BRUTE UDESC

Eliton Machado da Silva, Enzo de Almeida Rodrigues, Eric Grochowicz, João Vitor Frölich, João Marcos de Oliveira e Rafael Granza de Mello

3 de janeiro de 2024

Índice

1	Gra	fos	6
	1.1	Matching	6
	1.2	Hungarian Algorithm for Bipartite Matching	6
	1.3	LCA	7
	1.4	LCA	7
	1.5	HLD	8
	1.6	$\label{eq:heavy-Light Decomposition (hld.cpp)} \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots$	8
	1.7	Binary Lifting	S
	1.8	Binary Lifting	S
	1.9	Kruskal	11
	1.10	Kruskal	11
	1.11	Bridge	11
	1.12	Graph Center	12
	1.13	Graph Center	12
	1.14	Dijkstra	13
	1.15	Dijkstra	13
	1.16	Dijkstra 1:1	13
	1.17	Dijkstra 1:N	13
	1.18	Dijkstra N:N	13
	1.19	Fluxo	14
	1.20	Fluxo	14
	1.21	Dinic	14
	1.22	Edmonds Karp	14
	1.23	Min Cost Max Flow	15
	1 24	Stoer-Wagner Min-Cut	18

	1.25	Stoer-Wagner	18
	1.26	2-SAT	19
	1.27	2-SAT	19
	1.28	Inverse Graph	20
	1.29	Inverse Graph	20
	1.30	SPFA	21
	1.31	Shortest Path Fast Algorithm (SPFA)	21
2	Estr	ruturas de Dados	22
	2.1	MergeSort Tree	22
	2.2	MergeSort Tree	22
	2.3	MergeSort Tree com Update Pontual	22
	2.4	Operation Queue	24
	2.5	Operation Queue	24
	2.6	Operation Stack	25
	2.7	Operation Stack	25
	2.8	Ordered Set	25
	2.9	Ordered Set	25
	2.10	Exemplo	26
	2.11	LiChao Tree	26
	2.12	LiChao Tree	26
	2.13	LiChao Tree Sparse	26
	2.14	DSU	28
	2.15	Disjoint Set Union	28
	2.16	DSU Simples	28
	2.17	DSU Bipartido	28
	2.18	DSU com Rollback	28
	2.19	DSU Completo	28
	2.20	Kd Fenwick Tree	32
	2.21	KD Fenwick Tree	32
	2.22	Fenwick Tree	33
	2.23	Fenwick Tree	33
	2.24	Segment Tree	34
	2.25	Segment Tree	34
	2.26	Seg Tree	34
	2 27	Son Troo Lagy	2/

	2.28	Sparse Seg Tree	34
	2.29	Persistent Seg Tree	34
	2.30	Seg Tree Beats	34
	2.31	Seg Tree Beats Max and Sum update	34
	2.32	Interval Tree	45
	2.33	Interval Tree	45
	2.34	Sparse Table	46
	2.35	Sparse Table	46
	2.36	Disjoint Sparse Table	47
	2.37	Disjoint Sparse Table	47
0	a.		40
3	Stri		49
	3.1	Aho-Corasick	49
	3.2	Aho-Corasick	49
	3.3	Hashing	50
	3.4	Hashing	50
	3.5	Trie	51
	3.6	Trie	51
	3.7	Prefix Function	51
	3.8 3.9	Prefix Function	51
			51
		Autômato de KMP	51
		Prefix Count	
		Manacher	53
		Algoritmo de Manacher	53
		Lyndon	54
		Lyndon Factorization	54
		Duval	54
		Min Cyclic Shift	54
		Patricia Tree	55
		Patricia Tree ou Patricia Trie	55
		Suffix Array	55
	3.21	Suffix Array	55
4	Para	adigmas	58
	4.1	Busca Ternaria	58
	4.9	Busea Tornária	58

	4.3	Busca Ternária em Espaço Discreto	58
	4.4	Mo	59
	4.5	Mo	59
	4.6	Mo com Update	59
	4.7	All Submasks	61
	4.8	All Submask	61
	4.9	Exponenciação de Matriz	61
	4.10	Exponenciação de Matriz	61
	4.11	Uso Comum	61
	4.12	Variação que dependa de **constantes** e do **índice**	61
	4.13	Variação Multiplicativa	62
	4.14	Divide and Conquer	63
	4.15	Divide and Conquer	63
	4.16	Divide and Conquer com Query on demand	63
	4.17	Busca Binaria Paralela	65
	4.18	Busca Binária Paralela	65
	4.19	DP de Permutacao	66
	4.20	DP de Permutação	66
	4.21	Convex Hull Trick	67
	4.22	Convex Hull Trick	67
5	Mat	emática	68
•		Sum of floor(n div i)	68
	5.2	Soma do floor(n / i)	68
	5.3	Primos	68
	5.4	Primos	68
	5.5	Crivo de Eratóstenes	68
	5.6	Miller-Rabin	68
	5.7	Teste Ingênuo	68
	5.8	NTT	69
	5.9	Numeric Theoric Transformation	69
	5.10	Totiente de Euler	71
		Totiente de Euler	71
		Totiente de Euler (Phi) para um número	71
		Totiente de Euler (Phi) entre 1 e N	71
		Exponenciação Modular Rápida	71

5.15	Exponenciação modular rápida	71
5.16	Eliminação Gaussiana	72
5.17	Eliminação Gaussiana	72
5.18	Inverso Modular	73
5.19	Modular Inverse	73
5.20	Modular Inverse	73
5.21	Modular Inverse by Extended GDC	74
5.22	Modular Inverse for 1 to MAX \hdots	74
5.23	Modular Inverse for all powers	74
5.24	GCD	75
5.25	Máximo divisor comum	75
5.26	Algoritmo de Euclides	75
5.27	Algoritmo de Euclides Estendido	75
5.28	Teorema do Resto Chinês	75
5.29	Teorema do Resto Chinês	75
5.30	Generalizado!!! Retorna -1 se a resposta não existir	75
5.31	Fatoração	76
5.32	Fatoração	76
5.33	Fatoração Simples	76
5.34	Crivo Linear	76
5.35	Fatoração Rápida	76
5.36	Pollard-Rho	76
5.37	FFT	77
5.38	Transformada rápida de Fourier	77

1 Grafos

1.1 Matching

1.2 Hungarian Algorithm for Bipartite Matching

Resolve o problema de Matching para uma matriz A[n][m], onde $n \leq m$.

A implementação minimiza os custos, para maximizar basta multiplicar os pesos por -1.

A matriz de entrada precisa ser indexada em 1 !!!

O vetor result guarda os pares do matching.

Complexidade de tempo: $O(n^2 * m)$

```
const 11 INF = 1e18 + 18;
1
3
    vector<pair<int , int>> result ;
5
    11 hungarian (int n, int m, vector < vector < int >> &A) {
         vector < int > u(n + 1), v(m + 1), p(m + 1), way(m + 1);
6
7
         for (int i = 1; i \le n; i++) {
              p[0] = i;
8
9
              int j0 = 0;
10
              vector < int > minv(m + 1, INF);
11
              vector < char > used(m + 1, false);
12
                   used[j0] = true;
13
14
                   11 \ i0 = p[j0], \ delta = INF, \ j1;
15
                   for (int j = 1; j <= m; j++) {
                        \mathbf{if} \ (!\, used\, [\, j\, ]) \ \{
16
                            {\bf int} \ cur = A[\,i\,0\,][\,j\,] \, - \, u[\,i\,0\,] \, - \, v[\,j\,];
17
                            if (cur < minv[j]) { minv[j] = cur, way[j] = j0; }
18
19
                            if (minv[j] < delta) \{ delta = minv[j], j1 = j; \}
                       }
20
21
22
                   for (int j = 0; j <= m; j++) {
23
                       if (used[j]) {
                            u\,[\,p\,[\,j\,]\,] \ +\!= \ delta \;,\;\; v\,[\,j\,] \;-\!= \; delta \;;
24
25
                       } else {
26
                            minv[j] — delta;
27
28
                  j0 = j1;
29
              } while (p[j0] != 0);
30
31
32
                   int j1 = way[j0];
33
                  p[j0] = p[j1];
34
                  j0 = j1;
              } while (j0);
35
36
37
         for (int i = 1; i \le m; i++) { result.emplace back(p[i], i); }
38
         return -v[0];
39
    }
```

1.3 LCA

1.4 LCA

Algoritmo de Lowest Common Ancestor usando EulerTour e Sparse Table

```
Complexidade de tempo:
```

```
- O(Nlog(N)) Preprocessing - O(1) Query LCA
```

Complexidade de espaço: O(Nlog(N))

```
#include <bits/stdc++.h>
 2
   using namespace std;
 3
   #define INF 1e9
 4
   #define fi first
 5
   #define se second
 6
 7
8
   typedef vector<int> vi;
9
   typedef pair<int, int> ii;
10
11
   vi tin, tout;
12
   vector < vi> adj;
13
    vector<ii> prof;
14
    vector < vector < ii >> st;
15
16
   int n, timer;
17
18
   void SparseTable(vector<ii> &v) {
19
        int n = v.size();
20
        int e = floor(log2(n));
21
        st.assign(e + 1, vector < ii > (n));
        \mbox{for $($ int $i = 0$; $i < n$; $i++) { st [0][i] = v[i]; }}
22
23
        for (int i = 1; i \le e; i++) {
24
              \mbox{for } (\mbox{int } j = 0; \ j + (1 << i) <= n; \ j++) \ \{ \ st [i][j] = min(st [i-1][j],
                 st[i - 1][j + (1 << (i - 1))]); }
        }
25
26
    }
27
   void et dfs(int u, int p, int h) {
28
29
        tin[u] = timer++;
30
        prof.emplace_back(h, u);
31
        for (int v : adj[u]) {
32
             \mathbf{if} \ (\mathbf{v} \ != \ \mathbf{p}) \ \{
33
                  et dfs(v, u, h + 1);
34
                  prof.emplace back(h, u);
35
36
37
        tout[u] = timer++;
38
    }
39
   void build(int root = 0) {
40
41
        tin.assign(n, 0);
42
        tout.assign(n, 0);
43
        prof.clear();
44
        timer = 0;
        et dfs(root, root, 0);
45
46
        SparseTable(prof);
47
    }
48
```

```
49
   int lca(int u, int v) {
50
        int l = tout[u], r = tin[v];
        if (1 > r) \{ swap(1, r); \}
51
52
        int i = floor(log2(r - l + 1));
53
        return \min(st[i][1], st[i][r - (1 << i) + 1]).se;
54
   }
55
56
   int main() {
57
        cin >> n;
58
59
        adj.assign(n, vi(0));
60
        for (int i = 0; i < n - 1; i++) {
61
62
            int a, b;
63
            cin >> a >> b;
64
            adj[a].push back(b);
65
            adj[b].push_back(a);
        }
66
67
68
        build();
69
   }
```

1.5 HLD

1.6 Heavy-Light Decomposition (hld.cpp)

Técnica usada para otimizar a execução de operações em árvores.

- Pré-Processamento: O(N) - Range Query/Update: O(Log(N)) * O(Complexidade de query da estrutura) - Point Query/Update: O(Complexidade de query da estrutura) - LCA: O(Log(N)) - Subtree Query: O(Complexidade de query da estrutura) - Complexidade de espaço: O(N)

```
1
   namespace hld {
        \mathbf{const} \ \mathbf{int} \ \mathrm{MAX} = 2\,\mathrm{e}5 \,+\, 5\,;
 2
3
        int t, sz [MAX], pos [MAX], pai [MAX], head [MAX];
 4
        bool e = 0;
 5
        11 merge(11 a, 11 b) { return max(a, b); } // how to merge paths
 6
        void dfs sz(int u, int p = -1) {
 7
             sz[u] = 1;
             for (int &v : adj[u]) {
 8
9
                  if (v != p) {
10
                      dfs_sz(v, u);
11
                      sz[u] += sz[v];
                      if (sz[v] > sz[adj[u][0]] || adj[u][0] == p) { swap(v, adj[u][0]);}
12
13
                  }
             }
14
15
        void dfs hld(int u, int p = -1) {
16
17
             pos[u] = t++;
             for (int v : adj[u]) {
18
19
                  if (v != p) {
20
                      pai[v] = u;
21
                      head[v] = (v = adj[u][0] ? head[u] : v);
22
                      dfs hld(v, u);
23
                  }
             }
24
25
26
        void build(int root) {
```

```
27
              dfs sz(root);
28
              t = 0;
29
              pai[root] = root;
30
              head[root] = root;
31
              dfs hld(root);
32
         void build(int root, vector<ll> &v) {
33
34
              build (root);
35
              vector<ll> aux(v.size());
36
              for (int i = 0; i < (int)v.size(); i++) { aux[pos[i]] = v[i]; }
37
              seg::build(aux);
38
39
         void build(int root, vector <i3> &edges) { // use this if weighted edges
40
              build (root);
              e = 1;
41
42
              vector < ll > aux(edges.size() + 1);
43
              for (auto [u, v, w] : edges) {
                   if (pos[u] > pos[v]) { swap(u, v); }
44
                   aux[pos[v]] = w;
45
46
47
              seg::build(aux);
48
         11 query(int u, int v) {
49
              if (pos[u] > pos[v]) \{ swap(u, v); \}
50
              \mathbf{if} \ (\operatorname{head}[\mathtt{u}] = \operatorname{head}[\mathtt{v}]) \ \{
51
                   return seg::query(pos[u] + e, pos[v]);
52
53
                   11 qv = seg :: query(pos[head[v]], pos[v]);
54
55
                   11 \text{ qu} = \text{query}(u, \text{pai}[\text{head}[v]]);
56
                   return merge (qu, qv);
57
              }
58
         }
         void update(int u, int v, ll k) {
59
              if (pos[u] > pos[v]) { swap(u, v); }
60
              if (head[u] = head[v]) {
61
62
                   seg::update(pos[u] + e, pos[v], k);
              } else {
63
                   seg::update(pos[head[v]], pos[v], k);
64
65
                   update(u, pai[head[v]], k);
              }
66
67
         int lca(int u, int v) {
68
69
              if (pos[u] > pos[v]) { swap(u, v); }
              \mathbf{return} \ (\mathbf{head}[\mathbf{u}] = \mathbf{head}[\mathbf{v}] \ ? \ \mathbf{u} : \mathbf{lca}(\mathbf{u}, \ \mathbf{pai}[\mathbf{head}[\mathbf{v}]]));
70
71
72
         11 query subtree(int u) { return seg::query(pos[u], pos[u] + sz[u] - 1); }
73
    }
```

1.7 Binary Lifting

1.8 Binary Lifting

Usa uma sparse table para calcular o k-ésimo ancestral de u. Pode ser usada com o algoritmo de EulerTour para calcular o LCA.

