

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ : A61K 39/02		A1	(11) International Publication Number: WO 94/21290 (43) International Publication Date: 29 September 1994 (29.09.94)
(21) International Application Number: PCT/US94/02550 (22) International Filing Date: 15 March 1994 (15.03.94)		(81) Designated States: AU, BR, CA, FI, JP, KR, NO, RU, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 038,682 16 March 1993 (16.03.93) US		Published <i>With international search report.</i>	
(71)(72) Applicants and Inventors: BARENKAMP, Stephen, J. [US/US]; 16 Villawood Lane, Webster Grove, MO 63119-4954 (US). ST. GEME, Joseph, William, III [US/US]; 45 Bershire Drive, St. Louis, MO 63117 (US).			
(74) Agent: BERKSTRESSER, Jerry, W.; Shoemaker and Mattare, Ltd., 2001 Jefferson Davis Highway, 1203 Crystal Plaza Building 1, P.O. Box 2286, Arlington, VA 22202-0286 (US).			

(54) Title: HIGH MOLECULAR WEIGHT SURFACE PROTEINS OF NON-TYPEABLE HAEMOPHILUS

(57) Abstract

High molecular weight surface proteins of non-typeable *Haemophilus influenzae* which exhibit immunogenic properties and genes encoding the same are described. Specifically, genes coding for two immunodominant high molecular weight proteins, HMW1 and HMW2, have been cloned, expressed and sequenced, while genes coding for high molecular proteins HMW3 and HMW4 have been cloned, expressed and partially sequenced.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Larvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

SUMMARY OF INVENTION

The inventors, in an effort to further characterize the high molecular weight (HMW) Haemophilus proteins, have cloned, expressed and sequenced the genes coding for two immunodominant HMW proteins (designated HMW1 and HMW2) from a prototype non-typeable Haemophilus strain and have cloned, expressed and almost completely sequenced the genes coding for two additional immunodominant HMW proteins (designated HMW3 and HMW4) 5 from another non-typeable Haemophilus strain.

In accordance with one aspect of the present invention, therefore, there is provided an isolated and purified gene coding for a high molecular weight protein 10 of a non-typeable Haemophilus strain, particularly a gene coding for protein HMW1, HMW2, HMW3 or HMW4, as well as any variant or fragment of such protein which retains the 15 immunological ability to protect against disease caused by a non-typeable Haemophilus strain. In another aspect, the invention provides a high molecular weight protein of 20 non-typeable Haemophilus influenzae which is encoded by these genes.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 is a DNA sequence of a gene coding for protein HMW1 (SEQ ID NO: 1);

25 Figure 2 is a derived amino acid sequence of protein HMW1 (SEQ ID NO: 2);

Figure 3 is a DNA sequence of a gene coding for protein HMW2 (SEQ ID NO: 3);

30 Figure 4 is a derived amino acid sequence of HMW2 (SEQ ID NO: 4);

Figure 5A shows restriction maps of representative recombinant phages which contained the HMW1 or HMW2 structural genes, the locations of the structural genes being indicated by the shaded bars;

35 Figure 5B shows the restriction map of the T7 expression vector pT7-7;

TITLE OF INVENTIONHIGH MOLECULAR WEIGHT SURFACE PROTEINS
OF NON-TYPEABLE HAEMOPHILUSFIELD OF INVENTION

5 This invention relates to high molecular weight proteins of non-typeable haemophilus.

BACKGROUND TO THE INVENTION

10 Non-typeable Haemophilus influenzae are non-encapsulated organisms that are defined by their lack of reactivity with antisera against known H. influenzae capsular antigens.

15 These organisms commonly inhabit the upper respiratory tract of humans and are frequently responsible for infections, such as otitis media, sinusitis, conjunctivitis, bronchitis and pneumonia. Since these organisms do not have a polysaccharide capsule, they are not controlled by the present Haemophilus influenzae type b (Hib) vaccines, which are directed towards Hib bacterial capsular polysaccharides. 20 The non-typeable strains, however, do produce surface antigens that can elicit bactericidal antibodies. Two of the major outer membrane proteins, P2 and P6, have been identified as targets of human serum bactericidal activity. However, it has been shown that the P2 protein sequence is variable, in particular in the non-typeable Haemophilus strains. Thus, a P2-based vaccine would not 25 protect against all strains of the organism.

30 There have previously been identified by Barenkamp et al (Pediatr. Infect. Dis. J., 9:333-339, 1990) a group of high-molecular-weight (HMW) proteins that appeared to be major targets of antibodies present in human convalescent sera. Examination of a series of middle ear isolates revealed the presence of one or two such proteins in most strains. However, prior to the present 35 invention, the structures of these proteins were unknown as were pure isolates of such proteins.

SUBSTITUTE SHEET (RULE 26)

antigenically-related proteins are produced by the majority of the non-typeable strains of Haemophilus. Antisera raised against the protein expressed by the HMW1 gene recognizes both the HMW2 protein and the B. pertussis FHA. The present invention includes an isolated and purified high molecular weight protein of non-typeable haemophilus which is antigenically related to the B. pertussis FHA, which may be obtained from natural sources or produced recombinantly.

A phage genomic library of a known strain of non-typeable Haemophilus was prepared by standard methods and the library was screened for clones expressing high molecular weight proteins, using a high titre antiserum against HMW's. A number of strongly reactive DNA clones were plaque-purified and sub-cloned into a T7 expression plasmid. It was found that they all expressed either one or the other of the two high-molecular-weight proteins designated HMW1 and HMW2, with apparent molecular weights of 125 and 120 kDa, respectively, encoded by open reading frames of 4.6 kb and 4.4 kb, respectively.

Representative clones expressing either HMW1 or HMW2 were further characterized and the genes isolated, purified and sequenced. The DNA sequence of HMW1 is shown in Figure 1 and the corresponding derived amino acid sequence in Figure 2. Similarly, the DNA sequence of HMW2 is shown in Figure 3 and the corresponding derived amino acid sequence in Figure 4. Partial purification of the isolated proteins and N-terminal sequence analysis indicated that the expressed proteins are truncated since their sequence starts at residue number 442 of both full length HMW1 and HMW2 gene products.

Subcloning studies with respect to the hmw1 and hmw2 genes indicated that correct processing of the HMW proteins required the products of additional downstream genes. It has been found that both the hmw1 and hmw2 genes are flanked by two additional downstream open

Figure 6 contains the DNA sequence of a gene cluster for the hmw1 gene (SEQ ID NO: 5), comprising nucleotides 351 to 4958 (ORF a) (as in Figure 1), as well as two additional downstream genes in the 3' flanking region, comprising ORFs b, nucleotides 5114-6748 and c nucleotides 7062-9011;

Figure 7 contains the DNA sequence of a gene cluster for the hmw2 gene (SEQ ID NO: 6), comprising nucleotides 792 to 5222 (ORF a) (as in Figure 3), as well as two additional downstream genes in the 3' flanking region, comprising ORFs b, nucleotides 5375-7009, and c, nucleotides 7249-9198;

Figure 8 is a partial DNA sequence of a gene coding for protein HMW3 (SEQ ID NO: 7);

Figure 9 is a partial DNA sequence of a gene coding for protein HMW4 (SEQ ID NO: 8); and

Figure 10 is a comparison table for the derived amino acid sequence for proteins HMW1, HMW2, HMW3 and HMW4.

GENERAL DESCRIPTION OF INVENTION

The DNA sequences of the genes coding for HMW1 and HMW2, shown in Figures 1 and 3 respectively, were shown to be about 80% identical, with the first 1259 base pairs of the genes being identical. The derived amino acid sequences of the two HMW proteins, shown in Figures 2 and 4 respectively, are about 70% identical. Furthermore, the encoded proteins are antigenically related to the filamentous hemagglutinin surface protein of Bordetella pertussis. A monoclonal antibody prepared against filamentous hemagglutinin (FHA) of Bordetella pertussis was found to recognize both of the high molecular weight proteins. This data suggests that the HMW and FHA proteins may serve similar biological functions. The derived amino acid sequences of the HMW1 and HMW2 proteins show sequence similarity to that for the FHA protein. It has further been shown that these

reading frames (ORFs), designated b and c, respectively, (see Figures 6 and 7).

The b ORFs are 1635 bp in length, extending from nucleotides 5114 to 6748 in the case of hmw1 and 5 nucleotides 5375 to 7009 in the case of hmw2, with their derived amino acid sequences 99% identical. The derived amino acid sequences demonstrate similarity with the derived amino acid sequences of two genes which encode proteins required for secretion and activation of 10 hemolysins of P. mirabilis and S. marcescens.

The c ORFs are 1950 bp in length, extending from nucleotides 7062 to 9011 in the case of hmw1 and 15 nucleotides 7249 to 9198 in the case of hmw2, with their derived amino acid sequences 96% identical. The hmw1 c ORF is preceded by a series of 9 bp direct tandem repeats. In plasmid subclones, interruption of the hmw1 b or c ORF results in defective processing and secretion 20 of the hmw1 structural gene product.

The two high molecular weight proteins have been 25 isolated and purified and shown to be partially protective against otitis media in chinchillas and to function as adhesins. These results indicate the potential for use of such high molecular weight proteins and structurally-related proteins of other non-typeable strains of Haemophilus influenzae as components in non-typeable Haemophilus influenzae vaccines.

Since the proteins provided herein are good cross-reactive antigens and are present in the majority 30 of non-typeable Haemophilus strains, it is evident that these HMW proteins may become integral constituents of a universal Haemophilus vaccine. Indeed, these proteins may be used not only as protective antigens against otitis, sinusitis and bronchitis caused by the 35 non-typeable Haemophilus strains, but also may be used as carriers for the protective Hib polysaccharides in a conjugate vaccine against meningitis. The proteins also

may be used as carriers for other antigens, haptens and polysaccharides from other organisms, so as to induce immunity to such antigens, haptens and polysaccharides.

5 The nucleotide sequences encoding two high molecular weight proteins of a different non-typeable Haemophilus strain (designated HMW3 and HMW4) have been largely elucidated, and are presented in Figures 8 and 9. HMW3 has an apparent molecular weight of 125 kDa while HMW4 has an apparent molecular weight of 123 kDa. These high
10 molecular weight proteins are antigenically related to the HMW1 and HMW2 proteins and to FHA. Sequence analysis of HMW3 is approximately 85% complete and of HMW4 95% complete, with short stretches at the 5'-ends of each gene remaining to be sequenced.

15 Figure 10 contains a multiple sequence comparison of the derived amino acid sequences for the four high molecular weight proteins identified herein. As may be seen from this comparison, stretches of identical peptide sequence may be found throughout the length of the comparison, with HMW3 more closely resembling HMW1 and HMW4 more closely resembling HMW2. This information is highly suggestive of a considerable sequence homology between high molecular weight proteins from various non-typeable Haemophilus strains.
20

25 In addition, mutants of non-typeable H. influenzae strains that are deficient in expression of HMW1 or HMW2 or both have been constructed and examined for their capacity to adhere to cultured human epithelial cells. The hmw1 and hmw2 gene clusters have been expressed in E. coli and have been examined for in vitro adherence. The results of such experimentation demonstrate that both HMW1 and HMW2 mediate attachment and hence are adhesins and that this function is present even in the absence of other H. influenzae surface structures.
30

35 With the isolation and purification of the high molecular weight proteins, the inventors are able to

determine the major protective epitopes by conventional epitope mapping and synth size peptides corresponding to these determinants to be incorporated in fully synthetic or recombinant vaccines. Accordingly, the invention also 5 comprises a synthetic peptide having an amino acid sequence corresponding to at least one protective epitope of a high molecular weight protein of a non-typeable Haemophilus influenzae. Such peptides are of varying 10 length that constitute portions of the high-molecular-weight proteins, that can be used to induce immunity, either directly or as part of a conjugate, against the relative organisms and thus constitute vaccines for protection against the corresponding diseases.

15 The present invention also provides any variant or fragment of the proteins that retains the potential immunological ability to protect against disease caused by non-typeable Haemophilus strains. The variants may be constructed by partial deletions or mutations of the 20 genes and expression of the resulting modified genes to give the protein variations.

EXAMPLES

Example 1:

25 Non-typeable H.influenzae strains 5 and 12 were isolated in pure culture from the middle ear fluid of children with acute otitis media. Chromosomal DNA from strain 12, providing genes encoding proteins HMW1 and HMW2, was prepared by preparing Sau3A partial restriction 30 digests of chromosomal DNA and fractionating on sucrose gradients. Fractions containing DNA fragments in the 9 to 20 kbp range were pooled and a library was prepared by ligation into λEMBL3 arms. Ligation mixtures were packaged in vitro and plate-amplified in a P2 lysogen of E. coli LE392.

35 For plasmid subcloning studies, DNA from a representative recombinant phage was subcloned into the

T7 expression plasmid pT7-7, containing the T7 RNA polymerase promoter Φ 10, a ribosome-binding sit and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site (see Figure 5B).

5 DNA sequence analysis was performed by the dideoxy method and both strands of the HMW1 gene and a single strand of the HMW2 gene were sequenced.

10 Western immunoblot analysis was performed to identify the recombinant proteins being produced by reactive phage clones. Phage lysates grown in LE392 cells or plaques picked directly from a lawn of LE392 cells on YT plates were solubilized in gel electrophoresis sample buffer prior to electrophoresis. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis was performed on 7.5% or 11% polyacrylamide modified Laemmli gels. After transfer of the proteins to nitrocellulose sheets, the sheets were probed sequentially with an E. coli-absorbed human serum sample containing high-titer antibody to the high-molecular-weight proteins and then with alkaline phosphatase-conjugated goat anti-human immunoglobulin G (IgG) second antibody. Sera from healthy adults contains high-titer antibody directed against surface-exposed high-molecular-weight proteins of non-typeable H. influenzae. One such serum sample was used as the screening antiserum after having been extensively absorbed with LE392 cells.

15 To identify recombinant proteins being produced by E. coli transformed with recombinant plasmids, the plasmids of interest were used to transform E. coli BL21 (DE3)/pLysS. The transformed strains were grown to an A_{600} of 0.5 in L broth containing 50 μ g of ampicillin per ml. IPTG was then added to 1 mM. One hour later, cells were harvested, and a sonicate of the cells was prepared. 20 The protein concentrations of the samples wer determined by th bicinchoninic acid method. Cell sonicates

containing 100 µg f total protein were solubilized in electrophoresis sampl buffer, subjected to SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose. The nitrocellulose was then probed sequentially with the E. coli-absorbed adult serum sample and then with alkaline phosphatase-conjugated goat anti-human IgG second antibody.

Western immunoblot analysis also was performed to determine whether homologous and heterologous non-typeable H. influenzae strains expressed high-molecular-weight proteins antigenically related to the protein encoded by the cloned HMW1 gene (rHMW1). Cell sonicates of bacterial cells were solubilized in electrophoresis sample buffer, subjected to SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose. Nitrocellulose was probed sequentially with polyclonal rabbit rHMW1 antiserum and then with alkaline phosphatase-conjugated goat anti-rabbit IgG second antibody.

Finally, Western immunoblot analysis was performed to determine whether non-typeable Haemophilus strains expressed proteins antigenically related to the filamentous hemagglutinin protein of Bordetella pertussis. Monoclonal antibody X3C, a murine immunoglobulin G (IgG) antibody which recognizes filamentous hemagglutinin, was used to probe cell sonicates by Western blot. An alkaline phosphatase-conjugated goat anti-mouse IgG second antibody was used for detection.

To generate recombinant protein antiserum, E. coli BL21(DE3)/pLysS was transformed with pHMW1-4, and expression of recombinant protein was induced with IPTG, as described above. A cell sonicate of the bacterial cells was prepared and separated into a supernatant and pellet fraction by centrifugation at 10,000 x g f r 30 min. The rec mbinant protein fractionated with the

pellet fraction. A rabbit was subcutaneously immunized on biweekly schedule with 1 mg of protein from the pellet fraction, the first dose given with Freund's complete adjuvant and subsequent doses with Freund's incomplete adjuvant. Following the fourth injection, the rabbit was bled. Prior to use in the Western blot assay, the antiserum was absorbed extensively with sonicates of the host E. coli strain transformed with cloning vector alone.

To assess the sharing of antigenic determinants between HMW1 and filamentous hemagglutinin, enzyme-linked immunosorbent assay (ELISA) plates (Costar, Cambridge, Mass.) were coated with 60 μ l of a 4-ug/ml solution of filamentous hemagglutinin in Dulbecco's phosphate-buffered saline per well for 2 h at room temperature. Wells were blocked for 1 h with 1% bovine serum albumin in Dulbecco's phosphate-buffered saline prior to addition of serum dilutions. rHMW1 antiserum was serially diluted in 0.1% Brij (Sigma, St. Louis, Mo.) in Dulbecco's phosphate-buffered saline and incubated for 3 h at room temperature. After being washed, the plates were incubated with peroxidase-conjugated goat anti-rabbit IgG antibody (Bio-Rad) for 2 h at room temperature and subsequently developed with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (Sigma) at a concentration of 0.54 mg/ml in 0.1 M sodium citrate buffer, pH 4.2, containing 0.03% H₂O₂. Absorbances were read on an automated ELISA reader.

Recombinant phage expressing HMW1 or HMW2 were recovered as follows. The non-typeable H. influenzae strain 12 genomic library was screened for clones expressing high-molecular-weight proteins with an E. coli-absorbed human serum sample containing a high titer of antibodies directed against the high-molecular-weight proteins.

Numerous strongly reactive clones were identified along with more weakly reactive ones. Twenty strongly reactive clones were plaque-purified and examined by Western blot for expression of recombinant proteins.

5 Each of the strongly reactive clones expressed one of two types of high-molecular-weight proteins, designated HMW1 and HMW2. The major immunoreactive protein bands in the HMW1 and HMW2 lysates migrated with apparent molecular masses of 125 and 120 kDa, respectively. In addition to

10 the major bands, each lysate contained minor protein bands of higher apparent molecular weight. Protein bands seen in the HMW2 lysates at molecular masses of less than 120 kDa were not regularly observed and presumably represent proteolytic degradation products. Lysates of

15 LE392 infected with the λ EMBL3 cloning vector alone were non-reactive when immunologically screened with the same serum sample. Thus, the observed activity was not due to cross-reactive *E. coli* proteins or λ EMBL3-encoded proteins.

20 Furthermore, the recombinant proteins were not simply binding immunoglobulin nonspecifically, since the proteins were not reactive with the goat anti-human IgG conjugate alone, with normal rabbit sera, or with serum from a number of healthy young infants.

25 Representative clones expressing either the HMW1 or HMW2 recombinant proteins were characterized further. The restriction maps of the two phage types were different from each other, including the regions encoding the HMW1 and HMW2 structural genes. Figure 5A shows restriction maps of representative recombinant phage which contained the HMW1 or HMW2 structural genes. The locations of the structural genes are indicated by the shaded bars.

30 HMW1 plasmid subclones were constructed by using the T7 expression plasmid T7-7 (Fig. 5A and B). HMW2 plasmid subclones also were constructed, and the results with

these latter subclones were similar to those observed with the HMW1 constructs.

The approximate location and direction of transcription of the HMW1 structure gene were initially determined by using plasmid pHMW1 (Fig. 5A). This plasmid was constructed by inserting the 8.5-kb BamHI-SallI fragment from λ HMW1 into BamHI- and Sall-cut pT7-7. E. coli transformed with pHMW1 expressed an immunoreactive recombinant protein with an apparent molecular mass of 115 kDa, which was strongly inducible with IPTG. This protein was significantly smaller than the 125-kDa major protein expressed by the parent phage, indicating that it either was being expressed as a fusion protein or was truncated at the carboxy terminus.

To more precisely localize the 3' end of the structural gene, additional plasmids were constructed with progressive deletions from the 3' end of the pHMW1 construct. Plasmid pHMW1-1 was constructed by digestion of pHMW1 with PstI, isolation of the resulting 8.8-kb fragment, and religation. Plasmid pHMW1-2 was constructed by digestion of pHMW1 with HindIII, isolation of the resulting 7.5-kb fragment, and religation. E. coli transformed with either plasmid pHMW1-1 or pHMW1-2 also expressed an immunoreactive recombinant protein with an apparent molecular mass of 115 kDa. These results indicated that the 3' end of the structural gene was 5' of the HindIII site.

To more precisely localize the 5' end of the gene, plasmids pHMW1-4 and pHMW1-7 were constructed. Plasmid pHMW1-4 was constructed by cloning the 5.1-kb BamHI-HindIII fragment from λ HMW1 into a pT7-7-derived plasmid containing the upstream 3.8-kb EcoRI-BamHi fragment. E. coli transformed with pHMW1-4 expressed an immunoreactive protein with an apparent molecular mass of approximately 160 kDa. Although protein production was inducible with IPTG, the levels of protein production in these

transformants were substantially lower than those with the pHMW1-2 transformants described above. Plasmid pHMW1-7 was constructed by digesting pHMW1-4 with NdeI and SpeI. The 9.0-kbp fragment generated by this double digestion was isolated, blunt ended, and religated. E. coli transformed with pHMW1-7 also expressed an immunoreactive protein with an apparent molecular mass of 160 kDa, a protein identical in size to that expressed by the pHMW1-4 transformants. The result indicated that the initiation codon for the HMW1 structural gene was 3' of the SpeI site. DNA sequence analysis confirmed this conclusion.

As noted above, the λ HMW1 phage clones expressed a major immunoreactive band of 125 kDa, whereas the HMW1 plasmid clones pHMW1-4 and pHMW1-7, which contained what was believed to be the full-length gene, expressed an immunoreactive protein of approximately 160 kDa. This size discrepancy was disconcerting. One possible explanation was that an additional gene or genes necessary for correct processing of the HMW1 gene product were deleted in the process of subcloning. To address this possibility, plasmid pHMW1-14 was constructed. This construct was generated by digesting pHMW1 with NdeI and MluI and inserting the 7.6-kbp NdeI-MluI fragment isolated from pHMW1-4. Such a construct would contain the full-length HMW1 gene as well as the DNA 3' of the HMW1 gene which was present in the original HMW1 phage. E. coli transformed with this plasmid expressed major immunoreactive proteins with apparent molecular masses of 125 and 160 kDa as well as additional degradation products. The 125- and 160-kDa bands were identical to the major and minor immunoreactive bands detected in the HMW1 phage lysates. Interestingly, the pHMW1-14 construct also expressed significant amounts of protein in the uninduced condition, a situation not observed with the earlier constructs.

The relationship between the 125- and 160-kDa proteins remains somewhat unclear. Sequence analysis, described below, reveals that the HMW1 gene would be predicted to encode a protein of 159 kDa. It is believed
5 that the 160-kDa protein is a precursor form of the mature 125-kDa protein, with the conversion from one protein to the other being dependent on the products of the two downstream genes.

Sequence analysis of the HMW1 gene (Figure 1) revealed a 4,608-bp open reading frame (ORF), beginning with an ATG codon at nucleotide 351 and ending with a TAG stop codon at nucleotide 4959. A putative ribosome-binding site with the sequence AGGAG begins 10 bp upstream of the putative initiation codon. Five other in-frame ATG codons are located within 250 bp of the beginning of the ORF, but none of these is preceded by a typical ribosome-binding site. The 5'-flanking region of the ORF contains a series of direct tandem repeats, with the 7-bp sequence ATCTTTC repeated 16 times. These tandem repeats stop 100 bp 5' of the putative initiation codon. An 8-bp inverted repeat characteristic of a rho-independent transcriptional terminator is present, beginning at nucleotide 4983, 25 bp 3' of the presumed translational stop. Multiple termination codons are present in all three reading frames both upstream and downstream of the ORF. The derived amino acid sequence of the protein encoded by the HMW1 gene (Figure 2) has a molecular weight of 159,000, in good agreement with the apparent molecular weights of the proteins expressed by
10 the HMW1-4 and HMW1-7 transformants. The derived amino acid sequence of the amino terminus does not demonstrate the characteristics of a typical signal sequence. The BamHI site used in generation of pHMW1 comprises bp 1743 through 1748 of the nucleotide sequence. The ORF downstream of the BamHI site would be predicted to encode
15 a protein of 111 kDa, in good agreement with the 115 kDa
20
25
30
35

estimated for th apparent molecular mass of the pHMW1-encoded fusion prot in.

The sequence of the HMW2 gene (Figure 3) consists of a 4,431-bp ORF, beginning with an ATG ccdon at nucleotide 5 352 and ending with a TAG stop codon at nucleotide 4783. The first 1,259 bp of the ORF of the HMW2 gene are identical to those of the HMW1 gene. Thereafter, the sequences begin to diverge but are 80% identical overall. With the exception of a single base addition at 10 nucleotide 93 of the HMW2 sequence, the 5'-flanking regions of the HMW1 and HMW2 genes are identical for 310 bp upstream from the respective initiation codons. Thus, the HMW2 gene is preceded by the same set of tandem repeats and the same putative ribosome-binding site which 15 lies 5' of the HMW1 gene. A putative transcriptional terminator identical to that identified 3' of the HMW1 ORF is noted, beginning at nucleotide 4804. The discrepancy in the lengths of the two genes is principally accounted for by a 186-bp gap in the HMW2 20 sequence, beginning at nucleotide position 3839. Th derived amino acid sequence of the protein encoded by the HMW2 gene (Figure 4) has a molecular weight of 155,000 and is 71% identical with the derived amino acid sequence of the HMW1 gene.

The derived amino acid sequences of both the HMW1 and HMW2 genes (Figures 2 and 4) demonstrated sequence similarity with the derived amino acid sequence of filamentous hemagglutinin of Bordetella pertussis, a surface-associated protein of this organism. The initial 30 and optimized TFASTA scores for the HMW1-filamentous hemagglutinin sequence comparison were 87 and 186, respectively, with a word size of 2. The z score for the comparison was 45.8. The initial and optimized TFASTA scores for the HMW2-filamentous hemagglutinin sequence 35 comparison were 68 and 196, respectively. The z score for the latter comparison was 48.7. Th magnitudes of

the initial and optimized TFASTA scores and the z scores suggested that a biologically significant relationship existed between the HMW1 and HMW2 gene products and filamentous hemagglutinin. When the derived amino acid sequences of HMW1, HMW2, and filamentous hemagglutinin genes were aligned and compared, the similarities were most notable at the amino-terminal ends of the three sequences. Twelve of the first 22 amino acids in the predicted peptide sequences were identical. In additional, the sequences demonstrated a common five-amino-acid stretch, Asn-Pro-Asn-Gly-Ile, and several shorter stretches of sequence identity within the first 200 amino acids.

Example 2:

To further explore the HMW1-filamentous hemagglutinin relationship, the ability of antiserum prepared against the HMW1-4 recombinant protein (rHMW1) to recognize purified filamentous hemagglutinin was assessed. The rHMW1 antiserum demonstrated ELISA reactivity with filamentous hemagglutinin in a dose-dependent manner. Preimmune rabbit serum had minimal reactivity in this assay. The rHMW1 antiserum also was examined in a Western blot assay and demonstrated weak but positive reactivity with purified filamentous hemagglutinin in this system also.

To identify the native Haemophilus protein corresponding to the HMW1 gene product and to determine the extent to which proteins antigenically related to the HMW1 cloned gene product were common among other non-typeable H. influenzae strains, a panel of Haemophilus strains was screened by Western blot with the rHMW1 antiserum. The antiserum recognized both a 125- and a 120-kDa protein band in the homologous strain 12, the putative mature protein products of the HMW1 and HMW2 genes, respectively.

When used to screen heterologous non-typable H. influenzae strains, rHMW1 antiserum recognized high-molecular-weight proteins in 75% of 125 epidemiologically unrelated strains. In general, the antiserum reacted with one or two protein bands in the 100- to 150-kDa range in each of the heterologous strains in a pattern similar but not identical to that seen in the homologous strain.

Monoclonal antibody X3C is a murine IgG antibody directed against the filamentous hemagglutinin protein of B. pertussis. This antibody can inhibit the binding of B. pertussis cells to Chinese hamster ovary cells and HeLa cells in culture and will inhibit hemagglutination of erythrocytes by purified filamentous hemagglutinin. A Western blot assay was performed in which this monoclonal antibody was screened against the same panel of non-typeable H. influenzae strains discussed above. Monoclonal antibody X3C recognized both the high-molecular-weight proteins in non-typeable H. influenzae strain 12 which were recognized by the recombinant-protein antiserum. In addition, the monoclonal antibody recognized protein bands in a subset of heterologous non-typeable H. influenzae strains which were identical to those recognized by the recombinant-protein antiserum. On occasion, the filamentous hemagglutinin monoclonal antibody appeared to recognize only one of the two bands which had been recognized by the recombinant-protein antiserum. Overall, monoclonal antibody X3C recognized high-molecular-weight protein bands identical to those recognized by the rHMW1 antiserum in approximately 35% of our collection of non-typeable H. influenzae strains.

Example 3:

Mutants deficient in expression of HMW1, MW2 or both proteins were constructed to examine the role of these proteins in bacterial adherence. The following strategy was employed. pHMW1-14 (see Example 1, Figure 5A) was

digested with BamHI and then ligated to a kanamycin cassette isolated on a 1.3-kb BamH1 fragment from pUC4K. The resultant plasmid (pHMW1-17) was linearized by digestion with XbaI and transformed into non-typeable H. influenzae strain 12, followed by selection for kanamycin resistant colonies. Southern analysis of a series of these colonies demonstrated two populations of transformants, one with an insertion in the HMW1 structural gene and the other with an insertion in the HMW2 structural gene. One mutant from each of these classes was selected for further studies.

Mutants deficient in expression of both proteins were recovered using the following protocol. After deletion of the 2.1-kb fragment of DNA between two EcoRI sites spanning the 3'-portion of the HMW1 structural gene in pHMW-15, the kanamycin cassette from pUC4K was inserted as a 1.3-kb EcoR1 fragment. The resulting plasmid (pHMW1-16) was linearized by digestion with XbaI and transformed into strain 12, followed again by selection for kanamycin resistant colonies. Southern analysis of a representative sampling of these colonies demonstrated that in seven of eight cases, insertion into both the HMW1 and HMW2 loci had occurred. One such mutant was selected for further studies.

To confirm the intended phenotypes, the mutant strains were examined by Western blot analysis with a polyclonal antiserum against recombinant HMW1 protein. The parental strain expressed both the 125-kD HMW1 and the 120-kD HMW2 protein. In contrast, the HMW2⁻ mutant failed to express the 120-kD protein, and the HMW1 mutant failed to express the 125-kD protein. The double mutant lacked expression of either protein. On the basis of whole cell lysates, outer membrane profiles, and colony morphology, the wild type strain and the mutants were otherwise identical with one another. Transmission

electron microscopy demonstrated that none of the four strains expressed pili.

The capacity of wild type strain 12 to adhere to Chang epithelial cells was examined. In such assays, 5 bacteria were inoculated into broth and allowed to grow to a density of $\sim 2 \times 10^9$ cfu/ml. Approximately 2×10^7 cfu were inoculated onto epithelial cell monolayers, and plates were gently centrifuged at $165 \times g$ for 5 minutes to facilitate contact between bacteria and the epithelial 10 surface. After incubation for 30 minutes at $37^\circ C$ in 5% CO_2 , monolayers were rinsed 5 times with PBS to remove nonadherent organisms and were treated with trypsin-EDTA (0.05% trypsin, 0.5% EDTA) in PBS to release them from the plastic support. Well contents were agitated, and 15 dilutions were plated on solid medium to yield the number of adherent bacteria per monolayer. Percent adherence was calculated by dividing the number of adherent cfu per monolayer by the number of inoculated cfu.

As depicted in Table 1 below (the Tables appear at 20 the end of the descriptive text), this strain adhered quite efficiently, with nearly 90% of the inoculum binding to the monolayer. Adherence by the mutant expressing HMW1 but not HMW2 (HMW2⁻) was also quite efficient and comparable to that by the wild type strain. 25 In contrast, attachment by the strain expressing HMW2 but deficient in expression of HMW1 (HMW1⁻) was decreased about 15-fold relative to the wild type. Adherence by the double mutant (HMW1⁻/HMW2⁻) was decreased even further, approximately 50-fold compared with the wild 30 type and approximately 3-fold compared with the HMW1 mutant. Considered together, these results suggest that both the HMW1 protein and the HMW2 protein influence attachment to Chang epithelial cells. Interestingly, optimal adherence to this cell line appears to require HMW1 but not HMW2.

Example 4:

Using the plasmids pHMW1-16 and pHMW1-17 (see Example 3) and following a scheme similar to that employed with strain 12 as described in Example 3, three non-typeable Haemophilus strain 5 mutants were isolated, including one with the kanamycin gene inserted into the hmw1-like (designated hmw3) locus, a second with an insertion in the hmw2-like (designated hmw4) locus, and a third with insertions in both loci. As predicted, Western immunoblot analysis demonstrated that the mutant with insertion of the kanamycin cassette into the hmw1-like locus had lost expression of the HMW3 125-kD protein, while the mutant with insertion into the hmw2-like locus failed to express the HMW4 123-kD protein. The mutant with a double insertion was unable to express either of the high molecular weight proteins.

As shown in Table 1 below, wild type strain 5 demonstrated high level adherence, with almost 80% of the inoculum adhering per monolayer. Adherence by the mutant deficient in expression of the HMW2-like protein was also quite high. In contrast, adherence by the mutant unable to express the HMW1-like protein was reduced about 5-fold relative to the wild type, and attachment by the double mutant was diminished even further (approximately 25-fold). Examination of Giemsa-stained samples confirmed these observations (not shown). Thus, the results with strain 5 corroborate the findings with strain 12 and the HMW1 and HMW2 proteins.

Example 5:

To confirm an adherence function for the HMW1 and HMW2 proteins and to examine the effect of HMW1 and HMW2 independently of other H. influenzae surface structures, the hmw1 and the hmw2 gene clusters were introduced into E. coli DH5 α , using plasmids pHMW1-14 and pHMW2-21, respectively. As a control, the cloning vector, pT7-7, was also transformed into E. coli DH5 α . Western blot

analysis demonstrated that E. coli DH5 α containing the hmw1 genes expressed a 125 kDa protein, while the same strain harboring the hmw2 genes expressed a 120-kDa protein. E. coli DH5 α containing pT7-7 failed to react with antiserum against recombinant HMW1. Transmission electron microscopy revealed no pili or other surface appendages on any of the E. coli strains.

Adherence by the E. coli strains was quantitated and compared with adherence by wild type non-typeable H. influenzae strain 12. As shown in Table 2 below, adherence by E. coli DH5 α containing vector alone was less than 1% of that for strain 12. In contrast, E. coli DH5 α harboring the hmw1 gene cluster demonstrated adherence levels comparable to those for strain 12. Adherence by E. coli DH5 α containing the hmw2 genes was approximately 6-fold lower than attachment by strain 12 but was increased 20-fold over adherence by E. coli DH5 α with pT7-7 alone. These results indicate that the HMW1 and HMW2 proteins are capable of independently mediating attachment to Chang conjunctival cells. These results are consistent with the results with the H. influenzae mutants reported in Examples 3 and 4, providing further evidence that, with Chang epithelial cells, HMW1 is a more efficient adhesin than is HMW2.

