Online Learning Without Prior Information

Speaker: Yi-Shan Wu

Institute of Information Science

Academia Sinica

Taiwan

November 19, 2017

Outline

- Online Convex Optimization
- Online Convex Optimization with Unconstrained Domains and Losses (NIPS2016)

3 Online Learning Without Prior Information (COLT2017)

- Setting:
 - Sample at time t: $(\mathbf{x_t}, y_t)$
 - Hypothesis : w
 - Let $f_t(\mathbf{w}) = \langle \mathbf{w}, \mathbf{g_t} \rangle$, where $\mathbf{g_t} \in \nabla f_t(\mathbf{w_t})$
 - Let $R(\mathbf{w}) = \frac{1}{2\eta} \|\mathbf{w}\|_2^2$

- Setting:
 - Sample at time t: $(\mathbf{x_t}, y_t)$
 - Hypothesis : w
 - Let $f_t(\mathbf{w}) = \langle \mathbf{w}, \mathbf{g_t} \rangle$, where $\mathbf{g_t} \in \nabla f_t(\mathbf{w_t})$
 - Let $R(\mathbf{w}) = \frac{1}{2n} \|\mathbf{w}\|_2^2$
- 2 Regret:

Regret(
$$\mathbf{u}$$
)= $\sum_{t=1}^{T} f_t(\mathbf{w_t}) - f_t(\mathbf{u})$

- Setting:
 - Sample at time t: $(\mathbf{x_t}, y_t)$
 - Hypothesis : w
 - Let $f_t(\mathbf{w}) = \langle \mathbf{w}, \mathbf{g_t} \rangle$, where $\mathbf{g_t} \in \nabla f_t(\mathbf{w_t})$
 - Let $R(\mathbf{w}) = \frac{1}{2n} ||\mathbf{w}||_2^2$
- 2 Regret:

Regret(
$$\mathbf{u}$$
)= $\sum_{t=1}^{T} f_t(\mathbf{w_t}) - f_t(\mathbf{u})$

FTRL Algorithm:

$$\forall t, \mathbf{w}_t = \underset{i=1}{\operatorname{argmin}} \mathbf{w}_{\mathbf{w}} \sum_{i=1}^{t-1} f_i(\mathbf{w}) + R(\mathbf{w})$$
 Thus, $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \mathbf{g}_t = \mathbf{w}_t - \eta \bigtriangledown f_t(\mathbf{w}_t)$

lemma

Let w_1, w_2, \cdots be the sequence of vectors produced by this OLO algorithm, we have

$$\begin{aligned} \textit{Regret}(\mathbf{u}) &= \sum_{t=1}^{T} f_t(\mathbf{w_t}) - f_t(\mathbf{u}) \\ &\leq R(\mathbf{u}) - R(\mathbf{w_1}) + \sum_{t=1}^{T} (f_t(\mathbf{w_t}) - f_t(\mathbf{w_{t+1}})) \\ &\leq \frac{1}{2\eta} \|\mathbf{u}\|_2^2 + \sum_{t=1}^{T} < \mathbf{w_t} - \mathbf{w_{t+1}}, \mathbf{g_t} > \\ &= \frac{1}{2\eta} \|\mathbf{u}\|_2^2 + \sum_{t=1}^{T} \eta \|\mathbf{g_t}\|_2^2 \end{aligned}$$

$$\begin{aligned} & \textit{Regret}(\mathbf{u}) \leq \frac{1}{2\eta} \|\mathbf{u}\|_2^2 + \sum_{t=1}^T \eta \|\mathbf{g_t}\|_2^2 \\ & \text{Usually, we consider } U = \{\mathbf{u} : \|\mathbf{u}\| \leq B\} \text{ and let } L \text{ be such that } \\ & \frac{1}{T} \sum_{t=1}^T \|\mathbf{g_t}\|_2^2 \leq L^2, \text{ then by setting } \eta = \frac{B}{L\sqrt{2T}}, \text{ we have} \end{aligned}$$

 $Regret_{\tau}(U) < BL\sqrt{2T}$

Previous works and problem now

$B = max_{\mathbf{u} \in U} \ \mathbf{u}\ $	$L_{max} = max_t \ z_t\ $	Regret bound
V	V	$O(BL_{max}\sqrt{T})$
V	X	$O(BL_{max}\sqrt{T})$
X	V	$O(\ \mathbf{u}\ \log(\ \mathbf{u}\)L_{max}\sqrt{T})$
X	X	??

