Import required Libraries

```
In [3]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

# import sklearn libraries for model building
from sklearn.model_selection import train_test_split, ShuffleSplit, GridSearchCV
from sklearn.linear_model import LinearRegression,Lasso
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
import pickle
import json
import warnings
warnings.filterwarnings('ignore')
```

Loading Dataset

```
In [4]:
```

```
df = pd.read_csv(r"C:\Users\sayed\OneDrive\Desktop\TITANIC\50_Startups.csv")
```

In [5]:

```
df.head()
```

Out[5]:

	R&D Spend Administration		Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94

In [6]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
# Column
                   Non-Null Count Dtype
0 R&D Spend
                   50 non-null float64
    Administration 50 non-null
                                  float64
2 Marketing Spend 50 non-null
                                  float64
3
    State
                    50 non-null
                                   obiect
    Profit
                    50 non-null
                                   float64
dtypes: float64(4), object(1)
memory usage: 2.1+ KB
```

Observations:

```
In [7]:
```

```
df.describe()
```

Out[7]:

	R&D Spend	Administration	Marketing Spend	Profit
count	50.000000	50.000000	50.000000	50.000000
mean	73721.615600	121344.639600	211025.097800	112012.639200
std	45902.256482	28017.802755	122290.310726	40306.180338
min	0.000000	51283.140000	0.000000	14681.400000
25%	39936.370000	103730.875000	129300.132500	90138.902500
50%	73051.080000	122699.795000	212716.240000	107978.190000
75%	101602.800000	144842.180000	299469.085000	139765.977500
max	165349.200000	182645.560000	471784.100000	192261.830000

Observations:

1. The mean and median of the above columns are nearly equal so it is a Normally distributed dataset

Missing Value Count

In [8]:

```
df.isnull().sum()
```

Out[8]:

R&D Spend 0
Administration 0
Marketing Spend 0
State 0
Profit 0
dtype: int64

Observations:

1. All the columns are having zero missing values

Unique Values

```
In [9]:
```

```
df["State"].unique()
```

Out[9]:

array(['New York', 'California', 'Florida'], dtype=object)

Distribution of Categorical variable

In [10]:

```
plt.figure(figsize = (6,4), dpi= 100)
sns.countplot(data = df, x = "State")
plt.title("Count plot for States")
```

Out[10]:

Text(0.5, 1.0, 'Count plot for States')

Relationship between categorical variable and target value

In [11]:

```
plt.figure(figsize = (6,4), dpi = 100)
sns.boxplot(data = df, x = "State", y = "Profit")
```

Out[11]:

<AxesSubplot:xlabel='State', ylabel='Profit'>

Distribution plot for numerical feature

In [12]:

```
plt.figure(figsize=(20,25))
plotnumber = 1

for column in df:
    if plotnumber<=3 :
        ax = plt.subplot(3,3, plotnumber)
        sns.distplot(df[column])
        plt.xlabel(column,fontsize=20)
    plotnumber+=1
plt.tight_layout()</pre>
```


Observations:

1. From the graph it is clearly visible that datset is Normally distributed

Scatter plot for Numerical and Target values

In [13]:

```
plt.figure(figsize=(20,30), facecolor='white')
plotnumber = 1

for column in df:
    if plotnumber<=3 :
        ax = plt.subplot(3,3,plotnumber)
        plt.scatter(df[column], df.Profit)
        plt.xlabel(column,fontsize=20)
        plt.ylabel('Profit',fontsize=20)
        plotnumber+=1
plt.tight_layout()</pre>
```


Observations:

1. From Scatter plot it is clear that all the numeric features are having linear relationship with profit

Boxplot for Numerical features

In [14]:

```
plt.figure(figsize = (6,4), dpi = 100)
sns.boxplot(data = df, x = "R&D Spend")
plt.figure(figsize = (6,4), dpi = 100)
sns.boxplot(data = df, x = "Administration")
plt.figure(figsize = (6,4), dpi = 100)
sns.boxplot(data = df, x = "Marketing Spend")
```

Out[14]:

<AxesSubplot:xlabel='Marketing Spend'>

60000 80000 100000 120000 140000 160000 180000 Administration

Feature Engineering

In [16]:

