

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 November 2003 (13.11.2003)

PCT

(10) International Publication Number
WO 03/093416 A2

- (51) International Patent Classification⁷: C12N (81) Designated States (*national*): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE (utility model), EE, ES, FI (utility model), FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK (utility model), SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.
- (21) International Application Number: PCT/US03/13229
- (22) International Filing Date: 29 April 2003 (29.04.2003)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
60/376,251 29 April 2002 (29.04.2002) US
- (71) Applicant: THE BOARD OF REGENTS FOR OKLAHOMA STATE UNIVERSITY [US/US]; 203 Whitehurst, Oklahoma State University, Stillwater, OK 74078 (US).
- (72) Inventors: DE LA FUENTE, Jose de Jesus; 400 Squires Landing, Apt. M-5, Stillwater, OK 74074 (US). KOCAN, Katherine, M.; 3909 E. 92nd Street, Perkins, OK 74059 (US). GARCIA-ALMAZAN, Consuelo; 835 Connell, Stillwater, OK 74075 (US). GARCIA-GARCIA, Jose, Carlos; 700 W. Scott Ave., Apt. 137, Stillwater, OK 74075 (US). BLOUIN, Edmour, E.; 3909 E. 92nd Street, Perkins, OK 74059 (US).
- (74) Agent: WEEKS, Alan, R.; Fellers, Snider, Blankenship, Bailey & Tippens, P. C., 321 South Boston, Suite 800, Tulsa, OK 74103-3318 (US).
- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for all designations

Published:

- without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/093416 A2

(54) Title: PROTECTIVE ANTIGENS FOR THE CONTROL OF IXODES SPECIES INFESTATIONS

(57) Abstract: Protective antigens against infestations with *Ixodes* spp. ticks, gene sequences and encoded proteins for such antigens, related vaccines and methods useful to induce an immune response, which are protective to interfere with infestations by *Ixodes* spp. ticks.

**PROTECTIVE ANTIGENS FOR THE CONTROL
OF *IXODES* SPECIES INFESTATIONS**

BACKGROUND OF THE INVENTION

Technical Field:

The present invention relates to the identification of protective antigens against infestations with *Ixodes* spp. ticks, gene sequences and encoded proteins for such antigens, related vaccines and methods useful to induce an immune response, which are protective to interfere with infestations by *Ixodes* spp. ticks.

Background:

Ticks parasitize wild, domesticated animals and humans and transmit pathogens including fungi, bacteria, viruses and protozoan. Currently, ticks are considered to be second in the world to mosquitoes as vectors of human diseases, but they are considered to be the most important vector of pathogens in North America (Parola and Raoult, 2001). *Ixodes* spp. are distributed worldwide and act as vectors of human diseases caused by *Borrelia burgdorferi* (Lyme disease), *Anaplasma phagocytophila* (human granulocytic ehrlichiosis), *Coxiella burnetti* (Q fever), *Francisella tularensis* (tularemia), *B. afzelii*, *B. lusitaniae*, *B. valaisiana* and *B. garinii*, *Rickettsia helvetica*, *R. japonica* and *R. australis*, *Babesia divergens* and tick-borne encephalitis (TBE) and Omsk Hemorrhagic fever viruses (Estrada-Pefia and Jongejan, 1999; Parola and Raoult, 2001). Throughout eastern and southeastern United States and Canada, *I. scapularis* (the black legged tick) is the main vector of *B. burgdorferi* sensu stricto and *A. phagocytophila* (Estrada-Pefia and Jongejan, 1999; Parola and Raoult, 2001).

Control of tick infestations is difficult and often impractical for multi-host ticks such as *Ixodes* spp. Presently, tick control is effected by integrated pest management in which different control methods are adapted to one area or against one tick species with due consideration to their environmental effects. Recently, development of vaccines against one-host *Boophilus* spp. has provided new possibilities for the identification of protective antigens for immunization against tick infestations (Willadsen, 1997; Willadsen and Jongejan, 1999; de la Fuente et al., 1999; 2000; de Vos et al., 2001). The recombinant *B. microplus* BM86 gut antigen included in commercial vaccine formulations TickGARD (Hoechst Animal Health, Australia) and Gavac (Heber Biotec S. A., Havana, Cuba) also confers partial protection against phylogenetically related *Hyalomma* and *Rhipicephalus* tick genera (de la Fuente et al., 2000; de Vos et al., 2001). However, immunization with BM86 failed to protect against the more phylogenetically distant *Amblyomma* spp. (de Vos et al., 2001). These results suggest that using Bm86 or a closely related gene for the production of vaccines against *Ixodes* spp. or other tick genera phylogenetically distant from *Boophilus* spp. (Black and Piesman, 1994) could be impractical. Therefore, the screening for novel protective antigens is necessary to identify vaccine candidates against infestations with these tick species of medical and veterinary importance. Control of ticks by vaccination would avoid environmental contamination and selection of drug resistant ticks that result from repeated acaricide application (de la Fuente et al., 1998; Garcia-Garcia et al., 1999). Anti-tick vaccines also allow for inclusion of multiple antigens in order to target a broad range of tick species and for incorporation of pathogen-blocking antigens.

Vaccination with DNA and cDNA molecules has been used to induce a protective immune response against *B. microplus* and several pathogens in laboratory

animals and livestock (De Rose et al., 1999; Drew et al., 1999; van Drunen Littel-van den Hurk et al., 2001; Kofta and Wedrychowicz, 2001). A new technique, expression library immunization (ELI) in combination with sequence analysis provides an alternative approach for identification of potential vaccine antigens based on rapid screening of the expressed genes without prior knowledge of the antigens encoded by cDNA clones. ELI was first reported for *Mycoplasma pulmonis* (Barry et al., 1995) and since then has been used for unicellular and multicellular pathogens and viruses (Manoutcharian et al., 1998; Alberti et al., 1998; Brayton et al., 1998; Melby et al., 2000; Smooker et al., 2000; Moore et al., 2002; Singh et al., 2002). However, the identification of individual protective clones has not been reported and it is predicted that identification of protective antigens will be more difficult as the complexity of the genome increases.

Although several reports in the literature have demonstrated by ELI that libraries can offer a degree of protection (Barry et al., 1995; Manoutcharian et al., 1998; Alberti et al., 1998; Brayton et al., 1998; Melby et al., 2000; Smooker et al., 2000; Moore et al., 2002; Singh et al., 2002), none have applied ELI to arthropods and particularly to ticks. Several vaccines have been developed to protect humans against *Ixodes*-transmitted pathogens including TBE virus and *B. burgdorferi*. However, it is not clear whether these vaccines will protect against all pathogen strains and genotypes. The inclusion of tick immunogens in pathogen-specific vaccines could enhance their protective effect and increase efficacy (Nuttall, 1999). This transmission-blocking approach is supported by evidence that host resistance to ticks provides some protection against tick-borne transmission of viruses and *B. burgdorferi* (Wikle et al., 1997). Furthermore, vaccination against *B. microplus* has

been demonstrated to contribute to the control of tick-borne diseases (de la Fuente et al., 1998; 1999).

SUMMARY OF THE INVENTION

The present invention is based upon our identification by ELI and sequence analysis of protective cDNA clones against experimental infestations with *I. scapularis*. This is the first example of the application of ELI to arthropods and particularly to ticks. The protective antigens are homologous to endopeptidases, nucleotidases, chorion proteins, vitellogenin receptors, peptidoglycan recognition proteins, glutamine-alanine rich proteins, ribosomal proteins, β -adaptin, Beta-amyloid precursor protein, Block of proliferation (Bop1), lectins, chloride channels, RNA polymerases, ATPases and heat-shock proteins. These antigens induce an immune response in vaccinated hosts that either interferes with tick development or results in a pro-feeding activity, which could be due to the expression of cDNAs encoding for tick immunosuppressants, anticoagulants and other proteins with low antigenicity and a pro-feeding activity or they could encode for proteins homologous to host proteins with anti-tick activity, which neutralization results in a tick pro-feeding activity. These protective antigens, although identified for *I. scapularis*, may be cross protective between *Ixodes* species considering the high degree of conservation of gene sequences and protein function between species of the same genus. A 5'-nucleotidase was identified and characterized in *B. microplus* by Liyou et al. (1999; 2000) but they did not assay its protection capacity. Although surprising at first glance, the protection capacity of ribosomal and heat shock protein preparations has been previously documented in other organisms (Elad and Segal, 1995; Silva, 1999; Melby et al., 2000; Cassataro et al., 2002) but never in ticks. The effect of cDNA vaccination on *I. scapularis*

experimental infestations of mice was evidenced by the reduction of the number of engorged larvae, the retardation of larval development, the inhibition of molting to nymphal stages and the appearance of visibly damaged larvae with red coloration. These effects were also recorded in vaccination experiments with recombinant BM86 and BM95 against infestations with *B. microplus*, including the red coloration in some ticks, attributed to blood leakage to the tick haemolymph (Garcia-Garcia et al., 2000).

Thus, in one embodiment of the present invention there is provided cDNA sequences, protein encoding fragments thereof, and derived protein sequences for protective *I. scapularis* antigens comprising antigens homologous to endopeptidases, nucleotidases, chorion proteins, vitellogenin receptors, peptidoglycan recognition proteins, glutamine-alanine rich proteins, ribosomal proteins, β -adaptin, Beta-amyloid precursor protein, Block of proliferation (Bop1), lectins, chloride channels, RNA polymerases, ATPases and heat-shock proteins.

In another embodiment of the present invention there is provided a vaccine composition comprising the *I. scapularis* protective recombinant proteins and/or modified cDNAs separately or which may optionally be combined with adjuvant to enhance the protection efficacy of vaccine preparations against *Ixodes* spp., wherein the vaccine composition further comprises a pharmaceutically acceptable carrier or diluent. The vaccine composition also may optionally be combined with tick-borne pathogen components to provide a means to control tick-borne infections, wherein the vaccine composition further comprises a pharmaceutically acceptable carrier or diluent and adjuvant.

In another embodiment of the present invention there is provided a method for inducing an immune response in a mammal to provide immune protection, which reduces or affects infestations by *Ixodes* spp. ticks and/or transmission of tick-borne

pathogens, the method comprising administering to at-risk human population and mammalian reservoir an effective amount of a vaccine composition comprising the *I. scapularis* protective recombinant proteins and/or modified cDNAs alone or in combination with an adjuvant or tick-borne pathogen components to provide a means to control tick infestations and to reduce transmission to humans of tick-borne infections, wherein the vaccine composition further comprises a pharmaceutically acceptable carrier or diluent.

A better understanding of the present invention and its objects and advantages will become apparent to those skilled in this art from the following detailed description, wherein there is described only the preferred embodiment of the invention, simply by way of illustration of the best mode contemplated for carrying out the invention. As will be realized, the invention is capable of modifications in various obvious respects, all without departing from the scope and spirit of the invention. Accordingly, the description should be regarded as illustrative in nature and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG 1 is a summary of the cDNA ELI approach used to identify protective antigens against *I. scapularis* infestations.

FIG. 2A is a graph depicting the results of a primary screen of cDNA pools (A-H 1-4, A5) by ELI. V, control mice injected with 1 µg vector DNA alone. * $\alpha<0.01$, ** $\alpha<0.05$ (Tukey's *post-hoc* test for pair comparisons after ANOVA). Number in boxes represent values for inhibition of tick infestation with respect to the control group.

FIG. 2B is a graph depicting the results of a primary screen of cDNA pools (A6-A10, B-H 5-8) by ELI. V, control mice injected with 1 µg vector DNA alone. * $\alpha<0.01$, ** $\alpha<0.05$ (Tukey's *post-hoc* test for pair comparisons after ANOVA). Number in boxes represent values for inhibition of tick infestation with respect to the control group.

FIG. 3 is a graph depicting the results of a tertiary screen by ELI of cDNA sub-pools formed according to the predicted function of encoded proteins. Only groups with $I\geq 15\%$ are shown (white bars). The number of engorged larvae per mouse is expressed as mean±SD (black bars). Control mice were injected with mitochondrial (MT) cDNAs. * $P\leq 0.05$ (Student's t-test).

DETAILED DESCRIPTION OF THE INVENTION

Before explaining the present invention in detail, it is important to understand that the invention is not limited in its application to the details of the construction illustrated and the steps described herein. The invention is capable of other embodiments and of being practiced or carried out in a variety of ways. It is to be understood that the phraseology and terminology employed herein is for the purpose of description and not of limitation.

The present invention derives from the sequences set forth on the Sequence Listing attached hereto and incorporated herein. In particular, there is provided 25 separate and distinct sequences comprising 14 cloned cDNA molecules and 11 deduced amino acid sequences of encoded polypeptides, said sequences having been isolated and identified as possessing the asserted utility in accordance with the following described experimental methodology.

*Example 1: Construction of an *I. scapularis* cDNA library and screening for protective antigens by ELI*

Tick cells

Monolayers of IDE8 (ATCC CRL 1973) cells, originally derived from embryonic *I. scapularis*, were maintained at 31°C in L-15B medium supplemented with 5% foetal bovine serum, tryptose phosphate broth and bovine lipoprotein concentrate after Munderloh et al. (1994). Cells were subcultured at 1:5 – 1:10 when monolayers reached a density of approximately 10^7 cells/T-25 flask. Medium was replaced weekly.

Library construction

A cDNA expression library was constructed in the vector pEXP1 containing the strong cytomegalovirus CMV_{IE} promoter (Clontech). Because we planned to target the early larval stages of *I. scapularis*, we chose to construct our library from cultured embryonic *I. scapularis* IDE8 cells-derived poly(A)+ RNA. The cDNA library contained 4.4×10^6 independent clones and a titer of approximately 10^{10} cfu/ml with more than 93% of the clones with cDNA inserts. The average cDNA size was 1.7 kb (0.5-4.0 kb).

Primary screen

The overall schema for identification of protective antigens through ELI, sequential fractionation and sequence analysis is shown in Fig. 1.

Ninety-six LBA (master) plates containing an average of 41 (30-61) cDNA clones per plate were prepared. Replicas were made and clones from each plate were pooled, inoculated in Luria-Bertani with 50 µg/ml ampicillin, grown for 2 hr in a 96 wells plate and plasmid DNA purified from each pool (Wizard SV 96 plasmid DNA purification system, Promega, Madison, WI, USA). BALB/c female mice, 5-6 weeks of age at the time of first vaccination, were used. Mice were cared for in accordance

with standards set in the Guide for Care and Use of Laboratory Animals. Mice were injected with a 1 ml tuberculin syringe and a 27 gauge needle at days 0 and 14. Three mice per group were each immunized IM in the thigh with 1 µg DNA/dose in 50 µl PBS. Two groups of 3 mice each were included as controls. One group was injected with 1 µg vector DNA alone and the second with saline only. Two weeks after the last immunization, mice were infested with 100 *I. scapularis* larvae per mouse. Ticks were artificially reared at the Oklahoma State University tick rearing facility by feeding larvae on mice, nymphs on rabbits and adults on sheep and using for infestation in our experiments the larvae obtained from the eggs oviposited by a single female. Twelve hours after tick infestation, larvae that did not attach were counted to calculate the number of attached larvae per mouse and mice were transferred to new cages. Replete larvae dropping from each mouse were collected daily and counted during 7 days. The inhibition of tick infestation (I) for each test group was calculated with respect to vector-immunized controls as $[1 - (\langle RL \rangle_n / \langle RL \rangle_c \times \langle RL \rangle_{ic} / \langle RL \rangle_{in})] \times 100$, where $\langle RL \rangle_n$ is the average number of replete larvae recovered per mouse for each test group, $\langle RL \rangle_c$ is the average number of replete larvae recovered per mouse for control group, $\langle RL \rangle_{ic}$ is the average number of larvae attached per mouse for control group, and $\langle RL \rangle_{in}$ is the average number of larvae attached per mouse for each test group.

