

Winning Space Race with Data Science

<Name> <Date>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data collection methodology
- Data wrangling
- Exploratory data analysis (EDA) using visualization and SQL
- Interactive visual analytics using Folium and Plotly Dash
- Predictive analysis using classification models

Summary of all results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Introduction

- SpaceX, or Space Exploration Technologies Corp., is an American aerospace manufacturer and space transportation company founded by Elon Musk in 2002.
- One of the best innovation ideas in the world is SpaceX creating a reusable rocket technology.
- The Falcon 9 is a two-stage orbital launch vehicle developed and manufactured by SpaceX. The ability to land and reuse the first stage contributes significantly to reducing the cost of space travel.
- The prediction of Falcon 9 Landing using Data Science.

Methodology

Executive Summary

- Data collection methodology:
 - Describe how data was collected
- Perform data wrangling
 - Describe how data was processed
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

Describe how data sets were collected.

Downloading from spacex

Converting into dataframe

Cleansing data

```
[6]: spacex_url="https://api.spacexdata.com/v4/launches/past"
[7]: response = requests.get(spacex_url)
[12]: # Use json_normalize meethod to convert the json result into a dataframe
```

data=pd.json normalize(response.json())

```
[23]: # Create a data from Launch dict
data=pd.DataFrame(launch_dict)
```

```
[37]: # Hint data['BoosterVersion']!='Falcon 1'
  data_falcon9=data[data['BoosterVersion']!='Falcon 1']
  data_falcon9.head()
```

Data Collection - SpaceX API

 Present your data collection with SpaceX REST calls using key phrases and flowcharts

https://github.com/gayathridevi1256/
 Applied-Data-Science Capstone/blob/main/jupyter-labs spacex-data-collection-api.ipynb

```
Start
[Initiate SpaceX API Call]
[Specify API Endpoint (e.g., Launches, Rockets, etc.)]
[Include Parameters (e.g., Date Range, Filters)]
[Make HTTP Request]
[Receive API Response]
[Check Status Code]
[Status Code == 200?]
|-----[Yes]
   [Parse JSON Response]
   [Extract Relevant Data]
   [Data Processing/Analysis] ----> [Display or Save Results]
[Error Handling]
                                                                        8
[End]
```

Data Wrangling

Describe how data were processed

 Cleansing all the null values and replacing them with the mean value.

- https://github.com/gayathridevi1256/Applied-Data-Science-Capstone/blob/main/labs-jupyter-spacex-Data%20wrangling.ipynb
- https://github.com/gayathridevi1256/Applied-Data-Science-Capstone/blob/main/jupyter-labswebscraping.ipynb

```
[32]: data_falcon9.isnull().sum()
32]: FlightNumber
     Date
     BoosterVersion
     PayloadMass
     Orbit
     LaunchSite
     Outcome
     Flights
     GridFins
     Reused
     Legs
     LandingPad
     Block
     ReusedCount
     Serial
     Longitude
     Latitude
     dtype: int64
```

```
[34]: # Calculate the mean value of PayloadMass column
mean=data_falcon9['PayloadMass'].mean()
# Replace the np.nan values with its mean value
data_falcon9.replace(np.nan_mean)
```

EDA with Data Visualization

- Summarize what charts were plotted and why you used those charts
- There are various types of charts and graphs, each suitable for different data types and purposes.
- Bar chart:Show the relationship between individual data points and a categorical variable
- Line chart: Display trends over a continuous interval or time series.
- Pie chart:Represent parts of a whole; each slice represents a proportion of the entire dataset.
- Scatter Plot:Display the relationship between two continuous variables, showcasing individual data points.
- https://github.com/gayathridevi1256/Applied-Data-Science-Capstone/blob/main/jupyter-labs-webscraping.ipynb

EDA with **SQL**

- Using bullet point format, summarize the SQL queries you performed
- SQL (Structured Query Language) is commonly used in conjunction with machine learning tasks, especially when dealing with databases and data preprocessing.
- Some of the SQL commands used in the project apart from the basic DDL and DML commands are:
- Functions like Rank(), GroupBy(), OrderBY(), Min(), Max(), Avg(), Sum()

 https://github.com/gayathridevi1256/Applied-Data-Science-Capstone/blob/main/jupyter-labs-eda-sql-coursera_sqllite.ipynb

