Consider the following Hidden Markov Model.

X_1	$\Pr(X_1)$
0	$0.3 \\ 0.7$

\mathbf{X}_t	X_{t+1}	$\mid \Pr(\mathbf{X}_{t+1} \mid \mathbf{X}_t) \mid$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

X_t	O_t	$\Pr(O_t \mid X_t)$
0	A B	0.9
$\frac{0}{1}$	B A	0.1
1	В	0.5

Use the Forward algorithm to compute the probability distribution $Pr(X_2, O_1 = A, O_2 = B)$. Show your work. You do not need to evaluate arithmetic expressions involving only numbers.

Solution. We must compute $Pr(X_2, O_1 = A, O_2 = B)$ for each value of X_2 . That is, we compute the two probabilities $Pr(X_2 = 0, O_1 = A, O_2 = B)$ and $Pr(X_2 = 1, O_1 = A, O_2 = B)$. We do this by first computing $Pr(X_2 = 0, x_1, O_1 = A, O_2 = B)$ for each $x_1 \in \{0, 1\}$ (the possible values for the random variable X_1), and then we sum over x_1 to get the marginal probability $Pr(X_2 = 0, O_1 = A, O_2 = B)$.

$$Pr(X_2, O_1 = A, O_2 = B) = \Sigma_{x_1} Pr(X_2, x_1, O_1 = A, O_2 = B).$$

Recall, by the definition of conditional probability (or the chain rule), we have

$$\begin{split} \Pr(X_2, x_1, O_1 = A, O_2 = B) &= \Pr(x_1) \Pr(X_2, O_1 = A, O_2 = B \mid x_1) \\ &= \Pr(x_1) \Pr(O_1 = A \mid x_1) \Pr(X_2, O_2 = B \mid x_1, O_1 = A) \\ &= \Pr(x_1) \Pr(O_1 = A \mid x_1) \Pr(X_2 \mid x_1, O_1 = A) \Pr(O_2 = B \mid X_2, x_1, O_1 = A) \end{split}$$

Now we use the structure of the Bayes net to infer some conditional independences and simplify the above express. Specifically, O_2 is independent of O_1 given O_2 is independent of O_1 given O_2 is independent of O_2 is independent of O_3 given O_4 is independent of O_4 given O_4 gin

$$Pr(X_2 = 0, X_1 = 0, O_1 = A, O_2 = B) = Pr(X_1 = 0)Pr(O_1 = A \mid X_1 = 0)Pr(X_2 = 0 \mid X_1 = 0)Pr(O_2 = B \mid X_2 = 0) \\ = 0.3 \cdot 0.9 \cdot 0.4 \cdot 0.1, \text{ and}$$

$$\begin{split} \Pr(X_2 = 0, X_1 = 1, O_1 = A, O_2 = B) &= \Pr(X_1 = 1) \Pr(O_1 = A \mid X_1 = 1) \Pr(X_2 = 0 \mid X_1 = 1) \Pr(O_2 = B \mid X_2 = 0) \\ &= 0.7 \cdot 0.5 \cdot 0.8 \cdot 0.1 \end{split}$$

Therefore, $\Pr(X_2 = 0, O_1 = A, O_2 = B) = 0.3 \cdot 0.9 \cdot 0.4 \cdot 0.1 + 0.7 \cdot 0.5 \cdot 0.8 \cdot 0.1 = 0.1 \ (0.3 \cdot 0.9 \cdot 0.4 + 0.7 \cdot 0.5 \cdot 0.8) = 0.1 \ (0.108 + 0.280) = 0.0388$, Similarly,

$$\begin{split} \Pr(X_2 = 1, X_1 = 0, O_1 = A, O_2 = B) &= \Pr(X_1 = 0) \Pr(O_1 = A \mid X_1 = 0) \Pr(X_2 = 1 \mid X_1 = 0) \Pr(O_2 = B \mid X_2 = 1) \\ &= 0.3 \cdot 0.9 \cdot 0.6 \cdot 0.5, \text{ and} \end{split}$$

$$\begin{split} \Pr(X_2 = 1, X_1 = 1, O_1 = A, O_2 = B) &= \Pr(X_1 = 1) \Pr(O_1 = A \mid X_1 = 1) \Pr(X_2 = 1 \mid X_1 = 1) \Pr(O_2 = B \mid X_2 = 1) \\ &= 0.7 \cdot 0.5 \cdot 0.2 \cdot 0.5 \end{split}$$

Therefore, $\Pr(X_2 = 1, O_1 = A, O_2 = B) = 0.3 \cdot 0.9 \cdot 0.6 \cdot 0.5 + 0.7 \cdot 0.5 \cdot 0.2 \cdot 0.5 = 0.5 \ (0.3 \cdot 0.9 \cdot 0.6 + 0.7 \cdot 0.5 \cdot 0.2) = 0.5 \ (0.162 + 0.07) = 0.1160$, So the distribution $\Pr(X_2, O_1 = A, O_2 = B)$ is given by the following table:

$$X_2 \mid Pr(X_2, O_1 = A, O_2 = B)$$
 $0 \mid 0.0388$
 $1 \mid 0.1160$