Flow Networks and Bipartite Matching

Alexandra Stefan

Flow Network

- A flow network is a directed graph G = (V,E) in which each edge, (u,v) has a non-negative capacity, c(u,v) ≥ 0, and for any pair of vertices (u,v) it has only one edge (it does not have edges in both directions: both (u,v) and (v,u)).
 - 2 special vertices: source, s, and sink, t.
- Applications: Shipping network, Internet network
- A flow in G is a function f:VxV -> R, s.t.:
 - Capacity constraint: for any two vertices u,v, $0 \le f(u,v) \le c(u,v)$
 - Flow conservation: for each $u \in V \{s, t\}$: $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$
- Goal: find a maximum flow through G.

Give maximum flow example:

Ford-Fulkerson Method

Ford-Fulkerson-Method(*G*,*s*,*t*)

- 1. Initialize flow f to 0
- 2. While there exists an augmenting path , p, in the residual network G_f , augment flow f along p
- 3. Return *f*
- Residual graph G_f : $c_f(u,v) = \begin{cases} c(u,v) f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E, \\ 0 & \text{otherwise}. \end{cases}$
- Augmenting path: a path in G_f from s to t.

Ford-Fulkerson Method Work sheet

- Additional properties for a flow network:
 - No self loops.
 - Every vertex, v, is on a path from s to t => connected and |E| ≥ |V|-1
- Antiparallel edges
 - Edges in both directions: (u,v) and (v,u)

Variations

- Multiple source and multiple sink nodes:
 - Add one extra source and one extra sink
- Antiparallel edges exist:
 - If both (u, v) and (v, u):
 - Add vertex v',
 - Replace edge (v,u) with edges (v, v') and (v', u).

Max-Flow Min-Cut Theorem

- If f is a flow in a flow network G = (V,E) with source s and sink t, then the following conditions are equivalent:
 - 1. f is a maximum flow in G.
 - 2. The residual network G_f contains no augmenting paths.
 - 3. |f| = c(S,T) for some cut (S,T) of G.
 - 1. c(S,T) is the sum of flows on edges from S to T minus the sum of flows on edges from T to S.

Time Complexity Analysis

- If the flow has real values, the algorithm may never terminate.
- Worst case: $O(E | f^*|)$ (f* maximum flow)
 - In G_f , pick paths that use the small-capacity edges: (u,v) and, when available (v,u).

Edmonds-Karp Algorithm

- In the residual graph, pick as augmenting path the shortest path from s to t (given by breadthfirst search when all edges have weight 1).
- Time complexity of Edmonds-Karp algorithm:
 O(VE²)
 - Intuition:
 - Finding the augmenting path takes O(E) (due to BFS)
 - Each edge can become critical at most O(V) times.
 - There are O(E) edges in the residual graph.

Bipartite Matching

- Bipartite undirected graph, G = (V,E):
 - -V=LUR
 - All edges are between L and R.
- Model dependencies:
 - Employees and Jobs
 - Resources and processes
- Goal: maximize pairing vertices
 - E.g. assign employees s.t. maximum number of jobs is done.
 - p_1 p_2 p_3 p_4 Bipartite graph

- Solved with maximum-flow
 - Add extra source and sink nodes
 - Put capacity of 1 on all edges
 - Solve for maximum flow.

Corresponding flow network (with capacity 1 for each edge)

Work sheet

