

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Робототехники и комплексной автоматизации» КАФЕДРА «Системы автоматизированного проектирования (РК-6)»

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине «Модели и методы анализа проектных решений»

Студент:	Кильдишев Петр Степанович
Группа:	PK6-66B
Тип задания:	Лабораторная работа
Тема:	Метод конечных разностей

Студент		Кильдишев П.С	
	подпись, дата	Фамилия, И.О.	
Преподаватель			
TIP OTTO AGENT OF THE	подпись, дата	Фамилия, И.О.	

Содержание

Метод	конечных разностей	•
1	Задание	,
2	Цель выполнения лабораторной работы	(
3	Теоретическое описание метода конечной разности	(
4	Описание структуры программы	(
5	Результат работы программы	1:
	Заключение	1!

Метод конечных разностей

1 Задание

Метод конечных разностей объединяет целый класс численных методов для решения дифференциальных уравнений путём аппроксимации производных.

В данной задаче необходимо найти распределение температуры в двумерной области (пластине) Ω^1 , представленной на рис. 1. Пластина изготовлена из однородного материала. Единицы измерения: время – секунды (сек.), пространство – миллиметры (мм), температура – градусы Цельсия (С°).

Рис. 1. Чертёж расчётной области пластины Ω

Основные размеры пластины: H = 400 мм, W = 500 мм, R2 = 150 мм, сторона квадратного отверстия S = 100 мм, радиус круглого отверстия R1 = 50 мм. В каждом варианте задания пластина имеет лишь одно отверстие из двух изображенных на рис. 1. Тип отверстия определяется в соответсвии с параметром $\gamma_1 \in \Gamma_1 = \{\partial \Omega_{r1}, \partial \Omega_s\}$. Координаты центра отверстия (XR1, YR1) или (XS2, YS2) определяются параметром $\gamma_2 \in \Gamma_2 = \{(155, 155), (155, 255), (355, 255), (355, 155), (255, 205)\}.$

 $^{^{1}\}Omega$ – область пластины, не включая её границу, $\bar{\Omega}$ = $\Omega \cup \partial \Omega$ – область пластины, включая её границу $\partial \Omega$, Ω_{near} – внутренняя область в h-окрестности границы $\partial \Omega$, где h-шаг сетки.

Пусть граница пластины $\partial\Omega$ представлена несколькими участками (рис. 1):

$$\begin{split} \partial\Omega &= \partial\Omega_l \cup \partial\Omega_r \cup \partial\Omega_t \cup \partial\Omega_b \cup \partial\Omega_{r1} \cup \partial\Omega_s \cup \partial\Omega_{r2}; \\ \partial\Omega_{ex} &= \partial\Omega_l \cup \partial\Omega_r \cup \partial\Omega_t \cup \partial\Omega_b \cup \partial\Omega_{r2}, \quad \text{внешняя граница области } \Omega; \\ \partial\Omega_{in} &= \partial\Omega_s \cup \partial\Omega_{r1}, \quad \text{внутренняя граница области } \Omega. \end{split}$$

Узловые точки, расположенные на границах $(x,y) \in \partial \Omega$ или их окрестности $(x,y) \in \Omega_{near}$ требуют особого внимания, поскольку в этих областях шаг сетки неравномерный, формулы для расчёта производных можно вывести используя материалы лекций по Вычислительной математике или материалы БИГОР. Напомним, что внутренняя область пластины обозначена просто Ω и рассматривается двумерная постановка задачи. Известно, что температура T в точке с координатами $(x,y) \in \Omega$ в момент времени t есть отображение $T: \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}$, которое вычисляется в результате решения дифференциального уравнения теплопроводности:

$$Tt = \Delta T, \qquad (x, y) \in \Omega, \quad t \ge 0, \quad T = T(x, y, t),$$
 (1)

где Δ – оператор Лапласа, т.е. $\Delta T = Tx + Ty$.