Pools of 41 (30-61) *I. scapularis* cDNA clones were screened by ELI. Only 33 cDNA pools and controls were analyzed per experiment. The average tick infestation level was 50 ± 13 and 56 ± 15 and 56 ± 15 and 54 ± 18 larvae/mouse for cDNA immunized and control mice, respectively ($P > 0.05$) (Table 1). The average number of engorged larvae recovered per mouse was 9 ± 3 and 13 ± 4 in the cDNA-immunized mice and 16 ± 4 and 17 ± 3 in the control vector-immunized group ($P < 0.05$) (Table 1).

No reduction was observed in the number of larvae collected from mice that received the vector DNA compared to saline-immunized controls. The maximum number of engorged larvae was collected 3 to 4 days after infestation. However, in mice immunized with cDNA pools B5, A8 and A10 (Fig. 2) a retardation of larval development in 1 to 2 days was recorded. The average inhibition of tick infestation (I) was $49\pm28\%$ and $30\pm22\%$ (Table 1). After two experiments covering the analysis of 66 pools (2705 clones), 9 protective pools (351 clones) were selected producing an inhibition of tick infestation $I \geq 60\%$ (Fig. 2A and 2B and Table 1). When we started these experiments, we planned to screen over 4000 cDNA clones considering the complexity of the tick genome. However, to our surprise 9 protective cDNA pools were identified after screening 66 pools containing 2705 cDNA clones. This result probably reflects the possibility of interfering with tick infestations at many different levels that involve a Pleiades of gene products. Results from vaccination experiments against ticks employing recombinant antigens support this view (reviewed by Mulenga et al., 2000). Because of the complexity of the screening procedure in mice vaccinated and challenged with tick larvae, it was difficult to work with more than 9 protective cDNA pools. Therefore we did not continue screening new cDNA pools and focused our attention on the 9 pools selected after the primary screen.

Secondary screen

The secondary screen was done to verify the protective capacity of the cDNA pools selected after the primary screen (Fig. 2A and 2B). After the primary screen of 66 cDNA pools (2705 clones), 9 pools with $I \geq 60\%$ were selected for the secondary screen (re-screening) employing 5 mice per group as described above. Engorged larvae were kept for molting in a 95% humidity atmosphere. Molting of engorged larvae was evaluated by visual examination of tick nymphs under a stereomicroscope

34 days after last larval collection. The inhibition of molting (M) for each test group was calculated with respect to vector-immunized controls as $[1-(MLn/MLc \times RLc/RLn)] \times 100$, where MLn is the number of nymphs for each test group, MLc is the number of nymphs for the control group, RLc is the number of larvae recovered for the control group, and RLi is the number of larvae recovered for each test group. Control mice were immunized with the negative ($I=0\%$) F2 cDNA pool or saline only. A group was included immunized SC with two doses of 100 μ g of total IDE8 tick cell proteins per dose in Freund's incomplete adjuvant.

All 9 protective cDNA pools gave positive results in the secondary screen (data not shown). The tick infestation levels were higher in this experiment (average 85 ± 6 and 84 ± 3 larvae/mouse for cDNA-immunized and control mice, respectively; $P>0.05$). Nevertheless, the average number of engorged larvae recovered per mouse was 39 ± 7 and 26 ± 6 for control and cDNA-immunized mice, respectively ($P<0.05$). The group immunized with total IDE8 tick cell proteins was protected with $I=33\%$. Again, no reduction was observed in the number of larvae collected from mice that received the control cDNA (F2 negative pool after the primary screen; Fig. 2A) compared to saline-immunized controls.

In the secondary screen, molting of engorged larvae was evaluated after 34 days. Molting was affected in all but one test cDNA-immunized group. Inhibition of molting in test cDNA-immunized mice compared to the control cDNA-immunized group varied from 0% to 12% ($6 \pm 4\%$). The inhibition of molting was higher than 50% only in the larvae collected from mice immunized with cDNA pools B5 and A10, which showed a retardation of larval development in 1 to 2 days as in the primary screen. No differences were observed between control cDNA and saline-immunized mice. Among the larvae that did not molt to nymph, some were visibly damaged and

presented a strong red coloration. The percent of red larvae in cDNA-immunized mice varied between 3% to 18 % ($7\pm5\%$) while in the saline and control cDNA-immunized groups red larvae represented the 6% and 4%, respectively.

Tertiary screen

For the tertiary screen, 64 clones were grouped in 16 sub-pools each containing 1 to 17 plasmids according to the predicted function of encoded proteins (e.g., all the plasmids that encoded histone proteins were grouped together) and used with 4 sub-pools containing 182 clones of unknown function or with sequences without homology to sequence databases to immunize 4 mice per group. Mice were immunized with 0.3 µg/plasmid/dose in 50 µl PBS and evaluated as described above. Control mice were immunized with a pool of 20 plasmids containing mitochondrial cDNAs.

Tick infestation levels were similar in all test groups (72 ± 2 larvae/mouse) and in control mice (69 ± 2 larvae/mouse) ($P>0.05$). The number of engorged larvae recovered per mouse was also similar between test (16 ± 7) and control (14 ± 6) mice ($P>0.05$). However, the groups immunized with cDNA sub-pools containing clones with putative endopeptidase, nucleotidase, ribosomal proteins, heat shock proteins, glutamine-alanine-rich proteins and 3 of the sub-pools with unknown function or with sequences without homology to sequence databases had $I\geq15\%$ (Fig. 3). Furthermore, among them, the groups immunized with sub-pools containing clones with a putative endopeptidase, nucleotidase and two of the cDNA sub-pools with unknown function or with sequences without homology to sequence databases resulted in lower infestation levels compared to control mice ($P\leq0.05$) and $I\geq40\%$ (Fig. 3). Clones homologous to chorion proteins, vitellogenin receptors, and peptidoglycan recognition

proteins were selected for they potential protection capacity in other stages of tick development.

Statistical analysis

The number of larvae attached per mouse and the number of engorged larvae recovered per mouse 7 days after infestation were compared by Analysis of Variance (ANOVA) followed by a series of Tukey's *post-hoc* tests for pair comparisons between cDNA-immunized and control vector DNA-immunized mice (primary screen), and by Student's t-test between mice immunized with positive cDNA pools and the control negative F2 cDNA pool (secondary screen) or between test cDNA sub-pools-immunized and control mice immunized with mitochondrial cDNAs (tertiary screen).

Example 2: Sequence analysis of protective clones

All the 351 cDNA clones in the 9 pools that resulted positive in the secondary screen were sequenced. DNA from individual clones in these pools was purified (Wizard SV 96 plasmid DNA purification system, Promega) from the master plate and partially sequenced. In most cases a sequence larger than 700 nucleotides was obtained. Nucleotide sequences were analyzed using the program AlignX (Vector NTI Suite V 5.5, InforMax, North Bethesda, MD, USA). BLAST (Altschul et al., 1990) was used to search the NCBI databases to identify previously cloned sequences that may have homology to those that we sequenced. Sequence analysis allowed grouping the clones according to sequence identity to DNA databases and predicted protein function. The protective clones selected after the tertiary screen were fully sequenced.

Comparison to sequence databases permitted to identify sequence identity to previously reported genes with known function in 152 (43%) of the clones (Table 2).

Fifty seven percent of the sequences were homologous to genes with unknown function or had no significant identity to previously reported sequences (Table 2). Of the clones with sequence identity to genes with known function, 85% were homologous to arthropod sequences. Ninety-three clones (61%) contained sequences homologous to *Drosophila melanogaster*, 5 (3%) to other insects and 32 (21%) to Ixodid tick species. Thirty percent of the clones were eliminated from further analysis based on their sequence identity, including those containing similar sequences (Table 2). The protective clones included antigens homologous to endopeptidases, nucleotidases, chorion proteins, vitellogenin receptors, peptidoglycan recognition proteins, glutamine-alanine rich proteins, ribosomal proteins, and heat-shock proteins.

Summary of results

The results obtained with the various protective clones identified in the Sequence Listing, along with certain selected expressed proteins, are summarized in Table 4.

SEQ ID NO:1 denotes the clone designated 4E6, wherein the relevant protein encoding fragment has been identified as comprising residues 1-117, which encodes the polypeptide shown in SEQ ID NO: 2.

SEQ ID NO:3 denotes the clone designated 4D8, wherein the relevant protein encoding fragment has been identified as comprising residues 80-575, which encodes the polypeptide shown in SEQ ID NO: 4.

SEQ ID NO:5 denotes the clone designated 4F8, wherein the relevant protein encoding fragment has been identified as comprising residues 1-951, which encodes the polypeptide shown in SEQ ID NO: 6.

SEQ ID NO:7 denotes the clone designated 4G11, wherein the relevant protein encoding fragment has been identified as comprising residues 1-697, which encodes the polypeptide shown in SEQ ID NO: 8.

SEQ ID NO:9 denotes the clone designated 4D6, wherein the relevant protein encoding fragment has been identified as comprising residues 198-1025, which encodes the polypeptide shown in SEQ ID NO: 10.

SEQ ID NO:11 denotes the clone designated 3E1, wherein the relevant protein encoding fragment has been identified as comprising residues 3-578, which encodes the polypeptide shown in SEQ ID NO: 12.

SEQ ID NO:13 denotes the clone designated 1C10, wherein the relevant protein encoding fragment has been identified as comprising residues 1-1119, which encodes the polypeptide shown in SEQ ID NO: 14.

SEQ ID NO:15 denotes the clone designated 3E10, wherein the relevant protein encoding fragment has been identified as comprising residues 51-1544, which encodes the polypeptide shown in SEQ ID NO: 16.

SEQ ID NO:17 denotes the clone designated 4F11, wherein the relevant protein encoding fragment has been identified as comprising residues 31-2295, which encodes the polypeptide shown in SEQ ID NO: 18.

SEQ ID NO:19 denotes the clone designated 3C12, wherein the relevant protein encoding fragment has been identified as comprising residues 6-332, which encodes the polypeptide shown in SEQ ID NO: 20.

SEQ ID NO:21 denotes the clone designated 2C12, wherein the relevant protein encoding fragment has been identified as comprising residues 3-137, which encodes the polypeptide shown in SEQ ID NO: 22.

SEQ ID NOS: 22, 23 AND 24, denote, respectively, clones 1A9, 1B2 and 4A4, each comprising a partial sequence with no associated polypeptide.

* * * *

As noted above, the present invention relates to the sequences identified in the Sequence Listing. More generally, the invention concerns the given cDNA sequences and any nucleotide sequence coding for a protein which is capable of eliciting an antibody or other immune response (e.g., T-cell response of the immune system) which recognizes an epitope(s) of the amino acid sequences depicted in the Sequence Listing, including less than the full cDNA sequences and mutants thereof. Hence the nucleotide sequence may encode a protein which is the entire antigen encoded by the variously identified bases, or a fragment or derivative of the antigen or a fusion product of the antigen or fragment and another protein, provided that the protein which is produced from such sequence is capable of eliciting an antibody or other immune response which recognizes an epitope(s) of the given amino acid sequences.

As a result, the invention encompasses DNA sequences which encode for and/or express in appropriate transformed cells, proteins which may be the full length antigen, antigen fragment, antigen derivative or a fusion product of such antigen, antigen fragment or antigen derivative with another protein.

Proteins included within the present invention have an amino acid sequence depicted in the Sequence Listing. Other included proteins consist of a fragment of said sequence capable of eliciting an antibody or other immune response which recognizes an epitope(s) of the amino acid sequences depicted and a mutuant of said sequence capable of eliciting an antibody or other immune response which recognizes an epitope(s) of such amino acid sequences.

The nucleotide sequences may be inserted into any of a wide variety of expression vectors by a variety of procedures. Such procedures and others are deemed to be known by those skilled in the art. Suitable vectors include chromosomal, nonchromosomal and synthetic DNA sequences; e.g., derivatives of SV40; bacterial plasmids; phage DNAs; yeast plasmids; vectors derived from combinations of plasmids and phage DNAs, viral DNA such as baculovirus, vaccinia, adenovirus, fowl pox virus, pseudorabies, etc. The appropriate DNA sequence must be operatively linked in the vector to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned LTR or SV40 promoter, the *E. coli* lac or trp, the phage lambda PL promoter and other promoters known to control expression of genes in prokaryotic and eukaryotic cells or their viruses. The expression vector also includes a non-coding sequence for a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.

The vector containing the appropriate cDNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein. Examples of host organisms and cells include bacterial strains (e.g., *E. coli*, *Pseudomonas*, *Bacillus*, *Salmonella*, etc.), fungi (e.g., yeasts and other fungi), animal or plant hosts (e.g., mouse, swine or animal and human tissue cells). The selection of the host is deemed to be within the scope of those skilled in the art.

It is also understood that the appropriate cDNA sequence present in the vector when introduced into a host may express part or only a portion of the protein which is encoded within the noted terminology, it being sufficient that the expressed protein be

capable of eliciting an antibody or other immune response which recognizes an epitope(s) of the listed amino acid sequences.

The isolated cDNAs and/or polypeptide expressed by the host transformed by the vector may be harvested by methods which will occur to those skilled in the art and used in a vaccine for protection of a mammal, such as a bovine, swine, human, etc., against infestations of *Ixodes* species. Such protective recombinant proteins and/or modified cDNAs are used in an amount effective to induce an immune response against *Ixodes* species ticks and their associated pathogens and may be used in combination with a suitable physiologically acceptable carrier. The term "inducing an immune response" when used with respect to the vaccine described herein means that the vaccine prevents disease associated with a particular tick species or reduces the severity of the disease.

The carrier employed in conjunction with vaccine may be any one of a wide variety of carriers. As representative examples of suitable carriers, there may be mentioned mineral oil, synthetic polymers, etc. Carriers for vaccines are well known in the art and the selection of a suitable carrier is deemed to be within the scope of those skilled in the art. The selection of a suitable carrier is also dependent upon the manner in which the vaccine is to be administered.

The present invention provides a method of immunizing a susceptible mammal, against infestations and disease caused by *Ixodes* species with the vaccine described above. For purposes of this invention, the vaccine is administered in an effective amount. The vaccine may be administered by any of the methods well known to those skilled in the art, for example, by intramuscular, subcutaneous, intraperitoneal or intravenous injection. Alternatively, the vaccine may be administered intranasally or orally. It is also to be understood that the vaccine may

include active components, such as tick-borne pathogen components or adjuvants in addition to the antigen(s) or fragments hereinabove described.

The host expressing the antigen may itself be used to deliver antigen to non-human animals, by introducing killed or viable host cells that are capable of propagating in the animal. Direct incorporation of the cDNA sequences into host cells may also be used to introduce the sequences into animal cells for expression of antigen in vivo.

