Вычислительная математика

Весна 2020

Преподаватель Н.Б. Явич

Компьютерное задание №1 к 02/03/2020

Смоделируйте три периода свободных колебаний физического маятника с затуханием, описываемого уравнением,

$$l u''(t) + 2\lambda u'(t) + g \sin(u(t)) = 0,$$

 $u(0) = u_0, \qquad u'(0) = v_0.$

Период приближённо можно считать равным

$$2\pi\sqrt{\frac{l}{g}}$$
.

При моделировании следует выполнять по 10-20 шагов по времени τ на период. Параметры l,λ , g,u_0 и v_0 . возьмите по своему усмотрению, но неравными нулю. Для расчётов используйте явную схему Эйлера (EE) и схему Рунге-Кутты 4го порядка (RK).

Для **малых** колебаний вам хорошо известно точное решение (AN) из курса общей физики; запрограммируйте его. Результаты выведите на экран в виде таблицы приближённых и точных значений на каждом шаге: t_n , u_n^{EE} , u_n^{RK} , u_n^{AN} .

Указание: для приближённого решения, преобразуйте дифференциальное уравнение второго порядка к системе двух дифференциальных уравнений первого порядка.