МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчёт о выполнении лабораторной работы 3.7.1

Скин-эффект в полом цилиндре

Автор: Тихонов Дмитрий Романович, студент группы Б01-206

1 Введение

Цель работы: исследовать явление проникновения переменного магнитного поля в медный полый цилиндр.

В работе используются: : генератор сигналов АКИП–3420, соленоид, намотанный на полый цилиндрический каркас, медный экран в виде полого цилиндра, измерительная катушка, амперметр, вольтметр, двухканальный осциллограф GOS–620, RLC-метр.

2 Теоретические сведения

2.1 Скин-эффект для полупространства

Рассмотрим квазистационарное поле внутри проводящей среды в простейшем плоском случае. Пусть вектор E направлен всюду вдоль оси y (рис.1) и зависит только от координаты x, т. е. $E_x = E_z \equiv 0$, $E_y \equiv E_y(x,t)$. Пренебрегая током смещения в уравнениях поля, запишем

$$rot \mathbf{H} = \sigma \mathbf{E}. \tag{1}$$

Возьмём ротор обеих частей (1), считая проводимость σ постоянной:

rot rot
$$\mathbf{H} = \operatorname{grad} \operatorname{div} \mathbf{H} - \nabla^2 \mathbf{H} = -\nabla^2 \mathbf{H} = \sigma \operatorname{rot} \mathbf{E}$$
 (2)

Подставим закон электромагнитной индукции (rot $\boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$) и материальное уравнение для векторов магнитного поля ($\boldsymbol{B} = \mu \mu_0 \boldsymbol{H}$):

Рис. 1: Скин-эффект в плоской геометрии

$$\nabla^2 \mathbf{H} = \sigma \mu \mu_0 \frac{\partial \mathbf{H}}{\partial t} \tag{3}$$

Точно такое же уравнение имеет место и для E:

$$\nabla^2 \mathbf{E} = \sigma \mu \mu_0 \frac{\partial \mathbf{E}}{\partial t} \tag{4}$$

Подставляем в (4) соотношение для электрического поля $E_y = E_y(x,t)$:

$$\frac{\partial^2 E_y}{\partial x^2} = \sigma \mu \mu_0 \frac{\partial E_y}{\partial t} \tag{5}$$

Пусть полупространство x>0 заполнено проводящей средой с проводимостью σ , а на границе x=0 задано электрическое поле, изменяющееся по гармоническому закону: $E_y=E_0e^{i\omega t}$. Будем искать решение уравнения (5) также в виде гармонической функции:

$$E_y(x,t) = E(x)e^{i\omega t},$$

где E(x) – комплексная амплитуда колебаний поля, зависящая от координаты x. После подстановки в (5) получим уравнение на функцию E(x):

$$\frac{d^2E}{dx^2} = i\omega\sigma\mu\mu_0E. \tag{6}$$

Решение будеим искать в виде

$$E(x) = E_0 e^{\alpha x},\tag{7}$$

где α – комплексная константа. Подставляя (7) в (6), получим, что

$$\alpha = \pm \frac{1+i}{\sqrt{2}} \sqrt{\omega \sigma \mu \mu_0}.$$
 (8)

Для полубесконечной среды физический смысл имеет только решение со знаком «—», соответствующее стремлению к нулю амплитуды поля. Окончательное решение уравнения (5) для нашего случая:

$$E_y(x,t) = E_0 e^{-x/\delta} e^{i(\omega t - x/\delta)}, \tag{9}$$

где

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu \mu_0}}. (10)$$

Расстоянием δ , на котором амплитуда поля уменьшается в e раз, называют *глубиной проникновения* поля или *скиновой* длиной. С ростом частоты ω электрическое поле всё более «вытесняется» к поверхности проводника. Это явление называется ckuh-эффектом.

