Estructura del Sistema Operativo

Departamento de Automática
Universidad de Alcalá

/gso>

Índice

- Descripción de un sistema
 - Planteamiento
 - Descripción funcional de un SO
 - Descripción estructural de un sistema operativo
 - El SO y el hardware
- Estructura jerárquica de los sistemas operativos
 - Diseño por capas
- El núcleo del SO
 - Características generales
 - Funciones básicas
 - Gestión de eventos
 - Soporte al diagrama de estados
- 4 Enfoques de diseño de un Sistema Operativo
 - Tipos de enfoques
 - Monitor monolítico
 - Micronúcleo
 - Comparativa
- Ejemplos de estructuración
 - Sistema operativo Linux
 - Sistema operativo Mach
 - Sistema operativo Windows
 - Sistema operativo Android

rianteamiento Descripción funcional de un SO Descripción estructural de un sistema operativo El SO y el hardware

Planteamiento

Necesidad

Disminuir la complejidad en el estudio y diseño de un sistema.

- Solución: diferentes tipos de descripciones
 - Descripción funcional.
 - Descripción estructural.
 - Descripción de la implementación.

Descripción funcional

Objetivo

Funciones que proporciona un sistema operativo.

- Esta descripción sólo considera qué obtiene el usuario del sistema operativo.
- El sistema operativo es básicamente una caja negra, cuyo contenido no interesa.
- ¿Todos los usuarios perciben las mismas funciones?
 - Visión amplia:
 - Propia de los usuarios.
 - Visión restringida:
 - Propia de los desarrolladores del sistema operativo.

Descripción funcional Visión restringida

- Un SO es un administrador de recursos y una interfaz entre los programas, los usuarios y el hardware.
- Sus funciones son:
 - Compartir el hardware entre usuarios.
 - Facilitar la E/S.
 - Planificar recursos entre usuarios.
 - Definir la "interfaz de usuario".
 - Permitir a los usuarios compartir los datos.
 - Recuperarse de los errores.
- Los recursos claves que un SO administra son:
 - El microprocesador.
 - La memoria principal.
 - Los dispositivos de E/S.
 - Almacenamiento y los datos.

Descripción estructural

Objetivo

Buscar una organización interna que incremente la portabilidad, extensión y facilite la comprensión y el mantenimiento del sistema

- ¿Cómo abordar el desarrollo de un programa de millones de líneas de código?
- ¿Qué características generales deberá tener un sistema operativo? ¿Y el hardware?

El SO y el hardware

- El SO debe ser seguro, robusto, estable y eficiente.
- El diseñador de SSOO solicita al arquitecto de computadores los siguientes mecanismos:
 - Modo dual de ejecución.
 - Modo usuario y modo privilegiado.
 - Mecanismos para pasar de modo usuario a modo supervisor: Eventos.

Petición de servicio del SO: Llamada al sistema (SVC)

Otros eventos: interrupciones de E/S, ...

- Mecanismos de protección del hardware:
 - De memoria: Hardware de protección.
 - De dispositivos: Hardware de protección o instrucciones privilegiadas.
 - Del procesador: Interrupciones.
- Mecanismos para maximizar el rendimiento del hardware.
 - Solapar operaciones de la E/S con el uso de la CPU (DMA).

Diseño por capas

Objetivo

Disminuir la complejidad observable de un sistema en su diseño.

Concepto de capa

Conjunto de funciones claramente definidas hacia un objetivo común.

Ventajas de la estructuración por capas

- Las estructuras internas y algoritmos de una capa no son visibles a las demás.
- El sistema puede evolucionar fácilmente manteniendo las interfaces.
- Pueden existir realizaciones alternativas procedentes de distintos grupos de trabajo.
- Algunas capas pueden ser transparentes si sus servicios no son necesarios.
- Cada capa se codifica y prueba de modo independiente (importante en el desarrollo del software).

Obietivos del nivel

Repartir la memoria

Compartir la CPU entre

entre los procesos

procesos

Niveles clásicos en el diseño por capas de un SO

Creación y destrucción de archivos/directorios. Gestión del espacio de Apertura v cierre de archivos. nombres lógicos y Lectura/Escritura de archivos. NIVEL 5: GESTIÓN DE LA INFORMACIÓN protección de la Protección de acceso. información Creación de procesos de E/S. Gestión de E/S en función Asignación y liberación de NIVEL 4: GESTIÓN DE DISPOSITIVOS de los dispositivos del dispositivos de E/S. sistema Planificación de E/S. Creación v destrucción de proc. Manejo de procesos a NIVEL 3: GESTIÓN DE PROCESOS alto nivel Intercambio de mensaies. Detención v arranque de proc.

NIVEL 2: GESTIÓN DE MEMORIA

NIVEL 1: GESTIÓN DEL PROCESADOR

Funciones principales del nivel

Asianación v liberación de

Conmutación de la CPU. Gestión de interrupciones.

Control de violación de acceso.

Sincronización entre procesos.

memoria.

Características generales

- Corresponde al primer nivel en el diseño jerárquico de un SO.
- Es la parte más dependiente del HW de todo el SO.
- Suele permanecer en el almacenamiento primario. ¿Por qué?
- Parte en ensamblador y, a veces, con dispositivos cableados.
- Se ejecuta siempre en modo privilegiado (supervisor).