Начальное значение температуры (IC) для всех вариантов имеет вид:

$$T\big|_{t=0} = 0, (x,y) \in \Omega. \tag{2}$$

При этом, граничные условия (BC) для сторон пластины $\partial \Omega_x$ будут иметь различный вид:

$$T|_{(x,y)\in\partial\Omega_x}$$
 = 100 – ВС 1-о рода, задает источник нагрева; (3)

$$\nabla_{\bar{n}}T|_{(x,y)\in\partial\Omega_x}$$
= 0 – ВС 3-о рода, теплоизоляция, (4)

где $\nabla_{\bar{n}}T$ = $T\bar{n}$ = $\nabla_{x,y}T\cdot\bar{n}$ – градиент температуры вдоль внешней нормали \bar{n} к $\partial\Omega_x$;

$$\nabla_{\bar{n}}T|_{(x,y)\in\partial\Omega_x}=T$$
 – BC 3-о рода, для конвективного теплообмена на границе $\partial\Omega_x$. (5)

Физический смысл BC 1-о рода может означать, например, соприкосновение стороны поверхности $\partial \Omega_x$, если рассматиривать пластину как сечение тела, с некоторой средой высокой температуры (100 С°). Соотвествие $\partial \Omega_x$ конкретному BC задает параметр

 $\gamma_3 \in \Gamma_3 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$, исходя из таблицы 1. Требуется (базовая часть):

1 Определить форму пластины и BC в соответствии с $\Gamma_i[\gamma_i]$, $\forall i \in [1:3]$.

²Глава «Метод разложения функции в ряд Тейлора»

	«нагрев» (3)	«теплоизоляция» (4)	«конвекция» (5)
$\gamma_3 = 1$	$\partial\Omega_{ex}$	Ø	$\partial\Omega_{in}$
$\gamma_3 = 2$	$\partial \Omega_{in}$	Ø	$\partial\Omega_{ex}$
$\gamma_3 = 3$	$\partial\Omega_l$	$\partial\Omega_{in}\cup\partial\Omega_t\cup\partial\Omega_b$	$\partial\Omega_r$
$\gamma_3 = 4$	$\partial\Omega_r$	$\partial\Omega_{in}\cup\partial\Omega_t\cup\partial\Omega_b$	$\partial\Omega_l$
$\gamma_3 = 5$	$\partial\Omega_t$	$\partial\Omega_{in}\cup\partial\Omega_l\cup\partial\Omega_r$	$\partial\Omega_b$
$\gamma_3 = 6$	$\partial\Omega_b$	$\partial\Omega_{in}\cup\partial\Omega_l\cup\partial\Omega_r$	$\partial\Omega_t$
$\gamma_3 = 7$	$\partial \Omega_l \cup \partial \Omega_r$	$\partial\Omega_{in}$	$\partial\Omega_t\cup\partial\Omega_b$
$\gamma_3 = 8$	$\partial\Omega_l\cup\partial\Omega_r\cup\partial\Omega_{in}$	Ø	$\partial\Omega_t\cup\partial\Omega_b$
$\gamma_3 = 9$	$\partial \Omega_t \cup \partial \Omega_b$	$\partial\Omega_{in}$	$\partial\Omega_l\cup\partial\Omega_r$
$\gamma_3 = 10$	$\partial \Omega_t \cup \partial \Omega_b \cup \partial \Omega_{in}$	Ø	$\partial\Omega_l\cup\partial\Omega_r$
$\gamma_3 = 11$	$\partial\Omega_l\cup\partial\Omega_r$	Ø	$\partial\Omega_t \cup \partial\Omega_b \cup \partial\Omega_{in}$
γ_3 = 12	$\partial\Omega_t\cup\partial\Omega_b$	Ø	$\partial\Omega_l\cup\partial\Omega_r\cup\partial\Omega_{in}$
γ_3 = 13	$\partial\Omega_l\cup\partial\Omega_b$	$\partial\Omega_{in}$	$\partial \Omega_t \cup \partial \Omega_r$

