BUNDESREPUBLIK **DEUTSCHLAND**

(f) Int. Cl.⁷: F 01 N 11/00

DEUTSCHES PATENT- UND **MARKENAMT**

(21) Aktenzeichen: 100 03 612.0 Anmeldetag: 28. 1.2000 (43) Offenlegungstag:

2. 8. 2001

(7) Anmelder:

Volkswagen AG, 38440 Wolfsburg, DE

(72) Erfinder:

Hahn, Hermann, 38165 Lehre, DE; Lang, Axel, 38302 Wolfenbüttel, DE; Hinze, Sören, 38114 Braunschweig, DE

(66) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 198 30 829 C1 DE 197 53 718 C1 DE 195 43 219 C1 198 28 609 A1 DE DE 198 23 512 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (§) Verfahren und Vorrichtung zur Ermittlung einer NOx-Speicherkapazität eines NOx-Speicherkatalysators
- Die Erfindung betrifft Verfahren zur Ermittlung eines NO_x-Speicherkapazität eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO_x-Speicherkatalysators mit einer stromab des NOx-Speicherkatalysators angeordneten NO_x-empfindlichen Meßeinrich-

Es ist vorgesehen, daß durch Integration einer stromab des NO_x-Speicherkatalysators (16) gemessenen NO_x-Konzentration mindestens eine für die NOx-Speicherkapazität des NO_x-Speicherkatalysators (16) kennzeichnende Ist-Kenngröße berechnet und mit mindestens einer entsprechenden, für einen schwefelfreien und ungeschädigten NO_x-Speicherkatalysators modellierten Kenngröße (Soll-Kenngröße) verglichen wird.

Die Erfindung betrifft außerdem eine Vorrichtung zur Durchführung des Verfahrens.

Beschreibung

Es ist bekannt, eine Nachbehandlung von Abgasen von Verbrennungskraftmaschinen mit Katalysatorsystemen vorzunehmen, die in einem Abgaskanal einer Verbrennungskraftmaschine angeordnet sind. Überdies ist im Falle magerlauffähiger Verbrennungskraftmaschinen üblich, NO_X-Speicher in ein Katalysatorsystem zu integrieren (NO_X-Speicherkatalysator). Ein NO_X-Speicherkatalysator erfüllt dabei in der Regel die Rolle eines 3-Wege-Katalysators, indem er Kohlenmonoxid (CO) und unverbrannte oder nur teilweise verbrannte Kohlenwasserstoffe (HC) oxidativ mit Luftsauerstoff zu Kohlendioxid und Wasser umsetzt und gleichzeitig die Reduktion von Stickoxiden (NO_X) unter Wirkung der Reduktionsmittel CO und HC zu Stickstoff (N₂) fördert. Auf diese Weise können in einem sogenannten stöchiometrischen Abgas die Schadstoffe praktisch vollständig in weniger umweltrelevante Verbindungen umgesetzt werden. Wird die Verbrennungskraftmaschine jedoch in einem verbrauchsgünstigen Magermodus betrieben, das heißt bei Luftüberschuß, liegt NO_X im Abgas gegenüber den Reduktionsmitteln CO und HC in einem stöchiometrischen Überschuß vor und kann daher nicht vollständig konvertiert werden. Der NO_X-Speicher absorbiert überschüssiges NO_X in Form von Nitrat. Die NO_X-Einlagerung in den NO_X-Speicher wird durch eine NO_X-Speicherkapazität des Absorbers begrenzt. In wiederkehrenden Abständen müssen daher NO_X-Regenerationen durchgeführt werden, wobei der NO_X-Speicherkatalysator mit einem stöchiometrischen oder fetten Abgas (λ ≤ 1) beaufschlagt wird.

Die NO_X-Speicherkapazität eines NO_X-Speicherkatalysators wird jedoch nicht nur durch die kontinuierliche NO_X-Einlagerung, sondern auch durch eine unerwünschte parallele Schwefeleinlagerung herabgesetzt. Der in Form von Sulfat eingelagerte Schwefel kann zudem durch eine sogenannte Sulfatkornbildung eine irreversible Schädigung von Speicher und Katalysator hervorrufen. Es ist somit notwendig, den NO_X-Speicherkatalysator in periodischen Abständen einer Entschwefelungsmaßnahme zu unterziehen, die wiederum die Beaufschlagung mit einer fetten Abgasatmosphäre sowie eine Katalysatortemperatur von über 600°C umfaßt.

