Ondes électromagnétiques dans les milieux conducteurs

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

I. Principe de l'étude illustré sur l'exemple du métal ohmique

1. Recherche des équations régissant le problème

Domaine spectral	Ondes radios à micrométriques	IR à UV	UV durs à X faibles
	$\omega \ll rac{1}{ au} \ll \omega_P$	$\frac{1}{ au} \ll \omega \ll \omega_P$	$rac{1}{ au} \ll \omega_P \ll \omega$
Electro- neutralité	Oui	Oui, sauf pour une perturbation initiale de charge volumique	Oui, sauf pour une perturbation initiale de charge volumique
Relation de dispersion	$\underline{k}^2 \approx -i\mu_0 \sigma_0 \omega$	$\underline{k}^2 \approx (\omega^2 - \omega_P^2)/c^2$	
Interprétation	Pénétration de l'onde EM dans le métal Amortissement par effet Joule	Interaction électrons - ions négligeable donc absence d'effet Joule et réémission totale de l'onde électromagnétique	Les électrons ne suivent plus l'excitation et le métal devient transparent à l'onde électromagnétique
Phénomènes physiques	Loi d'Ohm, effet de peau Réflexion partielle	Onde stationnaire évanescente Réflexion totale (éclat métallique)	Propagation libre, transparence des métaux à ces fréquences