# WORLD INTELLECTUAL PROPERTY ORGANIZATION [Submittings] Burens



#### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|   | (51) International Patent Classification <sup>4</sup> :<br>C12P 21/00, C12N 15/00, 9/54<br>C12N 9/56, C11D 7/42<br>C12N 5/00, 1/20, C07H 15/12                                                                                                                                                                                                                              | AI                         | ) -                                           | 1) International Publication Number: WO 88/ 08033<br>3) International Publication Date: 20 October 1988 (20.10.88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|   | (21) International Application Number: PCT/US (22) International Filing Date: 28 March 1988 (                                                                                                                                                                                                                                                                               |                            | 1900 Oak Terrace Lane, Thousand Oaks, CA 9137 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|   | (31) Priority Application Number: (32) Priority Date: 10 April 1987 ( 33) Priority Country: (71) Applicant: AMGEN 1NC, [US/US]: 1900 Oal Lane, Thousand Oaks, CA 91320 (US). (72) Inventors: ZUROWSKI, Mark, M. ; 2928 S Street, Thousand Oaks, CA 91506 (US). S Kry, Tribank: 3415 Friedberg Drive, Boa 80201 (US). LEVITT, Michael ; 880 Lattice Stanford, CA 94905 (US). | k Term<br>Sunflov<br>FABIN | 87)<br>US<br>sce<br>ver                       | rupean patent), CH. (Buropean patent), DE (Buropean patent), CH. (F. P. R. (European patent), Cf. (European patent), Tf. (European patent), Ff. R. Lt. (European patent), N. (European patent), Europe |  |  |  |  |  |
| 1 | real That OF THAT TO THE A NEAR OWN                                                                                                                                                                                                                                                                                                                                         |                            |                                               | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |

#### (54) Title: SUBTILISIN ANALOGS

#### (57) Abstract

A class of subrilisin analogs suitable for admixture to cleaning compositions and having improved stability over naturally occurring Buellus subrilisina are prepared by expressing a modified gene eacoding the subrilism analog in Buellus subrilis. The subrilisin analogs are characterized as having a modified caicium binding site to improve calcium binding and either an Asn or a Gly replaced in any Asn-Gly sequences present in the subrilisin.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AT  | Austria                      | FR  | Prance                       | 511. | Mali                     |
|-----|------------------------------|-----|------------------------------|------|--------------------------|
| AU  | Australia                    | GA  | Gabon                        | MR   | Mauritania               |
| 33  | Barbados                     | 638 | United Kingdom               | 34W  | Malawi                   |
| 38  | Belgium                      | 303 | Hunesey                      | NE   | Netherlands              |
| 86  | Bulgaria                     | m   | ftaly                        | NO   | Norway                   |
| 83  | Benis                        | 339 | lacen                        | RO   | Romania                  |
| 88  | Brazii                       | KP  | Democratic People's Republic | SD   | Sudan                    |
| CF  | Central African Republic     | *** | of Kores                     | SE   | Swaden                   |
| CG  | Coaso                        | 8.8 | Republic of Korea            | SN   | Sonotal                  |
| CH  | Switzerland                  | E3  | Liechtenstein                | SU   |                          |
| CM  | Camaroos                     | Y.K | Sri Lanks                    | TD   | Soviet Union             |
| DE  | Germany, Federal Republic of |     |                              |      | Chad                     |
| BK  | Denmark                      | EG  | Luxambinisg                  | TG   | Tage                     |
|     |                              | MC  | Monace                       | US   | United States of America |
| 2.5 | Finland                      | MG  | Madagascar                   |      |                          |
|     |                              |     |                              |      |                          |

- 1 -

#### SUBTILISIN ANALOGS

#### Background of the Invention

The present invention provides a novel class of thermally stable and pH stable subtilisin analogs and to a method for preparing such analogs. In particular, the present invention relates to a class of subtilisin analogs having a modified calcium binding site providing 10 improved calcium binding capacity and optionally a deletion and/or replacement of either residue of Asn-Gly sequences present in the subtilisin. The present invention further relates to detergent compositions containing such subtilisins and to the use of such 15 subtilisins and compositions in cleaning applications. The term subtilisin designates a group of extracellular alkaline serine proteases produced by various species of Bacilli. These enzymes are also

referred to as Bacillus serine proteases, Bacillus 20 subtilisins or bacterial alkaline proteases.

Bacillus subtilisin molecules are composed of a single polypeptide chain of either 274 residues (for subtilisin type Carlsberg produced by Bacillus licheniformis and for the subtilisin produced by Bacillus

- 25 subtilis strain DY) or 275 residues (for subtilisin type BPN' produced by Bacillus amyloliquefaciens, the aprA gene product of Bacillus subtilis, and the subtilisin of Bacillus mesentericus). When comparing amino acid sequences of subtilisin from different strains of
- 30 Bacillus herein, the sequence of subtilisin BPN' is used as a standard. Por example, based on an alignment of sequences that gives the highest degree of homology between subtilisin Carlsberg and subtilisin SPN', the serine at the active site of the former is referred to
- 35 as serine 221, even though it is located at position 220 of the amino acid sequence. On the same basis, position

220 of the amino acid sequence of subtilisin Carlsberg may be said to "correspond" to position 221 of subtilisin BPN'. See e.g., Nedkov et al., Hoppe-Seyler's Z. Physiol. Chem., 364, 1537-1540 (1983).

- The X-ray structure of subtilisin BPN' [Wright, et al., Nature, 221, 235 (1969)] revealed that the geometry of the catalytic site of subtilisin, involving Asp<sup>32</sup>, His<sup>64</sup> and Ser<sup>221</sup>, is almost identical to that of the active site of mammalian serine proteases (e.g., chymotrypsin) involving the residues Asp<sup>102</sup>, His<sup>57</sup>, and Ser<sup>195</sup>. However, the overall dissimilarities
- Ris<sup>57</sup>, and Ser<sup>195</sup>. However, the overall dissimilarities between <u>Bacillus</u> serine proteases and mammalian serine proteases indicate that these are two unrelated families of proteolytic enzymes.
- In the family of <u>Bacillus</u> subtilisins complete amino acid sequences are available for five subtilisins: Carlsberg, [Smith, et al., <u>J. Biol. Chem.</u>, <u>243</u>, 2184-2191 (1968)]; EPN' [Markland, et al., <u>J. Biol. Chem.</u>, <u>242</u>, 5198-5211 (1967)]; the aprA gene product [Stahl, et
- 20 al., J. Bacteriol., 158, 411-418 (1984)]; DY [Nedkov, et al., supra] and Bacillus mesentericus [Svendsen, et al., FEBS Letters, 196, 220-232 (1986)]. Subtilisin Carlaberg and subtilisin BPN' (sometimes referred to as subtilisin Novo) differ by 84 amino acids and one
- 25 additional residue in BPN' (subtilisin Carlsberg lacks an amino acid residue corresponding to residue 56 of subtilisin BPN'). Subtilisin DY comprises 274 amino acids and differs from subtilisin Carlsberg in 32 amino acid positions and from subtilisin BPN' by 82 amino acid
- 30 replacements and one deletion (subtilisin DY lacks an amino acid residue cortesponding to residue 56 of subtilisin BPN'). The amino acid sequence of the aptA gene product is 85% homologous to the amino acid sequence of subtilisin BPN'. Thus, it appears that there is an
- 35 extensive homology between amino acid sequences of subtilisins from different strains of Bacillus. This

homology is complete in certain regions of the molecule and especially in those that play a role in the catalytic mechanism and in substrate binding. Examples of such sequence invariances are the primary and secondary substrate binding sites, Ser125-Leu126-Gly127-Gly128 and Tyr104 respectively and the sequence around the reactive serine (221), Asn218-Gly219-Thr220-Ser221-Met222-Ala223. Subrilisin molecules exhibit unique stability

- properties. Although they are not completely stable
  10 over a wide pH range, subtilisins are relatively
  resistant to denaturation by urea and quantidine
  solutions and their enzymatic activity is retained for
  some time in 8 M urea. In solutions having a pH below
  4, subtilisin rapidly and irreversibly loses its
- 15 proteclytic activity. Gounaris, et al., <u>Compt. Rend. Trav. Lab. Carlsberg</u>, <u>35</u>, 37 (1965) demonstrated that the acid deactivation of subtilisin is not due to a general charge effect and speculated that it is due to other changes in the molecule, such as protonation of
- 20 nistidine residues in the interior, hydrophobic parts of the molecule. <u>Bacillus</u> subtilisins undergo irreversible inactivation in aqueous solutions at a rate that is largely dependent upon temperature and pH. At pH values below 4 or above 11 the rate of inactivation is very
- 25 rapid while at pH's of between 4.5 and 10.5 the rate, although much slower, increases as the solution becomes more alkaline. The mechanisms of this inactivation are not fully known but there is evidence indicating that autodigestion is responsible at least in part for enzyme
- 30 instability at this pH range. In general, at any pH value, the higher the temperature the faster the rate of subtilisin deactivation.

The use of proteases in industrial processes which require hydrolysis of proteins has been limited 35 due to enzyme instability under operational conditions. Thus, for example, the incorporation of trypsin into

laundry detergents (e.g., Bio-38, Schnyder; Switzerland) to facilitate removal of proteinaceous stains had a very limited success which was undoubtedly a result of enzyme instability under the washing conditions. In addition,

5 bacterial alkaline proteases compatible with detergents have been utilized in detergent formulations.

Because many industrial processes are conducted at temperatures that are above the stability range of most enzymes, highly thermostable proceases not 10 only will be advantageous to certain industries such as

only will be advantageous to certain industries such as detergent and hide dehalring, that already require stable proteases, but may be useful in industries that use chemical means to hydrolyze proteins e.g. hydrolysis of vegetable and animal proteins for the production of

15 soup concentrates.

Although thermal inactivation may be the most important factor in restricting the industrial use of enzymes, other factors such as need for effectiveness over broad pH ranges and use of denaturing agents may also have a detrimental effect with respect to the use of proteases in industrial processes. It is therefore desirable to obtain a class of proteases characterized by improved stability with respect to temperature, pH,

denaturing agents and other conditions required by

temperature.

Over the past several years there have been major changes in detergent formulations, particularly in the replacement of phosphates with alternate builders and in the development of liquid laundry detergents to 30 meet environmental and consumer demands. These changes create a need for changes in traditional detergent enzymes. More particularly, it has become desirable to employ proteolytic enzymes which possess greater storage stability in liquid laundry formulations as well as 55 stability and activity at broader ranges of pH and

One approach to producing modified subtilisins useful in detergent formulations was disclosed in European Patent Application No. 130,756, wherein mutations in the subtilisin of Bacillus

- 5 <u>amyloliquefaciens</u> (<u>B. amyloliquefaciens</u>) at positions Tyr<sup>-1</sup>, Asp<sup>32</sup>, Asn<sup>155</sup>, Tyr<sup>104</sup>, Met<sup>222</sup>, Gly<sup>166</sup>, Ris<sup>64</sup>, Gly<sup>169</sup>, Phe<sup>189</sup>, Ser<sup>33</sup>, Ser<sup>221</sup>, Tyr<sup>217</sup>, Glu<sup>156</sup>, and/or Ala<sup>152</sup> were identified as providing changed stability, altered conformation or as having changes in the
- "processing" of the enzyme. In particular, a mutation of Met<sup>222</sup> to Ala or Cys (which mutant also exhibits a sharper pë optimum than wild type) or Ser assertedly resulted in improved oxidation stability. It was suggested that substitution for Gly<sup>166</sup> with Ala, Asp,
- 15 Glu, Phe, His, Lys, Asn, Arg or Val would alter the kinetic parameters of the enzyme. However, none of the mutations disclosed provide analogs having greater stability at high temperatures or stability over a broader pH range than the wild type enzyme.
- In another approach, Thomas, et al. Nature,  $\frac{218}{100}$ , 375-376 (1985), disclosed that the pH dependence of subtilisin may be altered by changing an Asp to Ser in  $\frac{318}{100}$  of subtilisin BPN'. This change represents an alteration of a surface charge 14-15 Angstroms from
- 25 the active site. However, Thomas, et al. fails to provide any indication of improvement where no change in surface charge is made, as is the case where one uncharged residue is substituted for another.
- A third approach, described in co-pending U.S. 30 application S.N. 819,241 relates to a class of <u>Bacillus</u> serine protease analogs characterized by deletion and/or modifications of any Asn-Gly sequences present in the protease.

