





# Seja muito bem-vindo(a)!





# Processando Big Data com Apache Spark







# Por que Aprender Apache Spark?







# Como Vamos Estudar o Spark?





#### Como Vamos Estudar o Spark?

- Capítulo 7 Arquitetura do Spark, Transformações, Ações, PySpark
- Capítulo 8 Spark SQL
- Capítulo 9 Spark Streaming e Análise de Dados em Tempo Real
- Capítulo 10 Machine Learning em Streaming de Dados com Spark MLlib









#### Data Science Academy

## Big Data Real-Time Analytics com Python e Spark

A dedicação é o combustível que nos move. Ela é a responsável pelo nosso sucesso.















#### Data Science Data Academy











#### Data Science Academy

## **Apache Spark e Big Data**

Como armazenar e processar todos esses dados, se o volume aumenta de forma exponencial?





Clusters são conjuntos de computadores (servidores) conectados, que executam como se fossem um único sistema.







#### Data Science Academy





Apache Spark é um framework open-source para processamento de Big Data construído para ser veloz, fácil de usar e para análises sofisticadas.



Apache Spark é uma ferramenta de análise de Big Data, escalável e eficiente.



















#### Data Science Academy















#### Data Science Academy



































Quando Devemos Usar o Spark?



#### Data Science Academy

### Ecossistema e Componentes do Apache Spark

#### Quando Devemos Usar o Spark?

- Integração de Dados e ETL
- Análises Interativas
- Computação em Batch de Alta Performance
- Análises Avançadas de Machine Learning
- Processamento de Dados em Tempo Real





# Principais Características do Apache Spark





## Principais Características do Apache Spark





## Principais Características do Apache Spark

- Spark realiza operações de MapReduce
- Spark pode utilizar o HDFS
- Spark permite construir um workflow de Analytics
- > Spark utiliza a memória do computador de forma diferente e eficiente
- > Spark é veloz
- > Spark é flexível
- > Spark é gratuito







#### Big Data Real-Time Analytics com Python e Spark

# Hadoop MapReduce X Apache Spark







#### **Hadoop MapReduce x Apache Spark**

# Hadoop MapReduce X Apache Spark

Hadoop MapReduce e Apache Spark são os dois frameworks mais populares para computação em cluster e análise de dados de larga escala (Big Data).





#### **Hadoop MapReduce x Apache Spark**

# Hadoop MapReduce X Apache Spark

Estes dois frameworks escondem a complexidade existente no tratamento de dados com relação a paralelismo entre tarefas e tolerância a falha por meio da exposição de uma simples API com informações para os usuários.



#### **Hadoop MapReduce x Apache Spark**





### **Hadoop MapReduce x Apache Spark**





#### **Hadoop MapReduce x Apache Spark**

O Spark realiza o processamento distribuído, de forma similar ao Hadoop MapReduce, porém com muito mais velocidade.





#### Hadoop MapReduce x Apache Spark

O Spark não possui sistema de armazenamento, podendo usar o HDFS como fonte/destino de dados.



#### O Processo de MapReduce no Apache Spark





#### O Processo de MapReduce no Apache Spark



RDD's = Resilient Distributed Datasets



#### O Processo de MapReduce no Apache Spark



RDD's = Resilient Distributed Datasets



## O Processo de MapReduce no Apache Spark

- O Spark suporta mais do que apenas as funções de Map e Reduce.
- Hadoop MapReduce grava os resultados intermediários em disco, enquanto o Spark grava os resultados intermediários em memória, o que é muito mais rápido.
- O Spark fornece APIs concisas e consistentes em Scala, Java e Python (e mais recentemente em R).
- O Spark oferece shell interativo para Scala, Python e R.
- O Spark pode utilizar o HDFS como uma de suas fontes/destinos de dados.



#### O Processo de MapReduce no Apache Spark

O Cientista de Dados é responsável por definir as regras de manipulação e análise de dados.

O Engenheiro de Dados é responsável por garantir o processamento distribuído, cuidando do pipeline, fontes de dados e destino, bem como pela segurança dos dados.



#### O Processo de MapReduce no Apache Spark

O Spark e o Hadoop MapReduce tem uma característica principal em comum: são responsáveis por gerenciar o processamento distribuído.

Porém o Spark faz isso de forma muito mais rápida e eficiente que o Hadoop MapReduce.





