CSC373

Week 6: Network Flow (contd)

Recap

- Some more DP
 - > Traveling salesman problem (TSP)
- Start of network flow
 - > Problem statement
 - > Ford-Fulkerson algorithm
 - > Running time
 - > Correctness using max-flow, min-cut

This Lecture

- Network flow in polynomial time
 - > Edmonds-Karp algorithm (shortest augmenting path)
- Applications of network flow
 - > Bipartite matching & Hall's theorem
 - > Edge-disjoint paths & Menger's theorem
 - Multiple sources/sinks
 - > Circulation networks
 - > Lower bounds on flows
 - Survey design
 - > Image segmentation

- Define the residual graph G_f of flow f
 - $\succ G_f$ has the same vertices as G
 - For each edge e = (u, v) in G, G_f has at most two edges
 - Forward edge e = (u, v) with capacity c(e) f(e)
 - We can send this much additional flow on e
 - Reverse edge $e^{rev} = (v, u)$ with capacity f(e)
 - The maximum "reverse" flow we can send is the maximum amount by which we can reduce flow on e, which is f(e)
 - \circ We only add each edge if its capacity > 0

• Example!

Residual graph G_f


```
MaxFlow(G):
// initialize:
Set f(e) = 0 for all e in G
// while there is an s-t path in G_f:
While P = \text{FindPath}(s, t, \text{Residual}(G, f)) != \text{None}:
  f = Augment(f, P)
  UpdateResidual(G, f)
EndWhile
Return f
```

Running time:

- > #Augmentations:
 - At every step, flow and capacities remain integers
 - For path P in G_f , bottleneck(P, f) > 0 implies bottleneck $(P, f) \ge 1$
 - o Each augmentation increases flow by at least 1
 - \circ At most $C = \sum_{e \text{ leaving } s} c(e)$ augmentations
- > Time for an augmentation:
 - o G_f has n vertices and at most 2m edges
 - \circ Finding an s-t path in G_f takes O(m+n) time
- ▶ Total time: $O((m+n) \cdot C)$

Edmonds-Karp Algorithm

• At every step, find the shortest path from s to t in G_f , and augment.

```
\begin{tabular}{ll} MaxFlow(G): \\ // initialize: \\ Set $f(e) = 0$ for all $e$ in $G$ \\ \\ // Find shortest $s$-$t path in $G_f$ & augment: \\ While $P = $BFS(s,t,Residual(G,f))!=None: \\ $f = Augment(f,P)$ \\ UpdateResidual(G,f) \\ EndWhile \\ Return $f$ \\ \end{tabular}
```


- d(v) = shortest distance of v from s in residual graph G_f
- Lemma 1: During the execution of the algorithm, d(v) does not decrease for any v.
- Proof:
 - > Suppose augmentation $f \to f'$ decreases d(v) for some v
 - \succ Choose the v with the smallest d(v) in $G_{f'}$
 - \circ Say d(v) = k in $G_{f'}$, so $d(v) \ge k + 1$ in $G_{f'}$
 - \succ Look at node u just before v on a shortest path $s \to v$ in $G_{f'}$
 - $\circ d(u) = k 1 \text{ in } G_{f'}$
 - d(u) didn't decrease, so $d(u) \le k-1$ in G_f

Proof

- d(v) = shortest distance of v from s in residual graph G_f
- Lemma 1: During the execution of the algorithm, d(v) does not decrease for any v.
- Proof:

- In G_f , (u, v) must be missing
- We must have added (u, v) by selecting (v, u) in augmenting path P
- But P is a shortest path, so it cannot have edge (v, u) with d(v) > d(u)

373S22 - Deepanshu Kush

Proof

- Call edge (u, v) critical in an augmentation step if
 - > It's part of the augmenting path P and its capacity is equal to bottleneck(P, f)
 - \triangleright Augmentation step removes e and adds e^{rev} (if missing)
- Lemma 2: Between any two steps in which (u, v) is critical, d(u) increases by at least 2
- Proof of Edmonds-Karp running time
 - \triangleright Each d(u) can go from 0 to n (Lemma 1)
 - > So, each edge (u, v) can be critical at most n/2 times (Lemma 2)
 - > So, there can be at most $m \cdot n/2$ augmentation steps
 - \triangleright Each augmentation takes O(m) time to perform
 - \triangleright Hence, $O(m^2n)$ operations in total!

