AntiaTech

Test Documentation

09.12.2022

Table of Contents

AntiaTech Test Documentation	3
Introduction	3
Definitions	3
Unit Test	
Feature Test	3
Integration Test	3
User Acceptance Test	3
Unit Tests	4
Check if DC Motors Work Continuously with Rated Current	4
Check If Maximum Power Consumption of All Motor Units is In Proper Limits	5
Check If Mechanical Components Fits Our Purpose After Printing Them	6
Check if Servo Motor of Ball Thrower Can Work as Expected	7
Check if Step Motor of Ball Thrower Can Work as Expected	8
Check if Microphones Work Properly	9
Check if System Ball Tracking Can Work Continuously	10
Feature Tests	11
Check if ball-thrower can throw ball with manually entered input speeds	11
Check if balls are sent to barrel with manually entered input speeds	12
Check if Barrel and Motors Are Connected Properly	13
Check if Ball Thrower Changes Vertical Angles Correctly	14
Check if Ball Thrower Changes Horizontal Angles Correctly	15
Check if System Can Track Ball Accurately	17
Check if Raspberry Pi Understands the Verbal Commands	18
Integration Test	19
Check if ball-thrower mechanism with all components can work properly	19
Check if immediate photo capture is possible by signaling	

AntiaTech Test Documentation

Introduction

This document provides possible test scenarios of the product. There are 4 different test scenario are defined; unit, feature, integration and user acceptance tests.

This demo document contains only the first three. Since the final product has not been completed, we don't have an acceptance test yet.

Definitions

Unit Test

By doing the unit test, we aim to test all minor elements of the system. These tests are not very comprehensive but very critical for our processes because any fault in a minor component in the system may have an important effect on other subsystems.

Feature Test

Feature test aims to test the combination of sub-system elements. These tests are executed for all different sub-systems, and the test inputs don't depend on the other sub-systems.

These tests are important in order to prevent any fault while integrating the sub-systems.

Integration Test

Integration test aims to test the behavior of a combination of all sub-systems. By doing these tests, we would like to ensure that our sub-systems are properly integrated and can work together.

User Acceptance Test

User Acceptance test aims to test if the final product meets the specifications of the project definition. This test will probably be executed at the end of the development progress.

Unit Tests

Check if DC Motors Work Continuously with Rated Current

Summary

Location & Date

TBD

Description & Aim

DC motors will probably work continuously during the game. Thus, we need to check if they can properly work continuously without interruption or hazard. In this test, we aims to assure that dc motors can work at least 10 minutes without interruption with rated current.

Participants

TBD

Preconditions & Environment Requirements

- 1. DC Motors which are connected with wheels
- 2. DC Supply
- 3. Digital Multimeter (Ground Truth: If multimeter & dc supply shows the same values)

Step	Data	Expected Result	Actual Result
Connect 1 of the dc motors to the supply	-	-	
Then, activate power supply with zero voltage & current	0V,0A	No motion observed	
Then, increase voltage	9V	No motion observed	
limit		because supply is at CC mode	
Then, starts to increase current	0.10A	Motor starts to run with low speed	
Then, set current value to the rated current of dc motor	0.5A	Motor speed increases, Motor temperature increases	
Then, wait 10 minutes to observe if motor has been damaged or not	10 minutes	Motor should run continuously without interruption Motor temperature should not be high	

Check If Maximum Power Consumption of All Motor Units is In Proper Limits Summary

Location & Date

TBD

Description & Aim

In the project, we are going to use batteries to power up all motor components. Since the batteries has some current limits, we need to check our maximum power ratings to run our system in proper limits.

In this test, all motors are run at their rated currents and maximum current rate will be observed. Then, it is optimized according to batteries capability.

Participants

TBD

Preconditions & Environment Requirements

- 1. DC Supply
- 2. Battery
- 3. Digital Multitemer *2 (Ground Truth: If multimeter & dc supply shows the same values)
- 4. DC Motors

Step	Data	Expected Result	Actual Result
Connect all dc motors at the same dc supply	-	-	
Then, activate power supply with zero voltage & current	0V,0A	No motion observed	
Then, increase voltage	9V	No motion observed	
limit		because supply is at	
		CC mode	
Then, starts to increase	0.3A	Motors start to run	
current		with low speed	
Then, increate the	-	Motors reach top	
current up to DC		speed.	
supply enters VC		At 9V case, maximum	
mode		current is observed.	
		Check the 1 series 9V	
		battery capability to	
		run all motors at the	
		same time.	

