```
import numpy as np
In [1]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.filterwarnings("ignore")
         df=pd.read_csv("https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/
In [2]:
         df.head()
Out[2]:
            Product Age Gender Education MaritalStatus Usage Fitness Income Miles
         0
              KP281
                      18
                            Male
                                         14
                                                   Single
                                                               3
                                                                           29562
                                                                                   112
         1
              KP281
                      19
                            Male
                                         15
                                                   Single
                                                                           31836
                                                                                    75
         2
              KP281
                      19
                          Female
                                         14
                                                 Partnered
                                                              4
                                                                      3
                                                                           30699
                                                                                    66
         3
              KP281
                                                               3
                      19
                            Male
                                         12
                                                   Single
                                                                           32973
                                                                                    85
              KP281
                      20
                            Male
                                         13
                                                 Partnered
                                                              4
                                                                      2
                                                                          35247
                                                                                    47
```

What Does 'Good' Look Like

Checking the Structure & Characteristics of the Dataset

```
In [3]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 180 entries, 0 to 179
        Data columns (total 9 columns):
                           Non-Null Count Dtype
             Column
         ---
             -----
         0
             Product
                            180 non-null
                                            object
         1
                            180 non-null
             Age
                                            int64
         2
             Gender
                            180 non-null
                                            object
             Education
                            180 non-null
                                            int64
             MaritalStatus 180 non-null
         4
                                            object
         5
             Usage
                            180 non-null
                                             int64
         6
             Fitness
                            180 non-null
                                            int64
             Income
                            180 non-null
                                            int64
             Miles
                            180 non-null
                                            int64
        dtypes: int64(6), object(3)
        memory usage: 12.8+ KB
In [4]:
        df.shape
        (180, 9)
Out[4]:
        df.isnull().sum()
In [5]:
```

 Out[5]:
 0

 Product
 0

 Age
 0

 Gender
 0

 Education
 0

 MaritalStatus
 0

 Usage
 0

 Fitness
 0

 Income
 0

dtype: int64

Miles 0

In [6]: df.describe()

Out[6]:

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

In [7]: df.dtypes

Out[7]:

Product object Age int64 Gender object **Education** int64 MaritalStatus object Usage int64 **Fitness** int64 Income int64 Miles int64

0

dtype: object

Detect Outliers

```
In [8]: lst=["Age", "Education", "Usage", "Fitness", "Income", "Miles"]
plt.figure(figsize=(20,10))
for i in range(len(lst)):
    plt.subplot(2,3,i+1)
    sns.boxplot(x=df[lst[i]])
    plt.title(f"{lst[i]} Distribution")
    plt.xlabel("")
plt.tight_layout()
plt.show()

Age Distribution

Géncation Distribution

Usage Distribution

O o o
```

```
In [9]: df1=df.copy()
df1.drop(columns=["Gender","Product","MaritalStatus"],inplace=True)
```

Clipping the Data

plt.figure(figsize=(20,10))
for i in range(len(lst)):
 plt.subplot(2,3,i+1)

```
In [10]:
         lower percentiles = df1.quantile(0.05)
          upper_percentiles = df1.quantile(0.95)
          df_clipped = df1.apply(lambda x: np.clip(x, lower_percentiles[x.name], upper_percent
          print(df clipped)
                                                   Income Miles
                Age Education
                                 Usage Fitness
         0
                                  3.00
              20.00
                             14
                                              4 34053.15
                                                             112
         1
              20.00
                             15
                                  2.00
                                              3 34053.15
                                                              75
         2
              20.00
                             14
                                  4.00
                                              3 34053.15
                                                              66
         3
              20.00
                             14
                                  3.00
                                              3 34053.15
                                                              85
              20.00
                                              2
                                                 35247.00
                                                              47
                             14
                                  4.00
                                  . . .
                                                              . . .
         175 40.00
                             18
                                  5.05
                                             5 83416.00
                                                             200
              42.00
                             18
                                  5.00
                                              4 89641.00
                                                             200
         177
              43.05
                             16
                                  5.00
                                              5 90886.00
                                                             160
                                              5 90948.25
         178
             43.05
                             18
                                  4.00
                                                             120
         179
              43.05
                             18
                                  4.00
                                              5 90948.25
                                                             180
         [180 rows x 6 columns]
         lst=["Age","Education","Usage","Fitness","Income","Miles"]
In [11]:
```

```
sns.histplot(x=lst[i],kde=True,data=df)
plt.title(f"{lst[i]} Distribution")
plt.xlabel(f"{lst[i]}")
plt.ylabel("Count")
plt.tight_layout()
plt.show()
```


Insights -

- Age: The majority of customers are young adults (20-30 years).
- **Education**: Customers typically have 14 to 16 years of education.
- Usage: Most customers use the product 2 to 4 times.
- **Fitness**: A fitness level of 3 is common among customers.
- **Income**: The majority of customers have moderate incomes (30,000-70,000).
- Miles: Most customers travel relatively short distances (50-150 miles).

