FONCTIONS ZÊTA SUR GLn

1. Fonctions zêta sur $GL_n(\mathbb{Q}_p)$

Dans la suite, on notera $G=GL_n(\mathbb{Q}_p)$, dg une mesure de Haar sur G et (π,V) une représentation admissible irréductible de G.

Les coefficients de π sont les fonctions de la forme $g \in G \mapsto \langle \pi(g)\nu, \tilde{\nu} \rangle$, où $\nu \in V$ et $\tilde{\nu} \in \tilde{V}$.

On note M_n l'ensemble des matrices $n \times n$ à coefficients dans \mathbb{Q}_p et 8 l'ensemble des fonctions $\phi: M_n \to \mathbb{C}$ localement constantes à support compact.

Si f est un coefficient de π , $\phi \in S$ et $s \in \mathbb{C}$, on pose

(1)
$$\zeta(f, \varphi, s) = \int_{G} \varphi(g) f(g) |\det g|_{p}^{s} dg.$$

On fixe un caractère non trivial ψ de \mathbb{Q}_p et on pose

(2)
$$\hat{\phi}(y) = \int_{M_n} \phi(x) \psi(\mathsf{Tr}(xy)) dx,$$

où dx est une mesure de Haar sur M_n .

On veut montrer l'équation fonctionnelle suivante

(3)
$$\zeta(f, \phi, s) = \gamma(s)\zeta(\check{f}, \hat{\phi}, n - s),$$

où γ est une fonction rationnelle en \mathfrak{p}^s et $\check{\mathsf{f}}(g) = \mathsf{f}(g^{-1})$.

Pour montrer cette équation fonctionnelle, on va utiliser la

Propriété 1. Les opérateurs $\zeta(.,.,s)$ et $\zeta(\tilde{,},\tilde{,},n-s)$ sont des opérateurs d'entrelacements, éléments de $\text{Hom}_{G\times G}((\tilde{\pi}\boxtimes\pi)\otimes S,|\det|_p^s\boxtimes|\det|_p^{-s})$.

On précise que l'action de $G \times G$ sur S est $(g_1, g_2).\phi(x) = \phi(g_1^{-1}xg_2)$. De plus, on identifie l'ensemble des coefficients de π avec l'espace $\tilde{V} \otimes V$; l'action de $G \times G$ sur $\tilde{\pi} \boxtimes \pi$ est $(g_1, g_2).f(g) = f(g_1^{-1}gg_2)$.

Démonstration. L'action de $G \times G$ sur $\zeta(f, \phi, s)$ donne

(4)
$$\int_{C} \Phi(g_1^{-1}gg_2) f(g_1^{-1}gg_2) |\det g|_p^s dg.$$

On effectue le changement de variable $g\mapsto g_1gg_2^{-1}$, le groupe G étant unimodulaire l'intégrale devient

(5)
$$|\det g_1 g_2^{-1}|^s \int_C \phi(g) f(g) |\det g|_p^s dg.$$

D'autre part, l'action de $G \times G$ sur $\zeta(\check{f}, \hat{\phi}, n-s)$ donne

(6)
$$\int_{G} \hat{\phi}_{g_{1},g_{2}}(g) \check{f}_{g_{1},g_{2}}(g) |\det g|_{p}^{n-s} dg,$$

où l'on a noté
$$\phi_{g_1,g_2}(x) = \phi(g_1^{-1}xg_2)$$
 et $f_{g_1,g_2}(g) = f(g_1^{-1}gg_2)$.

Un calcul immédiat, montre que $\check{f}_{g_1,g_2}(g) = \check{f}(g_2^{-1}gg_1)$. De plus,

(7)
$$\hat{\phi}_{g_1,g_2}(g) = \int_{M_n} \phi(g_1^{-1} x g_2) \psi(\mathsf{Tr}(xg)) dx.$$

Après le changement de variable $x\mapsto g_1xg_2^{-1}$ l'intégrale devient

(8)
$$|\det g_1^{-1} g_2|_p^n \int_{M_n} \phi(x) \psi(\text{Tr}(x g_2^{-1} g g_1)) dx,$$

qui n'est autre que $|\det g_1g_2^{-1}|_p^n\hat{\varphi}(g_2^{-1}gg_1)$. L'intégrale (6) devient donc, après le changement de variable $g\mapsto g_2gg_1^{-1}$,

(9)
$$|\det g_1^{-1}g_2|_p^n |\det g_2g_1^{-1}|_p^{n-s} \int_G \hat{\varphi}(g)\check{f}(g) |\det g|_p^{n-s} dg.$$

