Memory Rehearsal and Belief Biases

John J. Conlon

First version: May 28, 2024

This version: June 28, 2025*

Abstract

We rely on memory to form beliefs, but we also frequently revisit memories in conversation and private reflection. I show experimentally that such rehearsal generates systematic belief biases. Participants are randomized to have conversations about a subset of experiences, either ones that reflect well or poorly on them, which has large effects on which experiences they can recall a week later. Crucially, participants appear naive about these effects: they take what they remember at face value when later incentivized to form accurate beliefs about their experiences. Participants also make rehearsal choices seemingly without regard to their later distortionary effects. Intrinsic preferences for thinking about positive experiences instead drive rehearsal choices and therefore a positivity bias in recall and beliefs. This mechanism provides a new non-strategic channel through which overly optimistic beliefs can arise and generates novel predictions in a range of economic domains.

^{*}Carnegie Mellon University: jconlon@andrew.cmu.edu. I thank Chiara Aina, Kai Barron, Lukas Bolte, Lucas Coffman, Ben Enke, Thomas Graeber, Spencer Kwon, Muriel Niederle, Dev Patel, Pete Robertson, Chris Roth, Peter Schwardmann, Andrei Shleifer, Cassidy Shubatt, and Florian Zimmerman for helpful comments.

1 Introduction

Inaccurate beliefs generate choice mistakes across a wide array of economic settings, leading to increased interest in how and why biased expectations arise. Growing evidence suggests memory plays a key role. For example, biases in people's expectations about the what will happen to them in the future often come paired with corresponding biases about what has happened to them in the past, such as in beliefs about workplace productivity, sophistication regarding self-control problems, stock market returns, and savings levels (Huffman et al. 2022, Sial et al. 2023, Gödker et al. 2025, Augenblick et al. 2024). There is thus growing recognition that memories are a crucial input into expectation-formation, and therefore that systematic frictions in what people recall can generate mistakes in beliefs and thereby in choices (Bordalo et al. 2023b, Amelio & Zimmermann 2023, Graeber et al. 2023, Enke et al. 2024, Bohren et al. 2024).

But our reasons for retrieving and attending to our experiences go well beyond using them to construct beliefs or inform some immediate decision. Memory is a ubiquitous part of people's social and inner lives: we rely on our memory whenever we recount experiences in conversation with others, tell and re-tell stories about ourselves, privately reflect on or ruminate over past episodes, and so on. Often such reminiscing serves no particular purpose besides the inherent enjoyment of thinking back on previous experiences. This fact has received much attention in psychology (Bluck & Alea 2002, Walker et al. 2009), but what implications does it have for economics?

In this paper, I study experimentally how these two forces—memory as an input into the belief construction process and reminiscing as an activity with independent utility consequences—interact to generate belief biases. Psychologists have long known that when trying to memorize something, it helps to *rehearse* it: remembering an experience at one time makes it more likely to come to mind in the future (Kahana 2012). The myriad opportunities we have for retrieving and attending to past experiences (e.g., in conversation or private reflection) therefore have the potential to distort what comes to mind when we later use memory to form beliefs. To explore this idea, I first describe a simple model of endogenous memory rehearsal.¹ The agent

¹Mullainathan (2002) and Bodoh-Creed (2020) incorporate rehearsal-like effects in models of exogenous memory retrieval, which is used in their models to generate autocorrelation in beliefs and thereby lasting distortions originally arising from other memory forces (i.e., associativity).

derives in-the-moment utility from retrieving and thinking more about certain past experiences, but doing so induces *selection bias* in her future recall by increasing the probability that more attended-to experiences will come to mind. Whether this in turn distorts the agent's beliefs (and the magnitude of any such bias) depends on if, and when, she is sophisticated or naive about this selection problem. *Which* biases arise, and their welfare consequences, depend on the motivations underlying rehearsal choices.

I design an experiment to measure the consequences for belief biases of naturalistic rehearsal of rich experiences, while maintaining tight control of the underlying environment. A first survey asks participants to list and then describe classes they took in college/high school that they felt they either did well or poorly in (henceforth, "successes" and "failures"). The number of successes vs failures is pre-determined, with the experiment eliciting a fixed number of each one-by-one in a random order. Participants then wait a week before taking a second survey. One of the classes they listed in the first survey is chosen at random, without revealing its identity, and participants must estimate the percent chance that this random class was one of the successes. For an agent without memory constraints, this belief elicitation is trivial: participants directly provided the full set of classes and so could simply report as their belief the true percent of the classes from the first survey that were successes. In practice, however, they must rely on what they can remember about the first survey in order to form their beliefs. Indeed, errors in participants' beliefs are tightly linked to their memory: participants are separately asked to free-recall (by listing the names of) these classes, and this measure of recall is highly correlated with their beliefs.

To study the effect of rehearsal, participants in the first survey have conversations with a large language model about three of the classes they named. These conversations are randomized to focus either on three successful classes (the *Successes* treatment) or three unsuccessful classes (the *Failures* treatment), and participants are aware that this is how the conversation topics are selected. These conversations are incentivized: participants' responses are graded according to how engaged they were in the conversation, and their bonus payment increases (in expectation) in this score. This method of incentivization, as well as the structure of the conversations, was chosen to generate naturalistic but focused rehearsal of the classes being discussed. To my knowledge, this natural-language method of keeping certain experiences top-of-mind is novel in economics experiments, though related methods are sometimes

used to measure what is already top-of-mind (Haaland et al. 2024).

These conversations have large effects on recall a week later. Participants in the second survey recall 45.9% of the classes they do not have conversations about. In contrast, they recall 72.1% of the classes they were randomized to have conversations about, a 26.2 percentage point increase (p < 0.01). There are therefore significant corresponding differences across treatments in the number of successes and failures that participants recall. In the *Successes* treatment, participants on average recall 2.9 successes and 1.9 failures, while those in the *Failures* treatment recall 2.2 successes and 2.8 failures (all differences significant at the p < 0.01 level). Thus, of the classes participants do recall, 62.7% are successes in the *Successes* treatment but only 41.8% are successes in the *Failures* treatment (a 20.9 percentage point difference, p < 0.01).

I then turn to my primary question: the implications of these rehearsal effects for belief biases. The model I describe makes the intuitive point that rehearsal can only bias beliefs if agents are naive ex post, when they are retrieving experiences to inform their beliefs, about the selection problem that earlier rehearsal induces in their memory. Such an agent takes what she recalls at face value, failing to account for the fact that her recall is distorted by earlier rehearsal. "Biases" in rehearsal (e.g., only having conversations about successes) therefore produce biases in her beliefs. In contrast, an ex post sophisticated agent, who realizes that some experiences were more likely to come to mind due to rehearsal, can "back out" accurate beliefs on average even from a biased memory.

A priori, it is unclear whether we should expect this kind of sophistication about rehearsal. On the one hand, agents appear naive ex post about other forces in memory such as cueing and associativity when forming beliefs (Bordalo et al. 2023b). On the other hand, rehearsal is perhaps the most well-known force that shapes human recall, as any student using flashcards to prepare for an exam can attest. Indeed, rehearsal is sometimes defined in explicitly sophisticated terms. For example, Kahana (2012) writes, "By rehearsal, we mean the strategy of repeating previously presented items ... to keep those items in mind until the time of test" (pg 71, italics mine). Other

²These treatment effects are almost entirely on the extensive margin: i.e., whether classes originally classified as successes vs failures are recalled at all in the second survey. I find only very small effects on the intensive margin (whether, conditional on recalling the name of a class, it is (mis)remembered as being a success vs a failure). This is partly because participants are extremely internally consistent in classifying individual classes as successes vs failures (they agree across surveys in 93% of cases). Thus the partly subjective nature of the success vs failure classification does not drive any results.

authors in psychology (e.g., Tversky & Marsh 2000, Walker et al. 2009), however, adopt the more general terminology that I employ in this paper, including in the definition of "rehearsal" episodes of retrieving and attending to past experiences that people engage in for purposes other than improving recall of them in the future. The question is whether agents understand that even these latter types of rehearsal—e.g., conversation about and reflection on past experiences—have large and lasting effects on which experiences come to mind in the future.

I find that participants appear almost wholly naive ex post about rehearsal's effect on their memory. Those in the Successes treatment, who had conversations about only successful classes, believe that 61.8% of the original classes were successes. This average belief is 16.5 percentage points lower (p < 0.01) among participants in the Failures treatment whose conversations instead focused on unsuccessful classes. This treatment effect is not statistically distinguishable from the 20.9 percentage point effect on recall, so I cannot reject that participants are fully naive ex post. In addition to the incentivized belief about the share of classes that are successes vs failures, the second survey also asks participants to make a binary bet on whether the randomly selected class is a success vs a failure. Participants in the Successes treatment are 47.6 percentage points more likely (p < 0.01) to bet that the randomly selected class is a success than those in the Failures treatment. In a sense, this ex post naivete represents a internal form of selection neglect (Enke 2020, Jin et al. 2021, Barron et al. 2024, Farina et al. 2024): participants take what they remember at face value, failing to account for the fact that factors beyond objective frequency contribute to recall.

My experiment exogenously varies rehearsal patterns to identify their effect on participants' memory and beliefs. But which experiences do participants choose to rehearse, and therefore which belief biases would arise endogenously? To answer these questions, I ask participants to express a preference for which classes to have conversations about. They can choose to discuss only successes, only failures, or a randomly selected set of classes. To make this elicitation incentive-compatible, I actually implement the choice of a random subset of participants. Using the estimated treatment effect of rehearsing positive experiences, I then compute what I call participants' "endogenous belief": the belief they would have formed had their rehearsal choice been implemented. I find that participants are dramatically more likely to choose to discuss successes than failures (44.6% vs 10.0%, p < 0.01). This preference

toward rehearsing positive experience, combined with $ex\ post$ naivete, implies that participants' endogenous beliefs are overly "optimistic": that is, they prefer rehearsal patterns that on average lead them to believe that they did well in more classes than they in fact did.³

Eliciting rehearsal preferences in this way also allows me to test whether the naivete I find is driven in part by participants being induced (by random treatment assignment) to rehearse different experiences than they would naturally choose themselves. I find no evidence for this channel: participants are just as naive when they were randomized into the same rehearsal pattern that they would have chosen themselves (p = 0.93).

What drives these rehearsal choices and therefore endogenous belief biases? Openended questions asking participants the reasons behind their rehearsal decisions allow me to provide qualitative evidence on this question. Two factors appear to largely determine participants' choices. First, financial incentives appear to matter: 37.0% of participants mention preferring to discuss classes about which they could more easily have thoughtful conversations (recall that participants' bonus payment depended on how thoughtful their responses in the conversations were graded as being). Second, many participants report an intrinsic preference for thinking about times they were successful and for avoiding ruminating on failures: over half of those who choose to discuss successes mention this consideration.

Do participants fail to anticipate that their rehearsal choices will affect their later recall and beliefs? While I show that such ex ante naivete is not necessary for rehearsal preferences to produce belief biases (ex post naivete is sufficient), my experiment nonetheless provides suggestive evidence on this question. A randomly selected half of participants were warned immediately before making their rehearsal choice that they would later face monetary incentives for accurate beliefs about the fraction of classes that were successes vs failures. Of these, only 3.3% appear to mention anything about how their choice of conversation might affect these future beliefs or their future memory. Further, this manipulation does not have any effect on participants' rehearsal choices, nor does it attenuate the effect of rehearsal on later

³Of course, because these beliefs are about the number of successful vs unsuccessful classes that the first survey asked about (not about, say, how well participants did overall academically in school), these apparently "overoptimistic" beliefs are likely divorced from ego-relevant considerations about ability and self-confidence. This was an intentional design choice: seemingly "overconfident" beliefs can be generated through rehearsal choices even in a domain that is plausibly ego-irrelevant.

beliefs. These results suggest that, in addition to being naive *ex post* about the effect of rehearsal on their memory, participants may also be naive *ex ante*. In-the-moment factors, either instrumental motives (financial incentives) or intrinsic preferences (for thinking about positive experiences), instead drive rehearsal choices and therefore—through *ex post* naivete—belief biases within my experiment.

This mechanism—in-the-moment preferences for thinking about positive experiences unintentionally biasing beliefs—is to my knowledge a novel explanation in economics for overoptimism. The typical story told in the literature on motivated reasoning is inherently sophisticated: agents with belief-based, ego-based, or anticipatory utility optimize their future beliefs, achieving overoptimistic beliefs by strategically managing the evidence they collect or remember (e.g., Akerlof & Dickens 1982, Kunda 1990, Bénabou & Tirole 2002, Brunnermeier & Parker 2005, Köszegi 2006). My evidence shows that this kind of belief-optimization is not necessary to explain memory-driven overoptimistic beliefs: in-the-moment preferences over which experiences to rehearse, plus *ex post* naivete about their effects on memory, are sufficient.

Does distinguishing between these two mechanisms—naive rehearsal-induced biases on the one hand vs. sophisticated optimized-beliefs on the other hand—matter? After all, they will sometimes make similar predictions: an ex ante sophisticated (but ex post naive) agent may intentionally become overly optimistic in order to derive belief-based utility, whereas a fully naive agent may do so accidentally by myopically acting on her intrinsic rehearsal-based utility. For two reasons, I suggest that this distinction does matter. First, I show that even when these two mechanisms generate similar predictions about eventual belief biases, they have diametrically opposed welfare implications: for example, a sophisticated agent with belief-based utility generally is harmed by an information intervention correcting her beliefs (by a simple revealed preference argument), while a naive agent with intrinsic rehearsal-based preference

⁴One piece of evidence often provided for this optimization channel is that overoptimism is sometimes found to decrease as the monetary incentives for accurate beliefs increase. However, such evidence shows that agents can respond to incentives for accuracy, but not that their biases absent monetary incentives were chosen strategically. For example, suppose that agents know they have imperfect/noisy memory but also, as in my experiment, fail to understand how acting on their intrinsic rehearsal preferences biases their recall. With sufficient incentives for accurate beliefs, agents may take other steps to improve their memory (e.g., writing down everything that happens during the experiment to ensure no forgetting later on, or spending much more time and effort trying to remember everything they can at the retrieval stage). Such agents might "improve" their beliefs in response to greater incentives, but this is consistent with never having attempted to have biased beliefs in the first place.

erences is helped (because she is straightforwardly making an error while forming her beliefs $ex\ post$). Disentangling these two mechanisms is therefore relevant for policy makers considering whether de-biasing beliefs will tend to be beneficial.

Second, these two mechanisms do not generally make the same predictions. To demonstrate this, I conclude the paper by returning to the model of endogenous rehearsal to ask how these forces bias both the agent's beliefs about the past and her forecasts about the future. I show that assuming the agent is naive and prefers rehearing positive experiences generates rich predictions about both the magnitude and even the sign of the belief biases she develops. First, I show that while such an agent is unbiased about the most recent period, she grows increasingly overoptimistic about time periods further in the past. This is because she has had more opportunities to differentially rehearse positive experiences that happened longer ago. Thus, while the agent is on average weakly overoptimistic about all periods in the past, she is especially so about the more distant past. Consistent with this result, Americans overwhelmingly tend to report in surveys that the best time in the US along many dimensions, including arts and music, happy family lives, moral decision-making, and political harmony, happens to coincide with their own childhood. Conversely, people across generations tend to agree that the worst time in the country's history along all these dimensions happens to be now (Mastroianni & Gilbert 2023, Dam 2024).

How does the agent interpret her increasingly rosy view of the past when making forecasts about the future? I assume she has priors about both the expected value of the initial period and how this expected value changes over time. She uses Bayes' rule to form posteriors about these two parameters from what she (seems to) remember, which she then uses to forecast the expected value of future periods. I show that whether her rehearsal-induced overoptimism about more distant past periods leads her to become overoptimistic about the future depends crucially on what she knows about whether the expected value of periods is changing over time. If she knows the true time trend—for example, she might know that her true average productivity compared to her coworkers is relatively constant over time—she will then interpret the last few periods (which she tends to remember less overoptimistically than more distant periods) as a string of somewhat bad luck and expect mean-reversion to an overly high expected value. Such an agent is therefore overconfident about the future because she is overoptimistic about the past. On the other hand, suppose instead that the agent suspects there may be a time trend but is unsure: perhaps, for example,

she wonders whether the country is changing for the better or not. This agent will interpret her decreasing overoptimism about the more recent past as evidence that things are getting worse, and she will therefore become overly pessimistic about the future. Such an agent looks nostalgic for the past and skeptical that the negative apparent trend will reverse itself on its own.

I conclude by briefly applying this basic insight to three economic environments. First, I show that this force predicts that voters will repeatedly sour on incumbent politicians, whom they blame for the deterioration of affairs that their rehearsal leads them to perceive. Second, rehearsal leads agents to be excessively hesitant to adopt, and overly quick to abandon, self-improvement technologies like therapy. Their overoptimism about the past leads them to understate their initial need for improvement, while they blame the fact that more recent periods seem less rosy than more distant ones on the self-improvement investment failing to work. Finally, rehearsal can produce a status quo bias through a form of information trap. Suppose an agent repeatedly consumes a good (e.g., a similar vacation every year) whose perceived average utility serves as a signal of its expected quality. Rehearsal will lead her to believe that her previous purchases were better than they in fact were. She can thus become stuck with her initial decision, failing to switch to a better option even with an infinite stream of mediocre signals about her current choice. Note that none of these predictions is obviously shared by the typical optimized-beliefs models of motivated cognition in which agents simply distort their beliefs toward what they want to be true. These applications point toward how a greater understanding of rehearsal-based belief biases can lead economists to ask new questions.⁵

This paper proceeds as follows. Section 2 describes how this paper relates to previous work in economics and psychology. Section 3 describes a simple model of endogenous memory rehearsal to motivate the experimental design, which is then described in Section 4. Section 5 presents the main experimental results. Section 6 embeds these results back into the model to explore the implications of these findings for belief formation. Section 7 concludes.

