- 2. Дайте определения импульса, кинетической и потенциальной энергии тела. Каков их физический смысл?
- 3. Сформулируйте второй закон Ньютона в дифференциальной и интегральной форме.
 - 4. Когда выполняется закон сохранения импульса в системе тел?
 - 5. Дайте определение центра масс системы тел.
- 6. Покажите, что импульс системы тел совпадает с импульсом ее центра масс.
- 7. Какие виды соударений тел существуют? Какой удар называют абсолютно неупругим?
- 8. Какой системой уравнений описывается абсолютно неупругий удар? Докажите формулу (2.2).

Работа 3н. УПРУГОЕ СТОЛКНОВЕНИЕ ШАРОВ

Цель работы: экспериментальная проверка законов сохранения импульса и механической энергии при абсолютно упругом столкновении стальных шаров, подвешенных на бифилярных подвесах, по углу отклонения подвесов после столкновения шаров.

Приборы и принадлежности. Лабораторная установка для изучения упругого удара (рис. 3.1) представляет собой два стальных шара с массами m_1 и m_2 , закрепленных на бифилярных подвесах 3. Длины бифилярных подвесов от оси их подвеса до центров масс шаров одинаковы и равны L. Шар m_1 может удерживаться в отклоненном положении электромагнитом 4. Положение электромагнита может изменяться за счет поворота штанги 5.

Начальный угол отклонения подвеса шара m_1 от вертикального положения определяется с помощью поворотного индикатора 6 и шкалы 7. Этот же индикатор позволяет определить максимальный угол отклонения шара m_1 после удара. Максимальный угол отклонения шара m_2 измеряется с помощью второго поворотного индикатора 8 со шкалой 9. Устройство 10 позволяет предотвратить отклонение шара m_2 после столкновения с шаром m_1 , если это необходимо. Управление электромагнитом осуществляется с помощью блока 11 СЭ-1.

Исследуемые закономерности

Абсолютно упругим называется удар, при котором не происходит превращение механической энергии соударяющихся тел в другие виды энергии. В частности, не наблюдается нагревание тел при ударе. При абсолютно упругом ударе деформация тел, возникающая в момент удара, после его завершения полностью исчезает. Очень близким к упругому является удар стальных шаров.

Исследуемые закономерности частично описаны в работе 1н.

Система уравнений, описывающая абсолютно упругий удар шаров с массами m_1 и m_2 (рис. 3.2), с учетом законов сохранения импульса при их лобовом столкновении в проекциях на ось x и энергии в системе сталкивающихся тел, имеет вид:

$$m_1v_1 + m_2v_2 = m_1u_1 + m_2u_2, \quad \frac{m_1v_1^2}{2} + \frac{m_2v_2^2}{2} = \frac{m_1u_1^2}{2} + \frac{m_2u_2^2}{2},$$
 (3.1)

где v_i и u_i (i=1,2) – скорости тел до и после их столкновения.

Систему уравнений (3.1) можно свести к линейной:

$$v_1 + u_1 = v_2 + u_2, \quad m_1 v_1 + m_2 v_2 = m_1 u_1 + m_2 u_2.$$
 (3.2)

Для получения первого уравнения в (3.2) необходимо в (3.1) члены с одинаковыми индексами 1 и 2 перенести в одну часть равенства, а затем разделить одно уравнение на другое.

Решая систему (3.2), получим

$$u_1 = \frac{\left(m_1 - m_2\right)v_1 + 2m_2v_2}{m_1 + m_2}, \ u_2 = \frac{\left(m_2 - m_1\right)v_2 + 2m_1v_1}{m_1 + m_2}.$$
 (3.3)

В этих уравнениях v_1, v_2 и u_1, u_2 — это проекции скоростей тел на выбранное направление оси проецирования x, имеющие знак (\pm) . Если при расчетах будет получено $u_i < 0$ (i = 1, 2), это означает, что вектор скорости тела \mathbf{u}_i после столкновения тел направлен противоположно выбранному направлению оси x.