Build an Interactive Map with Folium

- Summarize what map objects such as markers, circles, lines, etc. you created and added to a folium map
- In the context of creating and adding elements to a Folium map, various map objects such as markers, circles, and lines are commonly utilized.
 - Markers are used to pinpoint specific locations on the map.
 - Circles are employed to represent areas of influence or coverage around a central point.
 - Lines are used to depict paths, routes, or connections between two or more points on the map.

(download was not supporting so I added a pdf below)

 https://github.com/gayathridevi1256/Applied-Data-Science-Capstone/blob/main/JupyterLite-Folium.pdf

Build a Dashboard with Plotly Dash

- Summarize what plots/graphs and interactions you have added to a dashboard
- Explain why you added those plots and interactions
- Add the GitHub URL of your completed Plotly Dash lab, as an external reference and peer-review purpose

Predictive Analysis (Classification)

- Summarize how you built, evaluated, improved, and found the best performing classification model
- I have calculated and predicted the output using four different algorithms and compared their accuracy.

(download was not supporting so I added a pdf below)

• https://github.com/gayathridevi1256/Applied-Data-Science-
Capstone/blob/main/JupyterLite-Machine%20learning%20prediction.pdf

Results

Exploratory data analysis results

- Interactive analytics demo in screenshots
- Predictive analysis results

```
Landing OutcomeRANK() OVER(ORDER BY COUNT(LANDING_OUTCOME) ASC)Precluded (drone ship)1Failure (parachute)2Uncontrolled (ocean)2Controlled (ocean)4Success (ground pad)4Failure (drone ship)6Success (drone ship)6No attempt8
```

```
Best Algorithm is Tree with a score of 0.875

Best Params is : {'criterion': 'entropy', 'max_depth': 2, 'max_features': 'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 2, 'splitter': 'best'}
```


Flight Number vs. Launch Site

 Show a scatter plot of Flight Number vs. Launch Site

 Show the screenshot of the scatter plot with explanations

Payload vs. Launch Site

 Show a scatter plot of Payload vs. Launch Site

 Show the screenshot of the scatter plot with explanations

Success Rate vs. Orbit Type

 Show a bar chart for the success rate of each orbit type

 Show the screenshot of the scatter plot with explanations

Flight Number vs. Orbit Type

 Show a scatter point of Flight number vs. Orbit type

 Show the screenshot of the scatter plot with explanations

Payload vs. Orbit Type

 Show a scatter point of payload vs. orbit type

 Show the screenshot of the scatter plot with explanations

Launch Success Yearly Trend

 Show a line chart of yearly average success rate

 Show the screenshot of the scatter plot with explanations

All Launch Site Names

- Find the names of the unique launch sites
- Present your query result with a short explanation here
- DISTINCT keyword is used to return unique values.

Launch Site Names Begin with 'CCA'

- Find 5 records where launch sites begin with `CCA`
- Present your query result with a short explanation here

We use LIKE operator to find launch_site starting with CCA and we use LIMIT to reduce the

output to 5 records

```
[10]: %sql SELECT LAUNCH_SITE FROM SPACEXTBL WHERE LAUNCH_SITE LIKE 'CCA%' LIMIT 5;

* sqlite:///my_data1.db
Done.

[10]: Launch_Site

CCAFS LC-40

CCAFS LC-40

CCAFS LC-40

CCAFS LC-40

CCAFS LC-40
```

Total Payload Mass

- Calculate the total payload carried by boosters from NASA
- Present your query result with a short explanation here
- SUM function is used to calculate the total.

```
Task 3

Display the total payload mass carried by boosters launched by NASA (CRS)

[30]: %sql SELECT SUM(PAYLOAD_MASS_KG_) FROM SPACEXTBL WHERE Customer = 'NASA (CRS)';

* sqlite:///my_datal.db
Done.

[30]: SUM(PAYLOAD_MASS_KG_)

45596
```

Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9 v1.1
- Present your query result with a short explanation here
- AVG function is used to calculate average.

