MTH 102A - Linear Algebra - 2015-16-II Semester

Arbind Kumar Lal *

P. Linear Transformations

- Let \mathbb{V}, \mathbb{W} be VS's over \mathbb{F} . A function $T: \mathbb{V} \to \mathbb{W}$ is a linear map/transformation if $T(\boldsymbol{u}+\alpha\boldsymbol{v})=T(\boldsymbol{u})+\alpha T(\boldsymbol{v})$ for each $\boldsymbol{u},\boldsymbol{v}\in\mathbb{V},\,\alpha\in\mathbb{F}$. The class of all linear transformations (LT) from \mathbb{V} to \mathbb{W} is denoted by $\mathcal{L}(\mathbb{V}, \mathbb{W})$.
- Define T(v) = 0 for all $v \in \mathbb{V}$. Then T is a LT from \mathbb{V} to any \mathbb{W} .
- Define T(v) = v for all $v \in V$. Then T is a LT from V to V, called the identity map.
- Fix $A_{m\times n}$. For $\boldsymbol{v}\in\mathbb{C}^n$ define $T(\boldsymbol{v})=A\boldsymbol{v}$. Then $T\in\mathcal{L}(\mathbb{C}^n,\mathbb{C}^m)$.
- Let $\mathbb{V} = \mathbb{R}[x]$ and T(p(x)) = p'(x). Then $T \in \mathcal{L}(\mathbb{V}, \mathbb{V})$.
- For $f \in \mathbb{V} = \mathcal{C}(\mathbb{R}, \mathbb{R})$, define g = T(f) as $g(a) = \int_0^a f(t)dt$. So $[T(\sin t)](a) =$ $\int_0^a \sin t dt = 1 - \cos a. \text{ So } T(\sin t) = 1 - \cos t. \text{ In general } T(\boldsymbol{f} + \alpha \boldsymbol{g}) = F + \alpha G - F(0) - \alpha G(0),$ where $F = \int \mathbf{f}$ and $G = \int \mathbf{g}$. So $T \in \mathcal{L}(\mathbb{V}, \mathbb{V})$.
 - Fix $z \in \mathbb{R}^n$. For $x \in \mathbb{R}^n$ define $T(x) = \langle x, z \rangle$. Then $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$.
- Sometimes we write Tv to mean T(v).
- For $\boldsymbol{x} \in \mathbb{R}^2$ define $T(\boldsymbol{x}) = \begin{bmatrix} x_1 + x_2 \\ 3x_1 \end{bmatrix}$. Then $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$. For $\boldsymbol{x} \in \mathbb{R}^2$ define $T(\boldsymbol{x}) = \begin{bmatrix} x_1x_2 \\ 3x_1 \end{bmatrix}$. Then T is not a LT.
- Let $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$. Then $T(\mathbf{0}) = T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0}) + T(\mathbf{0})$. So $T(\mathbf{0}) = \mathbf{0}$.
- Let $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ s.t. $T(e_1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $T(e_2) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. So $T\begin{bmatrix} x \\ y \end{bmatrix} = xT\begin{bmatrix} 1 \\ 0 \end{bmatrix} + yT\begin{bmatrix} 0 \\ 1 \end{bmatrix} = x\begin{bmatrix} 1 \\ 1 \end{bmatrix} + y\begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} x+y \\ x+3y \end{bmatrix}.$
- Let $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ s.t. $T \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $T(e_2) = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. What is $T \begin{bmatrix} x \\ y \end{bmatrix}$? We have $T(\mathbf{e}_1) = T\left(\begin{bmatrix}1\\1\end{bmatrix} - \begin{bmatrix}0\\1\end{bmatrix}\right) = T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) - T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}-2\\2\end{bmatrix}$. So $T\begin{bmatrix}x\\y\end{bmatrix} = xT(\mathbf{e}_1) + yT(\mathbf{e}_2) = x\begin{bmatrix}-2\\2\end{bmatrix} + y\begin{bmatrix}3\\1\end{bmatrix} = \begin{bmatrix}-2x + 3y\\2x + y\end{bmatrix}$.

