CHT11 数字温湿度传感器 产品规格书(V1.0)

广州西博臣科技有限公司

GUANGZHOU CYBERSEN TECHNOLOGY CO.,LTD.

版本:V1.0	发行时间: 2019年7月		
编制: 植国明	日期: 2019年6月	审核: 植新明	日期: 2019年6月
批准:李玉林	日期: 2019年7月		

一、产品概述

CHT11数字型温湿度传感器是一款小体积,高性能,含有已校准数字信号输出单总线的高可靠,高精度温湿度传感器。

特点:

硬件精良:传感器内部采用高可靠,高精度感湿敏感元件和外置的高精度NTC温度感知元件,并与一个高性能,宽电压供电(2.7-5.5Vdc)数模混合微处理器(MCU)相连接,内部具有模拟对数线性处理电路,并内置高精度14位ADC,自带加强型单总线硬件驱动输出,驱动及抗干扰能力强,低功耗模式。

高精度,高可靠:CHT11产品采用多点宽范围在线自动标定工艺,通过独特的算法(多点标定,多阶拟合,线性修正等),确保证产品的精度及一致性,内部电路均做三防处理,产品经过高温高湿环境的老化与测试,确保产品的可靠性与长期稳定性。

输出:CHT11产品通信方式采用单总线(见说明六),使用方便,并可直接替代其他 类型的数字型温湿度传感器。

数字直读:CHT11系列产品采用数字直读输出,即内部已经对温度,湿度以及温飘进行补偿,用户无需对数字输出进行二次计算,所读数据即实际真实温湿度,无需计算,应用方便。(具体例程见附件一)

二、 应用范围

※空调、除湿器、加湿器、冰箱等家电行业 ※恒温恒湿机,环境测试设备及仪器

※智能家居,智慧城市,物联网应用 ※数据记录器、气象站

※工业、农业、食品,化工、医疗、汽车、暖通空调等相关环境温湿度检测及控制

三、 外观尺寸

引脚说明

1、VDD 供电 (POWER): 2.7-5.5Vdc

2、SDA 串行数据(DATA): 双向

3、NC 空脚

4、GND 电源负极:地

四、 传感器性能参数

4.0 温湿度测量范围及精度示意图

4.1 相对湿度测量范围及精度

参数	条件	min	typ	max	单位
分辨率			0.1		%RH
量测范围		10		95	%RH
精度	25℃	±5	±4	±5	%RH
重复性			±1		%RH
互换性		完全互换			
响应时间		2	6	8	S
迟滞		±0.5	±1	±2	%RH
漂移		±0.5	±1	±1.5	%RH/yr

4.2 温度测量范围及精度

参数	条件	min	Тур	max	单位	
分辨率			0.1		℃	
精度		±0.2	±0.5	±1	°C	
量测范围		-40		125	°C	
重复性			±0.3		°C	
互换性		完全互换				
响应时间			2		S	
漂移			0.3		°C/yr	

五、 电气特性

参数	条件	min	typ	max	单位
电压 VDD		2.7	5	5.5	V
T+1≠I	5V-休眠		3		uA
功耗	5V- <u>量</u> 测		1.5		mA
I/O 低电平输入电		0		0.2VDD	V
压		U		0.2400	V
I/O 高电平输入电		0.8VDD		VDD	V
压		0.6400		۷۵۵	V
I/O 灌电流	5V	34	68		mA
I/O 源电流	5V	-11	-22		mA

六、 引脚定义

引脚	名称	描述	
1	VDD	电源(2.7Vdc-5.5Vdc)	
2	SDA	串行数据,双向	
3	NC	空脚	
4	GND	地	

七、 通讯协议

CHT11 采用简化的单总线通信。单总线即只有一根数据线,系统中的数据交换、控制均由单总线完成。具体通讯方式及应用电路请参考以下章节:

7.1 单总线协议介绍

CHT11 模块具备单总线通讯接口,实际应用中主机可通过一个 I/O 口即可对模块进行温湿度读取,可节省主控的 I/O 资源。

7.1.1 单总线应用电路

Note:

- 1. 模块 SCL 接地,此时模块处于单总线模式(即3脚为NC空脚)。
- 2. 模块 SDA 引脚需要外接上拉电阻。

7.1.2 单总线通讯格式

模块的 SDA 在单总线模式用于与主机通讯和同步,一次传输 40 为数据, 高位先出,分别为湿度高位、湿度低位、温度高位、温度低位、校验位。通讯 格式如下:

7.2.3 单总线通讯时序及特性参数

- 1. 主机将 SDA 拉低(建议 4ms 以上);然后释放总线,等待模块应答(等待时间建议至少 200uS 以上).
- 2. 模块收到主机的起始信号后,将总线先拉低 80µs,然后拉高 80µs 作为应答信号.
- 3. 紧接着模块开始传输 40bit 数据,高位在前,低位在后(位数据 "0" 的波形:50μs 低电平+26-30μs 高电平;位数据 "1" 的波形:50μs 低电平+70-75μs 高电平).
- 4. 40bit 传输完成后,模块继续输出 50µs 低电平作为结束信号,然后释放总线。

