

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «Київський політехнічний інститут»

Т.В. Авдєєва

В.М. Горбачук

АЛГЕБРА

ОСНОВИ АЛГЕБРАЇЧНИХ СТРУКТУР

Навчальний посібник

Київ НТУУ «КПІ» 2015

міністерство освіти та науки україни національний технічний університет україни «Київський політехнічний інститут»

Т.В. Авдєєва

В.М. Горбачук

АЛГЕБРА

ОСНОВИ АЛГЕБРАЇЧНИХ СТРУКТУР

Навчальний посібник

"Рекомендовано" Методичною радою НТУУ "КПІ"

> Київ НТУУ «КПІ» 2015

УДК 512.8 (076) 512 (075.8) ББК 22.14

Гриф надано методичною радою HTУУ «КПІ» (протокол № 5 від 8 червня 2015 р.)

Рецензенти: О.Г. Ганюшкін, канд. фіз.-мат. наук, доцент.,

Київський національний університет

Імені Тараса Шевченка

В.В. *Сергійчук*, доктор фіз.-мат. наук, провідний науковий співробітник Інституту математики НАН України

Відповідальний

редактор: *Н.О. Вірченко*, д-р фіз.-мат. наук, проф.,

Національний технічний університет України

«Київський політехнічний інститут»

Алгебра. Основи алгебраїчних структур. Навчальний посібник /Т.В. Авдєєва, В.М. Горбачук.- К.: НТУУ «КПІ», 2015. – 79 с. – Бібліогр.: с. 79. –100 пр.

В навчально-методичному посібнику викладено короткі теоретичні відомості з теорії груп, кілець і полів, даються приклади розв'язування задач з відповідних розділів. Наводяться варіанти індивідуальних завдань для студентів.

Призначений для студентів фізико-математичного факультету НТУУ "КПІ", може бути використаний також в інших університетах при вивчені курсу "Алгебри і теорії чисел".

УДК 512.8 (076) 512 (075.8) ББК 22.14

> © Т.В. Авдєєва, В.М. Горбачук, 2015

3MICT

	Передмо	ва	4
	Програм	іа курсу	5
	Розділ 1.	Алгебраїчні структури	7
1.1.	Бінарна с	операція. Напівгрупа. Група	7
1.2.	Таблиця	Келі	15
1.3.	Порядок	елемента групи	17
1.4.	Група си	метрій	22
1.5.	Система	твірних елементів групи. Циклічна група	24
1.6.	Теореми	Силова. Силовськи підгрупи	27
1.7.	Морфізм	и груп	28
1.8.	Кільце		34
1.9	Дільники	и нуля, дільники одиниці, оборотні та нільпотентні	40
	елементи	г. Поле	
	Розділ 2.	Кільце многочленів від однієї змінної	49
2.1.	Многочл	ени від однієї змінної. Схема Горнера	49
2.2.	Звідні та	незвідні многочлени. Корені многочлена	56
	Розділ 3.	Многочлени від багатьох змінних	68
3.1	Симетри	чні многочлени	68
	Додатки	1. Питання колоквіуму	71
		2. Варіанти контрольних та самостійних робіт	73
		3. Цікаві задачі	75
		4. Умовні позначення	76
		5. Таблиця простих чисел	78
	Список л	ітератури	79

Передмова

Посібник є методичним забезпеченням курсу алгебри, який, як відомо, є невід'ємною частиною фундаментальної підготовки для студентів спеціальності "Математика".

Даний посібник містить короткі теоретичні відомості та велику кількість прикладів, вправ і задач, необхідних для виконання типових розрахунків з цього курсу. Наводяться також наближені варіанти планових контрольних та самостійних робіт і перелік питань для колоквіумів.

Посібник розрахований на студентів фізико-математичного та інших факультетів для використання в навчальному процесі, пов'язаному з алгеброю. Цей посібник може бути корисним для організації самостійної роботи студентів університетів та вищих педагогічних навчальних закладів, які вивчають цей курс

ПРОГРАМА КУРСУ

1 семестр

Тема 1. Групи, кільця, поля

Групи, основні властивості груп, підгрупи, їх властивості, циклічні групи, групи симетрії, знакозмінна група, групи підстановок, ізоморфізм груп, теорема Келі, розклад групи за підгрупою, терема Лагранжа, теореми Сілова.

Кільця, основні властивості кілець, кільця з одиницею, дільники нуля, гомоморфізм кілець.

Поля, поле класів лишків за простим модулем, властивості полів, підполе.

Тема 3. Поліноми, симетричні поліноми

Кільце многочленів над областю цілісності, теорія подільності многочленів, схема Горнера, незвідні многочлени, канонічний розклад многочлена, корені многочленів, метод Штурма, критерій Айзенштайна, многочлени з багатьма змінними, симетричні многочлени, основна теорема про симетричні многочлени.

Розділ 1. АЛГЕБРАЇЧНІ СТРУКТУРИ

1.1. Бінарна операція. Напівгрупа. Група

Нехай M- довільна непорожня множина елементів. **Бінарною алгебраїчною операцією** (або просто **бінарною операцією**) на множині M називається довільне відображення декартового квадрата множини M на множину M, тобто $\tau: M \times M \to M$. Інакше кажучи, під бінарною операцією на множині M розуміють закон (*), за яким будь-яким двом (різним чи однаковим) елементом a і b множини M, взятим у певному порядку, ставиться у відповідність єдиний елемент a*b множини M.

Бінарна операція (*) на множині M називається **асоціативною**, якщо для будь-яких трьох елементів a,b i c множини M справджується рівність (a*b)*c=a*(b*c). Операція називається **неасоціативною**, якщо в множині M існує хоча б одна трійка елементів a,b i c, для яких $(a*b)*c \neq a*(b*c)$.

Бінарна операція (*) називається **комутативною**, якщо для будьяких двох елементів a і b множини M справджується рівність a*b=b*a. Операція називається **некомутативною**, якщо в множині M існує хоча б одна пара елементів a і b, для яких $a*b \neq b*a$.

Елемент $\eta \in M$ називається **нейтральним елементом** відносно операції (*), якщо для будь-якого елемента a з множини M справджуються рівності $a*\eta=\eta*a=a$. Нейтральний елемент називають також **одиницею** e.

Нехай у множині M з бінарною операцією (*) є нейтральний елемент η . Елемент $a' \in M$ називається **симетричним** елементу $a \in M$ (або оберненим до a), якщо $a*a'=a'*a=\eta$.

Множина M з бінарною операцією (*) називається **напівгрупою**, якщо операція * асоціативна. Якщо напівгрупа (M,*) містить нейтральний елемент, то її називають напівгрупою з одиницею або **моноїдом**.

У напівгрупі з одиницею η для кожного елемента існує щонайбільше один обернений елемент. Справді, якщо $a*a'=a'*a=\eta$ і $a*a''=a''*a=\eta$, то маємо такий ланцюжок рівностей:

$$a' = a' * \eta = a' * (a * a'') = (a' * a) * a'' = \eta * a'' = a''.$$

Далі обернений до a елемент (якщо він існує) ми позначатимемо через a^{-1} . Елемент, для якого існує обернений, називається **оборотним**.

Напівгрупа з одиницею, в якій всі елементи оборотні, називається **групою**. Іншими словами, множина G з бінарною операцією (*) називається **групою**, якщо виконуються три наступні умови:

- 1) операція (*) асоціативна;
- 2) в G існує нейтральний елемент η ;
- 3) для кожного елемента $a \in G$ в множині G існує обернений до a елемент a'.

Зауважимо, що множина G повинна бути замкненою відносно операції * (за означенням бінарної операції).

Якщо операцію в групі G називають множенням, то групу називають **мультиплікативною** (від лат. *multipliko* — множити), якщо G утворює групу відносно звичайного додавання, то групу називають **адитивною** (від лат. *additio* —додавати).

Якщо бінарна операція (*) комутативна, то група G називається комутативною або абелевою. Групу, що містить скінчену кількість елементів, називають скінченною. Кількість елементів скінченної групи називають її порядком. Групу, що не ε скінченною, називають нескінченною.

Наведемо деякі приклади груп.

Множина Z цілих чисел утворює групою відносно додавання. Справді, додавання цілих чисел асоціативне, нейтральним елементом для додавання буде число 0, а протилежним до a – число – a. Зауважимо, що ця група буде комутативною.

Множина {1,-1} утворює комутативну групу відносно множення.

Множина $GL_n(R)$ всіх невироджених матриць n-го порядку з дійсними елементами ϵ групою відносно множення матриць. Дійсно, якщо матриці A і B- невироджені, тобто $\det A \neq 0$, $\det B \neq 0$, то $\det (AB) = \det A \cdot \det B \neq 0$. Отже, множення ϵ бінарною операцією на множині $GL_n(R)$. Ця операція ϵ асоціативною, оскільки асоціативним ϵ множення довільних квадратних матриць. Нейтральним елементом буде одинична матриця E_n , і для кожної невиродженої матриці A існу ϵ невироджена обернена матриця A^{-1} .

3ауваження: часто буває, що бінарна операція (*) початково визначена на множині, більшій за M. Тому перш ніж з'ясовувати, чи буде множина M утворювати відносно (*) групу або напівгрупу, потрібно пересвідчитись, чи можна операцію (*) обмежити на множину M, тобто чи для довільної пари елементів $a,b \in M$ результат a*b також належить M. Якщо це так, то кажуть, що **множина** M замкнена відносно операції(*). Наприклад, сума двох непарних чисел завжди є парним числом, тому множина непарних чисел не є замкненою відносно операції додавання. Іншими словами, додавання не є бінарною операцією на множині непарних чисел.

Вкажемо деякі властивості груп. При цьому операцію будемо називати множенням і позначати символом *, а результат a*b її застосування до елементів a і b називати добутком a і b.

Властивість 1. Для довільних цілих чисел m і n та елемента a групи G справджуються рівності $a^m * a^n = a^{m+n}$ та $(a^m)^n = a^{m \cdot n}$.

Властивість 2. Для довільних елементів a і b групи G кожне з рівнянь a*x=b і y*a=b має єдиний розв'язок.

Властивість 3. Для будь-яких елементів a,b,c групи G з рівності a*b=a*c випливає рівність b=c, а з рівності a*c=b*c випливає рівність a=b.

Множина S_n всіх взаємно однозначних перетворень множини $S = \{1,2,...,n\}$ утворює групу відносно суперпозиції відображень. Дійсно, суперпозиція відображень є асоціативною, нейтральним елементом для суперпозиції буде тотожне відображення $e = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$, а оберненим

до перетворення $\varphi = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$ буде перетворення

$$\varphi^{-1} = \begin{pmatrix} i_1 & i_2 & \dots & i_n \\ 1 & 2 & \dots & n \end{pmatrix}$$
. Взаємно однозначні перетворення множини S

називають також підстановками або підстановками n-го степеня. Групу S_n називають симетричною групою степеня n.

Відомо, що довільну підстановку φ із S_n можна розкласти в добуток взаємно незалежних циклів, причому такий розклад єдиний з точністю до порядку слідування множників. Наприклад,

$$\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 5 & 7 & 3 & 8 & 9 & 10 & 2 & 4 & 6 & 1 \end{pmatrix} \in S_{10}$$

може бути записаний $\varphi = (159610)(27)(3)(48)$ або, опускаючи цикл довжини один, $\varphi = (159610)(27)(48)$. Якщо в підстановки φ всі точки, крім двох, є нерухомими, тобто $\varphi = (i\ j)$, то її називають **транспозицією**. Відомо, що кожну підстановку n-го степеня можна подати у вигляді добутку скінченної кількості транспозицій. Кажуть, що в підстановці

$$\varphi = \begin{pmatrix} 1 & 2 & \dots & n \\ k_1 & k_2 & \dots & k_n \end{pmatrix}$$
 числа k_i та k_j утворюють **інверсію**, якщо $i < j$, але

$$k_i > k_j$$
. Так для підстановки $\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 5 & 7 & 3 & 8 & 9 & 10 & 2 & 4 & 6 & 1 \end{pmatrix}$ числа

5 та 4 в нижньому рядку утворюють інверсію, а 7 та 8 — ні. Для вказаної вище підстановки число 2 утворює 6 інверсій (у нижньому рядку перед 2 стоять числа 5,7,3,8,9,10 та всі вони більше за 2), кількість інверсій числа 9 дорівнює 0 (у нижньому рядку перед 9 стоять числа 5,7,3,8, але більших за 9 серед них немає). Підстановка називається **парною**, якщо загальна кількість інверсій її чисел є парною, і називається **непарною**, якщо загальна кількість інверсій непарна. Для вказаної вище підстановки загальна кількість інверсій дорівнює 9+6+2+5+0+4+0+0+0+0=26, отже, підстановка є парною.

Відомо, що у групі S_n кількість парних підстановок дорівнює кількості непарних підстановок. Можна довести, що множина всіх парних підстановок групи S_n утворює групу відносно множення (добуток парних підстановок є парною підстановкою, обернена до парної підстановки є парною підстановкою, тотожна підстановка також є парною). Цю групу називають знакозмінною групою n-го степеня та позначають A_n . Зауважимо, що множина B_n всіх непарних підстановок групи S_n не утворює групу відносно множення, оскільки добуток двох непарних підстановок є парною підстановкою.

Непорожня підмножина H групи G називається **підгрупою** групи G (позначають H < G), якщо вона сама утворює групу відносно тієї самої операції, що визначена на G. Наприклад, знакозмінна група A_n степеня n є підгрупою симетричної групи S_n , а множина $SL_n(R)$ квадратних матриць з визначником $\det A = 1$ є підгрупою групи $GL_n(R)$ невироджених матриць.

Із означення векторного простору випливає, що множина векторів цього простору утворює комутативну групу відносно додавання векторів.

Для того, щоб з'ясувати, чи ϵ непорожня підмножина підгрупою можна скористатися наступною теоремою:

Критерій підгрупи (через дві умови): Непорожня підмножина H групи G буде підгрупою тоді й лише тоді, коли вона замкнена відносно множення (тобто $a*b \in H$ для довільних $a,b \in H$) і взяття оберненого елемента (тобто $a^{-1} \in H$ для кожного $a \in H$).

Сама група G та множина $E = \{e\}$, яка складається лише з нейтрального елемента групи, ϵ тривіальними (найпростішими) підгрупами групи G. Усі інші підгрупи називаються нетривіальними. Підгрупа H групи G називається власною підгрупою, якщо $H \neq G$. Власна підгрупа H групи G називається максимальною підгрупою в G, якщо не існує жодної іншої власної підгрупи групи G, яка б містила підгрупу H. Власна підгрупа $H \neq E$ групи G називається мінімальною підгрупою в G, якщо не існує жодної іншої власної підгрупи групи G, відмінної від групи G називається у підгрупи G називається G наз

<u>Приклад 1.</u> З'ясувати, чи утворює групу відносно операції додавання множина всіх цілих чисел, які кратні 3.

Нехай G- множина всіх цілих чисел, які кратні 3, тобто $G=\{3k:k\in Z\}=\{0,\pm 3,\pm 6,....\}$. Оскільки 3k+3m=3(k+m), тобто сума чисел, кратних 3, саме є кратною 3, і $-3k=3\cdot(-k)$, тобто число, протилежне кратному 3, саме є кратним 3, то множина цілих чисел, кратних 3, є замкненою відносно додавання і взяття протилежного елемента. Тому вона утворює підгрупу групи цілих чисел, а отже, є групою. Групу всіх цілих чисел, які кратні 3, позначатиме 3Z.

<u>Приклад 2.</u> З'ясувати, чи утворює групу відносно операції множення множина всіх дійсних кососиметричних матриць.

Квадратна матриця A називається кососиметричною, якщо $A^T = -A$. Зрозуміло, що всі діагональні елементи кососиметричної матриці дорівнюють нулю. Неважко переконатися, що множина кососиметричних матриць не утворює групу за множенням, оскільки до множини не попадає одинична матриця. Зауважимо також, що добуток двох кососиметричних матриць може бути матрицею не кососиметричною. Наприклад,

$$\begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \\ -2 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 3 \\ 0 & 3 & 0 \end{pmatrix} = \begin{pmatrix} -1 & -6 & 3 \\ 0 & -1 & 0 \\ 0 & 2 & 0 \end{pmatrix}.$$

Твердження. Якщо H_1, H_2 підгрупи групи G, то їхній перетин $H_1 \cap H_2$ також є підгрупою групи G.

Це твердження узагальнюється на будь-яке число (скінченне чи нескінченне) підгруп групи G.

Нехай H < G і $a \in G$. **Правим суміжним класом** Ha групи G за підгрупою H називається множина $Ha = \{ha : h \in H\}$. Лівий суміжний клас визначаємо аналогічно: $aH = \{ah : h \in H\}$. Легко перевірити, що два правих суміжних класи за підгрупою H або не перетинаються або збігаються (як множини). Таким чином, праві суміжні класи за підгрупою H утворюють розбиття групи G на класи суміжності. Зрозуміло, що всі суміжні класи за підгрупою H мають однакову кількість елементів, яка збігається з кількістю елементів підгрупи H. Два елементи a і b групи G лежать в одному суміжному класі за підгрупою H тоді й лише тоді, коли $ab^{-1} \in H$. Кількість (правих) суміжних класів називають **індексом підгрупи** H у групі G і позначають |G:H|. Справедлива

Теорема Лагранжа: Нехай G- скінченна група, H- підгрупа групи G . Тоді $|G|=|G:H|\cdot|H|$.

Зокрема, порядок підгрупи скінченної групи ϵ дільником порядку групи.

Завдання 1. З'ясувати, чи буде групою

- 1. Множина всіх дійсних симетричних матриць порядку *п* відносно множення.
- 2. Множина всіх дійсних кососиметричних матриць порядку n відносно додавання.
- 3. Множина всіх дійсних невироджених матриць порядку *п* відносно множення.
- 4. Множина всіх дійсних діагональних матриць порядку *п* відносно додавання.
- 5. Множина всіх дійсних верхніх трикутних матриць порядку n відносно множення.
- 6. Множина всіх дійсних матриць порядку n із фіксованим визначником d відносно множення.
- 7. Множина ненульових дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число число a фіксоване, відносно множення.
- 8. Множина ненульових дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, відносно множення.
- 9. Множина ненульових дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, відносно додавання.
- 10. Множина матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in R$, відносно множення.
- 11. Множина матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in R$, відносно додавання.
- 12. Множина матриць вигляду $\begin{pmatrix} m & m-1 \\ 1 & 1 \end{pmatrix}$, де $m \in Z$, відносно множення.
- 13. Множина матриць вигляду $\begin{pmatrix} m & m-1 \\ 1 & 1 \end{pmatrix}$, де $m \in Z$, відносно додавання.

- 14.Множина всіх відображень множини $M = \{1, 2, ..., n\}$ у себе відносно суперпозиції відображень.
- 15.Множина всіх ін'єктивних відображень множини $M = \{1, 2, ..., n\}$ у себе відносно суперпозиції відображень.
- 16.Множина всіх сюр'єктивних відображень множини $M = \{1, 2, ..., n\}$ у себе відносно суперпозиції відображень.
- 17. Множина всіх бієктивних відображень множини $M = \{1, 2, ..., n\}$ у себе відносно суперпозиції відображень.
- 18.Множина степенів дійсного фіксованого числа $a \neq 0$ з цілими показниками відносно операції множення.
- 19. Множина всіх комплексних коренів фіксованого степеня n з одиниці відносно операції множення.
- 20.Множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 21.Множина комплексних чисел із фіксованим модулем r відносно операції множення.
- 22.Множина ненульових комплексних чисел, модуль яких не перевищує даного числа r, відносно операції множення.
- 23.Множина ненульових комплексних чисел, розташованих на променях, що виходять із початку координат та утворюють з променем 0x кути $\varphi_1, \varphi_2, ..., \varphi_n$, відносно операції множення.
- 24. Множина всіх непарних підстановок множини $M = \{1, 2, ..., n\}$ відносно операції множення.
- 25.Множина підстановок $\{E,(12)(34),(13)(24),(14)(23)\}$ відносно операції множення.
- 26.Множина матриць вигляду $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, відносно множення.
- 27. Множина всіх дійсних невироджених матриць порядку *п* відносно додавання.

- 28.Множина всіх дійсних невироджених діагональних матриць порядку n відносно множення.
- 29. Множина всіх дійсних невироджених діагональних матриць порядку n відносно додавання.
- 30.Множина підстановок $\{E,(12),(13),(14),(23),(24),(34)\}$ відносно операції множення.

1.2. Таблиця Келі

Нехай є множина $G = \left\{ a_1, a_2, ..., a_n \right\}$ з бінарною операцією (*). **Таблицею Келі** або таблицею множення цієї множини називається таблиця яка складається з n стовпчиків та n рядків. У рядки і стовпчики таблиці послідовно нумеруються елементами $a_1, a_2, ..., a_n$ множини G. Якщо (G,*) — група, то за елемент a_1 , як правило, беруть нейтральний елемент e групи. На перетині рядка, поміченого елементом a_i , і стовпчика, поміченого елементом a_i , записують результат $a_i * a_j$.