2.2 Скин-эффект в полом цилиндре

Рис. 2: Электрическое и магнитное поле в тонкостенном цилиндре

Рис. 3: Поле в стенке цилиндра

Пусть цилиндр достаточно длинный, так что в нём можно пренебречь краевыми эффектами. В этом приближении магнитное поле \boldsymbol{H} всюду направлено по оси системы (ось z), а вихревое электрическое поле \boldsymbol{E} будет всюду перпендикулярно радиусу (рис. 2). Для ненулевых компонент поля можно записать

$$H_z = H(r)e^{i\omega t}, \quad E_{\varphi} = E(r)e^{i\omega t},$$

где H(r) и E(r) – комплексные амплитуды колебаний соответствующих полей, зависящие только от расстояния r до оси системы. Заметим, что на границе цилиндра должны быть непрерывны касательные к поверхности компоненты как E, так и B, поэтому функции E(r) и H(r) непрерывны во всей исследуемой области.

Поскольку внутри цилиндра ток отсутствует, магнитное поле там является однородным: $H_z(r,t) = H_1 e^{i\omega t}$, где $H_1 = \text{const} - \text{амплитуда}$ поля на внутренней поверхности цилиндра. По теореме об электромагнитной индукции:

$$E_{\varphi} \cdot 2\pi r = -\mu_0 \pi r^2 \cdot \frac{dH_z}{dt} \rightarrow E(r) = -\frac{1}{2}\mu_0 r \cdot i\omega H_1.$$

Отсюда, получим связь амплитуд колебаний электрического и магнитного полей на внутренней (r=a) границе цилиндра:

$$E_1 = -\frac{1}{2}i\omega a\mu_0 H_1. \tag{11}$$

Поле внутри тонкой стенки цилиндра описывается уравнением скин-эффекта (5) в плоской геометрии (рис. 3). Тогда надо решить уравнение (3) с граничными условиями. Решая уравнение, получим связь между H_0 и H_1 :

$$H_1 = \frac{H_0}{\operatorname{ch} \alpha h + \frac{1}{2} \alpha a \operatorname{sh} (\alpha h)},\tag{12}$$

где

$$\alpha = \sqrt{i\omega\sigma\mu_0} = \frac{1+i}{\delta} = \frac{\sqrt{2}}{\delta}e^{i\pi/4}.$$
 (13)

Рассмотрим предельные случаи (12).

1. При малых частотах толщина скин-слоя превосходит толщину цилиндра $\delta\gg h$. Тогда $|\alpha h|\ll 1$, поэтому сh $\alpha h\approx 1$, sh $\alpha h\approx \alpha h$ и

$$H_1 \approx \frac{H_0}{1 + i\frac{ah}{\delta^2}}. (14)$$

Отношение модулей амплитуд здесь будет равно

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + \left(\frac{ah}{\delta^2}\right)^2}} = \frac{1}{\sqrt{1 + \frac{1}{4} \left(ah\sigma\mu_0\omega\right)^2}}.$$
 (15)

При этом колебания H_1 отстают по фазе от H_0 на угол ψ , определяемый равенством

$$\operatorname{tg}\psi = \frac{ah}{\delta^2}.\tag{16}$$

2. При достаточно *больших частотах* толщина скин-слоя станет меньше толщины стенки: $\delta \ll h$. Тогда $|\alpha h| \gg 1$ и $|\alpha a| \gg 1$, а также $\mathrm{sh}(\alpha h) \approx \mathrm{ch}(\alpha h) \approx \frac{1}{2}e^{\alpha h}$. Выражение (12) с учётом (13) переходит в

$$\frac{H_1}{H_0} = \frac{4}{\alpha a} e^{-\alpha h} = \frac{2\sqrt{2}\delta}{a} e^{-\frac{h}{\delta}} e^{-i\left(\frac{\pi}{4} + \frac{h}{\delta}\right)}.$$
 (17)

При этом поле внутри цилиндра запаздывает по фазе на

$$\psi = \frac{\pi}{4} + \frac{h}{\delta} = \frac{\pi}{4} + h\sqrt{\frac{\omega\sigma\mu_0}{2}}.$$
 (18)

3 Методика измерений и используемое оборудование

3.1 Экспериментальная установка

Схема экспериментальной установки для исследования скин-эффекта в полом цилиндре изображена на рис. 4.

Рис. 4: Экспериментальная установка для изучения скин-эффекта

Переменное магнитное поле создается с помощью соленоида 1, намотанного на цилиндрический каркас 2 из поливинилхлорида, который подключается к генератору сигналов (ЗГ) АКИП–3420 (канал А). Внутри каркаса расположен медный экран 3 в виде полого цилиндра.

