

ACM SAC '19 - Privacy by Design in Practice Track (PDP)

Mind Your Wallet's Privacy

Identifying Bitcoin Wallet Apps and User's Actions through Network Traffic Analysis

Fabio Aiolli, Mauro Conti, **Ankit Gangwal**, Mirko Polato Department of Mathematics, University of Padua, Italy

Table of contents

- 1. Introduction
- 2. Smartphone, app, and action selection
- 3. Classifier design
- 4. Equipment setup
- 5. Evaluation
- 6. Future works
- 7. References

Introduction

- Bitcoin [1] offers pseudo-anonymity, which is, unfortunately, being exploited to commit several financial frauds.
 - E.g., ransomware campaigns.

Our work primarily aims to identify/filter smartphone-based Bitcoin wallet users.

- We use network traffic analysis using machine learning techniques to achieve our goals.
 - The governments can ask telecom operators to identify/filter Bitcoin wallet users using our approach, which can assist in the hunt of cyber-criminals.

[1] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," https://bitcoin.org/bitcoin.pdf, 2008.

3/20

Introduction

Our approach works even when the payload is encrypted.

- Using network traffic analysis, we identify:
 - If a user is using a Bitcoin wallet app or not?
 - If so, then which app the user is using?
 - What actions they performing on these apps?
 - Sending, receiving, etc.

 Our work can be extended to other categories of smartphone apps to further improve user profiling.

Smartphone, app, and action selection

According to Gartner [2], Android and iOS devices together accounted for 99.9% of all smartphone sales by the end of the year 2017. Hence, in our study, we used both Android and iOS devices.

For the apps, we chose the worldwide most downloaded [3] Bitcoin wallet apps on both Google Play Store and Apple's App Store in the year 2017.

For non-Bitcoin apps, we chose the top-10 apps along with additional 20 Internet-dependent apps from each store.

5/20

^[2] gartner.com/newsroom/id/3859963

^[3] sensortower.com/blog/bitcoin-wallet-app-growth

Smartphone, app, and action selection

We found seven classes of actions relevant to Bitcoin transactions.

- The most important (and common across each app) actions for Bitcoin transactions are:
 - a. Send Bitcoin,
 - b. Receive Bitcoin,
 - c. Open the app (sync data).

	Action						
Арр	Open app	Receive Bitcoin	Send Bitcoin	Generate addresses	In-app buy/sell	Transaction history	Check balance
BTC.com	/	/	/	Х	4	*	*
BitPay	1	1	1	1	1	*	*
Bitcoin Wallet (Bitcoin Wallet Devs)	1	1	1	х	x	*	*
Bitcoin Wallet (Bitcoin.com)	1	1	1	1	Ð	*	*
Blockchain	1	1	1	X	/	*	*
Bread	1	1	1	X	1	*	*
Coinbase	1	1	1	×	/	*	*
Copay	/	/	1	1	/	*	*
Luno	1	1	1	X	1	*	+
Mycelium	1	1	1	×	4	*	*
Unocoin	/	1	1	X	1	*	*
Wirex	/	/	/	X	/	*	*
Xapo	1	1	1	×	/	*	*
Zebpay	1	1	1	Х	1	*	*

 [✓] Available X Not available * On app's home ♣ Under individual wallet/currency

[♣] Under dedicated menu for wallets' summary ❖ Under dedicated menu for transaction history

[₹] Redirects to an external website, leaving the app

- Our classification procedure consists of the following steps:
 - a. Data preprocessing
 - b. Feature selection
 - c. Machine learning
 - d. Training & prediction

Data preprocessing

- To handle network traffic traces via machine learning models, we need to perform a preprocessing step, which includes:
 - a. Network trace capture
 - b. Traffic burstification (time/threshold based)
 - c. Flows separation

(a) Network traces capture: different colors represent different applications.

(b) Traffic *burstification*: traces are split into bursts.

(c) Flows separation: for each burst, different flows are separated by means of the pairs of source-destination IPs.

Feature selection

 Now, we convert the flows into training instances using following 12 statistics: length of the series, minimum, maximum, mean, median, mode, variance, skewness, kurtosis, and percentile (25%, 50% and 75%).

• These statistics are computed for: the entire sequence, incoming packets only, and for the outgoing packets only. Hence, the resulting instance has a dimension of 36 (12 × 3).

Machine learning

- We employed two most successful machine learning methods for classification:
 - a. Random Forest (RF)
 - b. Support Vector Machine (SVM)

Training & prediction

- Training: We tackle our problem at different levels. We identified the following layers of classification:
 - a. Classify whether the instance represents a flow of a Bitcoin app;
 - b. If so, classify whether it belongs to an Android app or an iOS app;
 - c. If it has been categorized as Android/iOS app, classify specific app;
 - d. Given the app from the previous step, finally, classify the specific action.

Training & prediction

- Training: We tackle our problem at different levels. We identified the following layers of classification:
 - a. Classify whether the instance represents a flow of a Bitcoin app;
 - b. If so, classify whether it belongs to an Android app or an iOS app;
 - c. If it has been categorized as Android/iOS app, classify specific app;
 - d. Given the app from the previous step, finally, classify the specific action.