```
df_state_dummies = pd.get_dummies(df["State"],prefix="State",drop_first=True)
df = pd.concat([df, df_state_dummies], axis = 1)
df.head()
```

Out[16]:

	R&D Spend	Administration	Marketing Spend	State	Profit	State_Florida	State_New York
0	165349.20	136897.80	471784.10	New York	192261.83	0	1
1	162597.70	151377.59	443898.53	California	191792.06	0	0
2	153441.51	101145.55	407934.54	Florida	191050.39	1	0
3	144372.41	118671.85	383199.62	New York	182901.99	0	1
4	142107.34	91391.77	366168.42	Florida	166187.94	1	0

Observations:

1. As we are having categorical feature called state column so we need to create dummy variable for that

```
In [17]:
```

```
df = df.drop("State", axis = 1)
df.head()
```

Out[17]:

	R&D Spend	Administration	Marketing Spend	Profit	State_Florida	State_New York
0	165349.20	136897.80	471784.10	192261.83	0	1
1	162597.70	151377.59	443898.53	191792.06	0	0
2	153441.51	101145.55	407934.54	191050.39	1	0
3	144372.41	118671.85	383199.62	182901.99	0	1
4	142107.34	91391.77	366168.42	166187.94	1	0

Model selection

```
In [18]:
```

```
# Separate Dependent and Independent Variables
X = df.drop('Profit',axis=1)
y = df['Profit']
```

In [19]:

```
from sklearn.preprocessing import StandardScaler
```

In [20]:

```
scaler=StandardScaler()
```

In [21]:

```
X = scaler.fit_transform(X)
```

In [22]:

```
# Train-Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 50)
```

In [23]:

```
lm_model = LinearRegression()
lm_model.fit(X_train, y_train)
from sklearn.metrics import r2_score
y_hat_lm = lm_model.predict(X_test)
print("r2_score for Linear Regression Model is : ", r2_score(y_test, y_hat_lm))
```

r2_score for Linear Regression Model is : 0.9101473536069875

In [24]:

```
from sklearn.linear_model import Ridge, Lasso, ElasticNet
```

In [25]:

grid_model = GridSearchCV(estimator = ridge_model, param_grid = param_grid_ridge, cv = 5, verbose = 3)

