Exact Solutions > Ordinary Differential Equations > Second-Order Nonlinear Ordinary Differential Equations

3. Second-Order Nonlinear Ordinary Differential Equations

3.1. Ordinary Differential Equations of the Form $y_{xx}^{\prime\prime}$ = f(x,y)

- 1. $y_{xx}^{"} = f(y)$. Autonomous equation.
- 2. $y_{xx}^{"} = Ax^n y^m$. Emden–Fowler equation.
- 3. $y''_{xx} + f(x)y = ay^{-3}$. Ermakov (Yermakov) equation.
- 4. $y_{xx}'' = f(ay + bx + c)$.
- 5. $y_{xx}^{"} = f(y + ax^2 + bx + c)$.
- 6. $y''_{xx} = x^{-1}f(yx^{-1})$. Homogeneous equation.
- 7. $y_{xx}'' = x^{-3}f(yx^{-1})$.
- 8. $y_{mm}^{"} = x^{-3/2} f(yx^{-1/2})$.
- 9. $y''_{xx} = x^{k-2} f(x^{-k}y)$. Generalized homogeneous equation.
- 10. $y''_{xx} = yx^{-2}f(x^ny^m)$. Generalized homogeneous equation.

11.
$$y_{xx}'' = y^{-3} f\left(\frac{y}{\sqrt{ax^2 + bx + c}}\right)$$
.

- 12. $y_{xx}^{"} = e^{-ax} f(e^{ax} y)$.
- 13. $y''_{xx} = yf(e^{ax}y^m)$.
- 14. $y''_{xx} = x^{-2}f(x^n e^{ay})$.

15.
$$y_{xx}'' = \frac{\psi_{xx}''}{\psi} y + \psi^{-3} f\left(\frac{y}{\psi}\right), \quad \psi = \psi(x).$$

3.2. Ordinary Differential Equations of the Form

$$f(x,y)y_{xx}^{\prime\prime}=g(x,y,y_x^\prime)$$

- 16. $y''_{xx} y'_x = f(y)$. Autonomous equation.
- 17. $y''_{xx} + f(y)y'_x + g(y) = 0$. Lienard equation.
- 18. $y_{xx}'' + [ay + f(x)]y_x' + f_x'(x)y = 0$.
- 19. $y''_{xx} + [2ay + f(x)]y'_x + af(x)y^2 = g(x)$.
- 20. $y_{xx}^{"} = ay_x' + e^{2ax}f(y)$.

21.
$$y_{xx}'' = f(y)y_x'$$
.

22.
$$y_{xx}^{\prime\prime} = \left[e^{\alpha x}f(y) + \alpha\right]y_x^{\prime}$$
.

23.
$$xy_{xx}^{"} = ny_x^{'} + x^{2n+1}f(y)$$
.

24.
$$xy_{xx}'' = f(y)y_x'$$
.

25.
$$xy_{xx}'' = [x^k f(y) + k - 1]y_x'$$
.

26.
$$x^2y''_{xx} + xy'_x = f(y)$$
.

27.
$$(ax^2+b)y_{xx}''+axy_x'+f(y)=0$$
.

28.
$$y''_{xx} = f(y)y'_x + g(x)$$
.

29.
$$xy_{xx}'' + (n+1)y_x' = x^{n-1}f(yx^n)$$
.

30.
$$gy''_{xx} + \frac{1}{2}g'_xy'_x = f(y), \quad g = g(x).$$

31.
$$y''_{xx} = -ay'_x + e^{ax}f(ye^{ax})$$
.

32.
$$xy_{xx}'' = f(x^n e^{ay})y_x'$$
.

33.
$$x^2y_{xx}'' + xy_x' = f(x^ne^{ay})$$
.

34.
$$yy''_{xx} + (y'_x)^2 + f(x)yy'_x + g(x) = 0$$
.

35.
$$yy''_{xx} - (y'_x)^2 + f(x)yy'_x + g(x)y^2 = 0$$
.

36.
$$yy''_{xx} - n(y'_x)^2 + f(x)y^2 + ay^{4n-2} = 0$$
.

37.
$$yy_{xx}'' - n(y_x')^2 + f(x)y^2 + g(x)y^{n+1} = 0$$
.

38.
$$yy''_{xx} + a(y'_x)^2 + f(x)yy'_x + g(x)y^2 = 0$$
.

39.
$$yy''_{xx} = f(x)(y'_x)^2$$
.

40.
$$y_{xx}^{\prime\prime} - a(y_x^{\prime})^2 + f(x)e^{ay} + g(x) = 0$$
.

41.
$$y_{xx}^{\prime\prime} - a(y_x^{\prime})^2 + be^{4ay} + f(x) = 0$$
.

42.
$$y_{xx}'' + a(y_x')^2 - \frac{1}{2}y_x' = e^x f(y)$$
.

43.
$$y''_{xx} + \alpha (y'_x)^2 = [e^{\beta x} f(y) + \beta] y'_x$$
.

44.
$$y''_{xx} + f(y)(y'_x)^2 + g(y) = 0$$
.

45.
$$y_{xx}'' + f(y)(y_x')^2 - \frac{1}{2}y_x' = e^x g(y)$$
.

46.
$$y_{xx}'' = xf(y)(y_x')^3$$
.

47.
$$y_{xx}^{"} = f(y)(y_x^{"})^2 + g(x)y_x^{"}$$
.

48.
$$y_{xx}'' = f(x)g(xy_x' - y)$$
.

$$49. \quad y_{xx}^{"} = \frac{y}{x^2} f\left(\frac{xy_x^{"}}{y}\right).$$

50.
$$gy''_{xx} + \frac{1}{2}g'_xy'_x = f(y)h(y'_x\sqrt{g}), \quad g = g(x).$$

51.
$$y''_{xx} = f(y'^2_x + ay)$$
.

The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.

Copyright © 2004–2005 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ode/ode-toc3.pdf