Computer Organization
Organization means how various parts
of a system interact
Computer Linput durius E from humans directly from hyboard/mouse from other computer mimory durius
> ALU > CU
> output derices
Types of computer servers. Servers. Embedded devices perform
disktop
- for individual purpose
- have mouse, keyboard.
-> low cost
- has higher storage & compelling methods
-, for office, web, file storage
-> costly scientific purposes is weather forecasting

Embedded duris A computational durie is placed in another durie eg. washing m/c, car, phone... hard softer spe does compiler Hambles - control 1/0 duries - protects info (succity) - minory management In me luck long, to perform a task, i's po's are provided whose top part is husered for what op. is to be performed. ng: a+b → 101101110110010 € in assembly long, add a, b) assembler eg: a+b×c reg. multtibic] in assembly level add t, , a compile / interpreter ... use higher level proton ellated

Scanned by CamScanner

1/0 deviis	
Mouse: -> Doug Engelbert invented @ 19	67 - CUI
1973 (2117	
Mouse = light source - light the s. camera - capture 3 400 plousson - plouss the	image to find
speed and	direction
Monitor: Use LED now, used	LCO tube; before cathor xay tub
soulie is	diff
- gui powel to bind I	ight using trystus
to gue trong	
-> associated with each	
matter to control its	
intensity wird has 3 c	olours R, CA, B
3 active mat	he for a pine.
-reach volour has 8	bits and is stored
in bit map nathe	
-s each pivil has ar	ray of bits called
bitmap	

Blu- say disk Networking technology communicate among computers - LAM - WAN - MAN -slarge computer size du to vaccum tube 1951 -, In 1965, transistors technology _, In 1975, 1Cs - In 1995 VLSI - In 2000 ultra LSI arintary

How to find execution time if no of instruct is guen? No. of clockagele = total no. of instruction * Avg no of elk cycle for I instruction (CPI) elk cycle per instruction serie dk cycle is not some * instruction : cru uccution time = no of elk yele x elk period Q]. If we have 2 implementations of same architecture. comp. A has alk eyele of 250ps & CPI of 20 for some pagem. Comp. B has elk eyele 300PS & CPI of 1.2 for same pegen. which comp. faster for this program and by how much? $E_1 = n \times 20 \times 250 = 5000n$ Ez = n x 1.2 x 500 = 600 n $\frac{P_1}{P_2} = \frac{E_2}{E_1} = 1.2$ E2>E2 > 1 is faster $\frac{\epsilon_1}{\epsilon_2} = \frac{5.0}{6} \qquad \epsilon_1 = \frac{8 \cdot 33 \epsilon_2}{10}$ P1 = 12PL

0)	A compiler is made of 2 vode sequence
	for a computer. The hardware designer
	have supplied the following facts:

instrictass	A	1 8 1	C
CPI	(2	3

for a particular high level long. Buy he compiler druce is considering 2 wile seg that seg following instruction count

code	A	B	c	
1	2	1	2.	
2	4	my	you many	

- (i) Which code seq executes the most instruction
- (ii) Which will be fastes?
- (iii) What is the CPI for each seq?

(ii)
$$E_{1A} + E_{1B} + E_{1C} = (2 \times 1 + 1 \times 2 + 2 \times 3)^{n} = 10n$$

 $E_{2A} + E_{2B} + E_{2C} = (4 \times 1 + 1 \times 2 + 1 \times 3)^{n} = 9n$
 $E_{2A} + E_{2B} + E_{2C} = (4 \times 1 + 1 \times 2 + 1 \times 3)^{n} = 9n$

Computer axittenetic sign magnitude drawback: -, 2 septesentation for o - cettabit to represent sign if 2 no ale adder. Langes -2 +1 to 2 n-1-1 sign-mag. convert to 2's => write iff the sign-may form, if we take 215 ways, then MSB =1 2 to 2 nd -1 (MSB=1 =) nois-ve 2's comp 1000 = 8 =) 00 000 1001-7 = -0001 0010 1011-5 0011 1100-4 100 1 1 0 1 -3 5 0101

sign retension: 6+ = 0110+ Overflow Q101 ve not true de overflow 6-7 => 0110 1001 -6-7 -> 1010+ 1(0011) + ve 2; wrong Multiplication (Shift & add) (64 bit) - shift left badd it I else shift left Multiplicant. 62 bit) -> Shift right multiplui (G4) -- 32+32 - 64 product (64) ALU 19: 2×3. Mc ma product multiplui multiplicant Heration stip 00000000 0011 000000010 0 0000010 00000100 P-P+ Mc 0001 sll me .00001000 STI MY 00000110 0000 P=P+ Mc

3 , 4 sll me 0000 00010000 00000110 SYL MY SILMC Total - ilitation = 32 man no of steps = 32 x 3 = 96. HOW HALL - HAR SO The state of the s