Chapter 1

∞ -category theory

1.1 Motivations

Exercise 1.1.1. We fix a base field k. Let $X = \mathbb{P}^1_k$ and let U_0 and U_1 be the standard open affine cover of \mathbb{P}^1_k . For any k-algebra A, we have:

$$U_0(A) := \{ [x_0 : x_1] \in \mathbb{P}^1_k(A) \mid x_0 \neq 0 \}, \qquad U_1(A) := \{ [x_0 : x_1] \in \mathbb{P}^1_k(A) \mid x_1 \neq 0 \}.$$

Let $U_{01}=U_0\cap U_1$ be their intersection. Show that the canonical functor

$$h(\mathcal{D}(\mathbb{P}^1_k)) \to h(\mathcal{D}(U_0)) \times_{h(\mathcal{D}(U_{01}))} h(\mathcal{D}(U_1))$$

is essentially surjective but not fully faithful.

Exercise 1.1.2. Let \mathcal{C} be a triangulated category where countable products and countable direct sums exist. Show that if there exists a functor Tr from the category of arrows \mathcal{C}^{Δ^1} to the category of exact triangles in \mathcal{C} , then every triangle in \mathcal{C} is split. (See [4, Proposition II.1.2.13].)

1.2 Reminders on simplicial sets

Exercise 1.2.1. Show that the nerve functor N: Cat \rightarrow sSet is fully faithful and its essential image is spanned by those simplicial sets K satisfying the following lifting condition: for every $n \ge 2$ and for every 0 < i < n every lifting problem

has a unique solution.

Solution. The nerve of a category \mathcal{C} is:

$$(N\mathcal{C})_n = \{(f_1, \dots, f_n) | \text{ composable morphisms}\}.$$

The face maps are:

$$d_j(f_1, \dots, f_n) = \begin{cases} (f_1, \dots, f_{n-1}), & j = 0\\ (f_1, \dots, f_j \circ f_{j-1}, \dots, f_n), & 0 < j < n\\ (f_2, \dots, f_n), & j = n. \end{cases}$$

The degeneracy s_i is obtained by inserting an identity map in the j^{th} slot.

A functor $F: \mathcal{C} \to \mathcal{D}$, induces a simplicial map:

$$N(F)_n : (N\mathfrak{C})_n \to (N\mathfrak{D})_n$$

 $(f_1, \dots, f_n) \mapsto (F(f_1), \dots, F(f_n)).$

If two functors F, F' induce simplicial maps N(F) = N(F') which agree, then F(f) = F'(f) for every morphism f. Hence N is faithful. Given a simplicial map $G: N\mathcal{C} \to N\mathcal{D}$, we define a functor $F: \mathcal{C} \to \mathcal{D}$ to be G_0 on objects and G_1 on morphisms. We show that F respects composition. Let f_1, f_2 be two composable morphisms in \mathcal{C} and denote by x the 2-simplex (f_1, f_2) . Then:

$$F(f_2 \circ f_1) = G(d_1 x) = d_1 G(x) = F(f_2) \circ F(f_1).$$

This proves that N is also full.

We move on to the essential image. Let K be the nerve of a category. The data of a map $\Lambda_i^n \to K$ is the same as the data of maps $y_j : \Delta^{n-1} \to K$ for $j \neq i$, which are compatible along their faces. By Yoneda, this is the same as simplices $\{y_j \in K_{n-1}\}_{j\neq i}$ compatible along faces. Given this data, we define the horn filler $x \in K_n$ by:

$$x = ((d_0)^{n-2}y_{n-1}, (d_0)^{n-3}d_ny_{n-1}, \dots, d_0(d_n)^{n-3}y_{n-1}, (d_n)^{n-2}y_0).$$

The simplicial identities ensure that $d_j x = y_j$ for $j \neq i$. Using the compatibility of the y_j along faces, x is the unique solution to the lifting problem.

