Introduction to Image Processing

Lecture 1 16th Sept. 2015

Guillaume Lemaître guillaume.lemaitre@udg.edu

Université de Bourgogne

1 Human Vision
Human eye
Image formation in the eye
Brightness adaptation & discrimination

Digital Image Formation Sampling & quantisation

3 Pixel Relationships
Neighbours
Adjacency
Path
Subset & region
Distance measures

Human Vision Human eye

From the eye to a camera

Choroid

- Composed of blood vessels serving as source of nutrition
- ► Avoid the entrance of external light or backscatter
- ► See relation with physics experiments

Human Vision Human eye

From the eye to a camera

Ciliary body & iris

- ► Control the amount of light (2 mm to 8 mm)
- ► Relation with the camera aperture

Human Vision Human eye

From the eye to a camera

Lens

- Made of fibrous cells and attached to ciliary body
- ► Absorb 8 % of visible light and all the IR and UV
- Cataract diseases
- Idem to an optical lens

Human Vision Human eye

From the eye to a camera

Retina

- ► Contains 2 types of discrete light receptors: the cones and the rods
- Myopia & hyperopia

Human Vision Human eye

From the eye to a camera

Cones

- Account for about 6 to 7 million per eye
- Are sensitive to color and details
- Each one connected to a single nerve end
- Cone vision is called photopic and is sensitive to high levels of illumination
- ► Similar to a high frequency receptor

Human Vision Human eye

From the eye to a camera

Rods

- Account for 75 to 150 millions per eye
- Not involved in color
- ► Give a general and overall picture of the FOV
- Several rods connected to a single nerve end
- Sensitive to low levels of illuminations: scotopic
- Similar to a low frequency receptor

Human Vision Human eye

From the eye to a camera

Cones & Rods

- Symmetrically distributed
- Note the presence of the blind spot

Adapted after Østerberg, 1935

Human Vision Human eye

From the eye to a camera

Fovea

- ▶ Localisation of the cones in this area
- ▶ 1.5 mm × 1.5 mm
- ▶ 150,000 elts/mm² to 337,000 $elts/mm^2$
- CCD imaging ship would need a 5 mm × 5 mm to achieve similar density

Human Vision Image formation in the eye

- Focal length varies from 17 mm to 14 mm
- Perception takes place by the relative excitation of light receptors.
- ► The receptors transform this energy to electrical impulses

Human Vision

Human Vision Brightness adaptation & discrimination

Human visual system

- ► The human vision system (HVS) can adapt to 10¹⁰ light intensity levels
- Subjective brightness is a logarithmic function of the light intensity incident on the eve

- The HVS cannot operate over such a range simultaneously
- For a given set of conditions, the current sensitivity level is called brightness adaptation level

Human visual system

- The eye also discriminates between changes in brightness at any specific adaption level
- ► This is characterised by the Weber ratio

$$\frac{\Delta I_c}{I}$$
, (1)

where ΔI_c is the increment of illumination discriminable 50 % of the time and I is the background illumination

Human visual system

- ► Small values of Weber ration mean good brightness discrimination and vice versa
- ► At low levels of illumination brightness discrimination is poor (rods)
- ► It improves significantly as background illumination increases (cones)
- ▶ The typical observer can discern one to two dozen different intensity changes

Human visual system

- Overall intensity discrimination is broad due to different set of incremental changes to be detected at each new adaptation level
- Perceived brightness is not a simple function of intensity: Mach band effect, simultaneously contrast, and optical effect

Optical effect

Digital image formation

- f(x,y): intensity or brightness of a pixel at a position (x,y)
- $ightharpoonup 0 < f(x,y) < +\infty$

Digital image formation

ightharpoonup r(x,y): illumination — $[0,+\infty[$

Digital image formation

- ▶ r(x,y): illumination $[0,+\infty[$
- \blacktriangleright i(x,y): reflectance [0,1]

Digital image formation

- ightharpoonup r(x,y): illumination $[0,+\infty[$
- \blacktriangleright i(x, y): reflectance [0, 1]
- f(x,y) = r(x,y)i(x,y)

Example of reflectance

▶ Black velvet: 0.01

► Snow: 0.93

Example of illumination

► Sunny day: 9000 foot-candles

► Cloudy day: 1000 foot-candles

► Full moon: 0.01 foot-candles

In practise

ightharpoonup i(x,y) and r(x,y) are bounded

$$i_{\min}(x_0, y_0)r_{\min}(x_0, y_0) < f(x_0, y_0) < i_{\max}(x_0, y_0)r_{\max}(x_0, y_0),$$
 (2)

$$L_{\min} < f(x_0, y_0) < L_{\max}. \tag{3}$$

▶ $[L_{min}, L_{max}] \approx [10, 1000]$ — Shifted in [0, L-1]

In practise

ightharpoonup i(x,y) and r(x,y) are bounded

$$i_{\min}(x_0, y_0)r_{\min}(x_0, y_0) < f(x_0, y_0) < i_{\max}(x_0, y_0)r_{\max}(x_0, y_0),$$
 (2)

$$L_{\min} < f(x_0, y_0) < L_{\max}. \tag{3}$$

▶
$$[L_{min}, L_{max}] \approx [10, 1000]$$
 — Shifted in $[0, L-1]$

 \rightarrow What is the value for true white and black colors in an image?

