Treelet Dimension Reduction of ICD-9-CM Diagnosis Codes

Dominic DiSanto, Master's Thesis

Graduate School of Public Health, Department of Biostatistics Defended on December 7th, 2020

Introduction & Background

Objectives

• **Primary Objective**: Transform a large number of ICD-9-CM diagnosis codes into a sparse set of features using *treelet dimension reduction*, and apply this new feature space towards the *prediction of clinical outcomes* of in-hospital mortality, unplanned hospital re-admission, and hospital length of stay.

 Public Health Significance: The presented work leverages a large, publicly accessible database of critical care admissions and generates useful predictive models of clinical outcomes using only patient demographic and comorbidity diagnosis information.

Clinical Prediction Models

 Present useful, and ideally generalizable, methods to measure patient risk of adverse, clinical outcomes

 Current prediction models of mortality, length of stay, and unplanned readmission have limited performance and utility

- Useful models not only demonstrate high prediction accuracy but ideally require "feasible" data
 - Inexpensive
 - Non-invasive
 - Standardized

Modern Healthcare Data

 Digitization of clinical data (such as in an electronic healthcare record) has led to large volumes of patient-level data

- Large, publicily available data sets are growing source of clinical research data, including both:
 - Diverse patient populations
 - Robust data elements for each respective patient

Dimension Reduction

 Models that allow a number of data elements¹ to be represented by a smaller number of inputs

 Methods often use the correlation structure to represent "similar" covariates in a reduced number of inputs

 Specific methods may not only reduce dimensionality but retain only a subset of the original data elements

^{6/63}

Treelet

 A novel dimension reduction method proposed by Ann Lee, Boaz Nadler, and Larry Wasserman in 2008²

 Previously improved performance of regression and classification models compared to "raw" input data

 Has yet to be applied in high-dimensional patient-level comorbidity data or in fitting of clinical prediction models

Data

MIMIC-III

• A publicily available³ database of critical care admissions

 Prospective cohort study of Beth Israel Deaconess Medical Center critical care admissions from 2001 to 2012

· Contains diagnosis, lab, and demographic information from 60,000 admissions in over 45,000 patients

³: MIMIC-III, a freely accessible critical care database. Johnson AEW, Pollard TJ, Shen L, Lehman L, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, and Mark RG. Scientific Data (2016). DOI: 10.1038/sdata.2016.35. Available from: http://www.nature.com/articles/sdata201635

ICD-9-CM Diagnosis Codes

· International Classification of Disease, 9th Version

· Coding system of disease and injury diagnosis used in hospital billing

Over 17,000 unique codes describing various patient diagnoses

. The presented analysis included only ICD-9-CM codes with $\geq 1\%$ prevalence in our full, analytic cohort (p=178)

Outcomes

In-hospital mortality

- Unplanned hospital re-admission
 - Captured within year of hospital discharge
 - Analysis excluded patients who died post-discharge with no hospital re-admission

- Total hospital length of stay
 - Measured in days

Covariates

 Primary focus on ICD-9-CM diagnosis codes (following treelet dimension reduction)

- Models controlled for patient demographic variables
 - Age
 - Sex
 - Genotypical sex of patient (Male, Female)
 - Insurance
 - Categorized as Medicare, Medicaid, Private Insurance, or Self-Pay

Analytic Cohort

- Final analysis of mortality and hospital length of stay included 38,554 patients
 - Mortality rate of 14.49% (n=5,586)
 - Median length of stay was 7 days (range of 1-295 days)

- Hospital readmission analysis included 28,894
 - Excluding 9,660 patients
 - 2,153 (7.45%) of patients experienced unplanned re-admission

Statistical Analyses

Overview

Applied treelet dimension reduction to ICD-9-CM diagnosis codes

- ' Used cross-validation of GLMs to identify values of treelet parameters K-dimensionality and $L \vert K$ -basis matrix
 - Logistic regression for in-hospital mortality, hospital-readmission
 - Negative binomial regression for hospital length of stay

• Final model fit measures were assessed on our hold-out test data-set (20% of each analytic cohort)

Treelet

- Using the correlation matrix of our input data, performs a series of rotations⁴, grouping together highly correlated variables
- · For p input predictors, treelet constructs p-1 basis matrices $\left(or\ B_{L_1}, B_{L_2}, \ldots B_{L_{p-1}}\right)$
- $^{\cdot}$ The final representation requires identifying a value for the the K parameter (for K retained inputs in the Lth basis matrix)
 - For a given K, there is a deterministic cut-off $(L^*|K)$ and respective basis $(B_{L^*|K})$

^{16/63}

Cross-Validation

- Analytic cohorts first split into training (80%) and test (20%) data sets
- · Used 5-fold cross-validation within the training data set to select K and $L \mid K$ parameters for treelet models
 - Logistic regression classification accuracy was assessed by Brier's Score $\frac{1}{N}\sum_{i=1}^{N}\left(\hat{p}_i-y_i\right)^2$
 - Negative binomial fit by root-mean-square error $\sqrt{\frac{1}{N}\sum_{i=1}^{N}\left(\hat{y}_i-y_i\right)^2}$
- Final model performance was assessed on a holdout test data set that was not used in cross-validation or model fitting

