Part II, assignment 1 Graded Student Scott A. Fullenbaum **Total Points** 16 / 16 pts Question 1 Subgroup of S_{_}5 isomorphic to Z_{_}6 4 / 4 pts ✓ - 0 pts Correct - 1 pt Use Cayley's method - look at the group acting on itself by left multiplication Question 2 8.3 4 / 4 pts - 0 pts Correct - 2 pts Incorrect permutations Question 3 4 / 4 pts 8.6 - 0 pts Correct - 1 pt Use Cayley's method - look at the group acting on itself by left multiplication - 1 pt On the right track but missing a step **Question 4** 4 / 4 pts 8.11 - 0 pts Correct

- 1 pt Did not describe the symmetry q or given symmetry does not induce the permutation (12)

- 1 pt Cayley's theorem is not applicable in this case.
- 1 pt Showing a bijection between the symmetries and permutations does not quite show an isomorphism; you
 need some explanation of why it preserves the group structure

Questions assigned to the following page: $\underline{1}$ and $\underline{2}$

Q1) So 7/5 10 1 2 3 4
0 0 1 2 2 11
1 1 2 3 4 0 2 2 3 4 0 1 3 3 4 0 1 2 4 4 0 1 2 3
3 3 4 0 1 2
50 05 5 - 50 - 2 - 3
So as S= ED, 2, 3, 4, 5} we see that Zs is just permuting it's row as a cycle. So take H = < C1, 2 3 4 8 12, I and H = 7/= 05
So take H= < (1,2345) > Taid sugle.
H= 7/s as have map bills dearly
1 -> (12345) Subgroup of S5
a -> (12348)*
3 -> C 1233195)3
This is clearly bijective and to show
(Carb) = (12345) = 6
(Carb) = C12345) = 5
= (12345)°(12345)° = (60) (60)
So have an isomorphism between
Subgroup of S5 and 7/80
835 /
(8.3) (3.6) front. 1 right. 2
bottom: 5 back: 6
Dane by rataling 2 die
150 ° 5. +
1 - 2 1 -> 5 1 -> 5 2 -> 4
2→6 3→3 3→4 3→6
y→1 y→6 y→2
5->5 5->2 5->1
6-34 6-33 6-33

Questions assigned to the following page: $\underline{4}$ and $\underline{3}$

Questions assigned to the following page: $\underline{4}$ and $\underline{3}$

