<u>Chapter 4</u> Linear Transformations – Part I

- 4.3 Inverse Linear Transformations
- - \diamondsuit That is, if $\mathbf{v}_1 \neq \mathbf{v}_2$, then $T(\mathbf{v}_1) \neq T(\mathbf{v}_2)$.
 - $\langle Thm. T \text{ is } 1\text{-}1 \text{ iff } \ker(T)=\{0\} \text{ (and thus, nullity}(T)=0).$
- \bigcirc <u>Thm.</u> A Lop T: V \rightarrow V is 1-1 iff range(T)=V.
- \bigcirc <u>Def.</u> A LT T: V \rightarrow W is said to be onto iff

- every vector in W is an image of at least one vector in V under T.
- \diamondsuit That is, for any vector w in W, there exists a vector v in V such that $\mathbf{w} = T(\mathbf{v})$.
- \diamondsuit In other words, W is included in range(T).
- \Diamond <u>Thm.</u> T: V \rightarrow W is onto iff range(T)=W.
- \bigcirc <u>Def.</u> If a LT T: V → W is 1-1 and onto, then any vector w in W can be regarded the image of some vector v in V (because of "onto"), and it is unique (because of "1-1"). The mapping from w back to v is called the

- inverse of T (denoted as T^{-1}).
- \Diamond Thm. If $T: V \rightarrow W$ is 1-1 and onto, then $T^{-1}: W \rightarrow V$ is also 1-1 and onto.
- $\Diamond \underline{Thm.} (T^{-1})^{-1} = T$
- \diamondsuit <u>Def.</u> When T^{-1} exists (and thus $(T^{-1})^{-1}=T$ exists), we say that T is invertible.
- Def. An isomorphism between vector spaces
 V and W is an invertible LT between them (i.e. from V to W, or from W to V).
 - \diamondsuit <u>Ex.</u> The transformation from a vector **v** in an n-dim vector space V to its coordinate

- vector (wrt to some o.b. B), denoted as C_B : $V \rightarrow R^{n \times 1}$ (i.e. $C_B(\mathbf{v}) = [\mathbf{v}]_B$), is an isomorphism.
- ♦ <u>Def.</u> When there exists an isomorphism between V and W, we say that V and W are isomorphic to each other.
- \bigcirc <u>Thm.</u> All vector spaces (say, V₁, V₂, V₃,...) of the same finite dimension (say, n) are isomorphic.
 - \diamondsuit Key idea: Use $C_{B,k}: V_k \rightarrow \mathbb{R}^{n \times 1}$ (k=1,2,3,...) and their inverses as the isomorphisms to

(uniquely) map a vector in V_i into another vector in V_i .

- \bigcirc <u>Thm.</u> Consider a Lop $T: V \rightarrow V$. The following statements are equivalent:
 - \diamondsuit 1 *T* is invertible.
 - \diamondsuit 2 *T* is 1-1 and onto.
 - \diamondsuit 3 *T* is 1-1 or onto.
 - \diamondsuit 4 ker(T)={ $\mathbf{0}$ }.
 - \diamondsuit 5 nullity(T)=0.
 - \diamondsuit 6 range(T)=V.
 - \diamondsuit 7 rank(T)=dim(V).

composition of more than two LT's.

- 4.4 Matrices of Linear Transformations
- Recall: coordinate vector
 - \diamondsuit Given o.b. $B = \{v_1, v_2, ..., v_n\}$, and if $v = k_1v_1 + k_2v_2 + ... + k_nv_n$ then, $[v]_B = [k_1, k_2, ..., k_n]^T$.

- Ohange of basis:
 - \Diamond D = { $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n$ } is another o.b.
 - $\langle \mathbf{v} \rangle$ $[\mathbf{v}]_D = \Phi_{D,B} [\mathbf{v}]_B$, where $\Phi_{D,B} = [[\mathbf{v}_1]_D, [\mathbf{v}_2]_D, ..., [\mathbf{v}_n]_D]$
 - \diamondsuit $\Phi_{D,B}$ is called the change-of-basis (COB) matrix from B to D.
 - \Diamond [v]_D= Φ _{D,B}[v]_B, [v]_B= Φ _{B,D}[v]_D, and Φ _{B,D}= Φ _{D,B}-1, Φ _{D,B}= Φ _{B,D}-1.

