

full length thereof, including a polymorphic site shown in Table 1, wherein the polymorphic site within the segment is occupied by a base other than the base shown in Table 1, column 3 ("asn base").

10. (Twice amended) A method of analyzing a nucleic acid comprising;

obtaining the nucleic acid from an individual; and identifying a base occupying any one of the polymorphic sites shown in Table 1 wherein the base is a base other than the base shown in Table 1, column 3 ("asn base").

REMARKS

1. Sequence Listing

Applicants request entry of the substitute sequence listing in adherence with 37 C.F.R. §§1.821 to 1.825. This amendment is accompanied by a floppy disk containing the above named sequences, SEQ ID NOS:1-30, in computer readable form, and a paper copy of the sequence information which has been printed from the floppy disk. The substitute sequence listing corrects the inaccurately entered SEQ ID NO:12 noted by the Examiner in the office action mailed September 11, 2001. In addition, the orientation of SEQ ID NOS: 3-6, 13-20, and 22-29) has been reversed to fulfill requirements under 37 C.F.R. 1.822 (c)(5) to present all nucleotide sequences in the 5' to 3' direction. The information contained in the computer readable disk was prepared through the use of the software program "FastSEQ" and is identical to that of the paper copy. The specification has also been amended to conform to the substitute sequence listing. No new matter is involved.

2. Drawings

Applicants attach 3 sheets of formal drawings.

3. Rejection under 35 USC 112, second paragraph

The Examiner says it is not clear that the reference to a "perfect complement" of a segment in claims 1, 3-9, and 15-33 means perfect complementarity throughout the length of the segment. In response, applicants have further amended the claims for still further clarity. As was noted in the previous response, the

specification inherently discloses perfect complement of the sequences of table 1. Mitochondrial DNA is inherently double stranded, and as with other double-stranded sequences, mitochondrial DNA is conventionally represented by showing only a single strand, it being understood that the other strand is the perfect complement of the strand presented. For simplicity, claim 4 has been amended to depend from claim 1.

4. Rejection under 35 USC 103

Claim 10 stands rejected as anticipated by Anderson. The Examiner says Anderson at p. 462, Table 2 refers to a comparison of the human mitochondrial sequence of several genes with the sequences of bovine mitochondrial DNA. In response, the claim has been amended explicitly to require that the identified base at one of the polymorphic positions is a base other than the base in the Anderson sequence. Anderson does not disclose the identification of alternative bases at the polymorphic positions recited in the present application.

If the Examiner believes a telephone conference would expedite prosecution of this application, please telephone the undersigned at 650-326-2400.

Respectfully submitted,

Joe Liebeschuetz
Reg. No. 37,505

TOWNSEND and TOWNSEND and CREW LLP
Two Embarcadero Center, 8th Floor
San Francisco, California 94111-3834
Tel: (650) 326-2400
Fax: (650) 326-2422
JOL:adm
PA 3188949 v1

VERSION WITH MARKINGS TO SHOW CHANGES MADE
IN THE SPECIFICATION:

The paragraph beginning on page 3, line 18, has been amended as follows:

Fig. 1. (A) Design of a 4L tiled array. Each position in the target sequence (upper case) (SEQ ID NO:12) is queried by a set of 4 probes on the chip (lower case), identical except at a single position, termed the substitution position, which is either A, C, G, or T (blue indicates complementarity, red a mismatch). Two sets of probes are shown, querying adjacent positions in the target (SEQ ID NOS:13-20). (B) Effect of change in the target sequence. The probes are the same as in panel A, but the target now contains a single base substitution (C, shown in green) (SEQ ID NO:21). The probe set querying the changed base still has a perfect match (the G probe). However, probes in adjacent sets that overlap the altered target position (SEQ ID NOS:22-29) now have either one or two mismatches (red), instead of zero or one, since they were designed to match the target shown in panel A. (C) Hybridization to a 4L tiled array and detection of a base change in the target. The array shown was designed to the mt1 sequence. (Upper panel) hybridization to mt1. The substitution used in each row of probes is indicated to the left of the image. The target sequence can be read 5' to 3' from left to right as the complement of the substitution base with the brightest signal. With hybridization to mt2 (lower panel), which differs from mt1 in this region by a T → C transition, the G probe at position 16,493 is now a perfect match, with the other three probes having single base mismatches (A 5, C 3, G 37, T 4 counts). However, at flanking positions, the probes have either single or double base mismatches, since the mt2 transition now occurs away from the query position.

IN THE CLAIMS:

1. (Three times amended) A segment of human mitochondrial DNA or RNA of between 10 and 100 bases including any one of the polymorphic sites shown in Table 1, wherein the polymorphic site within the segment is occupied by a base

other than the base shown in Table 1, column 3 ("asn base") or the perfect complement of the full length of the segment.

4. (Three times amended) An allele-specific oligonucleotide [that is perfectly complementary to a segment of human mitochondrial nucleic acid or its perfect complement including a polymorphic site shown in Table 1, column 1, wherein the polymorphic site within the segment is occupied by a base other than the base shown in Table 1, column 3 ("asn base")] comprising the segment or the full complement thereof as defined by claim 1.