Experiments with E. coli HB101 harboring pT7-7, pHMW1-14, or pHMW2-21 confirmed the results obtained with the DH5 α derivatives (see Table 2).

Example 6:

HMW1 and HMW2 were isolated and purified from non-typeable H. influenzae (NTHI) strain 12 in the following manner. Non-typeable Haemophilus bacteria from frozen stock culture were streaked onto a chocolate plate and grown overnight at 37°C in an incubator with 5% CO₂. 50ml starter culture of brain heart infusion (BHI) broth, supplemented with 10 μ g/ml each of hemin and NAD was inoculated with growth on chocolate plate. The starter

culture was grown until the optical density (O.D. - 600nm) reached 0.6 to 0.8 and then the bacteria in the starter culture was used to inoculate six 500 ml flasks of supplemented BHI using 8 to 10 ml per flask. The 5 bacteria were grown in 500 ml flasks for an additional 5 to 6 hours at which time the O.D. was 1.5 or greater. Cultures were centrifuged at 10,000 rpm for 10 minutes.

Bacterial pellets were resuspended in a total volume of 250 ml of an extraction solution comprising 0.5 M NaCl, 0.01 M Na₂EDTA, 0.01 M Tris 50 μM 1,10-phenanthroline, pH 7.5. The cells were not sonicated or otherwise disrupted. The resuspended cells were allowed to sit on ice at 0°C for 60 minutes. The resuspended cells were centrifuged at 10,000 rpm for 10 minutes at 15 4°C to remove the majority of intact cells and cellular debris. The supernatant was collected and centrifuged at 100,000 xg for 60 minutes at 4°C. The supernatant again was collected and dialyzed overnight at 4°C against 0.01 M sodium phosphate, pH 6.0.

20 The sample was centrifuged at 10,000 rpm for 10 minutes at 4°C to remove insoluble debris precipitated from solution during dialysis. The supernatant was applied to a 10 ml CM Sepharose column which has been pre-equilibrated with 0.01 M sodium phosphate, pH 6. 25 Following application to this column, the column was washed with 0.01 M sodium phosphate. Proteins were elevated from the column with a 0 - 0.5M KCl gradient in 0.01 M Na phosphate, pH 6 and fractions were collected for gel examination. Coomassie gels of column fractions 30 were carried out to identify those fractions containing high molecular weight proteins. The fractions containing high molecular weight proteins were pooled and concentrated to a 1 to 3 ml volume in preparation for application of sample to gel filtration column.

35 A Sepharose CL-4B gel filtration column was equilibrated with phosphate-buffered saline, pH 7.5. The

concentrated high molecular weight protein sample was applied to the gel filtration column and column fractions were collected. Coomassie gels were performed on the column fractions to identify those containing high molecular weight proteins. The column fractions containing high molecular weight proteins were pooled.

The proteins were tested to determine whether they would protect against experimental otitis media caused by the homologous strain.

Chinchillas received three monthly subcutaneous injections with 40 µg of an HMW1-HMW2 protein mixture in Freund's adjuvant. One month after the last injection, the animals were challenged by intrabullar inoculation with 300 cfu of NTHI strain 12.

Infection developed in 5 of 5 control animals versus 5 of 10 immunized animals. Among infected animals, geometric mean bacterial counts in middle ear fluid 7 days post-challenge were 7.4×10^6 in control animals versus 1.3×10^5 in immunized animals.

Serum antibody titres following immunization were comparable in uninfected and infected animals. However, infection in immunized animals was uniformly associated with the appearance of bacteria down-regulated in expression of the HMW proteins, suggesting bacterial selection in response to immunologic pressure.

Although this data shows that protection following immunization was not complete, this data suggests the HMW adhesin proteins are potentially important protective antigens which may comprise one component of a multi-component NTHI vaccine.

These animal challenge tests were repeated in Chinchillas at a lower dose challenge than the 300 cfu employed above. In this instance, complete protection was achieved. In these experiments, groups of five animals were immunized with 20 µg of the HMW1-HMW2

mixture on days 1, 28, and 42 in the presence of AlPO₄. Blood samples were collected on day 53 to monitor the antibody response. On day 56, the left ear of animals was challenged with about 10 cfu of H. influenzae strain 12. Ear infection was monitored on day 4. Four animals in Group 3 were infected previously by H. influenzae strain 12 and were recovered completely for at least one month before the second challenge. The results are outlined in the following Table A:

10

TABLE A

15

**Protective ability of HMW protein against
non-typeable H. influenzae challenge
in chinchilla model**

20

Group (#)	Antigens	Total Animals	Number of Animals Showed Positive Ear Infection		
			Tympano- gram	Otosco- pic Examina- tion	cfu of Bac- teria/ 10 µL
1	HMW	5	0	0	0
2	None	5	5	5	850- 3200 (4/5)
3	Convalescent	4	0	0	0

25

Example 7:

A number of synthetic peptides were derived from HMW1. Antisera then was raised to these peptides. The anti-peptide antisera to peptide HMW1-P5 was shown to recognize HMW1. Peptide HMW1-P5 covers amino acids 1453 to 1481 of HMW1, has the sequence VDEVIEAKRILEVKVKDLSDEEREALAKLG (SEQ ID NO:9), and represents bases 1498 to 1576 in Figure 10.

This finding demonstrates that the DNA sequence and the derived protein is being interpreted in the correct

reading frame and that peptides derived from th sequence can be produced which will be immunogenic.

SUMMARY OF DISCLOSURE

In summary of this disclosure, the present invention provides high molecular weight proteins of non-typeable Haemophilus, genes coding for the same and vaccines incorporating such proteins. Modifications are possible within the scope of this invention.

Table 1. Effect of mutation of high molecular weight proteins on adherence to Chang epithelial cells by nontypable *H. influenzae*.

ADHERENCE*		
Strain	\odot inoculum	relative to wild type†
Strain 12 derivatives		
wild type	87.7 \pm 5.9	100.0 \pm 6.7
HMW1- mutant	6.0 \pm 0.9	6.8 \pm 1.0
HMW2- mutant	89.9 \pm 10.8	102.5 \pm 12.3
HMW1-/HMW2- mutant	2.0 \pm 0.3	2.3 \pm 0.3
Strain 5 derivatives		
wild type	78.7 \pm 3.2	100.0 \pm 4.1
HMW1-like mutant	15.7 \pm 2.6	19.9 \pm 3.3
HMW2-like mutant	103.7 \pm 14.0	131.7 \pm 17.8
double mutant	3.5 \pm 0.6	4.4 \pm 0.8

* Numbers represent mean (\pm standard error of the mean) of measurements in triplicate or quadruplicate from representative experiments.

† Adherence values for strain 12 derivatives are relative to strain 12 wild type; values for strain 5 derivatives are relative to strain 5 wild type.

- 27 -

Table 2. Adherence by *E. coli* DH5 α and HB101 harboring *hmw1* or *hmw2* gene clusters.

<u>Strain*</u>	Adherence relative to <u>H. influenzae strain 12†</u>
DH5 α (pT7-7)	0.7 \pm 0.02
DH5 α (pHMW1-14)	114.2 \pm 15.9
DH5 α (pHMW2-21)	14.0 \pm 3.7
HB101 (pT7-7)	1.2 \pm 0.5
HB101 (pHMW1-14)	93.6 \pm 15.8
HB101 (pHMW2-21)	3.6 \pm 0.9

* The plasmid pHMW1-14 contains the *hmw1* gene cluster, while pHMW2-21 contains the *hmw2* gene cluster; pT7-7 is the cloning vector used in these constructs.

† Numbers represent the mean (\pm standard error of the mean) of measurements made in triplicate from representative experiments.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: BARENKAMP, STEPHEN J
ST. GEME III, JOSEPH W
- (ii) TITLE OF INVENTION: HIGH MOLECULAR WEIGHT SURFACE PROTEINS
OF NON-TYPEABLE HAEMOPHILUS
- (iii) NUMBER OF SEQUENCES: 8
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Shoemaker and Mattare, Ltd
 - (B) STREET: 2001 Jefferson Davis Hwy., 1203 Crystal Plaza
Bldg. 1
 - (C) CITY: Arlington
 - (D) STATE: Virginia
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 22202-0286
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/038,682
 - (B) FILING DATE: 16-MAR-1993
 - (C) CLASSIFICATION:
- (vii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: BERKSTRESSER, JERRY W
 - (B) REGISTRATION NUMBER: 22,651
 - (C) REFERENCE/DOCKET NUMBER: 1038-293
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (703) 415-0810
 - (B) TELEFAX: (703) 415-0813

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5116 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ACAGCGTTCT CTTAATACTA GTACAAACCC ACAATAAAAT ATGACAAACA ACAATTACAA	60
CACCTTTTTT GCAGTCTATA TGCAAATATT TTAAAAAAATA GTATAAATCC GCCATATAAA	120
ATGGTATAAT CTTTCATCTT TCATCTTCA TCTTTCATCT TTCATCTTTC ATCTTTCATC	180
TTTCATCTTT CATCTTTCAT CTTTCATCTT TCATCTTCA TCTTTCATCT TTCATCTTTC	240
ACATGCCCTG ATGAACCGAG GGAAGGGAGG GAGGGGCAAG AATGAAGAGG GAGCTGAACG	300

SUBSTITUTE SHEET (RULE 26)

AACGCAAATG ATAAAGTAAT TTAATTGTTA AACTAACCTT AGGAGAAAAT ATGAACAAGC	360
TATATCGTCT CAAATTCAAGC AAACGCCTGA ATGCTTTGGT TGCTGTGTCT GAATTGGCAC	420
GGGGTTGTGA CCATTCCACA GAAAAAGGCA GCGAAAACC TGCTCGCATG AAAGTGCCTC	480
ACTTAGCGTT AAAGCCACTT TCCGCTATGT TACTATCTTT AGGTGTAACA TCTATTCCAC	540
AATCTGTTT AGCAAGCGGC TTACAAGGAA TGGATGTAGT ACACGGCACA GCCACTATGC	600
AAGTAGATGG TAATAAAACC ATTATCCGCA ACAGTGTGA CGATATCATT AATTGGAAAC	660
AATTAAACAT CGACCAAAAT GAAATGGTGC AGTTTTTACA AGAAAACAC AACTCCGCCG	720
TATTCAACCG TGTTACATCT AACCAAATCT CCCAATTAAA AGGGATTTA GATTCTAACG	780
GACAAGTCTT TTTAATCAAC CCAAATGGTA TCACAATAGG TAAAGACGCA ATTATTAACA	840
CTAATGGCTT TACGGCTTCT ACGCTAGACA TTTCTAACGA AAACATCAAG GCGCGTAATT	900
TCACCTTCGA GCAAACCAA GATAAAGCGC TCGCTGAAAT TGTGAATCAC GGTTTAATTA	960
CTGTCGGTAA AGACGGCAGT GTAAATCTTA TTGGTGGCAA AGTGAAAAC GAGGGTGTGA	1020
TTAGCGTAAA TGGTGGCAGC ATTTCTTAC TCGCAGGGCA AAAATCACC ATCAGCGATA	1080
TAATAAACCC AACCATTACT TACAGCATTG CCGCGCTGA AAATGAAGCG GTCAATCTGG	1140
GCGATATTT TGCCAAAGGC GGTAACATTA ATGTCCGTGC TGCCACTATT CGAAACCAAG	1200
GTAAACTTTC TGCTGATTCT GTAAAGCAAAG ATAAAAGCGG CAATATTGTT CTTCCGCCA	1260
AAGAGGGTGA AGCGGAAATT GGCAGGTAA TTTCCGCTCA AAATCAGCAA GCTAAAGGCG	1320
GCAAGCTGAT GATTACAGGC GATAAAGTCA CATTAAAAC AGGTGCAGTT ATCGACCTTT	1380
CAGGTAAAGA AGGGGGAGAA ACTTACCTTG GCGGTGACGA GCGCGGCGAA GGTAAAAGG	1440
GCATTCAATT AGCAAAGAAA ACCTCTTAC AAAAAGGCTC AACCATCAAT GTATCAGGCA	1500
AAGAAAAGG CGGACGCGCT ATTGTGTGGG GCGATATTGC GTTAATTGAC GGCAATATTAA	1560
ACGCTCAAGG TAGTGGTGAT ATCGCTAAA CCGGTGGTTT TGTGGAGACG TCGGGGCATG	1620
ATTTATTCAAT CAAAGACAAT GCAATTGTTG ACGCCAAGA GTGGTTGTTA GACCCGGATA	1680
ATGTATCTAT TAATGCAGAA ACAGCAGGAC GCAGCAATAC TTCAGAAGAC GATGAATACA	1740
CGGGATCCGG GAATAGTGCC AGCACCCCAA AACGAAACAA AGAAAAGACA ACATTAACAA	1800
ACACAACTCT TGAGAGTATA CTAAAAAAAG GTACCTTGT TAACATCACT GCTAATCAAC	1860
GCATCTATGT CAATAGCTCC ATTAATTAT CCAATGGCAG CTTAACTCTT TGGAGTGAGG	1920
GTGGAGCGG TGGCGCGTT GAGATTAACA ACGATATTAC CACCGGTGAT GATACCAGAG	1980
GTGCAAACCTT ACAATTAC TCAGGCGGCT GGGTTGATGT TCATAAAAAT ATCTCACTCG	2040
GGGGCGCAAGG TAACATAAAC ATTACAGCTA AACAGATAT CGCCTTGAG AAAGGAAGCA	2100
ACCAAGTCAT TACAGGTCAA GGGACTATTA CCTCAGGCAA TCAAAAGGT TTTAGATTAA	2160
ATAATGTCTC TCTAAACGGC ACTGGCAGCG GACTGCAATT CACCACTAAA AGAACCAATA	2220
AATAACGCTAT CACAAATAAA TTTGAAGGGA CTTTAAATAT TTCAGGGAAA GTGAACATCT	2280
CAATGGTTT ACCTAAAAAT GAAAGTGGAT ATGATAAATT CAAAGGACGC ACTTACTGGA	2340

ATTTAACCTC CTTAAATGTT TCCGAGAGTG GCGAGTTAA CCTCACTATT GACTCCAGAG	2400
GAAGCGATAG TGCAGGCACA CTTACCCAGC CTTATAATTT AAACGGTATA TCATTCAACA	2460
AAGACACTAC CTTTAATGTT GAACGAAATG CAAGAGTCAA CTTTGACATC AAGGCACCAA	2520
TAGGGATAAA TAAGTATTCT AGTTTGAATT ACGCATCATT TAATGGAAAC ATTCAGTTT	2580
CGGGAGGGGG GAGTGTGAT TTCACACTTC TCGCCTCATC CTCTAACGTC CAAACCCCCG	2640
GTGTAGTTAT AAATTCTAAA TACTTTAATG TTTCAACAGG GTCAAGTTA AGATTTAAAA	2700
CTTCAGGCTC AACAAAAACT GGCTCTCAA TAGAGAAAGA TTTAACTTA AATGCCACCG	2760
GAGGCAACAT AACACTTTG CAAGTTGAAG GCACCGATGG AATGATTGGT AAAGGCATTG	2820
TAGCCAAAAA AAACATAACC TTTGAAGGAG GTAACATCAC CTTGGCTCC AGGAAAGCCG	2880
TAACAGAAAT CGAAGGCAAT GTTACTATCA ATAACAACGC TAACGTCACT CTTATCGGTT	2940
CGGATTTGA CAACCATCAA AACCTTTAA CTATTAAAAA AGATGTCATC ATTAATAGCG	3000
GCAACCTTAC CGCTGGAGGC AATATTGTCA ATATAGCCGG AAATCTTACC GTTGAAAGTA	3060
ACGCTAATTT CAAAGCTATC ACAAAATTCA CTTTTAATGT AGGCGGCTTG TTTGACAACA	3120
AAGGCAATTG AAATATTCC ATTGCCAAAG GAGGGGCTCG CTTAAAGAC ATTGATAATT	3180
CCAAGAATTG AAGCATCACC ACCAACTCCA GCTCCACTTA CCGCACTATT ATAAGGGCA	3240
ATATAACCAA TAAAAACGGT GATTAAATA TTACGAACGA AGGTAGTGAT ACTGAAATGC	3300
AAATTGGCGG CGATGTCTCG CAAAAAGAAG GTAATCTCAC GATTCTTCT GACAAATCA	3360
ATATTACCAA ACAGATAACA ATCAAGGCAG GTGTTGATGG GGAGAATTCC GATTCAAGACG	3420
CGACAAACAA TGCCAATCTA ACCATTAAAA CCAAAGAATT GAAATTAAACG CAAGACCTAA	3480
ATATTCAAGG TTTCAATAAA GCAGAGATTA CAGCTAAAGA TGGTAGTGAT TTAACTATTG	3540
GTAACACCAA TAGTGCTGAT GGTACTAATG CCAAAAAGT AACCTTTAAC CAGGTTAAAG	3600
ATTCAAAAT CTCTGCTGAC GGTACAAAGG TGACACTACA CAGCAAAGTG GAAACATCCG	3660
GTAGTAATAA CAACACTGAA GATAGCAGTG ACAATAATGC CGGCTTAAC ATCGATGCAA	3720
AAAATGTAAC AGTAAACAAC AATATTACTT CTCACAAAGC AGTGAGCATC TCTGCGACAA	3780
GTGGAGAAAT TACCACTAAA ACAGGTACAA CCATTAACGC ACCACTGGT AACGTGGAGA	3840
TAACCGCTCA AACAGGTAGT ATCCTAGGTG GAATTGAGTC CAGCTCTGGC TCTGTAACAC	3900
TTACTGCAAC CGAGGGCGCT CTTGCTGTAA GCAATATTTC GGGCAACACC GTTACTGTTA	3960
CTGCAAATAG CGGTGCTTA ACCACTTGG CAGGCTCTAC AATTAAAGGA ACCGAGAGTG	4020
TAACCACTTC AAGTCAATCA GGCGATATCG GCGGTACGAT TTCTGGTGGC ACAGTAGAGG	4080
TTAAAGCAAC CGAAAGTTA ACCACTCAAT CCAATTCAA AATTAAAGCA ACAACAGGCG	4140
AGGCTAACGT ACAAAAGTGCA ACAGGTACAA TTGGTGGTAC GATTTCGGT AATACGGTAA	4200
ATGTTACGGC AAACGCTGGC GATTAAACAG TTGGGAATGG CGCAGAAATT AATGCGACAG	4260
AAGGAGCTGC AACCTTAAC ACTCATCGG GCAAATTAAC TACCGAAGCT AGTTCACACA	4320
TTACTTCAGC CAAGGGTCAG GTAAATCTTT CAGCTCAGGA TGGTAGCGTT GCAGGAAGTA	4380

31

TTAATGCCGC CAATGTGACA CTAATACTA CAGGCACITT AACTACCGTG AAGGGTTCAA	4440
ACATTAATGC AACCAAGCGGT ACCTTGGTTA TTAACGCAA AGACGCTGAG CTAAATGGCG	4500
CAGCATTGGG TAACCACACA GTGGTAAATG CAACCAACGC AAATGGCTCC GGCAGCGTAA	4560
TCGCGACAAC CTCAAGCAGA GTGAACATCA CTGGGGATT AATCACAATA AATGGATTAA	4620
ATATCATTTC AAAAAACGGT ATAAACACCG TACTGTTAAA AGGC GTTAAA ATTGATGTGA	4680
AATACATTCA ACCGGGTATA GCAAGCGTAG ATGAAGTAAT TGAAGCGAAA CGCATCCTTG	4740
AGAAGGTAAA AGATTTATCT GATGAAGAAA GAGAAGCGTT AGCTAAACTT GGAGTAAGTG	4800
CTGTACGTTT TATTGAGCCA AATAATACAA TTACAGTCGA TACACAAAAT GAATTGCAA	4860
CCAGACCATT AAGTCGAATA GTGATTCTG AAGGCAGGGC GTGTTCTCA AACAGTGATG	4920
GCGCGACGGT GTGC GTTAAT ATCGCTGATA ACGGGCGGTA GCGGT CAGTA ATTGACAAGG	4980
TAGATTCAT CCTGCAATGA AGTCATTAA TTTT CGTATT ATTTACTGTG TGGGTTAAAG	5040
TTCAGTACGG GCTTTACCCA TCTTGTAAA AATTACGGAG AATACAATAA AGTATTTTA	5100
ACAGGTTATT ATTATG	5116

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1536 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Asn Lys Ile Tyr Arg Leu Lys Phe Ser Lys Arg Leu Asn Ala Leu	
1 5 10 15	
Val Ala Val Ser Glu Leu Ala Arg Gly Cys Asp His Ser Thr Glu Lys	
20 25 30	
Gly Ser Glu Lys Pro Ala Arg Met Lys Val Arg His Leu Ala Leu Lys	
35 40 45	
Pro Leu Ser Ala Met Leu Leu Ser Leu Gly Val Thr Ser Ile Pro Gln	
50 55 60	
Ser Val Leu Ala Ser Gly Leu Gln Gly Met Asp Val Val His Gly Thr	
65 70 75 80	
Ala Thr Met Gln Val Asp Gly Asn Lys Thr Ile Ile Arg Asn Ser Val	
85 90 95	
Asp Ala Ile Ile Asn Trp Lys Gln Phe Asn Ile Asp Gln Asn Glu Met	
100 105 110	
Val Gln Phe Leu Gln Glu Asn Asn Asn Ser Ala Val Phe Asn Arg Val	
115 120 125	
Thr Ser Asn Gln Ile Ser Gln Leu Lys Gly Ile Leu Asp Ser Asn Gly	
130 135 140	

SUBSTITUTE SHEET (RULE 26)

Gln Val Phe Leu Ile Asn Pro Asn Gly Ile Thr Ile Gly Lys Asp Ala
 145 150 155 160
 Ile Ile Asn Thr Asn Gly Phe Thr Ala Ser Thr Leu Asp Ile Ser Asn
 165 170 175
 Glu Asn Ile Lys Ala Arg Asn Phe Thr Phe Glu Gln Thr Lys Asp Lys
 180 185 190
 Ala Leu Ala Glu Ile Val Asn His Gly Leu Ile Thr Val Gly Lys Asp
 195 200 205
 Gly Ser Val Asn Leu Ile Gly Gly Lys Val Lys Asn Glu Gly Val Ile
 210 215 220
 Ser Val Asn Gly Gly Ser Ile Ser Leu Leu Ala Gly Gln Lys Ile Thr
 225 230 235 240
 Ile Ser Asp Ile Ile Asn Pro Thr Ile Thr Tyr Ser Ile Ala Ala Pro
 245 250 255
 Glu Asn Glu Ala Val Asn Leu Gly Asp Ile Phe Ala Lys Gly Gly Asn
 260 265 270
 Ile Asn Val Arg Ala Ala Thr Ile Arg Asn Gln Gly Lys Leu Ser Ala
 275 280 285
 Asp Ser Val Ser Lys Asp Lys Ser Gly Asn Ile Val Leu Ser Ala Lys
 290 295 300
 Glu Gly Glu Ala Glu Ile Gly Gly Val Ile Ser Ala Gln Asn Gln Gln
 305 310 315 320
 Ala Lys Gly Gly Lys Leu Met Ile Thr Gly Asp Lys Val Thr Leu Lys
 325 330 335
 Thr Gly Ala Val Ile Asp Leu Ser Gly Lys Glu Gly Gly Glu Thr Tyr
 340 345 350
 Leu Gly Gly Asp Glu Arg Gly Glu Gly Lys Asn Gly Ile Gln Leu Ala
 355 360 365
 Lys Lys Thr Ser Leu Glu Lys Gly Ser Thr Ile Asn Val Ser Gly Lys
 370 375 380
 Glu Lys Gly Gly Arg Ala Ile Val Trp Gly Asp Ile Ala Leu Ile Asp
 385 390 395 400
 Gly Asn Ile Asn Ala Gln Gly Ser Gly Asp Ile Ala Lys Thr Gly Gly
 405 410 415
 Phe Val Glu Thr Ser Gly His Asp Leu Phe Ile Lys Asp Asn Ala Ile
 420 425 430
 Val Asp Ala Lys Glu Trp Leu Leu Asp Phe Asp Asn Val Ser Ile Asn
 435 440 445
 Ala Glu Thr Ala Gly Arg Ser Asn Thr Ser Glu Asp Asp Glu Tyr Thr
 450 455 460
 Gly Ser Gly Asn Ser Ala Ser Thr Pro Lys Arg Asn Lys Glu Lys Thr
 465 470 475 480
 Thr Leu Thr Asn Thr Thr Leu Glu Ser Ile Leu Lys Lys Gly Thr Phe
 485 490 495

SUBSTITUTE SHEET (RULE 26)

Val Asn Ile Thr Ala Asn Gln Arg Ile Tyr Val Asn Ser Ser Ile Asn
 500 505 510
 Leu Ser Asn Gly Ser Leu Thr Leu Trp Ser Glu Gly Arg Ser Gly Gly
 515 520 525
 Gly Val Glu Ile Asn Asn Asp Ile Thr Thr Gly Asp Asp Thr Arg Gly
 530 535 540
 Ala Asn Leu Thr Ile Tyr Ser Gly Gly Trp Val Asp Val His Lys Asn
 545 550 555 560
 Ile Ser Leu Gly Ala Gln Gly Asn Ile Asn Ile Thr Ala Lys Gln Asp
 565 570 575
 Ile Ala Phe Glu Lys Gly Ser Asn Gln Val Ile Thr Gly Gln Gly Thr
 580 585 590
 Ile Thr Ser Gly Asn Gln Lys Gly Phe Arg Phe Asn Asn Val Ser Leu
 595 600 605
 Asn Gly Thr Gly Ser Gly Leu Gln Phe Thr Thr Lys Arg Thr Asn Lys
 610 615 620
 Tyr Ala Ile Thr Asn Lys Phe Glu Gly Thr Leu Asn Ile Ser Gly Lys
 625 630 635 640
 Val Asn Ile Ser Met Val Leu Pro Lys Asn Glu Ser Gly Tyr Asp Lys
 645 650 655
 Phe Lys Gly Arg Thr Tyr Trp Asn Leu Thr Ser Leu Asn Val Ser Glu
 660 665 670
 Ser Gly Glu Phe Asn Leu Thr Ile Asp Ser Arg Gly Ser Asp Ser Ala
 675 680 685
 Gly Thr Leu Thr Gln Pro Tyr Asn Leu Asn Gly Ile Ser Phe Asn Lys
 690 695 700
 Asp Thr Thr Phe Asn Val Glu Arg Asn Ala Arg Val Asn Phe Asp Ile
 705 710 715 720
 Lys Ala Pro Ile Gly Ile Asn Lys Tyr Ser Ser Leu Asn Tyr Ala Ser
 725 730 735
 Phe Asn Gly Asn Ile Ser Val Ser Gly Gly Ser Val Asp Phe Thr
 740 745 750
 Leu Leu Ala Ser Ser Ser Asn Val Gln Thr Pro Gly Val Val Ile Asn
 755 760 765
 Ser Lys Tyr Phe Asn Val Ser Thr Gly Ser Ser Leu Arg Phe Lys Thr
 770 775 780
 Ser Gly Ser Thr Lys Thr Gly Phe Ser Ile Glu Lys Asp Leu Thr Leu
 785 790 795 800
 Asn Ala Thr Gly Gly Asn Ile Thr Leu Leu Gln Val Glu Gly Thr Asp
 805 810 815
 Gly Met Ile Gly Lys Gly Ile Val Ala Lys Lys Asn Ile Thr Phe Glu
 820 825 830
 Gly Gly Asn Ile Thr Phe Gly Ser Arg Lys Ala Val Thr Glu Ile Glu
 835 840 845

Gly Asn Val Thr Ile Asn Asn Asn Ala Asn Val Thr Leu Ile Gly Ser
 850 855 860
 Asp Phe Asp Asn His Gln Lys Pro Leu Thr Ile Lys Lys Asp Val Ile
 865 870 875 880
 Ile Asn Ser Gly Asn Leu Thr Ala Gly Gly Asn Ile Val Asn Ile Ala
 885 890 895
 Gly Asn Leu Thr Val Glu Ser Asn Ala Asn Phe Lys Ala Ile Thr Asn
 900 905 910
 Phe Thr Phe Asn Val Gly Gly Leu Phe Asp Asn Lys Gly Asn Ser Asn
 915 920 925
 Ile Ser Ile Ala Lys Gly Gly Ala Arg Phe Lys Asp Ile Asp Asn Ser
 930 935 940
 Lys Asn Leu Ser Ile Thr Thr Asn Ser Ser Ser Thr Tyr Arg Thr Ile
 945 950 955 960
 Ile Ser Gly Asn Ile Thr Asn Lys Asn Gly Asp Leu Asn Ile Thr Asn
 965 970 975
 Glu Gly Ser Asp Thr Glu Met Gln Ile Gly Gly Asp Val Ser Gln Lys
 980 985 990
 Glu Gly Asn Leu Thr Ile Ser Ser Asp Lys Ile Asn Ile Thr Lys Gln
 995 1000 1005
 Ile Thr Ile Lys Ala Gly Val Asp Gly Glu Asn Ser Asp Ser Asp Ala
 1010 1015 1020
 Thr Asn Asn Ala Asn Leu Thr Ile Lys Thr Lys Glu Leu Lys Leu Thr
 1025 1030 1035 1040
 Gln Asp Leu Asn Ile Ser Gly Phe Asn Lys Ala Glu Ile Thr Ala Lys
 1045 1050 1055
 Asp Gly Ser Asp Leu Thr Ile Gly Asn Thr Asn Ser Ala Asp Gly Thr
 1060 1065 1070
 Asn Ala Lys Lys Val Thr Phe Asn Gln Val Lys Asp Ser Lys Ile Ser
 1075 1080 1085
 Ala Asp Gly His Lys Val Thr Leu His Ser Lys Val Glu Thr Ser Gly
 1090 1095 1100
 Ser Asn Asn Asn Thr Glu Asp Ser Ser Asp Asn Asn Ala Gly Leu Thr
 1105 1110 1115 1120
 Ile Asp Ala Lys Asn Val Thr Val Asn Asn Ile Thr Ser His Lys
 1125 1130 1135
 Ala Val Ser Ile Ser Ala Thr Ser Gly Glu Ile Thr Thr Lys Thr Gly
 1140 1145 1150
 Thr Thr Ile Asn Ala Thr Thr Gly Asn Val Glu Ile Thr Ala Gln Thr
 1155 1160 1165
 Gly Ser Ile Leu Gly Gly Ile Glu Ser Ser Ser Gly Ser Val Thr Leu
 1170 1175 1180
 Thr Ala Thr Glu Gly Ala Leu Ala Val Ser Asn Ile Ser Gly Asn Thr
 1185 1190 1195 1200

SUBSTITUTE SHEET (RULE 26)

Val Thr Val Thr Ala Asn Ser Gly Ala Leu Thr Thr Leu Ala Gly Ser
 1205 1210 1215
 Thr Ile Lys Gly Thr Glu Ser Val Thr Thr Ser Ser Gln Ser Gly Asp
 1220 1225 1230
 Ile Gly Gly Thr Ile Ser Gly Gly Thr Val Glu Val Lys Ala Thr Glu
 1235 1240 1245
 Ser Leu Thr Thr Gln Ser Asn Ser Lys Ile Lys Ala Thr Thr Gly Glu
 1250 1255 1260
 Ala Asn Val Thr Ser Ala Thr Gly Thr Ile Gly Gly Thr Ile Ser Gly
 1265 1270 1275 1280
 Asn Thr Val Asn Val Thr Ala Asn Ala Gly Asp Leu Thr Val Gly Asn
 1285 1290 1295
 Gly Ala Glu Ile Asn Ala Thr Glu Gly Ala Ala Thr Leu Thr Thr Ser
 1300 1305 1310
 Ser Gly Lys Leu Thr Thr Glu Ala Ser Ser His Ile Thr Ser Ala Lys
 1315 1320 1325
 Gly Gln Val Asn Leu Ser Ala Gln Asp Gly Ser Val Ala Gly Ser Ile
 1330 1335 1340
 Asn Ala Ala Asn Val Thr Leu Asn Thr Thr Gly Thr Leu Thr Thr Val
 1345 1350 1355 1360
 Lys Gly Ser Asn Ile Asn Ala Thr Ser Gly Thr Leu Val Ile Asn Ala
 1365 1370 1375
 Lys Asp Ala Glu Leu Asn Gly Ala Ala Leu Gly Asn His Thr Val Val
 1380 1385 1390
 Asn Ala Thr Asn Ala Asn Gly Ser Gly Ser Val Ile Ala Thr Thr Ser
 1395 1400 1405
 Ser Arg Val Asn Ile Thr Gly Asp Leu Ile Thr Ile Asn Gly Leu Asn
 1410 1415 1420
 Ile Ile Ser Lys Asn Gly Ile Asn Thr Val Leu Leu Lys Gly Val Lys
 1425 1430 1435 1440
 Ile Asp Val Lys Tyr Ile Gln Pro Gly Ile Ala Ser Val Asp Glu Val
 1445 1450 1455
 Ile Glu Ala Lys Arg Ile Leu Glu Lys Val Lys Asp Leu Ser Asp Glu
 1460 1465 1470
 Glu Arg Glu Ala Leu Ala Lys Leu Gly Val Ser Ala Val Arg Phe Ile
 1475 1480 1485
 Glu Pro Asn Asn Thr Ile Thr Val Asp Thr Gln Asn Glu Phe Ala Thr
 1490 1495 1500
 Arg Pro Leu Ser Arg Ile Val Ile Ser Glu Gly Arg Ala Cys Phe Ser
 1505 1510 1515 1520
 Asn Ser Asp Gly Ala Thr Val Cys Val Asn Ile Ala Asp Asn Gly Arg
 1525 1530 1535

SUBSTITUTE SHEET (RULE 26)