Funciones básicas

- Proporcionar el entorno adecuado para la existencia de procesos
 - Gestión de eventos.
 - Conmutación del procesador entre procesos (soporte al diagrama de estados).
 - Mecanismos básicos de comunicación entre procesos.
 - Carga inicial y activación de la configuración del sistema.

Gestión de eventos Tipos de eventos

Eventos

Síncronos

TRAP's - llamadas al sistema

Excepciones (división por cero, fallo de pág., instrucción ilegal, violación de privilegios, etc.)

Asíncronos - Interrupciones

¡La CPU conmuta a Modo Supervisor!

Gestión de eventos TRAPS - llamadas al sistema

- ¿Cómo puede el usuario ejecutar una instrucción privilegiada?
 - Petición de servicio al SO: SVC (Super Visor Call).
 - Modo usuario ⇒ TRAP ⇒ Modo supervisor.
 - Método: a través de una instrucción máquina específica según la arquitectura del ordenador.
 - Al ejecutarse esta instrucción toma el control el S.O.

Llamada al sistema

Son el mecanismo controlado de acceso por parte de los procesos a los recursos del S.O.

Gestión de eventos Tipos de llamadas al sistema

- Comunicación y sincronización de procesos.
- Ejecución de programas.
- Manejo de operaciones de E/S.
- Manipulación del sistema de archivos.
- Detección y control de errores en tiempo de ejecución.
- Comunicaciones en red.
- Funciones de tiempo.
- Personalización de la interfaz.

Gestión de eventos Programación con llamadas al sistema

- Las llamadas al sistema se definen a nivel de ensamblador.
- Interfaz POSIX: estándar de interfaz de sistemas operativos portables de IEEE basado en UNIX.
 - API (Application Programming Interface) estándar (routine wrapper en Linux).
 - Objetivo: portabilidad de las aplicaciones.
 - Disponible en todas las versiones de Unix/Linux.
 - Incluye servicios de sistema para muchos entornos de aplicación.

Características generales Funciones básicas <mark>Gestión de eventos</mark> Soporte al diagrama de estados

Gestión de eventos

Programación con llamadas al sistema - un ejemplo

```
write:
     pushl %ebx
                    ; salvar en pila ebx
     movl 8(%esp), %ebx ; paso de parómetros
     movl 12(%esp), %ecx; en registros a rut.
     movl 16(%esp), %edx; de tratamiento de la sc
     movl $4, %eax
                         ; nómero de sc en eax
     int $0x80
                         : invocar a la sc
     cmpl $-126, %eax
                          ; chequeo cód. de ret
     jbe .L1
                         : saltar si no error
     negl %eax
                         ; complem. valor eax
     movl %eax, errno
                         : result. en errno
     movl $-1, %eax
                         ; poner eax a -1
.L1:
     popl %ebx
                         : restaurar ebx
     ret
                          ; retornar al proceso
```

Gestión de eventos Ejecución de un servicio POSIX

programa en ejecución

fx_API() fx_API() fx_API() fx_API() fx_API()

Modo supervisor

Rutina wrapper

Características generales Funciones básicas **Gestión de eventos** Soporte al diagrama de estados

Gestión de eventos Manipulación de archivos

```
Crear/Borrar
```

```
int creat(const char *archivo, mode_t modo);
int unlink(const char *archivo);
```

Abrir/Cerrar

Leer/Escribir

```
int read(int descriptor, char *buf, int n_bytes);
int write(int descriptor, char *buf, int n_bytes);
```

⇒ Otros servicios POSIX: rename, 1seek, etc.

Gestión de eventos Ejemplo de servicio POSIX

Prototipo

Descripción

Busca el archivo de nombre archivo en el sistema de archivos y, si la operación es válida, le asocia un descriptor de archivo.

Devuelve

Un entero, descriptor de archivo. Si la llamada fracasa, devuelve -1

Soporte al diagrama de estados

Tipos de enfoques

- A grandes rasgos, cabe considerar dos enfoques de diseño:
 - Enfoque monitor monolítico
 - Toda la funcionalidad del SO se incluye en el núcleo
 - MS-DOS, Linux
 - Enfoque micronúcleo
 - Parte de la funcionalidad del SO se realiza por procesos de sistema que se sirven de la funcionalidad mínima proporcionada por un micronúcleo
 - Mach, L4, Chorus
- ¿Dónde se clasificará Windows?

Esquema de operación

Esquema de operación Micronúcleo

Comparativa

Monitor monolítico

- Todo el SO se ejecuta en modo supervisor
- Menos robusto
- El SO es ininterrumpible*
- Mayor rendimiento
- Muy adecuado para sistemas pequeños
- Difícil de modificar en tiempo de ejecución
- Menos adaptable

Micronúcleo

- Sólo el micronúcleo se ejecuta en modo supervisor
- Mós robusto
- El SO es interrumpible
- Menor rendimiento (sobrecarga de comunicaciones)
- Muy adecuado para sistemas grandes
- Fácil de modificar en tiempo de ejecución
- Más adaptable

Sistema operativo Linux

Sistema operativo Mach

Sistema operativo Windows

Sistema operativo Android

Referencias bibliográficas I

- [Sánchez, 2005] S. Sánchez Prieto. Sistemas Operativos. Servicio de Publicaciones de la UA, 2005.
- [Tanenbaum, 2009] A. Tanenbaum.

 Sistemas Operativos Modernos.

 Ed. Pearson Education, 2009.
- [Stallings, 1999] W. Stallings.
 Organización y arquitectura de Computadores.
 Ed. Prentice Hall, 1999.