Package 'auditor'

October 30, 2023

```
Title Model Audit - Verification, Validation, and Error Analysis
```

Version 1.3.5

Description Provides an easy to use unified interface for creating validation plots for any model.

The 'auditor' helps to avoid repetitive work consisting of writing code needed to create resid-

This visualizations allow to asses and compare the goodness of fit, performance, and similarity of models.

```
Depends R (>= 3.5.0)
License GPL
Encoding UTF-8
LazyData true
Imports DALEX, ggplot2, ggrepel, grid, gridExtra, hnp, scales
RoxygenNote 7.2.3
Suggests jsonlite, knitr, markdown, mgcv, r2d3, randomForest,
     rmarkdown, spelling, testthat, covr
VignetteBuilder knitr
URL https://github.com/ModelOriented/auditor
BugReports https://github.com/ModelOriented/auditor/issues
```

Language en-US

NeedsCompilation no

Author Alicja Gosiewska [aut, cre] (https://orcid.org/0000-0001-6563-5742), Przemyslaw Biecek [aut, ths] (https://orcid.org/0000-0001-8423-1823), Hubert Baniecki [aut] (https://orcid.org/0000-0001-6661-5364), Tomasz Mikołajczyk [aut], Michal Burdukiewicz [ctb], Szymon Maksymiuk [ctb]

Maintainer Alicja Gosiewska <alicjagosiewska@gmail.com>

Repository CRAN

Date/Publication 2023-10-30 15:40:07 UTC

R topics documented:

audit
auditorData
check_residuals
check_residuals_autocorrelation
check_residuals_outliers
check_residuals_trend
model_cooksdistance
model_evaluation
model_halfnormal
model_performance
model_residual
plotD3
plotD3_acf
plotD3_autocorrelation
plotD3_cooksdistance
plotD3_halfnormal
plotD3_lift
plotD3_prediction
plotD3_rec
plotD3_residual
plotD3_roc
plotD3_rroc
plotD3_scalelocation
plot_acf
plot_auditor
plot_autocorrelation
plot_cooksdistance
plot_correlation
plot_halfnormal
plot_lift
plot_pca
plot_prc
plot_prediction
plot_radar
plot_rec
plot_residual
plot_residual_boxplot
plot_residual_density
plot_rroc
plot_scalelocation
plot_tsecdf
print.auditor_model_cooksdistance
print.auditor_model_evaluation
print.auditor_model_halfnormal
print.auditor_model_performance
print.auditor_model_residual

audit 3

X		85
	score_specificity	84
	score_runs	83
	score_rroc	82
	score_rmse	81
	score_recall	80
	score_rec	79
	score_r2	78
	score_precision	77
	score_peak	76
	score_one_minus_specificity	75
	score_one_minus_recall	74
	score_one_minus_precision	73
	score_one_minus_gini	72
	score_one_minus_f1	71
	score_one_minus_auprc	70
	score_one_minus_auc	69
	score_one_minus_acc	68
	score_mse	67
	score_mae	66
	score_halfnormal	65
	score_gini	64
	$score_f1 \ \dots $	63
	score_dw	62
	score_cooksdistance	61
	score_auprc	60
	score_auc	59
	score_acc	58
	score	57
	print.auditor_score	57

Description

audit

The audit() function is deprecated, use explain from the DALEX package instead.

Deprecated

Usage

```
audit(
  object,
  data = NULL,
  y = NULL,
  predict.function = NULL,
  residual.function = NULL,
  label = NULL,
```

4 audit

```
predict_function = NULL,
  residual_function = NULL
)
```

Arguments

object An object containing a model or object of class explainer (see explain).

data Data.frame or matrix - data that will be used by further validation functions. If

not provided, will be extracted from the model.

y Response vector that will be used by further validation functions. Some func-

tions may require an integer vector containing binary labels with values 0,1. If

not provided, will be extracted from the model.

predict.function

Function that takes two arguments: model and data. It should return a numeric

vector with predictions.

residual.function

Function that takes three arguments: model, data and response vector. It should return a numeric vector with model residuals for given data. If not provided,

response residuals $(y - \hat{y})$ are calculated.

label Character - the name of the model. By default it's extracted from the 'class'

attribute of the model.

predict_function

Function that takes two arguments: model and data. It should return a numeric vector with predictions.

residual_function

Function that takes three arguments: model, data and response vector. It should return a numeric vector with model residuals for given data. If not provided, response residuals $(y - \hat{y})$ are calculated.

Value

An object of class explainer.

auditorData 5

```
library(randomForest)
model_rf <- randomForest(Species ~ ., data=iris)
audit_rf <- audit(model_rf)</pre>
```

auditorData

Artificial auditorData

Description

The auditor Data is an artificial data set. It consists of 2000 observations. First four of simulated variables are treated as continuous while the fifth one is categorical.

Usage

```
data(auditorData)
```

Format

a data frame with 2000 rows and 5 columns

Examples

```
data("auditorData", package = "auditor")
head(auditorData)
```

check_residuals

Automated tests for model residuals

Description

Currently three tests are performed - for outliers in residuals - for autocorrelation in target variable or in residuals - for trend in residuals as a function of target variable (detection of bias)

Usage

```
check_residuals(object, ...)
```

Arguments

object An object of class 'explainer' created with function explain from the DALEX

package.

... other parameters that will be passed to further functions.

Value

list with statistics for particular checks

Examples

```
dragons <- DALEX::dragons[1:100, ]
lm_model <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(lm_model, data = dragons, y = dragons$life_length)
check_residuals(lm_audit)
## Not run:
library("randomForest")
rf_model <- randomForest(life_length ~ ., data = dragons)
rf_audit <- audit(rf_model, data = dragons, y = dragons$life_length)
check_residuals(rf_audit)
## End(Not run)</pre>
```

check_residuals_autocorrelation

Checks for autocorrelation in target variable or in residuals

Description

Checks for autocorrelation in target variable or in residuals

Usage

```
check_residuals_autocorrelation(object, method = "pearson")
```

Arguments

object An object of class 'explainer' created with function explain from the DALEX

package.

method will be passed to the cor.test functions

Value

autocorrelation between target variable and between residuals

```
dragons <- DALEX::dragons[1:100, ]
lm_model <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(lm_model, data = dragons, y = dragons$life_length)
check_residuals_autocorrelation(lm_audit)</pre>
```

```
check_residuals_outliers
```

Checks for outliers

Description

Outlier checks

Usage

```
check_residuals_outliers(object, n = 5)
```

Arguments

object An object of class 'explainer' created with function explain from the DALEX

package.

n number of lowest and highest standardized residuals to be presented

Value

indexes of lowest and highest standardized residuals

Examples

```
dragons <- DALEX::dragons[1:100, ]
lm_model <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(lm_model, data = dragons, y = dragons$life_length)
check_residuals_outliers(lm_audit)</pre>
```

check_residuals_trend Checks for trend in residuals

Description

Calculates loess fit for residuals and then extracts statistics that shows how far is this fit from one without trend

Usage

```
check_residuals_trend(object, B = 20)
```

Arguments

object An object of class 'explainer' created with function explain from the DALEX

package.

B number of samplings

8 model_cooksdistance

Value

standardized loess fit for residuals

Examples

```
library(DALEX)
dragons <- DALEX::dragons[1:100, ]
lm_model <- lm(life_length ~ ., data = dragons)
lm_exp <- explain(lm_model, data = dragons, y = dragons$life_length)
library(auditor)
check_residuals_trend(lm_exp)</pre>
```

model_cooksdistance

Cook's distances

Description

Calculates Cook's distances for each observation. Please, note that it will work only for functions with specified update method.

Usage

```
model_cooksdistance(object)
observationInfluence(object)
```

Arguments

object

An object of class explainer created with function explain from the DALEX package.

Value

An object of the class auditor_model_cooksdistance.

References

Cook, R. Dennis (1977). "Detection of Influential Observations in Linear Regression". doi:10.2307/1268249.

model_evaluation 9

```
y = titanic_imputed$survived)
# validate a model with auditor
mc <- model_cooksdistance(glm_audit)
mc
plot(mc)</pre>
```

model_evaluation

Create model evaluation explanation

Description

Creates explanation of classification model.

Returns, among others, true positive rate (tpr), false positive rate (fpr), rate of positive prediction (rpp), and true positives (tp).

Created object of class auditor_model_evaluation can be used to plot Receiver Operating Characteristic (ROC) curve (plot plot_roc) and LIFT curve (plot plot_lift).

Usage

```
model_evaluation(object)
modelEvaluation(object)
```

Arguments

object

An object of class explainer created with function explain from the DALEX package.

Value

An object of the class auditor_model_evaluation.

10 model_halfnormal

```
me
```

```
plot(me)
```

model_halfnormal

Create Halfnormal Explanation

Description

Creates auditor_model_halfnormal object that can be used for plotting halfnormal plot.

Usage

```
model_halfnormal(object, quant = FALSE, ...)
modelFit(object, quant = FALSE, ...)
```

Arguments

object An object of class explainer created with function explain from the DALEX package.

quant if TRUE values on axis are on quantile scale.

other parameters passed do hnp function.

Value

An object of the class auditor_model_halfnormal.

