Problem Komiwojażera

Projektowanie Efektywnych Algorytmów Metody poszukiwania lokalnego

Karol Kłusek 21 grudnia 2018

Wstęp

Celem projektu było wykonanie programu, wykorzystującego algorytm przeszukiwania z zakazami (ang. Tabu Search) oraz Symulowanego Wyżarzania (ang. Simmulatd Annealing) dla problemu komiwojażera. Wskazanym było, aby algorytm uwzględniał mechanizm dywersyfikacji przeszukiwania przestrzeni rozwiązań (powroty, ruchy losowe, itp).

Specyfikacja Techniczna

- Struktury przechowujące dane alokowane są dynamicznie, zależnie od rozmiaru problemu.
- Program posiada możliwość wczytywania danych z pliku, w celu weryfikacji poprawności.
- Algorytm zostały zaimplementowany zgodnie z paradygmatami programowania obiektowego.
- Czas wykonania algorytmu mierzony był z dokładnością do nanosekund, przy wykorzystaniu bibliotek systemowych.

Założenia projektowe

dla wykonywania algorytmu Symulowanego wyżarzania

- sposób schładzania temperatury zrealizować według wzoru T' = T*a gdzie a jest stałą schładzania,
- wybrać jeden ze sposobów definicji sąsiedztwa,
- temperaturę początkową obliczać w oparciu o przetwarzane dane (zaproponować sposób obliczenia)

Wstęp teoretyczny

Problem komiwojażera (ang. travelling salesman problem, w skrócie TSP) – problem obliczeniowy polegający na poszukiwaniu w grafie takiego cyklu, który zawiera wszystkie wierzchołki (każdy dokładnie raz) i ma jak najmniejszy koszt. Bardziej formalnie, problem komiwojażera polega na poszukiwaniu w grafie cyklu Hammiltona o najmniejszej wadze.

Problem ma liczne zastosowania w życiu codziennym. Najlepszym przykładem jest praca kuriera, który musi wyjechać z magazynu, zawieźć przesyłki w różne miejsca i wrócić do magazynu.

Nie jest znany efektywny (tj. działający w czasie co najwyżej wielomianowym) algorytm dający gwarancję znalezienia optymalnego rozwiązania problemu komiwojażera. Problem ten jest bowiem zaliczany do klasy problemów NP-trudnych. W wersji decyzyjnej (czy istnieje cykl o długości mniejszej od x) problem jest zaliczany do klasy problemów NP-zupełnych. W grafie pełnym mającym n wierzchołków liczba możliwych cykli Hammiltona wynosi aż (n-1)!/2. W praktyce sprawdzenie wszystkich możliwości jest zatem wykonalne tylko dla niewielkiej liczby wierzchołków.

Kolejne ścieżki wybierane z grafu mogą być swoimi sąsiadami. Definicja sąsiedztwa jest umową w jaki sposób tworzy się kolejne ścieżki na podstawie ścieżki podstawowej. Najpopularniejszym przykładem sąsiedztwa ścieżek jest sąsiedztwo typu **swap**. Polega ono na zamianie dwóch wierzchołków w grafie miejscami. Przykład poniżej

$$r=0-5-4-6-2-3-1-0$$

 $r'=0-1-4-6-2-3-5-0$

Kolejnym typem jest sąsiedztwo **insert**, definiowane jako wstawienie dowolnego wierzchołka między dwa inne w ścieżce. Przykład:

$$r=0-5-4-6-2-3-1-0$$

 $r'=0-5-1-4-6-2-3-0$

Ostatnim jest sąsiedztwo typu **inverse** zdefiniowane jako odwrócenie kolejności wierzchołków w ścieżce. przykład:

$$r = 0 - 5 - 4 - 6 - 2 - 3 - 1 - 0$$

 $r' = 0 - 5 - 3 - 2 - 6 - 4 - 1 - 0$

Cechy dobrego sasiedztwa

Aby sąsiedztwo zostało uznane za dobre, musi spełniać następujące cechy:

- zawiera conajmniej jedno rozwiązanie inie obejmuje całej przestrzeni rozwiązań,
- rozwiązania różnią się niewiele oddanego rozwiązania,

• niezależnie od początkowego rozwiązania, powinno być osiągalne każde rozwiązanie z przestrzeni rozwiązań algorytmu.

