Probabilistic Programming Languages

Guillaume Baudart

MPRI 2024-2025

Probabilistic programming

Programming and reasoning with uncertainty

- Sample from probability distributions
- Condition on observed data

Bayesian Inference: learn parameters from data

- Latent parameter θ
- Observed data x_1, \ldots, x_n

$$p(\theta \mid x_1, \dots x_n) = \frac{p(\theta) p(x_1, \dots, x_n \mid \theta)}{p(x_1, \dots, x_n)}$$
 (Bayes' theorem)

posterior

$$\propto p(\theta) p(x_1, \ldots, x_n \mid \theta)$$

(Data are constants)

prior

likelihood

Thomas Bayes (1701-1761)

Consider a series of coin tosses

- Observations: head or tail
- Each toss is independent
- What is the probability of getting head at the next toss?

Probabilistic model

- Prior: $z \sim Uniform(0, 1)$
- Observations: for $i \in [1, n]$, $x_i \sim Bernoulli(z)$
- Posterior: $p(z \mid x_1, \dots, x_n)$?

Consider a series of coin tosses

- Observations: head or tail
- Each toss is independent
- What is the probability of getting head at the next toss?

Probabilistic model

- Prior: $z \sim Uniform(0,1)$
- Observations: for $i \in [1, n]$, $x_i \sim Bernoulli(z)$
- Posterior: $p(z \mid x_1, \dots, x_n)$?

$$p(z \mid x_1, ..., x_n) = \frac{p(x_1, ..., x_n \mid z)p(z)}{p(x_1, ..., x_n)}$$
$$= \frac{p(x_1, ..., x_n \mid z)p(z)}{\int_z p(x_1, ..., x_n \mid z)}$$

$$p(x_1, ..., x_n \mid z) = \prod_{i=1}^n p(x_i \mid z)$$

$$= \prod_{i=1}^n z^{x_i} (1-z)^{1-x_i}$$

$$= z^{\sum_{i=1}^n x_1} (1-z)^{\sum_{i=1}^n (1-x_i)}$$

$$= z^{\text{\#heads}} (1-z)^{\text{\#tails}}$$

$$p(z \mid x_1, \dots, x_n) = \frac{z^{\text{\#heads}} (1-z)^{\text{\#tails}}}{\int_z^{\text{\#heads}} (1-z)^{\text{\#tails}}}$$

$$= \frac{z^{\text{\#heads}} (1-z)^{\text{\#tails}}}{B(\text{\#heads} + 1, \text{\#tails} + 1)}$$

$$= pdf(Beta(\text{\#heads} + 1, \text{\#tails} + 1))$$

Consider a series of coin tosses

- Observations: head or tail
- Each toss is independent
- What is the probability of getting head at the next toss?

Probabilistic model

- Prior: $z \sim Uniform(0, 1)$
- Observations: for $i \in [1, n]$, $x_i \sim Bernoulli(z)$
- Posterior: $p(z \mid x_1, \dots, x_n)$?

 $z \sim Beta(\text{\#heads} + 1, \text{\#tails} + 1)$

Example: Linear Regression

Consider a series of observations

- Observation: point (x, y)
- Each point is independent from others
- Find the distribution of possible regressions

Probabilistic model

- Prior: $a \sim \mathcal{N}(0,1)$, and $b \sim \mathcal{N}(0,1)$
- Observations: for $i \in [1, n]$, $y_i \sim \mathcal{N}(a \times x_i + b, \sigma)$
- Posterior: $p(a, b | (x_1, y_1) \dots, (x_n, y_n))$?

What if the model is much more complex?

What if we use arbitrary control flow?

Can we compute the posterior automatically?

Probabilistic programming languages

General purpose programming languages extended with probabilistic constructs

- sample: draw a sample from a distribution
- assume, factor, observe: condition the model on inputs (e.g., observed data)
- infer: compute the posterior distribution of a model given the inputs

Multiple examples:

- Church, Anglican (lisp, clojure), 2008
- WebPPL (javascript), 2014
- Pyro/NumPyro (python), 2017/2019
- Gen (julia), 2018
- ProbZelus (Zelus), 2019
- ...