Conversely, given a K which has unique solutions to all lifting problems of inner horns, we define a category \mathcal{C} such that $K \cong \mathcal{C}$. Let K_0 be the objects of \mathcal{C} , and for $X, Y \in K_0$, define:

$$\text{Hom}(X,Y) := \{ f \in K_1 | d_1 f = X, d_0 f = Y \}.$$

Given $f_1: X \to Y$ and $f_2: Y \to Z$, define a lifting problem by mapping the 1-simplices $0 \to 1$ and $1 \to 2$ in Λ_1^2 to f_1 and f_2 , respectively. We define $f_2 \circ f_1$ to be d_1 of the unique lift. Associativity of this composition follows from the unique filling of the horn Λ_1^3 ; we don't give the details here.

Exercise 1.2.2. Let S, S' be sets, seen as discrete simplicial set. Show that any morphism $f: S \to S'$ is a Kan fibration, and that f is a trivial Kan fibration if and only if f is a bijection.

Solution. Since S and S' are sets, all k-simplices are of the form $s^k x$, for x a 0-simplex. Given a lifting problem:

$$\begin{array}{ccc}
\Lambda_i^n & \longrightarrow S \\
\downarrow & & \downarrow f \\
\Delta^n & \longrightarrow S'
\end{array}$$

all k-simplices of Λ_i^n , for k > 0, must map to degenerate k-simplices in S. Hence Λ_i^n maps to a point $s \in S$. Similarly, Δ^n maps to f(s). The constant map from Δ^n to s is then the unique solution to the lifting problem. It follows that f is a Kan fibration, and moreover that all sets S are ∞ -groupoids.

By definition, f is a weak equivalence if it induces a weak equivalence on geometric realizations. |S| and |S'| are discrete topological spaces, therefore |f| is a weak equivalence iff it is a bijection.

Exercise 1.2.3. Let G and H be simplicial groups and let $f: G \to H$ be a surjective group homomorphism. Show that f is a Kan fibration.

Solution. There is an algorithm for constructing fillers on nLab. ² We don't have any intuition for it, so we should work on building that.

The algorithm produces unique fillers for all horns, so in particular simplicial groups are ∞ -groupoids.

Note that it's essential that both y_0 and y_{n-1} are available to use in the definition of x, i.e. that Λ_i^n is an inner horn. https://ncatlab.org/nlab/show/simplicial+group

1.3 ∞-categories 3

Exercise 1.2.4. Let $\partial \Delta^2$ be the smallest full subsimplicial set of Δ^2 spanned by its non-degenerate edges $\Delta^1 \to \Delta^2$. Show that $\partial \Delta^2$ fits into a coequalizer diagram

$$(\Delta^0)^{\coprod 6} \rightrightarrows (\Delta^1)^{\coprod 3} \to \partial \Delta^2.$$

(Hint: Have a look at [2, Theorem III.3.1].)

Exercise 1.2.5. Let S be a set, seen as a discrete simplicial set. Show that $\operatorname{cosk}_n(S)$ satisfies the following property: for every $m \ge n$ and every $0 \le i \le m$ the lifting problem

$$\Lambda_i^n \longrightarrow \operatorname{cosk}_n(S)$$

$$\downarrow^{\qquad \qquad \qquad }$$

$$\Lambda^n$$

has a solution. In particular, deduce that $cosk_0(S)$ is a Kan complex.

1.3 ∞ -categories

Exercise 1.3.1. Show that every Kan complexes and 1-categories are ∞ -categories (quasicategories).

Solution. Kan complexes have fillers for all horns. 1-categories have unique fillers for all inner horns. In particular, both have fillers for all inner horns, which is the definition of ∞ -categories.