Dans le but de comprendre l'espace $\operatorname{Hom}_{G\times G}((\tilde{\pi}\boxtimes\pi)\otimes S, |\det|_p^s\boxtimes |\det|_p^{-s})$, on va décomposer S selon le rang des matrices. Soit r un entier compris entier 1 et n, on note S_r l'espace des matrices $n\times n$ de rang r et $S^{(r)}$ l'espace des matrices $n\times n$ de rang r et r espace des matrices r espace des r espace des matrices r espace des r espac

Si X est un espace localement compact totalement discontinu, on note $C_c^{\infty}(X)$ l'espace des fonctions $f: X \to \mathbb{C}$ localement constantes à support compact. L'espace S est donc égal à $C_c^{\infty}(M_n)$.

Le groupe G est un ouvert de M_n et $M_n \setminus G = S^{(n)}$. Cette décomposition donne la suite exacte

$$(10) 0 \to C_{\mathbf{c}}^{\infty}(\mathsf{G}) \to C_{\mathbf{c}}^{\infty}(\mathsf{M}_{\mathbf{n}}) \to C_{\mathbf{c}}^{\infty}(\mathsf{S}^{(\mathbf{n})}) \to 0,$$

où l'inclusion de $C_c^\infty(G)$ dans $C_c^\infty(M_n)$ se fait par extension par 0 et l'application $C_c^\infty(M_n) \to C_c^\infty(S^{(n)})$ est l'application de restriction.

Cette suite exacte commute avec l'action de $G \times G$, on la voit donc comme une suite exacte de représentations de $G \times G$. On applique le foncteur $\text{Hom}_{G \times G}(., (\pi \boxtimes \tilde{\pi}) \otimes (|\det|_p^s \boxtimes |\det|_p^{-s}))$, qui est exact à gauche, on en déduit alors l'inégalité suivante :

(11)
$$\dim \operatorname{\mathsf{Hom}}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes\mathcal{S},|.|_{\mathfrak{p}}^{\mathfrak{s}})\leqslant \dim \operatorname{\mathsf{Hom}}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes C_{\mathfrak{c}}^{\infty}(\mathsf{G}),|.|_{\mathfrak{p}}^{\mathfrak{s}}) \\ +\dim \operatorname{\mathsf{Hom}}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes C_{\mathfrak{c}}^{\infty}(\mathsf{S}^{(n)}),|.|_{\mathfrak{p}}^{\mathfrak{s}}),$$

où l'on a abrégé $|.|_{\mathfrak{p}}^{s}=|\det|_{\mathfrak{p}}^{s}\boxtimes|\det|_{\mathfrak{p}}^{-s}.$

On décompose ensuite $S^{(n)}$ selon le rang r, ce qui donne, en utilisant le même raisonnement, que

$$(12) \ \dim \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes S,|.|_{p}^{s})\leqslant \sum_{r=0}^{n}\dim \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes C_{c}^{\infty}(S_{r}),|.|_{p}^{s}).$$

Il ne nous reste plus qu'à calculer la dimension de ces différents espaces, pour cela on dispose de la

Proposition 1. Pour r = n $(S_r = G)$, on a

$$\dim \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes C_c^\infty(\mathsf{G}),|.|_{\mathfrak{p}}^s)=1;$$

et pour r < n, on a

(14)
$$\operatorname{Hom}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes C_{\mathsf{c}}^{\infty}(\mathsf{S}_{\mathsf{r}}),|.|_{\mathsf{p}}^{\mathsf{s}})=0$$

sauf pour un nombre fini de valeurs de s modulo $\frac{2i\pi}{(n-r)\log p}\mathbb{Z}$.

 $D\acute{e}monstration$. Commençons par le cas r = n,

$$(15) \qquad \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes C_{c}^{\infty}(\mathsf{G}),|.|_{\mathfrak{p}}^{s})\simeq \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\tilde{\pi}\boxtimes\pi)\otimes|.|_{\mathfrak{p}}^{-s},C^{\infty}(\mathsf{G}))$$

$$(16) \simeq \operatorname{Hom}_{\mathsf{H}}((\tilde{\pi} \boxtimes \pi) \otimes |.|_{\mathfrak{p}}^{-\mathfrak{s}}, \mathbb{C})$$

(17)
$$\simeq \operatorname{Hom}_{\mathsf{G}}(\tilde{\pi}, \tilde{\pi});$$

où le groupe H désigne la diagonale de $G \times G$. Ce dernier espace est bien de dimension 1 d'après le lemme de Schur.

