

Image Analysis

Rasmus R. Paulsen Tim B. Dyrby DTU Compute

rapa@dtu.dk

http://www.compute.dtu.dk/courses/02502

Lecture 11 – Face detection using the Viola Jones method

What can you do after today?

- Describe the concept of face detection
- Describe the concept of Haar features
- Compute the values of 2, 3 and 4 rectangle Haar features
- Describe the integral image
- Compute the sum of pixels values in a rectangle using an integral image
- Describe the concept of a weak classifier
- Describe how several weak classifiers can be combined into a strong classifier
- Describe the attentional cascade
- Describe how faces can be detected using a moving window

Face detection

- First problem
 - Analyze a window in an image
 - Is there a face in that window?

Face detection

- Slightly more advanced
 - Analyze many windows in an image
 - How many (if any) windows contain faces?

Face detection

Ideal

- Analyze (almost) all possible windows in an image
- How many (if any) windows contain faces?

What is needed?

A fast method to determine if a *window* contains a face

Primary task – image feature based classification

Image based features - what features can you think of?

Viola Jones – fast features and smart classification

Training data

Face images:

- 4916 hand labelled faces
- Aligned and scaled to 24x24 pixels
- Non-face images:
 - 9544 images with no faces
 - 350 million sub-windows sampled from these

Viola Jones – fast features and smart classification

Haar features

- Alfred Haar (1885-1933)
 - Hungarian Mathematician
- Introduced the Haar wavelet in 1909
- A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times.
- Simplest possible wavelet

https://en.wikipedia.org/wiki/Wavelet

Haar features

Two rectangle features

Three rectangle feature

Four rectangle feature

D

Sum of pixel values in image

One Haar feature

Feature = 254+198+20+208+113+222-154-21-67-58-167-233 = 1015-700 = 315

Four rectangle Haar feature - what is the feature value?

567 179 -611 -113 76 I do not know

Fast computing of Haar features

24 x 24 pixels

- Even for small Haar features, there are quite a lot of basic operations
- The larger the Haar feature, the more operations
- We need a fast way to compute Haar features

2023

How many basic operations (plus and minus) are needed to compute the feature?

15 6 21 3 I do not know

Image Analysis

15 6 9 21 3 I do not know

15 √0%69213

Fast computation of Haar features – the integral image

- In an integral image the pixel value is:
 - The sum of pixel above it and to the left of it in the original image

- Including the pixel itself
- Can be computed very fast

Computing the integral image - what is the value in the marked pixel?

Computing the integral image - what is the value in the marked pixel?

Computing the integral image - what is the value in the marked pixel?

Using the integral image

- We want to compute the pixel sum in the rectangle
- Defined by four corners: 1, 2, 3, 4

Using the integral image

- Define four regions:
 - A, B, C, D
- The sum of pixels in the area
 - A+B+C+D is the value of the integral image at point 4

Using the integral image

- The sum of pixels in the area
 - A+B is the value of the integral image at point 2
 - A+C is the value of the integral image at point 3

Using the integral image – short notation

The sum of pixels in the area

$$-ii(2) = A+B$$

$$- ii(3) = A+C$$

$$-ii(4) = A+B+C+D$$

$$-ii(1) = A$$

$$-ii(4)-ii(3)-ii(2) = D - A$$

$$-ii(4)-ii(3)-ii(2)+ii(1) = D$$

Haar features in an image window

24 x 24 pixels

- Image window of 24 x 24 pixels
- All possible sizes and shapes of Haar features
- More than 180.000 features according to Viola and Jones
- They are overcomplete meaning there is a very high redundancy
- We need feature selection

2023

Possible features

$$f_1 = 1$$
 $f_5 = 1$
 $f_2 = 1$ $f_6 = 1$
 $f_3 = 1$ $f_7 = 1$

Feature selection – from the article

- There are over 180,000 rectangle features associated with each image subwindow, a number far larger than the number of pixels.
- Even though each feature can be computed very efficiently, computing the complete set is prohibitively expensive.
- Our hypothesis, which is borne out by experiment, is that a very small number of these features can be combined to form an effective classifier.
- The main challenge is to find these features

Learning Classification Functions

$h_j(x) = \begin{cases} 1 & \text{if } p_j f_j(x) < p_j \theta_j \\ 0 & \text{otherwise} \end{cases}$

Weak classifier

24 x 24 subwindow

$$f_j = \blacksquare$$

Feature value computed on the sub-window

$$p_j \in [-1, 1]$$

Parity - determines if the feature value should be positive or negative

$$\theta_j$$

Feature threshold

Weak classifier

$$f_j(\square) = \square = 2049$$

Learnt by training: $p_j = 1$ $\theta_j = 456$

$$\rightarrow 1 * 2049 < 1 * 456 \rightarrow h_j(\square) = 0$$

2023

What is this parity?

43

$h_j(x) = \begin{cases} 1 & \text{if } p_j f_j(x) < p_j \theta_j \\ 0 & \text{otherwise} \end{cases}$

Weak classifier

$$x =$$

$$f_j(\square) = \square = 2049$$

Learnt by training:

$$p_j = -1 \quad \theta_j = 456$$

$$\rightarrow -1 * 2049 < -1 * 456 \rightarrow h_j(\square) = 1$$

Creating a strong classifier from weak classifiers

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

$$h_1(\square) =$$

$$h_2(\square) =$$

$$h(\square) = \alpha_1 h_1 + a_2 h_2 + \dots + a_T h_T$$

Learnt using AdaBoost

Boosted features – good performance but not enough

- Frontal face classifier with
 - T=200 features
 - Detection rate 95%
 - False positives 1 in 14084
 - 0.7 seconds for a 384 x 288

$$h_1(\mathbf{n}) = \alpha_1 h_1 + a_2 h_2 + \dots + a_T h_T$$

2023

The Attentional Cascade

Image Attention

- The process of focusing on specific parts of an image
 - Followed by fine grained analysis of selected windows

Focusing on potential face regions

Input image windows

Cascaded classifier

Also called a *degenerate decision* tree

What is a false negative?

A face window classifed as face window

A background window classified as a face window

A face window classified as a background window

A background window classified as a background window

I do not know

What is a false negative?

A face window classifed as face window

A background window classified as a face window

A face window classified as a background window

A background window classified as a background window

I do not know

What is a false negative?

A face window classifed as face window

A background window classified as a face window

A face window classified as a background window

A background window classified as a background window

I do not know

The attentional cascade

- Later more complex classifier
 - Low false positive rate

2023

Training a cascade

$$h(\blacksquare) = \alpha_1 h_1 + a_2 h_2 + \dots + a_T h_T$$

Learnt using AdaBoost

Learnt using AdaBoost

2023

First stage classifier

Final classifier

- 38 stages (step in the cascade)
- Total 6000 features (over the entire cascade)
- Faces are detected using on average 10 features per sub-window

Finding all faces in an image

- Slide a sub-window over the entire image
- Do a face detection for all positions
- Scale the features in a certain interval
 - To find faces of different sizes

Conclusion

- One of the most important algorithms before deep learning
- Uses many interesting concepts
 - Attention
 - Boosted weak classifiers
 - Very fast feature computation

Demo

61

Next week

Statistical models of shape and appearance

