

IATEX Worksheet

Debayan Sarkar * 22MS002

Gautam Singh 22MS023

Piyush Kumar Singh † 22MS027

Sabarno Saha 22MS037

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

^{*}The Silly Coder. github. io

[†]iamPiyushKrSingh.github.io

Contents

1	Title Page	2
2	Images	2
3	Math Commands 3.1 Matrix 3.2 Align Equations 3.3 Physics	3 3 4
4	Table	4
5	Bibliography	4

1 Title Page

Try to replicate the title page of this document itself. There are multiple ways to do the same, and one of the ways has been mentioned in handout.

2 Images

(a) Rishab P. Hariharan (22MS045)

(b) Abhratanu Ray (22MS052)

Figure 1: Some more people...

Then, try to reference these images individually as well as combined. Like Figure 1a contain a rare appearance of /g user. And Figure 1b contains our CR. The fact is that both of them are math geniuses (Figure 1).

3 Math Commands

3.1 Matrix

$$\begin{pmatrix} 2 & -2 & 0 & \cdots & \cdots & 0 \\ -1 & 5 & -2 & \ddots & & & \vdots \\ 0 & -2 & 5 & -2 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & -2 & 5 & -2 & 0 \\ \vdots & & & \ddots & -2 & 5 & -1 \\ 0 & \cdots & \cdots & 0 & -2 & 2 \end{pmatrix}_{n \times n}$$

3.2 Align Equations

$$b_{n} = \frac{1}{L} \left\{ -\int_{-L}^{0} \sin\left(\frac{n\pi x}{L}\right) dx + \int_{0}^{L} \sin\left(\frac{n\pi x}{L}\right) dx \right\}$$

$$= \frac{1}{L} \left\{ \left(\frac{\cos\left(\frac{n\pi x}{L}\right)}{\frac{n\pi}{L}}\right|_{-L}^{0} + \left(-\frac{\cos\left(\frac{n\pi x}{L}\right)}{\frac{n\pi}{L}}\right|_{0}^{L} \right\}$$

$$= \frac{1}{n\pi} \left\{ (1 - (-1)^{n}) + (1 - (-1)^{n}) \right\}$$

$$= \frac{2}{n\pi} (1 - (-1)^{n})$$

$$b_{n} = \begin{cases} \frac{4}{n\pi}, & n = \text{odd} \\ 0, & n = \text{even} \end{cases}$$

Physics 3.3

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V(x) \Psi \tag{1}$$

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \tag{2}$$

$$\rho \left(\frac{\partial \vec{\mathbf{v}}}{\partial t} + \vec{\mathbf{v}} \cdot \nabla \vec{\mathbf{v}} \right) = -\nabla p + \nabla \cdot \boldsymbol{\tau} + \mathbf{f}$$

$$(i\hbar \gamma^{\mu} \partial_{\mu} - mc) \psi(x) = 0$$

$$(4)$$

$$(i\hbar\gamma^{\mu}\partial_{\mu} - mc)\psi(x) = 0 \tag{4}$$

Table 4

Raptorial (Spoons)	Prey consumed by Predator						
rtaptoriai (Spoolis)	1	2	3	$^{\circ}4$	5	6	7
Prey 1: White Bean	6	3	0	0	0	0	0
Prey 2: Black Bean	3	7	0	0	0	0	0
Prey 3: Pasta	4	1	5	6	6	7	8
Total:	0 (Poisoned)	11	5	6	6	7	8

Bibliography **5**