# Deep Learning para series temporales

Part II

**Preprocessing and Analysis** 











### Contents

#### Part I: Introduction

Why am I here?

### **Part II: Preprocessing** and analysis

ETL + First observations

#### Part III: Classification

Labelling time series

### **Part IV: Segmentation** & Clustering

Identifying long-term behaviours

### **Part V: Forecasting**

Predicting the future

### **Part VI: Other Deep Learning tasks**

What more can we do?

### ETL

Preprocess the data



### ML Workflow



https://www.linkedin.com/pulse/data-collection-preprocessing-dr-john-martin-5kj3f/



### ETL (Extract + Transform + Load)

Extract





### ETL (Extract + Transform + Load)

Transform

DataFrame & ndarray

Analyze Transform as needed



### ETL (Extract + Transform + Load)

Load

DataFrame → □ →

### Extract

Get & Open de data





- Files: owned folder
- Database: SQL, Cassandra, MongoDB, PostgretSQL, Weight and Biases
- Specific webpages: Kaggle, zenodo, INE, HuggingFace
- Other's datasets: Github, GoogleDrive, e-mail, personal webpage





Extract







In this step we want to get a first touch with the time series data

- ▶ Take a look to the file... What types of data does the file contains? What variables do we want to analyze?
- Take a look to the variables, plot them
  - Problems with the scale? Fix it if the variates are in different scales so you can read the information correctly.
- Take a profile from the data to get a little nearer to its information.



### Extract

Let's take a look to the following dataset:

https://www.kaggle.com/datasets/uysalserkan/fault-inductionmotor-dataset

► Take a look to the file... What types of data does the file contains? What variables do we want to analyze?

The database is composed by several CSV (Comma-Separated Values) files, each one with 8 columns, one column for each sensor, according to:

- Col 1: tachometer signal that allows to estimate rotation frequency
- ▶ Cols 2-4: underhang bearing accelerometer (axial, radiale tangential direction)
- ▶ **Cols 5-7**: overhang bearing accelerometer (axial, radiale tangential direction)
- Col 8: microphone





### Extract

Se lleva un rato la descarga, dejarles en algún enlace público que puedan hacer wget un 20% del dataset...

Al variables are double, so we can analyze of all them



### **Dataset**

To begin we need a dataset to have an available time series.

#### **Activity 1**:

Step 1: Download the MetroPT3 dataset <a href="https://archive.ics.uci.edu/dataset/791/metropt+3+dataset/791/metropt+3+dataset/">https://archive.ics.uci.edu/dataset/791/metropt+3+dataset/</a>

Step 2: Create a jupyter notebook to begin working

Step 3: Use pandas to load

import pandas as pd
pd.read\_csv('MetroPT3(AirCompressor).csv')



### Extract | EDA (Exploratory Data Analysis) | Plot

- ► Take a look to the variables, plot them
- Plot variables by group
- Plot the first variable of each group toguether
  - Problems with the scale? Fix it if the variates are in different scales so you can read the information correctly.
- ► Take a profile from the data to get a little nearer to its information.



### **EDA**

Visualize the information contained in the dataset

### **Activity 2**:

Visualize a variable. Example for "Motor\_current".

ax = dataset.loc[:500].plot(x='Unnamed: 0',y='Motor\_current')
ax.set xticklabels(ax.get xticklabels(), rotation=45)



Try other variables!





### Extract | EDA | Profile

► Take a profile from the data to get a little nearer to its information.



### Extract | EDA | Analysis

- Check if the data is evenly spaced
- Take a look to the histogram
- Identify persistence with autocorrelation plot
- Use the lag plot to visualize autocorrelation
- Check periodogram plot
- Check pase plot
- Check calendar plots

--- Aquí no entiendo la mitad. Revisar y poner paso a paso ---



### Activity 3: Install and run ydata\_profiling

Oil temperature

!pip install ydata\_profiling
from ydata\_profiling import ProfileReport
profile = ProfileReport(dataset.sample(10000))
profile.to\_file('report.html')

