

تمرین درس رباتیک دوره کارشناسی ارشد

رشته مهندسي مكاترونيك

عنوان

كوييز رباتيك

نگارش

عليرضا اميرى

تحقیق سوم، بسط رابطه نیروی نیوتن

مقدمه

معادلات اویلر-کین یک تعمیم مهم از مکانیک کلاسیک هستند که برای توصیف دقیق تر حرکت جسم صلب توسعه یافته اند. این معادلات شامل توصیف همز مان حرکت انتقالی و چرخشی اجسام بوده و بر پایه اصول نیوتن و اویلر بنا شده اند.

قانون دوم نیوتن و نقص آن

قانون دوم نیوتن بیان می کند:

$$F = ma (1)$$

این معادله تنها حرکت انتقالی را توصیف میکند و نیروهای داخلی، قیود و نیروهای اینرسی در دستگاههای غیر لخت را در نظر نمی گیرد.

بسط معادلات اويلر

اویلر این معادلات را گسترش داد تا حرکت چرخشی را نیز شامل شود:

$$M = I\alpha \tag{(Y)}$$

که در آن:

- \bullet گشتاور اعمالی است،
 - تانسور ممان اینرسی، I
 - شتاب زاویهای.

فرمول بندى كلى معادلات اويلر-كين

بعدها کین معادلات نیوتن-اویلر را به فرم کلی تری بسط داد که برای سیستمهای چندجسمی کاربرد دارد:

$$M\ddot{q} + C(q, \dot{q})\dot{q} + G(q) = Q \tag{(7)}$$

که در آن:

- مختصات تعميميافته،
- ماتریس جرم تعمیمیافته، M
- اثرات كوريوليس و گريز از مركز، $C(q,\dot{q})$
 - نیروهای گرانشی، G(q)
 - Q نیروهای تعمیمیافته خارجی.

كاربردها

معادلات اویلر-کین در زمینه های مختلفی از جمله:

- طراحی سیستمهای رباتیکی،
 - ديناميک وسايل نقليه،
- تحلیل سیستمهای چندجسمی،
- شبیه سازی فیزیکی در مهندسی مکانیک و هوافضا.

نتيجهگيري

معادلات او یلر-کین با در نظر گرفتن نیروهای اینرسی، قیود و حرکت چرخشی، یک ابزار قدرتمند برای تحلیل سیستمهای مکانیکی پیچیده فراهم میکنند.