فرض محروس رقم 3 الدورة الأولى

 $ln(e^{2h})$ مدة الإنجاز:

ثانوية عبدالكريم الخطابي التأهيلية مديرية قلعة السراغنة الأكاديمية الجهوية للتربية و التكوين مراكش آسفي

الأستاذ: عبدالإله الشافعي

الموسم الدراسي : 2018-2017

القسم : 2 باكالوريا ع.فزيائية2

<u> مسألت: (11نقطت)</u>

 $g(x)=x^2-2lnx+2$: الجزء الأول : لتكن g الدالة العددية المعرفة على $g(x)=x^2-2lnx+2$ بما يلي . $\lim_{x\to 0^+} g(x)$ و $\lim_{x\to +\infty} g(x)$ أحسب النهايتين 1ن $(\forall x \in]0; +\infty[); g'(x) = \frac{2x^2-2}{x}$ بين أن 2 0،75ئ $(\forall x \in]0; +\infty[)$ و استنتج أن g(x) > 0 فع جدول تغيرات g و استنتج $f(x)=x-2+2rac{lnx}{x}$: نعتبر الدالة العددية f المعرفة على $0;+\infty[$ بما يلي $rac{lnx}{x}$. $(0;ec{t};ec{j})$ منحناها في المستوى المنسوب إلى معلم متعامد ممنظم وليكن $\lim_{x \to +\infty} f(x)$: أحسب النهاية: 0،5ن . أحسب النهاية: $\lim_{x \to 0^+} f(x)$ ثم أول النتيجة هندسيا 0،75ن $oldsymbol{x}$. $+\infty$ مقارب مائل للمنحنى (Δ) دو المعادلة y=x-2 مقارب مائل للمنحنى أن المستقيم . 0،5 . (Δ) والمستقيم ب- أدرس الوضع النسبي للمنحنى (C_f 0،75ئ $]0; +\infty[$ من $f'(x) = \frac{g(x)}{x^2}$ أ-بين أن $\frac{g(x)}{x^2}$ 1ن ب-إستنتج أن f تزايدية قطعا على المجال $]\infty+0$ ، ثم ضع جدول تغيراتها . 0،75ن lpha < 2 : بين أن المنحنى (C_f) يقطع محور الأفاصيل في النقطة ذات الأفصول lpha حيث lpha < 20،75ن . 1 عند النقطة ذات الأفصول (T) عند النقطة ذات الأفصول (T)0،5ن $\left(\mathcal{C}_f\right)$ بين أن لكل x من $f''(x)=rac{4lnx-6}{x^3}$: $]0;+\infty[$ نعطاف المنحنى بين أن لكل 1،25ن $oldsymbol{.}$ (C_f) والمناس (T) والماس (Δ) والمستقيم (Δ) والمنحنى ($D; ec{t}; ec{j}$) المستقيم (Δ) والمنحنى (5،1ن الْتَمرينَ الْثَانَى : $(m{9}$ نقطًا في المستوى العقدي $(0;ec{u};ec{v})$ النقط A و B و C التي الحاقها على .[BC] و النقطة D و النقطة $c=1-\mathrm{i}$ و $b=1+\mathrm{i}$ و $a=-\sqrt{2}$ و النقطة المثلثي طدد معيار و عمدة العدد ia ثم اكتب العددين b و على الشكل المثلثي a1،5ن 2. حدد لحق النقطة D ثم بين أن النقط A و O و D مستقيمية 0،75ن $rac{b-a}{c-a}=rac{\sqrt{2}}{2}$ أ)-اكتب على الشكل الجبري العدد العقدي : $rac{b-a}{c-a}$ ثم استنتج أن : $rac{b-a}{2}$ 0،75ن $\left(\overrightarrow{AC},\overrightarrow{AB}
ight)$ ب-استنتج الشكل المثلثي للعدد $rac{b-a}{c-a}$ ثمر استنتج قياسا للزاوية الموجهة: 1،25ن <u>ABC استنتج طبيعة المثلث 4</u> 0،25ئ $\left(\overrightarrow{AO},\overrightarrow{AB}
ight)\equivrac{\pi}{8}[2\pi]$: ثم استنتج أن $\left(BC
ight]$ هو واسط القطعة $\left(OA
ight)$ ثم استنتج أن 0،75ن |z-1-i| = |z-1+i| : حدد مجموعة النقط M ذات اللحق وبحيث يحقق : |z-1-i| = |z-1+i|0،75ن $sin\left(rac{\pi}{8}
ight)$ على الشكلين الجبري و المثلثي ثم استنتج $cos\left(rac{\pi}{8}
ight)$ على الشكلين الجبري و المثلثي 1،5ن

دد الكتابة العقدية للإزاحة t التي تحول النقطة C إلى النقطة C اثم حدد لحق النقطة C . و10 . و10 . C

يؤخد بعين الإعتبار طريقة صياغة الأجوبة والدقة في الطريقة المتبعة. فرض محروس رقم 3 الدورة الأولى

 $ln(e^{2h})$ مدة الإنجاز

ثانوية عبدالكريم الخطابي التأهيلية مديرية قلعة السراغنة الأكاديمية الجهوية للتربية و التكوين مراكش آسفي

