Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on a separate sheet of paper.

3. zyBooks
$$7.3.1$$
 (a), (b), (e), (f), and (g).

6. zyBooks 7.3.3

Consider the following algorithm for counting the triangles in a symmetric, non-reflexive graph.

Algorithm 1: Triangle counting

7. Analyze the algorithm Triangle counting and express the total number of additions, multiplications, and comparisons required for an $n \times n$ matrix as a function of n.

```
Solution: f(n) = n^2 + 2n^3 + n^2 + 2n^2 = 2n^3 + 4n^2

n^2 comparisons for triu.

n^3 multiplications and additions for matrix multiplication.

n^2 multiplications for Hadamard product.

n^2 comparisons and additions for counting ones.
```

8. Prove that this algorithm is $\Theta(n^3)$.

Solution:

Proof. Let c = 6 and $n_0 = 1$.

For $n \ge 1$, $n^3 \ge n^2$, so

$$2n^3 + 4n^2 \le 2n^3 + 4n^3 = 6n^3$$

Therefore for n > 1, $f(n) < 6n^3$.

$$f = O(n^3).$$

Proof. Let c=2 and $n_0=1$.

Since n is positive, the $4n^2$ term in f(n) is also positive. The positive terms can be dropped from the expression $2n^3 + 4n^2$ and the resulting expression is smaller, so

$$2n^3 + 4n^2 \ge 2n^3$$
.

Therefore for n > 1, $f(n) > 2n^3$.

$$f = \Omega(n^3).$$