

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Clase 6 Cobertura de grafos aplicada

IIC3745 – Testing

Rodrigo Saffie

rasaffie@uc.cl

1. Clase pasada

- Cobertura aplicada en grafos
 - Elementos del diseño
 - Especificación del diseño: restricciones de secuencia

2. Cobertura aplicada en grafos

- Especificación del diseño: estado
- Casos de Uso

3. Herramientas proyecto

Comportamiento según estado

- Utilizaremos una máquina de estados finitos (FSM) como descriptor del estado de las variables de un software y sus modificaciones en ejecución.
 - <u>Nodos</u>: Estados representados como un conjunto de valores de variables claves.
 - Aristas: Transiciones, posibles cambios de estado

Comportamiento según estado

- Las máquinas de estado pueden modelar distintos tipos de software:
 - Software embebidos
 - Estructuras de datos
 - Compiladores y sistemas operativos
- Diseñar software en base a máquinas de estado permite capturar posibles errores
- Es impracticable en *software* con múltiples estados.

Anotaciones en FSM

- Una FSM puede ser anotada con distintas acciones:
 - Transiciones
 - Entrada de nodos
 - Salidas de nodos
- Una acción puede expresar cambios en variables o condiciones en las mismas
- Consideraremos las siguientes anotaciones:
 - <u>Precondiciones</u>: condiciones que deben ser verdaderas para que se realice una transición.
 - <u>Gatilladores</u>: Cambios en variables que causan transiciones.

Ejemplo Ascensor

Cobertura en *FSM*

- Estructural
 - State coverage: ejecutar cada estado
 - Transition coverage: ejecutar cada transición
 - *Transition-pair*: ejecutar cada par de transiciones
- Flujo de información:
 - Nodos a menudo no incluyen defs ni uses
 - Usualmente sólo modelan un subconjunto de variables.
 - Se han hecho pocos intentos de aplicar criterios de flujo de información en *FSM*.

Derivar diagrama FSM

- En general es más difícil generar un *FSM* que cubrirlo.
- Se puede generar un *FSM* en la etapa de diseño, pero es deber del *tester* revisar que se encuentre al día respecto con la implementación.
- También se suelen utilizar estrategias (algunas incorrectas) para derivar *FSM* del software:
 - a. Combinar grafos de control de flujo
 - b. Basarse en la estructura del *software*
 - c. Modelar variables de estado
 - d. Utilizar especificaciones explícitas o implícitas

Cobertura con *FSM*

- Ventajas
 - a. Las pruebas pueden ser diseñadas antes de la implementación
 - b. Analizar un *FSM* es más simple que analizar el código
- Desventajas
 - a. Algunas decisiones de implementación no pueden ser modeladas como *FSM*
 - b. Hay variaciones debido a la naturaleza subjetiva de derivar *FSM*
 - c. Las pruebas deben ser mapeadas a inputs reales del programa

Cobertura de grafos aplicada

- Código fuente
- Elementos de diseño
- Especificación de diseño
- Casos de uso

Casos de Uso

- Son utilizados generalmente para expresar requerimientos de *software*.
- Ayudan a expresar el flujo de la aplicación.

Casos de Uso

- Node Coverage: cubrir cada caso de uso
- No es muy útil analizar estos diagramas

Diagramas de actividad (o flujo)

- Indican el flujo entre las actividades
- Actividades deben modelar pasos a nivel del usuario
- 2 tipos de nodos:
 - Estados de acción
 - Ramificaciones
- En general estos diagramas tienen características deseables:
 - Pocos loops
 - Predicados simples

Giro en cajero automático

Cobertura en diagramas de actividad

- Flujos de datos no aplica
- Estructural:
 - Escenario: un camino completo a través del diagrama
 - Debe tener sentido semántico para el usuario
 - Número de caminos es finito a menudo
 - Node Coverage
 - Edge Coverage
 - Cobertura de camino específico (SPC)

1. Clase pasada

- Cobertura aplicada en grafos
 - Elementos del diseño
 - Especificación del diseño: restricciones de secuencia

2. Cobertura aplicada en grafos

- Especificación del diseño: estado
- Casos de Uso

3. Herramientas proyecto

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Clase 6 Cobertura de grafos aplicada

IIC3745 – Testing

Rodrigo Saffie

rasaffie@uc.cl