Deep Neural Network for Speech Emotion Recognition —A Study of Deep Learning—

7huowei Han

Institut für Signalverarbeitung und Systemtheorie

Universität Stuttgart

16/04/2015

Motivation

Why speech emotion recognition

- Most current work focuses on speech processing based on linguistic information, e.g.: Skype Translator
- More natural human-machine interaction requires paralinguistic information such as age, gender, emotion.
- Speech Recognition / Speeker Identification / Emotion

Deep Network Applications

- Handwriting Digit Recognition
- Image Recognition

Motivation

Why speech emotion recognition

- Most current work focuses on speech processing based on linguistic information, e.g.: Skype Translator
- More natural human-machine interaction requires paralinguistic information such as age, gender, emotion.
- Speech Recognition / Speeker Identification / Emotion

Deep Network Applications

- Handwriting Digit Recognition
- Image Recognition

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine

Product of Experts Restricted Boltzmann Machine

Deep Neural Networks

Concept
Problems and Solutions

Long Short Term Memory Recurrent Neural Network

Experiments

Conclusion and Outlook

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine Product of Experts Restricted Boltzmann Machine

Deep Neural Networks
Concept
Problems and Solutions

Long Short Term Memory Recurrent Neural Network

Experiments

Conclusion and Outlook

Mel Frequency Cepstral Features

- short-term power spectrum
- mel-scale approximate human perception
- widely-used in speech recognition tasks
- Transformation between Mel and Hertz scale

$$f_{mel} = 1125 \ln \left(1 + f_{Hz}/700\right)$$
 (1)

$$f_{Hz} = 700 \left(\exp(f_{mel}/1125) - 1 \right)$$
 (2)

Emotion Recognition Approaches

Traditional Approaches

- pre-selected features
- supervised training
- low-level features not appropriate for classification
- shallow structure of classifiers

Deep Learning Approaches

- learning representations from high-dim data
- extracting appropriate features without hand-crafting
- low-level features are used to build high-level features as network gets deeper
- frame-based classfication

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine

Product of Experts Restricted Boltzmann Machine

Deep Neural Networks

Concept

Problems and Solutions

Long Short Term Memory

Recurrent Neural Network

Experiments

Conclusion and Outlook

Product of Experts

Character

- Generative model, capture data distribution $P(\mathbf{x}|\boldsymbol{\theta})$
- Undirected graphical model, good at modeling high-dimensioanl data (speech emotion)
- Trained in unsupervised way, only use unlabeled input sequencex for learning.
 - automatically extract useful features from data
 - Find hidden structure (distribution).
 - Learned features used for prediction or classification
- Potential to be extend to capture temporal information
- Binary Units of input and outpu layer
- No interconnections within the same layer

Restricted Boltzmann Machine

Structure

Energy Function: $E_{\theta} = -\mathbf{x}^{\mathbf{T}}\mathbf{W}\mathbf{h} - \mathbf{b}^{\mathbf{T}}\mathbf{x} - \mathbf{c}^{\mathbf{T}}\mathbf{h}$

Joint Distribution: $P^{RBM}(\mathbf{x}, \mathbf{h}) = \frac{1}{Z}e^{-E_{\theta}(\mathbf{x}, \mathbf{h})}$

Partition Function: $Z = \sum_{\mathbf{r}, \mathbf{h}} e^{-E_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{h})}$

Free Energy: $\mathcal{F}(\mathbf{x}) = -\log \sum_{\mathbf{r}} e^{-E(\mathbf{x},\mathbf{h})}$

Inference

Inference

$$\begin{split} P(\mathbf{x}) &= \sum_{\mathbf{h}} P(\mathbf{x}, \mathbf{h}) \\ P(\mathbf{h}) &= \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{h}) \\ P(\mathbf{h}|\mathbf{x}) &= \frac{P(\mathbf{x}, \mathbf{h})}{P(\mathbf{x})} \\ P(\mathbf{x}|\mathbf{h}) &= \frac{P(\mathbf{x}, \mathbf{h})}{P(\mathbf{h})} \\ P(h_j = 1 \mid \mathbf{x}) &= sigmoid(\sum_i x_i W_{ij} + c_j) \\ P(x_i = 1 \mid \mathbf{h}) &= sigmoid(\sum_j W_{ij} h_j + b_i) \end{split}$$

- Linear input units with independent Gaussian noise
- Real-valued data, e.g. spectral features

- Linear input units with independent Gaussian noise
- Real-valued data, e.g. spectral features

