

SJSU SAN JOSÉ STATE UNIVERSITY

Agenda

- Principles of Counting
- Basic Probability Concepts

3

Why Counting?

- To perform probability and statistics calculations, it is important to know how to count the size of a population or the size of a sample drawn from the population correctly.
- Knowing how to count in various situations is very crucial.

Δ

Examples

Suppose your video streaming service has these types of movies:

• You want to watch three movies tonight, one of each type. How many different combinations of movies you can watch?

Туре	Movies
action	674
romance	913
comedy	84

• In this case, <u>order doesn't matter</u>: Your choice of movie of any one type does not depend on your choice of any other type.

5

Examples

There are 26 letters in the alphabet. How many 1-letter sequences can you make?

- How many 2-letter sequences are there?
- How many 5-letter sequences are there?
- In this case, order does matter: AB is different from BA

k	Number of sequences (N)		
1 letter	<mark>26¹</mark> = 26		
2 letters	$26 \times 26 = \frac{26^2}{100} = 676$		
3 letters	26 x 26 x 26 = 26 ³ = 17,576	\succ	$N^{k} = 26^{k}$
4 letters	26 x 26 x 26 x 26 = 26 ⁴ = 456,976		
5 letters	26 x 26 x 26 x 26 x 26 = 26 ⁵ = 11,881,376		
6 letters	26 x 26 x 26 x 26 x 26 x 26 = 26 ⁶ = 308,915,776	15.00	

Examples

Now, for the same 26 letters in the alphabet. What if there can be no repeated letters in the sequences?

k	Number of sequences (N)
1 letter	26
2 letters	26 x 25 = 650
3 letters	26 x 25 x 24 = 15,600
4 letters	26 x 25 x 24 x 23 = 358,800
5 letters	26 x 25 x 24 x 23 x 22 = 7,893,600
6 letters	26 x 25 x 24 x 23 x 22 x 21 = 165,765,600

The # of ways for a sequence of k objects chosen without repetition from a collection of n objects:

 $n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \dots \cdot (n-k+1)$

7

Factorial Notation

- The product $n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \dots \cdot 3 \cdot 2 \cdot 1$ is n factorial, denoted as n!
- Note that n! grows very rapidly:
- Factorial notation can simplify formulas.

	11:	
0	1	by definition
1	1	= 1
2	2	= 2 · 1
3	6	= 3 · 2 · 1
4	24	= 4 · 3 · 2 · 1
5	120	= 5 · 4 · 3 · 2 · 1
6	720	
7	5,040	
8	40,320	
9	362,880	
10	3,628,800	
11	39,916,800	
12	479,001,600	
13	6,227,020,800	
14	87,178,291,200	

Sequence without Repetition Revisited

 Recall that the # of ways for a sequence of k objects chosen without repetition from a collection of n objects is

$$n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \dots \cdot (n-k+1)$$

• Using factorial notation, we can simplify this as:

$$_{n}P_{k} = \left| \frac{n!}{(n-k)!} \right|$$
 Permutation

• What about the # of permutations of n objects in a circle?

9

Example: Counting Numbers

- How many 3-digit numbers are there using the digits 1 through 9 that have no repeated digits?
- How many of these 3-digit numbers from above are odd? Here are some hints:
 - How many have 1, 3, 5, 7, or 9 as their third digit?
 - How many choices are there for the third digit?
 - It depends on what we chose for the first two digits!

Example: Counting Numbers

- Start by counting digits from left to right.
- There are 4 even digits: 2, 4, 6, and 8. There are 5 odd digits: 1, 3, 5, 7, and 9.

Possible digit sequences	Number in each sequence
even even odd	4 x 3 x <mark>5</mark> = 60
odd even odd	5 x 4 x 4 = 80
even odd odd	4 x 5 x 4 = 80
odd odd odd	5 x 4 x 3 = 60
TOTAL	60 + 80 + 80 + 60 = 280

• Is there a better way to compute this?

11

Example: Forming Baseball Teams

Suppose you need to choose a baseball team of 9 children out of 15 children. How many possible teams are there?

Questions to ask:

- Does order matter?
- Is there repetition?

Counting When Order Doesn't Matter

How many different committees of 4 students can you make from a group of 15 students?

- In this case, order doesn't matter.
- We can start with the permutation where order does matter: $\frac{n!}{(n-k)!} = \frac{15!}{(15-4)!} = \frac{15!}{11!}$
- Then, we determine the # of possible committees if order matters: $\frac{n!}{(n-k)!} = \frac{4!}{(4-4)!} = 4!$
- Thus, the # of possible committees of 4 students from 15 students: $\frac{15!}{11!} \cdot \frac{1}{4!} = \frac{15!}{4! \cdot 11!}$
- In general, the # of ways to make a combination of k objects without repetition among n objects, and order doesn't matter is: ${}_{n}C_{k} = \frac{n!}{k! \; (n-k)!}$ Combination

13

Binomial Coefficients

• The combination formula can also be written as:

$$_{n}C_{k} = \binom{n}{k} = \frac{n!}{k! (n-k)!}$$

- $\binom{n}{k}$ is also known as a binomial coefficient.
- One important property of $\binom{n}{k}$:

$$\binom{n}{k} = \frac{n!}{k! \ (n-k)!} = \frac{n!}{(n-k)! \ k!} = \binom{n}{n-k}$$

e.g. Counting the number of ways to make a committee of 4 students out of 15 students is the same as counting the number of ways to leave 11 students off the committee.

