Задача 12

Предсказать сорт винограда из которого сделано вино, используя результаты химических анализов, с помощью KNN - метода k ближайших соседей с тремя различными метриками. Построить график зависимости величины ошибки от числа соседей k.

Решение

In [109]:

```
import numpy as np
import pandas as pd
from matplotlib.colors import ListedColormap
from sklearn import model_selection, datasets, metrics, neighbors, preprocessing
from matplotlib import pyplot as plt
%matplotlib inline
%pylab inline
```

Populating the interactive namespace from numpy and matplotlib

Основные константы:

```
In [110]:
```

```
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data"
column names = [ 'Class',
                  'Alcohol',
                  'Malic acid',
                  'Ash',
                  'Alcalinity of ash',
                  'Magnesium',
                  'Total phenols',
                  'Flavanoids',
                  'Nonflavanoid phenols',
                  'Proanthocyanins',
                  'Color intensity',
                  'Hue',
                  'OD280/OD315 of diluted wines',
                  'Proline'l
use_metrics = ['euclidean', 'manhattan', 'chebyshev']
```

Загрузим данные:

In [48]:

```
# Считываем все данные data = pd.read_csv(url, header=None, names=column_names) data.head()
```

Out[48]:

	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavar phei
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39

Можно заметить, что данные имеют большой численный разброс. Поэтому ортонормирую их и разделю на обучающую и тестовую выборки:

In [39]:

```
y = data[ column_names[0] ].values
X = data[ column_names[1:]].values

# Нормирование
X = preprocessing.scale(X,axis=0)
# Разделение на обучающую и тестовую выборки
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_s ize=0.2, random_state=42)

y_train = y_train.ravel()
y_test = y_test.ravel()
```

Выполним расчёт точности предсказания от двух параметров:

- выбранная метрика ('euclidean', 'manhattan', 'chebyshev')
- количество соседий

In [56]:

In [73]:

```
plt.figure(figsize=(13, 7))
for i in range(0, 3):
    plt.plot(np.arange(1, max_neighbors_num), accuracy[i][1:], label = use_metrics[i])

plt.title('Зависимость предсказаний от метрики и количества соседей', fontsize=1
7)
plt.xlabel('Количество соседий', fontsize=17)
plt.ylabel('Точность', fontsize=17)
plt.legend(fontsize=17)
plt.legend(fontsize=17)
plt.savefig(fname='Error_from_Neighborscnt_withSTD.png',format='png')
plt.show()
```


Вывод:

Можно заметить, что, при выборе количества соседий болшего, чем половина выборки, точность предсказаний падает. От метрики же не большая зависимость, но можно подметить, что метрика чебышева ведёт себя более стабильно

Доп. Задание (для 694 группы)

На синтетической выборке или выборке из пробных задач построить график зависимости ошибки от числа добавленных признаков. Сделать на обучении и контроле с указанием дисперсии. Дисперсию считать по ошибкам на дополнительных разбиениях выборки

In [85]:

```
import numpy as np
import scipy.stats as sps
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn import model_selection
%matplotlib inline
```

Решение

• Решим задачу, используя данные из предыдущей задачи:

In [99]:

```
# n - размер набора
# m - количество признаков
n, m = X_train.shape

# Значения функции потерь от кол-ва параметров
loss_test = np.zeros(m + 1)
loss_train = np.zeros(m + 1)

# Значение дисперсии от количества параметров
var_test = np.zeros(m + 1)
var_train = np.zeros(m + 1)
n, m
```

Out[99]:

(142, 13)

• Произведём подсчёт функции потерь и дисперсии от разного количества признаков

In [101]:

• И изобразим полученные веиличины на графиках:

In [107]:

```
part_names = ['обучающей', 'тренировочной']
loss_functions = [loss_train, loss_test]
var functions = [var train, var test]
for i in range(2):
    plt.figure(figsize=(13, 7))
    plt.title("Зависимость функции потерь от числа параметров на {} выборке".for
mat(part names[i]),
          fontsize=24)
    plt.plot(np.arange(1, m + 1), loss functions[i][1:], label="Функция потерь")
    plt.fill between(np.arange(1, m + 1), loss functions[i][1:] - var functions[
i][1:],
                 loss functions[i][1:] + var functions[i][1:], color='red', alph
a = 0.2,
                 label='Функция потерь $\\pm$ дисперсия')
    plt.legend(fontsize=24)
    plt.xlabel("Число параметров", fontsize=24)
    plt.ylabel("Функция потери", fontsize=24)
    plt.show()
```

Зависимость функции потерь от числа параметров на обучающей выборке

Вывод

Можно заметить, что величина функции потерь и дисперсия убывают при росте числа признаков.