Лабораторная работа №2 по дисциплине «Дифференциальные уравнения»

Держапольский Юрий Витальевич

Содержание

1	Введение	2
2	Задание 1: Решить уравнения 2.1 Постановка задачи	3 3
3	Задание 2: Решить задачи Коши 3.1 Постановка задачи	6 6
4	Задание 3: Проверка решения задачи Коши 4.1 Постановка задачи	8 8 8
5	Заключение	9

1 Введение

В этой лабораторной работе мы будем решать дифференциальные уравнения, строить векторные поля, а также решать и проверять задачи Коши, верстая решения в \LaTeX .

2 Задание 1: Решить уравнения

2.1 Постановка задачи

Для следующих дифференциальных уравнений определить тип, найти общее решение и построить векторное поле с помощью программ компьютерной математики:

1.
$$u' \cdot \ln x + 2xu = 2x \cdot \sqrt{u}$$

$$2. e^{xy} \cdot (y^2 + xyy') = y' + y \cdot \cot x$$

3.
$$r' \cdot \cos^2 \varphi = \sec r \cdot \ln \sin r$$

4.
$$5x\sqrt{x} \cdot u' - 5u\sqrt{x} = 25x^2 - u^2$$

5.
$$y'\sqrt{x} \cdot \sec^2 \sqrt{y} = 2\sqrt{y} \cdot (\tan \sqrt{y} + \ln x)$$

2.2 Решение

 $1. \ u' \cdot \ln x + 2xu = 2x \cdot \sqrt{u}$

Тип уравнения: Уравнение с разделяющимися переменными.

Общее решение: $\operatorname{Ei}(2\ln x) + \ln(1 - \sqrt{u}) = C$.

Рис. 1: Векторное поле к уравнению (1).

$$2. e^{xy} \cdot (y^2 + xyy') = y' + y \cdot \cot x$$

Tun уравнения: Приводимое к уравнению в полных дифференциалах.

Общее решение: $e^{xy} - \ln y - \ln(\sin x) = C$.

Векторное поле:

Рис. 2: Векторное поле к уравнению (2).

3.
$$r' \cdot \cos^2 \varphi = \sec r \cdot \ln \sin r$$

Tun уравнения: Уравнение с разделяющимися переменными.

Общее решение: $\lim r = \tan \varphi + C$.

Рис. 3: Векторное поле к уравнению (3).

4.
$$5x\sqrt{x} \cdot u' - 5u\sqrt{x} = 25x^2 - u^2$$

Tun уравнения: Приводимое к уравнению с разделяющимися переменными.

Общее решение: $\frac{u+5x}{u-5x} = Ce^{4\sqrt{x}}$.

Векторное поле:

Рис. 4: Векторное поле к уравнению (4).

5.
$$y'\sqrt{x} \cdot \sec^2 \sqrt{y} = 2\sqrt{y} \cdot (\tan \sqrt{y} + \ln x)$$

 $Tun\ ypaвнения:$ Приводимое к уpавнению в полных дифференциалах заменой $u=\tan\sqrt{y}.$

Общее решение: $e^{-2\sqrt{x}}(\tan\sqrt{y} + \ln x) = 2 \operatorname{Ei}(-2\sqrt{x}) + C$.

Рис. 5: Векторное поле к уравнению (5).

3 Задание 2: Решить задачи Коши

3.1 Постановка задачи

Для следующих уравнений с начальными условиями определить тип, найти общее и частное решения, построить график решения и векторное поле уравнения:

1.
$$\theta r' = \theta \cdot \sin \frac{r}{\theta} + r$$
; $r(1) = \frac{\pi}{2}$

2.
$$y'\cos x + y = \frac{y}{\ln y}$$
; $y(0) = 1$

3.2 Решение

1.
$$\begin{cases} \theta r' = \theta \cdot \sin \frac{r}{\theta} + r \\ r(1) = \frac{\pi}{2} \end{cases}$$

 $Tun\ ypaвнения:$ Приводимое к уpавнению с paзделяющимися переменными заменой $x=\frac{r}{\theta}.$

Общее решение: $\tan \frac{r}{2\theta} = C \cdot \theta$.

Рис. 6: Векторное поле к уравнению (1).

2.
$$\begin{cases} y'\cos x + y = \frac{y}{\ln y} \\ y(0) = 1 \end{cases}$$

Тип уравнения: Уравнение с разделяющимися переменными.

Общее решение: $y(1 - \ln y) \tan \left(\frac{x}{2} + \frac{\pi}{4}\right) = C.$

Частное решение: $y(1 - \ln y) \tan \left(\frac{x}{2} + \frac{\pi}{4}\right) = 1.$

Рис. 7: Векторное поле к уравнению (2).

4 Задание 3: Проверка решения задачи Коши

4.1 Постановка задачи

Для следующей задачи Коши проверить, является ее ли решением представленная неявно заданная функция:

$$\theta r' \cdot (\theta - \sin e^r + re^r \cdot \cos e^r) = \theta r - r^2, \ r(1) = \ln \frac{\pi}{2}; \quad r \ln \theta + \sin e^r = \theta$$

4.2 Решение

Проверка начальных условий:

$$\ln \frac{\pi}{2} \cdot \ln 1 + \sin e^{\ln \frac{\pi}{2}} = 1$$
$$0 + 1 = 1$$
$$1 = 1$$

Решение удовлетворяет начальным условиям. Проверка решения уравнения:

$$r' \ln \theta + \frac{r}{\theta} + e^r r' \cos e^r = 1$$

Подставим $\ln \theta = \frac{\theta - \sin e^r}{r}$.

$$r'\frac{\theta - \sin e^r}{r} + e^r r' \cos e^r + \frac{r}{\theta} = 1 \quad |\cdot r\theta|$$

$$\theta r' (\theta - \sin e^r + e^r r \cos e^r) + r^2 = r\theta$$

$$\theta r' \cdot (\theta - \sin e^r + re^r \cdot \cos e^r) = \theta r - r^2$$

Дифференцируя решение, и используя зависимости между функциями в решении, было получено исходное уравнение.

Omsem: Неявно заданная функция является решением задачи Коши.

5 Заключение

В этой лабораторной работе мы решили дифференциальные уравнения, построили векторные поля, а также решили и проверили задачи Коши, сверстав решения в \LaTeX