# Lecture 6: Approximate Inference – Monte Carlo Approximations

Probabilistic Graphical Models, Koller and Friedman: Chap 12

Approximate Inference: Monte Carlo Principle, Direct Sampling, Importance Sampling, Evidence, Rejection Sampling, MCMC, Gibbs Sampling, Collapsed Importance Sampling,

# Approximate Inference

- Approximate Inference comes into play whenever exact inference is not tractable.
  - E.g. the model is not tree structured
- - - •
    - •

- - •
  - lacktriangle

# Approximate Inference

- Approximate Inference comes into play whenever exact inference is not tractable.
  - E.g. the model is not tree structured
- What would we like to approximate?
  - E.g. posterior distribution p(z | x)
  - Expectations:
    - continuous: integrals may be intractable
    - discrete: sum over exponentially many states is infeasible

•

•

lacktriangle

## Approximate Inference

- Approximate Inference comes into play whenever exact inference is not tractable.
  - E.g. the model is not tree structured
- What would we like to approximate?
  - E.g. posterior distribution p(z | x)
  - Expectations:
    - continuous: integrals may be intractable
    - discrete: sum over exponentially many states is infeasible
- Conceptually there are two approaches
  - Deterministic Approximation
  - Numerical Sampling (e.g. Markov Chain Monte Carlo )

# Two Approaches

#### 1. Deterministic Approximation

- Approximate the quantity of interest, (ie everything is Gaussian, Loopy Belief Propagation, cut some edges,...)
- Solve the approximation analytically
- Results depends on the quality of the approximation
- We mentioned the projection technique (a Variational Method)
- 2. Numerical Sampling (Monte Carlo)
- Take the quantity of interest
- Use random samples to approximate it
- Results depends on the quality and amount of random samples

## Monte Carlo Principle

$$p_N(x) = \frac{1}{N} \sum_{i=1}^N \delta_{x^{(i)}}(x),$$

$$I_N(f) = \frac{1}{N} \sum_{i=1}^N f(x^{(i)}) \xrightarrow[N \to \infty]{a.s.} I(f) = \int_{\mathcal{X}} f(x) p(x) dx.$$

# **Direct Sampling**

- Bayes Nets are possible to sample directly
- With evidence we can just throw away samples that do not match



$$\hat{\Phi} = \hat{E}[f(\mathbf{X})] = \frac{1}{M} \sum_{m=1}^{M} f\left(\mathbf{x}^{(m)}\right)$$

| $x^1$ | $x^2$ | $x^7$ |
|-------|-------|-------|
| 0.2   | 0.7   | 0.1   |



# Problems with Direct Sampling

- High dimensional distributions are often impossible to sample from.
- Throw away solution for evidence can be very wasteful.

# (Normalized) Importance Sampling

- Draw from a simpler distribution that wastes as few particles as possible.
- $P(x) = Q(x) \{ P(x) / Q(x) \}$
- Importance Weight:  $w_m = P(x^{(m)})/Q(x^{(m)})$
- We must do inference (at a point)to do this approximate inference. f(x)

$$\hat{E}[f(\mathbf{X})] = \frac{\sum_{m} w_{m} f\left(\mathbf{x}^{(m)}\right)}{\sum_{m} w_{m}}$$

Have to pick a good Q that covers the support!

'Unnormalized' uses a normalized P and Q (ie. Z is known) so no denominator.

[From (3)]

# (Normalized) Importance Sampling

- Importance Weight:  $w_m = P(x^{(m)})/Q(x^{(m)})$
- If there is evidence then we have to find a Q that works well for P(X-Y|Y).

$$\hat{E}[f(\mathbf{X})] = \frac{\sum_{m} w_{m} f\left(\mathbf{x}^{(m)}\right)}{\sum_{m} w_{m}}$$

 $P^*(x)$ 

Have to pick a good Q that covers the support!

# Importance Sampling with Evidence

- If we know Grade is g<sup>2</sup> and the intelligence is i<sup>1</sup>.
- Q: We modify the graph and just sample away.
- Problem is again that we are likely to sample parents that do not match well with the grade.





# Importance Sampling with Evidence

• The normalized sampling of  $p(y \mid e)$  works well if evidence is in the roots but not if it is in the leaves (for Bayes Nets).



