(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 5 June 2003 (05.06.2003)

PCT

(10) International Publication Number WO 03/046126 A2

(51) International Patent Classification7:

C12N

- (21) International Application Number: PCT/US02/34001
- (22) International Filing Date: 23 October 2002 (23.10.2002)
- (25) Filing Language: English
- (26) Publication Language: English

(30) Priority Data:

60/335,115	24 October 2001 (24.10.2001)	US
10/140,545	7 May 2002 (07.05.2002)	US
60/391,367	25 June 2002 (25.06.2002)	US

- (71) Applicant: AMERSHAM BIOSCIENCES (SV) CORP [US/US]; 928 East Arques Avenue, Sunnyvale, CA 94085 (US).
- (72) Inventors: SAMARTZIDOU, Hrissi; 938G La Mesa Terrace, Sunnyvale, CA 94086 (US). HOUTS, Thomas; 8485 Burchell Road, Gilroy, CA 95020 (US). YANG, Wen; 2025 California Street, #30, Mountain View, CA 94040 (US). BUI, Son; 1243 Stellar Way, Milpitas, CA 95035 (US). HARKINS, Timothy; 884 Myrtle Street, San Jose, CA 95126 (US).
- (74) Agent: RONNING, Royal, N., Jr.; Amersham Biosciences Corp, 800 Centennial Avenue, Piscataway, NJ 08855 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

03/046126 A2

(54) Title: ARTIFICIAL GENES FOR USE AS CONTROLS IN GENE EXPRESSION ANALYSIS SYSTEMS

(57) Abstract: Method of producing universal controls for use in gene expression analysis systems such as macroarrays, real-time PCR, northern blots, SAGE and microarrays. The controls are generated either from near-random sequence of DNA, or from intergenic or intronic regions of a genome. Twenty-three specific control sequences are also disclosed. Also presented are methods of using these controls, including as negative controls, positive controls, and as calibrators of a gene expression analysis system.

ARTIFICIAL GENES FOR USE AS CONTROLS IN GENE EXPRESSION ANALYSIS SYSTEMS

CROSS-REFERENCE TO RELATED APPLICATIONS

5

10

This application is a continuation-in-part of United States patent application number 10/140,545, filed May 7, 2002, which claims priority to United States provisional patent application number 60/289,202, filed May 7, 2001, and 60/312,420, filed August 15, 2001. This application also claims priority to United States provisional patent application serial number 60/335,115, filed October 24, 2001, and 60/391,367, filed June 25, 2002, the disclosures of which are incorporated herein by reference in their entireties.

REFERENCE TO SEQUENCE LISTING SUBMITTED ON COMPACT DISC

The present application includes a Sequence

Listing filed on one CD-R disc, provided in duplicate,
containing a single file named pto_PB0181.txt, having 56
kilobytes, last modified on October 21, 2002, and recorded
on October 21, 2002. The Sequence Listing contained in said
file on said disc is incorporated herein by reference in its
entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention:

30

The present invention relates to a method of using artificial genes as universal controls in gene expression analysis systems. More particularly, the present invention relates to a method of producing universal Controls for use

in gene expression analysis systems such as macroarrays, real-time PCR, northern blots, SAGE and microarrays, such as those provided in the Microarray ScoreCard system.

5 2. Description of Related Art:

25

30

Gene expression profiling is an important biological approach used to better understand the molecular mechanisms that govern cellular function and growth. 10 Microarray analysis is one of the tools that can be applied to measure the relative expression levels of individual genes under different conditions. Microarray measurements often appear to be systematically biased, however, and the factors that contribute to this bias are many and illdefined (Bowtell, D.L., Nature Genetics 21, 25-32 (1999); Brown, P.P. and Botstein, D., Nature Genetics 21, 33-37 (1999)). Others have recommended the use of "spikes" of purified mRNA at known concentrations as controls in microarray experiments. Affymetrix includes several for use with their GeneChip products. In the current state of the 20 art, these selected genes are actual genes selected from very distantly related organisms. For example, the human chip (designed for use with human mRNA) includes control genes from bacterial and plant sources.

Each of the prior art controls consists of transcribed sequences of DNA from some source. As a result, that source cannot be the subject of a hybridization experiment using those controls due to the inherent hybridization of the controls to its source. In addition, the lack of universal references consistent from experiment to experiment and from species to species greatly reduces the ability for scientists to compare data across labs, users, or time. What is needed, therefore, is a set of universal controls that do not hybridize with the DNA of any

source which may be the subject of an experiment. More desirably, there is a need for a universal control for gene expression analysis which do not hybridize with any known source.

5

10

15

20

25

30

SUMMARY OF THE INVENTION

Accordingly, this invention provides a process of producing universal controls that are useful in gene expression analysis systems designed for any species and which can be tested to insure lack of hybridization with mRNA from sources other than the control DNA itself.

The invention relates in a first embodiment to a process for producing at least one universal control for use in a gene expression analysis system. The process comprises selecting at least one non-transcribed (preferably intergenic, also intronic) region of genomic DNA from a known sequence, designing primer pairs for said at least one non-transcribed region and amplifying said at least one non-transcribed region of genomic DNA to generate corresponding double stranded DNA, then cloning said double stranded DNA using a vector to obtain additional double stranded DNA and formulating at least one control comprising said double stranded DNA.

The present invention relates in a second embodiment to a process of producing at least one universal control for use in a gene expression analysis system wherein testing of said at least one non-transcribed region to ensure lack of hybridization with mRNA from sources other than said at least one non-transcribed region of genomic DNA is performed.

The present invention in a third embodiment relates to said process further comprising purifying said DNA and mRNA, determining the concentrations thereof and

formulating at least one control comprising said DNA or of said mRNA at selected concentrations and ratios.

Another embodiment of the present invention is a universal control for use in a gene expression analysis system comprising a known amount of at least one DNA generated from at least one non-transcribed region of genomic DNA from a known sequence, or comprising a known amount of at least one mRNA generated from DNA generated from at least one non-transcribed region of genomic DNA from a known sequence. The present invention may optionally include generating mRNA complementary to said DNA and formulating at least one control comprising said mRNA, by optionally purifying said DNA and mRNA, determining the

10

15

20

25

30

concentrations thereof and formulating at least one control comprising said DNA or of said mRNA at selected concentrations and ratios.

Another embodiment of the present invention is a universal control for use in a gene expression analysis system wherein a known amount of at least one DNA sequence generated from at least one non-transcribed region of genomic DNA from a known sequence, a known amount of at least one mRNA generated from DNA generated from at least one non-transcribed region of genomic DNA from a known sequence is included, and the aforementioned control wherein, said DNA and mRNA do not hybridize with any DNA or mRNA from a source other than the at least one non-transcribed region of genomic DNA.

The present invention, relates to a method of using said universal control, as a negative control in a gene expression analysis system by adding a known amount of said control containing a known amount of DNA, to a gene expression analysis system as a control sample and subjecting the sample to hybridization conditions in the

absence of complementary labeled mRNA and examining the control sample for the absence or presence of signal.

Further, said controls can be used in a gene expression analysis system by adding a known amount of a said control containing a known amount of DNA to a gene expression analysis system as a control sample and subjecting the sample to hybridization conditions, in the presence of a said control containing a known amount of labeled complementary mRNA, and measuring the signal values for the labeled mRNA and determining the expression level of the gene transcript based on the signal value of the labeled mRNA.

10

15

20

25

30

Additionally, said controls may be used as calibrators in a gene expression analysis system by adding a known amount of a said control containing known amounts of several DNA sequences to a gene expression analysis system as control samples and subjecting the samples to hybridization conditions in the presence of a said control containing known amounts of corresponding complementary labeled mRNAs, each mRNA being at a different concentration and measuring the signal values for the labeled mRNAs and constructing a dose-response or calibration curve based on the relationship between signal value and concentration of each mRNA.

Also, the present invention relates to a method of using said controls as calibrators for gene expression ratios in a two-color gene expression analysis system by adding a known amount of at least one of said controls containing a known amount of DNA to a two-color gene expression analysis system as control samples and subjecting the samples to hybridization conditions in the presence of a said control containing known amounts of two differently labeled corresponding complementary labeled mRNAs for each DNA sample present and measuring the ratio of the signal

values for the two differently labeled mRNAs and comparing the signal ratio to the ratio of concentrations of the two or more differently labeled mRNAs.

A further embodiment of the present invention is a process of producing controls that are useful in gene expression analysis systems designed for any species and which can be tested to insure lack of hybridization with mRNA from sources other than the synthetic sequences of DNA from which the control is produced.

10

25

30

One or more such controls can be produced by a process comprising synthesizing a near-random sequence of non-transcribed DNA, designing primer pairs for said at least one near random sequence and amplifying said non-transcribed DNA to generate corresponding double stranded DNA, then cloning said double stranded DNA using a vector to obtain additional double stranded DNA and formulating at least one control comprising said double stranded DNA.

The process can also be used to produce at least one control for use in a gene expression analysis system wherein testing of said sequence of non-transcribed synthetic DNA to ensure lack of hybridization with mRNA from sources other than said sequence of non-transcribed DNA is performed.

Additionally, mRNA complementary to said synthetic DNA can be generated and formulated to generate at least one control comprising said mRNA.

DNA and mRNA can be subsequently purified, the concentrations thereof determined, and one or more controls comprising said DNA or said mRNA at selected concentrations and ratios be formulated.

Another embodiment of the present invention is a control for use in a gene expression analysis system produced by the process comprises synthesizing a near-random sequence of DNA, designing primer pairs for said synthetic

DNA and amplifying said DNA to generate corresponding double stranded DNA, then cloning said double stranded DNA using a vector to obtain additional double stranded DNA and formulating at least one control comprising a known amount of at least one said double stranded DNA or a known amount of at least one mRNA generated from said DNA, and optionally, wherein, said DNA and mRNA do not hybridize with any DNA or mRNA from a source other than said DNA sequence of non-transcribed DNA.

The present invention, additionally, relates to a method of using said controls containing a known amount of DNA, as a negative control in a gene expression analysis system including adding a known amount of said control containing a known amount of DNA to a gene expression analysis system as a control sample, and subjecting the sample to hybridization conditions in the absence of complementary labeled mRNA and examining the control sample for the absence or presence of signal.

10

30

Further, said controls may be used in a gene

20 expression analysis system wherein a known amount of a said
control containing a known amount of DNA is added to a gene
expression analysis system as a control sample and
subjecting the sample to hybridization conditions in the
presence of a said control containing a known amount of

25 labeled complementary mRNA and measuring the signal values
for the labeled mRNA and determining the expression level of
the gene transcript based on the signal value of the labeled
mRNA.

The present invention, also relates to a method of using said controls as calibrators in a gene expression analysis system including adding known amounts of a said control containing known amounts of several DNAs to a gene expression analysis system as control samples and subjecting the samples to hybridization conditions in the presence of a

said control containing known amounts of corresponding complementary labeled mRNAs, each mRNA being at a different concentration and measuring the signal values for the labeled mRNAs and constructing a dose-response or calibration curve based on the relationship between signal value and concentration of each mRNA.

The present invention, additionally, relates to a method of using said controls as calibrators for gene expression ratios in a two-color gene expression analysis system comprising adding a known amount of at least one of said controls containing a known amount of DNA to a two-color gene expression analysis system as control samples and subjecting the samples to hybridization conditions in the presence of a said control containing known amounts of two differently labeled corresponding complementary labeled mRNAs for each DNA sample present and measuring the ratio of the signal values for the two differently labeled mRNAs and comparing the signal ratio to the ratio of concentrations of the two or more differently labeled mRNAs.

Further embodiments and uses of the current invention will become apparent from a consideration of the ensuing description.

