

Using Process Mining and LLMs for Activity Recognition in a Smart Home Environment

Student: Mattia Curri

Formal Methods in Computer Science Master Degree in Computer Science

K Introduction

Data-driven technique that analyzes event logs from information systems to discover, monitor, and improve real business processe

Extracts process models from event data. Compares actual processes with predefined models. Identifies inefficiencies and suggests optimizations.

Business process optimization Compliance auditing Customer journey analysis

Dataset

The MIT smart home dataset is a dataset in the field of Activity Recognition, collected in a real-world smart home environment.

Data was collected in a smart home and features various binary sensors.

Timestamp, CaseID, Activity

```
Cabinet 67 Cabinet 67 ON Toileting
```


The Alpha algorithm constructs a Petri net representation of a process by analyzing event logs.

The Heuristic Miner algorithm is an extension of the Alpha algorithm that deals with noise and incompleteness in event logs. It uses frequency-based heuristics to construct a more robust process model.

The Inductive Miner algorithm aims to produce sound process models that are guaranteed to be free of deadlocks and other anomalies. The noise threshold parameter is used to filter out infrequent and potentially noisy behavior from the event logs.

Fitness: Measures how well the discovered model can reproduce the behavior observed in the event log.

Precision: Measures how much behavior allowed by the model is observed in the event log.

Simplicity: Measures the complexity of the discovered model.

Generalization: Measures how well the model can generalize to unseen behavior.

No processing vs Processing

Base model vs Tuned model (Noise Threshold)

Trimming of little traces vs No Trimming

CSV Formatting

Removing Suffix Numbers e.g. combining Sink_faucet_-_hot and Sink_faucet_-_cold into Sink_faucet

Activity Windows: segment the activities into windows based on changes in activity or case ID. This function ensured that each activity window had a start and end timestamp, providing a clear view of the activity duration.

Dataset Augmented with data generated by large language models.

GPT-40, Claude 3.5 Sonnet, Qwen 2.5 Plus, Deepseek-R1, Mistral were used to generate data.

Limited context window -> Activities less represented

System Prompt - 1

You are a synthetic data generator specialized in process mining. Your task is to expand the user-provided dataset (with columns [Timestamp, CaseID, Activity]) by creating new realistic cases that strictly adhere to the existing activities in the original dataset.

Binding Instructions:

Mandatory Input: The user will always provide an existing dataset as reference.

Activity Preservation: Use only the activities present in the original dataset (no new invented activities).

Output Structure: Maintain the exact 3-column order: Timestamp, CaselD, Activity.

Generation Guidelines:

Temporal Patterns:

Create plausible chronological sequences based on observed logic in the original data.

CaseID Generation:

CaseIDs represent sensors from which the data was obtained. Do not invent new CaseIDs.

Follow the original CaseID format (e.g., C 1001, S 205).

System Prompt - 2

Realistic Timestamps:

Ensure intra-case chronological consistency (no time travel within a case).

Required Output Example:

Timestamp, CaseID, Activity 2023-11-05T08:02:34Z,C 1001,Start

2023-11-05T08:03:11Z,C 1001,Material Loading

2023-11-05T08:07:22Z.C 1001.Quality Check

2023-11-05T08:09:45Z,C 1001,End

Absolute Constraints:

Do not invent new activities or CaseIDs.

Do not alter column order or add/remove fields.

Use Cases:

Enrich training data for process discovery algorithms.

Base Model Experiments

Miner Configuration	Fitness	Precision	Simplicity	Generalization
Inductive Miner (0.0)	1.000	0.276	0.640	0.304
Inductive Miner (0.1)	0.999	0.356	0.643	0.308
Inductive Miner (0.2)	0.994	0.445	0.645	0.300
Inductive Miner (0.3)	0.989	0.511	0.648	0.294
Inductive Miner (0.5)	0.978	0.636	0.660	0.282
Inductive Miner (0.6)	0.976	0.629	0.661	0.278
Inductive Miner (0.8)	0.970	0.624	0.664	0.265
Heuristic Miner	0.955	0.698	0.588	0.232
Alpha Miner	0.554	0.025	1.000	0.297

