Phase 2 - Machine Learning with XGBoost

• More information - Phase 0 (Business Requirement) and Phase 1 (EDA using Python)

Info: This notebook will be implemented using Python and will provide the same information of R notebook (xgb with R)

Same charts and information but using Python instead of R

Exploratory Data Analysis (EDA) - customer support and

Deep investigation to identify why and which characteristics led the customers to churn

Dataset

The dataset used in this process can be accessed through IBM website below

https://www.ibm.com/communities/analytics/watson-analytics-blog/guide-to-sample-datasets/ (https://www.ibm.com/communities/analytics/watson-analytics-blog/guide-to-sample-datasets/)

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import utilsEDA
## from sklearn.preprocessing import Imputer

import warnings
warnings.filterwarnings("ignore")

## Export model
import pickle
```

In [2]:

```
df1 = pd.read_csv('../data/WA_Fn-UseC_-Telco-Customer-Churn.csv')
df1.head()
```

Out[2]:

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLiı	
0	7590- VHVEG	Female	0	Yes	No	1	No	No pho serv	
1	5575- GNVDE	Male	0	No	No	34	Yes		
2	3668- QPYBK	Male	0	No	No	2	Yes		
3	7795- CFOCW	Male	0	No	No	45	No	No pho ser\	
4	9237- HQITU	Female	0	No	No	2	Yes		
5 r	5 rows × 21 columns								

Info

- · One dataset related to a telco customer can have hundreds, sometimes thousand of features to analyse
- To keep the process simple it is going to be used the top 5 features from Phase 1 + gender to add some context of analysis
- Obs. the categorical features ('gender', 'PaymentMethod', 'Contract') will be analyzed by each detailed information

(One Hot Encode techinque) present later in this notebook

In [3]:

```
## Filter columns and set values
df1.loc[(df1.tenure==0) & (df1.TotalCharges == ' '), ['TotalCharges', 'tenure']] = 0
df1['TotalCharges'] = df1['TotalCharges'].astype('float')
target = 'Churn'
current_features = ['tenure', 'MonthlyCharges', 'TotalCharges', 'gender', 'PaymentMetho
d' , 'Churn', 'Contract']
df1 = df1[current_features]
df1.describe(include='all').T
```

Out[3]:

	count	unique	top	freq	mean	std	min	25%	50%	
tenure	7043	NaN	NaN	NaN	32.3711	24.5595	0	9	29	
MonthlyCharges	7043	NaN	NaN	NaN	64.7617	30.09	18.25	35.5	70.35	
TotalCharges	7043	NaN	NaN	NaN	2279.73	2266.79	0	398.55	1394.55	3
gender	7043	2	Male	3555	NaN	NaN	NaN	NaN	NaN	
PaymentMethod	7043	4	Electronic check	2365	NaN	NaN	NaN	NaN	NaN	
Churn	7043	2	No	5174	NaN	NaN	NaN	NaN	NaN	
Contract	7043	3	Month-to- month	3875	NaN	NaN	NaN	NaN	NaN	

Analyse charges and churn by gender

Info

• The Monthly Charge, Total Charges and churn(yes/no) is well distributed between gender as showed by graphic below

In [4]:

```
## Plot charges by gender
sns.set_style(style='darkgrid')
colors = ['#ff8b24', '#2a39ff']
customPalette = sns.set_palette(sns.color_palette(colors))
fig, axs = plt.subplots(ncols=2, figsize=(15,4))
sns.boxplot(x='MonthlyCharges', y='Churn', hue='gender', data=df1, ax=axs[0], palette=customPalette)
sns.scatterplot(x='TotalCharges', y='MonthlyCharges', hue='gender', data=df1, ax=axs[1], palette=customPalette)
```

Out[4]:

<matplotlib.axes._subplots.AxesSubplot at 0x6869b33358>

Analyse the Payment Method and charges associated with Churn (Yes or No)

Note

- The Payment Method (Eletronick check: biggest one) have quite the same proportion of Churn (Yes or No) seems to not influence a lot.
- · Other types of payments can influence the customer churn but have less customers associated with it

1st Insight

- The first important insight is the confirmation of a lot of Churners caused by Monthly Charges without correlation high Total Charges
- · Note that high Total Charges do not have so many churners also

In [5]:

