Elektrotechnisches Labor

Laborübung Aktive Filter

Rene Hampölz, Gruppe 6 HTBLA Weiz, 5BHET

19. September 2022

Inhaltsverzeichnis

	Emiunrung	_
2	Passiver Tiefpass-Filter 2.1 Schaltung (RC-Glied)	2
3	Aktiver Tiefpass-Filter 3.1 Schaltung (Sallen-Key-Topologie) 3.1.1 Verstärkungsfaktor K 3.2 Filter-Polynom (Butterworth)	3
4	Passiver vs. Aktiver Filter	4
5	Berechnungen5.1 Korrektur der Grenzfrequenz5.2 Kapazität C 5.3 Widerstände R_3 und R_4	4
6	Simulation	5
7	Auswertung 7.1 Messdaten	

1 Einführung

Es soll ein aktiver (Butterworth-) Filter der zweiten Ordnung über der Sallen-Key-Schaltung dimensioniert und aufgebaut werden. Des weiteren soll ein passiver Filter der zweiten Ordnung Simuliert werden.

Angaben: $f_c = 1000 \, \text{Hz}$, $R_1 = R_2 = 100 \, \Omega$, $C_1 = C_2$

Passiver Tiefpass-Filter 2

2.1 Schaltung (RC-Glied)

2.1.1 Erste Ordnung

Für die Grenzfrequenz gilt:

$$f_c = rac{1}{2\pi \cdot R \cdot C}$$
 bzw. $w_c = rac{f_c}{R \cdot C}$

2.1.2 Zweite Ordnung

Für die Grenzfrequenz gilt:

bzw.
$$w_c=rac{f_c}{R\cdot C}$$
 $f_c=rac{1}{2\pi\sqrt{R_1R_2C_1C_2}}$ bzw. $w_c=rac{f_c}{\sqrt{R_1R_2C_1C_2}}$

2.2 Korrektur der Grenzfrequenz

Ab Filter der 2. Ordnung entspricht die Grenzfrequenz f_c nicht mehr der Verstärkung von $-3 \,\mathrm{dB}$. Deshalb muss die Grenzfrequenz für die gewünschte Filter-Ordnung n korrigiert werden:

$$f_{(-3\,\mathrm{dB})} = f_c \sqrt{2^{(rac{1}{n})} - 1}$$
 bzw. $w_{(-3\,\mathrm{dB})} = w_c \sqrt{2^{(rac{1}{n})} - 1}$

3 Aktiver Tiefpass-Filter

3.1 Schaltung (Sallen-Key-Topologie)

3.1.1 Verstärkungsfaktor K

$$A_0 = K = 1 + \frac{R_4}{R_3}$$

$$K = 3 - \frac{1}{Q}$$

bei $K \geq 3$ ist der Filter instabil!

3.2 Filter-Polynom (Butterworth)

Beim Butterworth-Polynom wird ein Signal an der Grenzfrequenz auf das $\frac{1}{\sqrt{2}}=0,707$ -fache des ursprünglichen Signals abgeschwächt. Daraus ergibt sich die Güte Q, die Gleichspannungsverstärkung K, sowie die Übertragungsfunktion $\frac{U_a}{U_e}$:

$$Q = \frac{1}{\sqrt{2}} = 0,707$$

$$K = 3 - \sqrt{2} = 1,586$$

$$\frac{U_a}{U_e} = \frac{K \cdot \frac{1}{R_1 R_2 C_1 C_2}}{s^2 + s \left[\frac{R_1 C_2 + R_2 C_2 + R_1 C_1 \cdot (1 - k)}{R_1 R_2 C_1 C_2}\right] + \frac{1}{R_1 R_2 C_1 C_2}} \qquad \text{mit} \quad s = j \cdot w$$

Da in dieser Übung $R_1=R_2$ und $C_1=C_2$ entspricht, kann das Polynom vereinfacht werden. Durch umformen und einsetzten von $w_c=\frac{f_c}{\sqrt{R_1R_2C_1C_2}}$, wird das Polynom weiter vereinfacht:

$$\frac{U_a}{U_e} = \frac{K \cdot w_c^2}{s^2 + s \cdot w_c \cdot (3 - K) + w_c^2}$$

4 Passiver vs. Aktiver Filter

Im Gegensatz zum passiven Filter haben aktive Filter höhere Eingangs- und niedrigere Ausgangsimpedanzen. Aufgrund des OPVs benutzen aktive Filter <u>nicht</u> die Energie des Signals sondern benötigen eine externe Stromversorgung.