WO 88/08033 PCT/US88/01038

- 6 -

## Summary of the Invention

The present invention provides a class of subtilisin analogs characterized as having improved pH 5 and thermal stability thereby rendering such analogs especially useful in detergent formulations as well as other processes requiring stable protesses. The subtilisin analogs according to the present invention are characterized as having an amino acid sequence of a 10 naturally occurring Bacillus subtilisin that has been modified by having (1) one or more amino acid residues in a calcium binding site present in the amino acid sequence of the naturally occurring Bacillus subtilisin replaced with a negatively charged amino acid, and (2) 15 either residue of any Asn-Gly sequence present in the amino acid sequence of the naturally occurring Bacillus subtilisin deleted or replaced. The present invention further provides detergent compositions comprising the subtilisin analogs of the present invention and to the use of such subtilisin analogs and compositions in cleaning applications.

The subtilisin analogs of the present invention exhibit improved thermal and pH stability, increased specific activity and broad substrate specificity thereby increasing the detergency of detergent formulations containing such analogs. In particular, the subtilisin analogs of the present invention provide improved thermostability, increased pH stability and higher specific activity than found in "wild type" subtilisins.

30 In addition, the present invention relates to DNA sequences having codons encoding a subtilisin analog as described above.

The present invention also provides a process for the production of subtilisin analogs comprising a 35 host cell having nucleic acid encoding a subtilisin analog as described above. In such a cell, the nucleic

15

acid encoding the subtilisin analog may be chromosomal or extrachromosomal. The host cell is preferably selected from a strain deficient in secreted proteases, allowing for facile isolation of the analogs of the present invention.

In addition, the present invention provides a method for improving the thermal and pH stability of subtilisins by modifying the calcium binding site and/or substituting an amino acid other than asparagine for an 10 asparagine in an Asn-Gly sequence and in particular for the asparagine residue at the position in the amino acid sequence of the subtilisin which corresponds to position 218 in the amino acid sequence as disclosed in Table 1.

### Brief Description of the Drawings

Fig. 1 schematically illustrates the cyclization of Asn-Gly residues, such as those found at positions 218 and 219 of subtilisin as set forth in 20 Table 1, to form anhydroaspartylglycine and also depicts base-catalyzed hydrolysis thereof;

Fig 2 is a partial restriction map of an <u>apr</u>A gene-containing an  $\underline{EcoRI-KppI}$  gene fragment of <u>Bacillus subtilis</u> (<u>B. subtilis</u>) strain QB127 and includes a

25 partial restriction map of the aprA gene and flanking sequences;

Fig. 3 is a partial restriction map of a plasmid pAMB11;

Fig. 4 is a flowchart illustrating stages in 30 construction of pAMB113, a plasmid which directs synthesis of [Ser]<sup>218</sup>-subtilisin from <u>B. subtilis</u> host cells:

Fig. 5 is a partial restriction map of pAMB30 plasmid;

35 Fig. 6 illustrates the construction of pAMB106;

Fig. 7 illustrates the construction of M13 mp18 apr4.

#### Detailed Description

5

It should be noted that, as employed herein, the term "subtilisin" refers to a mature, secreted form of the enzyme which lacks leader sequences cleaved from the mature enzyme prior to or at secretion.

- 10 Representative of subtilisins that may be modified in accordance with the present invention include but is not limited to naturally occurring subtilisins represented by the amino acid sequence of subtilisin Carlsberg, subtilisin BPN', the apra gene product of Bacillus
- 15 <u>subtilis</u>, subtilisin DY and the subtilisin of <u>Bacillus</u> <u>mesentericus</u>. The amino acid sequence for subtilisin Carlsberg is described by <u>Smith</u>, et al., <u>J. Biol. Chem.</u>, <u>243</u>, 2184-2191 (1968). The amino acid sequence for subtilisin BPN' is described by Markland, et al., J.
- Biol. Chem., 242, 5198-5211 (1967). The amino acid sequence for subtilisin DY is described by Nedlov, et al., Hoppe-Seyler's Z. Physiol. Chem., 364, 1537-1540 (1983). The amino acid sequence for the subtilisin of Bacillus mesentericus is described by Svedsen, et al.,
- 25 FEBS Letters, 196, 220-232 (1986). The amino acid sequence of the aprA gene product of Bacillus subtilis is described by Stahl, et al., J. Bacteriol., 158, 41-418 (1984). The amino acid sequence of such subtilisins are incorporated by reference herein. Such subtilisins
- 30 are characterized as having calcium binding sites necessary to stabilize the molecule.

In accordance with the present invention, a class of subtilisin analogs are provided which possess improved capacity to bind to calcium. Calcium has been used to stabilize subtilisin in powders and liquid

detergent, especially in applications requiring higher

temperatures. The present invention relates to the modification of the calcium binding site of the subtilisin molecule to increase calcium binding. As used herein the term "modification of the calcium 5 binding site" refers to replacement of one or more amino acids in the region of a calcium binding site present in the amino acid sequence of subtilisin with a negatively charged amino acid thereby enabling the resulting

subtilisin analog to have an additional negative 10 charge. It has been found that one calcium binding site

in a subtilisin involves the following amino acids: Asp41, Leu75, Asn76, Asn77, Ser78, Ile79, Gly80, Val81, Thr<sup>208</sup> and Tyr<sup>214</sup> relative to the amino acid sequence set forth in Table 1. The present invention preferably 15 involves replacement of one or more of the amino acids

oresent in the calcium binding site with a "negatively charged" amino acid such as Asp and Glu. and more preferably Asp. It should be noted that although Asp41 in the calcium binding sits is a negatively charged

20 amino acid, one embodiment of the present invention involves changing Asp41 to Glu41. The other embodiments relate to changes other than to Asp41.

One preferred embodiment of the present invention involves a subtilisin analog wherein Asn<sup>76</sup> is converted to Asp<sup>76</sup>. Another embodiment involves

conversion of the Ile79 to Asp79. A preferred embodiment involves a subtilisin analog wherein Asn<sup>7,7</sup> is converted to Asp<sup>77</sup>. The more preferred embodiments of the present invention involve the above preferred

30 modifications to the calcium binding site and substitutions of Asn<sup>109</sup> and Asn<sup>218</sup> to Ser<sup>109</sup> and Ser<sup>218</sup>. thus eliminating two unstable Asn-Glv sequences.

In addition to the calcium binding sites described above, subtilisins may have one or more 35 additional calcium binding sites. The claims of the present invention encompass modification of one or more of all calcium binding sites that may be present in the subtilisin. The number of calcium binding sites in any particular subtilisin that may be modified depends on many factors, i.e., the specific subtilisin, the

5 particular application for the subtilisin analog. Other potential calcium binding sites that may be present in subtilisins include the following (1) Asp<sup>140</sup> and Pro<sup>172</sup>; (2) Pro<sup>14</sup> and Glu<sup>271</sup>; and (3) Pro<sup>172</sup> and Glu<sup>195</sup> or Asp<sup>197</sup>. The specific calcium binding site present in each molecule depends upon the particular subtilisin to

Deach molecule depends upon the particular subtilisin to be modified. As previously mentioned, the replacement of one or more of the amino acids in the above potential calcium binding sites will result in a subtilisin having improved thermal and pH stability. Representative of

15 replacements include  ${\rm Asp}^{140}$  with  ${\rm Glu}^{140}$ ,  ${\rm Pro}^{172}$  with  ${\rm Asp}^{172}$ ,  ${\rm Pro}^{14}$  with  ${\rm Asp}^{14}$ ,  ${\rm Glu}^{271}$  with  ${\rm Glu}^{271}$ ,  ${\rm Glu}^{197}$  with  ${\rm Asp}^{197}$ .

In addition to modifying the calcium binding sites of a subtilisin molecule, it is preferred to have 20 any Asn-Gly sequence present in the subtilisin deleted or replaced. As previously disclosed in U.S. Application S.N. 819,241, a conserved sequence, Asn-Gly, at positions 109-110 and especially at positions 218-219 of Bacillus subtilisins has been identified as a major

25 factor responsible for the pH instability of these substances. In order to eliminate the unstable element, Asn<sup>218</sup>-Gly<sup>219</sup>, from the subtilisin molecule it was disclosed to either replace Asn<sup>218</sup> with any amino acid other than asparagine and/or change Gly<sup>219</sup> to any amino

30 acid other than glycine. In a like manner, modification of the unstable Asn-Gly element at positions 109-110 was described as providing stability to the analogs described therein.

In addition, as previously noted, a preferred
35 class of analogs of a <u>Bacillus</u> subtilisin according to
the present invention have an amino acid sequence wherein

- in addition to a modification of a calcium binding site, positions comprising an Asn-Gly sequence in the <u>Bacillus</u> subtilisin do not comprise an Asn-Gly sequence in the analog, and in particular wherein there are fewer Asn-Gly sequences than in the <u>Bacillus</u> subtilisin. Most
- 5 Gly sequences than in the <u>Bacillus</u> subtilisin. Most preferably, a position corresponding to position 218 in the amino acid sequence as set forth in Table 1, does not comprise an asparaginyl residue, but rather comprises a residue of a different amino acid, preferably an amino
- 10 acid selected from among serine, valine, threonine, cysteine, glutamine and isoleucine. To the extent that replacement of asparagine with certain amino acids may give rise to interference with active site conformation, (e.g., due to steric hindrance which may be introduced
- by the presence of an aromatic amino acid or changes in tertiary structure such as may be introduced by the presence of a proline) substitution with such amino acids would ordinarily be less preferred. Likewise, to the extent that replacement of asparagine with other
- 20 amino acids may introduce a charged group (e.g., aspartic acid) into the proximity of the active site, such substitution would be less preferred. Illustrative of a presently preferred embodiment is an analog having a modified calcium binding site and a [Ser<sup>218</sup>]
- 25 modification of the Asn-Gly sequence of the subtilisin. Alternative embodiments of analogs within the contemplation of the invention are those having a modified calcium binding site and wherein Asn<sup>109</sup> of subtilisin PPN' or of the abrA gene product is replaced,
- 30 preferably by a serine, and wherein glycine residues at positions 110 and/or 219 are replaced by different amino acid residues. In other subtilisins, modification of a calcium binding site or sites and substitution for Asn at residue 62 or Gly at residue 63 of subtilisins
- 35 Carlsberg or DY are also comprehended by the present invention.

disclosed.

Due to their capacity to secrete substantial quantities of proteins and because they are currently used to produce detergent proteases, <u>Bacillus</u> microorganisms represent a preferred host for recombinant production of the subtilisin analogs according to the present invention. Because most <u>Bacilli</u> secrete alkaline and neutral proteases, it is preferable that mutations be introduced into the endogenous alkaline and neutral protease genes of <u>B. subtilis</u> so that the mutated subtilisin may be produced and secreted by <u>B. subtilis</u> in a medium free of other proteases. Thus the present invention also provides mutant strains of <u>B. subtilis</u> which are blocked with respect to the synthesis of endogenous proteases but which retain the ability to synthesize and secrete the subtilisin analogs herein

As described in greater detail below, it was found that the pH and thermal stability and the stability in detergent formulations of the subtilisin analogs of the present invention is significantly greater than that of the wild type aprA gene product subtilisin and Carlsberg subtilisin.

