Chin. Ann. Math. 29B(4), 2008, 341–352 DOI: 10.1007/s11401-007-0401-y

Chinese Annals of Mathematics, Series B

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2008

The Change-Base Issue for Ω -Categories**

Chengling FANG* Dexue ZHANG*

Abstract Let $G:\Omega\to\Omega'$ be a closed unital map between commutative, unital quantales. G induces a functor \overline{G} from the category of Ω -categories to that of Ω' -categories. This paper is concerned with some basic properties of \overline{G} . The main results are: (1) when Ω , Ω' are integral, $G:\Omega\to\Omega'$ and $F:\Omega'\to\Omega$ are closed unital maps, \overline{F} is a left adjoint of \overline{G} if and only if F is a left adjoint of G; (2) \overline{G} is an equivalence of categories if and only if G is an isomorphism in the category of commutative unital quantales and closed unital maps; and (3) a sufficient condition is obtained for \overline{G} to preserve completeness in the sense that $\overline{G}A$ is a complete Ω' -category whenever A is a complete Ω -category.

Keywords Commutative unital quantale, Closed unital map, Enriched category, Change-base

2000 MR Subject Classification 18D20, 18A35, 06F07, 18B35

1 Introduction

Let $(\Omega, *, I)$ (or Ω for short) be a commutative, unital quantale (cf. Definition 2.1). From the point of view of category theory, $(\Omega, *, I)$ is exactly a symmetric, monoidal closed category with the underlying category being a complete lattice. Thus, one can establish a theory of Ω -categories (that is, categories enriched over Ω). If $G: (\Omega, *, I) \to (\Omega', *', I')$ is a closed unital map between commutative, unital quantales (cf. Definition 3.1) and A is an Ω -category, then

$$(\overline{G}A)(a,b) \stackrel{\triangle}{=} G(A(a,b))$$

defines an Ω' -category $\overline{G}A$. This correspondence defines a functor $\overline{G}: \Omega\text{-}\mathbf{Cat} \to \Omega'\text{-}\mathbf{Cat}$ from the category of Ω -categories to that of Ω' -categories (cf. [4, 9]). This functor plays a role of change-base in the theory of Ω -categories. Therefore, the study of the functor \overline{G} is important for Ω -categories. In this paper, we are concerned with some basic questions about \overline{G} :

- (1) When does \overline{G} have a left adjoint which is also of this form?
- (2) When is \overline{G} an equivalence of categories?
- (3) When does \overline{G} preserve completeness?

For the first question, a necessary and sufficient condition is obtained in the case that both Ω and Ω' are integral quantales. For the second, it is shown that \overline{G} is an equivalence of categories if and only if G is an isomorphism in the category of commutative, unital quantales and closed

Manuscript received September 7, 2007. Published online June 24, 2008.

 $^{^*\}mbox{Department}$ of Mathematics, Sichuan University, Chengdu 610064, China.

 $E\text{-mail: fangchengling@163.com} \quad dxzhang@scu.edu.cn$

^{**}Project supported by the National Natural Science Foundation of China (No. 10771147) and the Program for New Century Excellent Talents in University (No. 05-0779).

unital maps. For the third, it is shown that if G has a left adjoint which preserves tensors then \overline{G} preserves completeness.

At the end of this introduction, we recall some basic notions of concrete categories from [1], which shall be needed in the sequel.

By a concrete category over the category **Set** of sets is meant a pair (\mathbf{A}, U) , where **A** is a category and $U: \mathbf{A} \to \mathbf{Set}$ is a faithful functor. U is called the underlying functor or the forgetful functor. For each object A in \mathbf{A} , U(A) (also written as |A|) is called the underlying set of A; and for each morphism $f: A \to B$ in \mathbf{A} , U(f) is called the underlying function of f. In this paper, by a concrete category we always mean a concrete category over **Set**. A concrete category (\mathbf{A}, U) is often abbreviated to \mathbf{A} if the functor U is obvious. A concrete functor $F: (\mathbf{A}, U) \to (\mathbf{B}, V)$ is a functor $F: \mathbf{A} \to \mathbf{B}$ such that $V \circ F = U$.

2 Basic Ideas of Ω -Categories

Definition 2.1 (cf. [12]) A (commutative) unital quantale is a triple $(\Omega, *, I)$, where Ω is a complete lattice, I is a fixed element of Ω , and * is a (commutative) associative binary operation on Ω such that $a * (\lor b_i) = \lor (a * b_i)$, $(\lor b_i) * a = \lor (b_i * a)$ and I * a = a = a * I for all $a, b_i \in \Omega$.

For a unital quantale $(\Omega, *, I)$, the binary operation * is called the tensor on Ω . $(\Omega, *, I)$ is often abbreviated to Ω if there would be no confusion with respect to the unit and the tensor. A unital quantale Ω is integral (cf. [6]) if the unit element coincides with the top element in Ω .

We are mainly concerned with commutative, unital quantales in this article. Given a commutative, unital quantale $(\Omega, *, I)$, let $a \to b = \bigvee \{c \in \Omega, a * c \leq b\}$ for all $a, b \in \Omega$. Then * and \to are interlocked with each other by the adjoint property: $c \leq a \to b \Leftrightarrow a * c \leq b$. The binary operation \to shall be called the cotensor of Ω (with respect to *).

