

Camada de Internet

DHCP: Dynamic Host Configuration Protocol

Como um hospedeiro obtém endereço IP na rede?

Fornecido pelo administrador do sistema em um arquivo

- DHCP: Dynamic Host Configuration Protocol: recebe endereço dinamicamente do servidor
 - "plug-and-play"

Objetivo: permitir que o hospedeiro obtenha *dinamicamente* seu IP do servidor de rede quando se conectar à rede

Pode renovar seu prazo no endereço utilizado

Permite reutilização de endereços (só mantém endereço enquanto conectado e "ligado")

Aceita usuários móveis que queiram se juntar à rede

Visão geral do DHCP:

- Host envia broadcasts "DHCP discover" msg [optional]
- ❖ Servidor DHCP responde com msg "DHCP offer" [opcional]
- ❖ Hospedeiro requer endereço IP: msg "DHCP request"
- ❖ Servidor DHCP envia endereço: msg "DHCP ack"

DHCP pode retornar mais do que apenas o endereço IP alocado na sub-rede:

- Endereço do roteador do primeiro salto para o cliente
- Nome e endereço IP do servidor
 DNS
- Máscara de rede (indicando parte de rede versus hospedeiro do endereço)

- Conexão de laptop precisa do seu endereço IP, endereço do roteador do primeiro salto, endereço do servidor DNS: use DHCP
- Solicitação DHCP encapsulada no UDP, encapsulada no IP, encapsulado no Ethernet 802.1
- Broadcast de quadro Ethernet (dest: FFFFFFFFFFFFFF) na LAN, recebido no roteador rodando DHCP
- Ethernet demultiplexado para IP demultiplexado, UDP demultiplexado para DHCP

- Servidor DHCP formula DHCP ACK contendo endereço IP do cliente, endereço IP do roteador do primeiro salto para cliente, nome & endereço IP do servidor DNS
 - Encapsulamento do servidor DHCP, quadro repassado ao cliente, demultiplexando para DHCP no cliente
 - Cliente agora sabe seu endereço IP, nome e endereço IP do servidor DNS, endereço IP do seu roteador do primeiro salto

- Motivação: rede local usa apenas um endereço IP no que se refere ao mundo exterior:
 - Intervalo de endereços não necessário pelo ISP: apenas um endereço IP para todos os dispositivos
 - Pode mudar os endereços dos dispositivos na rede local sem notificar o mundo exterior
 - Pode mudar de ISP sem alterar os endereços dos dispositivos na rede local
 - Dispositivos dentro da rede local não precisam ser explicitamente endereçáveis ou visíveis pelo mundo exterior (uma questão de segurança).

IPv4

- √ Um endereço IP associado a uma interface
- √ 32 bits (equivalente a 4 bytes)
- √ 4,294 bilhões de endereços
- ✓ Dividido em 4 octetos
- ✓ Notação decimal separada por pontos.

Fonte: Cisco IBSG, abril de 2011

NAT - Network Address Translation

- Características do NAT: rede local usa apenas um endereço IP no que se refere ao mundo exterior:
 - ❖ Apenas *um endereço IP* para todos os dispositivos na LAN
 - pode mudar os endereços dos dispositivos na rede local sem notificar o mundo exterior
 - ❖ pode mudar de ISP sem alterar os endereços dos dispositivos na rede local
 - ❖ dispositivos dentro da rede local não precisam ser explicitamente endereçáveis ou visíveis pelo mundo exterior (uma questão de segurança).

Tabela de tradução NAT		
Lado da WAN	Lado da LAN	
138.76.29.7, 5001	10.0.0.1, 3345	

Em Resumo: roteador NAT deve:

- *enviando datagramas: substituir* (endereço IP de origem, # porta) de cada datagrama saindo por (endereço IP da NAT, novo # porta)
 - . . . clientes/servidores remotos responderão usando (endereço IP da NAT, novo # porta) como endereço de destino
- lembrar (na tabela de tradução NAT) de cada par de tradução (endereço IP de origem, # porta) para (endereço IP da NAT, novo # porta)
- recebendo datagramas: substituir (endereço IP da NAT, novo # porta) nos campos de destino de cada datagrama chegando por (endereço IP origem, # porta) correspondente, armazenado na tabela NAT

NAT - Network Address Translation

Como fazer para um cliente quer se conectar ao servidor ou dispositivo com endereço 10.0.0.1?

