CS 223 Computer Architecture & Organization

External Memory

J. K. Deka

Professor

Department of Computer Science & Engineering Indian Institute of Technology Guwahati, Assam.

Physical Types

- Semiconductor
 - RAM/Solid State Storage
- Magnetic
 - Disk & Tape
- Optical
 - CD & DVD

Types of External Memory

- Magnetic Disk
 - RAID
 - Removable
- Optical
 - CD-ROM
 - CD-Recordable (CD-R)
 - CD-R/W
 - DVD
- Magnetic Tape

Magnetic Disk

- Disk substrate coated with magnetisable material (iron oxide)
- Substrate used to be aluminium
- Now glass
 - Improved surface uniformity
 - Increases reliability
 - Reduction in surface defects
 - Reduced read/write errors
 - Better stiffness
 - Better shock/damage resistance

Read and Write Mechanisms

- Recording & retrieval via conductive coil called a head
- May be single read/write head or separate ones
- During read/write, head is stationary, platter rotates
- Write
 - Current through coil produces magnetic field
 - Pulses sent to head
 - Magnetic pattern recorded on surface below
- Read (traditional)
 - Magnetic field moving relative to coil produces current
 - Coil is the same for read and write
- Read (contemporary)
 - Separate read head, close to write head
 - Partially shielded magneto resistive (MR) sensor
 - Electrical resistance depends on direction of magnetic field
 - High frequency operation
 - Higher storage density and speed

Read and Write Mechanisms

- Mechanisms
 - Recording & retrieval via conductive coil called a head
 - May be single read/write head or separate ones
 - During read/write, head is stationary, platter rotates

Data Organization and Formatting

- Concentric rings or tracks
 - Gaps between tracks
 - Reduce gap to increase capacity
 - Same number of bits per track (variable packing density)
 - Constant angular velocity
- Tracks divided into sectors
- Minimum block size is one sector

Disk Data Layout

Disk Velocity

- Rotate disk at constant angular velocity (CAV)
 - Gives pie shaped sectors and concentric tracks
 - Individual tracks and sectors addressable
 - Move head to given track and wait for given sector
 - Waste of space on outer tracks
 - Lower data density
- Can use zones to increase capacity
 - Each zone has fixed bits per track
 - More complex circuitry

Disk Layout Methods Diagram

(a) Constant angular velocity

(b) Multiple zoned recording

Finding Sectors

- Must be able to identify start of track and sector
- Format disk
 - Marks tracks and sectors

Characteristics

- Fixed (rare) or movable head
- Removable or fixed
- Single or double (usually) sided
- Single or multiple platter
- Head mechanism
 - Contact (Floppy)
 - Fixed gap

Multiple Platters

Fixed/Movable Head Disk

- Fixed head
 - One read write head per track
 - Heads mounted on fixed ridged arm
- Movable head
 - One read write head per side
 - Mounted on a movable arm

Removable or Not

- Removable disk
 - Can be removed from drive and replaced with another disk
 - Provides unlimited storage capacity
 - Easy data transfer between systems
- Nonremovable disk
 - Permanently mounted in the drive

Multiple Platter

- One head per side
- Heads are joined and aligned
- Aligned tracks on each platter form cylinders
- Data is striped by cylinder
 - reduces head movement
 - Increases speed (transfer rate)

Multiple Platters

Tracks and Cylinders

Disk Addressing

- Need to know
 - Sector No.
 - Track No.
 - Surface No. (Head No.)
- Option I
 - track : surface : sector
- Option II
 - surface : track : sector

Speed

- Seek time
 - Moving head to correct track
- (Rotational) latency
 - Waiting for data to rotate under head
- Access time = Seek + Latency
- Transfer rate

Performance

- Access time
 - Time between presenting the address and getting the valid data
- Memory Cycle time
 - Time may be required for the memory to "recover" before next access
 - Cycle time is access + recovery
- Transfer Rate
 - Rate at which data can be moved

Time requirements

Transfer Time:

- The transfer time to or from the disk depends on the rotation speed of the disk as:
 - T = b/rN
 - Where
 - T = Transfer time
 - b = number of bytes to be transferred
 - N = number of bytes on a track
 - r = rotational speed, in revolution per second

Total Time = Ts + 1/2r + b/rN (Ts: Average seek time, 1/2r: Average Rotational Delay)

Time requirements

- Consider a disk pack: rotational speed = 15000 rpm, 512 bytes per sector with 500 sectors per track. Average seek time is 4 ms. Consider a file containing 2500 sectors, so file size is1.28 Mbytes
 - Average seek time: 4 ms
 - Average rotational delay = 1/(2*15000) = 2ms
 - Time to read one sector = 4/500 = 0.008 ms
 - Time to read one track = 0.008 * 500 = 4 ms
 - File type: Sequential and Random

Reference

Computer Organization and Architecture –
Designing for Performance
William Stallings, Seventh Edition

Chapter 6: External Memory

Page No.: 170 - 179