

Universidade Federal do Ceará - UFC
Centro de Tecnologia - CT
Departamento de Engenharia Elétrica – DEE
Programa de Pro-graduação em Engenharia Elétrica

Unidade I – Proteção e Controle

1. Fundamentos e Tecnologias de Subestação

Disciplina: THP 7222 Estudos Especiais em Engenharia Elétrica I - Proteção Automação e Controle em Subestações e Sistemas de Distribuição Inteligentes

Prof. Raimundo Furtado Sampaio. e-mail: rfurtado@dee.ufc.br

Definição: Conjunto de instalações elétricas em média ou alta tensão que agrupa os equipamentos, condutores e acessórios, destinados à proteção, medição, manobra e transformação de grandezas elétricas (Módulo 1- Prodist).

➤ **Tipos de Subestações:** SE coletora, SE elevadora, SE abaixadora, SE distribuidora, SE secionadora,, SE móvel, etc.

SE Transmissora

SE Distribuidora

SE semi-abrigada

SE isolada e compacta

SE Móvel

- > Subestação no sistema elétrico de potência (SEP):
 - ✓ É o nó no SEP que conectam linhas e condutores para transmissão e distribuição de energia elétrica.
- > Leis de Kirchoff aplicadas aos nós do SEP:

> Arranjos:

✓ São compostos por conjuntos de elementos, com funções específicas no sistema elétrico, denominados vãos (bays).

Vão ou Bays:

- ✓ São subpartes da subestação intimamente ligadas e com funcionalidades comuns.
- ✓ Define a característica modular da subestação.

✓ Vãos predominantes nas subestações:

- ✓ Vão de entrada de linha;
- ✓ Vão de saída de linha;
- ✓ Vãos de Barramentos de alta e média tensão;
- ✓ Vãos de transformação;
- ✓ Vão de Banco de capacitor ou vão de regulação;
- Vão de saída de alimentador.

Principais Funções:

- ✓ Monitorar as grandezas elétricas, visando o controle, proteção, supervisão e automação do SEP;
- ✓ Proporcionar recursos operacionais ao SEP;
- ✓ Efetuar a regulação de tensão;
- ✓ Modificar o nível de tensão;
- ✓ Realizar a conversão da energia (SE conversora CA/CC e CC/CA)

Característica Física:

✓ Modularidade

Estudes necessaries para un estudo de proteções elétricas:

-Estudo de curto-circuito

-Fatudo de fluxo de potência

Equipamentos de Proteção e Controle de uma SE

- ✓ Pára-raios;
- ✓ Relés;
- ✓ Disjuntores;
- ✓ Religadores;
- Secionadores fusíveis ou chaves fusíveis;
- Chave de Aterramento Rápido.

> Transformadores para Instrumentos

- ✓ Transformador de Potencial (TPC e TPI);
- ✓ Transformador de Corrente (TC).

Diagrama simplificado de Proteção e Controle de uma SE

LEGENDA:

EL – Vão de entrada de linha

SL - Vão de saída de linha

B1 – Barramento média tensão

B2 – Barramento alta tensão

TR – Vão de transformador

TSA – Trafo de Serviço Auxiliar

BC – Vão de regulação

AL – Vão de alimentação

D - Disjuntor

TC – Transformador de Corrente

TP - Transformador de Potencial

Rel – Proteção de EL

RsI – Proteção de SL

Rtd – Proteção diferencial do TR

Rti – Proteção intrínseca do TR

Rb – Relé de bloqueio

Rbc – Proteção do BC

Ral - Proteção do AL

Introdução à Subestação de Energia Elétrica (SE)

□ Topologias típicas de STAT e de SDAT:

Sistema de Transmissão

Topologias:

Sistema em Anel

Sistema em anel aberto

Sistema em Anel com GD

Sistema em anel aberto com GD

LEGENDA:

Equipamento NF Equipamento NA

Vãos de Entrada de Linha e de Saída de Linha:

✓ Nas entradas e saídas de linhas das subestação são normalmente instalados para-raios, transformadores de instrumentos, secionadores e disjuntores.

