Equivalence	Name
$p \wedge T \equiv p$	Identity laws
$p \lor F \equiv p$	
$p \lor T \equiv T$	Domination laws
$p \wedge F \equiv F$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$	Commutative laws
$p \wedge q \equiv q \wedge p$	

]	
Equivalence	Name
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
$\neg(p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg (p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \land (p \lor q) \equiv p$	
$p \lor \neg p \equiv T$	Negation laws
$p \land \neg p \equiv F$	

Equivalence	Name
$p \to q \equiv \neg p \lor q$	Involving conditional statements
$p o q \equiv \neg q o \neg p$	
$(p \to q) \land (p \to r) \equiv p \to (q \land r)$	
$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$	
$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$	
$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$	
$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$	Involving biconditional statements
$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$	mivolving biconditional statements
$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$	
$p \lor q = (p \lor q) \lor (p \lor q)$	

Quantifications of Two Variables		
Statement	When is it true?	When is it false?
$\forall x \forall y P(x,y)$	P(x,y) is true for every	There is a pair x, y for
$\forall y \forall x P(x,y)$	pair x, y .	which $P(x, y)$ is false.
$\forall x \exists y P(x, y)$	For every x there is a y for	There is an x such that
	which $P(x, y)$ is true.	P(x,y) is false for every y .
$\exists x \forall y P(x,y)$	There is an x such that	For every x there is a y for
	P(x, y) is true for every y .	which $P(x, y)$ is false.
$\exists x \exists y P(x,y)$	There is a pair x, y for	P(x,y) is false for every
$\exists y \exists x P(x, y)$	which $P(x, y)$ is true.	pair x, y.

		Rules of Inference for Propositional	Logic
Ru	le of inference	Tautology	Name
	$egin{array}{c} p \ p ightarrow q \ q \end{array}$	$[p \wedge (p o q)] o q$	Modus ponens
	$ \begin{array}{c} \neg q \\ p \to q \\ \neg p \end{array} $	$[\neg q \land (\rho \to q)] \to \neg \rho$	Modus tollens
·.	$ \begin{array}{c} p \to q \\ q \to r \\ p \to r \end{array} $	$[(\rho \to q) \land (q \to r)] \to (\rho \to r)$	Hypothetical syllogism
	<i>p</i> ∨ <i>q</i> ¬ <i>p q</i>	$[(\rho \vee q) \wedge \neg \rho] \to q$	Disjunctive syllogism

Ru	le of inference	Tautology	Name
	р	$p o (p \lor q)$	Addition
∴.	$p \lor q$		
	$p \wedge q$	$(p \land q) \rightarrow p$	Simplification
∴ ˈ	p		
	p	$[(p) \land (q)] \to (p \land q)$	Conjunction
	q		
∴ '	$p \wedge q$		
	$p \lor q$	$[(p \lor q) \land (\neg p \lor r)] \rightarrow (q \lor r)$	Resolution
	$\neg p \lor r$		
.·.	$q \vee r$		

	Rules of Inference for Predicate Logic		
	Rule of inference	Name	
	$\forall x P(x)$	Universal instantiation	
·:.	<i>P</i> (<i>c</i>)		
	P(c) for an arbitrary c	Universal generalization	
·:.	$\forall x P(x)$		
	$\exists x P(x)$	Existential instantiation	
·:.	P(c) for some element c		
	P(c) for some element c	Existential generalization	
··.	$\exists x P(x)$		