Aprendizado de Máquina

Apresentação

MACHINE LEARNING

Prof. Dr. André C. P. L. F. de Carvalho ICMC-USP

© André de Carvalho - ICMC/USP

Tópicos do curso

- Aprendizado de Máquina
- Algoritmos de indução de árvores de decisão
- Algoritmos probabilísticos
- Redes neurais
- SVM e Deep Learning
- Agrupamento de dados

© André de Carvalho - ICMC/USP

Objetivo

 Apresentar os aspectos fundamentais e principais algoritmos de aprendizado de máquina, que investiga técnicas para desenvolver algoritmos capazes de aprender, ou melhorar seu desempenho, utilizando exemplos de situações previamente observadas.

© André de Carvalho - ICMC/USP

Apresentação e expectativas

- Qual minha formação
- O que espero do curso?
- No que ele vai ajudar minha dissertação / tese?

© André de Carvalho - ICMC/USP

Ementa

- Aspectos básicos de Aprendizado de Máquina
- Tarefas de aprendizado
- Viés indutivo
- Aprendizado descritivo
- Aprendizado preditivo
- Algoritmos de Aprendizado de Máquina
- Algoritmos que seguem diferentes paradigmas, incluindo algoritmos baseados em procura (algoritmos de inducao de arvores de decisao e de conjuntos de regras, redes neurais artificiais (perceptron e multilayer perceptron) e modelos probabilisticos (regressão logística e naive Bayes)
- Medidas de avaliação; Aplicações de Aprendizado de Máquina.

© André de Carvalho - ICMC/USP

Exercícios

- Por em prática o que for visto durante o curso
 - Preparação de dados
 - Implementação
 - Realização de experimentos
 - Análise de resultados
 - Bem escrito

© André de Carvalho - ICMC/USP

6

Projeto

- Utilizar algoritmos de AM vistos em aula para resolver problema real
 - Ligado a dissertação ou tese
 - Dados públicos
 - Artigo científico formato LNCS
 - 8 a 10 páginas, coluna simples
 - Mestrado: português
 - Doutorado: inglês

© André de Carvalho - ICMC/USF

Avaliação (PCCMC)

- NF = $(5*N_{Pv} + 4*N_{Pi} + 1*N_R) / 10$
- Onde:
 - N_{Pv}: nota da prova
 - N_{Pi}: nota do projeto
 - N_R: nota dos relatórios
 - Se algumas das notas < 5
 - MF = menor valor entre as notas
- Não haverá prova substitutiva nem recuperação

© André de Carvalho - ICMC/USP

.

Avaliação (MECAI)

- NF = $(5*N_{Pv} + 5*N_{Pi}) / 10$
- Onde:
 - N_{Pv}: nota da prova
 - N_{Pi}: nota do projeto
 - Se algumas das notas < 5
 - MF = menor valor entre as notas
- Não haverá prova substitutiva nem recuperação

© André de Carvalho - ICMC/USP

Práticas

- Grupos de até 3 pessoas
 - Grupos com pelo menos um aluno de mestrado acadêmico/doutorado
 - Usar R ou Python
 - Aula pratica
 - Grupos apenas com alunos do MECAI
 - Utilizar ferramentas para mineração de dados
 - R, Python, WEKA, Knime ou Rapid Miner

© André de Carvalho - ICMC/USP

10

Práticas (PCCMC)

- Aplicar conceitos vistos em conjunto de dados do Kaggle
 - https://www.kaggle.com/
 - Problema de classificação
 - Práticas das 16:00 as 17:00
 - Relatórios semanais
 - Até duas páginas
 - Falar o que foi feito

© André de Carvalho - ICMC/USP

Práticas (MECAI)

- Aplicar conceitos vistos em conjunto de dados do Kaggle
 - https://www.kaggle.com/
 - Problema de classificação

© André de Carvalho - ICMC/USP

12

Bibliografia

- Faceli, K., Lorena, A., Gama, J. e Carvalho, A., Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina, LTC,
- Flach, P. Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, 2012
- Bishop, C. M., Pattern Recognition and Machine Learning, Springer, 2006 Duda, R. O., Hart, P. E., and Stork, D. G., Pattern Classification,
- 2nd Edition, Wiley, 2001
- Alpaydin, E. Introduction to Machine Learning, MIT Press, 2004
- Tan, P.-N. Steinbach, M., and Kumar, V., Introduction to Data Mining, Addison-Wesley, 2006
- Mitchell, T. M. Machine Learning. McGraw-Hill, 1997.

@ André de Carvalho - ICMC/USP