Overview (revisited)

Applied treelet dimension reduction to ICD-9-CM diagnosis codes

· Used cross-validation of GLMs to identify K-dimensionality and $L \mid K$ basis matrix parameters for each outcome

- Final model fit measures were assessed on our hold-out test data-set (20% of each analytic cohort)
 - Compare model fit of treelet features to lasso, PCA, Charlson & Elixhauser indices, and original ICD data

Results

In-Hospital Mortality

Hospital Re-Admission

Length of Stay

Mortality (Cross-Validation)

Mortality (Covariate Importance)

Mortality (ROC Curves)

Mortality (Predicted Probabilities)

Mortality (Summary)

- · Treelet reduction (and cross-validation) did *not* yield a sparse feature space
 - K=123 dimensions retained loadings from all 178 diagnosis codes

Model	Test AUC
Including All Treelet Features	0.858
Including 5 Most-Significant Treelet Features	0.830
Excluding Treelet Features	0.666

In-Hospital Mortality

Hospital Re-Admission

Length of Stay

Readmission (Cross-Validation)

Readmission (Covariate Importance)

Readmission (ROC Curves)

Readmission (Predicted Probabilities)

Readmission (Summary)

- Treelet improved performance but still presented only limited discrimination of hospital re-admission
 - While cross-validation reduced our 178 diagnosis codes covariates into K=30 variables, we again retained loadings from all codes

Model	Test AUC
Including All Treelet Features	0.661
Including 5 Most-Significant Treelet Features	0.658
Excluding Treelet Features	0.574

In-Hospital Mortality

Hospital Re-admission

Length of Stay

Length of Stay (Cross-Validation)

Length of Stay (Covariate Importance)

Length of Stay (Performance by Included Features)

Length of Stay (Predicted Values)

Length of Stay (Summary)

- · Treelet identified a reduced dimensionality and a sparse feature set
 - The retained K=46 variables from our treelet model including loadings from 107 of our 178 ICD-9-CM diagnosis codes

Model	Test RMSE
Including All Treelet Features	10.29
Including 5 Most-Significant Treelet Features	10.35
Excluding Treelet Features	11.09

Model Comparisons

Comparative Model Results

Model	Mortality*	Readmission*	Length of Stay**
All Treelet Features	0.858	0.661	10.29
Top 5 Treelet Features	0.830	0.658	10.35
Lasso	0.868	0.669	9.61
PCA	0.860	0.667	10.24
All ICD Codes	0.867	0.667	11.75
Charlson	0.632	0.502	13.48
Elixhauser	0.615	0.513	13.49

^{*} AUC; ** RMSE

Implications & Conclusions

Objectives (Revisited)

• **Primary Objective**: Transform a large number of ICD-9-CM diagnosis codes into a sparse set of features using *treelet dimension reduction*, and apply this new feature space towards the *prediction of clinical outcomes* of in-hospital mortality, unplanned hospital re-admission, and hospital length of stay.

 Public Health Significance: The presented work leverages a large, publicly accessible database of critical care admissions and generates useful predictive models of clinical outcomes using only patient demographic and comorbidity diagnosis information.

Summary

 ICD-9-CM diagnosis codes improve predictive performance of in-hospital mortality, but remain limited in their ability to predict hospital length of stay and re-admission

 Additional information (e.g. patient discharge disposition, social determinants of health, patient environment data) may be necessary to adequately predict post-discharge outcomes

 Treelet dimension reduction reduces the number of retained covariates in our models but does not outperform PCA, LASSO

References

- Awad, A., Bader–El–Den, M., & McNicholas, J. (2017). Patient length of stay and mortality prediction: A survey. Health Services Management Research, 30(2), 105–120. https://doi.org/10.1177/0951484817696212
- Lee, A. B., Nadler, B., & Wasserman, L. (2008). Treelets—An adaptive multi-scale basis for sparse unordered data. The Annals of Applied Statistics, 2(2), 435–471. https://doi.org/10.1214/07-AOAS137
- Harrell, F. E. (2001). Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis (Updated September 4, 2020). Springer Science & Business Media.
- Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Second Edition). Springer.
- MIMIC-III, a freely accessible critical care database. Johnson AEW, Pollard TJ, Shen L, Lehman L, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, and Mark RG. Scientific Data (2016). DOI: 10.1038/sdata.2016.35. Available from: http://www.nature.com/articles/sdata201635

Supplemental Slides

Probability Curves

Mortality

Retaining only demographic predictors

Mortality

Retaining demographic & treelet predictors

Readmission

Retaining only demographic predictors

Readmission

Retaining demographic & treelet predictors

Length of Stay

Retaining only demographic predictors

Length of Stay

Retaining demographic & treelet predictors

Retained Diagnosis Codes

Retained Diagnosis Codes

Outcome	All Treelet Features	Top 5 Treelet Features	LASSO
Mortality	178	38	170
Hospital Re-admission	178	178	48
Length of Stay	107	29	178