Processed Dataset Experiments

Miner Configuration	Fitness	Precision	Simplicity	Generalization
Inductive Miner (0.0)	0.999	0.111	0.633	0.407
Inductive Miner (0.1)	0.999	0.222	0.634	0.410
Inductive Miner (0.2)	0.991	0.176	0.636	0.407
Inductive Miner (0.3)	0.985	0.337	0.640	0.405
Inductive Miner (0.5)	0.969	0.389	0.647	0.344
Inductive Miner (0.6)	0.969	0.368	0.646	0.349
Inductive Miner (0.8)	0.975	0.382	0.650	0.318
Heuristic Miner	0.973	0.450	0.558	0.294
Alpha Miner	0.425	0.015	1.000	0.412

Trimmed Dataset Experiments

Miner Configuration	Fitness	Precision	Simplicity	Generalization
Inductive Miner (0.0)	1.000	0.262	0.641	0.306
Inductive Miner (0.1)	0.999	0.338	0.644	0.310
Inductive Miner (0.2)	0.994	0.424	0.646	0.302
Inductive Miner (0.3)	0.988	0.489	0.649	0.297
Inductive Miner (0.5)	0.976	0.617	0.662	0.284
Inductive Miner (0.6)	0.974	0.610	0.663	0.279
Inductive Miner (0.8)	0.968	0.605	0.665	0.266
Heuristic Miner	0.982	0.677	0.588	0.233
Alpha Miner	0.533	0.022	1.000	0.299

Performance metrics comparison. Inductive Miner shown with different noise thresholds, compared to baseline Heuristic and Alpha miners. Best results per column are highlighted.

GPT-4o (Original Dataset)					
Miner Configuration	Fitness	Precision	Simplicity	Generalization	
Inductive Miner (0.0)	1.000	0.271	0.640	0.299	
Inductive Miner (0.2)	0.994	0.428	0.644	0.293	
Inductive Miner (0.5)	0.978	0.599	0.659	0.273	
Inductive Miner (0.6)	0.976	0.593	0.660	0.269	
Inductive Miner (0.8)	0.970	0.589	0.662	0.256	
Heuristic Miner	0.955	0.664	0.589	0.227	
Alpha Miner	0.554	0.025	1.000	0.291	

Performance metrics comparison on the original dataset. Inductive Miner shown with different noise thresholds, compared to baseline Heuristic and Alpha miners.

	GPT-4o	(Augmented [Oataset)	
Miner	Fitness	Precision	Simplicity	Generalization
Inductive Miner (0.0)	1.000	0.298	0.640	0.305
Inductive Miner (0.2)	0.995	0.474	0.644	0.301
Inductive Miner (0.5)	0.979	0.657	0.659	0.278
Inductive Miner (0.6)	0.978	0.656	0.660	0.278
Inductive Miner (0.8)	0.973	0.650	0.662	0.267
Heuristic Miner	0.947	0.730	0.589	0.234
Alpha Miner	0.533	0.029	1.000	0.299

Claude 3.5 Sonnet

Claude 3.5 Sonnet (Original Dataset)					
Miner Configuration	Fitness	Precision	Simplicity	Generalization	
Inductive Miner (0.0)	0.987	0.261	0.635	0.279	
Inductive Miner (0.2)	0.980	0.413	0.645	0.273	
Inductive Miner (0.5)	0.967	0.563	0.650	0.257	
Inductive Miner (0.6)	0.966	0.567	0.652	0.258	
Inductive Miner (0.8)	0.955	0.577	0.654	0.246	
Heuristic Miner	0.958	0.694	0.589	0.212	
Alpha Miner	0.589	0.024	1.000	0.291	

Performance metrics comparison on the original dataset. Inductive Miner shown with different noise thresholds, compared to baseline Heuristic and Alpha miners.

Cla	ude 3.5 Son	inet (Augment	ted Dataset)	
Miner Configuration	Fitness	Precision	Simplicity	Generalization
Inductive Miner (0.0)	1.000	0.266	0.635	0.302
Inductive Miner (0.2)	0.990	0.425	0.645	0.297
Inductive Miner (0.5)	0.972	0.579	0.650	0.282
Inductive Miner (0.6)	0.972	0.583	0.652	0.281
Inductive Miner (0.8)	0.962	0.593	0.654	0.273
Heuristic Miner	0.951	0.697	0.589	0.231
Alpha Miner	0.536	0.025	1.000	0.325

Qwen 2.5 Plus

Qwen 2.5 Plus (Original Dataset)				
Miner	Fitness	Precision	Simplicity	Generalization
Inductive Miner (0.0)	1.000	0.239	0.639	0.281
Inductive Miner (0.2)	0.994	0.338	0.643	0.270
Inductive Miner (0.5)	0.978	0.419	0.655	0.246
Inductive Miner (0.6)	0.976	0.416	0.656	0.243
Inductive Miner (0.8)	0.970	0.416	0.658	0.230
Heuristic Miner	0.955	0.535	0.597	0.213
Alpha Miner	0.554	0.025	1.000	0.237

Performance metrics comparison on the original dataset. Inductive Miner shown with different noise thresholds, compared to baseline Heuristic and Alpha miners.