Le premier isomorphisme provient de la dualité entre $C_c^{\infty}(G)$ et $C^{\infty}(G)$. Le deuxième isomorphisme est une application de la réciprocité de Frobenius avec l'identification $C^{\infty}(G) = \operatorname{Ind}_{H}^{G \times G}(1)$. Pour finir, le dernier isomorphisme provient du fait que l'action diagonale de H sur $\tilde{\pi} \boxtimes \pi$ correspond à l'action de G sur $\tilde{\pi} \otimes \pi$ et que $|.|_p^{-s}$ est trivial sur H.

Passons au cas r < n, S_r est l'orbite de $\begin{pmatrix} 1_r & 0 \\ 0 & 0 \end{pmatrix}$ sous l'action de $G \times G$ par translation à gauche du premier facteur et translation à droite de l'inverse sur le second facteur. On calcule le stabilisateur,

$$(18) \hspace{1cm} \mathsf{H} = \mathsf{Stab}_{\mathsf{G} \times \mathsf{G}} \begin{pmatrix} \mathbf{1}_{\mathsf{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \left\{ \begin{pmatrix} \begin{pmatrix} \mathfrak{a} & \mathfrak{b} \\ \mathbf{0} & \mathfrak{c} \end{pmatrix}, \begin{pmatrix} \mathfrak{a} & \mathbf{0} \\ \mathfrak{d} & \mathfrak{e} \end{pmatrix} \right\} \right\} \subset \mathsf{G} \times \mathsf{G},$$

où a décrit $GL_r(\mathbb{Q}_p)$; c,e décrivent $GL_{n-r}(\mathbb{Q}_p)$; b décrit $M_{r,n-r}(\mathbb{Q}_p)$ et d décrit $M_{n-r,r}(\mathbb{Q}_p)$.

On note P=MN le sous-groupe parabolique de G des matrices de la forme $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ et $\bar{P}=M\bar{N}$ le groupe parabolique opposé, alors $H\subset P\times \bar{P}$.

(19)

$$\mathsf{Hom}((\tilde{\pi}\boxtimes\pi)\otimes C_c^\infty(S_r),|.|_p^s)\simeq \mathsf{Hom}_{G\times G}((\tilde{\pi}\boxtimes\pi)\otimes|.|_p^{-s},\mathsf{Ind}_H^{G\times G}(\delta_H))$$

$$(20) \qquad \qquad \simeq \mathsf{Hom}_{\mathsf{M}\times\mathsf{M}}((\tilde{\pi}\boxtimes\pi)_{\mathsf{N}\times\bar{\mathsf{N}}}\otimes|.|_{\mathsf{p}}^{-s},\mathsf{Ind}_{(\mathsf{M}\times\mathsf{M})\cap\mathsf{H}}^{\mathsf{M}\times\mathsf{M}}(\delta_{\mathsf{H}}))$$

$$\simeq \mathsf{Hom}_{(\mathsf{M}\times\mathsf{M})\cap\mathsf{H}}((\tilde{\pi}\boxtimes\pi)_{\mathsf{N}\times\bar{\mathsf{N}}},\delta_{\mathsf{H}}\otimes|.|_{\mathfrak{p}}^{s}),$$

où δ_H est le caractère modulaire de H.

Le premier isomorphisme provient de l'identification de $C_c^{\infty}(S_r) = c - Ind_H^{G \times G}(1)$ et de la dualité entre $c - Ind_H^{G \times G}(1)$ et $Ind_H^{G \times G}(\delta_H)$. Pour le deuxième isomorphisme, on utilise la transitivité de l'induction, $H \subset P \times \bar{P} \subset G \times G$, et l'adjonction entre $Ind_{P \times \bar{P}}^{G \times G}$ et le foncteur de Jacquet ; en remarquant, que $N \times \bar{N}$ agit trivialement sur $|.|_p^{-s}$. Le dernier isomorphisme n'est autre que la réciprocité de Frobenius.

On utilise le fait que $(\tilde{\pi} \boxtimes \pi)_{N \times \bar{N}}$ est de longueur finie; en effet le foncteur de Jacquet préserve la longueur finie. Il existe donc des représentations admissibles V_i de $M \times M$ telles que

$$(22) 0 = V_0 \subset V_1 \subset ... \subset V_l = (\tilde{\pi} \boxtimes \pi)_{N \times \bar{N}},$$

avec V_i/V_{i-1} irréductibles.