Given a commutative, unital quantale $(\Omega, *, I)$, an Ω -category (cf. [7, 9]) is a set A together with an assignment of an element $A(a, b) \in \Omega$ to every ordered pair $(a, b) \in A \times A$, such that

- (1) $I \leq A(a, a)$ for every $a \in A$;
- (2) $A(a,b) * A(b,c) \le A(a,c)$ for all $a,b,c \in A$.

An Ω -functor (or simply a functor) between Ω -categories A and B is a function $f:A\to B$ such that $A(a,b)\leq B(f(a),f(b))$ for all $a,b\in A$. An Ω -functor f is called an Ω -isometry if A(a,b)=B(f(a),f(b)) for all $a,b\in A$. A bijective Ω -isometry f is an $(\Omega$ -)isomorphism. Ω -functors are composed by composing the underlying functions on sets. Ω -categories and Ω -functors form a concrete category, which is denoted by Ω -Cat.

Given an Ω -category A and $x, y \in A$, set $x \leq y$ if $I \leq A(x, y)$. Then $A_0 \triangleq (A, \leq)$ is a preordered set, called the underlying preordered set of A. An Ω -category A is said to be antisymmetric if A_0 is a partially ordered set, that is, if $A(x, y) \geq I$ and $A(y, x) \geq I$ then x = y. Some examples of commutative, unital quantales and corresponding Ω -categories are given below.

Example 2.1 (1) Let $\{0,1\}$ be the two-point lattice ordered by 0 < 1. Then 2 =

- $(\{0,1\}, \wedge, 1)$ is a commutative, unital quantale. The category of **2**-categories is exactly the category **PrOrd** of preordered sets and order-preserving functions.
- (2) (The Canonical Ω -Category Structure on Ω) Let $\Omega(\alpha, \beta) = \alpha \to \beta$. Then it is easy to check that Ω becomes an antisymmetric Ω -category. We shall write (Ω, \to) (or Ω for short) for this Ω -category.
- (3) Let $\Omega = [0, \infty]^{\text{op}}$ denote the extended interval of all non-negative real numbers with the opposite ordering as real numbers (so 0 is the greatest element). Let + be the usual addition on real numbers extended to cope with infinity such as $x + \infty = \infty$ for every $x \in [0, \infty]$. Then $\Omega = ([0, \infty]^{\text{op}}, +, 0)$ is a commutative, unital quantale. The category of Ω -categories is just the category **GMet** of generalized metric spaces (or pseudo-quasi-metric spaces) and non-expansive functions (cf. [2, 9]).
- (4) (Discrete Ω -Categories) Let X be a set. For all $x, y \in X$, let X(x, y) = I, the unit element in Ω , if x = y; otherwise, let X(x, y) = 0, the least element in Ω . Then X becomes an Ω -category. Such an Ω -category will be called a discrete Ω -category since every function from such an Ω -category to any other Ω -category is always an Ω -functor.

Definition 2.2 (cf. [7, 16]) Let K and A be Ω -categories.

(1) An element $a \in A$ is called a limit of an Ω -functor $f: K \to A$ weighted by $\psi: K \to \Omega$ if for each $y \in A$,

$$A(y,a) = \bigwedge_{x \in K} \psi(x) \to A(y,f(x)).$$

(2) An element $b \in A$ is called a colimit of an Ω -functor $f: K \to A$ weighted by $\phi: K^{\mathrm{op}} \to \Omega$ if for each $y \in A$,

$$A(b,y) = \bigwedge_{x \in K} \phi(x) \to A(f(x),y).$$

Weighted limits, when they exist, are unique up to isomorphism. Thus, we write $b = \lim_{\psi} f$ if b is a limit of f weighted by ψ ; similarly, we write $b = \operatorname{colim}_{\phi} f$ if b is a colimit of f weighted by ϕ .

Example 2.2 If A is an Ω -category, let |A| be the discrete Ω -category with the same underlying set of A. If a is a limit of id: $|A| \to A$ weighted by $\mu : |A| \to \Omega$, then for all $y \in A$,

$$A(y,a) = \bigwedge_{x \in A} \mu(x) \to A(y,x).$$

This equality can be interpreted as that y is smaller than or equal to a if and only if y is smaller than or equal to x whenever x is in μ . Therefore, a is called an infimum (or a greatest lower bound) of μ , denoted by $\inf \mu$.

Similarly, if a is a colimit of id: $|A| \to A$ weighted by $\mu: |A| \to \Omega$, then for all $y \in A$,

$$A(b,y) = \bigwedge_{x \in A} \mu(x) \to A(x,y).$$

b is called a supremum (or a least upper bound) of μ , denoted by $\sup \mu$.

Definition 2.3 (cf. [3, 7]) An Ω -category A is said to be complete if for any Ω -functor $f: K \to A$ and any $\psi: K \to \Omega$, the weighted limit $\lim_{\psi} f$ exists. A is said to be cocomplete if for any Ω -functor $f: K \to A$ and any $\phi: K^{\mathrm{op}} \to \Omega$, the weighted colimit $\mathrm{colim}_{\phi} f$ exists.

Proposition 2.1 (cf. [10, 14]) Suppose that A is an Ω -category. Then the following conditions are equivalent:

- (1) A is complete.
- (2) Every $\mu \in \Omega^A$ has an infimum.
- (3) Every $\mu \in \Omega^A$ has a supremum.
- (4) A is cocomplete.

