C: Exercício 13

- •Escrever um programa para alternar o estado dos LEDs vermelho e verde da placa MSP-EXP430G2 a cada 0,8s.
- •Configurar a frequência de Clock para 1 MHz.
- Inicialmente os LEDs deverão estar apagados;
- •Sempre que a interrupção do pino *P1.3* (*Botão S2*) for ativada, o estado dos LEDs deverá alternar entre apagado e piscante;

•A temporização deverá ser feita através do *Timer0_A*

Vetores de Interrupções do MSP430G2553

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range ⁽¹⁾	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	OFFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ⁽²⁾⁽³⁾	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TA1CCR0 CCIFG ⁽⁴⁾	maskable	0FFFAh	29
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG, TAIFG ⁽²⁾⁽⁴⁾	maskable	0FFF8h	28
Comparator_A+	CAIFG ⁽⁴⁾	maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TA0CCR0 CCIFG ⁽⁴⁾	maskable	OFFF2h	25
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG, TAIFG	maskable	0FFF0h	24
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG ⁽²⁾⁽⁵⁾	maskable	0FFEEh	23
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG ⁽²⁾⁽⁶⁾	maskable	0FFECh	22
ADC10 (MSP430G2x53 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18

C: Exercício 13

P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the PxIFG, PxIE, and PxIES registers. All P1 pins source a single interrupt vector, and all P2 pins source a different single interrupt vector. The PxIFG register can be tested to determine the source of a P1 or P2 interrupt.

Port	Register	Short Form	Address	Register Type	Initial State
P1	Input	P1IN	020h	Read only	r -
	Output	P1OUT	021h	Read/write	Unchanged
	Direction	P1DIR	022h	Read/write	Reset with PUC
	Interrupt Flag	P1IFG	023h	Read/write	Reset with PUC
	Interrupt Edge Select	P1IES	024h	Read/write	Unchanged
	Interrupt Enable	P1IE	025h	Read/write	Reset with PUC
	Port Select	P1SEL	026h	Read/write	Reset with PUC
	Port Select 2	P1SEL2	041h	Read/write	Reset with PUC
	Resistor Enable	P1REN	027h	Read/write	Reset with PUC

Table 12–3. Timer_A Registers

Register	Short Form	Register Type	Address	Initial State
Timer_A control	TACTL	Read/write	0160h	Reset with POR
Timer_A counter	TAR	Read/write	0170h	Reset with POR
Timer_A capture/compare control 0	TACCTL0	Read/write	0162h	Reset with POR
Timer_A capture/compare 0	TACCR0	Read/write	0172h	Reset with POR
Timer_A capture/compare control 1	TACCTL1	Read/write	0164h	Reset with POR
Timer_A capture/compare 1	TACCR1	Read/write	0174h	Reset with POR
Timer_A capture/compare control 2	TACCTL2†	Read/write	0166h	Reset with POR
Timer_A capture/compare 2	TACCR2†	Read/write	0176h	Reset with POR
Timer_A interrupt vector	TAIV	Read only	012Eh	Reset with POR

[†] Not present on MSP430x20xx Devices

Timer0_A: TA0xxxxx

Timer1_A: TA1xxxxx

Como configurar o Timer para temporizar 0,8s (800ms)

$$DCO = 1 MHZ \rightarrow 800.000 \text{ ciclos}$$

Timer no modo UP

$$Divisor = 8$$

$$8 \times 65.535 = 528.280$$

Modo de Contagem *UP/DOWN*

O *Timer* conta repetidamente de modo ascendente até o valor de comparação armazenado no Registrador *TACCR0* zero.

Quando atinge o valor de comparação ($TACCR\theta$) o Timer passa a contar de modo descendente até zero.

A *flag* de interrupção *CCIFG* é setada quando o *Timer* atinge o valor armazenado no Registrador de comparação *TACCR0*.

