1. O Processo de Contato Um sistema de spin onde

$$c(\infty, \eta) = \begin{cases} \lambda & \frac{1}{14-2} & \eta(y), & \text{se } \eta(\infty) = 0 \\ 1, & \text{se } \eta(\infty) = 1. \end{cases}$$

2. Considerações Preliminares

Para 2710, seja

Defina

(Tal limite existe pelo Tco. 2.3. do Cap. III, uma vez que o proc. de contato é atrativo). J

$$\rho(\lambda) = \gamma_{\lambda} \ell \eta : \eta(x) = 1$$

que é independente de $x \in \mathbb{Z}^1$, uma vez que $V_{\lambda} \in \mathcal{J}$. Pelo Corolário 2.4 do Cap. \mathbb{II} , o processo é ergódico para um dedo λ so $p(\lambda) = 0$. Ademais, por 1.7 do Cap. \mathbb{II} ,

Logo, p(x) é não decrescente em x.

3. Teoremas de Convergência

Se 27 26, todas as medidas inv. para o processo de condato unidimensional são combinações lineares convexas de 80 e y, pelo Teo. 6.1.5. Ademais, pelo Teo. 3.5.18,

onde y = µ [n: n=0], dado que µ e J, isto é, é invariante por translação. Vamos à prova de algo análogo à (1) para µ E P.

Para isso, sijam le e le as versões de proc. de contato com estados iniciais

$$\int_{0}^{\infty} (x) = 1 \quad \text{se e somente se } x710, e$$

$$\lim_{x \to \infty} \int_{0}^{\infty} (x) = 1 \quad \text{se e somente se } x \neq 0.$$

Defino,

de modo que lo=ro=0.

Teorema 2.2. Seja At o processo de contato com Ao= ED3, e le o processo de contato com lo= 1. Então

Neste evento,

$$A_{\varepsilon} = \{x, \xi_{\varepsilon} | x \leq r_{\varepsilon}, \xi_{\varepsilon}(x) = 1\}$$
(3)

· [At + \$] = { lo \$ rs , \$ s = t }.

1 Att Ø

Apenas um ponto e um caminho

Apenas um ponto e mais de um caminho

Labirinto

Tais cominhos delimitom fronteiros para le ere.

Basta considerar os extremais! Reulta outra vez que serão fronteiras para de ere, respectiva mente.

Mais de um ponto e mais de um aminho

Decorre que, se As + Ø, inf(As) = 2s \ rs = sup (As).

2. At = \$\phi\$

ls.= rs. · Em 8t, rst < rs. e lst γε => rs+ < lst . Isto, ∃ stet.q.

Γ₂+ ₹ } } ,

Uma vez que A++D, éfácil ver que valem as constatações

Todos os contaminados em [22, re] foram cont.

pela origem. Espirros nas fronteiras não alterom
o resultado, de modo que a origem quem deter
mina os inf. em t, dodo que existe ao monos 2,

tanto partindo de lo = 1, No., No ou Ao.

A principal ideia dos próximos resultados é que a sobrevivência do processo de contato deveria corresponder à t indo à to e le à-o. Deste modo, gostariamos de entender o comportamen to assintótico de re e le quendo t 7 o. Por simetria

A análise de rt é baseada no seguinte resultado geral, conhecido como Teorema Subaditivo Ergódico.

Teorema 6.2.6. (Teo. Subaditivo Ergódico). Suponha (Xmin, m = n)

variáveis aleatórias que satisfazem as seguintes proprie dades:

(a) Xo,o = 0, Xo,n = Xo,m + Xmin, para 0 = m = n. (seq. subaditiva)

(b) [X(n-2)K,nK, n > 1] é um processo/para cada K > 1.

(c) {X_{m,m+k}, k, 0} = {X_{m+1,m+k+1}, k, 7, 0} em distribuição para cadam. (d) EX_{0,1} √ ∞.

"O Teorema ergódia subaditivo foi inicialmente provado por King.
man. Ele dá condições suf: cientes para a convergência quaser
certa de Xn onde (Xn), é uma sequência subaditiva de

variavers aleatorias.

