Digitalni video

Do sada smo govorili o piksel grafici, a sada uračunavamo i dimenziju vremena, što nas dovodi do pojma "digitalni video". I unutar *videa* broj piksela igra bitnu ulogu, utječe na rezoluciju te njegove opće kvalitetu slike.

Digitalni video je serija digitalnih slika koje se izmjenjuju u nekom vremenskom periodu. Podaci digitalnog videa se zapisuju na memorijske kartice, diskove, CD/DVD medije (za razliku od analognih medija čiji je zapis bio na filmovima ili su se transmitirali preko radiovalova) te se određenim procesima dekodiraju i kodiraju prilikom prikazivanja.

Analogni televiijski prijenos

3 standarda, odnose se na različite načina kodiranja boje u slici, brojem sličica koje se izmjene u sekundi, te rezolucija slike. Ta 3 standarda su se koristila u različitim dijelovima svijeta.

Najčešći standardi koji su se koristili u Europi, dijelu Afrike, JI Aziji, Australiji i Južnoj Americi su **PAL** (*Phase Alternating Line*) sistemi. U Francuskoj i njezinim kolonijama, Rusiji i srednjoj Aziji su se koristili **SECAM** (*Sequential colour with memory*) sistemi.

U Sjevernoj Americi, Japanu i Filipinima koristio se sustav standarda **NTSC** (*National Television System Committee*).

PAL i SECAM

Koristili su se na strujnoj mreži od 50 Hz. Slika se sastojala od 625 horizontalnih linija tj. redova slike koji su činili vertikalnu rezoluciju. Daljnja karakteristika je izmjena 25 sličica u sekundi (*frame per second* – fps).

NTSC

Ovaj je sustav radio na strujnoj mreži od 60 Hz, imao je 525 horizontalnih linija i izmjenu od 30 sličica u sekundi (fps).

Ovdje vidimo vezu između prikazanih sličica u sekundi i strujne mreže (60 Hz – 30 fps, 50Hz – 25 fps, znači broj slika prikazanih u sekundi je upola manji s obzirom na frekvenciju strujne mreže).

Digitalne inačice standarda

Ima ih samo od PAL i NTSC standarda. Digitalni PAL sustav ima kraticu PAL DV (*digital video*) sa dimenzijama 720h x 576v, a digitalni NTSC sustav tj. NTSC DV ima dimenzije 720h x 480v. Ove dimenzije nazivamo SDTV (*Standard Definition TV*), a omjer horizontalne i vertikalne stranice SD formata je 4:3. Novi standardi su se najčešće računali brojevima koji su već bili definirani u standardnoj definiciji i standardnim NTSC sistemima.

HDTV (*High Definition TV*) SD i HD nazivi se odnose na dimenzije slike. HD se naziva video čija je rezolucija 1280 x 720 ili 1920 x 1080 (*Full HD*) piksela. Do ovih brojeva smo došli tako što smo dimenzije od NTSC DV-a, 480v pomnožili sa 1.5 pa dobivamo rezoluciju 720, a ako dalje množimo sa 1.5 dobivamo 1080. Sve današnje rezolucije su povezane sa prijašnjim, starijim rezolucijama. SD ima omjer stranica 4:3, a HD ima omjer 16:9 što se naziva *widescreen* (široki ekran). Sad imamo novi format, UHD (*Ultra High Definition*), što su sve rezolucije veće od *Full HD*. Još neki poznati formati standarda su VHS (320 x 240), VGA (640 x 480, stari kompjuterski *dispayi*), 4K, 8K itd.

Omjer stranica slike (Aspect ratio) – omjer širine i visine video slike

Prvi standard omjer slike uspostavljen je još početkom 20. st. Za vrijeme nijemog filma, a baziran je na filmu od 35 mm koji je imao omjer stranica 4:3 (1.33:1), te su se svi filmovi projicirali u tom formatu. S pojavom televizije uzeo se isti taj omjer da bi se mogli prikazivati filmovi iz kina. Nakon pojave TV-a, kino industrija je izmislila nove standarde: *Widescreen* (eksperimentiralo se raznim formatima, 2.59:1, 1.37:1, 2.35:1 (*cinemascope*), 1.85:1, 2.76:1, 2.20:1...).

