Notation

 ${\tt Version:} February\ 27,\ 2023$

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	Scalars
a, b, c, \dots	Vectors
A, B, C, \dots	Matrices
$\mathcal{A},\mathcal{B},\mathcal{C},\dots$	Tensors
$A, B, C, \ldots, A, B, C, \ldots$	Sets

2 Signals and functions operations

$f: A \to B$ $f^{(n)}$ f^{-1} $f \circ g$ $\inf_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	A function f whose domain is A and codomain is B nth derivative of the function f Inverse function of f Composition of the functions f and g Infimum
$\sup_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	Supremum
$y \in A$	•
*	Convolution
*, N	Circular convolution
$\delta(t)$	Delta function
$\delta[n]$	Kronecker function
h(t), h[n]	Impulse response (continuous and
	discrete time)
x(t)	Continuous-time t
$x[n], x[k], x[m], x[i], \dots$	Discrete-time n, k, m, i, \ldots
$x(n), x(k), x(m), x(i), \dots$	Discrete-time n, k, m, i, \ldots (it should
	be used only if there are no continuous-time signals in the con- text to avoid ambiguity)
$\hat{x}(t)$ or $\hat{x}[n]$	Hilbert transform of $x(t)$ or $x[n]$

 $\begin{array}{ll} \tilde{x}[n] & \text{Periodic discrete-time signal} \\ x\left[((n-m))_N\right], x\left((n-m)\right)_N & \text{Circular shift in } m \text{ samples within a} \\ x_I(t) \text{ or } x_I[n] & \text{Real or in-phase part of } x(t) \text{ or } x[n] \\ x_Q(t) \text{ or } x_Q[n] & \text{Imaginary or quadrature part of } x(t) \\ \text{ or } x[n] \\ \end{array}$

2.1 Transformations

 $\mathcal{F}\left\{ \cdot \right\}$ Fourier transform $\mathcal{L}\left\{ \cdot \right\}$ Laplace transform $\mathcal{Z}\left\{ \cdot \right\}$ z-transform X(s)Laplace transform of x(t)Fourier transform (FT) (in linear fre-X(f)quency, Hz) of x(t) $X(j\omega)$ Fourier transform (FT) (in angular frequency, rad/sec) of x(t) $X(e^{j\omega})$ Fourier Discrete-time transform (DTFT) of x[n]X[k], X(k)Discrete Fourier transform (DFT) or fast Fourier transform (FFT) of x[n], or even the Fourier series (FS) of the periodic signal x(t) $\tilde{X}[k], \tilde{X}(k)$ Discrete Fourier series (DFS) of $\tilde{x}[n]$ X(z)z-transform of x[n] $S_x(f)$ Power spectral density of x(t) in linear frequency $S_x(j\omega)$ Power spectral density of x(t) in angular frequency

3 Statistical signal processing

 $\nabla f, \mathbf{g}$ Gradient vector $\nabla_x f, \mathbf{g}_x$ Gradient vector with respect x \mathbf{g} (or $\hat{\mathbf{g}}$ if the gradient vector is \mathbf{g}) Stochastic approximation of the gradient vector $J(\cdot)$ Cost-function or objective function $\Lambda(\cdot)$ Likelihood function Log-likelihood function $\Lambda_l(\cdot)$ Estimate of x(t) or x[n] $\hat{x}(t)$ or $\hat{x}[n]$ Sample mean of x[n] or x(t) $\hat{\boldsymbol{\mu}}_{x}, \hat{\mathbf{m}}_{x}$ $\hat{\boldsymbol{\mu}}_{\mathbf{x}}, \hat{\mathbf{m}}_{\mathbf{x}}$ Sample mean vector of $\mathbf{x}[n]$ or $\mathbf{x}(t)$

