Advanced Topics on Artificial Intelligence

Alban Grastien

The Australian National University

Second Semester, 2020

Formally: Little Robot

- Four actions: Up, Down, Left, Right (50% chance of going Down-Right).
- Each action costs 1
- Reaching ends the game.
- Trying to minimise total cost

Greedy Policy

Let $V:S\to\mathcal{Q}^+$ be a value function , that estimates the value of each state.

The greedy policy π_V chooses the action that guarantees the smallest expected cost according to a one-step lookahead:

$$\pi_V(s) \stackrel{def}{=} \arg\min_{a \in A(s)} \quad \Sigma_{s' \in S} \left(P(s, a, s') \cdot (C(s, a, s') + \gamma \times V(s')) \right)$$

(ties broken arbitrarily)

4	60	50	40	30	20
3	50	40	30	20	10
2		30		10	7
1	50	40	30	20	10
0	60	50	40	30	20
,	Α	В	С	D	Е

- Cost of each action is 1. Reward is $0. \ \gamma = 1.$
- Initialise value function with values defined from obstacle-free distance

4	60	50	40	30	20
3	50	40	30	20	10
2	Ä	30		10	7
1	50	40	30	20	10
0	60	50	40	30	20
,	Α	В	С	D	E

- Cost of each action is 1. Reward is $0. \ \gamma = 1.$
- Initialise value function with values defined from obstacle-free distance
- Consider A2:
- Up: C(Up) + V(A3) = 51
- Right: C(Right)+(.5V(B2)+.5V(B1))=36
- Down: C(Down) + V(A1) = 51

4	60	50	40	30	20
3	50	40	30	20	10
2	Ä	30		10	8
1	50	40	30	20	10
0	60	50	40	30	20
	Α	В	С	D	E

- Cost of each action is 1. Reward is $0. \ \gamma = 1.$
- Initialise value function with values defined from obstacle-free distance
- Consider A2:
- Up: C(Up) + V(A3) = 51
- Right: C(Right)+(.5V(B2)+.5V(B1))=36
- Down: C(Down) + V(A1) = 51

- Cost of each action is 1. Reward is $0. \ \gamma = 1.$
- Initialise value function with values defined from obstacle-free distance
- Consider A2:
- Up: C(Up) + V(A3) = 51
- Right: C(Right)+(.5V(B2)+.5V(B1))=36
- Down: C(Down) + V(A1) = 51

Bellmann Backup

- The idea of Bellmann backup is to update the value of each state with its lookahead.
- It is expected that the new value will be more accurate.

Given value function V, the Bellmann backup is a new value function, BV, defined as the cost of the next action + the (discounted) value of the next state, weighted by the outcome of the action If s is a goal state, then $BV(s) \stackrel{def}{=} 0$. Otherwise:

$$BV(s) \stackrel{def}{=} \min_{a \in A(s)} \Sigma_{s' \in S} P(s, a, s') \left(C(s, a, s') + \gamma \cdot V(s') \right)$$

Little Robot: Bellmann Backup

- Cost of actions is 1

then:

•
$$BV(E1) = C(Up) + V(E2) = 1$$

•
$$BV(D2) = C(Right) + (.5V(E2) + .5V(E1)) = 6$$

Little Robot: Bellmann Backup

- Cost of actions is 1

then:

•
$$BV(E1) = C(Up) + V(E2) = 1$$

•
$$BV(D2) = C(Right) + (.5V(E2) + .5V(E1)) = 6$$

Little Robot: Greedy Backup Policy

4	46	41	26	21	11
3	36	31	16	6	1
2	1	41		6	Ø
1	41	31	26	11	1
0	51	41	31	21	11
,	Α	В	С	D	Е

- ullet Replacing V with BV
- If several actions are tied in a state, we stick to the same policy.

Little Robot: Greedy Backup Policy

- ullet Replacing V with BV
- If several actions are tied in a state, we stick to the same policy.
- In blue: the new decisions.

Little Robot: Greedy Backup Policy

- ullet Replacing V with BV
- If several actions are tied in a state, we stick to the same policy.
- In blue: the new decisions.

Little Robot: Going On

4	37	22	14.5	7	2
3	37	17	7	1.5	1
2	R	32		1.5	
1	37	29.5	17	7	1
0	42	32	22	12	2
	Α	В	С	D	Е

Little Robot: Going On

Little Robot: Going On

Little Robot: Eventually

Bellmann Backup and Perfect Value Function V^*

Assuming either $\gamma \neq 1$ or every action has a positive cost except in goal states.

THEOREM

 V^* enjoys the following property:

$$\forall s \in S. \quad BV^*(s) = V^*(s)$$

Furthermore, $V^{st}(s)$ is the only value function that enjoys this property.

Proof (sketch)

Assume $V_1 \neq V_2$ and yet $BV_1 = V_1$ and $BV_2 = V_2$. Assume that all actions have a positive cost. Assume $\gamma = 1$.

- **①** Let s be one state that maximises $\delta := V_2(s)/V_1(s)$ where $\delta > 1$.
- 2 Let a be the optimal action in s according to V_1 .
- We have

$$V_{2}(s) \leq Q_{2}(s, a)$$

$$\leq \Sigma_{s' \in S} \left(P(s, a, s') \times (C(s, a, s') + V_{2}(s')) \right)$$

$$\leq \Sigma_{s' \in S} \left(P(s, a, s') \times (C(s, a, s') + \delta V_{1}(s')) \right)$$

$$< \Sigma_{s' \in S} \left(P(s, a, s') \times (\delta C(s, a, s') + \delta V_{1}(s')) \right)$$

$$< \delta \Sigma_{s' \in S} \left(P(s, a, s') \times (C(s, a, s') + V_{1}(s')) \right)$$

$$< \delta V_{1}(s)$$

Bellmann Error

The Bellmann error of a value function is the maximum absolute difference before the value of a state and the backup value of the same state:

$$BE(\mathit{V}) \stackrel{\mathit{def}}{=} \quad \max_{\mathit{s}} \quad |\mathit{BV}(\mathit{s}) - \mathit{V}(\mathit{s})|$$

THEOREM

The Bellmann error of a function is 0 iff this function is the perfect value function.

Iterative Backup

• For an SSP derived from an MDP with discount factor $\gamma \in [0,1)$, the Bellmann error satisfies the following inequality:

$$BE(BV) \le (1 - \gamma)BE(V).$$

• In other words, V^* can be obtained by applying infinitely many backups to any value function:

$$V^* = \lim_{i \to \infty} \ \underbrace{B \dots B}_{i} \ V.$$

• If the Bellmann error of V is below $\frac{\varepsilon(1-\gamma)}{2\gamma}$, then V is within ε of V^* :

$$V^*(s) \in [V(s) - \varepsilon, V(s) + \varepsilon]$$
 for all state s .

Value Iteration

If the goal is reachable with a non-zero percent chance from any state, then $B \dots B$ V converges as i increases.

Value-Iteration

- Input: small number ε
- t := 0
- ullet Choose an arbitrary value function V^t
- repeat
 - t += 1
 - $V^t := BV^{t-1}$
- while $BE(V^{t-1}) > \varepsilon$
- \bullet return V^t

Convergence

Notice that in general, the optimal value V^* is never reached. Example:

- there is only one action per state;
- P(S1, a, S2) = 1, P(S2, a, S1) = P(S2, a, G) = 1/2.
- the goal is G (value 0) and each action has cost 1.

Properties and Drawbacks

- Fairly expensive
- Diverges when there are dead-ends
- Struggles to find the best first action (but good at finding the last good action)
- ullet Allows for asynchronous backups o more about this later