9. (Twice amended) An isolated nucleic acid comprising a segment of at least 10 contiguous bases from SEQ ID NO:30, or the perfect complement of the full length thereof, including a polymorphic site shown in Table 1, wherein the polymorphic site within the segment is occupied by a base other than the base shown in Table 1, column 3 ("asn base").

10. (Twice amended) A method of analyzing a nucleic acid comprising,

obtaining the nucleic acid from an individual; and
[determining] identifying [whether] a base occupying any one of the polymorphic sites shown in Table 1 wherein the base is a base other than the base shown in Table 1, column 3 ("asn base").

AnOT/C

SUBSTITUTE SEQUENCE LISTING

<110> Chee et al.
Affymetrix, Inc.

<120> Polymorphisms In Human Mitochondrial DNA

<130> 3028.1

<140> 08/856,376
<141> 1997-05-14

<150> 60/024,206
<151> 1996-08-20

<150> 60/017,203
<151> 1996-05-16

<160> 30

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for human mitochondrial DNA

<400> 1
ctcggaatta accctcacta aaggaaacctt ttttccaagg a

41

<210> 2
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for human mitochondrial DNA

<400> 2
taataacgact cactataggg agaggctagg accaaaccta tt

42

<210> 3
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 3
gatgtcggat acagt

15

<210> 4
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 4
gatgtcggct acagt

15

<210> 5
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for human mitochondrial DNA

<400> 5
gatgtcgggt acagt

15

<210> 6
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for human mitochondrial DNA

<400> 6
gatgtcgggtt acagt

15

<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Control Oligonucleotide

<400> 7
ctgaacggta gcatcttgac

20

<210> 8
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for human mitochondrial DNA

<400> 8
aattaaccct cactaaaggg attctcgcac ggactacaac

40

<210> 9
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for human mitochondrial DNA

<400> 9
aattaaccct cactaaaggg atgaaaacttc ggctcaactcc ttggc 45

<210> 10
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for human mitochondrial DNA

<400> 10
taatacact cactataggg atttcatcat gcggagatgt tggatgg 47

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Control Oligonucleotide

<400> 11
ctgaacggta gcatcttgac 20

<210> 12
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Control Oligonucleotide

<400> 12
tgaactgtat ccgacat 17

<210> 13
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 13
gatgtcggta cagt 14

<210> 14
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 14
gatgtcggct acagt

15

<210> 15
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 15
gatgtcgggt acagt

15

<210> 16
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 16
gatgtcgggtt acagt

15

<210> 17
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 17
agatgtcgaa tacag

15

<210> 18
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 18
agatgtcgca tacag 15
<210> 19
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 19
agatgtcgat acag 14
<210> 20
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 20
agatgtcgta tacag 15
<210> 21
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 21
tgaactgtac ccgacat 17
<210> 22
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 22
gatgtcggat acagt 15
<210> 23
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 23
gatgtcggct acagt 15

<210> 24
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 24
gatgtcggtt cagtt

14

<210> 25
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 25
gatgtcggtt acagt

15

<210> 26
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 26
agatgtcgaa tacag

15

<210> 27
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 27
agatgtcgca tacag

15

<210> 28
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 28
agatgtcgat acag

14

<210> 29
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe for human mitochondrial DNA

