Constraint Satisfaction

Chapter 6
Part 2

Slides courtesy of Andrea Thomaz

Improving Backtracking

- * What variable to assign next?
- * What order to try the domain values?
- * What inference can be made to detect failure early?
- * Can we take advantage of the problem structure?

Improving Backtracking

- * What variable to assign next?
- * What order to try the domain values?
- * What inference can be made to detect failure early?
- * Can we take advantage of the problem structure?

What var to do next?

- * Simplest: some fixed order, or random
- * Better idea: choose the most constrained variable as the next one to assign so it doesn't run out of options

Minimum Remaining Values (MRV)

Choose var with the fewest legal

Minimum Remaining Values (MRV)

Choose var with the fewest legal

Minimum Remaining Values (MRV)

Choose var with the fewest legal

Degree Heuristic

* Tie breaker for MRV

Choose var with most constraints on remaining variables

Improving Backtracking

- * What variable to assign next?
- * What order to try the domain values?
- * What inference can be made to detect failure early?
- * Can we take advantage of the problem structure?

Least Constraining Value

 Given a variable, choose value that rules out the least values in remaining vars

Allows 1 value for SA

Allows 0 values for SA

Improving Backtracking

- * Variable ordering -- fail first, to minimize nodes in the search tree
- * Value ordering -- fail last, we only need one solution so keep options open
- * Can we interleave search and inference to narrow our choices even further?

Improving Backtracking

- * What variable to assign next?
- * What order to try the domain values?
- * What inference can be made to detect failure early?
- * Can we take advantage of the problem structure?

- * Keep track of remaining legal vals for vars, terminate and backtrack when any is empty
- * MRV + Forward Checking...
 - * FC is efficient way to compute info that the MRV heuristic needs

- Can stop a branch even earlier by propagating constraints and values
- * After deleting neighbors run constraints

NT and SA cannot both be blue!

- Use the constraints to limit the domain values of your variables
- * Any time you set a variable, propagate that decision to the domains of all your other variables

Simplest form of propagation makes each arc consistent

 $X \to Y$ is consistent iff for **every** value x of X there is **some** allowed y

Simplest form of propagation makes each arc consistent

 $X \rightarrow Y$ is consistent iff for **every** value x of X there is **some** allowed y

Simplest form of propagation makes each arc consistent

 $X \to Y$ is consistent iff for **every** value x of X there is **some** allowed y

Simplest form of propagation makes each arc consistent

 $X \to Y$ is consistent iff for **every** value x of X there is **some** allowed y

If X loses a value, neighbors of X need to be rechecked

Simplest form of propagation makes each arc consistent

 $X \to Y$ is consistent iff for **every** value x of X there is **some** allowed y

(wa)

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_j) \leftarrow \text{Remove-First}(queue)
      if Remove-Inconsistent-Values(X_i, X_j) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_i) returns true iff succeeds
   removed \leftarrow false
   for each x in DOMAIN[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_i
         then delete x from Domain[X_i]; removed \leftarrow true
   return removed
```

 $O(n^2d^3)$, can be reduced to $O(n^2d^2)$ (but detecting all is NP-hard)

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

```
Domain: {1,2,3,4,5,6,7,8,9}

Propagate Box constraint
{1,2,3,4,5 7,8,9}

Propagate Row constraint
{ 2,3 7,8 }

Propagate Col constraint
```

{ 2,3 7 }

For Sodoku, you just propagate constraints, setting values as their domains have only one option

Improving Backtracking

- * What variable to assign next?
- * What order to try the domain values?
- * What inference can be made to detect failure early?
- Can we take advantage of the problem structure?

Problem Structure

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n\,d^2)$ time

Compare to general CSPs, where worst-case time is $O(d^n)$

Solving Tree CPSs

1. Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

- 2. For j from n down to 2, apply REMOVEINCONSISTENT $(Parent(X_j), X_j)$
- 3. For j from 1 to n, assign X_j consistently with $Parent(X_j)$

Wow, trees are easy! Let's make everything a tree...

Nearly Trees

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size $c \Rightarrow$ runtime $O(d^c \cdot (n-c)d^2)$, very fast for small c

Summary

- CSP are special problem representing states=variables, goals=constraints
- * Backtracking = DFS assign 1 var/node
- Variable ordering and Value selection heuristics help significantly
- Constraint propagation prevents assignments that lead to later failure
- Problem structure helps, Tree CSPs can be solved in linear time.