EE4C10 Analog Circuit Design Fundamentals

Homework Assignment II

Tzong Lin Chua

September 24, 2021

Contents

Problem 1	1
Problem 2	2
Problem 3	5
Problem 4	ϵ
Problem 5	8
Problem 6	10

Problem 1

(a) Overdrive voltage, $\mathbf{V}_{\mathrm{gt}},$ for:

1. M1

$$I_{D1} = \frac{\mu_n C_{OX}}{2} (\frac{W}{L})_1 (V_{GS_1} - V_{TH_1})^2 (1 + \lambda_1 V_{DS_1})$$

$$I_{D1} \approx \frac{\mu_n C_{OX}}{2} (\frac{W}{L})_1 (V_{gt_1})^2$$

$$V_{gt_1} \approx \sqrt{\frac{2I_{D_1}}{\mu_n C_{OX}} (\frac{L}{W})_1}$$

 $V_{gt_1} \approx 109.11 mV$

2. M2

$$V_{gt_2} \approx \sqrt{\frac{2I_{D_2}}{\mu_p C_{OX}}(\frac{L}{W})_2}$$

 $V_{gt_2} \approx 377.96 mV$

(b) Small-signal gain

$$g_{m1}V_{in} = \frac{-V_{out}}{r_{o1}//r_{o2}}$$

 $\frac{V_{out}}{V_{in}} = -g_{m1}(r_{o1}//r_{o2})$

$$g_{m1} = \mu_n C_{OX}(\frac{W}{L})_1 V_{gt_1}$$
$$= 4.582mS$$

$$r_{o1} = \frac{1}{I_{D1}\lambda_n}$$
$$= 20k\Omega$$

$$r_{o2} = \frac{1}{I_{D2}\lambda_p}$$
$$= 40k\Omega$$

$$\frac{V_{out}}{V_{in}} \approx -61.09$$

(c) V_{out} output swing For M_1 to be in saturation,

$$V_{DS1} \ge V_{gt1}$$
$$V_{out} \ge 0.109V$$

For M_2 to be in saturation,

$$V_{DS2} \ge V_{gt2}$$

$$V_{DD} - V_{out} \ge 0.377V$$

$$V_{out} \le 3.3V - 0.377V$$

$$V_{out} \le 2.923V$$

Swing of V_{out} ,

$$0.109V < V_{out} < 2.923V$$

$$V_{out,pp} = 2.923V - 0.109V$$
$$= 2.814V$$

(d)

Problem 2

(a) For M1 to be 100mV from triode,

$$V_{DS1} = V_{GS1} - V_{TH,N} + 100mV$$
$$X = V_{in} - V_{TH,N} + 100mV$$

 $V_{\rm in}$ for M1 to be in saturation with $I_{\rm D1}$ of 0.35 mA,

$$I_{D1} = \frac{\mu_n C_{OX}}{2} (\frac{W}{L})_1 (V_{GS1} - V_{TH,N})^2$$

$$I_{D1} = \frac{\mu_n C_{OX}}{2} (\frac{W}{L})_1 (V_{in} - V_{TH,N})^2$$

$$V_{in} = \sqrt{\frac{2I_{D1}}{\mu_n C_{OX}}} (\frac{L}{W})_1 + V_{TH,N}$$

$$= 0.653V$$

$$X = \sqrt{\frac{2I_{D1}}{\mu_n C_{OX}} (\frac{L}{W})_1} + 100mV$$

$$\approx 0.253V$$

 $V_{\rm b}$ for M2 to be in saturation with $I_{\rm D2}$ of 0.35 mA,

$$\begin{split} I_{D2} &= \frac{\mu_n C_{OX}}{2} (\frac{W}{L})_2 (V_{GS2} - V_{TH,N})^2 \\ I_{D2} &= \frac{\mu_n C_{OX}}{2} (\frac{W}{L})_2 (V_b - X - V_{TH,N})^2 \\ V_b &= \sqrt{\frac{2I_{D2}}{\mu_n C_{OX}} (\frac{L}{W})_2} + X + V_{TH,N} \\ &\approx 0.906 V \end{split}$$

