NMB - Oefenzitting 3: Eigenwaardenproblemen

Hendrik Speleers

Overzicht

Weetjes

Ontbindingen

Methodes

Methode van de machten Inverse iteratie Rayleigh quotiënt iteratie QR Andere

Nota's	
Nota's	

Weetjes

 $Ax = \lambda x$

► x eigenvector (ev)

 $\triangleright \lambda$ eigenwaarde (ew)

► Geometrische meervoudigheid : dimensie eigenruimte ew (aantal ev horende bij ew)

► Algebraïsche meervoudigheid : meervoudigheid als wortel van de karakteristieke veelterm

▶ gm \leq am (gm < am \Rightarrow defectieve matrix)

▶ Gelijkvormigheidstransformatie : $A \rightarrow X^{-1}AX$

Weetjes

► Hermitisch : $A^* = A$ (symmetrisch : $A^T = A$) reële ew, orthogonale ev

$$Ax = \lambda x \Rightarrow x^* Ax = \lambda x^* x$$
$$x^* A^* = \lambda^* x^* \Rightarrow x^* Ax = \lambda^* x^* x$$
$$\lambda^* = \lambda \Rightarrow \lambda \in \mathbb{R}$$

▶ SPD matrix : $\lambda = \frac{x^T A x}{x^T x} > 0$

► Unitair : $A^*A = I$ (orthogonaal : $A^TA = I$) alle ew modulus 1

$$||Ax||_2^2 = x^*A^*Ax = x^*\lambda^*\lambda x = x^*x$$
$$\lambda^*\lambda = 1 \Leftrightarrow |\lambda| = 1$$

Nota's		
Nota's		

Ontbindingen

Ontbindingen die eigenwaarden onthullen :

Structuur	Ontbinding	Voorwaarden
Diagonalisatie	$A = V \Lambda V^{-1}$	A is niet defectief
Unitaire diag.	$A = Q\Lambda Q^*$	A is normaal
		$(A^*A=AA^*)$
Schur factorisatie	$A = QTQ^*$	_
(Unitaire triangul.)		

A hermitisch \rightarrow unitaire diagonalisatie

Methodes

- ► Steeds iteratief
 - cfr. nulpunten veelterm $(m \ge 5)$
- ► Twee fasen aanpak:
 - ▶ Reductie naar Hessenberg/tridiagonale vorm
 - ▶ Iteratief proces op gestructureerde matrix

-		
-		
Nota's		
NOLA S		

Nota's

Methodes

► Methode van de machten (lineair) $w \leftarrow Av$; $v \leftarrow \frac{w}{\|w\|}$; $\lambda = v^*Av$

• enkel de eigenvector bij de grootste eigenwaarde

► Inverse iteratie (lineair)

$$(A - \mu I)w = v \rightarrow w ; \quad v \leftarrow \frac{w}{\|w\|} ; \quad \lambda = v^*Av$$

ightharpoonup keuze μ bepaalt gevonden eigenwaarden

► Rayleigh quotiënt iteratie (kwadratisch, kubisch)

$$(A - \lambda I)w = v \rightarrow w ; \quad v \leftarrow \frac{w}{\|w\|} ; \quad \lambda = v^* A v$$

▶ EV via inverse iteratie

► EW via Rayleigh quotiënt

► Voordeel : snelle convergentie

▶ Nadeel : telkens stelsel oplossen

Methodes

- ► QR
 - ► Hessenberg, tridiagonaal
 - ► Zonder shift (lineair)

$$QR = A \rightarrow (Q, R)$$
; $A \leftarrow RQ$

Met shift (kwadratisch, kubisch)

$$QR = A - \mu I \rightarrow (Q, R)$$
; $A \leftarrow RQ + \mu I$

- Keuze shift
 - ▶ Rayleigh-quotiënt shift $(a_{m,m})$
 - ▶ Wilkinson shift
- ► Andere : Jacobi, bisectie, verdeel en heers, Arnoldi, Lanczos

Nota's			

Nota's