EXERCISE SHEET 4

RUNLIN ZHANG

截止日期:并没有,选做;如需反馈可以发给我。

评分标准:取 sup-norm——只要做对一小道题,就能得到满分。当然,你也可以尝试说明题目出错了。

提示: 你可以自由使用序号靠前习题的结果来解答序号靠后的习题。

如对习题 (陈述, 定义等) 有任何的疑问, 请联系我。

CONTENTS

- An example of equidistribution of unipotent flows
 Homogeneous sets of bounded volume
 Orbit counting and equidistribution
 3
 - 1. An example of equidistribution of unipotent flows

Notations

- $G = SL_2(\mathbb{C})$, $\Gamma = SL_2(\mathbb{Z}[i])$ and $X := G/\Gamma$;
- $U = \left\{ \mathbf{u}_s = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \middle| s \in \mathbb{R} \right\}$ and $x_0 = [g_0] \in G/\Gamma$.

Let (S_n) be a sequence of positive real numbers tending to $+\infty$ such that the following limit exists:

$$\mu := \lim_{S_n \to +\infty} \frac{1}{S_n} \int_0^{S_n} (\mathbf{u}_s)_* \delta_{[g_0]} \, \mathrm{d}s.$$

Assume the fact that such a μ belongs to Prob(X) U .

Recall the definitions of \mathcal{H} , T(H,U),... (see Lec.11, Def.1.6, Def.3.1). And V_H , v_H same as in Lec.12.

Exercise 1.1. Let $H \in \mathcal{H}$, $H \neq G$. Show that if $\mu(T(H, U)) > 0$, then there exists a bounded set $\Phi \subset V_H$ and a sequence $(\gamma_n) \subset \Gamma$ such that

$$\mathbf{u}_{[0,S_n]}g_0\gamma_n.\nu_H\subset\Phi.$$

Exercise 1.2. Same notations as the exercise above. Conclude that there exists $\gamma \in \Gamma$ such that

$$\mathbf{u}_{[0,+\infty)}g_0\gamma.v_H\subset\Phi.$$

Exercise 1.3. Same notations as the exercise above. Conclude that $g_0^{-1}Ug_0 \subset N_G(\gamma H \gamma^{-1})^{(1)}$.

Date: 2022.05.

Exercise 1.4. Use exercises above to show that if $x_0 = [g_0] \notin [Sing(G, U)]_{\Gamma}$, then

$$\lim_{S_n\to+\infty}\frac{1}{S_n}\int_0^{S_n}(\mathbf{u}_s)_*\delta_{[g_0]}\,\mathrm{d}s=\widehat{\mathbf{m}}_{G/\Gamma}.$$

[Hint: use Lec.11, Thm.2.3 if it helps.]

Exercise 1.5. Conclude that if $x_0 = [g_0] \notin [Sing(G, U)]_{\Gamma}$, then $U.x_0$ is dense in G/Γ .

2. Homogeneous sets of bounded volume

Notations

- $G := \mathrm{SL}_N(\mathbb{R})$ and $\Gamma := \mathrm{SL}_N(\mathbb{Z})$.
- Fix a right *G*-invariant Riemannian metric on *G*, which induces Riemannian
 metrics on *G*/Γ and also on immersed submanifolds. Volumes below are all
 induced from this.

For C > 0, let

 $\mathcal{A} := \{ H \le G \mid H \text{ is a closed connected subgroup of } G, \operatorname{Vol}(H/H \cap \Gamma) < \infty. \}$

 $\mathcal{A}_C := \{ H \le G \mid H \text{ is a closed connected subgroup of } G, \operatorname{Vol}(H/H \cap \Gamma) < C. \}$

Definition 2.1. Given a sequence (H_n) of closed subgroups of G, we say that (H_n) **converges** iff for every (infinite) subsequence (n_k) and $h_{n_k} \in H_{n_k}$ such that $\lim_k h_{n_k}$ exists, there exists $h'_n \in H_n$ for each n, such that

$$\lim_k h_{n_k} = \lim_n h'_n.$$

Exercise 2.1. Given a sequence (H_n) of closed subgroups of G, there exists a subsequence that converges.