Tabu Search

(przeszukiwanie tabu, przeszukiwanie z zakazami) to metaheurystyczna metoda oparta na iteracyjnym przeszukiwaniu przestrzeni rozwiązań, wykorzystując sąsiedztwo elementów, zapamiętując niektóre ruchy, oraz ich częstość występowania w celu unikania lokalnych minimów oraz poszukiwania rozwiązań globalnie optymalnych w rozsądnym czasie. Algorytm tabu search zawiera kilka elementów charakterystycznych:

- Funkcja definiująca wartość ścieżki.
- Lista zawierająca ruchy zakazane (lista tabu).
- Metoda dywersyfikacji.
- Warunek kończący wykonywanie algorytmu.

W algorytmie znajduje się również mechanizm dywersyfikacji przeszukiwań przestrzeni rozwiązań.

Simulated Annealing

Symulowanie wyżarzanie wzięło swoją nazwę od zjawiska wyżarzania (przeciwnego do hartowania). Polega ono na zmieianiu struktury metalu poprzez podgrzanie go do wysokiej temperatury a następnie stopniowym chłodzeniu pozwalając cząsteczką struktury na ułożenie się w równych odstępach od siebie poprzez szukanie najniższego stanu energetycznego. Algorytm swoim działaniem przypomina większość zachłannych metod rozwiązywania problemu ATSP, z tą różnicą, że jest w nim możliwe by przyjęto ścieżkę pogarszającą obecny wynik, a która może doprowadzić do polepszenia ostatecznego wyniku. Jest zatem algorytmem który przeszukuje strukturę w celu znalezienia minimum lokalnego, lecz nie zatrzymuje się w jednym miejscu w całej strukturze. Prawdopodobieństwa przeskoku w inne miejsce struktury w celu poszukiwania lepszych rozwiązań jest określone wzorem probabilistycznym przedstawionym na wykładzie:

$$P = e^{(\frac{v1 - v2}{T})}$$

Plan eksperymentu

Pomiary czasu wykonania zadania przez program są obarczone pewnymi niepewnościami. Pierwszą z nich jest prawdopodobieństwo wylosowania szczególnego przypadku danych, dla którego algorytm może być skrajnie nieefektywny lub odwrotnie. Druga to nieprzewidziane zachowanie urządzenia testowego np. zmiana taktowania w trakcie wykonywania eksperymentu. Aby zapobiec tym przekłamaniom będę wykonywał testy dla każdej instancji problemu o zadanym rozmiarze 10-krotnie i wyciągał średnią oraz szukał najlepszego wyniku.

Czas będzie mierzony poprzez funkcję z biblioteki systemowej w Rust'cie nazywaną *PreciseTime::now();*. Zapewnia ona dokładność do jednej nanosekundy.

Wszystkie wykorzystane struktury w programie są alokowane dynamicznie co pozwala na modyfikację ich rozmiaru w trakcie działania programu. Do reprezentacji grafu wykorzystałem macierz sąsiedztwa.

Wielowątkowość

Wyniki eksperymentu

Tabu Search

ftv
47.atsp – parametry uruchomienia: limit czasu – 120 s, limit iteracji –
10000, kadencja blokowanej ścieżki –20 iteracji, ilość błędów krytycznych – 25.

ftv
170. atsp – parametry uruchomienia: limit czasu – 240s, limit iteracji –
10000, kadencja blokowanej ścieżki –20 iteracji, ilość błędów krytycznych – 25.

rbg403.atsp – parametry uruchomienia: limit czasu – 360s, limit iteracji –10000, kadencja blokowanej ścieżki –20 iteracji, ilość błędów krytycznych – 25.

