MA4702. Programación Lineal Mixta 2020.

Profesor: José Soto.

Tarea 3.

Fecha entrega: Lunes 15 de Junio, 23:59. Por u-cursos.

Instrucciones:

- 1. Extensión máxima: Entregue su tarea en a lo más 6 planas.
- 2. Formato: La tarea debe entregarse en formato pdf, con fondo de un solo color (blanco de preferencia), letra legible en manuscrito y clara. (No se aceptarán documentos tipeados o generados por computador, pero si tiene alguna manera de escribir en manuscrito directamente de manera digital lo puede hacer). Si desarrolla su tarea en papel, entréguelo escaneados o en fotos de alta calidad, via ucursos.
- 3. **Tiempo de dedicación:** El tiempo estimado de desarrollo de la tarea es de 2.5 horas de dedicación. Esto no considera el tiempo de estudio previo, el tiempo dedicado en asistir a cátedras y auxiliares, ni el tiempo para ponerse al día. Tendrá un plazo de 7 días para entregarlo. No espere hasta el último momento para escanear o fotografiar adecuadamente su tarea y cambiarla al formato solicitado (pdf). Entregue con suficiente anticipación a la hora límite.
- 4. Revisión: Se podrá descontar hasta 1 punto en la nota final por falta de formato o extensión.
- 5. Esta tarea está pensada para ser hecha en forma individual.

Ejercicios:

- (a) [15 puntos] Sean $S, T \subseteq \mathbb{R}^n$. Pruebe que $\operatorname{conv}(S + T) = \operatorname{conv}(S) + \operatorname{conv}(T)$.
- (b) [15 puntos] Sean P, Q polítopos con vértices V(P) y V(Q) respectivamente. Demuestre que $R = \text{conv}(P \cup Q)$ es polítopo y que si V(R) son los vértices de R entonces $V(R) \subseteq V(P) \cup V(Q)$.
- (c) [30 puntos] Considere la variante del cutting stock problem en el cual cada cliente i desea **a lo más** b_i rollos de ancho w_i y está dispuesto a pagar g_i pesos por cada rollo de dicho ancho recibido (y no recibirá más de b_i). Además, la papelera incurre en un costo fijo de s pesos por cada tronco de ancho w_i usado, y dispone de no más de w_i rollos. La papelera desea maximizar su utilidad definida como el ingreso recibido por los rollos vendidos menos el costo de los troncos usados. Determine:
 - (c1) Modele el problema como un programa lineal entero (PE) que solo use variables x_p para cada posible patrón $p \in \mathcal{P}$ (use la misma definición de patrón usada en clases y laboratorio).

Indicación: Defina explícitamente g_p como el ingreso que le reporta vender los rollos de cierto patrón p. Este valor es una constante para (PE).

(c2) Para $Q \subseteq \mathcal{P}$, el master problem MP(Q) asociado y su dual DUAL-MP(Q).

Indicación: Recuerde que MP(Q) se obtiene tomando la relajación lineal de (PE) y eliminando (fijando a cero) todas las variables x_p para p fuera de Q. Su formulación MP(Q) solo debe incluir variables x_p con $p \in Q$ (no debe hacer mención al resto de los x_p).

(c3) Para una solución dual factible q de DUAL-MP(Q) dada, el pricing problem asociado. Escriba este pricing problem como un programa lineal entero e interprételo como un problema de mochila.

Indicación: Recuerde que el pricing problem consiste en determinar cual es el índice (columna) asociada a la restricción de DUAL-MP(\mathcal{P}) que más viola q (la menos satisfecha).