Social Network Analysis

VK project Analysis of a friend's graph of friends

NETWORK SUMMARY

Node size is based on betweenness centrality Color of nodes \rightarrow degrees

Number of nodes: 201

Number of edges: 1553

Nodes' attributes: sex, city of location, university,

educational status

Average node degree: 15,38

Average clustering coefficient: 0,521

Average path: 1,98

Density: 0.076

GCC:

Number of nodes: 190

Number of edges: 1537

Radius: 4

Diameter: 8

Average clustering coefficient: 0, 521

Average shortest path: 3,055

Degree distribution

Average degree = 15,38

Clustering coefficients

Fitting models

The best models are Watts-Strogatz and Havel-Hakimi

	Original	Erdos-Renyi model	Watts- Strogatz	Barabasi- Albert	Havel- Hakimi
Number of nodes	202	202	202	202	202
Number of edges	1553	1500	1616	5160	1553
Diameter	8	4	4	3	23
Radius	4	3	3	2,	12
Average node degree	15,376	14,851	16	51,089	15,376
Average clustering coefficient	0,522	0,075	0,559	0,357	0,535
Average shortest path	1,982	2,24	2,702	1,746	1,364
Density	0,076	0,074	0,08	0,254	0,076

^{1.} Watts-Strogatz parameters: , k nearest neighbors in ring topology = 16, p = 0.1

^{2.} Havel-Hakimi model's parameter is a degree_sequence

Degree distributions of fitting models

The closest models are: Watts-Strogatz and Havel-Hakimi

Centralities: degree

Top 5 nodes include a colleague and groupmates:

- 1. Lika Sochkina(0,308)
- 2. Katya Novak (0,303)
- 3. Khetag Tsabolov (0,250)
- 4. Mid Issss (0,224)
- 5. Zilia Kanchurina (0,219)

Centralities: betweenness

Top 5 nodes include best friends and a relative:

- 1. Lika Sochkina (0,171)
- 2. Nikita Shamshaev (0,097)
- 3. Yulia Khubatullina (0,087)
- 4. Irina Proskurina (0,086)
- Rodion Zosin (0,081)

Centralities: closeness

Top 5 nodes include best friends and a relative:

- 1. Lika Sochkina (0,465)
- 2. Katya Novak (0,445)
- 3. Mid Issss (0,424)
- 4. Masterskaya Kamenkovicha-I-Krymova (0,424)
- 5. Anastasia Plokhikh (0,413)

Centralities: Katz

300

200

100

Top 5 nodes include same friends and previous colleagues:

- 1. Lika Sochkina
- 2. Nikita Shamshaev
- 3. Rodion Zosin
- 4. Yulia Khubatullina
- 5. Lidia Smirnova

PageRank and HITS

Assortative mixing

Node degree assortativity: 0.217

Assortativity for node attributes:

- 1. City 0,023
- 2. Sex 0,089
- 3. University 0,216
- 4. Education status 0,020

Network visualization by the university

K-core decomposition

K-shells in 2-core

K-shells in 4-core

K-shells in 8-core

Cliques

Max cliques consist of colleagues involved in different projects

Community detection

Asynchronous Label Propagation

Spectral clustering

Modularity = 0.16295533619734032, Coverage = 0.9414443721535458, Performance = 0.4394319131161236, Silhouette = 0.11008914852558008

Best result of community detection

Girvan-Newman algorithm 10 communities

Best score with respect to modularity: 10-11 communities

Girvan-Newman algorithm 10 communities

Results of Community Detection

	Edge- betweenness	Clauset- Newman- Moore	Girvan- Newman	Spectral- clustering	Markov clustering
Modularity	0,336	0,108	0,344	0,163	0,327
Coverage	0,934	0,114	0,935	0,941	0,447
Performance	0,761	0,919	0,757	0,439	0,897
Silhouette	0,202	0,051	0,184	0,11	0,067