Seja «n = EXo,n roo, que é bem definido por (a), (b), e (d). Entano

$$\alpha = \lim_{n \to \infty} \frac{\alpha_n}{n} = \inf_{n \to \infty} \frac{\alpha_n}{n} \in [-\infty, \infty), e$$

Ademais, EX = a. Se a 7- a, então

$$\lim_{n\to\infty} E \left| \frac{X_{0,n}}{x} - X_{\infty} \right| = 0.$$

Se o processo estacionário em (b) são ergódico, então Xa=aqic.

Logo, por (d)

EXO,n = n EXO,L = n EXO,1 < 00

(Xm, m+k, KNO) = [Xm, 1, m, k, 1, k, 1, 0] (Xm, m+k, KNO) = [Xm, 1, m, k, 1, k, 1, 0]

$$\begin{vmatrix} \chi_{1,a} \\ \chi_{1,b} \\ \chi_{1,b} \end{vmatrix} \geq \begin{vmatrix} \chi_{2,2} \\ \chi_{2,3} \\ \chi_{2,q} \end{vmatrix}$$

 $X_{3,0}$ $X_{3,0}$ $X_{3,0}$ $X_{2,0}$ $X_{2,0}$

inicial e salto K abaixo e

wrro k à esquerda. Repito iterativa

7° K 3° 4° E.

mende.

Teorema 6.2.19. Seja « = Er. Então

(a)
$$\alpha = \lim_{t \to \infty} \frac{\alpha_t}{t} = \inf_{t \to 0} \frac{\alpha_t}{t} \in [-\infty, \infty)$$

(b)
$$\lim_{t\to\infty}\frac{r_t}{t}=\alpha q.c., e$$

$$\lim_{t\to\infty} \mathbb{E}\left|\frac{r_t}{t}-\alpha\right|=0.$$

Prova.

6

Sega $*Obs: \exists cominho ativo é <math>*evtar ativado! Logo, basta infectar$ $r_{s,t} = max \{x \in \mathbb{Z}: \exists vm caminho ativo a csquerda de cesdo (y,s) à (x,t)$

para algum y & rs 3 - rs , para 08 s Et.

Interpretação geométrica:

Pela atratividade

Le Vaciesoimo

Nt = max loce Z: (ty, 0) ~ (x,t) para algum y 0, com as mortes ignoradas)

Éfácil ver que

Ademais, îrm, n, m \(\bar{n}\) satisfaz (a), (b) e (c) do T.S.E.

re reinf. todos at exquerda de re no inst. s.

Basta infector todos à esquerda de rs. Pela transitividade, vale (a).

P)

· Froiki, rhi, Rk , raki, 3ki) - . 3 estacionário e ergódico Justificativos

εσω ν.α. 1.1.d.

posso fazer 1220 pelas
perda de memória
do Processo de Poisson!

C) Decorre dous propriedades de Proc. de Poisson!

Eron 700 pois re & Nt & NEW DDD(X)

No Ne Ne No

Agara, bastos fazer a transição da convergência

dos interros para os reais. Para tal, basta usor o lema de Borel-Cantelli e os limítes

 $P(|r_{t}-r_{0}||N(\epsilon_{0}),0)) = P(|r_{t}-r_{0}||N(\epsilon_{0})) = P(|N|,N(\epsilon_{0})) = P(|N|$

P(max (rn-re) 7 En) = P(N17 En) < 00 Lema Borel-Cantelli, Sejam DI, Au, evendos aleatórios em (IL, I, P), i.e., An E & Yn.

a) Se = P(An) 700, então P(An inf. veres)=0

b) Se \ P(An) = 00 e 01 An são indi, então

P(An inf. verses) = 1.

/ Xn → Xq.c. ← P(1Xn-X178 inf. vezes)=0, Y870.

Esse Teorema è um importante primeiro passo na provo de alguns teoremas básicos de convergência para o processo de contato. Em sua aplicação, no entomto, veremos que se x70 · se x7 de, uma vez que queremos usar o teorema para mostrar que re soo q.c. neste caso.