Es ist ferner bekannt, den Betrieb von NO_X-Speicherkatalysatoren, insbesondere ihre Regeneration, mit nachgeschalteten NO_X-Sensoren, die eine NO_X-Konzentration im Abgas erfassen, zu regeln. Nachteilig an den bekannten Verfahren ist, daß auf Basis momentaner NO_X-Konzentrationen im Abgas keine oder nur sehr ungenaue Aussagen über eine tatsächliche NO_X-Speicherkapazität des NO_X-Speicherkatalysators möglich sind. Mangels einer exakten Kenntnis der NO_X-Speicherkapazität des Katalysators fehlte es bislang an der Möglichkeit, den Zeitpunkt einer Entschwefelungsnotwendigkeit exakt zu bestimmen, irreversible Schädigungen des Katalysators zu erkennen oder auch andere Verfahren zu sperren, die auf eine hohe NO_X-Speicheraktivität des Katalysators angewiesen sind.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren und eine Vorrichtung vorzuschlagen, mit deren Hilfe eine NO_X-Speicherkapazität eines NO_X-Speicherkatalysators mit hoher Genauigkeit ermittelt werden kann.

Erfindungsgemäß wird diese Aufgabe durch die in den unabhängigen Ansprüchen 1 und 14 genannten Merkmale gelöst. Indem durch Integration einer stromab des NO_X-Speicherkatalysators gemessenen NO_X-Konzentration mindestens eine für die NO_X-Speicherkapazität des NO_X-Speicherkatalysators kennzeichnende Ist-Kenngröße berechnet wird, kann mit einer höheren Genauigkeit auf eine vorliegende NO_X-Speicherkapazität des Katalysators geschlossen werden, als es aufgrund einer gemessenen momentanen NO_X-Konzentration hinter dem Speicherkatalysator allein möglich ist. Es ist ferner vorgesehen, die für den NO_X-Speicherkatalysator kennzeichnende Kenngröße mit einer entsprechenden Soll-Kenngröße, die für einen theoretischen schwefelfreien und ungeschädigten NO_X-Speicherkatalysator modelliert wird, zu vergleichen. Hierdurch wird ein Bewertungsmaßstab für den Zustand des NO_X-Speicherkatalysators geschaffen.

Die erfindungsgemäße Vorrichtung sieht Mittel vor, mit denen die beschriebenen Verfahrensschritte ausführbar sind. Diese Mittel umfassen vorzugsweise eine Steuereinheit, in der die Prozedur zur Ermittlung einer NO_X-Speicherkapazität des NO_X-Speicherkatalysators in digitaler Form hinterlegt ist. Die Steuereinheit ist vorteilhafterweise in ein Motorsteuergerät integriert.

Gemäß einer vorteilhaften Ausgestaltung der Erfindung wird aus einem Verhältnis der Ist-Kenngröße des NO_X-Speicherkatalysators und der modellierten Soll-Kenngröße ein Gütefaktor des NO_X-Speicherkatalysators berechnet. Es ist weiterhin vorgesehen, bei Überschreitung eines vorgebbaren Schwellenwertes durch den so ermittelten Gütefaktor (GFSK) eine Entschwefelung auszulösen. Außer einer Entschwefelung können jedoch ebenso gut bei entsprechender Schwellenvorgabe andere Maßnahmen vorgesehen sein, beispielsweise eine Sperrung eines Magerbetriebes oder die Registrierung eines Katalysatorfehlers.

Gemäß einer bevorzugten Ausführungsform der Erfindung beginnt die Integration der NO_X-Konzentration hinter dem NO_X-Speicherkatalysator mit einem Beginn einer mageren Betriebsphase, vorzugsweise nach einer erfolgreich abgeschlossenen NO_X-Regeneration oder einer Entschwefelung. Unter diesen Umständen kann von einem NO_X-freien Katalysator ausgegangen werden.