Checking Features (MaritalStatus, Gender, Age) effect on the product purchase

```
In [12]: lst=["Gender","MaritalStatus","Age"]
    plt.figure(figsize=(20,10))
    for i in range(len(lst)):
        plt.subplot(2,2,i+1)
        sns.countplot(x=lst[i],hue="Product",data=df,width=0.4)
        plt.title(f"{lst[i]} vs Product Purchased")
        plt.xlabel("")
        plt.ylabel("Count")
    plt.tight_layout()
    plt.show()
```


Marginal Probability

```
In [14]: (round(df["Product"].value_counts(normalize=True),4)*100).apply(lambda x: '{:.2f}%'
```

22.22%

Out[14]:		proportion	
	Product		
	KP281	44.44%	
	KP481	33.33%	

KP781

dtype: object

Insights -

- KP281 is the most used product, with 44.44% of customers choosing it
- KP481 is the second most used product, with 33.33% of customers preferring it.
- KP781 is the least used product, with 22.22% of customers opting for it.

Probability that the customer buys a product based on Gender, Marital Status and Age

Insights -

KP781

3.89% 18.33%

- The gender distribution for product preferences reveals that KP281 is equally popular among both females and males, each holding 22.22%.
- For KP481, males show a slightly higher preference (17.22%) compared to females (16.11%).
- KP281 is universally popular, KP781 is particularly favored by males.

```
In [16]: crosstab=round(pd.crosstab(index=df["Product"],columns=df["MaritalStatus"],normaliz
    crosstab_percentage = crosstab.applymap(lambda x: '{:.2%}'.format(x))
    crosstab_percentage
```

Out[16]:	MaritalStatus	Partnered	Single
	Product		
	KP281	26.67%	17.78%
	KP481	20.00%	13.33%
	KP781	12.78%	9.44%

Insights -

- Partnered individuals prefer all three products more than single individuals.
- KP281 is the most popular among both groups, with 26.67% of partnered individuals and 17.78% of single individuals choosing it.
- KP481 follows, with 20.00% of partnered and 13.33% of single individuals.
- KP781 is less popular overall but still preferred more by partnered individuals (12.78% compared to 9.44% of singles).

Insights -

KP781 9.44% 7.22%

5.56%

- **KP281** is most popular among the 18-30 age group (18.89%) but also maintains a consistent preference across the 31-40 (11.67%) and 41-50 (13.89%) age groups.
- **KP481** has a strong preference in the 18-30 (15.56%) and 41-50 (13.89%) age groups, but significantly drops in popularity among the 31-40 age group (3.89%).
- **KP781** is less popular overall, with its highest preference in the 18-30 age group (9.44%), followed by a decline in the 31-40 (7.22%) and 41-50 (5.56%) age groups.

Conditional Probability that the customer buys a product given that Gender is Male or Female

```
In [18]: lst = ["KP281", "KP481", "KP781"]
  crosstab = pd.crosstab(df['Gender'], df['Product'], normalize='index')
  for gender in ['Male','Female']:
     print(f"\nProbabilities for {gender} customers:")
     print("")
```

```
for product in lst:
    prob = crosstab.loc[gender, product]
    bold_prob = f"\033[1m{prob:.2%}\033[0m"
    print(f"Probability that a {gender.lower()} customer purchases {product}: {

Probabilities for Male customers:

Probability that a male customer purchases KP281: 38.46%
Probability that a male customer purchases KP481: 29.81%
Probability that a male customer purchases KP781: 31.73%

Probabilities for Female customers:

Probability that a female customer purchases KP281: 52.63%
Probability that a female customer purchases KP481: 38.16%
Probability that a female customer purchases KP781: 9.21%
```