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 4937 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TAAATATAACA AGATAATAAA AATAAAATCAA GATTTTGTG ATGACAAACA ACAATTACAA	60
CACCTTTTT GCAGTCTATA TGCAAATATT TTAAAAAAAT AGTATAAATC CGCCATATAAA	120
AATGGTATAA TCTTCATCT TTCATCTTA ATCTTCATC TTTCATCTT CATCTTCAT	180
CTTTCATCTT TCATCTTCA TCTTCATCT TTCATCTTC ATCTTCATC TTTCATCTT	240
CACATGAAAT GATGAACCGA GGGAAAGGGAG GGAGGGGCAA GAATGAAGAG GGAGCTGAAC	300
GAACGCAAAT GATAAAGTAA TTTAATTGTT CAACTAACCT TAGGAGAAAA TATGAACAAG	360
ATATATCGTC TCAAATTCAAG CAAACGCCTG AATGCTTG TGCTGTGTC TGAATTGGCA	420
CGGGGTTGTG ACCATTCCAC AGAAAAAGGC TTCCGCTATG TTACTATCTT TAGGTGTAAC	480
CACTTAGCGT TAAAGCCACT TTCCGCTATG TTACTATCTT TAGGTGTAAC ATCTATTCCA	540
CAATCTGTT TAGCAAGCGG CTTACAAGGA ATGGATGTAG TACACGGCAC AGCCACTATG	600
CAAGTAGATG GTAATAAAAC CATTATCCGC AACAGTGTG ACGCTATCAT TAATTGGAAA	660
CAATTAAACA TCGACCAAAA TGAAATGGTG CAGTTTTAC AAGAAAACAA CAACTCCGCC	720
GTATTCAACC GTGTTACATC TAACCAAATC TCCCAATTAA AAGGGATTT AGATTCTAAC	780
GGACAAGTCT TTTTAATCAA CCCAAATGGT ATCACAATAG GTAAAGACGC AATTATTAAC	840
ACTAATGGCT TTACGGCTTC TACGCTAGAC ATTTCTAACG AAAACATCAA GGCGCGTAAT	900
TTCACCTTCG AGCAAAACCA AGATAAAGCG CTCGCTGAAA TTGTGAATCA CGGTTTAATT	960
ACTGTGGTA AAGACGGCAG TGTAAATCTT ATTGGTGGCA AAGTAAAAAA CGAGGGTGTG	1020
ATTAGCGTAA ATGGTGGCAG CATTCTTTA CTCGCAGGGC AAAAAATCAC CATCAGCGAT	1080
ATAATAAAACC CAACCATTAC TTACAGCATT GCCGCGCCTG AAAATGAAGC GGTCAATCTG	1140
GGCGATATTT TTGCCAAAGG CGGTAACATT AATGTCCGTG CTGCCACTAT TCGAAACCAA	1200
GGTAAACCTT CTGCTGATTC TGTAAGCAA GATAAAAGCG GCAATATTGT TCTTTCCGCC	1260
AAAGAGGGTG AAGCGGAAAT TGGCGGTGTA ATTTCCGCTC AAAATCAGCA AGCTAAAGGC	1320
GGCAAGCTGA TGATTACAGG CGATAAAGTC ACATTAACCA CAGGTGCAGT TATCGACCTT	1380
TCAGGTTAAAG AAGGGGGAGA AACTTACCTT GGCAGGTGACG AGCGCGGCAG AGGTAAAAAC	1440
GGCATTCAAT TAGCAAAGAAA AACCTCTTTA GAAAAAGGCT CAACCATCAA TGTATCAGGC	1500
AAAGAAAAAG GCGGACGCGC TATTGTGTGG GGCGATATTG CGTTAATTGA CGGCAATATT	1560
AACGCTCAAG GTAGTGGTGA TATCGCTAAA ACCGGTGGTT TTGTGGAGAC ATCGGGGCAT	1620

TATTATCCA TTGACAGCAA TGCAATTGTT AAAACAAAAG AGTGGTTGCT AGACCTGAT	1680
GATGTAACAA TTGAAGCCGA AGACCCCCTT CGCAATAATA CCGGTATAAA TGATGAATTC	1740
CCAACAGGCA CCGGTGAAGC AAGCGACCCT AAAAAAAATA GCGAACTCAA AACAAACGCTA	1800
ACCAATACAA CTATTTCAAA TTATCTGAAA AACGCCTGGA CAATGAATAT AACGGCATCA	1860
AGAAAACCTTA CCGTTAACAG CTCAATCAAC ATCGGAAGCA ACTCCCACCTT AATTCTCCAT	1920
AGTAAAGGTC AGCGTGGCGG AGGCCTTCAG ATTGATGGAG ATATTACTTC TAAAGGCGGA	1980
AATTTAACCA TTTATTCTGG CGGATGGGTT GATGTTCATA AAAATATTAC GCTTGATCAG	2040
GGTTTTTAA ATATTACCGC CGCTTCCGTA GCTTTGAAG GTGGAAATAA CAAAGCACGC	2100
GACGCGGCAA ATGCTAAAAT TGTCGCCAG GGCACGTAA CCATTACAGG AGAGGGAAAA	2160
GATTTCAGGG CTAACAAACGT ATCTTAAAC GGAACGGGTAA AAGGTCTGAA TATCATTCA	2220
TCAGTGAATA ATTTAACCCA CAATCTTAGT GGCACAATTAA ACATATCTGG GAATATAACA	2280
ATTAACCAAA CTACGAGAAA GAACACCTCG TATTGGCAA CCAGCCATGA TTCGCACTGG	2340
AACGTCAGTG CTCTTAATCT AGAGACAGGC GCAAATTTA CCTTTATTAA ATACATTCA	2400
AGCAATAGCA AAGGCTAAC AACACAGTAT AGAAGCTCTG CAGGGGTGAA TTTAACGGC	2460
GTAAATGGCA ACATGTCATT CAATCTCAA GAAGGAGCGA AAGTTAATTAA CAAATTAAAA	2520
CCAAACGAGA ACATGAACAC AAGCAAACCT TTACCAATTG GGTGTTTAGC CAATATCACA	2580
GCCACTGGTG GGGGCTCTGT TTTTTTGAT ATATATGCCA ACCATTCTGG CAGAGGGCT	2640
GAGTTAAAAA TGAGTGAAT TAATATCTCT AACGGCGCTA ATTTTACCTT AAATTCCCAT	2700
GTTCGCGGCG ATGACGCTTT TAAAATCAAC AAAGACTTAA CCATAAAATGC AACCAATTCA	2760
AATTTCAGCC TCAGACAGAC GAAAGATGAT TTTTATGACG GGTACGCACG CAATGCCATC	2820
AATTCAACCT ACAACATATC CATTCTGGC GGTAATGTCA CCCTTGGTGG ACAAAACCTCA	2880
AGCAGCAGCA TTACGGGAA TATTACTATC GAGAAAGCAG CAAATGTTAC GCTAGAAGCC	2940
AATAACGCC CTAATCAGCA AAACATAAGG GATAGAGTTA TAAAACTTGG CAGCTTGCTC	3000
GTTAATGGGA GTTTAAGTTT AACTGGCGAA AATGCAGATA TAAAGGCAA TCTCACTATT	3060
TCAGAAAGCG CCACTTTAA AGGAAAGACT AGAGATAACCC TAAATATCAC CGGCAATTAA	3120
ACCAATAATG GCACTGCCGA AATTAATATA ACACAAGGAG TGGTAAAAC TGGCAATGTT	3180
ACCAATGATG GTGATTTAA CATTACCACT CACGCTAAC GCAACCAAAG AAGCATCATC	3240
GGCGGAGATA TAATCAACAA AAAAGGAAGC TTAAATATTA CAGACAGTAA TAATGATGCT	3300
GAAATCCAAA TTGGCGGCAA TATCTCGCAA AAAGAAGGCA ACCTCACGAT TTCTTCCGAT	3360
AAAATTAATA TCACCAAACA GATAACAATC AAAAAGGGTA TTGATGGAGA GGACTCTAGT	3420
TCAGATGCGA CAAGTAATGC CAACCTAACT ATTAAAACCA AAGAATTGAA ATTGACAGAA	3480
GACCTAAGTA TTTCAGGTTT CAATAAAGCA GAGATTACAG CCAAAGATGG TAGAGATTAA	3540
ACTATTGGCA ACAGTAATGA CGGTAACAGC GGTGCCGAAG CCAAAACAGT AACTTTAAC	3600
AATGTTAAAG ATTCAAAAT CTCTGCTGAC GGTACACAATG TGACACTAAA TAGCAAAGTG	3660

AAAACATCTA	GCAGCAATGG	CGGACGTGAA	AGCAATAGCG	ACAACGATAC	CGGCTTAAC	3720
ATTACTGCAA	AAAATGTAGA	AGTAAACAAA	GATATTACTT	CTCTCAAAAC	AGTAAATATC	3780
ACCGCGTCGG	AAAAGGTTAC	CACCACAGCA	GGCTCGACCA	TTAACGCAAC	AAATGGCAAA	3840
GCAAGTATTA	CAACCAAAAC	AGGTGATATC	AGCGGTACGA	TTTCCGGTAA	CACGGTAAGT	3900
GTTAGCGCGA	CTGGTGATTT	AACCACTAAA	TCCGGCTCAA	AAATTGAAGC	GAAATCGGGT	3960
GAGGCTAATG	TAACAAGTGC	AACAGGTACA	ATTGGCGGT	CAATTCCGG	TAATACGGTA	4020
AATGTTACGG	CAAACGCTGG	CGATTTAACCA	GTTGGGAATG	GCGCAGAAAT	TAATGCGACA	4080
GAAGGAGCTG	CAACCTTAAC	CGCACACAGGG	AATACCTTGA	CTACTGAAGC	CGGTTCTAGC	4140
ATCACTTCAA	CTAAGGGTCA	GGTAGACCTC	TTGGCTCAGA	ATGGTAGCAT	CGCAGGAAGC	4200
ATTAATGCTG	CTAATGTGAC	ATTAATTAAC	ACAGGCACCT	TAACCACCGT	GGCAGGCTCG	4260
GATATTAAAG	CAACCAGCGG	CACCTTGGTT	ATTAACGCAA	AAGATGCTAA	GCTAAATGGT	4320
GATGCATCAG	GTGATAGTAC	AGAAGTGAAT	GCAGTCAACG	CAAGCGGCTC	TGGTAGTGTG	4380
ACTGCGCAA	CCTCAAGCAG	TGTGAATATC	ACTGGGGATT	TAAACACAGT	AAATGGGTTA	4440
AATATCATT	CGAAAGATGG	TAGAAACACT	GTGCGTTAA	GAGGCAAGGA	AATTGAGGTG	4500
AAATATATCC	AGCCAGGTGT	AGCAAGTGT	GAAGAAGTAA	TTGAAGCGAA	ACCGCTCCTT	4560
GAAAAAGTAA	AAGATTTATC	TGATGAAGAA	AGAGAAACAT	TAGCTAAACT	TGGTGTAAAGT	4620
GCTGTACGTT	TTGTTGAGCC	AAATAATACA	ATTACAGTCA	ATACACAAAA	TGAATTTACA	4680
ACCAGACCGT	CAAGTCAAGT	GATAATTTCT	GAAGGTAAGG	CGTGTCTC	AAAGGGTAAT	4740
GGCGCACGAG	TATGTACCAA	TGTTGCTGAC	GATGGACAGC	CGTAGTCAGT	AATTGACAAG	4800
GTAGATTTC	TCCTGCAATG	AAGTCATT	TTTTCGTAT	TATTTACTGT	GTGGGTTAAA	4860
GTTCAGTACG	GGCTTTACCC	ATCTTGTAAA	AAATTACGGA	GAATACAATA	AAAGTATTTT	4920
AACAGGTTAT	TATTATG					4937

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1477 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met	Asn	Lys	Ile	Tyr	Arg	Leu	Lys	Phe	Ser	Lys	Arg	Leu	Asn	Ala	Leu
1				5					10					15	
Val	Ala	Val	Ser	Glu	Leu	Ala	Arg	Gly	Cys	Asp	His	Ser	Thr	Glu	Lys
			20				25					30			
Gly	Ser	Glu	Lys	Pro	Ala	Arg	Met	Lys	Val	Arg	His	Leu	Ala	Leu	Lys
			35				40					45			

SUBSTITUTE SHEET (RULE 26)

Pro Leu Ser Ala Met Leu Leu Ser Leu Gly Val Thr Ser Ile Pro Gln
 50 55 60
 Ser Val Leu Ala Ser Gly Leu Gln Gly Met Asp Val Val His Gly Thr
 65 70 75 80
 Ala Thr Met Gln Val Asp Gly Asn Lys Thr Ile Ile Arg Asn Ser Val
 85 90 95
 Asp Ala Ile Ile Asn Trp Lys Gln Phe Asn Ile Asp Gln Asn Glu Met
 100 105 110
 Val Gln Phe Leu Gln Glu Asn Asn Ser Ala Val Phe Asn Arg Val
 115 120 125
 Thr Ser Asn Gln Ile Ser Gln Leu Lys Gly Ile Leu Asp Ser Asn Gly
 130 135 140
 Gln Val Phe Leu Ile Asn Pro Asn Gly Ile Thr Ile Gly Lys Asp Ala
 145 150 155 160
 Ile Ile Asn Thr Asn Gly Phe Thr Ala Ser Thr Leu Asp Ile Ser Asn
 165 170 175
 Glu Asn Ile Lys Ala Arg Asn Phe Thr Phe Glu Gln Thr Lys Asp Lys
 180 185 190
 Ala Leu Ala Glu Ile Val Asn His Gly Leu Ile Thr Val Gly Lys Asp
 195 200 205
 Gly Ser Val Asn Leu Ile Gly Gly Lys Val Lys Asn Glu Gly Val Ile
 210 215 220
 Ser Val Asn Gly Gly Ser Ile Ser Leu Leu Ala Gly Gln Lys Ile Thr
 225 230 235 240
 Ile Ser Asp Ile Ile Asn Pro Thr Ile Thr Tyr Ser Ile Ala Ala Pro
 245 250 255
 Glu Asn Glu Ala Val Asn Leu Gly Asp Ile Phe Ala Lys Gly Asn
 260 265 270
 Ile Asn Val Arg Ala Ala Thr Ile Arg Asn Gln Gly Lys Leu Ser Ala
 275 280 285
 Asp Ser Val Ser Lys Asp Lys Ser Gly Asn Ile Val Leu Ser Ala Lys
 290 295 300
 Glu Gly Glu Ala Glu Ile Gly Gly Val Ile Ser Ala Gln Asn Gln Gln
 305 310 315 320
 Ala Lys Gly Gly Lys Leu Met Ile Thr Gly Asp Lys Val Thr Leu Lys
 325 330 335
 Thr Gly Ala Val Ile Asp Leu Ser Gly Lys Glu Gly Gly Glu Thr Tyr
 340 345 350
 Leu Gly Gly Asp Glu Arg Gly Glu Gly Lys Asn Gly Ile Gln Leu Ala
 355 360 365
 Lys Lys Thr Ser Leu Glu Lys Gly Ser Thr Ile Asn Val Ser Gly Lys
 370 375 380
 Glu Lys Gly Gly Phe Ala Ile Val Trp Gly Asp Ile Ala Leu Ile Asp
 385 390 395 400

40

Gly Asn Ile Asn Ala Gln Gly Ser Gly Asp Ile Ala Lys Thr Gly Gly
 405 410 415

Phe Val Glu Thr Ser Gly His Asp Leu Phe Ile Lys Asp Asn Ala Ile
 420 425 430

Val Asp Ala Lys Glu Trp Leu Leu Asp Phe Asp Asn Val Ser Ile Asn
 435 440 445

Ala Glu Asp Pro Leu Phe Asn Asn Thr Gly Ile Asn Asp Glu Phe Pro
 450 455 460

Thr Gly Thr Gly Glu Ala Ser Asp Pro Lys Lys Asn Ser Glu Leu Lys
 465 470 475 480

Thr Thr Leu Thr Asn Thr Ile Ser Asn Tyr Leu Lys Asn Ala Trp
 485 490 495

Thr Met Asn Ile Thr Ala Ser Arg Lys Leu Thr Val Asn Ser Ser Ile
 500 505 510

Asn Ile Gly Ser Asn Ser His Leu Ile Leu His Ser Lys Gly Gln Arg
 515 520 525

Gly Gly Gly Val Gln Ile Asp Gly Asp Ile Thr Ser Lys Gly Gly Asn
 530 535 540

Leu Thr Ile Tyr Ser Gly Gly Trp Val Asp Val His Lys Asn Ile Thr
 545 550 555 560

Leu Asp Gln Gly Phe Leu Asn Ile Thr Ala Ala Ser Val Ala Phe Glu
 565 570 575

Gly Gly Asn Asn Lys Ala Arg Asp Ala Ala Asn Ala Lys Ile Val Ala
 580 585 590

Gln Gly Thr Val Thr Ile Thr Gly Glu Gly Lys Asp Phe Arg Ala Asn
 595 600 605

Asn Val Ser Leu Asn Gly Thr Gly Lys Gly Leu Asn Ile Ile Ser Ser
 610 615 620

Val Asn Asn Leu Thr His Asn Leu Ser Gly Thr Ile Asn Ile Ser Gly
 625 630 635 640

Asn Ile Thr Ile Asn Gln Thr Thr Arg Lys Asn Thr Ser Tyr Trp Gln
 645 650 655

Thr Ser His Asp Ser His Trp Asn Val Ser Ala Leu Asn Leu Glu Thr
 660 665 670

Gly Ala Asn Phe Thr Phe Ile Lys Tyr Ile Ser Ser Asn Ser Lys Gly
 675 680 685

Leu Thr Thr Gln Tyr Arg Ser Ser Ala Gly Val Asn Phe Asn Gly Val
 690 695 700

Asn Gly Asn Met Ser Phe Asn Leu Lys Glu Gly Ala Lys Val Asn Phe
 705 710 715 720

Lys Leu Lys Pro Asn Glu Asn Met Asn Thr Ser Lys Pro Leu Pro Ile
 725 730 735

Arg Phe Leu Ala Asn Ile Thr Ala Thr Gly Gly Ser Val Phe Phe
 740 745 750

SUBSTITUTE SHEET (RULE 26)

Asp Ile Tyr Ala Asn His Ser Gly Arg Gly Ala Glu Leu Lys Met Ser
 755 760 765
 Glu Ile Asn Ile Ser Asn Gly Ala Asn Phe Thr Leu Asn Ser His Val
 770 775 780
 Arg Gly Asp Asp Ala Phe Lys Ile Asn Lys Asp Leu Thr Ile Asn Ala
 785 790 795 800
 Thr Asn Ser Asn Phe Ser Leu Arg Gln Thr Lys Asp Asp Phe Tyr Asp
 805 810 815
 Gly Tyr Ala Arg Asn Ala Ile Asn Ser Thr Tyr Asn Ile Ser Ile Leu
 820 825 830
 Gly Gly Asn Val Thr Leu Gly Gly Gln Asn Ser Ser Ser Ile Thr
 835 840 845
 Gly Asn Ile Thr Ile Glu Lys Ala Ala Asn Val Thr Leu Glu Ala Asn
 850 855 860
 Asn Ala Pro Asn Gln Gln Asn Ile Arg Asp Arg Val Ile Lys Leu Gly
 865 870 875 880
 Ser Leu Leu Val Asn Gly Ser Leu Ser Leu Thr Gly Glu Asn Ala Asp
 885 890 895
 Ile Lys Gly Asn Leu Thr Ile Ser Glu Ser Ala Thr Phe Lys Gly Lys
 900 905 910
 Thr Arg Asp Thr Leu Asn Ile Thr Gly Asn Phe Thr Asn Asn Gly Thr
 915 920 925
 Ala Glu Ile Asn Ile Thr Gln Gly Val Val Lys Leu Gly Asn Val Thr
 930 935 940
 Asn Asp Gly Asp Leu Asn Ile Thr Thr His Ala Lys Arg Asn Gln Arg
 945 950 955 960
 Ser Ile Ile Gly Gly Asp Ile Ile Asn Lys Lys Gly Ser Leu Asn Ile
 965 970 975
 Thr Asp Ser Asn Asn Asp Ala Glu Ile Gln Ile Gly Gly Asn Ile Ser
 980 985 990
 Gln Lys Glu Gly Asn Leu Thr Ile Ser Ser Asp Lys Ile Asn Ile Thr
 995 1000 1005
 Lys Gln Ile Thr Ile Lys Lys Gly Ile Asp Gly Glu Asp Ser Ser Ser
 1010 1015 1020
 Asp Ala Thr Ser Asn Ala Asn Leu Thr Ile Lys Thr Lys Glu Leu Lys
 1025 1030 1035 1040
 Leu Thr Glu Asp Leu Ser Ile Ser Gly Phe Asn Lys Ala Glu Ile Thr
 1045 1050 1055
 Ala Lys Asp Gly Arg Asp Leu Thr Ile Gly Asn Ser Asn Asp Gly Asn
 1060 1065 1070
 Ser Gly Ala Glu Ala Lys Thr Val Thr Phe Asn Asn Val Lys Asp Ser
 1075 1080 1085
 Lys Ile Ser Ala Asp Gly His Asn Val Thr Leu Asn Ser Lys Val Lys
 1090 1095 1100

Thr Ser Ser Ser Asn Gly Gly Arg Glu Ser Asn Ser Asp Asn Asp Thr
 1105 1110 1115 1120
 Gly Leu Thr Ile Thr Ala Lys Asn Val Glu Val Asn Lys Asp Ile Thr
 1125 1130 1135
 Ser Leu Lys Thr Val Asn Ile Thr Ala Ser Glu Lys Val Thr Thr Thr
 1140 1145 1150
 Ala Gly Ser Thr Ile Asn Ala Thr Asn Gly Lys Ala Ser Ile Thr Thr
 1155 1160 1165
 Lys Thr Gly Asp Ile Ser Gly Thr Ile Ser Gly Asn Thr Val Ser Val
 1170 1175 1180
 Ser Ala Thr Val Asp Leu Thr Thr Lys Ser Gly Ser Lys Ile Glu Ala
 1185 1190 1195 1200
 Lys Ser Gly Glu Ala Asn Val Thr Ser Ala Thr Gly Thr Ile Gly Gly
 1205 1210 1215
 Thr Ile Ser Gly Asn Thr Val Asn Val Thr Ala Asn Ala Gly Asp Leu
 1220 1225 1230
 Thr Val Gly Asn Gly Ala Glu Ile Asn Ala Thr Glu Gly Ala Ala Thr
 1235 1240 1245
 Leu Thr Ala Thr Gly Asn Thr Leu Thr Thr Glu Ala Gly Ser Ser Ile
 1250 1255 1260
 Thr Ser Thr Lys Gly Gln Val Asp Leu Leu Ala Gln Asn Gly Ser Ile
 1265 1270 1275 1280
 Ala Gly Ser Ile Asn Ala Ala Asn Val Thr Leu Asn Thr Thr Gly Thr
 1285 1290 1295
 Leu Thr Thr Val Ala Gly Ser Asp Ile Lys Ala Thr Ser Gly Thr Leu
 1300 1305 1310
 Val Ile Asn Ala Lys Asp Ala Lys Leu Asn Gly Asp Ala Ser Gly Asp
 1315 1320 1325
 Ser Thr Glu Val Asn Ala Val Asn Ala Ser Gly Ser Gly Ser Val Thr
 1330 1335 1340
 Ala Ala Thr Ser Ser Val Asn Ile Thr Gly Asp Leu Asn Thr Val
 1345 1350 1355 1360
 Asn Gly Leu Asn Ile Ile Ser Lys Asp Gly Arg Asn Thr Val Arg Leu
 1365 1370 1375
 Arg Gly Lys Glu Ile Glu Val Lys Tyr Ile Gln Pro Gly Val Ala Ser
 1380 1385 1390
 Val Glu Glu Val Ile Glu Ala Lys Arg Val Leu Glu Lys Val Lys Asp
 1395 1400 1405
 Leu Ser Asp Glu Glu Arg Glu Thr Leu Ala Lys Leu Gly Val Ser Ala
 1410 1415 1420
 Val Arg Phe Val Glu Pro Asn Asn Thr Ile Thr Val Asn Thr Gln Asn
 1425 1430 1435 1440
 Glu Phe Thr Thr Arg Pro Ser Ser Gln Val Ile Ile Ser Glu Gly Lys
 1445 1450 1455

SUBSTITUTE SHEET (RULE 26)

Ala Cys Phe Ser Ser Gly Asn Gly Ala Arg Val Cys Thr Asn Val Ala
 1460 1465 1470

Asp Asp Gly Gln Pro
 1475

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9171 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ACAGCGTTCT	CTTAATACTA	GTACAAACCC	ACAATAAAAT	ATGACAAACA	ACAATTACAA	60
CACCTTTTTT	GCAGTCTATA	TGCAAATATT	TTAAAAAAATA	GTATAAATCC	GCCATATAAA	120
ATGGTATAAT	CTTCATCTT	TCATCTTCA	TCTTCATCT	TTCATCTTC	ATCTTCATC	180
TTTCATCTT	CATCTTCAT	CTTCATCTT	TCATCTTCA	TCTTCATCT	TTCATCTTC	240
ACATGAAATG	ATGAACCGAG	GGAAGGGAGG	GAGGGGCAAG	AATGAAGAGG	GAGCTGAACG	300
AACGCAAATG	ATAAAGTAAT	TTAATTGTT	AACTAACCTT	AGGAGAAAAT	ATGAACAAGA	360
TATATCGTCT	CAAATTCA	AAACGCC	ATGCTTG	TGCTGTGTCT	GAATTGGCAC	420
GGGGTTGTGA	CCATTCCACA	AAAAAAGGCA	GCGAAAACC	TGCTCGCATG	AAAGTGC	480
ACTTAGCGTT	AAAGCCACTT	TCCGCTATGT	TACTATCTT	AGGTGTAACA	TCTATTCCAC	540
AATCTGTTTT	AGCAAGCGGC	TTACAAGGAA	TGGATGTAGT	ACACGGCACA	GCCACTATGC	600
AAGTAGATGG	TAATAAAACC	ATTATCCGCA	ACAGTGTGA	CGCTATCATT	AATTGAAAC	660
AATTAAACAT	CGACCAAAAT	GAAATGGTGC	AGTTTTTACA	AGAAAACAAC	AACTCCGCCG	720
TATTCACCG	TGTTACATCT	AACCAAATCT	CCCAATTAAA	AGGGATTTA	GATTCTAACG	780
GACAAGTCTT	TTTAATCAAC	CCAAATGGTA	TCACAATAGG	TAAAGACGCA	ATTATTAACA	840
CTAATGGCTT	TACGGCTTCT	ACGCTAGACA	TTTCTAACGA	AAACATCAAG	GCGCGTAATT	900
TCACCTTCGA	GCAAACCAAA	GATAAAGCGC	TCGCTGAAAT	TGTGAATCAC	GGTTTAATT	960
CTGTCGGTAA	AGACGGCAGT	GTAAATCTT	TTGGTGGCAA	AGTGAAAAC	GAGGGTGTGA	1020
TTAGCGTAAA	TGGTGGCAGC	ATTCTTTAC	TCGCAGGGCA	AAAAATCACC	ATCAGCGATA	1080
TAATAAAACCC	AACCATTACT	TACAGCATTG	CCGCGCCTGA	AAATGAAGCG	GTCAATCTGG	1140
GCGATATTTT	TGCCAAAGGC	GGTAACATTA	ATGTCCGTGC	TGCCACTATT	CGAAACCAAG	1200
CTTCCGCCA	AAGAGGGTGA	AGCGGAAATT	GGCGGTGTAA	TTTCCGCTCA	AAATCAGCAA	1260
GCTAAAGGCG	GCAAGCTGAT	GATTACAGGC	GATAAAGTC	CATTAAAAAC	AGGTGCAGTT	1320
ATCGACCTTT	CAGGTAAAGA	AGGGGGAGAA	ACTTACCTTG	GCGGTGACGA	GCGCGGCCAA	1380
GGTAAAAACG	GCATTCAATT	AGCAAAGAAA	ACCTCTTAG	AAAAAGGCTC	AACCATCAAT	1440

GTATCAGGCA AAGAAAAAGG CGGACGCGCT ATTGTGTGGG GCGATATTGC GTTAATTGAC	1500
GGCAATATTA ACGCTCAAGG TAGTGGTGAT ATCGCTAAAA CCGGTGGTTT TGTGGAGACG	1560
TCGGGGCATG ATTTATTCAT CAAAGACAAT GCAATTGTTG ACGCCAAAGA GTGGTTGTTA	1620
GACCCGGATA ATGTATCTAT TAATCCAGAA ACAGCAGGAC GCAGCAATAC TTCAGAAGAC	1680
GATGAATACA CGGGATCCGG GAATAGTGCC AGCACCCCAA AACGAAACAA AGAAAAGACA	1740
ACATTAACAA ACACAACCT TGAGAGTATA CTAAAAAAAG GTACCTTTGT TAACATCACT	1800
GCTAATCAAC GCATCTATGT CAATAGCTCC ATTAATTAT CCAATGGCAG CTTAACCTCTT	1860
TGGAGTGAGG GTCGGAGCGG TGGCGCGTT GAGATTAACA ACGATATTAC CACCGGTGAT	1920
GATACCAGAG GTGCAAACCTT AACAAATTAC TCAGGCGGCT GGGTTGATGT TCATAAAAAT	1980
ATCTCACTCG GGGCGCAAGG TAACATAAAC ATTACAGCTA AACAAAGATAT CGCCTTGAG	2040
AAAGGAAGCA ACCAAGTCAT TACAGGTCAA GGGACTATTA CCTCAGGCAA TCAAAAAGGT	2100
TTTAGATTAA ATAATGTCTC TCTAAACGGC ACTGGCAGCG GACTGCAATT CACCACTAAA	2160
AGAACCAATA AATACGCTAT CACAAATAAA TTTGAAGGGA CTTAAATAT TTCAGGGAAA	2220
GTGAACATCT CAATGGTTT ACCTAAAAT GAAAGTGGAT ATGATAAATT CAAAGGACGC	2280
ACTTACTGGA ATTTAACCTC GAAAGTGGAT ATGATAAATT CAAAGGACGC CCTCACTATT	2340
GACTCCAGAG GAAGCGATAG TGCAGGCACA CTTACCCAGC CTTATAATTT AAACGGTATA	2400
TCATTCAACA AAGACACTAC CTTTAATGTT GAACGAAATG CAAGAGTCAA CTTTGACATC	2460
AAGGCACCAA TAGGGATAAA TAAGTATTCT AGTTGAATT ACGCATCATT TAATGGAAAC	2520
ATTTCAAGTTT CGGGAGGGGG GAGTGGTGTAT TTCAACTTC TCGCCTCATC CTCTAACGTC	2580
CAAACCCCCG GTGTAGTTAT AAATTCTAAA TACTTTAATG TTTCAACAGG GTCAAGTTA	2640
AGATTAAAAA CTTCAAGGCTC AACAAAAACT GGCTTCTCAA TAGAGAAAGA TTTAACTTTA	2700
AATGCCACCG GAGGCAACAT AACACTTTG CAAGTTGAAG GCACCGATGG AATGATTGGT	2760
AAAGGCATTG TAGCCAAAAA AAACATAACC TTTGAAGGAG GTAAGATGAG GTTGGCTCC	2820
AGGAAAGCCG TAACAGAAAT CGAAGGCAAT GTTACTATCA ATAACAACGC TAACGTCACT	2880
CTTATCGGTT CGGATTTGA CAACCCTCAA AAACCTTTAA CTATTAAAAA AGATGTCATC	2940
ATTAATAGCG GCAACCTTAC CGCTGGAGGC AATATTGTCA ATATAGCCGG AAATCTTACC	3000
GTTGAAAGTA ACGCTAATTG CARAGCTATC ACAAAATTCA CTTTTAATGT AGGCGGTTG	3060
TTTGACAACA AAGGCAATTG AAATATTTC ATTGCCAAAG GAGGGGCTCG CTTTAAAGAC	3120
ATTGATAATT CCAAGAATTG AAGCATCACC ACCAACTCCA GCTCCACTTA CCGCACTATT	3180
ATAAGCGGCA ATATAACCAA TAAAAACGGT GATTAAATA TTACGAACGA AGGTAGTGAT	3240
ACTGAAATGC AAATTGGCGG CGATGTCTCG CAAAAAGAAG GTAATCTCAC GATTCTTCT	3300
GACAAAATCA ATATTACCAA ACAGATAACA ATCAAGGCAG GTGTTGATGG GGAGAATTCC	3360
GATTCAAGACG CGACAAACAA TGCCAATCTA ACCATTAAAA CCAAAGAATT GAAATTAACG	3420
CAAGACCTAA ATATTCAGG TTTCAATAAA GCAGAGATTA CAGCTAAAGA TGGTAGTGAT	3480

TTAACTATTG	GTAACACCAA	TAGTGCTGAT	GGTACTAATG	CCAAAAAAGT	AACCTTTAAC	3540
CAGGTTAAAG	ATTCAAAAAT	CTCTGCTGAC	GGTCACAAGG	TGACACTACA	CAGCAAAGTG	3600
GAACATCCG	GTAGTAATAA	CAACACTGAA	GATAGCAGTG	ACAATAATGC	CGGCTTAACT	3660
ATCGATGCAA	AAAATGTAAC	AGTAAACAAAC	AATATTACTT	CTCACAAAGC	AGTGAGCATC	3720
TCTCGACAA	GTGGAGAAAT	TACCACTAAA	ACAGGTACAA	CCATTAACGC	AACCACGTGGT	3780
AACGTGGAGA	TAACCGCTCA	AACAGGTAGT	ATCCTAGGTG	GAATTGAGTC	CAGCTCTGGC	3840
TCTGTAACAC	TTACTGCAAC	CGAGGGCGCT	CTTGCTGTAA	GCAATATTTC	GGGCAACACC	3900
GTTACTGTTA	CTGCAAATAG	CGGTGCATTA	ACCACTTTGG	CAGGCTCTAC	AATTAAAGGA	3960
ACCGAGAGTG	TAACCACTTC	AACTCAATCA	GGCGATATCG	GCGGTACGAT	TTCTGGTGGC	4020
ACAGTAGAGG	TTAAAGCAAC	CGAAAGTTA	ACCACTCAAT	CCAATTCAAA	AATTAAAGCA	4080
ACAACAGGCG	AGGCTAACGT	AACTAGTGCA	ACAGGTACAA	TTGGTGGTAC	GATTCCGGT	4140
AATACGGTAA	ATGTTACGGC	AAACGCTGGC	GATTTAACAG	TTGGGAATGG	CGCAGAAATT	4200
AATGCGACAG	AAGGAGCTGC	AACCTTAACT	ACATCATCGG	GCAAATTAAC	TACCGAAGCT	4260
AGTTCACACA	TTACTTCAGC	CAAGGGTCAG	GTAAATCTTT	CAGCTCAGGA	TGGTAGCGTT	4320
GCAGGAAGTA	TTAATGCCGC	CAATGTGACA	CTAAATACTA	CAGGCACCTT	AACTACCGTG	4380
AAGGGTTCAA	ACATTAATGC	AACCAGCGGT	ACCTTGGTTA	TTAACGCAAA	AGACGCTGAG	4440
CTAAATGGCG	CAGCATTGGG	TAACCACACA	GTGGTAAATG	CAACCAACGC	AAATGGCTCC	4500
GGCAGCGTAA	TCGCGACAAC	CTCAAGCAGA	GTGAACATCA	CTGGGGATTT	AATCACAATA	4560
AATGGATTAA	ATATCATTTC	AAAAAACGGT	ATAAACACCG	TACTGTTAAA	AGGC GTTAAA	4620
ATTGATGTGA	AATACATTCA	ACCGGGTATA	GCAAGCGTAG	ATGAAGTAAT	TGAAGCGAAA	4680
CGCATCCTTG	AGAAGGTAAA	AGATTTATCT	GATGAAGAAA	GAGAAGCGTT	AGCTAAACTT	4740
GGCGTAAGTG	CTGTACGTTT	TATTGAGCCA	AATAATACAA	TTACAGTCGA	TACACAAAAT	4800
GAATTTCGAA	CCAGACCAATT	AAGTCGAATA	GTGATTTCTG	AAGGCAGGGC	GTGTTTCTCA	4860
AACAGTGATG	GCGCGACGGT	GTGCGTTAAT	ATCGCTGATA	ACGGGCGGTA	GCGGTCA GTA	4920
ATTGACAAGG	TAGATTTCAT	CCTGCAATGA	AGTCATTTTA	TTTTCGTATT	ATTTACTGTG	4980
TGGGTTAAAG	TTCAGTACGG	GCTTTACCCA	TCTTGTAAAA	AATTACGGAG	AATACAATAA	5040
AGTATTTTTA	ACAGGTTATT	ATTATGAAAA	ATATAAAAAG	CAGATTTAAA	CTCAGTGCAA	5100
TATCAGTATT	GCTTGGCCTG	GCTTCTTCAT	CATTGTATGC	AGAAGAAGCG	TTTTTAGTAA	5160
AAGGCTTC	GTTATCTGGT	GCACCTGAAA	CTTTAAGTGA	AGACGCCAA	CTGCTGTAG	5220
CAAAATCTTT	ATCTAAATAC	CAAGGCTCGC	AAACTTTAAC	AAACCTAAA	ACAGCACAGC	5280
TTGAATTACA	GGCTGTGCTA	GATAAGATTG	AGCCAAATAA	GTGGATGTG	ATATTGCCAC	5340
AACAAACCAT	TACGGATGGC	AATATTATGT	TTGAGCTAGT	CTCGAAATCA	GCCGCAGAAA	5400
GCCAAAGTTT	TTATAAGGCG	AGCCAGGGTT	ATAGTGAAGA	AAATATCGCT	CGTAGCCTGC	5460
CATCTTGAA	ACAAGGAAAA	GTGTATGAAG	ATGGTCGTCA	GTGGTTCGAT	TTGCGTGAAT	5520