الموسم الدراسي : 2018-2017

القسم: 2 باكالوريا ع. فزيائية 1

الأستاذ: عبدالإله الشافعي

<u> مسألت: (11نقطت)</u>

	$g(x)= oldsymbol{ln} x-x^2$: إلجزء الأول : لتكن g الدالمّ العدديمّ المعرفمّ على 0 ; $+\infty$ بما يلي g
5،1ن	$m{g}\left(rac{\sqrt{2}}{2} ight) < 0$: ثم بين أن $\lim_{x o 0^+} g(x)$ و $\lim_{x o 0^+} g(x)$ ثم بين أن $g(x)$
0،75ن	$(\forall x \in]0; +\infty[); g'(x) = \frac{1-2x^2}{x}$ بين أن 2 .
1ن	$(orall x \in]0; +\infty[)$ فع جدول تغيرات g و استنتج أن g
	$f(x)=x+rac{1}{x}+rac{\ln x}{x}$: نعتبر الدالم العدديم f المعرفم على 0 ; $+\infty$ بما يلي $f(x)=x+rac{1}{x}+rac{\ln x}{x}$
	وليكن (\mathcal{C}_f) منحناها في المستوى المنسوب إلى معلم متعامد ممنظم $(0;ec{\imath};ec{\jmath})$.
0،5	$\lim_{x o +\infty} f(x)$. أحسب النهاية:
0،75	$\lim\limits_{x o 0^+} f(x)$ أحسب النهاية: $\lim\limits_{x o 0^+} f(x)$ ثم أول النتيجة هندسيا
0،5	$x + \infty$ مقارب مائل للمنحنى (C_f) بجوار $y = x$ مقارب مائل المنحنى عبين أن المستقيم .
0،75ئ	(Δ) والمستقيم (C_f) ب- أدرس الوضع النسبي للمنحنى
0،75	$]0;+\infty[$ ا-بين أن $f'(x)=rac{-g(x)}{x^2}$ لكل f من $f'(x)=\frac{-g(x)}{x^2}$
0،75	. ب-إستنتج أن f تزايديـ قطعا على المجال $]\infty+0$ ، ثم ضع جدول تغيراتها f
0.75	$rac{1}{4}: بين أن المنحنى (C_f) يقطع محور الأفاصيل في النقطة ذات الأفصول lpha حيث rac{1}{4}$
0،5	1. أكتب معادلة المماس (T) عند النقطة ذات الأفصول 1 .
1ن	$\left(\mathcal{C}_f ight)$ بين أن لكل x من $f''(x)=rac{2lnx-1}{x^3}:]0$ ثم حدد نقطة انعطاف المنحنى $rac{7}{x}$
1،5ن	(C_f) المستقيم (Δ) و المماس (T) والمنحنى أنشئ في نفس المعلم ($D;ec{\imath};ec{j}$) المستقيم (Δ).

التمرين الثانى ، (9 نقط) $extstyle extstyle extstyle extstyle extstyle \frac{\alpha}{2}{2}$ نعتبر في المستوى العقدي $(0; ec{u}; ec{v})$ النقط $a = -i \sqrt{2}$ و التوالى $a = -i \sqrt{2}$ و النقطة $a = -i \sqrt{2}$ و النقطة $a = -i \sqrt{2}$ و النقطة $a = -i \sqrt{2}$ و النقطة و ال

على الشكل المثلثي \overline{b} هو مرافق العدد \overline{b} و \overline{b} على الشكل المثلثي \overline{b} هو مرافق العدد \overline{b} 10،5 \underline{b} 1.5 هو مرافق العدد \overline{b} 10،75 ثم النقطة \overline{b} شمر بين أن النقط \overline{b} و \overline{b} مستقيمية

 $\frac{b-a}{c-a} = \frac{\sqrt{2}}{2}\,\overline{b}$: ثم استنتج أن والعدد العقدي العدد العقدي: $\frac{b-a}{c-a}$ ثم استنتج أن والشكل الجبري العدد العقدي والعدد العقدي أن والتنتج الشكل المثلثي للعدد والعقدي المتنتج قياسا للزاوية الموجهة: $(\overline{AC}, \overline{AB})$

ن ((OA) هو واسط القطعة(BC] ثم استنتج أن(BC) هو واسط القطعة(BC) هو اسط القطعة القطعة

ر. حدد مجموعة النقط M ذات اللحق z بحيث يحقق : |z+1-i|=|z-1-i|ن |z+1-i|=|z-1-i|ن

 $\sin\left(\frac{\pi}{8}\right)$ و $\cos\left(\frac{\pi}{8}\right)$ على الشكلين الجبري و المثلثي ثم استنتج $\cos\left(\frac{\pi}{8}\right)$ على الشكلين الجبري و المثلثي ثم استنتج

ن مركزه A و نسبته $\frac{\sqrt{2}+2}{2}$ حدد الكتابة العقدية للتحاكي h الذي مركزه h و نسبته $\frac{\sqrt{2}+2}{2}$

ين أن: h(O)=D ، ثم حدد لحق النقطةh(D) صورة النقطةh(D) بالتحاكي h.

يؤخد بعين الإعتبار طريقة صياغة الأجوبة والدقة في الطريقة المتبعة.