- Linear input units with independent Gaussian noise
- Real-valued data, e.g. spectral features

Energy Function:
$$E_{\boldsymbol{\theta}}^{CRBM}(\mathbf{x}, \mathbf{h}) = \left\| \frac{\mathbf{x} - \tilde{\mathbf{b}}}{2} \right\|^2 - \tilde{\mathbf{c}}^T \mathbf{h} - \mathbf{x}^T \mathbf{W} \mathbf{h}$$

Free Energy: $\mathcal{F}(\mathbf{x}) = \left\| \mathbf{x} - \tilde{\mathbf{b}} \right\|^2 - \log(1 + e^{\tilde{\mathbf{c}} + \mathbf{x} \cdot \mathbf{W}})$

$$\tilde{\mathbf{b}} = \mathbf{b} + \mathbf{A} \cdot \mathbf{x}_{< t}$$

$$\tilde{\mathbf{c}} = \mathbf{c} + \mathbf{B} \cdot \mathbf{x}_{< t}$$

$$\boldsymbol{\theta} = \{ \mathbf{W}, \mathbf{A}, \mathbf{B}, \mathbf{b}, \mathbf{c} \}$$

Training of Energy-based Model

Optimization Method: Maximum Likelihood

$$P(\mathbf{x}) = \frac{e^{-\mathcal{F}(\mathbf{x})}}{Z}$$
$$-\frac{\partial \log P(\mathbf{x})}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} - \sum_{\tilde{\mathbf{x}}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}}$$
$$-\frac{\partial \log P(\mathbf{x})}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} - \frac{1}{|\mathcal{N}|} \sum_{\tilde{\mathbf{x}} \in \mathcal{N}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}}$$

Training of Energy-based Model

Optimization Method: Maximum Likelihood

$$P(\mathbf{x}) = \frac{e^{-\mathcal{F}(\mathbf{x})}}{Z}$$
$$-\frac{\partial \log P(\mathbf{x})}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} - \sum_{\tilde{\mathbf{x}}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}}$$
$$-\frac{\partial \log P(\mathbf{x})}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} - \frac{1}{|\mathcal{N}|} \sum_{\tilde{\mathbf{x}} \in \mathcal{N}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}}$$

Training of Energy-based Model

t=1, Gibbs step \rightarrow Constrastive Divergence

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine

Product of Experts Restricted Boltzmann Machine

Deep Neural Networks

Concept

Problems and Solutions

Long Short Term Memory

Recurrent Neural Network

Experiments

Conclusion and Outlook

Computing net-activation

$$\begin{array}{rcl} \underline{z}_k^{(l+1)} & = & \mathbf{W}^{(l)}\underline{a}_k^{(l)} + \underline{b}^{(l)} \\ \underline{a}_k^{(l+1)} & = & \underline{\Phi}\left(\underline{z}_k^{(l+1)}\right) \\ & & & \\ \underline{\hat{y}}_k & = & \underline{a}_k^{(ol)} \end{array}$$

- Arbitrary non-linear mapping from \underline{x}_k to $\hat{\underline{y}}_k$ possible
- Relation $N \Leftrightarrow \mathsf{Complexity}$
- Deep Architectures $(l \uparrow)$ more efficient than shallow ones $(l \downarrow, N_l \uparrow)$

Determining the parameters

Training objective

$$J(\mathbf{W}, \underline{b}) = \sum_{\forall k} \frac{1}{2} ||\underline{y}_k - \underline{\hat{y}}_k||^2 + \frac{\lambda}{2} \sum_{\forall l} ||\mathbf{W}^{(l)}||_F^2$$
 (4)

$$\mathbf{W}, \underline{b} = \arg\min_{\mathbf{W}, b} J(\mathbf{W}, \underline{b})$$
 (5)

Numerical minimization

- Gradient calculation with Backpropagation
- Stochastic gradient descent
- Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

Problems

- Optimization problem non-convex⇒ getting stuck in poor local minima
- Diffusion of gradients
- Large p small n problem \Rightarrow overfitting

Solutions

Layerwise Pre-training

■ Layerwise Pre-training

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine

Product of Experts Restricted Boltzmann Machine

Deep Neural Networks

Concept
Problems and Solutions

Long Short Term Memory Recurrent Neural Network

Experiments

Conclusion and Outlook

- modelling sequential data, emotion in speech
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping.
- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with backpropagation through time (BPTT)

- modelling sequential data, emotion in speech .
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping.
- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with **b**ack**p**ropagation **t**hrough **t**ime (BPTT)