BRIEF DESCRIPTION OF THE DRAWINGS

25

30

20

10

The above and other objects and advantages of the present invention will be apparent upon consideration of the following detailed description taken in conjunction with the accompanying drawings, in which like characters refer to like parts throughout, and in which:

FIG. 1 shows representative results for the selection of universal controls that do not cross-hybridize with human RNA;

FIG. 2 shows representative results for the selection of universal controls that do not cross-hybridization with each other;

- FIG. 3 represents a performance evaluation of the universal controls;
 - FIG. 4 shows a scatter plot of raw signals for the calibration and ratio controls from a two-color hybridization experiment;
- FIG. 5 shows calibration curves based on the
 10 Calibration controls for a representative hybridization experiment;
 - FIG. 6 presents the control nucleotide sequence of DR1 (SEQ ID NO: 1);
- FIG. 7 presents the control nucleotide sequence of DR2 (SEQ ID NO: 2);
 - FIG. 8 presents the control nucleotide sequence of DR3 (SEQ ID NO: 3);
 - FIG. 9 presents the control nucleotide sequence of DR4 (SEQ ID NO: 4);
- 20 FIG. 10 presents the control nucleotide sequence of DR5 (SEQ ID NO: 5);
 - FIG. 11 presents the control nucleotide sequence of DR6 (SEQ ID NO: 6);
- FIG. 12 presents the control nucleotide sequence of DR7 (SEQ ID NO: 7);
 - FIG. 13 presents the control nucleotide sequence of DR8 (SEQ ID NO: 8);
 - FIG. 14 presents the control nucleotide sequence of DR9 (SEQ ID NO: 9);
- of DR10 (SEQ ID NO: 10);
 - FIG. 16 presents the control nucleotide sequence of RC1 (SEQ ID NO: 11);

FIG. 17 presents the control nucleotide sequence of RC2 (SEQ ID NO: 12);

FIG. 18 presents the control nucleotide sequence of RC3 (SEQ ID NO: 13);

5 FIG. 19 presents the control nucleotide sequence of RC4 (SEQ ID NO: 14);

10

25

FIG. 20 presents the control nucleotide sequence of RC5 (SEQ ID NO: 15);

FIG. 21 presents the control nucleotide sequence of RC6 (SEQ ID NO: 16);

FIG. 22 presents the control nucleotide sequence of RC7 (SEQ ID NO: 17);

FIG. 23 presents the control nucleotide sequence of RC8 (SEQ ID NO: 18);

15 FIG. 24 presents the control nucleotide sequence of Utility1 (SEQ ID NO: 19);

FIG. 25 presents the control nucleotide sequence of Utility2 (SEQ ID NO: 20);

FIG. 26 presents the control nucleotide sequence 20 of Utility3 (SEQ ID NO: 21);

FIG. 27 presents the control nucleotide sequence of Negativel (SEQ ID NO: 22);

FIG. 28 presents the control nucleotide sequence of Negative2 (SEQ ID NO: 23);

FIG. 29 presents the nucleotide sequence of DR1s used in a spike mix (SEQ ID NO: 24);

FIG. 30 presents the nucleotide sequence of DR2s used in a spike mix (SEQ ID NO: 25);

FIG. 31 presents the nucleotide sequence of DR3s used in a spike mix (SEQ ID NO: 26);

FIG. 32 presents the nucleotide sequence of DR4s used in a spike mix (SEQ ID NO: 27);

FIG. 33 presents the nucleotide sequence of DR5s used in a spike mix (SEQ ID NO: 28);

FIG. 34 presents the nucleotide sequence of DR6s used in a spike mix (SEQ ID NO: 29);

FIG. 35 presents the nucleotide sequence of DR7s used in a spike mix (SEQ ID NO: 30);

FIG. 36 presents the nucleotide sequence of DR8s used in a spike mix (SEQ ID NO: 31);

FIG. 37 presents the nucleotide sequence of DR9s used in a spike mix (SEQ ID NO: 32);

FIG. 38 presents the nucleotide sequence of DR10s

10 used in a spike mix (SEQ ID NO: 33);

20

FIG. 39 presents the nucleotide sequence of RC1s used in a spike mix (SEQ ID NO: 34);

FIG. 40 presents the nucleotide sequence of RC2s used in a spike mix (SEQ ID NO: 35);

FIG. 41 presents the nucleotide sequence of RC3s used in a spike mix (SEQ ID NO: 36);

FIG. 42 presents the nucleotide sequence of RC4s used in a spike mix (SEQ ID NO: 37);

FIG. 43 presents the nucleotide sequence of RC5s used in a spike mix (SEQ ID NO: 38);

FIG. 44 presents the nucleotide sequence of RC6s used in a spike mix (SEQ ID NO: 39);

FIG. 45 presents the nucleotide sequence of RC7s used in a spike mix (SEQ ID NO: 40);

FIG. 46 presents the nucleotide sequence of RC8s used in a spike mix (SEQ ID NO: 41);

FIG. 47 presents the nucleotide sequence of Utility1s used in a spike mix (SEQ ID NO: 42);

FIG. 48 presents the nucleotide sequence of

30 Utility2s used in a spike mix (SEQ ID NO: 43);

FIG. 49 presents the nucleotide sequence of Utility3s used in a spike mix (SEQ ID NO: 44);

FIG. 50 presents the nucleotide sequence of Negativels used in a spike mix (SEQ ID NO: 45); and

FIG. 51 presents the nucleotide sequence of Negative2s used in a spike mix (SEQ ID NO: 46).

DETAILED DESCRIPTION OF THE INVENTION

5

10

20

25

30

The present invention teaches universal Controls for use in gene expression analysis systems such as microarrays. Many have expressed interest in being able to obtain suitable genes and spikes as controls for inclusion in their arrays.

An advantage of the universal Controls of this invention is that a single set can be used with assay systems designed for any species, as these Controls will not be present unless intentionally added. This contrasts with the concept of using genes from "distantly related species." For example, an analysis system directed at detecting human gene expression might employ a Bacillus subtilis gene as control, which may not be present in a human genetic material. But this control might be present in bacterial genetic material (or at least, cross hybridize), thus it may not be a good control for an experiment on bacterial gene expression. The novel universal Controls presented here provide an advantage over the state of the art in that the same set of controls can be used without regard to the species for the test sample RNA.

The present invention employs the novel approaches of using either non-transcribed genomic sequences or totally random synthetic sequences as a template and generating both DNA and complementary "mRNA" from such sequences, for use as controls. The Controls could be devised de novo by designing near-random sequences and synthesizing them resulting in synthetic macromolecules as universal controls. Totally synthetic random DNA fragments are so designed that they do not cross-hybridize with each other or with RNA from

any biologically relevant species (meaning species whose DNA or RNA might be present in the gene expression analysis system). The cost of generating such large synthetic DNA molecules can be high. However, they only need to be generated a single time. Additionally, fragment size can be increased by ligating smaller synthetic fragments together by known methods. In this way, fragments large enough to be easily cloned can be created. Through cloning and PCR sufficient quantities of DNA for use as controls can be produced and mRNA can be generated by in vitro transcription for use in controls.

A simpler approach is to identify sequences from the intergenic or intronic regions (referred here as non-transcribed regions) of genomic DNA from an organism, and use these as a template for synthesis via PCR (polymerase chain reaction). Ideally, sequences of around 1000 bases (could range from 500 to 2000 bases) are selected based on computer searches of publicly accessible sequence data. The criteria for selection include:

20

25

- The sequence must be from a non-transcribed region; and
- 2. The sequence must not have homology with or be predicted to hybridize with any known / published gene or expressed sequence tag (EST).

PCR primer pairs are designed for the selected sequence(s) and PCR is performed using genomic DNA (as a template) to generate PCR fragments (double strand DNA) corresponding to the non-transcribed sequence(s) as the control DNA. Additional control DNA can be cloned using a vector and standard techniques. Subsequently, standard techniques such as in vitro transcription are used to generate mRNA (complementary to the cDNA and containing a poly-A tail) as the control mRNA. Standard techniques are

used for purifying the Control DNA and Control mRNA products, and for estimating their concentrations.

10

15

20

25

30

Empirical testing is also performed to ensure lack of hybridization between the Control DNA on the array and other mRNAs, as well as with mRNA from important gene expression systems (e.g., human, mouse, Arabidopsis, etc.).

The above approaches were used to generate twentythree universal control sequences from intergenic regions of the yeast Saccharomyces cerevisiae genome. Specifically, using yeast genome sequence data publicly available (http://genome-www.stanford.edu/Saccharomyces/), intergenic regions approximately 1 kb in size were identified. sequences were BLAST'd and those showing no homology to other sequences were identified as candidates for artificial gene controls. Candidates were analyzed for GC-content and a subset with a GC-content of ≥36% was identified. Specific primer sequences have been identified and primers synthesized. PCR products amplified with the specific primers have been cloned directly into the pGEMTM-T Easy vector (Promega Corp., Madison, WI). Both array targets and templates for spike mRNA have been amplified from these clones using distinct and specific primers.

A greater number of intergenic regions have been cloned for testing. DNA samples from all the candidates were amplified, spotted on glass microarray slides and hybridized with mRNA samples from several species and each candidate spike mRNA, respectively, to identify those that do not cross-hybridize. First, they were screened for no cross-hybridization with RNA from different biological species. mRNA from human (eight tissues: skeletal muscle, spleen, liver, heart, kidney, brain, placenta and lung), mouse (six tissues: skeletal muscle, spleen, liver, heart, kidney and brain), rat (six tissues: skeletal muscle, spleen, liver, heart, kidney and brain), yeast (S.

cerevisiae) and bacteria (E. coli and two Archaea species), as well as total RNA from plant (Arabidopsis, Oil Palm) were tested against the control candidates. Candidates that did not cross-react with the RNA samples from the species tested were then selected for cross-hybridization with each other. The candidates were hybridized with each candidate mRNA independently.

From the candidate clones that exhibited specific hybridization, twenty-three were included into the final set of universal controls. FIG. 6 through FIG. 28 presents the nucleotide sequences of the twenty-three controls spotted on the microarray slides, while FIG. 29 through 51 presents the nucleotide sequences of the twenty-three controls that were transcribed and used in a spike mix, respectively. SEQ ID NO: 1 through SEQ ID NO: 23 present the nucleotide sequences of the twenty-three controls spotted on the microarray slides, while SEQ ID NO: 24 through SEQ ID NO: 46 present the nucleotide sequences of the controls that were transcribed and used in a spike mix.

10

15

20

25

30

These universal controls, when included in microarray experiments, perform as:

- 1. Negative controls: Control DNA included in the array, but for which no complementary artificial mRNA is spiked into the RNA sample, serves as a negative control;
- 2. Calibration controls: Several different Control
 DNA samples may be included in an array, and the
 complementary Control mRNA for each is included
 at a known concentration, each having a
 different concentration of mRNA. The signals
 from the array features corresponding to these
 Controls or Calibrators may be used to construct
 a "dose-response curve" or calibration curve to

5

10

15

20

30

estimate the relationship between signal and amount of mRNA from the sample;

- 3. Ratio controls: In two-color microarray gene expression studies, it is possible to include different, known, levels of Control mRNA complementary to Control DNA in the labeling reaction for each channel. The ratio of signals for the two dyes from a particular gene can be compared to the ratio of signals from the two dyes of the Control mRNA. This can serve as a test of the accuracy of the system for determining gene expression ratios.
- 4. Utility controls: These controls can be added into the sample preparation steps (such as RNA extraction and purification) for normalization of the biological samples and assessment of sample losses during preparation. Alternatively, they can be added to labeling reactions as additional calibrators or ratios.

Mixtures of several different Control mRNA species can be prepared (spike mixes) at known concentrations and ratios to simplify and standardize the experimental protocol while providing a comprehensive set of precision and accuracy information. Table 1 demonstrates one embodiment 25 of this concept. The mRNA from the final set of clones have been pre-mixed at specific concentrations and ratios so they can serve as the various controls when hybridized to their corresponding control DNA spotted on the arrays. calibrators (those included in the labeling reaction at a ratio of 1:1) spanning a dynamic range of 4.5 orders of magnitude are included as calibration controls. Eight ratio controls are included, at two expression levels (low and medium to high) and reversed with respect to the reference and test samples.

The universal controls as shown in Table 1 can be used as references for microarray validation and standardization across biological species and experimental platforms. These controls can be used to verify the accuracy and precision of gene expression ratios, and the sensitivity and dynamic range of the microarray system. Through the use of Calibration (standard) curves, these controls may allow reporting gene expression levels in consistent mass units, improving the comparisons of results across laboratories.

The following examples demonstrate how these Control DNA and Control mRNA were generated, and then used as universal controls in microarray gene expression experiments. They are representative of the many different types of experiments that could benefit from the use of these controls. The following examples are offered by way of illustration and not by way of limitation.

10

15

Table 1. Suggested Control mRNA spike mix composition for two-color gene expression ratio experiments.

Control Type	Control Name	Target Cy3:Cy5 Ratio	mRNA in the Spike Mix (pg/2µl of spike)	
			СуЗ	Cy5
Calibration	DR1s	1:1	30 000	30 000
Calibration	DR2s	1:1	10 000	10 000
Calibration	DR3s	1:1	3 000	3 000
Calibration	DR4s	1:1	1 000	1 000
Calibration	DR5s	1:1	300	300
Calibration	DR6s	1:1	100	100
Calibration	DR7s	1:1	30	30
Calibration	DR8s	1:1	10	10
Calibration	DR9s	1:1	3	3
Calibration	DR10s	1:1	1	1
Ratio	RC1s	3:1 low	300	100
Ratio	RC2s	1:3 low	100	300
Ratio	RC3s	3:1 high	3 000	1 000
Ratio	RC4s	1:3 high	1 000	3 000

Ratio	RC5s	10:1 low	300	30
Ratio	RC6s	1:10 low	30	300
Ratio	RC7s	10:1 high	10 000	1 000
Ratio	RC8s	1:10 high	1 000	10 000
Utility	utilityls	User defined	User	User
			defined	defined
Utility	Utility2s	User defined	User	User
			defined	defined
Utility	Utility3s	User defined	User	User
			defined	defined
Negative	Negativels	NA	0	0
Negative	Negative2s	NA	0	0

Example 1. Generation of Artificial Controls from Intergenic Regions of S. cerevisiae Genome.

Using yeast genomic sequence data publicly available (http://genome-www.stanford.edu/Saccharomyces/), intergenic regions (YIRs) approximately 1 kb in size were identified. These sequences were BLAST'd and those showing no homology to other sequences were identified as candidates for artificial gene controls. Candidates were analyzed for GC-content and a subset with a GC-content of ≥36% was identified. Specific primer sequences have been identified and synthesized. PCR products amplified with the specific primers have been cloned directly into the pGEMTM-T Easy vector (Promega Corp., Madison, WI). Both array targets and templates for spike mRNA have been amplified from these clones using distinct and specific primers.