Es ist ferner bevorzugt vorgesehen, daß der Gütefaktor des NO_X-Speicherkatalysators am Ende einer mageren Betriebsphase der Verbrennungskraftmaschine, insbesondere vor einer NO_X-Regeneration des Katalysators, bestimmt wird und mit dem Schwellenwert verglichen wird. Die Bestimmung des Gütefaktors und der Vergleich mit dem Schwellenwert kann von einer ungestörten NO_X-Einlagerung während der vorausgegangenen Magerphase der Verbrennungskraftmaschine abhängig gemacht werden, da das Beladungsmodell bei einem sehr dynamischen Betrieb ungenauer wird. Die Bestimmung und Auswertung des Gütefaktors kann beispielsweise unterbunden werden, wenn in der vorausgegangenen Magerphase kurzzeitig in einen stöchiometrischen Betrieb geschaltet wurde, eine Schubabschaltung erfolgte oder extreme Laständerungen stattfanden. Ebenso kann es sinnvoll sein, einen Temperaturbereich des Katalysators vorzugeben, in dem eine zufriedenstellende NO_X-Einlagerung möglich ist.

Entsprechend einer bevorzugten Ausgestaltung wird als eine erste Ist-Kenngröße ein integraler NO_X-Durchbruch ermittelt, indem die stromab des NO_X-Speicherkatalysators gemessene NO_X-Konzentration, beispielsweise während einer Magerphase, aufintegriert wird. Der NO_X-Durchbruch gibt demnach eine NO_X-Menge an, die den Katalysator in dem betreffenden Meßintervall passiert hat. Als eine zweite Ist-Kenngröße wird eine NO_X-Beladung des NO_X-Speicherkataly-

sators aus einer Differenz ein O_X-Rohemission der Verbrennungskraftmaschine, also VO_X-Eingangsmenge, und des integralen NO_X-Durchbruches berechnet. Die NO_X-Rohemission kann entweder durch Integration einer vor dem NO_X-Speicherkatalysator mit einer zweiten NO_X-Sonde gemessenen NO_X-Konzentration ermittelt werden oder anhand aktueller Betriebsparameter der Verbrennungskraftmaschine mit guter Genauigkeit berechnet werden.

Es ist ferner vorgesehen, daß eine modellierte NO_X-Beladung gemäß einem theoretischen Beladungsmodell in Abhängigkeit der NO_X-Rohemission der Verbrennungskraftmaschine als eine Soll-Kenngröße berechnet wird. Dabei setzt das Beladungsmodell einen schwefelfreien und ungeschädigten NO_X-Speicherkatalysator voraus. Die modellierte NO_X-Beladung entspricht somit einer in einen idealen NO_X-Speicherkatalysator theoretisch eingelagerten NO_X-Menge. Die Berechnung eines modellierten NO_X-Durchbruches als eine weitere Soll-Kenngröße ergibt sich dann aus einer Differenz der besagten NO_X-Rohemission der Verbrennungskraftmaschine und der nach dem theoretischen Beladungsmodell modellierten NO_X-Beladung.

Für die Bestimmung eines Gütefaktors aus den genannten Ist-Kenngrößen des NO_X-Speicherkatalysators und den Soll-Kenngrößen des idealen Speicherkatalysators ergeben sich verschiedene Möglichkeiten. Gemäß einer bevorzugten Ausgestaltung wird ein erster Gütefaktor aus dem Verhältnis der ermittelten NO_X-Beladung des NO_X-Speicherkatalysators und der modellierten NO_X-Beladung berechnet. Nach einer weiteren vorteilhaften Ausgestaltung ist ein zweiter Gütefaktor das Verhältnis des modellierten NO_X-Durchbruches zu dem gemessenen NO_X-Durchbruch.

Weitere vorteilhafte Ausgestaltungen sind Gegenstand der übrigen Unteransprüche.

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Fig. 1 eine schematische Darstellung einer Anordnung einer Verbrennungskraftmaschine mit einem NO_X-Speicherkatalysator;

Fig. 2 zeitliche Verläufe integraler Ist- und Soll-Kenngrößen während einer Magerphase einer Verbrennungskraftmaschine und

Fig. 3 zeitliche Verläufe einer modellierten NO_X-Beladung und einer gemessenen NO_X-Beladung über einen mehrere Magerphasen umfassenden Zeitraum.

