Московский	физико-технический	институт	(МФТИ-Физтех)

Лабораторная работа 2.2.6: Определение энергии активации по температурной зависимости вязкости жидкости

Иванов Артём, Б05-409

27 февраля 2025 г.

Цель работы: 1) измерение скорости падения шариков при разной температуре жидкости; 2) вычисление вязкости жидкости по закону Стокса и расчет энергии активации.

В работе используются: стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат; секундомер; горизонтальный компаратор; микроскоп; мелкие шарики (диаметром 1-2 мм).

1 Теоретическая часть

1.1 Энергия активации

Для того чтобы перейти в новое состояние, молекула жидкости должна преодолеть участки с большой потенциальной энергией, превышающей среднюю тепловую энергию молекул. Для этого тепловая энергия молекул должна — вследствие флуктуации — увеличиться на некоторую величину W, называемую энергией активации. Температурная зависимость вязкости жидкости при достаточно грубых предположениях можно опистаь формулой

$$\eta \sim Ae^{W/kT} \tag{1}$$

Из формулы (1) следует, что существует линейня зависимость между величинами $ln\eta$ и 1/T, и энергию активации можно найти по формуле

$$W = k \frac{d(\ln \eta)}{d(1/T)} \tag{2}$$

1.2 Измерение вязкости

По формуле Стокса, если шарик радиусом r и со скоростью v движется в среде с вязкостью η , и при этом не наблюдается турбулентных явлении, тормозящую силу можно найти по формуле (3)

$$F = 6\pi nrv \tag{3}$$

Для измерения вязкости жидкости рассмотрим свободное падение шарика в жидкости. При медленных скоростях на шарик действуют силы Архимеда и Стокса, выражения для которых мы знаем. Отсюда находим выражения для установившейся скорости шарика и вязкости жидкости

$$v = \frac{2}{9}gr^2\frac{\rho - \rho_{\mathcal{K}}}{\eta},\tag{4}$$

$$\eta = \frac{2}{9}gr^2 \frac{\rho - \rho_{\mathcal{K}}}{v_{\text{VCT}}} \tag{5}$$

Как видим, измерив установившуюся скорость шарика и параметры системы можно получить вязкость по формуле (5).

1.3 Экспериментальная установка

Для измерений используется стеклянный цилиндрический сосуд В, наполненный исследуемой жидкостью (глицерин). Диаметр сосуда ≈ 3 см, длина ≈ 25 см. На стенках сосуда нанесены две метки на некотором расстоянии друг от друга. Верхняя метка должна располагаться ниже уровня жидкости с таким расчетом, чтобы скорость шарика к моменту

прохождения этой метки успевала установиться. Измеряя расстояние между метками, b время падения определяют установившуюся скорость шарика v. Сам сосуд B помещен в рубашку D, омываемую водой из термостата. При работающем термостате температура воды в рубашке D, а потому и температура жидкости 12 равна температуре воды в термостате. Схема прибора (в разрезе) показана на рис. 1.

Рис. 1: Установка для определения коэффициента вязкости жидкости.

2 Ход работы

2.1 Подготовительные работы

Для начала отбираем примерно 25 шариков, и измеряем их диаметры. Диаметры измеряем в трех случайных направлениях и усредняем. Это делается по той причине, что некоторые шарики (в частности металлические) имеют неидеальную геометрию. Данные измерении приведены в таблице 1. В таблице шарики с номерами вида s# стеклянные, а вида m# металлические. Погрешности измерении диаметров $\sigma_d=0.02$ мм. Плотности шариков в эксперименте

$$\rho = 2.5 \text{ г/cm}^3$$

$$\rho = 7.8 \text{ г/cm}^3$$

Измеряем длины частей цилиндра установки (см. рис. ??)

$$l_1 = l_2 = (10.2 \pm 0.1) \text{ cm}$$

2.2 Измерение установившихся скоростей

Мы знаем путь, который проходит шарик от одной отметки цилиндра к другой. Осталось измерить время прохождения между этими отметками для получения скорости. В данной работе время падения определяется секундомером. Получаем следующие данные (см. таблицу 2). Видео снималось с частотой 30 кадров в секунду, следовательно единица времени в таблице 1/30. Как видим t_1 и t_2 всегда бизки. Отсюда можно предаоложить что на рассматриваемых участках скорость не меняется. В дальнейшем будем считать это предположение правдивым, которое в дальнейшем подтверждается малостью времени и пути релаксации.

Nº	d_1	d_2	d_3	$\langle d \rangle$	No॒	d_1	d_2	d_3	$\langle d \rangle$
	MM	MM	MM	MM		MM	MM	MM	MM
s1	2.10	2.04	2.10	2.08	m3	0.84	0.84	0.84	0.84
s2	2.08	2.06	2.06	2.07	m4	0.82	0.82	0.82	0.82
s3	2.10	2.10	2.10	2.10	m5	0.76	0.76	0.76	0.76
s4	2.06	2.08	2.08	2.07	m6	0.82	0.88	0.72	0.81
s5	2.06	2.08	2.06	2.07	m7	0.92	0.88	0.94	0.91
s6	2.08	2.08	2.08	2.08	m8	0.88	0.92	0.88	0.89
s7	2.04	2.06	2.08	2.06	m9	0.90	0.90	0.88	0.89
s8	2.04	2.10	2.08	2.07	m10	0.88	0.88	0.86	0.87
s9	2.10	2.08	2.06	2.08	m11	0.96	0.92	0.92	0.93
s10	2.08	2.08	2.08	2.08	m12	1.00	1.04	0.88	0.97
s11	2.10	2.10	2.10	2.10	m13	0.88	0.90	0.88	0.89
m1	0.66	0.70	0.70	0.69	m14	0.94	0.98	1.00	0.97
m2	0.68	0.66	0.68	0.67	m15	0.90	0.90	0.90	0.90

Таблица 1: Измеренные диаметры шариков.