More Counting Situations

- For the case when you have n objects and would like to r different partitions with n_1 elements in the first partition, n_2 in the second, and so forth.
- The number of ways to partition is:

$$\binom{n}{n_1, n_2, \cdots, n_r} = \frac{n!}{n_1! \, n_2! \cdots n_r!} \qquad n = n_1 + n_2 + \cdots + n_r$$

Example: In how many ways can 7 graduate students be assigned to 1 triple and 2 double hotel rooms during a conference?

$$\binom{7}{3,2,2} = \frac{7!}{3!2!2!} = 210$$

ISUNS ISUNS

15

Counting Scenarios So Far

	Repetitions allowed (with replacement)	No Repetitions (without replacement)
Sequences (order matters)	n^k	${}_{n}P_{k} = \frac{n!}{(n-k)!}$
Combinations (order doesn't matter)	?	$_{n}C_{k} = \binom{n}{k} = \frac{n!}{k! (n-k)!}$

What about combinations or collections with repetitions or replacements?

- Permutations: Arrangements of items in a sequence where order does matter.
- Combinations: Arrangements of items in a collection where order does not matter.

Combinations with Replacements or Repititions

Problem: Determine the # of combinations for choosing r items from n distinct items.

- Imagine you have:
 - -r stars ($\stackrel{\star}{\sim}$), representing the items you choose.
 - -n-1 separators (1), representing the separations between different types of items.
- For simplicity, let's consider 3 types of fruits (A, B, C) and choose 2 fruits. Here are the different combinations with repetitions:

17

Summary of Different Counting Scenarios

	Repetitions allowed (with replacement)	No Repetitions (without replacement)
Sequences (order matters)	n^k	$_{n}P_{k} = \frac{n!}{(n-k)!}$
Combinations (order doesn't matter)	$\binom{n+k-1}{k} = \frac{(n+k-1)!}{k! (n-1)!}$	$_{n}C_{k} = \binom{n}{k} = \frac{n!}{k! (n-k)!}$

19

What is Probability?

- Probability is a branch of mathematics that deals with the likelihood or chance of different outcomes.
- It measures how likely it is for an event to occur, using a scale from 0 to 1 (0 means the event cannot happen and 1 means it will certainly happen).
- It creates mathematical models to study chance or randomness.
- Originally arose from studying games of chance.
 - The probability that a flipped fair coin will land heads is 1/2.
 - The probability that a card drawn from a shuffled deck of 52 cards is an ace is 4/52.

ຣົງຣບ_ິລິງຣບຣິວີງຣບຣິວີງຣບຣິວີງຣບຣິວີງຣບຣິວີງຣບຣິວີງຣບຣິວີງຣບຣິວີງຣບຣິວີງຣບຣິວີງຣບຣິວີງຣບຣິວີງຣບຣິວີງຣບຣິວີງຣບ

Role of Probability

What's the relation and distinction of probability and statistics?

- Science of collecting, analyzing, interpreting, and presenting data
- Making inferences about a population based on sample data
- Probability allow us to draw conclusions about characteristics of (hypothetical) data taken from the population, based on known features of the population.
- Statistics allows us to draw conclusions about the population, with inferential statistics making clear use of elements of probability.

SISUW SISUW

21

Some Probability Definitions

- Experiment: A process or activity that generates measurable results (a set of data).
 - E.g. Flipping a coin or rolling a dice.
- Outcome: Each distinct result of an experiment. Aka sample point.
 - E.g. The outcome of flipping a coin is H or T.
- Sample Space (S): The set of all possible outcomes of an experiment.
 - E.g. Sample space of rolling a six-sided die is $S = \{1, 2, 3, 4, 5, 6\}$.
- Event (E): A collection of outcomes; a specific subset of outcomes from S.
 - E.g. The event of rolling an even number of a six-sided die: $E = \{2, 4, 6\}$.
- Complementary Event (\bar{E}): The event that represents all outcomes in the sample space that are not in E.
 - E.g. If E is rolling a 3 on a die, \bar{E} is rolling anything other than 3, i.e., $\{1, 2, 4, 5, 6\}$.

Some Probability Definitions (cont)

Here are definitions based on two events A and B:

- Intersection of A and B $(A \cap B)$: The event containing all elements that are common to A and B.
 - E.g. $A = \{2, 4, 6\}$ and $B = \{4, 5, 6\}$, then $A \cap B = \{2, 4, 5, 6\}$.
- Union of A and B $(A \cup B)$: The event containing all elements that belong to A or B or both.
 - E.g. Let $A = \{a, b, c\}$ and $B = \{d, e\}$, then $A \cup B = \{a, b, c, d, e\}$.