Previous works and problem now

$B = max_{\mathbf{u} \in U} \ \mathbf{u}\ $	$L_{max} = max_t z_t $	Regret bound
V	V	$O(BL_{max}\sqrt{T})$
V	X	$O(BL_{max}\sqrt{T})$
X	V	$O(\ \mathbf{u}\ \log(\ \mathbf{u}\)L_{max}\sqrt{T})$
X	X	??

Lower bound

For any $\epsilon > 0$,

$$Regret_T(U) \ge O(\|\mathbf{u}\| log(\|\mathbf{u}\|) L_{max} \sqrt{T} + L_{max} exp[(max_t \frac{\|g_t\|}{L(t)})^{1/2-\epsilon}])$$

where $L(t) = \max_{t' < t} ||g_{t'}||$ and L_{max} are unknown in advance.

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q҈

Lower Bound with unknown L_{max} and unbounded U

Theorem 1

For any $c, k, \epsilon > 0$, there exists a T and an adversarial strategy picking $g_t \in \mathbb{R}$ in response to $w_t \in \mathbb{R}$ such that

$$R_{T}(u) = \sum_{t=1}^{T} g_{t}w_{t} - g_{t}u$$

$$\geq (k + c\|\mathbf{u}\|\log\|\mathbf{u}\|)L_{max}\sqrt{T}\log(L_{max} + 1) + kL_{max}e^{((2T)^{1/2-\epsilon})})$$

$$\geq (k + c\|\mathbf{u}\|\log\|\mathbf{u}\|)L_{max}\sqrt{T}\log(L_{max} + 1) + kL_{max}e^{[(max_{t}\frac{\|g_{t}\|}{L(t)})^{1/2-\epsilon}]})$$

for some $u \in \mathbb{R}$ where $L_{max} = max_{t \leq T} \|g_t\|$ and $L(t) = max_{t' < t} \|g_{t'}\|$

Speaker: Yi-Shan Wu (IIS)

Proof of lower bound

$$R_T(u) = \sum_{t=1}^T g_t w_t - g_t u$$

High level concept: for adversary, the goal is to pick a sequence of g_t s such that the algorithm suffer high regret.

• Case 1: when w_t is small $(w_t < \frac{1}{2} \exp\{T^{1/2}/4log(2)c\})$, there is a large u

$$\Rightarrow$$
 choose $g_t = -1$ $\Rightarrow L_{max} = 1, \quad \max_t \frac{\|g_t\|}{L(t)} = 1$

• Case 2: when $w_t < \frac{1}{2} \exp\left\{T^{1/2}/4log(2)c\right\}$, let u=0 \Rightarrow choose $g_t=2T$ $\Rightarrow L_{max}=2T, \quad \max_t \frac{\|g_t\|}{L(t)}=2T$

1 ト 4 昼 ト 4 昼 ト 4 夏 ト 9 Q (や

The algorithm RESCALEDEXP

High level concept: by "guess-and-double" strategy

- Initialize a guess L for L_{max} to $||g_1||$, then we can run a "known- L_{max} " algorithm.
- The "known-L_{max} algorithm uses the Follow-the-Regularized-Leader(FTRL) framework.
- If $||g_t|| > 2L$, then update the guess to $||g_t||$. The periods during which L is constant is called "epochs".
- Need to prove that the "known- L_{max} " algorithm does not suffer too much regret when seeing a g_t that violate the assumed bound L.

