

Radioactivity GCSE overview

<u>isaacphysics.org</u> <u>https://isaacphysics.org/pages/remote_learning</u>

Atomic models

Plum pudding

Nuclear

Energy levels

Scattering

Alpha particles fired at the atom usually did not deflect. A small number were bounced back.

Spectra

Light absorbed or emitted by atoms was at specific frequencies.

Neutrons

Neutral particles of similar mass to the proton were discovered in nuclei

Meet the atom

Particle	Charge	Mass
Proton	+1	1
Neutron	0	≈1
Electron	-1	0.0005

Same element Different mass ISOTOPES

Mass of nucleus (or atom) approx. proportional to number of neutrons and protons (mass number)

Charge of nucleus proportional to number of protons (atomic number)

Nuclide practice

1. How many protons, neutrons and electrons are there in these nuclides? ${}_{1}^{2}H$, ${}_{1}^{3}H$, ${}_{8}^{15}O$, ${}_{26}^{56}Fe$, ${}_{92}^{238}U$

- 2. Write the symbol for the isotope of...
 - a) carbon (6) with 7 neutrons
 - b) hydrogen (1) with no neutrons
 - c) neon (10) with mass number of 21

Ionizing radiation

When ionizing radiation passes another atom, it will take out electrons. The atom's chemistry will be altered.

Unstable nucleus

This makes ionizing radiation harmful to life

Irradiation and Contamination

- > Irradiation is when you receive ionizing radiation from a source. In general, this will not make you radioactive, and your dose will end once the source is not near you.
- Contamination is when a part of the source sticks to you, or is inhaled, consumed or otherwise becomes part of you. If this happens, you do become radioactive.

Background radiation

Radiation in the environment which is not related to the experiment we are doing. Dose is measured in sieverts (Sv)

Sources of background radiation (with typical annual doses) for a person in the UK include

- 1.3mSv radon (radioactive gas coming up through rocks)
- 0.4mSv rocks (especially igneous rocks like granite)
- 0.4mSv medical uses of radioactivity
- 0.3mSv food and drink
- 0.3mSv the Sun, and cosmic radiation (from outside the solar system)
- 0.01mSv fallout from the testing of nuclear weapons & nuclear accidents

Sources: Nuclear Industry Association and UK Radioactive Waste Inventory for fractions, gov.uk for totals.

Background correction

The number of decays each second is the activity.

Activity is measured in becquerel (Bq).

Example: Before an experiment is done, the background radiation gives 30 counts in 120s. During an experiment, 120 counts are measured in one minute

Types of radiation

	What it is	Range in air	Stopped by	Ionizing?
Alpha	helium nucleus (2p+2n)	5cm	paper skin	very
Beta	high energy electron	1m	1cm Al	moderately
Gamma	high freq. electromag. wave	far	few cm Pb	weakly

Nuclear equation practice

Write the equations for the following decays

1. Beta decay of ³H to helium (He)

2. Alpha decay of $^{238}_{92}$ U to thorium (Th)

3. Gamma decay of $^{60}_{27}$ Co

Uses of radiation

- > Smoke alarm
 - alpha particles ionize air, enabling it to conduct electricity
 - smoke from a fire stops the current, triggering the alarm
- Medical diagnosis (investigation)
 - usually a small quantity of a gamma emitter is injected into the patient, attached to a suitable molecule
 - ideal half life is about 6 hours
 - special cameras can monitor where it goes in the body
- Medical therapy (treatment)
 - cancerous cells have higher metabolic rate than healthy ones
 - targeting beams of gamma rays kills them more easily (radiotherapy)

Half life

Radioactive decay is a random process

You can not predict when a nucleus will decay

With many billions of nuclei in a sample, you can predict when half of them will have decayed – the half life.

The number of nuclei (and the activity) halves with each half life.

Half life practice

1. The half life of tritium $\binom{3}{1}H$) is 12 years. If the background corrected count is 360 counts/min today, what would you expect it to be in 24 years time?

2. The half life of ${}^{99}_{43}Tc$ is 6.0 hours. With background of 10counts/min, and current count of 60counts/min, what will count be in 6.0 hours time?

Fission

Some nuclei, such as uranium, split after absorbing a neutron Neutrons are given out, which can trigger more reactions All particles given out have high kinetic energy

Nuclear reactor

Control rods - inserting them deeper between the fuel rods decreases the reaction rate.

Water
moderator and
coolant convects
around the fuel
rods, slowing
neutrons and
heating up

Fuel rods - contain uranium-235 and uranium-238. Enriched fuels contain a greater proportion of uranium-235

Fusion

Helium

Two small nuclei (hydrogen) join to make a larger nucleus

Particles come out with high kinetic energy

Once stationary, products have less mass than reactants

Reaction requires high temperatures to overcome repulsion of reactants

Links

GCSE Topic Revision

https://isaacphysics.org/pages/
gcse_topic_index#gcse_revision

Consolidation Programme

https://isaacphysics.org/pages/ summer_programmes_2021