★☆☆☆ Exercice 1.

Calculer $J = \int_1^2 \frac{2t-1}{t-3} dt$.

 $\star\star$ \Leftrightarrow \Leftrightarrow Exercice 2.

Partie A

1.
$$u_0 = \int_0^1 (1-t)^0 e^t dt$$
 donc $u_0 = \int_0^1 e^t dt = [e^t]_0^1 = e - 1$.

2. (a) En posant
$$u(t) = (1-t)^{n+1}$$
 $v'(t) = e^t$ $u'(t) = -(n+1)(1-t)^n$ $v(t) = e^t$ par exemple

Toutes ces fonctions étant continues et dérivables, en intégrant par parties :

$$u_{n+1} = \left[(1-t)^{n+1} e^t \right]_0^1 + (n+1) \int_0^1 (1-t)^n e^t dt$$
$$= -1 + (n+1)u_n$$

(b)
$$u_1 = u_0 - 1$$
 donc $u_1 = e - 1 - 1 = e - 2$.
 $u_2 = 2u_1 - 1$ donc $u_2 = 2(e - 2) - 1 = 2e - 5$.

- 3. (a) Pour tout entier naturel n et pour tout réel t de l'intervalle [0; 1] on a $(1-t)^n \ge 0$ et $e^t > 0$ donc par produit $(1-t)^n e^t \ge 0$. L'intégrale conservant l'ordre dans \mathbb{R} on en déduit que $\int_0^1 (1-t)^n e^t dt \ge 0$ ce qui montre que la suite (u_n) est minorée par 0.
 - (b) Pour tout entier naturel n,

$$u_{n+1} - u_n = \int_0^1 (1-t)^{n+1} e^t dt - \int_0^1 (1-t)^{n+1} e^t dt$$
$$= \int_0^1 (1-t)^n e^t (1-t-1) dt$$
$$= \int_0^1 -t(1-t)^n e^t dt$$

Pour tout entier naturel n et pour tout réel t de l'intervalle [0; 1], on a $-t \le 0$, $(1-t)^n e^t \ge 0$ donc par produit $-t(1-t)^n e^t \le$ et comme l'intégrale conserve l'ordre dans \mathbb{R} , $\int_0^1 -t(1-t)^n e^t \, \mathrm{d}t \le 0$ ce qui montre que $u_{n+1} - u_n \le 0$ et donc la suite (u_n) est décroissante.

- (c) La suite (u_n) est décroissante et minorée par 0 donc la suite (u_n) est convergente et converge vers une limite ℓ telle que $\ell \geqslant 0$.
- 4. (a) $0 \leqslant t \leqslant 1 \longleftrightarrow e^t \leqslant e \longleftrightarrow (1-t)^n e^t \leqslant e \times (1-t)^n$.
 - (b) En « intégrant cette inégalité sur l'intervalle [0; 1], on a $u_n \le \int_0^1 e \times (1-t)^n \iff u_n \le \frac{e}{n+1}[-(1-t)]_0^1$ et finalement :

$$u_n \leqslant \frac{\mathrm{e}}{n+1}.$$

(c) On a donc démontré que :

$$0 \leqslant u_n \leqslant \frac{\mathrm{e}}{n+1}.$$

Par application du théorème d'encadrement des limites la limite de u_n au voisinage de plus l'infini est égale à zéro.