References

Moral, R., Hinde, J., & Demétrio, C. (2017). Half-Normal Plots and Overdispersed Models in R: The hnp Package.doi:http://dx.doi.org/10.18637/jss.v081.i10

model_performance 11

```
plot(mh)
```

Description

 $Creates\ auditor_model_performance\ object\ that\ can\ be\ used\ to\ plot\ radar\ with\ ranking\ of\ models.$

Usage

```
model_performance(
  object,
  score = c("mae", "mse", "rec", "rroc"),
  new_score = NULL,
  data = NULL,
  ...
)

modelPerformance(
  object,
  score = c("mae", "mse", "rec", "rroc"),
  new_score = NULL
)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
score	Vector of score names to be calculated. Possible values: acc, auc, cookdistance, dw, f1, gini, halfnormal, mae, mse, peak, precision, r2, rec, recall, rmse, rroc, runs, specificity, one_minus_acc, one_minus_auc, one_minus_f1, one_minus_gini, one_minus_precision, one_minus_recall, one_minus_specificity (for detailed description see functions in see also section). Pass NULL if you want to use only custom scores by new_score parameter.
new_score	A named list of functions that take one argument: object of class 'explainer' and return a numeric value. The measure calculated by the function should have the property that lower score value indicates better model.
data	New data that will be used to calculate scores. Pass NULL if you want to use data from object.
	Other arguments dependent on the score list.

Value

An object of the class auditor_model_performance.

12 model_residual

See Also

```
score_acc, score_auc, score_cooksdistance, score_dw, score_f1, score_gini, score_halfnormal, score_mae, score_mse, score_peak, score_precision, score_r2, score_rec, score_recall, score_rmse, score_rroc, score_runs, score_specificity, score_one_minus_acc, score_one_minus_auc, score_one_minus_f1, score_one_minus_precision, score_one_minus_gini, score_one_minus_recall, score_one_minus_specificity
```

Examples

model_residual

Create Model Residuals Explanation

Description

Creates auditor_model_residual that contains sorted residuals. An object can be further used to generate plots. For the list of possible plots see see also section.

Usage

```
model_residual(object, ...)
modelResiduals(object, ...)
```

Arguments

object An object of class explainer created with function explain from the DALEX package.
... other parameters

plotD3 13

Value

An object of the class auditor_model_residual.

See Also

```
plot_acf, plot_autocorrelation, plot_residual, plot_residual_boxplot,plot_pca, plot_correlation,
plot_prediction, plot_rec, plot_residual_density,plot_residual, plot_rroc, plot_scalelocation,
plot_tsecdf
```

Examples

plotD3

Model Diagnostic Plots in D3 with r2d3 package.

Description

This function provides several diagnostic plots for regression and classification models. Provide object created with one of auditor's computational functions, model_residual, model_cooksdistance, model_evaluation, model_performance, model_evaluation.

Usage

```
plotD3(x, ...)
plotD3_auditor(x, ..., type = "residual")
## S3 method for class 'auditor_model_residual'
plotD3(x, ..., type = "residual")
## S3 method for class 'auditor_model_halfnormal'
plotD3(x, ..., type = "residual")
```

14 plotD3

```
## S3 method for class 'auditor_model_evaluation'
plotD3(x, ..., type = "residual")

## S3 method for class 'auditor_model_cooksdistance'
plotD3(x, ..., type = "residual")
```

Arguments

See Also

```
plotD3_acf, plotD3_autocorrelation, plotD3_cooksdistance,plotD3_halfnormal, plotD3_residual, plotD3_lift,plotD3_prediction, plotD3_rec, plotD3_roc,plotD3_rroc, plotD3_scalelocation
```

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)

lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
# plot results
plotD3(mr_lm)
plotD3(mr_lm, type = "prediction")

hn_lm <- model_halfnormal(lm_audit)
plotD3(hn_lm)</pre>
```

plotD3_acf

_		_
nl	.otD3	20t
NΤ	כעטט.	acı

Plot Autocorrelation Function in D3 with r2d3 package.

Description

Plot Autocorrelation Function of models' residuals.

Usage

```
plotD3_acf(object, ..., variable = NULL, alpha = 0.95, scale_plot = FALSE)
plotD3ACF(object, ..., variable = NULL, alpha = 0.95, scale_plot = FALSE)
```

Arguments

object An object of class 'auditor_model_residual' created with model_residual func-

tion.

... Other 'auditor_model_residual' objects to be plotted together.

variable Name of variable to order residuals on a plot. If variable="_y_", the data

is ordered by a vector of actual response (y parameter passed to the explain function). If variable = "_y_hat_" the data on the plot will be ordered by predicted response. If variable = NULL, unordered observations are presented.

alpha Confidence level of the interval.

scale_plot Logical, indicates whenever the plot should scale with height. By default it's

FALSE.

Value

```
a 'r2d3' object.
```

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
# plot results
plotD3_acf(mr_lm)
library(randomForest)</pre>
```

```
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plotD3_acf(mr_lm, mr_rf)</pre>
```

plotD3_autocorrelation

Autocorrelation Plot in D3 with r2d3 package.

Description

Plot of i-th residual vs i+1-th residual.

Usage

```
plotD3_autocorrelation(
  object,
  variable = NULL,
  points = TRUE,
  smooth = FALSE,
  point_count = NULL,
  single_plot = TRUE,
  scale_plot = FALSE,
  background = FALSE
)
plotD3Autocorrelation(
  object,
  . . . ,
  variable = NULL,
  points = TRUE,
  smooth = FALSE,
  point_count = NULL,
  single_plot = TRUE,
  scale_plot = FALSE,
  background = FALSE
)
```

Arguments

object An object of class 'auditor_model_residual' created with model_residual function.

Other 'auditor_model_residual' objects to be plotted together.

Variable Name of variable to order residuals on a plot. If variable="_y_", the data

Name of variable to order residuals on a plot. If variable="_y_", the data is ordered by a vector of actual response (y parameter passed to the explain

function).

plotD3_cooksdistance 17

points	Logical, indicates whenever observations should be added as points. By default it's TRUE.
smooth	Logical, indicates whenever smoothed lines should be added. By default it's FALSE.
point_count	Number of points to be plotted per model. Points will be chosen randomly. By default plot all of them.
single_plot	Logical, indicates whenever single or facets should be plotted. By default it's TRUE.
scale_plot	Logical, indicates whenever the plot should scale with height. By default it's FALSE.
background	Logical, available only if single_plot = FALSE. Indicates whenever background plots should be plotted. By default it's FALSE.

Value

a r2d3 object

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
# plot results
plotD3_autocorrelation(mr_lm)
plotD3_autocorrelation(mr_lm, smooth = TRUE)</pre>
```

Description

Plot of Cook's distances used for estimate the influence of an single observation.

Usage

```
plotD3_cooksdistance(
  object,
    ...,
  nlabel = 3,
  single_plot = FALSE,
  scale_plot = FALSE,
  background = FALSE
)

plotD3CooksDistance(
  object,
    ...,
  nlabel = 3,
  single_plot = FALSE,
  scale_plot = FALSE,
  background = FALSE
```

Arguments

object	An object of class 'auditor_model_cooksdistance' created with model_cooksdistance function.
	Other objects of class 'auditor_model_cooksdistance'.
nlabel	Number of observations with the biggest Cook's distances to be labeled.
single_plot	Logical, indicates whenever single or facets should be plotted. By default it's FALSE.
scale_plot	Logical, indicates whenever the plot should scale with height. By default it's FALSE.
background	Logical, available only if single_plot = FALSE. Indicates whenever background plots should be plotted. By default it's FALSE.

Details

Cook's distance is a tool for identifying observations that may negatively affect the model. They may be also used for indicating regions of the design space where it would be good to obtain more observations. Data points indicated by Cook's distances are worth checking for validity.

Cook's Distances are calculated by removing the i-th observation from the data and recalculating the model. It shows how much all the values in the model change when the i-th observation is removed.

For model classes other than lm and glm the distances are computed directly from the definition.

Value

```
a r2d3 object
```

plotD3_halfnormal

References

Cook, R. Dennis (1977). "Detection of Influential Observations in Linear Regression". doi:10.2307/1268249.

See Also

```
plot_cooksdistance
```

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
cd_lm <- model_cooksdistance(lm_audit)
# plot results
plotD3_cooksdistance(cd_lm, nlabel = 5)</pre>
```

plotD3_halfnormal

Plot Half-Normal in D3 with r2d3 package.

Description

The half-normal plot is one of the tools designed to evaluate the goodness of fit of a statistical models. It is a graphical method for comparing two probability distributions by plotting their quantiles against each other. Points on the plot correspond to ordered absolute values of model diagnostic (i.e. standardized residuals) plotted against theoretical order statistics from a half-normal distribution.

Usage

```
plotD3_halfnormal(object, ..., quantiles = FALSE, sim = 99, scale_plot = FALSE)
plotD3HalfNormal(object, ..., quantiles = FALSE, sim = 99, scale_plot = FALSE)
```

Arguments

object	An object of class 'auditor_model_halfnormal' created with model_halfnormal function.
	2012 12011
	Other 'auditor_model_halfnormal' objects.
quantiles	If TRUE values on axis are on quantile scale.
sim	Number of residuals to simulate.
scale_plot	Logical, indicates whenever the plot should scale with height. By default it's FALSE.

20 plotD3_lift

Value

```
a r2d3 object
```

See Also

```
model_halfnormal
score_halfnormal, plot_halfnormal
```

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
hn_lm <- model_halfnormal(lm_audit)
# plot results
plotD3_halfnormal(hn_lm)</pre>
```

plotD3_lift

Plot LIFT in D3 with r2d3 package.

