자율주행기술

Contents

제1장	개요1
제2장	기술동향5
제3장	산업동향9
제4장	정책동향11
제5장	R&D 투자동향 ·······16
제6장	결론 22

제1장 개요

1.1. 작성 배경

- 운전자의 노령화 등으로 인한 사고 위험성 증대와 운전편의에 대한 소비자들의요구 증대에 따라 자율주행기술이 주목
 - '18년 기준 우리나라 65세 이상 고령 인구는 738만 1천 명으로 '30년 1,295만 5천 명까지 지속적으로 증가할 전망임¹⁾
 - 최근 차량 구매자들의 상당 수는 자율주행기술이 적용된 사양을 선택하고 있음2)
- 자율주행기술이 고도화됨에 따라 이를 지원하는 인프라의 중요성이 커지고 있음
 - 자율주행 인프라는 자율주행을 지원하는 도로, 통신 등을 의미함
 - 혁신성장동력 시행계획('18.5)에서는 자율주행 지원 인프라를 노변장치, 교통센터 등 첨단 교통 도로 인프라와 맵 등 디지털 인프라라고 정의함
 - 혁신성장동력 추진현황 및 계획('18.6)에서는 테스트베드, 자율주행지원 첨단도로시스템 (C-ITS), 정밀도로지도 등을 포함하여 인프라로 정의함
 - 자율주행차 선제적 규제혁파로드맵('18.11), 미래차 산업 발전전략('19.10)에서는 자율주행차 운행 통신을 인프라로 정의함
 - 자율주행기술을 고도화(자율주행 구간 확대 포함)하기 위해서는 도로시설물, 노변센서, 교통센터,
 통신 등의 인프라 지원이 필수적임
 - 자율주행은 레벨 0~5(SAE J3016³⁾ 기준)로 구분되며, 현재 고속도로 구간에서 동작되는 레벨 3까지 자율주행차량이 양산되었음

¹⁾ 통계청 (2018), 「2018 고령자 통계」

²⁾ 경향신문 (2017), 현대기아차 만의 스마트한 비서···주행에 안전과 편의를 더하다, 2017.07.27.

³⁾ Society of Automotive Engineers J3016 (2014), Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems

- 고속도로 구간의 레벨 3 자율주행은 공사 등의 돌발상황에서는 동작하지 않으므로, 돌발상황 (위치, 폐쇄차로 등)을 정확히 감지해 전달하는 인프라가 필요함
- 도심지로 자율주행이 확대될 경우에도 신호등(위치, 상태, 잔여시간 등) 정보 등 자율주행에 필수적인 정보가 인프라를 통해 제공되어야 함
- 따라서 도심지 등을 포함한 구간에서 운전자의 주시가 불필요한 레벨 4 수준의 자율주행을 상용화하기 위해서는 자율주행을 지원하는 인프라가 필수적임

레벨	Lv. 0	Lv. 1	Lv. 2	Lv. 3	Lv. 4	Lv. 5
정의	無 자율주행 (No Automation)	운전자 지원 (Driver Assistance)	부분 자율주행 (Partial Automation)	조건부 자율주행 (Conditional Automation)	고도 자율주행 (High Automation)	완전 자율주행 (Full Automation)
자동화 기능	없음 (경고 등)	조향 또는 속도	조향 및 속도	조향 및 속도	조향 및 속도	조향 및 속도
운전자 주시	항시	항시	항시	시스템 요청시	자율주행 구간 내 불필요	전 구간 불필요
자율주행 구간	_	특정 구간	특정 구간	특정 구간	특정 구간	전 구간
양산 현황	대부분 완성차社 양산	대부분 완성차社 양산	7~8개 완성차社 양산	2개 완성차社 양산	없음	없음

〈표 1〉 자율주행 레벨에 따른 구분

🥯 하지만. 인프라가 제한된 구간에 비연속적으로 구축되거나 인프라에 적용된 기술의 수준과 표준이 상이하면 동 인프라의 실효성이 낮아질 가능성이 있음

- 현재 구축되어 있거나 구축 예정인 인프라는 일부 고속도로 또는 일부 도심지에 국한되어 있음
 - 현재 서울 상암 DMC⁴⁾, 제주 (공항-중문평화로⁵⁾, 서부산업도로⁶⁾), 세종 스마트시티⁷⁾, 일부 고속도로(서울TG-신갈JC-호법JC8), 서울-세종9) 등), 광주와 울산10) 등 일부 구간에만 시범 사업의 성격으로 인프라를 설치해 테스트 베드를 구축함

⁴⁾ 한겨례(2019), 서울 상암동에 '자율주행 차량 특구', 2019.01.17.

⁵⁾ 제주연구원(2018), 「제주특별자치도 발전계획(2018~2022)」

⁶⁾ 제주도정뉴스(2019), 제주에 적합한 자율주행 기술 실현 청사진 제시, 2019.01.14

⁷⁾ 국토교통부(2019), 「세종 스마트시티 국가 시범도시 시행계획」

⁸⁾ 디지털타임스(2017), 자율차 주행지원 '스마트 도로' 개발 속도, 2017.05.14

⁹⁾ 국토일보(2019), 서울-세종고속도로, 韓 핵심 인프라 '자리매김', 2019.07.08

¹⁰⁾ 보안뉴스(2019), 자율주행차 위한 스마트 도로 사업, 국내 추진 현황은?, 2019.04.22

- 국토부는 2025년까지 전국 고속도로에 자율협력주행 인프라를 구축하는 것을 목표¹¹⁾로 제시하였으나 연속성이 보장되지 않을 경우의 실효성이 의문시됨
- 2030년까지는 모든 도로에 해당 인프라를 구축하겠다고 제시하였으며, 자율주행 교통관제 센터도 2025년~2030년 기간 동안 단계적으로 전국으로 확대해 적용하겠다고 제시함
- 또한, 노변센서가 차량과 보행자를 인식하는 기술의 수준이나 사용되는 통신의 표준이 상이하여 인프라의 실효성이 낮아질 위험성이 있음
 - 미래자동차 산업 발전전략(2019)에서 국제표준 등을 고려하여 2021년까지 무선통신 방식을 결정하겠다고 제시함¹²⁾

1.2. 기술의 정의 및 범위

- - 자동차 관리법¹³⁾ 제2조 제1의 3호에서 "자율주행자동차"란 운전자 또는 승객의 조작 없이 자동차 스스로 운행이 가능한 자동차를 말함
 - 자율주행차량의 시스템은 인지, 판단, 제어의 3단계를 거쳐 동작하며, 이를 지원하는 인프라에는 자율주행차량의 성능을 향상시키고 동 차량에 필요한 정보를 감지·분석·관리하여 차량에 송신하는 기술이 적용됨
 - 혁신성장동력 시행계획('19.5)에서는 자율주행차 기술을 주행환경인식, 판단 및 차량제어, 통신/보안, 자율주행 지원 인프라 등으로 분류하며, 자율주행 지원 인프라는 첨단교통 운영시스템과 첨단교통 시설물로 분류됨

¹¹⁾ 국토교통부(2018), 「자율주행 스마트교통시스템 구축방안」, 국토부는 급커브, 터널 등 자율주행이 어려운 구간에 인프라를 우선적으로 구축한다고 제시함