- Prediction: Given a new instance to classify, the prediction is performed using the same steps as in the training phase.
 - Clearly, if a wrong prediction is made in one step, all the following steps will also be wrong.

Equipment setup

- The workstation was equipped with two Ethernet-based (NICs):
 - One for connecting it to the Internet,
 - The other one for connecting it to the Wi-Fi AP

The workstation was configured to forward traffic between Wi-Fi
AP and the Internet.

• The smartphones were provided (only one at a time) the Internet via Wi-Fi AP.

Equipment setup

- User actions were simulated on the smartphones using scripted-commands sent via USB or automation.
 - For Android, we used Android Debug Bridge (adb),
 - For iOS, we used Alloy 2.1.1 app that allows to automate the device without jailbreaking it.

 The generated network traffic was captured on the workstation using Wireshark 2.2.6; we discarded the packet's payload.

Evaluation

Evaluation settings

- We performed two different experiments:
 - a. **Single classifier assessment:** in this setting, each single classifier is tested independently from the others.
 - b. **Full stack classification:** in this setting, the classification is performed following the full-sequence of classification.

 We repeated each experiment 10 times with a stratified 5-fold cross validation on 90-10% training and test splits of our dataset containing a total of 2362 instances.

HIT IN THE RESERVE THE RESERVE

Results - Single classifier assessment

Bitcoin vs. non-Bitcoin app classification

Method	Accuracy	Precision	Recall	F1
RF	0.977 ± 0.005•	0.977 ± 0.005	0.973 ± 0.005•	0.975 ± 0.005
SVM	0.930 ± 0.01	0.922 ± 0.01	0.923 ± 0.01	0.922 ± 0.02

App's OS classification

Method	Accuracy	Precision	Recall	F1
RF	0.984 ± 0.01•	0.984 ± 0.01•	0.983 ± 0.01	0.983 ± 0.01•
SVM	0.956 ± 0.01	0.955 ± 0.02	0.955 ± 0.02	0.955 ± 0.02

Bitcoin app classification on Android

Method	Accuracy	Precision	Recall	F1
RF	0.966 ± 0.01•	0.968 ± 0.01•	0.968 ± 0.01•	0.968 ± 0.01
SVM	0.945 ± 0.02	0.948 ± 0.02	0.948 ± 0.02	0.948 ± 0.02

Evaluation

Results - Single classifier assessment

Classification of user actions in Bitcoin apps on Android

Method	Bitcoin Wallet (Bitcoin.com)	BTC.com	Coinbase	Mycelium	
RF	0.8 ± 0.15	0.98 ± 0.03•	0.991 ± 0.01	0.971 ± 0.03•	
SVM	0.85 ± 0.1•	0.975 ± 0.03	0.988 ± 0.02	0.958 ± 0.05	

Bitcoin app classification on iOS

Method	Accuracy	Precision	Recall	F1
RF	0.962 ± 0.02•	0.964 ± 0.02•	0.963 ± 0.02•	0.963 ± 0.02•
SVM	0.935 ± 0.02	0.938 ± 0.02	0.935 ± 0.02	0.935 ± 0.02

Classification of user actions in Bitcoin apps on iOS

Method	Bitcoin Wallet (Bitcoin.com)	BitPay	Blockchain	Bread	Copay
RF	1.0 ± 0.0•	1.0 ± 0.0	0.920 ± 0.02	0.943 ± 0.03	1.0 ± 0.0
SVM	1.0 ± 0.0•	1.0 ± 0.0	0.911 ± 0.03	0.958 ± 0.04	1.0 ± 0.0

Evaluation

Results - Full stack classification

(b) iOS

Future works

 In the future, we will investigate the security and privacy implication of transacting on such apps by considering a stronger adversary model.

 We will also explore the possibility to de-anonymize financial transaction placed via wallet apps.

References

- 4. M. Conti, A. Gangwal, and S. Ruj. 2018. "On the Economic Significance of Ransomware Campaigns: A Bitcoin Transactions Perspective," in Elsevier Computers & Security 79 (2018), 162–189.
- 5. G. Ateniese, B. Hitaj, L. V. Mancini, N. V. Verde, and A. Villani. "No Place to Hide that Bytes won't Reveal: Sniffing Location-Based Encrypted Traffic to Track a User's Position," in Springer Network & System Security 9408 (2015), 46–59.
- 6. X. Cai, X. Zhang, B. Joshi, and R. Johnson. "Touching From a Distance: Website Fingerprinting Attacks and Defenses," in 19th ACM Computer and Communications Security (2012), 605–616.
- 7. Q. Wang, A. Yahyavi, B. Kemme, and W. He. "I Know What You Did on Your Smartphone: Inferring App Usage over Encrypted Data Traffic," in 3rd IEEE Communications and Network Security (2015), 433–441.
- 8. M. Liberatore and B. Neil Levine. "Inferring the Source of Encrypted HTTP Connections," in 13th ACM Computer and Communications Security (2006), 255–263.
- 9. V. N. Vapnik. "The Nature of Statistical Learning Theory," Springer (1995) NY, USA.

Thank you!