Machine Learning with Physics

Scaling Law, Optimization and Minimax Optimality

Yiping Lu

Institute for Computational and Mathematical Engineering
School Of Engineering
Stanford University

Joint work with Haoxuan Chen, Jianfeng Lu, Lexing Ying and Jose Blanchet.

Motivation 1

Lavarian

We can make **Predictions** from

- physics usingPDEs/Structure Form
- data using Machine Learning

Can we have a hybrid way?

Without Machine Learning

With Machine Learning

Motivation 2

<u>Inverse Problem</u>: What we can measure is not what we want to know! How to do machine learning?

- ▶ Stock price → drift
- ► Imaging: X-Ray, CT, Calderon problems
- Our work: "Inverse Game Theory": policy → utility (not included today)

How much data we need?

Questions Aim to Answer in This Talk

<u>Satistical Limit</u>. For a given PDE, how large the sample size are needed to reach a prescribed performance level?

Optimal Estimators. How complex the model are needed to reach the satistical limit?

Computational Power. How can we design an algorithm?

Questions Aim to Answer in This Talk

<u>Satistical Limit</u>. For a given PDE, how large the sample size are needed to reach a prescribed performance level?

Optimal Estimators. How complex the model are needed to reach the satistical limit?

Computational Power. How can we design an algorithm?

Questions Aim to Answer in This Talk

<u>Satistical Limit</u>. For a given PDE, how large the sample size are needed to reach a prescribed performance level?

Optimal Estimators. How complex the model are needed to reach the satistical limit?

Computational Power. How can we design an algorithm?

Answers by this Talk

Satistical Limit. Gradient value have more information

Optimal Estimators. PINN and Modified DRM are optimal

Computational Power. Sobolev Loss Accelerates Training

Answers by this Talk

Satistical Limit. Gradient value have more information

Optimal Estimators. PINN and Modified DRM are optimal

Computational Power. Sobolev Loss Accelerates Training

Answers by this Talk

Satistical Limit. Gradient value have more information

Optimal Estimators. PINN and Modified DRM are optimal

Computational Power. Sobolev Loss Accelerates Training

Insights for Empirical Users

- Deep Ritz Method High dimensional problem,Smooth problem
- PINN Low dimensional problem, Non-smooth problem

1. Problem Formulation

2. Lower Bound

3. Upper Bound Empirical Risk Minimization Gradient Descent

Problem Formulation

Problem Formulation

Static Schrödinger Equation

$$-\Delta u + Vu = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega.$$
(1)

What we observed:

- ▶ Random Samples in Domain: $\{x_i\}_{i=1}^n \sim \mathsf{Unif}(\Omega)$
- RHS Function Values: $\{f_i = f(x_i) + \eta_i\}_{i=1}^n$

What we want:

ightharpoonup An Esitmate of $\underline{\underline{u}}$ in **Sobolev Norm**.

Lower Bound

General Lower Bound

Information Theoretical Lower Bound

Any Estimator H using $(X_i, f_i)_{i=1}^n$ can't do better than

$$\inf_{H} \sup_{u \in C^{\alpha}(\Omega)} \mathbb{E} \|H(\{X_i, f_i\}_{i=1,\dots,n}) - u^*\|_{W_s^2} \gtrsim n^{-\frac{2\alpha - 2s}{2\alpha - 2t + d}},$$

For

- ▶ <u>t</u>-th order PDE
- Solution $u \in \overline{H^{\alpha}}$
- Consider Convergence in H^s

Now:

PINN: H^2 norm

DRM: H^1 norm

Upper Bound

Problem Formulation

Strong form (residual minimization) → Physics Informed Neural Network/DGM

$$\mathcal{L}(u) := \left| (-\Delta + V)u - f \right|_{L^2(\Omega)}^2$$

Variational form → Deep Ritz Methods

$$u^* = \arg\min_{u \in H^1(\Omega)} \mathcal{E}(u) := \frac{1}{2} \int_{\Omega} \|\nabla u\|^2 + V \|u\|^2 u(x) - \int_{\Omega} fu(x)$$

Problem Formulation

Strong form (residual minimization) → Physics Informed Neural Network/DGM

$$\mathcal{L}(u) := \left| (-\Delta + V)u - f \right|_{L^2(\Omega)}^2$$

Variational form → Deep Ritz Methods

$$u^* = \arg\min_{u \in H^1(\Omega)} \mathcal{E}(u) := \frac{1}{2} \int_{\Omega} \|\nabla u\|^2 + V \|u\|^2 u(x) - \int_{\Omega} fu(x)$$

Further Question

Will different objective function gives different answers to **Statistical Efficiency**, **Optimization**?