```
df_group = df1.groupby(by=['PaymentMethod', 'Churn'])['tenure'].count().reset_index().c
opy()
df_group.columns = ['PaymentMethod', 'Churn', 'Qt']
df_group = df_group.sort_index(by='Qt', ascending=False)
pivot_df = df_group.pivot(index='PaymentMethod', columns='Churn', values='Qt')

sns.set(font_scale=1.2) ## Higher font scale
# ## Plot Churn
colors = ['#2a39ff', "#FF0B04"]
customPalette = sns.set_palette(sns.color_palette(colors))
fig, axs = plt.subplots(ncols=2, figsize=(15,4))
g1 = pivot_df.plot.barh(stacked=True, color=colors, ax=axs[0], title='Total - Churn by
Payment Method')
# g1.plt.xlabel('customers_n')
sns.scatterplot(x='TotalCharges', y='MonthlyCharges', hue='Churn', data=df1, ax=axs[1],
palette=customPalette)
```

Out[5]:

<matplotlib.axes._subplots.AxesSubplot at 0x6869e15f28>

Investigate monthly charges by contract type, by tenure and churners

Note

- The customer churners are not well distributed between contract types
- · Long term contracts such as Two years and also One Year have much less churners

2nd Insight

 The higher volume of churners are associated with Month-to-Month Contract with high Monthly Charges and usually small tenure

In [6]:

```
sns.set(font_scale=1.3) ## Higher font scale
colors = ['#2a39ff', "#FF0B04"]
customPalette = sns.set_palette(sns.color_palette(colors))
sns.relplot(x='tenure', y='MonthlyCharges', col='Contract', hue='Churn', kind='scatter'
, data=df1, palette=customPalette)
```

Out[6]:

<seaborn.axisgrid.FacetGrid at 0x6869cf10b8>

Let's run one machine learning algorithm to identify the relationship in the data

- Run xgboost model and plot the feature importance
- the idea here is also to improve the model accuracy achieved with Random Forest in Phase 1
- One trick: use of One Hot Encoding and not the Label Encoding used Phase 1
- the target with this trick is to see the detailed features that drives customers to churn
- and also to confirm if the analysis above can be sustained by the machine learning model

Execution of the machine learning model (xgb)

- Website info: https://xgboost.readthedocs.io/en/latest/python/python_intro.html)

 (https://xgboost.readthedocs.io/en/latest/python/python_intro.html)
- Build xgb model with XGBoost core (with parameters example) and sklearn wrapper for XGBoost and compare the results from models

Obs. The xgb execution below will be done in 2 ways

- · xgb core
- xbg sklearn wrapper

XGB Core execution

In [7]:

```
## ML : XGBOOST
import xgboost as xgb
import numpy as np
## Sklearn
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
## Metrics - Classification
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
## Report dataframe
df_RPT = df1.copy()
## OHE categorical features
df1 = pd.get_dummies(df1, columns=['gender', 'PaymentMethod' , 'Contract'])
# print(df1.head(3))
target = 'Churn'
features = df1.columns.to_list()
features.remove(target)
le = LabelEncoder()
X = df1[features].values
y = le.fit_transform(df1['Churn'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
## xgb Parameters - default
parameter_xbg = {'max_depth': 10, 'eta': 1, 'objective': 'binary:logistic', 'eval_metri
c': 'auc'}
evallist = [(dtest, 'eval'), (dtrain, 'train')]
num round = 10
fit_xgb = xgb.train(parameter_xbg, dtrain, num_boost_round=num_round, evals=evallist)
# print(fit xqb)
## Prediction
ypred = fit xgb.predict(dtest)
ypred = np.round(ypred)
print('')
print(' Precict sample')
print(ypred[:10])
## XGBOOST - core
print('')
print('Model type: ' , type(fit_xgb) )
```

