

- NeuralFieldEq.jl: A flexible solver to compute Neural
- 2 Field Equations in several scenarios
- 3 Tiago Sequeira*1
- 1 Instituto Superior Técnico University of Lisbon

DOI: 10.21105/joss.03974

Software

- Review 🗗
- Repository 🗗
- Archive ♂

Editor: Jarvist Moore Frost ♂ Reviewers:

- @rougier
- @gdetor

Submitted: 02 November 2021 **Published:** 07 February 2022

License

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Summary

In their works, Wilson & Cowan (1972) presented a model, later developed by Amari (1977), named Neural Field Equations (NFE). Bressloff (2011) and Coombes (2005), summarise the main theoretical results and enumerate a wide variety of neurological phenomena that can be described by these equations. Such as working memory (Laing et al., 2002), travelling waves, etc. One of the improvements to consider in the simpler NFE, is to take into account the time taken by the stimulus to travel from neurons at different points. This leads to the delayed equation,

$$\alpha \frac{\partial V}{\partial t} (\mathbf{x}, t) = I(\mathbf{x}, t) - V(\mathbf{x}, t) + \int_{\Omega} K(||\mathbf{x} - \mathbf{y}||_2) S[V(\mathbf{y}, t - d(\mathbf{x}, \mathbf{y}))] d^k \mathbf{y}, \quad (1)$$

with $\Omega = [-\frac{L}{2}, \frac{L}{2}]^k$ with k = 1, 2; $V(\mathbf{x}, t)$ is the membrane potential at point $\mathbf{x} \in \Omega$ at time t; $I(\mathbf{x}, t)$ is the external input applied to the neural field; $K(||\mathbf{x} - \mathbf{y}||_2)$ is the average strength of connectivity between neurons located at points \mathbf{x} and \mathbf{y} in an isotropic and homogeneous neural field. When the coupling is positive (resp. negative) the synapses are excitatory (resp. inhibitory); S(V) is the firing rate function, which converts the potential to the respective firing rate result; α is the constant decay rate; $d(\mathbf{x}, \mathbf{y}) = \frac{||\mathbf{x} - \mathbf{y}||_2}{v}$ represents the delay, which is assumed to only depend on the distance, between points \mathbf{x} and \mathbf{y} , and on the transmission speed v. If v is sufficiently high, d can be neglected and Equation 1 is reduced to a non-delayed NFE, d = 0. Moreover, V satisfies the initial condition $V(\mathbf{x}, t_0) = V_0(\mathbf{x}, t_0)$, $t_0 \in [-\tau_{max}, 0]$, wherein τ_{max} is the maximum delay correspondent to Ω .

Kuehn & G Riedler (2014) considered the stochasticity inherent to neuronal interactions, and presented a spectral method to stochastic non-delayed NFE with additive white noise and spatial correlation. So, considering a finite speed in this scenario, the following delayed stochastic NFE can be written,

$$\alpha dV(\mathbf{x}, t) = \left[I(\mathbf{x}, t) - V(\mathbf{x}, t) + \int_{\Omega} K(||\mathbf{x} - \mathbf{y}||_2) S[V(\mathbf{y}, t - d(\mathbf{x}, \mathbf{y}))] d^2 \mathbf{y} \right] dt + \epsilon dW(\mathbf{x}, t),$$
(2)

whereas ϵ is the additive noise level and W is a Q-Wiener process. With $V(\mathbf{x},t_0)=V_0(\mathbf{x},t_0),\ t_0\in[-\tau_{max},\ 0].$

Statement of need

- 26 Studies suggest that Neural Field Equations, can be applied to cognitive robotics. The archi-
- 27 tecture of autonomous robots, able to interact with other agents in solving a mutual task, is

^{*}first author

strongly inspired by the processing principles and the neuronal circuitry in the primate brain (Erlhagen & Bicho, 2006). Furthermore, recent efforts made by Ferreira et al. (2020) show a necessity of efficient numerical methods capable of computing NFE in real time, in order to endow robots with working memory mechanisms.