En reprenant un raisonnement que l'on a déjà fait, la suite exacte de représentations de $M\times M$

$$(23) 0 \rightarrow V_{i-1} \rightarrow V_i \rightarrow V_i / V_{i-1} \rightarrow 0$$

permet d'obtenir l'inégalité suivante : (24)

$$\dim \mathsf{Hom}_{(M\times M)\cap H}((\tilde{\pi}\boxtimes \pi)_{N\times \bar{N}},|.|_p^s\delta_H)\leqslant \sum_{i=1}^l \dim \mathsf{Hom}_{(M\times M)\cap H}(V_i/V_{i-1},|.|_p^s\delta_H).$$

Il nous suffit donc de montrer que ces derniers espaces sont nuls sauf pour au plus une valeur de s modulo $\frac{2i\pi}{(n-r)\log p}\mathbb{Z}.$

En tant que représentation irréductible de $M \times M \simeq GL^2_r(\mathbb{Q}_p) \times GL^2_{n-r}(\mathbb{Q}_p)$, on peut décomposer $V_i/V_{i-1} \otimes \delta_H^{-1}$ sous la forme $\sigma^{(i)} \boxtimes (\tau_1^{(i)} \boxtimes \tau_2^{(i)})$, où $\sigma^{(i)}$ est une représentation irréductible de $GL^2_r(\mathbb{Q}_p)$ et $\tau_1^{(i)}, \tau_2^{(i)}$ sont des représentations irréductibles de $GL_{n-r}(\mathbb{Q}_p)$.

D'après le lemme de Schur, la représentation $\tau_2^{(i)}$ admet un caractère central $\omega^{(i)}$. On en déduit que

(25)
$$\operatorname{Hom}_{(M \times M) \cap H}(V_i / V_{i-1}, |.|_{\mathfrak{p}}^{\mathfrak{s}} \delta_H) = 0,$$

sauf si $\omega^{(i)} = |.|_p^{-(n-r)s}$ sur \mathbb{Q}_p^{\times} . Cette dernière équation ne peut être vérifiée que pour au plus une valeur de s modulo $\frac{2i\pi}{(n-r)\log p}\mathbb{Z}$.

Terminons la preuve de l'équation fonctionnelle. Rappelons que les opérateurs $\zeta(.,.,s)$ et $\zeta(\check{.},\hat{.},n-s)$ sont des éléments de $\text{Hom}_{G\times G}((\tilde{\pi}\boxtimes\pi)\otimes\mathcal{S},|\det|_p^s\boxtimes|\det|_p^{-s}),$ qui est de dimension 1 sauf pour un nombre fini de valeurs de s modulo $\sum_{r=0}^{n-1}\frac{2i\pi}{(n-r)\log p}\mathbb{Z}$.

Autrement dit, pour s en dehors de cet ensemble de valeurs exceptionnelles, il existe $\gamma(s) \in \mathbb{C}$ tel que

(26)
$$\zeta(.,.,s) = \gamma(s)\zeta(\check{\cdot},\hat{\cdot},n-s).$$

Les fonctions zêta étant des fonctions rationnelles en p^s et l'ensemble des valeurs de s pour lesquelles γ est ainsi défini est dense pour la topologie de Zariski, on en déduit que l'on peut étendre γ en une fonction rationnelle en p^s pour laquelle l'équation (26) est vérifiée en tant qu'égalité de fonctions rationnelles en p^s .

2. Fonctions zêta sur
$$GL_n(\mathbb{A})$$

Dans cette partie, on note $G=GL_n(\mathbb{Q}),\ G_\mathbb{A}=GL_n(\mathbb{A}).$ On pose $K=O_n(\mathbb{R})\times\prod_p GL_n(\mathbb{Z}_p),$ c'est un sous-groupe compact maximal de $G_\mathbb{A}.$

2.1. Formes cuspidales. On commence par donner la définition des formes automorphes (et cuspidales), on renvoie à [1] et [2] pour plus de détails.

On fixe un caractère unitaire $\omega : \mathbb{A}^{\times}/\mathbb{Q}^{\times} \to \mathbb{S}^{1}$.

Définition 1. Une forme automorphe de caractère central ω est une fonction ϕ : $G_{\mathbb{A}} \to \mathbb{C}$ lisse et G-invariante qui vérifie de plus :

- φ est K-finie à droite,
- φ est $Z(U(\mathfrak{g}))$ -finie,

$$(27) \hspace{1cm} \phi(zg) = \omega(z)\phi(g) \quad \forall g \in G_{\mathbb{A}}, z \in \mathbb{A}^{\times},$$

— φ est à croissance modérée.