Description

LIFT is a plot of the rate of positive prediction against true positive rate for the different thresholds. It is useful for measuring and comparing the accuracy of the classificators.

Usage

```
plotD3_lift(object, ..., scale_plot = FALSE, zeros = TRUE)
plotD3LIFT(object, ..., scale_plot = FALSE)
```

Arguments

object	An object of class 'auditor_model_evaluation' created with model_evaluation function.
	Other 'auditor_model_evaluation' objects to be plotted together.
scale_plot	Logical, indicates whenever the plot should scale with height. By default it's FALSE.
zeros	Logical. It makes the lines start from the $(0,0)$ point. By default it's TRUE.

plotD3_prediction 21

Value

```
a r2d3 object
```

See Also

```
plot_lift
```

Examples

```
data(titanic_imputed, package = "DALEX")
# fit a model
model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed)</pre>
glm_audit <- audit(model_glm,</pre>
                    data = titanic_imputed,
                    y = titanic_imputed$survived)
# validate a model with auditor
eva_glm <- model_evaluation(glm_audit)</pre>
# plot results
plot_roc(eva_glm)
plot(eva_glm)
#add second model
model_glm_2 \leftarrow glm(survived \sim .-age, family = binomial, data = titanic_imputed)
glm_audit_2 <- audit(model_glm_2,</pre>
                      data = titanic_imputed,
                      y = titanic_imputed$survived,
                      label = "glm2")
eva_glm_2 <- model_evaluation(glm_audit_2)</pre>
plotD3_lift(eva_glm, eva_glm_2)
```

plotD3_prediction

Plot Prediction vs Target, Observed or Variable Values in D3 with r2d3 package.

Description

Function plotD3_prediction plots predicted values observed or variable values in the model.

Usage

```
plotD3_prediction(
  object,
   ...,
```

22 plotD3_prediction

```
variable = "_y_",
 points = TRUE,
  smooth = FALSE,
 abline = FALSE,
 point_count = NULL,
  single_plot = TRUE,
  scale_plot = FALSE,
 background = FALSE
)
plotD3Prediction(
 object,
  . . . ,
 variable = NULL,
 points = TRUE,
  smooth = FALSE,
 abline = FALSE,
 point_count = NULL,
 single_plot = TRUE,
  scale_plot = FALSE,
 background = FALSE
)
```

Arguments

object	An object of class 'auditor_model_residual.
	Other modelAudit or modelResiduals objects to be plotted together.
variable	Name of variable to order residuals on a plot. If variable="_y_", the data is ordered by a vector of actual response (y parameter passed to the explain function). If variable = "_y_hat_" the data on the plot will be ordered by predicted response. If variable = NULL, unordered observations are presented.
points	Logical, indicates whenever observations should be added as points. By default it's TRUE.
smooth	Logical, indicates whenever smoothed lines should be added. By default it's FALSE.
abline	Logical, indicates whenever function $y = x$ should be added. Works only with variable = NULL which is a default option.
point_count	Number of points to be plotted per model. Points will be chosen randomly. By default plot all of them.
single_plot	Logical, indicates whenever single or facets should be plotted. By default it's TRUE.
scale_plot	Logical, indicates whenever the plot should scale with height. By default it's FALSE.
background	Logical, available only if single_plot = FALSE. Indicates whenever background plots should be plotted. By default it's FALSE.

plotD3_rec 23

Value

```
a r2d3 object
```

See Also

```
plot_prediction
```

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)

lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
# plot results
plotD3_prediction(mr_lm, abline = TRUE)
plotD3_prediction(mr_lm, variable = "height", smooth = TRUE)

library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plotD3_prediction(mr_lm, mr_rf, variable = "weight", smooth = TRUE)</pre>
```

plotD3_rec

Regression Error Characteristic Curves (REC) in D3 with r2d3 package.

Description

Error Characteristic curves are a generalization of ROC curves. On the x axis of the plot there is an error tolerance and on the y axis there is a percentage of observations predicted within the given tolerance.

Usage

```
plotD3_rec(object, ..., scale_plot = FALSE)
plotD3REC(object, ..., scale_plot = FALSE)
```

plotD3_rec

Arguments

object	An object of class 'auditor_model_residual' created with model_residual function.
	Other 'auditor_model_residual' objects to be plotted together.
scale_plot	Logical, indicates whenever the plot should scale with height. By default it's FALSE.

Details

REC curve estimates the Cumulative Distribution Function (CDF) of the error Area Over the REC Curve (REC) is a biased estimate of the expected error

Value

```
a r2d3 object
```

References

Bi J., Bennett K.P. (2003). Regression error characteristic curves, in: Twentieth International Conference on Machine Learning (ICML-2003), Washington, DC.

See Also

```
plot_rec
```

```
dragons <- DALEX::dragons[1:100, ]

# fit a model
model_lm <- lm(life_length ~ ., data = dragons)

lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)

# validate a model with auditor
mr_lm <- model_residual(lm_audit)
plotD3_rec(mr_lm)

library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plotD3_rec(mr_lm, mr_rf)</pre>
```

plotD3_residual 25

plotD3_residual

Plot Residuals vs Observed, Fitted or Variable Values in D3 with r2d3 package.

Description

Function plotD3_residual plots residual values vs fitted, observed or variable values in the model.

Usage

```
plotD3_residual(
  object,
  variable = "_y_",
  points = TRUE,
  smooth = FALSE,
  std_residuals = FALSE,
  nlabel = 0,
  point_count = NULL,
  single_plot = TRUE,
  scale_plot = FALSE,
  background = FALSE
)
plotD3Residual(
 object,
  . . . ,
  variable = NULL,
  points = TRUE,
  smooth = FALSE,
  std_residuals = FALSE,
  point_count = NULL,
  single_plot = TRUE,
  scale_plot = FALSE,
  background = FALSE
)
```

Arguments

object An object of class 'auditor_model_residual' created with model_residual function.

Other 'auditor_model_residual' objects to be plotted together.

variable

Name of variable to order residuals on a plot. If variable="_y_", the data is ordered by a vector of actual response (y parameter passed to the explain function). If variable = "_y_hat_" the data on the plot will be ordered by predicted response. If variable = NULL, unordered observations are presented.

26 plotD3_residual

Logical, indicates whenever observations should be added as points. By default points it's TRUE. Logical, indicates whenever smoothed lines should be added. By default it's smooth FALSE. Logical, indicates whenever standardized residuals should be used. By default std_residuals it's FALSE. nlabel Number of observations with the biggest residuals to be labeled. Number of points to be plotted per model. Points will be chosen randomly. By point_count default plot all of them. Logical, indicates whenever single or facets should be plotted. By default it's single_plot TRUE. scale_plot Logical, indicates whenever the plot should scale with height. By default it's

FALSE.

Logical, available only if single_plot = FALSE. Indicates whenever background plots should be plotted. By default it's FALSE.

Value

a r2d3 object

background

See Also

```
plot_residual
```

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
# use DALEX package to wrap up a model into explainer
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
# plot results
plotD3_residual(mr_lm)
library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plotD3_residual(mr_lm, mr_rf)</pre>
```

27 plotD3_roc

_					
nl	\sim	+Г	12	r	\cap

Receiver Operating Characteristic (ROC) in D3 with r2d3 package.

Description

Receiver Operating Characteristic Curve is a plot of the true positive rate (TPR) against the false positive rate (FPR) for the different thresholds. It is useful for measuring and comparing the accuracy of the classificators.

Usage

```
plotD3_roc(object, ..., nlabel = NULL, scale_plot = FALSE)
```

Arguments

object An object of class auditor_model_evaluation created with model_evaluation function. Other auditor_model_evaluation objects to be plotted together. . . . Number of cutoff points to show on the plot. Default is NULL. nlabel scale_plot

Logical, indicates whenever the plot should scale with height. By default it's

FALSE.

Value

a r2d3 object

See Also

```
plot_roc
```

```
data(titanic_imputed, package = "DALEX")
# fit a model
model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed)</pre>
# use DALEX package to wrap up a model into explainer
glm_audit <- audit(model_glm,</pre>
                   data = titanic_imputed,
                   y = titanic_imputed$survived)
# validate a model with auditor
eva_glm <- model_evaluation(glm_audit)</pre>
# plot results
plot_roc(eva_glm)
plot(eva_glm)
```

28 plotD3_rroc

plotD3_rroc

Regression Receiver Operating Characteristic (RROC) in D3 with r2d3 package.

Description

The basic idea of the ROC curves for regression is to show model asymmetry. The RROC is a plot where on the x-axis we depict total over-estimation and on the y-axis total under-estimation.

Usage

```
plotD3_rroc(object, ..., scale_plot = FALSE)
```

Arguments

object An object of class 'auditor_model_residual' created with model_residual function.

