Математический анализ.

Лектор — Юрий Сергеевич Белов и Юрий Ильич Любарский Создатель конспекта — Глеб Минаев *

TODOs

	ут нужно рассказать про функции exp, sin, cos и $(1+x)^{lpha}$ и их ряды	Τ?
Пδ	азвание раздела?	
Κŧ	артиночки!	20
Те	ем более картиночки!!!	20
Kı	ривая Пеано, тра-ля-ля	50
П	ривести пример, когда в точке есть производные по всем направлениям (и, может, даже	
	в одной плоскости), но нет производной	58
Pa	азделить теорему на две: про существование у точки при определённых условиях "хо-	
	рошей" окрестности и про обратимость функции на "хорошем" открытом множестве.	61
Μ	ожет попробовать обобщить пункт 4 до " $f(V)$ есть вложение диска в $\mathbb{R}^m \ (m \geqslant n)$ "?	61
Зд	цесь нужно написать правильные условия и доказательство	66
	аписать теорему о неявной функции по-другому?	
	аписать решение?	
Ηŧ	аписать решение?	70
Ha	аписать	75
Нa	аписать	75
\mathbf{C}	10 HODING THE	
1	ОДержание Множества, аксиоматика и вещественные числа.	1
		1
1	Множества, аксиоматика и вещественные числа. Топология прямой, пределы и непрерывность. 2.1 Последовательности, пределы и ряды	
1	Множества, аксиоматика и вещественные числа. Топология прямой, пределы и непрерывность. 2.1 Последовательности, пределы и ряды	8
1	Множества, аксиоматика и вещественные числа. Топология прямой, пределы и непрерывность. 2.1 Последовательности, пределы и ряды	11
1	Множества, аксиоматика и вещественные числа. Топология прямой, пределы и непрерывность. 2.1 Последовательности, пределы и ряды 2.2 Топология 2.3 Пределы функций, непрерывность 2.4 Гладкость (дифференцируемость)	11 14
1	Множества, аксиоматика и вещественные числа. Топология прямой, пределы и непрерывность. 2.1 Последовательности, пределы и ряды	11 14
1	Множества, аксиоматика и вещественные числа. Топология прямой, пределы и непрерывность. 2.1 Последовательности, пределы и ряды 2.2 Топология 2.3 Пределы функций, непрерывность 2.4 Гладкость (дифференцируемость)	11 14
1 2	Множества, аксиоматика и вещественные числа. Топология прямой, пределы и непрерывность. 2.1 Последовательности, пределы и ряды 2.2 Топология 2.3 Пределы функций, непрерывность 2.4 Гладкость (дифференцируемость) 2.5 Стандартные функции, ряды Тейлора и их сходимость	11 14 19
1 2 3	Множества, аксиоматика и вещественные числа. Топология прямой, пределы и непрерывность. 2.1 Последовательности, пределы и ряды 2.2 Топология 2.3 Пределы функций, непрерывность 2.4 Гладкость (дифференцируемость) 2.5 Стандартные функции, ряды Тейлора и их сходимость Примеры и контрпримеры	20 20
1 2 3	Множества, аксиоматика и вещественные числа. Топология прямой, пределы и непрерывность. 2.1 Последовательности, пределы и ряды 2.2 Топология 2.3 Пределы функций, непрерывность 2.4 Гладкость (дифференцируемость) 2.5 Стандартные функции, ряды Тейлора и их сходимость Примеры и контрпримеры Интегрирование	11 14 19 20 22 22
1 2 3	Множества, аксиоматика и вещественные числа. Топология прямой, пределы и непрерывность. 2.1 Последовательности, пределы и ряды . 2.2 Топология . 2.3 Пределы функций, непрерывность . 2.4 Гладкость (дифференцируемость) . 2.5 Стандартные функции, ряды Тейлора и их сходимость . Примеры и контрпримеры Интегрирование 4.1 Первообразная .	20 22 23

^{*}Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

5	Логарифм? Полезности?? Что???	34
	5.1 Формулы Валлиса и Стирлинга	$\frac{38}{42}$
	5.3 Некоторые методы интегрирования и их результаты	46
	5.4 Кривые	50
6	Кривые	50
7	Тригонометрия	53
8	Многомерный анализ	54
	8.1 Дифференцируемость	54
	8.2 Нормирование линейных операторов	55
	8.3 Формула Тейлора для многих переменных	64
	8.4 Задача поиска экстремумов	66 68
	8.6 Условные экстремумы	70
9	Топологический соус	70
10	Теоремы о неподвижной точке	74
11	Голоморфные функции	7 5
12	Интеграл в смысле главного значения	7 5
13	Интегрирование функций нескольких переменных	7 5
14	Теория меры	77
	14.1 Конечные структуры	77
	14.2 Внешняя мера	83
	Литература:	
	• В. А. Зорич "Математический анализ"	
	• О. Л. Виноградов "Математический анализ"	
	• (подходит попозже) Г. М. Фихтенгельц "Курс дифференциального и интегрального числения"	ис-
	• У. Рудин "Основы анализа"	
	• М. Спивак "Математический анализ на многообразиях"	
	• В. М. Тихомиров "Рассказы о максимумах и минимумах"	
	Страницы курса:	
	• Страница курса, 1 семестр (осень 2020).	
	• Страница курса, 2 семестр (весна 2021).	
	• Страница курса, 3 семестр (осень 2021).	

1 Множества, аксиоматика и вещественные числа.

Мы начинаем с теории множеств.

Определение 1.

- Множества и элементы понятно.
- $a \in B$ понятно.
- $A \cup B := \{x \mid x \in A \lor x \in B\}$ объединение.
- $A \cap B := \{x \mid x \in A \land x \in B\}$ пересечение.
- $A \setminus B := \{x \mid x \in A \lor x \notin B\}$ разность.
- $A \triangle B := A \setminus B \cup B \setminus A$ симметрическая разница.
- $A^C:=X\backslash A-\mathit{dononhehue},$ где X- некоторое фиксированное рассматриваемое множество.
- $A \subset B$ "A подмножество B", т.е. $\forall x (X \in A \Rightarrow x \in B)$.

Следствие.

• (первое правило Моргана) $(A \cup B)^C = A^C \cap B^C$.

$$x \in (A \cup B)^C \Leftrightarrow x \notin A \cup B \Leftrightarrow \begin{cases} x \notin A \\ x \notin B \end{cases} \Leftrightarrow \begin{cases} x \in A^c \\ x \in B^C \end{cases} \Leftrightarrow x \in A^C \cap B^C$$

• (второе правило Моргана) $(A \cap B)^C = A^C \cup B^C$. Аналогично.

Определение 2. (Аксиома индукции.) Пусть есть функция $A : \mathbb{N} \to \{\text{True}; \text{False}\}$, что:

1.
$$A(1) = \text{True};$$

2.
$$\forall n \in \mathbb{N} \quad A(n) \to A(n+1)$$
.

Тогда $\forall n \ A(n) = \text{True}.$

Определение натуральных чисел сложно, рассматривать его не будем (оно описывается в курсе теории множеств). Важно также иметь в виду натуральные числа с операциями сложения и умножения.

Определение 3. Пусть есть кольцо без делителей нуля R. Рассмотрим отношение эквивалентности \sim на $R \times (R \setminus \{0\})$, что $(a;b) \sim (c;d) \Leftrightarrow ad = bc$. Тогда $\mathrm{Quot}(R)$ — фактор-множество по \sim и поле.

Определение 4. Рациональные числа — $\mathbb{Q} := \operatorname{Quot}(\mathbb{Z})$.

Теорема 1. $\nexists x \in \mathbb{Q}$: $x^2 = 2$.

Доказательство. Предположим противное, т.е. существуют взаимно простые $m \in \mathbb{Z}$ и $n \in \mathbb{N} \setminus \{0\}$, что $(\frac{m}{n})^2 = 2$. Тогда $m^2 = 2n^2$. Очевидно, что тогда $m^2 \vdots 2$, значит $m \vdots 2$, значит $m \vdots 4$, значит $n z \vdots 2$

Теперь мы хотим понять, что есть вещественные числа. Тут есть несколько подходов; рассмотрим только один из них.

Определение 5 (аксиоматический подход). Вещественные числа — это полное упорядоченное поле \mathbb{R} (состоящее не из одного элемента).

Здесь "поле" значит, что на множестве (вместе с его операциями и выделенными элементами) верны аксиомы поля A_1 , A_2 , A_3 , A_4 , M_1 , M_2 , M_3 , M_4 и D (т.е. сложение и умножение ассоциативны, коммутативны имеют нейтральные элементы и удовлетворяют условию существованию обратных (по умножению — для всех кроме нуля), а также дистрибутивности).

Упорядоченность поля значит, что есть рефлексивное транзитивное антисимметричное отношение ≼, что все элементы сравнимы, согласованное с операциями, т.е.:

- $A) \ a \leq b \Rightarrow a + x \leq b + x.$
- $M) \ 0 \le a \land 0 \le b \Rightarrow 0 \le ab.$

Полнота поля значит любое из следующих утверждений (они равносильны):

- любое ограниченное сверху (снизу) подмножество поля имеет точную верхнюю (нижнюю) грань;
- (аксиома Кантора-Дедекинда) для любых двух множеств A и B, что $A \preccurlyeq B$, есть разделяющий их элемент.

Итого мы имеем 9 аксиом поля, 2 аксиомы упорядоченности и 1 аксиома полноты упорядоченности.

Утверждение. $Had \mathbb{Q}$ нет элемента разделяющего $A := \{a > 0 \mid a^2 < 2\}$ $u B := \{b > 0 \mid b^2 > 2\}.$

Доказательство. Предположим противное, т.е. есть c > 0, что A < c < B.

Если $c^2 < 2$, то найдём ε , что $\varepsilon \in (0;1)$ и $(c+\varepsilon)^2 < 2$. Заметим, что $(c+\varepsilon)^2 = c^2 + 2c\varepsilon + \varepsilon^2 < c^2 + (2c+1)\varepsilon$. Пусть $\varepsilon < \frac{2-c^2}{2c+1}$, тогда такое ε точно подойдёт, ну а поскольку $\frac{2-c^2}{2c+1} > 0$, то такое ε есть. Значит $c^2 \geqslant 2$.

Аналогично имеем, что $c^2 \leqslant 2$. А значит $c^2 = 2$, что не бывает над \mathbb{Q} .

Следствие. \mathbb{Q} не полно.

Определение 6. Значение t является верхней (нижней) гранью непустого множества $X \in \mathbb{R}$ тогда и только тогда, когда $t \geqslant X$, т.е. любой элемент x множества X не более t.

Точная верхняя (нижняя) грань или супремум (инфимум) непустого множества $X \subseteq \mathbb{R}$ — минимальная верхняя (нижняя) грань множества X. Он же является элементом разделяющим X и множество всех его верхних (нижних) граней. Обозначение: $\sup(X)$ и $\inf(X)$ соответственно.

 $Ocuunnauue\check{u}$ множества X называется значение $\operatorname{osc} X := \sup X - \inf X$.

Определение 7.

- Закрытый интервал или отрезок $[a;b] := \{x \in \mathbb{R} \mid a \leqslant x \leqslant b\}.$
- Открытый интервал или просто интервал $(a;b) := \{x \in \mathbb{R} \mid a < x < b\}.$
- Полуоткрытый интервал или полуинтервал $(a;b] := \{x \in \mathbb{R} \mid a < x \leqslant b\}, [a;b) := \{x \in \mathbb{R} \mid a \leqslant x < b\}.$

Теорема 2 (Лемма о вложенных отрезках). Пусть имеется $\{I_i\}_{i=1}^{\infty}$ — множество вложенных (непустых) отрезков, т.е. $\forall n > 1$ $I_{n+1} \subset I_n$. Тогда $\bigcap_{i=1}^{\infty} I_i \neq \varnothing$.

Доказательство. Заметим, что для любых натуральных n < m верно, что $a_n \leqslant a_m \leqslant b_m \leqslant b_n$, где $I_n = [a_n; b_n]$. Тогда для $A := \{a_i\}_{i=1}^{\infty}$ и $B := \{b_i\}_{i=1}^{\infty}$ верно, что $A \leqslant B$. Значит есть разделяющий их элемент t, значит $A \leqslant t \leqslant B$, значит $t \in I_i$ для всех i, значит $t \in \bigcap_{i=1}^{\infty} I_i$. \square

Замечание 1. Теорема 2 не верна для не отрезков.

Замечание 2. Если в теореме 2 $b_i - a_i$ "сходится к 0", т.е. $\forall \varepsilon > 0 \, \exists n \in \mathbb{N} : \forall i > n \, b_i - a_i < \varepsilon$, то пересечение всех отрезков состоит из ровно одного элемента.

Теорема 3 (индукция на вещественных числах). Пусть дано множество $X \subseteq [0;1]$, что

- 1. $0 \in X$;
- 2. $\forall x \in X \exists \varepsilon > 0 : U_{\varepsilon}(x) \cap [0; 1] \subseteq X$;
- 3. $\forall Y \subseteq X \sup(Y) \in X$.

 $Tor \partial a X = [0; 1].$

Доказательство. Предположим противное: $X \neq [0;1]$. Рассмотрим $Z := [0;1] \setminus X$ ($Z \neq \varnothing!$) и $Y := \{y \in [0;1] \mid y < Z\}$ ($Y \neq \varnothing!$). Заметим, что $Y \subseteq X$ и $\sup(Y) = \inf(Z) = t$. Тогда $t \in X$ по второму условию. Значит для некоторого $\varepsilon > 0$ верно, что $U_{\varepsilon}(t) \cap [0;1] \in X$, а т.е. $(U_{\varepsilon}(t) \cap [0;1]) \cap Z = \varnothing$, а тогда $t \neq \inf(Z)$ — противоречие. Значит X = [0;1].

2 Топология прямой, пределы и непрерывность.

2.1 Последовательности, пределы и ряды

Определение 8. Предел последовательности $\{x_n\}_{n=0}^{\infty}$ — такое число x, что для любой окрестности x эта последовательность с некоторого момента будет лежать в этой окрестности:

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \forall n \geqslant N \quad x_n \in U_{\varepsilon}(x)$$

Обозначение: $\lim \{x_n\}_{n=0}^{\infty} = x$.

Предельная точка последовательности $\{x_n\}_{n=0}^{\infty}$ — такое число x, что в любой его окрестности после любого момента появится элемент данной последовательности:

$$\forall \varepsilon > 0 \,\forall N \in \mathbb{N} \,\exists n > N : \quad x_n \in U_{\varepsilon}(x)$$

Определение 9. Последовательность $\{x_n\}_{n=0}^{\infty}$ называется $\phi y n \partial a m e n m a n b n o \ddot{u}$, если

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \; \forall n_1, n_2 > N \quad |x_{n_1} - x_{n_2}| < \varepsilon$$

Теорема 4. Последовательность сходится тогда и только тогда, когда фундаментальна.

Доказательство.

1. Пусть последовательность $\{x_n\}_{n=0}^{\infty}$ сходится к некоторому значению X, тогда

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n > N \quad |x_n - X| < \varepsilon/2 \Rightarrow \\ \forall n_1, n_2 > N \quad |x_{n_1} - x_{n_2}| = |x_{n_1} - X + X - x_{n_2}| \leqslant |x_{n_1} - X| + |X - x_{n_2}| < \varepsilon$$

2. Пусть последовательность $\{x_n\}_{n=0}^{\infty}$ фундаментальна. Мы знаем, что для каждого $\varepsilon > 0$ все члены, начиная с некоторого различаются менее чем на ε . Тогда возьмём какой-нибудь такой член y_0 для некоторого ε , затем какой-нибудь такой член y_1 для $\varepsilon/2$, который идёт после y_0 и так далее. Получим последовательность, что все члены, начиная с n-ого лежат в $\varepsilon/2^n$ -окрестности y_n . Тогда рассмотрим последовательность $\{I_n\}_{n=0}^{\infty}$, где $I_n = [y_n - \varepsilon/2^{n-1}; y_n + \varepsilon/2^{n-1}]$. Несложно понять, что $I_n \supseteq I_{n+1}$, поэтому в пересечении $\{I_n\}_{n=0}^{\infty}$ лежит некоторый X. Несложно понять, что все члены начальной последовательности, начиная с y_{n+2} , лежат в $\varepsilon/2^{n+2}$ -окрестности y_{n+2} . При этом $|y_{n+2} - X| \le \varepsilon/2^{n+1}$, что значит, что все члены главной последовательности, начиная с y_{n+2} лежат в $3\varepsilon/2^{n+2}$ -окрестности X, а значит и в $\varepsilon/2^n$.

Утверждение 5. Для последовательностей $\{x_n\}_{n=0}^{\infty}$ и $\{y_n\}_{n=0}^{\infty}$ верно (если определено), что

1.
$$\lim \{x_n\}_{n=0}^{\infty} + \lim \{y_n\}_{n=0}^{\infty} = \lim \{x_n + y_n\}_{n=0}^{\infty}$$

$$2. - \lim \{x_n\}_{n=0}^{\infty} = \lim \{-x_n\}_{n=0}^{\infty}$$

3.
$$\lim \{x_n\}_{n=0}^{\infty} \cdot \lim \{y_n\}_{n=0}^{\infty} = \lim \{x_ny_n\}_{n=0}^{\infty}$$

4.
$$\frac{1}{\lim\{x_n\}_{n=0}^{\infty}} = \lim\{\frac{1}{x_n}\}_{n=0}^{\infty} (ecnu \lim\{x_n\}_{n=0}^{\infty} \neq 0)$$

и всегда, когда определена левая сторона определена, правая тоже определена.

Доказательство.

1. Пусть $\lim \{x_n\}_{n=0}^{\infty} = X$, $\lim \{y_n\}_{n=0}^{\infty} = Y$. Тогда

$$\forall \varepsilon > 0 \ \exists N, M \in \mathbb{N} : \quad \forall n > N \ |x_n - X| < \varepsilon/2 \quad \land \quad \forall m > M \ |y_m - Y| < \varepsilon/2,$$

тогда

$$\forall n > \max(N, M) \quad |(x_n + y_n) - (X + Y)| \leqslant |x_n - X| + |y_n - Y| < \varepsilon,$$

что означает, что $\{x_n + y_n\}_{n=0}^{\infty}$ сходится и сходится к X + Y.

2. Пусть $\lim \{x_n\}_{n=0}^{\infty} = X$. Тогда

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \quad \forall n > N \; |x_n - X| < \varepsilon,$$

тогда

$$\forall n > N \quad |(-x_n) - (-X)| = |X - x_n| = |x_n - X| < \varepsilon,$$

что означает, что $\{-x_n\}_{n=0}^{\infty}$ сходится и сходится к -X.

3. Пусть $\lim \{x_n\}_{n=0}^{\infty} = X$, $\lim \{y_n\}_{n=0}^{\infty} = Y$. Определим также

$$\delta: (0; +\infty) \to \mathbb{R}, \varepsilon \mapsto \frac{\varepsilon}{\sqrt{\left(\frac{|x| + |y|}{2}\right)^2 + \varepsilon + \frac{|x| + |y|}{2}}} = \sqrt{\left(\frac{|x| + |y|}{2}\right)^2 + \varepsilon} - \frac{|x| + |y|}{2}$$

Несложно видеть, что $\delta(\varepsilon)$ всегда определено и всегда положительно. Также несложно видеть, что $\delta(\varepsilon)$ есть корень уравнения $t^2+t(|X|+|Y|)=\varepsilon$. Тогда

$$\forall \varepsilon > 0 \ \exists N, M \in \mathbb{N} : \quad \forall n > N \ |x_n - X| < \delta(\varepsilon) \quad \land \quad \forall m > M \ |y_m - Y| < \delta(\varepsilon),$$

тогда

$$\forall n > \max(N, M) \quad |x_n \cdot y_n - X \cdot Y| = |x_n \cdot y_n - x_n \cdot Y + x_n \cdot Y - X \cdot Y|$$

$$\leq |x_n \cdot (y_n - Y)| + |(x_n - X) \cdot Y|$$

$$< |x_n| \cdot \delta(\varepsilon) + \delta(\varepsilon) \cdot |Y|$$

$$< (|X| + \delta(\varepsilon)) \cdot \delta(\varepsilon) + |Y| \cdot \delta(\varepsilon)$$

$$= \delta(\varepsilon)^2 + (|X| + |Y|)\delta(\varepsilon)$$

$$= \varepsilon,$$

что означает, что $\{x_n\cdot y_n\}_{n=0}^\infty$ сходится и сходится к $X\cdot Y$.

4. Пусть $\lim \{x_n\}_{n=0}^{\infty} = X$. Определим также

$$\delta: (0; +\infty) \to \mathbb{R}, \varepsilon \mapsto \frac{\varepsilon |X|^2}{1 + \varepsilon |X|}$$

Несложно видеть, что $\delta(\varepsilon)$ всегда определено и всегда меньше |X|. Также несложно видеть, что $\delta(\varepsilon)$ есть корень уравнения $\frac{t}{|X|(|X|-t)} = \varepsilon$. Тогда

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \quad \forall n > N \; |x_n - X| < \delta(\varepsilon),$$

тогда

$$\forall n > N \quad \left| \frac{1}{x_n} - \frac{1}{X} \right| = \left| \frac{X - x_n}{X \cdot x_n} \right| < \frac{\delta(\varepsilon)}{|X| \cdot |x_n|} < \frac{\delta(\varepsilon)}{|X|(|X| - \delta(\varepsilon))} = \varepsilon,$$

что означает, что $\{\frac{1}{x_n}\}_{n=0}^{\infty}$ сходится и сходится к 1/X.

Определение 10. Последовательность $\{x_n\}_{n=0}^{\infty}$ асимптотически больше последовательности $\{y_n\}_{n=0}^{\infty}$, если $x_n > y_n$ для всех натуральных n, начиная с некоторого. Обозначение: $\{x_n\}_{n=0}^{\infty} \succ \{y_n\}_{n=0}^{\infty}$.

Аналогично определяются асимптотически меньше $(\{x_n\}_{n=0}^{\infty} \prec \{y_n\}_{n=0}^{\infty})$, асимптотически не больше $(\{x_n\}_{n=0}^{\infty} \preccurlyeq \{y_n\}_{n=0}^{\infty})$ и асимптотически не меньше $(\{x_n\}_{n=0}^{\infty} \succcurlyeq \{y_n\}_{n=0}^{\infty})$.

Утверждение 6. Если $\{x_n\}_{n=0}^{\infty} \succcurlyeq \{y_n\}_{n=0}^{\infty}$, то $\lim \{x_n\}_{n=0}^{\infty} \geqslant \lim \{y_n\}_{n=0}^{\infty}$.

Доказательство. Предположим противное, т.е. Y > X, где $X := \lim\{x_n\}_{n=0}^{\infty}$, $Y := \lim\{y_n\}_{n=0}^{\infty}$. Тогда пусть $\varepsilon = \frac{|X-Y|}{2}$. С каких-то моментов $\{x_n\}_{n=0}^{\infty}$ и $\{y_n\}_{n=0}^{\infty}$ находятся в ε -окрестностях X и Y соответственно. Тогда начиная с позднего из этих моментов, $y_n > Y - \varepsilon = X + \varepsilon > x_n$, т.е. $\{x_n\}_{n=0}^{\infty} \prec \{y_n\}_{n=0}^{\infty}$ — противоречие. Значит $X \geqslant Y$.

Утверждение 7. Если $\lim \{x_n\}_{n=0}^{\infty} > \lim \{y_n\}_{n=0}^{\infty}$, то $\{x_n\}_{n=0}^{\infty} \succ \{y_n\}_{n=0}^{\infty}$.

Доказательство. Пусть $X := \lim\{x_n\}_{n=0}^{\infty}$, $Y := \lim\{y_n\}_{n=0}^{\infty}$. Тогда пусть $\varepsilon = \frac{|X-Y|}{2}$. С каких-то моментов $\{x_n\}_{n=0}^{\infty}$ и $\{y_n\}_{n=0}^{\infty}$ находятся в ε -окрестностях X и Y соответственно. Тогда начиная с позднего из этих моментов, $x_n > X - \varepsilon = Y + \varepsilon > y_n$, т.е. $\{x_n\}_{n=0}^{\infty} \succ \{y_n\}_{n=0}^{\infty}$.

Утверждение 8 (леммма о двух полицейских). *Если*

$$\{x_n\}_{n=0}^{\infty} \succcurlyeq \{y_n\}_{n=0}^{\infty} \succcurlyeq \{z_n\}_{n=0}^{\infty}$$

u

$$\lim \{x_n\}_{n=0}^{\infty} = \lim \{z_n\}_{n=0}^{\infty} = A,$$

то предел $\{y_n\}_{n=0}^{\infty}$ определён и равен A.

Доказательство. Для каждого $\varepsilon > 0$ есть $N, M \in \mathbb{N}$, что

$$\forall n > N \ |x_n - A| < \varepsilon \quad \land \quad \forall m > M \ |z_n - A| < \varepsilon,$$

значит

$$\forall n > \max(N, M) \quad A + \varepsilon > x_n \geqslant y_n \geqslant z_n > A - \varepsilon \quad \text{r.e. } |y_n - A| < \varepsilon,$$

что означает, что $\{y_n\}_{n=0}^{\infty}$ сходится и сходится к A.

Утверждение 9. Если $\{x_n\}_{n=0}^{\infty} \succcurlyeq \{y_n\}_{n=0}^{\infty}$, $\lim \{x_n\}_{n=0}^{\infty} = A$, а $\{y_n\}_{n=0}^{\infty}$, не убывает (с некоторого момента), то предел $\{y_n\}_{n=0}^{\infty}$ существует и не превосходит A.

Доказательство. Если последовательность $\{y_n\}_{n=0}^{\infty}$ возрастает не с самого начала, то отрежем её начало с до момента начала возрастания. Заметим, что она ограничена сверху (из-за последовательности $\{x_n\}_{n=0}^{\infty}$), тогда определим $B:=\sup(\{y_n\}_{n=0}^{\infty})$. Тогда $\forall \varepsilon>0 \;\exists N\in\mathbb{N}: \;\;|B-x_N|<\varepsilon$, тогда $\forall n>N \;\;|B-x_n|<\varepsilon$, что означает, что $\{y_n\}_{n=0}^{\infty}$ сходится и сходится к B. По утверждению $\{x_n\}_{n=0}^{\infty}$ сходится и сходится и

Определение 11. Сумма ряда $\{a_k\}_{k=0}^{\infty}$ есть значение $\sum_{k=0}^{\infty} a_k := \lim \left\{\sum_{i=0}^{k}\right\}_{k=0}^{\infty}$. Частичной же суммой s_k этого ряда называется просто $\sum_{i=0}^{k} a_i$.

Определение 12. Ряд $\sum_{i=0}^{\infty} a_i \ cuльно \ cxodumcs$, если $\sum_{i=0}^{\infty} |a_i|$ сходится.

Теорема 10. Если ряд сильно сходится сходится, то он сходится.

Доказательство.

Лемма 10.1. Пусть ряд $\sum_{i=0}^{\infty} a_i$ сходится, тогда сходится любой его "хвост" (суффикс), и для любого $\varepsilon > 0$ есть такой хвост, сумма которого меньше ε .

Доказательство. Пусть $A = \sum_{i=0}^{\infty} a_i$. Это значит, что для каждого $\varepsilon > 0$ существует $N \in \mathbb{N}$, что для всех $n \geqslant N$ верно, что $\sum_{i=0}^{n} |a_i| \in U_{\varepsilon}(A)$. Тогда заметим, что

$$\sum_{i=N+1}^{\infty} |a_i| = \lim_{n \to \infty} \sum_{i=N+1}^{n} |a_i| = \lim_{n \to \infty} \left(\sum_{i=0}^{n} |a_i| - \sum_{i=0}^{N} |a_i| \right) = \lim_{n \to \infty} \sum_{i=0}^{n} |a_i| - \sum_{i=0}^{N} |a_i| = A - \sum_{i=0}^{N} |a_i| \in U_{\varepsilon}(0)$$

Это и означает, что любой хвост сходится. И так мы для каждого ε нашли такой хвост, что его сумма меньше ε .

Пусть дан сильно сходящийся ряд $\sum_{i=0}^{\infty} a_i$. Пусть $\varepsilon_n := \sum_{i=n}^{\infty} |a_i|$. Несложно видеть, что $\{\varepsilon_n\}_{n=0}^{\infty}$ монотонно уменьшается, сходясь к 0 (последнее следует из леммы 10.1). Также несложно видеть по рассуждениям леммы 10.1, что $\varepsilon_n - \varepsilon_{n+1} = |a_n|$. Тогда определим

$$S_n := \overline{U}_{\varepsilon_{n+1}}(\sum_{i=0}^n a_i),$$

где $\overline{U}_{\varepsilon}(x)$ — закрытая ε -окрестность точки x. Тогда несложно видеть, что

$$\left| \sum_{i=0}^{n+m} a_i - \sum_{i=0}^n a_i \right| = \left| \sum_{i=n+1}^{n+m} a_i \right| \leqslant \sum_{i=n+1}^{n+m} |a_i| \leqslant \varepsilon_{n+1}$$

Тем самым сумма любого префикса длины хотя бы n+1 лежит в $\overline{U}_{\varepsilon_{n+1}}(\sum_{i=0}^n a_i) = S_n$. Также несложно видеть, что $S_{n+1} \subseteq S_n$. А также понятно, что S_i замкнуто и ограничено ("компактно").

Пусть $A:=\bigcap_{i=0}^{\infty}S_i$ (поскольку диаметры шаров сходятся к нулю, то в пересечении лежит не более одной точки). Тогда мы видим, что $|\sum_{i=0}^n a_i - A| \leqslant \varepsilon_{n+1} \to 0$, поэтому $\sum_{i=0}^n a_i$ сходится и сходится к A.

Следствие 10.1. Если $\{b_i\}_{i=0}^{\infty}\succcurlyeq\{|a_i|\}_{i=0}^n\ u\ \sum_{i=0}^{\infty}|b_i|\ cyществует,\ mo\ u\ \sum_{i=0}^{\infty}a_i\ cyществует.$

Теорема 11 (признак Лейбница). Пусть дана последовательность $\{a_n\}$, монотонно сверху сходящаяся к 0. Тогда ряд $\sum_{i=0}^{\infty} (-1)^i a_i$ сходится.

Доказательство. Рассмотрим последовательности

$$\{P_n\}_{n=0}^{\infty} := \{S_{2n}\}_{n=0}^{\infty} = \left\{\sum_{i=0}^{2n} (-1)^i a_i\right\}_{n=0}^{\infty} \qquad \{Q_n\}_{n=0}^{\infty} := \{S_{2n+1}\}_{n=0}^{\infty} = \left\{\sum_{i=0}^{2n+1} (-1)^i a_i\right\}_{n=0}^{\infty}$$

Несложно видеть, что

$$P_{n+1} - P_n = -a_{2n+1} + a_{2n+2} \le 0$$

$$Q_n - P_n = -a_{2n+1} \le 0$$

$$Q_{n+1} - Q_n = a_{2n+2} - a_{2n-3} \ge 0$$

$$P_{n+1} - Q_n = a_{2n+2} \ge 0$$

Тогда имеем, что $\{P_n\}_{n=0}^\infty$ монотонно убывает, $\{Q_n\}_{n=0}^\infty$ монотонно возрастает, а также

$${P_n}_{n=0}^{\infty} \geqslant {Q_n}_{n=0}^{\infty}.$$

Тогда последовательности $\{P_n\}_{n=0}^{\infty}$ и $\{Q_n\}_{n=0}^{\infty}$ сходятся и сходятся к P и Q соответственно. При этом последовательность

$${P_n}_{n=0}^{\infty} - {Q_n}_{n=0}^{\infty} = {P_n - Q_n}_{n=0}^{\infty} = a_{2n+1}$$

тоже сходится по условию и сходится к 0. Поэтому

$$P - Q = \lim \{P_n\}_{n=0}^{\infty} - \lim \{Q_n\}_{n=0}^{\infty} = 0$$

значит P=Q. Значит и последовательность префиксных сумм тоже сходится к P=Q. \square

Лемма 12 (преобразование Абеля).

$$\sum_{k=0}^{n} a_k b_k = \sum_{k=0}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n$$

 $e \partial e \ B_n := \sum_{i=0}^n b_i.$

Теорема 13 (признак Дирихле). Если даны $\{a_i\}_{i=0}^{\infty}$ и $\{b_i\}_{i=0}^{\infty}$, что $\{a_i\}_{i=0}^{\infty} \searrow 0$, а $\{B_n\}_{n=0}^{\infty} = \{\sum_{i=0}^{n} b_i\}_{i=0}^{\infty}$ ограничена, то ряд $\sum_{i=0}^{\infty} a_i b_i$ сходится.

Доказательство

$$S_n = \sum_{i=0}^n a_k b_k = \sum_{i=0}^n (a_k - a_{k+1}) B_k + a_n B_n$$

Пусть $|B_n| < C$ для всех n. Несложно видеть, что

$$\lim_{n \to \infty} |a_n B_n| \leqslant \lim a_n C = C \lim a_n = 0,$$

поэтому $\lim a_n B_n = 0$. Также

$$|(a_k - a_{k+1})B_k| < C|a_k - a_{k+1}| = C(a_k - a_{k+1}),$$

поэтому

$$|S_n - a_n B_n| \le \sum_{k=0}^{n-1} |(a_k - a_{k+1})B_k| < C \sum_{k=0}^{n-1} (a_k - a_{k+1}) = C(a_1 - a_{n+1}),$$

что тоже сходится. Поэтому $\{S_n\}_{n=0}^{\infty}$ сходится, т.е. и ряд сходится.

2.2 Топология

Определение 13. ε -окрестность точки x (для $\varepsilon > 0$) — $(x - \varepsilon; x + \varepsilon)$. Обозначение: $U_{\varepsilon}(x)$. Проколотая ε -окрестность точки $x - (x - \varepsilon; x) \cup (x; x + \varepsilon)$. Обозначение: $V_{\varepsilon}(x)$.

Определение 14. Пусть дано некоторое множество $X \subseteq \mathbb{R}$. Тогда точка $x \in X$ называется внутренней точкой множества X, если она содержится в X вместе со своей окрестностью. Само множество X называется открытым, если все его точки внутренние.

Пример 1. Следующие множества открыты:

- (a;b); $(a;+\infty);$ $\mathbb{R};$
- $\bigcup_{i=0}^{\infty} (a_i; b_i)$ (интервалы не обязательно не должны пересекаться).

Определение 15. Пусть дано множество $X \subseteq \mathbb{R}$. Точка $x \in \mathbb{R}$ называется *предельной точкой* множества, если в любой проколотой окрестности x будет какая-либо точка X.

Множество предельных точек X называется npouseodным множеством множества X.

Множество X называется замкнутым, если содержит как подмножество своё производное множество.

Определение 16. Пусть дано множество $X \subseteq \mathbb{R}$. Если у любой последовательности его точек есть предельная точка из самого множества X, то X называется *компактным*.

Теорема 14. Подмножество \mathbb{R} компактно тогда и только тогда, когда замкнуто и ограничено.

Доказательство.

