In [1]:

```
# Importing necessary libraries

import numpy as np
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter
import matplotlib.ticker as ticker
import seaborn as sns
from sklearn import preprocessing
%matplotlib inline
```

In [2]:

```
# Importing Dataset

df = pd.read_csv("Data-Collisions.csv")
df.head()
```

G:\Python\Anaconda\lib\site-packages\IPython\core\interactiveshell.py:3058: DtypeWarning: Columns (33) have mixed types. Specify dtype option on import or set low_memory=False.

interactivity=interactivity, compiler=compiler, result=result)

Out[2]:

	SEVERITYCODE	X	Υ	OBJECTID	INCKEY	COLDETKEY	REPORTNO	ST/
0	2	-122.323148	47.703140	1	1307	1307	3502005	Ма
1	1	-122.347294	47.647172	2	52200	52200	2607959	Ма
2	1	-122.334540	47.607871	3	26700	26700	1482393	Ма
3	1	-122.334803	47.604803	4	1144	1144	3503937	Ма
4	2	-122.306426	47.545739	5	17700	17700	1807429	Ма
5 rows × 38 columns								
4								•

Data Preprocessing

In [3]:

Checking all columns to remove irrelevant ones
df.isnull().sum()

Out[3]:

SEVERITYCODE	0
Χ	5334
Υ	5334
OBJECTID	0
INCKEY	0
COLDETKEY	0
REPORTNO	0
STATUS	0
ADDRTYPE	1926
INTKEY	129603
LOCATION	2677
EXCEPTRSNCODE	109862
EXCEPTRSNDESC	189035
SEVERITYCODE.1	0
SEVERITYDESC	0
COLLISIONTYPE	4904
PERSONCOUNT	0
PEDCOUNT	0
PEDCYLCOUNT	0
VEHCOUNT	0
INCDATE	0
INCDTTM	0
JUNCTIONTYPE	6329
SDOT_COLCODE	0
SDOT_COLDESC	0
INATTENTIONIND	164868
UNDERINFL	4884
WEATHER	5081
ROADCOND	5012
LIGHTCOND	5170
PEDROWNOTGRNT	190006
SDOTCOLNUM	79737
SPEEDING	185340
ST_COLCODE	18
ST_COLDESC	4904
SEGLANEKEY	0
CROSSWALKKEY	0
HITPARKEDCAR	0
dtype: int64	

In [4]:

```
# Dropping non-required columns
df.drop(["OBJECTID","REPORTNO","STATUS","PEDROWNOTGRNT","SDOTCOLNUM","INATTENTIONIND"]

# Dropping all null values
df.dropna(axis = 0, inplace = True)

df.isnull().sum()
```

Out[4]:

SEVERITYCODE	0
X	0
Υ	0
INCKEY	0
COLDETKEY	0
ADDRTYPE	0
INTKEY	0
LOCATION	0
EXCEPTRSNCODE	0
EXCEPTRSNDESC	0
SEVERITYCODE.1	0
SEVERITYDESC	0
COLLISIONTYPE	0
PERSONCOUNT	0
PEDCOUNT	0
PEDCYLCOUNT	0
VEHCOUNT	0
INCDATE	0
INCDTTM	0
JUNCTIONTYPE	0
SDOT_COLCODE	0
SDOT_COLDESC	0
UNDERINFL	0
WEATHER	0
ROADCOND	0
LIGHTCOND	0
SPEEDING	0
ST_COLCODE	0
ST_COLDESC	0
SEGLANEKEY	0
CROSSWALKKEY	0
HITPARKEDCAR	0

dtype: int64

In [5]:

1 df.head()

Out[5]:

	SEVERITYCODE	X	Υ	INCKEY	COLDETKEY	ADDRTYPE	INTKEY	l
147780	2	-122.334204	47.573700	205778	205938	Intersection	32334.0	
150966	2	-122.290875	47.704785	211254	211494	Intersection	36855.0	
151135	1	-122.344651	47.701430	213455	213715	Intersection	37301.0	

3 rows × 32 columns

Data Visualization

In [6]:

```
1  a = df["SEVERITYCODE"].value_counts()
2  x = a.index
3  y = a.values
4  fig = px.bar(df["SEVERITYCODE"])
5  fig.show()
```



```
In [7]:
```

```
1  a = df["ADDRTYPE"]
2  xx = a.index
3  yy = a.values
4  fig = px.bar(a, x = xx, y = yy, color = xx)
5  fig.show()
```


In [8]:

```
1  a = df["SEVERITYDESC"]
2  x = a.index
3  y = a.values
4  fig = px.bar(df["SEVERITYDESC"])
5  fig.show()
```



```
In [9]:
```

```
1  a = df["COLLISIONTYPE"]
2  b = df["COLLISIONTYPE"]
3  xx = a.index
4  yy = a.values
5  fig = px.bar(b, x = xx, y = yy, color = xx)
6  fig.show()
```


In [10]:

```
1  a = df["PERSONCOUNT"]
2  xx = a.index
3  yy = a.values
4  fig = px.bar(a, x = xx, y = yy, color = xx)
5  fig.show()
```


In [11]:

```
1  a = df["WEATHER"]
2  xx = a.index
3  yy = a.values
4  fig = px.bar(a, x = xx, y = yy, color = xx)
5  fig.show()
```


In [12]:

```
1  a = df["ROADCOND"]
2  xx = a.index
3  yy = a.values
4  fig = px.bar(a, x = xx, y = yy, color = xx)
5  fig.show()
```


In [13]:

```
1  a = df["LIGHTCOND"]
2  xx = a.index
3  yy = a.values
4  fig = px.bar(a, x = xx, y = yy, color = xx)
5  fig.show()
```


Conclusion

Number of accidents with Severity 1 is greater than that with Severity 2. More accidents occur at Blocks compared to that at Intersections. Majorly, accidents caused property damage to injuries. In most cases, only 1 person was involved in accidents whie the maximum rose to 3. A very surprising thing noticed was accidents occured more when:

- 1. Weather was clear
- 2. Road was dry
- 3. During Daylight

==> I have not supported my deductions with numbers as it is pretty clear from the graphs. Moreover, since my dataset is a sample and not census, therefore evaluating them in terms of numbers wouldn't be correct.