Other 'auditor_model_residual' objects to be plotted together.

Logical, indicates whenever the plot should scale with height. By default it's FALSE.

Details

For RROC curves we use a shift, which is an equivalent to the threshold for ROC curves. For each observation we calculate new prediction: $\hat{y}' = \hat{y} + s$ where s is the shift. Therefore, there are different error values for each shift: $e_i = \hat{y_i}' - y_i$

Over-estimation is calculated as: $OVER = \sum (e_i | e_i > 0)$.

Under-estimation is calculated as: $UNDER = \sum (e_i | e_i < 0)$.

The shift equals 0 is represented by a dot.

The Area Over the RROC Curve (AOC) equals to the variance of the errors multiplied by $fracn^2$ 2.

Value

```
a 'r2d3' object
```

plotD3_scalelocation 29

References

Hernández-Orallo, José. 2013. "ROC Curves for Regression". Pattern Recognition 46 (12): 3395–3411.

See Also

```
plotD3_rroc
```

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
# use DALEX package to wrap up a model into explainer
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
# plot results
plotD3_rroc(mr_lm)
library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plotD3_rroc(mr_lm, mr_rf)</pre>
```

plotD3_scalelocation Scale Location Plot in D3 with r2d3 package.

Description

Function plotD3_scalelocation plots square root of the absolute value of the residuals vs target, observed or variable values in the model. A vertical line corresponds to median.

Usage

```
plotD3_scalelocation(
  object,
    ...,
  variable = NULL,
  smooth = FALSE,
  peaks = FALSE,
  point_count = NULL,
```

30 plotD3_scalelocation

Arguments

object	An object of class auditor_model_residual created with model_residual function.
	Other auditor_model_residual objects to be plotted together.
variable	Name of variable to order residuals on a plot. If variable="_y_", the data is ordered by a vector of actual response (y parameter passed to the explain function). If variable = "_y_hat_" the data on the plot will be ordered by predicted response. If variable = NULL, unordered observations are presented.
smooth	Logical, indicates whenever smoothed lines should be added. By default it's FALSE.
peaks	Logical, indicates whenever peak observations should be highlighted. By default it's FALSE.
point_count	Number of points to be plotted per model. Points will be chosen randomly. By default plot all of them.
single_plot	Logical, indicates whenever single or facets should be plotted. By default it's TRUE.
scale_plot	Logical, indicates whenever the plot should scale with height. By default it's FALSE.
background	Logical, available only if single_plot = FALSE. Indicates whenever background plots should be plotted. By default it's FALSE.

Value

a r2d3 object

See Also

plot_scalelocation

plot_acf 31

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
# plot results
plotD3_scalelocation(mr_lm, peaks = TRUE)</pre>
```

plot_acf

Autocorrelation Function Plot

Description

Plot Autocorrelation Function of models' residuals.

Usage

```
plot_acf(object, ..., variable = NULL, alpha = 0.95)
plotACF(object, ..., variable = NULL, alpha = 0.95)
```

Arguments

object	An object of class auditor_model_residual created with model_residual function.
	Other auditor_model_residual objects to be plotted together.
variable	Name of variable to order residuals on a plot. If variable="_y_", the data is ordered by a vector of actual response (y parameter passed to the explain function). If variable = "_y_hat_" the data on the plot will be ordered by predicted response. If variable = NULL, unordered observations are presented.
alpha	Confidence level of the interval.

Value

A ggplot object.

32 plot_auditor

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)

lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)

# plot results
plot(mr_lm, type = "acf")
plot_acf(mr_lm)

library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plot_acf(mr_lm, mr_rf)
plot(mr_lm, mr_rf, type="acf")</pre>
```

plot_auditor

Model Diagnostic Plots

Description

This function provides several diagnostic plots for regression and classification models. Provide object created with one of auditor's computational functions, model_residual, model_cooksdistance, model_evaluation, model_performance, model_evaluation.

Usage

```
plot_auditor(x, ..., type = "residual", ask = TRUE, grid = TRUE)

## S3 method for class 'auditor_model_residual'
plot(x, ..., type = "residual", ask = TRUE, grid = TRUE)

## S3 method for class 'auditor_model_performance'
plot(x, ..., type = "residual", ask = TRUE, grid = TRUE)

## S3 method for class 'auditor_model_halfnormal'
plot(x, ..., type = "residual", ask = TRUE, grid = TRUE)

## S3 method for class 'auditor_model_evaluation'
```

plot_auditor 33

```
plot(x, ..., type = "residual", ask = TRUE, grid = TRUE)
## S3 method for class 'auditor_model_cooksdistance'
plot(x, ..., type = "residual", ask = TRUE, grid = TRUE)
```

Arguments

object of class auditor_model_residual (created with model_residual func-Х tion), auditor_model_performance (created with model_performance function), auditor_model_evaluation (created with model_evaluation function), auditor_model_cooksdistance (created with model_cooksdistance function), or auditor_model_halfnormal (created with model_halfnormal function). other arguments dependent on the type of plot or additional objects of classes 'auditor_model_residual','auditor_model_performance', 'auditor_model_evaluation', 'auditor_model_cooksdistance', 'auditor_model_halfnormal'. the type of plot. Character or vector of characters. Possible values: 'acf', type 'autocorrelation', 'cooksdistance', 'halfnormal', 'lift', 'pca', 'radar', 'correlation', 'prediction', 'rec', 'resiual', 'residual_boxplot', 'residual_density', 'rroc', 'scalelocation', 'tsecdf' (for detailed description see corresponding functions in see also section). logical; if TRUE, the user is asked before each plot, see par(ask=). ask grid logical; if TRUE plots will be plotted on the grid.

Value

A ggplot object.

See Also

```
plot_acf, plot_autocorrelation, plot_cooksdistance,plot_halfnormal, plot_residual_boxplot,
plot_lift, plot_pca,plot_radar, plot_correlation,plot_prediction, plot_rec, plot_residual_density,
plot_residual, plot_roc,plot_rroc, plot_scalelocation, plot_tsecdf
```

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
# plot results
plot(mr_lm)
plot(mr_lm, type = "prediction")</pre>
```

34 plot_autocorrelation

```
hn_lm <- model_halfnormal(lm_audit)
plot(hn_lm)

library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)

mp_rf <- model_performance(rf_audit)
mp_lm <- model_performance(lm_audit)
plot(mp_lm, mp_rf)</pre>
```

 ${\tt plot_autocorrelation}$ Autocorrelation of Residuals Plot

Description

Plot of i-th residual vs i+1-th residual.

Usage

```
plot_autocorrelation(object, ..., variable = "_y_hat_", smooth = FALSE)
plotAutocorrelation(object, ..., variable, smooth = FALSE)
```

Arguments

object	An object of class $\operatorname{auditor_model_residual}$ created with $\operatorname{model_residual}$ function.
	Other auditor_model_residual objects to be plotted together.
variable	Name of variable to order residuals on a plot. If variable="_y_", the data is ordered by a vector of actual response (y parameter passed to the explain function).
smooth	Logical, if TRUE smooth line will be added.

Value

A ggplot object.

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)</pre>
```

plot_cooksdistance 35

```
# validate a model with auditor
mr_lm <- model_residual(lm_audit)

# plot results
plot_autocorrelation(mr_lm)
plot(mr_lm, type = "autocorrelation")
plot_autocorrelation(mr_lm, smooth = TRUE)
plot(mr_lm, type = "autocorrelation", smooth = TRUE)</pre>
```

plot_cooksdistance

Influence of Observations Plot

Description

Plot of Cook's distances used for estimate the influence of an single observation.

Usage

```
plot_cooksdistance(object, ..., nlabel = 3)
plotCooksDistance(object, ..., nlabel = 3)
```

Arguments

object An object of class auditor_model_cooksdistance created with model_cooksdistance function.
 Other objects of class auditor_model_cooksdistance.
 Number of observations with the biggest Cook's distances to be labeled.

Details

Cook's distance is a tool for identifying observations that may negatively affect the model. They may be also used for indicating regions of the design space where it would be good to obtain more observations. Data points indicated by Cook's distances are worth checking for validity.

Cook's Distances are calculated by removing the i-th observation from the data and recalculating the model. It shows how much all the values in the model change when the i-th observation is removed.

For model classes other than lm and glm the distances are computed directly from the definition.

Value

A ggplot object.

References

Cook, R. Dennis (1977). "Detection of Influential Observations in Linear Regression". doi:10.2307/1268249.

plot_correlation

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
library(auditor)
cd_lm <- model_cooksdistance(lm_audit)
# plot results
plot_cooksdistance(cd_lm)
plot(cd_lm, type = "cooksdistance")</pre>
```

plot_correlation

Correlation of Model's Residuals Plot

Description

Matrix of plots. Left-down triangle consists of plots of fitted values (alternatively residuals), on the diagonal there are density plots of fitted values (alternatively residuals), in the right-top triangle there are correlations between fitted values (alternatively residuals).

Usage

```
plot_correlation(object, ..., values = "fit")
plotModelCorrelation(object, ..., values = "fit")
```

Arguments

object	An object of class auditor_model_residual created with model_residual function.
	Other auditor_model_residual objects to be plotted together.
values	"fit" for model fitted values or "res" for residual values.

