Database Systems II Project

Mendelova Univerzita v Brně Pavel Kostarev 11 June, 2020

Students' performance in studying and factors that influence it. Comparing High School and University studying performance

Submitted to: Ing. Jan Přichystal, Ph.D.
Ing. Pavel Turčínek, Ph.D.
Provozně ekonomická fakulta

Contents

Intro		. 3
1 Da	taset information	. 3
1.1	Math students' performance from Kaggle	. 3
1.2 Pomera	Dataset "Ankieta2019" from my Home University, "West anian University of Technology in Szczecin, Poland"	.5
2 KF	PI and their visual representation in Power BI	. 6
2.1	KPI 1 - Age / grade dependency	. 6
2.2	KPI 2 - Family size / failure dependency	
2.3	KPI 3 - Parents status / absences dependency	. 7
2.4	KPI 4 - Grade / activities dependency	. 8
2.5	KPI 5 - What kind of students study the best?	. 8
2.6	KPI 6 - Is parents' education so important?	. 9
2.7	KPI 7 Is parents' job important?	. 9
3 Tra	ansforming the data	10
3.1	Reducing the dataset	10
3.2	Changing the data types	10
3.3	Snowflake scheme	10
3.4	Merging two datasets	10
3.5	Model	10
3.6	Model description	11
4 Vis	sualization of new information that we get	13
4.1 grades	Where probably will live students according to the all three results?	13
4.2	How health at schooltime and school support will influence the	3
numbe	r of ECTS credits at the University?	14
4.3 role at	Will background education and first period exam grade play the university GPA?	14
4.4	How influence students' going out on the average GPA results	15

	4.5	Does differ GPA values from the place of living and	what grade
t!	hese s	students at school had? Do they study better now?	15
5	Pr	os and Cons of the data analysis	16
	5.1	What are the disadvantages of the model?	16
6	Re	eferences.	16

Intro

This project was created from 2 datasets. One of them I found on Kaggle.com and another one we created a year ago for statistic purposes at my Home university

1 Dataset information

1.1 Math students' performance from Kaggle

"This dataset contains the final scores of students at the end of a math programs with several features that might or might not impact the future outcome of these students."

Here is example of first three rows and all the columns that file student-mat.csv contains

school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	reason
GP	F	18	U	GT3	A	4	4	at_home	teacher	course
GP	F	17	U	GT3	Т	1	1	at_home	other	course
GP	F	15	U	LE3	Τ	1	1	at_home	other	other
guardian	traveltime	studytime	failures	schoolsup	famsup	paid	activities	nursery	higher	internet
mother	2	2	0	yes	no	no	no	yes	yes	no
father	1	2	0	no	yes	no	no	no	yes	yes
mother	1	2	3	yes	no	yes	no	yes	yes	yes
romantic	famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
no	4	3	4	1	1	3	6	5	6	6
no	5	3	3	1	1	3	4	5	5	6
no	4	3	2	2	3	3	10	7	8	10

Number of rows = 396

Number of columns = 33

- 1. <u>school</u> student's school (binary: 'GP' Gabriel Pereira or 'MS' Mousinho da Silveira)
- 2. <u>sex</u> student's sex (binary: 'F' female or 'M' male)
- 3. <u>age</u> student's age (numeric: from 15 to 22)