Fonte: Coelce

> Entrada e Saída de Linha:

> Entrada e Saída de Linha:

- Esquema P&C Relés de Linhas de Transmissão
 - ✓ Relé de sobrecorrente: 50/51, 50/51N, 79, 50BF.
 - ✓ Relé de sobrecorrente direcional: 50/51, 50/51N, 67/67N, 79, 50BF.
 - ✓ Relé de Distância: 21, 50/51, 85, 50/51N, 67, 67N, 79, 50BF.
 - ✓ Relé diferencial de linha: 87L, 21, 85, 67, 67N, 79, 50BF
 - ✓ Esquema de proteções Especiais

Esquemas de Proteção de Linha de Transmissão:

- ✓ Topologia radial;
- ✓ Linha curta;
- Cento de carga urbano de grande porte.

VÃO	RELÉ	TIPO DE RELÉ	FUNÇÕES DE PROTEÇÃO
Saída de linha da SED A	ı Rı	Relé de sobrecorrente	50/51; 50N/51N; 79; 50BF.
		Diferencial de linha	87L; 50/51; 50N/51N; 79; 50BF.
Entrada de linha da SED B	l R)	Relé de sobrecorrente	50/51; 50N/51N; 79; 50BF.
		Diferencial de linha	87L; 50/51; 50N/51N; 79; 50BF.

Esquemas de Proteção de Linha de Transmissão:

- ✓ Topologia radial;
- ✓ Linha média e longa;
- Cento de carga rural de médio porte.

VÃO	RELÉ	TIPO DE RELÉ	FUNÇÕES DE PROTEÇÃO
Saída de linha da SED A	L L I	Relé de sobrecorrente	50/51; 50N/51N; 79
		Relé de distância	21/21N; 50/51; 50N/51N; 67/67N; 79
Entrada de linha da SED B	R)	Relé de sobrecorrente	50/51; 50N/51N; 79
		Relé de distância	21/21N; 50/51; 50N/51N; 79

P&C de Linhas de Transmissão com topologia radial

Esquemas de P&C – Proteção de Sobrecorrente

Falta na barra da SE B:

- R2 de sobrecorrente comanda abertura do disjuntor.
- Todos os consumidores fora de serviço.

Falta na LT 0xL1:

- R1 de sobrecorrente comanda abertura do disjuntor.
- Todos os consumidores fora de serviço.

- > **Esquemas de** P&C Proteção de Sobrecorrente e Direcional:
 - ✓ Topologia em anel ou radial com linhas em paralelo.

VÃO	RELÉ	TIPO DE RELÉ	FUNÇÕES DE PROTEÇÃO
Saída de linha da SED A	R1	Relé de sobrecorrente	50/51; 50N/51N
	R2	Relé de sobrecorrente direcional	50/51; 50N/51N; 67/67N
Entrada de linha da SED B		Relé de sobrecorrente	50/51; 50N/51N
	R4	Relé de sobrecorrente direcional	50/51; 50N/51N; 67/67N

Esquema de P&C em duas LTs suprindo a Subestação:

Operação normal

- SED suprida pelas LTs 02L1 e 02L2
- Proteção de Sobrecorrente Direcional
 R1 e R3

Arranjo barramento simples em contingência:

Falta F1 na LT 02L1:

- Relé R1 comandam a abertura do disjuntor 12L1
- Falta eliminada, retirando de serviço todos os consumidores.

P&C de Linhas de Transmissão com topologia radial

Esquemas de P&C – Proteção de Sobrecorrente e Direcional

Falta na barra da SE B:

- Funções de sobrecorrente dos relés R2 e R3 comandam abertura dos disjuntores.
- Todos os consumidores fora de serviço.

Falta na LT 0xL1:

- Funções de sobrecorrente direcional dos relés R1 e R2 comandam abertura dos disjuntores.
- Todos os consumidores fora de serviço.

