Ravi Shripad

Roll no.58

House Price prediction using Linear Regression - SingleVarile

```
1 import pandas as pd
```

- 2 from sklearn.linear_model import LinearRegression
- 3 import matplotlib.pyplot as plt
- C:\ProgramData\Anaconda3\lib\site-packages\scipy__init__.py:146: UserWarning: A NumPy version
 warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"</pre>

Load Dataset

```
1 Dataset = pd.read_csv('house dataset.csv')
2 Dataset.head()
```

```
area price

0 8450 208500

1 9600 181500

2 11250 223500

3 9550 140000

4 14260 250000
```

Load Summariz

1 Dataset.describe()

$\overline{\Rightarrow}$		area	price
	count	1460.000000	1460.000000
	mean	10516.828082	180921.195890
	std	9981.264932	79442.502883
	min	1300.000000	34900.000000
	25%	7553.500000	129975.000000
	50%	9478.500000	163000.000000
	75%	11601.500000	214000.000000
	max	215245.000000	755000.000000

Visualize Dataset

```
1 plt.xlabel('Area')
2 plt.ylabel('price')
3 plt.scatter(Dataset.area,Dataset.price,color='blue', marker='*')
```


Segreate Dataset into Input X & Output Y

```
1 X = Dataset.drop('price', axis='columns')
 2 X
\overline{\Rightarrow}
            area
            8450
            9600
           11250
           9550
           14260
     1455
           7917
     1456 13175
     1457
           9042
     1458
           9717
           9937
     1459
    1460 rows × 1 columns
 1 Y = Dataset.price
 2 Y
→ 0
             208500
             181500
    1
    2
             223500
            140000
             250000
          175000
    1455
    1456
             210000
    1457
            266500
            142125
    1458
            147500
    1459
    Name: price, Length: 1460, dtype: int64
```

Training Dataset using Linear Regression

```
1 model = LinearRegression()
2 model.fit(X,Y)

The LinearRegression()
```

Predicted Price for Land sq.Feet of custom values

```
1 x=int(input('Enter house Squar fit'))
2 LandAreainSqFt=[[x]]
3 PredictedmodelResult = model.predict(LandAreainSqFt)
4 print(PredictedmodelResult)

Enter house Squar fit3000
[165136.067752]
    C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have varuings.warn(
```

Checking model is right

Theory Calculation

Y=m*X+b(m is coefficient and b is intercept)

Part B-Exam marks

- 1 import pandas as pd
- 2 from sklearn.linear_model import LinearRegression
- 1 dataset = pd.read_csv('exam data.csv')

1 dataset.head(10)

$\overrightarrow{\Rightarrow}$		hours	age	internet	marks
	0	6.83	15	1	78.50
	1	6.56	16	0	76.74
	2	NaN	17	1	78.68
	3	5.67	18	0	71.82
	4	8.67	19	1	84.19
	5	7.55	20	0	81.18
	6	6.67	15	0	76.99
	7	8.99	16	0	85.46
	8	5.19	17	1	70.66

9 6.75 18 0 77.82

1 print(dataset.shape)

2 print(dataset.head(5))

\rightarrow	(2	01, 4)			
		hours	age	internet	marks
	0	6.83	15	1	78.50
	1	6.56	16	0	76.74
	2	NaN	17	1	78.68
	3	5.67	18	0	71.82
	4	8.67	19	1	84.19

1 X = dataset.iloc[:, :-1].values

2 print(X.shape)

3 X

 $\overline{\mathbf{T}}$

```
L / . / , IJ.
            [ 7.3 , 20.
            [ 7.79, 15.
                             1.
                                 ],
            [ 6.75, 16.
                             0.
            [ 7.87, 17.
                             1.
            [ 5.38, 18.
                             0.
                                 ],
              7.8 , 19.
                             1.
                                 ],
            [ 5.07, 20.
                             0.
                                 ],
            [ 7.95, 15.
                             1.
                                 ],
            [ 8.35, 16.
                             0.
                                  ],
                                 ],
            [ 5.19, 17.
                             0.
              7.19, 18.
                             0.
                                  ],
            [ 7.35, 19.
                             1.
            [ 5.22, 20.
                             1.
                                  ],
            [ 5.39, 15.
                             1.
                                 ],
            [ 5.39, 16.
                             1.
                                 ],
            [ 8.93, 17.
                                 ],
            [ 5.79, 18.
                             0.
                                 ],
            [ 8.42, 19.
                             1.
                                 ],
              7.26, 20.
                             0.
            [ 6.97, 15.
                             1.
            [ 5.55, 16.
                             1.
                                 ],
            [ 8.66, 17.
                             0.
                                 ],
            [ 8.61, 18.
                             1.
                                 ],
            [ 5.22, 19.
                             1.
                                 ],
            [ 8.05, 20.
                             0.
                                 ],
                             1.
                                 ],
            [ 8.87, 15.
            [ 5.54, 16.
                             0.
                                  ],
              nan, 17.
                             0.
              7.26, 18.
                             1.
                                  ],
            [ 5.79, 19.
                             0.
                                 ],
            [ 5.22, 20.
                             0.
                                 ],
            [ 8.71, 15.
                                 ],
            [ 7.55, 16.
                             1.
                                 ],
                             1.
            [ 6.35, 17.
                                  ],
            [ 7.53, 18.
                             0.
                                  ],
            [ 8.56, 19.
[ 8.94, 20.
                             1.
                             1.
            [ 6.6 , 15.
                             1.
                                 ],
            [ 8.35, 16.
                             1.
            [ 4.15, 15.
                             0.
                                 ]])
 1 dataset.columns[dataset.isna().any()]
Index(['hours'], dtype='object')
 1 dataset.hours = dataset.hours.fillna(dataset.hours.mean())
 1 X = dataset.iloc[:, :-1].values
 2 print(X.shape)
```

