Methods of Proving Identities

Subset Method - show that each side of identity is a subset of the other side.

Membership Pable -> For each possible combination of the atomic sets, 8.9 an element in exactly these atomic sets most either belong to both sides.

Or belong to neither side.

Apply existing Identition -> Start with one side, transform to other side, using a sequence of steps by applying an established Identity.

by def of compliment ANB = {x | x & ANB} by def & symbol. = { x | 7 (x e (AnB))}

· E ach (Bockers) and (se ches)

= {a|7(xeAnxeB)} by def of intersection.

by demorgan law for logical equivalence. { x | 7 (x e A) V7(x e B)}

= { x | x & A V x & B }

= {alacA va eB?

= {x|xEAUB}

= AUB

by definition of does not belong symbol. by definition of compliment

by del of union

i by meaning of set builder

Membership table.

An	B	2	Ā	UB	using m	ombur sh	p table	
٨	B		Ā	B	AUB	An	В	ANB
O	0		}	ſ	1	0		1
0	Ţ		1	O	1	O	·	1
į	0		0	1	1	0		1
1	J		0	0	0	1		0.

2) By	,	Mumber	ship tal	51 c P	$\cdot \tau$	An	(B#C).	= (An	B) U(Anc	').
	o ,	В	C	B (1)	C. A	n (80)	c) An B	Anc	(ANB) U (A	1 c)
	H	B				<u>ო</u>	O	O	O	
	0	0	1	1		6	O	0	O	
	0	1	٠ <u>٨</u> ٠ ن	1	-	Ø	O	0	O .	
	0	i	1	4.	,	O	0	0	Ö	
	1.	0	.1	O.		Ø	0	0	1	
	l	1	0	, 0		1	1	0	4	
		· · · · · · · · · · · · · · · · · · ·	1	7		1	1	1	1	

Membership table.

An	B	Z	A	UB	using ma	mburship ta	ble
A	B		Ā	B	A U B	An B	ANB
O	0		1	1		O	1
0	1		1	O	t	O	1
ţ	0		0	1	1 3	0	1
t	J		0	0	0	1	O .

2) By	*	Mumbers	hip tak	ble p.	T A	n (BWC)	= (An	B) U (An C	<i>.</i>).
	•	p	C	B D C	· Ancı	apc) An B	Anc	(ANB) U (A	n c)
	H	ci m	~ ~	0	0	Ö	O	0	
	0	0	1	<u>A</u>	, 6	O	0	O	
	0	1	\mathcal{O}	4	· O	O	0	Ö	
	0	1	1	4. 0	0	0	0	0	
	1	Ö	1	<u>d</u>	9	Ø 0	ı	1	
	ì	i	0	1	1	1	. 0	1	
		1	,	1		1	_ 		

AU(Bnc) = (CUB) NA Prove ANB = ANB B By demorgans Law AU(Bnc) = An(Bnc) = AN(BUZ) (By demorgans Law) = (BUZ) NA (By Commutative Law) AUB = BUA. ANB = BNA. = (TUB)NA

= R. H.S (Hence Proved) L. 1-1.5

Membuship Jable

6	M
Z	U
1	manage of the same

A	B	С	впс	AU B nc	AUBNE	Ā	B Z CUB ANCEUE
0	0	0	0	0 *	1	1	
0	0	1	O	0	1		0 1 1 0
0	1	0	0	4	1	t	0 0 0
O	1	1	1	1	0	0	1 1 1 0
ŀ	0	0.	O	1	O	O	1 0 1 0
t	0	1	U	1	O	O	0 1 1 0
1	ŧ	0	\mathcal{O}	1		O	0 0 0
1	1	1	1	1	Ò		

L. 14.5 = R. 1-1.5

Hence Proved.

Computer Representation of sets: Bit string

Will Assume U is finite.

U = { a1 1 a2 - - · an}

ACBU with bit strang of length n
ith bit in strang is 1 a; EA
0 a; &A

 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Subsets of length & Max 10

Bit string represent set of all odd integers: 1010101010

10 1010 1010

Bit string represent set of all even integers: 01 0101 0101

Set of all integers in U that do not exceeds: 11 1110 0000

- - @ Find bit string for A and B.
 - (b) Find complement of A, and B
 - (c) Find Union, and intersection of A and B
 - (a) A = 11111100000 A = 000000111111B = 1010101010 B = 0101010101

AUB $1111101010 = \{1,2,3,4,5,7,9\}$ ANB $1010100000 = \{1,3,5\}$

find the set specified by each of these bit strong.

= $\{1,2,3,4,7,8,9,10\}$ a) 11 1100 1111

= {2,4,5,6,7} b) 01 0111 1000

(C) 10 0000 0001 => {1,10}.

(3) What subsets of a finite Universe set do the bit string represen

a) the strong with all zero: => mull set

(b) the string with all ones. => Universal sel-

Mulfiset

A multiset is an unordered collection of elements, where an element can occur as a member more than once.

Multisel- is denoted by {a, a, a, b, b}.

=> element a thrue.

=> element b twice

Notation for multiset

 $PUQ = \{ \max(4,3) \cdot a, \max(1,4) \cdot b, \max(3,0) \cdot C, \max(0,2) \cdot d \}$ = $\{ 4 \cdot a, 4 \cdot b, 3 \cdot C, 2 \cdot d \}$ (a) 11 1100 1111 $\Rightarrow \{1,2,3,4,7,8,9,10\}$

b) 01 0111 1000 => {2,4,5,6,7}

© 10 0000 0001 => {1,10}.

(3) What subsets of a finite Universe set do the bit string repre

a) the strong with all zero: => mull set

(b) the string with all ones. => Universal set

(24 a)PNQ = { min (413) · a, min (1,4) · b, min (3,0) · C, min (0,2) · d} $= \{3.4, 1.6, 6.6, 0.d\} = \{3.a, 1.b\}$

{ max (4-3,0).0, max (1-4,0).b, max (3-0,0).c, max (0-2,0).d} = { .a, 0.b, 3.c, 0.d} $= \left\{ 1 \cdot \alpha, 3 \cdot C \right\}$

Sum of P and Q

 $P+Q=\{(4+3)\cdot a, (1+4)\cdot b, (3+0)\cdot C, (0+2)\cdot d\}$ = {7.a, 5.b, 3.c, 2.d}

A and B are multiset { 3.a, 2.b, 1.c) and { 2.a, -

Ind.

(a) AUB = { 3.a, 3.b, 1.c, 4.d}

(b) ANB = { 2.0, 2.6, 0.0.d}

(C) A-B = { 1.a, 0.b, 1.c, 0.d}

(d) B-A = { o.a, 1.b, o.c, 4.d}

e A+B= {5.a, 5.b, 1.C, 4.d}.

A and B are multiset {3.a, 2.b, 1.c? and {2.a, 3.b, 4.d?

(a) AUB = { 3.a, 3.b, 1.c, 4.d}

(b) ANB = { 2.a, 2.b, 0.c, 0.d}

(C) A-B = { 1.a, 0.b, 1.c, o.d}

(d) B-A={0.a, 1.b, 0.c, 4.d}

3) A+B= {5.a, 5.b, 1.C, 4.d}.

Symmetric Difference

Symmetric difference of A and B denoted by A (A) B is the set containing those elements in either A on B not in both A and B.

Problem -:1

Venn Diagram for the symmetric Difference of Add

$$A \oplus B = (A \cup B) - (A \cap B)$$

$$A \oplus B = (A - B) \cup (B - A)$$

problema

Find Symmetric Difference of {1,3,5}

and {1,2,3}

B = {1,2,3}

ANB = [1,3]

(26)