

numbers of clusters

numbers of	clusters	distortion	
J	1	14492.3280552	
	10	6069.46957241	
	50	4206.79999043	
	100	3964.96948795	
	200	3610.83577035	
	300	3151.95867747	
	400	3077.38040546	
	500	1023.57322387	
	600	750.568263875	
	700	430.226641725	
	800	360.810977522	

900

1000

35.1531524065

3. The lowest possible distortion
is 0, it happens when numbers of
clusters = 1000 (n, maximum).
The reason for it is: the number of data
is equal to the number of clusters, so
every data belongs to one cluster center
which is itself. Thus, total distortion is

equal to 0.

4. We could use Gap statistic method.

- 1. Cluster the observed data, varying the number of clusters from $k = 1, ..., k_{max}$, and compute the corresponding total within intra-cluster variation W_k .
- 2. Generate B reference data sets with a random uniform distribution. Cluster each of these reference data sets with varying number of clusters $k = 1, ..., k_{max}$, and compute the corresponding total within intra-cluster variation W_{kb} .
- 3. Compute the estimated gap statistic as the deviation of the observed W_k value from its expected value W_{kb} under the null hypothesis:

$$Gap(k)=rac{1}{B}\sum_{b=1}^{B}log(W_{kb}^*)-log(W_k)$$
 . Compute also the standard deviation of the statistics.

4. Choose the number of clusters as the smallest value of k such that the gap statistic is within one standard deviation of the gap at k+1: $Gap(k) \ge Gap(k+1) - s_{k+1}$.

Reference: https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-methods/