$\hat{r}_{x}(au),\hat{R}_{x}(au)$	Estimated autocorrelation function of the signal $x(t)$ or $x[n]$
$\hat{\mathbf{R}}_{\mathbf{x}}$	Sample (auto)correlation matrix
$\hat{r}_{x,d}(\tau), \hat{R}_{x,d}(\tau)$	Estimated cross-correlation between
	x[n] and $d[n]$ or $x(t)$ and $d(t)$
$\hat{\mathbf{R}}_{\mathbf{x}\mathbf{y}}$	Sample cross-correlation matrix of
·	R_{xy}
$\hat{ ho}_{x,y}$	Estimated Pearson correlation coeffi-
•	cient between x and y
$\hat{c}_{x}(au),\hat{C}_{x}(au)$	Estimated autocovariance function of
	the signal $x(t)$ or $x[n]$
$\hat{\mathbf{C}}_{\mathbf{x}},\hat{\mathbf{K}}_{\mathbf{x}},\hat{\mathbf{\Sigma}}_{\mathbf{x}}$	Sample (auto)covariance matrix
$\hat{c}_{xy}(au), \hat{C}_{xy}(au)$	Estimated cross-covariance function
	of the signal $x(t)$ or $x[n]$
$\hat{ extbf{C}}_{ extbf{xy}}, \hat{ extbf{K}}_{ extbf{xy}}, \hat{ extbf{\Sigma}}_{ extbf{xy}}$	Sample cross-covariance matrix
$\mathbf{w}, \mathbf{\theta}$	Parameters, coefficients, or weights
	vector
$\mathbf{w}_o, \mathbf{w}^{\star}, \mathbf{\theta}_o, \mathbf{\theta}^{\star}$	Optimum value of the parameters,
	coefficients, or weights vector
\mathbf{W}	Matrix of the weights
J	Jacobian matrix

4 Linear Algebra

4.1 Common matrices and vectors

\mathbf{W}, \mathbf{D}	Diagonal matrix
P	Projection matrix; Permutation ma-
	trix
J	Jordan matrix
${f L}$	Lower matrix
\mathbf{U}	Upper matrix
\mathbf{C}	Cofactor matrix
$\mathbf{C}_{\mathbf{A}},\operatorname{cof}\left(\mathbf{A}\right)$	Cofactor matrix of A
\mathbf{S}	Symmetric matrix
\mathbf{Q}	Orthogonal matrix
\mathbf{I}_N	$N \times N$ -dimensional identity matrix
$0_{M imes N}$	$M \times N$ -dimensional null matrix
0_N	N-dimensional null vector
$1_{M imes N}$	$M \times N$ -dimensional ones matrix
1_N	N-dimensional ones vector
0	Null matrix, vector, or tensor (di-
	mensionality understood by context)

4.2 Operations with matrices

\mathbf{A}^{-1}	Inverse matrix
$\mathbf{A}^+,\mathbf{A}^\dagger$	Moore-Penrose pseudoinverse
$\mathbf{A}^{ op}$	Transpose
\mathbf{A}^*	Complex conjugate
\mathbf{A}^H	Hermitian
$\ \mathbf{A}\ _{\mathrm{F}}$	Frobenius norm
$\ \mathbf{A}\ $	Matrix norm
$ \mathbf{A} $, $\det(\mathbf{A})$	Determinant
$\operatorname{diag}(\mathbf{A})$	The elements in the diagonal of A
$\operatorname{vec}(\mathbf{A})$	Vectorization: stacks the columns of
100 (12)	the matrix A into a long column vec-
	tor
$\operatorname{vec}_{\operatorname{d}}\left(\mathbf{A}\right)$	Extracts the diagonal elements of a
100d (11)	square matrix and returns them in a
	column vector
$\operatorname{vec}_{\operatorname{l}}\left(\mathbf{A}\right)$	Extracts the elements strictly below
vecl (A)	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\mathrm{vec_{u}}\left(\mathbf{A}\right)$	Extracts the elements strictly above
vec _u (A)	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\operatorname{vec_b}\left(\mathbf{A}\right)$	Block vectorization operator: stacks
$\operatorname{vec}_{\operatorname{b}}(\mathbf{A})$	square block matrices of the input
	into a long block column matrix
unvoc (A)	
$\operatorname{unvec}\left(\mathbf{A}\right)$	Reshapes a column vector into a matrix
$\mathrm{tr}\left(\mathbf{A} ight)$	trace
ti (A) ⊗	Kronecker product
	Hadamard (or Schur) (elementwise)
\odot	product (or schur) (eiementwise)
$\mathbf{A}^{\odot n}$	-
A	n th-order Hadamard power of the matrix \mathbf{A}
$\mathbf{A}^{\odot rac{1}{n}}$	
$\mathbf{A} \stackrel{\sim}{} n$	nth-order Hadamard root of the ma-
	trix A
\oslash	Hadamard (or Schur) (elementwise)
	division
♦	Khatri-Rao product

