(CURRENTLY AMENDED) A composition comprising a pharmaceutically acceptable formulation of formula 1

$$R_6$$
 R_7
 R_7
 R_7

Formula 1

wherein

Ra is C1-C10 alkvl:

 $R_4 \text{ to } R_7 \text{ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C1-C10 alkyl, C1-C10 aryl, -SO_3T, -CO_2T, -OH, -(CH_2)_sCO_3T, -(CH_2)$

Y₁ is independently selected from the group consisting of G-1-G-10-pelyalkexyalkyl, C5-C20 polyhydroxyaryl, saccharides, G-1-G-10-aminealkyl, hydrophilic peptides, arylpolysulfonates, G-1-G-10-aryl, +(GH₂)₀COS₀, +(GH₂)₀NHSO₃T, +(GH₂)₀COS₀(GH₂)₀SO₃T, +(GH₂)₀COC(GH₂)₀SO₃T, +(GH₂)₀COC(GH₂)₀SO₃T, +(GH₂)₀CONH(GH₂)₀SO₃T, +(GH₂)₀NHCONH(GH₂)₀SO₃T, +(GH₂)₀NHCONH(GH₂)₀SO₃T, +(GH₂)₀NHCONH(GH₂)₀SO₃T, +(GH₂)₀NHCONH(GH₂)₀SO₃T, +(GH₂)₀NHCONH(GH₂)₀SO₃T, +(GH₂)₀NHCONH(GH₂)₀SO₃T, +(GH₂)₀NHCONH(GH₂)₀SO₃T, +(GH₂)₀NHCONH(GH₂)₀SO₃T, +(GH₂)₀CO₂(GH₂)₀PO₃T₂, +(GH₂)₀COC(GH₂)₀PO₃T₂, +(GH₂)₀COC(GH₂)₀PO₃T₂, +(GH₂)₀COC(GH₂)₀PO₃TT, +(GH₂)₀COC(GH₂

-(CH₂)_BNHCO(CH₂)_BPO₃T₂, -(CH₂)_BNHCONH(CH₂)_BPO₃HT, -(CH₂)_BNHCONH(CH₂)_BPO₃T₂, -(CH₂)_BNHCSNH(CH₂)_BPO₃HT, -(CH₂)_BNHCSNH(CH₂)_BPO₃T₂, -(CH₂)_BOCONH(CH₂)_BPO₃HT, -(CH₂)_BOCONH(CH₂)_BPO₃T₂, -CH₂(CH₂-O-CH₂)_C-CH₂-OH, <u>and</u> -(CH₂)_B-N(R_B)-(CH₂)-CO₂T, and-(CH₂)_B-CH₂

W₁ is -CR₂R₄:

a, b, d, f, h, i, and j independently vary from 1-10;

c, e, g, and k independently vary from 1-100;

Ra, Rb, Rc, and Rd are defined in the same manner as Y1; and

T is either H or a negative charge.

2-3. (CANCELED)

 (WITHDRAWN) A method for performing a diagnostic procedure which comprises administering to an individual an effective amount of a composition comprising formula 1

$$R_6$$
 R_7
 R_7
 R_7

Formula 1

wherein R_3 to R_7 , and Y_1 are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, C1-C10 aminoalkyl, oyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C6-C10 alkyl, C1-C10 aryl, $-SO_3T$, $-CO_2T$, -OH, $-(CH_2)_bSO_3T$, $-(CH_2)_b$

