A Comparison of Approaches for Unplanned Sample Size Changes in Phase II Clinical Trials

Molly Olson molly.a.olson@vanderbilt.edu Advisor: Tatsuki Koyama

Vanderbilt University
Department Of Biostatistics

June 13, 2017

Outline

Background and Introduction

Motivation

Deviation from Planned Sample Sizes in Second Stage

Deviation from planned sample sizes in first stage

Comparison of Methods

Phase II Trials

- ▶ Phase I: Evaluate safety and dose
- ▶ Phase II: Evaluate initial effect to determine phase III trial
- ▶ Phase III: Evaluate efficacy
- ▶ Phase II Two-stage
 - ▶ Mitigate the risk of exposure
 - ▶ Don't want to "waste" resources

Two-stage Phase II Trial

 $H_0: p \le p_0, H_1: p > p_1$

- 1. stage 1: n_1 patients are enrolled
 - ▶ $X_1 \sim \text{Binomial}(n_1, p) = \# \text{ of successes in first stage}$
- 2. If number of responses is r_1 or fewer, trial stopped for futility
- 3. Otherwise, stage 2: n_2 patients are enrolled $(n_t = n_1 + n_2$ total patients now)
 - $X_2 \sim \text{Binomial}(n_2, p) = \# \text{ of successes in second stage}$
 - $X_t = X_1 + X_2$
- 4. If number of responses is r_t or fewer, lack of efficacy concluded
- 5. Otherwise efficacy concluded
- $\triangleright p_0, p_1, n_1, n_t, r_1, r_t, \alpha, \beta$ are design parameters
- ▶ n_1, n_t, r_1, r_t are chosen so that type I error rate is less than α and the type II error rate is less than β .

Types of Two-Stage Designs

- Simon introduced Optimal and Minimax criteria for good designs
 - \triangleright Optimal minimizes the expected sample size under H_0
 - ▶ Minimax minimizes the maximum sample size
- ▶ Jung et al. introduced Admissible designs
 - ▶ Compromise between Optimal and Minimax
 - Similar maximum sample sizes as Minimax
 - \triangleright Similar expected sample size under H_0 as Optimal
- ► Suppose $H_0: p_0 \le 0.25, H_1: p_1 > 0.4, \alpha = 0.05, \beta = 0.2$

Design	n_t	n_1	r_1	r_t	EN_0	PET_0
Optimal	71	20	5	23	39.5	0.617
Minimax	60	51	16	20	52	0.886
Admissible	63	25	6	21	41.7	0.561

Deviation from the design

- ► Attain different enrollment than planned in first and/or second stage
- ▶ Why would we deviate?
 - Unanticipated recruitment speed
 - ► Unanticipated drop out rates
 - ▶ Delay in communication for multi-center trials
 - Ethical considerations
 - Shopping for sponsors
- Nice properties go out the window
- Currently, common practice is to treat attained sample size as planned
- ▶ Leads to invalid inference
- Hypothesis testing is not straightforward

Setting the Scene

- ▶ Goal is to make a decision
- ▶ How do we do this if our attained sample size is different than planned?
- P-value calculations are complicated we don't consider these solutions
- ► Consider prespecified "redesigns" recalculating critical values
- Primary focus on deviation in first stage

Deviation from Planned Sample Sizes in Second Stage

- ▶ Over-enrollment in first stage: perform interim analysis on the planned number of first stage, adjust testing procedure for attained second stage
- ▶ Under-enrollment: just wait
- ▶ Literature exists for point estimation, calculation of p-values when stage II differs (Review: Porcher *et al.*)
- ▶ P-values in two-stage trials depend on planned design and attained data, complicated when attained SS differ than planned [Koyama and Chen]

Koyama and Chen

- ▶ Koyama and Chen, StatMed, 2008
- ▶ Notation:
 - ▶ Planned design parameters: $n_1, n_t, n_2 = n_t n_1 r_1, r_t, \alpha, \beta$.
 - Attained design parameters: $n_1, n_t^*, n_2^* = n_t^* - n_1, r_1, r_t^*, \alpha^*, \beta^*$
- ▶ Let first stage remained as planned and change testing procedure in stage II
- ▶ Calculate new critical value, r_t^* , by finding maximum integer s.t.

$$P[X_2^* \ge r_t^* | X_1 = x_1] \le P[X_2 \ge r_t | X_1 = x_1]$$

 $X_2^* \sim \text{Binomial}(n_2^*, p_0)$

Leviation from Planned Sample Sizes in Second Stage

Koyama and Chen

- Results in controlled unconditional type I error rate new CV gives more conservative conditional type I error rate
- ▶ New critical value depends on number of positive responses

Zeng et al.

- ▶ Zeng et al., StatMed, 2015
- ► Attempts to maximize unconditional power while controlling type I error
- ▶ r_2^* new stage II critical value and $r_t^* \equiv r_2^* + x_1$
- ▶ Second stage CV is integer that maximizes unconditional power while subject to type I error $\leq \alpha$
- ► Theoretically possible, computationally difficult. No closed form solution.
- Propose normal approximation to ease computation of power
- ▶ Math (Lagrange multipliers, derivatives, substitution, searching over λ s)
- ▶ Solve an ugly equation for r_2^*

Leviation from Planned Sample Sizes in Second Stage

Zeng et al.

$$\left(\frac{1}{p_0(1-p_0)} - \frac{1}{p_1(1-p_1)}\right) r_2^{*2} - \frac{2n_2^*(p_0-p_1)}{(1-p_0)(1-p_1)} r_2^* + \frac{n_2^{*2}(p_0-p_1)}{(1-p_0)(1-p_1)} - 2n_2^* log\left(\frac{\lambda a(x_1)}{b(x_1)}\right) = 0$$

$$a(x_1) = \binom{n_1}{x_1} p_0^{x_1} (1-p_0)^{n_1-x_1}$$

$$b(x_1) = \binom{n_1}{x_1} p_1^{x_1} (1-p_1)^{n_1-x_1}$$
(1)

 λ is the Lagrange multiplier.