### Data profiling

Time series can be examined through traditional EDA techniques



| Distinct                                                               | 1216      | Minimum                                        | 21.4                                                                                               |         |                |                                                       |                                |
|------------------------------------------------------------------------|-----------|------------------------------------------------|----------------------------------------------------------------------------------------------------|---------|----------------|-------------------------------------------------------|--------------------------------|
| Distinct (%)                                                           | 12.2%     | Maximum                                        | 88.1                                                                                               |         |                |                                                       |                                |
| Missing                                                                | 0         | Zeros                                          | 0                                                                                                  |         |                | dilib                                                 |                                |
| Missing (%)                                                            | 0.0%      | Zeros (%)                                      | 0.0%                                                                                               |         |                |                                                       |                                |
| Infinite                                                               | 0         | Negative                                       | 0                                                                                                  |         |                |                                                       |                                |
| Infinite (%)                                                           | 0.0%      | Negative (%)                                   | 0.0%                                                                                               |         |                | .illiillii.                                           | III.                           |
| Mean                                                                   | 62.656032 | Memory size                                    | 156.2 KiB                                                                                          |         |                |                                                       |                                |
|                                                                        |           |                                                |                                                                                                    | 40      | <sub>s</sub> o | ep.                                                   | q <sub>p</sub>                 |
|                                                                        |           | Extreme values                                 |                                                                                                    |         |                |                                                       | Mixte del                      |
| Ratistics Histogram                                                    |           | Extreme values                                 | Descriptive statist                                                                                | ics     |                |                                                       | Mice des                       |
|                                                                        |           | Extreme values                                 | Descriptive statist                                                                                | ics     |                | 6.575033                                              |                                |
| Quantile statist                                                       |           |                                                |                                                                                                    |         |                | 6.57503:<br>0.10493i                                  | 31                             |
| Quantile statist                                                       |           | 21.4                                           | Standard deviation                                                                                 |         |                |                                                       | 31                             |
| Quantile statist Minimum 5-th percentile                               |           | 21.4<br>52.2                                   | Standard deviation<br>Coefficient of variati                                                       |         |                | 0.10493                                               | 31<br>355<br>593               |
| Quantile statist Minimum 5-th percentile Q1                            |           | 21.4<br>52.2<br>57.8                           | Standard deviation<br>Coefficient of variati<br>Kurtosis                                           | on (CV) |                | 0.10493                                               | 31<br>955<br>593               |
| Quantile statist Minimum 5-th percentile Q1 median                     |           | 21.4<br>52.2<br>57.8<br>62.75                  | Standard deviation Coefficient of variati Kurtosis Mean                                            | on (CV) |                | 0.10493<br>0.24527<br>62.6560                         | 855<br>593<br>32               |
| Quantile statist Minimum 5-th percentile Q1 median Q3                  |           | 21.4<br>52.2<br>57.8<br>62.75<br>67.15         | Standard deviation<br>Coefficient of variati<br>Kurtosis<br>Mean<br>Median Absolute De             | on (CV) |                | 0.104938<br>0.245275<br>62.65600<br>4.675             | 31<br>355<br>593<br>32         |
| Quantile statist Minimum 5-th percentile Q1 median Q3 95-th percentile |           | 21.4<br>52.2<br>57.8<br>62.75<br>67.15<br>73.6 | Standard deviation<br>Coefficient of variati<br>Kurtosis<br>Mean<br>Median Absolute De<br>Skewness | on (CV) |                | 0.104938<br>0.245273<br>62.65603<br>4.675<br>-0.07020 | 31<br>355<br>593<br>32<br>6527 |

### Transform

Analyze and preprocess the data



|           | Time     | Available food (grs) |
|-----------|----------|----------------------|
| 4h        | 7:00 AM  | 100                  |
| 4h        | 11:00 AM | 50                   |
|           | 03:00 PM | 0                    |
| 3h 30 min | 06:30 PM | 100                  |
| 30 min    | 07:00 PM | 50                   |
| 4h        | 11:00 PM | 0                    |

Non evenly spaced





|           | Time     | Available food (grs) |
|-----------|----------|----------------------|
| 4h        | 7:00 AM  | 100                  |
| 4h        | 11:00 AM | 50                   |
|           | 03:00 PM | 0                    |
| 3h 30 min | 06:30 PM | 100                  |
| 30 min    | 07:00 PM | 50                   |
| 4h        | 11:00 PM | 0                    |