Exercise 1.3.2. A morphism $f: X \to Y$ in an ∞ -category \mathfrak{C} is said to be an equivalence if its image in $h(\mathfrak{C})$ is an isomorphism. Define $S^{\infty} := \cos k_0(\{0,1\})$ and let $j: \Delta^1 \to S^{\infty}$ be the map classified by

$$sk_0(\Delta^1) = \{0, 1\} \xrightarrow{id} \{0, 1\}.$$

To give a morphism $f: X \to Y$ in an ∞ -category \mathcal{C} it is equivalent to specify a morphism of simplicial sets $e_f: \Delta^1 \to \mathcal{C}$. Show that f is an equivalence if and only if the lifting problem

$$\begin{array}{ccc}
\Delta^1 & \xrightarrow{e_f} & \mathcal{C} \\
\downarrow^j & & \\
S^{\infty} & & & \\
\end{array}$$

has at least one solution. Next, show that any two such solution are homotopic. (Hint: have a look at Exercises 1.2.5 and 1.4.1.)

Exercise 1.3.3. In [3] a functor of ∞ -categories $f: \mathcal{C} \to \mathcal{D}$ is said to be a *categorical equivalence* if and only if the induced functor $\mathfrak{C}[f]: \mathfrak{C}[\mathcal{C}] \to \mathfrak{C}[\mathcal{D}]$ is an equivalence of simplicial categories. Show that f is a categorical equivalence if and only if it is fully faithful and essentially surjective.

Exercise 1.3.4. Let E denote the walking isomorphism (i.e. the 1-category with two objects and an isomorphism between them). Recall the definition of S^{∞} from the previous exercise. Show that there is a canonical map $E \to S^{\infty}$ and that this is a categorical equivalence. In particular, for every ∞ -category \mathcal{C} , the functor

$$\operatorname{Fun}(S^{\infty}, \mathfrak{C}) \to \operatorname{Fun}(E, \mathfrak{C})$$

is a categorical equivalence. (This is a very simple example of what an "internal rectification theorem" looks like.)

Exercise 1.3.5. Let \mathcal{C} be an ∞ -category. Let S_0 be a collection of *objects* in \mathcal{C} . Let \mathcal{C}_0 be the smallest full subsimplicial set of \mathcal{C} containing S_0 (explicitly, an *n*-simplex $\sigma \colon \Delta^n \to \mathcal{C}$ belongs to \mathcal{C} if and only if for every morphism $\Delta^0 \to \Delta^n$ the composition $\Delta^0 \to \Delta^n \to \mathcal{C}$ belongs to S_0 .) Show that \mathcal{C}_0 is an ∞ -category. Furthermore, show that the inclusion $\mathcal{C}_0 \hookrightarrow \mathcal{C}$ of simplicial sets is a fully faithful functor of ∞ -categories.

Exercise 1.3.6. Let \mathcal{C} be an ∞ -category. Let S_0 be a collection of *morphisms* in \mathcal{C} , and suppose that S_0 is closed under composition, in the sense that for every 2-simplex

$$X \xrightarrow{f} Z$$

is \mathcal{C} , if f and g belong to S_0 then so does h. Let \mathcal{C}_0 be the smallest full subsimplicial set of \mathcal{C} containing S_0 (explicitly, an n-simplex $\sigma \colon \Delta^n \to \mathcal{C}$ belongs to \mathcal{C} if and only if for every morphism $\Delta^1 \to \Delta^n$ the composition $\Delta^1 \to \Delta^n \xrightarrow{\sigma} \mathcal{C}$ belongs to S_0). Show that \mathcal{C}_0 is an ∞ -category.

Exercise 1.3.7. Let \mathcal{C} be an ∞ -category. Show that the collection of equivalences in \mathcal{C} is closed under composition, in the sense of the previous exercise. Let \mathcal{C}^{\simeq} be the ∞ -subcategory of \mathcal{C} spanned by equivalences in \mathcal{C} . Show that \mathcal{C}^{\simeq} is a Kan complex.