¹²⁾ 현재 WAVE 방식과 5G 방식을 병행하여 검토 중

¹³⁾ 법제처(2019). 자동차관리법

〈표 2〉 자율주행 기술분류 및 정의

구분	기술분류	정의 및 요소기술
	인지	· 차량, 보행자, 운전자, 도로, 장애물 등의 데이터를 수집하여 주행환경을 인지하는 기술 ※ 센서: GPS, 정밀지도, 라이더, 레이더, 카메라, V2X 등
차량	판단	· 주행환경에 따른 주행상황을 인식하고 최적의 주행조건(경로, 속도 등)을 결정하는 기술 ※ 주행경로 탐색, 차량/보행자 충돌방지, 장애물 회피, 시스템 오류 등
	제어	· 차량 주행 및 움직임과 관련된 구동계 등을 제어하는 기술 ※ 종방향(ESC), 횡방향(MDPS) 제어
	도로시설물	· 자율주행차량의 인지성능 향상과 사고위험 감소 등을 위해서 도로시설물에 적용되는 기술 ※ 스마트 톨게이트, 스마트 신호등, 발광 차선 등의 자율주행 지원 도로 시설물
	노변센서	·도로 내외의 물체와 환경을 감지하는 기술 ※ 보행자, 차량, 장애물, 기후 등을 감지하는 노변 카메라, 레이더, 라이다 등의 센서
인프라	교통센터	· 차량과 도로시설물, 노변센서 등으로 수집된 데이터를 종합적으로 분석하고 관리하는 기술 ※ 교통신호, 정체, 사고, 공사, 기상 등의 정보를 관리
	통신	· 자율주행에 필요한 데이터를 차량-차량간 또는 차량-인프라간에 송수신 하는 기술 ※ 5G/WAVE 등의 통신기술, 정밀 GPS 지원 통신기술
	기타	·상기 기술분류에 포함되지 않는 인프라성 연구 ※ 기획/전략연구, 인력양성, 법·제도/정책연구, 보험 등

제2장 기술동향

2.1 글로벌 기술동향

- ◎ 2019년 아우디는 시속 60km 범위 내에서 레벨3의 자율주행이 가능한 5세대 A8 유럽내 출시¹⁴⁾, 이후 2020년부터 레벨3 지원 자동차 다수 등장할 전망
 - 혼다와 벤츠는 레벨3 자율주행 시스템을 2020년까지 양산할 예정이며, 포드와 볼보는 레벨3 보다는 레벨4에 초점을 맞춰 개발을 추진 중임¹⁵⁾
- 글로벌 ICT 업체들이 상황 판단 및 주행전략 수립을 위한 AI기술 개발에 매진하고 있음
 - 구글의 자율주행차는 300여 개의 센서를 통해 초당 1GB의 데이터를 생성, 이를 처리하기 위한 AI컴퓨터의 데이터처리 능력은 초당 120조회 연산가능한 120TOPS로 PC의 2,300배¹⁶⁾
- - 미국 ICT 업체(구글, 애플, 우버 등)들은 독자적으로 지도 서비스 부문을 강화하고 있으며, 일본의 경우에는 정부가 민간기업들과 협력해 HD맵 실용화를 추진 중임¹⁷⁾¹⁸⁾
 - 유럽에서는 HERE社가 약 4,300km의 도로 DB를 구축했으며, 196개국에 50개 언어로 차량용 지도 서비스 중으로 독일 3사를 비롯하여 싱가포르 국부펀드 GIC, Navinfo, 중국 Tencent 등 인수기업과 컨소시엄을 구성해 공동으로 정밀지도 기술을 개발 중임¹⁹⁾

¹⁴⁾ Automotive News(2019), Audi, BMW, others frustrated by hurdles slowing launch of self-driving cars, 2019.10.15., 기능이 탑재된 차량은 출시되었으나 유럽에서의 법규 미비로 동 기능을 판매할 수는 없음

¹⁵⁾ Automotive News(2019), Why Level 3 automated technology has failed to take hold, 2019.07.21., 아우디의 2019년도 A8 차량의 레벨 3 자율주행 기능은 향후 통신 업데이트를 통해 활성화가 가능함

¹⁶⁾ 박형근(2019), "스마트카 시대 자동차 신벨류체인" 포스코경영연구원.

^{17) 2016}년 6월 6개의 차량 내비게이션 업체와 9개 차량 제조사, 정밀지도용 차량업체 등이 '동적지도구상(Dynamic Map Planning)'이라는 회사를 설립해 HD맵 구축을 위한 공동 대응전략을 펼치고 있음

¹⁸⁾ 김주성·민수진(2019), "지능형 자동차산업의 발전동향 및 핵심 기술개발분야" 한국전자통신연구원 미래전략연구소

¹⁹⁾ 김필성·김문·엄익현·김덕·한석우·권선연·방보경·김경민·김지혜·백장균(2019), "자동차 분야 신산업 동향 및 밸류체인 분석", 대한무역투자진흥공사, 산업별 글로벌시장 진출전략 보고서

- 🥯 차량용 5G 통신 등장에 따라 기존보다 5~20배 빠른 속도로, 차량밀집 구간에서도 지연이나 단절없이 안전한 데이터 송수신이 가능할 전망²⁰⁾
 - 자동차용 5G통신 표준개발을 위한 협의체를 통해 사업분야를 초월한 협력 진행중
 - 퀄컴과 자동차 회사인 BMW. 다임러. 포드 통신사인 에릭손. 화웨이. 노키아 등으로 2016년 9월 구성된 5GAA²¹⁾는 커넥티드카 통신 솔루션 개발을 위해 출범²²⁾
 - 현재는 자동차, 통신, IT, 인증, 학계 등 70여개 기관이 참여해 차세대 통신 표준 개발을 위한 협력과 교류를 진행중
- 🥯 현재 차량용 통신방식으로 DSRC와 C-V2X/5G 중에 어느 것을 사용할 것인지를 두고 각 진영이 대립 중임23)
 - 미국에서는 DSRC V2X 장치를 의무장착하는 법안(2019년 발효 후 2021년 의무장착 개시)의 NPRM²⁴⁾을 공표하였으나, 예정대로 진행되지 못한 상황임
 - 다만, 미국내에서 Toyota가 DSRC의 양산을 추진 중에 있으며, 현재 연방정부의 지원으로 와이오밍, 뉴욕, 플로리다 등 3개 주의 도시에서 DSRC 기반 V2X 시범사업 (CV Pilot Deployment Program, 2015~2019)이 진행 중임
 - 유럽에서도 각 통신방식을 추구하는 진영 간 대립이 심화되고 있으며, 정부에서는 차량간 통신의 호환성이 보장되지 못할 우려를 표명하고 있음
 - 유럽에서는 VW이 DSRC 기반의 V2X를 장착한 차량을 2019년에 양산하겠다고 발표하였 으며²⁵⁾. 5GAA내 유럽 통신사 등을 중심으로 C-V2X/5G의 필요성을 어필하고 있음
 - 정부 주도적 사업모델의 비효율성 및 DSRC의 기술적 부족함에 대한 비판 속에 C-V2X/5G를 앞세운 5GAA 진영이 V2X 사업에 박차를 가하는 상황임

²⁰⁾ 연규봉(2019), "5G 커넥티드 자율주행차와 센서기술 동향" 자동차부품연구원, 첨단센서2025포럼

^{21) 5}GAA (5G Automotive Association): 차량용 5G 통신 표준개발을 위한 협의체

²²⁾ 박형근(2019), "스마트카 시대 자동차 신벨류체인" 포스코경영연구원.