Units: h, min

#### **Spaces:**

4h | 3h 30 min = 240 m | 210 min

#### **Greatest common divisor:**

$$gcd(240, 190) = gcd(2^4 \cdot 3 \cdot 5, 2^* \cdot 3^* \cdot 5^* \cdot 7) =$$
  
= 2\*3\*5 = 30

=> The biggest space we can use to fit both space sizes is **h = 30 min** 

Non evenly spaced



| Time     | Available<br>food (grs) | Time     | Available<br>food (grs) | Time     | Available<br>food (grs) | Time     | Available food (grs) |
|----------|-------------------------|----------|-------------------------|----------|-------------------------|----------|----------------------|
| 07:00 AM | 100                     | 10:00 AM | Unknown                 | 01:10 PM | Unknown                 | 04:00 PM | Unknown              |
| 07:30 AM | Unknown                 | 10:30 AM | Unknown                 | 01:30 PM | Unknown                 | 04:30 PM | Unknown              |
| 08:00 AM | Unknown                 | 11:00 AM | 50                      | 02:00 PM | Unknown                 | 05:00 PM | Unknown              |
| 08:30 AM | Unknown                 | 11:30 AM | Unknown                 | 02:30 PM | Unknown                 | 05:30 PM | Unknown              |
| 09:00 AM | Unknown                 | 00:00 AM | Unknown                 | 03:00 PM | 0                       | 06:00 PM | Unknown              |
| 09:30 AM | 0                       | 00:30 PM | Unknown                 | 03:30 PM | Unknown                 | 06:30 PM | 100                  |

Evenly spaced 30 min





| Time     | Available<br>food (grs) | Time     | Available<br>food (grs) |
|----------|-------------------------|----------|-------------------------|
| 07:00 PM | Unknown                 | 10:30 PM | Unknown                 |
| 07:30 PM | Unknown                 | 10:30 PM | Unknown                 |
| 08:00 PM | Unknown                 | 11:00 PM | 0                       |
| 08:30 PM | Unknown                 |          |                         |
| 09:00 PM | 100                     |          |                         |
| 09:30 PM | 50                      |          |                         |

Length:

Evenly spaced 30 min





|          |                         | •        |                         |
|----------|-------------------------|----------|-------------------------|
| Time     | Available<br>food (grs) | Time     | Available<br>food (grs) |
| 07:00 PM | Unknown                 | 10:30 PM | Unknown                 |
| 07:30 PM | Unknown                 | 10:30 PM | Unknown                 |
| 08:00 PM | Unknown                 | 11:00 PM | 0                       |
| 08:30 PM | Unknown                 |          |                         |
| 09:00 PM | 100                     |          |                         |
| 09:30 PM | 50                      |          |                         |

Length:

7AM -> 11 AM => 16 h

=> 32 timestamps of 30 min

Length: 32

Evenly spaced 30 min



## How do we apply this change in python?

?





- Create an pd.DataFrame with index
- Add the previous data to its position within the index

Now we got the evenly spaced... What problem do we have?

?



### Transform | Example 1 | What problem do we have?

- We have a lot of "unknown" values.
- What will pandas have done with them at creating the dataset?
- How can we control the value in those place?
- ▶ In this case, ... do we know the values?
- What about the multivariate version... could we fill any of the columns with real data based on the known information?

### Missing data - Imputation





### Transform | Example 1 | Missing data - Imputation

In the multivariate version, in the column "Refilled food (grs)" we know exactly the hours we filled the bowl, thus we can just use '0' at the unknown timestamps.

In the 'Eaten food (grs)' or 'Available food (grs)' we don't know if the cat have eaten between timestamps, so, we must take a decision.



### Máster Deep Learning

### Transform | Missing data - Imputation

### **Definition: Imputation**

Replacing missing values (MVs) with an arbitrary value to fill the empty timestamps.

The most similar to the real time series, the better we are doing.





### Transform | Missing data - Imputation

- Use 'NaN' in the unknown positions.
- Constant (eg. use '0' for the unknown positions).
- Statistics: Mean/mode/median of the time series.



### Transform | Missing data - Imputation

- Use 'NaN' in the unknown positions.
  - The same as doing nothing
- Constant (eg. use '0' for the unknown positions).
  - Usually skews the value distribution
- Statistics: Mean/mode/median of the time series.
  - Bad for high variance variables





### Transform | Missing data - Imputation

- ▶ LOCF: Last Observation Carried Forward (makes sense?)
- NOCB: Next Observation Carried Backward (makes sense?)
- Rolling statistics: mean/mode/median across a time window



- LOCF: Last Observation Carried Forward (makes sense?)
  - Biases the time series if non-stationary
- NOCB: Next Observation Carried Backward (makes sense?)
  - Same as LOCF
- Rolling statistics: mean/mode/median across a time window
  - Adjusting window size is non-trivial, bad for large MV gaps





- Lineal interpolation
- Spline (polynomical) interpolation
- Additive/multiplicative/mixed decomposition



- Lineal interpolation
  - Assumes linearity in observations
- Spline (polynomical) interpolation
  - Assumes the variable is smooth without many perturbations
- Additive/multiplicative/mixed decomposition
  - Assumes non-relevant noise



- ▶ IA based (Imputation): RNN, K-NN, Miss Forest
  - Much more computionally expensive than the alternatives
- Other methods:
  - Regression
  - Multiple imputation: create various imputated dataset and combine them in some way
  - Inverse probability weighting
  - ARIMA/SARIMA: approximate through statistics
  - Matrix completion





## Transform | Missing data - Definitions

### **Definition: missing data**

Missing value related to a timestamp in a timeseries.



