Problem Set 1

Problems marked (T) are for discussions in Tutorial sessions.

1. If A is an $m \times n$ matrix, B is an $n \times p$ matrix and D is a $p \times s$ matrix, then show that A(BD) = (AB)D (Associativity holds).

Solution: Entry by entry for $1 \le i \le m$ and $1 \le j \le s$, we have

$$[A(BD)]_{ij} = \sum_{k=1}^{n} [A]_{ik} [BD]_{kj} = \sum_{k=1}^{n} [A]_{ik} \left(\sum_{l=1}^{p} [B]_{kl} [D]_{lj} \right) = \sum_{k=1}^{n} \sum_{l=1}^{p} [A]_{ik} [B]_{kl} [D]_{lj}$$

$$= \sum_{l=1}^{p} \sum_{k=1}^{n} [A]_{ik} [B]_{kl} [D]_{lj} = \sum_{l=1}^{p} [D]_{lj} \left(\sum_{k=1}^{n} [A]_{ik} [B]_{kl} \right)$$

$$= \sum_{l=1}^{p} [D]_{lj} [AB]_{il} = \sum_{l=1}^{p} [AB]_{il} [D]_{lj} = [(AB)D]_{ij}.$$

Hence the result.

2. If A is an $m \times n$ matrix, B and C are $n \times p$ matrices and D is a $p \times s$ matrix, then show that

(a)
$$A(B+C) = AB + AC$$
 (Distributive law holds).

Solution: Entry by entry for $1 \le i \le m$ and $1 \le j \le p$, we have

$$[A(B+C)]_{ij} = \sum_{k=1}^{n} [A]_{ik} [B+C]_{kj} = \sum_{k=1}^{n} [A]_{ik} ([B]_{kj} + [C]_{kj})$$

$$= \sum_{k=1}^{n} ([A]_{ik} [B]_{kj} + [A]_{ik} [C]_{kj}) = \sum_{k=1}^{n} [A]_{ik} [B]_{kj} + \sum_{k=1}^{n} [A]_{ik} [C]_{kj}$$

$$= [AB]_{ij} + [AC]_{ij} = [AB + AC]_{ij}.$$

Hence the result.

(b) (B+C)D = BD + CD (Distributive law holds).

Solution: Similar to part (a) with appropriate modifications.

3. **(T)** Let A and B be 2×2 real matrices such that $A \begin{bmatrix} x \\ y \end{bmatrix} = B \begin{bmatrix} x \\ y \end{bmatrix}$ for all $(x, y) \in \mathbb{R}^2$. Prove that A = B.

Solution: Let
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 and $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$. The given equation imply
$$x \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} + y \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix} = x \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} + y \begin{bmatrix} b_{12} \\ b_{22} \end{bmatrix}$$
(1)

Now, by substituting x = 1 and y = 0 in (1), we get

Similarly, by substituting x = 0 and y = 1 in (1), we get

$$\begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix} = \begin{bmatrix} b_{12} \\ b_{22} \end{bmatrix} \tag{3}$$

Equations (2) and (3) together imply the result.

- 4. Let A and B be $m \times n$ real matrices such that $A\mathbf{x} = B\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Then, A = B
- 5. $(A+B)^* = A^* + B^*$ and $(AB)^* = B^*A^*$ whenever A+B and AB are defined.

Solution: Let A and B be $m \times n$ matrices. Then, for $1 \le i \le m$ and $1 \le j \le n$, we have

$$[(A+B)^T]_{ij} = [A+B]_{ji} = [A]_{ji} + [B]_{ji} = [A^T]_{ij} + [B^T]_{ij} = [A^T+B^T]_{ij}.$$

Hence the result.

Solution: Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Then, entry by entry for $1 \le i \le p$ and $1 \le j \le m$, we have

$$[(AB)^T]_{ij} = [AB]_{ji} = \sum_{k=1}^n [A]_{jk} [B]_{ki} = \sum_{k=1}^n [A^T]_{kj} [B^T]_{ik} = \sum_{k=1}^n [B^T]_{ik} [A^T]_{kj} = [B^T A^T]_{ij}.$$

Hence the result.

- 6. Let $A \in \mathbb{M}_n(\mathbb{C})$. Then A = S + T, where $S^* = S$ (Hermitian matrix) and $T^* = -T$ (skew-Hermitian matrix).
- 7. Give examples of 3×3 non zero matrices A and B such that $A^2 = 0$ and $B^3 = B$.

 8. Show by an example that if $AB \neq BA$ then $(A + B)^2 = A^2 + 2AB + B^2$ need not hold.

Solution: Consider
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Clearly, $AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix} = BA$.

$$(A+B)^2 = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \neq \begin{bmatrix} 0 & 2 \\ 0 & -1 \end{bmatrix} = A^2 + 2AB + B^2.$$

9. Let $A, B \in \mathbb{M}_n(\mathbb{C})$ be invertible matrices. Then $(AB)^{-1} = B^{-1}A^{-1}$.

Solution: Let $D = B^{-1}A^{-1}$. Then

$$(AB)D = (AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

and

$$D(AB) = (B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$$

imply that D is the inverse of AB.