²³⁾ 한국지능형교통체계협회(2017), ITS 기술동향 및 사례조사보고서

²⁴⁾ NPRM (Notice of Proposed Rule Making): 제정공시

²⁵⁾ Acumen Research and Consulting(2019), Cellular Vehicle-to-Everything (C-V2X) Market Size to Hit \$1.1 BN by 2026

2.2 국내 기술동향

- ☞ 국내 자율주행차 기술개발은 완성차 업체인 현대기아차 등을 중심으로 선제적 신기술을 적용하고 있으며, 국내 통신사 및 IT 기업들도 적극적으로 참여 중임
 - * 기술수준은 세계 최고 기술국인 미국 대비 80.0% 수준26)으로 평가되고 있음
 - 현대자동차의 경우 고속도로 구간의 레벨 2 자율주행시스템을 '16년도에 양산하였으며, 2020년 이후 레벨 3 자율주행시스템을 양산할 예정임²⁷⁾
 - 2018년에는 서울-평창 고속도로 190km 구간에서 자사 수소차량과 내연기관 차량으로 레벨 4 자율주행을 성공²⁸⁾적으로 시연하였음
 - LG전자는 Here社와 2017년도에 '차세대 커넥티드카 솔루션'을 공동 개발하는 파트너십계약을 체결하였고²⁹⁾, NXP와는 2018년도에 '차세대 ADAS 통합 솔루션'을 공동 개발하는 업무협약을 체결함³⁰⁾
 - 삼성전자는 자율주행 기술도 가속화로 차량에 사용하는 반도체에 요구되는 안전 등급의 중요성이 부각됨에 따라 차량용 반도체 ISO 26262 인증을 취득함³¹⁾
 - SKT는 2016년 인텔과 자율주행 기술·서비스 공동 개발³²⁾을 위한 MOU 체결³³⁾하였고,
 2019년 서울시와 '자율주행 시대를 위한 정밀도로지도 기술 개발 및 실증 협약^{'34)}을 체결³⁵⁾함
 - 네이버 랩스는 딥러닝과 비전 기술로 도로 정보를 자동 추출해 지도를 제작할 수 있는 자동화 알고리즘과 시시각각 변하는 도로정보를 반영할 수 있는 크라우드 소스 매핑(crowd-source mapping) 방식의 HD맵 업데이트 솔루션 '어크로스(ACROSS)'를 연구 중임³⁶⁾

²⁶⁾ 한국과학기술기획평가원(2019), "2018년 기술수준평가," - 해당 보고서는 스마트 자동차 기술로 표기

²⁷⁾ 한국자동차공학회(2019), 현대차 2020년 레벨3 자율주행차 양산

²⁸⁾ 중앙일보(2018), 넥쏘 서울-평창 190km 구간 자율주행, 2018.02.04

²⁹⁾ 중앙일보(2017), LG전자, '히어'와 제휴 '차세대 커넥티드카 솔루션' 개발, 2017.12.27

³⁰⁾ Social LG전자(2018), LG전자-NXP-헬라 자율주행 시장 선점 위해 손잡았다, 2018.01.07

³¹⁾ 삼성뉴스룸(2019), 삼성전자, 차량용 반도체 기능안전 국제 표준 인증, 2019.05.13., 이외에도 자동차 품질 경영시스템 「IATF 16949」와 자동차용 반도체 신뢰성 평가 규격인 「AEC-Q100」을 만족하는 신뢰성 높은 제품을 생산하고 있으며, 차량 인포테인먼트 시스템용 '엑시노스 오토 V9'과 업계 최고 수준의 '16Gb LPDDR4X D램', '256GB eUFS', LED조명 제품 등 차량용 반도체 솔루션을 확대해 나가고 있음

³²⁾ LTE-A 5G 기반의 차량통신, 영상인식 및 자율주행차량 플랫폼 등 공동개발에 합의

³³⁾ 연합뉴스(2016), 5G 기반 자율주행차 개발···SK텔레콤·인텔 협약, 2016.10.31.

^{34) 1600}대와 택시 100대에 5G ADAS를 장착시켜 '19년 하반기부터 서울 시내 일반 도로를 주행할 계획

³⁵⁾ 한국일보(2019), 서울시 '5G 자율주행 버스·택시' 밑그림 그린다, 2019.05.23.

³⁶⁾ 전자과학(2019), 네이버랩스, 자율주행 측위기술 고도화 '도로에 이어 인도 매핑도', 2019.06.26.

- 🥯 정부에서는 '자율주행 시험도시(K-City)'에 자율주행자동차와 통신이 가능한 인프라 등을 구축하여 자율주행 기술개발을 지원함37)
 - K-City에 구축된 인프라를 기반으로 자율주행협력 지원이 가능한 C-ITS 환경을 제공함
 - K-City의 C-ITS 시스템은 첨단신호제어시스템38), 노변기지국, 스마트돌발상황검지기39), 차로제어기, CCTV 등의 장비로 구성됨
 - C-ITS의 실시간 과제시스템은 차량 및 인프라 정보를 실시간으로 지도상에 표출하며, 수집된 차량과 인프라의 정보를 노변 기지국을 통해 자율주행차량에 제공함

³⁷⁾ 한국지능형교통체계협회(2017), ITS 기술동향 및 사례조사보고서

³⁸⁾ 신호체계 실시간 제어 및 표출신호정보를 RSU를 통해 차량에 제공, 센터 연계를 통한 신호정보 수집 (신호주기 및 현시 등)

³⁹⁾ 돌발상황 검지, 검지된 정보를 센터 및 RSU에 전송 (낙하물, 보행자, 역주행, 정지차량 등)

제3장 산업동향

3.1 글로벌 산업동향

- - 레벨 4 이상 완전자율주행차 세계 시장 규모는 2020년 6.6억 달러에서 연평균 84.2% 성장하여 2035년에는 6,299억 달러 규모에 달할 전망

(표 3) 세계 자율주행차 시장 전망 (2020년~2035년)

(단위: 억 달러)

구분	2020년	2025년	2030년	2035년	CAGR(%)
조건부 자율주행 (레벨3)	63.9	1,235	3,456	4,905	33.6
완전 자율주행 (레벨4 이상)	6.6	314	3,109	6,299	84.2
합계	70.5	1,549	6,565	11,204	40.2

- ※ 출처: Autonomous Vehicles, Navigant Research(2013), Strategic Analysis of the European and North American Market for Automated Driving, Frost&Sullivan(2014) 자율주행 기능 시스템, KISTI(2016).
 - 자율주행차용 센서 및 전장품은 안전, 운전보조 목적으로 빠르게 성장, 2022년 관련 센서 시장규모만 258억 달러에 이를 것으로 전망⁴¹⁾
 - 카메라 관련 현 핵심이슈는 초고화질, 광각기술확보이며, 센서칩은 ON Semi 가시장의 절반을 차지하고 있고, 모빌아이가 모듈시장 80% 장악⁴²⁾
 - 라이다는 자율주행차 부상과 함께 핵심부품으로 부상하였으나, 가격경쟁력 확보와 소형화라는 과제를 안고 있으며 벨로다인과 쿼너지가 시장주도

⁴⁰⁾ 소프트웨어정책연구소(2017), 자율주행자동차 시장 및 정책 동향, 월간 SW중심사회, 2017년 6월.

⁴¹⁾ FA저널(2019), 센서산업의 성장, 자율주행차의 안전성 높여줄 핵심 산업, 2019.03.24

⁴²⁾ 박형근(2019), "스마트카 시대 자동차 신벨류체인" 포스코경영연구원.

