Relazione di Elettronica

Amplificatori Operazionali

Francesco Forcher

Università di Padova, Facoltà di Fisica francesco.forcher@studenti.unipd.it Matricola: 1073458

Enrico Lusiani

Università di Padova, Facoltà di Fisica enrico.lusiani@studenti.unipd.it Matricola: 1073300

Laura Buonincontri

Università di Padova, Facoltà di Fisica laura.buonincontri@studenti.unipd.it Matricola: 1073131

8 maggio 2016

Sommario

L'obiettivo dell'esperienza è la misura della curva di trasferimento di un amplificatore (in configurazione invertente e non invertente) e lo studio della sua risposta in frequenza (in configurazione non invertente).

INDICE

Ι	Sche	ema Circuiti	2				
II	Parte I						
	I	Amplificatore invertente	2				
		I.1 Calcolo amplificazione	3				
		I.2 Analisi	3				
	II	Amplificatore non invertente	3				
		II.1 Calcolo amplificazione	4				
		II.2 Analisi	5				
III	Part	e II	7				
	I	Amplificatore con A=10	7				
	II	Amplificatore con A=5	7				
	III	Amplificatore con A=1	8				
	IV	Discussione dei punti precedenti	9				
IV	Ana	lisi dei dati	16				
V	Appendice: calcolo degli errori						
VI	Con	clusioni	16				
VI	ICod	ice	17				

I. SCHEMA CIRCUITI

Circuito di alimentazione:

II. PARTE I

II.I Amplificatore invertente

Schema amplificatore invertente: Le resistenze sono state scelte in modo da avere guadagno $A=-10\frac{V}{V}$

 $R_1=9.85\pm0.05\,k\Omega$

 $R_2=101.3\pm0.6\,k\Omega$

 $R_3 = 56.0 \pm 0.3\,\Omega$

Per il calcolo degli errori sul valore delle resistenze, lette sull'Agilent U1232A, è stata utilizzata la seguente formula:

$$\sigma_{tot} = \sqrt{\sigma_{\%}^2 + \sigma_{dgt}^2}$$

Per il calcolo delle σ_{tot} è stato cercato del datasheet dello strumento, l'errore percentuale e di digit corrispondente al fondo scala utilizzato.

I.1 Calcolo amplificazione

La relazione tra le resistenze, affichè soddisfino la richiesta A=10 è la seguente:

$$\frac{V_1 - V_n}{R_1} = \frac{V_n - V_0}{R_2}$$

$$V_n = 0$$

$$\frac{V_1}{R_1} = \frac{-V_0}{R_2}$$

$$V_0 = -\frac{R_2}{R_1} \cdot V_1$$

Da cui si ricava la relazione per il calcolo di A.

I.2 Analisi

La stima di A teorica, a partire dalle resistenze misurate è: $A_{teorica} = 10.28 \pm 0.08$

Le misure sono state fatte applicando una tensione sinusoidale di frequenza $f=1\,kHz$, variando l'ampiezza tra $0.2V_{pp}$ e $4V_{pp}$.

Per il calcolo degli errori sui valori di V_{in} e V_{out} letti sull'oscilloscopio, è stata utilizzata la seguente formula:

$$\sigma_{tot} = \sqrt{(0.02 \cdot V_{letto})^2 + (0.06 \cdot V_{div})^2}$$

 $\rm E'$ stata fatta l'interpolazione lineare pesata dei punti compresi tra 0 e 1.5 $\rm V.$

$$\begin{aligned} q &= 0.02 \pm 0.03 \, V \\ m &= -10.0 \pm 0.1 \, \frac{V}{V} \end{aligned} \label{eq:mass_potential}$$