Deviation from planned sample sizes in first stage

- ► SWOG:
 - $\alpha = 0.05, \beta = 0.1$
 - ▶ Interim: $H_0: p = p_1, H_1: p < p_1$, stop if p-value is significant at 0.02-level
 - ► Stage II: $H_0: p = p_0, H_1: p > p_0$
- ► Green and Dahlberg, StatMed, 1992
 - ▶ Use SWOG, but use attained sample size
 - ► Test stage II at 0.055 level
- ▶ Unclear how to generalize
- ► Arbitrary and lacks theoretical justification [Li et al.]

Deviation from planned sample sizes in first stage

- ▶ Chen and Ng, StatMed, 1998
- ► Consider range of sample sizes
- ► Search these ranges for the Minimax or Optimal design that satisfy error constraints using the average PET and EN
- ▶ Limitation: attained sample sizes may fall outside of ranges
- ► Limitation: average probabilities rather then actual for attained SS

Chang et al.

- ▶ Chang et al. Biometrics & Biostatistics, 2015
- Recall: $n_1, n_t, r_1, r_t, p_0, p_1, \alpha, \beta$
- Notation: n_1^{**}, n_2^{**} attained sample sizes
- Notation: s_1, s_t new critical values
- Choose s_1 by first using β -spending function

$$\beta(m) = \begin{cases} \beta_1 m / n_1 & \text{if } m \le n_1 \\ \beta_1 + (\beta - \beta_1)(m - n_1) / n_2 & \text{if } m > n_1 \end{cases}$$

- ▶ Integer s.t. type II error probability given s_1, n_1^{**} is closest to $\beta(n_1^{**})$
- ▶ Choose s_t s.t. type I error $\leq \alpha$

Olson and Koyama

- ▶ Select s_1 s.t. $PET_0^{**} \approx PET_0$
- Conservative
- ▶ Could have done $PET_0^{**} \le PET_0$

Background: Likelihood

- ▶ Law of likelihood: "If $H_1 \Rightarrow P(X = x) = P_1(X)$, $H_2 \Rightarrow P(X = x) = P_2(X)$, then the observation X=x is evidence supporting H_1 over H_2 iff $P_1(X) > P_2(X)$. Likelihood ratio measures strength of evidence.
- Likelihood function:

$$L_n(p) = P(X|p, n)$$

$$= \binom{n}{x} p^x (1-p)^{n-x}$$

$$\propto p^x (1-p)^{n-x}$$
(2)

► Likelihood ratio:

$$LR_n = \frac{L_n(p_1)}{L_n(p_2)} \tag{3}$$

 \square Deviation from planned sample sizes in first stage

Likelihood

- Can calculate probability of observing weak evidence, strong evidence, misleading evidence
- ▶ Universal bound of misleading evidence is $\leq 1/k$

Ayers and Blume

- ▶ Likelihood two-stage design
- ightharpoonup Enroll n_1 ,
 - ▶ $1/k < LR_{n_1}$; k \rightarrow second stage
 - ▶ $LR_{n_1} < 1/k \rightarrow \text{stop for futility}$
 - ▶ $LR_{n_1} > k \to \text{stop for efficacy}$
- $Enroll \ n_2, \ LR_{n_t} = LR_{n_1}LR_{n_2}$
 - ▶ $1/k < LR_{n_1}$ j k \rightarrow conclude weak
 - ▶ $LR_{n_1} < 1/k \rightarrow$ conclude futility
 - ▶ $LR_{n_1} > k \rightarrow \text{conclude efficacy}$

Ayers and Blume

- ► Emulate conventional two-stage designs
- ▶ Notation: $k_{a_1}, k_{a_t}, k_{b_1}, k_{b_t}$
- ▶ Start with conventional two-stage design, set $k_{b_1}, k_{b_t} = \infty$, redefine k_{a_1}, k_{a_t}

$$s_{1} = \frac{\log(k_{a_{1}}) - n_{1}^{**}\log\left(\frac{1-p_{1}}{1-p_{0}}\right)}{\log\left(\frac{p_{1}(1-p_{0})}{p_{0}(1-p_{1})}\right)}$$

$$s_{t} = \frac{\log(k_{a_{t}}) - n_{t}^{**}\log\left(\frac{1-p_{1}}{1-p_{0}}\right)}{\log\left(\frac{p_{1}(1-p_{0})}{p_{0}(1-p_{1})}\right)}$$

$$(4)$$

Ayers and Blume

- ► Can recalculate probability of weak, strong, and misleading evidence, PET₀, EN₀ under attained
- ▶ Minimizes average of error rates
- ▶ Type I error rate often below nominal rates

Comparison of methods

- ▶ Don't consider added cohorts
- ▶ Original total sample size $(n_t^{**} = n_t, n_2^{**} = n_t n_1^{**})$
- ▶ Original second stage sample size $(n_t^{**} = n_1^{**} + n_2)$

Title

Title