Simulated Annealing

ftv47.atsp – parametry uruchomienia: limit czasu – 120 s, temperatura początkowa – 20, szybkość wyżarzania – 0.999999. ftv170.atsp – parametry uruchomienia: limit czasu – 240 s, temperatura początkowa – 20, szybkość wyżarzania – 0.999999. rbg403.atsp – parametry uruchomienia: limit czasu – 360 s, temperatura początkowa – 20, szybkość wyżarzania – 0.999999.

Uzyskane Wyniki

Tabu Search

maksimum	maksimum błędów	czas zakazu	rozmiar miasta			błąd względny		
iteracji			48	168	403	48	168	403
5000	10	10	3309	18061	6554	86%	556%	166%
		20	3298	17827	6636	86%	547%	169%
		40	3255	18638	6624	83%	577%	169%
	25	10	2468	13783	6500	39%	400%	164%
		20	2503	13638	6484	41%	395%	163%
		40	2342	13917	6486	32%	405%	163%
	75	10	2306	7963	6639	30%	189%	169%
		20	2294	8063	6414	29%	193%	160%
		40	2233	8120	6606	26%	195%	168%
10000	10	10	3256	18306	6574	83%	564%	167%
		20	3305	18220	6725	86%	561%	173%
		40	3285	18451	6663	85%	570%	170%
	25	10	2461	13809	6390	39%	401%	159%
		20	2414	13742	6548	36%	399%	166%
		40	2409	13507	6511	36%	390%	164%
	75	10	2371	8122	6614	34%	195%	168%
		20	2311	8074	6543	30%	193%	165%
		40	2386	8084	6474	34%	193%	163%
20000	10	10	3251	17864	6591	83%	548%	167%
		20	3204	18444	6757	80%	569%	174%
		40	3207	18499		81%	571%	171%
	25	10	2423	13374	6576	36%	385%	167%
		20	2400	13392	6485	35%	386%	163%
		40	2489	13749	6553	40%	399%	166%
	75	10	2191	7929	6562	23%	188%	166%
		20	2371	8293	6381	34%	201%	159%
		40	2304	8134	6468	30%	195%	162%

Najlepsze uzyskane rozwiązania:

