Ques1.

An interface at z=0 separates two media labeled as 1 and 2. The ratio of the magnetic permeability of the two media μ_2/μ_1 is 5/4. Assume, there is no free current at the interface. The magnetic field in medium 1 is given by $\vec{B}_1=4z\hat{x}+5x\hat{z}$. This results in the magnetic field in medium 2 as $\vec{B}_2=a\hat{x}+b\hat{y}+c\hat{z}$. The values of a, b and c are c are c and c are c are c and c are c and c are c are c are c and c are c are c are c are c and c are c are c are c are c and c are c are c are c are c and c are c and c are c are c are c and c are c

Ques2.

Ques3.

The figure shows two coplanar, concentric circular rings C_1 and C_2 with radii R_1 and R_2 , respectively. Given that $R_2=10R_1$ and $R_1=1$ mm. The flux through C_2 , when a steady current I=1 mA passes through C_1 , can be calculated as $\phi=n\times 10^m$ Wb. Then the values of n and m are 2 and 3, respectively, where n is a single digit integer. [Given: The magnetic field at a point on the axis of a circular ring carrying steady current I at a distance z from the center of the ring is given by $B(z)=\frac{\mu_0 I}{2}\frac{R^2}{(R^2+z^2)^{3/2}}$, where R is the radius of the ring.]

Ques4.

A parallel plate capacitor is immersed in a liquid and is driven by a sinusoidal voltage with frequency 4×10^{10} Hz. Relative permittivity of the liquid is 100 at the same frequency; relative permeability $\mu_r\approx 1$ and the resistivity is $0.25\,\Omega$ -cm. The ratio of the free current to the displacement current in the capacitor is ______1.

Round off the answer to one decimal place.