Solução 1: configure a NAT estaticamente para repassar as solicitações de conexão que chegam a determinada porta ao servidor

eg.:

123.76.29.7: 2500 sempre repassado para **10.0.0.1: 25000**

Solução 2: *Universal Plug and Play (UPnP)* Internet Gateway Device (IGD) Protocol. Permite que o hospedeiro com NAT:

- ❖ descubra endereço IP público (138.76.29.7)
- ❖inclua/remova mapeamentos de porta (com tempos de posse)

Solução 1: configure a NAT estaticamente para repassar as solicitações de conexão que chegam a determinada porta ao servidor eg.:

123.76.29.7: 2500 sempre repassado para 10.0.0.1: 25000

Solução 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD)

Protocol. Permite que o hospedeiro com NAT:

❖ descubra endereço IP público (138.76.29.7)

❖inclua/remova mapeamentos de porta (com tempos de posse)

Ao habilitar o UPnP, você está abrindo portas na sua rede local

Cuidado, ferramenta para atacar o Google Chromecast disponível na Internet

07 JAN 2019 · INTERNET 4 COMENTÁRIOS

Se tem um Google Chromecast então é melhor só o ter ligado quando precisar do mesmo! A razão deve-se a uma falha de segurança que foi descoberta recentemente e que permitiu a dois hackers aceder a milhares de Google Chromecast e promover o Youtuber PewDiePie.

Para complicar a ferramenta usada foi agora publicada na internet, no GitHub, podendo ser usada por qualquer pessoa que se queira divertir.

https://pplware.sapo.pt/internet/google-chromecast-ataque-internet/

Protocolo ICMP

Internet Control Message Protocol (ICMP)

O ICMP é usado pela implementação do protocolo IP de estações e roteadores para trocar informações de erro e controle, sinalizando situações especiais por meio de seus diversos tipos de mensagens;

Mensagens ICMP são encapsuladas diretamente em datagramas IP

Internet Control Message Protocol (ICMP)

Tipo ICMP	Código	Descrição
0	0	resposta de eco (para <i>ping</i>)
3	0	rede de destino inalcançável
3	1	hospedeiro de destino inalcançável
3	2	protocolo de destino inalcançável
3	3	porta de destino inalcançável
3	6	rede de destino desconhecida
3	7	hospedeiro de destino desconhecido
4	0	repressão da origem (controle de congestionamento)
8	0	solicitação de eco
9	0	anúncio do roteador
10	0	descoberta do roteador
11	0	TTL expirado
12	0	cabeçalho IP inválido

- relato de erro: hospedeiro, rede, porta, protocolo inalcançável
- eco de solicitação/ resposta (usado por ping)

Internet Control Message Protocol (ICMP)

Traceroute e ICMP

- Origem envia série de segmentos UDP ao destino
 - ❖ Primeiro tem TTL = 1
 - ❖ Segundo tem TTL = 2 etc.
 - Número de porta improvável
- Quando nº datagrama chegar no nº roteador:
 - Roteador descarta datagrama
 - Envia à origem uma msg ICMP (tipo 11, código 0)
 - Mensagem inclui nome do roteador & endereço IP

- Quando a mensagem ICMP chega, origem calcula RTT
- Traceroute faz isso 3 vezes

Critério de término

- Segmento UDP por fim chega no hospedeiro de destino
- Destino retorna pacote ICMP "host inalcançável" (tipo 3, código 3)
- Quando origem recebe esse ICMP, termina.

Obrigado!

Referências:

DHCP: Dynamic Host Configuration Protocol

Capitulo 4 - Páginas de 255 à 258

Network Address Translation (NAT)

Capitulo 4 - Páginas de 258 à 260

Protocolo ICMP

Capitulo 4 – Páginas 260 à 262

Referências:

DHCP: Dynamic Host Configuration Protocol

Capitulo 5 – Página 294

Network Address Translation (NAT)

Capitulo 5 - Páginas de 283 à 285

Protocolo ICMP

Capitulo 5 – Páginas 291 à 292