II.II Amplificatore non invertente

Schema amplificatore non invertente: Le resistenze sono state scelte in modo da avere guadagno $A=10\frac{V}{V}$

$$\begin{split} R_{1,up} &= 9.91 \pm 0.05 \, k\Omega \\ R_{1,down} &= 9.85 \pm 0.05 \, k\Omega \\ R_{2,up} &= 99.7 \pm 0.6 \, k\Omega \\ R_{2,down} &= 101.3 \pm 0.6 \, k\Omega \\ R_{4} &= 56.0 \pm 0.3 \, \Omega \end{split}$$

Grafico 1 Curva di trasferimento di un amplificatore invertente

II.1 Calcolo amplificazione

La relazione tra le resistenze, affichè soddisfino la richiesta A=10 è la seguente: Nell'ingresso non invertente:

$$\begin{split} \frac{V_1-V_p}{R_{1down}} &= \frac{V_p}{R_{2down}} \\ \frac{V_1}{R_{1down}} &= \frac{V_p}{R_{1down}} + \frac{V_p}{R_{2down}} = V_p \left(\frac{1}{R_{1down}} + \frac{1}{R_{2down}}\right) \end{split}$$

Nell'ingresso invertente:

$$\begin{split} \frac{V_0 - V_n}{R_{2up}} &= \frac{V_n}{R_{1up}} \\ \frac{V_0}{R_{2up}} &= \frac{V_n}{R_{1up}} + \frac{V_n}{R_{2up}} = V_n \left(\frac{1}{R_{1up}} + \frac{1}{R_{2up}} \right) \end{split}$$

Poichè

$$\begin{split} V_p &= V_n \\ \frac{V_1}{R_{1down}} \frac{1}{\left(\frac{1}{R_{1down}} + \frac{1}{R_{2down}}\right)} &= \frac{V_0}{R_{2up}} \frac{1}{\left(\frac{1}{R_{1up}} + \frac{1}{R_{2up}}\right)} \\ V_0 &= \frac{R_{2up}}{R_{1down}} \cdot V_1 \frac{\left(\frac{1}{R_{1up}} + \frac{1}{R_{2up}}\right)}{\left(\frac{1}{R_{1down}} + \frac{1}{R_{2down}}\right)} \end{split}$$

$V_{in+} \pm$	$V_{in-} \pm$	FS	$V_{out+} \pm$	$V_{out-}\pm$	FS
$\sigma_{V_{in+}}(V)$	$\sigma_{V_{\text{in}-}}(V)$	(V)	$\sigma_{V_{out+}}(V) \; (V)$	$\sigma_{V_{\mathrm{out}-}}(V)$	(V)
1.06 ± 0.03	-1.04 ± 0.03	0.3	$\textbf{-}10.7 \pm 0.3$	10.6 ± 0.3	3
0.107 ± 0.003	-0.108± 0.003	0.03	-1.04 ± 0.03	1.08 ± 0.03	0.3
0.43± 0.01	-0.422 ± 0.01	0.12	-4.2 ± 0.1	4.32 ± 0.1	1.2
$0.73 \!\pm 0.02$	$\textbf{-}0.74 \!\pm 0.02$	0.2	-7.3 ± 0.2	7.4 ± 0.2	2
1.36 ± 0.04	-1.38 ± 0.04	0.4	-13.8 ± 0.4	$13.9 \!\pm 0.4$	4
1.68 ± 0.05	-1.68 ± 0.05	0.5	$\textbf{-}14.1 \pm 0.4$	$14.9 {\pm}~0.4$	4
1.99 ± 0.05	-1.99± 0.05	0.6	-14.2 ± 0.4	$14.9 {\pm}~0.4$	4
2.09 ± 0.06	-2.09± 0.06	0.6	-14.2± 0.4	14.9 ± 0.4	4

Tabella 1: Dati curva di trasferimento

Da cui si ricava la relazione per il calcolo di A. Se poi si assume che $R_{1down}=R_{1up}$ e $R_{2down}=R_{2up}$, la relazione si semplifica a

$$V_0 = \frac{R_{2up}}{R_{1down}} \cdot V_1$$

II.2 Analisi

La stima di A teorica, a partire dalle resistenze misurate è:

$$A_{teorica} = 10.08 \pm 0.07$$

Le misure sono state fatte applicando una tensione sinusoidale di frequenza f = 1 kHz, variando l'ampiezza tra $0.2V_{pp}$ e $4V_{pp}$.