<400> 29
agatgtcgta tacag

15

<210> 30
<211> 16569
<212> DNA
<213> Homo sapiens

<400> 30
gatcacaggt ctatcacccct attaaccact cacgggagct ctccatgcat ttggatttt 60
cgtctgggg gtatgcacgc gatagcattt cgagacgctg gagccggagc accctatgtc 120
gcagtatctg tcttgattt ctgcctcatc ctattattt tcgcacccatc gttcaatattt 180
acaggcgaac atacttacta aagtgtgtt attaattaaat gctttagga cataataata 240
acaattgaat gtctgcacag ccactttcca cacagacatc ataacaaaaa atttccacca 300
aaccggccct cccccgcttc tggccacagc acttaaacac atctctgcca aaccccaaaa 360
acaagaacc ctaacaccag cctaaccaga tttcaaaattt tatctttgg cggtatgcac 420
tttaacagt caccggccaa ctaacacatt atttccctt cccactccca tactactaat 480
ctcatcaata caaccccccgc ccattctacc cagcacacac acaccgctgc taacccata 540
ccccgaacca accaaacccc aaagacaccc cccacagttt atgtagctt cctcctcaaa 600
gcaatacaact gaaaatgttt agacgggctc acatcaccctt ataaacaaat aggtttggc 660
ctagccttc tattagctt tagtaagatt acacatgcaa gcatcccggt tccagtgaat 720
tcaccctcta aatcaccacg atcaaaaggg acaagcatca agcacgcgc aatgcagctc 780
aaaacgctt gcctagccac acccccacgg gaaacagcag tgattaacct ttagcaataa 840
acgaaagtt aactaagcta tactaaccctt agggttggc aatttcgtgc cagccaccgc 900
ggtcacacga ttaacccaaag tcaatagaag ccggcgtaaa gagtgttta gatcacccccc 960
tcccaataa agctaaaact cacctgagtt gtaaaaaact ccagttgaca caaaatagac 1020
tagaaagtg gcttaacat atctgaacac acaatagcta agacccaaac tgggattaga 1080
tacccacta tgcttagccc taaacctcaa cagttaaatc aacaaaactg ctcgcccaga 1140
caactacgac cacagctaa aactcaaagg acctggcggt gttcatatc cctctagagg 1200
agcctgttct gtaatcgata aaccccgatc aacctcacca cctcttgctc agcctatata 1260
ccgcatctt cagcaaaccc tggatggc tacaaggtaa ggcgaatgtc ccacgtaaag 1320
acgttaggtc aaggtagtc ccattggatgt gcaagaaatg ggctacattt tctaccccg 1380
aaaactacga tagcccttat gaaacttaag ggtcgaaagg ggatttagca gtaaactaag 1440
agtagagtgc ttagttgaac agggccctga agccgctaca caccggccgt caccctcctc 1500
aagtataact caaaggacat ttaactaaaa cccctacgca tttatataga ggagacaagt 1560
cgtaacatgg taagtgtact ggaaagtgc cttggacgaa ccagagtgt gcttaacaca 1620
aagcacccaa cttacacta ggagattca acttaacttgc accgctctga gctaaaccta 1680
gccccaaacc cactccaccc tactaccaga caacccatgc caaaccattt accccaaataa 1740
agtataggcg atagaaattt aaacctggcg caatagat agtaccgcaa gggaaagatg 1800
aaaaattata accaagcata atatagcaag gactaaccctt tatacccttgc gataatgaa 1860
ttaactagaa ataactttgc aaggagagcc aaagctaaaga ccccccggaaac cagacgagct 1920
acctaagaac agctaaaaga gcacaccgt ctatgtgca aaatagtggg aagattata 1980
ggtagaggcg acaaaccctac cgaccctggt gatagctggt tgtccaagat agaatcttag 2040
ttcaacttta aatttgcctt cagaacccttcc taaatccctt tgtaaatttactgttagtc 2100
caaagagggaa cagcttttgc gacacttagga aaaaacccctt tagagagagt aaaaatttt 2160
acacccatag taggcctaaa agcagccacc aattaagaaa gcttcaagc tcaacaccctt 2220
ctacctaaaa aatcccaaacc atataactgaa actccctcaca cccaaatttgc ccaatctatc 2280
accctataga agaactaatg ttagtataag taacatgaaa acatttccttcccgatc 2340
ctgcgtcaga ttaaaacact gaactgacaa ttaacagccc aatatctaca atcaacccaa 2400
aagtcttattt taccctcact gtcacccaa cacaggcatg ctcataagga aaggtttaaa 2460
aaagttttttt gaaactcggca aatcttaccc cgcctgttta cccaaacat cacctctagc 2520
atcaccatgtt ttagaggcac cgcctgccc gtcacatgtt ttaacggcc gcggtaccct 2580