A subtilisin analogs according to the invention may be prepared in accordance with the 25 following procedure:

- 1) Isolation of the representative subtilisin gene  $\underline{\mathtt{aprA}}$  from  $\underline{\mathtt{B}}.$   $\underline{\mathtt{subtilis}};$
- Cloning of the <u>aprA</u> gene on a vector which permits utilization of oligonucleotide site-directed
- 30 mutagenesis to create desired modifications;
  - 3) Site-directed mutagenesis and sequencing of the resulting DNA to confirm the presence of the desired mutation:
- 4) Construction of an expression vector to 35 direct the synthesis of the mutated enzyme in B. subtilis;

10

- 5) Construction of mutated <u>B. subtilis</u> strains which do not synthesize subtilisin and neutral protease;
- Solation of the enzyme in the extra cellular growth medium and its purification;
  - 7) Practice of procedures for insertion of the gene coding for the improved enzyme into the chromosome of a <u>B. subtilis</u> strain previously mutated to block synthesis of endogenous proteases.
  - As used herein, the specific subtilisin analogs are indicated by representing the replaced or deleted amino acid in brackets. For example, a [Ser<sup>109</sup>] subtilisin refers to a subtilisin molecule having a serine in amino acid position 109 and a [Ser<sup>109</sup>, Ser<sup>218</sup>]
- 15 subtilisin refers to a subtilisin molecule having a serine at amino acid positions 109 and 218.

In Example 1, the <u>aprA</u> gene encoding subtilisin is isolated from the  $\underline{8}$ . <u>subtilis</u> genome. In Example 2, the <u>aprA</u> gene is subjected to site-directed

- 20 mutagenesis. In Example 3, an expression vector containing the mutated <u>aprA</u> gene is constructed. In Example 4, a [Ser<sup>109</sup>] subtilisin analog is prepared. Example 5 describes the preparation of a [Ser<sup>109</sup>, Ser<sup>218</sup>] subtilisin analog. Example 6 describes prepara-
- 25 tion of a  $\{Asp^{76}, Ser^{109}, Ser^{218}\}$  subtilisin analog. In Example 7, a  $\{Asp^{76}, Asp^{77}, Ser^{109}, Ser^{218}\}$  subtilisin analog is prepared. Example 8 describes the preparation of a  $\{Asp^{76}, Glu^{79}, Ser^{109}, Ser^{218}\}\}$  subtilisin analog. In Example 9, two mutant strains of 8. subtilis
- 30 which produce no detectable extracellular proteases are constructed. Example 10 describes procedures for integration of a mutated aprA gene into the chromosome of 8, subtilis. In Example 11, wild-type and mutant aprA subtilisins are isolated and purified. Examples 12
- 35 through 14 compare the thermostability of [Ser<sup>218</sup>] subtilisin to that of wild-type aprA gene product.

20

In addition to a subtilisin analog of the present invention, detergent compositions of the present invention may comprise:

- (a) At least one surfactant which may be anionic, non-lonic, or amphoteric, or a water-soluble soap. Typically, an anionic surfactant (e.g., a linear alkyl aryl sulphonate) is used in admixture with a nonionic (e.g., an alkyl phenyl polyglycol ether) in amounts of 5-30 and 1-5 percent by weight, respectively, 0 of the detergent composition.
- (b) One or more builders, preferably having a concomitant sequestering function. Sodium tripolyphosphate, sodium citrate, sodium silicate, and zeolites are examples of such compounds, usually constituting from 10 to 70 percent by weight of the detergent composition.
  - (c) A bleaching agent, preferably a peroxy compound such as sodium perborate, typically incorporated in an amount up to 30 percent by weight of the composition.
  - (d) Ancillary agents, such as carboxymethyl cellulose, optical brighteners and perfumes. If required, a pH-adjusting agent is added to give a pH of the laundering medium in the range of from 8.0 to 10.5.
- 25 The detergent compositions contain an effective amount of one or more of the subtilisin analogs of the present invention. As used herein "effective amount of a subtilisin analog" refers to the quantity of subtilisin analog necessary to achieve the enzymatic activity necessary in the specific detergent composition. Such effective amounts are readily ascertained by one of ordinary skill in the art and is based on many factors, such as the particular subtilisin analog utilized, the cleaning application, the specific composition of the detergent composition, whether a

liquid or dry composition is required and the like.

The particulate subtilisin analog preparation of the invention is added in an amount calculated to give an enzyme activity of at least 0.1 Anson units (AU, vide infra), preferably 0.5-2.5 AU per 100 g of detergent composition. If required, balance to 100 percent may be established with an inorganic filler, preferably sodium sulphate.

Liquid detergent compositions may be prepared from enzyme slurries, preferably in non-aqueous media.

- 10 Typically, such slurries may consist of a suspension of finely ground subtilisin analog concentrate in a liquid non-ionic surfactant, for example Tergitol 15 S 9 or a mixture of such surfactants. Usually, the slurry will also contain one or more inorganic fillers, such as
- 15 finely ground sodium chloride, optionally in admixture with a suspension stabilizer, for example fumed silica (Aerosil 200). Tergitol and Aerosil are trademarks.

A subtilisin analog of the invention is added in an amount calculated to give a procease activity of 20 at least 0.1 AU preferably 0.5-2.5 AU per 100 g of liquid determent composition.

The detergent compositions may be prepared in the usual manner, for example by mixing together the components. Alternatively, a pre-mix is made, which is then mixed with the remaining ingredients.

Because of the good stability and activity properties described, the subtilisin analogs according to the invention can be used in all fields where proteolytic enzymes are generally used. In particular,

- 30 it can be used for detergents and cleansers or spot removers, as a depilatory in tanning, and also in the food industry for the preparation of protein hydrolysates and in serology for the detection of incomplete antibodies. It is particularly advantageous for use in the food
- 35 industry and in serology that the subtilisin analogs according to the invention have excellent stability in

the solid or dissolved form that physiologically acceptable quantities of calcium ions may not be necessary to stabilize the subtilisin analog in aqueous solutions, in contrast to those of other enzyme preparations.

The following Examples will further serve to illustrate the invention although it will be understood that the invention is not limited to these specific examples.

## Example 1

10

<u>B. subtilis</u> strain QB127 (trpC2 leuA8 sacU<sup>h</sup>200) [Lepesant, et al., <u>Molec. Gen. Genet.</u>, <u>118</u>, 135-160 (1982)] was obtained from the <u>Bacillus</u> Genetic Stock Center at the Ohio State University, Columbus,

- 15 Ohio. This strain overproduces extracellular serine and metal proteases, a-amylase and levansucrase relative to isogenic  $\underline{\operatorname{sac}}0^+$  strains due to the pleiotropic effect of the  $\underline{\operatorname{sac}}0^h200$  mutation [Lepesant, et al., in
- Schlessinger, D., ed., <u>Microbiology</u>, 1976, American 20 Society for Microbiology, Washington, D.C., p. 65
  - (1976)]. Thus, strain Q8127 is a suitable source of DNA for isolating the <u>apra</u> gene which codes for subtilisin.

    Genomic DNA was isolated from cells of B.
- <u>subtilis</u> strain QB127 in accordance with the procedure 25 of Saito, et al., <u>Biochim. Biophys. Acta. 72</u>, 619-629 (1963). Purified chromosomal DNA was digested to completion with the <u>Eco</u>RI restriction endonuclease.

The resulting DNA fragments were resolved on a low-melting point agarose gel by electrophoresis and

- 30 fragments in the 4.4 to 8.0 kilobase (kb) range were isolated. These fragments were ligated to pCFM936 (A.T.C.C. No. 53.413 from the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland) an Escherichia coli (E. coli) plasmid which displays
- 35 higher copy numbers at elevated temperatures and which confers kanamycin resistance. The vector was digested

with EcoRI and dephosphorylated with calf intestine alkaline phosphatase prior to ligation.

The ligation products were introduced into E. coli C600 ( A.T.C.C. No. 23724 from the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland) and following overnight incubation on L-agar supplemented with 10 ug/ml kanamycin, kanamycin-resistant host cells were selected. Plasmid DNA was amplified by incubating the selected host cells at 42°C for 4 hours.

10 Colonies were then transferred to nitrocellulose filters and processed in accordance with a colony hybridization procedure described by Grunstein, et al., <u>Proc. Natl.</u> <u>Acad. Sci. (USA)</u>, <u>72</u>, 3961 (1975).

An oligonucleotide probe was used to screen
15 for colonies which harbored the subtilisin gene on
pCFM936. The probe synthesized by the phosphite method
described by Beaucage, et al., <u>Tetrahedron Letters</u>, <u>22</u>,
1859-1862 (1981) had the nucleotide sequence
5' GCGCAATCTGTTCCTTATGCC 3'

- which corresponds to the amino-terminus of the <a href="https://docs.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.nlm.ncbi.n
- 25 a total of 400. The plasmid DNA from one of the positive colonies was designated pCFM936  $\underline{apr}2$ .

Plasmid pCFM936 <a href="mailto:apr2">apr2</a> was digested with <a href="mailto:EcoRI">EcoRI</a> and <a href="mailto:RindIIII in combination. Sizes of <a href="mailto:EcoRI">EcoRI</a> fragments of the subtilisin gene conformed to those described in Stahl, et al.,

- supra, but several otherwise undescribed HindIII sites were discovered. As described herein in Example 3, two of the HindIII sites were utilized in the genetic manipulations of the subtilisin gene.
- 35 It was determined that a large 6.5 kb  $\underline{\text{EcoRI}}$  fragment of  $\underline{\text{B.}}$  subtilis QB127 genomic DNA carried the

- aprA gene, its regulatory sequences and unrelated flanking sequences by verifying that restriction enzyme digests conformed to the results reported by Stahl, et al., <u>supra</u>. This was confirmed by DNA sequencing using
- 5 the dideoxy chain termination method described by Sanger, et al., J. Mol. Biol., 143, 161-178 (1980). A 3.0 kb EcoRI to KpnI subfragment of the 6.5 kb EcoRI fragment, as illustrated in Fig. 2, was also found to contain the aprA gene, its regulatory sequences, and
- 10 unrelated flanking sequences. Although the <a href="KpnI-EcoRI">KpnI-EcoRI</a> fragment is reported to be 2.5 kb in length by Stahl, et al., and in the legend to Fig. 1 therein, comparison of the scale of Fig. 1 and the scaled depiction of the fragment therein reveal that, even in Stahl, et al., the
- 15 KpnI-EcoRI fragment is substantially larger than 2.5 kb.

  A cloning vector for Bacillus host systems,
  plasmid pAMB11, was constructed as follows. The plasmid
  pTG402 (Northern Regional Research Laboratories, United
  States Department of Agriculture, Peoria, Illinois,
- 20 strain number NRRL B-15264) was partially digested with the <u>Rsa</u>I restriction endonuclease. Fragments were ligated to Ml3 <u>mp</u>18 (available from Bethesda Research Laboratories, Gaithersburg, Maryland as catalog number 82275A) which had been previously digested with
- 25 <u>Hinc</u>II. Ligation products were introduced into <u>E. coll</u> JM103 (available from Pharmacia, Inc., Piscataway, New Jersey as catalog number 27-1545-01) by transformation in accordance with the procedure of Mandel, et al., <u>J.</u> <u>Mol. Biol.</u>, <u>53</u>, 154, (1970). Bacteriophage plaques were
- 30 sprayed with 0.5M catechol (prepared in distilled water) to detect the functional expression of an xylE gene derived from pTG402. The xylE gene encodes catechol 2,3-dioxygenase and is useful for detecting promoters in a variety of organisms (Zukowski, et al., Proc. Natl.
- 35 <u>Acad. Sci. (USA)</u>, <u>80</u>, 1101-1105 (1983)}.

The xylS gene was then transferred as a 1.0 kb ECORI to PstI fragment to the E. coli/B. subtilis plasmid pHV33 (available from the American Type Culture Collection as A.T.C.C. 39217) [Primrose, et al. Plasmid, 5 6, 193-201 (1981)) obtained from R. Dedonder (Institut Pasteur, Paris, France). The pHV33 plasmid had been previously digested with EcoRI and PatI so that the xylE-containing fragment, when ligated in this region, would inactivate a gene for ampicillin resistance. The 10 resulting plasmid, pAMB21, contains a functional xylE gene in E. coli host cells, but requires the addition of a promoter for kylE to be expressed in B. subtilis host cells. E. coli cells harboring pAMB21 are resistant to tetracycline (15 ug/ml) and chloramphenicol (20 ug/ml) 15 while B. subtilis cells harboring pAMB21 are resistant only to chloramphenicol (5 µg/ml).