(b) Small-signal gain

$$G_m = \frac{g_{m1}(g_{m2}r_{o1}r_{o2} + r_{o1})}{g_{m2}r_{o1}r_{o2} + r_{o1} + r_{o2}}$$

$$\approx g_{m1}$$

$$R_{out} = (g_{m2}r_{o1}r_{o2} + r_{o1} + r_{o2})//R_d$$

Small-signal gain,

$$\frac{V_{out}}{V_{in}} = -G_m R_{out}$$

$$= -g_{m1}[(g_{m2}r_{o1}r_{o2} + r_{o1} + r_{o2})//R_d]$$

$$g_{m1} = \mu_n C_{OX}(\frac{W}{L})_1 (V_{GS1} - V_{TH,N})$$
$$= \mu_n C_{OX}(\frac{W}{L})_1 (V_{in} - V_{TH,N})$$
$$= 4.583mS$$

$$g_{m2} = \mu_n C_{OX}(\frac{W}{L})_2 (V_{GS2} - V_{TH,N})$$

$$\approx \mu_n C_{OX}(\frac{W}{L})_2 (V_b - X - V_{TH,N})$$

$$= 4.583mS$$

$$r_{o1} = \frac{1}{I_{D1}\lambda_n}$$

$$= 28.571k\Omega$$

$$r_{o2} = \frac{1}{I_{D2}\lambda_p}$$
$$= 28.571k\Omega$$

$$\frac{V_{out}}{V_{in}} \approx -22.88$$

(c) Assume V_b to be 1.65V, For M2 to be in saturation,

$$V_{out} - X \ge V_b - X - V_{TH,N}$$
$$V_{out} \ge 1.15V$$

When $I_D \geq 0$,

$$V_{out} \le V_{DD}$$
$$1.15V \le V_{out} \le 3.3V$$

$$V_{out,pp} = 2.15 V\,$$

(d) X_{pp} Gain of X,

$$\frac{X}{V_{in}} = \frac{-g_{m1}}{g_{m2} + \frac{1}{r_{o1}} + \frac{1}{r_{o2}}}$$

$$\approx \frac{-g_{m1}}{g_{m2}}$$

 X_{pp}

$$\frac{X}{V_{out}} = \frac{X}{V_{in}} \frac{V_{in}}{V_{out}}$$
$$= \frac{1}{22.88}$$

$$X_{pp} = 54.63 mV$$

Problem 3

- (a) Sketch of:
 - 1. Output voltage [[

Figure 1: Output voltage sketch

2. Small-signal gain

Figure 2: Small-signal gain

(b) Small-signal model

Figure 3: Small-signal model of folded-cascode stage

$$R_{out} = g_{m2}r_{o1}r_{o2} + r_{o1} + r_{o2}$$

$$\approx g_{m2}r_{o1}r_{o2}$$

$$G_m = \frac{-g_{m1}(g_{m2} + \frac{1}{r_{o1}})}{g_{m2} + \frac{1}{r_{o1}} + \frac{1}{r_{o2}}}$$

$$\approx -g_{m1}$$

$$\frac{V_{out}}{V_{in}} = g_{m1}g_{m2}r_{o1}r_{o2}$$

Problem 4

(a) V_{out} - V_{in} characteristics

Figure 4: V_{out} - V_{in} characteristics

(b) Small-signal gain, $\frac{dV_{out}}{dV_{in}}$

Figure 5: Small-signal gain, $\frac{dV_{out}}{dV_{in}}$

From figure 5 the gain when:

