Python Visualization Libraries Guide: Matplotlib & Seaborn

Library Overview

Matplotlib

Matplotlib is a foundational Python library for data visualization. It provides extensive control over plots and is well-suited for static, 2D plots in Python.

Unique Features:

- o Highly customizable.
- Works seamlessly with NumPy and Pandas.
- Used as a base for other libraries like Seaborn.

• Typical Use Cases:

- o Simple to complex 2D plots.
- Academic and scientific visualization.

Seaborn

Seaborn is built on top of Matplotlib and is designed to create attractive and informative statistical graphics.

Unique Features:

- o Simplified syntax for complex plots.
- $_{\circ}$ $\;$ Built-in themes and color palettes.
- Deep integration with Pandas data frames.

Typical Use Cases:

- Statistical visualizations.
- o Exploratory data analysis.

Graph Types

Matplotlib Graphs

1. Line Plot

Description: Shows data points connected by straight lines, ideal for trends over time.

Use Case: Stock prices over time, temperature changes.

```
import matplotlib.pyplot as plt # type: ignore

x = [1, 2, 3, 4]
y = [10, 20, 25, 30]

plt.plot(x, y)
plt.title('Simple Line Plot')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')

plt.show()
```

2. Scatter Plot

Description: Displays individual data points as dots, showing relationship between variables.

Use Case: Correlation between height and weight.

```
import matplotlib.pyplot as plt # type: ignore

x = [5, 7, 8, 7, 2, 17]
y = [99, 86, 87, 88, 100, 86]

plt.scatter(x, y)
plt.title('Scatter Plot Example')
plt.xlabel('X values')
plt.ylabel('Y values')
plt.show()
```

3. Bar Chart

Description: Uses rectangular bars to represent categorical data.

Use Case: Sales by product category.

```
import matplotlib.pyplot as plt

categories = ['A', 'B', 'C']

values = [15, 10, 20]

plt.bar(categories, values)

plt.title('Bar Chart Example')

plt.xlabel('Categories')

plt.ylabel('Values')

plt.show()
```

4. Histogram

Description: Shows distribution of numerical data using bins.

Use Case: Age distribution in a population.

```
import matplotlib.pyplot as plt
import numpy as np

data = np.random.normal(170, 10, 250)

plt.hist(data, bins=20)
plt.title('Histogram Example')
plt.xlabel('Height')
plt.ylabel('Frequency')

plt.show()
```

5. Pie Chart

Description: Circular chart divided into slices to show proportions.

Use Case: Market share distribution.

```
import matplotlib.pyplot as plt

labels = ['A', 'B', 'C', 'D']

sizes = [15, 30, 45, 10]

plt.pie(sizes, labels=labels, autopct='%1.1f%%')

plt.title('Pie Chart Example')

plt.show()
```

Seaborn Graphs

1. Distribution Plot (Distplot)

Description: Combines histogram with kernel density estimate.

Use Case: Visualizing distribution of a dataset.

```
import seaborn as sns
import numpy as np

data = np.random.normal(size=1000)
sns.displot(data, kde=True)
plt.title('Distribution Plot')
plt.show()
```

2. Box Plot

Description: Shows distribution through quartiles with outliers.

Use Case: Comparing distributions across categories.

```
import seaborn as sns
import pandas as pd

data = pd.DataFrame({
    'Category': ['A', 'A', 'B', 'B', 'C', 'C'],
    'Values': [10, 15, 12, 18, 20, 25]

})

sns.boxplot(x='Category', y='Values', data=data)
plt.title('Box Plot Example')

plt.show()
```

3. Violin Plot

Description: Combines box plot with kernel density estimation.

Use Case: Detailed distribution comparison.

```
import seaborn as sns
import pandas as pd

data = pd.DataFrame({
    'Category': ['A', 'A', 'B', 'B', 'C', 'C'],
    'Values': [10, 15, 12, 18, 20, 25]
}

sns.violinplot(x='Category', y='Values', data=data)
plt.title('Violin Plot Example')
plt.show()
```

4. Heatmap

Description: Matrix representation of data with color coding.

Use Case: Correlation matrices, confusion matrices.

```
import seaborn as sns
import numpy as np

data = np.random.rand(5, 5)
sns.heatmap(data, annot=True)
plt.title('Heatmap Example')
plt.show()
```

5. Pair Plot

Description: Matrix of scatter plots for multiple variables.

Use Case: Exploring relationships in multivariate data.

```
import seaborn as sns
iris = sns.load_dataset('iris')

sns.pairplot(iris, hue='species')
plt.title('Pair Plot Example')
plt.show()
```

Comparison

Feature	Matplotlib	Seaborn
Ease of Use	Steeper learning curve	Easier for common plots
Customization	Highly customizable	Limited but good defaults
Interactivity	Basic (with add-ons)	Basic (inherited from mpl)
Performance	Good with large datasets	Good with large datasets
Best For	Precise control, publication	Quick EDA, statistical viz
Style	Basic defaults	Attractive defaults
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Feature	Matplotlib	Seaborn
Data Format	Arrays, lists	Pandas Data Frames preferred