Bibliography

The following references are incorporated herein by reference:

- Alberti E, Acosta A, Sarmiento ME, Hidalgo C, Vidal T, Fachado A, Fonte L, Izquierdo L, Infante JF, Finlay CM, Sierra G. Specific cellular and humoral immune response in Balb/c mice immunised with an expression genomic library of *Trypanosoma cruzi*. *Vaccine* 1998; 16: 608-12.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. *J Mol Biol* 1990; 215: 403-10.
- Barry MA, Lai WC, Johnston SA. Protection against mycoplasma infection using expression-library immunization. *Nature* 1995; 377: 632-5.
- Black WC 4th, Piesman J. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. *Proc Natl Acad Sci U S A* 1994; 91: 10034-8.
- Brayton KA, Vogel SW, Allsopp BA. Expression library immunization to identify protective antigens from *Cowdria ruminantium*. *Ann N Y Acad Sci* 1998; 849: 369-71.
- Cassataro J, Velikovsky CA, Giambartolomei GH, Estein S, Bruno L, Cloeckaert A, Bowden RA, Spitz M, Fossati CA. Immunogenicity of the *Brucella melitensis* recombinant ribosome recycling factor-homologous protein and its cDNA. *Vaccine* 2002; 20: 1660-9.
- de la Fuente J, Rodriguez M, Redondo M, Montero C, Garcia-Garcia JC, Mendez L, Serrano E, Valdes M, Enriquez A, Canales M, Ramos E, Boue O, Machado H, Leonart R, de Armas CA, Rey S, Rodriguez JL, Artiles M, Garcia L. Field studies and cost-effectiveness analysis of vaccination with Gavac against the cattle tick *Boophilus microplus*. *Vaccine* 1998; 16: 366-73.

- de la Fuente J, Rodriguez M, Montero C, Redondo M, Garcia-Garcia JC, Mendez L, Serrano E, Valdes M, Enriquez A, Canales M, Ramos E, Boue O, Machado H, Leonart R. Vaccination against ticks (*Boophilus* spp.): the experience with the Bm86-based vaccine Gavac. *Genet Anal* 1999; 15: 143-8.
- de la Fuente J, Rodriguez M, Garcia-Garcia JC. Immunological control of ticks through vaccination with *Boophilus microplus* gut antigens. *Ann N Y Acad Sci* 2000; 916: 617-21.
- De Rose R, McKenna RV, Cobon G, Tennent J, Zakrzewski H, Gale K, Wood PR, Scheerlinck JP, Willadsen P. Bm86 antigen induces a protective immune response against *Boophilus microplus* following DNA and protein vaccination in sheep. *Vet Immunol Immunopathol* 1999; 71: 151-60.
- de Vos S, Zeinstra L, Taoufik O, Willadsen P, Jongejan F. Evidence for the utility of the Bm86 antigen from *Boophilus microplus* in vaccination against other tick species. *Exp Appl Acarol* 2001; 25: 245-61.
- Drew DR, Lightowers M, Strugnell RA. Vaccination with plasmid DNA expressing antigen from genomic or cDNA gene forms induces equivalent humoral immune responses. *Vaccine* 1999; 18: 692-702.
- Elad D, Segal E. Immunogenicity in calves of a crude ribosomal fraction of *Trichophyton verrucosum*: a field trial. *Vaccine* 1995; 13: 83-7.
- Estrada-Peña A, Jongejan F. Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. *Exp Appl Acarol* 1999; 23: 685-715.
- Garcia-Garcia JC, Gonzalez IL, Gonzalez DM, Valdes M, Mendez L, Lamberti J, D'Agostino B, Citroni D, Fragoso H, Ortiz M, Rodriguez M, de la Fuente J. Sequence variations in the *Boophilus microplus* Bm86 locus and implications for

immunoprotection in cattle vaccinated with this antigen. *Exp Appl Acarol* 1999; 23: 883-95.

Kofta W, Wedrychowicz H. c-DNA vaccination against parasitic infections: advantages and disadvantages. *Vet Parasitol* 2001; 100: 3-12.

Liyou N, Hamilton S, Elvin C, Willadsen P. Cloning and expression of ecto 5'-nucleotidase from the cattle tick *Boophilus microplus*. *Insect Mol Biol* 1999; 8: 257-66.

Liyou N, Hamilton S, Mckenna R, Elvin C, Willadsen P. Localization and functional studies on the 5'-nucleotidase of the cattle tick *Boophilus microplus*. *Exp Appl Acarol* 2000; 24: 235-46.

Manoutcharian K, Terrazas LI, Gevorkian G, Govezensky T. Protection against murine cysticercosis using cDNA expression library immunization. *Immunol Lett* 1998; 62: 131-6.

Melby PC, Ogden GB, Flores HA, Zhao W, Geldmacher C, Biediger NM, Ahuja SK, Uranga J, Melendez M. Identification of vaccine candidates for experimental visceral leishmaniasis by immunization with sequential fractions of a cDNA expression library. *Infect Immun* 2000; 68: 5595-602.

Moore RJ, Lenghaus C, Sheedy SA, Doran TJ. Improved vectors for expression library immunization--application to *Mycoplasma hyopneumoniae* infection in pigs. *Vaccine* 2001; 20: 115-20.

Mulenga A, Sugimoto C, Onuma M. Issues in tick vaccine development: identification and characterization of potential candidate vaccine antigens. *Microbes Infect* 2000; 2: 1353-61.

Munderloh UG, Wang YLM, Chen C, Kurtti TJ. Establishment, maintenance and description of cell lines from the tick *Ixodes scapularis*. *J Parasitol* 1994; 80: 533-43.

Nuttall PA. Pathogen-tick-host interactions: *Borrelia burgdorferi* and TBE virus.

Zentralbl Bakteriol 1999; 289: 492-505.

Parola P, Raoult D. Tick-borne bacterial diseases emerging in Europe. Clin Microbiol Infect 2001; 7: 80-3.

Silva CL. The potential use of heat-shock proteins to vaccinate against mycobacterial infections. Microbes and Infection 1999; 1: 429-35.

Singh RA, Wu L, Barry MA. Generation of genome-wide CD8 T cell responses in HLA-A*0201 transgenic mice by an HIV-1 ubiquitin expression library immunization vaccine. J Immunol 2002; 168: 379-91.

Smooker PM, Setiady YY, Rainczuk A, Spithill TW. Expression library immunization protects mice against a challenge with virulent rodent malaria. Vaccine 2000; 18: 2533-40.

van Drunen Littel-van den Hurk S, Loehr BI, Babiuk LA. Immunization of livestock with DNA vaccines: current studies and future prospects. Vaccine 2001; 19: 2474-9.

Wikle SK, Ramachandra RN, Bergman DK, Burkot TR, Piesman J. Infestation with pathogen-free nymphs of the tick *Ixodes scapularis* induces host resistance to transmission of *Borrelia burgdorferi* by ticks. Infect Immun 1997; 65: 335-8.

Willadsen P. Novel vaccines for ectoparasites. Vet Parasitol 1997; 71: 209-22.

Willadsen P, Jongejan F. Immunology of the tick-host interaction and the control of ticks and tick-borne diseases. Parasitol Today 1999; 15: 258-62.

Table 1. Primary screen of the *I. scapularis* cDNA library by ELI in mice.

Experimental group ^a	Number of pools screened (Number of clones)	Average±SD number of larvae attached per mouse ^b	Average±SD number of engorged larvae per mouse ^c	Average±SD inhibition of tick infestation (I) ^d	Number of pools selected for the secondary screen
Experiment 1	33 (1383)	50±13 (33-80)	9±3 (2-42)	39±55% (-183 - 87%)	6 (I>75%)
Vector DNA-immunized controls for experiment 1	---	56±13 (45-67)	16±4 (5-27)	---	---
Experiment 2	33 (1322)	56±15 (29-79)	13±4 (1-27)	27±28% (-53 - 89%)	3 (I>60%)
Vector DNA-immunized controls for experiment 2	---	54±18 (36-73)	17±3 (6-28)	---	---

^aNinety six LBA plates containing an average of 41 cDNA clones per plate were prepared. Replicas were made and clones from each plate were pooled, inoculated, grown for 2 hr in a 96 wells plate and plasmid DNA purified from each pool for ELI. Three mice per group were each immunized IM twice with 1 µg DNA/dose in 50 µl PBS two weeks apart. Two groups of 3 mice each were included as controls. One group was injected with vector DNA and the second with saline only.

^bFifteen days after the last immunization, mice were infested with 100 *I. scapularis* larvae per mouse. Twelve hrs later, larvae that did not attach were counted to calculate the number of attached larvae per mouse and mice were transferred to new cages.

^cEngorged larvae dropping from each mouse were collected daily and counted after 7 days.

^dThe inhibition of tick infestation (I) for each test group was calculated with respect to vector-immunized controls as $[1 - (RLn/RLc \times RLic/RLin)] \times 100$, where RLn is the average number of replete larvae recovered per mouse for each test group, RLc is the average number of replete larvae recovered per mouse for control group, RLic is the average number of larvae attached per mouse for control group, and RLin is the average number of larvae attached per mouse for each test group.

Table 2. Classification of the clones in protective pools by putative protein function according to identity to sequence databases.

Putative protein Function	Number of clones
Biosynthetic ^a	2
Catabolism	4
Cell adhesion	2
Cell cycle ^a	2
Cytoskeletal ^a	8
Defense	2
DNA structure or replication ^a	3
Extracellular matrix	3
Endocytosis	2
Energy metabolism	10
Homeostasis	2
Morphogenetic	9
Mitochondrial ^a	34
Protein synthesis or processing ^{a,b}	34
RNA synthesis or processing ^a	7
Heat-shock proteins	4
Signal transduction	16
Transport	8
Unknown	199
Total	351

^aEliminated from further screening of protective antigens. Other clones were eliminated for containing similar sequences.

^bExcept for ribosomal proteins.

Table 3. Grouping of the clones according to the predicted function of encoded proteins in sub-pools for the tertiary screen.

Sub-pool (No. of clones)	Clone	Pool ^a
Ribosomal (17)	1A2, 1A10, 1C11 1F6 2B8 2F8, 2F10 3A10, 2C3, 3D2, 3D10 3G9, 3G10 4D11, 4D12, 4E7, 4F7	A5 D1 A10 E8 B4 E3 F1
Membrane protein (7)	1D8, 1D11, 1E10 2B12 2H5 3C9 3G11	D1 A10 E8 B4 E3
ATPase (6)	1A9, 1B2, 1C9 2C9 4A4 4G12	A5 A10 C3 F1
Cell channel/Transporter (5)	1F4 2H11 4A12 4G10, 4G11	D1 E8 C3 F1
Early development-specific (4)	1C8 3F4 4C7 4G9	A5 E3 C3 F1
G protein-coupled receptor (4)	2B7, 2C12 2F12 4C9	A10 E8 C3
Growth factor receptor (3)	2E8 3B8, 3C8	B5 B4
Lectin (3)	3E10 4B8, 4C8	E3 C3
Vitellogenin (3)	1F12 4A6 4G2	D1 C3 F1
Heat shock (3)	1C10 1F10 3F6	A5 D1 E3
EGF-like (2)	2H4 4C10	E8 C3
Secreted protein (2)	2F9 3C12	E8 B4
Glutamine-Alanine rich (2)	4D6, 4E6	F1
Adaptin (1)	3E1	E3
Endopeptidase (1)	4D8	F1
Nucleotidase (1)	4F8	F1

^acDNA pools refer to positive pools after primary and secondary screens (Fig. 2A and 2B).

Table 4: Summary of results with *I. scapularis* cDNA clones.

cDNA clone	Predicted Protein	Inhibition of tick infestation I (%)	Inhibition of molting M (%)	Efficacy E (%)
4D8	Endopeptidase	40*/54**	7*/8**	44*/58**
4F8	Nucleotidase	50*/64**	17*/-9**	58*/61**
1C10	HSP70	17*	ND	ND
4D6	Glu-Ala-rich	61*	11	66*
4E6	Glu-Ala-rich	20*/46**	16**	55**
3E1	β-adaptin (appendage region)	27*	5*	31*
2C12	Beta-amyloid precursor protein (APP)	-8***	ND	ND
4F11	Block of proliferation Bop1	-39***	ND	ND
3E10	Mannose binding lectin	-48*/-10***	ND	ND
4G11	Chloride channel	38***	30	57
3C12	RNA polymerase III	-104***	ND	ND
1A9, 1B2, 4A4	ATPase	-57***	ND	ND

Mice were immunized with cDNA-containing expression plasmid DNA as described above (*) or with 100 µg/dose of recombinant protein expressed in *E. coli* (**). I, M and E were calculated as described above. ND, not determined.

***Resulted in a pro-feeding activity. This effect could be due to the expression of cDNAs encoding for tick immunosuppressants, anticoagulants and other proteins with low antigenicity and a pro-feeding activity. Alternatively, they could encode for proteins homologous to host proteins with anti-tick activity, which neutralization results in a tick pro-feeding activity.

In view of the above, it will be seen that the several objectives of the invention are achieved and other advantageous results attained. As various changes could be made in the above DNA molecules, proteins, etc. without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. While the invention has been described with a certain degree of particularity, it is understood that the invention is not limited to the embodiment(s) set forth herein for purposes of exemplification, but is to be limited only by the scope of the attached claim or claims, including the full range of equivalency to which each element thereof is entitled.

WHAT IS CLAIMED IS:

1. An isolated cDNA molecule which encodes an *Ixodes* associated antigenic polypeptide, said molecule having a nucleotide sequence comprising at least residues 1-117 of SEQ ID NO: 1.
2. An expression vector comprising the isolated cDNA molecule of claim 1.
3. An isolated cell transformed by the expression vector of claim 2.
4. A vaccine comprising an effective immunizing amount of an immunogen selected from the group consisting of (i) the isolated cDNA molecule of claim 1, (ii) the polypeptide encoded by the isolated cDNA molecule of claim 1, and (iii) a combination of the isolated cDNA molecule of claim 1 and the encoded polypeptide, and further comprising a pharmaceutically acceptable carrier or diluent.
5. A method of inducing an immune response in a mammal against *Ixodes* species ticks and their associated pathogens, comprising administering to the mammal the vaccine of claim 4.
6. The polypeptide encoded by the isolated cDNA molecule of claim 1.
7. An isolated cDNA molecule which encodes an *Ixodes* associated antigenic polypeptide, said molecule having a nucleotide sequence comprising at least residues 80-575 of SEQ ID NO: 3.
8. An expression vector comprising the isolated cDNA molecule of claim 7.
9. An isolated cell transformed by the expression vector of claim 8.
10. A vaccine comprising an effective immunizing amount of an immunogen selected from the group consisting of (i) the isolated cDNA molecule of

claim 7, (ii) the polypeptide encoded by the isolated cDNA molecule of claim 7, and
(iii) a combination of the isolated cDNA molecule of claim 7 and the encoded
polypeptide, and further comprising a pharmaceutically acceptable carrier or diluent.

11. A method of inducing an immune response in a mammal against
Ixodes species ticks and their associated pathogens, comprising administering to the
mammal the vaccine of claim 10.

12. The polypeptide encoded by the isolated cDNA molecule of claim 7.

13. An isolated cDNA molecule which encodes an *Ixodes* associated
antigenic polypeptide, said molecule having a nucleotide sequence comprising at least
residues 10-951 of SEQ ID NO: 5.

14. An expression vector comprising the isolated cDNA molecule of claim
13.

15. An isolated cell transformed by the expression vector of claim 14.

16. A vaccine comprising an effective immunizing amount of an
immunogen selected from the group consisting of (i) the isolated cDNA molecule of
claim 13, (ii) the polypeptide encoded by the isolated cDNA molecule of claim 13,
and (iii) a combination of the isolated cDNA molecule of claim 13 and the encoded
polypeptide, and further comprising a pharmaceutically acceptable carrier or diluent.