Conversion from continuous to digital

- f(x, y) is a continuous function with regarding the coordinates and the amplitude
- ▶ Image sampling to refer to spatial coordinates
- Signal quantisation to digitise the amplitude

Sampling

Digital image

► Check the appendix notebook

Coordinate system convention

Digitisation requirements

► Set an height: *M*

► Set an width: *N*

▶ Set an intensity level: $L = 2^k$ and equally spaced

▶ Dynamic range : $\frac{L_{\min}}{L_{\max}}$

Parameter variations

N/k	1(L=2)	2 (L = 4)	3(L = 8)	4(L=16)	5 (L=32)	6 (L=64)	7(L=128)	8 (L = 256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

- ightarrow What is the best values regarding the resolution and dynamic range parameters?
 - Larger is better ...
 - ... storage and processing could be a problem

Isopreference curves

Non-uniform sampling and quantisation

Non-uniform sampling and quantisation

► Fine sampling in details region — coarse sampling in smooth region

Non-uniform sampling and quantisation

- ► Fine sampling in details region coarse sampling in smooth region
- ► Few gray levels in details regions more in smooth region

Neighours

4-neighbours — N₄-p

 0
 1
 1
 1
 0

 0
 1
 0
 0
 1

 0
 0
 1
 0
 0

 1
 0
 1
 1
 0

 0
 1
 1
 0
 1

D-neighbours — N_D-p

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

Neighours

4-neighbours — N₄-p

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

D-neighbours — N_D-p

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

0	1	1	1	0	
0	1	0	0	1	
0	0	1	0	0	
1	0	1	1	0	
0	1	1	0	1	

Neighours

4-neighbours — N₄-p

 0
 1
 1
 1
 0

 0
 1
 0
 0
 1

 0
 0
 1
 0
 0

 1
 0
 1
 1
 0

 0
 1
 1
 0
 1

D-neighbours — N_D-p

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

	0	1	1	1	0
Γ	0	1	0	0	1
Γ	0	0	1	0	0
ľ	1	0	1	1	0
Γ	0	1	1	0	1
_					

Neighours

4-neighbours — N₄-p

 0
 1
 1
 1
 0

 0
 1
 0
 0
 1

 0
 0
 1
 0
 0

 1
 0
 1
 1
 0

 0
 1
 1
 0
 1

D-neighbours — N_D-p

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

Adjacency

Let denotes $V=\{1\}$ defining the adjacency

4-adjacency

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

8-adjacency

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

Adjacency

Let denotes $V=\{1\}$ defining the adjacency

4-adjacency

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

8-adjacency

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

Adjacency

Let denotes $V=\{1\}$ defining the adjacency

4-adjacency

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

8-adjacency

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

Adjacency

Let denotes $V=\{1\}$ defining the adjacency

4-adjacency

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

8-adjacency

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1
	a ∈	N ₄ (n)	

Adjacency

Let denotes $V=\{1\}$ defining the adjacency

4-adjacency

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

8-adjacency

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1
$a \in N_D(p)$				

Adjacency

Let denotes $V=\{1\}$ defining the adjacency

4-adjacency

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

8-adjacency

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

0	1	1	1	0	
0	1	0	0	1	
0	0	1	0	0	
1	0	1	1	0	
0	1	1	0	1	
		()	A B I I		

 $q \in N_D(p) \text{ AND}$ $N_4(p) \cap N_4(q) \notin V$

Adjacency

Let denotes $V=\{1\}$ defining the adjacency

4-adjacency

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

8-adjacency

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

0	1	1	1	0
0	1	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	1	0	1

Path

0	1	1	1	0
0	1	0	0	1
0	1	1	0	0
1	0	1	1	0
0	1	1	1	1

Path

m-path

0	1	1	1	0
0	1	0	0	1
0	1	1	0	0
1	0	1	1	0
0	1	1	1	1

▶ if $(x_{init}, y_{init}) = (x_{end}, y_{end}) \rightarrow closed path$

Subset

- ▶ p and q are connected in the subset S if there is a path in with all the pixels belonging to S
- ► For any pixel p in S, the set of pixels in S that are connected to p is a *connected component* of S
- ▶ If S has only one connected component then S is called a connected set

Region

- ▶ R is a subset of pixels: R is a region if R is a connected set
- ▶ Region can be adjacent or disjoint

Pixel Relationships Distance measures

Definition

For pixels p, q, z with coordinates (x, y), (s, t), (u, v), D is a distance function or metric if:

- ▶ $D(p,q) \ge 0 \ (D(p,q) = 0 \ \text{iff} \ p = q)$
- ▶ D(p,q) = D(q,p) and
- $D(p,z) \leq D(p,q) + D(q,z)$

Pixel Relationships Distance measures

Euclidean distance

For pixels p, q, z with coordinates (x, y), (s, t), (u, v):

•
$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

D₄ distance

►
$$D_4(p,q) = |x-s| + |y-t|$$

D₈ distance

►
$$D_8(p,q) = \max(|x-s|,|y-t|)$$

D_m distance

► Shortest *m*-path considering the *m*-adjacency