Artificial Neural Networks

Inteligencia Artificial en los Sistemas de Control Autónomo Máster en Ciencia y Tecnología desde el Espacio

Departamento de Automática

Objectives

- 1. Describe biological neurons and networks
- 2. Basics of artifical neurons and networks
- 3. Understand the role of trainning in ANNs
- 4. Strengths and weaknesses of ANNs

Bibliography

- A. Tettamanzi, M. Tomassini. Soft Computing. Integrating Evolutionary, Neural, and Fuzzy Systems. Springer-Verlag. 2001
- McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 7:115 133.
- Rosenblatt, Frank. (1958). The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, 65:386-408

Table of Contents

- I. Introduction
 - History
 - Structure of neurons
- 2. Artificial neurons
 - Definition
 - Logical gates with a neuron
 - Activation functions
 - Learning limits
- 3. Artificial Neural Networks
 - Definition
 - Application examples
- 4. Feedforward networks
 - Definition
 - Separability
 - Bias in a MLP
- 5. Training algorithms
 - Problem statement
 - Gradient descent algorithm
 - Stochastic Gradient Descent Algorithm
 - Other optimization algorithms
 - Backpropagation algorithm
 - Learning problems

Inteligencia Artificial en los Sistemas de Control Autónomo

History

- 1888 Ramón y Cajal. Discovery of biological neurons
- 1943 McCulloch & Pitts. First neural network designers
- 1949 Hebb. First learning rule
- 1958 Rosenblatt. Perceptron
- 1969 Minsky & Papert. Perceptron limitation Death of ANN
- 1986 Rumelhart et al. Re-emergence of ANN: Backpropagation
- 201X Convolutional Neural Networks (CNNs) Deep learning
- 2014 Goodfellow et al. Generative Adversarial Networks (GANs)

Structure of neurons (I)

Animal	Neurons		
Sponge	О		
Roundworm	302		
Jellyfish	800		
Ant	250,000		
Cockroach	1,000,000		
Frog	16,000,000		
Mouse	71,000,000		
Cat	760,000,000		
Macaque	6,376,000,000		
Human	86,000,000,000		
Elephant	267,000,000,000		

Human brain

Neuron switching time: 0.001 s Synapsis: 10-100 thousand Scene recognition time: o.i s

Inteligencia Artificial en los Sistemas de Control Autónomo

Introduction

Structure of neurons (II)

A neuron has a cell body ...

- ... a branching input structure (dendrite) and
- ... a branching output structure (axon)

Axons connect to dendrites via synapses

Structure of neurons (III)

A neuron only fires if its input signal exceeds a threshold

- Good connections allowing a large signal
- Slight connections allowing a weak signal
- Synapses may be either excitatory or inhibitory

Synapses vary in strength

Biological learning involves setting that strength

Definition (I)

- a_i Normalized input $(0 \le a_i \le 1)$
- wi Weight of input j
 - Threshold
 - g Activation function

Neuron model (perceptron)

$$\gamma = g\left(\sum_{i=1}^n w_i a_i\right)$$

Artificial neurons

Definition (II)

- Each neuron has a threshold value
- Each neuron has weighted inputs
- The input signals form a weighted sum
- If the activation level exceeds the threshold, the neuron activates

Artificial neurons

Definition (III)

The idealized activation function is a step function

$$g(x) = \begin{cases} 1 & \text{if } \sum_{i=1}^N w_i x_i > \theta \\ 0 & \text{otherwise} \end{cases}$$

The step function is rarely used in practice

Logical gates with a neuron

Artificial neurons

(A neuron in Excel)

Definition of neuron (alternative version)

- a_i Normalized input $(0 \le a_i \le 1)$
- wi Weight of input j
- w₀ Bias
 - g Activation function

Neuron model

$$\gamma = g\left(\sum_{i=0}^n w_i \alpha_i\right)$$

Example of biased neuron

AND logical gate with a biased input

\mathfrak{a}_0	\mathfrak{a}_1	a ₂ Output	
I	0	O	0
I	O	I	О
I	I	O	О
I	I	I	I

Activation functions: Sigmoid function

Artificial neurons

- S-shaped, continuous and everywhere differentiable
- Asymptotically approach saturation points
- Derivative fast computation

• Range
$$\in [0,1]$$

Sigmoid function

$$g(x) = \frac{1}{1 + e^{-x}}$$

$$g'(x) = g(x)(1 - g(x))$$

Activation functions: Tanh function

- Asymptotically approach saturation points
- Range $\in [-1, 1]$
- Bigger derivative than sigmoid (faster training)

Tanh function

$$g(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$$

$$g'(x) = 1 - g(x)^2$$

Activation functions: Softmax function

- Generalization of the logistic function
- Usually used in the output layer in classification problems
- Asymptotically approach saturation points

Softmax function

$$g(\boldsymbol{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}} \operatorname{for} j = 1,...,K$$

with z a K-dimensional vector

Other activation functions

Artificial neurons

Learning limits (I)

Problem: A single neuron only can solve linearly separable problems

Learning limits (II)

XOR cannot be implemented with a neuron

Solution: Neuronal networks

Artificial Neural Networks

Definition (I)

- A very much simplified version of biological nerve systems
- A set of nodes (neurons)
 - Each node has input and output
 - Each node performs a simple computation
- Weighted connections between nodes
 - Connectivity gives the structure of the net
 - What can be computed by an ANN is primarily determined by the connections and their weights
- It can recognize patterns, learn and generalize

Definition (II)

ANN properties

- Noise tolerance
- General function approximator

Machine Learning tasks

- Supervised learning (classification and regression)
- Unsupervised learning (known as self-organizing maps in ANN terminology)