Kronecker Product
n-mode product

4.3 Operations with vectors

 \otimes

 \times_n

$\ \mathbf{a}\ $	l_1 norm, 1-norm, or Manhatan norm
$\ \mathbf{a}\ , \ \mathbf{a}\ _2$	l_2 norm, 2-norm, or Euclidean norm
$\ \mathbf{a}\ _p$	l_p norm, p -norm, or Minkowski norm
$\ \mathbf{a}\ _{\infty}^{\perp}$	l_{∞} norm, ∞ -norm, or Chebyshev
	norm
$\operatorname{diag}\left(\mathbf{a}\right)$	Diagonalization: a square, diagonal
	matrix with entries given by the vec-
	tor a
$\langle \mathbf{a}, \mathbf{b} angle$	Inner product, i.e., $\mathbf{a}^{T}\mathbf{b}$
$\mathbf{a} \circ \mathbf{b}$	Outer product, i.e., \mathbf{ab}^{T}

4.4 Decompositions

Λ	Eigenvalue matrix
U	Left singular vectors
\mathbf{U}_r	Left singular nondegenerated vectors
Σ	Singular value matrix
Σ_r	Singular value matrix with nonzero
·	singular values in the main diagonal
Σ^+	Singular value matrix of the pseu-
	doinverse
Σ_r^+	Singular value matrix of the pseu-
,	doinverse with nonzero singular val-
	ues in the main diagonal
V	Right singular vectors
\mathbf{V}_r	Right singular nondegenerated vec-
•	tors
$\operatorname{eig}\left(\mathbf{A} ight)$	Set of the eigenvalues of A
$\llbracket \mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots brace$	CANDECOMP/PARAFAC (CP) de-
	composition of the tensor $\boldsymbol{\mathcal{X}}$ from the
	outer product of column vectors of A ,
	B, C,
$\llbracket \boldsymbol{\lambda}; \mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots bracket$	Normalized CANDE-
	COMP/PARAFAC (CP) decom-
	position of the tensor \mathcal{X} from the
	outer product of column vectors of
	A, B, C, \dots

4.5 Spaces

$N(\mathbf{A})$, nullspace(\mathbf{A}), kernel(\mathbf{A}) $C(\mathbf{A})$, columnspace(\mathbf{A}), range(\mathbf{A})	Nullspace (or kernel) Columnspace (or range), i.e., the space span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, where \mathbf{a}_i is the ith column vector of the matrix \mathbf{A}
$\mathrm{span}\left(\mathbf{a}_{1},\mathbf{a}_{2},\ldots,\mathbf{a}_{n}\right)$	Vector space spanned by the argument vectors
$\operatorname{span}\left(\mathbf{A}\right)$	Vector space spanned by the column vectors of \mathbf{A} , which gives the columnspace of \mathbf{A}
$\operatorname{rank}\left(\mathbf{A} ight)$	Rank, that is, $\dim (\operatorname{span} (\mathbf{A})) = \dim (\mathbb{C} (\mathbf{A}))$
$\operatorname{nullity}\left(\mathbf{A}\right)$	Nullity of \mathbf{A} , i.e., dim $(N(\mathbf{A}))$
$\mathbf{a} \perp \mathbf{b}$	\mathbf{a} is orthogonal to \mathbf{b}
a ≠ b	\mathbf{a} is not orthogonal to \mathbf{b}
$\mathbf{X}_{(n)}$	n -mode matricization of the tensor ${\cal X}$

