Numerical Optimization

David Levin

Plan for Today

- A fast and furious tour through numerical optimization
 - Unconstrained Optimization
 - Gradient Descent
 - Newton's Method
 - Constrained Optimization
 - Newton's Method
 - Quadratic Programming

Plan for Today

- A fast and furious tour through numerical optimization
 - Discrete Optimization
 - Simulated Annealing
 - Branch and Bound

Warning

- Learning about optimization is a contact sport
- There will be math than (not too hard though!)

Example of a Design Optimization

Introduction to Optimization

Optimization involves finding an "optimal value"

• i.e. Maximizing a profit, minimizing an area etc... Cost Function

 $\min f$

minimize

Introduction to Optimization

Optimization involves finding an "optimal value"

• i.e. Maximizing a profit, minimizing an area etc...

$$x^* = \arg\min f(x)$$
Optimal Solution

Types of Optimization

- Continuous vs. Discrete
- Constrained vs. Unconstrained

Continuous

Discrete

Choose from discrete points in parameter space

Unconstrained

Constrained

Types of Optimization

- Continuous vs. Discrete
- Constrained vs. Unconstrained

Continuous Optimization

We're solving

$$x^* = \arg\min f(x)$$

 How do we know we've found a potential solution?

$$abla \mathbf{f}\left(\mathbf{x}^*\right) = \mathbf{0}$$

Intuitively we look for a flat point on the cost function

Sometimes that's easier said than done

Computing the Gradient

- Analytically (pencil, paper, mathematica)
- Finite Differences

Computing the gradient requires a limit

Computing the gradient requires a limit

• In Finite Differencing we choose h and evaluate $\frac{1}{h}f\left(x+h\right)-f\left(x\right)$ numerically

 Matlab does this automatically which makes it easy to test out optimizations

Continuous Optimization

- General, continuous optimizations are difficult to solve
- We focus on certain classes of problems that are solvable

Convex Optimization

Convex Optimization

- Convex optimizations are ones that have a single minimum
- Let's look at some examples of convex cost functions

Convex Optimization

Is This Convex?

Is This Convex?

Least Squares Fitting of a Curve

 Want to find a line, mx + c, that is a "best fit"

Least Squares Fitting of a Curve

 Want to find a line, mx + c, that is a "best fit"

Least Squares Fitting of a Curve

Minimize sum of squared errors

Total Error =
$$\|\mathbf{A}\theta - \mathbf{y}\|^2$$

Minimize sum of squared errors

Sum of Squared Error =
$$f(x) = ||\mathbf{A}\theta - \mathbf{y}||^2$$

Solution is the normal equations

Descent Algorithms

- Used when cost function is more complicated
- Idea: Follow search directions that reduce the cost!
- Two Types
 - Gradient Descent
 - Newton's Method

Gradient Descent

Recall that the gradient of a function is given by

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial \mathbf{x}_1} & \frac{\partial f}{\partial \mathbf{x}_2} & \dots & \frac{\partial f}{\partial \mathbf{x}_n} \end{pmatrix}$$

Gradient Descent

Recall that the gradient of a function is given by

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial \mathbf{x}_1} & \frac{\partial f}{\partial \mathbf{x}_2} & \dots & \frac{\partial f}{\partial \mathbf{x}_n} \end{pmatrix}$$

Points in direction of maximum ascent

An Aside: Level Sets

An Aside: Level Sets

Gradient Descent

Gradient Descent

Simple Gradient Descent Algorithm

- While not at an optimal point
 - Compute the gradient at current point (x)
 - Move to new point $x = x h \nabla f(x)$

Gradient Descent

Simple Gradient Descent Algorithm

- While not at an optimal point
 - Compute the gradient at current point (x)
 - Move to new point $x = x h \nabla f(x)$

Gradient Descent

- Good:
 - Simple to implement
- Bad:
 - Sometimes converges badly

Gradient Descent

- Can we choose better search directions?
- This is the goal of Newton's Method
- Newton's Method needs access to the "Hessian" of a function