aaccgtgcaa aggtacgtata atcacttggtt ccttaaaatag ggacctgtat gaatggctcc 2640
 acgagggttc agctgtctct tacttttaac cagtggaaatt gacctgccc tgaagaggcg 2700
 ggcataaac acgcaagacga gaagacccta tggagctta atttattaat gcaaacagta 2760
 ccttaacaac ccacaggctt taaaactacca aacctgcatt aaaaatttcg gttggggcga 2820
 cctcggagca gaaccacacc tccgagcagt acatgctaag acttcaccag tcaaagcgaa 2880
 ctactatact caattgatcc aataactga ccaacggAAC aagttaccct agggataaca 2940
 gcgcaatcctt attcttagt ccatacAAC aatagggtt acgaccccg tggatca 3000
 ggacatcccg atggcggc cgctttaaa ggttcgtttt ttcaacgatt aaagtccctac 3060
 gtgatctgag ttcagaccgg agtaatccag gtcggtttct atctacccctt aaattccctcc 3120
 ctgtacgaaa ggacaagaga aataaggctt acttcacaaaa ggcctcccccc ccttaatgaa 3180
 tatcatctca acttagtatt ataccccaccc ccaacccaaga acagggtttt ttaagatgac 3240
 agagcccggtt aatcgatcaa aacttaaaac tttagactca gaggttcaat tcctcttctt 3300
 aacaacatc ccatggccaa cctcctactc ctcattgtac ccattctaat cgcaatggca 3360
 ttcttaatgc ttacccgaacg aaaaattttaa ggcttataac aactacgcaa aggcccccaac 3420
 gttgtaggcc cctacgggctt actacaaccc ttgcgtgacg ccataaaaactt cttcacccaa 3480
 gagccctaa aaccggccac atctaccatc accctctaca tcaccggcccc gaccttagt 3540
 ctcaccatcg ctcttctact atgaacccccctt ctcattgtac ccattctaat cgcaatggca 3600
 aacctaggcc ttcttattat tctagccacc tctagcttag ccgtttactc aatcctctga 3660
 tcagggttag catcaaactc aaactacgac ctgatcgcc cactgcgagc agtagcccaa 3720
 acaatctcat atgaagtcaat cctagccatc attctactt caacattact aataagtgc 3780
 tccttaacc tctccaccctt tattcacaaca caagaacacc tctgattact cctgcccata 3840
 tgacccttgg ccataatatg atttatctcc acactagcag agaccaaccc aaccccttc 3900
 gacccgtcc aaggggagtc cgaactagtc tcagggttca acatcgataa cgccgcagc 3960
 cccttcgccc tattttcat agccgaataac acaaacatta ttataataaa caccctcacc 4020
 actacaatctt tccttaggaac aacatatgac gcactctcc ctgaactcta cacaacat 4080
 tttgtcacca agaccctact tctaacccctt ctgttcttat gaattcgaac agcataaccc 4140
 cgattccgctt acgaccaactt catacacccctt ctatgaaaaa acttccttacc actcaccctt 4200
 gcattactt tatgatatgt ctccatcccc attacaatctt ccagcattcc ccctcaaacc 4260
 taagaaatat gtctgataaa agagttactt tgatagagta aataatagga gcttaaaaccc 4320
 ccttatttttcc aggactatga gaatcgaaacc catccctgag aatccaaaat tctccgtgcc 4380
 acctatcaca ccccatccta aagtaaggc agctaaataa gctatcgcc ccataaccccg 4440