Nº	$T,^{\circ}C$	t_1	t_2	Nº	$T,^{\circ}C$	t_1	t_2
s1	30.86	459	452	m3	30.84	505	507
s2	30.86	455	453	m4	30.85	523	523
s3	41.53	255	252	m5	41.51	320	313
s4	41.50	249	250	m6	41.53	300	302
s5	50.93	146	150	m7	51.09	132	135
s6	51.05	139	146	m8	51.05	135	143
s7	62.00	84	88	m10	61.53	83	81
s8	61.97	81	87	m11	61.16	79	78
s9	61.85	79	81	m12	61.16	71	71
s10	68.40	60	61	m14	67.81	60	59
s11	68.47	59	61	m15	67.73	58	60

Таблица 2: Измеренные времена падения шариков в кадрах.

Для каждого измерения считаем v, η, Re, τ, S где v это скорость шарика на участке $1+2, \tau$ это время релаксации (см. формулу 6), а $S=v\tau$ это путь релаксации.

$$\tau = \frac{2r^2\rho}{9\eta} \tag{6}$$

Плотность жидкости берем из графика 2

Данные всех расчетов приведены в таблице 3

Как видим, времена и пути релаксации очень малые величины, поэтому предположение что установившейся скорость достигается на участках 1 и 2 оправдано. Как видим, числа Рейнольдса в основном меньше 1. Можно предположить что формула Стокса работает, но окончательный вердикт вынесет график зависимости $ln(\eta)(1/T)$. Собственно построим график этой зависимости.

$\mathcal{N}_{\overline{\mathbf{o}}}$	T, °C	v, cm/c	$\Delta v, \text{cm/c}$	η , м $\Pi a \cdot c$	$\Delta \eta$, м $\Pi \mathbf{a} \cdot \mathbf{c}$	Re	τ , MC	$S, \mu_{\rm M}$
s1	30.86	0.67	0.007	441	21	0.02	0.70	0.05
s2	30.86	0.67	0.007	435	8	0.02	0.70	0.05
s3	41.53	1.20	0.012	251	3	0.06	1.20	0.1
s4	41.50	1.21	0.013	240	5	0.07	1.20	0.1
s5	50.93	2.05	0.023	143	3	0.18	2.10	0.4
s6	51.05	2.13	0.024	139	2	0.20	2.20	0.5
s7	62.00	3.52	0.045	83	3	0.55	3.50	1.2
s8	61.97	3.61	0.047	81	4	0.57	3.60	1.3
s9	61.85	3.79	0.05	78	2	0.63	3.80	1.4
s10	68.40	5.01	0.077	59	1	1.09	5.00	2.5
s11	68.47	5.05	0.078	60	1	1.10	5.10	2.6
m3	30.84	0.60	0.006	420	4	0.01	0.10	0.01
m4	30.85	0.58	0.006	414	4	0.01	0.10	0.01
m5	41.51	0.96	0.01	215	2	0.02	0.20	0.02
m6	41.53	1.01	0.01	233	66	0.02	0.20	0.02
m7	51.09	2.27	0.025	130	12	0.10	0.40	0.09
m8	51.05	2.18	0.024	130	10	0.09	0.40	0.09
m10	61.53	3.70	0.049	73	3	0.27	0.70	0.3
m11	61.16	3.86	0.052	80	6	0.28	0.70	0.3
m12	61.16	4.27	0.06	79	19	0.33	0.80	0.3
m14	67.81	5.09	0.079	66	6	0.46	1.00	0.5
m15	67.73	5.14	0.08	56	1	0.51	1.00	0.5

Таблица 3: Значения вязкостей в экспериментах

Рис. 2: Плотность глицерина при различных температурах.

Построив график (см. на рис. 3) и апроксимировав точки прямой линией, получаем следующий угловой коэффициент:

Рис. 3: График зависимости $\ln \eta(1/T)$

$$W/k = 5.53 \cdot 10^3 \ {\rm K}$$
 Погрешность будем вычислять как $\sigma_{W/k} = \sqrt{(\sigma_{W/k}^{\rm cnyq})^2 + (\sigma_{W/k}^{\rm cuct})^2}.$

$$\sigma_{W/k}^{\text{случ}} = \sqrt{\frac{1}{N-1} \left(\frac{\langle (\ln \eta)^2 \rangle}{\langle (1/T)^2 \rangle} - \left(\frac{W}{k} \right)^2 \right)} = 0.09 \cdot 10^3 \text{ K},$$

$$\sigma_{W/k}^{\text{cmct}} = \frac{W}{k} \sqrt{\varepsilon_{\ln \eta}^2 + \varepsilon_{1/T}^2} = 0.15 \cdot 10^3 \text{ K},$$

$$\frac{W}{k} = (5.53 \pm 0.17) \cdot 10^3 \text{ K}, \ \varepsilon_{W/k} = 3\%,$$

В итоге для энергии активации:

$$W = (76 \pm 2) \cdot 10^{-21}$$
 Дж, $\varepsilon_W = 3\%$

3 Обсуждение результатов

Проанализируем полученные результаты. На графике 3 видно, что значение вязкостей заметно отличаютя при низких температурах, при которых наш метод работает лучше всего. Различие можно объяснить различием состава глицерина и, возможно, неравномерностью нагрева в нашей установке, т.к. при низких температурах вязкость меняется резче, и это может серьезно повлиять на среднюю вязкость.