When used as DNA controls, the YIR sequences were amplified by PCR with specific primers, using 5 ng of cloned

template (plasmid DNA) and a primer concentration of $0.5\mu\text{M}$ in a 100 μl reaction volume, and cycled as follows: 35 cycles of 94°C 20 sec., 52°C 20 sec., 72°C 2 min., followed by extension at 72°C for 5 min.

5

10

15

20

25

30

All YIR control mRNAs for the spike mix are generated by in vitro transcription. Templates for in vitro transcription (IVT) are generated by amplification with specific primers that are designed to introduce a T7 RNA polymerase promoter on the 5' end and a polyT (T21) tail on the 3' end of the PCR products. Run-off mRNA is produced using 1 µl of these PCR products per reaction with the AmpliScribe system (Epicentre, Madison, WI). IVT products are purified using the RNAEasy system (Qiagen Inc., Valencia, CA) and quantified by spectrophotometry.

Initially, fifty intergenic region sequences have been cloned for testing. DNA samples from all the candidates were amplified, spotted on glass microarray slides and hybridized with mRNA samples from several species and each candidate spike mRNA, respectively, to identify those that do not cross-hybridize. First, they were screened for no cross-hybridization with RNA from different biological species. mRNA from human (8 tissues: skeletal muscle, spleen, liver, heart, kidney, brain, placenta and lung), mouse (6 tissues: skeletal muscle, spleen, liver, heart, kidney and brain), rat (6 tissues: skeletal muscle, spleen, liver, heart, kidney and brain), yeast (S. cerevisiae) and bacteria (E. coli and two Archaea species), as well as total RNA from plant (Arabidopsis, Oil Palm) were tested against the control candidates.

Figure 1 shows the hybridization of candidates with human brain mRNA. The results indicated that two YIR clones, 33 and 62, hybridized with human brain RNA while the other candidates did not (since no appreciable signal is detected). Clones, such as 33 and 62, that exhibited such

5

15

20

25

30

template (plasmid DNA) and a primer concentration of $0.5\mu\text{M}$ in a 100 μl reaction volume, and cycled as follows: 35 cycles of 94°C 20 sec., 52°C 20 sec., 72°C 2 min., followed by extension at 72°C for 5 min.

All YIR control mRNAs for the spike mix are generated by in vitro transcription. Templates for in vitro transcription (IVT) are generated by amplification with specific primers that are designed to introduce a T7 RNA polymerase promoter on the 5' end and a polyT (T21) tail on the 3' end of the PCR products. Run-off mRNA is produced using 1 µl of these PCR products per reaction with the AmpliScribe system (Epicentre, Madison, WI). IVT products are purified using the RNAEasy system (Qiagen Inc., Valencia, CA) and quantified by spectrophotometry.

Initially, fifty intergenic region sequences have been cloned for testing. DNA samples from all the candidates were amplified, spotted on glass microarray slides and hybridized with mRNA samples from several species and each candidate spike mRNA, respectively, to identify those that do not cross-hybridize. First, they were screened for no cross-hybridization with RNA from different biological species. mRNA from human (8 tissues: skeletal muscle, spleen, liver, heart, kidney, brain, placenta and lung), mouse (6 tissues: skeletal muscle, spleen, liver, heart, kidney and brain), rat (6 tissues: skeletal muscle, spleen, liver, heart, kidney and brain), yeast (S. cerevisiae) and bacteria (E. coli and two Archaea species), as well as total RNA from plant (Arabidopsis, Oil Palm) were tested against the control candidates.

Figure 1 shows the hybridization of candidates with human brain mRNA. The results indicated that two YIR clones, 33 and 62, hybridized with human brain RNA while the other candidates did not (since no appreciable signal is detected). Clones, such as 33 and 62, that exhibited such

cross-hybridization were removed from the set of candidates for universal controls.

Candidates that did not cross-react with the RNA samples from the species tested were then tested for cross-hybridization with each other. The candidates were hybridized with each candidate mRNA independently. In Figure 2 the labeled mRNA made from clone #50 was specifically hybridized against all other candidate clones. It hybridized only to its corresponding target DNA and can be included into the candidate set. However, clone #52 bound to the spot of clone #49 besides its own and therefore was not included in the candidate set.

From the candidate clones that exhibited specific hybridization, twenty-three are included into the final set of universal controls. FIG. 6 through FIG. 28 presents the nucleotide sequences of the twenty-three controls spotted on the microarray slides, while FIG. 29 through 51 presents the nucleotide sequences of the twenty-three controls as used in a spike mix, respectively. The sequences of these clones are further presented in the Sequence Listing, incorporated herein by reference in its entirety, as follows:

20

25

30

- SEQ ID NOs: 1 23 (nt, control nucleotide sequences,
 including calibration controls 1 through 10, ratio
 controls 1 through 8, utility controls 1 through
 3, and negative controls 1 and 2 respectively);
- SEQ ID NOs: 24 46 (nt, spike mix nucleotide sequences, including calibration controls 1 through 10, ratio controls 1 through 8, utility controls 1 through 3, and negative controls 1 and 2 respectively);

Upon confirmation of the exact structure, each of the above-described nucleic acids of confirmed structure is recognized to be immediately useful as a control.

Example 2. Performance Evaluation of the Artificial Controls.

5

10

20

25

30

The universal controls (both the spike mixes and their corresponding spotting samples) have been evaluated for their performance in real microarray experiments and tested for the following.

Experimental design, including array design and the hybridization sample concentration were tested (Figure 3). Control samples were spotted in five replicates and hybridized with probes prepared with the spike mix only or the spike mixes with skeletal muscle mRNA. The same array image in Figures 3 is shown at two different gray scales for easy visualization of signals across the entire dynamic range.

Universal utility, including hybridization of the spikes on pre-arrayed slides from various species were also tested. The controls showed no cross-hybridization on human, rat, mouse, *Arabidopsis*, Yeast and *E. coli* pre-arrayed slides from commercial sources (data not shown).

Spike mix performance was tested, including ratio performance and Calibration curves (Figures 4 and 5). The mRNA from the final set of clones have been pre-mixed at specific concentrations and ratios (see Table 1 above) so they can serve as the various controls when hybridized to their corresponding control DNA spotted on the arrays. Ten calibrators (those included in the labeling reaction at a ratio of 1:1), spanning a dynamic range of 4.5 orders of magnitude, are included as calibration controls. Eight ratio controls are included, at two expression levels (low and

medium to high) and reversed with respect to the reference and test samples.

Figure 4 shows a scatter plot of raw signals for the calibration and ratio controls from a two-color hybridization experiment. The Calibrators are accurately and precisely clustered at the 45-degree line and the ratios at their expected target values at high (labeled 'H') and low (labeled 'L') levels of expression.

10

15

20

30

Figure 5 shows calibration curves based on the Calibration controls for a hybridization experiment. In this "standard curve", the Cy3 and Cy5 signals from the calibration controls are plotted as a function of the amount of mRNA in the spike mix. The error bars represent the 95% confidence intervals for the mean value. From such curves, attributes such as the limit of detection, the linear dynamic range and the signal saturation limit can be assessed. The application of the universal controls for the generation of standard curves can be the first step towards true quantitation of expression levels from microarray experiments.

The controls as shown in Table 1 can be used as references for microarray validation and standardization across biological species and experimental platforms. These controls can be used to verify the accuracy and precision of gene expression ratios, and the sensitivity and dynamic range of the microarray system. Through the use of Calibration (standard) curves, these controls may allow reporting gene expression levels in consistent mass units, improving the comparisons of results across laboratories

The above examples illustrate specific aspects of the present invention and are not intended to limit the scope thereof in any respect and should not be so construed.

Those skilled in the art having the benefit of the teachings of the present invention as set forth above, can

effect numerous modifications thereto. These modifications are to be construed as being encompassed within the scope of the present invention as set forth in the appended claims.

5

What is claimed is:

5

10

15

- 1. A control for use in a gene expression analysis system comprising:
 - (a) a known amount of at least one DNA selected from the group consisting of
 - (i) SEQ ID Nos: 1 23;
 - (ii) a degenerate variant of the sequence set
 forth in (i); and
 - (iii) a complement of the sequence set forth
 in (i) and (ii); or
 - (b) a known amount of at least one mRNA transcribed from the group consisting of
 - (i) SEQ ID NOs: 24 46;
 - (ii) a degenerate variant of the sequence set
 forth in (i); and
 - (iii) a complement of the sequence set forth
 in (i) and (ii).
- 20 2. A method of using a control as a negative control in a gene expression analysis system comprising:

adding a known amount of said control DNA of claim 1, to a gene expression analysis system as a control sample;

subjecting the sample to hybridization conditions in the absence of complementary labeled mRNA;

examining the control sample for the absence or presence of signal.

30 3. A method of using controls in a gene expression analysis system comprising:

> adding a known amount of said control DNA of claim 1, to a gene expression analysis system as a control sample;

subjecting the sample to hybridization conditions in the presence of a known amount of labeled complementary mRNA of claim 1;

measuring the signal values for the labeled mRNA and determining the expression level of the DNA based on the measured signal value.

4. A method of using controls as calibrators in a gene expression analysis system comprising:

5

10

15

20

25

30

adding a known amount of a said control containing known amounts of several DNAs of claim 1, to a gene expression analysis system as control samples;

subjecting the samples to hybridization conditions in the presence of a said control containing known amounts of corresponding complementary labeled mRNAs of claim 1, each mRNA being at a different concentration;

measuring the signal values for the labeled mRNAs and constructing a dose-response or calibration curve based on the relationship between signal value and concentration of each mRNA.

5. A method of using controls as calibrators for gene expression ratios in a two-color gene expression analysis system comprising:

adding a known amount of at least one of said controls containing a known amount of DNA of claim 1, to a two-color gene expression analysis system as control samples;

subjecting the samples to hybridization conditions in the presence of a said control containing known amounts of two differently labeled corresponding complementary labeled mRNAs of claim 1, for each DNA sample present;

measuring the ratio of the signal values for the two differently labeled mRNAs and comparing the signal ratio to the ratio of concentrations of the two or more differently labeled mRNAs.

1/51

FIG. 1

2/51

FIG. 2

4/51

FIG. 4

6/51

DR1

nt: SEQ ID NO: 1

tgttgtccaagaaaggaggattttgttcatcagaaaagaattcagaaaa	50
gcaaggaaacagtactatcgtttagaatgtagaatgataggttgcttgc	100
aattctattatggcacgaatgatacacccatattttcaacaaaatcaata	150
cccactagcatcattgagccaactatttgtcaatgcaaccattaccggta	200
cttcatcctgatttaacgagtctacttttttatcacgtcaaaatttactt	250
gttttcctgtaaacccgaaataaaggcaaaaaagacctgggtgcaattac	300
gaataaatgtacaataatcatcctgtttgcatagtaaacttccagttaga	350
gtcacacaacgcaatgaattttgacagttttctgtgcgatattctttggt	400
aaacgtaaagaacaggcaacttttggtacaatggattctagcccatatgg	450
ttcatttctggtgcattcgcaaagtcagtatttgtctagctgtgttttct	500
ggctgagagacattatgatgttattcattgttatggatatctctgtagct	550
catgctgcttatttctccctaaaaaagttttttctctcgaatacattctt	600
gaccatttcatagtgaaattcttgtacttatttaaaaccaaaaatggaag	650
tattcatacatccccctatcaaaaacactcaataagtttcgaattattcg	700
ttcgtctaaacagtgtccaatactcaaaggggtattcaagacggcacaaa	750
atcagcatcttcccttatccgtgttccagaaataccacgctaaggttttt	800
cctcctacaatccataaaatcattaaggaggcagcttgaaaaatcttgaa	850
attcaaaagagttatcttgggctaatcgaaattaacgataaccagagtag	900
aatattcaagatcacagctccaccttagtttcgagg	936

7/51

DR2

nt: SEQ ID NO: 2

$\tt gcgaataaccaaaacgagactactttttaccattacaaccattttcttt$	50
${\tt tccctatttctcactggttgacagaaatcagtgtgctatcatcctaccat}$	100
${\tt atgcgctaaacttattgtctttctcctcctagagatgctgtattccatgc}$	150
${\tt atattctgaacgatgggttggtgtttttatcaagcaaggttaatcacatg}$	200
$\tt gcgtggcttgctccacactcagtagaaaacgcataccgcagcggaatcc$	250
${\tt ttaaataataagtgattttactgttcatcaactacaatcggactctttca}$	300
${\tt caattacccttcttgttttccacatttactgttaaatgaagggatgtaca}$	350
$\tt gaaggettaggaaaacctgtgctgaatactggatggacactgcattccca$	400
${\tt cagtgaaacttttatagatacactgtcagttattttcgaactttcatcaa}$	450
$\tt gttgctgagttttagtatccctttgccttagctatatgtttgaatgagca$	500
${\tt aaatatttgcaatgtctctagctttcttgaaatattggtttatattgagg}$	550
${\tt gcttggtaagatttcaaatttcactttgaaatactcaggagaaaaatcat}$	600
$\tt gctcttttgataatttggtgactaaacatacataaaacagtttaattttg$	650
ggtggtaatggctgtgtgactagctatagaaagaaaaaaattaaaaaaaa	700
${\tt aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	750
${\tt aattggtccctgatttacgcatgcgataaactatttttagcgcagccgca}$	800
${\tt tattatccgagaataacttccgacataagaaaattcgcagaaaatagata}$	850
${\tt aaaaactgctcttggcattcttcacttcctctattacacactgtgtcata}$	900
${\tt ccacaatcatctcacagtatgtatttgtatgtttatacatgctataacgt}$	950
aaaacaatgtagaatatatatctaaatacctcacggttttagtttagtgc	1000