The top transcription termination sequence of bacteriophage lambda was transferred from plasmid pCFM936 (on a 400 base pair PstI to BqlII fragment) to 20 the unique PstI site of pAMB21. A synthetic nucleotide with the sequence, 5' GATCTGCA 3', was constructed to join the BqlII extremity of the top fragment to the PstI site of the vector pAMB21. The resulting plasmid was designated pAMB22 and had properties identical to pAMB21 except for the inclusion of a transcription

pameri except for the inclusion of a transcription terminator. The pameri plasmid is useful for detecting strong promoters that are functional in <u>B. subtilis</u>.

The 1.4 kb <u>EcoRI</u> to <u>BglII</u> fragment of DNA from

pAMB22 that contains <a href="mailto:xyle">xyle</a> and toop was isolated from a low-melting point agarose gel after electrophoresis of restricted fragments. The 1.4 kb piece of DNA was ligated to plasmid pBD64 (available from <a href="mailto:Bacillus">Bacillus</a> Genetic Stock Center, number 1E22) which had been previously digested with <a href="mailto:EcoRI">EcoRI</a> and <a href="mailto:BamHI">BamHI</a>. The resulting 5.3 kb plasmid,

35 pamBll, contains the polylinker sequence of Ml3mpl8 (EcoRI, SstI, XmaI, Sma, BamBl and XbaI) upstream of the

xylE gene which is followed by toop, as shown in Figure 3. The pAMB11 plasmid is capable of replicating in 8. subtilis and confers upon host cells resistance to chloramphenicol (5 ug/ml) and/or kanamycin (5 ug/ml).

- As illustrated in Fig. 4, the purified EccRI to KpnI fragment containing aprA was cloned onto pAMB11 to form pAMB11. Ligation products were introduced into B. subtilis MI112 (arg-15 leu8 thr5 recE4) (available from Bacillus Genetic Stock Center as No. 1A423) by the protoplast transformation method described by Chang, et al., Mol. Gen. Genet., 168, 111-115 (1979). B. subtilis MI112 without plasmid DNA is protease-proficient (Prt phenotype), but secreted levels of subtilisin are rather low. Chloramphenicol-resistant (Cmr) transformants were transferred onto L-agar plates supplemented with 1.5% (W/V) skim milk and 5 ug/ml chloramphenicol, then
- After incubation at 37°C for approximately sixteen hours, colonies of MI112 harboring plasmid
  20 pAMB111 produced a clear halo surrounding each colony. Halos were formed by the proteolytic action of subtilisin on the casein component of the skim milk medium supplement. MI112 harboring the pAMB11 vector alone had no visible halo after 16 hrs. of incubation, although a slight halo eventually developed after 40 hrs. of incubation at 37°C. Cells carrying pAMB11 were clearly distinguished from cells carrying pAMB1 by a difference in halo size. The cloning of the aprA gene in a fully functional form thus led to a high level

incubated at 37°C.

#### Example 2

As illustrated in Fig. 4, a 3.0 kb <u>ScoRI</u> to 35 <u>Kpn</u>I genomic fragment, the isolation of which is described in Example 1, was digested with HindIII to

30 production and secretion of subtilisin by B. subtilis.

produce three fragments: (1) a 1.1 kb EcoRI to HindIII fragment carrying genetic regulatory sequences for aprA gene expression, the "pre-pro" region of the gene required to extracellular export of subtilisin, and the DNA sequence coding for the first 49 amino acids of mature subtilisin; (2) a 1.1 kb HindIII to HindIII fragment carrying DNA sequences coding for amino acids 50 through 275 (carboxyl-terminus) of subtiliain along with a transcription termination sequence and 3' non-coding sequences; and (3) a 0.8 kb HindIII to KpnI fragment containing 3' non-coding sequences.

The 1.1 kb fragment flanked by <u>Hind</u>III sites was cloned to the single <u>Hind</u>III site of bacteriophage M13 <u>mp</u>18 for the purposes of DNA sequencing and site-directed mutagenesis. One of the recombinants, designated M13 <u>mp</u>18 <u>apr</u>2, provided single stranded template DNA required for site-directed mutagenesis of the aprA gene.

The coding region of the aprA gene was

20 sequenced and the results of the sequence are set forth in Table 1 herein. It should be noted that the specific identity of the initial 5 codons of the leader region is attributable to the report of Stahl, et al., <a href="supra">supra</a>, of sequence information for the Wong, et al., <a href="supra">supra</a>, of sequence information for the apra gene, and that there exist codon sequence differences from Stahl, et al., <a href="supra">supra</a>, at amino acid positions 84 and 85. Specifically, Stahl, et al., <a href="supra">supra</a>, reports a codon GTT (coding for valine) at amino acid position 84 while the codon GTA (also coding for valine) appears in Table 1. Stahl, et al., <a href="supra">supra</a>, also reports a codon AGC (coding for serine) at amino acid position 85 as opposed to the codon GCG (coding for

alanine) in Table 1.

-105

#### TABLE 1

Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala GTG AGA AGC AAA AAA TTG TGG ATC AGC TTG TTG TTT GCG Leu Thr Leu Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala TTA ACG TTA ATC TTT ACG ATG GCG TTC AGC AAC ATG TCT GCG Gln Ala Ala Gly Lys Ser Ser Thr Glu Lys Lys Tyr Ile Val CAG GCT GCC GGA AAA AGC AGT ACA GAA AAG AAA TAC ATT GTC Gly Phe Lys Gln Thr Met Ser Ala Met Ser Ser Ala Lys Lys GGÁ TTT AÁA CAG ACA ATG AGT GCC ATG AGT TCC GCC AÁG AÁA Lys Asp Val Ile Ser Glu Lys Gly Gly Lys Val Gln Lys Gln AAG GAT GTT ATT TCT GAA AAA GGC GGA AAG GTT CAA AAG CAA Phe Lys Tyr Val Asn Ala Ala Ala Ala Thr Leu Asp Glu Lys TTT AAG TAT GTT AAC GCG GCC GCA GCA ACA TTG GAT GAA AAA Ala Val Lys Glu Leu Lys Lys Asp Pro Ser Val Ala Tyr Val GCT GTA AÁA GAA TTG AÁA AÁA GAT CCG AGC GTT GCA TÁT GTG -1 +1 Glu Glu Asp His Ile Ala His Glu Tyr Ala Gln Ser Val Pro GAA GAA GAT CAT ATT GCA CAT GAA TAT GCG CAA TCT GTT CCT 3.0 Tyr Gly Ile Ser Gln Ile Lys Ala Pro Ala Leu His Ser Gln TÁT GGC ATT TOT CAA ATT AÂA GCG CCG GCT CTT CAC TOT CAA Gly Tyr Thr Gly Ser Asn Val Lys Val Ala Val Ile Asp Ser GGC TAC ACA GGC TCT AAC GTA AAA GTA GCT GTT ATC GAC AGC Gly Ile Asp Ser Ser His Pro Asp Leu Asn Val Arg Gly Gly GGA ATT GAC TCT TCT CAT CCT GAC TTA AAC GTC AGA GGC GGA Ala Ser Phe Val Pro Ser Glu Thr Asn Pro Tyr Gln Asp Gly GCA AGO TTO GTA COT TOT GAA ACA AAC COA TAO CAG GAO GGO Ser Ser His Gly Thr His Val Ala Gly Thr Ile Ala Ala Leu AGT TOT CAC GGT ACG CAT GTA GCC GGT ACG ATT GCC GCT CTT

## TABLE 1 (cont'd.)

80 Asn Asn Ser Ile Gly Val Leu Gly Val Ala Pro Ser Ala Ser AAT AAC TCA ATC GGT GTT CTG GGC GTA GCG CCA AGC GCA TCA 90 Leu Tyr Ala Val Lys Val Leu Asp Ser Thr Gly Ser Gly Glm TTA TÂT GCA GTA AÂA GTG CTT GAT TCA ACA GGÁ AGC GGĆ CAA Tyr Ser Trp Ile Ile Asn Gly Ile Glu Trp Ala Ile Ser Asn TÂT AGC TGG ATT ATT AAC GGC ATT GAG TGG GCC ATT TCC AAC Asn Met Asp Val Ile Asn Met Ser Leu Gly Gly Pro Thr Gly AAT ATG GAT GTT ATC AAC ATG AGC CTT GGC GGA CCT ACT GGT 140 Ser Thr Ala Leu Lys Thr Val Val Asp Lys Ala Val Ser Ser TCT ACA GCG CTG AAA ACA GTC GTT GAC AAA GCC GTT TCC AGC 150 Glv Ile Val Val Ala Ala Ala Ala Gly Asn Glu Gly Ser Ser GGT ATC GTC GTT GCT GCC GCA GCC GGÀ AAC GAA GGT TCA TCC 160 170 Gly Ser Thr Ser Thr Val Gly Tyr Pro Ala Lys Tyr Pro Ser GGA AGC ACA AGC ACA GTC GGC TAC CCT GCA AAA TAT CCT TCT 180 Thr Ile Ala Val Gly Ala Val Asn Ser Ser Asn Gln Arg Ala ACT ATT GCA GTA GGT GCG GTA AAC AGC AGC AAC CAA AGA GCT Ser Phe Ser Ser Ala Gly Ser Glu Leu Asp Val Met Ala Pro TCA TTC TCC AGC GCA GGT TCT GAG CTT GAT GTG ATG GCT CCT 210 Gly Val Ser Ile Gln Ser Thr Leu Pro Gly Gly Thr Tyr Gly GGC GTG TCC ATC CAA AGC ACA CTT CCT GGA GGC ACT TAC GGC Ala Tyr Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly GCT TAT AAC GGA ACG TCC ATG GCG ACT CCT CAC GTT GCC GGA 230 240 Ala Ala Ala Leu Ile Leu Ser Lys His Pro Thr Trp Thr Asn GCA GCA GCG TTA ATT CTT TCT AAG CAC CCG ACT TGG ACA AAC 250 Ala Gin Val Arg Asp Arg Leu Glu Ser Thr Ala Thr Tvr Leu GCG CAA GTC CGT GAT CGT TTA GAA AGC ACT GCA ACA TAT CTT

PCT/US88/01038

- 24 -

## TABLE 1 (cont'd.)

| Gly<br>GGA | Asn<br>AAC | 260<br>Ser<br>TCT | Phe<br>TTC | Tyr<br>TAC | Tyr<br>TAT | Gly<br>GGA | Lys<br>AAA | Gly<br>GGG | Leu<br>TTA | Ile<br>ATC | Asn<br>AAC        | 270<br>Val<br>GTA | G C   |
|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|-------------------|-------|
|            |            | Ala<br>GCA        |            |            | TAG        | PAAA/      | AAGA       | AGCA       | 3CTTT1     | ارشارا     | ገልጥል <sup>*</sup> | CTG               | - dis |

TCTTTTTATTGTCAGCATCCTGATGTTCCGGCGCATTCTC

Bacteriophage M13 mp18 apr2 was constructed by inserting a 1.1 kb <u>Hind</u>III to <u>Hind</u>III fragment of <u>B</u>.

<u>subtilis</u> QB127 genomic DNA, carrying nucleotide sequences coding for amino acids 50 through 275 (carboxyl-terminus)

of <u>aprA</u> - subtilisin along with a transcription termination sequence and 3' non-coding sequences, in the unique <u>Hind</u>III site of bacteriophage M13 mp18. To eliminate the 3' non-coding sequences, a <u>Kpn</u>I restriction endonuclease site was introduced, by site-directed mutagenesis, at a position

immediately following the transcription termination sequence.

Site-directed mutagenesis was conducted in accordance with a procedure described by Norrander et. al., <u>Gene</u>, <u>26</u>, 101-106 (1983). Single-stranded DNA from M13 mb18 abr2 was annealed to a primer,

15

#### 5' TCCTGAGGTACCGGCGCATTC 3'

which was synthesized by the phosphite method described by Beaucage et. al., <u>Tetrahedron Letters</u> 22, 1859-1862 (1981). The primer was homologous to the nucleotides in this region except for two (marked by asterisks), where a thymine (T) was changed to guanine (G) and another thymine (T) was changed to adenine (A), thus creating a <u>Kpn</u>I site (underlined) in this region.