- 자율주행차가 1초에 1GB씩 생산해내는 데이터의 빠른 처리가 가능한 Al컴퓨터도 발전하고 있는데, 현재는 엔비디아와 인텔, 모빌아이가 시장주도적 역할을 하고 있음
- 차량의 V2X 시장 규모는 2020년 8억 달러에서 2030년 148억 달러로 성장할 것으로 예측 되고 있으며, 이후 더욱 급격하게 성장할 것으로 예상
- 완성차 업체를 포함하여 구글, 아마존, 애플 등의 ICT업체들, 우버와 같은 차량 공유업체들은 향후 종합 모빌리티 공급 및 서비스 업체가 되고자 함
 - 자율주행차 시대에서는 스마트폰처럼 제조보다는 종합 플랫폼 솔루션 업체가 시장 지배자가 될 가능성을 고려함
 - * 자동차업체들 가운데서는 도요타와 GM 등이 가장 먼저 MaaS(Mobility as a Service)를 내세우면서, 다양한 모빌리티의 제조와 서비스를 영위하는 플랫폼 사업자가 되겠다고 선언함
 - MaaS(Mobility as a Service)의 시기총액은 2035년에 약 10조 달러에 도달할 것으로 전망됨

3.2 국내 산업동향

- 🬑 국내시장의 경우 미국. EU. 중국에 비해 규모는 작은 편이나 글로벌 수준의 자동차 생산력과 ICT기술력을 바탕으로 성장기반을 확보할 것으로 기대⁴³⁾
 - 완전자율주행 기능의 자율주행차 국내 시장 규모는 2020년 15억 원에서 연평균 84.2% 성장하여 '35년에는 14조 7,183억 원 규모에 달할 전망

〈표 4〉 국내 자율주행차 시장 전망 (2020년~2035년)

(단위: 억 원)

구분	2020년	2025년	2030년	2035년	CAGR(%)
조건부 자율주행 (레벨3)	1,493	28,552	80,753	114,610	33.6
완전 자율주행 (레벨4 이상)	15	7,341	72,651	147,183	84.2
합계	1,508	36,193	153,404	261,794	41.0

⁴³⁾ 소프트웨어정책연구소(2017), 자율주행자동차 시장 및 정책 동향, 월간SW중심사회, 2017년 6월.

제4장 정책동향

4.1 글로벌 정책 동향

4.1.1 미국

- □국은 2012년부터 연방정부 및 주정부차원에서 자율주행차를 합법화를 위한 법・제도적 기반을 마련함
 - 2012년 네바다주에서 자율주행차의 일반도로 시험운행을 최초 합법화한 이후 2018년까지 캘리포니아주, 플로리타, 애리조나, 워싱턴DC 등 37개의 주정부에서 자율주행차 입법을 완료함
 - 연방정부는 2017년에 입법을 완료하였으나, 미국의 경우 비엔나 협약 미가입국이기 때문에 네바다주와 같이 입법이 완료된 주의 경우 입법내용에 따라 연방정부 입법 전 자율주행차량 운행이 가능하였음
- ◎ 미국 도로교통안전국(NHTSA)에서 2016년 연방 자율주행차 정책(Federal Automated Vehicles Policy) 가이드라인 발표 이후 2018년까지 자율주행차를 위한 3차 가이드라인이 발표되었음
 - 미국 교통부(DOT)와 도로교통안전국(NHTSA)에서 함께 수립한 연방 자율주행차 정책 가이드라인 (2016.9)은 자율주행차 관련 입법방향과 정책 가이드라인을 제시함
 - 2차 자율주행 시스템 가이드라인(Automated Driving systems A Vision for safety 2.0, 2017.9)에서는 1차 가이드라인에서 제시된 15개 기술적 가이드라인을 12개로 통합하고 안전을 강조함
 - 3차 자율주행차 가이드라인(Preparing for the Future of Transportation : Automated Vehicles 3.0, 2018.10)은 미국 교통부(DOT)에서 발표하였으며, 자율주행차량 관련 안전·기술·정책·인프라전략과 정부·민간의 역할구분을 제시함

4.1.2 유럽

- 🕯 (영국) 자율주행자동차의 성공적인 개발 및 정착을 위해. 법·제도를 제정하고 자율주행자동차 연구기관을 설립함44)
 - AEV Act8⁴⁵⁾는 자율주행자동차 사고 관련 법적 책임, 전기차량 충전 인프라 등에 대한 제도적 기반을 마련함
 - 자율주행자동차에 대한 개발 및 시험 분야의 선도적인 지위 유지를 위해 교통부 및 경제. 에너지, 산업 전략부9의 합작으로 커넥티드카 및 자율주행자동차 센터를 설립함
- 🥯 (독일) 도로교통법 8차 개정을 통해 자율운행 시 운전자의 행동양태 및 책임에 중점을 둔 자율운행 관련 법규를 추가하고 자율주행 관련 윤리 지침을 제정함
 - 개정된 도로교통법에서 자동운전 기능 관련 법적 규제 설정, 자동운전 기능 구현의 기본 틀을 제시하여 자동운전 승인을 위한 규제 기반을 마련함
 - 자율주행윤리지침46)에서는 개인에 대한 보호를 다른 모든 실용적 고려 사항들보다 우선하고, 자율주행시스템의 운행 면허는 사람의 운전과 비교해 위험이 낮다고 확인되지 않은 이상 정당화될 수 없음을 명시함

4.1.3 일본

- 🥯 일본은 레벨3 수준의 자율주행자동차 운행 허용을 위한 관련 법 개정안을 의결하고 2020년 이후 시행을 예정⁴⁷⁾하고 있음
 - 일본의 경우 현행법 상 일반도로에서 운전자를 운전 주체로 전제한 레벨 2 이하 수준의 자율 주행자동차 운행 대응이 가능48)함
 - 2019년 3월 일반도로에서 레벨3 수준의 자율주행자동차 주행 허용을 위해 '도로교통법 개정안' 및 '도로운송차량법 개정인'을 의결하고 운행과 관련한 안전의무 및 대책을 추가함

⁴⁴⁾ 소프트웨어정책연구소(2018), 자율주행자동차 발전을 위한 해외 자동차 정책 동향, 월간SW중심사회, 2018년 12월호

⁴⁵⁾ Automated and Electric Vehicles Act.

⁴⁶⁾ Ethics Commission Automated and Connected Driving 2017년 6월 발표.

⁴⁷⁾ 이소양(2019), 최근 일본의 자율주행차 관련 동향, KIRI 리포트 2019년 4월호

⁴⁸⁾ 데이코산업연구소(2018). 자율주행차 시장전망과 개발전략

4.2 국내 정책 동향

- ◎ 미래차 산업 발전전략('19.10)에서는 2027년 완전자율주행(레벨4, 주요도로) 세계 최초 상용화를 제시
 - 2021년에 레벨3 자율주행차를 출시하고, 2024년에 레벨4를 일부 구간에 상용화하며 2027년에 레벨4를 전국 주요도로에 상용화하겠다는 계획을 제시함
 - 완전자율주행 상용화를 위해 제도·인프라를 완비(~2024년)하고 핵심부품에 투자하겠다는 전략을 제시함
 - * 자율주행차 선제적 규제혁파 로드맵('18.11)에서는 ICT가 융합된 자율주행차의 발전단계를 고려하여 운전 주체, 차량장치, 운행, 인프라의 4대 영역에 대해 30개의 규제이슈를 발굴하였고, 이에 대한 개선방안을 마련함
- 3000년 국가 ITS 기본계획 21(지능형교통체계 2010)이 발표되며 2020년까지 지능형교통체계 도입을 위한 3단계 추진전략이 수립되었음⁴⁹⁾
 - •국가 ITS 기본계획 21은 교통체계효율화법 제12조에 근거하고 있으며, 교통이용자 요구 충족을 위한 7개 ITS 서비스분야*가 정의되어있음
 - * 교통관리 최적화 ,전자지불 처리, 교통정보유통 활성화, 여행자정보 고급화, 대중교통, 화물운송 효율화 등 7개 서비스분야를 정의하고 18개 서비스, 62개 단위서비스가 제시됨
 - 7개 서비스분야에 대하여 '1단계(2001~2005) 사업 추진 기반조성 및 기초서비스 제공', '2단계 (2006~2010) ITS 성장 및 확산', '3단계(2011~2020) ITS 성숙 및 고급화'내용의 추진계획이 제시되어 있음
- 3011년 수립된 지능형교통체계 기본계획 2020⁵⁰⁾은 육·해·공 통합 교통체계 지능회를 위한 기본계획으로 '곁에 있는 교통 정보, 막힘 없는 교통서비스'를 비전으로 제시함
 - 국가통합교통체계 효율화법 제73조 제1항을 근거로 수립된 지능형교통체계 기본계획 2020은 지능형교통체계(ITS) 최상위 국가계획으로 3가지 목표*를 제시함
 - * ① 사고를 예방하는 안전한 교통체계 구축, ② 수단간 문턱 없는 편리한 교통서비스 제공, ③ 상황에 대응하는 스마트 교통기반 조성

⁴⁹⁾ 한국지능형교통체계협회(2017), ITS 산업의 현황과 전망.

^{50) 2017}년 수정계획이 수립됨

• 지능형교통체계 기본계획 2020은 지능형교통체계 2010 대비 중점 서비스 지능화 대상, 시 스템구조, 통신방식, 제공주체측면에서 추진전략이 변경됨

〈표 5〉 지능형교통체계 기본계획의 추진전략

구분	지능형교통체계 2010	지능형교통체계 2020
중점 서비스	• 혼잡·사고의 사후관리	• 혼잡·사고의 사전예방
지능화 대상	• 공공 교통시설(도로) 중심	• 교통수단, 여행자 중심
시스템 구조	• 단일 센터 기반의 집중형	• 현장 기반의 분산형 • 연계 기반의 통합형
통신방식	• 고정 구성요소 간 유선통신	• 이동 구성요소 간 무선통신
제공주체	• 공공부문 주도의 서비스	• 공공과 민간의 상호협력

[※] 출처: "정책 QIA 국토교통부" www.molit.go.kr, 최종접속: 2019.7.

• 자동차·도로교통분야의 경우 안전혁신, 편의증진, 지속성장관점으로 구분되는 3개 목표별로 8대 중점추진과제가 제시됨

〈표 6〉 지능형교통체계 기본계획 2020에 제시된 자동차·도로교통분야 중점추진과제

	목표	지능형교통체계 2020
안전혁신	획기적 교통사고 감소예방 가능한 안전한 도로교통	• 돌발상황에 신속 대응하는 교통관리체계 확대 • 도로위험요소 관리 및 실시간 모니터링을 위한 협력형 ITS 도입·확대 • 민간부문 교통정보체계를 활용한 공공 인프라의 안전정보 제공·확대
편의증진	전국단위 끊김 없는 정보와 시설 이용이 편리한 도로교통	│● 교통으로 시자시 로 미만 및 시절개시
지속성장	친환경·고효율의 지속적 성장 가능한 도로교통	• 자율주행차와 첨단안전차량 도입·확대를 통한 글로벌 경쟁력 강화 • 교통플랫폼 등을 통한 이용자 교통편의 및 저탄소 녹색교통 지원 강화

[※] 출처: 국토교통부 (2017), 지능형교통체계 기본계획 2020 수정계획

- 🦚 2012년 수립된 자동차·도로분야 지능형교통체계 기본계획 2020은 지속가능한 지능형교통체계의 성장과 생활형 스마트 도로교통을 위한 내용을 담고 있음
 - 안전·편리·고효율·환경친화내용의 4개 정책목표*를 제시하고 있으며, 본 계획에 제시된 7개 서비스분야**와 연계한 정책목표별 중점추진과제가 포함됨
 - ** ① 실시간 모니터링체계로 교통사고 없는 안전한 도로교통, ② 모든 이용자가 쉽게 이용할 수 있는 편리한 도로교통, ③ 여행자순응 교통정보체계로 정시성 높은 고효율 도로교통, ④ 환경친화적 녹색교통운영 및 지원 기능의 도로교통
 - ** 교통관리, 대중교통, 전자지불, 교통정보유통, 부가교통정보제공, 지능형차량·도로, 화물운송

- '실시간 모니터링체계로 교통사고 없는 안전한 도로교통'목표는 차량 자율주행과 연관성이 높은 중점과제^{*}로 구성됨
 - * ① 돌발상황에 신속하게 대응하는 교통관리체계 확대, ② 도로위험요소를 관리하는 교통사고예방체계 도입,
 - ③ 교통사고를 회피하는 첨단안전차량 개발 및 지능형 도로 구축 확대
- 2013년 본 계획의 세부추진계획 성격⁵¹⁾을 지닌 차세대 ITS(C-ITS, Cooperative ITS) 기본 계획이 발표되며, 서비스 추진계획이 보다 구체화*됨
 - * 지능형차량·도로 서비스분야의 세부추진계획 성경을 지니며 '2020년 고속도로 V2I 연동서비스 제공, 2030년 교통사고 사망자 제로화를 위한 V2X교통안전서비스제공'의 목표를 제시함
- 2017년 발표된 혁신성장동력 추진계획에 자율주행차가 포함되며 4차 산업혁명대응하고 범부처적 지원을 통한 맞춤형 육성전략이 마련됨
 - 자율주행차분이는 13대 혁신성장동력 중 조기상용화 분이에 속하며, 범부처 협력을 통한 관련 규제개선, 금융지원, 인프라 조성 추진을 계획함
 - 2018년 발표된 혁신성장동력 시행계획에서 2022년까지 자율주행 레벨3 상용회⁵²⁾를 목표로 구체적인 규제개선 및 인프라구축 계획^{*}이 제시되었음
 - * ('19) 스마트인프라 제도마련, 자율주행 부품 실도로 평가환경 구축 완료, ('20) 자율주행차 안전기준, 보험제도화, 정밀도로지도 구축·갱신, ('21) 국가 보안체계 구축, ('22) 스마트도로 구축
- 제2차 자동차정책기본계획, 자율주행차 상용화를 위한 스마트교통시스템 구축방안, 미래차 산업 발전전략에도 자율주행기술과 관련 인프라 확보에 대한 추진과제가 제시됨
 - 제2차 자동차정책기본계획(2017~2021)에 제시된 5개 전략 중 '첨단 미래형자동차 운행생태계 구축' 전략은 자율주행차 상용화와 교통 인프라 조성 관련 추진과제^{*}로 구성됨
 - * ① 자율주행차 상용화 지원, ② 친환경자동차 운행기반 조성, ③ 미래형 모빌리티 서비스 제공, ④ 자동차 기반의 교통 연계 네트워크 조성
 - 자율주행차 상용화를 위한 스마트교통시스템 구축방안(2018)은 2030년 완전자율주행 실현을 목표로 2020년 고속도로 자율주행 실현(레벨3), 2022년 완전 자율주행 기반마련(레벨4,5) 내용의 정책 추진방향을 제시함

⁵¹⁾ 한국지능형교통체계협회(2017), 자동차·도로부문 지능형교통체계 ITS 산업의 현황과 전망.