(Qwen 2.5 P	lus (Augmente	ed Dataset)	
Miner	Fitness	Precision	Simplicity	Generalization
Inductive Miner (0.0)	1.000	0.434	0.639	0.281
Inductive Miner (0.2)	0.997	0.621	0.643	0.270
Inductive Miner (0.5)	0.988	0.772	0.655	0.242
Inductive Miner (0.6)	0.987	0.770	0.657	0.240
Inductive Miner (0.8)	0.984	0.764	0.658	0.229
Heuristic Miner	0.800	0.852	0.597	0.213
Alpha Miner	0.754	0.064	1.000	0.237

Deepseek-R1

Deepseek-R1 (Original Dataset)				
Miner	Fitness	Precision	Simplicity	Generalization
Inductive Miner (0.0)	1.000	0.245	0.639	0.276
Inductive Miner (0.2)	0.994	0.353	0.642	0.265
Inductive Miner (0.5)	0.978	0.447	0.654	0.240
Inductive Miner (0.6)	0.976	0.444	0.655	0.237
Inductive Miner (0.8)	0.970	0.443	0.657	0.224
Heuristic Miner	0.956	0.509	0.592	0.206
Alpha Miner	0.554	0.024	1.000	0.246

Performance metrics comparison on the original dataset. Inductive Miner shown with different noise thresholds, compared to baseline Heuristic and Alpha miners.

	Deepseek-I	R1 (Augmente	d Dataset)			
Miner Fitness Precision Simplicity Generalizat						
Inductive Miner (0.0)	1.000	0.408	0.639	0.282		
Inductive Miner (0.2)	0.997	0.596	0.642	0.272		
Inductive Miner (0.5)	0.986	0.754	0.654	0.245		
Inductive Miner (0.6)	0.985	0.753	0.655	0.245		
Inductive Miner (0.8)	0.982	0.747	0.657	0.234		
Heuristic Miner	0.940	0.850	0.592	0.213		
Alpha Miner	0.690	0.052	1.000	0.259		

Mistral (Original Dataset)					
Miner Fitness Precision Simplicity Generali					
Inductive Miner (0.0)	1.000	0.258	0.640	0.282	
Inductive Miner (0.2)	0.994	0.388	0.644	0.272	
Inductive Miner (0.5)	0.978	0.514	0.657	0.247	
Inductive Miner (0.6)	0.976	0.510	0.658	0.244	
Inductive Miner (0.8)	0.970	0.508	0.660	0.232	
Heuristic Miner	0.955	0.593	0.591	0.215	
Alpha Miner	0.554	0.025	1.000	0.274	

Performance metrics comparison on the original dataset. Inductive Miner shown with different noise thresholds, compared to baseline Heuristic and Alpha miners.

Mistral (Augmented Dataset)				
Miner	Fitness	Precision	Simplicity	Generalization
Inductive Miner (0.0)	1.000	0.353	0.640	0.296
Inductive Miner (0.2)	0.996	0.540	0.644	0.290
Inductive Miner (0.5)	0.984	0.712	0.657	0.266
Inductive Miner (0.6)	0.982	0.710	0.659	0.262
Inductive Miner (0.8)	0.978	0.705	0.660	0.255
Heuristic Miner	0.907	0.795	0.591	0.228
Alpha Miner	0.550	0.040	1.000	0.302

Large Language Models (LLMs) can be used to directly analyze datasets by understanding and interpreting the event logs.

LLMs can help in identifying patterns and anomalies in event logs, providing insights that may not be immediately apparent through traditional analysis methods.

LLMs can assist in preprocessing event logs by normalizing and structuring data, making it easier to apply process mining algorithms and improving the overall quality of the analysis.

Models Used

GPT-4o

DeepSeek-R1 (@!)

Qwen2.5-Max

Llama3.2:3B (SLM in local)

Here is an activity recognition dataset. Do a full analysis. Find any anomalies, bottlenecks, and special things.

Thanks for the attention!