TCAATATGGC AAAAGAAAAT CCACTTAAAG TCACTCGCGT GCATTACGAG TTAAACCCCTA	5580
AAAACAAAAC CTCTGATTG GTAGTTGCAG GTTTTTCGCC TTTTGGCAAAC ACGCGTAGCT	5640
TTGTTTCCTA TGATAATTC GGCGCAAGGG AGTTTAACTA TCAACGTGTA AGTCTAGGTT	5700
TTGTAAATGC CAATTTGACC GGACATGATG ATGTATTAAA TCTAAACCCA TTGACCAATG	5760
TAAAAGCACC ATCAAAATCT TATGCGGTAG GCATAGGATA TACTTATCCG TTTTATGATA	5820
AACACCAATC CTTAAGTCTT TATACCAGCA TGAGTTATGC TGATTCTAAT GATATCGACG	5880
GCTTACCAAG TGCGATTAAAT CGTAAATTAT CAAAAGGTCA ATCTATCTCT GCGAATCTGA	5940
AATGGAGTTA TTATCTCCCG ACATTTAACCC TTGGAATGGA AGACCAGTTT AAAATTAATT	6000
TAGGCTACAA CTACCGCCAT ATTAATCAAA CATCCGAGTT AAACACCCCTG GGTGCAACGA	6060
AGAAAAAAATT TGCAGTATCA GGCGTAAGTG CAGGCATTGA TGGACATATC CAATTTACCC	6120
CTAAAACAAT CTTTAATATT GATTAACTC ATCATTATTA CGCGAGTAAA TTACCAGGCT	6180
CTTTTGGAAAT GGAGCGCATT GGCGAACAT TTAATCGCAG CTATCACATT AGCACAGCCA	6240
GTTTAGGGTT GAGTCAAGAG TTTGCTCAAG GTTGGCATTT TAGCAGTCAA TTATCGGGTC	6300
AGTTTACTCT ACAAGATATA AGTAGCATAG ATTTATTCTC TGTAACAGGT ACTTATGGCG	6360
TCAGAGGCTT TAAATACGGC GGTGCAAGTG GTGAGCGCGG TCTTGTATGG CGTAATGAAT	6420
TAAGTATGCC AAAATACACC CGCTTCAAA TCAGCCCCTTA TCGGTTTTAT GATGCAGGTC	6480
AGTTCCGTTA TAATAGCGAA AATGCTAAAA CTTACGGCGA AGATATGCAC ACGGTATCCT	6540
CTGCGGGTTT AGGCATTAAA ACCTCTCCTA CACAAAACCTT AAGCTTAGAT GCTTTGTTG	6600
CTCGTCGCTT TGCAAATGCC AATAGTGACA ATTTGAATGG CAACAAAAAA CGCACAAAGCT	6660
CACCTACAAC CTTCTGGGTT AGATTAACAT TCAGTTCTA ACCCTGAAAT TTAATCAACT	6720
GGTAAGCGTT CCGCCTACCA GTTATAACT ATATGTTTA CCCGCCAATT TACAGTCTAT	6780
ACGCAACCCCT GTTTCATCC TTATATATCA AACAAACTAA GCAAACCAAG CAAACCAAGC	6840
AAACCAAGCA AACCAAGCAA ACCAAGCAA CCAAGCAAAC CAAGCAAACC AAGCAAACCA	6900
AGCAAACCAA GCAAACCAAG CAAACCAAGC AAACCAAGCA ATGCTAAAAA ACAATTTATA	6960
TGATAAACTA AAACATACTC CATAACCCTGG CAATACAAGG GATTTAATAA TATGACAAAAA	7020
GAAAATTTAC AAAGTGTCC ACAAAATACG ACCGCTTCAC TTGTAGAATC AAACAACGAC	7080
CAAACCTCCC TGCAAATACT TAAACAAACCA CCCAAACCCCA ACCTATTACG CCTGGAACAA	7140
CATGTCGCCA AAAAAGATTA TGAGCTTGCT TGCGCGAAT TAATGGCGAT TTTGGAAAAAA	7200
ATGGACGCTA ATTTTGGAGG CGTTCACGAT ATTGAATTG ACGCACCTGC TCAGCTGGCA	7260
TATCTACCCG AAAAACTACT AATTCACTTT GCCACTCGTC TCGCTAATGC AATTACAACA	7320
CTCTTTCCG ACCCCGAATT GGCAATTCTC GAAGAAGGGG CATTAAAGAT GATTAGCCTG	7380
CAACGCTGGT TGACGCTGAT TTTGCTCT TCCCCCTACG TTAACGCAGA CCATATTCTC	7440
AATAAAATATA ATATCAACCC AGATTCCGAA GGTGGCTTTC ATTTAGCAAC AGACAACCTCT	7500
TCTATTGCTA AATTCTGTAT TTTTACTTA CCCGAATCCA ATGTCAATAT GAGTTTAGAT	7560

GC GTTATGGG CAGGAAATCA ACAACTTGT GCTTCATTGT GTTTGCGTT GCAGTCTTCA	7620
CGTTTATTG GTACTGCATC TGC GTTTCAT AAAAGAGCGG TGGTTTTACA GTGGTTTCCT	7680
AAAAAACTCG CCGAAATTGC TAATTTAGAT GAATTGCCTG CAAATATCCT TCATGATGTA	7740
TATATGCACT GCAGTTATGA TTTAGCAAAA AACAAAGCACG ATGTTAAGCG TCCATTAAAC	7800
GAACCTGTCC GCAAGCATAT CCTCACGAA GGATGGCAAG ACCGCTACCT TTACACCTTA	7860
GGTAAAAAGG ACGGCAAACC TGTGATGATG GTACTGCTTG AACATTTAA TTCGGGACAT	7920
TCGATTATC GCACGCATTC AACTICAATG ATTGCTGCTC GAGAAAAATT CTATTTAGTC	7980
GGCTTAGGCC ATGAGGGCGT TGATAACATA GGTCGAGAAG TGTTTGACGA GTTCTTTGAA	8040
ATCAGTAGCA ATAATATAAT GGAGAGACTG TTTTTATCC GTAAACAGTG CGAAACTTTC	8100
CAACCCGCAG TGTTCTATAT GCCAAGCATT GGCAATGGATA TTACCAACGAT TTTTGTGAGC	8160
AACACTCGGC TTGCCCCAT TCAAGCTGTA GCCTTGGTC ATCCTGCCAC TACGCATTCT	8220
GAATTATTG ATTATGTCAT CGTAGAAGAT GATTATGTGG GCAGTGAAGA TTGTTTTAGC	8280
GAAACCTTT TACGCTTACC CAAAGATGCC CTACCTTATG TACCATCTGC ACTCGCCCCA	8340
CAAAAAGTGG ATTATGTA CAGGGAAAAC CCTGAAGTAG TCAATATCGG TATTGCCGCT	8400
ACCACAAATGA AATTAAACCC TGAATTTTG CTAACAITGC AAGAAATCAG AGATAAAAGCT	8460
AAAGTCAAAA TACATTTCA TTTCGCACTT GGACAATCAA CAGGCTTGAC ACACCCCTAT	8520
GTCAAATGGT TTATCGAAAG CTATTTAGGT GACGATGCCA CTGCACATCC CCACGCACCT	8580
TATCACGATT ATCTGGCAAT ATTGCGTGAT TGCGATATGC TACTAAATCC GTTTCCTTTC	8640
GGTAATACTA ACGGCATAAT TGATATGGTT ACATTAGGTT TAGTTGGTGT ATGCAAAACG	8700
GGGGATGAAG TACATGAACA TATTGATGAA GGTCTGTTA AACGCTTAGG ACTACCAGAA	8760
TGGCTGATAG CCGACACACG AGAAAACATAT ATTGAATGTG CTTTGCCTCT AGCAGAAAAC	8820
CATCAAGAAC GCCTTGAAC TCCGTCGTTAC ATCATAGAAA ACAACGGCTT ACAAAAGCTT	8880
TTTACAGGCG ACCCTCGTCC ATTGGGCAA AATCTGCTTA AGAAAACAAA TGAATGGAAG	8940
CGGAAGCACT TGAGTAAAAA ATAACGGTTT TTTAAAGTAA AAGTGCGGTT AATTTCAAA	9000
GC GTTTTAAA AACCTCTCAA AAATCAACCG CACTTTATC TTTATAACGC TCCCGCGC	9060
TGACAGTTA TCTCTTTCTT AAAATACCCA TAAAATTGTG GCAATAGTTG GGTAATCAA	9120
TTCAATTGTT GATACGGCAA ACTAAAGACG GCGCGTTCTT CGGCAGTCAT C	9171

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 9323 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

CGCCACTTCA	ATTTGGATT	GTTGAAATTC	AACTAACCAA	AAAGTGC GG	TAAAATCTGT	60
GGAGAAAATA	GGTTGTAGTG	AAGAACGAGG	TAATTGTTCA	AAAGGATAAA	GCTCTCTTAA	120
TTGGGCATTG	GTTGGCGTTT	CTTTTCGGT	TAATAGTAAA	TTATATTCTG	GACGACTATG	180
CAATCCACCA	ACAACCTTAC	CGTTGGTTTT	AAGCGTTAAT	GTAAGTTCTT	GCTCTCTTGG	240
GCGAATACGT	AATCCCATT	TTTGTGTTAGC	AAGAAAATGA	TCGGGATAAT	CATAATAGGT	300
GTTGCCAAA	AATAAATT	T	GATGTTCTAA	AATCATAAAT	TTTGCAGAGAT	360
TTCAATACCT	ATTTGTGGCG	AAATCGCCAA	TTTTAATTCA	ATTTCTTGTA	GCATAATATT	420
TCCCACCAA	ATCAACTGGT	TAATATACA	AGATAATAAA	AATAAATCAA	GATTTTG TG	480
ATGACAAACA	ACAATTACAA	CACCTTTTTT	GCAGTCTATA	TGCAAATATT	TTAAAAAAAT	540
AGTATAAATC	CGCCATATAA	AATGGTATAA	TCTTCATCT	TTCATCTTTC	ATCTTCATC	600
TTTCATCTT	CATCTTCAT	CTTCATCTT	TCATCTTCA	TCTTCATCT	TTCATCTTTC	660
ATCTTCATC	TTTCATCTT	CACATGAAAT	GATGAACCGA	GGGAAGGGAG	GGAGGGCAA	720
GAATGAAGAG	GGAGCTGAAC	GAACGCAAAT	GATAAAGTAA	TTTAATTGTT	CAACTAACCT	780
TAGGAGAAAA	TATGAACAAG	ATATATCGTC	TCAAATTCA	CAAACGCCTG	AATGTTTG	840
TTGCTGTGTC	TGAATTGGCA	CGGGGTTGTG	ACCATTCCAC	AGAAAAAGGC	AGCGAAAAAC	900
CTGCTCGCAT	GAAAGTGC GT	CACTTAGCGT	TAAAGCCACT	TTCCGCTATG	TTACTATCTT	960
TAGGTGTAAC	ATCTATTCCA	CAATCTGTT	TAGCAAGCGG	CAATTAAACA	TCGACCAAAA	1020
TGAAATGGTG	CAGTTTTAC	AAGAAAACAA	GTAATAAAC	CATTATCCGC	AACAGTGTG	1080
ACGCTATCAT	TAATTGGAAA	CAATTAAACA	TCGACCAAAA	TGAAATGGTG	CAGTTTTAC	1140
AAGAAAACAA	CAACTCCGCC	GTATTCAACC	GTGTTACATC	TAACCAAATC	TCCCAATTAA	1200
AAGGGATTTT	AGATTCTAAC	GGACAAGTCT	TTTTAATCAA	CCCAAATGGT	ATCACAATAG	1260
GTAAAAGACGC	AATTATTAAAC	ACTAATGGCT	TTACGGCTTC	TACGCTAGAC	ATTTCTAACG	1320
AAAACATCAA	GGCGCGTAAT	TTCACCTTCG	AGCAAACCAA	AGATAAAGCG	CTCGCTGAAA	1380
TTGTGAATCA	CGGTTTAATT	ACTGTCGGTA	AAGACGGCAG	TG TAAATCTT	ATTGGTGGCA	1440
AAGTGAAGAA	CGAGGGTGTG	ATTAGCGTAA	ATGGTGGCAG	CATTCTTTA	CTCGCAGGGC	1500
AAAAAATCAC	CATCAGCGAT	ATAATAAAC	CAACCATTAC	TTACAGCATT	GGCGCGCCTG	1560
AAAATGAAGC	GGTCAATCTG	GGCGATATT	TTGCCAAAGG	CGGTAACATT	AATGTCCGTG	1620
CTGCCACTAT	TCGAAACCAA	GGTAAACTT	CTGCTGATTC	TG TAAAGCAA	GATAAAAGCG	1680
GCAATATTGT	TCTTTCCGCC	AAAGAGGGTG	AAGCGGAAAT	TGGCGGTGTA	ATTTCCGCTC	1740
AAAATCAGCA	AGCTAAAGGC	GGCAAGCTGA	TGATAAAAGTC	CGATAAAAGTC	ACATTAAAAA	1800
CAGGTGCAGT	TATCGACCTT	TCAGGTAAAG	AAGGGGGAGA	AACTTACCTT	GGCGGTGACG	1860
AGCGCGGCAG	AGGTAAAAAC	GGCATTCAAT	TAGCAAAGAA	AACCTCTTTA	AAAAAAGGCT	1920
CAACCATCAA	TGTATCAGGC	AAAGAAAAAG	GC GGACGCGC	TATTGTGTGG	GGCGATATTG	1980

CGTTAATTGA CGGCAATATT AACGCTCAAG GTAGTGGTGA TATCGCTAAA ACCGGTGGTT	2040
TTGTGGAGAC ATCGGGGCAT TATTTATCCA TTGACAGCAA TGCAATTGTT AAAACAAAAG	2100
AGTGGTTGCT AGACCCCTGAT GATGTAACAA TTGAAGCCGA AGACCCCCTT CGCAATAATA	2160
CCGGTATAAA TGATGAATTC CCAACAGGCA CCGGTGAAGC AAGCGACCCT AAAAAAAATA	2220
GCGAACTCAA AACAACGCTA ACCAATACAA CTATTTCAA TTATCTGAAA AACGCCCTGGA	2280
CAATGAATAT AACGGCATCA AGAAAACCTTA CCGTTAATAG CTCATCACAC ATCGGAAGCA	2340
ACTCCCACCTT AATTCTCCAT AGTAAAGGTC AGCGTGCGG AGGCCTTCAG ATTGATGGAG	2400
ATATTACTTC TAAAGGCGGA AATTTAACCA TTTATTCTGG CGGATGGGTT GATGTTCATA	2460
AAAATATTAC GCTTGATCAG GGTTTTTAA ATATTACCGC CGCTTCCGTA GCTTTGAAG	2520
GTGGAAATAA CAAAGCACGC GACGCCGCAA ATGCTAAAAT TGTCGCCAG GGCACGTAA	2580
CCATTACAGG AGAGGGAAAA GATTCAGGG CTAACAACGT ATCTTAAAC GGAACGGGTA	2640
AAGGTCTGAA TATCATTCA TCAGTGAATA ATTTAACCCA CAATCTTAGT GGCACAATTA	2700
ACATATCTGG GAATATAACA ATTAACCAAAT CTACGAGAAA GAACACCTCG TATTGGCAA	2760
CCAGCCATGA TTCGCACTGG AACGTCAGTG CTCTTAATCT AGAGACAGGC GCAAATTITTA	2820
CCTTTATTAA ATACATTCA AGCAATAGCA AAGGCTTAAC AACACAGTAT AGAAGCTTG	2880
CAGGGGTGAA TTTTAACGGC GTAAATGGCA ACATGTCATT CAATCTCAA GAAGGAGCGA	2940
AAGTTAATT CAAATTAAAA CCAAACGAGA ACATGAACAC AAGCAAACCT TTACCAATT	3000
GGTTTTAGC CAATATCACA GCCACTGGTG GGGGCTCTGT TTTTTTGAT ATATATGCCA	3060
ACCATTCTGG CAGAGGGCT GAGTTAAAAA TGAGTGAAT TAATATCTCT AACGGCGCTA	3120
ATTTTACCTT AAATTCCAT GTTCGCGGCG ATGACGCTTT TAAAATCAAC AAAGACTTAA	3180
CCATAATGC AACCAATTCA AATTTCAGCC TCAGACAGAC GAAAGATGAT TTTTATGACG	3240
GGTACGCACG CAATGCCATC AATTCAACCT ACAACATATC CATTCTGGC GGTAATGTCA	3300
CCCTTGGTGG ACAAAACTCA AGCAGCAGCA TTACGGGAA TATTACTATC GAGAAAGCAG	3360
CAAATGTTAC GCTAGAAGCC AATAACGCC CTAATCAGCA AAACATAAGG GATAGAGTTA	3420
TAAAACTTGG CAGCTTGCTC GTTAATGGGA GTTTAAGTTT AACTGGCAGA AATGCAGATA	3480
TTAAAGGCAA TCTCACTATT TCAGAAAGCG CCACTTTAA AGGAAAGACT AGAGATAACCC	3540
TAAATATCAC CGGCAATTTC ACCAATAATG GCACTGCCGA AATTAATATA ACACAAGGAG	3600
TGGTAAACT TGGCAATGTT ACCAATGATG GTGATTAAA CATTACCACT CACGCTAAC	3660
GCAACCAAAG AAGCATCATC GGCAGGAGATA TAATCAACAA AAAAGGAAGC TTAAATATTA	3720
CAGACAGTAA TAATGATGCT GAAATCCAAA TTGGGGCAA TATCTCGCAA AAAGAAGGCA	3780
ACCTCACGAT TTCTTCCGAT AAAATTAAATA TCACCAAACA GATAACAATC AAAAAGGGTA	3840
TTGATGGAGA GGACTCTAGT TCAGATGCCA CAAGTAATGC CAACCTAACT ATTAAAACCA	3900
AAGAATTGAA ATTGACAGAA GACCTAAGTA TTTCAGGTTT CAATAAGCA GAGATTACAG	3960
CCAAAGATGG TAGAGATTAA ACTATTGGCA ACAGTAATGA CGGTAAACAGC GGTGCCGAAG	4020

SUBSTITUTE SHEET (RULE 26)

CCAAAACAGT AACTTTAAC AATGTTAAAG ATTCAAAAAT CTCTGCTGAC GGTCACAATG	4080
TGACACTAA TAGCAAAGTG AAAACATCTA GCAGCAATGG CGGACGTGAA AGCAATAGCG	4140
ACAACGATAAC CGGCTTAACT ATTACTGCAA AAAATGTAGA AGTAAACAAA GATATTACTT	4200
CTCTCAAAAC AGTAAATATC ACCGCCTCGG AAAAGGTTAC CACCACAGCA GGCTCGACCA	4260
TTAACGCAAC AAATGGCAA GCAAGTATTAA CAACCAAAAC AGGTGATATC AGCGGTACGA	4320
TTTCCGGTAA CACGGTAAGT GTTAGCGCGA CTGGTGATTT AACCACTAAA TCCGGCTCAA	4380
AAATTGAAGC GAAATCGGGT GAGGCTAATG TAACAAGTGC AACAGGTACA ATTGGCGGTAA	4440
CAATTTCGG TAATACGGTA AATGTTACGG CAAACGCTGG CGATTTAACAA GTTGGGAATG	4500
GCGCAGAAAT TAATGCGACA GAAGGAGCTG CAACCTTAAC CGCAACAGGG AATACCTTGA	4560
CTACTGAAGC CGGTTCTAGC ATCACTTCAA CTAAGGTCA GGTAGACCTC TTGGCTCAGA	4620
ATGGTAGCAT CGCAGGAAGC ATTAATGCTG CTAATGTGAC ATTAAAATACT ACAGGCACCT	4680
TAACCACCGT GGCAGGCTCG GATATTAAAG CAACCAGCGG CACCTGGTT ATTAACGCAA	4740
AAGATGCTAA GCTAAATGGT GATGCATCAG GTGATAGTAC AGAAGTGAAT GCAGTCAACG	4800
ACTGGGGATT TGGTAGTGTG ACTGCGGCAA CCTCAAGCAG TGTGAATATC ACTGGGGATT	4860
TAAACACAGT AAATGGGTTA AATATCATT CGAAAGATGG TAGAAACACT GTGCGCTTAA	4920
GAGGCAAGGA AATTGAGGTG AAATATATCC AGCCAGGTGT AGCAAGTGTAA GAAGAAGTAA	4980
TTGAAGCGAA ACGCGTCCTT GAAAAAGTAA AAGATTATC TGATGAAGAA AGAGAAACAT	5040
TAGCTAAACT TGGTGTAAAGT GCTGTACGTT TTGTTGAGCC AAATAATACA ATTACAGTCA	5100
ATACACAAAA TGAATTTACA ACCAGACCGT CAAGTCAAGT GATAATTCT GAAGGTAAGG	5160
CGTGTTCCTC AAGTGGTAAT GGCGCACGAG TATGTACCAA TGTGCTGAC GATGGACAGC	5220
CGTAGTCAGT AATTGACAAG GTAGATTCA TCCTGCAATG AAGTCATTT ATTTTCGTAT	5280
TATTTACTGT GTGGGTTAAA GTTCAGTACG GGCTTACCC ATCTTGTAAA AAATTACGGA	5340
GAATACAATA AAGTATTTT AACAGGTTAT TATTATGAAA AATATAAAA GCAGATTAAA	5400
ACTCAGTGCA ATATCAGTAT TGCTTGGCCT GGCTTCTTCA TCATTGTATG CAGAAGAAGC	5460
GTTTTTAGTA AAAGGCTTTC AGTTATCTGG TGCACTTGAA ACTTTAAGTG AAGACGCCA	5520
ACTGTCTGTA GCAAAATCTT TATCTAAATA CCAAGGCTCG CAAACTTAA CAAACCTAAA	5580
AACAGCACAG CTTGAATTAC AGGCTGTGCT AGATAAGATT GAGCCAAATA AATTTGATGT	5640
GATATTGCCG CAACAAACCA TTACGGATGG CAATATCATG TTTGAGCTAG TCTCGAAATC	5700
AGCCGCAGAA AGCCAAGTTT TTTATAAGGC GAGCCAGGGT TATAGTGAAG AAAATATCGC	5760
TCGTAGCCTG CCATCTTGA AACAAAGGAAA AGTGTATGAA GATGGTCGTC AGTGGTTCGA	5820
TTTGCCTGAA TTTAATATGG CAAAAGAAAA CCCGCTTAAG GTTACCCGTG TACATTACGA	5880
ACTAAACCCCT AAAAACAAAA CCTCTAAATT GATAATTGCG GGCTTCTCGC CTTTTGGTAA	5940
AACGCGTAGC TTTATTTCTT ATGATAATT CGGCGCGAGA GAGTTAACT ACCAACGTGT	6000
AAGCTTGGGT TTTGTTAATG CCAATTAAAC TGGTCATGAT GATGTGTTAA TTATACCAAGT	6060

ATGAGTTATG CTGATTCTAA TGATATCGAC GGCTTACCAA GTGCGATTAA TCGTAAATTA	6120
TCAAAAGGTC AATCTATCTC TGCGAATCTG AAATGGAGTT ATTATCTCCC AACATTTAAC	6180
CTTGGCATGG AAGACCAATT TAAAATTAAT TTAGGCTACA ACTACCGCCA TATTAATCAA	6240
ACCTCCGCGT TAAATCGCTT GGGTGAAACG AAGAAAAAT TTGCAGTATC AGGCGTAAGT	6300
GCAGGCATTG ATGGACATAT CCAATTACCC CCTAAAACAA TCTTTAATAT TGATTTAATC	6360
CATCATTATT ACGCGAGTAA ATTACCAGGC TCTTTGGAA TGGAGCGCAT TGGCGAAACAA	6420
TTTAATCGCA GCTATCACAT TAGCACAGCC AGTTTAGGGT TGAGTCAAGA GTTGTCTCAA	6480
GGTTGGCATT TTAGCAGTCA ATTATCAGGT CAATTACTC TACAAGATAT TAGCAGTATA	6540
GATTATTCT CTGTAACAGG TACTTATGGC GTCAGAGGCT TTAAATACGG CGGTGCAAGT	6600
GGTGAGCGCG GTCTTGTATG GCGTAATGAA TTAAGTATGC CAAAATACAC CCGCTTCCAA	6660
ATCAGCCCTT ATGCGTTTTA TGATGCAGGT CAGTTCCGTT ATAATAGCGA AAATGCTAAA	6720
ACTTACGGCG AAGATATGCA CACGGTATCC TCTGCGGGTT TAGGCATTAA AACCTCTCCT	6780
ACACAAAAT TAAGCCTAGA TGCTTTGTT GCTCGCGCT TTGCAAATGC CAATAGTGAC	6840
AATTGAAATG GCAACAAAAA ACGCACAAAGC TCACCTACAA CCTTCTGGGG GAGATTAACAA	6900
TTCAGTTCT AACCTGAAA TTTAATCAAC TGGTAAGCGT TCCGCCTACC AGTTTATAAC	6960
TATATGCTTT ACCCGCCAAT TTACAGTCTA TAGGCAACCC TGTTTTTACC CTTATATATC	7020
AAATAAACAA GCTAAGCTGA GCTAAGCAAA CCAAGCAAAAC TCAAGCAAGC CAAGTAATAC	7080
TAAAAAACAA ATTATATATGA TAAACTAAAG TATACTCCAT GCCATGGCGA TACAAGGGAT	7140
TTAATAATAT GACAAAAGAA AATTGCAAA ACGCTCCTCA AGATGCGACC GCTTTACTTG	7200
CGGAATTAAG CAACAATCAA ACTCCCCCTGC GAATATTAA ACAACCACGC AAGCCCAGCC	7260
TATTACGCTT GGAACAAACAT ATCGAAAAAA AAGATTATGA GTTGTCTTGT CGTGAATTAA	7320
TGGTGATTCT GGAAAAAAATG GACGCTAATT TTGGAGGCCT TCACGATATT GAATTGACG	7380
CACCCGCTCA GCTGGCATAT CTACCCGAAA AATTACTAAT TTATTTGCC ACTCGTCTCG	7440
CTAATGCAAT TACAACACTC TTTTCCGACC CGAATTGGC AATTCTGAA GAAGGGCGT	7500
TAAAGATGAT TAGCCTGCAA CGCTGGTTGA CGCTGATTT TGCCCTTCC CCCTACGTTA	7560
ACGCAGACCA TATTCTCAAT AAATATAATA TCAACCCAGA TTCCGAAGGT GGCTTTCAATT	7620
TAGCAACAGA CAACTCTCT ATTGCTAAAT TCTGTATTT TTACTTACCC GAATCCAATG	7680
TCAATATGAG TTTAGATGCG TTATGGCAG GGAATCAACA ACTTTGTGCT TCATTGTGTT	7740
TTGCGTTGCA GTCTTCACGT TTTATTGGTA CGCGCATCTGC GTTTCATAAA AGAGCGGTGG	7800
TTTTACAGTG GTTTCTAAAA AACTCGCCG AAATTGCTAA TTAGATGAA TTGCTGCAA	7860
ATATCCTTCA TGATGTATAT ATGCACTGCA GTTATGATTT AGCAAAAAAC AAGCACGATG	7920
TTAAGCGTCC ATTAAACGAA CTTGTCCGCA AGCATATCCT CACGCAAGGA TGGCAAGACC	7980
GCTACCTTTA CACCTTAGGT AAAAAGGACG GCAAACCTGT GATGATGGTA CTGCTTGAAC	8040
ATTTTAATTC GGGACATTG ATTTATCGTA CACATTCAAC TTCAATGATT GCTGCTCGAG	8100

AAAAATTCTA TTTAGTCGGC TTAGGCCATG AGGGCGTTGA TAAAATAGGT CGAGAAGTGT	8160
TTGACGAGTT CTTTGAAATC AGTAGCAATA ATATAATGGA GAGACTGTTT TTTATCCGTA	8220
AACAGTGCAG AACTTTCCAA CCCGCAGTGT TCTATATGCC AAGCATTGGC ATGGATATTA	8280
CCACGATTTT TGTGAGCAAC ACTCGGCTTG CCCCTATTCA AGCTGTAGCC CTGGGTCACTC	8340
CTGCCACTAC GCATTCTGAA TTTATTGATT ATGTCATCGT AGAAGATGAT TATGTGGGCA	8400
GTGAAGATTG TTTCAGCGAA ACCCTTTAC GCTTACCCAA AGATGCCCTA CCTTATGTAC	8460
CTTCTGCACT CGCCCCACAA AAAGTGGATT ATGTAATCAG GGAAAACCT GAAGTAGTC	8520
ATATCGGTAT TGCCGCTACC ACAATGAAAT TAAACCTGA ATTTTGCTA ACATTGCAAG	8580
AAATCAGAGA TAAAGCTAAA GTCAAAATAC ATTTTCATTT CGCACTTGGA CAATCAACAG	8640
GCTTGACACA CCCTTATGTC AAATGGTTA TCGAAAGCTA TTTAGGTGAC GATGCCACTG	8700
CACATCCCCA CGCACCTTAT CACGATTATC TGGCAATATT GCGTGATTGC GATATGCTAC	8760
TAAATCCGTT TCCTTTCGGT AATACTAACG GCATAATTGA TATGGTTACA TTAGGTTAG	8820
TTGGGTGTATG CAAAACGGGG GATGAAGTAC ATGAACATAT TGATGAAGGT CTGTTAAC	8880
GCTTAGGACT ACCAGAATGG CTGATAGCCG ACACACGAGA AACATATATT GAATGTGCTT	8940
TGCGTCTAGC AGAAAACCAT CAAGAACGCC TTGAACCTCG TCGTTACATC ATAGAAAACA	9000
ACGGCTTACA AAAGCTTTT ACAGGCGACC CTCGTCCATT GGGCAAAATA CTGCTTAAGA	9060
AAACAAATGA ATGGAAGCGG AAGCACTTGA GTAAAAAATA ACGGTTTTT AAAGTAAAAG	9120
TGCGGTTAAT TTTCAAAGCG TTTTAAAAAC CTCTAAAAA TCAACCGCAC TTTTATCTT	9180
ATAACGATCC CGCACGCTGA CAGTTTATCA GCCTCCGCC ATAAAACCTC GCCTTTCATG	9240
GCGGAGATTT TAGCCAAAAC TGGCAGAAAT TAAAGGCTAA AATCACCAAA TTGCACCACA	9300
AAATCACCAA TACCCACAAA AAA	9323

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 4287 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GATCAATCTG GGCGATATTG TTGCCAAAGG TGGTAACATT AATGTCCGCG CTGCCACTAT	60
TCGCAATAAA GGTAAACTTT CTGCCGACTC TGTAAGCAAA GATAAAAGTG GTAACATTGT	120
TCTCTCTGCC AAAGAAGGTG AAGCGGAAAT TGGCGGTGTA ATTTCCGCTC AAAATCAGCA	180
AGCCAAAGGT GGTAAGTTGA TGATTACAGG CGATAAAAGTT ACATTGAAAA CGGGTGCAC	240
TATCGACCTT TCGGGTAAAG AAGGGGGAGA AACTTATCTT GGCGGTGACG AGCGTGGCGA	300
AGGTAAAAAC GGCATTCAAT TAGCAAAGAA AACCACTTTA GAAAAAGGCT CAACAATTAA	360

SUBSTITUTE SHEET (RULE 26)