Complexidade de tempo:

- Pré-processamento: O(N * log(N)) - Consulta do k-ésimo ancestral de u: O(log(N)) - LCA: O(log(N))

```
Complexidade de espaço: O(Nlog(N))
1
   namespace st {
2
        int n, me, timer;
3
        vector < int > tin , tout;
4
        vector < vector < int>> st;
        void et dfs(int u, int p) {
5
6
            tin[u] = ++timer;
7
            st[u][0] = p;
8
            for (int i = 1; i \le me; i++) { st[u][i] = st[st[u][i-1]][i-1]; }
9
            for (int v : adj[u]) {
10
                 if (v != p) \{ et_dfs(v, u); \}
11
12
            tout[u] = ++timer;
13
14
        void build(int _n, int root = 0) {
15
            n = n;
16
            tin.assign(n, 0);
17
            tout.assign(n, 0);
18
            timer = 0;
19
            me = floor(log2(n));
20
            st.assign(n, vector < int > (me + 1, 0));
21
            et dfs(root, root);
22
23
        bool is\_ancestor(int u, int v) \{ return tin[u] <= tin[v] \&\& tout[u] >=
            tout[v]; }
24
        int lca(int u, int v) {
25
            if (is_ancestor(u, v)) { return u; }
26
            if (is_ancestor(v, u)) { return v; }
27
            for (int i = me; i >= 0; i ---) {
28
                 if (!is\_ancestor(st[u][i], v)) { u = st[u][i]; }
29
30
            return st [u][0];
31
32
        int ancestor(int u, int k) { // k-th ancestor of u
33
            for (int i = me; i >= 0; i ---) {
34
                 if ((1 << i) \& k) \{ u = st[u][i]; \}
35
36
            return u;
37
        }
38
   }
1
   namespace st {
2
        int n, me;
3
        vector < vector < int>> st;
4
        void bl_dfs(int u, int p) {
5
            \operatorname{st}[\mathbf{u}][0] = \mathbf{p};
6
            for (int i = 1; i \le me; i++) { st[u][i] = st[st[u][i-1]][i-1]; }
7
            for (int v : adj[u]) {
8
                 if (v != p) { bl_dfs(v, u); }
9
10
11
        void build(int n, int root = 0) {
12
            n = n;
13
            me = floor(log2(n));
14
            st.assign(n, vector < int > (me + 1, 0));
15
            bl dfs(root, root);
16
17
        int ancestor(int u, int k)  { // k—th ancestor of u
18
            for (int i = me; i >= 0; i ---) {
19
                 if ((1 \ll i) \& k) \{ u = st[u][i]; \}
20
            }
```

1.9 Kruskal

```
1.10
          Kruskal
   Utiliza [DSU](../../Estruturas%20de%20Dados/DSU/dsu.cpp) - (disjoint set union) - para construir MST
   - (minimum spanning tree)
      - Complexidade de tempo (Construção): O(M log N)
1
   struct Edge {
 2
        int u, v, w;
 3
        bool operator < (Edge const & other) { return w < other.w; }
 4
    };
 5
6
    vector < Edge > edges , result ;
7
   int cost;
8
9
   struct DSU {
        vector < int > pa, sz;
10
11
        DSU(int n) {
12
            sz.assign(n + 5, 1);
            for (int i = 0; i < n + 5; i++) { pa.push back(i); }
13
14
15
        int root(int a) { return pa[a] = (a = pa[a] ? a : root(pa[a])); }
        bool find (int a, int b) { return root(a) = root(b); }
16
17
        void uni(int a, int b) {
            int ra = root(a), rb = root(b);
18
            if (ra == rb) { return; }
19
20
            if (sz[ra] > sz[rb]) \{ swap(ra, rb); \}
21
            pa[ra] = rb;
22
            sz[rb] += sz[ra];
23
        }
24
    };
25
26
   void kruskal(int m, int n) {
27
        DSU dsu(n);
28
29
        sort(edges.begin(), edges.end());
30
31
        for (Edge e : edges) {
32
            if (!dsu.find(e.u, e.v)) 
33
                 cost += e.w;
                 result.push_back(e); // remove if need only cost
34
                 dsu.uni(e.u, e.v);
35
36
37
        }
38
   }
```

1.11 Bridge

Algoritmo que acha pontes utilizando uma dfs

Complexidade de tempo: O(N + M)

```
int n;
                               // number of
                                               17
                                                                low[u] = min(low[u],
                                                                    low[v]);
       nodes
2
   vector < vector < int >> adj; // adjacency
                                                                if (low[v] > tin[u]) {
                                               18
                                                                    // edge UV is a bridge
       list of graph
                                               19
3
                                               20
                                                                    // do_something(u, v)
4
   vector < bool > visited;
                                               21
                                                                }
   vector < int > tin , low;
                                               22
                                                           }
5
                                               23
                                                       }
   int timer;
7
                                               24
                                                  }
8
   void dfs (int u, int p = -1) {
                                               25
9
                                               26
                                                   void find bridges() {
        visited[u] = true;
        tin[u] = low[u] = timer++;
                                               27
10
                                                       timer = 0;
                                               28
11
        for (int v : adj[u]) {
                                                       visited.assign(n, false);
12
                                               29
            if (v = p) \{ continue; \}
                                                       tin.assign(n, -1);
13
            if (visited[v]) {
                                               30
                                                       low.assign(n, -1);
14
                 low[u] = min(low[u],
                                               31
                                                       for (int i = 0; i < n; ++i) {
                     tin[v]);
                                               32
                                                            if (! visited[i]) { dfs(i); }
                                               33
15
            } else {
                                                       }
                                               34
                                                  }
16
                 dfs(v, u);
```

1.12 Graph Center

1.13 Graph Center

Encontra o centro e o diâmetro de um grafo

```
Complexidade de tempo: O(N)
```

```
const int INF = 1e9 + 9;
 2
 3
    vector < vector < int >> adj;
 4
 5
    struct GraphCenter {
 6
          int n, diam = 0;
 7
          {\tt vector}{<} {\tt int}{\gt} \ {\tt centros} \ , \ {\tt dist} \ , \ {\tt pai} \ ;
 8
          int bfs(int s) {
 9
               queue<int> q;
10
               q. push(s);
11
                dist.assign(n + 5, INF);
12
                pai.assign (n + 5, -1);
13
                dist[s] = 0;
14
               int maxidist = 0, maxinode = 0;
15
               while (!q.empty()) {
16
                     int u = q.front();
17
                     q.pop();
18
                     if (dist[u] >= maxidist) \{ maxidist = dist[u], maxinode = u; \}
                     \quad \textbf{for} \ (\, \textbf{int} \ v \ : \ \text{adj} \, [\, u \, ] \, ) \ \ \{ \,
19
                           if \ (\, dist \, [\, u \, ] \,\, + \,\, 1 \,\, < \,\, dist \, [\, v \, ] \, ) \ \ \{ \,
20
                                dist[v] = dist[u] + 1;
21
22
                                pai [v] = u;
23
                                q.push(v);
24
                           }
25
                     }
26
27
               diam = max(diam, maxidist);
28
               return maxinode;
29
30
          GraphCenter(int st = 0) : n(adj.size()) 
               int d1 = bfs(st);
31
```

```
32
         int d2 = bfs(d1);
33
         vector<int> path;
         34
35
         int len = path.size();
         if (len \% 2 == 1) {
36
37
             centros.push_back(path[len / 2]);
         } else {
38
39
             centros.push back(path[len / 2]);
             centros.push back(path[len / 2 - 1]);
40
41
         }
42
43
  };
```

1.14 Dijkstra

1.15 Dijkstra

Computa o menor caminho entre nós de um grafo.

1.16 Dijkstra 1:1

Dado dois nós u e v, computa o menor caminho de u para v.

Complexidade de tempo: O((E + V) * log(E))

1.17 Dijkstra 1:N

Dado um nó u, computa o menor caminho de u para todos os nós.

Complexidade de tempo: O((E + V) * log(E))

1.18 Dijkstra N:N

Computa o menor caminho de todos os nós para todos os nós

```
Complexidade de tempo: O(V * ((E + V) * log(E)))
    const int MAX = 505, INF = 1e9 + 9;
 1
 2
    vector < ii > adj [MAX];
 3
 4
    int dist[MAX][MAX];
 5
    void dk(int n) {
 6
 7
         for (int i = 0; i < n; i++) {
              for (int j = 0; j < n; j++) { dist[i][j] = INF; }
 8
 9
10
         for (int s = 0; s < n; s++) {
              priority queue<ii, vector<ii>, greater<ii>>> fila;
11
12
              dist[s][s] = 0;
13
              fila.emplace(dist[s][s], s);
              while (!fila.empty()) {
14
                   auto [d, u] = fila.top();
15
                   fila.pop();
16
                   if (d != dist[s][u]) { continue; }
17
                   \quad \textbf{for} \ (\textbf{auto} \ [\textbf{w}, \ \textbf{v}] \ : \ \textbf{adj} [\textbf{u}]) \ \{
18
                        if (dist[s][v] > d + w) {
19
```

```
20
                            dist[s][v] = d + w;
21
                            fila.emplace(dist[s][v], v);
22
                       }
23
                 }
24
             }
25
        }
26
   }
    const int MAX = 1e5 + 5, INF = 1e9 + 9;12
                                                                auto [d, u] = fila.top();
 2
                                                  13
                                                                fila.pop();
3
    vector < ii > adj [MAX];
                                                                if (d != dist[u]) { continue; }
                                                  14
 4
   int dist [MAX];
                                                  15
                                                                \quad \textbf{for} \ (\textbf{auto} \ [\textbf{w}, \ \textbf{v}] \ : \ \textbf{adj} [\textbf{u}]) \ \{
 5
                                                  16
                                                                    if (dist[v] > d + w) {
6
   void dk(int s) {
                                                                         dist[v] = d + w;
                                                  17
7
        priority_queue<ii, vector<ii>,
                                                  18
                                                                         fila.emplace(dist[v],
             greater<ii>>> fila;
                                                                             v);
8
         fill (begin (dist), end (dist), INF);
                                                                    }
9
         dist[s] = 0;
                                                                }
10
         fila.emplace(dist[s], s);
                                                  21
                                                           }
                                                  22
                                                      }
11
        while (!fila.empty()) {
    const int MAX = 1e5 + 5, INF = 1e9 + 9;13
1
                                                                fila.pop();
                                                                if (u = t) { return dist[t]; }
3
   vector < ii > adj [MAX];
                                                  15
                                                                if (d != dist[u]) { continue; }
   int dist[MAX];
                                                  16
                                                                for (auto [w, v] : adj[u]) {
 4
                                                                    \mathbf{if} (dist[v] > d + w) {
 5
                                                  17
   int dk(int s, int t) {
6
                                                  18
                                                                         dist[v] = d + w;
7
        priority_queue<ii, vector<ii>,
                                                  19
                                                                         fila.emplace(dist[v],
             greater < ii >> fila;
                                                                             v);
8
         fill (begin (dist), end (dist), INF);
                                                                    }
9
         dist[s] = 0;
                                                                }
10
         fila.emplace(dist[s], s);
                                                  22
11
        while (!fila.empty()) {
                                                  23
                                                           return -1;
             auto [d, u] = fila.top();
                                                      }
12
                                                  24
```

1.19 Fluxo

1.20 Fluxo

Conjunto de algoritmos para calcular o fluxo máximo em problemas relacionados de fluxo

1.21 Dinic

Muito útil para grafos bipartidos e para grafos com muitas arestas

Complexidade de tempo: O(V² * E), mas em grafo bipartido a complexidade é O(sqrt(V) * E)

1.22 Edmonds Karp

Útil para grafos com poucas arestas

Complexidade de tempo: $O(V * E^2)$

1.23 Min Cost Max Flow

Computa o fluxo máximo com custo mínimo

Complexidade de tempo: $O(V^2 * E^2)$

```
const long long INF = 1e18;
1
2
   struct FlowEdge {
3
4
        int u, v;
        long long cap, flow = 0;
5
6
        FlowEdge(int u, int v, long long cap) : u(u), v(v), cap(cap) { }
7
   };
8
9
   struct EdmondsKarp {
10
        int n, s, t, m = 0, vistoken = 0;
        vector < Flow Edge > edges;
11
12
        vector < vector < int >> adj;
13
        vector < int > visto;
14
        EdmondsKarp(int n, int s, int t) : n(n), s(s), t(t) 
15
16
            adj.resize(n);
17
            visto.resize(n);
18
        }
19
        void add_edge(int u, int v, long long cap) {
20
21
            edges.emplace_back(u, v, cap);
22
            edges.emplace\_back(v,\ u,\ 0);
23
            adj [u].push_back(m);
24
            adj[v].push back(m + 1);
25
            m += 2;
        }
26
27
        int bfs() {
28
            vistoken++;
29
30
            queue<int> fila;
31
            fila.push(s);
32
            vector < int > pego(n, -1);
33
            while (!fila.empty()) {
                int u = fila.front();
34
35
                 if (u == t) { break; }
36
                 fila.pop();
37
                 visto[u] = vistoken;
                 for (int id : adj[u]) {
38
                     if (edges[id].cap - edges[id].flow < 1) { continue; }
39
40
                     int v = edges[id].v;
                     if (visto[v] = -1) \{ continue; \}
41
                     fila.push(v);
42
                     pego[v] = id;
43
                }
44
45
46
            if (pego[t] = -1) \{ return 0; \}
            long long f = INF;
47
            for (int id = pego[t]; id != -1; id = pego[edges[id].u]) { f = min(f, f)
48
                edges[id].cap - edges[id].flow); }
            for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
49
                 edges[id].flow += f;
50
51
                 edges[id ^1].flow = f;
52
53
            return f;
        }
54
```

```
55
        long long flow() {
56
57
            long long maxflow = 0;
58
            while (long long f = bfs()) { maxflow += f; }
59
            return maxflow;
60
        }
61
   };
   struct MinCostMaxFlow {
1
2
        int n, s, t, m = 0;
        11 \text{ maxflow} = 0, \text{ mincost} = 0;
3
4
        vector < Flow Edge > edges;
5
        vector < vector < int >> adj;
6
7
        MinCostMaxFlow(int n, int s, int t) : n(n), s(s), t(t) { adj.resize(n); }
8
9
        void add_edge(int u, int v, ll cap, ll cost) {
10
            edges.emplace back(u, v, cap, cost);
            edges.emplace back(v, u, 0, -cost);
11
12
            adj[u].push_back(m);
13
            adj[v].push back(m + 1);
14
            m += 2;
        }
15
16
17
        bool spfa() {
            vector < int > pego(n, -1);
18
19
            vector < ll > dis(n, INF);
20
            vector < bool > inq(n, false);
21
            queue < int > fila;
22
            fila.push(s);
23
            dis[s] = 0;
24
            inq[s] = 1;
            while (!fila.empty()) {
25
26
                 int u = fila.front();
27
                 fila.pop();
28
                 inq[u] = false;
29
                 for (int id : adj[u]) {
30
                     if (edges[id].cap - edges[id].flow < 1) { continue; }
31
                     int v = edges[id].v;
                     if (dis[v] > dis[u] + edges[id].cost) {
32
                          dis[v] = dis[u] + edges[id].cost;
33
                          pego[v] = id;
34
35
                         if (!inq[v]) {
36
                              inq[v] = true;
37
                              fila.push(v);
38
                         }
39
                     }
40
                }
            }
41
42
43
            if (pego[t] = -1) \{ return 0; \}
44
            11 f = INF;
45
            for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
46
                 f = min(f, edges[id].cap - edges[id].flow);
                 mincost += edges[id].cost;
47
48
49
            for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
50
                 edges[id].flow += f;
51
                 edges[id ^1].flow = f;
52
            }
            maxflow += f;
53
```

```
54
             return 1;
        }
55
56
57
        11 flow() {
             \mathbf{while} \ (\mathrm{\,spfa\,}()\,)
58
59
60
             return maxflow;
61
        }
62
    };
    typedef long long 11;
1
   const 11 \text{ INF} = 1e18;
 3
 4
    struct FlowEdge {
 5
        int u, v;
6
        11 \text{ cap}, \text{ flow} = 0;
7
        FlowEdge(int u, int v, ll cap) : u(u), v(v), cap(cap) { }
 8
    };
9
10
    struct Dinic {
11
        vector<FlowEdge> edges;
12
13
        vector < vector < int >> adj;
14
        int n, s, t, m = 0;
15
        vector<int> level, ptr;
16
        queue < int > q;
17
        Dinic(int n, int s, int t) : n(n), s(s), t(t) 
18
19
             adj.resize(n);
20
             level.resize(n);
21
             ptr.resize(n);
22
        }
23
        void add edge(int u, int v, ll cap) {
24
25
             edges.emplace_back(u, v, cap);
26
             edges.emplace_back(v, u, 0);
27
             adj [u].push_back(m);
             adj[v].push back(m + 1);
28
29
             m += 2;
30
        }
31
        bool bfs() {
32
33
             while (!q.empty()) {
                  \mathbf{int}\ u\,=\,q\,.\,front\,(\,)\;;
34
35
                  q.pop();
                  36
37
                       if (edges[id].cap - edges[id].flow < 1) { continue; }
38
                      int v = edges[id].v;
                       if (level[v] != -1) \{ continue; \}
39
40
                      level[v] = level[u] + 1;
41
                      q.push(v);
42
                  }
43
44
             return level [t] != -1;
        }
45
46
        ll dfs (int u, ll f) {
47
48
             \mathbf{if} \ (\mathbf{f} = 0) \ \{ \ \mathbf{return} \ 0; \ \}
49
             if (u = t) \{ return f; \}
             for (int &cid = ptr[u]; cid < (int)adj[u].size(); cid++) {
50
51
                  int id = adj[u][cid];
```

```
52
                   int v = edges[id].v;
                   if (level[u] + 1 != level[v] || edges[id].cap - edges[id].flow < 1) {
53
                       continue; }
                   11 \text{ tr} = dfs(v, min(f, edges[id].cap} - edges[id].flow));
54
                    \quad \textbf{if} \ (\,\mathrm{tr} \, = \, 0) \ \{ \ \textbf{continue} \, ; \ \} 
55
56
                   edges[id].flow += tr;
                   edges[id ^1].flow = tr;
57
58
                  return tr;
59
60
             return 0;
         }
61
62
63
         ll flow() {
64
              11 \text{ maxflow} = 0;
65
              while (true) {
66
                   fill(level.begin(), level.end(), -1);
67
                   level[s] = 0;
68
                   q. push(s);
69
                   if (! bfs()) { break; }
70
                   fill (ptr.begin(), ptr.end(), 0);
71
                   while (11 f = dfs(s, INF)) \{ maxflow += f; \}
72
73
              return maxflow;
74
         }
75
    };
```

1.24 Stoer-Wagner Min-Cut

1.25 Stoer-Wagner

O algoritmo de Stoer-Wagner é um algoritmo para resolver o problema de corte mínimo em grafos não direcionados com pesos não negativos. A ideia essencial deste algoritmo é encolher o grafo mesclando os vértices mais intensos até que o grafo contenha apenas dois conjuntos de vértices combinados

Complexidade de tempo: $O(V^3)$

```
const int MAXN = 555, INF = 1e9+7;
1
2
   int n, e, adj [MAXN] [MAXN];
4
   vector<int> bestCut;
5
6
   int mincut() {
7
        int bestCost = INF;
8
        vector < int > v[MAXN];
9
        for (int i = 0; i < n; i++) v[i]. assign (1, i);
10
        int w[MAXN], sel;
        bool exist [MAXN], added [MAXN];
11
12
        memset(exist, true, sizeof(exist));
        for(int phase = 0; phase < n-1; phase++) {
13
14
            memset(added, false, sizeof(added));
15
            memset(w, 0, sizeof(w));
16
            for (int j = 0, prev; j < n-phase; j++) {
17
                sel = -1;
18
                for (int i = 0; i < n; i++) {
                    if (exist[i] \&\& !added[i] \&\& (sel == -1 || w[i] > w[sel])) sel = i;
19
20
21
                if (j = n-phase-1) {
22
                     if (w[sel] < bestCost) {
23
                         bestCost = w[sel];
```

```
bestCut = v[sel];
24
25
26
                    v[prev].insert(v[prev].end(), v[sel].begin(), v[sel].end());
27
                     for (int i = 0; i < n; i++)
28
                         adj[prev][i] = adj[i][prev] += adj[sel][i];
29
                     exist[sel] = false;
30
                } else {
                     added[sel] = true;
31
                     for (int i = 0; i < n; i++) w[i] += adj[sel][i];
32
33
                     prev = sel;
34
            }
35
36
37
       return bestCost;
38
   }
```

1.26 2-SAT

1.27 2-SAT

Resolve problema do 2-SAT.