^{*}Indian Institute of Technology Kanpur

• Alternate:
$$T\left(\begin{bmatrix}1 & 0\\ 1 & 1\end{bmatrix}\begin{bmatrix}\alpha\\ \beta\end{bmatrix}\right) = T\left(\alpha\begin{bmatrix}1\\ 1\end{bmatrix} + \beta\begin{bmatrix}0\\ 1\end{bmatrix}\right) = \alpha T\begin{bmatrix}1\\ 1\end{bmatrix} + \beta T\begin{bmatrix}0\\ 1\end{bmatrix} = \alpha\begin{bmatrix}1\\ 3\end{bmatrix} + \beta\begin{bmatrix}3\\ 1\end{bmatrix}$$

$$= \begin{bmatrix}1 & 3\\ 3 & 1\end{bmatrix}\begin{bmatrix}\alpha\\ \beta\end{bmatrix} = \begin{bmatrix}T\begin{bmatrix}1\\ 1\end{bmatrix} & T\begin{bmatrix}0\\ 1\end{bmatrix}\begin{bmatrix}\alpha\\ \beta\end{bmatrix}.$$
So, $T\begin{bmatrix}x\\ y\end{bmatrix} = T\left(\begin{bmatrix}1 & 0\\ 1 & 1\end{bmatrix}\begin{pmatrix}\begin{bmatrix}1 & 0\\ 1 & 1\end{bmatrix}^{-1}\begin{bmatrix}x\\ y\end{bmatrix}\right) = \begin{bmatrix}1 & 3\\ 3 & 1\end{bmatrix}\begin{pmatrix}\begin{bmatrix}1 & 0\\ 1 & 1\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}-2x + 3y\\ 2x + y\end{bmatrix}.$

• Let $\{v_1, \ldots, v_n\}$ be a basis of \mathbb{V} and $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$. Then T is determined by $\{Tv_1, \ldots, Tv_n\}$. If we know $\{Tv_1, \ldots, Tv_n\}$, then we know Tv for all $v \in \mathbb{V}$ as $v = \sum \alpha_i v_i \Rightarrow T(v) = \sum \alpha_i T(v_i)$.

Th. Let $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$ and $S \subseteq \mathbb{V}$ be lin.dep. Then T(S) is lin.dep.

Pr. As S is lin.dep, there exist $v_1, \dots, v_k \in \mathbb{V}$, $\alpha_i \neq 0$ s.t. $\sum \alpha_i v_i = \mathbf{0}$. So $\sum \alpha_i T v_i = T(\sum \alpha_i v_i) = T(\mathbf{0}) = \mathbf{0}$. Hence $\{Tv_1, \dots, Tv_k\}$ is lin.dep.

• So T(S) is linearly independent $\Rightarrow S$ is linearly independent.

P. Linear Transformations- Kernel and Range

• Let $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$. Then

the kernel/null space of T is $KER T = \{v \in V | Tv = 0\}$.

The range/image of T is RNG $T = \{Tv : v \in V\}$.

• If $\dim \mathbb{V}$ is finite, we define $\operatorname{RANK} T := \dim \operatorname{RNG} T$; $\operatorname{NULLITY} T := \dim \operatorname{KER} T$.

Ex. Let $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$. Is KER T a subspace of \mathbb{V} ? Is RNG T a subspace of \mathbb{W} ?

• Let $\mathcal B$ be a basis for $\mathbb V$ and $T\in\mathcal L(\mathbb V,\mathbb W)$. Then RNG $T=\operatorname{LS} T(\mathcal B)$.!!

T is determined by $\{T\boldsymbol{v}:\boldsymbol{v}\in\mathcal{B}\}$

• An LT from $\mathbb V$ to $\mathbb V$ is also called a linear operator on $\mathbb V$.

P. Linear Transformations-Ordered basis

- Is $\{v_1 = e_1 e_2, v_2 = e_1 + e_2\}$ a basis of \mathbb{R}^2 ? Ans: Yes.
- Write $\boldsymbol{x} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ as lin.comb of $\boldsymbol{v}_1, \boldsymbol{v}_2$: Ans: $\boldsymbol{x} = \boldsymbol{v}_1 + 3\boldsymbol{v}_2$. Coefficient vector: $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$.
- Which \boldsymbol{x} has coefficient vector $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$? $\boldsymbol{x} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. Here we use the *i*th coefficient for the *i*th basis vector v_i . That is, $\{\boldsymbol{v}_1, \boldsymbol{v}_2\}$ is ordered.
- An ordered basis \mathcal{B} in \mathbb{V} is an 'ordered set' of vectors that form a basis of \mathbb{V} . For finite dimension, it means calling them 1st basis vector, 2nd basis vector, etc.
- Let DIM \mathbb{V} be finite, \mathcal{B} be an ordered basis and $\mathbf{x} \in \mathbb{V}$. The coefficient vector (coordinate matrix) of \mathbf{x} w.r.t \mathcal{B} is denoted by $[\mathbf{x}]_{\mathcal{B}}$.
- In \mathbb{R}^2 , take $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$, $\mathcal{B}' = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$. Let $\boldsymbol{x} = \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \in \mathbb{R}^2$. Then $[\boldsymbol{x}]_{\mathcal{B}} = \frac{1}{2} \begin{bmatrix} x_1 - x_2 \\ x_1 + x_2 \end{bmatrix}$ and $[\boldsymbol{x}]_{\mathcal{B}'} = \frac{1}{2} \begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \end{bmatrix}$. Note that

 $egin{bmatrix} 1 & 1 \ -1 & 1 \end{bmatrix} [m{x}]_{\mathcal{B}} = egin{bmatrix} 1 & 1 \ -1 & 1 \end{bmatrix} rac{1}{2} egin{bmatrix} m{x}_1 - m{x}_2 \ m{x}_1 + m{x}_2 \end{bmatrix} = m{x} ext{ and } egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix} [m{x}]_{\mathcal{B}'} = m{x}.$

• Let $\mathbf{v} \in \mathbb{R}^n$ and $\bar{\mathcal{B}} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be an ordered basis of \mathbb{R}^n . Form a matrix $B = [\mathbf{v}_1 \cdots \mathbf{v}_n]$. Then by definition $B[\mathbf{v}]_{\mathcal{B}} = \mathbf{v}$. We are considering the augmented matrix $[B \mid \mathbf{v}]$ to get the entries of $[\mathbf{v}]_{\mathcal{B}}$.

P. Linear Transformations-Matrix- $[v]_{\mathcal{B}} = B^{-1}v$

Th. Let $\mathbf{v} \in \mathbb{R}^n$ and $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be an ordered basis of \mathbb{R}^n . Put $B = [\mathbf{v}_1 \ \cdots \ \mathbf{v}_n]$ (this is called the basis matrix). Then

 $B[[e_1]_{\mathcal{B}} \cdots [e_n]_{\mathcal{B}}] = [B[e_1]_{\mathcal{B}} \cdots B[e_n]_{\mathcal{B}}] = [e_1 \cdots e_n] = I$. Hence, B is invertible and $[v]_{\mathcal{B}} = B^{-1}v$.

- Let $\mathcal{B} = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_n \}$ be an ordered basis of \mathbb{V} . Let $\mathcal{B}' = \{ \boldsymbol{w}_1, \dots, \boldsymbol{w}_m \}$ be an ordered basis of \mathbb{W} and $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$.
- Let A be a matrix s.t. $A[\boldsymbol{v}]_{\mathcal{B}} = [T\boldsymbol{v}]_{\mathcal{B}'}$ for each $\boldsymbol{v} \in \mathbb{V}$. Then 'in some sense' A takes \boldsymbol{v} to $T\boldsymbol{v}$. So we call A a coordinate matrix of T.
- Note: $A(:,i) = Ae_i = A[v_i]_{\mathcal{B}} = [Tv_i]_{\mathcal{B}'}$, by definition. So A is unique.
- We denote the coordinate matrix of T by $T[\mathcal{B}, \mathcal{B}']$ or simply by [T].
- When there is no mention of basis, we take the standard basis.

Example. Take $T\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \end{bmatrix}$ on \mathbb{R}^2 .

- a) Then $[T] = \begin{bmatrix} Te_1 \end{bmatrix}$ $[Te_2] = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
- b) On the image space take the ordered basis $\mathcal{B}' = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$.

Then
$$[T] = \begin{bmatrix} [Te_1]_{\mathcal{B}'} & [Te_2]_{\mathcal{B}'} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{\mathcal{B}'} & \begin{bmatrix} 1 \\ -1 \end{bmatrix}_{\mathcal{B}'} \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix}.$$

c) In b) take $\mathcal{B} = \left\{ \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} 3\\1 \end{bmatrix} \right\}$ as the ordered basis of domain.

Then
$$[T] = \left[\begin{bmatrix} T \begin{bmatrix} -1 \\ 1 \end{bmatrix} \end{bmatrix}_{\mathcal{B}'} \begin{bmatrix} T \begin{bmatrix} 3 \\ 1 \end{bmatrix} \end{bmatrix}_{\mathcal{B}'} \right] = \left[\begin{bmatrix} 0 \\ -2 \end{bmatrix}_{\mathcal{B}'} \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{\mathcal{B}'} \right] = \begin{bmatrix} 2 & 2 \\ -2 & 2 \end{bmatrix}.$$

- Fix $A \in \mathcal{M}_n(\mathbb{C})$. Take $T \in \mathcal{L}(\mathbb{C}^n, \mathbb{C}^n)$ defined as $T\mathbf{x} = A\mathbf{x}$. Let \mathcal{B} be the standard basis in \mathbb{C}^n . Put B = [T]. Then $B(:,i) = [T\mathbf{e}_i]_{\mathcal{B}} = [A\mathbf{e}_i]_{\mathcal{B}} = [A(:,i)]_{\mathcal{B}} = A(:,i)$. Is this a bijection?
- Fix $A \in \mathcal{M}_n(\mathbb{C})$. Define $T \in \mathcal{L}(\mathbb{C}^n, \mathbb{C}^n)$ as $T\mathbf{x} = A\mathbf{x}$. Take ordered bases $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ on the domain and $\mathcal{B}' = \{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ on the range. Let B and B' be the respective basis matrices. Then

$$[T] = \begin{bmatrix} [T\boldsymbol{v}_1]_{\mathcal{B}'} & \cdots & [T\boldsymbol{v}_n]_{\mathcal{B}'} \end{bmatrix} = \begin{bmatrix} B'^{-1}T\boldsymbol{v}_1 & \cdots & B'^{-1}T\boldsymbol{v}_n \end{bmatrix} = \begin{bmatrix} B'^{-1}A\boldsymbol{v}_1 & \cdots & B'^{-1}A\boldsymbol{v}_n \end{bmatrix} = B'^{-1}A\begin{bmatrix} \boldsymbol{v}_1 & \cdots & \boldsymbol{v}_n \end{bmatrix} = B'^{-1}AB.$$

• In particular, if $\mathcal{B} = \mathcal{B}'$, then we have $[T] = B^{-1}AB$.

• Let $\mathbb{V} = \mathbb{R}[t;3]$ and $\mathbb{W} = \mathbb{R}[t;2]$. Take $\mathcal{B} = \{1,t,t^2,t^3\}$ on \mathbb{V} and $\mathcal{B}' = \{1,t,t^2\}$ on \mathbb{W} . Take $T: \mathbb{V} \to \mathbb{W}$ defined as T(f) = f', differentiation transformation. Then

$$\begin{split} &[T] = \begin{bmatrix} [T1]_{\mathcal{B}'} & [Tt]_{\mathcal{B}'} & [Tt^2]_{\mathcal{B}'} & [Tt^3]_{\mathcal{B}'} \end{bmatrix} \\ &= \begin{bmatrix} [0]_{\mathcal{B}'} & [1]_{\mathcal{B}'} & [2t]_{\mathcal{B}'} & [3t^2]_{\mathcal{B}'} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}. \end{split}$$