Error Decomposition

If we

$$\begin{split} \mathbb{E}\left(\mathcal{E}\left(u_{n}\right) - \mathcal{E}\left(u^{*}\right)\right) \leqslant \underbrace{\mathbb{E}[\mathcal{E}\left(u_{n}\right) - \mathcal{E}_{n}(u_{n})]}_{\Delta\mathcal{E}_{\mathbf{gen}}} + \underbrace{\mathbb{E}[\mathcal{E}_{n}(u_{\mathcal{F}})] - \mathcal{E}\left(u_{\mathcal{F}}\right)}_{\Delta\mathcal{E}_{\mathbf{bias}}} \\ + \underbrace{\mathcal{E}\left(u_{\mathcal{F}}\right) - \mathcal{E}\left(u^{*}\right)}_{\Delta\mathcal{E}_{\mathbf{approx}}}. \end{split}$$

bias+variance decomposition:

approximation
$$+\frac{\text{Complexity}}{\sqrt{n}}$$
 bound

But leads to sub-optimal results... [Shin et al 2020], [Lu et al 2021], [Duan et al

2021]

Motivating Example

Estimating the mean

Goal. Estimate $\theta = \mathbb{E}[X]$ via loss function $\frac{1}{2}(\theta - x)^2$

Empirical Solution of ℓ_2 loss: $\theta_n = \frac{1}{n} \sum_{i=1}^n x_i$, using chernoff bound we know $\theta_n - \theta = \sqrt{\frac{\sigma^2 \log \frac{1}{\delta}}{n}}$ w.h.p.

The generalization gap $L(\theta_n) - L(\theta^*) = \|\theta - \theta^*\|^2$ w.h.p

$$L(\theta_n) - L(\theta^*) = (\theta_n - \theta^*)^2 \leqslant C \frac{\sigma^2 \log \frac{1}{\delta}}{n}$$

A $O(\frac{1}{n})$ fast rate bound.

Motivating Example

Estimating the mean

Goal. Estimate $\theta = \mathbb{E}[X]$ via loss function $\frac{1}{2}(\theta - x)^2$

Empirical Solution of ℓ_2 loss: $\theta_n = \frac{1}{n} \sum_{i=1}^n x_i$, using chernoff bound we know $\theta_n - \theta = \sqrt{\frac{\sigma^2 \log \frac{1}{\delta}}{n}}$ w.h.p.

The generalization gap $L(\theta_n) - L(\theta^*) = \|\theta - \theta^*\|^2$ w.h.p

$$L(\theta_n) - L(\theta^*) = (\theta_n - \theta^*)^2 \leqslant C \frac{\sigma^2 \log \frac{1}{\delta}}{n}$$

A $O(\frac{1}{n})$ fast rate bound.

Observation 1: Fast rate via Localization

The variational form has some "strongly convex"

Lemma

Assume $0 < V_{\min} \leq V(x) \leq V_{\max}$ for all $x \in \Omega$

$$\frac{2}{\max(1, V_{\max})} \big(\mathcal{E}(u) - \mathcal{E}(u^*)\big) \leqslant \|u - u^*\|_{H^1(\Omega)}^2 \leqslant \frac{2}{\max(1, V_{\min})} \big(\mathcal{E}(u) - \mathcal{E}(u^*)\big)$$

Can we have a $\frac{1}{n}$ fast rate generalization bound?