#### Big Data Real-Time Analytics com Python e Spark

# Profissionais Que Trabalham com Apache Spark







#### Profissionais Que Trabalham com Apache Spark

Exstem basicamente 3 perfis de profissionais que vão trabalhar com Spark:

- Cientistas de Dados
- Engenheiros de Dados
- Administradores





#### Big Data Real-Time Analytics com Python e Spark

# Anatomia de Uma Aplicação Spark





#### Anatomia de Uma Aplicação Spark

Cada aplicação Spark inicia uma instância de um Spark Context.

Sem um Spark Context, nada pode ser feito no Spark. Cada aplicação Spark é uma instância de um Spark Context.





#### Anatomia de Uma Aplicação Spark

O Spark Context é basicamente uma espécie de cliente que estabelece a conexão com o ambiente de execução do Spark e age como o processo principal da sua aplicação.



#### Anatomia de Uma Aplicação Spark

Com o Spark Context criado, podemos então definir os nossos RDD's e Dataframes, que são os objetos que vão armazenar os dados para o processamento pelo Spark.

#### **Datasets**

#### **RDDs**

- Functional Programming
- · Type-safe

#### **Dataframes**

- Relational
- · Catalyst query optimization
- · Tungsten direct/packed RAM
- · JIT code generation
- Sorting/suffling without deserializing



#### Anatomia de Uma Aplicação Spark

#### E como criamos um Spark Context?

- 1. Shell área de trabalho via linha de comando
- 2. Spark Context conexão ao ambiente Spark criado quando iniciamos o pyspark

Ou seja, uma vez que iniciamos o PySpark, é criado um Spark Context, que nos permite criar RDD's e Dataframes e realizar transformações e ações. Cada operação Spark gera um job que então é executado ou agendado para ser executado ao longo do cluster de computadores ou localmente em nossa máquina.



#### Anatomia de Uma Aplicação Spark

Quando utilizamos o PySpark e o Jupyter Notebook não precisamos nos preocupar com a criação do Spark Context.



#### Academy Data Science Acad

#### Anatomia de Uma Aplicação Spark

Quando utilizamos o PySpark e o Jupyter Notebook não precisamos nos preocupar com a criação do Spark Context.

Mas quando criamos uma aplicação de análise de dados (um arquivo .py por exemplo) e utilizamos o spark-submit para iniciar nossa aplicação, precisamos explicitamente criar um Spark Context.





#### Big Data Real-Time Analytics com Python e Spark

# Arquitetura Spark





# **Arquitetura Spark**

Arquitetura Spark
Master/Worker











Arquitetura Spark Task





#### Big Data Real-Time Analytics com Python e Spark







# Spark Modes

Modo Modo Batch Interativo

Utiliza o shell para executar comandos no cluster. O shell age como um driver program e provê um SparkContext.



# Spark Modes



Um programa que executa continuamente para processar os dados à medida que eles chegam, em tempo real.





#### Big Data Real-Time Analytics com Python e Spark

# Deploy Mode e Fontes de Dados





Spark Mode → Modo de processamento de dados no Spark (Batch, Interativo ou Streaming).

Deploy Mode → Modo de execução do Spark. Em cada Deploy Mode podemos usar um ou mais Spark Modes.



# **Deploy Mode**

Local (Standalone ou Cluster)

Cluster em Nuvem (Databricks, Amazon EC2, IBM Bluemix)

Única JVM

Cluster Gerenciado



### **Fontes de Dados**







#### Big Data Real-Time Analytics com Python e Spark

# RDD's Resilient Distributed Datasets







#### **RDD's - Resilient Distributed Datasets**

RDD é uma coleção de objetos, distribuída e imutável. Cada conjunto de dados no RDD é dividido em partições lógicas, que podem ser computados em diferentes nodes do cluster.





## **RDD's - Resilient Distributed Datasets**





# **RDD's - Resilient Distributed Datasets**







#### Existem 2 formas de criar o RDD

Paralelizando uma coleção existente (função sc.parallelize)

Referenciando um dataset externo (HDFS, RDBMS, NoSQL, S3)





# As RDD's são a essência do funcionamento do Spark









Por padrão, os RDD's são computados cada vez que executamos uma Ação. Entretanto, podemos "persistir" o RDD na memória (ou mesmo no disco) de modo que os dados estejam disponíveis ao longo do cluster e possam ser processados de forma muito mais rápida pelas operações de análise de dados criadas por você, Cientista de Dados.



