Physics 321 – Spring 2017

Homework #6, due at beginning of class Wednesday Feb 22.

1. [6 pts] A thin uniform stick of wood of length B and mass M is in the process of falling to the floor. It starts at $\theta = 90^{\circ}$ with $\dot{\theta}$ vanishingly small but negative so it falls to $\theta = 0$. Assume that the end on the floor does not slip, and ignore air resistance.

- (a) Write its kinetic energy as a function of B, M, θ , and $\dot{\theta}$.
- (b) Write its potential energy as a function of B, M, g, θ .
- (c) Use energy conservation (KE + PE = constant) to obtain a relation between θ and θ . Evaluate the constant using the initial conditions t = 0.
- (d) Take the derivative of your energy conservation equation with respect to time to obtain $\ddot{\theta}$ as a function of θ .
- (e) Find the horizontal component N_x of the force due to the floor as a function of B, M, g, θ .
- (f) Find the vertical component N_y of the force due to the floor as a function of B, M, g, θ .
- (g) Write the stick's angular momentum about the point of contact with the floor.
- (h) Write the torque on the stick due to gravity about the point of contact with the floor.
- (i) Use the formula $\tau = dL/dt$ where τ is the torque and L is the angular momentum, to obtain an equation of motion for $\ddot{\theta}$ as a function of θ and check that it agrees with your previous result for that.
- (j) What is the smallest coefficient of friction that will keep the stick from slipping through the entire fall? (Hint: look at the ratio N_x/N_y near $\theta = 0$.
- 2. [4 pts] The potential energy of a particle is given by $U(x, y, z) = a \sin(bxyz^2)$ where a and b are constants.
 - (a) Find the magnitude of the force at the point x = y = z = 1.
 - (b) Find the unit vector in the direction of the force at the point x = y = z = 1, assuming a > 0 and $b = \pi$.
- 3. [4 pts] A conservative force is acting in the two-dimensional plane (x, y). The component of force in the x-direction is $F_x = a x^2 y^3$ where a is a constant.
 - (a) Find the most general form possible for the potential energy U(x,y).
 - (b) Find the most general form possible for the y-component of the force $F_y(x,y)$.
- 4. [6 pts] Taylor problem 4.20

(Last updated 2/17/2017.)