More and more, incorporating new ideas:

- New inference techniques, e.g., stochastic variational inference (SVI)
- Interaction with neural nets (deep probabilistic programming)

Bayesian reasoning

Bayesian Inference: learn parameters from data

- Latent parameter x
- Observed data y_1, \ldots, y_n

$$p(x \mid y_1, \dots, y_n) = \frac{p(x) \ p(y_1, \dots, y_n \mid x)}{p(y_1, \dots, y_n)} \qquad \text{(Bayes' theorem)}$$
 posterior
$$\propto p(x) \ p(y_1, \dots, y_n \mid x) \qquad \text{(Data are constants)}$$
 prior likelihood

Probabilistic constructs

- x = sample(d): introduce a random variable x of distribution d
- \blacksquare observe(d, y): condition on the fact that y was sampled from d
- infer(m, y): compute posterior distribution of m given y

Notation: $x \sim \mu$

parameter (output): sample(mu)

observation (input): observe(mu)

Thomas Bayes (1701-1761)

Bayesian reasoning

Bayesian Inference: learn parameters from data

- Latent parameter x
- Observed data y_1, \ldots, y_n

$$p(x \mid y_1, \dots, y_n) = \frac{p(x) \ p(y_1, \dots, y_n \mid x)}{p(y_1, \dots, y_n)} \qquad \text{(Bayes' theorem)}$$

$$posterior$$

$$p(x \mid y_1, \dots, y_n) = \frac{p(x) \ p(y_1, \dots, y_n \mid x)}{p(y_1, \dots, y_n \mid x)} \qquad \text{(Data are constants)}$$

$$prior \qquad \qquad \text{likelihood}$$

```
let model (y1, ..., yn) =
  let x = sample prior in
  let () = observe ((likelihood x), (y1, ..., yn)) in
  x

infer model (y1, ..., yn)
```

Notation: $x \sim \mu$

parameter (output): sample(mu)

observation (input): observe(mu)

Thomas Bayes (1701-1761)

Probabilistic programming

Probabilistic constructs

```
    x = sample(d): introduce a random variable x of distribution d
    observe(d, y): condition on the fact that y was sampled from d
    infer(m,y): compute posterior distribution of m given y
```

More general than classic Bayesian Reasoning

```
let rec weird () =
  let b = ample(Bernoulli(0.5)) in
  let mu = 0.5 if (b = 1) else 1.0 in
  let theta = sample(Gaussian(mu, 1.0)) in
  if theta > 0.:
    let () = observe (Gaussian(mu, 0.5), theta) in
    theta
  else:
    weird ()
```


Outline

I - Language

- Syntax: language and types
- Types and kinds: deterministic vs. probabilistic

II - Runtime: basic inference

- Rejection sampling (hard)
- Importance sampling

III - Kernel Semantics

- Types as measurable spaces
- Expressions as measures

Language

Probabilistic Programming Languages

Language and types

```
Simplified syntax
x ::= variables
c ::= constants
d ::= let p = e \mid let f = fun p \rightarrow e \mid d d
p := x | (p, p)
e ::= c | x | (e, e) | op (e) | f (e)
     | if e then e else e | let p = e in e
     | sample (e) | factor (e) | observe (e, e) | infer (e)
Types
t ::= unit \mid bool \mid float \mid t dist \mid t dist^* \mid t \times t \mid t \to t
\blacksquare t dist: distribution over values of type t
• t \operatorname{dist}^*: distribution with densities (\operatorname{pdf}(d): V \to [0, \infty)) is defined)
```

Types and kinds

Kind P guards what can be expressed in a probabilistic model

Typing declarations

$$\frac{G \vdash^D e : t}{G \vdash^D \mathsf{let}\; p = e : G + [p \leftarrow t]}$$

$$\frac{k \in \{D, P\} \qquad G + [p \leftarrow t_1] \vdash^k e : t_2}{G \vdash^D \mathsf{let} f = \mathsf{fun} \ p \to e : G + [f \leftarrow (t_1 \to^k t_2)]}$$

$$\frac{G \vdash^{D} d_{1} : G_{1} \qquad G_{1} \vdash^{D} d_{2} : G_{2}}{G \vdash^{D} d_{1} \ d_{2} : G_{2}}$$