The primer was annealed to M13 mpl8 apr2 DNA
25 at 65°C and the annealed DNA was slowly cooled to
approximately 22°C and then polymerized for 2 hr. at
15°C in a reaction mixture which consisted of 12.5 ul of
annealed DNA solution, 2.5 ul of 10 mM each of dATP,
dCTP and dGTP, 20 ul of 12 mM ATP, 0.1 ul Klenox DNA
30 polymerase, 0.1 ul T4 DNA ligase and 13 ul sterile
distilled water. The resulting double-stranded,
covalently closed circular DNA was introduced into E.

Bacteriophage plaques were then transferred to 35 Gene Screen <sup>TM</sup>(New England Nuclear, Beverly, Massachusetts) hybridization membranes. Plaques which

coli JM103 by transfection.

30

contained DNA with the desired base changes were identified by hybridization to the radioactively labeled ( Y-32p) synthetic oligonucleotide used for the mutagenic priming reaction described above. Hybridization was 5 performed at a restrictive temperature (65°C) in order that only DNA carrying a RpnI mutation would hybridize to the synthetic oligonucleotide. The presence of the KpnI mutation downstream of the aprA gene on DNA from a single purified plaque, designated M13 mp18 apr2 KpnI, 10 was confirmed by DNA sequencing by the procedure described by Sanger et. al., supra and restriction enzyme analysis. A 1.1 kb segment carrying most of the 3' noncoding region was deleted by digesting MI3 mp18 apr2

KpnI with KpnI, religating digestion products at a 15 concentration of 500 ng DNA/ml, then introducing the ligation products into E. coli JM103 by transfection. Bacteriophage plaques which contained DNA with the desired 0.35 kb deletion were identified by restriction endonuclease analysis. Bacteriophage from one such

20 plaque was designated M13 mpl8 apr4 (Fig. 7). M13 mpl8 apr4 provided single-stranded template DNA for sitedirected mutagenesis of the aprA gene described hereinafter in Example 3.

25 Example 3

In order to express mutated subtilisin genes in B. subtilis, the plasmid pAMB186 was constructed as a vehicle for the mutated gene, as follows:

1) pAMBILL was digested with HindIII. A 1.1 kb segment carrying most of the apra gene was deleted by re-ligating **EindIII** digestion products of pAMB111 at a concentration of approximately 1 ug/ml. This resulted in the formation of pAMB110 as illustrated in Fig. 4. The 35 pAMB110 plasmid carries genetic regulatory sequences for expression of the subtilisin gene, the "pre-pro" region

required for secretion of subtilisin, and the DNA sequence coding for the 3' non-coding region of mature subtilisin and the first 49 amino acids of mature subtilisin.

- 2) Plasmid pAMB110 was digested with BamHI 5 and PstI in combination. This produced DNA fragments of two sizes, 6.2 kb and 1.0 kb. The 1.0 kb fragment carries the xylE gene, coding for catechol 2,3dioxygenase, from the TOL plasmid of Pseudomonas putida mt-2 (Zukowski et. al., supra).
- 3) The larger, 6.2 kb -BamHI-PstI fragment was self-ligated with the aid of a single-stranded synthetic oligonucleotide, 5' GATCTGCA 3', which was synthesized by the phosphite method described by Beaucage et. al., supra, and T4 DNA ligase. Ligation products were
- 15 introduced into B. <u>subtilis</u> MIll2 (<u>arq-15 leuB thr5 recE4</u> (available from Bacillus Genetic Stock Center as No. 1A423) by the protoplast transformation method described by Change et. al., Mol. Gene. <u>168</u>, 111-115 (1979). Chloramphenicol-resistant (Cm<sup>R</sup>) colonies were
- 20 screened for plasmid content. The 6.2 kb plasmid pAMB106 was identified by restriction endonuclease analysis. It is identical to plasmid pAMB110 except that xylE has been deleted (Figure 6).
- Because it is lacking DNA coding for amino 25 acids 50 through 275 of aprA subtilisin, pAMB106 does not synthesize subtilisin when introduced into B. subtilis host cells. Subtilisin is synthesized only after insertion of the remainder of the subtilisin gene, i.e., either the native DNA sequence or an analog-
- 30 encoding sequence.

## Example 4

# Preparation of a [Serine 109] Subtilisin Analog

35 Single-stranded DNA from bacteriophage M13mp18 apr4 was annealed to a primer, 15

5' TGG ATT ATT AGC GGC ATT GAG TGG 3'
106 107 108 109 110 111 112 113
TRP ILE ILE SER GLY ILE GLU TRP

which was synthesized by the phosphite method described by Beaucage et. al., <u>supra</u>. The primer was homologous to the nucleotides comprising codons for amino acids 106 through 113 of <u>aprA</u>-subtilisin except for one base change (marked by an asterisk) where an A was changed to a G to allow for the transition which would change Asn<sup>109</sup> (codon AAC) to Ser<sup>109</sup> (codon AGC).

The primer was annealed to M13mp18 apr4 DNA at 65°C and the annealed DNA was slowly cooled to approximately 22°C and then polymerized, ligated and transfected as described in Example 2.

Bacteriophage plaques were transferred to hybridization membranes, then those which contained DNA with the desired base change were identified by hybridization to a radioactively labeled ( a-32p) oligonucleotide used for the mutagenic priming reaction 20 described above. Hybridization was performed at 65°C. One positive plaque contained bacteriophage designated as Ml3mpl8 apr4[Ser109]. Double-stranded DNA from this bacteriophage was digested with HindIII and KonI in combination, then the 750 bp fragment carrying the mutated 25 portion of the aprA-subtilisin gene was ligated to pAMB106 which had been previously digested with HindIII and KpnI. The resulting plasmid, pAMB129, may be introduced into a suitable B. subtilis host cells for synthesis and secretion of [Ser 109] - subtilisin.

## Example 5

Preparation of a [Serine 109, Serine 218] Subtilisin Analog

35 Single-stranded DNA from M13mp18 apr4[Ser109] was annealed to a primer:

25

5' GGC GCT TAT AGC GGA AC 3' 215 216 217 218 219 220 GLY ALA TYR SER GLY THR

which was synthesized by the phosphite method described by Beuacage et. al., supra. The primer was homologous to nucleotides comprising codons for amino acids 215 through 220 of aprA-subtilisin except for one base change (marked by an asterisk) where an A was changed to a G to allow for the transition which would change Asn<sup>218</sup> (codon AAC) to Ser<sup>218</sup> (codon AGC). The conditions for annealing, polymerization, ligation, transfection, and identification of positive plaques were as described in Example 2. A single purified plaque 19 contained bacteriophage designed as M13mp18 apr4 (Ser 109, Ser 218). Double-stranded DNA from this bacteriophage was digested with HindIII and KpnI in combination, then a 750 bp fragment carrying the two mutations was ligated to pAMB106 which had been 20 previously digested with HindIII and KonI. The resulting plasmid, pAMB130, may be introduced into B. subtilis host cells for synthesis and secretion of [Ser109, Ser218]-subtilisin.

## Example 6

# Preparation of a [Asp 76, Ser 109, Ser 218] Subtilisin

30 Single-stranded DNA from M13mp18 apr4 (Ser $^{109}$ , Ser $^{218}$ ) was annealed to a primer;

5' GCT CTT GAT AAC TCA ATC 3' 74 75 76 77 78 79 ALA LEU ASP ASN SER ILE

which was synthesized by the phosphite method described by Beaucage et. al., supra. The primer was homologous to the nucleotides comprising codons for amino acids 74 through 79 of  $\underline{aprA}$ -subtilisin except for one base change (marked by an asterisk), where an A was changed to a G to allow for the transition which would change  $Asn^{76}$  (codon AT) to  $Aso^{76}$  (codon AT) to  $Aso^{76}$ 

The primer was annealed to M13mp18 [Ser $^{109}$ , Ser $^{218}$ ] DNA at 65°C and the annealed DNA was slowly cooled to approximately 22°C and polymerized, ligated and transfected as described in Example 2.

Bacteriophage plaques were transferred to hybridization membranes and those which contained DNA with the desired base change were identified by hybridization as described in Example 2 except that hybridization was performed at 46°C. One positive plaque contained bacteriophage designated at M13mpl8 apr4 [Asp76, Ser109, Ser218]. Double-stranded DNA from the bacteriophage was digested with HindIII and KpnI in combination, then a 750 bp fragment carrying the three mutations of the aprA-subtilisin gene was ligated to pAMB106 which had been previously digested with HindIII and KpnI. The resulting plasmid, pAMB131, may be introduced into B. subtilis host cells for synthesis and secretion of [Asp.76] Ser218]-subtilisin.

25

35

#### Example 7

## Preparation of a [Asp<sup>76</sup>, Asp<sup>77</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>] Subtilisin Analog

30 Single-stranded DNA from M13mpl8 apr4 [Asp<sup>76</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>] was annealed to a primer:

> 5' GCT CTT GAT GAT TCA ATC CGT 3' 74 75 76 77 78 79 80 ALA LEU ASP ASP SER ILE GLY

which was synthesized by the phosphite method described

by Beaucage et. al., <u>supra</u>. The primer was homologous to the nucleotides comprising codons for amino acids 74 through 80 of (Asp $^{76}$ , Ser $^{109}$ ), Ser $^{218}$ ]—subtilisin except for two base changes (marked by asterisks), where an A 5 was changed to a G and a C was changed to a T for the transitions which changed Asn $^{77}$  (codon AAC) to Asp $^{77}$  (codon GAT).

The primer was annealed to M13mp18 apr4
[Asp<sup>76</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>] DNA at 65°C and the annealed DNA
10 was slowly cooled to approximately 22°C and polymerized,
ligated and transfected as described in Example 2.

Bacteriophage plaques were transferred to hybridization membranes and those which contained DNA with the desired base changes were identified by

- 15 hybridization as described in Example 2 except that hybridization was conducted at 45°C. One positive plaque contained bacteriophage designated as M13mpl8 apr4 [Asp76, Asp77, Ser109, Ser218]. Double-stranded DNA from this bacteriophage was digested with HindIII
- 20 and KpnI in combination, then the 750 bp fragment carrying the four mutations of the aprA-subtilisin gene was ligated to pAMB106 which had been previously digested with HindIII and KpnI. The resulting plasmid, pAMB132, may be introduced into B. subtilis host cells
- 25 for synthesis and secretion of  $\{Asp^{76}, Asp^{77}, Ser^{109}, Ser^{218}\}$ -subtilisin.

## Example 8

## Preparation of a (Asp<sup>76</sup>, Glu<sup>79</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>) Subtilisin Analog

Single-stranded DNA from M13mpl8 apr4 [Asp<sup>76</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>] was annealed to a primer: - 32 -

## 5' T GAT AAC TCA GAA GGT GTT CTG G 3' 75 76 77 78 79 80 81 82 83

ASP ASN SER GLU GLY VAL LEU

- which was synthesized by the phosphite method described by Beaucage et. al., supra. The primer was homologous to the nucleotides comprising partial codons for amino acids 75 and 83 and entire codons for amino acids 76 through 82 of [Asp<sup>76</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>]-subtilisin except 10 for three base changes (marked by asterisks), wherein an A was changed to a G, a T was changed to an A, and a C was changed to an A, which changed Ile79 (codon ATC) to Glu<sup>79</sup> (codon GAA).
- The primer was annealed to M13mpl8 apr4 [Asp 76]. Ser 109, Ser 218] DNA at 65° and the annealed DNA was slowly cooled to approximately 22°C and was polymerized, ligated and transfected as described in Example 2.