- Complexidade de tempo (caso médio): O(N + M)

N é o número de variáveis e M é o número de cláusulas. A configuração da solução fica guardada no vetor *assignment*.

Em relaçõa ao sinal, tanto faz se 0 liga ou desliga, apenas siga o mesmo padrão.

```
struct sat2 {
 2
        int n;
3
        vector < vector < int >> g, gt;
 4
        vector < bool > used;
 5
        vector < int > order, comp;
        vector<bool> assignment;
 6
7
8
        // number of variables
9
        sat2(int n) {
10
            n = 2 * (n + 5);
            g.assign(n, vector < int > ());
11
            gt.assign(n, vector<int>());
12
13
14
        void add_edge(int v, int u, bool v_sign, bool u_sign) {
15
            g[2 * v + v\_sign].push\_back(2 * u + !u\_sign);
16
            g[2 * u + u sign].push back(2 * v + !v sign);
17
            gt[2 * u + !u\_sign].push\_back(2 * v + v\_sign);
            gt[2 * v + !v_sign].push_back(2 * u + u_sign);
18
19
        void dfs1(int v) {
20
            used[v] = true;
21
22
            for (int u : g[v]) {
                 if (!used[u]) { dfs1(u); }
23
24
25
            order.push back(v);
26
27
        void dfs2(int v, int cl) {
28
            comp[v] = cl;
29
            for (int u : gt[v]) {
                 if (comp[u] = -1) \{ dfs2(u, cl); \}
30
            }
31
```

```
32
33
        bool solve() {
34
            order.clear();
35
            used.assign(n, false);
36
            for (int i = 0; i < n; ++i) {
37
                 if (!used[i]) { dfs1(i); }
38
39
            comp. assign (n, -1);
40
            for (int i = 0, j = 0; i < n; ++i) {
41
                int v = order[n - i - 1];
42
                 if (comp[v] = -1) \{ dfs2(v, j++); \}
43
44
            }
45
46
            assignment.assign(n / 2, false);
            for (int i = 0; i < n; i += 2) {
47
48
                 if (comp[i] = comp[i + 1]) \{ return false; \}
                 assignment [i / 2] = comp[i] > comp[i + 1];
49
50
51
            return true;
52
        }
53
   };
```

1.28 Inverse Graph

1.29 Inverse Graph

Resolve problemas em que se deseja encontrar as componentes conexas quando são dadas as arestas que não pertencem ao grafo

- Complexidade de tempo: $O(N \log N + N \log M)$

```
#include <bits/stdc++.h>
 2
   using namespace std;
3
 4
   set < int > nodes;
5
   vector<set<int>>> adj;
6
   void bfs(int s) {
7
8
        queue < int > f;
9
        f.push(s);
10
        nodes.erase(s);
11
        set < int > aux;
12
        while (! f . empty()) {
13
             int x = f.front();
14
             f.pop();
             for (int y : nodes) {
15
                  \mathbf{if} (adj[x].count(y) == 0) { aux.insert(y); }
16
17
             for (int y : aux) {
18
19
                  f.push(y);
20
                 nodes.erase(y);
21
22
             aux.clear();
23
        }
24
   }
```

1.30 SPFA

1.31 Shortest Path Fast Algorithm (SPFA)

Encontra o caminho mais curto entre um vértice e todos os outros vértices de um grafo.

Detecta ciclos negativos.

}

}

32

33 34 }

```
Complexidade de tempo: O(|V| * |E|)
    \mathbf{const} \ \mathbf{int} \ \mathbf{MAX} = 1\,\mathbf{e}4 \,+\, 4\,;
    \mathbf{const} \ 11 \ INF = 1e18 + 18;
 2
 3
    vector < ii > adj[MAX];
 4
    ll dist [MAX];
5
 7
    void spfa(int s, int n) {
 8
         fill(dist, dist + n, INF);
         vector < int > cnt(n, 0);
9
10
         vector < bool > inq(n, false);
         queue<int> fila;
11
12
         fila.push(s);
13
         inq[s] = true;
14
         dist[s] = 0;
         while (!fila.empty()) {
15
              int u = fila.front();
16
              fila.pop();
17
18
              inq[u] = false;
19
              for (auto [w, v] : adj[u]) {
                    11 \text{ newd} = (\text{dist}[u] = -\text{INF} ? -\text{INF} : \max(w + \text{dist}[u], -\text{INF}));
20
                    if (newd < dist[v]) 
21
22
                         dist[v] = newd;
                         if (!inq[v]) {
23
24
                              fila.push(v);
                              inq[v] = true;
25
26
                              \operatorname{cnt}[v]++;
                              if (cnt[v] > n) { // negative cycle}
27
                                   dist[v] = -INF;
28
29
30
                        }
                  }
31
```

2 Estruturas de Dados

2.1 MergeSort Tree

2.2 MergeSort Tree

Resolve Queries que envolvam ordenação em Range. (**SEM UPDATE**)

- Complexidade de construção : O(N * log(N)) - Complexidade de consulta : $O(log^2(N))$

2.3 MergeSort Tree com Update Pontual

Resolve Queries que envolvam ordenação em Range. (**COM UPDATE**) **1 segundo para vetores de tamanho $3*10^{5**}$

- Complexidade de construção : $O(N*log^2(N))$ - Complexidade de consulta : $O(log^2(N))$ - Complexidade de update : $O(log^2(N))$

```
\#include < ext/pb_ds/assoc\_container.hpp>
1
   #include <ext/pb ds/tree policy.hpp>
3
4
   using namespace __gnu_pbds;
5
6
   namespace mergesort {
7
        typedef tree<ii, null_type, less<ii>, rb_tree_tag,
            tree_order_statistics_node_update> ordered set;
8
        const int MAX = 1e5 + 5;
9
10
        int n;
        ordered set mgtree [4 * MAX];
11
12
        vi values;
13
14
        int le(int n) \{ return 2 * n + 1; \}
15
        int ri(int n) \{ return 2 * n + 2; \}
16
        ordered set join (ordered set set 1, ordered set set r) {
17
18
            for (auto v : set r) { set l.insert(v); }
19
            return set 1;
20
        }
21
22
        void build(int n, int esq, int dir) {
23
            if (esq = dir) {
                mgtree[n].insert(ii(values[esq], esq));
24
25
            } else {}
26
                 int mid = (esq + dir) / 2;
27
                 build (le(n), esq, mid);
28
                 build (\,ri\,(n)\,,\,\,mid\,+\,1\,,\,\,dir\,)\,;
                 mgtree[n] = join(mgtree[le(n)], mgtree[ri(n)]);
29
30
            }
31
        void build (vi &v) {
32
33
            n = v.size();
            values = v;
34
35
            build (0, 0, n - 1);
36
37
38
        int less(int n, int esq, int dir, int l, int r, int k) {
39
            if (esq > r \mid | dir < 1) \{ return 0; \}
            if (1 \le esq \&\& dir \le r) { return mgtree[n].order of key({k, -1}); }
40
```

```
41
             int mid = (esq + dir) / 2;
             \textbf{return} \;\; less \, (\, le \, (n) \,\,, \;\; esq \,\,, \;\; mid \,\,, \;\; l \,\,, \;\; r \,\,, \;\; k) \,\,+ \,\; less \, (\, ri \, (n) \,\,, \;\; mid \,\,+ \,\, 1 \,\,, \;\; dir \,\,, \;\; l \,\,, \;\; r \,\,, \;\; k) \,\,;
42
43
44
        int less(int l, int r, int k) { return less(0, 0, n - 1, l, r, k); }
45
46
        void update(int n, int esq, int dir, int x, int v) {
47
             if (esq > x \mid | dir < x) \{ return; \}
48
             if (esq = dir) {
                  mgtree[n].clear(), mgtree[n].insert(ii(v, x));
49
50
             } else {
                  int mid = (esq + dir) / 2;
51
                  if (x \le mid) {
52
53
                      update(le(n), esq, mid, x, v);
54
                  } else {
                       update(ri(n), mid + 1, dir, x, v);
55
56
                  mgtree[n].erase(ii(values[x], x));
57
                  mgtree[n].insert(ii(v, x));
58
             }
59
60
61
        void update(int x, int v) {
62
             update(0, 0, n-1, x, v);
63
             values[x] = v;
64
        }
65
        // ordered_set debug_query(int n, int esq, int dir, int l, int r) {
66
67
                 if (esq > r \mid \mid dir < l) return ordered_set();
                 if (1 \le esq \&\& dir \le r) return mgtree[n];
68
69
                 int mid = (esq + dir) / 2;
70
                 return join (debug query (le (n), esq, mid, l, r), debug query (ri(n),
            mid+1, dir, l, r);
71
72
         // ordered set debug query(int l, int r) {return debug query(0, 0, n-1, l, r);}
73
        // int greater(int n, int esq, int dir, int l, int r, int k) {
74
75
                if (esq > r \mid \mid dir < 1) return 0;
76
                 if (1 \le esq \&\& dir \le r) return (r-l+1) - mgtree[n]. order of key(\{k, r\})
77
                int mid = (esq + dir) / 2;
                return greater (le(n), esq, mid, l, r, k) + greater (ri(n), mid+1, dir,
78
            1, r, k);
79
        // int greater(int l, int r, int k) \{\text{return greater}(0, 0, n-1, 1, r, k);\}
80
    };
81
1
    namespace mergesort {
        const int MAX = 1e5 + 5;
2
3
        int n;
 4
5
        vi mgtree [4 * MAX];
 6
7
        int le(int n) \{ return 2 * n + 1; \}
8
        int ri(int n) \{ return 2 * n + 2; \}
9
10
        void build (int n, int esq, int dir, vi &v) {
             mgtree[n] = vi(dir - esq + 1, 0);
11
             if (esq = dir) {
12
13
                  mgtree[n][0] = v[esq];
             } else {
14
15
                  int mid = (esq + dir) / 2;
16
                  build(le(n), esq, mid, v);
```

```
17
                   build (ri(n), mid + 1, dir, v);
18
                   merge (mgtree [le (n)].begin (),
19
                           mgtree [le(n)].end()
20
                           mgtree [ri(n)]. begin(),
21
                           mgtree[ri(n)].end(),
22
                           mgtree[n].begin());
23
              }
24
         void build (vi &v) {
25
26
              n = v.size();
27
              build(0, 0, n - 1, v);
28
29
30
         int less (int n, int esq, int dir, int l, int r, int k) {
31
              if (esq > r \mid | dir < 1) { return 0; }
32
              if (1 \le esq \&\& dir \le r) \{ return lower bound(mgtree[n].begin(),
                  mgtree[n].end(), k) - mgtree[n].begin();
33
              \mathbf{int} \hspace{0.2cm} \mathrm{mid} \hspace{0.1cm} = \hspace{0.1cm} (\hspace{0.1cm} \mathrm{es}\hspace{0.1cm} q \hspace{0.1cm} + \hspace{0.1cm} \mathrm{dir}\hspace{0.1cm}) \hspace{0.2cm} / \hspace{0.2cm} 2\hspace{0.1cm} ;
              return less (le(n), esq, mid, l, r, k) + less (ri(n), mid + 1, dir, l, r, k);
34
35
36
         int less(int l, int r, int k) { return less(0, 0, n-1, l, r, k); }
37
38
             vi debug query(int n, int esq, int dir, int l, int r) {
                  if (esq > r \mid \mid dir < 1) return vi();
39
40
                  if (1 \le esq \&\& dir \le r) return mgtree[n];
                  int mid = (esq + dir) / 2;
41
42
                  auto vl = debug_query(le(n), esq, mid, l, r);
                  auto \ vr = debug\_query(ri(n), mid+1, dir, l, r);
43
44
                  vi ans = vi(vl.size() + vr.size());
45
                  merge(vl.begin(), vl.end(),
46
                       vr.begin(), vr.end(),
47
                       ans.begin());
48
                  return ans;
49
            vi debug query(int 1, int r) {return debug_query(0, 0, n-1, 1, r);}
50
51
    };
```

2.4 Operation Queue

2.5 Operation Queue

Fila que armazena o resultado do operatório dos itens.

template <typename T> struct op_queue { 1 2 stack<pair<T, T>> s1, s2; 3 T result; 4 T op(T a, T b) { return a; // TODO: op to compare 5 6 // min(a, b); 7 // gcd(a, b); 8 // lca(a, b); 9 **T** get() { 10 **if** (s1.empty() || s2.empty()) { 11 return result = s1.empty() ? s2.top().second : s1.top().second;12 13 } else { 14 return result = op(s1.top().second, s2.top().second);

* Complexidade de tempo (Push): O(1) * Complexidade de tempo (Pop): O(1)

```
}
15
16
17
        void add(T element) {
18
            result = s1.empty() ? element : op(element, s1.top().second);
19
            s1.push({element, result});
20
        void remove() {
21
22
            if (s2.empty()) {
23
                 while (!s1.empty()) {
24
                     T \text{ elem} = s1.top().first;
25
                     s1.pop();
                     T result = s2.empty()? elem : op(elem, s2.top().second);
26
27
                     s2.push({elem, result});
28
29
            T remove elem = s2.top().first;
30
31
            s2.pop();
32
        }
33
   };
```

2.6 Operation Stack

2.7 Operation Stack

Pilha que armazena o resultado do operatório dos itens.

```
* Complexidade de tempo (Push): O(1) * Complexidade de tempo (Pop): O(1)
```

```
template <typename T> struct op_stack {
 1
 2
        stack < pair < T, T >> st;
 3
        T result;
        T op(T a, T b)  {
 4
             \mathbf{return}\ \mathbf{a}\,;\ //\ \mathbf{TODO}\colon\ \mathbf{op\ to\ compare}
 5
             // min(a, b);
 6
              // gcd(a, b);
 7
              // lca(a, b);
 8
 9
        T get() { return result = st.top().second; }
10
11
         void add(T element) {
              result = st.empty() ? element : op(element, st.top().second);
12
13
              st.push({element, result});
14
         void remove() {
15
16
             T removed element = st.top().first;
17
             st.pop();
18
         }
19
    };
```

2.8 Ordered Set

2.9 Ordered Set

Pode ser usado como um set normal, a principal diferença são duas novas operações possíveis:

- $find_by_order(x)$: retorna o item na posição x. - $order_of_key(k)$: retorna o número de elementos menores que k. (o índice de k)

2.10 Exemplo

```
1
   #include <ext/pb_ds/assoc_container.hpp>
   #include <ext/pb ds/trie policy.hpp>
 4
    using namespace __gnu_pbds;
    typedef tree<int, null type, less<int>, rb tree tag,
 5
        tree order statistics node update> ordered set;
 6
7
    ordered set X;
 8
   X.insert(1);
  X.insert(2);
10 X. insert (4);
   X.insert(8);
11
12
   X. insert (16);
13
14
    cout << *X. find by order (1) << endl; // 2
   cout << *X. find by order (2) << endl; // 4
15
   cout \ll X. find by order (4) \ll endl; // 16
16
17
    cout << (end(X) \longrightarrow X. find by order(6)) << endl; // true
18
19
    cout << X. order_of_key(-5) << endl;
    cout << X. order_of_key(1) << endl;
20
    cout \ll X.order\_of\_key(3) \ll endl;
21
22
    cout << X.order\_of\_key(4) << endl;
    cout \ll X. order of key (400) \ll endl;
   #include <ext/pb_ds/assoc_container.hpp>
2
   #include <ext/pb_ds/trie_policy.hpp>
3
 4
    using namespace gnu pbds;
    \textbf{template} < \!\! \textbf{typename} \ T \!\! > \ \textbf{typedef} \ \texttt{tree} < \!\! T, \ \texttt{null\_type} \;, \ \texttt{less} < \!\! T \!\! >, \ \texttt{rb\_tree\_tag} \;,
        tree order statistics node update> ordered set;
```

2.11 LiChao Tree

2.12 LiChao Tree

Uma árvore de Funções. Retorna o F(x) máximo em um ponto X.

