Solution for the assignment of the third class

Kovacs Marton

9/29/2021

Importing data

```
raw <- read_tsv("data/boldog.txt", locale = locale(encoding = "UTF-8"))

##
## -- Column specification ------
## cols(
## .default = col_double()
## )
## i Use `spec()` for the full column specifications.</pre>
```

R sometimes have a problem with special characters. I will fix that now.

```
# first I fix the special Hungarian characters
Encoding(names(raw)) <- 'latin1'
# I translate them to English letters for the sake of simplicity
iconv(names(raw), from = "latin1", to = "ASCII//TRANSLIT")</pre>
```

```
[1] "index"
                              "Eletkora" "Gyermeke" "Isk"
                                                                "Anyagi"
                   "Neme"
  [7] "PElmeny%" "Testi-Fi" "AltLelki" "AltEgAll" "Fizero"
                                                                "Arcocska"
## [13] "Aggodalo" "Ideges"
                              "Feszult" "Nyugtala" "Diener1"
                                                                "Diener2"
## [19] "Diener3"
                              "Diener5"
                                         "Diener6"
                   "Diener4"
                                                    "Diener7"
                                                                "Diener8"
## [25] "Jollet"
                   "Savor"
                              "AVhat"
                                         "Onreg"
                                                    "Rezil"
                                                                "M_Flow"
                                         "GJspir"
## [31] "GJerz"
                   "GJpszi"
                              "GJszoc"
                                                    "GJerzpsz" "GJspszoc"
## [37] "PIK_MM"
                   "PIK_AV"
                              "PIK Onr"
                                         "PIK Rez"
                                                    "PPozErz"
                                                                "PElmely"
                                                    "PEgeszs"
## [43] "PPozKapc" "PErtCel"
                              "PTelj"
                                         "PBoldog"
                                                                "PNegErz"
## [49] "PMagany"
                   "PERMA"
```

Also, I like to use *snake_case* for my variable names, therefore I will transform the variable names.

```
raw <- janitor::clean_names(raw)</pre>
```

I will use this dataset for further assignments, so I save the cleaned version in .tsv format.

```
write_tsv(raw, "data/boldog_raw.tsv")
```

Data exploration

skimr::skim(raw) %>%

kable()

skim_type	skim variable	n_missing	complete_rate	numeric.mean	numeric.sd	numeric.p0	numeric.p2
numeric	index	0	1.000	972.344000	486.4327160	3.0	598.0000
numeric	neme	0	1.000	1.500000	0.5005008	1.0	1.0000
numeric	eletkora	0	1.000	52.522000	11.7257196	18.0	45.0000
numeric	gyermeke	0	1.000	1.750000	1.2371585	0.0	1.0000
numeric	isk	0	1.000	2.786000	0.8328212	1.0	2.0000
numeric	anyagi	0	1.000	3.100000	0.5644796	1.0	3.0000
numeric	p_elmeny_percent	0	1.000	58.460000	21.4183541	10.0	40.0000
numeric	testi_fi	3	0.994	4.164990	0.9572209	1.0	4.0000
numeric	alt_lelki	4	0.992	4.161290	1.0722362	1.0	4.0000
numeric	alt_eg_all	7	0.986	4.121704	1.1195761	1.0	3.0000
numeric	fizero	6	0.988	4.153846	1.1867317	1.0	3.0000
numeric	arcocska	0	1.000	2.570000	1.1435539	1.0	2.0000
numeric	aggodalo	0	1.000	2.772000	1.4325223	1.0	2.0000
numeric	ideges	0	1.000	2.490000	1.3746561	1.0	1.0000
numeric	feszult	0	1.000	2.610000	1.3992197	1.0	1.0000
numeric	nyugtala	0	1.000	2.406000	1.4578803	1.0	1.0000
numeric	diener1	0	1.000	5.514000	1.3286590	1.0	5.0000
numeric	diener2	0	1.000	5.228000	1.3219346	1.0	4.0000
numeric	diener3	0	1.000	5.574000	1.2310788	1.0	5.0000
numeric	diener4	0	1.000	5.418000	1.2611332	1.0	5.0000
numeric	diener5	0	1.000	5.756000	1.0727374	1.0	5.0000
numeric	diener6	0	1.000	5.768000	1.1245912	1.0	5.0000
numeric	diener7	0	1.000	5.620000	1.3738176	1.0	5.0000
numeric	diener8	0	1.000	5.532000	1.2148777	1.0	5.0000
numeric	jollet	0	1.000	4.488666	1.0610844	1.0	4.0000
numeric	savor	0	1.000	4.514667	1.0133860	1.0	4.0000
numeric	a_vhat	0	1.000	4.595600	0.9393964	1.0	4.0000
numeric	onreg	0	1.000	4.217332	1.2217368	1.0	3.3333
numeric	rezil	0	1.000	4.044667	1.0210453	1.0	3.3333
numeric	m_flow	0	1.000	4.773997	0.8909798	1.0	4.3333
numeric	g_jerz	0	1.000	4.152800	1.0313775	1.0	3.4000
numeric	g_jpszi	0	1.000	4.282000	0.9892843	1.0	3.7500
numeric	g_jszoc	0	1.000	3.949500	1.1789209	1.0	3.0000
numeric	g_jspir	0	1.000	4.245500	1.2003067	1.0	3.5000
numeric	g_jerzpsz	0	1.000	4.217400	0.9720234	1.1	3.6187
numeric	g_jspszoc	0	1.000	4.097500	1.1382101	1.0	3.3750
numeric	pik_mm	0	1.000	3.027334	0.6267487	1.0	2.6667
numeric	pik_av	0	1.000	3.175000	0.6232189	1.0	2.7500
numeric	pik_onr	0	1.000	3.064000	0.7912331	1.0	2.6667
numeric	pik_rez	0	1.000	3.150668	0.7424924	1.0	2.6667
numeric	p_poz_erz	0	1.000	21.742000	5.2751389	0.0	20.0000
numeric	p_elmely	0	1.000	22.360000	4.5585041	8.0	20.0000
numeric	p_poz_kapc	0	1.000	22.442000	5.5671017	0.0	19.0000
numeric	p_ert_cel	0	1.000	23.374000	4.6790931	0.0	21.0000
numeric	p_telj	0	1.000	22.716000	4.3420099	0.0	21.0000
numeric	p_boldog	0	1.000	7.404000	2.1217416	0.0	7.0000
numeric	p_egeszs	0	1.000	22.260000	5.2248443	0.0	19.0000
numeric	p_neg_erz	0	1.000	9.766000	5.7089779	0.0	5.0000
numeric	p_magany	0	1.000	3.162000	3.0565407	0.0	0.0000
numeric	perma	0	1.000	169.370000	31.2671131	22.0	155.0000
	<u> </u>						

Transforming variables

I will also save this version with the more informative labels for future use.

```
write_tsv(processed, "data/boldog_processed.tsv")
```

1. On which scales do people differ the most in their education level?

To investigate this question I decided to run several one-way ANOVA tests with the education level as the independent variable, and the different scales as the dependent variable. I will include only interval scales. Then, I will compare the differences with a standardized effect size measure, eta-square. The comparison with the biggest eta-square will be the answer.

Also, I will run the ANOVA tests in bulk in one iteration as I did in the second assignment. This way I can save some time typing, which is always nice. The results will be saved in a table format for an easy comparison. Also, a plot with the different standardized effect sizes would be helpful.

I am running type 2 ANOVA tests.

```
# Selecting and saving interval scales
interval_vars <-
    processed %>%
    select(26:50) %>%
    names()

# Converting participant id and isk to factor variable
isk_scale_data <-
    processed %>%
    mutate(isk = as.factor(isk),
        index = as.factor(index))

# Checking the order of levels for isk as a factor variable
levels(processed$isk)
```