Local Rademacher Complexity

Local Rademacher Complexity

$$\psi(r) \geqslant \mathbb{E}R_n\{f \in \mathcal{F}, T(f) \leqslant r\}$$

The generalization bound: fix point solution of $\psi(r) = r$

$$\sqrt{\frac{r}{n}} = r \to r = \frac{1}{n}$$

$$1/\sqrt{N} \text{ rate}$$

Key: increase speed according to r.

Local Rademacher Complexity

Local Rademacher Complexity

$$\psi(r) \geqslant \mathbb{E} R_n \{ f \in \mathfrak{F}, T(f) \leqslant r \}$$

The generalization bound: fix point solution of $\psi(r) = r$

$$\underbrace{\sqrt{\frac{r}{n}}}_{1/\sqrt{N} \text{ rate}} = r \to r = \frac{1}{n}$$

Key: increase speed according to r.

Is Fast Rate Optimal?

For PINN, Yes!. For DRM, No!

Up	Lower Bound		
Objective Function	Neural Network	Fourier Basis	Lower Bound
Deep Ritz	$n^{-\frac{2s-2}{d+2s-2}}\log n$	$n^{-\frac{2s-2}{d+2s-2}}$	$n^{-\frac{2s-2}{d+2s-4}}$
PINN	$n^{-\frac{2s-4}{d+2s-4}}\log n$	$n^{-\frac{2s-4}{d+2s-4}}$	$n^{-\frac{2s-4}{d+2s-4}}$

Table: Upper bounds and lower bounds Fast Rate achieved.

Why?

A Fourier Basis View

Solving a simple PDE $\Delta u = f$ using Fourier Basis.

Estimator 1

First Estimate
$$f$$
 then solve u , $f_z=\frac{1}{n}\sum f(x_i)\varphi_z(x_i)$, then $u=\sum \frac{1}{\|z\|^2}f_z\varphi_z(x)$

Estimator 2

Plug $u = \sum u_z \phi_z(x)$ into the Deep Ritz Objective function

$$\frac{1}{n}\sum_{i=1}^{n}\left(\sum_{z}u_{z}\nabla\varphi_{z}(x_{i})\right)^{2}+\sum_{z}u_{z}\varphi_{z}(x_{i})f(x_{i})$$

A Fourier Basis View

Solving a simple PDE $\Delta u = f$ using Fourier Basis.

Estimator 1

First Estimate
$$f$$
 then solve u , $f_z = \frac{1}{n} \sum f(x_i) \varphi_z(x_i)$, then $u = \sum \frac{1}{\|z\|^2} f_z \varphi_z(x)$

Estimator 2

Plug $u = \sum u_z \varphi_z(x)$ into the Deep Ritz Objecive function

$$\frac{1}{n}\sum_{i=1}^{n}\left(\sum_{z}u_{z}\nabla\varphi_{z}(x_{i})\right)^{2}+\sum_{z}u_{z}\varphi_{z}(x_{i})f(x_{i})$$

A Fourier Basis View

Solving a simple PDE $\Delta u = f$ using Fourier Basis.

Estimator 1

First Estimate f then solve u, $f_z = \frac{1}{n} \sum f(x_i) \varphi_z(x_i)$, then $u = \sum \frac{1}{\|z\|^2} f_z \varphi_z(x)$

Estimator 2

Plug $u = \sum u_z \varphi_z(x)$ into the Deep Ritz Objective function

$$\frac{1}{n}\sum_{i=1}^{n}\left(\sum_{z}u_{z}\nabla\varphi_{z}(x_{i})\right)^{2}+\sum_{z}u_{z}\varphi_{z}(x_{i})f(x_{i})$$

Estimator1 is Optimal

Consider estimating in H_{-1} norm using Fourier Basis up to Z, i.e. $\mathcal{Z} := \{z \in \mathbb{N}^d | ||z||_{\infty} \leq Z\}$.