⁵On the methodological side, note that the naive-rehearsal mechanism also generates a simple method of anticipating exceptions to these predictions. Wherever people in fact tend not to disproportionately rehearse positive experiences (say, because their job, other external forces, or mental health push them toward focusing more on the negative) we should expect these forces to be attenuated or even reversed. Further, because many forms of rehearsal are observable (conversations, social media posts, etc.), these predictions can be disciplined by collecting and analyzing the right type of data.

2 Related Literature

This paper contributes to a growing literature in economics studying memory distortions. There is by now ample evidence that people's memories of their own pasts are often systematically distorted. Models explaining memory distortions have largely emphasized the role of similarity, both between experiences themselves as well as between experiences and the retrieval context or cue, in explaining a wide variety of belief biases and choice anomalies (Mullainathan 2002, Bordalo et al. 2023b, Graeber et al. 2023, Bordalo et al. 2024, Enke et al. 2024, Bohren et al. 2024). Similarity alone, however, does not provide an obvious explanation for the well-documented pattern in both economics and psychology that people tend to hold overoptimistic or self-serving beliefs about their own past: e.g., overestimating one's own previous productivity, academic performance, ethical choices, consistency, healthy behaviors, and financial returns (Gervais & Odean 2001, Compte & Postlewaite 2004, Saucet & Villeval 2019, Adler & Pansky 2020, Chew et al. 2020, Zimmermann 2020, Carlson et al. 2020, Müller 2022, Huffman et al. 2022, Amelio & Zimmermann 2023, Sial et al. 2023, Gödker et al. 2025). Instead the literature on motivated memory focuses on sophisticated explanations whereby agents strategically manage their future beliefs by intentionally manipulating their own memory (Bénabou & Tirole 2002). To my knowledge, the explanation my experiment provides evidence for—that intrinsic preferences for thinking about positive experiences unintentionally generate overoptimistic beliefs for naive agents—is novel to this literature.⁷

Next, this paper contributes to a literature on attention in economics (see Loewenstein & Wojtowicz 2023 for a review). Much existing work focuses on the forces that

⁶A related but distinct literature studies "asymmetric updating," a tendency to react more to positive news than negative news. Often such updates are measured immediately after participants receive signals, and so memory *per se* is unlikely to underlie this form of apparently motivated cognition. See, among others, Eil & Rao (2011), Möbius et al. (2022), Drobner (2022), Engelmann et al. 2024, and Bolte & Fan (2024).

⁷Perhaps relatedly, many papers find that people tasked with convincing others of some fact (e.g., a legal or political case) tend to also convince themselves in a way that seems "self serving" (e.g., Babcock et al. 1995, Schwardmann & van der Weele 2019, Schwardmann et al. 2022). Such effects are sometimes explained by suggesting that agents try to convince themselves of an argument in order to better convince others. Like with belief-based utility, this explanation is inherently sophisticated. My results suggest a different, more naive mechanism may also operate: participants tasked with arguing for one side of an argument may simply pay more attention to (i.e., rehearse more) the arguments that favor their assigned side. If agents are naive about the fact that this will make such arguments more memorable to themselves later on, they will accidentally convince themselves of the merits of their case. See also Marsh (2007) for related evidence from psychology.

attract attention and how mistakes arise when too much/little attention is devoted to features of a decision (e.g., Koszegi & Szeidl 2013, Bushong et al. 2021, Bordalo et al. 2022, 2023a, Link et al. 2023, Conlon 2024), but there is a also a small literature on the emotional consequences of attention that relates to this paper. For example, Loewenstein (1987), Caplin & Leahy (2001), and Bolte & Raymond (2024) all model how preferences for attending to past or future good states affect choices, and the rehearsal-based utility I study might be naturally thought of as an example of such attention-based utility. However, the agents in these models are assumed to be fully rational (i.e., forward looking with correct expectations), precluding belief biases like those I study. In a similar vein, Quispe-Torreblanca et al. (2022) show that people have a preference for attending to positive information (about stock market portfolios) even when it has no effect on their beliefs, a finding they connect with information-avoidance behavior à la the "ostrich effect" (Karlsson et al. 2009). To my knowledge, my paper is the first provide direct experimental evidence that attention allocation (which rehearsal requires) at one time can have longer-run cognitive effects, through memory, on beliefs at later times.

Finally, this paper speaks to a literature on rehearsal effects in psychology that goes back at least to the nineteenth century. Most such work focuses on exploring how different variables (e.g., lag time, spacing, elaboration) increase or decrease the effect of rehearsal on later recall (Madigan 1969, Craik & Lockhart 1972, Roediger & Karpicke 2006, Cepeda et al. 2006, Bartsch et al. 2018) and how other patterns in memory are related to rehearsal (Rundus 1971, Brodie & Murdock 1977, Tan & Ward 2000). For example, primacy effects (events being more memorable when they occurred first) are often attributed to rehearsal, as earlier items have had more opportunities to be rehearsed (see, e.g., Gennaioli et al. 2024, who study primacy effects regarding experiences of inflation). My results highlight a complementary result: not only can rehearsal make experiences easier to recall the earlier they occurred, but in addition rehearsal-induced biases within time periods become more severe when they are more distant in the past. The psychology literature on memory also tends to focus on participants actively studying word lists, unlike my experiment where experiences and rehearsal episodes are more naturalistic and where participants are not (necessarily) explicitly attempting to memorize anything. Finally, work in psychology tends not to speak to naivete about rehearsal (though see, e.g., Marsh 2007 for related evidence on misremembering details of a fictional story) nor connect memory distortions to belief biases.

3 Model

Setup I first describe a simple model of endogenous memory rehearsal to fix ideas and motivate the experimental design. Note that, throughout this section, I make various simplifying assumptions about functional forms to facilitate deriving closed-form expressions for agents' choices and beliefs. All of the qualitative results are robust to relaxing such assumptions.

Assume there are three periods $t \in \{0, 1, 2\}$. In periods t = 1 and t = 2, the agent has a memory database M comprised of experiences that occurred in the prior period t = 0. Each experience $m \in \{1, 2, ..., M\}$ has some characteristic $y_m \in \mathbb{R}$. For example, M might represent various assignments, tests, or classes a student took in school, and y_m might capture how successful or unsuccessful she was in each. In period t = 1 the agent decides how much to think about each experience m. Let $a = (a_1, a_2, ..., a_M)$ denote the vector of these rehearsal choices, which I will also interchangeably call her attention vector, where $a_m \in \mathbb{R}$. For simplicity, I assume that during this period, the agent has perfect memory: she can decide to think more about any of her experiences, without any uncertainty about or constraint on whether she can recall them.

Utility In period t=1, the agent derives some in-the-moment utility u_a depending on the rehearsal vector a that she chooses: in particular, I assume $u_a = \sum_m \nu_m a_m - \frac{\phi}{2} a_m^2$. That is, the agent derives a constant marginal utility ν_m from thinking about m (e.g., perhaps some experiences are simply pleasant or unpleasant to think about, or perhaps she faces decisions in t=1 that require thinking back on some experiences more than others) but with a quadratic cost ϕ . A natural way to interpret this assumption is that $a_m=0$ is a baseline level of rehearsal, with the agent paying a cost to distort her attention away from this baseline (i.e., $a_m < 0$ indicates less attention and $a_m > 0$ more attention than the baseline).

In the final period t=2, I assume the agent derives utility from two potential sources. First, she may have belief-based utility $u_b = \alpha E_a[\bar{y}]$ depending on her subjective expectation of the average value of the characteristic y_m in her memory database (where $\alpha=0$ nests the standard case without belief-based utility). For example, the

agent may have an intrinsic preference for her future self to have high beliefs about her ability. Second, the agent derives instrumental utility u_c (c for correct) that decreases in how far her belief $E_a[\bar{y}]$ is from the true average value of y_m . I assume a simple quadratic loss function, $u_c = -\frac{\beta}{2}(E_a[\bar{y}] - \bar{y})^2$, where β governs the costs of incorrect beliefs.⁸

Equation 1 summarizes these assumptions about the agent's utility:

$$u = \underbrace{\sum_{m} \nu_{m} a_{m} - \frac{\phi}{2} a_{m}^{2}}_{\text{Rehearsal-Based Utility } u_{a}} + \underbrace{\alpha E_{a}[\bar{y}]}_{\text{Belief-Based Utility } u_{b}} - \underbrace{\frac{\beta}{2} (E_{a}[\bar{y}] - \bar{y})^{2}}_{\text{Instrumental Utility } u_{c}}$$
(1)

Beliefs by Sampling How does the agent form her beliefs $E_a[\bar{y}]$ about the average value of y_m in period 2? I assume she does so by sampling experiences from her memory database M. She then takes a weighted average of the y_m values of the experiences she samples. I assume she takes N iid samples (with replacement), and I analyze her beliefs in the limit where $N \to \infty$. As is standard in the memory literature (e.g., Bordalo et al. 2023b), I assume the agent "double counts" experiences that come to mind more than once. This ensures that beliefs do not simply converge to the truth as $N \to \infty$ and should be thought of as a tractable way of modeling the idea that some experiences may fail to come mind, rather than literally infinite recall with double counting.

Let $r(m, a) \in [0, 1]$ be the probability that the agent recalls/samples experience m given rehearsal vector a. Finally, let $\omega(m, a)$ be the weight the agent gives m in the weighted average conditional on recalling that experience. With these assumptions, the agent's beliefs are given by equation 7:

$$E_a[\bar{y}] = \frac{1}{N} \sum_{n=1}^{N} y_{m(n)} \cdot \omega(m(n), a) \xrightarrow{P} \sum_{m \in M} y_m \cdot r(m, a) \cdot \omega(m, a)$$
 (2)

Rehearsal Effects and $Ex\ Post$ Sophistication I assume that the probability r(m,a) of recalling experience m in period 2 is higher the more attention a_m that experience received in period 1 and the less other experiences received. For tractability, I assume $r_m \propto \exp{\{\gamma a_m\}}$, where γ governs the strength of these rehearsal effects.

⁸A simple way to microfound this would be to assume the agent takes some action x with a quadratic loss function. i.e., if $u_c(x) = -\frac{\beta}{2}(x-\bar{y})^2$, then the agent will choose $x^* = E_a[\bar{y}]$. In that case, we can rewrite this utility as $u_c(E_a[\bar{y}]) = -\frac{\beta}{2}(E_a[\bar{y}] - \bar{y})^2$

A crucial question is whether the agent realizes the extent to which earlier rehearsal alters her probability of recalling experiences. Let $\tilde{r}_2(m,a)$ be the agent's belief in period 2 about her probability of recalling m, which I assume takes the following form: $\tilde{r}_2(m,a) \propto \exp\{\lambda_2 \gamma a_m\}$. The sophistication parameter $\lambda_2 \in [0,1]$ represents the agent's (dogmatic) belief about the strength of rehearsal effects, relative to their true strength. The $ex\ post$ rational, full-sophistication benchmark is $\lambda_2 = 1$, while full naivete would correspond with $\lambda_2 = 0$.

I assume that the agent attempts to correct for the effect she believes rehearsal has on her memory when she is forming beliefs. In particular, she employs an inverse probability weighting rule to back out the true average \bar{y} of her experiences even in the presence of rehearsal effects. Let $\omega(m,a) = \frac{1}{M\tilde{r}_2(m,a)}$, meaning she down-weights experiences she believes she was more likely to recall and up-weights experiences that she believes were less likely to come to mind. Then Proposition 1 follows (all proofs in Appendix B):

Proposition 1 Rehearsal distorts beliefs if and only if it boosts recall of more attended-to experiences ($\gamma > 0$) and agents are at least partially naive expost ($\lambda_2 < 1$):

$$E_a[\bar{y}] \approx \bar{y} + (1 - \lambda_2) \cdot \gamma \cdot \text{Cov}(a_m, y_m)$$
 (3)

The approximation is a first-order Taylor expansion around a = 0.9

Note that I have interpreted naivete as a belief by the agent that rehearsal affects her recall less than it truly does. An equivalent interpretation (in the sense that Proposition 1 would still follow) would be that, though the agent in a sense is aware of rehearsal effects, she simply fails (to an extent $1 - \lambda_2$) to correctly apply this knowledge when forming her beliefs. For example, perhaps the agent simply fails to attend to the fact that rehearsal biases recall (even if in a sense she knows this), or does not know which weighting strategy would correct for this fact, or forgets how much rehearsal previous experiences received (and fails to understand or correctly

⁹This approximation assumes away two forces. First, of course, it eliminates non-linearity in the effect of attending to an experience on whether that experience is recalled later. This will be especially awkward for very negative values of a_m as of course the probability of recall cannot be negative. More substantively, the approximation assumes that increasing rehearsal of one experience boosts recall of it by distracting equally from all other experiences. For example, boosting rehearsal of one experience should disproportionately reduce recall rates of experiences that one is already rehearsing more, a dynamic that is shut down by linearizing.

adjust for this forgetting). I leave these interpretations aside as they all lead to similar conclusions about how rehearsal would distort beliefs.¹⁰

More generally, for rehearsal to change the agent's beliefs on average (i.e., generate a bias), she must be naive or mis-calibrated in some way about how her memory works. No imperfection in the agents' memory (e.g., failing to recall certain experiences, failing to recall which experiences were rehearsed more/less, etc.) can end up biasing her beliefs unless she either holds incorrect beliefs about her memory or updates in a non-Bayesian way in response to what she recalls. This follows directly from the Martingale property of rational beliefs.

Rehearsal Choice We have seen that rehearsal distorts an $ex\ post$ naive agent's beliefs in period 2. How does such an agent choose how much to rehearse each experience in period 1? She can derive in-the-moment utility by thinking more about experiences with a high value of ν_m , the marginal rehearsal-based utility from attending to m. Whether she perceives that doing so will distort her future recall depends on whether she is sophisticated $ex\ ante$ about rehearsal. More precisely, assume now that the agent in period 1 believes that her period-2 recall probability is given by $\tilde{r}_1(m,a) \propto \exp\{\lambda_1\gamma a_m\}$. That is, the agent believes, when choosing which experiences to attend to, that rehearsal effects are only a $\lambda_1 \in [0,1]$ fraction of their true magnitude. For $\lambda_1 = 1$ the agent is fully $ex\ ante$ sophisticated, whereas if $\lambda_1 = 0$ she is fully naive. I also make the simplifying assumption the agent knows about her future level of $ex\ post$ sophistication λ_2 , such that she treats her future self as believing that recall probabilities are proportional to $\exp\{\lambda_1\lambda_2\gamma a_m\}$. Proposition 2 then characterizes the agent's rehearsal choice.

Proposition 2 The agent "myopically" maximizes her in-the-moment rehearsal-based utility unless she is both sophisticated ex ante $(\lambda_1 > 0)$ and naive ex post

¹⁰An important place where these interpretations would come apart is when thinking about what interventions might help an agent to correct for her distorted recall. If the only problem is that agents don't think to "undo" rehearsal effects when forming beliefs, then a simple nudge toward doing so could be helpful.

 $(\lambda_2 < 1)$:

$$\underbrace{a_m^* - \frac{\nu_m}{\phi}}_{\text{Myopic rehearsal}} \propto \underbrace{\frac{1}{\phi} \lambda_1 (1 - \lambda_2) (y_m - \bar{y}) \left(\alpha - \lambda_1 \beta (E_{a^*}[\bar{y}] - \bar{y})\right)}_{\text{Correction due to anticipated belief effect}} \tag{4}$$

The intuition behind Proposition 2 is straightforward. An ex ante naive agent does not realize that she is affecting her future recall when deciding what to attend to. She therefore chooses which experiences to rehearse simply to maximize her inthe-moment rehearsal-based utility. An ex ante sophisticated agent whose future self is also ex post sophisticated will also ignore any potential belief effects, though for a different reason: she realizes that her future self will optimally "back out" the correct beliefs from whatever she recalls, and so altering recall through rehearsal has no effect on eventual beliefs. Therefore the fully sophisticated agent simply maximizes her inthe-moment rehearsal-based utility. Only when the agent is both ex ante sophisticated and ex post naive does the agent realize that future beliefs are a function of today's rehearsal and therefore recognize the need to potentially alter her choice away from what would maximize rehearsal-based utility.

Note that all of these conclusions are robust to the agent having belief-based utility (i.e., $\alpha \neq 0$). In particular, belief-based utility will not affect the agent's rehearsal choices unless she is both ex ante sophisticated and ex post naive. If she is ex ante naive, she will not recognize any opportunity for using rehearsal to realize her preferred beliefs. If she is ex post sophisticated, her present self will know that her rehearsal choices will fail to alter her future self's beliefs, and therefore the best she can do is maximize her in-the-moment rehearsal-based utility. Only in the case where the agent is more sophisticated ex ante than she is ex post does she realize that there may be an opportunity to reap belief-based utility through rehearsal.

One implication of Proposition 2 is that even a fully ex ante sophisticated ($\lambda_1 = 1$) agent still acts on her rehearsal-based preferences. Such an agent recognizes that her future self may naively fail to correct for the recall effects of such rehearsal. If this agent has no belief-based utility ($\alpha = 0$), and therefore future mistaken beliefs are strictly harmful, she will nonetheless accept some belief bias in the future as the price of indulging her rehearsal-based preferences in the present. If she does have belief-based utility (for example, $\alpha > 0$), she will still distort her rehearsal toward her

rehearsal-based preferences, and away from the choice that would optimally tradeoff the harms of future belief biases (governed by β) with the belief-based utility she stands to gain.

Proposition 3 below characterizes the agent's beliefs in period 2 given her rehearsal choices in period 1 and the conditions under which rehearsal-based preferences lead to belief biases.

