SEGUNDA ENTREGA

Matrices. Espacios vectoriales. Aplicaciones lineales

Ejercicio 1. Sea $P \in M_{3\times 7}(\mathbb{Z}_2)$ la matriz cuyas columnas son los números del 1 al 7 escritos en binario.

- 1. Calcula el rango de P.
- 2. Calcula una matriz $G \in M_{4\times 7}(\mathbb{Z}_2)$, de rango cuatro, y tal que $G \cdot P^t = 0$.
- 3. Calcula la forma escalonada reducida de G, y llámala H_G . Comprueba que $H_G \cdot P^t = 0$.
- 4. Elige $m \in M_{1\times 4}(\mathbb{Z}_2)$, $m \neq 0$ y calcula $c = m \cdot G$.
- 5. Sea $v = P \cdot c^t$. Comprueba que v = 0.
- 6. Toma c, y modifica un coeficiente (cambia un 1 por un 0 o al revés). Llama c' al resultado de la modificación. Intenta determinar el bit modificado a partir del valor de $v' = P \cdot (c')^t$ (Indicación: considera el vector v' como un número escrito en binario).
- 7. Repite los apartados 4, 5 y 6 pero tomando, en lugar de la matriz G la matriz H_G. Encuentra una forma de determinar m a partir de c.
- 8. Realiza operaciones elementales por columas en la matriz P^t hasta obtener una matriz de la forma $\left(\frac{B}{\text{Id}}\right)$.

Ejercicio 2. Sean $B_1 = \{(2,3,2), (3,3,4), (4,0,0)\}$ y $B_2 = \{(1,0,3), (1,2,1), (1,1,4)\}$ dos subconjuntos de $(\mathbb{Z}_5)^3$.

- 1. Comprueba que B₁ y B₂ son bases.
- 2. Calcula la matriz del cambio de base de B₁ a B₂.
- 3. Sea $\mathfrak u$ el vector cuyas coordenadas en B_1 son (1,3,4). Calcula el vector $\mathfrak u$ y sus coordenadas en B_2 .
- 4. Calcula todos los vectores $u \in (\mathbb{Z}_5)^3$ que tienen las mismas coordenadas en B_1 y en B_2 .

Ejercicio 3. Sea $f: \mathbb{Q}^4 \to \mathbb{Q}^3$ la única aplicación lineal que verifica que

$$f(1,0,0,0) = (4,7,2)$$

$$f(1,1,0,0) = (-1,3,9)$$

$$f(1,1,1,0) = (0,1,2)$$

$$f(1,1,1,1) = (2,-1,8)$$

Se pide:

- 1. Escribe la matriz asociada a f respecto de las bases canónicas de \mathbb{Q}^4 y \mathbb{Q}^3 .
- 2. Da una expresión para f(x, y, z, t).
- 3. Calcula la dimensión de los subespacios núcleo e imagen de f.

Ejercicio 4. Sean $U = L[(1,2,3),(2,3,4),(3,4,0)], W \equiv \begin{cases} 2x + 2y + z = 0 \\ 4x + 3y + 3z = 0 \end{cases}$ y $V_3 \equiv \begin{cases} 4x + 2y + z = 0 \\ 2x + y + 3z = 0 \end{cases}$ tres subespacios de $(\mathbb{Z}_5)^3$.

- 1 Calcula una base de cada uno de ellos.
- **2** Calcula una base de $V_2 = U \cap W$.
- **3** Compureba que $(\mathbb{Z}_5)^3 = V_2 \oplus V_3$.

Sea A la matriz 3×3 con coeficientes en \mathbb{Z}_5 que tiene dos valores propios 2 y 3, y cuyos subespacios propios correspondientes son V_2 y V_3 .

- 4 Calcula las multiplicidades algebraicas y geométricas de los valores propios 2 y 3.
- 5 Calcula la matriz A.
- 6 Calcula A²⁰.