1.4 Localization of ∞ -categories

Exercise 1.4.1. Let \mathcal{C} be an ∞ -category (seen as a quasicategory). Let $\mathcal{C} \to \widetilde{\mathcal{C}}$ be a fibrant replacement for the Kan model structure on sSet. Show that $\widetilde{\mathcal{C}}$ enjoys the following universal property: for every ∞ -category \mathcal{D} the functor of ∞ -categories

$$\operatorname{Fun}(\widetilde{\mathcal{C}}, \mathfrak{D}) \to \operatorname{Fun}(\mathcal{C}, \mathfrak{D})$$

is fully faithful and its essential image is spanned by those morphisms $f : \mathcal{C} \to \mathcal{D}$ that send every morphism in \mathcal{C} into an equivalence in \mathcal{D} . Thus, there is a categorical equivalence $\tilde{\mathcal{C}} \simeq \mathcal{C}[W^{-1}]$, where W denotes the collection of all arrows in \mathcal{C} . Deduce that if \mathcal{C} is an ∞ -category where every morphism is invertible, then \mathcal{C} is categorically equivalent to a Kan complex.

Exercise 1.4.2. Let \mathcal{C} be an ∞ -category and let S be a (small) collection of arrows in \mathcal{C} . Show that $h(\mathcal{C}[S^{-1}]) \in \operatorname{Cat}$ is canonically equivalent to the 1-categorical localization of $h(\mathcal{C})$ at \overline{S} , the collection of morphism which is the image of S via the canonical functor $\mathcal{C} \to h(\mathcal{C})$.

Exercise 1.4.3. Let \mathcal{C} be an ∞ -category with finite limits and let S be a (small) collection of arrows in \mathcal{C} . Suppose that \mathcal{C} is stable under pullbacks. Then the ∞ -categorical localization $\mathcal{C}[S^{-1}]$ has finite limits and the localization functor $L: \mathcal{C} \to \mathcal{C}[S^{-1}]$ commutes with them.

1.5 Limits and colimits

Exercise 1.5.1. Let \mathcal{S} be the ∞ -category of spaces and let X be an object in \mathcal{S} . Using [3, Theorem 4.2.4.1] show that the colimit of the diagram

$$*\longleftarrow X\longrightarrow *$$

can be canonically identified with $\Sigma(X)$.

Now fix two points $p, q: * \to X$. Show that the limit of the diagram

$$* \xrightarrow{p} X \xleftarrow{q} *$$

can be canonically identified with the path space $Path_X(p,q)$.

Exercise 1.5.2. * Prove the following variation of Quillen's theorem A: let $1 \le n \le \infty$ and let \mathcal{C} be an (n,1)-category. Let $G\colon I\to J$ be an ∞ -functor between ∞ -categories. Let $F\colon J\to \mathcal{C}$ be any other ∞ -functor. Suppose that for every $j\in J$ and any $i\in I_{/j}:=I\times_J J_{/j}$ one has

$$\pi_m(I_{/i}, i) = 0$$

for all $0 \le m \le n-1$ (the above homotopy group is understood to be the homotopy group of the enveloping groupoid of $I_{(i)}$). Then F admits a limit if and only if $F \circ G$ admits a limit, in which case they coincide.

Remark 1.5.3. The above version of Quillen's theorem A appears in [?] for n = 1 and in [3, 4.1.3.1] for $n = \infty$.

Exercise 1.5.4. Let Δ_s denote the subcategory of Δ spanned by all the objects and only the monomorphisms between them. For $n \geq 1$, let $\Delta_s^{\leq n}$ be the full subcategory of Δ_s spanned by the objects $1, 2, \ldots, n$. Prove that for every $n \geq 1$ and every $k \geq 0$ the enveloping groupoid of $(\Delta_s^{\leq n})_{/n+k}$ is equivalent to the wedge of a certain number $N_{n,k}$ of (n-1)-spheres.³

Exercise 1.5.5. A useful consequence of Quillen's theorem A is the following: let I be a weakly contractible ∞ -category, by which we mean that the enveloping groupoid of I is weakly contractible. Let \mathcal{C} be an ∞ -category and let $x \in \mathcal{C}$ be an object in \mathcal{C} . Let $c_x \colon I \to \mathcal{C}$ be the constant diagram associated to x. Then prove that both the limit and the colimit of c_x exists and coincides with x.