8/51

DR3

nt: SEQ ID NO: 3

tgtgagaaattcactagcttcacctaaaagcaaaaaatctcaaaattccc	50
aatattcacatagtctaaagtaccgatagcaaccaacatatataaacagt	100
agtattttacgaagctgaattgcaagattagtgagaggagaataaccgga	150
taatttttttggattacgttattgttaaaggctataatattaggtgaaac	200
agaatgtcctagaagtttttttctttcatgttaaatttattgattcttgc	250
gcttcagcttttataaaacataagaactgtttcttcacgttaacttcttg	300
tgccacatataatgatgtactagtaatatgggtactatttggcagatgat	350
atttgatttttattcaagacggttactgtttctacgattgatattttcat	400
tcctggatatcatcttgccagatcacttacaatttaggccgcgcctgaat	450
tgaagagtacttcaatacgtagtgtactgtccaaactctcttccaaattt	500
ttaatatttagctggggttgggtaacaagtgagcaagggaaaaagtgaac	550
attttaagaagaacaataaaatagcaagagatggaatggtaatgcttggc	. 600
tctcgagaagagtagcataaaacgagacttgtttaaaacaggatatgaca	650
tacttcaattcagctttccctatcagccgctcgagcagttatataggtgt	700
gttgccggagtaatttggcggaggccaacagtggctaggcggcaacgcct	750
ggaacacgcgcttaaaagttctggaaggttcgcgaattgagaactgctca	800
ggggcgaatacaggggcggccttggcggcagggggggggg	850
ttagttatataagacttgctgtcatcgttttttttgatcccggcaggaact	900
atcttttattctcatacatacggtcaagaagtataattatacataacata	950
gggacacgttcaggcaattgtccatatccc	980

9/51

DR4

nt: SEQ ID NO: 4

gatgtctgttttctttatgcaggatattaaatacaagtttgtgcttaaga 50 aatttccatgaagatatcaacatttattgtaggaattgcataaatagatg 100 aattatgtgccgctggacgtttatagatagcataagcacaatgacttaaa 150 ggttataatactcattgatatcactctgattataaaatcgtaatatgcga 200 at aggtgaacta at cggaata acccatacgacacttc aagcttc aattct250 atttcaactgtagtgcctgctagtgaagaatacaaaagtagcatacgtga 300 tgtgcaaaaatgcgctacttatcacacaagtaccttgcgcaagaagggt 350 actctaaaccggggccatcgcattaccagacggagatgtattctttatga 400 agcaataattggaggtgtatcaagttcgaaactgctgatgctatggattt 450 500 tagatttttgtcaagtctggggtaagttaattcgagcaaaattaacggca 550 cgttattctaatgcatatgttgttcatatattcttttacaaagaggtttg 600 gaatgatgtcaccgatgttagaatgttaggagaatttcatgtgaatttta 650 gtccaagtgttgaagttctcttctgcagttagggcacgtacatggcaacg 700 atatcgtttttgatgtattaatcttagtaggcgttgagtttgtatgttac 750 ttttctcaggtgatgaagcgtgatgacgatgacaaaaatgggttataata 800 gggcgcactatcatcatgcgtgattgatatttaaccaatgtcttgagtac 850 atcaactccagaaaatgggtcattatatgcctagcatgtattatttgaga 900 cataaagttttatctcgagaccttgacgtataggaaa 937

10/51

DR5

ctgtagatttgcatggacgcacgtcgcccatacgccaaactttggcaatg	50
atactcgttattcgtaatatcagtccgtcaaggtgctgtgatttctctat	100
tttatattgcctattattttttcaaatgatttgagccgttttaaattgag	150
tatgcaatgagtcttttgaatcaaccgtaaggcagttccataaccactgc	200
cacgaatacgtttcactaccttgaagaatctctaatgtaggccgtattct	250
tcgcacttagttctgacgatgtagacatctcattatataagagcataagc	300
gcctgtttctagaatcatttcttcgtgacccagctttttgagttatttcg	350
cggtattttgaaacatttctcgagcttgacgtgaacatccttatatttca	400
tgacaaactcgatcattggaacatccctgcctcgattttagagctagtat	450
caaatttcaatctctttgtgatggagccccgctcctatttcaaaagagaa	500
gtttcttgtatgcatatgttattgaagtctgattatagcaagtgcaatgt	550
cgtctcaattattttaactatttttagccatacatgttagtta	600
agagagcctccagactgggaagcagtgtttgtcatttcaaataagtagat	650
ttcacagtttgtatgattttcgaagccaggattcattgggctttgagtaa	700
agagaagccgcgtattacgaacagcttacgatattgtaaaatattccctt	750
attgtggtgccccaatggatacatgccagagaaatgtctgtgaaattgaa	800
caattacaatgacgagagcaagtaatccggcggccttgtctctctttcac	850
tagtaccgtctatatctcttgagcgccaatatgcgaaagctttcacaagg	900
ttgatgttcatggtattcggcgtcgatagcgaattgctta	940

11/51

DR6

nt: SEQ ID NO: 6

ttagtttggaacagcagtgtagataccgtccttggatagagcgctggaga 50 tagctggtctcaatctggtggagtaccatgggacaccagtgatqactcta 100 gtgacttgatcagcgggaataccagtcaacatagtggtgaaatcaccqta 150 gttgaaaacagcttcagcaatttcaactgggtaagtttcagttggatgag 200 cagcttggaacatatagtattcagccaaatgagctctgatatctgagacg 250 tagacacctaattcgaccaggttaactctttcgtcagagggagataaagt 300 agtggtggctggggcagcagcgacaccagcagcaatagcagcgacaccag 350 ${\tt caacaattgaagttagtttgaccatttttttcgattgaacttttgtagat}$ 400 ctttttagtgaagatgtgagctcactcgaatgtaaataacaatgccaaat 450 tgtcggaaagagttaatcaaagctgctctatttatatgccgttttttaat500 aagcgacggacgaacagataaattgttgaatagctatttcactgctgata 550 tttctcttacttgggctcccctatcccatactcttcaccactacaaatat 600 gcagttgccctttcttcaacaatgctttttttatagatctcgtatacgga 650 tccgcgcctttgtactacctatatcttattatgatatatacaggagcaca 700 ggaatgttcggtacagggatgatacctttaaaggaagttttggcatqcct 750 tgacaacttcaattaatctttggccaagaaatgaaccagaaatcaaatt 800 ttattctgtgccctctgaacgagggcaatatccaatgtttgacactaaac 850 ggttgtcaggagaaaaattgaatgtttcccaaatcagaaacattaaaatc 900 cctctatatgatcagaggagtcgtacctgttagggtatgagcgaggaaac 950

12/51

DR7

aatgagttaccgtctgttacttttgggacggtttttgcactaagaacaga	50
cgagtttacggttatcctcaacaagcaagcaagtatttgctaatctagat	100
gccattccgaatcattactcatacgttactattgagagatgttttacaat	150
agatgagaagaatacaatgtccagagctcctggtatgctagagtgcatat	200
tccaggtcttattcgaatcatatcataccgtccatttcaacaatggtgaa	250
atgtggtccacatatatcagaaatcttaacatttagtgaggagagccagt	300
agaaaaatgtgcgcaagcggaaagaagtcattcacagacacgtttaacaa	350
aacaccaccacagcagctttgtctcttgattctgatcagtttgccatcga	400
agaagcaaaattgtggtgttatttttttcaaacaaaacttttttggcaac	450
agcagttttcttctggatatttgtactttatcatccaaccgatgaaagct	500
ggtttcctgtcaacctacatttaaatggcccgtacttcttcaaaaccgct	550
agataagcaaattaacccaacttttgagcgtcctaaattccccttggctc	600
agaagactcgttaatatgggaagtttaagtcctaccatataatcaaattg	650
gaagctttctgtgttcgaatggctattctaaccgctgggctattaatcag	700
aggggaagtgaaatgaccgagacgtattatacgtcatgttgacatcaaca	750
atttaaggaaaaaataaaaaaagcaatgaaaaagggttttttaagtt	800
gaagacccttttcaaatatatgttgctttgaattgtatctaccgtctcgt	850
ttcttctgctttaccgtttttttttgccttctttagatatgtcttttatg	900
cttgaaaggtccggctttaatgcattcatctaaacgtagtattcctattt	950
ttgaactgctaccaatccaccatqactttact	982

13/51

DR8

gtcaaactcccacagccaagtccaagagtacgaaaaaaaa	50
gagttcaaaaaatgtgggatgaagactcccgtttttcaccgcctagaaaa	100
cagcgtttgctgagaaaaaaaataaatcatcgagaagaagtatgtcatca	150
taggatgttcccattgtaaggtgatgtgtaacatactcgaacaaagaatg	200
tatagagctgaatatttctcctttaaatttcaaagaaaatgagaaggaaa	250
atctcaaacagaaacttcgttctttttctcaagtaagcaaaagcttattg	300
agacaaagcggaataactacgatattaataacgttgatgaagctcgaaca	350
aagttagcgtcggttatgcttgcctatataaagatatatttgccttacat	400
tttcgttgaacgtagaatgatttttgcttttaataaattttttgttgttc	450
tttcagtgcttcttcaactttgatacgaaagcaagtgcattagtacaaca	500
agaactggccacaactatactatactcattttttcttgcccgtgttttaa	550
atgttttcatccacagcatttgatgggatgattggaagtgagacgttcga	600
gaaaatccatattttgagtcaagaattcagataatatactgagatgatta	650
ggtatggctgggttctacaaaaacacaaatatccggctagcaatgatcac	700
tgagcaaattaaagcgttaactcactcattattgtagcttatgcgtttct	750
cctcctctcttttttcctcgaaccggagtggaagatccaataacgtaat	800
attactgatgttgttattaaagctggcaaaaataacatgaggcgtaaaac	850
egcactgcggtaagatgagggtataaggtggagatcaggcgaacaagctg	900
tcta	905

14/51

DR9

aacgatccaatgagcgtttcatgatgccattgtttaatcagagtgatgaa	50
aaagaaatatttgcgaccttttttcgttacattgatcgtgaaattttaat	100
caaagataatataaggacgtgagatatttatctttttacttgaaattaac	150
aatagaattgcgctaagcggaataagagctttcgtaaacctttctatttg	200
caccattgcgtcaacgtataaaatggtatgacctttacacaaacgcatgc	250
ttataatcttatgtttttcatagggtgtaatttggttgatgacgtagtct	300
aaatttgatgctatctgcaattgaggtacatataagaggtcaatttcggg	350
accaacccttttaatcgaaaaaacgtaattcactagggcaagggagaac	400
ttagcagctaatatcgtaaacctttcatactaaaaaaatgcacttaccat	450
caacaaaaaactcaggaccaatttccaagcttttctaggtgattgcctat	500
aacacaaaaagattcgctcatacatgagatttttacatgtaatagcaatt	550
tgttccgatcagttgaaggtcatcaacgcacggcaggtacatccacacct	600
atcacaaagcccttcaataattcacctacgtaaagttataccgaaacatg	650
caaaatccatgaaaaattctgtatgataacgatcatatccttttgtattg	700
gtggtacgatgctcaaagatagttattgttgcacctgaggcaaaagcgga	750
aatgaaaaatccagatggggccaaaagcagaagtattgtgtacaacaatt	800
gcttcagcagtttaccaaaccgtttcccagcaatcatcaaaagttgcttt	850
agccacatttccgcaagatatctttgtggctcaacgaagagggctattcc	900
aaatgcaa	908

15/51

DR10

aactttcccccgtttaccacattgaagctgggtgtggaagatttattt	50
agaaactaaaacgtaccctgtcatttcctgagtcccctttcaacttagtg	100
tgaaagccgaacaattataatcctcggtagacaacagatttattgtacta	150
aagttactcttcctgttatcttccttgattttactgttatagcaatgacc	200
caccgcaatcaggagagccgccgtatggaatagcataccaagtcataaaa	250
tcgtcaacctattaacggggttcaggttctttttcagcgtagtagccctt	300
taacaagcgctgacaaagttgacactcagagaaaattcaggatttattgt	350
aatccagctactcatccttagatccgcttgcaggcatggttttttcacc	400
ttgagaggctattttgggtaagccaggaaggctgaaaaatcccaaaagga	450
cacagtaataagaaattgttgttgttgtatgatgcatttagaactcaaaa	500
gacgagtttctgaaaatgcttacaatactccataggtaacatgattttt	550
tattaaaaaagtatactgttcctttgggtaaaaattatgcaacccttgag	600
tgtccgatgaagataagactacgaaacaatttgcggtaaatttttctgc	650
tattgacatttacacatgctccaatccattaccctttccattctcgtaat	700
aaaacctcgaactgttatttcatatttacatctagacgggtatcggcctc	750
aacaactccaaacaaagtaaatagaaaagagccagacctatcgcaccgg	800
gtagagccagaaaatattttaaactatagttgacgtattctacggctgtt	850
gtttaggacaatactttttccttcacaggcttcgaattacgcacatgcag	900
aactcctgt	909

