Practice Problems

Module-1

1. Given matrix
$$A = \begin{bmatrix} 2 & 1 & 0 & 4 \\ 2 & 2 & 3 & -1 \\ 4 & 2 & 0 & 1 \end{bmatrix}$$
, find

- i. Echelon form of A.
- ii. Reduced row echelon for of *A*.
- 2. Solve the following system of equation using Gauss-elimination method

$$x - y + 2z + w = 1$$

 $3x + y - w = 3$
 $x + y + z = -1$

3. Given system of equation

$$x + y - z + w = 1$$

 $2x + y + z - w = 2$
 $3x + 3y + cz + 4w = 4$
 $2x + 2y - z + dw = e$

Find the values of parameters c,d and e, such the system of equations

- (i) Has infinitely many solutions
- (ii) Has unique solutions
- (iii) Has no solution.
- 4. Use the Gauss-Jordon method to find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}.$$

5. Find the LU decomposition of the matrix $A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & 2 & 2 \\ 2 & 1 & 1 \end{bmatrix}$ and hence, us LU decomposition to

find the solution of the following system of equations

$$x + 2y + 3z = 1$$
$$x + 2y + 2z = -1$$
$$2x + y + z = 1$$

Module 2:

- 1. Are the following sets vector spaces with the indicated operations? If not, why not?
 - i) The set V of nonnegative real numbers; ordinary addition and scalar multiplication.
 - ii) he set V of all polynomials of degree ≥ 3, together with 0; operations of Polynomials.
 - iii) The set V of 2 × 2 matrices with equal column sums; operations of $M_{2\times 2}$.
 - iv) The set V of all ordered pairs (x, y) with the addition of \mathbb{R}_2 , but using scalar multiplication a(x,y)=(ax,-ay).
 - v) The set V of all 2 × 2 matrices with the addition of $M_{2\times 2}$ but scalar multiplication * defined by $a * X = aX^T$.
 - vi) The set V of complex numbers; usual addition and multiplication by a real number.

- 2. Which of the following are subspaces of P_3 (Set of all polynomials of degree ≤ 3)? Support your answer
 - a. $U = \{ f(x) | f(x) \in P_3, f(2) = 1 \}$
 - b. $U = \{xg(x) + (1-x)h(x) \mid g(x) \text{ and } h(x) \in P_2\}$
- 3. Which of the following are subspaces of $M_{2\times2}$ (Set of all 2 × 2 matrices)? Support your answer.
 - a. $U = \{A \mid A \in M_{2\times 2}, A^2 = A\}$
 - b. $U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a+b=c+d; a,b,c,d \in \mathbb{R} \right\}$
 - c. $U = \{A \mid A \in M_{2\times 2}, BAC = CAB\}, B \text{ and } C \text{ fixed } 2\times 2 \text{ matrices.}$
- 4. Write each of the following vector as linear combination of x+1, x^2+x , and x^2+2 , I. x^2+3x+2 , II. $2x^2-3x+1$, III. x^2+1 .
- 5. Consider the vectors $p_1 = 1 + x + 4x^2$ and $p_2 = 1 + 5x + x^2$ in P_2 . Determine whether p_1 and p_1 lie in span $\{1 + 2x x^2, 3 + 5x + 2x^2\}$.
- 6. Find the value of a such that the following subsets are linearly independent in \mathbb{R}^3
 - a. $\{(1, -1, 0), (a, 1, 0), (0, 2, 3)\}$
 - b. {(2, a, 1), (1, 0, 1), (0, 1, 3)}
- 7. Find the basis and dimension of the following
- a. $w = \{a(1+x) + b(x+x^2) \mid a \text{ and } b \text{ } in \mathbb{R}\}$, subspace of P_2 (set of polynomials of degree atmost 2)
- b. $w=\{p(x) \mid p(x)=p(-x)\}$, subspace of P_2 (set of polynomials of degree atmost 2)
- c. $w = \{A | A^T = -A\}$, subspace of $M_{2 \times 2}$ (set of all 2×2 matrices).
- d. $w = \left\{A \middle| A \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} A\right\}$, subspace of $M_{2 \times 2}$ (set of all 2×2 matrices).

Module-3

1. Find the rank, basis and dimension of the row space, column space and null space of the following matrix

$$A = \begin{bmatrix} 1 & -2 & 2 & 1 & 3 \\ 1 & 1 & -1 & 7 & 5 \\ 2 & -4 & 4 & 2 & 6 \\ -1 & 2 & -2 & 3 & 4 \end{bmatrix}.$$