Para retornar o minimo deve-se inserir o negativo da função e pegar o negativo do resultado.

Está pronta para usar função linear do tipo F(x) = mx + b.

Funciona para funções com a seguinte propriedade, sejam duas funções f(x) e g(x), uma vez que f(x) ganha/perde de g(x), f(x) vai continuar ganhando/perdendo de g(x), ou seja f(x) e g(x) se intersectam apenas uma vez.

* Complexidade de consulta : O(log(N)) * Complexidade de update: O(log(N))

2.13 LiChao Tree Sparse

O mesmo que a superior, no entanto suporta consultas com $|x| \le 1e18$.

* Complexidade de consulta : $O(\log(tamanho do intervalo))$ * Complexidade de update: $O(\log(tamanho do intervalo))$

```
typedef long long 11;
 2
    const 11 MAXN = 1e5 + 5, INF = 1e18 + 9;
 3
 4
 5
    struct Line {
 6
          ll \ a, \ b = -INF;
 7
          ll operator()(ll x) { return a * x + b; }
 8
    } tree [4 * MAXN];
 9
    int le(int n) \{ return 2 * n + 1; \}
10
    int ri(int n) { return 2 * n + 2; }
11
12
    {f void} insert (Line line, {f int} n=0, {f int} l=0, {f int} r=M\!A\!X\!N\!) {
13
          \mathbf{int} \ \mathrm{mid} = (1 + r) / 2;
14
15
          bool bl = line(1) < tree[n](1);
16
          bool bm = line(mid) < tree[n](mid);
17
          if (!bm) { swap(tree[n], line); }
           \quad \textbf{if} \ (l = r) \ \{ \ \textbf{return}; \ \} 
18
          if (bl != bm) {
19
20
                insert (line, le(n), l, mid);
21
          } else {
22
                insert(line, ri(n), mid + 1, r);
23
          }
24
    }
25
     ll query(\mathbf{int} \ \mathbf{x}, \mathbf{int} \ \mathbf{n} = 0, \mathbf{int} \ \mathbf{l} = 0, \mathbf{int} \ \mathbf{r} = \mathbf{MAXN}) {
26
27
           if (l == r) \{ return tree[n](x); \} 
          {f int} \ {f mid} = (1 + {f r}) \ / \ 2;
28
29
          if (x < mid) 
                return \max(\text{tree}[n](x), \text{query}(x, \text{le}(n), 1, \text{mid}));
30
31
32
                return \max(\text{tree}[n](x), \text{query}(x, \text{ri}(n), \text{mid} + 1, \text{r}));
33
34
    typedef long long 11;
 1
 2
 3
    const 11 MAXN = 1e5 + 5, INF = 1e18 + 9, MAXR = 1e18;
 4
    struct Line {
 5
 6
          11 a, b = -INF;
              _{\mathrm{int}128} operator()(ll x) { return (_{\mathrm{-int}128})a * x + b; }
 7
     } tree [4 * MAXN];
 8
    int idx = 0, L[4 * MAXN], R[4 * MAXN];
9
10
    int le(int n) {
11
12
          if (!L[n]) \{ L[n] = ++idx; \}
13
          return L[n];
14
    int ri(int n) {
15
          if (!R[n]) \{ R[n] = ++idx; \}
16
17
          return R[n];
18
    }
19
    \mathbf{void} \ \ \mathbf{insert} \ ( \ \mathbf{Line} \ \ \mathbf{line} \ , \ \ \mathbf{int} \ \ \mathbf{n} \ = \ \mathbf{0} \ , \ \ \mathbf{11} \ \ \mathbf{1} \ = \ -\!\! MAXR, \ \ \mathbf{11} \ \ \mathbf{r} \ = \ MAXR) \ \ \{
20
          11 \ \mathrm{mid} = (1 + r) / 2;
21
          \mathbf{bool} \ \mathrm{bl} = \mathrm{line}(1) < \mathrm{tree}[n](1);
22
23
          bool bm = line(mid) < tree[n](mid);
24
          if (!bm) \{ swap(tree[n], line); \}
25
          if (l == r) { return; }
          if (bl != bm) {
26
```

```
insert (line, le(n), l, mid);
27
28
          else {
             insert(line, ri(n), mid + 1, r);
29
30
        }
31
   }
32
    \_int128 query(int x, int n = 0, ll l = -MAXR, ll r = MAXR) {
33
        if (l = r) { return tree [n](x); }
34
35
         11 \mod = (1 + r) / 2;
36
        if (x < mid) 
             return max(tree[n](x), query(x, le(n), l, mid));
37
38
             return \max(\text{tree}[n](x), \text{query}(x, \text{ri}(n), \text{mid} + 1, \text{r}));
39
40
41
   }
```

2.14 DSU

2.15 Disjoint Set Union

2.16 DSU Simples

Estrutura que trata conjuntos. Verifica se dois itens pertencem a um mesmo grupo.

- Complexidade de tempo: O(1) amortizado.

Une grupos.

- Complexidade de tempo: O(1) amortizado.

2.17 DSU Bipartido

DSU para grafo bipartido, é possível verificar se uma aresta é possível antes de adicioná-la. Para todas as operações:

- Complexidade de tempo: O(1) amortizado.

2.18 DSU com Rollback

Desfaz as últimas K uniões

- Complexidade de tempo: O(K).

É possivel usar um checkpoint, bastando chamar **rollback()** para ir até o último checkpoint. O rollback não altera a complexidade, uma vez que K <= queries. **Só funciona sem compressão de caminho**

- Complexidade de tempo: O(log(N))

2.19 DSU Completo

DSU com capacidade de adicionar e remover vértices. **EXTREMAMENTE PODEROSO!** Funciona de maneira off-line, recebendo as operações e dando as respostas das consultas no retorno da função **solve()**

- Complexidade de tempo: O(Q * log(Q) * log(N)); Onde Q é o número de consultas e N o número de nodos

Roda em 0.6ms para $3*10^5$ queries e nodos com printf e scanf. Possivelmente aguenta 10^6 em 3s struct DSU { 1 vector < int > pa, sz;2 3 $DSU(int \ n) : pa(n + 1), sz(n + 1, 1) \{ iota(pa.begin(), pa.end(), 0); \}$ int root(int a) { return pa[a] = (a == pa[a] ? a : root(pa[a])); } 4 **bool** find (int a, int b) { return root(a) = root(b); } 5 6 void uni(int a, int b) { 7 int ra = root(a), rb = root(b);8 $if (ra = rb) \{ return; \}$ 9 if $(sz[ra] > sz[rb]) \{ swap(ra, rb); \}$ 10 pa[ra] = rb;sz[rb] += sz[ra]; 11 12 } 13 **}**; struct rollback dsu { 1 2 struct change { 3 int node, old size; 4 5 stack<change> changes; 6 vector < int > parent, size; 7 int number of sets; 8 rollback dsu(int n) { 9 10 size.resize(n + 5, 1); $number_of_sets = n;$ 11 12 for (int i = 0; i < n + 5; ++i) { parent.push back(i); } 13 } 14 int get(int a) { return (a == parent[a]) ? a : get(parent[a]); } 15 bool same(int a, int b) { return get(a) == get(b); } 16 17 **void** checkpoint() { changes.push($\{-2, 0\}$); } 18 void join(int a, int b) { 19 20 a = get(a);21 b = get(b);22 **if** (a == b) { changes.push $(\{-1, -1\})$; 23 24return; 25 if $(size[a] > size[b]) \{ swap(a, b); \}$ 26 27 changes.push($\{a, size[b]\}$); 28 parent[a] = b;29 size[b] += size[a];30 —number_of_sets; } 31 3233 $void rollback(int qnt = 1 \ll 31)$ { 34 for (int i = 0; i < qnt; ++i) { 35 auto ch = changes.top();36 changes.pop(); 37 if (ch.node = -1) { continue; } if (ch.node == -2) { 38 39 **if** (qnt == 1 << 31) { **break**; } 40 —i; 41 continue; 42 size [parent [ch.node]] = ch.old size; 43

```
44
                parent[ch.node] = ch.node;
45
                ++number_of_sets;
46
            }
        }
47
48
   };
1
   struct bipartite_dsu {
2
        vector < int > parent;
3
        vector < int > color;
4
        int size;
        bipartite dsu(int n) {
5
6
            size = n;
7
            color.resize(n + 5, 0);
8
            for (int i = 0; i < n + 5; ++i) { parent.push_back(i); }
9
        }
10
11
        pair<int, bool> get(int a) {
12
            if (parent[a] = a) \{ return \{a, 0\}; \}
13
            auto val = get(parent[a]);
14
            parent[a] = val.fi;
15
            color[a] = (color[a] + val.se) \% 2;
16
            return {parent[a], color[a]};
        }
17
18
19
        bool same_color(int a, int b) {
20
            get (a);
21
            get(b);
22
            return color[a] == color[b];
23
24
        bool same group(int a, int b) {
25
            get(a);
26
            get (b);
27
            return parent[a] == parent[b];
28
        bool possible edge(int a, int b) { return !same color(a, b) || !same group(a,
29
           b); }
30
        void join(int a, int b) {
31
32
            auto val a = get(a), val b = get(b);
33
            parent [val a.fi] = val b.fi;
            color[val a.fi] = (val a.se + val b.se + 1) % 2;
34
35
        }
36
   };
   struct full_dsu {
1
2
        struct change {
3
            int node, old_size;
4
5
        struct query {
6
            int 1, r, u, v, type;
7
8
        stack<change> changes;
9
       map<pair<int, int>, vector<query>> edges;
10
        vector < query > queries;
11
        vector < int > parent, size;
12
        int number_of_sets, time;
13
        full dsu(int n) {
14
15
            time = 0;
16
            size.resize(n + 5, 1);
17
            number of sets = n;
```

```
18
            loop(i, 0, n + 5) parent.push back(i);
        }
19
20
21
        int get(int a) \{ return (parent[a] = a ? a : get(parent[a])); \}
22
        bool same(int a, int b) { return get(a) = get(b); }
23
        void checkpoint() { changes.push(\{-2, 0\}); }
24
25
        void join(int a, int b) {
26
            a = get(a);
27
            b = get(b);
            if (a == b) { return; }
28
            if (size[a] > size[b]) \{ swap(a, b); \}
29
30
            changes.push(\{a, size[b]\});
31
            parent[a] = b;
32
            size[b] += size[a];
33
            —number of sets;
34
        }
35
        void rollback() {
36
37
            while (!changes.empty()) {
38
                auto ch = changes.top();
39
                 changes.pop();
                 if (ch.node = -2) \{ break; \}
40
                 size [parent [ch.node]] = ch.old size;
41
42
                parent [ch.node] = ch.node;
                +\!\!+\!\!number\_of\_sets\,;
43
44
            }
45
        }
46
        void ord(int &a, int &b) {
47
48
            if (a > b) \{ swap(a, b); \}
49
50
        void add(int u, int v) {
51
            ord(u, v);
            edges[{u, v}].push back({time++, (int)1e9, u, v, 0});
52
53
        void remove(int u, int v) {
54
55
            ord(u, v);
56
            edges[{u, v}].back().r = time++;
57
        }
58
59
        // consulta se os v rtices est o no mesmo grupo
60
        void question(int u, int v) {
61
            ord(u, v);
62
            queries.push back({time, time, u, v, 1});
63
            ++time;
        }
64
65
        void ord(int &a, int &b) {
66
            if (a > b) \{ swap(a, b); \}
67
68
69
        void add(int u, int v) {
70
            ord(u, v);
            edges[{u, v}].push back({time++, (int)1e9, u, v, 0});
71
72
        void remove(int u, int v) {
73
74
            ord(u, v);
            edges[{u, v}].back().r = time++;
75
76
        }
77
78
        // consulta se dois vertices estao no mesmo grupo
```

```
79
        void question(int u, int v) {
80
             ord(u, v);
             queries.push back({time, time, u, v, 1});
81
82
83
         }
84
         // consulta a quantidade de grupos distintos
85
86
        void question() {
87
             queries.push back({time, time, 0, 0, 1});
88
             ++time;
         }
89
90
         vector < int > solve() {
91
92
             for (auto [p, v] : edges) \{ queries.insert(queries.end(), all(v)); \}
93
             vector < int > vec(time, -1), ans;
94
             run(queries, 0, time, vec);
95
             for (int i : vec) {
                 if (i != -1) \{ ans.push back(i); \}
96
97
98
             return ans;
99
         }
100
        void run(const vector<query> &qrs, int 1, int r, vector<int> &ans) {
101
102
             if (l > r) \{ return; \}
103
             checkpoint();
             vector < query > qrs_aux;
104
             for (auto &q : qrs) {
105
                 if (!q.type \&\& q.l <= 1 \&\& r <= q.r) {
106
107
                      join (q.u, q.v);
                 else if (r < q.l | | l > q.r) 
108
109
                      continue;
110
                 } else {
                      qrs\_aux.push\_back(q);
111
112
113
             if (1 = r) {
114
                 for (auto &q : qrs) {
115
                      if (q.type && q.l == 1) {
116
117
                          ans[1] = number_of_sets; // numero de grupos nesse tempo
                          // ans[1] = same(q.u, q.v); // se u e v estao no mesmo grupo
118
                      }
119
120
121
                 rollback();
122
                 return;
123
             }
124
             int m = (1 + r) / 2;
125
             run(qrs_aux, l, m, ans);
126
             run(qrs_aux, m + 1, r, ans);
127
             rollback();
128
         }
129
    };
```

2.20 Kd Fenwick Tree

2.21 KD Fenwick Tree

Fenwick Tree em K dimensoes.

^{*} Complexidade de update: $O(log^k(N))$. * Complexidade de query: $O(log^k(N))$.

```
const int MAX = 10;
   11 tree [MAX] [MAX] [MAX] [MAX] [MAX] [MAX] [MAX] [MAX]; // insira a quantidade necessaria
       de dimensoes
 3
   int lsONE(int x) \{ return x & (-x); \}
4
5
    11 query (vector < int > s, int pos) {
6
7
        11 \text{ sum} = 0;
8
        while (s[pos] > 0) {
9
            if (pos < s.size() - 1) {
                 sum += query(s, pos + 1);
10
11
                sum += tree[s[0]][s[1]][s[2]][s[3]][s[4]][s[5]][s[6]][s[7]];
12
13
14
            s[pos] = lsONE(s[pos]);
15
        }
16
        return sum;
   }
17
18
   void update(vector<int> s, int pos, int v) {
19
20
        while (s [pos] < MAX + 1) {
21
            if (pos < s.size() - 1)  {
22
                 update(s, pos + 1, v);
23
            } else {}
24
                 tree[s[0]][s[1]][s[2]][s[3]][s[4]][s[5]][s[6]][s[7]] += v;
25
26
27
            s[pos] += lsONE(s[pos]);
28
        }
29
   }
```

2.22 Fenwick Tree

2.23 Fenwick Tree

Consultas e atualizações de soma em intervalo.

O vetor precisa obrigatoriamente estar indexado em 1.