- dla pliku ftv47.atsp: 2191 (błąd względny 23%) ścieżka
 25-37-39-19-44-15-34-35-45-11-8-32-7-23-13-46-36-14-16-21-40-38-18-17-12-6-3-24-4-29-30-31-5-9-33-27-28-2-41-43-42-22-20-0-47-26-1-10,
- dla pliku ftv170.atsp: 7929 (błąd względny 188%) ścieżka 164-4-6-58-66-29-70-26-72-32-105-126-77-51-28-114-110-10-46-73-151-147-87-1 65-96-13-148-47-16-2-127-125-92-158-18-137-104-22-7-160-150-33-119-107-106-131-118-109-19-130-93-163-17-139-76-115-100-142-68-53-64-21-145-35-108-132-123-102-27-113-121-101-30-117-153-88-1-78-15-146-44-25-111-124-116-140-81-0 -3-167-85-157-43-94-155-84-24-129-65-41-69-48-11-42-31-99-141-63-38-112-136-74-133-79-8-54-52-49-23-89-57-60-59-45-80-9-83-162-134-86-5-95-166-14-154-82 -156-62-40-50-20-143-90-55-61-56-67-37-71-39-98-149-36-135-75-152-97-34-103-128-122-138-120-144-91-161-159-12,
- dla pliku rbg403.atsp: 6381 (błąd względny 159%) ścieżka 193-98-135-254-332-360-148-238-343-186-366-382-208-81-400-245-197-288-132-150-373-87-36-9-359-286-20-229-44-72-1-122-140-357-297-166-67-114-385-28-26 5-230-167-75-54-126-251-250-277-103-84-293-354-185-49-5-115-42-352-175-70-2 69-236-258-241-306-157-174-321-188-237-58-315-50-65-183-260-160-394-16-121 -386 - 40 - 104 - 4 - 387 - 52 - 324 - 59 - 284 - 170 - 240 - 347 - 10 - 89 - 317 - 221 - 389 - 199 - 266 - 344 - 100125-323-361-105-51-295-220-233-252-369-117-308-47-154-163-144-63-336-64-91 -268-355-341-177-113-96-82-156-32-145-196-85-29-264-328-309-106-311-397-24 7-222-165-348-30-318-172-182-218-398-201-365-25-246-118-299-303-136-61-2-2 67-362-329-259-206-334-57-232-74-194-283-307-402-45-24-203-92-130-273-358-180-71-158-6-159-326-243-179-26-35-27-271-255-33-17-119-169-95-192-340-128-8-377-316-171-375-231-152-181-338-99-78-60-205-34-213-298-263-80-38-120-29 0-333-69-371-107-292-401-73-97-204-319-224-368-116-108-191-287-257-211-217 -22-15-187-133-207-153-0-335-79-53-190-249-13-102-346-296-21-178-100-226-2 12-124-314-18-285-56-55-134-253-173-242-200-383-131-209-12-195-395-129-363 -19-68-198-41-384-101-62-235-210-77-327-239-294-289-94-66-155-275-272-93-1 51-393-302-278-378-396-23-337-123-313-310-356-379-111-3-112-219-274-46-262 -320-261-349-146-305-110-301-304-374-256-388-364-391-31-149-312-300-380-22 5-141-39-248-282-164-350-325-161-223-139-381-143-392-351-281-331-279-90-22 7-399-76-228-280-14-270-322-370-83-162-189-43-339-48-138-244-137-109-215-3 67-330-202-127-372-147-184-214-390-345-276-86-11-216-7-291-37-342-376-88-2 34-168-142-353-176.

Simulated Annealing

Temperatura	Szybkość	Najlepsze rozwiązanie w zależn. od rozmiaru problemu					
początkowa	wyżarzania	48	168	403			
		(rozw. najl. 1776)	(rozw. najl. 2755)	(rozw. najl. 2465)			
10	0,999990	<u>1951</u>	<u>6341</u>	<u>5180</u>			
		<u>10%</u>	<u>130%</u>	<u>110%</u>			
	0,999994	1968	<u>6043</u>	<u>5186</u>			
		11%	<u>119%</u>	<u>110%</u>			
	0,999999	<u>1860</u>	<u>5540</u>	<u>5167</u>			
		<u>5%</u>	<u>101%</u>	<u>110%</u>			
20	0,999990	1988	6369	6025			
		12%	131%	144%			
	0,999994	<u>1885</u>	6262	5980			
		<u>6%</u>	127%	143%			
	0,999999	1899	5803	5972			
		7%	111%	142%			
40	0,999990	2537	10135	6448			
		43%	268%	162%			
	0,999994	2516	10041	6474			
		42%	264%	163%			
	0,999999	2530	9657	6408			
		42%	<i>251%</i>	160%			

- dla pliku ftv47.atsp: 1860 (błąd względny 5%) ścieżka
 23-12-32-7-31-30-5-6-24-4-29-3-8-11-10-0-25-47-26-1-9-33-27-28-2-41-43-19-44-1
 5-16-45-39-21-40-42-22-20-38-37-18-17-34-13-46-36-35-14,
- dla pliku *ftv170.atsp*: 5540 (błąd względny 101%) ścieżka 116-113-110-144-55-68-34-54-6-166-16-151-149-45-21-135-84-12-153-130-121-14 1-61-49-75-20-143-57-60-158-9-10-162-122-106-107-4-120-102-150-43-85-1-70-1 1-156-66-140-63-38-41-92-3-124-95-155-32-62-50-90-161-146-48-26-119-105-19-18-138-69-31-104-127-89-160-134-53-74-23-128-71-25-118-109-125-93-154-86-5-163-131-129-126-99-37-97-139-94-52-59-44-79-13-147-78-14-145-42-100-164-88-167-7-159-17-24-137-72-29-112-133-81-0-77-22-142-67-40-36-83-28-108-123-101-30-111-136-47-80-8-157-56-65-39-98-152-96-148-76-15-114-103-132-87-2-33-58-46-82-165-91-64-35-51-73-27-117-115,