^{52) 2018}년 기준 자율주행 레벨2 상용화(차선유지 등 운전자 보조기능) 수준

제5장 R&D 투자동향

5.1 글로벌 R&D 투자동향

- 🕯 (미국) 연방교통부(DOT)는 자율주행차 연구개발과 제도개선. 교통인프라 실증 등에 총 79억 달러를 투자한다고 발표함53)
 - DOT는 '16년 1월, 자율주행차를 미국의 국가전략기술로 선정하여 집중 연구개발과 제도개선에 10년간 40억 달러를 투자한다고 발표함
 - 교통 인프라와 통신 기능이 지원되는 커넥티드 차량 테스트를 실시하고, 커넥티드 차량 관련 규정 등의 제도 마련에 10년간 39억 달러를 투자한다고 발표함
- (유럽) 유럽의 주요국가들은 다양한 형태의 차량과 기술을 기반으로 자율주행차의 연구개발과 상용화 지원을 추진 중임
 - (SARTRE⁵⁴⁾) 영국, 스웨덴, 독일, 스페인 등 7개 국가가 참여하였고, 군집주행을 포함한 자율 주행차 핵심기술 개발하는데 669만 유로를 투자 (2009.9 ~ 2012.10)
 - (CITYMOBIL255)) 이탈리아, 프랑스, 영국, 독일 등 총 11개국 47개의 기관이 참가하였고, 도시내 정해진 구간에서 운전자 없는 저속 전기자율주행버스 개발하는데 1.560만 유로를 투자 $(2012.9 \sim 2016.8)$
 - (L3Pilot) Horizon 2020 프로젝트로 중 하나이며 자율주행 레벨 3, 4의 기능에 대한 공용도로 에서의 대규모 실증실험에 약 6,800만 유로 투자 (2017 ~ 2021)56)

⁵³⁾ 차원용(2016), 미국 자율주행차 정책과 구글의 자율주행차 특허가 주는 시사점, 아스팩미래기술경영연구소, KISTEP Inl 제14호(2016년 6월)

⁵⁴⁾ SAfe Road TRains for the Environment

⁵⁵⁾ Interoperable GCDC AutoMation Experience

⁵⁶⁾ 국토교통과학기술진흥원(2018), 도심도로 자율협력주행 시스템 안전 인프라 연구사업, 기획연구 최종보고서

- ◎ (일본) 국토교통성(MLIT)과 과학기술창조위원회(CSTI)를 중심으로 자율주행 기술개발에 대한 투자를 진행 중임
 - 국토교통성은 자율주행기술 개발 및 실용화를 위해서 2017년도와 2018년도에 각각 87.8억 엔과 176.5억 엔을 투자하였고, 2019년도에 231.4억 엔의 예산을 요구함⁵⁷⁾
 - 과학기술창조위원회는 SIP⁵⁸⁾를 통해 Automated Driving Systems for Universal Service (ADUS)에 대한 개발을 1단계(2014~2018)와 2단계(2018~2022)로 진행함⁵⁹⁾
 - 1단계에서는 HMI(Human Machine Interface), 동적지도, 보안, 시뮬레이션, 데이터 베이스 등 11개 분야로 구성되며, 2단계에서는 개발된 결과물을 공용도로와 공공운송에까지 확대하고, 사회구성원 모두의 안전과 편의를 증진 시킬 수 있는 다양한 서비스를 제공함

5.2 국내 R&D 투자동향

- 최근 3년간(2016년~2018년) 자율주행분야 정부 R&D 투자규모는 총 3,617억 원⁶⁰⁾으로, 연평균 57.3% 수준으로 증가함
 - 2018년도 기준 과기정통부(652억 원)와 산업부(523억 원)의 투자규모는 각각 39.5%, 31.7%로 두 부처는 정부 총 투자규모의 71.1%를 차지하였음
 - 다음으로는 국토부(335억 원), 중기부(80억 원), 교육부(34억 원), 경찰청(9억 원), 다부처 (19억 원) 순으로 투자규모가 높게 나타남
 - 자율주행 기술분야의 특성 상 신호체계, 도로교통 등과 관련된 투자가 요구됨에 따라 경찰청, 국토교통부의 연구개발 투자도 꾸준히 증가추세를 보임
 - 최근 3년간 경찰청, 국토교통부 투자규모의 연평균 증가율은 각각 19.3%, 71.0%로 높게 나타남

⁵⁷⁾ 국토교통성(2015), 자동차국 관계 예산 개산 요구 개요

⁵⁸⁾ Cross-ministerial Strategic Innovation Promotion Program

⁵⁹⁾ SIP(2018), SIP Automated Driving for Universal Services(SIP-adus) R&D Plan

⁶⁰⁾ 국가연구개발사업 조사·분석 통계(NTIS)(2016년~2018년)를 기준으로 자율주행 기술분야에 대한 정부 R&D 투자 추이를 부석

● 혁신성장동력프로젝트를 통한 다부처 투자도 증가('17년 280백만 원 → '18년 1,870백만 원)하고 있는 것으로 분석되었음

〈표 7〉자율주행분야 부처별 투자규모(2016년~2018년)

(백만 원, %)

부처	'16년 예산	'17년 예산	'18년 예산	총합계	CAGR
경찰청	600	734	854	2,188	19.3
과기정통부	33,335	56,277	65,194	154,806	39.8
교육부	1,865	2,396	3,350	7,612	34.0
국무조정실	100	40	169	309	30.4
국토부	11,464	30,652	33,513	75,629	71.0
산업부	16,882	34,384	52,302	103,568	76.0
중기부	2,487	5,010	7,952	15,448	78.8
다부처	_	280	1,870	2,150	_
총합계	66,733	129,772	165,204	361,710	57.3

- 🕯 최근 3년간(2016년~2018년) 차량 관련 기술 투자규모(총 1.544억 원) 대비 인프라 관련 기술 투자규모(총 2.073억 원)가 큰 것으로 나타남
 - 차량 관련 기술 투자규모는 연평균 43.0%의 증가율을 보였으며, 인지(1,126억 원), 판단 (278억 원), 제어(141억 원)분야 순으로 투자규모가 높은 것으로 분석되었음
 - 인프라 관련 기술 투자규모의 연평균 증가율은 71.4%로 나타났으며, 노변센서(193.3%)와 기타(148.5%)분야의 연평균 증가율이 상대적으로 높게 분석되었음
 - 기획/전략연구, 법·제도/정책연구, 인력양성 등의 내용을 포함한 기타분야의 투자규모 ('16년 32,270백만 원 → '18년 59,692백만 원)가 큰 폭으로 늘어나 2018년도 기준 투자규모가 가장 큰 것으로 나타남
 - 다음으로 통신(16,766백만 원), 교통센터(9,615백만 원), 도로시설물(5,619백만 원), 노변센서(3,063)백만 원) 순으로 투자규모가 높았음

〈표 8〉 자율주행 기술분야별 투자규모(2016년~2018년)

(백만 원, %)

