

Konnektivität im Gehirn

Lutz Althüser, Tobias Frohoff-Hülsmann, Victor Kärcher, Lukas Splitthoff, Timo Wiedemann

Unterstützt durch: Christian Himpe

Überblick

DCM für fMRI - Rückblick

Nichtlineare Erweiterung des Modells

EEG-Modell

Literatur

```
import numpy as np
          import matplotlib.pyplot as plt
         from programs import RK4 as RK4
         from programs import Euler as RK1
         from programs import hemodynamicModel as HM
         from programs import bilinearModel as BM
        # Parameter Beispiel 1
       T = 100.
       t0 = 0.
       dt = 0.1
                                     # Endzeit
       t = np.arange(t0,T+dt,dt)
                                     # Anfangszeit
                                    # Zeitachrittlaenge
      A = np.array([[-1.,0.,0.],
                                    # Zeitarray
                    [0.3,-1,0.2],
                    [0.6,0.,-1.]]) # Kopplung
     B1 = np.zeros((3,3))
    B2 = np.array([[0 , 0, 0 ], [0 , 0, 0.8],
                                  # Induzierte Kopplung
    B = np.array([B1, B2])
                    [0.1, 0, 0 ]])
                                 # Zusammenfassen der ind. Kopplung in ei
   C = np.array([[1, 0],
                  10, 011)
                                # äußerer Einfluss auf Hirnaktivität
   # äußerer Stimulus
  u = np.zeros((len(B), len(t)))
  u[0,101:-99:200] = 10.
                               # Stimulus u1
  u[1,451:550] = 2.
  u[1,251:350] = 5.
 u[1, 691:910] = 2.
                               # Stimulus u2
                               # Stimulus u2
 # Anfangsbedingunden
                               # Stimulus u2
 x_0 = np.ones(15)
\times 0[0:6] = 0.
# Zusammenfassen der Parameter für das "hemodynamicModel"
```


Dynamic Causal Modelling für fMRI

- ▶ Ziel:
 - Modellierung von Interaktionen in einem neuronalen Netzwerk
- ► Ansatz:

Modellierung neuronaler Zustandsentwicklung mithilfe einer Taylorreihen-Näherung

- → Netzwerk-Modell
- ► Vergleichbarkeit mit Experiment:
 Hämodynamisches Modell:
 Basierend auf Variation des Blutvolumens und des desoxygenierten Hämoglobins
 - → Observablen-Modell

Interaktion zwischen verschiedenen Hirnregionen

Bilineares Netzwerk-Modell

- ► A: feste Verknüpfung der Hirnregionen
- ▶ B: Einfluss des Inputs auf Konnektivität
- ► C: Einfluss des Inputs auf neuronale Aktivität der Hirnregionen

$$\dot{z}(t) = f(z(t), u(t))$$

$$\approx f(0, 0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial z \partial u}zu$$

$$\dot{z}(t) = A \cdot z + \sum_{i} u_{i} B^{j} \cdot z + C \cdot u$$

$$A = \begin{pmatrix} a_{11} & 0 & a_{13} \\ 0 & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad B^{(1)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & b_{32}^{(1)} & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} c_1 \\ 0 \\ 0 \end{pmatrix}$$

→ Neuronale Aktivität ↔ Konnektivität

Nichtlineare Erweiterung

Mathematische Beschreibung

- ► A: feste Verknüpfung der Hirnregionen
- ▶ B: Einfluss des Inputs auf Konnektivität
- ► C: Einfluss des Inputs auf neuronale Aktivität der Hirnregionen
- D: Einfluss der Regionen auf Konnenktivität

$$\dot{z}(t) = f(z(t), u(t))
\approx f(0, 0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial z \partial u}zu + \frac{\partial^2 f}{\partial z^2}\frac{z^2}{2}$$

$$\dot{z}(t) = A \cdot z + \sum_{j} u_{j} B^{j} \cdot z + C \cdot u + \frac{1}{2} \sum_{i} z_{i} D^{i} \cdot z$$

$$A = \begin{pmatrix} a_{11} & 0 & a_{13} \\ 0 & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad B^{(1)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} c_1 \\ 0 \\ 0 \end{pmatrix} \qquad \qquad D^{(1)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & d_{32}^{(1)} & 0 \end{pmatrix}$$

Idee: Autoregulation einer Region

Frage: Selbiges Resultat ohne nichtlineare Erweiterung möglich?