An Aside: The Hessian

• The Hessian of a function $f(\mathbf{x})$

$$H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

- In Newton's Method we approximate our function using a quadratic model
- Use that model to compute the best step length

Choose best descent direction according to approximation

- How do we get our approximation?
- Taylor Expansion (we saw this in lecture 1)

$$f\left(\mathbf{x}^{c} + \Delta\mathbf{x}\right) \approx f\left(\mathbf{x}^{c}\right) + \Delta\mathbf{x}^{T}\mathbf{g} + \frac{1}{2}\Delta\mathbf{x}^{T}\mathbf{H}\Delta\mathbf{x}$$

$$|\mathbf{y}| = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}} \end{bmatrix}$$

- We minimize the model problem
- Find where the gradient is zero

$$f(\mathbf{x}^c) + \Delta \mathbf{x}^T \mathbf{g} + \frac{1}{2} \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x}$$

- We minimize the model problem
- Find where the gradient is zero

Model:
$$f(\mathbf{x}^c) + \Delta \mathbf{x}^T \mathbf{g} + \frac{1}{2} \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x}$$

Gradient: $\mathbf{H}\Delta\mathbf{x} + \mathbf{g} = \mathbf{0}$

Increment: $\Delta \mathbf{x} = -\mathbf{H}^{-1}\mathbf{g}$

- Initialize \mathbf{x}^c
- While not at optimal point
 - Compute gradient (g) and Hessian (H)
 - Compute $\mathbf{x}^c = \mathbf{x}^c + h\Delta\mathbf{x}$
 - Update $\Delta \mathbf{x} = -\mathbf{H}^{-1}\mathbf{g}$

Aside: Hessian for Black Box Functions

Centered Finite Differences:

$$\frac{\partial f}{\partial \mathbf{x}_i}(\mathbf{x}) \approx \frac{f(\mathbf{x} + \epsilon \mathbf{e}_i) - f(\mathbf{x} - \epsilon \mathbf{e}_i)}{2\epsilon}$$

Second order accurate

The Hessian via Finite Differences

• Each entry of the Hessian: $\frac{\partial f^2}{\partial^2 \mathbf{x}}$

 Can apply finite differences twice to get a formula for each entry.

Gradient Descent vs. Newton's Method

- Gradient Descent is simpler
- Newton's Method converges faster, esp. near the solution
- Available Newton's Method Implementations:
 - MATLAB: fminunc
 - LBFGS: http://www.chokkan.org/software/liblbfgs/

Search Direction vs. Step Length

- While not at optimal point
 - Compute gradient (g) and Hessian (H)
 - Compute $\Delta \mathbf{x} = ?$
 - Update $\mathbf{x}^c = \mathbf{x}^c + h\Delta\mathbf{x}$

When Good Optimizations Go Bad

Numerical Optimization - Nocedal and Wright, pg. 33

When Good Optimizations Go Bad

Numerical Optimization - Nocedal and Wright, pg. 32

Choosing step length automatically

- While not at optimal point
 - Compute gradient (g) and Hessian (H)
 - Compute $\Delta \mathbf{x} = ?$
 - Update $\mathbf{x}^c = \mathbf{x}^c + h\Delta\mathbf{x}$

Characteristics of a Good Optimization Step

- We've seen that just guaranteeing a decreasing cost function is not enough
- We need sufficient decrease in the cost function
- How do we define sufficient decrease?

Sufficient Decrease

$$f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha \nabla f_k^T p_k$$

Curvature Condition

$$\nabla f(x_k + \alpha_k p_k)^T p_k \ge c_2 \nabla f_k^T p_k$$

Wolfe Conditions

$$f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha \nabla f_k^T p_k,$$
$$\nabla f(x_k + \alpha_k p_k)^T p_k \ge c_2 \nabla f_k^T p_k.$$

- Typical values
 - C1=1e-8 to 1e-4
 - C2 = 0.1 to 0.9

Backtracking Line Search

Algorithm 3.1 (Backtracking Line Search).

