2. La adjunta de un operador lineal

A lo largo de esta sección E y F denotarán e.p.i.'s finitos dimensionales. Mostraremos cómo el producto interno nos permite asociar a cada transformación lineal $A:E\to F$ una nueva transformación $A^*:F\to E$, llamada la adjunta de A. Esta transformación nos dará una nueva visión de la transformación A sobre una nueva perspectiva.

Theorem 2.1. La aplicación $\xi: E \to E^*$, $v \mapsto f_v$, donde $f_v(w) = \langle w, v \rangle$ para todo $w \in E$, es un isomorfismo.

Demostración. Ejercicio.

Observación 2.2. El teorema 2.1 es responsable por el poco (o ningún) uso que se hace de funcionales lineales en espacios, como \mathbb{R}^n , donde hay un producto interno: funcionales son substituidos por vectores y la acción de un funcional sobre un vector es sustituida por un producto interno.

Propiedad 2.3. Sea $A: E \to F$ una transformación lineal. Existe una única transformación lineal $B: F \to E$ tal que

$$\forall v \in E, \, \forall w \in F : \quad \langle Av, w \rangle = \langle v, Bw \rangle.$$

Demostración. Ejercicio.

Definición 2.4 (La adjunta). Sea $A: E \to F$ una transformación lineal. Llamaremos de la **adjunta** de A a la transformación lineal $A^*: F \to E$ tal que

$$\forall v \in E, \forall w \in F : \langle Av, w \rangle = \langle v, A^*w \rangle.$$

Theorem 2.5. Sean $\mathcal{U} = \{u_1, \dots, u_n\} \subset E$ y = $\{v_1, \dots, v_m\} \subset F$ bases ortonormales. Si $\mathbf{a} = [a_{ij}] \in \mathcal{M}(m \times n)$ es la matriz de la transformación lineal $A : E \to F$ en las bases \mathcal{U} ,, entonces la matriz de la adjunta A^* en las bases \mathcal{U} es la transpuesta $\mathbf{a}^{\top} = [a_{ji}] \in \mathcal{M}(n \times m)$ de \mathbf{a} .

Demostraci'on. Ejercicio.

Definición 2.6 (Rango). El **rango** de una transformación lineal $A: E \to F$ es la dimensión del subespacio A(E).

Corolario 2.7. Una transformación lineal y su transpuesta tienen el mismo rango.

Demostraci'on. Ejercicio.

Propiedad 2.8. Sean $A, B : E \to F$ y $C : F \to G$ transformaciones lineales, donde G es un espacio vectorial de dimensión finita. Sea $I : E \to E$ la identidad. Se cumple:

(I)
$$I^* = I$$

(II)
$$(A+B)^* = A^* + B^*$$

(III)
$$(\alpha A)^* = \alpha A^*$$

(IV)
$$(CA)^* = A^*C^*$$

(v)
$$A^{**} = A$$

Demostración. Ejercicio.

Propiedad 2.9. Sean $\mathbf{a}, \mathbf{b} \in \mathcal{M}(m \times n)$ y $\mathbf{c} \in \mathcal{M}(p \times m)$. Sea $\mathbf{I} \in \mathcal{M}(n \times n)$ la matriz identidad. Se cumple:

$$(I) \mathbf{I}^{\top} = \mathbf{I}$$

$$(\mathrm{II}) \ (\mathbf{a} + \mathbf{b})^\top = \mathbf{a}^\top + \mathbf{b}^\top$$

(III)
$$(\alpha \mathbf{a})^{\top} = \alpha \mathbf{a}^{\top}$$

$$(IV) (\mathbf{ca})^{\top} = \mathbf{a}^{\top} \mathbf{c}^{\top}$$

$$(v) \ (\mathbf{a}^{\top})^{\top} = \mathbf{a}$$

Demostración. Ejercicio.

