Групповой проект. Тема: Рост дендритов

Этап 2

Артамонов Т. Е., Федорина Э. В., Морозов М. Е., Коротун И. И., Маслова А. С. 7 марта 2024

Российский Университет Дружбы Народов, Moscow, Russian Federation

Состав исследовательской команды

Студенты группы НКНбд-01-21

- Артамонов Тимофей Евгеньевич
- Федорина Эрнест Васильевич
- Морозов Михаил Евгеньвич
- Коротун Илья Игоревич
- Маслова Анастасия Сергеевна

Вводная часть

Алгоритм— это упорядоченный набор действий, который необходимо выполнить для решения поставленной задачи.

Алгоритм

Этап 1: Инициализация параметров симуляции

Этап 1: Инициализация параметров симуляции

На первом этапе задается начальное состояние системы, включающее все необходимые физические параметры материала и начальные условия для симуляции. Этот этап критически важен для обеспечения корректности всего процесса моделирования.

Определение параметров вещества:

- \cdot Плотность ho
- \cdot Удельная теплота плавления L
- · Теплоемкость при постоянном давлении c_p
- \cdot Коэффициент теплопроводности κ
- · Температура плавления T_m

Титан

Атомный номер	22
Атомная масса	47,867
Плотность, кг/м ⁸	4510
Температура плавления, °С	1668
Температура кипения, °С	
Теплоемкость, кДж/(кг.°С)	0,527
Электроотрицательность	1,5
Ковалентный радиус, А	1,32
1-й ионизац. потенциал, эв	6,83

Задание начальных условий:

- · Начальная температура расплава T_{∞}
- Безразмерное переохлаждение S: Вычисляется как $S=\frac{c_p(T_m-T_\infty)}{L}$, является ключевым фактором, определяющим начало процесса кристаллизации.

Этап 2: Настройка симуляционной сетки

Этап 2: Настройка симуляционной сетки

Создается симуляционная сетка, служащая пространством для моделирования роста дендритов. Этап включает подготовку сетки и начальную конфигурацию затравки кристаллизации.

Создание симуляционной сетки:

- Определение размера сетки $N \times N$, где N- количество узлов по каждому измерению. Размер сетки должен обеспечивать достаточную детализацию для визуализации роста дендритов и учитывать вычислительные ограничения.
- Установка расстояния между узлами сетки h, влияющего на детализацию моделирования и точность результатов.

Инициализация затравки:

• В центре сетки создается затравка, представляющая участок в твердой фазе. Размер и форма затравки могут варьироваться в зависимости от целей симуляции.

Рис. 2: Вычислительная сетка в физическом пространстве

Этап 3: Расчет температурного поля

Этап 3: Расчет температурного поля

Моделирование распределения температуры в системе с течением времени, являющееся основой для анализа роста дендритов.

Применение уравнения теплопроводности:

· Используется уравнение теплопроводности $ho c_p rac{\partial T}{\partial t} = \kappa
abla^2 T$ для моделирования изменений температуры, учитывая приток тепла в систему и его распределение.

Численное решение уравнения:

• Реализация численного метода, например, метода конечных разностей, для аппроксимации производных и расчета температуры в каждом узле сетки. Выбор временного шага Δt и пространственного шага h важен для стабильности и точности расчетов.

Этап 4: Моделирование роста дендритов

Этап 4: Моделирование роста дендритов

На этом этапе реализуется моделирование роста дендритов на основе рассчитанных температурных полей и соответствующих физических законов.

Использование условия Стефана:

- · Скорость роста границы кристаллизации Vопределяется условием Стефана: $V=rac{\kappa}{
 ho L}(
 abla T|_sabla T|_l)$, что позволяет связать скорость роста с разницей градиентов температуры на границе фаз.
- \cdot Исходя из скорости V, происходит обновление положения границы кристаллизации, тем самым моделируя расширение твердой фазы.

Применение условия Гиббса-Томсона:

• Условие Гиббса-Томсона корректирует температуру плавления на границе кристалла: $T_b = T_m \left(1 - rac{\gamma T_m}{
ho L^2 R}
ight)$, учитывая кривизну границы и влияние поверхностного натяжения.

Обновление температурного поля:

• После каждого этапа роста дендритов требуется пересчитать температурное поле, учитывая выделение или поглощение теплоты за счет фазового перехода.

Рис. 3: Фазовое поле и соответствующее температурное поле дендритной структуры

Обновление температурного поля

Рис. 4: Фазовое поле и соответствующее температурное поле дендритной структуры

Этап 5: Анализ структуры дендритов

Проводится детальный анализ сформированных дендритных структур для оценки их свойств и сравнения с теоретическими и экспериментальными данными.

Оценка морфологии:

- Анализ формы, размеров и ветвления дендритов позволяет понять механизмы их роста и определить влияющие на это процессы.
- · Использование методов измерения фрактальной размерности дает количественную оценку сложности структуры дендритов.

Сравнение с экспериментальными данными:	

• Сопоставление результатов моделирования с экспериментальными данными по росту дендритов помогает проверить точность и надежность модели.

Этап 6: Визуализация и оценка результатов

2
Заключительный этап проекта включает подготовку визуализации процесса роста дендритов
и анализ полученных результатов.

Этап 6: Визуализация и оценка результатов

Визуализация роста дендритов:

- Использование графических инструментов для создания изображений и видео, демонстрирующих динамику роста дендритов и конечную структуру.
- Визуализация является ключевым элементом для наглядного представления исследования и помогает в анализе результатов.

Анализ результатов и формулировка выводов:

- Оценка эффективности использованных методов моделирования, сопоставление с теоретическими предположениями и экспериментальными данными.
- Подготовка выводов о механизмах роста дендритов и возможных путях улучшения процессов материаловедения на основе результатов моделирования.

Вывод

Представлен процесс разработки алгоритма моделирования роста дендритов, начиная с инициализации параметров симуляции и настройки симуляционной сетки, и заканчивая моделированием роста дендритов и анализом их структуры. Алгоритмы играют важную роль в решении задач, обеспечивая более эффективный и точный способ получения результатов, а каждый этап моделирования от инициализации параметров до анализа результатов имеет свою важную роль в создании полной картины процесса.