Aprendizado por Reforço

AULA - 6

Off-Policy Learning

Anteriormente...

Diferença Temporal

$$V(s) \leftarrow V(s) + \alpha[r_{t+1} + \gamma V(s_{t+1}) - V(s)]$$

Deep Q-Network

$$L(\theta) = \left(r + \gamma \max_{a'} Q(s', a'; \phi) - Q(s, a; \theta)\right)^2$$

Anteriormente...

Gradiente de Política

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) R_{i,t}$$

Com Baseline

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) [R_{i,t} - V_{\phi}(s_t)]$$

Anteriormente...

Actor-Critic

A3C - PPO - SAC

Off-Policy

O que é aprender Off-Policy?

- Como o nome diz "fora da política"
- Com experiências de outras políticas

Off-Policy vs Imitation Learning

- Aprende com as experiências
- Maximizar recompensa em situações do dataset
- Aprende com experiências de qualquer política

- Imita comportamento
- Minimizar erro entre ações do dataset e do modelo
- Política que coleta experiências deve ser expert

O que é Offline e Online Learning?

- Offline: Não há acesso ao ambiente, agente aprende com experiências previamente coletadas
- **Online**: Há acesso ao ambiente, agente coleta novas experiências com uma certa frequência

Por que Off-Policy/Offline RL é Importante?

- O mundo possui uma quantidade enorme de dados
- Podemos usar esses dados para:
 - Minimizar Custos
 - Minimizar Riscos
 - Aproveitar Experiências

No Mundo Real...

Marketing

Ofertas de Produtos

Alocação de Recursos

Horários de Funcionamento

Dados ou Ambiente?

- Interagir com o ambiente pode ser caro e arriscado, pois erros precisam ser cometidos para explorar e aprender
- Permite exploração
- Otimização direta do ambiente

- Interagir com os dados é seguro,
 e, muitas vezes, mais rápido.
- Aproveita o conhecimento de políticas de coleta (humano ou modelos)
- Não há espaço para exploração
- Otimização limitada pelos dados

Podemos ter Ambos?

- Se a situação permitir
- Treino com dados primeiro
- Atuação no ambiente depois
- Aprender no ambiente
- Modelo menos aleatório
- Aplicação com menos riscos

Problema de Superestimação

- Treinar com dados nem sempre é fácil
- Se os dados apresentam um caminho ruim, é fácil para o modelo superestimar o caminho não percorrido

- Quanto mais representativo, menor esse problema
- Dados muito representativos são incomuns, porque geralmente alguma política está sendo seguida para coletá-los

Conservative Q-Learning (CQL)

- Adiciona o valor de Q na função de perda
- Para minimizar a função, Q deve ser pequeno
- Cria um limite inferior
 - Menor Q possível que ainda faça boas predições
- Subtrair o valor de ações que vêm do dataset
 - o Minimiza apenas o valor de ações que estão fora do dataset

Model-Based

MOPO

- Cria um ensemble de modelos do ambiente
- o Iterativamente treina modelos e política
- Política é treinada com estados e recompensas inferidos pelos modelos
- No treino da política é adicionado um fator de discordância dos modelos

MOReL

- Treina um modelo a partir das experiências
- Usa o modelo para emular o ambiente, prevendo estado e recompensas
- Treino com o ambiente "falso"

Dificuldades com os Dados

- Informações Disponíveis
- Há informações suficientes para tomar decisões?
- Construção da representação do estado
- Construção da Recompensa

Dificuldades com os Dados

- Desproporcionalidade
- Talvez é necessário repensar as recompensas ou filtrar os dados.

Sequências que geram Recompensas Positivas

Dificuldades de Avaliação

- Como avaliar uma política sem acesso ao ambiente?
- Off-Policy Evaluation

- Direct Estimator
- Importance Sampling
- Weighted Importance Sampling
- Doubly Robust

Off-Policy Estimators

Tão bons quanto os dados disponíveis

Projeto com a Acordo Certo

Problema

 Trazer usuários para a plataforma para quitar suas dívidas através de mensagens SMS

- Não se pode acionar usuários com menos de 3 dias do último contato
- Não se pode acionar todos os usuários (são muitos)

Dados Disponíveis

- Montar Recompensa
 - cadastro +
 - o acordo ++
 - o acionamento ·
- Montar Estados
 - Estado Markoviano
 - Histórico
 - Último acionamento?
 - O Quantos acionamentos?

Quem Coletou os Dados?

- Modelos previamente desenvolvidos pela empresa
- Há inteligência nos dados / nas trajetórias

Fluxo de Treino

Resultados

Conversão em Cadastros

É isso aí...

Próxima Aula: Tópicos Avançados