TGTGTCAGGT AAAGAAAAAG CTGGGCGCGC TATTGTATGG GGCGATATTG CGTTAATTGA	420
CGGCAATATT AATGCCCAAG GTAAAGATAT CGCTAAAATC GGTGGTTTTG TGGAGACGTC	480
GGGGCATTAC TTATCCATTG ATGATAACGC AATTGTTAAA ACAAAAGAAT GGCTACTAGA	540
CCCAGAGAAT GTGACTATTG AAGCTCCTTC CGCTTCTCGC GTCGAGCTGG GTGCCGATAG	600
GAATTCCCAC TCGGCAGAGG TGATAAAAAGT GACCCTAAAA AAAAATAACA CCTCCTTGAC	660
AACACTAACCA AATACAACCA TTTCAAATCT TCTGAAAAGT GCCCACGTGG TGAACATAAC	720
GGCAAGGAGA AAACCTACCG TTAATAGCTC TATCAGTATA GAAAGAGGCT CCCACTTAAT	780
TCTCCACAGT GAAGGTCAGG GCGGTCAAGG TGTTCAGATT GATAAAGATA TTACTTCTGA	840
AGGCGGAAAT TTAACCATTT ATTCTGGCGG ATGGGTTGAT GTTCATAAAA ATATTACGCT	900
TGGTAGCGGC TTTTAAACA TCACAACAA AGAAGGAGAT ATCGCCTTCG AAGACAAGTC	960
TGGACGGAAC AACCTAACCA TTACAGCCCA AGGGACCATC ACCTCAGGTA ATAGTAACGG	1020
CTTTAGATTT ACAACGTCT CTCTAAACAG CCTTGGCGGA AAGCTGAGCT TTACTGACAG	1080
CAGAGAGGAC AGAGGTAGAA GAACTAAGGG TAATATCTCA AACAAATTG ACGGAACGTT	1140
AAACATTTCC GGAACGTAG ATATCTCAAT GAAAGCACCC AAAGTCAGCT GGTTTACAG	1200
AGACAAAGGA CGCACCTACT GGAACGTAAC CACTTAAAT GTTACCTCGG GTAGTAAATT	1260
TAACCTCTCC ATTGACAGCA CAGGAAGTGG CTCAACAGGT CCAAGCATAAC GCAATGCAGA	1320
ATTAATGGC ATAACATTTA ATAAAGCCAC TTTAATATC GCACAAGGCT CAACAGCTAA	1380
CTTTAGCATC AAGGCATCAA TAATGCCCTT TAAGAGTAAC GCTAACTACG CATTATTTAA	1440
TGAAGATATT TCAGTCTCAG GGGGGGGTAG CGTTAATTTC AAACCTAACG CCTCATCTAG	1500
CAACATACAA ACCCCTGGCG TAATTATAAA ATCTCAAAC TTTAATGTCT CAGGAGGGTC	1560
AACTTTAAAT CTCAAGGCTG AAGGTTCAAC AGAAACCGCT TTTCAATAG AAAATGATTT	1620
AAACCTAAAC GCCACCGGTG GCAATATAAC AATCAGACAA GTCGAGGGTA CCGATTCAAC	1680
CGTCAACAAA GGTGTCGCAG CCAAAAAAAA CATAACTTTT AAAGGGGGTA ATATCACCTT	1740
CGGCTCTCAA AAAGCCACAA CAGAAATCAA AGGCAATGTT ACCATCAATA AAAACACTAA	1800
CGCTACTCTT CGTGGTGCAG ATTTGCCGA AAACAAATCG CCTTTAAATA TAGCAGGAAA	1860
TGTTATTAAT AATGGCAACC TTACCACTGC CGGCTCCATT ATCAATATAG CCGGAAATCT	1920
TACTGTTCA AAAGGCCTA ACCTTCAGC TATAACAAAT TACACTTTA ATGTAGCCGG	1980
CTCATTGAC ACAATGGCG CTTCAAACAT TTCCATTGCC AGAGGAGGGG CTAAATTTAA	2040
AGATATCAAT AACACCAGTA GCTTAAATAT TACCACCAAC TCTGATACCA CTTACCGCAC	2100
CATTATAAAA GGCAATATAT CCAACAAATC AGGTGATTG AATATTATTG ATAAAAAAAG	2160
CGACGCTGAA ATCCAAATTG GCGGCAATAT CTCACAAAAA GAAGGCAATC TCACAATTTC	2220
TTCTGATAAA GTAAATATTA CCAATCAGAT ACAATCAA GCAGGCGTTG AAGGGGGCG	2280
TTCTGATTCA AGTGAGGCAG AAAATGCTAA CCTAACTATT CAAACCAAAG AGTTAAAATT	2340
GGCAGGAGAC CTAAATATTT CAGGCTTAA TAAAGCAGAA ATTACAGCTA AAAATGGCAG	2400

SUBSTITUTE SHEET (RULE 26)

TGATTTAACT ATTGGCAATG CTAGCGGTGG TAATGCTGAT GCTAAAAAAG TGACTTTGA	2460
CAAGGTTAAA GATTCAAAAA TCTCGACTGA CGGTACAAT GTAACACTAA ATAGCGAAGT	2520
GAAAACGTCT AATGGTAGTA GCAATGCTGG TAATGATAAC AGCACCGGTT TAACCATTTC	2580
CGCAAAAGAT GTAACGGTAA ACAATAACGT TACCTCCCAC AAGACAATAA ATATCTCTGC	2640
CGCAGCAGGA AATGTAACAA CCAAAGAAGG CACAACATAC AATGCAACCA CAGGCAGCGT	2700
GGAAGTAACT GCTCAAAATG GTACAATTAA AGGCAACATT ACCTCGCAAA ATGTAACAGT	2760
GACAGCAACA GAAAATCTTG TTACCACAGA GAATGCTGTC ATTAATGCAA CCAGCGGCAC	2820
AGTAAACATT AGTACAAAAA CAGGGGATAT TAAAGGTGGA ATTGAATCAA CTTCCGGTAA	2880
TGTAAATATT ACAGCGAGCG GCAATACACT TAAGGTAACT AATATCACTG GTCAAGATGT	2940
AACAGTAACA GCGGATGCGAG GAGCCTTGAC AACTACAGCA GGCTCAACCA TTAGTGCAGC	3000
AACAGGCAAT GCAAATATTA CAACCAAAAC AGGTGATATC AACGGTAAAG TTGAATCCAG	3060
CTCCGGCTCT GTAACACTTG TTGCAACTGG AGCAACTCTT GCTGTAGGTA ATATTCAGG	3120
TAACACTGTT ACTATTACTG CGGATAGCGG TAAATTAAACC TCCACAGTAG GTTCTACAAT	3180
TAATGGGACT AATAGTGTAA CCACCTCAAG CCAATCAGGC GATATTGAAG GTACAATTTC	3240
TGGTAATACA GTAAATGTTA CAGCAAGCAC TGGTGATTAA ACTATTGGAA ATAGTGCAGA	3300
AGTTGAAGCG AAAATGGAG CTGCAACCTT AACTGCTGAA TCAGGCAAAT TAACCACCCA	3360
AACAGGCTCT AGCATTACCT CAAGCAATGG TCAGACAACCT CTTACAGCCA AGGATAGCAG	3420
TATCGCAGGA AACATTAATG CTGCTAATGT GACGTTAAAT ACCACAGGCA CTTTAACATC	3480
TACAGGGGAT TCAAAGATTA ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAAGATGC	3540
CAAATTAGAT GGTGCTGCAT CAGGTGACCG CACAGTAGTA AATGCAACTA ACGCAAGTGG	3600
CTCTGGTAAC GTGACTGCGA AAACCTCAAG CAGCGTGAAT ATCACCGGGG ATTTAAACAC	3660
AATAAAATGGG TTAAATATCA TTTCGAAAAA TGGTAGAAC ACTGTGCGCT TAAGAGGCAA	3720
GGAAATTGAT GTGAAATATA TCCAACCAGG TGTAGCAAGC GTAGAAGAGG TAATTGAAGC	3780
GAAACGCGTC CTTGAGAAGG TAAAAGATTT ATCTGATGAA GAAAGAGAAA CACTAGCCAA	3840
ACTTGGTGTAA AGTGTGTAC GTTTCGTTGA GCCAAATAAT GCCATTACGG TTAATACACA	3900
AAACGAGTTT ACAACCAAAAC CATCAAGTCA AGTGACAATT TCTGAAGGTA AGGCGTGT	3960
CTCAAGTGGT AATGGCGCAC GAGTATGTAC CAATGTTGCT GACGATGGAC AGCAGTAGTC	4020
AGTAATTGAC AAGGTAGATT TCATCCTGCA ATGAAGTCAT TTTTATTTCG TATTATTTAC	4080
TGTGTGGTT AAAGTTCACT ACGGGCTTTA CCCACCTTGT AAAAAATTAC GAAAATACA	4140
ATAAAAGTATT TTTAACAGGT TATTATTATG AAAAACATAA AAAGCAGATT AAAACTCAGT	4200
GCAATATCAA TATTGCTTGG CTTGGCTTCT TCATCGACGT ATGCAGAAGA AGCGTTTTA	4260
GTAAAAGGCT TTCAGTTATC TGGCGCG	4287

INTERNATIONAL SEARCH REPORT

Information on patent family members

Original Application No
PCT/CA 99/01189

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9400149	A 06-01-1994	US AT CA DE DE EP ES JP WO US US CA EP JP JP	5843463 A 176989 T 2098598 A 69130955 D 69130955 T 0565590 A 2131066 T 6508346 T 9210936 A 5721115 A 5679547 A 2138765 A 0647139 A 2805174 B 7509693 T	01-12-1998 15-03-1999 22-06-1992 08-04-1999 01-07-1999 20-10-1993 16-07-1999 22-09-1994 09-07-1992 24-02-1998 21-10-1997 06-01-1994 12-04-1995 30-09-1998 26-10-1995
WO 9736914	A 09-10-1997	US AU CA EP	5977336 A 2587397 A 2259133 A 0900232 A	02-11-1999 22-10-1997 09-10-1997 10-03-1999
WO 9603506	A 08-02-1996	US US US AU AU BR CA CN EP NZ US US US US US US US US US US	5506139 A 5939297 A 5869302 A 687619 B 3337695 A 9506272 A 2171611 A 1136328 A 0729513 A 291750 A 6025342 A 6020183 A 5665353 A 5935573 A 5656436 A 5981503 A 5962430 A	09-04-1996 17-08-1999 09-02-1999 26-02-1998 22-02-1996 12-08-1997 08-02-1996 20-11-1996 04-09-1996 24-10-1997 15-02-2000 01-02-2000 09-09-1997 10-08-1999 12-08-1997 09-11-1999 05-10-1999

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4702 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GGGAATGAGC GTCGTACACG GTACAGCAAC CATGCAAGTA GACGGCAATA AAACCACATAT	60
CCGTAATAGC ATCAATGCTA TCATCAATTG GAAACAATT AACATTGACC AAAATGAAAT	120
GGAGCAGTTT TTACAAGAAA GCAGCAACTC TGCCGTTTTC AACC GTGTTA CATCTGACCA	180
AATCTCCCAA TTAAAAGGGA TTTTAGATTG TAACGGACAA GTCTTTTAA TCAACCCAAA	240
TGGTATCACA ATAGGTAAAG ACGCAATTAT TAACACTAAT GGCTTTACTG CTTCTACGCT	300
AGACATTTCT AACGAAAACA TCAAGGC CGCG TAATTT CACC CTTGAGCAAA CCAAGGATAA	360
AGCACTCGCT GAAATCGTGA ATCACGGTTT AATTACCGTT GGTAAAGACG GTAGCGTAAA	420
CCTTATTGGT GGCAAAGTGA AAAACGAGGG CGTGATTAGC GTAAATGGCG GTAGTATTTC	480
TTTACTTGCA GGGCAAAAAA TCACCATCAG CGATATAATA AATCCAACCA TCACCTTACAG	540
CATTGCTGCA CCTGAAAACG AAGCGATCAA TCTGGCGAT ATTTTGCCCA AAGGTGGTAA	600
CATTAATGTC CGCGCTGCCA CTATTGCAA TAAAGGTAAA CTTTCTGCCG ACTCTGTAAG	660
CAAAGATAAA AGTGGTAACA TTGTTCTCTC TGCCAAAGAA GGTGAAGCGG AAATTGGCGG	720
TGTAATTCC GCTCAAAATC AGCAAGCCAA AGGTGGTAAG TTGATGATTA CAGGTGATAA	780
AGTCACATTA AAAACAGGTG CAGTTATCGA CCTTTCAGGT AAAGAAGGGG GAGAGACTTA	840
TCTTGGCGGT GATGAGCGTG GCGAAGGTAA AAATGGTATT CAATTAGCGA AGAAAACCTC	900
TTTAGAAAAA GGCTCGACAA TTAATGTATC AGGCAAAGAA AAAGGCGGGC GCGCTATTGT	960
ATGGGGCGAT ATTGCATTA TTAATGGTAA CATTAATGCT CAAGGTAGCG ATATTGCTAA	1020
AACTGGCGGC TTTGTGGAAA CATCAGGACA TGACTTATCC ATTGGTGATG ATGTGATTGT	1080
TGACGCTAAA GAGTGGTTAT TAGACCCAGA TGATGTGTCC ATTGAAACTC TTACATCTGG	1140
ACGCAATAAT ACCGGCGAAA ACCAAGGATA TACAACAGGA GATGGGACTA AAGAGTCACC	1200
TAAAGGTAAAT AGTATTCTA AACCTACATT AACAAACTCA ACTCTTGAGC AAATCCTAAG	1260
AAGAGGTTCT TATGTTAATA TCACTGCTAA TAATAGAATT TATGTTAATA GCTCCATCAA	1320
CTTATCTAAT GGCAGTTAA CACTTCACAC TAAACGAGAT GGAGTTAAA TTAACGGTGA	1380
TATTACCTCA AACGAAAATG GTAATTAAAC CATTAAAGCA GGCTCTTGGG TTGATGTTCA	1440
TAAAAACATC ACGCTGGTA CGGGTTTTT CAATATTGTC GCTGGGGATT CTGTAGCTTT	1500
TGAGAGAGAG GGCGATAAAAG CACGTAACGC AACAGATGCT CAAATTACCG CACAAGGGAC	1560
GATAACCGTC AATAAAAGATG ATAAACAATT TAGATTCAAT AATGTATCTA TTAACGGGAC	1620

SUBSTITUTE SHEET (RULE 26)

GGGCAAGGGT TTAAAGTTA TTGCAAATCA AAATAATTTC ACTCATAAAAT TTGATGGCGA	1680
AATTAACATA TCTGGAATAG TAACAATTAA CCAAACCACG AAAAAAGATG TTAAATACTG	1740
GAATGCATCA AAAGACTCTT ACTGGAATGT TTCTTCTCTT ACTTTGAATA CGGTGAAAAA	1800
ATTTACCTTT ATAAAATTCG TTGATAGCGG CTCAAATTCC CAAGATTGA GGTACATCACG	1860
TAGAAGTTTT GCAGGCGTAC ATTTAACGG CATCGGAGGC AAAACAAACT TCAACATCGG	1920
AGCTAACGCA AAAGCCTTAT TTAAATTAAA ACCAACGCC GCTACAGACC CAAAAAAAGA	1980
ATTACCTATT ACTTTAACG CCAACATTAC AGCTACCGGT AACAGTGATA GCTCTGTGAT	2040
GTTTGACATA CACGCCAATC TTACCTCTAG AGCTGCCGGC ATAAACATGG ATTCAATTAA	2100
CATTACCGGC GGGCTTGACT TTTCCATAAC ATCCCATAAT CGCAATAGTA ATGCTTTGA	2160
AATCAAAAAA GACTTAACTA TAAATGCAAC TGGCTCGAAT TTAGTCTTA AGCAAACGAA	2220
AGATTCTTTT TATAATGAAT ACAGCAAACA CGCCATTAAC TCAAGTCATA ATCTAACCAT	2280
TCTTGGCGGC AATGTCACTC TAGGTGGGGA AAATTCAAGC AGTAGCATTAA CGGGCAATAT	2340
CAATATCACC AATAAAGCAA ATGTTACATT ACAAGCTGAC ACCAGCAACA GCAACACAGG	2400
CTTGAAGAAA AGAACTCTAA CTCTGGCAA TATATCTGTT GAGGGGAATT TAAGCCTAAC	2460
TGGTGCRAAT GCAAACATTG TCGGCAATCT TTCTATTGCA GAAGATTCCA CATTAAAGG	2520
AGAACCGAGT GACAACCTAA ACATCACCGG CACCTTTACC ACAACCGTA CCGCCAACAT	2580
TAATATAAAA CAAGGAGTGG TAAAACCTCA AGGCGATATT ATCAATAAAAG GTGGTTAAA	2640
TATCACTACT AACGCCTCAG GCACTAAAA ACCATTATT AACGGAAATA TAACTAACGA	2700
AAAAGGCGAC TTAAACATCA AGAATATTAA AGCCGACGCC GAAATCCAAA TTGGCGGCAA	2760
TATCTCACAA AAAGAAGGCA ATCTCACAAT TTCTTCTGAT AAAGTAAATA TTACCAATCA	2820
GATAACAATC AAAGCAGGCG TTGAAGGGGG GCGTTCTGAT TCAAGTGAGG CAGAAAATGC	2880
TAACCTAACT ATTCAAACCA AAGAGTTAAA ATTGGCAGGA GACCTAAATA TTTCAGGCTT	2940
TAATAAAGCA GAAATTACAG CTAAAAATGG CAGTGATTAA ACTATTGGCA ATGCTAGCGG	3000
TGGTAATGCT GATGCTAAAA AAGTGACTTT TGACAAGGTT AAAGATTCAA AAATCTCGAC	3060
TGACGGTCAC AATGTAACAC TAAATAGCGA AGTAAAAACG TCTAATGGTA GTAGCAATGC	3120
TGGTAATGAT AACAGCACCG GTTTAACCAT TTCCGAAAA GATGTAACGG TAAACAATAA	3180
CGTTACCTCC CACAAGACAA TAAATATCTC TGCCGCAGCA GGAAATGTAA CAACCAAAGA	3240
AGGCACAACAT ATCAATGCAA CCACAGGCAG CGTGGAAAGTA ACTGCTAAA ATGGTACAAT	3300
TAAAGGCAAC ATTACCTCGC AAAATGTAAC AGTGACAGCA ACAGAAAATC TTGTTACCAC	3360
AGAGAATGCT GTCATTAATG CAACCAGCGG CACAGTAAAC ATTAGTACAA AAACAGGGGA	3420
TATTAAAGGT GGAATTGAAT CAACTTCCGG TAATGTAAAT ATTACAGCGA GCGGCAATAC	3480
ACTTAAGGTA AGTAATATCA CTGGTCAAGA TGTAACAGTA ACAGCGGATG CAGGAGCCTT	3540
GACAACCTACA GCAGGCTCAA CCATTAGTGC GACAACAGGC AATGCAAATA TTACAAACAA	3600
AACAGGTGAT ATCAACGGTA AAGTTGAATC CAGCTCCGGC TCTGTAACAC TTGTTGCAAC	3660

TGGAGCAACT CTTGCTGTAG GTAATATTC AGGTAACACT GTTACTATT A CTGCGGATAG	3720
CGGTAAATTA ACCTCCACAG TAGGTTCTAC AATTAATGGG ACTAATAGTG TAACCACCTC	3780
AAGCCAATCA GGCGATATTG AAGGTACAAT TTCTGGTAAT ACAGTAAATG TTACAGCAAG	3840
CACTGGTGAT TTAACTATTG GAAATAGTGC AAAAGTTGAA GCGAAAATG GAGCTGCAAC	3900
CTTAACTGCT GAATCAGGCA AATTAACCAC CCAAACAGGC TCTAGCATTA CCTCAAGCAA	3960
TGGTCAGACA ACTCTTACAG CCAAGGATAG CAGTATCGCA GGAAACATTA ATGCTGCTAA	4020
TGTGACGTT AATACCACAG GCACITTAAC TACTACAGGG GATTCAAAGA TTAACGCAAC	4080
CAGTGGTACC TTAACAATCA ATGCAAAAGA TGCCAAATTA GATGGTGCTG CATCAGGTGA	4140
CCGCACAGTA GTAAATGCAA CTAACGCAAG TGGCTCTGGT AACGTGACTG CGAAAACCTC	4200
AAGCAGCGTG AATATCACCG GGGATTTAAA CACAATAAAT GGGTTAAATA TCATTTCGGA	4260
AAATGGTAGA AACACTGTGC GCTTAAGAGG CAAGGAAATT GATGTGAAAT ATATCCAACC	4320
AGGTGTAGCA AGCGTAGAAG AGGTAATTGA AGCGAACGC GTCCTTGAGA AGGTAAAAGA	4380
TTTATCTGAT GAAGAAAGAG AAACACTAGC CAAACTTGGT GTAAGTGCTG TACGTTTCGT	4440
TGAGCCAAAT AATGCCATTA CGGTTAATAC ACAAAACGAG TTTACAACCA AACCATCAAG	4500
TCAAGTGACA ATTTCTGAAG GTAAGGCGTG TTTCTCAAGT GGTAATGGCG CACGAGTATG	4560
TACCAATGTT GCTGACCGATG GACAGCAGTA GTCAGTAATT GACAAGGTAG ATTTCATCCT	4620
GCAATGAAGT CATTATTT TCGTATTATT TACTGTGTGG GTAAAGTTC AGTACGGGCT	4680
TTACCCACCT TGTAAAAAAT TA	4702

CLAIMS

What we claim is:

1. A vaccine against disease caused by non-typeable Haemophilus influenzae, including otitis media, sinusitis and bronchitis, comprising an effective amount of a high molecular weight protein of non-typeable Haemophilus influenzae which is protein HMW1, HMW2, HMW3 or HMW4 or a variant or fragment of said protein retaining immunological properties thereof or a synthetic peptide having an amino acid sequence corresponding to that of said protein, and a physiological carrier therefor.
2. The vaccine of claim 1 wherein said protein is HMW1 encoded by the DNA sequence shown in Figure 1 (SEQ ID NO:1), having the derived amino acid sequence of Figure 2 (SEQ ID NO:2) and having an apparent molecular weight of 125 kDa.
3. The vaccine of claim 1 wherein said protein is HMW2 encoding by the DNA sequence shown in Figure 3 (SEQ ID NO:3), having the derived amino acid sequence of Figure 4 (SEQ ID NO:4) and having an apparent molecular weight of 120 kDa.

SUBSTITUTE SHEET (RULE 26)

FIG. 1A. DNA SEQUENCE OF HIGH MOLECULAR WEIGHT PROTEIN

I (HMW1)

1 ACAGCGTTCT CTTAATACTA GTACAAACCC ACAATAAAAT ATGACAAACA
 51 ACAATTACAA CACCTTTT GCAGTCATA TGCATAATTT TTAAAAAATA
 101 GTATAAAATCC GCAATATAAA ATGGTATAAT CTTTCATCT TCATCTTTCA
 151 TCTTTCATCT TTCACTCTTCA ATCTTTCATC TCTTTCATCT TTTCATCTTT CATCTTTCAT
 201 CTTTCATCT TCATCTTCA TCTTTCATCT TTCACTCTTC ACATGCCCTG
 251 ATGAAACCGAG GGAAGGGAGG GAGGGCAAG AATGAAGAGG GAGCTGAACG
 301 AACGCAAATG ATAAAGTAAT TTAATTGTTTC AACTAACCTT AGGAGAAAT
 351 ATGAAACAAGC TATATCGTCT CAAATTCAAGC AAACGCCCTGA ATGCTTTGCT
 401 TGCTGTGTCT GAATTGGCAC GGGTTGTGA CCATTCCACA GAAAAGGCA
 451 GCGAAAAAC TGCTCGCATG AAAGTGGCTC ACTTAGGGTT AAAGCCACTT
 501 TCCGCTATGT TACTATCTT AGGTGTAACA TCTATTCCAC AATCTGTTT
 551 AGCAAGGGC TTACAAGGAA TGGATGTAGT ACACGGCACA GCCCACTATGC
 601 AAGTAGATGG TAATAAAACC ATTATCCGCA ACAGTGGTGA CGATATCATT
 651 AATTGAAAC AATTAAACAT CGACCAAAAT GAAATGGTGC AGTTTTTACA
 701 AGAAAACAAAC AACTCCGCCG TATTCAACCG TGTTACATCT AACCAAATCT

FIG. 1B.

751 CCCAATTAAA AGGGATTAA GATTCTAACG GACAAGTCTT TTTAATCAAC
 801 CCAAATGGTA TCACAAATTAGG TAAAGACGCC ATTATTAACA CTAATGGCCTT
 851 TACGGCTTCT ACGGCTAGACA TTTCTAACGA AAACATCAAG GCGCGTAATT
 901 TCACCTTCGA GCAAACCAAA GATAAAGCCGC TCGCTGAAT TGTGAATCAC
 951 GGTTAATTAA CTGTCGGTAA AGACGGCAGT GTAATCTTA TTGGTGGCAA
 1001 AGTGAAC AAC GAGGGTGTGA TTAGCGTAAA TGGTGGCAGC ATTTCTTAC
 1051 TCGCAGGGCA AAAAATCACCC ATCAGCGATA TAATAAACCC AACCATTA^N
 1101 TACAGCATTG CGCGCCTGA AAATGAAGCG GTCAATCTGG GCGATATT⁶
 1151 TGCCAAGGC GGTAAACATTA ATGTCGGTGC TGCCACTATT CGAAACCAAG
 1201 GTAAACTTTC TGCTGATTCT GTAAGCAAAG ATAAAAGGG CAATATTGTT
 1251 CTTTCCGCCA AAGAGGGTGA AGGGAAATT GGCGGTGTAA TTTCGGCTCA
 1301 AAATCAGCAA GCTAAAGGGC GCAAGGCTGAT GATTACACGC GATAAAGTC
 1351 CATTAAAC AGGTGCAGTT ATCGACCTT CAGGTAAAGA AGGGGGAGAA
 1401 ACTTACCTTG GCGGTGACGA GCGGGCGAA GGTAAAAGG GCATTCAATT
 1451 AGCAAAAGAAA ACCCTCTTTAG AAAAAGGCTC AACCATCAAT GTATCAGGCA
 1501 AAGAAAAAGG CGGACGGCGCT ATTGTGTGGG GCGATATTGC GTTAATTGAC

FIG. 1C.

1551	GGCAATATA	ACGCTCAAGG	TAGTGGTGAT	ATCGCTAAA	CCGGTGGTTT
1601	TGTGGAGACG	TCGGGCATG	ATTATTCAT	CAAAGACAAT	GCAATTGTTG
1651	ACGCCAAAGA	GTGGTTGTTA	GACCCGGATA	ATGTATCTAT	TAATGCAGAA
1701	ACAGCAGGAC	GCAGCAATAC	TTCAGAAGAC	GATGAATAACA	CGGGATCCGG
1751	GAATAGTGCC	AGCACCCCCA	AACGAAACAA	AGAAAAGACA	ACATTAACAA
1801	ACACAACTCT	TGAGAGTATA	CTAAAAAAAG	GTACCTTTGT	TAACATCACT
1851	GCTAAATCAAC	GCATCTATGT	CAATAGCTCC	ATTAATTAT	CCAATGGCAG 3 / 68
1901	CTTAACTCTT	TGGAGTGAGG	GTGGGAGGG	TGGGGGGGT	GAGATTAAACA
1951	ACGATATTAC	CACCGGTGAT	GATAACCAGAG	GTGCAAACCT	ACAATTAC
2001	TCAGGGGCT	GGGTTGATGT	TCATAAAAAT	ATCTCACTCG	GGGGCAAGG
2051	TAACATAAAC	ATTACAGCTA	AACAAGATAT	CGCCCTTTGAG	AAAGGAAGCA
2101	ACCAAGTCAT	TACAGGTCAA	GGGACTATT	CCTCAGGCCA	TCAAAAGGT
2151	TTTAGATTAA	ATAATGTCTC	TCTAAACGGC	ACTGGCAGCG	GACTGCAATT
2201	CACCACTAA	AGACCAATA	AATACGCTAT	CACAAATAAA	TTTGAAGGGA
2251	CTTTAAATAT	TTCAAGGAAA	GTGAACATCT	CAATGGTTTT	ACCTAAAAAT
2301	GAAAGTGGAT	ATGATAAATT	CAAAGGACGC	ACTTACTGGA	ATTAAACCTC

FIG. 1D.

2351 CTTAAATGTT TCCGAGACTG GCGGAGTTAA CCTCACTATT GACTCCAGAG
 2401 GAAGCGATAG TGCAGGCACCA CTTACCAGC CTTATAATT AAAACGGTATA
 2451 TCATTCACCA AAGACACTAC CTTTAATGTT GAACCCAATG CAAGAGTCAA
 2501 CTTTGACATC AAGGCACCAA TAGGGATAAA TAAGTATTCT AGTTTGATT
 2551 ACGCATCAT TAATGGAAC ATTTCAGTT CGGGAGGGG GAGTGTGAT
 2601 TTCACACTTC TCGCCTCATC CTCTAACGTC CAAACCCCCG GTGTAGTTAT
 2651 AAATTCTAAA TACTTTAATG TTTCAACAGG GTCAAGTTA AGATTAAAA ^A
 2701 CTTCAGGCTC AACAAAAACT GGCTTCTCAA TAGAGAAAGA TTTAACTTTA ^G
 2751 AATGCCACCG GAGGCCACAT AACACTTTG CAAGTTGAAG GCACCGATGG
 2801 AATGATTGGT AAAGGCATTG TAGCCAAAA AACACATAACC TTIGAAGGAG
 2851 GTAACATCAC CTTGGCTCC AGGAAAGCCG TAACAGAAAT CGAAGGCAAT
 2901 GTTACTATCA ATAACAACGC TAACGTCACT CTTATCGGT CGGATTGTA
 2951 CAACCATCAA AACCTTTAA CTATTAAGA AGATGTCATC ATTAATAGCG
 3001 GCAACCTTAC CGCTGGAGGC AATATTGTCA ATATAGCCGG AAATCTTAC
 3051 GTTGAAGTA ACGCTAATT CAAAGCTATC ACAAAATTCA CTTTTAATGT
 3101 AGGGGGCTTG TTGACACAA AGGCCATTCA AAATATTTC ATTGCCAAAG
 3151 GAGGGCTCG CTTAAAGAC ATTGATAATT CCAAGAAATT AACCATCACC

FIG. 1E.

3201	ACCAACTCCA	GCTCCACTTA	CCGGCACTATT	ATAAGCGGCA	ATATAACC	AA
3251	TAAAACGGT	GATTAAATA	TTACGAACGA	AGGTAGTGAT	ACTGAAATGC	
3301	AAATTGGGG	CGATGTC	CGAAGAAG	GTAATCTCAC	GATTCTCTCT	
3351	GACAAATCA	ATATTACCAA	ACAGATAACA	ATCAAGGCAG	GTGTTGATGG	
3401	GGAGAATTCC	GATTCAAGACG	CGACAAACAA	TGCCAATCTA	ACCATTAAAA	
3451	CCAAAGAATT	GAAATTAAACG	CAAGACCTAA	ATATTTCAGG	TTTCAATAAA	
3501	GCAGAGATT	CAGCTAAAGA	TGGTAGTGAT	TTAACTATTG	GTAACACCAA	U
3551	TAGTGGCTGAT	GGTACTAATG	CCAAAAAAAGT	AACCTTTAAC	CAGGTTAAAG	6
3601	ATTCAAAAT	CTCTGCTGAC	GGTCACAAAGG	TGACACTACA	CAGCAAAGTG	
3651	GAAACATCCG	GTAGTAATAA	CAACACTGAA	GATAGCAGTG	ACAATAATGC	
3701	CGGCTTAAC	ATCGATGCCA	AAAATGTAAC	AGTAACAAAC	AATATTACTT	
3751	CTCACAAAGC	AGTGAGGCATC	TCTGCCACAA	GTGGAGAAAT	TACCACTAAA	
3801	ACAGGTACAA	CCATTAACGC	AACCACTGGT	AACGTTGGAGA	TAACCGCTCA	
3851	AACAGGTAGT	ATCCTAGGTG	GAATTGAGTC	CAGCTCTGGC	TCTGTAAACAC	
3901	TTACTGCAAC	CGAGGGCGCT	CTTGCTGTAA	GCAATATTTC	GGGCAACACC	
3951	GTACTGTTA	CTGCAAATAG	CGGTGCATTA	ACCACTTTGG	CAGGCTCTAC	

FIG. 1F.

4001 AATTAAGGA ACCGAGAGTG TAACCACCTC AAGTCAATCA GCGATATCG
 4051 GGGGTACGGAT TTCTGGTGGC ACAGTAGAGG TTAAAGGCAAC CGMAAGTTTA
 4101 ACCACTCAAT CCAATTCAA AATTAAAGCA ACAACAGGGG AGGCTAACGTT
 4151 ACAAAGTGCA ACAGGTACAA TTGGTGGTAC GATTTCGGT AATACGGTAA
 4201 ATGTTACGGC AAACGCTGGC GATTAAACAG TTGGGAATGG CGCAGAAATT
 4251 AATGGGACAG AAGGAGCTGC AACCTTAACCT ACATCATCGG GCAAATTAAAC
 4301 TACCGAAGCT AGTTACACA TTACTTCAGC CAAGGGTCAG GTAAATCTTT
 4351 CAGCTCAGGA TGGTAGCGTT GCAGGAAGTA TTAATGCCGC CAATGTGACA
 4401 CTAATACTA CAGGCCACTT AACTACCGTG AAGGGTTCAA ACATTAAATGC
 4451 AACCGGGT ACCTTGGTT TAAACGCAA AGACGCTGAG CTAATGGCG
 4501 CAGCATGGG TAACCACACA GTGGTAAATG CAACCAACGC AAATGGCTCC
 4551 GGCAGCGTAA TCGCGACAAC CTCAGCAGA GTGAACATCA CTGGGGATT
 4601 AATCACATA AATGGATTAA ATATCATTTC AAAAACGGT ATAAACACCG
 4651 TACTGTAAA AGGGCTAAA ATTGATGTGA AATACATTCA ACCGGGTATA
 4701 GCAAGCGTAG ATGAAGTAAT TGAAGCGAAA CGCATTCTTG AGAAGGTTAA
 4751 AGATTATCT GATGAAGAAA GAGAAGCGTT AGCTAAACTT GGAGTAAGTG
 4801 CTGTTACGTTT TATTGAGCCA AATAATACAA TTACAGTCGA TACACAAAT

7/68

FIG. 1G.

4851	GAATTGGCAA	CCAGACCATT	AAGTCGAATA	GTGATTCTTG	AAGGCAGGGC
4901	GTGTTTCTCA	AACAGTGATG	GCGGACGGT	GTGCGTTAAT	ATCCCTGATA
4951	ACGGGGGTA	GCGGTCACTA	ATTGACAAGG	TAGATTTCAT	CCTGCAATGA
5001	AGTCATTTA	TTTTGGTATT	ATTACTGTG	TGGGTTAAAG	TTCAGTACGG
5051	GCTTACCCA	TCTTGTAAA	AATTACGGAG	AATACAATAA	AGTATTTTA
5101	ACAGGTTATT	ATTATG			

FIG. 2A. AMINO ACID SEQUENCE OF HIGH MOLECULAR WEIGHT

PROTEIN I

1	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
51	SAMLLSLGVT	SIPQSVLASG	LQGMDV VHGT	ATMQV DGNKT	IIRNSVDALL
101	NWKQFNIDQN	EMVQFLQENN	NSAVFNRVTS	NQI SQLKGIL	DSNGQVF LIN
151	PNGITIGKDA	LINTINGFTAS	TLDISNENIK	ARNFTFEQTK	DKALAEIIVNH
201	GLITVGKDGS	VNLIGGKVKN	EGVISVNGGS	ISLLAGQKIT	ISDIINPTIT
251	YSIAAPENE A	VNLIGDIFAKG	GNINVRAATI	RNQGKLSADS	VSKDKSGNIV
301	LSAKEGEAEI	GGVISAQNQQ	AKGGKLMITG	DKVTLKTGAV	IDL SGKEGG E
351	TYLGGDERGE	GKNGIQLAKK	TSLEKGSTIN	VSGKEKGGRA	IVWGDI ALID
401	GNINAQGSGD	IAKTGGFVET	SGHDLFIRDN	AIVDAKEWLL	DFDNVSINAE
451	TAGRSNTSED	DEYTGSNSA	STPKRNKEKT	TLTN TTLESI	LKKGTFVNIT
501	ANQRRIYVNSS	INL SNGSILTL	WSEGRSGGGV	EINNDITTG D	DTRGANLT IY
551	SGGMWVDVHKN	ISLGAQGNIN	ITAK QDIAFE	KGSNQVITG Q	GTITSGNQKG
601	FRFNNVSLNG	TGSGLQFTTK	RTNKYAITNK	FE GTLNISG K	VNI SMVL PKN
651	ESGYDKFKGR	TYWNLTSLNV	SES GEFNL TI	DSRGSDSAG T	LTQPYNLNG I
701	SFNKDTTENV	ERNARVNFDI	KAPIGINKYS	SLNYASFNGN	ISVSGGG SVD

8
68

FIG. 2B.