- $(CH_2\cdot C-CH_2)_0\cdot CH_2\cdot NH_2\cdot -(CH_2)_n\cdot N(R_0)+(CH_2\cdot CO_2T, and -(CH_2)_n\cdot N(R_0)+CH_2-(CH_2\cdot C-CH_2)_n\cdot CH_2\cdot CO_2T,$ W_1 is selected from the group consisting of $-CR_0R_0$, $-O_1$ and $-NR_0$; a, b, d, f, h, i, and j independently vary from 1-10; c, e, g, and k independently vary from 1-100; R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 . T is either H or a negative charge.
- 5. (WITHDRAWN) The method for performing the diagnostic or therapeutic procedure of claim 4 which comprises administering to an individual an effective amount of the composition wherein R₃ to R₇, and Y₁ are independently selected from the group consisting of C1-C5 alkoxyl, C1-C5 polyalkoxyalkyl, C1-C10 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, mono- and disaccharides, nitro, hydrophilic peptides, arylpolysulfonates, C1-C10 aryl, -SQ₃T, -CQ₂T, -OH, -(CH₂)₈SQ₃T, -(CH₂)₈NHSQ₃T, -(CH₂)₈CQ₂(CH₂)₈SQ₃T, -(CH₂)₈CO(C(C1)₂)₈SQ₃T, -(CH₂)₈CO(C(C1)₂)₈SQ₃T, -CH₂(CH₂-C-CH₂)₈-CH₂-CH₂-CH₂-CH₂-CCH₂)₈-CH₂-CH₂-CH₂-CCH₂)₈-CH₂-CH₂-CCH₂)₈-CH₂-CH₂-CCH₂)₈-CH₂-CH₂-CCH₂)₈-CH₂-CH₂-CCH₂)₈-CH₂-CCH₂-CCH₂)₈-CH₂-CCH₂-CCH₂)₈-CH₂-CCH₂-CCH₂)₈-CH₂-CCH₂-CCH₂)₈-CH₂-CCH₂-CCH₂-CCH₂-CCH₂-CCH₂)₈-CH₂-C
- 6. (WITHDRAWN) The method for performing the diagnostic or therapeutic procedure of claim 5 which comprises administering to an individual an effective amount of the composition wherein each R₃, R₄, R₆ and R₇ is H, R₅ is SO₃T, Y₁ is -(CH₂)₂SO₃T; W₁ is -C(CH₃)₂; T is a negative charge.
- 7. (WITHDRAWN) The method of claim 4 wherein said procedure utilizes light of wavelength in the region of 350-1300 nm.
- (WITHDRAWN) The method of claim 4 wherein said diagnostic procedure comprises
 monitoring a blood clearance profile by fluorescence wherein light of wavelength in the region of
 350 to 1300 nm is utilized.
- (WITHDRAWN) The method of claim 4 wherein said diagnostic procedure comprises
 monitoring a blood clearance profile by absorption wherein light of wavelength in the region of
 350 to 1300 nm is utilized.
- 10. (WITHDRAWN) The method of claim 4 wherein said procedure is for physiological function monitoring.

- 11. (WITHDRAWN) The method of claim 10 wherein the diagnostic procedure is for renal function monitoring.
- 12. (WITHDRAWN) The method of claim 10 wherein the diagnostic procedure is for cardiac function monitoring.
- 13. (WITHDRAWN) The method of claim 10 wherein the diagnostic procedure is for kidney function monitoring.
- 14. (WITHDRAWN) The method of claim 10 wherein the diagnostic procedure is for determining organ perfusion in vivo.
- 15. (CANCELED)
- 16. (WITHDRAWN) A method for performing a diagnostic procedure which comprises administering to an individual an effective amount of formula 1

$$R_6$$
 R_7
 R_7
 R_8

Formula 1

wherein R_3 to R_7 , and Y_1 are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, C1-C10 aminoalkyl, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C6-C10 alkyl, C1-C10 aminoalkyl, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C6-C10 alkyl, C1-C10 aryl, -SO_3T, -CC2, -OH, -(CH2)_aSO_3T, -(CH2)_aSO_3T, -(CH2)_aSO_3T, -(CH2)_aSO_3T, -(CH2)_aSO_3T, -(CH2)_bSO_3T, -(CH2)_bSO_3T, -(CH2)_bSO_3T, -(CH2)_bSO_3T, -(CH2)_bNHCONH(CH2)_bSO_3T, -(CH2)_bNHCSNH(CH2)_bSO_3T, -(CH2)_bNHCONH(CH2)_bSO_3T, -(CH2)_bCONH(CH2)_bSO_3T, -(CH2)_bCONH(CH2)_bPO_3T2, -(CH2)_bCONH(CH2)_bPO_3T2, -(CH2)_bCONH(CH2)_bPO_3T2, -(CH2)_bCONH(CH2)_bPO_3T2, -(CH2)_bCONH(CH2)_bPO_3T2, -(CH2)_bNHCONH(CH2)_bPO_3T2, -(CH2)_bNHCONH(C

-CH₂(CH₂-O-CH₂)_e-CH₂-OH, -(CH₂)_e-CO₂T, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)-NH₂, -CH₂-C(CH₂-O-CH₂)_e-CH₂-CO₂T, and -(CH₃)-N(R₆)-CH₂-CO-CH₂)_e-CH₂-CO₂T, w₁ is selected from the group consisting of -CR_cR_e, -O₇-NR_e, and -S-; a, b, d, f, h, i, and j independently vary from 1-10; c, e, g, and k independently vary from 1-10; R_a, R_b, R_a, and R_d are defined in the same manner as Y₁; T is either H or a negative charge; with the proviso that when W₁ is -S₇-R₂-R₇ are not -H or C1-C10 alkyl; and Y₁ is not -H.

17. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein R₃ is C₁ alkyl.

18. CANCELED

19. (PREVIOUSLY PRESENTED) The composition of claim 17 wherein each of R_4 to R_7 is independently -H or -SO₃T.

20-22, CANCELED

23. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein each of R_4 to R_7 is independently -H or -SO₄T.

24-26. CANCELED