On note $\mathcal{A}(\mathsf{G}_\mathbb{A}, \omega)$ l'espace des formes automorphes de caractère central ω .

On rajoute aussi une condition d'annulation dont on aura besoin pour la preuve de l'équation fonctionnelle. Ce qui donne la

Définition 2. Une forme cuspidale φ de caractère central ω est une forme automorphe de caractère central ω qui vérifie de plus les conditions :

$$\int_{\mathsf{U}\setminus\mathsf{U}_{\mathbb{A}}} \varphi(\mathsf{u}\mathsf{g}) \mathsf{d}\mathsf{u} = 0$$

pour tout radical unipotent U d'un sous-groupe parabolique propre de $G_{\mathbb{A}}$ et tout $g \in G_{\mathbb{A}}$.

On note $\mathcal{A}_0(\mathsf{G}_\mathbb{A},\omega)$ l'espace des formes cuspidales de caractère central $\omega.$

L'espace de Schwartz de $M_n(\mathbb{A})$ est, par définition, $S(M_n(\mathbb{A})) = \bigotimes_{\nu}' S(M_n(\mathbb{Q}_{\nu})) = \{ \phi = \otimes \phi_{\nu}, \phi_{\nu} \in S(M_n(\mathbb{Q}_{\nu})), \phi_{\nu} = \mathbb{1}_{\mathbb{Z}_{\nu}} \text{sauf pour un nombre fini de v} \}.$

Pour $\phi \in \mathcal{A}_0(G_{\mathbb{A}}, \omega)$, $\phi \in \mathcal{S}(M_{\mathbb{A}})$ et $s \in \mathbb{C}$, on pose

(29)
$$\zeta(\varphi, \varphi, s) = \int_{G_{\mathbb{A}}} \varphi(g) \varphi(g) |\det g|_{\mathbb{A}}^{s} dg,$$

où $dg = \bigotimes_{\nu} dg_{\nu}$ est une mesure de Haar sur $GL_n(\mathbb{A})$ et $|.|_{\mathbb{A}} = \prod_{\nu} |.|_{\nu}$ est la valeur absolue adélique.

Notons $G^0_{\mathbb{A}}=\{g\in G_{\mathbb{A}}, |\det g|_{\mathbb{A}}=1\}$. Comme $\mathbb{R}_{>0}\subset \mathbb{A}^\times=Z(G_{\mathbb{A}})$, l'application $|\det|_{\mathbb{A}}:G_{\mathbb{A}}\to\mathbb{R}_{>0}$ est surjective de noyau $G^0_{\mathbb{A}}$.

La factorisation $G_{\mathbb{A}} = \mathbb{R}_{>0} G^0_{\mathbb{A}}$ permet d'obtenir que

(30)
$$\zeta(\varphi, \varphi, s) = \int_0^\infty \int_{G_s^0} \varphi(tg) \omega(t) \varphi(g) t^{ns} dg \frac{dt}{t}$$

$$= \int_0^\infty \int_{G \setminus G_{\mathbb{A}}^0} \sum_{x \in G} \phi(txg) \varphi(g) \omega(t) t^{ns} dg \frac{dt}{t}.$$

Comme dans la preuve de l'équation fonctionnelle de la fonction zêta de Riemann, on scinde l'intégrale en 1 dans le but de faire apparaître une symétrie. Autrement dit,

$$\zeta(\phi, \phi, s) = \int_0^1 \int_{G \setminus G_{\mathbb{A}}^0} \sum_{x \in G} \phi(txg) \phi(g) \omega(t) t^{ns} dg \frac{dt}{t}$$

$$+ \int_1^\infty \int_{G \setminus G_{\mathbb{A}}^0} \sum_{x \in G} \phi(txg) \phi(g) \omega(t) t^{ns} dg \frac{dt}{t}.$$

La seconde intégrale converge absolument pour tout $s \in \mathbb{C}$, c'est une fonction entière. Pour la première intégrale, on fait le changement de variable $t \mapsto t^{-1}$, ce qui donne

$$\int_1^\infty \int_{G \setminus G^0_{\frac{\delta}{a}}} \sum_{x \in G} \varphi(t^{-1}xg) \phi(g) \omega^{-1}(t) t^{-ns} dg \frac{dt}{t}.$$