 aaaatgttgg ttataccctt cccgtactaa ttaatccctt ggcacccatcc gtcatctact 4500
 ctaccatctt tgcaggcaca ctcatcacag cgctaaagctc gcactgattt tttacctgag 4560
 taggcctaga aataaacatg ctatgtttt ttccagttt aacccaaaaaaa ataaacccctt 4620
 gttccacaga agctgcccattt aagtatttcc tcacgcaagc aaccgcattcc ataatccctt 4680
 taatagctat cctcttcaac aataactctt ccggacaaatg aaccataacc aataactacca 4740
 atcaataactc atcattataa atcataatag ctatagcaat aaaacttagga atagccccctt 4800
 ttcacttctg agtcccagag gttacccaaag gcacccctctt gacatccggc ctgttcttc 4860
 tcacatgaca aaaactagcc cccatctcaa tcataatcca aatctctccc tcactaaacg 4920
 taagccttctt cctcaactctc tcaatcttccat ccatactatc aggcagttga ggtggattaa 4980
 accaaaccca gctacgcaaa atcttagcat actccctcaat tacccacata ggtgaataa 5040
 tagcagtttcc accgtacaac cctaaacataa ccattcttaa tttaacttattt tatattatcc 5100
 taactactac cgcattccctt ctactcaact taaactccag caccacgacc ctactactat 5160
 ctcgcacccgtt aaacaagctt acatgactaa cacccttaat tccatccacc ctcctctccc 5220
 taggaggctt gccccggctt accggctttt tgcccaatg ggccattatc gaagaattca 5280
 caaaaaacaa tagcctcatc atccccacca tcataccacatc catcaccctt cttaaacccctt 5340
 acttcttaccctt acgcttacatc tactccactt caatcacact actcccccata tctaaacacg 5400
 taaaaataaa atgacagttt gaacataaa aacccacccc attccctcccc acactcatcg 5460
 cccttaccac gctactctt cctatctccc ctttataact aataatctt tagaaattta 5520
 ggttaataac agaccaagag ccttcaaaagc cctcagtaag ttgcaataact taatttctgt 5580
 aacagcttaag gactgcaaaa ccccaactctg catcaactga acgcaaatca gccactttaa 5640
 ttaagcttaag cccttacttag accaatggggat tttaaacccca caaacactta gttacacgct 5700
 aagcaccctt atcaactggc ttcaatcttccat ttcccccggcc gcccggaaaa aaggcggggag 5760
 aagccccggc aggttgaag ctgttcttc gaatttgcac ttcaatatga aaatcaccctt 5820
 ggagctggta aaaagaggcc taacccctgtt cttagattt acgttccat gtttactca 5880
 gccatccatc ctcacccccc ctgttccat cccgaccgtt actattcttccat acaaaccaca 5940
 aagacattgg aacactatac ctattatcg gcgcatttgc tggatccat ggcacagctc 6000
 taagcctctt tattcgttccat gagctggcc agccaggccaa ctttcttaggt aacgaccaca 6060
 tctacaacgtt tattcgttccat gcccatttgc ttttttttttttataat gtaataccca 6120
 tcataatccgg aggcttggc aactgacttag ttcccccataat aatcggtgcc cccgatatgg 6180
 ctgttcccttccat aataacaac ataaatctt gacttccatc tccctcttccat ctactcttc 6240