NULL

```
# Function to run the one-way ANOVA
isk_anova <- function(data, dv_var) {</pre>
  eval(
    substitute(
      # The ANOVA
      ezANOVA(data = data, dv = dv_var, wid = index, between = isk, detailed = TRUE),
      list(dv_var = dv_var)
      )
   )
}
# Running the ANOVA tests
isk_scale_res <-
  tibble(
   variable = interval_vars,
   anova_res = map(variable,
                     ~ isk_anova(data = isk_scale_data, dv_var = .x)),
   f_value = map_dbl(anova_res, ~ pluck(.x, "ANOVA", "F")),
   p_value = map_dbl(anova_res, ~ pluck(.x, "ANOVA", "p")),
   generalized_eta_square = map_dbl(anova_res, ~ pluck(.x, "ANOVA", "ges"))
   ) %>%
  select(-anova_res) %>%
  arrange(desc(generalized_eta_square))
isk_scale_res %>%
  kable(
   format = "latex",
   col.names = c("Variable", "F value", "p value", "Generalized Eta-squared"),
   align = c("l", "c", "c", "c"),
   caption = "One-way ANOVA Results for Each Scale Variable by Three Education Level"
  ) %>%
  row_spec(row = 0, align = "c") %>%
  kable_styling(full_width = TRUE) %>%
  add_footnote("Results are arranged in descending order by the size of the effec size.")
```

To answer the question I only consider significant effects. The highest difference between the educational levels were present on the *avhat* variable which is a subscale of the MET test (Vargha et al. (2020)).

Lets see the results on a plot as well.

Table 1: One-way ANOVA Results for Each Scale Variable by Three Education Level

Variable	F value	p value	Generalized Eta-squared
a_vhat	6.7985628	0.0001691	0.0394962
onreg	6.3436851	0.0003163	0.0369513
p_telj	6.2677818	0.0003511	0.0365253
pik_mm	6.0417033	0.0004792	0.0352543
p_ert_cel	5.8707103	0.0006062	0.0342907
m_flow	5.8165120	0.0006530	0.0339849
perma	5.2291004	0.0014630	0.0306580
p_poz_erz	4.6515348	0.0032269	0.0273644
p_boldog	4.5911821	0.0035044	0.0270190
pik_av	4.5260853	0.0038303	0.0266461
pik_onr	4.4917908	0.0040140	0.0264495
p_elmely	4.3638893	0.0047796	0.0257157
g_jerz	4.0535990	0.0072940	0.0239310
pik_rez	3.6508889	0.0125978	0.0216049
p_neg_erz	3.6280982	0.0129924	0.0214729
g_jerzpsz	3.4581228	0.0163474	0.0204875
savor	3.2765573	0.0208788	0.0194328
p_poz_kapc	2.5696220	0.0536523	0.0153042
g_jpszi	2.4290833	0.0645856	0.0144793
g_jszoc	2.3981773	0.0672662	0.0142977
g_jspszoc	1.8849284	0.1311545	0.0112723
g_jspir	1.4689255	0.2221533	0.0088064
p_egeszs	1.3123623	0.2696230	0.0078752
rezil	1.1208468	0.3401198	0.0067337
p_magany	0.6074972	0.6103794	0.0036609

^a Results are arranged in descending order by the size of the effec size.

```
theme(
  legend.position = c(.9, .35)
)
```


2. On which scales do people differ more if we merge the data of the two lowest educational level?

```
p_value = map_dbl(anova_res, ~ pluck(.x, "ANOVA", "p")),
   generalized_eta_square = map_dbl(anova_res, ~ pluck(.x, "ANOVA", "ges"))
   ) %>%
  select(-anova_res) %>%
  arrange(desc(generalized_eta_square))
## Warning: Converting "index" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning: Converting "index" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
\mbox{\tt \#\#} well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning: Converting "index" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning: Converting "index" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning: Converting "index" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning: Converting "index" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
```

- ## Warning: Converting "index" to factor for ANOVA.
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
 ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Converting "index" to factor for ANOVA.
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Converting "index" to factor for ANOVA.
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Converting "index" to factor for ANOVA.
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Converting "index" to factor for ANOVA.
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Converting "index" to factor for ANOVA.
- $\tt \#\#$ Warning: Data is unbalanced (unequal N per group). Make sure you specified a $\tt \#\#$ well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- $\mbox{\tt \#\#}$ Warning: Converting "index" to factor for ANOVA.
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()

