

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2003-106048

(43)Date of publication of application : 09.04.2003

(51)Int.Cl.

E05F 15/20
B60J 5/00
B60J 5/10
G01L 1/20

(21)Application number : 2001-300698

(71)Applicant : MATSUSHITA ELECTRIC IND
CO LTD

(22)Date of filing :

28.09.2001

(72)Inventor : OGINO HIROYUKI
FUKUDA YU
NAGAI TAKESHI
UEDA SHIGEKI
EBISAWA MITSUO
SUGIMORI TORU

(54) PINCH DETECTING DEVICE AND OPENING/CLOSING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To overcome a conventional problem such that a pinch caused by a hatchback door 1 cannot be detected.

SOLUTION: A pinch detecting device is equipped with: a pressure sensitive sensor 2 which is arranged bendably along a shape of the hatchback door 1; and a determination means 16 for detecting that an object is pinched between a body opening 7 and the hatchback door 1, in accordance with an output signal from the sensor 2. The pinch caused by the hatchback door 1 can be detected because the sensor 2 is arranged bendably along the shape of the hatchback door 1.

LEGAL STATUS

[Date of request for examination] 01.12.2003

[Date of sending the examiner's decision of
rejection]

[Kind of final disposal of application other
than the examiner's decision of rejection or

[application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's
decision of rejection]

[Date of requesting appeal against
examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2003-106048

(P2003-106048A)

(43)公開日 平成15年4月9日(2003.4.9)

(51)Int.Cl.'

識別記号

E 0 5 F 15/20

F I

テマコード(参考)

B 6 0 J 5/00

E 0 5 F 15/20

2 E 0 5 2

5/10

B 6 0 J 5/00

C

G 0 1 L 1/20

5/10

K

G 0 1 L 1/20

C

審査請求 未請求 請求項の数7 O.L (全9頁)

(21)出願番号

特願2001-300698(P2001-300698)

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(22)出願日

平成13年9月28日(2001.9.28)

(72)発明者 萩野 弘之

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 福田 祐

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 100097445

弁理士 岩橋 文雄 (外2名)

最終頁に続く

(54)【発明の名称】 挟み込み検出装置及び開閉装置

(57)【要約】

1 ハッチバックドア
2 感圧センサ

【課題】 従来、ハッチバックドア1での挟み込みを検出することができないといった課題があった。

【解決手段】 ハッチバックドア1の形状に沿って屈曲可能に配設された感圧センサ2と、感圧センサ2の出力信号に基づきボディ開口部7とハッチバックドア1との間への物体の挟み込みを検出する判定手段16とを備えたもので、感圧センサ2がハッチバックドア1の形状に沿って屈曲可能に配設されているので、ハッチバックドア1での挟み込みを検出することができる。

【特許請求の範囲】

【請求項 1】 車両のハッチバックドアの形状に沿って屈曲可能に配設された感圧センサと、前記感圧センサの出力信号に基づき前記自動車のボディ開口部と前記ハッチバックドアとの間への物体の挟み込みを検出する判定手段とを備えた挟み込み検出装置。

【請求項 2】 感圧センサは可撓性のある圧電センサを有した請求項 1 記載の挟み込み検出装置。

【請求項 3】 感圧センサは荷重に対する変位量が非線型な非線形たわみ部材を有し、圧電センサは前記非線形たわみ部材に隣接して配設された請求項 2 記載の挟み込み検出装置。 10

【請求項 4】 判定手段は圧電センサの出力信号に基づき感圧センサに物体が接触し続けているか否かを判定する請求項 2 または 3 記載の挟み込み検出装置。

【請求項 5】 感圧センサは挟み込まれた物体による押圧により圧縮可能な緩衝部を有した請求項 1 乃至 4 のいずれか 1 項記載の挟み込み検知装置。 20

【請求項 6】 請求項 1 乃至 5 のいずれか 1 項記載の挟み込み検出装置とハッチバックドアを駆動する駆動手段とを備え、判定手段の出力信号に基づき挟み込み判定時には挟み込みを解除するよう前記駆動手段を制御する制御手段を有した開閉装置。