A partir daqui,

x = ~()). "velocidade da bordo para Vi com taxa de inf. à para indicar a dep. em >.

*ennmerane)

Para qualquer BC Z contendo, seja

(= max (x, ha um aminho ativo de (y,0) à (x,t) para algum yEBJ,

onde rt = - os se não há tal caminho.

Lema 6.2.21 Suponha BCA, onde A têm apenas um osto montro enumeravel, e seja C qualquer conjunto finito. Então

Em particular, para BC (-00,-1],

$$E(r_{t}^{BUto3}-r_{t}^{B}) \nabla E(r_{t}^{C-\omega,03}-r_{t}^{C-\omega,-23}) = 1. \quad (2.23)$$

Prova.

Da definição,

pl qualquer A, D. (Estar é uma monifestação da aditividade.

Aplicando isto ass pares &A,Ci, &A,Bi, & (B,C3, obtemos

$$\Gamma_{t}^{AUD} = max \left(r_{t}^{A}, r_{t}^{D} \right) \qquad \Gamma_{t}^{AUD} = max fx : \exists \forall (y, 0) \dot{\alpha} \\
(x, t) \dot{p}_{a} ra alg. y \in AUD$$

$$E E S fa & uma monifectação = max fmax f A J, max f, DJ \\
= max \left(r_{t}^{A}, r_{t}^{D} \right) \qquad \bot$$

$$= max \left(r_{t}^{A}, r_{t}^{D} \right) \qquad \bot$$

$$pre > fA, CJ, fA, BJ, e$$

$$\Pi_{t}^{AUD} = \Pi_{t}^{A} U \Pi_{t}^{B} \Rightarrow max \left(\Pi_{t}^{AUD} \right) = max \Gamma_{t}^{A} \Gamma_{t}^{B}$$

$$r_t^{AVC} - r_t^A = ($$

Por construção do processo temos Nt = Rt U Rt | Aditividade Vanc = Van Ove

Por construção do processo, temos pela aditividade que

de forma que

0

$$r_t^{BUC} - r_t^B = (r_t^C - r_t^B)^+$$

Como (tA 71 rt (atratividade) e f(z) = (rt-z) + é decrescente, segue que

Com esse resultado, tomando

por invariancia por translação. (Leardonisar (T)

Fixado w, exibo w +,q.

$$E(L_{(-\alpha',0)}^{-\alpha',0)} - L_{(-\alpha'-1)}^{-\alpha',0)} = E(L_{(-\alpha',0)}^{-\alpha',0)} + E$$

Teorema 6.2.24.

Prova. Uma vez provado o item (0), segue o Hem (b), Já que

$$\alpha(\lambda+8) = \lim_{t\to\infty} \frac{\alpha_t(\lambda+8)}{t} = \lim_{t\to\infty} \frac{\alpha_t(\lambda)+8t}{t} = \alpha+8,870.$$

Construo duas cópias acopladas do sistema com parâmetro 1+8 e 7 com e gando de (-00,0].

Para comparar rtis e rti no evento 128ti, introduzimo um processo auxiliar

E seja it sua borda do direita.

$$E(r_{t}^{\lambda+8}-r_{t}^{\lambda}) \gg E(r_{t}^{\lambda+8}-r_{t}^{\lambda}, \forall \forall t)$$

$$+E(r_{t}^{\lambda+8}-r_{t}^{\lambda}, \forall \forall t)$$

$$=E(r_{t}^{\lambda+8}-r_{t}^{\lambda}, \forall \forall t)$$

$$=E(r_{t}^{\lambda+8}-r_{t}^{\lambda}, \forall \forall t)$$

$$=(r_{t}^{\lambda+8}-r_{t}^{\lambda}, \forall t)$$

$$=(r_{t}^{\lambda+8}-r_{t}^{\lambda+8}-r_{t}^{\lambda+8}, \forall t)$$

$$=(r_{t}^{\lambda$$

4 por \$12,23

٠,٠

Ademais,

soma telescópica

Teorema B. 2.27.

