ИТМО, Лабораторная по алгоритмам, Строки, у2020 3 семестр (Осень 2021)

1А. Кубики

2 секунды, 256 мегабайт

Привидение Петя любит играть со своими кубиками. Он любит выкладывать их в ряд и разглядывать свое творение. Однако недавно друзья решили подшутить над Петей и поставили в его игровой комнате зеркало. Ведь всем известно, что привидения не отражаются в зеркале! А кубики отражаются.

Теперь Петя видит перед собой N цветных кубиков, но не знает, какие из этих кубиков настоящие, а какие — всего лишь отражение в зеркале. Помогите Пете! Выясните, сколько кубиков может быть у Пети. Петя видит отражение всех кубиков в зеркале и часть кубиков, которая находится перед ним. Часть кубиков может быть позади Пети, их он не видит.

Входные данные

Первая строка входного файла содержит число N ($1 \le N \le 100~000$) и количество различных цветов, в которые могут быть раскрашены кубики — M ($1 \le M \le 100~000$). Следующая строка содержит N целых чисел от 1 до M — цвета кубиков.

Выходные данные

Выведите в выходной файл все такие K, что у Пети может быть K кубиков.

входные данные	
6 2 1 1 2 2 1 1	
выходные данные	
6 5 3	

В приведенном примере взаимные расположения Пети, кубиков и зеркала приведены на рисунке. Петя смотрит вправо, затененные на рисунке кубики находятся позади Пети и поэтому он их не видит.

1В. Быстрый поиск подстроки в строке

2 секунды, 256 мегабайт

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки.

Входные данные

Первая строка входного файла содержит p, вторая — t ($1 \le |p|, |t| \le 10^6$). Строки состоят из букв латинского алфавита.

Выходные данные

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

входные дані	ные
aba abaCaba	
выходные да	нные
2 1 5	

1С. Поиск периода

2 секунды, 256 мегабайт

Дана строка s. Требуется найти минимальную по длине строку t, такую что s представима в виде конкатенации одной или нескольких строк t.

Входные данные

Первая строка входного файла содержит s ($1 \le |s| \le 10^6$). Строка состоит из букв латинского алфавита.

Выходные данные

Выведите длину искомой строки t.

входные данные	
abcabcabc	
выходные данные	
3	
входные данные	
abacaba	
выходные данные	

2А. Множественный поиск 2

3 секунды, 1024 мегабайта

Дан массив строк S_i и строка t. Требуется для каждой строки S_i определить, сколько раз она встречается в t как подстрока.

Входные данные

Первая строка входных данных содержит целое число n ($1 \le n \le 10^6$) — число элементов в s.

Следующие n строк содержат по одной строке s_i . Гарантируется, что сумма длин всех строк из s не превосходит 10^6 .

Последняя строка входных данных содержит строку t ($1 \le |t| \le 10^6$).

Все строки состоят из строчных латинских букв.

Выходные данные

Для каждой строки S_i выведите количество её вхождений в строку t в том же порядке, что и во входных данных.

входные д	цанные
abc abcdr abcde xabcdef	
выходные	данные
1	
0	
-	

Вы работаете в компании, специализирующейся на интернеттехнологиях, и сейчас вы разрабатываете спам-фильтр. Этот фильтр определяет, содержит ли строка спам, для этого он использует словарь «спам-слов». Если входная строка содержит по крайней мере одно слово из этого словаря в качестве подстроки, то фильтр считает, что это сообщение подозрительное. (примечание: вся строка считается подстрокой для самой себя)

Вы решили решить более сложную задачу: посчитать, сколько существует различных строк длины l, состоящих из строчных букв, который являются подозрительными для данного фильтра. Выведите ответ по модулю 10000.

Входные данные

В первой строке записано число n — число спам-слов в словаре $(1 \le n \le 10)$. Во второй строке перечислены спам-слова через пробел (длина строк не больше 10, строки состоят только из строчных латинских букв). В третьей строке задано число l $(1 \le l \le 2^{31}$ - 1).

Выходные данные

Выведите число подозрительных строк длины l по модулю 10000.

входные данные	
1	
x	
1	
выходные данные	
1	
входные данные	
2	

ab bb 2		
выходные	данные	
2		

входные данные	
2	
ab bb	
5	
выходные данные	
6350	

входные данные	
2 aab bba 5	
выходные данные	
4054	

данные
c x yyxyy xxxyxxx y yx xy zzzzzzzzzz
е данные

2С. Бинарные Вирусы

1 секунда. 512 мегабайт

Комитет По Исследованию Бинарных Вирусов обнаружил, что некоторые последовательности единиц и нулей являются кодами вирусов. Комитет изолировал набор кодов вирусов. Последовательность из единиц и нулей называется безопасной, если никакой её подотрезок (т.е. последовательность из соседних элементов) не является кодом вируса. Сейчас цель комитета состоит

Входные данные

последовательность из единиц и нулей.