The algorithm RESCALEDEXP

RESCALEDEXP

```
Initialize: k \leftarrow \sqrt{2}, M_0 \leftarrow 0, w_1 \leftarrow 0, t_{\star} \leftarrow 1 // t_{\star} is the start-time of the current epoch.
for t = 1 to T do
    Play w_t, receive subgradient g_t \in \partial \ell_t(w_t).
    if t=1 then
        L_1 \leftarrow \|g_1\|
        p \leftarrow 1/L_1
    end if
    M_t \leftarrow \max(M_{t-1}, \|g_{t_*:t}\|/p - \|g\|_{t_{t-t}}^2).
   \eta_t \leftarrow \frac{1}{k\sqrt{2(M_t + ||g||_{t+\cdot,t}^2)}}
    //Set w_{t+1} using FTRL update
    w_{t+1} \leftarrow - \tfrac{g_{t_\star:t}}{\|g_{t_\star:t}\|} \left[ \exp(\eta_t \|g_{t_\star:t}\|) - 1 \right] \textit{//} = \operatorname{argmin}_w \left\lceil \tfrac{\psi(w)}{\eta_t} + g_{t_\star:t} w \right\rceil
    if ||q_t|| > 2L_t then
        //Begin a new epoch: update L and restart FTRL
        L_{t+1} \leftarrow \|g_t\|
        p \leftarrow 1/L_{t+1}
        t_{\star} \leftarrow t + 1
        M_t \leftarrow 0
        w_{t+1} \leftarrow 0
    else
         L_{t+1} \leftarrow L_t
```

The algorithm RESCALEDEXP

Theorem 2

Let $M_{max} = max_t M_t$. Then if $L_{max} = max_t \|g_t\|$ and $L(t) = max_{t' < t} \|g_t\|$, RESCALEDEXP achieves regret:

$$R_T(\mathbf{u}) \leq O(L_{max}log(\frac{L_{max}}{L_1})[(\|\mathbf{u}\|log(\|\mathbf{u}\|) + 2)\sqrt{T} + exp(8max_t\frac{\|g_t\|^2}{L(t)^2})])$$

Improved version-lower bound

For any $\gamma \in (1/2,1], k>0$, $T_0>0$, and any online optimization algorithm picking $w_t \in \mathbb{R}$, there exists a $T>T_0$, a $u \in \mathbb{R}$, and a sequence $g_1, \cdots, g_T \in \mathbb{R}$ with $\|g_t\| \leq \max(1, 18\gamma(4k)^{1/\gamma}(t-1)^{1-1/2\gamma})$ on which the regret is:

$$R_{T}(\mathbf{u}) = \sum_{t=1}^{T} g_{t} w_{t} - g_{t} \mathbf{u}$$

$$\geq k \|\mathbf{u}\| L_{max} log^{\gamma} (T \|\mathbf{u}\| + 1) \sqrt{T}$$

$$+ \max_{t \leq T} L_{max} \frac{L_{t-1}^{2}}{\|g\|_{1:t-1}^{2}} exp \left[\frac{1}{2} \left(\frac{L_{t}/L_{t-1}}{288\gamma k^{2}} \right)^{1/2\gamma - 1} \right]$$

Improved version: lower bound

First dimension tradeoff

Fix $\gamma = 1$, for k > 0 there is tradeoff between

$$k \|\mathbf{u}\| L_{max} log(T \|\mathbf{u}\|) \sqrt{T}$$

and

$$exp[(\frac{L_t/L_{t-1}}{k^2})]$$

Second dimension tradeoff

Fix k, for $\gamma \in (1/2, 1]$ there is tradeoff between

$$\|\mathbf{u}\| L_{max} log^{\gamma} (T\|\mathbf{u}\|) \sqrt{T}$$

and

$$exp[(L_t/\gamma L_{t-1})^{1/(2\gamma-1)}]$$

Improved version: design algorithm

Still uses the FTRL framework with different regularizer.

