NGN Project SoSe 2021

Evaluation of ThingsBoard Implementation in the Context of an IoT Based Home Network

Project by:

Rubaiya Kabir Pranti and Others

Impact of IoT

By **2018**, there was an estimated **22 billion** IoT connected devices in use globally.

According to Statista, this number will be **38.6 billion** by **2025**

Impact of IoT

Fuel to the Fire

•Low-cost, & low-power sensor technology. E.g.: Temperature, pressure, photoelectric etc.

•Cloud computing platforms. E.g.

•Machine learning and analytics E.g.: Business analytics like Hohotjar website heat mapping

•Conversational artificial intelligence (AI) E.g.: amazon alexa Cortana

•Custom Connectivity Protocols. E.g.: Manager AP, Zigle zigbee

IoT Supporting Protocols

Parameters	HTTP	MQTT	CoAP	
Abbreviation	Hyper Text Transfer Protocol	Message Queuing Telemetry Transport	Constrained Application protocol	
Architecture	Request-response model	Publish-subscribe model	Request-response model or Publish-subscribe model	
Interaction Model	Device-to-Cloud Cloud-to-Cloud	Device-to-Cloud Cloud-to-Cloud	Device-to-Device	
Transport Layer	TCP	TCP	UDP	
Network Layer	IPv4 or IPv6	IPv6	IPv6	
Port Number	80 or 443	1883 or 8883	5683	
Header Size	8 bytes	2 bytes	4 bytes	
Protocol Design	Document Centric	Data Centric	Document Centric	
Encoding	ASCII text	UTF-8 Binary	RESTful Binary	
Reliability Mechanism	1 level	3 levels	Confirmable messages, Non-confirmable messages, Acknowledgements and retransmissions	
Security	SSL/TLS	SSL/TLS	DTLS or IPSEC	
QoS	N/A	Limited	Limited	

The Project

Evaluate the performance of ThingsBoard via IoT based home device management application, HomeNetwork

- •Devices connected to HomeNetwork:
 - o Raspberry Pi based lighting device
 - o ESP8266 based temperature and humidity measurement system
- •Project application run in community edition (ThingsBoard also offers cloud and Professional edition) hosted on private virtual server.
- Operation and monitoring of application via ThingsBoard dashboard using MQTT protocol.
- •Tests, based on connectivity, functionality, usability and robustness of the system was carried out to gauge parameters such as latency of real time data, accuracy, responsiveness etc.
- •Short analysis of some popular IoT supporting communication protocols like MQTT, CoAP and HTTP.

HomeNetwork Architecture

Notifications to end users will be communicated via third party mailing service such as Gmail.

All signaling and telemetry data will be stored in ThingsBoard's inbuilt NoSQL database,

Cassandra

Push messages to external systems from ThingsBoard and to receive data in desired format via Rule Engine.

Devices (Hardware)

Lighting Control Device

How it works

Functionality based on the code written to Raspberry Pi. It switches on every time it receives a voltage value (5V) associated with switch on state i.e.: True or False in case of OV. This voltage is supplied as a signal from a application based user interface

Temperature & Humidity Device

DHT 22 - measures the humidity and temperature of the surrounding air with its capacitive humidity probe and thermistor and displays a digital signal output.

NODEMCU ESP8266 -

Development kit based on the ESP8266 for programming of Wireless LAN controlled projects with open source firmware

How it works

Power is supplied over a USB-Cable to ESP8266 which in turn supplies power to the DHT22 with its internal regulator.

In Addition to these modules the IoT Sensor also has an indicator LED. It is switched on every time a measurement is undertaken and data is transmitted to the dashboard.

The IoT Platform:

Installing Thingsboard

- Installation on Ubuntu 18.04, other OS' like CentOS7/8 are possible
- Prerequisite: Java 11
- Consists of 3 Steps:
 - Thingsboard Service itself
 - Thingsboard Database:
 - Cassandra 4.x beta
 - PostgreSQL
 - Thingsboard Queue Service
 - In memory queue implementation (default)
 - Alternative: e.g. Kafka
- Optional: Installation script. Creates sample users, devices, and rulechains

Device Integrations

- Integration or connection of devices is done on a token base.
- Each device has its own entry in Thingsboard and a unique token
- In case of Raspberry Pi: maho-mqtt is used
- In case of ESP8266: Thingsboard-library for the Arduino IDE are available

THINGSBOARD_HOST = '45.146.254.245'
ACCESS_TOKEN = 'access_token'

Configuration of Devices

Device Page with access token

Rulechain Setup

- The Rulechain drives the Workflow of the System.
- Messages are used between nodes in a rule chain.
- Nodes can alter and process a message and can trigger events
- Nodes are connected with each other by relations which are node dependent

Input-node: start of every rulechain

Action-Node: e.g. saving of data

Transformation-Node: modifies message

Dashboard Setup & Visualization

- A dashboard corresponds to a rulechain
- Needs to be connected to a customer
- Is made up out of widgets
 - Each widget has its own set of keys and attributes which needs to be considered
- Displays data saved in timeseries –
 table form rulechain

Dashboard with multiple Widgets

Testing the System

Connectivity Testing

Content itself is what the end-user derives value from also can refer to the information provided through the medium, the way in which the information was presented, as well as the added features included in the medium in which that information was delivered. The medium, however, provides little to no value to the end-user without the information and experiences that make

Functionality Testing

Content itself is what the end-user derives value from also can refer to the information provided through the medium, the way in which the information was presented, as well as the added features included in the medium in which that information was delivered. The medium, however, provides little to no value to the end-user without the information and experiences that make

Protocol Testing

Content itself is what the end-user derives value from also can refer to the information provided through the medium, the way in which the information was presented, as well as the added features included in the medium in which that information was delivered. The medium, however, provides little to no value to the end-user without the information and experiences that make

Regression Testing

Content itself is what the end-user derives value from also can refer to the information provided through the medium, the way in which the information was presented, as well as the added features included in the medium in which that information was delivered. The medium, however, provides little to no value to the end-user without the information and experiences that make

Usability Testing

Content itself is what the end-user derives value from also can refer to the information provided through the medium, the way in which the information was presented, as well as the added features included in the medium in which that information was delivered. The medium, however, provides little to no value to the end-user without the information and experiences that make

Testing Afterthoughts

Content itself is what the end-user derives value from also can refer to the information provided through the medium, the way in which the information was presented, as well as the added features included in the medium in which that information was delivered. The medium, however, provides little to no value to the end-user without the information and experiences that make

Conclusions

Thanks! Any questions?

Backup templates

- Write here a list of features
- Here you can write more
- More about the project

Content itself is what the end-user derives value from also can refer to the information provided.

YOUR SLIDE TILE

CONTENT IN TWO COLUMNS

Content A

Content itself is what the end-user derives value from also can refer to the information provided through the medium, the way in which the information was presented, as well as the added features included in the medium in which that information was delivered.

Content B

Content itself is what the end-user derives value from also can refer to the information provided through the medium, the way in which the information was presented, as well as the added features included in the medium in which that information was delivered.

Content C

Content itself is what the end-user derives value from also can refer to the information provided through the medium, the way in which the information was presented, as well as the added features included in the medium in which that information was delivered.

TABLES TO COMPARE DATA

	A	В	C
Content A	100	200	400
Content B	\$67,000	\$56,000	\$78,000
Content C	4500	60000	\$8,000
Content D	34000	\$400	\$600
Content E	\$90	\$800	\$1,000