25

In Fig. 1 ist eine Verbrennungskraftmaschine 10 und ein dieser zugeordneter Abgaskanal 12 in schematischer Weise dargestellt. In Strömungsrichtung eines die Verbrennungskraftmaschine 10 verlassenden Abgases ist zunächst ein optionaler Vorkatalysator 14 und nachfolgend ein NO_X-Speicherkatalysator 16 in dem Abgaskanal 12 angeordnet. Stromabwärts des NO_X-Speicherkatalysators 16 befindet sich eine als NO_X-Sensor 18 ausgestaltete Meßeinrichtung, die in Abhängigkeit einer NO_X-Konzentration im Abgas hinter dem NO_X-Speicherkatalysator 16 ein Signal an eine Steuereinheit 20 weiterleitet. Der Abgaskanal 12 kann weitere, hier nicht dargestellte Meßeinrichtungen beherbergen, deren Signale ebenfalls Eingang in die Steuereinheit 20 finden. Dies können etwa Lambdasonden, weitere NO_X-Sensoren, Druck- oder Temperaturfühler sein. Ferner werden aktuelle Betriebsparameter der Verbrennungskraftmaschine 10, beispielsweise eine Drehzahl und eine Motorlast, an die Steuereinheit 20 übermittelt. Die Steuereinheit 20 digitalisiert alle eingehenden Signale und wertet diese gemäß abgelegter Algorithmen aus. Ferner steuert die Steuereinheit 20 die Verbrennungskraftmaschine 10 in Abhängigkeit der erfaßten beziehungsweise berechneten Parameter, wie nachfolgend im einzelnen dargestellt wird.

Fig. 2 stellt in vereinfachter Weise Verläufe der erfindungsgemäßen integralen Ist- und Soll-Kenngrößen während der Dauer einer Magerphase der Verbrennungskraftmaschine 10 dar. Selbstverständlich zeigt eine Rohemission RE im realen Betrieb entsprechend einem veränderlichen Betriebsmodus der Verbrennungskraftmaschine 10 einen komplexeren Verlauf als den dargestellten. Da es sich um eine integrale Größe handelt, kann ihre Steigerung jedoch nie negativ werden. Die Rohemission RE der Verbrennungskraftmaschine 10 kann durch eine vor dem NO_X-Speicherkatalysator 16 angeordnete NO_x-Sonde erfaßt werden, indem die so ermittelte NO_x-Konzentration von der Steuereinheit 20 kontinuierlich aufintegriert wird. Sie kann jedoch ebenso auf der Grundlage aktueller Betriebsparameter der Verbrennungskraftmaschine (Luft-Kraftstoff-Gemisch, Drehzahl, Motorlast etc.) von der Steuereinheit 20 mit hinreichender Genauigkeit berechnet werden. Die NO_X-Rohemission RE der Verbrennungskraftmaschine 10 ist hier vereinfacht als eine Gerade dargestellt. Der gemessene NOx-Durchbruch EHK_{MES} wird ebenfalls von der Steuereinheit 20 durch kontinuierliche Integration der durch den NO_X-Sensor 18 gemessenen NO_X-Konzentration hinter dem NO_X-Speicherkatalysator 16 berechnet. Die "gemessene" NO_X-Beladung FSK_{MES} des NO_X-Speicherkatalysators 16 ergibt sich aus der Differenz der Rohemission RE und dem gemessenen NO_X-Durchbruch EHK_{MES} gemäß der Formel FSK_{MES} = RE – EHK_{MES}. Zu Beginn einer Magerphase der Verbrennungskraftmaschine 10 zum Zeitpunkt to nehmen alle Kenngrößen den Wert 0 an. Die NOx-Beladung FSK_{MES} des NO_x-Speicherkatalysators 16 entspricht etwa bis zu einem Zeitpunkt t₁ der Rohemission RE. Bis zu diesem Zeitpunkt ist der NO_X-Speicherkatalysator 16 in der Lage, die gesamte emittierte NO_X-Masse RE annähernd vollständig einzulagern. Dementsprechend wird bis zum Zeitpunkt t₁ praktisch kein NO_X-Durchbruch EHK_{MES} hinter dem NO_X-Speicherkatalysator 16 registriert, so daß diese Kenngröße bei nahe 0 verharrt. Ungefähr zum Zeitpunkt t1 beginnt die NO_X-Speicheraktivität des NO_X-Speicherkatalysators 16 einzubrechen. Die Beladung FSK_{MES} steigt zunehmend flacher an, um sich einem Sättigungswert zu nähern. Gleichzeitig steigt die NO_X-Emission EHK_{MES} hinter dem NO_X-Speicherkatalysator 16 an.