【請求項 7】 制御手段はハッチバックドアを閉止する際、ハッチバックドアを一旦開方向へ所定距離移動した後に閉動作するよう駆動手段を制御する請求項 6 記載の開閉装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、自動車等の車両のボディ開口部とハッチバックドアとの間への物体の挟み込みを検出する挟み込み検出装置および開閉装置に関するものである。 30

【0002】

【従来の技術】従来の挟み込み検出装置は、パワーウィンドウや電動スライドドアでの挟み込みを検出するもので、ボディ開口部とハッチバックドアとの間の物体の挟み込みを検出するものは無かった。

【0003】

【発明が解決しようとする課題】利便性の向上のため電動で開閉するハッチバックドアが求められているが、上述のようにボディ開口部とハッチバックドアとの間の物体の挟み込みを検出する挟み込み検出装置が無いため、電動で閉止する際にボディ開口部とハッチバックドアとの間に不用意に物体が挟み込まれてしまうといった課題があった。

【0004】本発明はこのような従来の課題を解決するものであり、ハッチバックドアでの挟み込みを検出する挟み込み検出装置および開閉装置を提供することを目的とする。 40

【0005】

【課題を解決するための手段】上記課題を解決するため本発明は、車両のハッチバックドアの形状に沿って屈曲可能に配設された感圧センサと、前記感圧センサの出力信号に基づき前記自動車のボディ開口部と前記ハッチバックドアとの間への物体の挟み込みを検出する判定手段とを備えたもので、感圧センサがハッチバックドアの形状に沿って屈曲可能に配設されているので、ハッチバックドアでの挟み込みを検出することができる。

【0006】

【発明の実施の形態】上記の課題を解決するために請求項 1 の発明は、感圧センサが車両のハッチバックドアの形状に沿って屈曲可能に配設されているので、ハッチバックドアでの挟み込みを検出することができる。

【0007】また請求項 2 の発明は、感圧センサが可撓性のある圧電センサを有したもので、感圧センサとして対向する複数の電極からなる接点型の感圧スイッチを用いてハッチバックドアに配設した場合、屈曲部があるとそこで電極同士が接触して誤検出するが、圧電センサは接点が無く屈曲部に配設しても誤検出無く挟み込みを検出でき、信頼性が向上する。

【0008】また請求項 3 の発明は、感圧センサは荷重に対する変位量が非線型な非線形たわみ部材を有し、圧電センサは前記非線形たわみ部材に隣接して配設されたもので、例えばハッチバックドアの閉止速度が遅い時に物体が挟み込まれても、物体による感圧センサへの押圧荷重が所定値以上となると、非線形たわみ部材が急に変形し、隣接して配設された圧電センサも急な変形を受けて大きな出力信号を出し、判定手段により挟み込みを判定することができ、挟み込み検知の信頼性がさらに向上する。

【0009】また請求項 4 の発明は、判定手段は圧電センサの出力信号に基づき感圧センサに物体が接触し続けているか否かを判定するもので、例えば感圧センサへ物体が接触し続けていると判定された場合は、ハッチバックドアの閉止を禁止するといった制御が可能となり、信頼性が向上する。

【0010】また請求項 5 の発明は、感圧センサは挟み込まれた物体による押圧により圧縮可能な緩衝部を有したもので、挟み込みを検出してもハッチバックドアが反転するまでに緩衝部が圧縮されるので物体に印加される挟み込み荷重の増加を抑制することができ、挟まれた物体へのストレスや損傷を低減することができる。

【0011】また請求項 6 の発明は、請求項 1 乃至 5 のいずれか 1 項記載の挟み込み検出装置とハッチバックドアを駆動する駆動手段とを備え、判定手段の出力信号に基づき挟み込み判定時には挟み込みを解除するよう前記駆動手段を制御する制御手段を有したもので、挟み込み判定時には挟み込みを解除するので不要な挟み込みを防止することができる。

【0012】また請求項7の発明は、ハッチバックドアを閉止する際、ハッチバックドアを一旦開方向へ所定距離移動した後に閉動作するよう駆動手段を制御するもので、ハッチバックドアの閉止開始前に物体が圧電センサに接触していても、ハッチバックドアを一旦開方向へ所定距離移動した後に閉動作することにより、開方向へ移動した物体の慣性力が閉動作により圧電センサに印加され、圧電センサへの押圧が確実に起こるので、挟み込みを確実に検出することができる。