On va maintenant utiliser la formule de Poisson sur $M_n(\mathbb{A})$, ce qui donne pour la fonction $x\mapsto \varphi(t^{-1}xg)$:

$$(34) \qquad \sum_{x \in M_n(\mathbb{Q})} \varphi(t^{-1}xg) = t^{n^2} \sum_{x \in M_n(\mathbb{Q})} \hat{\varphi}(txg^{-1}),$$

on se rappelle que $g\in G^0_{\mathbb{A}}$, donc $|\det g|_{\mathbb{A}}=1$. On scinde la somme selon le rang de la matrice et on obtient :

$$\begin{split} \sum_{x \in G} \varphi(t^{-1}xg) &= t^{n^2} \sum_{x \in G} \hat{\varphi}(txg^{-1}) \\ &+ \sum_{r < n, rg(x) = r} \left(t^{n^2} \hat{\varphi}(txg^{-1}) - \varphi(t^{-1}xg) \right). \end{split}$$

La contribution de la dernière somme s'avèrera nulle. Ce qui nous permet d'en déduire la

Proposition 2. Si $\varphi \in \mathcal{A}_0(G_{\mathbb{A}}, \omega)$ et $\varphi \in \mathcal{S}(M_n(\mathbb{A}), \text{ la fonction } \zeta(\varphi, \varphi, .) \text{ peut être prolongée en une fonction entière et vérifie l'équation fonctionnelle$

(36)
$$\zeta(\phi,\varphi,s)=\zeta(\check{\phi},\hat{\varphi},n-s),$$
 où $\check{\phi}(g)=\phi(g^{-1}).$

Démonstration. Il suffit de prouver que la contribution dans la formule de Poisson des matrices de rang r < n est effectivement nulle. On considère l'action de G par translation à droite sur l'ensemble des matrices de rang r. Chaque orbite contient un représentant de la forme $\begin{pmatrix} * & 0 \\ * & 0 \end{pmatrix}$, on note X l'ensemble des matrices de cette

forme. On pose P le sous-groupe parabolique de G des matrices de la forme $\begin{pmatrix} * & 0 \\ * & * \end{pmatrix}$ et U son radical unipotent.

On réécrit la somme sur les matrices de rang $\mathfrak r$ grâce au système de représentant X,

(37)
$$\sum_{rg(x)=r} \phi(xg) = \sum_{\gamma \in P \setminus G} \sum_{x \in X} \phi(x\gamma g).$$

On en déduit que la contribution des matrices de rang ${\bf r}$ dans la seconde intégrale est

(38)
$$\int_{P \setminus G_A^0} \sum_{x \in Y} \phi(t^{-1}xg) \varphi(g) dg.$$

De plus, on remarque que, xu=x, pour tout $x\in X$ et $u\in U_{\mathbb{A}}$. Ce qui nous permet de réécrire cette intégrale sous la forme

(39)
$$\int_{PU_{\mathbb{A}} \setminus G_{\mathbb{A}}^{0}} \sum_{x \in X} \phi(t^{-1}xg) \int_{U \setminus U_{\mathbb{A}}} \phi(ug) dudg.$$

Cette dernière intégrale s'annule, car f est cuspidale. On montre de même de l'intégrale correspondant au terme en $\hat{\varphi}$ sur les matrices de rang r < n s'annule aussi. Ce qui nous donne, grâce à la formule de Poisson et le raisonnement précédent, la formule

$$\zeta(\varphi, \varphi, s) = \int_{1}^{\infty} \int_{G \setminus G_{\mathbb{A}}^{0}} \sum_{x \in G} \hat{\varphi}(txg^{-1}) \varphi(g) \omega^{-1}(t) t^{n(n-s)} dg \frac{dt}{t}$$

$$+ \int_{1}^{\infty} \int_{G \setminus G_{\mathbb{A}}^{0}} \sum_{x \in G} \varphi(txg) \varphi(g) \omega(t) t^{ns} dg \frac{dt}{t},$$

ce qui démontre l'équation fonctionnelle en effectuant le changement de variable $g\mapsto g^{-1}$ dans la première intégrale. \Box

2.2. Représentations automorphes. L'espace des formes cuspidales $\mathcal{A}_0(G_\mathbb{A},\omega)$ est stable par l'action de $U(\mathfrak{g})$ par opérateurs différentiels et par translation à droite de $O_n(\mathbb{R})$ et $GL_n(\mathbb{A}_f)$, c'est un $(\mathfrak{g},O_n(\mathbb{R})) \times GL_n(\mathbb{A}_f)$ -module.

Un coefficient f de $A_0(G_A, \omega)$ est de la forme

(41)
$$f(g) = \langle \pi(g)\varphi, \tilde{\varphi} \rangle = \int_{\mathbb{A}^{\times} G \backslash G_{\mathbb{A}}} \varphi(hg)\tilde{\varphi}(h)dh,$$

où $\phi \in \mathcal{A}_0(G_{\mathbb{A}}, \omega)$ et $\tilde{\phi} \in \mathcal{A}_0(G_{\mathbb{A}}, \omega^{-1})$.

