> Guillern Ibarra

Contenid

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas d

Métodos de Solución

Introducción a las Ecuaciones Diferenciales en Ingeniería Enfocándonos en Ecuaciones Diferenciales Ordinarias (EDOs) y Aplicaciones

Guillermo Ibarra

12 de noviembre de 2014

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

Contenido

- 1 Intro a Ecuaciones Diferenciales
- 2 Clasificación de las Ecuaciones Diferenciales
- 3 Problemas de Valor Inicial
- 4 Métodos de Solución

> Guillern Ibarra

Contenid

Intro a Ecuaciones Diferenciales

de las Ecuaciones Diferenciale

Problemas d Valor Inicial

Métodos de Solución

¿Qué son las Ecuaciones Diferenciales?

- ¿Qué significa fisicamente una derivada?
- ¿Cómo se representa matemáticamente?

> Guillern Ibarra

Contenid

Intro a Ecuaciones Diferenciales

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos d Solución

Representación Matemática

> Guillern Ibarra

Contenid

Intro a Ecuaciones Diferenciales

Clasificación de las Ecuaciones Diferenciales

Problemas d Valor Inicial

Métodos de Solución

Ecuaciones Diferenciales en Ingeniería

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0 \tag{1}$$

$$\rho \left(\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} \right) = -\nabla \rho + \nabla \cdot \tau + \vec{f}$$
 (2)

$$\rho \frac{\partial e}{\partial t} + \rho (\vec{u} \cdot \nabla) e = \nabla \cdot (k \nabla T) + \Phi$$
 (3)

> Guillerm Ibarra

Contenid

Intro a Ecuaciones Diferenciales

de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

Ecuaciones Diferenciales en Ingeniería

Ecuación de Continuidad:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0 \tag{1}$$

$$\rho\left(\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u}\right) = -\nabla p + \nabla \cdot \tau + \vec{f}$$
 (2)

$$\rho \frac{\partial e}{\partial t} + \rho (\vec{u} \cdot \nabla) e = \nabla \cdot (k \nabla T) + \Phi$$
 (3)

> Guillerm Ibarra

Contenid

Intro a Ecuaciones Diferenciales

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

Ecuaciones Diferenciales en Ingeniería

Ecuación de Continuidad:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0 \tag{1}$$

Ecuaciones de Navier-Stokes:

$$\rho \left(\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} \right) = -\nabla \rho + \nabla \cdot \tau + \vec{f}$$
 (2)

$$\rho \frac{\partial e}{\partial t} + \rho (\vec{u} \cdot \nabla) e = \nabla \cdot (k \nabla T) + \Phi$$
 (3)

> Guillerm Ibarra

Contenido

Intro a Ecuaciones Diferenciales

de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos d Solución

Ecuaciones Diferenciales en Ingeniería

Ecuación de Continuidad:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0 \tag{1}$$

Ecuaciones de Navier-Stokes:

$$\rho\left(\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u}\right) = -\nabla p + \nabla \cdot \tau + \vec{f}$$
 (2)

Ecuación de Energía:

$$\rho \frac{\partial e}{\partial t} + \rho (\vec{u} \cdot \nabla) e = \nabla \cdot (k \nabla T) + \Phi$$
 (3)

> Guillern Ibarra

Contenid

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas d Valor Inicial

Métodos de Solución

Tipos de Ecuaciones Diferenciales

Ecuaciones Diferenciales Ordinarias (ODEs)

$$\frac{dy}{dx} = f(x, y)$$

Contenid

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

Tipos de Ecuaciones Diferenciales

Ecuaciones Diferenciales Ordinarias (ODEs)

$$\frac{dy}{dx} = f(x, y)$$

Ecuaciones Diferenciales Parciales (PDEs)

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$

Métodos de Solución

Tipos de Ecuaciones Diferenciales

Ecuaciones Diferenciales Ordinarias (ODEs)

$$\frac{dy}{dx} = f(x, y)$$

Ecuaciones Diferenciales Parciales (PDEs)

