INSTALLING PACKAGES

```
#installing packages
install.packages("httr")
install.packages("rvest")
if (!requireNamespace("e1071", quietly = TRUE)) {
   install.packages("e1071")
}

Installing package into '/usr/local/lib/R/site-lib/
   (as 'lib' is unspecified)

Installing package into '/usr/local/lib/R/site-lib/
   (as 'lib' is unspecified)
```

Installing package into '/usr/local/lib/R/site-lib/
(as 'lib' is unspecified)

also installing the dependency 'proxy'

LOADING LIBRARIES

#loading libraries
library(httr)
library(rvest)

DATASET CREATION

```
# Creating an extended sample dataset for pizza sales
set.seed(123) # for reproducibility

# Sample data with additional columns
pizza_data <- data.frame(
   day = seq(as.Date("2022-01-01"), as.Date("2022-01-1")
   sales = c(20, 25, 18, 30, 22, 27, 24, 28, 21, 26),
   pizza = c("Margherita", "Pepperoni", "Vegetarian",
   pizza_size = c("Medium", "Large", "Small", "Large",
)</pre>
```

	day	sales	pizza	pizza_size
1	2022-01-01	20	Margherita	Medium
2	2022-01-02	25	Pepperoni	Large
3	2022-01-03	18	Vegetarian	Small
4	2022-01-04	30	Supreme	Large
5	2022-01-05	22	Hawaiian	Medium
6	2022-01-06	27	Meat Lovers	Large
7	2022-01-07	24	Cheese	Medium
8	2022-01-08	28	Veggie Delight	Large
9	2022-01-09	21	BBQ Chicken	Small
10	2022-01-10	26	Buffalo Chicken	Medium

pizza_data

A data.frame: 10 × 4				
day	sales	pizza	pizza_size	
<date></date>	<dbl></dbl>	<chr></chr>	<chr></chr>	
2022-01-01	20	Margherita	Medium	
2022-01-02	25	Pepperoni	Large	
2022-01-03	18	Vegetarian	Small	
2022-01-04	30	Supreme	Large	
2022-01-05	22	Hawaiian	Medium	
2022-01-06	27	Meat Lovers	Large	
2022-01-07	24	Cheese	Medium	

Summary statistics for the data frame
summary(pizza_data) # Equivalent to df.describe() in

```
day sales pizza
pizza_size
Min. :2022-01-01 Min. :18.00 Length:10
Length:10
1st Qu.:2022-01-03 1st Qu.:21.25 Class
:character Class :character
```

SINGLE COLUMN STATISTICS

```
sales_stats <- summary(pizza_data$sales)
sales_stats

Min. 1st Qu. Median Mean 3rd Qu. Max.
18.00 21.25 24.50 24.10 26.75 30.00</pre>
```

MEAN

```
mean_sales <- mean(pizza_data$sales)
mean_sales</pre>
```

24.1

mean_sales: The mean (average) of the sales values, indicating the central tendency of the data

Create a bar plot
barplot(pizza_data\$sales, names.arg = pizza_data\$day,
abline(h = mean_sales, col = "red", lty = 2, lw = 2)
legend("topright", legend = c("Sales", "Mean"), fill:

MEDIAN

```
median_sales <- median(pizza_data$sales)
median_sales</pre>
```

24.5

median_sales: The median, which is the middle value when the data is sorted, providing an alternative measure of central tendency.

Create a bar plot with mean and median
barplot(pizza_data\$sales, names.arg = pizza_data\$day,
abline(h = mean_sales, col = "red", lty = 2, lw = 2)
abline(h = median_sales, col = "blue", lty = 2, lw = 2
legend("topright", legend = c("Sales", "Mean", "Media")

MODE

mode_sales <- as.numeric(names(table(pizza_data\$sales
mode_sales</pre>

18

mode_sales: The mode, representing the most frequently occurring value in the sales data.

STANDARD DEVIATION

```
std_dev_sales <- sd(pizza_data$sales)
std_dev_sales</pre>
```

3.81371792932362

std_dev_sales: The standard deviation, a measure of the amount of variation or dispersion in the sales data.

Create a bar plot with error bars
barplot(pizza_data\$sales, names.arg = pizza_data\$day,
arrows(seq_along(pizza_data\$sales), mean_sales - std_legend("topright", legend = c("Sales", "Mean ± SD"),

VARIANCE

variance_sales <- var(pizza_data\$sales)
variance_sales</pre>

14.544444444444

variance_sales: The variance, which is the square of the standard deviation, providing another measure of data spread

Create a box plot
boxplot(pizza_data\$sales, main = "Pizza Sales Distrib"
Add text annotation for variance
text(1, max(pizza_data\$sales), paste("Variance:", rou")

RANGE

```
range_sales <- range(pizza_data$sales)
range_sales</pre>
```

18 · 30

range_sales: The range, which is the difference between the maximum and minimum sales values.

