PROTOCOL

to exercise

Standing Waves

Class	Secretary	Signature
4BHELS	HOFSTÄTTER A.	
Exercise- / Delivery date	Employee	Signature
25 th February 2015 4 th March 2015		
Teacher	Employee	Signature
GRASINGER		
Grade	Employee	Signature

Standing Waves

Used Devices

Nr.	Device	Manufacturer	Type	
1.	Oscilloscope	-		
2.	Function generator	-		
3.	Spectrum Analyser			

1 Inhalt

<u>2</u>	TASKS	3
2.1	GENERAL INFORMATION	3
2.2	GIVEN EXERCISES	3
<u>3</u>	MEASURING OF THE FREQUENCY	4
<u>4</u>	MEASURING OF THE WAVELENGTH	5
<u>5</u>	PROPAGATION SPEED	5
<u>6</u>	COMPARISON WITH THE SPEED OF LIGHT	5
6.1	SHORTENING FACTOR	5
7	LIST OF FIGURES	7

2.1 General Information

A configuration with two parallel lines to measure standing waves and their wavelength is also called lecher-line. At one end of the lecher-line a high frequency signal is feed into the line. On the other End of the lecher-line a short circuit was made.

The maximas of the current are always located at the distance of $\lambda/2$ and λ , measured from the short circuited lecher-line end. In addition a current maxima is also located at each end of the lecher-line.

This effect causes the possibility to measure the wavelength of a periodic signal with a lecher-line.

The practical uses of this is to measure propagation speeds of electromagnetic signals.

2.2 Given Exercises

- Measuring of the wavelength of a radio signal using the lecher-line.
- Measuring of the frequency of the radio signal.
- Calculating of the propagation speed of the signal on the lecher-line.
- Comparison with the measured propagation speed and the speed of light in vacuum.
- Calculating of the shortening factor (*k*).

Figure 1. - Idea of the lecher-line

The given lecher-line was driven by a generator und built up on a wood-bar. Therefore the propagation speed is way smaller as the one from light.

3 Measuring of the frequency

Figure 2. – Measured spectrum of the generator

The generated signal was measured on a Spectrum RF Analyser. Based on aboves spectrum it is shown that the generator has an output of about 100 MHz (exactly 98 MHz).

$$f = 98 MHz$$

Measuring the signal with an oscilloscope was logically resulting in the same frequency value.

4 Measuring of the wavelength

The distance between the maxima was 2,55 m. This value was measured with a light bulb connected to both lines of the lecher-line which indicated the maxima.

$$\lambda/2=1,275~m$$

$$\lambda = 2,55m$$

Figure 3. - Signal wavelength

5 Propagation Speed

Based on both aboves measured values the propagation speed (v) was calculated.

$$v = \lambda * f = 2,55m * 98 MHz$$

$$v = 255\,000\,km/s$$

6 Comparison with the speed of light

The speed of light is about $3\,000\,000\,km/s$ the measured speed with $255\,000\,km/s$ was therefore only 85 % of the speed of light.

6.1 Shortening factor

Based on the measured propagation speed and the speed of the light the following calculation was made.

$$k = \frac{v}{c} = \frac{3\ 000\ 000\ km/s}{250\ 000\ km/s} = 0.85$$

7 List of figures

Figure 1. – Idea of the lecher-line	3
Figure 2. – Measured spectrum of the generator	
Figure 3. – Signal wavelength	5