```
[0]
        eval-auc:0.811839
                                train-auc:0.893568
[1]
        eval-auc:0.812782
                                train-auc:0.920016
[2]
        eval-auc:0.813683
                                train-auc:0.928964
[3]
        eval-auc:0.809304
                                train-auc:0.93903
        eval-auc:0.809967
[4]
                                train-auc:0.945341
[5]
        eval-auc:0.81135
                                train-auc:0.950655
[6]
        eval-auc:0.81235
                                train-auc:0.956579
[7]
        eval-auc:0.81105
                                train-auc:0.964021
[8]
        eval-auc:0.811615
                                train-auc:0.971746
[9]
        eval-auc:0.811901
                                train-auc:0.977281
Precict sample
[1. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
Model type: <class 'xgboost.core.Booster'>
```

Build XGBoost model with Scikit-Learn API - XGBClassifier

site: https://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.sklearn (https://xgboost.readthedocs.io/en/latest/python/python api.html#module-xgboost.sklearn)

```
In [8]:
```

```
## XGBOOST - Scikit-Learn API
from xgboost import XGBClassifier
model_xgb = XGBClassifier()
model_xgb.fit(X_train, y_train)
```

Out[8]:

```
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
              colsample_bynode=1, colsample_bytree=1, gamma=0,
              learning_rate=0.1, max_delta_step=0, max_depth=3,
              min_child_weight=1, missing=None, n_estimators=100, n_jobs=
1,
              nthread=None, objective='binary:logistic', random_state=0,
              reg alpha=0, reg lambda=1, scale pos weight=1, seed=None,
              silent=None, subsample=1, verbosity=1)
```

In [9]:

```
## XGBOOST - Model type and prediction
print('')
print('Model type: ' , type(model_xgb) )
ypred_xgb_sklearn = model_xgb.predict(X_test)
print('')
print(' Precict sample')
print(ypred_xgb_sklearn[:10])
```

```
Model type: <class 'xgboost.sklearn.XGBClassifier'>
 Precict sample
[1 0 0 1 0 0 0 0 0 0]
```

Evaluation with confusion matrix

- · Evaluate model performance
- Compare results between xgb core vs. xgb sklearn wrapper

Info: the accuracy divergence between these 2 xgb models (77,6% vs. 79,9%) are associated with default parameters and other info

• The main idea here is to show how to run xgb in these 2 ways

In [10]:

```
def print_confusion_matrix(y_true, y_pred):
    """Function to print Confusion Matrix and metrics"""
    report = classification_report(y_true, y_pred)
    confusion_matrix_rpt = confusion_matrix(y_true, y_pred)
    accuracy_score_rpt = accuracy_score(y_true, y_pred)
    print('-- Confusion Matrix')
    print('0 FP')
    print('FN 1')
    print('')
    print(confusion_matrix_rpt)
    print('')
    print('-- Accuracy')
    print(accuracy_score_rpt)
    print('')
    print('-- Metrics report')
    print(report)
print('')
print('---- XGBOOST CORE execution')
print('')
print_confusion_matrix(y_test, ypred)
print('')
print('---- XGBOOST sklearn wrapper')
print('')
print_confusion_matrix(y_test, ypred_xgb_sklearn)
```

```
---- XGBOOST CORE execution
```

-- Confusion Matrix

0

FN 1

[[1482 215]

[306 322]]

-- Accuracy

0.7759139784946236

-- Metrics report

	precision	recall	f1-score	support
0	0.83	0.87	0.85	1697
1	0.60	0.51	0.55	628
accuracy			0.78	2325
macro avg	0.71	0.69	0.70	2325
weighted avg	0.77	0.78	0.77	2325

---- XGBOOST sklearn wrapper

Confusion Matrix

FP 0

FN 1

[[1550 147]

[320 308]]

Accuracy

0.7991397849462366

-- Metrics report

	precision	recall	f1-score	support
0	0.83	0.91	0.87	1697
1	0.68	0.49	0.57	628
accuracy			0.80	2325
macro avg	0.75	0.70	0.72	2325
weighted avg	0.79	0.80	0.79	2325

Best XGBoost model achieved 79,9% of accuracy score - XGBClassifier

Improvement of 3% of accuracy compared to random forest in phase 1

• The accuracy now is 79,9% instead of 77% (Phase 1 with Random Forest)

Export the model

Save / store the xgb model for prediction

- Info: The results with xgboost.sklearn.XGBClassifier was better than xgb.core
- · Save best score model and run one new prediction to guarantee everything is fine

In [11]:

