class labels ("predict" the class using the selected GMM)
      labels = best_gmm.predict(Xpca)
      # find posterior probabilities (the probabilities of belonging to each class)
      posterior_probs = best_gmm.predict_proba(Xpca)
      # maximum posterior probability (the class is assigned based on this value)
      max_posterior_probs = np.max(posterior_probs,axis=1)
      # put the labels and maximum posterior probabilities back in original dataframe
      #df.insert(3, 'label', labels, True)
      #df.insert(4, 'max posterior prob', max posterior probs, True)
      # print out best_qmm parameters
      #posterior_probs.shape
      # convert labels into xarray format
      xlabels = xr.DataArray(labels, coords=[profiles_antarctic.profile],__

→dims='profile')
      # convert posterior probabilities into xarray format
      gmm_classes = [b for b in range(0,n_components_selected,1)]
      xprobs = xr.DataArray(posterior_probs,
```

1.3 Plot GMM results

1.3.1 Calculate class means

```
[14]: # create grouped object using the labels
grouped = profiles_antarctic.groupby("label")

# class means and standard deviations
class_means = grouped.mean()
class_stds = grouped.std()

# visualize grouped dataset
#class_means
```

1.3.2 Plot vertical structure of class means: temperature

```
[15]: cNorm = colors.Normalize(vmin=0, vmax=n_components_selected)
      scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=colormap)
      # initialize the figure
      plt.figure(figsize=(60, 60))
      plt.style.use('seaborn-darkgrid')
      #palette = cmx.Paired(np.linspace(0,1,n_comp))
      # vertical coordinate
      z = profiles.depth.values
      # iterate over groups
      num = 0
      for nrow in range(0,n_components_selected):
          num += 1
          colorVal = scalarMap.to_rgba(nrow)
          # extract means
          mean_T = class_means.prof_T[nrow,:].values
          # extract stdevs
          std_T = class_stds.prof_T[nrow,:].values
          # select subplot
```

```
ax = plt.subplot(np.ceil(n_comp/3),3,num)
   plt.plot(mean_T, z, marker='', linestyle='solid', color=colorVal,__
\rightarrowlinewidth=6.0, alpha=0.9)
   plt.plot(mean_T+std_T, z, marker='', linestyle='dashed', color=colorVal,
\rightarrowlinewidth=6.0, alpha=0.9)
   plt.plot(mean_T-std_T, z, marker='', linestyle='dashed', color=colorVal, u
\rightarrowlinewidth=6.0, alpha=0.9)
   # custom grid and axes
   plt.ylim([zmin,zmax])
   plt.xlim([-3, 3])
  #text box
   fs = 42 \# font size
   plt.xlabel('Temperature (deg C)', fontsize=fs)
   plt.ylabel('Depth (m)', fontsize=fs)
   plt.title('Class = ' + str(num), fontsize=fs)
   # font and axis stuff
   plt.gca().invert_yaxis()
   ax.tick_params(axis='x', labelsize=30)
   ax.tick_params(axis='y', labelsize=30)
```


1.3.3 Plot vertical structure of class means: salinity

```
[16]: cNorm = colors.Normalize(vmin=0, vmax=n_components_selected)
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=colormap)

# initialize the figure
plt.figure(figsize=(60, 60))
plt.style.use('seaborn-darkgrid')
#palette = cmx.Paired(np.linspace(0,1,n_comp))

# vertical coordinate
```

```
z = profiles_antarctic.depth.values
# iterate over groups
num = 0
for nrow in range(0,n_components_selected):
    num += 1
    colorVal = scalarMap.to_rgba(nrow)
    # extract means
    mean_S = class_means.prof_S[nrow,:].values
    # extract stdevs
    std_S = class_stds.prof_S[nrow,:].values
    # select subplot
    ax = plt.subplot(np.ceil(n_comp/3),3,num)
    plt.plot(mean_S, z, marker='', linestyle='solid', color=colorVal,_
\rightarrowlinewidth=6.0, alpha=0.9)
    plt.plot(mean_S+std_S, z, marker='', linestyle='dashed', color=colorVal,
 \rightarrowlinewidth=6.0, alpha=0.9)
    plt.plot(mean_S-std_S, z, marker='', linestyle='dashed', color=colorVal, u
\rightarrowlinewidth=6.0, alpha=0.9)
    # custom grid and axes
    plt.ylim([zmin, zmax])
    plt.xlim([33.8, 34.8])
   #text box
   fs = 42 \# font size
    plt.xlabel('Salinity (psu)', fontsize=fs)
    plt.ylabel('Depth (m)', fontsize=fs)
    plt.title('Class = ' + str(num), fontsize=fs)
    # font and axis stuff
    plt.gca().invert_yaxis()
    ax.tick_params(axis='x', labelsize=30)
    ax.tick_params(axis='y', labelsize=30)
```


1.3.4 Plot label map

