LOGICĂ MATEMATICĂ ȘI COMPUTAȚIONALĂ TEMA COLECTIVĂ 1

Claudia MURESAN cmuresan@fmi.unibuc.ro, claudia.muresan@g.unibuc.ro

> Universitatea din Bucuresti Facultatea de Matematică și Informatică București

2024-2025. Semestrul II

- Toate temele colective se adresează AMBELOR SERII.
- Rezolvarea fiecărei teme colective trebuie trimisă în câte un singur exemplar de fiecare grupă a seriei IF și fiecare grupă a seriei ID ca răspuns la aceste assignments MS Teams.

Temă colectivă (de programare în Prolog)

După modelul predicatelor similare din fișierele .PL pentru CURSUL IV și LABORATOARELE II și III, scrieți predicate în Prolog pentru a demonstra (semantic, i.e. prin tabele de adevăr) că, pentru orice mulțimi A, B, C, D, T astfel încât $T \supseteq A$ și $T \supseteq B$, au loc următoarele proprietăți, unde am notat cu $M := T \setminus M$ pentru orice $M \in \mathcal{P}(T)$:

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $\bullet \ A \cup B = B \Leftrightarrow A \subseteq B \Leftrightarrow A \cap B = A$
- $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$, $A \setminus \emptyset = A$, $\emptyset \setminus A = \emptyset$, $A \triangle \emptyset = A$
- $A \cup B = \emptyset \Leftrightarrow A = B = \emptyset$, $A \setminus B = \emptyset \Leftrightarrow A \subseteq B$, $A \triangle B = \emptyset \Leftrightarrow A = B$
- $A \subseteq B \Leftrightarrow (A \subseteq B \text{ si } B \not\subseteq A) \Leftrightarrow (A \subseteq B \text{ si } B \setminus A \neq \emptyset)$
- $A \subseteq B \Leftrightarrow (A \subseteq B \text{ sau } A = B)$
- $A \subseteq B \subseteq C \Rightarrow A \subseteq C$, $A \subseteq B \subseteq C \Rightarrow A \subseteq C$, $A \subseteq B \subseteq C \Rightarrow A \subseteq C$
- $A \subseteq B \Rightarrow A \cup C \subseteq B \cup C$, $A \subseteq B \Rightarrow A \setminus C \subseteq B \setminus C$, $A \subseteq B \Rightarrow C \setminus B \subseteq C \setminus A$
- $(A \subseteq B \neq C \subseteq D) \Rightarrow (A \cup C \subseteq B \cup D, A \cap C \subseteq B \cap D \neq A \setminus D \subseteq B \setminus C)$
- $A \setminus B \subseteq A$, $A \cap (A \setminus B) = A \setminus B$, $A \cap (B \setminus A) = \emptyset$
- $A \cap B = \emptyset \Leftrightarrow A \setminus B = A \Leftrightarrow B \setminus A = B$
- $A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A}$, $A = B \Leftrightarrow \overline{A} = \overline{B}$, $A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A}$
- $A \cap B = \emptyset \Leftrightarrow A \subset \overline{B} \Leftrightarrow B \subset \overline{A}, A \cup B = T \Leftrightarrow A \supset \overline{B} \Leftrightarrow B \supset \overline{A}$
- $A\Delta B = (A \cup B) \setminus (A \cap B)$