▶ Rias

$$\|\sum_{\|z\|_{\infty}>Z} f_z \varphi_z\|_{H^{-1}}^2 \leqslant C \sum_{\|z\|_{\infty}>Z} f_z^2 z^{-2} \leqslant \|z\|^{-2(s-1)} \|f\|_{H_{\alpha-2}}^2$$

Variance:

$$\mathbb{E}\|f - f\|_{H_{-1}}^2 \leqslant \mathbb{E}\sum_{\|z\|_{\infty} \leqslant Z} (f_z - f_z)^2 \|\phi_z\|_{H_{-1}}^2 \leqslant \sum_{\|z\|_{\infty} \leqslant Z} |z|^{-1} \mathsf{Var}(f_z)$$

Final bound:
$$Z^{-2(s-1)} + \frac{Z^{d-2}}{n}$$

Difference Between Estimator1 and 2

► Estimator 1: The Fourier coefficient of the solution of Estimator 1 is

$$\mathbf{u}_{1,z} = \operatorname{diag} \left(\|z\|_2^2 \right)_{\|z\|_{\infty} \leqslant Z}^{-1} f_z.$$
 (2)

► Estimator 2: The Fourier coefficient of the solution of Estimator 2 is

$$\mathbf{u}_{2,z} = \underbrace{\left(\frac{1}{n}\sum_{i=1}^{n}\nabla\phi_{i}(x_{i})\nabla\phi_{j}(x_{i})\right)^{-1}_{\|i\|_{\infty}\leqslant Z,\|j\|_{\infty}\leqslant Z}}_{\text{empirical Gram Matrix }A} f_{z}, \qquad (3)$$

Thus
$$\|u_1 - u_2\|_{H_1}^2 \propto \|((\mathbb{E}A) - A)\|_{H}^2 \propto \frac{Z^d}{n}$$

Difference Between Estimator1 and 2

► Estimator 1: The Fourier coefficient of the solution of Estimator 1 is

$$\mathbf{u}_{1,z} = \operatorname{diag} \left(\|z\|_2^2 \right)_{\|z\|_{\infty} \leqslant Z}^{-1} f_z.$$
 (2)

► Estimator 2: The Fourier coefficient of the solution of Estimator 2 is

$$\mathbf{u}_{2,z} = \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} \nabla \phi_{i}(x_{i}) \nabla \phi_{j}(x_{i})\right)^{-1}_{\|i\|_{\infty} \leqslant Z, \|j\|_{\infty} \leqslant Z}}_{\text{empirical Gram Matrix } A} f_{z}, \qquad (3)$$

Thus
$$||u_1 - u_2||_{H_1}^2 \propto ||((\mathbb{E}A) - A)||_H^2 \propto \frac{Z^d}{n}$$
.

How Much Gradient We Need?

We Introduce the Modified DRM

$$\mathcal{E}_{N,n}^{\mathsf{MDRM}}(u) = \underbrace{\frac{1}{N} \sum_{j=1}^{N} \left[|\Omega| \cdot \frac{1}{2} \|\nabla u(X_j')\|^2 \right]}_{\mathsf{Sample More Gradients}}$$

(4)

$$+\frac{1}{n}\sum_{i=1}^{n}\left[|\Omega|\cdot\left(\frac{1}{2}V(X_{j})|u(X_{j})|^{2}-f_{j}u(X_{j})\right)\right]$$

Thus Variance:
$$\frac{\xi^d}{N} < \frac{\xi^{d-2}}{n} \simeq \xi^{-2(s-1)} \Rightarrow \xi \simeq n^{\frac{1}{d+2s-4}}$$
 and

$$\frac{N}{n} = \xi^2 = n^{\frac{2}{d+2s-4}}$$

Experiment

	(a) Deep Ritz Methods	(b) Modified Deep Ritz Methods	
Theory	$\frac{2s - 2}{d + 2s - 2} = 0.75$	$\frac{2s-2}{d+2s-4} = 1$	
Empirical	0.6595	0.7953	
R2 Score	0.91	0.89	

Summarize in One Table...