Pour un coefficient f de $\mathcal{A}_0(G_\mathbb{A},\omega),\, \varphi\in \mathcal{S}(M_\mathbb{A})$ et $s\in\mathbb{C},$ on pose

(42)
$$\zeta(f, \phi, s) = \int_{G_{\mathbb{A}}} \phi(g) f(g) |\det g|_{\mathbb{A}}^{s} dg.$$

On peut déduire les propriétés de cette fonction zêta grâce à ce que l'on vient de faire pour les formes cuspidales. Plus précisément, on a

$$(43) \qquad \zeta(f,\varphi,s)=\int_{G_{\mathbb{A}}}\varphi(g)\int_{\mathbb{A}^{\times}G\backslash G_{\mathbb{A}}}\phi(hg)\tilde{\phi}(h)dh|\det g|_{\mathbb{A}}^{s}dg$$

$$(44) \hspace{1cm} = \int_{\mathbb{A}^{\times} G \setminus G_{\mathbb{A}}} \tilde{\phi}(h) \int_{G_{\mathbb{A}}} \varphi(h^{-1}g) \phi(g) |\det g|_{\mathbb{A}}^{s} dg |\det h|_{\mathbb{A}}^{-s} dh$$

$$= \int_{\mathbb{A}^{\times} G \setminus G_{\mathbb{A}}} \tilde{\phi}(h) \zeta(\phi, \phi(h^{-1}.), s) |\det h|_{\mathbb{A}}^{-s} dh,$$

où la deuxième égalité s'obtient grâce au changement de variable $g\mapsto h^{-1}g$. Ceci nous permet de démontrer la

Proposition 3. Si f est un coefficient de $\mathcal{A}_0(G_\mathbb{A}, \omega)$ et $\varphi \in \mathcal{S}(M_\mathbb{A})$, la fonction $\zeta(f, \varphi, .)$ peut être prolongée en une fonction entière et vérifie l'équation fonctionnelle

(46)
$$\zeta(\mathbf{f}, \mathbf{\phi}, \mathbf{s}) = \zeta(\check{\mathbf{f}}, \hat{\mathbf{\phi}}, \mathbf{n} - \mathbf{s}),$$

 $o\dot{u} \, \check{f}(g) = f(g^{-1}).$

Démonstration. On utilise l'équation fonctionnelle (36) et le fait que la transformée de Fourier de $\phi(h^{-1})$ est $|\det h|_{\mathbb{A}}^{n}\hat{\phi}(.h)$,

$$(47) \qquad \zeta(f,\varphi,s)=\int_{\mathbb{A}^{\times}G\backslash G_{\mathbb{A}}}\tilde{\phi}(h)\zeta(\check{\phi},\hat{\varphi}(.h),n-s)|\det h|_{\mathbb{A}}^{n-s}dh$$

$$= \int_{\mathbb{A}^{\times} G \backslash G_{\mathbb{A}}} \tilde{\phi}(h) \int_{G_{\mathbb{A}}} \hat{\phi}(gh) \phi(g^{-1}) |\det g|_{\mathbb{A}}^{n-s} dg |\det h|_{\mathbb{A}}^{n-s} dh.$$

On effectue maintenant le changement de variable $g \mapsto gh^{-1}$, ce qui donne

$$\int_{\mathbb{A}^{\times} G \backslash G_{\mathbb{A}}} \tilde{\phi}(h) \int_{G_{\mathbb{A}}} \hat{\phi}(g) \phi(hg^{-1}) |\det g|_{\mathbb{A}}^{n-s} dg dh,$$

qui est bien
$$\zeta(\check{f}, \hat{\phi}, n-s)$$
.

Si l'on combine cette proposition avec les résultats locaux, on peut construire la fonction L attachée à une représentation cuspidale irréductible.

Définition 3. Une représentation cuspidale est un $(\mathfrak{g}, O_n(\mathbb{R})) \times GL_n(\mathbb{A}_f)$ -module qui est isomorphe à un sous-quotient de $\mathcal{A}_0(G_{\mathbb{A}}, \omega)$.

Plus précisément, on montre le

Théorème 1. Soit π une représentation cuspidale irréductible.

