CT2 Hair: High-Fidelity 3D Hair Modeling using Computed Tomography

Brynja Schultz CSCI-UA 480

Introduction

- Why does realistic hair matter?
 - Essential for digital humans in video games, social media, and animation
- Challenges
 - Large number of strands
 - Incredible diversity in hair styles and types

Traditional Methods

- Manual Creation
 - Time-consuming
 - Limited by tools
- Image-Based Methods
 - Limited by occlusion

CT2Hair Overview

- Method: Uses computed tomography (CT) for 3D hair modeling
- Coarse-to-Fine Approach
 - Guide strands creation
 - Interpolation for dense strands
 - Optimization for realism
- Significance: Overcomes occlusion to visualize the entire hair structure

CT Scanning & Preprocessing

- CT Scanning
 - Produces 3D density volumes of hair regions
 - Resolution depends on scanner hardware and wig size
 - Initial Challenges
 - Noise and blurriness due to Modulation Transfer Function (MTF)
 - Low contrast between hair and air
- Preprocessing
 - Threshold filtering to remove irrelevant data (eg. air, mannequin head, etc.)
 - Remove hair net
 - Segment strand roots, reconstruct scalp, delete voxels near hair net

From 3D Volume to Guide Strands

- Steps to Create Guide Strands
 - Generate dense point cloud from 3D orientation volumes
 - Filter noise using mean-shift point cloud filtering
 - Connect and extend short hair segments into strands
 - Cluster hair segments into fine strands and poor segments
 - Redirect and grow poor segments alongside fine strands
 - Merge both sets to form guide hair strands

Dense Strand Optimization

- Interpolation
 - Uses neural interpolation to uniformly distribute guide strands across the scalp
- Optimization
 - Aligns dense strands with CT density volumes for accuracy
 - Refines strand structure to create natural wisps and realistic appearance

Results & Applications

- Results
 - First recovery of occluded hair structures
 - Handles diverse hair types
 - Ready for downstream applications
 - Limitations
 - Unsuitable for live humans due to high radiation levels
- Applications
 - Digital Animation
 - Physically-based simulations
 - Game design and rendering

Conclusion

- Introduces a scalable, accurate framework for 3D hair modeling
- Combines CT technology with innovative algorithms to overcome previous limitations
- Revolutionizes digital human representation