Up	Lower Bound		
Objective Function	Neural Network	Fourier Basis	Lower Bound
Deep Ritz	$n^{-\frac{2s-2}{d+2s-2}}\log n$	$n^{-\frac{2s-2}{d+2s-2}}$	$n^{-\frac{2s-2}{d+2s-4}}$
Modified Deep Ritz	$n^{-\frac{2s-2}{d+2s-2}}\log n$	$n^{-\frac{2s-2}{d+2s-4}}$	$n^{-\frac{2s-2}{d+2s-4}}$
PINN	$n^{-\frac{2s-4}{d+2s-4}}\log n$	$n^{-\frac{2s-4}{d+2s-4}}$	$n^{-\frac{2s-4}{d+2s-4}}$

Table: Upper bounds and lower bounds we achieve in this paper and previous work. The upper bound colored in red indicates that the convergence rate matches the min-max lower bound.

Observation 3: Tigher Local Rademacher

Local Rademacher Complexity

$$\psi(r) \geqslant \mathbb{E}R_n\{f \in \mathfrak{F}, \underbrace{T(f) \leqslant r}\}$$
loss function

- For nonparametric estimation: ℓ_2 Norm
- ► For Solving PDE: Sobolev Norm

Can Tigher Norm leads to Tigher Bound?

► Fourier Basis Yes DNN No

Gradient Descent


```
Why you select Ritz form in the first paper
```

Me

```
minimizing \int (\Delta u)^2 is crazy to me due to the condition number of \Delta^\top \Delta Lexing
```

Gradient Descent


```
Why you select Ritz form in the first paper
```

Me

```
minimizing \int (\Delta u)^2 is crazy to me due to the condition number of \Delta^\top \Delta Lexing
```

Gradient Descent

Why you select Ritz form in the first paper

Me

minimizing $\int (\Delta u)^2$ is crazy to me due to the condition number of $\Delta^\top \Delta$ Lexing

(Stochastic) Gradient Descent

Let's consider $\Delta u = f$ via minimizing $\frac{1}{2} \langle f, A_1 f \rangle - \langle u, A_2 f \rangle$

- ▶ Deep Ritz Methods. $A_1 = \Delta$, $A_2 = Id$
- ▶ PINN. $A_1 = \Delta^2$, $A_2 = \Delta$

We consider parameterize f using kernel regression $f(x) = \langle \theta, K_x \rangle$. Then we apply a stochastic gradient descent and get

$$\theta_{t+1} = \theta_t - \eta(\langle \theta, A_1 K_{x_i} \rangle K_{x_i} - f_i A_2 K_{x_i})$$

(Stochastic) Gradient Descent

Let's consider $\Delta u = f$ via minimizing $\frac{1}{2} \langle f, A_1 f \rangle - \langle u, A_2 f \rangle$

- ▶ Deep Ritz Methods. $A_1 = \Delta$, $A_2 = Id$
- ▶ PINN. $A_1 = \Delta^2$, $A_2 = \Delta$

We consider parameterize f using kernel regression $\underline{f(x)} = \langle \theta, K_x \rangle$. Then we apply a stochastic gradient descent and get

$$\theta_{t+1} = \theta_t - \eta(\langle \theta, A_1 K_{x_i} \rangle K_{x_i} - f_i A_2 K_{x_i})$$

Setting: Sobolev Learning Rate

We can formulate the Sobolev Norm as $[H^{\alpha}]$ norm as

$$\|\sum_{i\geqslant 1} a_i \mu_i^{\alpha/2} e_i\|_{[H]^{\alpha}} := \left(\sum_{i\geqslant 1} a_i^2\right)^2$$

The evaulation Sobolev norm can be different as the training Sobolev norm. We consider convergence rate in $\overline{H^{\gamma}}$ norm.

First Result: Three Regime

Can be concluded into Three Regimes

- β:function smoothness
- $\triangleright \alpha$: kernel smoothness

(larger, smoother)

The first Regime:

Suboptimal, concentration error of $\frac{1}{n}K_x \otimes K_x \to \Sigma$ dominates

Similar to the modified DRM!