Definition 2.4 An Ω -functor $f:A\to B$ is said to preserve weighted limits if for all Ω -functor $g:C\to A$ and $\psi:C\to \Omega$ such that the weighted limit $\lim_{\psi} g$ exists, the weighted limit of $f\circ g:C\to B$ weighted by ψ exists and $\lim_{\psi}(fg)=f(\lim_{\psi} g)$. Dually, one can define weighted-colimits-preserving Ω -functors. An Ω -functor f is said to be complete if f preserves both weighted limits and weighted colimits.

A complete Ω -lattice is an antisymmetric, complete Ω -category. All complete Ω -lattices and complete maps form a category, denoted Ω -CLat.

Example 2.3 (cf. [3, 10]) (Ω, \rightarrow) is a complete Ω -lattice, since for any Ω -functor $f: K \rightarrow \Omega$ and any $\psi: K \rightarrow \Omega$ the weighted limit exists and

$$\lim_{\psi} f = \bigwedge_{x \in K} (\psi(x) \to f(x)).$$

Definition 2.5 (cf. [3, 7, 15]) Let A be an Ω -category. Then

(1) A is said to be tensored if for all $\alpha \in \Omega, x \in A$, there is an element $\alpha \otimes x \in A$ such that

$$A(\alpha \otimes x, y) = \alpha \to A(x, y)$$

for any $y \in A$. In this case $\alpha \otimes x$ is called the tensor of α with x.

(2) A is said to be cotensored if for all $\alpha \in \Omega, x \in A$, there is an element $\alpha \mapsto x \in A$ such that

$$A(y, \alpha \rightarrow x) = \alpha \rightarrow A(y, x)$$

for any $y \in A$. In this case $\alpha \rightarrow x$ is called the cotensor of α with x.

For any $\alpha \in \Omega$, $x \in A$, define a function $\alpha_x : |A| \to \Omega$ by $\alpha_x(z) = \alpha$ if z = x and $\alpha_x(z) = 0$ if $z \neq x$. Then $\alpha \otimes x$ and $\alpha \mapsto x$ are exactly the supremum and infimum of α_x respectively (cf. [17]). Thus, every complete Ω -category is both tensored and cotensored (cf. [15]).

It is easy to see that if an Ω -category A is tensored then A_0 has a bottom element \bot . Similarly, if A is cotensored then A_0 has a top element \top .

Proposition 2.2 (cf. [15]) Suppose that A is an antisymmetric Ω -category.

- (1) If A is tensored, then the tensor $\otimes : \Omega \times A_0 \to A_0$ satisfies:
- (i) $0 \otimes x = \bot$, $I \otimes x = x$.

- (ii) $A(\alpha \otimes x, y) = \alpha \rightarrow A(x, y)$. Hence, $\alpha \otimes x \leq y$ in $A_0 \Leftrightarrow \alpha \leq A(x, y)$.
- (iii) $(\alpha * \beta) \otimes x = \alpha \otimes (\beta \otimes x)$.
- (2) If A is both tensored and cotensored, then for any $\alpha \in \Omega$, $\alpha \otimes (-) : A_0 \to A_0$ is a left adjoint of $\alpha \mapsto (-) : A_0 \to A_0$.
- (3) If A is both tensored and cotensored, then for any $x \in A$, $(-) \otimes x : \Omega \to A_0$ is a left adjoint of $A(x, -) : A_0 \to \Omega$.

Theorem 2.1 (cf. [15]) Let A be a both tensored and cotensored Ω -category. Then A is a complete Ω -category if and only if A_0 is a complete preorder.

Theorem 2.2 (cf. [15]) Let $f: A \to B$ be an Ω -functor between complete Ω -categories. Then the following conditions are equivalent:

- (1) f is complete.
- (2) $f: A_0 \to B_0$ preserves meets and joins; and f preserves tensors and cotensors in the sense that $f(\alpha \otimes x) = \alpha \otimes f(x)$, $f(\alpha \to x) = \alpha \to f(x)$ for all $x \in A$, $\alpha \in \Omega$.

A combination of Proposition 2.2 and Theorem 2.1 shows that a complete Ω -lattice is essentially an Ω -module in the category of complete lattices and suprema-preserving functions (cf. [15]). The details are as follows.

Suppose that A is a complete Ω -lattice. Then A_0 is a complete lattice. The set $[A_0, A_0]$ of join-preserving endo-maps on A_0 is a complete lattice under the pointwise ordering. Clearly, $([A_0, A_0], \circ, \mathrm{id})$ becomes a unital quantale, which is not commutative in general. By Proposition 2.2, the function $k: \Omega \to [A_0, A_0], \ k(\alpha) = \alpha \otimes (-)$, satisfies: (a) k preserves joins; (b) $k(I) = \mathrm{id}$; and (c) $k(\alpha * \beta) = k(\alpha) \circ k(\beta)$. Conversely, given a complete lattice A_0 and a function $k: \Omega \to [A_0, A_0]$ fulfilling the conditions (a)–(c), define $A(x, y) = \vee \{\alpha \in \Omega \mid k(\alpha)(x) \leq y\}$ for all $x, y \in A_0$. Then A becomes an Ω -category with A_0 as underlying preorder. Moreover, A is tensored and cotensored, with tensor and cotensor given by $\alpha \otimes x = k(\alpha)(x)$ and $\alpha \mapsto x = \vee \{y \in A_0 \mid k(\alpha)(y) \leq x\}$. Therefore A is a complete Ω -lattice.

