A Bitmapper's Companion

epilys November 28, 2021

an introduction
to basic bitmap
mathematics
and algorithms
with code
samples in **Rust**

Table Of Contents	4	toe
Introduction	7	intro
Points And Lines	20	lines
Points and Line Segments	38	segments
Points, Lines and Circles	47	circles
Curves other than circles	56	curves
Points, Lines and Shapes	60	shapes
Vectors, matrices and transformations	71	transfor- mations
Advanced	94	ad- vanced

https://github.com/epilysepilys@nessuent.xyz

All non-screenshot figures were generated by hand in Inkscape unless otherwise stated.

The skull in the cover is a transformed bitmap of the skull in the 1533 oil painting by Hans Holbein the Younger, *The Ambassadors*, which features a floating distorted skull rendered in anamorphic perspective.

A Bitmapper's Companion, 2021

Special Topics ► Computer Graphics ► Programming

006.6'6-dc20

Copyright © 2021 by Emmanouil Pitsidianakis

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

The source code for this work is available under the GNU GENERAL PUBLIC LICENSE version 3 or later. You can view it, study it, modify it for your purposes as long as you respect the license if you choose to distribute your modifications.

The source code is available here

https://github.com/epilys/bitmappers-companion

Contents

I	Introduction	9			
1	Data representation	11			
2	Displaying pixels to your screen	13			
3	Bits to byte pixels	15			
4	Real pixels to byte pixels	17			
5	Loading xbm files in Rust	19			
II	Points And Lines	21			
6	Distance between two points	23			
7	Equations of a line	25			
	7.1 Line through a point $P = (x_p, y_p)$ and a slope m	25			
	7.2 Line through two points	26			
8	Distance from a point to a line	29			
	8.1 Using the implicit equation form	29			
	8.2 Using an L defined by two points P_1, P_2	29			
	8.3 Using an L defined by a point P_l and angle θ	30			
9	Angle between two lines	31			
10	Intersection of two lines	33			
11	Line equidistant from two points	35			
12	Normal to a line through a point 37				

III	Points And Line Segments	39			
13	Drawing a line segment from its two endpoints	41			
14	Drawing line segments with width				
15	Intersection of two line segments	45			
]	15.1 <i>Fast</i> intersection of two line segments	45			
IV	Points, Lines and Circles	49			
16	Equations of a circle	53			
17	Bounding circle	55			
\mathbf{V}	Curves other than circles	57			
18	Parametric elliptical arcs	59			
VI	Points, Lines and Shapes	61			
19	Union, intersection and difference of polygons	63			
20	Centroid of polygon	65			
21	Flood filling	67			
VII	Vectors, matrices and transformations	73			
22	Rotation of a bitmap	75			
2	22.1 Fast 2D Rotation	79			
23	90° Rotation of a bitmap by parallel recursive subdivision	81			
24	Magnification/Scaling	83			
2	24.1 Smoothing enlarged bitmaps	85			
2	24.2 Stretching lines of bitmaps	86			
25	Mirroring	89			
26	Shearing	91			
27	27 Projections				

CONTENTS 7

V		Advanced	95	
	27.1	Faster Drawing a line segment from its two endpoints using Sym-		
		metry	97	
28	Jo	ining the ends of two wide line segments together	99	
29	Co	mposing monochrome bitmaps with separate alpha channel data	101	
30	Orthogonal connection of two points			
31	31 Join segments with round corners			
32	Fa	ster line clipping	107	
33	Sp	ace-filling Curves	109	
	33.1	Hilbert curves	110	
	33.2	Peano curves	112	
	33.3	Z-order curves	113	
Inc	dex		115	

Part I Introduction

Data representation

The data structures we're going to use is *Point* and *Image*. *Image* represents a bitmap, although we will use full RGB colors for our points therefore the size of a pixel in memory will be u8 instead of 1 bit.

We will work on the cartesian grid representing the framebuffer that will show us the pixels. The *origin* of this grid (i.e. the center) is at (0,0).