$$\mathbf{w_{t+1}} = argmin_{\mathbf{w} \in W} \psi_t(\mathbf{w}) + \sum_{t'=1}^t f_{t'}(\mathbf{w})$$

where

$$\psi_t(\mathbf{w}) = \frac{k}{a_t \eta_t} \psi(a_t \mathbf{w})$$

$$\frac{1}{\eta_0^2} = 0, \quad \frac{1}{\eta_t^2} = \max(\frac{1}{\eta_{t-1}^2} + 2\|g_t\|_*^2, L_t\|g_{1:t}\|_*)$$

$$a_1 = \frac{1}{(L_1 \eta_1)^2}, \quad a_t = \max(a_{t-1}, \frac{1}{(L_t \eta_t)^2})$$

 a_t and η_t are carefully chosen functions of observed gradients g_1, \dots, g_t that guarantee the desired asymptotics in the regret bound

Improved version: adaptive regularizers

Definition 1

A convex function $f:W\to\mathbb{R}$ is σ -strongly convex with respect to a norm $\|\cdot\|$ if for all $x,y\in W$ and $g\in\partial f(x)$ we have

$$f(y) \ge f(x) + g \cdot (y - x) + \frac{\min(\sigma(x), \sigma(y))}{2} ||x - y||^2$$

Definition 2

Let W be a closed convex subset of a vector space s.t. $0 \in W$. Any differentiable function $\psi : W \to \mathbb{R}$ that satisfies the following conditions:

- $\psi(0) = 0$
- ② $\psi(x)$ is σ -strongly-convex with respect to some norm $\|\cdot\|$ for some $\sigma: W \to \mathbb{R}$ s.t. $\|x\| \ge \|y\|$ implies $\sigma(x) \le \sigma(y)$
- **3** For any C, there exists a B s.t. $\psi(x)\sigma(x) \geq C$ for all $||x|| \geq B$ is called a $(\sigma, ||\cdot||)$ -adaptive regularizer.

Improved version: adaptive regularizers

Define

$$h(\mathbf{w}) = \psi(\mathbf{w})\sigma(\mathbf{w}), \quad h^{-1}(x) = \max_{h(\mathbf{w}) \le x} \|\mathbf{w}\|$$
$$D = \max_{t} \frac{L_{t-1}^2}{(\|g\|_*^2)_{1:t-1}} h^{-1}(\frac{5L_t}{k^2 L_{t-1}})$$

Theorem 3

Suppose ψ is a $(\sigma, \|\cdot\|)$ -adaptive regularizer and $g_1, \cdots g_T$ is some arbitrary sequence of subgradients, then FTRL with regularizer ψ_t achieves regret

$$R_T(u) \le kL_{max} \frac{\psi(2uT)}{\sqrt{2T}} + 2L_{max}D + \frac{45L_{max}}{\sigma_{min}}$$

Goal: Choose a $h(x) = \psi(x)\sigma(x)$ s.t. $h^{-1}(x) \approx \exp(x)$ and $\psi(2uT)/\sqrt{2T} = O(\|u\|\sqrt{T}\log(T\|u\|+1))$

◆□ → ◆□ → ◆三 → □ → のQ へ

Improved version: γ -optimal

Theorem 4

If ψ is an $(\sigma, \|\cdot\|)$ -adaptive regularizer s.t.

$$\psi(x)\sigma(x) \ge \Omega(\gamma \log^{2\gamma - 1}(\|x\|)) \tag{1}$$

$$\psi(x) \le O(\|x\| \log^{\gamma}(\|x\| + 1)) \tag{2}$$

Then for any $k \geq 1$, FTRL with regularizers $\psi_t(\mathbf{w}) = \frac{k}{a_t n_t} \psi(a_t \mathbf{w})$ yields regret

$$\begin{split} R_{\mathcal{T}}(u) & \leq O[kL_{max}\sqrt{\mathcal{T}}\|u\|log^{\gamma}(\mathcal{T}\|u\|+1)] \\ & + max_{t}\frac{L_{max}L_{t-1}^{2}}{\|g\|_{1:t-1}^{2}}exp[O((\frac{L_{t}}{k^{2}\gamma L_{t-1}})^{1/2\gamma-1})] \end{split}$$

We call regularizers that satisfy these conditions γ -optimal.

Note that this actually match the lower bound for all $\gamma \in (1/2, 1]$.

