

FABind: Fast and Accurate Protein-Ligand Binding

Qizhi Pei*, Kaiyuan Gao*, Lijun Wu#, Jinhua Zhu, Yingce Xia, Shufang Xie, Tao Qin, Kun He, Tie-Yan Liu, Rui Yan#

Contact: Qizhi Pei, Lijun Wu

qizhipei@ruc.edu.cn ijuwu@microsoft.c

Code Available

Protein-ligand binding/docking is crucial for drug discovery

- Sampling-based method: accurate, but requires large space of sampling candidates, scoring function learning
 - → High cost and low speed
- Regression-based method: fast, directly predict the docking pose.
- → Accuracy is not as good as sampling method

FABind: fast and accurate protein-ligand binding

- Unified network for pocket prediction and docking process
- End-to-end framework, input rigid protein and random molecule conformation, then output the predicted pose
- Scheduled sampling, training with predicted pocket

FABind layers

- Independent message passing: inside protein and molecule
- Cross-attention update: cross protein and molecule
- Interfacial message passing: on the protein-molecule contact surface

Pocket prediction

Pocket classification

$$L_p^c = -\frac{1}{n_p} \sum_{j=1}^{n_p} [y_j \log(p_j) + (1 - y_j) \log(1 - p_j)]$$

Constraint for pocket center coordinates

$$\gamma_{j}^{p} = \frac{\exp((\log(p_{j}) + g_{j})/\tau_{e}}{\sum_{k'=1}^{n_{p}} \exp(\log(p_{k'}) + g_{k'})/\tau_{e}}, \quad x^{p} = \frac{1}{n_{p}} \sum_{j=1}^{n^{p}} \gamma_{j}^{p} x_{j}^{p}$$

$$L_{p}^{c2r} = l_{Huber}(x^{p}, x^{p*})$$

$$L_{pocket} = L_{p}^{c} + \alpha L_{p}^{c2r}$$

Docking

Direct coordinates prediction

$$L_{coord} = l_{Huber}(x^L, x^*)$$

Constraint by distance matrix

$$\widetilde{D_{ij}} = \|\mathbf{x}_i^L - \mathbf{x}_j^L\|, \qquad \widehat{D_{ij}} = MLP(\mathbf{z}_{ij}^L)$$

$$L_{dist} = \frac{1}{n^l n^{p*}} \{ \sum_{i=1}^{n} \sum_{j=1}^{n} \left[\left(D_{ij} - \widetilde{D_{ij}} \right)^2 + \left(D_{ij} - \widehat{D_{ij}} \right)^2 + \gamma \left(\widetilde{D_{ij}} - \widehat{D_{ij}} \right)^2 \right] \}$$

$L_{docking} = L_{coord} + \beta L_{dist}$

Comprehensive loss for joint optimization $L = L_{pocket} + L_{docking}$

Experimental results

• Blind self-docking performance on the whole test set

	Ligand RMSD						Centroid Distance						
Methods	Percentiles ↓				% Below ↑		Percentiles ↓			% Below ↑		Average	
	25%	50%	75%	Mean	2Å	5Å	25%	50%	75%	Mean	2Å	5Å	Runtime (s)
QVINA-W	2.5	7.7	23.7	13.6	20.9	40.2	0.9	3.7	22.9	11.9	41.0	54.6	49*
GNINA	2.8	8.7	22.1	13.3	21.2	37.1	1.0	4.5	21.2	11.5	36.0	52.0	146
SMINA	3.8	8.1	17.9	12.1	13.5	33.9	1.3	3.7	16.2	9.8	38.0	55.9	146*
GLIDE	2.6	9.3	28.1	16.2	21.8	33.6	0.8	5.6	26.9	14.4	36.1	48.7	1405*
VINA	5.7	10.7	21.4	14.7	5.5	21.2	1.9	6.2	20.1	12.1	26.5	47.1	205*
EQUIBIND	3.8	6.2	10.3	8.2	5.5	39.1	1.3	2.6	7.4	5.6	40.0	67.5	0.03
TANKBIND	2.6	4.2	7.6	7.8	17.6	57.8	0.8	1.7	4.3	5.9	55.0	77.8	0.87
E3BIND	2.1	3.8	7.8	<u>7.2</u>	23.4	60.0	0.8	1.5	4.0	<u>5.1</u>	60.0	78.8	0.44
DIFFDOCK (1)	2.4	4.9	8.9	8.3	20.4	51.0	0.7	1.8	4.5	5.8	54.1	76.8	2.72
DIFFDOCK (10)	<u>1.6</u>	3.8	7.9	7.4	32.4	59.7	0.6	1.4	3.6	5.2	60.7	79.8	20.81
DIFFDOCK (40)	1.5	<u>3.5</u>	<u>7.4</u>	7.4	36.0	<u>61.7</u>	0.5	1.2	3.3	5.4	62.9	80.2	82.83
FABIND	1.7	3.1	6.7	6.4	33.1	64.2	0.7	1.3	3.6	4.7	60.3	80.2	0.12