Declarations are deterministic Functions can be D or P

Typing probabilistic constructs

$$\frac{G dash^P e: t}{G dash^D ext{infer}(e): t ext{ dist}}$$

$$\frac{G \vdash^D e : t \, \mathsf{dist}}{G \vdash^P \mathsf{sample}(e) : t}$$

$$\frac{G \vdash^D e : \mathsf{float}}{G \vdash^P \mathsf{factor}(e) : \mathsf{unit}}$$

$$G \vdash^D e_1 : t \operatorname{dist}^* \quad G \vdash^D e_2 : t$$
 $G \vdash^P \operatorname{observe}(e_1, e_2) : \operatorname{unit}$

$$\frac{G \vdash^D e : t}{G \vdash^P e : t}$$

$$\frac{G \vdash^D e : t \operatorname{dist}^*}{G \vdash^D e : t \operatorname{dist}}$$

Subtyping

Typing expressions

$$\frac{\textit{typeOf}(c) = t}{G \vdash^{D} c : t} \qquad \qquad \frac{G(x) = t}{G \vdash^{D} x : t}$$

$$\frac{G(x) = t}{G \vdash^D x : t}$$

$$rac{G dash^D e_1 : t_1 \qquad G dash^D e_2 : t_2}{G dash^D (e_1, e_2) : t_1 imes t_2}$$

$$\frac{\textit{typeOf}(\textit{op}) = t_1 \rightarrow^D t_2 \qquad G \vdash^D e : t_1}{G \vdash^D \textit{op}(e) : t_2}$$

$$\frac{G(f) = t_1 \to^k t_2 \qquad G \vdash^D e : t_1}{G \vdash^k f(e) : t_2}$$

$$G dash^D e_1 : exttt{bool} \qquad G dash^k e_2 : t \qquad G dash^k e_3 : t$$
 $G dash^k ext{if } e_1 ext{ then } e_2 ext{ else } e_3 : t$

$$\frac{G \vdash^{k} e_{1} : t_{1} \qquad G + [p \leftarrow t_{1}] \vdash^{k} e_{2} : t_{2}}{G \vdash^{k} \mathsf{let} \ p = e_{1} \; \mathsf{in} \; e_{2} : t_{2}}$$

Polymorphic kind

coin.ml

Example: Coin

```
let coin (x1, ..., xn) =
  let z = sample (uniform (0., 1.)) in
  observe (bernoulli (z), x1);
  ...;
  observe (bernoulli (z), xn);
  z

let _ =
  let d = infer (coin (1; 1; 0; 0; ...)) in
  plot (d)
```

```
[\operatorname{coin}:???] \\ [\operatorname{x1}:\alpha_1,\ldots,\operatorname{xn}:\alpha_n] \vdash^P \operatorname{z}:\operatorname{float} \\ [\operatorname{x1}:\operatorname{int},\ldots,\operatorname{xn}:\alpha_n,z:\operatorname{float}] \vdash^P \_:\operatorname{unit} \\ [\operatorname{x1}:\operatorname{int},\ldots,\operatorname{xn}:\operatorname{int},z:\operatorname{float}] \vdash^P \_:\operatorname{unit} \\ [\operatorname{x1}:\operatorname{int},\ldots,\operatorname{xn}:\operatorname{int},z:\operatorname{float}] \vdash^P \_:\operatorname{float} \\ [\operatorname{x1}:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},z:\operatorname{int},
```

coin.ml

Example: Coin

```
[coin:(int \times \cdots \times int) \rightarrow^P float]
let coin (x1, ..., xn) =
                                                                                               [\mathsf{x}\mathsf{1}:\alpha_1,\ldots,\mathsf{x}\mathsf{n}:\alpha_n]\vdash^P\mathsf{z}:\mathsf{float}
   let z = sample (uniform (0., 1.)) in
                                                                                               [\mathtt{x1}:\mathtt{int},\ldots,\mathtt{xn}:lpha_n,z:\mathtt{float}]\vdash^P\_:\mathtt{unit}
   observe (bernoulli (z), x1);
    ••• ;
                                                                                               [x1:int,...,xn:int,z:float] \vdash^P \_:unit
   observe (bernoulli (z), xn);
                                                                                               [x1:int,...,xn:int,z:float] \vdash^P :float
   Z
let _ =
                                                                              [coin:(int \times \cdots \times int) \rightarrow^P float] \vdash^D d:float dist
   let d = infer (coin (1; 1; 0; 0; ...)) in
                                                                              [coin:(int \times \cdots \times int) \rightarrow^P float, d:float dist] \vdash^D _: unit
   plot (d)
```

Runtime

Probabilistic Programming Languages

Hands-on: BYO-PPL

Install

- Clone https://github.com/mpri-probprog/probprog-24-25
- cd byo-ppl
- opam install --deps-only .