5 Berechnungen

5.1 Korrektur der Grenzfrequenz

Da es sich bei der Sallen-Key-Topologie um Filter der zweiten Ordnung handelt, muss die Grenzfrequenz f_c korrigiert werden, um weiterhin eine Verstärkung von $-3\,\mathrm{dB}$ zu erreichen:

$$f_{(-3 \, dB)} = f_c \sqrt{2^{\frac{1}{n}} - 1}$$
 $(f_{(-3 \, dB)} = 1000 \, Hz)$
 $1000 = f_c \cdot \sqrt{2^{\frac{1}{2}} - 1}$
 $\rightarrow f_c = 1554 \, Hz$

5.2 Kapazität C

Um nun den Bauteilwert für die Kapazität C zu berechnen, wird die Formel der Grenzfrequenz f_c für die zweite Ordnung umgeformt:

$$f_{c} = \frac{1}{2\pi\sqrt{R_{1}R_{2}C_{1}C_{2}}}$$

$$f_{c} = \frac{1}{2\pi \cdot R \cdot C}$$

$$C = \frac{1}{2\pi \cdot R \cdot f_{c}}$$

$$C = \frac{1}{2\pi \cdot 100 \cdot 1554}$$

$$C = 1,02 \cdot 10^{-6} \,\mathrm{F}$$

$$(R_{1} = R_{2}, C_{1} = C_{2})$$

$$(R_{1} = R_{2}, C_{1} = C_{2})$$

5.3 Widerstände R_3 und R_4

Die letzten zwei Bauteilwerte, für die Widerstände R_3 und R_4 , werden über das Widerstandsverhältnis des Verstärkungsfaktors K ausgerechnet:

$$K=1+rac{R_4}{R_3}$$

$$rac{R_4}{R_3}=K-1 \end{(}K=1{,}586{)}$$

$$rac{R_4}{R_3}=0{,}586=rac{0{,}586}{1} \end{(}Angenommen $R_3=1\cdot 10^4\,\Omega{)}$}$$

$$rac{R_4}{R_3}\sim rac{5858\,\Omega}{1\cdot 10^4\,\Omega}$$

6 Simulation

Abbildung 1: Betrags- und Phasengang des Simulierten passiven und aktiven Tiefpass-Filters der zweiten Ordnung

7 Auswertung

7.1 Messdaten

Aufgrund eines falsch gewählten OPVs konnten aus der aufgebauten Schaltung keine Werte zur Auswertung entnommen werden. Stattdessen wurde der aktive Filter ebenfalls Simuliert.

7.2 Verwendete Komponenten

Geräteart	Inventar-Nummer	Bezeichnung
Frequenzgenerator	ET-MTL1-FG01	U_e
Widerstands-Dekade	ET-MTL1-RD09	R_1
Wider Starius-Dekade	ET-MTL1-RD14	R_2
	ET-MTL1-RD28	R_3
	ET-MTL1-RG26	R_4
	ET-MTL1-CD11	C_1
Kapazitäts-Dekade	ET-MTL1-CD18	C_2
Oszilloskop	ET-MTL1-OS04	U_e , U_a
Operationsverstärker	0P27	OPV

Änderungsverlauf

2023-06-19 · · •	a873a75 by github-actions[bot] chore: Merge changes from template (#2)
2023-06-08 · · ·	a29835b by hampoelz chore: Merge changes from template
2023-04-17 · · ·	3666a28 by github-actions[bot] chore: Merge changes from template (#1)
2023-04-15 · · ·	23b8e76 by hampoelz chore: Reset commit timeline limit
2023-04-15 · · •	916cda6 by hampoelz chore: Import simulations for better visualization

