

Regresja liniowa

Weronika Piotrowska, Golem 2022

Agenda

- 1. Wprowadzenie
- 2. Regresja liniowa od A do Z
 - 1. Jak zminimalizować MSE?
 - 2. Spadek gradientu
 - 3. Więcej zmiennych
 - 4. Regularyzacja
- 3. Inne rodzaje regresjii
- 4. Kodowańsko

Wprowadzenie

Na podstawie tego

Chcemy przewidzieć to

					"		
No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	X6 longitude	Y house price of unit area
1	2012.917	32	84.87882	10	24.98298	121.54024	37.9
2	2012.917	19.5	306.5947	9	24.98034	121.53951	42.2
3	2013.583	13.3	561.9845	5	24.98746	121.54391	47.3
4	2013.5	13.3	561.9845	5	24.98746	121.54391	54.8
5	2012.833	5	390.5684	5	24.97937	121.54245	43.1
6	2012.667	7.1	2175.03	3	24.96305	121.51254	32.1
7	2012.667	34.5	623.4731	7	24.97933	121.53642	40.3
8	2013.417	20.3	287.6025	6	24.98042	121.54228	46.7
9	2013.5	31.7	5512.038	1	24.95095	121.48458	18.8
10	2013.417	17.9	1783.18	3	24.96731	121.51486	22.1
11	2013.083	34.8	405.2134	1	24.97349	121.53372	41.4
12	2013.333	6.3	90.45606	9	24.97433	121.5431	58.1
13	2012.917	13	492.2313	5	24.96515	121.53737	39.3
14	2012.667	20.4	2469.645	4	24.96108	121.51046	23.8
15	2013.5	13.2	1164.838	4	24.99156	121.53406	34.3
		-					

Wprowadzenie

features target / label

No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	X6 longitude	Y house price of unit area
1	2012.917	32	84.87882	10	24.98298	121.54024	37.9
2	2012.917	19.5	306.5947	9	24.98034	121.53951	42.2
3	2013.583	13.3	561.9845	5	24.98746	121.54391	47.3
4	2013.5	13.3	561.9845	5	24.98746	121.54391	54.8
5	2012.833	5	390.5684	5	24.97937	121.54245	43.1
6	2012.667	7.1	2175.03	3	24.96305	121.51254	32.1
7	2012.667	34.5	623.4731	7	24.97933	121.53642	40.3
8	2013.417	20.3	287.6025	6	24.98042	121.54228	46.7
9	2013.5	31.7	5512.038	1	24.95095	121.48458	18.8
10	2013.417	17.9	1783.18	3	24.96731	121.51486	22.1
11	2013.083	34.8	405.2134	1	24.97349	121.53372	41.4
12	2013.333	6.3	90.45606	9	24.97433	121.5431	58.1
13	2012.917	13	492.2313	5	24.96515	121.53737	39.3
14	2012.667	20.4	2469.645	4	24.96108	121.51046	23.8
15	2013.5	13.2	1164.838	4	24.99156	121.53406	34.3

- 0 **-**4.0
- 1 16.6
- 2 22.6
- 3 28.4
- 4 15.0
- 5 35.8
- 6 32.6
- 7 34.7
- 8 40.8
- 9 9 40.7

$$y = \beta_0 + \beta_1 x$$

Jak znaleźć najlepszą wartość β_0 i β_1 ?

MSE

$$MSE = \frac{1}{n} \sum_{i=0}^{n} ||y_i - f(x_i)||_2^2$$

W tym przypadku możemy to uprościć (Dlaczego?)

$$MSE = \frac{1}{n} \sum_{i=0}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

MSE jako funkcja od β_0 i β_1

• Oś pionowa: MSE

• Osie poziome: β_0 i β_1

$$MSE = \frac{1}{n} \sum_{i=0}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

Znaleźć taką wartość eta_0 i eta_1 żeby MSE była najmniejsza

Pochodne!

$$\frac{\partial MSE}{\partial \beta_0} = \frac{-2}{n} \sum_{i=0}^{n} (y_i - (\beta_0 + \beta_1 x_i))$$

$$\frac{\partial MSE}{\partial \beta_1} = \frac{-2}{n} \sum_{i=0}^{n} x_i (y_i - (\beta_0 + \beta_1 x_i))$$

Spadek gradientu

Spadek gradientu

Learning rate

$$\beta_0 = \beta_0 - \frac{\partial MSE}{\partial \beta_0} \cdot \alpha$$

$$\beta_1 = \beta_1 \, - \, \frac{\partial MSE}{\partial \beta_1} \cdot \alpha$$

Learning rate

Więcej zmiennych

No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	X6 longitude	Y house price of unit area
1	2012.917	32	84.87882	10	24.98298	121.54024	37.9
2	2012.917	19.5	306.5947	9	24.98034	121.53951	42.2
3	2013.583	13.3	561.9845	5	24.98746	121.54391	47.3
4	2013.5	13.3	561.9845	5	24.98746	121.54391	54.8
5	2012.833	5	390.5684	5	24.97937	121.54245	43.1
6	2012.667	7.1	2175.03	3	24.96305	121.51254	32.1
7	2012.667	34.5	623.4731	7	24.97933	121.53642	40.3
8	2013.417	20.3	287.6025	6	24.98042	121.54228	46.7
9	2013.5	31.7	5512.038	1	24.95095	121.48458	18.8
10	2013.417	17.9	1783.18	3	24.96731	121.51486	22.1
11	2013.083	34.8	405.2134	1	24.97349	121.53372	41.4
12	2013.333	6.3	90.45606	9	24.97433	121.5431	58.1
13	2012.917	13	492.2313	5	24.96515	121.53737	39.3
14	2012.667	20.4	2469.645	4	24.96108	121.51046	23.8
15	2013.5	13.2	1164.838	4	24.99156	121.53406	34.3

Więcej zmiennych

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

- Wszystko robimy tak samo tylko dla większej ilości β
- Nie da się zwizualizować ☺

Regularyzacja

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

Jeśli na przykład β_0 = 0.05, β_1 =2 , β_2 =500, to wynik zależy tylko od x_2

Regularyzacja

Zmieniamy troche funkcję straty

$$MSE = \frac{1}{n} \sum_{i=0}^{n} (y_i - pred_i)^2 + \lambda \sum_{j=0}^{m} \beta_j^2$$

$$MSE = \frac{1}{n} \sum_{i=0}^{n} (y_i - pred_i)^2 + \lambda \sum_{j=0}^{m} |\beta_j|$$

Inne modele regresyjne

Regresja wielomianowa

$$y = \beta_0 + \beta_1 x_1 \longrightarrow y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
 ???

Regresja wielomianowa

$$y = \beta_0 + \beta_1 x_1 \longrightarrow y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Regresja wielomianowa

- Bierzemy pod uwagę <u>wszystkie możliwe iloczyny</u> wszystkich x-ów do określonego stopnia wielomianu
- Każdy iloczyn dostaje swój współczynnik β
- Dalej robimy jak w przypadku zwykłej regresji liniowej