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$

Ecuaciones Diferenciales Estocásticas (SDEs)

$$dX_t = \mu X_t dt + \sigma X_t dW_t$$

> Guillern Ibarra

Contenid

Intro a
Ecuaciones
Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas d Valor Inicial

Métodos de Solución

Orden y Grado de las Ecuaciones Diferenciales

Orden de una Ecuación Diferencial

- El orden es la mayor derivada que aparece en la ecuación.
- Ejemplo:

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + y = 0$$

> Guillern Ibarra

Contenid

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

Orden y Grado de las Ecuaciones Diferenciales

Orden de una Ecuación Diferencial

- El orden es la mayor derivada que aparece en la ecuación.
- Ejemplo:

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + y = 0$$

Grado de una Ecuación Diferencial

- El grado es el **exponente** de la derivada de mayor orden, suponiendo que la ecuación está en una forma polinómica.
- Ejemplo:

$$\left(\frac{d^2y}{dx^2}\right)^3 + \frac{dy}{dx} = 0$$

> Guillern Ibarra

Contenid

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas d Valor Inicial

Métodos de Solución

Ecuaciones Lineales vs. No Lineales

Ecuaciones Lineales

$$\frac{dy}{dx} + p(x)y = g(x)$$

Contenido

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

Ecuaciones Lineales vs. No Lineales

Ecuaciones Lineales

$$\frac{dy}{dx} + p(x)y = g(x)$$

Ecuaciones No Lineales

$$\frac{dy}{dx} + y^2 = 0$$

> Guillerm Ibarra

Contenio

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas d Valor Inicial

Métodos de Solución

Problemas de Valor Inicial (PVI) vs. Problemas de Valor en la Frontera (PVF)

Problemas de Valor Inicial (PVI)

 Definición: En un PVI, se da una condición inicial para la función en un solo punto.

$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0$$

> Guillern Ibarra

Contenio

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

Problemas de Valor Inicial (PVI) vs. Problemas de Valor en la Frontera (PVF)

Problemas de Valor Inicial (PVI)

 Definición: En un PVI, se da una condición inicial para la función en un solo punto.

$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0$$

Problemas de Valor en la Frontera (PVF)

 Definición: En un PVF, se dan condiciones en más de un punto, típicamente en los extremos de un intervalo.

$$\frac{d^2y}{dx^2} = g(x), \quad y(a) = y_a, \quad y(b) = y_b$$

> Guillern Ibarra

Contenio

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

Ecuaciones Diferenciales Ordinarias en Ingeniería

Oscilador Armónico:

$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$

donde x es el desplazamiento y ω es la frecuencia angular.

• Circuito RLC:

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = 0$$

donde q es la carga, L la inductancia, R la resistencia y C la capacitancia.

> Guillerr Ibarra

Contenio

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas d Valor Inicial

Métodos de Solución

Relevancia de las EDOs en Ingeniería

Aplicaciones de las EDOs

- Modelar sistemas dinámicos que evolucionan con el tiempo o el espacio.
- Predecir el comportamiento del sistema en el tiempo bajo diferentes condiciones.

Énfasis

- Las EDOs son fundamentales para la simulación de sistemas del mundo real.
- Permiten analizar y prever la respuesta de sistemas bajo diversas condiciones, como variaciones en fuerzas, cargas o factores ambientales.

> Guillerr Ibarra

Conteni

Intro a Ecuaciones Diferencial

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos o Solución

¿Qué es un Problema de Valor Inicial?

Definición de PVI

- Un Problema de Valor Inicial (PVI) consiste en resolver una ecuación diferencial a partir de una condición inicial especificada en un punto.
- La condición inicial define el valor de la función en un punto específico, lo cual permite determinar una solución única.

Importancia

- Los PVI son esenciales para analizar sistemas dinámicos, ya que establecen el estado inicial del sistema.
- Permiten predecir la evolución del sistema en el tiempo a partir de ese estado inicial.

