ST2132 Tutorial 10 2210

- 1. Let x_1, \ldots, x_n be realisations of IID Normal (μ, ν) random variables X_1, \ldots, X_n , and $0 < \alpha < 1$.
 - (a) For large n, what is the approximate joint distribution of the ML estimators $\hat{\mu}$ and $\hat{\nu}$? Express your answer in terms of $\sigma = \sqrt{\nu}$.
 - (b) Construct approximate (1α) -CI for ν , expressing your answer in terms of σ .
- 2. Refer to Tutorial 8 Question 4, and Tutorial 9 Question 4.
 - (a) Write down an approximate distribution for $\hat{\theta}_n$, the ML estimator of θ based on n plants, where n is large.
 - (b) Construct a 95%-CI for θ based on the data.
- 3. Refer to Tutorial 8 Question 3. Write down an approximate distribution for the ML estimators of (p_1, \ldots, p_5) based on n rolls of a die, where n is large. Use slide 15 of Distribution of ML Estimators; there is no need to invert a Fisher information matrix.
- 4. Let a > 0, and define

$$f(x) = x \log\left(\frac{x}{a}\right), \qquad x > 0$$

Use a Taylor series expansion to show that for x close to a,

$$f(x) \approx (x - a) + \frac{(x - a)^2}{2a}$$