TODO

- Add a new distribution to distribution.ml (e.g, exponential, Poisson)
- Complete the code of Rejection_sampling_hard and Importance_sampling
- Implement and test the two models coin and regression

infer : $(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta$ dist

Rejection Sampling

Runtime

Example: Funny Bernoulli

```
let funny_bernoulli () =
  let a = sample (bernoulli ~p:0.5) in
  let b = sample (bernoulli ~p:0.5) in
  let c = sample (bernoulli ~p:0.5) in
  a + b + c
```


Example: Funny Bernoulli

```
let funny_bernoulli () =
  let a = sample (bernoulli ~p:0.5) in
  let b = sample (bernoulli ~p:0.5) in
  let c = sample (bernoulli ~p:0.5) in
  let () = assume (a = 1 || b = 1) in
  a + b + c
```


Rejection sampling (hard)

```
module Rejection_sampling_hard : sig
  val sample : 'a Distribution.t → 'a
  val assume : bool → unit
  val infer : ?n:int → ('a → 'b) → 'a → 'b Distribution.t
  end = struct ... end
```

Inference algorithm

- Run the model to get a sample
- sample : draw a value from a distribution
- assume: accept / reject a sample
- If a sample is rejected, re-run the model to get another sample

Hard conditioning

- val observe : 'a Distribution.t \rightarrow 'a \rightarrow unit
- Assume that a value was sampled from a distribution (??)

Rejection sampling (hard)

```
module Rejection_sampling_hard = struct

let sample d = assert false
 let assume p = assert false
 let observe d x = assert false

let infer ?(n = 1000) model obs = assert false
end
```

Rejection sampling (hard)

```
module Rejection_sampling_hard = struct
  exception Reject
  let sample d = Distribution.draw d
  let assume p = if not p then raise Reject
  let observe d x = assume (Distribution.draw d = x)
  let infer ?(n = 1000) model obs =
    let rec gen i = try model obs with Reject \rightarrow gen i in
    let values = List.init n gen in
    Distribution.empirical ~values
end
```

The type prob trick

```
module Rejection_sampling_hard : sig
  type prob

val sample : prob → 'a Distribution.t → 'a

val assume : prob → bool → unit

val observe : prob → 'a Distribution.t → 'a → unit

val infer : ?n:int → (prob → 'a → 'b) → 'a → 'b Distribution.t

end = struct ... end
```

Forbid the use of probabilistic construct outside a model

- Define a simple abstract type prob
- Probabilistic constructs and models all require an argument of type prob
- Such a value can only be build by infer

Rejection sampling (hard)

```
module Rejection_sampling_hard = struct
  type prob = Prob
  exception Reject
  let sample _prob d = Distribution.draw d
  let assume _prob p = if not p then raise Reject
  let observe _prob d x = assume (Distribution.draw d = x)
  let infer ?(n = 1000) model obs =
    let rec exec i = try model Prob obs with Reject \rightarrow exec i in
    let values = Array.init n exec in
    Distribution.uniform_support ~values
end
```

Example: Funny Bernoulli

```
open Byoppl
open Distribution
open Basic.Rejection_sampling_hard
let funny_bernoulli prob () =
  let a = sample prob (bernoulli ~p:0.5) in
  let b = sample prob (bernoulli ~p:0.5) in
  let c = sample prob (bernoulli ~p:0.5) in
 let () = assume prob (a = 1 || b = 1) in
  a + b + c
let
  let dist = infer funny_bernoulli () in
```

```
0.4

0.3

0.2

0.1

2

3

0

1
```

```
let dist = infer funny_bernoulli () in
let support = categorical_to_list dist in
List.iter (fun (v, w) → Format.printf "%d %f@." v w) support
```

