Corespondența între propoziții, tipuri și categorii

Adrian Manea

supervizor: Conf. Dr. Denisa Diaconescu

SLA, anul 1, grupa 410

Subiectele de interes

Informatică teoretică: programare funcțională, programe scrise ca teorii și demonstrații, teoria de omotopie a tipurilor;

Subiectele de interes

Informatică teoretică: programare funcțională, programe scrise ca teorii și demonstrații, teoria de omotopie a tipurilor;

Logică: logica intuiționistă, interpretarea BHK, teoria intuiționistă a tipurilor (Per Martin-Löf);

Subiectele de interes

Informatică teoretică: programare funcțională, programe scrise ca teorii și demonstrații, teoria de omotopie a tipurilor;

Logică: logica intuiționistă, interpretarea BHK, teoria intuiționistă a tipurilor (Per Martin-Löf);

Categorii: CCC, ∞-grupoizi, algebre Heyting, fascicule, toposuri;

Subjectele de interes

Informatică teoretică: programare funcțională, programe scrise ca teorii și demonstrații, teoria de omotopie a tipurilor;

Logică: logica intuiționistă, interpretarea BHK, teoria intuiționistă a tipurilor (Per Martin-Löf);

Categorii: CCC, ∞-grupoizi, algebre Heyting, fascicule, toposuri;

Filosofie: structuralism (axioma univalenței, Voevodsky-Awodey), "spații sintetice" (Shulman), ierarhii (tipuri: trepte [Frege], funcții [Wittgenstein], limbaj [Carnap]);

Reguli de deducție în perechi (introducere-eliminare):

Reguli de deducție în perechi (introducere-eliminare):

$$\frac{A \quad B}{A \& B} \& I \qquad \frac{A \& B}{A} \& E1 \qquad \frac{A \& B}{B} \& E2;$$

Reguli de deducție în perechi (introducere-eliminare):

$$\frac{A \quad B}{A\&B} \& I \qquad \frac{A\&B}{A} \& E1 \qquad \frac{A\&B}{B} \& E2;$$

Reguli de rescriere (simplificare):

Reguli de rescriere (simplificare):

$$\frac{\stackrel{\vdots}{A} \stackrel{\vdots}{B}}{A \& B} \& I \Longrightarrow \stackrel{\vdots}{A}$$

$$\frac{A \& B}{A} \& E1$$

$$\begin{array}{ccc}
[A]^{\times} & & \vdots \\
\frac{B}{A \supset B} \supset I^{\times} & \vdots & \Longrightarrow A \\
\vdots & & \vdots & \vdots \\
B & & B
\end{array}$$

Reguli de tipizare:

introducere = tipizare/abstracţie;

- introducere = tipizare/abstracţie;
- eliminare = aplicare/proiecție.

- introducere = tipizare/abstracţie;
- eliminare = aplicare/proiecție.

$$\frac{M:A \quad N:B}{\langle M,N\rangle:A\times B}\times I \qquad \begin{array}{c} [x:A]^{\times} \\ \vdots \\ N:B \\ \overline{\lambda x.N:A\to B} \end{array} \to I^{\times}$$

- introducere = tipizare/abstracţie;
- eliminare = aplicare/proiecție.

$$\frac{M:A \quad N:B}{\langle M,N\rangle:A\times B}\times I \qquad \begin{array}{c} [x:A]^{x} \\ \vdots \\ N:B \\ \overline{\lambda x.N:A\to B} \end{array} \to I^{x}$$

$$\pi_1(L:A\times B):A, \qquad \pi_2(L:A\times B):B$$

- introducere = tipizare/abstracţie;
- eliminare = aplicare/proiecție.

$$\frac{M:A \quad N:B}{\langle M,N\rangle:A\times B}\times I \qquad \begin{array}{c} [x:A]^{x} \\ \vdots \\ N:B \\ \overline{\lambda x.N:A\to B} \end{array} \to I^{x}$$

$$\pi_1(L:A\times B):A, \qquad \pi_2(L:A\times B):B$$

$$\frac{L:A\to B \quad M:A}{LM:B}\to E.$$

Reguli de simplificare (evaluare):

Reguli de simplificare (evaluare):

$$\frac{M: A \quad N: B}{\langle M, N \rangle : A \times B} \times I \Longrightarrow H: A$$

$$\frac{\pi_1 \langle M, N \rangle : A \times B}{\pi_1 \langle M, N \rangle : A}$$

Reguli de simplificare (evaluare):

$$\frac{ \overset{\vdots}{M:A} \overset{\vdots}{N:B}}{\langle M,N\rangle:A\times B} \times I \Longrightarrow \overset{\vdots}{M:A} \times A$$

$$\frac{\pi_1\langle M,N\rangle:A\times B}{\langle M,N\rangle:A} \times E1$$

$$\begin{array}{ccc}
[x:A]^{\times} & & & & \vdots \\
\vdots & & & & \vdots \\
\frac{N:B}{\lambda x.N:A \to B} \to I^{\times} & \vdots & & & \vdots \\
\hline
(\lambda x.N)M:B & & & & & & \\
\end{array}$$

$$\xrightarrow{M:A} N[M/x]:B$$

O categorie ${\mathcal C}$ se numește ${\it cartezian}$ ${\it închisă}$ dacă are:

