Visualização 3D

•Câmera: precisa ser posicionada em relação à cena

Definição da posição e orientação do plano de

Área de Visualização

Visualização 3D

- Câmera: precisa ser
 posicionada em relação à cena
 - Objetos podem ser
 exibidos com
 estrutura wireframe
 ou renderizados
 (iluminação, shading, etc)

Figure 9-2
Wireframe display of three objects,

Projeções

- Projeção: conversão de elementos de uma determinada ordem para outra menor (3D para 2D)
 - Caracterizam a projeção:
 - Plano de projeção
 - Centro de projeção

Projeções – Área de Visualização

Parallel Projection (a)

Section 12-4

View Volumes and General

Perspective Projection

Projeções

- Tipos de projeções 3D/2D:
 - 1. Projeção paralela

2. Projeção perspectiva

View

Plane

Figure 9-3
Three parallel-projection views of an object, showing relative proportions from different viewing positions.

Tipos

- a) Ortogonais: projeção perpendicular ao plano de projeção
- b) Oblíquas: projeção com determinado ângulo em relação ao plano de projeção

PUC - CG

a) Ortogonal: frontal, lateral, superior (1 face objeto)

- a) Ortogonal: mais de um eixo principal do objeto
 - Axonométricas (Isométrica, Dimétrica,)

a) Coordenadas da projeção paralela ortogonal

$$- Xp = x e Yp = y$$

Z corresponde posição do plano de projeção,
 considerando superfícies visíveis

b) Coordenadas da projeção paralela oblíqua

$$- Xp = x + L \cos\theta$$

$$- Yp = y + L sen\theta$$

$$-L = \underline{z}$$
 tan α

PUC - CG

$$x=f\left(X/Z\right)$$

$$y = f(Y/Z)$$