- 1. Пусть $X \subseteq \mathbb{R}$ компактно. Если X неограниченно, то несложно построить последовательность элементов X, которая монотонно возрастает или убывает, а разность между членами не меньше любой фиксированной константы (например, не меньше 1); такая последовательность не имеет предельных точек, что противоречит определению X, а значит X ограничено. Если X не замкнуто, то можно рассмотреть предельную точку x, не лежащую в X, и построить последовательность, сходящуюся к ней, а значит никаких других точек у последовательности быть не может, а значит опять получаем противоречие с определением X; значит X ещё и замкнуто.
- 2. Пусть X замкнуто и ограничено. Пусть также дана некоторая последовательность $\{x_n\}_{n=0}^{\infty}$ элементов X. Поскольку X ограничено, то значит лежит внутри некоторого отрезка I_0 . Определим последовательность $\{I_n\}_{n=0}^{\infty}$ рекуррентно следующим образом. Пусть I_n определено; разделим I_n на две половины и определим I_{n+1} как любую из половин, в которой находится бесконечное количество членов последовательности $\{x_n\}_{n=0}^{\infty}$. после этого определим последовательность $\{y_n\}_{n=0}^{\infty}$ как подпоследовательность $\{x_n\}_{n=0}^{\infty}$, что $y_n \in I_n$ для любого $n \in \mathbb{N}$ (это можно сделать рекуррентно: если определён член y_n , то найдётся ещё бесконечное количество членов начальной последовательности в I_{n+1} , которые идут после y_n , так как отброшено конечное количество, а значит можно взять любой). Несложно видеть, что $\lim_{n\to\infty} y_n = \bigcap_{n\in\mathbb{N}} I_n =: y$. Из-за замкнутости $y \in X$, а значит y— предельная точка $\{x_n\}_{n=0}^{\infty}$ лежит в X и доказывает компактность X.

Лемма 15. Пусть Σ — семейство интервалов длины больше некоторого d > 0, покрывающее отрезок [a;b]. Тогда у Σ есть конечное подсемейство Σ' , покрывающее [a;b].

Доказательство. Давайте вести индукцию по $\lceil (b-a)/d \rceil$.

База. $\lceil (b-a)/d \rceil = 0$. В таком случае a=b, а значит, можно взять любой интервал, покрывающий единственную точку и получить всё искомое семейство Σ' .

Шаг. Рассмотрим $\Omega := \{I \in \Sigma \mid a \in I\}$. Заметим, что если у правых концов интервалов из Ω нет верхних граней (т.е. их множество не ограничено сверху), то значит найдётся интервал, покрывающий и a, и b, а значит его как единственный элемент семейства Σ' будет достаточно. Иначе определим a' как супремум правых концов интервалов из Ω .

Тогда мы имеем, что есть интервалы из Ω , подбирающиеся сколь угодно близко к a', а также что все интервалы из Σ , покрывающие a' не покрывают a. Если a' > b, то можно опять же взять интервал, который покроет весь [a;b], и остановится. Иначе рассмотрим любой интервал I, покрывающий a' и любой интервал J из Ω , перекрывающийся с I. Пусть a'' — правый конец J.

Заметим, что I и J покрывают [a;a''). При этом a < J < a'', значит $a'' - a \geqslant \operatorname{osc}(J) > d$. Если a'' > b, то $\Sigma = \{I,J\}$ будет достаточно. Иначе заметим, что

$$\left\lceil \frac{b-a''}{d} \right\rceil = \left\lceil \frac{b-a}{d} - \frac{a''-a}{d} \right\rceil \leqslant \left\lceil \frac{b-a}{d} - 1 \right\rceil = \left\lceil \frac{b-a}{d} \right\rceil - 1 < \left\lceil \frac{b-a}{d} \right\rceil$$

Тогда по предположению индукции есть конечное подпокрытие Σ'' покрытия Σ отрезка [a'';b]. Значит $\Sigma' := \Sigma'' \cup \{I,J\}$ является конечным подпокрытием покрытия Σ множества [a;b]. \square

Лемма 16. Пусть Σ — семейство интервалов длины больше некоторого d>0. Тогда найдётся не более чем счётное подсемейство Σ' , имеющее такое же объединение, т.е. $|\Sigma'| \leq |\mathbb{N}|$, $a \cup \Sigma = \bigcup \Sigma'$.

Доказательство. Несложно видеть, что $A := \bigcup \Sigma$ представляется в виде дизъюнктного объединения интервалов. Каждый из них можно представить как объединение не более чем счётного отрезков. Итого мы получим не более чем счётное семейство Ω отрезков, что $\bigcup \Omega = A$. Для каждого отрезка из Ω построим по лемме 15 конечное подпокрытие покрытия Σ , а затем объединив их, получим не более чем счётное семейство Σ' , покрывающее любой из них, а значит и $\bigcup \Omega = A = \bigcup \Sigma$. С другой стороны Σ' — подмножество Σ , значит и $\bigcup \Sigma'$ — подмножество $\bigcup \Sigma$.

В итоге $\bigcup \Sigma' = \bigcup \Sigma$, и при этом Σ' — не более чем счётное подмножество Σ .

Лемма 17. Пусть дано семейство Σ интервалов. Тогда из него можно выделить не более чем счётное подсемейство Σ' с тем же объединением, т.е. $|\Sigma'| \leq |\mathbb{N}|$, $a \cup \Sigma = \bigcup \Sigma'$.

Доказательство. Рассмотрим для каждого $n \in \mathbb{Z}$ семейство

$$\Sigma_n = \{ I \in \Sigma \mid osc(I) \in [2^n; 2^{n+1}) \}$$

Применим лемму к Σ_n и получим Σ'_n . Тогда $\Sigma' := \bigcup_{n \in \mathbb{Z}} \Sigma'_n$ является подмножеством Σ , даёт в объединении то же, что и Σ , и при этом имеет мощность не более $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.

Теорема 18. Подмножество \mathbb{R} компактно тогда и только тогда, когда из любого его покрытия интервалами можно выделить конечное подпокрытие.

Доказательство.

1. Пусть X компактно, а Σ — некоторое его покрытие интервалами. Определим для каждого d>0

$$\Sigma_d := \{ I \in \Sigma \mid \operatorname{osc}(I) > d \}$$

Если никакое из Σ_d не является подпокрытием множества X, то рассмотрим последовательность $\{x_n\}_{n=0}^{\infty}$, где x_n — любой элемент $X\setminus \Sigma_{1/2^n}$. У $\{x_n\}_{n=0}^{\infty}$ есть предельная точка $x\in X$. Значит должен быть интервал, покрывающий x, но тогда он же покрывает весь некоторый хвост нашей последовательности, а сам лежит в некотором $\Sigma_{1/2^n}$ — противоречие. Значит некоторое Σ_d является подпокрытие, а значит далее можно рассматривать его в качестве Σ .

 $\bigcup \Sigma$ — открытое множество, поэтому является дизъюнктным объединением семейства Ω интервалов. Поскольку в Σ длины всех интервалов больше d, то в Ω тоже. Но также X ограничено, поэтому Ω конечно, да и все интервалы в нём ограничены. Заметим, что $X \cap I$, где I — любой интервал из Ω , является замкнутым множеством, поэтому его можно накрыть некоторым отрезком $S \subseteq I$ (для этого можно взять отрезок $[\inf(X \cap I); \sup(X \cap I)]$). Значит из накрытия Σ выделить $|\Omega|$ конечных подпокрытий для каждого отрезка (по лемме 16), а их объединение даст конечное покрытие X.

 $2. \ \, \Pi y$ сть X таково, что из любого покрытия можно выбрать конечное подпокрытие.

Если X неограниченно, то тогда несложно будет видеть, что покрытие $\{(n; n+2) \mid n \in \mathbb{Z}\}$ нельзя уменьшить до конечного. Значит X ограничено.

Если X не замкнуто, то значит есть точка $x \notin X$, что в любой окрестности x будет точка. Тогда рассмотрим покрытие $\{(x+2^n;x^{n+2})\mid n\in\mathbb{Z}\}\cup\{(x-2^{n+2};x^n)\mid n\in\mathbb{Z}\}$. Несложно видеть, что если взять любое конечное подсемейство интервалов, то оно не накроет некоторую окрестность x, а значит и X. Значит X замкнуто.

Итого получаем, что X компактно.

2.3 Пределы функций, непрерывность

Определение 17 (по Коши). *Предел* функции $f:X\to\mathbb{R}$ в точке x — такое значение y, что

$$\forall \varepsilon > 0 \,\exists \delta > 0 : f(V_{\delta}(x) \cap X) = U_{\varepsilon}(y)$$

Обозначение: $\lim_{t \to x} f(t) = y$.

Определение 18 (по Гейне). Предел функции $f: X \to \mathbb{R}$ в точке x — такое значение y, что для любой последовательность $\{x_n\}_{n=0}^{\infty}$ элементов $X \setminus \{x\}$ последовательность $\{f(x_n)\}_{n=0}^{\infty}$ сходится к y. Обозначение: $\lim_{t \to x} f(t) = y$.

Теорема 19. Определения пределов по Коши и по Гейне равносильны.

Доказательство. Будем доказывать равносильность отрицаний утверждений, ставимых в определениях.

1. Пусть функция $f: X \to \mathbb{R}$ не сходится по Коши в x к значению y. Значит есть такое $\varepsilon > 0$, что в любой проколотой окрестности x (в множестве X) есть точка, значение f в которой не лежит в ε -окрестности. Рассмотрев любую такую проколотую окрестность $I_0 = V_{\delta_0}(x)$, берём в ней любую такую точку x_0 . Далее рассмотрев $I_1 = V_{\delta_1}(x)$, где $\delta_1 = \min(\delta_0/2, |x-x_0|)$, берём там любую точку x_1 , где значение f вылетает вне ε -окрестности y. Так далее строим последовательность $\{x_n\}_{n=0}^{\infty}$, сходящуюся к x, значения f в которой не лежат в ε -окрестности y, что означает, что $\{f(x_n)\}_{n=0}^{\infty}$ не сходится к y, что означает, что f не сходится по Гейне в x к значению y.

2. Пусть функция $f: X \to \mathbb{R}$ не сходится по Гейне в x к значению y. Значит есть последовательность $\{x_n\}_{n=0}^{\infty}$, сходящаяся к x, что последовательность её значений не сходится к y. Значит есть $\varepsilon > 0$, что после любого момента в последовательности будет член, значение в котором вылезает вне ε -окрестности y. Поскольку для любой проколотой окрестности x есть момент, начиная с которого вся последовательность лежит в этой окрестности, то в любой проколотой окрестности x есть член, значение которого вылезает вне ε -окрестности y, что означает, что f не сходится по Коши в x к y.

Утверждение 20. Функция $f:X\to\mathbb{R}$ имеет в x предел тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x_1, x_2 \in V_{\delta}(x) \quad |f(x_1) - f(x_2)| < \varepsilon$$

Доказательство. Такое же как для последовательностей: см. теорему 4.

Утверждение 21. Для функций $f: \mathbb{R} \to \mathbb{R} \ u \ g: \mathbb{R} \to \mathbb{R} \ верно, что$

1.
$$\lim_{x \to a} f(x) + \lim_{x \to a} g(x) = \lim_{x \to a} (f+g)(x)$$

2.
$$\lim_{x \to a} (-f)(x) = -\lim_{x \to a} f(x)$$

3.
$$\lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = \lim_{x \to a} f(x)$$

4.
$$\frac{1}{\lim_{x \to a} f(x)} = \lim_{x \to a} (\frac{1}{f})(x) \ (ecnu \lim_{x \to a} f(x) \neq 0)$$

5.
$$\lim_{y \to \lim_{x \to a} g(x)} f(y) = \lim_{x \to a} (f \circ g)(x)$$

и всегда, когда определена левая сторона определена, правая тоже определена.

Замечание 3. Утверждения 6, 7 и 8 верны, если заменить последовательности на функции, пределы последовательностей на пределы функций в некоторой точке x, а асимптотические неравенства на неравенства на окрестности x.

Определение 19. Bерхним пределом функции f в точке x_0 называется

$$\overline{\lim}_{x \to x_0} f(x) = \inf_{\delta > 0} (\sup_{V_{\delta}(x_0)} f)$$

Hиженим пределом функции f в точке x_0 называется

$$\underline{\lim}_{x \to x_0} f(x) = \sup_{\delta > 0} (\inf_{V_{\delta}(x_0)} f)$$

Определение 20. Функция $f: X \to \mathbb{R}$ называется *непрерывной в точке* x, если $\lim_{t \to x} f(t) = f(x)$. В изолированных точках f всегда непрерывна.

Определение 21. Функция $f: X \to \mathbb{R}$ называется *непрерывной на множестве* $Y \subseteq X$, если она непрерывна во всех точках Y.

Утверждение 23. Для непрерывных на X функций f и g верно, что

- f + g непрерывна на X;
- fg непрерывна на X;
- $\frac{1}{f}$ непрерывна на X (если $f \neq 0$).

Утверждение 24. Для f, непрерывной в x_0 , u g, непрерывной в $f(x_0)$, $g \circ f$ непрерывна в x_0 .

Теорема 25 (Вейерштрасса). *Непрерывная функция на компакте ограничена на нём и принимает на нём свои минимум и максимум*.

Доказательство. Докажем утверждение для ограниченности сверху и максимума; для ограниченности снизу и минимума рассуждения аналогичны.

Пусть множество неограниченно сверху. Тогда есть $\{x_n\}_{n=0}^{\infty}$, что $\{f(x_n)\}_{n=0}^{\infty} \to +\infty$. Тогда рассмотрим подпоследовательность $\{y_n\}_{n=0}^{\infty}$ последовательности $\{x_n\}_{n=0}^{\infty}$, сходящуюся к y. Тогда

$$f(y) = \lim_{n \to \infty} f(y_n) = +\infty$$

— противоречие.

Тогда существует последовательность $\{x_n\}_{n=0}^{\infty}$, что $\{f(x_n)\}_{n=0}^{\infty}$ сходится к супремуму S функции. Рассмотрим подпоследовательность $\{y_n\}_{n=0}^{\infty}$ последовательности $\{x_n\}_{n=0}^{\infty}$, сходящуюся к y. Тогда

$$f(y) = \lim_{n \to \infty} f(y_n) = S$$

Следствие 25.1. Так как отрезок компактен, то любая непрерывная на нём функция ограничена и принимает на нём свои максимум и минимум.

Теорема 26 (о промежуточном значении). Пусть f непрерывна на [a;b], а f(a) < f(b). Тогда $\forall y \in [f(a);f(b)]$ найдётся $c \in [a;b]$, что f(c) = y.

Доказательство. Рассмотрим последовательность $\{(a_n;b_n)\}_{n=0}^{\infty}$, что $(a;b)=(a_0;b_0)$, а следующие пары определяются так: если $f(\frac{a_n+b_n}{2})< y$, то $(a_{n+1};b_{n+1})=(\frac{a_n+b_n}{2};b_n)$, иначе $(a_{n+1};b_{n+1})=(a_n;\frac{a_n+b_n}{2})$. Тогда $c=\lim\{a_n\}_{n=0}^{\infty}=\lim\{b_n\}_{n=0}^{\infty}$. Тогда

$$f(c) = \lim \{ f(a_n) \}_{n=0}^{\infty} = \lim \{ f(b_n) \}_{n=0}^{\infty},$$

откуда получаем, что $f(c)\geqslant y$ и $f(c)\leqslant y$, т.е. f(c)=y.

Определение 22. Функция f равномерно непрерывна на X, если

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x \in X \quad f(U_{\delta}(x)) \subseteq U_{\varepsilon}(f(x))$$

Теорема 27 (Кантор). *Непрерывная на компакте функция равномерно непрерывна.*

Доказательство. Предположим противное. Тогда

$$\exists \varepsilon > 0 : \forall \delta > 0 \ \exists x, y : \quad |x - y| < \delta \land |f(x) - f(y)| > \varepsilon$$

Тогда рассмотрим последовательность пар x и y построенных так для δ , сходящихся к 0. Из неё выделим подпоследовательность, что x сходится к некоторому a. Тогда y сойдутся к нему же. Тогда в любой окрестности a будет пара точек (x';y'), что $|f(x')-f(y')|>\varepsilon$, значит будет в любой окрестности x будет точка, выбивающаяся из $\varepsilon/2$ -окрестности — противоречие с непрерывностью.

Определение 23. Пусть есть функции f и g, что $|f| \leq C|g|$ в окрестности x для некоторого $C \in \mathbb{R}$, тогда пишут, что f = O(g) (при $t \to x$).

Если же $\forall \varepsilon > 0$ будет такая окрестность x_0 , что $|f| \leqslant \varepsilon |g|$ в этой окрестности, тогда пишут, что f = o(g) (при $t \to x$).

2.4 Гладкость (дифференцируемость)

Определение 24. Функция f называется гладкой (дифференцируемой) в x, если $f(x + \delta) = f(x) + A\delta + o(\delta)$ для некоторого $A \in \mathbb{R}$. В таком случае A называется дифференциалом (производной) f в точке x.

Обозначение: f'(x) = A.

Определение 25. Функция f называется гладкой (дифференцируемой) в x, если предел

$$\lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$

определён. В таком случае его значение называется $\partial u \phi \phi e penuuanom (npouseodnoŭ) f$ в точке x.

Утверждение 28. Определения 24 и 25 равносильны.

Утверждение 29. Дифференцируемая в некоторой точке функция там же непрерывна.

Определение 26. Функция, значения которой равны производным функции f в тех же точках называется *производной функцией* (или просто *производной*) функции f. Обозначение: f'.

Пемма 30. Для дифференцируемых в x функций f u g

- 1. $(f \pm g)'(x) = f'(x) \pm g'(x);$
- 2. $(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$ (правило Лейбница);
- 3. $(\frac{1}{f})'(x) = \frac{-f'(x)}{f(x)^2}$;
- 4. $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$.

Лемма 31. Пусть дана $f:[a;b] \to \mathbb{R}$ — непрерывная монотонно возрастающая (убывающая) функция. Тогда существует $g:[f(a);f(b)] \to \mathbb{R}$ — непрерывная монотонно возрастающая (убывающая) функция, что $g \circ f = Id$.

Доказательство. Заметим, что f — монотонно возрастающая (убывающая) биекция из [a;b] в [f(a);f(b)]. Тогда существует монотонно возрастающая (убывающая) биекция $g:[f(a);f(b)] \to [a;b]$, что $g \circ f = id$. Осталось показать, что g непрерывна.

Предположим противное, тогда в любой окрестности некоторой точки f(x) из [f(a); f(b)] есть точки вылетающие вне ε -окрестности. Значит все точки из либо $(x-\varepsilon;x)$, либо $(x;x+\varepsilon)$ не принимаются, значит g не биекция — противоречие. Значит g непрерывна.

Лемма 32.

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

Доказательство. Пусть $g := f^{-1}$. Тогда

$$1 = Id' = (f \circ g)' = f' \circ g \cdot g'$$

Откуда следует, что

$$(f^{-1})' = g' = \frac{1}{f' \circ g} = \frac{1}{f' \circ f^{-1}}$$

Определение 27. Функция f возрастает в точке y, если есть $\varepsilon > 0$, что $f(x) \leqslant f(y)$ для любого $x \in (y - \varepsilon; y)$ и $f(x) \geqslant f(y)$ для любого $x \in (y; y + \varepsilon)$.

Аналогично определяется убываемость функции в точке.

Лемма 33. Если f возрастает в любой точке на [a;b], то $f(a) \leqslant f(b)$.

Доказательство.

- 1. Можно рассмотреть для каждой точки [a;b] окрестность, для которой верна её возрастаемость, и из покрытия, ими образуемого, выделить конечное. А тогда перебираясь между общими точками окрестностей, получим искомое.
- 2. Также можно предположить противное, рассмотреть последовательность вложенных отрезков, у которых левый конец выше правого, и тогда для точки пересечения отрезков будет противоречие.

Следствие 33.1. f возрастает на всём отрезке.

Теорема 34. Если f гладка, а f' положительна на [a;b], то f строго возрастает на [a;b].

Доказательство. Несложно видеть, что в любой точке на [a;b] у функции есть окрестность, где она строго возрастает, так как если $t \in [a;b]$, а $f'(t) = \lambda > 0$, то в некоторой окрестности

$$\frac{f(x) - f(t)}{x - t} \in (0; 2\lambda) \qquad \Longrightarrow \qquad f(x) \in (f(t); f(t) + 2\lambda(x - t))$$

что значит, что эта окрестность — подтверждение для возрастания f в t. Тогда по предыдущему следствию f возрастает на [a;b]. Если вдруг функция возрастает нестрого, то тогда найдётся подотрезок на [a;b], на котором функция константа, а значит на интервале с теми же концами производная тождественна равна нулю.

Теорема 35. Если f возрастает, то f' в своей области определения неотрицательно.

Доказательство. Если функция в точке t равна $\lambda < 0$, то в некоторой окрестности t

$$\frac{f(x) - f(t)}{x - t} \in \left(\frac{3}{2}\lambda; \frac{1}{2}\lambda\right) \qquad \Longrightarrow \qquad f(x) \in \left(f(t) + \frac{3}{2}\lambda(x - t); f(t) + \frac{1}{2}\lambda(x - t)\right)$$

что значит, что f в точке t "строго" убывает — противоречие. Значит $f'(t)\geqslant 0$.

Определение 28. f имеет локальный максимум e x, если для некоторого $\varepsilon > 0$ верно, что $f(x) \geqslant f(y)$ для любого $y \in (x - \varepsilon; x + \varepsilon)$.

Аналогично определяется точка локального минимума.

Теорема 36. В точках локальных максимумов и минимумов функции f функция f' принимает нули (если определена).

Доказательство. Слева от точки максимума функция возрастает в данной точке, значит производная в данной точке ≥ 0 , а справа — убывает, значит производная ≤ 0 , значит производная равна 0. Аналогично для точки минимума.

Теорема 37 (Ролль). Если $f - \varepsilon$ ладкая функция на [a;b], $u \ f(a) = f(b)$, то существует $c \in (a;b)$, что f'(c) = 0.

Доказательство. В точке максимума или минимума f на [a;b] достигается ноль производной. Если они обе совпадают с концами отрезка, то значит функция константа, а тогда в любой точке отрезка производная равна нулю.

Теорема 38. Если f и g непрерывные на [a;b] и гладкие на (a;b) функции, а $g' \neq 0$, то существует $c \in (a;b)$, что

$$\frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(c)}{g'(c)}$$

Доказательство. Пусть

$$\lambda := \frac{f(a) - f(b)}{g(a) - g(b)}$$

а $\tau(x) := f(x) - \lambda g(x)$. В таком случае

$$\frac{\tau(a) - \tau(b)}{g(a) - g(b)} = \frac{(f(a) - f(b) - \lambda(g(a) - g(b)))}{g(a) - g(b)} = \lambda - \lambda = 0$$

значит $\tau(a)=\tau(b)$, значит есть $c\in[a;b]$, что $\tau'(c)=0$. Тогда

$$\frac{f'(c)}{g'(c)} = \frac{(\tau + \lambda g)'(c)}{g'(c)} = \frac{\tau'(c)}{g'(c)} + \lambda = \lambda = \frac{f(a) - f(b)}{g(a) - g(b)}$$

Теорема 39 (Лагранж). Если f непрерывна на [a;b] и гладка на (a;b), то существует $c \in (a;b)$, что

$$\frac{f(a) - f(b)}{a - b} = f'(c)$$

Доказательство. Очевидно следует из предыдущей теоремы с помощью подстановки g(x) = x.

Теорема 40. Пусть f -гладкая на (a; b) функция.

- 1. Если $f' \geqslant 0$, то f возрастающая функция.
- 2. Если f' > 0, то f строго возрастающая функция.
- 3. Если f возрастающая функция, то $f' \geqslant 0$.

Теорема 41. Пусть $f - \epsilon nad \kappa as$ на [a;b] функция. Если f'(x) = 0 для всех $x \in [a;b]$, то $f \equiv const$ на том же отрезке.

Замечание 4. Функция $f(x) := x^2 \sin(1/x)$ (доопределённая в нуле) имеет производную $f'(x) = 2x \sin(1/x) - \cos(1/x)$ в случае ненулевых x и производную f'(0) = 0. При этом легко видно, что f' не является непрерывной функцией (она имеет разрыв в том же нуле).

Теорема 42. Если f гладка на (a;b), а f' не равна нулю, то f' либо положительна, либо отрицательна.

Доказательство. f не принимает никакое значение на (a;b) дважды (т.к. иначе у производной был бы корень), значит она либо строго возрастает, либо строго убывает, а значит f' либо неотрицательна, либо неположительна соответственно. Но ноль принимать не может, поэтому последнее утверждение равносильно тому, что f либо строго положительна, либо строго отрицательна.

Теорема 43. Пусть f гладка на (a;b) и для некоторых $u,v \in (a;b)$ верно, что $f'(u) < \alpha < f'(v)$. Тогда существует $c \in (u;v)$, что $f'(c) = \alpha$.

Доказательство. Пусть $g(x) := f(x) - \alpha x$. Тогда g'(u) < 0 < g'(v), значит g не может строго возрастать или убывать на (u; v), значит $\exists c \in (u; v)$, что g'(c) = 0, а значит $f'(c) = \alpha$.

Замечание 5. Данная теорема по сути является теоремой о промежуточном значении для производной.

Теорема 44. Пусть f непрерывна на [a;b) и гладка на (a;b). Пусть также $\lim_{x\to a^+} f'(x)$ существует и равен d. Тогда f'(a) тоже существует и равна d.

Доказательство. Есть несколько способов:

- 1. Несложно видеть, что для любого $\varepsilon > 0$ есть некоторая правая окрестность a, в которой функция f' лежит в ε -окрестности d. Тогда $f(x) (d \varepsilon)x$ возрастает в данной окрестности, а $f(x) (d + \varepsilon)x$ убывает, значит $f(x) f(a) \in ((d \varepsilon)(x a); (d + \varepsilon)(x a))$. В таком случае f'(a) определена и равна d.
- 2. По теореме Лагранжа для любого $x \in [a; b)$ найдётся $\xi \in (a; x)$, что

$$\frac{f(x) - f(a)}{x - a} = f'(\xi)$$

Значит

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^+} f'(\xi) = d$$

что буквально значит, что f'(a) = d.

Теорема 45 (правило Лопиталя). Пусть $\lim_{x\to a^+} f(x) = \lim_{x\to a^+} g(x) = 0$. Пусть также f и g гладки и $g' \neq 0$ на (a;b). Тогда

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

если второй предел определён.

Доказательство. Пусть дано $\varepsilon > 0$, а

$$d := \lim_{x \to a^+} \frac{f'(x)}{g'(x)}.$$

Тогда есть $\delta > 0$, что для любого $t \in (a; a + \delta)$ значение f'(t)/g'(t) лежит в $U_{\varepsilon}(d)$. Легко видеть, что для любых $x, y \in (a; a + \delta)$ существует $\xi \in (x; y) \subseteq (a; a + \delta)$, что

$$\frac{f(x) - f(y)}{g(x) - g(y)} = f'(\xi) \in U_{\varepsilon}(d)$$

Устремляя x к a, получаем, что f(y)/g(y) тоже лежит в $U_{\varepsilon}(d)$. Тогда по определению предела

$$\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = d = \lim_{x \to a^{+}} \frac{f'(x)}{g'(x)}$$

Определение 29. f'' — вторая производная f, т.е. (f')', а $f^{(n)}$ — n-ая производная f, т.е. $f^{(n)} := (f^{(n-1)})'$, $f^{(0)} := f$.

Определение 30. P(x) — полином Тейлора степени n функции f, если $\deg(P) \leqslant n$, а

$$f(x) - P(x) = o((x - a)^n), \quad x \to a$$

Теорема 46. Если P_1 и P_2 — полиномы Тейлора степени n функции f, то $P_1 = P_2$.

Теорема 47. Пусть $f:(a;b)\to\mathbb{R},\ f^{(1)},\ \dots,\ f^{(n-1)}$ определены на $(t-\delta;t+\delta)$ для некоторого $\delta>0$ и определена $f^{(n)}(t)$. Тогда для всякого $x\in U_{\delta}(t)$

$$f(x) = f(t) + \frac{f^{(1)}(t)}{1!}(x-t) + \dots + \frac{f^{(n)}(t)}{n!}(x-t)^n + o((x-t)^n)$$

Доказательство. Рассмотрим $g(x) := f(x) - f(t)/0! \cdot (x-t)^0 - \dots - f^{(n)}(t)/n! \cdot (x-t)^n$. Тогда задача сведена к следующей лемме.

Лемма 47.1. Если $g^{(1)}, \ldots, g^{(n-1)}$ определены на $(t-\delta; t+\delta)$ для некоторого $\delta > 0$ и

$$g(t) = g^{(1)}(t) = \dots = g^{(n)}(t) = 0.$$

 $Tor \partial a \ g(x) = o((x-t)^n).$

Доказательство. Докажем по индукции по n.

База. Пусть n = 1. Тогда очевидно, что f(x) = f(t) + f'(t)(x - t) + o(x - t) = o(x - t).

Шаг. По предположению индукции $f'(x) = o((x-t)^n)$. Тогда мы имеем, что

$$f(x) = f(x) - f(t) = f'(\xi)(x - t)$$

для некоторого $\xi \in (x,t)$. Тогда

$$\frac{f(x) - f(t)}{(x - t)^n} = \frac{f'(\xi)}{(x - t)^{n - 1}} = \frac{o((\xi - t)^{n - 1})}{(x - t)^{n - 1}} = o(1)\frac{(\xi - t)^{n - 1}}{(x - t)^{n - 1}} = o(1)$$

П

Теорема 48. Пусть $f(t) = f^{(1)}(t) = \cdots = f^{(n)}(t) = 0$, а $f^{(n+1)} \neq 0$. Если п чётно, то t - ne экстремальные точка функции f, иначе t -экстремальная точка функции f.

Теорема 49. Пусть $f:(a;b)\to\mathbb{R},\ f^{(1)},\ \dots,\ f^{(n+1)}$ определены на $(t-\delta;t+\delta)$ для некоторого $\delta>0$. Тогда для всякого $x\in U_{\delta}(t)$ существует $\xi\in(x;t),\$ что

$$f(x) = f(t) + \frac{f^{(1)}(t)}{1!}(x-t) + \dots + \frac{f^{(n)}(t)}{n!}(x-t)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-t)^{n+1}$$

Доказательство. Точно так же сведём f к g, что $g(t) = \dots g^{(n)}(t) = 0$. Тогда требуется показать, что $g(x) = g^{(n+1)}(\xi)/(n+1)! \cdot (x-t)^{n+1}$ для некоторого $\xi \in (x,t)$. Докажем это по индукции.

База. n = 0. Теорема Лагранжа.

Шаг.

$$\frac{f(x)}{(x-t)^{n+1}} = \frac{f(x) - f(t)}{(x-t)^{n+1} - (t-t)^{n+1}} = \frac{f'(\xi)}{(n+1)(\xi-t)^n} = \frac{f^{(n+1)}(\eta)}{(n+1)!}$$

где $\xi \in (x,t)$ (существует по теореме Лагранжа), а $\eta \in (\xi,t) \subseteq (x,t)$ (существует по предположению индукции для f' и ξ). Отсюда следует искомое утверждение.

2.5 Стандартные функции, ряды Тейлора и их сходимость

Тут нужно рассказать про функции exp, sin, cos и $(1+x)^{\alpha}$ и их ряды

Определение 31. f является (поточечным) пределом $\{f_n\}_{n=0}^{\infty}$ на E, если $\lim \{f_n(x)\}_{n=0}^{\infty} = f(x)$ для любого $x \in E$.

Определение 32. f является равномерным пределом $\{f_n\}_{n=0}^{\infty}$ на E, если для любого $\varepsilon > 0$ найдётся $N \in \mathbb{N}$, что $|f_n(x) - f(x)| < \varepsilon$ для всех n > N и $x \in E$.

Теорема 50 (Стокс, Зейдель). Пусть $\{f_n\}_{n=0}^{\infty}$ — последовательность непрерывных функций, $u f_n \to f$ равномерно на E. Тогда f непрерывна.

Доказательство. Для любого $\varepsilon > 0$ есть такое $n \in \mathbb{N}$, что $|f_n(x) - f(x)| < \varepsilon/3$ для всех $x \in E$. Тогда существует $\delta > 0$, что $f_n(U_\delta(t)) \subseteq U_{\varepsilon/3}(f_n(t))$ для данного t. Тогда

$$f(U_{\delta}(t)) \subseteq U_{\varepsilon/3}(f_n(U_{\delta}(t))) \subseteq U_{2\varepsilon/3}(f_n(t)) \subseteq U_{\varepsilon}(f(t)).$$

Теорема 51 (Коши). *TFAE* (the following are equivalent):

- 1. $f_n \to f$ равномерно сходится на E.
- 2. Для любого $\varepsilon > 0$ существует $N \in \mathbb{N}$, что $|f_k(x) f_l(x)| < \varepsilon$ для любых k, l > N и $x \in E$.

Теорема 52 (Вейерштрасс). Пусть $\{u_n\}_{n=0}^{\infty}$ — последовательность непрерывных функций, что есть последовательность чисел $\{d_n\}_{n=0}^{\infty}$, для которой верно, что $|u_n| < d_n$ для всех $n \in \mathbb{N}$, $u \sum_{n=0}^{\infty} d_n$ сходится. Тогда $\sum_{n=0}^{\infty} u_n$ равномерно сходится.

Теорема 53. Пусть $f_n \to f$ на E и $\{f_n\}_{n=0}^{\infty}$ гладкие. Если $f'_n \to g$ равномерно, то f тогда тоже гладка и f' = g.

Доказательство. Для любого $\varepsilon > 0$ существует $N \in \mathbb{N}$, что $|f_k' - f_l'| < \varepsilon/3$ для всех k, l > N. Тогда имеем, что

$$\left| \frac{f_k(x) - f_k(y)}{x - y} - \frac{f_l(x) - f_l(y)}{x - y} \right| = \left| \frac{(f_k - f_l)(x) - (f_k - f_l)(y)}{x - y} \right| = \left| (f_k - f_l)'(\xi) \right| < \varepsilon/3$$

Устремляя l к бесконечности получаем, что

$$\left| \frac{f_k(x) - f_k(y)}{x - y} - \frac{f(x) - f(y)}{x - y} \right| \leqslant \varepsilon/3$$

Также имеем, что есть такое $\delta > 0$, что для всех $y \in U_{\delta}(x)$

$$\left| \frac{f_k(x) - f_k(y)}{x - y} - f'_k(x) \right| < \varepsilon/3$$

Также есть $M\in\mathbb{N},$ что $|f_k'-g|<arepsilon/3$ для любого k>M. Складывая всё вместе, получаем, что для всех $k>\max(N,M)$ и $y\in U_\delta(x)$

$$\left| \frac{f(x) - f(y)}{x - y} - g(x) \right| < \varepsilon$$

Значит f гладка и f' = g.

Следствие 53.1. Если $\{f^{(0)}\}, \ldots, \{f^{(n-1)}\}$ сходятся, а $f^{(n)}$ равномерно сходится. Тогда то же верно и про первые п производных.

Следствие 53.2. Если ряд Тейлора сходится, то функция бесконечно гладкая.

3 Примеры и контрпримеры

Название раздела?

Теорема 54. Существует непрерывная функция f на отрезке [a;b], которая не имеет производной ни в какой точке на отрезке [a;b]

Доказательство. Можно привести примеры данной функции f.

1. (функция Вейерштрасса) Определим

$$f_0(x) := \frac{1}{2} - \left| x - \lfloor x \rfloor - \frac{1}{2} \right|$$
 $f_n(x) := \frac{f_0(4^n x)}{4^n}$ $f(x) := \sum_{i=0}^{\infty} f_i(x)$

Поскольку $|f_n| = 1/4^n$, а $\sum_{i=0}^{\infty} 1/4^i$ сходится, то по теореме Вейерштрасса ряд равномерно сходится к f, а поскольку каждая f_n непрерывна, то по теореме Стокса-Зейделя функция f непрерывна. Теперь осталось показать, что у f нет производных.