* Complexidade de tempo (Pre-processamento): O(N*log(N)) * Complexidade de tempo (Consulta em intervalo): O(log(N)) * Complexidade de tempo (Update em ponto): O(log(N)) * Complexidade de espaço: 2*N = O(N)

```
struct FenwickTree {
1
2
       int n;
3
        vector<int> tree;
        FenwickTree(int n) : n(n) \{ tree.assign(n, 0); \}
4
5
        FenwickTree(vector<int> v) : FenwickTree(v.size()) {
            for (size t i = 1; i < v.size(); i++) { update(i, v[i]); }
6
7
8
       int lsONE(int x) \{ return x & (-x); \}
9
        int query(int x) {
10
            int soma = 0;
            for (; x > 0; x = lsONE(x)) \{ soma += tree[x]; \}
11
12
            return soma;
13
        int query(int l, int r) \{ return query(r) - query(l-1); \}
14
15
        void update(int x, int v) {
            for (; x < n; x += lsONE(x)) \{ tree[x] += v; \}
16
```

```
17 }
18 };
```

2.24 Segment Tree

2.25 Segment Tree

2.26 Seg Tree

Implementação padrão de Seg Tree

- Complexidade de tempo (Pré-processamento): O(N) - Complexidade de tempo (Consulta em intervalo): $O(\log(N))$ - Complexidade de tempo (Update em ponto): $O(\log(N))$ - Complexidade de espaço: 4*N = O(N)

2.27 Seg Tree Lazy

Implementação padrão de Seg Tree com lazy update

- Complexidade de tempo (Pré-processamento): O(N) - Complexidade de tempo (Consulta em intervalo): $O(\log(N))$ - Complexidade de tempo (Update em ponto): $O(\log(N))$ - Complexidade de tempo (Update em intervalo): $O(\log(N))$ - Complexidade de espaço: 2*4*N = O(N)

2.28 Sparse Seg Tree

Seg Tree Esparsa:

- Complexidade de tempo (Pré-processamento): O(1) - Complexidade de tempo (Consulta em intervalo): $O(\log(N))$ - Complexidade de tempo (Update em ponto): $O(\log(N))$

2.29 Persistent Seg Tree

Seg Tree Esparsa com histórico de Updates:

- Complexidade de tempo (Pré-processamento): O(N *log(N)) - Complexidade de tempo (Consulta em intervalo): O(log(N)) - Complexidade de tempo (Update em ponto): O(log(N)) - **Para fazer consulta em um tempo específico basta indicar o tempo na query**

2.30 Seg Tree Beats

Seg Tree que suporta update de maximo e query de soma

- Complexidade de tempo (Pré-processamento): O(N) - Complexidade de tempo (Consulta em intervalo): $O(\log(N))$ - Complexidade de tempo (Update em ponto): $O(\log(N))$ - Complexidade de tempo (Update em intervalo): $O(\log(N))$ - Complexidade de espaço: 2*4*N = O(N)

2.31 Seg Tree Beats Max and Sum update

Seg Tree que suporta update de maximo, update de soma e query de soma. Utiliza uma fila de lazy para diferenciar os updates