## Transform | Missing data - Definitions

### **Definition: Types of missing data**





### Transform

- LOCF: Last Observation Carried Forward (makes sense?)
  - Biases the time series if non-stationary
- NOCB: Next Observation Carried Backward (makes sense?)
  - Same as LOCF
- Rolling statistics: mean/mode/median across a time window
  - Adjusting window size is non-trivial, bad for large MV gaps

# Time window





# Transform | Time window | Subsequence

### **Definition: Subsequence**

If  $x^m = \{x_0, ..., x_m\}$  is a time series, a time window is a subsequence

$$x^{(k,n)} = \{x_{t_k}, \dots, x_{t_{k+n-1}}\}$$

$$k, n > 0; k + n - 1 < m$$



## Transform | Time window | Subsequence | I

### **Definition: Subsequence II**

If  $x: [1, m] \cap (\mathbb{N} \cup \{0\}) \to \mathbb{R}$  is a time series, a time window is a restriction

$$x \mid_{[k,n] \cap (\mathbb{N} \cup \{0\})}$$

$$k, n > 0; k + n - 1 < m$$



#### Transform | Time window | Time window

#### **Definition: Time window**

A time window is a subsequence of a time series, typically smaller in relation to the length of the series, used to compute derived features or perform analyses on the series.

Commonly, these extra features allow us to better understand patterns within the time series.

Extra feature: rolling mean, mean of two variates

Feature == variate

# Transform | Time window | Classification | Sliding window |



- Sliding window
- Tumbling window
- Rolling window
- Expanding window

# Transform | Time window | Classification | Sliding window |



### Sliding window

- $\{x^{(k+i\cdot stride,n)} \mid i \in \left[0, \frac{m-n-k}{stride}\right] \}$
- Fixed-size window that moves through the time series in steps of an specific given 'stride' size.
- ARIMA, AI-based (MVP)
- Tumbling window
- Rolling window
- Expanding window





Stride: 6 | m = 25



| k | Timestamps<br>(train)               |
|---|-------------------------------------|
| 0 | $\{t_0, t_1, \dots, t_{24}\}$       |
| 1 | $\{t_6, t_7, \dots, t_{30}\}$       |
| 2 | $\{t_{12}, t_{13}, \dots, t_{36}\}$ |
| 3 | $\{t_{18}, t_1, \dots, t_{42}\}$    |
| 4 | $\{t_{24}, t_1, \dots, t_{48}\}$    |

https://stackoverflow.com/questions/76836503/how-can-reproduce-animation-for-rolling-window-over-time





Stride: 25 | m = 25



| k | Timestamps<br>(train)               |
|---|-------------------------------------|
| 0 | $\{t_0, t_1, \dots, t_{24}\}$       |
| 1 | $\{t_6, t_7, \dots, t_{30}\}$       |
| 2 | $\{t_{12}, t_{13}, \dots, t_{36}\}$ |
| 3 | $\{t_{18}, t_1, \dots, t_{42}\}$    |
| 4 | $\{t_{24}, t_1, \dots, t_{48}\}$    |





Stride: 30 | m = 25



| k | Timestamps<br>(train)               |
|---|-------------------------------------|
| 0 | $\{t_0, t_1, \dots, t_{24}\}$       |
| 1 | $\{t_6, t_7, \dots, t_{30}\}$       |
| 2 | $\{t_{12}, t_{13}, \dots, t_{36}\}$ |
| 3 | $\{t_{18}, t_1, \dots, t_{42}\}$    |
| 4 | $\{t_{24}, t_1, \dots, t_{48}\}$    |
|   |                                     |

# Transform | Time window | Classification | Sliding window | U: Tumbling window |



- Sliding window
- Tumbling window
  - $\{x^{(k+i\cdot stride,n)} \mid i \in \left[0, \frac{m-n-k}{stride}\right] \}, n = stride$
  - $\{x^{(k+i\cdot n,n)} \mid i \in \left[0, \frac{m-k}{n} 1\right]\}$
  - Fixed-size window that moves through the time series in steps of an specific given 'stride' size.
- Rolling window
- Expanding window





