Principles of Machine Learning CSCI-B455

Supervised Learning — II

- Accuracy: We want the hypothesis h to be close to the true target class C.
- A probability that a given point is misclassified is at most ϵ .
- The level of desired accuracy is denoted by ϵ .

	h: If (weight > 115) then Orange, else Apple	C: If (weight > 125) then Orange else Apple					
Training Data 1. Apple 120g	Learned 1. Orange	True Class 1. Apple	h deviates from C by 20%, accuracy is 80%.				
 Orange: 150g Apple: 130g 	2. Orange3. Orange	2. Orange3. Orange	Error rate is then $\epsilon = 0.2$.				
4. Orange: 140g 5. Apple: 110g	4. Orange 5. Apple	4. Orange5. Apple	Does h provide a confidence?				

- Confidence: We want to be confident that the h provides the desired level of accuracy.
- The level of desired confidence is maintained with at least $(1-\delta)$ probability.

LEARNABILITY of a concept class with probabilistic guarantees

- APPROXIMATELY CORRECT: We allow an error rate of ϵ in the classification (Accuracy).
- **PROBABLY**: We want to maintain a confidence level (1δ) on our accuracy (Confidence).

The error rate is ϵ , and the probability of an error exceeding ϵ is less than δ .

PAC — Learnable Problem: With **enough** examples, possible to learn with desired ϵ , δ guarantees. In other words, there is a hypothesis in the hypothesis space that provides the guarantees.

Sample complexity: How many examples we need to learn a hypothesis with the desired accuracy and confidence?

How many examples we need to learn a hypothesis with the desired accuracy and confidence?

- We assume h is the tightest hypothesis S.
- ullet N examples are drawn from C with a fixed but unknown probability distribution
- We aim to estimate N such that $P(C\Delta h \le \epsilon) \ge (1 \delta)$, which also means $P(C\Delta h > \epsilon) < \delta$.
- $C\Delta h$ denotes the error, which is the region between C and h.

Anything falling in this strip is an error. We have 4 strips around h

Probability that an example point is out of that strip is $1 - \epsilon/4$.

All N points are out of it is $(1 - \epsilon/4)^N$.

N draws missing any of those 4 strips is $4(1 - \epsilon/4)^N$

Solve for $4(1-\epsilon/4)^N < \delta$ (see book chapter 2.3 for details)

$$N \ge \left(\frac{4}{\epsilon}\right) \log\left(\frac{4}{\delta}\right)$$

- Confidence: 95% , $1-\delta=0.95\Rightarrow\delta=0.05$
- Accuracy: 99%, error rate $\epsilon = 0.01$
- Number of samples we will need is N.

$$N \ge \left(\frac{4}{\epsilon}\right) \log\left(\frac{4}{\delta}\right) \Rightarrow N \ge \frac{4}{0.01} \log\frac{4}{0.05} \Rightarrow N \ge 400 \log 80 \Rightarrow N \ge 762$$

How many examples we need to learn a hypothesis with the desired accuracy and confidence?

Another approach by proving "The probability that there exists a hypothesis h that is consistent with m examples and satisfies Error(h) > e is less then $|H|(1-e)^m$.

- The hypothesis $h \in H$ is a **bad** one when $Error(h) > \epsilon$. Then, correct decision on a single point is **less than** (1ϵ) , and the probability that such an h is consistent with all m points is **less** than $(1 \epsilon)^m$.
- The probability that any one of the |H| hypothesis satisfies $Error(h) > \epsilon$ is $|H|(1-\epsilon)^m$.
- Now, we have a learning problem and the chosen hypothesis comes with worse than ϵ error probability.
- We want this situation to be upper bounded by δ , hence $|H|(1-\epsilon)^m<\delta$.
- The number of points, m, to satisfy this is $m > \frac{1}{\epsilon} \left(\ln |H| + \ln \frac{1}{\delta} \right)$

Noise in Learning

- Errors in measurements, recordings, etc...
- Errors in labeling the training data (teacher error)
- Effect of neglected attributes
- Actually, this is the real-life scenario:(
- No simple boundaries
- No zero-error on learning
- Occam's Razor, principle or law of parsimony: Among possible hypothesis, simpler is better unless there is strong evidence to choose the more complex one
- Avoid overfitting that results more than necessarily complex models.
- More complex, less generalizable!