Proposition 3 A sufficient condition for systematic rehearsal-based preferences $(Cov(y, \nu) \neq 0)$ to generate belief biases is that agents be expost naive $(\lambda_2 < 1)$. Ex ante naivete $(\lambda_1 < 1)$ is unnecessary, but amplifies any such biases:

$$\underbrace{E_{a^*}[\bar{y}] - \bar{y}}_{\text{Belief bias}} = \frac{(1 - \lambda_2)\gamma}{\phi + \beta M \xi^2 \text{Var}(y)} \left[\underbrace{\underbrace{\text{Cov}(y, \nu)}_{\text{Effect of rehearsal-based utility}} + \underbrace{\alpha \xi \text{Var}(y)}_{\text{Effect of belief-based utility}} \right] \tag{5}$$

where $\xi = \lambda_1 (1 - \lambda_2) \frac{\gamma}{M}$

Welfare Implications We see from Proposition 3 that for an $ex\ post$ naive agent, rehearsal-based preferences systematically impact beliefs. What are the welfare implications of rehearsal-induced belief biases? To provide some insight into this question, we can ask what the welfare impact of changing these beliefs $ex\ post$ would be. Let u_2 be the agent's actual utility from her period-2 beliefs given her period-1 rehearsal choice a^* : i.e., $u_2 = \alpha E_{a^*}[\bar{y}] - \frac{\beta}{2}(E_{a^*}[\bar{y}] - \bar{y})^2$. Proposition 4 then summarizes the effect of changing the agent's beliefs, for example by introducing a de-biasing information intervention, on her welfare.

Proposition 4 Assume $Cov(y, \nu) \ge 0$, $\alpha \ge 0$, and $\lambda_2 < 1$ (ex post naivete). Then,

(i) Rehearsal-based preferences increase the welfare gains from correcting beliefs:

$$\frac{d}{d\operatorname{Cov}(y,\nu)} \left[\underbrace{-\frac{du_2}{dE_{a^*}}}_{\text{Welfare effect of reducing beliefs}} \right] > 0$$
(6)

(ii) Suppose $\lambda_1(1-\lambda_1) < \frac{\phi}{\beta \operatorname{Var}(y) \frac{\gamma^2}{M}}$ and that the agent has belief-based but not rehearsal-

based utility: $\alpha > 0 = \text{Cov}(y, \nu)$. Then correcting her beliefs is harmful: $-\frac{du_2}{dE_{a^*}} < 0$. 11

(iii) Suppose the agent's rehearsal-based preferences are sufficiently strong: $Cov(y, \nu) > \frac{\alpha \phi}{(1-\lambda_2)\beta\gamma}$. Then correcting her beliefs is beneficial: $-\frac{du_2}{dE_{a^*}} > 0$.

Proposition 4 makes clear that the welfare implications of holding, and therefore of correcting, biased beliefs depend critically on their source: i.e., on whether they are the accidental byproduct of a naive agent with rehearsal-based utility or of a sophisticated agent with belief-based utility. The reason behind this distinction is that an agent with belief-based utility ($\alpha > 0$) wants to have biased beliefs, despite the costs (from β). Correcting her beliefs, following a simple revealed-preference logic, therefore tends to harm her. In contrast, a naive agent who accidentally biased her beliefs by maximizing her rehearsal-based preferences is straightforwardly making a mistake in period 2 when she forms inaccurate beliefs.

Takeaways for the Experimental Design The model described in this section suggests that learning about the implications of rehearsal for belief biases requires evidence on three questions. The first is about the existence and nature of rehearsal-based utility: do people have systematic preferences over which experiences to (say) converse about or otherwise reflect on, and, if so, what are those preferences? Answering this question will require a setting in which agents can choose which experiences to rehearse in an environment in which in-the-moment motivations (like the intrinsic enjoyment of reminiscing) may be present but where other confounding factors (like belief-based utility) are plausibly absent.

Second, does the kind of rehearsal that people have systematic preferences over (if any) have large effects on their future recall? Answering this question will require a two-part experiment, in which participants first are exogenously assigned to rehearse certain experiences and then later need to recall those same experiences. Such an experiment will allow me to estimate the causal effect of rehearsing experiences on whether they come to mind in the future (γ in the model above).

Third, are people sophisticated or naive *ex post* about the role prior rehearsal plays in shaping which experiences come to mind? Answering this question will require not only eliciting which of a set of experiences participants can *recall*, but also their *beliefs*

¹¹The assumption of not-too-partial *ex ante* naivete prevents the agent from "overshooting" her utility-maximizing beliefs (given her belief-based utility).

about the full set (potentially adjusting for the fact that some experiences may not have come to mind). If participants are *ex post* naive, belief biases should mirror rehearsal-induced distortions in recall, because such agents will fail to correct for the fact that earlier rehearsal induces a selection bias regarding which experiences come to mind.

Finally, Proposition 3 showed that ex ante naivete—failing to realize when deciding what to rehearse that one's choice will affect what comes to mind in the future—is unnecessary for rehearsal-based preferences to generate belief biases. However, ex ante naivete does amplifies biases if agents are ex post naive. The experiment described below therefore also attempts to provide some suggestive evidence on ex ante naivete by exogenously varying what participants know about the incentives for accurate beliefs in the future (i.e., about β). As Proposition 2 shows, such a manipulation will affect rehearsal choices only if agents are ex ante sophisticated.

4 Experimental Design

The experiment was designed to mimic the key features of the model described above. In particular, it first elicits from participants a memory database, then provides an opportunity to differentially rehearse some of the experiences included in it, and then later measures beliefs about and recall of these experiences. I describe each component of this design in turn. Screenshots of the experimental interface (implemented using a Qualtrics survey) can be viewed by accessing this online document.

Memory database The experiment first elicits from participants a "memory database" for the purposes of the study. Oftentimes memory experiments define such a database by providing participants a set of new (typically short and abstract) experiences, such as a word list or a set of Raven's matrices problems, and then test their memory of these experiences later on. My experiment instead has participants describe nine of their existing experiences in a first survey, and then tests in a second survey a week later what participants can recall about this set of experiences. In particular, it asks both whether participants can remember which experiences they described in the first survey (in a free-recall task) as well as their beliefs about summary statistics regarding this set of experiences (e.g., what share of them had particular characteristics). This design allows me to exploit richer experiences—for which ac-

tivities like conversation and reflection are natural and which participants may have pre-existing preferences for thinking about—than typical memory experiments that provide very brief and abstract experiences can.

More precisely, in the first of two surveys, participants are asked to name and describe nine classes they took during college or high school (depending on whether they have a college degree or not). They are asked one-by-one to name classes that they felt they did well or poorly in "compared to your normal academic performance," which I henceforth call "successes" and "failures." In a second survey a week later, participants are asked to recall which nine classes they named in the first survey as well as the share of these classes that were successes vs failures. This binary success vs failure variable represents the y_m characteristic from the model in Section 3. The ground truth for this variable is predetermined: the survey randomly asks either for four successes and five failures or for five successes and four failures. These elicitations occur in a random order. In addition to the name of the class, the first survey also asks a few followup questions about each class, including the gender of the professor, the year in school participants took it, whether it involved a final project or paper as a major part of the grade, whether it was part of their major (for college classes), and whether it was an elective class (for high school classes).

Rehearsal of Experiences After listing the nine classes in the first survey, participants were informed that they would be having conversations about three of the classes they had just named. Their conversation partner was described as a "chatbot" and was in fact GPT-4, a large language model. These conversations consisted of GPT-4 asking natural-language questions about the class in question, with participants answering in their own words and then followup questions being asked in response to their answers. Each conversation stopped after either 7.5 minutes or 12 question-and-answer pairs, whichever was shortest. The average participant wrote 209 words per conversation, while on average GPT-4 wrote 189 words per conversation.

These conversations were incentivized so as to encourage participants to be engaged and pay attention to the classes they were about. In particular, participants were told (truthfully) that their responses in each of the three conversations would be graded "on a scale from 0 to 100 according to how thoughtful they were". If a conversation was the randomly chosen response that determined their bonus, they would earn a bonus with a percent chance equal to the grade they received for it. In

practice, this grade was provided by GPT-4, though participants were not told this.

After learning they would be having these conversations, participants were asked whether they would prefer to have conversations about three classes they did well in ("successes", though they were not framed this way to participants), three classes they did poorly in ("failures"), or a randomly selected three classes. To make these elicitations incentive-compatible, 5% of participants had their choice actually implemented. For the remaining 95% of participants, the computer simply flipped a coin to decide whether they would discuss three successes or three failures. Participants knew this procedure and were also told whether their preference was implemented and, if not, whether they were randomized to have conversations about three classes they did well or poorly in. If participants were randomized to discuss three successes (the Successes treatment), the classes they discussed were randomly selected from the four or five successes in the memory database. Similarly, the three discussed classes in the Failures treatment were randomly chosen from the set of failures

Participants were randomly either warned that they would later face incentives for recall and accurate beliefs or were not warned. For the half of participants who were not warned, nothing in the experiment suggested that the study was about memory. The other half of participants, directly before being asked their conversation preferences, were told (truthfully) that "later, we'll ask you to remember some of the answers you just gave (e.g., in how many classes you named did you have a male professor, do well vs poorly, etc.). You'll have a better chance of winning the bonus if you answer those questions right." They then had to correctly answer a comprehension question reiterating these facts. Thus, these participants were aware both that the study was about memory and also were informed of the exact question they would be asked (about the share of classes that were successes vs failures). ¹³

Beliefs and Recall After having their three conversations, the first survey of the study ended. A week later, participants were invited back to take a short second survey that elicited their beliefs about and recall of the original set of nine classes. The second survey began by asking participants to "Think back to all the classes we had you name during the first survey you took, including both the classes you

¹²Participants were aware that there was a short second survey a week later, though its purpose was not disclosed during the first survey.

¹³Participants were also asked beliefs about the other elicited characteristics of classes, such as the share of classes they said had a male professor. This part of the warning was thus also truthful.

had conversations about **and** the ones you did not have conversations about." Note that this phrasing not only eliminates any ambiguity about which items the survey is asking about, it also equally cues participants with both types of classes.

A block of questions then asked participants to make incentivized binary bets about whether a randomly selected one of these classes had each of the binary characteristics that the first survey asked about, including the main variable indicating whether they felt they did well or poorly in it. If one of these questions was the randomly chosen response that determined their bonus, participants' earned a \$2.00 bonus if their bet was correct. A separate block of questions asked probabilistic versions of these same questions: e.g., "What do you think is the percent chance that the randomly selected class is one you said you did... well in? poorly in?" If one of these questions was the randomly chosen response that determined their bonus, participants' earned a \$2.00 bonus if their answer was within five percentage points of the true percentage. These two blocks occurred in a random order.

After these two belief-elicitation blocks, participants faced an incentivized free-recall task. In particular, they were asked to write down the names of as many classes as they could that they remembered listing in the first survey. If the free-recall question was chosen to determine participants' bonus, each correct response increased their chances of winning by 10 percentage points, while each incorrect response reduced this chance by 10 percentage points. Of course, their chances of winning could not go above 100% or below 0%. Their free-recall answers were graded by having GPT-4 assess whether each class they listed in the recall task matched a class they originally listed in the first survey (they need not have word-for-word matched).

Note that collecting separate high-quality free-recall data in addition to beliefs is crucial for attributing biased beliefs to biased memory. My reliance on such data as the primary measure of what participants remember is, to my knowledge, novel to the economics literature on self-serving memory. Many studies use as their measure of recall what participants guess about the number of various experiences they had in the past. Absent corroborating free-recall evidence, however, such measures can easily be misleading. As an example, suppose an agent has an exaggerated prior about how often she is trustworthy for reasons orthogonal to memory. An experiment has her play prisoners' dilemma games and then after a delay asks how often she chose to cooperate in them. Suppose her memory is completely unbiased: for each game (no matter what she chose) there is a fixed probability per unit time that it will be

forgotten. Then the agent will initially be unbiased; she can perfectly remember the games immediately after playing them, so her biased priors play no role. Over time, however, she will appear to have a "biased memory": her guess of how many games she cooperated in will revert to her prior. To see this, note that in the limit where she has completely forgotten everything about the experiment, her belief will simply be her original prior, which by assumption was biased for non-memory reasons. Thus separate measures of beliefs and recall are crucial to attributing biases in expectations to biases in memory.¹⁴

Logistics Participants were recruited on Prolific, restricting the subject pool to US residents who had completed at least 50 prior studies with an approval rate of at least 95% and who were between the ages of 18 and 40 (to make remembering classes not too difficult). A total of 439 participants completed the first survey. From these, I first drop 29 participants whose rehearsal preferences were randomly chosen to be implemented, because for such respondents I do not have random variation in rehearsal. I then drop 24 participants who gave any duplicate class names in the first survey. Finally, I drop 16 participants who did not complete the second survey, reflecting a 95.7% rate of taking the second survey (balanced across treatments). This set of 370 remaining participants constitutes the final sample. The median respondent spent 38 minutes on the first survey and 6 minutes on the second survey. One of the incentivized questions (across the two surveys) was randomly selected to determine participants' bonus (Azrieli et al. 2018).

5 Results

Beliefs and Recall I begin by describing some basic patterns in the beliefs and recall data. For all participants, the true share of classes from the first survey that were successes was either four or five out of nine: that is, 44% or 56%. The left panel of Figure 1 shows the distribution of participants' beliefs about this share in the second

¹⁴See also Sial et al. (2023) for a related discussion. Their model also explicitly draws out how failures to recall previous experiences require individuals to form beliefs about both past and future events.

¹⁵The original planned sample size was 600 participants. Fewer than that number successfully completed the first survey due to a server crash that made the chatbot unresponsive for some participants. I include only respondents who did not encounter any technical issues stemming from this because those who did encounter this issue were not invited to take the second survey.

survey. We see a wide range of beliefs, indicating that participants cannot perfectly think back on the first survey and report the actual distributions of experiences from it. Indeed, in the free-recall task the average participant only remembers 4.9 of the nine classes. ¹⁶ The middle panel of Figure 1 calculates for each participant the share of the classes they recalled that were successes vs failures, and then plots the distribution of this variable. We see wide variation in this measure of what participants recall. The right panel of Figure 1 shows that these two variables—beliefs and recall—are tightly linked in the cross-section: participants who recall more successes than failures in turn believe the original set of experiences contained a greater share of successes.

Figure 1: Beliefs and Recall

Notes: The left panel shows the distribution of participants' beliefs in the second survey about the percent of classes they listed in the first survey that were successes vs failures. The middle panel shows the distribution of the share of recalled classes that are successes. The right panel shows a binscatter correlating beliefs and recall.

Rehearsal Effects on Recall Next, I ask to what extent the rehearsal manipulation in the first survey affected recall in the second survey. Note that all participants listed nine classes in the first survey. Of these, either four or five were successes, and

¹⁶Throughout the results, unless otherwise noted, I focus on the classes that participants recall correctly. For 4.6% of entries in the free-recall task, participants wrote a class name that does not (according to GPT-4) correspond to one of the classes they listed in the first survey. Further, among recalled classes that did appear in the first survey 93.2% are correctly identified as being a success/failure. None of the results presented are sensitive to including/excluding these "false memories."

therefore five or four were failures. The rehearsal manipulation involved conversations about three classes, all successes in the *Successes* treatment or all failures in the *Failures* treatment. Thus, every participant had at least one success and one failure that they did *not* have a conversation about.

Recall that there are two sources of randomization that the experimental design allows me to exploit. First, participants randomly discuss either three successes or three failures depending on their treatment status. Second, within treatment, which classes the conversations focus on are chosen randomly from among all the successes (in the *Successes* treatment) or all the failures (in the *Failures* treatment). I start by looking at this second source of variation, comparing recall rates within treatment across experiences.

Panel A of Figure 2 shows recall rates within each treatment for different types of classes. First, we see that within the Successes treatment, participants recall 47.5% of the successes they do not have conversations about but 72.3% of the successes they do have conversations about. This difference of 24.8 percentage points is significant at the p < 0.01 level. We see very similar within-treatment differences in recall rates for the Failures treatment. Such participants recall 46.4% of the failures they did not have conversations about but 71.9% of those they did have conversations about. This 25.5 percentage point effect is significantly distiguishable from zero (p < 0.01) and indistinguishable from the 24.8 percentage point effect on successes in the Successes treatment (p = 0.89).

My primary focus in the recall data is on whether participants remember classes or not, but I also observe the order in which which classes were recalled. To analyze these data, I define the first class a participant writes down in the free-recall task as having an order of one, the second an order of two, and so on. Panel B of Figure 2 shows, among classes that participants recalled, within-treatment differences in the average order in which they were recalled. We see that within the Successes treatment, classes participants had conversations about are recalled 1.1 places sooner than successes they did not have conversations about (p < 0.01). Similarly, in the Failures treatment, participants recall failures they had conversations about 0.96 places sooner than failures they did not have conversations about (p < 0.01). These two treatment effects are not statistically distinguishable from each other (p = 0.66). Thus, rehearsing experiences makes them more likely to come to mind in the future but also to come to mind faster in the future. These results are consistent with

the memory-sampling framework of Section 3, where experiences that are closer to top-of-mind take less time on average to be retrieved.

Figure 2: Effects of Rehearsal on Recall

Notes: Panel A shows recall rates by treatment status. Panel B shows the average order of recalled classes by treatment status, where lower numbers indicate earlier recall. "Success + No Convo" refers to successful classes that participants did not have conversations about. "Failure + No Convo" refers to unsuccessful classes that participants did not have conversations about. "Convo" refers to classes participants did have conversations about, which were all successes in Successes and failures in Failures. Whiskers show 95% confidence intervals. Table A.I shows the underlying numbers for this figure.