tcgcacatctgc tatagtggag gccggagcag gaacaggttg aacagtctac cttcccttag 6300
 cagggaaacta ctcccaccct ggagcctccg tagaccta ac catcttctcc ttacacccat 6360
 cagggtgtctc ctctatctta ggggccccatca atttcattcac aacaattatc aatataaaac 6420
 cccctgcat aacccaatac caaacgcccc tcttcgtctg atccgtccta atcacagcag 6480
 tcctacttct cctatctctc ccagtcctag ctgtctggcat cactatacta ctaacagacc 6540
 gcaacctcaa caccacccctc ttcgaccccg ccggaggagg agacccatt ctataccaa 6600
 acctattctg atttttcggt caccctgaag tttatattct tattccttacca ggcttcggaa 6660
 taatctccca tattttaact tactactccg gaaaaaaaaga accatttggta tacataggt 6720
 tgggtctgagc tatgatatca attggcttcc tagggtttat cgtgtgagca caccatata 6780
 ttacagtagg aatagacgta gacacacgag catatttac cttcgctacc ataatcatcg 6840
 ctatccccac cggcgtaaaa gtatttatc gactcgccac actccacgga agcaatatga 6900
 aatgatctgc tgcaatgtctc tgagccctag gattcatctt tcttttccacc gttaggtggcc 6960
 tgactggcat tgtatttagca aactcatcac tagacatcgta actacacgac acgtactacg 7020
 ttgttagccca cttccactat gtccctatcaa taggagctgt atttgcctac ataggaggt 7080
 tcattcaactt atttccctta ttctcaggct acaccctaga ccaaaccatc gccaaaatcc 7140
 atttcactat catatttacat ggcgttaaatc taactttctt cccacaacac tttctcggcc 7200
 tatccggaat gccccgacgt tactcgact accccgatgc atacaccaca taaaacatcc 7260
 tatcatctgt aggctcatc atttctctaa cagcagtaat attaataatt ttcatgattt 7320
 gagaaggcctt cgcttcgaag cgaaaagtcc taatagtata agaaccctcc ataaacctgg 7380
 agtactata tggatgcccc ccacccttacc acacattcga agaaccctgta tacataaaat 7440
 ctagacaaaa aaggaaaggaa tgcgaaacccccc caaaagctggt ttcaagccaa ccccatggcc 7500
 tccatgactt ttcaaaaaag gtatttagaa accatttca taactttgtc aaagtttaat 7560
 tataggctaa atccatata tcttaatggc acatgcagcg caagtaggtc tacaagacgc 7620
 tacttccct atcatagaag agcttacatc ctttcatgtat cacgccttca taatcatttt 7680
 ccttatctgc ttcccttagtcc tggatgcctt ttcccttaaca ctcacaacaa aactaactaa 7740
 tactaacatc tcagacgctc aggaaataga aaccgtctga actatctgc cccgcctatcat 7800
 cctagtccctc atcgccttcc catcccttacg catccctttaac ataaacagacg aggtcaacga 7860
 tccctccctt accatcaa at caattggcca ccaatggtac tgaaccttacg agtacaccga 7920
 ctacggcgga ctaatcttca actccttacat acttccccc ttattcttag aaccaggcga 7980
 cctgcgactc cttgacgttg acaatcgagt agtactcccg attgaagccc ccattcgat 8040
 aataattaca tcacaagacg tcttgcactc atgagctgtc cccacattag gcttaaaaac 8100
 agatgcaatt cccggacgatc taaacccaaac cacttttacc gctacacgac cgggggtata 8160
 ctacggtcaa tgctctgaaa tctgtggagc aaaccacagt ttcatgccc tcgtcctaga 8220
 attaattccc ctaaaaatct ttgaaatagg gcccgtatcc accctatacg accccctctta 8280
 cccctcttag agccactgt aaagcttaact tagcattaac ctttttaagtt aaagattaaag 8340
 agaaccaaca cctctttaca gtgaaatgcc ccaactaaat actaccgtat ggcccaccat 8400
 aattacccccc atactccttta cactattctt catcacccaa ctaaaaatata taaacacaaa 8460
 ctaccaccta cctccctcac caaagccat aaaaataaaa aattataaca aaccctgaga 8520
 accaaaaatga acgaaaaatct gttcgcttca ttcatgtccc ccacaatctt aggcttaccc 8580
 gcccgcgtac tgatcattct atttccctt ctattgtatcc ccaccccttca atatctcatc 8640
 aacaaccgac taatcaccac ccaacaatga ctaatcaa ac taaccttcaaa acaaatagtata 8700
 accatacaca acactaaagg acgaacctga tctttatac tagtattcattt aatcattttt 8760
 attgccacaa ctaaccttctt cggactctg ccttactcat ttacaccaac cacccttacta 8820
 tctataaacc tagccatggc catcccttta tgagcgggca cagtgattt aggcttccgc 8880
 tctaagatataaaaatgcctt agccacttc ttaccacaaag gcacacccat acccccttatac 8940
 cccatacttag ttattatcga aaccatcagc ctacttattt aaccaatagc cctggccgt 9000
 cgccttaaccg ctaacattac tgcaaggccac ctacttactcatc acctaattgg aagcgccacc 9060
 ctagcaatataaccat cttccctt acacttatac tcttcataat tctaattctta 9120
 ctgactatcc tagaaatcgc tgctccctt atccaaggctt acgttttac acttcttagta 9180
 agcctctacc tgacgacaa cacataatga cccaccaatc acatgcctat catatagtaa 9240
 aaccctggcc atgaccccttta acagggggcc tcttgcctt cctaattgacc tccggccctag 9300
 ccatgtgatt tcacttccac tccataacgc tcccttactt aggcctacta accaacacac 9360
 taaccatata ccaatgtatgg cgcgtatgg caccggaaaag cacataccaa ggccaccaca 9420
 caccacctgt ccaaaaaaggc ttgcatacg ggataatccatttatttacc tcagaagttt 9480
 ttttcttcgc aggatttttc tgagcctttt accactccatg cctagccctt acccccttata 9540
 taggagggca ctggcccttca acaggcatc ccccgctaaa tcccttagaa gtcccactcc 9600
 taaacacatc cgtattactc gcatcaggag tatcaatcactt ctagtctac catatgtctaa 9660
 tagaaaaacaa ccgaaacccaa ataaatcag cactgcttata tacaatttttta ctgggtctct 9720
 attttacccctt cctacaagcc tcagacttactt tcgagttctcc cttcaccatt tccgacggca 9780
 tctacggctc aacattttt ttagccacag gcttccacgg acttcacgac attattggct 9840
 caacttctt cactatctgc ttcatccccc aactaataattt tcacttatac tccaaacatc 9900

