Lesson 5: Acoustic Modeling

0 前言

2021秋课程主页:

Speech Lab - Introduction to Digital Speech Processing (ntu.edu.tw)

1 Unit Selection

1.1 基础知识

语音识别任务中,HMM的每个state要对应到一个(或多个)token,或者说是unit。Unit可以是单词(word)、片语(phrase)和音素(phoneme)等等。选取unit时,首先要考虑一下几个方面。

- 1. Accuracy, 即unit能准确地表示语音的acoustic realization。
- 2. Trainability,即我们能够得到足够的数据来训练以该unit为基础的模型。
- 3. Generalizability,即训练数据里没有的词也能识别出来。

接下来分析几种可能unit各自的优劣。

Unit	Description	Accuracy	Trainability	Generalizability	Other
Word	词	如果数据 足够多则 精确的较 高。	对于小型词 汇表而言是 trainable 的。	不能表示新词。	
Phoneme	音素,也称音位, 是能区分语义的最 小发音单位。它与 phone(音)是不 同的概念。Phone 是phoneme的 acoustic realization。	粒度小, 可以比较 精确。	语言的 phoneme数 量比较有 限,容易训 练。	能表示新词。	孤立的 phoneme 无法考虑 上下文之 间的关 系。
Syllable	音节,必须包括一个元音或半元音,两端是辅音或者辅音的cluster。	取决于语言。	取决于语言。	能表示新词。	例如日语 只有50 音,汉语 有1300多 个,而英 语则有 30000多 个。

其中phoneme应该是相对而言比较好的unit,但其最大的问题在于无法考虑上下文信息,或者说周围其它phoneme的影响。举例来说,在 target , tea 与 two 中,词首的 t 对应到phoneme是一样的,但实际上,在念 target 中的 t 时,人的发声器官(articulators)已经准备接后面的 a 甚至 r 了,就与 tea 和 two 有微妙的不同。

这种现象称为coarticulation effects,即我们发某个音时,会受到周围其它音的影响。*The Study of Language*—书中的说明如下。

The process of making one sound almost at the same time as the next sound is called coarticulation.

它包括了同化 (assimilation) 、鼻音化 (nasalization) 和省音 (elision) 。

处理上下文依赖方法有如下几种。

- Left-context-dependency, 即只考虑前一个phoneme的影响。
- Right-context-dependency, 即只考虑后一个phoneme的影响。
- Both,即考虑前后相邻两个phoneme的影响。
- Intra-word,即只考虑词内部的上下文依赖。
- inter-word,即还要考虑词之间的上下文依赖。

值得注意的是,通常right-context-dependency的影响要大于left-context-dependency。

1.2 Triphone

Triphone是一种很好的unit。它考虑了相邻两个phonome的影响,即对于某个phoneme,如果前后的phoneme不同则视为不同的triphone。例如在 sick 和 quick 中, t 是相同的phoneme。但 t 对应的triphone为 s-z-k 和 w-z-k ,是不同的。

虽然triphone很好地结局了上下文依赖的问题,具有很高的accuracy和generalizability。但其数目却是非常大的,导致不好的trainability。例如一门语言中有60个phoneme,那么不同的triphone就有60的三次方个!为此,我们可以使用parameter sharing的方法将某些triphone视为一种,从而减少总数。这样会牺牲一定accuracy,但可以增加trainability。

1.3 Parameter Sharing

如下图,一个triphone在HMM中可能会对应多个states。Sharing at model level是指让那些相似的 triphone直接共享同一个HMM模型。而sharing at state level则是让不同triphone中相似的state共用 GMM。用得更多的是sharing at state level。

• Sharing at Model Level

Generalized Triphone

• Sharing at State Level

Shared Distribution Model (SDM)

- clustering similar triphones
 and merging them together
- those states with quite different distributions do not have to be merged

2 Information Theory

2.1 基础知识

如下图,一个信息源(information source)s 可以产生一些列事件(event)。其中每个事件 m_j 都是一个随机变量。它产生结果(outcome) x_i 的可能性为 $P(x_i)$ 。

