ICNT at MSU and FRIB/NCSL, May 2015, East Lansing, MI

Neutrons in a HO trap with chiral interactions

Pieter Maris

pmaris@iastate.edu

lowa State University

SciDAC project – NUCLEI http://computingnuclei.org

INCITE award - Computational Nuclear Structure

NERSC (CPU time and code development support)

Neutrons in a trap: Why

- Theoretical 'laboratory' to explore properties of different nuclear interactions
- Validate ab-initio DFT approaches against microscopic ab-initio calculations with the same interaction
- Guide developments of Nuclear Energy Density Fuctionals consistent with ab-initio calculations
- Model for neutron-rich systems in particular those with closed shell protons (Oxygen, Calcium)

- Uncertainty quantification essential
 - For comparisons between different methods
 - statistical and round-off errors in calculation
 - systematical errors inherent to the many-body method
 - For comparisons between different interactions
 - uncertainty of the nuclear potential

Neutrons in a trap: What

Neutrons

- Confined by external potential $\hat{\mathbf{U}}_{\text{ext}}$
- ullet Interacting via $\hat{\mathbf{V}}_{NN},\,\hat{\mathbf{V}}_{3NF},\,\dots$

$$\hat{\mathbf{H}} = \hat{\mathbf{T}} + \hat{\mathbf{U}}_{\mathsf{ext}} + \hat{\mathbf{V}}_{NN} + \hat{\mathbf{V}}_{3NF} + \dots$$

Observables

- Total energy $E_{\mathsf{tot}} = \langle \hat{\mathbf{H}} \rangle$ (per neutron)
- Internal energy $E_{\mathsf{int}} = \langle \hat{\mathbf{H}} \rangle \langle \hat{\mathbf{U}}_{\mathsf{ext}} \rangle$ (per neutron)
- Spectra, energy splittings
- One-body density $\rho(r)$
 - rms radius $r=\langle {\bf \hat{r}}^2 \rangle^{\frac{1}{2}}$
 - Fourier transform of density: form factor F(q)

_

Neutrons in a trap: How

Barrett, Navrátil, Vary, Ab initio no-core shell model, PPNP69, 131 (2013)

No-Core Configuration Interaction calculations

- Expand wavefunction in basis states $|\Psi\rangle = \sum a_i |\Phi_i\rangle$
- $m{P}$ Express Hamiltonian in basis $\langle \Phi_j | \hat{\mathbf{H}} | \Phi_i \rangle = H_{ij}$
- lacksquare Diagonalize Hamiltonian matrix H_{ij}
- \blacksquare No-Core: all N neutrons are treated the same
- Complete basis exact result
 - caveat: complete basis is infinite dimensional
- In practice
 - truncate basis
 - study behavior of observables as function of truncation
- Computational challenge
 - construct large ($10^{10} \times 10^{10}$) sparse symmetric real matrix H_{ij}
 - use Lanczos algorithm to obtain lowest eigenvalues & -vectors

No-Core Configuration Interaction methods

- ullet Many-Body basis states $\Phi_i(r_1,\ldots,r_A)$ Slater Determinants
- Single-Particle basis states $\phi_{ik}(r_k)$
 - eigenstates of SU(2) operators $\hat{\mathbf{L}}^2$, $\hat{\mathbf{S}}^2$, $\hat{\mathbf{J}}^2 = (\hat{\mathbf{L}} + \hat{\mathbf{S}})^2$, and $\hat{\mathbf{J}}_{\mathbf{z}}$ with quantum numbers n, l, s, j, m
 - radial wavefunctions
 - Harmonic Oscillator w. basis parameter $\hbar\omega$
 - Coulomb—Sturmian
 Caprio, Maris, Vary, PRC86, 034312 (2012)
- $m{D}$ M-scheme: Many-Body basis states eigenstates of $\hat{\mathbf{J}}_{\mathbf{z}}$

$$\hat{\mathbf{J}}_{\mathbf{z}}|\Phi_i\rangle = M|\Phi_i\rangle = \sum_{k=1}^A m_{ik}|\Phi_i\rangle$$