17. A method of inducing an immune response in a mammal against
Ixodes species ticks and their associated pathogens, comprising administering to the
mammal the vaccine of claim 16.

18. The polypeptide encoded by the isolated cDNA molecule of claim 13.

19. An isolated cDNA molecule which encodes an *Ixodes* associated
antigenic polypeptide, said molecule having a nucleotide sequence comprising at least
residues 1-697 of SEQ ID NO: 7.

20. An expression vector comprising the isolated cDNA molecule of claim 19.
21. An isolated cell transformed by the expression vector of claim 20.
22. A vaccine comprising an effective immunizing amount of an immunogen selected from the group consisting of (i) the isolated cDNA molecule of claim 19, (ii) the polypeptide encoded by the isolated cDNA molecule of claim 19, and (iii) a combination of the isolated cDNA molecule of claim 19 and the encoded polypeptide, and further comprising a pharmaceutically acceptable carrier or diluent.
23. A method of inducing an immune response in a mammal against *Ixodes* species ticks and their associated pathogens, comprising administering to the mammal the vaccine of claim 22.
24. The polypeptide encoded by the isolated cDNA molecule of claim 19.
25. An isolated cDNA molecule which encodes an *Ixodes* associated antigenic polypeptide, said molecule having a nucleotide sequence comprising at least residues 198-1025 of SEQ ID NO: 9.
26. An expression vector comprising the isolated cDNA molecule of claim 25.
27. An isolated cell transformed by the expression vector of claim 26.
28. A vaccine comprising an effective immunizing amount of an immunogen selected from the group consisting of (i) the isolated cDNA molecule of claim 25, (ii) the polypeptide encoded by the isolated cDNA molecule of claim 25, and (iii) a combination of the isolated cDNA molecule of claim 25 and the encoded polypeptide, and further comprising a pharmaceutically acceptable carrier or diluent.

29. A method of inducing an immune response in a mammal against *Ixodes* species ticks and their associated pathogens, comprising administering to the mammal the vaccine of claim 28.

30. The polypeptide encoded by the isolated cDNA molecule of claim 25.

31. An isolated cDNA molecule which encodes an *Ixodes* associated antigenic polypeptide, said molecule having a nucleotide sequence comprising at least residues 3-578 of SEQ ID NO: 11.

32. An expression vector comprising the isolated cDNA molecule of claim 31.

33. An isolated cell transformed by the expression vector of claim 32.

34. A vaccine comprising an effective immunizing amount of an immunogen selected from the group consisting of (i) the isolated cDNA molecule of claim 31, (ii) the polypeptide encoded by the isolated cDNA molecule of claim 31, and (iii) a combination of the isolated cDNA molecule of claim 31 and the encoded polypeptide, and further comprising a pharmaceutically acceptable carrier or diluent.

35. A method of inducing an immune response in a mammal against *Ixodes* species ticks and their associated pathogens, comprising administering to the mammal the vaccine of claim 34.

36. The polypeptide encoded by the isolated cDNA molecule of claim 31.

37. An isolated cDNA molecule which encodes an *Ixodes* associated antigenic polypeptide, said molecule having a nucleotide sequence comprising at least residues 1-1119 of SEQ ID NO: 13.

38. An expression vector comprising the isolated cDNA molecule of claim 37.

39. An isolated cell transformed by the expression vector of claim 38.

40. A vaccine comprising an effective immunizing amount of an immunogen selected from the group consisting of (i) the isolated cDNA molecule of claim 37, (ii) the polypeptide encoded by the isolated cDNA molecule of claim 37, and (iii) a combination of the isolated cDNA molecule of claim 37 and the encoded polypeptide, and further comprising a pharmaceutically acceptable carrier or diluent.

41. A method of inducing an immune response in a mammal against *Ixodes* species ticks and their associated pathogens, comprising administering to the mammal the vaccine of claim 40.

42. The polypeptide encoded by the isolated cDNA molecule of claim 37.

43. An isolated cDNA molecule which encodes an *Ixodes* associated antigenic polypeptide, said molecule having a nucleotide sequence comprising at least residues 51-1544 of SEQ ID NO: 15.

44. An expression vector comprising the isolated cDNA molecule of claim 43.

45. An isolated cell transformed by the expression vector of claim 44.

46. A vaccine comprising an effective immunizing amount of an immunogen selected from the group consisting of (i) the isolated cDNA molecule of claim 43, (ii) the polypeptide encoded by the isolated cDNA molecule of claim 43, and (iii) a combination of the isolated cDNA molecule of claim 43 and the encoded polypeptide, and further comprising a pharmaceutically acceptable carrier or diluent.

47. A method of inducing an immune response in a mammal against *Ixodes* species ticks and their associated pathogens, comprising administering to the mammal the vaccine of claim 46.

48. The polypeptide encoded by the isolated cDNA molecule of claim 43.

49. An isolated cDNA molecule which encodes an *Ixodes* associated antigenic polypeptide, said molecule having a nucleotide sequence comprising at least residues 31-2295 of SEQ ID NO: 17.

50. An expression vector comprising the isolated cDNA molecule of claim 49.

51. An isolated cell transformed by the expression vector of claim 50.

52. A vaccine comprising an effective immunizing amount of an immunogen selected from the group consisting of (i) the isolated cDNA molecule of claim 49, (ii) the polypeptide encoded by the isolated cDNA molecule of claim 49, and (iii) a combination of the isolated cDNA molecule of claim 49 and the encoded polypeptide, and further comprising a pharmaceutically acceptable carrier or diluent.

53. A method of inducing an immune response in a mammal against *Ixodes* species ticks and their associated pathogens, comprising administering to the mammal the vaccine of claim 52.

54. The polypeptide encoded by the isolated cDNA molecule of claim 49.

55. An isolated cDNA molecule which encodes an *Ixodes* associated antigenic polypeptide, said molecule having a nucleotide sequence comprising at least residues 6-332 of SEQ ID NO: 19.

56. An expression vector comprising the isolated cDNA molecule of claim 55.

57. An isolated cell transformed by the expression vector of claim 56.

58. A vaccine comprising an effective immunizing amount of an immunogen selected from the group consisting of (i) the isolated cDNA molecule of claim 55, (ii) the polypeptide encoded by the isolated cDNA molecule of claim 55,

and (iii) a combination of the isolated cDNA molecule of claim 55 and the encoded polypeptide, and further comprising a pharmaceutically acceptable carrier or diluent.

59. A method of inducing an immune response in a mammal against *Ixodes* species ticks and their associated pathogens, comprising administering to the mammal the vaccine of claim 58.

60. The polypeptide encoded by the isolated cDNA molecule of claim 55.

61. An isolated cDNA molecule which encodes an *Ixodes* associated antigenic polypeptide, said molecule having a nucleotide sequence comprising at least residues 3-137 of SEQ ID NO: 21.

62. An expression vector comprising the isolated cDNA molecule of claim 61.

63. An isolated cell transformed by the expression vector of claim 62.

64. A vaccine comprising an effective immunizing amount of an immunogen selected from the group consisting of (i) the isolated cDNA molecule of claim 61, (ii) the polypeptide encoded by the isolated cDNA molecule of claim 61, and (iii) a combination of the isolated cDNA molecule of claim 61 and the encoded polypeptide, and further comprising a pharmaceutically acceptable carrier or diluent.

65. A method of inducing an immune response in a mammal against *Ixodes* species ticks and their associated pathogens, comprising administering to the mammal the vaccine of claim 64.

66. The polypeptide encoded by the isolated cDNA molecule of claim 61.

67. An isolated cDNA molecule comprising a nucleotide sequence of that shown in SEQ ID NO: 23.

68. An expression vector comprising the isolated cDNA molecule of claim 67.

69. An isolated cell transformed by the expression vector of claim 68.
70. A vaccine comprising an effective immunizing amount of the isolated cDNA molecule of claim 67 and a pharmaceutically acceptable carrier or diluent.
71. A method of inducing an immune response in a mammal against *Ixodes* species ticks and their associated pathogens, comprising administering to the mammal the vaccine of claim 70.
72. An isolated cDNA molecule comprising a nucleotide sequence of that shown in SEQ ID NO: 24.
73. An expression vector comprising the isolated cDNA molecule of claim 72.
74. An isolated cell transformed by the expression vector of claim 73.
75. A vaccine comprising an effective immunizing amount of the isolated cDNA molecule of claim 72 and a pharmaceutically acceptable carrier or diluent.
76. A method of inducing an immune response in a mammal against *Ixodes* species ticks and their associated pathogens, comprising administering to the mammal the vaccine of claim 75.
77. An isolated cDNA molecule comprising a nucleotide sequence of that shown in SEQ ID NO: 25.
78. An expression vector comprising the isolated cDNA molecule of claim 77.
79. An isolated cell transformed by the expression vector of claim 78.
80. A vaccine comprising an effective immunizing amount of the isolated cDNA molecule of claim 77 and a pharmaceutically acceptable carrier or diluent.

81. A method of inducing an immune response in a mammal against *Ixodes* species ticks and their associated pathogens, comprising administering to the mammal the vaccine of claim 80.

FIG. 1

FIG. 2A

FIG. 2B

FIG. 3

Fuente2.ST25.txt
SEQUENCE LISTING

<110> De La Fuente, Jose de Jesus
 Kocan, Katherine M.
 Garcia-Almazan, Consuelo
 Garcia-Garcia, Jose Carlos
 Blouin, Edwin F.

<120> Protective Antigens for the Control of Ixodes Species Infestations

<130> 03-368

<150> 60/376,251

<151> 2002-04-29

<160> 25

<170> PatentIn version 3.2

<210> 1

<211> 349

<212> DNA

<213> Ixodes scapularis

<400> 1

atggaaatat	ctgtgaaaacc	aaggcccaca	aaaaggaaaa	gaaaggccat	catcatcatg	60
------------	-------------	------------	------------	------------	------------	----

gcaagaatga	gaacagcatt	ccccaccaga	agtggaaaca	gcttctcaag	gacttgaaca	120
------------	------------	------------	------------	------------	------------	-----

gttaatgatg	tgttgtgcaa	ttcgaatgtg	gctgcaacct	cgctagagaa	catagtcgac	180
------------	------------	------------	------------	------------	------------	-----

cagctgtagt	gctctagtat	taacccaagaa	gcagtattct	gccgtcataat	gtacaggcag	240
------------	------------	-------------	------------	-------------	------------	-----

atttgttacg	gcattttcag	cttttttta	tacaaaatgt	agttcttggtt	aaaaaaaaac	300
------------	------------	-----------	------------	-------------	------------	-----

ctaaaataaa	acaaagccac	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	349
------------	------------	------------	------------	------------	-----

<210> 2

<211> 38

<212> PRT

<213> Ixodes scapularis

<400> 2

Met Glu Ile Ser Val Lys Pro Arg Pro Thr Lys Arg Lys Arg Ala						
1	5	10	15			

Ile Ile Ile Met Ala Arg Met Arg Thr Ala Phe Pro Thr Arg Ser Gly						
20	25	30				

Asn Ser Phe Ser Arg Thr						
35						

<210> 3

<211> 2693

<212> DNA

<213> Ixodes scapularis

<220>

<221> misc_feature

<222> (685)..(685)

<223> n is a, c, g, or t

Fuente2.ST25.txt

<220>
<221> misc_feature
<222> (1962)..(1962)
<223> n is a, c, g, or t

<400> 3
ggtttgtgct gcttgaaaaa tccaccagga gcctgcaacc gcaaaaaagt tcatacatccg 60
gagctaagcc tatcgagga tggcttgcgc aacattaaag cgaacacacg attgggatcc 120
gctgcatagt ccaaacggaa gatcgcccaa acgacggaga tgtatgcctt tgtcggcac 180
acaaggcagcg actccccaa caagggcaca ccaaataaac ccttcaccct tcggtaagt 240
gccaccgaaa ttaacttcag aggagatgc ggccaacatt cgggaggaaa tgcgacgtct 300
gcagcggcgc aagcagctct gcttctcgctc tcccctggag tcgggctccc cgtcggcgc 360
tccccctgcg gccgattgcg gaccagcctc ccccacgggc ctgtcccccg ggggcctgct 420
gtcgcccgta cgccaggacc aaccctctt cacctccgc caggtgggc tcatactgcga 480
gcgcatgatg aaggagcgcg agagccagat acgcgcacg tacgaccacg ttctgtctgc 540
caagctggca gagcagtacg acacatttgta caagtttacg tacgaccaaa ttcagaagcg 600
gtttgaggggt gccactccaa gctatttgcataacatgat gggcatctgc aaacaagcaa 660
ggaactttga gggtttgc taganggaag aaacccatgg tgggaaagga cacaagacca 720
acacttagac tcggcaagca agccagatcc tgtgggtgc gggacgggg ggaatgagtc 780
cagtgggtgc ttccggagttt tttttttcc ttctcccttt ccctcgctt cttttggca 840
caactctta cggaactgggt gtgcattccat tccccgaaag tgcaagagaa ggactcgccg 900
cgatcatct acggaggaag aagtgtgtat gcctttgc tttgggtctc cttttttttt 960
tttttaaccg tcttgccatc tcgccccataga agacctgtga tctagcaaac aaagggtgtc 1020
gaatgttatg caaagggtgg aagtcaagttt gaaagtggag cgagagaaaa ttttgtatgc 1080
tgagtatgtt tagtcaccgt ttactttca ggagggggat gactgaggaa cggagccgcc 1140
ccaactctcg tttgtctttt attttttagga tactttctct gtggcgagaa tttgtgtgt 1200
catgcaagtt agcgagggtta cgaggaaaag aagggttata aaatattctg ggtgagagct 1260
gtagttcaac tgggggggtgg gattgtaaag acctcgccgtt accgagagga ccgcattgc 1320
tggctatatt acttgcattt agggggagga ggaatgtgg acctcgagca gagccagcaa 1380
gtatTTTgga aaggaataaa aacaaaaatt ggcttagtgt acagatgtat aatatatatg 1440
caactacaggg tgggtgtgcc tcttgcattt tccctgtgt tggcccttc ttgcggctt 1500
cccatctgac aaccgcctgt gtacataggc caacgcaagt cttcagcatg gcacccttt 1560
ctttttccctt tttttttct cataagtaat tttgaaggag agaatatttt gatttctaag 1620
actccaaaaa catcaagtgc tctgggtgtc ggaattctac aagtgcggaa gttccctttct 1680
ttttttgtt tcgagatagg aatggcttca ggttgcgtg cctatgcctt ggccacactt 1740
tggAACACCT gcaacagcga attaactgggt gtggcctgt gacacttgca cagccgttt 1800
ttttttttttt tttttgttag tttgcagta ataaaaactt gttatggaaa gagtgcatta 1860