> Guillerr Ibarra

Conteni

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos d Solución

Ejemplos de PVI en Ingeniería

Ejemplo 1: Sistema Masa-Resorte-Amortiguador

- Modela el movimiento de una masa conectada a un resorte y un amortiguador, bajo una condición inicial de posición y velocidad.
- Representado por una ecuación diferencial de segundo orden que describe la dinámica del sistema.

> Guillerr Ibarra

Conteni

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos o Solución

Ejemplos de PVI en Ingeniería

Ejemplo 1: Sistema Masa-Resorte-Amortiguador

- Modela el movimiento de una masa conectada a un resorte y un amortiguador, bajo una condición inicial de posición y velocidad.
- Representado por una ecuación diferencial de segundo orden que describe la dinámica del sistema.

Ejemplo 2: Distribución Inicial de Temperatura en Sistemas Térmicos

- Describe la evolución de la temperatura en un sistema a partir de una distribución inicial conocida.
- Útil en el análisis de transferencia de calor y enfriamiento de materiales.

> Guillern Ibarra

Contenic

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

Introducción a los Métodos de Solución

Métodos de Solución para Ecuaciones Diferenciales

- Los métodos de solución se dividen en dos tipos principales:
 - Métodos Analíticos: Buscan soluciones exactas en forma de expresiones matemáticas.
 - Métodos Numéricos: Aproximan soluciones mediante cálculos iterativos, útiles cuando no es posible una solución exacta.

> Guillerr Ibarra

Contenio

Intro a Ecuaciones Diferencial

Clasificación de las Ecuaciones Diferenciales

Problemas d Valor Inicial

Métodos de Solución

Comparación de Métodos Analíticos y Numéricos

Cuándo Utilizar Cada Método

- Métodos Analíticos:
 - Útiles cuando la ecuación es simple y tiene una solución exacta conocida.
 - Ejemplo: Ecuaciones lineales de primer orden, como $\frac{dy}{dx} = ky$, que se resuelve como $y = Ce^{kx}$.

• Métodos Numéricos:

- Necesarios cuando la ecuación es compleja o no tiene solución analítica.
- Ejemplo: Método de Euler o Runge-Kutta para sistemas no lineales o ecuaciones de segundo orden sin soluciones exactas.

> Guillerr Ibarra

Contenio

Intro a
Ecuaciones
Diferencial

Clasificación de las Ecuaciones Diferenciales

Problemas d Valor Inicial

Métodos de Solución

Métodos Analíticos – Separación de Variables

Explicación

- La separación de variables es una técnica para resolver ecuaciones diferenciales donde las variables se pueden separar en lados opuestos de la ecuación.
- Permite resolver ecuaciones de la forma $\frac{dy}{dx} = g(x) \cdot h(y)$.

Ejemplo: Crecimiento o Decaimiento Poblacional

• Ecuación: $\frac{dP}{dt} = kP$, donde k es una constante de crecimiento o decaimiento.

> Guillerm Ibarra

Contenid

Intro a
Ecuaciones
Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas d

Métodos de Solución

Proceso de Solución Paso a Paso

1 Separar Variables: $\frac{1}{P} dP = k dt$

> Guillerm Ibarra

Contenid

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciale

Problemas d Valor Inicial

Métodos de Solución

Proceso de Solución Paso a Paso

- **1** Separar Variables: $\frac{1}{P} dP = k dt$
- Integrar Ambos Lados:

$$\int \frac{1}{P} dP = \int k dt$$

> Guillerm Ibarra

Contenid

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas d Valor Inicial

Métodos de Solución

Proceso de Solución Paso a Paso

- **1** Separar Variables: $\frac{1}{P} dP = k dt$
- Integrar Ambos Lados:

$$\int \frac{1}{P} dP = \int k dt$$

Resolver la Integral:

$$ln(P) = kt + C$$

Contenid

Intro a Ecuaciones Diferenciales

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

Proceso de Solución Paso a Paso

- **1** Separar Variables: $\frac{1}{P} dP = k dt$
- ② Integrar Ambos Lados:

$$\int \frac{1}{P} dP = \int k dt$$

Resolver la Integral:

$$ln(P) = kt + C$$

4 Despejar P:

$$P = Ce^{kt}$$

donde C es una constante determinada por una condición inicial.