Check If Mechanical Components Fits Our Purpose After Printing Them Summary

Location & Date

TBD

Description & Aim

Some mechanical components are printed in 3D printer. Since they are all plastic, their mechanical strength should be checked. Note that this test doesn't aim to broke printed material. This test only aims to be assure that if printed component is suitable for us or not.

Participants

TBD

Preconditions & Environment Requirements

- 1. Printed Barrel
- 2. Printed Wheels
- 3. Printed Floor
- 4. Printed Motor Bed
- 5. Printed Screw Bed
- 6. Other Printed Components
- 7. No ground truth for this tests

Step	Data	Expected Result	Actual Result
Check Barrel	Ball can pass inside it		
Check DC Motor Bed	Motor Fit In Bed		
Check Screw Bed is			
Capable to Carry all			
Balls etc.			
Check Whells fit into			
Barrel and DC Motor			
Mill			
Check if Floor can	Floor can carry all	Up to 1.5KG	
capable to carry	balls.		
weight			

Check if Servo Motor of Ball Thrower Can Work as Expected Summary

Location & Date

Ground LAB C Block – 9/12/2022 19:00

Description & Aim

In the project, a servo motor is placed next to the ball thrower's tank, and it supplies vertical angle changes fort he ball thrower. Aim of this test is to check if the servo motor is working properly in desired limits. Ground truth is protactor with right angle measurements.

Participants

TBD

Preconditions & Environment Requirements

- Arduino
- Servo Motor
- Protractor

Step	Data	Expected Result	Actual Result
Connect Servo Motor Directly to the Arduino	-	-	-
Write a Code with 10° Angle Changes every time step in Arduino	-	-	-
Compile and Upload the Code to Arduino	-	RX TX leds of the Arduino blinks	-
Time Step 1	10°	• Protactor angle should show 10°	
Repeat Previous Step 1 for 10 times	20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°	• Protactor angle should show 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°	
Write and Upload a Code with 5° Angle Changes every time step in Arduino			
Time Step 1	5°	• Protactor angle should show 5°	
Repeat Previous Step 1 for 10 times	10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°	• Protactor angle should show 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°	
Write a Code with 100° Angle Changes in Total in Arduino			
Uploaded Code runs and changes the servo motor angle	100°	• Protactor angle should show 100°	

Check if Step Motor of Ball Thrower Can Work as Expected

Summary

Location & Date

TBD

Description & Aim

In the project, a step motor is placed next to the ball thrower's tank, and it supplies horizontal angle changes fort he ball thrower. Aim of this test is to check if the step motor is working properly in desired limits. Ground truth is protactor with right angle measurements.

Participants

TBD

Preconditions & Environment Requirements

- · Power Supply and Motor Driver
- · Step Motor
- · Protractor

Step	Data	Expected Result	Actual Result
Connect Step Motor to Power Supply and Motor Driver	-	-	-
Give Different Voltages to Change Step Motor Angle	-	-	-
Give High to First Input of Motor Driver to Change Step Motor Angle		· Protactor angle should show 0°	
Repeat Previous Step 3 times	45°, 90°, 135°	· Protactor angle should show 45°, 90°, 135°	

Check if Microphones Work Properly

Summary

Location & Date

TBD

Description & Aim

Three microphones are planned to be used in this project, two for recording the sound of the balls hitting the table and one for acquiring the player's commands. Since the performance expected from the microphones is not high, this standard unit test is designed to be applied to all microphones.

The ground truth for this test is a recorded clear and barely noisy speech including one or a few verbal commands.