### **RDD's - Resilient Distributed Datasets**

O RDD suporta dois tipos de operações:

Transformações

Ações

reduce()
collect()
first()
take()
countByKey()















As "Ações" aplicam as "Transformações" nos RDD's e retornam resultado.



Spark é baseado em RDD's. Criamos, transformamos e armazenamos RDD's com Spark.



- Spark é baseado em RDD's. Criamos, transformamos e armazenamos RDD's com Spark.
- RDD representa uma coleção de elementos de dados particionados que podem ser operados em paralelo.
- RDD's são objetos imutáveis. Eles não podem ser alterados uma vez criados.
- RDD's podem ser colocados em cache e permitem persistência (mesmo objeto usado entre sessões diferentes).
- Ao aplicarmos Transformações em RDD's criamos novos RDD's.





#### Portanto, as 3 características principais dos RDD's são:

#### Imutablidade

Importante quando se realiza processamento paralelo.

Particionado e Distribuído

Permite processar arquivos através de diversos computadores.

Armazenamento em Memória

Processamento muito mais veloz, permitindo armazenar os resultados intermediários em memória.





### Big Data Real-Time Analytics com Python e Spark

# O Que São Transformações?





### O Que São Transformações?

Transformações são "operações preguiçosas" (lazy operations) executadas sobre os RDD's e que criam um ou mais RDD's.



### O Que São Transformações?



Dizemos que as transformações são operações lazy, porque elas não são executadas imediatamente, mas sim no momento em que as operações de ação são executadas.



### O Que São Transformações?

Após executar operações de Transformação no RDD, o RDD resultante será diferente do RDD original e poderá ser menor (se usadas as funções filter, count, distinct, sample) ou maior (se usadas as funções flatMap, union, cartesian).





### O Que São Transformações?

New RDD





- Realizam as operações em um RDD e criam um novo RDD.
- Operações são feitas em um elemento por vez.
- Lazy Evaluation.
- Pode ser distribuída através de múltiplos nodes.





### O Que São Transformações?

Algumas operações de Tranformação podem ser colocadas no que o Spark chama de Pipeline, que é um encadeamento de transformações visando aumentar a performance.





### O Que São Transformações?

Narrow

Resultado de funções como map() e filter() e os dados vem de uma única partição.

Wide

Resultado de funções como groupByKey() e reduceByKey() e os dados podem vir de diversas partições.



### Principais Operações de Transformação

# Principais Operações de Transformação



### Principais Operações de Transformação

### Map

- Conceito de MapReduce
- Age sobre cada elemento e realiza a mesma operação



### Principais Operações de Transformação

## flatMap

Funciona como a função Map, mas retorna mais elementos



### Principais Operações de Transformação

### **Filter**

Filtra um RDD para retornar elementos



### Principais Operações de Transformação

### Set

São realizadas em duas RDD's, com operações de união e interseção



### Principais Operações de Transformação

### mapPartitions

 Quando utilizamos como fontes de dados bancos de dados como Hbase ou Cassandra, temos dados armazenados com pares chave-valor. A transformação mapPartitions garante a atomicidade dos dados, evitando problemas de overhead na manipulação de dados e garantindo performance.



### Principais Operações de Transformação

Lista com Todas as Operações de Transformação:

http://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations





### Big Data Real-Time Analytics com Python e Spark

# O Que São Ações?







São operações executadas sobre os RDD's que geram um resultado.













# **Ações**

Leitura de um arquivo

Divisão do arquivo em linhas

Mapeamento de cada palavra

Redução por agregação

Ordenação

Impressão das palavras com maior ocorrência

**RDD** 

Transformação

Transformação

Transformação

Transformação

Ação





Ações são operações síncronas mas podemos usar a função **AsyncRDDActions()** para tornar as operações assíncronas.



Podemos pensar nas ações como válvulas. Os dados estão prontos para serem processados e operações de transformação já foram definidas, mas somente quando abrirmos as válvulas, ou seja, executarmos as ações, o processamento será realmente iniciado.













Nós devemos c<mark>olocar os RDD's em cache, sempre</mark> que for necessário executar duas ou mais Ações no conjunto de dados. Isso melhora a performance.





Lista com Todas as Operações de Ação:

http://spark.apache.org/docs/latest/rdd-programming-guide.html#actions









Tenha uma Excelente Jornada de Aprendizagem.

Muito Obrigado por Participar!

**Equipe Data Science Academy**