Практическая работа 15. Трехмерная графика в системе MATLAB

Цель работы: приобретение навыков построения трехмерных графиков и поверхностей в пакете MATLAB.

1. Задание к работе

E=ones(size(t1));

Z=sin(t2)*E;
plot3(X,Y,Z,'r')

1.1. Построение трехмерной пространственной спирали (t, x, y — вектора одинакового размера). Установить различные цвета изображения. Задать сетку. Подписать оси. Подписать график.

Таблина 1.

N	Интервал, значения	N	Интервал, значения
1	n=100, a= pi, b= pi/2	6	n=100, a= pi/50, b= pi
2	n=100, a= pi/5, b= pi	7	n=100, a= 5*pi, b= pi
3	n=100, a= pi, b= pi/10	8	n=100, a= pi/10, b= pi
4	n=100, a= 2*pi, b= pi	9	n=100, a= pi, b= 2*pi
5	n=100, a= pi, b= pi/5	10	n=100, a= pi, b= pi/50

1.3. Формирование прямоугольной сетки на плоскости — **meshgrid.** Подписать оси. Подписать график.

```
[x,y]=meshgrid(-5:0.5:5,-5:0.5:5);
plot(x,y)
```

1.4. Построение пространственных сетчатых фигур — mesh (Z) согласно варианту (таблица 2):

Таблица 2.

N	Коэффициент	N	Коэффициент
1	b= 5	6	b= 15
2	b= 2	7	b= 25
3	b=1	8	b= 30
4	b= 10	9	b= 12
5	b= 20	10	b= 50

Подписать оси. Подписать график. Установить различные цвета изображения.

1.5. Построение пространственных сетчатых фигур — **mesh (Z)** и $\mathbf{R} = \sqrt{x^2 + y^2} + \mathbf{0.001}$ согласно варианту (таблица 3):

Таблица 3.

N	Коэффициент	N	Коэффициент
1	b= 5	6	b= 0.5
2	b= 2	7	b=0.1
3	b=1	8	b= 15
4	b= 10	9	b= 0.2
5	b= 20	10	b= 25

Подписать оси. Подписать график. Установить различные цвета изображения. Для сравнения применить plot3(x,y,Z), grid вместо mesh(Z)

- 1.6. Сетчатая поверхность с проекциями линий постоянного уровня **meshc(Z)** и $\mathbf{R} = \sqrt{x^2 + y^2} + \mathbf{0.001}$. Построить графики согласно варианту (таблица 3). Подписать оси. Подписать график. Установить различные цвета изображения.
- 1.7. Сетчатая поверхность с пьедесталом плоскости отсчета на нулевом уровне **meshz (Z)** и $\mathbf{R} = \sqrt{x^2 + y^2} + \mathbf{0.001}$. Построить графики согласно варианту (таблица 3). Подписать оси. Подписать график. Установить различные цвета изображения.
- 1.8. Построение пространственных сплошных фигур **surf(Z)** Построить графики согласно варианту (таблица 3). Подписать оси. Подписать график. Установить различные цвета изображения.

```
[x,y]=meshgrid(-5:0.1:5,-5:0.1:5);
Z = b*x.* exp(-x.^2 - y.^2);
```

1.9. Сплошная поверхность с проекциями линий постоянного уровня — **surfc(Z)** Построить графики согласно варианту (таблица 3). Подписать оси. Подписать график. Установить различные цвета изображения.

```
[x,y]=meshgrid(-5:0.1:5,-5:0.1:5);
Z = b*x.* exp(-x.^2 - y.^2);
```

1.10. Построение сферы (**sphere**) согласно варианту (таблица 4).

Таблица 4.

N	Радиус	N	Радиус
1	b= 50	6	b= 30
2	b= 12	7	b=60
3	b= 40	8	b= 80
4	b= 102	9	b= 0.5
5	b= 20	10	b= 25

Осуществить формирование сферы с произвольным радиусом. Для сравнения сформировать сферу при помощи функции **mesh**. Для сравнения сформировать сферу при помощи функции **surf**.

1.11. Выполнить построение графиков функций в полярной системе координат согласно варианту (таблица 5) на интервале [0, 2*pi] с шагом рі/50. Для сравнения изменить интервал, изменить шаг.

Таблица 5.