Participants

TBD

Preconditions & Environment Requirements

- A quiet place
- A device capable of recording clear and barely noisy sound (e.g., laptop)
- Another device capable of playing sound (e.g., mobile phone)
- USB microphone
- Distance measurement tool (e.g., a ruler)

Step	Data	Expected Result	Actual Result
Record a speech including pre-determined command(s) and get it ready to be played	-	-	-
Connect microphone to start recording sound	-	-	-
Play the pre-recorded speech and record it via microphone	10 times 40 centimeters, distance between speaker and microphone	all records include the command(s) in a clearly understandable way	-
Repeat the previous step	10 times 70 centimeters, distance between speaker and microphone	at least 8 records include the command(s) in a clearly understandable way	-
Repeat the previous step	10 times 110 centimeters, distance between speaker and microphone	at least 7 records include the command(s) in an understandable way	-

Check if System Ball Tracking Can Work Continuously

Summary

Location & Date

TBD

Description & Aim

We have designed our system to be simple and user-friendly. So, we expect the system to be up and running at the moment it is powered. Camera will continuously monitor the table as the practices goes on. We need to see if the image processing module of our product works for long periods of time without any overheating or program crashing.

Participants

TBD

Preconditions & Environment Requirements

- RasberryPi
- An image sensor (a webcam, piCamera etc.)
- A table tennis set-up

Step	Data	Expected Result	Actual Result
Connect image sensor to the RasberryPi	-	-	-
Connect power supply to RasberryPi	-	Image processing program starts running automatically	-
Let the system run for a while	2 hours(runtime)	-40° <t<sub>measured °<85°</t<sub>	TBD
Let the system run for a while	2 hours(runtime)	No crashing	TBD

Feature Tests

Check if ball-thrower can throw ball with manually entered input speeds

Summary

Location & Date

TBD

Description & Aim

After combining minor components, we need to check if ball-thrower can throw balls with desired speed and desired direction.

Participants

TBD

Preconditions & Environment Requirements

- 1. Power Supply
- 2. Ball
- 3. Ball-Thrower Body with controller elements

Step	Data	Expected Result	Actual Result
Check if all motor components are connected to input terminal	-	All motors should be connected to the related port of motor driver	
Then, power up controller but not dc motors	5V	Arduino and Controller Circuit leds should be activated	
Then, set PWM of motor controller inputA	20%	Only motors 1 should starts to run	
Then, push a ball to the barrel and check if it is thrown by whell		Ball, should be thrown with low speed	
Then, change the PWM of motor controller inputA	70%	 Motor should accelerate Possible "zzz" noise can be occurred Motor should run continously 	
Then, change the PWM of motor controller inputA	0%	Motor 1 should decelerate and stop.	
Then, repeat the steps above for the motor 2	-	-	

Check if balls are sent to barrel with manually entered input speeds Summary

Location & Date

TBD

Description & Aim

Balls should be pushed to the barrel in order to throw them. Thus, we build a push mechanism that contains a turning platform and 1 dc motor.

Participants

TBD

Preconditions & Environment Requirements

- Balls
- 2. Box Mechanism which contains all dc motors, turning platform(floor) and controller

Step	Data	Expected Result	Actual Result
Check the motor is		Motor terminals	
connected to the input		should be connected	
terminal.		the terminals properly.	
Then, give power to the controller but not motors.		Arduino and Controller Circuit leds should be activated	
Then, set PWM of motor controller	30%	Balls should be pushed to the barrel slowly (1ball/1 sec)	
Then, change the PWM of motor controller	80%	Balls should be pushed to the barrel fastly (2 balls /3sec)	

Check if Barrel and Motors Are Connected Properly

Summary

Location & Date

TBD

Description & Aim

DC motors of ball thrower should be integrated to the barrel in order to proper throw mechanism. Thus, we need to do test this part carefully because in case of any error or mistake, the balls can't be accelarated properly.