Таблица 1. Варианты граничных условий в зависимости от γ_3

- 2 Задать равномерный шаг дискретизации $h \in \{5, 10\}^3$ по координатам x и y. Построить расчётную сетку на множестве $\bar{\Omega}$ и рассчитать позиции узлов на границах.
- 3 Для каждого варианта шага h явным и неявным методом решить нестационарное уравнение теплопроводности (1) при заданных BC, определив значения температуры в узлах сетки в диапазоне времени $t \in (0;100]$ сек, с шагом $h_t = 1$ сек.
- 4 Результаты необходимо сохранить в 4-х текстовых файлах⁴, имя каждому следует задавать в формате согласно материалу инструкции по выполнению лабораторных работ. Содержание каждого файла с результатами расчётов должно соответствовать следующему формату:

- 5 Для неявного метода в отчёте должна быть приведена информация о LAS: количество неизвестных (уравнений), число ненулевых элементов матрицы.
- 6 Сравнить полученные результаты вычислений с результатом моделирования аналогичной задачи в ANSYS.

Требуется (продвинутая часть):

 $^{^3{\}rm K}$ аждому значению шага h соответсвует один расчет; шаг по координатам x и y одинаков.

 $^{^4}$ Рассматривается 2 шага и по 2 метода для каждого.

- 7. Реализовать функцию кубической интеполярции значений температуры для произвольных точек пластины $(x,y) \in \mathbb{R}^2$ по известным значениям в узлах, в дискретные моменты времени;
- 8. Визуализировать результаты вычислений: функцию поля температуры $f(t_i, x, y)$ по всей пластине в виде цветовой диаграммы в требуемый момент времени (во время защиты)⁵, для проверки корректности решения;

2 Цель выполнения лабораторной работы

Цель выполнения лабораторной работы: реализовать явный и неявный методы конечных разностей и найти с их помощью распределение температур в двумерной области пластины Ω .

3 Теоретическое описание метода конечной разности

В первую очередь для реализации МКР требуется дискретизировать время и пространство. Дискретизация пространства происходит путем наложения на пластину сетки с шагом h. Начало координат сетки совпадает с левым нижним углом пластины. Ось X параллельна нижней грани пластины. Ось Y параллельна левой грани пластины. Начало отсчета производится с нуля. На пересечении вертикальных и горизонтальных "полос" сетки находятся узлы, в которых будут вычисляться значения температур. Исключением являются граничные узлы, не попадающие на сетку. Они находятся на пересечении границ пластины с одной из "полос" сетки. Количество узлов в сетке по горизонтали, считая с граничными: $n = \frac{W}{h} + 1$, по вертикали: $m = \frac{H}{h} + 1$. Время дискретизируется путем разделения задачи на шаги, в каждом из которых производится вычисление температуры во всех узлах при фиксированном времени с шагом по времени $h_t = 1$ сек. Начальный момент времени t = 0.

Значение темературы в граничных узлах может быть записано формулой (6):

$$T_{ij}^{t} = \begin{cases} 100, \ \Gamma \mathbb{Y} = (3); \\ 200, (ih, jh) \in \Omega_{r2}; \\ T_{i+\Delta i_{1}, j+\Delta j_{1}}^{t}, \ \Gamma \mathbb{Y} = (4); \\ \frac{T_{i+\Delta i_{1}, j+\Delta j_{1}}^{t}}{\mu h+1}, \ \Gamma \mathbb{Y} = (5), \end{cases}$$

$$(6)$$

где $i=\{0,n\}$ при $j=1..m-1;\ j=\{0,m\}$ при $i=1..n-1;\ \Delta i_1=\begin{pmatrix} 0\\1 \end{pmatrix}\bar{n}, \Delta j_1=\begin{pmatrix} 1\\0 \end{pmatrix}\bar{n},\ \mu$ - соотношение расстояния между узлом (i,j) и $(i+\Delta i_1,j+\Delta j_1)$ к h.

 $^{^5}$ Для визуализации рекомендуется использовать язык Python и библиотеку matplotlib.