4.6 Inequalities

$\mathcal{X} \leq 0$	Nonnegative tensor
$\mathbf{a} \leq_K \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the conic subset K in
	the space \mathbb{R}^n
$\mathbf{a} \prec_K \mathbf{b}$	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the interior of
	the conic subset K in the space \mathbb{R}^n
$\mathbf{a} \leq \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the nonnegative or-
	thant conic subset, \mathbb{R}^n_+ , in the space
	\mathbb{R}^n
$\mathbf{a} \prec \mathbf{b}$	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the positive or-
	thant conic subset, \mathbb{R}^n_{++} , in the space
	\mathbb{R}^n
$\mathbf{A} \leq_K \mathbf{B}$	Generalized inequality meaning that
	$\mathbf{B} - \mathbf{A}$ belongs to the conic subset K
	in the space \mathbb{S}^n
$A <_K B$	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the interior of
	the conic subset K in the space \mathbb{S}^n
	•

$\mathbf{A} \leq \mathbf{B}$

A < B

Generalized inequality meaning that $\mathbf{B} - \mathbf{A}$ belongs to the positive semidefinite conic subset, \mathbb{S}^n_+ , in the space \mathbb{S}^n Strict generalized inequality meaning that $\mathbf{B} - \mathbf{A}$ belongs to the positive orthant conic subset, \mathbb{S}^n_{++} , in the space \mathbb{S}^n

4.7 Indexing

$x_{i_1,i_2,,i_N}, [\mathcal{X}]_{i_1,i_2,,i_N}$	Element in the position
$u_{l_1,l_2,,l_N}, v_{l_1,l_2,,l_N}$	(i_1,i_2,\ldots,i_N) of the tensor ${\mathcal X}$
$\mathcal{X}^{(n)}$	nth tensor of a nontemporal sequence
$\mathbf{x}_n, \mathbf{x}_{:n}$	nth column of the matrix X
\mathbf{x}_{n} :	nth row of the matrix X
$\mathbf{X}_{i_1,,i_{n-1},:,i_{n+1},,i_N}$	Mode- n fiber of the tensor \mathcal{X}
$\mathbf{X}_{:,i_2,i_3}$	Column fiber (mode-1 fiber) of the
7273	thrid-order tensor ${\cal X}$
$\mathbf{x}_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-
*1,***3	order tensor ${\cal X}$
$\mathbf{x}_{i_1,i_2,:}$	Tube fiber (mode-3 fiber) of the
1,,,2,,	thrid-order tensor ${\cal X}$
$\mathbf{X}_{i_1,:,:}$	Horizontal slice of the thrid-order
*1,.,.	tensor ${\cal X}$
$\mathbf{X}_{:,i_2,:}$	Lateral slices slice of the thrid-order
•,,,,	tensor ${\cal X}$
$\mathbf{X}_{i_3}, \mathbf{X}_{:::,i_3}$	Frontal slices slice of the thrid-order
13,,.,13	tensor ${\cal X}$

5 Sets

A + B	Set addition (Minkowski sum)
A - B	Minkowski difference
$A \setminus B, A - B$	Set difference or set subtraction,
	i.e., the set containing the elements
	of A that are not in B
$A \cup B$	Set of union
$A \cap B$	Set of intersection
$A \times B$	Cartesian product
A^n	$\underbrace{A \times A \times \cdots \times A}$
A^{\perp}	Orthogonal complement of A , e.g., $N(\mathbf{A}) = C(\mathbf{A}^{\top})^{\perp}$

