Course Code	Course/subject Name	Credits
MEDLO7034	Computational Fluid Dynamics	4

Objectives:

- 1. To study basic principles of Computational Fluid Dynamics
- 2. To study grid generation and discretization methods

Outcomes: Learner will be able to...

- 1. Demonstrate methodology to work with CFD
- 2. Illustrate principles of grid generation and discritisation methods
- 3. Identify and apply specific boundary conditions relevant to specific application
- 4. Decide solution parameters relevant to specific application
- 5. Analyze the results and draw the appropriate inferences
- 6. Demonstrate basic principles of FVM

Module	Detailed Contents	Hrs.
01	Introduction: What is CFD, Scope and Application of CFD, Methods of Predictions like Experimental and theoretical, Working of Commercial CFD Software, Solution	04
	methodology-Preprocessing, Solver, Post processing.	04
	Mathematical description of Physical Phenomenon: Governing Differential Equations,	
02	Meaning of Differential equation, The Continuity Equation, A Momentum equation, The	
	Energy Equation, The General Differential Equation, Boundary Conditions, Initial and	06
	Boundary Conditions, Initial and Boundary Value problems.	
	Grid Generation and Discretization Methods:	
03	Structured and unstructured Grids: O-type, H-type, C-type of Structured Grid Generation,	
	Mesh Adaptation.	08
	The Nature of Numerical Methods: The Discritization Concept, The Structure of the	
	Discritization Equation.	
	Basic discretization techniques applied to model equations and systems of equations: finite	
	difference, finite volume and finite element methods.	
	Methods of Deriving the Discretization Equations, Taylor-Series Formulation, Variational	
	Formulation, Method of Weighted Residuals, Control Volume Formulation	
04	Heat Conduction, Convection and Diffusion: Steady One-dimensional Conduction,	
	Unsteady One-dimensional Conduction, Two and Three-dimensional Situations, Over	
	relaxation and Under relaxation, Steady One-dimensional and Two Dimensional Convection-	
	Diffusion, Unsteady One-dimensional Convection.	
05	Incompressible Fluid Flow: Governing Equations, Stream Function-Vorticity Method,	
	Determination of Pressure for Viscous Flow, The SIMPLE, SIMPLER Algorithm,	
	Introduction to Turbulence Modeling, Basic Theories of Turbulence, The Time-Averaged	
	Equations for Turbulent Flow.	1.1
06	Finite Volume Methods: FVM solutions to steady one, two and three dimensional diffusion	•
	and unsteady one and two dimensional diffusion problems, FVM solutions to convection-dif	
	problems - one and two dimensional, steady and unsteady; Advection schemes; Pressure velo	ocityo
	coupling	l

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

References:

- 1. An introduction to computational fluid dynamics-The finite volume method, Versteeg.H.K. , Malalasekera.W., Prentice Hall
- 2. Computational Fluid Mechanics and Heat Transfer, Anderson, D.A., Tannehill, I.I., and Pletcher, R.H., Hemishphere Publishing Corporation, New York, USA, 1984
- 3. Introduction to Computational Fluid Dynamics, Niyogi P. ,Laha M.K., Chakrabarty S.K., Pearson Education, India
- 4. Computational Fluid Flow and Heat Transfer, Muralidhar, K.,andSundararajan, T., Narosa Publishing House, New Delhi
- 5. Computer Simulation of flow and heat transfer, Ghoshdasdidar, P. S., Tata McGraw-Hill Publishing Company Ltd
- 6. Finite Element Programming of the Navier Stock Equation, Taylor, C and Hughes J.B., Pineridge Press Ltd.U.K.
- 7. Computational Techniques for Fluid Dynamics: Fundamental and General Techniques, Fletcher, C.A.J., Springer-Verlag
- 8. Numerical Fluid Dynamics, Bose, T. K., Narosa Publishing House
- 9. T. J. Chung, Computational Fluid Dynamics, Cambridge University Press
- 10. Anderson, J.D. Computational Fluid Dynamics, McGraw Hill