A Web Services Based Architecture for Biomedical Applications

Sriram Krishnan sriram@sdsc.edu

Goals

- Enabling integration across multi-scale biomedical applications
- Leveraging geographically distributed, disparate computational and data resources

Modeling and Analysis Across Scales

Organisms
Organ
Tissue
Cell

Subcellular

Macromolecular

Molecule

Atom

NBCR Tools Integrate Data, Construct Models and Perform Analysis across Scales

Computational Infrastructure for Multiscale Modeling

Set of Biomedical Applications

Infrastructure

Computational Grid

Rich Clients

Web Portals

Web Services

APBSCommand

PMV ADT Vision

Continuity

Telescience Portal

Workflow Middleware

Requirements

- Making biomedical applications Gridaware
 - Remote execution on Grid resources
 - Use of Grid-based schedulers
 - Support for multiple concurrent users
 - Access via disparate user interfaces
 - Use of standards-based security mechanisms
- Integration across multi-scale applications via the use of Workflow tools

Towards a Services Oriented Architecture

- Applications are wrapped as services
 - Provide transparent execution on Grid resources
 - Users are free to use clients of their choice
 - Multiple standards-based security alternatives to choose from
- Services exchange strongly typed data defined using XML schemas
 - Aids in the creation of complex workflows

Talk Outline

- Motivation for a Services Oriented Architecture
- Overall end-to-end architecture
- Technical Details and Challenges
- Sample User Interfaces
- Status and Evaluation
- Conclusions

Architecture Overview

an NIH supported resource center

Technical Details and Challenges

- Application Services
 - Operations and Data Typing
- State Management
- Scheduling
- Security

Application Services

- APBS, GAMESS, QMView, LigPrep
 - Functionalities provided by the applications modeled as WSDL operations
 - Requests and responses for operations are strongly typed
 - Use of XML Schemas to define data structures passed around
 - Implementation details
 - Services wrap scientific codes no (or minimal) modification required to these codes
 - Software tools used Apache Axis, Jakarta Tomcat

Workflows and Strong Data Typing

Ligand-Protein Interaction

- Baldridge, Greenberg, Amoreira, Kondric
- GAMESS Service
 - More accurate Ligand Information via GAMESS-XML
 - Generation of Conformational Spaces
 - Assignment of parameters for APBS
- PDB2PQR Service
 - Protein preparation
- APBS Service
 - Generation of electrostatic information
- QMView Service or VMD Service
 - Visualization of electrostatic potential file
- Applications:
 - Electrostatics and docking
 - High-throughput processing of ligandprotein interaction studies
 - Use of small molecules (ligands) to turn on or off a protein function

Service Operations

- Operations can be invoked synchronously, or asynchronously
- Synchronous Operations:
 - Block until the operation is finished
 - Outputs returned as a response to initial request
 - Suitable for short jobs
- Asynchronous operations:
 - Return immediately with a jobID
 - Can query for job status and outputs using the jobID
 - Suitable for long running jobs

State Management

- Application services are stateful
 - Metadata about job inputs and outputs
 - Job status for asynchronous jobs
 - Job history
- Use of a database for storing/retrieving service state
 - Access to PostgreSQL database via JDBC
- Future Work:
 - Web Service Resource Framework (WSRF) integration

Scheduling

Security

- GSI-based transport level (SSL) authentication
 - Use of Java CoG libraries and Tomcat to provide a secure socket connection
- Simple grid-map based authorization provided as an Axis Handler
 - Every Axis request passes through a chain of handlers before the target service is invoked
 - The grid-map Authorization Handler verifies if the client is authorized to access the service by looking up the grid-map using the Client's Distinguished Name (DN).
- Future Work:
 - Message Level Security
 - SAML-based authorization techniques

Certificate Management

GAMA: Grid Account Management Architecture

User Interfaces

- Web services are language and platform independent
 - Can be accessed via a multitude of clients
- Java
 - Gridsphere-based Web portals
 - Workflow tools: Kepler, Informnet
- Python
 - Python Molecular Viewer (PMV)
 - Workflow tools: Vision
- Other
 - Gemstone: Mozilla-based Web services front-end

PMV APBS Client: Michel Sanner, et al

an NIH supported resource center

Invoke remote Web service

San Diego Supercomputer Center

Gemstone: Karan Bhatia, et al

National Biomedical

an NIH supported resource center

Initial Evaluation

- SOAP/HTTP not the most ideal technology to transfer large inputs and outputs
 - XML representation of molecule data (in PQR format) approximately an order of magnitude larger
 - Larger transfer times
- Axis de-serialization very expensive for large inputs
 - Large memory footprint
 - Very time consuming

Status and Software Availability

- Application services: http://nbcr.net/services
 - Alpha version of APBS service available for download and testing
 - GAMESS, QMView, LigPrep services available soon
- Gemstone: http://grid-devel.sdsc.edu/gemstone
- GAMA: http://grid-devel.sdsc.edu/gama
 - Version 1.0 available for download
- Informnet: http://grid-devel.sdsc.edu/informnet
- PMV: http://www.scripps.edu/~sanner/python

Summary

- An end-to-end infrastructure for Grid-enabling biomedical applications that provides:
 - Remote execution on Grid resources
 - Access to schedulers
 - State management
 - Concurrent access via disparate interfaces
 - Standards-based security
- Ability to use workflow tools for coupling multiscale biomedical applications

(Incomplete) Acknowledgements

- Karan Bhatia
- Phil Papadopoulos
- Brent Stearn
- Steve Mock
- Kurt Mueller
- Sandeep Chandra
- Nadya Williams

- Peter Arzberger
- Wilfred Li
- Kim Baldridge
- Jerry Greenberg
- Robert Konecny
- Michel Sanner
- Wibke Sudholt
- APBS Team

Appendix

Sample Service: APBS

- Operations provided:
 - calculateBindingEnergy
 - calculateSolvationEnergy
 - calculateElectrostaticPotential
- Operations accept and return strongly typed parameters in XML format
 - Described by an XML Schema
 - Data binding provided by stub generators in various languages
 - WSDL2Java provided by Apache Axis
 - WSDL2PY provided by Python ZSI

APBS Input Types

SOAP Performance: Alternatives

- Parsing techniques
 - Streaming
 - Pull-based
- Binary XML
 - More compact representation of data
 - More efficient data transport and parsing
 - Smaller memory footprint
- Data Format Description Language (DFDL)
 - Definition of structure of binary and character files
 - Files transferred in their native formats
 - Smaller sizes, hence faster transfer