Действующее значение переменного тока в цепи соленоида измеряется цифровым амперметром «А». Действующее значение переменного напряжения на измерительной катушке 4 измеряется цифровым вольтметром «V». В качестве амперметра и вольтметра используются два мультиметра GDM-8245.

Для измерения сдвига фаз между током в цепи соленоида и напряжением на измерительной катушке используется двухканальный осциллограф GOS-620 (ЭО).

Схема экспериментальной установки для нахождения проводимости σ по изменению индуктивности катушки L изображена на рис. 5. RLC-метр, измеряющий индуктивность, подключается к катушке 1 через клеммы 5 и 6 на панеле установки. Другие приборы при этом должны быть отсоединены от цепи, т.к. RLC-метр измеряет индуктивность активным образом.

Рис. 5: Экспериментальная установка для изучения скин-эффекта

3.2 Измерение отношения амплитуд магнитного поля внутри и вне экрана

С помощью вольтметра V измеряется действующее значение ЭДС индукции, которая возникает в измерительной катушке, находящейся в переменном магнитном поле $H_1e^{i\omega t}$:

$$U(t) \propto \frac{dB_1(t)}{dt} = -i\omega H_1 e^{i\omega t}.$$

Поле вне экрана $|H_0|$ пропорционально току I в цепи соленоида, измеряемому амперметром A:

$$|H_0| \propto I$$
.

Отсюда,

$$\frac{|H_1|}{|H_0|} = \operatorname{const} \cdot \frac{U}{\nu I} = \frac{\xi}{\xi_0},\tag{19}$$

где константу ξ_0 можно определить из условия $|H_1|/|H_0| \to 1$ при $\nu \to 0$.

3.3 Определение проводимости материала экрана по фазовому сдвигу

Из формул (16) и (10) следует линейная зависимость $\operatorname{tg} \psi$ от ν , причем аппроксимирующая прямая должна проходить через начало координат.

Как видно из выражения (18), в области больших частот $\nu \gg 1/(\pi h^2 \sigma \mu_0)$ зависимость $\psi(\sqrt{\nu}) - \pi/4$ аппроксимируется прямой, проходящей через начало координат. По наклону этих прямых можно вычислить проводимость материала экрана.

Заметим, что на схеме, изображённой на рис. 4, на входной канал Y осциллографа подаётся сигнал с измерительной катушки, который пропорционален не полю внутри экрана, а его производной по времени, а это означает, что появляется дополнительный сдвиг по фазе на $\pi/2$. Поэтому измеренный по экрану осциллографа сдвиг по фазе между двумя синусоидами будет на $\pi/2$ больше фазового сдвига между магнитными полями вне и внутри экрана:

$$\varphi = \psi + \frac{\pi}{2}.\tag{20}$$

3.4 Влияние скин-эффекта на индуктивность катушки

Из-за скин эффекта индуктивность соленоида с медным цилиндрическим экраном внутри будет зависеть от частоты тока. Рассмотрим магнитный поток через катушку как сумму двух магнитных потоков: 1) пронизывающий область между катушкой и цилиндрическим экраном Φ_{out} ; 2) пронизывающий область за экраном Φ_{in} :

$$\Phi = \Phi_{out} + \Phi_{in} = H_0 S_0 + H_1 S_1 = LI, \tag{21}$$

где H_0 , H_1 – мгновенные значения магнитного поля внутри и снаружи цилиндра при данном токе $I; S_0, S_1$ – площади внешней и внутренней областей соответственно.

Минимальная индуктивность будет, когда $\Phi_{in} = 0$, при этом:

$$L_{min} = \frac{\Phi_{out}}{I}. (22)$$

Выразим поток магнитного поля сквозь внутреннюю область Φ_{in} через поток сквозь внешнюю Φ_{out} при произвольном переменном токе I:

$$\Phi_{in} = H_1 S_1 = \frac{H_1 S_1}{H_0 S_0} \Phi_{out}. \tag{23}$$

Максимальная индуктивность катушки достигается при максимальном потоке поля во внутренней области:

$$\Phi_{max} = \Phi_{out} + \Phi_{in}^{max} = H_0(S_1 + S_0) = L_{max}I.$$
(24)

Отсюда,

$$\frac{S_1}{S_0} = \frac{L_{max} - L_{min}}{L_{min}} \Rightarrow L = L_{min} + \frac{L_{max} - L_{min}}{H_0/H_1}$$
 (25)

Используя формулы (10) и (14), окончательно получаем зависимость индуктивности катушки от частоты:

$$\frac{L_{max} - L}{L - L_{min}} = (\pi a h \mu_0 \sigma \nu)^2. \tag{26}$$

Данная зависимость может быть аппроксимирована прямой, по углу наклона которой можно найти проводимость материала экрана σ .

