ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

► We recall:

- ▶ We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- ▶ We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

▶ This is commonly known as $\epsilon - \delta$ form of continuity.

- ▶ We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- ▶ This is commonly known as $\epsilon \delta$ form of continuity.
- ▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty}f(x_n)=f(c).$$

- ▶ We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- ▶ This is commonly known as $\epsilon \delta$ form of continuity.
- ▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty}f(x_n)=f(c).$$

▶ This is known as sequential form of continuity.

- ► We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- ▶ This is commonly known as $\epsilon \delta$ form of continuity.
- ▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty} f(x_n) = f(c).$$

- ▶ This is known as sequential form of continuity.
- ▶ Definition 22.7: Let $A \subseteq \mathbb{R}$. Then a function $f : A \to \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.

▶ Definition 24.1: Let A be a non-empty set and let $f: A \to \mathbb{R}$ be a function. Then f is said to be bounded if

$$|f(x)| \le M, \quad \forall x \in A.$$

In such a case M said to be a bound for f.

▶ Definition 24.1: Let A be a non-empty set and let $f: A \to \mathbb{R}$ be a function. Then f is said to be bounded if

$$|f(x)| \le M, \quad \forall x \in A.$$

In such a case M said to be a bound for f.

▶ If $f: A \to \mathbb{R}$ is a bounded function,

$$\sup(f) := \sup\{f(x) : x \in A\},\$$

$$\inf(f) = \inf\{f(x) : x \in A\}.$$

▶ Definition 24.1: Let A be a non-empty set and let $f: A \to \mathbb{R}$ be a function. Then f is said to be bounded if

$$|f(x)| \le M, \ \forall x \in A.$$

In such a case M said to be a bound for f.

▶ If $f: A \to \mathbb{R}$ is a bounded function,

$$\sup(f) := \sup\{f(x) : x \in A\},\$$

$$\inf(f) = \inf\{f(x) : x \in A\}.$$

▶ $\sup(f)$ is said to be a maximum if there exists $x_0 \in A$ such that $f(x_0) = \sup(f)$.

▶ Definition 24.1: Let A be a non-empty set and let $f: A \to \mathbb{R}$ be a function. Then f is said to be bounded if

$$|f(x)| \le M, \ \forall x \in A.$$

In such a case M said to be a bound for f.

▶ If $f: A \to \mathbb{R}$ is a bounded function,

$$\sup(f) := \sup\{f(x) : x \in A\},\$$

$$\inf(f) = \inf\{f(x) : x \in A\}.$$

- ▶ $\sup(f)$ is said to be a maximum if there exists $x_0 \in A$ such that $f(x_0) = \sup(f)$.
- ▶ Similarly, $\inf(f)$ is said to be a minimum if there exists $x_1 \in A$ such that $f(x_1) = \inf(f)$.

Examples

▶ Example 24.2: Let $f:[0,1) \to \mathbb{R}$ be the function f(x) = x, $\forall x \in [0,1)$. Then f is bounded with bound 1. $\sup(f)$ is not a maximum. However, inf is a minimum with $\inf(f) = f(0)$.

Examples

- ▶ Example 24.2: Let $f:[0,1) \to \mathbb{R}$ be the function f(x) = x, $\forall x \in [0,1)$. Then f is bounded with bound 1. $\sup(f)$ is not a maximum. However, inf is a minimum with $\inf(f) = f(0)$.
- ► Example 24.3: Let $g:(0,1) \to \mathbb{R}$ be the function $g(x) = \frac{1}{x}, x \in (0,1)$. Then f is continuous but not bounded.

Now we focus on the study of continuous functions on intervals.

- Now we focus on the study of continuous functions on intervals.
- ▶ In the following a, b are real numbers with a < b and we look at continuous functions on [a, b].

- Now we focus on the study of continuous functions on intervals.
- In the following a, b are real numbers with a < b and we look at continuous functions on [a, b].
- ▶ Theorem 24.4: Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then it is bounded.

- Now we focus on the study of continuous functions on intervals.
- In the following a, b are real numbers with a < b and we look at continuous functions on [a, b].
- ▶ Theorem 24.4: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then it is bounded.
- ▶ Proof: Suppose $f:[a,b] \to \mathbb{R}$ is not bounded. We want to arrive at a contradiction.

- Now we focus on the study of continuous functions on intervals.
- In the following a, b are real numbers with a < b and we look at continuous functions on [a, b].
- ▶ Theorem 24.4: Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then it is bounded.
- ▶ Proof: Suppose $f : [a, b] \to \mathbb{R}$ is not bounded. We want to arrive at a contradiction.
- As f is not bounded, for every $n \in \mathbb{N}$ there exists some x_n in [a,b] such that $|f(x_n)| \ge n$.

- Now we focus on the study of continuous functions on intervals.
- In the following a, b are real numbers with a < b and we look at continuous functions on [a, b].
- ▶ Theorem 24.4: Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then it is bounded.
- ▶ Proof: Suppose $f : [a, b] \to \mathbb{R}$ is not bounded. We want to arrive at a contradiction.
- As f is not bounded, for every $n \in \mathbb{N}$ there exists some x_n in [a,b] such that $|f(x_n)| \ge n$.
- ▶ Now $\{x_n\}_{n\in\mathbb{N}}$ is a sequence in [a,b].