The above results showed effects of conversations on later recall at the class-by-class level. Of course, the two treatments differed in whether these conversations focused on successes or failures. We should therefore expect treatment effects across individuals on the total number of successes and failures that participants recall. Indeed, the first pair of bars in Figure 3 shows that those in the *Successes* treatment recall on average 2.9 successes, 0.6 more than those in the *Failures* treatment (p < 0.01).¹⁷ Similarly, the second pair of bars shows that those in *Failures* recall 2.8

 $^{^{17}}$ Table A.II shows that the two treatment groups are largely balanced across a range of baseline characteristics, as we would expect from randomization. The one difference that is significant at the p < 0.05 level—those randomized into the Failures treatment had 2 p.p. more successes in their memory database thank those in the Successes group (p = 0.04)—goes in the opposite direction of the primary treatment effects. All effects in the main text are robust to including controls for all these variables.

failures, 0.9 more than those in Successes (p < 0.01). Transforming these numbers, the third pair of bars shows that 63% of the classes participants in Successes recall are successes, 20.9 percentage points more than those in Failures (p < 0.01). Thus, shifting rehearsal toward successes in turn systematically shifts the composition of participants' recall toward successes.

My primary measure of recall includes only those classes that participants name in the second survey and correctly remember whether they were initially classified as a success or a failure in the first survey. A natural question is whether the rehearsal manipulation in my experiment led participants to misremember successes as failures or vice versa. Table A.III shows only limited such effects, however. Only 6.8% of recalled classes are misclassified, with participants being somewhat more likely to misidentify failures as successes than vice versa. Conversations improve misclassification rates, but these effects are much smaller than the effects on recall described above: compared to classes they did not have conversations about, participants are 3.4 p.p. less likely to mislabel successes they had conversations about as failures and 4.7 p.p. less likely to mislabel failures they had conversations about as successes. Correspondingly, Table A.IV shows that treatment variation across participants only has a small effect on the number of misclassified successes and failures. The effect on the number of "recalled" false successes and false failures is only 13.1% and 7.5% the effect on true successes and failures, respectively. I conclude that the subjective classification of classes into successes vs failures is therefore not driving any of the main results, in part because participants are extremely internally consistent in labeling classes within my experiment.

Beliefs and Ex Post Naivete All of the results presented thus far are consistent with a fully sophisticated agent reacting rationally to her memory constraints when forming beliefs. I now turn to discussing whether rehearsal biases beliefs in addition to recall. That is, do the distortions of recall from rehearsal in turn distort participants' beliefs about the share of classes that were successes vs failures? Proposition 1 stated that belief biases arise from rehearsal effects if and only if agents are naive ex post about them. That is, a sophisticated agent who understands that what she can recall partly reflects what she has rehearsed more can nonetheless form accurate beliefs (in expectation). A naive agent will instead take what she recalls at face value: i.e., as representative of the true distribution of her experiences.

The fourth pair of bars in Figure 3 shows participants' average beliefs about the share of the original set of classes that were successes rather than failures. Those in Successes on average believe 61.8% of classes were successes, while those in Failures believe only 45.3% were successes. This treatment effect of 16.5 percentage points (p < 0.01) is 79% of the 20.9 percentage point effect on recall that we saw above (third pair of bars in Figure 3) and is statistically indistinguishable from it (p = 0.16). It therefore cannot reject that agents are fully naive $ex\ post$ about rehearsal's effect on their recall. Rehearsal therefore biases beliefs in addition to distorting recall.

Recall that in addition to eliciting probabilistic beliefs, the experiment also asked participants to make a binary bet on whether a randomly selected class was a success or failure. The final pair of bars in Figure 3 shows very large treatment effects of the rehearsal manipulation on these bets. Those in *Successes* are 47.6 percentage points (p < 0.01) more likely to bet that the random class is a success than those in *Failures*.

In addition to stating beliefs and making bets on whether experiences were successes or failures, the first survey also asked participants about four other attributes of the classes they listed. 19 Because treatment variation only directly manipulated whether participants rehearsed three successes or three failures, I do not have direct independent variation in the number of classes with these other attributes that participants discussed. However, the main treatment variation does induce partially random variation in the number of classes with other attributes: e.g., a student whose successes tended to be classes with female instructors will rehearse more such classes in the Successes treatment than in the Failures treatment, or a female-instructed success might have been randomly chosen to be discussed instead of a male-instructed success. Using such variation (and controlling for the underlying number of classes with each attribute), Table A.V shows similar effects on recall, beliefs, and bets of being randomly assigned to have conversations about more or fewer classes with each other attribute. That is, being randomly assigned to have conversations about more classes with a female instructor, for example, makes participants more likely to recall such classes in the second survey as well as boosts their beliefs about and willingness to bet on whether the randomly selected class had a female instructor.

 $^{^{18} \}mathrm{This}~p\textsc{-}\mathrm{value}$ is from a seemingly unrelated regression comparing treatment effects on each variable

¹⁹These included the gender of the instructor, whether they took the class in their first two years of high school/college, whether it involved a final project, whether it was part of their major (for college classes), and whether it was an elective class (for high-school classes).

Figure 3: Effects of Rehearsal on Recall and Beliefs

Notes: The first two pairs of bars from the left show the number of successes and failures that participants correctly recalled in the free-recall task. The third pair of bars shows the average percent of recalled classes that were successes. The fourth pair shows the average belief about the percent of classes that were successes. The final pair shows the percent of participants who bet the randomly selected class was a success. Whiskers show 95% confidence intervals. Table A.VII shows the underlying numbers. Table A.VII shows analogous regressions controlling for a variety of covariates, where the results look identical.

Endogenous Rehearsal Choices Thus far, I have focused on the effect of exogenously assigning rehearsal patterns to participants in order to measure their effects on recall and beliefs. I now consider participants' rehearsal preferences to understand what memory-based belief biases (if any) arise endogenously. Recall that participants could express a preference for having conversations about either three successes, three failures, or three randomly selected classes. The light blue bars of figure 4 shows the share of participants choosing each of these options among those who were *not* aware that they would later face monetary incentives to form accurate beliefs. We see that participants are over four times more likely to choose to discuss successes than failures (44.6% vs 10.0%, p < 0.01), with the remainder choosing to discuss randomly selected classes.

Because many more participants choose to discuss successes than choose to discuss

failures, and doing so has large impacts on beliefs, participants are in effect (if not intentionally) choosing to have biased beliefs on average. To make this claim precise, I calculate what I call participants' "endogenous" beliefs: the beliefs they would have formed had their rehearsal preferences been implemented. Figure 4 shows that on average participants choose "overoptimistic beliefs", meaning they make rehearsal choices that predictably lead them to believe that more of the original experiences were successes.

Sophistication Regarding Chosen vs Imposed Rehearsal An implicit assumption in the above discussion is that the causal effect on recall and beliefs of the rehearsal choices participants would make themselves is the same as that of the exogenously assigned rehearsal that my experiment imposes. One might reasonably wonder whether this assumption is correct: for example, participants might be more sophisticated ex post about the kinds of rehearsal they actually tend to choose than about unusual rehearsal patterns that are imposed on them by a coin flip. 21 My experiment was not directly designed to test whether sophistication is different across these two cases, but nonetheless some patterns in the data appear inconsistent with this possibility. Columns 1 to 5 of Table A.VIII show average recall, beliefs, and guesses, splitting the data by treatment status and participants' elicited rehearsal preference. Column 6 shows the average deviation between participants' beliefs about the share of successes and the share of the classes they recalled that were successes. Notice that for sophisticated agents, this deviation should be negative in the Successes treatment (reducing beliefs to correct for successes being overrepresented in memory via rehearsal) and positive in the Failures treatment (increasing beliefs to correct for failures being overrepresented via rehearsal).

Two facts stand out from Table A.VIII. First, the average deviations across groups between beliefs and recall are quite small, centered on zero (p-value for the mean in

 $^{2^{0}}$ More precisely, define $ChosenBelief_i = Belief_i + (ChosenSuccess_i - Successes_i) \cdot TE/3$, where $Belief_i$ is i's actual belief about the percent of successes, $ChosenSuccess_i$ is the number of successes they preferred to have conversations about, $Successes_i$ is the actual number of successes they were randomly selected to discuss, and TE is the estimated treatment effect (from Figure 3) on beliefs of being assigned to Successes.

²¹Of course, which experiences we attend to is not always entirely determined by intrinsic/internal motivations. For example, people may be forced to think about experiences more than they would otherwise choose to by external forces like their job (e.g., reflecting on failures in performance reviews) or social norms (talking about what one's conversation partner wants to think about, rather than what one would otherwise choose to).

all groups being zero = 0.330), and indistinguishable from each other (p-value for the mean in all groups being equal = 0.381). This result is consistent with the overall naivete result from Figure 3. Second, we can specifically compare such deviations between 1) those participants who preferred to discuss successes and were assigned to the Successes treatment and 2) those participants who preferred to discuss failures and were assigned to the Failures treatment. These participants happened to be randomized into the rehearsal treatment that they would have preferred anyway. If participants are more sophisticated $ex\ post$ about rehearsal patterns they themselves would choose, we should expect deviations between beliefs and recall to be especially different between these groups (more negative for those who preferred Successes and more positive for those who preferred Failures). In fact we see no such difference on average between them (p = 0.93), and both average deviations are small and statistically indistinguishable from zero. This suggests that my finding of $ex\ post$ naivete is not substantially driven by the fact that my experiment sometimes induced people to rehearse different experiences than they otherwise would have chosen to.

Suggestive Evidence on Ex Ante Sophistication We have seen that participants seem substantially naive ex post about the effect earlier rehearsal has on what comes to mind. Are they also naive ex ante, or do they take into account future belief distortions when deciding which experiences to attend to? Recall from Proposition 3 that while ex ante naivete is unnecessary for rehearsal-based preferences to generate belief biases (ex post naivete is sufficient), it would amplify any such biases. Proposition 2 suggests a way to test for ex ante sophistication: an ex ante sophisticated agent who is aware that she will face incentives for accurate beliefs in the future will shade her choice away from rehearsal patterns that would bias her beliefs. This observation motivated the decision to randomly vary whether participants are aware while choosing what they would like to rehearse that they will later be incentivized to form accurate beliefs (varying β in equation 4). Ex ante sophisticated agents should in response become less likely to choose the "biasing" rehearsal choices (discussing all successes or all failures) and more likely to choose to rehearse a random set of classes (which, because it induces no correlation on average between rehearsal and the characteristics of experiences, does not bias beliefs).

The dark blue bars of Figure 4 show rehearsal choices and endogenous beliefs among those participants who were warned that they would later face incentives for

accurate beliefs, while the light blue bars show the same statistics among those who were not warned. We see no statistically significant differences in any of these variables when comparing those who were vs were not warned about incentives. These data therefore do not provide any evidence of *ex ante* sophistication about rehearsal effects in my setting.

Figure 4: Effects of Incentives Warnings on Rehearsal Choices

Notes: The first three pairs of bars from the left show the fraction of participants who expressed that they wanted to have conversations about three successes, three failures, or a randomly selected three classes. The rightmost pair of bars shows the average implied "chosen" belief: the belief participants would have held about the share of successes had their rehearsal choice been implemented. "Warning" and "No Warning" refer to participants who did and did not receive a warning that they would face incentives for accurate beliefs. Table A.IX shows the underlying numbers from this figure. Whiskers show 95% confidence intervals.

While Figure 4 shows no evidence of ex ante sophistication regarding the rehearsal choice I can measure (which experiences to have conversations about), in principle ex ante sophisticated agents could take other steps to mitigate the effect this choice would have on their beliefs. For example, such an agent, upon being told that she will have conversations about successes, might choose to otherwise rehearse or improve her memory of failures to offset the foreseen effect the conversations will have on her memory of successes. If so, we should expect attenuated treatment effects among participants who were warned of the incentives for belief accuracy. To study this possibility, Figure A.I shows treatment effects on recall, beliefs, and the binary bet,

splitting the sample by whether they were warned or not about the incentives for belief accuracy. We see no significant differences in treatment effects on the number of successes or failures recalled, on the share of recalled experiences that were successes, on the mean belief about the share of successes, or on the fraction of participants who bet the random class is a success. I therefore find no evidence of *ex ante* sophistication either directly in rehearsal choices or indirectly in later recall and beliefs.

What Drives Rehearsal Choices Because participants appear naive ex ante about rehearsal effects, strategic motives related to managing future beliefs seem not to determine rehearsal choices within my experiment. To provide some qualitative evidence on what does drive these choices, the experiment simply asked participants to explain in their own words why they selected the rehearsal option they did. I then have GPT-40, a large language model, code whether their response mentions any of five different considerations (described more below). These five considerations were chosen in an ex post fashion, but I also allow GPT-40 to respond that the participant mentions any other consideration. A total of 92.7% of participants are coded as mentioning at least one of these five considerations, and only 14.1% mention anything else (6.8% mention both one of the five considerations as well as something else). These five considerations therefore appear to comprise the very large majority of what participants mention.

Figure 5 shows the fraction of participants who are coded as mentioning each consideration, split by which rehearsal option they selected. We see that 25.7% of participants mention that it is "more enjoyable to discuss positive memories than negative ones". Perhaps unsurprisingly, almost all of these participants had selected to discuss successes. This consideration was meant to capture in-the-moment utility from thinking back on positive experiences (rather than, say, a desire to produce self-confidence in the future), and many of participants' responses that are coded this way appear in line with this interpretation. For example, some such responses include "It's more pleasant to think about times I performed well than times I did not...", "I feel good about how well I did in the classes and prefer to focus on the positive...", and "They bring back great memories."

Next, 37.0% of participants mention "how easy it would be to engage thoughtfully in conversations". This category was chosen to reflect the monetary incentives participants faced in the conversations, where their responses were graded according

to how thoughtful they were. For example, some such responses include "I feel that these classes are the easiest to remember to have a informed discussion about" and "I believe it will be easier for me to respond thoughtfully." These respondents also tend to favor discussing successes.

Next, 30.0% of participants mention being indifferent about the conversation topics, and perhaps unsurprisingly almost all choose to discuss a random set of classes. Another substantial driver of choosing random classes is that is "more enjoyable to discuss a wide variety of things". Many such participants mention wanting to keep the conversations interesting or mention the value of surprise in conversation topics.

One natural concern with the analysis above showing that rehearsal choices do not respond to incentives for accurate recall is that the incentives in the experiment may simply not be large enough. For example, many participants might be aware of the distortionary impact of rehearsal on their future beliefs, but they might nonetheless choose to discuss successes because the in-the-moment intrinsic utility stakes dwarf any concern about the effect on beliefs. My results of course cannot conclusively rule out such a story, but I can investigate whether many participants mention such a tradeoff while explanating their choice. In fact, almost no participants (3.2%) are coded as mentioning "anything about how their conversations will have an effect on what they will later remember or believe in the study," which I included to capture any expressed sophistication about rehearsal. Even among these 12 responses, none expresses the logic of rehearsal in a clear way.²² Thus, if participants are in fact sophisticated about rehearsal but simply do not face high enough incentives, none expresses this sentiment. Further, Table A.X shows that the share of participants mentioning each consideration does not meaningfully vary depending on whether they were warned about incentives for belief accuracy. This is despite the incentive warning occurring immediately prior to rehearsal choices (to maximize its salience during this decision). Finally, participants do seem motivated by the monetary incentives in the experiment, as evidenced by many participants choosing conversation topics that they felt would better allow them to earn a high score (and the associated better chance of a bonus payment) that came from more thoughtful engagement in the conversations.

To conclude, two factors (besides indifference) seem to explain the majority of participants' rehearsal choices in this context. First, they respond to monetary in-

²²The closest such participant writes "Less chance of me hyper focusing on a specific, better chance at memory recall in my opinion".

centives, tending to select rehearsal options they feel will help them earn more.²³ Second, they enjoy thinking about positive experiences. These combine in my context to produce "overoptimistic" beliefs a week later by distorting which experiences come to mind.

Figure 5: Reasons behind Rehearsal Choices

Notes: This figure shows the share of participants mentioning each of five considerations in their explanation of how they made their choice about which rehearsal option to select. The first panel of Table A.X shows the numbers underlying this figure.

6 Implications: Optimism and Pessimism

We have seen that a preference for thinking about positive experiences biases beliefs through rehearsal. In this section, I briefly explore the implications of these results for whether agents become overly optimistic about the future and for the choices they might make in response. I focus on a case where the agent is naive both $ex\ post$ and $ex\ ante$ about rehearsal ($\lambda_2 = \lambda_1 = 0$), has no belief-based utility ($\alpha = 0$),²⁴ and intrinsically prefers to rehearse experiences with a high y_m value

²³Of course, participants may have an intrinsic preference as well for engaging conversations.

²⁴Note that in this section I ask how memory-induced belief biases about multiple past periods generate belief biases in the agent's forecasts about multiple future periods. It is not clear how one would choose to incorporate belief-based utility in such a setting: should a beliefs-based utility

 $(u_a = \nu \sum a_m y_m)$, which I interpret as positive experiences.

I also generalize the model from Section 3 to allow more than a single period of experiences and rehearsal. In particular, now assume there are T+2 periods $t \in \{0, 1, ..., T, T+1\}$. In each period $t \leq T$, the agent has a set of experiences M_t . I assume that in each period the characteristic y_m has the same variance σ_y^2 but with a true mean \bar{y}_t that is random. In particular, let $\bar{y}_t = \mu + \kappa t + \epsilon_t$, where $\epsilon \sim N(0, \sigma_\epsilon^2)$: that is, in the first period t = 0 in expectation the average of y_m is μ with a variance in that average of σ_ϵ^2 . Further, this expectation potentially evolves in a linear way, changing by κ each period.

In addition to having experiences in each period, the agent also chooses much attention $a_{m,t}$ to pay to each of her previous experiences $m \in \bigcup_{t=0}^{t-1} M_t$. As before, I assume that in these rehearsal periods, the agent has no memory constraints (adding this complication would simply amplify the effect of rehearsal). In period T+1, the agent must then use her memory to form beliefs $E_a[\bar{y}_t]$ about the average value of y_m within each previous time period. I assume that rehearsal effects take the following simple form: $r(m, a) \propto \exp\{\gamma \sum_{t=1}^{T} a_{m,t}\}$. Proposition 5 then follows.