Stride: 25 | m = 25



| k | Timestamps<br>(train)               |
|---|-------------------------------------|
| 0 | $\{t_0, t_1, \dots, t_{24}\}$       |
| 1 | $\{t_6, t_7, \dots, t_{30}\}$       |
| 2 | $\{t_{12}, t_{13}, \dots, t_{36}\}$ |
| 3 | $\{t_{18}, t_1, \dots, t_{42}\}$    |
| 4 | $\{t_{24}, t_1, \dots, t_{48}\}$    |

# Transform | Time window | Classification | Sliding window | VII: Rolling window |



- Sliding window
- Tumbling window
- Rolling window
  - $\{x^{(k+i\cdot stride,n)} \mid i \in \left[0, \frac{m}{\text{stride}} n k + 1\right] \}, \text{ stride} < n$
  - Sliding window with overlap: each window includes part of the previows window
  - Rolling statistics (rolling mean), time series smoothing
- Expanding window





Stride: 6 | m = 25



| k | Timestamps<br>(train)               |
|---|-------------------------------------|
| 0 | $\{t_0, t_1, \dots, t_{24}\}$       |
| 1 | $\{t_6, t_7, \dots, t_{30}\}$       |
| 2 | $\{t_{12}, t_{13}, \dots, t_{36}\}$ |
| 3 | $\{t_{18}, t_1, \dots, t_{42}\}$    |
| 4 | $\{t_{24}, t_1, \dots, t_{48}\}$    |

https://stackoverflow.com/guestions/76836503/how-can-reproduce-animation-for-rolling-window-over-time

# Transform | Time window | Classification Expanding window |



- Sliding window
- Tumbling window
- Rolling window
- Expanding window

$$\{x^{(k,n+i\cdot\Delta)} \mid i \in \left[0, \frac{m-n-k}{\Delta}\right] \}$$

- ightharpoonup Each window expands the previous one a  $\Delta$  size.
- Financial forecasting, cumulative statistics

## Transform | Time window | Classification Expanding window | I



Data: [1,2,3,5,8,13, ...]

Delta: 6 | m = 25



| k | Timestamps<br>(train)         |
|---|-------------------------------|
| 0 | $\{t_0, t_1, \dots, t_9\}$    |
| 1 | $\{t_0, t_1, \dots, t_{15}\}$ |
| 2 | $\{t_0, t_1, \dots, t_{21}\}$ |
| 3 | $\{t_0, t_1, \dots, t_{27}\}$ |
| 4 | $\{t_0, t_1, \dots, t_{33}\}$ |

https://stackoverflow.com/questions/76836503/how-can-reproduce-animation-for-rolling-window-over-time

If we are splitting the dataset for a Almodel into train + test +validation.

How should the preprocessing look look like?

?



### Transform | Time windows | Al-based methods

- Data: [1,2,3,5,8,13, ...]
- Stride: 6 | m\_train = 25 | m\_test = 10



| estamps<br>rain)            | Timestamps<br>(test)                                              |
|-----------------------------|-------------------------------------------------------------------|
| $[,, t_{24}]$               | $\{t_{25}, t_{26}, \dots, t_{34}\}$                               |
| $\{t_{30}, \dots, t_{30}\}$ | $\{t_{31}, t_{32}, \dots, t_{40}\}$                               |
| $\{x_3, \dots, t_{36}\}$    | $\{t_{37}, t_{38}, \dots, t_{46}\}$                               |
| $\{1, \dots, t_{42}\}$      | $\{t_{43}, t_{44}, \dots, t_{52}\}$                               |
| $\{1, \dots, t_{48}\}$      | $\{t_{49}, t_{50}, \dots, t_{58}\}$                               |
|                             | rain) $t_1,, t_{24}$ $t_2,, t_{30}$ $t_3,, t_{36}$ $t_4,, t_{42}$ |

https://stackoverflow.com/questions/76836503/how-can-reproduce-animation-for-rolling-window-over-time

### **Activity 4**:

Step 1: We need missing values to impute

```
mw dataset = dataset.mask(np.random.random(dataset.shape) < .01, other=pd.NA)</pre>
```

Step 1.5: Plot the variable with missing values Step 2: Rolling mean imputation

```
mv_dataset['Oil_temperature'].fillna(mv_dataset['Oil_temperature'].rolling(window=100).mean())
```

Step 3: Compare the variable with/ without missing values

Is this impute method adequate? Why?

