

Lecture 2 – Supplement

-Cryptographic Algorithms and Protocols

Huang, Xiujie (黄秀姐)

Office: Nanhai Building, #411

E-mail: t_xiujie@jnu.edu.cn

Dept. Computer Science

Intuition on Cryptography

Symmetric-Key Cryptosystem (SKC)

Cryptographic Communication System

Protocol:

- A and B choose a random key K by a secure channel
- A wants to sent a string message $\mathbf{x} = x_1 x_2 ... x_n$
- A computes $y_i = e_K(x_i)$ and the resulting string $y = y_1 y_2 ... y_n$ is sent over the insecure channel
- B receives $y=y_1y_2...y_n$ and decrypts $x_i=d_K(y_i)$ to obtain $x=x_1x_2...x_n$

Statistical Properties of the English Language

Beker and Piper's Table for Probabilities of occurrence of the 26 letters

letter	probability	letter	probability
A	.082	\overline{N}	.067
B	.015	0	.075
C	.028	P	.019
D	.043	Q	.001
E	.127	R	.060
F	.022	S	.063
G	.020	$\mid \mid T \mid$.091
H	.061	U	.028
I	.070	V	.010
J	.002	W	.023
K	.008	X	.001
L	.040	Y	.020
M	.024	Z	.001

The thirty most common digrams:

TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, OF.

The twelve most common trigrams:

THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR, DTH.

Ciphertext-only attack on the Substitution Cipher

► See Example 2.11 on Pages 42-44. Ciphertext from a substitution cipher:

YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

letter	frequency	letter	frequency	
\overline{A}	0	N	9	
B	1	0	0	
C	15	P	1	Stage 2: Look at digrams, especially
D	13	Q	4_	those of the form –Z or Z
E	7	R	10	those of the form –Z or Z
F	11	S	3	
\overline{G}	1	T	2	7 (***) 7
H	4	U	5	$d_{K}(W) = d$
I	5	V	5	
J	11	W	8	
K	i	X	6	CDFIMBY
L	0	Y	<u>10 S</u>	tage 1 C,D,F,J,M,R,Y
M	16	Z	20	$d_K(Z) = e^{C,D,F,J,M,R,Y}$

Ciphertext-only attack on the Substitution Cipher

▶ See Example 2.11 on Pages 42-44. Ciphertext from a substitution cipher:

YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

Our friend from Paris examined his empty glass with surprise, as if evaporation had taken place while he wasn't looking. I poured some more wine and he settled back in his chair, face tilted up towards the sun.¹

Attack on Shift Cipher

Jack

Key K = 1

MFUVTNFFUBUFJHIU

MERCING

letusmeetateight

Lucy

Ciphertext-only attack on the Affine cipher

▶ See Example 2.10 on Pages 41-42.

Ciphertext from an Affine cipher:

FMXVEDKAPHFERBNDKRXRSREFMORUDSDKDVSHVUFEDK

APRKDLYEVLRHHRH

$$e_K(x) = ax + b$$

Beker and Piper's statistical table

letter	frequency	letter	frequency
\overline{A}	2	N	1
\boldsymbol{B}	1	0	1
C	0	P	2
D	7	Q	0
E	5	R	8
F	4	S	3
G	0	T	0
\mathcal{H}	5	U	2
I	0	V	4
J	0	W	0
K	5	X	2
L	2	Y	1
M	2	Z	0

letter	probability	letter	probability
A	.082	N	.067
B	.015	0	.075
C	.028	P	.019
D	.043	Q	.001
$\subset E$.127	R	.060
F	.022	S	.063
G	.020	T	.091
H	.061	U	.028
I	.070	V	.010
J	.002	W	.023
K	.008	X	.001
L	.040	Y	.020
M	.024	Z	.001

Ciphertext-only attack on the Affine cipher

▶ See Example 2.10 on Pages 41-42.