16/51

RC1

gtgagacctccggaattttgacgctgcaagtcaatctacgggaaagaaga	50
aattttttaaacctaatgcaaaataagcttttcttggaaaataagatttt	100
cggcaataaaaggtaaatgcagccaaaaatcaaaatacttcagaagaagt	150
cgtagcgaggactgctaaggggaagcggatttgaagatcctttccagaac	200
aagaaggagccgaaagctgtcaggaactgttcctgattttttaggaaaac	250
aattaataggtatctcgtctagagtagtatctcgagcttccagaagttgc	300
agataatcaaatcattgttttatccctttttttagattacagcttagaa	350
gagtagagagcaagtttactgaaacggttccttgtttacaataatattcc	400
taacaaactttacgaattaggatgcagcatgattttttatattgcttcac	450
ttcctaaagtatgaatttttatccgtagtcgcaaacaaaacagctactgg	500
aaatctgcagcttgttaaaaaccggtagtttccgaatactcctcgtcctt	550
gagttgtataccgttaaacttcctagggtgtcatgtgtctggcccaattg	600
gcccacaaaatctggtcctattgacggttttcttttgattttcagcatct	650
tcctctaagaaggacagaaaattatgtaatatatgggagaaacggcctcc	700
caactgctaagtgtccccggcagcacgagtaagcaaaattcaggcaaact	750
attgcattaagaagccgtacataattcagcgtgatatgatgaaattttgt	800
taattgcaaattttagtacgatttggttgttagtgtgtttatgcaagt	850
aattattgaaccctaagtagttactgtcttcttttgctgtaattcgtgga	900
ttcacggccctccagcaacatggattgaa	929

17/51

RC2

agtagcatttatgaccaaaagcgtacttaaattagcagcaaaaaatttt	50
${\tt taataacgaaactataaggaaaatacgaggtactgattatgagagtcccc}$	100
$\tt gtttctcatttttgagacatgatctgaacaaggctgaaaacagcaatctt$	150
$\verb tttcgataacttttgcaaaaatttcaaacattgttgtttgaatgcagcca $	200
${\tt attttatagggtacagagcttaatgctttacatgtgctttattttcggt}$	250
${\tt actttccttaaagtgtctacattatctctcaggacttgaatgtcttcggc}$	300
tgaattactataaaatcttgagttttctctgaagtttaatcctaagacaa	350
tagtggtgagtgatgtagttcacgtgtgtgccactggtaataatagagat	400
aactatctcagttaagtttgaaaaggtaaaaaatagtttaagtagtcatt	450
ttttgcgacggtcattcttctctgatgcacgttctttagactacctataa	500
acaccattcttacggaattataatggaaataaaacatcagtacgtgttgc	550
tgtcggtgatagaggggtaacagaaccttaattgaaaaattagcacagtg	600
cataatttattaacatgattgttttctgtgggaaataagaaatttcagca	· 650
ccagtaaaagacgagaaatatagggcacataaatgcgctcttactcgtat	700
gttccaggatgaaaatgtttagggcatcaagtattgccgaaagggcaata	750
tgctttaacaccagaaaatccactgtatactcgttacgggtaaacaaagc	800
aaaacgcagtgcgtgataatgtttctaaaatctctgcacactgttgaaat	850
gcggctctgatactttagcccttagtacctgacggtgcctaaaatgagga	900

18/51

RC3

tagttggaggttggtgagtaccagattgcttacaaaagaatagcgagcca	50
acatttgctctgcctcaggcctcttggtgctgcttgaagactcatcttat	100
atggcttttgtatgtcatgatttgttcttgtacattatgtgttgatatta	150
aacaaattgattttttttttttgcgatagcaagcagataatgaaagaga	200
caaggacttggaacatccgataagactgcgccgatatcgatcttacagtc	250
cttcccttgtgtcatgactttcggaaaagcatcctcgtcgactggtagtt	300
tgctgtctgtcacgtgctgaagggtctgatacatttttttaaagataaga	350
gacggggtttacccttcggaggactaagcgagatctccaagtaaagatct	400
cgcttatcaagaaagcagccaagtgtggaacgtcctttttttt	450
aaaagatattcaacagtttacactgcagctttaattgcctcaaaaggata	500
tcatgaggtgatctagggtcagaagggaaagattacagcatcttgagttg	550
aatcacatctgcaaaaggtggtattattgacgttgctcttccttaatgga	600
aactcatggggtttggaaaggaggtgcggtaatctattttttcgaacac	650
aaaacctaaccttgaaaagaaactgtccaatttcattgaacttacctcag	700
aacgggccggagtctttgctttcagtctaacatggtctaatttcttcgaa	750
aagcttcatttaattgttagactgtggttttacaaggaaaaaaccagtgc	800
tatactgaagcgatacccagaactaattaccttgtgtgacgattcggctc	850
agcgaaacggacatggtaaaattgggaatttgaaagcaggcag	900
gtacagcgacatgacgataggtttagaatccccatcacgtacgagttgaa	950
	951

19/51

RC4

${\tt tcctagagtagcgattccccttcgcgtattcttacatcttcgaagagaac}$	50
$\verb ttctggtgtaagtataataaatattatagctctatcgaatggtgcaatta $	100
tttaccaaattctcaataggaatccataatactacatacgatactaatat	150
${\tt tctagtatttttatacttattatttcttttttattacaccagcaatcgtt}$	200
gcaaattatcttctgatagaatttctgagggtatcctaaacttatgccat	250
tttcttggactgtaaatcatacttggatgttgtgcattagtcaataatcg	300
gttcttgttccaacgattacatgtaaatgaagggagaaataattatggta	350
aatcatgcggcggtccttttggtgatgcagtatccatagtcactacataa	400
caatcttagtcaccttgtattgattcaccacataatcctgcagagcccgc	450
tatgtccttaatctgcgcgataactctcctacccctgaattttgagagcg	500
ccatagcaaaccgataaagctggcacaattaaaggtatcggtgttgtcag	550
aattaggtgcctcctgctttttttttttttcctgctcttatatccgttata	600
${\tt tccgaatgatttttatcgcttgtttaaaaaatactttcccgatatatat$	650
${\tt tatagtctccctttaaatttgtttccggtaagtttttaacaccaataaat}$	700
gaaaagaaatgactacggtgatgaatatgagccgcgcattgaatcaggtt	750
atgtaagtatcagaacccctaattatgatgtcactcttacccttcgatgg	800
ctaageggegactgggatgeegggaaaagetetacaaatetactaaaaaa	850
gtcaaatatacagctgtaaacttctttcctcgtctacatcatggtaacga	900
ttgttcaatctttacttcgtgtctttttttttttttttt	950
ccaacctatgtgaagactaaaattcaccttagtaaacgtaaagacaatga	1000
cgataggtgc	1010

20/51

RC5

acaattgcatctgtgcttggctctcaagaacggtgtttggtgcatcaaaa	50
gttttcgactgcttatttggtcggaaatataaaaactcgatcctcttatc	100
taagcagtatacattcttcttttgaaatgaatgtactccgtaatatctt	150
cttatttggcattttcatccttaacttttgcatggctctgaactagtcag	200
atagttgcccttttcagcaaacctcttattattgaaagcatggtgtacat	250
ccgttatactattatataagaaattgggatgccaatttttttgcttt	300
tgttttgcctgttttccttctttcgcaaaagtaattgcagatttaatag	350
caggatattataccgttggtaaaacttaaggattttatgaacaatagctt	400
caagtacagcattcatagaaccaactactaaggatgaaactagtatgttt	450
ttgtcaaaatattttcttgaccttgctgtaacatcaagatctgtttctct	500
aagatattaaagttgagtaaaaacaaagctgatatgagaaaaatacgtaa	550
ttgctccacataatacgtgggtcagacataaaggtagaatacttgataca	600
gaagagattattcggtactcttgatggcgtgcttgaactggtgcctctta	650
acaaccggtaatatagtcagatgagtcactacgagtgtgtgt	700
gtgttttacctacgtggcagtaagagtagctctatggttgtgtaatagtg	750
gtgcttattcctaatgctctgaagtctgaagcggtacagttggtctggtc	800
tatatcatggtcaaaggagcaaacatatcttctgaagtgaccgcaaatag	850
tactatgatgtggttggcaatataacttaaaaggaaataaccacaaggaa	900
ttgcacccatgtacacaqtttttcccqqaaattqqqaaaccaqta	945

21/51

RC6

gcataatgcccgctataaccttattttttatatgggggtctggcgcttc	50
gggaaaagaggaaaacttgtaactcaatatatctcgatacaacattac	100
gttttgtaaatttatcacaaaagccaaatgatgatatctctcttgcaagt	150
tatcgaacattgattggtaatttgtttgaaaattgttaatttattgaata	200
tttcttttgcaaaagaaatagtctcagcgaaagctggttacaaaatttac	250
atcatgagtttacgggatttgtaaatacgctttttgcataaaaatacttt	300
gccgtttcccacccttgcatattcacttactccccccttcatatactcta	350
tgtaatgatgattaagctttggccgctaagtctctcaattagtgttgatt	400
ttggttttattcatatgattcttctttagtgaagtattgatcaattacgt	450
gagtcagctttttgaaaaccccatttggaaggaattaggaaattattttg	500
cttactacgaccactaatttaccgccatttctgggcctttttattgacta	550
ttttgaccatgtgctcgactagaagaacggcatcataatctgctggtaga	600
gttagtctataatgattgttgaaaataaaggcataagagatattccacct	650
aaaattcaagttattgactttattatcaggatcttagtatccttttttgg	700
taagtcatattcaatgaactaggtctcgcaaactttttgttcgaaaagcg	750
gtagtgcatagttatgctaactctggatatatggcataaaccgtacaaca	800
ctagcccatttttttggaagtagtgagggcagctagactgtatgatgaat	850
attcgcctgcatactgagttttttggtccttttttttatgtggctggc	900
tacgatatg	909

22/51

RC7

gtttagtgcacccagactcgaatcttaaataccactttacacacctacta	50
aattttgtcctcacaaaatgaagacaggattcaaaaccgattaatagtag	100
cagaaactaaaaaagtacgaatattagtaaaattcatgttcttgaatcga	150
gctactatctttgtcgggagggtaaacgattataactcaaaatgactgga	200
actggtgattattaatttttacgtttcctgtgccaataagcggaagataa	250
gaggatagaagaaaggaaggggacttggcgaactacaatggcgatta	300
tattcatggcgattatattcatacaaaggtaatggaggcctcggataatg	350
gacaatattgagaaaatccttatgcttacttctcttaataaaaatagac	400
acagccatttattatgcgtaaaaaagattacccacttgtcttcgatgcgt	450
gctgctgccaatcaaccttttgagcggaacttcgagctcgcaatgcgtct	500
ggaatgttgctagagacagtcttggttatctgtgacatgtgtttcgttca	550
ggcgtgtgagcatcttcttgttcgatttcaaaattaccgccttgactcgt	600
gaaactggataattcgttggcgttttcatataagtcgtctgatggcgaaa	650
acttttcctttacttagcatacagcaaatatccccatttgacggattttt	700
gaaaaatgagcccgctaacccagaatgaactgcattaccaagcatttatg	750
taaacgttccgccaccatctttggtaaggtatactattatgttctggatt	800
taaggttgattcacaatttttcatcaccaaaatctggtggcatgcctagt	850
tgtctggtttcaggcaatttagccatcatagaaaagcatcctctgtcttg	900
aqttqaqaaaatqttactcataqaqccaaacaaataaaccctqq	944

23/51

RC8

ttcttgccgttctcatttcctgcacagtttctttgattatgtttgcagaa	50
gaatttctttatcgtttagtctaaacaaagaattcgttgtaaagaatttg	100
agagcggatcttgcattttttatttatcatgcttatgttttttctttgat	150
gtaagaagaagcaagtaagatatgtgaatatcttatcactaattcaaata	200
actaagagagctcacaacgacaatttgtgacagcatgcgaagcaaagagc	250
agtgataccagtatctttcatccagtaataacatacgactgatgttatag	300
ttaaatgttacattttgagagacttcaacctctcgaaaccaagaggttgg	350
ttttaactctggtgacttcaagaagggtgggtaccttttacaaagcttga	400
gacgaagcaatagtcagtctctgtataacaaggagaccacctcattttcc	450
agtaactcttgaggcatgtcggatggtttgccttgaataaaccgcagtca	500
ttataatgaatggcctgtactttcaaaacagtctggaaacagaaatccat	550
tgctgaggtaccttttagtagcactttcgttagtgaaggtttaaggttag	600
ttcttatttactgcacaagagtttacatttaaccactctaatagtaactg	650
ttagagtggtttaactgttaggtgatctgttcattccatttttcgtgttg	700
tatctcaagatgagatagcttagcgttgctacatacataaatctaaacat	750
ataaacacctgtgtaactcgttaacgtctgggcttccatgcttctaccat	800
ttagaatgatgtagaccatttattccaagaggataagcaccctctgtgat	850
tcaaaatgataataagtgttgacgacaagttactctcgcagaattgttgt	900
caa	903