Fuente2.ST25.txt

tgctatggca ttgtctgctg ctatgcttat tggaatgcat gcctgatgtg tggatgtcctt	1920
gaggatagtg aagtggattt gcagggttgg aaaggagctt anaatgcctt ctggcttttg	1980
cataagcgta gctttgggtg tcgtctgagc ttgtcaatca cagtcaaca tgcactttgt	2040
ccaattggtt tattggggac tgctttttggg tgcagagttt gactaatttt tagtaatgt	2100
tcaaatgcaa cgcttctgtg ttgatcgcag ttcatcaact cgtcgatcat tatgcatgtg	2160
aaaaactgct cacgtaaact gtatgttgc atcacagttt cactgaggaa gcctggctta	2220
agatggtgtg tgcaagtgc tggcacactg cgtatccc agcataaagc tggtagtgc	2280
caggtgctgc tgtagtgc aaactttctg ccattgctgc cacaattcat gcatgaatga	2340
gtgttgggaa gtatgttagt ttatcttttc aaaactgatt tgaagtacca gtgtccctata	2400
tttttgcattt tgcattaata tggatcctgc attgtttacg gaaaaaaagtg ataacattaa	2460
ttatgaaaga tattaagcga gtttattgac tttccagga gaatttagac caggaggcac	2520
tacatagcct gtggctgc ttgttatgtt gacttggttt ttgtggaaat tagttctaaa	2580
agtttacaat cttttggca tgacttgc ttgacttgcat tgtaatttgg ccattattag	2640
aataaaggca ctctctcagt acctaaaaaaaaaaaaaaaaaaa aaa	2693

<210> 4
 <211> 184
 <212> PRT
 <213> Ixodes scapularis
 <400> 4

Met Ala Cys Ala Thr Leu Lys Arg Thr His Asp Trp Asp Pro Leu His
 1 5 10 15

Ser Pro Asn Gly Arg Ser Pro Lys Arg Arg Arg Cys Met Pro Leu Ser
 20 25 30

Val Thr Gln Ala Ala Thr Pro Pro Thr Arg Ala His Gln Ile Asn Pro
 35 40 45

Ser Pro Phe Gly Glu Val Pro Pro Lys Leu Thr Ser Glu Glu Ile Ala
 50 55 60

Ala Asn Ile Arg Glu Glu Met Arg Arg Leu Gln Arg Arg Lys Gln Leu
 65 70 75 80

Cys Phe Ser Ser Pro Leu Glu Ser Gly Ser Pro Ser Ala Thr Pro Pro
 85 90 95

Ala Ala Asp Cys Gly Pro Ala Ser Pro Thr Gly Leu Ser Pro Gly Gly
 100 105 110

Leu Leu Ser Pro Val Arg Arg Asp Gln Pro Leu Phe Thr Phe Arg Gln
 115 120 125

Fuente2.ST25.txt

Val Gly Leu Ile Cys Glu Arg Met Met Lys Glu Arg Glu Ser Gln Ile
 130 135 140

Arg Asp Glu Tyr Asp His Val Leu Ser Ala Lys Leu Ala Glu Gln Tyr
 145 150 155 160

Asp Thr Phe Val Lys Phe Thr Tyr Asp Gln Ile Gln Lys Arg Phe Glu
 165 170 175

Gly Ala Thr Pro Ser Tyr Leu Ser
 180

<210> 5
 <211> 1821
 <212> DNA
 <213> Ixodes scapularis

<220>
 <221> misc_feature
 <222> (1487)..(1487)
 <223> n is a, c, g, or t

<220>
 <221> misc_feature
 <222> (1595)..(1595)
 <223> n is a, c, g, or t

<220>
 <221> misc_feature
 <222> (1606)..(1606)
 <223> n is a, c, g, or t

<220>
 <221> misc_feature
 <222> (1623)..(1623)
 <223> n is a, c, g, or t

<220>
 <221> misc_feature
 <222> (1762)..(1762)
 <223> n is a, c, g, or t

<220>
 <221> misc_feature
 <222> (1789)..(1789)
 <223> n is a, c, g, or t

<400> 5
 atggcgtcgt gtggagcatc agcgacgggt cctctcgcc taagagtaat ttccaacact 60
 gttaaaatag ttaacagcgcg cgaaaaagata atcaaggaca tcatgaacag tggaaacctc 120
 ggaatcgctcg aaaaggaagg catcaatgac ctgcaaacgg aggcagacag atctgttcag 180
 cgctgcattt tgacttcgtc ctcgagacag ttccccaaac tgacaataat tggtaagag 240
 actctggagg agaaaaagat cagcgacgac tggatcatca ccgagcatga caaggatgtc 300
 ctggccactt ctctgccgga caacctgaag aacatcaaag aggaagattt ggtagtctgg 360
 gttgatcctc tggatggaac caaggagtac acacagggtt tcctggacca cgtgacgatc 420

Fuente2.ST25.txt

ctgggtgggga ttgcgggtga cggttaaggca	gtgggtggag tgatccacca	gccgtactac	480
aactaccagg tggagaagga cgtctacaag	cagggacgta ccatgtgggg	cattgtcggc	540
gtcgggtgcct ttgggatctc	gcgcattgcg cctccggaga	acaagaggat catcaactacg	600
acgcgcctccc attccagccc	caccatcaac agctgcattg	aagccatgaa tccggacgag	660
gtgctgcgag ttggagggtgc	cgggcacaag gtgctgctgt	tgattgaggg caaggctcac	720
gcttacgtgt ttcccagcaa	aggggtcaag aaatgggaca	cttgcgcccc cgaagcgatt	780
cttcatgcca ctggcgccct	tcttacagat gttcacggga	acagattgga gtaccacaag	840
gacgtggaac acgtcaatgc	cggcggcggtt	cttgcaccc gcctgaagga acaacacgaa	900
tggttcaaga accacattcc	cgaagatgtc	cgcaagacgc ttcccttatg	960
cgttgtccgt tgcgatcaca	ctcaagtgcgc	gttttccctt taactttgtg	1020
tcaaagtctt atactattag	tgtttggtg	gtccaaatat tattactaaa	1080
gacatgggac aaaaaaaaaat	ggagggggcgg	gacaataagg tctcgaacac	1140
gaattttta aaataatgtt	gatttcaggt	ttatttgtgg aaactctgaa	1200
atgtcattat ttgggttgc	ccgtttgaaa	tttatgaaa tacgtaatag	1260
tttgcaggcc actcagctcc	ttgaatgctc	gatgcttgc	1320
tatctcaagt ttttctacca	caagaaacag	taccctaaca	1380
cttggatttt atctggatg	cataatataag	atctatggat	1440
tttgaacat accctgtcct	taccaacctt	caaacatttt	1500
cacttacatt gcttgcgt	tgaattaatt	tttagctga	1560
attaaggaaa tgagatcgat	cttgcgttg	tttngcctc	1620
canacctaatt gcttaatgca	acaataattt	tcaagtaatc	1680
gcaaggcagat gccaatgctt	ctgttcattt	agtgccaaa	1740
tgcatgcatt tatgacagcc	cnccttaata	aactataatg	1800
aaaaaaaaaaaa aaaaaaaaaa a			1821

<210> 6
<211> 316
<212> PRT
<213> Ixodes scapularis
<400> 6

Met Ala Ser Cys Gly Ala Ser Ala Thr Gly Pro Leu Val Leu Arg Val
1 5 10 15

Ile Ser Asn Thr Val Lys Ile Val Asn Ser Ala Gly Lys Ile Ile Lys
20 25 30

Asp Ile Met Asn Ser Gly Asn Leu Gly Ile Val Glu Lys Glu Gly Ile
35 40 45

Fuente2.ST25.txt

Asn Asp Leu Gln Thr Glu Ala Asp Arg Ser Val Gln Arg Cys Ile Val
50 55 60

Thr Ser Leu Ser Arg Gln Phe Pro Lys Leu Thr Ile Ile Gly Glu Glu
65 70 75 80

Thr Leu Glu Glu Lys Lys Ile Ser Asp Asp Trp Ile Ile Thr Glu His
85 90 95

Asp Lys Asp Val Leu Ala Thr Ser Leu Pro Asp Asn Leu Lys Asn Ile
100 105 110

Lys Glu Glu Asp Leu Val Val Trp Val Asp Pro Leu Asp Gly Thr Lys
115 120 125

Glu Tyr Thr Gln Gly Phe Leu Asp His Val Thr Ile Leu Val Gly Ile
130 135 140

Ala Val Asp Gly Lys Ala Val Gly Val Ile His Gln Pro Tyr Tyr
145 150 155 160

Asn Tyr Gln Val Glu Lys Asp Val Tyr Lys Gln Gly Arg Thr Met Trp
165 170 175

Gly Ile Val Gly Val Gly Ala Phe Gly Ile Ser Arg Ile Ala Pro Pro
180 185 190

Glu Asn Lys Arg Ile Ile Thr Thr Arg Ser His Ser Ser Pro Thr
195 200 205

Ile Asn Ser Cys Ile Glu Ala Met Asn Pro Asp Glu Val Leu Arg Val
210 215 220

Gly Gly Ala Gly His Lys Val Leu Leu Ile Glu Gly Lys Ala His
225 230 235 240

Ala Tyr Val Phe Pro Ser Lys Gly Cys Lys Lys Trp Asp Thr Cys Ala
245 250 255

Pro Glu Ala Ile Leu His Ala Thr Gly Gly Leu Leu Thr Asp Val His
260 265 270

Gly Asn Arg Leu Glu Tyr His Lys Asp Val Glu His Val Asn Ala Gly
275 280 285

Gly Val Leu Ala Thr Cys Leu Lys Glu Gln His Glu Trp Phe Lys Asn
290 295 300

His Ile Pro Glu Asp Val Arg Lys Thr Leu Pro Leu
305 310 315

Fuente2.ST25.txt

<210> 7
<211> 697
<212> DNA
<213> Ixodes scapularis

<220>
<221> misc_feature
<222> (573)..(573)
<223> n is a, c, g, or t

<400> 7		
gacctcaagg aaggcatctg cccgcaggcc ttctggctca acaaggagca gtgttgctgg	60	
gcctccaacg ataccttctt taagggggac gactgcaagc agtggtatcg gtggcccgag	120	
atgttcgaca gcggcatgga caaggacggg gcaggctttt acctgctctc ctacctgctg	180	
tacgtcatgt ggagtgtgct cttcgccacc ctggccgtca tgctcgttcg caccttcgctg	240	
ccctatgcct gtggatctgg aatcccgag atcaagacga ttctgagcgg cttcatcatc	300	
cgggcttacc tgggcaagtg gacgctgacc atcaaatacg tgtgtctggt gctggccgtc	360	
ggggcgggccc tcagcctggg caaagagggg cccctggtgc acgtggcctg ctgcattcggg	420	
aacatcttctt cctacctctt ccccaagtac ggcaagaatg aggccaagaa gagggagatc	480	
ctgtcggctg ccgcccgc gggagtttct gtggcctttg gggctccat cggcgggttt	540	
ctcttcagcc tcgaagaggt gagctactac ttnccttga agacgctgtg gcgttccccc	600	
ttctgcgccc tggtggcagc ctggtgctg cgctccatca acccccttgg caacgaccac	660	
ctggtgatgt tctacgtcga gtacgacttt ccctggc	697	

<210> 8
<211> 232
<212> PRT
<213> Ixodes scapularis

<220>
<221> misc_feature
<222> (191)..(191)
<223> Xaa can be any naturally occurring amino acid

<400> 8

Asp Leu Lys Glu Gly Ile Cys Pro Gln Ala Phe Trp Leu Asn Lys Glu
1 5 10 15

Gln Cys Cys Trp Ala Ser Asn Asp Thr Phe Phe Lys Gly Asp Asp Cys
20 25 30

Lys Gln Trp Tyr Arg Trp Pro Glu Met Phe Asp Ser Gly Met Asp Lys
35 40 45

Asp Gly Ala Gly Phe Tyr Leu Leu Ser Tyr Leu Leu Tyr Val Met Trp
50 55 60

Ser Val Leu Phe Ala Thr Leu Ala Val Met Leu Val Arg Thr Phe Ala
65 70 75 80

Fuente2.ST25.txt

Pro Tyr Ala Cys Gly Ser Gly Ile Pro Glu Ile Lys Thr Ile Leu Ser
85 90 95

Gly Phe Ile Ile Arg Gly Tyr Leu Gly Lys Trp Thr Leu Thr Ile Lys
100 105 110

Ser Val Cys Leu Val Leu Ala Val Gly Ala Gly Leu Ser Leu Gly Lys
115 120 125

Glu Gly Pro Leu Val His Val Ala Cys Cys Ile Gly Asn Ile Phe Ser
130 135 140

Tyr Leu Phe Pro Lys Tyr Gly Lys Asn Glu Ala Lys Lys Arg Glu Ile
145 150 155 160

Leu Ser Ala Ala Ala Ala Gly Val Ser Val Ala Phe Gly Ala Pro
165 170 175

Ile Gly Gly Val Leu Phe Ser Leu Glu Glu Val Ser Tyr Tyr Xaa Pro
180 185 190

Leu Lys Thr Leu Trp Arg Ser Phe Phe Cys Ala Leu Val Ala Ala Ser
195 200 205

Val Leu Arg Ser Ile Asn Pro Phe Gly Asn Asp His Leu Val Met Phe
210 215 220

Tyr Val Glu Tyr Asp Phe Pro Trp
225 230

<210> 9
<211> 1221
<212> DNA
<213> *Ixodes scapularis*

```
<220>
<221> misc_feature
<222> (713)..(713)
<223> n is a, c, g, or t

<400> 9
gtttcttgtt acggtagtgg agtgctgagt ttactcgata atatctgaga aatagtggca 60
atatcaattt ttctgtaaat tagaaatgta accaatggcg tggctatctt ctatgcac 120
ctaacgtctc ggatctgctg ttcaaagtcc cggcgatca agccgtatTT gttgtccagc 180
tgccaagtgc gtcgaatatg atgccaaaaa agaaagaatc agtcgcgagc tctaaagaag 240
acgcgcggat cgacgtgatc ggcctgccc cccacaaaacg acacaagaag cacaaggcaca 300
aaaagcacaa gcgcaagcga ggcacggacc aagacgaaga ccaatcgccc gccgcgagcc 360
cqcaqaqcqq tqqcqaqqqt aqcaqcaqca aqcccgcqct caaqctcaag atcaagatcg 420
```

Fuente2.ST25.txt

gcggacagac	ggtcgagaag	aacgtgacca	agctgaaaca	gcagcggccg	ccgcccgg	480
acccttagcga	agccgatctc	gccgaactcc	tgatgaaacc	caactcggc	gatacgagcg	540
cagacagcga	tgacgaagag	gaagcctggc	tcgaagccct	cgagtccggc	aggctcgaag	600
aggtcgacga	cgagctccgc	aaaatgaagg	acccgaccct	gatgacggcc	aggcagcggg	660
ccctgctcga	gagcaagtcg	cagaaggacg	aggtccccgc	gacggggatg	gcnggcgtcc	720
gcggagcccg	tcaaagagat	gtccgaggag	atgattcagc	ggcggatgct	gcgggcca	780
aagcggaaagc	agcaggccga	agagaagaaa	gagaaggaga	agaagcagac	gatcgagcgt	840
ctgctcaaga	agtccgactc	gaggctgagg	gccagcaaga	agttggccaa	gaagagcgat	900
actcccaagg	tgtcgcttgt	caacacgcag	gcaggcacgc	tgctctcg	tcccgctggc	960
gttgcgttcc	cgctgtcggc	agccgtggcc	cagggttacc	ccgagaagac	gacgtcggc	1020
attaagggtt	gtcgtaaccc	gaagaagtac	tcgtgctcca	agacaggcgt	gcccctgtgc	1080
agcctcgagt	gctacaagac	gaacatgctg	cagatgtgcg	tctgagcggg	cagctaggct	1140
tccgggctac	agctgctcct	tgtgtatatg	tatataaagt	cgagaatgct	aaaaaaa	1200
aaaaaaaaaa	aaaaaaaaaa	a				1221