> dune exec ./examples/funny_bernoulli.exe

```
open Basic.Rejection_sampling_hard
let coin prob data =
  let z = sample prob (uniform ~a:0. ~b:1.) in
  let tosses = List.map (fun \rightarrow sample prob (bernoulli \simp:z)) data in
                                                                                  observe d x
 let () = assume prob (data = tosses) in
let data = [false; true; true; false; false; false; false; false; false;
let _ =
 let dist = infer coin data in
  let m, s = Distribution.stats dist in
  Format.printf "Coin bias, mean:%f std:%f@." m s
```

```
> dune exec ./examples/coin.exe
Coin bias, mean:0.246161, std:0.119687
```

coin.ml

Example: Coin

```
open Basic.Rejection_sampling_hard
let coin prob data =
 let z = sample prob (uniform ~a:0. ~b:1.) in
  let () = List.iter (observe prob (bernoulli ~p:z)) data in
  Z
let data = [false; true; true; false; false; false; false; false; false;
let =
 let dist = infer coin data in
  let m, s = Distribution.stats dist in
  Format.printf "Coin bias, mean:%f std:%f@." m s
```

```
> dune exec ./examples/coin.exe
Coin bias, mean:0.246161, std:0.119687
```

coin.ml

```
open Basic.Rejection_sampling_hard
let coin prob data =
  let z = sample prob (uniform ~a:0. ~b:1.) in
  let () = List.iter (observe prob (bernoulli ~p:z)) data in
let data = [false; true; true; false; false; false; false; false; false;
let =
 let dist = infer coin data in
  let m, s = Distribution.stats dist in
  Format.printf "Coin bias, mean:%f std:%f@." m s
> dune exec ./examples/coin.exe
Coin bias, mean: 0.246161, std: 0.119687
```

```
100 particles
```

coin.ml

```
open Basic.Rejection_sampling_hard
let coin prob data =
  let z = sample prob (uniform ~a:0. ~b:1.) in
  let () = List.iter (observe prob (bernoulli ~p:z)) data in
let data = [false; true; true; false; false; false; false; false; false;
let =
 let dist = infer coin data in
  let m, s = Distribution.stats dist in
  Format.printf "Coin bias, mean:%f std:%f@." m s
> dune exec ./examples/coin.exe
Coin bias, mean: 0.246161, std: 0.119687
```


coin.ml

1000 particles

```
open Basic.Rejection_sampling_hard
let coin prob data =
  let z = sample prob (uniform ~a:0. ~b:1.) in
  let () = List.iter (observe prob (bernoulli ~p:z)) data in
let data = [false; true; true; false; false; false; false; false; false;
let =
 let dist = infer coin data in
  let m, s = Distribution.stats dist in
  Format.printf "Coin bias, mean:%f std:%f@." m s
> dune exec ./examples/coin.exe
                                                Slow!
Coin bias, mean: 0.246161, std: 0.119687
```

Example: Laplace and gender bias

```
open Basic.Rejection_sampling_hard

let laplace prob () =
    let p = sample prob (uniform ~a:0. ~b:1.) in
    let g = sample prob (binomial ~p ~n:493_472) in
    let () = assume prob (g = 241_945) in
    p

let _ =
    let dist = infer ~n:1000 laplace () in
    let m, s = Distribution.stats dist in
    Format.printf "Gender bias, mean:%f std:%f@." m s
```

> dune exec ./examples/laplace.exe

Never terminate!

infer : $(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta$ dist

Importance Sampling

Runtime

Importance sampling

```
module Importance_sampling : sig
  type prob
  val sample : prob → 'a Distribution.t → 'a
  val factor : prob → float → unit
  val infer : ?n:int → (prob → 'a → 'b) → 'a → 'b Distribution.t
end = struct... end
```

Inference algorithm

- Run a set of n independent executions
- sample: draw a sample from a distribution
- factor: associate a score to the current execution
- Gather output values and score to approximate the posterior distribution

Likelihood weighting

observe d x := factor (logpdf d x)

basic.ml

Importance sampling

```
module Importance_sampling = struct
  type prob = ...

let sample prob d = assert false
  let factor prob s = assert false
  let observe prob d x = factor prob (Distribution.logpdf d x)

let infer ?(n = 1000) model obs = assert false
end
```

