Equações Diferenciais: Notas de Aula Modelagem matemática com EDOs de segunda ordem

Prof: Felipe Figueiredo

http://sites.google.com/site/proffelipefigueiredo

Versão: 20151117

1 Objetivos de aprendizagem

Ao final desta aula o aluno deve conhecer os Osciladores Harmônicos Simples e Amortecido.

2 Conteúdo

O aluno deve consultar o livro texto nas seções 11.10 e 11.11 para se aprofundar no conteúdo desta aula.

2.1 Problema

Um tijolo de 2Kg está em repouso, pendurado em uma mola que tem coeficiente de elasticidade $8 \frac{N}{cm}$. Você puxa o tijolo para baixo, esticando a mola em 5cm e o solta. Assumindo que não há atrito, o tijolo oscila para cima e para baixo em movimento harmônico simples. Descrever este movimento no como a posição s no espaço em função do tempo, a amplitude, a frequência e o período da oscilação.

2.2 A Lei de Hooke e o Oscilador Harmônico Simples

Quando o tijolo está na posição s força da mola que atua no tijolo é dada pela lei de Hooke.

$$F = -ks$$

Sabemos pela segunda lei de Newton, que a resultante é F = ms'', onde s'' é aceleração.

$$ms'' = -ks \Rightarrow ms'' + ks = 0$$

$$s'' + \frac{k}{m}s = 0$$

Para simplificar a notação, chamemos $\omega=\sqrt{\frac{k}{m}}$. Assim $\omega^2=\frac{k}{m}$, e a equação do OHS fica apenas:

$$s'' + \omega^2 s = 0$$

Essa mudança de variáveis tem algumas vantagens: (a) esta constante tem uma interpretação física: a frequência (angular) da oscilação, (b) ω já aparece na solução da EDO, facilitando a resolução e (c) a equação fica mais simpática. As características deste movimento são dados pelas seguintes fórmulas:

- Frequência $\omega = \sqrt{\frac{k}{m}}$
- Período $T = \frac{2\pi}{\omega}$
- Amplitude $A = \sqrt{K_1^2 + K_2^2}$
- Solução geral $s(t) = K_1 \cos(\omega t) + K_2 \sin(\omega t)$

Tijolo

Vamos agora voltar ao nosso tijolo, e usar estas fórmulas para descrever seu movimento:

$$s'' + 4s = 0$$

Assim, podemos identificar que $\omega^2 = \frac{8}{2} = 4$, donde $\omega = 2$. Sabendo este valor de ω , a solução geral desta equação é $s(t) = K_1 \cos(2t) + K_2 \sin(2t)$. O período da oscilação é $T = \frac{2\pi}{2} = \pi$. Para encontrarmos a amplitude, precisamos descobrir K_1 e K_2 , montando e resolvendo um PVI.

Como, no tempo inicial, o tijolo foi deslocado para a posição inicial s(0) = 5, e solto com velocidade inicial s'(0) = 0, podemos substituir estes valores na solução geral para montar um sistema 2×2 e encontrar as constantes K_1 e K_2 . No tempo t = 0:

$$s(0) = K_1 \cos 0 + K_2 \sin 0 = K_1 \Rightarrow K_1 = 5$$

Calculando a derivada de s(t) (exercício!) temos $s'(t) = -2K_1 \operatorname{sen}(2t) + 2K_2 \operatorname{cos}(2t)$. No tempo t = 0:

$$s'(0) = -2K_1 \operatorname{sen} 0 + 2K_2 \cos 0 = 2K_2 \Rightarrow 2K_2 = 0 \Rightarrow K_2 = 0$$

Agora com os valores de K_1 e K_2 podemos escrever a solução do PVI $(s(t) = 5\cos(2t))$, e calcular a amplitude do movimento $A = \sqrt{5^2 + 0^2} = 5$. As características do movimento são então:

$$\omega = 2, T = \pi, A = 5$$

Conclusão: na ausência de atrito, o tijolo se desloca para cima e para baixo, atingindo sempre o deslocamento máximo de 5cm em relação ao repouso e repetindo a oscilação a cada π segundos.

Mas e se houver atrito?

2.3 Oscilador Harmônico Amortecido

Suponha agora que há atrito diminuindo a velocidade do tijolo. A tendência é, portanto, que o tijolo diminua as oscilações até parar, certo? Este é o Oscilador Harmônico Amortecido.

Digamos que a força de atrito é proporcional à velocidade s' do objeto (assim como no modelo da resistência do ar), ou seja, R = as', onde a é o coeficiente de atrito.

A força resultante F = ms'' no objeto é a soma vetorial das forças atuantes: a mola e o atrito.

$$ms'' = -as' - ks \Rightarrow ms'' + as' + ks = 0$$
$$s'' + \frac{a}{m}s' + \frac{k}{m}s = 0$$

Por simplicidade, vamos chamar $b=\frac{a}{m}$ e $c=\frac{k}{m}$. Assim, a equação acima fica s''+bs'+cs=0, cuja equação característica é $r^2+br+c=0$.

Ao resolver esta última equação com o método da equação característica $(r^2 + br + c = 0)$, podemos identificar quanto amortecimento há neste sistema.

- 1. Super-amortecido: não há oscilação
- 2. Sub-amortecido: o sistema oscila cada vez menos, até voltar para o equilíbrio

Podemos distinguir entre estes dois tipos de amortecimento fazendo o estudo das raízes da equação característica. Isto começa pelo discriminante Δ , para identificar se são reais (e quantas) ou complexas.

Lembre-se que as soluções de uma EDO linear sempre envolvem funções exponenciais. Estas funções podem crescer, ou decair. Como estamos modelando um amortecimento, a amplitude das oscilações deve **decair**, portanto precisamos obrigatoriamente de uma taxa negativa nas exponenciais! Esta é a ideia que unifica todas as fórmulas abaixo:

- 1. Super-amortecido: $\Delta > 0$, com ambas raízes $r_1 < 0$ e $r_2 < 0$.
- 2. Sub-amortecido: $\Delta < 0$, com parte real $\alpha < 0$.

Para outra maneira fácil de distinguir os dois tipos de amortecimento acima, basta lembrar que a oscilação vem das funções trigonométricas. Assim, com $\Delta > 0$ (raízes reais) não há oscilação, apenas o decaimento (de volta ao repouso). Moleza.

Além destes dois tipos de amortecimento, podemos também identificar outros dois interessantes:

- Criticamente amortecido (caso intermediário entre o super e o sub amortecido): $\Delta=0$, com raiz r<0. Para isto, basta que b>0 (pense: por quê?)
- Não amortecido: $\Delta < 0$ com parte real $\alpha = 0$. Compare com o Oscilador Harmônico Simples.