- Complexidade de tempo (Pré-processamento): O(N) - Complexidade de tempo (Consulta em intervalo): $O(\log(N))$ - Complexidade de tempo (Update em ponto): $O(\log(N))$ - Complexidade de tempo (Update em intervalo): $O(\log(N))$ - Complexidade de espaço: 2*4*N = O(N)

```
1
   #include <bits/stdc++.h>
 2
   using namespace std;
3
4
   #define ll long long
   #define INF 1e9
5
6
   struct Node {
7
8
        int m1 = INF, m2 = INF, cont = 0, lazy = 0;
9
        11 \text{ soma} = 0;
10
11
        void set(int v) {
12
            m1 = v;
13
            cont = 1;
            soma = v;
14
15
16
        void merge(Node a, Node b) {
17
18
            m1 = min(a.m1, b.m1);
19
            m2 = INF;
            if (a.m1 != b.m1) \{ m2 = min(m2, max(a.m1, b.m1)); \}
20
21
            if (a.m2 != m1) \{ m2 = min(m2, a.m2); \}
            if (b.m2 != m1) { m2 = min(m2, b.m2); }
22
23
            cont = (a.m1 = m1 ? a.cont : 0) + (b.m1 = m1 ? b.cont : 0);
24
            soma = a.soma + b.soma;
25
        }
26
27
        void print() { printf("%d %d %d %lld %d\n", m1, m2, cont, soma, lazy); }
28
   };
29
30
   int n, q;
31
   vector < Node > tree;
32
33
   int le(int n) \{ return 2 * n + 1; \}
34
   int ri(int n) \{ return 2 * n + 2; \}
35
36
   void push(int n, int esq, int dir) {
        if (tree[n].lazy <= tree[n].m1) { return; }</pre>
37
        tree[n].soma += (11)abs(tree[n].m1 - tree[n].lazy) * tree[n].cont;
38
39
        tree[n].m1 = tree[n].lazy;
40
        if (esq != dir) {
            tree[le(n)].lazy = max(tree[le(n)].lazy, tree[n].lazy);
41
42
            tree[ri(n)]. lazy = max(tree[ri(n)]. lazy, tree[n]. lazy);
43
        tree[n].lazy = 0;
44
   }
45
46
   void build(int n, int esq, int dir, vector<int> &v) {
47
48
        if (esq = dir) {
            tree [n]. set (v[esq]);
49
50
        } else {
51
            int mid = (esq + dir) / 2;
52
            build(le(n), esq, mid, v);
            build(ri(n), mid + 1, dir, v);
53
            tree[n].merge(tree[le(n)], tree[ri(n)]);
54
55
56
   void build (vector <int> &v) { build (0, 0, n - 1, v); }
```

```
58
59
   // ai = max(ai, mi) em [1, r]
   void update(int n, int esq, int dir, int l, int r, int mi) {
60
61
        push(n, esq, dir);
         \label{eq:final_state} \textbf{if} \ (\, \text{esq} \, > \, r \ || \ \text{dir} \, < \, 1 \ || \ \text{mi} <= \, \text{tree} \, [\, n \, ] \, . \, \text{m1}) \ \{ \ \textbf{return} \, ; \ \}
62
63
         if (1 \le esq \&\& dir \le r \&\& mi < tree[n].m2) {
64
              tree[n].lazy = mi;
65
             push(n, esq, dir);
66
         } else {
67
             int mid = (esq + dir) / 2;
              update(le(n), esq, mid, l, r, mi);
68
69
              update(ri(n), mid + 1, dir, l, r, mi);
70
              tree[n].merge(tree[le(n)], tree[ri(n)]);
71
72
   }
73
   void update(int l, int r, int mi) { update(0, 0, n-1, l, r, mi); }
74
75
    // soma de [1, r]
   int query(int n, int esq, int dir, int l, int r) {
76
77
         push(n, esq, dir);
78
         if (esq > r \mid | dir < 1) { return 0; }
79
         if (1 \le esq \&\& dir \le r) \{ return tree[n].soma; \}
        int mid = (esq + dir) / 2;
80
81
        return query (le(n), esq, mid, l, r) + query(ri(n), mid + 1, dir, l, r);
82
   int query(int l, int r) { return query(0, 0, n - 1, l, r); }
83
84
85
   int main() {
86
         cin >> n;
87
         tree.assign(4 * n, Node());
88
   }
   #include <bits/stdc++.h>
1
   using namespace std;
3
4
   #define ll long long
   #define INF 1e9
5
   #define fi first
7
   #define se second
8
9
   \mathbf{typedef}\ \mathrm{pair}{<}\mathbf{int}\;,\;\;\mathbf{int}{>}\;\;\mathrm{ii}\;;
10
   struct Node {
11
12
         int m1 = INF, m2 = INF, cont = 0;
13
         11 \text{ soma} = 0;
14
         queue<ii> lazy;
15
16
        void set(int v) {
17
             m1\,=\,v\,;
18
             cont = 1;
19
             soma = v;
20
         }
21
22
        void merge (Node a, Node b) {
23
             m1 = min(a.m1, b.m1);
24
             m2 = INF;
25
             if (a.m1 != b.m1) \{ m2 = min(m2, max(a.m1, b.m1)); \}
26
              if (a.m2 != m1) { m2 = min(m2, a.m2); }
27
              if (b.m2 != m1) \{ m2 = min(m2, b.m2); \}
28
             cont = (a.m1 = m1 ? a.cont : 0) + (b.m1 = m1 ? b.cont : 0);
29
             soma = a.soma + b.soma;
```

```
30
        }
31
        void print() { printf("%d %d %d %lld\n", m1, m2, cont, soma); }
32
33
    };
34
35
   int n, q;
    vector < Node > tree;
36
37
38
   int le(int n) \{ return 2 * n + 1; \}
   int ri(int n) \{ return 2 * n + 2; \}
39
40
41
    void push(int n, int esq, int dir) {
42
        while (!tree[n].lazy.empty()) {
43
             ii p = tree[n].lazy.front();
44
             tree | n | . lazy.pop();
             int op = p.fi, v = p.se;
45
             if (op = 0) {
46
                  if (v \le tree[n].m1) \{ continue; \}
47
48
                  tree[n].soma += (ll)abs(tree[n].m1 - v) * tree[n].cont;
49
                  tree[n].m1 = v;
                  \mathbf{if} \ (\,\mathrm{esq} \ != \ \mathrm{dir}\,) \ \{\,
50
                      tree [le(n)]. lazy. push (\{0, v\});
51
52
                      tree [ri(n)]. lazy.push(\{0, v\});
53
                  }
             } else if (op == 1) {
54
                  tree[n].soma += v * (dir - esq + 1);
55
56
                  tree[n].m1 += v;
57
                  tree[n].m2 += v;
                  if (esq != dir) {
58
59
                      tree [le(n)]. lazy.push(\{1, v\});
60
                      tree [ri(n)]. lazy.push(\{1, v\});
61
                  }
             }
62
        }
63
64
    }
65
   void build (int n, int esq, int dir, vector <int> &v) {
66
67
        if (esq = dir) {
68
             tree[n].set(v[esq]);
69
        } else {
70
             int mid = (esq + dir) / 2;
             build\left(\,l\,e\left(\,n\,\right)\,,\ esq\;,\ mid\,,\ v\,\right);
71
72
             build(ri(n), mid + 1, dir, v);
73
             tree[n].merge(tree[le(n)], tree[ri(n)]);
74
75
    }
   void build (vector \leq int> \&v) { build (0, 0, n - 1, v); }
76
77
    // ai = max(ai, mi) em [l, r]
78
    void update(int n, int esq, int dir, int l, int r, int mi) {
79
80
        push(n, esq, dir);
81
        if (esq > r \mid \mid dir < l \mid \mid mi \le tree[n].m1) { return; }
82
        if (l \le esq \&\& dir \le r \&\& mi < tree[n].m2) {
83
             tree[n].soma += (ll)abs(tree[n].ml - mi) * tree[n].cont;
84
             tree[n].m1 = mi;
             if (esq != dir) {
85
                  tree [le(n)].lazy.push({0, mi});
86
                  tree [ri(n)].lazy.push({0, mi});
87
88
89
        } else {
             int mid = (esq + dir) / 2;
90
```

```
91
              update(le(n), esq, mid, l, r, mi);
 92
              update(ri(n), mid + 1, dir, l, r, mi);
              tree[n].merge(tree[le(n)], tree[ri(n)]);
 93
 94
         }
 95
    }
 96
    void update(int l, int r, int mi) { update(0, 0, n - 1, l, r, mi); }
97
98
    // soma v em [1, r]
    void upsoma(int n, int esq, int dir, int l, int r, int v) {
99
100
         push(n, esq, dir);
         if (esq > r \mid \mid dir < 1) \{ return; \}
101
102
         if (1 \le esq \&\& dir \le r) 
103
              tree[n].soma += v * (dir - esq + 1);
104
              tree[n].m1 += v;
105
              tree | n | .m2 += v;
106
              if (esq != dir) {
107
                  tree[le(n)].lazy.push({1, v});
                  \texttt{tree} \, [\, \texttt{ri} \, (\, \texttt{n}) \, ] \, . \, \texttt{lazy} \, . \, \texttt{push} \, (\, \{\, \texttt{1} \, , \, \, \, \texttt{v} \, \}\,) \, ;
108
              }
109
         } else {
110
111
              int mid = (esq + dir) / 2;
112
              upsoma(le(n), esq, mid, l, r, v);
113
              upsoma(ri(n), mid + 1, dir, l, r, v);
              tree [n]. merge (tree [le (n)], tree [ri (n)]);
114
115
116
117
    void upsoma(int l, int r, int v) { upsoma(0, 0, n - 1, l, r, v); }
118
119
    // soma de [1, r]
    int query(int n, int esq, int dir, int l, int r) {
120
121
         push(n, esq, dir);
122
         if (esq > r \mid | dir < 1)  { return 0; }
123
         if (1 \le esq \&\& dir \le r) \{ return tree[n].soma; \}
124
         int mid = (esq + dir) / 2;
125
         return query (le(n), esq, mid, l, r) + query(ri(n), mid + 1, dir, l, r);
126
    int query(int l, int r) { return query(0, 0, n-1, l, r); }
127
128
129
    int main() {
130
         cin >> n;
131
         tree.assign(4 * n, Node());
132
         build (v);
133
    }
    const int SEGMAX = 8e6 + 5; // should be Q * log(DIR-ESQ+1)
 1
    const 11 ESQ = 0, DIR = 1e9 + 7;
 3
 4
    struct seg {
 5
         ll tree [SEGMAX];
         int R[SEGMAX], L[SEGMAX], ptr = 2; // 0 is NULL; 1 is First Root
 6
 7
         ll op(ll a, ll b) { return (a + b) % MOD; }
 8
         int le(int i) {
 9
              if (L[i] == 0) \{ L[i] = ptr++; \}
 10
              return L[i];
 11
         int ri(int i) {
 12
              13
 14
              return R|i|;
 15
 16
         ll query(ll l, ll r, int n = 1, ll esq = ESQ, ll dir = DIR) {
 17
              if (r < esq \mid | dir < l)  { return 0; }
```

```
18
             if (l \le esq \&\& dir \le r) \{ return tree[n]; \}
19
             11 \quad \text{mid} = (\text{esq} + \text{dir}) / 2;
             return op(query(l, r, le(n), esq, mid), query(l, r, ri(n), mid + 1, dir));
20
21
22
        void update(ll x, ll v, int n = 1, ll esq = ESQ, ll dir = DIR) {
23
             if (esq = dir) {
24
                  tree[n] = (tree[n] + v) \% MOD;
25
                  11 \quad mid = (esq + dir) / 2;
26
27
                  \mathbf{if} \ (\mathbf{x} \le \mathbf{mid}) \ \{
28
                      update(x, v, le(n), esq, mid);
29
                  } else {
30
                      update(x, v, ri(n), mid + 1, dir);
31
32
                  tree[n] = op(tree[le(n)], tree[ri(n)]);
33
             }
34
        }
    };
35
1
    const int MAX = 2505;
2
   int n, m, mat[MAX][MAX], tree[4 * MAX][4 * MAX];
3
4
5
    int le(int x) \{ return 2 * x + 1; \}
    int ri(int x) \{ return 2 * x + 2; \}
6
7
    void build_y(int nx, int lx, int rx, int ny, int ly, int ry) {
8
9
        if (ly = ry) {
10
             if (lx = rx) 
11
                  tree[nx][ny] = mat[lx][ly];
12
             } else {
13
                  tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
14
        } else {
15
16
             \mathbf{int} \ \mathbf{my} = (1\mathbf{y} + \mathbf{ry}) \ / \ 2;
17
             build_y(nx, lx, rx, le(ny), ly, my);
             build_y(nx, lx, rx, ri(ny), my + 1, ry);
18
             tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
19
20
        }
    }
21
22
    void build x(int nx, int lx, int rx) {
        if (lx != rx) {
23
24
             int mx = (lx + rx) / 2;
25
             build_x(le(nx), lx, mx);
26
             build_x(ri(nx), mx + 1, rx);
27
28
        build y(nx, lx, rx, 0, 0, m-1);
29
    void build() { build_x(0, 0, n-1); }
30
31
   void update y(int nx, int lx, int rx, int ny, int ly, int ry, int x, int y, int v)
32
        if (ly = ry) {
33
34
             if (lx = rx) 
35
                  tree[nx][ny] = v;
36
             } else {}
                  tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
37
38
39
        } else {
40
             \mathbf{int} \ \mathbf{my} = (1\mathbf{y} + \mathbf{ry}) \ / \ 2;
41
             if (y \ll my)
```

```
42
                    update y(nx, lx, rx, le(ny), ly, my, x, y, v);
43
               } else {
44
                    update y(nx, lx, rx, ri(ny), my + 1, ry, x, y, v);
45
               tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
46
47
          }
48
    }
49
    void update x(int nx, int lx, int rx, int x, int y, int v) {
50
          if (lx != rx) {
51
               int mx = (lx + rx) / 2;
52
               if (x \le mx) 
53
                     update x(le(nx), lx, mx, x, y, v);
54
               } else {
55
                    update_x(ri(nx), mx + 1, rx, x, y, v);
56
57
58
          update_y(nx, lx, rx, 0, 0, m-1, x, y, v);
59
    void update(int x, int y, int v) { update x(0, 0, n-1, x, y, v); }
60
61
62
    int sum_y(int nx, int ny, int ly, int ry, int qly, int qry) {
63
          if (ry < qly \mid | ly > qry) \{ return 0; \}
64
          if (qly \le ly \&\& ry \le qry) \{ return tree[nx][ny]; \}
65
          int my = (ly + ry) / 2;
66
          \mathbf{return} \ \operatorname{sum}_{y}(\operatorname{nx}, \ \operatorname{le}(\operatorname{ny}), \ \operatorname{ly}, \ \operatorname{my}, \ \operatorname{qly}, \ \operatorname{qry}) + \operatorname{sum}_{y}(\operatorname{nx}, \ \operatorname{ri}(\operatorname{ny}), \ \operatorname{my} + 1, \ \operatorname{ry},
              qly, qry);
67
    \mathbf{int} \ \mathrm{sum} \underline{\ } x (\mathbf{int} \ \mathrm{nx} \, , \ \mathbf{int} \ \mathrm{lx} \, , \ \mathbf{int} \ \mathrm{rx} \, , \ \mathbf{int} \ \mathrm{qlx} \, , \ \mathbf{int} \ \mathrm{qly} \, , \ \mathbf{int} \ \mathrm{qry}) \ \{
68
69
          if (rx < qlx \mid | lx > qrx) \{ return 0; \}
70
          if (qlx \le lx \&\& rx \le qrx) \{ return sum y(nx, 0, 0, m-1, qly, qry); \}
71
          \mathbf{int} \ \mathbf{mx} = (1\mathbf{x} + \mathbf{rx}) \ / \ 2;
72
          return sum x(le(nx), lx, mx, qlx, qrx, qly, qry) + sum <math>x(ri(nx), mx + 1, rx, qlx, qry)
              qlx, qrx, qly, qry);
73
74
    int sum(int lx, int rx, int ly, int ry) { return sum x(0, 0, n-1, lx, rx, ly,
         ry); }
1
    namespace seg {
          const int MAX = 2e5 + 5;
3
          int n;
 4
          11 \text{ tree} \left[4 * \text{MAX}\right];
          ll merge(ll a, ll b) { return a + b; }
 5
 6
          int le(int n) { return 2 * n + 1; }
 7
          int ri(int n) \{ return 2 * n + 2; \}
 8
          void build (int n, int esq, int dir, const vector < ll > &v) {
9
               if (esq = dir) 
10
                     tree[n] = v[esq];
11
               } else {}
12
                    int mid = (esq + dir) / 2;
13
                     build(le(n), esq, mid, v);
14
                     build(ri(n), mid + 1, dir, v);
15
                     tree[n] = merge(tree[le(n)], tree[ri(n)]);
16
17
18
          void build (const vector < ll > &v) {
19
               n = v.size();
20
               build (0, 0, n - 1, v);
21
22
          ll query(int n, int esq, int dir, int l, int r) {
23
               if (esq > r \mid | dir < l) { return 0; }
24
               if (l \le esq \&\& dir \le r) \{ return tree[n]; \}
```

```
25
              int mid = (esq + dir) / 2;
26
              return merge(query(le(n), esq, mid, l, r), query(ri(n), mid + 1, dir, l,
                   r));
27
         ll query(int l, int r) { return query(0, 0, n - 1, l, r); }
28
29
         void update(int n, int esq, int dir, int x, ll v) {
              if (esq > x \mid | dir < x) \{ return; \}
30
31
               if (esq = dir) {
                    \,t\,r\,e\,e\,\lceil\,n\,\rceil \;=\; v\,;
32
33
              } else {
                    int mid = (esq + dir) / 2;
34
                    if (x \le mid) {
35
36
                         update(le(n), esq, mid, x, v);
37
                    } else {
38
                         update(ri(n), mid + 1, dir, x, v);
39
40
                    tree[n] = merge(tree[le(n)], tree[ri(n)]);
41
42
43
         void update(int x, 11 \text{ v}) { update(0, 0, n - 1, x, v); }
44
    }
    namespace seg {
1
 2
         const int MAX = 1e5 + 5;
 3
         int n;
         11 \text{ tree} [4 * MAX];
 4
 5
         ll merge(ll a, ll b) \{ return max(a, b); \}
         int le(int n) { return 2 * n + 1; }
 6
7
         int ri(int n) { return 2 * n + 2; }
 8
         void build (int n, int esq, int dir, const vector < ll > &v) {
 9
              if (esq = dir) {
                    \texttt{tree}\,[\,n\,] \;=\; v\,[\,esq\,]\,;
10
              } else {
11
                    int mid = (esq + dir) / 2;
12
                    \texttt{build} \left(\, \texttt{le} \left(\, n\,\right) \,, \ \mathsf{esq} \,, \ \mathsf{mid} \,, \ v\,\right) \,;
13
14
                    build(ri(n), mid + 1, dir, v);
                    tree[n] = merge(tree[le(n)], tree[ri(n)]);
15
              }
16
17
         void build (const vector < ll > &v) {
18
19
              n = v.size();
20
              build (0, 0, n - 1, v);
21
22
          // find fist index greater than k in [l, r]
23
         ll query(int n, int esq, int dir, int l, int r, ll k) {
24
               if (esq > r \mid | dir < 1) { return -1; }
               \textbf{if} \hspace{0.2cm} (\hspace{0.1cm} \textbf{l} \hspace{0.2cm} <= \hspace{0.2cm} \text{esq \&\& dir} \hspace{0.2cm} <= \hspace{0.2cm} \textbf{r} \hspace{0.2cm} ) \hspace{0.2cm} \{
25
                    if (tree[n] < k) \{ return -1; \}
26
                    while (esq != dir) {
27
28
                         int mid = (esq + dir) / 2;
29
                         if (tree[le(n)] >= k) {
30
                              n = le(n), dir = mid;
                         } else {
31
32
                              n = ri(n), esq = mid + 1;
33
34
35
                    return esq;
36
37
              int mid = (esq + dir) / 2;
38
              int res = query(le(n), esq, mid, l, r, k);
39
               if (res != -1) \{ return res; \}
```

```
40
             return query (ri(n), mid + 1, dir, l, r, k);
        }
41
        ll query(int l, int r, ll k) { return query(0, 0, n - 1, l, r, k); }
42
43
        void update(int n, int esq, int dir, int x, ll v) {
             if (esq > x \mid | dir < x) \{ return; \}
44
45
             if (esq = dir) {
46
                  tree[n] = v;
47
             } else {}
48
                  int mid = (esq + dir) / 2;
49
                  \mathbf{if} \ (\mathbf{x} \leq \mathbf{mid}) \ \{
50
                       update(le(n), esq, mid, x, v);
51
                  } else {
52
                       update(ri(n), mid + 1, dir, x, v);
53
54
                  tree |n| = merge(tree | le(n) |, tree | ri(n) |);
55
             }
56
57
        void update(int x, ll v) { update(0, 0, n - 1, x, v); }
58
   struct SegTree {
1
2
        int n;
3
        vector<int> tree;
4
5
        SegTree(int n) : n(n) { tree.assign(4 * n, 0); }
6
7
        int le(int n) \{ return 2 * n + 1; \}
8
        int ri(int n) \{ return 2 * n + 2; \}
9
10
        int query(int n, int esq, int dir, int l, int r) {
11
             if (esq > r \mid | dir < 1) { return 0; }
12
             if (1 \le esq \&\& dir \le r) \{ return tree[n]; \}
13
             int mid = (esq + dir) / 2;
             return max(query(le(n), esq, mid, l, r), query(ri(n), mid + 1, dir, l, r));
14
15
16
        int query(int l, int r) { return query(0, 0, n - 1, l, r); }
17
18
        void update(int n, int esq, int dir, int x, int v) {
19
             if (esq > x \mid | dir < x) \{ return; \}
20
             if (esq = dir) {
                  \,t\,r\,e\,e\,\left[\,n\,\right] \;=\; v\,;
21
22
             } else {}
23
                  int mid = (esq + dir) / 2;
24
                  \mathbf{if} \ (\mathbf{x} \leq \mathbf{mid}) \ \{
25
                       update\left(\,l\,e\,(\,n\,)\;,\;\;esq\;,\;\;mid\,,\;\;x\,,\;\;v\,\right);
26
                  } else {
27
                       update(ri(n), mid + 1, dir, x, v);
28
29
                  tree[n] = max(tree[le(n)], tree[ri(n)]);
30
             }
31
32
        void update(int x, int v) { update(0, 0, n - 1, x, v); }
33
   };
   namespace seg {
1
        const int MAX = 1e5 + 5;
2
3
        struct node {
 4
             ll pref, suff, sum, best;
 5
        };
 6
        node new_node(11 v) \{ return node \{v, v, v, v\}; \}
7
        const node NEUTRAL = \{0, 0, 0, 0\};
```

```
8
           node tree [4 * MAX];
 9
           node merge (node a, node b) {
                 11 pref = max(a.pref, a.sum + b.pref);
10
11
                 11 \text{ suff} = \max(b.\text{suff}, b.\text{sum} + a.\text{suff});
                 11 \text{ sum} = a.\text{sum} + b.\text{sum};
12
13
                 11 best = max(a.suff + b.pref, max(a.best, b.best));
14
                 return node{pref, suff, sum, best};
15
           }
16
17
           int n;
           int le(int n) { return 2 * n + 1; }
18
           int ri(int n) { return 2 * n + 2; }
19
20
           void build(int n, int esq, int dir, const vector<ll> &v) {
21
                 if (esq = dir) {
22
                       tree[n] = new node(v[esq]);
23
                 } else {
24
                       int mid = (esq + dir) / 2;
25
                       build(le(n), esq, mid, v);
26
                       build (ri(n), mid + 1, dir, v);
27
                       tree[n] = merge(tree[le(n)], tree[ri(n)]);
28
                 }
29
           void build (const vector < ll > &v) {
30
31
                 n = v.size();
32
                 build (0, 0, n - 1, v);
33
34
           node query(int n, int esq, int dir, int l, int r) {
                 \textbf{if} \hspace{0.2cm} (\hspace{0.1cm} \text{es}\hspace{0.1cm} q \hspace{0.1cm} > \hspace{0.1cm} r \hspace{0.2cm} |\hspace{0.1cm} | \hspace{0.2cm} \text{dir} \hspace{0.1cm} < \hspace{0.1cm} l\hspace{0.1cm}) \hspace{0.2cm} \{ \hspace{0.2cm} \textbf{return} \hspace{0.2cm} \hspace{0.1cm} \text{NEUTRAL}; \hspace{0.2cm} \}
35
36
                  \textbf{if} \hspace{0.2cm} (\hspace{.05cm} l \hspace{.05cm} <= \hspace{.05cm} \operatorname{esq} \hspace{0.2cm} \& \& \hspace{0.2cm} \operatorname{dir} \hspace{.05cm} <= \hspace{.05cm} r \hspace{.05cm} ) \hspace{0.2cm} \left\{ \hspace{0.2cm} \textbf{return} \hspace{0.2cm} \operatorname{tree} \hspace{.05cm} [\hspace{.05cm} n \hspace{.05cm}] \hspace{.05cm} ; \hspace{0.2cm} \right\} 
37
                 int mid = (esq + dir) / 2;
38
                 return merge (query (le(n), esq, mid, l, r), query (ri(n), mid + 1, dir, l,
                      r));
39
           ll query(int l, int r) { return query(0, 0, n - 1, l, r).best; }
40
41
           void update(int n, int esq, int dir, int x, ll v) {
42
                 if (esq > x \mid | dir < x) \{ return; \}
43
                 if (esq = dir) {
                       tree[n] = new node(v);
44
45
                 } else {
46
                       int mid = (esq + dir) / 2;
47
                       if (x \leq mid) 
48
                             update(le(n), esq, mid, x, v);
49
                       } else {}
50
                             update(ri(n), mid + 1, dir, x, v);
51
52
                       tree[n] = merge(tree[le(n)], tree[ri(n)]);
53
                 }
54
           void update(int x, ll v) { update(0, 0, n - 1, x, v); }
55
     }
56
     namespace seg {
 1
           \mathbf{const} \ \mathbf{int} \ \mathrm{MAX} = 2\,\mathrm{e}5 \ + \ 5;
 2
 3
           const 11 NEUTRAL = 0; // merge(a, neutral) = a
           ll merge(ll a, ll b) { return a + b; }
 4
           int sz; // size of the array
 5
 6
           11 \text{ tree} \left[4 * \text{MAX}\right], \text{ lazy} \left[4 * \text{MAX}\right];
 7
           int le(int n) { return 2 * n + 1;}
 8
           int ri(int n) \{ return 2 * n + 2; \}
 9
           void push(int n, int esq, int dir) {
10
                 if (lazy[n] = 0) \{ return; \}
```

```
11
              tree[n] += lazy[n] * (dir - esq + 1);
              if (esq != dir) {
12
                   lazy[le(n)] += lazy[n];
13
14
                   lazy[ri(n)] += lazy[n];
15
16
              lazy[n] = 0;
17
18
         void build (span < const ll > v, int n, int esq, int dir) {
19
              if (esq = dir) {
20
                   tree[n] = v[esq];
21
              } else {
22
                   int mid = (esq + dir) / 2;
                   \texttt{build}\,(\,v\,,\ \texttt{le}\,(\,n\,)\,\,,\ \texttt{esq}\,\,,\ \texttt{mid}\,)\,\,;
23
24
                   build\,(\,v\,,\ ri\,(\,n\,)\,\,,\ mid\,\,+\,\,1\,,\ dir\,)\,\,;
25
                   tree[n] = merge(tree[le(n)], tree[ri(n)]);
26
              }
27
         }
28
         void build (span<const ll > v) {
29
              sz = v. size();
30
              build (v, 0, 0, sz - 1);
31
32
         ll query(int l, int r, int n = 0, int esq = 0, int dir = sz - 1) {
33
             push(n, esq, dir);
34
              if (esq > r \mid | dir < 1) { return NEUTRAL; }
35
              if (l \le esq \&\& dir \le r) \{ return tree[n]; \}
              int mid = (esq + dir) / 2;
36
37
              return merge (query (1, r, le(n), esq, mid), query (1, r, ri(n), mid + 1,
                  dir));
38
39
         void update(int 1, int r, 11 v, int n = 0, int esq = 0, int dir = sz - 1) {
40
             push(n, esq, dir);
              if (esq > r \mid \mid dir < 1) { return; }
41
42
              if (1 \le esq \&\& dir \le r)  {
43
                   lazy[n] += v;
44
                  push(n, esq, dir);
45
              } else {
46
                   int mid = (esq + dir) / 2;
47
                   update(1, r, v, le(n), esq, mid);
48
                   update(l, r, v, ri(n), mid + 1, dir);
49
                   tree[n] = merge(tree[le(n)], tree[ri(n)]);
50
              }
51
         }
52
    }
    namespace seg {
1
2
         const 11 ESQ = 0, DIR = 1e9 + 7;
3
         struct node {
              11 \ v = 0;
4
              node *l = NULL, *r = NULL;
 5
 6
              node() { }
7
              node(11 \ v) : v(v) \{ \}
8
              node(node *l, node *r) : l(l), r(r) \{ v = l \rightarrow v + r \rightarrow v; \}
9
              void apply() {
                   if (1 == NULL) { 1 = new node(); }
10
                   if (r = NULL) \{ r = new node(); \}
11
12
13
         };
14
         vector<node *> roots;
         \mathbf{void} \ \mathrm{build}\left(\right) \ \left\{ \ \mathrm{roots.push\_back}\left(\mathbf{new} \ \mathrm{node}\left(\right)\right); \ \right\}
15
16
         void push(node *n, int esq, int dir) {
17
              if (esq != dir) { n->apply(); }
```

```
18
        }
19
        // sum v on x
        node *update(node *n, int esq, int dir, int x, int v) {
20
21
             push(n, esq, dir);
22
             if (esq = dir) \{ return new node(n->v+v); \}
23
             int mid = (esq + dir) / 2;
24
             if (x \le mid) 
                 return new node(update(n->l, esq, mid, x, v), n->r);
25
26
             } else {
27
                 return new node (n->l, update(n->r, mid + 1, dir, x, v));
28
29
30
        int update(int root, int pos, int val) {
31
             node *novo = update(roots[root], ESQ, DIR, pos, val);
32
             roots.push back(novo);
33
             return roots.size() -1;
34
        // sum in [L, R]
35
        11 query (node *n, int esq, int dir, int l, int r) {
36
37
             push(n, esq, dir);
38
             if (esq > r \mid | dir < 1) { return 0; }
             if (1 \le esq \&\& dir \le r) \{ return n > v; \}
39
             int mid = (esq + dir) / 2;
40
41
            return query (n->1, \text{ esq}, \text{ mid}, 1, r) + \text{query}(n->r, \text{ mid} + 1, \text{ dir}, 1, r);
42
        11 query(int root, int 1, int r) { return query(roots[root], ESQ, DIR, 1, r); }
43
44
        // kth min number in [L, R] (l_root can not be 0)
        int kth(node *L, node *R, int esq, int dir, int k) {
45
             push(L, esq, dir);
46
47
             push (R, esq, dir);
48
             if (esq = dir) \{ return esq; \}
             int mid = (esq + dir) / 2;
49
             int cont = R -> l -> v - L -> v;
50
             if (cont >= k) {
51
52
                 return kth(L\rightarrow l, R\rightarrow l, esq, mid, k);
53
             } else {}
                 return kth(L\rightarrow r, R\rightarrow r, mid + 1, dir, k - cont);
54
55
56
        int kth(int l root, int r root, int k) { return kth(roots[l root - 1],
57
            roots [r root], ESQ, DIR, k); }
58
   };
```

2.32 Interval Tree

2.33 Interval Tree

Por Rafael Granza de Mello

Capaz de retornar todos os intervalos que intersectam [L, R]. **L e R inclusos** Contém funções insert(L, R, ID), erase(L, R, ID) , overlaps(L, R) e find(L, R, ID). É necessário inserir e apagar indicando tanto os limites quanto o ID do intervalo.

- Complexidade de tempo: O(N * log(N)).