Ciphertext from an Affine cipher:

FMXVEDKAPHFERBNDKRXRSREFMORUDSDKDVSHVUFEDK APRKDLYEVLRHHRH

$$e_K(x) = ax + b$$

Try 1: R is the encryption of e and D is the encryption of t

$$\begin{cases} e_K(4) = 17 \\ e_K(19) = 3 \end{cases} \begin{cases} 4a + b = 17 \implies a = 6, b = 19 \text{ (in } \mathbb{Z}_{26}) \\ 19a + b = 3. \end{cases} \gcd(a, 26) = 2 > 1$$

The 2: R is the encryption of e and E is the encryption of t = a = 13

Ty 3:R is the encryption of e and H is the encryption of $t \implies a = 8$

Try 4:R is the encryption of e and K is the encryption of t

$$a = 3, b = 5$$
 $d_K(y) = 9y - 19$

algorithmsarequitegeneraldefinitionsofarit hmeticprocesses

Permutation Cipher - Example 2.7

Suppose m=6 and the key is the following permutation π :

$$\frac{x}{\pi(x)} \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \pi(x) & 3 & 5 & 1 & 6 & 4 & 2 \end{vmatrix}.$$
 we see that the permutation π^{-1} is the following:
$$\frac{x}{\pi^{-1}(x)} \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & 3 & 6 & 1 & 5 & 2 & 4 \end{vmatrix}.$$
 $K_{\pi} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$

Plaintext: shesellsseashellsbytheseashore.

Partition: shesel | 1sseas | hellsb | ythese | ashore

Encryption: EESLSH | SALSES | LSHBLE | HSYEET | HRAEOS

General LFSR of Binary Steam Ciphers

$$z_{i+m} = \sum_{j=0}^{m-1} c_j z_{i+j} \mod 2$$

Stream Ciphers - Example 2.8

Suppose m=4 and the keystream is generated using the linear

recurrence

$$z_{i+4} = (z_i + z_{i+1}) \mod 2,$$

 $i \ge 1$. If the keystream is initialized with any vector other than (0, 0, 0, 0), then we obtain a keystream of period 15. For example, starting with (1, 0, 0, 0), the keystream is

1000100110101111....

Any other non-zero initialization vector will give rise to a cyclic permutation of the same keystream.

Known-plaintext attack on the LFSR Stream cipher

Oscar has a plaintext string $x_1x_2\cdots x_n$ and the corresponding ciphertext string $y_1y_2\cdots y_n$

Encryption rule:
$$y_i = (x_i + z_i) \mod 2$$
.

Keystream generator:
$$z_{m+i} = \sum_{j=0}^{m} c_j z_{i+j} \mod 2$$

 $(z_1, \ldots, z_m) = (k_1, \ldots, k_m)$

KEY?

$$k_1, k_2, \cdots, k_m; c_0, c_1 \cdots, c_{m-1}$$

Then he can compute the keystream bits $z_i = (x_i + y_i) \mod 2$

$$(k_1, k_2, ..., k_m) = (z_1, z_2, ..., z_m)$$

Known-plaintext attack on the LFSR Stream cipher

$$c_0, c_1 \cdots, c_{m-1}$$

$$z_{m+i} = \sum_{j=0}^{m-1} c_j z_{i+j} \mod 2$$

$$z_{m+i} = \sum_{j=0}^{m-1} c_j z_{i+j} \mod 2$$

$$(z_{m+1}, z_{m+2}, \dots, z_{2m}) = (c_0, c_1, \dots, c_{m-1}) \begin{pmatrix} z_1 & z_2 & \dots & z_m \\ z_2 & z_3 & \dots & z_{m+1} \\ \vdots & \vdots & & \vdots \\ z_m & z_{m+1} & \dots & z_{2m-1} \end{pmatrix}$$

$$(c_0,c_1,\ldots,c_{m-1})=(z_{m+1},z_{m+2},\ldots,z_{2m})\left(egin{array}{ccccc} z_1 & z_2 & \ldots & z_m \ z_2 & z_3 & \ldots & z_{m+1} \ dots & dots & dots \ z_m & z_{m+1} & \ldots & dots \ \end{array}
ight)^{-1}$$

Autokey Cipher - Example 2.9

Suppose the key is K = 8, and the plaintext is

Plaintext: rendezvous.

Integers of Plaintext: 17 4 13 3 4 25 21 14 20 18 Keystream: 8 17 4 13 3 4 25 21 14 20

Encryption: 25 21 17 16 7 3 20 9 8 12

Ciphertext: ZVRQHDUJIM.