Reference-Based Transcriptome Assembly

Mingfu Shao

Computational Biology Department, Carnegie Mellon University

January 18, 2016

Problem Statement

- Input: strongly connected DAG G = (V, E) with a single source s and a single sink t, weight w(e) for $e \in E$
- **Output:** a set of paths $\mathscr P$ from s to t and capacity c(P) for $P \in \mathscr P$, such that
 - $\blacksquare |\mathscr{P}|$ is minimized, and that
 - $\sum_{e \in E} |w(e) \sum_{e \in P} c(P)|$ is minimized

Existing Method: Cufflinks

- **Algorithm:** compute a minimum number of paths to cover all edges using Dilworth's Theorem
- **Disadvantage:** do not consider the weights of edges

Existing Method: Scripture

- Algorithm: output all possible paths
- **Disadvantage:** exponential number of paths

Existing Method: IsoLasso

■ Algorithm: use quadratic programming

- Disadvantage:
 - \blacksquare $|\mathscr{P}|$ is not bounded
 - exponential number of variables

Existing Method: Traph

- **Algorithm:** use a network flow formulation to compute a new weight w'(e) for $e \in E$ such that
 - $\sum_{e \in E} |w(e) w'(e)|$ is minimized, and that
 - there exists a flow decompositions of the new DAG, i.e., there exists a set of paths satisfying $\sum_{e \in E} |w'(e) \sum_{e \in P} c(P)| = 0$

Disadvantage:

- only the weights are updated; the paths are not returned; actually they use a greedy algorithm to compute paths (the same as StringTie)
- the number of paths is not considerred in this formulation

Existing Method: CLIIQ

- Algorithm: use ILP to model this problem
- **■** Disadvantage:
 - ILP itself is NP-complete
 - exponential number of variables

Existing Method: StringTie

Algorithm:

- use greedy algorithm to compute paths (transcripts): iteratively compute heaviest path
- use network flow formulation to estimate abundance (a sophisticated way to handle reads spanning several vertices)

Disadvantage:

when compute the current path, the tradeoff between weights is not considerred

Our Algorithm

- I compute a (good) basis ${\mathscr B}$ (with |E|-|V|+2 paths) of the path space
- 2 use an LP to estimate the capacities of the paths in ${\mathscr B}$
- ${f 3}$ try to reduce the number of paths in ${\mathscr B}$
 - for two paths with (almost) identical capacities, merge them into one path
 - discard paths with very small capacities
- 4 iterate between step 2 and step 3

Compute Basis of the Path Space

I for each vertex (except s and t), arbitrarily choose exactly an in-edge and an out-edge (the one with maximum weight);

- 2 for each vertex v (except s and t), there exists a unique path from s to v, and a unique path from v to t
- 3 output paths to cover all edges following these chosen edges

Merge Paths: Example

Optimal solution:

- $\blacksquare P_1^*: s \to a \to b \to c \to d \to t$, capacity = 3
- $ightharpoonup P_2^*: s o b o c o t$, capacity = 2

Our solution:

- $\blacksquare P_1: s \to a \to b \to c \to d \to t$, capacity = 1
- $\blacksquare P_2: s \rightarrow b \rightarrow c \rightarrow d \rightarrow t$, capacity = 2
- $ightharpoonup P_3: s
 ightharpoonup a
 ightharpoonup b
 ightharpoonup c
 ightharpoonup t$, capacity = 2
- Merge P_2 and P_3
 - $\blacksquare P_4: s \rightarrow b \rightarrow c \rightarrow t$, capacity = 2
 - $\blacksquare P_2 + P_3 = P_4 + P_1$, and P_1 must be in \mathscr{B}