The above result is false if I is not weakly contractible. Construct a counterexample by choosing $\mathcal{C} = \mathcal{S}$, $I = \{ \bullet \rightrightarrows \bullet \}$ and x = *, the final object of \mathcal{S} . Nevertheless, show that keeping the same I and the same x, the result is again true for $\mathcal{C} = \operatorname{Set}$. What happens in the ∞ -category of n-homotopy types $\mathcal{S}^{\leq n}$ for general n?

Exercise 1.5.6. * Let K be a simplicial set and let $F: K^{\text{op}} \to \mathbb{P}^{\mathbf{L}}$ be an ∞ -functor. Let \mathcal{C} be a presentable ∞ -category and let $\Delta_{\mathcal{C}}: K^{\text{op}} \to \mathbb{P}^{\mathbf{L}}$ denote the constant ∞ -functor associated to F. Let $\varphi: \Delta_{\mathcal{C}} \to F$ be a natural transformation in $\text{Fun}(K^{\text{op}}, \mathbb{P}^{\mathbf{L}})$. We let

$$\Phi \colon \mathfrak{C} \to \varprojlim F$$

be the induced functor. For every $x \in K$, the functor $\varphi_x \colon \mathcal{C} \to F(x)$ admits a right adjoint, which we denote $\psi_x \colon F(x) \to \mathcal{C}$. Show that there exists an ∞ -functor

$$\overline{\Psi}$$
: $\lim F \to \operatorname{Fun}(K, \mathfrak{C})$

which informally sends $Y = \{Y_x\}_{x \in K} \in \varprojlim F$ to the diagram $\overline{\Psi}(Y) \colon K \to \mathcal{C}$ given by

$$\overline{\Psi}(Y)(x) = \psi_x(Y_x).$$

Prove moreover that the composition

$$\varprojlim F \stackrel{\overline{\Psi}}{\longrightarrow} \operatorname{Fun}(K, \mathfrak{C}) \stackrel{\lim}{\longrightarrow} \mathfrak{C}$$

can be canonically identified with a right adjoint for Φ .

1.6 Left and right fibrations

Exercise 1.6.1. Let X be a connected Kan complex and let F be any other Kan complex. Let us further fix a point $x \in X$. Let $LF_x(X; F)$ be the full subcategory of left fibrations LF(X) over X whose homotopy fiber at x is equivalent to F. Let B(hAut(F)) be the classifying space of the simplicial group of homotopy automorphisms of F. Show that there is a canonical equivalence of ∞ -categories

$$LF_x(X; F) \simeq Fun(X, B(hAut(F))).$$

³It should be possible to determine these numbers. We certainly have $N_{n,0} = 1$ and $N_{n,1} = 3$.

1.7 Cartesian and coCartesian fibrations

Exercise 1.7.1. Let \mathcal{C} be an ∞ -category and let $X \in \mathcal{C}$ be an object. Let $f: U \to X$ and $g: V \to X$ be two morphisms in \mathcal{C} . For every 2-simplex $\sigma: \Delta^2 \to \mathcal{C}$ such that $d_0(\sigma) = f$ and $d_1(\sigma) = g$, show that there is a pullback square in \mathcal{S} :

$$\operatorname{Path}_{\operatorname{Map}_{\mathfrak{S}}(U,X)}(f,d_{2}(\sigma)) \longrightarrow \operatorname{Map}_{\mathfrak{S}_{/X}}(f,g)$$

$$\downarrow \qquad \qquad \downarrow$$

$$* \xrightarrow{d_{2}(\sigma)} \operatorname{Map}_{\mathfrak{S}}(U,V).$$

(Hint: Use [3, Propositions 2.1.2.1 and 2.4.4.2].)

