Evidence Detection

The University of Manchester

BI-LSTM

0.79

0.80

0.78

An Overview of Two Approaches: LR + TF-IDF & Bi-LSTM

By Bilal Yaqub and Abdelrahman Abdeldaim

Introduction

Evidence detection (ED) is a vital NLU task, involving analyzing text to determine if provided evidence supports or contradicts a claim. It's crucial in domains like law, media and academia where information accuracy is key. Manual assessment of evidence relevance is labor-intensive and prone to subjective interpretations.

Objective

Develop two distinct computational methods for Evidence Detection (ED). The first method employs TF-idf vectorization, a traditional machine learning technique, while the second utilizes a sophisticated deep learning model, Bi-directional LSTM.

Methodology

The project employs a dataset with over 23,000 training pairs and nearly 6,000 validation pairs, with rigorous preprocessing to improve data quality for modeling.

Model Development

- TF-idf Vectorization Model: Utilizes statistical analysis to assess word relevance, establishing a baseline by highlighting term frequency and significance.
- Bi-directional LSTM Model: Employs a neural network that processes text bidirectionally, capturing complex contextual relationships more effectively than traditional models.

	Term-Frequencies] [Documents		Feature Vectors					
	this	is	good	bad	awesome		"This is good"		this	is	good	bad	awesome
sen1	1/3 = .66	1/3 = .66	1/3 = .66	0	0		"This is bad" "awesome This is awesome"	sen1	0	0	0.31	0	0
sen2	1/3 = .66	1/3 = .66	0	1/3 = .66	0			sen2	0	0	0	0.31	0
sen3	1/4 = .25	1/4 = .25	0	0	2/4 = .5	~	TF-IDF Vectroization 3	sen3	0	0	0	0	0.23
							Inverse Document Frequencies		1				

	this	is	good	bad	awesom
values	$\log(3/3) = 0$	$\log(3/3) = 0$	log(3/1) = 0.47	log(3/1) = 0.47	$\log(3/1)$ $= 0.47$

ACCURACY	0.808	0.798

Conclusion

LINEAR REGRESSION

+ TFIDF

0.80

0.81

0.79

PRECISION

RECALL

F1-SCORE

The model utilising Logistic Regression with a TF-IDF vectorizer achieved an accuracy of >80% with an F1 score of 0.79, recall score of 0.81 and precision score of 0.80. Showing that even a simple linear relation was able to achieve promising results in this experiment. On the other hand, using a deep learning technique like a Bidirectional-LSTM achieved very similar results with an accuracy of nearly 80%, F1 score of 0.78, recall of 0.80 and precision of 0.79, however, training it took more than 2 hours of run time.