```
[17]: # extract values as new DataArrays
      df1D = profiles antarctic.isel(depth=0)
      da lon = df1D.lon
      da lat = df1D.lat
      da_label = df1D.label
      # extract values
      lons = da_lon.values
      lats = da_lat.values
      clabels = da_label.values
      # size of random sample (all profiles by now)
      random_sample_size = int(np.ceil(0.99*df1D.profile.size))
      # random sample for plotting
      rows_id = random.sample(range(0,clabels.size-1), random_sample_size)
      lons random sample = lons[rows id]
      lats_random_sample = lats[rows_id]
      clabels_random_sample = clabels[rows_id]
      #colormap with Historical data
      plt.figure(figsize=(17, 13))
      ax = plt.axes(projection=ccrs.PlateCarree())
      ax.set_extent([lon_min, lon_max, lat_min, -45], ccrs.PlateCarree())
      CS = plt.scatter(lons_random_sample-360,
                       lats_random_sample,
                       c=clabels_random_sample,
                       marker='o',
                       cmap= colormap,
                       s=8.0,
                       transform=ccrs.Geodetic(),
      ax.coastlines(resolution='50m')
```

```
ax.gridlines(color='black')
ax.add_feature(cartopy.feature.LAND)
```

[17]: <cartopy.mpl.feature_artist.FeatureArtist at 0x7fa8a51299d0>

1.4 Calculate i-metric

1.4.1 Define function

```
[18]: # function to calculate the i_metric, label, and runner-up label
def get_i_metric(posterior_prob_list):
    sorted_posterior_list = sorted(posterior_prob_list)
    ic_metric = 1 - (sorted_posterior_list[-1] - sorted_posterior_list[-2])
    runner_up_label = posterior_prob_list.index(sorted_posterior_list[-2])
    label = posterior_prob_list.index(sorted_posterior_list[-1])
    return ic_metric, np.array([label, runner_up_label]) # np.sort()
```

1.4.2 Iterate through profiles, calculate i-metric

1.4.3 Plot i-metric by class

```
[20]: # extract values as new DataArrays
      da_lon = df1D.lon
      da lat = df1D.lat
      da_i_metric = df1D.i_metric
      # extract values
      lons = da_lon.values
      lats = da_lat.values
      c = da_i_metric.values
      # random sample for plotting
      rows_id = random.sample(range(0,c.size-1), random_sample_size)
      lons random sample = lons[rows id]
      lats_random_sample = lats[rows_id]
      clabels_random_sample = c[rows_id]
      #colormap with Historical data
      plt.figure(figsize=(17, 13))
      ax = plt.axes(projection=ccrs.PlateCarree())
      ax.set_extent([lon_min, lon_max, lat_min, -45], ccrs.PlateCarree())
      CS = plt.scatter(lons_random_sample-360,
                       lats_random_sample,
                       c=clabels_random_sample,
                       marker='o',
                       cmap= plt.get_cmap('cividis'),
                       s=8.0,
                       transform=ccrs.Geodetic(),
      ax.coastlines(resolution='50m')
      ax.gridlines(color='black')
      ax.add_feature(cartopy.feature.LAND)
```

distributed.comm.tcp - WARNING - Closing dangling stream in <TCP
local=tcp://127.0.0.1:62038 remote=tcp://127.0.0.1:61952>

[20]: <cartopy.mpl.feature_artist.FeatureArtist at 0x7fa8a0ea1bd0>


```
[21]: # extract values as new DataArrays
      da_lon = df1D.lon
      da_lat = df1D.lat
      da_i_metric = df1D.i_metric
      # extract values
      lons = da lon.values
      lats = da_lat.values
      c = da_i_metric.values
      for iclass in range(n_components_selected):
          # random sample for plotting
          lons_random_sample = lons[labels==iclass]
          lats_random_sample = lats[labels==iclass]
          clabels_random_sample = c[labels==iclass]
          #colormap with Historical data
          plt.figure(figsize=(17, 13))
          ax = plt.axes(projection=ccrs.PlateCarree())
          ax.set_extent([-80, 80, -85, -45], ccrs.PlateCarree())
          CS = plt.scatter(lons_random_sample-360,
                           lats_random_sample,
                           c=clabels random sample,
                           marker='o',
                           cmap= plt.get_cmap('cividis'),
                           s=10.0,
                           transform=ccrs.Geodetic(),
          ax.coastlines(resolution='50m')
          ax.gridlines(color='black')
          ax.add_feature(cartopy.feature.LAND)
```


Notably, we do seem to have what could be called a "Weddell Gyre class", sort of. It's roughly in the right place; in the core of where the gyre circulation is expected to be.

Caveats: this is sort of a climatological picture, so to speak. It will be biased towards more recent times, where the density of observations is higher.