HW 06

Due Online, Friday, Oct. 29th, 11:50 PM

Using the example given in class as a guide, derive the equations of motion (in Matlab) for the double pendulum with parameter definitions as in the figure below. A torque τ_1 with vector $\tau_1 \hat{k}$ (where $\hat{k} = \hat{i} \times \hat{j}$) acts between the base and body 1, and a torque τ_2 with vector $\tau_2 \hat{k}$ acts between body 1 and body 2. Assume gravity $g = 9.81 \,\mathrm{m/s^2}$ in the $-\hat{j}$ direction. Write a function to simulate the double pendulum. Provide a copy of your working code.

Figure 1: Double pendulum and parameter definitions.

1. With $\tau_1 = \tau_2 = 0$, solve the initial boundary value problem from the initial condition

$$\theta_1 = 3 \, \text{rad}, \, \theta_2 = 0 \, \text{rad}, \, \dot{\theta}_1 = \dot{\theta}_2 = 0 \, \text{rad/s}$$

on the time interval $t = [0 \, s, \, 7 \, s]$. Use parameters

$$m_1 = m_2 = 1 \,\mathrm{kg}, \; I_1 = I_2 = 0.05 \,\mathrm{kg \cdot m^2}, \; l_1 = 1 \,\mathrm{m}, \; l_2 = 0.5 \,\mathrm{m}, \; c_1 = 0.5 \,\mathrm{m}, \; c_2 = .25 \,\mathrm{m}$$

Plot $\theta_1(t)$ and $\theta_2(t)$. Does the solution display any repetitive and predictable patterns?

- 2. Plot the total system energy (T + V) over the same interval. Verify energy conservation (You will see almost constant energy having a small drift).
- 3. (Optional) Derive the equations again considering the addition of three springs with potential energies

$$V_{e1} = \frac{1}{2}\kappa_1(\theta_1 - \theta_{1,0})^2 \qquad V_{e2} = \frac{1}{2}\kappa_2(\theta_2 - \theta_{2,0})^2$$
$$V_{e3} = \frac{1}{2}k_3(\|\mathbf{r}_C - \mathbf{r}_0\| - l_0)^2$$

The vector $\mathbf{r}_0 = [r_x \ r_y]^T$ represents the attachment point for the last spring.

4. (Optional) After verifying energy conservation of your equations, simulate the system with

$$\kappa_1 = \kappa_2 = 10 \, \text{Nm/rad}, \, k_3 = 50 \, \text{N/m}$$

$$\theta_{1.0} = \theta_{2.0} = 0, \, l_0 = 0, \, r_x = 0 \,\mathrm{m}, \, r_y = 0.5 \,\mathrm{m}$$

Apply $\tau_1 = -\dot{\theta}_1$ and $\tau_2 = -\dot{\theta}_2$ and use the same initial state as in step 2.