O categorie C se numește cartezian închisă dacă are:

• Un object distins $1 \in \mathcal{C}$ și o săgeată $!_{\mathcal{C}} : \mathcal{C} \to 1$ unică;

O categorie $\mathcal C$ se numește cartezian închisă dacă are:

- Un obiect distins $1 \in \mathcal{C}$ și o săgeată $!_{\mathcal{C}} : \mathcal{C} \to 1$ unică;
- Pentru orice A, B, un obiect $A \times B$ și săgeți $p_1 : A \times B \to A$ și $p_2 : A \times B \to B$ cu proprietate de universalitate;

O categorie $\mathcal C$ se numește cartezian închisă dacă are:

- Un object distins $1 \in \mathcal{C}$ și o săgeată $!_{\mathcal{C}} : \mathcal{C} \to 1$ unică;
- Pentru orice A, B, un obiect $A \times B$ și săgeți $p_1 : A \times B \rightarrow A$ și $p_2 : A \times B \rightarrow B$ cu proprietate de universalitate;
- Pentru orice $A \times B$, un obiect B^A (exponențială, $\lambda(-)$) și $\varepsilon: B^A \times A \to B$ (eval(-));

O categorie $\mathcal C$ se numește cartezian închisă dacă are:

- Un object distins $1 \in \mathcal{C}$ și o săgeată $!_{\mathcal{C}} : \mathcal{C} \to 1$ unică;
- Pentru orice A, B, un obiect $A \times B$ și săgeți $p_1 : A \times B \rightarrow A$ și $p_2 : A \times B \rightarrow B$ cu proprietate de universalitate;
- Pentru orice $A \times B$, un obiect B^A (exponentială, $\lambda(-)$) și $\varepsilon: B^A \times A \to B$ (eval(-));
- + diagrame comutative (compatibilitate și universalitate).

Tipuri de bază: $A, B, \ldots, A \times B, A \rightarrow B$ etc.;

Tipuri de bază: $A, B, \ldots, A \times B, A \rightarrow B$ etc.;

Tipuri de bază: $A, B, \ldots, A \times B, A \rightarrow B$ etc.;

Termeni:

• Variabile de tip A;

Tipuri de bază: $A, B, \ldots, A \times B, A \rightarrow B$ etc.;

- Variabile de tip A;
- Constante;

Tipuri de bază: $A, B, \ldots, A \times B, A \rightarrow B$ etc.;

- Variabile de tip A;
- Constante;
- Perechi $\langle a, b \rangle : A \times B \quad (a : A, b : B);$

Tipuri de bază: $A, B, \ldots, A \times B, A \rightarrow B$ etc.;

- Variabile de tip A;
- Constante;
- Perechi $\langle a, b \rangle : A \times B \quad (a : A, b : B);$
- Proiecții $fst(c): A, snd(c): B \quad (c: A \times B);$

Tipuri de bază: $A, B, \ldots, A \times B, A \rightarrow B$ etc.;

- Variabile de tip A;
- Constante:
- Perechi $\langle a, b \rangle : A \times B \quad (a : A, b : B);$
- Proiecții $fst(c): A, snd(c): B \quad (c: A \times B);$
- Evaluări $ca: B \quad (c: A \times B, a: A);$

Tipuri de bază: $A, B, \ldots, A \times B, A \rightarrow B$ etc.;

- Variabile de tip A;
- Constante:
- Perechi $\langle a, b \rangle : A \times B \quad (a : A, b : B);$
- Proiectii $fst(c): A, snd(c): B \quad (c: A \times B);$
- Evaluări $ca: B \quad (c: A \times B, a: A);$
- Abstracții $\lambda x.b : A \times B \quad (x : A, b : B);$

Ecuații:

Ecuatii:

• $fst(\langle a, b \rangle) = a$, $snd(\langle a, b \rangle) = b$;

Ecuații:

- $fst(\langle a, b \rangle) = a$, $snd(\langle a, b \rangle) = b$;
- $\langle \text{fst}(c), \text{snd}(c) \rangle = c \quad (c : A \times B);$

Ecuatii:

- $fst(\langle a, b \rangle) = a$, $snd(\langle a, b \rangle) = b$;
- $\langle \operatorname{fst}(c), \operatorname{snd}(c) \rangle = c \quad (c : A \times B);$
- $(\lambda x.b)a = b[a/x];$

Ecuatii:

- $fst(\langle a, b \rangle) = a$, $snd(\langle a, b \rangle) = b$;
- $\langle \operatorname{fst}(c), \operatorname{snd}(c) \rangle = c \quad (c : A \times B);$
- $(\lambda x.b)a = b[a/x];$
- $\lambda x.cx = c$, cu x liberă în c.