(a) Por construção pê C pé de forma que

Seja it = inf Nto, a) e it = inf Nt com it 7/2t. Se x(x) to então, com prob. 1

$$\lim_{t \to \infty} \frac{1}{t} = \alpha(\lambda) \zeta - \alpha(\lambda) = \lim_{t \to \infty} \frac{f_t}{t}$$

De forma que , para torande

よるでいり

Suponha «(2) ro. Então lim re = -00 q.c. pelo Teo. 6.2.19. Por

simedria, lim le = +00 q.c. Portanto

1100 P (At + 0) = 0.

Se Ao=103 por (B.3) [[At+Q]=[Isers: Yest]]. Dal, p())=0 pela.

parte (a) do Teorema 6.1.10.

ind. de xez

Y coleção de todos os subcitas finitos de Z. O proci de contato
 finito é aquele plo qual iniciolmente, e portento para todo tempo,
 Σχη ε(χ) του. Com o ident.

 $A = \{x : \eta(x) = L\},$

e proc. contato finito pode ser vieto como uma cadeia de Markov Atem Y. Então, Até o dual de Nt.

 $[A=x^{1}] = P^{A} = [A = X + O = (x) = 0$ $[A_{e}(x) = O + x \in A] = P^{A} = [A_{e}(x) = O + x \in A]$ $[A_{e}(x) = O + x \in A] = P^{A} = [A_{e}(x) = O + x \in A]$

Seja J=Infitrio: A== p3 e defina (A) = pA (J=00), YAEY.

 $\Rightarrow \underline{\text{Teo. 6.1.10}} \quad \text{(a') } \sigma(A) = V_{\lambda} [\Lambda : \Lambda(x) = 3 \text{ para algum } \infty \in A^{\frac{1}{2}}, \text{ de modo}$ $que \ em \ partialar, \ \rho(\lambda) = \sigma(\ell \infty \ell) \ pl \ qqer \times \in \mathbb{Z}^{\ell}.$ $(b) : \lambda_{c} = \inf \{\lambda > 0 : \sigma(A) > 0\} \ pl \ qqer \ A \in Y.$

(c) p(λc)=0 \(\in \) o(A) = 0 \(\text{A} \) qdo \(\text{λ} = \text{λ} \).

(d) Se p(\(\text{λ} \))70, entao \(\text{Im} \) σ(A) = \(\text{λ} \).

«(>) ~(×)>0 => Lf → co d·c· & borgavgo = W +·d·

Se le ertemont são def. da forma usual,

Como pora que Ne sobreviva pl simpre 3 algum x E [-M,+M] que sob. pl cempre,

$$\leq \sum_{i,m} b(\mathcal{U}_x^{f} \dagger \phi_{Af}) = (SW^{f}) b(\mathcal{U}_x^{f} \dagger \phi_{Af})$$

$$\mathcal{D}(\mathcal{U}_x^{f} \dagger \phi_{Af}) = b(\int_{\mathbb{T}^{c-W''MJ}}^{x \in c-W''MJ} \int_{x}^{f} \dagger \phi_{Af})$$

obofluer o sugaz s

(P).

(x(X) 710 para x7 xc pela parte (a). Ademais,

at (10) 210 (Teo. 6.2,19 xt(x) e cont. em > paratfixo)

ab segue do Teo δ, 2, 24 α(λ) = α(λ, (λ - λο)) >, α(λο) + λ - λο 7/ λ - λο.

(C) AND Resulta da parte (b) e do Teo. 6.2.19 (15/6-3-4 q.c.)

Teo. 6.2.28. Suponha 27 2c. Então para uma dada distribuição inicial 4.

lim pe Slt) = y so + (1-y) vx,

onde L = lbs [2200] m (qu) e 1 e o tembo ogé o bumerro

passagem peb vario (que é id. com N=0).

oz f. em X que

(m=n = Itan=)tan)

Prova: É suficiente mostrar que para qualquer AEY e fe D, many coordinat

I'm Ey (UF) = f(p) by (L 200) + by (L=00) f dA>.

, 3