# Importance Sampling with Evidence

- So we sample along the 'topological ordering' and when we come to our 'knowns',  $\{e\}$ , we plug them in. We then multiply  $w_m$  by the conditional probability of that known.
- The weight is the conditional probability, P, since the Q here is simple 1. (Look at the multilated graph's grade table)

# Ratio Importance Sampling with Evidence

An alternative is 'ratio' method, for a specific event *y*:

$$\overline{p}(\mathbf{y}|\mathbf{e}) = \overline{p}(\mathbf{y}, \mathbf{e}) / \overline{p}(\mathbf{e}) = M' \Sigma_M w_m / (M \Sigma_{M'} w'_m)$$

# Rejection Sampling

Same setup: P(x) is too complex to sample from, and we have a simpler proposal Q(x)

#### Additional assumption:

$$\exists c = const : \forall x, cQ \cdot (x) > P \cdot (x)$$



# Rejection Sampling

Generate a sample x from  $Q^*(X)$ . Whats with the \*?

Evaluate  $cQ^*(x)$ , and sample r.v. u uniform on  $[0, cQ^*(x)]$ .

Evaluate  $P^*(x)$ , reject x if  $u > P^*(x)$ , else accept.

Continue until M samples are accepted

Prob = 
$$Q*(x)P(u < P*(x))$$
  
=  $Q*(x) P*(x) / (cQ*(x))$   
=  $P*(x) / c$ 



Figure from Lectures of: Veselin Stoyanov, Alexandre Klementiev and Shane Bergsman

# Rejection and Importance Sampling

- Problem is that proposal distribution, Q, might not be close to P leading to many unimportant samples.
- Also P may have local maxima (modes) that are not in Q.



Consider:

$$p(\mathbf{z}) = \frac{\tilde{p}(\mathbf{z})}{\mathcal{Z}}$$

Goal: Find a Gaussian approximation  $q(\mathbf{z})$  which is centered on a mode of the distribution  $p(\mathbf{z})$ .

At a stationary point  $\mathbf{z}_0$  the gradient  $\nabla \tilde{p}(\mathbf{z})$  vanishes. Consider a Taylor expansion of  $\ln \tilde{p}(\mathbf{z})$ :

$$\ln \tilde{p}(\mathbf{z}) \approx \ln \tilde{p}(\mathbf{z}_0) - \frac{1}{2} (\mathbf{z} - \mathbf{z}_0)^T A(\mathbf{z} - \mathbf{z}_0)$$

where A is a Hessian matrix:

$$A = - \nabla \nabla \ln \tilde{p}(\mathbf{z})|_{z=z_0}$$



Consider:

$$p(\mathbf{z}) = \frac{\tilde{p}(\mathbf{z})}{\mathcal{Z}}$$

Goal: Find a Gaussian approximation  $q(\mathbf{z})$  which is centered on a mode of the distribution  $p(\mathbf{z})$ .

At a stationary point  $\mathbf{z}_0$  the gradient  $\nabla \tilde{p}(\mathbf{z})$  vanishes. Consider a Taylor expansion of  $\ln \tilde{p}(\mathbf{z})$ :

$$\ln \tilde{p}(\mathbf{z}) \approx \ln \tilde{p}(\mathbf{z}_0) - \frac{1}{2} (\mathbf{z} - \mathbf{z}_0)^T A(\mathbf{z} - \mathbf{z}_0)$$

where A is a Hessian matrix:

$$A = - \nabla \nabla \ln \tilde{p}(\mathbf{z})|_{z=z_0}$$

Notice: The stationary point is the MAP point given some data.



Consider:

$$p(\mathbf{z}) = \frac{\tilde{p}(\mathbf{z})}{\mathcal{Z}}$$

Goal: Find a Gaussian approximation  $q(\mathbf{z})$  which is centered on a mode of the distribution  $p(\mathbf{z})$ .