1.8 Adjunctions

Exercise 1.8.1. Let \mathcal{C} be an ∞ -category with a zero object 0. Suppose that for every object $X \in \mathcal{C}$ the span

$$0 \longleftarrow X \longrightarrow 0$$

has both a limit $\Omega(X)$ and a colimit $\Sigma(X)$. Construct in an explicit way ∞ -functors $\Sigma, \Omega \colon \mathcal{C} \to \mathcal{C}$ informally given by $X \mapsto \Sigma(X)$ and $X \mapsto \Omega(X)$, respectively. Show that Σ and Ω are adjoint by explicitly constructing a fibration $\mathcal{D} \to \Delta^1$ which is both Cartesian and coCartesian.

Exercise 1.8.2. Let $F: \mathcal{C} \to \mathcal{D}$ be an ∞ -functor. Show that the following statements are equivalent:

- 1. F has a right adjoint $G: \mathcal{D} \to \mathcal{C}$;
- 2. for every $Y \in \mathcal{D}$ there exists an object $X \in \mathcal{C}$ and a morphism $\varepsilon_X \colon F(X) \to Y$ such that for every other $X' \in \mathcal{C}$ the canonical composition

$$\operatorname{Map}_{\mathfrak{C}}(X',X) \xrightarrow{f} \operatorname{Map}_{\mathfrak{D}}(f(X'),f(X)) \xrightarrow{\varepsilon_{X*}} \operatorname{Map}_{\mathfrak{D}}(f(X'),Y)$$

is a weak homotopy equivalence.

1.9 Stable ∞ -categories

Exercise 1.9.1. Let \mathcal{C} be a stable ∞ -category and let $\mathcal{D} \subseteq \mathcal{C}$ be a full stable subcategory of \mathcal{C} . Let $S := \{f \colon X \to Y \in \mathcal{C} \mid \operatorname{cofib}(f) \in \mathcal{D}\}$. Show that the ∞ -categorical localization $\mathcal{C}[S^{-1}]$ is a stable ∞ -category.

Exercise 1.9.2. It is shown in [1] that $\operatorname{Cat}_{\infty}^{\operatorname{Ex}}$ is a presentable ∞ -category. Prove directly that cofibers in $\operatorname{Cat}_{\infty}^{\operatorname{Ex}}$ exist.

Chapter 2

Derived rings

2.1 Derived rings

Exercise 2.1.1. Show that a discrete commutative ring A over k is finitely presented if and only if its associated corepresentable functor

$$\operatorname{Hom}_{\operatorname{CAlg}_k}(A, -) \colon \operatorname{CAlg}_k \to \operatorname{Set}$$

commutes with filtered colimits.

Exercise 2.1.2. Let $A \in \mathrm{sCAlg}_k$ and let $M \in A\text{-Mod}^{\leq 0}$. Show that the diagram

$$\begin{array}{ccc} \operatorname{Sym}_A(M) & \longrightarrow & A \\ \downarrow & & \downarrow \\ A & \longrightarrow & \operatorname{Sym}_A(M[1]) \end{array}$$

is a (homotopy) pushout square (where the two maps $\operatorname{Sym}_A(M) \to A$ are both classified by the zero map $M \to A$, and where both the maps $A \to \operatorname{Sym}_A(M[1])$ are the structure morphisms).

Exercise 2.1.3. Let $A \in \mathrm{sCAlg}_k$ and let $M \in A\text{-Mod}^{\leq 0}$. Let $A \oplus M$ denote the split square-zero extension of A by M. Show that the diagram

$$\begin{array}{ccc} A \oplus M & \longrightarrow & A \\ \downarrow & & \downarrow^{d_0} \\ A & \stackrel{d_0}{\longrightarrow} & A \oplus M[1] \end{array}$$

is a homotopy pullback, where $d_0 \colon A \to A \oplus M[1]$ is the morphism classifying the zero derivation.