```
In [26]:
```

```
grid model.fit(X train, y train)
y_hat_ridge = grid_model.predict(X_test)
[CV 3/5] END .....alpha=0.0, fit intercept=True;, score=0.880 total time=
[CV 4/5] END .....alpha=0.0, fit_intercept=True;, score=0.981 total time=
                                                                                                                          0.0s
[CV 5/5] END .....alpha=0.0, fit_intercept=True;, score=0.922 total time=
                                                                                                                          0.05
[CV 1/5] END ...alpha=0.0, fit_intercept=False;, score=-2.888 total time=
                                                                                                                          0.0s
[CV 2/5] END ..alpha=0.0, fit_intercept=False;, score=-16.372 total time=
[CV 3/5] END ..alpha=0.0, fit_intercept=False;, score=-27.948 total time=
                                                                                                                          0.0s
[CV 4/5] END ...alpha=0.0, fit intercept=False;, score=-7.145 total time=
[CV 5/5] END ...alpha=0.0, fit intercept=False;, score=-9.689 total time=
[CV 1/5] END alpha=0.7142857142857143, fit_intercept=True;, score=0.915 total time=
                                                                                                                                          0.0s
[CV~2/5]~END~alpha=0.7142857142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857143,~fit\_intercept=True;,~score=0.965~total~time=0.7142857143,~fit\_intercept=True;,~score=0.965~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~total~tota
                                                                                                                                          0.0s
[CV 3/5] END alpha=0.7142857142857143, fit_intercept=True;, score=0.883 total time= [CV 4/5] END alpha=0.7142857142857143, fit_intercept=True;, score=0.980 total time=
                                                                                                                                          0.0s
[CV 5/5] END alpha=0.7142857142857143, fit_intercept=True;, score=0.929 total time=
[CV 1/5] END alpha=0.7142857142857143, fit_intercept=False;, score=-3.002 total time=
[CV 2/5] END alpha=0.7142857142857143, fit_intercept=False;, score=-15.288 total time=
[CV 3/5] END alpha=0.7142857142857143, fit_intercept=False;, score=-27.265 total time=
                                                                                                                                               0.05
[CV 4/5] END alpha=0.7142857142857143, fit_intercept=False;, score=-7.236 total time=
                                                                                                                                             0.0s
[CV 5/5] END alpha=0.7142857142857143, fit_intercept=False;, score=-9.608 total time= [CV 1/5] END alpha=1.4285714285714286, fit_intercept=True;, score=0.904 total time=
                                                                                                                                          0.0s
[CV 2/5] END alpha=1.4285714285714286, fit_intercept=True;, score=0.962 total time=
In [27]:
lasso_model = Lasso()
param_grid_lasso = {"alpha" : np.linspace(0, 10, 15),
                              "fit_intercept" : [True, False],
                              "selection" : ["cyclic", "random"]}
In [28]:
grid_model_lasso = GridSearchCV(estimator = lasso_model, param_grid= param_grid_lasso, cv = 5, verbose = 3)
grid model lasso.fit(X train, y train)
y_hat_lasso = grid_model_lasso.predict(X_test)
Fitting 5 folds for each of 60 candidates, totalling 300 fits
[CV 1/5] END alpha=0.0, fit_intercept=True, selection=cyclic;, score=0.925 total time=
                                                                                                                                               0.05
[CV 2/5] END alpha=0.0, fit_intercept=True, selection=cyclic;, score=0.964 total time=
                                                                                                                                               0.05
[CV 3/5] END alpha=0.0, fit_intercept=True, selection=cyclic;, score=0.880 total time=
                                                                                                                                               0.05
[CV 4/5] END alpha=0.0, fit_intercept=True, selection=cyclic;, score=0.981 total time=
[CV 5/5] END alpha=0.0, fit_intercept=True, selection=cyclic;, score=0.922 total time=
                                                                                                                                               0.0s
[CV 1/5] END alpha=0.0, fit_intercept=True, selection=random;, score=0.925 total time=
[CV 2/5] END alpha=0.0, fit_intercept=True, selection=random;, score=0.964 total time=
[CV 3/5] END alpha=0.0, fit_intercept=True, selection=random;, score=0.880 total time=
                                                                                                                                               0.0s
[CV 4/5] END alpha=0.0, fit_intercept=True, selection=random;, score=0.981 total time=
[CV 5/5] END alpha=0.0, fit_intercept=True, selection=random;, score=0.922 total time=
[CV 1/5] END alpha=0.0, fit_intercept=False, selection=cyclic;, score=-2.888 total time=
                                                                                                                                                  0.0s
[CV 2/5] END alpha=0.0, fit_intercept=False, selection=cyclic;, score=-16.372 total time=
                                                                                                                                                    0.0
[CV 3/5] END alpha=0.0, fit_intercept=False, selection=cyclic;, score=-27.948 total time=
                                                                                                                                                    0.0
[CV 4/5] END alpha=0.0, fit_intercept=False, selection=cyclic;, score=-7.145 total time=
                                                                                                                                                  0.0s
[CV 5/5] END alpha=0.0, fit_intercept=False, selection=cyclic;, score=-9.689 total time=
                                                                                                                                                  0.0s
[CV 1/5] END alpha=0.0, fit_intercept=False, selection=random;, score=-2.888 total time=
                                                                                                                                                  0.0s
In [29]:
elastic model = ElasticNet()
para_grid_elastic = {"alpha" : np.linspace(0, 10, 15),
                                 "<mark>l1_ratio"</mark> : np.linspace(0, 1, 15),
                                "fit_intercept" : [True, False],
                                "selection" : ["cyclic", "random"]}
```

grid_model_elastic = GridSearchCV(estimator = elastic_model, param_grid= para_grid_elastic, cv = 5, verbose = 3)