 $\rm E'$ stata fatta l'interpolazione lineare pesata dei punti compresi tra 0 e 1.5 $\rm V.$

$$q = -0.007 \pm 0.03 \, V$$

$$m = 10.0 \pm 0.1 \frac{V}{V}$$

Grafico 2 Curva di trasferimento di un amplificatore invertente

Tabella 2: Dati curva di trasferimento

$V_{\text{in}+}\pm$	$V_{in-}\pm$	FS	$V_{out+} \pm$	$V_{out-}\pm$	FS
$\sigma_{V_{in+}}(V)$	$\sigma_{V_{\text{in}-}}(V)$	(V)	$\sigma_{V_{\text{out}+}}(V)$ (V)	$\sigma_{\mathrm{V_{out}-}}(\mathrm{V})$	(V)
1.08 ± 0.03	-1.04 ± 0.03	0.3	$10.7 {\pm}~0.3$	-10.7 ± 0.3	3
0.108±	-0.107±	0.03	1.07 ± 0.003	-1.07 ± 0.03	0.3
0.003	0.003				
0.43 ± 0.01	-0.43 ± 0.01	0.120	$4.3 \!\pm 0.1$	-4.3 ± 0.1	1.2
0.74 ± 0.02	-0.74 \pm 0.02	0.2	$7.4\pm~0.2$	-7.4 ± 0.2	2
1.39 ± 0.04	-1.38 ± 0.04	0.4	$13.9 \!\pm 0.4$	-13.9 ± 0.4	4
1.72 ± 0.05	-1.70 ± 0.05	0.5	$14.9 \!\pm 0.4$	-14.4 \pm 0.4	4
2.04 ± 0.05	-1.99 ± 0.05	0.6	$14.7 {\pm}~0.4$	-14.2 ± 0.4	4
2.14 ± 0.06	-2.09± 0.06	0.6	$14.9 \!\pm 0.4$	-14.2 ± 0.4	4

III. PARTE II

Le misure sono state effettuate sull'amplificatore non invertente utilizzato al punto precedente e applicando una tensione sinusoidale di frequenza variabile mantenendo l'ampiezza $V_{\rm s}=2V_{\rm pp}$.

III.I Amplificatore con A=10

Le resistenze inserite sono le stesse dello schema precedente, e quindi anche l'amplificazione teorica.

Sono state interpolate separatamente la zona di plateau e di discesa, ottenendo come risultati:

```
\begin{aligned} A_{plateau} &= 10.1 \pm 0.1 \\ q &= 4.0 \pm 0.6 \\ m &= -0.6 \pm 0.1 \end{aligned}
```

La closed-loop bandwidth, f_b , del circuito, è stata ricavata tradformando il grafico come $y' = log_{10}(y)$, interpolando la parte costante, traslandola di 3dB $(log_{10}(\sqrt{2}))$ verso il basso e intersecandola con la retta ottenuta interpolando la parte di discesa. La f_b era poi l'esponenziale in base 10 dell'intersezione. L'errore è stato poi calcolato effettuando una propagazione degli errori sulla f_b , tenendo conto anche dell'alta correlazione tra i coefficienti della retta (-0.9995).

```
\begin{split} &f_b = 215 \pm 7 \text{ kHz} \\ &\text{II GBP è} \\ &\text{GBP} = A_{\text{CL}} \cdot f_b = 2.17 \pm 0.08 \text{ MHz} \end{split}
```