Bacteriophage plaques were transferred to hybridization membranes and those which contained the desired base changes were identified by hybridization as 20 described in Example 2 except that hybridization was performed at 45°C. One positive plaque contained bacteriophage designated as M13mpl8 apr4 [Asp76, Glu79, Ser 109, Ser 218]. Double-stranded DNA from this bacteriophage was digested with HindIII and KpnI in 25 combination, then a 750 bp fragment carrying the four mutations of the aprA-subtilisin gene was ligated to pAMBLO5 which had been previously digested with HindIII and KpnI. The resulting plasmid, pAMB133, may be an introduced into B. subtilis host cells for synthesis and

# secretion of (Asp<sup>76</sup>, Glu<sup>79</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>1-subtilisin. Example 9

Because most Bacilli secrete alkaline and/or 35 neutral proteases into the surrounding growth medium, it is preferable that mutations be introduced into endogenous alkaline and neutral protease genes of <u>B. subtills</u> to block their synthesis so that mutated subtilisin genes, when introduced into the mutant cell, may produce mutated subtilisins which will then be secreted in a medium free of other proteases likely to interfere with isolation of intact subtilisin analogs. Two mutant <u>B. subtilis</u> strains BZ24 and BZ25, which produce no detectable extracellular proteases, were constructed in accordance with the following procedure:

First, a plasmid vehicle capable of replicating in  $\underline{E}$ ,  $\underline{coli}$ , but not in  $\underline{B}$ ,  $\underline{subtilis}$  unless integrated into the  $\underline{B}$ ,  $\underline{subtilis}$  chromosome by homologous recombination, was constructed as follows. Plasmid pBD64 (Bacillus

- 15 Genetic Stock Center, Number 1E22) was digested to completion with <u>Hea</u>II to produce three fragments of 2.95 kb, 1.0 kb and 0.75 kb in size. These fragments were then ligated as a mixture to plasmid pBR322 (A.T.C.C. 37017) which previously had been dicested with ClaI. The
- 20 ligation products were introduced into <u>E. coli</u> C600 (available from the American Type Culture Collection as A.T.C.C. 23724) by transformation [Mandel, et al., <u>J. Mol. Biol.</u>, <u>53</u>, 154 (1970)]. Selection was for cells resistant to chloramphenicol (20 ug/ml) and ampicillin
- 25 (50 µg/ml). Plasmid DNA from 12 transformants was prepared by an alkaline extraction procedure described by Birnboim, et al., Nucleic Acids Res., 7, 1513-1523 (1979), then digested with <u>HindIII</u> and <u>EcoRI</u> in combination to verify the presence of inserted fragment(s). One such
- 30 plasmid, designated pAMB30, was found to carry the 1.0 and 0.75 kb <u>Bpa</u>II fragments of pBB64 in the <u>Cla</u>I site of pBB322. These fragments contain the chloramphenicol acetyltransferase (<u>cat</u>) gene which is functional in <u>E. coli</u> and <u>B. subtilis</u>. Digestions with <u>Bgl</u>II and,
- 35 separately, with  $\underline{Sau3A}$  confirmed the identity and orientation of the  $\underline{cat}$  gene on pAMB30, as illustrated in Fig. 5.

Because pAMB30 lacks an origin of replication sequence which is functional in <u>B. subtilis</u>, it cannot replicate as an autonomous replicon in <u>B. subtilis</u> host cells. On the other hand, pAMB30 contains the pBR322-

- 5 derived origin of replication which is functional in <u>E. coli</u>, thus the plasmid can be propagated in <u>E. coli</u> host cells. Plasmid pAMB30 is useful in at least 2 ways. First, a fragment of DNA which contains a functional origin of replication in <u>B. subtilis</u> may be detected when cloned onto pAMB30 such that the plasmid will
- autonomously replicate in the extrachromosomal state. Second, plasmid pAMB30 can integrate into the genome of B. subtilis at a site of homology between the chromosome and B. subtilis DNA cloned onto pAMB30. This has been demonstrated by Haldenwang, et al., J. Bacteriol., 142, 90-98 (1980) and Young, J. Gen. Microbiol., 129, 1497-1512 (1983) using plasmid vehicles similar to, but not

identical to pAMB30.

- Plasmid pAMB21 (described in Example 1) was

  digested with EcoRI and PstI to isolate the xylE gene on
  a 1.0 kb fragment. The fragment was ligated to pAMB30
  which had been previously digested with EcoRI and
  PstI. Ligation products were introduced into E. coli
  C500 by transformation. Selection was for chlocamphenicol resistant (20 ug/ml) host cells which were
  sensitive to ampicillin (50 ug/ml) due to the insertion
- sensitive to ampicillin (50 ug/ml) due to the insertion of the <u>xylE</u> fragment of pAMB21 into the structural gene for ampicillin resistance of pAMB30. The resulting plasmid, pAMB30/21, has properties identical to pAMB30 but has, in addition, a functional <u>xylE</u> gene.

Plasmid pAMB110, which carries the  $\underline{aprA}$  gene deleted of a region coding for the latter 226 amino acids of mature subtilisin, was digested with  $\underline{Eco}RI$  and  $\underline{Kpn}I$ . The 1.9 kb fragment of  $\underline{B}$ ,  $\underline{subtilis}$  DNA containing

35 genetic regulatory sequences for <u>aprA</u> gene expression. "the pre-pro" region, the DNA sequence coding for the first 49 amino acids of mature subtilisin and 3' noncoding sequences was ligated to pAMB30/21 that had been
previously digested with EcoRI and KpnI. Ligation
products were introduced into E. coli C600 by

5 transformation. Plasmid DNA from several transformants
was isolated by the alkaline extraction procedure of
Birnboim, et al., supra, and the presence of the
inserted 1.9 kb fragment was verified by multiple
restriction endonuclease digestions. One such plasmid,
10 designated pAMB301, was retained for further use.

B. subtilis strain BGSClA274 (Bacillus Genetic Stock Center) carries a mutation at the nor locus and is incapable of producing extracellular neutral protease. The plasmid pAMB301 was integrated into the genome of B. 15 subtilis BGSClA274 by transformation of competent cells [Spizizen, Proc. Natl. Acad. Sci. (USA), 44, 1072-1078 (1958)]. Selection was for chloramphenicol-resistant (5 µg/ml) host calls which were then transferred by sterile toothpicks to L-agar supplemented with 1.5% 20 (w/y) powdered skim milk and (5 ug/ml) cloramphenicol. Those cells which failed to produce a clear halo surrounding the colony were deficient in the ability to produce extracellular neutral and serine proteases due to the combination of the npr mutation along with the 25 newly introduced aprA mutation. The aprA mutation was a deletion of the latter 226 amino acids of mature subtilisin due to the replacement of the wild-type aprA gene with the deleted version carried on pAMB301. One such strain, designated BZ24, has the Npr Apr Cmr

30 phenotype, thus it produces no detectable extracellular neutral protease nor extracellular alkaline protease and is resistant to chloramphenicol at 5 1g/ml. Southern blotting [Southern, J. Mol. Biol., 98, 503-517 (1975)] was used to confirm the deletion in the aprA gene on the

35 chromosome of B, <u>subtilis</u> BZ24. Cultivation of B. <u>subtilis</u> BZ24 in Antibiotic Medium No. 3 (Penassay

WO 88/08033 PCT/US88/01038

- 36 -

Broth, Difco, Detroit, Michigan) in the absence of antibiotic selection for approximately 32 generations led to the isolation of a derivative strain of BZ24 in which the <u>cat</u> gene confering chloramphenicol resistance upon host cells was lost due to its instability in the BZ24 chromosome. Such a phenomenon has been previously observed by Stahl, et al., <u>J. Bacteriol.</u>, <u>158</u>, 411-418 (1984). A chloramphenicol-sensitive derivative of BZ24 was designated BZ25. <u>B. subtilis</u> BZ25 has the Npr Apr 10 phenotype, thus it produces no detectable extracellular neutral protease nor extracellular alkaline protease. Southern blotting was used to confirm the deletion in the <u>aptA</u> gene on the chromosome of <u>B. subtilis</u> BZ25.

Because B. subtilis BZ25 produces no

15 detectable extracellular neutral protease nor subtilisin, it is a useful host strain for introduction of plasmid DNA, such as pAMB113, for the production of mutated subtilisins which may be secreted into the surrounding growth medium free of other proteases.

20 <u>B. subtilis</u> BZ25 produces no detectable extracellular proteases when culture supernatants are assayed as described below. <u>B. subtilis</u> BZ25/paMBll3, which is BZ25 that harbors plasmid pAMBll3 (introduced by the protoplast transformation method of Chang, et al., <u>supra</u>) produces appreciable quantities of [Ser<sup>218</sup>]—subtilisin when culture supernatants are assayed as described.

30

#### Example 10

Integration of the [Ser<sup>218</sup>]-subtilisin gene into the chromosome of <u>B. subtilis</u> was believed to provide an efficient way of increasing the genetic stability of this mutant gene. Such an approach also

alleviates the requirement for chloramphenical in the fermentation medium which is otherwise needed for application of selective pressure to maintain plasmid DNA in the extrachromosomal state. Therefore, the 5 [Ser 218]-subtilisin gene, along with its genetic regulatory sequences and flanking DNA homologous to the B. subtilis chromosome, was isolated from a low melting point agarose gel after electrophoresis of pAMB113 which had been digested with EcoRI and PstI in combination. 10 The 4.0 kb EcoRI to PstI fragment (illustrated in Fig. 4) was then ligated to pAMB30 (illustrated in Fig. 5) which had been digested with EcoRI and PstI in combination. Ligation products were introduced into E. coli HB101 (A.T.C.C. 33694) by transformation. Selection was for 15 cells resistant to chloramphenicol (20 ug/ml). Plasmid DNA from four transformants which met the criteria above were isolated by the alkaline extraction procedure of Birnboim, et al., supra, then digested with EcoRI and PstT in combination. All four plasmids contained the 20 4.0 kb insert and the 5.6 kb remaining portion of pAME30. One such plasmid, designated pAME302, was purified and retained for further use. Repeated attempts to integrate plasmid pAMB302 into the chromosome of B. subtilis 8225 by the 25 competence method [Spizizen, supra] were unsuccessful. This may have been due to the failure of BZ25 cells to become competent by the method employed. Therefore, pAMB302 was introduced into B. subtilis BZ25 cells by . the protoplast transformation method of Chang, et al., 30 supra. This result is particularly significant in that research strains in which integration has been obtained were selected on the basis of transformation by the competence method. Strains which may be unable to become competent, and in particular industrial strains 35 which were not selected on the basis of transformation

by the competence method, may be more likely to be

unable to become competent.

Selection was for chloramphenicol-resistant cells (5  $\mu$ g/ml) cells, which were then transferred with sterile toothpicks to L-agar supplemented with 1.5%

- 5 (w/v) skim milk and 5 µg/ml chloramphenicol. Cells were incubated overnight at 37°C. Clear halos of different diameters were observed around the Cm<sup>T</sup> colonies. This indicates that subtilisin was produced and secreted by these cells. An attempt was made to isolate plasmid DNA from eight of these colonies by the alkaline extraction method. No plasmid DNA was detected on agarose gels
- method. No plasmid DNA was detected on agarose gels which were stained with ethidium bromide (1 µg/ml) to visualize DNA after electrophoresis. The absence of extrachromosomal plasmid DNA in the Cm<sup>r</sup> cells which produced subtilisin was a strong indication that pamm302
- 15 produced subtilisin was a strong indication that pAMB30 had been integrated into the chromosome of <u>B. subtilis</u>. Several colonies resulting from this

experiment were isolated and designated B228, B229, B230, B231, B232 and B233. Each strain was grown 20 overnight at 37°C with vigorous shaking in brain heart influsion medium (BHI, Difco) supplemented with 5 ug/ml chloramphenicol. Culture supernatants were assayed for subtilisin activity. B. subtilis strains B228, B229,

- BZ30, BZ31, BZ32 and BZ33 all produced subtilisin and 25 secreted it into the surrounding growth medium, some strains producing more than others. The amount of subtilisin observed in the liquid culture broth was directly proportional to the size of the halo observed on skim milk L-agar plates. Because of the amounts of
- subtilisin secreted by these cells differed, multiple copies of pAME302 were integrated into the chromosome or gene amplification (Young, J. Gen. Microbiol., 129, 1497-1512 (1983); Albertini, et al., J. Bacteriol., 162, 1203-1211 (1985) had taken place.

1.0

Wild-type subtilisin, from BZ25/pAM8111, and [Asp<sup>76</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>]-subtilisin analog, from BZ25/pAMB131, were isolated and purified as follows. 5 Each culture broth was centrifuced at 15,000g for 30 minutes and protein in the clear supernatant was precipitated with (NHA),SOA (350g per liter). The precipitate was collected by centrifugation, triturated with 75% acetone, filtered and dried under vacuum.