Proposition 5 Beliefs about the most recent period are unbiased. The agent is increasingly overoptimistic about periods further in the past. As a result, on average she perceives the time trend in \bar{y}_t to be more negative (or less positive) than the true trend κ .

$$E_{a^*}[\bar{y}_t] = \bar{y}_t + (T - t)\frac{\gamma\nu}{\phi}\sigma_y^2$$

$$E\left[E_{a^*}[\bar{y}_t] - E_{a^*}[\bar{y}_{t-1}]\right] = \kappa - \frac{\gamma\nu}{\phi}\sigma_y^2$$

The intuition behind Proposition 5 is straightforward. The agent has had more opportunities to rehearse experiences that happened longer ago. Her tendency to focus on positive experiences each period therefore creates larger distortions in her memory about more distant experiences. In contrast, she has had no opportunity to differentially rehearse experiences in the most recent period T, so her beliefs about

agent be modeled as preferring to have positive beliefs about the past, about the future, about the especially near vs distant past, about the especially near vs distant future? Ex ante, it is unclear which of the many possible assumptions makes the most sense, and it is difficult to see how one could choose between them except by post-hoc checking which belief biases she actually arrives at. In contrast, rehearsal-based preferences make clear predictions even in this expanded case.

that period are correct. An implication of this increasing optimism about the more distant past is that from the agent's perspective, the time trend in the perceived average value of experiences tends to be less steeply positive (or more steeply negative) than the true trend κ . If in fact there is no underlying time trend ($\kappa=0$), the agent tends to perceive things to be getting worse, with the earliest period she can remember on average seeming best and the most recent period seeming worst. Indeed, in surveys, Americans overwhelmingly tend to report that the best time in the US along many dimensions, such as arts and music, happy family lives, and political harmony, happened to coincide with their own childhood. Conversely, people across generations tend to agree that the worst time in America along all these dimensions happens to be now (Dam, 2024). Similarly, there is a pervasive "illusion of moral decline," whereby people across generations think moral decision-making has been deteriorating since they were young, but that times before their birth were not increasingly moral (Mastroianni & Gilbert 2023).

What implications does this increasing over-optimism regarding the past have for the agent's beliefs about the future? The answer depends on what the agent believes about the dynamics of \bar{y}_t . Suppose the agent's priors for both μ (the expected average y_m in period t = 0) and κ (the time trend) are normally distributed:

$$\begin{pmatrix} \mu \\ \kappa \end{pmatrix} \sim N \left(\begin{pmatrix} \tilde{\mu} \\ \tilde{\kappa} \end{pmatrix}, \begin{pmatrix} \sigma_{\mu}^2 & 0 \\ 0 & \sigma_{\kappa}^2 \end{pmatrix} \right)$$

Then she can use the apparent values of \bar{y}_t in the past to update her beliefs about μ and κ and therefore her forecast about the future. More precisely, Proposition 6 follows.

Proposition 6 Let $E_{a^*}[\bar{y}_{T+1}]$ be the agent's forecast of the average value of y_m in period T+1. Assume the agent is sufficiently uncertain about the initial expected value of experiences $(\sigma_{\mu} \to \infty)$ and that her priors are unbiased $(\tilde{\mu} = \mu \text{ and } \tilde{\kappa} = \kappa)$.

Then rehearsal ($\gamma > 0$) makes her overoptimistic about the future ($E_{a^*}[\bar{y}_{T+1}] > \bar{y}_{T+1}$) on average if and only if she is sufficiently confident she understands how $E[\bar{y}_t]$ evolves over time: i.e., if and only if σ_{κ} is sufficiently small.

To see the intuition behind Proposition 6, consider a case where in fact the distribution of experiences is constant over time. Figure 6 shows an example of the actual past history of \bar{y} (gray dots) along with the agent's rehearsal-enhanced belief about it (blue dots). Suppose first that the agent knows the value of κ for sure ($\sigma_{\kappa} = 0$), which is the case portrayed in the middle panel of Figure 6. For example, the agent might know that her expected ability is roughly constant over time but not know it's true level. Though she tends to perceive more recent periods as having been less positive than more distant periods, her knowledge that there is no underlying trend leads her to attribute this fact to recent bad luck. She concludes that the average experience is overly positive which, absent a belief that this average might be changing, pushes her to believe that her ability in the future will be higher than it in fact will be. That is, she expects reversion to an excessively high mean. In this case, overoptimism about the past leads to overconfidence about the future.

Figure 6: Optimism vs Pessimism

Next, consider a case where the agent is sufficiently uncertain about the extent to which the average experience is changing over time (σ_{κ} large enough), such as in the right panel of Figure 6. This agent will then partially interpret the fact that more recent periods seem worse than earlier ones as evidence of a negative (or less positive) trend. Her beliefs about the most recent period t = T are still unbiased, and therefore her underestimation of the time trend makes her overly pessimistic or underconfident about the future despite the fact that she is weakly overoptimistic about every previous period. Such an agent looks nostalgic for the past and skeptical that the negative apparent trend will reverse itself.²⁵

 $^{^{25}}$ Note an interesting parallel between these results and those of Rabin & Vayanos (2010) regarding

I conclude by sketching how applications of Proposition 6 can generate predictions about how rehearsal might distort choices in various economic domains. First, consider a citizen deciding whether to vote out her country's incumbent leaders. We can analyze this case by relabeling terms above. Let t=0 denote the current administration's first term in office and \bar{y}_t denote quality of life during time t. We can then interpret κ as the incumbents' skill in governing (i.e., more skilled leaders on average improve quality of life). Rehearing good times will gradually lead voters to believe that things were better in the past than they truly were: i.e., that things are getting worse under the current administration. If σ_{κ} is large enough (sufficient initial uncertainty about the new leaders' ability), then voters will gradually attribute this apparent deterioration to their current leaders' poor governing abilities. Such voters would then be willing to replace their current leaders for even below-average ($\tilde{\kappa} < \kappa$) new ones, whom they will of course in turn vote out in due time. This result resonates with survey evidence showing that the US public's approval of presidents tends to decrease while they are in office and then increase in the years after they leave office (Beck et al. 2012, Jones 2023).

Next, suppose an agent is considering investing in self-improvement, such as by beginning to go to therapy. Let \bar{y}_t be on average how she was feeling at time t. Suppose absent the investment, the agent knows her average well-being is not changing over time ($\sigma_{\kappa} = 0$). The investment involves a continuing per-period cost, which I assume would boost κ by an uncertain amount only if her average well-being is below some threshold (e.g., therapy is more helpful if one has certain mental health conditions). First, such an agent will be overly hesitant to start investing in self-improvement: she believes her average well-being is higher than it truly is because she tends to rehearse positive memories. Though she has a realistic assessment of more recent periods, she will view these as being unlucky deviations from a high mean. She will thus tend to underestimate the benefits of self-improvement.

In addition to being unlikely to invest in self-improvement to begin with, however, such an agent will also be excessively likely to *abandon* it once starting. By

the hot-hand fallacy. In that paper, a decision-maker's belief about the likelihood of observing an outcome after a long streak of the same outcome depends on whether she believes the underlying process is stationary. If it is, she will update her belief to think that the repeatedly-observed outcome is very likely to recur (because if the outcome were only moderately likely, gambler's fallacy would predict such a streak to be extremely unlikely). If not, the gambler's fallacy will lead her expect the outcome to be especially unlikely to occur, since she regards long unrepresentative streaks as (too) unlikely.

assumption, the self-improvement investment has an uncertain impact on κ . The agent's tendency to be increasingly overoptimistic about the past will thus lead her to conclude, after beginning to invest in self-improvement, that it must not be very effective (else things would be getting better, not worse). She is therefore excessively likely to quit using it. Of course, she would have perceived a decline even absent the investment, but in that case (as we have seen) she would instead have attributed it to temporary bad luck. Thus, the agent tends to reject and abandon investments that have uncertain impacts on her well-being.

Finally, Proposition 6 can lead to a form of status-quo bias through a type of information trap. Suppose a consumer repeatedly purchases a product that provides a mix of good and bad experiences with an unknown but non-time-varying expected value ($\sigma_{\kappa} = 0$). For example, she might choose to go on a similar vacation every year. Each purchase provides a new signal about the expected value of the good. But in addition, by rehearsing positive experiences the agent eventually comes to believe that her previous purchases were better than they were: i.e., her perception of her existing signals grows more optimistic over time. Suppose the product is in fact only mediocre (the true μ is small) but that agent's first few purchases happened to be better than average, and so she continued to buy the good for several periods. An agent like this might never switch to purchasing a different good (with a new expected value μ) despite receiving an infinite stream of informative (and typically negative) signals. She thus exhibits a form of status-quo bias, sticking with the same products, job, city, relationships, or habits despite plenty of evidence that a change is in order.

7 Conclusion

In this paper, I show experimentally that rehearsing experiences generates belief biases by distorting future memory. Further, agents appear to have intrinsic preferences over which experiences to rehearse: they enjoy thinking about past experiences that reflect well on them. Acting on this preference, combined with naivete about rehearsal, generates overoptimistic beliefs. These results provide a novel non-strategic mechanism behind overly optimistic beliefs. Further, we saw that while rehearsal-based overoptimism about the past often naturally produces optimism about the future, uncertainty can reverse this prediction, with novel applications in a range of simple economic settings.

More speculatively, these results open the way to asking new questions about memory and belief biases. First, they raise the question of what other preferences and incentives might drive rehearsal patterns and therefore produce belief biases. Most obviously, people naturally need to attend to their own immediate environments and experiences more than those of others. To the extent that individual environments and experiences differ, this fact will naturally create polarization in beliefs, through memory. People will react more to prices or signals they personally have to think about more (Simonsohn & Loewenstein 2006, Georganas et al. 2014, D'acunto et al. 2021, Hartzmark et al. 2021), will believe that their own (or their family's) wages and jobs are more typical than they are (Cruces et al. 2013, Jäger et al. 2023, Conlon & Patel 2023), or will believe that information or evidence they personally uncovered (and therefore spent more time thinking about) outweighs what others have found (Thompson & Loewenstein 1992, Schwardmann & van der Weele 2019; Schwardmann et al. 2022, Conlon et al. 2022). Of course, many explanations for such polarization are possible, but my results suggest that a simple rehearsal-based story—things we spend more time thinking about later come to mind more easily—may partly contribute.

Second, while this study focuses on preferences for thinking about experiences, bottom-up forces play a key role in determining what grabs our attention independently of our preferences (Bordalo et al. 2022). Exploring how such factors might produce later belief biases by altering rehearsal patterns remains an important question for future work. One natural hypothesis is that extreme past events—which contrast highly with other experiences—may attract attention and therefore loom larger in the future than their true frequency would suggest. In addition, some mental health conditions like depression are partly defined as an inability to avoid ruminating on negative experiences, which (combined with rehearsal effects and naivete) could produce low self-confidence for affected individuals.

Finally, the participants in my experiment appear almost fully naive about rehearsal effects both ex ante and ex post, but this cannot be universally true. Students use flashcards to study for tests, leveraging rehearsal effects to boost their academic performance. When is the effect of attention on recall clear enough that agents take it into account, either exploiting it to improve/change their memories or accounting for it ex post? Answering this question would aid both in predicting when (and which) belief biases arise as well as in understanding how to design policies to counteract rehearsal's distortionary effects.

References

- Adler, O., & Pansky, A. (2020, 1). A "rosy view" of the past: Positive memory biases. In (p. 139-171). Elsevier. doi: 10.1016/B978-0-12-816660-4.00007-6
- Akerlof, G. A., & Dickens, W. T. (1982). The economic consequences of cognitive dissonance. *American Economic Review*, 72, 307-319.
- Amelio, A., & Zimmermann, F. (2023). Motivated memory in economics-a review. Games. Retrieved from www.econtribute.de
- Augenblick, N., Jack, B. K., Kaur, S., Masiye, F., & Swanson, N. (2024). Retrieval failures and consumption smoothing: A field experiment on seasonal poverty. Working paper.
- Azrieli, Y., Chambers, C. P., & Healy, P. J. (2018). Incentives in experiments: A theoretical analysis. *Journal of Political Economy*, 126.
- Babcock, L., Loewenstein, G., Issacharoff, S., & Camerer, C. (1995). Biased judgments of fairness in bargaining. *American Economic Review*, 85, 1337-1343.
- Barron, K., Huck, S., & Jehiel, P. (2024, 8). Everyday econometricians: Selection neglect and overoptimism when learning from others. *American Economic Journal: Microeconomics*, 16, 162-198. Retrieved from https://pubs.aeaweb.org/doi/10.1257/mic.20200030 doi: 10.1257/mic.20200030
- Bartsch, L. M., Singmann, H., & Oberauer, K. (2018, 7). The effects of refreshing and elaboration on working memory performance, and their contributions to long-term memory formation. *Memory and Cognition*, 46, 796-808. doi: 10.3758/s13421-018-0805-9
- Beck, J. W., Carr, A. E., & Walmsley, P. T. (2012, 10). What have you done for me lately? charisma attenuates the decline in u.s. presidential approval over time. *Leadership Quarterly*, 23, 934-942. doi: 10.1016/j.leaqua.2012.06.002
- Bluck, S., & Alea, N. (2002). Exploring the functions of autobiographical memory: Why do i remember the autumn? In J. D. Webster & B. K. Haight (Eds.), *Critical advances in reminiscence work: From theory to application* (pp. 61–75). New York: Springer.
- Bodoh-Creed, A. L. (2020). Mood, memory, and the evaluation of asset prices. *Review of Finance*, 24, 227-262. doi: 10.1093/rof/rfz001
- Bohren, A., Hascher, J., Imas, A., Ungeheuer, M., & Weber, M. (2024). A cognitive foundation for perceiving uncertainty. Retrieved from https://ssrn.com/abstract=4706147
- Bolte, L., & Fan, T. Q. (2024, 1). Motivated mislearning: The case of correlation neglect. *Journal of Economic Behavior and Organization*, 217, 647-663. doi: 10.1016/j.jebo.2023.11.020
- Bolte, L., & Raymond, C. (2024). Emotional inattention.
- Bordalo, P., Burro, G., Coffman, K., Gennaioli, N., & Shleifer, A. (2024). Imagining the future: Memory, simulation, and beliefs. *Review of Economic Studies*.

- Bordalo, P., Conlon, J. J., Gennaioli, N., Kwon, S. Y., & Shleifer, A. (2023a). How people use statistics. *NBER Working Paper No. 31631*. Retrieved from https://www.socialscienceregistry.org/trials/11166
- Bordalo, P., Conlon, J. J., Gennaioli, N., Kwon, S. Y., & Shleifer, A. (2023b, 12). Memory and probability. *The Quarterly Journal of Economics*, 138, 265-311. doi: 10.1093/qje/qjac031
- Bordalo, P., Gennaioli, N., & Shleifer, A. (2022). Salience. Annual Review of Economics, 1-42.
- Brodie, D. A., & Murdock, B. B. (1977). Effect of presentation time on nominal and functional serial-position curves of free recall. *Journal of Verbal Learning and Verbal Behavior*, 16, 5-7.
- Brunnermeier, M. K., & Parker, J. A. (2005). Optimal expectations. *American Economic Review*.
- Bushong, B., Rabin, M., & Schwartzstein, J. (2021). A model of relative thinking. Review of Economic Studies.
- Bénabou, R., & Tirole, J. (2002). Self-confidence and personal motivation. The Quarterly Journal of Economics.
- Caplin, A., & Leahy, J. (2001). Psychological expected utility theory and anticipatory feelings. *Quarterly Journal of Economics*. Retrieved from https://academic.oup.com/qje/article/116/1/55/1939090
- Carlson, R. W., Maréchal, M. A., Oud, B., Fehr, E., & Crockett, M. J. (2020, 12). Motivated misremembering of selfish decisions. *Nature Communications*, 11. doi: 10.1038/s41467-020-15602-4
- Cepeda, N. J., Pashler, H., Vul, E., Rohrer, D., & Wixted, J. (2006). Distributed practice in verbal recall tasks: A review and quantitative synthesis. *Psychological Bulletin*, 132.
- Chew, S. H., Huang, W., & Zhao, X. (2020). Motivated false memory. *Journal of Political Economy*, 128, 3913-3939. doi: 10.1086/709971
- Compte, O., & Postlewaite, A. (2004). Confidence-enhanced performance. American Economic Review, 94(5), 1536–1557.
- Conlon, J. (2024). Attention, Information, and Persausion. Working paper.
- Conlon, J., Mani, M., Rao, G., Ridley, M. W., & Schilbach, F. (2022). Not learning from others. *NBER Working Paper 30378*. Retrieved from http://www.nber.org/papers/w30378
- Conlon, J., & Patel, D. (2023). What jobs come to mind? stereotypes about fields of study.
- Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research 1. *Journal of Verbal Learning and Verbal Behavior*, 11, 671-684.
- Cruces, G., Truglia, R. P., & Tetaz, M. (2013). Biased perceptions of income distribution and preferences for redistribution: Evidence from a survey experiment. *Journal of Public Economics*. Retrieved from http://hdl.handle.net/10419/51652