Propiedad 2.10. Sean $A: E \to F$ una transformación lineal y $\mathbf{a} \in \mathcal{M}(n \times n)$. Se cumple:

- (I) A es inyectiva \Rightarrow A^* es sobreyectiva.
- (II) A es sobreyectiva \Rightarrow A^* es inyectiva.
- (III) A es isomorfismo \Leftrightarrow A^* es isomorfismo.
- (IV) A^* es isomorfismo \Rightarrow $(A^*)^{-1} = (A^{-1})^*$.
- (v) \mathbf{a} es invertible \Leftrightarrow \mathbf{a}^{\top} es invertible.
- $(VI) \ \mathbf{a}^\top \ \mathrm{es \ invertible} \quad \Rightarrow \quad \left(\mathbf{a}^\top\right)^{-1} = \left(\mathbf{a}^{-1}\right)^\top.$

Demostración. Ejercicio.

Las nociones de rectas y planos perpendiculares de la geometría elemental se extienden en álgebra lineal al concepto de complemento ortogonal, el cual ayuda a entender las relaciones entre una transformación lineal y su adjunta (ver teorema 2.19)

Definición 2.11 (Complemento ortogonal). El **complemento ortogonal** de un conjunto no vacío $X \subset E$ es el conjunto

$$X^{\perp} := \{ v \in E ; \langle v, x \rangle = 0, \forall x \in X \}.$$

Propiedad 2.12. Sean $X, Y \subset E$ no vacíos. Se cumple:

(I) X^{\perp} es un subsespacio vectorial.

$$\text{(II)} \ \ X \subset Y \quad \Rightarrow \quad Y^{\perp} \subset X^{\perp}.$$

- $(III) \ X \cap X^{\perp} = \{0\}.$
- (IV) $\operatorname{span}(X)^{\perp} = X^{\perp}$.

Demostración. Ejercicio.

Ejemplo 2.13. Se tiene que
$$\{0\}^{\perp} = E \text{ y } E^{\perp} = \{0\}.$$

Ejemplo 2.14. Sea $F \subset \mathbb{R}^n$ el subespacio vectorial generado por el vector no nulo $v = (a_1, \dots, a_n)$. Luego F^{\perp} es el hiperplano definido por la ecuación

$$a_1x_1 + \dots + a_nx_n = 0.$$

Theorem 2.15. Para todo subespacio vectorial $F \subset E$ se tiene la descomposición en suma directa

$$E = F \oplus F^{\perp}$$
.

Demostración. Ejercicio.

Corolario 2.16. Para todo subespacio vectorial $F \subset E$ se tiene

$$\dim(E) = \dim(F) \oplus \dim(F^{\perp}).$$

Demostración. Ejercicio.

Corolario 2.17. Para todo subespacio vectorial $F \subset E$ se tiene

$$(F^{\perp})^{\perp} = F.$$

Demostración. Ejercicio.

Observación 2.18. En la sección anterior vimos que la proyección de un vector $v \in E$ sobre un subespacio $F \subset E$ está dado por el vector

$$P_F(v) = \sum_{i=1}^{m} \langle u_i, v \rangle u_i,$$

donde $\{u_1, \ldots, u_m\} \subset F$ es una base ortonormal de F. El teorema 2.15 nos da un camino para demostrar que dicho vector no depende de la base ortonormal escogida. Ejercicio.

Theorem 2.19. Sean $A: E \to F$ una transformación lineal. Se cumple:

- (I) $\ker(A^*) = \operatorname{im}(A)^{\top}$.
- (II) $\operatorname{im}(A^*) = \ker(A)^{\top}$.
- (III) $\ker(A) = \operatorname{im}(A^*)^{\top}$.
- (IV) $\operatorname{im}(A) = \ker(A^*)^{\top}$.

Demostración. Ejercicio.