Esquemas de P&C – sistema de transmissão com duas fontes –
 Proteção de Sobrecorrente e Direcional:

VÃO	RELÉ	TIPO DE RELÉ	FUNÇÕES DE PROTEÇÃO
Saída de linha da SED A	R1	Relé de sobrecorrente	50/51; 50N/51N; 67/67N
	R2	Relé de sobrecorrente direcional	50/51; 50N/51N; 67/67N
Entrada de linha da SED B		Relé de sobrecorrente	50/51; 50N/51N; 67/67N
	R4	Relé de sobrecorrente direcional	50/51; 50N/51N; 67/67N

P&C de Linhas de Transmissão com dupla fonte

Esquema de P&C com dupla fonte – Fluxo Reverso:

Esquemas de P&C de Sistema de Transmissão em Anel:

> Esquemas de P&C de Sistema de Transmissão em Anel:

Analisando faltas em P1:

- ✓ Falta em P1
- Relé associado a B21 deve operar mais rápido do que o relé B32.

> Esquemas de P&C de Sistema de Transmissão em Anel:

Analisando faltas em P2:

✓ Falta em P2 o relé B32 deve operar mais rápido do que o relé B13.

✓ Ocorrendo perda de linha ou fonte, a coordenação entre relés torna-se extremamente difícil e complexa.

> Esquemas de P&C de Sistema de Transmissão em Anel:

Analisando faltas em P3:

 Falta em P3 o relé B13 deve operar mais rápido do que o relé B21.

Conclui-se que em sistemas em anel com múltiplas fontes:

- Ocorrendo perda de linha ou fonte, a coordenação entre relés baseado em tempo x corrente, como por exemplo, relés de sobrecorrente direcional torna-se difícil.
- Recomenda-se nesse caso o uso de relés que operam com base na relação da tensão/corrente de falta, como por exemplo relé 21.

Esquemas de P&C – Relés de sobrecorrente com 2 Grupos de Ajustes:

Esquemas de P&C – Relés de sobrecorrente com 2 Grupos de Ajustes:

Esquemas de P&C – Relés de sobrecorrente com 2 Grupos de Ajustes:

Fonte: (Silveira, 2014)

Barramentos de Subestações

Barramentos de Subestação

Definição:

✓ São condutores reforçados, geralmente sólidos ou tubos e de impedância desprezível.

Função:

- ✓ Definir a configuração do arranjo elétrico da subestação em alta e média tensão.
- ✓ Servem como centros comuns de coleta e redistribuição de circuitos.

Tipos:

- ✓ Barramento simples.
- ✓ Barramento simples seccionados.
- ✓ Barramento principal de transferências.
- ✓ Barramento em anel.
- ✓ Barramento de disjuntor e meio.
- ✓ Barramento duplo.

Barramentos de Subestação

> Estruturas de Barramentos:

Estrutura de barramento

Barramento aéreo - Estrutura de Concreto

Barramento aéreo - Estrutura Metálica

> Estrutura de barramento

Barramento aéreo - Estrutura de Concreto

Barramento abrigado – Switchgear

Fonte: Coelce

Barramento Simples

> Arranjo:

Baixo custo, com poucos recursos operacionais, sem recurso de manobra para manutenção e baixa confiabilidade.

> Aplicação:

Subestações 69-13,8 kV de pequeno e médio porte.

Sistema de Proteção e Controle (P&C):

Esquema de proteção:

- Depende da filosofia de proteção da empresa
- > Predomina uso de relés de sobrecorrente não direcional.

Esquema de controle:

Intertravamentos simples, envolvendo chaves e disjuntores.

P&C de Barramento Simples

Esquema P&C em condição normal:

Operação normal

 SED suprida pelas LTs 02L1 e 02L2

Arranjo barramento simples em contingência:

Falta F1 na barra 01B1:

- Relé R1 e R3 comandam a abertura dos disjuntores 12L1 e 12L2
- Falta eliminada, desligando todos os consumidores.

