Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Московский физико-технический институт (государственный университет)»

Факультет проблем физики и энергетики

Кафедра нелинейных и динамических процессов в астрофизике и геофизике

ПОДГОТОВКА ПРОГРАММЫ НАБЛЮДЕНИЙ КОСМИЧЕСКОЙ МИССИИ "СПЕКТР-УФ": ОТБОР КАНДИДАТОВ В ЗВЁЗДЫ ТИПА Т ТЕЛЬЦА В СОЗВЕЗДИИ ЗМЕИ

Выпускная квалификационная работа (бакалаврская работа)

Направление подготовки 03.03.01 Прикладные математика и физика

Выполнила:		
студентка 183 группы	Молярова Тамара Сергеевна	
Научный руководитель:		
д.фм.н., ведущий научный сотрудник	Михаил Евгеньевич Сачков	

Оглавление

1	Вве	дение
	1.1	Т Tauri звёзды
	1.2	Изучаемая область
	1.3	Метод поиска
	1.4	актуальность
2	ТТ	auri
	2.1	Звёзды типа Т Тельца
	2.2	Спектральные особенности
	2.3	Методы поиска
3	Дан	иные
	3.1	GALEX
	3.2	2MASS и UCAC4
	3.3	Используемые инструменты
4	Отб	oop
	4.1	Эталонная выборка
	4.2	Цветовые диаграммы
	4.3	Критерии отбора
	4.4	Результат
	4.5	Адекватность критериев
5	Улу	учшение списка
	5.1	Удаление источников известного типа
	5.2	Поиск галактик по собственным движениям
	5.3	Оценка эффективных температур
6	Ана	ализ
	6.1	Диаграммы цвет-интенсивность
	6.2	Оценка поглощения
	6.3	Расположение
	6.4	Классические и со слабыми линиями
7	Вы	воды
Л	итер	этура

1. Введение

1.1 Т Tauri звёзды

Зачем их искать вообще, что в них инетерсного.

1.2 Изучаемая область

Это туманность какая-то в созвездии Змеи. Где она, кем наблюдалась, звездообразование в ней етс.

1.3 Метод поиска

По фотометриям galex, цветовым диаграммам + отсев по собственным движениям, эффективным температурам и simbad.

1.4 актуальность

О космическом телескопе Спектр-УФ. Неисследованная область

2. T Tauri

2.1 Звёзды типа Т Тельца

Звёзды типа Т Тельца - это маломассивные молодые звёзды, находящиеся на пути к главной последовательности. Обычно они находятся недалеко от отражательных или тёмных туманностей, оставшихся от газопылевого облака, из которого эти звёзды сформировались. Эти звёзды находятся в той части диаграммы Герцшпрунга - Рассела, которая соответствует звёздам с массами около 2-3 солнечных. С точки зрения звёздной эволюции они находятся в стадии гравитационного сжатия и, как молодые объекты, имеют близкую к солнечной металличность. (цитировать Додина) Характерными чертами также является избыточная эмиссия в ИК и УФ дапазонах.

Выделяют два подтипа этих звёзд: классические звёзды типа T Тельца (classical T Tauri stars, CTTS) и звёзды типа T Тельца со слабыми линиями (weak-lined T Tauri stars). Звёзды обоих подтипов находятся на одной стадии эволюции, имеют малую массу, и их металличность близка к солнечной. Различие состоит B том, что B спектрах классических звёзд типа B Тельца присутствуют сильные эмиссионные линии, указывающие на то, что эти звёзды проявляют определённого рода активность. У звёзд типа B Тельца со слабыми линиями эмиссионные линии гораздо слабее. Граница между подтипами проводится по эквивалентной ширине линии B.

2.2 Спектральные особенности

Звёзды типа Т Тельца относятся к классу переменных звёзд. Первоначально они были выделены в отдельный класс на основе чисто спектроскопических характеристик: наличия эмиссии в линиях Н α и Fe I, а также класс светимости IV-V.

Сейчас выделяются следующие критерии принадлежности к типу:

- Наличие поблизости тёмной или отражательной туманности;
- Спектральный класс F5-M, класс светимости IV-V;
- Эмиссия в линиях H и He I, а также нейтральных и однократно ионизированных металлов;
- Сильная линия поглощения Li I 6707 A;

Присутствие линии Li указывает на молодость звёзд, так как согласно теоретическим расчётам литий быстро выгорает.

Эмиссионный спектр CTTS напоминает спектр солнечной хромосферы. Поэтому изначально считалось, что для них характерна высокая хромосферная активность. Но ожидаемое в этой модели сильное рентгеновское излучение не нашло экспериментального подтверждения.

В настоящее время считается, что спектральные особенности СТТS обусловлены наличием аккреционного диска. Если также предположить наличие магнитного поля, направление которого не совпадает с осью вращения звезды, то удаётся объяснить асимметричность эмиссионных линий. Предполагается, что они образуются на границе магнитосферы. Также аккреция вещества на звезду вызывает возникновение джетов. Это биполярные узконаправленные струи газа, истекающие со звезды. Они наблюдаются обычно в запрещённых линиях [SiI], [OI].

Наличие протопланетных дисков и магнитного поля у многих звёзд типа Т Тельца подтверждается наблюдениями.

