UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autores: Fernanda Villafán Flores Fernando Alvarado Adrián Aguilera Moreno

Gráficas y Juegos

Tarea 1

- 1. Sea n un entero, $n \geq 3$. Demuestre que existe un único n-ciclo, salvo isomorfismo.
- 2. De un ejemplo de tres gráficas del mismo orden, mismo tamaño y misma sucesión de grados tales que cualesquiera dos de dichas gráficas no sean isomorfas, al menos una de ellas sea conexa, y al menos una sea inconexa.
- 3. Sea D una digráfica. Demuestre que

$$\sum_{v \in V_D} d^+(v) = \sum_{v \in V_D} d^-(v) = |A_D|.$$

Demostración: La demostración se dividirá en dos incisos:

$$\cdot) \sum_{v \in V_D} d^+(v) = |A_D|$$

Sea M_1 una matriz de incidencia de D, tal que:

$$M_1 = M_{ij}^+ = \left\{ egin{array}{ll} 1 & si & v_i \ es \ la \ cola \ de \ e_j \ \\ 0 & si & v_i \ no \ es \ la \ cola \ de \ e_j \end{array}
ight.$$

Ahora, supongamos que $V=\{v_1,\cdots,v_n\}$ donde v_i corresponde al i-ésimo renglón de M_1 .

Sabemos que las entradas de cada columna de M_1 son igual a 1, que son las flechas e_j con un vértice llamado cola de la flecha. Por otro lado, las entradas del *i-ésimo* renglón de M_1 suman $d^+(v_i)$, ya que las entradas corresponden a todas las flechas de las cuales v_i es cola de dicha flecha.

Entonces, tenemos que:

$$|A_D| = \sum_{j=1}^{|A|} \sum_{i=1}^{|V|} M_{ij}^+$$

$$= \sum_{i=1}^{|V|} \sum_{j=1}^{|A|} M_{ij}^+$$

$$= \sum_{i=1}^{|V|} d^+(v_i)$$

$$= \sum_{v \in V} d^+(v)$$

De forma análoga se realiza el otro inciso.

$$\cdots) \sum_{v \in V_D} d^-(v) = |A_D|$$

Sea M_2 una matriz de incidencia de D, tal que:

$$M_2 = M_{ij}^- = \left\{ egin{array}{ll} 1 & si & v_i \ es \ la \ cabeza \ de \ e_j \ \\ 0 & si & v_i \ no \ es \ la \ cabeza \ de \ e_j \end{array}
ight.$$

Ahora, supongamos que $V = \{v_1, \dots, v_n\}$ donde v_i corresponde al *i-ésimo* renglón de M_1 .

Sabemos que las entradas de cada columna de M_1 son igual a 1, que son las flechas e_j con un vértice llamado cabeza de la flecha. Por otro lado, las entradas del *i-ésimo* renglón de M_1 suman $d^-(v_i)$, ya que las entradas corresponden a todas las flechas de las cuales v_i es cabeza de dicha flecha.

Entonces, tenemos que:

$$|A_D| = \sum_{j=1}^{|A|} \sum_{i=1}^{|V|} M_{ij}^-$$

$$= \sum_{i=1}^{|V|} \sum_{j=1}^{|A|} M_{ij}^-$$

$$= \sum_{i=1}^{|V|} d^-(v_i)$$

$$= \sum_{v \in V} d^-(v)$$

Por lo tanto, queda demostrado que:

$$\sum_{v \in V_D} d^+(v) = \sum_{v \in V_D} d^-(v) = |A_D|$$

QED

- 4. Sea n un entero positivo. Definimos a la $Reticula\ Booleana,\ BL_n$, como la gráfica cuyo conjunto de vértices es el conjunto de todos los posibles subconjuntos de $\{1, \dots, n\}$, donde dos subconjuntos X y Y son advacentes si y sólo si su diferencia simétrica tiene exactamente un elemento.
 - (a) Dibuje BL_1 , BL_2 , BL_3 y BL_4 . Gráfica representativa de BL_1 :

Gráfica representativa de BL_2 :

Gráfica representativa de BL_3 :

Gráfica representativa de BL_4 :

(b) Determine $|V_{BL_n}|$ y $|E_{BL_n}|$. (Justifique su respuesta).

Veamos que la cantidad de vértices es igual a la cantidad de subconjuntos que se pueden formar de la retícula BL_n , esto es el conjunto potencia de $\{1, \dots, n\}$. Por lo que:

$$|V_{BL_n}| = |P(\{1, \cdots, n\})| = 2^n$$

Mientras que es un tanto más empírica la forma en la que se obtiene la cardinalidad de E_{BL_n} , veamos la siguiente tabla con las primeras retículas:

Valor de n	# de aristas
$n=1 \Rightarrow$	1 arista
$n=2 \Rightarrow$	4 arista
$n=3 \Rightarrow$	12 arista
$n=4 \Rightarrow$	32 arista