- Now we focus on the study of continuous functions on intervals.
- In the following a, b are real numbers with a < b and we look at continuous functions on [a, b].
- ▶ Theorem 24.4: Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then it is bounded.
- ▶ Proof: Suppose $f : [a, b] \to \mathbb{R}$ is not bounded. We want to arrive at a contradiction.
- As f is not bounded, for every $n \in \mathbb{N}$ there exists some x_n in [a,b] such that $|f(x_n)| \ge n$.
- ▶ Now $\{x_n\}_{n\in\mathbb{N}}$ is a sequence in [a,b].
- ► Then by Bolzano-Weierstrass theorem there exists a convergent subsequence $\{x_{n_k}\}_{k\in\mathbb{N}}$.

▶ Suppose $\{x_{n_k}\}_{k\in\mathbb{N}}$ converges to $c \in [a, b]$.

- ▶ Suppose $\{x_{n_k}\}_{k\in\mathbb{N}}$ converges to $c \in [a, b]$.
- ▶ Then by the continuity of f, $\{f(x_{n_k})\}_{k\in\mathbb{N}}$ converges to f(c).

- ▶ Suppose $\{x_{n_k}\}_{k\in\mathbb{N}}$ converges to $c \in [a, b]$.
- ▶ Then by the continuity of f, $\{f(x_{n_k})\}_{k\in\mathbb{N}}$ converges to f(c).
- ▶ In particular, $\{f(x_{n_k})_{k\in\mathbb{N}}\}$ is a bounded sequence.

- ▶ Suppose $\{x_{n_k}\}_{k\in\mathbb{N}}$ converges to $c \in [a, b]$.
- ▶ Then by the continuity of f, $\{f(x_{n_k})\}_{k\in\mathbb{N}}$ converges to f(c).
- ▶ In particular, $\{f(x_{n_k})_{k\in\mathbb{N}}$ is a bounded sequence.
- ▶ This contradicts with $|f(x_{n_k})| \ge n_k \ge k$, which makes $\{f(x_{n_k})_{k\in\mathbb{N}} \text{ unbounded.}$

- ▶ Suppose $\{x_{n_k}\}_{k\in\mathbb{N}}$ converges to $c \in [a, b]$.
- ▶ Then by the continuity of f, $\{f(x_{n_k})\}_{k\in\mathbb{N}}$ converges to f(c).
- ▶ In particular, $\{f(x_{n_k})_{k\in\mathbb{N}}$ is a bounded sequence.
- ▶ This contradicts with $|f(x_{n_k})| \ge n_k \ge k$, which makes $\{f(x_{n_k})_{k\in\mathbb{N}} \text{ unbounded.}$
- ▶ This is a contradiction and this completes the proof.

- ▶ Suppose $\{x_{n_k}\}_{k\in\mathbb{N}}$ converges to $c \in [a, b]$.
- ▶ Then by the continuity of f, $\{f(x_{n_k})\}_{k\in\mathbb{N}}$ converges to f(c).
- ▶ In particular, $\{f(x_{n_k})_{k\in\mathbb{N}}$ is a bounded sequence.
- ▶ This contradicts with $|f(x_{n_k})| \ge n_k \ge k$, which makes $\{f(x_{n_k})_{k\in\mathbb{N}} \text{ unbounded.}$
- ▶ This is a contradiction and this completes the proof.
- ▶ We have already seen that continuous functions on open intervals need not be bounded. Also examples, such as f(x) = x, show that continuous functions on \mathbb{R} need not be bounded.

▶ Theorem 24.5: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then there exists c,d in [a,b] such that

$$f(c) = \sup\{f(x) : x \in [a, b]\};$$

$$f(d) = \inf\{f(x) : x \in [a, b]\}.$$

▶ Theorem 24.5: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then there exists c,d in [a,b] such that

$$f(c) = \sup\{f(x) : x \in [a, b]\};$$

$$f(d) = \inf\{f(x) : x \in [a, b]\}.$$

▶ Proof: Since $\{f(x): x \in [a,b]\}$ is a non-empty bounded set, $\sup\{f(x): x \in [a,b]\}$ exists.

▶ Theorem 24.5: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then there exists c,d in [a,b] such that

$$f(c) = \sup\{f(x) : x \in [a, b]\};$$

 $f(d) = \inf\{f(x) : x \in [a, b]\}.$

- ▶ Proof: Since $\{f(x): x \in [a,b]\}$ is a non-empty bounded set, $\sup\{f(x): x \in [a,b]\}$ exists.
- ► Take $M = \sup\{f(x) : x \in [a, b]\}.$