Making data "similar"





## Transform | Making similar

Having similar data in terms of

- Scale (range of values)
- Distribution

makes easier reducing the data with both classical an AI techniques



## Transform | Making similar | Normalization

### Normalization / Min-max scaling

- Scale values to an specific range  $[r_{min}, r_{max}]$
- Used for having same scale in all data.
- Used when the features have different scales and no specif distribution is needed
  - RRNN, k-NN

## Transform | Making similar | Normalization

#### Normalization

$$[0,1] \rightarrow x_{norm} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

► [-1,1] 
$$\rightarrow x_{norm} = 2 \cdot \frac{x - \min(x)}{\max(x) - \min(x)} - 1$$

• 
$$[0,1] \rightarrow x_{norm} = (r_{max} - r_{min}) \cdot \frac{x - \min(x)}{\max(x) - \min(x)} + r_{min}$$



## Transform | Making similar | Standarization

#### Standarization

- Fix value to have mean = 0 and standard deviation = 1
- Used for having same mean and deviation in all features
- Used when data must follow a normal distribution
  - SVM Support Vector Machine
  - PCA Principal Component Analysis
  - Logistic regression



## Transform | Making similar | Other

- Robut scaling: using percentile values
  - $x_{scaled} = \frac{x Q1}{Q3 Q1}$
  - Less affected by outliers
- Logaritmic scaling: logarithm
  - $x_{scaled} = \log(x+1)$
  - Large differences in scale (economics)



## Transform | Making similar | Other

- Quantile normalization: align different distribution quantiles
- Steps:
  - Order values from upper to lwer
  - Compute the mean of each position of the quantile
  - Replace values by the mean
  - Bioinformatics, genetics



## Transform | Making similar | Other scaling



| pos | Α  |
|-----|----|
| 0   | 5  |
| 1   | 8  |
| 2   | 12 |

| pos | В  |
|-----|----|
| 0   | 6  |
| 1   | 7  |
| 2   | 10 |

| pos | mean |
|-----|------|
| 0   | 5,5  |
| 1   | 7,5  |
| 2   | 11   |

| Α   | В   |
|-----|-----|
| 5,5 | 7,5 |
| 7,5 | 5,5 |
| 11  | 11  |



## Transform | Making similar | Other

- MaxAbs scaling: scale by absolute máximum per feature
- Scales in [-1,1]
- $x_{scaled} = \frac{x}{\max(|x|)}$
- Useful for:
  - Data with positive and negative models where wee need to preserve the sign: finances
  - Models sensitive to relative magnitudes that do no require centering (e.g. mean = 0): Lasso, ElasticNets, NN
  - Sparse data. Does not alter the structure. Sparse matrices (Word frequencies)
  - Preserve relative proportions: signal processing



## Transform | Making similar | Other

- Rolling <...>
  - Make the operation within sliding windows
- Expanding <...>
  - Make the operation withing expanding windows
- Seasonal <...>
  - Makes the operation for specific time sizes (eg. yearly)

Stationarity, Seasonality and Trend



#### Transform | Stationarity

- Qualitative
  - Plot and check
- Quantitative
  - Get mean and standard deviation from random sliding windows
- Statistical analysis
  - Check through statistical analysis wether the time series is stationary or not



#### Transform | Stationarity

- Qualitative
  - Plot and check
- Quantitative
  - Get mean and standard deviation from random sliding windows
- Statistical analysis
  - Check through statistical analysis wether the time series is stationary or not



#### Transform | Stationarity | Qualitative











#### Transform | Stationarity

- Qualitative
  - Plot and check
- Quantitative
  - Get mean and standard deviation from random sliding windows
- Statistical analysis
  - Check through statistical analysis wether the time series is stationary or not



#### Transform | Stationarity | Qualitative

#### Mean stationarity

- Look for trends: any upward/downward tren?
- Non-stationary data often show a trend,
- Stationary data fluctuates around a constant mean.