<u>Приклад</u> 1. Таблиця Келі для множини $Z_6 = \left\{ \overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5} \right\}$, з операціями додавання і множення мають відповідно вигляд

+	$\overline{0}$	ī	$\overline{2}$	$\overline{3}$	$\overline{4}$	- 5
$\overline{0}$	$\overline{0}$	Ī	$\overline{2}$	3	$\overline{4}$	<u>-</u> 5
Ī	Ī	$\overline{2}$	3	$\overline{4}$	<u>5</u>	$\bar{0}$
$\overline{2}$	2	3	$\overline{4}$	5	$\overline{0}$	Ī
3	3	$\overline{4}$	5	$\overline{0}$	ī	$\bar{2}$
$\overline{4}$	$\overline{4}$	5	$\overline{0}$	ī	<u>-</u> 2	3
5	5	$\overline{0}$	Ī	$\bar{2}$	3	4

×	$\overline{0}$	ī	$\overline{2}$	<u>3</u>	4	5
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\bar{0}$	$\bar{0}$
Ī	$\overline{0}$	ī	$\overline{2}$	3	$\overline{4}$	<u>-</u> 5
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{0}$	$\bar{2}$	$\overline{4}$
3	$\overline{0}$	3	Ō	3	$\bar{0}$	3
$\overline{4}$	$\overline{0}$	$\overline{4}$	$\overline{2}$	$\overline{0}$	$\overline{4}$	$\bar{2}$
5	$\bar{0}$	5	$\overline{4}$	3	$\overline{2}$	Ī

Приклад 2. Таблиця Келі для групи

$$GL_2(Z_2) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$$
 має вигляд:

	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
$ \begin{array}{ c c } \hline \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	$ \begin{array}{c c} \hline \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	$ \begin{array}{ c c } \hline \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \end{array} $	$ \begin{array}{ c c } \hline \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} $	$ \begin{array}{c c} (1 & 0) \\ \hline (1 & 1) \\ (1 & 0) \end{array} $	$ \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} $	$ \begin{array}{ c c } \hline \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{array} $
$ \begin{array}{ c c } \hline \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \end{array} $	$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$	$ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} $	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$
$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
$ \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} $	$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
$ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} $	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $

3ауваження. a) якщо операція (*) комутативна, то її таблиця Келі є симетричною відносно головної діагоналі.

b) якщо для операції (*) існує нейтральний елемент e, то елемент a_i буде оборотним зліва (справа) тоді й лише тоді, коли у стовпчику (рядку), поміченому елементом a_i , зустрічається нейтральний елемент.

с) у випадку групи в кожному рядку і в кожному стовпчику таблиці Келі всі елементи групи зустрічаються по одному разу (немає повторів).

Завдання 2. Скласти табличку Келі групи

1.
$$Z_7$$
. 2. C_6 . 3. D_3 . 4. $T_2(Z_3)$. 5. $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$.

6.
$$Z_6$$
. 7. C_8 . 8. S_3 . 9. $\langle (136)(45) \rangle$. 10. $\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix} \rangle$.

11.
$$D_4$$
. 12. Z_9^* . 13. Q_8 . 14. $T_3(Z_2)$. 15. $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} \right\rangle$.

16.
$$\langle (154)(26) \rangle$$
. 17. Z_{15}^* . 18. Z_{20}^* . 19. Z_{30}^* . 20. $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 1 & 3 & 4 \end{pmatrix} \right\rangle$.

21.
$$Z_{16}^*$$
. 22. Z_7^* . 23. $\langle (1352)(46) \rangle$. 24. C_7 .

25.
$$\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 2 & 4 & 6 & 1 \end{pmatrix} \right\rangle$$
. $26. \left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 6 & 4 & 2 & 1 \end{pmatrix} \right\rangle$.

$$27. \ \left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 5 & 1 & 4 \end{pmatrix} \right\rangle. \qquad 28. \left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 5 & 6 & 1 \end{pmatrix} \right\rangle.$$

$$29. \ \left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 2 & 6 & 4 & 1 \end{pmatrix} \right\rangle. \qquad 30. \left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 2 & 3 & 6 & 1 \end{pmatrix} \right\rangle.$$

1.3. Порядок елемента групи

Нехай G - мультиплікативна група. **Порядком елемента** a групи G називається найменше натуральне число n (найменший додатний показник n), для якого $a^n = e$. Якщо такого показника не існує, то a називається елементом нескінченого порядку.

Твердження 1: Порядок елемента дорівнює кількості різних степенів цього елемента.

Якщо елемент a має порядок n, то пишуть |a|=n.

Якщо a елемент n-ого порядку, то породжена ним циклічна підгрупа $\langle a \rangle$ складається з таких елементів: $e = a^0, a, a^2, ..., a^{n-1}$.

<u>Приклади.</u> 1. Елемент $i \in C^*$ має порядок 4.

- 2. Елемент $g = \cos \frac{5\pi}{8} + i \sin \frac{5\pi}{8}$ із C^* є елементом порядку 16, оскільки $g^8 = -1, \ g^{16} = 1.$
- 3. Елемент 2 з R^* є елементом нескінченного порядку (для довільного натурального n $2^n \neq 1$).
- 4. Елемент $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ із $GL_2(Z_2)$ є елементом порядку 2: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$
- 5. Елемент $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix} \in S_5$ є елементом порядку 4:

$$g^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 3 & 1 \end{pmatrix}, g^{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 1 & 5 & 3 \end{pmatrix},$$

$$g^{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 1 & 5 & 3 \end{pmatrix},$$

$$g^4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}.$$

Твердження 2: Порядок підстановки дорівнює найменшому спільному кратному довжин незалежних циклів цієї підстановки.

<u>Зауважимо</u>, що порядок добутку ab елементів a і b, взагалі кажучи, не визначаються порядками елементів a і b.

Приклади.

1. Розглянемо дві осьові симетрії з паралельними осями. Порядок кожної осьової симетрії дорівнює 2. Якщо ми розглянемо добуток s_1s_2 , то отримаємо паралельне перенесення, яке має нескінченний порядок.

$$\begin{vmatrix} |s_1| = |s_2| = 2, \\ |s_1 s_2| = \infty \end{vmatrix}$$

$$|s_1 s_2| = \infty$$

2. Розглянемо дві осьові симетрії з осями, що перетинаються під кутом 90° . Порядок кожної осьової симетрії дорівнює 2, тобто $|s_1| = |s_2| = 2$. Добуток s_1s_2 є поворотом на кут 180° навколо точки перетину осей і має порядок 2. π

3. Розглянемо дві осьові симетрії з осями, що перетинаються під кутом 45°. Порядок кожної осьової симетрії дорівнює 2. Але цього разу добуток s_1s_2 є поворотом на 90° навколо точки перетину осей і має порядок 4 . π

4. Елемент $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 3 & 10 & 9 & 6 & 7 & 12 & 2 & 8 & 1 & 11 & 5 & 4 \end{pmatrix} \in S_{12}$ перепишемо у вигляді добутку незалежних циклів g = (139)(2101157)(4612)(8). Маємо чотири незалежних цикла та HCK(3,5,3,1) = 15. Отже, елемент має порядок 15.

Завдання 3. Знайти порядок елемента групи

1. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8;$$
 b) $g = \frac{\sqrt{3}}{2} - \frac{1}{2}i \in C^*.$
2. a) $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 4 & 6 & 2 & 5 & 8 & 7 \end{pmatrix} \in S_8;$ b) $g = -\frac{\sqrt{3}}{2} + \frac{1}{2}i \in C^*.$

3. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 7 & 4 & 6 & 2 & 5 & 8 & 3 \end{pmatrix} \in S_8;$$
 b) $g = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i \in C^*.$

b)
$$g = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i \in C^*$$
.

4. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 3 & 4 & 6 & 2 & 5 & 8 & 1 \end{pmatrix} \in S_8;$$
 b) $g = -\frac{\sqrt{3}}{2} - \frac{1}{2}i \in C^*.$

b)
$$g = -\frac{\sqrt{3}}{2} - \frac{1}{2}i \in C^*$$
.

5. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 3 & 6 & 2 & 5 & 8 & 7 \end{pmatrix} \in S_8;$$
 b) $g = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \in C^*.$

b)
$$g = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \in C^*$$

6. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 7 & 6 & 2 & 5 & 8 & 4 \end{pmatrix} \in S_8;$$
 b) $g = 2 - i \in C^*$.

b)
$$g = 2 - i \in C^*$$
.

7. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 4 & 6 & 2 & 3 & 8 & 7 \end{pmatrix} \in S_8;$$
 b) $g = -i \in C^*.$

b)
$$g = -i \in C^*$$
.

8. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 3 & 4 & 6 & 1 & 5 & 2 & 7 \end{pmatrix} \in S_8;$$
 b) $g = \cos \frac{6\pi}{5} + i \sin \frac{6\pi}{5} \in C^*.$

b)
$$g = \cos \frac{6\pi}{5} + i \sin \frac{6\pi}{5} \in C^*$$
.

9. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 4 & 6 & 2 & 5 & 8 & 7 \end{pmatrix} \in S_8;$$

b)
$$g = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7} \in C^*$$
.

10. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 6 & 4 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$$
; b) $g = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in GL_4(R)$.

b)
$$g = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \in GL_4(R).$$

11. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 4 & 6 & 2 & 5 & 3 & 7 \end{pmatrix} \in S_8;$$
 b) $g = \begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C).$
12. a) $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 2 & 7 & 1 & 5 & 8 & 6 \end{pmatrix} \in S_8;$ b) $g = \begin{pmatrix} -1 & a \\ 0 & 1 \end{pmatrix} \in GL_2(R).$

b)
$$g = \begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$$
.

12. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 2 & 7 & 1 & 5 & 8 & 6 \end{pmatrix} \in S_8$$

b)
$$g = \begin{pmatrix} -1 & a \\ 0 & 1 \end{pmatrix} \in GL_2(R)$$
.

13. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 4 & 6 & 5 & 8 & 2 & 7 \end{pmatrix} \in S_8;$$
 b) $g = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in GL_2(Z).$

b)
$$g = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in GL_2(Z)$$
.

14. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 7 & 6 & 4 & 5 & 8 & 2 \end{pmatrix} \in S_8;$$
 b) $g = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \in GL_2(Z).$

b)
$$g = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \in GL_2(Z)$$
.

15. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 1 & 6 & 7 & 5 & 8 & 4 \end{pmatrix} \in S_8;$$
 b) $g = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in GL_3(Z).$

b)
$$g = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \in GL_3(Z)$$
.

16. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8;$$
 b) $g = \frac{1 - i\sqrt{3}}{2} \in C^*.$

b)
$$g = \frac{1 - i\sqrt{3}}{2} \in C^*$$
.

17. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 4 & 6 & 3 & 5 & 2 & 7 \end{pmatrix} \in S_8;$$
 b) $g = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \in C^*.$

b)
$$g = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \in C^*$$

18. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 8 & 4 & 6 & 1 & 5 & 7 & 3 \end{pmatrix} \in S_8;$$
 b) $g = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \in C^*.$

b)
$$g = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \in C^*$$
.

19. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 4 & 7 & 5 & 8 & 2 & 6 \end{pmatrix} \in S_8;$$
 b) $g = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \in C^*.$

b)
$$g = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \in C^*$$
.

20. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 4 & 6 & 5 & 8 & 2 & 7 \end{pmatrix} \in S_8;$$
 b) $g = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in GL_3(Z).$

b)
$$g = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in GL_3(Z).$$

21. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 8 & 6 & 1 & 5 & 7 & 4 \end{pmatrix} \in S_8;$$
 b) $g = \begin{pmatrix} a & 1 \\ -1 & 0 \end{pmatrix} \in GL_2(R).$

b)
$$g = \begin{pmatrix} a & 1 \\ -1 & 0 \end{pmatrix} \in GL_2(R)$$
.

22. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8;$$
 b) $g = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \in GL_3(Z).$

b)
$$g = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \in GL_3(Z)$$

23. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 4 & 6 & 7 & 5 & 3 & 2 \end{pmatrix} \in S_8;$$
 b) $g = i \in C^*$.

b)
$$g = i \in C^*$$
.

24. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 4 & 3 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8;$$
 b) $g = \begin{pmatrix} 1 & 0 \\ a & -1 \end{pmatrix} \in GL_2(Z).$

b)
$$g = \begin{pmatrix} 1 & 0 \\ a & -1 \end{pmatrix} \in GL_2(Z)$$
.

25. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 1 & 6 & 5 & 8 & 2 & 7 \end{pmatrix} \in S_8;$$
 b) $g = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \in C^*.$

b)
$$g = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \in C^*$$
.

26. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 3 & 4 & 6 & 1 & 7 & 2 & 5 \end{pmatrix} \in S_8;$$
 b) $g = \cos \frac{3\pi}{5} + i \sin \frac{3\pi}{5} \in C^*.$

b)
$$g = \cos \frac{3\pi}{5} + i \sin \frac{3\pi}{5} \in C^*$$
.

27. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 3 & 4 & 8 & 1 & 5 & 2 & 7 \end{pmatrix} \in S_8;$$
 b) $g = \cos \frac{7\pi}{15} + i \sin \frac{7\pi}{15} \in C^*.$

b)
$$g = \cos \frac{7\pi}{15} + i \sin \frac{7\pi}{15} \in C^*$$
.

28. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 3 & 4 & 6 & 1 & 5 & 2 & 7 \end{pmatrix} \in S_8;$$
 b) $g = \cos \frac{6\pi}{15} + i \sin \frac{6\pi}{15} \in C^*.$

b)
$$g = \cos \frac{6\pi}{15} + i \sin \frac{6\pi}{15} \in C^*$$
.

29. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 3 & 2 & 6 & 1 & 5 & 4 & 7 \end{pmatrix} \in S_8;$$
 b) $g = \cos \frac{3\pi}{13} + i \sin \frac{3\pi}{13} \in C^*.$

b)
$$g = \cos \frac{3\pi}{13} + i \sin \frac{3\pi}{13} \in C^*$$
.

30. a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 1 & 6 & 5 & 8 & 7 \end{pmatrix} \in S_8;$$
 b) $g = \cos \frac{\pi}{5} + i \sin \frac{\pi}{5} \in C^*.$

b)
$$g = \cos \frac{\pi}{5} + i \sin \frac{\pi}{5} \in C^*$$
.

1.4. Група симетрій

Симетрія фігури (тіла) — це рух площини (простору), за яким фігура (тіло) в цілому, як множина, переходить у себе.

Теорема: Множина симетрій фігури (тіла) утворює групу відносно суперпозиції.

Цю групу називають групою симетрій фігури (тіла).

Приклад 1. Група симетрій ромба містить 4 елементи:

тотожне перетворення ε , симетрію відносно діагоналі AD, симетрію відносно діагоналі BC, поворот на 180° навколо центра O.

Отже, порядок групи симетрій ромба дорівнює 4.

<u>Приклад</u> 2. Група симетрій кола містить усі повороти навколо центра кола і всі симетрії відносно осей, що проходять через центр кола. Зокрема, ця група нескінченна.

Приклад 3. Група поворотів куба містить :

- а) тотожний поворот;
- б) повороти навколо кожної з трьох осей, що з'єднують центри протилежних граней, на кути

$$\frac{\pi}{2}, \pi, \frac{3\pi}{2}$$
 (всього 9 поворотів);

в) по два повороти навколо кожної з чотирьох

діагоналей (на кути
$$\frac{2\pi}{3}$$
; $\frac{4\pi}{3}$; всього 8 поворотів);

г) повороти на 180° навколо кожної з шести осей, що з'єднують середини протилежних ребер (6 поворотів).

Таким чином, група поворотів куба містить 24 елементи. Зауважимо, що група симетрій куба має порядок 48.

<u>Приклад</u> 4. Знайдемо порядок групи симетрій фігури, зображеної на рисунку.

Як можна побачити, ця група містить 8 осьових симетрій (4 симетрії типу s_1 і 4 симетрії типу s_2) і 8 поворотів (на кути, кратні $\frac{\pi}{4}$).

Отже, порядок цієї групи дорівнює 16.

<u>Приклад 5</u>. Побудувати таблицю Келі для групи симетрій прямокутника.

Група симетрій прямокутника містить чотири елемента: два повороти на кути 0° і 180° навколо його центра та дві осьові симетрії відносно прямих s_1 та s_2 , що проходять через середини протилежних сторін прямокутника. Бінарною операцією є суперпозиція. Таблиця Келі має такий вигляд:

0	0°	180°	s_1	s ₂
0°	0°	180°	s_1	<i>s</i> ₂
180°	180°	0°	<i>s</i> ₂	s_1
s_1	s_1	<i>s</i> ₂	0°	180°
s_2	s_2	s_1	180°	0°

Завдання 4. Знайти порядок групи симетрій

- 1. Рівностороннього трикутника. 16. Квадрата.
- 2. Правильної чотирикутної піраміди. 17. Букви Ф.
- 3. Еліпса. 18. Правильної восьмикутної піраміди.
- 4. Правильної шестикутної піраміди. 19. Паралелограма.
- 5. Еліпсоїд із попарно різними півосями. 20. Цифри 8.
- 6. Гіперболи. 21. Правильного шестикутника.
- 7. Цифри 0. 22. Правильної семикутної піраміди.
- 8. Правильного п'ятикутника. 23. Букви Н.
- 9. Правильної трикутної піраміди. 24. Правильного восьмикутника.
- 11.Виразу 00. 26. Виразу 88.
- 12. Правильної трикутної піраміди. 27. Виразу XX.
- 13. Прямого різностороннього паралелепіпеда. 28. Букви S.
- 14. Прямої призми з ромбом в основі. 29. Прямокутника.
- 15. Правильної п'ятикутної піраміди. 30. Виразу \$\$.

1.5. Система твірних елементів групи. Циклічна група

Підмножина $A \subseteq G$ групи G називається системою твірних елементів групи G, якщо A не міститься в жодній власній підгрупі з G. Можна показати, що A буде системою твірних групи G тоді й лише тоді, коли кожен елемент $g \in G$ можна записати у вигляді $g = a_1 a_2 a_s$, де кожен множник a_i належить множині A або є оберненим до елемента з A. Група, для якої існує система твірних з одного елемента, називається циклічною. Зрозуміло, що множина всіх елементів групи G буде системою твірних для G, але це надлишкова система. Система твірних з якої неможна вилучити жодного елемента, називається незвідною. Якщо кількість елементів незвідної системи твірних групи є скінченною, то таку групу G називають скінченопородженою. В кожній скінченній групі

існують незвідні системи твірних, причому вони можуть складатися з тобто незвідна система твірних різних елементів, неоднозначно. Так наприклад, $Q_8 = \{\pm 1; \pm i; \pm j; \pm k\} = \langle i, j \rangle = \langle i, k \rangle = \langle j, k \rangle$. Незвідні системи твірних групи G можуть містити навіть різну кількість елементів. Наприклад, група підстановок S_n може бути породжена як всіма фіксованим елементом, транспозиціями 3 тобто $S_n = <(1,2);(1,3);(1,4);...;(1,n)> (n-1)$ елемент) так і всього двома елементами $S_n = <(1,2);(1,2,3,...,n)>$. Нескінченні групи не обов'язково повинні мати незвідні системи твірних, наприклад, адитивна група раціональних чисел. 3 іншого боку, існують нескінченні групи зі скінченною незвідною групою твірних, наприклад адитивна група цілих чисел породженна одним елементом, а саме (Z,+) = <1> = <-1>.

Можна також сказати, що група G називається **циклічною**, якщо вона складається зі степенів (кратних) одного із своїх елементів a. Елемент a називається **твірним елементом** циклічної групи. Циклічна група з твірним елементом a позначається $\langle a \rangle$. Кожна циклічна група абелева.

<u>Приклад</u> 1. Множина цілих чисел відносно додавання утворює нескінченну циклічну групу з твірним елементом одиниця (за твірний елемент можна також взяти елемент – "мінус одиниця").

<u>Приклад</u> 2. Група всіх комплексних коренів n-ого степеня з одиниці є скінченною циклічною групою з твірним елементом $\varepsilon_1 = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)$. Зауважимо, що за твірний елемент цієї групи

можна взяти довільне число $\varepsilon_k = \cos\left(\frac{2k\pi}{n}\right) + i\sin\left(\frac{2k\pi}{n}\right)$, де k взаємно просте з n .

Нехай G- мультиплікативна група з одиницею e. **Порядком** елемента $a \in G$ називається найменше натуральне число n, для якого $a^n = e$. Якщо елемент a ϵ елементом скінченного порядку n (пишуть |a| = n), то порядок циклічної групи $\langle a \rangle$ збігається з порядком твірного елемента. Якщо елемент a ϵ елементом нескінченного порядку, то циклічна група $\langle a \rangle$ нескінченна. Всі циклічні групи одного порядку n ізоморфні між собою. Всі циклічні групи нескінченного порядку ізоморфні між собою.

