Isometries

By definition, an isometry of \mathbb{R}^n is a distance-preserving map $m:\mathbb{R}^n\to\mathbb{R}^n$, a map such that

$$|m(v) - m(w)| = |v - w|$$

for all v and w in \mathbb{R}^n . To simplify notation, let v' to stand for m(v). Then the distance-preserving property of m reads

$$|v' - w'| = |v - w|$$
 for all $v, w \in \mathbb{R}^n$.

Translations t_a , defined by $t_a(x) = x + a$, and orthogonal linear operators, are examples of isometries. The composition of two isometries is an isometry.

Theorem 1. If an isometry of \mathbb{R}^n fixes the origin, then it is an orthogonal linear operator.

Theorem 2. Every isometry of \mathbb{R}^n is the composition of an orthogonal linear operator and a translation.

Theorem 3. The orthogonal linear operators on \mathbb{R}^3 with determinant 1 are the rotations about axes through the origin.

The very neat proof of Theorem 1 was found a few years ago by Sharon Hollander, a student in 18.701.

Lemma 1. Let x and y be vectors in \mathbb{R}^n . If the three dot products $(x \cdot x)$, $(x \cdot y)$, $(y \cdot y)$ are equal, then x = y.

Proof. Suppose that $(x \cdot x) = (x \cdot y) = (y \cdot y)$. To show that x = y, it suffices to show that the length of the vector x - y is zero. This is seen by expanding $|x - y|^2$:

$$((x-y)\cdot(x-y)) = (x\cdot x) - 2(x\cdot y) + (y\cdot y) = 0.$$

Lemma 2. An isometry which fixes the origin preserves dot products, i.e., for all $v, w \in \mathbb{R}^n$,

$$(v' \cdot w') = (v \cdot w).$$

Proof. Since |v'-w'|=|v-w|,

$$((v' - w') \cdot (v' - w')) = ((v - w) \cdot (v - w))$$

for all v, w. Since 0' = 0 by hypothesis, setting w = 0 shows that $(v' \cdot v') = (v \cdot v)$. Similarly, $(w' \cdot w') = (w \cdot w)$. The lemma follows by expanding (*) and cancelling $(v \cdot v)$ and $(w \cdot w)$ from the two sides.

Proof of Theorem 1. The fact that m is orthogonal will follow from Lemma 2, once we show that m is a linear operator.

We show first that m(u+v) = m(u) + m(v) for all u and v in \mathbb{R}^n . Let's introduce a symbol w for u+v. Using our prime notation, the relation to be shown becomes w' = u' + v'.

We substitute x = w' and y = u' + v' into Lemma 1. To show that w' = u' + v', it suffices to show that $(w' \cdot w') = (w' \cdot (u' + v')) = ((u' + v') \cdot (u' + v'))$, or that

$$(w' \cdot w') = (w' \cdot u') + (w' \cdot v') = (u' \cdot u') + 2(u' \cdot v') + (v' \cdot v').$$

Lemma 2 allows us to drop the primes from these dot products. It suffices to show that

$$(w \cdot w) = (w \cdot u) + (w \cdot v) = (u \cdot u) + 2(u \cdot v) + (v \cdot v).$$

These equalities are true because w = u + v.

To show that m is a linear operator, we must also show that m(cv) = cm(v) for all $v \in \mathbb{R}^n$ and all scalars c. The proof is similar: Writing w for cv, we must show that w' = cv'. It suffices to show that $(w' \cdot w') = (w' \cdot cv') = (cv' \cdot cv')$, or that

$$(w' \cdot w') = c(w' \cdot v') = c^2(v' \cdot v').$$

Lemma 2 allows us to drop primes, and then the equalities become true because w = cv.

Proof of Theorem 2. Let m be an isometry, and let a = m(0). We claim that $m = t_a p$ for some orthogonal operator p. This formula is equivalent with $t_{-a}m = p$, which determines p. So we must show that $t_{-a}m$ is an orthogonal linear operator. Since it is the composition of two isometries, $t_{-a}m$ is an isometry, and it fixes the origin. So Theorem 2 follows from Theorem 1.

The next lemma is Chapter 4, Lemma 5.23 of the text.

Lemma 3. An orthogonal linear operator with determinant 1 has 1 as an eigenvalue.

Lemma 4. An orthogonal linear operator on \mathbb{R}^3 with determinant 1, and which fixes two linearly independent vectors v_1, v_2 , is the identity operator.

Proof. Let p denote the operator. Let v_3 be a vector orthogonal to both v_1 and v_2 . Because the operator is orthogonal, pv_3 is also orthogonal to $v_1 = pv_1$ and to v_2 . Also, pv_3 has the same length as v_3 . So $pv_3 \pm v_3$. In the basis (v_1, v_2, v_3) , the matrix of the operator becomes

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \pm 1 \end{pmatrix}.$$

Since the determinant is +1, the sign of the bottom entry is +, and p is the identity.

Proof of Theorem 3. We need a definition of a rotation ρ . We make three requirements:

- ρ is an isometry which fixes the origin,
- ρ fixes a nonzero vector v, and
- ρ rotates the plane orthogonal to v through an angle θ .

Let ρ be a rotation. By Theorem 1, ρ is an orthogonal linear operator. Its determinant is ± 1 . The determinant varies continuously with the angle of rotation θ , and it is +1 when the angle is zero. Therefore it is +1 for all θ .

Conversely, let p be an orthogonal linear operator with determinant 1. By Lemma 3, there is an eigenvector v_1 such that $pv_1 = v_1$.

We choose a nonzero vector v_2 orthogonal to v_1 . Because the operator is orthogonal, pv_2 is orthogonal to $pv_1 = v_1$, and it has the same length as v_2 . So v_2 and pv_2 are vectors of equal length in the plane orthogonal to v_1 . There is a rotation ρ about the axis v_1 which carries v_2 to pv_2 . Then $\rho^{-1}p$ fixes both v_1 and v_2 . Moreover, being a composition of orthogonal operators with determinant 1, $\rho^{-1}p$ is also an orthogonal operator with determinant 1. By Lemma 4, $\rho^{-1}p$ is the identity, and $p = \rho$.