Exponentiating both sides:

$$\tilde{p}(\mathbf{z}) \approx \tilde{p}(\mathbf{z}_0) \exp\left(-\frac{1}{2}(\mathbf{z} - \mathbf{z}_0)^T A(\mathbf{z} - \mathbf{z}_0)\right)$$

We get a multivariate Gaussian approximation:

$$q(\mathbf{z}) = \frac{|A|^{1/2}}{(2\pi)^{D/2}} \exp\left(-\frac{1}{2}(\mathbf{z} - \mathbf{z}_0)^T A(\mathbf{z} - \mathbf{z}_0)\right)$$

Remember  $p(\mathbf{z}) = \frac{\tilde{p}(\mathbf{z})}{\mathcal{Z}}$ , where we approximate:

$$\mathcal{Z} = \int \tilde{p}(\mathbf{z}) d\mathbf{z} \approx \tilde{p}(\mathbf{z}_0) \int \exp\left(-\frac{1}{2}(\mathbf{z} - \mathbf{z}_0)^T A(\mathbf{z} - \mathbf{z}_0)\right) = \tilde{p}(\mathbf{z}_0) \frac{(2\pi)^{D/2}}{|A|^{1/2}}$$

Bayesian Inference:  $P(\theta|\mathcal{D}) = \frac{1}{P(\mathcal{D})}P(\mathcal{D}|\theta)P(\theta)$ .

Identify:  $\tilde{p}(\theta) = P(\mathcal{D}|\theta)P(\theta)$  and  $\mathcal{Z} = P(\mathcal{D})$ :

ullet The posterior is approximately Gaussian around the MAP estimate  $heta_{MAP}$ 

$$p(\theta|\mathcal{D}) \approx \frac{|A|^{1/2}}{(2\pi)^{D/2}} \exp\left(-\frac{1}{2}(\theta - \theta_{MAP})^T A(\theta - \theta_{MAP})\right)$$

The posterior is approximately Gaussian around the MAP estimate  $\theta_{MAP}$ 

$$p(\theta|\mathcal{D}) \approx \frac{|A|^{1/2}}{(2\pi)^{D/2}} \exp\left(-\frac{1}{2}(\theta - \theta_{MAP})^T A(\theta - \theta_{MAP})\right)$$



Notice how bad a fit this is. In Lecture 7 we will do better using variational methods.

- Idea is P(X) is hard to sample but we can define a Markov chain that is easier.
- We have to define a transition probability:
  - $T(\mathbf{x}^{n} \rightarrow \mathbf{x}^{n+1}) = T(\mathbf{x}^{n+1} \mid \mathbf{x}^{n})$
  - Also called a Kernel.

An Introduction to MCMC for Machine Learning CHRISTOPHE ANDRIEU

- Trick is to make the transition  $T(x^{n+1} | x^n)$  such that a sequence of samples converges to a sample from P(X)
- Must be stationary:  $P(x) = \sum_{x'} T(x \mid x') P(x')$ 
  - This ensures that there is a solution
  - Still need to ensure that the solution is reached
  - And that it is unique.
- P is an 'Eigen Vector' of T
- Eigen value is  $\lambda=1$  and the others are  $1>\lambda>0$ ,
- $\Rightarrow T^nQ \rightarrow P$ , (since all other components go like  $\lambda^n \rightarrow 0$ ).
- Next biggest eigen value determines convergence speed.

- stationary:  $P(x) = \sum_{x'} T(x | x') P(x')$
- Reducible MC: there are separate regions that one can become trapped in.
  - We do not want reducible MC.

- stationary:  $P(x) = \sum_{x'} T(x | x') P(x')$
- Reducible MC: there are separate regions that one can become trapped in.
  - We do not want reducible MC.
- Periodic MC: one can become trapped in cycles.
  - We do not want periodic MC.

- stationary:  $P(x) = \sum_{x'} T(x | x') P(x')$
- Reducible MC: there are separate regions that one can become trapped in.
  - We do not want reducible MC.
- Periodic MC: one can become trapped in cycles.
  - We do not want periodic MC.
- We want regular MC:  $\exists$  k such that for  $\forall$  x, x' the probability of x  $\rightarrow$  x' in exactly k steps > 0.

Finite state space + regular  $\Rightarrow$  ergodic  $\Rightarrow$  A stationary solution will be unique.

# Ergodic

- Ergodic chain has:
  - Irreducibility: It is possible to get from any state to any other state with probability > 0 in a finite number of steps.
  - Aperiodicity: It is possible to return to any state at any time (after a finite delay), i.e. there exists an n such that for all x and all n' > n, the probability of returning to x in n' steps > 0.

# Ergodic

- Ergodic chain has:
  - Irreducibility: It is possible to get from any state to any other state with probability > 0 in a finite number of steps.
  - Aperiodicity: It is possible to return to any state at any time,
     i.e. there exists an n such that for all x and all n' > n, the
     probability of returning to x in n' steps > 0.
- $T(x \mid x') > 0$  for all  $x, x' \Rightarrow$  ergodic
- This guarantees that a stationary distribution is unique.
  - Still need to show that the one you want is stationary.