$A \oplus B$	Direct sum, e.g., $C(\mathbf{A}^{\top}) \oplus C(\mathbf{A}^{\top})^{\perp} = \mathbb{R}^{n}$
A^c, \bar{A}	Complement set (given U)
#A, A	Cardinality
$a \in A$	a is element of A
$a \notin A$	a is not element of A
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-
	ements $1, 2, \ldots, n$
U	Universe
2^A	Power set of A
\mathbb{R}	Set of real numbers
\mathbb{C}	Set of complex numbers
$\mathbb Z$	Set of integer number
$\mathbb{B} = \{0, 1\}$	Boolean set
Ø	Empty set
\mathbb{N}	Set of natural numbers
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$???
$\mathbb{K}^{I_1 \times I_2 \times \cdots \times I_N}$	$I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or complex) space
K +	- , -
K++	Nonnegative real (or complex) space Positive real (or complex) space, i.e.,
124+	$\mathbb{K}_{++} = \mathbb{K}_+ \setminus \{0\}$
$\mathbb{S}^n, \mathcal{S}^n$	Conic set of the symmetric matrices
,,0	in $\mathbb{R}^{n \times n}$
$\mathbb{S}^n_+, \mathcal{S}^n_+$	Conic set of the symmetric positive
	semidefinite matrices in $\mathbb{R}^{n \times n}$
$\mathbb{S}^n_{++}, \mathcal{S}^n_{++}$	Conic set of the symmetric positive
	definite matrices in $\mathbb{R}^{n\times n}$, i.e., $\mathbb{S}^n_{++} =$
	$\mathbb{S}^n_+\setminus\{0\}$
\mathbb{H}^n	Set of all hermitian matrices in $\mathbb{C}^{n\times n}$
[a,b]	Closed interval of a real set from a to
	b
(a,b)	Opened interval of a real set from a
	to b
[a,b),(a,b]	Half-opened intervals of a real set
	from a to b

6 Probability, statistics, and stochastic processes

6.1 Operators and symbols

$E\left[\cdot ight]$	Statistical	expectation		
$E_u\left[\cdot\right]$	Statistical	expectation	with	$\operatorname{respect}$
	to u			

μ_x	Mean of the random variable x
μ_x, m_x	Mean vector of the random variable
	x
μ_n	nth-order moment of a random vari-
	able
\mathcal{K}_x, μ_4	Kurtosis (4th-order moment) of the
	random variable x
$VAR[\cdot]$	Variance operator
$\sigma_{\scriptscriptstyle X}$	Variance of the random variable x
$\rho_{x,y}$	Pearson correlation coefficient be-
	tween x and y
$a \sim P$	Random variable a with distribution
	P

6.2 Stochastic processes

$r_{x}(\tau), R_{x}(\tau)$	Autocorrelation function of the signal $x(t)$ or $x[n]$
$\mathbf{R}_{\mathbf{x}}$	(Auto)correlation matrix of $\mathbf{x}(n)$
$r_{x,d}(\tau), R_{x,d}(\tau)$	Cross-correlation between $x[n]$ and
	d[n] or $x(t)$ and $d(t)$
$\mathbf{R}_{\mathbf{x}\mathbf{y}}$	Cross-correlation matrix of $\mathbf{x}(n)$ and
·	$\mathbf{y}(n)$
$\mathbf{p}_{\mathbf{x}d}$	Cross-correlation vector between
	$\mathbf{x}(n)$ and $d(n)$
$c_x(\tau), C_x(\tau)$	Autocovariance function of the signal
	x(t) or $x[n]$
C_x, K_x, Σ_x	(Auto)covariance matrix of \mathbf{x}
$c_{xy}(\tau), C_{xy}(\tau)$	Cross-covariance function of the sig-
	$\operatorname{nal} x(t) \text{ or } x[n]$
$\mathrm{C}_{\mathrm{xy}}, \mathrm{K}_{\mathrm{xy}}, \Sigma_{\mathrm{xy}}$	Cross-covariance matrix of \mathbf{x}

6.3 Functions

$Q(\cdot)$	Q-function, i.e., $P[\mathcal{N}(0,1) > x]$
$\operatorname{erf}(\cdot)$	Error function
$\operatorname{erfc}(\cdot)$	Complementary error function i.e.,
	$\operatorname{erfc}(x) = 2Q(\sqrt{2}x) - \operatorname{erf}(x)$
P[A]	Probability of the event or set A
$p(\cdot), f(\cdot)$	Probability density function (PDF)
$p(x \mid A)$	Conditional probability density func-
	tion
$F(\cdot)$	Cumulative distribution function (CDF)

