EE 242, Win 2022 Homework 6

HW6 Topics: CTFT and DTFT

NOTE: You will notice that some selected problems are given answers through "Show that" statements. Make sure you show all your work clearly for every problem.

Throughout the assignment, u(t) is the unit step function, r(t) = tu(t) and p(t) = u(t) - u(t-1)

Problem 1

Consider the signal x(t), which consists of a single rectangular pulse of unit height, is symmetric about the origin, and has a total width T_1 .

- (a) Sketch x(t).
- **(b)** Sketch $\tilde{x}(t)$, which is a periodic repetition of x(t) with period $T_0 = 3T_1/2$.
- (c) Compute $X(\omega)$, the Fourier transform of x(t). Sketch $|X(\omega)|$ for $|\omega| \leq 6\pi/T_1$.
- (d) Compute a_k , the Fourier series coefficients of $\tilde{x}(t)$. Sketch a_k for $k=0,\pm 1,\pm 2,\pm 3$.
- (e) Using your answers to (c) and (d), verify that, for this example,

$$a_k = \frac{1}{T_0} X(\omega) \bigg|_{\omega = (2\pi k)/T_0}$$

(f) Write a statement that indicates how the Fourier series for a periodic function can be obtained if the Fourier transform of one period of this periodic function is given.

Problem 2

Consider the periodic signal $\tilde{x}(t)$ in Figure P2-1, which is composed solely of impulses.

- (a) What is the fundamental period T_0 ?
- (b) Find the Fourier series of $\tilde{x}(t)$.
- (c) Find the Fourier transform of the signals in Figures P2-2 and P2-3.
- (d) $\tilde{x}(t)$ can be expressed as either $x_1(t)$ periodically repeated or $x_2(t)$ periodically repeated, i.e.,

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} x_1(t - kT_1), \quad \text{or}$$
 (P2-1)

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} x_2(t - kT_2)$$
 (P2-2)

Determine T_1 and T_2

(e) Verify that the Fourier series of $\tilde{x}(t)$ is composed of scaled samples of either $X_1(\omega)$ or $X_2(\omega)$.

Problem 3

Determine the Fourier series coefficients for the three periodic sequences shown in Figures P3-1 to P3-3. Since these three sequences all have the same nonzero values over one period, we suggest that you first determine an expression for the envelope of the Fourier series coefficients and then sample this envelope at the appropriate spacings in each case.

Problem 4

Consider a discrete-time system with impulse response

$$h[n] = (\frac{1}{2})^n u[n]$$

Figure P3-3

Determine the response to each of the following inputs:

(a)
$$x[n] = (-1)^n = e^{j\pi n}$$
 for all n

(b)
$$x[n] = e^{j(\pi n/4)}$$
 for all n

(c)
$$x[n] = \cos\left(\frac{\pi n}{4} + \frac{\pi}{8}\right)$$
 for all n