Importance sampling

```
module Importance_sampling = struct
  type prob = { mutable score : float }
  let sample _prob d = Distribution.draw d
  let factor prob s = prob.score ← prob.score +. s
  let observe prob d x = factor prob (Distribution.logpdf d x)
  let infer ?(n = 1000) model obs =
    let gen _ =
      let prob = { score = 0. } in
      let value = model prob data in
      (value, prob.score)
    in
    let support = List.init n gen in
    Distribution.categorical ~support
end
```

Example: Coin

```
open Basic.Importance_sampling
let coin prob data =
 let z = sample prob (uniform ~a:0. ~b:1.) in
  let () = List.iter (observe prob (bernoulli ~p:z)) data in
  Z
let data = [false; true; true; false; false; false; false; false; false;
let =
 let dist = infer coin data in
  let m, s = Distribution.stats dist in
  Format.printf "Coin bias, mean:%f, std:%f@." m s
```

```
coin bias, mean:0.247876, std:0.118921
Beta(2+1, 8+1), mean:0.250000, std:0.120096
```

10 particles

Example: Coin

```
open Basic.Importance_sampling
let coin prob data =
  let z = sample prob (uniform ~a:0. ~b:1.) in
  let () = List.iter (observe prob (bernoulli ~p:z)) data in
let data = [false; true; true; false; false; false; false; false; false;
let =
 let dist = infer coin data in
  let m, s = Distribution.stats dist in
  Format.printf "Coin bias, mean:%f, std:%f@." m s
> dune exec ./examples/coin.exe
Coin bias, mean: 0.247876, std: 0.118921
Beta(2+1, 8+1), mean:0.250000, std:0.120096
```

Example: Coin

```
open Basic.Importance_sampling
let coin prob data =
  let z = sample prob (uniform ~a:0. ~b:1.) in
  let () = List.iter (observe prob (bernoulli ~p:z)) data in
let data = [false; true; true; false; false; false; false; false; false;
let =
 let dist = infer coin data in
  let m, s = Distribution.stats dist in
  Format.printf "Coin bias, mean:%f, std:%f@." m s
> dune exec ./examples/coin.exe
Coin bias, mean: 0.247876, std: 0.118921
```

Beta(2+1, 8+1), mean:0.250000, std:0.120096

```
100 particles
0.02
```

1000 particles

Example: Coin

```
open Basic.Importance_sampling
let coin prob data =
  let z = sample prob (uniform ~a:0. ~b:1.) in
  let () = List.iter (observe prob (bernoulli ~p:z)) data in
let data = [false; true; true; false; false; false; false; false; false;
let =
 let dist = infer coin data in
  let m, s = Distribution.stats dist in
  Format.printf "Coin bias, mean:%f, std:%f@." m s
> dune exec ./examples/coin.exe
Coin bias, mean: 0.247876, std: 0.118921
Beta(2+1, 8+1), mean:0.250000, std:0.120096
```

```
0.003
0.0025
 0.002
```

Conditioning

```
module Rejection_sampling_hard = struct ...
  (* Reject if [p] is not true. *)
  let assume prob p =
    if not p then raise Reject

  (* Assume [x] was sampled from [d]. *)
  let observe prob d x =
    let v = sample d in
    assume prob (v = x)
```

```
module Importance_sampling = struct ...

(* Update the (log)score. *)
let factor prob s =
   prob.score ← prob.score +. s

(* Assume [x] was sampled from [d]. *)
let observe prob d x =
   prob.score ← prob.score +. (logpdf d x)
```

Hard conditioning

Soft conditioning

Kernel Semantics

Probabilistic Programming Languages

Types as mesurable spaces

A ground type t is interpreted as a measurable space $[\![t]\!]$

- [unit]: discrete measurable space over the unique value ()
- bool discrete measurable space with the two values true, false
- [float]: reals with its Borel sets (intervals)
- $\begin{array}{c} \blacksquare & A \times B \text{ product space } \llbracket A \rrbracket \times \llbracket B \rrbracket \\ \text{with the rectangles } U \times V \text{ for } U \in \Sigma_A \text{ and } B \in \Sigma_B \end{array}$
- A context $G = [x_1:A_1,\ldots,x_n:A_n]$ maps variables to types $\llbracket G \rrbracket = \prod_{i=1}^n \llbracket A_i \rrbracket \text{ is also a measurable space (product of all variables spaces)}$

What about function types?