 dla pliku rbg403.atsp: 5167 (błąd względny 110%) – ścieżka 159-173-3-306-225-178-390-286-154-220-342-176-219-47-54-231-257-161-136-21 0-137-138-40-48-203-275-68-188-246-326-96-88-39-236-227-14-66-42-106-29-12 9-322-293-179-70-8-233-380-269-214-174-185-384-261-119-146-247-375-294-289 195-31-297-124-123-386-324-63-372-283-368-376-55-388-204-167-24-36-142-84-272-209-118-186-242-144-213-64-4-339-315-171-330-389-16-44-234-304-383-162 -314-11-207-378-78-52-341-110-340-166-59-359-351-325-95-76-152-366-128-260-26-87-56-5-51-43-255-382-320-254-311-240-288-148-75-105-391-281-86-279-92-3 98-41-321-130-363-116-252-30-93-120-125-60-61-98-90-271-379-151-143-135-18 7-241-327-302-74-194-121-53-309-169-17-218-7-266-399-18-285-0-333-177-183-316-355-149-329-205-344-81-278-34-182-72-62-310-164-282-395-239-208-73-155 -112-280-189-163-15-192-251-357-317-190-348-307-228-373-267-352-335-10-292 -362-184-202-198-253-374-71-103-82-259-264-274-350-97-381-345-215-319-224-160-238-299-328-35-145-273-83-217-212-248-13-100-300-117-353-65-37-19-244-28-158-397-9-114-108-46-85-226-197-132-243-323-206-115-230-338-126-301-393 -91-141-371-290-402-38-131-262-181-12-6-235-287-147-127-196-400-318-172-394-157-57-222-200-122-32-67-79-396-270-156-298-369-337-104-139-284-134-232-49-221-229-354-1-332-20-107-370-358-193-250-223-111-308-343-140-360-263-21 1-365-133-245-77-367-295-312-346-401-150-392-256-249-258-33-268-94-99-21-2 3-69-265-199-336-27-165-168-175-303-201-89-58-276-25-387-180-191-109-102-2 91-347-237-331-101.

Wnioski

- Algorytmy poszukiwania lokalnego są niedokładne, to znaczy, że nie zawsze znajdują najlepsze rozwiązanie. W zamian znajdują rozwiązania bliskie optymalnemu w krótkim czasie (w porównaniu do algorytmów dokładnych)
- Implementacja algorytmu to jedynie połowa sukcesu, bardzo ważnym aspektem jest dobór parametrów najlepszych dla problemu. W zależności o rozmiaru grafu jak i odchylenia wartości średniej przejść można wnioskować jakie parametry będą dawały najlepsze wyniki
- Strategia wykorzystania tych algorytmów opiera się na ich szybkości. Są na tyle szybkie, że najlepiej jest uruchamiać je wiele razy dla tego samego problemu i wyciągać najbardziej optymalne rozwiązanie.

Źródła

https://www.youtube.com/watch?v=1FEP_sNb62k

https://www.youtube.com/watch?v=XaXsJJh-Q5Y

http://cs.pwr.edu.pl/zielinski/lectures/om/mow10.pdf

https://doc.rust-lang.org/book/2018-edition/index.html

https://docs.rs/permutohedron/0.2.4/permutohedron/

https://docs.rs/time/0.1.40/time/

https://docs.rs/num-traits/0.2.6/num_traits/

https://docs.rs/rand/0.6.0/rand/