Participants

TBD

Preconditions & Environment Requirements

- 1. Printed Barrel
- 2. Printed Motor Bed
- 3. DC Motor connected with a Whell
- 4. DC Supply
- 5. Ball

Step	Data	Expected Result	Actual Result
Check if Motor Bed		When someone tries to	
and Barrel is well		seperate bed from	
connected		barrel, it should not be	
		seperated	
Then, check if DC		DC motor should fit	
motor can fit into		into the bed and there	
motor bed		should not be any	
		space.	
Then, put DC motor		Motor is ready to be	
into the bed and		run	
connect its terminal to			
dc supply directiy			
Then, activate dc	V = 9V	Motor should start to	
supply and set the		accelerate and motor	
voltage		should be stationary	
		inside the bed	

Check if Ball Thrower Changes Vertical Angles Correctly

Summary

Location & Date

TBD

Description & Aim

After combining the servo motor with the rest of the ball thrower mechanism, vertical angle changes of the overall system with the proper time limits will be checked. The ground truth is protactor measuring the angle differences, and chronometer measuring the time change.

Participants

TBD

Preconditions & Environment Requirements

- Tennis Table
- Balls
- DC Power Supply
- Ball Thrower
- Protactor
- Chronometer

Step	Data	Expected Result	Actual Result
Activate ball thrower	-	-	-
Activate the mode with 10° angle changes for every time step, and minimize the mass of the ball thrower	-	-	
Time Step 1 - Ball thrower with minimum mass rotates vertical 10°	10°	Protactor angle should show 10°	
Repeat the previous step 6 times	20°, 30°, 40°, 50°, 60°	Protactor angle should show 20°, 30°, 40°, 50°, 60°	
Activate the mode with 10° angle changes for every time step, and maximize the mass of the ball thrower			
Time Step 1 - Ball thrower with maximum mass rotates vertical 10°	10°	Protactor angle should show 10°	
Repeat the previous step 6 times	20°, 30°, 40°, 50°, 60°	Protactor angle should show 20°, 30°, 40°, 50°, 60°	
Activate the mode with 10° angle changes for every 3 secs			
Ball thrower rotates vertical 10° every 3 seconds	10°, 20°, 30°, 40°, 50°, 60°	Protactor angle should change every 3 seconds and show 10°, 20°, 30°, 40°, 50°, 60° in total 18 seconds	

Check if Ball Thrower Changes Horizontal Angles Correctly Summary

Location & Date

Ground LAB

Description & Aim

After combining the step motor with the rest of the ball thrower mechanism, horizontal angle changes of the overall system with the proper time limits will be checked. The ground truth is protactor measuring the angle differences, and chronometer measuring the time change.

Participants

TBD

Preconditions & Environment Requirements

- 1. Tennis Table
- 2. Balls
- 3. DC Power Supply
- 4. Ball Thrower
- 5. Protactor
- 6. Chronometer

Scenario			
Step	Data	Expected Result	Actual Result
Activate ball thrower	-	-	-
Activate the mode with 45° angle changes for every time step, and minimize the mass of the ball thrower	-	-	
Time Step 1 - Ball thrower with minimum mass acts at horizontal 0°	0°	Protactor angle should show 0°	
Repeat the previous step 4 times	45°, 90°, 135°, 180°	Protactor angle should show 45°, 90°, 135°, 180°	
Activate the mode with 45° angle changes for every time step, and maximize the mass of the ball thrower			

Time Step 1 - Ball thrower with maximum mass rotates vertical 45°	45°	Protactor angle should show 45°	
Repeat the previous step 4 times	45°, 90°, 135°, 180°	Protactor angle should show 45°, 90°, 135°, 180°	
Activate the mode with 45° angle changes for every 3 secs			
Ball thrower rotates vertical 45° every 3 seconds	0°, 45°, 90°, 135°, 180°	Protactor angle should change every 3 seconds and show 0°, 45°, 90°, 135°, 180° in total 12 seconds	

Check if System Can Track Ball Accurately

Summary

Location & Date

TBD

Description & Aim

Camera will continuously monitor the table as the practices goes on. We need to see if the image processing module of our product works.