3 The Change-Base Issue

Definition 3.1 (cf. [12]) A closed unital map $G:(\Omega,*,I)\to(\Omega',*',I')$ is a function $G:\Omega\to\Omega'$ such that

- (1) G preserves order;
- (2) I' < G(I);
- (3) G(a) *' G(b) < G(a * b) for all $a, b \in \Omega$.

In terminology of category theory, a closed unital map between commutative unital quantales is a closed functor if we regard commutative unital quantales as symmetric, monoidal closed categories (cf. [4, 7, 9]).

Remark 3.1 In the presence of (1), (3) in the above definition is equivalent to (3') $G(a \to b) \leq G(a) \to' G(b)$ for all $a, b \in \Omega$.

On one hand, if (3') holds, then $G(b) \leq G(a \to a * b) \leq G(a) \to' G(a * b)$, hence

$$G(a) *' G(b) \leq G(a * b).$$

On the other hand, if (3) holds, then $G(a) *' G(a \rightarrow b) \leq G(a * (a \rightarrow b)) \leq G(b)$, thus

$$G(a \to b) \le G(a) \to' G(b)$$
.

Let $G:(\Omega,*,I)\to (\Omega',*',I')$ be a closed unital map and A be an Ω -category. Then

$$(\overline{G}A)(a,b) \stackrel{\triangle}{=} G(A(a,b))$$

defines an Ω' -category $\overline{G}A$ with the same underlying set of A. Moreover, if $f: X \to Y$ is an Ω -functor, then $f: \overline{G}X \to \overline{G}Y$ is also an Ω' -functor, denoted by $\overline{G}f$. Therefore, we obtain a functor $\overline{G}: \Omega$ -Cat $\to \Omega'$ -Cat, which plays a role of change-base in the theory of Ω -categories.

Example 3.1 (1) For each commutative, unital quantale $(\Omega, *, I)$. Let $[-]: \Omega \to \mathbf{2}$ be given by

$$[x] = \begin{cases} 1, & x \ge I; \\ 0, & x \not\ge I. \end{cases}$$

Then [-] is a closed unital map. For each Ω -category A, $\overline{[A]}$ is exactly the underlying preordered set A_0 of A. Therefore, we write $(-)_0$ to denote the functor $\overline{[-]}$: Ω -Cat \to **PrOrd**.

(2) If $e: \mathbf{2} \to \Omega$ is the function given by e(0) = 0, e(1) = I. Then e is a closed unital map and the functor $\overline{e}: \mathbf{PrOrd} \to \Omega\text{-}\mathbf{Cat}$ is clearly an embedding. \overline{e} is a left adjoint of $(-)_0$ (cf. Example 3.2).

Theorem 3.1 Let Ω, Ω' be integral, commutative, unital quantales. If both $G : \Omega \to \Omega'$ and $F : \Omega' \to \Omega$ are closed unital maps, then the following conditions are equivalent:

- (1) (F,G) is an adjunction.
- (2) $(\overline{F}, \overline{G})$ is an adjunction.

Proof (1) \Rightarrow (2) Let A be an Ω -category and B an Ω' -category. Then $f: B \to \overline{G}A$ is an Ω' -functor $\Leftrightarrow B(x,y) \leq G(A(f(x),f(y)))$ for all $x,y \in B \Leftrightarrow F(B(x,y)) \leq A(f(x),f(y))$ for all $x,y \in B \Leftrightarrow f: \overline{F}B \to A$ is an Ω -functor. Therefore $(\overline{F},\overline{G})$ is an adjunction, and it is indeed a Galois correspondence following the terminology of [1].

 $(2)\Rightarrow (1)$ First, let $\overline{\eta}: \operatorname{id} \to \overline{G} \circ \overline{F}$ be the unit of the adjunction $(\overline{F}, \overline{G})$. Then for each Ω' -category B, the underlying function of $\overline{\eta}_B: B \to \overline{G} \circ \overline{F}(B)$ must be the identity function on B. Suppose on the contrary that there is an Ω' -category B such that $\overline{\eta}_B(x) = y$ for some different elements $x, y \in B$. Let $f: B \to B$ be a constant map with value x. Then f is easily checked to be an Ω' -functor since Ω' is integral. Because $\overline{G} \circ \overline{F}(f)(\overline{\eta}_B(x)) = x$ and $(\overline{\eta}_B \circ f)(x) = y$,

the diagram $f \downarrow \qquad \qquad \downarrow_{\overline{G} \circ \overline{F}(B)}$ does not commute, a contradiction to that $\overline{\eta}$ is a natural $G \circ \overline{F}(B)$

transformation.

Similarly, if $\overline{\varepsilon}$ denotes the co-unit of the adjunction $(\overline{F}, \overline{G})$, then for each Ω -category A, the underlying function of $\overline{\varepsilon}_A : \overline{F} \circ \overline{G}(A) \to A$ is the identity function on A.