Proof

• Lemma 2: Between any two steps in which (u, v) is critical, d(u) increases by at least 2

• Proof:

- > Suppose (u, v) was critical in G_f
 - So, the augmentation step must have removed it
- \triangleright Let k = d(u) in G_f
 - \circ Because (u,v) is part of a shortest path, d(v)=k+1 in G_f
- \triangleright For (u, v) to be critical again, it must be added back at some point
 - Suppose $f' \rightarrow f''$ steps adds it back
 - \circ Augmenting path in f' must have selected (v, u)
 - $\circ \ln G_{f'} \colon d(u) = d(v) + 1 \ge (k+1) + 1 = k+2$

Lemma 1 on v

Edmonds-Karp Proof Overview

Note:

- > Some graphs require $\Omega(mn)$ augmentation steps
- But we may be able to reduce the time to run each augmentation step
- Two algorithms use this idea to reduce run time
 - \rightarrow Dinitz's algorithm [1970] \Rightarrow $O(mn^2)$
 - > Sleator-Tarjan algorithm [1983] $\Rightarrow O(m n \log n)$
 - Using the dynamic trees data structure

Network Flow Applications

Rail network connecting Soviet Union with Eastern European countries (Tolstoĭ 1930s)

Rail network connecting Soviet Union with Eastern European countries (Tolstoĭ 1930s)

Integrality Theorem

 Before we look at applications, we need the following special property of the max-flow computed by Ford-Fulkerson and its variants

Observation:

- > If edge capacities are integers, then the max-flow computed by Ford-Fulkerson and its variants are also integral (i.e., the flow on each edge is an integer).
- > Easy to check that each augmentation step preserves integral flow

- Problem
 - > Given a bipartite graph $G=(U\cup V,E)$, find a maximum cardinality matching

- We do not know any efficient greedy or dynamic programming algorithm for this problem.
- But it can be reduced to max-flow.

- Create a directed flow graph where we...
 - Add a source node s and target node t
 - > Add edges, all of capacity 1:
 - $\circ s \to u$ for each $u \in U$, $v \to t$ for each $v \in V$
 - $\circ u \rightarrow v$ for each $(u, v) \in E$

Observation

- > There is a 1-1 correspondence between matchings of size k in the original graph and flows with value k in the corresponding flow network.
- Proof: (matching ⇒ integral flow)
 - > Take a matching $M = \{(u_1, v_1), ..., (u_k, v_k)\}$ of size k
 - \succ Construct the corresponding unique flow f_M where...
 - \circ Edges $s \to u_i$, $u_i \to v_i$, and $v_i \to t$ have flow 1, for all $i=1,\ldots,k$
 - The rest of the edges have flow 0
 - > This flow has value k

Observation

- \rightarrow There is a 1-1 correspondence between matchings of size k in the original graph and flows with value k in the corresponding flow network.
 - Proof: (integral flow ⇒ matching)
 - > Take any flow f with value k
 - > The corresponding unique matching $M_f=$ set of edges from U to V with a flow of 1
 - \circ Since flow of k comes out of s, unit flow must go to k distinct vertices in U
 - \circ From each such vertex in U, unit flow goes to a distinct vertex in V
 - Uses integrality theorem

$$\rightarrow$$
 where $n = |\mathcal{V}| = |\mathcal{V}|$

Recall naïve Ford-Fulkerson running time:

 $> O((m+n) \cdot C)$, where C = sum of capacities of edges leaving s

> Q: What's the runtime when used for bipartite matching?

> Dinitz's algorithm runs in time $O(m\sqrt{n})$ when all edge capacities are 1

- When does a bipartite graph have a perfect matching?
 - \triangleright Well, when the corresponding flow network has value n
 - > But can we interpret this condition in terms of edges of the original bipartite graph?
 - \triangleright For $S \subseteq U$, let $N(S) \subseteq V$ be the set of all nodes in V adjacent to some node in S

Observation:

- If G has a perfect matching, $|N(S)| \ge |S|$ for each $S \subseteq U$ Because each node in S must be matched to a distinct node in N(S)

- We'll consider a slightly different flow network, which is still equivalent to bipartite matching
 - \rightarrow All $U \rightarrow V$ edges now have ∞ capacity
 - > $s \rightarrow U$ and $V \rightarrow t$ edges are still unit capacity

- Hall's Theorem:
 - $\succ G$ has a perfect matching iff $|N(S)| \ge |S|$ for each $S \subseteq U$

- Proof (reverse direction, via network flow):
 - Suppose G doesn't have a perfect matching
 - > Hence, max-flow = min-cut < n
 - \rightarrow Let (A, B) be the min-cut
 - Can't have any $U \rightarrow V$ (∞ capacity edges)
 - Has unit capacity edges $s \rightarrow U \cap B$ and $V \cap A \rightarrow t$

rappers to allowing

373S22 - Deepanshu Kush

• Hall's Theorem:

- > G has a perfect matching iff $|N(S)| \ge |S|$ for each $S \subseteq V$
- Proof (reverse direction, via network flow):

$$cap(A,B) = |U \cap B| + |V \cap A| < n = |U| \quad |U \cap A| < |U| \quad |U \cap B|$$

- > So $|V \cap A| < |U \cap A|$
- ▶ But $\widetilde{N}(\overline{U} \cap A) \subseteq V \cap A$ because the cut doesn't include any ∞ edges
- > So $|N(U \cap A)| \le |V \cap A| < |U \cap A|$.