Пусть a — произвольная точка из \mathbb{R} . Заметим, что для всяких m и n, что $m \geqslant n$, период f_m равен $1/4^m$, значит $1/4^m \mid 1/4^n$, а тогда $f_m(a \pm 1/4^n) = f_m(a)$. Значит для всякого $n \in \mathbb{N} \cup \{0\}$

$$f(a \pm 1/4^n) - f(a) = \sum_{i=0}^{n-1} f_i(a \pm 1/4^n) - f_i(a)$$

Заметим, что a находится на отрезке монотонности функции f_{n-1} длины $1/(2 \cdot 4^{n-1}) = 2/4^n$, который также является отрезком монотонности каждой функции из f_0, \ldots, f_{n-2} . Поскольку $1/4^n$ в два раза меньше, то либо $a+1/4^n$, либо $a-1/4^n$ лежит на том же отрезке монотонности; пусть это будет точка b_n . Тогда имеем, что

$$\left| \frac{f_0(b_n) - f_0(a)}{b_n - a} \right| = \left| \frac{f_1(b_n) - f_1(a)}{b_n - a} \right| = \dots = \left| \frac{f_{n-1}(b_n) - f_{n-1}(a)}{b_n - a} \right| = 1$$

Следовательно

$$\frac{f(b_n) - f(a)}{b_n - a} = \sum_{i=0}^{\infty} \frac{f_i(b_n) - f_i(a)}{b_n - a} = \sum_{i=0}^{n-1} \frac{f_i(b_n) - f_i(a)}{b_n - a}$$

— целое число, совпадающее по чётности с n. Если f'(a) определено, то $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ сходится, а значит должен сойтись и

$$\lim_{n \to \infty} \frac{f(b_n) - f(a)}{b_n - a};$$

но это последовательность целых значений, значит с какого-то момента она должна быть тождественно равна 0, но это не так, так как нечётных членов бесконечно много в этой последовательности.

2. (пример Глеба Минаева) Рассмотрим $f_0(x) := x$. Представим её как бесконечную ломанную $\cdots \leftrightarrow (-2, -2) \leftrightarrow (-1, -1) \leftrightarrow (0, 0) \leftrightarrow (1, 1) \leftrightarrow (2, 2) \leftrightarrow \dots$. Далее будем получать f_{n+1} из f_n следующим образом.

ноч-

 f_n будет некоторой бесконечной в обе стороны ломанной, при этом всегда $f_n(x) = f_n(x+1)$. Следующая функция будет получаться заменой ребра $(a_1, b_1) \leftrightarrow (a_2, b_2)$ на три ребра:

$$(a_1,b_1) \quad \longleftrightarrow \quad \left(\frac{a_1+2a_2}{3},\frac{2b_1+b_2}{3}\right) \quad \longleftrightarrow \quad \left(\frac{2a_1+a_2}{3},\frac{b_1+2b_2}{3}\right) \quad \longleftrightarrow \quad (a_2,b_2)$$

Так мы получим f_{n+1} . Рассматриваемой же функцией будет $f:=\lim_{n\to\infty}f_n$.

Несложно видеть, что звено высоты h каждый раз заменяется на три ребра: два высоты 2h/3 и одно высоты h/3. При этом описанный прямоугольник любого ребра содержит описанные прямоугольники рёбер, на которые он был заменён, а значит, окажись точка на ребре, из его описанного прямоугольника больше не вылезет. Таким образом после функции f_n разброс положений $f_i(x)$ не более $1/3^n$, поэтому поточечный предел определён.

При этом значения в точках $k/3^m$ с некоторого момента неподвижны: после функции f_n значения во всех точках $k/3^n$ не меняются. Таким образом мы имеем, что во всякой окрестности будут точки вида $k/3^n$, $(3k+1)/3^{n+1}$, $(3k+2)/3^{n+1}$ и $(k+1)/3^n$, а они ломают монотонность функции на данном интервале. Таким образом f нигде не монотонна.

Также предположим в точке a есть производная. Рассмотрим для каждого $n \in \mathbb{N} \cup \{0\}$ пару (p_n, q_n) , что p_n и q_n — абсциссы концов звена на котором лежит $(a, f_n(a))$ в ломаной функции f_n $(q_n > p_n)$. Тогда заметим, что $q_n - p_n = 1/3^n$, $f_n(p_n) = f(p_n)$, $f_n(q_n) = f(q_n)$, а тогда

$$\frac{f_n(q_n) - f_n(p_n)}{q_n - p_n} = \frac{f(q_n) - f(p_n)}{q_n - p_n} = \frac{f(q_n) - f(a)}{q_n - a} \cdot \frac{q_n - a}{q_n - p_n} + \frac{f(a) - f(p_n)}{a - p_n} \cdot \frac{a - p_n}{q_n - p_n}$$

Следовательно значение $\frac{f_n(q_n)-f_n(p_n)}{q_n-p_n}$ лежит на отрезке между $\frac{f(q_n)-f(a)}{q_n-a}$ и $\frac{f(p_n)-f(a)}{p_n-a}$; при этом оно является коэффициентом наклона звена $(p_n,f(p_n)) \leftrightarrow (q_n,f(q_n))$.

Заметим, что звено $(p_n, f(p_n)) \leftrightarrow (q_n, f(q_n))$ будет заменено на три, среди которых будет и $(p_{n+1}, f(p_{n+1})) \leftrightarrow (q_{n+1}, f(q_{n+1}))$. Значит коэффициент наклона $(p_{n+1}, f(p_{n+1})) \leftrightarrow (q_{n+1}, f(q_{n+1}))$ можно получить из коэффициента наклона $(p_n, f(p_n)) \leftrightarrow (q_n, f(q_n))$ домножением либо на 2, либо на -1.

Таким образом мы имеем, что последовательность

$$\left(\frac{f_n(q_n) - f_n(p_n)}{q_n - p_n}\right)_{n=0}^{\infty}$$

либо расходится по модулю, либо с некоторого момента не меняет модуль, но знакочередуется. При этом если f'(a) определена, то в некоторой окрестности a значение

$$\frac{f(x) - f(a)}{x - a}$$

несильно отличается от f'(a) (чем меньше окрестность, тем меньше отличается). Но если мы будем рассматривать точки p_n и q_n , то для одной из них (обозначим её за x_n) верно, что

$$\left| \frac{f(x_n) - f(a)}{x_n - a} \right| \geqslant \left| \frac{f_n(q_n) - f_n(p_n)}{q_n - p_n} \right| \quad \operatorname{sign}\left(\frac{f(x_n) - f(a)}{x_n - a}\right) = \operatorname{sign}\left(\frac{f_n(q_n) - f_n(p_n)}{q_n - p_n}\right)$$

Тогда про последовательность

$$\left(\frac{f_n(x_n) - f_n(a)}{x_n - a}\right)_{n=0}^{\infty}$$

с одной стороны можно сказать, что она сходится к f'(a) (т.к. $|p_n-a|$ и $|q_n-a|$ не более $1/3^n$, а следовательно и $|x_n-a|$); с другой же стороны эта последовательность либо неограниченно растёт по модулю, либо с некоторого момента знакочередуется без уменьшения модуля, а значит навряд ли сходится — противоречие. Значит ни в какой точке f' не определена.

4 Интегрирование

4.1 Первообразная

Определение 33. g-nepsooбразная функции f, если на области определения f верно, что g'=f.

Теорема 55. Если g_1 и g_2 — первообразные f на отрезке [a;b], то $g_1 - g_2 = \text{const}$ на том же отрезке.

Доказательство. Очевидно, что $(g_1 - g_2)' = f' - f' = 0$ на отрезке [a;b]. Если $g_1 - g_2$ не константна, то есть две точки на отрезке [a;b], в которых принимаются разные значения, а тогда по теореме Лагранжа будет точка строго между ними (а значит и на отрезке), где производная не равна нулю — противоречие. Следовательно $g_1 - g_2$ является константой.

Замечание 6. Для несвязного множества утверждение неверно. Например, если областью определения f будут два отрезка, то g_1-g_2 будет константной на каждом отрезке, но константы могут быть различны.

Определение 34. Семейство первообразных функции f обозначается как

$$\int f$$

Определение 35. Линейная форма — линейная однородная функция $(f(x) = \alpha x)$.

Теорема 56.

1.
$$\int \alpha f = \alpha \int f + C$$
2.
$$\int f \, dg = fg - \int g \, df$$

$$\int f + g = \int f + \int g$$
4.
$$\int f(\varphi(x))\varphi'(x)dx = \left(\int f\right) \circ \varphi$$

Доказательство.

1. Продифференцируем обе части:

$$\left(\int \alpha f\right)' = \alpha f = \alpha \left(\int f\right)' = \left(\alpha \int f\right)'$$

Таким образом обе стороны отличаются на константу: её корректность гарантирует +C.

2. Продифференцируем обе части:

$$\left(\int f + g\right)' = f + g = \left(\int f\right)' + \left(\int g'\right) = \left(\int f + \int g\right)$$

Таким образом обе стороны отличаются на константу; эта константа поглощается первообразными слева и справа (так как это семейства функций).

3. Продифференцируем обе части:

$$\left(\int f \, dg\right)' = f \cdot g' = (fg)' - g \cdot f' = \left(fg - \int g \, df\right)'$$

Таким образом обе стороны отличаются на константу; эта константа поглощается первообразными слева и справа (так как это семейства функций).

4. Продифференцируем обе части:

$$\left(\int f(\varphi(x))\varphi'(x)dx\right)'=(f\circ\varphi)\cdot\varphi'=\left(\left(\int f\right)\circ\varphi\right)'$$

Таким образом обе стороны отличаются на константу; эта константа поглощается первообразными слева и справа (так как это семейства функций).

4.2 Суммы Дарбу и интеграл Римана

Определение 36. Pas биение отрезка [a;b] — такое семейство $\Sigma := \{I_k\}_{k=1}^n$ отрезков (ненулевой длины), что $[a;b] = \bigcup_{k=1}^n I_k$, и все отрезки из Σ попарно пересекаются не более, чем по одной точке.

Пусть дана функция $f: E \to \mathbb{R}$, где $E \supseteq [a;b]$, и некоторое разбиение Σ отрезка [a;b]. Тогда верхняя и нижняя суммы Дарбу функции f при разбиении Σ есть выражения

$$S^{+}(f,\Sigma) := \sum_{I \in \Sigma} |I| \cdot \sup_{x \in I} f(x)$$

$$S^{-}(f,\Sigma) := \sum_{I \in \Sigma} |I| \cdot \inf_{x \in I} f(x)$$

соответственно. (При этом sup и inf могут принимать значения $+\infty$ и $-\infty$ соответственно; и в таких случаях соответствующие суммы Дарбу тоже будут принимать значения $\pm\infty$.)

 Π ример 2.

• Пусть
$$f(x):=x^{\alpha},\ \alpha>0,\ [a;b]:=[0;1],\ \mathrm{a}\ \Sigma:=\{[\frac{k-1}{n};\frac{k}{n}]\}_{k=1}^{n}.$$
 Тогда
$$S^{+}(f,\Sigma)=\sum_{I\in\Sigma}|I|\cdot\sup_{x\in I}f(x)=\sum_{k=1}^{n}\frac{1}{n}\cdot f\left(\frac{k}{n}\right)=\frac{\sum_{k=1}^{n}k^{\alpha}}{n^{\alpha+1}}$$

$$S^{-}(f,\Sigma)=\sum_{I\in\Sigma}|I|\cdot\inf_{x\in I}f(x)=\sum_{k=0}^{n-1}\frac{1}{n}\cdot f\left(\frac{k}{n}\right)=\frac{\sum_{k=1}^{n-1}k^{\alpha}}{n^{\alpha+1}}$$

 $\bullet\,$ Пусть f — функция Дирихле, отрезок [a;b] — любой, и его разбиение Σ — любое. Тогда

$$S^{+}(f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot \sup_{x \in I} f(x) = \sum_{I \in \Sigma} |I| \cdot 1 = b - a$$
$$S^{-}(f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot \inf_{x \in I} f(x) = \sum_{I \in \Sigma} |I| \cdot 0 = 0$$

Лемма 57. Пусть даны функция f, отрезка [a;b] и его разбиение Σ . Назовём его подразбиением семейство отрезков Σ' , которое является объединением разбиений отрезков из Σ (иначе говоря, множество концов отрезков Σ является подмножеством концов отрезков Σ'). Тогда верны неравенства

$$S^+(f,\Sigma) \geqslant S^+(f,\Sigma')$$
 $S^-(f,\Sigma) \leqslant S^-(f,\Sigma')$

Доказательство. Покажем это для верхних сумм Дарбу; для нижних доказательство аналогично.

Пусть $\{\Lambda_I\}_{I\in\Sigma}$ — набор разбиений каждого отрезка I из Σ , что $\Sigma'=\bigcup_{I\in\Sigma}\Lambda_I$. Тогда мы имеем, что для всяких $I\in\Sigma$ и $J\in\Lambda_I$ верно, что

$$\sup_{x \in I} f(x) \geqslant \sup_{x \in J} f(x)$$

Следовательно

$$\sum_{J \in \Lambda_I} |J| \cdot \sup_{x \in J} f(x) \leqslant \sum_{J \in \Lambda_I} |J| \cdot \sup_{x \in I} f(x) = \left(\sum_{J \in \Lambda_I} |J|\right) \cdot \sup_{x \in I} f(x) = |I| \cdot \sup_{x \in I} f(x)$$

Значит, суммируя обе части по Σ , получаем, что

$$S^+(f,\Sigma') = \sum_{J \in \Sigma'} |J| \cdot \sup_{x \in J} f(x) = \sum_{I \in \Sigma} \sum_{J \in \Lambda_I} |J| \cdot \sup_{x \in J} f(x) \leqslant \sum_{I \in \Sigma} |I| \cdot \sup_{x \in I} f(x) = S^+(f,\Sigma)$$

Пемма 58. Пусть даны функция f, отрезок [a;b], его разбиения Σ_1 и Σ_2 . Тогда

$$S^+(f, \Sigma_1) \geqslant S^-(f, \Sigma_2)$$

Доказательство. Рассмотрим

$$\Sigma := \{ I \cap J \mid I \in \Sigma_1 \land J \in \Sigma_2 \land |I \cap J| > 1 \}$$

— (минимальное) подразбиение Σ_1 и Σ_2 . Тогда верно, что

$$S^+(f,\Sigma_1) \geqslant S^+(f,\Sigma) \geqslant S^-(f,\Sigma) \geqslant S^-(f,\Sigma_2)$$

Следствие 58.1. Пусть фиксированы функция f и отрезок [a;b]. Рассмотрим множества

$$D^+ := \{ S^+(f, \Sigma) \mid \Sigma - pas биение [a; b] \}$$
 $D^- := \{ S^-(f, \Sigma) \mid \Sigma - pas биение [a; b] \}$

Тогда $D^+ \geqslant D^-$.

Определение 37. Пусть фиксированы функция f и отрезок [a;b], разбиения которого рассматриваются. Если

$$\sup_{\Sigma} S^{-}(f,\Sigma) = \inf_{\Sigma} S^{+}(f,\Sigma) = S,$$

то тогда f называется интегрируемой по Риману, а S называют интегралом Римана функции f на отрезке [a;b]. Обозначение:

$$\int_{a}^{b} f(x)dx := S$$

25

Лемма 59. Пусть даны функция f и отрезок [a;b]. Тогда если для всякого $\varepsilon > 0$ есть разбиение Σ отрезка [a;b], что

$$\forall I \in \Sigma \quad \operatorname*{osc}_{I} f < \varepsilon$$

то f интегрируема по Риману на [a;b].

Доказательство. Обозначим для каждого такого ε разбиение из условия за Σ_{ε} . Тогда мы имеем, что

$$S^{+}(f, \Sigma_{\varepsilon}) - S^{-}(f, \Sigma_{\varepsilon}) = \sum_{I \in \Sigma} |I| \cdot (\sup_{I} f - \inf_{I} f) = \sum_{I \in \Sigma} |I| \cdot \operatorname{osc}_{I} f < \varepsilon \cdot \sum_{I \in \Sigma} |I| = \varepsilon \cdot (b - a)$$

T.е. для всякого $\varepsilon > 0$ верно, что

$$\inf_{\Sigma} S^{+}(f,\Sigma) - \sup_{\Sigma} S^{-}(f,\Sigma) \leqslant S^{+}(f,\Sigma_{\varepsilon/(b-a)}) - S^{-}(f,\Sigma_{\varepsilon/(b-a)}) < \frac{\varepsilon}{b-a} \cdot (b-a) = \varepsilon$$

Следовательно

$$\inf_{\Sigma} S^{+}(f, \Sigma) = \sup_{\Sigma} S^{-}(f, \Sigma),$$

что значит, что f интегрируема по Риману.

Лемма 60. Пусть даны функция f и отрезок [a;b]. Тогда f интегрируема по Риману на [a;b] тогда и только тогда, когда для всякого $\varepsilon > 0$ существует $\delta > 0$, что для всякого разбиение Σ отрезка [a;b], где $\forall I \in \Sigma \mid I| < \delta$, верно, что

$$\sum_{I \in \Sigma} |I| \cdot \operatorname*{osc}_{I} f < \varepsilon$$

Доказательство.

 (\Rightarrow) Пусть f интегрируема по Риману на [a;b]. Тогда для всякого $\varepsilon>0$ есть разбиения Σ_1 и Σ_2 отрезка [a;b], что

$$\{S^+(f,\Sigma_1); S^-(f,\Sigma_2)\} \subseteq U_{\varepsilon/4}\left(\int_a^b f(x)dx\right)$$

Пусть Σ — общее подразбиение Σ_1 и Σ_2 (например, минимальное). Тогда

$$S^+(f,\Sigma_1) \geqslant S^+(f,\Sigma) \geqslant S^-(f,\Sigma) \geqslant S^-(f,\Sigma_2)$$

Следовательно,

$$\{S^+(f,\Sigma); S^-(f,\Sigma)\} \subseteq U_{\varepsilon/4}\left(\int_a^b f(x)dx\right)$$

Заметим, что в таком случае $\sup_{[a;b]} f$ и $\inf_{[a;b]} f$ ограничены (равны вещественным значениям, а не $\pm \infty$). Поэтому $A := \operatorname{osc}_{[a;b]} f$ является вещественной величиной. Определим также $L := \min_{\Sigma} |I|$.

Пусть Λ — некоторое разбиение [a;b], что длина всякого отрезка не больше $L \cdot \alpha$, где

$$\alpha := \min\left(1, \frac{\varepsilon \cdot |\Sigma|}{2 \cdot A \cdot L}\right) \in (0; 1].$$

Тогда мы имеем, что всякий отрезок I из Λ либо является подотрезком некоторого отрезка J_I из Σ (обозначим множество таких I за Γ), либо является подотрезком объединения двух

соседних отрезков K_1 и K_2 из Σ и содержит их общую границу (обозначим множество таких I за Θ). В случае I и J мы имеем, что $\operatorname{osc}_I f \leqslant \operatorname{osc}_J f$; в случае I, K_1 и K_2 мы имеем, что $\operatorname{osc}_I f \leqslant \operatorname{osc}_{K_1 \cup K_2} f \leqslant A$. Следовательно, используя только что оговоренные оценки,

$$\begin{split} \sum_{I \in \Lambda} |I| \cdot \operatorname{osc} f \\ &= \sum_{I \in \Gamma} |I| \cdot \operatorname{osc} f + \sum_{I \in \Theta} |I| \cdot \operatorname{osc} f \\ &\leqslant \sum_{I \in \Gamma} |I| \cdot \operatorname{osc} f + \sum_{I \in \Theta} |I| \cdot \operatorname{osc} f \\ &\leqslant \sum_{I \in \Sigma} |I| \cdot \operatorname{osc} f + A \cdot \sum_{I \in \Theta} |I| \\ &\leqslant \sum_{I \in \Sigma} |I| \cdot \operatorname{osc} f + A \cdot L \cdot \alpha \cdot |\Theta| \\ &\leqslant S^{+}(f, \Sigma) - S^{-}(f, \Sigma) + A \cdot L \cdot \alpha \cdot |\Sigma| \\ &\leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \end{split}$$

Таким образом $\delta := L \cdot \alpha$.

(\Leftarrow) Пусть для всякого $\varepsilon > 0$ существует $\delta > 0$, что для всякого разбиение Σ отрезка [a;b], где $\forall I \in \Sigma \ |I| < \delta$, верно, что

$$\sum_{I \in \Sigma} |I| \cdot \operatorname{osc}_{I} f < \varepsilon$$

 $=\varepsilon$

Тогда

$$S^{+}(f,\Sigma) - S^{-}(f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot (\sup_{I} f - \inf_{I} f) = \sum_{I \in \Sigma} |I| \cdot \operatorname{osc}_{I} f < \varepsilon$$

T.e. для всякого $\varepsilon > 0$

$$\inf_{\Sigma} S^{+}(f,\Sigma) - \sup_{\Sigma} S^{-}(f,\Sigma) < \varepsilon$$

Следовательно

$$\inf_{\Sigma} S^{+}(f, \Sigma) = \sup_{\Sigma} S^{-}(f, \Sigma)$$

т.е. f интегрируема на [a;b] по Риману.

Теорема 61. Пусть f — непрерывная на [a;b] функция. Тогда она интегрируема по Риману на [a;b].

Доказательство. Поскольку f непрерывна на компакте [a;b], то она равномерно непрерывна, т.е.

$$\forall \varepsilon > 0 \,\exists \delta > 0 : \, \forall x \in [a; b] \qquad f(U_{\delta}(x)) \subseteq U_{\varepsilon}(f(x))$$

Для каждого такого ε получаемое δ обозначим за δ_{ε} . Тогда для всякого подотрезка I отрезка [a;b] длины менее $\delta_{\varepsilon/2}$ верно, что $\operatorname{osc}_I f < \varepsilon$. Следовательно для любого разбиения Σ с шагом не более $\delta_{\varepsilon/2}$ (т.е. $\forall I \in \Sigma |I| < \delta_{\varepsilon/2}$) мы имеем, что

$$\sum_{I \in \Sigma} |I| \cdot \operatorname*{osc}_I f < [a; b] \cdot \varepsilon$$

Поэтому f интегрируема по Риману на [a;b].

Теорема 62.

1.

$$\int_{a}^{b} \lambda dx = \lambda (b - a)$$

 $2. \ Ecnu f \ uнтегрируема по Puману на [a;b], mo$

$$f \geqslant 0 \Longrightarrow \int_{a}^{b} f(x) dx \geqslant 0$$

3. Если f и g интегрируемы по Риману на $[a;b],\ mo$

$$\int_a^b (f+g)(x)dx = \int_a^b f(x)dx + \int_a^b g(x)dx$$

4. Ecnu f интегрируема по Puману на [a;b], то

$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$$

5. f интегрируема по Риману на [a;b] и [b;c] тогда и только тогда, когда на [c;a], и во всех случаях

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

Доказательство.

- 1. Очевидно, что для всякого разбиения Σ верно, что $S^+(f,\Sigma) = S^-(f,\Sigma) = \lambda(b-a)$, следовательно и интеграл Римана равен $\lambda(b-a)$.
- 2. Очевидно, что для всякого разбиения Σ верно, что $S^-(f,\Sigma)\geqslant 0$, следовательно, если интеграл Римана определён, то он неотрицателен.
- 3. Очевидно, что для всякого $\varepsilon > 0$ есть разбиения Σ_1 и Σ_2 , что

$$\sum_{I \in \Sigma_1} |I| \cdot \operatorname*{osc}_I f < \frac{\varepsilon}{2} \qquad \qquad \sum_{I \in \Sigma_2} |I| \cdot \operatorname*{osc}_I g < \frac{\varepsilon}{2}$$

Рассмотрим любое подразбиение Σ разбиений Σ_1 и Σ_2 . Тогда

$$S^{+}(f+g,\Sigma)$$

$$= \sum_{I \in \Sigma} |I| \cdot \sup_{I} (f+g)$$

$$\leqslant \sum_{I \in \Sigma} |I| \cdot \sup_{I} f + \sum_{I \in \Sigma} |I| \cdot \sup_{I} g$$

$$\leqslant \sum_{I \in \Sigma_{1}} |I| \cdot \sup_{I} f + \sum_{I \in \Sigma_{2}} |I| \cdot \sup_{I} g$$

$$= S^{+}(f,\Sigma_{1}) + S^{+}(g,\Sigma_{2})$$

Аналогично мы имеем, что $S^-(f+g,\Sigma) \geqslant S^-(f,\Sigma_1) + S^-(g,\Sigma_2)$. Таким образом отметим две важные строки неравенств.

$$S^{+}(f, \Sigma_{1}) + S^{+}(g, \Sigma_{2}) \geqslant S^{+}(f + g, \Sigma) \geqslant S^{-}(f + g, \Sigma) \geqslant S^{-}(f, \Sigma_{1}) + S^{-}(g, \Sigma_{2})$$
$$S^{+}(f, \Sigma_{1}) + S^{+}(g, \Sigma_{2}) \geqslant \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx \geqslant S^{-}(f, \Sigma_{1}) + S^{-}(g, \Sigma_{2})$$

Так мы получаем, что $S^+(f+g,\Sigma),\ S^-(f+g,\Sigma)$ и $\int_a^b f(x)dx+\int_a^b g(x)dx$ — три числа с отрезка

$$[S^{-}(f,\Sigma_{1}) + S^{-}(g,\Sigma_{2}); S^{+}(f,\Sigma_{1}) + S^{+}(g,\Sigma_{2})],$$

длина которого меньше ε . Следовательно f+g интегрируема по Риману на [a;b], и интеграл равен

$$\int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

4. Докажем сначала для $\lambda \geqslant 0$. Для всякого $\varepsilon > 0$ есть разбиение Σ отрезка [a;b], что

$$\sum_{I \in \Sigma} |I| \cdot \operatorname*{osc}_I f < \varepsilon$$

Также имеем, что

$$\begin{split} S^+(\lambda f, \Sigma) &= \sum_{I \in \Sigma} |I| \cdot \sup_I \lambda f = \sum_{I \in \Sigma} |I| \cdot \lambda \cdot \sup_I f = \lambda \sum_{I \in \Sigma} |I| \cdot \sup_I f = \lambda S^+(f, \Sigma) \\ S^-(\lambda f, \Sigma) &= \sum_{I \in \Sigma} |I| \cdot \inf_I \lambda f = \sum_{I \in \Sigma} |I| \cdot \lambda \cdot \inf_I f = \lambda \sum_{I \in \Sigma} |I| \cdot \inf_I f = \lambda S^-(f, \Sigma) \end{split}$$

Следовательно

$$S^{+}(\lambda f, \Sigma) = \lambda S^{+}(f, \Sigma) \geqslant \lambda \int_{a}^{b} f(x) dx \geqslant \lambda S^{-}(f, \Sigma) = S^{-}(\lambda f, \Sigma)$$
$$S^{+}(\lambda f, \Sigma) - S^{-}(\lambda f, \Sigma) < \lambda \varepsilon$$

Таким образом интеграл λf по Риману на [a;b] определён и равен $\lambda \int_a^b f(x) dx$. Теперь покажем для $\lambda = -1$. Заметим, что

$$S^{+}(-f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot \sup_{I} -f = \sum_{I \in \Sigma} |I| \cdot \inf_{I} f = -\sum_{I \in \Sigma} |I| \cdot \inf_{I} f = -S^{-}(f,\Sigma)$$

$$S^{-}(-f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot \inf_{I} -f = \sum_{I \in \Sigma} |I| \cdot -\sup_{I} f = -\sum_{I \in \Sigma} |I| \cdot \sup_{I} f = -S^{+}(f,\Sigma)$$

Следовательно

$$S^{+}(-f,\Sigma) = -S^{-}(f,\Sigma) \geqslant -\int_{a}^{b} f(x)dx \geqslant -S^{+}(f,\Sigma) = S^{-}(-f,\Sigma)$$
$$S^{+}(-f,\Sigma) - S^{-}(-f,\Sigma) < \varepsilon$$

Таким образом интеграл -f по Риману на [a;b] определён и равен $-\int_a^b f(x)dx$. Используя доказанные утверждения получаем, что для всякого λ верно, что

$$\int_{a}^{b} \lambda f(x)dx$$

$$= \int_{a}^{b} \operatorname{sign}(\lambda) \cdot |\lambda| f(x) dx$$

$$= \operatorname{sign}(\lambda) \int_{a}^{b} |\lambda| f(x) dx$$

$$= \operatorname{sign}(\lambda) |\lambda| \int_{a}^{b} f(x) dx$$

$$= \lambda \int_{a}^{b} f(x) dx$$

5. Если f интегрируема по Риману на некотором отрезке I, то $\sup_I f$ и $\inf_I f$ равны некоторым вещественным значениям (не $\pm \infty$).

Таким образом пусть f интегрируема по Риману на [a;b] и [b;c]. Тогда для всякого $\varepsilon > 0$ есть разбиения Σ_L отрезка [a;b] и Σ_R отрезка [b;c], что

$$\sum_{I \in \Sigma_L} |I| \operatorname{osc}_I f < \frac{\varepsilon}{2} \qquad \qquad \sum_{I \in \Sigma_R} |I| \operatorname{osc}_I f < \frac{\varepsilon}{2}$$

Следовательно, если определить $\Sigma := \Sigma_L \cup \Sigma_R$,

$$S^{+}(f,\Sigma) = \sum_{I \in \Sigma} |I| \sup_{I} f = \sum_{I \in \Sigma_{L}} |I| \sup_{I} f + \sum_{I \in \Sigma_{R}} |I| \sup_{I} f \geqslant \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

По аналогии получаем, что

$$S^+(f,\Sigma) \geqslant \int_a^b f(x)dx + \int_b^c f(x)dx \geqslant S^-(f,\Sigma)$$

При этом

$$S^{+}(f,\Sigma) - S^{-}(f,\Sigma) = \sum_{I \in \Sigma} |I| \operatorname{osc}_{I} f = \sum_{I \in \Sigma_{L}} |I| \operatorname{osc}_{I} f + \sum_{I \in \Sigma_{R}} |I| \operatorname{osc}_{I} f < \varepsilon$$

Таким образом f интегрируема по Риману на [a;c], а интеграл равен $\int_a^b f(x)dx + \int_b^c f(x)dx$. Пусть теперь f интегрируема на [a;c]. Тогда для всякого разбиения Σ отрезка [a;c] мы можем рассмотреть

$$\Sigma_L := \{ I \cap [a; b] \mid I \in \Sigma \}$$

и тогда

$$\sum_{I \in \Sigma_L} |I| \cdot \operatorname*{osc}_I f < \sum_{I \in \Sigma} |I| \cdot \operatorname*{osc}_I f$$

Следовательно есть разбиения со сколь угодно маленькой осцилляцией f на них, а значит f интегрируема на [a;b]; аналогично и на [b;c]. А по предыдущим рассуждениям достигается равенство в тождестве интегралов.

Теорема 63. Пусть дана функция f, а $M = \sup_{[a;b]} |f|$. Тогда

$$\left| \int_{a}^{b} f(x)dx \right| \leqslant M(b-a)$$

Доказательство. Очевидно, что при разбиении $\Sigma := \{[a;b]\}$

$$S^{+}(f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot \sup_{I} f = (b-a) \cdot \sup_{[a;b]} f$$

$$S^{-}(f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot \inf_{I} f = (b-a) \cdot \inf_{[a;b]} f$$

Следовательно

$$M(b-a) \ge (b-a) \sup_{[a;b]} f = S^+(f,\Sigma) \ge \int_a^b f(x) dx \ge S^-(f,\Sigma) = (b-a) \sup_{[a;b]} f \ge -M(b-a)$$

откуда следует требуемое.

Теорема 64. Пусть $f:[a;b] \to \mathbb{R}$ непрерывна. Тогда

$$F: [a,b] \to \mathbb{R}, x \mapsto \int_a^x f(t)dt$$

является первообразной f.

Доказательство. Рассмотрим какие-то x и y, что $a \leqslant x < y \leqslant b$. Тогда

$$F(y) - F(x) = \int_a^y f(t)dt - \int_a^x f(t)dt = \int_x^y f(t)dt$$

Следовательно, рассматривая $\Sigma := \{[x;y]\},\$

$$\sum_{I \in \Sigma} |I| \cdot \inf_{I} f \leqslant F(y) - F(x) \leqslant \sum_{I \in \Sigma} |I| \cdot \sup_{I} f$$

$$(y - x) \cdot \inf_{[x;y]} f \leqslant F(y) - F(x) \leqslant (y - x) \cdot \sup_{[x;y]} f$$

$$\inf_{[x;y]} f \leqslant \frac{F(y) - F(x)}{y - x} \leqslant \sup_{[x;y]} f$$

Немного меняя обозначения, получаем, что для всякого $\varepsilon \in [a-x;b-x] \setminus \{0\}$

$$\inf_{U_{|\varepsilon|}(x)} f \leqslant \frac{F(x+\varepsilon) - F(x)}{\varepsilon} \leqslant \sup_{U_{|\varepsilon|}(x)} f$$

Заметим, что по непрерывности f

$$\lim_{\varepsilon \to 0^+} \inf_{U_{\varepsilon}(x)} f = \lim_{\varepsilon \to 0^+} \sup_{U_{\varepsilon}(x)} f = f(x)$$

Следовательно

$$\lim_{\varepsilon \to 0} \frac{F(x+\varepsilon) - F(x)}{\varepsilon} = f(x)$$

Иначе говоря F'(x) = f(x). Таким образом F' = f.

Следствие 64.1 (формула Ньютона-Лейбница). Пусть F — первообразная непрерывной на [a;b] функции f. Тогда

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Доказательство. Заметим, что $G(x):=\int_a^x f(t)dt$ — первообразная f. Следовательно G(x)-F(x)=C на [a;b]. Значит

$$\int_{a}^{b} f(x)dx = G(b) = G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a)$$

Теорема 65. Пусть $(f_n)_{n=0}^{\infty}$ — последовательность интегрируемых по Риману на [a;b] функций — равномерно сходится κ f. Тогда f интегрируема по Риману на [a;b], u

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)dx$$

Доказательство. Заметим, что для всякого $\varepsilon > 0$ есть $N \in \mathbb{N} \cup \{0\}$, что для всяких n, m > N верно, что

$$|f_n - f_m| \leqslant \frac{\varepsilon}{3(b-a)};$$

следовательно для всякого n > N верно, что

$$|f - f_n| \leqslant \frac{\varepsilon}{3(b - a)}.$$

При этом существует такое разбиение Σ отрезка [a;b], что

$$S^{+}(f_{N+1}, \Sigma) - S^{-}(f_{N+1}, \Sigma) = \sum_{I \in \Sigma} |I| \cdot \operatorname*{osc}_{I} f < \frac{\varepsilon}{3}.$$

Таким образом для всякого n > N верно, что

$$S^{+}(f_{n}, \Sigma)$$

$$= \sum_{I \in \Sigma} |I| \cdot \sup_{I} f_{n} \leqslant \sum_{I \in \Sigma} |I| \cdot \left(\frac{\varepsilon}{3(b-a)} + \sup_{I} f_{N+1} \right) = \frac{\varepsilon}{3} + \sum_{I \in \Sigma} |I| \cdot \sup_{I} f_{N+1}$$

$$= S^{+}(f_{N+1}, \Sigma) + \frac{\varepsilon}{3};$$

аналогично $S^-(f_n, \Sigma) \geqslant S^-(f_{N+1}, \Sigma) - \frac{\varepsilon}{3}$. Аналогично данные утверждения верны и для f (вместо f_n).