Now, we show that (F,G) is an adjunction. Since the underlying functions of $\overline{\eta}_{\Omega'}, \overline{\varepsilon}_{\Omega}$ are both identities, for any $\alpha \in \Omega$ and $\alpha' \in \Omega'$, we have

$$\alpha' = \Omega'(I', \alpha') \le \overline{G} \circ \overline{F}\Omega'(I', \alpha') = GF(\alpha'),$$

$$FG(\alpha) = \overline{F} \circ \overline{G}\Omega(I, \alpha) \le \Omega(I, \alpha) = \alpha.$$

Therefore, (F, G) is an adjunction.

Example 3.2 For each commutative, unital quantale Ω , let [-] and e be defined as in Example 3.1. Then (e, [-]) is an adjunction in the category of quantales and closed unital maps. Hence $(\overline{e}, (-)_0)$ is an adjunction.

Theorem 3.2 If $G: \Omega \to \Omega'$ is a closed unital map, then the following (1), (2) and (3) are equivalent:

- (1) $\overline{G}: \Omega\text{-}\mathbf{Cat} \to \Omega'\text{-}\mathbf{Cat}$ is an equivalence of categories,
- (2) G is an order isomorphism and preserves tensor,
- (3) $\overline{G}: \Omega\text{-}\mathbf{Cat} \to \Omega'\text{-}\mathbf{Cat}$ is an isomorphism of categories.

Proof (1) \Rightarrow (2) (i) G is surjective. Since \overline{G} is an equivalence of categories, there is an Ω -category A such that $(\Omega', \to') \cong \overline{G}A$. Let $f: \Omega' \to \overline{G}A$ be an Ω' -isomorphism. Then for any $x' \in \Omega'$, $x' = \Omega'(I', x') = \overline{G}A(f(I'), f(x')) = G(A(f(I'), f(x')))$. Hence, G is surjective.

(ii) G reflects order in the sense that if $G(\alpha) \leq G(\beta)$ then $\alpha \leq \beta$. In particular, G is injective.

First, we note that $f:A\to B$ is an Ω -functor if and only if $f:\overline{G}A\to \overline{G}B$ is an Ω' -functor since \overline{G} is a full and faithful concrete functor.

Suppose on the contrary that $G(\alpha) \leq G(\beta)$ but $\alpha \nleq \beta$. Define two Ω -categories A and B as follows. The underlying set of A is $\{x,y\}$ and that of B is $\{z,w\}$; the hom-functors are given by

$$A(x, y) = \alpha$$
, $A(x, x) = A(y, y) = I$, $A(y, x) = 0$

and

$$B(z, w) = \beta$$
, $B(z, z) = B(w, w) = I$, $B(w, z) = 0$.

Let f be the function given by f(x) = z, f(y) = w. Then $f : \overline{G}A \to \overline{G}B$ is an Ω -functor, but $f : A \to B$ is not an Ω -functor, a contradiction.

- (iii) It follows from (i) and (ii) that G is an order isomorphism.
- (iv) G preserves tensor. Suppose on the contrary that there exist $\alpha, \beta \in \Omega$, such that $G(\alpha * \beta) > G(\alpha) *' G(\beta)$. Define an Ω' -category B as follows: the underlying set is $\{x', y', z'\}$, and the hom-functor is given by

$$B(x', y') = G(\alpha), \quad B(y', z') = G(\beta), \quad B(x', z') = G(\alpha) *' G(\beta)$$

and

$$B(y',x') = B(z',y') = B(z',x') = 0, \quad B(x',x') = B(y',y') = B(z',z') = I'.$$

Since \overline{G} is an equivalence, there is an Ω -category A, such that $\overline{G}A \cong B$. Let $f : \overline{G}A \to B$ be such an Ω' -isomorphism. By definition of \overline{G} , the underlying set of A has exactly 3 elements, say, $\{x, y, z\}$. Suppose that f(x) = x', f(y) = y', and f(z) = z'. Because G is injective and

$$G(A(x,y)) = \overline{G}A(x,y) = B(f(x),f(y)) = B(x',y') = G(\alpha),$$

we get $A(x,y) = \alpha$. Similarly, it can be checked that $A(y,z) = \beta$. Thus,

$$G(\alpha) *' G(\beta) < G(\alpha * \beta) = G(A(x, y) * A(y, z))$$

$$\leq G(A(x, z)) = B(x', z')$$

$$= G(\alpha) *' G(\beta),$$

a contradiction. Hence, G preserves tensor.

(2) \Rightarrow (3) Since G is an order isomorphism, there is a functor $F: \Omega' \to \Omega$, such that $GF = 1_{\Omega'}, FG = 1_{\Omega}$.

We check that F preserves tensor and unit, which is thus a closed unital map. Since G preserves tensor, for any $\alpha', \beta' \in \Omega'$, $\alpha' *' \beta' = GF(\alpha') *' GF(\beta') = G(F(\alpha') * F(\beta'))$. Then $F(\alpha' *' \beta') = F(\alpha') * F(\beta')$, i.e., F preserves tensor. F preserves unit because F(I') = F(I') * I = F(I') * FG(I) = F(I' *' G(I)) = FG(I) = I.

Thus, both F and G are isomorphisms, inverse to each other, in the category of commutative, unital quantales and unital closed maps. By definition of \overline{F} and \overline{G} , it is easy to see that they are inverse to each other. Therefore, \overline{G} is an isomorphism of categories.

$$(3) \Rightarrow (1)$$
 Trivial.