Если шар m_2 до столкновения покоился $(v_2 = 0)$, то скорости тел после столкновения согласно (3.3) будут равны

$$u_1 = \frac{(m_1 - m_2)v_1}{m_1 + m_2}, \quad u_2 = \frac{2m_1v_1}{m_1 + m_2}.$$
 (3.4)

Из (3.4) следует: если сталкивающиеся шары имеют одинаковую массу $(m_1 = m_2)$, то налетающий шар после столкновения остановится $(u_1 = 0)$, а покоящийся приобретет скорость налетающего $(u_2 = v_1)$. Если масса налетающего шара меньше покоящегося $(m_1 < m_2)$, то после столкновения налетающий шар отскочит назад $(u_1 < 0)$.

Шары на бифилярных подвесах одинаковой длины можно рассматривать как математические маятники с одинаковым периодом колебания, поэтому они вернутся в исходную точку столкновения на вертикали с некоторой высоты через одинаковое время (через половину периода колебаний) и перед последующим вторым столкновением по закону сохранения механической энергии будут иметь такие же скорости, как в (3.4).

Переобозначив в (3.4) u_1 и u_2 как v_1 и v_2 и подставив эти выражения в (3.3), получим для скоростей тел после их второго столкновения:

$$u_{1} = \left(\frac{\left(m_{1} - m_{2}\right)^{2} + 4m_{1}m_{2}}{\left(m_{1} + m_{2}\right)^{2}}\right)v_{1} = v_{1},$$

$$u_{2} = \left(\frac{2m_{1}(m_{2} - m_{1}) + 2m_{1}(m_{1} - m_{2})}{\left(m_{1} + m_{2}\right)^{2}}\right)v_{1} = 0.$$

То есть шары после второго столкновения будут иметь такие же скорости, что и до первого столкновения.

Величинами, которые будут измеряться в опыте, являются не скорости, а углы отклонения подвесов шаров от положения равновесия.

Пусть подвес первого шара отклонен на угол α_0 , тогда он поднимется от положения равновесия на высоту

$$h_0 = L(1-\cos\alpha_0)$$
,

где L – расстояние от оси вращения шара до его центра масс.

Согласно закону сохранения энергии $m_1gh_0 = m_1v_1^2/2$ шар m_1 перед столкновением с покоящимся шаром m_2 будет иметь скорость

$$v_1 = \sqrt{2gh_0} = \sqrt{2gL(1-\cos\alpha_0)}$$

и после столкновения с шаром m_2 с учетом (3.4) приобретет скорость

$$u_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) \sqrt{2gL(1 - \cos\alpha_0)}, \qquad (3.5)$$

а при отклонении подвеса на угол α_1 после столкновения поднимется на высоту

$$h_1 = L(1 - \cos \alpha_1).$$

Из закона сохранения энергии $m_1gh_1=m_1u_1^2/2$ с учетом (3.5) следует:

$$2gL(1-\cos\alpha_1) = \left(\frac{m_1-m_2}{m_1+m_2}\right)^2 2gL(1-\cos\alpha_0).$$

Отсюда получим для косинуса угла отклонения α_1 подвеса шара m_1 после столкновения

$$\cos \alpha_1 = 1 - \left(\frac{m_1 - m_2}{m_1 + m_2}\right)^2 \left(1 - \cos \alpha_0\right). \tag{3.6}$$

Рассуждая подобным же образом, получим для косинуса угла отклонения α_2 подвеса шара m_2 после столкновения

$$\cos \alpha_2 = 1 - \left(\frac{2m_1}{m_1 + m_2}\right)^2 (1 - \cos \alpha_0). \tag{3.7}$$

Из (3.6) и (3.7) следует, что связь между косинусами углов отклонения шаров после упругого удара такова:

$$\cos \alpha_1 = 1 - \left(\frac{m_1 - m_2}{2m_1}\right)^2 (1 - \cos \alpha_2),$$

$$\cos \alpha_2 = 1 - \left(\frac{2m_1}{m_1 - m_2}\right)^2 (1 - \cos \alpha_1).$$

