## Proves d'accés a la Universitat. Curs 2006-2007

# Electrotècnia

Sèrie 3

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A o B), de les quals cal triar-ne UNA.

#### **PRIMERA PART**

#### Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Resposta ben contestada, 0,5 punts; resposta mal contestada, -0,16 punts; resposta no contestada, 0 punts.]

#### Qüestió 1

La funció lògica corresponent al diagrama de portes de la figura és:

- **a)** s = b + c
- **b)** s = a + b + c
- c)  $s = a \cdot b$
- d)  $s = a \cdot b + c$



#### Qüestió 2

Un motor d'inducció, alimentat a la tensió i la freqüència nominals, gira en buit a 1 499 min<sup>-1</sup>. Si la tensió d'alimentació passa a ser un 20 % inferior a la nominal, la velocitat del motor serà aproximadament de \_\_\_\_\_\_.

- a) 999 min-1
- b) 1199 min-1
- c) 1499 min<sup>-1</sup>
- d) 1799 min<sup>-1</sup>

#### Qüestió 3

Una màquina síncrona de 2 parells de pols connectada a una xarxa de 60 Hz gira a una velocitat de \_\_\_\_\_.

- a) 3600 min-1
- b) 1800 min<sup>-1</sup>
- c) 1 200 min-1
- d) 900 min-1

#### Qüestió 4

Un motor d'inducció té la placa de característiques adjunta.

| P = 10 kW                  | <i>U</i> = 400 V      | I = 21 A  |
|----------------------------|-----------------------|-----------|
| $n = 720 \text{ min}^{-1}$ | $\cos \varphi = 0.85$ | f = 50 Hz |

El nombre de parells de pols és \_\_\_\_\_.

- **a**) un
- b) dos
- **c**) tres
- d) quatre

#### Qüestió 5

Un condensador de 220  $\mu\text{F}$ , connectat a una tensió alterna de 230 V i 50 Hz, consumeix una potència reactiva de \_\_\_\_\_\_.

- a) -11,64 kvar
- **b)** -3,66 kvar
- c) 3,66 kvar
- d) 11,64 kvar

#### Exercici 2

[2,5 punts]



El circuit de la figura està alimentat amb una tensió *U*.

a) Dibuixeu el diagrama fasorial de tensions i corrents.

[1 punt]

Determineu:

**b)** Els valors de la reactància  $X_L$  i la resistència R.

[0,5 punts]

c) El valor de la tensió d'alimentació U.

[0,5 punts]

d) La potència activa consumida P.

[0,5 punts]

#### **SEGONA PART**

#### OPCIÓ A

#### Exercici 3

[2,5 punts]



El circuit de la figura, alimentat amb una tensió composta U i una freqüència f, consumeix una potència activa P i una potència reactiva Q. Determineu:

| a)  | El valor de les resistències R.     | [0,5 punts]  |
|-----|-------------------------------------|--------------|
| ۰., | = 1 valor do 100 10010to110100 7 ft | [O,O parito] |

**d)** El valor dels corrents de línia 
$$I_{L}$$
. [1 punt]

#### Exercici 4

[2,5 punts]

Un motor de corrent continu, d'excitació per imants permanents, té la placa de característiques següent:

$$U = 24 \text{ V}$$
  $P = 60 \text{ W}$   $I = 3 \text{ A}$   $n = 2500 \text{ min}^{-1}$ 

Si tant les pèrdues mecàniques com les de les escombretes són negligibles, determineu:

a) El rendiment  $\eta$  en condicions nominals. [0,5 punts]

**b)** El parell  $\Gamma$  en condicions nominals. [0,5 punts]

c) La velocitat a què girarà si està alimentat a 20 V i treballa a parell nominal. [1 punt]

d) La velocitat a què girarà alimentat a tensió nominal i treballant a parell nul. [0,5 punts]

### OPCIÓ B

#### **Exercici 3**

[2,5 punts]



Per al circuit de la figura, amb la tensió  $U_3$  = 0 V, determineu:

a) Els corrents  $l_1$  i  $l_2$  que circulen per les resistències.

[1 punt]

**b)** Les potències  $P_1$  i  $P_2$  subministrades per les fonts de tensió.

[0,5 punts]

Si el valor de  $U_3$  és tal que la potència dissipada per  $R_3$  esdevé nul·la, determineu:

**c)** El nou valor  $U_3$ . [1 punt]

#### **Exercici 4**

[2,5 punts]



El circuit de la figura s'alimenta amb una tensió U de valor i freqüència constants. El condensador és variable, de manera que la reactància  $X_{\mathbb{C}}$  també ho és. Determineu:

a) L'expressió del corrent del circuit en funció de la reactància  $X_c$ .

[1 punt]

**b)** A quin valor de reactància  $X_c$  li correspon el corrent màxim i el valor d'aquest corrent.

[0,5 punts]

- c) L'expressió de la potència activa del circuit en funció de la reactància  $X_c$ . [0,5 punts]
- **d)** A quin valor de reactància  $X_c$  li correspon la potència màxima i el valor d'aquesta potència. [0,5 punts]