Заметим, что

$$S^{+}(f_{N+1}, \Sigma) + \frac{\varepsilon}{3} \geqslant S^{+}(f_{n}, \Sigma) \geqslant \int_{a}^{b} f_{n}(x) dx \geqslant S^{-}(f_{n}, \Sigma) \geqslant S^{-}(f_{N+1}, \Sigma) - \frac{\varepsilon}{3}$$
$$S^{+}(f_{N+1}, \Sigma) + \frac{\varepsilon}{3} \geqslant S^{+}(f, \Sigma) \geqslant S^{-}(f, \Sigma) \geqslant S^{-}(f_{N+1}, \Sigma) - \frac{\varepsilon}{3}$$

Таким образом

$$S^+(f,\Sigma) - S^-(f,\Sigma) < \varepsilon,$$

следовательно f интегрируема по Риману на [a;b]. Таким образом мы имеем, что

$$S^{+}(f_{N+1}, \Sigma) + \frac{\varepsilon}{3} \geqslant \int_{a}^{b} f_{n}(x) dx \geqslant S^{-}(f_{N+1}, \Sigma) - \frac{\varepsilon}{3}$$
$$S^{+}(f_{N+1}, \Sigma) + \frac{\varepsilon}{3} \geqslant \int_{a}^{b} f(x) dx \geqslant S^{-}(f_{N+1}, \Sigma) - \frac{\varepsilon}{3}$$

т.е. для всех n > N

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| < \varepsilon$$

Это значит, что

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)dx$$

Лемма 66. Если f и g интегрируемы по Риману на [a;b], то и $f \cdot g$.

Доказательство. Заметим, что, поскольку f и g интегрируемы по Риману, есть такие константы $C_f > 0$ и $C_g > 0$, что $|f| \leqslant C_f$ и $|g| \geqslant C_g$. Следовательно для всяких $x, y \in [a;b]$

$$|f(x)g(x) - f(y)g(y)| \le |f(x)g(x) - f(y)g(x)| + |f(y)g(x) - f(y)g(y)| \le C_g|f(x) - f(y)| + C_f|g(x) - g(y)|$$

Значит для всякого отрезка I верно, что

$$\operatorname*{osc}_{I} f \cdot g \leqslant C_{g} \operatorname*{osc}_{I} f + C_{f} \operatorname*{osc}_{I} g$$

Следовательно для всякого разбиения Σ отрезка [a;b]

$$\sum_{I \in \Sigma} |I| \cdot \operatorname{osc}_I f \cdot g \leqslant C_g \sum_{I \in \Sigma} |I| \cdot \operatorname{osc}_I f + C_f \sum_{I \in \Sigma} |I| \cdot \operatorname{osc}_I g$$

Вспомним, что для всякого $\varepsilon>0$ есть разбиения Σ_f и Σ_g отрезка [a;b], что

$$\sum_{I \in \Sigma_f} |I| \cdot \operatorname*{osc}_I f < \frac{\varepsilon}{2C_g} \qquad \qquad \sum_{I \in \Sigma_f} |I| \cdot \operatorname*{osc}_I g < \frac{\varepsilon}{2C_f}$$

Рассмотрим общее подразбиение Σ разбиений Σ_f и Σ_g . Для него верны предыдущие предыдущие неравенства. Следовательно

$$\sum_{I \in \Sigma} |I| \cdot \operatorname{osc}_{I} f \cdot g < C_{g} \frac{\varepsilon}{2C_{g}} + C_{f} \frac{\varepsilon}{2C_{f}} = \varepsilon$$

Поэтому $f \cdot g$ интегрируема по Риману на [a;b].

4.3 У чего есть выражаемая первообразная?

Лемма 67.

Теорема 68. Следующие виды функций имеют выражаемую первообразную:

1. рациональные функции;

- 3. рациональные функции от $\sinh u \cosh$;
- 2. рациональные функции от $\sin u \cos$;
- 4. рациональные функции от x и $\sqrt{ax^2 + bx + c}$, где $a \neq 0$.

Доказательство.

- 1. Каждая рациональная функция представляется в виде суммы полиномов, членов вида $\frac{k}{(x+a)^n}$ и членов вида $\frac{px+q}{(ax^2+bx+c)^n}$. Покажем, что каждый из них имеет выражаемую первообразную.
 - Первообразная многочлена очевидна.

•

$$\int \frac{dx}{x+a} = \ln(x+a) + C$$

• Для всякого n > 1

$$\int \frac{dx}{(x+a)^n} = \frac{1}{(1-n)(x-a)^{n-1}} + C$$

•

$$\int \frac{dx}{x^2 + 1} = \operatorname{tg}^{-1}(x)$$

•

$$\int \frac{xdx}{x^2 + 1} = \frac{1}{2}\ln(x^2 + 1)$$

• Для всякого n > 1

$$\int \frac{xdx}{(x^2+1)^n} = \frac{1}{2(1-n)(x^2+1)^{n-1}}$$

• Заметим, что

$$\left(\frac{x}{(x^2+1)^n}\right)' = \frac{1}{(x^2+1)^n} - 2n\frac{x^2}{(x^2+1)^{n+1}} = \frac{2n}{(x^2+1)^{n+1}} - \frac{2n-1}{(x^2+1)^n}$$

Следовательно

$$\int \frac{dx}{(x^2+1)^{n+1}} = \frac{x}{2n(x^2+1)^n} + \frac{2n-1}{2n} \int \frac{dx}{(x^2+1)^n}$$

Таким образом несложно понять по индукции, что $\int \frac{dx}{(x^2+1)^n}$ для n>1 есть некоторая сумма рациональных функций и tg^{-1} .

- Линейными заменами задача нахождения первообразных у $\frac{1}{(x+a)^n}$ и $\frac{px+q}{(ax^2+bx+c)^n}$ сводится к нахождению первообразных $\frac{1}{x^n}$, $\frac{1}{(x^2+1)^n}$ и $\frac{x}{(x^2+1)^n}$.
- 2. Заметим, что

$$\sin(x) = \frac{2 \operatorname{tg}(x/2)}{1 + \operatorname{tg}(x/2)^2} \qquad \cos(x) = \frac{1 - \operatorname{tg}(x/2)^2}{1 + \operatorname{tg}(x/2)^2} \qquad dx = \frac{2d(\operatorname{tg}(x/2))}{1 + \operatorname{tg}(x/2)^2}$$

Следовательно задача сводится к нахождению первообразной рациональной функции при помощи подстановки $t := \operatorname{tg}(x)$.

34

3. С одной стороны это можно свести к предыдущей задаче заменой t:=ix. С другой стороны можно заметить, что

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
 $\cosh(x) = \frac{e^x + e^{-x}}{2}$ $dx = \frac{d(e^x)}{e^x}$

Следовательно задача сводится к нахождению первообразной рациональной функции при помощи подстановки $t := e^x$.

- 4. Линейными подстановками можно свести задачу к нахождению первообразной рациональной функции от y и $\sqrt{\pm y^2 \pm 1}$ или только от y.
 - Случай рациональной функции только от у уже был разобран.
 - Если нам дана рациональная функция от y и $\sqrt{1-y^2}$, то заменой $t:=\sin^{-1}(y)$ она сводится к рациональной функции от \sin и \cos .
 - Если нам дана рациональная функция от y и $\sqrt{y^2-1}$, то заменой $t:=\cosh^{-1}(y)$ она сводится к рациональной функции от sinh и cosh.
 - Если нам дана рациональная функция от y и $\sqrt{1+y^2}$, то заменой $t:=\sinh^{-1}(y)$ она сводится к рациональной функции от sinh и cosh.

5 Логарифм? Полезности?? Что???

Теорема 69. Пусть дана функция $\varphi:(0;+\infty)\to\mathbb{R},\ что$

- $\forall a, b \in (0; +\infty)$ $\varphi(ab) = \varphi(a) + \varphi(b)$
- $\bullet \varphi$ монотонна.

Тогда верны следующие утверждения:

- 1. $\varphi(1) = 0$;
- 2. $\forall a \in (0; +\infty), n \in \mathbb{N} \quad \varphi(a^n) = n\varphi(a);$
- 3. $\forall a \in (0; +\infty) \quad \varphi(a^{-1}) = -\varphi(a);$
- 4. $\forall a \in (0; +\infty), q \in \mathbb{Q} \quad \varphi(a^q) = q\varphi(a);$
- $5. \ \varphi$ непрерывна;
- 6. φ бесконечно дифференцируема;
- 7. $\varphi'(x) = \frac{C}{x}$ для некоторого $C \in \mathbb{R}$;
- 8. все такие ϕ имеют вид $\int_1^x \frac{Cdt}{t} \, d$ ля некоторого C>0 и наоборот: любая такая функция удовлетворяет условиям на ϕ .

Доказательство.

1.

$$\varphi(1) = \varphi(1 \cdot 1) - \varphi(1) = \varphi(1) - \varphi(1) = 0.$$

2. Докажем по индукции по n. База при n=0 и n=1 очевидна. Весь шаг:

$$\varphi(a^{n+1}) = \varphi(a^n) + \varphi(a) = n\varphi(a) + \varphi(a) = (n+1)\varphi(a).$$

3.

$$\varphi(a^{-1}) = \varphi(a \cdot a^{-1}) - \varphi(a) = \varphi(1) - \varphi(a) = -\varphi(a)$$

4. Пусть $q=\frac{kn}{m}$, где $n,m\in\mathbb{N}\setminus\{0\}$, а $k=\pm1$. Тогда

$$m\varphi(a^q) = \varphi(a^{mq}) = \varphi(a^{kn}) = k\varphi(a^n) = kn\varphi(a) = qm\varphi(a)$$

Следовательно

$$\varphi(a^q) = q\varphi(a)$$

5. Заметим, что $\lim_{x\to 1^+} \varphi(x)$ в связи с монотонностью и ограниченностью (например, значением $\varphi(1/2)$) функции φ определён, значит равен некоторому b. Тогда

$$2b = \lim_{x \to 1^+} 2\varphi(x) = \lim_{x \to 1^+} \varphi(x^2) = \lim_{y \to 1^+} \varphi(y) = b$$

значит b = 0. Следовательно

$$\lim_{x \to 1^{-}} \varphi(x) = -\lim_{x \to 1^{-}} \varphi(x^{-1}) = -\lim_{y \to 1^{+}} \varphi(y) = 0$$

Таким образом φ непрерывна в 1. Следовательно

$$\lim_{x \to y} \varphi(x) = \varphi(y) + \lim_{x \to y} \varphi\left(\frac{x}{y}\right) = \varphi(y) + \lim_{\alpha \to 1} \varphi(\alpha)$$

т.е. φ непрерывна во всех точках $(0; +\infty)$.

6. Рассмотрим

$$\Phi := (0; +\infty) \to \mathbb{R}, x \mapsto \int_{1}^{x} \varphi(t)dt$$

Тогда мы имеем, что Φ — первообразная, поскольку φ непрерывна. А тогда если φ имеет $n \in \mathbb{N} \cup \{0\}$ производных, то Φ имеет n+1 производную. Заметим, что

$$\Phi(2x) - \Phi(x) = \int_{x}^{2x} \varphi(t)dt = x \int_{x}^{2x} \varphi\left(\frac{t}{x}\right) d\frac{t}{x} + x \int_{x}^{2x} \varphi(x) d\frac{t}{x} = Cx + \varphi(x)x$$

где

$$C := \int_{1}^{2} \varphi(t)dt$$

Следовательно

$$\varphi(x) = \frac{\Phi(2x) - \Phi(x)}{x} - C$$

Таким образом, если Φ имеет $n \in \mathbb{N} \cup \{0\}$ производных, то φ тоже. Значит Φ и ϕ бесконечно дифференцируемы.

7. Пусть фиксировано некоторое y > 0. Следовательно

$$y\varphi'(xy) = (\varphi(xy))' = (\varphi(x) + \varphi(y))' = \varphi'(x)$$

а значит, если подставить $y = x^{-1}$

$$\varphi'(x) = \frac{\varphi'(1)}{x}$$

Таким образом определяя $C := \varphi'(1)$ имеем, что

$$\varphi'(x) = \frac{C}{x}$$

8. Действительно, если есть некоторое ϕ , то ϕ и $\int_1^x \frac{\phi'(1)dt}{t}$ являются первообразными $\frac{\phi'(1)}{x}$, значит отличаются на константу. При этом в 1 они обе равны 0, значит функции совпадают.

Теперь же покажем, что $\psi(x):=\int_1^x \frac{Cdt}{t}$ является корнем функционального уравнения.

 \bullet Поскольку $\frac{C}{x}$ — функция одного знака, то ψ монотонна.

•

$$\psi(xy) = \int_1^{xy} \frac{Cdt}{t} = \int_1^x \frac{Cdt}{t} + \int_x^{xy} \frac{Cdt}{t}$$
$$= \int_1^x \frac{Cdt}{t} + \int_x^{xy} \frac{Cd(t/x)}{(t/x)} = \int_1^x \frac{Cdt}{t} + \int_1^y \frac{Cds}{s} = \psi(x) + \psi(y)$$

Определение 38. Натуральный логарифм — функция

$$\ln: (0; +\infty) \to \mathbb{R}, x \mapsto \int_1^x \frac{dt}{t}$$

Экспонента — функция

$$\exp: \mathbb{R} \to (0; +\infty), x \mapsto \ln^{-1}(x)$$

Теорема 70.

- 1. ехр корректно определена;
- $2. \exp$ непрерывна;
- 3. ехр бесконечно дифференцируема, и каждая производная ехр равна ехр;
- 4. $\exp(0) = 1$;
- 5. $\exp(a+b) = \exp(a) \cdot \exp(b)$;

6.

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!};$$

Доказательство.

- 1. Поскольку \ln монотонна, то всякое значение из области значений \ln всё \mathbb{R} принимается единожды. Следовательно ехр корректно определена.
- 2. Поскольку всякая монотонная биекция из интервала в интервал является непрерывной функцией, то и ехр непрерывна на всяком интервале.
- 3. По свойству дифференцирования

$$\exp'(x) = \frac{1}{\ln'(\exp(x))} = \frac{1}{1/\exp(x)} = \exp(x)$$

Таким образом ехр дифференцируема раз, и при дифференцировании не меняется. Следовательно ехр бесконечно дифференцируема.

- 4. Следует из того, что ln(1) = 0.
- 5. Следует из того, что $\ln(xy) = \ln(x) + \ln(y)$, подстановкой $x := \ln^{-1}(a)$ и $y := \ln^{-1}(b)$.
- 6. Вспомним, что по теореме 49 для всякого $x \in \mathbb{R}$ и $n \in \mathbb{N} \cup \{0\}$ есть $\xi_n \in (0; x)$, что

$$\exp(x) = \sum_{k=0}^{n} \frac{\exp^{(k)}(0)}{k!} (x-0)^k + \frac{\exp^{(n+1)}(\xi_n)}{(n+1)!} (x-0)^{n+1} = \sum_{k=0}^{n} \frac{x^k}{k!} + \frac{\exp(\xi_n)x^{n+1}}{(n+1)!}$$

Вспомним также, что

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} \stackrel{\text{def}}{=} \lim \left(\sum_{k=0}^n \frac{x^k}{k!} \right)_{n=0}^{\infty}$$

Чтобы показать, что предел этой последовательности реально совпадает с $\exp(x)$, покажем, что

$$\lim \left(\exp(x) - \sum_{k=0}^{n} \frac{x^k}{k!} \right)_{n=0}^{\infty} = 0$$

Действительно,

$$\left(\left| \exp(x) - \sum_{k=0}^{n} \frac{x^{k}}{k!} \right| \right)_{n=0}^{\infty} = \left(\left| \frac{\exp(\xi_{n}) x^{n+1}}{(n+1)!} \right| \right)_{n=0}^{\infty} \leqslant \exp(|x|) \left(\frac{|x|^{n+1}}{(n+1)!} \right)_{n=0}^{\infty}$$

Пусть $N = \lceil 2|x| \rceil$. Тогда для всякого $n \geqslant N$ имеем, что

$$\frac{|x|^{n+1}}{(n+1)!} = \frac{|x|^N}{N!} \prod_{k=N+1}^{n+1} \frac{|x|}{k} < \frac{|x|^N}{N!} \prod_{k=N+1}^{n+1} \frac{1}{2} = \frac{|x|^N \cdot 2^{N-1}}{N!} \cdot \frac{1}{2^n}$$

Следовательно, с момента N последовательность

$$\left(\frac{|x|^{n+1}}{(n+1)!}\right)_{n=0}^{\infty}$$

сходится к 0 немедленнее, чем геометрическая прогрессия, а тогда и

$$\lim \left(\exp(x) - \sum_{k=0}^{n} \frac{x^k}{k!} \right)_{n=0}^{\infty} = 0$$

Теорема 71.

1.
$$(a^x)' = \ln(a)a^x$$

2.
$$(x^a)' = ax^{a-1}$$

Доказательство.

1.

$$(a^x)' = \exp(x \ln(a))' = (x \ln(a))'a^x = \ln(a)a^x$$

2.

$$(x^a)' = \exp(a\ln(x))' = (a\ln(x))'x^a = \frac{a}{x}x^a = ax^{a-1}$$

Теорема 72. Пусть $f:(a;b)\to\mathbb{R},\ f^{(1)},\ \dots,\ f^{(n+1)}$ определены на $(t-\delta;t+\delta)$ для некоторого $\delta>0$. Тогда для всякого $x\in U_{\delta}(t)$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(t)}{k!} (x-t)^k + \frac{1}{n!} \int_{t}^{x} f^{(n+1)}(s) (x-s)^n ds$$

Доказательство. Рассмотрим функцию

$$g(x) := f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(t)}{k!} (x-t)^k$$

Тогда мы имеем, что $g(t)=g'(t)=g^{(2)}(t)=\cdots=g^{(n)}(t)=0$, а $g^{(n+1)}(t)=f^{(n+1)}(t)$. Тогда нужно показать, что

$$g(x) = \frac{1}{n!} \int_{t}^{x} f^{(n+1)}(s)(x-s)^{n} ds$$

Докажем это по индукции по n.

База. n = 0. Тогда

$$g(x) = g(t) + \int_{t}^{x} g'(s)ds = \frac{1}{n!} \int_{t}^{x} g^{(n+1)}(s)(x-s)^{n} ds$$

Шаг. Пусть утверждение верно для n докажем для n+1.

$$g(x) = \frac{1}{n!} \int_{t}^{x} g^{(n+1)}(s)(x-s)^{n} ds$$

$$= \frac{-g^{(n+1)}(s)(x-s)^{(n+1)}}{(n+1)!} \Big|_{x}^{t} + \frac{1}{(n+1)!} \int_{t}^{x} g^{(n+1)}(s)(x-s)^{(n+1)} ds$$

$$= \frac{1}{(n+1)!} \int_{t}^{x} g^{(n+1)}(s)(x-s)^{(n+1)} ds$$

5.1 Формулы Валлиса и Стирлинга

Теорема 73 (формула Валлиса).

$$\frac{\pi}{2} = \lim_{n \to \infty} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2 \cdot \frac{1}{2n+1} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \dots$$

Доказательство. Для всякого $n \in \mathbb{N} \cup \{0\}$ определим

$$I_n := \int_0^{\pi/2} \sin(x)^n dx$$

Заметим, что $\sin(x)^{n+1}<\sin(x)^n$ на $(0;\frac{\pi}{2})$, следовательно $I_n>I_{n+1}$. Также

$$I_{n+2} = \int_0^{\pi/2} \sin(x)^{n+2} dx$$

$$= -\sin(x)^{n+1} \cos(x) \Big|_0^{\pi/2} + (n+1) \int_0^{\pi/2} \sin(x)^n \cos(x)^2 dx$$

$$= (n+1) \int_0^{\pi/2} \sin(x)^n (1 - \sin(x)^2) dx$$

$$= (n+1) \int_0^{\pi/2} \sin(x)^n dx - (n+1) \int_0^{\pi/2} \sin(x)^{n+2} dx$$

$$= (n+1)I_n - (n+1)I_{n+2}$$

Следовательно $I_{n+2}=\frac{n+1}{n+2}I_n$. При этом понятно, что $I_0=\frac{\pi}{2}$, а $I_1=1$. Таким образом для всякого $n\in\mathbb{N}\cup\{0\}$

$$I_{2n} = \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \cdot \dots \cdot \frac{1}{2} \cdot I_0 = \frac{(2n-1)!!}{(2n)!!} \frac{\pi}{2}$$

$$I_{2n+1} = \frac{2n}{2n+1} \cdot \frac{2n-2}{2n-1} \cdot \dots \cdot \frac{2}{3} \cdot I_1 = \frac{(2n)!!}{(2n+1)!!}$$

Вспомним, что $I_{2n+1} < I_{2n} < I_{2n-1}$. Следовательно

$$\frac{(2n)!!}{(2n+1)!!} < \frac{\pi}{2} \cdot \frac{(2n-1)!!}{(2n)!!} < \frac{(2n-2)!!}{(2n-1)!!}$$

$$\frac{(2n)!! \cdot (2n)!!}{(2n-1)!! \cdot (2n+1)!!} < \frac{\pi}{2} < \frac{(2n)!! \cdot (2n-2)!!}{(2n-1)!! \cdot (2n-1)!!}$$

$$\left(\frac{(2n)!!}{(2n-1)!!}\right)^2 \frac{1}{2n+1} < \frac{\pi}{2} < \left(\frac{(2n)!!}{(2n-1)!!}\right)^2 \frac{1}{2n}$$

Заметим, что в последнем неравенстве отношение значений слева и справа сходится к 1, значит

$$\lim_{n \to \infty} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2 \frac{1}{2n+1} = \frac{\pi}{2}$$

Теорема 74 (формула Стирлинга).

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{\epsilon}\right)^n$$

Доказательство. Вспомним, что для $x \in (-1; 1)$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \qquad \ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots$$

40

Следовательно

$$\ln\left(\frac{1+x}{1-x}\right) = \ln(1+x) - \ln(1-x) = 2x + \frac{2x^3}{3} + \frac{2x^5}{5} + \dots = 2x\left(1 + \frac{x^2}{3} + \frac{x^4}{5} + \dots\right)$$

Пусть $n \in \mathbb{N} \setminus \{0\}$. Подставим $x = \frac{1}{2n+1}$. Тогда

$$\left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right) = \frac{1}{2x} \ln\left(\frac{1+x}{1-x}\right)$$

$$= 1 + \frac{x^2}{3} + \frac{x^4}{5} + \dots \in \left(1; 1 + \frac{1}{3} \cdot \frac{x^2}{1-x^2}\right) = \left(1; 1 + \frac{1}{12n(n+1)}\right)$$

Рассмотрим последовательность $(x_n)_{n=1}^{\infty} := \left(\frac{n! \cdot e^n}{n^{n+1/2}}\right)_{n=1}^{\infty}$. Заметим, что

$$\ln\left(\frac{x_{n+1}}{x_n}\right) = \ln\left(\frac{(n+1)\cdot e}{(n+1)^{n+3/2}/n^{n+1/2}}\right) = \ln\left(\frac{e}{(1+\frac{1}{n})^{n+1/2}}\right) = 1 - \left(n+\frac{1}{2}\right)\ln\left(1+\frac{1}{n}\right)$$

Таким образом $\ln(x_{n+1}/x_n) \in (0; \frac{-1}{12n(n+1)})$. Следовательно $\ln(x_n) < \ln(x_1)$ и

$$\ln(x_n) - \ln(x_1) > \frac{-1}{12n(n-1)} + \frac{-1}{12(n-1)(n-2)} + \dots + \frac{-1}{12 \cdot 2 \cdot 1}$$

$$= \frac{1}{12} \left(\frac{1}{n} - \frac{1}{n-1} + \frac{1}{n-1} - \frac{1}{n-2} + \dots + \frac{1}{2} - \frac{1}{1} \right)$$

$$= \frac{1}{12} \left(\frac{1}{n} - 1 \right)$$

Значит $\lim_{n\to\infty}\ln(x_n)\geqslant \frac{-1}{12}$ (предел убывающей ограниченной последовательности), а тогда $\lim_{n\to\infty}x_n$ определён и равен $\alpha>0$. Значит

$$n! \sim \alpha \sqrt{n} \left(\frac{n}{e}\right)^n$$

Теперь нужно показать, что $\alpha = \sqrt{2\pi}$. По формуле Валлиса

$$\sqrt{2\pi} \sim 2 \frac{(2n)!!}{(2n-1)!!} \cdot \frac{1}{\sqrt{2n+1}} = 2 \frac{((2n)!!)^2}{(2n)!} \cdot \frac{1}{\sqrt{2n+1}} = 2 \frac{2^{2n}(n!)^2}{(2n)!} \cdot \frac{1}{\sqrt{2n+1}}$$

$$\sim 2^{2n+1} \frac{\alpha^2 n \left(\frac{n}{e}\right)^{2n}}{\alpha \sqrt{2n} \left(\frac{2n}{e}\right)^{2n}} \cdot \frac{1}{\sqrt{2n}} = \frac{2^{2n+1} \alpha^2 n}{\alpha (2n) 2^{2n}} = \alpha$$

Таким образом $\alpha = \sqrt{2\pi}$.

3амечание 7. Из оценки $\ln(x_n) - \ln(x_1) > \frac{1}{12}(\frac{1}{n} - 1)$ следует, что

$$\ln(x_n) - \ln(\alpha) = \lim_{m \to \infty} \ln(x_n) - \ln(x_m) = \sum_{k=n}^{\infty} \ln(x_k) - \ln(x_{k+1})$$

$$< \sum_{k=n}^{\infty} \frac{1}{12k(k+1)} = \frac{1}{12} \sum_{k=n}^{\infty} \frac{1}{n} - \frac{1}{n+1} = \frac{1}{12n}$$

Таким образом $x_n = \alpha(1 + O(\frac{1}{n}))$. А значит

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + O\left(\frac{1}{n}\right)\right)$$

Лемма 75. Пусть дана функция $f \geqslant 0$, невозрастающая на $[0; +\infty)$. Тогда $\sum_{n=0}^{\infty} f(n)$ сходится тогда и только тогда, когда $\int_{0}^{\infty} f(x) dx$ сходится.

Доказательство.

 (\Rightarrow)

$$\int_0^N f(x)dx = \sum_{k=0}^{N-1} \int_k^{k+1} f(x)dx \leqslant \sum_{k=0}^{N-1} f(k)$$

Следовательно, поскольку $\int_0^A f(x) dx$ возрастает по A, но ограничена сверху значением $\sum_{n=0}^\infty f(n)$, то $\int_0^{+\infty} f(x) dx$ сходится.

 (\Leftarrow)

$$\sum_{k=0}^{N} f(x) \leqslant f(0) + \sum_{k=0}^{N-1} \int_{k}^{k+1} f(x)dx = f(0) + \int_{0}^{N} f(x)dx$$

Следовательно, поскольку $\sum_{0}^{N} f(x) dx$ возрастает по N, но ограничена сверху значением $f(0) + \int_{0}^{+\infty} f(x) dx$, то $\sum_{n=0}^{\infty} f(n)$ сходится.

Теорема 76.

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$$

для некоторой константы γ .

Определение 39. Константа γ из прошлой теоремы называется константой Эйлера или константой Эйлера-Маскерони.

Доказательство.

$$\sum_{k=1}^{n} \frac{1}{k} - \ln(n) = 1 + \sum_{k=2}^{n} \frac{1}{k} - \ln(k) + \ln(k-1)$$

Заметим, что

$$\ln(k-1) - \ln(k) = \ln\left(\frac{k-1}{k}\right) = \ln\left(1 - \frac{1}{k}\right) = -\frac{1}{k} - \frac{1}{2k^2} - \frac{1}{3k^3} - \dots$$

Следовательно

$$\sum_{k=1}^{n} \frac{1}{k} - \ln(n) = 1 - \sum_{k=2}^{n} \left(\frac{1}{2k^2} + \frac{1}{3k^3} + \frac{1}{4k^4} + \dots \right)$$

Поскольку

$$\frac{1}{2k^2} + \frac{1}{3k^3} + \dots < \frac{1}{2k^2} \left(1 + \frac{1}{k} + \frac{1}{k^2} + \dots \right) = \frac{1}{2k(k-1)} = \frac{1}{2(k-1)} - \frac{1}{2k}$$

TO

$$\sum_{k=2}^{n} \left(\frac{1}{2k^2} + \frac{1}{3k^3} + \frac{1}{4k^4} + \dots \right) \leqslant \sum_{k=2}^{n} \frac{1}{2(k-1)} - \frac{1}{2k} = \frac{1}{2} - \frac{1}{2n}$$

Значит

$$\sum_{k=2}^{\infty} \left(\frac{1}{2k^2} + \frac{1}{3k^3} + \frac{1}{4k^4} + \cdots \right)$$

— ряд положительных значений, ограниченный сверху значением 1/2, следовательно сходится; пусть к некоторой константе λ . Значит мы получаем, что

$$\sum_{k=2}^{n} \left(\frac{1}{2k^2} + \frac{1}{3k^3} + \frac{1}{4k^4} + \dots \right) = \lambda - o(1)$$

и следовательно

$$\sum_{k=1}^{n} \frac{1}{k} - \ln(n) = 1 - \lambda + o(1) = \gamma + o(1)$$

Замечание 8. Таким рассуждением мы получаем, что ряд

$$\sum_{k,l\geqslant 2} \frac{1}{l\cdot k^l}$$

сильно сходится и равен $1 - \gamma$. Следовательно

$$1 - \gamma = \sum_{l=2}^{\infty} \frac{\zeta(l) - 1}{l}$$

5.2 Бернулли обернули

Определение 40. Определим последовательность чисел Бернулли $(B_n)_{n=0}^{\infty}$ как последовательность, чья экспоненциальная производящая функция есть $\frac{x}{\exp(x)-1}$, т.е. на уровне формальных степенных рядов верно, что

$$\sum_{n=0}^{\infty} \frac{B_n x^n}{n!} = \frac{x}{\exp(x) - 1}$$

Лемма 77.

$$B_0 = 1 \qquad \sum_{k=0}^{n} B_k \binom{n+1}{k} = 0$$

Доказательство. На уровне формальных рядов

$$\frac{\exp(x) - 1}{x} = \sum_{k=0}^{\infty} \frac{x^k}{(k+1)!}$$

Следовательно

$$1 = \left(\sum_{k=0}^{\infty} \frac{1}{(k+1)!} x^k\right) \cdot \left(\sum_{k=0}^{\infty} \frac{B_k}{k!} x^k\right)$$

Значит, рассматривая коэффициенты при степенях x, получаем, что

$$\sum_{k=0}^{n} \frac{B_k}{k!(n-k+1)!} = 0$$

Домножая последнее равенство на (n+1)!, получаем, что

$$\sum_{k=0}^{n} B_k \binom{n+1}{k} = 0$$

Пемма 78. Ряд Тейлора $\frac{x}{\exp(x)-1}$ при x=0 равен $\sum_{k=0}^{\infty} \frac{B_k}{k!} x^k$ (если доопределить правильно функцию в нуле).

Доказательство. Определим

$$f(x) := \begin{cases} 1 & \text{если } x = 0 \\ \frac{\exp(x) - 1}{x} & \text{иначе} \end{cases}$$

$$g(x) = \frac{1}{f(x)}$$

Заметим, что f просто задаётся рядом $\sum_{k=0}^{\infty} \frac{x^k}{(k+1)!}$ и всюду положительна, поэтому g определена корректно.

Тогда очевидно равенство $f \cdot g = 1$. Продифференцируем его $n \in \mathbb{N} \setminus \{0\}$ раз:

$$0 = (f \cdot g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} \cdot g^{(n-k)}$$

Подставляя в последнее 0 получаем, что

$$g^{(0)}(0) = 1 \qquad \frac{1}{n+1} \sum_{k=0}^{\infty} g^{(k)}(0) \binom{n+1}{k} = \sum_{k=0}^{\infty} g^{(k)}(0) \binom{n}{n-k} \frac{1}{n-k+1} = 0$$

Тем самым последовательность $(g^{(n)}(0))_{n=0}^{\infty}$ удовлетворяет тому же рекуррентному соотношению, что и $(B_n)_{n=0}^{\infty}$, значит они совпадают. А это значит, что ряд Тейлора g есть

$$\sum_{k=0}^{\infty} \frac{g^{(k)}(0)}{k!} x^k = \sum_{k=0}^{\infty} \frac{B_k}{k!} x^k$$

Лемма 79. Для всякого $n \in \mathbb{N} \setminus \{0\}$ верно, что $B_{2n+1} = 0$.

Доказательство. Заметим, что

$$\frac{x}{\exp(x) - 1} + \frac{x}{2} = \frac{x}{2} \cdot \frac{\exp(x) + 1}{\exp(x) - 1} = \frac{x}{2} \cdot \frac{\exp(x/2) + \exp(-x/2)}{\exp(x/2) - \exp(-x/2)} = \frac{x}{2} \cdot \coth(x/2)$$

При этом $\frac{x}{2} \coth(x/2)$ является чётной функцией, значит производные всех нечётных степеней равны 0, откуда и получаем, что $B_{2n+1}=0.1$

Определение 41. Многочлены Бернулли — такая последовательность многочленов $(B_n(t))_{n=0}^{\infty}$, что на уровне формальных рядов (теперь от x и y)

$$\frac{x \exp(yx)}{\exp(x) - 1} = \sum_{n=0}^{\infty} \frac{B_n(y)x^n}{n!}$$

 $^{^{1}}$ Но для B_{1} мы получаем равенство $B_{1}+rac{1}{2}=0,$ поэтому только для n=0 рассуждение неверно.

Замечание. Определение корректно, поскольку данный формальный ряд по сути является произведением рядов $\sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$ и $\exp(yx)$, что значит, что в каждом мономе степень x не менее степени y, значит формальные ряды при каждой степени x в разложении $\frac{x \exp(yx)}{\exp(x)-1}$ — ряды $B_n(y)$ — получаются конечными, т.е. являются просто многочленами.

Следствие 79.1. $B_n(0) = B_n$.

Лемма 80.

$$\sum_{k=0}^{n} \binom{n+1}{k} B_k(y) = (n+1)y^n$$

Доказательство. По определению

$$\left(\sum_{k=0}^{\infty} \frac{(xy)^k}{k!}\right) = \left(\sum_{l=0}^{\infty} \frac{x^l}{(l+1)!}\right) \left(\sum_{m=0}^{\infty} \frac{B_m(y)x^m}{m!}\right)$$

Рассматривая коэффициенты при степенях x получаем, что

$$\frac{y^n}{n!} = \sum_{k=0}^n \frac{1}{(n-k+1)!} \cdot \frac{B_k(y)}{k!} = \frac{1}{(n+1)!} \sum_{k=0}^n \binom{n+1}{k} B_k(y)$$

Откуда мы и получаем требуемое равенство.

Следствие 80.1. $deg(B_n) = n$.

Лемма 81. $B'_{n+1} = (n+1)B_n$.

Доказательство. Давайте продифференцируем по y равенство (на уровне формальных рядов)

$$\frac{x \exp(yx)}{\exp(x) - 1} = \sum_{n=0}^{\infty} \frac{B_n(y)}{n!} x^n$$

Получаем, что

$$\sum_{n=1}^{\infty} \frac{B_{n-1}(y)}{(n-1)!} x^n = x \sum_{n=0}^{\infty} \frac{B_n(y)}{n!} x^n = \frac{x^2 \exp(yx)}{\exp(x) - 1} = \sum_{n=1}^{\infty} \frac{B'_n(y)}{n!} x^n$$

Следовательно $B'_n = nB_{n-1}$.

Следствие 81.1. $B_n(y) = \sum_{k=0}^n \binom{n}{k} B_{n-k} y^k$

Доказательство.

$$B_n(y) = \sum_{k=0}^n \frac{B_n^{(k)}(0)}{k!} x^k = \sum_{k=0}^n \frac{B_{n-k}(0)n!}{k!(n-k)!} x^k = \sum_{k=0}^n \binom{n}{k} B_{n-k} x^k$$

Лемма 82. $B_n(y) = B_n(1-y)(-1)^n$.