Create a bar plot with error bars
barplot(pizza_data\$sales, names.arg = pizza_data\$day,
arrows(seq_along(pizza_data\$sales), range_sales[1], salegend("topright", legend = c("Sales", "Range"), fill

QUARTILES

quartiles_sales <- quantile(pizza_data\$sales, c(0.25,
quartiles_sales</pre>

25%: 21.25 50%: 24.5 75%: 26.75

sales_stats: A summary of basic statistics such as minimum, 1st quartile (Q1), median (2nd quartile or Q2), mean, 3rd quartile (Q3), and maximum.

```
# Create a box plot
boxplot(pizza_data$sales, main = "Pizza Sales Distrib"
# Add text annotations for quartiles
text(1, quantile(pizza_data$sales, 0.75), "Q3", pos =
text(1, median(pizza_data$sales), "Q2 (Median)", pos =
text(1, quantile(pizza_data$sales, 0.25), "Q1", pos =
```


MIN

min_sales <- min(pizza_data\$sales)
min_sales</pre>

18

min_sales: The minimum sales value in the dataset

```
# Calculate the minimum sales
min_sales <- min(pizza_data$sales)

# Create a bar plot
barplot(pizza_data$sales, names.arg = pizza_data$day,

# Add a vertical line for the minimum value
abline(h = min_sales, col = "purple", lty = 2, lw = 2

# Add text annotation for the minimum value
text(1, min_sales, paste("Min:", min_sales), pos = 3,

# Show the plot</pre>
```


MAX

max_sales <- max(pizza_data\$sales)
max_sales</pre>

30

max_sales: The maximum sales value in the dataset

```
# Calculate the maximum sales
max_sales <- max(pizza_data$sales)

# Create a bar plot
barplot(pizza_data$sales, names.arg = pizza_data$day,

# Add a vertical line for the maximum value
abline(h = max_sales, col = "orange", lty = 2, lw = 2

# Add text annotation for the maximum value
text(1, max_sales, paste("Max:", max_sales), pos = 3,</pre>
```


COUNT

```
count_sales <- length(pizza_data$sales)
count_sales</pre>
```

10

count_sales: The count or number of values in the 'sales' column.

```
# Calculate the count of sales on each day
count_sales <- table(pizza_data$sales)

# Create a bar plot
barplot(count_sales, main = "Count of Pizza Sales on |

# Add text annotations for each bar
text(seq_along(count_sales), count_sales, labels = as

# Show the plot</pre>
```


SKEWNESS AND KURTOSIS

```
# Install and load the e1071 library
if (!requireNamespace("e1071", quietly = TRUE)) {
   install.packages("e1071")
}
library(e1071)

# Calculate skewness
skewness_sales <- skewness(pizza_data$sales)
cat("Skewness:", skewness_sales, "\n")

# Calculate kurtosis
kurtosis_sales <- kurtosis(pizza_data$sales)
cat("Kurtosis:", kurtosis_sales, "\n")</pre>
```

Skewness: -0.06901226 Kurtosis: -1.436965

skewness_sales: A measure of the asymmetry in the sales data distribution. Positive skewness indicates a right-skewed distribution, while negative skewness indicates a left-skewed distribution.

kurtosis_sales: A measure of the tails and sharpness of the peak of the sales data distribution. Positive kurtosis indicates heavy tails and a peaked distribution, while negative kurtosis suggests light tails and a flat distribution.

```
# Install and load required libraries
if (!requireNamespace("e1071", quietly = TRUE)) {
  install.packages("e1071")
}
library(e1071)
```

```
# Calculate skewness and kurtosis
skewness_sales <- skewness(pizza_data$sales)
kurtosis_sales <- kurtosis(pizza_data$sales)

# Create a histogram with a normal distribution curve
hist(pizza_data$sales, col = "lightblue", main = "His
lines(density(pizza_data$sales), col = "red", lwd = 2

# Add text annotations for skewness and kurtosis
text(35, 0.15, paste("Skewness:", round(skewness_sale
text(35, 0.12, paste("Kurtosis:", round(kurtosis_sale))</pre>
```

Show the plot

