Задача 1

Решить краевую задачу для уравнения Лапласа в шаре. (З балла)

1.
$$\begin{cases} \Delta u = 0, \ r < 1, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=1} = 3\cos^2\vartheta + \sin\vartheta\,\sin\varphi. \end{cases}$$

3.
$$\begin{cases} \Delta u = 0, \ r < 2, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u'_r \big|_{r=2} = 2\sin^3 \vartheta \sin \varphi. \end{cases}$$

5.
$$\begin{cases} \Delta u = 0, \ r < 3, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=3} = \cos \vartheta + \sin 2\vartheta \cos \varphi. \end{cases}$$

7.
$$\begin{cases} \Delta u = 0, \ r < 3, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=3} = \sin 2\vartheta \, \sin \varphi + \cos 2\vartheta. \end{cases}$$

9.
$$\begin{cases} \Delta u = 0, \ r < 1, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=1} = \cos^2 \vartheta + 3\sin^2 \vartheta \cos 2\varphi. \end{cases}$$

11.
$$\begin{cases} \Delta u = 0, \ r < 3, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=3} = \sin^2 \vartheta (1 + \cos \vartheta \sin 2\varphi). \end{cases}$$

13.
$$\begin{cases} \Delta u = 0, \ r < 3, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=3} = 2\cos\vartheta + 3\sin 2\vartheta \sin\varphi. \end{cases}$$

15.
$$\begin{cases} \Delta u = 0, \ r < 2, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u'_r \big|_{r=2} = 2\cos\vartheta + 3\sin^2\vartheta \sin 2\varphi. \end{cases}$$

17.
$$\begin{cases} \Delta u = 0, \ r < 3, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=3} = \sin^2 \vartheta(\cos \vartheta + \cos 2\varphi). \end{cases}$$

$$\textbf{19.} \ \begin{cases} \Delta u = 0, \ r < 2, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u_r'\big|_{r=2} = 2\cos\vartheta\,\sin^2\vartheta\,\sin2\varphi. \end{cases}$$

21.
$$\begin{cases} \Delta u = 0, \ r < 4, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u'_r \big|_{r=4} = 2\cos\vartheta + \sin^2\vartheta \cos 2\varphi. \end{cases}$$

23.
$$\begin{cases} \Delta u = 0, \ r < 1, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u'_r \big|_{r=1} = \cos^3 \vartheta + \sin 2\vartheta \cos \varphi. \end{cases}$$

$$\textbf{25.} \ \begin{cases} \Delta u = 0, \ r < 2, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = \sin \vartheta (\sin \vartheta + \cos \varphi). \end{cases}$$

27.
$$\begin{cases} \Delta u = 0, \ r < 4, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=4} = \sin^2 \vartheta (3 + \cos 2\varphi). \end{cases}$$

$$\mathbf{29.} \ \left\{ \begin{array}{l} \Delta u = 0, \ r < 3, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=3} = \cos^2 \vartheta + \sin^2 \vartheta \, \cos 2\varphi. \end{array} \right.$$

$$2. \ \begin{cases} \Delta u = 0, \ r < 3, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=3} = 6\sin 2\vartheta \, \cos \varphi. \end{cases}$$

$$\mathbf{4.} \ \left\{ \begin{array}{l} \Delta u = 0, \ r < 4, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=4} = 2\cos\vartheta + \sin^2\vartheta \, \cos 2\varphi. \end{array} \right.$$

6.
$$\begin{cases} \Delta u = 0, \ r < 1, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=1} = \sin^2 \vartheta (1 + 3\sin 2\varphi). \end{cases}$$

8.
$$\begin{cases} \Delta u = 0, \ r < 1, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=1} = 4\sin 2\vartheta \, \cos \varphi. \end{cases}$$

$$\textbf{10.} \ \begin{cases} \Delta u = 0, \ r < 1, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u_r'\big|_{r=1} = 4\sin^3\vartheta\,\cos\varphi. \end{cases}$$

12.
$$\begin{cases} \Delta u = 0, \ r < 4, \ 0 \le \vartheta \le \pi, \ 0 \le \varphi < 2\pi; \\ u\big|_{r=4} = 2\cos^3\vartheta + 3\sin^2\vartheta \sin 2\varphi. \end{cases}$$

14.
$$\begin{cases} \Delta u = 0, \ r < 2, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = 3\cos^2 \vartheta + \sin \vartheta \sin \varphi. \end{cases}$$

$$\textbf{16.} \ \begin{cases} \Delta u = 0, \ r < 2, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = 2\sin^3\vartheta\,\sin\varphi. \end{cases}$$

$$\textbf{18.} \ \begin{cases} \Delta u = 0, \ r < 4, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ \left. u_r' \right|_{r=4} = \sin 2\vartheta \, \sin \varphi. \end{cases}$$

20.
$$\begin{cases} \Delta u = 0, \ r < 4, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=4} = \sin^2 \vartheta (1 + \sin 2\varphi). \end{cases}$$

$$22. \ \begin{cases} \Delta u = 0, \ r < 4, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=4} = \sin^3 \vartheta \, \sin \varphi. \end{cases}$$