- Dam, A. V. (2024). America's best decade, according to data. *The Washington Post*. Retrieved from https://www.washingtonpost.com/business/2024/05/24/when-america-was-great-according-data/
- Drobner, C. (2022, 3). Motivated beliefs and anticipation of uncertainty resolution. American Economic Review: Insights, 4, 89-105. doi: 10.1257/aeri.20200829
- D'acunto, F., Malmendier, U., Ospina, J., & Weber, M. (2021). Exposure to grocery prices and inflation expectations. *Journal of Political Economy*. doi: 10.1086/713192
- Eil, D., & Rao, J. M. (2011). The good news-bad news effect: Asymmetric processing of objective information about yourself. *American Economic Journal: Microeconomics*, 3, 114-138. doi: 10.1257/mic.3.2.114
- Engelmann, J. B., Lebreton, M., Salem-Garcia, N. A., Schwardmann, P., & Weele, J. J. V. D. (2024). Anticipatory anxiety and wishful thinking. *American Economic Review*.
- Enke, B. (2020, 8). What you see is all there is. Quarterly Journal of Economics, 135, 1363-1398. doi: 10.1093/qje/qjaa012
- Enke, B., Schwerter, F., & Zimmerman, F. (2024). Associative memory and belief formation.
- Farina, A., Fréchette, G. R., Lizzeri, A., & Perego, J. (2024). The selective disclosure of evidence: An experiment. *Working paper*.
- Gennaioli, N., Leva, M., Schoenle, R., & Shleifer, A. (2024). How inflation expectations de-anchor: The role of selective memory cues. *NBER Working Paper 32633*. Retrieved from http://www.nber.org/papers/w32633
- Georganas, S., Healy, P. J., & Li, N. (2014, 4). Frequency bias in consumers' perceptions of inflation: An experimental study. *European Economic Review*, 67, 144-158. doi: 10.1016/j.euroecorev.2014.01.014
- Gervais, S., & Odean, T. (2001). Learning to be overconfident. The review of financial studies, 14(1), 1–27.
- Graeber, T., Roth, C., & Zimmermann, F. (2023). Stories, statistics, and memory. Gödker, K., Jiao, P., & Smeets, P. (2025). Investor memory. The Review of Financial Studies.
- Haaland, I., Roth, C., Stantcheva, S., & Wohlfart, J. (2024). Measuring what is top of mind. ECONtribute Discussion Paper No. 298. Retrieved from www.econtribute.de
- Hartzmark, S. M., Hirshman, S. D., & Imas, A. (2021, 8). Ownership, learning, and beliefs. Quarterly Journal of Economics, 136, 1665-1717. doi: 10.1093/qje/qjab010
- Huffman, D., Raymond, C., & Shvets, J. (2022, 10). Persistent overconfidence and biased memory: Evidence from managers. American Economic Review, 112, 3141-3175. doi: 10.1257/aer.20190668

- Jin, G. Z., Luca, M., & Martin, D. (2021). Is no news (perceived as) bad news? an experimental investigation of information disclosure. *American Economic Journal: Microeconomics*, 13, 141-173. doi: 10.1257/mic.20180217
- Jones, J. M. (2023). Retrospective approval of jfk rises to 90%; trump at 46%. *Gallup News*. Retrieved from https://news.gallup.com/pol1/508625/retrospective-approval-jfk-rises-trump.aspx
- Jäger, S., Roth, C., Roussille, N., & Schoefer, B. (2023). Worker beliefs about outside options. *NBER Working Paper 29623*. Retrieved from http://www.nber.org/papers/w29623
- Kahana, M. J. (2012). Foundations of human memory. OUP USA.
- Karlsson, N., Loewenstein, G., & Seppi, D. (2009, 4). The ostrich effect: Selective attention to information. *Journal of Risk and Uncertainty*, 38, 95-115. doi: 10.1007/s11166-009-9060-6
- Koszegi, B., & Szeidl, A. (2013). A Model of Focusing in Economic Choice. *Quarterly Journal of Economics*, 53–104. doi: 10.1093/qje/qjs049.Advance
- Kunda, Z. (1990). The case for motivated reasoning (Vol. 108).
- Köszegi, B. (2006, 6). Ego utility, overconfidence, and task choice. *Journal of the European Economic Association*, 4, 673-707. doi: 10.1162/JEEA.2006.4.4.673
- Link, S., Peichl, A., Roth, C., & Wohlfart, J. (2023). Attention to the macroeconomy. ECONtribute Discussion Paper No. 256. Retrieved from www.econtribute.de
- Loewenstein, G. (1987, 9). Anticipation and valuation of delayed consumption. *The Economic Journal*, 666-684.
- Loewenstein, G., & Wojtowicz, Z. (2023). The economics of attention. Retrieved from https://ssrn.com/abstract=4368304
- Madigan, S. A. (1969). Intraserial repetition and coding processes in free recall (Vol. 8).
- Marsh, E. J. (2007). Retelling is not the same as recalling: Implications for memory. Current Directions in Psychological Science, 16(1), 16–20.
- Mastroianni, A. M., & Gilbert, D. T. (2023). The illusion of moral decline. *Nature*, 618 (7966), 782–789.
- Mullainathan, S. (2002). A memory-based model of bounded rationality. *The Quarterly Journal of Economics*. Retrieved from https://academic.oup.com/qje/article/117/3/735/1932979
- Möbius, M. M., Niederle, M., & Niehaus, P. (2022). Managing self-confidence. *Management Science*.
- Müller, M. W. (2022). Selective memory around big life decisions.
- Quispe-Torreblanca, E., Gathergood, J., Loewenstein, G., & Stewart, N. (2022). Attention utility: Evidence from individual investors.
- Rabin, M., & Vayanos, D. (2010). The gambler's and hot-hand fallacies: Theory and applications. *The Review of Economic Studies*, 77(2), 730–778.
- Roediger, H. L., & Karpicke, J. D. (2006). Test-enhanced learning taking memory tests improves long-term retention. *Psychological Science*, 17.

- Rundus, D. (1971). Analysis of rehearsal processes in free recall. *Journal of Experimental Psychology*, 89, 63-77.
- Saucet, C., & Villeval, M. C. (2019, 9). Motivated memory in dictator games. Games and Economic Behavior, 117, 250-275. doi: 10.1016/j.geb.2019.05.011
- Schwardmann, P., Tripodi, E., & van der Weele, J. J. (2022, 4). Self-persuasion: Evidence from field experiments at international debating competitions. *American Economic Review*, 112, 1118-1146. doi: 10.1257/aer.20200372
- Schwardmann, P., & van der Weele, J. (2019, 10). Deception and self-deception (Vol. 3). Nature Research. doi: 10.1038/s41562-019-0666-7
- Sial, A. Y., Sydnor, J. R., & Taubinsky, D. (2023). Biased memory and perceptions of self-control. *NBER Working Paper 30825*. Retrieved from http://www.nber.org/papers/w30825
- Simonsohn, U., & Loewenstein, G. (2006). Mistake 37: The effect of previously encountered prices on current demand. *The Economic Journal*, 175-199. Retrieved from https://academic.oup.com/ej/article/116/508/175/5087768
- Tan, L., & Ward, G. (2000). A recency-based account of the primacy effect in free recall. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 26, 1589-1625.
- Thompson, L., & Loewenstein, G. (1992). Egocentric interpretations of fairness and interpersonal conflict. Organizational Behavior and Human Decision Proceses, 51, 176-197.
- Tversky, B., & Marsh, E. J. (2000). Biased retellings of events yield biased memories. Cognitive psychology, 40(1), 1–38.
- Walker, W. R., Skowronski, J. J., Gibbons, J. A., Vogl, R. J., & Ritchie, T. D. (2009). Why people rehearse their memories: Frequency of use and relations to the intensity of emotions associated with autobiographical memories. *Memory*, 17, 760-773. doi: 10.1080/09658210903107846
- Zimmermann, F. (2020). The dynamics of motivated beliefs (Vol. 110). American Economic Association. doi: 10.1257/aer.20180728

A Supplemental Appendix: Additional Tables and Figures

Figure A.I: Effects of Rehearsal on Recall and Beliefs

Notes: This figure shows treatment effects of being assigned to the Successes treatment, splitting the sample by those who were or were not warned about later incentives for accurate beliefs. The first two pairs of bars from the left show effects on the number of successes and failures that participants correctly recalled in the free-recall task. The third pair of bars shows effects on the percent of recalled classes that were successes. The fourth pair shows effects on beliefs about the percent of classes that were successes. The final pair shows effects on whether participants bet that the randomly selected class was a success. Table A.XI shows the underlying regressions. Whiskers show 95% confidence intervals.

Table A.I: Effects of Rehearsal on Recall

	I	Recalled Cla	SS	Order of Recall			
	Pooled (1)	Successes (2)	Failures (3)	Pooled (4)	Successes (5)	Failures (6)	
Conversation	0.721 (0.016)	0.723 (0.025)	0.719 (0.022)	2.984 (0.076)	3.014 (0.112)	2.959 (0.104)	
Success + No Conversation	0.487 (0.017)	0.475 (0.037)	0.490 (0.020)	4.280 (0.096)	4.122 (0.238)	4.320 (0.104)	
Failure + No Conversation	0.428 (0.018)	0.414 (0.022)	0.464 (0.031)	4.047 (0.098)	4.102 (0.118)	3.919 (0.175)	
Observations	3,330	1,503	1,827	1,819	792	1,027	
Individuals	370	167	203	359	162	197	
p-value: Convo = Success + No Convo	0.00	0.00	0.00	0.00	0.00	0.00	
p-value: Convo = Failure + No Convo	0.00	0.00	0.00	0.00	0.00	0.00	
p-value: No Convo, Success = Failure	0.01	0.08	0.43	0.09	0.94	0.06	

Notes: Table shows average recall rates, with standard errors (clustered at the individual level) in parentheses. Columns 1 and 4 show rates for the sample as a whole, columns 2 and 5 restrict to the *Successes* treatment, and columns 3 and 6 restrict to the *Failures* treatment. "Conversation" shows recall rates for the classes participants had conversations about, while "Success + No Conversation" and "Failure + No Conversation" show rates for the successes and failures that participants did not have conversations about. *, **, and *** show significance at the p < 0.10, 0.05, and 0.01 levels respectively.

Table A.II: Balance Table

	Fai	Failures		Successes	
Self-Assessed Memory Quality (1-5)	3.24	(0.97)	3.16	(0.96)	0.40
Age (Years)	31.45	(5.56)	30.86	(5.53)	0.31
Share of Successes within Experiment	0.51	(0.06)	0.49	(0.06)	0.04
Share of Overall Successes in School	0.50	(0.22)	0.54	(0.22)	0.13
Choose to Discuss Successes	0.42	(0.49)	0.48	(0.50)	0.21
Choose to Discuss Failures	0.11	(0.31)	0.08	(0.27)	0.30
Choose to Discuss Random Classes	0.47	(0.50)	0.44	(0.50)	0.52
College Educated	0.56	(0.50)	0.65	(0.48)	0.06
Female	0.51	(0.50)	0.42	(0.49)	0.08
Took Second Survey	0.97	(0.17)	0.94	(0.23)	0.18

Notes: Table shows mean characteristics across the two treatment groups, with standard deviations in parentheses. The final column shows a p-value for the hypothesis that the two means are identical. Successes is the treatment group in which participants had conversations about three successes, whereas in Failures participants had conversations about three failures. "Self-Assessed Memory Quality" is participants answer on a 5-point scale about how good their memory tends to be. "Share of Successes within Experiment" is the randomly assigned number (either 4/9 or 5/9) of pre-defined successes vs failures that participants were asked to provide. "Share of Overall Successes in School" is participants answer to the question "Think back on all the classes you took back in [college/high school]. What percent of these classes would you say you did well academically in?" This question was asked before participants were asked to list any class names. "Took Second Survey" is an indicator for whether a participant who completed the first survey also completed the second survey.

Table A.III: Misremembering is Rare

	Misclassified				
	Pooled (1)	Successes (2)	Failures (3)		
Conversation	0.040	0.016	0.058		
	(0.008)	(0.007)	(0.013)		
Success + No Conversation	0.058	0.050	0.060		
	(0.009)	(0.020)	(0.011)		
Failure + No Conversation	0.126 (0.017)	0.135 (0.021)	0.105 (0.026)		
Observations	1,952	853	1,099		
Individuals	363	165	198		
p-value: Convo = Success + No Convo	0.11	0.12	0.89		
p-value: Convo = Failure + No Convo	0.00	0.00	0.10		
p-value: No Convo, Success = Failure	0.00	0.00	0.12		

Notes: Table shows average rates at which classes were recalled but incorrectly (i.e., as a success if initially a failure or $vice\ versa$), with standard errors (clustered at the individual level) in parentheses. Column 1 shows rates for the sample as a whole, column 2 restricts the sample to the Successes treatment, and column 3 restricts the sample to the Failures treatment. "Conversation" shows recall rates for the classes participants had conversations about, while "Success + No Conversation" and "Failure + No Conversation" show rates for the successes and failures that participants did not have conversations about.

Table A.IV: Small Treatment Effects on Misremembering

	False Successes (1)	False Failures (2)
Successes	0.082	-0.071**
	(0.061)	(0.033)
Constant	0.212*** (0.038)	0.143***
	(0.036)	(0.026)
Observations	370	370

Notes: Table shows OLS regressions. The dependent variables are the number of failures participants incorrectly recalled as being successes (column 1) and the number of successes they incorrectly recalled as being failures (column 2). Successes is an indicator variable for having conversations about three successes (rather than three failures). Robust standard errors in parentheses. *, **, and *** show significance at the p < 0.10, 0.05, and 0.01 levels respectively.

Table A.V: Effects of Rehearsal on Recall and Beliefs about Other Attributes								
	Recalled	Recalled						
	w/ Attribute	w/o Attribute	Recall $\%$	Belief	Bet			
	(1)	(2)	(3)	(4)	(5)			
# Conversations	0.216***	-0.295***	0.059***	2.271**	0.048***			
	(0.051)	(0.056)	(0.008)	(0.954)	(0.018)			
True #	0.473***	-0.536***	0.094***	5.069***	0.070***			
	(0.028)	(0.025)	(0.003)	(0.442)	(0.008)			
Constant	0.138**	5.489***	-0.004	27.000***	0.165***			
	(0.060)	(0.127)	(0.007)	(1.470)	(0.025)			
Observations	1,480	1,480	1,452	1,480	1,480			
Individuals	370	370	363	370	370			

Notes: Table shows OLS regressions without a constant (i.e., mean outcomes for each of the six mutually exclusive groups listed in the rows). The dependent variables are the number of successes participants correctly recalled (column 1), the number of failures they correctly recall (column 2), the fraction of recalled classes that were successes (column 3), participants' beliefs about the share of classes that were successes (column 4), whether participants' bet that the randomly selected classes was a success (column 5), and the difference between the share of classes they believe were successes and the share that they recall that were successes (column 6, i.e., the difference between the dependent variables in columns 4 and 3). Successes is an indicator variable for having conversations about three successes (rather than three failures), i.e., the treatment group. "Preferred Successes" is an indicator variable for whether the participant, in her choice of what she would prefer to rehearse, chose the option of having conversations about successes (likewise for the "Preferred Failures" and "Preferred Random" variables). Robust standard errors, clustered at the individual level, in parentheses. *, **, and *** show significance at the p < 0.10, 0.05, and 0.01 levels respectively.

Table A.VI: Effect of Rehearsal on Recall and Beliefs								
	Successes	Failures						
	Recalled	Recalled	Recall $\%$	Belief	Bet			
	(1)	(2)	(3)	(4)	(5)			
Successes	0.625***	-0.941***	0.209***	0.165***	0.476***			
	(0.132)	(0.131)	(0.021)	(0.023)	(0.045)			
Constant	2.232***	2.828***	0.418***	0.453***	0.345***			
	(0.091)	(0.085)	(0.014)	(0.016)	(0.033)			
Observations	370	370	359	370	370			

Notes: Table shows OLS regressions. The dependent variables are the number of successes participants correctly recalled (column 1), the number of failures they correctly recalled (column 2), the fraction of recalled classes that were successes (column 3), participants' beliefs about the share of classes that were successes (column 4), and whether participants' bet that the randomly selected classes was a success (column 5). Successes is an indicator variable for having conversations about three successes (rather than three failures). Robust standard errors in parentheses. *, **, and *** show significance at the p < 0.10, 0.05, and 0.01 levels respectively.

Table A.VII: Effect of Rehearsal on Recall and Beliefs with Controls Successes Failures Recalled Recalled Recall % Belief Bet (2)(3)(1)(4)(5)0.207*** 0.652***-0.932*** 0.158*** 0.477^{***} Successes(0.131)(0.021)(0.023)(0.133)(0.045)Constant 0.5374.509*** 0.278**0.087-0.227(0.764)(0.695)(0.114)(0.134)(0.261)Observations 370 370 359 370 370

Notes: Table shows OLS regressions. The dependent variables are the number of successes participants correctly recalled (column 1), the number of failures they correctly recall (column 2), the fraction of recalled classes that were successes (column 3), participants' beliefs about the share of classes that were successes (column 4), and whether participants' bet that the randomly selected classes was a success (column 5). Successes is an indicator variable for having conversations about three successes (rather than three failures). Robust standard errors in parentheses. *, **, and *** show significance at the p < 0.10, 0.05, and 0.01 levels respectively. All regressions include linear controls for participants' self-reported memory quality (1-5 scale), their age, the share of experiences in the experiment that are successes (either 4/9 or 5/9), their belief about the share of actual classes at college/high school that they felt they did well in, whether they expressed a preference to discuss successes, whether they expressed a preference to discuss failures, and whether they are female.

