Principles of Programming Languages Syntax Analysis

Quan Thanh Tho, Ph.D.

CSE – HCMUT

qttho@hcmut.edu.vn

Outline

- Grammar
 - Context-free grammar
 - Derivation and Derivation Tree
- Grammar for Arithmetic Expression
 - Operation precedence and associativity
- Syntax Analysis
- Ambiguity in Grammar
- Parser Construction

The Big Picture Again

Syntax and Grammar

- Syntax (programming language sense):
 - Define structure of a program
 - Not reflect the meaning (semantic) of the program
- Grammar:
 - Rule-based formalism to specify a language syntax

Context-Free Grammar (CFG)

- A kind of grammar
- Not as complex as context-sensitive and phase-structure grammar
- More powerful than regular grammar

Formal Definition of CFG

- $G = (V_N, V_T, S, P)$
- V_N: finite set of nonterminal symbols

 V_T : finite set of tokens $(V_T \cap V_N = \emptyset)$

S∈V_N: start symbol

P: finite set of rules (or productions) of BNF (Backus – Naur Form) form $A \rightarrow (a)^*$ where $A \in V_N$, $a \in (V_T \cup V_N)$

- $G = (\{exp,op\},\{+,-,*,/,id\},exp)$
- $\exp \rightarrow \exp \exp \exp$
- $\exp \rightarrow id$
- op $\rightarrow + |-|^*|/$

Derivation

• $\alpha = uXv$ derives $\beta = u\gamma v$ if X-> γ is a production Notation: $\alpha \Rightarrow \beta$ (directly derive) $\alpha \Rightarrow^* \beta$ $(\alpha \Rightarrow ... \Rightarrow \beta \mid \alpha = \beta)$ $\alpha \Rightarrow^+ \beta$

Derivations: $S \Rightarrow^+ \alpha$ where α consists of tokens only.

Sentential form: $S \Rightarrow^+ \alpha \Leftrightarrow \alpha$ is a sentential form

Sentence: $S \Rightarrow^* \alpha$ is a derivation $\Leftrightarrow \alpha$ is a sentence

Language: set of all sentences possibly derived

- exp ⇒ exp op exp ⇒ exp op id ⇒ id op id
 ⇒ id + id
- exp ⇒ exp op exp ⇒ id op exp ⇒ id + exp
 ⇒ id + id
- exp ⇒ exp op exp ⇒ exp op exp op exp ⇒
 id op exp op exp ⇒ id + exp op exp ⇒ id +
 exp * exp ⇒ id + id * exp ⇒ id + id * id

- exp ⇒ exp op exp ⇒ id op exp ⇒ id + exp
 ⇒ id + id
- exp ⇒ exp op exp ⇒ exp op id ⇒ exp + id
 ⇒ id + id

Derivations as Trees

- Internally, in the parser, derivations are implemented as trees
- A convenient and natural way to represent a sequence of derivations is a syntactic tree or parse tree
- Example:

exp

exp

• $\exp \Rightarrow \exp \exp \exp$

 $\exp \Rightarrow \exp \operatorname{op} \exp \Rightarrow \operatorname{id} \operatorname{op} \exp$

• $\exp \Rightarrow \exp \exp \Rightarrow id \circ \exp \Rightarrow id + \exp \Rightarrow id \circ id \circ \exp \Rightarrow id$

• $\exp \Rightarrow \exp \exp \Rightarrow id \circ \exp \Rightarrow id + \exp \Rightarrow id \circ id \circ \exp \Rightarrow id$

Classic Expression Grammar

exp → exp + term | exp – term | term term → term * factor | term /factor | factor factor → (exp) | **ID** | **INT**

why is this classic expression grammar better than the previously used one?

Operator Associativity

Operator Associativity

Operator Associativity

Precedence and Associativity

 When properly written, a grammar can enforce operator precedence and associativity as desired

Hands-on Excersice

- Rewrite the grammar to fulfill the following requirements:
 - operator "*" takes lower precedence than "+"
 - operator "-" is right-associativity

Syntactic Analysis

- Lexical Analysis was about ensuring that we extract a set of valid words (i.e., tokens/lexemes) from the source code
- But nothing says that the words make a coherent sentence (i.e., program)

Syntactic Analysis

Example:

- "for while i == == == 12 + for (abcd)"
- Lexer will produce a stream of tokens:
 <TOKEN_FOR> <TOKEN_WHILE> <TOKEN_IDENT, "i"></token_TOKEN_COMPARE> <TOKEN_COMPARE> <TOKEN_COMPARE> <TOKEN_NUMBER,"12"> <TOKEN_OP, "+"> <TOKEN_FOR> <TOKEN_OPAREN> <TOKEN_ID, "abcd"> <TOKEN_CPAREN>
- But clearly we do not have a valid program
- This program is lexically correct, but syntactically incorrect

A Grammar for Expressions

Expr → Expr Op Expr

Expr → Number | Identifier

Identifier → Letter | Letter Identifier

Letter → a-z

Op → "+" | "-" | "*" | "/"

Number → Digit Number | Digit

Digit $\rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

What is Parsing?

