2

2

2

Contents IIUM cat-us-trophy

typedef long long LL;

```
.vimrc
set ai ts=4 sw=4 st=4 noet nu nohls
syntax enable
filetype plugin indent on
map <F6> :w<CR>:!g++ % -g && (ulimit -c unlimited; ./a.out < ~/input.txt) <CR>
map <F5> <F6>
colo pablo
map <F12> :!gdb ./a.out -c core <CR>
template.cpp
#include<cstdio>
#include<sstream>
#include<cstdlib>
#include < cctype >
#include<cmath>
#include<algorithm>
#include<set>
#include<queue>
#include<stack>
#include<list>
#include<iostream>
#include<string>
#include<vector>
#include<cstring>
#include<map>
#include<cassert>
#include<climits>
using namespace std;
#define REP(i,n) for(int i=0; i < (n); i++)
#define FOR(i,a,b) for(int i=(a); i <=(b); i++)
#define FORD(i,a,b) for(int i=(a); i>=(b); i--)
#define FORIT(i, m) for (__typeof((m).begin()) i=(m).begin(); i!=(m).end(); ++i)
#define SET(t,v) memset((t), (v), sizeof(t))
#define ALL(x) x.begin(), x.end()
#define UNIQUE(c) (c).resize( unique( ALL(c) ) - (c).begin() )
#define sz(v) int(v.size())
#define pb push_back
#define VI vector<int>
#define VS vector<string>
```

Combinatorics: binomial, catalan

Mathematical Sums

```
\begin{array}{ll} \sum_{k=0}^{n} k = n(n+1)/2 & \sum_{k=0}^{b} k = (a+b)(b-a+1)/2 \\ \sum_{k=0}^{n} k^2 = n(n+1)(2n+1)/6 & \sum_{k=0}^{n} k^3 = n^2(n+1)^2/4 \\ \sum_{k=0}^{n} k^4 = (6n^5+15n^4+10n^3-n)/30 & \sum_{k=0}^{n} k^5 = (2n^6+6n^5+5n^4-n^2)/12 \\ \sum_{k=0}^{n} x^k = (x^{n+1}-1)/(x-1) & \sum_{k=0}^{n} kx^k = (x-(n+1)x^{n+1}+nx^{n+2})/(x-1)^2 \end{array}
```

Binomial coefficients

	0	1	2	3	4	5	6	7	8	9	10	11	12	$\binom{n}{k} = \frac{n!}{(n-k)!k!}$
0	1													$\binom{n}{1} - \binom{n-1}{1} + \binom{n-1}{1}$
1	1	1												(n) n $(n-1)$
2	1	2	1											
3	1	3	3	1										$\binom{k}{k} - \binom{k}{k-1}$
4	1	4	6	4	1									$egin{pmatrix} inom{n+1}{k} &= rac{n+1}{n-k+1}inom{n}{k} \ inom{n}{k+1} &= rac{n-k}{k+1}inom{n}{k} \end{pmatrix}$
5	1	5	10	10	5	1								$\binom{n}{k+1} = \frac{n}{k+1} \binom{n}{k}$
6	1	6	15	20	15	6	1							
7	1	7	21	35	35	21	7	1						$\sum_{n=1}^{n} (n)$ $2n-1$
8	1	8	28	56	70	56	28	8	1					$\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}$ $\sum_{k=1}^{n} k^{2} \binom{n}{k} = (n+n^{2})2^{n-2}$
9	1	9	36	84	126	126	84	36	9	1				$\sum_{k=1}^{n} k^{2} \binom{n}{k} = (n+n^{2})2^{n-2}$
10	1	10	45	120	210	252	210	120	45	10	1			
11	1	11	55	165	330	462	462	330	165	55	11	1		$(m+n) = \sum_{r} r \pmod{n}$
12	1	12	66	220	495	792	924	792	495	220	66	12	1	$\binom{r}{r} - \sum_{k=0}^{r} \binom{k}{r-k}$
	0	1	2	3	4	5	6	7	8	9	10	11	12	$\binom{n}{k} = \prod_{i=1}^k \frac{n-k+i}{i}$

Catalan numbers $C_n = \frac{1}{n+1} \binom{2n}{n}$. $C_0 = 1$, $C_n = \sum_{i=0}^{n-1} C_i C_{n-1-i}$. $C_{n+1} = C_n \frac{4n+2}{n+2}$. $C_0, C_1, \ldots = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, \ldots$ C_n is the number of: properly nested sequences of n pairs of parentheses; rooted ordered binary trees with n+1 leaves; triangulations of a convex (n+2)-gon.

RMQ DP

Suffix arrays

```
const int N = 100 * 1000 + 10;
char str[N]; bool bh[N], b2h[N];
int rank[N], pos[N], cnt[N], next[N], lcp[N];
bool smaller(int a, int b) { return str[a]<str[b];}</pre>
```

```
void suffix_array(int n) {
    REP(i,n)pos[i]=i, b2h[i]=false;
    sort(pos,pos+n,smaller);
    REP(i,n) bh[i]=!i||str[pos[i]] != str[pos[i-1]];
    for(int h=1;h< n;h*=2) {
        int buckets=0;
        for(int i=0,j; i<n; i=j) {
            j=i+1;
            while(j<n && !bh[j])j++;
            next[i]=j;
            buckets++;
        }
        if(buckets==n)break;
        for(int i=0;i<n;i=next[i]) {</pre>
            cnt[i] = 0;
            FOR(j, i, next[i]-1) rank[pos[j]]=i;
        cnt[rank[n-h]]++;
        b2h[rank[n-h]]=true;
        for(int i=0;i<n;i=next[i]) {</pre>
            FOR(j, i, next[i]-1) {
                int s = pos[j]-h;
                if(s>=0){
                    rank[s] = rank[s] + cnt[rank[s]]++;
                    b2h[rank[s]]=true;
            FOR(j, i, next[i]-1) {
                int s = pos[j]-h;
                if(s>=0 && b2h[rank[s]])
                    for(int k=rank[s]+1;!bh[k] && b2h[k]; k++) b2h[k]=false;
        REP(i,n) pos[rank[i]]=i, bh[i]|=b2h[i];
}
    }
void get_lcp(int n) {
    lcp[0]=0;
    int h=0;
    REP(i,n) if(rank[i]) {
        int j=pos[rank[i]-1];
        while(i+h < n && j+h < n && str[i+h] == str[j+h]) h++;
        lcp[rank[i]]=h;
        if(h)h--;
}
    }
Graph algorithms (LCA, SCC)
Tarjan's offline LCA
function TarjanOLCA(u)
    MakeSet(u); u.ancestor := u;
    for each v in u.children do
        TarjanOLCA(v); Union(u,v); Find(u).ancestor := u;
    u.colour := black;
    for each v such that {u,v} in P and v.color==black do
        print "LCA", u, v, Find(v).ancestor
```

Tarjan's Strong Connected Components

```
procedure tarjan(v)
  index = count; v.lowlink = count++; S.push(v);color[v] = 1;
  for all (v, v2) in E do
    if (!color[v2])
       tarjan(v2); v.lowlink = min(v.lowlink, v2.lowlink);
  else if (color[v2]==1)
       v.lowlink = min(v.lowlink, v2.lowlink);
  if (v.lowlink == index)
    do { v2 = S.top(); S.pop(); print v2; color[v2]=2; } while (v2 != v);
  for all v in V do if(!color[v]) tarjan(v);
```