【0013】

【実施例】以下、本発明の実施例について図1から図11を参照して説明する。

【0014】(実施例1)実施例1の発明を図1から図6を参照して説明する。

【0015】図1は実施例1の発明の挟み込み検出装置及び開閉装置の外観図で、自動車のハッチバックドア1に感圧センサ2を配設した構成を示している。図2はハッチバックドア1への感圧センサ2の配設場所を示した外観図で、車両室内側からハッチバックドア1を見た状態を示している。図2(a)はハッチバックドア1の左右両サイドにそれぞれ感圧センサ2を配設した場合、図2(b)はハッチバックドア1の左右両サイドと下端部に沿って1本の感圧センサ2を配設した場合を示している。

【0016】図3は図1のA-A位置における断面構成図である。図面上側が車両室内側、下側が車外方向である。図3(a)はハッチバックドア1が閉止した状態を示しており、ハッチバックドア1の端部3に支持手段4を介して感圧センサ2が配設されている。5はボディ、6はハッチバックドア1が閉止した際にボディ開口部7及びボディ5とハッチバックドア1との間をシールするシール部である。感圧センサ2はハッチバックドア1が完全に閉止した際にボディ5と接触しないようボディ5との間に所定の距離において端部3に固定されている。子供の指等の挟み込みを考慮するとこの距離は3mm~5mmとすることが好ましい。図3(b)はハッチバックドア1とボディ開口部7との間に物体Qが挟み込まれた状態での図1のA-A位置における断面構成図である。

【0017】図4は感圧センサ2の構成図である。図4より、感圧センサ2は弾性体8に可撓性のある圧電センサ9を配設した構成から成っている。圧電センサ9は圧電材としての複合圧電体層10と、複合圧電体層10を挟む電極としての中心電極11及び外側電極12とを中心円状に積層して成形した同軸ケーブル状の構成を備えており、感圧センサ2は全体として可撓性に優れた構成を有している。圧電センサ9は以下の工程により製造される。最初に、塩素化ポリエチレンシートと(40~70)vol%の圧電セラミック(ここでは、チタン酸ジルコン酸鉛)粉末がロール法によりシート状に均一に混合される。このシートを細かくペレット状に切断した後、

これらのペレットは中心電極11と共に連続的に押し出されて複合圧電層10を形成する。それから、外側電極12が複合圧電体層10の周囲に巻きつけられる。外側電極12を取り巻いて弾性体8も連続的に押し出される。最後に、複合圧電層10を分極するために、中心電極11と外側電極12の間に(5~10)kV/mmの直流高電圧が印加される。

【0018】上記塩素化ポリエチレンシートには、非晶質塩素化ポリエチレンと結晶性塩素化ポリエチレンの混合物を用いる。この場合、押し出しの加工性、可撓性、圧電特性等を考慮して、分子量6万~15万の非晶質塩素化ポリエチレンを75wt%、結晶化度(15~25)%で分子量20万~40万の結晶性塩素化ポリエチレンを25wt%混合した塩素化ポリエチレンが好ましいことが実験的に見出された。この混合塩素化ポリエチレンは圧電セラミック粉末を約70vol%まで含むことができる。

【0019】この混合塩素化ポリエチレンに圧電セラミック粉末を添加するとき、前もって圧電セラミック粉末をチタン・カップリング剤の溶液に浸漬・乾燥することが好ましい。この処理により、圧電セラミック粉末表面が、チタン・カップリング剤に含まれる親水基と疎水基で覆われる。親水基は圧電セラミック粉末同志の凝集を防止し、また、疎水基は混合塩素化ポリエチレンと圧電セラミック粉末との濡れ性を増加する。この結果、圧電セラミック粉末は混合塩素化ポリエチレン中に均一に、最大70vol%まで多量に添加することができる。上記チタン・カップリング剤溶液中の浸漬に代えて、混合塩素化ポリエチレンと圧電セラミック粉末のロール時にチタン・カップリング剤を添加することにより、上記と同じ効果の得られることが見出された。この処理は、特別にチタン・カップリング剤溶液中の浸漬処理を必要としない点で優れている。

【0020】中心電極11は通常の金属単線導線を用いてもよいが、ここでは絶縁性高分子繊維13の周囲に金属コイル14を巻いた電極を用いている。絶縁性高分子繊維13と金属コイル14としては、電気毛布において商業的に用いられているポリエステル繊維と銀を5wt%含む銅合金がそれ好ましい。

