

planetmath.org

Math for the people, by the people.

the limit of a uniformly convergent sequence of continuous functions is continuous

 $Canonical\ name \qquad The Limit Of A Uniformly Convergent Sequence Of Continuous Functions Is Continuous Functions Function Functio$

Date of creation 2013-03-22 15:21:58

Last modified on 2013-03-22 15:21:58

Owner neapol1s (9480)

Last modified by neapol1s (9480)

Numerical id 13

Author neapol1s (9480)

Entry type Theorem Classification msc 40A30

Related topic LimitFunctionOfSequence

Theorem. The limit of a uniformly convergent sequence of continuous functions is continuous.

Proof. Let $f_n, f: X \to Y$, where (X, ρ) and (Y, d) are metric spaces. Suppose $f_n \to f$ uniformly and each f_n is continuous. Then given any $\epsilon > 0$, there exists N such that n > N implies $d(f(x), f_n(x)) < \frac{\epsilon}{3}$ for all x. Pick an arbitrary n larger than N. Since f_n is continuous, given any point x_0 , there exists $\delta > 0$ such that $0 < \rho(x, x_0) < \delta$ implies $d(f_n(x), f_n(x_0)) < \frac{\epsilon}{3}$. Therefore, given any x_0 and $\epsilon > 0$, there exists $\delta > 0$ such that

$$0 < \rho(x, x_0) < \delta \Rightarrow d(f(x), f(x_0)) \le d(f(x), f_n(x)) + d(f_n(x), f_n(x_0)) + d(f_n(x_0), f(x_0)) < \epsilon.$$

Therefore, f is continuous.

The theorem also generalizes to when X is an arbitrary topological space. To generalize it to X an arbitrary topological space, note that if $d(f_n(x), f(x)) < \epsilon/3$ for all x, then $x_0 \in f_n^{-1}(B_{\epsilon/3}(f_n(x_0))) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$, so $f^{-1}(B_{\epsilon}(f(x_0)))$ is a neighbourhood of x_0 . Here $B_{\epsilon}(y)$ denote the open ball of radius ϵ , centered at y.