Choose $\bar{\alpha} > 0$, $\rho \in (0, 1)$, $c \in (0, 1)$; Set $\alpha \leftarrow \bar{\alpha}$; repeat until $f(x_k + \alpha p_k) \leq f(x_k) + c\alpha \nabla f_k^T p_k$ $\alpha \leftarrow \rho \alpha$;

end (repeat)

Terminate with $\alpha_k = \alpha$.

Backtracking Line Search

Examples of Optimization in Engineering

- Static Equilibrium: Find the minimum energy state of a deformable object
- Typically done using a Newton's method

Examples from Engineering

Examples in Graphics

 Newton's method is used to compute frictional force between hairs

Types of Optimization

- Continuous vs. Discrete
- Constrained vs. Unconstrained

Constrained Optimization

Optimization involves finding an "optimal value"

i.e. Maximizing a profit, minimizing an area etc...

$$\min f(x)$$

$$s.t \mathbf{c}_i(\mathbf{x}) = 0$$
Equality Constraints

Constrained Optimization

Optimization involves finding an "optimal value"

i.e. Maximizing a profit, minimizing an area etc...

Constrained Optimization

At Optimal Point

Equation from Geometry

$$-\nabla f = \lambda \nabla c$$
 Lagrange Multipliers!

Equation from Geometry

$$-\nabla f = \lambda \nabla c$$

$$\nabla f + \lambda \nabla c = 0$$

$$\nabla (f + \lambda c) = 0$$

$$\min (f + \lambda c)$$

Minimize old cost function + constraints · Lagrange Multipliers

Find Optimal Point!

$$\nabla_{\mathbf{x}} f(\mathbf{x}) + \mathbf{A}^T \lambda = 0$$
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

- This simple tool is incredibly powerful
- Let's use it to build an equality constrained Newton's Method

Equality Constrained Newton's Method

Newton's Method

- How do we get our approximation?
- Taylor Expansion!!!!

$$f\left(\mathbf{x}^{c} + \Delta\mathbf{x}\right) \approx f\left(\mathbf{x}^{c}\right) + \Delta\mathbf{x}^{T}\mathbf{g} + \frac{1}{2}\Delta\mathbf{x}^{T}\mathbf{H}\Delta\mathbf{x}$$

$$Vf|_{\mathbf{x}^{c}}$$

$$H(f) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}} \end{bmatrix}$$

Equality Constrained Newton

Add constraints to model problem

$$\Delta x = \arg \min f(\mathbf{x}^c) + \Delta \mathbf{x}^T \mathbf{g} + \frac{1}{2} \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x}$$

$$s.t. \mathbf{A} \mathbf{x} = \mathbf{b}$$

Equality Constrained Newton's Method

Equality Constrained Newton

- Very useful for general equality constrained problems
- Available in MATLAB as fmincon
- Easy to modify unconstrained Newton Code

So Far!

Gradient Descent

Newton's Method

Equality Constrained Newton's Method

Next: Inequality Constrained Optimization

 Specifically we will work up to a particular type of problem called a Quadratic Program

Inequality Constrained Optimization

Optimization involves finding an "optimal value"

• i.e. Maximizing a profit, minimizing an area etc...

$$\min f(x)$$

$$s.t c_i(\mathbf{x}) \leq 0$$
 Inequality Constraints

Inequality Constrained Optimization

Optimization involves finding an "optimal value"

• i.e. Maximizing a profit, minimizing an area etc...

$$\min f(x)$$
 $s.t \mathbf{A} \mathbf{x} \leq \mathbf{b}$
Inequality Constraints

Equality Constrained Optimization

Inequality Constrained Optimization

The Active Set

- Hidden inside of each inequality constrained optimization is an equality constrained optimization
- There are two cases for our optimal point...