<u>Problem</u>: Einfluss auf weitere Region

EEG

${\sf EEG} = {\sf Elektroenzephalografie}$

Konzeptioneller Vergleich von fMRI- zu EEG-Modell

fMRI-Modell	EEG-Modell
Biologische Beschreibung	
Verknüpfung einzelner Neuronen	Verknüpfung von Gehirnbereichen
	und Subregionen untereinander
Zielgrößen	
Gehirnaktivität = abstrakte Größe	direktes Modell für
ightarrow biologisches Modell nötig	Potentiale und Impulsraten
Mathematische Beschreibung	
Taylorentwicklung	Eingangs- und
	Ausgangsoperatoren

Das EEG-Modell

Mathematische Realisierung - Neuroneneingang

Physikalische Größen sind Membranpotentiale und Impulsraten

Präsynaptische Impulsrate \rightarrow Postsynaptisches Membranpotential

$$u_{ein}(t)$$

$$u_{ein}(t) \rightarrow v(t) = h(t) * u_{ein}(t)$$

Mathematische Realisierung - Neuronenausgang

Synaptisches Membranpotential
$$ightarrow$$
 Impulsrate $v(t)
ightarrow u_{aus}(t) = S(v(t))$

Zusammenfassung

DCM für fMRI:

- ► Netzwerkmodell ≠ Observablenmodell
- linearer Term:
 Gehirn mit statischer Konnektivität
- bilinearer + nichtlinearer Term:
 Gehirn mit dynamischer Konnektivität
- ► Beschreibung andauernder Gehirnaktivität

Zusammenfassung

DCM für fMRI:

- ► Netzwerkmodell ≠ Observablenmodell
- ▶ linearer Term: Gehirn mit statischer Konnektivität
- bilinearer + nichtlinearer Term:
 Gehirn mit dynamischer Konnektivität
- Beschreibung andauernder Gehirnaktivität

DCM für EEG:

- ► Netzwerkmodell = Observablenmodell
- ► Gehirn mit Substrukturen: intrinsische Dynamik
- Auflösung andauernder Gehirnaktivität

Literatur

- Dynamic causal modelling
 K.J. Friston, L. Harrison and W. Penny / NeuroImage 4 (2003)
 web.mit.edu/swg/ImagingPubs/connectivity/Dcm_Friston.pdf
- ► Synaptischer Spalt
 In: Gedankenschatz: Bewusstsein- und Persönlichkeitsentfaltung
 http://gedankenschatz.de/quantenphysik-im-kopf/ (Abgerufen: 6. Juli 2016,
 12:28 UTC)
- ► Sternneuronen

```
http://gdpsychtech.blogspot.de/2014/06/
medium-spiny-neurons-msn.html (Abgerufen: 6. Juli 2016, 12:28 UTC)
```


Literatur

► Pyramidenzellen

http://www.ruf.rice.edu/~lngbrain/Sidhya/ (Abgerufen: 6. Juli 2016, 12:28 UTC)

 Aktionspotential und Neurotransmission
 In: Institut for complex Systems, Forschungszentrum Jülich http:

//www.fz-juelich.de/ics/ics-4/DE/Forschungsthemen/02Biogene

(Abgerufen: 6. Juli 2016, 12:28 UTC)

► EEG and ERP Laboratory Experiment Demonstration
http://jerlab.psych.sc.edu/infantdevelopmentlab/pwreegdemobaby/
pwrbabydemo1.htm (Abgerufen: 6. Juli 2016, 12:28 UTC)