Wie bereits geschildert, werden diese Ist-Kennwerte EHK_{MES}, FSK_{MES} des NO_X-Speicherkatalysators 16 mit den theoretischen Soll-Kennwerten eines schwefelfreien und ungeschädigten Speicherkatalysators verglichen. Hierfür berechnet die Steuereinheit 20 in Abhängigkeit von der NO_X-Rohemission RE nach einem abgespeicherten Beladungsmodell eine theoretische NO_X-Beladung FSK_{MOD}. Aus der Differenz der Rohemission RE und der theoretischen NO_X-Beladung FSK_{MOD} ergibt sich wiederum der Soll-Kennwert des modellierten NO_X-Durchbruches EHK_{MOD} hinter dem NO_X-Speicherkatalysator 16 gemäß der Gleichung EHK_{MOD} = RE – FSK_{MOD}. Die Verläufe der Soll-Kenngrößen FSK_{MOD} und EHK_{MOD} ähneln qualitativ den Ist-Kenngrößen FSK_{MES} und EHK_{MES}. Die modellierte NO_X-Beladung FSK_{MOD} entspricht anfänglich der Rohemission RE der Verbrennungskraftmaschine 10 und beginnt etwa zu einem Zeitpunkt t₂ langsam abzuflachen und sich einem maximalen Beladungsgrenzwert zu nähern. Die maximale NO_X-Beladung FSK_{MOD} des schwefelfreien, ungeschädigten NO_X-Katalysators ist größer als die maximale Beladung FSK_{MES} des Ka-

talysators 18. Die Differenze hen beiden ist auf eine Schwefelvergiftung und/oder eine Verersible Schädigung, beispielsweise einer thermischen Schädigung des Katalysators 16, zurückzuführen. Entsprechend der höheren Speicherkapazität des theoretischen Katalysators setzt auch der modellierte NO_X-Durchbruch EHK_{MOD} hinter dem Katalysator, verglichen mit dem tatsächlichen NO_X-Speicherkatalysator 16, zu einem späteren Zeitpunkt t₂ ein.

Am Ende der Magerphase zum Zeitpunkt t3 erfolgt eine Bewertung der Speicherkapazität des NO_X-Speicherkatalysators 16, indem aus mindestens einer Ist-Kenngröße des NO_X-Speicherkatalysators 16 und mindestens einer Soll-Kenngröße ein Gütefaktor GFSK berechnet und mit einem Schwellwert SW abgeglichen wird. Zum Beispiel kann durch Bezug der Ist-Beladung FSK_{MES} auf die Soll-Beladung FSK_{MOD} der Gütefaktor 1 GFSK1 gemäß

$$GFSK_1 = \frac{FSK_{MES}}{FSK_{MOD}}$$

berechnet werden. Ebenso können die NO_X-Soll- und Ist-Durchbrüche EHK_{MOD} und EHK_{MES} zur Bewertung herangezogen werden, gemäß

$$GFSK_2 = \frac{EHK_{MOD}}{EHK_{MFS}}$$
.

Optional ist die Bewertung des NO_X-Speicherkatalysators 16 auch durch Bezug der emittierten NO_X-Menge EHK auf die jeweils eingespeicherte NO_X-Menge FSK möglich. Beispielsweise können die Gütefaktoren GFSK3 und GFSK4 gemäß

$$_{25} GFSK_{3} = \frac{1 - \frac{EHK_{MES}}{FSK_{MES}}}{1 - \frac{EHK_{MOD}}{FSK_{MOD}}}$$

30

40

60

65

$$GFSK_4 = \frac{1 - \frac{EHK_{MES} + 1}{FSK_{MES} + 1}}{1 - \frac{EHK_{MOD}}{FSK_{MOD}}}$$

gebildet werden. Der Vorteil liegt hierbei in einer genaueren Bewertung des tatsächlichen Wirkungsgrades der NO_X-Einlagerung sowie in einem größeren Auflösungsbereich des berechneten Faktors. Dabei hat der Gütefaktor GFSK₄ gegenüber GFSK₃ den Vorteil, eine Division durch Null zu vermeiden, wenn in einem Extremfall keine Beladung des NO_X-Speicherkatalysators 16 erfolgt.