Явный метод конечных разностей

Формула для решения задачи явным МКР в данной задаче следующая:

$$T_{ij}^{t+1} - T_{ij}^{t} = 2 \frac{\mu_x T_{i+\Delta i_2, j}^{t} - (1 + \mu_x) T_{ij}^{t} + T_{i-\Delta i_2, j}^{t}}{\mu_x (1 + \mu_x) h^2} + 2 \frac{\mu_y T_{i, j+\Delta j_2}^{t} - (1 + \mu_y) T_{ij}^{t} + T_{i, j-\Delta j_2}^{t}}{\mu_y (1 + \mu_y) h^2},$$
(7)

где
$$i=1..n-1,\; j=1..m-1,\; \Delta i_2= \begin{cases} 1,i=1;\\ -1,i=2..n-1 \end{cases}$$
 , $\Delta j_2= \begin{cases} 1,j=1;\\ -1,j=2..m-1 \end{cases}$, μ_x - соот-

ношение расстояния между узлом $(i-\Delta i_2,j)$ и (i,j) к h,μ_y - соотношение расстояния между узлом $(i,j-\Delta j_2)$ и (i,j) к h. Для всех узлов, не граничащих с граничными μ_x и μ_y будут равны 1.

По результатам прошлого шага или по НУ на нулевом шаге вычисляются значения температуры в граничных узлах по формуле (6). Затем по полученным значениям и по значениям температур во внутренних узлах с прошлого шага вычисляются значения на новом шаге по формуле (7).

Цикл повторяется до достижения поставленного задачей времени выполнения. В таком случае значения во внутренних узлах на следующем шаге не вычисляются.

Неявный метод конечных разностей

Для решения задачи неявным МКР применяется метод расщепления.

Первым этапом по значениям температур предыдущего шага находятся температуры w_{ij}^{t+1} , по значениям которых на втором этапе находятся температуры на новом шаге T_{ij}^{t+1} . При этом i=1..n-1, j=1..m-1.

Формула на первом этапе следующая:

$$w_{ij}^{t+1} - T_{ij}^{t} = 2 \frac{\mu_x w_{i+\Delta i_2, j}^{t+1} - (1 + \mu_x) w_{ij}^{t+1} + w_{i-\Delta i_2, j}^{t+1}}{\mu_x (1 + \mu_x) h^2},$$
(8)

(8) можно представить в виде:

$$-T_{ij}^{t} = \frac{2}{(1+\mu_{x})h^{2}} w_{i+\Delta i_{2},j}^{t+1} + \frac{-2-\mu_{x}h^{2}}{\mu_{x}h^{2}} w_{ij}^{t+1} + \frac{2}{\mu_{x}(1+\mu_{x})h^{2}} w_{i-\Delta i_{2},j}^{t+1}, \tag{9}$$

При фиксации j, (9) можно представить ввиде СЛАУ. При $i = \{1, n-1\}$ при этом в СЛАУ будут фигурировать ГУ. От них можно избавиться путем подстановки (6). Такая подстановка влияет либо на коэффициент перед T_{ij}^t , либо перед w_{ij}^{t+1} . Дополнительно можно подставить $\mu_x = 1$ для i = 2..n-2.

Результирующая СЛАУ в матричном виде:

$$\begin{bmatrix} \frac{-2-\mu_{x1}h^{2}}{\mu_{x1}h^{2}} + \Delta w_{1} & \frac{2}{(1+\mu_{x1})h^{2}} & 0 & 0 & \dots & 0 & 0 & 0\\ \frac{1}{h^{2}} & -\frac{2}{h^{2}} & \frac{1}{h^{2}} & 0 & \dots & 0 & 0 & 0\\ 0 & \frac{1}{h^{2}} & -\frac{2}{h^{2}} & \frac{1}{h^{2}} & \dots & 0 & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \dots & \frac{1}{h^{2}} & -\frac{2}{h^{2}} & \frac{1}{h^{2}}\\ 0 & 0 & 0 & 0 & \dots & 0 & \frac{2}{(1+\mu_{x2})h^{2}} + \Delta w_{2} & \frac{-2-\mu_{x2}h^{2}}{\mu_{x2}h^{2}} \end{bmatrix} \begin{bmatrix} w_{11}^{t+1} \\ w_{2j}^{t+1} \\ w_{3j}^{t+1} \\ \vdots \\ w_{n-2,j}^{t+1} \\ w_{n-1,j}^{t+1} \end{bmatrix} = (10)$$