10. Let $A \in \mathbb{M}_n(\mathbb{C})$ be a nilpotent matrix. Then show that I + A is invertible.

Solution: As A is nilpotent, there exists an N > 0 such that $A^N = 0$. Define

$$B = \sum_{n=0}^{N-1} (-1)^n A^n.$$

We have

$$(I+A)B = (I+A)\left(\sum_{n=0}^{N-1} (-1)^n A^n\right) = \sum_{n=0}^{N-1} (-1)^n A^n + \sum_{n=0}^{N-1} (-1)^n A^{n+1}$$
$$= \sum_{n=0}^{N-1} (-1)^n A^n - \sum_{n=1}^{N-1} (-1)^n A^n = I$$

and

$$B(I+A) = \left(\sum_{n=0}^{N-1} (-1)^n A^n\right) (I+A) = \sum_{n=0}^{N-1} (-1)^n A^n + \sum_{n=0}^{N-1} (-1)^n A^{n+1}$$
$$= \sum_{n=0}^{N-1} (-1)^n A^n - \sum_{n=1}^{N-1} (-1)^n A^n = I$$

and, therefore, B is the inverse of I + A.

11. (T) Let $A, B \in \mathbb{M}_n(\mathbb{C})$. Define $\operatorname{Tr}(A) = \sum_{i=1}^n a_{ii}$. Then show that $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$. Hence or otherwise, show that if A is invertible then $\operatorname{Tr}(ABA^{-1}) = \operatorname{Tr}(B)$. Furthermore, show that there do not exist matrices A and B such that AB - BA = cI, for any $c \neq 0$.

Solution: Tr (AB) = Tr (BA) follows from a straightforward calculation shown below:

$$\sum_{i=1}^{n} [AB]_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij}b_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ji}a_{ij} = \sum_{j=1}^{n} [BA]_{jj}.$$

Now let $D = BA^{-1}$. We have,

$$\operatorname{Tr}(ABA^{-1}) = \operatorname{Tr}(AD) = \operatorname{Tr}(DA) = \operatorname{Tr}(BA^{-1}A) = \operatorname{Tr}(B).$$

12. Let $A \in \mathbb{M}_n(\mathbb{C})$. If $AA^* = \mathbf{0}$ then show that $A = \mathbf{0}$.

Solution:

$$AA^* = 0 \Rightarrow \text{Tr}(AA^*) = 0 \Rightarrow \sum_{i=1}^n [AA^*]_{ii} = 0 \Rightarrow \sum_{i=1}^n \sum_{j=1}^n [A]_{ij} [A^*]_{ji} = 0 \Rightarrow \sum_{i=1}^n \sum_{j=1}^n [A]_{ij} \overline{[A]_{ij}} = 0.$$

We, therefore, have $[A]_{ij} = 0$ for all $1 \le i \le n$, $1 \le j \le n$ and thus A = 0.

13. **(T)** The parabola $y = a + bx + cx^2$ goes through the points (x, y) = (1, 4), (2, 8) and (3, 14). Find and solve a matrix equation for the unknowns (a, b, c).

Solution: As the parabola passes through point (1,4), we have $4 = a + b \cdot 1 + c \cdot 1^2$ leading to the equation a + b + c = 4.

Similarly for points (2,8) and (3,14), we get a+2b+4c=8 and a+3b+9c=14.

We can obtain a, b and c as a solution to

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \\ 14 \end{bmatrix}.$$

Carry out Gauss-elimination as follows:

$$\begin{bmatrix} 1 & 1 & 1 & | & 4 \\ 1 & 2 & 4 & | & 8 \\ 1 & 3 & 9 & | & 14 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{bmatrix} 1 & 1 & 1 & | & 4 \\ 0 & 1 & 3 & | & 4 \\ 0 & 2 & 8 & | & 10 \end{bmatrix} \xrightarrow{R_3 \leftarrow R_3 - 2R_2} \begin{bmatrix} 1 & 1 & 1 & | & 4 \\ 0 & 1 & 3 & | & 4 \\ 0 & 0 & 2 & | & 2 \end{bmatrix}$$

We can thus obtain the solution to the given linear system by solving the equivalent system

$$a+b+c = 4$$
$$b+3c = 4$$
$$2c = 2$$

The solution is a = 2, b = 1 and c = 1.

14. (T) Let $J = \mathbf{11}^*$. Then each entry of J equals 1. Determine condition(s) on a and b such that $bJ + (a-b)I_n$ is invertible. Find α and β in terms of a and b such that the inverse has the form $\alpha J + \beta I$.

Solution: Check that each entry of J equals 1 and $J^2 = nJ$. The symmetry of the matrix bJ + (a-b)I motivates us to try to assume that $\alpha J + \beta I$ may be the inverse for some choice of α and β . Verify $\beta = \frac{1}{a-b}$ and $\alpha = \frac{b}{(b-a)((n-1)b+a)}$.

15. (T) Let $\mathbf{x} \in \mathbb{M}_{3,1}(\mathbb{R})$. Then find $\mathbf{y}, \mathbf{z} \in \mathbb{M}_{3,1}(\mathbb{R})$ such that $\mathbf{x}^T \mathbf{y} = 0$ and $\mathbf{x}^T \mathbf{z} = 0$.

Solution: Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. Choose \mathbf{y} and \mathbf{z} such that their dot product with \mathbf{x} is zero.

16. (T) Let A be an upper triangular matrix. If $AA^* = AA^*$ then A is a diagonal matrix.

Solution: $(AA^*)_{11} = \sum_{i=1}^n a_{1i}\overline{a_{1i}}$ and $(A^*A)_{11} = a_{11}\overline{a_{11}}$. Thus, $\sum_{i=1}^n a_{1i}\overline{a_{1i}} = 0$ and hence $a_{1i} = 0$ for all $i \neq 1$. Now, consider the (2, 2)-entry of both sides and continue the above argument.