Нагадаємо, що через $\varphi(n)$ позначається кількість натуральних чисел, що не перевищують n і взаємно прості з числом n. Нехай $G = \langle a \rangle$, |a| = n. Тоді кількість елементів n-го порядку в $\langle a \rangle$ дорівнює $\varphi(n)$ (тобто кількість твірних елементів групи G дорівнює $\varphi(n)$).

Для кожного елемента b циклічної групи G порядку n його порядок |b| ϵ дільником числа n .

<u>Приклад</u> 3. У циклічній групі $G = \langle a \rangle$ порядку 560 знайти всі елементи g , які задовольняють умову $g^{30} = e$.

Потрібно знайти всі такі елементи $g=a^k$, що $g^{30}=e$. $g^{30}=\left(a^k\right)^{30}=a^{30k}=e$, тому 30k:560, 3k:56, отже k:56, k=0,56,112,168,224,280,336,392,448,504. Відповідь: умову $g^{30}=e$ задовольняють елементи $e,a^{56},a^{112},a^{168},a^{224},a^{280},a^{336},a^{392},a^{448},a^{504}$.

<u>Приклад</u> 4. У циклічній групі G порядку 360 знайти всі елементи g порядку 30.

За означенням порядку елемента групи 30 найменша степінь, в якій $g^{30} = e$. Маємо 360:30=12. Зрозуміло, що коли елемент має порядок 30, то він має порядок 2,3,4,5,6,...,15,...,28, тобто якщо ми хочемо знайти найменшу степінь, то нам потрібно вибрати взаємно прості числа для

30. числа Числа прості 30 будуть взаємно числа 1, 7, 11, 13, 17, 19, 23, 29. Тобто, нас цікавлять елементи $b,b^7,b^{11},b^{13},b^{17},b^{19},b^{23},b^{29},$ тому елементи порядку 30 ϵ елементи a^{12} , a^{84} , a^{132} , a^{156} , a^{204} , a^{228} , a^{276} , a^{348} .

Завдання 5. У циклічній групі $\langle a \rangle$ порядку n

- 1) знайти всі елементи g, які задовольняють умову $g^k = e$;
- 2) та знайти всі елементи порядку k, якщо :

1.
$$n = 24$$
, $k = 6$.
11. $n = 36$, $k = 9$.
21. $n = 150$, $k = 15$.
22. $n = 100$, $k = 20$.
12. $n = 48$, $k = 6$.
22. $n = 240$, $k = 12$.

3.
$$n = 24$$
, $k = 4$. 13. $n = 36$, $k = 6$. 23. $n = 150$, $k = 10$.

4.
$$n = 360$$
, $k = 60$. 14. $n = 56$, $k = 8$. 24. $n = 72$, $k = 8$.

5.
$$n = 100$$
, $k = 10$. 15. $n = 28$, $k = 4$. 25. $n = 150$, $k = 25$.

6.
$$n = 360$$
, $k = 12$. 16. $n = 160$, $k = 8$. 26. $n = 140$, $k = 35$.

7.
$$n = 234$$
, $k = 9$. 17. $n = 125$, $k = 25$. 27. $n = 105$, $k = 15$.

8.
$$n = 360$$
, $k = 45$. 18. $n = 200$, $k = 8$. 28. $n = 280$, $k = 14$.

9.
$$n = 250$$
, $k = 10$. 19. $n = 250$, $k = 50$. 29. $n = 275$, $k = 25$.

10.
$$n = 255$$
, $k = 15$. 20. $n = 164$, $k = 4$. 30. $n = 121$, $k = 11$.

1.6. Теореми Силова. Силовськи підгрупи

За теоремою Лагранжа порядок довільної підгрупи є дільником порядка скінченої групи. На прикладі групи A_4 можна переконатися, що зворотне твердження не є правильним. Порядок групи A_4 дорівнює 12, але A_4 не містить підгруп шостого порядку. У знакозмінній групі A_5 порядку 60 не існує підгруп 30-го порядку, 20-го та 15-го порядків. Природно виникає питання: "для яких дільників d порядку n групи n існує підгрупа даного порядку n ?" Для випадку n n рупи n групи n існує підгрупа даного порядку n групи n рупи n існує підгрупа даного порядку n групи n рупи n існує підгрупа даного порядку n групи n взаємно просте з n0, відповідь дає теорема Силова

(зауважимо, що підгрупи порядку p^s називають силовськими p - підгрупами групи G)

Теорема Силова. Нехай G – група, p – просте число. Якщо $|G| = p^s m$, де $s \ge 1$ та p не ϵ дільником m, то справедливі наступні твердження:

- 1. у групі G існують підгрупи порядку p^{i} для кожного i = 1, 2, ..., s;
- 2. якщо $0 \le k \le s-1$, то довільна підгрупа P' порядку p^k міститься в деякій підгрупі P'' порядку p^{k+1} .
- 3. довільні дві силовські підгрупи P і P_1 групи G є спряженими, тобто знайдеться елемент $a \in G$, для якого $P_1 = aPa^{-1}$.
- 4. кількість N_p всіх силовськіх p підгруп групи G порядку $n=p^sm$ конгруентна одиниці за модулем p , причому N_p ϵ дільником порядка групи.

Група S_3 порядку 6 містить три силовськи 2-підргупи: $\{e,(12)\}$, $\{e,(13)\}$, $\{e,(23)\}$ і одну силовські 3-підгрупу A_3 . Група A_4 порядку $12=2^2\cdot 3$ містить одну силовські 2-підгрупу K_4 та чотири силовських 3-підгрупи $\{e,(123),(132)\}$, $\{e,(124),(142)\}$, $\{e,(134),(143)\}$, $\{e,(234),(243)\}$.

Вправа для самостійного опрацювання: Знайти всі силівські 5-підгрупи в групі A_5 .

1.7. Морфізми груп

Розглянемо дві непорожні множини A і B. Кажуть, що множина A відображається $\mathbf B$ множину B, якщо кожному елементу множини A за деяким правилом φ поставлено у відповідність один і тільки один елемент множини B; записують $\varphi:A\to B$. Відображення $\varphi:A\to B$ називають **сюр'єктивним**, або відображення множини A **на** множину B, якщо кожний елемент множини B ε образом деякого елемента множини A.

Відображення $\varphi: A \to B$ називають **ін'єктивним**, якщо воно різним елементам множини A зіставляє різні елементи множини B.

Відображення $\varphi: A \to B$ називають **бієктивним**, або взаємно однозначним, відображенням множини A на множину B, якщо кожний елемент множини B ϵ образом ϵ диного елемента множини A (тобто відображення є ін'єктивним і сюр'єктивним одночасно).

Відображення "в" Відображення "на"

Бієктивне відображення

Відображення $f: G \to G'$ групи (G,*) в групу (G',\circ) називається **гомоморфізмом**, якщо для довільних елементів a, b групи G виконується рівність $f(a*b) = f(a) \circ f(b)$.

Гомоморфізм $f: G \to G$ групи G в себе називається ендоморфізмом.

Гомоморфізм $f: G \to G'$ називається епіморфізмом, якщо відображення $f: G \to G'$ є сюр'єктивним.

Гомоморфізм $f: G \to G'$ називається мономорфізмом, якщо відображення $f: G \to G'$ є ін'єктивним.

Бієктивний гомоморфізм $f: G \to G'$ називається ізоморфізмом (тобто гомоморфізм $f: G \to G'$ є ізоморфізмом), якщо відображення $f \in G$ ін'єктивним і сюр'єктивним одночасно.

Ізоморфізм групи G на себе називають **автоморфізмом**.

Властивості ізоморфізмів груп

Твердження. При кожному ізоморфізмі відображені $\varphi: G \to G_1$ групи (G,*) в групу (G_1,\circ) :

- 1. нейтральний елемент e групи G відображається в нейтральний елемент e_1 групи G_1 , тобто $\varphi(e) = e_1$;
- 2. образ оберненого елемента ϵ оберненим до образу елемента, тобто $\varphi(g^{-1}) = (\varphi(g))^{-1}$;
- 3. порядки ізоморфних груп рівні.

Зауважимо також, що коли множина G_1 із визначеною бінарною операцією \circ , ізоморфна деякій групі (G,*), то (G_1,\circ) також ε групою. Якщо група (G,*) ε абелевою (або циклічною) та відображення $\varphi:G\to G_1$ ε ізоморфним, то (G_1,\circ) також абелева (відповідно циклічна) група.

<u>Приклад 1.</u> З'ясувати, чи будуть ізоморфними група D_3 та група $GL_2(Z_2)$. Група D_3 симетрій правильного трикутника складається з трьох поворотів на кути 0° , 120° , 240° відповідно та трьох осьових симетрій S_1 , S_2 , S_3 відносно прямих, що містять бісектриси кутів трикутника. Група невироджених матриць другого порядку з елементами поля Z_2 складається теж з шістьох елементів, а саме

$$GL_{2}(Z_{2}) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$$

Позначимо елементи відповідних груп

$$D_3 = \left\{a_0 = 0^\circ, \, a_1 = s_1, \, a_2 = s_2, \, a_3 = s_3, \, a_4 = 120^\circ, \, a_5 = 240^\circ\right\}$$

$$GL_2(Z_2) = \left\{b_0, \, b_1, \, b_2, \, b_3, \, b_4, \, b_5\right\} \text{ і складемо відповідні таблиці Келі:}$$

0	a_0	a_1	a_2	a_3	a_4	a_5
a_0	a_0	a_1	a_2	a_3	a_4	a_5
a_1	a_1	a_0	a_4	a_5	a_2	a_3
a_2	a_2	a_5	a_0	a_4	a_3	a_1
a_3	a_3	a_4	a_5	a_0	a_1	a_2
a_4	a_4	a_3	a_1	a_2	a_5	a_0
a_5	a_5	a_2	a_3	a_1	a_0	a_4

0	b_0	b_1	b_2	b_3	b_4	b_5
b_0	b_0	b_1	b_2	b_3	b_4	b_5
b_1	b_1	b_0	b_4	b_5	b_2	b_3
b_2	b_2	b_5	b_0	b_4	b_3	b_1
b_3	b_3	b_4	b_5	b_0	b_1	b_2
b_4	b_4	b_3	b_1	$\overline{b_2}$	b_5	b_0
b_5	b_5	\overline{b}_2	\overline{b}_3	\overline{b}_1	\overline{b}_0	\overline{b}_4

3 таблиць Келі видно, що відображення $\varphi: a_i \to b_i$, $i = \overline{0,5}$, буде ізоморфізмом.

Справедливі наступні твердження.

Твердження 1. Кожна нескінченна циклічна група ізоморфна адитивній групі Z цілих чисел.

Твердження 2. Кожна циклічна група порядку n ізоморфна групі поворотів C_n правильного n - кутника.

Наслідок з твердження 2. Циклічні групи одного порядку ізоморфні між собою.

Твердження 3 (теорема Келі). Кожна скінченна група порядку n ізоморфна деякій підгрупі H симетричної групи S_n .

<u>Приклад 2</u>. З'ясувати, чи будуть ізоморфними групи D_6 , A_4 , Z_{12} , C_6 , Z_7^* , S_3 .

Нагадаємо, що D_6- група симетрій правильного шестикутника (шість симетрій + шість поворотів),

 A_4 – група парних підстановок з 4-х елементів (12 парних підстановок), Z_{12} – адитивна група кільця лишків за модулем 12 (порядок 12),

 C_6 – група поворотів правильного шестикутника (шість поворотів на кути, кратні 60° , відносно центра шестикутника),

 Z_7^* — мультиплікативна група кільця лишків за модулем 7 (містить 6 елементів),

 S_3 – симетрична група степеня 3 (шість підстановок).

Оскільки порядки ізоморфних груп однакові, то жодна з перших трьох груп не може бути ізоморфною жодній з трьох останніх груп. Далі, в ізоморфних групах кількість елементів даного порядку однакова, тому $D_6 \not\equiv A_4$, оскільки D_6 має сім елементів другого порядку (180° та шість осьових симетрій), а група A_4 має лише три елемента другого порядку, а саме (12)(34), (13)(24), (14)(23). Група Z_{12} є циклічною, тому $Z_{12} \not\equiv D_6$, $Z_{12} \not\equiv A_4$ (ці групи не є циклічними). Отже, серед перелічених груп порядку 12 ізоморфних немає. Група S_3 не є циклічною, тому вона не може бути ізоморфною ні C_6 , ні Z_7^* . Нарешті, групи C_6 , Z_7^* є циклічними групами порядку 6, отже вони ізоморфні.

<u>Приклад</u> 3. З'ясувати, чи буде відображення $f: C^* \to C^*$, $f(z) = z^2$, гомоморфізмом? Чи буде воно ізоморфізмом?

Перевіримо умову гомоморфізму : $f(a*b) = f(a) \circ f(b)$. Візьмемо довільні два елемента $z_1, z_2 \in C^*$. Тоді

$$f(z_1 \cdot z_2) = (z_1 \cdot z_2)^2 = z_1^2 \cdot z_2^2 = f(z_1) \cdot f(z_2).$$

Отже, відображення ϵ гомоморфізмом, але не ϵ ізоморфізмом, оскільки $f(z) = f(\overline{z})$.

Завдання 6. З'ясувати, чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом?

1.
$$f: C^* \to R^*$$
, $f(z) = |z|$.

17.
$$f: R \to R^+, \quad f(x) = 3^x$$
.

2.
$$f: C^* \to R^*$$
, $f(z) = 4|z|$. 18. $f: Q \to Q$, $f(x) = ax$, $a \ne 0$.

18.
$$f: Q \rightarrow Q$$
, $f(x) = ax$, $a \ne 0$

3.
$$f: C^* \to R^*$$
, $f(z) = \frac{3}{|z|}$.

19.
$$f: C \to C$$
, $f(z) = z \cdot \overline{z}$.

4.
$$f: C^* \to R^*$$
, $f(z) = \frac{1}{|z|}$.

20.
$$f: R \to R$$
, $f(x) = \sin x$.

5.
$$f: C^* \to R^*$$
, $f(z) = 2 + |z|$. 21. $f: R \to R$, $f(x) = x\sqrt{3}$.

21.
$$f: R \to R$$
, $f(x) = x\sqrt{3}$

6.
$$f: C^* \to C^*$$
, $f(z) = \frac{z}{|z|}$.

22.
$$f: R^+ \to R$$
, $f(x) = \ln x$.

7.
$$f:(Z,+) \to (Z,+), \quad f(n) = 3n$$

7.
$$f:(Z,+) \to (Z,+)$$
, $f(n) = 3n$. 23. $f:R^* \to R^*$, $f(x) = 2\frac{x}{|x|}$.

8.
$$f: R^* \to R^*$$
, $f(x) = x^3$.

24.
$$f: R \to Z$$
, $f(x) = [x]$.

9.
$$f: R^+ \to R$$
, $f(x) = \log_2 x$.

9.
$$f: R^+ \to R$$
, $f(x) = \log_2 x$. 25. $f: C^* \to R^+$, $f(z) = |z|^3$.

10.
$$f: R \to R^+, \quad f(x) = 2^x$$

10.
$$f: R \to R^+, \quad f(x) = 2^x.$$
 26. $f: R^* \to R^*, \quad f(x) = x^4.$

11.
$$f: C^* \to C^*$$
, $f(z) = \frac{z^2}{|z|^2}$.

27.
$$f: C^* \to R^+, \quad f(z) = |z|^2.$$

12.
$$f:(Z,+) \to (Z,+)$$
, $f(n) = -5n$. 28. $f:R^* \to R^*$, $f(x) = \frac{1}{x}$.

28.
$$f: R^* \to R^*, \quad f(x) = \frac{1}{x}$$
.

13.
$$f: R \to R$$
, $f(x) = ax + b$, $a, b \in R$. 29. $f: R \to R^+$, $f(x) = e^x$.

29.
$$f: R \to R^+, \quad f(x) = e^x$$
.

14.
$$f:(Z,+) \to (Z,+)$$
, $f(n) = 2n^2 + n$. 30.. $f:R \to R$, $f(x) = -|x|$

30..
$$f: R \to R$$
, $f(x) = -|x|$

15.
$$f: R \to R$$
, $f(x) = \sin x + \cos 2x$.

16.
$$f:(T,\cdot) \to (T,\cdot), f(z) = z^2, \text{ ge } T = \{z \in C: |z| = 1\}.$$

1.8. Кільце

Непорожня множина K, на якій введено дві бінарні операції (*) і (\circ), називається **кільцем**, якщо виконуються такі умови:

- 1) множина $K \in$ абелевою групою відносно операції (*);
- 2) операція (\circ)— асоціативна на множини K;
- 3) операція (∘) дистрибутивна відносно операції (∗), тобто

$$\forall a,b,c \in K \quad (a*b) \circ c = a \circ c * b \circ c; \quad c \circ (a*b) = c \circ a * c \circ b.$$

Зауважимо, що операції (*) і (\circ) часто називають відповідно додаванням і множенням. Враховуючи це, можна дати таке означення: непорожня множина K з бінарними операціями додавання і множення називається **кільцем**, якщо відносно додавання вона є абелевою групою, відносно множення — напівгрупою, і має місце дистрибутивність множення відносно додавання як зліва, так і справа.

Абелева група (K,+) називається адитивною групою кільця K. Зауважимо, що так визначені кільця називають асоціативними, за рахунок асоціативного множення. Поряд з цим існують і неасоціативні кільця (кільця Лі, альтернативні кільця, йорданові кільця тощо). Але ми розглядаємо лише асоціативні кільця, тому далі термін «кільце» означатиме «асоціативне кільце». Якщо операція множення комутативна, то кільце називають комутативним.

Елемент e кільця K називається **правою одиницею** цього кільця, якщо для довільного $a \in K$ має місце ae = a (відповідно **лівою одиницею** кільця — якщо ea = a). Елемент e кільця K називається **одиницею** цього кільця, якщо він одночасно є лівою і правою одиницею. Ненульове кільце K, в якому існує одиничний елемент e відносно операції множення, називають **кільцем з одиницею**.

<u>Приклад 1.</u> Множина квадратних матриць даного порядку n з дійсними коефіцієнтами є кільцем з одиницею (одинична матриця) відносно операції додавання і множення.

<u>Приклад 2.</u> Множина парних чисел ϵ комутативним кільцем відносно операції додавання і множення.

<u>Приклад 3.</u> Множина двічі дифереційовних на проміжку (a,b) функцій є комутативним кільцем з одиницею відносно звичайних операції додавання і множення.

Справедливі таки твердження:

- 1. У кожному кільці K сума будь-яких його елементів $a_1, a_2, ..., a_n$ не залежить від способу розставлення дужок і порядку розміщення доданків.
- 2. У кожному кільці K здійсненна операція віднімання.
- 3. У кожному кільці K містяться кратні na будь-якого елемента a $(n \in \mathbb{Z}).$
- 4. Для будь-яких елементів a і b кільця K та довільних цілих чисел m і n справджуються таки рівності: (m+n)a = ma + na, m(a+b) = ma + mb, m(na) = (mn)a.
- 5. У кожному кільці K для будь-яких його елементів $a_1, a_2, ..., a_n$ справджується рівність $-(a_1 + a_2 + ... + a_n) = (-a_1) + (-a_2) + ... + (-a_n)$.
- 6. У кожному кільці K для будь-якого його елемента a і довільного натурального числа n справджується рівність n(-a) = -(na).
- 7. У кожному кільці K для будь-яких його елементів a і b справджуються рівності (-a)b = -ab , a(-b) = -ab , (-a)(-b) = ab .
- 8. У кожному кільці нульовий елемент 0 єдиний.
- 9. У кожному кільці з одиницею одиничний елемент 1 єдиний.
- 10.У кожному кільці K для будь-якого його елемента a маємо $a \cdot 0 = 0 \cdot a = 0$.

Непорожня підмножина A кільця K називається **підкільцем**, якщо вона сама є кільцем відносно тих самих операцій, що введені на K. У кожному кільці K є такі підкільця: саме кільце K та нульове підкільце,

яке складається лише з нульового елемента — їх називають тривіальними. Всі інші підкільця називають нетривіальними. Для того щоб з'ясувати, чи є дана непорожня підмножина A кільця K його підкільцем, зручно використовувати **критерій підкільця**: Непорожня підмножина A кільця K буде підкільцем тоді й лише тоді, коли A є замкненою відносно операцій множення та віднімання.

Зрозуміло, що перетин довільної родини підкілець кільця K також буде підкільцем цього кільця та підкільце комутативного кільця ϵ комутативним.

<u>Приклад 4</u>. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина $Z(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in Z\}.$

Зрозуміло, що дана множина є підмножиною кільця R . Нехай $x,y\in Z(\sqrt{2})$.

