Introduction about K-Means Clustering

Supervised learning

Supervised learning: given labeled examples

Unsupervised learning

Unupervised learning: given data, i.e. examples, but no labels

Unsupervised learning

Given some example without labels, do something!

Unsupervised learning applications

learn clusters/groups without any label

customer segmentation (i.e. grouping)

image compression

bioinformatics: learn motifs

find important features

• • •

Unsupervised learning: clustering

No "supervision", we're only given data and want to find natural groupings

Clustering

Clustering: the process of grouping a set of objects into classes of similar objects

Applications?

Clustering applications

Find clusters of users

- Targeted advertising
- Exploratory analysis

Clusters of the Web Graph

• Distributed pagerank computation

Who-messages-who IM/text/twitter graph

~100M nodes

A data set with clear cluster structure

Issues for clustering

Representation for clustering

- How do we represent an example
 - features, etc.
- Similarity/distance between examples

Number of clusters

- Fixed a priori
- Data driven?

Most well-known and popular clustering algorithm:

Start with some initial cluster centers

Iterate:

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

K-means: an example

K-means: Initialize centers randomly

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

No changes: Done

Iterate:

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

How do we do this?

Iterate:

- Assign/cluster each example to closest center
 - iterate over each point:
 - get distance to each cluster center
 - assign to closest center (hard cluster)
- Recalculate centers as the mean of the points in a cluster

Iterate:

- Assign/cluster each example to closest center
 - iterate over each point:
 - get distance to each cluster center
 - assign to closest center (hard cluster)
- Recalculate centers as the mean of the points in a cluster

Distance measures

Euclidean:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

good for spatial data

Clustering documents (e.g. wine data)

One feature for each word. The value is the number of times that word occurs.

Documents are points or vectors in this space

cosine similarity

$$sim(x,y) = \frac{x \cdot y}{|x||y|} = \frac{x}{|x|} \cdot \frac{y}{|y|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$$

correlated with the angle between two vectors

