Diskretna matematika

Zadaci za vježbu - drugi ciklus 2008/2009

1.	Nađite sve	Pitagorine	trokute	kojima je	e jedna	stranica	jednal	ка
	a) 15·							

- a) 15;
- b) 20;
- c) 29;
- d) 38.
- 2. Odredite razvoj u jednostavni verižni razlomak broja
 - a) $\frac{51}{97}$;
 - b) $\frac{101}{31}$;
 - c) $\frac{58}{269}$.
- 3. Odredite razvoj u jednostavni verižni razlomak broja
 - a) $\sqrt{23}$;
 - b) $\sqrt{47}$;
 - c) $\sqrt{57}$.
- 4. Nađite najmanje rješenje u prirodnim brojevima Pellove jednadžbe $x^2-71y^2=1.$
- 5. Nađite sva rješenja Pellove jednadžbe $x^2-146y^2=1$ za koja vrijedi1 < x < 100000.
- 6. Neka je X skup svih funkcija $f:S\to G$ sa skupa S u grupu (G,\cdot) . Na X je definirana binarna operacija * na sljedeći način:

$$(f * g)(s) = f(s) \cdot g(s), \quad f, g \in X, s \in S.$$

Dokažite da je (X,*) grupa.

- 7. Odredite red
 - a) elementa i u grupi (\mathbb{C}^*, \cdot);
 - b) elementa 4 u grupi $(\mathbb{Z}_6, +_6)$;
 - c) elementa 4 u grupi $(\mathbb{Z}_7, +_7)$;
 - d) elementa 4 u grupi $(\mathbb{Z}_7^*, \cdot_7)$.
- 8. Neka je H normalna podgrupa grupe Gi neka su $a,b\in G.$ Dokažite da vrijedi:

$$ab \in H \iff ba \in H.$$

- 9. Jesu li grupe $(\mathbb{Z}, +)$ i $(2\mathbb{Z}, +)$ izomorfne?
- 10. Jesu li grupe \mathbb{Z}_{12} i $\mathbb{Z}_2 \times \mathbb{Z}_6$ izomorfne?
- 11. Neka je (\mathbb{Q}^*,\cdot) multiplikativna grupa racionalnih brojeva različitih od nule, te neka je $\varphi:\mathbb{Q}^*\to\mathbb{Q}^*$ preslikavanje zadano sa $\varphi(x)=x^2$. Dokažite da je φ homomorfizam grupa, te odredite jezgru Ker φ i sliku Im φ .
- 12. Dokažite da brojevi oblika $a+b\sqrt{5}$, $a,b\in\mathbb{Q}$, uz uobičajeno zbrajanje i množenje, čine polje. Odredite inverz, obzirom na množenje, elementa $x=2-3\sqrt{5}$. Je li to polje izomorfno polju racionalnih brojeva $(\mathbb{Q},+,\cdot)$?
- 13. Dokažite da matrice oblika $\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}$, gdje su a i b racionalni brojevi, uz uobičajeno zbrajanje i množenje matrica, čine polje.
- 14. Dokažite da je polinom $g(t) = t^3 + t + 1$ ireducibilan nad \mathbb{Z}_2 . Nađite jedan generator multiplikativne grupe \mathbb{F}_8^* polja \mathbb{F}_8 reprezentiranog kao $\mathbb{Z}_2[t]/(g(t))$. Odredite inverz elementa a = t + 1 u \mathbb{F}_8^* .