Доказательство. Действительно,

$$\sum_{n=0}^{\infty} \frac{B_n(1-y)x^n}{n!} = \frac{x \exp((1-y)x)}{\exp(x) - 1} = \frac{x \exp(-yx)}{1 - \exp(-x)}$$
$$= \frac{-x \exp(y(-x))}{\exp(-x) - 1} = \sum_{n=0}^{\infty} \frac{B_n(y)(-x)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n B_n(y)x^n}{n!}$$

Следовательно, выделяя полиномы от y при степенях x, получаем искомое равенство.

Следствие 82.1. $\int_0^1 B_n(y) dy = 0$

Доказательство.

$$\int_0^1 B_n(y)dy = \left. \frac{B_{n+1}(y)}{n+1} \right|_0^1 = \frac{B_{n+1}(1) - B_{n+1}(0)}{n+1} = 0$$

Теорема 83 (формула Эйлера-Маклорена). Пусть даны целые a u b u функция f, которая имеет m ($m \in \mathbb{N} \setminus \{0\}$) производных на [a;b]. Тогда

$$\sum_{k=a}^{b-1} f(k) = \int_{a}^{b} f(x)dx + \sum_{k=1}^{m} \frac{B_{k}}{k!} f^{(k-1)}(x) \Big|_{a}^{b} + R_{m} \qquad R_{m} = (-1)^{m+1} \int_{a}^{b} \frac{B_{m}(\{x\})}{m!} f^{(m)}(x)dx$$

Доказательство. Заметим, что достаточно доказать формулу для a=0 и b=1, а $\{x\}$ можно заменить на x. Также будем доказывать её по индукции по m.

База. m=1. Тогда $B_1(x)=x-\frac{1}{2}$. Следовательно по интегрированию по частям (по функциям f и B_1)

$$\frac{f(1) + f(0)}{2} = f(x) \left(x - \frac{1}{2} \right) \Big|_{0}^{1} = \int_{0}^{1} f(x) dx + \int_{0}^{1} \left(x - \frac{1}{2} \right) f'(x) dx$$

Таким образом

$$f(0) = \int_0^1 f(x)dx + \frac{-1/2}{1!} f(x)|_0^1 + R_1$$

Шаг. Пусть утверждение для m верно; покажем верность для m+1. Заметим, что нужно показать, что

$$R_m = \frac{B_{m+1}}{(m+1)!} f^{(m)}(x) \Big|_0^1 + R_{m+1}$$

Интегрируя по частям по функциям $f^{(m)}(x)$ и $B_{m+1}(x)/(m+1)!$, получаем, что

$$(-1)^{m+1} \int_0^1 \frac{B'_{m+1}(x)}{(m+1)!} f^{(m)}(x) dx = (-1)^{m+1} \frac{B_{m+1}(x)}{(m+1)!} f^{(m)}(x) \Big|_0^1 + (-1)^{m+2} \int_0^1 \frac{B_{m+1}(x)}{(m+1)!} f^{(m+1)}(x) dx$$
$$= (-1)^{m+1} \frac{B_{m+1}(x)}{(m+1)!} f^{(m)}(x) \Big|_0^1 + R_{m+1}$$

Поскольку $B'_{m+1}(x) = (m+1)B_m(x)$, то получаем

$$R_m = (-1)^{m+1} \frac{B_{m+1}(x)}{(m+1)!} f^{(m)}(x) \Big|_0^1 + R_{m+1}$$

Следовательно осталось показать, что $(-1)^{m+1}B_{m+1}=B_{m+1}(0)=B_{m+1}(1)$. Заметим, что уже есть $B_{m+1}=B_{m+1}(0)=(-1)^{m+1}B_{m+1}(1)$. Осталось заметить, что при нечётных m мы имеем $(-1)^{m+1}=1$, а при чётных $-B_{m+1}=0$, так как $m+1\geqslant 2$. Отсюда следует искомое.

 Π ример 3. Давайте посчитаем $\sum_{k=1}^{n-1} k^d$. Для этого подставим в формулу Эйлера-Маклорена функцию $f(x):=x^d$, отрезок [a;b]:=[0;n] и m=d+1:

$$\sum_{k=1}^{n-1} k^d = \sum_{k=0}^{n-1} f(k)$$

$$= \int_0^n f(x) dx + \sum_{k=1}^m \frac{B_k}{k!} f^{(k-1)}(x) \Big|_0^n + (-1)^{m+1} \int_0^n \frac{B_m(\{x\})}{m!} f^{(m)}(x) dx$$

$$= \frac{x^{d+1}}{d+1} \Big|_0^n + \sum_{k=1}^m \frac{B_k}{k!} \frac{d!}{(d-k+1)!} x^{d-k+1} \Big|_0^n + (-1)^{m+1} \int_0^n \frac{B_m(\{x\})}{m!} \cdot 0 \cdot dx$$

$$= \frac{n^{d+1}}{d+1} + \sum_{k=1}^{d+1} B_k \frac{d!}{k!(d+1-k)!} n^{d+1-k}$$

$$= \frac{1}{d+1} \sum_{k=0}^{d+1} B_k \binom{d+1}{k} n^{d+1-k}$$

5.3 Некоторые методы интегрирования и их результаты

Рассмотрим неформальные примеры и докажем теоремы, их формализующие.

Пример 4. Несложно понять, что

$$K := \int_0^{+\infty} e^{-x^2} dx$$

сходится. Заметим также, что для всякого t > 0

$$K = \int_0^{+\infty} e^{-x^2} dx = \int_0^{+\infty} e^{-(ty)^2} d(ty) = \int_0^{+\infty} t e^{-y^2 t^2} dy$$

Следовательно

$$\begin{split} K^2 &= K \cdot \int_0^{+\infty} e^{-t^2} dt &= \int_0^{+\infty} e^{-t^2} \cdot K \cdot dt \\ &= \int_0^{+\infty} e^{-t^2} \left(\int_0^{+\infty} t e^{-t^2 y^2} dy \right) dt &= \int_0^{+\infty} \left(\int_0^{+\infty} t e^{-t^2 (y^2 + 1)} dy \right) dt \\ &= \int_0^{+\infty} \left(\int_0^{+\infty} t e^{-t^2 (y^2 + 1)} dt \right) dy &= \int_0^{+\infty} \left(\int_0^{+\infty} e^{-t^2 (y^2 + 1)} \frac{d(t^2)}{2} \right) dy \\ &= \int_0^{+\infty} \frac{1}{2} \left(\int_0^{+\infty} e^{-v(y^2 + 1)} dv \right) dy &= \frac{1}{2} \int_0^{+\infty} \frac{e^{-v(y^2 + 1)}}{-(y^2 + 1)} \Big|_0^{+\infty} dy \\ &= \frac{1}{2} \int_0^{+\infty} \frac{dy}{y^2 + 1} &= \frac{1}{2} \arctan(y) \Big|_0^{+\infty} = \frac{\pi}{4} \end{split}$$

откуда $K = \frac{\sqrt{\pi}}{2}$.

Пример 5. Рассмотрим функцию

$$I(a) := \int_0^{+\infty} e^{-ax} \frac{\sin(x)}{x} dx$$

Тогда

$$I'(a) = \int_0^{+\infty} (-x)e^{-ax} \frac{\sin(x)}{x} dx = \int_0^{+\infty} -e^{-ax} \sin(x) dx = \left. \frac{e^{-ax} (a\sin(x) + \cos(x))}{a^2 + 1} \right|_0^{+\infty} = -\frac{1}{a^2 + 1}$$

Значит $I(a) = C - \arctan(a)$. Но поскольку

$$\lim_{a \to \infty} I(a) + \arctan(a) = \lim_{a \to \infty} \int_0^{+\infty} e^{-ax} \frac{\sin(x)}{x} dx + \arctan(a) = 0 + \frac{\pi}{2}$$

то $C = \frac{\pi}{2}$, а значит

$$\int_{0}^{+\infty} \frac{\sin(x)}{x} dx = I(0) = \frac{\pi}{2} - \arctan(0) = \frac{\pi}{2}$$

 Π ример 6.

$$\int_0^1 \frac{x^b - x^a}{\ln(x)} dx = \int_0^1 \left(\int_a^b x^y dy \right) dx = \int_a^b \left(\int_0^1 x^y dx \right) dy$$
$$= \int_a^b \frac{dy}{y+1}$$
$$= \ln\left(\frac{b+1}{a+1}\right)$$

Пример 7. Заметим, что

$$\int_{1}^{+\infty} \frac{x^2 - y^2}{(x^2 + y^2)^2} dy = \frac{y}{x^2 + y^2} \bigg|_{1}^{+\infty} = -\frac{1}{x^2 + 1}$$

Таким образом

$$\int_{1}^{+\infty} \left(\int_{1}^{+\infty} \frac{x^2 - y^2}{(x^2 + y^2)^2} dy \right) dx = -\frac{\pi}{4} \qquad \text{ Ho} \qquad \int_{1}^{+\infty} \left(\int_{1}^{+\infty} \frac{x^2 - y^2}{(x^2 + y^2)^2} dx \right) dy = \frac{\pi}{4}$$

Замечание. Этот пример говорит о том, что не всегда можно переставлять интегралы местами.

Теорема 84. Пусть даны непрерывные функции a и b на $[x_0; x_1]$. Пусть также дана непрерывная функция f(x,t) на $\{(x,t) \mid t \in [a(x);b(x)] \land x \in [x_0;x_1]\}$. Тогда $\int_{a(x)}^{b(x)} f(x,t) dt$ непрерывна.

Доказательство.

$$\lim_{y \to x} \int_{a(y)}^{b(y)} f(y, t) dt = \lim_{y \to x} \int_{a(y)}^{a(x)} f(y, t) dt + \lim_{y \to x} \int_{b(x)}^{b(y)} f(y, t) dt + \lim_{y \to x} \int_{a(x)}^{b(x)} f(y, t) dt$$

Лемма 84.1.

$$\lim_{y \to x} \int_{b(x)}^{b(y)} f(y, t) dt = 0$$

Доказательство. Заметим, что

$$\left| \int_{b(x)}^{b(y)} f(y,t)dt \right| \leqslant |b(y) - b(x)| \cdot \max_{t \in [b(x);b(y)]} |f(y,t)|$$

Заметим, что из непрерывности f следует, что

$$\max_{t \in [b(x);b(y)]} |f(y,t)| \leqslant \max_{\substack{y \in [x-\varepsilon;x+\varepsilon] \\ t \in [b(x);b(y)]}} |f(y,t)|$$

Но при этом $\lim_{y\to x} |b(y) - b(x)| = 0$, следовательно

$$\lim_{y \to x} \left| \int_{b(x)}^{b(y)} f(y, t) dt \right| = 0$$

откуда и получается требуемое.

Лемма 84.2.

$$\lim_{y \to x} \int_{a(x)}^{b(x)} f(y, t) dt = \int_{a(x)}^{b(x)} f(x, t) dt$$

Доказательство. Поскольку f непрерывна, то непрерывна и f(y,t) - f(x,t). Значит

$$\lim_{y \to x} \int_{a(x)}^{b(x)} f(y,t) dt - \int_{a(x)}^{b(x)} f(x,t) dt = \lim_{y \to x} \int_{a(x)}^{b(x)} (f(y,t) - f(x,t)) dt$$

$$\leqslant \lim_{y \to x} |b(x) - a(x)| \max_{t \in [a(x);b(x)]} |f(y,t) - f(x,t)| \leqslant |b(x) - a(x)| \lim_{\varepsilon \to 0} \max_{y \in [x - \varepsilon; x + \varepsilon] \atop t \in [a(x);b(x)]} |f(y,t) - f(x,t)| = 0$$

Объединяя всё вышесказанное, получаем требуемое.

Теорема 85 (интегральное правило Лейбница, "дифференцирование под знаком интеграла"). Пусть даны функции a u b на $[x_0; x_1]$ c непрерывными производными. Пусть также дана функция f(x,t), что f u $\frac{\partial}{\partial x} f$ непрерывны на множестве $\{(x,t) \mid t \in [a(x);b(x)] \land x \in [x_0;x_1]\}$. Тогда для всякого $x \in [x_0;x_1]$

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,t)dt = f(x,b(x)) \cdot \frac{d}{dx}b(x) - f(x,a(x)) \cdot \frac{d}{dx}a(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t)dt$$

Доказательство.

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,t)dt \stackrel{\text{def}}{=} \lim_{\delta \to 0} \frac{\int_{a(x+\delta)}^{b(x+\delta)} f(x+\delta,t)dt - \int_{a(x)}^{b(x)} f(x,t)dt}{\delta}$$

$$= \lim_{\delta \to 0} \left(\frac{\int_{a(x+\delta)}^{a(x)} f(x+\delta,t)dt}{\delta} + \frac{\int_{b(x)}^{b(x+\delta)} f(x+\delta,t)dt}{\delta} + \frac{\int_{a(x)}^{b(x)} (f(x+\delta,t) - f(x,t))dt}{\delta} \right)$$

Лемма 85.1.

$$\lim_{\delta \to 0} \frac{\int_{b(x)}^{b(x+\delta)} f(x+\delta,t)dt}{\delta} = f(x,b(x)) \cdot \frac{d}{dx}b(x)$$

Доказательство.

$$\lim_{\delta \to 0} \frac{\int_{b(x)}^{b(x+\delta)} f(x+\delta,t)dt}{\delta} = \lim_{\delta \to 0} \frac{b(x+\delta) - b(x)}{\delta} \cdot \frac{\int_{b(x)}^{b(x+\delta)} f(x+\delta,t)dt}{b(x+\delta) - b(x)}$$
$$= \frac{d}{dx}b(x) \cdot \lim_{\delta \to 0} \frac{\int_{b(x)}^{b(x+\delta)} f(x+\delta,t)dt}{b(x+\delta) - b(x)}$$

Заметим, что

$$\min_{t \in [b(x):b(x+\delta)]} f(x+\delta,t) \leqslant \frac{\int_{b(x)}^{b(x+\delta)} f(x+\delta,t)dt}{b(x+\delta) - b(x)} \leqslant \max_{t \in [b(x):b(x+\delta)]} f(x+\delta,t)$$

По непрерывности f предыдущие минимум и максимум определены и

$$\lim_{\delta \to 0} \min_{t \in [b(x):b(x+\delta)]} f(x+\delta,t) = \lim_{\delta \to 0} \max_{t \in [b(x):b(x+\delta)]} f(x+\delta,t) = f(x,b(x))$$

Тогда

$$\lim_{\delta \to 0} \frac{\int_{b(x)}^{b(x+\delta)} f(x+\delta,t)dt}{b(x+\delta) - b(x)} = f(x,b(x))$$

Отсюда следует требуемое.

Лемма 85.2.

$$\lim_{\delta \to 0} \frac{\int_{a(x)}^{b(x)} (f(x+\delta,t) - f(x,t))dt}{\delta} = \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t)dt$$

Доказательство. Заметим, что для всяких δ и $t \in [a(x);b(x)]$ есть $\gamma_t(\delta) \in (0;\delta)$, что

$$\frac{f(x+\delta,t)-f(x,t)}{\delta} = \frac{\partial}{\partial x}f(x+\gamma_t(\delta),t)$$

Тогда

$$\frac{\int_{a(x)}^{b(x)} (f(x+\delta,t) - f(x,t))dt}{\delta} = \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x+\gamma_t(\delta),t)dt$$

Заметим, что

$$\left| \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x + \gamma_t(\delta), t) dt - \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x, t) dt \right|$$

$$\leq \int_{a(x)}^{b(x)} \left| \frac{\partial}{\partial x} f(x + \gamma_t(\delta), t) - \frac{\partial}{\partial x} f(x, t) \right| dt$$

$$\leq \int_{a(x)}^{b(x)} \max_{y \in [x; x + \delta]} \left| \frac{\partial}{\partial x} f(y, t) - \frac{\partial}{\partial x} f(x, t) \right| dt$$

$$\leq (b(x) - a(x)) \max_{\substack{y \in [x; x + \delta] \\ t \in [a(x); b(x)]}} \left| \frac{\partial}{\partial x} f(y, t) - \frac{\partial}{\partial x} f(x, t) \right|$$

Следовательно так как $\frac{\partial}{\partial x}f$ непрерывна, то $\frac{\partial}{\partial x}f(y,t)-\frac{\partial}{\partial x}f(x,t)$ непрерывна, а поэтому

$$\lim_{\delta \to 0} \max_{\substack{y \in [x; x+\delta] \\ t \in [a(x); b(x)]}} \left| \frac{\partial}{\partial x} f(y, t) - \frac{\partial}{\partial x} f(x, t) \right| = 0$$

и тогда

$$\lim_{\delta \to 0} \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x + \gamma_t(\delta), t) dt = \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x, t) dt$$

Таким образом получаем требуемое.

Объединяя всё вышесказанное, получаем требуемое.

Следствие 85.1. Если взять функции a и b константными, то будет лишь условие на непрерывность f и $\frac{\partial}{\partial x} f(x,t)$ на прямоугольнике $[x_0;x_1] \times [a;b]$, а мы получим, что

$$\frac{d}{dx} \int_{a}^{b} f(x,t)dt = \int_{a}^{b} \frac{\partial}{\partial x} f(x,t)dt$$

Теорема 86. Пусть дана непрерывная функция f(x,y) на $[a;b] \times [c;d]$. Тогда интегралы

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx \qquad \qquad u \qquad \qquad \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy$$

определены и равны.

Доказательство. Заметим, что $\int_a^t f(x,y) dx$ и $\int_c^s f(x,y) dy$ являются непрерывными функциями от y и x соответственно. Следовательно интегралы

$$F(t,s) := \int_a^t \left(\int_c^s f(x,y) dy \right) dx \qquad \qquad \mathbf{u} \qquad \qquad G(t,s) := \int_c^s \left(\int_a^t f(x,y) dx \right) dy$$

определены. При этом

$$\frac{\partial}{\partial t}F(t,s) = \int_{s}^{s} f(t,y)dy$$

И

$$\frac{\partial}{\partial t}G(t,s) = \frac{\partial}{\partial t} \int_{c}^{s} \left(\int_{a}^{t} f(x,y)dx \right) dy = \int_{c}^{s} \frac{\partial}{\partial t} \left(\int_{a}^{t} f(x,y)dx \right) dy = \int_{c}^{s} f(t,y)dy$$

T.e. $\frac{\partial}{\partial t}F = \frac{\partial}{\partial t}G$.

При этом несложно видеть, что F(a,s) = G(a,s) = 0, следовательно

$$F(t,s) = \int_{a}^{t} \frac{\partial}{\partial t} F(x,s) dx + F(a,s) = \int_{a}^{t} \frac{\partial}{\partial t} G(x,s) dx + G(a,s) = G(t,s)$$

5.4 Кривые

Определение 42. Kpusas — непрерывное отображение отрезка [0;1] в любое топологическое пространство (например, \mathbb{R}^n).

Кривая Пеано, тра-ля-ля...

Определение 43. Длина кривой τ — значение

$$\sup \left\{ \sum_{k=1}^{n} d(\tau(x_{k-1}), \tau(x_k)) \mid n \in \mathbb{N} \setminus \{0\} \land x_0 = 0 \land x_n = 1 \right\}$$

Утверждение 87. Если дана кривая τ в \mathbb{R}^n и она дифференцируема по всем координатам, то её длина равна

$$\int_0^1 \sqrt{\left(\frac{\partial}{\partial x_1}\tau(t)\right)^2 + \dots + \left(\frac{\partial}{\partial x_n}\tau(t)\right)^2} dt = \int_0^1 |\operatorname{grad}(\tau(t))| dt$$

6 Кривые

Определение 44. n-мерная кривая — непрерывное отображение $f:[a;b] \to \mathbb{R}^n$.

Определение 45. Вариация функции $f:S \to \mathbb{R}^n \ (S \subseteq \mathbb{R})$ на отрезке $[a;b] \subseteq S$ — величина

$$V_f([a;b]) := \sup_{\Sigma} \sum_{k=1}^m |f(x_k) - f(x_{k-1})|,$$

где нахождение супремума производится во всем разбиениям $\Sigma = \{[x_k; x_{k-1}]\}_{k=1}^m$ отрезка [a; b], а |X - Y| — евклидово расстояние между точками \mathbb{R}^n (X - Y — поточечная разница, а |X| — евклидов модуль вектора).

Замечание. Неформально говоря, $V_f([a;b])$ — длина кривой $f|_{[a:b]}$.

Лемма 88.

- 1. Если $f: \mathbb{R} \to \mathbb{R}$ монотонна, то $V_f([a;b]) = |f(a) f(b)|$.
- 2. $V_f([a;b]) = 0$ тогда и только тогда, когда $f|_{[a;b]} \equiv \text{const.}$
- 3. $V_{f+g} \leqslant V_f + V_g$.
- 4. Для всяких $a \leq b \leq c$ верно $V_f([a;c]) = V_f([a;b]) + V_f([b;c])$.

Лемма 89. Будем рассматривать функции $[a;b] \to \mathbb{R}$.

- 1. Функция, представимая в виде разницы двух монотонных функций, имеет конечную вариацию.
- 2. Функция, имеющая конечную вариацию, представима в виде разницы двух монотонных функций.

Таким образом мы получаем, что функция имеет конечную вариацию тогда и только тогда, когда представима в виде разницы двух ограниценных функций.

Доказательство.

- 1. Так как f_1 и $-f_2$ имеют ограниченные вариации, то вариация их суммы, ограниченная сверху суммой их вариаций, тоже ограничена.
- 2. Рассмотрим функции

$$\varphi(x) := V_f([a;x])$$
 и $h := \varphi - f$.

Понятно, что тогда $f=\varphi-h$, а φ не убывает. При этом для всяких $x\leqslant y\in [a;b]$

$$f(y) - f(x) \leqslant V_f([x;y]) = \varphi(y) - \varphi(x) \implies h(x) = \varphi(x) - f(x) \leqslant \varphi(y) - f(y) = h(y),$$

 \mathbf{T} .е. h тоже не убывает.

Лемма 90. Пусть $g:[a;b] \to [c;d]$ — непрерывная биекция (следовательно строго монотонная). Тогда для всякой функции f

$$V_f([c;d]) = V_{f \circ g}([a;b]).$$

Лемма 91. Пусть f — гладкая функция $[a;b] \to \mathbb{R}^n$ (m.e. $f = (f_i)_{i=1}^n$, где кажедая f_i гладка). Тогда

$$V_f([a;b]) = \int_a^b \sqrt{\sum_{i=1}^n f_i'(x)^2} dx.$$

Доказательство. Понятно, что

$$V_f([a;b]) = \sup_{\Sigma} \sum_{k=1}^m \sqrt{\sum_{i=1}^n (f_i(x_k) - f_i(x_{k-1}))^2}$$

где $\Sigma = \{[x_k; x_{k-1}]\}_{k=1}^m$ — разбиение [a; b]. Следовательно есть последовательность разбиений $\{\Sigma_l\}_{l=0}^\infty$, что супремум совпадает с пределом по этой последовательности (того же выражения). При этом понятно, что при замене разбиения на подразбиение выражение не уменьшается. Следовательно можно считать, что Σ_{l+1} — подразбиение Σ_l , а длины отрезков в разбиении Σ_l не больше $1/2^l$. При этом

$$\lim_{\{\Sigma\}_{l=0}^{\infty}} \sum_{k=1}^{m} \sqrt{\sum_{i=1}^{n} (f_i(x_k) - f_i(x_{k-1}))^2} = \lim_{\{\Sigma\}_{l=0}^{\infty}} \sum_{k=1}^{m} (x_k - x_{k-1}) \sqrt{\sum_{i=1}^{n} f'_i(\xi_{i,k})^2}$$

где для разбиения Σ_l для всяких x_k , x_{k-1} и f_i строится $\xi_{i,k} \in [x_{k-1}; x_k]$ по теореме 39. Таким образом, если описанный интеграл сходится, то последний предел с ним совпадает по определению интеграла Римана.

Ну а интеграл сходится, так как подинтегральная функция непрерывна.

Определение 46. Пусть дана непрерывная функция $f:[a;b] \to \mathbb{R}^n$. Естественной параметризацией f называется функция $f \circ \psi$, где $\psi:[0;\alpha] \to [a;b]$ — возрастающая биекция, а

$$V_{f \circ \psi}([0; x]) = x.$$

Определение 47. Непрерывная функция $f:[a;b] \to \mathbb{R}^n$ называется *путём без остановок*, если f не константна ни на каком интервале.

Лемма 92. Путь с ограниченной вариацией $f:[a;b] \to \mathbb{R}^n$ не имеет остановок тогда и только тогда, когда обратима функция

$$\varphi: [a;b] \to \mathbb{R}, x \mapsto V_f([a;x]).$$

Теорема 93. У пути $f : [a;b] \to \mathbb{R}^n$ имеется естественная параметризация тогда и только тогда, когда f имеет конечную вариацию и не имеет остановок.

Доказательство. Из существования естественной параметризации очевидным образом выходит конечность вариации и отсутствие остановок. Если f имеет конечную вариацию, то функция

$$\varphi: [a;b] \to \mathbb{R}, x \mapsto V_f([a;x])$$

корректно определена (и монотонна). А из отсутствия остановок следует, что φ — биекция $[a;b] \to [0;\alpha]$ для некоторого α . Пусть $\psi := \varphi^{-1}$. Тогда

$$V_{f \circ \psi}([0;x]) = V_f([a;\psi(x)]) = \varphi(\psi(x)) = x,$$

т.е. $f \circ \psi$ — естественная параметризация f.

Замечание. Если g — естественная параметризация f, то для всяких $0 \leqslant c \leqslant d$

$$V_g([c;d]) = d - c.$$

В таком случае |g'|=1.

7 Тригонометрия

Теорема 94. Рассмотрим функцию $\Gamma: \mathbb{R} \to S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$, что

- $\Gamma(0) = 1$,
- $\Gamma \in C^1 \ u \ |\Gamma'| = 1$,
- $\Gamma'(0) = i$.
- 1. Такая функция не более чем единственна.
- 2. Такая функция существует.
- 3. Такая функция является естественной параметризацией кривой.

Доказательство. Пусть дана Γ , удовлетворяющая данному условию. Заметим, что $\Gamma(t) \in S^1$ тогда и только тогда, когда $\Gamma(t)\overline{\Gamma}(t) = 1$. Дифференцируя последнее, получаем

$$\Gamma'(t)\overline{\Gamma}(t) + \Gamma(t)\overline{\Gamma}'(t) = 0,$$
 r.e. $2\operatorname{Re}(\overline{\Gamma}'(t)\Gamma(t)) = 0.$

Следовательно $\Gamma(t)\overline{\Gamma}'(t)=ih(t)$, где $h(t)\in\mathbb{R}$. Вспоминая, что $|\Gamma|=|\Gamma'|=1$, получаем, что $h(t)\equiv\pm 1$. При этом $h(0)=\Gamma(0)\overline{\Gamma}'(0)/i=-1$. Следовательно

$$\Gamma'(t) = i\Gamma(t).$$

Таким образом всякое решение удовлетворяет полученному дифференциальному уравнению, а следовательно бесконечно дифференцируема: $\Gamma^{(n)} = i^n \Gamma$.

1. Пусть есть две функции Γ_1 и Γ_2 удовлетворяют условиям на Γ . Тогда заметим, что

$$(\Gamma_1 \overline{\Gamma_2})' = \Gamma_1' \overline{\Gamma_2} + \Gamma_1 \overline{\Gamma_2}' = i \Gamma_1 \overline{\Gamma_2} + \Gamma_1 \overline{i \Gamma_2} = 0.$$

Таким образом $\Gamma_1\overline{\Gamma_2}=\mathrm{const}=\Gamma_1(0)\overline{\Gamma_2}(0)=1$. Следовательно $\Gamma_1=\Gamma_2$.

2. Рассмотрим функцию

$$\Gamma: \mathbb{R} \to S^1, x \mapsto \exp(xi) = \sum_{k=0}^{\infty} \frac{(xi)^k}{k!}.$$

Заметим, что данный ряд абсолютно сходится на всём \mathbb{R} , значит Γ бесконечно дифференцируема на всём \mathbb{R} . Теперь заметим следующее.

• Так как $\exp(-xi) = \exp(\overline{xi}) = \overline{\exp(xi)}$, то

$$\operatorname{Re}(\Gamma(x)) = \frac{\exp(xi) + \exp(-xi)}{2}, \qquad \operatorname{Im}(\Gamma(x)) = \frac{\exp(xi) - \exp(-xi)}{2i}.$$

Следовательно

$$\begin{split} |\Gamma(x)| &= \operatorname{Re}(\Gamma(x))^2 + \operatorname{Im}(\Gamma(x))^2 \\ &= \frac{(\exp(xi) + \exp(-xi))^2}{4} - \frac{(\exp(xi) - \exp(-xi))^2}{4} \\ &= \exp(xi) \exp(-xi) \\ &= 1. \end{split}$$

- $\Gamma(0) = \exp(0) = 1$.
- $\Gamma \in C^{\infty}$ u $\Gamma' = (\exp(xi))' = i \exp'(xi) = i \exp(xi) = i\Gamma$.
- $|\Gamma'| = |i||\Gamma| = 1$.
- $\Gamma'(0) = i\Gamma(0) = i$.

Таким оразом данная функция удовлетворяет условиям на Г.

3. Поскольку $|\Gamma'| = 1$, то

$$V_{\Gamma}([a;b]) = \int_{a}^{b} |\Gamma'(x)| dx = \int_{a}^{b} dx = b - a.$$

Определение 48. Рассматривая функцию Г выше, определим

$$cos(x) := Re(\Gamma(x))$$
 и $cos(x) := Re(\Gamma(x)).$

8 Многомерный анализ

8.1 Дифференцируемость

Определение 49. Функция $f: \mathbb{R}^m \to \mathbb{R}^n$ называется $\partial u \phi \phi e penuupye mo u в точке <math>x_0$, если есть некоторая линейная отображение (векторных пространств) $L: \mathbb{R}^m \to \mathbb{R}^n$, что для всякой точки x верно, что

$$f(x) = f(x_0) + L(x - x_0) + o(||x - x_0||).$$

L называется $\partial u\phi\phi$ еренциалом f в точке x и обозначается $d_{x_0}f$.

Замечание 9.

• Дифференциал не более чем единственен. Действительно, если

$$f(x) = f(x_0) + L_1(x - x_0) + o(\|x - x_0\|) = f(x_0) + L_2(x - x_0) + o(\|x - x_0\|),$$

ТО

$$(L_1 - L_2)(x - x_0) = o(||x - x_0||),$$

что означает тривиальность $L_1 - L_2$, т.е. равенство $L_1 = L_2$.

• Дифференциал линеен. Действительно, если L и M — дифференциалы f и g в точке x_0 , а $\alpha, \beta \in \mathbb{R}$, то

$$(\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x)$$

$$= \alpha (f(x_0) + L(x - x_0) + o(||x - x_0||)) + \beta (g(x_0) + M(x - x_0) + o(||x - x_0||))$$

$$= (\alpha f + \beta g)(x_0) + (\alpha L + \beta M)(x - x_0) + o(||x - x_0||)$$

8.2 Нормирование линейных операторов

Попробуем ввести норму на пространстве линейных операторов $\mathbb{R}^{m \times n}$.

Определение 50. Eеклидова норма — норма, определённая на пространстве операторов $\mathbb{R}^{m \times n}$ по правилу

$$||L|| := \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} L_{i,j}^2}.$$

Определение 51. Операторная норма — норма определённая на пространстве операторов $\mathbb{R}^{m \times n}$ по правилу

$$\begin{split} \|L\| &:= \sup_{\|v\| \leqslant 1} \|L(v)\| &= \sup_{\|v\| < 1} \|L(v)\| &= \sup_{\|v\| < 1} \|L(v)\| \\ &= \sup_{\|v\| \neq 0} \frac{\|L(v)\|}{\|v\|} &= \inf\{c \geqslant 0 \mid \forall v \in \mathbb{R}^m \quad \|L(v)\| \leqslant c\|v\|\} \end{split}$$

(при этом во всех случаях кроме случая с ||v|| < 1 можно заменить sup и inf на max и min соответственно).

Пока будем рассматривать операторную норму.

Лемма 95. Пусть даны линейные операторы $A: \mathbb{R}^m \to \mathbb{R}^n$ и $B: \mathbb{R}^k \to \mathbb{R}^m$. Тогда $||A|| \le ||A|| \cdot ||B||$.

Доказательство. Действительно,

$$\forall v \in \mathbb{R}^k \qquad \|(AB)(v)\| = \|A(B(v))\| \leqslant \|A\| \|B(v)\| \leqslant \|A\| \|B\| \|v\|,$$

откуда $||AB|| \le ||A|| \cdot ||B||$.

Лемма 96. Пусть дан линейный оператор $A: \mathbb{R}^n \to \mathbb{R}^m$. TFAE

- 1. Ядро A тривиально.
- 2. Существует $\varepsilon > 0$, что для всякого $v \in \mathbb{R}^n$

$$||A(v)|| \geqslant \varepsilon ||v||.$$

Доказательство. Понятно, что для всякого $\lambda \in \mathbb{R}$ выполнено

$$||A(v)|| \geqslant \varepsilon ||v|| \implies ||A(\lambda v)|| = ||\lambda A(v)|| = |\lambda|||A(v)|| \geqslant \lambda \varepsilon ||v|| = \varepsilon ||\lambda v||.$$

Значит условие на ε можно сузить до условий для $v \in \|v\| = 1$.

Множество получившихся v образуют единичную сферу — компактное множество. Таким образом искомое ε существует тогда и только тогда, когда существует $\varepsilon > 0$, что для функции

$$f: \{v \in \mathbb{R}^n \mid ||v|| = 1\} \to \mathbb{R}, v \mapsto \frac{||A(v)||}{||v||} = ||A(v)||$$

верно неравенство

$$f \geqslant \varepsilon$$
.

А так как f непрерывна (так как A и ||v|| непрерывны) и определена на компакте, то принимает на нём минимум. Т.е. есть $v \in \mathbb{R}^n \setminus \{\vec{0}\}$, что

$$\frac{\|A(v)\|}{\|v\|} = \min(f).$$

Таким образом если $\min(f) > 0$, то такое ε , очевидно, существует; в противном случае есть $v \in \mathbb{R}^n \setminus \{\vec{0}\}$, что ||A(v)|| = 0, т.е. $A(v) = \vec{0}$, т.е. A имеет нетривиальное ядро.

Пемма 97. Пусть даны $f: U \to \mathbb{R}^m$ и $g: V \to \mathbb{R}^k$, где $U \subseteq \mathbb{R}^n$ и $V \subseteq \mathbb{R}^m$ — окрестности x_0 и $f(x_0)$. Пусть также известно, что f и g дифференцируемы в x_0 и $f(x_0)$ и A и B — их дифференциалы соответственно. Тогда $g \circ f$ дифференцируема в x_0 , а BA — её дифференциим в x_0 .

Доказательство. Действительно,

$$(g \circ f)(x) = g(f(x))$$

$$= g(f(x_0) + A(x - x_0) + o(x - x_0))$$

$$= g(f(x_0)) + B(A(x - x_0) + o(x - x_0)) + o(A(x - x_0) + o(x - x_0))$$

$$= g(f(x_0)) + B(A(x - x_0)) + o(x - x_0) + o(x - x_0)$$

$$= (g \circ f)(x_0) + (B \circ A)(x - x_0) + o(x - x_0)$$

Для завершения уточним лишь, что для всякого линейного оператора L

$$||L(v)|| \le ||L|| ||v|| = O(v),$$

и следовательно

$$||L(o(v))|| = O(o(v)) = o(v).$$

И поскольку o(O(f)) = o(f), то

$$B(A(x-x_0)+o(x-x_0)) = B(A(x-x_0)) + B(o(x-x_0)) = B(A(x-x_0)) + o(x-x_0),$$

a

$$o(A(x-x_0)+o(x-x_0))=o(O(x-x_0)+o(x-x_0))=o(O(x-x_0))=o(x-x_0).$$

Лемма 98. Функция $f: \mathbb{R}^n \to \mathbb{R}^m$ можно покоординатно разложить как $(f_i)_{i=1}^m$. Тогда f дифференцируема в точке x_0 тогда и только тогда, когда все f_i дифференцируемы в x_0 .

