16:28

### Rules of thumb for sound machine learning

- Verify data quality
- Verify tussenresultaten
- Measure effectiveness using a ground truth on a hold out test set
- Compare against baseline
- Model selection (the simplest one is the best)
- Regression/continuous scale
  - Mean Absolute Error  $\frac{1}{m}\sum_{i=1}^{m}(\hat{y}-y)^{[i]}$
  - Mean Squared Error  $\frac{1}{m}\sum_{i=1}^{m}(\hat{y}-y)^2$





# High variance - a.k.a. overfitting

- Causes for overfitting:
  - Too many features (e.g. classify 100MP images)
  - Not enough training data
  - Learning on a poor sample (not representative)
  - Doing model selection on the training set

#### Regularisation

Eel penalty toevoegen

· Reduce risk of overfitting

#### Feature Engineering

- 1. Check Data Edges
  - a. Check number of rows and columns
  - b. Check first few rows and last few rows
  - c. Formatting ok? Are the values within realm of reality?
- 2. Variable Identification (Codebook)
  - Per set: Where did data come from? How was data collected? Technical information about files. (How many, size, format)
  - Per variable: Position, name, label, values, data type, numerical/categorical, predictor/target variable, summary statistics.
- 3. Univariate Analysis
  - a. Check if it is a normal distribution
- 4. Bi-variate
  - a. Check the correlations
  - b. Plot the data in different graphs to understand the data
- 5. Missing Values
  - a. Find NaN values and delete or replace them
- 6. Outliers
  - a. Find outliers and delete or place them
- 7. Variable transformation
  - a. Mean normalisation
  - b. Find a group of outliers and change the scale or multiply everything with a log
- 8. Variable creation
  - a. Change categoricals in numbers
- Evaluation
  - a. Check if the cleaned data has better results than the same model on the raw data. Use Mean Root Squared Error.

## Job Vink

Als je meer computerkracht nodig hebt dan kan je meer computers aan elkaar koppelen (scaling-out) of je kan een krachterige computer kopen (scaling-up)



Fout, learning rate moet lager



Fout, overfitting want traning error is veel lager dan test, (dus te veel getraind op training set).

- Lambda moet dan hoger.
- Polynomials of features minders
- Verhoog traing size



Fout, de lijnen moeten lager komen. Underfitting, te gegeneraliseerd. (to high in bias)

- Lamba lager maken
- Meer features (wordt specifieker)







model simplicity

- Get more training examples
- Try smaller set of features
- Try to increasing regularization

Model complexity/simplicity tunen om te voorkomen dat het model high bias of high variance heeft. Dat kan bijvoorbeeld zijn door een juiste feature selection te maken, of een juiste order polynomial.