Value

Invisibly returns a gtable object.

plot_halfnormal 37

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
# use DALEX package to wrap up a model into explainer
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)

library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
# plot results
plot_correlation(mr_lm, mr_rf)
plot(mr_lm, mr_rf, type = "correlation")</pre>
```

plot_halfnormal

Half-Normal plot

Description

The half-normal plot is one of the tools designed to evaluate the goodness of fit of a statistical models. It is a graphical method for comparing two probability distributions by plotting their quantiles against each other. Points on the plot correspond to ordered absolute values of model diagnostic (i.e. standardized residuals) plotted against theoretical order statistics from a half-normal distribution.

Usage

```
plot_halfnormal(object, ..., quantiles = FALSE, sim = 99)
plotHalfNormal(object, ..., quantiles = FALSE, sim = 99)
```

Arguments

object	An object of class auditor_model_halfnormal created with model_halfnormal function.
	Other auditor_model_halfnormal objects.
quantiles	If TRUE values on axis are on quantile scale.
sim	Number of residuals to simulate.

38 plot_lift

Value

A ggplot object.

See Also

```
model_halfnormal
score_halfnormal
```

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
hn_lm <- model_halfnormal(lm_audit)
# plot results
plot_halfnormal(hn_lm)
plot(hn_lm)</pre>
```

plot_lift

LIFT Chart

Description

LIFT is a plot of the rate of positive prediction against true positive rate for the different thresholds. It is useful for measuring and comparing the accuracy of the classificators.

Usage

```
plot_lift(object, ..., zeros = TRUE)
plotLIFT(object, ...)
```

Arguments

object	An object of class auditor_model_evaluation created with model_evaluation function.
	Other auditor_model_evaluation objects to be plotted together.
zeros	Logical. It makes the lines start from the (0,0) point. By default it's TRUE.

plot_pca 39

Value

A ggplot object.

See Also

```
model_evaluation
```

Examples

```
data(titanic_imputed, package = "DALEX")
# fit a model
model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed)</pre>
glm_audit <- audit(model_glm,</pre>
                    data = titanic_imputed,
                    y = titanic_imputed$survived)
# validate a model with auditor
eva_glm <- model_evaluation(glm_audit)</pre>
# plot results
plot_lift(eva_glm)
plot(eva_glm, type ="lift")
model_glm_2 <- glm(survived ~ .-age, family = binomial, data = titanic_imputed)</pre>
glm_audit_2 <- audit(model_glm_2,</pre>
                      data = titanic_imputed,
                      y = titanic_imputed$survived,
                      label = "glm2")
eva_glm_2 <- model_evaluation(glm_audit_2)</pre>
plot_lift(eva_glm, eva_glm_2)
plot(eva_glm, eva_glm_2, type = "lift")
```

plot_pca

Principal Component Analysis of models

Description

Principal Component Analysis of models residuals. PCA can be used to assess the similarity of the models.

```
plot_pca(object, ..., scale = TRUE, arrow_size = 2)
plotModelPCA(object, ..., scale = TRUE)
```

40 plot_prc

Arguments

object	An object of class auditor_model_residual created with model_residual function.
	Other auditor_model_residual objects to be plotted together.
scale	A logical value indicating whether the models residuals should be scaled before the analysis.
arrow_size	Width of the arrows.

Value

A ggplot object.

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
# plot results
plot_pca(mr_lm, mr_rf)</pre>
```

plot_prc

Precision-Recall Curve (PRC)

Description

Precision-Recall Curve summarize the trade-off between the true positive rate and the positive predictive value for a model. It is useful for measuring performance and comparing classificators.

Receiver Operating Characteristic Curve is a plot of the true positive rate (TPR) against the false positive rate (FPR) for the different thresholds. It is useful for measuring and comparing the accuracy of the classificators.

plot_prc 41

Usage

```
plot_prc(object, ..., nlabel = NULL)
plot_roc(object, ..., nlabel = NULL)
plotROC(object, ..., nlabel = NULL)
```

Arguments

object An object of class auditor_model_evaluation created with model_evaluation

function.

... Other auditor_model_evaluation objects to be plotted together.

nlabel Number of cutoff points to show on the plot. Default is NULL.

Value

A ggplot object.

A ggplot object.

See Also

```
plot_rroc, plot_rec
```

```
library(DALEX)
# fit a model
model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed)</pre>
glm_audit <- audit(model_glm,</pre>
                    data = titanic_imputed,
                    y = titanic_imputed$survived)
# validate a model with auditor
eva_glm <- model_evaluation(glm_audit)</pre>
# plot results
plot_prc(eva_glm)
plot(eva_glm)
#add second model
model_glm_2 <- glm(survived ~ .-age, family = binomial, data = titanic_imputed)</pre>
glm_audit_2 <- audit(model_glm_2,</pre>
                      data = titanic_imputed,
                      y = titanic_imputed$survived,
                      label = "glm2")
eva_glm_2 <- model_evaluation(glm_audit_2)</pre>
plot_prc(eva_glm, eva_glm_2)
```

42 plot_prediction

```
plot(eva_glm, eva_glm_2)
data(titanic_imputed, package = "DALEX")
# fit a model
model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed)</pre>
# use DALEX package to wrap up a model into explainer
glm_audit <- audit(model_glm,</pre>
                    data = titanic_imputed,
                    y = titanic_imputed$survived)
# validate a model with auditor
eva_glm <- model_evaluation(glm_audit)</pre>
# plot results
plot_roc(eva_glm)
plot(eva_glm)
#add second model
model_glm_2 <- glm(survived ~ .-age, family = binomial, data = titanic_imputed)</pre>
glm_audit_2 <- audit(model_glm_2,</pre>
                      data = titanic_imputed,
                      y = titanic_imputed$survived,
                      label = "glm2")
eva_glm_2 <- model_evaluation(glm_audit_2)</pre>
plot_roc(eva_glm, eva_glm_2)
plot(eva_glm, eva_glm_2)
```

plot_prediction

Predicted response vs Observed or Variable Values

Description

Plot of predicted response vs observed or variable Values.

Usage

```
plot_prediction(object, ..., variable = "_y_", smooth = FALSE, abline = FALSE)
plotPrediction(object, ..., variable = NULL, smooth = FALSE, abline = FALSE)
```

Arguments

```
object An object of class auditor_model_residual.
... Other auditor_model_residual objects to be plotted together.
```

plot_radar 43

Name of variable to order residuals on a plot. If variable="_y_", the data is ordered by a vector of actual response (y parameter passed to the explain function). If variable = "_y_hat_" the data on the plot will be ordered by predicted response. If variable = NULL, unordered observations are presented.

smooth

Logical, indicates whenever smooth line should be added.

Logical, indicates whenever function y = x should be added. Works only with variable = "_y_" (which is a default option) or when variable equals actual

response variable.

Value

A ggplot2 object.

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)

lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
# plot results
plot_prediction(mr_lm, abline = TRUE)
plot_prediction(mr_lm, variable = "height", smooth = TRUE)
plot(mr_lm, type = "prediction", abline = TRUE)

library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plot_prediction(mr_lm, mr_rf, variable = "height", smooth = TRUE)</pre>
```

plot_radar

Model Ranking Plot

Description

Radar plot with model score. score are scaled to [0,1], each score is inversed and divided by maximum score value.

44 plot_rec

Usage

```
plot_radar(object, ..., verbose = TRUE)
plotModelRanking(object, ..., verbose = TRUE)
```

Arguments

An object of class auditor_model_performance created with model_performance function.
 Other auditor_model_performance objects to be plotted together.
 Verbose
 Logical, indicates whether values of scores should be printed.

Value

A ggplot object.

Examples

```
dragons <- DALEX::dragons[1:100, ]

# fit a model
model_lm <- lm(life_length ~ ., data = dragons)

lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)

# validate a model with auditor
mp_lm <- model_performance(lm_audit)

library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mp_rf <- model_performance(rf_audit)

# plot results
plot_radar(mp_lm, mp_rf)</pre>
```

plot_rec

Regression Error Characteristic Curves (REC)

Description

Error Characteristic curves are a generalization of ROC curves. On the x axis of the plot there is an error tolerance and on the y axis there is a percentage of observations predicted within the given tolerance.

plot_rec 45

Usage

```
plot_rec(object, ...)
plotREC(object, ...)
```

Arguments

object An object of class auditor_model_residual created with model_residual function.

... Other auditor_model_residual objects to be plotted together.

Details

REC curve estimates the Cumulative Distribution Function (CDF) of the error Area Over the REC Curve (REC) is a biased estimate of the expected error

Value

A ggplot object.

References

Bi J., Bennett K.P. (2003). Regression error characteristic curves, in: Twentieth International Conference on Machine Learning (ICML-2003), Washington, DC.