- \diamondsuit Suppose that we want to find $\mathbf{w} = T(\mathbf{v})$.
- \Diamond First, we need to select an o.b. $B = \{v_1, v_2, ..., v_n\}$ for V, and an o.b. $D = \{w_1, w_2, ..., w_m\}$ for W.
- \diamondsuit v can be equivalently expressed as $[v]_B$.
- \diamondsuit w can be equivalently expressed as [w]_D.
- ♦ We can construct an m×n matrix **A** such that $[\mathbf{w}]_D = \mathbf{A} [\mathbf{v}]_B$. This **A** is called the matrix of T wrt bases B and D. It is denoted as $[T]_{D,B}$.
- \diamondsuit Construction of $[T]_{D,B}$:

$$[T]_{D,B} = [[T(\mathbf{v}_1)]_D [T(\mathbf{v}_2)]_D \dots [T(\mathbf{v}_n)]_D]$$

- \diamondsuit Summary: $[T(\mathbf{v})]_D = [T]_{D,B} [\mathbf{v}]_B$
- Effect of change of bases on the matrix of *T*:
 Let B, C be o.b.'s of V (domain), and D, E be o.b.'s of W (codomain).

(B: old basis for V, D: old basis for W;

C: new basis for V, E: new basis for W)

- $\langle T(\mathbf{v}) \rangle_{E} = \Phi_{E,D}[T(\mathbf{v})]_{D,}$ $[\mathbf{v}]_{B} = \Phi_{B,C}[\mathbf{v}]_{C}$

- \bigcirc Matrix of Lop $T: V \rightarrow V:$
 - This is just a special case for the matrix of a LT.
 - \diamondsuit Usually the same basis is used for the domain and the codomain: $[T]_{B,B}=[T]_B$.
 - \diamondsuit Effect of change of basis: Apply (#) with B \leftarrow B, D \leftarrow B; C \leftarrow D, E \leftarrow D:

$$[T]_{D,D} = \Phi_{D,B}[T]_{B,B}\Phi_{B,D}$$

(or, $[T]_{D} = \Phi_{D,B}[T]_{B}\Phi_{B,D} = \Phi_{B,D}^{-1}[T]_{B}\Phi_{B,D}$)

- ⊚ <u>Thm.</u> Let $T: V \rightarrow V$ be a Lop, and B be an o.b. of V. Then T is invertible iff $[T]_B$ is invertible. Moreover, when T is invertible, $[T^{-1}]_B = [T]_{B^{-1}}$.
- - ♦ This theorem can be easily generalized to composition of more than two LT's.

- 4.5 Similar Linear Transformations
- O Previously, we see that $[T]_D = \Phi_{D,B}[T]_B \Phi_{B,D} = \Phi_{B,D}^{-1}[T]_B \Phi_{B,D}$. We wonder if we can make $[T]_D$ look simple (e.g. diagonal or triangular) by some proper choice of the o.b. D.
- - ♦ <u>Def.</u> A property of square matrices is said to be a similarity invariant (or invariant

- under similarity) if that property is shared by any two similar matrices.
- \diamondsuit <u>Ex.</u> det(**P**⁻¹**AP**)=det(**A**). So, determinant is a similarity-invariant property.
- ♦ Some other similarity-invariant properties: invertibility, rank, nullity, trace.
- \bigcirc Thm. Let T: V → V be a Lop. The matrix of T wrt an o.b. of V is similar to the matrix of T wrt any other o.b. of V.

- \bigcirc <u>Thm.</u> Let $T: V \rightarrow V$ be a Lop. Let B be any o.b. of V. Then, the properties below hold:
 - \Diamond rank $(T) = \text{rank}([T]_{B})$
 - \Diamond nullity(T) = nullity(T]_B)
 - \diamondsuit T is invertible iff $[T]_B$ is invertible.
- ⑤ <u>Def.</u> Let $T: V \rightarrow V$ be a Lop. The determinant of T (denoted as det(T)) is defined to be $det([T]_B)$, where B is any o.b. of V.
- \odot To find a B so that $[T]_B$ looks simple for a Lop T, we need the concept of eigenvalues and eigenvectors.