$[{ m CYBER1}][2024 ext{-}2025]$ Partiel (Sujet B) CORRECTION $(1{ m h}30)$

Architecture des Ordinateurs 1

NOM:	PRÉNOM:

Vous devez respecter les consignes suivantes, sous peine de 0 :

- Lisez le sujet en entier avec attention
- Répondez sur le sujet
- Ne détachez pas les agrafes du sujet
- Écrivez lisiblement vos réponses (si nécessaire en majuscules)
- Écrivez lisiblement votre nom et votre prénom sur la copie dans les champs prévus au dessus de cette consigne
- Ne trichez pas

1 Conversions Binaires d'Entiers (5 points)

1.1 (1 point) Rappelez les 14 premières puissances de 2 :

2^{0}	2^1	2^2	2^3	2^4	2^5	2^{6}	2^7	2^8	2^{9}	2^{10}	2^{11}	2^{12}	2^{13}
1	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192

1.2 (2 points) Convertissez ces nombres vers le format décimal. Vous donnerez leur interprétation sur 12 bits en tant que nombre signé, puis non-signé.

	signé	non-signé
\$ 5E6	1510	1510
\$ A3D	-1475	2621

1.3 (2 points) Convertissez ces nombres décimaux en binaire sur 12 bits, puis en hexadécimal.

				hexadécimal									
1834	0	1	1	1	0	0	1	0	1	0	1	0	\$ 72A
-323	1	1	1	0	1	0	1	1	1	1	0	1	\$ EBD

2 Flottants IEEE 754 (8 points)

2.1 (2 points) Rappelez les formats IEEE 754 des flottants, ainsi que leurs biais :

simple précision	(<u>32</u> bits)	Signe : 1 bit	Exposant : 8 bits	Mantisse : 23 bits
double précision	(<u>64</u> bits)	Signe : 1 bit	Exposant: 11 bits	Mantisse : 52 bits

	biais
simple précision	127
double précision	1023

2.2 (4 points) Reportez en binaire l'exposant biaisé trouvé dans ces flottants IEEE 754, puis cochez à quelle(s) catégorie(s) ils correspondent :

Flottant IEEE 754	Exposant biaisé	Caté	égorie(s)
ć 0072 E#2D	% 0000 0000	$\Box + Z\acute{e}ro$ $\Box - Z\acute{e}ro$	
\$ 8073 5E3B	(0)	□ Normalisé ✓ Dénormalisé	\square Supranormalisé \square NaN
\$ 53E4 28C2	% 1010 0111	\Box + Zéro \Box - Zéro	$\begin{array}{c} \square + \infty \\ \square - \infty \end{array}$
\$ 33E4 26C2	(167)	✓ Normalisé □ Dénormalisé	\square Supranormalisé \square NaN
\$ FF80 0000	% 1111 1111	\Box + Zéro \Box - Zéro	$\begin{array}{c} \Box + \infty \\ \checkmark - \infty \end{array}$
\$ 1180 0000	(255)	□ Normalisé □ Dénormalisé	\square Supranormalisé \square NaN
¢ 7002 2006	% 1111 1111	\Box + Zéro \Box - Zéro	$\begin{array}{c} \Box + \infty \\ \Box - \infty \end{array}$
\$ 7F83 AE86	(255)	□ Normalisé □ Dénormalisé	□ Supranormalisé ✓ NaN

2.3 (2 points) Convertissez ces valeurs décimales vers le format IEEE 754 simple précision tout en indiquant le signe et l'exposant biaisé en binaire :

Nombre	S	Exposant biaisé									F	Iexad	décin	nal (I	EEE	754)	
-42,0625	1	1	0	0	0	0	1	0	0	\$	С	2	2	8	4	0	0	0
35,09375	0	1	0	0	0	0	1	0	0	\$	4	2	0	С	6	0	0	0

- 3 Circuits Logiques (7 points)
- 3.1 (1 point) Écrivez la formule associée à ce schéma :

$$(a ET b)$$

$$NON-OU$$

$$X = [(a XOR b)$$

$$XOR$$

$$((a XOR b) ET c)]$$

$$X = \overline{(A \cdot B) + ((A \oplus B) \oplus ((A \oplus B) \cdot C))}$$

- 3.2 (2 points) Remplissez la table de 3.3 (2 vérité de la formule précédente : de
 - 3.3 (2 points) Déduisez-en la formule des mintermes, ainsi que la formule des maxtermes :

A	В	\mathbf{C}	X
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Mintermes:

$$X = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot C) + (\overline{A} \cdot \overline{B} \cdot C)$$

Maxtermes:

$$X = (A + \overline{B} + C) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + \overline{C})$$

3.4 (2 points) Remplissez le tableau de Karnaugh, formez les groupes, et déduisezen la formule réduite :

<u>A</u>

	00	01	11	10
0	1	1	1	0
1	0	1	0	0

вс

$$X = (\overline{A} \cdot \overline{B}) \ + \ (\overline{A} \cdot C) \ + \ (\overline{B} \cdot C)$$

SUJET B CORRECTION ARCHITECTURE DES ORDINATEURS 1