За критерієм підкільця потрібно показати, що $x-y\in Z\left(\sqrt{2}\right)$ та $x\cdot y\in Z\left(\sqrt{2}\right)$. Нехай $x=a_1+b_1\sqrt{2}$, $y=a_1+b_1\sqrt{2}$. Тоді маємо:

$$x - y = (a_1 + b_1 \sqrt{2}) - (a_2 + b_2 \sqrt{2}) = (a_1 - a_2) + (b_1 - b_2) \sqrt{2},$$

$$x \cdot y = (a_1 + b_1 \sqrt{2})(a_2 + b_2 \sqrt{2}) = (a_1b_1 + 2b_1b_2) + (a_1b_2 + a_2b_1)\sqrt{2}.$$

Оскільки кожне з чисел a_1-a_2 , b_1-b_2 , $a_1b_1+2b_1b_2$, $a_1b_2+a_2b_1$ є цілими, то множина $Z(\sqrt{2})$ є підкільцем кільця дійсних чисел. Отже, буде кільцем.

<u>Приклад 5</u>. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина $M = \left\{ a + b \sqrt[3]{2} : a, b \in Z \right\}$.

Зрозуміло, що множина M є підмножиною кільця R. Нехай $x,y\in M$. За критерієм підкільця достатньо показати, що $x-y\in M$ та $x\cdot y\in M$. Нехай $x=a_1+b_1\sqrt[3]{2}$, $y=a_1+b_1\sqrt[3]{2}$. Тоді,

$$x \cdot y = \left(a_1 + b_1\sqrt[3]{2}\right)\left(a_2 + b_2\sqrt[3]{2}\right) = a_1b_1 + \left(a_1b_2 + a_2b_1\right)\sqrt[3]{2} + a_2b_2\sqrt[3]{4}$$

Покажемо, що $\sqrt[3]{4} \not\in M$. Від супротивного, припустимо, що $\sqrt[3]{4} = c + d\sqrt[3]{2}$ для деяких цілих c і d . Це означає що $\sqrt[3]{2}$ є коренем многочлена

 $f(x) = x^2 - dx - c$. Поділимо многочлен $x^3 - 2$ на f(x) в кільці Z[x] з остачею: $x^3 - 2 = f(x)q(x) + r(x)$, де остача r(x) - многочлен не вище першого степеня з цілими коефіцієнтами. Підставляючи в обидва боки рівності $x^3 - 2 = \left(x^2 - dx - c\right)q(x) + r(x)$ значення $\sqrt[3]{2}$, отримаємо, що $r\left(\sqrt[3]{2}\right) = 0$. Тоді лінійний многочлен q(x) не може бути з цілими коефіцієнтами, оскільки він містить радикал. Ця суперечність доводить, що $\sqrt[3]{4} \notin M$. Множина M не є кільцем, оскільки вона не замкнена відносно звичайного множення.

<u>Приклад 6</u>. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина $C_{[a,b]}$ всіх функцій, неперервних на відрізку [a,b].

3 курсу математичного аналізу відомо, що сума, різниця та добуток функцій, неперервних на відрізку [a,b], ϵ функцією, неперервною на цьому відрізку. Асоціативність і комутативність додавання та множення, а також дистрибутивності випливають із відповідних законів для додавання й множення дійсних чисел. Нейтральним елементом для операції додавання буде нульова функція 0, нейтральним елементом для операції множення буде одинична функція 1, протилежною функцією для f(x) буде функція -f(x). Отже, множина $C_{[a,b]}$ всіх функцій, неперервних на відрізку [a,b] буде комутативним кільцем з одиницею.

Завдання 7. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення

- 1. Множина дійсних чисел вигляду $x + y\sqrt{3}$, де $x, y \in Q$?
- 2. Множина дійсних функцій, неперервних на проміжку [0,1]?
- 3. Множина ненульових дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число a фіксоване?
- 4. Множина дійсних чисел вигляду $x + y\sqrt[3]{3}$, де $x, y \in Q$?
- 5. Множина всіх дійсних симетричних матриць порядку n?
- 6. Множина раціональних чисел, у нескоротному записі яких знаменники ϵ дільниками фіксованого натурального числа n?
- 7. Множина всіх дійсних невироджених матриць порядку n.
- 8. Множина дійсних чисел, які можна подати у вигляді многочлена $a_0 + a_1 \pi + a_2 \pi^2 + \ldots + a_n \pi^n$ від числа π ?
- 9. Множина комплексних чисел вигляду x + iy, де $x, y \in \mathbb{Z}$?
- 10. Множина дійсних чисел вигляду $x + y\sqrt[3]{2}$, де $x, y \in Q$?
- 11. Множина всіх дійсних кососиметричних матриць порядку n?
- 12. Множина всіх тригонометричних многочленів вигляду $a_0 + \sum_{k=1}^n a_k \cos(kx) \ \text{ із дійсними коефіцієнтами?}$
- 13. Множина дійсних чисел вигляду $x + y\sqrt[3]{3} + z\sqrt[3]{9}$, де $x, y, z \in Q$?
- 14. Множина всіх дійсних верхніх трикутних матриць порядку n?
- 15. Множина дійсних функцій, неперервних на проміжку (0,1)?
- 16. Множина раціональних чисел, у нескоротному записі яких знаменники не діляться на фіксоване просте число p?
- 17. Множина дійсних чисел вигляду $x + y\sqrt[3]{2} + z\sqrt[3]{4}$, де $x, y, z \in Q$?

- 18. Множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -w & z \end{pmatrix}$?
- 19. Множина всіх тригонометричних многочленів вигляду $a_0 + \sum_{k=1}^n a_k \cos(kx) + b_k \sin(kx) \text{ із дійсними коефіцієнтами?}$
- 20. Множина комплексних чисел вигляду x + iy, де $x, y \in Q$?
- 21. Множина дійсних чисел вигляду $x y\sqrt{3}$, де $x, y \in Q$?
- 22. Множина раціональних чисел, у нескоротному записі яких знаменники ϵ степенями фіксованого простого числа p?
- 23. Множина дійсних чисел вигляду $x + y\sqrt{7}$, де $x, y \in Q$?
- 24. Множина всіх тригонометричних многочленів вигляду $\sum_{k=1}^{n} b_k \sin(kx)$ із дійсними коефіцієнтами?
- 25. Множина дійсних чисел вигляду $x + y\sqrt[3]{25}$, де $x, y \in Q$?
- 26. Множина всіх скалярних матриць порядку *n*?
- 27. Множина дійсних чисел вигляду $x + y\sqrt[3]{7} + z\sqrt[3]{49}$, де $x, y, z \in Q$?
- 28. Множина дійсних чисел вигляду $x + y\sqrt[4]{2}$, де $x, y \in Q$?
- 29. Множина дійсних функцій, неперервних на проміжку (-1,1)?
- 30. Множина всіх многочленів степінь яких не перевищує 2 від однієї змінної над полем Z_3 ?

1.9. Дільники нуля, дільники одиниці, оборотні та нільпотентні елементи. Поле

Нехай $(K,+,\cdot)$ — кільце. Ненульовий елемент $a\in K$ називається **лівим** дільником нуля, якщо існує такий ненульовий елемент $b\in K$, що ab=0. Ненульовий елемент $a\in K$ називається **правим** дільником нуля, якщо існує такий ненульовий елемент $b\in K$, що ba=0. Дільником нуля називається такий елемент $a\in K$, який одночасно є лівим та правим дільником нуля. Зрозуміло, що в комутативному кільці лівий дільник нуля буде правими дільником нуля, і навпаки.

Комутативне кільце з одиницею без дільників нуля називається **областю цілісності**. Прикладами області цілісності є кільце цілих чисел Z та кільце многочленів R[x]. Зауважимо, що кільце квадратних матриць $M_n(R)$ при n>1 не є областю цілісності, оскільки множення матриць не комутативне та кільце містить дільники нуля.

Елемент $a \in K$ називається **нільпотентним** елементом, якщо існує таке натуральне число n, що $a^n = 0$. Найменше таке n називається **ступенем нільпотентності** елемента a. Таким чином, кожний нільпотентний елемент є дільником нуля.

Нехай тепер K – кільце з одиницею. Елемент $a \in K$ називається лівим (відповідно правим) дільником одиниці, якщо існує такий неодиничний елемент $b \in K$, що ab = 1 (відповідно ba = 1). Якщо елемент одночасно є лівим і правим дільником одиниці, то його називають Дільники дільником одиниці. одиниці називають оборотними елементами, ліві дільники одиниці називають оборотними справа, праві дільники одиниці називають оборотними зліва. До необоротних елементів відносяться всі дільники нуля та сам нуль. У кільці Z_{20} дільниками нуля ε 2,4,5,6,810,12,14,15,16,18, необоротними елементами ϵ 0,2,4,5,6,810,12,14,15,16,18, оборотними відповідно елементами

1,3,7,9,11,13,17,19. У кільці цілих чисел Z дільників нуля немає, але всі елементи відмінні від ± 1 є необоротними.

Комутативне кільце з одиницею, в якому для кожного ненульового елемента існує обернений, називають полем. Поле називається скінченним, кількість елементів якщо y ньому скінченна. **Характеристикою поля** P з одиницею e і нулем θ називають найменше натуральне число p, для якого $pe = \theta$. Якщо рівність $pe = \theta$ виконується лише при p = 0, то вважають, що $P \in$ полем характеристики нуль. Всі числові поля мають характеристику нуль, всі скінченні поля мають скінченну характеристику p, причому p-просте число. Також зауважимо, що жодне поле не має дільників нуля.

<u>Приклад 1.</u> У полі Z_{331} знайти обернений елемент для елемента 173. *Розв'язування*. Оскільки (331,173)=1, то можна знайти лінійне зображення 1: 1=331a+173b.

В полі Z_{331} 331a=0, тому 1=173b, й елемент b буде оберненим до елемента 173. Знайдемо лінійне зображення 1:

$$-\frac{331}{173} \left| \frac{173}{1} \right| \\ -\frac{173}{158} \left| \frac{158}{1} \right| 158 = 331 - 173 \\ -\frac{158}{150} \left| \frac{15}{10} \right| \\ -\frac{15}{8} \left| \frac{8}{1} \right| 8 = 158 - 15 \cdot 10 = 331 - 173 - 10(2 \cdot 173 - 331) = 11 \cdot 331 - 21 \cdot 173 \\ -\frac{8}{7} \left| \frac{7}{1} \right| 7 = 15 - 8 = 2 \cdot 173 - 331 - (11 \cdot 331 - 21 \cdot 173) = 23 \cdot 173 - 12 \cdot 331 \\ -\frac{7}{7} \left| \frac{1}{1} \right| 7 = 18 - 7 = 11 \cdot 331 - 21 \cdot 173 - (23 \cdot 173 - 12 \cdot 331) = 23 \cdot 331 - 44 \cdot 173$$

Отже, в полі Z_{331} $1 = -44 \cdot 173 = 287 \cdot 173$ і елемент 287 ϵ оберненим до елемента 173 .

<u>Приклад 2</u>. У кільці Z_{150} знайти обернений елемент для елемента 31. *Розв'язування*. Оскільки (150,31)=1, то можна знайти лінійне зображення 1: 1=150a+31b. В кільці Z_{150} маємо 150a=0, тому 1=31b, й елемент b буде оберненим до елемента 31. Знайдемо лінійне зображення 1:

Отже, в кільці Z_{150} $1 = 6 \cdot 150 - 29 \cdot 31$ і елемент $-29 \equiv 121 \pmod{150}287$ є оберненим до елемента 31.

$$x_{1,2} = \frac{13 - \sqrt{5} \pm \left(9 - 3\sqrt{5}\right)}{2}$$
, $x_1 = 11 - 2\sqrt{5}$, Перевірку зробимо за теоремою $x_2 = 2 + \sqrt{5}$.

Вієта:

$$\begin{cases} x_1 \cdot x_2 = \frac{C}{A}, \\ x_1 + x_2 = \frac{-B}{A} \end{cases} \Rightarrow \begin{cases} (11 - 2\sqrt{5}) \cdot (2 + \sqrt{5}) = 22 - 10 + 11\sqrt{5} - 4\sqrt{5} = 12 + 7\sqrt{5}, \\ 11 - 2\sqrt{5} + 2 + \sqrt{5} = 13 - \sqrt{5}. \end{cases}$$

Biдnoвiдь: у полі $Q(\sqrt{5})$ рівняння $x^2-(13-\sqrt{5})x+12+7\sqrt{5}=0$ має таки розв'язки $x_1=11-2\sqrt{5}, \quad x_2=2+\sqrt{5}.$

<u>Приклад</u> 4. У полі $Q(\sqrt{13})$ розв'язати рівняння $x^2 - (3 - \sqrt{13})x + 120 + 7\sqrt{13} = 0$.

Розв'язування. $D = \left(3 - \sqrt{13}\right)^2 - 4\left(120 + 7\sqrt{13}\right) = -458 - 34\sqrt{13} < 0$. Зрозуміло, що дискримінант D не можна подати у вигляді $D = \left(a - b\sqrt{5}\right)^2$. Отже, рівняння розв'язків не має.

Приклад 5. У полі $Q(\sqrt{3})$ розв'язати рівняння $x^2-(3+2\sqrt{3})x-22-\sqrt{3}=0$. P озв'язування. $D=\left(3+2\sqrt{3}\right)^2+4\left(22+\sqrt{3}\right)=109+16\sqrt{3}$. З'ясуємо, чи можна дискримінант D подати у вигляді $D=\left(a-b\sqrt{3}\right)^2, a,b\in Q$. Розв'язуючи систему рівнянь $\begin{cases} 109=a^2+3b^2\\ 8=ab \end{cases}$, отримаємо $\begin{cases} a=\frac{8}{b}\\ 3b^4-109b^2+64=0 \end{cases}$. Тому

$$b_{1,2} = \frac{109 \pm \sqrt{11113}}{6} \notin Q.$$

 $Bi\partial noвi\partial b$: у полі $Q(\sqrt{3})$ рівняння $x^2 - (3 + 2\sqrt{3})x - 22 - \sqrt{3} = 0$ не має розв'язків.

<u>Приклад 6</u>. В кільці Z_{124} розв'язати систему рівнянь $\begin{cases} x+y=110,\\ y-x=4. \end{cases}$

Розв'язування. Додавши рівняння, отримаємо: 2y = 114. Конгруенція $2y \equiv 114 \pmod{124}$ має два розв'язки $y_1 = 57$, $y_2 = 119$. Отже, початкова система має два розв'язки: $x_1 = 53$, $y_1 = 57$, $x_2 = 115$, $y_2 = 119$.

Завдання 8. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент

для елемента а

1.
$$M = Z_{179}$$
, $a = 96$.

2.
$$M = Z_{103}$$
, $a = 63$.

3.
$$M = Z_{157}$$
, $a = 121$.

4.
$$M = Z_{191}$$
, $a = 152$.

5.
$$M = Z_{233}$$
, $a = 199$.

6.
$$M = Z_{149}$$
, $a = 123$.

7.
$$M = Z_{173}$$
, $a = 96$.

8.
$$M = Z_{113}$$
, $a = 97$.

9.
$$M = Z_{163}$$
, $a = 57$.

10.
$$M = Z_{151}$$
, $a = 13$.

11.
$$M = Z_{111}$$
, $a = 16$.

12.
$$M = Z_{193}$$
, $a = 129$.

13.
$$M = Z_{293}$$
, $a = 123$.

14.
$$M = Z_{149}$$
, $a = 113$.

15.
$$M = Z_{164}$$
, $a = 97$.

16.
$$M = Z_{143}$$
, $a = 97$.

17.
$$M = Z_{199}$$
, $a = 111$.

18.
$$M = Z_{181}$$
, $a = 160$.

19.
$$M = Z_{197}$$
, $a = 115$.

20.
$$M = Z_{191}$$
, $a = 187$.

21.
$$M = Z_{167}$$
, $a = 117$.

22.
$$M = Z_{194}$$
, $a = 107$.

23.
$$M = Z_{132}$$
, $a = 25$.

24.
$$M = Z_{150}$$
, $a = 101$.

25.
$$M = Z_{211}$$
, $a = 95$.

26.
$$M = Z_{229}$$
, $a = 99$.

27.
$$M = Z_{121}$$
, $a = 97$.

28.
$$M = Z_{173}$$
, $a = 101$.

29.
$$M = Z_{175}$$
, $a = 127$.

30.
$$M = Z_{281}$$
, $a = 100$.

Завдання 9. Розв'язати рівняння та систему рівнянь

1.
$$x^2 - (2 + \sqrt{3})x - 6 - 2\sqrt{3} = 0$$
 у полі $Q(\sqrt{3})$;
$$\begin{cases} x + y = 7, \\ x - y = 5. \end{cases}$$
 в кільці Z_{20} .

2.
$$x^2 - (2 + \sqrt{5})x + 2\sqrt{5} = 0$$
 у полі $Q(\sqrt{5})$;

3.
$$x^2 - x - 13 + 3\sqrt{11} = 0$$
 у полі $Q(\sqrt{11})$;

4.
$$x^2 + 2\sqrt{7}x - 25 - 8\sqrt{7} = 0$$
 у полі $Q(\sqrt{7})$;
$$\begin{cases} x + y = 17, \\ x - y = 3 \end{cases}$$
 в кільці Z_{18} .

$$\begin{cases} x + y = 7, \\ x - y = 5. \end{cases}$$
 в кільці Z_{20} .

$$\begin{cases} x - y = 7, \\ x + y = 21. \end{cases}$$
 в кільці Z_{22} .

$$\begin{cases} x + y = 9, \\ x - y = 15. \end{cases}$$
 в кільці Z_{18} .

$$\begin{cases} x + y = 17, \\ x - y = 3 \end{cases}$$
 в кільці Z_{18} .

5.
$$x^2 + (2 - \sqrt{3})x - 2\sqrt{3} = 0$$
 у полі $Q(\sqrt{3});$
$$\begin{cases} x + y = 11, \\ y - x = 15. \end{cases}$$
 в кільці Z_{24} .

6.
$$x^2 + (4 - 2\sqrt{7})x + 7 - 4\sqrt{7} = 0$$
 у полі $Q(\sqrt{7})$; $\begin{cases} x + y = 11, \\ y - x = 3. \end{cases}$ в кільці Z_{16} .

7.
$$x^2 + (2 + \sqrt{2})x - 4 - 2\sqrt{2} = 0$$
 у полі $Q(\sqrt{2});$ $\begin{cases} x + y = 11, \\ y - x = 5. \end{cases}$ в кільці Z_{20} .

8.
$$x^2 + (\sqrt{5} - 1)x + \frac{1 - 2\sqrt{5}}{4} = 0$$
 у полі $Q(\sqrt{5})$; $\begin{cases} x - y = 21, \\ x + y = 35. \end{cases}$ в кільці Z_{42} .

9.
$$x^2 - 2x - 10 = 0$$
 у полі $Q(\sqrt{11})$;
$$\begin{cases} x - y = 10, \\ x + y = 22. \end{cases}$$
 в кільці Z_{42} .

$$10. \ x^2 + \left(2 + 2\sqrt{11}\right) x + 11 + 2\sqrt{11} = 0 \ \text{y} \ Q\left(\sqrt{11}\right); \qquad \begin{cases} x - y = 8, \\ x + y = 22. \end{cases}$$
 в кільці Z_{30} .

11.
$$x^2 - (3 + \sqrt{7})x - 70 - 26\sqrt{7} = 0$$
 у полі $Q(\sqrt{7})$; $\begin{cases} x + y = 21, \\ x - y = 11. \end{cases}$ в кільці Z_{42} .

12.
$$x^2 + x\sqrt{3} - 7 + 3\sqrt{3} = 0$$
 у полі $Q(\sqrt{3});$ $\begin{cases} x + y = 17, \\ x - y = 5 \end{cases}$ в кільці Z_{28} .

13.
$$x^2 - 2\sqrt{3}x - 1 = 0$$
 у полі $Q(\sqrt{3})$;
$$\begin{cases} x + y = 7, \\ x - y = 3. \end{cases}$$
 в кільці Z_{12} .

14.
$$x^2 + 2\sqrt{5}x - 19 + 8\sqrt{5} = 0$$
 у полі $Q(\sqrt{5})$; $\begin{cases} x + y = 17, \\ x - y = 19. \end{cases}$ в кільці Z_{28} .

15.
$$x^2 - 6x + 6 = 0$$
 у полі $Q(\sqrt{3})$;
$$\begin{cases} x - y = 9, \\ x + y = 21. \end{cases}$$
 в кільці Z_{42} .

16.
$$x^2 - 10x + 20 = 0$$
 у полі $Q(\sqrt{5})$; $\begin{cases} x + y = 21, \\ x - y = 25. \end{cases}$ в кільці Z_{38} .

