Electrical-STGCN: An Electrical Spatio-Temporal Graph Convolutional Network for Intelligent Predictive Maintenance IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021

妥布雷素

NCUT

April, 2022

- Introduction
- 2 ELECTRICAL-STGCN
- 3 Experiment

- Introduction
- 2 ELECTRICAL-STGCN
- 3 Experiment

研究背景与研究意义

研究背景:

- 预防性维修(Predictive maintenance, PdM)是一种数据驱动的设备健康预测策略,广泛用于各行各业。
- 然而, 当前基于 AI 的预测策略缺乏考虑工业设备之间的相互作用。

研究背景与研究意义

研究背景:

- 预防性维修(Predictive maintenance, PdM)是一种数据驱动的设备健康预测策略,广泛用于各行各业。
- 然而,当前基于 AI 的预测策略缺乏考虑工业设备之间的相互作用。

研究意义:

- 提出了 Electrical-STGCN 模型,同时考虑到了设备相互作用和时间序列特性
- 提出了新的核函数解决图卷积过平滑问题
- 通过实验验证 Electrical-STGCN 有效性

NCUT

相关工作

PdM 采用的 ML 算法分为四块: Supporting Vector Machines (SVM), K-Means, Ensemble Learning (EL), and Artificial Neural Network (ANN).

相关工作

PdM 采用的 ML 算法分为四块: Supporting Vector Machines (SVM), K-Means, Ensemble Learning (EL), and Artificial Neural Network (ANN).

- SVM: 缺乏时间依赖 (temporal dependency); svm 不好优化
- K-Means: 需要提取指定聚类个数; 数据顺序敏感; 不同数 据标准化方法影响预测结果。
- EL algorithms: 模型复杂; 计算时间长
- ANN: 只提了 GCN 的讨平滑问题

相关工作

PdM 采用的 ML 算法分为四块: Supporting Vector Machines (SVM), K-Means, Ensemble Learning (EL), and Artificial Neural Network (ANN).

- SVM: 缺乏时间依赖 (temporal dependency); svm 不好优化
- K-Means:需要提取指定聚类个数;数据顺序敏感;不同数据标准化方法影响预测结果。
- EL algorithms: 模型复杂; 计算时间长
- ANN: 只提了 GCN 的过平滑问题
- 4 类模型共同缺点,缺乏考虑时间依赖。所以提出了 Electrical-STGCN,既考虑设备相互作用和时间依赖。

- 1 Introduction
- **2** ELECTRICAL-STGCN
- 3 Experiment

数据来自于卧式加工中心(horizontal machining center)的三相 **电路**。shape == 5 * 3 * 34394

TABLE II SPECIFICATIONS OF THE TOTAL 34394 RECORDS.

Attribute	Variable	Range	Mean/Standard Deviation
A phase power factor	$\cos \varphi_A$	0.40-1	0.84/0.17
B phase power factor	$\cos \varphi_B$	0.27-1	0.82/0.20
C phase power factor	$\cos \varphi_C$	0.31-1	0.78/0.23
A phase reactive power	Q_A	1-133 W	25.21/25.11
B phase reactive power	Q_B	3-152 W	32.76/32.05
C phase reactive power	Q_C	1-137 W	30.79/33.02
A phase current	I_A	0-34.8 A	6.58/7.05
B phase current	I_B	0.4-40 A	8.03/8.69
C phase current	I_C	0-38 A	7.11/7.83
A phase voltage	U_A	213.2-229.9 V	223.20/3.03
B phase voltage	U_B	217.6-231.7 V	226.74/2.39
C phase voltage	U_C	217.9-231.4 V	226.34/2.53
A phase frequency	f_A	49.96-50.03 Hz	49.99/0.02
B phase frequency	f_B	25.02-50.03 Hz	49.99/0.14
C phase frequency	f_C	49.96-50.03 Hz	49.99/0.02