We will represent points as pairs of signed integers. When actually drawing them though, negative values and values outside the window's geometry will be ignored (clipped).

src/lib.rs:

Displaying pixels to your screen

A way to display an *Image* is to use the minifb crate which allows you to create a window and draw pixels directly on it. Here's how you could set it up:

src/bin/introduction.rs:

attachment

This code file is a PDF

```
use bitmappers_companion::*;
use minifb::{Key, Window, WindowOptions};
const WINDOW_WIDTH: usize = 400;
const WINDOW_HEIGHT: usize = 400;
fn main() {
    },
    .unwrap();
    // Limit to max ~60 fps update rate
window.limit_update_rate(Some(std::time::Duration::from_micros(16600)));
    let mut image = Image::new(50, 50, 150, 150);
image.draw_outline();
    image.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);
    while window.is_open()
          && !window.is_key_down(Key::Escape)
          && !window.is_key_down(Key::Q) {
         window
              .update_with_buffer(&buffer, WINDOW_WIDTH, WINDOW_HEIGHT)
         .unwrap();
let millis = std::time::Duration::from_millis(100);
std::thread::sleep(millis);
    }
```

Running this will show you something like this:

▼ Test - ESC to exit	-	×

intro

Chapter 3

Bits to byte pixels

Let's define a way to convert bit information to a byte vector:

```
pub fn bits_to_bytes(bits: &[u8], width: usize) -> Vec<u32> {
    let mut ret = Vec::with_capacity(bits.len() * 8);
    let mut current_row_count = 0;
    for byte in bits {
        for n in 0..8 {
            if byte.rotate_right(n) & 0x01 > 0 {
                ret.push(BLACK);
            } else {
                ret.push(WHITE);
            }
            current_row_count += 1;
            if current_row_count == width {
                     current_row_count = 0;
                     break;
            }
        }
    }
}
ret
```

intro

Chapter 4

Real pixels to byte pixels

Loading xbm files in Rust

xbm files are C source code files that contain the pixel information for an image as macro definitions for the dimensions and a static char array for the pixels, with each bit column representing a pixel. If the width dimension doesn't have 8 as a factor, the remaining bit columns are left blank/ignored.

They used to be a popular way to share user avatars in the old internet and are also good material for us to work with, since they are small and numerous. The following is such an image:

Then, we can convert the xbm file from C to **Rust** with the following transformations:

```
|#define news_width 48
|#define news_height 48
|static char news_bits[] = {
```

to

```
const NEWS_WIDTH: usize = 48;
const NEWS_HEIGHT: usize = 48;
const NEWS_BITS: &[u8] = &[
```

And replace the closing } with].

We can then include the new file in our source code:

```
include!("news.xbm.rs");
```

load the image:

```
let mut image = Image::new(NEWS_WIDTH, NEWS_HEIGHT, 25, 25);
image.bytes = bits_to_bytes(NEWS_BITS, NEWS_WIDTH);
```

and finally run it:

Part II Points And Lines

Distance between two points

Given two points, K and L, an elementary application of Pythagoras' Theorem gives the distance between them as

$$r = \sqrt{(x_L - x_K)^2 + (y_L - y_K)^2}$$
 (6.1)

which is simply coded:

```
pub fn distance_between_two_points(p_k: Point, p_l: Point) -> f64 {
    let (x_k, y_k) = p_k;
    let (x_l, y_l) = p_l;
    let xlk = x_l - x_k;
    let ylk = y_l - y_k;
    f64::sqrt((xlk*xlk + ylk*ylk) as f64)
}
```

Equations of a line

There are several ways to describe a line mathematically. We'll list the convenient ones for drawing pixels.

The equation that describes every possible line on a two dimensional grid is the *implicit* form ax + by = c, $(a, b) \neq (0, 0)$. We can generate equivalent equations by adding the equation to itself, i.e. $ax + by = c \equiv 2ax + 2by = 2c \equiv a'x + b'y = c'$, a' = 2a, b' = 2b, c' = 2c as many times as we want. To "minimize" the constants a, b, c we want to satisfy the relationship $a^2 + b^2 = 1$, and thus can convert the equivalent equations into one representative equation by multiplying the two sides with $\frac{1}{\sqrt{a^2+b^2}}$; this is called the normalized equation.

The *slope intercept form* describes any line that intercepts the y axis at $b \in \mathbb{R}$ with a specific slope a:

$$y = ax + b$$

The *parametric* form...