4 Результаты измерений и обработка данных

Параметры нашей установки d=45 мм, h=1,5 мм. Проводимость порядка $\sigma\sim 5\cdot 10^7$ См/м. Получаем оценку для частоты, при которой глубина проникновения равна толщине стенок цилиндра $\nu_h=2250$ Гц.

4.1 Измерение проводимости через отношение амплитуд

В области низких частот (от $\sim 0,01\nu_h$ до $0,05\nu_h$) получили зависимость отношения $\xi=U/\nu I$ от частоты ν . Результаты измерений представлены в таблице 1.

U, B	I, мА	ν, Гц	$ u^2$, Γ ц 2	$1/\xi^2$
0,1370	446,52	22	484	5141
0,1660	443,20	27	729	5196
0,2012	442,90	33	1089	5277
0,2662	436,98	45	2025	5457
0,3202	430,51	56	3136	5669
0,3424	426,41	61	3721	5771
0,3687	423,29	67	4489	5917
0,4118	416,03	78	6084	6210
0,4529	408,20	90	8100	6580
0,4682	404,73	95	9025	6744
0,4855	401,20	101	10201	6966
0,5139	394,50	112	12544	7392

Таблица 1: Результаты измерения зависимости $1/\xi^2(\nu^2)$

По этим данным построим график зависимости $1/\xi^2 = f(\nu^2)$ (рис. 6).

Рис. 6: График зависимости $1/\xi^2 = f(\nu^2)$

В области низких частот ($\nu \ll \nu_h$) из соотношения (15), получим

$$\frac{\xi^2}{\xi_0^2} = \frac{1}{1 + \pi^2 a^2 h^2 \sigma^2 \mu_0^2 \nu^2} \Rightarrow \frac{1}{\xi^2} = k^2 \nu^2 + \frac{1}{\xi_0^2}.$$

Аппроксимируя полученные данные при помощи программы OriginPro 2023b, получим

$$k^2 = (0, 1857 \pm 0, 0008) \frac{\text{MA}^2}{\text{B}^2} \Rightarrow k = (0, 431 \pm 0, 002) \frac{\text{MA}}{\text{B}},$$

$$\frac{1}{\xi_0^2} = (5073 \pm 5) \, \frac{\Gamma \text{L}^2 \cdot \text{MA}^2}{\text{B}^2} \Rightarrow \frac{1}{\xi_0} = (71, 22 \pm 0, 04) \, \frac{\Gamma \text{L} \cdot \text{MA}}{\text{B}}.$$

Отсюда,

$$\sigma = \frac{k}{\pi \frac{\mu_0}{\xi_0} ah} = (4,542 \pm 0,005) \cdot 10^7 \text{ Cm/m}.$$

4.2 Измерение проводимости через разность фаз в низкочастотном диапазоне

В этом пункте была исследована зависимость величины ξ и фазового сдвига ψ от частоты ν при низких частотах в диапазоне от $0,01\nu_h$ до $\sim 0,5\nu_h$. Результаты измерений представлены в таблице 2.

