

Very Long Baseline Interferometry (VLBI)

International Centre for Radio Astronomy Research Potential, Challenges and Astrophysical Applications.

Maria J. Rioja ICRAR-UWA & CSIRO

Long Baseline Interferometry (VLBI)

First VLBI measurement OH emission (J.Moran)

Challenges and cal Applications.

ia J. Rioja AR-UWA & CSIRO

The first VLBI measurements between Haystack and NRAO from data recorded June 8, 1967. (Image credit: Moran, J.M., 1968, "Interferometric Observations of Galactic OH Emission," PhD thesis, MIT, p. 160.)

Outline

- VLBI holds the **POTENTIAL** for highest <u>resolution</u> and <u>highest precision astrometry</u>.
- CHALLENGES to overcome.

 A flavor of WHAT ONE CAN DO with high resolution and high precision astrometry.

Radio Telescopes: Resolution

Arrays 10 km

ıllılı

Radio Telescopes: Resolution

Arrays 10 km

6000km

Radio Telescopes: Resolution

10 km 250 mas

6000km 0.4 mas

20.000km; 350.000km 100 μas; 10 μas

VLBI provides.....

HIGHER SPATIAL RESOLUTION (small Θ_{synt}):
High resolution imaging and high precision astrometry
What they look like and where they are

TRADE-OFF WITH SENSITIVITY (collecting area and coh time):

Targets: Very bright, compact (\rightarrow High T_B emission)

e.g.: Active Galactic Nuclei (AGNs), pulsars, supernova,

astrophysical masers: SFR, AGB; grav. lenses...

Calibration plays a significant role

Extreme interferometry: Very Long Baseline Interferometry (VLBI)

 Why need VLBI calibration?

Why need VLBI calibration?

VLBI Observables: The interferometric Phase, ϕ_{12}^{a}

Earth's atmosphere is the largest source of error in typical VLBI observations.

Calibration Technique (1): Self-Calibration

Goal: IMAGING STRONG SOURCE

(requires detection within coh time)

Obs. strategy: Tracking

Obs. Freq.: wide range

ONLY STRONG SOURCES
&
NO ASTROMETRY

Calibration Technique (2): Phase Referencing

(or errors in the "a priori" delay models)

Goal: IMAGING weak (and strong) precise ASTROMETRY

Obs. strategy: Alternate fast btw 2 nearby sources

Obs. Freq.: 8-22(43) GHz (for precise astrometry)

Astrometric Precision: $0.5\theta_B/SNR$ (10's micro-as) +

The Many Faces of the Propagation Medium

High Frequencies (> 22 GHz) & Troposphere

GOAL: Precise Astrometry **>** wider applicability

Phase Referencing "trans-source"

Phase Referencing "trans-source"

PR @ 43 GHz 1 deg. **Bright Reference** Source **Target Source WEAK SOURCES ASTROMETRY**

Paradigm Shift: "trans-frequency" calibration

"fast-frequency switching" with VLBA

Phase Referencing "trans-source"

Paradigm Shift: "trans-frequency" calibration

"Simultaneous Multi-channel receivers" with KVN

Low Freq VLBI also very interesting.

**Steep Spectrum sources (pulsars)

** SKA era

Low Frequencies (< 8 GHz) & lonosphere

GOAL: Precise Astrometry → wider applicability

THE PROBLEM:

"IONOSPHERIC WEDGE" **Spatial structure Direction Dependent Effects**

THE PROBLEM:

"IONOSPHERIC WEDGE"
Spatial structure
Direction Dependent Effects

THE PROBLEM:

"IONOSPHERIC WEDGE" **Spatial structure Direction Dependent Effects**

MultiView

Now the spatial structure is accounted for, Resulting in high precision astrometry achievable at low frequencies..

(Rioja et al. 2017)

VLBI NETWORKS

CRAR

Highest Frequency Astrometry

VLBA Very Long Baseline Arra

<~ 86GHz

<~ 22GHz

KVN Korean VI BI Network 22/43/86/129 GHz

Southern Hemisphere

General Purpose

VERA VLBI for Farth Rotation and Astrometry

22/43 GHz

<~ 22GHz

and Space Science Institu

Astrophysical Applications

Radio jets and BH physics

Arc-minute resolution is often not good enough to resolve the detailed structure of many astrophysical objects e.g. distant galaxies, quasars etc.

Radio sources can show emission on scales of arcminutes --> arcseconds --> milliarcseconds...

AGN Jet Studies

Accretion of gas onto a massive central black hole releases tremendous amounts of energy.

Magnetic field collimates outflow and accelerates particles to close to the speed of light.

Optical Depth & "Core Shift"

High precision astrometry required because core shifts smaller (→ SFPR)

AGN Jets - Measured "Core shifts" in M87

AGN Jets - Measured "Core shifts" in M87

Event Horizon Telescope

POWER OF THE DARK

The Event Horizon Telescope aims to reveal the edge of a black hole. These objects are surrounded by accretion disks: swirling masses of matter that spiral inwards. Anything that falls past the event horizon disappears from riew because light cannot escape from inside that boundary.