问题阐述

已知序列,
$$\mathbf{X}_{\tau} = \left\{ \mathbf{X}^{t-\tau+1}, \dots, \mathbf{X}^{t} \right\} \in \mathbb{R}^{\tau \times 15}$$
 其中 $\mathbf{X}^{i} = \left(\cos \varphi_{A}^{i}, \cos \varphi_{B}^{i}, \cos \varphi_{C}^{i}, Q_{A}^{i}, Q_{B}^{i}, Q_{C}^{i}, I_{A}^{i}, I_{B}^{i}, I_{C}^{i}, U_{A}^{i}, U_{B}^{i} U_{C}^{i}, f_{A}^{i}, f_{B}^{i}, f_{C}^{i} \right) \in \mathbb{R}^{1 \times 15}, i \in \left\{ t - \tau + 1, \dots, t \right\}$ 求 \hat{RUL}^{t}

图公式:
$$G^t = (V^t, E^t, \mathbf{A}^t)$$

图公式:
$$G^t = (V^t, E^t, \mathbf{A}^t)$$

其中: $\mathbf{V}^t = \begin{pmatrix} \cos \varphi_A^t & \cos \varphi_B^t & \cos \varphi_C^t \\ Q_A^t & Q_B^t & Q_C^t \\ I_A^t & I_B^t & I_C^t \\ U_A^t & U_B^t & U_C^t \\ f_A^t & f_B^t & f_C^t \end{pmatrix} \in \mathbb{R}^{5 \times 3}, E^t = \mathbf{1}$

图公式:
$$G^t = (V^t, E^t, \mathbf{A}^t)$$
其中: $\mathbf{V}^t = \begin{pmatrix} \cos \varphi_A^t & \cos \varphi_B^t & \cos \varphi_C^t \\ Q_A^t & Q_B^t & Q_C^t \\ I_A^t & I_B^t & I_C^t \\ U_A^t & U_B^t & U_C^t \\ f_A^t & f_B^t & f_C^t \end{pmatrix} \in \mathbb{R}^{5 \times 3}, E^t = \mathbf{1}$

 A^t 有两种方法:

• 相似度法
$$a_{sim(j,k)}^t = \begin{cases} 1/\left\|\mathbf{v}_j^t - \mathbf{v}_k^t\right\|_2, & \left\|\mathbf{v}_j^t - \mathbf{v}_k^t\right\|_2 \neq 0 \\ 0, & \text{otherwise} \end{cases}$$

图公式:
$$G^t = (V^t, E^t, \mathbf{A}^t)$$
其中: $\mathbf{V}^t = \begin{pmatrix} \cos \varphi_A^t & \cos \varphi_B^t & \cos \varphi_C^t \\ Q_A^t & Q_B^t & Q_C^t \\ I_A^t & I_B^t & I_C^t \\ U_A^t & U_B^t & U_C^t \\ f_A^t & f_B^t & f_C^t \end{pmatrix} \in \mathbb{R}^{5 \times 3}, E^t = \mathbf{1}$

 A^t 有两种方法:

- 相似度法 $a_{sim(j,k)}^t = \left\{ \begin{array}{ll} 1/\left\| \mathbf{v}_j^t \mathbf{v}_k^t \right\|_2, & \left\| \mathbf{v}_j^t \mathbf{v}_k^t \right\|_2 \neq 0 \\ 0, & \text{otherwise} \end{array} \right.$
- 特征值法 $\mathbf{L}_{norm}^{t} = (\mathbf{D}^{t})^{-\frac{1}{2}} (\mathbf{D}^{t} \mathbf{E}^{t}) (\mathbf{D}^{t})^{-\frac{1}{2}} \in \mathbb{R}^{5 \times 5}$ $a_{\phi_{1}(j,k)}^{t} = \begin{cases} \phi_{1(j)}^{t} \phi_{1(k)}^{t}, & e_{jk} = 1\\ 0, & \text{otherwise} \end{cases}$

模型框架

Fig. 5. Working procedure of the Electrical-STGCN. Given τ electrical records X_{τ} , we first transform this sequence to the constructed spatiotemporal graph $G_T = (V_T, E_T, A_T)$. Then G_T is forwarded through the Spatio-Temporal Graph Convolution Network (STGCN) to create feature $\overline{V_{\tau}}$, which involves both attribute interactions and temporal dependency. After that, the $\overline{V_{\tau}}$ is fed into the Health Prediction Network (HPN) for current health estimation. (a) is the monitored industrial equipment. (b) is the power supply circuit of the electrical sensor; b1 is the leakage protector; b2 is the three phase fuse; b3 is the electrical sensor.