ν, Гц	х, дел	x_0 , дел	Δx , дел.	ψ, рад.	$\Delta \psi$, рад.	$tg \psi$	$\Delta \operatorname{tg} \psi$
100	17	25		0,57	0,04	0,63	0,06
112	16	23		0,61	0,05	0,71	0,07
123	14	20		0,63	0,05	0,73	0,08
135	14	19		0,74	0,07	0,92	0,12
146	13	18		0,70	0,07	0,84	0,11
157	24	33		0,71	0,04	0,87	0,06
168	24	32		0,79	0,04	1,00	0,08
180	19	25		0,82	0,05	1,06	0,12
191	20	26		0,85	0,05	1,13	0,12
202	18	23	1	0,89	0,06	1,23	0,16
213	19	24	1	0,92	0,06	1,30	0,17
225	20	25		0,94	0,06	1,38	0,17
337	26	30		1,15	0,06	2,25	0,35
450	21	24		1,18	0,07	2,41	0,51
562	19	21		1,27	0,09	3,24	1,04
675	20	22		1,29	0,09	3,41	1,09
788	16	16		1,57	∞	-	-
900	14	14		1,57	∞	-	-
1013	12	12		1,57	∞	-	-
1125	11	11		1,57	∞	-	-

Таблица 2: Результаты измерения зависимости $\psi(\nu)$

По этим данным построим график зависимости $\operatorname{tg} \psi = f(\nu)$ (рис. 7).

ФРКТ МФТИ, 2023 7

Рис. 7: График зависимости $\operatorname{tg} \psi = f(\nu)$

Аппроксимируя полученные данные при помощи программы OriginPro 2023b, получим

$$k = \frac{d(\operatorname{tg}\psi)}{d\nu} = (0,00596 \pm 0,00009) \ \Gamma \Pi^{-1}.$$

Отсюда,

$$\sigma = \frac{k}{\pi \mu_0 a h} = (4, 47 \pm 0, 07) \cdot 10^7 \text{ Cm/m}.$$

4.3 Измерение проводимости через разность фаз в высокочастотном диапазоне

Была исследована зависимость величины ξ и фазового сдвига ψ от частоты ν при высоких частотах в диапазоне от $0,5\nu_h$ до $\sim 15\nu_h$. Результаты измерений представлены в таблице 3.

ν, Гц	$\sqrt{ u}$, Гц 0,5	х, дел.	x_0 , дел.	δx , дел.	$\psi - \pi/4$	$\Delta \psi$
100	10,00	17	25		-0,22	0,02
112	10,58	16	23		-0,17	0,01
123	11,09	14	20		-0,16	0,01
135	11,62	14	19		-0,04	0,01
146	12,08	13	18		-0,09	0,01
157	12,53	24	33		-0,07	0,01
168	12,96	24	32		0,00	0,01
180	13,42	19	25		0,03	0,01
191	13,82	20	26		0,06	0,01
202	$14,\!21$	18	23		0,10	0,01
213	14,59	19	24		0,13	0,01
225	15,00	20	25		0,16	0,01
337	18,36	26	30		0,37	0,02
450	21,21	21	24		0,39	0,02
562	23,71	19	21	1	0,49	0,03
675	25,98	20	22	1	0,50	0,03
2000	44,72	13	13		0,79	0,09
3377	58,11	17	15		1,20	0,11
4000	63,25	15	12		1,57	0,17
5628	75,02	11	9		1,48	0,21
6500	80,62	10	8		1,57	0,25
7880	88,77	21	16		1,77	0,14
8500	92,20	20	14		2,13	0,19
10132	100,66	18	13		1,99	0,19
12383	111,28	15	10		2,36	0,28
14635	120,98	14	9		2,53	0,33
16886	129,95	24	15		2,67	0,21
19138	138,34	22	13		2,96	0,26
21390	146,25	19	11		3,07	0,32
23641	153,76	20	11		3,36	0,35

Таблица 3: Результаты измерения зависимости $\psi - \pi/4(\sqrt{\nu})$

По этим данным построим график зависимости $\psi - \pi/4 = f(\sqrt{\nu})$ (рис. 8).

Рис. 8: График зависимости $\psi-\pi/4=f(\sqrt{\nu})$

Аппроксимируя полученные данные при помощи программы OriginPro 2023b, получим

$$k = \frac{d(\psi - \pi/4)}{d(\sqrt{\nu})} = (0,0208 \pm 0,0003) \ \Gamma \mu^{-0.5}.$$

Отсюда,

$$\sigma = \frac{k^2}{h^2 \pi \mu_0} = (4,87 \pm 0,09) \cdot 10^7 \text{ Cm/m}.$$

4.4 Измерение проводимости через изменение индуктивности

Была исследована зависимость индуктивности катушки L от частоты ν . Результаты измерений приведены в таблице 4.