【0021】外側電極12は高分子層の上に金属膜の接着された帯状電極を用い、これを複合圧電体層10の周囲に巻きつけた構成としている。そして、高分子層としてはポリエチレン・テレフタレート(PET)を用い、この上にアルミニウム膜を接着した電極は、120°Cで高い熱的安定性を有するとともに商業的にも量産されているので、外側電極12として好ましい。尚、圧電センサ9を外部環境の電気的雑音からシールドするために、外側電極12は部分的に重なるようにして複合圧電体層10の周囲に巻きつけることが好ましい。

【0022】弾性体8としては、物体の挟み込みによる

押圧時に圧電センサ9が変形しやすいよう圧電センサ9よりも柔軟性及び可撓性の良いゴム等の弾性材料が用いられ、車搭部品として耐熱性、耐寒性を考慮して選定し、具体的には-30°C~85°Cで可撓性の低下が少ないものを選定することが好ましい。このようなゴムとして、例えばエチレンプロピレンゴム(E P D M)、クロロブレンゴム(C R)、ブチルゴム(I I R)、シリコンゴム(S i)、熱可塑性エラストマー等を用いればよい。また、弾性体8は、中空に成形され、挟み込まれた物体による押圧により圧縮可能な緩衝部15を有している。さらに、弾性体8の底部には支持手段4に固定支持するための溝部が形成されている。

【0023】感圧センサ2をハッチバックドア1に取付ける場合は、先ず、ハッチバックドア1の端部形状に沿って取付けられるよう支持手段4を成形し、成形した支持手段4に感圧センサ2を固定する。そして、感圧センサ2と支持手段4からなるセンサ部材をハッチバックドア1の端部に固定する。固定方法は、例えば、支持手段4に固定用の穴を形成してハッチバックドア1の端部にビス止めすればよい。

【0024】感圧センサ2として対向する複数の電極からなる接点型の感圧スイッチを用いてハッチバックドア1に配設した場合、屈曲部があるとそこで電極同士が接触して誤検出するが、圧電センサ8は接点が無く屈曲部に配設しても誤検出しない。従って、本実施例1では、上述した構成により、ハッチバックドア1に図2に示すような屈曲部Rがあっても感圧センサ2を屈曲部Rに沿って配設することが可能となった。

【0025】図5は実施例1の発明の挟み込み検出装置及び開閉装置のブロック図である。図5より、16は判定手段、17は断線検出用の回路側抵抗体、18は圧電センサ8からの信号を導出するための信号導出用抵抗体、19は圧電センサ8からの出力信号から所定の周波数成分のみを通過させる濾波部、20は濾波部19からの出力信号に基づき挟み込みを判定する判定部、21は圧電センサ8の断線異常を判定する異常判定部、22はコネクタ、23はバッテリー、24はハッチバックドア1を駆動する駆動手段、25は判定手段16の出力信号に基づき駆動手段24を制御する制御手段、26は判定手段16の判定結果を車室内のフロントパネル等で表示する表示部である。駆動手段24は例えば電動モータを用いる。27は圧電センサ8の端部において中心電極10と外側電極11との間に断線検出用の抵抗体として設けられたセンサ側抵抗体である。

【0026】濾波部19は圧電センサ8の出力信号から自動車の車体の振動等に起因する不要な信号を除去し、物体の挟み込みに特有な周波数成分を有した信号を抽出するような濾波特性を有する。濾波特性の決定には自動車の車体の振動特性等を考慮して最適化すればよい。具体的には、自動車のエンジンや走行による振動を除去す

るため約10Hz以下の信号成分を抽出するローパスフィルタとすることが望ましい。

【0027】圧電センサ8と判定手段16とは直接接続され、判定手段16はハッチバックドア1の上端に配設または内蔵されている。外来の電気的ノイズを除去するため判定手段16はシールド部材で全体を覆って電気的にシールドすることが好ましい。また、判定手段16の入出力部に貫通コンデンサやEMIフィルタ等を付加して強電界対策を行ってもよい。

【0028】次に作用について説明する。図3(b)に示すように、ハッチバックドア1とボディ開口部7との間に物体Qが挟み込まれると物体Qが感圧センサ2と接触し、物体Qの押圧により感圧センサ2内の圧電センサ8が変形する。