17.
$$x^2 + 14x - 28 = 0$$
 у полі $Q(\sqrt{77})$;
$$\begin{cases} x - y = 7, \\ y + x = 13. \end{cases}$$
 в кільці Z_{22} .

18.
$$x^2 + 2x - 1 = 0$$
 у полі $Q(\sqrt{2})$;
$$\begin{cases} x + y = 27, \\ x - y = 13. \end{cases}$$
 в кільці Z_{42} .

19.
$$x^2 - 4x + 2 = 0$$
 у полі $Q(\sqrt{2});$
$$\begin{cases} x - y = 1, \\ y + x = 13. \end{cases}$$
 в кільці Z_{22} .

20.
$$x^2 - 4x + 1 = 0$$
 у полі $Q(\sqrt{3})$;
$$\begin{cases} x - y = 17, \\ x + y = 23. \end{cases}$$
 в кільці Z_{46} .

21.
$$x^2 - (3+3\sqrt{2})x + 4 + 6\sqrt{2} = 0$$
 у полі $Q(\sqrt{2})$; $\begin{cases} x+y=7, \\ x-y=15. \end{cases}$ в кільці Z_{18} .

22.
$$x^2 - (4 + \sqrt{2})x - 1 + 5\sqrt{2} = 0$$
 у полі $Q(\sqrt{2})$; $\begin{cases} x + y = 11, \\ y - x = 15. \end{cases}$ в кільці Z_{24} .

23.
$$x^2 + (1-3\sqrt{2})x - 2 + \sqrt{2} = 0$$
 у полі $Q(\sqrt{2})$; $\begin{cases} x + y = 13, \\ x - y = 7. \end{cases}$ в кільці Z_{24} .

24.
$$x^2 + 2x\sqrt{3} - 13 + 8\sqrt{3} = 0$$
 у полі $Q(\sqrt{3})$; $\begin{cases} x + y = 11, \\ y - x = 17. \end{cases}$ в кільці Z_{24} .

25.
$$x^2 - 2x - 1 - \sqrt{2} = 0$$
 у полі $Q(\sqrt{2});$
$$\begin{cases} x + y = 10, \\ x - y = 2. \end{cases}$$
 в кільці Z_{16} .

26.
$$x^2 + (5 + \sqrt{3})x + \sqrt{3} = 0$$
 у полі $Q(\sqrt{3})$; $\begin{cases} x + y = 33, \\ x - y = 37. \end{cases}$ в кільці Z_{44} .

27.
$$x^2 + (1-3\sqrt{5})x + 4 + \sqrt{5} = 0$$
 у полі $Q(\sqrt{5});$ $\begin{cases} x+y=11, \\ x-y=27. \end{cases}$ в кільці Z_{30} .

28.
$$x^2 - 5x + 4 - \sqrt{2} = 0$$
 у полі $Q(\sqrt{2})$;
$$\begin{cases} x + y = 17, \\ x - y = 27. \end{cases}$$
 в кільці Z_{38} .

29.
$$x^2 + (1+\sqrt{3})x - 12 - 7\sqrt{3} = 0$$
 у полі $Q(\sqrt{3})$; $\begin{cases} x+y=24, \\ x-y=16. \end{cases}$ в кільці Z_{46} .

30.
$$x^2 - (5+3\sqrt{5})x + 16 + 7\sqrt{5} = 0$$
 у полі $Q(\sqrt{5})$; $\begin{cases} x+y=33, \\ x-y=37. \end{cases}$ в кільці Z_{50} .

Завдання 10

- 1. Довести, що в групі $\frac{Q}{Z}$ кожен елемент має скінченний порядок.
- 2. Довести, що кожна група порядку 6 або комутативна, або ізоморфна групі S_3 .
- 3. Довести, що в кожній групі перетин довільного набору підгруп ϵ підгрупою.
- 4. Довести, що в групі елементи *ху* і *ух* завжди мають однаковий порядок.
- 5. Нехай R скінченне кільце. Довести, що коли кільце R не має дільників нуля, то воно має одиницю та всі ненульові елементи кільця будуть оборотними.
- 6. Нехай елемент x групи G має порядок n. Довести, що $x^k = x^m$ тоді й лише тоді, коли n|(k-m).
- 7. Довести, що в групі S_n порядок непарної підстановки є парне число.
- 8. Довести, що в будь–якій групі парного степеня ε елемент порядку 2.
- 9. Нехай R скінченне кільце. Довести, що коли кільце R має одиницю, то будь–який лівий дільник нуля є правим дільником нуля.
- 10. Довести, що порядок скінченної групи ділиться на порядок кожної своєї підгрупи.
- 11. Довести, що об'єднання двох підгруп є підгрупою тоді й лише тоді, коли одна з підгруп міститься в іншій.
- 12. Довести, що в групі елементи x і yxy^{-1} мають однаковий порядок.
- 13. Довести, що кожна некомутативна група порядку 6 ізоморфна групі
 S_3 .
- 14. Довести, що в групі Q_Z для кожного натурального n існує єдина підгрупа порядку n .
- 15. Нехай елемент x групи G має нескінченний порядок. Довести, що $x^k = x^m$ тоді й лише тоді, коли k = m.

- 16. Довести, що в групі S_n порядок підстановки є найменшим спільним кратним довжин незалежних циклів, що входять в її розклад.
- 17. Нехай G- скінченна група, $a\in G$. Довести, що $G=\left\langle a\right\rangle$ тоді й лише тоді, коли елемент a має порядок |G| .
- 18. Довести, що в кільці з одиницею та без дільників нуля кожний елемент, що має односторонній обернений, є оборотним.
- 19. Довести, що група, в якій всі елементи мають порядок 2, комутативна.
- 20. Довести, що в групі C^* кожна скінченна підгрупа є циклічною.
- 21. Довести, що кільце цілих гаусових чисел $\{x + iy : x, y \in Z\}$ є евклідовим.
- 22. Довести, що в групі кожна скінченна піднапівгрупа є підгрупою.
- 23. Нехай елемент x групи G має порядок n . Довести, що $x^k = e$ тоді й лише тоді, коли n|k .
- 24. Нехай $G = \langle a \rangle$ — циклічна група порядку n. Довести, що елемент a^k є твірним елементом групи G тоді й лише тоді, коли числа k і n взаємно прості.
- 25. Довести, що в кільці дійсних функцій будь–який елемент, що не ϵ дільником нуля, ϵ оборотним.
- 26. Довести, що кільце комплексних чисел $\left\{ \frac{x+iy}{2} : x, y \in Z, x \equiv y \pmod{2} \right\} \epsilon$ евклідовим.
- 27. Довести, що всі оборотні елементи кільця з одиницею утворюють групу відносно множення.
- 28. Довести, що кільце чисел $\left\{x+i\sqrt{3}y:x,y\in Z\right\}$ не є евклідовим.
- 29. Довести, що кожна група порядку p^2 , де p- просте число, ϵ комутативною.
- 30. Довести, що порядок довільного елемента циклічної групи є дільником порядку твірного елемента цієї циклічної групи.

Розділ 2. КІЛЬЦЕ МНОГОЧЛЕНІВ ВІД ОДНІЄЇ ЗМІННОЇ

2.1. Многочлени від однієї змінної. Схема Горнера

Розглянемо довільні многочлени f(x) і g(x) над полем P. Найменшим спільним кратним двох многочленів називається многочлен q(x), який є спільним кратним многочленів f(x) і g(x) і ділить будь—яке спільне кратне цих многочленів. Многочлен q(x) можна обчислити за формулою : $q(x) = \frac{f(x) \cdot g(x)}{(f(x), g(x))}$. Для знаходження найбільшого спільного дільника зручно використовувати **алгоритм Евкліда**.

Приклад 1. Знайти найменше спільне кратне многочленів

$$f(x) = 3x^5 + 5x^4 - 16x^3 - 6x^2 - 5x - 6$$
, $g(x) = 3x^4 - 4x^3 - x^2 - x - 2$.

Найбільший спільний дільник цих многочленів дорівнює (-3x-2). Отже, найменше спільне кратне

$$g(x) = \frac{\left(3x^5 + 5x^4 - 16x^3 - 6x^2 - 5x - 6\right) \cdot \left(3x^4 - 4x^3 - x^2 - x - 2\right)}{\left(-3x - 2\right)}, \text{ afo}$$

$$g(x) = -3x^8 + x^7 + 23x^6 - 28x^5 + 14x^4 - 14x^3 - 13x^2 + x - 6.$$

Оскільки найменше спільне кратне і найбільший спільний дільник двох многочленів визначені лише з точністю до множника з поля P, то при знаходженні найбільшого спільного дільника остачу, частку і дільник можна на будь–якому кроку множити на довільне ненульове число (щоб уникнути дробових коефіцієнтів).

Найбільший спільний дільник можна знайти і за допомогою розкладу многочленів на незвідні многочлени.

Приклад 2. Знайти найбільший спільний дільник многочленів

$$f(x) = (x^3 - 1)(x^2 - 2x + 1)$$
 i $g(x) = (x^2 - 1)^3$.

Знайдемо розклад многочленів на незвідні множники над полем дійсних чисел:

$$f(x) = (x-1)^3(x^2+x+1),$$
 $g(x) = (x-1)^3(x+1)^3.$

Відповідь: $(f,g) = (x-1)^3$

Для обчислення значення многочлена $f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n \text{ в точці } x_0 = c \text{ зручно користуватися}$ **схемою Горнера**.

Приклад 3. Обчислити значення многочлена

$$-3x^5 + 11x^3 - 13x^2 + x - 6$$
 у точці $x = -2$.

	-3	0	11	-13	1	-6
-2	-3	6	-1	-11	23	-52

Отже, значення многочлена $-3x^5 + 11x^3 - 13x^2 + x - 6$ в точці x = -2 дорівнює -52.

Схема Горнера має й інші застосування.

<u>Приклад</u> 4. Визначити кратність кореня x = 3 для многочлена

$$f(x) = -x^6 + 9x^5 - 27x^4 + 28x^3 - 9x^2 + 27x - 27.$$

	-1	9	-27	28	-9	27	-27
3	-1	6	- 9	1	-6	9	0
3	-1	3	0	1	-3	0	
3	-1	0	0	1	0		
3	-1	-3	-9	-26			

Оскільки $-26 \neq 0$, то корінь x=3 має кратність 3 для многочлена $f(x) = -x^6 + 9x^5 - 27x^4 + 28x^3 - 9x^2 + 27x - 27.$

<u>Приклад</u> 5. Розкласти многочлен $f(x) = x^5 - 4x^3 + 6x^2 - 8x + 10$ за степенями x - 2.

	1	0	-4	6	-8	10
2	1	2	0	6	4	18
2	1	4	8	22	48	
2	1	6	20	62		
2	1	8	36			
2	1	10				
2	1					

Отже, розклад многочлена f(x) за степенями x-2 має вигляд

$$f(x) = (x-2)^5 + 10(x-2)^4 + 36(x-2)^3 + 62(x-2)^2 + 48(x-2) + 18.$$

Порівнюючи розклад многочлена за степенями $(x-x_0)$

$$f(x) = f(x_0) + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + \dots + a_n(x - x_0)^n$$

із розкладом f(x) у ряд Тейлора за степенями $x - x_0$:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \dots$$

Отримаємо: $f^{(k)}(x_0) = a_k \cdot k!$. Тому схему Горнера можна використовувати і для обчислення значень похідних многочлена.

Приклад 6. Знайти значення многочлена

 $f(x) = -12x^4 + 2x^3 - 9x^2 + 7x - 2$ та значення усіх його похідних у точці x = -1.

	-12	2	-9	7	-2
-1	-12	14	-23	30	-32
-1	-12	26	-49	79	
-1	-12	38	-87		
-1	-12	50			
-1	-12				

Відповідь:
$$f^{(4)}(-1) = -12 \cdot 4!$$
, $f^{(3)}(-1) = 50 \cdot 3!$, $f''(-1) = -87 \cdot 2!$, $f'(-1) = 79 \cdot 1!$, $f(-1) = -32$.

Схему Горнера можна також використовувати для знаходження розкладу дробів вигляду $\frac{f(x)}{(x-c)^n}$ на елементарні дроби.

<u>Приклад</u> 7. Розкласти дріб $\frac{x^5 + 2x^2 - 4}{(x - 4)^6}$ на найпростіші дроби над

полем R.

Знайдемо розклад многочлена $f(x) = x^5 + 2x^2 - 4$ за степенями x - 4:

$$f(x) = (x-4)^5 + 20(x-2)^4 + 160(x-4)^3 + 642(x-4)^2 + 1296(x-4) + 1052.$$

Поділимо многочлен на $(x-4)^6$, після скорочення отримаємо:

$$\frac{1}{x-4} + \frac{20}{(x-4)^2} + \frac{160}{(x-4)^3} + \frac{642}{(x-4)^4} + \frac{1296}{(x-4)^5} + \frac{1052}{(x-4)^6}.$$

Завдання 11. Знайти найменше спільне кратне двох

многочленів f(x) та g(x)

1.
$$f(x) = x^4 + 2x^3 - x^2 - 4x - 2$$
, $g(x) = x^4 + x^3 - x^2 - 2x - 2$.

2.
$$f(x) = x^4 + 2x^3 + x + 2$$
, $g(x) = x^5 + 3x^4 + x^3 + x^2 + 3x + 1$.

3.
$$f(x) = 2x^5 + 2x^4 + x^3 + 3x^2 + 1$$
, $g(x) = 2x^4 - 2x^3 - x^2 - x - 1$.

4.
$$f(x) = 2x^5 + x^4 + x^3 - 2x^2 - x - 1$$
, $g(x) = x^4 - x^3 - x + 1$.

5.
$$f(x) = 3x^5 + 5x^4 - 16x^3 - 6x^2 - 5x - 6$$
, $g(x) = 3x^4 - 4x^3 - x^2 - x - 2$.

6.
$$f(x) = 4x^4 - 2x^3 - 16x^2 + 5x + 9$$
, $g(x) = 2x^3 - x^2 - 5x + 4$.

7.
$$f(x) = 3x^5 - 2x^2 + x + 2$$
, $g(x) = x^2 - x + 1$.

8.
$$f(x) = x^5 - x^3 - 4x^2 + 4x + 1$$
, $g(x) = x^3 - x - 1$.

9.
$$f(x) = x^5 - 5x^4 - 2x^3 + 12x^2 - 2x + 12$$
, $g(x) = x^3 - 5x^2 - 3x + 17$.

10.
$$f(x) = 2x^4 + 3x^3 - 3x^2 - 5x + 2$$
, $g(x) = 2x^3 + x^2 - x - 1$.

11.
$$f(x) = 3x^4 - 5x^3 + 3x^2 - 2x + 1$$
, $g(x) = 3x^3 - 2x^2 + x - 1$.

12.
$$f(x) = x^5 + 5x^4 + 9x^3 + 7x^2 + 5x + 3$$
, $g(x) = x^4 + 2x^3 - 2x^2 + x + 1$.

13.
$$f(x) = x^4 - 4x^3 + 1$$
, $g(x) = x^3 - 3x^2 + 1$.

14.
$$f(x) = x^5 + 2$$
, $g(x) = x^2 - 2x + 1$.

15.
$$f(x) = x^5 - 7x + 6$$
, $g(x) = (1 - x)^4$.

16.
$$f(x) = (1-x)^3$$
, $g(x) = x^5 - 1$.

17.
$$f(x) = x^5 + 3x^4 + x^3 + x^2 + 3x + 1$$
, $g(x) = x^4 + 2x^3 + x + 2$.

18.
$$f(x) = x^5 + 3x^3 + 2x^2 + 6$$
, $g(x) = x^5 + x^4 - x^3 + 2x^2 + 2x - 2$.

19.
$$f(x) = 3x^4 - 4x^3 - x^2 - x - 2$$
, $g(x) = 3x^5 + 5x^4 - 16x^3 - 6x^2 - 5x - 6$.

20.
$$f(x) = x^4 + 7x^3 + 19x^2 + 23x + 10$$
, $g(x) = x^4 + 7x^3 + 18x^2 + 22x + 12$.

21.
$$f(x) = x^5 + x^4 + x^3 + x^2 + x + 1$$
. $g(x) = x^4 + 2x^3 + x^2 - 1$.

22.
$$f(x) = x^5 - x^4 + 3x^3 - 4x^2 - 3$$
, $g(x) = x^4 - x^3 + 2x^2 - 3x - 3$.

23.
$$f(x) = x^5 + 2x^3 + x^2 + x + 1$$
, $g(x) = x^4 - x^3 - 2x^2 - x - 3$.

24.
$$f(x) = 2x^4 - 3x^3 - 4x^2 + 4x + 3$$
, $g(x) = x^2 - x - 1$.

25.
$$f(x) = 3x^5 + 5x^4 - 16x^3 - 6x^2 - 5x - 6$$
, $g(x) = 3x^4 - 4x^3 - x^2 - x - 2$.

26.
$$f(x) = x^5 + x^4 + 3x^3 - 5x^2 - 5x - 15$$
, $g(x) = x^5 + x^4 - x^3 - 5x^2 - 5x + 5$.

27.
$$f(x) = x^5 + x^4 + 2x^3 + 3x^2 + 3x + 2$$
, $g(x) = x^4 - 3x^3 + x^2 - x - 6$.

28.
$$f(x) = x^5 + x^4 + 4x^2 + 2x - 3$$
, $g(x) = x^4 + 2x^3 + x^2 + 5x + 6$.

29.
$$f(x) = 2x^5 + x^4 + 4x^3 + 3x^2 + 3x + 2$$
, $g(x) = 2x^4 - x^3 + 2x^2 + x - 1$.

30.
$$f(x) = x^5 + 2x^4 + 2x^3 - 3x - 2$$
, $g(x) = x^4 - x^3 + x^2 - 3x + 2$.

Завдання 12. Визначити кратність кореня $\it c$ для многочлена

f(x). Знайти значення многочлена f(x) і його похідних у

точці
$$x = x_0$$

1.
$$f(x) = 3x^5 + 2x^4 + x^3 - 10x - 8$$
, $c = -1$, $x_0 = 2$.

2.
$$f(x) = x^5 - 6x^4 + 2x^3 + 36x^2 - 27x - 54$$
, $c = 3$, $x_0 = -1$.

3.
$$f(x) = x^5 + 5x^2 + 5x + 1$$
, $c = -1$, $x_0 = 2$.

4.
$$f(x) = 3x^4 - 4x^3 + 1$$
, $c = 1$, $x_0 = -2$.

5.
$$f(x) = x^4 + 4x^3 + 4x^2 - 1$$
, $c = -1$, $x_0 = -3$

6.
$$f(x) = x^4 + 5x^3 - 3x^2 - 13x + 10$$
, $c = 1$, $x_0 = 2$.

7.
$$f(x) = x^4 - 7x^3 + 15x^2 - 13x + 4$$
, $c = 1$, $x_0 = 3$.

8.
$$f(x) = x^4 + 2x^3 + x^2 + 2x + 2$$
, $c = -1$, $x_0 = 2$.

9.
$$f(x) = 2x^5 + 12x^4 + 27x^3 + 34x^2 + 36x + 24$$
, $c = -2$, $x_0 = -1$.

10.
$$f(x) = 3x^5 - 4x^4 + x$$
, $c = 1$, $x_0 = -2$.

11.
$$f(x) = x^5 + 4x^4 + 4x^3 - x$$
, $c = -1$, $x_0 = -3$.

12.
$$f(x) = 2x^4 + 4x^3 + 2x^2 + 2x + 2$$
, $c = -1$, $x_0 = -3$.

13.
$$f(x) = x^5 - 5x^4 + 7x^3 - 2x^2 + 4x - 8$$
, $c = 2$, $x_0 = -1$.

14.
$$f(x) = 2x^5 + 12x^4 + 21x^3 - 2x^2 - 36x - 24$$
, $c = -2$, $x_0 = 1$.

15.
$$f(x) = x^5 + 6x^4 + 11x^3 + 2x^2 - 12x - 8$$
, $c = -2$, $x_0 = -1$.

16.
$$f(x) = x^6 + 4x^5 + 3x^4 - 8x^3 - 17x^2 - 12x - 3$$
, $c = -1$, $x_0 = 1$.

17.
$$f(x) = 2x^5 + 12x^4 + 27x^3 + 34x^2 + 36x + 24$$
, $c = -2$, $x_0 = -1$.

18.
$$f(x) = 2x^5 - 12x^4 + 21x^3 + 2x^2 - 36x - 24$$
, $c = 2$, $x_0 = 1$.

19.
$$f(x) = x^6 - 4x^5 + 3x^4 + 8x^3 - 17x^2 + 12x - 3$$
, $c = 1$, $x_0 = -3$.

20.
$$f(x) = x^5 + 6x^4 + 13x^3 + 14x^2 + 12x + 8$$
, $c = -2$, $x_0 = 1$.