Example 3.3 Let $\Omega = ([0,\infty]^{\mathrm{op}},+,0), \Omega' = ([0,1],\cdot,1)$. Then, $G:\Omega \to \Omega', G(x) = \mathrm{e}^{-x}$ is an order isomorphism and preserves tensor. Hence, $\overline{G}:\Omega\text{-}\mathbf{Cat} \to \Omega'\text{-}\mathbf{Cat}$ is an isomorphism of categories.

4 Preservation of Completeness

In this section a sufficient condition is obtained for \overline{G} to preserve completeness in the sense that $\overline{G}A$ is a complete Ω' -category whenever A is a complete Ω -category.

Theorem 4.1 Suppose that $G:(\Omega,*,I)\to (\Omega',*',I')$ is a closed unital map with a left adjoint $F:\Omega'\to\Omega$ which preserves tensor in the sense that $F(\alpha')*F(\beta')=F(\alpha'*'\beta')$ for any $\alpha',\beta'\in\Omega'$. Then for any complete Ω -category $A,\overline{G}(A)$ is a complete Ω' -category.

We prove a lemma first.

Lemma 4.1 Suppose that $G: (\Omega, *, I) \to (\Omega', *', I')$ is a closed unital map with a left adjoint $F: \Omega' \to \Omega$. Then the following conditions are equivalent:

- (1) For any $\alpha', \beta' \in \Omega'$, $F(\alpha') * F(\beta') = F(\alpha' *' \beta')$.
- (2) For any $\alpha' \in \Omega'$, $\alpha \in \Omega$, $G(F(\alpha') \to \alpha) = \alpha' \to G(\alpha)$.

Proof (1) \Rightarrow (2) (F,G) is an adjunction. For any $\alpha \in \Omega$, α' , $\beta' \in \Omega'$,

$$\beta' \leq \alpha' \to' G(\alpha) \Leftrightarrow \beta' *' \alpha' \leq G(\alpha)$$

$$\Leftrightarrow F(\beta' *' \alpha') \leq \alpha$$

$$\Leftrightarrow F(\beta') * F(\alpha') \leq \alpha$$

$$\Leftrightarrow F(\beta') \leq F(\alpha') \to \alpha$$

$$\Leftrightarrow \beta' \leq G(F(\alpha') \to \alpha).$$

Thus, $\alpha' \to G(\alpha) = G(F(\alpha') \to \alpha)$.

 $(2) \Rightarrow (1)$ For any $\gamma \in \Omega$,

$$\begin{split} F(\alpha' *' \beta') &\leq \gamma \Leftrightarrow \alpha' *' \beta' \leq G(\gamma) \\ &\Leftrightarrow \alpha' \leq \beta' \to' G(\gamma) = G(F(\beta') \to \gamma) \\ &\Leftrightarrow F(\alpha') \leq F(\beta') \to \gamma \\ &\Leftrightarrow F(\alpha') * F(\beta') \leq \gamma. \end{split}$$

Thus, $F(\alpha') * F(\beta') = F(\alpha' *' \beta')$.

Now we prove Theorem 4.1.

Proof Suppose that A is a complete Ω -category. We show that $\overline{G}A$ is also a complete Ω' -category. To this end, we check that every $\mu' \in \Omega'^{\overline{G}A}$ has an infimum in $\overline{G}A$.

Let $a \in A$ be an infimum of $F \circ \mu' \in \Omega^A$ in A. Then, for any $y \in \overline{G}A$,

$$\begin{split} \overline{G}A(y,a) &= G(A(y,a)) \\ &= G\Big(\bigwedge_{x \in A} F \circ \mu'(x) \to A(y,x)\Big) \\ &= \bigwedge_{x \in \overline{G}A} G(F(\mu'(x)) \to A(y,x)) \\ &= \bigwedge_{x \in \overline{G}A} \mu'(x) \to' G(A(y,x)) \\ &= \bigwedge_{x \in \overline{G}A} \mu'(x) \to' (\overline{G}A)(y,x). \end{split}$$

Therefore, a is an infimum of μ' in $\overline{G}A$.

Example 4.1 (cf. [4, 7]) For each commutative, unital quantale Ω , the closed unital map $[-]: \Omega \to \mathbf{2}$ satisfies the conditions in Theorem 4.1. Thus, A_0 is a complete preorder if A is a complete Ω -category.

Given a closed unital map $G: \Omega \to \Omega'$ with the conditions in Theorem 4.1, the left adjoint F of G is not always a closed unital map. And for an Ω -category A, the underlying preorders of A and $\overline{G}A$ might be different.

Example 4.2 Let $\Omega = (\{0, \frac{1}{2}, 1\}, \wedge, 1)$ and $G : \Omega \to \mathbf{2}$ be given by G(0) = 0, $G(\frac{1}{2}) = G(1) = 1$. Then G is a closed unital map. The function $F : \mathbf{2} \to \Omega$ given by F(0) = 0, $F(1) = \frac{1}{2}$ is a left adjoint of G. Obviously, F preserves tensor. Hence, G satisfies the condition in Theorem 4.1. But F is not a closed unital map because F(1) < 1. Let $A = (\Omega, \to)$. Then $\overline{G}A(1, \frac{1}{2}) = G(A(1, \frac{1}{2})) = G(\frac{1}{2}) = 1$. Thus, $1 \le \frac{1}{2}$ in $(\overline{G}A)_0$, which is not the case in A_0 .