First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
- Present your query result with a short explanation here
- MIN function returns the minimum of values.

```
Task 5

List the date when the first successful landing outcome in ground pad was acheived.

Hint:Use min function

[34]: %sql SELECT MIN(Date) FROM SPACEXTBL WHERE Landing_Outcome='Success (ground pad)';

* sqlite:///my_data1.db
Done.

[34]: MIN(Date)

2015-12-22
```

Successful Drone Ship Landing with Payload between 4000 and 6000

- List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000
- Present your query result with a short explanation here
- BETWEEN funtions
 gives values in between
 a range.

There are some additional -I rows in the output.

```
Task 6
       List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less
       than 6000
[38]: %sql SELECT Booster Version FROM SPACEXTBL WHERE PAYLOAD MASS KG BETWEEN 4000 AND 6000;
        * sqlite:///my_data1.db
       Done.
       Booster_Version
                F9 v1.1
          F9 v1.1 B1011
          F9 v1.1 B1014
          F9 v1.1 B1016
           F9 FT B1020
           F9 FT B1022
           F9 FT B1026
           F9 FT B1030
          F9 FT B1021.2
```

Total Number of Successful and Failure Mission Outcomes

- Calculate the total number of successful and failure mission outcomes
- Present your query result with a short explanation here
- COUNT function
 returns the number of
 Items and LIKE functiom
 Compares the similarity.

```
Task 7
      List the total number of successful and failure mission outcomes
[50]: %sql SELECT COUNT(*) AS MISSION SUCCESS FROM SPACEXTBL WHERE Mission Outcome LIKE 'Success%';
       * sqlite:///my_data1.db
      Done.
[50]: MISSION_SUCCESS
                    100
[49]: %sql SELECT COUNT(*) AS MISSION FAIL FROM SPACEXTBL WHERE Mission Outcome LIKE 'Fail%';
       * sqlite:///my_data1.db
      Done.
[49]: MISSION FAIL
```

Boosters Carried Maximum Payload

- List the names of the booster which have carried the maximum payload mass
- Present your query result with a short explanation here
- SubQuery is used in this case.

2015 Launch Records

- List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015
- Present your query result with a short explanation here
- Sunbstr gives the substring .

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order
- Present your query result with a short explanation here
- The ORDER BY keyword sorts
 the records in ascending order by default.

Folium Map Of Launch Sites Locations

The generated folium map that includes all launch sites' location markers on

a global map

Folium Map - Color Labeled Launch Outcomes

Explore the folium map and make a proper screenshot to show the colorlabeled launch outcomes on the map

Folium Map – Launch Site Proximities

The generated folium map of a selected launch site to its proximities such as railway, highway, coastline, with distance

calculated and displayed

< Dashboard Screenshot 1>

Replace <Dashboard screenshot 1> title with an appropriate title

Show the screenshot of launch success count for all sites, in a piechart

Explain the important elements and findings on the screenshot

< Dashboard Screenshot 2>

Replace <Dashboard screenshot 2> title with an appropriate title

 Show the screenshot of the piechart for the launch site with highest launch success ratio

Explain the important elements and findings on the screenshot

< Dashboard Screenshot 3>

Replace < Dashboard screenshot 3> title with an appropriate title

 Show screenshots of Payload vs. Launch Outcome scatter plot for all sites, with different payload selected in the range slider

• Explain the important elements and findings on the screenshot, such as which payload range or booster version have the largest success rate, etc.

Classification Accuracy

 Visualize the built model accuracy for all built classification models, in a bar chart

 Best Algorithm is Tree with a 0.875.

Confusion Matrix

• Show the confusion matrix of the best performing model with an

explanation

Conclusions

• In conclusion, our machine learning project successfully developed a predictive model for Falcon 9 landings, contributing valuable insights into the factors influencing mission success. The model's predictions and accuracy make it a valuable tool for enhancing the efficiency in prediction of Falcon 9 Landing.

Appendix

- Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project
- https://github.com/gayathridevi1256/Applied-Data-Science-Capstone