- ## Warning: Converting "index" to factor for ANOVA.
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
 ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Converting "index" to factor for ANOVA.
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
 ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Converting "index" to factor for ANOVA.
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Converting "index" to factor for ANOVA.
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Converting "index" to factor for ANOVA.
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Converting "index" to factor for ANOVA.
- $\tt \#\#$ Warning: Data is unbalanced (unequal N per group). Make sure you specified a $\tt \#\#$ well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Converting "index" to factor for ANOVA.
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()

```
## Warning: Converting "index" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning: Converting "index" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning: Converting "index" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning: Converting "index" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning: Converting "index" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
isk_scale_merged_res %>%
 kable(
   format = "latex",
   col.names = c("Variable", "F value", "p value", "Generalized Eta-squared"),
   align = c("1", "c", "c", "c"),
   caption = "One-way ANOVA Results for Each Scale Variable by Education Level"
 ) %>%
  row_spec(row = 0, align = "c") %>%
  kable_styling(full_width = TRUE) %>%
```

Run a two-way ANOVA with educational level and gender on the scale type variables. Is there a scale where the interaction significant? How big is the eta-squared here?

add_footnote("Results are arranged in descending order by the size of the effec size.")

Table 2: One-way ANOVA Results for Each Scale Variable by Education Level

Variable	F value	p value	Generalized Eta-squared
m_flow	8.7183317	0.0001899	0.0338947
onreg	8.7044261	0.0001925	0.0338424
p_ert_cel	8.3464017	0.0002721	0.0324957
a_vhat	8.0119699	0.0003762	0.0312343
p_telj	7.4216047	0.0006669	0.0289995
pik_mm	7.0311525	0.0009746	0.0275158
perma	6.7933451	0.0012283	0.0266100
pik_av	6.2774193	0.0020306	0.0246388
pik_onr	5.5604026	0.0040904	0.0218861
p_neg_erz	5.4508846	0.0045530	0.0214643
pik_rez	5.2219310	0.0056970	0.0205813
p_poz_erz	4.9598958	0.0073648	0.0195688
p_boldog	4.4416829	0.0122472	0.0175601
p_elmely	4.0589266	0.0178432	0.0160712
g_jerz	3.9933334	0.0190329	0.0158156
p_poz_kapc	3.7903888	0.0232425	0.0150239
savor	3.7593595	0.0239639	0.0149028
g_jerzpsz	3.2003591	0.0415887	0.0127150
g_jszoc	3.1986510	0.0416589	0.0127083
g_jspszoc	2.6622574	0.0707857	0.0105998
g_jspir	2.1824140	0.1138485	0.0087059
g_jpszi	2.0510451	0.1296876	0.0081861
rezil	1.6009931	0.2027345	0.0064014
p_egeszs	1.4480227	0.2360244	0.0057933
p_magany	0.9021394	0.4063641	0.0036172

^a Results are arranged in descending order by the size of the effec size.

```
# Converting neme to a factor variable
isk_scale_merged_data <-</pre>
  isk_scale_merged_data %>%
  mutate(neme = as.factor(neme),
         index = as.factor(index))
# Function to run the two-way ANOVA
isk neme anova <- function(data, dv var) {
  eval(
   substitute(
      # The ANOVA
      ezANOVA(data = data, dv = dv_var, wid = index, between = .(isk, neme), detailed = TRUE),
      list(dv_var = dv_var)
   )
}
# Running the ANOVA tests
isk_neme_scale_res <-</pre>
  tibble(
   variable = interval_vars,
   anova_res = map(variable,
                     ~ isk_neme_anova(data = isk_scale_merged_data, dv_var = .x)[["ANOVA"]]),
   interaction_res = map(anova_res, . %>% filter(Effect == "isk:neme")),
   f_value = map_dbl(interaction_res, . %>% pull(F)),
   p_value = map_dbl(interaction_res, . %>% pull(p)),
   generalized_eta_square = map_dbl(interaction_res, . %>% pull(ges))
   ) %>%
  select(-anova_res, -interaction_res) %>%
  arrange(desc(generalized_eta_square))
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
```

- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
 ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
 ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
 ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()

- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()
- ## Warning: Data is unbalanced (unequal N per group). Make sure you specified a ## well-considered value for the type argument to ezANOVA().
- ## Coefficient covariances computed by hccm()

Table 3: Results of the Interaction Terms of the Two-way ANOVA for Each Scale Variable by Education Level

Levei			
Variable	F value	p value	Generalized Eta-squared
p_neg_erz	6.5937844	0.0014925	0.0260014
p_elmely	6.1977004	0.0021958	0.0244777
m_flow	5.0882903	0.0064959	0.0201846
p_poz_erz	4.4520338	0.0121262	0.0177053
perma	4.2788559	0.0143757	0.0170283
p_telj	3.5018631	0.0308916	0.0139794
g_jpszi	3.4871377	0.0313434	0.0139214
g_jerzpsz	3.3440698	0.0360938	0.0133579
g_jspir	2.8624591	0.0580762	0.0114561
p_egeszs	2.8524759	0.0586522	0.0114166
g_jerz	2.7619516	0.0641441	0.0110583
rezil	2.1931892	0.1126455	0.0088012
g_jspszoc	1.6516000	0.1927998	0.0066422
p_ert_cel	1.5769930	0.2076336	0.0063441
pik_onr	1.2194553	0.2962786	0.0049128
a_vhat	1.1076563	0.3311512	0.0044644
savor	0.8243678	0.4391145	0.0033264
g_jszoc	0.8033598	0.4484060	0.0032419
pik_mm	0.7306656	0.4821080	0.0029494
p_boldog	0.7011803	0.4964925	0.0028308
p_poz_kapc	0.4606435	0.6311483	0.0018615
pik_rez	0.3260950	0.7218918	0.0013185
p_magany	0.2208301	0.8019320	0.0008933
pik_av	0.1930446	0.8245074	0.0007809
onreg	0.1149874	0.8914012	0.0004653

^a Results are arranged in descending order by the size of the effec size.

```
isk_neme_scale_res %>%
kable(
   format = "latex",
   col.names = c("Variable", "F value", "p value", "Generalized Eta-squared"),
   align = c("l", "c", "c", "c"),
   caption = "Results of the Interaction Terms of the Two-way ANOVA for Each Scale Variable by Educati
) %>%
   row_spec(row = 0, align = "c") %>%
   kable_styling(full_width = TRUE) %>%
   add_footnote("Results are arranged in descending order by the size of the effec size.")
```

4. Run the same as before but with a robust equivalent of the ANOVA.

As a robust non-parametric alternative for the two-way ANOVA I will use the medians instead of the means for the calculation.

```
# Function to run the robust two-way ANOVA
isk_neme_robust_anova <- function(dv_var) {</pre>
  pbad2way(as.formula(paste(dv_var, "~ isk:neme")), data = isk_scale_merged_data, est = "median")
# Running the ANOVA tests
isk_neme_scale_robust_res <-</pre>
  tibble(
    variable = interval_vars,
    anova res = map(variable,
                     ~ isk_neme_robust_anova(dv_var = .x)),
   p value = map dbl(anova res, ~pluck(.x, "AB.p.value"))
   ) %>%
  select(-anova_res) %>%
  mutate(significance = case_when(p_value <= 0.05 ~ "Significant",</pre>
                                 p_value > 0.05 ~ "Nonsignificant"))
## Aggregation requires fun.aggregate: length used as default
isk_neme_scale_robust_res %>%
  kable(
   format = "latex",
   col.names = c("Variable", "p value", "Significance"),
   align = c("1", "c", "c"),
    caption = "Results of the Interaction Terms of the Robust Two-way ANOVA for Each Scale Variable by
  ) %>%
  row_spec(row = 0, align = "c") %>%
  kable_styling(full_width = TRUE)
```

Table 4: Results of the Interaction Terms of the Robust Two-way ANOVA for Each Scale Variable by Education Level

