

Apr 18, 2022

Relative quantification of mRNA transcript levels by qPCR

Will Hancock-Cerutti^{1,2,3}, Zheng Wu^{4,5}, Gerald S. Shadel⁵, Pietro De Camilli^{1,3}

¹Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Ce Ilular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA;

²Interdisciplinary Neuroscience Program and MD-PhD Program, Yale University School of Medicine, New Haven, Connecticut 06510, USA;

³Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20 815:

⁴Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA;

⁵Salk Institute for Biological Studies, La Jolla, CA, USA

dx.doi.org/10.17504/protocols.io.14egnz12qg5d/v1

This method describes isolation of RNA from cultured cells, generation of cDNA, and relative quantification of transcript levels by qPCR.

dxwybkjz7.pdf

DOI

dx.doi.org/10.17504/protocols.io.14egnz12qg5d/v1

Will Hancock-Cerutti, Zheng Wu, Gerald S. Shadel, Pietro De Camilli 2022. Relative quantification of mRNA transcript levels by qPCR. **protocols.io** https://dx.doi.org/10.17504/protocols.io.14egnz12qg5d/v1

RNA, cDNA, qPCR, ASAPCRN

_____ protocol,

Jul 08, 2021

Apr 18, 2022

1

Jul 08, 2021 Urmilas

Jul 14, 2021 William Hancock-Cerutti

51403

Solutions to prepare:

DMEM solution:

FBS	10%
Penicillin	100 U/ml
Streptomycin	100 mg/ml
L-glutamine	2 mM

Cell culture and treatments

3d

- 1 Culture the HeLa-M cells at ₹ 37 °C in 5% CO₂ and DMEM containing 10% FBS, □100 U/ml penicillin, [M]100 mg/mL streptomycin, and [M]2 Milimolar (mM) L-glutamine (all from Gibco).
- 2 For any given experiment, plate the cells at such density so as to be approximately 90% confluent at the time of lysis.
- 3 For experiments using siRNA, transfect 60 pmols of the indicated siRNA using **□6** μL Lipofectamine RNAiMax (ThermoFisher) in Opti-MEM (Gibco) per well according to manufacturer protocol. Lyse the cells **⊙72:00:00** after siRNA transfection.

3d

Cell lysis, RNA purification, and qPCR

- 4 Aspirate media from cells and rinse cells with PBS & On ice.
- 5 Isolate RNA using RNeasy Micro Plus kit (Qiagen) according to manufacturer's protocol.
- 6 Generate cDNA from $\Box 1 \mu g$ purified RNA using iScript cDNA synthesis Kit (Bio-Rad)

protocols.io

2

Citation: Will Hancock-Cerutti, Zheng Wu, Gerald S. Shadel, Pietro De Camilli Relative quantification of mRNA transcript levels by qPCR https://dx.doi.org/10.17504/protocols.io.14egnz12qg5d/v1

according to manufacturer's protocol.

7 Dilute the iScript reaction to a total of **3400 μL** Sterile Water (American Bio).

8

Combine $\blacksquare 10~\mu L$ SYBR Green Master Mix (BioRad) with $\blacksquare 6.78~\mu L$ Sterile Water (American Bio) per sample.

9

Combine $\Box 16.78~\mu L$ diluted SYBR Green Master Mix with $\Box 0.61~\mu L$ each of [M]10 Micromolar (μM) forward and reverse primers per sample. Pipette this mixture into wells of 96-well qPCR plate. Perform at least two technical replicates for each sample.

10

Pipette 2 µL of diluted RNA from step 7 in well with SYBR Green Master Mix.

- 11 Cover plate with Optical Adhesive Covers (Applied Biosystems).
- 12

Spin down plate in table top centrifuge.

Run qPCR in CFX96 Real-Time System (BioRad) using the following protocol:

Α	В	С
95 °C	3 min	
95 °C	10 sec	Repeat 39x
55 °C	10 sec	
72°C	30 sec	
95 °C	10 sec	
65 °C	5 sec	
95 °C	5 sec	

Data analysis

- 14 Subtract the housekeeping gene (b-actin) mean threshhold cycle (Ct) values from transcript of interest mean Ct values to calculate Δ Ct.
- 15 Subtract the Δ Ct of the control sample from each sample Δ Ct to calculate the Δ DCt value.
- 16 Calculate relative expression using the $2^{-\Delta\Delta Ct}$ method.