【0029】図6はこの際の濾波部19の出力信号V、挟み込み判定部20の判定出力J、駆動手段24への印加電圧Vmを示す特性図である。図6において、縦軸は上から順にV、J、Vm、横軸は時刻tである。時刻t1で駆動手段24に+Vdの電圧を印加してハッチバックドア1を閉止方向に駆動させる。挟み込みが起こると圧電センサ8からは圧電効果により圧電センサ8の変形の加速度に応じた信号(図6のVで基準電位V0より大きな信号成分)が出力される。挟み込み判定部20はVのV0からの振幅V-V0がD0以上ならば挟み込みが生じたと判定し、時刻t0で判定出力としてLo→Hi→Loのパルス信号を出力する。制御手段25ではこのパルス信号があると駆動手段24への+Vdの電圧印加を停止し、表示部26に挟み込みが生じたことを表示させ、-Vdの電圧を一定時間印加してハッチバックドア1を開方向へ駆動させ、挟み込みを解除する。挟み込みが判定されると表示部26から警報を発生する構成としてもよい。尚、挟み込みを解除する際、圧電センサ8からは変形が復元する加速度に応じた信号(図6の基準電位V0より小さな信号成分)が出力される。

【0030】尚、挟み込みの際、VがV0より大となるか小となるかは、圧電センサ8の屈曲方向や分極方向、電極の割付け(どちらを基準電位とするか)、圧電センサ8の支持方向により変わるために、挟み込み判定部20でVのV0からの振幅|V-V0|に基づき挟み込みを判定する構成としてもよく、VのV0に対する大小によらず挟み込みを判定することができる。

【0031】尚、物体Qが挟み込まれた際、弾性体8が挟み込まれた物体による押圧により圧縮可能な緩衝部15を有しているため、判定手段16が挟み込みを検出した後、ハッチバックドア1が反転するまでに緩衝部15が圧縮されるので、物体Qに印加される挟み込み荷重の増加を緩衝部15が抑制し、挟まれた物体Qへのストレスや損傷を低減することができる。また、緩衝部15がつぶれることにより圧電センサ8の変形度合いがより大きくなり、圧電センサ8からの出力信号が増大するの

で、挟み込みを検出し易くなる。

【0032】次に、異常判定部21での断線判定の手順を以下に示す。図5において、センサ側抵抗体27、回路側抵抗体17、信号導出用抵抗体18の抵抗値をそれぞれR1、R2、R3、P点の電圧をVp、電源23の電圧をVsとする。R1、R2、R3は通常数メガ～数十メガオームの抵抗値が用いられる。圧電センサ8の電極が正常の場合、VpはVsに対して、R2とR3の並列抵抗とR1との分圧値となる。ここで、複合圧電体層10の抵抗値は通常数百メガオーム以上であるのでR2、R3の並列抵抗値にはほとんど寄与しないため上記分圧値の算出には無視するものとする。圧電センサ8の電極が断線すると等価的にはPa点またはPb点がオープンとなるので、VpはR2とR3の分圧値となる。電極がショートすると等価的にはPa点とPb点がショートすることになるので、VpはVsに等しくなる。このように異常判定部21でVpの値に基づいて圧電センサ8の電極の断線やショートといった異常を検出するので、信頼性を向上することができる。

【0033】上記作用により、感圧センサが車両のハッチバックドアの形状に沿って屈曲可能に配設されているので、ハッチバックドアでの挟み込みを検出することができる。

【0034】また、感圧センサが可撓性のある圧電センサを有したもので、感圧センサとして対向する複数の電極からなる接点型の感圧スイッチを用いてハッチバックドアに配設した場合、屈曲部があるとそこで電極同士が接触して誤検出するが、圧電センサは接点が無く屈曲部に配設しても誤検出無く挟み込みを検出でき、信頼性が向上するとともに、ハッチバックドアのデザイン面での自由度も向上する。

【0035】また、感圧センサは挟み込まれた物体による押圧により圧縮可能な緩衝部を有したもので、挟み込みを検出してもハッチバックドアが反転するまでに緩衝部が圧縮されるので物体に印加される挟み込み荷重の増加を抑制することができ、挟まれた物体Qへのストレスや損傷を低減することができる。