24.
$$\begin{cases} \Delta u = 0, \ r < 2, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u'_r \big|_{r=2} = \sin^2 \vartheta (2\cos \vartheta + 3\sin 2\varphi). \end{cases}$$

$$\textbf{26.} \ \begin{cases} \Delta u = 0, \ r < 1, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=1} = 1 + \sin 2\vartheta \, \sin \varphi. \end{cases}$$

$$28. \ \begin{cases} \Delta u = 0, \ r < 2, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ \left. u_r' \right|_{r=2} = 4 \sin^3 \vartheta \, \cos \varphi. \end{cases}$$

$$\textbf{30.} \ \begin{cases} \Delta u = 0, \ r < 4, \ 0 \leqslant \vartheta \leqslant \pi, \ 0 \leqslant \varphi < 2\pi; \\ \left. u_r' \right|_{r=4} = 2\cos^3\vartheta + \sin^2\vartheta \, \sin 2\varphi. \end{cases}$$

Задача 2

Найти функцию, удовлетворяющую внутри шара уравнению Гельмгольца и принимающую на границе шара заданное значение ($3\ балла$)

1.
$$\Delta u + u = 0$$
, $0 \le r < \pi/2$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/2} = \cos \vartheta$

2.
$$\Delta u + u = 0$$
, $0 \le r < \pi$, $\frac{\partial u}{\partial r}\Big|_{r=\pi} = \cos \theta$

3.
$$\Delta u + u = 0$$
, $0 \le r < 3\pi/2$, $\frac{\partial u}{\partial r}\Big|_{r=3\pi/2} = \cos \theta$

4.
$$\Delta u + u = 0$$
, $0 \le r < 2\pi$, $\frac{\partial u}{\partial r}\Big|_{r=2\pi} = \cos \vartheta$

5.
$$\Delta u + 4u = 0$$
, $0 \le r < \pi/4$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/4} = \cos \vartheta$

6.
$$\Delta u + 4u = 0$$
, $0 \le r < \pi/2$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/2} = \cos \vartheta$

7.
$$\Delta u + 4u = 0$$
, $0 \le r < 3\pi/2$, $\frac{\partial u}{\partial r}\Big|_{r=3\pi/2} = \cos \theta$

8.
$$\Delta u + 4u = 0$$
, $0 \le r < \pi$, $\frac{\partial u}{\partial r}\Big|_{r=\pi} = \cos \vartheta$

9.
$$\Delta u + 9u = 0$$
, $0 \le r < \pi/6$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/6} = \cos \theta$

10.
$$\Delta u + 9u = 0$$
, $0 \le r < \pi/3$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/2} = \cos \vartheta$

11.
$$\Delta u + 9u = 0$$
, $0 \le r < \pi/2$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/2} = \cos \vartheta$

12.
$$\Delta u + 9u = 0$$
, $0 \le r < 2\pi/3$, $\frac{\partial u}{\partial r}\Big|_{r=3\pi/3} = \cos \vartheta$

13.
$$\Delta u + 16u = 0$$
, $0 \le r < \pi/8$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/8} = \cos \vartheta$

14.
$$\Delta u + 16u = 0$$
, $0 \le r < \pi/4$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/4} = \cos \vartheta$

15.
$$\Delta u + 16u = 0$$
, $0 \le r < 3\pi/8$, $\frac{\partial u}{\partial r}\Big|_{r=3\pi/8} = \cos \vartheta$

16.
$$\Delta u + 16u = 0$$
, $0 \le r < \pi/2$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/2} = \cos \theta$

17.
$$\Delta u + 25u = 0$$
, $0 \le r < \pi/10$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/10} = \cos \vartheta$

18.
$$\Delta u + 25u = 0$$
, $0 \le r < \pi/5$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/5} = \cos \vartheta$

19.
$$\Delta u + 25u = 0$$
, $0 \le r < 3\pi/10$, $\frac{\partial u}{\partial r}\Big|_{r=3\pi/10} \equiv \cos \theta$

20.
$$\Delta u + 25u = 0$$
, $0 \le r < 2\pi/5$, $\frac{\partial u}{\partial r}\Big|_{r=2\pi/5} = \cos \vartheta$

21.
$$\Delta u + 36u = 0$$
, $0 \le r < \pi/12$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/12} = \cos \vartheta$

22.
$$\Delta u + 36u = 0$$
, $0 \le r < \pi/6$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/6} = \cos \vartheta$

23.
$$\Delta u + 36u = 0$$
, $0 \le r < \pi/4$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/4} = \cos \vartheta$

24.
$$\Delta u + 36u = 0$$
, $0 \le r < \pi/2$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/2} = \cos \vartheta$

25.
$$\Delta u + 49u = 0$$
, $0 \le r < \pi/7$, $\frac{\partial u}{\partial r}\Big|_{r=\pi/2} = \cos \vartheta$

26.
$$\Delta u + 49u = 0$$
, $0 \le r < 2\pi/7$, $\frac{\partial u}{\partial r}\Big|_{r=2\pi/7} = \cos \vartheta$

27.
$$\Delta u + 4u = 0$$
, $0 \le r < 3\pi/4$, $\frac{\partial u}{\partial r}\Big|_{r=3\pi/4} = \cos \vartheta$

28.
$$\Delta u + u = 0$$
, $0 \le r < 3\pi$, $\frac{\partial u}{\partial r}\Big|_{r=3\pi} = \cos \vartheta$

29.
$$\Delta u + 9u = 0$$
, $0 \le r < \pi$, $\frac{\partial u}{\partial r}\Big|_{r=\pi} = \cos \vartheta$

30.
$$\Delta u + 16u = 0$$
, $0 \le r < \pi$, $\frac{\partial u}{\partial r}\Big|_{r=\pi} = \cos \vartheta$