21.
$$f(x) = 2x^5 - 12x^4 + 27x^3 - 34x^2 + 36x - 24$$
, $c = 2$, $x_0 = 4$.

22.
$$f(x) = x^6 + 4x^5 + 9x^4 + 16x^3 + 19x^2 + 12x + 3$$
, $c = -1$, $x_0 = -3$.

23.
$$f(x) = x^5 - 5x^4 + 7x^3 - 2x^2 + 4x - 8$$
, $c = 2$, $x_0 = -1$.

24.
$$f(x) = x^5 + 7x^4 + 16x^3 + 8x^2 - 16x - 16$$
. $c = -2$. $x_0 = 1$.

25.
$$f(x) = x^5 - 5x^4 + 7x^3 - 2x^2 + 4x - 8$$
, $c = 2$, $x_0 = -1$.

26.
$$f(x) = x^4 - x^3 + x^2 - 3x + 2$$
, $c = 1$, $x_0 = -1$.

27.
$$f(x) = x^5 - 3x^4 + 5x^3 - 7x^2 + 6x - 2$$
, $c = 1$, $x_0 = 3$.

28.
$$f(x) = x^5 + 3x^4 + 5x^3 + 7x^2 + 6x + 2$$
, $c = -1$, $x_0 = -3$.

29.
$$f(x) = x^5 - x^4 + x^3 - 3x^2 + 2x$$
, $c = 1$, $x_0 = -2$.

30.
$$f(x) = x^6 - 3x^5 + 5x^4 - 7x^3 + 6x^2 - 2x$$
, $c = 1$, $x_0 = 2$.

Завдання 13. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел:

а) за допомогою схеми Горнера;

б) методом невизначених коефіцієнтів

1. a)
$$\frac{x^4}{(x-2)^6}$$
, b) $\frac{x^2}{x^4-16}$. 16. a) $\frac{x^2-x-1}{(x-4)^4}$, b) $\frac{1}{x^4+4}$.

2. a)
$$\frac{9x^4 + 11x^2 - 1}{(x+1)^5}$$
, b) $\frac{x}{(x^2 - 1)^2}$. 17. a) $\frac{3x^3 - 2x^2 + x + 2}{(x-2)^5}$, b) $\frac{1}{(x^2 - 1)^2}$.

3. a)
$$\frac{14x^3 - 3x + 1}{(x - 1)^4}$$
, b) $\frac{1}{x^4 - 16}$. 18. a) $\frac{2x^3 - x^2 - 5x + 4}{(x + 1)^5}$, b) $\frac{1}{x^3 + 1}$.

4. a)
$$\frac{6x^4 + 12x - 3}{(x - 2)^5}$$
, b) $\frac{x}{(x + 1)(x^2 + 1)^2}$. 19. a) $\frac{x^5 + x^2 - x + 1}{(x + 2)^6}$, b) $\frac{x^2}{x^3 - 1}$.

5. a)
$$\frac{x^3 - 10x + 4}{(x+2)^5}$$
, b) $\frac{x^2}{x^4 - 16}$. 20. a) $\frac{x^3 - 3x^2 + 1}{(x-2)^5}$, b) $\frac{3+x}{(x-1)(x^2+1)}$.

6. a)
$$\frac{5x^4 + 3x^3 - 1}{(x - 3)^5}$$
, b) $\frac{x}{(x^2 + 1)^2}$. 21. a) $\frac{x^4 - 4x^3 + 1}{(x + 3)^5}$, b) $\frac{x^2}{x^4 - 1}$.

7. a)
$$\frac{x^3}{(x+1)^5}$$
, b) $\frac{1}{(x+1)(x+2)(x+3)}$. 22. a) $\frac{x^4+22x+12}{(x-3)^5}$, b) $\frac{1}{(x^2+1)^2}$.

8. a)
$$\frac{2x^2-3x+1}{(x-2)^4}$$
, b) $\frac{2x-3}{(x^2+1)(x-2)}$. 23. a) $\frac{3x^5+3x^2-7}{(x+1)^6}$, b) $\frac{1-x}{(x^2+4)^2}$.

9. a)
$$\frac{x^3 - 5x^2 + 17}{(x-3)^5}$$
, b) $\frac{x^3 - 3}{x^4 + 10x^2 + 25}$. 24. a) $\frac{x^4 - 10x^2 + 1}{(x+1)^5}$, b) $\frac{x^3 + 4x^2 - 2}{x^4 + x}$.

10. a)
$$\frac{3x^3 - 2x^2 + x - 1}{(x+1)^5}$$
, b) $\frac{3x+1}{(x^2+1)^2}$. 25. a) $\frac{x^3 + x^2 - x - 1}{(x+2)^5}$, b) $\frac{3}{(x^3+x)}$.

11. a)
$$\frac{2x^3 + x^2 - x - 1}{(x - 4)^5}$$
, b) $\frac{x^2}{x^4 + 5x^2 + 4}$. 26. a) $\frac{x^4 - 2x^2 + 3}{(x + 1)^5}$, b) $\frac{x}{x^3 - 1}$.

12. a)
$$\frac{2x^4 - 3x^2 + 2}{(x+3)^5}$$
, b) $\frac{1}{(x^2+1)(x+3)}$. 27. a) $\frac{x^3 - x^2 + 1}{(x-2)^5}$, b) $\frac{1 - x^3}{(x^2+1)^2}$.
13. a) $\frac{x^4 - 4x^3 + 1}{(x-3)^5}$, b) $\frac{x^2}{(x^2+1)(x-3)}$. 28. a) $\frac{x^3 - x^2 + 1}{(x-2)^5}$, b) $\frac{1 - x^3}{(x^2+1)^2}$.
14. a) $\frac{2x^5 + 2x - 7}{(x+3)^7}$, b) $\frac{2x - 5}{(x^2+1)(x+3)}$. 29. a) $\frac{-x^3 + 3x - 4}{(x+3)^7}$, b) $\frac{3x^2 + 5x - 5}{(x^2+1)x}$.
15. a) $\frac{-2x^5 + 2x^2 + 3}{(x+3)^6}$, b) $\frac{3x^2 + 2x - 1}{(x^2+1)^2}$. 30. a) $\frac{-3x^3 + 11}{(x-2)^5}$, b) $\frac{-4x + 5}{(x^3+1)(x+1)}$.

2.2. Звідні та незвідні многочлени. Корені многочлена

Многочлен f(x) степеня n називається **незвідним** над полем P, якщо його не можна подати у вигляді добутку многочленів степеня меншого за n. Над полем дійсних чисел незвідним може бути лише многочлен першого або другого степеня, над полем комплексних чисел незвідним може бути лише многочлен першого степеня. Над скінченним полем P і над полем раціональних чисел Q незвідним може бути многочлен як завгодно великого степеня. Для многочленів над полем раціональних чисел можна використовувати

критерій Айзенштайна: якщо для многочлена

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

із цілими коефіцієнтами знайдеться таке просте число p, що:

- 1) старший коефіцієнт a_0 не ділиться на p;
- 2) всі інші коефіцієнти a_i діляться на число p;
- 3) вільний коефіцієнт a_n не ділиться на p^2 , то многочлен f(x) є незвідним над полем раціональних чисел.

Зауважимо, що критерій Айзенштайна є лише достатньою умовою незвідності многочлена над полем раціональних чисел. Незвідний над Q многочлен може цю ознаку не задовольняти (наприклад, многочлен x+1).

Кожний многочлен f(x) з кільця P[x] степеня $n \ge 1$ можна подати у вигляді добутку незвідних над полем P многочленів.

<u>Приклад</u> 1. *a*) многочлен $x^2 + 1$ є незвідним над полем дійсних чисел R, але над полем комплексних чисел його можна розкласти: $x^2 + 1 = (x - i)(x + i)$.

b) многочлен $16x^4+81$ буде звідним і в кільці R[x]: $16x^4+81=$ $=16x^4+72x^2-72x^2+81=\left(4x^2+9\right)^2-72x^2=\left(4x^2-\sqrt{72}x+9\right)\left(4x^2+\sqrt{72}x+9\right),$ і в кільці C[x]: $16x^4+81=\left(4x^2-\sqrt{72}x+9\right)\left(4x^2+\sqrt{72}x+9\right)=$ $=\left(x-\frac{3\sqrt{2}}{4}\left(1-i\right)\right)\left(x-\frac{3\sqrt{2}}{4}\left(1+i\right)\right)\left(x-\frac{3\sqrt{2}}{4}\left(-1-i\right)\right)\left(x-\frac{3\sqrt{2}}{4}\left(-1+i\right)\right).$

c) многочлен $16x^{105}+7$ буде незвідним у кільці Q[x] (він задовольняє критерію Айзенштайна для простого числа p=7).

Зауважимо, що над полем дійсних чисел кожний многочлен f(x) степеня n>2 ϵ звідним. Але дійсні корені многочлен f(x) ма ϵ лише в тому випадку, коли серед його незвідних множників ϵ лінійні.

Для знаходження всіх раціональних коренів (якщо вони існують) многочлена $f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n$ із цілими коефіцієнтами можна використати наступне **твердження**:

Кожний раціональний корінь многочлена f(x) має вигляд $\frac{p}{q}$, де p- дільник числа $a_n,\ q-$ дільник числа $a_0,\ p-mq$ ділить f(m). Зокрема, якщо $a_0=1$, то раціональний корінь є цілим числом.

Приклад 2. Знайдемо всі раціональні корені многочлена

$$f(x) = x^4 - 2x^3 - 8x^2 + 13x - 24$$
.

Випишемо всі дільники числа 24: ±1; ±2; ±3;±4;±6;±8;±12;±24.

Раціональні корені потрібно шукати серед цих дільників.

Візьмемо перше число m=1: $f(1)=-20\neq 0$. З'ясуємо, для яких дільників p числа 24 число p-1 ділить 20. $p\neq -2, +4, -6, \pm 8, \pm 12, \pm 24$. Тепер візьмемо число m=-1: $f(-1)=-42\neq 0$. З'ясуємо, для яких з дільників, що залишились $(+2,\pm 3,-4,+6)$, p+1 не ділить число 42. $p\neq 3$. Знайдемо $f(2)=-30\neq 0$. Число p-2=6-2=4 не ділить 30, $p\neq 6$, також $p\neq -4$. Знайдемо f(-3)=0 (тобто -3 є коренем). З'ясуємо кратність кореня x=-3:

	1	-2	- 8	13	-24
- 3	1	- 5	7	- 8	0
- 3	1	- 8	31	≠ 0	

Корінь x = -3 простий.

Якщо многочлен має дійсні корені, то можна їх відокремити, тобто вказати проміжки, на яких многочлен буде мати по одному кореню. Встановити загальну кількість дійсних коренів та відокремити їх можна за допомогою методу Штурма. Нехай многочлен f(x) з дійсними коефіцієнтами не має кратних коренів. Для многочлена f(x) побудуємо послідовність многочленів Штурма за таким правилом:

 $f \coloneqq f(x)$; $f_0 \coloneqq f'(x)$; f_1 — остача від ділення f на f_0 , взята з протилежним знаком; f_2 — остача від ділення f_0 на f_1 , взята з протилежним знаком; f_3 — остача від ділення f_1 на f_2 , взята з протилежним знаком; ...; f_{k+2} — остача від ділення f_{k+1} на f_k , взята з протилежним знаком; На деякому кроку ми отримаємо в остачі ненульове число, тобто $f_s \coloneqq const \neq 0$. Зауважимо, що на будь—якому етапі можна множити або ділити на довільне додатне число. Ці многочлени задовольняють наступним умовам:

- 1) останній многочлен f_s не має дійсних коренів та відмінний від нуля;
- 2) два сусідніх многочлена не мають спільних коренів (не дорівнюють нулю одночасно);
- 3) якщо многочлен $f_k(x_0)=0$, то в точці x_0 сусідні многочлени f_{k-1} та f_{k+1} мають значення, протилежні за знаком, тобто $f_{k-1}(x_0)\cdot f_{k+1}(x_0)<0\,.$

Якщо відомі многочлени Штурма, то вибираючи різні значення x_0 заповнюємо табличку. У табличці фіксується лише знак многочлена в даній точці; в останній стовпчик будемо записувати кількість змін знаку при фіксованому x_0 (якщо деякий многочлен у точці x_0 дорівнює нулю, то при підрахунку змін знаку ми на нього не звертаємо уваги):

	f	f_0	f_1	f_2	•••	f_{k+1}	f_{k+2}	•••	f_s	S
$-\infty$	_	+	_	_	_	_	+	+	+	$s(-\infty)$
+ ∞	+	+	+	_	_	_	_	+	+	$s(+\infty)$
0	+	+	+	+	_	_	+	+	+	s(0)

Модуль різниці змін знаку |s(a)-s(b)| на інтервалі (a,b) вказує на кількість дійсних коренів на цьому інтервалі. Наприклад, $|s(-\infty)-s(+\infty)|$ вказує на загальну кількість дійсних коренів; $|s(-\infty)-s(0)|$ вказує на кількість від'ємних дійсних коренів; $|s(0)-s(+\infty)|$ вказує на кількість додатних дійсних коренів. Якщо на деякому інтервалі (a,a+1) є кілька коренів, то треба дробити інтервал (a,a+1) далі.

<u>Приклад</u> 3. Відокремити дійсні корені многочлена $f(x) = x^4 - 6x^2 - 4x + 2.$

$$f = x^4 - 6x^2 - 4x + 2$$
. $f' = 4x^3 - 12x - 4$, tomy $f_0 = x^3 - 3x - 1$.

Знайдемо остачу від ділення многочлена f на многочлен f_0 :

Tomy $f_1 = 3x^2 + 3x - 2$.

Знайдемо остачу від ділення многочлена f_0 на многочлен f_1 :

$$\begin{array}{c|c}
-3x^3 - 9x - 3 & 3x^2 + 3x - 2 \\
\hline
3x^3 + 3x^2 - 2x & x - 1 \\
-3x^2 - 7x - 3 & x - 1 \\
-3x^2 - 3x + 2 & -4x - 5
\end{array}$$

Tomy $f_2 = 4x + 5$.

Знайдемо остачу від ділення многочлена f_1 на многочлен f_2 :

Tomy $f_3 = 1$.

 $f=x^4-6x^2-4x+2$, $f_0=x^3-3x-1$, $f_1=3x^2+3x-2$, $f_2=4x+5$, $f_3=1$. Заповнюємо таблицю:

x_0	f	f_0	f_1	f_2	f_3	S
∞	+	+	+	+	+	0
$-\infty$	+	_	+	_	+	4
0	+	_	_	+	+	2
1	_	_	+	+	+	1
2	_	+	+	+	+	1
3	+	+	+	+	+	0
-1	+	+	_	+	+	2
-2	+	_	+	_	+	4
-1.5	_	+	+	_	+	3

На інтервалі $(-\infty,\infty)$ многочлен має 4 дійсних корені (різниця змін знаку дорівнює 4);

На проміжку $(-\infty,0)$ многочлен має 2 дійсних корені;

На проміжку $(0,+\infty)$ многочлен має 2 дійсних корені;

На проміжку (0,+1) многочлен має <u>1 дійсний корінь</u>;

На проміжку (+ 1,+2) многочлен не має дійсних коренів;

На проміжку (+ 2,+3) многочлен має 1 дійсний корінь;

На проміжку (-1,0) многочлен не має дійсних коренів;

На проміжку (-2,-1) многочлен має 2 дійсних корені;

На проміжку $\left(-\frac{3}{2},-1\right)$ многочлен має <u>1 дійсний корінь</u>;

На проміжку $\left(-2, -\frac{3}{2}\right)$ многочлен має <u>1 дійсний корінь.</u>

Отже, дійсні корені многочлена знаходяться на проміжках : $\left(-2, -\frac{3}{2}\right)$,

$$\left(-\frac{3}{2},-1\right)$$
, $(0,+1)$, $(+2,+3)$.

розв'язування При деяких задач доводиться користуватися методами, які застосовуються лише до многочленів, що не мають кратних множників (наприклад метод Штурма – відокремлення дійсних коренів многочлена). Тому розглянемо питання про розкладання многочленів f(x), що має кратні множники, в добуток многочленів, що не мають кратні множники. Нехай $f(x) = a_0 p_1^{k_1}(x) \cdot p_2^{k_2}(x) \cdot ... \cdot p_m^{k_m}(x)$ ϵ канонічний розклад многочлена f(x), причому найвища кратність множників дорівнює s. Виберемо в цьому розкладі всі множники $p_i(x)$, кратність k_i яких дорівнює 1. Позначимо добуток всіх цих множників символом $\varphi_1(x)$. Виберемо двократні множники, тобто множники для яких $k_i = 2$. Позначимо добуток всіх таких множників взятих у першому степені

символом $\varphi_2(x)$ і т.д. нарешті, виберемо всі множники кратності s, і добуток усіх їх, також узятих лише по одному разу, позначимо символом $\varphi_s(x)$. Якщо ж при цьому многочлен f(x) не має множників кратності k, то вважатимемо, що $\varphi_k(x) = 1$. Тоді многочлен f(x) можна записати так: $f(x) = a_0 \varphi_1(x) \cdot \varphi_2^2(x) \cdot \varphi_3^3(x) \cdot ... f_s^s(x)$. Задачу відшукання такого розкладу називають відокремленням кратних множників.

Зауважимо, що коли многочлен f(x) має дійсні коефіцієнти, то f'(x) та $HC\mathcal{I}(f,f')$ також будуть мати дійсні коефіцієнти. Тому в цьому випадку всі обчислення будуть виконуватися в полі дійсних чисел (хоча неявно і використовується розклад на лінійні множники над полем C). Це дає нам наступний метод відокремлення кратних множників:

- 1. знайдемо похідну f'(x).
- 2. знайдемо найбільший спільний дільник $HC\mathcal{I}(f,f')=d_1$ (Відомо, що многочлен f(x) не має кратних множників тоді й лише тоді, коли він є взаємно простим зі своєю похідною f'(x)). Якщо $d_1=1$, то многочлен немає кратних множників.
- 3. поділимо многочлен f(x) на $d_1(x)$ та позначимо $V_1(x) = \frac{f(x)}{d_1(x)}$.
- 4. запишемо відповідь.

Приклад 4. Відокремити кратні множники многочлена

$$f(x) = x^6 - 6x^4 - 4x^3 + 9x^2 + 12x + 4$$
.

Розв'язування. Знайдемо спочатку похідну многочлена:

 $f'(x) = 6x^5 - 24x^3 - 12x^2 + 18x + 12$. Тепер за алгоритмом Евкліда знайдемо найбільший спільний дільник многочленів f(x) та f'(x):

$$\begin{array}{c|c}
 & x^{6} - 6x^{4} - 4x^{3} + 9x^{2} + 12x + 4 & x^{5} - 4x^{3} - 2x^{2} + 3x + 12 \\
\hline
 & x^{6} - 4x^{4} - 2x^{3} + 3x^{2} + 2x & x \\
\hline
 & -2x^{4} - 2x^{3} + 6x^{2} + 10x + 4 & :(-2)
\end{array}$$

$$\begin{array}{c|c}
 & x^{5} - 4x^{3} - 2x^{2} + 3x^{2} + 12 & x^{4} + x^{3} - 3x^{2} - 5x - 2 \\
\hline
 & x^{5} + x^{4} - 3x^{3} - 5x^{2} - 2x & x - 1
\end{array}$$

$$\begin{array}{c|c}
 & x^{4} + x^{3} - 3x^{2} - 5x - 2 \\
\hline
 & x - 1
\end{array}$$

$$\begin{array}{c|c}
 & -x^{4} - x^{3} + 3x^{2} + 5x + 2 \\
\hline
 & -x^{4} - x^{3} + 3x^{2} + 5x + 2
\end{array}$$

Маємо $HC\mathcal{I}(f,f')=x^4+x^3-3x^2-5x-2=d_1$. Далі $d_1'=4x^3+3x^2-6x-5$.

 $V_1 = \frac{f}{d_1}$: Тепер обчислюємо многочлен

$$-\frac{x^{6}-6x^{4}-4x^{3}+9x^{2}+12x+4}{x^{6}+x^{5}-3x^{4}-5x^{3}-2x^{2}} | x^{4}+x^{3}-3x^{2}-5x-2$$

$$-\frac{x^{6}+x^{5}-3x^{4}+5x^{3}-2x^{2}}{-x^{5}-3x^{4}+x^{3}+11x^{2}+12x+4}$$

$$-\frac{x^{5}-x^{4}+3x^{2}+5x^{2}+2x}{-2x^{4}-2x^{3}+6x^{2}+10x+4}$$

$$-\frac{2x^{4}-2x^{3}+6x^{2}+10x+4}{0}$$

Таким чином, многочлен $V_1 = x^2 - x - 2$ немає кратних множників

Завдання 14. Розкласти даний многочлен на незвідні

а) над полем R; b) над полем C

1.
$$x^4 + 16$$
.