Deterministic vs. probabilistic

Deterministic semantics $G \vdash^D e : t$

- Classic denotational semantics
- Environments: ϕ (global declarations), γ (local variables)
- Given the declarations ϕ , $\llbracket e \rrbracket^{\phi} : \Gamma \to t$ is a measurable function
- \blacksquare $\llbracket e \rrbracket_{\gamma}^{\phi}$ is a value of type t

Probabilistic semantics $G \vdash^P e : t$

- lacksquare Given the declarations ϕ , expressions are interpreted as kernels
- $\blacksquare \quad \{\![e]\!]^{\phi} : \Gamma \times \Sigma_{\llbracket t \rrbracket} \to [0, \infty)$
- \blacksquare $\{e\}_{\gamma}^{\phi}$ is a measure on values of type t

(Un)normalized measures

Unnormalized measure

(Un)normalized measures

Unnormalized measure

$$\llbracket \mathsf{infer}(e) \rrbracket_{\gamma}^{\phi} = \frac{ \{\![e]\!]_{\gamma}^{\phi} }{ \{\![e]\!]_{\gamma}^{\phi} ([\![\mathit{typeOf}(e)]\!]) }$$

Distribution

normalize over all possible values

Deterministic semantics

Probabilistic semantics

Careful with 0, and ∞...

Example: Gaussian

```
let my_gaussian (mu, sigma) = let x = sample (gaussian (mu, sigma)) in x  \{ \text{my\_gaussian (mu, sigma)} \}_{\emptyset}(U) = \int_{\mathbb{R}} \{ \text{sample (gaussian (mu, sigma))} \}_{[\text{mu}\leftarrow\mu,\text{sigma}\leftarrow\sigma]}(dx) \; \{ \text{x} \}_{[\text{mu}\leftarrow\mu,\text{sigma}\leftarrow\sigma,\text{x}\leftarrow x]}(U) \\ = \int_{\mathbb{R}} Gaussian(\mu,\sigma)(dx) \; \delta_x(U) \\ = \int_{U} \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx \\ = Gaussian(\mu,\sigma)(U)
```

Example: Beta

```
let my_beta (a, b) =
        let x = sample (uniform (0., 1.)) in
        let () = observe (beta (a, b), x) in
       X
 \begin{aligned} \big\{ \text{my\_beta (a, b)} \big\}_{\emptyset}(U) &= \int_{0}^{1} \big\{ \text{sample (uniform (0, 1))} \big\}_{[\mathsf{a} \leftarrow a, \mathsf{b} \leftarrow b]}(dx) \\ &\qquad \qquad \int_{(\cdot)} \big\{ \text{observe (beta (a, b), x)} \big\}_{[\mathsf{a} \leftarrow a, \mathsf{b} \leftarrow b, \mathsf{x} \leftarrow x]}(du) \, \{ \mathsf{x} \}_{[\mathsf{a} \leftarrow a, \mathsf{b} \leftarrow b, \mathsf{x} \leftarrow x]}(U) \end{aligned} 
                                                         = \int_{0}^{1} Uniform(dx) \ pdf(Beta(a,b))(x) \ \delta_{x}(U)
                                                         = \int_{U} pdf(Beta(a,b))(x)dx
                                                          = Beta(a,b)(U)
```