Доказательство. Действительно, если f дифференцируема, то f_i дифференцируема как композиция f и координатной проекции — линейной функции, т.е. везде одинаково дифференцируемой. Если же все f_i дифференцируемы, то, понятно, дифференцируемы и все $f_i\bar{e}_i$, а значит дифференцируема и

$$f = \sum_{i=1}^{m} f_i \bar{e}_i.$$

Определение 52. Частная производная $f:\mathbb{R}^n \to \mathbb{R}$ по x_k в точке $\bar{x}_0=(x_{0,i})_{i=1}^n$ —

$$\left. \frac{\partial f}{\partial x_k} \right|_{\bar{x}_0} := g'(x_{0,k}),$$

где

$$g(t) := f(x_{0,1}, \dots, x_{0,k-1}, t, x_{0,k+1}, \dots, x_{0,n}).$$

Если рассматривать частную производную как функцию, то

$$\frac{\partial f}{\partial x_k} := \frac{d}{dt} f(x_1, \dots, x_{k-1}, t, x_{k+1}, \dots, x_n).$$

Определение 53. Градиент функции $f: \mathbb{R}^n \to \mathbb{R}$ в точке \bar{x}_0 —

$$(\operatorname{grad} f)(x_0) := \left(\frac{\partial f}{\partial x_k}\Big|_{\bar{x}_0}\right)_{k=1}^n.$$

Если рассматривать градиент как функцию, то

$$\operatorname{grad} f := \left(\frac{\partial f}{\partial x_k}\right)_{k=1}^n.$$

Определение 54. Пусть имеется функция $f: \mathbb{R}^n \to \mathbb{R}$ и вектор $e \in \mathbb{R}^n$, что $\|e\| = 1$. f дифференцируема по направлению e в точке $x_0 \in \mathbb{R}^n$, если дифференцируема в нуле функция

$$q(t) := f(x_0 + te).$$

При этом производной f по направлению e в точке \bar{x}_0 называется g'(0).

Пемма 99. Пусть дана дифференцируемая в \bar{x}_0 функция $f: \mathbb{R}^n \to \mathbb{R}$.

- 1. Частные производные f в \bar{x}_0 определены по всем координатам.
- 2. B точке \bar{x}_0 верно, что

$$df = (\operatorname{grad} f) \cdot dx.$$

3. Производная f в точке x_0 по направлению е равна

$$(\operatorname{grad} f) \cdot e$$
.

4.

$$||df|| = || \operatorname{grad}(f) ||.$$

Доказательство.

1. Пусть L — дифференциал f в \bar{x}_0 . В таком случае

$$\frac{\partial f}{\partial x_k} = \lim_{\varepsilon \to 0} \frac{f(x_{0,1}, \dots, x_{0,k-1}, x_{0,k} + \varepsilon, x_{0,k+1}, \dots, x_{0,n}) - f(x_0)}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{f(x_0 + \varepsilon e_k) - f(x_0)}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{L(\varepsilon e_k) + o(\varepsilon e_k)}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{\varepsilon L(e_k) + o(\varepsilon)}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} L(e_k) + o(1)$$

Последний предел по понятным причинам сходится.

2. Пусть p_k — проекция на координату x_k . Понятно, что

$$L\left(\sum_{k=1}^n \alpha_k e_k\right) = \sum_{k=1}^n \alpha_k L(e_k) = \sum_{k=1}^n p_k \left(\sum_{i=1}^n \alpha_i e_i\right) L(e_k) = \left(\sum_{k=1}^n L(e_k) p_k\right) \left(\sum_{i=1}^n \alpha_i e_i\right),$$

т.е.

$$L = \sum_{k=1}^{n} L(e_k) p_k = \sum_{k=1}^{n} \frac{\partial f}{\partial x_k} \Big|_{\bar{x}_0} p_k.$$

При этом $L = d_{\bar{x}_0} f$, а $p_k := d_{\bar{x}_0} x_k$, и поэтому

$$d_{x_0}f = \sum_{k=1}^n \frac{\partial f}{\partial x_k} \Big|_{\bar{x}_0} d_{\bar{x}_0} x_k = \left(\frac{\partial f}{\partial x_k} \Big|_{\bar{x}_0} \right)_{k=1}^n \cdot (d_{\bar{x}_0} x_k)_{k=1}^n = (\operatorname{grad} f) \Big|_{\bar{x}_0} \cdot d_{\bar{x}_0} x.$$

Это в общей форме (не зависимо от \bar{x}_0) можно переписать как

$$df = (\operatorname{grad} f) \cdot dx.$$

3. Повторим трюк:

$$\lim_{\varepsilon \to 0} \frac{f(x_0 + \varepsilon e) - f(x_0)}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{L(\varepsilon e) + o(\varepsilon e)}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{\varepsilon L(e) + o(\varepsilon)}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} L(e) + o(1).$$

Таким образом искомая производная по направлению равна

$$L(e) = ((\operatorname{grad} f) \cdot dx)(e) = (\operatorname{grad} f) \cdot dx(e) = (\operatorname{grad} f) \cdot e.$$

4. Несложно видеть, что

$$||d_{\bar{x}_0}f|| = \sup_{|e|=1} ||d_{\bar{x}_0}f(e)|| = \sup_{|e|=1} ||(\operatorname{grad} f)|_{\bar{x}_0} \cdot e||.$$

При этом

$$\|(\operatorname{grad} f)|_{\bar{x}_0} \cdot e\| \leq \|(\operatorname{grad} f)|_{\bar{x}_0}\| \cdot \|e\| = \|(\operatorname{grad} f)|_{\bar{x}_0}\|,$$

а равенство достигается, например, при

$$e := \frac{(\operatorname{grad} f)|_{\bar{x}_0}}{\|(\operatorname{grad} f)|_{\bar{x}_0}\|}.$$

Следовательно

$$||d_{\bar{x}_0}f|| = \sup_{|e|=1} ||(\operatorname{grad} f)|_{\bar{x}_0} \cdot e|| = ||(\operatorname{grad} f)|_{\bar{x}_0}||.$$

 Π ример 8.

Привести пример, когда в точке есть производные по всем направлениям (и, может, даже в одной плоскости), но нет производной.

Определение 55. $Mampuya\ \mathcal{I}\kappa o \delta u$ функции $f:\mathbb{R}^n \to \mathbb{R}^m$ — матрица

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Поскольку элементы матрицы являются функциями, то вместо просто обозначения матрицы (например, "J") пишут зависимость от аргумента f (т.е. "J(v)").

Лемма 100.

1. Пусть дана функция $f: \mathbb{R}^n \to \mathbb{R}^m$, дифференцируемая в точке \bar{x}_0 , и её матрица Якоби J Тогда

$$d_{\bar{x}_0}f = J(\bar{x}_0).$$

2. Пусть даны функции $f: \mathbb{R}^n \to \mathbb{R}^m$ и $g: \mathbb{R}^m \to \mathbb{R}^l$, дифференцируемые в точках \bar{x}_0 и $f(\bar{x_0})$ соответственно, и их матрицы Якоби J_f и J_g соответственно. Тогда для матрицы Якоби функции $g \circ f$ верно, что

$$J_{q \circ f}(\bar{x}_0) = J_q(f(\bar{x}_0))J_f(\bar{x}_0).$$

Как следствие, это означает, что

$$J_{g \circ f} = (J_g \circ f) \cdot J_f.$$

Доказательство.

1. Повторим, что для каждого $t \in [1; m]$

$$f_t(\bar{x}) = f_t(\bar{x}_0) + d_{\bar{x}_0} f_t(\bar{x} - \bar{x}_0) + o(\bar{x} - \bar{x}_0).$$

Отсюда сразу получаем

$$f(\bar{x}) = \begin{pmatrix} f_{1}(\bar{x}) \\ \vdots \\ f_{m}(\bar{x}) \end{pmatrix}$$

$$= \begin{pmatrix} f_{1}(\bar{x}_{0}) \\ \vdots \\ f_{m}(\bar{x}_{0}) \end{pmatrix} + \begin{pmatrix} d_{\bar{x}_{0}}f_{1}(\bar{x} - \bar{x}_{0}) \\ \vdots \\ d_{\bar{x}_{0}}f_{m}(\bar{x} - \bar{x}_{0}) \end{pmatrix} + \begin{pmatrix} o(\bar{x} - \bar{x}_{0}) \\ \vdots \\ o(\bar{x} - \bar{x}_{0}) \end{pmatrix}$$

$$= f(\bar{x}_{0}) + \begin{pmatrix} (\operatorname{grad} f_{1}|_{\bar{x}_{0}}) \cdot (\bar{x} - \bar{x}_{0}) \\ \vdots \\ (\operatorname{grad} f_{m}|_{\bar{x}_{0}}) \cdot (\bar{x} - \bar{x}_{0}) \end{pmatrix} + o(\bar{x} - \bar{x}_{0})$$

$$= f(\bar{x}_{0}) + \begin{pmatrix} \operatorname{grad} f_{1}|_{\bar{x}_{0}} \\ \vdots \\ \operatorname{grad} f_{m}|_{\bar{x}_{0}} \end{pmatrix} \cdot (\bar{x} - \bar{x}_{0}) + o(\bar{x} - \bar{x}_{0})$$

$$= f(\bar{x}_{0}) + \begin{pmatrix} \operatorname{grad} f_{1}|_{\bar{x}_{0}} \\ \vdots \\ \operatorname{grad} f_{m}|_{\bar{x}_{0}} \end{pmatrix} \cdot (\bar{x} - \bar{x}_{0}) + o(\bar{x} - \bar{x}_{0})$$

(но поскольку матрица, строки которой суть градиенты f_i , является матрицей Якоби функции f)

$$= f(\bar{x}_0) + J(\bar{x}_0) \cdot (\bar{x} - \bar{x}_0) + o(\bar{x} - \bar{x}_0)$$

2. Прямо следует из леммы 97.

Теорема 101. Пусть дана функция $f: U \to \mathbb{R}^m$, где $U \subseteq \mathbb{R}^n$ — окрестность \bar{x}_0 . Пусть также все частные производные f определены в V и непрерывны в точке \bar{x}_0 . Тогда f дифференцируема в \bar{x}_0 .

Доказательство. По лемме 98 можно считать m=1. Тогда

$$f(\bar{x}) = f(x_1, \dots, x_n)$$

$$= f(\bar{x}_0) + \sum_{k=1}^n f(x_{0,1}, \dots, x_{0,k-1}, x_k, \dots, x_n) - f(x_{0,1}, \dots, x_{0,k}, x_{k+1}, \dots, x_n);$$

по теореме Лагранжа имеем, что для каждой разницы в сумме есть $\xi_k \in (x_k; x_{0,k})$, что

$$= f(\bar{x}_0) + \sum_{k=1}^n \frac{\partial f}{\partial x_k} \Big|_{(x_{0,1},\dots,x_{0,k-1},\xi_k,x_{k+1},\dots,x_n)} (x_k - x_{0,k});$$

поскольку точки, в которых берутся значения частных производных находятся от \bar{x}_0 не дальше, чем \bar{x} от \bar{x}_0 , то по непрерывности сами значения частных производных приближаются значениями в \bar{x}_0 при помощи o(1):

$$= f(\bar{x}_0) + \sum_{k=1}^n \left(\frac{\partial f}{\partial x_k} \Big|_{\bar{x}_0} + o(1) \right) (x_k - x_{0,k})$$

= $f(\bar{x}_0) + \operatorname{grad} f|_{\bar{x}_0} \cdot (\bar{x} - \bar{x}_0) + o(\bar{x} - \bar{x}_0).$

Следовательно в качестве искомого дифференциала подойдёт линейный оператор

$$v \mapsto (\operatorname{grad} f)(\bar{x}_0) \cdot v.$$

Теорема 102. Пусть дана гладкая (т.е. все частные производные (или, что равносильно, дифференциал) определены и непрерывны) $f:U\to\mathbb{R}$, где U — некоторое открытое множество. Пусть известно, что $\bar{x}_0\in U$ — точка локального минимума (максимума). Тогда $\operatorname{grad} f|_{\bar{x}_0}=0$.

Доказательство. Заменой f на -f можно свести задачу максимума к задаче минимума, а заменой U на окрестность \bar{x}_0 , где достигается локальная минимальность можно получить, что \bar{x}_0 — точка минимума на всём U.

Предположим противное: grad $f|_{\bar{x}_0} \neq 0$. Рассмотрим направление

$$e := \frac{\operatorname{grad} f|_{\bar{x}_0}}{\left|\operatorname{grad} f|_{\bar{x}_0}\right|}.$$

Заметим, что

$$f(\bar{x}_0 + te) - f(\bar{x}_0) = d_{\bar{x}_0} f(te) + o(te) = (d_{\bar{x}_0} f(e) + o(1))t.$$

При этом

$$d_{\bar{x}_0} f(e) = \operatorname{grad} f|_{\bar{x}_0} \cdot e = \frac{\left(\operatorname{grad} f|_{\bar{x}_0}\right)^2}{\left|\operatorname{grad} f|_{\bar{x}_0}\right|} = \left|\operatorname{grad} f|_{\bar{x}_0}\right| > 0,$$

откуда значит, что есть окрестность нуля (по t), где $d_{\bar{x}_0}f(e)+o(1)>0$. Также есть окрестность нуля, в которой $\bar{x}_0+te\in U$. Значит, беря в пересечении этих окрестностей отрицательное t, имеем, что

$$f(\bar{x}_0 + te) < f(\bar{x}_0),$$

т.е. \bar{x}_0 не является точкой минимума в U — противоречие.

Теорема 103 (об обратном отображении). Пусть $f: G \to \mathbb{R}^n$ — гладкая на G функция, где $G \subseteq \mathbb{R}^n$ открыто.

- 1. У всякой точки $\bar{x}_0 \in G$ есть окрестность, где f липшицева.
- 2. У всякой точки $\bar{x}_0 \in G$, в которой дифференциал невырожден (т.е. имеет тривиальное ядро, т.е. det $d_{\bar{x}_0} f \neq 0$), есть окрестность, где f билипшицева.
- 3. Пусть дано открытое $V \subseteq G$, что f на нём билипшицева, а df не вырождается на нём. Тогда для всякой точки $x_0 \in V$ верно, что $f(x_0)$ является внутренней точкой f(V). И следовательно f(V) открыто.
- 4. Для всякой точки $\bar{x}_0 \in G$, в которой дифференциал невырожден, существует окрестность $V \subseteq G$ точки \bar{x}_0 и функция $g: H \to \mathbb{R}^n$, что $H \subseteq \mathbb{R}^n$ открыто, $f(V) \subseteq H$ и

$$g \circ f|_V = \mathrm{Id}_V$$
.

5. g дифференцируема в $f(\bar{x}_0)$ и дифференциал в этой точке равен A^{-1} . Как следствие g дифференцируема на f(V) и

$$dg = df^{-1} \circ f^{-1}.$$

Разделить теорему на две: про существование у точки при определённых условиях "хорошей" окрестности и про обратимость функции на "хорошем" открытом множестве.

Может попробовать обобщить пункт 4 до "f(V) есть вложение диска в \mathbb{R}^m ($m \ge n$)"?

Доказательство.

Лемма 103.1. Пусть имеется матрица

$$A(p) = \begin{pmatrix} a_{1,1}(p) & \cdots & a_{1,n}(p) \\ \vdots & \ddots & \vdots \\ a_{m,1}(p) & \cdots & a_{m,n}(p) \end{pmatrix},$$

где всякий её коэффициент $a_{i,j}$ есть непрерывная функция $C \to \mathbb{R}$, где C — некоторый ком-пакт в \mathbb{R}^k . Тогда максимальные растяжение и сужение матрицы A, т.е. величины

$$\sup_{v \in \mathbb{R}^n} \frac{\|A(p)v\|}{\|v\|} \qquad u \qquad \inf_{v \in \mathbb{R}^n} \frac{\|A(p)v\|}{\|v\|},$$

меняются непрерывно по р.

Доказательство. Вспомним, что эти же величины равны

$$\max_{v \in B_1(\bar{0})} \|A(p)v\| \qquad \text{ } \text{ } \text{ } \text{ } \text{ } \min_{v \in B_1(\bar{0})} \|A(p)v\|$$

соответственно. Таким образом имеем непрерывную функцию на компакте $C \times B_1(\bar{0})$.

Заметим также, что $C \times B_1(\bar{0})$ — компакт в \mathbb{R}^{n+k} . При этом функция $\pi:(p,v)\mapsto A(p)v$ на нём непрерывна, а следовательно равномерно непрерывна. Следовательно для всякого $\varepsilon>0$ есть $\delta=\delta(\varepsilon)>0$, что для всякой точки $x\in C\times B_1(\bar{0})$

$$\pi(U_{\delta}(x)) \subseteq U_{\varepsilon}(\pi(x)).$$

Покажим непрерывность максимума (непрерывность минимума доказывается по аналогии или сводится к максимуму заменой A на -A) в точке $p_0 \in C$. Пусть дано $\varepsilon > 0$. Пусть также

максимум M в точке p_0 достигается при векторе v_0 . Пусть p — точка из $\delta(\varepsilon)$ -окрестности точки p_0 . Тогда

$$\{(p,v)\}_{v\in B_1(\bar{0})}\subseteq U_{\delta(\varepsilon)}(\{(p_0,v)\}_{v\in B_1(\bar{0})}).$$

Следовательно,

$$\pi(\{(p,v)\}_{v\in B_1(\bar{0})}) \subseteq \pi(U_{\delta(\varepsilon)}(\{(p_0,v)\}_{v\in B_1(\bar{0})})) \subseteq U_{\varepsilon}(\pi(\{(p_0,v)\}_{v\in B_1(\bar{0})}))$$
$$\subseteq U_{\varepsilon}((-\infty;M)) \subseteq (-\infty;M+\varepsilon).$$

Так мы получили оценку сверху на максимум в точке p. Также заметим, что точка (p, v_0) лежит в $\delta(\varepsilon)$ -окрестности (p_0, v_0) , а значит $\pi(p, v_0) \in U_{\varepsilon}(M)$. Отсюда мы получаем оценку снизу на максимум в точке p. Итого, максимум в точке p находится в ε -окрестности M. Это и означает непрерывность в точке p_0 .

1. У \bar{x}_0 есть метрическая окрестность (т.е. окрестность, являющаяся открытым шаром с центром в \bar{x}_0) V, лежащая в G. В ней все частные производные непрерывны. Значит для всяких точек \bar{x} и \bar{y} верно, что если

$$\bar{e} := \bar{y} - \bar{x}, \qquad g(t) := f((1-t)\bar{x} + t\bar{y}),$$

ТО

$$g'(t) = d_{(1-t)\bar{x}+t\bar{y}}f(e),$$

откуда

$$|g'(t)| \le ||d_{(1-t)\bar{x}+t\bar{y}}f(e)|| \le ||d_{(1-t)\bar{x}+t\bar{y}}f|| \cdot ||e||.$$

Следовательно по теореме Лагранжа есть $\xi \in [0; 1]$, что

$$||f(\bar{y}) - f(\bar{x})|| = |g(1) - g(0)| = |g'(\xi) \cdot (1 - 0)| = |g'(\xi)| \le ||d_z f|| \cdot ||\bar{y} - \bar{x}||,$$

где $z:=(1-\xi)\bar x+\xi\bar y$. Немного уменьшая радиус окрестности V, получаем, что замыкание V лежит в G, а значит $\|d_z f\|$ (непрерывная функция по доказанной лемме) на V ограничена, а значит есть константа C>0, что

$$||d_z f|| \leqslant C$$
,

и следовательно,

$$||f(\bar{y}) - f(\bar{x})|| \le C||\bar{y} - \bar{x}||.$$

2. Мы показали существование окрестности, где f липшицева; осталось показать существование окрестности обратной липшицевости. Для этого по аналогии временно обозначим

$$||L|| := \inf_{v \in \mathbb{R}^n} \frac{||Lv||}{||v||}$$

и возьмём метрическую окрестность V точки \bar{x}_0 , что замыкание V лежит в G и $\|df\|$ не достигает на замыкании V нуля (так как она непрерывна, а значение в \bar{x}_0 отлично от нуля). Тогда для всяких точек \bar{x} и \bar{y}

$$||f(\bar{x}) - f(\bar{y})|| \ge ||d_z f|| \cdot ||\bar{y} - \bar{x}||$$

для некоторой точки $z \in [x;y]$. При этом $||d_z f|| \geqslant c$ в V для некоторого c > 0, значит

$$||f(\bar{x}) - f(\bar{y})|| \ge c||\bar{y} - \bar{x}||.$$

3. Давайте возьмём некоторое R>0, что $\overline{U}_R(\bar{x}_0)\subseteq V$. Пусть c>0 — константа обратной липшицевости f, т.е. для всяких $\bar{x},\bar{y}\in V$

$$||f(\bar{x}) - f(\bar{y})|| \ge c||\bar{x} - \bar{y}||.$$

Таким образом возьмём такой r > 0, что

$$(cR - r)^2 > r^2$$
 $(\Leftrightarrow cR > 2r).$

Тогда рассмотрим любую точку $\bar{y} \in U_r(f(\bar{x}_0))$ и введём функцию

$$g(\bar{x}) := ||f(\bar{x}) - \bar{y}||^2 = \sum_{k=1}^n (f_k(\bar{x}) - y_k)^2.$$

Понятно, что g определена и непрерывна на $\overline{U}_R(\bar{x}_0)$, следовательно принимает на ней минимум; пусть точкой минимума g будет \bar{x} . Заметим, что

$$g(\bar{x}_0) = ||f(\bar{x}_0) - \bar{y}||^2 < r^2,$$

так как $\bar{y} \in U_r(f(\bar{x}_0))$. В таком случае, если \bar{x} лежит на границе данной окрестности, то тогда

$$g(\bar{x}) = \|f(\bar{x}) - \bar{y}\|^2 \geqslant (\|f(\bar{x}) - f(\bar{x}_0)\| - \|f(\bar{x}_0) - \bar{y}\|)^2 > (c\|\bar{x} - \bar{x}_0\| - r)^2 = (cR - r)^2 > r^2 > g(\bar{x}_0),$$

— противоречие с определением \bar{x} . Следовательно \bar{x} внутри окрестности. Но тогда верно, что grad $g|_{\bar{x}}=\bar{0}$. При этом

$$\operatorname{grad} g = \begin{pmatrix} \sum_{k=1}^{n} \frac{\partial f_k}{\partial x_1} 2(f_k - y_k) \\ \vdots \\ \sum_{k=1}^{n} \frac{\partial f_k}{\partial x_n} 2(f_k - y_k) \end{pmatrix} = 2 \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_1} \end{pmatrix} \begin{pmatrix} f_1 - y_1 \\ \vdots \\ f_1 - y_1 \end{pmatrix} = 2J_f^T(f - \bar{y}),$$

где J_f — матрица Якоби функции f. Следовательно $J_f^T(\bar{x})(f(\bar{x}) - \bar{y}) = 0$. Но $J_f = df$, а поэтому J_f не вырождается в рассматриваемой области. Следовательно невырождается и J_f^T , а значит $f(\bar{x}) - \bar{y} = 0$, т.е. $f(\bar{x}) = \bar{y}$.

Таким образом всякая точка из r-окрестности $f(\bar{x}_0)$ имеет прообраз, т.е.

$$U_r(f(\bar{x}_0)) \subseteq f(V).$$

4. Мы доказали, что у \bar{x}_0 есть окрестность, в которой f билипшицева; также, понятно, есть окрестность, в которой df не вырождается. Обозначим их пересечение за V. Тогда мы доказали, что f(V) открыто. Следовательно из билипшицевости следует, что f индуцирует биекцию между V и f(V). А это значит, что можно построить на f(V) функцию g, обратную индуцированной. Таким образом мы имеем, что

$$g \circ f|_V = \mathrm{Id}_V$$
 и $f|_V \circ g = \mathrm{Id}_{f(V)}$.

5. Повторим, что f непрерывно, осуществляет биекцию между открытыми множествами V и f(V) и билипшицево. Следовательно оно является билипшицевым гомеоморфизмом из V в f(V). Тогда заметим, что если $\bar{y}_0 = f(\bar{x}_0)$, то

$$\lim_{\bar{y} \to \bar{y}_0} \frac{g(\bar{y}) - g(\bar{y}_0) - (d_{\bar{x}_0} f)^{-1} (\bar{y} - \bar{y}_0)}{\|\bar{y} - \bar{y}_0\|}$$

(делаем замену $\bar{y} := f(\bar{x})$ и $\bar{y}_0 := f(\bar{x}_0)$)

$$= \lim_{\bar{x} \to \bar{x}_0} \frac{\bar{x} - \bar{x}_0 - (d_{\bar{x}_0} f)^{-1} (f(\bar{x}) - f(\bar{x}_0))}{\|f(\bar{x}) - f(\bar{x}_0)\|}$$

$$= \lim_{\bar{x} \to \bar{x}_0} \frac{\bar{x} - \bar{x}_0 - (d_{\bar{x}_0} f)^{-1} (d_{\bar{x}_0} f(\bar{x} - \bar{x}_0) + o(\bar{x} - \bar{x}_0))}{\|\bar{x} - \bar{x}_0\|} \frac{\|\bar{x} - \bar{x}_0\|}{\|f(\bar{x}) - f(\bar{x}_0)\|}$$

$$= \lim_{\bar{x} \to \bar{x}_0} \frac{(d_{\bar{x}_0} f)^{-1} o(\bar{x} - \bar{x}_0)}{\|\bar{x} - \bar{x}_0\|} \frac{\|\bar{x} - \bar{x}_0\|}{\|f(\bar{x}) - f(\bar{x}_0)\|}$$

$$= \lim_{\bar{x} \to \bar{x}_0} o(1) \frac{\|\bar{x} - \bar{x}_0\|}{\|f(\bar{x}) - f(\bar{x}_0)\|}$$

$$= 0.$$

Это означает дифференцируемость g в \bar{x}_0 и то, что

$$d_{\bar{y}_0}g = (d_{\bar{x}_0}f)^{-1}.$$

8.3 Формула Тейлора для многих переменных

Теорема 104 (формула Лагранжа). Пусть дана дифференцируемая на G функция $f: G \to \mathbb{R}$, где $G \subseteq \mathbb{R}^n$ открыто. Пусть также даны точки $\bar{x}, \bar{y} \in G$, что $[\bar{x}; \bar{y}] \subseteq G$. Тогда есть точка $\bar{\xi} \in [\bar{x}; \bar{y}]$, что

$$f(\bar{y}) - f(\bar{x}) = \operatorname{grad} f|_{\bar{\xi}} \cdot (\bar{y} - \bar{x}).$$

Доказательство. Определим

$$\varphi: [0;1] \to \mathbb{R}, t \mapsto f((1-t)\bar{x} + t\bar{y}).$$

Тогда по одномерной формуле Лагранжа есть точка $\psi \in [0;1]$, что

$$f(\bar{y}) - f(\bar{x}) = \varphi(1) - \varphi(0) = \varphi'(\psi) \cdot (1 - 0) = \varphi'(\psi) = d_{(1 - \psi)\bar{x} + \psi\bar{y}} f d_{\psi} ((1 - \psi)\bar{x} + \psi\bar{y}) = d_{\xi} f x(\bar{y} - \bar{x}).$$

Теорема 105. Пусть дана функция $f:G\to\mathbb{R}$, где $G\subseteq\mathbb{R}^2$ — окрестность точки \bar{t} , что $\frac{\partial^2 f}{\partial x_1 \partial x_2}$ и $\frac{\partial^2 f}{\partial x_2 \partial x_1}$ определены в G и непрерывны в \bar{t} . Тогда

$$\left. \frac{\partial^2 f}{\partial x_1 \partial x_2} \right|_{\bar{t}} = \left. \frac{\partial^2 f}{\partial x_2 \partial x_1} \right|_{\bar{t}}.$$

Доказательство. Давайте рассмотрим сумму

$$g(\delta_1, \delta_2) := f(t_1 + \delta_1, t_2 + \delta_2) - f(t_1, t_2 + \delta_2) - f(t_1 + \delta_1, t_2) + f(t_1, t_2).$$

Применяя (одномерную) формулу Лагранжа для функции $\pi(\varepsilon) := f(t_1 + \varepsilon, t_2 + \delta_2) - f(t_1 = \varepsilon, t_2)$ на отрезке $[0; \delta_1]$, получаем некоторое $\xi_1 \in [0; \delta_1]$, что

$$g(\delta_1, \delta_2) = \delta_1 \pi'(\xi_1) = \delta_1 \left(\frac{\partial f}{\partial x_1} \Big|_{(t_1 + \xi_1, t_2 + \delta_2)} - \left. \frac{\partial f}{\partial x_1} \right|_{(t_1 + \xi_1, t_2)} \right).$$

Повторяя данный шаг для второй переменной, получаем точку $\xi_2 \in [0; \delta_2]$, что

$$g(\delta_1, \delta_2) = \delta_1 \delta_2 \left. \frac{\partial f}{\partial x_1 \partial x_2} \right|_{(t_1 + \xi_1, t_2 + \xi_2)}.$$

Аналогичным образом, меняя порядок шагов, получаем $\nu_1 \in [0; \delta_1]$ и $\nu_2 \in [0; \delta_2]$, что

$$g(\delta_1, \delta_2) = \delta_1 \delta_2 \left. \frac{\partial f}{\partial x_2 \partial x_1} \right|_{(t_1 + \mu_1, t_2 + \mu_2)}.$$

Тогда по непрерывности

$$\left.\frac{\partial f}{\partial x_1 \partial x_2}\right|_{(t_1,t_2)} = \lim_{\delta_1,\delta_2 \to 0} \left.\frac{\partial f}{\partial x_1 \partial x_2}\right|_{(t_1+\xi_1,t_2+\xi_2)} = \lim_{\delta_1,\delta_2 \to 0} \left.\frac{\partial f}{\partial x_2 \partial x_1}\right|_{(t_1+\mu_1,t_2+\mu_2)} = \left.\frac{\partial f}{\partial x_2 \partial x_1}\right|_{(t_1,t_2)}.$$

Следствие 105.1. Пусть дана функция $f:G\to\mathbb{R}$, где $G\subseteq\mathbb{R}^n$ — окрестность точки \bar{t} , что $\frac{\partial^2 f}{\partial x_k \partial x_l}$ и $\frac{\partial^2 f}{\partial x_l \partial x_k}$ определены в G и непрерывны в \bar{t} . Тогда

$$\left. \frac{\partial^2 f}{\partial x_k \partial x_k} \right|_{\bar{t}} = \left. \frac{\partial^2 f}{\partial x_l \partial x_k} \right|_{\bar{t}}.$$

Доказательство. Поскольку частные производные по x_k и x_l в точке \bar{t} зависят только от значений f на двумерном подпространстве, проходящем через \bar{t} и параллельном x_k и x_l , то задача моментально сводится к двумерному случаю.

Следствие 105.2. Пусть дана функция $f:G\to\mathbb{R}$, где $G\subseteq\mathbb{R}^n$ — окрестность точки \bar{t} , что $\frac{\partial^m f}{\partial x_{k_1}...\partial x_{k_m}}$ и $\frac{\partial^m f}{\partial x_{k_{\sigma(1)}}...\partial x_{k_{\sigma(m)}}}$, где σ — фиксированная перестановка $\{1;\ldots;m\}$, определены в G и непрерывны в \bar{t} . Тогда

$$\left. \frac{\partial^m f}{\partial x_{k_1} \dots \partial x_{k_m}} \right|_{\bar{t}} = \left. \frac{\partial^m f}{\partial x_{k_{\sigma(1)}} \dots \partial x_{k_{\sigma(m)}}} \right|_{\bar{t}}.$$

Замечание. Условие непрерывности необходимо; иначе есть контрпример. Рассмотрим функцию

$$f(x,y) := \begin{cases} \frac{xy(x^2 - y^2)}{(x^2 + y^2)} & \text{при } (x,y) \neq \bar{0} \\ 0 & \text{иначе.} \end{cases}$$

Несложно видеть, что вне точки $\bar{0}$

$$\frac{\partial f}{\partial x} = \frac{y(x^4 + 4x^2y^3 - y^4)}{(x^2 + y^2)^2}, \qquad \qquad \frac{\partial f}{\partial y} = \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2},$$

$$\frac{\partial^2 f}{\partial x \partial x} = \frac{-4xy^3(x^2 - 3y^2)}{(x^2 + y^2)^3}, \qquad \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3},$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3}, \qquad \qquad \frac{\partial^2 f}{\partial y \partial y} = \frac{4x^3y(y^2 - 3x^2)}{(x^2 + y^2)^3}$$

(в частности $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial x \partial y}$), а в точке $\bar{0}$

$$\left. \frac{\partial f}{\partial x} \right|_{\bar{0}} = 0, \quad \left. \frac{\partial f}{\partial y} \right|_{\bar{0}} = 0, \quad \left. \frac{\partial^2 f}{\partial x \partial x} \right|_{\bar{0}} = 0, \quad \left. \frac{\partial^2 f}{\partial x \partial y} \right|_{\bar{0}} = -1, \quad \left. \frac{\partial^2 f}{\partial y \partial x} \right|_{\bar{0}} = 1, \quad \left. \frac{\partial^2 f}{\partial y \partial y} \right|_{\bar{0}} = 0,$$

T.e.
$$\frac{\partial^2 f}{\partial x \partial y}\Big|_{\bar{0}} \neq \frac{\partial^2 f}{\partial y \partial x}\Big|_{\bar{0}}$$
.

Под конец добавим небольшое дополнительное описание картины. f — однородная рациональная функция степени 2, и поэтому все её частные производные являются однородными рациональными функциями, но первые производные — степени 1, а вторые — степени 0. Поэтому f дифференцируема в нуле (в нуле она выглядит как $\Theta(x^2+y^2)$, поэтому $d_{\bar{0}}f=0$, т.е. тождественно нулевое отображение), поэтому первые производные уже не непрерывны. Также они дифференцируемы по всякому направлению в $\bar{0}$, но совершенно не дифференцируема в обычном смысле: например, по направлениям (1;0), $(\sqrt{\sqrt{5}-2};1)$ и $(\sqrt{\sqrt{5}-2};-1)$ значение производной равно 0, а по всем другим направлениям — не равно 0, например, по направлению (0;1) значение производной равно 1. Таким образом поэтому множество предельных значений в 0 у каждой второй производной образует некоторый отрезок.

Теорема 106 (формула Тейлора для многих переменных).

Здесь нужно написать правильные условия и доказательство.

$$f(\bar{y}) = f(\bar{x}) + \frac{1}{1!} \left(\sum_{k=1}^{n} \frac{\partial}{\partial x_k} (y_k - x_k) \right) f \Big|_{\bar{x}} + \frac{1}{2!} \left(\sum_{k=1}^{n} \frac{\partial}{\partial x_k} (y_k - x_k) \right)^2 f \Big|_{\bar{x}} + \dots$$

$$+ \frac{1}{m!} \left(\sum_{k=1}^{n} \frac{\partial}{\partial x_k} (y_k - x_k) \right)^m f \Big|_{\bar{x}} + R$$

1.

$$R = o(\|\bar{y} - \bar{x}\|^m)$$

2.

$$R = \frac{1}{(m+1)!} \left(\sum_{k=1}^{n} \frac{\partial}{\partial x_k} (y_k - x_k) \right)^{m+1} f \bigg|_{\bar{\xi}}$$

3.

$$R = \int_0^1 \frac{(1-t)^m}{m!} \left(\sum_{k=1}^n \frac{\partial}{\partial x_k} (y_k - x_k) \right)^{m+1} f \bigg|_{(1-t)\bar{x} + t\bar{y}} dt$$

8.4 Задача поиска экстремумов

Определение 56. Пусть дана функция $f: \mathbb{R}^n \to \mathbb{R}$. Точка \bar{x} называется

- локальным минимумом f, если есть окрестность V точки \bar{x} , что $f(\bar{x}) \leqslant f(\bar{y})$ для всякой точки $\bar{y} \in V$.
- локальным максимумом f, если есть окрестность V точки $\bar x$, что $f(\bar x)\geqslant f(\bar y)$ для всякой точки $\bar y\in V$.
- экстремумом f, если является точкой локального минимума или точкой локального максимума f.