Some Notes

Runtime for bipartite perfect matching

- > 1955: $O(mn) \rightarrow$ Ford-Fulkerson
- > 1973: $O(m\sqrt{n}) \rightarrow \text{blocking flow (Hopcroft-Karp, Karzanov)}$
- > 2004: $O(n^{2.378}) \rightarrow$ fast matrix multiplication (Mucha–Sankowsi)
- > 2013: $\tilde{O}(m^{10/7}) \rightarrow$ electrical flow (Mądry)
- > Best running time is still an open question

Nonbipartite graphs

- > Hall's theorem → Tutte's theorem
- > 1965: $O(n^4) \rightarrow \text{Blossom algorithm (Edmonds)}$
- > 1980/1994: $O(m\sqrt{n}) \rightarrow$ Micali-Vazirani

Problem

- \triangleright Given a directed graph G=(V,E), two nodes s and t, find the maximum number of edge-disjoint $s \rightarrow t$ paths
- > Two $s \rightarrow t$ paths P and P' are edge-disjoint if they don't share an edge

- Application:
 - > Communication networks
- Max-flow formulation
 - > Assign unit capacity on all edges

> There is 1-1 correspondence between sets of k edge-disjoint $s \to t$ paths and integral flows of value k

Proof (paths → flow)

- ightharpoonup Let $\{P_1, ..., P_k\}$ be a set of k edge-disjoint $s \to t$ paths
- > Define flow f where f(e) = 1 whenever $e \in P_i$ for some i, and 0 otherwise
- Since paths are edge-disjoint, flow conservation and capacity constraints are satisfied
- \succ Unique integral flow of value k

• Theorem:

> There is 1-1 correspondence between k edge-disjoint $s \to t$ paths and integral flows of value k

- Proof (flow → paths)
 - Let f be an integral flow of value k
 - $\triangleright k$ outgoing edges from s have unit flow
 - \triangleright Pick one such edge (s, u_1)
 - \circ By flow conservation, u_1 must have unit outgoing flow (which we haven't used up yet).
 - \circ Pick such an edge and continue building a path until you hit t
 - ightarrow Repeat this for the other k-1 edges from s with unit flow lacktriangle

- Maximum number of edge-disjoint $s \to t$ paths
 - > Equals max flow in this network
 - > By max-flow min-cut theorem, also equals minimum cut
 - **Exercise:** minimum cut = minimum number of edges we need to delete to disconnect s from t
 - \circ Hint: Show each direction separately (≤ and ≥)

Exercise!

Show that to compute the maximum number of edge-disjoint s-t paths in an undirected graph, you can create a directed flow network by adding each undirected edge in both directions and setting all capacities to 1

Menger's Theorem

> In any directed/undirected graph, the maximum number of edge-disjoint (resp. vertex-disjoint) $s \to t$ paths equals the minimum number of edges (resp. vertices) whose removal disconnects s and t

Multiple Sources/Sinks

Problem

Sources $s_1, ..., s_k$ and sinks $t_1, ..., t_\ell$, find the maximum total flow from sources to sinks.

Multiple Sources/Sinks

Network flow formulation

- \triangleright Add a new source s, edges from s to each s_i with ∞ capacity
- \triangleright Add a new sink t, edges from each t_i to t with ∞ capacity
- > Find max-flow from s to t

 \triangleright Claim: 1-1 correspondence between flows in two networks

373S22 - Deepanshu Kush

Input

- \triangleright Directed graph G = (V, E)
- > Edge capacities $c: E \to \mathbb{N}$
- > Node demands $d: V \to \mathbb{Z}$

Output

- > Some circulation $f: E \to \mathbb{N}$ satisfying
 - For each $e \in E : 0 \le f(e) \le c(e)$
 - \circ For each $v \in V : \sum_{e \text{ entering } v} f(v) \sum_{e \text{ leaving } v} f(v) = d(v)$
- > Note that you need $\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v)$
- > What are demands?