Learning Multiple Classes

What if we have K > 2 classes?

Classes: C_i , i = 1, 2, ..., K

Training data: $\mathcal{X} = \{x^t, r^t\}_{t=1}^N$

Class attribution r_i^t of $x_i^t \in \mathcal{X}$ is a K- dimensional binary vector as $r^t = \langle r_1^t, r_2^t, ..., r_K^t, \rangle$, where $r_i^t = 1$ if $x^t \in C_i$, else $r_i^t = 0$

K—class classification defines K two—class classification problems.

Learning Multiple Classes

K—class classification defines K two—class classification problems.

We need K hypotheses as h_1, h_2, \ldots, h_K , each for a two-class separation of a specific class among K

$$h(x^{t}) = \langle h_{1}(x^{t}), h_{2}(x^{t}), ..., h_{K}(x^{t}) \rangle$$

$$h_{i}(x^{t}) = \begin{cases} 1, & \text{if } x^{t} \in C_{i} \\ 0, & \text{if } x^{t} \notin C_{i} \end{cases}$$

Learn $h_1, h_2, ..., h_K$ that minimizes the error E.

$$E(\{h_1, h_2, \dots, h_K\} \mid \mathcal{X}) = \sum_{t=1}^{N} \sum_{i=1}^{K} 1(h_i(x^t) \neq r_i^t)$$

- Compare $h(x^t)$ with r^t to decide on correct class attribution.
- Exactly one dimension of K should be 1, all others are 0 for valid assignments.
- If there are more than one dimension set or all are zero, then this is a doubt point and a reject case.
- We try to learn the hypothesis that minimize the total error.

Regression

- Given the training set $\mathcal{X} = \{x^t, r^t\}_{t=1}^N$, regression aims to learn the function $f(x^t) = r^t$.
- Both regression and classification are supervised learning problems.
- The output of classification is boolean, where regression output is a real number.
- Interpolation: Find function f() such that $r^t = f(x^t), \forall t \in 1,2,...,N$.
- Polynomial interpolation: At most degree N polynomial for given N points.
- Finding the output of an input $x \notin \mathcal{X}$ not in the training, is called **extrapolation**, **e.g.**, **prediction**
- There is no noise.
- Regression: $r^t = f(x^t) + \epsilon$, where there is noise which causes the error ϵ .
- In other words, there are other **hidden unknown** attribute(s) z^t that effect r^t , $r^t = f(x^t, z^t)$

Regression

- Regression: $r^t = f(x^t) + \epsilon$, where there is noise which causes the error ϵ .
- In other words, there are other **hidden unknown** attribute(s) z^t that effect r^t , $r^t = f(x^t, z^t)$

The model $g(x^t)$ approximates the function $f(x^t)$. Learn g(x) by minimizing the error $E(g \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \left[r^t - g(x^t) \right]^2$

The hypothesis class for regression:

Assume g() is a linear function and x^t is a d—dimensional vector.

$$g(x^t) = w_1 x_1^t + w_2 x_2^t + \dots + w_d x_d^t + w_0 = w_0 + \sum_{i=1}^d w_i \cdot x_i^t$$

The parameters $w_0, w_1, \dots w_d$ define the hypothesis class.

Depending on the assumed function, the hypothesis set is specified by its parameters, and regression aims to learn those parameters from the training set.