7.1 Line through a point $P = (x_p, y_p)$ and a slope m

$$y - y_p = m(x - x_p)$$

7.2 Line through two points

Figure 7.1:

It seems sufficient, given the coordinates of two points M,N, to calculate a,b and c to form a line equation:

$$ax + by + c = 0$$

If the two points are not the same, they necessarily form such a line. To get there, we start from expressing the line as parametric over t: at t=0 it's at point M and at t=1 it's at point N:

$$c = c_M + (c_N - c_M)t, t \in R, c \in \{x, y\}$$
$$c = c_M, t \in R, c \in \{x, y\}$$

Substituting *t* in one of the equations we get:

$$(y_M - y_N)x + (x_N - x_M)y + (x_My_N - x_Ny_M) = 0$$

Which is what we were after. We finish by normalising what we found with $\frac{1}{\sqrt{a^2+h^2}}$:

Distance from a point to a line

8.1 Using the implicit equation form

Let's find the distance from a given point P and a given line L. Let d be the distance between them. Bring L to the implicit form ax + by = c.

$$d = \frac{|ax_p + by_p + c|}{\sqrt{a^2 + b^2}}$$

8.2 Using an L defined by two points P_1, P_2

With $P = (x_0, y_0)$, $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$.

$$d = \frac{|(x_2 - x_1)(y_1 - y_0) - (x_1 - x_0)(y_2 - y_1)|}{\sqrt{((x_2 - x_1)^2 + (y_2 - y_1)^2}}$$

8.3 Using an L defined by a point P_l and angle θ

$$d = |cos(\theta)(P_{ly} - y_p) - sin(\theta)(P_{lx} - P_x)|$$

Angle between two lines

Intersection of two lines

Line equidistant from two points

Let's name this line L. From the previous chapter we know how to get the line that's created by the two points M and N. If only we knew how to get a perpendicular line over the midpoint of a line segment!

Thankfully that midpoint also satisfies *L*'s equation, ax + by + c. The midpoint's coordinates are intuitively:

$$(\frac{x_M + x_N}{2}, \frac{y_M + y_N}{2})$$

Putting them into the equation we can generate a triple of (a',b',c') and then normalize it to get L.

Chapter 12

Normal to a line through a point

Part III Points And Line Segments

Chapter 13

Drawing a line segment from its two endpoints

For any line segment with any slope, pixels must be matched with the infinite amount of points contained in the segment. As shown in the following figure, a segment *touches* some pixels; we could fill them using an algorithm and get a bitmap of the line segment.

The algorithm presented here was first derived by Bresenham. In the *Image* implementation, it is used in the plot_line_width method.

```
pub fn plot_line_width(&mut self, (x1, y1): (i64, i64), (x2, y2): (i64, i64)) {
    /* Bresenham's line algorithm */
    let mut d;
    let mut x: i64;
    let mut y: i64;
    let ax: i64;
    let ay: i64;
    let sy: i64;
    let sy: i64;
    let dx: i64;
    let dy: i64;
```

```
segments
```

Chapter 14

Drawing line segments with width

```
pub fn plot line width(&mut self, (x1, y1): (i64, i64), (x2, y2): (i64, i64), _wd: f64) {
    # Bresenham's line algorithm */
    let mut d;
    let mut x; i64;
    let mut x; i64;
    let ax: i64;
    let ax: i64;
    let x: i64;
    let x: i64;
    let x: i64;
    let dx: i64;
    let dx
```

```
segments
```

Chapter 15

Intersection of two line segments

Let points $\mathbf{l} = (x_1, y_1)$, $\mathbf{2} = (x_2, y_2)$, $\mathbf{3} = (x_3, y_3)$ and $\mathbf{4} = (x_4, y_4)$ and $\mathbf{l}, \mathbf{2}, \mathbf{3}, \mathbf{4}$ two line segments they form. We wish to find their intersection:

First, get the equation of line L_{12} and line L_{34} from chapter *Equations of a line*.

Substitute points **3** and **4** in equation L_{12} to compute $r_3 = L_{12}(\mathbf{3})$ and $r_4 = L_{12}(\mathbf{4})$ respectively.

If $r_3 \neq 0$, $r_4 \neq 0$ and $sgn(r_3) == sign(r_4)$ the line segments don't intersect, so stop.

In L_{34} substitute point 1 to compute r_1 , and do the same for point 2.

If $r_1 \neq 0$, $r_2 \neq 0$ and $sgn(r_1) == sign(r_2)$ the line segments don't intersect, so stop.

At this point, L_{12} and L_{34} either intersect or are equivalent. Find their intersection point. (Refer to *Intersection of two lines*.)