После столкновения шаров начальная потенциальная энергия шара m_1 перейдет в потенциальные энергии шаров m_1 и m_2 :

$$m_1gh_0=m_1gh_1+m_2gh_2.$$

Откуда $m_1\big(1-\coslpha_0ig)=m_1\big(1-\coslpha_1ig)+m_2\big(1-\coslpha_2ig).$

Далее приходим к уравнению связи:

$$\cos \alpha_0 = \cos \alpha_1 - \frac{m_2}{m_1} (1 - \cos \alpha_2).$$

Найдем, при каком соотношении масс $x=m_2/m_1$ сталкивающихся шаров углы их отклонения после столкновения будут одинаковыми. Полагая в (3.6) и (3.7) $\alpha_1=\alpha_2$, придем к квадратному уравнению $x^2-2x-3=0$, откуда $x=m_2/m_1=3$.

Указания по подготовке к работе

Создайте таблицы (по форме табл. 3.1 и 3.2) для записи параметров установки и результатов наблюдений.

Указания по проведению наблюдений

- 1. Включите установку, нажав на СЭ-1 кнопку «Сеть».
- 2. Переведите установку в режим «Удар», переключив тумблер в нижней части установки слева в положение на себя.
- 3. Убедитесь, что в качестве шара m_1 (на левом подвесе) используется шар меньшей массы.
- 4. Подведите к электромагниту 4 шар m_1 и убедитесь, что он удерживается им. Для этого на СЭ-1 должна быть нажата кнопка «Стоп». Установите поворотом штанги 5 начальный угол α_0 отклонения подвеса шара m_1 . Пользуясь поворотным индикатором 6 и шкалой 7 (рис. 3.1), измерьте этот угол и занесите в табл. 3.1.
- 5. Подготовьте поворотный индикатор 8 к измерению угла отклонения α_2 подвеса шара m_2 . Для этого установите его в положение, близкое к 0° .
- 6. Нажатием кнопки «Пуск» на электронном блоке СЭ-1 отключите питание электромагнита и освободите шар m_1 .
- 7. Снимите показания со шкалы 9 и запишите полученное значение угла отклонения α_2 подвеса шара m_2 после первого удара в табл. 3.1.
- 8. Нажатием кнопки «Стоп» включите питание электромагнита и вновь подведите к нему шар m_1 . Повторите опыт (п. 6–7) пять раз.
- 9. Верните на место шар малой массы m_1 , отклонив его подвес на угол α_0 . Проведите качественный опыт с целью наблюдения особенностей второго упругого удара. Убедитесь, что шар большей массы m_2 после второго удара останавливается, а шар m_1 отклоняется почти на первоначальный угол α_0 .
- 10. Выключите установку, нажав кнопку «Сеть», и уберите принадлежности к работе (если таковые имеются) в контейнер для нее.

Таблица 3.1

на бифилярных подвесах, после их абсолютно упругого столкновения при $N=5,\,P=95$ %, $\beta_{P,N}=0.51,\,\theta_{\alpha}=2.5^{\circ}$ Проверка соответствия теоретическим значениям углов отклонения a_1 и a_2 шаров, подвешенных

