

SSVEP Classification

- Prashanth H CIPE14EC099
- -Pavan Kumar D
 IPE14EC094
- -Sawan Singh Mahara
 IPE14EC128
- -Lakshmiraj
 IPE14EC412

Guide: Mrs. Vidya T V

Assistant Professor, PESIT-BSC

THE OBJECTIVE

Classify EEG signals in an SSVEP using a statistical approach

- ➤ SSVEP classification
- ➤ Statistical Approach
- ➤ Using our own data set
- Explore a Riemann manifold approach
 - ❖What is it?
 - ❖ Why is it better than the conventional CCA?
- **Benefits**
 - Minimised search so faster detection possible theoretically.
 - Covariance estimation and distance metric dependencies.
 - Fine tuning possible
 - Double edged sword, however

Offline SSVEP Classification

EEG Digital Database

Digital Filter

Data Matrix Classifier Algorithm

Class predictor

The Data

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \qquad \qquad \begin{bmatrix} c_{11} & \cdots & c_{1m} \\ \vdots & \ddots & \vdots \\ c_{m1} & \cdots & c_{mm} \end{bmatrix}$$
EEG Data
Covariance Matrix

- There are different ways to compute the covariance matrix
- Each of the methods have different computation costs and accuracy
- Each covariance matrix is a point on an $\frac{m(m+1)}{2}$ dimensional riemannian surface

What is a vector?

Ordered Set

{1,2,3,4,5,6}

{3,1,4,2,6,5}

Different From

 $Different\ From$

Geometric Representation

2-D Vectors as Points

FSK Constellation

FSK Constellation

What is Distance?

Between vectors x and y

• Euclidean Distance

$$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

• Manhattan Distance

$$\sum_{i=1}^{n} |x_i - y_i|$$

• Mean Squared Distance

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2$$

Conditions For a Distance Measure

For any Distance function

- $d(x,y) \ge 0$
- $d(x, y) = 0 \Leftrightarrow x = y$
- d(x,y) = d(y,x)
- $d(x,z) \le d(x,y) + d(y,z)$

The Riemannian Distance

$$\left\|\ln(C_1^{-1}C_2)\right\|_F$$

Frobenius Norm of Matrix A is

$$||A||_F \triangleq \sqrt{\sum_{i=1,j=1}^{m,n} a_{ij}^2}$$

Where a_{ij} is the (i,j)th element of matrix A

Matrix Constellation

The Point of This All

- Each covariance matrix is a point on an $\frac{m(m+1)}{2}$ dimensional riemannian surface
- Compute a lot of 'points' to get a <u>cluster</u>
- The 'centroid' will be the 'mean'
- The centroid is computed using riemannian geometry
- Trained classifier knows the **mean** of each frequency class
- <u>Distance</u> between new EEG signal and this mean
- Shortest distance is found and the EEG signal is assigned to that cluster
- That cluster corresponds to a particular flickering frequency

Trained Classifier

The Cyton

Spec Sheet

- Compatible with active and passive electrodes
- 8 differential, high gain, low noise input channels
- Texas Instruments ADS1299 ADC
- PIC32MX250F128B microcontroller
- REduino Low Power Bluetooth radio
- 24-bit channel data resolution
- Programmable gain: 1, 2, 4, 6, 8, 12, 24
- 3.3V digital operating voltage
- +/-2.5V analog operating voltage
- ~3.3-12V input voltage
- LIS3DH accelerometer
- Micro SD card slot
- 5 GPIO pins, 3 of which can be Analog

The Dongle

Spec Sheet

- RFD22301 radio module from Rfdigital
- FT231X USB-to-serial converter from FTDI
- Can upload code to the OpenBCI board or the dongle
- Fully broken out and pin-compatible RFduino form factor

		Phase	Q3			04			01		
	Complete		Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
1		SSVEP Classification									
2		Documentation									
3		SSVEP/Brain study				i					
4		Understanding the signal acquisition and hardware usage									
5		Obtaining SSVEP datasets									
6	✓	Algorithm study									
- 7		Implementing algorithm on a computer									
8		Testing the performance of contrived code									
9		Expanding test set with a different acquisition style									
10		Evaluating performance of code with new dataset									