- modelling sequential data, emotion in speech.
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping.

$$h_t = \mathcal{H}(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$
$$y_t = W_{hy}h_t + b_y$$

- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with backpropagation through time (BPTT)

- modelling sequential data, emotion in speech.
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping.
- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with **b**ack**p**ropagation **t**hrough **t**ime (BPTT)

- modelling sequential data, emotion in speech .
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping.
- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with backpropagation through time (BPTT)

- modelling sequential data, emotion in speech .
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping.
- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with backpropagation through time (BPTT)

From RNN to LSTM

Problems with RNN

- lacktriangledown gradient vanishing during backpropagation as time steps increases (>100)
- difficult to capture long-time dependency (which is required in emotion recognition)

Solutions

Long short term memory

S. Hochreiter and J. Schmidhuber, Lovol. 9, pp. 1735-1780, 1997.

LSTM unit

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_{f})$$

$$c_{t} = f_{t}c_{t-1} + i_{t}\tanh(W_{xc}x_{t} + W_{hc}h_{t-1} + b_{f})$$

$$h_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_{t} + b_{o})$$

$$h_{t} = o_{t}\tanh(c_{t})$$

Long short term memory

LSTM unit

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_{f})$$

$$c_{t} = f_{t}c_{t-1} + i_{t}\tanh(W_{xc}x_{t} + W_{hc}h_{t-1} + b_{c})$$

$$o_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_{t} + b_{o})$$

$$h_{t} = o_{t}\tanh(c_{t})$$

Long short term memory

Features in LSTM

- gates are trained to learn when it should be open/closed.
- Constant Error Carousel
- preserve long-time dependency by maintaining gradient over time.

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine

Product of Experts Restricted Boltzmann Machine

Deep Neural Networks

Concept
Problems and Solutions

Long Short Term Memory

Recurrent Neural Network

Experiments

Conclusion and Outlook

CRBM-DNN

■ CRBM-LSTM

LSTM

LSTM with rectifier units

Confusion	matrix of	CRBM-DNN	result
COIII USIOII	IIIauin Oi	CINDIVI-DIVIN	I CSUIL

			Classfied		_
	Joy	Joy 57.7%	Neutral 1.4%	Sadness 0.0%	Anger 40.8%
True	Neutral Sadness Anger	17.7% 1.6% 39.4%	54.4% 27.9% 1.6%	25.3% <mark>70.5%</mark> 0.0%	2.5% 0.0% 59.1%

 $recognition\ rate: 59.76\%$

Confusion	matrix	of	CRBM-LSTM result

			Classfied		
	Joy	Joy 11.3%	Neutral 9.9%	Sadness 2.8%	Anger 76.1%
True Neutral Sadness Anger	0.0%	72.2%	17.7%	10.1%	
		0.0% 0.8%	4.8% 1.6%	88.7% 0.0%	6.5% 97.6%

recognition rate: 71.98%

Confusion matrix of pure LSTM result

			Classfied		_
True	Joy Neutral Sadness Anger	Joy 66.2% 6.3% 0.0% 12.6%	Neutral 4.2% 79.7% 19.7% 0.8%	Sadness 0.0% 10.2% 80.3% 0.0%	Anger 29.6% 3.8% 0.0% 86.6%

recognition rate: 81.59%

Confusion	matrix of	LSTM-Rectifier result

			Classfied		
True	Joy Neutral Sadness Anger	Joy 57.7% 6.3% 0.0% 8.7%	Neutral 7.0% 86.1% 6.6% 0.0%	Sadness 0.0% 6.3% 93.4% 0.0%	Anger 35.2% 1.3% 0.0% 91.3%

recognition rate: 83.43%

Table of Contents

Foundations

Mel Frequency Cepstral Features
Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine

Product of Experts
Restricted Boltzmann Machine

Deep Neural Networks

Problems and Solutions

Long Short Term Memory

Recurrent Neural Network

Experiments

Conclusion and Outlook

Conclusion

- Model with long-term dependencies shall be used for speech emotion.
- CRBM is appropriate for short time modelling, stacked CRBM can model longer dependency
- LSTM can model long time dependency, get in the task.
- frame-based classification can also reach good result
 - □ CRBM-LSTM 71.98%
 - □ LSTM 81.59%
 - \Box LSTM with rectifier layers 83.43%

Outlook

- Stacking CRBM to form deeper structure
- Traing CRBM with more/larger data base
- Second order optimization to speed up learning process
- Bi-directional LSTM, capturing future dependencies

End

Thank You!