See Also

```
plot_roc, plot_rroc
```

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
# use DALEX package to wrap up a model into explainer
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
plot_rec(mr_lm)
plot(mr_lm, type = "rec")

library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plot_rec(mr_lm, mr_rf)
plot(mr_lm, mr_rf, type = "rec")</pre>
```

46 plot_residual

plot_residual

Plot Residuals vs Observed, Fitted or Variable Values

Description

A plot of residuals against fitted values, observed values or any variable.

Usage

```
plot_residual(
  object,
    ...,
  variable = "_y_",
  smooth = FALSE,
  std_residuals = FALSE,
  nlabel = 0
)

plotResidual(
  object,
    ...,
  variable = NULL,
  smooth = FALSE,
  std_residuals = FALSE,
  nlabel = 0
)
```

Arguments

object	An object of class $auditor_model_residual$ created with $model_residual$ function.
	Other auditor_model_residual objects to be plotted together.
variable	Name of variable to order residuals on a plot. If variable="_y_", the data is ordered by a vector of actual response (y parameter passed to the explain function). If variable = "_y_hat_" the data on the plot will be ordered by predicted response. If variable = NULL, unordered observations are presented.
smooth	Logical, indicates whenever smoothed lines should be added. By default it's FALSE.
std_residuals	Logical, indicates whenever standardized residuals should be used.
nlabel	Number of observations with the biggest absolute values of residuals to be labeled.

plot_residual_boxplot 47

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)

lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)

# plot results
plot_residual(mr_lm)
plot(mr_lm, type = "residual")

library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plot_residual(mr_lm, mr_rf)
plot(mr_rf, mr_rf, type = "residual")</pre>
```

```
plot_residual_boxplot Plot Boxplots of Residuals
```

Description

A boxplot of residuals.

Usage

```
plot_residual_boxplot(object, ...)
plotResidualBoxplot(object, ...)
```

Arguments

object An object of class auditor_model_residual created with model_residual function.

Other auditor_model_residual objects to be plotted together.

Value

A ggplot object.

See Also

```
plot_residual
```

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
# plot results
plot_residual_boxplot(mr_lm)
plot(mr_lm, type = "residual_boxplot")
library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plot_residual_boxplot(mr_lm, mr_rf)
plot(mr_lm, mr_rf)</pre>
```

```
plot_residual_density Residual Density Plot
```

Description

Density of model residuals.

Usage

```
plot_residual_density(object, ..., variable = "", show_rugs = TRUE)
plotResidualDensity(object, ..., variable = NULL)
```

Arguments

```
object An object of class auditor_model_residual created with model_residual function.

Other auditor_model_residual objects to be plotted together.
```

plot_rroc 49

variable Split plot by variable's factor level or median. If variable="_y_", the plot

will be split by actual response (y parameter passed to the explain function). If variable = "_y_hat_" the plot will be split by predicted response. If variable = NULL, the plot will be split by observation index If variable = "" plot is not

split (default option).

show_rugs Adds rugs layer to the plot. By default it's TRUE

Value

A ggplot object.

See Also

```
plot_residual
```

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)

lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
# plot results
plot_residual_density(mr_lm)
plot(mr_lm, type = "residual_density")

library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plot_residual_density(mr_lm, mr_rf)
plot(mr_lm, mr_rf, type = "residual_density")</pre>
```

plot_rroc

Regression Receiver Operating Characteristic (RROC)

Description

The basic idea of the ROC curves for regression is to show model asymmetry. The RROC is a plot where on the x-axis we depict total over-estimation and on the y-axis total under-estimation.

50 plot_rroc

Usage

```
plot_rroc(object, ...)
plotRROC(object, ...)
```

Arguments

object An object of class auditor_model_residual created with model_residual function.

... Other auditor_model_residual objects to be plotted together.

Details

For RROC curves we use a shift, which is an equivalent to the threshold for ROC curves. For each observation we calculate new prediction: $\hat{y}' = \hat{y} + s$ where s is the shift. Therefore, there are different error values for each shift: $e_i = \hat{y_i}' - y_i$

Over-estimation is calculated as: $OVER = \sum (e_i | e_i > 0)$.

Under-estimation is calculated as: $UNDER = \sum (e_i | e_i < 0)$.

The shift equals 0 is represented by a dot.

The Area Over the RROC Curve (AOC) equals to the variance of the errors multiplied by $fracn^2 2$.

Value

A ggplot object.

References

Hernández-Orallo, José. 2013. "ROC Curves for Regression". Pattern Recognition 46 (12): 3395–3411.

See Also

```
plot_roc, plot_rec
```

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
# plot results
plot_rroc(mr_lm)
plot(mr_lm, type = "rroc")</pre>
```

plot_scalelocation 51

```
library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plot_rroc(mr_lm, mr_rf)
plot(mr_lm, mr_rf, type="rroc")</pre>
```

plot_scalelocation

Scale location plot

Description

Variable values vs square root of the absolute value of the residuals. A vertical line corresponds to median.

Usage

```
plot_scalelocation(
  object,
  ...,
  variable = "_y_",
  smooth = FALSE,
  peaks = FALSE
)

plotScaleLocation(object, ..., variable = NULL, smooth = FALSE, peaks = FALSE)
```

Arguments

object	An object of class $auditor_model_residual$ created with $model_residual$ function.
	Other auditor_model_residual objects to be plotted together.
variable	Name of variable to order residuals on a plot. If variable="_y_", the data is ordered by a vector of actual response (y parameter passed to the explain function). If variable = "_y_hat_" the data on the plot will be ordered by predicted response. If variable = NULL, unordered observations are presented.
smooth	Logical, indicates whenever smoothed lines should be added. By default it's FALSE.
peaks	A logical value. If TRUE peaks are marked on plot by black dots.

Value

A ggplot object.

52 plot_tsecdf

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
# plot results
plot_scalelocation(mr_lm)
plot(mr_lm, type = "scalelocation")</pre>
```

plot_tsecdf

Two-sided Cumulative Distribution Function

Description

Cumulative Distribution Function for positive and negative residuals.

Usage

```
plot_tsecdf(
  object,
    ...,
  scale_error = TRUE,
  outliers = NA,
  residuals = TRUE,
  reverse_y = FALSE
)

plotTwoSidedECDF(
  object,
    ...,
  scale_error = TRUE,
  outliers = NA,
  residuals = TRUE,
  reverse_y = FALSE
)
```

Arguments

object An object of class 'auditor_model_residual' created with model_residual function.

. . . Other modelAudit objects to be plotted together.

scale_error	A logical value indicating whether ECDF should be scaled by proportions of
	positive and negative proportions.
outliers	Number of outliers to be marked.
residuals	A logical value indicating whether residuals should be marked.
reverse_y	A logical value indicating whether values on y axis should be reversed.

Value

A ggplot object.

Examples

```
dragons <- DALEX::dragons[1:100, ]</pre>
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)</pre>
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)</pre>
# validate a model with auditor
mr_lm <- model_residual(lm_audit)</pre>
plot_tsecdf(mr_lm)
plot(mr_lm, type="tsecdf")
library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)</pre>
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)</pre>
mr_rf <- model_residual(rf_audit)</pre>
plot_tsecdf(mr_lm, mr_rf, reverse_y = TRUE)
```

```
print.auditor_model_cooksdistance
```

Prints Model Cook's Distances Summary

Description

Prints Model Cook's Distances Summary

Usage

```
## S3 method for class 'auditor_model_cooksdistance'
print(x, ...)
```

Arguments

```
an object auditor_model_cooksdistance created with model_cooksdistance
Х
                function.
```

other parameters

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
# create an explainer
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# calculate score
model_cooksdistance(lm_audit)</pre>
```

```
print.auditor_model_evaluation
```

Prints Model Evaluation Summary

Description

Prints Model Evaluation Summary

Usage

```
## S3 method for class 'auditor_model_evaluation' print(x, ...)
```

Arguments

```
x an object auditor_model_evaluation created with model_evaluation function.
```

... other parameters

Description

Prints Model Halfnormal Summary

Usage

```
## S3 method for class 'auditor_model_halfnormal'
print(x, ...)
```

Arguments

```
x an object auditor_model_halfnormal created with model_halfnormal function.... other parameters
```

Examples

```
print.auditor_model_performance
```

Prints Model Performance Summary

Description

Prints Model Performance Summary

```
## S3 method for class 'auditor_model_performance' print(x, ...)
```

Arguments

```
x an object auditor_model_performance created with model_performance function.... other parameters
```

... other parameters

Examples

Description

Prints Model Residual Summary

Usage

```
## S3 method for class 'auditor_model_residual' print(x, ...)
```

Arguments

```
x an object auditor_model_residual created with model_residual function.... other parameters
```

print.auditor_score 57

```
# validate a model with auditor
model_residual(glm_audit)
```

```
print.auditor_score
```

Prints of Models Scores

Description

Prints of Models Scores

Usage

```
## S3 method for class 'auditor_score'
print(x, ...)
```

Arguments

x an object auditor_score created with score function.

... other parameters

Examples

score

Model Scores computations

Description

This function provides several scores for model validation and performance assessment. Scores can be also used to compare models.