Danas je popularan omjer 16:9 (1.78:1), pojavio se tokom 80-ih kao kompromis raznih formata širokokutnih videa na televiziji. To je zapravo geometrijska sredina između najpopularnijih omjera, 4:3 i 2.35:1. Prilikom prikaza klasičnog formata 1.33 na 16:9 dobivali bi višak crne boje sa strane koji se nazivao *pillarbox*. Kada bi se *cinemascope* (2.35) format prikazivao na 16:9 formatu dobili bi *pillarbox* i gore i dolje. Ovako su se na Tv prijamnicima prikazivali filmovi raznih omjera formata bez rezanja slike i bez previše praznog prostora. 16:9 je postao default.

Izmjena broja sličica u sekundi (frame rate)

Frame rate označava koliko će se slika tj. frameova izmijeniti u 1 sekundi. Ljudsko oko zbog tromosti percipira 10 - 12 fps kao kontinuirani pokret. Siguran način da se izmjene slike percipiraju kao pokret se računaju 24 slike u sekundi (24 fps) što je filmski standard. PAL standard je 25 fps, a NTSC standard je 29.97 fps (skoro 30, pojavom boje trebao se smanjiti signal). Za posebne namjene se koriste veći fpsovi (50, 100 te puno veći brojevi).

Način prikaza slika (frameova)

Standardna definicija slike je koristila način transmisije koji nije ispisivao cijelu sliku na ekranu u istom trenutku već red po red slike u kratkom vremenskom intervalu. Ovakav način prikaza se zove "isprepleten" (*interlaced*) i često se prikazuje uz rezoluciju s malom slovom i (npr 480i). Sveukupna slika se prikazuje prvo prikazom podslike nepranih redova pa prikazom podslike parnih redova toliko brzo da naše oko to ne zamijeti. Ubrzanjem prijenosa video signala tj. većim *bandwidthom* taj način prikaza se polako napušta u svrhu "progresivnog" (*progressive*) koji se označava malim slovom p uz rezoluciju (720p). On se ne razlama na podslike. Svi HD formati mogu prikazivati sliku na oba načina (danas imamo tri načina prikaza HD formata, 720p, 1080i i 1080p).

Veličina video materijala

Primjer: video rezolucije 640 x 480 px, ukupno 307 200 px (*piksela*), ako je slika u RGB onda će to biti 24 bita (8 bita po kanalu), to bi bilo 3 bajta (B, 24b/8 = 3 B, jedan *piksel* će biti 3 bajta).

3 X 307 200 = 921 600B = 900 KB za 1 frame/sličicu

Ako imamo 30 fps

30 X 921 600 = 27 648 000 B = 27 000 KB što je približno 26.5 MB po sekundi videa

Zbog ovoga se radi kodiranje tj. kompresija podataka, uklanjamo detalje koje ionako ne bi primijetili.

Optimizacija veličine video datoteke:

Optimizacija se temelji na nekoliko stvari: rezolucija, broj sličica u sekundi i jačina kompresije. Kod rezolucije moramo paziti gdje će se video prikazivati i moramo ga prilagoditi ekranu. YouTube sam prilagođava rezolucije ovisno o ekranu na kojemu se prikazuje.

Druga stavka je broj sličica u sekundi, standard je 24 ili 25 do 27 sličica u sekundi, za statični video treba manje, a za dinamične scene razmatramo povećanje. Velikim povećanjem ne dobivamo na kvaliteti, naše oko ne primjećuje razlike. Jačina kompresije se radi pomoću različitih *codeca*.