Podem ser usadas as operações em Set:

-insert() - erase() - upper bound() - etc

1 #include <ext/pb_ds/assoc_container.hpp>

```
#include <ext/pb ds/tree policy.hpp>
3
   using namespace __gnu_pbds;
4
5
   struct interval {
6
        long long lo, hi, id;
7
        bool operator < (const interval &i) const {
            return lo < i.lo || (lo == i.lo && hi < i.hi) || (lo == i.lo && hi == i.hi
8
                && id < i.id);
9
        }
10
   };
   template <class CNI, class NI, class Cmp Fn, class Allocator> struct
11
       intervals node update {
        typedef long long metadata type;
12
13
        int sz = 0;
14
        \mathbf{virtual} CNI node \operatorname{begin}() \mathbf{const} = 0;
15
        \mathbf{virtual} CNI node \mathbf{end}() \mathbf{const} = 0;
16
17
        inline vector < int > overlaps (const long long l, const long long r) {
18
            queue < CNI> q;
19
            q.push(node begin());
            vector<int> vec;
20
21
            while (!q.empty()) {
22
                CNI it = q.front();
23
                q.pop();
                 if (it = node\_end()) \{ continue; \}
24
25
                 if (r >= (*it) -> lo \&\& l <= (*it) -> hi) { vec.push_back((*it) -> id); }
                CNI l it = it.get l child();
26
27
                long long l_max = (l_it == node_end()) ? -INF : l_it.get_metadata();
28
                 if (l_max >= l) { q.push(l_it); }
29
                 if ((*it)->lo <= r) \{ q.push(it.get r child()); \}
30
31
            return vec;
32
        }
33
        inline void operator()(NI it, CNI end it) {
34
35
            const long long l_max = (it.get_l_child() == end_it) ? -INF :
                it.get_l_child().get_metadata();
            const long long r max = (it.get r child() == end it) ? -INF:
36
                it.get r child().get metadata();
            const cast<long long &>(it.get metadata()) = max((*it)->hi, max(l max,
37
                r max));
38
        }
39
   };
40
   typedef tree<interval , null_type , less<interval >, rb_tree_tag ,
       intervals_node_update> interval_tree;
```

2.34 Sparse Table

2.35 Sparse Table

Responde consultas de maneira eficiente em um conjunto de dados estáticos. Realiza um pré-processamento para diminuir o tempo de cada consulta.

- Complexidade de tempo (Pré-processamento): O(N * log(N)) - Complexidade de tempo (Consulta para operações sem sobreposição amigável): O(N * log(N)) - Complexidade de tempo (Consulta para operações com sobreposição amigável): O(1) - Complexidade de espaço: O(N * log(N))

Exemplo de operações com sobreposição amigável: max(), min(), gcd(), f(x, y) = x

```
struct SparseTable {
1
2
       int n, e;
3
       vector < vector < int >> st;
 4
       SparseTable(vector < int > &v) : n(v.size()), e(floor(log2(n))) 
           st.assign(e + 1, vector < int > (n));
5
 6
           for (int i = 0; i < n; i++) { st[0][i] = v[i]; }
7
           for (int i = 1; i \le e; i++) {
8
               for (int j = 0; j + (1 << i) <= n; j++) { st[i][j] = min(st[i - 1][j],
                   st[i - 1][j + (1 << (i - 1))]); }
9
           }
10
       // O(log(N)) Query for non overlap friendly operations
11
       int logquery(int 1, int r) {
12
           int res = 2e9;
13
14
           for (int i = e; i >= 0; i---) {
               if ((1 << i) <= r - 1 + 1) {
15
16
                   res = min(res, st[i][1]);
                   l += 1 << i;
17
18
19
20
           return res;
21
       // O(1) Query for overlab friendly operations
22
       // ex: max(), min(), gcd(), f(x, y) = x
23
24
       int query(int 1, int r) {
           // if (1 > r) return 2e9;
25
26
           int i = ilogb(r - l + 1);
27
           28
       }
29
   };
```

2.36 Disjoint Sparse Table

2.37 Disjoint Sparse Table

Resolve Query de range para qualquer operação associativa em **O(1)**.

Pré-processamento em **O(Nlog(N))** struct dst { 2 const int neutral = 1;3 #define comp(a, b) (a | b) 4 vector < vector < int >> t; 5 dst(vector < int > v) { 6 int n, k, sz = v.size();7 for (n = 1, k = 0; n < sz; n <<= 1, k++)8 9 t.assign(k, vector < int > (n));for (int i = 0; i < n; i++) { $t[0][i] = i < sz ? v[i] : neutral; }$ 10 for (int j = 0, len = 1; $j \le k$; j++, len \iff 1) { 11 for (int $s = len; s < n; s += (len << 1)) {$ 12 13 t[j][s] = v[s];t[j][s-1] = v[s-1];14 for (int i = 1; i < len; i++) { 15 16 t[j][s+i] = comp(t[j][s+i-1], v[s+i]);17 t[j][s-1-i] = comp(v[s-1-i], t[j][s-i]);18 19 } } 20

```
21 }
22 int query(int l, int r) {
23 if (l == r) { return t[0][r]; }
24 int i = 31 - __builtin_clz(l ^ r);
25 return comp(t[i][l], t[i][r]);
26 }
27 };
```

3 String

3.1 Aho-Corasick

3.2 Aho-Corasick

Constrói uma estrutura de dados semelhante a um trie com links adicionais e, em seguida, constrói uma máquina de estados finitos (autômato). Útil para pattern matching de um set de strings em um texto.

Complexidade de tempo: O(|S|+|T|), onde |S| é o somatório do tamanho das strings e |T| é o tamanho do texto

```
const int K = 26;
 1
 2
 3
   struct Vertex {
        int next[K], p = -1, link = -1, exi = -1, go[K], cont = 0;
 4
        bool term = false;
 5
 6
        vector < int > idxs;
7
        char pch;
 8
        Vertex(int p = -1, char ch = '\$') : p(p), pch(ch) 
9
            fill (begin (next), end (next), -1);
10
            fill(begin(go), end(go), -1);
11
        }
12
    };
    vector < Vertex > aho(1);
13
14
   void add_string(const string &s, int idx) {
        int v = 0;
15
        for (char ch : s) {
16
            int c = ch - 'a';
17
            if (aho[v]. next[c] = -1) {
18
19
                aho[v]. next[c] = aho. size();
                aho.emplace back(v, ch);
20
21
22
            v = aho[v].next[c];
23
        aho[v].term = true;
24
25
        aho[v].idxs.push back(idx);
26
   int go(int u, char ch);
27
   int get_link(int u) {
28
29
        if (aho[u].link = -1) {
            if (u = 0 || aho[u].p = 0) {
30
31
                aho[u]. link = 0;
32
            } else {
33
                aho[u]. link = go(get link(aho[u].p), aho[u].pch);
34
35
36
        return aho[u].link;
37
   int go(int u, char ch) {
38
39
        int c = ch - 'a';
        if (aho[u].go[c] = -1) {
40
            if (aho[u].next[c] != -1) {
41
                aho[u].go[c] = aho[u].next[c];
42
43
            } else {
                aho[u].go[c] = u = 0 ? 0 : go(get link(u), ch);
44
45
46
47
        return aho[u].go[c];
48
   }
```

```
49
   int exi(int u) {
        if (aho[u]. exi != -1) \{ return aho[u]. exi; \}
50
        int v = get link(u);
51
52
        return aho[u]. exi = (v = 0 \mid | aho[v]. term ? v : <math>exi(v));
53
   }
54
   void process(const string &s) {
        int st = 0;
55
56
        for (char c : s) {
57
            st = go(st, c);
58
            for (int aux = st; aux; aux = exi(aux)) { aho[aux].cont++; }
59
        for (int st = 1; st < aho_sz; st++) {
60
            if (!aho[st].term) { continue; }
61
62
            for (int i : aho[st].idxs) {
63
                // Do something here
64
                 // idx i ocurs + aho[st].cont times
65
                h[i] += aho[st].cont;
            }
66
67
        }
68
   }
```

3.3 Hashing

3.4 Hashing

Hashing para testar igualdade de duas strings A função ***range(i, j)*** retorna o hash da substring nesse range. Pode ser necessário usar pares de hash para evitar colisões.

* Complexidade de tempo (Construção): O(N) * Complexidade de tempo (Consulta de range): O(1)

```
struct hashing {
1
2
         const long long LIM = 1000006;
 3
        long long p, m;
4
         vector < long long > pw, hsh;
 5
         hashing \left( \textbf{long long } \_p, \ \textbf{long long } \_m \right) \ : \ p\left( \_p \right), \ m\left( \_m \right) \ \left\{
 6
             pw.resize(LIM);
7
             hsh.resize(LIM);
8
             pw[0] = 1;
9
             for (int i = 1; i < LIM; i++) { pw[i] = (pw[i-1] * p) % m; }
10
         void set string(string &s) {
11
12
             hsh[0] = s[0];
             for (int i = 1; i < s.size(); i++) { hsh[i] = (hsh[i-1] * p + s[i]) % m;
13
14
15
         long long range (int esq, int dir) {
16
             long long ans = hsh[dir];
              if (esq > 0) \{ ans = (ans - (hsh[esq - 1] * pw[dir - esq + 1] \% m) + m) \%
17
                 m; }
18
             return ans;
19
         }
20
    };
```

3.5 Trie

3.6 Trie

Estrutura que guarda informações indexadas por palavra. Útil encontrar todos os prefixos inseridos anteriormente de uma palavra específica.

* Complexidade de tempo (Update): O(|S|) * Complexidade de tempo (Consulta de palavra): O(|S|)

```
struct trie {
 1
         \qquad \qquad \text{map} \!\!<\!\! \mathbf{char} \,, \ \mathbf{int} \!\!> \ \mathrm{trie} \, [100005];
 2
 3
         int value [100005];
         int n nodes = 0;
 4
         void insert (string &s, int v) {
 5
 6
              int id = 0;
 7
               for (char c : s) {
                    if (!trie[id].count(c)) { trie[id][c] = ++n_nodes; }
 8
                    id = trie[id][c];
 9
10
11
              value[id] = v;
12
         int get value(string &s) {
13
              int id = 0;
14
15
               for (char c : s) {
                    if (! trie[id].count(c)) \{ return -1; \}
16
                    id = trie[id][c];
17
18
19
              return value[id];
20
         }
21
    };
```

3.7 Prefix Function

3.8 Prefix Function

Para cada prefixo k de uma dada string s, calcula o maior prefixo que tambem é sufixo de k.

Seja n o tamanho do texto e m o tamanho do padrão.

3.9 KMP

String matching em O(n + m).

3.10 Autômato de KMP

String matching em O(n) com O(m) de pré-processamento.

3.11 Prefix Count

Dada uma string s, calcula quantas vezes cada prefixo de s aparece em s com complexidade de tempo de O(n).

```
1 vector<int> pi(string &s) {
2 vector<int> p(s.size());
3 for (int i = 1, j = 0; i < s.size(); i++) {
```

```
4
            while (j > 0 \&\& s[i] != s[j]) \{ j = p[j-1]; \}
5
            if (s[i] == s[j]) { j++; }
6
            p[i] = j;
7
8
        return p;
9
   }
1
   vector<int> pi(string &s) {
2
        vector < int > p(s.size());
3
        for (int i = 1, j = 0; i < s.size(); i++) {
            while (j > 0 \&\& s[i] != s[j]) \{ j = p[j-1]; \}
4
5
            if (s[i] = s[j]) \{ j++; \}
6
            p[i] = j;
7
        }
8
        return p;
9
   }
10
11
   vector < int > kmp(string &s, string t) {
12
        t += '$';
13
        vector < int > p = pi(t), match;
14
         \mbox{for (int } i = 0, \ j = 0; \ i < s.\,size(); \ i+\!\!+\!\!) \ \{
15
            while (j > 0 \&\& s[i] != t[j]) \{ j = p[j-1]; \}
16
            if (s[i] = t[j]) { j++; }
17
            if (j = t.size() - 1) \{ match.push_back(i - j + 1); \}
18
19
        return match;
20
   }
   vector<int> pi(string s) {
1
2
        vector < int > p(s.size());
3
        for (int i = 1, j = 0; i < s.size(); i++) {
            while (j > 0 \&\& s[i] != s[j]) \{ j = p[j-1]; \}
4
5
            if (s[i] = s[j]) { j++; }
6
            p[i] = j;
7
8
        return p;
9
   }
10
11
   vector<int> prefixCount(string s) {
12
        vector < int > p = pi(s + '\#');
13
        int n = s.size();
14
        vector < int > cnt(n + 1, 0);
15
        for (int i = 0; i < n; i++) { cnt[p[i]]++; }
16
        for (int i = n - 1; i > 0; i—) { cnt[p[i - 1]] += cnt[i]; }
17
        for (int i = 0; i \le n; i++) { cnt[i]++; }
18
        return cnt;
19
   }
   struct AutKMP {
1
2
        vector < vector < int >> nxt;
3
4
        vector<int> pi(string &s) {
5
             vector < int > p(s.size());
6
            for (int i = 1, j = 0; i < s.size(); i++) {
                 while (j > 0 \&\& s[i] != s[j]) \{ j = p[j-1]; \}
7
8
                 if (s[i] == s[j]) { j++; }
9
                 p | i | = j;
10
11
            return p;
12
        }
13
```

```
14
          void setString(string s) {
15
               s += '#';
               \mathtt{nxt.assign} \, (\, \mathtt{s.size} \, (\,) \,\,, \  \, \mathtt{vector} \! < \! \mathbf{int} \! > \! (26) \,) \,;
16
17
               vector < int > p = pi(s);
               for (int c = 0; c < 26; c++) { nxt[0][c] = ('a' + c == s[0]); }
18
               \mbox{ for } (\mbox{ int } i = 1; \ i < s.\,size\,(); \ i+\!+\!) \ \{
19
                    for (int c = 0; c < 26; c++) { nxt[i][c] = ('a' + c == s[i]) ? i + 1:
20
                         nxt[p[i - 1]][c];
21
               }
22
          }
23
24
          vector < int > kmp(string &s, string &t) {
25
               vector < int > match;
               \mbox{for (int $i=0$, $j=0$; $i< s.size()$; $i++) { } } \label{eq:formula}
26
27
                    j = nxt[j][s[i] - 'a'];
28
                    if (j = t.size()) { match.push back(i - j + 1); }
29
30
               return match;
31
32
    } aut;
```

3.12 Manacher

3.13 Algoritmo de Manacher

Dada uma string s de tamanho n, encontra todos os pares (i,j) tal que a substring s

i...j

seja um palindromo.

```
* Complexidade de tempo: O(N)
```

```
1
    struct manacher {
 2
        long long n, count;
 3
         vector < int > d1, d2;
        long long solve (string &s) {
 4
 5
             n = s.size(), count = 0;
 6
             solve odd(s);
             solve even(s);
 7
 8
             return count;
9
10
        void solve_odd(string &s) {
11
             d1. resize(n);
12
             for (int i = 0, l = 0, r = -1; i < n; i++) {
13
                  int k = (i > r) ? 1 : min(d1[l + r - i], r - i + 1);
                  while (0 \le i - k \&\& i + k \le n \&\& s[i - k] = s[i + k]) \{ k++; \}
14
                  count += d1[i] = k--;
15
16
                  if (i + k > r)  {
                       l = i - k;
17
18
                       r = i + k;
19
                  }
             }
20
21
22
        void solve even(string &s) {
23
             d2.resize(n);
             for (int i = 0, l = 0, r = -1; i < n; i++) {
24
                  \mbox{int} \ k = (\,i \,>\, r\,) \ ? \ 0 \ : \ \min(\,d2\,[\,l \,+\, r\,-\,i \,+\, 1\,]\,, \ r\,-\,i \,+\, 1\,)\,;
25
                  while (0 \le i - k - 1 \&\& i + k < n \&\& s[i - k - 1] == s[i + k]) \{ k++; \}
26
                      }
```

```
27
                  count += d2[i] = k--;
                  if (i + k > r) {
28
29
                      l = i - k - 1;
30
                      r = i + k;
31
                 }
32
             }
        }
33
34
   } mana;
```

3.14 Lyndon

3.15 Lyndon Factorization

Strings em decomposição única em subcadeias que são ordenadas lexicograficamente e não podem ser mais reduzidas.

3.16 Duval

Gera a Lyndon Factorization de uma string

* Complexidade de tempo: O(N)

3.17 Min Cyclic Shift

Gera a menor rotação circular da string original que pode ser obtida por meio de deslocamentos cíclicos dos caracteres.