step 1. 数据规范化

- ullet $oldsymbol{\mathrm{A}}_{\mathsf{sim}}$ is a stack of $\left\{oldsymbol{\mathrm{A}}_{\mathrm{sim}}^{t- au+1},\ldots,oldsymbol{\mathrm{A}}_{\mathrm{sim}}^{t}
 ight\}$
- $\bullet \ \ \mathbf{A}_{\phi_1} \ \text{is a stack of} \ \left\{ \mathbf{A}_{\phi_1}^{t-\tau+1}, \dots, \mathbf{A}_{\phi_1}^t \right\}$
- $\mathbf{A}_{\mathsf{sim}}$, $\mathbf{A}_{\phi_1} \in \mathbb{R}^{\tau \times 5 \times 5}$

step 1. 数据规范化

- ullet $\mathbf{A}_{\mathsf{sim}}$ is a stack of $\left\{\mathbf{A}_{\mathsf{sim}}^{t- au+1}, \dots, \mathbf{A}_{\mathsf{sim}}^{t}
 ight\}$
- $\bullet \ \ \mathbf{A}_{\phi_1} \ \text{is a stack of} \ \left\{ \mathbf{A}_{\phi_1}^{t-\tau+1}, \dots, \mathbf{A}_{\phi_1}^t \right\}$
- $\mathbf{A}_{\mathsf{sim}}$, $\mathbf{A}_{\phi_1} \in \mathbb{R}^{\tau \times 5 \times 5}$
- $\bullet \ \mathbf{A}_{\mathit{sim}}^t = \left(\mathbf{\Lambda}_{\mathit{sim}}^t\right)^{-\frac{1}{2}} \mathbf{A}_{\mathit{sim}}^t \left(\mathbf{\Lambda}_{\mathit{sim}}^t\right)^{-\frac{1}{2}}$
- $\bullet \ \mathbf{A}_{\phi_1}^t = \frac{\left|\mathbf{A}_{\phi_1}^t(\mathbf{n},:)\right|}{\left\|\mathbf{A}_{\phi_1}^t(\mathbf{n},:)\right\| + \epsilon}$

step 2. Electrical-STGCN and step 3. HPN

空间卷积

- $\mathbf{V}^t = \gamma \mathbf{A}_{\phi_1}^t \mathbf{V}^t + (1 \gamma) \mathbf{A}_{sim}^t \mathbf{V}^t$
- 其中, $\mathbf{V}_{\tau} \in \mathbb{R}^{\tau \times 5 \times 3}$, $\overline{\mathbf{V}_{\tau}} \in \mathbb{R}^{\tau \times 5 \times 3}$, γ 为超参数, $\widetilde{\mathbf{V}_{\tau}} = \left\{\widehat{\mathbf{V}^{t-\tau+1}}, \dots, \widetilde{\mathbf{V}^{t}}\right\} \in \mathbb{R}^{\tau \times 5 \times 3}$

step 2. Electrical-STGCN and step 3. HPN

空间卷积

- $\widetilde{\mathbf{V}^t} = \gamma \mathbf{A}_{\phi_1}^t \mathbf{V}^t + (1 \gamma) \mathbf{A}_{sim}^t \mathbf{V}^t$
- 其中, $\mathbf{V}_{ au} \in \mathbb{R}^{ au imes 5 imes 3}$, $\overline{\mathbf{V}_{ au}} \in \mathbb{R}^{ au imes 5 imes 3}$, γ 为超参数, $\widetilde{\mathbf{V}_{ au}} = \left\{ \widetilde{\mathbf{V}^{t- au+1}}, \ldots, \widetilde{\mathbf{V}^{t}} \right\} \in \mathbb{R}^{ au imes 5 imes 3}$

时间卷积和残差网络

Fig. 6. (a) Overview of the 5-layer temporal residual block. Given the $\widetilde{V_T} \in \mathbb{R}^{T \times 5 \times 3}$, the output is $\widetilde{V_T} \in \mathbb{R}^{T \times 5 \times 3}$. (b) The HPN is made up of a residual connection and a convolution layer. Given the $\widetilde{V_T} \in \mathbb{R}^{T \times 5 \times 3}$ the output is $\widetilde{RUL^L}$.

