一、选择题

- 1. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等, 则不计自感时[1
 - (A) 铜环中有感应电动势, 木环中无感应电动势
 - (B) 铜环中感应电动势大, 木环中感应电动势小
 - (C) 铜环中感应电动势小, 木环中感应电动势大
 - (D) 两环中感应电动势相等
- 2. 圆铜盘水平放置在均匀磁场中, \vec{B} 的方向垂直盘面向上. 当铜盘绕通过中心垂直于盘面 的轴沿图示方向转动时[- 1
 - (A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动
 - (B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动
 - (C) 铜盘上产生涡流
 - (D) 铜盘上有感应电动势产生,铜盘边缘处电势最高
 - (E) 铜盘上有感应电动势产生,铜盘中心处电势最高

- 3. 在圆柱形空间内有一磁感强度为 \bar{B} 的均匀磁场,如图所示. \bar{B} 的大小以速率 dB/dt变化.在 磁场中有 $A \setminus B$ 两点,其间可放直导线 \overline{AB} 和弯曲导线 \widehat{AB} ,则[
 - (A) 电动势只在直导线 \overline{AB} 中产生
 - (B) 电动势只在弯曲导线 \widehat{AB} 中产生
 - (C) 电动势在直导线 \overline{AB} 和弯曲导线 \overline{AB} 中都产生,且两者大小相等
 - (D) 直导线 \overline{AB} 中的电动势小于弯曲导线 \widehat{AB} 中的电动势
- 在感应电场中电磁感应定律可写成 $\oint_L \vec{E}_i \cdot d\vec{l} = -\frac{d \, \phi}{dt}$,式中 \vec{E}_i 为感应电场的电场强度.此 式表明:[
 - (A) 闭合曲线 $L \perp \bar{E}_i$ 处处相等
 - (B) 感应电场是保守力场
 - (C) 感应电场的电场强度线不是闭合曲线
 - (D) 在感应电场中不能像对静电场那样引入电势的概念
- 5. 半径为 a 的圆线圈置于磁感强度为 \bar{B} 的均匀磁场中,线圈平面与磁场方向垂直,线圈电 阻为 R; 当把线圈转动使其法向与 \bar{B} 的夹角 $\alpha=60^\circ$ 时,线圈中通过的电荷与线圈面积及 转动所用的时间的关系是[

 - (A) 与线圈面积成正比,与时间无关 (B) 与线圈面积成正比,与时间成正比
 - (C) 与线圈面积成反比,与时间成正比
- (D) 与线圈面积成反比,与时间无关

6. 如图,长度为 l 的直导线 ab 在均匀磁场 \bar{B} 中以速度 \bar{v} 移动,直导 线 ab 中的电动势为[1 (A) Blv (B) $Blv \sin$ (C) Blv cos (D) 0

7. 如图所示, 一矩形线框长为 a 宽为 b,置于均匀磁场中, 线框绕 OO'轴以匀角速度 ω 旋 转.设t=0时,线框平面处于纸面内,则任一时刻感应电动势的大小为[

- (A) $2abB |\cos \omega t|$
- (B) ωabB
- (C) $\frac{1}{2}\omega abB |\cos \omega t|$ (D) $\omega abB |\cos \omega t|$
- (E) $\omega abB |\sin \omega t|$

8. 在一通有电流 I 的无限长直导线所在平面内,有一半径为 r、电阻为 R 的导线小环,环中 心距直导线为 a, 如图所示,且 a >> r. 当直导线的电流被切断

- 后,沿着导线环流过的电荷约为[
- (B) $\frac{\mu_0 Ir}{2\pi R} \ln \frac{a+r}{a}$

(D) $\frac{\mu_0 Ia^2}{2rR}$

- 9. 两个通有电流的平面圆线圈相距不远,若要使其互感系数近似为零,应调整线圈的取向使 1
 - (A) 两线圈平面都平行于两圆心连线
 - (B) 两线圈平面都垂直于两圆心连线
 - (C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线
 - (D) 两线圈中电流方向相反
- 10. 对于单匝线圈取自感系数的定义式为 $L = \Phi/I$. 当线圈的几何形状、大小及周围磁介质分 布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数 LI
 - (A) 变大,与电流成反比关系
- (B) 变小.

(C) 不变

(D) 变大,但与电流不成反比关系

二、填空题

11. 桌子上水平放置一个半径为 $r=10 \, \text{cm}$ 的金属圆环,其电阻为 $R=1\Omega$. 若地球磁场的磁感 应强度的竖直分量为 5×10-5 T. 那么将环面翻转一次,沿金属圆环流过任一横截面的电荷 量为 *q* =