2.2 Modules

Exercise 2.2.1. Let A be a discrete commutative ring over k. Show that $M \in A\text{-Mod}^{\heartsuit}$ is finitely generated if and only if its associated corepresentable functor

$$\operatorname{Hom}_{A\operatorname{-Mod}^{\heartsuit}}(M,-)\colon A\operatorname{-Mod}^{\heartsuit}\to\operatorname{Set}$$

commutes with filtered colimits of monomorphisms.

Exercise 2.2.2. Let A be a discrete commutative ring over k. Show that $M \in A\text{-Mod}^{\circ}$ is finitely presented if and only if its associated corepresentable functor

$$\operatorname{Hom}_{A\operatorname{-Mod}^{\heartsuit}}(M,-)\colon A\operatorname{-Mod}^{\heartsuit}\to\operatorname{Set}$$

commutes with filtered colimits.

2.3 Cotangent complex 8

2.3 Cotangent complex

Exercise 2.3.1. Compute the cotangent complex of the following morphisms:

- 1. $k \to k[\varepsilon]/(\varepsilon^2)$, $\deg(\varepsilon) = 0$;
- 2. $k[X,Y] \to k[X,Y]/(Y^3 X^2);$
- 3. $k \to k[X,Y]/(Y^3 X^2)$.

Exercise 2.3.2. Find all the square-zero extensions (up to homotopy) of $R := k[\varepsilon]/(\varepsilon^2)$ by $k \simeq R/(\varepsilon)$. What happens if we replace k by k[n], $n \ge 0$?

Solution. We could work with the cotangent complex of $k \to k[\varepsilon]/(\varepsilon^2)$, as computed in Exercise 2.3.1. Instead, we work straight from the definition, in order to get a more explicit understanding of the extensions. Recall that square zero extensions up to homotopy are:

$$\pi_0 \operatorname{Map}_{cdga_{k}^{\leq 0}/k[\varepsilon]/(\varepsilon^2)} \left(k[\varepsilon]/(\varepsilon^2), k[\varepsilon]/(\varepsilon^2) \oplus k[1] \right). \tag{2.3.1}$$

Note that mapping spaces are *not* homotopy invariant; in order to obtain the correct answer, we need to take a cofibrant replacement of the first variable and a fibrant replacement of the second, in the category $cdga_k^{\leq 0}/k[\varepsilon]/(\varepsilon^2)$. Recall that the model structure on $cdga_k$ is obtained via transfer from the model structure on $Chain_k$; in particular:

- Fibrations are the same as those of the underlying complexes, i.e. the degree-wise surjections. All objects are fibrant.
- Cofibrations $f: A \to B$ are the morphisms such that B is quasi-free over A. The cofibrant objects are cdga's which are quasi-free over k.

Therefore, to describe the square-zero extensions given by 2.3.1, it suffices to take a k-free resolution of $k[\varepsilon]/(\varepsilon^2)$. This is accomplished by:

$$0 \longrightarrow k[\varepsilon] \xrightarrow{\varepsilon^2} k[\varepsilon] \longrightarrow 0.$$

Of course, one needs to check that this gives indeed a cdga.

- For |a| = |b| = 0, ab is ring multiplication in $k[\varepsilon]$.
- For |a| = 0, |b| = 1, ab is ring multiplication in $k[\varepsilon]$.
- For |a| = |b| = 1, |ab| = 2, so the only possibility is ab = 0.
- Let's check that multiplication by ε^2 satisfies the Leibniz rule. We do this for |a|=0, |b|=1:

$$\varepsilon^2(a) \cdot b + (-1)^{|a|} a \varepsilon^2(b) = 0 \cdot b + (-1)^0 a \varepsilon^2 b = \varepsilon^2(ab).$$

With this cofibrant model, we compute 2.3.1. These are maps between cdga's, and we identify them by their components:

$$k[\varepsilon] \xrightarrow{\varepsilon^2} k[\varepsilon]$$

$$\downarrow^p$$

$$k \xrightarrow{0} k[\varepsilon]/(\varepsilon^2).$$

But, since we are working in the comma category of cdga's over $k[\varepsilon]/(\epsilon^2)$, the map p is forced to be the canonical projection $k[\varepsilon] \to k[\varepsilon]/(\varepsilon^2)$. It follows that the only freedom is in choosing η . The constraints

