1M001 UPMC, 21 novembre 2014.

TD 8: Nombres complexes

Exercice 1 Calculer la partie réelle et la partie imaginaire des nombres complexes suivants :

$$z_1 = \frac{3+6i}{3-4i}, z_2 = \left(\frac{1+i}{2-i}\right)^2, z_3 = \frac{2+5i}{1-i} + \frac{2-5i}{1+i}$$

Exercice 2 Déterminer le module et l'argument des nombres complexes suivants : $1, 3 + 3i, -1 - \sqrt{3}i, (1-i)^9, (\sqrt{5}-i)(\sqrt{5}+i)$.

Exercice 3 Déterminer les nombres complexes z tels que :

- 1. $|\bar{z} i| = 1$
- 2. $z\bar{z} = z^3$
- 3. $i\Re(z^2) \Im(z^2) = z$

Exercice 4 Soit $z \in \mathbb{C} - \{1\}$ tel que |z| = 1. Montrer que $\frac{z+1}{z-1}$ est un imaginaire pur.

Exercice 5 Soit $\theta \in]0, 2\pi[$ et $n \in \mathbb{N}$, calculer

$$\sum_{k=0}^{n} \cos(k\theta) \text{ et } \sum_{k=0}^{n} \sin(k\theta).$$

Exercice 6 Soit w = 1 + i.

- 1. Déterminer les racines carrées de w sous la forme a+ib avec a,b réels.
- 2. Calculer le module et l'argument de w.
- 3. En déduire la valeur de $\cos(\pi/8)$ et $\sin(\pi/8)$.

Exercice 7 Résoudre dans $\mathbb C$ les équations suivantes :

- 1. $z^2 + z + 1 = 0$,
- $2. \ z^2 \sqrt{3}z i = 0,$
- 3. $4z^2 2z + 1 = 0$

Exercice 8 Déterminer l'ensemble des points du plan, d'affixe $z \in \mathbb{C}$, tels que $\frac{z-2}{z-i} \in \mathbb{R}$, $\left|\frac{z-1}{z-2i}\right| = 1$, puis $\Re(\bar{z}) \leq 3$.

Exercice 9 Écrire les nombres suivants sous forme cartésienne : $\frac{1+i}{1-i}$, $\frac{2-i}{3i}$, $\frac{1-i}{3+2i}$

Exercice 10 Écrire les nombres suivants sous forme polaire : $\sqrt{2}(1+i)$, $\frac{3}{2} - \frac{3i\sqrt{3}}{2}$, $\left(\frac{1+i\sqrt{3}}{1-i}\right)^2$.

1

Exercice 11 Calculer l'inverse de : $\sqrt{2}(1+i)$, 3-2i.