QP Testcase

Problem Formulation

- State $x = [p \ v \ z]^T \in \mathbb{R}^3$ Control Input $\mathbf{u} \in \mathbb{R}^1$
- Dynamics $\dot{x} = \begin{bmatrix} v \\ -\frac{1}{m}F_r(v) \\ v_0 v \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \\ 0 \end{bmatrix} u$ $\dot{x} = f(x) + g(x)u$, where $F_r(v) = f_0 + f_1v + f_2v^2$ is the resistance
- $\bullet \quad \text{Input Constraints} \quad -mc_dg \leq u \leq mc_ag$
- Stability objective $v
 ightharpoonup v_d$ (v_d : desired velocity)
- Safety objective $z \ge T_h v$ (T_h : lookahead time)
- $\bullet \quad \text{CLF} \quad V(x) = (v-v_d)^2 \qquad \text{Constraint} \quad (v-v_d) \left\{ \frac{2}{m} (u-F_r) + \lambda (v-v_d) \right\} \leq \delta$

$$\bullet \quad \text{CBF} \quad h(x) = z - T_h v - \frac{\frac{1}{2}(v - v_0)^2}{c_{dg}} \qquad \text{Constraint} \quad \frac{1}{m} (T_h + \frac{v - v_0}{c_{dg}}) (F_r(v) - u) + \gamma \left(v_0 - v + z - T_h v - \frac{(v - v_0)^2}{2c_{dg}}\right) \geq 0 \quad \text{(Feasible Guaranteed)}$$

• Final QP
$$argmin(u, \delta) = \frac{1}{2} \begin{bmatrix} u \\ \delta \end{bmatrix}^T \begin{bmatrix} \frac{4}{m^2} & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} u \\ \delta \end{bmatrix} + \begin{bmatrix} -\frac{2F_r}{m^2} & 0 \end{bmatrix} \begin{bmatrix} u \\ \delta \end{bmatrix}$$

Performance on Different Solvers

CVXOPT

Results:

Executing time: 21.39902138710022 (2000 Iteration)

Quadprog

CVXPY

Gurobi

QP Testcase 3

Executing time: 135.90692472457886

QP Testcase 4