1.
$$V_{out} = 0.6 \text{ V}$$

 $\frac{dV_{out}}{dV_{in}} = -35.59$

2.
$$V_{out} = 2.8 \text{ V}$$

$$\frac{dV_{out}}{dV_{in}} = -32.77$$

(c) From figure 5, the input voltage, V_{in} , for maximum gain, $max(|\frac{dV_{out}}{dV_{in}}|)$ is given to be:

$$max(|\frac{dV_{out}}{dV_{in}}|) = 50.07$$

$$V_{in} = 489mV$$

(d) Output voltage swing for gain of 1,

$$V_{out,max} = 3.24V$$

$$V_{out,min} = 56mV$$

$$V_{out,pp} = 3.184V$$

Output peak to peak voltage

$$V_{out,pp} = 3.184V$$

(e) Small-signal voltage gain when:

$$1.\ V_{out}\,=\,0.6\ V,\ V_{in}\,=\,0.514\ V$$

Figure 6: Small-signal gain, $|\frac{V_{out}}{V_{in}}|,\, \rm V_{out}=0.6~V,\, V_{in}=0.514~V$

$$Gain = 36.82$$

$$2.\ V_{out}\,=2.8\ V,\ V_{in}\,=0.464\ V$$

Figure 7: Small-signal gain, $|\frac{V_{out}}{V_{in}}|,\, \rm V_{out}\,=2.8~V,\, V_{in}\,=0.464~V$

Gain = 31.54

Problem 5

- (a) Procedure for designing V_b for M1 to be 100mV away from triode, $V_b = 0.825 V$, is determined by the following:
 - (a) Select an initial value V_b for M1 and M2 to be in saturation when $V_{in} > V_{TH1}$. In figure 8, $V_b = 1.5$ V. From the error logfile 9, $V_{DS1} > V_{GS1}$ V_{TH1} and $V_{DS2} > V_{GS2}$ V_{TH2} .

Figure 8: Testbench for Q5

Name:	m2	BSIM3 MOSFETS m1
	nch.3	nch.3
Model: Id:	3.74e-04	
Vas:	7.73e-01	6.00e-01
vgs: Vds:	7.75e-01 7.05e-01	
	-7.27e-01	
Vbs. Vth:		4.97e-01
	1.18e-01	
vusat. Gm:	4.21e-03	
	1.29e-04	
Gmb	7.98e-04	
Cbd:	0.00e+00	0.00e+00
Cbs:	0.00e+00	
	6.59e-15	
- 5	6.59e-15	
_	3.18e-17	
	3.21e-14	
	-6.47e-15	
~ 3	-2.27e-14	
	-6.61e-15	
dQddVdb:	6.60e-15	1.32e-14
dQddVsb:	2.09e-17	9.01e-17
dQbdVgb:	-3.63e-15	-1.24e-14
dQbdVdb:	1.50e-17	2.88e-18
dQbdVsb:	-2.22e-15	-1.44e-14

Figure 9: Semiconductor Device Operating Points

(b) Doing a DC-sweep for $\rm I_{D1}\text{-}V_{in},~V_{in}\approx 0.6V$ when $\rm I_{D1}=0.35mA.$

Figure 10: $I_{\rm D1}\text{-}V_{\rm in}$

(c) From the operation point simulation int figure 9, V_{TH1} is determined to be 0.497V. For M1 to be 100mV from triode region,

$$V_x = V_{in} - V_{TH1} + 100mV$$
$$\approx 0.2V$$

(d) DC-sweeping $V_x\text{-}V_b$ and determining V_b for $V_x=0.2V.$ From the figure 11 , $V_b=0.825V.$

Figure 11: V_x - V_b

(b) $I_{\rm OUT}\text{-}V_{\rm OUT}$ when $V_{\rm IN}$ is fixed for $I_{\rm D1}=0.35~mA$

Figure 12: I_{OUT} - V_{OUT}

Problem 6

The output resistance, $R_{\rm out}$ is the reciprocal of the slope of $I_{\rm OUT}\text{-}V_{\rm OUT}$,

$$R_{out} = (\frac{I_{OUT}}{V_{OUT}})^{-1}$$

The results are shown in figure 13,

Figure 13: R_{OUT} - V_{OUT}

 $\begin{aligned} & From \ figure \ 14, \\ & max(R_{out}) = 4920 \ \Omega \\ & when, \\ & V_{out} = 1.53 \ V \end{aligned}$

Figure 14: Maximum R_{out}