- single run gives entire spectrum
- $ightharpoonup N_{\text{max}}$ truncation: Many-Body basis states satisfy

$$\sum_{k=1}^{A} \left(2 n_{ik} + l_{ik}\right) \leq N_0 + N_{\text{max}}$$

No-Core CI methods for neutrons in a trap

N neutrons in Harmonic Oscillator trap with strength $\hbar\Omega$

$$\hat{\mathbf{H}} = \sum_{i}^{N} \frac{\vec{p}_{i}^{2}}{2m} + \frac{1}{2} \sum_{i}^{N} m \Omega \vec{r}_{i}^{2} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

- Trap defines coordinate system
 - Center-of-Mass motion is part of the system
 - No need to factorize out Center-of-Mass motion!
- Truncation methods
 - Many-body N_{max} truncation
 - Single-Particle basis truncation (N_{shell}) FCI
 - Particle-hole truncation
 - SU(3) truncation

Dytrych et al, PRL111, 252501 (2013)

No-Core Monte-Carlo Shell Model

Abe et al, PRC86, 054301 (2012)

Importance Truncation

Roth, PRC79, 064324 (2009)

- Extrapolate to the infinite basis space

Convergence: N_{shell} truncation vs. N_{max} truncation

- Small model spaces
 - variational minimum for $\hbar\omega$ near H.O. trap $\hbar\Omega$
- Large model spaces
 - ullet variational minimum for $\hbar\omega$ near optimal value for interaction
- Convergence
 - ullet independence of basis $\hbar\omega$ and truncation parameter N

Convergence rate: N_{max} truncation vs. N_{shell} truncation

- $m N_{
 m max}$ truncation below FCI truncation for same $\hbar\omega$ and dimension
- Smooth approach to NCFC result with N_{max} truncation
- Allows for extrapolation to exact total energy

Extrapolation to complete basis

Empirical extrapolation method (ground state) energies

$$E(N_{\rm max}) \approx E_{\infty} + a \exp(-bN_{\rm max})$$

- Error estimate: difference with result from smaller model spaces
 - ullet errors decrease with $N_{\rm max}$
 - extrapolation at $N_{\rm max}$ within error estimates of $N_{\rm max}-2$
- Need at least $N_{\rm max}=8$, preferably $N_{\rm max}=10$ for meaningfull extrapolation

NCCI calculations – main challenge

- Increase of basis space dimension with increasing A and N_{max}
 - need calculations up to at least $N_{\rm max}=8$ for meaningful extrapolation and numerical error estimates
- More relevant measure for computational needs
 - number of nonzero matrix elements
 - current limit 10^{13} to 10^{14} (Edison, Mira, Titan)

Many Fermion Dynamics – nuclear physics

Configuration Interaction (Shell Model) code

- Platform-independent, hybrid OpenMP/MPI, Fortran 90
- Highly parallelized, highly scalable, load-balanced
- Nonzero matrix elements stored in core
 - Lanczos iterations very fast (few seconds per iteration)
 - LOBPCG (SpMatMul instead of SpMatVec) in progress, but overall less efficient than Lanczos
- NN, 3NF implemented and fully functional
 - 4NF implemented, but no interface with input FBMEs (yet)
- One-body and scalar two-body observables fully functional
- Optimized for No-Core calculations
 - Small systems: 5 to 20 nucleons
 - Large bases: 100 to 500 S.P. orbitals ($\sim 10,000$ S.P. states)
- Capable to perform, but not optimized for, traditional shell model calculations

Validating ab-initio Density Functional Theory

Bogner, Furnstahl, Hergert, Kortelainen, Furnstahl, PM, Stoistov, Vary, PRC84, 044306 (2011)

- Simple model for interaction
 - Minnesota potential
- Ab-initio NCFC calculations for neutrons in H.O. potential
 - including numerical error estimates on all 'observables'
- Density Functional Theory approaches using same NN interaction
 - Hartree—Fock
 - Density Matrix Expansion / Phase—Space—Averaging with exact Hartree
 - Incorporate correlations beyond HF using Brueckner-Hartree-Fock calculations of neutron matter
 - Density-dependent terms
 - Fit surface parameters in DME functional
- Comparison for 8 and 20 neutrons
 - total and internal energy per neutron as function of radius
 - density $\rho(r)$ and form factor F(q)

Minnesota potential – energies and radii

Bogner, Furnstahl, Hergert, Kortelainen, Furnstahl, PM, Stoistov, Vary, PRC84, 044306 (2011)