23

Some Probability Definitions (cont)

Here are definitions based on two events A and B:

- Mutually Exclusive Events: Two events that cannot occur at the same time.
 - E.g. When flipping a coin, the events "heads" and "tails" are mutually exclusive.
 - Can be written as $A \cap B = \phi$
- Independent Events: Two events are independent if the occurrence of one does not affect the occurrence of the other.
 - E.g. Rolling a die and flipping a coin are independent events.

Example: Selection of Three Items

- Suppose that <u>three items are selected</u> at random from a manufacturing process. Each item is inspected and classified defective, **D**, or nondefective, **N**.
- Here's a list of all the elements of the sample space:

 $S = \{DDD, DDN, DND, DNN, NDD, NDN, NND, NNN\}$

• A tree diagram can also be constructed.

25

SJSU SAN JOSÉ STATE UNIVERSITY

Venn Diagrams

• We can represent the relationships of different sets using Venn diagrams.

Example

Construct a Venn diagram that would capture the following events:

- A: the card is red,
- B: the card is the jack, queen, or king of diamonds,
- C: the card is an ace.

What is the region for $A \cap C$?

What would these expressions equal to?

- $A \cap \bar{A}$
- $A \cap \bar{A}$
- \blacksquare $\overline{(A \cap B)}$
- \blacksquare $\overline{(A \cup B)}$

ઽૢૻઽ૫ઌ૾ૢઽૢૻઽ૫ઌ૾ૢઽૢૻઽ૫ઌ૾ૢઽૢૻઽ૫ઌ૾ૢઽૢૻઽ૫ઌ૾ૢઽૢૻઽ૫ઌ૾ૢઽૢૻઽ૫ઌ૾ૢઽૢૻઽ૫ઌ૾ૢઽૢૻઽ૫ઌ૾ૢઽૢૻઽ૫ઌ૾ૢઽૢૻઽ૫ઌ૾ૢઽૢૻઽ૫ઌ૾ૢઽૢૻઽ૫ઌ૾ૢઽૢૻઽ૫ઌ

27

Statement of a Sample Space

Sample spaces with a large or infinite number of sample points are best described by a statement or rule method.

• If the possible outcomes of an experiment are the set of cities in the world with a population over 1 million, our sample space is written as:

 $S = \{x \mid x \text{ is a city with a population over 1 million}\}$

• If S is the set of all points (x, y) on the boundary or the interior of a circle of radius 2 with center at the origin, we write the rule as:

$$S = \{(x, y) \mid x^2 + y^2 \le 4\}$$

Some Probability Definitions

• The probability of an event E is the ratio of the number of outcomes N_E favorable to event E to the total number of possible outcomes N.

$$P(E) = \frac{N_E}{N}$$

• E.g. Let $N_E = 4$ ace cards and N = 52 total cards. Then, $P(drawing\ an\ ace\ card) = 4/52$.

29

Some Probability Definitions

An empirical approach that uses experiments to count the occurrences of event E.

- Repeat an experiment a number of times. If event *E* occurs 30% of the time, then 0.3 can be a good approximation to the probability of event *E*.
- If n is the number of trials of the experiment and event E occurs on N_E of those trials, then

$$P(E) \approx \frac{N_E}{N}$$

• The approximation improves as value of n increases.

Some Basic Probability Laws

• For any event A:, the probability P(A) is:

$$0 \le P(A) \le 1$$

- The probability of event A occurring ranges from never (probability 0) to always (probability 1).
- The complement \bar{A} of an event A is the event that A does <u>not</u> occur:

$$P(\bar{A}) = 1 - P(A)$$

jsum sjsum sjs

31

Probabilities of Two Events

Let A be the set of outcomes favorable to some event E_A and B be the set of outcomes favorable to some event E_B . There may be some common outcomes in both A and B.

- A∪B is "A union B": event A or event B occurs
- $A \cap B$ is "A intersect B": event B and event B occurs

$$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• What if event A and event B are <u>mutually exclusive events</u>? $P(A \text{ and } B) = P(A \cap B) = 0$

$$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B)$$

• If event A and event B are independent, then:

$$P(A \cap B) = P(A) \cdot P(B)$$

Example: Probabilities of Two Events

What is the probability that a roll of a die produces an even number <u>or</u> a number between 2 and 5?

Let A = the set of even number outcomes
 Let B = the set of between 2 and 5 outcomes

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= P(\{2,4,6\}) + P(\{3,4\}) - P(\{4\})$$

$$= \frac{3}{6} + \frac{2}{6} - \frac{1}{6} = \frac{4}{6}$$

33

Example: Probabilities of Two Events

What is the probability that a roll of a die produces an even number <u>and</u> a number between 2 and 5?

Let A = the set of even number outcomes
 Let B = the set of between 2 and 5 outcomes

$$P(A \cup B) = P(A) \cdot P(B)$$

$$= P(\{2, 4, 6\}) \cdot P(\{3, 4\})$$

$$= \frac{3}{6} \cdot \frac{2}{6} = \frac{6}{36} = \frac{1}{6}$$

5 2 3 3