actttggctt cgaaggccgc gcctgatact ggcattttgt agatgtggtt tgactatttc 9960
 tgtatgtctc catctattga tgagggctt actcttttag tataaaatagt accgttaact 10020
 tccaattaaac tagtttgac aacattcaaa aaagagtaat aaacttcgccc ttaattttaa 10080
 taatcaacac cctcttagcc ttactactaa taattattac attttgcata ccacaactca 10140
 acggctacat agaaaaatcc accccttacg agtgcggctt cgaccctata tcccccgccc 10200
 ggtccctt ctccataaaa ttcttcttag tagctattac cttcttatta tttgatctag 10260
 aaattgcctt ccttttaccc ctaccatgag ccctacaaac aactaacctg ccactaatag 10320
 ttatgtcatc ccttcttata atcatcatcc tagccctaag tctggcttat gagtgactac 10380
 aaaaaggatt agactgaacc gaattggat atagttaaa caaaacgaat gatttcgact 10440
 cattaaatata tgataatcat atttaccaaa tgcccctcat ttacataat attataactag 10500
 catttaccat ctcaacttcta ggaataactag tatatcgctc acacccata tcctccctac 10560
 tatgcctaga aggaataata ctatcgctgt tcattatagc tactctcata accctcaaca 10620
 cccactccctt cttagccat attgtgccta ttgcctact agtcttgcc gcctgcgaag 10680
 cagcggtggg cctagcccta cttagtctcaa tctccaaacac atatggctta gactacgtac 10740
 ataacctaaa cctactccaa tgctaaaact aatcgccccca acaatttatat tactaccact 10800
 gacatgacctt tccaaaaaac acataatttg aatcaacaca accacccaca gccttaattat 10860
 tagcatcatc cctctactat tttttaaacca aatcaacaaac aacctattta gctgttcccc 10920
 aaccttttcc tccgacccccc taacaaccccc cctcctaaata ctaactacccct gactccttacc 10980
 cctcacaatc atggcaagcc aacggccactt atccagtga ccactatcac gaaaaaaaaact 11040
 ctacccctct atactaatct ccctacaaat ctcccttaattt ataaacattca cagccacaga 11100
 actaatcata ttttataatct tcttcgaaac cacacttaccccaccccttgg ctatcatcac 11160
 ccgatgaggc aaccagccag aacgcctgaa cgcaggcaca tacttccat ttcacacccct 11220
 agtaggctcc ctcccccctac tcacgcact aatttacact cacaaccccccc taggctcaact 11280
 aaacatttca ctactcactc tcactgccccca agaactatca aactcctgag ccaacaactt 11340
 aatatgacta gcttacacaa tagcttttat agtaaagata cctctttagc gactccactt 11400
 atgactccct aaagccccatg tcgaaggcccccc catcgctggg tcaatagtc ttgcgcgaat 11460
 actcttaaaaa cttagcggtt atggtataat acgcctcaca ctcattctca accccctgac 11520
 aaaacacata gcctacccct tccttgcact atccctatga ggcataattta taacaagctc 11580
 catctgccta cgacaaacag acctaaaatc gctcattgca tacttccaa ttagccacat 11640
 agccctcgta gtaacagccca ttctcatcca aaccccttga agcttcacccg ggcgcagtcat 11700
 tctcataatc gcccacgggc ttacatccctt attactattc tgcctagcaa actcaaacta 11760
 cgaacgcact cacagtcgca tcataatctt ctctcaagga cttccaaactc tactccact 11820
 aatagcttt tgatgacttc tagcaagccct cgtcaaccccttgccttaccccccttgcact 11880
 cctactggga gaactctctg tgcttagtaac cacgttctcc tgatcaaata tcaactctct 11940
 acttacagga ctcaacatac tagtcacagc cctataactcc ctctcatat ttaccacaaac 12000
 acaatggggc tcactcaccc accacattaa caacataaaa ccctcattca caccggaaaa 12060
 caccctcatg ttcatcaccc tatccccat tctccctcta tccctcaacc ccgacatcat 12120
 taccgggtt tcctcttgcataatataat aaccaaaaca tcagattgtg aatctgacaa 12180
 cagaggctt cgcaccccttta ttaccgaga aagctcacaa gaactgctaa ctcatgcccc 12240
 catgtctaac aacatggctt tctcaacttt taaaggataa cagctatcca ttggctttag 12300
 gccccaaaaa ttttgggtca actccaaata aaagtaataa ccatgcacac tactataacc 12360
 accctaaccct tgacttccctt aattcccccc atccttacca ccctcgtaa ccctaacaaa 12420
 aaaaactcat acccccttta tgtaaaatcc attgtcgcat ccaccccttata ttcacttc 12480
 ttccccacaa caatattcat gtgcctagac caagaaggtt ttatctgaa ctgacactga 12540
 gccacaaccc aaacaacccca gctccctta agcttcaaaac tagactactt ctccataata 12600
 ttcatccctg tagcattgtt cgttacatgg tccatcatag aattctcaact gtgatata 12660
 aactcagacc caaacattaa tcagttcttc aaatatctac tcatcttctt aattaccata 12720
 ctaatcttag ttaccgctaa caaccttattc caactgttca tcggctgaga gggcgtagga 12780
 attatatctt tcttcgtcat cagttgtatga tacgccccgag cagatgcca cacagcagcc 12840
 attcaagccaa tcctatacaa cctgtatcgcc gatatcggtt tcacgcctc cttacatcg 12900
 tttatcttac actccaaactc atgagacccca caacaaatag cccttctaaa cgctaatcca 12960
 agcctcaccc cactactagg cctcccttgcac gcaacatcagc ccaatttagt 13020
 ctccacccctt gactcccttc agccatagaa ggccccaccc cagtctcagc cttactccac 13080
 tcaaggacta tagttgtacg aggaatcttc ttactcatcc gcttccaccc cctagcagaa 13140
 aatagcccac taatccaaac tctaaacacta tgcttaggcg ctatcaccac tctgttgcga 13200
 gcagtctgctg cccttacaca aaatgacatc aaaaaaaatcg tagccttctc cacttcaagt 13260
 caacttaggac tcataatagt tacaatcgga atcaaccaac cacacccatc attccctgcac 13320
 atctgtaccc acgccttctt caaagccata ctatttatgt gctccgggtc catcatccac 13380
 aaccttaaca atgaacaaga tattcgaaaa ataggaggac tactcaaaac catacccttc 13440
 acttcaaccc ccctcaccat tggcagccctt gcatggcagc gaataccctt cttccacaggt 13500
 ttctactcca aagaccacat catcgaaacc gcaaaacatata catacacaac ccgcctgagcc 13560