Ecuatii:

- $fst(\langle a, b \rangle) = a$, $snd(\langle a, b \rangle) = b$;
- $\langle \text{fst}(c), \text{snd}(c) \rangle = c \quad (c : A \times B);$
- $(\lambda x.b)a = b[a/x];$
- $\lambda x.cx = c$, cu x liberă în c.

 \rightsquigarrow categoria tipurilor λ -calculului:

Ecuații:

- $fst(\langle a, b \rangle) = a$, $snd(\langle a, b \rangle) = b$;
- $\langle \operatorname{fst}(c), \operatorname{snd}(c) \rangle = c \quad (c : A \times B);$
- $(\lambda x.b)a = b[a/x];$
- $\lambda x.cx = c$, cu x liberă în c.
- \rightsquigarrow categoria tipurilor λ -calculului:
 - Obiecte: tipurile simple (dintre tipurile de bază, A, B, C, ...);

Ecuatii:

- $fst(\langle a, b \rangle) = a$, $snd(\langle a, b \rangle) = b$;
- $\langle \operatorname{fst}(c), \operatorname{snd}(c) \rangle = c \quad (c : A \times B);$
- $(\lambda x.b)a = b[a/x];$
- $\lambda x.cx = c$, cu x liberă în c.
- \rightsquigarrow categoria tipurilor λ -calculului:
 - Obiecte: tipurile simple (dintre tipurile de bază, A, B, C, ...);
 - Săgeți: tipuri de forma $A \times B$;

Ecuații:

- $fst(\langle a, b \rangle) = a$, $snd(\langle a, b \rangle) = b$;
- $\langle \operatorname{fst}(c), \operatorname{snd}(c) \rangle = c \quad (c : A \times B);$
- $(\lambda x.b)a = b[a/x];$
- $\lambda x.cx = c$, cu x liberă în c.
- \rightsquigarrow categoria tipurilor λ -calculului:
 - Obiecte: tipurile simple (dintre tipurile de bază, A, B, C, ...);
 - Săgeți: tipuri de forma $A \times B$;
 - Identități $1_A = \lambda x.x \quad (x:A);$

Ecuații:

- $fst(\langle a, b \rangle) = a$, $snd(\langle a, b \rangle) = b$;
- $\langle \operatorname{fst}(c), \operatorname{snd}(c) \rangle = c \quad (c : A \times B);$
- $(\lambda x.b)a = b[a/x];$
- $\lambda x.cx = c$, cu x liberă în c.
- \rightsquigarrow categoria tipurilor λ -calculului:
 - Obiecte: tipurile simple (dintre tipurile de bază, A, B, C, ...);
 - Săgeți: tipuri de forma $A \times B$;
 - Identități $1_A = \lambda x.x \quad (x : A);$
 - Compunerea: $c \circ b = \lambda x.c(bx)$

Tipuri (ierarhii): introducere logică și filosofică (Frege, Russell, Ramsey, Wittgenstein, Carnap);

Tipuri (ierarhii): introducere logică și filosofică (Frege, Russell, Ramsey, Wittgenstein, Carnap);

Logica intuiționistă (Brouwer, Heyting) și teoria intuiționistă a tipurilor (Martin-Löf);

Tipuri (ierarhii): introducere logică și filosofică (Frege, Russell, Ramsey, Wittgenstein, Carnap);

Logica intuiționistă (Brouwer, Heyting) și teoria intuiționistă a tipurilor (Martin-Löf);

Tipuri de egalitate (ML) → teorii de omotopie (HoTT);

Tipuri (ierarhii): introducere logică și filosofică (Frege, Russell, Ramsey, Wittgenstein, Carnap);

Logica intuiționistă (Brouwer, Heyting) și teoria intuiționistă a tipurilor (Martin-Löf);

Tipuri de egalitate (ML) → teorii de omotopie (HoTT);

Axioma de **univalență** (Voevodsky, HoTT): "echivalența este echivalentă cu egalitatea"

Tipuri (ierarhii): introducere logică și filosofică (Frege, Russell, Ramsey, Wittgenstein, Carnap);

Logica intuiționistă (Brouwer, Heyting) și teoria intuiționistă a tipurilor (Martin-Löf);

Tipuri de egalitate (ML) → teorii de omotopie (HoTT);

Axioma de **univalență** (Voevodsky, HoTT): "echivalența este echivalentă cu egalitatea"

Toposuri via fascicule (Mac Lane) sau teorii semantice (Lawvere), categorii ca sisteme deductive (Lambek).

Bibliografie orientativă

- Awodey, S. Structuralism, Invariance, and Univalence (2014);
- Goldblatt, R. Topoi: The Categorial Analysis of Logic (1984);
- Lambek, J., Scott, P. J. Introduction to Higher Order Categorical Logic (1988);
- Lawvere, F. Functorial Semantics of Algebraic Theories (1963);
- Martin-Löf, P. Intuitionistic Type Theory (1980);
- Shulman, M. Homotopy Type Theory: The Logic of Space (2017);
- Sørensen, M. Urzyczyn, P. Lectures on the Curry-Howard isomorphism (2006);
- Wadler, P. Propositions as Types (2015).