N	Функция	N	Функция
	3 ,		,

1	y=sin(10t)	6	$y=\sin(5t)+\cos(5t)$
2	y=cos(10t)	7	$y=\sin(t)+\cos(3t)$
3	$y=\sin(t)+\cos(t)$	8	$y=\sin(0.5t)+\cos(3t)$
4	y=sin(5t)	9	$y=\sin(5t)+\cos(0.1t)$
5	y=cos(5t)	10	$y=\sin(0.5t)+\cos(t)$

1.12. Выполнить построение графиков функций в логарифмическом масштабе согласно варианту (таблица 6) в диапазоне [-1; 3]. Для сравнения изменить интервал.

Таблица 6.

N	Функция	N	Функция
1	$y=e^{x}$	6	$y=(e^{3x})/x$
2	$y=(e^x)/x$		$y=(e^{3x})/(3x)$
3	$y=(e^{2x})/x$	8	$y=3x+e^{3x}$
4	$y=2x+e^x$	9	$y=2x+e^{2x}$
5	$y=e^x/(2x)$	10	$y=e^{2x}/(2x)$

1.13. Выполнить анимацию графика функции (продемонстрировать движение точки по траектории) согласно варианту (таблица 7) . Задать шаг, интервал.

Таблица 7. Функции

N	Функции	N	Функции
1	$f2 = \sin(x) + \cos(x);$	6	$f2 = \sin^2(x) + \cos^2(x);$
2	$f2 = \sin(x) + x;$	7	$f2 = x * \sin(x);$
3	$f2 = \cos(x);$	8	$f2 = x * \cos(x);$
4	$f2 = \cos^2(x) + x;$	9	$f2 = \cos^2(x);$
5	$f2 = \cos(x^2) * x^2;$	10	$f2 = \sin(x);$

1.14. Продемонстрировать движение по кривой в пространстве согласно варианту (таблица 8). Задать шаг, интервал.

Таблица 8. Функции

Z	Функции	N	Функции
1	$f2 = \sin(x) + \cos(x); f4 = \cos(x) + x^2;$	6	$f2 = \sin^2(x) + \cos^2(x); f4 = \cos(x) + x^2;$
2	$f2 = \sin(x) + x$; $f4 = \sin(x) + x^2$;	7	$f2 = x * \sin(x); f4 = x * \cos(x);$

3	$f2 = \cos(x); f4 = \sin(x);$	8	$f2 = x * cos(x); f4 = cos(x) + x^2;$
4	$f2 = \cos^2(x) + x$; $f4 = \cos(x^2) + x $;	9	$f2 = \cos^2(x); f4 = \sin(x) + x;$
5	$f2 = \cos(x^2) * x^2; f4 = \cos(x^2) * x;$	10	$f2 = \sin(x); f4 = \cos^2(x);$

1.15. Построение поверхности Гаусса по заданной 49х49 матрице z.

z=peaks; surf(z); % Построение поверхности Гаусса по заданной 49×49 матрице z. z=peaks(25); surf(z)
z=3*peaks(25); surf(z) % С множителем по оси Z.

1.16. Цветовые массивные уровни на плоскости от распределения Гаусса.

[X,Y,Z]=peaks; pcolor(X,Y,Z)

% Функция **pcolor** позволяет наблюдать область определения в плоскости XOY

1.17. Распределение Гаусса с задаваемой областью определения на плоскости ХОУ.

[X,Y]=meshgrid(-7:0.3:7,-5:0.3:5); Z=peaks(X,Y);pcolor(X,Y,Z)

1.18. Линии уровня трехмерной поверхности — **contour.**

contour(peaks,10) % 10 линий уровня

1.19. Линии уровня с учетом масштаба плоскости ХОУ

[X,Y]=meshgrid(-7:0.3:7,-5:0.3:5); Z=peaks(X,Y);contour(X,Y,Z),grid
[X,Y]=meshgrid(-7:0.3:7,-5:0.3:5); Z=peaks(X,Y);contour(X,Y,Z,4),grid

1.20. Линии уровня с цветовой окраской плоскости XOY — contour F

[X,Y]=meshgrid(-7:0.3:7,-5:0.3:5); Z=peaks(X,Y);contourF(Z)

[X,Y]=meshgrid(-7:0.3:7,-5:0.3:5); Z=peaks(X,Y);contourF(X,Y,Z,15)

1.21. "Пространственные" линии уровня — **contour3**

[X,Y]=meshgrid(-7:0.3:7,-5:0.3:5); Z=peaks(X,Y);contour3(Z)

[X,Y]=meshgrid(-7:0.3:7,-5:0.3:5);Z=peaks(X,Y);contour3(2*X,8*Y,12*Z)

1.22. Обзор поверхности из заданной точки пространства — **view.** Задать различные параметры функции view. Сформировать затененную поверхность с подсветкой.

peaks,view(10,45); % Число 10 — азимут обзора, 45 — угол обзора (все в градусах)

[X,Y]=meshgrid(-7:0.3:7,-5:0.3:5);Z=peaks(X,Y);surf(Z),view(10,45)

[X,Y]=meshgrid(-5:0.2:5,-5:0.2:5);Z=X.*exp(-X.^2-Y.^2);surf(X,Y,Z),view(-45,60)

1.23. Построение поверхностей относительно полярной системы координат. Преобразование **pol2cart.** Задать различные параметры функции view.