III.II Amplificatore con A=5

Le resistenze inserite sono state sostituite con:

```
\begin{split} R_{1,up} &= 5.54 \pm 0.03 \, k\Omega \\ R_{1,down} &= 5.54 \pm 0.03 \, k\Omega \\ R_{2,up} &= 26.9 \pm 0.1 \, k\Omega \\ R_{2,down} &= 26.9 \pm 0.2 \, k\Omega \\ R_4 &= 56.0 \pm 0.3 \, \Omega \end{split}
```

L'amplificazione teorica è perciò $A_{teorica} = 4.86 \pm 0.03$

Sono state interpolate separatamente la zona di plateau e di discesa, ottenendo come risultati:

```
A_{plateau} = 4.88 \pm 0.06

q = 3.7 \pm 0.7

m = -0.5 \pm 0.1
```

Grafico 3 Risposta in frequenza di un amplificatore non invertente con A=10

Frequency response

Dall'interpolazione si è poi ricavato f $_{\rm b}=520\pm20\,{\rm kHz}$ Il GBP è

$$\mathsf{GBP} = \mathsf{A}_{\mathsf{CL}} \cdot \mathsf{f}_{\mathsf{b}} = 2.5 \pm 0.1 \, \mathsf{MHz}$$

III.III Amplificatore con A=1

Le resistenze inserite sono state sostituite con:

 $R_{1,up}=32.6\pm0.2\,k\Omega$

 $R_{1,down} = 32.6 \pm 0.2 \, k\Omega$

 $R_{2,up} = 32.7 \pm 0.2 \, k\Omega$

 $R_{2,down}=32.5\pm0.2\,k\Omega$

 $R_4 = 56.0 \pm 0.3\,\Omega$

L'amplificazione teorica è perciò $A_{teorica} = 1.000 \pm 0.005$

Sono state interpolate separatamente la zona di plateau e di discesa, ottenendo come risultati:

$$A_{plateau} = 1.01 \pm 0.01$$

$$q=12.6\pm0.4$$

$$m = -2.11 \pm 0.06$$

Dall'interpolazione si è poi ricavato $f_b = 1.12 \pm 0.01 \, \text{MHz}$

Il GBP è

$$\mathsf{GBP} = \mathsf{A}_{\mathsf{CL}} \cdot \mathsf{f}_{\mathsf{b}} = 1.13 \pm 0.02\,\mathsf{MH}z$$

III.IV Discussione dei punti precedenti

 Tabella 3: Dati risposta in frequenza

f(Hz)	A	???
10	10.14	2.5
50	10.09	2.5
100	10.05	2.5
500	10.14	2.5
1000	10.09	2.5
5000	10.05	2.5
50000	9.36	2
100000	9.23	2
200000	7.48	2
211000	7.14	1.5
215000	7.09	1.5
220000	7.09	1.5
230000	6.94	1.5
250000	6.54	1.5
300000	5.85	1.5
400000	4.66	1
500000	3.69	1
1000000	1.57	0.4
5000000	0.11	0.03

Grafico 4 Risposta in frequenza di un amplificatore non invertente con A=5

Frequency response

Tabella 4: Dati risposta in frequenza

f(Hz)	A	???
10	4.91	1
40	4.86	1
100	4.93	1
300	4.88	1
1000	4.88	1
3000	4.86	1
10000	4.86	1
30000	4.85	1
100000	4.8	1
300000	4.32	1
400000	3.96	1
515000	3.50	1
600000	3.16	1
1000000	2.02	0.5
3000000	0.44	0.1
5000000	0.17	0.04

Grafico 5 Risposta in frequenza di un amplificatore non invertente con A=1

Frequency response

Tabella 5: Dati risposta in frequenza

f(Hz)	A	???
10	1.01	0.2
30	1.01	0.2
100	1.01	0.2
300	1.01	0.2
1000	1.01	0.2
3000	1.00	0.2
10000	1.00	0.2
30000	1.01	0.2
100000	1.02	0.2
300000	1.08	0.2
800000	1.18	0.2
900000	1.05	0.2
1000000	0.90	0.2
1130000	0.71	0.2
1500000	0.39	0.1
2000000	0.21	0.05
3000000	0.09	0.02
6000000	0.03	0.02