Note: 单总线信号特性参数:

符号	参数	min	typ	max	单位
Tbe	主机起始信号拉低时间	4	20	30	ms
Tgo	主机释放总线时间	5	30	200	μs
Trel	响应低电平时间	75	80	85	μs
Treh	响应高电平时间	75	80	88	μs
TLOW	信号"0"、"1"低电	40	Ε0	FF	
	平时间	48	50	55	μs

TH0	信号"0"高电平时间	22	26	30	μs
TL0	信号"1"高电平时间	68	70	75	μs
Ten	传感器释放总线时间	45	50	56	μs

7.1.3 单总线数据格式

示例一:接收到的40位数据:

0011 0101 0000 0000 0001 1000 0000 0100 0101 0001

湿度高 8 位 湿度低 8 位 温度高 8 位 温度低 8 位 校验位

计算:接收到40位数据后,首先判断校验位是否正确来确认此笔数据是

否有效(校验位为前4个字节的累加和后取低8位),如:

00110101+00000000+00011000+00000100 = 01010001(校验位)

接收数据正确:

湿度高 8 位:00110101(整數)=35H(十六进制)=53(十进制)

湿度低 8 位:0000000(小數)=00H(十六进制)=0.0(十进制)

湿度=(53+0.0)=53.0%RH

温度高 8 位:00011000 (整數)=18H(十六进制)=24(十进制)

温度低 8 位:00000100 (小數)=04H(十六进制)=0.4(十进制)

温度=(24+0.4)= 24.4℃

Note: 温度的低 8 位 MSB 表示符号位, 0 表示正温度, 1 表示负温度;

如-10.1℃的转换数据为 00001010 10000001。

示例二:接收到的40位数据:

<u>0011 0101</u> <u>0000 0000</u> <u>0001 1000</u> <u>0000 0100</u> <u>0111 0001</u>

湿度高 8 位 湿度低 8 位 温度高 8 位 温度低 8 位 校验位

校验和计算:

00110101+00000000+00011000+00000100 ≠ 01110001(校验位)校验和错误,放弃此次数据,重新读取模块的温湿度。

7.1.4 单总线应用注意

主机读取模块的温湿度值为上一次的转换值,读取完成后模块将触发一次温湿度转换;因此长时间没有读取模块时,需要读取两次以得到准确的温湿度值(连续读取最小间隔为 2S)。

7.1.5 单总线读取例程 (C语言), 见附件一

八、包装说明:

产品每 50PCS 包装在吸塑盘内 , 吸塑盘尺寸见图 8-1

图 8.1

代码	A (宽)	B(长)
尺寸 (CM)	17	18.6

备注:外包装与订货量有关,尺寸按发货时实际尺寸为准

九、应用注意事项

- 1、尽量避免在以下环境中直接使用: 盐雾,腐蚀性气体: 强酸(硫酸,盐酸),强碱,有机溶剂(酒精,丙酮等),灰尘及凝露环境需要特别措施进行保护。
- 2、推荐储存条件:温度:10℃~40℃ 湿度:20%RH --60%RH ,无扬尘,
- 3、使用时,建议手工焊接,不宜使用波峰焊,回流焊等工艺,焊接温度不宜过高,焊接时间建议在12S以内。

- 4、温度影响处理,由于焊接或储存环境温度差异,会对现场测试的温湿度产生一定影响,建议在焊接后2小时后或从储存环境拿出来后平衡半小时后,消除模块本身余温,与环境达到平衡后,再进行温湿度测量,确保测量的精准性。
- 5、在选定一种通讯格式的前提下,确保按照本规格书推荐的电气参数,电路图及跳线方式进行设计,接线及跳线,按规定的软件协议或参考例程进行使用。
- 6、特殊环境,例如高温(>85°C),高湿(>90%RH)下,需要在外壳上粘接或内置防水透气膜,或将敏感器件外移,或保护,再进行测量,可向厂家咨询相关使用建议。

7、通讯配线注意事项:

如本传感器模块与主采样 MCU 之间采用远距离通讯模式时,建议采用通讯专用高质量的多股屏蔽线材,以提高抗扰能力及通讯距离。

8、许可证协议

本规格书及相关内容版权属于本司所有,未经本司许可,不得以任何形式或手段, 无论机械(影印)或电子,对本规格书进行全部或部分复制,也不得将其内容传达给 第三方,本说明书内容若有变更,恕不另行通知。广州西博臣科技有限公司与第三方 拥有软件所有权,用户只有在签订了合同或软件使用许可时后方可使用。