Notable Treelet Features

Mortality

ICD-9-CM Code	Treelet Feature	Loading	Description
584.9	Cluster 1	0.555	Acute kidney failure NOS
518.81	Cluster 1	0.507	Acute respiratry failure
995.92	Cluster 1	0.347	Severe sepsis
560.1	Cluster 12	0.837	Paralytic ileus
997.4	Cluster 12	0.546	Digestive compliations NOS
427.5	Cluster 15	0.946	Cardiac arrest
427.41	Cluster 15	0.324	Ventricular fibrillation
198.5	Cluster 2	0.556	Secondary malig neo bone
197.7	Cluster 2	0.539	Second malig neo liver
197.0	Cluster 2	0.475	Secondary malig neo lung
785.51	Cluster 38	1.000	Cardiogenic shock

Readmission

ICD-9-CM Code	Treelet Feature	Loading	Description
584.9	Cluster 1	0.604	Acute kidney failure NOS
518.81	Cluster 1	0.418	Acute respiratry failure
599.0	Cluster 1	0.252	Urin tract infection NOS
705.4	Cluster 2	0.491	Chrnc hpt C wo hpat coma
571.2	Cluster 2	0.484	Alcohol cirrhosis liver
572.3	Cluster 2	0.413	Portal hypertension
427.1	Cluster 22	0.889	Parox ventric tachycard
425.4	Cluster 22	0.406	Prim cardiomyopathy NEC
410.11	Cluster 22	0.116	AMI anterior wall, init
357.2	Cluster 4	0.573	Neuropathy in diabetes
403.91	Cluster 4	0.494	Hyp kid NOS w cr kid V
250.60	Cluster 4	0.469	DMII neuro nt st uncntrl

Length of Stay

ICD-9-CM Code	Treelet Feature	Loading Description	
584.9	Cluster 1	0.555 Acute kidney fo	ailure NOS
518.81	Cluster 1	0.507 Acute respirate	ry failure
995.92	Cluster 1	0.347 Severe sepsis	
198.5	Cluster 2	0.556 Secondary ma	lig neo bone
197.7	Cluster 2	0.539 Second malig	neo liver
197.0	Cluster 2	0.475 Secondary ma	lig neo lung
263.9	Cluster 22	1.000 Protein-cal ma	lnutr NOS
585.9	Cluster 4	0.708 Chronic kidney	dis NOS
403.90	Cluster 4	0.703 Hy kid NOS w	cr kid I-IV
585.3	Cluster 4	0.067 Chr kidney dis	stage III

Additional Comparative Models (Treelet & ICD Features)

Comparative Models (Treelet & ICD Only)

Outcome	Treelet (All Features)	ICD Codes (All Features)	Treelet (5 Features)	ICD Codes (Top 5 Features)
Mortality	0.858	0.867	0.830	0.851
Readmission	0.661	0.667	0.658	0.667
Length of Stay	10.29	11.75	10.35	11.22

Patient Demographic Model Results

Mortality (Model Results)

Predictor	β	95% Confidence Interval	P-Value
Intercept Term	-5.021	[-5.371, -4.671]	<0.001
Age	0.038	[0.035, 0.042]	<0.001
Sex (Male)	-0.118	[-0.198, -0.037]	0.004
Insurance			
Medicaid	0.178	[-0.140, 0.497]	0.273
Medicare	0.328	[0.029, 0.627]	0.032
Private Insurance	0.103	[-0.191, 0.397]	0.491
Self-Pay	1.174	[0.762, 1.586]	<0.001

Test Model Performance: Brier Score = 0.0917; AUC = 0.858

Readmission (Final Model Results)

Predictor	β	95% Confidence Interval	P-Value
Intercept Term	-3.137	[-3.490, 2.783]	<0.001
Age	0.002	[-0.002, 0.007]	0.455
Sex (Male)	0.039	[-0.142, 0.064]	0.281
Insurance			
Medicaid	0.484	[0.162, 0.806]	0.003
Medicare	0.310	[0.005, 0.625]	0.053
Private Insurance	0.033	[-0.336, 0.271]	0.833
Self-Pay	-0.608	[-1.278, 0.061]	0.075

Test Model Performance: Brier Score = 0.0681; AUC = 0.661

Length of Stay (Final Model Results)

Predictor	β	95% Confidence Interval	P-Value
Intercept Term	2.001	[1.942, 2.061]	<0.001
Age	-0.002	[-0.003, 0.002]	<0.001
Sex (Male)	0.053	[0.035, 0.071]	<0.001
Insurance			
Medicaid	0.114	[0.058, 0.171]	<0.001
Medicare	0.048	[-0.006, 0.101]	0.079
Private Insurance	0.039	[-0.12, 0.090]	0.133
Self-Pay	-0.318	[-0.407, -0.229]	<0.001

Test Model Performance: RMSE = 10.29