Case 1: Optimal Value Inside Feasible Set

Case 2: Optimal Value On Boundary

Case 2: Optimal Value On Boundary

The Active Set

On the boundary we satisfy

$$\min f(x)$$

$$s.t \mathbf{A}^* \mathbf{x} = \mathbf{b}$$
Active Set

Quadratic Programs

It's got a quadratic cost function!

$$\min \mathbf{x}^T \mathbf{H} \mathbf{x} + \mathbf{x}^T \mathbf{d}$$

$$s.t. \ \mathbf{A} \mathbf{x} = \mathbf{b}$$

$$s.t. \ \mathbf{L} \mathbf{x} \leq \mathbf{m}$$

Quadratic Program

Quadratic Programs

Quadratic Program

- How do we solve this?
- Active Set: Try different combinations of constraints until the minimum is found
- Interior Point: ...

Interior Point Methods

Replace inequality constraints with functions

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + (\mathbf{A}\mathbf{x} - \mathbf{b})^T \lambda$$

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + (\mathbf{A}\mathbf{x} - \mathbf{b})^T \lambda + \sum_{i} c_i(\mathbf{x})$$

Special "Constraint" Function

Interior Point

Interior Point Methods

Replace inequality constraints with functions

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + (\mathbf{A}\mathbf{x} - \mathbf{b})^{T} \lambda$$

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + (\mathbf{A}\mathbf{x} - \mathbf{b}) + \sum_{i} c_{i}(\mathbf{x})$$

Special "Constraint" Function

Now use Equality Constrained Newton!!!

Quadratic Programs and Interior Point

- Quadratic Programs (Active Set)
 - Quadprog++ (http://quadprog.sourceforge.net)
 - MATLAB: quadprog
- Interior Point
 - Ipopt (https://projects.coin-or.org/lpopt)

Examples of Quadratic Programming

Staggered Projections for Frictional Contact in Multibody Systems

ACM SIGGRAPH Asia 2008

Danny M. Kaufman Shinjiro Sueda Doug L. James Dinesh K. Pai

Examples of Quadratic Programming

Types of Optimization

- Continuous vs. Discrete
- Constrained vs. Unconstrained

Continuous

Discrete

Choose from discrete points in parameter space

Branch and Bound Optimizations

- An optimization technique with 3 phases
 - Branch (divide the solution space into a number of subspaces)
 - Bound (compute some upper and lower bound for the cost of each subspace)
 - Prune (remove subspaces with upper bounds higher than the lower bounds of the least costly subspaces)

Continuum Mechanics and Fabrication

• Example: Cloning Object Behavior

We want to control the printed shoes response to applied force

Material Assignment

Match Goal Displacement G

Material 1	Material 1	Material 1	Material 1
Material 2	Material 2	Material 2	Material 2
Material 3	Material 3	Material 3	Material 3

Material Assignment

Material 1

Material 2

Material 3

SIMULATION

Material 1

Material 2

Material 3

SIMULATION

Material 1

Material 2

Material 3

Material 1

Material 2

Material 3

SIMULATION

Material 1

Material 2

Material 3

SIMULATION

SIMULATION

SIMULATION

Material 1

Material 2

Material 3

SIMULATION

SIMULATION

SIMULATION

- Has four ingredients
 - Cost function
 - Configuration (made of discrete elements)
 - Neighbor Generator
 - Annealing Schedule

- Basic Idea taken from cooling of materials in metallurgy
- At high "heat" atoms undergo rigorous motion
- As they are cooled they move less

• Cost function: f \mathbf{q} Configuration

- Cost function: $f(\mathbf{q})$
- Configuration: q e.g. Material Assignments
- Neighbor Generator: Rearrange Configuration
 - e.g. Change some materials to ones with nearby stiffness
- Annealing Schedule

Annealing Schedule

Image by MIT OpenCourseWare.

- Global optimization
- Combinatorial optimization
- Difficult to define good annealing schedule and neighbor generation scheme

Examples from Graphics

The End

- This is the last topic lecture for the course
- The remainder of the lectures will be on current research in computational fabrication