Лемма 107.

- 1. В точках экстремума f градиент f (когда определён) зануляется.
- 2. Если градиент f в \bar{x} равен нулю, а вторые производные f в \bar{x} определяют положительно (отрицательно) определённую квадратичную форму, то \bar{x} точка локального минимума (максимума) f.
- 3. Если градиент f в \bar{x} равен нулю, а вторые производные f в \bar{x} определяют знакопеременную квадратичную форму, то \bar{x} седловая точка f.

Доказательство.

1. Пусть \bar{x} — экстремум f. Предположим противное, т.е. grad $f|_{\bar{x}} \neq 0$. Тогда рассмотрим функцию

$$\varphi(t) := f(\bar{x} + t \operatorname{grad} f|_{\bar{x}}).$$

С одной стороны, φ — сужение f на некоторое направление (с точностью до масштабирования). Поэтому 0 — экстремум φ . С другой стороны,

$$\varphi'(0) = d\varphi|_{0} = df|_{\bar{x}+0 \operatorname{grad} f|_{\bar{x}}} d(\bar{x} + t \operatorname{grad} f|_{\bar{x}})|_{0} = df|_{\bar{x}} \operatorname{grad} f|_{\bar{x}} = (\operatorname{grad} f|_{\bar{x}})^{2} = \|\operatorname{grad} f|_{\bar{x}}\| > 0,$$

откуда 0 не будет экстремальной точкой φ . Следовательно, grad $f|_{\bar{x}}=0$.

2. Имеем, что

$$f(\bar{y}) - f(\bar{x}) = \frac{1}{1!} \left(\sum_{k=1}^{n} \frac{\partial}{\partial x_k} (y_k - x_k) \right) f \bigg|_{\bar{x}} + \frac{1}{2!} \left(\sum_{k=1}^{n} \frac{\partial}{\partial x_k} (y_k - x_k) \right)^2 f \bigg|_{\bar{x}} + o(\|\bar{y} - \bar{x}\|^2)$$
$$= \frac{1}{2} Q(\bar{y} - \bar{x}) + o(\|\bar{y} - \bar{x}\|^2),$$

где Q — квадратичная форма вторых производных. По определению Q положительно определена. Значит есть константа a>0, что $Q(\bar{v})\geqslant a\|\bar{v}\|^2$. Таким образом

$$f(\bar{y}) - f(\bar{x}) \geqslant ||\bar{y} - \bar{x}||^2 (a + o(1)).$$

Значит в некоторой окрестности \bar{x} член (a+o(1)) будет строго положительным, а тогда для всякого \bar{y} в этой окрестности $f(\bar{y}) > f(\bar{x})$.

3. -f удовлетворяет условиям прошлого пункта, поэтому \bar{x} — точка локального максимума f.

Теорема 108 (Сильвестра, напоминание).

- 1. Симметричная квадратная матрица задаёт положительно определённую квадратичную форму тогда и только тогда, когда все её угловые определители положительны.
- 2. Симметричная квадратная матрица задаёт отрицательно определённую квадратичную форму тогда и только тогда, когда все её угловые определители чередуются по знаку, а первый отрицателен.

8.5 Теоремы о неявной функции

Теорема 109. Пусть дана функция $F: G \to \mathbb{R}$, где G — открытое множество в \mathbb{R}^2 , $F(x_0,y_0)=0, \ F\in C^1(G)$ и $\frac{\partial F}{\partial u}(x_0,y_0)\neq 0$.

1. Тогда есть интервалы I_x , I_y , что $x \in I_x$, $y \in I_y$, $I_x \times I_y \subseteq G$ и единственная функция $f: I_x \to I_x$, что для всякой точки $(x,y) \in I_x \times I_y$ верно

$$F(x,y) = 0 \iff y = f(x).$$

2. f дифференцируема и

$$f'(x) = -\frac{\frac{\partial F}{\partial x}(x, f(x))}{\frac{\partial F}{\partial y}(x, f(x))}.$$

Доказательство. WLOG $\frac{\partial F}{\partial y}(x_0,y_0)>0$. По условию $\frac{\partial F}{\partial y}(x_0,y_0)>0$, а значит $\frac{\partial F}{\partial y}>0$ в некоторой окрестности (x_0,y_0) . Тогда в этой окрестности срезы $H_x(y)=F(x,y)$ строго монотонны по y, т.е. при каждом x будет не более одного y из данной окрестности, что $H_x(y)=0$.

Тогда возьмём какое-нибудь $\beta > 0$, что H_{x_0} имеет ненулевую производную на $(y_0 - \beta; y_0 + \beta)$. Тогда

$$F(x_0, y_0 - \beta) < 0 < F(x_0, y_0 + \beta).$$

Тогда можно взять такое lpha>0, что $\overline{U}_lpha(x_0) imes \overline{U}_eta(y_0)\subseteq G$ и

$$F(\overline{U}_{\alpha}(x_0) \times \{y_0 - \beta\}) < 0 < F(\overline{U}_{\alpha}(x_0) \times \{y_0 + \beta\}).$$

Следовательно для всякого $x \in [x_0 - \alpha; x_0 + \alpha]$ будет ровно одно $y \in [y_0 - \beta; y_0 + \beta]$, что F(x,y) = 0. Получается какая-то функция f.

Поймём, что f непрерывна. Действительно, возьмём любую точку (x_1, y_1) , где $y_1 = f(x_1)$. Тогда $F(x_1, y_1) = 0$. Значит проведя тот же трюк, что и в прошлом абзаце для данной точки и любой подокрестности, получаем, что для любой окрестности точки y_1 будет окрестность x_1 , что у всякого x_2 из этой окрестности будет единственный y_2 из данной окрестности, где F зануляется. С другой стороны всякое y_2 будет единственным для x_2 , где $F(x_2, y_2) = 0$, на всём G. Следовательно, $y_2 = f(x_2)$. Т.е. для всякой окрестности по y есть окрестность по x, которая в неё отображается по f. Это и значит непрерывность f.

Теперь покажем дифференцируемость f. Фиксируем любую точку x_1 . По формуле Тейлора для F

$$0 = F(x, f(x)) - F(x_1, f(x_1)) = \frac{\partial F}{\partial x}(x_1, f(x_1)) \cdot (x - x_1) + \frac{\partial F}{\partial y}(x_1, f(x_1)) \cdot (f(x) - f(x_1)) + o(x - x_1)$$

(по непрерывности $o(\sqrt{(x-x_1)^2+(f(x)-f(x_1))^2})=o(x-x_1)$). Следовательно,

$$f(x) - f(x_1) = -\frac{\frac{\partial F}{\partial x}(x_1, f(x_1)) + o(1)}{\frac{\partial F}{\partial y}(x_1, f(x_1))} \cdot (x - x_1),$$

т.е.

$$\frac{f(x) - f(x_1)}{x - x_1} = -\frac{\frac{\partial F}{\partial x}(x_1, f(x_1))}{\frac{\partial F}{\partial y}(x_1, f(x_1))} + o(1).$$

Отсюда следует и дифференцируемость f и формула для производной.

Следствие 109.1. *Если* $F \in C^k(G)$, *mo* $f \in C^k$.

Доказательство. Действительно, если $F \in C^k$, то $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \in C^{k-1}$, а тогда

$$f'(x) = -\frac{\frac{\partial F}{\partial x}(x, f(x))}{\frac{\partial F}{\partial y}(x, f(x))}$$

тоже k-1 раз дифференцируемо.

Теорема 110. Пусть дана функция $F: G \to \mathbb{R}$, где G открыто в \mathbb{R}^{m+1} , что $F \in C^1$, $F(\bar{x}_0, y_0) = 0$, $\frac{\partial F}{\partial y}(\bar{x}_0, y_0) \neq 0$.

1. Тогда есть окрестность-парамеленипед $I_x \times I_y \ni (\bar{x}_0, y_0)$ и единственная функция $f: I_x \to I_y$, что для всякой точки $(\bar{x}, y) \in I_x \times I_y$ верно

$$F(\bar{x}, y) = 0 \iff y = f(\bar{x}).$$

2. f дифференцируема и

$$\frac{\partial f}{\partial x_k}(\bar{x}) = -\frac{\frac{\partial F}{\partial x_k}(\bar{x}, f(\bar{x}))}{\frac{\partial F}{\partial y}(\bar{x}, f(\bar{x}))}.$$

Теорема 111. Пусть дана функция $F: G \to \mathbb{R}^n$, где G — открытое множество в $\mathbb{R}^m \times \mathbb{R}^n$, $F(\bar{x}_0, \bar{y}_0) = 0$ ($\bar{x}_0 \in \mathbb{R}^n$, $\bar{y}_0 \in \mathbb{R}^m$), $F \in C^1(G)$ и матрица $\frac{\partial F}{\partial \bar{y}}(\bar{x}_0, \bar{y}_0)$ обратима.

1. Тогда есть окрестность-парамеленипед $I_x \times I_y \ni (\bar{x}_0, \bar{y}_0)$ и единственная функция $f: I_x \to I_y$, что для всякой точки $(\bar{x}, \bar{y}) \in I_x \times I_y$ верно

$$F(\bar{x}, \bar{y}) = 0 \iff \bar{y} = f(\bar{x}).$$

2. f дифференцируема и

$$\frac{\partial f}{\partial \bar{x}}(\bar{x}) = -\left(\frac{\partial F}{\partial \bar{y}}(\bar{x}, f(\bar{x}))\right)^{-1} \frac{\partial F}{\partial \bar{x}}(\bar{x}, f(\bar{x}))$$

Доказательство. Будем доказывать утверждение по индукции по n.

Утверждение для n=1 верно в силу предыдущей теоремы. Следовательно, будем считать n>1. Разложим F по координатам:

$$F=(F_1,\ldots,F_n).$$

Далее по теореме для n=1 и F_n выразим y_n через $x_1, \ldots, x_m, y_1, \ldots, y_{n-1}$. По предположению индукции для оставшихся y_i и F_i выразим y_i через x_i . Нужно лишь только следить аз невырождаемостью матриц.

Может написать решение абсолютно похожее на первую теорему: т.е. точно также выделить окрестность-параллелепипед по \bar{y} , найти у крайних точек окрестность-параллелепипед по \bar{x} , таким же простым способом показать, что f определена (так как 0 принимается, так как нет способов вложить D^n в $\mathbb{R}^n \setminus \{0\}$, чтобы S^{n-1} перешло тождественно в себя), непрерывна и дифференцируема как надо.

8.6 Условные экстремумы

Теорема 112. Пусть даны функции $f_1, \ldots, f_m, g : G \to \mathbb{R}$, где G — открытое множество в \mathbb{R}^n . Пусть \bar{x}_0 — (локальный) экстремум g на поверхности $f_1 = \cdots = f_m = 0$. При чём f_1, \ldots, f_m и g дифференцируемы в \bar{x}_0 , а все градиенты $\operatorname{grad} f_i|_{\bar{x}_0}$ линейно независимы (в частности не равны нулю). Тогда $\operatorname{grad} g|_{\bar{x}_0}$ лежит в линейной оболочке векторов $\operatorname{grad} f_i|_{\bar{x}_0}$.

Написать решение?

Следствие 112.1 (метод множителей Лагранжа). Составим функцию

$$L: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}, (\bar{x}, \bar{\lambda}) \mapsto g(\bar{x}) - \sum_{k=1}^m \lambda_k f_k(\bar{x}).$$

Тогда есть единственный вектор $\bar{\lambda}_0$, что grad $L|_{(\bar{x}_0,\bar{\lambda}_0)}=0$.

Теорема 113. Пусть даны функции $f_1, \ldots, f_m, g: G \to \mathbb{R}$, где G — открытое множество в \mathbb{R}^n , и какая-то точка \bar{x}_0 на поверхности $f_1 = \cdots = f_m = 0$. При чём f_1, \ldots, f_m и g дважды дифференцируемы в \bar{x}_0 , градиенты $\{\operatorname{grad} f_i|_{\bar{x}_0}\}_{i=1}^m$ линейно независимы, и есть набор констант (множителей Лагранжа) $\{\lambda_i\}_{i=1}^m$, что

$$\operatorname{grad} g|_{\bar{x}_0} = \sum_{i=1}^m \lambda_i \operatorname{grad} f_i|_{\bar{x}_0}.$$

Обозначим функцию

$$L(\bar{x}) := g(\bar{x}) - \sum_{i=1}^{m} \lambda_i f_i(\bar{x}).$$

- 1. Если квадратичная форма вторых производных L, ограниченная на касательную плоскость (т.е. ортогональное пространство к $\{\operatorname{grad} f_i|_{\bar{x}_0}\}_{i=1}^m$), положительно определена в \bar{x}_0 , то \bar{x}_0 точка локального минимума g на поверхности $f_1 = \cdots = f_m = 0$.
- 2. Если квадратичная форма вторых производных L, ограниченная на касательную плоскость, отрицательно определена в \bar{x}_0 , то \bar{x}_0 точка локального максимума g на поверхности $f_1 = \cdots = f_m = 0$.
- 3. Если квадратичная форма вторых производных L, ограниченная на касательную плоскость, знакопеременна в \bar{x}_0 , то \bar{x}_0 седловая точка g на поверхности $f_1 = \cdots = f_m = 0$.

Написать решение?

9 Топологический соус

Теорема 114 (о перестанвке пределов). Пусть $X, Y - x a y c d o p \phi o в ы то пологические пространства, а <math>Z - n o n$ ное метрическое пространство. Пусть даны подмножества $A \subseteq X$ и $B \subseteq Y$, а также а — предельная точка A, не лежащая в A, и b - n p e d e n b на подмаже в B. Пусть также есть функция $F: X \times Y \to Z$, что для всякого $y \in B$ определён равномерный по B предел

$$\lim_{x \to a} F(x, y) = \varphi(y)$$

u для всякого $x \in A$ определён предел

$$\lim_{y \to b} F(x, y) = \psi(x).$$

Тог∂а

$$\lim_{y \to b} \varphi(y) = \lim_{x \to a} \psi(x).$$

2. Предел

$$\lim_{\substack{x \to a \\ y \to b}} F(x, y)$$

определён и равен двум предыдущим.

Доказательство.

Лемма 114.1. Пусть дана функция $f: C \to Z$, где $C \subseteq X$, а c- предельная точка C. Пусть также известно, что для всякого $\varepsilon > 0$ есть окрестность V точки c, что для любых $w_1, w_2 \in V$ верно $\rho(f(w_1), f(w_2)) < \varepsilon$. Тогда определён предел

$$\lim_{x \to c} f(x).$$

Доказательство. Для всякого $\varepsilon = \frac{1}{n}$ определим по условию окрестность V_n . WLOG $V_{n+1} \subseteq V_n$ (так как всегда V_{n+1} можно заменить на $V_{n+1} \cap V_n$). В каждом V_n выберем по точке w_n . Тогда последовательность $(f(w_n))_{n=1}^{\infty}$ фундаментальна, а значит есть $z \in Z$, что

$$\lim (f(w_n))_{n=1}^{\infty} = z.$$

Тогда для всякого $x \in V_n$

$$\rho(f(x), z) \leqslant \rho(f(x), f(w_n)) + \rho(f(w_n), z) \leqslant \frac{1}{n} + \rho(f(w_n), z) \to 0.$$

Следовательно

$$\lim_{x \to c} f(x) = z.$$

Зафиксируем $x_0 \in U \cap A$, что для всякого $y \in B$

$$\rho(F(x_0, y), \varphi(y)) < \varepsilon.$$

Также есть окрестность V точки b, что для всякого $y \in V \cap B$

$$\rho(F(x_0, y), \psi(x_0)) < \varepsilon.$$

Тогда для всяких $y_1, y_2 \in V \cap B$

$$\rho(\varphi(y_1), \varphi(y_2)) \leq \rho(\varphi(y_1), F(x_0, y_1)) + \rho(F(x_0, y_1), \psi(x_0)) + \rho(\psi(x_0), F(x_0, y_2)) + \rho(F(x_0, y_2), \varphi(y_2))$$

$$< \varepsilon + \varepsilon + \varepsilon + \varepsilon$$

 $=4\varepsilon$.

Это значит, что определён предел

$$\lim_{y \to b} \varphi(y) =: p.$$

Тогда

$$\rho(\psi(x_0), p) = \lim_{y \to b} \rho(F(x_0, y), \varphi(y)) \leqslant \varepsilon.$$

Это уже значит, что

$$\lim_{x \to a} \psi(x) = p.$$

Ну а поскольку сходимость к φ равномерная, то при $x \to a$ и $y \to b$ имеет место

$$\rho(F(x,y),\varphi(y)) \to 0$$
 и $\rho(\varphi(y),p) \to 0$.

Следовательно,

$$\lim_{\substack{x \to a \\ y \to b}} F(x, y) = p.$$

Теорема 115 (Стокса-Зейделя). Пусть даны хаусдорфовы топологические пространства X, Y, полное метрическое пространство Z и функция $F: X \times Y \to Z$, что

- 1. есть точка $x_0 \in X$, что для всякого $y \in B \subseteq Y$ функция $x \mapsto F(x,y)$ непрерывна в x_0 ,
- 2. b- предельная точка B, u для всякого $x \in A \subseteq X$ определён предел

$$\lim_{y \to b} F(x, y) =: \psi(x)$$

равномерный по $x \in A$.

 $Torda \psi(x)$ непрерывно в x_0 .

Теорема 116 (о дифференцировании предельной функции). Пусть X - xaycдорфово топологическое пространство, $Y = (\alpha; \beta) \subseteq \mathbb{R}, \ Z = \mathbb{R}, \ F : X \times Y \to \mathbb{R}, \ a - npedeльная точка <math>A \subseteq X$, что

- 1. для всякого $x \in X$ функция $y \mapsto F(x,y)$ дифференцируема на Y,
- 2. для всякого $y \in Y$ определён предел

$$\lim_{x \to a} F(x, y) =: \varphi(y),$$

а также определён предел

$$\lim_{x \to a} F'(x, y) =: \psi(y)$$

и равномерен.

Tогда φ гладка $u \varphi' = \psi$.

Теорема 117 (о перестановке производных). Неформально:

$$\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x}.$$

Определение 57. Подмножество $A \subseteq C(K)$, где K — хаусдорфово метрическое пространство, называется *алгеброй*, если A замнкуто относительно сложения, умножения и умножения на скаляр.

A выделяет точки, если для всякого $x \in K$ есть $f \in A$, что $f(x) \neq 0$.

A разделяет точки, если для любых $x_1, x_2 \in X$ существует $f \in A$, что $f(x_1) \neq f(x_2)$.

Теорема 118 (Стоуна-Вейерштрасса). A — алгебра, $A \subseteq C(K)$, K — компактное хаусдорфово топологическое пространство, что A выделяет и разделяет точки. Тогда $\overline{A} = C(K)$ (в метрике $\rho(f,g) := \sup_K |f-g|$).

Доказательство. Пусть дана функция $f \in C(K)$.

Лемма 118.1. Для всякого $\varepsilon > 0$ есть полином p, что $||x| - p(x)| < \varepsilon$ на [-1;1].

Доказательство. Заметим, что

$$|x| = \sqrt{x^2} = \sqrt{1 - (1 - x^2)}.$$

Поэтому будем приближать $\sqrt{1-x}$ на [0;1]; тогда приближение |x| на [-1;1] достигнется подстановкой $1-x^2$.

Заметим, что всякая функция $\sqrt{1-\alpha x}$, где $\alpha\in[0;1)$, приближается на [0;1] рядом Тейлора в нуле. При этом

$$\sqrt{1-x} = \lim_{\alpha \to 1} \sqrt{1-\alpha x}.$$

Следовательно, и $\sqrt{1-x}$ приближается.

Замечание 10. Можно считать, что приближающие |x| полиномы не имеют свободного члена, так как если ||x|-p(x)|<arepsilon/2, то |p(0)|<arepsilon/2, а тогда

$$||x| - (p(x) - p(0))| < \varepsilon.$$

Т.е. можно построить новый приближающий ряд.

Лемма 118.2. $Ecnu\ f \in A, mo\ |f| \in \overline{A}.$

Доказательство. f определено на компакте, а значит f ограничено. Тогда пусть C>0 такого, что |f|< C. Значит $f/C\in A$, а |f/C|<1. Тогда для всякого $\varepsilon>0$ есть полином p ($\mathbb{R}\to\mathbb{R}$), что $||x|-p|<\varepsilon/C$ на [-1;1]. Тогда $Cp(f/C)\in A$, а

$$||f| - Cp(f/C)| = C||f/C| - p(f/C)| \le C(\varepsilon/C) = \varepsilon.$$

Лемма 118.3. $Ecnu\ f_1, f_2 \in A, \ mo\ \max(f_1, f_2), \min(f_1, f_2) \in \overline{A}.$

Доказательство.

$$\max(f_1, f_2) = \frac{f_1 + f_2}{2} + \frac{|f_1 - f_2|}{2} \in \overline{A} \qquad \max(f_1, f_2) = \frac{f_1 + f_2}{2} - \frac{|f_1 - f_2|}{2} \in \overline{A}$$

Лемма 118.4. Пусть $x_1, x_2 \in K$, $u_1, u_2 \in \mathbb{R}$. Тогда есть $f \in A$, что $f(x_1) = u_1$, $f(x_2) = u_2$.

Доказательство. Сначала заметим, что есть функция $h \in A$, что $h(x_1) \neq 0$, $h(x_2) \neq 0$ и $h(x_1) \neq h(x_2)$. Действительно, есть функция $g \in A$, что $g(x_1) \neq g(x_2)$. WLOG $g(x_2) \neq 0$. Если $g(x_1) \neq 0$, то g подходит. Иначе есть функция $p \in A$, что $p(x_1) \neq 0$. Вектора $(p(x_1), p(x_2))$ и $(g(x_1), g(x_2))$ точно линейно независимы, а значит есть линейная комбинация g и p, подходящая на роль h.

Теперь заметим, что

$$\begin{vmatrix} h(x_1) & h(x_1)^2 \\ h(x_2) & h(x_2)^2 \end{vmatrix} = h(x_1)h(x_2)(h(x_1) - h(x_2)) \neq 0.$$

Значит есть линейная комбинация h и h^2 , которая на x_1 равна u_1 , а на x_2 равна u_2 .

Лемма 118.5. Для всякой функции $f \in C(K)$, всякой $x_0 \in K$ и всякого $\varepsilon > 0$ есть $g \in \overline{A}$, что $g(x_0) = f(x_0)$, а $g(x) \leqslant f(x) + \varepsilon$.

Доказательство. Для всякой точки $x \in K$ построим функцию g_x , что $g_x(x_0) = f(x_0)$, а $g_x(x) = f(x)$. Заметим, что для всякой точки $x \in K$ есть окрестность V_x точки X, что $|g_x(t) - f(t)| < \varepsilon$ для всякого $t \in V_x$. Поскольку K — компакт, то есть конечный набор x_1, \ldots, x_n , что

$$K = \bigcup_{i=1}^{n} V_{x_i}.$$

Т.е. для всякого $t \in K$ есть $i \in \{1; \ldots; n\}$, что $g_{x_i}(t) < f(t) + \varepsilon$. Следовательно,

$$g := \min(g_{x_1}, \dots, g_{x_n}) \in \overline{A},$$

и при этом $g(x_0) = f(x_0)$ (так как $g_{x_i}(x_0) = f(x_0)$) и для всякого $t \in K$ верно $g(t) < f(t) + \varepsilon$. \square

Выберем для каждой точки $x \in K$ функцию g_x , что $g_x \in \overline{A}$, $g_x(x) = f(x)$, $g_x \leqslant f + \varepsilon$, и окрестность V_k , что для всякого $t \in V$ верно $|f(t) - f(x)| < \varepsilon$ и $|g_x(t) - g_x(x)| < \varepsilon$. По компактности K есть конечный набор x_1, \ldots, x_n , что $K = \bigcup_{i=1}^n V_{x_i}$. Следовательно, рассмотрим

$$g := \max(g_{x_1}, \dots, g_{x_n}) \in \overline{A}.$$

Тогда для всякой точки $y \in K$ верно, что $y \in V_{x_k}$, т.е. $|g_{x_k}(y) - g_{x_k}(x_k)| < \varepsilon$ и $|f(y) - f(x_k)| < \varepsilon$, т.е. $|g_{x_k}(y) - f(y)| < 2\varepsilon$, а значит $g(y) \geqslant f(y) - 2\varepsilon$, но $g(y) \leqslant f(y) + \varepsilon$. Следовательно, $|g(y) - f(y)| \leqslant 2\varepsilon$. Это и значит, что $f \in \overline{A}$.

10 Теоремы о неподвижной точке

Теорема 119. Пусть X — полное метрическое пространство, а $T: X \to X$ отображение, что есть константа $\alpha \in [0;1)$, что $\rho(Tx,Ty) \leqslant \rho(x,y)$ для всяких $x,y \in X$. Тогда в X есть единственная неподвижная точка T.

Доказательство. Рассмотрим орбиту любой точки x: $(T^n(x))_{n=0}^{\infty}$. Заметим, что $\rho(T^{n+1}(x), T^n(x)) \leqslant \alpha^n \rho(x, T(x))$. Следовательно, для всяких $n \leqslant m$ верно, что $\rho(T^n(x), T^m(x)) \leqslant \frac{\alpha^n \rho(x, Tx)}{1-\alpha}$. Т.е. данная последовательность фундаментальна и имеет предел y. С другой стороны,

$$\rho(T(y), y) \leqslant \rho(T(y), T^{n+1}(x)) + \rho(T^{n+1}(x), y) \leqslant \alpha \rho(y, T^n(x)) + \rho(y, T^{n+1}, x) \xrightarrow{n \to \infty} 0.$$

Следовательно, $\rho(T(y),y)=0$, т.е. Ty=y. При этом если есть другая точка z, что Tz=z, то

$$\rho(y,z) = \rho(Ty,Tz) \leqslant \alpha \rho(y,z)$$

— противоречие.

Пемма 120. Пусть дана функция $f: \mathbb{R}^2 \to \mathbb{R}$, что есть A > 0, что для всяких x, y_1, y_2 верно $|f(x,y_1) - f(x,y_2)| \le A|y_1 - y_2|$. Тогда есть единственная функция $y \in C^1[a;b]$, где $|a-b| \cdot A < 1$, что y'(x) = f(x,y(x)) на [a;b] и $y(a) = y_0$.

Доказательство. Рассмотрим пространство X функций из $y \in C^1[a;b]$, что $y(a) = y_0$, с метрикой $\rho(y_1, y_2) = \sup_{[a;b]} |y_1 - y_2|$. Определим также на нём оператор

$$T(y)(t) := y_0 + \int_0^t f(s, y(s)) ds.$$

Тогда

$$\rho(T(y_1), T(y_2)) = \sup_{t \in [a;b]} |T(y_1)(t) - T(y_2)(t)|$$

$$= \sup_{t \in [a;b]} \left| \int_a^t (f(s, y_1(s)) - f(s, y_2(s))) ds \right|$$

$$\leqslant \sup_{t \in [a;b]} \int_a^t |f(s, y_1(s)) - f(s, y_2(s))| ds$$

$$\leqslant \sup_{t \in [a;b]} \int_a^t A|y_1(s) - y_2(s)| ds$$

$$\leqslant \sup_{t \in [a;b]} A|t - a|\rho(y_1, y_2)$$

$$= A|b - a|\rho(y_1, y_2)$$

Тогда по доказанной теореме есть неподвижная точка, т.е. такое y, что

$$y(t) = y_0 + \int_a^t f(s, y(s))ds.$$

Дифференцируя по t получаем, что y' = f(x, y). При этом $y(a) = y_0$.

Следствие 120.1. Условие |a - b| < 1/A можно убрать.

11 Голоморфные функции

Написать.

12 Интеграл в смысле главного значения

Написать.

13 Интегрирование функций нескольких переменных

14 Теория меры

14.1 Конечные структуры

Определение 58. Алгебра множества \mathfrak{A} множества X — это множество $\mathfrak{A} \subseteq 2^X$, что

- $\varnothing \in \mathfrak{A}$,
- для всякого $A \in \mathfrak{A}$ верно $X \setminus A \in \mathfrak{A}$,
- для всяких $A, B \in \mathfrak{A}$ верно $A \cup B \in \mathfrak{A}$.

Кольцо множества \mathfrak{A} множества X — это множество $\mathfrak{A}\subseteq 2^X$, что

- для всяких $A, B \in \mathfrak{A}$ верно $A \cup B \in \mathfrak{A}$,
- для всяких $A, B \in \mathfrak{A}$ верно $A \setminus B \in \mathfrak{A}$.

Полукольцо множества \mathfrak{A} множества X — это множество $\mathfrak{A}\subseteq 2^X$, что

- для всяких $A, B \in \mathfrak{A}$ верно $A \cap B \in \mathfrak{A}$,
- для всяких $A, B \in \mathfrak{A}$ найдутся $C_1, \dots C_n \in \mathfrak{A}$, что $A \setminus B = \bigcup_{i=1}^n C_i$ и все C_i попарно не пересекаются.

Пример 9.

- 1. $P(\mathbb{R}) := \{[a;b) \mid a,b \in \overline{\mathbb{R}}\}$ полукольцо над \mathbb{R} . $\overline{\mathbb{R}}$ обозначает замыкание \mathbb{R} , т.е. $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty; +\infty\}$. Это значит, что рассматриваются не только конечные интервалы.
- 2. $P(\mathbb{R}^n) := \{ \prod_{i=1}^n [a_i; b_i) \mid a_i, b_i \in \overline{\mathbb{R}} \}$ полукольцо над \mathbb{R}^n .

Определение 59. Произведение полуколец \mathfrak{A} и \mathfrak{B} — полукольцо

$$\mathfrak{A} \times \mathfrak{B} := \mathfrak{C} = \{ A \times B \mid A \in \mathfrak{A} \wedge B \in \mathfrak{B} \}.$$

Лемма 121. Пусть \mathfrak{A} — полукольцо.

- 1. Если $A, B \in \mathfrak{A}$, то $A \cup B$ представляется в виде конечного дизъюнктного объединения элементов \mathfrak{A} .
- 2. Конечное объединение элементов $\mathfrak A$ представляется в виде конечного дизъюнктного объединения элементов $\mathfrak A$.
- 3. Всякое конечное выражение, построенное из элементоа $\mathfrak A$ и операций \cup , \cap , \setminus , представляется в виде конечного дизъюнктного объединения элементов $\mathfrak A$.

Определение 60. Пусть дано пространство X (обычно интервал в \mathbb{R}) с выделенной структурой подмножеств \mathfrak{A} (обычно полукольцо, кольцо или алгебра множеств). Mepa на данной структуре — это функция $\eta: \mathfrak{A} \to \overline{\mathbb{R}}_{\geq 0}$, что

- $\eta(\varnothing) = 0$,
- $\eta\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \eta(A_i)$ для любых непересекающихся $A_1,\ldots,A_n \in \mathfrak{A}$.

 Π ример 10.

1. Пусть X — дискретное множество (не более чем счётное множество точек), а $\mathfrak{A}=2^X$. Тогда мерой будет функция

$$\eta(A) := \begin{cases} |A| & \text{если } A \text{ конечно,} \\ \infty & \text{иначе.} \end{cases}$$

2. Как и в прошлом случае, если для всякого $x \in X$ определена величина $p_x \geqslant 0$ (т.е. не обязательно ровно 1), то функция

$$\eta(A) := \sum_{x \in A} p_x$$

тоже будет мерой. При этом в случае $\sum_{x \in X} p_x = 1$ данная структура будет дискретным вероятностным пространством.

3. Пусть X — интервал в \mathbb{R} , а \mathfrak{A} — полукольцо полуинтервалов. Тогда функция

$$\eta([a;b)) := b - a$$

будет мерой длины.

4. Пусть f — неубывающая функция, X — интервал в \mathbb{R} , а \mathfrak{A} — полукольцо полуинтервалов. Тогда функция

$$\eta([a;b)) := f(b) - f(a)$$

будет мерой.

Лемма 122. В пулукольце мера монотонна: если $B \subseteq A$, то $\eta(B) \leqslant \eta(A)$.

Определение 61. Пусть \mathfrak{A} — полукольцо. Функция

$$\chi_A := \begin{cases} 1 & \text{если } x \in A, \\ 0 & \text{если } x \notin A. \end{cases}$$

называется xарактеристической (или индикаторной) функцией множества A. Функция f называется npocmoй, если она имеет вид

$$\sum_{i=1}^{n} a_i \chi_{A_i},$$

где $A_i \in \mathfrak{A}$, а $a_i \in \mathbb{R}$.

Лемма 123.

1. Функция проста тогда и только тогда, когда представима в виде

$$\sum_{i=1}^{n} a_i \chi_{A_i},$$

 $rde\ a_i \in \mathbb{R}$, а множества A_i лежат в \mathfrak{A} и попарно не пересекаются.

2. Функция является простой тогда и только тогда, когда принимает конечное множество значений, а прообраз каждого значения представим в виде дизъюнктного объединения конечного набора множеств из \mathfrak{A} .

- 3. Сумма простых функций проста.
- 4. Произведение простых функций просто.

Определение 62. Пусть даны полукольцо множеств $\mathfrak A$ на множестве X, мера η на нём и простая функция $f = \sum_{i=1}^n a_i \chi_{A_i}$. Интегралом Лебега функции f называется значение

$$\int f(x)dx = \sum_{i=1}^{n} a_i \eta(A_i).$$

Некоторые слагаемые могут принимать значение $+\infty$ или $-\infty$ (либо если некоторое $a_i = \pm \infty$, либо $\eta(A_i) = \pm \infty$; при этом конкретно здесь $0 \cdot \pm \infty = \pm \infty \cdot 0 = 0$). В таком случае, если встречаются слагаемые с бесконечным значением только одного знака, то сумма определяется как бесконечность того же знака. Если же встречаются бесконечные слагаемые разных знаков, то сумма для данного представления не определяется.

Теорема 124. Интеграл Лебега если определён, то определён корректно. Т.е. разные разложения функции в сумму характеристических функций дают одно и то же значение интеграла.

Доказательство. Пусть имеется два представления f

$$f = \sum_{i=1}^{n} a_i \chi_{A_i} = \sum_{j=1}^{m} b_i \chi_{B_i}.$$

Первым шагом их оба можно переписать так, чтобы A_i были попарно дизъюнктными и B_j были попарно дизъюнктными, а a_i и b_j не были равны 0: можно рассмотреть всевозможные множества

$$D_S := \bigcap_{i \in S} A_i \setminus \bigcup_{j \notin S} A_j = (A_{k_1} \cap A_{k_2} \cap \dots) \setminus A_{l_1} \setminus A_{l_2} \setminus \dots$$

для всякого $S \subseteq \{1; \ldots; n\}$, каждое из них представить в виде конечного дизъюнктного объединение множеств $C_{S,k}$ из $\mathfrak A$ (а оно представляется) и записать сумму $\sum_k a_S \chi_{C_{S,k}}$, где a_S — значение f на D_S (а оно, действительно, единственно на этом множестве; и равно $\sum_{i \in S} a_i$). Очевидно, что все D_S попарно дизъюнктны, а значит все полученные $C_{S,k}$ попарно дизъюнктны и лежат в $\mathfrak A$. Затем можно просто убрать те множества, чьи коэффициенты a_S равны 0.