In order to further purify the enzyme, the dried precipitate was dissolved in water and the solution was filtered and then dialyzed against 0.02M sodium phosphate buffer at pH 6.3. The dialyzed solution was passed through a column (2.5 x. 15cm) of 15 carboxymethyl cellulose at a rate of 2 ml per minute. After washing the column with 0.02M sodium phosphate (pH 6.3), the engyme was eluted with the same buffer containing 0.15M NaCl. Peak fractions were pooled and protein from the fractions containing the enzyme, as 20 identified by a color change in a sample of the fraction mixed with succinyl-L-alanyl-L-alanyl-L-prolyl-Lphenylalanyl-p-nitroanilide (Vega Biochemicals), were precipitated by addition of 2.5 volumes of acetone. The precipitate was collected by centrifugation and then 25 dissolved in 0.005M calcium acetate (about 1 ml per 10

30

#### Example 12

mg). The resulting solution was dialyzed at 4°C against

water and then lyphilized.

Pure subtilisin or subtilisin analog was applied to a FPLC Superose 12 column, and the material 35 eluting as the intact (not cleaved) protein was pooled, in 20 mM MES, 0.1 M NaCl, 10 mM CaCl, pH 6.3. Samples of wild type subtilisin, or subtilisin analog of the present invention to be evaluated were incubated for 10 min. in the same buffer, the buffer +3% SDS, or 20 mM MES, 0.1 M NaCl, 5 mM CaCl $_2$  and 15 mM EDTA at the

- 5 indicated temperature. The samples were cooled to room temperature for 5 min. and then assayed for 20 min. at room temperature (20°C) in Tris-HCl, pH 8.0 with 0.6% azocasein to determine proteolytic activity. The proteolytic activity of each sample is expressed as a
- 10 percentage of the original activity of either wild type or analog, at 20°C in 10 mM CaCl<sub>2</sub>, and is represented in Table 2.

15

20

25

3.0

PCT/US88/01038

- 41 -

TABLE 2

Proteolytic Activity of Wild Type Subtilisin

| 5  | Temperature | 0% SDS | <u> 3% SDS</u> | 0% SDS +15 mM EDTA |
|----|-------------|--------|----------------|--------------------|
|    | 20          | 100    | 8              | 100                |
|    | 35          | 100    | 0              | 62                 |
|    | 50          | 95     | 8              | 37                 |
| 10 | 70          | 14     | 0              | 14                 |
|    | 100         | 0      | 0              | 0                  |

Activity of [Asp<sup>76</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>]
Subtilisin Analog of Example 5

Temperature 0% SDS 3% SDS 0% SDS +15 mM EDTA

20 20 100 55 91
50 100 12 94
100 5 0 5

#### Example 13

25

15

Intact subtilisins were obtained by FPLC on the Superose 12 column. The intact subtilisins were incubated for 30 minutes at room temperature (20°C) in 15 mM MES, 0.05 M NaCl, pH 6.3 containing either 4 mM 30 CaCl<sub>2</sub> or 4 mM EDTA, and a varied amount of SDS. The proteolytic activity of the enzyme was then determined by a 20 min. incubation in 0.6% azocasein in Tris-Cl, pH8.0. The proteolytic activity of each sample evaluated is expressed in Table 3 as a percentage of the Ca<sup>2+</sup>.

TABLE 3

## Proteclytic Activity of Wild Type Subtilisin

| 5   | * SDS | 4 mM Ca <sup>2+</sup> | 4 mM EDTA |
|-----|-------|-----------------------|-----------|
|     | 0     | 100                   | 94        |
|     | 0.1   | 100                   | 76        |
|     | 0.25  | 100                   | 45        |
| 10  | 0.50  | 76                    | 13        |
|     | 0.75  | 63                    | 3         |
|     | 1.0   | 60                    | 0         |
|     | 2.0   | 29                    | 0         |
|     | 3.0   | 17                    | 0         |
| 1 5 |       |                       |           |

15

# Proteolytic Activity of [Asp<sup>76</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>] Subtilisin Analog

| 20 | % SDS | 4 mm Ca <sup>2+</sup> | 4 mM EDTA |
|----|-------|-----------------------|-----------|
|    | 0     | 100                   | 95        |
|    | 0.1   | 100                   | 95        |
| 25 | 0.25  | 100                   | 86        |
|    | 0.50  | 100                   | 81        |
|    | 0.75  | 96                    | 79        |
|    | 1.0   | 96                    | 78        |
|    | 2.0   | 86                    | 69        |
| 30 | 3.0   | 71                    | 65        |

## Example 14

The stabilities of [Asp<sup>76</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>]

35 subtilisin analog, [Asp<sup>76</sup>, Glu<sup>79</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>]

subtilisin analog and subtilisin Carlsberg were

evaluated at three temperatures (25°C, 37°C and 50°C) in two buffer solutions (0.06M sodium phosphate, pH 9.0 or 0.12 M sodium glycinate, pH 11.0). The results are expressed in Table 4 as half-life of the enzymes under the specified conditions.

10

15

20

25

30

35

- 44 -

## TABLE 4

A. In 0.12M sodium glycinate pH 11.0 + 0.2% SDS.

| Subtilisin                                                                                | <u>tj (25°C)</u> | <u>t}(37°C)</u>                 | <u>tj(50°C)</u>            |
|-------------------------------------------------------------------------------------------|------------------|---------------------------------|----------------------------|
|                                                                                           | 2 days           | 35.2 hrs<br>8.4 hrs<br>35.3 hrs | 0.53 hr                    |
| B. In 0.06M sodium phosphate pH 9.0 +                                                     | 0.2% SDS.        |                                 |                            |
| Subtilisin                                                                                | <u>ti (25°C)</u> | <u>tj(37°C)</u>                 | <u>t<sub>1</sub>(50°C)</u> |
| [Asp <sup>76</sup> , Ser <sup>109</sup> , Ser <sup>218</sup> ] analog                     | 79.2 hrs         | 16.0 hrs                        | 0.52 hr                    |
| subtilisin Carlsberg                                                                      | 17.3 brs         | 2.4 hrs                         | 0.18 hr                    |
| [Asp <sup>76</sup> , Glu <sup>79</sup> , Ser <sup>109</sup> , Ser <sup>218</sup> ] analog |                  |                                 |                            |
| C. In 0.12M sodium glycinate pH 11.0 +                                                    | 5 mM EDTA.       |                                 |                            |
| Subtilisin                                                                                | <u>tj (25°C)</u> | t <u>(37°C)</u>                 | <u>t}(50°C)</u>            |
| [Asp <sup>76</sup> , Ser <sup>109</sup> , Ser <sup>218</sup> ] analog                     | 28.7 hrs         | 1.87 hrs                        | 0.25 hr                    |
| subtilisin Carlaberg                                                                      | 24 hrs           | 1.71 hrs                        | 0.45 hr                    |
| [Asp <sup>76</sup> , Glu <sup>79</sup> , Ser <sup>109</sup> , Ser <sup>218</sup> ] analog | 21 E kee         | 1 17 100                        | 0 30 5-                    |
| the family and family                                                                     | er.a mm          | 7 - 45 117.5                    | 0.40 117                   |

D. In 0.06M sodium phosphate pH 9.0 + 5 mM EDTA.

| Subtilisin                                                                                | <u>tj (25°C)</u> | t <u>}(37°C)</u> | t (50°C) |
|-------------------------------------------------------------------------------------------|------------------|------------------|----------|
| [Asp <sup>76</sup> , Ser <sup>109</sup> , Ser <sup>218</sup> ] analog                     | 27.4 hrs         | 1.75 hrs         | 0.23 hr  |
| subtilisin Carlsberg                                                                      | 26.3 hrs         | 1.68 hrs         | 0.32 hr  |
| [Asp <sup>76</sup> , Glu <sup>79</sup> , Ser <sup>109</sup> , Ser <sup>218</sup> ] analog | 19.7 hrs         | 1.36 hrs         | 0.17 br  |

While the present invention has been described in terms of preferred embodiments it is understood that modifications and improvements will occur to those skilled in the art. Thus, it is expected that substitution of residues at calcium binding sites other than at the specific calcium described herein may improve stability as well. Additional improvements in stability are expected for such substitutions made in other enzymes which have the Asn-Gly sequence and in other proteins comprising this sequence. Furthermore, it is expected that a subtilisin analog according to the present invention possesses superior properties to wild type subtilisins in detergent formulations such as those

disclosed in, for example, U.S. Patent No. 3,732,170;
15 U.S. Patent No. 3,749,671 and U.S. Patent No. 3,790,482,
all of which are incorporated by reference herein.

Moreover, for practical teasons many industrial processes are conducted at temperatures that are above the stability temperature range of most

- 20 enzymes. Therefore, although detergent applications have been emphasized herein, it is believed that thermostable subtilisin analogs according to the present invention are not only advantageous to certain industries such as detergent industry, which already
- 25 require stable subtilisins, but also may be useful in industries that use chemical means to hydrolyze proteins, e.g. hydrolysis of vegetable and animal proteins for the production of soup concentrates. Therefore, it is intended that the present
- 30 invention include all such modifications and improvements as come within the scope of the present invention as claimed.

WQ 88/08033 PCT/US88/01038

- 45 -

#### WHAT IS CLAIMED IS:

5

 A subtilisin analog characterized as having an amino acid sequence of a naturally occurring <u>Bacillus</u> subtillsin that has been modified by having;

(1) one or more of the amino acids present in a calcium binding site of the naturally occurring Bacillus subtilisin replaced by a negatively charged amino acid: and

- (2) one or more of any Asn-Gly sequence of the naturally occurring <u>Bacillus</u> subtilisin deleted or replaced by a different amino acid.
- A subtilisin analog according to Claim 1 wherein the
   analog is an analog of a naturally occurring
   <u>Bacillus</u> subtilisin selected from the group
   consisting of subtilisin Carlsberg, subtilisin DY,
   subtilisin BPN', an <u>aprA</u> subtilisin of <u>Bacillus</u>
   <u>subtilis</u> and subtilisin from <u>Bacillus</u> <u>mesentericus</u>.

3. A subtilisin analog according to Claim 1 wherein one or more of the amino acids in the calcium binding site represented by Asp<sup>41</sup>, Leu<sup>75</sup>, Asn<sup>76</sup>, Asn<sup>77</sup>, Ser<sup>78</sup>, Ile<sup>79</sup>, Gly<sup>80</sup>, Val<sup>81</sup>, Thr<sup>208</sup> and Tyr<sup>214</sup> is replaced with a negatively charged amino acid.

- A subtilisin analog according to Claim 3 wherein the negatively charged amino acid is Asp or Glu.
- 30 5. A subtilisin analog according to Claim 4 having Asn<sup>76</sup> replaced with Asp<sup>76</sup>.
  - 6. A subtilisin analog according to Claim 4 having  ${\rm Asn}^{77}$  replaced with  ${\rm Asp}^{77}$ .

25

PCT/US88/01038

20

3.0

- 7. A subtilisin analog according to Claim 4 having  ${\rm Tle}^{79}$  replaced with  ${\rm Glu}^{79}$ .
- A subtilisin analog according to Claim 4 having Asn<sup>76</sup> replaced with Asp<sup>76</sup> and Asn<sup>77</sup> replaced with Asp<sup>77</sup>.
- 9. A subtilisin analog according to Claim 4 having  ${\rm Asn}^{76}$  replaced with  ${\rm Asp}^{76}$  and  ${\rm Ile}^{79}$  replaced with 10  ${\rm Glu}^{79}$ .
  - 10. A subtilisin analog according to Claim 1 wherein an Asm residue in the Asm-Gly sequence is replaced by a residue of a different amino acid.
- 15 11. The analog as recited in Claim 10 wherein an Asn residue in said Asn-Gly sequence is replaced by a residue of an amino acid from the group consisting of Ser, Val, Thr, Cys, Glu and Ile.
  - 12. A subtilisin analog according to Claim II wherein the Asn residue in the Asn-Gly sequence is replaced by Ser.
- 25 13. A subtilisin analog according to Claim 12 wherein an Asp residue at position 109 is replaced by Ser.
  - 14. A subtilisin analog according to Claim 12 wherein an Asn residue at position 218 is replaced by Ser.
  - 15. A subtilisin analog according to Claim 12 wherein an Asn residue at positions 109 and 218 is replaced by Ser.
- 35 16. A subtilisin analog according to Claim 15 selected from the group consisting of [Asp<sup>76</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>]

WO 88/08033 PCT/US88/01038

- 48 -

subtilisin,  $({\rm Asp}^{77}, {\rm Ser}^{109}, {\rm Ser}^{218})$  subtilisin,  $({\rm Glu}^{79}, {\rm Ser}^{109}, {\rm Ser}^{218})$  subtilisin,  $({\rm Asp}^{76}, {\rm Asp}^{77}, {\rm Ser}^{109}, {\rm Ser}^{218})$  subtilisin and  $({\rm Asp}^{76}, {\rm Glu}^{79}, {\rm Ser}^{109}, {\rm Ser}^{218})$  subtilisin.