- Demand at v = amount of flow you need to take out at node v
 - > d(v) > 0: You need to take some flow out at v
 - \circ So, there should be d(v) more incoming flow than outgoing flow
 - o "Demand node"
 - > d(v) < 0: You need to put some flow in at v
 - \circ So, there should be |d(v)| more outgoing flow than incoming flow
 - "Supply node"
 - d(v) = 0: Node has flow conservation
 - Equal incoming and outgoing flows
 - o "Transshipment node"

Circulation No sp. sonru/sink

Example

Network-flow formulation G'

- > Add a new source s and a new sink t
- > For each "supply" node v with d(v) < 0, add edge (s,v) with capacity -d(v)
- > For each "demand" node v with d(v)>0, add edge (v,t) with capacity d(v)

• Claim:

 \triangleright G has a circulation iff G' has max flow of value

$$\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v)$$

• Example

373S22 - Deepanshu Kush

• Example

Circulation with Lower Bounds

Input

- \rightarrow Directed graph G = (V, E)
- \triangleright Edge capacities $c:E\to\mathbb{N}$ and lower bounds $\ell:E\to\mathbb{N}$
- \rightarrow Node demands $d:V\to\mathbb{Z}$

Output

- > Some circulation $f: E \to \mathbb{N}$ satisfying
 - For each $e \in E : \ell(e) \le f(e) \le c(e)$
 - \circ For each $v \in V : \sum_{e \text{ entering } v} f(v) \sum_{e \text{ leaving } v} f(v) = d(v)$
- > Note that you still need $\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v)$

Circulation with Lower Bounds

- Transform to circulation without lower bounds
 - > Do the following operation to each edge

- Claim: Circulation in G iff circulation in G'
 - > Proof sketch: f(e) gives a valid circulation in G iff $f(e) \ell(e)$ gives a valid circulation in G'

Survey Design

Problem

- > We want to design a survey about m products
 - We have one question in mind for each product
 - \circ Need to ask product j's question to between p_i and p_i' consumers
- > There are a total of *n* consumers
 - \circ Consumer i owns a subset of products O_i
 - We can ask consumer *i* questions about only these products
 - \circ We want to ask consumer i between c_i and c_i' questions
- > Is there a survey meeting all these requirements?

Survey Design

- Bipartite matching is a special case
 - $> c_i = c_i' = p_j = p_i' = 1$ for all i and j
- Formulate as circulation with lower bounds
 - > Create a network with special nodes s and t
 - \triangleright Edge from s to each consumer i with flow $\in [c_i, c_i']$
 - \triangleright Edge from each consumer i to each product $j \in O_i$ with flow $\in [0,1]$
 - \triangleright Edge from each product j to t with flow $\in [p_j, p_j']$
 - \triangleright Edge from t to s with flow in [0, ∞]
 - > All demands and supplies are 0

Survey Design

- Max-flow formulation:
 - > Feasible survey iff feasible circulation in this network

Profit Maximization (Yeaa...!)

Problem

- > There are *n* tasks
- \triangleright Performing task *i* generates a profit of p_i
 - \circ We allow $p_i < 0$ (i.e., performing task i may be costly)
- > There is a set *E* of precedence relations
 - \circ $(i,j) \in E$ indicates that if we perform i, we must also perform j

Goal

Find a subset of tasks S which, subject to the precedence constraints, maximizes $profit(S) = \sum_{i \in S} p_i$

- We can represent the input as a graph
 - > Nodes = tasks, node weights = profits,
 - > Edges = precedence constraints
 - ▶ Goal: find a subset of nodes S with highest total weight s.t. if $i \in S$ and $(i, j) \in E$, then $j \in S$ as well

Want to formulate as a min-cut

- > Add source s and target t
- \rightarrow min-cut $(A, B) \Rightarrow$ want desired solution to be $S = A \setminus \{s\}$

> Goals:

- o cap(A, B) should nicely relate to profit(S)
- o Precedence constraints must be respected
 - "Hard" constraints are usually enforced using infinite capacity edges

Construction:

- > Add each $(i, j) \in E$ with *infinite* capacity
- > For each *i*:
 - o If $p_i > 0$, add (s, i) with capacity p_i
 - If p_i < 0, add (i, t) with capacity $-p_i$

QUESTION: What is the capacity of this cut?

Exercise: Show that...

- 1. A finite capacity cut exists.
- 2. If cap(A, B) is finite, then $A \setminus \{s\}$ is a valid solution;
- 3. Minimizing cap(A, B) maximizes $profit(A \setminus \{s\})$
 - Show that $cap(A, B) = constant profit(A \setminus \{s\})$, where the constant is independent of the choice of (A, B)