3 X

 $\overline{\Rightarrow}$

L 0.95 [5.14	19. 20. 15. 16. 17. 18. 19. 20. 15. 16. 17. 18. 19. 20. 15. 16. 17. 18. 19. 20. 15. 16. 17. 18. 19. 20. 15. 16. 17. 18. 19. 20. 15. 16. 17. 18. 19. 20. 15. 16. 17. 18. 19. 20. 15. 16. 17. 18. 19. 20. 15. 16. 17. 18. 19. 20. 15. 16. 17. 18. 19. 20. 15. 16. 17. 18.	, 0. , 1. , 0. , 1. , 0. , 1. , 0. , 1. , 0. , 1. , 0. , 1. , 0. , 1. , 0. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1	<pre> ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</pre>
[5.54 , [6.98142857, [7.26 , [5.79 , [5.22 ,	16. 17. 18. 19.	, 0. , 0. , 1. , 0.],

1 dataset.hours

```
→ 0
        6.830000
   1
        6.560000
   2
        6.981429
   3
         5.670000
   4
         8.670000
        8.560000
   196
   197
        8.940000
        6.600000
   198
         8.350000
   199
   200
         4.150000
   Name: hours, Length: 201, dtype: float64
```

```
1 Y = dataset.iloc[:,-1].values
 2 Y
→ array([78.5 , 76.74, 78.68, 71.82, 84.19, 81.18, 76.99, 85.46, 70.66,
           77.82, 75.37, 83.88, 79.5 , 80.76, 83.08, 76.03, 76.04, 85.11,
           82.5 , 80.58, 82.18, 83.36, 70.67, 75.02, 70.96, 83.33, 74.75,
           75.65, 74.15, 80.17, 82.27, 76.14, 71.1 , 84.35, 83.08, 76.76,
           81.24, 78.21, 73.08, 83.23, 70.27, 86.41, 71.1 , 82.84, 82.38,
           72.96, 77.46, 70.11, 72.38, 71.41, 72.22, 77.77, 84.44, 71.45,
           82.21, 85.48, 75.03, 86.65, 70.9 , 71.7 , 73.61, 79.41, 76.19,
           80.43, 85.78, 70.06, 81.25, 81.7, 69.27, 82.79, 71.8, 71.79,
           74.97, 78.61, 77.59, 72.33, 72.08, 77.33, 70.05, 73.34, 84.
           82.93, 76.63, 75.36, 77.29, 72.87, 73.4 , 81.74, 71.85, 84.6 ,
           79.56, 82.1 , 72.08, 79.1 , 81.01, 76.48, 75.39, 68.57, 83.64,
           82.3 , 75.18, 82.03, 82.99, 79.26, 77.55, 77.07, 72.1 , 73.25,
           74.25, 70.58, 81.08, 75.04, 76.38, 80.86, 78.42, 74.44, 70.34,
           85.04, 73.61, 75.55, 76.2 , 82.69, 76.83, 79.53, 83.57, 85.95, 76.02, 77.65, 77.01, 74.49, 73.19, 71.86, 75.8 , 72.46, 78.39,
           83.48, 83.15, 71.22, 85.98, 83.91, 84.58, 80.31, 82.55, 75.52,
           83.82, 85.15, 82.75, 74.34, 82.02, 86.12, 71.87, 76.7, 81.7,
           70.78, 78.45, 70.2, 83.37, 75.52, 81.57, 80.72, 80.81, 79.49,
           79.17, 77.07, 82.04, 71.94, 81.6, 70.79, 82.68, 83.08, 71.18,
           77.63, 77.78, 70.4, 73.02, 71.11, 85.96, 73.64, 84.24, 78.17,
           77.19, 71.83, 86.99, 83.87, 71.5 , 79.63, 85.1 , 72.01, 77.27,
           79.87, 73.14, 70.51, 84.03, 79.64, 74.24, 81.67, 84.68, 86.75,
           78.05, 83.5, 81.45])
 1 model=LinearRegression()
 2 model.fit(X,Y)
→ LinearRegression()
 1 a=[[1,75,1]]
 2 predicedModelresult = model.predict(a)
 3 print(PredictedmodelResult)
<del>[165136.067752]</del>
 1 Start coding or generate with AI.
 1 Start coding or generate with AI.
```