6.
$$x^6 - 256$$
.

$$11.x^6 - 64$$
.

2.
$$x^4 - 10x^2 + 1$$
. 7. $x^4 + 25$.

7.
$$x^4 + 25$$

12.
$$x^6 - 8$$
.

3.
$$x^4 - 81$$
.

8.
$$x^4 + 4$$
.

$$13. x^6 + 27.$$

4.
$$x^6 - 343$$
.

9.
$$x^6 + 1$$
.

14.
$$x^6 + 256$$
.

5.
$$x^4 + 27$$
.

$$10. x^4 + 9.$$

15.
$$x^4 - 625$$
.

$$16. x^4 - 25.$$

21.
$$x^6 + 125$$
.

26.
$$x^4 + 625$$
.

17.
$$x^4 + 81$$
.

22.
$$x^6 - 27$$
.

27.
$$x^4 + 121$$
.

18.
$$x^6 + 8$$
.

$$23. x^6 + 81.$$

$$28 x^4 - 10x^2 + 9$$

19.
$$x^4 - 16$$
.

24.
$$x^6 - 1$$
.

29.
$$x^4 - 196$$
.

20.
$$x^6 + 64$$
.

25.
$$x^6 - 81$$
.

30.
$$x^6 + 1331$$
.

Завдання 15. Знайти всі раціональні корені многочлена

1.
$$8x^4 + 10x^3 + 5x^2 + 10x - 3$$

2.
$$6x^4 - x^3 + 17x^2 - 3x - 3$$

3.
$$8x^4 + 10x^3 + 13x^2 + 20x - 6$$

4.
$$4x^4 + 4x^3 - x^2 + 5x + 3$$

5.
$$8x^4 + 18x^3 + 15x^2 + 7x - 3$$

6.
$$6x^4 + 5x^3 + 16x^2 - 4x - 3$$

7.
$$4x^4 - 4x^3 + 3x^2 - 13x + 6$$

8.
$$8x^4 + 2x^3 - 5x^2 + 13x - 3$$

9.
$$8x^4 - 10x^3 + 5x^2 - 10x - 3$$

10.
$$4x^4 + 8x^3 + 7x^2 + 8x + 3$$

11.
$$6x^4 + x^3 + 17x^2 + 3x - 3$$

12.
$$4x^4 + 8x^3 + 11x^2 + 16x + 6$$

13.
$$8x^4 - 10x^3 + 13x^2 - 20x - 6$$

14.
$$6x^4 + x^3 + 11x^2 + 2x - 2$$

15.
$$8x^4 - 16x^3 + 10x^2 - 8x + 3$$

16.
$$4x^4 - 8x^3 + 7x^2 - 8x + 3$$

17.
$$4x^4 - 8x^3 + 11x^2 - 16x + 6$$

18.
$$4x^4 - 4x^3 - x^2 - 5x + 3$$

19.
$$8x^4 - 18x^3 + 15x^2 - 7x - 3$$

20.
$$4x^4 + 4x^3 + 3x^2 + 13x + 6$$

21.
$$8x^4 - 2x^3 - 5x^2 - 13x - 3$$

22.
$$8x^4 + 10x^3 + 21x^2 + 30x - 9$$

23.
$$4x^4 - 8x^3 + 15x^2 - 24x + 9$$

24.
$$4x^4 - 12x^3 + 15x^2 - 11x + 3$$

25.
$$6x^4 - 5x^3 + 16x^2 + 4x - 3$$

26.
$$8x^4 - 10x^3 + 21x^2 - 30x - 9$$

27.
$$4x^4 + 8x^3 + 15x^2 + 24x + 9$$

28.
$$4x^4 + 12x^3 + 15x^2 + 11x + 3$$

29.
$$8x^4 + 16x^3 + 10x^2 + 8x + 3$$

30.
$$6x^4 - x^3 + 11x^2 - 2x - 2$$

Завдання 16. Відокремити дійсні корені многочлена f(x)

1.
$$f(x) = 4x^4 - 12x^2 + 8x - 1$$
.

2.
$$f(x) = x^4 - 4x^3 - 4x^2 + 4x + 1$$
.

3.
$$f(x) = 2x^5 - 10x^3 + 10x - 3$$
.

4.
$$f(x) = x^4 - 3x^2 + 1$$
.

5.
$$f(x) = x^4 + 6x^3 - 4x^2 + 4x + 2$$
.

6.
$$f(x) = x^4 - 7x^2 + 10$$
.

7.
$$f(x) = x^4 - x^3 - 4x^2 + 4x + 1$$
.

8.
$$f(x) = x^4 - 6x^3 + 11x^2 - 6x$$
.

9.
$$f(x) = x^4 - 12x^2 - 16x - 4$$
.

10.
$$f(x) = -2x^5 + 10x^3 - 10x - 3$$
.

11.
$$f(x) = x^5 - 5x^3 + 5x^2 + 10x - 3$$
.

12.
$$f(x) = 3x^4 - 6x^2 + 1$$
.

13.
$$f(x) = x^4 - 5x^2 + 6$$
.

14.
$$f(x) = x^4 - 2x^3 - 3x^2 + 2x + 1$$
.

15.
$$f(x) = x^4 - 12x^2 + 16x - 4$$
.

16.
$$f(x) = x^4 - 8x^2 + 7$$
.

17.
$$f(x) = 2x^4 - 8x^3 + 8x^2 - 1$$
.

18.
$$f(x) = x^4 - 6x^2 + 1$$
.

19.
$$f(x) = x^4 - 4x^2 + x + 1$$
.

20.
$$f(x) = x^4 - 4x^2 + 2$$
.

21.
$$f(x) = x^4 - 2x^3 - 3x^2 + 2x + 1$$
.

22.
$$f(x) = x^4 - 5x^2 + 4$$
.

23.
$$f(x) = x^4 - 4x^3 - 4x^2 + 4x + 5$$
.

24.
$$f(x) = x^4 - 6x^2 - 4x + 2$$
.

25.
$$f(x) = 2x^4 - 6x^3 - 4x + 3$$
.

26.
$$f(x) = x^4 - 3x^3 - x^2 + 8x - 4$$
.

27.
$$f(x) = x^4 - 10x^2 + 21$$
.

28.
$$f(x) = 3x^4 + 11x^2 + 2$$
.

29.
$$f(x) = x^4 - 6x^2 + 2$$
.

30.
$$f(x) = 4x^4 - x^2 - 4$$
.

Завдання 17

- 1. Довести, що для довільних натуральних чисел m, n і p многочлен $x^{3m} + x^{3n+1} + x^{3p+2}$ ділиться на $x^2 + x + 1$.
- 2. Визначити, для яких чисел A і B тричлен $Ax^4 + Bx^3 + 1$ ділиться на $(x-1)^2$.
- 3. Довести, що многочлен $f(x) = x^{10} x^5$ ділиться на x a для довільного $a \in Z_5$ у кільці $Z_5[x]$.
- 4. Знайти суму квадратів коренів многочлена $x^n + a_1 x^{n-1} + ... + a_n$.
- 5. Для яких натуральних чисел m, n і p многочлен $x^{3m} + x^{3n+1} + x^{3p+2}$ лілиться на $x^4 + x^2 + 1$?

- 6. Для яких натуральних чисел m многочлен $x^{2m} + x^m + 1$ ділиться на $x^2 + x + 1$?
- 7. Для яких натуральних чисел m многочлен $(x+1)^m x^m 1$ ділиться на $x^2 + x + 1$?
- 8. Яку умову повинні задовольняти числа a і b, щоб многочлен $x^5 + ax^3 + b$ мав подвійний корінь, відмінний від нуля.
- 9. Для яких натуральних чисел m многочлен $(x+1)^m x^m 1$ ділиться на $(x^2 + x + 1)^2$?
- 10.Знайти всі такі трійки чисел (a,b,c), щоб коренями многочлена $x^3 ax^2 + bx c$ були числа a,b,c.
- 11.Для яких значень a число -1 буде коренем многочлена $x^5 ax^2 ax + 1$ кратності не менше 2?
- 12. Визначити, для яких A і B тричлен $Ax^{n+1} + Bx^n + 1$ ділиться на $(x-1)^2$.
- 13.Для яких натуральних чисел m, n і p многочлен $x^{3m} + x^{3n+1} + x^{3p+2}$ ділиться на $x^2 + x + 1$?
- 14. Довести, що многочлен $f(x) = x^5 x$ ділиться на x a для довільного $a \in Z_5$ в кільці $Z_5[x]$.
- 15.Для яких натуральних чисел m многочлен $(x+1)^m + x^m + 1$ ділиться на $x^2 + x + 1$?
- 16.Які умови повинні задовольняти числа a, b і c, щоб многочлен $x^5 + 10ax^3 + 5bx + c$ мав потрійний корінь, відмінний від нуля?
- 17. Для яких натуральних чисел m многочлен $(x+1)^m + x^m + 1$ ділиться на $(x^2 + x + 1)^2$?
- 18. Яку умову повинні задовольняти числа a, b і c, щоб один із коренів многочлена $x^3 + ax^2 + bx + c$ дорівнював сумі двох інших коренів.

- 19. Довести, що многочлен $f(x) = x^7 x$ ділиться на x a для довільного $a \in Z_7$ в кільці $Z_7[x]$.
- 20. Яку умову повинні задовольняти числа a, b, c, і d, щоб сума якихось двох коренів многочлена $x^4 + ax^3 + bx^2 + cx + d$ дорівнювала сумі двох інших коренів.
- 21. Яку умову повинні задовольняти числа a, b, c, і d, щоб добуток якихось двох коренів многочлена $x^4 + ax^3 + bx^2 + cx + d$ дорівнював добутку двох інших коренів.
- 22. Для яких цілих значень a один корінь многочлена $36x^3 12x^2 5x + a$ дорівнює сумі двох інших? Знайти ці корені.
- 23.Сума двох коренів многочлена $2x^3 x^2 7x + a$ дорівнює 1. Визначити параметр a .
- 24. Яку умову повинні задовольняти числа b і d, щоб для коренів x_1, x_2, x_3 многочлена $x^3 + bx + d$ виконувалось співвідношення $x_3 = \frac{1}{x_1} + \frac{1}{x_2}$?
- 25. Довести, що многочлен f(x) із цілими коефіцієнтами не має цілих коренів, якщо f(0) і f(1) непарні числа.
- 26.Визначити многочлен найменшого степеня, який дає в остачі 2x при діленні на $(x-1)^2$ і 3x при діленні на $(x-2)^3$.
- 27.Визначити многочлен найменшого степеня, який дає в остачі $x^2 + x + 1$ при діленні на $x^4 2x^3 2x^2 + 10x 7$ і $2x^2 3$ при діленні на $x^4 2x^3 3x^2 + 13x 10$.
- 28. Чи утворюють корені многочлена $2x^4 + 8x^3 + 7x^2 2x 2$ арифметичну прогресію?
- 29.При яких значеннях a і b многочлен $f(x) = x^3 + 2x^2 + ax + b$ ділиться на многочлен $g(x) = x^2 + x + ab$ у кільці Q[x]?
- 30. Довести, що многочлен $f(x) = (x+a+b)^{2001} x^{2001} a^{2001} b^{2001}$ ділиться на двочлени $f_I(x) = x+a$ та $f_2(x) = x+b$ у кільці C[x].

Розділ 3. МНОГОЧЛЕНИ ВІД БАГАТЬОХ ЗМІННИХ

3.1. Симетричні многочлени

Многочлен $f(x_1, x_2, ..., x_n)$, що залежить від змінних $x_1, x_2, ..., x_n$, називають **симетричним**, якщо будь—яка підстановка множини $\{x_1, x_2, ..., x_n\}$ переводить цей многочлен у себе.

Приклад 1. Многочлени
$$x_1^3x_2 + x_1^3x_3 + x_2^3x_1 + x_2^3x_3 + x_3^3x_1 + x_3^3x_2$$
, $x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5$, $(x_1 + x_2 - x_3)(x_1 + x_3 - x_2)(x_2 + x_3 - x_1)$ будуть симетричними.

Симетричні многочлени
$$\sigma_1 = x_1 + x_2 + \ldots + x_n \,,$$

$$\sigma_2 = x_1 x_2 + x_1 x_3 + \ldots + x_1 x_n + x_2 x_3 + \ldots + x_{n-1} x_n \,\,,$$

$$\ldots \ldots$$

$$\sigma_n = x_1 x_2 x_3 \ldots x_n$$

називають елементарними симетричними многочленами.

В силу того, що сума, різниця і добуток симетричних многочленів над довільним полем P ϵ також симетричним многочленом над цим полем, симетричні многочлени над цім полем утворюють кільце.

Кожний симетричний многочлен $f(x_1,x_2,...,x_n)$ можна подати, причому єдиним способом, у вигляді многочлена $g(\sigma_1,\sigma_2,...,\sigma_n)$ від елементарних симетричних многочленів $\sigma_1,\sigma_2,...,\sigma_n$. При цьому потрібно враховувати, що коли $ax_1^{k_1}x_2^{k_2}...x_n^{k_n}$ — старший член симетричного многочлена $f(x_1,x_2,...,x_n)$ порядку m, тоді многочлен $f(x_1,x_2,...,x_n)$ містить член $ax_1^{k_1}x_2^{k_2}...x_n^{k_n}$; для показників виконується умова

 $k_1 \geq k_2 \geq k_3 \geq \ldots \geq k_n$, існує многочлен $h_i = c_i \sigma_1^{t_1 - t_2} \sigma_2^{t_2 - t_3} \ldots \sigma_n^{t_n}$, де c — якась стала, $t_1 \geq t_2 \geq t_3 \geq \ldots \geq t_n$, $t_1 + k_2 + t_3 + \ldots + t_n = m$, тоді $f = \sum h_i$.

<u>Приклад</u> 2. Виразити через основні симетричні многочлени многочлен

$$(x_1x_2 + x_3x_4)(x_1x_3 + x_2x_4)(x_1x_4 + x_2x_3).$$

Старший член цього многочлена $x_1^3x_2x_3x_4$. Випишемо показники старших членів многочленів:

t_1	t_2	t_3	t_4	Комбінація основних
				симетричних многочленів
3	1	1	1	$\sigma_1^2\sigma_4$
2	2	2	0	$a\sigma_3^2$
2	2	1	1	$c\sigma_2\sigma_4$

Нагадаємо, що
$$\sigma_1=x_1+x_2+x_3+x_4,$$

$$\sigma_2=x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4,$$

$$\sigma_3=x_1x_2x_3+x_1x_2x_4+x_1x_3x_4+x_2x_3x_4,$$

$$\sigma_4=x_1x_2x_3x_4.$$

Многочлен f можна записати у вигляді $f = \sigma_1^2 \sigma_4 + a \sigma_3^2 + c \sigma_2 \sigma_4$. Визначимо числові коефіцієнти, надаючи окремі значення x_1, x_2, x_3, x_4 :

x_1	1	x_2	x_3	x_4	f	$\sigma_{ m l}$	σ_2	σ_3	$\sigma_{\scriptscriptstyle 4}$	f
]	1	1	1	0	1	3	3	1	0	1 = <i>a</i>
]	1	1	-1	-1	8	0	-2	0	1	8 = -2 <i>c</i>

Розв'яжемо систему $\begin{cases} 1 = a \\ 8 = -2c \end{cases}$. Отже, $f = \sigma_1^2 \sigma_4 + \sigma_3^2 - 4 \sigma_2 \sigma_4$.

Завдання 18. Виразити через основні симетричні многочлени

заданий многочлен

1.
$$x_1^4 x_2 x_3 + x_1 x_2^4 x_3 + x_1 x_2 x_3^4$$
.

2.
$$x_1^5 + x_2^5 + x_3^5 + x_4^5$$
.

3.
$$x_1^2 x_2^2 x_3 + x_1^2 x_2 x_3^2 + x_1 x_2^2 x_3^2$$

4.
$$2x_1^3 + 2x_2^3 + 2x_3^3 + 2x_4^3 - x_1x_2x_3x_4$$

5.
$$x_1^3 x_2 + x_1^3 x_3 + x_2^3 x_1 + x_2^3 x_3 + x_3^3 x_1 + x_3^3 x_2$$
.

6.
$$x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5$$
.

7.
$$(x_1 + x_2)(x_1 + x_3)(x_2 + x_3)$$
.

8.
$$(x_1^2 + x_2 + x_3)(x_1 + x_2^2 + x_3)(x_1 + x_2 + x_3^2)$$
.

9.
$$x_1^3x_2^3 + x_1^3x_3^3 + x_2^3x_3^3$$
.

$$10. x_1^2 x_2^2 + x_1^2 x_3^2 + x_1^2 x_4^2 + x_2^2 x_3^2 + x_2^2 x_4^2 + x_3^2 x_4^2.$$

11.
$$(x_1^2 + 2x_2x_3)(x_2^2 + 2x_1x_3)(x_3^2 + 2x_1x_2)$$
.

12.
$$x_1^2 x_2 x_3 x_4 + x_1 x_2^2 x_3 x_4 + x_1 x_2 x_3^2 x_4 + x_1 x_2 x_3 x_4^2$$
.

13.
$$x_1^4 x_2 + x_1^4 x_3 + x_2^4 x_1 + x_3^4 x_1 + x_2^4 x_3 + x_3^4 x_2$$
.

14.
$$(x_1 + x_2 - 3x_3)(x_1 + x_3 - 3x_2)(x_2 + x_3 - 3x_1)$$
.

15.
$$x_1^3 x_2^2 + x_1^3 x_3^2 + x_2^3 x_1^2 + x_2^3 x_3^2 + x_3^3 x_1^2 + x_3^3 x_2^2$$
.

16.
$$x_1^2 x_2^2 x_3^2 + x_1^2 x_2^2 x_4^2 + x_1^2 x_3^2 x_4^2 + x_2^2 x_3^2 x_4^2$$
.

17.
$$(x_1 + x_2 - x_3)(x_1 + x_3 - x_2)(x_2 + x_3 - x_1)$$
.

18.
$$x_1^4 + x_2^4 + x_3^4 + x_4^4 + x_5^4$$
.

$$19. x_1^3 x_2^3 + x_1^3 x_3^3 + x_1^3 x_4^3 + x_2^3 x_3^3 + x_2^3 x_4^3 + x_3^3 x_4^3.$$

$$20. x_1^3 + x_2^3 + x_3^3 + x_4^3 - 5x_1x_2x_3x_4$$

$$21. x_1^5 + x_2^5 + x_3^5 + 3x_1^2x_2^2 + 3x_1^2x_3^2 + 3x_2^2x_3^2$$

22.
$$x_1^2 x_2^2 + x_1^2 x_3^2 + x_2^2 x_3^2 + 2x_1 x_2 x_3$$
.

23.
$$(2x_1 - x_2 - x_3)(2x_2 - x_1 - x_3)(2x_3 - x_2 - x_1)$$
.

24.
$$x_1^2 x_2 x_3 + x_1 x_2^2 x_3 + x_1 x_2 x_3^2$$
.

$$25. x_1^3 x_2 x_3 x_4 + x_1 x_2^3 x_3 x_4 + x_1 x_2 x_3^3 x_4 + x_1 x_2 x_3 x_4^3.$$

$$26. x_1^3 + x_2^3 + x_3^3 - 2x_1^2 x_2^2 - 2x_1^2 x_3^2 - 2x_2^2 x_3^2$$

$$27.(x_1^2 + x_2^2)(x_1^2 + x_3^2)(x_2^2 + x_3^2).$$

$$28.(x_1^2 + 2x_2 + 2x_3)(2x_1 + x_2^2 + 2x_3)(2x_1 + 2x_2 + x_3^2).$$

$$29.2x_1^4x_2 - 5x_1^2x_2 + 2x_1x_2^4 + 5x_1x_2^2$$
.

30.
$$(x_1 + x_2 - 2x_3)(x_1 + x_3 - 2x_2)(x_2 + x_3 - 2x_1)$$
.

Додаток 1. Питання колоквіуму

2 семестр

- 1. Бінарні операції, асоціативність, комутативність та дистрибутивність бінарних операцій, основні властивості бінарних операцій.
- 2. Означення групи, приклади груп.
- 3. Властивості груп. Довести:
 - a) рівність $a^m \cdot a^n = a^{m+n}$;
 - b) що кожне з рівнянь ax = b, ya = b має єдиний розв'язок;
 - c) що з ab = ac випливає b = c.
- 4. Підгрупи та їх властивості. Критерії того, що підмножина групи є підгрупою.
- 5. Циклічна група; приклади циклічних груп. Теорема про будову підгруп циклічної групи.
- 6. Група підстановок, зображення підстановок у вигляді добутку транспозицій.
- 7. Ізоморфізм груп; показати, що відношення ізоморфізму є відношенням еквівалентності.
- 8. Довести, що при ізоморфізмі нейтральний елемент переходить в нейтральний елемент, а обернений елемент в обернений.
- 9. Теорема, що коли множина з бінарною операцією ізоморфна групі, то вона ϵ групою.
- 10. Теорема: кожна нескінченна циклічна група ізоморфна адитивній групі цілих чисел, кожна скінченна група порядку n ізоморфна групі поворотів правильного n кутника.
- 11. Теорема Келі.
- 12. Розклад групи за підгрупою.
- 13. Теорема Лагранжа та наслідки з неї.
- 14. Кільця, приклади кілець, кільце лишків.
- 15. Основні властивості кілець, кільце з одиницею, дільники одиниці.