24/51

Utilityl

tgcaatttaaagagcgtacctgtaaataagaaggaagaacgttatgttat	50
taatggactttttagtgtcatcgaattttatgtaatatataagaaggtag	100
aataatttggcaggataatgtgttagcaaaggaggaaatcgaataccttt	150
aaaagagaaaaaattttttagctgcttaaatttctgtgttataccacccg	200
atagattttgagttatgctttctaattgatctgactgcgaacgttttctt	250
tatgccatctgaattgtcaggaacaaagaagaaaaagaaaagtttttaaa	300
aaatctgtggtcgtgtgtgatgtacctttcctttacatgcattaatgcgc	350
tctgaaatgtggtacgatatccttacagagaatatattttctgtatatcg	400
tgcaatgttgaataacctatgaaggaaagtacccatcgctcaaggtaagc	450
attccaggagggtcgccagaaacttaaactagttttagcgacagatccga	500
aaattgatagagacattgaaaaaatcactactccgtcctttttagtgctt	550
tctcaatgcataattttggtgcacgactaaaaaattctagaacactatag	600
ttgcattttttgggccggaagaagaaaaacgcatgtaactttaatgtcaa	650
ataaagttttcacctagtaagcgcgatacaaaaaaaacacagaaatagcc	700
ataggaaagtgaattttgtcagccgactaaaattaaggttagcttacaaa	750
gcagcaaaaaatttgacatcgcacggtattccctgaaaaaggagcaggca	800
ggtgctgtatatttttttcggttcctgcctcttacatggcgtcggtgtat	850
cttaaatactaaagtgagctgactacccttttgagtgccctatgtgacct	900
ctgatctcgaaagtaaacaagagatacctaatttcacagccacttttgtt	950
gcggacactgacgggatgtgttg	973

25/51

Utility2

nt: SEQ ID NO: 20

caaaaataacagcaagaaaagcggaaagaccatcgcaaqqtqgaaaqqat 50 tataatggcacagcaaagtcgcacagagcactacagtataqcataqagtq 100 ctaatgagttgataggcccaattttgattatgccttctttttcatacacg 150 acgccagaggacattattacattacagtagttcgccgctagatgacaaac 200 gacatccttaccgatatgagatgtgcaaagctacataatgqcaacaagcg 250 ttatgaacagccttgtctttacgaccacagaaaagccgtattagagctct 300 tcagctgcaaaattttcttctaatatgatgcaaagccatcaaaaatcatg 350 catagttatgaaatacctgatgaaacgcttcgagttcgtgctcaagaaat 400 tactgaaaggttaccgagaagaaaaatatctatgagacacgataaqqccc 450 cttctgaatccattgtcctgggcttgttcattctatttaccacttaaaat 500 tgatcctttcaaaggaattttttttctatttccaatagtatatttgtacaa 550 aaactacaaaaatggataaaaaataacagtaatttgtgactactgtaaat 600 atcactgatttggattttgtaatgagtactqctcatqcccatqccqatqc 650 aagtggatcataaattttactaaacgatattcgataatgcgccaagcctt 700 tataaggaactcaaaataacccatatggacagtttcagaaggccaaataa 750 cgatcaaggacattcactcatgtttttcaaagqcqaaqaqtqtaaaattt 800 tcttctatatagttcgaatattttatcttataaatttcagtcgtcatttt 850 ccacattcgaactcaaataatgataaagaacgctgcagtaatgqcttaaa 900

26/51

Utility3

gcaagtatggggtagcaagctgcttaaagcttcttatcacactgtaacct	50
ctgttaaagcagctgcgttgttcttgcactctgcacgtaaatgacgacgg	100
ccaatgtaaaaatagcagtcactgcaggcctcttggattgtacccgtaat	150
tacagcaattgccattagatttacgaagtcatttaattaa	200
ttatctccttaaatgcttccagaaatgggactagacttttttcactcaaa	250
cctgttcacaattattgctctttttcaattataaggtaaacaaggccatc	300
tatcagcaacacagtgctcgcattttttaattaaactatataaaaccaac	350
tatttgtggttgcgacttcactttttgttgaattactacccaatcattaa	400
tattgaagatgtgagatcatagatttattggctttgggcatctcaaatcc	450
caagaggtcattttaaccaacattttaaaaagtagatttgtctgcct	500
cagetatgagatgegeatgteectageateteatatetggttatattatt	550
ttttccacttggtgaatgttgaaaaaaacaccactcgtccaatttatcag	6Ó0
tttgcaggtctaatgtccttccctgttatttaaactgtatattgtaagca	650
tgtcttatcgaaacaacttactcagttgtccgaaaacaaaactgcaaatt	700
ctgtgtgtattcacgtactagaatcctgtcaaattggatcttgatttaag	750
cttttatagcaacgaactttgcatactaagtttttttttgttaaccggaac	800
tgccaagaagcattcagtaaaatacatcttcatcatttactgataatact	850
cattcagactcatatcatactatttcgaattcattatacatcctcaaaaa	900
ccatattcttcagttgtaataaaaqataqaqcctgcatttgattcgattt	950

27/51

Negative1

gatttaatacagtacctttcttcgctaggatctatatgcgaatatatcac	50
atatgtaaattataagctcatcgcaaaaccaaaaaaaaaa	100
taatttttcactaatcttcaaaaacaaatggggtaacccgtacaagagtt	150
attaaaacccaaaatgacaaaatcgcgacaattcaatcctacttaattag	200
caataacatactagcggtagagctactatcacatgttgaaccttgaatgc	250
tcaattcattgtactcaatactgctatcaaaagaaaaaaaa	300
tatattcttgtcaaaatcaattttacactataagaggaaaatgttcttca	350
gtcctagtaacattagttttctccctttgctagagactttacataatatc	400
ctagaaggtaaaattcgataatacagcagtaaagtcgtatattggtagca	450
atccttggtgacgctgacttttttttttttgtaattttattgtttagttca	500
tgataaaaaacttcaaatcacttttaatctggtagacagagaaaacaaat	550
cgaaacgaaaatagagaactacgaataaaaaaatataagtggagaagatc	600
gtcactacgcattaaacaatattgatcgctcaatgccagtactgcgcgta	650
aaagtttagtaacttaacgatttaggcacaatttgagaaaaatttcgccc	700
tgcagtaagtatgttattcagtacgatataaagctgaggttttatgctgg	750
caacgttcagattttttaggttatcagcaatgttaaaatattaaatagga	800
tacttttattgtttgagaccaccctcaatgccagatatgttaaacgcttt	850
tttctggagtgaggtatcatagaaaaaggctcgagtacatcaagcactta	900
aaggttcaacactctactgttacttctttaagctaagct	950
atagtccatcaaagtgg	967

28/51

Negative2

gcaatttgcagttcaacttttcaatgatgatttagaatgatctaacactg	50
gaagttgaagtttttcaaaaatttgctgtaaaatttgaccgatttgtgag	100
attetteetggetgteagaatatggggeegtagtatattgteagaeetgt	150
tcctttaagaggtgatggtgataggcgttgagtatgtgtagtgtttgacc	200
cgagggtatggttttcacaagtactgcgcactgtattgtgaaagcagctt	250
cggggtgcgtgattaaaaaatgcgaccaagaataaacaggtacatcataa	300
caagggccatttgaattgcatttatcaggatttgtaaccttgttctaaag	350
aggcatcgtatagtttaagttcattttccacccaatttgatgacggtgtg	400
gaccttaacctattgtcttgaaatttaggttatctcttagatatcacatg	450
tgattaccccagtgaacgcgtataagcttacagaaaggaaaaccggttgg	500
ctcagtcaaaactgttgcagatttgggctcccctgaatatttgagacatc	550
cctaaaatgaagagatatatacagctaattttgaatgaaaatttaaaatt	600
cgcaatgaacagtactagagatgagcttttgaagtcctttcaaattattt	650
gttcttccagttgatatttttattttatataccagtaccaaatataatc	700
ttgccatacatttacctttttgaggttgttcaacggaaatccagtgtatt	750
tacacattcttggaaacccatcgcttataatacgaactaatttattt	800
aacaaaggctttggaaaagtatccctactttttacgacgctaaatcatga	850
tacgaaactttaggaagattaacagtcactccataaaatcagaaagtatt	900
cgctaatagtggaaagaaatggttatataaagatggaaatatcttgaaag	950
agacagtttaacccgaagttctgtcaaagtg	981

29/51

DR1s

ttcagaaaagcaaggaaacagtactatcgtttagaatgtagaatgatagg	50
ttgcttgctaattctattatggcacgaatgatacacccatattttcaaca	100
aaatcaatacccactagcatcattgagccaactatttgtcaatgcaacca	150
ttaccggtacttcatcctgatttaacgagtctacttttttatcacgtcaa	200
aatttacttgttttcctgtaaacccgaaataaaggcaaaaaagacctggg	250
tgcaattacgaataaatgtacaataatcatcctgtttgcatagtaaactt	300
ccagttagagtcacacaacgcaatgaattttgacagttttctgtgcgata	350
ttctttggtaaacgtaaagaacaggcaacttttggtacaatggattctag	400
cccatatggttcatttctggtgcattcgcaaagtcagtatttgtctagct	450
gtgttttctggctgagagacattatgatgttattcattgttatggatatc	500
tctgtagctcatgcttatttctccctaaaaaagttttttctctcgaa	550
tacattcttgaccatttcatagtgaaattcttgtacttatttaaaaccaa	600
aaatggaagtattcatacatccccctatcaaaaacactcaataagtttcg	650
aattattcgttcgtctaaacagtgtccaatactcaaaggggtattcaaga	700
cggcacaaaatcagcatcttcccttatccgtgttccagaaataccacgct	750
aaggtttttcctcctacaatccataaaatcattaaggaggcagcttgaaa	800
aatcttq	807

30/51

DR2s

tttctttttccctatttctcactggttgacagaaatcagtgtgctatcat	50
cctaccatatgcgctaaacttattgtctttctcctcctagagatgctgta	100
ttccatgcatattctgaacgatgggttggtgtttttatcaagcaag	150
atcacatggcgtggcttgctccacacatcagtagaaaacgcataccgcag	200
cggaatccttaaataataagtgattttactgttcatcaactacaatcgga	250
ctctttcacaattacccttcttgttttccacatttactgttaaatgaagg	300
gatgtacagaaggcttaggaaaacctgtgctgaatactggatgga	350
cattcccacagtgaaacttttatagatacactgtcagttattttcgaact	400
ttcatcaagttgctgagttttagtatccctttgccttagctatatgtttg	450
aatgagcaaaatatttgcaatgtctctagctttcttgaaatattggttta	500
tattgagggcttggtaagatttcaaatttcactttgaaatactcaggaga	550
aaaatcatgctcttttgataatttggtgactaaacatacat	600
taattttgggtggtaatggctgtgtgactagctatagaaagaa	650
aaaaaaaaaaaaaaatcaagtagttcctgcactgcgacgtccattata	700
gcattatgaattggtccctgatttacgcatgcgataaactatttttagcg	750
cagccgcatatt	762

31/51

DR3s

aaaatctcaaaattcccaatattcacatagtctaaagtaccgatagcaac	50
caacatatataaacagtagtattttacgaagctgaattgcaagattagtg	100
agaggagaataaccggataatttttttggattacgttattgttaaaggct	150
ataatattaggtgaaacagaatgtcctagaagtttttttctttc	200
aatttattgattcttgcgcttcagcttttataaaacataagaactgtttc	250
ttcacgttaacttcttgtgccacatataatgatgtactagtaatatgggt	300
actatttggcagatgatatttgatttttattcaagacggttactgtttct	350
acgattgatattttcattcctggatatcatcttgccagatcacttacaat	400
ttaggccgcgcctgaattgaagagtacttcaatacgtagtgtactgtcca	450
aactctcttccaaatttttaatatttagctggggttgggtaacaagtgag	500
caagggaaaaagtgaacattttaagaagaacaataaaatagcaagagatg	550
gaatggtaatgcttggctctcgagaagagtagcataaaacgagacttgtt	600
taaaacaggatatgacatacttcaattcagctttccctatcagccgctcg	650
agcagttatataggtgtgttgccggagtaatttggcggaggccaacagtg	700
gctaggcggcaacgcctggaacacgcgcttaaaagttctggaaggttcgc	750
gaattgagaactgctcaggggcgaatacaggggcggccttggcggcaggg	800
gggaggcctctgtgaagttagttatataagacttgctgtcatcgtttttt	850
tgatcccggcaggaactatctttt	874

32/51

DR4s

nt: SEQ ID NO: 27

aatagatgaattatgtgccgctggacgtttatagatagcataagcacaat 50 gacttaaaggttataatactcattgatatcactctgattataaaatcgta 100 atatgcgaataggtgaactaatcggaataacccatacgacacttcaagct 150 tcaattctatttcaactgtagtgcctgctagtgaagaatacaaaagtagc 200 atacgtgatgtgcaaaaaatgcgctacttatcacacaagtaccttqcqca 250 agaagggtactctaaaccggggccatcgcattaccagacggagatgtatt 300 $\verb"ctttatgaagcaataattggaggtgtatcaagttcgaaactgctgatgct"$ 350 atggatttacatctttcttatgcacaaggcttgcttgtgtttctgagtag 400 ttagtttttagatttttgtcaagtctggggtaagttaattcgagcaaaat 450 taacggcacgttattctaatgcatatgttgttcatatattcttttacaaa 500 gaggtttggaatgatgtcaccgatgttagaatgttaggagaatttcatgt 550 gaattttagtccaagtgttgaagttctcttctgcagttaqqqcacqtaca 600 tggcaacgatatcgtttttgatgtattaatcttagtaggcgttgagtttg 650 tatgttacttttctcaggtgatgaagcgtgatgacgatgacaaaaatggg 700 ttataatagggcgcactatcatcatgcgtgattgatatttaaccaatgtc 750 ttgagtacatcaactccagaaaatgggtcattatatgcctaqcatgt 797