- What we just saw is the process of, starting with the start symbol and, through a sequence of rule derivation obtain a string of terminal symbols
 - We could generate all correct programs (infinite set though)
- Parsing: the other way around
 - Give a string of non-terminals, the process of discovering a sequence of rule derivations that produce this particular string

What is parsing

- When we say we can't parse a string, we mean that we can't find any legal way in which the string can be obtained from the start symbol through derivations
- What we want to build is a parser: a program that takes in a string of tokens (terminal symbols) and discovers a derivation sequence, thus validating that the input is a syntactically correct program

Ambiguity

- We call a grammar ambiguous if a string of terminal symbols can be reached by two different derivation sequences
- In other terms, a string can have more than one parse tree
- It turns out that our expression grammar is ambiguous!
- Let's show that string 3*5+8 has two parse trees

Ambiguity

"left parse-tree"

"right parse-tree"

Problems with Ambiguity

- The problem is that the syntax impacts meaning (for the later stages of the compiler)
- For our example string, we'd like to see the left tree because we most likely want * to have a higher precedence than +
- We don't like ambiguity because it makes the parsers difficult to design because we don't know which parse tree will be discovered when there are multiple possibilities
- So we often want to disambiguate grammars

Problems with Ambiguity

- It turns out that it is possible to modify grammars to make them non-ambiguous
 - by adding non-terminals
 - by adding/rewriting production rules
- In the case of our expression grammar, we can rewrite the grammar to remove ambiguity and to ensure that parse trees match our notion of operator precedence
 - We get two benefits for the price of one
 - Would work for many operators and many precedence relations

Non-Ambiguous Grammar

Expr → Term | Expr + Term | Expr - Term

Term → Term * Factor

Non-Ambiguous Grammar

Expr → Term | Expr + Term | Expr - Term

Term → Term * Factor

Consider the CFG:

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L, S \mid S$

Draw parse trees for:

```
(a, a)
(a, ((a, a), (a, a)))
```

• Consider the CFG:

$$S \rightarrow (L) \mid$$

$$L \rightarrow L, S \mid S$$

Draw parse trees for:

Consider the CFG:

a

$$S \rightarrow (L)$$

$$L \rightarrow L, S \mid S$$

Draw parse trees for:

- Write a CFG grammar for the language of well-formed parenthesized expressions
 - (), (()), ()(), (()()), etc.: OK
 - ()),)(, ((()), (((, etc.: not OK

- Write a CFG grammar for the language of well-formed parenthesized expressions
 - (), (()), ()(), (()()), etc.: OK
 - ()),)(, ((()), (((, etc.: not OK

$$P \rightarrow () \mid PP \mid (P)$$

Is the following grammar ambiguous?

 $A \rightarrow A$ "and" $A \mid "not" A \mid "0" \mid "1"$

Is the following grammar ambiguous?

Another Example Grammar

```
ForStatement → for "(" StmtCommaList ";"
ExprCommaList ";" StmtCommaList ")" "{"
StmtSemicList "}"
StmtCommaList → ε | Stmt | Stmt "," StmtCommaList
ExprCommaList → ε | Expr | Expr "," ExprCommaList
StmtSemicList → ε | Stmt | Stmt ";" StmtSemicList
Expr → . . . .
Stmt → . . .
```

Full Language Grammar Sketch

```
Program → VarDeclList FuncDeclList
VarDeclList → ε | VarDecl | VarDecl VarDeclList
VarDecl → Type IdentCommaList ";"
IdentCommaList → Ident | Ident "," IdentCommaList
Type → int | char | float
FuncDeclList → ε | FuncDecl | FuncDecl FuncDeclList
FuncDecl → Type Ident "(" ArgList ")" "{" VarDeclList StmtList "}"
StmtList \rightarrow \varepsilon | Stmt | Stmt StmtList
Stmt → Ident "=" Expr ";" | ForStatement | ...
Expr → ...
ldent → ...
```

Real-world CFGs

Some sample grammars found on the Web

- LISP: 7 rules

PROLOG: 19 rules

Java: 30 rules

- C: 60 rules

- Ada: 280 rules

So What Now?

- We want to write a compiler for a given language
- We come up with a definition of the tokens embodied in regular expressions
- We build a lexer (see previous lecture)
- We come up with a definition of the syntax embodied in a context-free grammar
 - not ambiguous
 - enforces relevant operator precedences and associativity
- Question: How do we build a parser?

How do we build a Parser?

- This question could keep us busy for 1/2 semester in a full-fledge compiler course
- So we're just going to see a very high-level view of parsing
 - If you go to graduate school you'll most likely have an indepth compiler course with all the details

How do we build a Parser?

- There are two approaches for parsing:
 - Top-Down: Start with the start symbol and try to expand it using derivation rules until you get the input source code
 - Bottom-Up: Start with the input source code, consume symbols, and infer which rules could be used
- Note: this does not work for all CFGs
 - CFGs much have some properties to be parsable with our beloved parsing algorithms

Writing Parsers?

 Nowadays one doesn't really write parsers from scratch, but one uses a parser generator (Yacc is a famous one)