- 4. <u>address</u> student's home address type (binary: 'U' urban or 'R' rural)
- 5. <u>famsize</u> family size (binary: 'LE3' less or equal to 3 or 'GT3' greater than 3)
- 6. <u>Pstatus</u> parent's cohabitation status (binary: 'T' living together or 'A' apart)
- 7. <u>Medu</u> mother's education (numeric: 0 none, 1 primary education (4th grade), $2 \rightarrow$ "5th to 9th grade, $3 \rightarrow$ secondary education or $4 \rightarrow$ higher education")
- 8. <u>Fedu</u> father's education (numeric: 0 none, 1 primary education (4th grade), $2 \rightarrow$ "5th to 9th grade, $3 \rightarrow$ secondary education or $4 \rightarrow$ higher education")
- 9. <u>Mjob</u> mother's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at home' or 'other')
- 10. <u>Fjob</u> father's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at home' or 'other')
- 11. <u>reason</u> reason to choose this school (nominal: close to 'home', school 'reputation', 'course' preference or 'other')
- 12. guardian student's guardian (nominal: 'mother', 'father' or 'other')
- 13. <u>traveltime</u> home to school travel time (numeric: 1 1 hour)
- 14. studytime weekly study time (numeric: 1 10 hours)
- 15. failures number of past class failures (numeric: n if 1
- 16. <u>schoolsup</u> extra educational support (binary: yes or no)
- 17. famsup family educational support (binary: yes or no)
- 18. <u>paid</u> extra paid classes within the course subject (Math or Portuguese) (binary: yes or no)
- 19. activities extra-curricular activities (binary: yes or no)

- 20. <u>nursery</u> attended nursery school (binary: yes or no)
- 21. <u>higher</u> wants to take higher education (binary: yes or no)
- 22. internet Internet access at home (binary: yes or no)
- 23. romantic with a romantic relationship (binary: yes or no)
- 24. <u>famrel</u> quality of family relationships (numeric: from 1 very bad to 5 excellent)
- 25. <u>freetime</u> free time after school (numeric: from 1 very low to 5 very high)
- 26. **goout** going out with friends (numeric: from 1 very low to 5 very high)
- 27. <u>Dalc</u> workday alcohol consumption (numeric: from 1 very low to 5 very high)
- 28. <u>Walc</u> weekend alcohol consumption (numeric: from 1 very low to 5 very high)
- 29. <u>health</u> current health status (numeric: from 1 very bad to 5 very good)
- 30. absences number of school absences (numeric: from 0 to 93)

These grades are related with the course, subject - Mathematics

- 31. G1 first period grade (numeric: from 0 to 20)
- 32. G2 second period grade (numeric: from 0 to 20)
- 33. G3 final grade (numeric: from 0 to 20, output target)

1.2 Dataset "Ankieta2019" from my Home University, "West Pomeranian University of Technology in Szczecin, Poland"

We used this dataset at our Applied mathematics and statistics course. Translated from Polish.

Sex	Weight	Height	Place of	High	ECTS	GPA	No. of	No. of	System	Age	F.education	No hrs
			living	School			hours	OS				code
Μ	84	194	Dormitory	Adv	24	3.6	4	1	Windows	7	FT	(0,4]
				math					10			
Μ	69.5	180	Rental	Adv	24	2.9	5	1	Other	7	FT	(4,8]
			housing	math								
Μ	70	186	Rental	Tech	18	2.1	4	1	Windows	6	FT	(0,4]
			housing	college					10			

Number of rows = 91

Number of columns = 13

Attributes (blue colored attributes were included into the project)

- 1. \rightarrow **Sex** (binary: M or F)
- 2. \rightarrow Weight (decimal number)
- 3. \rightarrow Height (whole number)
- 4. \rightarrow <u>Place of living</u> actual place of student's living (nominal: Dormitory, Rental Housing or Apartment) [used]
- 5. \rightarrow <u>High School</u> which school student attended before entering the university (nominal: adv math, basic math, tech college, other)[used]
- 6. \rightarrow <u>ECTS</u> number of credits received after the 1st semester (whole number)[used]
- 7. \rightarrow <u>GPA</u> the average value of the student's grades after the 1st semester (decimal number)[used]
- 8. \rightarrow No. Of hours spending in front of the PC (whole number)
- 9. \rightarrow No. Of Operation Systems (whole number)
- $10. \rightarrow \underline{\text{System}}$ (nominal: windows 10, windows 8 or older, other)
- 11. \rightarrow Age of PC (whole number)
- 12. \rightarrow <u>Form of education</u> (binary: FT full time, C correspondence learning) [used]
- 13. \rightarrow No. Of hours spent coding (interval)

2 KPI and their visual representation in Power BI

2.1 KPI 1 - Age / grade dependency

How depend the results of the second period grade on the age of students?

