Scalable Algorithms for Data Analysis

Assignment 1

Aug-Nov 2022

1 Instructions

- 1. Deadline: 5pm on 21-Sep-2022.
- 2. Maximum mark: 25
- 3. Solve it by yourself and be honest.
- 4. For each question write answers on separate sheets.
- 5. Submit the answers through gradescope (see the course description page in piazza).

2 Questions

1. Two sets A and B are chosen independently of each other uniformly at random from the power set of $\{1, ..., n\}$. Find

(a)
$$\Pr[A \subset B];$$

(1)

- (b) the probability that A and B are disjoint.
- 2. Two people toss a fair coin n times. Find the probability that they will score the same number of heads. (1)
- 3. I have a fair coin and a two headed coin. I choose one of the two coins randomly with equal probability and flip it. Given that the flip was head, what is the probability that I flipped the two-headed coin?
- 4. A permutation on the numbers $\{1, 2, ..., n\} = [n]$ can be represented as a function $\pi : [n] \to [n]$, where $\pi(i)$ is the position of i in the ordering given by the permutation. A fixed point of a permutation $\pi : [n] \to [n]$ is a value for which $\pi(x) = x$. Find the expected number of fixed points of a permutations chosen uniformly at random from all permutations. (2)
- 5. Describe a method for using a fair coin to generate a permutation π of $\{1, \ldots, n\}$ uniformly at random. What is the expected number of coin tosses of your scheme. (2)
- 6. A man with n keys wants to open his door and tries the key independently and at random. Find the expected number of trials. (2)
 - (a) if unsuccessful keys are not eliminated from further selections;

(b) if they are.

(Assume that only one key fits the door.)

- 7. Suppose $X_1, X_2, ..., X_n$ are pairwise independent random variables over the finite probability space (Ω, \Pr) . Let $X = \sum_{i=1}^n X_i$. Prove that $Var[X] = \sum_{i=1}^n Var[X_i]$. (2)
- 8. **Balls and bins.** Consider the standard balls and bins process. A collection of m identical balls are thrown into n bins. Each ball is thrown independently into a bin chosen uniformly at random. (3)
 - (a) What is the (precise) probability that a particular bin i contains exactly k balls at the end of the experiment.
 - (b) Let X be the number of bins that contain exactly k balls. What is the expected value of X?
 - (c) What is the variance of X? [**Hint:** Write $X = \sum_i Y_i$ where Y_i is indicator random variable for bin i having exactly k balls.]
- 9. Let σ be a uniformly random permutation of $\{1...,n\}$. That is $\sigma(1), \sigma(2), ..., \sigma(n)$ is a permutation and it is chosen uniformly from one of the n! permutations. We say that position i is a peak in σ if $\sigma(i)$ is the maximum number amongst $\sigma(1), \sigma(2), ..., \sigma(i)$. For instance if σ is the permutation 3, 4, 1, 2, 5 then positions 1, 2, 5 are peaks and positions 3 and 4 are not. Note that position 1 is always a peak. Let σ be a uniform random permutation of $\{1..., n\}$.
 - (a) What is the probability that position i is a peak in σ ? (2)
 - (b) What is the expected number of peaks in σ ?
- 10. Consider the following variant of Quick Sort. Given an array A of n numbers (which we assume are distinct for simplicity) the algorithm picks a pivot x uniformly at random from A and computes the rank of x. If the rank of x is between n/4 and 3n/4 (call such a pivot a good pivot) it behaves like the normal Quick Sort in partitioning the array A and recursing on both sides. If the rank of x does not satisfy the desired property (the pivot picked is not good) the algorithm simply repeats the process of picking the pivot until it finds a good one. Note that in principle the algorithm may never terminate! (5)
 - (a) Write a formal description of the algorithm.
 - (b) Prove that the expected runtime of this algorithm is $O(n \log n)$ on arrays of n numbers.
 - (c) What is the expected number of peaks in σ ?
 - (d) Prove that the algorithm terminates in $O(n \log n)$ time with high probability. Does this immediately imply that the expected run time is $O(n \log n)$?