"How to hunt for a black hole with a telescope the size of the Earth... "

VLBI with ALMA λ~ 1mm; Resolution ~ 35 μas

UNEVEN HALO

Radiation collected by the Event Horizon Telescope could resemble this simulation of light bending around a black hole. One side appears brighter because more of the radiation is shifted towards Acc the observing wavelengths.

Astrophysical Applications

Masers and VLBI: Extragalactic and Galactic

To measure geometric distances, BH masses, cosmology...

NGC 4258: The Maser Disk Archetype

H₂O masers in edge-on accretion disk

Orbit speed from Doppler shifts of masers, from single VLBI epoch

Transversal motion across the sky from multiple VLBI epochs of obs.

H₂O Megamasers in Active Galactic Nuclei

Central mass = 3.6×10^7 solar mass (Miyoshi et al. Nature 373, 127) (size < 0.13pc radius) Distance = $7.2 \pm 0.3 \pm 0.5$ Mpc (Herrnstein et al. Nature 400, 539)

Extragalactic Maser Surveys: Megamaser Cosmology Project (MCP)

The MCP is a multi-year VLBA "Key Project" With the goal of determining H_o precisely (better than 3%) by measuring direct geometric distances to circumnuclear H_2O megamasers in galaxies well into the the Hubble flow (at distances 50--200Mpc).

$$V = H_o D$$

 $H0 = 69.3 \pm 4.2 \text{ km/s/Mpc}$

Current estimate (from 4 sources).

Expect to achieve ~4% total uncertainty next year

https://safe.nrao.edu/wiki/bin/view/Main/MegamaserCosmologyProject

Astrometry is the most precise way to Measure Distances

TRIGONOMETRIC PARALLAX:

 π (mas) = 1 / D (Kpc); 10 Kpc away, Parallax 0.1mas =100 micro-as

3D Structure and Kinematics of the Milky Way

Trigonometric Parallax - Measure Distances

 π (mas) = 1 / D (Kpc); 10 Kpc away, Parallax 0.1mas =100 micro-as

Parallax for W 49N H₂O masers

 $\pi = 90 \pm 7 \mu as (D=11.1 \pm 0.9 kpc)$

Red: East Offset Blue: North Offset Zhang+ 2013

Mapping Spiral Structure

Major "Key Science" Projects for VERA and VLBA (BeSSeL survey)

CRAF

- Parallaxes: ~170 parallaxes for massive young stars
- Arms assigned by CO 1-v plot
- Tracing most spiral arms, eg...
 Outer arm traced
 Perseus arm "gap"
 Local arm significant
- Inner, bar-region is complicated

Reid et al. 2016 Honma et al. 2012

Plan view of the Milky Way with locations of HMSFR with trigonometric parallaxes.

The Milky Way's Rotation Curve

The increase in speed increases the Milky Way's mass by 50 percent, bringing it even with the Andromeda Galaxy

REVISING DISTANCES

Kinematic Distance 6.08 Kpc

VLBI Trigonometric Parallax 1.88 ±0.2 Kpc

+

(Sakai et al, 2012, VERA H₂O Masers, 22 GHz)

Physical Parameter =	Kinematic distance of 6.08 kpc (Molinari et al. 199	6) Our parallax measurement of 1.88 kpc
Virial mass (M_{\odot})	2.4×10^{3}	7.4×10 ²
LTE mass (M_{\odot})	$>1.2\times10^{4}$	$>1.1\times10^{3}$
$\alpha = M_{\rm vir} / M_{\rm LTE}$	0.2	0.7
Bolometric luminosity (L_{\odot})	17,130	1638
Spectral type	B0.5*	B3*

REVISING DISTANCES

Other cases:

Star Clusters "Pleiades Distance Controversy", 8.4 GHz μJy sources,
 VLBA+GB+Arecibo+Eff

Hipparcos parallax 120.2 \pm 1.5 pc vs. VLBI parallax 133.5 \pm 1.2 pc (Melis et al. 2014, Science)

RELEVANCE:

- Model-independent distance

 massive revision of physical parameter
- Distance to prototypical cluster \rightarrow underpin stellar population studies.

Physical Parameter	Kinematic distance of 6.08 kpc (Molinari et al. 199	 Our parallax measurement of 1.88 kpc
Virial mass (M_{\odot})	2.4×10^{3}	7.4×10^{2}
LTE mass (M_{\odot})	$>1.2\times10^{4}$	$>1.1\times10^{3}$
$\alpha = M_{\rm vir} / M_{\rm LTE}$	0.2	0.7
Bolometric luminosity (L_{\odot})	17,130	1638
Spectral type	B0.5*	B3*

Summary

VLBI: Presented the basics: connected array – taken further

Challenges:

- Everything needs correcting for all the time
- Atmosphere, Etc
- Different regimes, different solutions

Methods with Wide applicability – at all frequencies

- High Angular resolution (mas) with Self Calibration
- precision astrometry (μas) with Phase Referencing, SFPR, MV

Examples:

- Probe AGN radio jets, and movie of SN expansion
- Black Hole shadows
- Distance and mass of BH, dynamics of accretion disks
- Cosmological implications, determine Ho
- Parallax distances, 3D structure of Milky Way