- Hartree—Fock outside error bars of ab-initio calculations
- BHF density-dependent term and fit surface terms closest to ab-initio calculations

Minnesota potential – Densities

Bogner, Furnstahl, Hergert, Kortelainen, Furnstahl, PM, Stoistov, Vary, PRC84, 044306 (2011)

Good agreement density profiles

Minnesota potential – form factor

and good agreement form factor

Results for more realistic interactions: AV8' + UIX

Carlson, Gandolfi, Pieper, PRL106, 012501 (2011)

- GFMC and AFDMC with AV8' + UIX
- Neutron matter EOS consistent with known neutron star masses
- Significant differences Skyrme functionals and ab-initio results

Comparing results for realistic interactions

PM, Vary, Gandolfi, Carlson, Pieper, PRC87, 054318 (2013)

- Significant difference between AV8' plus IL7 and AV8' plus UIX
- JISP16 similar to
 - AV8' plus IL7 for $N \lesssim 14$
 - AV8' without 3NF for $N \gtrsim 18$
- JISP16 and AV8'+IL7 good description of nuclei upto $A=12\sim14$
- AV8': MC error bars plus estimate of systematic uncertainty (band)
- Extrapolation error estimates for JISP16

Nuclear interaction from chiral perturbation theory

- Strong interaction in principle calculable from QCD
- Use chiral perturbation theory to obtain effective A-body interaction from QCD
 Entem and Machleidt, PRC68, 041001 (2003)
 - ullet controlled power series expansion in Q/Λ_χ with $\Lambda_\chi\sim 1~{
 m GeV}$
 - natural hierarchy for many-body forces

$$V_{NN} \gg V_{NNN} \gg V_{NNNN}$$

- in principle no free parameters
 - in practice a few undetermined parameters
- renormalization necessary

Leading-order 3N forces in chiral EFT

Argonne vs. Chiral interactions

Potter, Fischer, PM, Vary, Binder, Calci, Langhammer, Roth, PLB739, 445 (2014)

- N³LO NN potential Entem–Machleidt with 500 MeV cutoff
- N²LO 3NF $c_D = -0.2$ $c_E = -0.205$

- Chiral N³LO NN similar to AV8' without 3NF
- Contributions from chiral N²LO 3NF small

Internal energies and radii

Potter, Fischer, PM, Vary, Binder, Calci, Langhammer, Roth, PLB739, 445 (2014)

- Contributions from chiral N²LO 3NF small
- Internal energies up to 10 neutrons all similar behavior, but noticable differences in radii
- Above 10 neutrons, chiral and JISP16 give similar radii, while AV8'+UIX gives larger radii
- Strong odd-even effect internal energies (also total energies)

Pairing

- Single differences
 - jumps at closed shell due to HO trap
 - odd-even difference indicating pairing
- Double differences $\Delta(N) = (-1)^{(N-1)}(E(N) \frac{1}{2}(E(N-1) + E(N+1)))$
 - similar pairing effects
 with different interactions
 in p-shell
 - chiral and JISP16 lead to more pairing than AV8' interactions in sd-shell

Level splitting: p-shell

PM, Vary, Gandolfi, Carlson, Pieper, PRC87, 054318 (2013) Chiral: work in progress (Potter, PhD student)

- $p\frac{1}{2} > p\frac{3}{2}$, as expected
- similar splitting for different interactions (JISP16, AV8', chiral) up to 10 MeV trap strength
- splitting larger for one-hole states than for one-particle states
- splitting increases with external field strength, due to
 - increased density?
 - steeper gradient?

Level splitting: sd-shell

PM, Vary, Gandolfi, Carlson, Pieper, PRC87, 054318 (2013) Chiral: work in progress (Potter, PhD student)

- Level ordering
 - $d\frac{3}{2} > d\frac{5}{2}$
 - \bullet $d\frac{3}{2} > s\frac{1}{2}$
 - $s\frac{1}{2} \gtrsim d\frac{5}{2}$
- Expect subshell closures
 - weak at 14
 - strong at 16 in particular with AV8'+IL7

Qualitatively similar splittings for different interactions

Conclusions

Microscopic ab-initio calculations of neutrons in a trap

- Compare and contrast different NN and 3N interactions
- Guide and validate ab-initio DFT approaches
- Benchmark microscopic ab-initio methods
- Simple model for neutron-rich systems

Thank you