По этим данным построим график зависимости $L(\nu)$ (рис. 9), определим и занесём в таблицу 4 максимальное и минимальное значения индуктивности.

Рис. 9: График зависимости $L(\nu)$

ν, Гц	ν^2 , к Γ ц 2	L , м Γ н	L_{max} , м Γ н	L_{min} , м Γ н	$(L_{max} - L)/(L - L_{min})$
50	0,0025	9,8733			0,0000
150	0,0225	7,1898			0,6247
250	0,0625	5,3095			1,8892
300	0,0900	4,7488			2,7625
400	0,1600	4,0547			5,0121
500	0,2500	3,6753			7,9309
600	0,3600	3,4495			11,5598
750	0,5625	3,2521			18,4795
800	0,6400	3,2086			21,1712
1000	1,0000	3,0903			34,5191
1500	2,2500	2,9681	9,8733	2,8938	92,9367
2000	4,0000	2,9259			216,4299
3000	9,0000	2,8982			1585,2500
5000	25,0000	2,8938			NaN
6000	36,0000	2,903			757,6413
10000	100,0000	2,981			79,0401
12000	144,0000	3,0557			42,1099
15000	225,0000	3,2234			20,1757
16200	262,4400	3,3139			15,6139
20000	400,0000	3,7614			7,0446
25000	625,0000	4,7573			2,7454

Таблица 4: Результаты измерения зависимости $L(\nu)$ и $(L_{max}-L)/(L-L_{min})=f(\nu^2)$

Теперь построим график зависимости $(L_{max}-L)/(L-L_{min})=f(\nu^2)$, пользуясь таблицей 4. Полученный график изображён на рис. 10.

ФРКТ МФТИ, 2023 11

Рис. 10: График зависимости $(L_{max} - L)/(L - L_{min}) = f(\nu^2)$

Аппроксимируя полученные данные при помощи программы OriginPro 2023b, получим

$$k = \frac{d((L_{max} - L)/(L - L_{min}))}{d(\nu^2)} = (33, 6 \pm 0, 3) \text{ } \kappa \Gamma \text{u}^{-2}.$$

Отсюда,

$$\sigma = \frac{\sqrt{k}}{\pi a h \mu_0} = (4, 35 \pm 0, 02) \cdot 10^7 \text{ Cm/m}.$$

4.5 Исследование коэффициентов ослабления поля

Используя значение ξ_0 , полученное ранее, расчитаем зависимость коэффициентов ослабления поля для всего диапазона частот, полученных в ходе работы. Изобразим на графике (рис. 11) теоретические и экспериментальные результаты для зависимости $\frac{|H_1|}{|H_0|}$ от ν в логарифмическом масштабе по оси абсцисс. Заметим, что теоретические графики для разных значений проводимости совпадают с экспериментальными значениями, что говорит о выполнимости соотношения (12).

Рис. 11: График зависимости $|H_1|/|H_0|$ от ν

5 Заключение

Мы измерили проводимость материала цилиндра 4 разными способами. Итоговые значения приведены в таблице 5.

Метод измерения	$\sigma, 10^7 \mathrm{Cm/m}$	$\Delta \sigma, 10^7 \mathrm{Cm/m}$	ε_{σ}
Отношение амплитуд	4,542	0,005	0,1%
Разности фаз (низкие частоты)	$4,\!470$	0,070	$1,\!5\%$
Разности фаз (высокие частоты)	4,870	0,090	1,8%
Индуктивность	4,350	0,020	$0,\!5\%$

Таблица 5: Сравнение результатов различных методов

В установке в качестве экрана используется медная труба промышленного производства. Технология изготовления труб оказывает заметное влияние на электропроводимость. Из-за наличия примесей проводимость меди нашей трубы отличается от табличного значения (в меньшую сторону).

Измерение проводимости с помощью исследования отношений амплитуд оказалось самым точным, самым неточным оказался метод измерения через разность фаз при высоких частотах. Погрешность измерения проводимости через разность фаз при низких частотах в основном связана с погрешностью измерения самой разности фаз, т.к. погрешность последней возрастает в несколько раз при подсчете тангенса угла.