<210> 10

<211> 275

<212> PRT

<213> Ixodes scapularis

<400> 10

Met	Met	Pro	Lys	Lys	Lys	Glu	Ser	Val	Ala	Ser	Ser	Lys	Glu	Asp	Ala
1					5			10				15			

Pro	Ile	Asp	Val	Ile	Gly	Leu	Pro	Ser	His	Lys	Arg	His	Lys	Asp	His
			20				25			30					

Lys	His	Lys	Lys	His	Lys	Arg	Lys	Arg	Gly	Thr	Asp	Gln	Asp	Glu	Asp
			35				40		45						

Gln	Ser	Pro	Ala	Ala	Ser	Pro	Gln	Ser	Gly	Gly	Glu	Gly	Ser	Ser	Ser
			50				55		60						

Lys	Pro	Ala	Leu	Lys	Leu	Lys	Ile	Lys	Ile	Gly	Gly	Gln	Thr	Val	Glu
			65				70		75			80			

Lys	Asn	Val	Thr	Lys	Leu	Lys	Gln	Gln	Arg	Pro	Pro	Pro	Asp	Pro	
			85				90		95						

Ser	Glu	Ala	Asp	Leu	Ala	Glu	Leu	Leu	Met	Lys	Pro	Asn	Ser	Gly	Asp
			100				105			110					

Thr	Ser	Ala	Asp	Ser	Asp	Asp	Glu	Glu	Glu	Ala	Trp	Leu	Glu	Ala	Leu
			115				120			125					

Fuente2.ST25.txt

Glu Ser Gly Arg Leu Glu Glu Val Asp Asp Glu Leu Arg Lys Met Lys
 130 135 140

Asp Pro Thr Leu Met Thr Ala Arg Gln Arg Ala Leu Leu Glu Ser Lys
 145 150 155 160

Ser Gln Lys Asp Glu Val Pro Ala Thr Gly Met Ala Gly Val Arg Gly
 165 170 175

Ala Arg Gln Arg Asp Val Arg Gly Asp Asp Ser Ala Ala Asp Ala Ala
 180 185 190

Gly Gln Lys Ala Glu Ala Ala Gly Arg Arg Glu Glu Arg Glu Gly Glu
 195 200 205

Glu Ala Asp Asp Arg Ala Ser Ala Gln Glu Val Arg Leu Glu Ala Glu
 210 215 220

Gly Gln Gln Glu Val Gly Gln Glu Glu Arg Tyr Ser Gln Gly Val Ala
 225 230 235 240

Gly Gln His Ala Gly Arg His Ala Ala Leu Val Ser Arg Arg Arg Cys
 245 250 255

Val Pro Ala Val Gly Ser Arg Gly Pro Gly Val Pro Arg Glu Asp Asp
 260 265 270

Val Arg His
 275

<210> 11

<211> 1942

<212> DNA

<213> Ixodes scapularis

<400> 11

cgatgcaggc gatgacgggc tttgcgggtgc agttcaacaa aaacagtttc gggctgactc	60
cagctcagcc gctgcagtgc cagattcccc tgcagcccaa cttcccgact gatgcgagct	120
tgcagctggg aaccaacggt cccgtgcaga agatggaccc cctcaccaac cttcaggtgg	180
ccatcaagaa caatgtggac gtgttctact tcagctgcct ggtgccatg cacgtgctga	240
gcacggagga cggcctgatg gacaagcggg tgttcctggc cacctggaaa gacatccccg	300
cccaaaacga ggtccagtac accctcgaca acgtcaacct cactgcagac caagttccc	360
agaagctgca gaacaacaac attttacgta tagccaagag gaacgtggac ggccaggaca	420
tgctgtacca gtcctgtggc ctcaccaacg gcattttgggt gttggcggag ctcaagatac	480
agcccgccaa tccaaggatc acgttgtctt tgaagacaag agcacctgaa gtggcagcag	540
gtgtacaaca aacttacgaa ctcattctac acagctgagg ctgctgtgaa taaaaactctt	600
ctccccacccc cttcttttga tggcagtcaa tgtctcgaaa cattttcttg ttttcttttg	660

Fuente2.ST25.txt

cggcgtgcta	cggaacaagg	tcctacattc	ccaagttata	tgggttgtc	gcgttaggggg	720
cagagtgccg	ctgagccgc	gacagccttg	tttctgagga	gagccgaacg	caccacttc	780
aaaaaagaaa	agtgaaaacg	aaaaaatgaa	aaattttcca	gttgcttcaa	attaacattc	840
ctcgtagtca	gtctgtggcc	gttgagttt	gtgtaaagaa	aaaaaaggtg	tctcttttag	900
tgaaaatggt	tgcttttat	tggtatcccc	tatcacaccc	agcacgaaca	taagaaaatcc	960
tgacaaggat	tctcctttag	ttgttattatg	gtggctggag	cacacgaggc	acctgttgc	1020
aattcgaccc	agcaaatgcc	caattctcaa	gatttgagtt	cattgagggtt	gttttgctcc	1080
tccccccca	ccccccaact	ttgtcggtgg	attgtctaac	agtgtaaatg	ggcgacgact	1140
cgttattctt	tttttcttca	ttctttcttt	ttgttgcac	gcgcgggggg	ggacgcgaca	1200
caacttatgt	gcataattga	tttcacagg	ctgcacgca	gtctgtaaaa	gaaggggaag	1260
tgaaactctg	ctcccccgc	gctagtgtca	tcacgggacg	accatcgct	tttctctgac	1320
tattnaaaca	aaactgcata	gtttaggggg	cagtctgtgc	aaagtggAAC	accAAactg	1380
agccctgccc	tttcgggtgt	tgtacaagca	tctctgtgt	acatgaacta	ctttacatga	1440
actacattgc	atgaacggga	gaagtttagt	tgtttttt	ttttttttt	caggtgacta	1500
tgtcaacaga	ttagaaccat	tttttggAAC	ggctggaaag	ataaccgctc	attttggttc	1560
tactaaaaga	ctacaaaaag	tgttgacttt	ttgcatcggt	ttggcaacgt	ttgtttggca	1620
tgcgttgt	tgagcgtaat	ggtatcacc	ctcgtaaaca	ataacagtgc	aatggagcag	1680
tactgttgt	tccattaaag	agcgagagtt	tggtaaagg	ttgttaattg	aggtccgtgt	1740
tatcctttga	gtaggagagc	ggcac	tttgcgtgggg	cgtcatatct		1800
gccctccaaa	acatgcacat	tttaagtgt	aattgtgcg	gcggcttgc	caagtatgt	1860
tgttatgtgt	agaaaaaagaa	ctcttaatta	aaatattgt	ggccaaaacg	tcaaaaaaaaaa	1920
aaaaaaaaaa	aaaaaaaaaa	aa				1942

<210> 12

<211> 191

<212> PRT

<213> Ixodes scapularis

<400> 12

Met	Gln	Ala	Met	Thr	Gly	Phe	Ala	Val	Gln	Phe	Asn	Asn	Ser	Phe
1					5				10			15		

Gly	Leu	Thr	Pro	Ala	Gln	Pro	Leu	Gln	Leu	Gln	Ile	Pro	Leu	Gln	Pro
					20			25			30				

Asn	Phe	Pro	Ala	Asp	Ala	Ser	Leu	Gln	Leu	Gly	Thr	Asn	Gly	Pro	Val
						35		40		45					

Gln	Lys	Met	Asp	Pro	Leu	Thr	Asn	Leu	Gln	Val	Ala	Ile	Lys	Asn	Asn
					50			55		60					

Fuente2.ST25.txt

Val Asp Val Phe Tyr Phe Ser Cys Leu Val Pro Met His Val Leu Ser
 65 70 75 80

Thr Glu Asp Gly Leu Met Asp Lys Arg Val Phe Leu Ala Thr Trp Lys
 85 90 95

Asp Ile Pro Ala Gln Asn Glu Val Gln Tyr Thr Leu Asp Asn Val Asn
 100 105 110

Leu Thr Ala Asp Gln Val Ser Gln Lys Leu Gln Asn Asn Asn Ile Phe
 115 120 125

Thr Ile Ala Lys Arg Asn Val Asp Gly Gln Asp Met Leu Tyr Gln Ser
 130 135 140

Leu Lys Leu Thr Asn Gly Ile Trp Val Leu Ala Glu Leu Lys Ile Gln
 145 150 155 160

Pro Gly Asn Pro Arg Ile Thr Leu Ser Leu Lys Thr Arg Ala Pro Glu
 165 170 175

Val Ala Ala Gly Val Gln Gln Thr Tyr Glu Leu Ile Leu His Ser
 180 185 190

<210> 13

<211> 1428

<212> DNA

<213> Ixodes scapularis

<220>

<221> misc_feature

<222> (701)..(701)

<223> n is a, c, g, or t

<400> 13

cgcgccgtgc	agaagctgcg	tcgggagggtt	gagaaggcaa	agaggaccct	gtccactgct	60
------------	------------	-------------	------------	------------	------------	----

caccaggcca	ggatcgagat	tgaatcgttc	ttcgaggag	aggacttcag	tgagaccctg	120
------------	------------	------------	-----------	------------	------------	-----

actctgtcta	agttttagga	gctgaacatg	gacctttcc	gttccaccat	gaagcctgtt	180
------------	------------	------------	-----------	------------	------------	-----

cagaaggta	tcgaggatgg	tgacctcaag	aagactgtat	tggacgagat	tgtgcttgc	240
-----------	------------	------------	------------	------------	-----------	-----

ggaggttcca	ccaggatccc	caaggttcaa	cagctggta	aggagttctt	aatggcaag	300
------------	------------	------------	-----------	------------	-----------	-----

gaacccaccc	gtggcatcaa	ccccgacgaa	gcagtcgcct	acggtgccgc	cgtgcaggct	360
------------	------------	------------	------------	------------	------------	-----

ggagtccctcg	gcggagagga	agacactggg	gacctcgatc	tgttggacgt	gaaccctctg	420
-------------	------------	------------	------------	------------	------------	-----

accctcggtca	tcgagacagt	gggaggcgatc	atgacgaaac	tgttggacgt	taacacagtc	480
-------------	------------	-------------	------------	------------	------------	-----

atccccacga	agaagtctca	gatcttctcc	acggcctcg	acgagcagag	cactgtcacc	540
------------	------------	------------	-----------	------------	------------	-----

atccaggatct	ttgaggggga	gcgtccctcg	acaaaggaca	accaccagct	ggcaagttc	600
-------------	------------	------------	------------	------------	-----------	-----

gacctgactg	gcatcccacc	tgctccctcg	ggtgtcccc	aaatcgaggt	gacccatcg	660
------------	------------	------------	-----------	------------	-----------	-----

attgacgtca	acggtatcct	gcgggtcagt	gcagaggaca	nngtacagg	caacaaggcag	720
------------	------------	------------	------------	-----------	-------------	-----

Fuente2.ST25.txt

aagatcacca	tcaacaatga	ccagaacagg	ctgacgcctg	aggacatcga	gaggatggta	780
aaggacgccc	aaaagtgc	cgacgaggac	aagaaggc	aggagaaggt	ggaggcccgc	840
aacgaactgg	agtcttatgc	ctactccctc	aagaaccaga	ttggagacaa	ggagaagatg	900
ggaggcaagc	tctccgacga	ggacaagaag	actattgagc	aagctgtgga	cgagaaaatc	960
aatggctgg	agcagcacag	tgacgctgat	gcgaaagaac	tcaaggaaca	gaagaaacag	1020
ctggctgata	ctgtcagcc	gattgttagcc	aagctgtacc	ctgcaggagg	caccccacgg	1080
ccgacggaca	aagatgactc	tacaaaggac	gagttgtaaa	aacaaggcca	gatcttttgg	1140
gtacagcgaa	aggcatgggg	cagcagcatt	atcacaagtc	atctgttacg	atcatgagct	1200
catcatttca	ccacccctac	agtgtctg	ctgcctgcct	tttggctgg	tgagtgttct	1260
tggacctatt	taccatgatc	attctctgta	caaaaacaat	tctttctgtg	tttttttttt	1320
tttcgttgta	gttaacttaag	ttatacagat	gtcttctact	gggtgggctt	tctccatgag	1380
ttggaggggg	ctgggtgtca	aataaaagtg	tttctattaa	aaaaaaaa		1428

<210> 14
<211> 372
<212> PRT
<213> Ixodes scapularis

<220>
<221> misc_feature
<222> (234)..(234)
<223> Xaa can be any naturally occurring amino acid