$$= \begin{bmatrix} -T_{1j}^t + \Delta T_1 \\ -T_{2j}^t \\ -T_{3j}^t \\ \vdots \\ -T_{n-2,j}^t \\ -T_{n-1,j}^t + \Delta T_2 \end{bmatrix},$$

где μ_{x1} - отношение расстояния между узлом (0,j) и узлом (1,j) к h; μ_{x2} - отношение расстояния между узлом (n-1,j) и узлом (n,j) к h;

расстояния между узлом
$$(n-1,j)$$
 и узлом (n,j) к n ,
$$\Delta w_1 = \begin{cases} 0, \Gamma \mathbf{y} \text{ в } (0,j) \text{ 1-го рода;} \\ \frac{2}{\mu_{x1}(1+\mu_{x1})h^2}, \Gamma \mathbf{y} \text{ в } (0,j) = (4); \\ \frac{2}{\mu_{x1}(1+\mu_{x1})h^2(\mu_{x1}h+1)}, \Gamma \mathbf{y} \text{ в } (0,j) = (5). \end{cases}$$

$$\Delta w_2 = \begin{cases} 0, \Gamma \mathbf{y} \text{ в } (n,j) \text{ 1-го рода;} \\ \frac{2}{\mu_{x2}(1+\mu_{x2})h^2}, \Gamma \mathbf{y} \text{ в } (n,j) = (4); \\ \frac{2}{\mu_{x2}(1+\mu_{x2})h^2(\mu_{x2}h+1)}, \Gamma \mathbf{y} \text{ в } (n,j) = (5). \end{cases}$$

$$\Delta T_1 = \begin{cases} -\frac{100}{\mu_{x1}(1+\mu_{x1})h^2}, \Gamma \mathbf{y} \text{ в } (0,j) : T_{ij}^{t+1} = 100; \\ -\frac{200}{\mu_{x1}(1+\mu_{x1})h^2}, \Gamma \mathbf{y} \text{ в } (0,j) : T_{ij}^{t+1} = 200; \\ 0, \text{ в остальных случаях.} \end{cases}$$

$$\Delta T_2 = \begin{cases} -\frac{100}{\mu_{x2}(1+\mu_{x2})h^2}, \Gamma \mathbf{y} \text{ в } (n,j) : T_{ij}^{t+1} = 100; \\ -\frac{200}{\mu_{x2}(1+\mu_{x2})h^2}, \Gamma \mathbf{y} \text{ в } (n,j) : T_{ij}^{t+1} = 200; \\ 0, \text{ в остальных случаях.} \end{cases}$$

В данной СЛАУ при каждом фиксированном j по n-2 неизвестные. Матрица коэффициентов содержит 3n-2 ненулевых элемента.

При решении СЛАУ (10) для всех j = 1..m - 1 получается массив значений w_{ij}^{t+1} , i = 1..n - 1. На основе него аналогичным первому этапу производится второй этап вычислений:

$$T_{ij}^{t+1} - w_{ij}^{t+1} = 2 \frac{\mu_y T_{i,j+\Delta j_2}^{t+1} - (1 + \mu_y) T_{ij}^{t+1} + T_{i,j-\Delta j_2}^{t+1}}{\mu_y (1 + \mu_y) h^2},$$
(11)