Чтобы отличить звёзды типа Т Тельца от других, нам нужно знать характеристики их спектров, в особенности те из них, которые можно наблюдать в фотометриях. Как следствие существования аккреционного диска и истечения вещества на звезду, у ТТЅ наблюдается избыток излучения в различных спектральных диапазонах, а именно:

- Избыток в инфракрасном диапазоне вплоть до миллиметровых длин волн, обусловленный как собственным излучением нагретого диска, так и переизлучением поглощённого им излучения звезды и джетов.
- Избыток в оптическом диапазоне свечение плазмы, нагретой до температуры 7000-10000 К. Это так называемое вуалирование континуальное излучение нефотосферной природы.
- Избыток в ультрафиолетовом диапазоне свечение плазмы с температурой электронов от 10000 К до 50000 К, причём присутствует как излучение в континууме, так и различные эмиссионные линии: нейтральные атомы (Н І, О І, С І), однократно (С ІІ, Si ІІ, Fe ІІ, Mg ІІ, О І) и многократно (С ІV, N V, O VІ) ионизованные атомы, молекулярный водород.
- Избыток в рентгеновском диапазоне, вызванный высокой активностью магнитосферы звезды, свечением короны и ударными волнами в аккреционном диске.

2.3 Методы поиска

Изначально главными критериями поиска были лишь самые основные характеристики звёзд типа Т Тельца, как-то: близость к молекулярным облакам, избыток в инфракрасном диапазоне, присутствие магнитного поля. Позже, с появлением широкомасштабных обзоров неба, стали учитываться эквивалентная ширина линии Н α, собственные движения звёзд и избыток излучения в рентгеновском диапазоне. Также могут быть использованы оптические и инфракрасные данные и расрпределение спектральной энергии (SED) в этих диапазонах, в которых можно выделить черты, характерные для аккреционных дисков. Однако этими методами труднее обнаружить WTTS. Единственным действительно надёжным критерием является присутствие линии Li, как показатель молодости звезды.

Несмотря на то, что у звёзд типа Т Тельца присутствует существенный ультрафиолетовый избыток, большинство исследований, направленных на их поиск, проводилось в инфракрасном и рентгеновском диапазонах. С появлением ультрафиолетового обзора неба от миссии GALEX есть возможность использования и

3. Данные

Данные мы брали из интернета, но это ничего страшного, они же в открытом дотупе лежат, и так и надо, зря что ли люди делали.

3.1 GALEX

Космическая миссия. О телескопе, звёздных величинах, фильтрах. Как выглядит спектр T Таури в этих фильтрах.

О точности и покрытии неба. Картинка насчёт того как он покрывает мне область. Первоначальный список источников из квадрата. Сколько. Какие данные

3.2 2MASS и UCAC4

Зачем нам вообще нужны эти данные. 2MASS для построения цветовых диаграмм, UCAC4 для оценки эффективных температур.

О каталогах, фильтрах, точности. В GALEX должно быть много ложных источников из-за их слабости и детектирования на пределе возможностей телескопа. Они пропадут при матчинге с нормальными каталогами

Кросс-идентификация первого списка с каталогами 2MASS и UCAC4. Радиус поиска. Какие откидывать? Новый список.

3.3 Используемые инструменты

casjobs для получения данных с галекса. visier для кросс-матчинга.

4. Отбор

Основной этап отбора кандидатов

4.1 Эталонная выборка

Что за звёзды, откуда, зачем.

4.2 Цветовые диаграммы

Построение этих диаграмм, анализ. Нанесённые эталоны.

4.3 Критерии отбора

Критерии для трёх типов диаграмм. Почему именно эти диаграммы. Выбираем источники, для которых хотя бы одно из условий выполняется. Зачем нам третий критерий. И сослаться на Ану Инес.

4.4 Результат

Получили столько-то источников. Самый сильный критерий оказался третий (вроде)

4.5 Адекватность критериев

Не упускают ли критерии известные звёзды типа Т Тельца? В нашей области проверить не на чем, но вот люди (Ана Инес) проверили на ТМС и работает.

5. Улучшение списка

Теперь мы очистим список от источников, который могли попасть туда случайно. Это могут быть галактики, например, или горячие звёзды, потому что у них тоже присутствует избыток ультрафиолета.

5.1 Удаление источников известного типа

С помощью Simbad удалось идентифицировать четверть источников. Многие из них галактики. Нет ни одной Т Tauri и даже ни одного кандидата. Выбрасываем галактики и звёзды с определённым типом.

5.2 Поиск галактик по собственным движениям

В UCAC4 указаны собственные движения, так что мы можем сравнить их друг с другом и выяснить, какие из источников находятся ближе. Если движение сравнимо со значением погрешности его измерения, то мы считаем, что эти источники находятся слишком далеко, скорее всего они являются галактикамии.

5.3 Оценка эффективных температур

Некоторые попавшие в список источники могут иметь ультрафиолетовый избыток просто потому что у них очень большая температура. Оцениваем её в VOSA, отбрасываем все источники горячее 7000 К.

6. Анализ

Анализ етого всего

6.1 Диаграммы цвет-интенсивность

Надо их показать, но не знаю, зачем.

6.2 Оценка поглощения

Не очень далеко область, но вроде поглощается там. Надо доделать.

6.3 Расположение

Картинки с координатами и собственными движениями.

6.4 Классические и со слабыми линиями

Что они распределены по гауссу и вдоль прямой соответственно, если смотреть на диаграмму FUV-NUV vs J-K. Вообще распредедить кандидаты в группы по WTTS, CTTS и просто TTS.

7. Выводы

Итак, мы получили финальный список кандидатов в звёзды типа T Тельца, всего их целых N штук.

Мы сделали всё, что мы сделали, мы молодцы.

Теперь можно понаблюдать все кандидаты со Спектра-УФ, чтобы выяснить, действительно ли они типа Т Tauri. Но можно и улучшить список ещё, если очень хочется, а именно – пронаблюдать эти источники на БТА и уточнить их звёздные величины в видимом диапазоне.

Спасибо мама, папе, Ленке, Вове, Лохматому и Булке за моральную поддержку и веру в меня, спасибо спасибо.