Первая строка ввода содержит одно целое число n, равное количеству всех вирусных кодов. Каждая из следующих n строк содержит непустое слово, составленное из символов 0 и 1 — код вируса. Суммарная длина всех слов не превосходит $30\,000$.

в том, чтобы установить, существует ли бесконечная безопасная

Выходные данные

DV6 511110 53111110

Первая и единственная строка вывода должна содержать слово:

- ТАК если бесконечная, безопасная последовательность из нулей и единиц сушествует;
- NIE в противном случае.

входные данные	
3	
01	
11	
00000	
выходные данные	
NIE	
вхолные ланные	

входные данные	
3	
011	
11	
00000	
выходные данные	
TAK	

3А. Суффиксный массив

2 секунды, 512 мегабайт

Постройте суффиксный массив для заданной строки s, для каждых двух соседних суффиксов найдите длину максимального общего префикса.

Входные данные

Первая строка входного файла содержит строку s ($1 \le |s| \le 400\,000$). Строка состоит из строчных латинских букв.

Выходные данные

В первой строке выведите |s| различных чисел — номера первых символов суффиксов строки s так, чтобы соответствующие суффиксы были упорядочены в лексикографически возрастающем порядке. Во второй строке выведите |s| – 1 чисел — длины наибольших общих префиксов.

входные данные
ababb
выходные данные
1 3 5 2 4 2 0 1 1

3В. Количество подстрок

2 секунды, 512 мегабайт

Вычислите количество различных подстрок строки S.

Входные данные

Единственная строка входного файла содержит строку s ($1 \le |s| \le 400\ 000$). Строка состоит из строчных латинских букв.

Выходные данные

Выведите одно число — ответ на задачу.

входные данные	
ababb	
выходные данные	
11	

3С. Рефрен

2 секунды, 512 мегабайт

Рассмотрим последовательность n целых чисел от 1 до m. Подпоследовательность подряд идущих чисел называется рефреном, если произведение ее длины на количество вхождений в последовательность максимально.

По заданной последовательности требуется найти ее рефрен.

Входные данные

Первая строка входного файла содержит два целых числа: n и m ($1 \le n \le 150\ 000,\ 1 \le m \le 10$).

Вторая строка содержит n целых чисел от 1 до m.

Выходные данные

Первая строка выходного файла должна содержать произведение длины рефрена на количество ее вхождений. Вторая строка должна содержать длину рефрена. Третья строка должна содержать последовательность которая является рефреном.

входные данные		
8 3 1 2 1 2 1 1 2 1		
выходные данные		
9		
3		
1 2 1		

4А. Контрольное списывание

2 секунды, 64 мегабайта

Сегодня на уроке преподаватель Массивов Автомат Укконевич рассказывал своим ученикам про строки, суффиксные структуры и всё такое. Например, он рассказал им, как сравнить две строки A и B лексикографически. Если одна из них является префиксом другой, то более короткая будет лексикографически меньше, иначе необходимо сравнить символы стоящие на первой позиции, в которой они отличаются. Строка с меньшим по номеру в алфавите символом на данной позиции и будет лексикографически меньше.

Чтобы проверить понимание учениками нового материала, Автомат Укконевич дал им следующее задание: найти k-ю лексикографически непустую уникальную подстроку строки S.

Так как учитель знает, что Михаил В. и Роман Б. очень любят списывать у известного в узких кругах Максима И., каждый школьник получил своё число \boldsymbol{k} и вынужден был обратиться к вам за помощью.

Входные данные

В первой строке входного файла находится строка S ($|S| \leq 10^5$). Вторая строка содержит число k ($1 \leq k \leq 10^{18}$) — порядковый номер запрашиваемой подстроки.

Выходные данные

входные данные

abacaba

racadabra

Если ответ существует, выведите искомую подстроку строки S. В противном случае выведите её лексикографически максимальную подстроку.

10	
выходные данные	
acab	
BYORIUG ROUULO	
входные данные	
abracadabra 10000000000000000000	
выходные данные	

4В. Помогите, спасите!

4 секунды, 256 мегабайт

Дана строка. Найдите для каждого её префикса количество различных подстрок в нём.

Входные данные

В единственной строке входных данных содержится непустая строка S, состоящая из N ($1 \le N \le 2 \cdot 10^5$) маленьких букв английского алгравита

Выходные данные

Выведите N строк, в i-й строке должно содержаться количество различных подстрок в i-м префиксе строки S.

входные данные	
aabab	
выходные данные	
1	
2	
5	
8	
11	

выходные данные				
1				