【0036】さらに、感圧センサによる挟み込み検出装置とハッチバックドアを駆動する駆動手段とを備え、判定手段の出力信号に基づき挟み込み判定時には挟み込みを解除するよう前記駆動手段を制御する制御手段を有しており、挟み込み判定時には挟み込みを解除するので、不要な挟み込みを防止する開閉装置を提供することができる。

【0037】尚、上述したように圧電センサ8の複合圧電体層10の原料として、非晶質塩素化ポリエチレンと結晶性塩素化ポリエチレンの混合物が用いられるが、非晶質塩素化ポリエチレンのみを用いると、約40vol%までの圧電セラミック粉体が添加でき、このペレットは容易に押出しできる。押出された複合圧電体層10も優

れた可撓性を有する。しかし、この複合圧電体層10は剛性が小さいために、約80°C以上で変形し易い点で実用的でない。120°Cでもほとんど変形しないほどの十分な剛性をこの複合圧電体層10に付与するためには、加硫が必要である。他方、結晶性塩素化ポリエチレンのみを用いると、この複合圧電体層10は120°Cでもほとんど変形しないほどの十分な剛性を有するので、加硫を必要としないが、押出しが困難である。また、圧電セラミック粉体は約40vol%までしか添加できない。本発明の圧電センサ8は、非晶質塩素化ポリエチレンと結晶性塩素化ポリエチレンと圧電セラミック粉体とを含む混合組成物からなる複合圧電体層10を有し、複合圧電体層10は非晶質塩素化ポリエチレンの有する可撓性と結晶性塩素化ポリエチレンの有する高温耐久性といった、両者の利点を併せ持ち、120°Cで1000時間以上動作できる。また、本発明の圧電センサ8は、一般の合成ゴムの製造に必要な加硫工程は不要である。

【0038】(実施例2)実施例2の発明を図7を参照して説明する。図7(a)、(b)は実施例2の発明の挟み込み検出装置及び開閉装置の感圧センサ2の断面図で、図7(a)は感圧センサ2に所定の荷重が印加されていない状態、図7(b)は感圧センサ2に所定の荷重以上の荷重が印加され感圧センサ2が圧縮された状態である。

【0039】実施例2が実施例1と相違する点は、感圧センサ2が荷重に対する変位量が非線形な非線形たわみ部材28を有し、圧電センサ8は非線形たわみ部材28に隣接して配設された点にある。非線形たわみ部材28は、例えば、コンベックスメジャーで使用されているような凸型の形状をした帯状の薄型鋼材や強化樹脂を用いる。このような部材は、押圧荷重を所定値以上になると、急に凹状に変形し、荷重印加をやめると元の形状に復元する特性を有する。尚、図7(a)、(b)において、29は非線形たわみ部材28を支持する支持部、30は緩衝部、31は実施例1と同じ材質の弾性体である。

【0040】実施例1の構成では、感圧センサ2にゆっくりと荷重を印加すると、圧電センサ8の変形がゆっくりとなるので、圧電センサ8からの出力信号が小さくなり、挟み込みを判定できない場合がある。

【0041】一方、本実施例2では、上記構成により、例えばハッチバックドア1の閉止速度が遅い時に物体が挟み込まれると、先ず、図7(a)に示す緩衝部30の上部が押しつぶされ、非線形たわみ部材28に荷重が印加され始める。そして、挟まれた物体による感圧センサ2への押圧により、非線形たわみ部材28に印加される荷重が所定値以上となると、図7(b)に示すように、押圧を受けた部分の非線形たわみ部材28が凸状から凹状へと急に変形し、隣接して配設された圧電センサも同時に変位して急な変形を受け、大きな出力信号を出力す

る。これにより、判定手段が挟み込みを判定することができ、挟み込み検知の信頼性がさらに向上する。

【0042】(実施例3)実施例3の発明を以下に説明する。実施例3が実施例1、2と相違する点は、判定手段16が圧電センサ8の出力信号に基づき感圧センサ2へ物体が接触し続けているか否かを判定する点である。

【0043】上記構成による動作を図8を基に説明する。図8は本実施例3の判定手段16における濾波部19の出力信号Vと挟み込み判定部20の判定出力Jを示す特性図である。図6において、縦軸は上から順にV、J、横軸は時刻tである。濾波部19は実施例1、2と同様な構成を用いている。

