A Network Model for Dynamic Textual Communications with Application to Government Email Corpora

Bomin Kim¹, Aaron Schein³, Bruce Desmarais¹, and Hanna Wallach^{2,3}

¹Pennsylvania State University ²Microsoft Research NYC ³University of Massachusetts Amherst

May 30, 2017

1 Tie Generating Process

We assume the following generative process for each document d in a corpus D:

1. (Data augmentation) For each sender $i \in \{1, ..., A\}$, create a list of receivers J_i by applying the Bernoulli probabilities to every $j \in \mathcal{A}_{\setminus i}$ with random order:

$$J_{ij}|J_{i\backslash j} \sim \operatorname{Ber}\left(\frac{\frac{\delta}{|J_{i\backslash j}^{(d)}|}\lambda_{ij}^{(d)}}{\frac{\delta}{|J_{i\backslash j}^{(d)}|}\lambda_{ij}^{(d)}+1}\right),\tag{1}$$

where $|J_{i\backslash j}^{(d)}|$ is the number of 1's currently in the receiver set J_i , excluding the j^{th} element. We divide δ by this quantity to ensure at least one receiver is chosen for each sender. For example, if $|J_{i\backslash j}^{(d)}|=0$, J_{ij} becomes 1 with probability 1. We no longer have independent asymption across the edges, instead, every j^{th} element is sampled conditioned on the rest of components in J_{ij} vector, $J_{i\backslash j}$.

2. For every sender $i \in \mathcal{A}$, generate the time increments

$$\Delta T_{iJ_i} \sim \text{Exp}(\lambda_{iJ_i}^{(d)}).$$
 (2)

3. Set timestamp, sender, and receivers simultaneously (NOTE: $t^{(0)} = 0$):

$$t^{(d)} = t^{(d-1)} + \min(\Delta T_{iJ_i}),$$

$$i^{(d)} = i_{\min(\Delta T_{iJ_i})},$$

$$J^{(d)} = J_{i(d)}.$$
(3)

2 Inference

$$\begin{split} &P(\mathcal{J}_{\mathbf{a}}^{(d)},\mathcal{T}_{\mathbf{a}}^{(d)},i_{0}^{(d)},J_{0}^{(d)},t_{0}^{(d)}|\mathcal{I}_{\mathbf{0}}^{(\Delta T_{i_{0}^{(d)}|J_{0}^{(d)}}\Big)\\ &=\Big(\prod_{i\in\mathcal{A}}\prod_{j\in\mathcal{A}\backslash i}\Big(\frac{\frac{\delta}{|J_{i(d)}^{(d)}|}\lambda_{ij}^{(d)}}{\frac{\delta}{|J_{i(d)}^{(d)}|}\lambda_{ij}^{(d)}+1}\Big)^{I(j\in J_{i}^{(d)})}\Big(\frac{1}{\frac{\delta}{|J_{i(d)}^{(d)}|}\lambda_{ij}^{(d)}+1}\Big)\times\Big(\prod_{i\in\mathcal{A}}\lambda_{iJ_{i}}^{(d)}e^{-\Delta T_{iJ_{i}}^{(d)}\lambda_{iJ_{i}}^{(d)}}\Big)\times\Big(\prod_{i\in\mathcal{A}}\lambda_{iJ_{i}}^{(d)}e^{-\Delta T_{iJ_{i}}^{(d)}\lambda_{iJ_{i}}^{(d)}}\Big)\\ &=\Big(\prod_{i\in\mathcal{A}}\prod_{j\in\mathcal{A}\backslash i}\frac{\Big(\frac{\delta}{|J_{i(d)}^{(d)}|}\lambda_{ij}^{(d)}+1}{\frac{\delta}{|J_{i(d)}^{(d)}|}\lambda_{ij}^{(d)}+1}\Big)\times\Big(\lambda_{i_{0}^{(d)}J_{0}^{(d)}\lambda_{i_{0}^{(d)}J_{0}^{(d)}}\lambda_{i_{0}^{(d)}J_{0}^{(d)}}^{(d)}\Big)\times\Big(\prod_{i\in\mathcal{A}}\lambda_{iJ_{i}}^{(d)}e^{-\Delta T_{iJ_{i}}^{(d)}\lambda_{iJ_{i}}^{(d)}}\Big)\times\Big(\prod_{i\in\mathcal{A}}\lambda_{iJ_{i}}^{(d)}e^{-\Delta T_{iJ_{i}}^{(d)}\lambda_{iJ_{i}}^{(d)}}\Big),$$