(11) можно представить в виде:

$$-w_{ij}^{t+1} = \frac{2}{(1+\mu_y)h^2} T_{i,j+\Delta j_2}^{t+1} + \frac{-2-\mu_y h^2}{\mu_y h^2} T_{ij}^{t+1} + \frac{2}{\mu_y (1+\mu_y)h^2} T_{i,j-\Delta j_2}^{t+1}, \tag{12}$$

При фиксации i, (12) можно представить ввиде СЛАУ. При $j = \{1, m-1\}$ в СЛАУ будут фигурировать ГУ. От них можно избавиться путем подстановки (6). Такая подстановка влияет либо на коэффициент перед w_{ij}^{t+1} , либо перед T_{ij}^{t+1} . Дополнительно можно подставить $\mu_y = 1$ для j = 2..m - 2.

$$\begin{bmatrix} \frac{-2-\mu_{y1}h^{2}}{\mu_{y1}h^{2}} + \Delta x_{1} & \frac{2}{(1+\mu_{y1})h^{2}} & 0 & 0 & \dots & 0 & 0 & 0\\ \frac{1}{h^{2}} & -\frac{2}{h^{2}} & \frac{1}{h^{2}} & 0 & \dots & 0 & 0 & 0\\ 0 & \frac{1}{h^{2}} & -\frac{2}{h^{2}} & \frac{1}{h^{2}} & \dots & 0 & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \dots & \frac{1}{h^{2}} & -\frac{2}{h^{2}} & \frac{1}{h^{2}}\\ 0 & 0 & 0 & 0 & \dots & 0 & \frac{2}{(1+\mu_{y2})h^{2}} + \Delta x_{2} & \frac{-2-\mu_{y2}h^{2}}{\mu_{y2}h^{2}} \end{bmatrix} \begin{bmatrix} T_{i1}^{t+1} \\ T_{i1}^{t+1} \\ T_{i2}^{t+1} \\ \vdots \\ T_{i,m-2}^{t+1} \\ T_{i,n-1}^{t+1} \end{bmatrix} = (13)$$

$$= \begin{bmatrix} -w_{i1}^{t+1} + \Delta T_3 \\ -w_{i1}^{t+1}t \\ -w_{i2}^{t+1}t \\ \vdots \\ -w_{i,n-2}^{t+1}t \\ -w_{i,n-1}^{t+1} + \Delta T_4 \end{bmatrix},$$

где μ_{y1} - отношение расстояния между узлом (i,0) и узлом (i,1) к h; μ_{y2} - отношение расстояния между узлом (i,m-1) и узлом (i,m) к h;

расстояния между узлом
$$(i, m-1)$$
 и узлом (i, m) к h ;
$$\Delta x_1 = \begin{cases} 0, \Gamma \mathbf{y} & \mathbf{g} & (i, 0) & 1\text{-го рода}; \\ \frac{2}{\mu_{y1}(1+\mu_{y1})h^2}, \Gamma \mathbf{y} & \mathbf{g} & (i, 0) & = (4); \\ \frac{2}{\mu_{y1}(1+\mu_{y1})h^2(\mu_{y1}h+1)}, \Gamma \mathbf{y} & \mathbf{g} & (i, 0) & = (5). \end{cases}$$

$$\Delta T_3 = \begin{cases} 0, \Gamma \mathbf{y} & \mathbf{g} & (i, m) & 1\text{-го рода}; \\ \frac{2}{\mu_{y2}(1+\mu_{y2})h^2}, \Gamma \mathbf{y} & \mathbf{g} & (i, m) & = (4); \\ \frac{2}{\mu_{y2}(1+\mu_{y2})h^2(\mu_{y2}h+1)}, \Gamma \mathbf{y} & \mathbf{g} & (i, m) & = (5). \end{cases}$$

$$\Delta T_3 = \begin{cases} -\frac{100}{\mu_{y1}(1+\mu_{y1})h^2}, \Gamma \mathbf{y} & \mathbf{g} & (i, 0) & : T_{ij}^{t+1} & = 100; \\ -\frac{200}{\mu_{y1}(1+\mu_{y1})h^2}, \Gamma \mathbf{y} & \mathbf{g} & (i, 0) & : T_{ij}^{t+1} & = 200; \\ 0, \mathbf{g} & \mathbf{g}$$

В данной СЛАУ при каждом фиксированном i по m-2 неизвестные. Матрица коэффициентов содержит 3m-2 ненулевых элемента.