- stationary:  $P(x) = \sum_{x'} T(x | x') P(x')$
- ergodic ⇒ stationary solution is unique
- Multi-kernels: A kernel that consists of a series of kernels used one after the other.
  - Prove stationary for each single kernel
  - Prove ergodic for the composition.
- Can also use a random selector to select between a set of kernels.

- Stationary:  $P(x) = \sum_{x'} T(x | x') P(x')$
- Reversible: Satisfies detailed balance
  - T(x'|x)P(x)=T(x|x')P(x')
- Reversible  $\Rightarrow P(x')$  is a stationary solution.
  - Unique if ergodic too.

#### MCMC Construction

- Metropolis-Hastings algorithm is a recipe to build such a Markov chain.
- Start with any transition kernel  $Q(x \mid x')$
- Accept with probability:

$$A(x', x) = min(1, P(x)Q(x'|x) / P(x')Q(x|x'))$$

#### MCMC Construction

- Metropolis-Hastings algorithm is a recipe to build such a Markov chain.
- Start with any transition kernel Q(x|x')
- Accept with probability:

```
A(x', x) = \min(1, P(x)Q(x'|x) / P(x')Q(x|x'))
```

Note: either A(x', x) = 1 or A(x, x') = 1

• We do not need to compute the partition function Z.

#### MH Detailed Balance

$$A(x', x) = \min(1, P(x)Q(x' \mid x) / P(x')Q(x \mid x'))$$
$$T(x' \mid x)P(x) = T(x \mid x')P(x') \text{ detail balance?}$$

- $T(x \mid x') = A(x', x)Q(x \mid x')$
- $A(x, x')Q(x' \mid x)P(x)=A(x', x)Q(x \mid x')P(x')$

• The side with A<1 has just the right expression to make it equal the other side (which has A=1).



# Gibbs Sampling

- 1. Sample  $x_i$ ' from  $p(x_i \mid x_{-i})$
- 2. New sample is:  $x' = (x_1, ..., x_i', ..., x_n)$

Note  $x_{-i}$  is all components of x except  $x_i$ 

- Special case of MH where A = 1 always. (really?)
- Typically easy to sample as we only need to set the Markov blanket.
- Factor graphs and MRF are naturals for Gibbs.
- Sometimes 'blocks' of variables are sampled.

## MCMC Mixing and Burn In Time

- We want good 'mixing', that is states should be able to move between all regions easily.
- We have to wait for a burn in time before we forget completely the arbitrary start state and can be really sampling from *P*.
- After that we can take many samples from P but they will not be independent.
  - Think about it!
- Burn in time is often polynomial in the number of dimensions, an escape from the curse of dimensionality.

# Gibbs with Simulated Annealing

We can replace P with

 $P'(T)=P^{(1/T)}=exp(T^{-1}\ln P)/Z;$  'T' here is now 'Temperature'.

- For large T this will flatten out the peaks and cause more mixing.
- We then lower T gradually to 1 which then has P'(1) = P
- OR go all the way to T=0 for a global max.
- Works on hard problems but is slow.

# Simulated Annealing, $T_i \rightarrow 0$



An Introduction to MCMC for Machine Learning CHRISTOPHE ANDRIEU, et al.

# Collapsed Importance Sampling

$$p(x)=p(x_p, x_d) = \sum_m w_m p(x_d | x_p^m)$$

- Variables are split between ones that are estimated via samples (particles  $x_{p^m}$ ) and ones that have a parametric representation,  $x_d$ .
- Weights are as usual the target / proposal.
- Can lead to huge simplifications if  $p(x_d | x_{p^m})$  factors nicely.
- Rao-Blackwellized Particle filters are another name for this.

# FASTSLAM and its Factor Graph

- = Measurements or Energy Nodes
- = Edge Showing dependancy



# Collapsed Importance Sampling

$$p(x)=p(x_p, x_d) = \sum_m w_m p(x_d | x_p^m)$$

- Can lead to huge simplifications if  $p(x_d | x_p^m)$  factors nicely.
- FASTSLAM for example we represent the feature map by a giant Gaussian and the robot path as particles
- Each feature is independent of the others if the path is known.