→Interpretation: analyzing the plot of students' average grades for the second period exams depending on the age we can say that younger students have better average results.

2.2 KPI 2 - Family size / failure dependency

Does the size of family influence the average number of exam failures?

→Interpretation: analyzing the plot of the data of students' failures depending on the family size we can claim that the bigger family the higher average number of students' failures.

2.3 KPI 3 - Parents status / absences dependency

Can parent status influence the number of absences at school?

Average of absences by Pstatus

→Interpretation: analyzing the plot of the data of students with maximum first, second and last period exam result we can see that the students with add. activities always have better results in all the exam periods.

2.4 KPI 4 - Grade / activities dependency

What is the maximum grades for students who have additional activities and for those who do not

Max of G1, Max of G2 and Max of G3 by activities

→Interpretation: analyzing the plot of the data of students with maximum first, second and last period exam result we can see that the students with add. activities always have better results in all the exam periods.

2.5 KPI 5 - What kind of students study the best?

How failures, absences and study time influence the grade result all together?

 \rightarrow Interpretation: analyzing the plot of data of students with 0 failures and average of study time 2.14 with the highest exam result at the first period we see two students who had few absences, i.e. 4 and 2

→Interpretation: analyzing the plot of the data of students with 3 failures (max possible) and average of study time 1.33 with the lowest exam result at the first period we see one student who had a lot of absences.

2.6 KPI 6 - Is parents' education so important?

How can parents' education influence the students' performance?

Average of Medu and Average of Fedu by G1

→Interpretation: Students' mothers from this dataset more often have better education than students' fathers and the more educated parents are, the higher grade of a student is.

2.7 KPI 7 Is parents' job important?

Does the students' performance depend on what kind of job parents do?

→Interpretation: Students whose mother is a teacher and father works from home have the best first period grade results, but vice versa if mother works at home and father is a teacher it produces the lowest grade results.

3 Transforming the data

3.1 Reducing the dataset

I deleted too many rows from the Kaggle dataset to make the two datasets equal in the number of rows. I also deleted unnecessary column from the initial dataset.

3.2 Changing the data types

I changed the values of 'yes' to TRUE and 'no' to FALSE in the tables, making the cells binary.

3.3 Snowflake scheme

I divided the table into several tables that have common attributes to describe a particular student connected with the help of foreign keys (unique ID of a particular table connected) with the Event table. All the tables have many-to-one relationships with the Event table.

3.4 Merging two datasets

I added the attributes that could be interesting to analyze and produce new correlations and dependencies with the data, having some conclusion. The second dataset can help us to imagine what grades or points would math students have if they would decide to study Informatics.

3.5 Model

3.6 Model description

Event table

person ID	int	Primary key
address	varchar	U/R
age	int	18
sex	varchar	M/F
Activity_id	int	Foreign key
Studying ID	int	Foreign key
Uni ID	int	Foreign key
Grades ID	int	Foreign key
Family_id	int	Foreign key
free_time ID	int	Foreign key

Activity table

Activity_id	int	Primary key
activities	binary	TRUE/FALSE
nursery	binary	TRUE/FALSE
paid	binary	TRUE/FALSE
schoolsup	binary	TRUE/FALSE

Free time table

free_time ID	int	Primary key
freetime	int	Values 1:5
goout	int	Values 1:5
Dalc	int	Values 1:5
Walc	int	Values 1:5
health	int	Values 1:5
internet	binary	TRUE/FALSE

Studying table

Studying ID	int	Primary key
school	varchar	U/R
studytime	int	18
failures	varchar	M/F
absences	int	Foreign key
reason	int	Foreign key
traveltime	int	Foreign key