Corolario 2.20. A fin de que un sistema lineal de m ecuaciones lineales con n incógnitas:

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad (i = 1, \dots, m)$$

posea solución es necesario y suficiente que el vector $b = (b_1, \ldots, b_m) \in \mathbb{R}^m$ sea perpendicular a toda solución $y = (y_1, \ldots, y_m)$ del sistema homogéneo transpuesto

$$\sum_{j=1}^{m} a_{ji} y_j = 0 \quad (i = 1, \dots, n).$$

Demostración. Ejercicio.

Observación 2.21. El corolario 2.20 nos permite concluir la existencia de soluciones sin que sea necesario exhibir una de ellas. □

Corolario 2.22. Una transformación lineal y su transpuesta tienen el mismo rango.

Demostración. Ejercicio.

Observación 2.23. La prueba del corolario 2.22 es una alternativa para la prueba del corolario 2.7 sin el uso de matrices. □

Definición 2.24. Un operador $A \in \text{End}(E)$ será llamado de **normal** si A y A^* conmutan.

Ejercicio 2.1. Sea $A \in \mathcal{L}(E, F)$. Probar que

- (I) Si A es sobreyectiva, entonces AA^* es invertible y $A^*(AA^*)^{-1}$ es una inversa a la derecha de A.
- (II) Si A es invertiva, entonces A^*A es invertible y $(A^*A)^{-1}A^*$ es una inversa a la izquierda de A.

Ejercicio 2.2. Encuentre una inversa a la derecha para la transformación lineal $A: \mathbb{R}^3 \to \mathbb{R}^2$, $(x, y, z) \mapsto (x + 2y + 3z, 2x - y - z)$.

Ejercicio 2.3. Encuentre una inversa a la izquierda para la transformación lineal $A: \mathbb{R}^2 \to \mathbb{R}^4, (x,y) \mapsto (x+2y,2x-y,x+3y,4x+y).$

Ejercicio 2.4. Sea $P: E \to E$ un operador de proyección. Pruebe que también P^* es un operador de proyección y dé un ejemplo en que $P \neq P^*$.

Ejercicio 2.5. Considere en $E := \mathcal{M}(n \times n)$ el producto interno definido por

$$\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{(i,j) \in J} a_{ij} b_{ij},$$

donde $J := \{1, ..., n\} \times \{1, ..., n\}$ y $\mathbf{a} = [a_{ij}], \mathbf{b} = [b_{ij}] \in E$. Muestre que el subespacio vectorial A de las matrices antisimétricas es el complemento ortogonal del subespacio S de las matrices simétricas.

Ejercicio 2.6. Considere en $E := \{f : [-1,1] \to \mathbb{R} ; f \text{ es continua}\}$ el producto interno definido por

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx,$$

donde $f, g \in E$. Muestre que el subespacio vectorial P de las funciones pares es el complemento ortogonal del subespacio I de las funciones impares.

Ejercicio 2.7. Sean $A, B \in \text{End}(E)$. Pruebe que si A y B conmutan, entonces también $A^* y B^*$ conmutan.

Ejercicio 2.8. Sea $\mathbf{a} \in \mathcal{M}(m \times n)$. Demuestre que o el sistema $\mathbf{a}x = b$ tiene soloución cualquiera que sea $b \in \mathcal{M}(m \times 1)$ o el sistema homogéneo transppuesto $\mathbf{a}^{\top}y = 0$ admite una solución no trivial.

Ejercicio 2.9. Sea $X \subset E$ no vacío. Pruebe que $X^{\top \top} = \operatorname{span}(X)$.

Ejercicio 2.10. Sean $F, G \subset E$ subespacios vectoriales. Demuestre que $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$ y $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Ejercicio 2.11. La teoría nos dice que la traza de toda matriz asociada a un endomorfismo es siempre la misma. Considere en $\mathcal{L}(E, F)$ la aplicación definida por

$$\langle A, B \rangle = (A^*B),$$

donde $A, B \in \mathcal{L}(E, F)$. Pruebe que esto define un producto interno en $\mathcal{L}(E, F)$ y que

$$\langle A, B \rangle = \sum_{(i,j) \in J} a_{ij} b_{ij},$$

donde $J := \{1, ..., n\} \times \{1, ..., n\}$ y $\mathbf{a} = [a_{ij}]$ y $\mathbf{b} = [b_{ij}]$ son las matrices de A y B en relación a bases ortonormales de E y F, respectivamente.