The common numerical methods for Neural Field Equations use the classical quadrature methods, which have $\mathcal{O}\left(N^{2k}\right)$ complexity, where k is the dimension of the domain, therefore, they do not scale well. In the case of non-delayed equations, one can directly apply Fast Fourier Transforms (FFT), $\mathcal{O}\left(N^k\log^k N\right)$, to compute the numerical solution. However, when $v<\infty$, this is no longer the case. Motivated by this, Hutt & P Rougier (2013) proposed a novel numerical scheme, where the authors rewrote the integral in a suitable way, such that, the delayed NFE could be numerically approximated using FFT techniques.

NeuralFieldEq.jl aims to enhance the method derived in (Hutt & P Rougier, 2013) and implemented by Nichols & Hutt (2015), and adapt to the stochastic scenario presented by Kuehn & G Riedler (2014). The solver uses Real Fast Fourier Transforms (RFFT) provided by Frigo & Johnson (2005), reducing the overall computations. And is written in Julia (Bezanson et al., 2015), which can be performant like low-level languages without sacrificing the usual features of high-level languages. Furthermore, its built to handle NFE in the scenarios aforementioned and their respective combinations, i.e. non-delayed or delayed equations in deterministic or stochastic 1D or 2D neural fields.

Sequeira & Lima (2021) exploited this versatility and efficiency to study stochastic neural fields where low transmission velocities play an important role, facilitating the exploration of new ideas and experiments.

Package usage

52

53

56

57

60

61

62

63

64

65

70

71

- 1. Specify parameters, initial condition and functions by using Input1D or Input2D:
 - The functions are defined as External input: I(x,t) or I(x,y,t); Kernel: K(x) or K(x,y); And Firing rate: S(V).
 - The initial condition can be constant or a function. In the latter case, must be defined as VO(x) or VO(x,y);
 - The parameters: a- α , v-velocity, L-domain length, N-number of spatial nodes, T-time span and n-number of time steps;
 - The inputs must be wrapped in the following order: nf = Input1D(a,v,V0,L,N,T,n,I,K,S);
 - **Remark:** Currently, to obtain the non-delayed problem, the velocity must satisfy: $v>\frac{L}{\sqrt{2}\Delta t}$ in 2D and $v>\frac{L}{2\Delta t}$ in 1D.
- 2. Prepare the NFE through function probNFE. Example: NFE = probNFE(nf);
- Solve the equation using solveNFE:
 - Declare an array, t, with the time instants where the solution is saved;
 - Compute deterministic equation: Vdet = solveNFE(NFE,t);
 - Compute stochastic equation with noise magnitude eps, spatial correlation xi, for np paths: Vsto = solveNFE(NFE,t,eps,xi,np);
 - Remark: Currently, xi=0.1 is the default value.
 - 4. Handle the output of solveNFE (callable object):
 - Call deterministic solution at ti ∈ t: Vdet(ti);
 - Call pth trajectory at ti: Vsto(ti,p);
- Call mean stochastic solution at ti. Example: Vsto(ti).

Example and code performance

The example shown below is adapted from Kulikov et al. (2019)

```
using NeuralFieldEq, Plots
I(x,t) = -3.4 + 8.0*exp(-x^2/(2.0*3^2))
K(x) = 2*exp(-0.08*sqrt(x^2))*(0.08*sin(pi*sqrt(x^2)/10)+cos(pi*sqrt(x^2)/10))
S(V) = V<=0.0 ? 0.0 : 1.0 # Heaviside function
nf = Input1D(1.0,20.0,0.0,100,512,20.0,200,I,K,S);
NFE = probNFE(nf)
t = [5.0,10.0,20.0] # Choose instants where sol is saved
V = solveNFE(NFE,t) # Compute deterministic solution
Vsto = solveNFE(NFE,t,0.05,100) # eps = 0.05. xi = 0.1. 100 paths
plot(V.x,[V(1),Vsto(1),Vsto(1,4)],xlabel="x",ylabel="Action Potential", label=["Det Solution" "Sto Mean Solution" "4th path"])</pre>
```


Figure 1: Caption for example figure.