Modos de Contagem UP/DOWN

12.3.1 TACTL, Timer_A Control Register

15	14	13	12	11	10	9	- 8
		Un	used			TAS	SELX
rw-(0) rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
	IDx	N	ICx .	Unused	TACLR	TAIE	TAIFG
rw-(0) rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
Unused	Bits 15-10	Unused					
TASSEL	x Bits 9-8	Timer_A clock source	e select				
		00 TACLK					
		01 ACLK					
		10 SMCLK					
			LK is device-spec ific data sheet)	cific and is often as	signed to the inve	rted TBCLK) (see	the
IDx	Bits 7-6	Input divider. These	bits select the div	vider for the input cl	lock.		
		00 /1					
		01 /2					
		10 /4					
		11 /8					
MCx	Bits 5-4	Mode control. Settin	g MCx = 00h whe	en Timer_A is not in	use conserves po	ower.	
		00 Stop mode:	the timer is halte	d.			
		01 Up mode: th	ne timer counts up	to TACCR0.			
		10 Continuous	mode: the timer of	counts up to 0FFFF	h.		
		11 Up/down me	ode: the timer cou	unts up to TACCR0	then down to 000	0h.	
Unused	Bit 3	Unused					
TACLR	Bit 2	Timer_A clear. Setting automatically reset a			der, and the count	direction. The TA	CLR bit is
TAIE	Bit 1	Timer_A interrupt er	able. This bit ena	ables the TAIFG inte	errupt request.		
		0 Interrupt dis	abled				
		1 Interrupt en	abled				
TAIFG	Bit 0	Timer_A interrupt fla	g				
		0 No interrupt	pending				
		1 Interrupt pe	nding				

TA0CCTL0

12.3.4 TACCTLx, Capture/Compare Control Register

15	14	1	3 12	11	10	9	8
CMx		CCISx		scs	SCCI	Unused	CAP
rw-(0)	rw-(0)	rw-	(0) rw-(0)	rw-(0)	r	r0	rw-(0)
7	6	Ę	44	3	2	1	0
	OUTMODx		CCIE	CCI	OUT	cov	CCIFG
OUTMODx	Bits 7-5	Output me	ode. Modes 2, 3, 6, and 7 a	are not useful for T	ACCR0, because E	EQUx = EQU0.	
			UT bit value				
		001 S	et				
		010 T	oggle/reset				
			et/reset				
		100 T	oggle				
			eset				
		110 T	oggle/set				
		111 F	eset/set				
CCIE	Bit 4	Capture/c	ompare interrupt enable. T	his bit enables the	interrupt request of	f the correspondin	g CCIFG flag.
		0 Ir	terrupt disabled				
		1 Ir	terrupt enabled				
CCI	Bit 3	Capture/c	ompare input. The selected	d input signal can b	be read by this bit.		
OUT	Bit 2	Output. F	or output mode 0, this bit d	irectly controls the	state of the output.		
		0 0	utput low				
		1 0	utput high				
cov	Bit 1	Capture o	verflow. This bit indicates a	a capture overflow	occurred. COV mu	st be reset with so	ftware.
		0 N	o capture overflow occurre	ed			
		1 0	apture overflow occurred				
CCIFG	Bit 0	Capture/c	ompare interrupt flag				
		0 N	o interrupt pending				
		1 Ir	terrupt pending				

Status Register (SR)

N

The status register (SR/R2), used as a source or destination register, can be used in the register mode only addressed with word instructions. The remaining combinations of addressing modes are used to support the constant generator. Figure 3–6 shows the SR bits.

GIE General interrupt enable. This bit, when set, enables maskable interrupts are disabled.

Negative bit. This bit is set when the result of a byte or word operation is negative and cleared when the result is not negative.

Word operation: N is set to the value of bit 15 of the

result

Byte operation: N is set to the value of bit 7 of the

result

Z Zero bit. This bit is set when the result of a byte or word operation is 0 and cleared when the result is not 0.

C Carry bit. This bit is set when the result of a byte or word operation produced a carry and cleared when no carry occurred.

Microcontrolador MSP430G2553:

C: Exercício 13

C: Exercício 13

Habilitação das interrupções:

```
_BIS_SR(GIE)
_bis_SR_register(GIE)
_enable_interrupt()

Qualquer uma delas
```

Rotina de Interrupção da porta 1:

Rotina de Interrupção do Timer0 A: