SYSEN 6000: Foundations of Complex Systems

Non-Linear Dynamics & Chaos

Nick Kunz [NetID: nhk37] nhk37@cornell.edu

October 21, 2022

SIR Model

The Susceptible, Infected, and Removed (SIR) Model is commonly applied in epidemiology to model disease transmission. It can be expressed as:

$$S' = -\alpha \cdot SI$$

$$I' = \alpha \cdot SI - \beta I$$

$$R' = \beta I$$
(1)

When n = 800, $\alpha = 2.2 \cdot 10^{-3}$, and $\beta = 0.4$, the phase plane solution can be illustrated as:

Figure 1: SIR Model General Application

Computing ρ , when $\rho = \beta/\alpha$, we see that:

$$\rho = 0.4/2.2 \cdot 10^{-3}
= 181.82$$
(2)

In the English Boarding School case of 1978, when n=1,000, the phase plane solution can be illustrated as:

Figure 2: SIR Model English Boarding School House of 1978

The SIR Model could exhibit chaos like below by changing variables in higher dimensions (1) (2).

Chaos Theory

Considering the Rossler model for chemical reactions, the dynamics can be represented by dimensions X, Y, Z, which have quadratic non-linearity similar to the SIR model and can be expressed as:

$$X' = -(Y + Z)$$

$$Y' = X + \alpha Y$$

$$Z' = \beta + (X - c)Z$$
(3)

Integrating through the first two period doubling of the Rossler model can be illustrated as:

Figure 3: Rossler's Model Phase Space (3)

Fractal Geometry

The "Sierpinksi Carpet" begins with a square and is divided into nine sub-squares. The central square is removed and repeated for each of the remaining sub-squares.

It's dimension can be expressed simply as:

$$-\lim_{m \to \infty} \frac{\log N(\epsilon_m)}{\log \epsilon_m} = -\lim_{m \to \infty} = \frac{m \log 8}{m \log 3} = \frac{\log 8}{\log 3}$$
 (4)

and can be illustrated as such:

References

- [1] P. G. Barrientos, J. Á. Rodríguez, and A. Ruiz-Herrera, "Chaotic Dynamics in the Seasonally Forced SIR Epidemic Model," *Journal of Mathematical Biology*, vol. 75, no. 6, pp. 1655–1668, 2017.
- [2] H. L. Smith, "Subharmonic Bifurcation in an S-I-R Epidemic Model," *Journal of Mathematical Biology*, vol. 17, no. 2, pp. 163–177, 1983.
- [3] F. C. Moon, *Chaotic and Fractal Dynamics*. Nashville, Tennessee: John Wiley & Sons, 2 ed., Oct. 1992.

Appendix

1. SIR Model

```
## libraries
2 import numpy as np
3 import pandas as pd
4 import matplotlib.pyplot as plt
5 from scipy.integrate import odeint
7 ## params
8 n = 1000
9 alpha = 0.002
10 \text{ beta} = 0.4
12 ## init
13 i = 1
14 s = n - i
15 r = 0
t_max = 30
17 t = np.linspace(0, t_max, t_max + 1)
18
19 ## sir model
def sir_der(y, t, alpha, beta):
       s, i, r = y
22
      ds_dt = -alpha * s * i
di_dt = alpha * s * i - beta * i
23
24
       dr_dt = beta * i
25
       return [ds_dt, di_dt, dr_dt]
27
29 ## derive
y = s, i, r
res = odeint(sir_der, y, t, args = (alpha, beta))
32 s, i, r = res.T
34 ## plot
35 plt.figure()
36 plt.grid()
plt.plot(t, s, 'orange', label = 'Susceptible')
plt.plot(t, i, 'r', label = 'Infected')
plt.plot(t, r, 'green', label = 'Recovered')
40 plt.xlabel('Days')
plt.ylabel('Numbers of Individuals')
plt.ylim([0, n])
plt.legend()
44 plt.show()
```

Python 3: SIR Model for English Boarding School House of 1978

2. Rossler Model

```
## libraries
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from mpl_toolkits.mplot3d import Axes3D
6 ## dynamics
def rossler(x, y, z, a, b, c):
      x_dot = -(y + z)
9
     y_dot = x + a * y
10
      z_{dot} = b + (x - c) * z
11
12
      return x_dot, y_dot, z_dot
13
14
15 ## differ rate
def rossler_differ(step, dt):
17
18
      xs = np.empty((step + 1,))
      ys = np.empty((step + 1,))
19
      zs = np.empty((step + 1,))
20
21
      xs[0], ys[0], zs[0] = (1.0, 1.0, 1.0)
22
23
      for i in range(0, step):
24
          x_dot, y_dot, z_dot = rossler(
              x = xs[i],
26
27
               y = ys[i],
               z = zs[i],
28
               a = 0.35,
29
               b = 2.00,
               c = 4.00
31
32
33
         xs[i+1] = xs[i] + (x_dot * dt)
34
          ys[i+1] = ys[i] + (y_dot * dt)
          zs[i+1] = zs[i] + (z_dot * dt)
36
37
38
      return xs, ys, zs
39
40 ## comp traj
41 xs, ys, zs = rossler_differ(
42
       step = 100000,
      dt = 0.001
43
44 )
45
46 ## plot
47 fig = plt.figure()
48 ax = Axes3D(fig)
49 ax.plot(xs, ys, zs, lw = 1)
50 ax.set_xlabel('x')
ax.set_ylabel('y')
52 ax.set_zlabel('z')
53 plt.show()
```

Python 3: Rossler Model for Chemical Reactions

3. Fractal Geometry

```
## libraries
2 import numpy as np
3 import matplotlib.pyplot as plt
5 ## make square
6 def square(x, y, len, img):
     for i in range(x, x + len):
          for j in range(y, y + len):
               img[i, j] = 0
9
10
      return img
11
12
13 # ## sierpinski carpet
def sierp_carpet(lev = 4):
15
      len = 3 ** lev
16
17
18
      img_sq = np.full(
        shape = (len, len),
19
          fill_value = 1
20
21
22
23
      len_i = lev + 1
      for i in range(1, len_i):
24
         len_sq = int(
              len / (3**i)
26
27
28
         len_j = 3 ** i
29
         for j in range(0, len_j, 3):
              x_j = int(
31
32
                   (j + 1) * len_sq
33
34
              len_k = 3 ** i
35
              for k in range(0, len_k, 3):
36
37
                  y_k = int(
                       (k + 1) * len_sq
38
39
40
                   img_sq = square(
41
                       x = x_j,

y = y_k,
42
43
                       len = len_sq,
44
                       img = img_sq
45
46
47
      return img_sq
48
49
50 ## make carpet
51 carpet = sierp_carpet()
53 ## plot
54 plt.axis('off')
plt.imshow(carpet, cmap = 'Reds')
56 plt.show()
```

Python 3: Fractal Geometry for Sierpenski Carpet