Kompresija

CODEC – **CO**DE / **DEC**ODE, to je zapravo algoritam prema kojem se sirovi podaci pakiraju i smanjuju kako bi smanjili ukupnu težinu video datoteke. Kodiranje se može odvijati već unutar kamere koja snima video materijal ili u programu za obradu video materijala. Dekodiranje se događa u trenutku kada video prikazujemo pomoću određene tehnologije (TV, *browser...*). Proces kodiranja se temelji na uklanjanju i sažimanju podataka koji su suvišni (redundantni, ponavljaju se) i nevažni (oko ih ne primjećuje da nedostaju, npr. ton boje). Sa senzora kamere dobivamo podatke o boji u tri kanala, RGB kanali, ti se podaci o boji matematičkim putem razlažu na podatke o svjetlini i tonu. Ljudsko oko je osjetljivije na promjene svjetline nego na promjene tona osobito prilikom kretanja, pa se kompresija obavlja kod tona boje.

Kompresija – vrste CODEC standarda

Najpoznatiji algoritmi CODEC-a:

MPEG-4 Part 2 / DivX – formati kodirani ovim standardom su .avi datoteke

MPEG-4 Part 10 / AVC (Advanced video coding) / H.264 – formati .mp4, .m4v, .mov, .mkv...

MPEG-H Part 2 / HEVC (High efficiency Video coding) / H.265 – formati isti kao za H.264

VP8 i VP9 (Video Processor) – rade kompresiju za web u formatu datoteke .webm

THEORA – isključivo na webu – razina kvalitete kao AVC i HEVC – formati datoteka .ogg

AOMedia Video 1 / AV1 – transmisija videa preko interneta – nije podržan svim tehnologijamaformati datoteka su .mp4, .webm, .mkv

Jačina kompresije ne ovisi o CODEC-u

Kompresija – Bit rate

Njome se određuje jačina kompresije. *Bit rate* je količina podataka video datoteke po 1 sekundi videa (znači koliko možemo poslati u 1 sekundi u *outputu*). Govori CODEC-u, algoritmu za kompresiju koliko smije smanjiti podataka za željenu kvalitetu slike. Mjerna jedinica joj je "bit po sekundi" (bps, Kbps, Mbps). Što je veći *bit rate* to je manja kompresija, samim time dobivamo više podataka po sekundi, bolju kvalitetu slike ali i puno veću datoteku, isto je za suprotno. *Bit rate* je neovisan o rezoluciji. Različite kamere snimaju različitim *bit rate*-ima ali ih možemo namjestiti prilikom izvoza datoteka.

Dok odabiremo *bit rate* trebamo imati na umu namjenu *videa*. Trebamo paziti da nam je datoteka mala (da se brzo šalje i *loada*), kod livestreama npr. žrtvujemo sliku kako bi se video pravilno i kontinuirano prenosio. Viši *bit rate* košta više *bandwitdtha*. Trebamo paziti i da ne koristimo preveliki *bit rate*, video bi koristio previše procesorske snage a kvaliteta našem oku ostaje ista. Za HD video od 720p otprilike treba *bit rate* do 10 Mbps, za Full HD se korsti 15-25 Mbps, a za UHD 4K video koristimo 50-100 Mbps. Postoje dvije vrste *bit rate*-a, konstantni i varijabilni. Konstantni je jednak tokom cijelog *videa* bez obzira na dinamiku slike, dok varijabilni ovisi o dinamici slike te se smanjuje kod sporijih scena sa jednoličnim tonom gdje se može raditi veća kompresija dok se povećanjem dinamike pokreta povećava i bit rate za veću kvalitetu. Pomoću *bit rate*-a možemo predvidjeti i kolika će biti veličina naše datoteke videa koju spremamo.

ZADATAK	Original	Obrađeni video
Format datoteke	.mp4	.gif
Veličina datoteke	11.2 MB	54.3 MB
Trajanje	5 s 468 ms	-
CODEC	AVC	GIF
Bit rate	256 Kbps	12 Mbps
Rezolucija	16:9 (1920*1080)	1280 x 720
Frame rate	29.97 fps	22