Conditional Probability that the customer buys a product given that MaritalStatus is Single or Partnered

```
In [19]: lst = ["KP281", "KP481", "KP781"]
         crosstab = pd.crosstab(df['MaritalStatus'], df['Product'], normalize='index')
         for i in ['Single', 'Partnered']:
             print(f"\nProbabilities for {i} customers:")
             print("")
             for product in 1st:
                 prob = crosstab.loc[i, product]
                 bold prob = f"\033[1m{prob:.2%}\033[0m"
                 print(f"Probability that a {i.lower()} customer purchases {product}: {bold_
         Probabilities for Single customers:
         Probability that a single customer purchases KP281: 43.84%
         Probability that a single customer purchases KP481: 32.88%
         Probability that a single customer purchases KP781: 23.29%
         Probabilities for Partnered customers:
         Probability that a partnered customer purchases KP281: 44.86%
         Probability that a partnered customer purchases KP481: 33.64%
         Probability that a partnered customer purchases KP781: 21.50%
```

Correlation Among Different Factors

```
In [20]: numeric_df = df.select_dtypes(include='number')
    correl=numeric_df.corr()
    correl
```

Education Miles Age Usage **Fitness** Income **Age** 1.000000 0.036618 0.280496 0.015064 0.061105 0.513414 **Education** 0.280496 1.000000 0.395155 0.410581 0.625827 0.307284 0.015064 Usage 0.395155 1.000000 0.668606 0.519537 0.759130 0.061105 **Fitness** 0.410581 0.668606 1.000000 0.535005 0.785702 Income 0.513414 0.625827 0.519537 0.535005 1.000000 0.543473 Miles 0.036618 0.307284 0.759130 0.785702 0.543473 1.000000

HeatMap

Out[20]:

```
In [21]: plt.figure(figsize=(10, 8))
    sns.heatmap(correl, annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5)
    plt.title('Correlation Matrix Heatmap')
    plt.show()
```


Insights -

- Strong Positive Correlations -
- Miles and Fitness have a high correlation (0.79), indicating that as fitness levels increase, the distance traveled (miles) also tends to increase.

• Income and Education are also strongly correlated (0.63), suggesting that higher education levels are associated with higher income.

• Usage and Miles -

• Usage is highly correlated with Miles (0.76), implying that higher product usage often results in more miles traveled.

• Fitness and Usage -

• There is a notable correlation between Fitness and Usage (0.67), indicating that those who are more fit tend to use the product more frequently.

Moderate Correlations -

• Income shows a moderate correlation with Usage (0.52) and Fitness (0.54), suggesting that higher income individuals tend to use the product more and have higher fitness levels.

Weak Correlations -

• Age shows generally weak correlations with the other variables, indicating that age has a minimal direct impact on the other factors like education, usage, and fitness.

Customer Profiling

Product - KP281

- **Age** Customers are typically aged around 28, with a range mostly between 25 to 35 years old.
- Income Less than 50,000, generally between 30,000 and 50,000.
- Fitness Fitness level is generally under 3.
- **Miles** Customers typically travel less than 90 miles, with a range mostly between 50 to 150 miles.
- **Usage -** Product usage is around 3-4 times.
- **Education** Less than 16 years of education, generally between 13 to 16 years.
- Marital Status KP281 is the most popular among both groups.
- Gender KP281 is equally popular among both females and males.

Product - KP481

- **Age** Customers are typically aged around 25, with a range mostly between 22 to 30 years old.
- **Income** Between 50,000 and 70,000.
- **Fitness** Fitness level is generally around 3.
- **Miles** Customers typically travel around 60 miles, with a range mostly between 50 to 100 miles.

- **Usage** Product usage is around 3 times.
- **Education** Around 16 years of education, generally between 14 to 17 years.
- Marital Status KP481 is the most popular among both groups
- Gender For KP481, males show a slightly higher preference compared to females.

Product - KP781

- **Age** Customers are typically aged around 32, with a range mostly between 28 to 40 years old.
- Income Between 70,000 and 100,000.
- Fitness Fitness level is above 5.
- Miles Customers typically travel around 200 miles, with a range mostly between 150 to 350 miles
- Usage Product usage is around 4-5 times.
- Education More than 16 years of education, generally between 15 to 20 years.
- Marital Status KP781 is less popular overall but still preferred more by partnered individuals.
- **Gender** KP781 is particularly favored by males.

Recommendations -

- For KP281, marketing efforts should highlight aspects that appeal to female customers, such as usability, moderate fitness, and travel needs, while also targeting younger males.
- For **KP481**, emphasize the product's versatility and balanced features that appeal to a broad demographic, focusing on professionals and balanced lifestyle attributes.
- For **KP781**, create marketing campaigns that focus on high-income, health-conscious males, and address the barriers that may be limiting its appeal to female customers.
- Highlighting unique features and benefits that cater to high fitness and travel requirements could attract a more diverse customer base.

Tn	- 1	0
T11	- 1	