Important tips:

moment generating function (m.g.f.)

$$M_X(t) = E(e^{tX}), \quad t \in R$$

The m.g.f. DOES NOT EXIST

for all random variable X.

$$E(X) = \frac{d^r}{dt^r} (M_X(t)) \quad at \ t = 0$$

$$Mean = E(X)$$

Variance = $E(X^2) - [E(X)]^2$

Properties:

$$M_{cX}(t) = M_X(ct)$$

1)
$$M_{cX}(t) = M_X(ct)$$

2) $M_{X_1+X_2}(t) = M_{X_1}(t)M_{X_2}(t)$
for independent r.v.'s

3) If
$$Y = \frac{X-a}{h}$$
 then
$$M_Y(t) = e^{-\frac{at}{h}} M_X\left(\frac{t}{h}\right)$$

4)
$$M_X(t) = M_Y(t) \Rightarrow$$
 $X \& Y \text{ are identically distributed.}$

If $X \sim B(x; n, p)$ with m.g.f. given as $(0.2 + 0.8e^t)^7$, then $\mu_2' =$

35.41

40.33

32.48

29.74

For a random variable X, with m.g.f. $M_X(t) = (1 - 2t)^{-3}$, the value of $E(X^3)$ is a)120 b)240 c)360 d) 480

Ans d

For a random variable X, with m.g.f $M_X(t) = e^{t^2 - 3t}$ and $E(X^2) = 11$, the value of Variance of X is

Ans c

For a random variable X, m.g.f $M_X(t) = \frac{1}{(1-3t)^2}$ and Y = 3X, then $M_Y(t) =$

(A)
$$\frac{3}{(1-3t)^2}$$

(A)
$$\frac{3}{(1-3t)^2}$$
 (B) $\frac{9}{(1-3t)^2}$ (C) $\frac{1}{(3-t)^2}$ (D) $\frac{1}{(1-9t)^2}$

$$(C)\frac{1}{(3-t)^2}$$

(D)
$$\frac{1}{(1-9t)^2}$$

Ans d

For a random variable X, m.g.f $M_X(t) = \frac{e^t}{(1-t)}$ and Y = X + 3, then $M_Y(t) =$

$$(A) \frac{3e^t}{(1-t)}$$

$$(B) \frac{e^{4t}}{(1-t)}$$

(A)
$$\frac{3e^t}{(1-t)}$$
 (B) $\frac{e^{4t}}{(1-t)}$ (C) $\frac{e^t+3-3t}{(1-t)}$ (D) $\frac{e^t}{(1-t)}$

(D)
$$\frac{e^t}{(1-t)^t}$$

If $X \sim P(x; \lambda)$ with m.g.f. given as $e^{5(e^t - 1)}$, then

[1]

a) 16 b) 50 c) 30 d) 5

Ans d

The moment generating function of a random variable X is given by

$$M_X(t) = \frac{1}{6} + \frac{1}{3}e^t + \frac{1}{3}e^{2t} + \frac{1}{6}e^{3t}, -\infty < t < \infty.$$

Then $P(X \le 2)$ equals

a) 1/3 b) 1/6 c) ½ d) 5/6

Ans d

$$M_{x}(t) - \sum e^{tx} \cdot p(x)$$

$$\frac{x}{p(x)} \frac{1}{k} \frac{2}{k_{3}} \frac{3}{k_{6}}$$

For a random variable X, m.g. $f M_X(t) = \frac{1}{(1-3t)^2}$ and Y = 3X, then $M_Y(t) =$

$$(A) \frac{3}{(1-3t)^2}$$

(B)
$$\frac{9}{(1-3t)^3}$$

$$(C)\frac{1}{(3-t)^2}$$

(B)
$$\frac{9}{(1-3t)^2}$$
 (C) $\frac{1}{(3-t)^2}$ (D) $\frac{1}{(1-9t)^2}$

Ans d

For a random variable X, m.g.f $M_X(t) = \frac{e^t}{(1-t)}$ and Y = X + 3, then $M_Y(t) =$

$$(A) \frac{3e^t}{(1-t)}$$

$$(B)\frac{e^{4t}}{(1-t)}$$

(A)
$$\frac{3e^t}{(1-t)}$$
 (B) $\frac{e^{4t}}{(1-t)}$ (C) $\frac{e^{t+3-3t}}{(1-t)}$ (D) $\frac{e^t}{(1-t)}$

(D)
$$\frac{e^t}{(1-t)}$$

Ans b

m.g.f. for If random variable X is $\longrightarrow M_{\underline{X}}(t) = \left(\frac{e^{t/2} + e^{-t/2}}{2}\right)^2, -\infty < t \quad \infty$

Then m.g.f. of Y = 2X is $(e^t + e^{-t})^2$

x→ t→at

Let Y = 2X + 3. If $M_X(t)$ and $M_Y(t)$ are the moment generating functions of

X and Y, respectively then $M_Y(t)$ is

a)
$$e^{-3t}M_X(2t)$$

b)
$$e^{3t}M_X(2t)$$

c)
$$e^{2t}M_X(3t)$$
 d) $e^{-2t}M_X(3t)$

d)
$$e^{-2t}M_X(3t)$$

Y= X-a

The m.g.f. of a random variable X is given by $M_X(t) = e^{3(e^t-1)}$. The value of P(X=1).

- a) 0.1494 b) 0.1532 c) 0.5671 d) none of these

Ans d

If the mgf of the negative binomial distribution is $\left(\frac{2e^t}{3-e^t}\right)^3$, then the variance is

a) 9/2 b) 9/4 c) 3/2 d) none

Ans b

If the mgf of the geometric distribution is $\frac{2e^t}{3-e^t}$, then the probability of 1st success in 4th trial is

a) 2/9 b) 1/81 c) 2/81 d) none

Ans c