We can simplify this further by integreting out the latent time $\mathcal{T}_{\mathbf{a}}^{(d)} = \{\Delta T_{iJ_i}^{(d)}\}_{i \in \mathcal{A}_{\setminus i_o^{(d)}}}$ in the last term as before, then we can simplify Equation (4) as below:

$$P(\mathcal{J}_{\mathbf{a}}^{(d)}, i_{\mathbf{0}}^{(d)}, J_{\mathbf{0}}^{(d)}, t_{\mathbf{0}}^{(d)} | \mathcal{I}_{\mathbf{0}}^{(

$$= \left(\prod_{i \in \mathcal{A}} \prod_{j \in \mathcal{A}_{\backslash i}} \frac{\left(\frac{\delta}{|\mathcal{J}_{i\backslash j}^{(d)}|} \lambda_{ij}^{(d)} \right)^{I(j \in J_{i})}}{\frac{\delta}{|\mathcal{J}_{i\backslash j}^{(d)}|} \lambda_{ij}^{(d)} + 1} \right) \times \left(\lambda_{i_{o}}^{(d)} J_{o}^{(d)} \right) \times \left(e^{-\Delta T_{i_{o}}^{(d)} J_{o}^{(d)} \sum_{i \in \mathcal{A}_{\backslash i_{o}}^{(d)}} \lambda_{iJ_{i}}^{(d)}} \right), \tag{5}$$$$

where this joint distribution can be interpreted as 'probability of latent and observed edges from Bernoulli distribution \times probability of the observed time comes from Exponential distribution \times probability of all latent time greater than the observed time, given that the latent time also come from Exponential distribution.'

2.1 Inference on the augmented data $\mathcal{J}_{\mathbf{a}}$

Given the observed sender of the document $i_o^{(d)}$, we sample the latent receivers for each sender $i \in \mathcal{A}_{\backslash_i(d)}$. Here we illustrate how each sender-receiver pair in the document d is updated.

Define $J_i^{(d)}$ be the (A-1) length vector of indicators (0/1) representing the latent receivers corresponding to the sender i in the document d. For each sender i, we are going to resample the receiver vector $J_i^{(d)}$, one at a time. For a latent sender $i \in \mathcal{A}_{\backslash i_o^{(d)}}$, we derive the conditional probability:

$$P(\mathcal{J}_{ij}^{(d)} = J_{ij}^{(d)} | \mathcal{J}_{i\setminus j}^{(d)}, i_{O}^{(d)}, J_{O}^{(d)}, t_{O}^{(d)}, \mathcal{I}_{O}^{(

$$\propto P(\mathcal{J}_{i}^{(d)} = J_{i}^{(d)}, \mathcal{J}_{i\setminus j}^{(d)}, i_{O}^{(d)}, J_{O}^{(d)}, t_{O}^{(d)} | \mathcal{I}_{O}^{(

$$\propto \left(\frac{\left(\frac{\delta}{|\mathcal{J}_{i\setminus j}^{(d)}|} \lambda_{ij}^{(d)}\right)^{I(j \in J_{i})}}{\frac{\delta}{|\mathcal{J}_{i\setminus j}^{(d)}|} \lambda_{ij}^{(d)} + 1}\right) \times \left(e^{-\Delta T_{i_{O}}^{(d)} J_{O}^{(d)}} \sum_{i \in \mathcal{A}_{\setminus i_{O}}^{(d)}} \lambda_{ij}^{(d)}} \lambda_{ij}^{(d)}\right), \tag{6}$$$$$$

where we replace typical use of (-d) to (< d) on the right hand side of the conditional probability, due to the fact that $d^{(th)}$ document only depends on the past documents, not on the future ones.

No idea how to choose the proposal distribution for the indicator vector $J_i^{(d)}$. Possibly sample each element $J_{ij}^{(d)}$ as we did before, using M-H sampling with the choice of univariate Wallenius' distribution as the proposal density which relies on approximation (Fog, 2008).

2.2 Inference on \mathcal{Z}

same as before but edge probability part changed to $\left(\prod_{i\in\mathcal{A}} \text{dMWNCHypergeo}\left(J_i^{(d)}; \mathbf{1}_{A-1}, R_i^{(d)}, \{\lambda_{ij}^{(d)}\}_{j\in\mathcal{A}_{\backslash i}}\right)\right)$

2.3 Inference on C

same as before but edge probability part changed to $\left(\prod_{i\in\mathcal{A}} \text{dMWNCHypergeo}\left(J_i^{(d)}; \mathbf{1}_{A-1}, R_i^{(d)}, \{\lambda_{ij}^{(d)}\}_{j\in\mathcal{A}_{\backslash i}}\right)\right)$

2.4 Inference on \mathcal{B}

same as before but edge probability part changed to $\left(\prod_{i\in\mathcal{A}} \text{dMWNCHypergeo}\left(J_i^{(d)}; \mathbf{1}_{A-1}, R_i^{(d)}, \{\lambda_{ij}^{(d)}\}_{j\in\mathcal{A}_{\backslash i}}\right)\right)$