 $[X,Y] = meshgrid(-5:0.2:5,-5:0.2:5); [x1,y1] = pol2cart(X,Y); peaks(x1,y1); \\ [X,Y] = meshgrid(-5:0.2:5,-5:0.2:5); [x1,y1] = pol2cart(X,Y); Z = peaks(x1,y1); surf(x1,y1,Z); \\ [X,Y] = meshgrid(-5:0.2:5,-5:0.2:5); [x1,y1] = pol2cart(X,Y); Z = peaks(x1,y1); surf(x1,y1,Z); \\ [X,Y] = meshgrid(-5:0.2:5,-5:0.2:5); [x1,y1] = pol2cart(X,Y); Z = peaks(x1,y1); surf(x1,y1,Z); \\ [X,Y] = meshgrid(-5:0.2:5,-5:0.2:5); [x1,y1] = pol2cart(X,Y); Z = peaks(x1,y1); surf(x1,y1,Z); \\ [X,Y] = meshgrid(-5:0.2:5,-5:0.2:5); [x1,y1] = pol2cart(X,Y); Z = peaks(x1,y1); surf(x1,y1,Z); \\ [X,Y] = meshgrid(-5:0.2:5,-5:0.2:5); [x1,y1] = pol2cart(X,Y); Z = peaks(x1,y1); surf(x1,y1,Z); \\ [X,Y] = meshgrid(-5:0.2:5,-5:0.2:5); [x1,y1] = pol2cart(X,Y); Z = peaks(x1,y1); surf(x1,y1,Z); \\ [X,Y] = meshgrid(-5:0.2:5,-5:0.2:5); [x1,y1] = pol2cart(X,Y); Z = peaks(x1,y1); surf(x1,y1,Z); \\ [X,Y] = meshgrid(-5:0.2:5,-5:0.2:5); [x1,y1] = pol2cart(X,Y); Z = peaks(x1,y1); surf(x1,y1,Z); \\ [X,Y] = meshgrid(-5:0.2:5,-5:0.2:5); [x1,y1] = pol2cart(X,Y); [x1,y1$

1.24. Построение цилиндрических поверхностей — cylinder

cylinder(**40,60**) % Цилиндр с заданным размером плоскости ХОҮ и числом образующих граней – 60 [**x,y,z**]=**cylinder**([**5 0],160**); **surf**(**x,y,z**) % Конус по заданному вектору [5,0] [**x,y,z**]=**cylinder**([**5 0],3**); **surf**(**x,y,z**) % Пирамида

1.25. Самостоятельно придумать функцию, график которой (3d) красивый и необычный (или найти в Интернете, указать ссылку на использованные источники и электронные ресурсы). Описать весь процесс построения графика, полный текст программы, содержащий результат работы.

Контрольные вопросы

- 1. Какая функция позволяет наблюдать цветовые массивные уровни на плоскости?
- 2. Какая функция задает линии уровня трехмерной поверхности?
- 3. Какая функция формирует затененную поверхность с подсветкой?
- 4. Какая функция задает обзор поверхности из заданной точки пространства?
- 5. Какая функция осуществляет построение цилиндрических поверхностей?
- 6. Поясните назначение аргументов следующей записи: view([az , el]).
- 7. В каких случаях применяется функция plot 3(x, y, z)?
- 8. С какой целью используется функция meshgrid?
- 9. Какие значения по умолчанию устанавливаются для *az* и *el* при использовании, например, функций *mesh* или *surf*?
- 10. С какой целью используется функция peaks?

Порядок выполнения работы.

- 1. Ознакомиться с теоретическими сведениями.
- 2. Выполнить задание к практической работе (п.1).
- 3. Оформить отчет по проделанной работе. Отчет должен содержать: титульный лист, цель работы, задание, ход выполнения работы, результаты работы, анализ результатов и выводы по работе. Ответить на контрольные вопросы.