> Guillern Ibarra

Contenio

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas d Valor Inicial

Métodos de Solución

Métodos Numéricos – Método de Euler

Método de Euler Adelante (Explícito)

- Aproximación paso a paso para resolver EDOs de la forma $\frac{dy}{dt} = f(t, y)$.
- Fórmula de actualización:

$$y_{n+1} = y_n + hf(t_n, y_n)$$

> Guillern Ibarra

Contenio

Intro a Ecuaciones Diferencial

Clasificación de las Ecuaciones Diferenciales

Problemas d Valor Inicial

Métodos de Solución

Algoritmo para el Método de Euler

Entradas

- Ecuación diferencial expresada como f(x, y)
- Condición inicial: y₀
- Valor inicial de la variable independiente: x_0
- Tamaño del paso: h
- Valor final de la variable independiente: x_n

Salida

• Valores aproximados de y en puntos discretos de x, formando la secuencia aproximada $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$.

> Guillern Ibarra

Contenio

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciale

Problemas de Valor Inicial

Métodos de Solución

Algoritmo para el Método de Euler

- **1 Inicializar:** Establecer $y_i = y_0$ y $x_i = x_0$.
- **2 Iterar:** Para i = 0 hasta n 1, donde $n = \frac{x_n x_0}{h}$:
 - Calcular la pendiente en el punto inicial: pendiente = $f(x_i, y_i)$
 - Calcular el siguiente valor de y: $y_{i+1} = y_i + h$ pendiente
 - Actualizar el valor de x: $x_{i+1} = x_i + h$
- **3 Salida:** Proporciona la secuencia aproximada $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$.

> Guillerr Ibarra

Conteni

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

Introducción a los Métodos Numéricos Avanzados

En este conjunto de métodos, exploramos tres enfoques avanzados para la solución numérica de EDOs:

- Método de Euler Atrás (Backward Euler): Un método implícito útil para ecuaciones rígidas.
- Método de Euler Modificado (Heun): Un método de predictor-corrector que mejora la precisión.
- Método de Runge-Kutta de Cuarto Orden (RK4): Un método de alta precisión que evalúa múltiples puntos intermedios.

Estos métodos ofrecen diferentes ventajas en términos de estabilidad y precisión para resolver problemas de ecuaciones diferenciales en ingeniería y ciencias.

> Guillerr Ibarra

Contenio

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

Método de Euler Atrás (Backward Euler)

Introducción

- El método de Euler Atrás es un método **implícito** para resolver ecuaciones diferenciales.
- Se utiliza comúnmente para ecuaciones rígidas debido a su estabilidad incondicional.
- Aunque es más complejo que el método de Euler Adelante, es ideal para problemas que requieren estabilidad a mayores tamaños de paso.

Fórmula de Actualización

• La fórmula de actualización para el método de Euler Atrás es:

$$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1})$$

• Se requiere resolver y_{n+1} implícitamente, ya que aparece en ambos lados de la ecuación.

> Guillern Ibarra

Contenio

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas de

Métodos de Solución

Algoritmo para el Método de Euler Atrás

Entradas

- Ecuación diferencial f(x, y)
- Condición inicial y₀
- Valor inicial x₀
- Tamaño de paso h
- Valor final x_n

Procedimiento

- **1** Inicializar: Establecer $y_i = y_0$ y $x_i = x_0$.
- **Q** Iterar: Para i = 0 hasta n 1:
 - Resolver la ecuación implícita para v_{i+1} :

$$v_{i+1} = v_i + hf(x_{i+1}, v_{i+1})$$

- Actualizar x: $x_{i+1} = x_i + h$
- **3 Salida:** Secuencia aproximada $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$.

> Guillerm Ibarra

Contenio

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

Método de Euler Modificado (Heun)

Introducción

- El método de Euler Modificado, también conocido como Método de Heun, es un método de predictor-corrector.
- Este método mejora la precisión sobre el método de Euler Adelante al promediar la pendiente inicial y la pendiente corregida.
- Es un método explícito, adecuado para problemas no rígidos.

