L3 A, M363, contrôle 1 Février 2014

Exercice 1 Soit $(A_k)_{1 \le k \le n}$ une suite finie de parties d'un ensemble non vide X. Montrer que :

$$egin{aligned} \mathbf{1}_{igcap_{k=1}^n} A_k &= \prod_{k=1}^n \mathbf{1}_{A_k} = \min_{1 \leq k \leq n} \mathbf{1}_{A_k} \ \mathbf{1}_{igcap_{k=1}^n} A_k &= \max_{1 \leq k \leq n} \mathbf{1}_{A_k} \end{aligned}$$

et:

$$((A_k)_{1 \le k \le n} \text{ est une partition de } A) \Leftrightarrow \left(\mathbf{1}_A = \sum_{k=1}^n \mathbf{1}_{A_k}\right)$$

où A est une partie de X.

Exercice 2 On rappelle que la mesure ℓ des intervalles réels se prolonge de manière unique en une mesure sur la tribu $\mathcal{B}(\mathbb{R})$ des boréliens, cette mesure étant invariante par translation. C'est la mesure de Lebesgue sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Nous allons vérifier que cette mesure ne peut pas se prolonger en une mesure invariante par translation sur $\mathcal{P}(\mathbb{R})$.

On désigne par C le groupe quotient \mathbb{R}/\mathbb{Q} .

1. Vérifier que, pour toute classe d'équivalence $c \in C$, on peut trouver un représentant x dans [0,1[.

Pour tout $c \in \mathcal{C}$, on se fixe un représentant x_c de c dans [0,1[(axiome du choix) et on désigne par A l'ensemble de tous ces réels x_c .

2. Montrer que les translatés r + A, où r décrit $[-1,1] \cap \mathbb{Q}$, sont deux à deux disjoints et que :

$$[0,1] \subset \bigcup_{r \in [-1,1] \cap \mathbb{Q}} (r+A) \subset [-1,2]$$

- 3. En déduire que A n'est pas borélien et que ℓ ne peut pas se prolonger en une mesure invariante par translation sur $\mathcal{P}(\mathbb{R})$ (on pourra raisonner par l'absurde).
- 4. Donner un exemple de fonction $f : \mathbb{R} \to \mathbb{R}$ non mesurable (\mathbb{R} étant muni de la tribu de Borel) telle que |f| soit mesurable.

Exercice 3 [a,b] est un intervalle fermé borné fixé avec a < b réels.

1. Montrer que les fonctions en escaliers positives sur [a,b] sont exactement les fonctions du type :

$$\varphi = \sum_{k=1}^{n} a_k \mathbf{1}_{I_k}$$

où $n \in \mathbb{N}^*$, les a_k sont des réels positifs ou nuls et les I_k sont des intervalles contenus dans [a,b].

- 2. Montrer que si $(\varphi_k)_{1 \le k \le n}$ est une suite finie de fonctions en escaliers sur [a,b], alors la fonction $\varphi = \max_{1 \le k \le n} \varphi_k$ est aussi en escaliers.
- 3. Soit f une fonction réglée définie sur [a,b] et à valeurs positives.
 - (a) Montrer qu'il existe une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions en escaliers qui converge uniformément vers f sur [a,b] et telle que :

$$\forall n \in \mathbb{N}, \ \forall x \in [a, b], \ \varphi_n(x) \le f(x)$$

(b) On désigne par $(\psi_n)_{n\in\mathbb{N}}$ la suite de fonctions définie sur [a,b] par $\psi_0=0$ et pour tout $n\geq 1$:

$$\psi_n = \max\left(0, \varphi_1, \cdots, \varphi_n\right)$$

Monter que $(\psi_n)_{n\in\mathbb{N}}$ est une suite croissante de fonctions en escaliers qui converge uniformément vers f sur [a,b].

- (c) Montrer qu'il existe une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions en escaliers à valeurs positives telle que la série $\sum f_n$ converge uniformément vers f sur [a,b].
- 4. Montrer que les fonctions réglées à valeurs positives sur [a, b] sont exactement les fonctions de la forme :

$$f = \sum_{n=0}^{+\infty} a_n \mathbf{1}_{I_n}$$

où les $(a_n)_{n\in\mathbb{N}}$ est une suite de réels positifs ou nuls, $(I_n)_{n\in\mathbb{N}}$ est une suite d'intervalles contenus dans [a,b] et la série considérée converge uniformément sur [a,b].

Exercice 4 Soit X un ensemble non vide. Quelle est la σ -algèbre engendrée par les singletons de X? (Distinguer les cas X dénombrable et X non dénombrable).

Exercice 5 Soient f, g deux fonctions continues de \mathbb{R} dans \mathbb{R} (\mathbb{R} étant muni de la tribu borélienne). Montrer que f est égale à g presque partout si, et seulement si, f=g.

Exercice 6 On se place sur $(X, \mathcal{P}(X))$ muni d'une mesure de Dirac $\mu = \delta_x$, où $x \in X$ est fixé. Calculer $\int_X f d\mu$ pour toute fonction $f: X \to \overline{\mathbb{R}^+}$.