Family table

Family_id	int	Primary key
famsize	varchar	GT3/LE3
Pstatus	varchar	A/T
famsup	binary	TRUE/FALSE
romantic	binary	TRUE/FALSE
famrel	int	Values 1:5
guardian	varchar	mother/father
mother_id	int	Foreign key
father_id	int	Foreign key

Father table

father_id	int	Primary key
Fedu	int	Values 1:5
Fjob	varchar	at_home/ser-
		vices/health/other/teacher

Mother table

mother_id	int	Primary key
Medu	int	Values 1:5

Mjob	varchar	at_home/ser-
		vices/health/other/teacher

Grades table

Grades ID	int	Primary key
G1	int	Values 0:20
G2	int	Values 0:20
G3	int	Values 0:20

University table

Uni ID	int	Primary key
Place of living	varchar	Apartment, Rental
		Housing, Dormitory
GPA	double	4.3
Form of Edu	varchar	FT/C
ECTS	int	25
High School	varchar	Adv math, basic math,
		tech college, other

4 Visualization of new information that we get

4.1 Where probably will live students according to the all three grades results?

Average of G2, Average of G1 and Average of G3 by Place of living

→Interpretation: analyzing the plot we can come to the conclusion that students who had the highest grades at school usually live in the apartment and students with the lowest ones rent a house.

4.2 How health at schooltime and school support will influence the number of ECTS credits at the University?

Average of ECTS by schoolsup and health

 \rightarrow Interpretation: analyzing the plot of data of students it can be said that students who had some extra educational support and have average or perfect state of health are more likely to have higher number of ECTS credits studying at the university.

4.3 Will background education and first period exam grade play role at the university GPA?

→Interpretation: students who had advanced math course at the high school and who had good results from the Math exam at the school are more likely to have higher GPA at the university. Although it does not often refer to the technical college students.

4.4 How influence students' going out on the average GPA results for full-time and correspondence learning students?

→Interpretation: students who were going out more during the school time do not have problems with studying analyzing their university GPA if their form of studying is Full studying, but if they are attending correspondence course it is opposite.

4.5 Does differ GPA values from the place of living and what grade these students at school had? Do they study better now?

Average of G1 by GPA and Place of living

→Interpretation: there are many students who had higher exam grades at schooltime, but do not have enough good GPA at the university. Place of living doesn't have strong influence on it, but still students living in an apartment have higher GPA.

5 Pros and Cons of the data analysis.

5.1 What are the disadvantages of the model?

The datasets have very different origin and probably not all the information could be referring to real life situations. It would be good to compare datasets from one place or have datasets from many different places to generalize the results.

6 References

- https://www.kaggle.com/janiobachmann/math-students
- P. Cortez and A. Silva. Using Data Mining to Predict Secondary School Student Performance. In A. Brito and J. Teixeira Eds., Proceedings of

- 5th FUture BUsiness TEChnology Conference (FUBUTEC 2008) pp. 5-12, Porto, Portugal, April, 2008, EUROSIS, ISBN 978-9077381-39-7.
- Dataset "Ankieta2019" was prepared by my professors from the questionnaire that students of the Informatics Department were participating: dr Małgorzata Machowska-Szewczyk, dr Joanna Banaś, West Pomeranian University of Techonology, Szczecin, Poland
- The Data Warehouse Toolkit: The Definitive Guide to
 Dimensional Modeling, Third Edition Published by John Wiley &
 Sons, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256
 www.wiley.com Copyright © 2013 by Ralph Kimball and Margy
 Ross Published by John Wiley & Sons, Inc., Indianapolis, Indiana
- https://docs.microsoft.com/en-us/power-bi/guided-learning/
- https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-quickstart-connect-to-data
- https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-analytics-pane
- https://www.youtube.com/watch?v=nPhtDVlRvSo