```
## Export with pickle
file_export_model = './ML_models/model_xgb_baseline_v1.sav'
pickle.dump(model_xgb, open(file_export_model, 'wb'))
print('Export done!')
```

Export done!

Reload and test if exported model is fine

In [12]:

```
## Load the exported model
xgb_load_model = pickle.load(open(file_export_model, 'rb'))

## Test with new predictions
ypred_new = xgb_load_model.predict(X_test)
print('-- New prediction sample')
print(ypred_new[:10])

print('')
print('Load and prediction done!')
```

```
-- New prediction sample [1 0 0 1 0 0 0 0 0 0]
```

Load and prediction done!

Plot - Feature importance

· xgb core

In [13]:

```
## Feature importance
fit_xgb.feature_names = features
xgb.plot_importance(fit_xgb)
plt.title('Feature importance by xgb core')
plt.show()
```


Plot - Feature importance

· xgb sklearn wrapper

In [14]:

3rd Insight

 Contract type and Month to Month contract are the most important features ### Evaluate the distribution of churners by contract type

In [15]:

```
## Plot
df_plot = df_RPT.groupby(['Contract','Churn'])['tenure'].count().reset_index()
df_plot.columns = ['Contract', 'Churn', 'Number_of_contracts']
# sns.barplot(x='Number_of_contracts', y='Contract', hue='Churn', data=df_plot).set_tit
le('Churn by Contract type')
sns.barplot(x='Number_of_contracts', y='Contract', hue='Churn', data=df_plot)
plt.title('Churn by Contract type')
plt.show()
```


How much revenue will be lost by contract type?

• May be the charges are quite similar between contract type and tenure ... let's see...

Revenue stopped because the customer churn

In [16]:

```
# df %>% filter(Churn=='Yes') %>%
    group_by(tenure, Contract) %>%
    summarise( MonthlyCharges=sum(MonthlyCharges),
#
#
               TotalCharges=sum(TotalCharges)) %>%
#
    qplot(data=. ,x=tenure, y=MonthlyCharges,
#
          geom='area', alpha=0.5, fill=Contract,
#
                   Revenue stopped: Customer Churn = Yes')
# ['#ff8b24', '#2a39ff']
colors = ["#FF0B04", '#2a39ff', '#ff8b24']
customPalette = sns.set_palette(sns.color_palette(colors))
rpt_plot = (df_RPT.loc[df_RPT.Churn == 'Yes']
            .groupby(['tenure', 'Contract'])[['MonthlyCharges', 'TotalCharges']]
            .sum()
            .reset index()
            .sort_values(by=['MonthlyCharges', 'tenure'], ascending=False)
## Plot line chart
sns.relplot(data=rpt_plot,
            x='tenure',
            y='MonthlyCharges',
            hue='Contract', kind='line',
            height=5, aspect=1.4,linestyle='solid',
            palette=customPalette
plt.xlabel('Tenure', fontsize=15)
plt.ylabel('Monthly charges stopped', fontsize=15)
plt.title('Revenue stopped by month: Customer Churn = Yes',fontsize=17)
plt.show()
```


Summary

• Following the charts below and also the execution of xgb with R we have:

The top 3 most important features related to churn (Yes) are:

- Higher Monthly Charges
- · Small to Medium Tenure and associated with
- Month-to-Month contract

Well done... better clear picture of why customers churn

Let's move on with more analysis and model build with next notebooks

```
In [17]:
# !jupyter nbconvert --to html Phase_2_Build_ML_models_with_Python_1x6_xgboost.ipynb
In [ ]:
```