Compton Streuung

Elektronen außer Rand und Band

Friedrich Schüßler, Volker Karle

April 24, 2015

Assistent: Kilian Rosbach

Inhaltsverzeichnis

Experimenteller Aufbau ¹³⁷Cs und ²²Na

Kalibrierung

Calibration of PS scintillator

Calibration of Na scintillator

Energieerhaltung

Energy Conservation

Foto des Aufbaus

Aufbau ohne Elektronik

Aufbau mit Elektronik

Zerfallsschemata von ¹³⁷Cs und ²²Na

Wie sieht ein Compton Peak aus? Klein-Nishina Formel!

Nal szintillator, ¹³⁷Cs Probe, ohne PVC

Nal Szintillator, ¹³⁷Cs Probe, mit PVC

Nal Szintillator, ¹³⁷Cs Probe, mit PVC

Peaks and fitting results of ²²Na

Name	Energy	Channel
1. Photo peak	511 keV	6347 ± 3
2. Photo peak	1277 keV	14180 ± 20
1. Compton edge	341 keV	4000 ± 2000
2. Compton edge	1064 keV	12000 ± 4000

Sichtbare Peaks und Kanten für beide Szintillisatoren

Probe	Peak/Kante	E / keV	Nal / Channel	PVC / Channel
¹³⁷ Cs	Photo	662	sichtbar	
	Compton	477	sichtbar	sichtbar
	Rückstreu	183	sichtbar	
²² Na	Photo	511	6347 ± 3	
	Compton	341	sichtbar	sichtbar
	Photo	1277	14180 ± 20	
	Compton	1064	4000 ± 2000	sichtbar

²²Na sample (measurement time 16.5h)

¹³⁷Cs sample (measurement time 6h)

Linear fit

Peaks and fitting results of $^{137}\mathrm{Cs}$

Name	Energy	Channel
Photo peak	662 keV	8040.59 ± 0.03
Compton edge	477 keV	5720 ± 4
Escape peak	183 keV	2510 ± 12

¹³⁷Cs sample (measurement time 2.7h)

²²Na sample (measurement time about 1h)

Linear fit

Energieerhaltung

Differentieller Wirkungsquerschnitt

Energy Conservationation

► Comparison of peak energies for different angles

Background of the PS scintillator with coincidence and random coincidences (measurem. time 13.4h and 1h)

Energy of electrons: Rate of coincident events of PS scintillator at angle of $\theta = 90^{\circ}$

Energy of electrons: Rate of coincident events of PS scintillator at angle of $\theta=15^\circ$

Background of Nal scintillator with coincidences (measurem. time 62h)

Energy of photons: Rate of coincident events of Nal scintillator at angle $\theta=30^{\circ}$

Energy of photons: Rate of coincident events of Nal scintillator at angle $\theta = 90^{\circ}$

Now to the result: combining all those peaks...