If the left adjoint F in Theorem 4.1 is already a closed unital map, \overline{G} can be described in another equivalent way.

Definition 4.1 (cf. [11]) Let $F: \Omega \to \Omega'$ be a closed unital map. Then

- (1) F is strict if F(I) = I' and $F(\alpha * \beta) = F(\alpha) *' F(\beta)$ for all $\alpha, \beta \in \Omega$.
- (2) F is cocontinuous if F is join-preserving.

It is easy to check that the right adjoint of every strict, cocontinuous closed map is also a closed unital map. Conversely, if $F: \Omega \to \Omega'$ is at the same time a closed unital map and a left adjoint of a closed unital map $G: \Omega' \to \Omega$, then F is strict and cocontinuous.

Suppose that $F: \Omega' \to \Omega$ is a strict, cocontinuous, closed unital map and that A is a complete Ω -category. Let $k: \Omega \to [A_0, A_0], k(\alpha) = \alpha \otimes (-)$, be the Ω -module representation of A. Then the composition $k \circ F$ defines a complete Ω' -category $\underline{F}A$ in terms of Ω' -modules with $(\underline{F}A)_0 = A_0$. If we denote the tensor and cotensor in A by \otimes and \mapsto respectively; the tensor and cotensor in $\underline{F}A$ by \otimes' and \mapsto' respectively, then we have the following conclusion.

Proposition 4.1
$$\alpha' \otimes' x = F(\alpha') \otimes x$$
; $\alpha' \rightarrowtail' x = F(\alpha') \rightarrowtail x$.

It is easy to check that \underline{F} is a functor from the category Ω -CLat of complete Ω -lattices and complete maps to the category Ω' -CLat of complete Ω' -lattices and complete maps.

Proposition 4.2 Let $G: \Omega \to \Omega'$ be a closed unital map such that G has a left adjoint $F: \Omega' \to \Omega$ which is a closed unital map. Then, for any complete Ω -lattice A, $\underline{F}A = \overline{G}A$. In particular, \overline{G} preserves completeness.

Proof For any $\beta' \in \Omega'$ and $x, y \in A$,

$$\beta' \leq \overline{G}A(x,y) \Leftrightarrow \beta' \leq G(A(x,y))$$
$$\Leftrightarrow F(\beta') \leq A(x,y)$$
$$\Leftrightarrow F(\beta') \otimes x \leq y$$
$$\Leftrightarrow \beta' \otimes' x \leq y$$
$$\Leftrightarrow \beta' \leq \underline{F}A(x,y).$$

Therefore, $\underline{F}A = \overline{G}A$.

Example 4.3 (1) Let $\Omega = ([0,1], \wedge, 1)$, or $\Omega = ([0,1], \times, 1)$, and $e : \mathbf{2} \to \Omega$ be the closed unital map given by e(0) = 0 and e(1) = 1. e has a left adjoint $F : \Omega \to \mathbf{2}$ given by F(0) = 0 and F(x) = 1 whenever $x \neq 0$. It is easy to see that F is a closed unital map. Thus, for any complete **2**-category $A, \overline{e}A$ is a complete Ω -category.

(2) A distance distribution function (briefly, a d.d.f.) is a non-decreasing function f defined on $[0,\infty]$ such that $f(0)=0, f(\infty)=1$, and is left continuous on $(0,\infty)$. The set of all d.d.f.'s will be denoted by Δ^+ . Clearly, Δ^+ is a complete lattice under the pointwise order with a top element ε_0 , where, $\varepsilon_0(0)=0$ and $\varepsilon_0(x)=1$ whenever x>0. Suppose that * is a left continuous t-norm on [0, 1]. Let $f \circledast g(t) = \bigvee \{f(r) * g(s) \mid r+s \leq t\}$ for all $f, g \in \Delta^+, t \in [0, \infty]$. Then, $(\Delta^+, \circledast, \varepsilon_0)$ is a commutative, unital quantale. Categories enriched over $(\Delta^+, \circledast, \varepsilon_0)$ are exactly the pseudo-quasi-probabilistic metric spaces (cf. [13]). Define $i:([0,\infty]^{\operatorname{op}},+,0)\to (\Delta^+, \circledast, \varepsilon_0)$ by i(x)(t)=0 if $t \leq x$ and i(x)(t)=1 if x < t. i is clearly a cocontinuous, strict closed unital map. The right adjoint $j:\Delta^+\to [0,\infty]^{\operatorname{op}}$ of i is given by $j(f)=\inf\{x\in[0,\infty]\mid f(x)=1\}$, where the infimum is taken in $[0,\infty]$, not in $[0,\infty]^{\operatorname{op}}$. Then, $j:(\Delta^+, \circledast, \varepsilon_0)\to ([0,\infty]^{\operatorname{op}},+,0)$ is a closed unital map and \overline{j} (= \underline{i}) preserves completeness by the above proposition.

The following examples show that if the left adjoint F in Theorem 4.1 does not preserve tensor, then \overline{G} does not preserve completeness in general.