751 FTLLASSSSNV QTPGVVVINSK YFNVSTGSSL RFKTSGSTKT GFSIEKDLTL
 801 NATGGNITLL QVEGTDMIG KGIVAKKKNIT FEGGNITFGS RKAUTIEIGN
 851 VTINNNANVT LIGSDFDNHQ KPLTIKKDVI INSGNLTAGG NIVNIAGNLT
 901 VESNANFKAI TNFTFNVGGL FDNGNSNIS IAKGGAREFKD IDNSKNLSTIT
 951 TNSSSTYRTI ISGNITNKG DLNITNEGSD TEMQIGGDVS QKEGNLTISS
 1001 DKINITKQIT IKAGVDGENS DSDATNNANL TIKTKELKLQ DQLNISGFNK
 1051 AEITAKDGSD LTIGNTNSAD GTNAKKVTFN QVKDSKISAD GHKVTLHSKV
 1101 ETSSGSNNNTE DSSDNNAGLT IDAKNVTVNN NITSHKAVSI SATSGEITTK
 1151 TGTTINATTG NVEITAQQTGS ILGGIESSSG SVTLTATEGA LAVSNISGNT
 1201 VTVTANSGAL TTLAGSTIKG TESVTTSSQS GDIGGTISGG TVEVKATESL
 1251 TTQNSNSKIKA TTGEANVTSQ TGTIGGTISG NTVNVNTANAG DLTVGNGAEI
 1301 NATEGAATLT TSSGKLTEA SSHITSAKGQ VNLSAQDGGSV AGSINAANVT
 1351 LNTTGTLTTV KGSSNINATSG TLVINAKDAE LNGAALGNHT VVNATNANGS
 1401 GSVIATTSSR VNITGDLITI NGLNIIISKNG INTVLLKGVK IDVKYIQPGI
 1451 ASVDEVIEAK RILEKVKDLS DEEREALAKL GVSAVRFIEP NNITITVDTQN
 1501 EFATRPLSRI VISEGRACFS NSDGATVCVN IADNGR

9/68

FIG. 3A. AMINO ACID SEQUENCE OF HIGH MOLECULAR WEIGHT**PROTEIN II (HMW2)**

1 TAATATACA AGATAATAAA ATAATAATCAA GATTITTGTCG ATGACAAACAA
 51 ACAATTACAA CACCTTTTGCAGTCTATA TGCAAAATATT TTAAAAAAAT
 101 AGTATAAATC CGCCATATAA AATGGTATAA TCTTTCATCT TTTCATCTTTA
 151 ATCTTCATC TTTCATCTTT CATCTTCAT CTTTCATCTT TCATCTTCA
 201 TCTTTCATCT TTTCATCTTTC ATCTTCATC ATCTTCATCTT CACATGAAAT
 251 GATGAACCGA GGGAAAGGGAG GGAGGGGCAA GAATGAAGAG GGAGGCTGAAAC O
 301 GAACGCAAAT GATAAAAGTAA TTTAACATTGTT CAACTAACCT TAGGAGAAAA 68
 351 TATGAACAAAG ATATATCGTC TCAAATTCAG CAAACGCCCTG AATGCTTTGG
 401 TTGCTGTGTC TGAATTGGCA CGGGGTGTG ACCATTCCAC AGAAAAGGC
 451 TTCCGCTATG TTACTATCTT TAGGTGTAAC CACTTAGCGT TAMAGCCACT
 501 TTCCGCTATG TTACTATCTT TAGGTGTAAC ATCTATTCCA CAATCTGTTT
 551 TAGCAAGCGG CTTACAAAGGA ATGGATGTAG TACACGGCAC AGCCACTATG
 601 CAAGTAGATG GTAATAAAAC CATTATCCGC AACAGTGTG AACGCTATCAT
 651 TAATTGGAAA CAATTTAACAA TCGACCAAAA TGAAATGGTG CAGTTTTTAC
 701 AAGAAAACAA CAACTCCGCC GTATTCAAACC GTGTACATC TAACCAAATC

FIG. 3B.

751 TCCCAATTAA AAGGGATTT AGATTCTAAC GGACAAGTCT TTTTAATCAA
 801 CCCAAATGGT ATCACAAATAG GTAAAGACGC AATTATTAAAC ACTAATGGCT
 851 TTACGGCTTC TAGGCTAGAC ATTCTAAACG AAAACATCAA GGCGCGTAAAT
 901 TTCACCTTCG AGCAAACCAA AGATAAAAGCG CTCGCTGAAA TTGTGAATCA
 951 CGGTAAATT ACTGTGGTA AAGACGGCAG TGTAAATCTT ATTGGTGGCA
 1001 AAGTGAAAAA CGAGGGTGT ATTAGCGTAA ATGGTGGCAG CATTTCCTTA
 1051 CTCGCAGGGC AAAAAATCAC CATCAGCGAT ATAATAAACCAACCACTTAC
 1101 TTACAGCATT GCCGGGCCCTG AAAATGAAGC GGTCAATCTG GGGGATATT^{11/60}
 1151 TTGCCAAAGG CGGTAACATT AATGTCCGTG CTGCCACTAT TCGAAACCAA
 1201 GGTAAACTTT CTGCTGATTCT TGTAAGCAA GATAAAAGCG GCAATATTGT
 1251 TCTTTCCGCC AAAGAGGGTG AAGGGAAAT TGGCGGTGTA ATTTCGGCTC
 1301 AAAATCAGCA AGCTAAAGGC GGCAAGCTGA TGATTAACAGG CGATAAAAGTC
 1351 ACATTAAAAA CAGGTGCAGT TATCGACCTT TCAGGTAAG AACGGGGAGA
 1401 AACTTACCTT GGCGGTGACG AGCGGGCGA AGGTAAAAAC GGCAATTCAAAT
 1451 TAGCAAAGAA AACCTCTTTA GAAAAGGCT CAACCATCAA TGTTATCAGGC
 1501 AAAGAAAAAG GCGGACGGCGC TATTGTGTGG GGCGATATTG CGTTAAATTGA

FIG. 3C.

1551 CGGCAATATT AACGGCTCAAG GTACTGGTGA TATCGCTAAA ACCGGTGGTT
 1601 TTGTGGAGAC ATCGGGCAT TATTATCCA TTGACAGCAA TGCAATTGTT
 1651 AAAACAAAG AGTGGTGCT AGACCCTGAT GATGTAACAA TTGAAGCCGA
 1701 AGACCCCTT CGCAATAATA CCGGTATAAA TGATGAATTTC CCAACAGGCA
 1751 CCGGTGAAGC AAGCGACCCCT AAAAAAATA GCGAACTCAA ACAAACGCTA
 1801 ACCAATACAA CTATTCAAAATTATCTGAAA AACGCCTGGA CAATGAATAT
 1851 AACGGCATCA AGAAAACCTTA CCGTTAATAG CTCAAATCAAAC ATCGGAAGCA
 1901 ACTCCCACTT AATTCTCCAT AGTAAAGGTC AGCGTGGCGG AGCGGTTCAG 12 / 68
 1951 ATTGATGGAG ATATTACTTC TAAAGGGGA AATTAAACCA TTTATTCTGG
 2001 CGGATGGTT GATGTTCTATA AAAATATTAC GCTTGATCAG GGTTTTTAA
 2051 ATATTACCGC CGCTTCCGTA GCTTTGAAAG GTGGAATAA CAAAGCACGC
 2101 GACGGGCCAA ATGCTAAAAT TGTGCCCCAG GGCACGTGTAAC CATTACAGG
 2151 AGAGGGAAA GATTTCAGGG CTAAACAACGT ATCTTTAAC AC GGAACGGGTAA
 2201 AAGGTCGTGAA TATCATTCA TCAGTGAATA ATTAAACCCA CAATCTTAGT
 2251 GGCACACATTA ACATATCTGG GAATAACA ATTAAACCAA CTACGAGAAA
 2301 GAACACCTCG TATTGGCAA CCAGGCCATGA TTCGGCACTGG AACGTCAGTG
 2351 CTCTTAATCT AGAGACAGGC GCAAATTAA CCTTTTATTTAA ATACATTTCA

FIG. 3D.

2401	AGCAATAGCA	AAGGCTTAAC	AACACAGTAT	AGAAGCTCTG	CAGGGGTGAA
2451	TTTTAACGGC	GTAAATGCCA	ACATGTCATT	CAATCTCAA	GAAGGAGCGA
2501	AAGTTAATT	CAAATAAAAA	CCAAACGAGA	ACATGAACAC	AAGCAAACCT
2551	TTACCAATT	GGTTTTAGC	CAATATCACA	GCCACTGGTG	GGGGCTCTGT
2601	TTTTTTGAT	ATATATGCCA	ACCATTCTGG	CAGAGGGCT	GAGTTAAAAA
2651	TGAGTGAAAT	TAATATCTCT	AACGGGGCTA	ATTTTACCTT	AAATTCCCCAT
2701	GTTCGGGCG	ATGACGGCTT	TAAAATCAAC	AAAGACTTAA	CCATAAATGCG
2751	AACCAAATTCA	AATTTCAGGC	TCAGACAGAC	GAAGAGATGAT	TTTTATGACG
2801	GGTACGGCACG	CATGCCATC	AATTCAACCT	ACAACATATC	CATTCTGGGC
2851	GGTAATGTCA	CCCTTGGTGG	ACAAAACCTCA	AGCAGGCAGCA	TTACGGGGAA
2901	TATTACTATC	GAGAAAGCAG	CAAATGTTAC	GCTAGAAAGCC	AATAACGCC
2951	CTAATCAGCA	AAACATAAGG	GATAGAGTTA	AAAACCTGG	CAGCTTGCTC
3001	GTAAATGGGA	GTTTAAGTTT	AACTGGCGAA	AATGCAGATA	TTAAAGGCAA
3051	TCTCACTATT	TCAGAAAGCG	CCACTTTAA	AGGAAAGACT	AGAGATAACCC
3101	TAATATCAC	CGGCAATT	ACCAATAATG	GCAC TGGCGA	AATTAAATATA
3151	ACACAAGGAG	TGGTAAACT	TGGCAATGTT	ACCAATGATG	GTGATTAAA

13 / 60

FIG. 3E.

3201 CATTACCACT CACGCTAAC GCAACCAAAG AAGCATCATT GGCAGGAGATA
 3251 TAATCAACAA AAAAGGAAGC TTAATATTAA CAGACAGTAA TAATGATGCT
 3301 GAAATCCAAA TTGGCGGCAA TATCTCGCAA AAAGAAGGCA ACCTCACCGAT
 3351 TTCTTCCGAT AAAATTAAATA TCACCAAACA GATAACAATC AAAAGGGTA
 3401 TTGATGGAGA GGACTCTAGT TCAGATGCCA CAAGTAATGC AACCTAACT
 3451 ATTAAAACCA AAGAATTGAA ATTGACAGAA GACCTTAAGTA TTTCAGGTTT
 3501 CAATAAGCA GAGATTACAG CCAAAGATGG TAGAGATTAA ACTATTGGCA
 3551 ACAGTAATGA CGGTAAACAGC GGTGCCGAAG CCAAAACAGT AACTTTAAC⁴⁶⁸
 3601 AATGTTAAG ATTCAAAAT CTCTGCTGAC GGTCAACAATG TGACACTAAA
 3651 TAGCAAAGTG AAAACATCTA GCAGCAATGG CGGACCGTGA AGCAATAGCG
 3701 ACAACGATAC CGGCTTAACCT ATTACTGCCA AAAATGTAGA AGTAAACAAA
 3751 GATATTACTT CTCTCAAAAC AGTAAATATC ACCGGTCTGG AAAAGGTTAC
 3801 CACCAACAGCA GGCTCGACCA TTAACGCAAC AAATGGCAA GCAAGTATTAA
 3851 CAACCAAAAC AGGTGATATC ACCGGTACGA TTTCCGGTAA CACGGTAAGT
 3901 GTTAGGGGA CTGGTGATT ACCCACTAAA TCCGGCTCAA AAATTGAAAGC
 3951 GAAATCGGGT GAGGCTTAATG TAACAAGTGC AACAGGTACA ATTGGCGGTA

FIG. 3F.

4001	CAATTCCGG	TAATACGGT	AATGTTACGG	CAAACGCTGG	CGATTAAACA
4051	GTTGGGAATG	GCGCAGAAAT	TAATGGCGACA	GAAGGGACTG	CAACCTTAAC
4101	CGCAACAGGG	AATAACCTTGA	CTACTGAAGC	CGGTTCTAGC	ATCACTTCAA
4151	CTAAGGGTCA	GGTAGACCTC	TTGGCTCAGA	ATGGTAGCCAT	GGCAGGAAAGC
4201	ATTAATGCTG	CTAATGTGAC	ATTAAATACT	ACAGGCACCT	TAACCACCGT
4251	GGCAGGGCTCG	GATATTAAAG	CAACCAGGG	CACCTTGTT	ATTAACGCAA
4301	AAGATGCTAA	GCTAAATGGT	GATGCATCAG	GTGATAGTAC	AGAAAGTGAAT
4351	GCAGTCAAACG	CAAGGGGCTC	TGGTAGTGTG	ACTGCCGCAA	CCTCAAGCAG
4401	TGTGAATATC	ACTGGGGATT	TAAACACACT	AAATGGTTA	AATATCATT
4451	CGAAAAGATGG	TAGAAACACT	GTGGCGTTAA	GAGGCAAGGA	AATTGAGGTTG
4501	AAATATATCC	AGCCAGGTGT	AGCAAGTGT	GAAGAAGTAA	TTGAAGCGAA
4551	ACGGCGTCCTT	GAAAAAGTAA	AAGATTATC	TGATGAGAA	AGAGAAACAT
4601	TAGCTAAACT	TGGTGTAAGT	GCTGTACGTT	TTGTTGAGCC	AAATAATACA
4651	ATTACAGTCA	ATACACAAAA	TGAATTTACA	ACCAAGACCGT	CAAGTCAAAGT
4701	GATAATTCT	GAAGGTAAGG	CGTGTTCCTC	AAGTGGTAAT	GGGGCACGAG
4751	TATGTACCAA	TGTTGCTGAC	GATGGACAGC	CGTAGTCAGT	ATTGACAAAG
4801	GTAGATTTCA	TCCTGCAATG	AAGTCATT	ATTTCGGTAT	TATTTACTGT

16/68

FIG. 3G.

4851 GTGGGTTAAA GTTCAGTACG GGCTTTACCC ATCTTGTAAG AAAATTACGGAA
4901 GAATACAATA AAGTATTTTT AACAGGTTAT TATTATG

**FIG. 4A. AMINO ACID SEQUENCE OF HIGH MOLECULAR WEIGHT
PROTEIN 2**

1	MNKIYRLKFS	KRLNALVAVS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
51	SAMILLSLGVT	SIPQSVLASG	LQGMDV VHGT	ATMQVDGNKT	TIRNSVDAII
101	NWKQFNIDQN	EMVQFLQENN	NSAVFNRVTS	NQISQLKGIL	DSNGQVFLIN
151	PNGITIGKDA	IINTNGFTAS	TLDISNENIK	ARNFTFEQTK	DKALAEIVNH
201	GLITVGKDGS	VNLIGGKVKN	EGVISVNGGS	ISLLAGQKIT	ISDIINPTIT
251	YSIAAPNEA	VNLGDI FAKG	GNINVRAATI	RNQGKLSADS	VSKDKSGNIV
301	LSAKEGEAEI	GGVISAQMQQ	AKGGKLIMITG	DKVTLKTGAV	IDLSGKEGGE
351	TYLGGDERGE	GKNGIQLAKK	TSLEKGSTIN	VSGKEKGGRA	IWGDIALID
401	GNINAQGSGD	IAKTGGFVET	SGHDLFIKDN	AIVDAKEWL	DFDNVSI
451	DPLRNNTGIN	DEFPTGTGEA	SDPKKNSELK	TTLTNTTISN	YLKNAWTMNI
501	TASRKLTVNS	SINIGSNSHL	ILHSKGQRGG	GVQIDGDITS	GGGNLTIYSG
551	GWVDVHKNIT	LDQGFLNITA	ASVAFEGGNN	KARDAANAKI	VAQGTVTITG
601	EGKDFRANNV	SLNGTGKGLN	IISSVMNLTH	NLSGTINISG	NITINQTRK
651	NTSYWQTSHD	SHWNVSALNL	ETGANFTFIK	YISSNSKGLT	TQYRSSAGVN
701	FNGVINGNMSF	NLKEGAKVNF	KLKPNNEMNT	SKPLPIRFLA	NITATGGGSV

FIG. 4B.

751 FFDIYANHSG RGAELKMSEI NISNGANFTL NSHVRGDDAF KINKDLTINA
 801 TNSNFSLRQT KDDFYDGYAR NAINSTYNIS ILGGNVTLGG QNSSSSITGN
 851 ITIEKAANVT LEANNAPNQQ NIRDRVIKLG SLLVNGSLSL TGENADIKGN
 901 LTISESATFK GKTRDTLNIT GNFTNNGTAE INITQGVVKL GNVTNNDGLN
 951 ITTHAKRNQR SIIGGDIINK KGSLNUNITDSN NDAEIQIGGN ISQKEGNLTI
 1001 SSDKINITKQ ITIKKGIDGE DSSSDATSNA NLTIKTKEKL LTEDLSISGF
 1051 NKAETITAKDG RDLTIGNSND GNSGAEAKTV TFNNVKDPSKI SADGHNVTLN
 1101 SKVKTSSSNG GRESNSDNDT GLTTAKNVE VNKDITSLKT VNITASEKVT 18 / 68
 1151 TTAGSTINAT NGKASITTKT GDISGTISGN TVSVSATVVDL TTKSGSKIEA
 1201 KSGEANTVSA TGTIGGTTISG NTVNVTANAG DLTVGNCAEI NATEGAATLT
 1251 ATGNTLTTEA GSSSITSTKGQ VDLIAQNGSI AGSINAANVT LNTTGTLLTV
 1301 AGSDIKATSG TLVINAKDAK LNGDASGDEST EVNAVNASGS GSVAATSS
 1351 VUNITGDLNTV NGLNIISKDG RNTVRLRGKE IEVKYIQPGV ASVEEVIEAK
 1401 RVLEKVKDLS DEERETLAKL GVSAVRFVEP NNITITVNTQN EFTTRPSSQV
 1451 IISSEGKACFS SGNGARVCTN VADDGQP

19/68

FIG.5A.

20/68

FIG. 5B.

(A) Partial restriction maps of representative HMW1 and HMW2 recombinant phage and of HMW1 plasmid subclones. The shaded boxes indicate the locations of the structural genes. In the recombinant phage, transcription proceeds from left to right for the HMW1 gene and from right to left for the HMW2 gene. The methods used for construction of the plasmids shown are described in the text. (B) Restriction map of the T7 expression vector pT7-7. This vector contains the T7 RNA polymerase promoter ϕ 10, a ribosome - binding site (rbs), and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site (37).

FIG. 6A.

1 ACAGCGTTCT CTTAATACTA GTACAAACCC ACAATAAAAT ATGACAAACA
 51 ACAATTACAA CACCTTTTGCAGTCATA TGCAAAATATT TTAAAAAATA
 101 GTATAAATCC GCCATATAAA ATGGTATAAT CTTCATCTT TCATCTTTC
 151 TCTTCATCTT TTCATCTTTC ATCTTTCATC TTTCATCTT CATCTTCAT
 201 CTTTCATCTT TCATCTTTC ATCTTTCATCTT TTCACTCTT ACATGAATIG
 251 ATGAAACCGAG GGAAGGGAGG GAGGGGCAAG AATGAAGAGG GAGCTGAACG
 301 AACGCAAATG ATAAGTAAT TTAATTGTTCAACTAACCTT AGGAGAAAT 21
 351 ATGAAACAAGA TATATCGTCT CAAATTCAAGC AAACGCCCTGA ATGCTTTGGT 68
 401 TGCTGTGTCT GAATTGGCAC GGGGTGTGTA CCATTCACCA GAAAAGGCCA
 451 GCGAAAACC TGCTCGCATG AAAGTGGCTC ACTTAGCGTT AAAGCCACTT
 501 TCCGCTATGT TACTATCTT AGGTGTAAACA TCTATTCCAC AATCTGTTT
 551 AGCAAGGGC TTACAAGGA TGGATGTAGT ACACGGCACA GCCACTATGC
 601 AAGTAGATGG TAATAAAACC ATTATCCGCA ACAGTGTGTA CGCTATCATT
 651 AATTGGAAC AATTAAACAT CGACCAAAAT GAAATGGTGC AGTTTTTACA
 701 AGAAAACAAC AACTCCGCCG TATTCAACCG TGTTACATCT AACCAAATCT
 751 CCCAATTAAA AGGGATTATA GATTCTAACCG GACAAGTCTT TTTAATCAAC

FIG. 6B.

22 / 68

801	CCAAATGGTA	TCACAAATAGG	TAAAGACGCA	ATTATTAACA	CTAATGGCTT
851	TACGGCTTCT	ACGCTAGACA	TTTCTAACGA	AAACATCAAG	GCGCGTAATT
901	TCACCTTCGA	GCAAACCAA	GATAAAGCGC	TCGCTGAAAT	TGTGAATCAC
951	GGTTAAATTA	CTGTCGGTAA	AGACGGCAGT	GTAAATCTTA	TTGGTGGCAA
1001	AGTGAAAAAC	GAGGGGTGTGA	TTAGCGTAAA	TGGTGGCAGC	ATTTCCTTAC
1051	TCGCAGGGCA	AAAAATCACC	ATCAGGGATA	TAATAAACCC	AACCATTA
1101	TACAGCCATTG	CCGGCGCTGA	AAATGAAGCG	GTCAAAATCTGG	GCGATATTCTT
1151	TGCCAAAGGC	GGTAACATTA	ATGTCCCGTGC	TGCCCACTATT	CGAAACCAAG
1251	CTTTCCGCCA	AAGAGGGTGA	ACGGGAATT	GGCGGTGTA	TTTCCGCTCA
1301	AAATCAGCAA	GCTAAAGGG	GCAAGGCTGAT	GATTACAGGC	GATAAAGTCA
1351	CATTAAAC	AGGTGCAGTT	ATCGACCTT	CAGGTAAAGA	AGGGGGAGAA
1401	ACTTACCTTG	GGGGTGACGA	GCGCGGGGAA	GGTAAAAAACG	GCATTCAATT
1451	AGCAAAGAA	ACCTCTTAG	AAAAGGCTC	AACCATCAAT	GTATCAGGCA
1501	AAGAAAAGG	CGGACGGCGT	ATTGTGTGGG	GCGATATTGC	TTAATTGAC
1551	GGCAATATTA	ACGCTCAAGG	TAGTGGGTGAT	ATCGCTAAA	CCGGTGGGTTT
1601	TGTGGAGACG	TCGGGGCATG	ATTATTCAT	CAAAGACAAT	GCAATTGTG

FIG. 6C.

1651 ACGCCAAGA GTGGTTGTTA GACCCGGATA ATGTATCTAT TAATGCAGAA
 1701 ACAGCGGAC GCAGCAATAC TTCAAGAAC GATGAAGAC GATGAATACA CGGGATCCGG
 1751 GAATAGTGCC AGCACCCAA AACGAAACAA AGAAAAGACA ACATTAACAA
 1801 ACACAACTCT TGAGAGTATA CTAAAAAAG GTACCTTGT TAACATCACT
 1851 GCTAATCAAC GCATCTATGT CAATAGCTCC ATTAAATTAT CCAATGGCAG
 1901 CTTAACTCTT TGGAGTGAGG GTCGGAGGG TGCGGGCGT GAGATTAACA
 1951 ACCGATATTAC CACCGGTGAT GATACCAGAG GTGCCAAACTT ACAAAATTAC 23 / 68
 2001 TCAGGGGGCT GGTTGATGT TCATAAAAT ATCTCACTCG GGGCGCAAAGG
 2051 TAACATAAAC ATTACAGCTA AACAAAGATAT CGCCCTTGAG AAAGGAAGCA
 2101 ACCAAGTCAT TACAGGTCAA GGGACTATTA CCTCAGGCAA TCAAAAGGT
 2151 TTTAGATTAA ATAATGTCTC TCTAAACGGC ACTGGCAGGC GACTGCAATT
 2201 CACCACTAA AGAACCAATA AATACGCTAT CACAAATAAA TTTGAAGGGA
 2251 CTTTAATAT TTCAGGGAA GTGAACATCT CAATGGTTT ACCTAAAAAT
 2301 GAAAGTGGAT ATGATAAAATT CAAAGGACCC ACTTAACTGGA ATTAAACCTC
 2351 GAAAGTGGAT ATGATAAAATT CAAAGGACCC CCTCACTATT GACTCCAGAG
 2401 GAAGGGATAG TGCAGGCACA CTTACCCAGC CTATAAATT AACCGGTATA
 2451 TCATTCAACA AAGACACTAC CTTAAATGTT GAAACGAAATG CAAGAGTCAA

FIG. 6D.

2501 CTTTGACATC AAGGCCCAA TAGGGATAAA TAAGTATTCT AGTTTGAAATT
 2551 ACGCATCATTAATGGAAAC ATTTCAGTCTT CGGGAGGGGG GAGGTGTTGAT
 2601 TTCACACTTC TCGCCTCATC CTCTAACGTC CAAACCCCCG GTGTAGTTAT
 2651 AAATTCTAAA TACTTTAATG TTCAACAGG GTCAAGTTA AGATTAAAAA
 2701 CTTCAGGCTC AACAAAAACT GGCTTCTCAA TAGAGAAAGA TTAACTTTA
 2751 AATGCCACCG GAGGCCACAT AACACTTTG CAAGTTGAAG GCACCGATGG
 2801 AATGATTGGT AAAGGCATTG TAGCCAAAAA AAACATAACC TTTGAAGGAG 24/60
 2851 GTAAGATGAG GTTGGCTCC AGGAAAGCCG TAACAGAAAT CGAAGGCAAT
 2901 GTTACTATCA ATAACAACGC TAACGTCACT CTTATCGGTT CGGATTGTA
 2951 CAACCATCAA AACACCTTAA CTATTTAAA AGATGTCATC ATTAATAGCG
 3001 GCAACCTTAC CGCTGGAGGC AATATTGTCA ATATAGCCGG AAATCTTAC
 3051 GTTGAAGTA ACCGCTAATT CAAAGCTATC ACAAAATTTCATACTTAAATGTT
 3101 AGGGGGCTTG TTGACAAACA AGGGCAATT AAATATTTCCTTCC ATTGCCAAAG
 3151 GAGGGGCTCG CTTTAAAGAC ATTGATAATT CCAAGAATT AAGCATCACC
 3201 ACCAACTCCA GCTCCACTTA CGGCACTATT ATAAGGGCA ATATAACCAA
 3251 TAAAACGGT GATTAAATA TTACGAACGA AGGTAGTGAT ACTGAAATGCA

FIG. 6E.

3301	AAATTGGCGG	CGATGTCTCG	CAAAAGAAG	GTAATCTCAC	GATTTCCTCT
3351	GACAAAATA	ATATTACCAA	ACAGATAACA	ATCAAGGCAG	GTGTTGATGG
3401	GGAGAATTCC	GATTCAGACG	CGACAAACAA	TGCCAATCTA	ACCATAAAA
3451	CCAAGAATT	GAATTAAACG	CAAGACCTAA	ATATTTCAGG	TTTCAATAAA
3501	GCAGGAGATA	CAGCTAANGA	TGGTAGTGAT	TTAACATTAG	GTAACACCAA
3551	TAGTGTGAT	GGTACTATG	CCAAAAAAAGT	AACCTTTAAC	CAGGTTAAAG
3601	ATTCAAAAT	CTCTGCTGAC	GGTCACAAAGG	TGACACTACA	CAGCAAAGTG
3651	GAAACATCCG	GTAGTAATAA	CAACACTGAA	GATAGCAGTG	ACAATAATGC
3701	CGGCTTAAC	ATCGATGCCA	AAAATGTAAC	AGTAAACAA	AATATTACTT
3751	CTCACAAAGC	AGTGAGCATC	TCTGGGACAA	GTGGAGAAAT	TACCACTAAA
3801	ACAGGTACAA	CCATTAAACGC	AACCACTGGT	AACGTGGAGA	TAACCGCTCA
3851	AACAGGTAGT	ATCCTAGGTG	GAATTGAGTC	CAGCTCTGGC	TCTGTAACAC
3901	TTACTGCAAC	CGAGGGCCGCT	CTTGCTGTAA	GCAATATTTC	GGGAAACACC
3951	GTТАCTGT'TA	CTGCAAATAG	CGGTGGATTAA	ACCACCTTTGG	CAGGCTCTAC
4001	AATTAAGGA	ACCGAGACTG	TAACCACTTC	AAGTCAATCA	GGCGATATCG
4051	GCGGTACGAT	TTCTGGTGGC	ACAGTAGAGG	TTAAAGCAAC	CGAAAGTTAA

FIG. 6F.

4101	ACCACTCAAT	CCATTCAA	AATTAAAGCA	ACAACAGGGC	AGGCTAACCGT
4151	AACAAAGTGCA	ACAGGTACAA	TTGGTGGTAC	GATTCCGGT	AATACGGTAA
4201	ATGTTACGGC	AAACGGCTGGC	GATTAAACAG	TTGGGAATGG	CGCAGAAATT
4251	AATGCCGACAG	AAGGAGCTGC	AACCTTAACT	ACATCATCGG	GCAAATTAAAC
4301	TACCGAAGCT	AGITTCACACAA	TTACTTCAGC	CAAGGGTCAG	GTAAATCTTT
4351	CAGCTCAGGA	TGGTAGCGTT	GCAGGAAGTA	TTAATGCCGC	CAATGTGACAA
4401	CTAAATACTA	CAGGCCACTTT	AACTACCGTG	AAGGGTTCAA	ACATTAATGC ²⁶
4451	AACCAGGGT	ACCTTGGTTA	TTAACGCAA	AGACCGCTGAG	CTAAATGGCG ⁶⁸
4501	CAGCATTGGG	TAACCACACA	GTGGTAAATG	CAACCAACGC	AAATGGCTCC
4551	GGCAGCGTAA	TCGGACAAAC	CTCAAGCAGA	GTGAAACATCA	CTGGGGATT
4601	AATCACAAATA	AATGGATTAA	ATATCATTTC	AAAAAAACGGT	ATAAACACCG
4651	TACTGTTAAA	AGGC GTTAAA	ATTGATGTGA	AATACATTCA	ACCGGGTATA
4701	GCAAGCGTAG	ATGAAGTAAT	TGAAGCGAA	CGCATCCTTG	AGAAGGTAA
4751	AGATTATCT	GATGAAGAAA	GAGAACGTT	AGCTAAACTT	GGCGTAAGTG
4801	CTGTACGTT	TATTGAGCCA	AATAATACAA	TTACAGTCGA	TACACAAAT
4851	GAATTTGCAA	CCAGACCATT	AAGTCGAATA	GTGATTCTG	AAGGCAGGGC
4901	GTGTTTCTCA	AACAGTGATG	GGCGGACGGT	GTGGCGTTAAT	ATCGCTGATA

FIG. 6G.

4951	ACGGGGGTA	GCGGTCAAGTA	ATTGACAAGG	TAGATTTCAT	CCTGCAATGA
5001	AGTCATTAA	TTTTCGTATT	ATTACTGTG	TGGGTTAAAG	TTCAAGTACGG
5051	GCTTTACCCAA	TCTTGTAAA	ATTACGGAG	AATAACAATAA	AGTATTTTTA
5101	ACAGGGTATT	ATTATGAAA	ATATAAAAG	CAGATTAAA	CTCAGTGC ^{AA}
5151	TATCAGTATT	GCTTGGCCTG	GCTTCTTCAT	CATTGTATGC	AGAAGAACGG
5201	TTTTTAGTAA	AAGGCTTCA	GTTATCTGGT	GCACATTGAA	CTTTAAGTGA
5251	AGACGCCAA	CTGTCTGTAG	CAAATCTTT	ATCTAAATAC	CAAGGCTCGC ²⁷
5301	AAACTTAAAC	AAACCTAAA	ACAGGCACAGC	TTGAATTACA	GGCTGTGCTA ⁶⁸
5351	GATAAGATG	AGCCAATAA	GTTTGATGTG	ATATTGCCAC	AACAAACCAT
5401	TACGGATGGC	AATATTATGT	TTGAGCTAGT	CTCGAAATCA	GCCGCAGAAA
5451	GCCAAAGTTT	TTATAAGGGCG	AGCCAGGGTT	ATAGTGAAGA	AAATATCGCT
5501	CGTAGCCTGC	CATCTTCA	ACAAGGAAA	GTGTATGAAG	ATGGTCGTCA
5551	GTGGTTCGAT	TTGGCTGAAT	TCAATATGGC	AAAAGAAAAT	CCACTTAAAG
5601	TCAC'TCGCCT	GCATTACGAG	TTAAACCCCTA	AAAACAAAAC	CTCTGATTG
5651	GTAGTTGCAG	GTTTTCCGC	TTTGGCAA	ACGCGTAGCT	TTGTTTCCCTA
5701	TGATAATTTC	GGCGCAAGGG	AGTTAACTA	TCAACGTGTA	AGTCTAGGTT

FIG. 6H.

5751 TTGTAATGC CAATTGACC GGACATGATG ATGTATTAA TCTAAACGCA
 5801 TTGACCAATG TAAAGCACC ATCAAATCT TATGCCGTAG GCATAGGATA
 5851 TACTTATCCG TTTTATGATA AACACCAATC CTTAAGTCTT TATACCAGCA
 5901 TGAGTTATGC TGATTCTAAT GATATCGACG GCTTACCAAG TGGGATTAAT
 5951 CGTAAATTAT CAAAGGTCA ATCTATCTCT GCGAATCTGA AATGGAGTTA
 6001 TTATCTCCCG ACATTAAACC TTGGAATGGA AGACCAGTTT AAAATTAAATT
 6051 TAGGCTACAA CTACCGCCAT ATTATCAA CATCCGAGTT AAACACCCCTG
 6101 GGTGCAACGA AGAAAAAATT TGCAGTATCA GGGCTAAGTG CAGGCATTGA 20/60
 6151 TGGACATATC CAATTACCC CTAAAAACATT CTTAAATATT GATTAACTC
 6201 ATCATTATTA CGCGAAGTAAA TTACCAAGGCT CTTTTGGAAAT GGAGGCCATT
 6251 GGGGAAACAT TTAATCGCAG CTATCACATT AGCACAGCCA GTTTAGGGTT
 6301 GAGTCAGAG TTTGCTCAAG GTTGGCATT TAGCAGTCAA TTATCGGGTC
 6351 AGTTTACTCT ACAAGATATA AGTAGCATAG ATTATTCTC TGTAACAGGT
 6401 ACTTATGGCG TCAGGGCTT TAAATACGGC GGTGCAAGTG GTGAGGGCGG
 6451 TCTTGTATGG CGTAATGAAT TAAGTATGCC AAAATACACC CGCTTTCAA
 6501 TCAGCCCTTA TGC GTTTTAT GATGCCAGGTG AGTTCCGTTA TAATAGCGAA
 6551 AATGCTAAAA CTTACGGCGA AGATATGCC ACGGTATCCT CTGGGGTTT

FIG. 6I.

