₁ Kapitola 1

² Minorové operace

- ³ V této kapitole zavedeme operace s klastrovým grafem, které zachovávají
- 4 klastrovou rovinnost. V závěru kapitolu zavedeme pojem klastrové minoru
- 5 jakožto

10

15

16

17

- 6 Definice: 1.1. (minorové operace) Minorové operace jsou následující:
- 1. Odebrání hrany nebo vrcholu z grafu
- 2. Odebrání klastru z klastrové hierarchie
- 9 3. Kontrakce hrany
 - pokud oba konce hrany patří do stejných klastrů
- 11 4. Nahrazení klastru velikosti 2 hranou
- v nakreslené verzi problému jenom tehdy, pokud to lze provést jednoznačně
- 5. Odebrání vrcholu v z klastru K (v nakreslené verzi)
 - K je nejmenší (vzhledem na inkluzi) klastr obsahující v
 - z v vychází právě 1 hrana ven z K
 - 6. Sjednocení dvou disjunktní klastrů $K_1, K_2 \in \mathcal{C}$ (nakreslená verze)
 - K_1, K_2 jsou dva minimální klastry (nemají podklastry) se společným rodičem

- $K_1 \cup K_2$ neindukuje kružnici s vrcholem mimo $K_1 \cup K_2$ uvnitř. Jinými slovy $K_1 \cup K_2$ nemá díru v G.
 - existuje hrana spojující K_1 s K_2
 - $C' := (C \setminus \{K_1, K_2\}) \cup \{K_1 \cup K_2\}$
- Tvrzení 1.1. Minorové operace (1) a (2) zachovávají klastrovou rovinnost
- 25 Důkaz. Mějme dáno klastrové nakreslení. Odebrání hrany zapříčiní jedině
- to, že se nemusí v daném nakreslení hrana kreslit. Podobně pro odebraný
- vrchol, kdy se odebereu hrany vedoucí do něj. Odebráný klastr se též prostě

- nenakreslí
- 29 Tvrzení 1.2. Kontrakce hrany (3) zachovává klastrovou rovinnost
- Důkaz. Mějme dáno klastrové nakreslení. Kontrakce je jen vlastně smrštění
- hrany do jediného bodu, jenž zastupuje vrchol vzniklý kontrakcí.
- 32 Tvrzení 1.3. Operace (4) zachovává klastrovou rovinnost
- ³³ Důkaz. Stačí si uvědomit, že takový klastr se chová jako hrana. V nakreslené
- verzi je požadavek na jednoznačnost (jen jediná stěna, kde lze hranu dokres-
- lit), protože by jinak se mohlo stát nahrazením klastru hranou, že vznikne
- 36 díra.
- 37 **Tvrzení 1.4.** Odebraní vrcholu z klastru (5) zachovává klastrovou rovinnost.
- 38 Důkaz. Jednoduchý překreslovací argument, kdy podél hrany protáhneme
- hranici klastru až ji přetáhneme přes vyjímaný vrchol. (TODO dát ilustra-
- 40 tivní obrázek)

22

23

- **Tvrzení 1.5.** Připojení vrcholu do klastru
- (G,C) "nakreslená" instance klastrové rovinnosti, $v \in V(G)$ a $K \in C$
- 43 $C' = (C \setminus \{K\}) \cup \{K \cup \{v\}\}$
- 1. v sousedí s K (je spojen s nějakým vrcholem v K hranou)
- 2. Každý klastr obsahující v obsahuje i K
- 3. K nemá podklastry
- 47 4. $K \cup \{v\}$ neindukuje kružnici s vrcholem mimo K uvnit \check{r}

- $Potom (G,C) je kl. rovinný \implies (G,C') je kl. rovinný$
- Důkaz. Toto tvrzení je speciálním případem následujícího lemmatu. Jedno-
- duše, budeme vrchol vydávat za jednovrcholový klastr.
- Tvrzení 1.6. Sjednocení klastrů (6) zachovává klastrovou rovinnost.
- $D\mathring{u}kaz$. Nechť S je minimální saturátor (G,\mathcal{C}) takový, že $(G[V,E\cup S],\mathcal{C})$
- nemá díru. S je saturátorem i pro klastrový graf (G, \mathcal{C}') , kde ale může být
- díra. Nechť existuje minimální saturátor $S' \subseteq S$ takový, že $(G[V, E \cup S'], \mathcal{C})$
- nemá díru. To dokážeme sporem.
- Nechť D je díra. Ta musí být ve sjednocení klastrů K_1 a K_2 , neboť kdyby 56
- byla jinde, bylo by to ve sporu s předpokladem, že původní klastrový graf
- je klastrově rovinný. Díra D má neprázdný průnik se saturátorem S'. Kdyby
- průnik byl prázdný, znamenalo by to, že příslušná díra byla v původním
- klastrovém grafu. Označme tuto hranu $e = \{x, y\}$, kde x a y jsou její koncové
- vrcholy. Jako S" označme $S' \setminus e$. Množina S" je saturátorem, protože každý
- klastr $K \in C'$ obsahující vrcholy x a y obsahuje i cestu $D \setminus \{e\}$. Dostali jsme
- tedy spor s minimalitou S'. S' tedy neobsahuje díry.
- (TODO vysvětlení předpokladů) 64
- Vyzbrojeni minorový operace můžeme definovat pojem klastrového mi-65 noru
- **Definice:** 1.2. Mějme klastrový graf (G, C). Klastrový graf (G', C') je klastro-
- vým minorem, pokud jej lze získat konečnou posloupností minorových operací
- z klastrového grafu (G, \mathcal{C}) .