Assume an information source: output a random variable m_j at time j $U = m_1 m_2 m_3 m_4 \dots m_j \text{: the } j\text{-th event, a random variable}$ $m_j \in \{x_1, x_2, \dots x_M\} \text{, M different possible kinds of outcomes}$ $P(x_i) = \text{Prob } [m_j = x_i] \text{, } \sum_{i=1}^{M} P(x_i) = 1 \text{, } P(x_i) \geq 0, \text{ } i = 1, 2, \dots M$

可以想象一种信息量的概念,它既能衡量我们看到某个事件所获得的信息多少,又能给出看完整个时间序列的信息多少。例如information source只产生0或1两个数字。如果产生1的概率为1,那么看到某个事件的结果为1时,我们没有得到任何信息,因为这完全可以推断出来。而如果产生1的概率为1/2,那么我们只有1/2的概率正确推断出事件结果。这也就意味着看到1时,我们获得了比较多的信息。进一步,如果产生0的概率很小,那么我们在一堆1中看到0时,应该会获得很多信息。

$$M=2$$
, $\{x_1, x_2\} = \{0, 1\}$

$$S \rightarrow U = 11111111111...$$

$$P(1) = 1, P(0) = 0$$

$$U = 110100101011001...$$

$$P(0) = P(1) = \frac{1}{2}$$

$$U = 1011111111111111111...$$

$$P(1) \approx 1, P(0) \approx 0$$

当观察到事件 m_i 的结果为 x_i 时得到的信息量 $I(x_i)$ 应当具备以下性质。

- $I(x_i) \geq 0$: 信息量是非负的,我们得到的信息不会越来越少。
- $\lim_{P(x_i) \to 1} I(x_i) = 0$: 必然出现的结果信息量为0。
- $I(x_i) \leq I(x_j)$ if $P(x_i) \geq P(x_j)$: 出现概率越小的结果,其携带的信息量越大。
- 信息量是可以累加的。这样我们就可以计算看到一系列事件的结果后得到的总信息量。

信息量的计算公式如下。对数的底数为2,结果的单位是bit。

$$I(x_i) = \log rac{1}{P(x_i)} = -\log P(x_i)$$

每个事件会依概率产生不同的结果。用加权信息量来度量每个事件携带的信息,称之为信息源*s*的信息熵(entropy)。

$$H(s) = \sum_{i=1}^{M} P(x_i) I(x_i) = -\sum_{i=1}^{M} P(x_i) \log P(x_i) = \mathbb{E}[I(x_i)]$$

举例如下。

$$\begin{array}{lll} - & M=2, \ \{x_1, \, x_2\} = \{0, 1\}, \ P(0) = P(1) = & \frac{1}{2} \\ & I(0) = I(1) = 1 & \text{bit (of information)}, & H(S) = 1 & \text{bit (of information)} \\ & U = 0 \ 1 \ \underline{1} \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ \dots \ \dots \end{array}$$

This binary digit carries exactly 1 bit of information

- M =4, $\{x_1, x_2, x_3, x_4\}$ = $\{00, 01, 10, 11\}$, $P(x_1)$ = $P(x_2)$ = $P(x_3)$ = $P(x_4)$ = $\frac{1}{4}$ $I(x_1)$ = $I(x_2)$ = $I(x_3)$ = $I(x_4)$ =2 bits (of information), H(S)=2 bits (of information) $U = 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ \dots \dots$

This symbol (represented by two binary digits) carries exactly 2 bits of information

This <u>binary digit</u> carries 0.42 <u>bit of information</u>

This <u>binary digit</u> carries 2 <u>bits of information</u>

可以知道,信息熵的大小与每个事件出现的概率是相联系的。如果信息源产生的事件只有两种结果,其 熵函数 (entropy function) 如下。

如果信息源产生的事件有三种结果, 其熵函数如下。

M=3,
$$\{x_1, x_2, x_3\} = \{0, 1, 2\}$$

P(0) = p, P(1) = q, P(2) = 1-p-q
[p, q, 1-p-q]

