

CLAIM AMENDMENTS

1 1. (currently amended) A joint assembly for joining a
2 filiform element to a connection element, the assembly comprising
3 a tube fitted on an end section of said filiform element
4 and formed with an eye for said connection element, the filiform
5 element consisting of a single composite and solid round strand ;
6 and

7 means for bonding together the tube and the connection
8 along continuous side contacting surfaces thereof.

1 2. (previously presented) The joint assembly according
2 to claim 1 wherein said tube and said eye are made in a single
3 piece.

1 3. (previously presented) The joint assembly according
2 to claim 2 wherein said tube and said eye are separate pieces.

1 4. (previously presented) The joint assembly according
2 to claim 3 wherein said tube has a curved section defining said
3 eye, and at least a first substantially straight section distal
4 from an outer end of said end section of said filiform element.

5. (canceled)

1 6. (previously presented) The joint assembly according
2 to claim 1 wherein said means for bonding said tube to said
3 filiform element comprises an adhesive or a chemical bond between
4 said tube and said filiform element.

1 7. (previously presented) The joint assembly according
2 to claim 4 wherein said first straight section of said tube has a
3 predetermined length such that the tensile stress force is at least
4 partially transferred from said filiform element to said tube along
5 said first straight section of said tube.

1 8. (previously presented) The joint assembly according
2 to claim 4 wherein said tube has a second substantially straight
3 section proximal to the outer end of said end section of said
4 filiform element.

9. (canceled)

1 10. (previously presented) The joint assembly according
2 to claim 1 wherein a matrix of said filiform element of composite
3 material is thermoplastic.

11. (canceled)

1 12. (previously presented) The joint assembly according
2 to claim 1 wherein said tube is steel.

13 - 14. (canceled)

1 15. (previously presented) The joint assembly according
2 to claim 1 wherein said filiform element has a protective coating
3 against ultraviolet rays, against attacks of chemical nature, or
4 against damage of mechanical origin.

1 16. (previously presented) The joint assembly according
2 to claim 1 wherein said filiform element or said protective coating
3 has a predetermined coloration for identifying the diameter of said
4 filiform element or for visually indicating said filiform element.

1 17. (previously presented) The joint assembly according
2 to claim 1 wherein said filiform element or said protective coating
3 has length markers for facilitating measurement of said filiform
4 element during manufacture of the joint assembly.

1 18. (previously presented) The joint assembly according
2 to claim 1, further comprising
3 means for locking the eye closed.

1 19. (previously presented) The joint assembly according
2 to claim 18 wherein said locking means are formed by a ring applied
3 around the neck of said eye.

1 20. (previously presented) The joint assembly according
2 to claim 1 wherein said tube has flared end edges.

1 21. (previously presented) The joint assembly according
2 to claim 1, further comprising
3 removable connection means between said tube and said
4 eye.

1 22. (previously presented) The joint assembly according
2 to claim 21 wherein said connection means comprise a threaded stem
3 that extends from said eye and screws into a first end of said
4 tube.

1 23. (previously presented) The joint assembly according
2 to claim 21, further comprising
3 a retaining element adapted to prevent the filiform
4 element from pulling out of a second end of said tube.

1 24. (previously presented) The joint assembly according
2 to claim 23 wherein the retaining element consists of a pin
3 inserted axially the outer end of said filiform element positioned

4 in said tube, and having a maximum cross section greater than an
5 internal clearance of said tube.

1 25. (previously presented) The joint assembly according
2 to claim 23 wherein said pin is conical or frustoconical.

1 26. (previously presented) The joint assembly according
2 to claim 23 wherein said filiform element is of composite
3 thermoplastic material heatable to a softening temperature adapted
4 to permit the penetration of the retaining element.

1 27. (previously presented) The joint assembly according
2 to claim 1, further comprising
3 means for screw connection between the outer side surface
4 of said end section of said filiform element and the inner side
5 surface of said tube.

28 - 29. (canceled)

1 30. (currently amended) A procedure for joining a
2 filiform element to a connection element comprising the steps of
3 fitting a tube on an end section of said filiform
4 element,

5 shaping said tube such that it defines an eye adapted to
6 be hooked by said connection element, the filiform element being a
7 composite and solid round strand,

8 simultaneously heating the strand with the tube to a
9 predetermined temperature at which both become malleable in order
10 to be shaped to define the eye.

31. (canceled)

1 32. (previously presented) The procedure for achieving
2 a system of junction of a filiform element to a connection element
3 according to claim 30, further comprising the step of
4 joining said filiform element to said tube in order to
5 transfer the tensile stress load from one to the other.

1 33. (currently amended) A kit for achieving a system of
2 junction of a filiform element to a connection element, the kit
3 comprising

4 a filiform element, resistant to tensile stress, of
5 thermoplastic composite and solid material,

6 a tube fittable on an end section of said filiform
7 element, and

8 a device for bending the tube including means for heating
9 adapted to simultaneously heat said filiform element and said tube
10 to a predetermined temperature in which said filiform element and

11 said tube become malleable, in order to be shaped such to
12 substantially define a hooking eye to said connection element.

1 34. (previously presented) A method for reducing the
2 aerodynamic resistance of a filiform element subject to a fluid
3 flux of variable direction, comprising the step of
4 attaching along at least one section of said filiform
5 element at least one element with highly aerodynamic wing profile,
6 supported and freely rotating around said filiform element such
7 that it orients itself in the flux direction which impacts it.

1 35. (previously presented) A device for reducing the
2 aerodynamic resistance of a filiform element subject to a fluid
3 flux of variable direction, the device comprising
4 at least one highly aerodynamic wing element attached
5 along at least one section of said filiform element and supported
6 and freely rotating around said filiform element such that it
7 orients itself in the flux direction which impacts it.

1 36. (previously presented) The device according to
2 claim 35 wherein the device is shaped like a wing-shaped foil
3 having elastically deformable opposing edges for snap-lock
4 introduction of said filiform element inside said element with
5 aerodynamic profile.

1 37. (previously presented) The device according to
2 claim 35 wherein it is a plastic extrusion.

1 38. (previously presented) The device according to
2 claim 36 wherein said foil has at least a first extension
3 projecting from the inner surface in order to join said foil to a
4 precise point on the longitudinal length of said filiform element.

1 39. (currently amended) The device according to [[any]]
2 claim 36 wherein said foil has a plurality of extensions projecting
3 from its inner surface in order to join said foil to a precise
4 point on the longitudinal length of said filiform element having
5 substantially smaller diameter than that of the maximum chord of
6 the curved part of said foil.

40. (canceled)