Grafico 6 Risposta in frequenza di un amplificatore non invertente a varie amplificazioni

IV. ANALISI DEI DATI

V. APPENDICE: CALCOLO DEGLI ERRORI

da cambiare

VI. CONCLUSIONI

da cambiare

VII. CODICE

É presentata qua la parte fondamentale del codice in c++ usato per i calcoli numerici. Inoltre è stato usato per i calcoli Mathematica.

```
1 /*
2
   * OpampAnalisys.cpp
3
4
      Created on: 01/mag/2016
5
           Author: enrico
 6
8 #include "OpampAnalisys.h"
9 #include "Graph.h"
10
11 #include <TROOT.h>
12 #include <TGraph.h>
13 #include <TGraphErrors.h>
14 #include <TF1.h>
15 #include <TCanvas.h>
16 #include <TAxis.h>
17 #include <TFitResult.h>
18 #include <TFrame.h>
19 #include <TLegend.h>
20
21 #include <iostream>
22
23 using namespace std;
24
25 string OpampAnalisys::basename ="";
26
27 unique_ptr (Graph) readGraph(string);
28
29 OpampAnalisys::OpampAnalisys(string filename)
30
    :filename(filename)
31 {
32
    string name = basename + filename + ".txt";
33
    unique_ptr (Graph) gr = readGraph(name);
34
35
    cout << gr->n() << endl;</pre>
     g = unique_ptr \langle TGraphErrors \rangle (new TGraphErrors(gr->n(), gr->x(),
36
       gr\rightarrow y(), gr\rightarrow ex(), gr\rightarrow ey());
37 }
38
39 OpampAnalisys::~OpampAnalisys()
40 {
41
     // TODO Auto-generated destructor stub
42 }
43
44 void OpampAnalisys::analisys()
45 | {
```

```
46
    TCanvas c("Interpolazione Opamp");
47
    c.SetGrid();
48
49
    g->SetFillColor(1);
50
    g->SetLineColor(2);
51
    g->SetLineWidth(1);
52
    g->SetMarkerColor(4);
53
    g->SetMarkerSize(0.7F);
54
    g->SetMarkerStyle(1);
55
    g->SetTitle("Gain");
    g->GetXaxis()->SetTitle("V_{out} [V]");
56
57
    g->GetYaxis()->SetTitle("V_{in} [V]");
58
    g->Draw("AP");
59
60
    TF1* f = new TF1("fit", "[0]+[1]*x");
61
     f \rightarrow SetParName(1, "m");
62
    f->SetParName(0, "q");
63
    f->SetLineColor(4);
64
    f->SetLineWidth(1);
65
    TFitResultPtr r = g \rightarrow Fit(f, "S", "", -1.5, 1.5);
66
    r->Print("V");
67
    for (unsigned int i = 0; i < r \rightarrow NPar(); ++i)
68
69
      clog << r->ParName(i)
70
71
         << " " << r->Parameter(i)
72
         << " " << r->ParError(i) << endl;</pre>
73
     }
74
75
    TLegend *leg = new TLegend(0.8, 0.8, 0.9, 0.9);
76
     leg->AddEntry(g.get(), "Data", "lp");
     leg->AddEntry(f, "Fit", "l");
77
78
     leg->Draw();
79
80
    c.Update();
    c.GetFrame()->SetFillColor(0);
81
82
    c.GetFrame()->SetBorderSize(12);
83
    c.Modified();
84
85
    string name = "Result" + filename + ".tex";
86
    c.Print(name.c_str());
87 }
```

 $../src/opamp_p1/OpampAnalisys.cpp$