```
In [30]:
```

```
grid_model_elastic.fit(X_train, y_train)
re=0.880 total time=
                    0.0s
                                                                                                        [CV 4/5] END alpha=0.0, fit_intercept=True, l1_ratio=0.3571428571428571, selection=cyclic;, sco
re=0.981 total time=
                     0.05
[CV 5/5] END alpha=0.0, fit intercept=True, l1 ratio=0.3571428571428571, selection=cyclic;, sco
re=0.922 total time=
                     0.0s
[CV 1/5] END alpha=0.0, fit_intercept=True, l1_ratio=0.35714285714, selection=random;, sco
re=0.925 total time=
                    0.0s
[CV 2/5] END alpha=0.0, fit_intercept=True, l1_ratio=0.35714285714, selection=random;, sco
re=0.964 total time=
                    0.0s
[CV 3/5] END alpha=0.0, fit_intercept=True, l1_ratio=0.35714285714, selection=random;, sco
re=0.880 total time=
                     0.0s
[CV 4/5] END alpha=0.0, fit_intercept=True, l1_ratio=0.35714285714, selection=random;, sco
re=0.981 total time=
                    0.0s
[CV 5/5] END alpha=0.0, fit_intercept=True, l1_ratio=0.3571428571428571, selection=random;, sco
re=0.922 total time=
                     0.0s
[CV 1/5] END alpha=0.0, fit_intercept=True, l1_ratio=0.42857142857142855, selection=cyclic;, sc
ore=0.925 total time= 0.0s
[CV 2/5] END alpha=0.0, fit_intercept=True, l1_ratio=0.42857142857142855, selection=cyclic;, sc
ore=0.964 total time=
                     0.0s
[CV 3/5] END alpha=0.0, fit_intercept=True, l1_ratio=0.42857142857142855, selection=cyclic;, sc
In [31]:
y_hat_elastic = grid_model_elastic.predict(X_test)
In [32]:
print("r2_score for Ridge Model is : ", r2_score(y_test, y_hat_ridge))
r2_score for Ridge Model is: 0.9101473536069874
In [33]:
print("r2_score for Ridge Model is : ", r2_score(y_test, y_hat_lasso))
r2_score for Ridge Model is : 0.9103811708859249
In [34]:
print("r2_score for Ridge Model is : ", r2_score(y_test, y_hat_elastic))
r2_score for Ridge Model is : 0.9103041588817918
In [35]:
decision_model = DecisionTreeRegressor()
"max_features" : ["auto", "sqrt", "log2"]}
In [36]:
grid decision = GridSearchCV(estimator = decision model, param grid=param grid decision)
grid decision.fit(X train, y train)
y_hat_decision = grid_decision.predict(X_test)
In [37]:
print("r2 score for Ridge Model is : ", r2 score(y test, y hat decision))
r2_score for Ridge Model is : 0.8593809123149713
```

```
In [38]:
```

```
random_model = RandomForestRegressor()
para_grid_random = {'n_estimators' : [int(x) for x in np.linspace(start = 100, stop = 400, num = 100)],
                'max_features': ['auto', 'sqrt'],
                'max_depth':[int(x) for x in np.linspace(10, 31, num = 11)],
                'min_samples_leaf':[1, 2]}
```

```
In [39]:
```

```
print("r2_score for Linear Regression Model is : ", r2_score(y_test, y_hat_lm))
print("r2_score for Ridge Model is : ", r2_score(y_test, y_hat_ridge))
print("r2_score for Lasso Model is : ", r2_score(y_test, y_hat_lasso))
print("r2_score for ElasticNet Model is : ", r2_score(y_test, y_hat_elastic))
print("r2_score for Decision Tree Model is : ", r2_score(y_test, y_hat_decision))
r2_score for Linear Regression Model is : 0.9101473536069875
r2_score for Ridge Model is : 0.9101473536069874
r2_score for Lasso Model is : 0.9103811708859249
r2_score for ElasticNet Model is : 0.9103041588817918
r2 score for Decision Tree Model is: 0.8593809123149713
```

Observations

In [40]:

```
# From above 5 models hieghst r2 score we got from linear model, so for model building we used linear regression
```

Model Building

```
In [43]:
```

```
model = LinearRegression()
model.fit(X train,y train)
y_pred = model.predict(X_test)
model.score(X_test,y_test)
```

Out[43]:

0.9101473536069875

Summary

- 1. In the above dataset total we have 5 columns & 50 rows
- 2. In which 1 is categorical & others are continuous columns
- 3. In the dataset we dont have any null values
- 4. From the description for all columns mean and median is almost same so we consider data is normally distributed
- 5. From scatter plot all the continuous column having linear relationship
- 6. So we test our dataset on linear Regression, ridge model, Lasso & Elastic net, Decision tree regressor. We got highest r2_score from linear regression which is 91.0147% so we select Linear regression to build our model.