МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №8 по дисциплине «Машинное обучение»

Тема: Классификация (линейный дискриминантный анализ, метод опорных векторов)

Студент гр. 6304	Иванов Д.В.
Преподаватель	Жангиров Т. Р.

Санкт-Петербург 2020

Цель работы

Ознакомиться с методами кластеризации модуля Sklearn.

Загрузка данных

1. Датасет скачан и загружен в датафрейм.

```
import pandas as pd
import numpy as np
data = pd.read_csv('iris.data',header=None)
```

2. Выделены данные и их метки, метки преобразованы к числам.

```
X = data.iloc[:,:4].to_numpy()
labels = data.iloc[:,4].to_numpy()
le = preprocessing.LabelEncoder()
Y = le.fit transform(labels)
```

3. Исходная выборка разбита на обучающую и тестовую.

```
X_train, X_test, y_train, y_test = train_test_split(X, Y,
test_size=0.5)
```

Линейный дискриминантный анализ

1. Проведена классификация наблюдений с использованием LDA. Количество неправильно классифицированных наблюдений и точность классификации:

```
Wrong classified: 3
Score: 0.987
```

2. Построен график зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки.

Рис. 1 — Графики зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки

3. Метод transform позволяет уменьшить размерность данных.

Рис. 2 — Результат работы метода *transform*

4. Исследована работа классификатора при различных параметрах solver, shrinkage

Рис. 3 — solver=svd, shrinkage=no

Рис. 4 — solver=lsqr, shrinkage=no

Рис. 5 — solver=lsqr, shrinkage=auto

Рис. 6 — solver= eigen, shrinkage=auto

5. Классу с номером 1 задана априорная вероятность классу 0.7, остальным классам заданыравные априорные вероятности.

Рис. 7 — Графики зависимости от размера тестового набора

Метод опорных векторов

1. Проведена классификация SVM на тех же данных. Количество неверно классифицированных наблюдений, точность классификации, количество листьев дерева и глубина:

```
Wrong classified: 4
Score: 0.953
```

2. Построен график зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки.

Рис. 8 — Графики зависимости от размера тестовой выборки

- 3. Исследована работа метода опорных векторов при различных значениях параметра.
 - а. *kernel* тип ядра для использования внутри алгоритма. На исходных данных лучший результат показывает значение «linear».

kernel	Wrong classified	Score
linear	2	0.97
poly	6	0.95
rbf	4	0.95
sigmoid	54	0.33

b. *degree* – степень полиномиальной функции ядра (при *kernel* = poly).

degree	Wrong classified	Score
1	5	0.947
2	6	0.940
3	6	0.953
4	5	0.960
5	3	0.973
6	3	0.980
7	3	0.980

с. *max_iter* – ограничение на количество итераций.

max_iter	Wrong classified	Score
1	9	0.920
2	8	0.940

5	0.950
3	0.967
1	0.980
3	0.967
3	0.967
_	0.960
	0.953
5	0.953
	3 1 3 3 4 5

4. Исследована работа методов:

а. NuSVC – имеет параметр для управления количеством опорных векторов.

Рис. 9 — Графики зависимости от размера тестовой выборки NuSVC

b. LinearSVC – аналогичен SVC с kernel=linear, но лучше масштабируется.

Рис. 9 — Графики зависимости от размера тестовой выборки LinearSVC

Вывод

В ходе выполнения лабораторной работы произведено знакомство с классификацией методом линейного дискриминантного анализа и методом опорных векторов модуля Sklearn.