损失函数

$$\begin{split} \textit{MSE} &= \frac{1}{\textit{N}} \sum_{i=1}^{\textit{N}} (\textit{RUL} - \widehat{\textit{RUL}})^2 \\ \texttt{其中}\,, \;\; \textit{RUL} &= \frac{\mathsf{Time \; to \; failure \; - \; Current \; time}}{\mathsf{Time \; to \; failure}} \end{split}$$

- 1 Introduction
- 2 ELECTRICAL-STGCN
- 3 Experiment

探索实验

Fig. 7. Evaluation metrics of the Electrical-STGCN at different window size τ . The Electrical-STGCN performs the best when $\tau=8$, i.e., Accuracy= $85.20\pm0.21\%$, Precision= $89.20\pm0.41\%$, Recall= $90.51\pm0.25\%$, and F1-Score= 0.90 ± 0.01 .

TABLE III ABLATION STUDY ON γ WITH $\tau=8$. Accuracy [%] Precision [%] Recall [%] F1-Score 0.2 75.77 ± 1.42 79.53 ± 0.87 91.38 ± 4.17 0.83 ± 0.02 0.3 73.76 ± 0.56 80.97 ± 1.20 86.37 ± 3.51 0.81 ± 0.01 0.4 85.20 ± 0.21 89.20 ± 0.41 90.51 ± 0.25 0.90 ± 0.01 0.5 76.98 ± 0.94 79.89 ± 0.71 92.67 ± 3.08 0.84 ± 0.01 0.6 76.14 ± 1.30 81.62 ± 0.89 88.56 ± 4.70 0.82 ± 0.02

TABLE IV

THE EFFECT OF DIFFERENT KERNEL FUNCTIONS WITH au=8 AND $\gamma=0.4$.

Kernel Functions	Accuracy [%]	Precision [%]	Recall [%]	F1-Score
Baseline [32]	77.32 ± 1.24	83.88 ± 1.11	87.75±4.43	0.83 ± 0.02
$\overline{a_{L_2(j,k)}^t}$	84.19 ± 0.28	87.60 ± 0.82	90.63 ± 0.48	0.88 ± 0.01
$a_{exp(j,k)}^{t}$ [31]	81.37 ± 0.28	85.48 ± 0.65	90.25 ± 0.99	0.87 ± 0.01
$\overline{a_{sim(j,k)}^t} \& a_{\boldsymbol{\phi}_1(j,k)}^t$	85.20±0.21	89.20±0.41	90.51±0.25	0.90±0.01

Accuracy

2.00

Prediction time

实验结果

100

Precision

Recall

F1-Score

Fig. 9. Comparison with different ML algorithms in terms of Accuracy, Precision, Recall, F1-Score, and Prediction time. We conduct ML algorithms on the testing data and calculate the average processing time for each record.

TABLE V

COMPARISON WITH OTHER ML ALGORITHMS IN TERMS OF WILCOYON SIGNED DANK TEST

E-STCCN(ours)	85 20+0 21	89 20+0 41	90 51+0 25	0.90+0.01			
TCN [30]	$64.43\pm2.62(+)$	82.99±2.65(≡)	$67.51\pm9.55(\equiv$	$0.69\pm0.04(+)$			
ConvLSTM [29]							
GRU [28]	$77.98 \pm 1.66(+)$	$87.81\pm1.41(\equiv)$	$79.06\pm5.59(\equiv$	$0.81\pm0.02(+)$			
LSTM [27]	77.25±2.02(\(\exi\)))88.48±1.70(≡)	81.44±6.05(≡	$0.82\pm0.03(\equiv)$			
RFs [25]	$76.57 \pm 1.23(+)$	$85.15\pm1.19(\equiv)$	$84.92 \pm 5.17 (\equiv$	$0.81\pm0.02(+)$			
K-Means [23]	$63.69 \pm 4.28 (+)$	$80.15\pm4.05(\equiv)$	$67.47 \pm 3.87(+)$	$0.72 \pm 0.02(+)$			
SVM [20]	49.85±3.56(+)	74.92±15.79(\(\exi\))	$32.42\pm9.93(+)$	$0.40\pm0.10(+)$			
Competitors	Accuracy [%]	Precision [%]	Recall [%]	F1-Score			
WILCOXON SIGNED-RANK 1EST.							

⁺ means that Electrical-STGCN is significantly better than other competitors.

⁼ means that there is no significant difference between Electrical-STGCN and others based on Wilcoxon signed-test with the significance level of 0.05.

Thank You