<400> 14

Arg Ala Val Gln Lys Leu Arg Arg Glu Val Glu Lys Ala Lys Arg Thr
1 5 10 15

Leu Ser Thr Ala His Gln Ala Arg Ile Glu Ile Glu Ser Phe Phe Glu
20 25 30

Gly Glu Asp Phe Ser Glu Thr Leu Thr Arg Ala Lys Phe Glu Glu Leu
35 40 45

Asn Met Asp Leu Phe Arg Ser Thr Met Lys Pro Val Gln Lys Val Leu
50 55 60

Glu Asp Gly Asp Leu Lys Lys Thr Asp Val Asp Glu Ile Val Leu Val
65 70 75 80

Gly Gly Ser Thr Arg Ile Pro Lys Val Gln Gln Leu Val Lys Glu Phe
85 90 95

Phe Asn Gly Lys Glu Pro Thr Arg Gly Ile Asn Pro Asp Glu Ala Val
100 105 110

Ala Tyr Gly Ala Ala Val Gln Ala Gly Val Leu Gly Gly Glu Glu Asp
115 120 125

Fuente2.ST25.txt

Thr Gly Asp Leu Val Leu Leu Asp Val Asn Pro Leu Thr Leu Gly Ile
130 135 140

Glu Thr Val Gly Gly Val Met Thr Lys Leu Ile Pro Arg Asn Thr Val
145 150 155 160

Ile Pro Thr Lys Lys Ser Gln Ile Phe Ser Thr Ala Ser Asp Glu Gln
165 170 175

Ser Thr Val Thr Ile Gln Val Phe Glu Gly Glu Arg Pro Leu Thr Lys
180 185 190

Asp Asn His Gln Leu Gly Lys Phe Asp Leu Thr Gly Ile Pro Pro Ala
195 200 205

Pro Arg Gly Val Pro Gln Ile Glu Val Thr Phe Glu Ile Asp Val Asn
210 215 220

Gly Ile Leu Arg Val Ser Ala Glu Asp Xaa Gly Thr Gly Asn Lys Gln
225 230 235 240

Lys Ile Thr Ile Asn Asn Asp Gln Asn Arg Leu Thr Pro Glu Asp Ile
245 250 255

Glu Arg Met Val Lys Asp Ala Glu Lys Phe Ala Asp Glu Asp Lys Lys
260 265 270

Val Lys Glu Lys Val Glu Ala Arg Asn Glu Leu Glu Ser Tyr Ala Tyr
275 280 285

Ser Leu Lys Asn Gln Ile Gly Asp Lys Glu Lys Met Gly Gly Lys Leu
290 295 300

Ser Asp Glu Asp Lys Lys Thr Ile Glu Gln Ala Val Asp Glu Lys Ile
305 310 315 320

Lys Trp Leu Glu Gln His Ser Asp Ala Asp Ala Glu Glu Leu Lys Glu
325 330 335

Gln Lys Lys Gln Leu Ala Asp Thr Val Gln Pro Ile Val Ala Lys Leu
340 345 350

Tyr Pro Ala Gly Gly Thr Pro Pro Pro Thr Asp Lys Asp Asp Ser Thr
355 360 365

Lys Asp Glu Leu
370

<210> 15
<211> 1847

Fuente2.ST25.txt

<212> DNA
 <213> Ixodes scapularis

<220>
 <221> misc_feature
 <222> (1814)..(1814)
 <223> n is a, c, g, or t

<400>	15					
cgacgtgttt	gtgagtgcag	cggtaactg	gacggtgtcg	tggccacgcg	atggcagcgg	60
cggtgatgaa	ctgcctacgg	actgcgcctt	taggcgtct	cgtcgtaaa	ctctacgcca	120
cgcagatagg	tcacccggaaa	ttcagttaca	agtacagttt	caagggaccc	tacctggcgc	180
agaaggatgg	atcggtgcct	ttctgggagt	acggcggcaa	ttgcattgc	agtgaggaga	240
tggttcggat	cacgcctcc	ctgaagagca	agaaaggatc	catctggtcc	aagctgccga	300
catcgttccc	ttggtgggag	gtggagctgg	tgttccgcac	cacgggtacg	ggcaggatag	360
gagctgacgg	cctggccttc	tggtacacag	acaagaagca	ggcggagggt	cctgtcttg	420
gaagcagcga	caagtggact	ggcctggcca	tcttcttcga	ttccttcgac	aatgataaca	480
agcacaacaa	cccatacatc	atgggcatgg	tgaacgatgg	aacaaaagcc	tacgatcatg	540
agagtgacgg	tgccaaccaa	cagctagcgg	gatgccagcg	ggacttccgc	aacaaggcctt	600
accctgtcag	ggccaagata	gaataacttca	acaacattct	cacggtgctg	ttccacaacg	660
gcaacaccaa	caacgacggt	gactacgaga	tgtgttccg	tgcggagaac	gtgttccgc	720
cgaccaacgg	ccactttggg	gtgtccgcgc	ccacgggggg	cctggcagac	gaccacgacg	780
ccctcaagtt	cctgacgacg	agcctgcatg	cggagggcac	gcagccggcc	ctggcccagg	840
gtatggccga	ctcagagaag	gagaagttct	ccaaggagta	tgaagtatac	aaggacaagc	900
tggaaaagca	gaaggaggag	taccggaaga	cgcacccgga	ggaggccgct	aagcaggcca	960
tggagcacgg	ccccgagcag	gcctacgaca	cgcagcagca	gcgcgagctg	cgccagatct	1020
tcgagggcca	gagccacaaa	ttgtttgagg	ggctcaaggc	actgcaccgc	aagctggacg	1080
aggtgctcgg	gcgccaggag	cgcaccctgt	cgctgggtgc	ggctggcggc	gccggcgtgg	1140
ccgtggcgg	tgttccgcca	ccgcagatgg	gtggagtgcc	gtcgctgc	aggcacgaag	1200
cagagtccct	gctgagcagc	cagcgggagc	tgcgtcagac	gttggctcag	gtcaagagct	1260
ttgtggccga	ggtgcatcaa	cgcacggcca	ccctgcaaca	ccagggggcg	ggaggcaccc	1320
agggcctcac	ggccgagcag	ctgcaagtgc	tccaccaggt	gcgggacagc	gtggccagca	1380
tgcacccgga	cgtctccaac	aaccagccgc	agaggactgg	ctgcgcgaca	tcctgtctca	1440
gcactaccca	cttcttgctg	tttgcaacgt	tgcagttggc	tgtcacgctg	ggctacttgg	1500
tgtacaggag	cagcaaagag	gcggcggcca	agaagttcta	ctgagtgcag	atctcgagcc	1560
ttgccttgcc	ctccccctccc	atggagtgg	ccttaacccc	acagactgccc	agaaaccagt	1620
tttgccagag	gagcccccct	cccttcttat	tgggtggggt	gccacagcca	tcacccattc	1680
ttcgagacaa	ggccactgtt	tggggggagg	ggcaagagat	tcatccgggg	tgcgcaacaa	1740

Fuente2.ST25.txt

aacatggccg tacagaggga ggggtgctcc agaactgggt cccagccaca tcgttgcgtg 1800
 ggagcgcctt tctncctcac tctaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaa 1847

<210> 16
<211> 497
<212> PRT
<213> Ixodes scapularis

<400> 16

Met Ala Ala Ala Val Met Asn Cys Leu Arg Thr Ala Leu Leu Gly Ala
 1 5 10 15

Leu Val Val Gln Leu Tyr Ala Thr Gln Ile Gly His Arg Lys Phe Glu
 20 25 30

Tyr Lys Tyr Ser Phe Lys Gly Pro Tyr Leu Ala Gln Lys Asp Gly Ser
 35 40 45

Val Pro Phe Trp Glu Tyr Gly Gly Asn Cys Ile Ala Ser Glu Glu Met
 50 55 60

Val Arg Ile Thr Pro Ser Leu Lys Ser Lys Lys Gly Ser Ile Trp Ser
 65 70 75 80

Lys Leu Pro Thr Ser Phe Pro Trp Trp Glu Val Glu Leu Val Phe Arg
 85 90 95

Thr Thr Gly Thr Gly Arg Ile Gly Ala Asp Gly Leu Ala Phe Trp Tyr
 100 105 110

Thr Asp Lys Lys Gln Ala Glu Gly Pro Val Phe Gly Ser Ser Asp Lys
 115 120 125

Trp Thr Gly Leu Ala Ile Phe Phe Asp Ser Phe Asp Asn Asp Asn Lys
 130 135 140

His Asn Asn Pro Tyr Ile Met Gly Met Val Asn Asp Gly Thr Lys Ala
 145 150 155 160

Tyr Asp His Glu Ser Asp Gly Ala Asn Gln Gln Leu Ala Gly Cys Gln
 165 170 175

Arg Asp Phe Arg Asn Lys Pro Tyr Pro Val Arg Ala Lys Ile Glu Tyr
 180 185 190

Phe Asn Asn Ile Leu Thr Val Leu Phe His Asn Gly Asn Thr Asn Asn
 195 200 205

Asp Gly Asp Tyr Glu Met Cys Phe Arg Ala Glu Asn Val Phe Leu Pro
 210 215 220

Fuente2.ST25.txt

Thr Asn Gly His Phe Gly Val Ser Ala Ala Thr Gly Gly Leu Ala Asp
225 230 235 240

Asp His Asp Ala Leu Lys Phe Leu Thr Thr Ser Leu His Ala Glu Gly
245 250 255

Thr Gln Pro Ala Leu Ala Gln Gly Met Ala Asp Ser Glu Lys Glu Lys
260 265 270

Phe Ser Lys Glu Tyr Glu Val Tyr Lys Asp Lys Leu Glu Lys Gln Lys
275 280 285

Glu Glu Tyr Arg Lys Thr His Pro Glu Glu Ala Ala Lys Gln Ala Met
290 295 300

Glu His Gly Pro Glu Gln Ala Tyr Asp Thr Gln Gln Gln Arg Glu Leu
305 310 315 320

Arg Gln Ile Phe Glu Gly Gln Ser His Lys Leu Phe Glu Gly Leu Lys
325 330 335

Ala Leu His Arg Lys Leu Asp Glu Val Leu Gly Arg Gln Glu Arg Thr
340 345 350

Leu Ser Leu Val Ser Ala Gly Gly Val Ala Val Gly Gly Val
355 360 365

Pro Pro Pro Gln Met Gly Gly Val Pro Ser Leu Gln Arg His Glu Ala
370 375 380

Glu Ser Leu Leu Ser Ser Gln Arg Glu Leu Leu Gln Thr Val Ala Gln
385 390 395 400

Val Lys Ser Phe Val Ala Glu Val His Gln Arg Thr Ala Thr Leu Gln
405 410 415

His Gln Gly Ala Gly Gly Thr Gln Gly Leu Thr Ala Glu Gln Leu Gln
420 425 430

Val Leu His Gln Val Arg Asp Ser Val Ala Ser Met His Arg Asp Val
435 440 445

Ser Asn Asn Gln Pro Gln Arg Thr Gly Cys Ala Thr Ser Cys Leu Ser
450 455 460

Thr Thr His Phe Leu Leu Phe Ala Thr Leu Gln Leu Ala Val Thr Leu
465 470 475 480

Gly Tyr Leu Val Tyr Arg Ser Ser Lys Glu Ala Ala Lys Lys Phe
485 490 495

Fuente2.ST25.txt

Tyr

<210> 17
<211> 2475
<212> DNA
<213> Ixodes scapularis

<220>
<221> misc_feature
<222> (1342)..(1342)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (1388)..(1388)
<223> n is a, c, g, or t

<400> 17		
catcactagt agcgagacac gtgcgtaaaa	atggggccca aaacgctgtc	taagcagccc 60
gctaaaggctt cttcatccac ttccaagcgc accgcccccc	ccacaataag caagcagacg	120
gaggacagcg atgacgaagg gtcaaggcgc gcctactccg	acttgagga ctccgaagga	180
gccgacagca gcgactcgaa cgatttgcg	gacacggagg cgtcgagga	240
gactcccaag acgaagaaaa cacgaagatt actttgactg	tgactacgat	300
gagttgaggg ggaaggacca ggaggcaccc	gtggagtcg gcaaaaggc	360
cggcagcaag aggacgcca ggaggacaga	ggcatggcac	420
tttgactctt ccgacgaaga ggacgttcgc	aacacggtt gcaacattcc	480
tacgagcact atccgcacat cggttatgat	ctggaaaggca agccaatcc	540
cgggttagtg acctggacga cttcctgagg	ttggaggacg	600
gtgaaggaca agagcacggg acaggacg	ttccctgaccg	660
cagaggctgc agaaaggaca gttccccagc	ttccctgactg	720
gacatcttt cgcacgagac catgatccac	acccttacga	780
agcttcgtgc cttcaaggat	gccatggc	840
atgggctgga tcaagccccg	tttccctgtgg	900
gacaaggatg actcgacagc	tttccctgtgg	960
aaagatgaagc tgccgggtca	tttccctgtgg	1020
gaggaagagg aggccaagtg	tttccctgtgg	1080
cccgccaagt acccatgtct	tttccctgtgg	1140
tttgagcgct gtctggatct	tttccctgtgg	1200
gatgcagagg acctgattcc	tttccctgtgg	1260
attcagtcta ttgtctatga	tttccctgtgg	1320
gcgggacagt tctttgcac	tttccctgtgg	1380
acgggcangt gcctcaagaa	tttccctgtgg	1440

Fuente2.ST25.txt

ccagttgtcg ttccccatgaa actctgcgtg gacaagactg tttccatgct ggatgccgga	1500
gttacggaca aactgctgcc gttcaccacg ggacaccgag ttgtctgccc tccccgaaga	1560
gtcctcgggc caggcggcgg tagtggagtg ggagcagacg tcggcctcct ctccagagtt	1620
cctctcccg ggggagcgtc tgccggtcgt tcaccgccc ac ggtgtggtgc aggtgacgtg	1680
gcactcgagg ggagactact ttgccactgt cacggacag ggacaggcca ccgtgcttgt	1740
ccatcagttg tccacgcggc gggttcgcagg ctccccttca gcaaggcga gggcgggttg	1800
tcccggtgc tggtccaccc gctgcgcccc ttccctgtgg tggcgtgcca ggcacagtg	1860
cgggtctacc acctgctcaa gcaggagctg gccaagaggc tcacatccaa ttgcaagtgg	1920
atctcgtgca tgggccgtcc acccccaggta gacaatctgc tgatggcac gtacgagaag	1980
cggctgatgt gggtcgatct ggacctctcg accaaaccgt accagcagct ggcatacac	2040
aatgcgcaca tccgcagtgt ggcgttccat ccgcgtatc cactgtttgc gtccgcggc	2100
gacgatcgca gcgtgatcgt ttgcacggat atggtgtaca atgatttact gcaaaaacca	2160
ctgatcgtgc cactgagacg gctgaagaac catgcacatca gcaagggtat gggtgtttg	2220
gactgcgcct tccatccccca ccagccgtgg atagtcacgg ccggagcaga cagcacgctg	2280
cggctttca cctaagccgg gacgtcgtct ggtgtacata gtgaatcgtc aagaccgtgc	2340
caataaaagg actccacacc taaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaa	2400
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaaa	2460
aaaaaaaaaaa aaaaa	2475

<210> 18
<211> 754
<212> PRT
<213> Ixodes scapularis

<220>
<221> misc_feature
<222> (438)..(438)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> misc_feature
<222> (453)..(453)
<223> Xaa can be any naturally occurring amino acid

