

MATHEMATICS DEPARTMENT

Year 11 Methods - Test Number 2 2020 Functions Resource Free

Name:	Teacher:
Marks:	37
Reading Time:	3 minutes
Working Time:	25 minutes
Instructions: You ARE NOT permitted any notes or calculators. The formula sheet will be provided.	

Solve the following equations:

a)
$$3x^2 - 12x = 0$$

b)
$$x^2 - 11x = 60$$

Find, in the form $y = ax^2 + bx + c$, the equation of the quadratic whose graph:

a) Touches the x-axis only at 4 and passes through (2, 12)

Question 3

[2, 2 = 4 marks]

a) Write the quadratic $y = x^2 + 4x - 3$ in the form $y = a(x - h)^2 + k$

b) Hence, sketch the graph of $y = x^2 + 4x - 3$

If $f(x) = 2x - x^2$ and g(x) = 3x - 4

a) Evaluate f(2)

b) Show that g(b + 2) = 3b + 2

c) Determine the values of b such that f(b) = g(b)

a) Show that -2 is an *x*-intercept of the graphs of $f(x) = 3x^3 - 5x^2 - 42x - 40$

b) Find any other *x*-intercepts

c) Using the information from part b) sketch the graph $f(x) = 3x^3 - 5x^2 - 42x - 40$

The three equations given below are for the three graphs shown below.

a) Determine the values of the constants a, b, c, d, e and f

$$f(x) = a(x - b)^3 + 3$$
 $g(x) = c\sqrt{x - 3} + d$

$$g(x) = c\sqrt{x-3} + d$$

$$h(x) = \frac{1}{x - e} + f$$

- b) State the natural domain of g(x)
- c) State the range of h(x)