```
score(object, type = "mse", data = NULL, ...)
```

58 score_acc

Arguments

object	An object of class explainer created with function explain from the DALEX package.
type	The score to be calculated. Possible values: acc, auc, cookdistance, dw, f1, gini, halfnormal, mae, mse, peak, precision, r2, rec, recall, rmse, rroc, runs, specificity, one_minus_acc, one_minus_auc, one_minus_f1, one_minus_gini, one_minus_precision, one_minus_recall, one_minus_specificity (for detailed description see functions in see also section).
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score, except Cooks distance, where numeric vector is returned.

See Also

```
score_acc, score_auc, score_cooksdistance, score_dw, score_f1, score_gini score_halfnormal, score_mae, score_mse, score_peak, score_precision, score_r2, score_rec, score_recall, score_rmse, score_rroc, score_runs, score_specificity, score_one_minus_acc, score_one_minus_auc, score_one_minus_f1, score_one_minus_gini, score_one_minus_precision, score_one_minus_recall, score_one_minus_specificity
```

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# calculate score
score(lm_audit, type = 'mae')</pre>
```

score_acc

Accuracy

Description

Accuracy

```
score_acc(object, cutoff = 0.5, data = NULL, y = NULL, ...)
```

score_auc 59

Arguments

object	An object of class explainer created with function explain from the DALEX package.
cutoff	Threshold value, which divides model predicted values (y_hat) to calculate confusion matrix. By default it's 0.5 .
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
У	New y parameter will be used to calculate score.
• • •	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

Examples

score_auc

Area Under ROC Curve (AUC)

Description

Area Under Curve (AUC) for Receiver Operating Characteristic.

```
score_auc(object, data = NULL, y = NULL, ...)
scoreROC(object)
```

score_auprc

Arguments

object	An object of class explainer created with function explain from the DALEX package.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object. $ \\$
у	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

See Also

```
plot_roc
```

Examples

score_auprc

Area under precision-recall curve

Description

Area under precision-recall (AUPRC) curve.

```
score_auprc(object, data = NULL, y = NULL, ...)
```

score_cooksdistance 61

Arguments

object	An object of class explainer created with function explain from the DALEX
	package.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
У	New y parameter will be used to calculate score.
• • •	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

Examples

score_cooksdistance

Score based on Cooks Distance

Description

Cook's distance are used for estimate of the influence of an single observation.

Usage

```
score_cooksdistance(object, verbose = TRUE, ...)
scoreCooksDistance(object, verbose = TRUE)
```

Arguments

object An object of class explainer created with function explain from the DALEX package.

verbose If TRUE progress is printed.

verbose if those progress is printed.

. . . Other arguments dependent on the type of score.

62 score_dw

Details

Cook's distance is a tool for identifying observations that may negatively affect the model. They may be also used for indicating regions of the design space where it would be good to obtain more observations. Data points indicated by Cook's distances are worth checking for validity.

Cook's Distances are calculated by removing the i-th observation from the data and recalculating the model. It shows how much all the values in the model change when the i-th observation is removed

Models of classes other than lm and glm the distances are computed directly from the definition, so this may take a while.

Value

A vector of Cook's distances for each observation. numeric vector

See Also

score

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
# create an explainer
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# calculate score
score_cooksdistance(lm_audit)</pre>
```

score_dw

Durbin-Watson Score

Description

Score based on Durbin-Watson test statistic. The score value is helpful in comparing models. It is worth pointing out that results of tests like p-value makes sense only when the test assumptions are satisfied. Otherwise test statistic may be considered as a score.

```
score_dw(object, variable = NULL, data = NULL, y = NULL, ...)
scoreDW(object, variable = NULL)
```

score_f1 63

Arguments

object	An object of class explainer created with function explain from the DALEX package.
variable	Name of model variable to order residuals.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object. $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
у	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# calculate score
score_dw(lm_audit)</pre>
```

score_f1

F1 Score

Description

F1 Score

Usage

```
score_f1(object, cutoff = 0.5, data = NULL, y = NULL, ...)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
cutoff	Threshold value, which divides model predicted values (y_hat) to calculate confusion matrix. By default it's 0.5.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
У	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

score_gini

Value

An object of class auditor_score.

Examples

score_gini

Gini Coefficient

Description

The Gini coefficient measures the inequality among values of a frequency distribution. A Gini coefficient equals 0 means perfect equality, where all values are the same. A Gini coefficient equals 100

Usage

```
score_gini(object, data = NULL, y = NULL, ...)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
у	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

See Also

```
plot_roc
```

score_halfnormal 65

Examples

score_halfnormal

Half-Normal Score

Description

Score is approximately: $\sum \#[res_i \leq simres_{i,j}] - n$ with the distinction that each element of sum is also scaled to take values from [0,1].

 res_i is a residual for i-th observation, $simres_{i,j}$ is the residual of j-th simulation for i-th observation, and n is the number of simulations for each observation. Scores are calculated on the basis of simulated data, so they may differ between function calls.

Usage

```
score_halfnormal(object, ...)
scoreHalfNormal(object, ...)
```

Arguments

object An object of class explainer created with function explain from the DALEX package.
...

Value

An object of class auditor_score.

score_mae

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
# create an explainer
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# calculate score
score_halfnormal(lm_audit)</pre>
```

score_mae

Mean Absolute Error

Description

Mean Absolute Error.

Usage

```
score_mae(object, data = NULL, y = NULL, ...)
scoreMAE(object)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
У	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

See Also

score

score_mse 67

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
# create an explainer
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# calculate score
score_mae(lm_audit)</pre>
```

score_mse

Mean Square Error

Description

Mean Square Error.

Usage

```
score_mse(object, data = NULL, y = NULL, ...)
scoreMSE(object)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
у	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

See Also

score

68 score_one_minus_acc

Examples

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# calculate score
score_mse(lm_audit)</pre>
```

score_one_minus_acc

One minus accuracy

Description

One minus accuracy

Usage

```
score_one_minus_acc(object, cutoff = 0.5, data = NULL, y = NULL, ...)
```

Arguments

object An object of class explainer created with function explain from the DAL package.	ılıx.
cutoff Threshold value, which divides model predicted values to calculate confus matrix. By default it's 0.5.	sion
New data that will be used to calculate the score. Pass NULL if you want to data from object.	use
y New y parameter will be used to calculate score.	
Other arguments dependent on the type of score.	

Value

An object of class auditor_score.

```
data(titanic_imputed, package = "DALEX")

# fit a model
model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed)

# create an explainer
glm_audit <- audit(model_glm,</pre>
```

score_one_minus_auc 69

score_one_minus_auc

One minus Area Under ROC Curve (AUC)

Description

One minus Area Under Curve (AUC) for Receiver Operating Characteristic.

Usage

```
score_one_minus_auc(object, data = NULL, y = NULL, ...)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
у	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

Description

One Minus Area under precision-recall (AUPRC) curve.

Usage

```
score_one_minus_auprc(object, data = NULL, y = NULL, ...)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
data	New data that will be used to calculate the score. Pass \ensuremath{NULL} if you want to use data from object.
у	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

score_one_minus_f1 71

Description

One Minus F1 Score

Usage

```
score_one_minus_f1(object, cutoff = 0.5, data = NULL, y = NULL, ...)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
cutoff	Threshold value, which divides model predicted values (y_hat) to calculate confusion matrix. By default it's 0.5 .
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
у	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

72 score_one_minus_gini

Description

One minus Gini Coefficient 100 0 expresses maximal inequality of values.

Usage

```
score_one_minus_gini(object, data = NULL, y = NULL, ...)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
У	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

```
score_one_minus_precision
```

One Minus Precision

Description

One Minus Precision

Usage

```
score_one_minus_precision(object, cutoff = 0.5, data = NULL, y = NULL, ...)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
cutoff	Threshold value, which divides model predicted values (y_hat) to calculate confusion matrix. By default it's 0.5 .
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
у	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

```
score_one_minus_recall
```

One minus recall

Description

One minus recall

Usage

```
score_one_minus_recall(object, cutoff = 0.5, data = NULL, y = NULL, ...)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
cutoff	Threshold value, which divides model predicted values (y_hat) to calculate confusion matrix. By default it's 0.5 .
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
У	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

```
score\_one\_minus\_specificity\\ One \ minus\ specificity
```

Description

One minus specificity

Usage

```
score_one_minus_specificity(object, cutoff = 0.5, data = NULL, y = NULL, ...)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
cutoff	Threshold value, which divides model predicted values (y_hat) to calculate confusion matrix. By default it's 0.5 .
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
У	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

76 score_peak

score_peak Peak Score

Description

This score is calculated on the basis of Peak test, which is used for checking for homoscedasticity of residuals in regression analyses.