- 16. Дільники нуля. Область цілісності. Приклади областей цілісності.
- 17. Підкільце. Критерій того, що підмножина кільця ϵ підкільцем.
- 18. Ізоморфізм кілець, властивості ізоморфних кілець.
- 19. Поле, властивості полів. Поле лишків \boldsymbol{Z}_p . Довести, що поле не містить дільників нуля.
- 20. Характеристика поля, її властивості. Довести, що в полі характеристики $p (a+b)^p = a^p + b^p$.
- 21.Підполе, розширення поля, ізоморфізм полів.

Додаток 2. Варіанти контрольних та самостійних робіт

Самостійна робота (2 семестр)

Варіант 1

- 1. Чи буде групою множина всіх комплексних коренів фіксованого степеня n з 1 відносно операції множення.
- 2. Чи буде операція * асоціативна на множини Z, $x * y = x^2 + y^2$.
- 3. Знайти порядок елемента групи:

a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 4 & 6 & 2 & 5 & 3 & 7 \end{pmatrix} \in S_8$$
; b) $g = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in GL_2(Z)$.

4. Розв'язати рівняння та систему рівнянь:

а)
$$x^2 - (1 + \sqrt{7})x - 26 + 10\sqrt{7} = 0$$
 у полі $Q(\sqrt{7})$; b) $\begin{cases} x + y = 11, \\ y - x = 15. \end{cases}$ в кільці Z_{24} .

- 5. Чи буде відображення гомоморфізмом? $f: R^* \to R^*, \ f(x) = -|x|$.
- 6. Чи буде кільце Z_{163} полем? Знайти обернений елемент до елемента a=57 .

Варіант 2

- 1. Чи буде групою множина всіх комплексних коренів усіх степенів з 1 відносно операції множення.
- 2. Чи буде операція * асоціативна на множини N, $x * y = x^y y$.
- 3. Знайти порядок елемента групи:

a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 7 & 6 & 4 & 5 & 8 & 2 \end{pmatrix} \in S_8;$$
 b) $g = \begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C).$

4. Розв'язати рівняння та систему рівнянь :

а)
$$x^2 + (4 - 2\sqrt{7})x + 7 - 4\sqrt{7} = 0$$
 у полі $Q(\sqrt{7})$; b) $\begin{cases} x + y = 11, \\ y - x = 5. \end{cases}$ в кільці Z_{20} .

- 5. Чи буде відображення гомоморфізмом? $f: C^* \to C^*, \quad f(z) = |z|$.
- 6. Чи буде кільце Z_{150} полем? Знайти обернений елемент до елемента a=101.

73

Контрольна робота (2 семестр)

Варіант 1

- 1. Розкласти на незвідні множники над полем R многочлен $x^4 + 2x^2 + 25$.
- 2. Знайти раціональні корені многочлена $6x^6 + x^5 + 5x^4 + 6x^2 + x + 5$.
- 3. Знайти значення многочлена $-3x^6-11x^5+5x^4-2x^2+3x-15$ та всіх його похідних при $x_0=-2$.
- 4. Розв'язати рівняння $3x^2 + (5 9\sqrt{5})x 15\sqrt{5} = 0$ в полі $Q(\sqrt{5})$.
- 5. Знайти елемент, обернений до елемента 53 в кільці Z_{241} .
- 6. Розкласти в ланцюговий дріб $\frac{1811}{409}$.
- 7. Знайти остачу від ділення числа $(5284040^{175718} + 189679)^{521158}$ на число 81.

Варіант 2

- 1. Розкласти на незвідні множники над полем R многочлен $x^4 2x^2 + 36$.
- 2. Знайти раціональні корені многочлена $6x^6 x^5 2x^4 + 6x^2 x 2$.
- 3. Знайти значення многочлена $2x^6 + 4x^5 5x^3 + 3x^2 17x + 35$ та всіх його похідних при $x_0 = -1$.
- 4. Розв'язати систему рівнянь $\begin{cases} \overline{x} + \overline{y} = \overline{97}, \\ \overline{y} \overline{x} = \overline{25} \end{cases}$ в кільці Z_{168} .
- 5. Знайти елемент, обернений до елемента 59 в кільці Z_{367} .
- 6. Розкласти в ланцюговий дріб $\sqrt{125}$.
- 7. Знайти остачу від ділення числа $(2283658^{208563} + 12680)^{58247}$ на число 55.

74

Додаток 3. Цікаві задачі

- 1. Доведіть, що довільна скінченна підгрупа H групи C^* є циклічною.
- 2. Нехай p,q прості числа та p < q. Доведіть, що кожна група порядку pq містить підгрупу порядку p (порядку q).
- 3. Доведіть, що кожна некомутативна група порядку 8 ізоморфна або групі D_4 , або групі кватерніонів Q_8 .
- 4. Доведіть, що кожна група порядку p^4 містить абелеву підгрупу порядку p^3 .
- 5. Доведіть, що група A_5 не містить підгруп порядків 15, 20 і 30.
- 6. Знайдіть кількість силовських p підгруп у групі S_{2p} .
- 7. Довести, що коли елемент x кільця \Re є нільпотентним, то елемент (1-x) є оборотним (елемент a кільця \Re називається нільпотентним, якщо для деякого натурального числа n маємо $a^n=0$).
- 8. Довести, що Z_m містить нільпотентні елементи тоді й лише тоді, коли m ділиться на квадрат натурального числа більшого за 1.
- 9. Довести: кожне п'яти елементне кільце або ізоморфне Z_5 , або є кільцем з нульовим множенням.

Додаток 4. Умовні позначення

 $HC\mathcal{I}(a,b)$ – найбільший спільний дільник чисел a та b;

HCK(a,b) – найменше спільне кратне чисел a та b;

 A^{T} — матриця, транспонована до матриці A;

|A| – потужність множини A;

|a| – порядок елемента a;

 $\langle a,b,...,c \rangle$ – група породжена елементами a,b,...,c;

 $A \subseteq B - A \in підмножиною B;$

 $A \subset B - A$ є власною підмножиною B (тобто $A \subseteq B$ і $A \neq B$);

 A_n — знакозмінна група всіх парних підстановок степеня n;

C – множина, або адитивна група, або поле комплексних чисел;

 C^* – мультиплікативна група поля комплексних чисел;

 C_n — група за множенням усіх комплексних коренів степеня n з 1 або група поворотів правильного n-кутника;

C(a) – клас спряженості елемента a;

 D_{n} – група симетрій правильного n -кутника;

 E_n — одинична матриця порядку n (матриця порядку n, в якій на головній діагоналі стоять одиниці, а решта елементів — нулі);

 $GL_n(P)$ — повна лінійна група степеня n — група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P;

 $GL_n(Z)$ – група за множенням усіх невироджених цілочисельних матриць порядку n, обернені до яких також ϵ цілочисельними;

G/H – фактор-група групи G за нормальною підгрупою H;

 $H \triangleleft G - H$ є нормальною підгрупою H;

 K_4 — четверна група Кляйна — група підстановок $\{e,(1\ 2)(3\ 4),(1\ 3)(2\ 4),(1\ 4)(2\ 3)\};$

 $M_{n \times m}(P)$ — адитивна група матриць розміру $n \times m$ з коефіцієнтами з поля P ;

 $M_n(P)$ – адитивна група квадратних матриць порядку n з коефіцієнтами з поля P;

 N_0 – множина цілих невід'ємних чисел;

P[x] – кільце многочленів від x з коефіцієнтами з поля P;

 $P_n[x]$ — множина всіх многочленів від x степеня не більшого ніж n з коефіцієнтами з поля P;

 $P_n[x_1,...,x_k]$ — множина всіх многочленів степеня не більшого ніж n від змінних $x_1,...,x_k$ з коефіцієнтами з поля P;

 Q_8 – група кватерніонів;

 Q^+ – мультиплікативна група всіх додатних раціональних чисел;

 Q^* – мультиплікативна група поля раціональних чисел;

 R^{+} — мультиплікативна група всіх додатних дійсних чисел;

 R^* – мультиплікативна група поля дійсних чисел;

 $SL_n(P)$ — спеціальна лінійна група степеня n — підгрупа матриць із $GL_n(P)$, визначник яких дорівнює 1;

 S_{n} — симетрична група всіх підстановок степеня n;

 $T_n(P)$ — група за множенням усіх невироджених верхніх трикутних матриць порядку n з коефіцієнтами з поля P;

 U_{n} – група комплексних коренів степеня n з 1;

 Z_n — множина, або адитивна група, або кільце класів лишків за модулем натурального числа n;

 Z_n^* – мультиплікативна група оборотних класів лишків за модулем числа n;

 $\tau(n)$ – кількість всіх натуральних дільників числа n;

S(n) – сума всіх кількість всіх натуральних дільників числа n;

 $\varphi(n)$ — функція Ойлера — кількість натуральних чисел менших за n та взаємно простих з ним.

Додаток 5. Таблиця простих чисел для $n \le 4861$

2 233 547 877 1229 1597 1993 2371 2749 3187 3583 4003 3 239 557 881 1231 1601 1997 2377 2753 3191 3593 4003 5 241 563 883 1237 1607 1999 2381 2767 3203 3607 4013 7 251 569 887 1249 1609 2003 2383 2777 3209 3613 4019 11 257 571 907 1259 1613 2011 2389 2789 3217 3617 4021 13 263 577 911 1277 1619 2017 2393 2791 3221 3623 4027 17 269 587 919 1279 1621 2027 2399 2797 3229 3631 4049 19 271 593 929 1283 1627 2029 2411 2801 3251 3637 4051 <t< th=""><th>4423 4441 4447 4457 4463 4481 4483 4493 4507</th></t<>	4423 4441 4447 4457 4463 4481 4483 4493 4507
5 241 563 883 1237 1607 1999 2381 2767 3203 3607 4013 7 251 569 887 1249 1609 2003 2383 2777 3209 3613 4019 11 257 571 907 1259 1613 2011 2389 2789 3217 3617 4021 13 263 577 911 1277 1619 2017 2393 2791 3221 3623 4027 17 269 587 919 1279 1621 2027 2399 2797 3229 3631 4049 19 271 593 929 1283 1627 2029 2411 2801 3251 3637 4051 23 277 599 937 1289 1637 2039 2417 2803 3253 3643 3307 29 281 601 941 1291 1657 2053 2423 2819 3257 3659 4053	4441 4447 4457 4463 4481 4483 4493 4507
7 251 569 887 1249 1609 2003 2383 2777 3209 3613 4019 11 257 571 907 1259 1613 2011 2389 2789 3217 3617 4021 13 263 577 911 1277 1619 2017 2393 2791 3221 3623 4027 17 269 587 919 1279 1621 2027 2399 2797 3229 3631 4049 19 271 593 929 1283 1627 2029 2411 2801 3251 3637 4051 23 277 599 937 1289 1637 2039 2417 2803 3253 3643 3307 29 281 601 941 1291 1657 2053 2423 2819 3257 3659 4053 31 283 607 947	4447 4457 4463 4481 4483 4493 4507
11 257 571 907 1259 1613 2011 2389 2789 3217 3617 4021 13 263 577 911 1277 1619 2017 2393 2791 3221 3623 4027 17 269 587 919 1279 1621 2027 2399 2797 3229 3631 4049 19 271 593 929 1283 1627 2029 2411 2801 3251 3637 4051 23 277 599 937 1289 1637 2039 2417 2803 3253 3643 3307 29 281 601 941 1291 1657 2053 2423 2819 3257 3659 4057 31 283 607 947 1297 1663 2063 2437 2833 3259 3671 4073 41 307 617 967	4457 4463 4481 4483 4493 4507
13 263 577 911 1277 1619 2017 2393 2791 3221 3623 4027 17 269 587 919 1279 1621 2027 2399 2797 3229 3631 4049 19 271 593 929 1283 1627 2029 2411 2801 3251 3637 4051 23 277 599 937 1289 1637 2039 2417 2803 3253 3643 3307 29 281 601 941 1291 1657 2053 2423 2819 3257 3659 4053 31 283 607 947 1297 1663 2063 2437 2833 3259 3671 4073 37 293 613 953 1301 1667 2069 2441 2837 3271 3673 4079 41 307 617 967 1303 1669 2081 2447 2843 3299 3677 4091 43 311 619 971 1307 1693 2083 2459 2851 3301 3691 4093	4463 4481 4483 4493 4507
17 269 587 919 1279 1621 2027 2399 2797 3229 3631 4049 19 271 593 929 1283 1627 2029 2411 2801 3251 3637 4051 23 277 599 937 1289 1637 2039 2417 2803 3253 3643 3307 29 281 601 941 1291 1657 2053 2423 2819 3257 3659 4057 31 283 607 947 1297 1663 2063 2437 2833 3259 3671 4073 37 293 613 953 1301 1667 2069 2441 2837 3271 3673 4079 41 307 617 967 1303 1669 2081 2447 2843 3299 3677 4091 43 311 619 971	4481 4483 4493 4507
19 271 593 929 1283 1627 2029 2411 2801 3251 3637 4051 23 277 599 937 1289 1637 2039 2417 2803 3253 3643 3307 29 281 601 941 1291 1657 2053 2423 2819 3257 3659 4057 31 283 607 947 1297 1663 2063 2437 2833 3259 3671 4073 37 293 613 953 1301 1667 2069 2441 2837 3271 3673 4079 41 307 617 967 1303 1669 2081 2447 2843 3299 3677 4091 43 311 619 971 1307 1693 2083 2459 2851 3301 3691 4093 47 313 631 977	4483 4493 4507
19 271 593 929 1283 1627 2029 2411 2801 3251 3637 4051 23 277 599 937 1289 1637 2039 2417 2803 3253 3643 3307 29 281 601 941 1291 1657 2053 2423 2819 3257 3659 4057 31 283 607 947 1297 1663 2063 2437 2833 3259 3671 4073 37 293 613 953 1301 1667 2069 2441 2837 3271 3673 4079 41 307 617 967 1303 1669 2081 2447 2843 3299 3677 4091 43 311 619 971 1307 1693 2083 2459 2851 3301 3691 4093 47 313 631 977	4483 4493 4507
23 277 599 937 1289 1637 2039 2417 2803 3253 3643 3307 29 281 601 941 1291 1657 2053 2423 2819 3257 3659 4057 31 283 607 947 1297 1663 2063 2437 2833 3259 3671 4073 37 293 613 953 1301 1667 2069 2441 2837 3271 3673 4079 41 307 617 967 1303 1669 2081 2447 2843 3299 3677 4091 43 311 619 971 1307 1693 2083 2459 2851 3301 3691 4093 47 313 631 977 1319 1697 2087 2467 2857 3313 3697 4099	4493 4507
29 281 601 941 1291 1657 2053 2423 2819 3257 3659 4053 31 283 607 947 1297 1663 2063 2437 2833 3259 3671 4073 37 293 613 953 1301 1667 2069 2441 2837 3271 3673 4079 41 307 617 967 1303 1669 2081 2447 2843 3299 3677 4091 43 311 619 971 1307 1693 2083 2459 2851 3301 3691 4093 47 313 631 977 1319 1697 2087 2467 2857 3313 3697 4099	4507
31 283 607 947 1297 1663 2063 2437 2833 3259 3671 4073 37 293 613 953 1301 1667 2069 2441 2837 3271 3673 4079 41 307 617 967 1303 1669 2081 2447 2843 3299 3677 4093 43 311 619 971 1307 1693 2083 2459 2851 3301 3691 4093 47 313 631 977 1319 1697 2087 2467 2857 3313 3697 4099	
37 293 613 953 1301 1667 2069 2441 2837 3271 3673 4079 41 307 617 967 1303 1669 2081 2447 2843 3299 3677 4091 43 311 619 971 1307 1693 2083 2459 2851 3301 3691 4093 47 313 631 977 1319 1697 2087 2467 2857 3313 3697 4099	1515
41 307 617 967 1303 1669 2081 2447 2843 3299 3677 4091 43 311 619 971 1307 1693 2083 2459 2851 3301 3691 4093 47 313 631 977 1319 1697 2087 2467 2857 3313 3697 4099	4517
43 311 619 971 1307 1693 2083 2459 2851 3301 3691 4093 47 313 631 977 1319 1697 2087 2467 2857 3313 3697 4099	4519
47 313 631 977 1319 1697 2087 2467 2857 3313 3697 4099	
33 31 1041 1963 1321 1099 2069 24/3 2601 3319 3701 4114	4549
59 331 643 991 1327 1709 2099 2477 2879 3323 3709 4127	
61 337 647 997 1361 1721 2111 2503 2887 3329 3719 4129	
67 347 653 1009 1367 1723 2113 2521 2897 3331 3727 4133	
71 349 659 1013 1373 1733 2129 2531 2903 3343 3733 4139	
73 353 661 1019 1381 1741 2131 2539 2909 3347 3739 4153	4597
79 359 673 1021 1399 1747 2137 2543 2917 3359 3761 4157	4621
83 367 677 1031 1409 1753 2141 2549 2927 3361 3767 4159	4637
89 373 683 1033 1423 1759 2143 2551 2939 3371 3769 4177	4639
97 379 691 1039 1427 1777 2153 2557 2953 3373 3779 4201	4643
101 383 701 1049 1429 1783 2161 2579 2957 3389 3793 4211	4649
103 389 709 1051 1433 1787 2179 2591 2963 3391 3797 4217	4651
107 397 719 1061 1439 1789 2203 2593 2969 3407 3803 4219	4657
109 401 727 1063 1447 1801 2207 2609 2971 3413 3821 4229	4663
113 409 733 1069 1451 1811 2213 2617 2999 3433 3823 4231	4673
127 419 739 1087 1453 1823 2221 2621 3001 3449 3833 4241	4679
131 421 743 1091 1459 1831 2237 2633 3011 3457 3847 4243	4691
137 431 751 1093 1471 1847 2239 2647 3019 3461 3851 4253	
139 433 757 1097 1481 1861 2243 2657 3023 3463 3853 4259	
149 439 761 1103 1483 1867 2251 2659 3037 3467 3863 4261	4723
151	4451
157 449 773 1117 1489 1873 2269 2671 3049 3491 3881 4273	
163 457 787 1123 1493 1877 2273 2677 3061 3499 3889 4283	
167 461 797 1129 1499 1879 2281 2683 3067 3511 3907 4289	
179 467 811 1153 1523 1901 2293 2689 3083 3527 3917 4327	
181 479 821 1163 1531 1907 2297 2693 3089 3529 3919 4337 181 407 823 1171 1543 1913 2297 2693 3089 3529 3919 4337	
191 487 823 1171 1543 1913 2309 2699 3109 3533 3923 4339 102 487 487 487 487 487 487 487 488 488 488	
193 491 827 1181 1549 1931 2311 2707 3119 3539 3929 4349 195 436 436 436 436 436 436 436	
197 499 829 1187 1553 1933 2333 2711 3121 3541 3931 4357	
199 503 839 1193 1559 1949 2339 2713 3137 3547 3943 4363	
211 509 853 1201 1567 1951 2341 2719 3163 3557 3947 4373	
223 521 857 1213 1571 1973 2347 2729 3167 3559 3967 4391	4817
227 523 859 1217 1579 1979 2351 2731 3169 3571 3989 4397	4831
229 541 863 1223 1583 1987 2357 2741 3181 3581 4001 4409	4861

Основна література

- 1. Завало С.Т., Костарчук В.Н., Хацет Б.І . Алгебра і теорія чисел. В 2–х ч. –К.: Вища шк., 1974, 1977, 1980.
- 2. Завало С.Т. Курс алгебри. К.: Вища шк., 1985.
- 3. Курош А.Г. Курс высшей алгебры. М., Наука, 1971.
- 4. Ван дер Варден Б.Л. Алгебра. М.: Наука, 1976.
- 5. Калужнин Л.А. Введение в общую алгебру. М.: Наука, 1973.
- 6. Кострикин А.И. Введение в алгебру. М.: Наука, 1977.
- 7. Скорняков Л.А. Элементы алгебры. М.: Наука, 1965.
- 8. Фаддеев Д.К. Лекции по алгебре. М.: Наука, 1984.
- 9. Фаддеев Д.К., Соминский И.С. Сборник задач по высшей алгебре. М.: Наука, 1977.
- 10. Проскуряков И.В. Сборник задач по линейной алгебре. М.: Наука, 1965.