33/51

DR5s

tggcaatgatactcgttattcgtaatatcagtccgtcaaggtgctgtgat	50
ttctctattttatattgcctattattttttcaaatgatttgagccgtttt	100
aaattgagtatgcaatgagtcttttgaatcaaccgtaaggcagttccata	150
accactgccacgaatacgtttcactaccttgaagaatctctaatgtaggc	200
cgtattcttcgcacttagttctgacgatgtagacatctcattatataaga	250
gcataagcgcctgtttctagaatcatttcttcgtgacccagctttttgag	300
ttatttcgcggtattttgaaacatttctcgagcttgacgtgaacatcctt	350
atatttcatgacaaactcgatcattggaacatccctgcctcgattttaga	400
gctagtatcaaatttcaatctctttgtgatggagccccgctcctatttca	450
aaagagaagtttcttgtatgcatatgttattgaagtctgattatagcaag	500
tgcaatgtcgtctcaattattttaactatttttagccatacatgttagtt	550
atcctcaaagagagcctccagactgggaagcagtgtttgtcatttcaaat	600
aagtagatttcacagtttgtatgattttcgaagccaggattcattgggct	650
ttgagtaaagagaagccgcgtattacgaacagcttacgatattgtaaaat	700
attcccttattgtggtgccccaatggatacatgccagagaaatgtctgtg	750
aaattgaacaattacaatgacgagagcaagtaatccggcggccttgtctc	800
tettteae	808

34/51

DR6s

agataccgtccttggatagagcgctggagatagctggtctcaatctggtg	50
gagtaccatgggacaccagtgatgactctagtgacttgatcagcgggaat	100
accagtcaacatagtggtgaaatcaccgtagttgaaaacagcttcagcaa	150
tttcaactgggtaagtttcagttggatgagcagcttggaacatatagtat	200
tcagccaaatgagctctgatatctgagacgtagacacctaattcgaccag	250
gttaactctttcgtcagagggagataaagtagtggtggctggggcagcag	300
cgacaccagcagcaatagcagcgacaccagcaacaattgaagttagtt	350
accatttttttcgattgaacttttgtagatctttttagtgaagatgtgag	400
ctcactcgaatgtaaataacaatgccaaattgtcggaaagagttaatcaa	450
agctgctctatttatatgccgttttttaataagcgacggacg	500
aattgttgaatagctatttcactgctgatatttctcttacttgggctccc	550
ctatcccatactcttcaccactacaaatatgcagttgccctttcttcaac	600
aatgcttttttatagatctcgtatacggatccgcgcctttgtactacct	650
atatettattatgatatatacaggagcacaggaatgtteggtacagggat	700
gataccttt	709

35/51

DR7s

ttgggacggtttttgcactaagaacagacgagtttacggttatcctcaac	50
aagcaagcaagtatttgctaatctagatgccattccgaatcattactcat	100
acgttactattgagagatgttttacaatagatgagaagaatacaatgtcc	150
agageteetggtatgetagagtgeatatteeaggtettattegaateata	200
tcataccgtccatttcaacaatggtgaaatgtggtccacatatatcagaa	250
atcttaacatttagtgaggagagccagtagaaaaatgtgcgcaagcggaa	300
agaagtcattcacagacacgtttaacaaaacaccaccacagcagctttgt	350
ctcttgattctgatcagtttgccatcgaagaagcaaaattgtggtgttat	400
ttttttcaaacaaacttttttggcaacagcagttttcttctggatattt	450
gtactttatcatccaaccgatgaaagctggtttcctgtcaacctacattt	500
aaatggcccgtacttcttcaaaaccgctagataagcaaattaacccaact	550
tttgagcgtcctaaattccccttggctcagaagactcgttaatatgggaa	600
gtttaagtcctaccatataatcaaattggaagctttctgtgttcgaatgg	650
ctattctaaccgctgggctattaatcagaggggaagtgaaatgaccgaga	700
cgtattatacgtcatgttgacatcaacaatttaaggaaaaaaataaaaaa	750
aagcaatgaaaaagggtttttttaagttgaagacccttttcaaatatatg	800
ttgctttgaattgtatctaccgtctcgtttcttctgctttaccgtttttt	850
tttgccttctttagatatgtcttttatgcttgaaaggtccggc	893

36/51

DR8s

ttcaccgcctagaaaacagcgtttgctgagaaaaaaaataaat	50
aagaagtatgtcatcataggatgttcccattgtaaggtgatgtgtaacat	100
actcgaacaaagaatgtatagagctgaatatttctcctttaaatttcaaa	150
gaaaatgagaaggaaaatctcaaacagaaacttcgttcttttctcaagt	200
aagcaaaagcttattgagacaaagcggaataactacgatattaataacgt	250
tgatgaagctcgaacaaagttagcgtcggttatgcttgcctatataaaga	300
tatatttgccttacattttcgttgaacgtagaatgatttttgcttttaat	350
aaattttttgttgttctttcagtgcttcttcaactttgatacgaaagcaa	400
gtgcattagtacaacaagaactggccacaactatactat	450
cttgcccgtgttttaaatgttttcatccacagcatttgatgggatgattg	500
gaagtgagacgttcgagaaaatccatattttgagtcaagaattcagataa	550
tatactgagatgattaggtatggctgggttctacaaaaacacaaatatcc	600
ggctagcaatgatcactgagcaaattaaagcgttaactcactc	650
tagcttatgcgtttctcctcctctttttttcctcgaaccggagtggaa	700
gatccaataacgtaatattactgatgttgttattaaagctggcaaaaata	750
acatgaggcgtaaaaccgcactgcggtaagatgagggt	788

37/51

DR9s

tgaaaaagaaatatttgcgaccttttttcgttacattgatcgtgaaattt	50
taatcaaagataatataaggacgtgagatatttatctttttacttgaaat	100
taacaatagaattgcgctaagcggaataagagctttcgtaaacctttcta	150
tttgcaccattgcgtcaacgtataaaatggtatgacctttacacaaacgc	200
atgcttataatcttatgtttttcatagggtgtaatttggttgatgacgta	250
gtctaaatttgatgctatctgcaattgaggtacatataagaggtcaattt	300
cgggaccaacccttttaatcgaaaaaaacgtaattcactagggcaaggga	350
gaacttagcagctaatatcgtaaacctttcatactaaaaaaatgcactta	400
ccatcaacaaaaactcaggaccaatttccaagcttttctaggtgattgc	450
ctataacacaaaaagattcgctcatacatgagatttttacatgtaatagc	500
aatttgttccgatcagttgaaggtcatcaacgcacggcaggtacatccac	550
acctatcacaaagcccttcaataattcacctacgtaaagttataccgaaa	600
catgcaaaatccatgaaaaattctgtatgataacgatcatatccttttgt	650
attggtggtacgatgctcaaagatagttattgttgcacctgaggcaaaag	700
cggaaatgaaaaatccagatggggccaaaagcagaagtattgtgtacaac	750
aattgcttcagcagtttaccaaaccgtttcccagcaatcatcaaaagttg	800
ctttagccacatttccgcaagatat	825

38/51

DR10s

nt: SEQ ID NO: 33

attgaagctgggtgtggaagatttatttgaagaaactaaaacgtaccctg 50 tcatttcctgagtcccctttcaacttagtgtgaaagccgaacaattataa 100 tcctcggtagacaacagatttattgtactaaagttactcttcctgttatc150 ttccttgattttactgttatagcaatgacccaccgcaatcaqqaqaqccq 200 ccgtatggaatagcataccaagtcataaaatcgtcaacctattaacqqqq 250 ttcaggttctttttcagcgtagtagccctttaacaagcgctgacaaagtt 300 gacactcagagaaaattcaggatttattgtaatccagctactcatcctta 350 gatccgcttgcaggcatggtttttttcaccttgagaggctattttgggta 400 agccaggaaggctgaaaaatcccaaaaggacacagtaataagaaattgtt 450 gttgttgtatgatgcatttagaactcaaaagacgagtttctgaaaatgct 500 tacaatactccataggtaacatgatttttttattaaaaaagtatactgtt 550 cctttgggtaaaaattatgcaacccttgagtgtccgatgaaqataaqact 600 acgaaacaatttgcggtaaattttttctgctattgacatttacacatqct 650 ccaatccattaccctttccattctcgtaataaaacctcgaactgttattt 700 750 aatagaaaagagccagacctatcgc 775

39/51

RC1s

nt: SEQ ID NO: 34

gctgcaagtcaatctacgggaaagaagaaatttttaaaacctaatgcaaa 50 ataagcttttcttggaaaataagattttcggcaataaaaggtaaatgcag 100 ccaaaaatcaaaatacttcagaagaagtcgtagcgaggactgctaagggg 150 aagcggatttgaagatcctttccagaacaagaaggagccgaaagctgtca 200 ggaactgttcctgattttttaggaaaacaattaataggtatctcgtctag 250 agtagtatctcgagcttccagaagttgcagataatcaaaatcattqtttt 300 atccctttttttagattacagcttagaagagtagagagcaagtttactga 350 aacggttccttgtttacaataatattcctaacaaactttacgaattagga 400 tgcagcatgattttttatattgcttcacttcctaaagtatgaatttttat 450 ccgtagtcgcaaacaaacagctactggaaatctgcagcttgttaaaaac 500 cggtagtttccgaatactcctcgtccttgagttgtataccgttaaacttc 550 ctagggtgtcatgtgtctggcccaattggcccacaaaatctggtcctatt 600 gacggttttcttttgattttcagcatcttcctctaagaaggacagaaaat 650 tatgtaatatatgggagaaacggcctcccaactgctaagtgtccccggca 700 gcacgagtaagcaaaattcaggcaaactattgcattaagaagccgtacat 750 aattcagcgtgatatgatgaaattttgttaattgcaaattttagtacgat 800 ttggttgttagtgtgtttatgcaagtaattattgaaccctaagtagtt 850 actgtcttcttttgctgtaattcgtggattcacg 884

40/51

RC2s

gtccccgtttctcatttttgagacatgatctgaacaaggctgaaaacagc	50
aatctttttcgataacttttgcaaaaatttcaaacattgttgtttgaatg	100
cagccaatttttatagggtacagagcttaatgctttacatgtgctttatt	150
ttcggtactttccttaaagtgtctacattatctctcaggacttgaatgtc	200
ttcggctgaattactataaaatcttgagttttctctgaagtttaatccta	250
agacaatagtggtgagtgatgtagttcacgtgtgtgccactggtaataat	300
agagataactatctcagttaagtttgaaaaggtaaaaaatagtttaagta	350
gtcattttttgcgacggtcattcttctctgatgcacgttctttagactac	400
ctataaacaccattcttacggaattata'atggaaataaaacatcagtacg	450
tgttgctgtcggtgatagaggggtaacagaaccttaattgaaaaattagc	500
acagtgcataatttattaacatgattgttttctgtgggaaataagaaatt	550
tcagcaccagtaaaagacgagaaatatagggcacataaatgcgctcttac	600
tcgtatgttccaggatgaaaatgtttagggcatcaagtattgccgaaagg	650
gcaatatgctttaacaccagaaaatccactgtatactcgttacgggtaaa	700
caaagcaaaacgcagtgcgtgataatgtttctaaaatctctgcacactgt	750
tgaaatgcggctctgatactttagcc	776

41/51

RC3s

nt: SEQ ID NO: 36

ccagattgcttacaaaagaatagcgagccaacatttgctctgcctcaggc 50 ctcttggtgctgcttgaagactcatcttatatggcttttgtatgtcatga 100 150 tttgcgatagcaagcagataatgaaagagacaaqgacttggaacatccga 200 taagactgcgccgatatcgatcttacagtccttcccttgtgtcatgactt 250 300 agggtctgatacatttttttaaagataagagacggggtttacccttcgga 350 ggactaagcgagatctccaagtaaagatctcgcttatcaagaaagcagcc 400 aagtgtggaacgtccttttttttggtttcaaaaagatattcaacagttta 450 cactgcagctttaattgcctcaaaaggatatcatgaggtgatctagggtc 500 agaagggaaagattacagcatcttgaqttgaatcacatctgcaaaaqqtq 550 gtattattgacgttgctcttccttaatggaaactcatggggtttggaaag 600 gaggtgcggtaatctattttttcgaacacaaaacctaaccttgaaaaga 650 aactgtccaatttcattgaacttacctcagaacqqqccqqaqtctttqct 700 ttcagtctaacatg 714

42/51

RC4s

ttcgcgtattcttacatcttcgaagagaacttctggtgtaagtataataa	50
atattatagctctatcgaatggtgcaattatttaccaaattctcaatagg	100
aatccataatactacatacgatactaatattctagtatttttatacttat	150
tatttctttttattacaccagcaatcgttgcaaattatcttctgataga	200
atttctgagggtatcctaaacttatgccattttcttggactgtaaatcat	250
acttggatgttgtgcattagtcaataatcggttcttgttccaacgattac	300
atgtaaatgaagggagaaataattatggtaaatcatgcggcggtcctttt	350
ggtgatgcagtatccatagtcactacataacaatcttagtcaccttgtat	400
tgattcaccacataatcctgcagagcccgctatgtccttaatctgcgcga	450
taactctcctacccctgaattttgagagcgccatagcaaaccgataaagc	500
tggcacaattaaaggtatcggtgttgtcagaattaggtgcctcctgcttt	550
tttttttttcctgctcttatatccgttatatccgaatgatttttatcgct	600
tgtttaaaaaatactttcccgatatatatatatagtctccctttaaattt	650
gtttccggtaagtttttaacaccaataaatgaaaagaaatgactacggtg	700
atgaatatgagccgcgcattgaatcaggttatgtaagtatcagaacccct	750
aattatq	757