Table A.VIII: Average Recall and Beliefs by Rehearsal Preference and Treatment Assignment

	Successes	Failures				Belief minus
	Recalled	Recalled	Recall %	Belief	Bet	Recall $\%$
	(1)	(2)	(3)	(4)	(5)	(6)
$Successes \times Preferred Successes$	2.901***	1.642***	0.671***	0.645***	0.852***	-0.022
	(0.147)	(0.147)	(0.024)	(0.025)	(0.040)	(0.032)
$Successes \times Preferred Failures$	2.429***	2.214***	0.497***	0.566***	0.857***	0.069
	(0.301)	(0.291)	(0.048)	(0.048)	(0.094)	(0.057)
$Successes \times Preferred Random$	2.889***	2.097***	0.606***	0.598***	0.778***	-0.005
	(0.135)	(0.146)	(0.021)	(0.025)	(0.049)	(0.028)
$Failures \times Preferred Successes$	2.405***	2.702***	0.469***	0.499***	0.429***	0.023
	(0.131)	(0.123)	(0.020)	(0.025)	(0.054)	(0.027)
$Failures \times Preferred Failures$	1.522***	2.696***	0.312***	0.296***	0.130*	-0.028
	(0.247)	(0.259)	(0.048)	(0.051)	(0.071)	(0.063)
$Failures \times Preferred Random$	2.250***	2.969***	0.399***	0.450***	0.323***	0.052**
	(0.139)	(0.129)	(0.021)	(0.021)	(0.048)	(0.026)
Observations	370	370	359	370	370	359
p -value: $S \times PS = F \times PF$	0.000	0.000	0.000	0.000	0.000	0.934
p-value: All means equal	0.000	0.000	0.000	0.000	0.000	0.381
<i>p</i> -value: All means zero	0.000	0.000	0.000	0.000	0.000	0.330

Notes: Table shows OLS regressions. The dependent variables are the number of successes participants correctly recalled (column 1), the number of failures they correctly recall (column 2), the fraction of recalled classes that were successes (column 3), participants' beliefs about the share of classes that were successes (column 4), and whether participants' bet that the randomly selected classes was a success (column 5). Successes is an indicator variable for having conversations about three successes (rather than three failures). Robust standard errors in parentheses. *, **, and *** show significance at the p < 0.10, 0.05, and 0.01 levels respectively.

Table A.IX: Effect of Knowing about Belief Incentives on Rehearsal Choices

	Chose Successes (1)	Chose Random (2)	Chose Failures (3)	Endogenous Belief (4)
Warned about Incentives	0.036	-0.012	-0.024	0.027
	(0.052)	(0.031)	(0.052)	(0.025)
Constant	0.429***	0.106***	0.466***	0.551***
	(0.036)	(0.022)	(0.036)	(0.018)
Observations	370	370	370	370

Notes: Table shows OLS regressions. The dependent variables are indicators for whether participants' chose to discusses three successes, a random three classes, or three failures (columns 1-3, respectively), and the implied belief from their rehearsal choice had it been implemented (column 4). The latter is calculated as $ChosenBelief_i = Belief_i + (ChosenSuccess_i - Successes_i) \cdot TE/3$, where $Belief_i$ is i's actual belief about the percent of successes, $ChosenSuccess_i$ is the number of successes they preferred to have conversations about, $Successes_i$ is the actual number of successes they were randomly selected to discuss, and TE is the estimated treatment effect (from Figure 3) on beliefs of being assigned to 3 Successes. Robust standard errors in parentheses. *, **, and *** show significance at the p < 0.10, 0.05, and 0.01 levels respectively.

Table A.X: Reasons for Rehearsal Choices							
	Chose Successes	Chose Failures	Chose Random				
		Full Sample					
Enjoy Discuss Success	0.249	0.003	0.005				
Prefer Variety	0.008	0.000	0.111				
Easier to Discuss	0.265	0.059	0.046				
Affect Later Memory	0.005	0.014	0.014				
Indifferent	0.003	0.005	0.289				
Other	0.035	0.030	0.076				
	No Warning about Belief Incentives						
Enjoy Discuss Success	0.217	0.005	0.011				
Prefer Variety	0.011	0.000	0.116				
Easier to Discuss	0.280	0.063	0.058				
Affect Later Memory	0.005	0.011	0.016				
Indifferent	0.000	0.011	0.275				
Other	0.048	0.026	0.095				
	Warning	about Belief In	ncentives				
Enjoy Discuss Success	0.282	0.000	0.000				
Prefer Variety	0.006	0.000	0.105				
Easier to Discuss	0.249	0.055	0.033				
Affect Later Memory	0.006	0.017	0.011				
Indifferent	0.006	0.000	0.304				
Other	0.022	0.033	0.055				

Notes: Table shows the share of participants who select each rehearsal option and mention each consideration when justifying their choice. The top panel shows data for the whole sample, while the lower two panels restrict to those who were not warned or who were warned about future incentives for accurate beliefs.

Table A.XI: Effects of Rehearsal on Recall and Beliefs, Depending on Warning about Belief Incentives

	Successes	s Recalled	Failures	Failures Recalled		Recall $\%$		Belief		Bet	
	NW	W	NW	W	NW	W	NW	W	NW	W	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
Successes	0.724***	0.516***	-0.890***	-0.993***	0.220***	0.198***	0.175***	0.155***	0.521***	0.425***	
	(0.179)	(0.194)	(0.184)	(0.186)	(0.031)	(0.028)	(0.034)	(0.031)	(0.062)	(0.064)	
Constant	2.086***	2.388***	2.819***	2.837***	0.404***	0.434***	0.437***	0.469***	0.276***	0.418***	
	(0.123)	(0.134)	(0.112)	(0.129)	(0.019)	(0.021)	(0.023)	(0.021)	(0.044)	(0.050)	
Observations	189	181	189	181	187	172	189	181	189	181	
p-value: NW = W		0.43		0.69		0.61		0.65		0.28	

Notes: Table shows OLS regressions. The dependent variables are the number of successes participants correctly recalled (column 1-2), the number of failures they correctly recall (column 3-4), the fraction of recalled classes that were successes (column 5-6), participants' beliefs about the share of classes that were successes (column 7-8), and whether participants' bet that the randomly selected classes was a success (column 9-10). Successes is an indicator variable for having conversations about three successes (rather than three failures). "NW" and "W" indicate whether the sample is restricted to those who were not warned or who were warned, respectively, about future incentives for accurate beliefs. Robust standard errors in parentheses. *, **, and *** show significance at the p < 0.10, 0.05, and 0.01 levels respectively.

B Supplemental Appendix: Proofs

I start by solving for the period-1 agent's beliefs about what her period-2 self's beliefs will be, which I denote by $\tilde{E}[\bar{y}|a]$. Recall that $\tilde{r}_t(m,a)$ is the agent's belief in period t about her probability of recalling m given attention a. Let $\tilde{r}_{1,2}(m,a)$ be her belief at time t=1 about what her future self at t=2 will believe this probability to be, which as in the main text I assume takes the form $\tilde{r}_{1,2}(m,a) \propto \exp\{\lambda_1 \lambda_2 \gamma a_m\}$. Then,

$$\begin{split} \tilde{E}[\bar{y}|a] &= \sum_{m} y_m \cdot \tilde{r}_1(m,a) \cdot \frac{1}{M\tilde{r}_{1,2}(m,a)} \\ \Longrightarrow \frac{d\tilde{E}[\bar{y}|a]}{da_l} &= \sum_{m} y_m \left[\frac{d\tilde{r}_1(m,a)}{da_l} \frac{1}{M\tilde{r}_{1,2}(m,a)} + \tilde{r}_1(m,a) \frac{d\frac{1}{M\tilde{r}_{1,2}(m,a)}}{da_l} \right] \\ &= \sum_{m} y_m \left[\frac{1}{M\tilde{r}_{1,2}(m,a)} \frac{d}{da_l} \frac{\exp\{\lambda_1 \gamma a_m\}}{\sum_k \exp\{\lambda_1 \gamma a_k\}} + \frac{1}{M}\tilde{r}_1(m,a) \frac{d}{da_l} \frac{\sum_k \exp\{\lambda_1 \lambda_2 \gamma a_k\}}{\exp\{\lambda_1 \lambda_2 \gamma a_m\}} \right] \\ &= y_l \left[\frac{1}{M\tilde{r}_2(l,a)} \frac{d}{da_l} \frac{\exp\{\gamma \lambda_1 a_l\}}{\sum_k \exp\{\lambda_1 \gamma a_k\}} + \frac{1}{M}\tilde{r}_1(l,a) \frac{d}{da_l} \frac{\sum_k \exp\{\lambda_1 \lambda_2 \gamma a_k\}}{\exp\{\lambda_1 \lambda_2 \gamma a_l\}} \right] \\ &+ \sum_{m \neq l} y_m \left[\frac{1}{M\tilde{r}_{1,2}(m,a)} \frac{d}{da_l} \frac{\exp\{\lambda_1 \gamma a_m\}}{\sum_k \exp\{\lambda_1 \gamma a_k\}} + \frac{1}{M}\tilde{r}_1(m,a) \frac{d}{da_l} \frac{\sum_k \exp\{\lambda_1 \lambda_2 \gamma a_k\}}{\exp\{\lambda_1 \lambda_2 \gamma a_k\}} \right] \\ &= y_l \left[\frac{1}{M\tilde{r}_2(l,a)} \frac{\sum_k \exp\{\lambda_1 \gamma a_k\} \lambda_1 \gamma \exp\{\lambda_1 \gamma a_l\}}{\sum_k \exp\{\lambda_1 \lambda_2 \gamma a_l\}} - \sum_k \exp\{\lambda_1 \lambda_2 \gamma a_k\} \lambda_1 \gamma \exp\{\lambda_1 \lambda_2 \gamma a_l\}} \right] \\ &+ \frac{1}{M}\tilde{r}_1(l,a) \frac{\exp\{\lambda_1 \lambda_2 \gamma a_l\} \lambda_1 \lambda_2 \gamma \exp\{\lambda_1 \lambda_2 \gamma a_l\}}{\sum_k \exp\{\lambda_1 \gamma a_k\}}} \\ &+ \sum_{m \neq l} y_m \left[\frac{1}{M\tilde{r}_2(l,a)} \frac{-\exp\{\lambda_1 \gamma a_m\} \lambda_1 \gamma \exp\{\lambda_1 \gamma a_l\}}{\sum_k \exp\{\lambda_1 \gamma a_k\}^2}} \right] \\ &+ \frac{1}{M}\tilde{r}_1(m,a) \frac{\exp\{\lambda_1 \lambda_2 \gamma a_m\} \lambda_1 \gamma \exp\{\lambda_1 \gamma a_l\}}{\exp\{\lambda_1 \lambda_2 \gamma a_l\}^2}} \\ &+ \frac{1}{M}\tilde{r}_1(m,a) \frac{\exp\{\lambda_1 \lambda_2 \gamma a_m\} \lambda_1 \gamma \exp\{\lambda_1 \gamma a_l\}}{\sum_k \exp\{\lambda_1 \lambda_2 \gamma a_l\}^2}} \\ \end{aligned}$$

Note that when a = 0, $\tilde{r}_1(m, a) = \tilde{r}_{1,2}(m, a) = \frac{1}{M}$ for all m. Thus,

$$\begin{split} \frac{d\tilde{E}[\bar{y}|a]}{da_k}|_{a=0} &= y_l \left[\frac{M\lambda_1\gamma - \lambda_1\gamma}{M^2} + \frac{1}{M^2} \frac{\lambda_1\lambda_2\gamma - M\lambda_1\lambda_2\gamma}{1} \right] + \sum_{m \neq l} y_m \left[-\frac{\lambda_1\gamma}{M^2} + \frac{1}{M^2} \frac{\lambda_1\lambda_2\gamma}{1} \right] \\ &= \frac{\lambda_1\gamma}{M} (1 - \lambda_2) \left[y_l - \frac{1}{M} \sum_m y_l \right] \\ &= \lambda_1 (1 - \lambda_2) \frac{\gamma}{M} (y_l - \bar{y}) \end{split}$$

Then, taking a first-order approximation around a = 0,

$$\tilde{E}[\bar{y}|a] \approx \bar{y} + \lambda_1 (1 - \lambda_2) \frac{\gamma}{M} \sum_m (y_m - \bar{y}) a_m$$

$$= \bar{y} + \gamma \lambda_1 (1 - \lambda_2) E[(y_m - \bar{y}) a_m]$$

$$= \bar{y} + \gamma \lambda_1 (1 - \lambda_2) \Big(E[y_m a_m] - E[y_m] E[a_m] \Big)$$

$$= \bar{y} + \gamma \lambda_1 (1 - \lambda_2) \text{Cov}(y, a)$$

We can then quickly prove Proposition 1 by supposing that the period-1 self is sophisticated ($\lambda_1 = 1$) since such an agent will be correct about what her future self will believe. That is, recall that

$$E[\bar{y}|a] = \sum_{m} y_m \cdot r(m, a) \cdot \frac{1}{M\tilde{r}_2(m, a)}$$

Note that, when $\lambda_1 = 1$, $\tilde{r}_1(m, a) = r(m, a)$ and $\tilde{r}_{1,2}(m, a) = \tilde{r}_2(m, a)$. Therefore, we can simply redo the above derivation but letting $\lambda_1 = 1$ to get that

$$E[\bar{y}|a] \approx \bar{y} + \gamma(1-\lambda_2)\text{Cov}(y,a)$$
 (7)

which is Proposition 1.

Next, I prove Proposition 2. The first-order conditions for a_m are

$$\nu_{m} = \phi a_{m}^{*} - \left(\alpha - \beta (\tilde{E}[\bar{y}|a^{*}] - \bar{y})\right) \frac{d\tilde{E}[\bar{y}|a^{*}]}{da_{m}}$$

$$\nu_{m} = \phi a_{m}^{*} - \left(\alpha - \beta \lambda_{1} (1 - \lambda_{2}) \frac{\gamma}{M} \sum_{k} (y_{k} - \bar{y}) a_{k}^{*}\right) \frac{\gamma}{M} \lambda_{1} (1 - \lambda_{2}) (y_{m} - \bar{y})$$

$$\nu_{m} = \phi a_{m}^{*} - \alpha \frac{\gamma}{M} \lambda_{1} (1 - \lambda_{2}) (y_{m} - \bar{y}) + \beta \left[\lambda_{1} (1 - \lambda_{2}) \frac{\gamma}{M}\right]^{2} (y_{m} - \bar{y}) \sum_{k} (y_{k} - \bar{y}) a_{k}^{*}$$

$$\phi a_{m}^{*} = \nu_{m} + (y_{m} - \bar{y}) \left[\alpha \frac{\gamma}{M} \lambda_{1} (1 - \lambda_{2}) - \beta \left(\lambda_{1} (1 - \lambda_{2}) \frac{\gamma}{M}\right)^{2} \sum_{k} (y_{k} - \bar{y}) a_{k}^{*}\right]$$

$$a_{m}^{*} - \frac{\nu_{m}}{\phi} = \frac{1}{\phi} (y_{m} - \bar{y}) \frac{\gamma}{M} \lambda_{1} (1 - \lambda_{2}) \left[\alpha - \beta \gamma \lambda_{1} (1 - \lambda_{2}) \operatorname{Cov}(y, a^{*})\right]$$

$$a_{m}^{*} - \frac{\nu_{m}}{\phi} = \frac{1}{\phi} (y_{m} - \bar{y}) \frac{\gamma}{M} \lambda_{1} (1 - \lambda_{2}) \left[\alpha - \beta (E[\bar{y}|a] - \bar{y})\right]$$

$$(9)$$

which is Proposition 2. Next, to prove Proposition 3, we can add the first-order conditions given by equation 8 across all experiences m:

$$\phi \sum_{m} a_{m}^{*}(y_{m} - \bar{y}) = \sum_{m} \nu_{m}(y_{m} - \bar{y}) + \sum_{m} (y_{m} - \bar{y})^{2} \left[\alpha \frac{\gamma}{M} \lambda_{1} (1 - \lambda_{2}) - \beta \left(\lambda_{1} (1 - \lambda_{2}) \frac{\gamma}{M} \right)^{2} \sum_{k} (y_{k} - \bar{y}) a_{k}^{*} \right]$$

$$\sum_{m} a_{m}^{*}(y_{m} - \bar{y}) = \frac{\sum_{m} \nu_{m}(y_{m} - \bar{y}) + \sum_{m} (y_{m} - \bar{y})^{2} \left[\alpha \frac{\gamma}{M} \lambda_{1} (1 - \lambda_{2}) \right]}{\phi + \beta \sum_{m} (y_{m} - \bar{y})^{2} \left(\lambda_{1} (1 - \lambda_{2}) \frac{\gamma}{M} \right)^{2}}$$

$$\operatorname{Cov}(a^{*}, y) = \frac{\operatorname{Cov}(y, \nu) + \operatorname{Var}(y) \left[\alpha \frac{\gamma}{M} \lambda_{1} (1 - \lambda_{2}) \right]}{\phi + \beta M \operatorname{Var}(y) \left(\lambda_{1} (1 - \lambda_{2}) \frac{\gamma}{M} \right)^{2}}$$

Plugging this expression into equation 7 then yields Proposition 3.

To derive Proposition 4, note that the utility effect of increasing beliefs above the agent's actual beliefs (given her endogenous rehearsal choices a^*) is given by:

$$\begin{split} \frac{du_2}{dE_a[\bar{y}]}|_{a^*} &= \alpha - \beta(E_{a^*}[\bar{y}] - \bar{y}) \\ &= \alpha - \beta\gamma(1 - \lambda_2)\mathrm{Cov}(y, a^*) \\ &= \alpha - \frac{\beta\gamma(1 - \lambda_2)}{\phi + \beta M \mathrm{Var}(y) \Big(\lambda_1(1 - \lambda_2)\frac{\gamma}{M}\Big)^2} \bigg[\mathrm{Cov}(y, \nu) + \mathrm{Var}(y) \Big[\alpha\frac{\gamma}{M}\lambda_1(1 - \lambda_2)\Big] \bigg] \\ &= \frac{1}{\phi + \beta M \mathrm{Var}(y) \Big(\lambda_1(1 - \lambda_2)\frac{\gamma}{M}\Big)^2} \bigg[- \beta\gamma(1 - \lambda_2)\mathrm{Cov}(y, \nu) + \\ \alpha \bigg(\phi + \beta \mathrm{Var}(y) \Big(\lambda_1(1 - \lambda_2)\Big)^2 \frac{\gamma^2}{M} - \beta(1 - \lambda_2)^2 \mathrm{Var}(y) \frac{\gamma^2}{M}\lambda_1 \bigg) \bigg] \\ &= \frac{1}{\phi + \beta M \mathrm{Var}(y) \Big(\lambda_1(1 - \lambda_2)\frac{\gamma}{M}\Big)^2} \bigg[- \beta\gamma(1 - \lambda_2)\mathrm{Cov}(y, \nu) + \\ \alpha \bigg(\phi - \beta \mathrm{Var}(y)\lambda_1(1 - \lambda_2)^2 \frac{\gamma^2}{M}(1 - \lambda_1) \bigg) \bigg] \end{split}$$

Note that Proposition 4(i) follows directly from the above expression, since $Cov(y, \nu)$ only appears in the negative first term. Note that this comparative static is implicitly holding the distribution of experiences y constant (since it appears Var(y) appears elsewhere in the expression). So this result should be thought of (and is phrased as) being about how changes in the agent's rehearsal-based preferences (i.e., ν) affects beliefs and the welfare impact of correcting beliefs.