Fig. 3 stellt zeitliche Verläufe der modellierten NO_X-Beladung FSK_{MOD} (unterbrochene Linien) und die gemessene NO_X-Beladung FSK_{MES} des NO_X-Speicherkatalysators 16 (durchgezogene Linien) über mehrere Magerphasen M und mehrere Regenerationsphasen R dar. Während der ersten Magerphase M1 ähnelt der Verlauf der Ist-Beladung FSK_{MES} des noch verhältnismäßig frischen NO_X-Speicherkatalysators 16 dem Verlauf der Soll-Beladung FSK_{MOD}. Am Ende der ersten Magerphase M1 erfolgt die erste NOX-Regeneration R1, so daß beide Werte auf 0 abfallen. Während die modellierte NOx-Beladung FSK_{MOD} in den folgenden Mager- und Regenerationszyklen praktisch immer den gleichen Verlauf zeigt, erreicht die NO_X-Beladung FSK_{MES} des aktuellen Katalysators 16 zunehmend niedrigere Beladungswerte. Dieser Aktivitätseinbruch ist auf eine zunehmende Schwefelvergiftung des NO_X-Speicherkatalysators 16 und/oder eine thermische Schädigung zurückzuführen. Am Ende jeder Magerphase M erfolgt erfindungsgemäß die Bewertung des Katalysatorzustandes, indem beispielsweise der Gütefaktor GFSK1 berechnet und mit einem vorgebbaren Schwellenwert verglichen wird. Am Ende der vierten Magerphase M4 weicht die Ist-Beladung FSK_{MES} von der Sollbeladung FSK_{MOD} so stark ab, daß der Gütefaktor GFSK1 den Schwellenwert unterschreitet. Infolgedessen wird eine Entschwefelung DS eingeleitet, indem die Steuereinheit 20 mindestens einen Betriebsparameter der Verbrennungskraftmaschine 10 beeinflußt. Beispielsweise stellt sie ein fettes Luft-Kraftstoff-Gemisch ein und regelt die Temperatur des NO_X-Speicherkatalysators 16 hoch. Nach Beendigung der Entschwefelung DS erreicht der Verlauf der Ist-Beladung FSK_{MES} wieder fast den theoretischen Wert FSK_{MOD}. Die Differenz zwischen beiden Werten kann nun auf eine irreversible Schädigung des NO_X-Speicherkatalysators 16 zurückgeführt werden.

Patentansprüche

1. Verfahren zur Ermittlung einer NO_X-Speicherkapazität eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO_X-Speicherkatalysators mit einer stromab des NO_X-Speicherkatalysators angeordneten NO_X-empfindlichen Meßeinrichtung, dadurch gekennzeichnet, daß durch Integration einer stromab des NO_X-Speicherkatalysators (16) gemessenen NO_X-Konzentration mindestens eine für die NO_X-Speicherkapazität des NO_X-Speicherkatalysators (16) kennzeichnende Ist-Kenngröße berechnet und mit mindestens einer entsprechenden, für einen schwefelfreien und ungeschädigten NO_X-Speicherkatalysator modellierten Kenngröße (Soll-Kenn-

größe) verglichen wird 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß aus einem Verhältnis der Ist-Kenngröße des NOx-Speicherkatalysators (16) und der modellierten Soll-Kenngröße ein Gütefaktor (GFSK) des NO_X-Speicherkatalysators (16) berechnet wird.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß bei Erreichen eines vorgebbaren Schwellenwertes durch den Gütefaktor (GFSK) eine Entschwefelung ausgelöst wird.