Ejercicio 2.12. Sea $A: \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (x + y + z, 3x - 2y - z, -2x + 3y + 2z)$. Obtenga bases para los siguientes subespacios: $\operatorname{im}(A), \ker(A), \operatorname{im}(A^*)$ y $\ker(A^*)$.

Ejercicio 2.13. Sea $A \in \mathcal{L}(E, F)$. Pruebe que

- (I) $A|_{im(A^*)}$ define un isomorfismo entre $im(A^*)$ e im(A).
- (II) $A^*|_{im(A)}$ define un isomorfismo entre im(A) e $im(A^*)$.

¿Son estos isomorfismos uno el inverso del otro?

Ejercicio 2.14. Sea $A \in \text{End}(E)$. Pruebe que

$$\sum_{i=1}^{n} |Au_i|^2 = \sum_{i=1}^{n} |A^*u_i|^2,$$

donde $\mathcal{U} := \{u_1, \dots, u_n\}$ es una base ortonormal de E.

Ejercicio 2.15. Sean $A, B \in \text{End}(E)$. Demuestre que si A y B conmutan, entonces $\ker(B)$ e $\operatorname{im}(B)$ son subespacios invariantes por A.

Ejercicio 2.16. Sean $A, B \in \text{End}(E)$ y el polinomio p(x). Pruebe que los subespacios vectoriales ker(p(A)) e im(p(A)) son invariantes por A.

Ejercicio 2.17. Sea $A \in \text{End}(E)$. Demuestre que

- (I) Si F y G son subespacios invariantes por A, entonces $F \cap G$ y F + G también son invariantes por A.
- (II) Si u y v son autovectores de A y A^* , respectivamente, correspondientes a autovalores que son distintos, entonces $\langle u, v \rangle = 0$.

Ejercicio 2.18. Sea $A \in \text{End}(E)$ un operador normal. Demuestre que

- (I) $\forall v \in E : |Av| = |A^*v|$.
- (II) todo autovector de A es también autovector de A^* , con el mismo autovalor.
- (III) $\ker(A)^{\perp} = \operatorname{im}(A)$

Ejercicio 2.19. Sea $E:=C^{\infty}(\mathbb{R},\mathbb{R})$. Muestre que los subespacios F,G generados por los conjuntos

- (I) $\{\cos(x), \sin(x)\},\$
- (II) $\{e^x, xe^x, x^2e^x\},$

respectivamente, son invariantes por el operador derivación $D: E \to E$.

Ejercicio 2.20. Sea $A \in \text{End}(E)$ con $\dim(E) = n$. Pruebe que

- (I) A posee un subespacio invariante de dimensión n-1 o n-2.
- (II) Si A posee n autovalores distintos, entonces existen exactamente 2^n subespacios de E invariantes por A.

Ejercicio 2.21. Sea $A: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (y,0).$

- (I) ¿Cuales son los autovalores de A?
- (II) ¿Cuales son los autovectores de A?
- (III) Si

$$\mathbf{a} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$$

¿existe alguna matriz invertible $\mathbf{b} \in \mathcal{M}(2 \times 2)$ tal que $\mathbf{b}^{-1}\mathbf{ab}$ sea diagonal?

Ejercicio 2.22. Sea $A: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (3x+y,2x+2y)$.

- (I) Muestre que A posee autovalores 4 y 1.
- (II) Halle una base $\mathcal{U} = \{u, v\}$ de \mathbb{R}^2 tal que Au = 4u y Av = v.
- (III) Si

$$\mathbf{a} = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix},$$

halle una matriz invertible $\in \mathcal{M}(2 \times 2)$ tal que

$$^{-1}\mathbf{a} = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}.$$