Exercices 1

TABLE DES MATIÈRES

1	Pro	babilités et statistiques	1
	1.1	P ₁	1
		1.1.1 Enoncé	1
	1.2	P ₂	1
		1.2.1 Enoncé	
	1.3	P ₃	
		1.3.1 Enoncé	2
2		cul différentiel	2
	2.1	C1	2
		2.1.1 Enoncé	2
	2.2	C2: Ordinary least squares	2
		2.2.1 Enoncé	

1 PROBABILITÉS ET STATISTIQUES

1.1 P1

1.1.1 Enoncé

Calculer l'espérance et la variance des variables aléatoires réelles suivantes.

- X_1 de loi uniforme sur [0, 1].
- $-- X_2$ de loi uniforme sur [-1, 1].

1.2 P2

1.2.1 Enoncé

Calculer l'espérance et la matrice de variance-covariance du vecteur aléatoire suivant

$$Y = (Y_1, Y_2) \tag{1}$$

où

- Y_1 suit une loi de Bernoulli de paramètre p
- Y_2 suit une loi normale $\mathcal{N}(\mu, \sigma)$.
- On suppose Y₁ et Y₂ indépendantes.

1.3 P3

1.3.1 Enoncé

Calculer l'espérance et la matrice de variance-covariance du vecteur aléatoire suivant

$$Z = (Z_1, Z_2) \tag{2}$$

où

- Z₁ suit une loi uniforme sur [1,2]

$$- Z_2 = Z_1^2.$$

2 CALCUL DIFFÉRENTIEL

2.1 C1

2.1.1 Enoncé

Calculer le gradient et la Hessienne en tout point des applications suivantes.

$$\begin{split} f_1 &= \left\{ \begin{array}{l} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto 3 \end{array} \right. \\ f_2 &= \left\{ \begin{array}{l} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto x^3 + \sin y \end{array} \right. \\ f_3 &= \left\{ \begin{array}{l} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto x^3 \sin y \end{array} \right. \\ f_4 &= \left\{ \begin{array}{l} \mathbb{R}^3 \to \mathbb{R} \\ (x,y,z) \mapsto x^2 y (z+2) \end{array} \right. \end{split}$$

2.2 C2: Ordinary least squares

2.2.1 Enoncé

1) Soit $d \in \mathbb{N}^*$. Calculer le gradient de

$$f = \left\{ \begin{array}{l} \mathbb{R}^d \to \mathbb{R} \\ x \mapsto ||x||^2 \end{array} \right.$$

où ||.|| est la norme euclidienne.

2) Soit $X\in\mathbb{R}^{n,d},$ et $Y\in\mathbb{R}^n.$ En utilisant la question précédente, calculer le gradient de

$$g = \left\{ \begin{array}{l} \mathbb{R}^d \to \mathbb{R} \\ \theta \mapsto \|X\theta - Y\|^2 \end{array} \right.$$

C'est la fonction objectif du problème OLS.