#### Variance stationarity

- Non-stationary data may show increasing or decreasing variance over time
- Auxiliar plots: use the time series decomposition to get the trend plot for easier analysis (if not that clear)



#### Transform | Quantitative

- Get mean and standard deviation from random sliding windows
  - Select representative window sizes: for example, computing Fourier predominant frequencies
  - Generate sliding window of those size in random positions
  - Compute mean and standard deviation





#### Transform | Quantitative

- If mean and deviation are ~constant between windows, the time series should be stationary
- Big changes between the values may indiquate seasonality, trends or non-variance-stationary



#### Transform | Stationarity

- Qualitative
  - Plot and check
- Quantitative
  - Get mean and standard deviation from random sliding windows
- Statistical analysis
  - Check through statistical analysis wether the time series is stationary or not



#### Transform | Statistical analysis

- Augmented Dickey-Fuller (ADF) Test
  - Tests for the presence of a unit root
- Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test
  - Tests for stationarity around a deterministic trend
- Philips-Perron (PP) Test
  - Similar to the ADF test, but adjusts for heteroscedasticity (variance on errors) and autocorrelation (dependency on past values) in the data.



#### Transform | Statistical analysis

#### Key values:

| Test      | p-value < 0,05     | Null hypothesis $(H_0)$ : | Alternative<br>hypothesis |
|-----------|--------------------|---------------------------|---------------------------|
| ADF Test  | Stationary         | Non-<br>stationary        | Stationary                |
| KPSS Test | Non-<br>stationary | Stationary                | Non-<br>stationary        |
| PP Test   | Non-<br>stationary | Non-<br>stationary        | X                         |





#### Transform | Statistical analysis | Expanded table

|   | Test                              | Purpose                                                         | Speed    | Python module              | Notes/Alternatives                                                     |
|---|-----------------------------------|-----------------------------------------------------------------|----------|----------------------------|------------------------------------------------------------------------|
|   | ADF Test                          | Detect unit roots                                               | Moderate | statsmodels                | Fails for heteroscedastic<br>data. Sensitive to lag<br>selection.      |
|   | KPSS Test                         | Check trend                                                     | Moderate | statsmodels                | Often used alongside ADF to confirm stationary                         |
|   | PP Test                           | Adjusts for heterosedasticity                                   | Fast     | statsmodels                | Similar to ADF but robust to serial correlation and heteroscedasticity |
| F | Perron Test                       | Multiple structural breaks                                      | Slow     | Limited external libraries | Best for datasets with complex strutural changes                       |
|   | Dickey-<br>Fuller GLS<br>(DF-GLS) | Improved ADF with Generalized<br>Least Squares (GLS) detrending | Moderate | statsmodels                | Powerfull with small sample sizes or data with trends                  |
|   | Hurst<br>Exponent                 | Long-term memory or tren persistence                            | Moderate | hurst                      | Classifies Mean-reverting / random walk / Trending                     |



#### Transform | Statistical analysis | Expanded table

| Test                | Purpose                                   | Speed    | Python module                | Notes/Alternatives                                                               |
|---------------------|-------------------------------------------|----------|------------------------------|----------------------------------------------------------------------------------|
| ADF-GLS<br>Test     | Combines ADF with GLS                     | Moderate | statsmodels                  | Effective when trends are present but subtle                                     |
| Wavelet<br>Analysis | Examines stationarity at different scales | Slow     | pywt (wavelet<br>transforms) | Useful for non-stationarity signals with localized variation (e.g. seismic data) |



#### Transform | Statistical analysis | Summary

| Test                | When to use                                   | Strengths                               | Notes/Alternatives                                    |
|---------------------|-----------------------------------------------|-----------------------------------------|-------------------------------------------------------|
| ADF/KPSS/PP         | General stationarity testing                  | Widely used, well<br>documented         | Sensitive to parameter tuning                         |
| Wavelet<br>Analysis | Non-stationary signals with localized changes | Handles multi-scale analysis            | Computationally intensive                             |
| Hurst<br>exponent   | Long-term detection                           | Hihlights persistence or mean-reversion | Less robust for short time series                     |
| ADF-GLS Test        | When trends are present but subtle            | More powerfull for small sample sizes   | Combines ADF with GLS detrending                      |
| Perron Test         | Multiple structural breaks                    | Handles structural changes in data      | Limited external libraries, slower compared to others |





#### Transform | Trend

► Trends and seasonality can affect model's convergence and results, it may be beneficial to remove it. How?



