

Sablé-Meyer et al. (2022) found that adults' reaction times and error rates in match-to-sample tasks were predicted by the minimum description length (MDL) of the shape's LOT program This fuses two features of geometric shape representations that are partly independent, format (LOT) and selection (MDL), and uses MDL data to argue for LOT—Highly indirect evidence We report more direct evidence for tree structure in geometric shape representations from three online

experiments with adults

Geometric shape representations in human adults have syntactic structure

Barbu Revencu and Stanislas Dehaene

NeuroSpin Cognitive Neuroimaging Unit | CEA | INSERM | Université Paris-Saclay

Different structured representations can be induced for the same shape

Experiment 1: Structural Ambiguity

Background

We build on the recent proposal that geometric shapes are represented in a language of thought (LOT) consisting of

a handful of primitives that combine to recreate the encoded shape (Sablé-

Meyer et al. 2022)

Subparts are easier to recognize when they belong to the same subtree

Experiment 2: Subtree Facilitation

Experiment 3: Movement Depth

Shapes are easier to reconfigure when they are split higher up in the tree

Samples				Targ	gets	
Shape	Structure	Overlap	Mat	ches	Devia	ants
•		•	Same subtree	Different subtrees	Rotated same	Rotated different
~	/	\ <u></u>	~	_	<	_
★	^ + /	V	_	~		<
$\vdash \!$	├ + ८	→	<	_/	~	
\searrow	✓ + >			<	_	~

Error rates

50 subjects
16 shapes
256 trials
Within-subjects

Error rates

50 subjects 16 shapes 128 trials

Within-subjects

Reaction times **Matches Deviants** 550 36 subjects 500 8 shapes 256 trials *** 450 Within-subjects Tree structure Tree preserved 400 Tree broken Log₂ Chunk Size I Height

Background

We build on the recent proposal that geometric shapes are represented in a language of thought (LOT) consisting of a handful of primitives that combine to recreate the encoded shape (Sablé-Meyer et al. 2022)

Sablé-Meyer et al. (2022) found that adults' reaction times and error rates in match-to-sample tasks were predicted by the minimum description length (MDL) of the shape's LOT program

This fuses two features of geometric shape representations that are partly independent, format (LOT) and selection (MDL), and uses MDL data to argue for LOT—Highly indirect evidence

We report more direct evidence for tree structure in geometric shape representations from three online experiments with adults

Geometric shape representations in human adults have syntactic structure

Barbu Revencu and Stanislas Dehaene

NeuroSpin Cognitive Neuroimaging Unit | CEA | INSERM | Université Paris-Saclay

Experiment 1: Structural Ambiguity

Different structured representations can be induced for the same shape

Samples

-		141.9010				
Shape Structure		Mat	tches	Deviants		
·		Congruent	Incongruent	Modified congruent	Modified incongruent	
	<i>-</i> □ + ∠/			\prod	\mathbf{H}	
	·	\mathbf{H}		\prod	\mathcal{H}	

Targets

Experiment 2: Subtree Facilitation

Subparts are easier to recognize when they belong to the same subtree

Samples

Jailibies				idi	900		
Shape	Structure	Overlap	Matches		Deviants		
·		·	Same subtree	Different subtrees	Rotated same	Rotated different	
~		\ <u></u>	~	_	<	_	
\wedge	+ -	~	~	~		<	
$\vdash \!$	├ + ८	_	<	_/	~	_	
\preceq	∨ + ≯		_	<	_	~	

Targets

Experiment 3: Movement Depth

Shapes are easier to reconfigure when they are split higher up in the tree

<u>Inser</u>

Background

We build on the recent proposal that geometric shapes are represented in a language of thought (LOT) consisting of a handful of primitives that combine to recreate the encoded shape (Sablé-Meyer et al. 2022)

Sablé-Meyer et al. (2022) found that adults' reaction times and error rates in match-to-sample tasks were predicted by the minimum description length (MDL) of the shape's LOT program

This fuses two features of geometric shape representations that are partly independent, format (LOT) and selection (MDL), and uses MDL data to argue for LOT—Highly indirect evidence

We report more direct evidence for tree structure in geometric shape representations from three online experiments with adults

Geometric shape representations in human adults have syntactic structure

Barbu Revencu and Stanislas Dehaene

NeuroSpin Cognitive Neuroimaging Unit | CEA | INSERM | Université Paris-Saclay

Experiment 1: Structural Ambiguity

Different structured representations can be induced for the same shape

Jailibies		laigets				
Shape	Structure	Mat	tches	Dev	iants	
·		Congruent	Incongruent	Modified congruent	Modified incongruent	
	· П ⁺ 2/			\prod	\prod	
	·	\prod	\mathbf{H}	\mathbf{H}	\prod	

Experiment 2: Subtree Facilitation

Subparts are easier to recognize when they belong to the same subtree

Samples				lar	gets		
Shape	Structure	Overlap	Matches [Devia	Deviants	
·		·	Same subtree	Different subtrees	Rotated same	Rotated different	
~		\ <u></u>	~	_	<	_/	
\wedge	^ + ^	~	_	~		<	
$\vdash \!$	├ + ८	~	<	_/	~		
	✓ + >	`	_	<	_	~	

Experiment 3: Movement Depth

Shapes are easier to reconfigure when they are split higher up in the tree

Samples		Targ	gets
Shape	Structure	Matches	Deviants
ليات	Height 3	Tree Tree preserved broken	Tree Tree preserved broken
	Height 2	다. · 다.	۲۰۲۷ ۱ ۲۰۲۷
	Height 1	لہ لہ رکہ	لب لب لب يكب
	Height 0	나 - 다 -	\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}

