Robert Davidson **ST1112: Statistics**

 $70\%~{\rm Exam} \\ 30\%~{\rm Continuous~Assessment}~(3~{\rm parts})$

Contents

1	Inferential Statistics
	1.1 Probability vs Statistics
	1.2 Definitions and Concepts
	Definition 1.1
	Definition 1.2
	Concept 1.1

1 Inferential Statistics

The ultimate goal in statistical inference is to estimate population paramaters (like the mean μ) based on sample statistics (like the sample mean \bar{X}).

1.1 Probability vs Statistics

- **Probability** deals with known underlying processes: one starts with a model (like proportion of red vs. green jelly beans in a jar) and computes probability of specific outcomes
- Statistics works in reverse: one observes outcomes (sample data) and attempts to infer the underlying process or population parameters (e.g. proportion of red jellybeans)

1.2 Definitions and Concepts

Definition 1.1: Population

A **population** is the complete set of items (or individuals) of interest.

Definition 1.2: Sample

A sample is a subset of that population, intended to represent the population

Concept 1.1: Sampling Variation

When we take multiple samples from the same population, each sample's mean \bar{X} will be different. This is variability is called **sampling variation**.

Larger sample sizes tend to reduce this variation, that is as n gros, the sample mean \bar{X} becomes a better estimate of the population mean μ .