

Ahmed Safwat Abouhashem Nayesha Gandotra

PyTorch

Open-source deep learning framework — developed by Facebook Al Research

Pythonic and User-Friendly — easy to learn

Flexible and intuitive — easy to build, modify, and debug custom models

Dynamic computation graphs

GPU-accelerated tensor computations

- Tensors are multidimensional arrays
 - Vector → 1D tensor
 - Matrix → 2D tensor
 - Extendable to n dimensions

Popular — large community & adopted by top Al labs and researchers

O RESEARCH TO PRODUCTION

Python API

control where torch. Tensor is allocated

```
>>> torch.device('cuda', 0)
device(type='cuda', index=0)
>>> torch.device('mps', 0)
device(type='mps', index=0)
>>> torch.device('cpu', 0)
device(type='cpu', index=0)
```

automatic differentiation (torch.autograd)

```
requires_grad=True
```

various optimization algorithms (torch.optim)

```
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr=0.0001)
```

visualize hyperparameter tuning, model graphs, ...etc (tensorboard)

torch.nn

Convolution layers

nn.Conv1d	Applies a 1D convolution over an input signal composed of several input planes.
nn.Conv2d	Applies a 2D convolution over an input signal composed of several input planes.
nn.Conv3d	Applies a 3D convolution over an input signal composed of several input planes.
nn.ConvTranspose1d	Applies a 1D transposed convolution operator over an input image composed of several input planes.
nn.ConvTranspose2d	Applies a 2D transposed convolution operator over an input image composed of several input planes.
nn.ConvTranspose3d	Applies a 3D transposed convolution operator over an input image composed of several input planes.

Non-linear activation

nn.Sigmoid	Applies the Sigmoid function element-wise.
nn.Tanh	Applies the Hyperbolic Tangent (Tanh) function element-wise.
nn.ReLU	Applies the rectified linear unit function element-wise.
nn.LeakyReLU	Applies the LeakyReLU function element-wise.
nn.Softmax	Applies the Softmax function to an n-dimensional input Tensor.
nn.Softmax2d	Applies SoftMax over features to each spatial location.

https://pytorch.org/

Loss functions

nn.L1Loss nn.MSELoss nn.CrossEntropyLoss nn.CTCLoss nn.NLLLoss nn.PoissonNLLLoss

Modeling

- Computer vision
- Language
- Specialized
- Medical & Biology
- Multimodal
- Adversarial & Robustness
- 3D

Rich ecosystem!

popular datasets pretrained models

object detection & segmentation

piect-detection-detectron2

Albumentations image augmentation

https://github.com/albumer

Training

- General
- Privacy
- Reinforcement Learning

natural language

audio and signal processing

systems

Networks

Optimizations

- Compilers & Runtimes
- General
- MLOps

popular datasets pretrained models

easy to use / benchmarking / transfer learning

https://landscape.pytorch.org/

Pytorch Practice Notebook

1. Pre-reqs:

- a. Python see recitation 0.1
- b. Notebooks see recitation 0.2
- c. Numpy see recitation 0.3
- d. Some math/ matrix algebra

Focus on solving the problem at hand!

https://pytorch.org/

(Tutorials, Community hub, Docs, others!)