Example 4.4 A left continuous t-norm (cf. [8]) on [0,1] is a binary operation * on [0,1] such that ([0,1],*,1) becomes a commutative, unital quantale. Let * and *' be two left continuous t-norms on [0,1] such that $x*y \geq x*'y$ for all $x,y \in [0,1]$. Then $G=\mathrm{id}:([0,1],*,1) \to ([0,1],*',1)$ is a closed unital map. Clearly, G has a left adjoint which fails to preserve tenor whenever $*' \neq *$. We shall show that \overline{G} does not preserve completeness whenever $*' \neq *$.

For convenience, we write Ω for ([0,1],*,1) and Ω' for ([0,1],*',1). Let \to and \to' denote the cotensors of Ω and Ω' respectively. Then $A=([0,1],\to)$ is a complete Ω -category. Because $G=\mathrm{id}$, the underlying preorder of $\overline{G}A$ coincides with that of A, which is the usual order on [0,1]. If $\overline{G}A$ is a complete Ω' -category, it must be tensored. Denote the tensor on $\overline{G}A$ by \otimes' . Then, appealing to Proposition 2.2 (1)(ii), we have

$$\alpha \otimes' x \leq y \Leftrightarrow \alpha \leq \overline{G}A(x,y) = A(x,y) = x \to y \Leftrightarrow \alpha * x \leq y,$$

which implies that $\alpha \otimes' x = \alpha * x$. Therefore, for any $\alpha, \beta \in [0,1]$, by Proposition 2.2 (1)(iii)

$$\alpha *' \beta = (\alpha *' \beta) * 1 = (\alpha *' \beta) \otimes' 1 = \alpha \otimes' (\beta \otimes' 1) = \alpha * (\beta * 1) = \alpha * \beta.$$

Example 4.5 Let $\Omega = ([0,1],*,1)$, where * is the Łukasiewicz t-norm on [0,1], i.e., $x*y = \max\{x+y-1,0\}$. The left adjoint $F:\Omega\to\mathbf{2}$ of the closed unital map $e:\mathbf{2}\to\Omega$ does not preserve tensor. We say that $\overline{e}:\mathbf{PrOrd}\to\Omega\text{-}\mathbf{Cat}$ does not preserve completeness. Indeed, if A is a complete lattice with at least 2 elements, we show that $\overline{e}A$ is not a complete Ω -category. To see this, let $\mu:\overline{e}A\to[0,1]$ be a constant function with value $\frac{1}{2}$. Then for each $y\in A\setminus\{\bot\}$, where \bot is the least element of A,

$$\bigwedge_{x \in A} \mu(x) \to (\overline{e}A)(y,x) = \bigwedge_{x \in A} \mu(x) \to e(A(y,x)) = \frac{1}{2} \to 0 = \frac{1}{2}.$$

But, $(\overline{e}A)(y,a) = e(A(y,a)) \neq \frac{1}{2}$ for any $a \in A$. Therefore, μ has no infimum.

References

- [1] Adámek, J., Herrlich, H. and Strecker, G. E., Abstract and Concrete Categories, The Joy of Cats, John Wiley & Sons, New York, 1990.
- [2] Bonsangue, M., Breugel, F. and Rutten, J. J. M. M., Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding, *Theoret. Comput. Sci.*, 193, 1998, 1–51.
- [3] Borceux, F., Handbook of Categorical Algebra, Vol. 2, Categories and Structures, Cambridge University Press, Cambridge, 1994.
- [4] Eilenberg, S. and Kelly, G. M., Closed categories, Proceedings of the Conference on Categorical Algebra, La Jolla 1965, Springer, Berlin, 1966, 421–562.
- [5] Gierz, G., Hofmann, K. H., et al., Continuous Lattices and Domains, Cambridge University Press, Cambridge, 2003.
- [6] Höhle, U., Commutative, residuated l-monoids, Non-classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory, U. Höhle, E. P. Klement (eds.), Kluwer, Dordrecht, 1995.
- [7] Kelly, G. M., Basic Concepts of Enriched Category Theory, London Mathematical Society Lecture Notes Series 64, Cambridge University Press, Cambridge, 1982.
- [8] Klement, E. P., Mesiar, R. and Pap, E., Triangular Norms, Trends in Logic, Vol. 8, Kluwer Academic Publishers, Dordrecht, 2000.
- [9] Lawvere, F. W., Metric spaces, generalized logic, and closed categories, Rend. Sem. Mat. Fis. Milano, 43, 1973, 135–166.
- [10] Lai, H. and Zhang, D., Complete and directed complete Ω-categories, Theoret. Comput. Sci., 388, 2007, 1–25.
- [11] Mac Lane, S., Categories for the Working Mathematician, 2nd Edition, Springer, Berlin, 1998.
- [12] Rosenthal, K. I., Quantales and Their Applications, Longman Scientific & Technical, London, 1990.
- [13] Schweizer, B. and Sklar, A., Probabilistic Metric Spaces, North-Holland, New York, 1983.
- [14] Stubbe, I., Categorical structures enriched in a quantaloid: categories, distributors and functors, Theory Appl. Categ., 14, 2005, 1–45.
- [15] Stubbe, I., Categorical structures enriched in a quantaloid: tensored and cotensored categories, Theory Appl. Categ., 16, 2006, 283–306.
- [16] Wagner, K. R., Liminf convergence in Ω-categories, Theoret. Comput. Sci., 184, 1997, 61–104.
- [17] Zhao, H. and Zhang, D., Many valued lattices and their representations, Fuzzy Sets and Syst., 159, 2008, 81–94.