Le produit $L(s,\pi) = \prod_{\nu} L(s,\pi_{\nu})$, qui est défini pour Re(s) > n, se prolonge en une fonction entière. De plus, $L(s,\pi)$ vérifie l'équation fonctionnelle

(50)
$$L(s,\pi) = \epsilon(s,\pi)L(1-s,\tilde{\pi}),$$

$$o\dot{u} \ \epsilon(s,\pi) = \prod_{\nu} \epsilon(s,\pi_{\nu}).$$

Démonstration. La représentation π se décompose en facteurs locaux, $\pi \simeq \otimes_{\nu}' \pi_{\nu}$, où π_{ν} est une représentation admissible irréductible de $GL_n(\mathbb{Q}_{\nu})$ (un $(\mathfrak{g}, O_n(\mathbb{R}))$ -module irréductible pour la place archimédienne) et pour presque toutes les places π_{ν} est sphérique (contient la représentation unité de $GL_n(\mathbb{Z}_{\nu})$).

D'après les résultats locaux, pour chaque place ν , il existe un nombre fini $(\phi_{\alpha_{\nu}})_{\alpha_{\nu} \in I_{\nu}}$ d'éléments de $S(M_{\nu})$ et de coefficient $(f_{\alpha_{\nu}})_{\alpha_{\nu} \in I_{\nu}}$ de π_{ν} tel que

(51)
$$\sum_{\alpha_{\nu} \in \mathcal{L}_{\nu}} \zeta(f_{\alpha_{\nu}}, \varphi_{\alpha_{\nu}}, s + \frac{1}{2}(n-1)) = L(s, \pi_{\nu}).$$

De plus, d'après l'équation fonctionnelle locale

(52)
$$\sum_{\alpha_{\nu} \in I_{\nu}} \zeta(\check{f}_{\alpha_{\nu}}, \hat{\varphi}_{\alpha_{\nu}}, 1 - s + \frac{1}{2}(n - 1)) = \varepsilon(s, \pi_{\nu})L(1 - s, \tilde{\pi}_{\nu}).$$

Notons $I = \prod_{\nu} I_{\nu}$. Pour presque toutes les places ν , π_{ν} est sphérique, I_{ν} est un singleton; donc I est fini.

Pour $\alpha = (\alpha_v) \in I$, on pose

$$\phi_{\alpha} = \prod_{\nu} \phi_{\alpha_{\nu}}, \quad f_{\alpha} = \prod_{\nu} f_{\alpha_{\nu}}.$$

Alors $\phi_{\alpha} \in \mathcal{S}(M_{\mathbb{A}})$ et f_{α} est un coefficient de π qui est un sous-quotient de $\mathcal{A}_0(G_{\mathbb{A}},\omega)$. De plus,

(54)
$$\zeta(f_{\alpha}, \varphi_{\alpha}, s) = \prod_{\nu} \zeta(f_{\alpha_{\nu}}, \varphi_{\alpha_{\nu}}, s).$$

On en déduit que

(55)
$$L(s,\pi) = \prod_{\nu} L(s,\pi_{\nu}) = \prod_{\nu} \sum_{\alpha_{\nu} \in I_{\nu}} \zeta(f_{\alpha_{\nu}}, \phi_{\alpha_{\nu}}, s + \frac{1}{2}(n-1))$$

(56)
$$= \sum_{\alpha \in I} \zeta(f_{\alpha}, \varphi_{\alpha}, s + \frac{1}{2}(n-1))$$

est une somme finie de fonction zêta, qui chacune se prolonge en une fonction entière. De plus,

$$L(s,\pi) = \sum_{\alpha \in I} \zeta(f_{\alpha},\varphi_{\alpha},s + \frac{1}{2}(n-1))$$

(58)
$$= \sum_{\alpha \in I} \zeta(\check{f}_{\alpha}, \hat{\varphi}_{\alpha}, 1 - s + \frac{1}{2}(n - 1))$$

(59)
$$= \prod_{\nu} \sum_{\alpha_{\nu} \in I_{\nu}} \zeta(\check{f}_{\alpha_{\nu}}, \hat{\varphi}_{\alpha_{\nu}}, 1 - s + \frac{1}{2}(n - 1))$$

(60)
$$= \prod_{\nu} \varepsilon(s, \pi_{\nu}) L(1 - s, \tilde{\pi}_{\nu})$$

$$= \varepsilon(s, \pi) L(1 - s, \tilde{\pi}).$$

(61)
$$= \epsilon(s, \pi) L(1 - s, \tilde{\pi}).$$

Références

- [1] D. Bump, Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1997.
- [2] D. GOLDFELD AND J. HUNDLEY, Automorphic Representations and L-Functions for the General Linear Group:, no. vol. 1 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2011.