First Result: Three Regime

First Result: Three Regime

Lower Bound

Recall

$$\inf_{H} \sup_{u \in C^{\alpha}(\Omega)} \mathbb{E} \|H(\{X_i, f_i\}_{i=1,\dots,n}) - u^*\|_{W_s^2} \gtrsim n^{-\frac{2\alpha - 2s}{2\alpha - 2t + d}},$$

and translate it into kernel setting

$$\|f_{\lambda}-f\|_{[H]^{\gamma}}^2 \leqslant n^{-\frac{(\beta-\gamma)\alpha}{\beta\alpha+2(p-q)+1}}$$

They matches for

- $\alpha = 1/d$
- $\beta = 2\alpha, \gamma = 2s$
- ho (q-p)=t (p,q: eigen decay of A_1,A_2)

Upper Bound

We can achieve infomration theortical optimal rate

$$n^{-\frac{(\beta-\gamma)\alpha}{\beta\alpha+2(p-q)+1}}$$
 via Bias-Variance Tradeoff.

- ► Train Longer, Bias Smaller.
- ► Train Longer, Bias Larger.

Convergence time

The convergence time will equal to the optimal selection of λ

Iteration Time

$$\lambda = n^{\frac{\alpha + \mathbf{p}}{\beta \alpha + 2(\mathbf{p} - \mathbf{q}) + 1}}$$

- Independent of γ .
- ▶ (p-q) is from the equation.
- p the only thing effects!

Recall Iteration time $\frac{\lambda = n^{\frac{\alpha+p}{\beta\alpha+2(p-q)+1}}}{1}$. To compare $\frac{\overline{DRM}}{1}$ and $\frac{\overline{PINN}}{1}$, we should fix p-q and then consider the dependency of iteration time on \overline{p} .

- Denominator do nothing with p
- Numerator
 - $p < 0, \alpha > 0$, differential operator helps to balance the condition number of the kernel operator. PINN is faster
 - lpha + p > 0 means activation function should be smooth for NTK

Recall Iteration time $\frac{\lambda = n^{\frac{N}{\beta\alpha+2(p-q)+1}}}{1}$. To compare $\frac{\overline{DRM}}{1}$ and $\frac{\overline{PINN}}{1}$, we should fix p-q and then consider the dependency of iteration time on \overline{p} .

- Denominator do nothing with p
- Numerator
 - p < 0, $\alpha > 0$, differential operator helps to balance the condition number of the kernel operator. PINN is faster.
 - lpha + p > 0 means activation function should be smooth for NTK

Figure: $\sum_{i=1}^{d} \sin(2\pi x)$

Figure: $\sum_{i=1}^{d} \sin(4\pi x)$

Variance of Integral by Parts

$$\mathbb{E}_{\mathbb{P}_n(x,y)} \frac{1}{2} \langle u, K_x \otimes A_1 K_x u \rangle - y \langle u, A_2 K_x \rangle$$

We considered the dynamic

$$\theta_{t} = \theta_{t-1} + \gamma \frac{1}{n} \sum_{i=1}^{n} \left(y_{i} \mathcal{A}_{2} K_{x_{i}} - \underbrace{\left\langle \theta_{t-1}, \mathcal{A}_{1} K_{x_{i}} \right\rangle_{\mathcal{H}} K_{x_{i}}}_{\text{not} \left(\left\langle \theta_{t-1}, \mathcal{A}_{1} K_{x_{i}} \right\rangle_{\mathcal{H}} K_{x_{i}} + \left\langle \theta_{t-1}, K_{x_{i}} \right\rangle_{\mathcal{H}} \mathcal{A}_{1} K_{x_{i}} \right) \right)$$

for the variance of integral by parts may dominated.

Main Message

- Deep Ritz Method High dimensional problem, Smooth problem
- PINN Low dimensional problem, Non-smooth problem

Take Home Message

- Non-parametric statistics view of numerical PDE solver
- Gives us new constraints to design objective functions to be statistical/information theortical optimal
- sparsity of the weight is not a good measurement of the complexity of gradients, we need to find new measure
- GD analysis sugguest Sobolev Training

Reference

- Lu Y, Chen H, Lu J, et al. Machine Learning For Elliptic PDEs: Fast Rate Generalization Bound, Neural Scaling Law and Minimax Optimality. ICLR 2021.
- Lu Y, Jose B, et al. Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations, submitted.

Thank you for listening! and Questions?

Yiping Lu

yplu@stanford.edu.cn

https://web.stanford.edu/~yplu/