- 4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Integration der NOx-Konzentration hinter dem NO_X-Speicherkatalysator (16) mit einem Beginn einer mageren Betriebsphase der Verbrennungskraftmaschine (10) beginnt.
- 5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Bestimmung des Gütefaktors (GFSK) und der Vergleich mit dem Schwellenwert (SW) am Ende einer mageren Betriebsphase der Verbrennungskraftmaschine (10) erfolgt.
- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Bestimmung des Gütefaktors (GFSK) und der Vergleich mit dem Schwellenwert am Ende einer mageren Betriebsphase der Verbrennungskraftmaschine (10) nur erfolgt, wenn in der vorausgegangenen Magerphase eine ungestörte NO_X-Einlagerung möglich war.
- 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als eine erste Ist-Kenngröße des NO_X-Speicherkatalysators (16) ein integraler NO_X-Durchbruch (EHK_{MES}) durch Integration der stromab des NO_X-Speicherkatalysators (16) gemessenen NO_X-Konzentration berechnet wird.
- 8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als eine zweite Ist-Kenngröße eine NO_x-Beladung (FSK_{MES}) des NO_x-Speicherkatalysators (16) aus einer Differenz einer NO_x-Rohemission (RE) der Verbrennungskraftmaschine (10) und des integralen NOx-Durchbruches (EHK_{MES}) berechnet wird. 9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine modellierte NOx-Beladung (FSK_{MOD}) gemäß einem theoretischen Beladungsmodell für einen schwefelfreien und ungeschädigten NO_x-Speicherkatalysator in Abhängigkeit der NO_X-Rohemission (RE) der Verbrennungskraftmaschine (10) als eine Soll-Kenngröße berechnet wird.
- 10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein modellierter NOx-Durchbruch (EHKMOD) für einen schwefelfreien und ungeschädigten NOx-Speicherkatalysator aus einer Differenz der NOx-Rohemission (RE) und der modellierten NOx-Beladung (FSK_{MOD}) als eine Soll-Kenngröße berech-
- 11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein erster Gütefaktor (GFSK₁) das Verhältnis der ermittelten NO_X-Beladung (FSK_{MES}) des NO_X-Speicherkatalysators (16) und der modellierten NO_X-Beladung (FSK_{MOD}) ist.
- 12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein zweiter Gütefaktor (GFSK₂) des NO_X-Speicherkatalysators (16) das Verhältnis des modellierten NO_X-Durchbruches (EHK_{MOD}) zu dem gemessenen NOx-Durchbruch (EHK_{MES}) ist.
- 13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß weitere Gütefaktoren des NO_X-Speicherkatalysators (16) das Verhältnis eines Quotienten aus gemessenem NO_X-Durchbruch (EHK_{MES}) und NO_X-Beladung (FSK_{MES}) zu einem Quotienten aus modelliertem NO_X-Durchbruch (EHK_{MOD}) und NO_X-Beladung (FSK_{MOD}) umfassen.
- 14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die NOx-Rohemission (EVK) anhand aktueller Betriebsparameter der Verbrennungskraftmaschine (10) berechnet oder gemessen wird.
- 15. Vorrichtung zur Ermittlung einer NO_X-Speicherkapazität eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO_X-Speicherkatalysators mit einer stromab des NO_X-Speicherkatalysators (16) angeordneten NO_X-empfindlichen Meßeinrichtung (18), dadurch gekennzeichnet, daß Mittel vorgesehen sind, mit welchen die Verfahrensschritte Integration einer stromab des NO_X-Speicherkatalysators (16) gemessenen No_X-Konzentration, Berechnung mindestens einer für die NO_x-Speicherkapazität des NO_x-Speicherkatalysators (16) kennzeichnenden Ist-Kenngröße und Vergleich mit mindestens einer entsprechenden, für einen schwefelfreien und ungeschädigten NOx-Speicherkatalysator modellierten Soll-Kenngröße ausführbar sind.
- 16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Mittel eine Steuereinheit (20) umfassen, in der eine Prozedur zur Ermittlung einer NO_X-Speicherkapazität des NO_X-Speicherkatalysators (16) in digitaler Form hinterlegt ist.
- 17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß die Steuereinheit (20) in ein Motorsteuergerät integriert ist.

Hierzu 2 Seite(n) Zeichnungen

55

60

15

- Leerseite -

12

16

18

FIG. 1

FIG. 2

FIG. 3