Regression

- Regression: $r^t = f(x^t) + \epsilon$, where there is noise which causes the error ϵ .
- In other words, there are other **hidden unknown** attribute(s) z^t that effect r^t , $r^t = f(x^t, z^t)$

Assume $g(x) = w_0 + w_1 x$, and we aim to minimize $E(w_0, w_1 \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} [r^t - (w_0 + w_1 x^t)]^2$, which

can be done solving the partial derivatives with respect to to w_0 and w_1 equal to zero, which returns

$$w_{1} = \frac{\left(\sum_{t=1}^{N} x^{t} r^{t}\right) - \bar{x}\bar{r}N}{\left(\sum_{t=1}^{N} (x^{t})^{2} N \bar{x}^{2}\right)} \quad and \quad w_{0} = \bar{r} - w_{1}\bar{x} \quad \text{,where } \bar{x} = \frac{\sum_{t=1}^{N} x^{t}}{N}, \text{ and } \bar{r} = \frac{\sum_{t=1}^{N} r^{t}}{N}$$

- If the error with the assumed model $g(x) = w_0 + w_1 x$ is still high, then we try the second-order $g(x) = w_0 + w_1 x + w_2 x^2$, find the parameters and check the error.
- Higher-order polynomials will reduce the error. Then, isn't it better to use the highest possible?
- No! Remember the Occam's razor.

ILL-POSED Problem

x_1	x ₂	h_1	<i>h</i> ₂	<i>h</i> ₃	h_4	<i>h</i> ₅	<i>h</i> ₆	h ₇	h ₈	h ₉	h ₁₀	h ₁₁	h ₁₂	h ₁₃	h ₁₄	h ₁₅	h ₁₆
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	X	X	1	1	X	X	1	1	X	X	1	1	X	X	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

If we know $f(x_1 = 1, x_2 = 0) = 1$, then $h_1, h_2, h_5, h_6, h_9, h_{10}, h_{13}, h_{14}$ are eliminated

- Assume we aim to learn the $f(x_1, x_2)$ BOOLEAN function
- Possible (x_1, x_2) values are $4 = 2^2$
- Possible output values for those 4 cases can be assigned in $16 = 2^4$ ways.
- Each is a hypothesis, and thus, $|\mathcal{H}| = 16$
- Given the training set, inconsistent hypothesis can be eliminated until we are left with a unique one.
- \bullet It needs all 2^{2^d} non-contradicting training samples to reach the unique solution.
- However, training data is usually not enough to specify the unique solution.
- Regression and classification problems are in general ill-posed.

Inductive Bias

- Data by itself is not enough for solution in ill-posed problems.
- We need assumptions. What are these?
 - The attributes we use, e.g., in family-car decision we used price and engine power!?
 - The models we assume in regression or classification, e.g., second-degree polynomial, axisaligned rectangle, etc..
 - The error function that we minimize also creates a bias
 - All introduce a **bias** in the final solution
- We actually need this bias to be able to induce a solution, hence, it is inductive bias.
- Each hypothesis class has a capacity (expressive power)
- Increased capacity brings increased complexity, e.g., instead of one rectangle, how about two?
- ullet Thus, to what extend we need to increase the capacity of ${\mathcal H}$?

Model Selection and Generalization

- Inductive bias is unavoidable, but how to choose a good one?
- What would be a good model selection?
 - What would be the degree of the polynomial?
 - Axis-aligned rectangle, free rectangle, lines, triangles, etc? How to choose?
- ullet Model selection is deciding on the hypothesis class ${\mathcal H}$.
- Aim of the learning is NOT to replicate or memorize the training data
- The aim is to do well on future unseen data!
- Therefore, increasing the performance on training data is good only up to a point!
- The generalization performance of the learned model is its success on future instances

Training / Validation / Test Sets & Cross-Validation

• Split the available labeled data into three sets as training, validation, and test sets.

https://medium.com/@rahulchavan4894/understanding-train-test-and-validation-dataset-split-in-simple-quick-terms-5a8630fe58c8