Matrizes

tipos, operações, determinantes, inversa de uma matriz

Exercícios

1. Dadas as matrizes
$$A = \begin{bmatrix} 1 & 2 & -1 \\ -2 & -3 & 2 \\ 1 & 4 & 5 \end{bmatrix}$$
 $\in B = \begin{bmatrix} 1 & 0 & 3 \\ 2 & -1 & 4 \\ -3 & -1 & -17 \end{bmatrix}$, encontre:

b)
$$C = B^2$$

c) Obtenha A e B como soma de uma matriz simétrica e outra anti-simétrica.

2. Se A=[
$$a_{ij}$$
] com a_{ij} = $\begin{cases} ji, i \geq j \\ 0, i < j \end{cases}$, B = [b_{ij}] com B simétrica e b_{ij} = {i + j, i \le j. Encontre:

a)
$$C = 2A - 3B$$

b) $C = B^2$ é uma matriz anti-simétrica?

3. Se A e B são matrizes simétricas, justifique a verdade ou falsidade dos seguintes enunciados:

b) AB é simétrica

4. Quais são os valores para a matriz A=
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ a & 1 & a & 1 \\ 1 & a & 1 & 1 \\ a & 1 & a & a \end{bmatrix}$$
 ser simétrica?

5. Encontre o determinante, posto e nulidade das matrizes

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 3 & 2 & 4 & 5 \\ 2 & 2 & 1 & 0 \\ -2 & 1 & 3 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 2 & 3 & 0 & -2 \\ -1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 3 \\ 2 & -1 & 4 \\ -6 & -1 & -17 \end{bmatrix}.$$

Nota: Use operações elementares e o método de Laplace.

6. Encontre a matriz inversa, se possível, das matrizes dadas no exercício 5.

7. Dadas as matrizes
$$A = \begin{bmatrix} a & c+2a \\ b & d+2b \end{bmatrix}$$
, $B = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$, mostre que det $A = \det B$.

Nota: Só use propriedades dos determinantes.

- 8. Crie situações do cotidiano em que seja possível, através do enunciado de um problema, fazer uso de:
 - a) Soma de matrizes
 - b) Subtração de matrizes
 - c) Produto de matrizes

Prof.^a Sonia MTM/UFSC