▶ Theorem 24.5: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then there exists c,d in [a,b] such that

$$f(c) = \sup\{f(x) : x \in [a, b]\};$$

$$f(d) = \inf\{f(x) : x \in [a, b]\}.$$

- ▶ Proof: Since $\{f(x): x \in [a,b]\}$ is a non-empty bounded set, $\sup\{f(x): x \in [a,b]\}$ exists.
- ► Take $M = \sup\{f(x) : x \in [a, b]\}.$
- Now for $n \in \mathbb{N}$, as $M \frac{1}{n}$ is not an upper bound of this set, there exists $x_n \in [a, b]$ such that

$$M - \frac{1}{n} < f(x_n) \leq M.$$

▶ Theorem 24.5: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then there exists c,d in [a,b] such that

$$f(c) = \sup\{f(x) : x \in [a, b]\};$$

$$f(d) = \inf\{f(x) : x \in [a, b]\}.$$

- ▶ Proof: Since $\{f(x): x \in [a,b]\}$ is a non-empty bounded set, $\sup\{f(x): x \in [a,b]\}$ exists.
- ► Take $M = \sup\{f(x) : x \in [a, b]\}.$
- Now for $n \in \mathbb{N}$, as $M \frac{1}{n}$ is not an upper bound of this set, there exists $x_n \in [a, b]$ such that

$$M - \frac{1}{n} < f(x_n) \leq M.$$

By squeeze theorem,

$$\lim_{n\to\infty}f(x_n)=M.$$

▶ As $x_n \in [a, b]$ for every n, $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.

- ▶ As $x_n \in [a, b]$ for every n, $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.
- ▶ By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent sequence, say $\{x_{n_k}\}_{k\in\mathbb{N}}$.

- ▶ As $x_n \in [a, b]$ for every n, $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.
- ▶ By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent sequence, say $\{x_{n_k}\}_{k\in\mathbb{N}}$.
- ightharpoonup Take $c = \lim_{k \to \infty} x_{n_k}$.

- ▶ As $x_n \in [a, b]$ for every n, $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.
- ▶ By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent sequence, say $\{x_{n_k}\}_{k\in\mathbb{N}}$.
- ightharpoonup Take $c = \lim_{k \to \infty} x_{n_k}$.
- Now as $\lim_{n\to\infty} f(x_n) = M$, taking limit along the subsequence, $\lim_{k\to\infty} f(x_{n_k}) = M$.

- ▶ As $x_n \in [a, b]$ for every n, $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.
- ▶ By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent sequence, say $\{x_{n_k}\}_{k\in\mathbb{N}}$.
- ightharpoonup Take $c = \lim_{k \to \infty} x_{n_k}$.
- Now as $\lim_{n\to\infty} f(x_n) = M$, taking limit along the subsequence, $\lim_{k\to\infty} f(x_{n_k}) = M$.
- ► Then by continuity of f at c,

$$f(c) = \lim_{k \to \infty} f(x_{n_k}) = M.$$

- ▶ As $x_n \in [a, b]$ for every n, $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.
- ▶ By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent sequence, say $\{x_{n_k}\}_{k\in\mathbb{N}}$.
- ightharpoonup Take $c = \lim_{k \to \infty} x_{n_k}$.
- Now as $\lim_{n\to\infty} f(x_n) = M$, taking limit along the subsequence, $\lim_{k\to\infty} f(x_{n_k}) = M$.
- ► Then by continuity of f at c,

$$f(c)=\lim_{k\to\infty}f(x_{n_k})=M.$$

► Hence $f(c) = \sup\{f(x) : x \in [a, b]\}.$

- ▶ As $x_n \in [a, b]$ for every n, $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.
- ▶ By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent sequence, say $\{x_{n_k}\}_{k\in\mathbb{N}}$.
- ightharpoonup Take $c = \lim_{k \to \infty} x_{n_k}$.
- Now as $\lim_{n\to\infty} f(x_n) = M$, taking limit along the subsequence, $\lim_{k\to\infty} f(x_{n_k}) = M$.
- Then by continuity of f at c,

$$f(c) = \lim_{k \to \infty} f(x_{n_k}) = M.$$

- ► Hence $f(c) = \sup\{f(x) : x \in [a, b]\}.$
- Similar proof works to show the existence of a d such that $f(d) = \inf\{f(x) : x \in [a, b]\}$, or one may use the continuity of f and the fact

$$\inf\{f(x) : x \in [a, b]\} = -\sup\{-f(x) : x \in [a, b]\}.$$

- ▶ As $x_n \in [a, b]$ for every n, $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence.
- ▶ By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent sequence, say $\{x_{n_k}\}_{k\in\mathbb{N}}$.
- ightharpoonup Take $c = \lim_{k \to \infty} x_{n_k}$.
- Now as $\lim_{n\to\infty} f(x_n) = M$, taking limit along the subsequence, $\lim_{k\to\infty} f(x_{n_k}) = M$.
- Then by continuity of f at c,

$$f(c) = \lim_{k \to \infty} f(x_{n_k}) = M.$$

- ► Hence $f(c) = \sup\{f(x) : x \in [a, b]\}.$
- Similar proof works to show the existence of a d such that $f(d) = \inf\{f(x) : x \in [a, b]\}$, or one may use the continuity of f and the fact

$$\inf\{f(x): x \in [a,b]\} = -\sup\{-f(x): x \in [a,b]\}.$$

► END OF LECTURE 24.