Barramento Simples Seccionado

> Arranjo:

Baixo custo, com poucos recursos operacionais, sem recurso de manobra para manutenção e baixa confiabilidade.

> Aplicação:

Arranjo para instalações 69-13,8 kV de pequeno e médio porte.

Sistema de Proteção Automação e Controle (P&C):

Esquema de proteção:

- > Depende da filosofia de proteção da empresa
- Predomina uso de relés de sobrecorrente não direcional.

> Esquema de controle:

Intertravamentos simples, envolvendo chaves e disjuntores.

Sistema de automação:

Poucos dados

P&C de Barramento Simples Seccionado

Esquema P&C - barra aberta:

Operação normal

SED suprida pelas LTs 02L1 e 02L2

Arranjo barra simples aberta seccionada em contingência:

Falta F1 na barra 02B2:

- Relé R1 comanda a abertura do disjuntor 12L1, desenergizando 02B2, 02T2 e todos os consumidores.
- Consumidores supridos por 02B1 continuam com suprimento

> Arranjo:

Complexa, de custo elevado e flexibilidade operacional para manutenção dos disjuntores dos vários vãos com a manutenção do sistema de proteção.

Aplicação:

- Arranjo para instalações de grande porte de 69 kV ou superior.
- Sistema de Proteção Automação e Controle (PAC):
 - > Esquema de proteção com e sem chave de transferência (43):
 - > Esquema de controle:
 - Intertravamentos complexo, envolvendo chaves de secionamento e de bay pass, logicas de chave de transferência de proteção, disjuntores principal e de transferência.
 - > Esquema de proteção sem chave de transferência:
 - > Mais complexo.

Esquema de P&C com chave 43:

Equipamento NF Equipamento NA

- Relé associado ao disjuntor principal e de transferência por meio da chave de transferência, código ANSI 43, ou lógica programável
- > Arranjo barra principal e de transferência na condição normal:

🔽 Simulação de falta

Equipamento NF Equipamento NA

> Arranjo barra principal e de transferência em contingência:

🔽 Simulação de falta

> Arranjo barra principal e de transferência em contingência:

- Esquema P&C Barramento Principal de Transferência com relé com múltiplos grupos:
 - Relé associado ao disjuntor de transferência com diferentes grupos.
 - Mudança de grupos de ajustes local no relé ou remota no sistema SCADA
- Barramento Principal de Transferência com relé com 2 grupos na condição normal:

Esquema P&C barramento principal e de transferência na média tensão com relé com dois grupos de ajustes:

Barramento Dublo com Disjuntor de Interligação

> Arranjo:

Complexa, de custo elevado e flexibilidade operacional para manutenção dos disjuntores dos vários vãos com a manutenção do sistema de proteção.

Aplicação:

- Arranjo para instalações de grande porte (230 kV) e importante .
- Sistema de Proteção Automação e Controle (PAC):
 - Esquema de proteção:
 - Complexo
 - > Esquema de controle:
 - > Complexo.

P&C Barramento Dublo com Disjuntor de Interligação

Esquema P&C barra dupla com Disjuntor de Interligação:

Condição normal:
Normalmente o disjuntor entre
barras é fechado, mantendo a
barra 2 com tensão ("quente")
e carga dividida entre as barras

Arranjo barra dupla com Disjuntor de Interligação em contingência:

P&C de Barramento Dublo com Disjuntor Duplo

> Arranjo:

Complexa, de custo elevado e flexibilidade operacional para manutenção dos disjuntores dos vários vãos com a manutenção do sistema de proteção.

Aplicação:

- > Arranjo para instalações de grande porte igual ou superior a 230 kV.
- Sistema de Proteção Automação e Controle (PAC):
 - Esquema de proteção:
 - Cada circuito é protegido por dois ou mais disjuntores.
 - > Esquema de controle:
 - Complexo.

P&C de Barramento Dublo com Disjuntor Duplo

Arranjo Disjuntor e Meio com esquema P&C :

Condição normal:

Cada circuito é protegido por dois ou mais disjuntores.