구분	기술분류	'16년 예산	'17년 예산	'18년 예산	총합계	CAGR
	인지	24,513	36,452	51,624	112,589	45.1
차량	판단	6,874	8,619	12,308	27,800	33.8
시경	제어	3,076	4,461	6,517	14,054	45.6
	소계	34,463	49,532	70,449	154,443	43.0
	도로시설물	3,467	5,838	5,619	14,924	27.3
	노변센서	356	290	3,063	3,709	193.3
인프라	교통센터	6,172	7,910	9,615	23,698	24.8
진프니	통신	12,609	20,456	16,766	49,831	15.3
	기타	9,666	45,746	59,692	115,104	148.5
	소계	32,270	80,240	94,755	207,266	71.4
	총합계	66,733	129,772	165,204	361,710	57.3

- 최근 3년간(2016년~2018년) 차량 관련 기술, 인프라 관련 기술 모두 과기정통부의 투자규모가 높게 나타났으며, 산업부, 국토부는 각각 차량 관련 기술, 인프라 관련 기술의 투자가 높게 나타남
 - 과기정통부에서는 차량 관련 기술 중 인지기술(594억 원, 52.8%)과 판단기술(134억 원, 48.5%), 인프라 관련 기술 중 통신기술(334억 원, 66.9%)분야 중심으로 투자가 이루어지고 있었음
 - 국토부는 인프라 관련 기술 중 도로시설물(92억 원, 61.4%)과 교통센터(113억 원, 47.5%) 분야에 주로 투자하고 있었음
 - 산업부는 차량 관련 기술 중 제어기술분야에서 높은 투자비중(116억 원, 82.2%)을 보였으며, 인지기술(378억 원, 33.6%)과 판단기술(92억 원, 33.1%)분야에도 고른 투자를 하고 있는 것으로 분석되었음

〈표 9〉 자율주행분야 부처별-기술별 투자규모(2016년~2018년)

(백만 원, (비중, %))

		차량				인프라		
부처	인지	판단	제어	도로 시설물	노변 센서	교통 센터	통신	기타
경찰청	_	_	_	1,800 (12.1)	_	388 (1.6)	_	_
과기정통부	59,403 (52.8)	13,489 (48.5)	1,432 (10.2)	2,620 (17.6)	1,333 (35.9)	8,297 (35.0)	33,358 (66.9)	34,874 (30.3)
교육부	2,723 (2.4)	576 (2.1)	225 (1.6)	118 (0.8)	_	779 (3.3)	1,239 (2.5)	1,953 (1.7)
국무조정실	_	_	_	_	_	_	_	309 (0.3)
국토부	4,541 (4.0)	3,920 (14.1)	289 (2.1)	9,170 (61.4)	_	11,263 (47.5)	5,277 (10.6)	41,169 (35.8)
산업부	37,837 (33.6)	9,193 (33.1)	11,552 (82.2)	410 (2.7)	356 (9.6)	773 (3.3)	7,407 (14.9)	36,040 (31.3)
중기부	7,806 (6.9)	622 (2.2)	556 (4.0)	806 (5.4)	150 (4.0)	2,198 (9.3)	2,550 (5.1)	759 (0.7)
다부처	280 (0.2)	_	_	_	1,870 (50.4)	_	_	-
총합계	112,589 (100.0)	27,800 (100.0)	14,054 (100.0)	14,924 (100.0)	3,709 (100.0)	23,698 (100.0)	49,831 (100.0)	115,104 (100.0)

- 🦚 최근 3년간(2016년~2018년) 대학 및 출연연·국공립연구소는 차량 관련 기술 중심으로 연구개발을 수행하였으며 기업의 경우 중소기업에서 자율주행분야 정부 연구개발을 주로 수행하였음
 - 대학은 차량 관련 기술 중 판단기술(61억 원, 21.9%)과 제어기술(47억 원, 33.1%)분이에서 연구개발 수행비중이 높았고, 출연연·국공립연구소에서는 인지기술(297억 원, 26.3%)과 판단기술(112억 원, 40.2%)분야 연구개발을 중점적으로 수행하였음
 - 기업은 차량 관련 기술 중 인지기술분야 연구개발 수행규모가 큰 것으로 나타남
 - 중견기업과 중소기업의 인지기술분야 연구개발 수행규모는 각각 149억 원, 291억 원 수준이었음
 - 대기업의 경우 자율주행분야 정부 연구개발의 수행이 감소한 것으로 분석되었음
 - ※ 대기업 정부 연구개발 수행규모: ('16) 80억 원 → ('18) 69억 원

〈표 10〉 자율주행분야 수행주체별-기술별 투자규모(2016년~2018년)

(백만 원, (비중, %))

		차량			인프라				
수행주체	인지	판단	제어	도로 시설물	노변 센서	교통 센터	통신	기타	
대학	21,593 (19.2)	6,093 (21.9)	4,654 (33.1)	2,668 (17.9)	100 (2.7)	5,651 (23.8)	5,827 (11.7)	10,858 (9.4)	
출연연· 국공립연구소	29,659 (26.3)	11,183 (40.2)	_	670 (4.5)	2,100 (56.6)	3,107 (13.1)	7,640 (15.3)	22,978 (20.0)	
대기업	6,650 (5.9)	_	_	_	_	2,321 (9.8)	14,000 (28.1)	320 (0.3)	
중견기업	14,893 (13.2)	4,497 (16.2)	8,444 (60.1)	-	_	_	7,000 (14.0)		
중소기업	29,056 (25.8)	5,662 (20.4)	956 (6.8)	2,991 (20.0)	1,509 (40.7)	3,453 (14.6)	10,187 (20.4)	13,271 (11.5)	
기타	10,738 (9.5)	365 (1.3)	_	8,595 (57.6)	_	9,166 (38.7)	5,177 (10.4)	67,678 (58.8)	
총합계	112,589 (100.0)	27,800 (100.0)	14,054 (100.0)	14,924 (100.0)	3,709 (100.0)	23,698 (100.0)	49,831 (100.0)	115,104 (100.0)	

제6장 결론

6.1 요약 및 정리

- 자율주행기술이 고도화됨에 따라 이를 지원하는 인프라가 중요함
 - 자율주행 인프라는 자율주행을 지원하는 도로, 통신 등을 의미하며, 레벨 4 이상으로 자율 주행기술이 고도화되기 위해서는 인프라의 지원이 필수적임
- 🥌 최근 고속도로를 중심으로 레벨 3 이상의 자율주행 기술이 양산 중이며. 향후 소비자들의 니즈도 더욱 증대됨에 따라 시장규모가 급격히 증가할 것으로 예상됨
 - 국내에서 현대자동차가 2016년도에 레벨2 고속도로 자율주행 시스템을 양산하였으며, 해외에서는 아우디가 2018년도에 레벨3 고속도로 자율주행 시스템을 양산함
 - 자율주행차의 글로벌 시장규모는 연평균 41% 성장하여 '35년에는 1조 1,204억 달러에 이를 것으로 전망됨
- 🦚 주요 선진국에서는 자율주행을 위한 법·제도적 기반을 마련 중이며. 국내에서도 이와 관련된 정책을 제시함
 - •국내는 2027년 완전자율주행 세계최초 상용화를 위해 제도·인프라를 완비(~2024년)하고 핵심부품에 투자하겠다는 전략을 제시하였고, 이를 위한 지능형교통체계 구축 및 고도화도 함께 제시됨
- 🥯 최근 자율주행에서 인프라의 중요성이 대두됨에 따라 우리나라도 이와 관련해 과기부, 산업부, 국토부, 경찰청 등 다양한 부처에서 자율주행차와 그와 관련된 인프라 개발을 수행하고 있음