<400> 18

Met Gly Pro Lys Thr Leu Ser Lys Gln Pro Ala Lys Ala Ser Ser Ser
1 5 10 15

Thr Ser Lys Arg Thr Ala Gly Pro Thr Ile Ser Lys Gln Thr Glu Asp
20 25 30

Ser Asp Asp Glu Gly Ser Ser Ser Ala Tyr Ser Asp Leu Glu Asp Ser
35 40 45

Fuente2.ST25.txt

Glu Gly Ala Asp Ser Ser Asp Ser Asn Asp Leu Ser Asp Thr Glu Ala
50 55 60

Ser Glu Asp Asp Tyr Asp Asp Ser Gln Asp Glu Glu Asn Thr Lys Ile
65 70 75 80

Thr Leu Thr Gly Val Glu Gly Lys Asp Leu Glu Leu Arg Gly Lys Asp
85 90 95

Gln Glu Ala Pro Val Glu Ser Gly Lys Arg Ser Ala Trp His Arg Gln
100 105 110

Gln Glu Asp Ala Lys Glu Asp Arg Arg Thr Gln Val Val Glu Asp Glu
115 120 125

Tyr Ala Phe Asp Ser Ser Asp Glu Glu Asp Val Arg Asn Thr Val Gly
130 135 140

Asn Ile Pro Leu Glu Trp Tyr Glu His Tyr Pro His Ile Gly Tyr Asp
145 150 155 160

Leu Glu Gly Lys Pro Ile Leu Lys Pro Pro Arg Val Ser Asp Leu Asp
165 170 175

Asp Phe Leu Arg Lys Met Asp Asp Pro Asn Tyr Trp Arg Thr Val Lys
180 185 190

Asp Lys Ser Thr Gly Gln Asp Val Val Leu Thr Asp Glu Asp Val Asp
195 200 205

Leu Ile Gln Arg Leu Gln Lys Gly Gln Phe Pro Ser Ser Thr Thr Asp
210 215 220

Pro Tyr Glu Pro Phe Glu Asp Ile Phe Ser His Glu Thr Met Ile His
225 230 235 240

Pro Val Thr Arg His Pro Pro Gln Lys Arg Ser Phe Val Pro Ser Arg
245 250 255

Ile Glu Lys Ala Met Val Ser Lys Met Val His Ala Ile Lys Met Gly
260 265 270

Trp Ile Lys Pro Arg Val Lys Lys His Asp Pro Glu Arg Phe Ser Leu
275 280 285

Leu Trp Asp Lys Asp Asp Ser Thr Ala Gly Ser Asn Glu Arg Met Gln
290 295 300

Arg His Ile Pro Ala Pro Lys Met Lys Leu Pro Gly His Glu Glu Ser
305 310 315 320

Fuente2.ST25.txt

Tyr Asn Pro Pro Ala Glu Tyr Leu Phe Thr Glu Glu Glu Glu Ala Lys
325 330 335

Trp Arg Glu Gln Glu Pro Glu Glu Arg Arg Ile Asn Phe Leu Pro Ala
340 345 350

Lys Tyr Pro Cys Leu Arg Ala Val Pro Ala Tyr Glu Arg Phe Ile Glu
355 360 365

Glu Arg Phe Glu Arg Cys Leu Asp Leu Tyr Leu Cys Pro Arg Gln Arg
370 375 380

Lys Met Arg Val Asn Val Asp Ala Glu Asp Leu Ile Pro Gln Leu Pro
385 390 395 400

Lys Pro Lys Asp Leu Gln Pro Phe Pro Ser Ile Gln Ser Ile Val Tyr
405 410 415

Glu Gly His Thr Asp Cys Val Leu Cys Leu Ser Leu Glu Pro Ala Gly
420 425 430

Gln Phe Phe Ala Ser Xaa Ser Glu Asp Gly Thr Val Arg Ile Trp Glu
435 440 445

Leu Leu Thr Gly Xaa Cys Leu Lys Phe Gln Phe Glu Ala Pro Val
450 455 460

Lys Ser Val Ala Trp Cys Pro Val Val Val Pro Met Lys Leu Cys Val
465 470 475 480

Asp Lys Thr Val Ser Met Leu Asp Ala Gly Val Thr Asp Lys Leu Leu
485 490 495

Pro Phe Thr Thr Gly His Arg Val Val Cys Pro Pro Arg Arg Val Leu
500 505 510

Gly Pro Gly Gly Ser Gly Val Gly Ala Asp Val Gly Leu Leu Ser
515 520 525

Arg Val Pro Leu Pro Gly Gly Ala Ser Ala Gly Arg Ser Pro Pro Arg
530 535 540

Cys Gly Ala Gly Asp Val Ala Leu Glu Gly Arg Leu Leu Cys His Cys
545 550 555 560

His Gly Arg Gly Thr Gly His Arg Ala Cys Pro Ser Val Val His Ala
565 570 575

Ala Val Arg Arg Leu Pro Phe Ser Lys Ala Lys Gly Gly Val Ser Arg
580 585 590

Fuente2.ST25.txt

Val Leu Phe His Pro Leu Arg Pro Phe Leu Leu Val Ala Cys Gln Arg
595 600 605

Thr Val Arg Val Tyr His Leu Leu Lys Gln Glu Leu Ala Lys Arg Leu
610 615 620

Thr Ser Asn Cys Lys Trp Ile Ser Cys Met Gly Arg Pro Pro Pro Gly
625 630 635 640

Asp Asn Leu Leu Ile Gly Thr Tyr Glu Lys Arg Leu Met Trp Phe Asp
645 650 655

Leu Asp Leu Ser Thr Lys Pro Tyr Gln Gln Leu Arg Ile His Asn Ala
660 665 670

Ala Ile Arg Ser Val Ala Phe His Pro Arg Tyr Pro Leu Phe Ala Ser
675 680 685

Ala Gly Asp Asp Arg Ser Val Ile Val Ser His Gly Met Val Tyr Asn
690 695 700

Asp Leu Leu Gln Asn Pro Leu Ile Val Pro Leu Arg Arg Leu Lys Asn
705 710 715 720

His Ala Ile Ser Lys Gly Met Gly Val Leu Asp Cys Ala Phe His Pro
725 730 735

His Gln Pro Trp Ile Val Thr Ala Gly Ala Asp Ser Thr Leu Arg Leu
740 745 750

Phe Thr

<210> 19
<211> 447
<212> DNA
<213> *Ixodes scapularis*

<400> 19 caaagatgct gctgttctgc ccgacgtgcg ccaacatcct cattgtggaa caaggcttgg 60
agtgcttccg tttcgccctgc aacacatgcc cctacgtgca caacatcaag gcgaagatgt 120
cgaatcgaaa gtacccgcgg ctcaaggacg tggacgacgt gctcgccggt gcagccgcct 180
gggagaatgt tgactcgacc gaagagaagt gccccaaagtg tggccatgag cgggcctatt 240
ttatgcagat ccagactagg tcggccgacg agcccatgac cacttctac aagtgtgcac 300
accagctctg tggccaccag tggagggact gacagatggc ggcttgacg aactcatgcc 360
cgtgcaaaat gcgtcgaaaa gagagagttt tggaaaaaaa catgcgcctt actttcataaa 420
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaa 447

<210> 20

Fuente2.ST25.txt

<211> 108
<212> PRT
<213> Ixodes scapularis
<400> 20

Met Leu Leu Phe Cys Pro Thr Cys Ala Asn Ile Leu Ile Val Glu Gln
1 5 10 15

Gly Leu Glu Cys Phe Arg Phe Ala Cys Asn Thr Cys Pro Tyr Val His
20 25 30

Asn Ile Lys Ala Lys Met Ser Asn Arg Lys Tyr Pro Arg Leu Lys Asp
35 40 45

Val Asp Asp Val Leu Gly Gly Ala Ala Ala Trp Glu Asn Val Asp Ser
50 55 60

Thr Glu Glu Lys Cys Pro Lys Cys Gly His Glu Arg Ala Tyr Phe Met
65 70 75 80

Gln Ile Gln Thr Arg Ser Ala Asp Glu Pro Met Thr Thr Phe Tyr Lys
85 90 95

Cys Cys Asn Gln Leu Cys Gly His Gln Trp Arg Asp
100 105

<210> 21
<211> 1567
<212> DNA
<213> Ixodes scapularis

<220>
<221> misc_feature
<222> (785)..(785)
<223> n is a, c, g, or t

<400> 21	
ccccccaggc gcagggcttc gttcaggtcg accagggggc cctcccccga agccccgagg	60
agcgccacct ggcaagcatg caggtcaatg gatatgagaa ccccacctac aagtacttcg	120
aggccaacac caactgagcg gccacgcccc caggggaggg ggaaaagggg gcggacggac	180
gtatttgtcc tgctgcgggc tgcgggatta gctcgcccc cggtgttccg ggagccagtt	240
ggtttgccctc gcgtttagg agtaggcacg gcctcccttc tgcacccgggt caaggaccat	300
ggtttgttggg gacacgagcg gcgtggggcg cagccagcct gagctttggg tcccggtacc	360
acggcaaacc gtttgttccc acccgcgaa tgaaaatttt gtttgcccta gtttctttcg	420
aatcgagcgt cggccccc tccgacagcc ccgagtcac tctgtctgtt gcgaaagacc	480
aatggagtag ttgacactcg ggtcgagct cgaacaagct cccgtaaaac gctacttaac	540
cggggccggc gaccgagcgt agagcttgct gtgcgtagtt gtggataaaa ctttttttt	600
tttgtgtgtg ctttggtcac agacaatggg cagcttccga cgtagccac gcgccacacg	660

Fuente2.ST25.txt

ctcgcctttg	ttttcttcctt	ctcgccgttg	tcatacttag	tttccattgg	cgggtaaca	720
ttccagtcgg	ggcgggcgcc	cccgttcagg	cgcgtcctga	tcaaaattga	gcatttgggt	780
gtgcngtgc	tttattggcc	gcagcagggg	gttcccgggt	gcacctggtg	tcgtgacacg	840
catgtcgtga	ctttcccctc	agacggtgt	ccttgctcat	ggctcggtca	cacctctagt	900
gctggtagtc	tctgttgctt	aggttttag	gagcacacta	cagcagaggg	tgtcacaag	960
ttttctaagc	tgtatataca	tgaggaaaac	attgcgttgc	acacacgcga	gtttcggcct	1020
gttttttagtt	gggacagtga	acgttttttg	tacaggttat	tatgttagtgc	ctacatttgt	1080
atgtgccagc	tgcgtgtgtt	ttcctgcatt	tggggaaagcc	tccgtctgc	cccgagctgt	1140
gtgcggcccc	tcctgagttt	ccatgtgcca	tgtccccagc	ctagggtgaa	ctgggggtgc	1200
agatgccctt	gcgcacggtg	tgcggggcg	agcattgtgt	gtccgttaggc	catcgacgt	1260
attcatgcga	aattaatgtg	gtcacagctg	tcattgtctc	agtgaacata	tcatatgtcc	1320
aaatttgc	ccctgtcag	tgtgtgcctc	tcttggttct	acactgcct	gcattttgt	1380
tagtttgc	gactgtcctt	ttcggtccca	ggtcgacagc	aggctataac	aacaattccg	1440
gtatttcca	gtatcgggtc	acaccagggt	taacctattg	tgcgttagt	gtaacttgag	1500
tggaaaagct	aaaataaaaaa	tttgcagag	tctcaactaa	aaaaaaaaaa	aaaaaaaaaa	1560
aaaaaaaa						1567

<210> 22
<211> 44
<212> PRT

<213> Ixodes scapularis

<400> 22

Pro Gln Ala Gln Gly Phe Val Gln Val Asp Gln Gly Ala Leu Pro Ala
1 5 10 15

Ser Pro Glu Glu Arg His Leu Ala Ser Met Gln Val Asn Gly Tyr Glu
20 25 30

Asn Pro Thr Tyr Lys Tyr Phe Glu Ala Asn Thr Asn
35 40

<210> 23
<211> 704
<212> DNA
<213> Ixodes scapularis

<220>
<221> misc_feature
<222> (534)..(534)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (598)..(598)
<223> n is a, c, g, or t

Fuente2.ST25.txt

<400>	23					
tgagaaggaca	ctagaggaca	agttcttcga	gcatgaggtg	atgctgaatg	tgaatgcgtt	60
catgcagcag	ttccattccg	gcgttttta	tgcctacgt	aagctgaagg	aacaagagt	120
ccgcaacatt	gtctggattg	ccgaatgcgt	tgctcagcgt	catcggtcca	agatcgataa	180
ctacattcca	atcttctagt	cgctcgagga	aaagaatgg	gccaaattcgg	tagttgtcg	240
gtgtaatata	tatatatata	tatatctact	tcgaaaaatt	cttcagctag	agtgtctatg	300
tctggtagc	tgcgattgtg	cgagagggga	aaaaaatgta	gtcagtggca	tgatcaagga	360
aggaaaaaaaaa	ttggccaata	acttttacct	tttgaagtt	aagcaagggt	taaaataatg	420
tctatttta	cttcgctta	ccgtgtgctg	gctattgctt	tgcaaacgtt	ttttaaaatt	480
tttgcagttc	gtcttccttc	tttgagcac	atatttattc	cagagttcca	atanccttt	540
atgtgtgaat	gaatgactaa	tccatgttgg	ggttggtaa	tggtgcattg	ttgaaaanat	600
aaaccccaac	tccagctggc	ctttggaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	660
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaa		704

<210> 24
<211> 681
<212> DNA
<213> Ixodes scapularis

<220>	
<221>	misc_feature
<222>	(432)..(432)
<223>	n is a, c, g, or t
<220>	
<221>	misc_feature
<222>	(467)..(467)
<223>	n is a, c, g, or t
<220>	
<221>	misc_feature
<222>	(472)..(472)
<223>	n is a, c, g, or t
<220>	
<221>	misc_feature
<222>	(481)..(481)
<223>	n is a, c, g, or t
<220>	
<221>	misc_feature
<222>	(493)..(493)
<223>	n is a, c, g, or t
<220>	
<221>	misc_feature
<222>	(495)..(495)
<223>	n is a, c, g, or t
<220>	
<221>	misc_feature
<222>	(499)..(499)
<223>	n is a, c, g, or t
<220>	

Fuente2.ST25.txt

```
<221> misc_feature
<222> (507)..(507)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (515)..(515)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (518)..(518)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (528)..(528)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (533)..(533)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (547)..(547)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (550)..(550)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (559)..(559)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (565)..(565)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (567)..(567)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (571)..(571)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (586)..(586)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (593)..(593)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (599)..(599)
<223> n is a, c, g, or t
```

Fuente2.ST25.txt

```

<220>
<221> misc_feature
<222> (603)..(603)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (606)..(606)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (611)..(611)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (619)..(619)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (623)..(623)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (625)..(625)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (627)..(627)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (651)..(651)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (658)..(658)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (666)..(666)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (673)..(674)
<223> n is a, c, g, or t

<400> 24
gtcacgggat ttgggaagct gtcgtctgtc gtcctgcagt ttcaaacggt ttcaccaaaa      60
acctttccgt ctcgctgtca gacgccttga accatgactg agttctggct catctcggt      120
ccggggcgaga aaacctgcca acagacttat gacaagctgc tcagcgtcac aagcaacaag      180
cagaacaacc tctcgacctg ctacaagttc caccttccgg acttgaaggt ggttacgctg      240
gatcagttgg ttggcctctc ggatgacttg ggaaagctcg acacctatgt cgaaaggcatc      300
actcgaaaag tggccagcta tctgggggac gtgcttgacg accagaggga caaactagcc      360

```

Fuente2.ST25.txt

gacaacccttc cttgccaatg gcttggggct ggaggcctac ctgaccccg ttttcagtgg	420
gacatggcca antaccccat caagcagttc gcctcaagag catcacntga antcatcagc	480
nagcaagtgt ctnanatng accggtncaa cctcnagnag caagttanct tgnttacaac	540
aaccttnaan aacttaagnt tcaantncat ncgaacccca aatccnccgg ggnaggccng	600
gcnttnttcc ngttagccnt ggncntnacc ttattgcgcc aaggagcca ntgtcncntt	660
gggggntcgg ganntacctt a	681

<210> 25
<211> 720
<212> DNA
<213> Ixodes scapularis

<220>
<221> misc_feature
<222> (488)..(488)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (625)..(625)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (627)..(627)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (631)..(631)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (641)..(641)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (680)..(680)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (692)..(692)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (700)..(700)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (719)..(719)
<223> n is a, c, g, or t

<400> 25
ctctcagcga ctccgacgtc caaaagcaga tcaagcacat gatggcttc atcgaccagg 60

Fuente2.ST25.txt

aagccaacga aaaggcagaa gaagttagacg ccaaggcagg aagaagagtt caacatcgag	120
aagggccgcc tggtcacgga gcaaaggctc aagatcatcg actactacac ccgtcgagag	180
aagcaagttg aactgcagcg caagatccaa agtccaaca tgctgaacca ggcccccgtg	240
aaggtgctga aggccggcga ggaccacatt gcgacggtgc tggaggaggc caagcgccgc	300
ctgggggaca tcaccaggga ccaggctcgc taccagccc tcctgcagag catggttctg	360
caggcactgc ttcagctcct cgagcaggag gtggcgtcc actgcccacc gcaagacgcc	420
gggctgctga acttggacac gctgagtgcc aagttcaagg aggccactgg ccgagaggtc	480
aagctcantg tggagcccg cctggcttcg agcagctgcg gcggagtcga gatgctctcc	540
aggcggggca agattcgcgt ctgcaacacg ctcgagtcgc ggctggacat gattgccctt	600
cagcttctg ccgcagatca agacngncct ntccggcagg nacccccaaac cgcaagttca	660
tggacttaggc gggctattgn ccccgccatt cnggccagtn agcttgacc gtgtttacng	720