Arranjo Disjuntor e Meio em contingência:

Equipamento NA

Equipamento NF

🔽 Simulação de falta

Barramento Disjuntor e Meio

> Arranjo:

Complexa, de custo elevado e flexibilidade operacional para manutenção dos disjuntores dos vários vãos com a manutenção do sistema de proteção.

Aplicação:

- > Arranjo para instalações de grande porte igual ou superior a 230 kV.
- Sistema de Proteção Automação e Controle (PAC):
 - Esquema de proteção:
 - Cada circuito é protegido por dois disjuntores separados.
 - > Esquema de controle:
 - Complexo.

P&C de Barramento Disjuntor e Meio

Arranjo Disjuntor e Meio com esquema P&C :

P&C de Barramento Disjuntor e Meio

> Arranjo Disjuntor e Meio em contingência:

P&C de Barramento em Anel

> Arranjo Disjuntor e Meio em contingência:

Condição normal: Cada circuito é protegido

por dois disjuntores

P&C de Barramento em Anel

> Arranjo barramento em Anel em contingência:

Vão de Transformação de Subestação

Transformadores

Destaques:

- Equipamento mais caro de uma subestação;
- > Faltas podem causar danos irreparáveis
- Retirada de serviço afeta muitos consumidores;
- Tempo de reparo normalmente longo;
- Diferentes tamanhos e tipos:
 - Transformador abaixador;
 - Transformador elevador;
 - Autotransformador;
 - Transformador de aterramento;
 - Transformador de potência;
 - Transformador tipo distribuição.

- > Sistema de refrigeração de transformadores de potência:
 - Métodos de resfriamento pode aumentar a potência fornecida a carga.
 - Refrigeração forçada por meio dentiladores:.
 - > ONAN/ONAF
 - > ONAN/ONAF/ONAF
 - > Refrigeração forçada por meio de bombas de circulação de óleo
 - > ONAN/OFAF
 - > ONAN/ONAF/OFAF

Vão de Transformação

Fonte: Coelce

Tipos de Núcleos dos transformadores:

> Enrolamentos:

- > São isolados e imersos em óleo.
- > Funções do Óleo:
 - □ Agente refrigerante dissipa calor do núcleo e dos enrolamentos.
 - □ Agente isolante impede as falhas entre espiras, isola carcaça dos enrolamentos.

Ligação de transformador trifásicos:

Tabela 16.4 Conexões dos transformadores de corrente para transformadores de potência de vários grupos de vetores						
	cão do irmador	Rotação de fase do transformador	Vetor ponteiro do relógio	Compensação de fase necessária	Fil tro de sequência zero na AT	Filtro de sequência zero na BT
Yyo					Sim	Sim
ZdO		0°	,	0°	Sim	
Dzo		0	0	U.		Sim
Dab						
Y21	Zy1				Sim	Sim
Yoʻi		-30°	1	30°	Sim	
Dy1						Sim
Yy6					Sim	Sim
<i>Zd</i> 6		-180°	6	180°	Sim	
Dz6		-180	ь	180		Sim
<i>Do</i> 6						
Y 2 11	<i>Z</i> y11				Sim	Sim
Yo'11		30°	11	-30°	Sim	
Dy11						Sim
YyH	Y z H				Sim	Sim
YdH	ZdH	(H/12) x 360°	Hora 'H'	- (H/12) x 360°	Sim	
DzH	DyH					Sim
DdH						

[&]quot;H": Deslocamento de fase seguindo número do relógio, de acordo com IEC 60076-1

> Diferentes ligações dos enrolamentos primário e secundário:

Transformador 2 entrolamentos Ligação Estrela - Estrela isolados

Transformador 2 entrolamentos Ligação Estrela isolado - Delta

Transformador 2 entrolamentos Ligação Delta - Estrela isolado

Transformador 2 entrolamentos Ligação Estrela aterrada - Estrela aterrada Ligação Estrela aterrada - Delta