6.2 정책제언

- 자율주행 관련 정책에서의 계획이행 여부를 점검하고 완성차 업체의 레벨별 자율주행 양산 시점을 감안해 향후 추진 방향성을 모색할 필요가 있음
- 완전 자율주행을 위해서는 인프라의 역할이 중요하며, 특히 레벨 4 이상 수준의 자율주행을 위해서는 인프라와 지능형교통체계와의 연계가 필수적임
- 따라서 인프라 확대와 지능형교통체계 고도화를 위한 지속적인 투자가 필요하며, 연계 시스템의 신뢰도 향상을 위한 실증(테스트베드 구축 등)도 함께 고려되어야 함

※ Hillsdale. et al.(2017), Planning for Connected and Automated Vehicles를 참고하여 재구성
 [그림] 자율주행차량과 지능형 교통체계 및 인프라의 연계 범위

|참고문헌|

- Acumen Research and Consulting (2019), Cellular Vehicle-to-Everything (C-V2X) Market Size to Hit \$1.1 BN by 2026
- Hillsdale. et al.(2017), Planning for Connected and Automated Vehicles, Public Sector Consultants and Center for Automotive Research
- SIP(2018), SIP Automated Driving for Universal Services(SIP-adus) R&D Plan
- Society of Automotive Engineers J3016(2014), Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems
- 국토교통성(2015), 자동차국 관계 예산 개산 요구 개요
- 관계부처합동(2019), 「미래자동차 산업 발전전략」
- 관계부처합동(2018), 「자율주행차 선제적 규제혁파 로드맵」
- 관계부처합동(2018), 「혁신성장동력 시행계획」
- 관계부처합동(2018), 「혁신성장동력 추진현황 및 계획」
- 국토교통부(2017), 「자동차정책 기본계획」
- 국토교통부(2018), 「자율주행 스마트교통시스템 구축방안」
- 국토교통부(2019), 「세종 스마트시티 국가 시범도시 시행계획」
- 법제처(2019),「자동차관리법」
- 통계청(2018), 「2018 고령자 통계」
- 정보통신기술진흥센터(2016), 해외 자율주행차 정책동향
- 제주연구원(2018),「제주특별자치도 발전계획(2018~2022)」
- 한국자동차공학회(2019), 현대차 2020년 레벨3 자율주행차 양산
- 한국지능형교통체계협회(2017), ITS 산업의 현황과 전망
- 한국지능형교통체계협회(2017), ITS 기술동향 및 사례조사보고서
- 김주성·민수진(2019), "지능형 자동차산업의 발전동향 및 핵실 기술개발분야" 한국전자통신연구원 미래전략연구소
- 김필성·김문·엄익현·김덕·한석우·권선연·방보경·김경민·김지혜·백장균(2019), "자동차 분야 신산업 동향 및 밸류체인 분석", 대한무역투자진흥공사, 산업별 글로벌시장 진출전략 보고서
- 박형근(2019), "스마트카 시대 자동차 신벨류체인" 포스코경영연구원
- 박현수(2018), "글로벌 자율주행차 시장 동향 및 시사점" KT경제경영연구소
- 소프트웨어정책연구소(2017), 자율주행자동차 시장 및 정책 동향, 월간 SW중심사회, 2017년 6월
- 연규봉(2019), "5G 커넥티드 자율주행차와 센서기술 동향" 자동차부품연구원, 첨단센서2025포럼
- 이승민(2018), "자율주행자동차 최근 동향 및 시사점" 정보통신기술진흥센터

- 이학무·박인우·박영호·이광수·이호승·하누리, "자율주행차, '현실'을 꿈꾸다." 미래에셋대우 리서치센터
- 이현숙(2017), "자율주행차 기술개발의 특징 및 정책동향" 융합연구정책센터
- 장필성·백서인·최병삼(2018), "자율주행차 사업화의 쟁점과 정책 과제" 과학기술정책연구원
- Automotive News(2019), Audi, BMW, others frustrated by hurdles slowing launch of self-driving cars, 2019.10.15
- Automotive News(2019), Why Level 3 automated technology has failed to take hold, 2019.07.21
- Social LG전자(2018), LG전자-NXP-헬라 자율주행 시장 선점 위해 손잡았다, 2018.01.07
- 국토일보(2019), 서울-세종고속도로, 韓 핵심 인프라 '자리매김', 2019.07.08
- 디지털타임스(2017), 자율차 주행지원 '스마트 도로' 개발 속도, 2017.05.14
- 보안뉴스(2019), 자율주행차 위한 스마트 도로 사업, 국내 추진 현황은?, 2019.04.22
- 삼성뉴스룸(2019), 삼성전자, 차량용 반도체 기능안전 국제 표준 인증, 2019.05.13
- 연합뉴스(2016), 5G 기반 자율주행차 개발…SK텔레콤·인텔 협약, 2016.10.31
- 전자과학(2019), 네이버랩스, 자율주행 측위기술 고도화 '도로에 이어 인도 매핑도', 2019.06.26
- 중앙일보(2017), LG전자, '히어'와 제휴 '차세대 커넥티드카 솔루션' 개발, 2017.12.27
- 중앙일보(2018), 넥쏘 서울-평창 190km 구간 자율주행, 2018.02.04
- 제주도정뉴스(2019), 제주에 적합한 자율주행 기술 실현 청사진 제시, 2019.01.14
- 한국일보(2019), 서울시 '5G 자율주행 버스·택시' 밑그림 그린다, 2019.05.23
- 한겨례(2019), 서울 상암동에 '자율주행 차량 특구', 2019.01.17

|KISTEP 기술동향브리프 발간 현황|

발간호	제목	저자 및 소속
2019-01	인공지능(반도체)	나영식·조재혁(KISTEP)
2019-02	입자가속기술	윤수진·함선영·이상경(KISTEP)
2019-03	과학기술 인력양성 정책 동향	김승균·임상우·김홍영(KISTEP)
2019-04	원전해체	여준석(KISTEP)
2019-05	농업용 드론	염경환(KISTEP)·정회종(숙명여대)
2019-06	UHD 방송	진영현·김동현(KISTEP)
2019-07	물관리 기술	박노언(KISTEP)·이상호(국민대)
2019-08	기술사업화 정책 동향	김현오·김홍영(KISTEP)
2019-09	의료서비스 로봇	유형정·도지훈(KISTEP)
2019-10	기상재해 영향예보	이동혁·김가영(KISTEP)
2019-11	면역항암제	김은정(KISTEP)·이선경(KDDF)
2019-12	지진 조기경보	전유정(KISTEP)
2019-13	알츠하이머 진단·치료기술	김주원·윤영소(KISTEP)
2019-14	지하공간 개발동향	황건욱·송화연(KISTEP)
2019-15	실험동물 공유·활용 동향	김종란·김한해(KISTEP)
2019-16	자율주행기술	박종록·김한해(KISTEP)

|저자소개|

박 종 록

한국과학기술기획평가원 예비타당성조사1센터 부연구위원

Tel: 02-589-5099 E-mail: jrpark@kistep.re.kr

김 한 해

한국과학기술기획평가원 예비타당성조사2센터 부연구위원

Tel: 02-589-5264 E-mail: hhkim@kistep.re.kr

|편집위원소개|

이 길 우 선임연구위원,

이 승 필, 김 선 재, 채 명 식 부연구위원

한국과학기술기획평가원 사업조정본부

Tel: 02-589-2283 E-mail: feel86@kistep.re.kr

KISTEP 기술동향브리프 | 2019-16호

자율주행기술