• General: let $\mathcal{B} = \{v_1, \dots, v_n\}, \ \mathcal{B}' = \{\tilde{\boldsymbol{w}}_1, \dots, \boldsymbol{w}_m\}$ be ordered bases in \mathbb{V} and \mathbb{W} with

basis matrices
$$B$$
 and B' , respectively. Let $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$. Then $Tv = T \sum \alpha_i v_i = \sum \alpha_i T v_i$

$$= [Tv_1 \quad \cdots \quad Tv_n] \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = [w_1 \quad \cdots \quad w_m][[Tv_1]_{\mathcal{B}'} \quad \cdots \quad [Tv_n]_{\mathcal{B}'}] \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = [w_1 \quad \cdots \quad w_m]T[\mathcal{B}, \mathcal{B}'][v]_{\mathcal{B}} = B'[T][v]_{\mathcal{B}} = B'[T]B^{-1}v \qquad (R1)$$

• Fix $A \in \mathcal{M}_{m \times n}(\mathbb{R})$, bases \mathcal{B} in \mathbb{R}^n and \mathcal{B}' in \mathbb{R}^m . Then there exists $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ s.t.

[T] = A. Let B be the matrix of \mathcal{B} and B' be that of \mathcal{B}' . Then by (R1)

$$T\mathbf{v} = B'A[\mathbf{v}]_{\mathcal{B}} = B'AB^{-1}\mathbf{v}. \tag{R2}$$

• On \mathbb{R}^2 take $\mathcal{B} = \left\{ \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} 3\\1 \end{bmatrix} \right\}$ and $\mathcal{B}' = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$. Take $A = \begin{bmatrix} 2 & 2\\-2 & 2 \end{bmatrix}$.

• Then the associated linear transformation is $T\boldsymbol{x} = B'A[\boldsymbol{x}]_{\mathcal{B}} = B'AB^{-1}\boldsymbol{x} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} 2 & 2 \\ -2 & 2 \end{vmatrix} \begin{vmatrix} -\frac{1}{4} & \frac{3}{4} \\ \frac{1}{4} & \frac{1}{4} \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = 0$ $\begin{vmatrix} 0 & 4 \\ -2 & 2 \end{vmatrix} \begin{vmatrix} -\frac{1}{4} & \frac{3}{4} \\ \frac{1}{4} & \frac{1}{4} \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}.$

P. Composition of Linear Transformations-Matrix Product

Ex. Let $\mathbb{U}, \mathbb{V}, \mathbb{W}$ be VS's over \mathbb{F} . Let $T \in \mathcal{L}(\mathbb{U}, \mathbb{V})$ and $S \in \mathcal{L}(\mathbb{V}, \mathbb{W})$. Define composition $ST: \mathbb{U} \to \mathbb{W}$ as $(ST)(\boldsymbol{x}) = S(T(\boldsymbol{x}))$. Then, ST is a linear transformation.

Now, let $\mathcal{B}, \mathcal{B}_1$ and \mathcal{B}_2 be bases of \mathbb{U}, \mathbb{V} and \mathbb{W} , respectively. Then, by definition $[ST(\boldsymbol{x})]_{\mathcal{B}_2} = ST[\mathcal{B}, \mathcal{B}_2][\boldsymbol{x}]_{\mathcal{B}}.$

Also,

$$[ST(\boldsymbol{x})]_{\mathcal{B}_2} = [S(T(\boldsymbol{x}))]_{\mathcal{B}_2} = S[\mathcal{B}_1, \mathcal{B}_2][T(\boldsymbol{x})]_{\mathcal{B}_1} = S[\mathcal{B}_1, \mathcal{B}_2]T[\mathcal{B}, \mathcal{B}_1][\boldsymbol{x}]_{\mathcal{B}}.$$

Hence, for all $x \in \mathbb{U}$, we have

$$ST[\mathcal{B}, \mathcal{B}_2][x]_{\mathcal{B}} = S[\mathcal{B}_1, \mathcal{B}_2]T[\mathcal{B}, \mathcal{B}_1][x]_{\mathcal{B}}.$$

Thus,

$$ST[\mathcal{B}, \mathcal{B}_2] = S[\mathcal{B}_1, \mathcal{B}_2]T[\mathcal{B}, \mathcal{B}_1].$$