可以知道,系统越混乱(出现某个结果越不确定),则熵越大,所携带的信息量也就越大。

2.2 KL散度

对于两个概率分布P(x)和Q(x),可以用KL散度来衡量它们之间的距离。

$$D(P(x)||Q(x)) = \sum_{i=1}^M P(x_i)\lograc{P(x_i)}{Q(x_i)} = \mathbb{E}[\log P(x_i) - \log Q(x_i)] \geq 0$$

当且仅当两个分布完全相同时KL散度为0。

3决策数

3.1 基础知识

每经过一次切分(spliting)会产生新的结点。我们期待新结点的熵之和可以比父节点的熵小,即数据的分布越来越规整。最终在叶子结点。我们希望其中的数据纯度最高,熵最小,也就意味着它们属于同一类。

那么对于某个结点,我们需要找到一个能让子结点熵尽可能小的切分方法。衡量切分好坏的准则就是熵。

Assume a Node n is to be split into nodes a and b

weighted entropy

$$\overline{H}_n = \left(-\sum p(c_n|n)\log [p(c_n|n)]\right)p(n)$$

p(c|n): percentage of data samples for class i at node n

p(n): prior probability of n, percentage of samples at node n out of total

number of samples

entropy reduction for the split for a question q

$$\Delta \overline{H}_{n}(q) = \overline{H}_{n} - \left[\overline{H}_{a} + \overline{H}_{b}\right]$$

choosing the best question for the split at each node

$$q^* = \mathop{\arg\max}_{q} \left[\Delta \overline{H}_{\scriptscriptstyle n}(q) \right]$$

• It can be shown

$$\Delta \overline{H}_{n} = \overline{H}_{n} - (\overline{H}_{a} + \overline{H}_{b})$$

$$= D \left[a(x) \| n(x) \right] p(a) + D \left[b(x) \| n(x) \right] p(b)$$

$$a(x): \text{ distribution in node a, } b(x) \text{ distribution in node b}$$

n(x): distribution in node n , $D[\bullet | \bullet]$: KL divergence

 weighting by number of samples also taking into considerations the reliability of the statistics

• Entropy of the Tree T

$$\overline{H}(T) = \sum_{\text{terminal } n} \overline{H}_n$$

- the tree-growing (splitting) process repeatedly reduces $\overline{H}(T)$

3.2 Training Triphone Models

假设我们有50个phoneme,每个HMM中有5个state。根据triphone的特点可以知道,某一个phoneme可以对应到2500种triphone。如果我们为这2500种triphone都建立一个HMM显然是很费资源的。

于是可以使用决策树,每个非叶子结点都设置一个语言学的问题来给各种triphone做分类,从而合并那些相似的triphone。例如 b 对应的两个triphone a-b+u 和 o-b+u ,由于 a 和 o 都是元音且口腔中的发音部位都偏低,我们可以认为它们相似。

正如前文所述,几个triphone做parameter sharing有model level和state level。前者让相似的triphone直接共用同一个HMM;而后者是让它们共用某些state。通常后者使用的更多。

如上图, a-b+u , o-b+u , y-b+u 和 Y-b+u 在第一个state属于同一类,那么我们在建立模型时就不会为它们各自建立一个独立的HMM,而是在第一个state会共用同一个state distribution。同理我们会在后面的四个state上都建立一颗树,并找到可以共用state的triphone。最后的效果类似于下图。

由于triphone的总量很大,我们的数据集可能不能覆盖到所有triphone。

For any unseen triphone, traversal across the tree by answering the questions leading to the most appropriate state distribution

对于一个数据集中不存在的triphone,我们依然可以用一系列语言学的问题将其分类到与之最相似的类中。

4 参考

<u>數位語音處理概論2021Autumn-week05 - YouTube</u>