

Description

The VSM60P02Y uses advanced trench technology and design to provide excellent $R_{\text{DS(ON)}}$ with low gate charge .This device is well suited for use as a load switch or in PWM applications.

General Features

• $V_{DS} = -60V, I_{D} = -2A$

 $R_{DS(ON)}$ <160m Ω @ V_{GS} =-10V

 $R_{DS(ON)}$ <200m Ω @ V_{GS} =-4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Load switch
- PWM application

SOT-23-3

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM60P02Y-S2	VSM60P02Y	SOT-23-3	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	-60	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	-2	А	
Pulsed Drain Current (Note 1)	I _{DM}	-8	Α	
Maximum Power Dissipation	P _D	1.7	W	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	$^{\circ}\!\mathbb{C}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient ^(Note 2)	$R_{\theta JA}$	73.5	°C/W
---	-----------------	------	------

Electrical Characteristics (T_C=25[°]Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-60	-	-	V	

Shenzhen VSEEI Semiconductor Co., Ltd

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	-1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•	•		•
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-1.4	-2.0	-2.6	V
Desir Course On Otata Basistan	R _{DS(ON)}	V _{GS} =-10V, I _D =-2A	-	140	160	mΩ
Drain-Source On-State Resistance		V _{GS} =-4.5V, I _D =-2A	-	160	200	mΩ
Forward Transconductance	g FS	V _{DS} =-5V,I _D =-2A	-	3	-	S
Dynamic Characteristics (Note4)				•		
Input Capacitance	C _{lss}		-	452	-	PF
Output Capacitance	C _{oss}	V_{DS} =-30V, V_{GS} =0V, F=1.0MHz	-	27.8	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UIVIHZ	-	21.5	-	PF
Switching Characteristics (Note 4)			•	•		
Turn-on Delay Time	t _{d(on)}		-	40	-	nS
Turn-on Rise Time	t _r	V_{DD} =-30V, I_D =-2A,	-	35	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{G} =3 Ω	-	15	-	nS
Turn-Off Fall Time	t _f		-	10	-	nS
Total Gate Charge	Qg	V - 20 L - 24	-	9.0	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} =-30,I _D =-2A, V _{GS} =-10V	-	1.6	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =-10V	-	1.9	-	nC
Drain-Source Diode Characteristics			•	•		•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-2A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-2	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F =- 2A	-	25		nS
Reverse Recovery Charge	Qrr	$di/dt = -100A/\mu s^{(Note3)}$	-	31		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance(Ω)

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 10 ID Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)