Saturated Acyclic Hydrocarbons

A. Intro-duck-shun

B. Conformations Of Acyclic Hydrocarbons

Ethane

The <u>staggered</u> ethane conformer is more stable

called <u>torsional</u> strain.

indicate *destabilizing* interactions

<u>stabilizing</u> interactions between empty and filled orbitals in staggered conformations.

if both the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital are filled, this is slightly destabilizing.

contributes 2 e empty one donates <u>0</u> e.

add electrons to the diagrams below and indicate bond orders:

Propane

$$\theta = 60^{\circ}$$

H

H

CH₃

Staggered

fe

Butane

ре

C. Art In Organic Chemistry

represents $\underline{CH_3}$, two bonds to an apex means it is a $\underline{CH_2}$, and three bonds to a branch point represent \underline{CH} . If there are four bonds to a central point, this means there are $\underline{0}$ hydrogen atoms on that carbon.

propane	pentane	nonane
H₂ H₃C ^C CH₃	H_2 H_2 H_3 C C C C C H_3 H_2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ethane	butane	decane
H ₃ C ^{CH} 3	H_2 H_3C C C C H_2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
hexane	heptane	octane
H_{2} H_{2} H_{3} C C C C C C H_{3} H_{2} H_{2}	H_{2} H_{2} H_{2} H_{3} H_{3} H_{2} H_{2} H_{2} H_{2} H_{2}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

sp³ hybridized carbons are 109°. has 4 bonds to other atoms. structures <u>always</u> have this number

<u>never</u> have five or more atoms attached to them. sp³ because they have 4 atoms attached.

tetrahedral shape about <u>109°</u>

octane	heptane	2-methylhexane
methylpropane	2-methylbutane	2,7-dimethylnonane
	CI	F
3-methylpentane	2-chlorohexane	3-fluoroheptane
	Br	
2,3-dimethylpentane	3-bromohexane	1-iododecanane
	CI	Br
CH ₃ CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ CHClCH ₂ CH ₃	BrCH ₂ CH(CH ₃)CHClCH ₂ CH ₃

Three Dimensional Diagrams Of Organic Molecules

Alkyl Fragments

is called a methyl. that have CH₂ connected to Methine is the name given to CH fragments. is called a *methyl*. A quaternary C has <u>0</u> hydrogen atoms attached.

C1, C5, C6, C7, C8 methyl C2 quarternary C3 methine C4 methylene

C1, C7, C8, C9, C10 methyl C2, C3, C5 methylene C4 = methineC6 = quarternary

C1, C7 methyl C2, C3, C6 methylene C4 = methine

ie substituted CH₃, Me

CH₃CH₂, Et (circle all correct).

cannot be isolated is not a discrete compound, is a molecular fragment.

2 types of hydrogen atoms different outcomes. MeCH₂CH₂, EtCH₂, ⁿPr (circle all correct). as Pr, (CH₃) CH (circle all correct

3 types of hydrogen atoms gives a normal butyl group as MeCH2CH2CH2, PrCH2, CH3CH2CH2CH2 a iso- butyl group that can be represented as PrCH2, (CH3) 2CH (isomer of butane: it has 2 an 'Bu group. something, ie a tBu group.

 ${}^{\mathrm{i}}\mathrm{PrOH}$

 ${}^{\rm S}BuOH$

EtOH

 ${}^{n}BuOH$

^tBuOH

	∕ 0 ∕	$\downarrow_{o}\downarrow$	\downarrow 0 \swarrow	_0_
[†] ВиОМе	EtOEt an anesthetic	iPrOiPr	[†] BuO ⁱ Pr	MeOMe
NH	∕ N ∕	NH ₂		∠NH ₂
[†] BuNHMe	Et ₃ N	ⁱ PrNH ₂	^t BuNMeEt	MeNH ₂
\$	_\s_\	↓ _s へ	>> S_	_S_
^s BuSMe	EtS [†] Bu	ⁱ PrSEt	ⁱ BuSMe	Me ₂ S

name functional groups as alcohol, amine, ether, or thioether on the dashed lines

D. Conclusion

These <u>are</u> zig-zag conformations.

^	\\\\	^	
pentane	hexane	heptane	decane

<u>can</u> be