Nótese que:

$$1 \cdot 1 = 1 \cdot 2^{1-1} = 1$$

$$2 \cdot 2 = 2 \cdot 2^{2-1} = 4$$

$$3 \cdot 4 = 3 \cdot 2^{3-1} = 12$$

$$4 \cdot 8 = 4 \cdot 2^{4-1} = 32$$

Podemos deducir $|E_{BL_n}| = n \cdot 2^{n-1}$. Ahora mostramos que esto funciona para $n \in \mathbb{Z}^+$. En la tabla anterior, se tendrían los casos base para mostrar esta propiedad. Supongamos que esto funciona para n = k-1, *i.e.*, cuando n = k-1 el número de aristas en la gráfica será:

$$(k-1)\cdot 2^{k-2}$$

Ahora veamos que sucede con n = k, tendríamos:

$$\begin{array}{rcl} (k-1)\cdot 2^{k-2} + (k+1)\cdot 2^{k-2} & = & 2^{n-2}\cdot [(k-1)+(k+1)] \\ & = & 2^{k-2}\cdot [2k-1+1] \\ & = & 2k\cdot 2^{k-2} \\ & = & k\cdot 2^{k-2+1} \\ & = & k\cdot 2^{k-1} \end{array}$$

Luego, como n = k tenemos:

$$(k-1) \cdot 2^{k-2} + (k+1) \cdot 2^{k-2} = k \cdot 2^{k-1} = n \cdot 2^{n-1}$$

 $\therefore |V_{BL_n}| = 2^n \text{ y } |E_{BL_n}| = n \cdot 2^{n-1}$

(c) Demuestre que BL_n es bipartita para cualquier $n \in \mathbb{Z}^+$.

Demostración: Sea $A = \{1, \dots, n\}$ conjunto con $n \in \mathbb{Z}^+$. Veamos que podemos particionar nuestra BL_n en los conjuntos X y Y de tal forma que X contenga los subconjuntos de BL_n tales que su cardinalidad es 2k, donde $2k \in A$ y Y tal que contenga los subconjuntos de BL_n de cardinalidad 2k-1, donde $2k-1 \in A$.

Veamos que pasa cuando dos subconjuntos en BL_n se relacionan, es decir, son adyacentes en BL_n .

- Su diferencia simétrica es 1.

Dados dos subconjuntos en BL_n , uno de ellos debe tener cardinalidad n+1 o n-1 y el otro de cardinalidad n tal que se cumple que uno de ellos es subconjunto del otro.

Notemos que en X están todos los subconjuntos de cardinalidad par. Por tanto, la diferencia simétrica entre cualesquiera 2 subconjuntos distintos en X es:

- A lo menos un conjunto de cardinalidad 2.

De lo anterior, tenemos que ningún subconjunto en X cumple ser adyacente mediante la definición de BL_n .

Ahora notemos que, en Y están todos los subconjuntos de BL_n que tienen cardinalidad impar. Por lo tanto, la diferencia simétrica en cualesquiera dos subconjuntos distintos en Y es:

- Al menos un conjunto de cardinalidad 2.

Entonces tenemos que: 2k + 1 - (2k - 1) = 2 y como Y es un conjunto, no se tiene dos conjuntos iguales a los cuales relacionar. Por lo anterior y por la definición de diferencia simétrica, no existen dos conjuntos adyacentes en Y. \therefore BL_n es bipartita en X y Y, i.e. $BL_n[X,Y]$ QED

- 5. Sea G[X,Y] una gráfica bipartita.
 - (a) Demuestre que $\sum_{v \in X} d(v) = \sum_{v \in Y} d(v)$.

Demostración: QED

(b) Demuestre que si G es k-regular, con $k \ge 1$, entonces |X| = |Y|.

Demostración: Dada G una gráfica k-regular G[X,Y] bipartita. Sabemos que por ser bipartita y k-regular, se cumple que:

- Al menos $|V_G| = 2$, pues una gráfica tiene como mínimo un elemento y por ser bipartita está debe relacionarse con al menos un elemento en la partición ajena a ella misma.
- Todos los vértices tienen grado k.

Tenemos que en el caso mínimo, $|V_G|=2$ hay una relación entre dos vértices (cada uno de ellos pertenecientes a su respectiva partición). Por lo tanto, al ser k-regular, tenemos que el grado de estos vértices es al menos 1. Entonces, $k \geq 1$.

Ahora usemos un resultado ya conocido. Sabemos que:

$$\sum_{v \in X} d(v) = \sum_{v \in Y} d(v)$$

Como cada vértice tiene grado k. podemos decir que:

$$|X| = \frac{\sum\limits_{v \in X} d(v)}{k} \quad \text{y} \quad |Y| = \frac{\sum\limits_{v \in Y} d(v)}{k}$$

De lo anterior, se deduce que:

$$\therefore$$
 $|X| = |Y|$ QED

Puntos Extra

- 1. Sea G = [X, Y] una gráfica bipartita con |X| = r y |Y| = s.
 - (a) Demuestre que $|E| \leq rs$.
 - (b) Deduzca que $|E| \leq \frac{|V|^2}{4}$.
 - (c) Describa a las gráficas bipartitas que cumplen la igualdad en el inciso anterior. Justifique su respuesta.