15.1 Fast intersection of two line segments

circles

Part IV Points, Lines and Circles

oiro	1

circles

Chapter 16

Equations of a circle

circles

Chapter 17

Bounding circle

curves

Part V Curves other than circles

curves

Chapter 18

Parametric elliptical arcs

Part VI Points, Lines and Shapes

shapes

Chapter 19

Union, intersection and difference of polygons

shapes

Chapter 20

Centroid of polygon

shapes

Chapter 21

Flood filling

15

OTTA DOTTO OF	$DI \cap OD$	
CHAPTER 21.	だしののり	<i>FILLIJING</i>

71

shapes

Part VII

Vectors, matrices and transformations

Rotation of a bitmap

$$p' = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
$$\begin{bmatrix} x_p \\ y_p \end{bmatrix}$$

$$c=cos\theta, s=sin\theta, x_{p'}=x_pc-y_ps, y_{p'}=x_ps+y_pc.$$

Let's load an xface. We will use bits_to_bytes (See Introduction).

```
include!("dmr.rs");
const WINDOW_WIDTH: usize = 100;
const WINDOW_HEIGHT: usize = 100;
let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image.bytes = bits_to_bytes(DMR_BITS, DMR_WIDTH);
This code file is a PDF
attachment
```


transformations

src/bin/rotation.rs:

This is the xface of dmr. Instead of displaying the bitmap, this time we will rotate it 0.5 radians. Setup our image first:

```
let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image.draw_outline();
let dmr = bits_to_bytes(DMR_BITS, DMR_WIDTH);
```

And then, loop for each byte in dmr's face and apply the rotation transformation.

```
let angle = 0.5;
let c = f64::cos(angle);
let s = f64::sin(angle);
for y in 0..DMR_HEIGHT {
    for x in 0..DMR_WIDTH {
        if dmr[y * DMR_WIDTH + x] == BLACK {
            let x = x as f64;
            let y = y as f64;
            let xr = x * c - y * s;
            let yr = x * s + y * c;
            image.plot(xr as i64, yr as i64);
    }
}
```

The result:

We didn't mention in the beginning that the rotation has to be relative to a *point* and the given transformation is relative to the *origin*, in this case the upper left corner (0,0). So dmr was rotated relative to the origin:

distance to the origin (actually 0 pixels) has been exaggerated for the sake of the example)

Usually, we want to rotate something relative to itself. The right point to choose is the *centroid* of the object.

If we have a list of n points, the centroid is calculated as:

$$x_c = \frac{1}{n} \sum_{i=0}^{n} x_i$$

$$y_c = \frac{1}{n} \sum_{i=0}^n y_i$$

Since in this case we have a rectangle, the centroid has coordinates of half the width and half the height.

By subtracting the centroid from each point before we apply the transformation and then adding it back after we get what we want:

Here's it visually: First subtract the center point.

transformations

Then, rotate.

And subtract back to the original position.

In code:

The result:

22.1 Fast 2D Rotation

transformations

90° Rotation of a bitmap by parallel recursive subdivision

Magnification/Scaling


```
let mut original = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
original.bytes = bits_to_bytes(DMR_BITS, DMR_WIDTH);
original.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);
let mut scaled = Image::new(DMR_WIDTH * 5, DMR_HEIGHT * 5, 100, 100);
let mut sx: i64; //source
let mut sy: i64; //source
let mut dx: i64; //destination
let mut dy: i64 = 0; //destination
let og_height = original.height as i64;
let og_width = original.width as i64;
let scaled_height = scaled.height as i64;
let scaled_width = scaled.width as i64;
while dy < scaled_height {
    sy = (dy * og_height) / scaled_height;
    dx = 0;
    while dx < scaled_width {
        sx = (dx * og_width) / scaled_width;
        if original.get(sx, sy) == Some(BLACK) {
            scaled.plot(dx, dy);
        }
        dx += 1;
    }
    dy += 1;
}
scaled.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);</pre>
```

src/bin/scale.rs:

This code file is a PDF attachment

24.1 Smoothing enlarged bitmaps

transformations

transformations

24.2 Stretching lines of bitmaps

20	

transformations

Mirroring

transformations

Shearing

Projections

Part VIII

Advanced

27.1 Faster Drawing a line segment from its two endpoints using Symmetry

Joining the ends of two wide line segments together

Composing monochrome bitmaps with separate alpha channel data

Orthogonal connection of two points

Join segments with round corners

Faster line clipping

Space-filling Curves

33.1 Hilbert curves

33.2 Peano curves

33.3 Z-order curves

Index

centroid, 65, 77

About this text

The text has been typeset in $X_{\overline{A}} \text{Le} T_{\overline{E}} X$ using the book class and:

- **Redaction** for the main text.
- $\boldsymbol{\mathsf{Fira}}$ $\boldsymbol{\mathsf{Sans}}$ for referring to the programming language $\boldsymbol{\mathsf{Rust}}$.
- **Redaction20** for referring to the words bitmap and pixels as a concept.