$\Phi_{X}(\omega), M_{X}(j\omega), E\left[e^{j\omega x}\right]$	First characteristic function (CF) of
	X
$M_X(t), \Phi_X(-jt), E\left[e^{tX}\right]$	Moment-generating function (MGF)
	of x $(M_x(t) = \Phi_x(-jt)$ and $\Phi(\omega) =$
	$M_{x}(j\omega)$
$\Psi_{x}(\omega), \ln \Phi_{x}(\omega), \ln E\left[e^{j\omega x}\right]$	Second characteristic function, i.e.,
	$\ln E\left[e^{j\omega x}\right]$
$K_x(t), \ln E\left[e^{tx}\right], \ln M_x(t)$	Cumulant-generating function
	(CGF) of x

6.4 Distributions	
$\mathcal{N}(\mu,\sigma^2)$ $\mathcal{C}\mathcal{N}(\mu,\sigma^2)$	Gaussian distribution of a random variable with mean μ and variance σ^2
$\mathcal{CN}(\mu,\sigma^2)$	Complex Gaussian distribution of a random variable with mean μ and variance σ^2
$\mathcal{N}(\pmb{\mu},\pmb{\Sigma})$	Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$\mathcal{CN}(oldsymbol{\mu},oldsymbol{\Sigma})$	Complex Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$\mathcal{U}(a,b) \\ \chi^2(n), \chi_n^2$	Uniform distribution from a to b Chi-square distribution with n degree of freedom (assuming that the Gaus- sians are $\mathcal{N}(0,1)$)
$\operatorname{Exp}(\lambda)$	Exponential distribution with rate parameter λ
$\Gamma(lpha,eta)$	Gamma distribution with shape parameter α and rate parameter β
$\Gamma(lpha, heta)$	Gamma distribution with shape parameter α and scale parameter $\theta = 1/\beta$
$\operatorname{Nakagami}(m,\Omega)$	Nakagami-m distribution with shape parameter m and spread parameter Ω
$\operatorname{Rayleigh}(\sigma)$	Rayleigh distribution with scale parameter σ
$\operatorname{Rayleigh}(\Omega)$	Rayleigh distribution with the second moment $\Omega = E[x^2] = 2\sigma^2$
$\mathrm{Rice}(s,\sigma)$	Rice distribution with noncentrality parameter (specular component) s and σ

Rice	(A,	K

Rice distribution with Rice factor $K=s^2/2\sigma^2$ and scale parameter $A=s^2+2\sigma^2$

7 Other notations

7.1 Mathematical symbols

3	There exists
∄	There does not exist
∃!	There exist an unique
A	For all
 ,:	Such that
: .	Therefore
\iff	Logical equivalence
≜	Equal by definition
≠	Not equal
∞	Infinity
j	$\sqrt{-1}$

7.2 Operations

a	Absolute value of a
\log	Base-10 logarithm or decimal loga-
	rithm
\ln	Natual logarithm
$\operatorname{Re}\left\{ x\right\}$	Real part of x
$\operatorname{Im}\left\{ x\right\}$	Imaginary part of x
∠.	phase (complex argument)
$x \mod y$	Remainder, i.e., $x - y \lfloor x/y \rfloor$
$\operatorname{frac}(x)$	Fractional part, i.e., $x \mod 1$
$a \wedge b$	Logical AND of a and b
$a \lor b$	Logical OR of a and b
$\neg a$	Logical negation of a
[·]	Ceiling operation
[.]	Floor operation

7.3 Functions

$\mathcal{O}(\cdot), O(\cdot)$	Big-O notation
$\Gamma(\cdot)$	Gamma function

8 Abbreviations

wrt. With respect to st. Subject to iff. If and only if

EVD Eigenvalue decomposition, or eigen-

decomposition

SVD Singular value decomposition CP CANDECOMP/PARAFAC