$= \left(\frac{\theta_{y_1'}}{m_1 - m_2}\right)^2 \times \theta_{x_2}$ $\times \theta_{x_2}$		
$\theta_{y_1} = \begin{cases} \theta_{y_1} = 1 & y_1' = 1 - \\ \frac{m_1 - m_2}{m_1 + m_2} \end{cases} \times \left - \left(\frac{m_1 - m_2}{2m_1} \right)^2 \times \right = \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \right + \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1} \right)^2 \times \left - \left(\frac{m_1}{2m_1$		
$\theta_{y_1} = \frac{\theta_{y_1}}{m_1 - m_2} \times \frac{m_1 - m_2}{m_1 + m_2} \times \frac{m_1 - m_2}{m_1 + m_2}$		
$\theta_{y_2} = y_1 = 1 - \frac{2m_1}{m_1 + m_2} \right)^2 \times -\left(\frac{m_1 - m_2}{m_1 + m_2}\right)^2 \times = \left(\frac{n}{m_1}\right)^2 \times \left(\frac{m_1 - m_2}{m_1 + m_2}\right)^2 \times \left(\frac{n_1 - m_2}{m_1 + m_2}$		
$\theta_{y_2} = \frac{\theta_{y_2}}{\left(\frac{2m_1}{m_1 + m_2}\right)^2 \times \theta_{x_0}}$		
$y_2 = 1 - \left(\frac{2m_1}{m_1 + m_2}\right)^2 \times = \left(-\frac{x_1}{n_1}\right)^2$		
$\theta_{x_2} = \sin \alpha_2 \theta_{\alpha}$		
$x_2 = \theta_{x_2} = 0$ $= \cos \alpha_2 = \sin \alpha_2 \theta_c$		
$\theta_{x_0} = \sin \alpha_0 \theta_{\alpha}$		
α_2		
$N_{\overline{0}} \alpha_0 \alpha_2$		
ž	1	5

Таблица 3.2

Константы эксперимента

L, cm	23.9 ± 0.1
m_2 , Γ	131 ± 1
$m_{ m l}$, Γ	45 ± 1

Задания по обработке результатов эксперимента

- 1. Выведите формулы приборных погрешностей θ_{x_2} и θ_{y_1} в табл. 3.1.
- 2. Заполните табл. 3.1 и рассчитайте выборочным методом по табл. Π .4 в приложении значения параметров $x_2 = \overline{x_2} \pm \overline{\Delta x_2}$, $y_2 = \overline{y_2} \pm \overline{\Delta y_2}$, $y_1 = \overline{y_1} \pm \overline{\Delta y_1}$ и для N=5 и P=95%. Для простоты случайную погрешность функции рассчитывайте по размаху выборки $\Delta x = \beta_{P,N} R_x$.
- 3. Проверьте выполнение условий $\overline{x}_2 \approx \overline{y}_2$ и $\overline{y}_1 \approx \overline{y'_1}$ ($y_1 = \cos \alpha_1$). Сделайте заключение о выполнимости законов сохранения импульса и механической энергии при абсолютно упругом ударе тел. Замечание: два значения физической величины считаются статистически неразличимыми, если среднее (истиное) значение одного из них попадает в доверительный интервал другого. Если это условие не выполняется, то в опыте присутствует не выявленная систематическая погрешность, и факторы, приводящие к ней, экспериментатор должен выявить. Либо следует сделать заключение об отсутствии соответствия между теорией и опытом.
- 4. Проверьте выполнение соотношения $\overline{y}_1 = \cos \alpha_1 \cong \cos \alpha_2 = \overline{y}_2$ и сделайте заключение о соотношении масс сталкивающихся шаров $(m_2/m_1 \cong 3)$.
- 5. Рассчитайте для максимального угла отклонения α_0 малого шара его скорость v_1 перед столкновением с большим шаром и скорости u_1 и u_2 шаров после их столкновения.

Контрольные вопросы

- 1. Какой маятник называют математическим? Можно ли шары на подвесах в данной работе рассматривать как математические маятники и почему? По какой формуле рассчитывается период колебаний математического маятника?
- 2. Через какое время после столкновения шары поднимутся до своей максимальной высоты и вернутся в исходную точку их столкновения?
- 3. Дайте определения импульса тела, его кинетической и потенциальной энергии. Каков их физический смысл?
- 4. Сформулируйте второй закон Ньютона в дифференциальной и интегральной форме.
 - 5. Когда выполняется закон сохранения импульса в системе тел?
 - 6. Дайте определение центра масс системы тел.