CSCI 420 Computer Graphics Lecture 13

Clipping

Line Clipping
Polygon Clipping
Clipping in Three Dimensions
[Angel Ch. 6]

Oded Stein University of Southern California

The Graphics Pipeline, Revisited

- Must eliminate objects that are outside of viewing frustum
- Clipping: object space (eye coordinates)
- Scissoring: image space (pixels in frame buffer)
 - most often less efficient than clipping
- We will first discuss 2D clipping (for simplicity)
 - OpenGL uses 3D clipping

Clipping Against a Frustum

General case of frustum (truncated pyramid)

Clipping is tricky because of frustum shape

Perspective Normalization

Solution:

- Implement perspective projection by perspective normalization and orthographic projection
- Perspective normalization is a homogeneous transformation

The Normalized Frustum

- OpenGL uses $-1 \le x, y, z \le 1$ (others possible)
- Clip against resulting cube
- Clipping against arbitrary (programmerspecified) planes requires more general algorithms and is more expensive

The Viewport Transformation

- Transformation sequence again:
 - 1. Camera: from object coordinates to eye coords
 - Clipping: in 4D homogeneous space (essentially 3D clip)
 - 3. Perspective division: to normalized device coords
 - 4. Orthographic projection (setting $z_p = 0$)
 - 5. Viewport transformation: to screen coordinates
- Viewport transformation can distort
 - Solution: pass the correct window aspect ratio to gluPerspective

Clipping

- General: 3D object against cube
- Simpler case:
 - In 2D: line against square or rectangle
 - Later: polygon clipping

Clipping Against Rectangle in 2D

 Line-segment clipping: modify endpoints of lines to lie within clipping rectangle

Clipping Against Rectangle in 2D

• The result (in red)

Clipping Against Rectangle in 2D

- Could calculate intersections of line segments with clipping rectangle
 - expensive, due to floating point multiplications and divisions
- Want to minimize the number of multiplications and divisions

Several practical algorithms for clipping

Main motivation:

Avoid expensive line-rectangle intersections (which require floating point divisions)

- Cohen-Sutherland Clipping
- Liang-Barsky Clipping
- There are many more (but many only work in 2D)

Cohen-Sutherland Clipping

 Clipping rectangle is an intersection of 4 halfplanes

- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-spaces)

Outcodes (Cohen-Sutherland)

- Divide space into 9 regions
- 4-bit outcode determined by comparisons

Cases for Outcodes

Outcomes: accept, reject, subdivide

Cohen-Sutherland Subdivision

- Pick outside endpoint (o ≠ 0000)
- Pick a crossed edge (o = b₀b₁b₂b₃ and b_k ≠ 0)
- Compute intersection of this line and this edge
- Replace endpoint with intersection point
- Restart with new line segment
 - Outcodes of second point are unchanged
- This algorithms converges

Liang-Barsky Clipping

Start with parametric form for a line

$$p(\alpha) = (1 - \alpha)p_1 + \alpha p_2, \qquad 0 \le \alpha \le 1$$

$$x(\alpha) = (1 - \alpha)x_1 + \alpha x_2$$

$$y(\alpha) = (1 - \alpha)y_1 + \alpha y_2$$

Liang-Barsky Clipping

- Compute all four intersections 1,2,3,4 with extended clipping rectangle
- Often, no need to compute all four intersections

Ordering of intersection points

- Order the intersection points
- Figure (a): $1 > \alpha_4 > \alpha_3 > \alpha_2 > \alpha_1 > 0$
- Figure (b): $1 > \alpha_4 > \alpha_2 > \alpha_3 > \alpha_1 > 0$

Liang-Barsky Idea

- It is possible to clip already if one knows the order of the four intersection points!
- Even if the actual intersections were not computed!
- Can enumerate all ordering cases

Liang-Barsky efficiency improvements

- Efficiency improvement 1:
 - Compute intersections one by one
 - Often can reject before all four are computed
- Efficiency improvement 2:
 - Equations for α_3 , α_2

$$y_{\text{max}} = (1 - \alpha_3)y_1 + \alpha_3 y_2$$

$$x_{\text{min}} = (1 - \alpha_2)x_1 + \alpha_2 x_2$$

$$\alpha_3 = \frac{y_{\text{max}} - y_1}{y_2 - y_1} \quad \alpha_2 = \frac{x_{\text{min}} - x_1}{x_2 - x_1}$$

- Compare α_3 , α_2 without floating-point division

Line-Segment Clipping Assessment

- Cohen-Sutherland
 - Works well if many lines can be rejected early
 - Recursive structure (multiple subdivisions) is a drawback
- Liang-Barsky
 - Avoids recursive calls
 - Many cases to consider (tedious, but not expensive)

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions

Polygon Clipping

- Polygon is clipped into one or more polygons
- Their union is intersection with clip window
- Alternatively, we can first tessellate concave polygons (OpenGL supported)

Concave Polygons

- Approach 1: clip, and then join pieces to a single polygon
 - often difficult to manage

- Approach 2: tesselate and clip triangles
 - this is the common solution

Sutherland-Hodgeman (part 1)

- Subproblem:
 - Input: polygon (vertex list) and single clip plane
 - Output: new (clipped) polygon (vertex list)
- Apply once for each clip plane
 - 4 in two dimensions
 - 6 in three dimensions
 - Can arrange in pipeline

Sutherland-Hodgeman (part 2)

- To clip vertex list (polygon) against a half-plane:
 - Test first vertex. Output if inside, otherwise skip.
 - Then loop through list, testing transitions
 - In-to-in: output vertex
 - In-to-out: output intersection
 - out-to-in: output intersection and vertex
 - out-to-out: no output
 - Will output clipped polygon as vertex list
- May need some cleanup in concave case
- Can combine with Liang-Barsky idea

Other Cases and Optimizations

- Curves and surfaces
 - Do it analytically if possible
 - Otherwise, approximate curves / surfaces by lines and polygons
- Bounding boxes
 - Easy to calculate and maintain
 - Sometimes big savings

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions

Clipping Against Cube

- Derived from earlier algorithms
- Can allow right parallelepiped

Cohen-Sutherland in 3D

Use 6 bits in outcode

$$- b_4: z > z_{max}$$

$$- b_5: z < z_{min}$$

 Other calculations as before

Liang-Barsky in 3D

- Add equation $z(\alpha) = (1 \alpha) z_1 + \alpha z_2$
- Solve, for p₀ in plane and normal n:

$$p(\alpha) = (1 - \alpha)p_1 + \alpha p_2$$
$$n \cdot (p(\alpha) - p_0) = 0$$

Yields

$$\alpha = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)}$$

Optimizations as for Liang-Barsky in 2D

Summary: Clipping

- Clipping line segments to rectangle or cube
 - Avoid expensive multiplications and divisions
 - Cohen-Sutherland or Liang-Barsky
- Polygon clipping
 - Sutherland-Hodgeman pipeline
- Clipping in 3D
 - essentially extensions of 2D algorithms

Preview

- Scan conversion
- Anti-aliasing
- Other pixel-level operations