From now on we fix a convergent sequence (H_n) . And assume each H_n is connected. Let

$$L := \left\{ g \in G \mid g = \lim_n h_n, \, \exists h_n \in H_n \right\}$$

Exercise 2.2. *Show that L is a closed subgroup.*

Exercise 2.3. There exists a subsequence n_k such that (\mathfrak{h}_{n_k}) (the Lie algebra of H_{n_k}) converges.

From now on we assume (\mathfrak{h}_n) converges to \mathfrak{h}_{∞} .

Exercise 2.4. Find an example of (H_n) such that \mathfrak{h}_{∞} is not the Lie algebra of L.

Now we further assume that $\{H_n\} \subset \mathcal{A}_{C_0}$ for some $C_0 > 0$.

Exercise 2.5. *Show that under the assumption above,* $\mathfrak{h}_{\infty} = \text{Lie}(L)$.

Exercise 2.6. Show that $(H_n \cap \Gamma)$ converges and its limit is given by

$$\Gamma_{\infty} := \{ \gamma \in \Gamma \mid \exists n_0, \ \forall n > n_0, \ \gamma \in H_n \cap \Gamma \}.$$

Exercise 2.7. Show that Vol_{H_n} converges to Vol_L in the weak* topology.

Exercise 2.8. Show that Γ_{∞} is a lattice in L. Indeed show that

$$Vol(L/\Gamma_{\infty}) \leq \limsup Vol(H_n/H_n \cap \Gamma).$$

[Hint, consider compact parts of a fundamental domain] It is a fact that once you know Γ_{∞} is a lattice in L, then it is finitely generated.

Exercise 2.9. Assume the fact above. Show that there exists n_0 such that for all $n > n_0$, $\Gamma \cap H_n \supset \Gamma_{\infty}$.

Continuing this way, using more inputs from the theory of algebraic groups, one can show that

Theorem 2.2 (Dani-Margulis). We have that

$$\#\{H\cap\Gamma\mid H\in\mathscr{A}_{C_0}\}<\infty.$$

Exercise 2.10. For $H \in \mathcal{A}$ and $g \in G$, show that

$$\operatorname{Vol}(gH\Gamma/\Gamma) = \frac{\left\|\operatorname{Ad}(g).\nu_H\right\|}{\|\nu_H\|}\operatorname{Vol}(H\Gamma/\Gamma).$$

Here v_H is a vector in $\wedge^{\dim H} \mathfrak{sl}_n$ defined by $v_1 \wedge ... \wedge v_{\dim H}$ where $(v_1, ..., v_{\dim H})$ is a basis for \mathfrak{h} , the Lie algebra of H.

Exercise 2.11. Assume the theorem above, show that $\Gamma . v_H$ is a discrete subset of $\wedge^{\dim H} \mathfrak{sl}_n$.

3. Orbit counting and equidistribution

Notations

- $G = \operatorname{SL}_2(\mathbb{R}), \Gamma = \operatorname{SL}_2(\mathbb{Z}), H = \left\{ \begin{bmatrix} x & 2y \\ y & x \end{bmatrix} \middle| x^2 2y^2 = 1 \right\};$
- $V := \{2\text{-by-}2 \text{ real matrices with trace } 0\};$
- $V(\mathbb{Z}) := \{2\text{-by-2 integer matrices with trace 0}\}$
- $M_0 := \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$ and $p_0(x) := x^2 2$;
- for a matrix M, its characteristic polynomial is denoted by $\operatorname{char}_M(x) := \det(xI M) = x^2 \operatorname{Tr}(M)x + \det(M)$;
- $\bullet \ X_{p_0}(\mathbb{R}):=\left\{M\in V, \operatorname{char}_M(x)=p_0(x)\right\}, \ X_{p_0}(\mathbb{Z}):=\left\{M\in V(\mathbb{Z}), \operatorname{char}_M(x)=p_0(x)\right\};$
- for a 2-by-2 matrix $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, define $ht(M) := \sqrt{a^2 + b^2 + c^2 + d^2}$;
- $B_R := \{ M \in X_{p_0}(\mathbb{R}) \mid ht(M) \le R \}.$

Exercise 3.1. Show that every pair of matrices $M_1, M_2 \in X_{p_0}(\mathbb{R})$, there exists $g \in G$ such that $gM_1g^{-1} = M_2$.

Let G acts on $X_{p_0}(\mathbb{R})$ by $g.M := gMg^{-1}$. The above exercise shows that this action is transitive.