Transformador 2 entrolamentos

Transformador 2 entrolamentos Ligação Delta - Ligação Estrela aterrada

Transformador 3 entrolamentos

Reator

Autotransformador

> Transformador trifásico:

- Buchas de alta tensão:
 - H₁, H₂, H₃ fases do sitema A, B e C
 - H_0 neutro
- > Buchas de baixa tensão:
 - X₁, X₂, X₃ fases do sitema A, B e C
 - X_0 neutro
- > Buchas do terciário:
 - Y₁, Y₂, Y₃ fases do sitema A, B e C
 - Y₀ neutro
- > Relação de transformação (RTT):

$$a = \frac{N_1}{N_2}$$

> Padrão ANSI - Conexões de transformadores trifásicos:

Tensão de referência do lado de AT está em fase com a tensão de referência do lado de BT

A tensão de referência do lado de AT está adiantada de 30º da tensão de referência do lado de BT

> Conexões de transformadores trifásicos em Estrela-Estrela (Y-Y):

$$a = \frac{N_1}{N_2}$$

- Ligação Y-Y:
 - Deslocamento ou defasamento angular igual a zero.
- Ligação Delta-Delta:
 - Deslocamento ou defasamento angular também é igual a zero.

➤ Conexões de transformadores trifásicos em Estrela-Delta (Y-△):

 $(1-\alpha)$

 $(I_A - I_C)$

> Conexões de transformadores trifásicos em Delta-Estrela:

Corrente de Inrush ou magnetização:

- Ocorre na energização e após a eliminação de uma falta, quando a corrente primária retorna ao seu valor nominal.
- Magnitude entre 8 a 30 vezes a corrente nominal.
- ✓ Duração: 100 ms.

Corrente de Inrush – Condição inicial ideal:

Analisando o gráfico observa-se:

- 1. Na desenergização a corrente de magnetização cai a zero e o fluxo cai a um valor residual Φ_{R} .
- 2. Se a energização ocorre no instante em que a forma de onda da tensão corresponde a densidade magnética residual no núcleo não ocorrerá transiente magnético.

Corrente de Inrush – Condição inicial real (prática):

Analisando o gráfico observa-se que:

- 1. Na prática, não é possível controlar o momento do chaveamento e o transiente de magnetização é praticamente inevitável.
- 2. Se a energização ocorre no instante em que o fluxo atinge o valor máximo negativo (Φ_{MAX}), o fluxo residual terá um valor positivo.

P&C do Vão Transformador de Potência

Relés de Proteção

VÃO	Proteção	TIPO	FUNÇÕES DE PROTEÇÃO
	Retaguarda	Relé de sobrecorrente	50/51; 50N/51N; 50/62BF
Conexão de AT		Chave fusível	-
		Chave de aterramento rápido	-
	Triccina ao	Relé de gás	63
		Válvula de alívio de pressão	63A
		Pressão do óleo do CDC	80
		Relé de temperatura do enrolamento	49
Vão de		Temperatura do óleo	26
Transformador		Nível do óleo	71
	Externa ao Transformador	Relé diferencial	87
		Relé de sobrecorrente de terra	51G
		Relé de Carcaça	64
	Auxiliar	Relé de bloqueio	86

P&C do Vão Transformador de Potência

Relés de Proteção - Proteções intrínsecas:

√ É o conjunto de dispositivos de proteção integrados aos equipamentos.

relés de gás

Relé Detector de Defeito de Selagem

válvulas de alívio de pressão

Secador de ar

Indicador de Nível do Óleo

Relé de temperatura

P&C do Vão do Transformador de Potência

- Esquema de P&C do Transformador de potência:
 - Esquema de proteção com proteção intrínseca, relé de diferencial e proteção de retaguarda

P&C do Vão do Transformador de Potência

Esquema de P&C do Vão de Transformação:

Esquema de proteção com proteção intrínseca, relé de diferencial e proteção de retaguarda.