Вторым шагом рассмотрим для каждых $i\in\{1;\ldots;n\}$ и $j\in\{1;\ldots;m\}$ множество $T_{i,j}:=A_i\cap B_j$. Понятно, что

$$\bigcup_{i=1}^{n} A_i = f^{-1}(\overline{\mathbb{R}} \setminus \{0\}) = \bigcup_{j=1}^{m} B_j.$$

Понятно, что все определённые $T_{i,j}$ ($(i;j) \in \{1; \ldots; n+1\} \times \{1; \ldots; m\}$) попарно дизъюнктны и лежат в \mathfrak{A} . При этом очевидно, что

$$A_i = \bigcup_{j=0}^{m} T_{i,j}, \qquad A_j = \bigcup_{i=0}^{n} T_{i,j}.$$

Также понятно, что значение f на A_i равно a_i , а на B_j равно b_j . Понятно также, что f константно на $T_{i,j}$ и зануляется вне объединения всех $T_{i,j}$; значит определим $t_{i,j}$ как значение f на $T_{i,j}$ (если $T_{i,j}$ пусто, то можно присвоить любое значение). Тогда если $T_{i,j}$ непусто, то $a_i = t_{i,j} = b_j$, а значит для любого $T_{i,j}$

$$a_i \eta(T_{i,j}) = t_{i,j} \eta(T_{i,j}) = b_j \eta(T_{i,j}).$$

Тогда понятно, что

$$\sum_{i=1}^{n} a_i \eta(A_i) = \sum_{i=1}^{n} a_i \sum_{j=1}^{m} \eta(T_{i,j}) = \sum_{i=1}^{n} \sum_{j=1}^{m} t_{i,j} \eta(T_{i,j}) = \sum_{j=1}^{m} b_j \sum_{i=1}^{n} \eta(T_{i,j}) = \sum_{j=1}^{m} b_j \eta(B_j).$$

Лемма 125.

1. Интеграл Лебега линеен:

$$\int (\alpha f + \beta g) dx = \alpha \int f dx + \beta \int g dx.$$

2. Интеграл Лебега монотонен: если $f \leqslant g$, то

$$\int f dx \leqslant \int g dx.$$

Определение 63. Пусть имеются полукольца $\mathfrak A$ и $\mathfrak B$ и меры μ и ν на них соответственно. Тогда произведение мер μ и ν — мера λ на полукольце $\mathfrak A \times \mathfrak B$, что

$$\lambda(A \times B) := \mu(A) \cdot \nu(B).$$

Теорема 126. $\lambda - \partial e \ddot{u} c m в u m e n ъ h o, мера.$

Доказательство. Пусть даны $A_1, \ldots, A_n, A \in \mathfrak{A}$ и $B_1, \ldots, B_n, B \in \mathfrak{B}$, что

$$\bigsqcup_{i=1}^{n} A_i \times B_i = A \times B.$$

Тогда нужно показать, что

$$\lambda\left(\bigsqcup_{i=1}^{n} A_i \times B_i\right) = \lambda(A \times B).$$

Мы имеем, что

$$A = \bigcup_{i=1}^{n} A_i \qquad \text{ } \mathbf{H} \qquad B = \bigcup_{i=1}^{n} B_i.$$

Для каждого непустого $S \subseteq \{1; \dots; n\}$ построим множества

$$A_S := \bigcap_{i \in S} A_i \setminus \bigcup_{j \notin S} A_j, \qquad B_S := \bigcap_{i \in S} B_i \setminus \bigcup_{j \notin S} B_j.$$

Каждое A_S и B_S представляется в виде конечного дизъюнктного объединения множеств из $\mathfrak A$ и $\mathfrak B$ соответственно:

$$A_S = \bigsqcup_{t=1}^{k_S} A_{S,t}, \qquad B_S = \bigsqcup_{t=1}^{l_S} B_{S,t}.$$

Тогда

$$A = \bigsqcup_{\substack{S \subseteq \{1; \dots; n\} \\ S \neq \emptyset}} A_S = \bigsqcup_{\substack{S \subseteq \{1; \dots; n\} \\ S \neq \emptyset}} \bigsqcup_{t=1}^{k_S} A_{S,t}, \qquad B = \bigsqcup_{\substack{S \subseteq \{1; \dots; n\} \\ S \neq \emptyset}} B_S = \bigsqcup_{\substack{S \subseteq \{1; \dots; n\} \\ S \neq \emptyset}} \bigsqcup_{t=1}^{l_S} B_{S,t},$$

И

$$A_{i} = \bigsqcup_{\substack{S \subseteq \{1; \dots; n\} \\ i \in S}} A_{S} = \bigsqcup_{\substack{S \subseteq \{1; \dots; n\} \\ i \in S}} \bigsqcup_{t=1}^{k_{S}} A_{S,t}, \qquad B_{i} = \bigsqcup_{\substack{S \subseteq \{1; \dots; n\} \\ i \in S}} B_{S} = \bigsqcup_{\substack{S \subseteq \{1; \dots; n\} \\ i \in S}} \bigsqcup_{t=1}^{l_{S}} B_{S,t}.$$

Следовательно,

$$A \times B = \bigsqcup_{\substack{S \subseteq \{1; \dots; n\} \\ S \neq \varnothing}} \bigsqcup_{s=1}^{k_S} \bigsqcup_{\substack{T \subseteq \{1; \dots; n\} \\ T \neq \varnothing}} \bigsqcup_{t=1}^{l_S} A_{S,s} \times B_{T,t},$$

$$A_i \times B_i = \bigsqcup_{\substack{S \subseteq \{1; \dots; n\} \\ i \in S}} \bigsqcup_{s=1}^{k_S} \bigsqcup_{\substack{T \subseteq \{1; \dots; n\} \\ i \in T}} \bigsqcup_{t=1}^{l_S} A_{S,s} \times B_{T,t}.$$

Аналогично,

$$\lambda(A \times B) = \mu(A)\nu(B)$$

$$= \left(\sum_{S \subseteq \{1; \dots; n\}} \sum_{s=1}^{k_S} \mu(A_{S,s})\right) \left(\sum_{T \subseteq \{1; \dots; n\}} \sum_{t=1}^{l_S} \nu(B_{T,t})\right)$$

$$= \sum_{S \subseteq \{1; \dots; n\}} \sum_{s=1}^{k_S} \sum_{T \subseteq \{1; \dots; n\}} \sum_{t=1}^{l_S} \lambda(A_{S,s} \times B_{T,t})$$

$$\lambda(A_i \times B_i) = \mu(A_i)\nu(B_i)$$

$$= \left(\sum_{S \subseteq \{1; \dots; n\}} \sum_{s=1}^{k_S} \mu(A_{S,s})\right) \left(\sum_{T \subseteq \{1; \dots; n\}} \sum_{t=1}^{l_S} \nu(B_{T,t})\right)$$

$$= \sum_{S \subseteq \{1; \dots; n\}} \sum_{s=1}^{k_S} \sum_{T \subseteq \{1; \dots; n\}} \sum_{t=1}^{l_S} \lambda(A_{S,s} \times B_{T,t})$$

$$= \sum_{S \subseteq \{1; \dots; n\}} \sum_{s=1}^{k_S} \sum_{T \subseteq \{1; \dots; n\}} \sum_{t=1}^{l_S} \lambda(A_{S,s} \times B_{T,t})$$

Т.е. мы имеем, что и $A \times B$, и каждое $A_i \times B_i$ и как множество, и по мере раскладываются на "ячейки" $A_{S,s} \times B_{T,t}$. Т.е. каждая непустая ячейка в разбиении $A \times B$ лежит в разбиении ровно одного блока $A_i \times B_i$, а пустые ячейки имеют меру 0, поэтому их можно игнорировать. Поэтому

$$\lambda(A \times B) = \sum_{i=1}^{n} \lambda(A_i \times B_i).$$

Определение 64. Пусть $\mathfrak{B} \subseteq 2^X$. Тогда функция $\mu: \mathfrak{B} \to \overline{\mathbb{R}}_{\geqslant 0}$ σ -аддитивна или счётно-аддитивна, если для всякого набора попарно дизъюнктных множеств $\{B_i\}_{i=0}^{+\infty} \subseteq \mathfrak{B}$, что $B:=\bigsqcup_{i=0}^{+\infty} B_i \in \mathfrak{B}$, верно

$$\mu(B) = \sum_{i=0}^{+\infty} \mu(B_i).$$

 $\Pi puмep 11.$

- 1. $\mathfrak{B}=2^X,\,\mu(X)=|X|$ (если X бесконечно, то $+\infty)-\sigma$ -аддитивная мера.
- 2. Как "дискретное вероятностное пространство". Пусть каждой точке $x \in X$ соответствует некоторое значение p(x). Тогда $\mu(X) = \sum_{x \in X} p(x)$ счётно-аддитивная мера.
- 3. Пусть $\mathfrak{B}=\{\langle a;b\rangle\mid a,b\in\overline{\mathbb{R}}\}$. Тогда для всякой неубывающей непрерывной функции $f:\overline{\mathbb{R}}\to\overline{\mathbb{R}}$

$$\mu(\langle a; b \rangle) := f(b) - f(a)$$

будет счётно-аддитивной мерой. В случае f(x) = x имеем обычную длину.

- 4. Объём ячейки в \mathbb{R}^n тоже будет счётно-аддитивной мерой.
- 5. Стилтьесовская длина. Пусть $\mathfrak{B}=\{\langle a;b \rangle\mid a,b\in\overline{\mathbb{R}}\}$. Тогда для всякой неубывающей функции $f:\overline{\mathbb{R}}\to\overline{\mathbb{R}}$

$$\mu([a;b)) := f(b) - \lim_{\varepsilon \to 0^{-}} f(a+\varepsilon), \qquad \mu((a;b)) := f(b) - \lim_{\varepsilon \to 0^{+}} f(a+\varepsilon).$$

будет счётно-аддитивной мерой.

Определение 65. Пусть дано топологическое пространство X, полукольцо $\mathfrak A$ на нём и мера μ на последнем. μ называется *регулярной*, если для всякого $A \in \mathfrak A$ верно

$$\mu(A) = \inf\{\mu(U) \mid A \subseteq U \in \mathfrak{A} \wedge U \text{ открыто}\} = \sup\{\mu(K) \mid A \supseteq K \in \mathfrak{A} \wedge K \text{ компактно}\}.$$

Теорема 127 (Александрова). Регулярная мера счётно-аддитивна.

Доказательство. Пусть дано топологическое пространство X, полукольцо $\mathfrak A$ на X, регулярная мера μ на $\mathfrak A$ и множества $A, A_0, A_1, \dots \in \mathfrak A$, что $A = \bigsqcup_{i=0}^{+\infty} A_i$. Нужно показать, что

$$\mu(A) = \sum_{i=0}^{+\infty} \mu(A_i).$$

Заметим, что для всякого n

$$\sum_{i=0}^{n} \mu(A_n) \leqslant \mu\left(\bigsqcup_{i=0}^{n} A_i \sqcup \left(A \setminus \bigcup_{i=1}^{n} A_i\right)\right) = \mu(A).$$

Отсюда

$$\mu(A) \geqslant \lim_{n \to +\infty} \sum_{i=0}^{n} \mu(A_n) = \sum_{i=0}^{+\infty} \mu(A_i).$$

Теперь покажем неравенство в обратную сторону. Пусть есть $\varepsilon > 0$. Так как

$$\mu(A) = \sup\{\mu(K) \mid A \supseteq K \in \mathfrak{A} \wedge K \text{ компактно}\},$$

то есть компакт $K \in \mathfrak{A}$, что $K \subseteq A$ и $\mu(K) \geqslant \mu(A) - \varepsilon/2$. Аналогично для каждого A_i есть открытое $U_i \in \mathfrak{A}$, что $U_i \supseteq A$ и $\mu(U_i) \leqslant \mu(A) + \varepsilon/2^{i+1}$. Следовательно,

$$\bigcup_{i=0}^{+\infty} U_i \supseteq \bigcup_{i=0}^{+\infty} A_i = A \supseteq K,$$

т.е. $\{U_i\}_{i=0}^{+\infty}$ — открытое покрытие компакта K. Значит есть конечное подпокрытие Λ . Тогда

$$\mu(A) \leqslant \mu(K) + \varepsilon/2 \leqslant \sum_{U \in \Lambda} \mu(U) + \varepsilon/2 \leqslant \sum_{i=1}^{+\infty} \mu(U_i) + \varepsilon/2 \leqslant \sum_{i=1}^{+\infty} \mu(A_i) + \varepsilon/2^{i+1} + \varepsilon/2 = \sum_{i=1}^{+\infty} \mu(A_i) + \varepsilon$$

Следовательно,

$$\mu(A) \leqslant \lim_{\varepsilon \to 0^+} \sum_{i=1}^{+\infty} \mu(A_i) + \varepsilon = \sum_{i=1}^{+\infty} \mu(A_i).$$

Определение 66. Пусть дано множество X. Множество $\mathfrak A$ называется σ -алгеброй, если является алгеброй и счётноаддитивно, т.е. для любого набора множеств $\{A_i\}_{i=0}^{+\infty} \subseteq \mathfrak A$ верно $\bigcup_{i=0}^{+\infty} \in \mathfrak A$.

 Π емма 128. Π ересечение колец/алгебр $/\sigma$ -алгебр - кольцо/алгебра $/\sigma$ -алгебра.

Определение 67. Кольцо/алгебра/ σ -алгебра, порождённая семейством $\mathfrak{B} \subseteq 2^X$ — наименьшее по включению кольцо/алгебра/ σ -алгебра, содержащее \mathfrak{B} .

Порождённая σ -алгебра обозначается $\overline{\mathfrak{B}}$.

Замечание 11. Оно определено по последней лемме, так как хотя бы одно кольцо/алгебра/ σ -алгебра есть: это просто всё 2^X .

Определение 68. Boldface Borel hierarchy топологического пространства (X, Λ_X) — это множества Σ^0_{α} , Π^0_{α} и Δ^0_{α} подмножеств X, определённые для всякого ординала $\alpha > 0$ следующим образом.

- $\Sigma_1^0 := \Lambda_X$ множество открытых множеств.
- $\Pi^0_{\alpha}:=\{X\setminus A\mid A\in\Sigma^0_{\alpha}\}$ множество дополнений множеств из $\Sigma^0_{\alpha}.$
- Σ_{α}^{0} множество всех таких подмножеств A, для каждого из которых есть набор множеств $\{A_{i}\}_{i=0}^{+\infty}$ и набор ординалов $\{\alpha_{i}\}_{i=0}^{+\infty}$, что для каждого i верно $\alpha_{i} < \alpha$, $A_{i} \in \Pi_{\alpha_{i}}^{0}$, а $A = \bigcup_{i=0}^{+\infty}$.
- $\bullet \ \Delta^0_\alpha := \Sigma^0_\alpha \cap \Pi^0_\alpha.$

Например,

- Σ^0_1 открытые множества, Π^0_1 замкнутые множества, Δ^0_1 замкнуто-открытые множества.
- Σ_2^0 множество счётных объединений замкнутых множеств, а Π_2^0 множество счётных пересечений открытых множеств. Они также обозначаются F_σ и G_δ соответственно.

14.2 Внешняя мера

Определение 69. Пусть дано полукольцо $\mathfrak A$ на X и мера μ на $\mathfrak A$. Функция

$$\mu^*: 2^X \to \overline{\mathbb{R}}_{\geq 0}, A \mapsto \inf \left\{ \sum_{i=0}^{+\infty} \mu(A_i) \mid \{A_i\}_{i=0}^{+\infty} \subseteq \mathfrak{A} \land A \subseteq \bigcup_{i=0}^{+\infty} A_i \right\}$$

называется внешней мерой, порождённой мерой μ .

Лемма 129.

- 1. Для всякого $A \in \mathfrak{A} \ \mu^*(A) \leqslant \mu(A)$.
- 2. Echu $A \subseteq B$, mo $\mu^*(A) \leqslant \mu^*(B)$.
- 3. Счётная полуаддитивность. Для всякого набора множеств $\{A_i\}_{i=0}^{+\infty}$

$$\mu^* \left(\bigcup_{i=0}^{+\infty} A_i \right) \leqslant \sum_{i=0}^{+\infty} \mu^*(A_i).$$

4. Если μ счётноаддитивна, то для всякого $A \in \mathfrak{A}$ верно $\mu^*(A) = \mu(A)$.

Доказательство.

1.

$$\mu^*(A) \leqslant \sum_{i=0}^{+\infty} \mu(A) = \mu(A)$$

2. Для всякого $\varepsilon > 0$ найдётся набор $\{B_i\}_{i=0}^{+\infty}$, что

$$A \subseteq B \subseteq \bigcup_{i=0}^{+\infty} B_i, \qquad \sum_{i=0}^{+\infty} \mu(B_i) \leqslant \mu^*(B) + \varepsilon.$$

Тогда

$$\mu^*(A) \leqslant \sum_{i=0}^{+\infty} \mu(B_i) \leqslant \mu^*(B) + \varepsilon.$$

Значит

$$\mu^*(A) \leqslant \lim_{\varepsilon \to 0^+} \mu^*(B) + \varepsilon.$$

3. Для всякого $\varepsilon>0$ для каждого $i\in\mathbb{N}$ есть последовательность $\{B_{i,k}\}_{k=0}^{+\infty}\subseteq\mathfrak{A}$, что

$$A_i \subseteq \bigcup_{k=0}^{+\infty} B_{i,k}, \qquad \sum_{k=0}^{+\infty} \mu(B_{i,k}) \leqslant \mu^*(A_i) + \varepsilon/2^{i+1}.$$

Следовательно,

$$\bigcup_{i=0}^{+\infty} A_i \subseteq \bigcup_{i=0}^{+\infty} \bigcup_{k=0}^{+\infty} B_{i,k},$$

а тогда

$$\mu^* \left(\bigcup_{i=0}^{+\infty} A_i \right) \leqslant \sum_{i=0}^{+\infty} \sum_{k=0}^{+\infty} \mu(B_{i,k}) \leqslant \sum_{i=0}^{+\infty} \mu^*(A_i) + \varepsilon/2^{i+1} = \varepsilon + \sum_{i=0}^{+\infty} \mu^*(A_i).$$

4. В одну сторону неравенство уже доказано: $\mu^*(A) \leqslant \mu(A)$. Осталось доказать, что $\mu(A) \leqslant \mu^*(A)$.

Пусть есть какой-то набор $\{A_i\}_{i=0}^{+\infty} \subseteq \mathfrak{A}$, что

$$A \subseteq \bigcup_{i=0}^{+\infty} A_i.$$

Достаточно показать, что

$$\mu(A) \leqslant \sum_{i=0}^{+\infty} \mu(A_i).$$

Пусть $B_i = A_i \setminus \bigcup_{k=0}^{i-1} A_k$. Понятно, что B_i представляется в виде дизъюнктного объединения $\bigsqcup_{t=1}^{m_i} C_{i,t}$ множеств из $\mathfrak A$. Тогда

$$A = \bigsqcup_{i=0}^{+\infty} B_i = \bigsqcup_{i=0}^{+\infty} \bigsqcup_{t=1}^{m_i} C_{i,t},$$

а значит

$$\mu(A) = \sum_{i=0}^{+\infty} \sum_{t=1}^{m_i} \mu(C_{i,t}) \leqslant \sum_{i=0}^{+\infty} \mu(A_i).$$

Определение 70. Пусть дано множество X. Функция $\gamma: 2^X \to \overline{\mathbb{R}}_{\geqslant 0}$ называется $\mathit{npedmepoù},$ если

- $\gamma(\varnothing) = 0$,
- если $A \subseteq B$, то $\gamma(A) \leqslant \gamma(B)$,
- (" σ -полуаддитивность") $\gamma(\bigcup_{i=0}^{+\infty} A_i) \leqslant \sum_{i=0}^{+\infty} \gamma(A_i)$.

Пусть дана предмера $\gamma.$ $E\subseteq X$ называется $\gamma\text{-}измеримым множеством, если для всякого <math display="inline">A\subseteq X$

$$\gamma(A) = \gamma(A \cap E) + \gamma(A \setminus E).$$

Пемма 130. Внешняя мера является предмерой.

Теорема 131 (Лебега-Каратеодори). Пусть $\gamma- npe \partial mep a$ на $X, a \Sigma- mhoже cmbo <math>\gamma$ -измеримых множе cmb.

- 1. Σ алгебра.
- $2. \gamma|_{\Sigma}$ мера на Σ .
- 3. $\Sigma \sigma$ -алгебра.
- 4. $\gamma|_{\Sigma}$ счётноаддитивная мера на Σ .
- 5. Пусть $\mathfrak A$ полукольцо на X, а μ мера на $\mathfrak A$. Пусть также $\gamma=\mu^*$. Тогда $\Sigma\supseteq\overline{\mathfrak A}$.

Доказательство.

1. • Для всякого $A \subseteq X$

$$\gamma(A) = \gamma(\varnothing) + \gamma(A) = \gamma(A \cap \varnothing) + \gamma(A \setminus \varnothing).$$

Следовательно, $\emptyset \in \Sigma$.

• Пусть $E \in \Sigma$. Тогда для всякого $A \subseteq X$

$$\gamma(A) = \gamma(A \cap E) + \gamma(A \setminus E) = \gamma(A \setminus (X \setminus E)) + \gamma(A \cap (X \setminus E)).$$

Следовательно, $X \setminus E \in \Sigma$.

• Пусть $E, F \in \Sigma$. Тогда для всякого $A \subseteq X$

$$\begin{split} \gamma(A) &= \gamma(A \cap F) + \gamma(A \setminus F) \\ &= \gamma(A \cap F) + \gamma((A \setminus F) \cap E) + \gamma(A \setminus F \setminus E) \\ &= \gamma(A \cap (F \cup E) \cap F) + \gamma((A \cap E) \setminus F) + \gamma(A \setminus (F \cup E)) \\ &= \gamma(A \cap (F \cup E) \cap F) + \gamma((A \cap (F \cup E)) \setminus F) + \gamma(A \setminus (F \cup E)) \\ &= \gamma(A \cap (F \cup E)) + \gamma(A \setminus (F \cup E)). \end{split}$$

- 2. $\gamma(\varnothing) = 0$ по определению.
 - Пусть $E, F \in \Sigma$ не пересекаются. Тогда

$$\gamma(E \cup F) = \gamma((E \cup F) \cap F) + \gamma((E \cup F) \setminus F) = \gamma(F) + \gamma(E).$$

Отсюда следует конечная аддитивность.

3. Пусть даны $\{E_i\}_{i=0}^{+\infty} \subseteq \Sigma$, а $E = \bigcup_{i=0}^{+\infty}$. Пусть также дано любое $A \subseteq X$. С одной стороны по полуаддитивности

$$\gamma(A) = \gamma \left(\left(A \cap \bigcup_{i=0}^{+\infty} E_i \right) \cup \left(A \setminus \bigcup_{i=0}^{+\infty} E_i \right) \right) \leqslant \gamma \left(A \cap \bigcup_{i=0}^{+\infty} E_i \right) + \gamma \left(A \setminus \bigcup_{i=0}^{+\infty} E_i \right).$$

Значит нужно показать неравенство с другой стороны. Также заметим, что в случае $\gamma(A) = +\infty$ утверждение очевидно, поэтому будем предполагать, что $\gamma(A) < +\infty$.

$$F_i := E_i \setminus \bigcup_{j=0}^{i-1} E_j.$$

Тогда

Пусть

$$\bigcup_{i=0}^n E_i = \bigcup_{i=0}^n F_i \qquad \text{ и } \qquad \bigcup_{i=0}^{+\infty} E_i = \bigcup_{i=0}^{+\infty} F_i.$$

А значит

$$A \cap \bigcup_{i=0}^{+\infty} E_i = A \cap \bigcup_{i=0}^{+\infty} F_i \qquad \text{if} \qquad A \setminus \bigcup_{i=0}^{+\infty} E_i = A \setminus \bigcup_{i=0}^{+\infty} F_i.$$

При этом, понятно, $F_i \in \Sigma$. Т.е. задача для $\{E_i\}$ сводится к задаче для попарно дизъюнктных $\{F_i\}$. Т.е. можно просто предполагать попарную дизъюнктность $\{E_i\}_{i=0}^{+\infty}$.

Заметим, что для всякого n

$$\gamma(A) = \gamma \left(A \cap \bigcup_{i=0}^{n} E_i \right) + \gamma \left(A \setminus \bigcup_{i=0}^{n} E_i \right) \geqslant \gamma \left(A \cap \bigcup_{i=0}^{n} E_i \right) + \gamma \left(A \setminus E \right)$$

Также заметим, что

$$\gamma\left(A \cap \bigcup_{i=0}^{n} E_{i}\right) = \gamma\left(\left(A \cap \bigcup_{i=0}^{n} E_{i}\right) \cap E_{n}\right) + \gamma\left(\left(A \cap \bigcup_{i=0}^{n} E_{i} \cap E_{n}\right) \setminus E_{n}\right)$$
$$= \gamma\left(A \cap \bigcup_{i=0}^{n-1} E_{i}\right) + \gamma\left(A \cap E_{n}\right).$$

Тогда, применяя индукцию, сразу получаем, что

$$\gamma\left(A\cap\bigcup_{i=0}^{n}E_{i}\right)=\sum_{i=0}^{n}\gamma(A\cap E_{i}).$$

Следовательно,

$$\gamma(A) \geqslant \gamma(A \setminus E) + \sum_{i=0}^{n} \gamma(A \cap E_i).$$

А тогда

$$\gamma(A) \geqslant \gamma(A \setminus E) + \sum_{i=0}^{+\infty} \gamma(A \cap E_i) \geqslant \gamma(A \setminus E) + \gamma\left(\bigcup_{i=0}^{+\infty} A \cap E_i\right) = \gamma(A \setminus E) + \gamma(A \cap E).$$

4. Пусть дан набор попарно дизъюнктных множеств $\{E_i\}_{i=0}^{+\infty} \subseteq \Sigma$, $E := \bigcup_{i=0}^{+\infty} E_i$. Тогда по последним рассуждениям прошлого пункта

$$\gamma(E) \geqslant \gamma(E \setminus E) + \sum_{i=0}^{+\infty} \gamma(E \cap E_i) = \sum_{i=0}^{+\infty} \gamma(E_i) \geqslant \gamma\left(\bigcup_{i=0}^{+\infty} E_i\right) = \gamma(E).$$

5. Достаточно показать, что $\mathfrak{A}\subseteq \Sigma$. Пусть $E\in \mathfrak{A}$, а $A\subseteq X$. Аналогично, надо показать, что если $\mu^*(A)<+\infty$, то

$$\mu^*(A) \geqslant \mu^*(A \cap E) + \mu^*(A \setminus E).$$

Тогда есть $\{B_i\}_{i=0}^{+\infty} \subseteq \mathfrak{A}$, что

$$A \subseteq \bigsqcup_{i=0}^{+\infty} B_i \qquad \text{if} \qquad \mu^*(A) + \varepsilon/2 \geqslant \sum_{i=0}^{+\infty} \mu(B_i).$$

Тогда

$$A \cap E \subseteq \bigsqcup_{i=0}^{+\infty} B_i \cap E$$
 и $A \setminus E \subseteq \bigsqcup_{i=0}^{+\infty} B_i \setminus E$.

При этом $B_i\cap E\in\mathfrak{A}$, а $B_i\setminus E=\bigsqcup_{t=1}^{m_i}C_{i,t}$, где $C_{i,t}\in\mathfrak{A}$. Тогда

$$\mu^*(A \cap E) \leqslant \sum_{i=0}^{+\infty} \mu(B_i \cap E) \qquad \text{if} \qquad \mu^*(A \setminus E) \leqslant \sum_{i=0}^{+\infty} \sum_{t=1}^{m_i} \mu(C_{i,t}).$$

Таким образом

$$\mu^*(A \cap E) + \mu^*(A \setminus E) \leqslant \sum_{i=0}^{+\infty} \mu(B_i \cap E) + \sum_{t=1}^{m_i} \mu(C_{i,t}) = \sum_{i=0}^{+\infty} \mu(B_i) \leqslant \mu^*(A) + \varepsilon.$$

Следовательно,

$$\mu^*(A \cap E) + \mu^*(A \setminus E) \leqslant \mu^*(A).$$

Определение 71. Вспомним полукольцо ячеек $P(\mathbb{R}^n)$ с естественной мерой μ .

 σ -алгебра Σ измеримых по μ^* называется σ -алгебра измеримых по Лебегу множеств, а мера $\mu^*|_{\Sigma}$ обозначается λ и называется мерой Лебега.

 σ -алгебра $\mathfrak{B}:=\overline{P(\mathbb{R}^n)}$ называется Борелевской σ -алгеброй. А мера $\lambda|_{\mathfrak{B}}$ называется мерой Бореля.

Лемма 132.

- 1. Мощность $|\mathfrak{B}|$ континуум.
- 2. Мощность $|\Sigma|$ гиперконтинуум.
- 3. $\mathfrak{B} \subsetneq \Sigma$.

Лемма 133. Пусть γ — предмера на X, а $E \subseteq X$, что $\gamma(E) = 0$. Тогда E γ -измеримо.

Доказательство. Для всякого $A \subseteq X$ по монотонности и полуаддитивности

$$\gamma(A \setminus E) \leqslant \gamma(A) \leqslant \gamma(A \setminus E) + \gamma(A \cap E) \leqslant \gamma(A \setminus E) + \gamma(E) = \gamma(A \setminus E) + 0 = \gamma(A \setminus E).$$

Следовательно,

$$\gamma(A) = \gamma(A \setminus E) + \gamma(A \cap E).$$

Определение 72. Мера на полукольце $\mathfrak{A} \subseteq 2^X$ называется σ -конечной, если исходное множество X представляется в виде счётного объединения множеств конечной меры:

$$X = \bigcup_{i=0}^{+\infty} A_i, \qquad A_i \in \mathfrak{A}, \mu(A_i) < +\infty.$$

Замечание 12. Мера Лебега и мера Бореля (на \mathbb{R}^n) σ -конечны.

Теорема 134 (о структуре измеримых множеств). Всякое измеримое по Лебегу множество A есть разность измеримого по Борелю множества B и его подмножества E меры Лебега ноль: $A = B \setminus E$, $B \in \mathfrak{B}$, $E \subseteq B$, $\lambda(E) = 0$.

Доказательство. Сначала докажим для случая $\lambda(A) < +\infty$. Также обозначим полукольцо ячеек как $\mathfrak A$.

Для всякого $\varepsilon>0$ есть $\{C_{\varepsilon,i}\}_{i=0}^{+\infty}\subseteq\mathfrak{A},$ что

$$A \subseteq \bigcup_{i=0}^{+\infty} C_{\varepsilon,i}, \qquad \sum_{i=0}^{+\infty} \mu(C_{\varepsilon,i}) \leqslant \mu^*(A) + \varepsilon = \lambda(A) + \varepsilon.$$

Т.е. пусть $C_{arepsilon}:=igcup_{i=0}^{+\infty}C_{arepsilon,i}$. Тогда

$$A \subseteq C_{\varepsilon}, \qquad \lambda(A) + \varepsilon \geqslant \sum_{i=0}^{+\infty} \mu(C_{\varepsilon,i}) = \sum_{i=0}^{+\infty} \mu(C_{\varepsilon,i}) = \sum_{i=0}^{+\infty} \lambda(C_{\varepsilon,i}) = \lambda(C_{\varepsilon}).$$

Пусть тогда $D = \bigcap_{\varepsilon > 0} C_{\varepsilon}$. Тогда

$$A \subseteq D$$
, $\forall \varepsilon > 0 \ \lambda(A) + \varepsilon \geqslant \lambda(D) \implies \lambda(A) = \lambda(D)$.

При этом каждое $C_{\varepsilon,i} \in \mathfrak{A} \subseteq \mathfrak{B}$, тогда $C_{\varepsilon} \in \mathfrak{B}$, а значит и $D \in \mathfrak{B}$. Следовательно,

$$\lambda(D \setminus A) = \lambda(D) - \lambda(A) = 0.$$

T.e. $A = D \setminus (D \setminus A)$, где $D \in \mathfrak{B}$ и $\lambda(D \setminus A) = 0$.

Теперь же случай любой меры A. Рассмотрим покрытие X множествами $\{B_i\}_{i=0}^{+\infty}$ конечной меры. WLOG B_i попарно дизъюнктны. Тогда по предыдущему рассуждению есть $D_i \in \mathfrak{B}$, что $D_i \supseteq A \cap B_i$ и $\lambda(D_i) = A \cap B_i$. Пусть $D := \bigcup_{i=0}^{+\infty} D_i$. Тогда

$$D \supseteq \bigcup_{i=0}^{+\infty} A \cap B_i = A \cap \bigcup_{i=0}^{+\infty} B_i = A \cap X = A.$$

При этом $A = \bigsqcup_{i=0}^{+\infty} A \cap B_i$. Также

$$D \setminus A = \bigcup_{i=0}^{+\infty} (D \setminus A) \cap B_i \subseteq \bigcup_{i=0}^{+\infty} D_i \setminus (A \cap B_i).$$

Значит

$$\lambda(D \setminus A) \leqslant \sum_{i=0}^{+\infty} \lambda(D_i \setminus (A \cap B_i)) = 0.$$

Значит $D \in \mathfrak{B}$, $A \subseteq D$ и $\lambda(D \setminus A) = 0$.

Лемма 135. Пусть есть σ -алгебра Δ и мера ν на ней, что $\mathfrak{B} \subseteq \Delta \subseteq \Sigma$ и $\nu|_{\mathfrak{B}} = \lambda|_{\mathfrak{B}}$. Тогда $\nu|_{\Delta} = \lambda|_{\Delta}$.

Доказательство. Для всякого $E \in \Delta$ λ -меры ноль верно, что есть $D \in \mathfrak{B}$ λ -меры ноль, содержащее E, а значит $\nu(E) \leqslant \nu(D) = \lambda(D) = 0$, т.е. $\nu(E) = 0$. Тогда для любого множества $E \in \Delta$ есть множество $D \in \mathfrak{B}$, что $\lambda(D \setminus E) = 0$. При этом $D \in \Delta$, а тогда $D \setminus E \in \Delta$, а тогда $\nu(D \setminus E) = 0$, а значит $\nu(E) = \nu(D) = \lambda(D) = \lambda(E)$.

Определение 73. Пусть X — некоторое множество, $\mathfrak A$ — σ -алгебра на X, а μ — мера на $\mathfrak A$. Тогда $(X,\mathfrak A)$ называется измеримым пространством, а $(X,\mathfrak A,\mu)$ — пространством c мерой или пространством-мерой.

Определение 74. Пусть (X,\mathfrak{A}) и (Y,\mathfrak{B}) — два измеримых пространства. Функция $f:X\to Y$ называется измеримой, если для всякого $B\in\mathfrak{B}$ верно $f^{-1}(B)\in\mathfrak{A}$.

Пример 12. Всякая непрерывная функция между топологическими пространствами с выделенными Борелевскими σ-алгебрами измерима.

Лемма 136. Пусть $f: G_1 \to G_2$ — липшицевый гомеоморфизм между областями в \mathbb{R}^n . Тогда для всякого $B \subseteq G_1$ меры Лебега ноль верно, что f(B) имеет меру Лебега ноль.

Доказательство. B можно накрыть Борелевскими множествами суммарной меры $\leq \varepsilon$, а тогда f(B) накроется их образами, а при f их меры не увеличатся, а значит и f(B) накрывается Борелевскими множествами меры $\leq \varepsilon$. В таком случае f(B) имеет меру ноль по Лебегу. \square