【0044】図8に示すように、ハッチバックドア1の感圧センサ2の一部を手で握ったり放したりすると、握った瞬間(時刻t4)や放した瞬間(時刻t5)には、Vにそれぞれ基準電位V0より大きな信号成分と小さな信号成分が現れるが、握ったままの状態(時刻t4～時刻t5)では圧電センサ8が既に変形しきってしまっていると信号は現れない。従って、実施例1の挟み込みの判定手順の場合は、例えば、感圧センサ2の一部を手で握ったまま、ハッチバックドア1を閉止させると、挟み込みが生じても圧電センサ8が既に変形しきってしまっている場合は、挟まれたままになる可能性がある。

【0045】一方、本実施例3では、図8に示すように、挟み込み判定部20は時刻t4でVがV1以上となると、つぎにVがV2以下となるまでは感圧センサに物体が接触し続けているとしてJをHiに保持し、VがV2以下となると感圧センサへの物体の接触が解除されたとしてJをLoとする。そして、制御手段25では、JがHiの場合は、駆動手段24による閉止動作を禁止するとともに、表示部26に物体が感圧センサ2に接触している旨の表示を行う。

【0046】上記作用により、判定手段が圧電センサの出力信号に基づき感圧センサに物体が接触し続けているか否かを判定するので、例えば感圧センサへ物体が接触し続けていると判定された場合は、ハッチバックドアの閉止を禁止するといった制御が可能となり、信頼性が向上する。

【0047】(実施例4)実施例4の発明の開閉装置を以下に説明する。実施例4では、ハッチバックドア1を閉止する際、制御手段25によりハッチバックドア1を一旦開方向へ所定距離移動した後に閉動作するよう駆動手段24を制御する構成を備えている。具体的な手順を図9を基に説明する。図9は駆動手段24への印加電圧Vmを示す特性図で、図中、縦軸はVm、横軸は時刻tである。図9より、ハッチバックドア1を閉止する際に、時刻t6で閉止を指示するための閉止スイッチをオンすると駆動手段24への印加電圧Vmを時刻t7まで-Vdとしてハッチバックドア1を開方向へ移動させ、時刻t7以降は時刻t8で完全閉止するまでVmを+V

10

20

30

40

50

dとしてハッチバックドア1を閉動作させる。時刻t6からt7までの時間の設定はハッチバックドア1の重量や駆動手段24の能力等により最適化すればよいが、最低数百ミリ秒程度でもよい。

【0048】実施例1では、ハッチバックドア1の閉止開始前に物体が感圧センサ2に接触していると、ハッチバックドア1が閉動作を開始しても圧電センサ8に充分な変形が起こらず、挟み込みを判定できない場合があるが、上記構成によれば、ハッチバックドア1を一旦開方向へ所定距離移動した後に閉動作することにより、開方向へ移動した物体の慣性力が閉動作により感圧センサ2に印加され、感圧センサ2への押圧が増し、圧電センサ8に充分な変形が起こるので、挟み込みを確実に検出することができる。

【0049】尚、上記構成でハッチバックドア1が完全開口している状態から閉動作する場合は、所定時間閉動作を行った後に閉動作を停止してから上記のようにハッチバックドア1を一旦開方向へ所定距離移動した後に閉動作するといった構成としてもよい。

【0050】

【発明の効果】上記実施例から明らかなように、請求項1の発明によれば、感圧センサが車両のハッチバックドアの形状に沿って屈曲可能に配設されているので、ハッチバックドアでの挟み込みを検出することができるといった効果がある。

【0051】また請求項2の発明によれば、感圧センサが可撓性のある圧電センサを有し、接点型の感圧スイッチではなく、無接点型のセンサなので、屈曲部に配設しても誤検出無く挟み込みを検出でき、信頼性が向上するといった効果がある。

【0052】また請求項3の発明によれば、感圧センサは荷重に対する変位量が非線型な非線形たわみ部材を有し、圧電センサは前記非線形たわみ部材に隣接して配設されているので、例えばハッチバックドアの閉止速度が遅い時に物体が挟み込まれても、物体による感圧センサへの押圧荷重が所定値以上となると、非線形たわみ部材が急に変形し、隣接して配設された圧電センサも急な変形を受けて大きな出力信号を出力し、判定手段により挟み込みを判定することができ、挟み込み検知の信頼性がさらに向上するといった効果がある。