Variable	p value	Significance
savor	0.0333890	Significant
a_vhat	0.0434057	Significant
onreg	0.0400668	Significant
rezil	0.0450751	Significant
m_flow	0.0467446	Significant
g_jerz	0.0450751	Significant
g_jpszi	0.0467446	Significant
g_jszoc	0.0484140	Significant
g_jspir	0.0367279	Significant
g_jerzpsz	0.0584307	Nonsignificant
g_jspszoc	0.0383973	Significant
pik_mm	0.0317195	Significant
pik_av	0.0434057	Significant
pik_onr	0.0367279	Significant
pik_rez	0.0434057	Significant
p_poz_erz	0.0467446	Significant
p_elmely	0.0317195	Significant
p_poz_kapc	0.0617696	Nonsignificant
p_ert_cel	0.0434057	Significant
p_telj	0.0617696	Nonsignificant
p_boldog	0.0567613	Nonsignificant
p_egeszs	0.0584307	Nonsignificant
p_neg_erz	0.0467446	Significant
p_magany	0.0417362	Significant
perma	0.0500835	Nonsignificant

5. Is there a difference between the means of the subscales of the Globalis Jollet scale?

To answer this question first I select the needed variables and transform them to long format.

```
global_comparison_data <-</pre>
  processed %>%
  select(index, g_jpszi, g_jszoc, g_jspir, g_jerzpsz) %>%
  gather(key = "subscale", value = "value", -index)
# Running the ANOVA
ezANOVA(dv = value, wid = index, within = subscale, data = global_comparison_data)
## Warning: Converting "index" to factor for ANOVA.
## Warning: Converting "subscale" to factor for ANOVA.
## $ANOVA
##
      Effect DFn DFd
                                           p p<.05
## 2 subscale 3 1497 39.99037 7.385872e-25
                                              * 0.01434657
##
## $`Mauchly's Test for Sphericity`
##
      Effect
                     W
                                    p p<.05
## 2 subscale 0.2195681 7.917897e-161
##
## $`Sphericity Corrections`
##
      Effect
                    GGe
                               p[GG] p[GG] < .05 HFe
                                                                p[HF] p[HF]<.05
## 2 subscale 0.6126106 3.162009e-16
                                             * 0.6147664 2.830209e-16
```

According to the one-way repeated measures ANOVA there is a significant difference between the subscales.

6. Two-way mixed ANOVA with the four subscales and gender.

Again, we start with the data transformation.

Warning: Converting "neme" to factor for ANOVA.

```
global_comparison_gender_data <-
   processed %>%
   select(index, neme, g_jpszi, g_jszoc, g_jspir, g_jerzpsz) %>%
   gather(key = "subscale", value = "value", -index, -neme)

# Running the ANOVA
ezANOVA(dv = value, wid = index, within = subscale, between = neme, data = global_comparison_gender_dat

## Warning: Converting "index" to factor for ANOVA.
## Warning: Converting "subscale" to factor for ANOVA.
```

```
## $ANOVA
                                                  p p<.05
##
            Effect DFn DFd
                                    F
## 2
                            3.578935 5.909653e-02
              neme
                        498
                                                          0.005846805
                     3 1494 40.190380 5.631951e-25
                                                        * 0.014447752
## 3
          subscale
## 4 neme:subscale
                     3 1494
                             3.495712 1.507624e-02
                                                        * 0.001273447
##
## $`Mauchly's Test for Sphericity`
                                        p p<.05
##
            Effect
                          W
## 3
          subscale 0.220302 3.845292e-160
## 4 neme:subscale 0.220302 3.845292e-160
## $`Sphericity Corrections`
                                                                      p[HF]
                                    p[GG] p[GG]<.05
                                                           HFe
##
            Effect
                         GGe
## 3
          subscale 0.6124615 2.694281e-16
                                                   * 0.6146203 2.409807e-16
## 4 neme:subscale 0.6124615 3.448531e-02
                                                   * 0.6146203 3.432600e-02
     p[HF]<.05
## 3
## 4
```

According to the results there is a significant interaction between the subscales and the gender. Also, the subscales have a significant main effect, but not gender.

References

Vargha, András, Virág Zábó, Regina Török, and Attila Oláh. 2020. "A jóllét és a Mentális Egészség mérése: A Mentális Egészség Teszt." Mentálhigiéné és Pszichoszomatika 21 (3): 281–322.