43/51

RC5s

ctcaagaacggtgtttggtgcatcaaaagttttcgactgcttatttggtc	50
ggaaatataaaaactcgatcctcttatctaagcagtatacattcttcttt	100
ttgaaatgaatgtactccgtaatatcttcttatttggcattttcatcctt	150
aacttttgcatggctctgaactagtcagatagttgcccttttcagcaaac	200
ctcttattattgaaagcatggtgtacatccgttatactattatataa	250
gaaattgggatgccaatttttttgcttttgttttgcctgttttccttctt	300
ttcgcaaaagtaattgcagatttaatagcaggatattataccgttggtaa	350
aacttaaggattttatgaacaatagcttcaagtacagcattcatagaacc	400
aactactaaggatgaaactagtatgtttttgtcaaaatattttcttgacc	450
ttgctgtaacatcaagatctgtttctctaagatattaaagttgagtaaaa	500
acaaagctgatatgagaaaaatacgtaattgctccacataatacgtgggt	550
cagacataaaggtagaatacttgatacagaagagattattcggtactctt	600
gatggcgtgcttgaactggtgcctcttaacaaccggtaatatagtcagat	650
gagtcactacgagtgtgtgtagtagcaagtgttttacctacgtggcagta	700
agagtagctctatggttgtgtaatagtggtgcttattcctaatgctctga	750
agtetgaageggtacagttggtetggtetatateatggteaaaggageaa	800
acatatcttctgaagtgaccgcaaatagtactatgatgtggttggcaata	850
taacttaaaaggaaataaccacaaggaattgcacccatgta	891

44/51

RC6s

tttttatatgggggtctggcgcttcgggaaaagagaggaaaacttgtaac	50
tcaatatatctcgatacaacattacgttttgtaaatttatcacaaaagcc	100
aaatgatgatatetetettgeaagttategaacattgattggtaatttgt	150
ttgaaaattgttaatttattgaatatttcttttgcaaaagaaatagtctc	200
agcgaaagctggttacaaaatttacatcatgagtttacgggatttgtaaa	250
tacgctttttgcataaaaatactttgccgtttcccacccttgcatattca	300
cttactcccccttcatatactctatgtaatgatgattaagctttggccg	350
ctaagtctctcaattagtgttgattttggttttattcatatgattcttct	400
ttagtgaagtattgatcaattacgtgagtcagctttttgaaaaccccatt	450
tggaaggaattaggaaattattttgcttactacgaccactaatttaccgc	500
catttctgggcctttttattgactattttgaccatgtgctcgactagaag	550
aacggcatcataatctgctggtagagttagtctataatgattgttgaaaa	600
taaaggcataagagatattccacctaaaattcaagttattgactttatta	650
tcaggatcttagtatccttttttggtaagtcatattcaatgaactaggtc	700
tcgcaaactttttgttcgaaaagcggtagtgcatagttatgctaactctg	750
gatatatggcataaaccgtacaacactagcccatttttttggaagtagtg	800
agggcagctagactgtatgatgaatattcqcctqcatactqaqttttt	848

45/51

RC7s

nt: SEQ ID NO: 40

tgaagacaggattcaaaaccgattaatagtagcagaaactaaaaaagtac 50 gaatattagtaaaattcatgttcttgaatcgagctactatctttgtcggg 100 agggtaaacgattataactcaaaatgactggaactggtgattattaattt 150 ttacgtttcctgtgccaataagcggaagataagaggatagaagaaaagaa 200 aggcggcacttggcgaactacaatggcgattatattcatggcgattatat 250 ${\tt tcatacaaaggtaatggaggcctcggataatggacaatattgagaaaatc}$ 300 cttatgcttacttctcttaataaaaaatagacacagccatttattatgcg 350 taaaaaagattacccacttgtcttcgatgcgtgctgctgccaatcaacct 400 tttgagcggaacttcgagctcgcaatgcgtctggaatgttgctagagaca 450 gtcttggttatctgtgacatgtgtttcgttcaggcgtgtgagcatcttct 500 tgttcgatttcaaaattaccgccttgactcgtgaaactggataattcgtt 550 ggcgttttcatataagtcgtctgatggcgaaaacttttcctttacttagc 600 atacagcaaatatccccatttgacggatttttgaaaaatgagcccqctaa 650 cccagaatgaactgcattaccaagcatttatgtaaacgttccgccaccat 700 ctttggtaaggtatactattatgttctggatttaaggttgattcacaatt 750 tttcatcaccaaaatctggtggcatgcctagttgtctggtttcagqcaat 800 ttagcc 806

46/51

RC8s

nt: SEQ ID NO: 41

aatttgagagcggatcttgcattttttatttatcatqcttatqtttttc 50 tttgatgtaagaagaagcaagtaagatatgtgaatatcttatcactaatt 100 caaataactaagagagctcacaacgacaatttgtgacagcatgcgaaqca 150 aagagcagtgataccagtatctttcatccagtaataacatacgactgatg 200 ttatagttaaatgttacattttgagagacttcaacctctcgaaaccaaga 250 ggttggttttaactctggtgacttcaagaagggtgggtaccttttacaaa 300 gcttgagacgaagcaatagtcagtctctgtataacaaggagaccacctca 350 ${\tt ttttccagtaactcttgaggcatgtcggatggtttgccttgaataaaccg}$ 400 cagtcattataatgaatggcctgtactttcaaaacagtctggaaacagaa 450 atccattgctgaggtaccttttagtagcactttcgttagtgaaggtttaa 500 ggttagttcttatttactgcacaagagtttacatttaaccactctaatag 550 ${\tt taactgttagagtggtttaactgttaggtgatctgttcattccatttttc}$ 600 650 aaacatataaacacctgtgtaactcgttaacgtctgggcttccatgcttc 700 taccatttagaatgatgtagaccatttattccaagaggataagcaccctc 750 tgtgattcaaaat 763 -

47/51

Utility1s

ttaatggactttttagtgtcatcgaattttatgtaatatataagaaggta	50
gaataatttggcaggataatgtgttagcaaaggaggaaatcgaatacctt	100
taaaagagaaaaaattttttagctgcttaaatttctgtgttataccaccc	150
gatagattttgagttatgctttctaattgatctgactgcgaacgttttct	200
ttatgccatctgaattgtcaggaacaaagaagaaaagaa	250
aaaatctgtggtcgtgtgtgatgtacctttcctttacatgcattaatgcg	300
ctctgaaatgtggtacgatatccttacagagaatatattttctgtatatc	350
gtgcaatgttgaataacctatgaaggaaagtacccatcgctcaaggtaag	400
cattccaggagggtcgccagaaacttaaactagttttagcgacagatccg	450
aaaattgatagagacattgaaaaaatcactactccgtcctttttagtgct	500
ttctcaatgcataattttggtgcacgactaaaaaattctagaacactata	550
gttgcattttttgggccggaagaagaaaacgcatgtaactttaatgtca	600
aataaagttttcacctagtaagcgcgatacaaaaaaaacacagaaatagc	650
cataggaaagtgaattttgtcagccgactaaaattaaggttagcttacaa	700
agcagcaaaaaatttgacatcgcacggtattccctgaaaaaggagcaggc	750
aggtgctgtatatttttttcggttcctgcctcttacatggcgtcggtgta	800
tettaaataetaaagtgagetgaetaeeettttgagtgeeetatgtgaee	850
tctgatctcgaaagtaaacaaga	873

48/51

Utility2s

nt: SEQ ID NO: 43

ttataatggcacagcaaagtcgcacagagcactacagtatagcatagagt 50 gctaatgagttgataggcccaattttgattatgccttctttttcatacac 100 gacgccagaggacattattacattacagtagttcqccqctagatgacaaa 150 cgacatccttaccgatatgagatgtgcaaagctacataatggcaacaagc 200 gttatgaacagccttgtctttacgaccacagaaaagccgtattagagctc 250 ttcagctgcaaaattttcttctaatatgatgcaaagccatcaaaaatcat 300 gcatagttatgaaatacctgatgaaacgcttcgagttcgtgctcaagaaa 350 ttactgaaaggttaccgagaagaaaaatatctatgagacacgataaggcc 400 ccttctgaatccattgtcctgggcttgttcattctatttaccacttaaaa 450 ttgatcctttcaaaggaatttttttctatttccaatagtatatttgtaca 500 aaaactacaaaaatggataaaaaataacagtaatttgtgactactgtaaa 550 tatcactgattttggattttgtaatgagtactgctcatgcccatgccgatg 600 caagtggatcataaattttactaaacgatattcgataatgcqccaagcct 650 ttataaggaactcaaaataacccatatggacagtttcagaaggccaaata 700 acgatcaaggacattcactcatgtttttcaaaggcgaagagtgtaaaatt 750 ttcttctatatagttcgaatattttatcttataaatttcagtcgtcattt800

49/51

Utility3s

nt: SEQ ID NO: 44

tctgttaaagcagctgcgttgttcttgcactctgcacgtaaatgacgacg 50 gccaatgtaaaaatagcagtcactgcaggcctcttggattgtacccgtaa 100 150 tttatctccttaaatgcttccagaaatgggactagacttttttcactcaa 200 acctgttcacaattattgctctttttcaattataaggtaaacaaggccat 250 ctatcagcaacacagtgctcgcattttttaattaaactatataaaaccaa 300 ctatttgtggttgcgacttcactttttgttgaattactacccaatcatta 350 atattgaagatgtgagatcatagatttattggctttgggcatctcaaatc 400 ccaagaggtcattttaaccaacaacattttaaaaagtagatttgtctgcc 450 tcagctatgagatgcgcatgtccctagcatctcatatctggttatattat 500 tttttccacttggtgaatgttgaaaaaaacaccactcgtccaatttatca 550 [°] gtttgcaggtctaatgtccttccctgttatttaaactgtatattgtaagc 600 atgtcttatcqaaacaacttactcaqttqtccqaaaacaaactqcaaat 650 tctgtgtgtattcacgtactagaatcctgtcaaattggatcttgatttaa 700 gcttttatagcaacgaactttgcatactaagttttttttgttaaccggaa 750 ctgccaagaagcattcagtaaaatacatcttcatcatttactgataatac 800 tcattcagactcatatcatactatttcgaattcattatacatcctcaaaa 850 .

50/51

Negative1s

gctaggatctatatgcgaatatatcacatatgtaaattataagctcatcg	50
caaaaccaaaaaaaaaattttcaataatttttcactaatcttcaaaa	100
acaaatggggtaacccgtacaagagttattaaaacccaaaatgacaaaat	150
cgcgacaattcaatcctacttaattagcaataacatactagcggtagagc	200
tactatcacatgttgaaccttgaatgctcaattcattgtactcaatactg	250
ctatcaaaagaaaaaaatgtattaattatattcttgtcaaaatcaattt	300
tacactataagaggaaaatgttcttcagtcctagtaacattagttttctc	350
cctttgctagagactttacataatatcctagaaggtaaaattcgataata	400
cagcagtaaagtcgtatattggtagcaatccttggtgacgctgacttttt	450
ttttttgtaattttattgtttagttcatgataaaaaacttcaaatcactt	500
ttaatctggtagacagagaaacaaatcgaaacgaaaatagagaactacg	550
aataaaaaatataagtggagaagatcgtcactacgcattaaacaatatt	600
gatcgctcaatgccagtactgcgcgtaaaagtttagtaacttaacgattt	650
aggcacaatttgagaaaaatttcgccctgcagtaagtatgttattcagta	700
cgatataaagctgaggttttatqct	725

51/51

Negative2s

ggaagttgaagtttttcaaaaatttgctgtaaaatttgaccgatttgtga	50
gattcttcctggctgtcagaatatggggccgtagtatattgtcagacctg	100
ttcctttaagaggtgatggtgataggcgttgagtatgtgtagtgtttgac	150
ccgagggtatggttttcacaagtactgcgcactgtattgtgaaagcagct	200
tcggggtgcgtgattaaaaaatgcgaccaagaataaacaggtacatcata	250
acaagggccatttgaattgcatttatcaggatttgtaaccttgttctaaa	300
gaggcatcgtatagtttaagttcattttccacccaatttgatgacggtgt	350
ggaccttaacctattgtcttgaaatttaggttatctcttagatatcacat	400
gtgattaccccagtgaacgcgtataagcttacagaaaggaaaaccggttg	450
gctcagtcaaaactgttgcagatttgggctcccctgaatatttgagacat	500
ccctaaaatgaagagatatatacagctaattttgaatgaa	550
tcgcaatgaacagtactagagatgagcttttgaagtcctttcaaattatt	600
tgttcttccagttgatattttttattttatataccagtaccaaatataat	650
cttgccatacatttacctttttgaggttgttcaacggaaatccagtgtat	700
ttacacattcttggaaacccatcgcttataatacgaactaatttattt	750
gaacaaaggctttggaaaagtatccctactttttacgacgctaaatcatg	800
atacgaaactttaggaagattaacagtcactccataaaatcagaaagtat	850
tcgctaatagtggaaagaaatggttatataa	881