【0053】また請求項4の発明によれば、判定手段は圧電センサの出力信号に基づき感圧センサに物体が接触し続けているか否かを判定するので、例えば感圧センサへ物体が接触し続けていると判定された場合は、ハッチバックドアの閉止を禁止するといった制御が可能となり、信頼性が向上するといった効果がある。

【0054】また請求項5の発明によれば、感圧センサは挟み込まれた物体による押圧により圧縮可能な緩衝部を有しているので、挟み込みを検出してもハッチバックドアが反転するまで緩衝部が圧縮されるので物体に印

加される挟み込み荷重の増加を抑制することができ、挟まれた物体へのストレスや損傷を低減することができるといった効果がある。

【0055】また請求項6の発明によれば、請求項1乃至5のいずれか1項記載の挟み込み検出装置とハッチバックドアを駆動する駆動手段とを備え、判定手段の出力信号に基づき挟み込み判定時には挟み込みを解除するよう前記駆動手段を制御する制御手段を有したもので、挟み込み判定時には挟み込みを解除するので不要な挟み込みを防止することができるといった効果がある。

【0056】また請求項7の発明によれば、ハッチバックドアを閉止する際、ハッチバックドアを一旦開方向へ所定距離移動した後に閉動作するよう駆動手段を制御するもので、ハッチバックドアの閉止開始前に物体が圧電センサに接触していても、ハッチバックドアを一旦開方向へ所定距離移動した後に閉動作することにより、開方向へ移動した物体の慣性力が閉動作により圧電センサに印加され、圧電センサへの押圧が確実に起こるので、挟み込みを確実に検出することができるといった効果がある。

【図面の簡単な説明】

【図1】実施例1の発明の挟み込み検出装置及び開閉装置の外観図

【図2】(a)ハッチバックドアの左右両サイドにそれぞれ感圧センサを配設した場合の外観図

(b)ハッチバックドアの左右両サイドと下端部に沿って1本の感圧センサを配設した場合の外観図

【図3】(a)ハッチバックドアが閉止した状態での図1のA-A位置における断面構成図

(b)ハッチバックドアとボディ開口部との間に物体が 30

挟み込まれた状態での図1のA-A位置における断面構成図

【図4】同装置の感圧センサの外観図

【図5】同装置のブロック図

【図6】同装置の滤波部からの出力信号V、挟み込み判定部の判定出力J、モータへの印加電圧Vmを示す特性図

【図7】(a)実施例2の発明の挟み込み検出装置及び開閉装置の感圧センサの断面図(感圧センサに所定の荷重が印加されていない状態)

(b)実施例2の発明の挟み込み検出装置及び開閉装置の感圧センサの断面図(感圧センサに所定の荷重以上の荷重が印加され感圧センサが圧縮された状態)

【図8】実施例3の発明の挟み込み検出装置及び開閉装置の滤波部からの出力信号V、挟み込み判定部の判定出力Jを示す特性図

【図9】実施例4の発明の挟み込み検出装置及び開閉装置の駆動手段への印加電圧Vmを示す特性図

【符号の説明】

20	1 ハッチバックドア
	2 感圧センサ
	7 ボディ開口部
	8 圧電センサ
	14 緩衝部
	16 判定手段
	24 駆動手段
	25 制御手段
	28 非線形たわみ部材
	30 緩衝部

【図1】

1 ハッチバックドア
2 感圧センサ

【図4】

9 圧電センサ
14 緩衝部

【図2】

【図3】

【図5】

【図8】

【図6】

【図7】

【図9】

フロントページの続き

(72)発明者 長井 彪
大阪府門真市大字門真1006番地 松下電器
産業株式会社内
(72)発明者 植田 茂樹
大阪府門真市大字門真1006番地 松下電器
産業株式会社内

(72)発明者 海老澤 満男
大阪府門真市大字門真1006番地 松下電器
産業株式会社内
(72)発明者 杉森 透
大阪府門真市大字門真1006番地 松下電器
産業株式会社内

Fターム(参考) 2E052 AA09 CA06 EA01 GA08 GB06
GC06 GD03 HA01 KA13 KA27