Improved version: choose adaptive regularizers

Proposition 1

Let $\phi: \mathbb{R}^+ \to \mathbb{R}$ be a three-times differentiable function that satisfies

- $\phi(0) = 0$
- **2** $\phi'(x) \ge 0$
- **3** $\phi''(x) \ge 0$
- **4** $\phi'''(x) \leq 0$

Then $\psi(\mathbf{w}) = \phi(\|\mathbf{w}\|)$ is a $(\phi''(\|\cdot\|), \|\cdot\|)$ -adaptive regularizer.

Improved version: 1-optimal adaptive regularizer

Proposition 2

Let $\phi(x) = (x+1)log(x+1) - x$. Then $\psi(w) = \phi(\|w\|)$ is a 1-optimal, $(\phi''(\|\cdot\|), \|\cdot\|)$ -adaptive regularizer (pf):

- $\phi(0) = 0$
- **2** $\phi'(x) = log(x+1)$
- $\phi''(x) = \frac{1}{x+1}$
- $\phi'''(x) = -\frac{1}{(x+1)^2}$

Thus, FTRL with regularizers

$$\psi_t(w) = \frac{k}{\eta_t a_t} ((\|w\| + 1) \log(\|w\| + 1) - \|w\|)$$
 achieves the regret:

$$k \|\mathbf{u}\| L_{max} log(T \|\mathbf{u}\| + 1) \sqrt{T} + L_{max} max_{t \le T} \frac{L_{t-1}^2}{\|g\|_{1:t-1}^2} exp[(\frac{5L_t/L_{t-1}}{k^2})]$$

Improved version: γ -optimal adaptive regularizer

Proposition 3

Given $\gamma \in (1/2,1]$, set $\phi(x) = \int_0^x \log^{\gamma}(z+1)dz$. Then $\psi(w) = \phi(\|w\|)$ is a γ -optimal, $(\phi''(\|\cdot\|), \|\cdot\|)$ -adaptive regularizer

Thus, FTRL with regularizers $\psi_t(w) = \int_0^{\|w\|} \log^{\gamma}(z+1) dz$ achieves the regret:

$$\begin{split} R_{\mathcal{T}}(u) & \leq O[kL_{max}\sqrt{T}\|u\|log^{\gamma}(T\|u\|+1)] \\ & + max_{t}\frac{L_{max}L_{t-1}^{2}}{\|g\|_{1:t-1}^{2}}exp[O((\frac{L_{t}}{k^{2}\gamma L_{t-1}})^{1/2\gamma-1})] \end{split}$$

and the update rule:

$$w_{t+1} = -\frac{g_{1:t}}{a_t \|g_{1:t}\|} [exp((\eta_t \|g_{1:t}\|/k)^{1/\gamma}) - 1]$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · かなで

The algorithm FREEREX

FREEREX, for $\gamma = 1$

Algorithm 1 FREEREX

```
Input: k.
Initialize: \frac{1}{\eta_0^2} \leftarrow 0, a_0 \leftarrow 0, w_1 \leftarrow 0, L_0 \leftarrow 0, \psi(w) = (\|w\| + 1) \log(\|w\| + 1) - \|w\|.

for t = 1 to T do

Play w_t, receive subgradient g_t \in \partial \ell_t(w_t).

L_t \leftarrow \max(L_{t-1}, \|g_t\|).

\frac{1}{\eta_t^2} \leftarrow \max\left(\frac{1}{\eta_{t-1}^2} + 2\|g_t\|^2, L_t\|g_{1:t}\|\right).

a_t \leftarrow \max(a_{t-1}, 1/(L_t\eta_t)^2).

//Set w_{t+1} using FTRL update

w_{t+1} \leftarrow -\frac{g_{1:t}}{a_t\|g_{1:t}\|} \left[\exp\left(\frac{\eta_t\|g_{1:t}\|}{k}\right) - 1\right] // = \arg\min_{w} \left[\frac{k\psi(a_t w)}{a_t \eta_t} + g_{1:t}w\right]
```

end for