6601 AGGCATTAA ACCTCTCCCTA CACAAACTT AAGCTTAGAT GCTTTTGTG
 6651 CTCGTCGCTT TGCAAATGCC AATAGTGACA ATTGAAATGG CAACAAAAAA
 6701 CGCACAAAGCT CACCTACAC CTTCTGGGT AGATTAACAT TCAGTTTCTA
 6751 ACCCTGAAT TTAATCAACT GGTAAAGCGTT CCGCCTACCA GTTTATAACT
 6801 ATATGCTTTA CCCGCCAATT TACAGTCTAT ACGCAACCC' GTTTTCATCC
 6851 TTATATATCA AACAAACTAA GCAAACCAAG CAAACCAAGC AAACCAAGCA
 6901 AACCAAGCAA ACCAAGCAA CCAAGCAAAC CAAACCAAGC AAACCAACC AAGCAAACCA 20
 6951 AGCAAACCAA GCAAACCAAG CAAACCAAGC AAACCAAGCA ATGCTAAAAA 68
 7001 ACAATTATA TGATAAACTA AACACATACTC CATAACCATGG CAATACAAAGG
 7051 GATTAAATA TATGACAAA GAAAATTAC AAAGTGTTC CACAAATAACG
 7101 ACCGGCTTCAC TTGTAGAATC AAACAACGGAC CAAACTTCCC TGCAAATACT
 7151 TAAACAAACCA CCCAAACCA ACCTATTACG CCTGGAACAA CATGTCGCCA
 7201 AAAAGATTAA TGAGCTTGCT TGCGCGGAAT TAATGGCGAT TTTGGAAAAA
 7251 ATGGACGGCTA ATTGGAGG CGTTCACCGAT ATTGAATTG ACGCACCTGC
 7301 TCAGGCTGGCA TATCTACCG AAAAACTACT AATTCAATT GCCACTCGTC
 7351 TCGCTTAATGC AATTACACCA CTCTTTTCCG ACCCCGAATT GGCAATTTC

FIG. 6J.

7401 GAAGAAGGGG CATAAAGAT GATTAGCCTG CAACGCTGGT TGACGCTGAT
 7451 TTTTGCCCTCT TCCCCCTACG TTAACGGAGA CCATATTCTC AATAAATATA
 7501 ATATCAACCC AGATTCCGAA GGTGGCTTTC ATTAGCAAC AGACAACCT
 7551 TCTATGCTA AATTCTGTAT TTTTACTTA CCCGAATCCA ATGTCATAT
 7601 GAGTTTAGAT GCGTTATGGG CAGGGAAATCA ACAACTTTGT GCTTCATTGT
 7651 GTTTGCGGT GCAGTCTICA CGTTTATTG GTACTGCATC TGGGTTTCAT
 7701 AAAAGAGCGG TGGTTTTACA GTGGTTTCCT AAAAAACTCG CCGAAATTGC³⁰
 7751 TAATTAGAT GAATTGCCCTG CAAATATCCT TCATGATGTA TATATGCACT⁶⁸
 7801 GCAGTTATGA TTAGCAAAA ACAAGCACG ATGTTAACGG TCCATTAAAC
 7851 GAACTTGTCC GCAAGCATAT CCTCACGCCA GGATGCCAAG ACCGCTACCT
 7901 TTACACCTTA GGTAAAGG ACGGCCAACC TGTGATGATG GTACTGCTTG
 7951 AACATTITAA TTCGGGACAT TCGATTATTC GCACGCCATT GCCTTACATG
 8001 ATTGCTGCTC GAGAAAAATT CTATTAGTC GGCTTAGGCC AACTTCATG
 8051 TGATAACATA GGTGGAGAAG TGTGACGA GTTCTTTGAA ATCACTAGCA
 8101 ATAATAAT GGAGAGACTG TTTTTATCC GTAAMACAGTG CGAAACTTTC
 8151 CAACCCGGCAG TGTCTATAT GCCAAGCATT GGCAATGGATA TTACACGAT

FIG. 6K.

8201 TTTTGTGAGC AACACTCGGC TTGGCCCTAT TCAAGCTGTA GCCTTGGTC
 8251 ATCCTGCCAC TACGCCATTCT GAATTATCT ATTATGTCAT CGTAGAAGAT
 8301 GATTATGTGG GCAGTGAAGA TTGTTTAGC GAAACCCTT TACGCTTAC
 8351 CAAAGATGCC CTACCTTATG TACCATCTGC ACTCGCCCCA CAAAAGTGG
 8401 ATTATGTAAT CAGGAAAAC CCTGAAGTAG TCAATATCGG TATTGCCGCT
 8451 ACCACAAATGA ATTAAACCC TGAAATTTTG CTAACATTCG AAGAAATCAG
 8501 AGATAAAGCT AAAGTCAAA TACATTTCAC TTTCGGCACTT GGACAATCAA
 8551 CAGGCTTGAC ACACCCCTAT GTCAAATGGT TTATCGAAAG CTATTTAGGT
 8601 GACGATGCCA CTGCACATCC CCACGGCACCT TATCACGATT ATCTGGCAAT
 8651 ATTGGGTGAT TGGGATATGC TACTAAATCC GTTTCCCTTTC GTAATACTA
 8701 ACGGCATAAT TGATATGGTT ACATTAGTT TAGTTGGTGT ATGCAAACG
 8751 GGGGATGAAG TACATGAACA TATTGATGAA GGTCTGTATA AACGCTTACG
 8801 ACTACCAGAA TGGCTGATAG CCGACACACG AGAAACATAT ATTGAATGTG
 8851 CTTTGGTCT AGCAGAAAC CATCAAGAAC GCCTTGAACT CGTCGGTAC
 8901 ATCATAGAAA ACAACGGCTT ACAAAAGCTT TTACAGGCG ACCCTCGTCC
 8951 ATTGGCAAAT ACTATGCTTA AGAAAACAAA TGAATGGAAG CGGAAGCACT
 9001 TGAGTAAAAA ATAACGGTTT TTAAAGTAA AAGTGGCTT ATTTCAAA

32 / 68

FIG. 6L.

9051	GGGTTTAAA	AACCTCTCAA	AAATCAACCG	CACTTTTATC	TTTATAACGC
9101	TCCCGGGGC	TGACAGTTA	TCTCTTTCTT	AAAATACCCCA	TAAAATTGTG
9151	GCAATAGTG	GGTAATCAA	TTCAATTGTT	GATAACGGCAA	ACTAAAGACG
9201	GCGCGTTCTT	CGGCAGTCAT	C		

FIG. 7A.

1 CGCCCACTCA ATTGGGATT GTTGAATTC AACTAACCAA AAAGTGC^{GGT}
 51 TAAATCTGT GGAGAAAATA GGTGTAGTG AAGAACGAGG TAATTGTTCA
 101 AAAGGATAAA GCTCTCTAA TGCGCATTG GTTGGCGTT CTTTTCCGGT
 151 TAATAGTAAA TTATATTCTG GACGACTATG CAATCCACCA ACAACTTAC
 201 CGTTGGTTT AAGCGTTAAT GTAAGTCTT GCTCTTCTTG GCGAATAACGT
 251 AATCCCATTT TTGTTTAGC AAGAAAATGA TCGGGATAAT CATAATAAGGT
 301 GTGCCAAAA AATAAATTGATGTTCTAA AATCATAAAT TTTGCAAGAT 33 / 60
 351 ATTGGCAA TTCAATAACT ATTGTGGCG AAATGCCAA TTGTAATTCA
 401 ATTCTTGTA GCATAATATT TCCCACCTCAA ATCAACTGGT TAAATATACA
 451 AGATAATAAA AATAAATCAA GATTGGTGTG ATGACAAACA ACAATTACAA
 501 CACCTTTTGCACTATA TGCAAATATT TTAAAAAAAT AGTATAAATC
 551 CGCCATATAA AATGGTATAA TCTTTCATCT TCATCTTTC ATCTTTCATC
 601 TTTCATCTT CTTTCATCTT TCATCTTTC ATCTTTCATCT
 651 TTTCATCTTTC ATCTTCATC TTTCATCTT CACATGAAAT GATGAACCGA
 701 GGGAAAGGGAG GGAGGGCAA GAATGAAGAG GGAGCTGAAC GAAACGCAAAT
 751 GATAAAAGTAA TTAAATTGTT CAACTACCT TAGGAGAAAA TATGAACMAAG

FIG. 7B.

801	ATATATCGTC	TCAAATTCAAG	CAAACGCCCTG	AATGCTTTGG	TTGCTGTGTC
851	TGAATTGGCA	CGGGGTTGTG	ACCATTCCAC	AGAAAAAGGC	AGCGAAAAAC
901	CTGCTCGCAT	GAAAGTGCCT	CACTTAGCGT	TAAAGCCACT	TTCGGCTATG
951	TTACTATCTT	TAGGTGTAAC	ATCTTATCCA	CAATCTGTTT	TAGCAAGCGG
1001	CAATTAAACA	TCGACCAAAA	TGAAATGGTG	CAGTTTTAC	AAGAAAACAA
1051	GTAATAAAC	CATATCCGC	AACAGTGGTG	ACGCTATCAT	TAATTGGAAA
1101	CAATTAAACA	TCGACCAAAA	TGAAATGGTG	CAGTTTTAC	AAGAAAACAA
1151	CAACTCCGCC	GTATTCAACC	GTGTTACATC	TAACCAAATC	TCCCAATTAA ³⁴
1201	AAGGGATT	AGATTCTAAC	GGACAAGTCT	TTTTAATCAA	CCCAAATGGT
1251	ATCACAAATAG	GTAAAGACGC	AATTATAAC	ACTAAATGGCT	TTACGGCTTC
1301	TACGGCTAGAC	ATTCTAACG	AAAACATCAA	GGCGCGTAAT	TTCACCTTCG
1351	AGCAAACCAA	AGATAAAGCG	CTCGCTGAAA	TTGTGAATCA	CGGTTAATT
1401	ACTGTCGGTA	AAGACGGCAG	TGTAAATCTT	ATTGGTGGCA	AAGTGAAAAA
1451	CGAGGGTGTG	ATTAGCGTAA	ATGGTGGCAG	CATTCTTTA	CTCGCAGGGC
1501	AAAAAAATCAC	CATCAGGGAT	ATAATAACC	CAACCATTAC	TTACAGCATT
1551	GCCGGCCCTG	AAAATGAAGC	GGTCAATTCTG	GGCGATATT	TTGCCAAAGG

FIG. 7C.

1601 CGGTAACATT AATGTCCGTG CTGCCACTAT TCGAAACCAA GGTAAACTTT
 1651 CTGGTGAATTCT TGTAAGCAAA GATAAAAGCG GCAATTATTGT TCTTTCCGCC
 1701 AAAGAGGGTG AAGCGGAAT TGGCGGTGTA ATTTCGGCTC AAAATCAGCA
 1751 AGCTAAAGGC GGCAAGCTGA TGATTACAGG CGATAAAAGTC ACATTAAGAA
 1801 CAGGTGCAGT TATCGACCTT TCAGGTAAG AAGGGGGAGA AACTTACCTT
 1851 GCGGGTGACG AGCGGGCGA AGGTAAAAAC GGCATTCAAT TAGCAAAGAA
 1901 AACCTCTTAA GAAAAGGCT CAACCATAA TGTATCAGGC AAGAAAAAG
 1951 GCGGACGGCGC TATGTGTGG GGGGATATTG CGTTAAATTGA CGGCAATATT⁵
 2001 AACGGCTCAAG GTAGTGGTA TATCGCTAAA ACCGGTGGTT TTGTGGAGAC⁶
 2051 ATCGGGGCAT TATTTATCCA TTGACAGCAA TGCAATTGTIT AAAACAAAG
 2101 AGTGGTTGCT AGACCCCTGAT GATGTAACAA TTGAAAGCCGA AGACCCCTT
 2151 CGCAATAATA CCGGTATAAA TGATGATTG CCAACAGGCA CCCGTGAAGC
 2201 AAGGGACCC' AAAAAATA GCGAACCTCAA AACAAACGCTA ACCAATACAA
 2251 CTATTCAA TTATCTGAAA AACGCCCTGGA CAATGAATAT AACGGCATCA
 2301 AGAAAACCTTA CCGTTAATAG CTCAAATCAAC ATCGGAAGCA ACTCCCACTT
 2351 AATTCTCCAT AGTAAAGGTC AGCGTGGCGG AGGGCGTTCAAG ATTGATGGAG
 2401 ATATTACTTC TAAAGGGGA ATTAAACCA TTTATTCTGG CGGATGGGTT

FIG. 7D.

2451 GATGTTCAT AAAATATTAC GCTTGATCAG GGTTTTTAA ATATTACCGC
 2501 CGCTTCGGTA GCTTTGAAAG GTGGAATAA CAAAGCACGC GACGGGGCAA
 2551 ATGCTAAAT TGTGCCAG GGCACGTAA CCATACAGG AGAGGGAAAA
 2601 GATTTCAGGG CTAACAACGT ATCTTAAAC GGAACGGGT AAGGTCTGAA
 2651 TATCATTCA TCAGTGAATA ATTAAACCCA CAATCTTAGT GGCACAAATTAA
 2701 ACATATCTGG GAATATAACA ATTAAACCAA CTACCGAGAAA GAACACCTTCG
 2751 TATTGGCAA CCAGCCATGA TTTCGCACTGG AACGTCAGTG CTCTTAATCT³⁶
 2801 AGAGACAGGC GCAAATTAA CCTTTATTAA ATACATTCA AGCAATAGCA⁶⁰
 2851 AAGGCTTAAC AACACAGTAT AGAACGCTCTG CAGGGTGA TTTAACGGC
 2901 GTAAATGGCA ACATGTCATT CAATCTCAA GAAGGAGCGA AAGTTAATT
 2951 CAAATTAAA CCAAACGAGA ACATGAACAC AAGCZAAACCT TTACCAATT
 3001 GGTTTTAGC CAATATCACA GCCACTGGT GGGCCTCTGT TTTTTTGT
 3051 ATATATGCCA ACCATTCTGG CAGAGGGCT GAGTTAAAAA TGAGTGAAAT
 3101 TAATATCTCT AACGGGGCTA ATTTCACCT AAATTCCCAT GTCGGGGCG
 3151 ATGACGCTTT TAAAATCAAC AAAGACTTAA CCATAAATGC AACCAATTCA
 3201 AATTTCAGCC TCAGACAGAC GAAAGATGAT TTTTATGACG GGTACGGCAGC

FIG. 7E.

3251 CAATGCCATC AATTCAACCT ACAAACATATC CATTCTGGGC GGTAAATGTC
 3301 CCCTTGGTGG ACAAAACTCA AGCAGCAGCA TTACCGGGAA TATTACTATC
 3351 GAGAAAGCAG CAAATGTTAC GCTAGAAGCC AATAACGCC CTAATCAGCA
 3401 AAACATAAAGG GATAGAGTTA TAAAACTTGG CAGCTTGCTC GTTAATGGGA
 3451 GTTTAAAGTTT AACTTGGCAA ATGCCAGATA TAAAGGCAA TCTCACTATT
 3501 TCAGAAAAGCG CCACTTTAA AGGAAAGACT AGAGATAACC TAAATATCAC
 3551 CGGCAATT ACCAATAATG GCACTGCCGA ATTAAATATA ACACAAGGAG
 3601 TGGTAAACT TGGCAATGTT ACCAATGATG GTGATTAAA CATTACCACT³⁷
 3651 CACGCTAAC GCACCAAAAG AAGCATCATC GGCGGAGATA TAATCAACAA⁶⁰
 3701 AAAAGGAAGC TAAATATTA CAGACAGTAA TAATGATGCT GAAATCCAA
 3751 TTGGGGCAA TATCTCGCAA AAAGAAGGCA ACCTCACGAT TTCTTCCGAT
 3801 AAAATTAAATA TCACCAAACA GATAACAATC AAAAAGGGTA TTGATGGAGA
 3851 GGACTCTAGT TCAGATGCCA CAAGTAATGC CAACCTAACCT ATTAAACCA
 3901 AAGAATTGAA ATTGACAGAA GACCTAAGTA TTTCAGGTTT CAATAAGCA
 3951 GAGATTACAG CCAAAAGATGG TAGAGATTAA ACTATTGGCA ACAGTAATGA
 4001 CGGTAACACGC GGTGCCGAAG CCAAAACAGT AACTTTAAC AATGTTAAC

FIG. 7F.

4051 ATTCAAAAT CTC TGCTGAC GGT CACAATG TGACACTAAA TAGCAAAGTG
 4101 AAAACATCTA GCAGCAATGG CGGACCGTCAA AGCAATAGCG ACAACGATA
 4151 CGGCTTAAC' ATTACTGCAA AAAATGTAGA AGTAAACAAA GATATTACTT
 4201 CTCTCAAAAC AGTAAATATC ACCGGCGTCGG AAAAGGTTAC CACCACAGCA
 4251 GGCTCGACCA TTACGCCAAC AAATGGCAA GCAAGTATTAA CAACCAAAAC
 4301 AGGTGATATC AGCGGTACGA TTTCGGTAA CACGGTAAGT GTTAGGGCGA
 4351 CTGGTGATT AACCACTAAA TCCGGCTCAA AAATTGAAGC GAAATCGGGT
 4401 GAGGCTAATG TAACAAGTGC AACAGGTACA ATTGGCGGTAA CAATTCCGG
 4451 TAATACGGTA AATGTTACGG CAAACGCTGG CGATTAAACA GTTGGGAATG
 4501 GCGCAGAAAT TAATGGGACAA GAAGGGCTG CAACCTTAAC CGCAAACACGG
 4551 AATAACCTTGA CTACTGAAGC CGGTTCTAGC ATCACTTCAA CTAAGGGTCA
 4601 GGTAGACCTC TTGGCTCAGA ATGGTAGGCAT CGCAGGAAGC ATTAATGCTG
 4651 CTAATGTGAC ATTAATACT ACAGGCACCT TAACCACCGT GGCAGGCTCG
 4701 GATATTAAAG CAACCCAGGG CACCTTGGTT ATTAACGCAA AAGATGCTAA
 4751 GCTAAATGGT GATGCCATCAG GTGATAGTAC AGAAGTGAAT GCAGTCAACG
 4801 ACTGGGGATT TGGTAGTGTG ACTGGCGCAA CCTCAAGCAG TGTGAATATC
 4851 ACTGGGGATT TAAACACAGT AAATGGGTTA AATATCATT CGAAAGATGG

FIG. 7G.

4901 TAGAAACACT GTGCGCTTAA GAGGCAAGGA AATTGAGGTG AAATATAATCC
 4951 AGCCAGGGTGT AGCAAGTGT GAAGAAGTAA TTGAAAGGAA ACGGCGTCCTT
 5001 GAAAAGTAA AAGATTATC TGATGAAGAA AGAGAAACAT TAGCTAAACT
 5051 TGGTCTAAGT GCTGTACGTT TTGTTGAGCC AAATAATAACA ATTACAGTCA
 5101 ATACACAAAA TGAATTACA ACCAGACCGT CAAGTCAAGT GATAATTCT
 5151 GAAGGTAAGG CGTGTTCCTC AAGTGGTAAT GGGCACGAG TATGTACCAA
 5201 TGT'TGCTGAC GATGGACAGC CGTAGTCAGT AATTGACAAG GTAGATTCA 30 /
 5251 TCCTGCAATG AAGTCATT TT ATTTCCTGTAT TATTACTGT GTGGGTTAAA 60
 5301 GTTCAGTACG GGCTTTACCC ATCTTGTAAT AAATTACGGA GAATAACATA
 5351 AAGTATTTT AACAGGTAT TATTATGAA AATATAAAA GCAGATTAAA
 5401 ACTCAGTGCAT ATATCAGTAT TGCTTGCCCT GGCTTCTTCA TCATTGTATG
 5451 CAGAAGAACG GTTTTACTA AAAGGCTTTC AGTTATCTGG TGCACCTGAA
 5501 ACTTTAAGTGT AAGACGCCA ACTGTCTGTAA GCAGAAATCTT TATCTAAATA
 5551 CCAAGGCTCG CAAACTTAA CAAACCTAA AACAGCACAG CT'TGAATTAC
 5601 AGGCTGTGCT AGATAAGATT GAGCCAATA AATTGATGT GATATTGCCG
 5651 CAACAAACCA TTACGGATGG CAATATCATG TTTGAGCTAG TCTCGAAATC

FIG. 7H.

5701 AGCCGCAGAA AGCCAAGTT TTTATAAGGC GAGCCAGGGT TATAGTGAAG
 5751 AAAATATCGC TCGTAGGCCTG CCATCTTGA AACAAAGAAA AGTGTATGAA
 5801 GATGGTCGTC AGTGGTTCGA TTTGGGTGAA TTAAATATGG CAAAGAAAA
 5851 CCCGCTTAAG GTTACCCGTG TACATTACGA ACTAAACCCT AAAAACAAA
 5901 CCTCTAATT GATAATTGCG GGCTTCTCGC CTTTTGGTAA AACGGCTAGC
 5951 TTTATTCTT ATGATAATT CGGGCGAGA GAGTTTAACT ACCAACGTTG
 6001 AAGCTTGCGGT TTTGTAAATG CCAATTAAAC TGGTCACTGAT GATGTGTTAA
 6151 TTATACAGT ATGAGTTATG CTGATTCTAA TGATATCCAC GGCTTACCAA
 6201 GTGGGATTAA TCGTAATTAA TCAAAGGTCA ATCTATCTC TGCGAATCTG
 6251 AAATGGAGTT ATTATCTCCC AACATTAAAC CTTGGCATGG AAGACCAAATT
 6301 TAAAATTAAAT TTAGGCTACA ACTACCGCCA TATTAATCAA ACCTCCCGT
 6351 TAAATCGCTT GGGTGAACG AAGAAAAAAT TTGCAGTATC AGGGGTAAGT
 6401 GCAGGCCATTG ATGGACATAT CCAATTACCC CCTAAACAA TCTTTAATAT
 6451 TGATTTAACT CATCATTATT ACGCGAGTAA ATTACCGGC TCTTTGGAA
 6501 TGGAGGGCAT TGGCGAAACA TTAAATCGCA GCTATCACAT TAGCACAGCC
 6551 AGTTAGGGT TGAGTCAAGA GTTGGCTCAA GGTTGGCATT TTAGCAGTCA
 6601 ATTATCAGGT CAATTACTC TACAGATAT TAGCAGTATA GATTTATCT

FIG. 7I.

6651	CTGTAACAGG	TACTTATGGC	GTCAGAGGCT	TTAAATAACGG	CGGTGCAAGT
6701	GGTGAGCGCC	GTCCTTGTATG	GCGTAATGAA	TTAAGTATGC	CAAATAACAC
6751	CCGCTTCCAA	ATCAGCCCC	ATGCCGTTTA	TGATGCAGGT	CAGTTCCGTT
6801	ATAATAGCGA	AAATGCTAA	ACTTACGGCG	AAGATATGCA	CACGGTATCC
6851	TCTGGGGGT	TAGGCATTAA	AACCTCTCCT	ACACAAAAC	TAAGCCTAGA
6901	TGCTTTGCT	GCTCGTCGCT	TTGCAAATGC	CAATAGTGAC	AATTGAAATG
6951	GCAACAAAAA	ACGCACAAAGC	TCACCTACAA	CCTTCTGGGG	GAGATTAACA ⁴¹
7001	TTCAGTTCT	AACCCTGAAA	TTAACATCAAC	TGGTAAGCGT	TCCGCCTACC ⁶⁸
7051	AGTTTATAAC	TATATGCTTT	ACCCGCCAAT	TTACAGTCTA	TAGGCAACCC
7101	TGTTTTTAC	CTTATATAC	AAATAAACAA	GCTAAGCTGA	GCTAAGCAA
7151	CCAAGCAAAC	TCAAGCAAGC	CAAGTAATAC	TAAAAAAACA	ATTATATATGA
7201	TAAACTAAAG	TATACTCCAT	GCCATGGCGA	TACAAGGGAT	TTAATAATAT
7251	GACAAAAGAA	AATTGCAA	ACGCTCCTCA	AGATGCAGAC	GCTTTACCTTG
7301	CGGAATTAAG	CAACAATCAA	ACTCCCCTGC	GAATATTAA	ACAAACACGC
7351	AAGCCCAGCC	TAT'TACGCTT	GGAACACAT	ATCGCAAAAA	AAGATTATGA
7401	GTTTGCTTGT	CGTGAATTAA	TGGTGATTCT	GGAAAAAATG	GACGCTAAATT

FIG. 7J.

7451 TTGGAGGGCGT TCACGGATATT GAATTTCGACG CACCCGCTCA GCTGGCATAT
 7501 CTACCCGAAA AATTACTAAT TTATTTCGCC ACTCGCTCTCG CTAATGCCAAT
 7551 TACACACACTC TTTCCGACC CGGAATTGGC AATTCTGAA GAAGGGGGCGT
 7601 TAAAGATGAT TAGCCTGCAA CGCTGGTTGA CGCTGATT TTGCCTCTTCC
 7651 CCCTACGTTA ACGCAGACCA TATTCTCAAT AAATAATAAA TCAACCCAGA
 7701 TTCCGAAGGGT GGCTTTCAATT TAGCAACAGA CAACTCTTCT ATTGCTAAAT
 7751 TCTGTATT TTACTTACCC GAATCCAATG TCAATTATGAG TTTAGATGCG 42 / 68
 7801 TTATGGCAG GGAAATCAACA ACTTTTGCGT TCATTGTGTT TTGCGGTTGCA
 7851 GTCTTCACGTT TTATTGGTA CGGCATCTGC GTTTCATAAA AGAGCGGTGG
 7901 TTTTACAGTG GTTTCCTAAA AAACCTGGCG AAATTCCTAA TTTAGATCAA
 7951 TTGCCCTGCAA ATATCCTTCA TGATGTATAT ATGCACTGCA GTTATGATT
 8001 AGCAAAAAAC AAGCACGATG TTAAGGGTCC ATTAAACGAA CTTGTCGGCA
 8051 AGCATATCCT CACCCAAGGA TGGCAAGAAC GCTACCTTTA CACCTTAGGT
 8101 AAAAGGACG GCACAAACCTGT GATGATGGTA CTGCTTGAAC ATTAAATTTC
 8151 GGGACATTCC ATTATATCGTA CACATTCAAC TTCAAATGATT GCTGCTCGAG
 8201 AAAAATTCTA TTAGTGGCC TTAGGCCATG AGGGCCATG TAAAATAGGT

FIG. 7K.

8251 CGAGAAGTGT TTGACCGAGTT CTTTGAATTC AGTAGCAATA ATATAATGGAA
 8301 GAGACTGTT TTTATCCGTA AACAGTGGAA AACTTTCCAA CCCGCAGTGT
 8351 TCTTATATGCC AAGCATTGGC ATGGATATT CCACGATT TT TGTGAGCAAC
 8401 ACTCGGCTTG CCCCTATTCA AGCTGTAGCC CTGGGTCACTC CTGCCACTAC
 8451 GCATTCTGAA TTTATTGATT ATGTCATCGT AGAAAGATGAT TATGTGGCA
 8501 GTGAAGATTG TTTCAGCGAA ACCCTTTAC GCTTACCCAA AGATGCCCTA
 8551 CCTTATGTAC CTTCTGGCACT CGCCCCACAA AAAGTGGATT ATGTACTCAG
 8601 GGAAAACCCT GAAGTAGTCA ATATCGGTAT TGCCGCTAAC ACAATGAAT / 43
 8651 TAAACCTGTA ATTTCGCTA ACATTGCAAG AAATCAGAGA TAAAGCTAAA 68
 8701 GTCAAAATAC ATTTCATT CGCACTTGG CAATCAACAG GCTTGACACACA
 8751 CCCTTATGTC AAATGGTTA TCGAAAGCTA TTTAGGTGAC GATGCCACTG
 8801 CACATCCCCA CGCACCTTAT CACGATTATC TGGCAATATT CGGTGATTGC
 8851 GATATGCTAC TAAATCCGTT TCCTTTCGGT AATACTAACG GCATAATTGA
 8901 TATGGTTACA TTAGGTTAG TTGGTGTATG CAAACGGGG GATGAAGTAC
 8951 ATGAAACATAT TGATGAAGGT CTGTTAAC GCCTTGGACT ACCAGAAATGG
 9001 CTGATAGCCG ACACACGAGA AACATATATT GAATGTGCTT TGGGTCTAGC
 9051 AGAAAACCAT CAAGAACGCC TTGAACTCCG TCGTTACATC ATAGAAAACA

FIG. 7L.

9101	ACGGCTTACA	AAAGCTTTT	ACAGGGGACC	CTCGTCCATT	GGGCAAATA
9151	CTGCTTAAGA	AAACAAATGA	ATGGAAGGG	AAGCACTTGA	GTAAAAAATA
9201	ACGGTTTTT	AAAGTAAAAG	TGCGGTTAAT	TTTCAAAGCG	TTTTAAAC
9251	CTCTCAAAA	TCAACCGCAC	TTTTATCTT	ATAACGATCC	CGCACGCTGA
9301	CAGTTATCA	GCCTCCCCGCC	ATAAAACTCC	GCCTTTCATG	GCGGAGATT
9351	TAGCCAAAC	TGGCAGAAAT	TAAAGGCTAA	AATCACCAA	TTGCACCAAA
9401	AAATCACCAA	TACCCACAAA	AAA		

FIG. 8A.

1 GATCAATCTG GGGGATATT TTGCCAAAGG TGGTAACATT AATGTCCGCG
 51 CTGCCACTAT TCGCAATAAA GGTAAACTTT CTGCCGACTC TGTAAGCAA
 101 GATAAAAGTG GTAACATTGT TCTCTCTGCC AAAAGAAGGTG AAGCGGAAAT
 151 TGGCGGTGTA ATTTCGCTC AAAATCAGCA AGCCAAGGT GGTAAAGTTGA
 201 TGATTACAGG CGATAAAGTT ACATTGAAA CGGGTGCAGT TATCGACCTT
 251 TCGGGTAAAG AAGGGGAGA AACTTATCTT GGCGGTGACG AGCGTGGCGA
 301 AGGTAAAAAC GGCATTCATT TAGCAAAGAA AACCACTTTA GAAAAGGCT 45
 351 CAACAAATTAA TGTGTCAAGGT AAAGAAAAAG GTGGGGGGC TATTGTATGG 60
 401 GGGGATATTG CGTTAATTGA CGGCAATATT AATGCCAAG GTAAAGATAT
 451 CGCTAAACT GGTGGTTTG TGGAGACGTC GGGGCATTAC TTATCCATTG
 501 ATGATAACGC AATTGTTAAA ACAAAAGAAT GGCTACTAGA CCCAGAGAAT
 551 GTGACTATTG AAGCTCCTTC CGCTTCTGCC GTCGAGCTGG GTGCCGATAG
 601 GAATTCCCAC TCGGCAGAGG TGATAAAAGT GACCCTAAA AAAATAACA
 651 CCTCCTTGAC AACACTAACCA AATACAACCA TTTCAAATCT TCTGAAAAGT
 701 GCCCACGTGG TGAACATAAC GGCAAGGAGA AACTTACCG TTAATAGCTC
 751 TATCAGTATA GAAAGAGGCT CCCACTTAAT TCTCCACAGT GAAGGTCAGG

FIG. 8B.

801 GCGGTCAAGG TGTTCAGATT GATAAAGATA TTACTTCTGA AGGGGGAAAT
 851 TTAACCATTT ATTCTGGGG ATGGGTTGAT GTTCATAAAA ATATTACGCT
 901 TGGTAGCGGC TTTTAAACA TCACAACTAA AGAAGGAGAT ATCGCCTTCG
 951 AAGACAAGTC TGGACGGAAC AACCTAACCA TTACAGCCC AGGGACCAC
 1001 ACCTCAGGTA ATAGTAACGG CTTAGATT AACAAACGTT CTCTAACAG
 1051 CCTTGGGGA AAGCTGAGCT TTACTGACAG CAGAGGGAC AGAGGTTAGAA
 1101 GAACTAAGGG TAATATCTCA AACAAATTG ACGGAACGTT AACATTTCC
 1151 GGAACGTGAG ATATCTCAAT GAAAGCACCC AAAGTCAGCT GGTTTTACAG⁴⁶
 1201 AGACAAAGGA CGCACCTACT GGAACGTAAC CACTTTAAAT GTTACCTCGG⁶⁰
 1251 GTAGTAAATT TAACCTCTCC ATTGACAGCA CAGGAAGTGG CTCAAACAGGT
 1301 CCAAGCATAAC GCAATGCCAGA ATTAATGGC ATAACATTAA ATAAAGCCAC
 1351 TTTTAATATC GCACAAAGGT CAACAGCTAA CTTAGCATC AAGGCATCAA
 1401 TAATGCCCTT TAAGAGTAAC GCTAACTACG CATTATTAA TGAAGATATT
 1451 TCAGTCTCAG GGGGGGGTAG CGTTAATTTC AAACTTAACG CCTCATCTAG
 1501 CAAACATACAA ACCCC'CTGGCG TAATTATAAA ATCTCAAAAC TTTAATGTCT
 1551 CAGGAGGGTC AACTTTAAAT CTCAAGGCTG AAGGTTCAAC AGAAACCGCT
 1601 TTTCAATAG AAAATGATT AAACCTAACC GCCACCGGTG GCAATATAAC

FIG. 8C.

1651 AATCAGACAA GTCCGAGGGTA CCGATTCA CGTCAACAAA GGTGTGGCAG
 1701 CCAAAAAAA CATAACTTTT AAAGGGGGTA ATATCACCTT CGGCTCTCAA
 1751 AAAGCCACAA CAGAAATCAA AGGCAATGTT ACCATCAATA AAAACACTAA
 1801 CGCTACTCTT CGTGGTGCAG ATTTCGCCGA AAACAAATCG CCTTTAAATA
 1851 TAGCAGGAAA TGTATTAAAT ATGGCAACC TTACCACTGC CGGCTCCATT
 1901 ATCAATATAG CCGGAATCT TACTGTTCA AAAGGGGCTA ACCTTCAAGC
 1951 TATAACAAAT TACACTTTTA ATGTAGCCGG CTCATTTGAC AACAAATGGCG
 2001 CTTCAAAACAT TTCCATTGCC AGAGGGGGG CTAATTTAA AGATATCAAT
 2051 AACACCAAGTA GCTTAAATAT TACCAACAC TCTGATACCA CTTACCGCAC
 2101 CATTATAAA GGCAATATAT CCAACAAATC AGGTGATTG AATATTATTG
 2151 ATAAAAAAAG CGACGCTGAA ATCCAAATG GGGCAATAT CTCACAAAAA
 2201 GAAGGCAATC TCACAATTTC TTCTGATAAA GTAATATTA CCAATCAGAT
 2251 AACAAATCAA GCAGGGCTTG AAGGGGGGG TTCTGATTCA AGTGAGGCAG
 2301 AAAATGCTAA CCTAACTATT CAAACCAAG AGTTAAAT AGTGGAGAC
 2351 CTAAATATT CAGGCTTAA TAAAGCAGAA ATTACAGCTA AAATGGCAG
 2401 TGATTTAACT ATTGGCAATG CTAGCGGTGG TAATGCTGAT GCTAAAAAG

47 / 68

FIG. 8D.

