Algorithms and Data Structures

DiGraphs – Directed Graphs

Dr. Bernhard Anrig

HS 2012/13

Outline

Definitions

Directed DFS and Reachability

Strong Connectivity

Transitive Closure

Topological Ordering

Outline

Definitions

Digraphs

- A digraph is a graph whose edges are all directed
 - Short for "directed graph"
 - Applications
 - one-way streets
 - flights
 - task scheduling

Digraph Properties

- D B
- A graph G=(V,E) such that
 - Each edge goes in one direction:
 - * Edge (a,b) goes from a to b, but not b to a.
- ♦ If G is simple, $m \le n(n-1)$.
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of of the sets of in-edges and out-edges in time proportional to their size.

Digraph Application

Scheduling: edge (a,b) means task a must be completed before b can be started

Outline

Directed DFS and Reachability

Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting at a vertex s determines the vertices reachable from s

Reachability

DFS tree rooted at v: vertices reachable from v via directed paths

Outline

Definitions

Directed DFS and Reachability

Strong Connectivity

Transitive Closure

Topological Ordering

. .

Strong Connectivity

Each vertex can reach all other vertices

Strong Connectivity Algorithm

- Pick a vertex v in G.
- Perform a DFS from v in G.
- If there's a w not visited, print "no".
- Let G' be G with edges reversed.
- Perform a DFS from v in G'.
 - If there's a w not visited, print "no".
 - Else, print "yes".
- Running time: O(n+m).

Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in O(n+m) time using DFS, but is more complicated (similar to biconnectivity).

Outline

Definitions

Directed DFS and Reachability

Strong Connectivity

Transitive Closure

Topological Ordering

Transitive Closure

- Given a digraph G, the transitive closure of G is the digraph G* such that
 - G* has the same vertices as G
 - if G has a directed path from u to v (u ≠v), G* has a directed edge from u to v
- The transitive closure provides reachability information about a digraph

COM

Computing the Transitive Closure

•We can perform DFS starting at each vertex

O(n(n+m))

If there's a way to get from A to B and from B to C, then there's a way to get from A to C.

◆Alternatively ... Use dynamic programming: the Floyd-Warshall Algorithm

Floyd-Warshall Transitive Closure

- ◆Idea #1: Number the vertices 1, 2, ..., n.
- ◆Idea #2: Consider paths that use only vertices numbered 1, 2, ..., k, as intermediate vertices:

. .

Floyd-Warshall's Algorithm

- Floyd-Warshall's algorithm numbers the vertices of G as $v_1, ..., v_n$ and computes a series of digraphs $G_0, ..., G_n$
 - $\mathbf{G}_{0}=\mathbf{G}$
 - G_{ν} has a directed edge (v_s, v_i) if G has a directed path from v_i to v_i with intermediate vertices in the set $\{v_1, ..., v_k\}$
- We have that $G_n = G^*$
- In phase k, digraph G_{k} is computed from $G_{\nu-1}$
- Running time: O(n3), assuming areAdjacent is O(1) (e.g., adjacency matrix)

```
Algorithm FloydWarshall(G)
   Input digraph G
   Output transitive closure G^* of G
  i \leftarrow 1
  for all v \in G.vertices()
      denote \mathbf{v} as \mathbf{v}_{i}
      i \leftarrow i + 1
   G_0 \leftarrow G
  for k \leftarrow 1 to n do
      G_{\iota} \leftarrow G_{\iota-1}
       for i \leftarrow 1 to n (i \neq k) do
          for i \leftarrow 1 to n (i \neq i, k) do
             if G_{k-1}. are Adjacent(v_v, v_k) \land
                     G_{\nu-1}.areAdjacent(v_{\nu}, v_{\nu})
                  if \neg G_{\nu} are Adjacent(v_i, v_i)
                     G_{\nu}insertDirectedEdge(v_i, v_i, k)
      return G.,
```


Floyd-Warshall, etc...

Outline

Definitions

Directed DFS and Reachability

Strong Connectivity

Transitive Closure

Topological Ordering

DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering

$$v_1, ..., v_n$$

of the vertices such that for every edge (v_i, v_j) , we have i < j

Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints

Theorem

A digraph admits a topological ordering if and only if it is a DAG

Topological Sorting

◆Number vertices, so that (u,v) in E implies u < v</p>

. m ≥

Algorithm for Topological Sorting

Note: This algorithm is different than the one in Goodrich-Tamassia

```
Method TopologicalSort(G)

H \leftarrow G // Temporary copy of G

n \leftarrow G.numVertices()

while H is not empty do

Let v be a vertex with no outgoing edges

Label v \leftarrow n

n \leftarrow n - 1

Remove v from H
```

◆Running time: O(n + m). How...?

Topological Sorting Algorithm using DFS

Simulate the algorithm by using depth-first search

Algorithm topologicalDFS(G)

Input dag G

Output topological ordering of G $n \leftarrow G.numVertices()$

for all $u \in G.vertices()$

setLabel(u, UNEXPLORED)

for all $e \in G.edges()$

setLabel(e, UNEXPLORED)

for all $v \in G.vertices()$

if getLabel(v) = UNEXPLOREDtopologicalDFS(G, v)

O(n+m) time.

```
Algorithm topologicalDFS(G, v)
```

Input graph G and a start vertex v of G

Output labeling of the vertices of G in the connected component of v

setLabel(v, VISITED)

for all a c G incident Edgas(v)

for all $e \in G.incidentEdges(v)$

if getLabel(e) = UNEXPLORED

 $w \leftarrow opposite(v,e)$

if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 topologicalDFS(G, w)

else

 $\{e \text{ is a forward or cross edge}\}\$ Label v with topological number n

 $n \leftarrow n - 1$

