At Tutorial 7 – Marked Question (26th July 2019)

Chapter 10, Ex 40a: Impedance and Admittance

Consider the network below, and determine the equivalent impedance seen looking into the open terminals if $\omega = 1$ rad/s.

At Tutorial 7 – Unmarked Questions (26th July 2019)

Chapter 10, Ex 28: Phasors

The following complex voltages are written in a combination of rectangular and polar form. Rewrite each, using conventional phasor notation (i.e. a magnitude and angle):

a)
$$\frac{2-j}{5 \angle 45^0} V$$

b)
$$\frac{6 \angle 20^{\circ}}{1000} - j V$$

c)
$$(j)(52.5\angle - 90^{\circ}) V$$

Chapter 10, Ex 43a: Impedance and Admittance

Calculate the equivalent impedance seen at the open terminals of the network shown above if f is equal to 1 Hz.

Chapter 10, Ex 52: Nodal and Mesh Analysis

Employ phasor analysis techniques to obtain expressions for the two mesh currents i_1 and i_2 as shown in the figure above.