Participants

TBD

Preconditions & Environment Requirements

- RasberryPi
- An image sensor (a webcam, piCamera etc.)
- A table tennis set-up

Step	Data	Expected Result	Actual Result
Connect power supply	-	-	-
to RasberryPi			
Connect image sensor	-	-	-
to the RasberryPi			
Execute the ball	-	Program runs	TBD
tracking software		successfully	
Place the balls in	x and y coordinates of	TBD	TBD
predestined locations	the pre-decided		
where we know the x	locations (in cm)		
and y locations			
(ground truth).			
See if the algorithm	-	Program prints any	TBD
responses		(x,y) location to the	
		console	
Compare the	x and y coordinates of	exact $(x\pm 1,y\pm 1)$	TBD
generated results and	the pre-decided	locations of the balls	
ground truth.	locations (in cm)		

Check if Raspberry Pi Understands the Verbal Commands

Summary

Location & Date

TBD

Description & Aim

To check how successfully Raspberry Pi understands the verbal commands recorded via a USB microphone.

Participants

TBD

Preconditions & Environment Requirements

- USB microphone
- Raspberry Pi 4 (4GB) (running speech recognition software)
- Pre-recorded verbal commands (by different people if possible)
- A device capable of playing sound (e.g., mobile phone)
- Distance measurement tool (e.g., a ruler)

Step	Data	Expected Result	Actual Result
Run Raspberry Pi	-	-	-
Connect USB microphone	-	-	-
Play a verbal command	10 times	At least 9 times	-
record and check whether	40 centimeters,	Raspberry Pi	
Raspberry Pi understands	distance between	understood the	
	speaker and	command	
	microphone		
Repeat the previous step	10 times	At least 7 times	-
	70 centimeters,	Raspberry Pi	
	distance between	understood the	
	speaker and	command	
	microphone		
Repeat the previous step	10 times	At least 5 times	-
	110 centimeters,	Raspberry Pi	
	distance between	understood the	
	speaker and	command	
	microphone		
Repeat the previous three	-	-	-
steps for different pre-			
recorded verbal			
commands			

Integration Test

Check if ball-thrower mechanism with all components can work properly.

Summary

Location & Date

TBD

Description & Aim

After constucting all mechanical components of the project, we need to assure that ball-thrower can take ball from box and throw them with desired speed and to desired direction.

Participants

TBD

Preconditions & Environment Requirements

- 1. All mechanical part is done (Barrel, box, other dc motor components etc.)
- 2. Balls

Step	Data	Expected Result	Actual Result
Check if all necessary		All required	
components are		components are ready	
connected to the		to power up.	
power supply,s.t			
battery.			
Then, activate one of	Speed of motor will be	Motor 1 should starts	
the barrel motors	determined by a pot or	and accelerate	
	Raspberry command		
Then, activate the ball	Speed of motor will be	Balls are started to be	
pusher motor	determined by a pot or	pushed to barrel and	
	Raspberry command	they should be thrown	
Then, activate the	Direction of motor	Barrel should starts to	
servo motors that	will be determined by	turn through desired	
change the motor	a pot or Raspberry	direction while they	
direction horizontally	command	are currently throwing	
		balls	
Then, stop the servo	Direction of motor	Barrel angle should	
motor of horizontal	will be determined by	change according to	
motion and change the	a pot or Raspberry	user decision	
angle of barrel for	command		
vertical direction			

Check if immediate photo capture is possible by signaling

Summary

Location & Date

TBD

Description & Aim

We would like to capture exactly where the ball has landed on the table. To achieve this, we plan to sense when the ball has hit the table, be it vibration sensor or audio sensor, and capture the place of the ball with our image sensor. This test is to see if we can capture the exact place of the ball with little error when a correct signal is emitted.

Participants

TBD

Preconditions & Environment Requirements

- RasberryPi
- An image sensor (a webcam, piCamera etc.)
- A table tennis set-up
- A signal emitter with the correct timing
- Ball launcher shooting at the exact place at an interval (ground truth)

Step	Data	Expected Result	Actual Result
Connect power supply	-	-	-
to RasberryPi			
Connect image sensor	-	-	-
to the RasberryPi			
Execute the ball	-	Program runs	TBD
tracking software		successfully	
Start the ball launcher	-	-	-
Compare the	(x,y) coordinates (in	$(x\pm 2cm, y\pm 2cm)$	TBD
generated results and	cm) of the place where		
ground truth.	the balls repeatedly		
	lands		