Blind self-docking performance on the unseen receptors

	Ligand RMSD					Centroid Distance							
		Perce	ntiles ↓		% Be	low ↑		Perce	ntiles ↓		% Be	low ↑	Average
Methods	25%	50%	75%	Mean	2Å	5Å	25%	50%	75%	Mean	2Å	5Å	Runtime (s)
QVINA-W	3.4	10.3	28.1	16.9	15.3	31.9	1.3	6.5	26.8	15.2	35.4	47.9	49*
GNINA	4.5	13.4	27.8	16.7	13.9	27.8	2.0	10.1	27.0	15.1	25.7	39.5	146
SMINA	4.8	10.9	26.0	15.7	9.0	25.7	1.6	6.5	25.7	13.6	29.9	41.7	146*
GLIDE	3.4	18.0	31.4	19.6	19.6	28.7	1.1	17.6	29.1	18.1	29.4	40.6	1405*
VINA	7.9	16.6	27.1	18.7	1.4	12.0	2.4	15.7	26.2	16.1	20.4	37.3	205*
EQUIBIND	5.9	9.1	14.3	11.3	0.7	18.8	2.6	6.3	12.9	8.9	16.7	43.8	0.03
TANKBIND	3.4	<u>5.7</u>	10.8	10.5	3.5	43.7	1.2	2.6	8.4	8.2	40.9	70.8	0.87
E3BIND	3.0	6.1	10.2	10.1	6.3	38.9	1.2	<u>2.3</u>	7.0	7.6	43.8	66.0	0.44
DIFFDOCK (1)	4.1	7.2	18.2	12.5	8.1	33.1	1.4	3.7	16.7	10.0	33.6	58.3	2.72
DIFFDOCK (10)	3.2	6.4	16.5	11.8	14.2	38.7	1.1	2.8	13.3	9.3	39.7	62.6	20.81
DIFFDOCK (40)	<u>2.8</u>	6.4	16.3	12.0	<u>17.2</u>	42.3	<u>1.0</u>	2.7	14.2	9.8	43.3	62.6	82.83
FABIND	2.2	3.4	8.3	7.7	19.4	60.4	0.9	1.5	4.7	5.9	57.6	75.7	0.12

Blind self-docking performance on ano proteins

	•					
	Apo ESN	/IFold proteins				
	Top-1 RMSD					
Method	%<2	Med.				
GNINA	2.0	22.3				
SMINA	3.4	15.4				
EQUIBIND	1.7	7.1				
TANKBIND	10.4	5.4				
P2RANK+SMINA	4.6	10.0				
P2RANK+GNINA	8.6	11.2				
EQUIBIND+SMINA	4.3	8.3				
EQUIBIND+GNINA	10.2	8.8				
DIFFDOCK (10)	21.7	5.0				
DIFFDOCK (40)	20.3	5.1				
FABIND	24.9	4.2				

Pocket prediction performance

	DCC % Below ↑			
Methods	3Å	4Å	5Å	
TANKBIND E3BIND	18.2 26.7	32.0 35.8	39.9 50.1	
P2RANK	36.4	50.1	57.0	
FABIND - LIGAND INFORMATION - CENTER CONSTRAINT	42.7 36.9 8.8	56.5 51.5 22.9	62.8 59.0 31.7	

Ablation study

Methods	RMSD Mean (Å)↓	RMSD % Below 2Å↑
FABIND	6.4	33.1
NO SCHEDULED SAMPLING COORD LOSS ONLY NO ITERATIVE REFINEMENT NO CROSS-ATTENTION	6.4 6.9 6.6 6.4	28.7 16.3 22.5 21.4

Cases demonstration

(b) PDB: 6JB4