CS25110

ISDN - Integrated Services Digital Network

"An ISDN is a network, in general evolving from a Telephony IDN that provides end-to-end digital connectivity to support a wide range of services, to which users have access by a limited set of standard multipurpose usernetwork interfaces"

CCITT I-Series recommendations on ISDN

Principles of ISDN

CCITT Recommendation 1.120 (1988)

- To support a wide range of voice and non-voice services.
- To support of a wide variety of applications including both switched and non switched connections.
- As far as practicable new services to be compatible with 64kbit/s switched digital connections.
- An ISDN will contain intelligence for providing service features, maintenance and network management functions.
- A layered protocol structure should be used for the specification of access to the ISDN.
- May be implemented in a variety of configurations...

An all digital network

- IDN "pushed" by
 - need for better quality voice
 - fast digital switching
 - high bandwidth fibre trunk system
- "pulled" by
 - desire to provide framework for ISDN
 - greater need for data communications
- Existing infrastructure expensive -subscriber loop

ISDN Services

- Bearer service
 - Provides connectivity.
 - No interpretation of the data or protocols.
- Tele services
 - Value adding.
 - Interprets protocols.
 - Provides extra services.
- Supplementary services

Types of Access

- Basic rate access
 - 2 B channels at 64kbit/s each
 - 1 D channel at 16 kbit/s each
- Primary rate access

UK/Europe (2.048Mbps):

- 30 B channels at 64kbit/s each
- 1 D channel at 64kbit/s

US, Canada, Japan (1.544Mbps):

- 23B channels at 64kbit/s each
- 1D channel at 64kbit/s
- B channel voice, FAX, slow video, data
- D channel signalling, telemetry, low speed data

Types of service

- · Circuit switched over B channel.
- Semi permanent connections over B channel.
- Packet switched calls over B channel.
- Packet switched calls over D channel.

Types of User Interface

- NT1 Network termination 1
 - physical and electrical termination (OSI 1)
 - supports multidrop line
- NT2 Network Termination 2
 - intelligent device
 - perform switching and concentration functions
- TE1 Terminal Equipment 1
 - equipment supporting the standard interface
- TE2 Terminal Equipment 2
 - existing non ISDN equipment
- TA Terminal Adapter

Reference Points

Basic Access Configurations

- A 'multidrop' configuration can be used, with up to 8 TEs.
- Two devices can simultaneously transmit on two B channels.
- A contention resolution protocol detects collisions on the D channel.

Basic Access Configurations

CS25110 - Communications and Telematics

N-ISDN

The Subscriber Loop

The requirements were:

- utilise existing twisted pair wire
- digital data
- required to support 2B+D (144kbit/s)
- full duplex

Possible solutions were:

- MODEMS...
- Time Compression Multiplexing (TCM)
- echo cancellation

Digital signal transmission using echo cancellation was chosen for the subscriber loop since it can support a range 4km rather than the 2km of TCM.

The basic rate signal structure

See Diagram at this point

- multiplexing of both the B channels and the D channel (TDM)
- frames are 48 bits
- · two 16 bit B channels
- one 4 bit D channel
- alternating 8 bit chunks from B channels with one D channel bit between each chunk.
- other bits used for framing and synchronisation

ISDN protocols

Protocols

Link level protocols

- · LAP-D based on LAP-B
- LAP-B subset of HDLC (ISO 33009,4335)
- LAP-F Frame relay

Network level protocols

- I.451/Q.931 B channel control signalling over D channel
- X.25 packet level used for user packet data over B or D channels

LAP-D

Aims:

- multiple terminals at the user network interface (S/T)
- multiple "layer 3" entities in each device

Two types of service:

- Unacknowledged operation:
 - error detection but no error control
 - no flow control
- Acknowledged operation:
 - error control
 - flow control

Flow and Error Control

• Stop and wait - simple

- what about errors?
- what about duplex channels?

N-ISDN

Flow and error control (cont)

- Stop and wait Automatic Repeat Request (ARQ).
- Frames numbered 0 and 1 to correctly deal with lost acknowledgement.

Inefficient - for long transmission delays

Flow and Error control (cont)

- Go-back-N ARQ
- allow several frames to be in transit
- need to number frames and acknowledgements
- use control messages
 - Receiver Ready (RR)
 - Receiver Not Ready (RNR)
 - Reject (REJ)

Example:

- 3 bit sequence numbers
- 2 frames already sent beyond the one being acknowledged

Flow and Error Control (cont)

Flow and Error Control (cont)

For full duplex operation

- "piggyback" acknowledgements onto information frames
- send acknowledge for TE->NT with information for NT->TE
- send acknowledge for NT->TE with information for TE->NT
- what if no data to be sent from one side?
 - wait for a time less than timeout and send acknowledgement frame.

LAPD Frame Format

Control field specifies:

- Information frame
- Supervisory frame
- Unnumbered frame
- 7 bit frame numbers

LAPD control field

Information

_		_	
M	N(C)	M	$N(\mathbf{P})$
v	14(9)	ĮΨ	11(11)

Supervisory

1	0	S	0	0	0	0	P	N(R)	

- Receive Ready
- Receive Not Ready
- REJect

• Unnumbered

- SABME Set Asynchronous Balanced Mode
- DM disconnected mode
- UI Unnumbered Information
- DISC Disconnect
- UA Unnumbered Acknowledgement
- FRMR Frame reject

N(S), N(R) send/receive sequence nos,

M and S function specifier bits

LAPD in operation

Packet mode service

• See diagram at this point

• see diagram at this point

Teleservices

CCITT defined teleservices:

- Telephony
- Teletex
- Telefax
- Mixed mode
- Videotex
- Telex
- Message Handling Service (MHS) **X.400** E-mail

List does not include computer-computer applications such as file transfer. These are mostly defined by ISO.

Supplementary Services

Each supplementary service adds value to an underlying Bearer service or **Teleservice**

- Call Forwarding
- Closed User Group
- Calling Line Identification Presentation (CLIP)
- Calling Line Identification Restriction (CLIR)
- Advice of Charge at End of Call (AOC-E)
- plus many others...

Costs

- More than ordinary phone line to install & line rental- but price dropping.
- Call charges the same.
- Cost per bit less for data.
- Cost effective against leased line when used of the order of 3 hours or less per day.

Euro - ISDN

- 1989 Memorandum of Understanding
 - 26 operators
 - 20 countries
- in place end 1992
- implementation 1993
- provides a minimum set of standardised services

MoU - Minimum Set of Services and Facilities

- International Interface
- Basic Rate Access
- Primary Rate Access
- Circuit mode 64Kbit/s unrestricted
- Circuit Mode 3.1Khz audio
- CLIP and CLIR
- Direct Dialling In
- Multiple Subscriber Number
- Terminal Portability

Lower Priority Items

- Packet Mode X.31 B channel
- Packet Mode X.31 D channel
- Advice of Charge
- Call waiting
- conference
- call completion busy
- call foreward
- call deflection
- free phone
- · malicious call identification
- · sub addressing
- three party
- user -user signalling

Items Not Covered

- $\bullet \ \ Channel\ aggregation\ \ N^*64kbit/s$
- Video Conference
- Programming Interfaces
- Data Encapsulation