5

- 17. A subtilisin analog according to Claim 1 wherein the Bacillus subtilisin has a naturally occurring amino acid sequence disclosed in Table 1.
- 10 18. A subtilisin analog according to Claim 17, [Asp $^{76}$ , Ser $^{109}$ , Ser $^{218}$ ] subtilisin.
  - 19. A subtilisin analog according to Claim 17,  $\{Asp^{77}, Ser^{109}, Ser^{218}\}$  subtilisin.

15

- 20. A subtilisin analog according to Claim 17, [Glu $^{79}$ , Ser $^{109}$ , Ser $^{218}$ ] subtilisin.
- A subtilisin analog according to Claim 17, [Asp<sup>76</sup>,
   Asp<sup>77</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>] subtilisin.
  - A subtilisin analog according to Claim 17, [Asp<sup>76</sup>, Glu<sup>79</sup>, Ser<sup>109</sup>, Ser<sup>218</sup>] subtilisin.
- 25 23. A DNA sequence encoding an analog of <u>Bacillus</u> subtilisin, said Bacillus subtilisin having an amino sequence comprising a calcium binding site and an Asn-Gly sequence, wherein (1) codons which encode one or more of the amino acids in the calcium
- binding site are deleted or replaced by codons encoding a negatively charged amino acid; and (2) codons which encode one or more of the amino acids in the Asn-Gly sequence are deleted or replaced by codons encoding a different amino acid residue.

35

5

10

2

- 24. A method for improving thermal and pH stability of a <u>Bacillus</u> subtilisin having a calcium binding site comprising replacing an amino acid residue in the calcium binding site with a negatively charged amino acid and replacing or deleting one or more of the amino acids in a Asn-Gly sequence.
- 25. A composition comprising an effective amount of a subtilisin analog of Claim 1 in a detergent formulation.
- 26. A subtilisin analog characterized as an amino acid sequence of a naturally occurring <u>Bacillus</u> subtilisin that has been modified by having one or more of the amino acids present in a calcium binding site of the naturally occurring <u>Bacillus</u> subtilisin replaced by a negatively charged amino acid.

1/5

FIG. I





PCT/US88/01038



4/5

F16. 6



5/5

FIG. 7







Ml3 mpl8 apr4

## INTERNATIONAL SEARCH REPORT

International Application No PCT/US88/01038

1. CLASSIFICATION OF SUBJECT MATTER (II several classification symbols apply, indicate 4il) 2 According to Improvious Patent Classification (IPC) or to both National Classification and IPC IPC(4): C12P 21/00: C12N 15/00: C12N 9/54, 9/56 See Attachment US CL : 435/68,172.3,223.240,253,254,320; 536/27 IL PIELDS BEARCHED Minimum Occumentation Searched 4 Classification Symbols Classification System : 435/68,91,172.2,221,22,240,253,320; 252/174.12 U.S. \$38/27.28.29.68.73 Documentation Searched other than Minimum Documentation to the Extent that such Occuments are included in the Fields Searched 9 CHEMICAL ABSTRACTS DATA BASE (CAS) 1967-1988: BIOLOGICAL ABSTRACTS DATA BASE (BIOSIS) 1967-1988: REYWORDS: SERINE, PROTEASE, SUBTILISIN, ANALOG, MUTEIN, MUTATION IB. DOCUMENTS CONSIDERED TO BE RELEVANT ! Citation of Document, 16 with Indication, where appropriate, of the relevant passages 11 Relevant to Claim No. 15 25 US, A, 3,790,482 (JONES) 5 February 1974. See the entire document and in particular columns 6 and 7. 25 US, A, 3,623,957 (FELDMAN) 30 November 1971. See entire document. NATURE, Volume 330, issued 5 November 1-24 & Y,P 1987 (London, UK), (STERNBERG ET AL) 26 "Prediction of electrostatic effects of engineering of protein charges", See pages 86-88 SCIENCE, Volume 237, issued 24 July 1-24 & Y,P 26 . 1987 (Washington, D.C.), (CARTER ET AL), "Engineering enzyme specificity by 'Substrate-Assisted Catalysis'", See pages 394-399. \*Y" Ister document published after the international filing date or priority date and not in comflict with the application but cited to understand the annotate or theory underlying the \* Special categories of cited documents: 18 "A" document defining the general state of the art which is not considered to be all particular relevance. invention "X" document of particular relevance; the distince invention cannot be considered have or cannot be considered to involve an inventive step. "E" serier document but published on or eiter the international filing date "L" document which may throw doubts on presity distints) or which is what to establish the publication gets of another citation or other special ressor (as specified) "y" document of paylicular releasances the claimed invention cannot be considered to involve an inventive stor when the document is combined with one or more other such document is combined with one or more other such documents, such combined with one or more other such documents, such combined with one or more other such documents. "O" document referring to an oral disclosure, use, exhibition or other meens \*P" document published grup to the international filing date but later from the priority date claimed in the art "4" document member of the same patent family IV. CESTIFICATION Cate of Mailing of this International Search Report 5 Date of the Actual Completion of the International Search 5 0 2 AUG 1988 30 June 1988 Signature of Authorized Officer 16 International Searching Authority

ISA/US

Attachment To Form PCT/ISA/210; Part I.

IPC(4): C11D 7/42; C12N 5/00; C12N 1/20 C07H 15/12

|            | NTS CONSIDERED TO SE RELEVANT (CONTINUES FROM THE SECOND SHE                                                                                                                                                                                                                                    |                 |        |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|
| Category * | Citation of Conument (** with indication, where appropriate, of the relevant passages of                                                                                                                                                                                                        | Relevant to Cir | ilm No |
| Υ, Ρ       | JOURNAL OF MOLECULAR BIOLOGY, Volume<br>193, issued September 1987 (London,<br>UK), (RUSSELL ET AL), "Electrostatic<br>effects on modification of charged<br>groups in the active site cleft of<br>subtilisin by protein engineering",<br>See pages 803-13, and in particular<br>pages 803-05.  | 1-24<br>26      | &      |
| Y,P        | CHEMICAL REVIEWS, Volume 87, Issued October 1987 (Baltimore, Maryland, USA), (GRRLT), "Relationships between enzymatic catalysis and active site atructure revealed by applications of site-directed mutagenesis". See pages 1079-1103, and in particular pages 1079-31,88,89,92,95,96,1103-05. | 1-24<br>26      | &      |
| Y          | SCIENCE, Volume 233, issued 8 August 1986 (Washington, D.C.), (ESTELL ET AL), "Probing steric and hydrophobic effect on enzyme-substrate interactions by protein engineering", See pages 659-63.                                                                                                | 1-24<br>26      | Š.     |
| ¥          | CHEMICAL ABSTRACTS, Volume 104, No. 19, issued 12 May 1986 (Columbus, Ohio, USA), (ESTELL ET AL), "Stedirected mutagenesis of the active site of subtilisin BPN", See page 130, column 1, the abstract No. 162674r, World Blotech Rep. 1984, 2, 181-7 (Eng).                                    | 1-24<br>26      | &      |
| ¥          | NATURE, Volume 318, issued 28<br>November 1985 (London, UK),<br>(THOMAS ET AL) "Tailoring the pH<br>dependence of enzyme catalysis<br>using protein engineering", See<br>pages 375 and 376.                                                                                                     | 1-24<br>26      | &      |
| X          | JOURNAL OF CELLULAR BIOCHEMISTRY, Volume Supplement 9B, issued 1985 (New York, USA), (BRYAN ET AL) "Site-directed mutagenesis of Bacillus subtilisin", Abstract No. 3632, page 92.                                                                                                              | 1-24<br>26      | Šŧ.    |

| INTHER INFORMATION CONTINUED FROM THE SECOND SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36ET                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                               |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t to                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i i                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
| OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D UNSEARCHABLE 19                                                                                                                                                                                                                                                                                                                                               |
| is international search report has not been established in respect of car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the claims under Article 17(2) (s) for the following ressons:                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
| Claim numbersbecause they releat to parts of the internation of the content of the conte         | omal anplication that du net comply with the prescribed require-<br>t be carried out w, specifically:                                                                                                                                                                                                                                                           |
| media jo such an establi mat no meaning ut etunization is sent unit. $\mathbb{Z}_{N}$ observations where unity of invention is each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iking st                                                                                                                                                                                                                                                                                                                                                        |
| media jo such an establi mat no meaning ut etunization is sent unit. $\mathbb{Z}_{N}$ observations where unity of invention is each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iking st                                                                                                                                                                                                                                                                                                                                                        |
| ments to such an extent that no meaning out the passion can be applied to the partial part of the partial part of the partial  | IKING 11  nernational appropriation as follows:  ner, this international search, report covers, sit sourchable claims, TROCLICE  lief by the applicant, this international search report covers only                                                                                                                                                            |
| ments to such an establish that no meaning us studies as sent to the control of the international speciation.  As all required additional search (see were timely paid by the applied of the international application. Tellephone P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IKING 11  nernational appropriate as follows:  ner, this international search report covers sit searchable claims:  TROCLICE is by the applicant, this international search report covers only  id, specifically claims:  IK. Consequently, this international search report is restricted to                                                                   |
| meets to such an extent that no meshinged churches seem out to be continued in the continued of the continued of the continued of the continued of the intermitional application.  As all required additional search (see were timely paid by the application for the intermitional application. Tellephone Phase up to other required additional search fear was finely paid by the application of the intermitional application. Tellephone Phase up to other required additional search fear was finely paid by the application of the continued additional search fear was finely paid by the application of the continued additional search fear was finely paid by the application of the continued additional search fear was finely paid by the application of the continued of the continued additional search fear was finely paid by the application of the continued of the  | international appropriation as follows:  see. this international search report covers all searchable claim.  FACCTOC  on the searchable claim.  FACCTOC  international search report covers only  on, specifically delines:  in. Consequently, this international search report is restricted to                                                                |
| ments to such an extent that no meshangeut churches seem and the control of the international Searching Authority build multiple inventions in this is See Attachment  See Attachment  As all required additional search feas were timely paid by the application of the international application.  To Lephone D.  As only some of the required additional search feas were timely paid by the application of the international application for whech less were specified to the international or the control of the | international approaction as follows:  ant, this international search report covers sit scarchable claims:  CCCLCE  ide by the applicant, this international search report covers only  out, openficially discuss:  t. Consequently, this international search report is restricted to unmere:  an additional hea, the International Searching Authority did no |

## Attachment to Form PCT/ISA/210, Part VI.

- I. Claims 1-9, 17, 23, 24 and 26 drawn to subtilisin analogs wherein amino acids positioned in the calcium binding region are substituted, method of stabilizing said analog and DNA encoding same classified in Class 435 subclasses 222, 91, 172.1 and 172.3; and Class 536 subclass 27 respectively.
- II. Claims 10-16 and 18-22 drawn to a subtilism analog wherein amino acids positioned in regions other than or in addition to the calcium binding region are substituted classified in Class 435 subclass 222; and Class 530 subclass 350.
- III. Claim 25 drawn to a detergent composition comprising an effective amount of a subtilisin analog classified in Class 252 subclass 174.12.