LAB SESSION 2 – DISTRIBUTIONS

Analytics Primer

PROBABILITY

Number of Credit Cards Per Age Group

Credit Cards	20 - 29	30 - 39	40 - 49	50+	Total
0	56	24	33	97	21 0
1 - 2	182	273	187	387	1029
3 - 4	147	358	413	212	1130
5 - 6	65	195	154	157	571
7 - 8	32	101	98	88	319
9+	10	67	123	11	211
Total	492	1018	1008	952	3470

- Determine the probability of the following:
 - 1. Person is between the age of 20-29 and owns 3-4 credit cards

$$\frac{147}{492} \times \frac{492}{3470} = \frac{147}{3470} = 0.0424$$

2. Person is between the age of 20-29 or owns 3-4 credit cards

$$\frac{492}{3470} + \frac{1130}{3470} - \frac{147}{3470} = \frac{1475}{3470} = 0.4251$$

- Determine the probability of the following:
 - 3. Person owns 5-6 credit cards

$$\frac{571}{3470} = 0.1646$$

Person owns at least one credit card

$$1 - \frac{210}{3470} = \frac{3260}{3470} = 0.9395$$

- Determine the probability of the following:
 - 5. Person owns 1-2 credit cards given they are between the age of 30-39

$$\frac{273}{1018} = 0.2682$$
 OR $\frac{\left(\frac{273}{3470}\right)}{\left(\frac{1018}{3470}\right)} = 0.2682$

6. Person is above the age of 40 given they own 9 or more credit cards

$$\frac{123 + 11}{211} = 0.635$$

EDUCATION AND INCOME LEVEL TABLE

Income (thousands)	No College	Some College	Associate s Degree	Bachelors Degree	Masters Degree	Doctorate
<\$30	40	25	24	30	2	1
\$30 < \$50	38	40	42	88	25	4
\$50 < \$70	10	11	15	50	41	9
> \$70	2	3	11	21	13	10

 What is the probability someone makes between \$30 and \$50 thousand and has a Master's degree?

$$\frac{25}{555} = 0.045$$

 What is the probability someone makes between \$30 and \$50 thousand or has a Master's degree?

$$\frac{237}{555} + \frac{81}{555} - \frac{25}{555} = \frac{293}{555} = 0.53$$

What is the probability someone makes less than \$30 thousand?

$$\frac{122}{555} = 0.22$$

 What is the probability someone makes less than \$30 thousand given that they did not have any college?

$$\frac{40}{90} = 0.44$$

OR

$$\frac{\left(\frac{40}{555}\right)}{\left(\frac{90}{555}\right)} = \left(\frac{40}{555}\right) \times \left(\frac{555}{90}\right) = 0.44$$