При решении (13) для всех i находятся значения во всех внутренних узлах на новом шаге. Для нахождения значений температур в граничных узлах используется формула (6) после вычисления значения во внутренних узлах.

Цикл нахождения повторяется до достижения поставленного задачей времени выполнения.

4 Описание структуры программы

Для выполнения поставленной задачи реализованы следующие классы:

- 1. Point класс точки;
- 2. Form класс геометрической формы;
- 3. EdgeCondition класс граничного условия;
- 4. Rectangle класс прямоугольника;

 $\mathsf{it}] \ \bullet \ (\mathsf{None}) \otimes (\mathsf{None}) \bullet (\mathsf{None}), \ (\mathsf{None}))$

git] • (None) @ (None) • (None), (None)((None))

- 5. Circle класс круга;
- 6. Node класс внутренних узлов;
- 7. EdgeNode класс граничных узлов;
- 8. Object класс пластины.

Диаграмма взаимодействия классов представлена на рис. 2 и рис. 3.

Рис. 2. Диаграмма взаимодействия классов 1

Рис. 3. Диаграмма взаимодействия классов 2

В начале работы создается объекты класса пластины и объекты классов прямоугольников и кругов, из которых формируется пластина путем добавления или вычитания. Граничные условия на границах прямых пластины также задаются прямоугольниками нулевой толщины. Созданная геометрия добавляется в пластину методом Object::add_form. При этом в пластине создаются узлы на персечении геометрической формы, не включая границы в добавленных геометрических фигурах, и точек (ih, jh), i = 1...n, j = 1..m.

После для добавления в модель пластины граничных узлов и удаления узлов, слишком близких к одной из границ пластины, вызывается метод Object::compile_edges. Температура в слишком близких к одной из границ пластины узлах рассчитываются не верно, так что они начинают считаются отверстиями. Дополнительно вычисляются mu_x и mu_y в элементах.

Затем запускаются методы Object::calculate_explicit для вычисления значений в узлах явным методом, описанным выше. Значения выводятся в файл методом Object::T_-out. Запуск метода Object::calculate_implicit вычисляет значения температур в уз-

[git] • (None) @ (None) • (None), (None) ((None))

лах явным методом, описанным выше. После значения выводятся в файл методом $Object::T_out.$

5 Результат работы программы

Вариант данной работы 8-й. Отверстие - окружность. Координаты центра отверстия: (355, 155). В таблице 1 граничным условиям соответствует 9-я строка.

Результат моделирования в ANSYS представлен на рис. ??.

Рис. 4. Визуализация результата явного метода при h=10

Результат выполнения программы при h = 10 явным методом представлен на рис. 5.

Рис. 5. Визуализация результата явного метода при h=10

Результат выполнения программы при h = 5 явным методом представлен на рис. 6.

Рис. 6. Визуализация результата явного метода при h=5

Результат выполнения программы при h = 10 неявным методом представлен на

рис. 7.

Рис. 7. Визуализация результата неявного метода при h=10

Результат выполнения программы при h=5 неявным методом представлен на рис. 8.

Рис. 8. Визуализация результата неявного метода при h=5

Результаты моделирования сходятся не очень сильно, так как в ANSYS заданы не соответствующие параметры пластины. Граничные узлы также не изображены в программной реализации.

6 Заключение

Программно реализованы явный и неявный МКР на языке С++. Построена модель в ANSYS и проведено сравнение с результатом выполнения программы.

Постановка:

© Ф доцент кафедры РК-6, PhD А.Ю. Першин

Решение и вёрстка: Студент группы РК6-66Б, Кильдишев П.С.

2023, весенний семестр