#### Transform | Trend

| Method                  | Definition                                                                                                  |
|-------------------------|-------------------------------------------------------------------------------------------------------------|
| Differencing            | Substracting the observations from a previous time period                                                   |
| Decomposition           | Breaking down the series into tren, seasonality, and residual components                                    |
| Moving averages         | Average over a sliding window                                                                               |
| Polynomial fitting      | Fitting a polynomial curve to the data and substract it                                                     |
| Trend filters           | Using statistical tool to detect/remove trends                                                              |
| Log transformations     | Applying logarithmic functions to remove exponential growth                                                 |
| Box-Cox transformations | Applying power transformations (mathematical transformations) to stabilize variance and make trends linear. |



#### Transform | Trend

| Method                  | Advantages                                                   | Disadvantages                                                            |
|-------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|
| Differencing            | Simple, effective for removing trends                        | Can amplify noise; may lose interpretability of the data                 |
| Decomposition           | Separate components clearly                                  | Requires assumptions about the model (additive/multiplicative/mixed)     |
| Moving averages         | Smooths fluctuations, reduce noises                          | May remove important short-term patterns                                 |
| Polynomial fitting      | Handles non-linear trends effectively                        | Risk of overfitting; higher-degree polinomials can distort data          |
| Trend filters           | Effective for extracting smooth trends                       | Can be computionally expensive; parameters need fine-tuning              |
| Log transformations     | Stabilizes variance, simplifies multiplicative relationships | Non suitable for data with <= 0 values                                   |
| Box-Cox transformations | Handles both tren and variance issues                        | Requires non-negative data; interpretation of transformed data is harder |

#### Máster Deep Learning

#### Transform | Trend

| Method                  | Recommendations                                                                     |
|-------------------------|-------------------------------------------------------------------------------------|
| Differencing            | When trends are linear and the data is heavily autocorrelated                       |
| Decomposition           | Ideal for datasets with clear seasonality or multiple components                    |
| Moving averages         | Best for smooting noise in non-seasonal series with light trends                    |
| Polynomial fitting      | Use for series with non-linear trends; limit polynomial degree to avoid overfitting |
| Trend filters           | Use for economic or financial data with noisy trends                                |
| Log transformations     | Use for exponential growth trends (e.g. population, financial data)                 |
| Box-Cox transformations | Use for data with heteroscedasticity and exponential trends                         |



#### Transform | Seasonality

- Detect a seasonality period -> Remove seasonality
- Steps:
  - Plot the data: check the period of your target variable
  - Identify pattern period: hourly, daily, weekly
  - Treat seasons are 'cyclical trends'
    - Differentiating: remove the value from a <insert detected period> before
    - Polynomial fitting: Fit a polynomial on a given season, later substract it from each <insert detect period>.

## Load

Save the data



DataFrame → □ → i





- Files: owned folder
- Database: SQL, Cassandra, MongoDB, PostgretSQL, Weight and Biases
- Specific webpages: Kaggle, zenodo, HuggingFace
- Own datasets: Github, GoogleDrive, personal webpage

## Miscelaneous

Auxiliar material



#### Further reading

- Research paper: <u>Survey: Time-series data preprocessing: A survey and an empirical analysis</u>
- Example I: <u>IMSL</u>
- Example II: <u>Medium</u>
- Example III: Kaggle
- Example IV: Advanced missing data reconstruction. <u>UCO: Time series data</u> <u>mining: preprocessing, analysis, segmentation and prediction.</u>
   <u>Applications</u>
- Example V: <u>Linkedin schema</u>
- Example VI: <u>Linkedin | Dr. John Martin AI | ML | Newsletter</u>



#### Further reading

- Paper | Missing data: <u>A comparison of three popular methods of handling missing data: complete-case analysis, inverse probability weighting, and multiple imputaiton</u>
- OpenAccess paper: <u>Recurrent Neural Networks for Multivariate Time Series</u> <u>with Missing Values</u>
- Light lectura on ADF: <u>Machine Learning Plus</u>
- Original paper of ADF: <u>Rizwan Mushtaq</u>





#### Practice datasets

- ► Tourism: <u>Tourists night stances in Tenerife</u>
- Normalization and standarization example: <u>Machine Learning Mastery</u>

# Google Collab 02\_preprocessing.ipynb

?

# Summary

Summary of the lesson





#### What this we just learned?

- What is a time series
- Where can we get time series from
- Types of time series
- The problem of evenly/non-evenly distribution
- Lenth
- Classical (additive decomposition): trend, seasonality, irregular/noise

# Google Collab 02\_preprocessing\_exercises.ipynb

?





#### What is the next step?

- Start with Deep Learning!
- Time series classification
  - How can we compare two time series and put them inside a cattegory?

### To be continued...

Questions? mi.santamaria@upm.es

# Deep Learning para series temporales

Part II

**Preprocessing and Analysis** 