Many topologies

- Acyclic, recurrent (cyclic), modular, etc
- Feed Forward networks (MLPs)

Human readability less important than performance

(More info)

Application examples (I)

Application examples (II)

Application examples (III)

Application examples (III)

Feedforward networks

Definition (I)

Neurons are arranged in layers

Input Which consists of any normalized data

Output Which are the net outcome

Hidden (Optional) No direct interaction

Also known as **multilayer perceptron** (MLP)

Definition (II)

The input layer

- Introduces input values into the network
- No activation function or other processing

The hidden layer(s)

- Perform classification of features
- Two hidden layers are sufficient to solve any problem
- Features imply more layers may be better

The output layer

- Functionally just like the hidden layers
- Outputs are passed on to the world outside the neural network

Feedforward Networks

Separability

Structure	Types of Decision Regions	Exclusive-OR Problem	Classes with Meshed regions	Most General Region Shapes
Single-Layer	Half Plane Bounded By Hyperplane	A B B A	B	
Two-Layer	Convex Open Or Closed Regions	A B A	B	
Three-Layer	Arbitrary (Complexity Limited by No. of Nodes)	A B A	B	

(Online demo)

Feedforward Networks

Bias in a MLP

Problem statement (I)

ANN can perform different tasks

Classification, regression, others

Classification (or supervised learning) uses a training set

A ₁	A_2	A ₃	О	Y
1,1	2,5	4,5	0,2	-0,1
0,9	2,4	1,2	0,5	0,4
1,0	2,0	9,9	0,4	1,2

Toss function: Measure of the error

- Usually mean squared error (mse): $E = \frac{1}{2}(\gamma \sigma)^2 = f(w)$
- Y and O are the desired and observed outputs

Problem statement (II)

$$E=rac{1}{2}Err^2=rac{1}{2}\left[\gamma-g\left(\sum_{j=0}^n w_j x_j
ight)
ight]^2$$

where

- Desired output
- w_i Weight connection j
- x_i Input j

Problem: Determine w that minimize f(w)

- This is a classical optimization problem
- Any optimization algorithm can be used
- ... in AI, optimization means search

Gradient Descent Algorithm (I)

Given the error

$${\rm E}=\frac{1}{2}{\rm Err}^2$$

Take partial derivatives

$$\begin{split} \frac{\partial E}{\partial w_j} &= Err \frac{\partial Err}{\partial w_j} \\ &= Err \frac{\partial}{\partial w_j} g \left(\gamma - \sum_{j=0}^n w_j x_j \right) \\ &= -Err \times g'(w) \times x_j \end{split}$$

Gradient Descent Algorithm (II)

Weight update

$$\textbf{w}_j^{k+1} = \textbf{w}_j^k + \alpha \times Err \times \textbf{g}'(\textbf{w}) \times \textbf{x}_j$$

with

- α Learning rate ($|\alpha| < 1$)
- Difference desired and current output
- Derivate of activation function
- Input j

Each iteration is named epoch

Learning algorithm (single neuron)

- 1. Apply input signal and compute outout
- 2. If output == desired output, do nothing
- 3. If output < desired output, increase weights
- 4. If output > desired output, decrease weights

Gradient Descent Algorithm (III)

Stochastic Gradient Descent (I)

SDG approximates the gradient sampling the dataset

On-line One sample

Mini-batch Several samples

Batch All the samples (Gradient Descent)

Weights update rule: $\mathbf{w}^{k+1} = \mathbf{w}^k - \alpha \nabla \mathbf{g}(\mathbf{i}\mathbf{n})$

• where α is the learning rate

SGD is slow and prone to local minima

Stochastic Gradient Descent (II)

Usually, a momentum is introduced: $w^{k+1} = w^k - \alpha z^{k+1}$, where $z^{k+1} = \beta z^k + \nabla g(in)$

- ullet lpha is the learning rate
- ullet eta is the momentum strength
- If $\beta = 0$ then gradient descent

(On-line demo)

Other optimization algorithms

Other optimization algorithms

- Newton's method
- Quasi-Newton's method
- Levenberg-Marquardt method
- Conjugate Gradient

Backpropagation algorithm (I)

Efficient learning algorithm for multilayer perceptrons. Three steps

- Feed-forward step. Feed input, compute output and error
- 2. Feed-backward step. Compute individual contribution to error
- 3. Adjust weights. Modify weights to minimize error: Input, output and hidden layers

Backpropagation algorithm (II)

Output layer: Same as single neuron

$$W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$$

Define modified error as

$$\Delta_i = Err_i \times g'(in_i)$$
, then

$$W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i$$

Backpropagation algorithm (III)

Hidden layer: Propagate error

$$W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j$$

where

$$\Delta_j = g'(in) \times \sum_j W_{j,i} \Delta_i$$

Backpropagation algorithm

- Compute output
- 2. Compute output error Δ
- 3. For each layer, repeat the following steps
 - 3.1 Propagate Delta backwards
 - 3.2 Update weights between two layers

Learning problems

Potential problems

- Local minima
- Flat plateau
- Oscillation
- Missing good minima

Learning problems: Under and overfitting (I)

Underfitting: Does not learn

Topology too simple

Overfitting: Memorizes samples

- Topology too complex
- Perhaps, the most serious concern in MI.
- The net fails when exposed to new data

Under- and Over-fitting examples

Learning problems: Under and overfitting (II)

Solution: Evaluate generalization capabilities

• Split training and validation sets and measure errors

- Jesus Aguilar Ruiz, Pablo de Olavide, Seville, Spain
- Daniel Rodríguez, Universidad de Alcalá, Alcalá de Henares, Spain

