Section 12.1

Exercise (1). Suppose $A = \{0, 1, 2, 3, 4\}$, $B = \{2, 3, 4, 5\}$ and $f = \{(0, 3), (1, 3), (2, 4), (3, 2), (4, 2)\}$. State the domain and range of f. Find f(2) and f(1).

Solution: Write your answer here.

Exercise (3). There are four different functions $f:\{a,b\}\to\{0,1\}$. List them. Diagrams suffice.

Solution: Write your answer here.

Exercise (7). Consider the set $f = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : 3x + y = 4\}$. Is this a function from \mathbb{Z} to \mathbb{Z} ? Explain.

Solution: Write your answer here.

Exercise (9). Consider the set $f = \{(x, x^2) : x \in \mathbb{R}\}$. Is this a function from \mathbb{R} to \mathbb{R} ? Explain.

Solution: Write your answer here.

Exercise (12). Is the set $\theta = \{((x,y), (3y, 2x, x+y)) : x,y \in \mathbb{R}\}$ a function? If so, what is the domain and range? What can be said about the codomain?

Solution: Write your answer here.

Section 12.2

Exercise (1). Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. Give and example of a function $f : A \to B$ that is neither injective nor surjective.

Solution: Write your answer here.

Exercise (5). A function $f: \mathbb{Z} \to \mathbb{Z}$ is defined as f(n) = 2n + 1. Verify whether this function is injective and whether it is surjective.

If it is either of these things, this requires a proof. If it is not one of these things, that requires a well presented counterexample.

Solution: Write your answer here.

Exercise (7). A function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is defined as f(m,n) = 2n - 4m. Verify whether this function is injective and whether it is surjective.

Solution: Write your answer here.

Exercise (8). A function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ is defined as f(m,n) = (m+n, 2m+n). Verify whether this function is injective and whether it is surjective.

Solution: Write your answer here.

Exercise (10). Prove the function $f: \mathbb{R} - \{1\} \to \mathbb{R} - \{1\}$ defined by $f(x) = \left(\frac{x+1}{x-1}\right)^3$ is bijective.

Proof: Write your answer here.

Exercise (14). Consider the function $\theta : \mathcal{P}(\mathbb{Z}) \to \mathcal{P}(\mathbb{Z})$ defined as $\theta(X) = \overline{X}$. Is θ injective? Is it surjective? Explain.

Solution: Write your answer here.

Section 12.3

Exercise (1). Prove that if six integers are chosen at random, then at least two of them will have the same remainder when divided by 5.

Proof: Write your answer here.

Exercise (4). Consider a square whose side-length is one unit. Select any five points from inside this square. Prove that at least two of these points are within $\frac{\sqrt{2}}{2}$ units of each other. Remark: It may help your argument to include suitable drawings.

Proof: Write your answer here.

Section 12.4

Exercise (2). Suppose $A = \{1, 2, 3, 4\}, B = \{0, 1, 2\}, C = \{1, 2, 3\}$. Let $f : A \to B$ be $f = \{(1, 0), (2, 1), (3, 2), (4, 0)\}$, and $g : B \to C$ be $g = \{(0, 1), (1, 1), (2, 3)\}$. Find $g \circ f$.

Solution: Write your answer here.

Exercise (4). Suppose $A = \{a, b, c\}$. Let $f : A \to A$ be the function $f = \{(a, c), (b, c), (c, c)\}$, and let $g : A \to A$ be the function $g = \{(a, a), (b, b), (c, a)\}$. Find $g \circ f$ and $f \circ g$.

Solution: Write your answer here.

Exercise (6). Consider the functions $f, g : \mathbb{R} \to \mathbb{R}$ defined as $f(x) = \frac{1}{x^2+1}$ and g(x) = 3x+2. Find the formulas for $g \circ f$ and $f \circ g$.

Solution: Write your answer here.

Exercise (7). Consider the functions $f, g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined as f(m, n) = (3m - 4n, 2m + n) and g(m, n) = 5m + n, m). Find the formulas for $g \circ f$ and $f \circ g$.

Solution: Write your answer here.

Exercise (Reflection Problem).

Answers:

How long did it take you to complete each problem?:

What was easy?:

What was challenging? What made it challenging?:

What did you learn from comparing your answers to those in the book?: