The leave-one-out cross-validation (LOOCV) statistic is given by

$$CV = \frac{1}{N} \sum_{i=1}^{N} e_{[i]}^2,$$

where  $e_{[i]} = y_i - \hat{y}_{[i]}, y_1, \dots, y_N$  are the observations, and  $\hat{y}_{[i]}$  is the predicted value obtained when the model is estimated with the *i*th case deleted. It turns out that for linear models, we do not actually have to estimate the model N times, once for each omitted case. Instead, CV can be computed after estimating the model once on the complete data set.

Suppose we have a linear regression  $Y = X\beta + e$ . Then  $\hat{\beta} = (X'X)^{-1}X'Y$  and  $H = X(X'X)^{-1}X'$  is the "hat-matrix". It has this name because it is used to compute  $\hat{Y} = X\hat{\beta} = HY$ . If the diagonal values of H are denoted by  $h_1, \ldots, h_N$ , then the leave-one-out cross-validation statistic can be computed using

$$CV = \frac{1}{N} \sum_{i=1}^{N} [e_i / (1 - h_i)]^2,$$

where  $e_i = y_i - \hat{y}_i$  and  $\hat{y}_i$  is the predicted value obtained when the model is estimated with all data included.

## $Proof^1$

Let  $X_{[i]}$  and  $Y_{[i]}$  be similar to X and Y but with the ith row deleted in each case. Let  $x_i'$  be the ith row of X and let

$$\hat{\boldsymbol{\beta}}_{[i]} = (\boldsymbol{X}_{[i]}' \boldsymbol{X}_{[i]})^{-1} \boldsymbol{X}_{[i]}' \boldsymbol{Y}_{[i]}$$

be the estimate of  $\beta$  without the *i*th case. Then  $e_{[i]} = y_i - x_i' \hat{\beta}_{[i]}$ .

Now  $X'_{[i]}X_{[i]}=(X'X-x_ix'_i)$  and  $x'_i(X'X)^{-1}x_i=h_i$ . So by the Sherman–Morrison–Woodbury formula<sup>2</sup>,

$$(X'_{[i]}X_{[i]})^{-1} = (X'X)^{-1} + \frac{(X'X)^{-1}x_ix_i'(X'X)^{-1}}{1-h_i}.$$

Also note that  $X'_{[i]}Y_{[i]}=X'Y-xy_i$ . Therefore

$$\hat{\beta}_{[i]} = \left[ (X'X)^{-1} + \frac{(X'X)^{-1}x_ix_i'(X'X)^{-1}}{1 - h_i} \right] (X'Y - x_iy_i)$$

$$= \hat{\beta} - \left[ \frac{(X'X)^{-1}x_i}{1 - h_i} \right] \left[ y_i(1 - h_i) - x_i'\hat{\beta} + h_iy_i \right]$$

$$= \hat{\beta} - (X'X)^{-1}x_ie_i/(1 - h_i)$$

Thus

$$e_{[i]} = y_i - x_i' \hat{\beta}_{[i]}$$

$$= y_i - x_i' \left[ \hat{\beta} - (X'X)^{-1} x_i e_i / (1 - h_i) \right]$$

$$= e_i + h_i e_i / (1 - h_i)$$

$$= e_i / (1 - h_i),$$

and the result follows.

<sup>&</sup>lt;sup>1</sup>(Seber2003-fm)

<sup>&</sup>lt;sup>2</sup>https://en.wikipedia.org/wiki/Sherman-Morrison\_formula