Fórmula de Actualización

- El método de Heun utiliza dos pasos:
 - **1** Paso Predictor: $y_{pred} = y_n + hf(t_n, y_n)$
 - **2** Paso Corrector: $y_{n+1} = y_n + \frac{h}{2}(f(t_n, y_n) + f(t_{n+1}, y_{pred}))$
- La pendiente se corrige usando la media entre el valor inicial y el valor predicho.

> Guillerm Ibarra

Contenid

Intro a Ecuaciones Diferenciale

Clasificaciór de las Ecuaciones Diferenciale

Problemas de Valor Inicial

Métodos de Solución

Algoritmo para el Método de Euler Modificado (Heun)

Entradas

- Ecuación diferencial f(x, y)
- Condición inicial y₀
- Valor inicial x_0
- Tamaño de paso h
- Valor final x_n

Procedimiento

- **1 Inicializar:** Establecer $y_i = y_0$ y $x_i = x_0$.
- **2 Iterar:** Para i = 0 hasta n 1:
 - Paso Predictor: Calcular $y_{pred} = y_i + hf(x_i, y_i)$
 - Paso Corrector: Calcular $y_{i+1} = y_i + \frac{h}{2}(f(x_i, y_i) + f(x_{i+1}, y_{pred}))$
 - Actualizar x: $x_{i+1} = x_i + h$
- **3 Salida:** Secuencia aproximada $(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)$.

> Guillerr Ibarra

Conteni

Intro a Ecuaciones Diferencial

Clasificación de las Ecuaciones Diferenciales

Problemas d Valor Inicial

Métodos de Solución

Método de Runge-Kutta de Cuarto Orden (RK4)

Introducción

- El método de Runge-Kutta de Cuarto Orden (RK4) es un método explícito de alta precisión para resolver EDOs.
- Evalúa la pendiente en cuatro puntos intermedios y pondera los resultados para alcanzar una precisión de cuarto orden.
- Es uno de los métodos más utilizados para problemas donde la precisión es importante y la estabilidad condicional es aceptable.

> Guillerm Ibarra

Contenio

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

RK4 Fórmula de Actualización

• El método RK4 calcula k_1, k_2, k_3, k_4 y luego actualiza y_{n+1} como:

$$k_1 = hf(t_n, y_n)$$

$$k_2 = hf\left(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right)$$

$$k_3 = hf\left(t_n + \frac{h}{2}, y_n + \frac{k_2}{2}\right)$$

$$k_4 = hf(t_n + h, y_n + k_3)$$

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Este método pondera cada pendiente para mejorar la precisión.

> Guillern Ibarra

Contenio

Intro a Ecuaciones Diferencial

Clasificación de las Ecuaciones Diferenciale

Problemas de Valor Inicial

Métodos de Solución

Algoritmo para el Método de Runge-Kutta de Cuarto Orden (RK4)

Entradas

- Ecuación diferencial f(x, y)
- Condición inicial y₀
- Valor inicial x_0
- Tamaño de paso h
- Valor final x_n

Métodos de Solución

RK4 Procedimiento

- **1) Inicializar:** Establecer $y_i = y_0$ y $x_i = x_0$.
- **Iterar:** Para i=0 hasta n-1:
 - Calcular:

$$k_1 = hf(x_i, y_i)$$

$$k_2 = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right)$$

$$k_3 = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_2}{2}\right)$$

$$k_4 = hf(x_i + h, y_i + k_3)$$

Calcular el siguiente valor de v:

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

- Actualizar x: $x_{i+1} = x_i + h$
- **Salida:** Secuencia aproximada $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$.

> Guillern Ibarra

Contenid

Intro a Ecuaciones Diferenciale

Clasificación de las Ecuaciones Diferenciales

Problemas de Valor Inicial

Métodos de Solución

¡Gracias!

¿Preguntas?

https://github.com/guillermoibarra/taller-fim-2024