Exercise 3.2. The stabilizer of M_0 in G is equal to H.

Exercise 3.3. $H \cap \Gamma$ is a lattice in H.

Exercise 3.4. Show that the action of Γ on $X_{p_0}(\mathbb{Z})$ is transitive.

[Hint: $\mathbb{Z}[\sqrt{2}]$ is a PID]

Further notations

- m_{G/H} is a G-invariant locally finite measure on G/H;
- similarly, m_G and m_H denote Haar measures on G and H respectively.

Note that G and H are unimodular: left Haar measures are the same as right Haar measures.

Definition 3.1. We say that a triple $(m_G, m_H, m_{G/H})$ is compatible iff for every compactly supported function $f \in C_c(G)$, we have

$$\int_{G/H} \int_{H} f(gh) m_{H}(h) m_{G/H}([g]) = \int_{G} f(g) m_{G}([g]). \tag{1}$$

Exercise 3.5. Show that for every triple of Haar measures $(m_G, m_H, m_{G/H})$, there exists a constant c > 0 such that for every $f \in C_c(G)$,

$$\int_{G/H} \int_{H} f(gh) \mathbf{m}_{H}(h) \mathbf{m}_{G/H}([g]) = c \cdot \int_{G} f(g) \mathbf{m}_{G}([g]).$$

From now on we fix the unique triple $(m_G, m_H, m_{G/H})$ satisfying

- 1. $(m_G, \delta_{\Gamma}, \widehat{m}_{G/\Gamma})$ and $(m_H, \delta_{H \cap \Gamma}, \widehat{m}_{H/H \cap \Gamma})$ are compatible. Here δ_{Γ} (resp. $\delta_{H \cap \Gamma}$) denotes the counting measure on Γ (resp. $H \cap \Gamma$).
- 2. $(m_G, m_H, m_{G/H})$ is compatible.

Its existence is guaranteed by the Exer.3.5 above.

Exercise 3.6. Find the asymptotics of

$$m_{G/H}(B_R) := m_{G/H}(\{[g] \in G/H \mid ht(g.M_0) \le R\}).$$

Definition 3.2. *Define* $\varphi_R : G/\Gamma \to \mathbb{R}$ *by*

$$\varphi_R([g]) := \# \big(g \Gamma. M_0 \cap B_R \big).$$

We say that $\frac{1}{m_{G/H}(B_R)}\varphi_R$ converges to 1 weakly iff for all $\psi \in C_c(G/\Gamma)$,

$$\lim_{R\to +\infty} \frac{1}{\mathrm{m}_{G/H}(B_R)} \int_{G/\Gamma} \varphi_R([g]) \psi([g]) \widehat{\mathrm{m}}_{G/\Gamma}([g]) = \int \psi([g]) \widehat{\mathrm{m}}_{G/\Gamma}([g]). \tag{2}$$

Exercise 3.7. Show that if $\frac{1}{m_{G/H}(B_R)} \varphi_R$ converges to 1 weakly then for every $[g] \in G/\Gamma$,

$$\lim_{R\to+\infty}\frac{1}{\mathrm{m}_{G/H}(B_R)}\varphi_R([g])=1.$$

In particular, in light of Exer. 3.4,

$$\#X_{n_0}(\mathbb{Z}) \cap B_R \sim \mathrm{m}_{G/H}(B_R).$$

[Hint: use Exer.3.6].

Exercise 3.8. Show that the left hand side of Equa. (2) (excluding the limit) is equal to

$$\frac{1}{\mathsf{m}_{G/H}(B_R)} \int_{\{g.M_0 \in B_R\}} \left(\int \psi(x) \, g_* \widehat{\mathsf{m}}_{H\Gamma/\Gamma}(x) \right) \mathsf{m}_{G/H}([g])$$

Exercise 3.9. Use "linearization technique" to show that for every sequence (g_n) such that $([g_n])$ diverges in G/H, we have

$$\lim_{n\to+\infty} (g_n)_* \widehat{\mathbf{m}}_{H\Gamma/\Gamma} = \widehat{\mathbf{m}}_{G/\Gamma}.$$

Exercise 3.10. Use Exer.3.9 to conclude that $\frac{1}{m_{GH}(B_R)} \varphi_R$ converges to 1 weakly.