P&C do Vão do Transformador de Potência

Proteção do Transformador de potência:

Esquema de proteção com proteção intrínseca, relé de diferencial e proteção de retaguarda

Vão de Banco de Capacitores

Regulação de tensão:

- ✓ Banco de capacitores
- ✓ Regulador de tensão
- ✓ Transformador com Comutador de Derivação sob Carga (CDC)

Reator

Células Capacitivas

- Relé de sobrecorrente de desequilíbrio de corrente para banco de capacitores: 61.
- Relé de Sobrecorrente + Desequilíbrio: 50/51, 50/51N, 50/51NS, 46, 27, 59, 50BF, 61

Esquema P&C vão do banco de capacitores com chave a óleo:

> Esquema P&C vão do banco de capacitores com disjuntor:

BC em operação normal

BC em contingência

Esquema P&C vão do banco de capacitores com disjuntor:

> Esquema P&C vão do banco de capacitores com disjuntor:

Vãos de saídas de alimentadores de distribuição: Os Vãos de Saída d Alimentadores de uma subestação suprem rede de distribuição que alimenta, diretamente ou por intermédio de ramais, os primários dos transformadores de distribuição do concessionário e/ou consumidor.

Fonte: Foto de subestação Enel

Alimentadores Principais ou Tronco de alimentadores

P&C do Vão de Saída de Alimentadores

Esquema P&C de Banco de Capacitores:

Suprimento dos Serviços Auxiliares (SA):

- ✓ Suprimento dos serviços auxiliares:
 - ✓ Sistema de Corrente Alternada (CA)
 - ✓ Sistema de Corrente Contínua (CC)

- Esquemas de Proteção do Transformador de Serviços Auxiliares (TSA):
 - ✓ Proteção do Primário:
 - Chaves fusíveis
 - ✓ Proteção do secundário:
 - Disjuntor termomagnético.

Equipamentos e Cargas dos Serviços Auxiliares

- > Equipamentos e sistemas da casa:
 - ✓ Quadro de Serviços Auxiliares CA;
 - ✓ Quadro de Serviços Auxiliares CC;
 - ✓ Quadro de Comando, Controle,
 Proteção e Supervisão;
 - ✓ Sistema Digital da Subestação;
 - ✓ Sistema de comunicações;
 - ✓ Retificador e Banco de Baterias.

Serviços Auxiliares

CARGAS DOS SERVIÇOS AUXILIARES	
QSA CA	QSA CC
Ventilação forçada dos transformadores	Sistema digital de automação da subestação
Retificador.	Sistema de telecomunicações
Casa de comando.	Dispositivos de controle e proteção (relés, controle de banco de capacitores, etc);
Tomadas e iluminação do pátio da SE	Motores, bobinas de abertura e fechamento e sinalização dos equipamentos de disjunção
Iluminação e aquecimento dos painéis	Iluminação de emergência da casa de comando e do pátio
Comutador de Derivação sob Carga (CDC) dos transformadores.	

Serviços Auxiliares CA – Padrão Coelce Antigo

Serviços Auxiliares CC

Retificador

✓ O retificador converte a corrente alternada (CA) fornecida pelo transformador de serviços auxiliares, através do QSA CA, em corrente contínua (CC), com a finalidade de alimentar as cargas em corrente contínua da subestação e manter em flutuação ou em carga o banco de baterias da subestação.

Serviços Auxiliares CC

Banco de Baterias

✓ O banco de baterias é ligado em paralelo com o retificador/carregador funcionando em regime de flutuação, mantendo assim a confiabilidade do sistema de controle, proteção e automação da subestação.

Cargas dos Serviços Auxiliares CC

Universidade Federal do Ceará - UFC
Centro de Tecnologia - CT
Departamento de Engenharia Elétrica - DEE
Programa de Pro-graduação em Engenharia Elétrica

Unidade I – Proteção e Controle

2. Fundamentos e Tecnologias de Sistemas de Distribuição de Média Tensão