Общие результаты:

Был реализован алгоритм LAS для обучения модели распознавания речи(ASR). Удалось достичь метрик 0.2 CER и 0.38 WER на тестовом датасете (LibriSpeech: test-clean),

```
test_clean_CER_(Argmax): 0.20453171065767414
test_clean_WER_(Argmax): 0.3752777800030405
test_other_CER_(Argmax): 0.3650813055022221
test_other_WER_(Argmax): 0.6291003369033128
```

что соответствует 5 баллам.

Так же были выполнены следующие бонусные пункты:

- 1. Реализована LAS модель (+3)
- 2. Реализован beam search для LAS (+ 3)
- 3. Использовался ВРЕ токенайзер (+1)

Воспроизведение результатов:

0. Установить все необходимые пакеты

```
pip install -r requirements.txt
```

1. Запустить скрипт обучения токенайзера:

```
python train_tokenizer.py
```

2. Запустить первый скрипт обучения (конфиг las):

```
python train.py
```

3. Запустить скрипт обучения с другими параметрами (конфиг las_continue):

```
python train.py
```

4. Запустить скрипт инференса с необходимыми параметрами

Архитектура модели:

Вдохновлялся статьей <u>SpecAugment: A Simple Data Augmentation</u> <u>Method for Automatic Speech Recognition</u>, однако авторы не захотели раскрывать детали имплементации модели и вместо этого сослались на другую статью:

Model Unit Exploration for Sequence-to-Sequence Speech Recognition в которой авторы были более благосклонны и почти предоставили подробное описание архитектуры, однако все же сослались на третью статью где я и почерпнул последние недостающие детали Very deep convolutional networks for end-to-end speech recognition

Модель состоит из следующих частей:

- 0) Модель ожидает спектрограмму с spec_dim = 80
 - 1. Listener состоит из 2 частей:
 - 1. 2 слоя Conv2d со страйдом 2(нужен для сокращения размерности), число каналов 32(входные после преобразования спектрограммы 40)
 - 2. 3 слоя двусторонней LSTM c hidden_dim=256

- 2. Attention: здесь все просто классический attention из оригинальной статьи LAS(product attention)
- Decoder представляет собой 2 слоя односторонней LSTM, скрытое состояние первого слоя передается в аттеншн и результат добавляется к эмбеддингу предыдущего токена.

Стоит сказать, что собранная мной модель является некоторой комбинацией идей из статей перечисленных выше - архитектура аналогично моделям из SpecAugment, однако я уменьшил количество параметров в итоге получилось что-то похоже на small модель из второй статьи. При этом часть параметров модели мне так и не удалось найти(например размер эмбеддинга, так что пришлось выкручиваться).

Особенности обучения:

Функция потерь классический логарифм вероятности правильного ответа(в нашем случае токена), однако из-за того что модель это LAS мы предсказываем токен не для конкретного момента времени из аудиозаписи, а скорее работаем как генеративная LLM модель. По этому использовать сtc декодер нельзя и как следствие мы всегда предсказываем результат сразу для всей аудиозаписи. Однако т.к в начале наша модель будет очень плохо предсказывать токены, то необходимо гайдить её - подсказывать правильный токен. Работает это следующим образом: во время обучения с вероятностью tf_rate(0.9 или 0.7 в зависимости от фазы обучания) мы подставляем следующий токен из правильной транскрипции записи. Без этого модель не обучается совсем.

В итоге я не использовал никакие аугментации для финального обучения - LAS достаточно тяжело учиться и сам по себе, добавление аугментаций еще утяжелило бы этот процесс(собственно у меня не получилось добиться нормального обучения). Если верить первой статье добавление аугментаций действительно улучшает качество,

однако только в очень долгосрочной перспективе (они обучались неделю на 32 Google Cloud TPU, у меня таких ресурсов не было), по этому сосредоточился на более скромном сетапе.

Пример запуска с аугментациями:

https://wandb.ai/torchrik/pytorch_template_asr_example/runs/ey8sr6dd? nw=nwusertorchrik

Также проблемой были проблемой с градиентом - в середине обучения он по норме достаточно быстро растет и из-за этого обучения почти останавливается, в одной из статей упоминался clipping градиента, собственно им я и воспользовался, что позволило сильно улучшить качество.

Первая часть обучения (еще без клиппинга):

https://wandb.ai/torchrik/pytorch_template_asr_example/runs/7ql8d6n3?
nw=nwusertorchrik

Вторая часть обучения(уже с клипингом)

https://wandb.ai/torchrik/pytorch_template_asr_example/runs/9gamsbnc?
nw=nwusertorchrik

(ретроспективно первые две части можно склеить в одну) И финальная часть(здесь применяется более слабый гайдинг, что повышает качество генерации):

https://wandb.ai/torchrik/pytorch_template_asr_example/runs/o2fpk7vd?
nw=nwusertorchrik

BPE tokenizer:

Честно говоря я не пробовал обычный токенайзер, т.к кажется для LAS он работал бы хуже. Размер словаря подбирал просто - посмотрел на тот, который использовался в первой статье(1000) взял в 10 раз меньше(100) потому что модель тоже была в 10 раз меньше) Но было бы интересно поэксперементировать с другими датасетами тоже.

Beam search

Beam search позволил достаточно сильно улучшить качество модели, реализация есть на гитхабе, здесь лишь хочу отметить, что я встроил его в модель, т.к из-за особенностей архитектуры в beam search надо перезаписывать hidden state decoder.

Основная сложность

Самым сложным было понять архитектуру LAS, на это ушло первые пару дней. Действительно довольно много нетривиальных моментов на мой взгляд, которые слабо поясняются в статьях.

Дальнейшие улучшения:

Я уверен, что из этой архитектуры можно выбить гораздо лучший результат, однако у меня не хватило времени на эксперемнты(Точно хорошей идеей является добавить LM для инференса(хотя мне кажется, что здесь прирост в качестве будет не таким сильным как для классических архитектур с ctc, т.к наша модель уже своего рода "языковая модель").

Так же было бы интересно обучить большую модель с аугментациями, на это просто не хватило времени.