12.	一半径为 $r=10~{\rm cm}$ 的圆形闭合导线回路置于均匀磁场 \bar{B} ($B=0.80~{\rm T}$)中, \bar{B} 与回路平面正交.若圆形回路的半径从 $t=0~{\rm H}$ 开始以恒定的速率 $dr/dt=-80~{\rm cm/s}$ 收缩,则在 $t=0~{\rm H}$ 刻,闭合回路中的感应电动势大小为
13.	半径为 a 的无限长密绕螺线管,单位长度上的匝数为 n ,通以交变电流 $i=I_m\sin\omega t$,则环绕在管外的半径为 r 的同轴圆形回路中的感生电动势为
14.	如图所示,一段长度为 I 的直导线 MN ,水平放置在电流为 I 的竖直长导线旁且与竖直导线共面,并从静止由图示位置自由下落,则 t 秒末导线两端的电势差 $\varphi_M - \varphi_N =$
15.	半径为 L 的均匀导体圆盘绕通过中心 O 的垂直轴转动,角速度为 ω ,盘面与均匀磁场 \overline{B} 垂直. (1) 图中 Oa 线段中动生电动势的 方向为 (2) 设 ca 线段长度为 d ,则下列电势 差的数值为: $\varphi_a - \varphi_o =$ $\varphi_a - \varphi_c =$
16.	载有恒定电流 I 的长直导线旁有一半圆环导线 cd ,半圆环半径为 b ,环面与直导线垂直,且半圆环两端点连线的延长线与直导线相交,如图. 当半圆环以速度 \bar{v} 沿平行于直导线的方向平移时,半圆环 I 上的感应电动势的大小是 a
17.	一导线被弯成如图所示的形状, acb 为半径为 R 的四分之三圆弧,直线段 Oa 长为 R . 若此导线放在匀强磁场 \overline{B} 中, \overline{B} 的方向垂直图面向内。导线以角速度 o 在图面内绕 o 点匀速转动,则此导线中的动生电动势 e a
18.	在竖直向上的均匀稳恒磁场中,有两条与水平面成 θ 角的平行导轨相距 L ,导轨下端与电阻 R 相连,一段质量为 m 的裸导线 ab 在导轨上保持匀速下滑。在忽略导轨与导线的电阻和其间摩擦的情况下,感应电动势 \mathcal{E}_i =

- 19. 有两个线圈, 自感系数分别为 L_1 和 L_2 . 已知 L_1 =3 mH, L_2 =5 mH, 串联成一个线圈后测 得自感系数 L=11 mH,则两线圈的互感系数 M=
- 20. 一自感线圈中, 电流强度在 0.002 s 内均匀地由 10 A 增加到 12 A, 此过程中线圈内自感 电动势为 $400 \, \text{V}$,则线圈的自感系数为 L =

三、计算题

- 21. 一个均匀的带电平面圆环,其电荷面密度为 σ ,内外半径分别为 R_1 、 R_2 ;另有一个导体小 环,其半径为r,且 $R_1 >> r$,电阻为R',两个圆环同心共面.如果带电 圆环以变角速度 $\omega = \omega(t)$ 绕垂直于环面的中心轴旋转,求导体小环中 的感应电流 i 的大小和方向.
- 22. 一个半径为r、长为L(L >> r)的绝缘薄壁长圆筒,表面上均匀分布总电量为0的电荷.圆 筒以角速度ω绕中心轴线旋转, 角速度大小随时 间的变化规律如下: $\omega = \omega_0(2 + t/t_0)$, 式中 ω_0 和 t_0 是已知常数. 如果让一个半径为 2r、电阻为 R的单匝圆形线圈套在圆筒上,并且圆环的圆心在 圆柱的轴线上,圆环半径与轴线相垂直.求圆形 线圈中感应电流的大小和方向.

23. 一根通有恒定电流 I 的无限长竖直导线,电流方向向上. 另有一个与导线共面、长度为 L的金属棒,它绕其一端 Ο 点以匀角速度ω在平面内沿逆时 针方向转动,O 点到导线的垂直距离为 $r_0(r_0 > L)$. 求当金 属棒转到与水平方向成 θ 角时,棒内感应电动势的大小和 方向.

24. 一根无限长竖直导线中通有恒定电流 I, 另有一边长为 l 的等边三角形线圈 LMN 与直导线 共面. 线圈 MN 边与长直导线距离最近且相互平行. 如果 线圈 LMN 以匀速v在纸面内远离长直导线运动,且v的方 向与长直导线相垂直. 求当线圈 MN 边与长直导线相距为 a时,线圈 LMN 内产生的动生电动势的大小和方向.

26. 一无限长竖直导线上通有恒定电流 I,在其附近有半径为 r 的半圆环导线 MLN 与导线共面,且其端点 MN 的连线垂直于长直导线,环心 O 距长直导线距离为 d. 若半圆环以匀速度 \vec{v} 平行导线平移,求半圆环内感应电动势大小和方向.

27. 真空中一通有电流为 $I(t) = I_0 e^{-\lambda t}$ 的长直导线,式中 I_0 、 λ 为常量,t为时间. 距长直导线距离为 a 处,有一个带滑动边的矩形导线框与长直导线平行

共面. 矩形线框的滑动边与长直导线垂直, 其宽度为 b, 以匀速度 \overline{v} 沿平行长直导线的方向滑动. 如果忽略线框中的自感电动势, 且设开始时滑动边与对边重合, 求任意时刻 t 在矩形线框内的感应电动势的大小和方向.

- 28. 一无限长竖直导线 MN 上通有恒定电流 I,另有一个长为 l_1 、宽为 l_2 矩形导线框 abcd 与长直导线共面,且 ac // MN,ac 边距长直导线距离为 l_0 .如果线框自感忽略不计.
 - (1) 若线圈以匀速度 \bar{v} 在纸面内向右运动,求任意时刻 t 在 矩形线框内的感应电动势的大小和方向.
 - (2) 若线圈不动,电流 $I = I_0 t^3$,式中 I_0 为常量且 $I_0 > 0$,t为 I^{\uparrow} 时间. 求任意时刻 t 在矩形线框内的感应电动势的大小和方向.
 - (3) 若计时开始,电流 $I = I_0 t^3$,式中 I_0 为常量且 $I_0 > 0$,t为时间. 同时线圈以匀速度 \bar{v} 在纸面内向右运动,求任意时刻 t 在矩形线框内的感应电动势的大小.