Usage

```
score_peak(object, variable = NULL, data = NULL, y = NULL, ...)
scorePeak(object)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
variable	Name of model variable to order residuals.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
У	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
# create an explainer
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# calculate score
score_peak(lm_audit)</pre>
```

score_precision 77

score_precision	Precision
-----------------	-----------

Description

Precision

Usage

```
score_precision(object, cutoff = 0.5, data = NULL, y = NULL, ...)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
cutoff	Threshold value, which divides model predicted values (y_hat) to calculate confusion matrix. By default it's \emptyset . 5.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
У	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

78 score_r2

score_r2	R-squared
----------	-----------

Description

The R2 is the coefficient of determination, An R2 coefficient equals 0 means that model explains none of the variability of the response. An R2 coefficient equals 1 means that model explains all the variability of the response.

Usage

```
score_r2(object, data = NULL, y = NULL, ...)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
у	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

See Also

score

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
# use DALEX package to wrap up a model into explainer
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# calculate score with auditor
score_r2(lm_audit)</pre>
```

score_rec 79

SCO	r۵	rac
300		1

Area Over the Curve for REC Curves

Description

The area over the Regression Error Characteristic curve is a measure of the expected error for the regression model.

Usage

```
score_rec(object, data = NULL, y = NULL, ...)
scoreREC(object)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
у	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

References

J. Bi, and K. P. Bennet, "Regression error characteristic curves," in Proc. 20th Int. Conf. Machine Learning, Washington DC, 2003, pp. 43-50

See Also

```
plot_rec
```

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
lm_model <- lm(life_length ~ ., data = dragons)
# create an explainer
lm_audit <- audit(lm_model, data = dragons, y = dragons$life_length)
# calculate score
score_rec(lm_audit)</pre>
```

80 score_recall

score_recall

Recall

Description

Recall

Usage

```
score_recall(object, cutoff = 0.5, data = NULL, y = NULL, ...)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
cutoff	Threshold value, which divides model predicted values (y_hat) to calculate confusion matrix. By default it's 0.5 .
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
У	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

score_rmse 81

SCO	re	rme	20

Root Mean Square Error

Description

Root Mean Square Error.

Usage

```
score_rmse(object, data = NULL, y = NULL, ...)
scoreRMSE(object)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
У	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

See Also

score

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
# create an explainer
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# calculate score
score_rmse(lm_audit)</pre>
```

82 score_rroc

score_	rroc
3CO1 C_	_1 1 0 0

Area Over the Curve for RROC Curves

Description

The area over the Regression Receiver Operating Characteristic.

Usage

```
score_rroc(object, data = NULL, y = NULL, ...)
scoreRROC(object)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
у	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

References

```
Hernández-Orallo, José. 2013. "ROC Curves for Regression". Pattern Recognition 46 (12): 3395–3411.
```

See Also

```
plot_rroc
```

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
# create an explainer
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# calculate score
score_rroc(lm_audit)</pre>
```

score_runs 83

Description

Score based on Runs test statistic. Note that this test is not very strong. It utilizes only signs of the residuals. The score value is helpful in comparing models. It is worth pointing out that results of tests like p-value makes sense only when the test assumptions are satisfied. Otherwise test statistic may be considered as a score.

Usage

```
score_runs(object, variable = NULL, data = NULL, y = NULL, ...)
scoreRuns(object, variable = NULL)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
variable	name of model variable to order residuals.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
у	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

```
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
# create an explainer
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# caluclate score
score_runs(lm_audit)</pre>
```

84 score_specificity

Description

Specificity

Usage

```
score_specificity(object, cutoff = 0.5, data = NULL, y = NULL, ...)
```

Arguments

object	An object of class explainer created with function explain from the DALEX package.
cutoff	Threshold value, which divides model predicted values (y_hat) to calculate confusion matrix. By default it's 0.5.
data	New data that will be used to calculate the score. Pass NULL if you want to use data from object.
У	New y parameter will be used to calculate score.
	Other arguments dependent on the type of score.

Value

An object of class auditor_score.

Index

audit, 3 auditorData, 5	<pre>plot.auditor_model_residual</pre>
check_residuals, 5	plot_auditor, 32
check_residuals_autocorrelation, 6	plot_autocorrelation, 13, 33, 34
check_residuals_outliers,7	plot_cooksdistance, 19, 33, 35
check_residuals_trend, 7	plot_correlation, <i>13</i> , <i>33</i> , 36
explain, 3–12, 15, 16, 22, 25, 30, 31, 34, 43,	plot_halfnormal, 20, 33, 37
46, 49, 51, 58–61, 63–84	plot_lift, 9, 21, 33, 38
70, 75, 51, 50 01, 05 07	plot_pca, 13, 33, 39
gtable, 36	plot_prc, 40
	plot_prediction, <i>13</i> , <i>23</i> , <i>33</i> , 42
hnp, <i>10</i>	plot_radar, 33, 43
	plot_rec, 13, 24, 33, 41, 44, 50, 79
model_cooksdistance, 8, 13, 14, 18, 32, 33,	plot_residual, 13, 26, 33, 46, 48, 49
35,53	plot_residual_boxplot, 13, 33, 47
model_evaluation, 9, 13, 14, 20, 27, 32, 33, 38, 39, 41, 54	plot_residual_density, 13, 33, 48
model_halfnormal, 10, 14, 19, 20, 33, 37, 38,	plot_roc, 9, 27, 33, 45, 50, 60, 64
55	plot_roc (plot_prc), 40
model_performance, 11, 13, 14, 32, 33, 44, 56	plot_rroc, 13, 33, 41, 45, 49, 82
model_residual, 12, <i>13</i> – <i>16</i> , 24, 25, 28,	plot_scalelocation, 13, 30, 33, 51
30–34, 36, 40, 45–48, 50–52, 56	plot_tsecdf, 13, 33, 52 plotACF (plot_acf), 31
<pre>modelEvaluation (model_evaluation), 9</pre>	plotAcr (plot_acr), 31 plotAutocorrelation
modelFit (model_halfnormal), 10	(plot_autocorrelation), 34
<pre>modelPerformance (model_performance), 11</pre>	plotCooksDistance (plot_cooksdistance),
<pre>modelResiduals (model_residual), 12</pre>	35
	plotD3, 13
observationInfluence	plotD3_acf, <i>14</i> , 15
<pre>(model_cooksdistance), 8</pre>	plotD3_auditor(plotD3), 13
par, <i>33</i>	plotD3_autocorrelation, <i>14</i> , 16
plot.auditor_model_cooksdistance	plotD3_cooksdistance, 14, 17
(plot_auditor), 32	plotD3_halfnormal, 14, 19
plot.auditor_model_evaluation	plotD3_lift, <i>14</i> , 20
(plot_auditor), 32	plotD3_prediction, <i>14</i> , 21
plot.auditor_model_halfnormal	plotD3_rec, 14, 23
(plot_auditor), 32	plotD3_residual, 14, 25
plot.auditor_model_performance	plotD3_roc, 14, 27
(plot_auditor), 32	plotD3_rroc, 14, 28, 29

86 INDEX

plotD3_scalelocation, 14, 29	score_one_minus_acc, 12, 58, 68
plotD3ACF (plotD3_acf), 15	score_one_minus_auc, <i>12</i> , <i>58</i> , 69
plotD3Autocorrelation	score_one_minus_auprc, 70
(plotD3_autocorrelation), 16	score_one_minus_f1, 12, 58, 71
plotD3CooksDistance	score_one_minus_gini, 12, 58, 72
(plotD3_cooksdistance), 17	score_one_minus_precision, 12, 58, 73
plotD3HalfNormal (plotD3_halfnormal), 19	score_one_minus_recall, 12, 58, 74
plotD3LIFT (plotD3_lift), 20	score_one_minus_specificity, 12, 58, 75
plotD3Prediction (plotD3_prediction), 21	score_peak, 12, 58, 76
plotD3REC (plotD3_rec), 23	score_precision, <i>12</i> , <i>58</i> , <i>77</i>
plotD3Residual (plotD3_residual), 25	score_r2, 12, 58, 78
plotD3ScaleLocation	score_rec, 12, 58, 79
(plotD3_scalelocation), 29	score_recall, 12, 58, 80
plotHalfNormal (plot_halfnormal), 37	score_rmse, <i>12</i> , <i>58</i> , 81
plotLIFT (plot_lift), 38	score_rroc, 12, 58, 82
plotModelCorrelation	score_runs, 12, 58, 83
(plot_correlation), 36	score_specificity, <i>12</i> , <i>58</i> , 84
plotModelPCA (plot_pca), 39	scoreCooksDistance
plotModelRanking (plot_radar), 43	(score_cooksdistance), 61
plotPrediction (plot_prediction), 42	scoreDW (score_dw), 62
plotREC (plot_rec), 44	scoreHalfNormal(score_halfnormal), 65
plotResidual (plot_residual), 46	scoreMAE (score_mae), 66
plotResidualBoxplot	scoreMSE (score_mse), 67
(plot_residual_boxplot), 47	scorePeak (score_peak), 76
plotResidualDensity	scoreREC (score_rec), 79
(plot_residual_density), 48	scoreRMSE (score_rmse), 81
plotROC (plot_prc), 40	scoreROC (score_auc), 59
plotROC (plot_pro), 49	scoreRROC (score_rroc), 82
plotKnoc (plot_170c), 49 plotScaleLocation (plot_scalelocation),	
51	scoreRuns (score_runs), 83
plotTwoSidedECDF (plot_tsecdf), 52	
print.auditor_model_cooksdistance, 53	
print.auditor_model_evaluation, 54	
print.auditor_model_evaluation, 54 print.auditor_model_halfnormal, 55	
print.auditor_model_performance, 55	
print.auditor_model_residual, 56	
print.auditor_score, 57	
print.additor_score, 37	
score, 57, 57, 62, 66, 67, 78, 81	
score_acc, 12, 58, 58	
score_auc, 12, 58, 59	
score_auprc, 60	
score_cooksdistance, 12, 58, 61	
score_dw, 12, 58, 62	
score_f1, 12, 58, 63	
score_gini, 12, 58, 64	
score_halfnormal, 12, 20, 38, 58, 65	
score_mae, 12, 58, 66	
score mse. 12, 58, 67	