Example: Coin

```
let coin (x1, \ldots, xn) =
      let z = sample (uniform (0., 1.)) in
      observe (bernoulli (z), x1); ...; observe (bernoulli (z), xn);
       Z
 \left\{ \left[ \text{coin} \left( \mathbf{x1, ..., xn} \right) \right] \right\}_{\emptyset} (U) = \int_{0}^{1} \left\{ \left[ \text{sample (uniform (0, 1))} \right]_{\left[ \mathbf{x1 \leftarrow x_{1}, ..., \mathbf{xn} \leftarrow x_{n} \right]}} (dz) \right. \\ \left. \int_{(\cdot)} \left\{ \left[ \text{observe (bernoulli (z), x1)} \right] \right\}_{\left[ \mathbf{z \leftarrow z, x1 \leftarrow x_{1}, ..., xn \leftarrow x_{n} \right]}} (du_{0}) \right. 
                                                                                            \int_{()} \left\{ \text{observe (bernoulli (z), x2)} \right\}_{[z \leftarrow z, x1 \leftarrow x_1, \dots, xn \leftarrow x_n]} (du_1)
                                                                                                      \int_{\mathbb{C}^{\times}} \left\{ \left[ \text{observe (bernoulli (z), xn)} \right] \right\}_{[z \leftarrow z, x1 \leftarrow x_1, \dots, xn \leftarrow x_n]} (du_n)
                                                                                                                     \{\![\mathbf{Z}]\!\}_{[\mathbf{Z}\leftarrow z,\mathbf{X}\mathbf{1}\leftarrow x_1,\ldots,\mathbf{X}\mathbf{n}\leftarrow x_n]}(U)
                                                                          = \int_0^1 \textit{Uniform}(0,1)(dz) \prod_{i=1}^n \textit{pdf}(\textit{Bernoulli}(z))(x_i) \ \delta_z(U)
                                                                         = \int_{U} z^{\text{\#heads}} (1-z)^{\text{\#tails}} dz
                                                                                                                                                                                                              Unnormalized!
```

Example: Coin

```
let coin (x1, ..., xn) = let z = sample (uniform (0., 1.)) in observe (bernoulli (z), x1); ...; observe (bernoulli (z), xn); z let d = infer (coin (data))  \{ [coin (x1, ..., xn)] \}_{\emptyset}(U) = \int_{U} z^{\text{\#heads}} (1-z)^{\text{\#tails}} dz
```

 $\left[\text{infer (coin (x1, ..., xn))} \right]_{\text{[coin]}} = \frac{\int_{U} z^{\text{\#heads}} \left(1 - z \right)^{\text{\#tails}} dz}{\int_{z}^{1} z^{\text{\#heads}} \left(1 - z \right)^{\text{\#tails}} dz} = \frac{\int_{U} z^{\text{\#heads}} \left(1 - z \right)^{\text{\#tails}} dz}{\mathsf{B}(\text{\#heads} + 1, \text{\#tails} + 1)} = Beta(\text{\#heads} + 1, \text{\#tails} + 1)(U)$

Exercises

Prove the following properties

```
sample mu (* where mu is defined on [a, b] *)

=
let x = sample (uniform (a, b)) in
let () = observe (mu, x) in
x
```

```
observe (mu, x) (* where mu is a discrete distribution *)

= let y = sample mu in assume x = y

sample (bernoulli (0.5))

= let x = sample (gaussian (0., 1.)) in
```

```
Example: Laplace and gender bias

open Basic.Rejection_sampling

let laplace prob () =
    let p = sample prob (uniform ~a:0. ~b:1.) in
    let g = sample prob (binomial ~p ~n:493_472) in
    let () = assume prob (g = 241_945) in
    p

let _ =
    let dist = infer ~n:1000 laplace () in
    let m, s = Distribution.stats dist in
    Format.printf "Gender bias, mean:%f std:%f@." m s

> dune exec ./examples/laplace.exe

Never terminate!
```

Improper priors

Uniform priors on bounded domains

- If $\mu : t \ \mathrm{dist}^*$ is defined on [a,b] and has a density
- $\hspace{0.1in} \hspace{0.1in} \hspace{0.1in}$

Improper priors

```
let improper =
  let x = sample (gaussian 0 1) in
  factor (1. /. (pdf (gaussian 0 1) x));
  x
```

60 Staton 2017

References

An Introduction to Probabilistic Programming

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, Frank Wood https://arxiv.org/abs/1809.10756

Semantics of probabilistic programs.

Dexter Kozen

Journal of Computer and System 1981

Commutative semantics for probabilistic programming

Sam Staton ESOP 2017

Semantics of Probabilistic Programs using s-Finite Kernels in Coq

Reynald Affeldt, Cyril Cohen, Ayumu Saito CPP 2023

TP: A short introduction to Stan

Everything is on Github: https://github.com/mpri-probprog/probprog-24-25

- Go to td/td4-stan
- Launch jupyter notebook (or jupyter lab)

Requirements

- Pandas
- CmdStanPy
- Jupyter
- Matplotlib

https://mc-stan.org/