ctatctatta ctctcatcgc tacctccctg acaagcgctt atagcactcg aataattctt 13620
 ctcaccctaa caggtcaacc tegcttcccc acccttacta acattaaacga aaataacccc 13680
 accctactaa accccattaa acgcctggca gcccgaagcc tattcgagg atttctcatt 13740
 actaacaaca ttccccccgc atcccccttc caaacaacaa tccccctctaa cctaaaactc 13800
 acagccctcg ctgtcacttt cctaggactt ctaacagccc tagacctaa ctacctaacc 13860
 aacaaaactt aaataaaaatc cccactatgc acattttatc tctccaacat actcgattc 13920
 tacccttagca tcacacacccg cacaatcccc tatctaggcc ttcttacgag cccaaaacctg 13980
 cccctactcc tccttagaccc aacctgacta gaaaagctat tacctaaaac aatttcacag 14040
 caccaaactt ccacccat catcacctca accaaaaaag gcataattaa actttacttc 14100
 ctctctttct tcttcccact catcctaacc ctactctaa tcacataacc tattccccg 14160
 agcaatctca attacaatat atacaccaac aaacaatgtt caaccatgaa ctactactaa 14220
 tcaacgccc taatcataca aagccccccg accaatagga tcctcccgaa tcaaccctga 14280
 cccctctct tctaaaatta ttcagcttc tacacttata aagtttacca caaccaccac 14340
 cccatcatac tcttcaccc acagcaccaa tcctacctcc atcgctaaacc ccactaaaac 14400
 actcaccaag acctcaaccc ctgacccccc tgctctcaggta tactccctaa tagccatcgc 14460
 tgttagtatc ccaaagacaa ccatcattcc ccctaaataaa attaaaaaaaaa ctattaaacc 14520
 catataacct ccccaaaaat tcagaataat aacacacccg accacaccgc taacaatcaa 14580
 tactaaaccc ccataaatacg gagaaggctt agaagaaaaac cccacaaacc ccattactaa 14640
 acccacactc aacagaaaca aagcatacat cattattctc gcacggacta caaccacgac 14700
 caatgatacg aaaaaccatc gttgtattt aactacaaga acaccaatga ccccaatacg 14760
 caaaactaac cccctaataa aattaattaa ccactcattc atcgactcc ccaccccatc 14820
 caacatctcc gcatgatgaa acttcggctc actccttggc gcctgcctga tcctccaaat 14880
 caccacagga ctattcctag ccatgcacta ctcaccagac gcctcaaccc ccttttcatc 14940
 aatcgccccac atcactcgag acgtaaaatta tggctgaatc atccgcattc ttacgcggccaa 15000
 tggcgctca atattctta tctgcctt cctacacatc gggcgaggcc tatattacgg 15060
 atcatttctc tactcagaaaa cctgaaacat cggcattatc tcctgcctg caactatagc 15120
 aacagccttc ataggctatg tcctccctg agggccaaata tcattctgag gggccacagt 15180
 aattacaaac ttactatccg ccattccata cattgggaca gacctagttc aatgaatctg 15240
 aggaggctac tcagtagaca gtcccaccc cacacgattc ttaccttcc acttcattt 15300
 gcccttcattt attgcagccc tagcaacact ccacccctta ttctgcacg aaacgggatc 15360
 aaacaacccc cttagaatca cctcccatc cgataaaaatc accttccacc ttactacac 15420
 aatcaaagac gccctcggt tacttctt cttctctcc ttaatgacat taacactatt 15480
 ctcaccagac ctccttaggctg accccagacaa ttatacccta gccaacccct taaacacccc 15540
 tccccacatc aagccgaaat gatatttctt attgcctac acaattctcc gatccgtccc 15600
 taacaaacta ggaggcgtcc ttgcctatt actatccatc ctcattcttag caataatccc 15660
 catcctccat atatccaaac aacaaagcat aatatttcgc ccactaagcc aatacttta 15720
 ttgactccta gcccgagacc tcctcattt aacctgaatc ggaggacaac cagtaagcta 15780
 cccttttacc atcattggac aagtagcatc cgtactatac ttccacaacaa tcctaatctt 15840
 aataccaact atctccctaa ttgaaaacaa aatactcaa tgggcctgtc cttgttagat 15900
 aaactaatac accagtctt gaaaccggag atgaaaacct tttccaagg acaaatacga 15960
 gaaaaagctt ttaactccac cattagcacc caaagctaag attctaattt aaactattct 16020
 ctgttcttc atggggaaagc agattgggt accacccaaag tattgactca cccatcaaca 16080
 accgctatgt atttcgtaca ttactgcccag ccaccaatgaa tattgtacgg taccataat 16140
 acttgaccac ctgttagtaca taaaaacccaa atccacatca aaacccctc cccatgctta 16200
 caagcaagta cagcaatcaa ccctcaacta tcacacatca actgcaactc caaagccacc 16260
 cctcaccac taggatacca acaaaccac ccacccctaa cagtagatc tacataaagc 16320
 catttaccgt acatagcaca ttacagtcaa atcccttctc gtccccatgg atgacccccc 16380
 tcagataggg gtccttgc caccatccctc cgtgaaatca atatcccgca caagagtgt 16440
 acttcctcg ctccggggccc ataacactt gggtagctt aagtgaactg tatccgacat 16500
 ctggttccca cttcagggtc ataaagccta aatagccac acgttccct taaataagac 16560
 atcactcgatg 16569

Figure 1

A

5' ...TGAACGTATCCGACAT...
3'
tgacat ggctgttag
tgacatCggctgttag
tgacatGggctgttag
tgacatTggctgttag
3'
gacataAgctgtaga
gacataCgctgtaga
gacata gctgtaga
gacataTgctgtaga

B

5' ...TGAACGTACCCGACAT...
3'
tgacatAggctgttag
tgacatCggctgttag
tgacat ggctgttag
tgacatTggctgttag
3'
gacataAgctgtaga
gacataCgctgtaga
gacata gctgtaga
gacataTgctgtaga

C

5' TGAACGTATCCGACAT
A [REDACTED]
C [REDACTED]
G [REDACTED]
T [REDACTED]

5' TGAACGTACCCGACAT
A [REDACTED]
C [REDACTED]
G [REDACTED]
T [REDACTED]

16,493

Figure 2

Figure 3