Regarding the solver performance, the table below shows the time spent (in seconds) in computing one time step with \mathbb{N} nodes, for the example listed above and its 2D version. Both equations were computed with v=400.

1D	2D
8.6e-6	1.4e-3
2.1e-5	9.2e-3
3.1e-5	3.8e-2
6.2e-5	0.155
1.3e-4	0.621
2.6e-4	2.72
	8.6e-6 2.1e-5 3.1e-5 6.2e-5 1.3e-4

78 Acknowledgements

1 want to thank my advisor, Pedro Lima, that kindly reviewed this article.

References

- Amari, S. (1977). Dynamic of pattern formation in lateral-inhibition type neural fields. *Biological Cybernetics*, 27, 77–87. https://doi.org/10.1007/BF00337259
- Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. (2015). *Julia: A fresh approach to numerical computing*. https://doi.org/10.1137/141000671
- Bressloff, P. (2011). Spatiotemporal dynamics of continuum neural fields. Journal of Physics
 A: Mathematical and Theoretical, 45, 033001. https://doi.org/10.1088/1751-8113/45/3/033001
- Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biol. Cybern. 93(2), 91-108. Biological Cybernetics, 93, 91–108. https://doi.org/10.1007/s00422-005-0574-y
- Erlhagen, W., & Bicho, E. (2006). The dynamic neural field approach to cognitive robotics.

 Journal of Neural Engineering, 3, R36–54. https://doi.org/10.1088/1741-2560/3/3/R02
- Ferreira, F., Wojtak, W., Sousa, E., Louro, L., Bicho, E., & Erlhagen, W. (2020). Rapid learning of complex sequences with time constraints: A dynamic neural field model. *IEEE Transactions on Cognitive and Developmental Systems*, *PP*, 1–1. https://doi.org/10.1109/TCDS.2020.2991789
- Frigo, M., & Johnson, S. G. (2005). The design and implementation of FFTW3. *Proceedings* of the IEEE, 93(2), 216–231. https://doi.org/10.1109/JPROC.2004.840301
- Hutt, A., & P Rougier, N. (2013). Numerical simulation scheme of one- and two dimensional
 neural fields involving space-dependent delays. Neural Fields: Theory and Applications.
 https://doi.org/10.1007/978-3-642-54593-1_6
- Kuehn, C., & G Riedler, M. (2014). Large deviations for nonlocal stochastic neural fields.

 Journal of Mathematical Neuroscience, 4, 1. https://doi.org/10.1186/2190-8567-4-1
- Kulikov, G. Yu., Kulikova, M. V., & Lima, P. M. (2019). Numerical simulation of neural fields with finite transmission speed and random disturbance. 2019 23rd International Conference on System Theory, Control and Computing (ICSTCC), 644–649. https://doi.org/10.1109/ICSTCC.2019.8885972
- Laing, C., C. Troy, W., Gutkin, B., & Ermentrout, B. (2002). Multiple bumps in a neuronal model of working memory. *SIAM Journal on Applied Mathematics*, *63*. https://doi.org/10.1137/\$0036139901389495
- Nichols, E., & Hutt, A. (2015). Neural field simulator: Two-dimensional spatio-temporal dynamics involving finite transmission speed. *Frontiers in Neuroinformatics*, *9*, 25. https://doi.org/10.3389/fninf.2015.00025
- Sequeira, T., & Lima, P. (2021). Numerical simulations of one- and two-dimensional stochastic neural field equations with delay submitted. *Journal of Computational Neuroscience*.
- Wilson, H., & Cowan, J. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. *Biophysical Journal*, 12, 1–24. https://doi.org/10.1016/S0006-3495(72)86068-5