Next, suppose $Cov(y, \nu) = 0$. Then,

$$-\frac{du_2}{dE_a[\bar{y}]}|_{a^*} < 0$$

$$\iff -\frac{1}{\phi + \beta M \operatorname{Var}(y) \left(\lambda_1 (1 - \lambda_2) \frac{\gamma}{M}\right)^2} \left[\alpha \left(\phi - \beta \operatorname{Var}(y) \lambda_1 (1 - \lambda_2)^2 \frac{\gamma^2}{M} (1 - \lambda_1)\right)\right] < 0$$

$$\iff \phi - \beta \operatorname{Var}(y) \lambda_1 (1 - \lambda_2)^2 \frac{\gamma^2}{M} (1 - \lambda_1) > 0$$

$$\iff \lambda_1 (1 - \lambda_1) < \frac{\phi}{\beta \operatorname{Var}(y) (1 - \lambda_2)^2 \frac{\gamma^2}{M}}$$

A sufficient condition for the above to hold is that $\lambda_1(1-\lambda_1) < \frac{\phi}{\beta \operatorname{Var}(y) \frac{\gamma^2}{M}}$, which is Proposition 4(ii).

Next,

$$-\frac{du_2}{dE_a[\bar{y}]}|_{a^*} > 0$$

$$\iff \alpha \left(\phi - \beta \operatorname{Var}(y)\lambda_1 (1 - \lambda_2)^2 \frac{\gamma^2}{M} (1 - \lambda_1) \right) < \beta \gamma (1 - \lambda_2) \operatorname{Cov}(y, \nu)$$

$$\iff \frac{\alpha \phi - \alpha \beta \operatorname{Var}(y)\lambda_1 (1 - \lambda_2)^2 \frac{\gamma^2}{M} (1 - \lambda_1)}{\beta \gamma (1 - \lambda_2)} < \operatorname{Cov}(y, \nu)$$

Notice that the left-hand side is bounded above by $\frac{\alpha\phi}{\beta\gamma(1-\lambda_2)}$, hence the sufficient condition described in Proposition 4(iii).

Next, to prove Proposition 5, let $\alpha=0$ (no beliefs-based utility) and $\lambda_1=\lambda_2=0$ (full naivete). Recall that $\mathrm{Var}(y)=\sigma_y^2$. Also note that the assumptions in Section 6 imply that, conditional on a period being in the past, the agent always chooses the same attention vector for experiences in it. Therefore, the probability of recalling it can be rewritten as $r(m,a) \propto \exp\{\gamma(T-t)a_{m,t}\}$. We can therefore think of the strength of rehearsal effects in period t to be $(T-t)\gamma$ and use our existing expressions above to derive beliefs. Also note that $\mathrm{Cov}(\nu_m,y_m)=\nu\mathrm{Var}(y)=\nu\sigma_y^2$

Then,

$$E_{a^*}[\bar{y}_t] = \bar{y}_t + (T - t)\gamma \frac{\nu \sigma_y^2}{\phi}$$

This proves the first part of Proposition 5. To prove the next part, note that

$$E[E_{a^*}[\bar{y}_t]] = E[\bar{y}_t] + (T - t)\gamma \frac{\nu \sigma_y^2}{\phi}$$

$$= \mu + \kappa t + (T - t)\gamma \frac{\nu \sigma_y^2}{\phi}$$

$$\implies E[E_{a^*}[\bar{y}_t] - E_{a^*}[\bar{y}_{t-1}]] = \kappa - \frac{\gamma \nu}{\phi} \sigma_y^2$$

which is the second part of Proposition 5.

Next, I prove Proposition 6. Let $\bar{y} = (\bar{y}_0 \ \bar{y}_1 \ ... \ \bar{y}_T)'$. Let $\xi = \begin{pmatrix} \mu \\ \kappa \end{pmatrix}$ be the true parameter vector. Let

$$X = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ \vdots & \vdots \\ 1 & T \end{pmatrix}$$

Then $\bar{y} = X\xi + \epsilon$, where $\epsilon = \begin{pmatrix} \epsilon_0 & \epsilon_1 & \dots & \epsilon_T \end{pmatrix}'$. Let Σ_T and ξ_T be the agents' posteriors about Σ and ξ after observing \bar{y} .

This is then a problem of Bayesian linear regression. The standard solution is then $\Sigma_T^{-1} = \Sigma^{-1} + \frac{X^T X}{\sigma_\epsilon^2}$ and

$$\xi_T = \Sigma_T \left(\Sigma^{-1} \tilde{\xi} + \frac{X^T \bar{y}}{\sigma_{\epsilon}^2} \right)$$
$$= \Sigma_T \left(\frac{\frac{\tilde{\mu}}{\sigma_{\mu}^2} + \frac{1}{\sigma_{\epsilon}^2} \sum_t \bar{y}_t}{\frac{\tilde{\kappa}}{\sigma_{\kappa}^2} + \frac{1}{\sigma_{\epsilon}^2} \sum_t t \bar{y}_t} \right)$$

We can then calculate Σ_T^-1 :

$$\Sigma_{T}^{-1} = \begin{pmatrix} \frac{1}{\sigma_{\mu}^{2}} & 0\\ 0 & \frac{1}{\sigma_{\kappa}^{2}} \end{pmatrix} + \frac{1}{\sigma_{\epsilon}^{2}} \begin{pmatrix} 1 & 1 & \dots & 1\\ 0 & 1 & \dots & T \end{pmatrix} \begin{pmatrix} 1 & 0\\ 1 & 1\\ 1 & 2\\ \vdots & \vdots\\ 1 & T \end{pmatrix}$$

$$\Sigma_{T}^{-1} = \begin{pmatrix} \frac{1}{\sigma_{\mu}^{2}} & 0\\ 0 & \frac{1}{\sigma_{\kappa}^{2}} \end{pmatrix} + \frac{1}{\sigma_{\epsilon}^{2}} \begin{pmatrix} T+1 & \sum_{t=0}^{T} t\\ \sum_{t=0}^{T} t & \sum_{t=0}^{T} t^{2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{\sigma_{\mu}^{2}} + \frac{T+1}{\sigma_{\epsilon}^{2}} & \frac{T(T+1)}{2\sigma_{\epsilon}^{2}}\\ \frac{T(T+1)}{2\sigma^{2}} & \frac{1}{\sigma_{\epsilon}^{2}} + \frac{T(T+1)(2T+1)}{6\sigma^{2}} \end{pmatrix}$$

To simplify expressions, I use ψ to denote the corresponding precision for each σ parameter: i.e., $\psi_X \equiv \frac{1}{\sigma_X^2}$. Then,

$$\begin{split} \Sigma_{T}^{-1} &= \begin{pmatrix} \psi_{\mu} + \psi_{\epsilon}(T+1) & \psi_{\epsilon} \frac{T(T+1)}{2} \\ \psi_{\epsilon} \frac{T(T+1)}{2} & \psi_{\kappa} + \psi_{\epsilon} \frac{T(T+1)(2T+1)}{6} \end{pmatrix} \\ \Longrightarrow \Sigma_{T} &= \frac{1}{\det(\Sigma_{T}^{-1})} \begin{pmatrix} \psi_{\kappa} + \psi_{\epsilon} \frac{T(T+1)(2T+1)}{6} & -\psi_{\epsilon} \frac{T(T+1)}{2} \\ -\psi_{\epsilon} \frac{T(T+1)}{2} & \psi_{\mu} + \psi_{\epsilon}(T+1) \end{pmatrix} \\ \det(\Sigma_{T}^{-1}) &= \left(\psi_{\mu} + \psi_{\epsilon}(T+1) \right) \left(\psi_{\kappa} + \psi_{\epsilon} \frac{T(T+1)(2T+1)}{6} \right) - \psi_{\epsilon}^{2} \frac{T^{2}(T+1)^{2}}{4} \\ &= \psi_{\mu} \psi_{\kappa} + \psi_{\epsilon} \psi_{\kappa}(T+1) + \psi_{\mu} \psi_{\epsilon} \frac{T(T+1)(2T+1)}{6} + \frac{1}{12} \psi_{\epsilon}^{2} T(T+1)^{2}(T+2) > 0 \end{split}$$

We can now compute ξ_T :

$$\begin{split} \xi_T &= \Sigma_T \begin{pmatrix} \frac{\tilde{\mu}}{\sigma_{\mu}^2} + \frac{1}{\sigma_{\epsilon}^2} \sum_t \bar{y}_t \\ \frac{\tilde{\kappa}}{\sigma_{\kappa}^2} + \frac{1}{\sigma_{\epsilon}^2} \sum_t t \bar{y}_t \end{pmatrix} \\ &= \frac{1}{\det(\Sigma_T^{-1})} \begin{pmatrix} \left(\frac{\tilde{\mu}}{\sigma_{\mu}^2} + \frac{1}{\sigma_{\epsilon}^2} \sum_t \bar{y}_t\right) \left(\psi_{\kappa} + \psi_{\epsilon} \frac{T(T+1)(2T+1)}{6}\right) - \left(\frac{\tilde{\kappa}}{\sigma_{\kappa}^2} + \frac{1}{\sigma_{\epsilon}^2} \sum_t t \bar{y}_t\right) \psi_{\epsilon} \frac{T(T+1)}{2} \\ \left(\frac{\tilde{\kappa}}{\sigma_{\kappa}^2} + \frac{1}{\sigma_{\epsilon}^2} \sum_t t \bar{y}_t\right) \left(\psi_{\mu} + \psi_{\epsilon}(T+1)\right) - \left(\frac{\tilde{\mu}}{\sigma_{\mu}^2} + \frac{1}{\sigma_{\epsilon}^2} \sum_t \bar{y}_t\right) \psi_{\epsilon} \frac{T(T+1)}{2} \end{pmatrix} \\ &= \frac{1}{\det(\Sigma_T^{-1})} \begin{pmatrix} \left(\psi_{\mu}\tilde{\mu} + \psi_{\epsilon} \sum_t \bar{y}_t\right) \left(\psi_{\kappa} + \psi_{\epsilon} \frac{T(T+1)(2T+1)}{6}\right) - \left(\psi_{\kappa}\tilde{\kappa} + \psi_{\epsilon} \sum_t t \bar{y}_t\right) \psi_{\epsilon} \frac{T(T+1)}{2} \\ \left(\psi_{\kappa}\tilde{\kappa} + \psi_{\epsilon} \sum_t t \bar{y}_t\right) \left(\psi_{\mu} + \psi_{\epsilon}(T+1)\right) - \left(\psi_{\mu}\tilde{\mu} + \psi_{\epsilon} \sum_t \bar{y}_t\right) \psi_{\epsilon} \frac{T(T+1)}{2} \end{pmatrix} \end{split}$$

The predictive posterior should then be

$$\hat{y}_{T+1} = \mu_T + (T+1)\kappa_T
= \frac{1}{\det(\Sigma_T^{-1})} \left[\left(\psi_\mu \tilde{\mu} + \psi_\epsilon \sum_t \bar{y}_t \right) \left(\psi_\kappa + \psi_\epsilon \frac{T(T+1)(2T+1)}{6} \right) - \left(\psi_\kappa \tilde{\kappa} + \psi_\epsilon \sum_t t \bar{y}_t \right) \psi_\epsilon \frac{T(T+1)}{2} \right]
+ (T+1) \left(\left(\psi_\kappa \tilde{\kappa} + \psi_\epsilon \sum_t t \bar{y}_t \right) \left(\psi_\mu + \psi_\epsilon (T+1) \right) - \left(\psi_\mu \tilde{\mu} + \psi_\epsilon \sum_t \bar{y}_t \right) \psi_\epsilon \frac{T(T+1)}{2} \right) \right]$$

Recall however that when the agent thinks about periods t = 0 to t = T, she misperceives \bar{y}_t to be $E_{a^*}[\bar{y}_t] = \bar{y}_t + (T - t)\frac{\gamma\nu}{\phi}\sigma_y^2$. Replacing \bar{y}_t with these values in the above equation then yields the subjective predictive posterior:

$$E_{a^*}[\bar{y}_{T+1}] = \frac{1}{\det(\Sigma_T^{-1})} \left[\left(\psi_\mu \tilde{\mu} + \psi_\epsilon \sum_t \left(\bar{y}_t + (T-t) \sigma_y^2 \gamma_{\phi}^{\nu} \right) \right) \left(\psi_\kappa + \psi_\epsilon \frac{T(T+1)(2T+1)}{6} \right) - \left(\psi_\kappa \tilde{\kappa} + \psi_\epsilon \sum_t t \left(\bar{y}_t + (T-t) \sigma_y^2 \gamma_{\phi}^{\nu} \right) \right) \psi_\epsilon \frac{T(T+1)}{2} + (T+1) \left(\left(\psi_\kappa \tilde{\kappa} + \psi_\epsilon \sum_t t \left(\bar{y}_t + (T-t) \sigma_y^2 \gamma_{\phi}^{\nu} \right) \right) \left(\psi_\mu + \psi_\epsilon (T+1) \right) - \left(\psi_\mu \tilde{\mu} + \psi_\epsilon \sum_t \left(\bar{y}_t + (T-t) \sigma_y^2 \gamma_{\phi}^{\nu} \right) \right) \psi_\epsilon \frac{T(T+1)}{2} \right) \right]$$

We can then take the derivative of $E_{a^*}[\bar{y}_{T+1}]$ with respect to γ to learn the effect of rehearsal on this posterior:

$$\begin{split} \frac{dE_{a^*}[\overline{y}_{T+1}]}{d\gamma} &= \frac{1}{\det(\Sigma_T^{-1})} \left[\psi_\epsilon \sum_t (T-t) \sigma_y^2 \frac{\nu}{\phi} \left(\psi_\kappa + \psi_\epsilon \frac{T(T+1)(2T+1)}{6} \right) - \psi_\epsilon \sum_t t(T-t) \sigma_y^2 \frac{\nu}{\phi} \psi_\epsilon \frac{T(T+1)}{2} \right] \\ &+ (T+1) \left(\psi_\epsilon \sum_t t(T-t) \sigma_y^2 \frac{\nu}{\phi} \left(\psi_\mu + \psi_\epsilon (T+1) \right) - \psi_\epsilon \sum_t (T-t) \sigma_y^2 \frac{\nu}{\phi} \psi_\epsilon \frac{T(T+1)}{2} \right) \right] \\ &= \frac{\psi_\epsilon \sigma_y^2 \frac{\nu}{\phi}}{\det(\Sigma_T^{-1})} \left[\sum_t (T-t) \left(\psi_\kappa + \psi_\epsilon \frac{T(T+1)(2T+1)}{6} \right) - \sum_t t(T-t) \psi_\epsilon \frac{T(T+1)}{2} \right) \right] \\ &+ (T+1) \left(\sum_t t(T-t) \left(\psi_\mu + \psi_\epsilon (T+1) \right) - \sum_t (T-t) \psi_\epsilon \frac{T(T+1)}{2} \right) \right] \\ &= \frac{\psi_\epsilon \sigma_y^2 \frac{\nu}{\phi}}{\det(\Sigma_T^{-1})} \left[\sum_t (T-t) \left(\psi_\kappa + \psi_\epsilon \frac{T(T+1)(2T+1)}{6} - \psi_\epsilon \frac{T(T+1)^2}{2} \right) \right] \\ &+ (T+1) \left(\sum_t t(T-t) \left(\psi_\mu + \psi_\epsilon (T+1) - \psi_\epsilon \frac{T}{2} \right) \right) \right] \\ &= \frac{\psi_\epsilon \sigma_y^2 \frac{\nu}{\phi}}{\det(\Sigma_T^{-1})} \left[\sum_t (T-t) \left(\psi_\kappa - \psi_\epsilon (T+1) \frac{T+2}{6} \right) + (T+1) \frac{T-1}{3} \left(\psi_\mu + \psi_\epsilon \frac{T+2}{2} \right) \right] \\ &= \frac{\psi_\epsilon \sigma_y^2 \frac{\nu}{\phi} T(T+1)}{2 \det(\Sigma_T^{-1})} \left[\left(\psi_\kappa - \psi_\epsilon (T+1) \frac{T+2}{6} \right) + (T+1) \frac{T-1}{3} \left(\psi_\mu + \psi_\epsilon \frac{T+2}{2} \right) \right] \\ &= \frac{\psi_\epsilon \sigma_y^2 \frac{\nu}{\phi} T(T+1)}{2 \det(\Sigma_T^{-1})} \left[\psi_\kappa - \psi_\epsilon (T+1) \frac{T+2}{6} + \frac{(T+1)(T-1)}{3} \psi_\mu \right] \end{split}$$

Proposition 6 assumes that σ_{μ} is sufficiently large, so we can drop the third term in the final line above (i.e., set $\psi_{\mu} = 0$). This derivative is therefore positive if and only if ϕ_{κ} is large enough (equivalently, σ_{κ} is small enough).

Proposition 6 also assumes that the agent's priors are unbiased: $\tilde{\mu} = \mu$ and $\tilde{\kappa} = \kappa$. In that case, absent rehearsal the agent's posteriors will also be unbiased (on average). Thus her posteriors will on average be too high or too low depending on whether ψ_{κ} is large enough or not. This proves Proposition 6.