2451 TGACTTTGA CAAGGTTAAA GATTCAAAAA TCTCGACTGA CGGTACAAAT
 2501 GTAACACTAA ATAGCGGAAGT GAAAACGTCT AATGGTAGTA GCAATGCTGG
 2551 TAATGATAAAC AGCACCGGTT TAACCATTTC CGCAAAAGAT GTAACGGTAA
 2601 ACAATAACGT TACCTCCAC AAGACAATAA ATATCTCTGC CGCAGCAGGA
 2651 AATGTAACAA CCAAAGGAAGG CACAACATAC AATGCAACCA CAGGCAGCGT
 2701 GGAAGTAACT GCTCAAAATG GTACAATTAA AGGCAACATT ACCTCGCAA
 2751 ATGTAACAGT GACAGCAACA GAAAATCTTG TTACCAACAGA GAATGGCTGTC
 2801 ATTAAATGCCA CCAGGGCAC AGTAAACATT AGTACAAAAA CAGGGATAT⁴⁸
 2851 TAAAGGTGGA ATTGAATCAA CTTCGGTAA TGTTAAATATT ACAGCGAGCG⁶⁰
 2901 GCAAAATCACT TAAGGTTAAGT AATATCACTG GTCAAGATGT AACAGTAACA
 2951 GCGGATGAG GAGCCCTTGAC AACTACAGCA GGCTCAACCA TTAGTGGGAC
 3001 AACAGGCAAT GCAAATATTAA CAACCAAAAC AGGTGATATC AACGGTAAG
 3051 TTGAATCCAG CTCCGGCTCT GTAACACTTG TTGCAACTGG AGCAAACCTT
 3101 GCTGTAGGTA ATATTCAAG TAACACTGTT ACTATTACTG CGGATAGCGG
 3151 TAAATTAACC TCCACAGTAG GTTCTACAAAT TAATGGGACT AATAGTGTAA
 3201 CCACCTCAAG CCAATCAGGC GATATTGAAG GTACAATTTC TGTTAAATACA
 3251 GTAAATGTTA CAGCAAGGCAC TGGTGATTAA ACTATTGGAA ATAGTGCAA

FIG. 8E.

3301 AGTTGAAGCG AAAAATGGAG CTGCAACCTT AACTGCTGAA TCAGGCAAAT
 3351 TAACCACCA AACAGGCCA AGCATTACCT CAAGCAATGG TCAGACAACT
 3401 CTTACAGCCA AGGATAGCG TATCGCAGGA AACATTAATG CTGCTAATGT
 3451 GACGTTAACAT ACCACAGGC ACCTTAACATAC TACAGGGAT TCAAAGATTA
 3501 ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAGATGC CAAATTAGAT
 3551 GGTGCTGCAT CAGGTGACCG CACAGTAGTA AATGCAAATCA ACGCAAGTGG
 3601 CTCTGGTAAC GTGACTGGCA AACCTCAAG CAGCGTGAAT ATCACCGGG 49
 3651 ATTAAACAC AATAAATGG TTAAATATCA TTTCGGAAA TGGTAGAAC 68
 3701 ACTGTGGCCT TAAGAGGCAA GGAAATGTAT GTGAAATATA TCCAACCAAGG
 3751 TGTAGCAAGC GTACAAGAGG TAATTGAAGC GAAACGGCGTC CTRGAGAAGG
 3801 TAAAGATTT ATCTGATGAA GAAAGAGAAA CACTAGCCAA ACTTGTTGTA
 3851 AGTGCCTGTAC GTTTCGTTGA GCCAAATAAT GCCATTACGG TAAATACACA
 3901 AAACCGAGTTT ACACCAAAAC CATCAAGTCA AGTGACAATT TCTGAAGGTA
 3951 AGGCCGTGTT CTCAGTGGT ATGGGGCAC GAGTATGTAC CAATGTTGCT
 4001 GACGATGGAC AGCAGTAGTC AGTAATTGAC AACGTTAGAT TCATCCTGCA
 4051 ATGAAGTCAT TTTATTTCG TATTATTAC TGTGTGGGT AAAGTTCACT

50/68

FIG. 8F.

4101	ACGGGCTTA	CCCACCTTGT	AAAAAATTAC	GAAAATACA	ATAAAGTATT
4151	TTAACAGGT	TATTATTATG	AAAACATAA	AAAGCAGATT	AAAACTCAGT
4201	GCAATATCAA	TATTGCTTGG	CTTGCGCTCT	TCATCGACGT	ATGCAGAAGA
4251	AGCGTTTA	GTAAGGCT	TTCAGTTATC	TGGCGCG	

FIG. 9A.

1 GGGAAATGAGC GTCGTACACG GTACAGCAAC CATGCAAGTA GACGGCAATA
 51 AAACCACTAT CCGTAATTAGC GTCAATGCTA TCATCAATTG GAAACAATT
 101 AACATTGACC AAAATGAAAT GGAGCAGTTT TTACAAGAAA GCAGCAACTC
 151 TGCCCGTTTC AACCGTGTAA CATCTGACCA AATCTCCAA TTAAAAGGGA
 201 TTTTAGATTC TAACGGACAA GTCTTTTTAA TCAACCCAAA TGGTATCACA
 251 ATAGGTAAG ACGCAATTAT TAACACTAAT GGCTTTACTG CTTCTACGCT
 301 AGACATTCT AACGAAAACAA TCAAGGGCGC TAATTCAAC CTTGAGCAA
 351 CCAAGGATAA AGCACTCGCT GAATTCGTGA ATCACGGTT ATTACCGTT
 401 GGTAAGACG GTAGCGTAAA CCTTATTGGT GCCAAAGTGA AAAACGAGGG
 451 CGTGATTAGC GTAAATGGCG GTAGTATTTC TTTACTTGCA GGGCAAAAAA
 501 TCACCATCAG CGATATAATA AATCCAACCA TCACTTACAG CATTGCTGCA
 551 CCTGAAACG AAGCGATCAA TCTGGCGAT ATTTTTGCCA AAGGGTGGTAA
 601 CATAATGTC CGCGCTGCCA CTATTGCAA TAAAGGTAAA CTTTCTGCCG
 651 ACTCTGTAAAG CAAAGATAAA AGTGGTAACA TTGTTCTCTC TGCCAAAGAA
 701 GGTGAAGCGG AAATTGGCGG TGTAAATTCC GCTCAAAATC AGCAAGCCAA
 751 AGGTGGTAAG TTGATGATTA CAGGTGATAA AGTCACATTA AAAACAGGTG

FIG. 9B.

801 CAGTTATCGA CCTTTCAGGT AAAGAAGGG GAGGACTTA TCTTGGGGT
 851 GATGAGCGTG GCGAAGGTAA AAATGGTAT CAATTAGCGA AGAAAACCTC
 901 TTTAGAAAAA GGCTCGACAA TTAATGTATC AGGCAAGAA AAAGGGGGC
 951 GCGCTATTGAT ATGGGGCGAT ATTGCATTAA TTAAATGGTAA CTTAAATGCT
 1001 CAAGGTAGCG ATATTGCTAA AACTGGGGC TTTGTGGAAA CATCAGGACA
 1051 TGACTTATCC ATTGGTGATG ATGTGATTGT TGACGGCTAA GAGTGGTTAT
 1101 TAGACCAGA TGATGGTGC ATTGAAACTC TTACATCTGG ACGCAATAAT
 1151 ACCGGCGAAA ACCAAGGATA TACAAACAGGA GATGGGACTA AGAGTCACC 52
 1201 TAAAGGTAAT AGTATTCTA AACCTACAT AACAAACTCA ACTCTTGAGC 68
 1251 AAATCCTAACG AAGAGGTCT TATGTTAATA TCAC TGCTAA TAATAGAATT
 1301 TATGTTAATA GCTCCATCAA CTTATCTAA GGCAGTTAA CACTTCACAC
 1351 TAAACGAGAT GGAGTTAAA TTAAACGGTGA TATTACCTCA AACGAAAATG
 1401 GTAATTAAAC CATTAAAGCA GGCTCTGGG TTGATGTTCA TAAAAACATC
 1451 ACGCTTGGTA CGGGTTTTT GAATATTGTC GCTGGGGATT CTGTAGCTT
 1501 TGAGAGGAG GGGGATAAAG CACGTAACGC AACAGATGCT CAAATTACCG
 1551 CACAAGGGAC GATAACCGTC AATAAAGATG ATAACAAATT TAGATTCAAT
 1601 ATGTATCTA TTAACGGAC GGGCAAGGGT TTAAGTTA TTGCAAATCA

FIG. 9C.

1651	AAATAATTTC	ACTCATAAAT	TTGATGGCGA	AATTAACATA	TCTGGAAATAG
1701	TAACATTAA	CCAAACCACG	AAAAAGATG	TTAAATACTG	GAATGCATCA
1751	AAAGACTCTT	ACTGGAATGT	TTCTTCTCTT	ACTTTGAATA	CGGTGCAAAA
1801	ATTACCTTT	ATAAAATTCG	TGATAGCGG	CTCAAATTCC	CAAGATTGAA
1851	GGTCATCAGG	TAGAAGTTT	GCAGGGCGTAC	ATTTAACGG	CATCGGAGGC
1901	AAAACAAACT	TCAACATCGG	AGCTAACGCC	AAAGCCTTAT	TTAAATTAAA
1951	ACCAAAAGCC	GCTACAGACC	AAAAAAAGA	ATTACCTAT	ACTTTAACG ⁵³
2001	CCAACATTAC	AGCTACCGGT	AACAGTGATA	GCTCTGTGAT	GTTTGACATA ⁶⁰
2051	CACGCCAATC	TTACCTCTAG	AGCTGCCGGC	ATAAACATGG	ATTCAATTAA
2101	CATTACCGGC	GGGCTTGACT	TTTCCATAAC	ATCCCATAAT	CGCAATAGTA
2151	ATGCCTTTGAA	AATCAAAAAA	GACTTAACTA	TAATGCAAC	TGGCTCGAAT
2201	TTTAGTCTTA	AGCAAACGAA	AGATTCTTT	TATAATGAAT	ACAGCAAACA
2251	CGCCATTAAAC	TCAAGTCATA	ATCTAACCAT	TCTTGGGGC	AATGTCACTC
2301	TAGGTGGGA	AAATTCAAGC	AGTAGGATTAA	CGGGCAATAT	CAATATCACC
2351	AATAAGCAA	ATGTTACATT	ACAAGCTGAC	ACCAGCAACA	GCAACACAGG
2401	CTTGAAGAAA	AGAACTCTAA	CTCTTGGCAA	TATATCTGTT	GAGGGGAATT

FIG. 9D.

2451 TAAGCCTAAC TGGTCAAAT GCAAACATTG TCGGCCAATCT TTCTATTGCA
 2501 GAAGATCCA CATTTAAAGG AGAAGCCAGT GACAACCTAA ACATCACCGG
 2551 CACCTTACCA AACAAACGGTA CGGCCAACAT TAATATAAA CAAGGACTGG
 2601 TAAAACCTCCA AGGGCATATT ATCAATAAAG GTGGTTAAA TATCACTACT
 2651 AACGGCTCAG GCACCTCAAA ACCATTATT AACCGAAATA TAACTAACGA
 2701 AAAAGGCAG TTAAACATCA AGAATATTAA AGCCGACGCC GAAATCCAA
 2751 TTGGGGCAA TATCTCACAA AAAGGAAGGCA ATCTCACAAAT TTCTTCTGAT
 2801 AAAGTAAATA TTACCAATCA GATAACAATC AAAGCAGGGC TTGAAGGGGG
 2851 GCGTTCTGTAT TCAAGGTGAGG CAGAAAATGC TAACCTAACT ATTCAAAACCA
 2901 AAGAGTTAAA ATTGGCAGGA GACCTAAATA TTTCAGGCTT TAATAAGCA
 2951 GAAATTACAG CTAAAATGG CAGTGATTAA ACTATTGCA ATGCTAGCGG
 3001 TGGTAATGCT GATGCTAAA AAGTGACTTT TGACAAAGGTT AAAGATTCAA
 3051 AAATCTCGAC TGACGGTCAC AATGTAACAC TAAATAGCA AGTGAAMACG
 3101 TCTAATGGTA GTAGCAAATGC TGGTAATGAT AACAGCACCG GTTTAACCAT
 3151 TTCCGCAAA GATGTAACGG TAAACAATA CGTTACCTCC CACAAGACAA
 3201 TAAATATCTC TGCGGCAGCA GGAAATGTA CAACCAAAGA AGGCACAACT
 3251 ATCAATGCCA CCACAGGCAG CGTGAAGTA ACTGGCTCAAAT TGGTACAAAT

FIG. 9E.

3301	TAAAGGCAAC	ATTACCTCGC	AAAATGTAAC	AGTGACAGCA	ACAGAAATC
3351	TTGTTACCAC	AGAGGAATGCT	GTCATTAATG	CAACCAGCGG	CACAGTAAAC
3401	ATTAGTACAA	AACAGGGGA	TATTAAGGT	GGAAATTGAAT	CAACTTCCGG
3451	TAATGTAAT	ATTACAGCGA	GCGGCAATAC	ACTTAAGGT	AGTAATAATCA
3501	CTGGTCAAGA	TGTAACAGTA	ACAGCGGATG	CAGGAGGCCT	GACAACATACA
3551	GCAGGCTCAA	CCATTAGTGC	GACAACAGGC	AATGCAAATA	TTACAACCAA
3601	AACAGGTGAT	ATCAAACGGTA	AAAGTTGAATC	CAGGCTCCGGC	TCTGTAACAC ⁵⁵
3651	TTGTTGCAAC	TGGAGCAACT	CTTGCTGTAG	GTAATATTTC	AGGTAACACT ⁶⁸
3701	GTTACTATTA	CTGGGGATAG	CGGTAAATTAA	ACCTCCACAG	TAGGTTCTAC
3751	AATTAAATGGG	ACTAATAGTG	TAACCACCTC	AAGCCAATCA	GGCGATATTG
3801	AAGGTACAAT	TTCTGGTAAT	ACAGTAAATG	TTACAGCAAG	CACTGGTGT
3851	TTAACTATTG	GAATAGTGC	AAAAGTTGAA	GCGAAAATG	GAGCTGCAAC
3901	CTTAACGT	GAATCAGGCC	AATTAACCCAC	CCAAACAGGC	TCTAGCATTAA
3951	CCTCAAGCAA	TGGTCAGACA	ACTCTTACAG	CCAAGGATAG	CAGTATGCCA
4001	GGAAACATTA	ATGCTGCTAA	TGTGACGTTA	AATACCAACAG	GCACTTTAAC
4051	TACTACAGGG	GATTCAAAAGA	TTAACGCAAC	CAGTGGTACC	TTAACAAATCA

FIG. 9F.

4101 ATGCCAAAGA TGCCAAATTA GATGGTGTG CATCAGGTGA CCGCACAGTA
 4151 GTAAATGCAA CTAACGCAAG TGGCTCTGGT AACGTGACTG CGAAAACCTC
 4201 AAGCAGCGTG AATATCACCG GGGATTAAACACAATAAAT GGTTAAATA
 4251 TCATTTCGGA AAATGGTAGAACACTGTGC GCTTAAGAGG CAAGGAAATT
 4301 GATGTGAAT ATATCCAACC AGGTGTAGCA AGCGTAGAAG AGGTAAATTGA
 4351 AGCGAAACGC GTCCCTGAGA AGGTAAAAGA TTATCTGAT GAAGAAAGAG
 4401 AAACACTAGC CAAACTTGGT GTAAGTGTGCTG TACGTTTCGTTGAGAAAT
 4451 AATGCCATT CGGTTAAATAC ACAAAACGAG TTACAAACCA ACCATCAAG
 4501 TCAAGTGACA ATTTCCTGAAG GTAAAGGGCTG TTCTCAAGT GTAAATGGCG
 4551 CACGAGTATG TACCAATGTT GCTGACGATG GACAGCAGTA GTCAGTAATT
 4601 GACAAGGTAG ATTTCATCCT GCAATGAAGT CATTATTATT TCGTATTATT
 4651 TACTGTGTGG GTTAAAGTTC AGTACGGGCT TTACCCACCT TGTAAAAAAT
 4701 TA

56 / 68

FIG. 10A. COMPARISON OF DERIVED AMINO ACID SEQUENCE

1	Hmw3.com
	Hmw4.com
	Hmw1.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
	Hmw2.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
51						
	Hmw3.com
	Hmw4.com	GMSVVIHGTT	ATMQVDGNKT
	Hmw1.com	SAMLLSLGVT	SIPQSVLASG	LQGMSVVIHGTT	ATMQVDGNKT	TIRNSVNALL
	Hmw2.com	SAMLLSLGVT	SIPQSVLASG	LQGMSVVIHGTT	ATMQVDGNKT	TIRNSVNALL
52						
	Hmw3.com
	Hmw4.com
	Hmw1.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
	Hmw2.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
53						
	Hmw3.com
	Hmw4.com
	Hmw1.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
	Hmw2.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
54						
	Hmw3.com
	Hmw4.com
	Hmw1.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
	Hmw2.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
55						
	Hmw3.com
	Hmw4.com
	Hmw1.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
	Hmw2.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
56						
	Hmw3.com
	Hmw4.com
	Hmw1.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
	Hmw2.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
57						
	Hmw3.com
	Hmw4.com
	Hmw1.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
	Hmw2.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
58						
	Hmw3.com
	Hmw4.com
	Hmw1.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
	Hmw2.com	MNKIYRLKFS	KRLNALVAWS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL

FIG. 10B.

Hmw1.com NWKQFNIDQN EMVQFLQENN NSAVFNRVTS NQISQLKGIL DSNQVFLIN
 Hmw2.com NWKQFNIDQN EMVQFLQENN NSAVFNRVTS NQISQLKGIL DSNQVFLIN

151 200

Hmw3.com
 Hmw4.com PNGITIGKDA IINTNGFTAS TLDISNENIK ARNFITLEQTK DKALAEIVNH
 Hmw1.com PNGITIGKDA IINTNGFTAS TLDISNENIK ARNFITLEQTK DKALAEIVNH 58
 Hmw2.com PNGITIGKDA IINTNGFTAS TLDISNENIK ARNFITLEQTK DKALAEIVNH 68

201 250

Hmw3.com
 Hmw4.com GLITVGKDGS VNLLIGGKVKN EGVISVNGGS ISLLAGQKIT ISDIINPTIT
 Hmw1.com GLITVGKDGS VNLLIGGKVKN EGVISVNGGS ISLLAGQKIT ISDIINPTIT
 Hmw2.com GLITVGKDGS VNLLIGGKVKN EGVISVNGGS ISLLAGQKIT ISDIINPTIT

251 300

Hmw3.com INLGDFIAKG GNINVRAATI RNKGKLSADS VSKDKSGNIV

FIG. 10C.

Hmw4.com YSIAAPNEA INLGDIFAKG GNINVRAATI RNKGKLSADS VSKDKSGNIV
Hmw1.com YSIAAPNEA VNLGDIFAKG GNINVRAATI RNKGKLSADS VSKDKSGNIV
Hmw2.com YSIAAPNEA VNLGDIFAKG GNINVRAATI RNKGKLSADS VSKDKSGNIV

301	Hmw3.com	L _S AKEGEAEI	GGVISAQNQQ	AKGGKLMITG	DKVTLKTGAV	IDLSGKEGGE
	Hmw4.com	L _S AKEGEAEI	GGVISAQNQQ	AKGGKLMITG	DKVTLKTGAV	IDLSGKEGGE
	Hmw1.com	L _S AKEGEAEI	GGVISAQNQQ	AKGGKLMITG	DKVTLKTGAV	IDLSGKEGGE
	Hmw2.com	L _S AKEGEAEI	GGVISAQNQQ	AKGGKLMITG	DKVTLKTGAV	IDLSGKEGGE

351	400
Hmw3 com	TYLGGDERGE GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA IWGDIALID
Hmw4 com	TYLGGDERGE GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA IWGDIALID
Hmw1 com	TYLGGDERGE GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA IWGDIALID
Hmw2 com	TYLGGDERGE GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA IWGDIALID

FIG. 10D.

401 450

Hmw3 com GNINAQGK.D IAKTGGFVET SGHYLSIDDN AIVKTKEWLL DPENVTEAP
 Hmw4 com GNINAQGS.D IAKTGGFVET SGHDLSIGDD VIVDAKEWLL DPDDVSIETL
 Hmw1 com GNINAQGSGD IAKTGGFVET SGHDLFIKDN AIVDAKEWLL DPDMVTINAE
 Hmw2 com GNINAQGSGD IAKTGGFVET SGHYLSIESN AIVKTKEWLL DPDDVTEAE

500 6 / 68

451 500

Hmw3 com SASRVELGAD RNSHSAEVIK VTLKKNNNTSL TTLTNTTISN LLKSAHVVMNI
 Hmw4 com TSGRNNTGEN QGYTTGDGTK ESPKGNSISK PTLTNSTLEQ ILRRGSYVNM
 Hmw1 com TAGRSNTSED DEYTGSNSA STPKRNKE.K TTLTNTTLES ILKKGTFVNM
 Hmw2 com DPLRNNTGIN DEFPTGTGEA SDPKKNSSELK TTLTNTTISN YLKNAWTMNI

501 550

Hmw3 com TARRKLTVNS SISIERGSHL ILHSEGQQGQ GVQIDKDDITS .E... GGNLT
 Hmw4 com TANNRIYVNS SINLSNGS.L TLHTK..RD GVKINGDITS NE.. .NGNLIT
 Hmw1 com TANQRIYVNS SINL.SNGSL TLWSEGRSGG GVEINNDITT GDDTRGANLT
 Hmw2 com TASRKLTVNS SINGSNGLSHL ILHSKGQRGG GVQIDGDDIT. . . SKGGNLIT

FIG. 10E.

600

Hmw3.com IYSGGWVDVH KNITLGS.GF LNITKEGDI AFEDKSGR... .NNLTITAQ
Hmw4.com IKAGSWWDVH KNITLGT.GF LNIVAGDS.V AFEREGDKAR NATDAQITAQ
Hmw1.com IYSGGWVDVH KNISLGAQGN INITAKQD.I AFEKGSNQV. ITGQ
Hmw2.com IYSGGGWVDVH KNITLD.QGF LNITA.AS.V AFEGGNNKAR DANNLTITAQ

61 / 68

Hmw3.com	GTITSG.NSN	GFRFNNVSLN	SLGGKILSFTD	SREDRGRRTK	GNISNKFDGT
Hmw4.com	GTITVNKDDK	QFRFNNVSLN	GTGKGGLKFIA	NQN.....	.NFTHKFDGE
Hmw1.com	GTIT.SGNQK	GFRFNNVSLN	GTGSGLQFTT	KRTN.....K	YAITNKFEGT
Hmw2.com	GTVTITGEKK	DFRANNVSLN	GTGKGGLNIIS	SVNN.....	..LTHNLLSGT

650

Hmw3.com	LNTISGTVDIS	MKAPKVSMFY	RD.KGRTYWN	VTTLNVTSGS	KFNLSIDSTG
Hmw4.com	INISGIVTIN	QTTKKDVYW	NA.SKDSYWN	VSSLTLNTVQ	KFTF.IKFVD
Hmw1.com	INISGKVNIS	WIPKNEESGY	DKEFKGRTYWN	LTSIINVSESG	EENLTIDSRC

700

FIG. 10F.

Hmw2com INISGNITIN QTTRKNTSYW QTSHD. SHWN VSALNLETGA NFTF. IKYIS

701

Hmw3com SGSTG...PS TRNA..ELNG ITFN....KA TENIAQSTA NESIKASIMP
 Hmw4com SGSNS...QD LRSSRRSFAG VHFNGIGGKT NFNIGANAKA LFKLKPNAAAT
 Hmw1com SDSAGTLTQ.PYNLNG ISFN...KDT TFNVERNARY NFDIKAPIGI
 Hmw2com SNSKGLTQY RSSAGVNFG V..N...GNM SFNLKEGAKV NFKLKPNENM
 62/68

751

Hmw3com FKSNNAYAL. FNEDISVSG. .GGSVNFKLN ASSSNIQTPG VIIKSQNFNV
 Hmw4com DPKKELPIT. FNANITATGN SDSSVMFDIH A...NLTSRA AGINMDSINI
 Hmw1com NKYSSLNYAS FNGNISVSG. .GGSVDFTLL ASSSNVQTPG VVINSKYFNV
 Hmw2com NTSKPLPI.R FLANITATG. .GGSVFFDIY ANHS...GRG AELKMSEINI

800

801

Hmw3com SGGSTLNKA EGSTETAFSI ENDLNLNATG GNITIRQVEG T..DSRVNKG
 Hmw4com TGGLDFSITS HNRNSNAFEI KKDLTINATG SNFSLKQTKD SFYNEYSKHA

850

FIG. 10G.

Hmw1com STGSSSLRFKT SGSTKTGFSI EKDLTLNATG GNITLLQVEG T..DGMIGKG

Hmw2com SNGANFTLNS HVRGDDDAFKI NKDLTINATN SNFSLRQTKD DFYDGYARNA

851 900

Hmw3com VAAKKNITFK GGNITFGSQK ATTEIKGNVT INKNTNATLR GANFAEN . . .
 Hmw4com INSSHNLTIL GGNVTLGGEN SSSSITGNIN ITNKANVTLQ ADTSNSNTGL
 Hmw1com IVAKKNITFE GGNITFGSRK AVTEIEGNVT INNNANVTLI GSDFDNHQ . .
 Hmw2com INSTYNISIL GGNVTLGGQN SSSSITGNIT IEKAANVTLE ANNAPNQQNI

901 950

Hmw3com KSPLNTIAGNV INNGNLTTAG SINIAGNLT VSKGANLQAI TNYTFNVAGS
 Hmw4com KKRTLTLGNI SVEGNLSLTG ANANIVGNLS IAEDSTFKGE ASDNLNITGT
 Hmw1com KPLTIKKDVI INSGNLTAGG NIVNIAGNLT VESNANFKAI TNFTFNVGGI
 Hmw2com RDRVVIKLGSL LVNGSLSLTG ENADIKGNLT ISESATFKGK TRDTLNITGN

951 1000

FIG. 10H.

Hmw3.com FDNNGASNIS IARGGAKFK . DINNTSSLNI TTNSDTTYRT IIKGNISNKS
Hmw4.com FTNNGTANIN IKQGVVKLQG DINNKGLNI TTNASGTQKT IINGNITNEK
Hmw1.com FDNKGNSNIS IAKGGARFK . DIDNSKNLSI TTNSSSTYRT IISGNITNKN
Hmw2.com FTNNGTAEIN ITQGVVKLG . NVTNNDGDLN1 TTHAKRNQRS IIIGDILINNK

		1001	1050	64 / 68
Hmw3.com	GDLNIIIDKKS	DAEIQIGGNI	SOKEGNLTIS	SDKVNITNQI
Hmw4.com	GDLNIKNIKA	DAEIQIGGNI	SQKEGNLTIS	SDKVNITNQI
Hmw1.com	GDLNITNEGS	DTEMQIGGDI	SQKEGNLTIS	SDKINITKQI
Hmw2.com	GSLNITDSNN	DAEIQIGGNI	SQKEGNLTIS	SDKINITKQI

1051	Hmw3.com	SDSSEAENAN	LTIQTKELKL	AGDLNISGFN	KAEITAKNGS	DLTIGNASGG
	Hmw4.com	SDSSEAENAN	LTIQTKELKL	AGDLNISGFN	KAEITAKNGS	DLTIGNASGG
	Hmw1.com	SDSDATNNAN	LTIKTKELKL	TQDLNISGFN	KAEITAKDGS	DLTIGNTNSA
	Hmw2.com	SSSDATSNAN	LTIKTKELKL	TEDLSISGFN	KAEITAKDGR	DLTIGN SNDG

FIG. 10I.

1150
1101

Hmw3.com N..ADAKKVT FDKVKDSKIS TDGHNVTLNS EVKT..SNGS SNAGNDNSTG
Hmw4.com N..ADAKKVT FDKVKDSKIS TDGHNVTLNS EVKT..SNGS SNAGNDNSTG
Hmw1.com D.GTNAKKVT FNQVKDSKIS ADGHKVTLHS KVETSGSNNN TEDSSDNNAG
Hmw2.com NSGAEEAKKVT FNNVKDSKIS ADGHNVTLNS KVKTSSSNNGG RESNSDNDTG

1151	Hmw3.com	LTISAKDVTV	NNNVTSHKTI	NISAAAGNVT	TKEGTTINAT TGSVEVTAQN
	Hmw4.com	LTISAKDVTV	NNNVTSHKTI	NISAAAGNVT	TKEGTTINAT TGSVEVTAQN
	Hmw1.com	LTIDAKNVTV	NNNITSHKAV	SISATSGEIT	TKTGTTINAT TGNVEIT . . .
	Hmw2.com	LTITAKNVEV	NKDVTSLKTV	NITA. SEKVT	TTAGSTINAT NGKASIT . . .

1201	Hmw3com	GTIKGNIITSQ	NVTVTATENL	VTTENAVINA	TSGTVNISTK	TGDIKGIES
	Hmw4com	GTIKGNIITSQ	NVTVTATENL	VTTENAVINA	TSGTVNISTK	TGDIKGIES
	Hmw1com	AQ

FIG. 10J.

Hmw2.com TK T

1251	Hmw3.com	TSGNVNITAS	GNTLKVSNIT	GQDVTVTADA	GALTTTAGST	ISATTGNANI
	Hmw4.com	TSGNVNITAS	GNTLKVSNIT	GQDVTVTADA	GALTTTAGST	ISATTGNANI
	Hmw1.com	SSGSVTLTAT	EGALAVSNIS	GNTVTVTANS	GALTTLAGST	IKG.TESVTT
	Hmw2.com

66 / 68

1301	Hmw3.com	TTKTDINGK VESSSGSVTL VATGATLAVG NISGNNTVTIT ADSGKLTTSTV
	Hmw4.com	TTKTDINGK VESSSGSVTL VATGATLAVG NISGNNTVTIT ADSGKLTTSTV
	Hmw1.com	SSQSGDIG..... G TISGGTVEVK ATESLTQTQSN
	Hmw2.comGDIS..... G TISGNNTVSVS ATVDLTTKSG

68

1301	Hmw3.com	TTKTDINGK VESSSGSVTL VATGATLAVG NISGNNTVTIT ADSGKLTTSTV
	Hmw4.com	TTKTDINGK VESSSGSVTL VATGATLAVG NISGNNTVTIT ADSGKLTTSTV
	Hmw1.com	SSQSGDIG..... G TISGGTVEVK ATESLTQTQSN
	Hmw2.comGDIS..... G TISGNNTVSVS ATVDLTTKSG

1351	Hmw3.com	GSTINGTN SV	TTSSQSGDIE	GTISGNTV NV	TASTGDLTIG	NSAKVEAKNG
1400	Hmw4.com	GSTINGTN SV	TTSSQSGDIE	GTISGNTV NV	TASTGDLTIG	NSAKVEAKNG

FIG. 10K.

Hmw1.com SKIKATTGEA NVTSATGTIG GTISGNTVNV TANAGDLTVG NGAEIINATEG
 Hmw2.com SKIEAKSGEA NVTSATGTIG GTISGNTVNV TANAGDLTVG NGAEIINATEG

1401 1450

Hmw3.com AATLTAESGK LTITQTGSSIT SSNGQTTLTA KDSSIAGNIN AANVTLNNTIG
 Hmw4.com AATLTAESGK LTITQTGSSIT SSNGQTTLTA KDSSIAGNIN AANVTLNNTG
 Hmw1.com AATLTTSSGK LTTEASSHIT SAKGQVNLSA QDSSVAGSIN AANVTLNNTG
 Hmw2.com AATLTATGNT LTTEAGSSIT STKGQVDLLA QNSSIAGNIN AANVTLNNTG
 67 / 68

1451 1500

Hmw3.com TLTTTGDSKI NATSGTLTIN AKDAKLDGAA SGDRTVVNAT NASGSGNVITA
 Hmw4.com TLTTTGDSKI NATSGTLTIN AKDAKLDGAA SGDRTVVNAT NASGSGNVITA
 Hmw1.com TLTTVKGSNI NATSGTLTIN AKDAEELNGAA LGNHTVVNAT NANGSGSVIA
 Hmw2.com TLTTIVAGSDI KATSGTLTIN AKDAKLNGDA SGDSTEVNAV NASGSGGSVTA
 1501 1550

FIG. 101.

Hmw3.com KTSSSVNITG DLNTINGLNI ISENGRNTVR LRGKEIDVKY IQPGVVASVEE
Hmw4.com KTSSSVNITG DLNTINGLNI ISENGRNTVR LRGKEIDVKY IQPGVVASVEE
Hmw1.com TTSSSRVNITG DLITINGLNI ISKNGINTVL LKGVKIDVKY IQPGIASVDE
Hmw2.com ATSSSVNITG DLNTVNGLNI ISKDGRNTVR LRGKEIEVKY IQPGVVASVEE

1551	Hmw3com	VIEAKRVL EK	VKDLSDE ERE	TLAKLG VSAV	RFVEPNN AIT	VNTQNEFT TK
	Hmw4com	VIEAKRVL EK	VKDLSDE ERE	TLAKLG VSAV	RFVEPNN AIT	VNTQNEFT TK
	Hmw1com	VIEAKRIL EK	VKDLSDE ERE	ALA KLG VSAV	RFIEPNNT IT	VDTQNEFA TR
	Hmw2com	VIEAKRVL EK	VKDLSDE ERE	TLAKLG VSAV	RFVEPNNT IT	VNTQNEFT TR

1601	Hmw3.com	PSSQVTISEG	KACFSSCGNGA	RVCTNVADDG	QQ
1632	Hmw4.com	PSSQVTISEG	KACFSSCGNGA	RVCTNVADDG	QQ
	Hmw1.com	PLSRIVISEG	RACFSNSDGA	TVCVNIAADNG	R.
	Hmw2.com	PSSQVIISEG	KACFSSCGNGA	RVCTNVADDG	QP

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US94/02550

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) : A61K 39/02

US CL : 424/92

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 424/92; 435/851

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Gene-Seq, APS, Biosis, Embase, Scisearch, Chem Abstracts

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Pediatric Infectious Disease Journal, Volume 9, No. 5, issued 05 May 1990, Barenkamp et al, "Development of Serum Bactericidal Activity Following Nontypable Haemophilus influenzae Acute Otitis Media", pages 333-339, see page 337.	1-3
Y	Pediatric Research, Volume 29, No. 4 part 2, issued 1991, Barenkamp S. J., "DNA Sequence Analysis of Genes for Nontypable Haemophilus influenza High Molecular Weight Outer Membrane Proteins which are Targets of Bactericidal Antibody", see page 167A, column 1, abstract no. 985.	1-3

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be part of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
E earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

09 MAY 1994

Date of mailing of the international search report

JUN 02 1994

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

JULIE KRSEK-STAPLES

Telephone No. (703) 308-0196

Form PCT/ISA/210 (second sheet)(July 1992)*