2.3 Cotangent complex 9

on η are given by the fact that a morphism of cdga's must commute with the cdga multiplication, in the sense that, for |f| = 0 and |g| = 1, $\eta(fg) = p(f)\eta(g)$. In particular:

$$\eta(\varepsilon) = \eta(1 \cdot \varepsilon) = p(\varepsilon) \cdot \eta(1) = \varepsilon \cdot \eta(1) = 0,$$

because ϵ acts by 0 on $k = k[\epsilon]/(\epsilon)$. Similarly, $\eta(\epsilon^i) = 0$ for all i > 0. It follows that, if |g| = 1 with $g = \alpha_0 + \alpha_1 \epsilon + \dots$, then $\eta(g) = \lambda \alpha_0$, for some $\lambda \in k$. Thus, elements of 2.3.1 are classified by $\lambda \in k$.

To see the square-zero extensions explicitly, we need to compute the homotopy fiber products:

$$\begin{array}{ccc} A^{\eta} & & & & \\ \downarrow & & & \downarrow d_{\eta} \\ \downarrow & & & \downarrow d_{\eta} \\ k[\varepsilon]/(\varepsilon^{2}) & \xrightarrow{d_{0}} k[\varepsilon]/(\varepsilon^{2}) \oplus k[1]. \end{array}$$

Homotopy fiber products *are* homotopy invariant, so this is the same as computing the homotopy fiber products:

The advantage of using this model is that the maps on the right face of the cube are degree-wise surjections, hence fibrations, so it suffices to compute the naive fiber product. This gives:

$$A = k[\varepsilon] \oplus (\varepsilon)k[\varepsilon],$$

$$B = k[\varepsilon] \oplus (\varepsilon^2)k[\varepsilon],$$

$$\phi = (\varepsilon^2, \varepsilon^2).$$

Note first that ϕ is injective, so the homotopy fiber product is (cohomologically) concentrated in degree 0. In other words, it is quasi-isomorphic as cdga to:

$$0 \to 0 \to k[\varepsilon]/(\varepsilon^2) \oplus k \to 0.$$

It remains to see how the choice of $\lambda \in k$ determines the product structure on $k[\varepsilon]/(\varepsilon^2) \oplus k$. The claim is that we get:

$$(a + b\varepsilon, c) \cdot_{\lambda} (a' + b'\varepsilon, c') = (aa' + (a'b + ab')\varepsilon, \lambda bb' + ac' + ca')$$

Note that for $\lambda = 1$ this is just the ring multiplication in $k[\varepsilon]/(\varepsilon^3)$, so we recover the classical square-zero extension $k[\varepsilon]/(\varepsilon^3) \to k[\varepsilon]/(\varepsilon^2)$. (Todo: I actually don't understand how we get this product structure in degree 0, given that the only freedom is in the map η , which goes between the degree -1 parts.)

¹We point out that, had we not used a cofibrant replacement for $k[\varepsilon]/(\varepsilon^2)$, we would obtain (0,id) as the only map of cdga's; this corresponds to the zero derivation. This answer is clearly wrong, as it doesn't account for the square-zero extension $k[\varepsilon]/(\varepsilon^3) \to k[\varepsilon]/(\varepsilon^2)$.

Chapter 3

Derived stacks

Bibliography

- [1] Andrew J Blumberg, David Gepner, and Gonçalo Tabuada. A universal characterization of higher algebraic k-theory. *Geometry & Topology*, 17(2):733–838, 2013.
- [2] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc., New York, 1967.
- [3] Jacob Lurie. *Higher topos theory*, volume 170 of *Annals of Mathematics Studies*. Princeton University Press, Princeton, NJ, 2009.
- [4] Jean-Louis Verdier. Des catégories dérivées des catégories abéliennes. Astérisque, 1996.