* Complexidade de tempo: O(N)

```
string min_cyclic shift(string s) {
                                                 11
                                                                   } else {
 2
        s += s;
                                                 12
                                                                        k++;
 3
        int n = s.size();
                                                 13
 4
        int i = 0, ans = 0;
                                                 14
 5
        while (i < n / 2) {
                                                 15
                                                              \mathbf{while} \ (i \le k) \ \{ i += j - k; \}
 6
             ans = i;
                                                 16
 7
             int j = i + 1, k = i;
                                                 17
             while (j < n \&\& s[k] <= s[j])
 8
                                                          return s.substr(ans, n / 2);
                                                {18
9
                                                     }
                  if (s[k] < s[j]) {
                                                 19
10
                      k = i;
 1
    vector<string> duval(string const &s) {
        int n = s.size();
2
3
        int i = 0;
        vector < string > factorization;
 4
        while (i < n) {
 5
 6
             {\bf int}\ j\ =\ i\ +\ 1\,,\ k\ =\ i\ ;
 7
             while (j < n \&\& s[k] <= s[j]) {
 8
                  if (s[k] < s[j]) {
9
                      k = i;
10
                  } else {
11
                      k++;
12
13
                  j++;
14
15
             while (i \le k) {
                  factorization.push back(s.substr(i, j - k));
16
```

3.18 Patricia Tree

3.19 Patricia Tree ou Patricia Trie

Implementação PB-DS, extremamente curta e confusa:

- Criar: patricia_tree pat; - Inserir: pat.insert("sei la"); - Remover: pat.erase("sei la"); - Verificar existência: pat.find("sei la") != pat.end(); - Pegar palavras que começam com um prefixo: auto match = pat.prefix_range("sei"); - Percorrer *match*: for(auto it = match.first; it != match.second; ++it); - Pegar menor elemento lexicográfico *maior ou igual* ao prefixo: *pat.lower_bound("sei"); - Pegar menor elemento lexicográfico *maior* ao prefixo: *pat.upper_bound("sei");

TODAS AS OPERAÇÕES EM O(|S|) **NÃO ACEITA ELEMENTOS REPETIDOS**

3.20 Suffix Array

3.21 Suffix Array

Estrutura que conterá inteiros que representam os índices iniciais de todos os sufixos ordenados de uma determinada string.

Tambem Constroi a tabela LCP(Longest common prefix).

* Complexidade de tempo (Pré-Processamento): O(|S|*log(|S|)) * Complexidade de tempo (Contar ocorrencias de S em T): O(|S|*log(|T|))

```
pair<int, int> busca(string &t, int i, pair<int, int> &range) {
 1
 2
        int esq = range.first, dir = range.second, L = -1, R = -1;
 3
        while (esq \ll dir) {
             int mid = (esq + dir) / 2;
 4
             if (s[sa[mid] + i] == t[i]) \{ L = mid; \}
 5
             if (s[sa[mid] + i] < t[i]) {
 6
 7
                  esq = mid + 1;
             } else {
 8
                  dir = mid - 1;
 9
10
11
        esq = range.first, dir = range.second;
12
13
        \mathbf{while} \ (\mathbf{esq} \le \mathbf{dir}) \ \{
             int mid = (esq + dir) / 2;
14
             15
             if \ (s \, [\, sa \, [\, mid \, ] \ + \ i \, ] \ <= \ t \, [\, i \, ]\,) \ \{
16
17
                  esq = mid + 1;
             } else {
18
```

```
19
               dir = mid - 1;
           }
20
21
       }
22
       return {L, R};
23
24
   // count ocurences of s on t
25
   int busca_string(string &t) {
26
       pair < int, int > range = \{0, n-1\};
27
       for (int i = 0; i < t.size(); i++) {
28
           range = busca(t, i, range);
29
           if (range.first = -1) \{ return 0; \}
30
31
       return range.second - range.first + 1;
32
   }
1
   const int MAX N = 5e5 + 5;
2
3
   struct suffix array {
4
       string s;
5
       int n, sum, r, ra [MAX N], sa [MAX N], auxra [MAX N], auxsa [MAX N], c [MAX N],
           lcp[MAX N];
6
       void counting_sort(int k) {
7
           memset(c, 0, sizeof(c));
           for (int i = 0; i < n; i++) { c[(i + k < n) ? ra[i + k] : 0]++; }
8
9
           c | i |; }
10
           for (int i = 0; i < n; i++) { auxsa[c[sa[i] + k < n ? ra[sa[i] + k] :
               [0]++] = sa[i];
11
           for (int i = 0; i < n; i++) { sa[i] = auxsa[i]; }
12
13
       void build sa() {
14
           for (int k = 1; k < n; k <<= 1) {
                counting_sort(k);
15
16
                counting_sort(0);
                auxra[sa[0]] = r = 0;
17
18
                for (int i = 1; i < n; i++) {
                    auxra[sa[i]] = (ra[sa[i]] = ra[sa[i-1]] & ra[sa[i] + k] =
19
                       ra[sa[i - 1] + k])? r : ++r;
20
21
                for (int i = 0; i < n; i++) { ra[i] = auxra[i]; }
                if (ra[sa[n-1]] = n-1) { break; }
22
23
           }
24
       void build_lcp() {
25
26
           for (int i = 0, k = 0; i < n - 1; i++) {
27
               int j = sa[ra[i] - 1];
28
               while (s[i + k] = s[j + k]) \{ k++; \}
29
               lcp[ra[i]] = k;
                if (k) { k--; }
30
           }
31
32
33
       void set_string(string _s) {
34
           s = s + '\$';
35
           n = s.size();
           \mbox{for $(int \ i = 0; \ i < n; \ i++) $\{ \ ra[i] = s[i], \ sa[i] = i; \ $\}$}
36
37
           build sa();
           build lcp();
38
39
           // for (int i = 0; i < n; i++) printf("%2d: %s\n", sa[i], s.c. <math>str() +
               sa[i]);
40
41
       int operator[](int i) { return sa[i]; }
```

42 } sa;

4 Paradigmas

4.1 Busca Ternaria

4.2 Busca Ternária

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

- Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

4.3 Busca Ternária em Espaço Discreto

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas). Versão para espaços discretos.

- Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

```
1
                                                12
2
   double eval (double mid) {
                                                13
                                                             // minimizing. To maximize use
3
        // implement the evaluation
                                                                >= to compare
4
                                                             if (eval(mid 1) \le eval(mid 2))
                                                14
5
6
   double ternary search (double 1, double 15
                                                                 r\ =\ mid\_2\,;
       r) {
                                                16
                                                             } else {
7
        int k = 100;
                                                17
                                                                 1 = mid 1;
8
        while (k--) {
                                                18
9
            double step = (1 + r) / 3;
                                                19
10
            double mid 1 = 1 + \text{step};
                                                20
                                                        return 1;
            double mid 2 = r - step;
11
                                                   }
1
2
   long long eval (long long mid) {
3
        // implement the evaluation
4
5
6
   long long discrete ternary search (long long 1, long long r) {
7
        long long ans = -1;
8
        r--; // to not space r
9
        \mathbf{while} \ (1 \le r) \ \{
10
            long long mid = (l + r) / 2;
11
12
             // minimizing. To maximize use >= to compare
13
             if (eval(mid) \le eval(mid + 1)) {
14
                 ans = mid;
                 r = mid - 1;
15
16
             } else {
17
                 l = mid + 1;
18
19
        }
20
        return ans;
21
   }
```

4.4 Mo

4.5 Mo

Resolve Queries Complicadas Offline de forma rápida. É preciso manter uma estrutura que adicione e remova elementos nas extremeidades de um range (tipo janela).

- Complexidade de tempo (Query offline): O(N * sqrt(N))

4.6 Mo com Update

Resolve Queries Complicadas Offline de forma rápida. Permite que existam **UPDATES PONTUAIS!** É preciso manter uma estrutura que adicione e remova elementos nas extremidades de um range (tipo janela).

- Complexidade de tempo: $O(Q * N^{(2/3)})$ typedef pair<int, int> ii; 1 2 int block sz; // Better if 'const'; 3 4 namespace mo { 5 struct query { 6 int l, r, idx; 7 bool operator < (query q) const { 8 $\mathbf{int} \ \ _l = \ l \ \ / \ \ \mathbf{block_sz} \, ;$ 9 $int _ql = q.l / block_sz;$ 10 11 } 12 }; vector <query> queries; 13 14 void build(int n) { 15 16 block sz = (int) sqrt(n);17 // TODO: initialize data structure 18 inline void add query(int 1, int r) { queries.push back({1, r, 19 (**int**) queries.size()}); } 20 inline void remove(int idx) { 21// TODO: remove value at idx from data structure 22 23 inline void add(int idx) { // TODO: add value at idx from data structure 242526inline int get answer() { // TODO: extract the current answer of the data structure 27 28return 0; } 29 30 31 vector<int> run() { 32vector < int > answers (queries.size()); sort(queries.begin(), queries.end()); 33 34 int L = 0; 35 int R = -1; 36 for (query q : queries) { $\mathbf{while} \ (L > q.l) \ \{ \ \mathrm{add}(--L); \ \}$ 37 38 $\mathbf{while} \ (\mathrm{R} < \mathrm{q.r}) \ \left\{ \ \mathrm{add}(++\mathrm{R}) \ ; \ \right\}$ 39 $\mathbf{while} \;\; (\mathrm{L} < \mathrm{q.l}) \;\; \{ \;\; \mathrm{remove}(\mathrm{L}\!\!+\!\!+\!\!); \;\; \}$ 40 **while** (R > q.r) { remove (R--); } 41 answers[q.idx] = get answer();

```
42
           }
43
           return answers;
44
       }
45
46
   };
   typedef pair<int, int> ii;
1
   typedef tuple<int, int, int> iii;
   int block_sz; // Better if 'const';
   vector<int> vec;
5
   namespace mo {
       struct query {
6
7
           int l, r, t, idx;
8
           bool operator < (query q) const {
9
                int _l = l / block_sz;
10
                int _r = r / block_sz;
11
                int _ql = q.l / block_sz;
                int _qr = q.r / block_sz;
12
                13
14
                       iii(_ql, (_ql & 1 ? -_qr : _qr), (_qr & 1 ? q.t : -q.t));
15
           }
16
        };
17
       vector < query > queries;
18
       vector < ii > updates;
19
20
       void build (int n) {
21
            block sz = pow(1.4142 * n, 2.0 / 3);
22
            // TODO: initialize data structure
23
24
       inline void add query(int 1, int r) { queries.push back({1, r,
           (int) updates. size(), (int) queries. size()); }
25
       inline void add_update(int x, int v) { updates.push_back({x, v}); }
26
       inline void remove(int idx) {
27
            // TODO: remove value at idx from data structure
28
29
       inline void add(int idx) {
30
           // TODO: add value at idx from data structure
31
32
       inline void update(int 1, int r, int t) {
33
           auto &[x, v] = updates[t];
34
            if (1 \le x \&\& x \le r) \{ remove(x); \}
35
           swap(vec[x], v);
36
            if (l \le x \&\& x \le r) \{ add(x); \}
37
38
       inline int get answer() {
39
            // TODO: extract the current answer from the data structure
40
           return 0;
41
       }
42
43
       vector<int> run() {
44
            vector < int > answers (queries.size());
45
            sort(queries.begin(), queries.end());
46
           int L = 0;
47
           int R = -1;
48
           int T = 0;
            for (query q : queries) {
49
                while (T < q.t) { update(L, R, T++); }
50
51
                while (T > q.t) { update(L, R, —T); }
52
                while (L > q.1) \{ add(--L); \}
53
                while (R < q.r) \{ add(++R); \}
54
                while (L < q.1) { remove (L++); }
```

4.7 All Submasks

4.8 All Submask

Percorre todas as submáscaras de uma máscara de tamanho N

```
* Complexidade de tempo: O(3^N)
```

```
1 int mask;
2 for (int sub = mask; sub; sub = (sub -
```

4.9 Exponenciação de Matriz

4.10 Exponenciação de Matriz

Otimização para DP de prefixo quando o valor atual está em função dos últimos K valores já calculados.

* Complexidade de tempo: $O(log(n) * k^3)$

É preciso mapear a DP para uma exponenciação de matriz.

_

4.11 Uso Comum

DP:

$$dp[n] = \sum_{i} i = 1^k c[i] \cdot dp[n-i]$$

Mapeamento:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ c[k] & c[k-1] & c[k-2] & \dots & c[1] & 0 \end{pmatrix}^n \times \begin{pmatrix} dp[0] \\ dp[1] \\ dp[2] \\ \dots \\ dp[k-1] \end{pmatrix}$$

4.12 Variação que dependa de **constantes** e do **índice**

Exemplo de DP:

$$dp[i] = dp[i-1] + 2 \cdot i^2 + 3 \cdot i + 5$$

Nesses casos é preciso fazer uma linha para manter cada constante e potência do índice.

Mapeamento:

$$\begin{pmatrix} 1 & 5 & 3 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix}^{n} \times \begin{pmatrix} dp[0] \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{array}{c} mantm \ dp[i] \\ mantm \ i \\ mantm \ i \\ mantm \ i \\ \end{pmatrix}$$

4.13 Variação Multiplicativa

Exemplo de DP:

$$dp[n] = c \times \prod _i = 1^k dp[n-i]$$

Nesses casos é preciso trabalhar com o logaritmo e temos o caso padrão:

$$\log(dp[n]) = log(c) + \sum_{i} -i = 1^{k} log(dp[n-i])$$

Se a resposta precisar ser inteira, deve-se fatorar a constante e os valores inicias e então fazer uma exponenciação para cada fator primo. Depois é só juntar a resposta no final.

```
11 \, dp [100];
2
   mat T;
3
4
   #define MOD 1000000007
5
6
   mat mult(mat a, mat b) {
7
        mat res(a.size(), vi(b[0].size()));
8
            (int i = 0; i < a.size(); i++) {
9
            for (int j = 0; j < b[0].size(); j++) {
10
                 for (int k = 0; k < b.size(); k++) {
                     res[i][j] += a[i][k] * b[k][j] % MOD;
11
                     res[i][j] %= MOD;
12
13
                 }
            }
14
15
16
        return res;
17
   }
18
   mat exp mod(mat b, ll exp){
19
20
        mat res(b.size(), vi(b.size()));
21
        for (int i = 0; i < b. size(); i++) res[i][i] = 1;
22
23
        while (exp) {
24
            if(exp \& 1) res = mult(res, b);
25
            b = mult(b, b);
26
            \exp /= 2;
27
28
        return res;
29
   }
30
   // MUDA MUITO DE ACORDO COM O PROBLEMA
31
32
   // LEIA COMO FAZER O MAPEAMENTO NO README
33
   11 solve(11 exp, 11 dim){
        if(exp < dim) return dp[exp];</pre>
34
35
36
        T. assign(dim, vi(dim));
        // TO DO: Preencher a Matriz que vai ser exponenciada
37
38
        // T[0][1] = 1;
```

```
39
        // T[1][0] = 1;
        // T[1][1] = 1;
40
41
42
43
        mat prod = exp mod(T, exp);
44
        mat vec; vec.assign(dim, vi(1));
45
        for (int i = 0; i < \dim; i++) vec[i][0] = dp[i]; // Valores iniciais
46
47
48
        mat ans = mult(prod, vec);
        return ans [0][0];
49
   }
50
```

4.14 Divide and Conquer

4.15 Divide and Conquer

Otimização para DP de prefixo quando se pretende separar o vetor em K subgrupos. É preciso fazer a função query(i, j) que computa o custo do subgrupo

i, j

. * Complexidade de tempo: O(n * k * $\log(n)$ * O(query))

4.16 Divide and Conquer com Query on demand

Usado para evitar queries pesadas ou o custo de pré-processamento. É preciso fazer as funções da estrutura **janela**, eles adicionam e removem itens um a um como uma janela flutuante.

* Complexidade de tempo: O(n * k * log(n) * O(update da janela))

```
1
   namespace DC {
 2
        vi dp_before, dp_cur;
3
        void compute(int l, int r, int optl, int optr) {
            if (1 > r) { return; }
 4
 5
            int mid = (1 + r) \gg 1;
            pair < ll, int > best = \{0, -1\}; // \{INF, -1\}  se quiser minimizar
 6
            for (int i = optl; i \le min(mid, optr); i++) {
 7
                best = max(best, \{(i ? dp before[i - 1] : 0) + query(i, mid), i\}); //
 8
                    min() se quiser minimizar
9
            dp_cur[mid] = best.first;
10
11
            int opt = best.second;
12
            compute(1, mid - 1, optl, opt);
            compute(mid + 1, r, opt, optr);
13
        }
14
15
        ll solve(int n, int k) {
16
17
            dp before.assign(n + 5, 0);
            dp cur.assign(n + 5, 0);
18
            for (int i = 0; i < n; i++) { dp before [i] = query(0, i); }
19
20
            for (int i = 1; i < k; i++) {
                compute (0, n - 1, 0, n - 1);
21
22
                dp before = dp cur;
23
24
            return dp_before[n-1];
25
26
   };
```

```
namespace DC {
2
        struct range { // eh preciso definir a forma de calcular o range
3
            vi freq;
            11 \text{ sum} = 0;
4
5
            int 1 = 0, r = -1;
6
            void back_l(int v) { // Mover o 'l' do range para a esquerda
7
                sum += freq[v];
8
                freq[v]++;
9
                1--:
10
            void advance r(int v) { // Mover o 'r' do range para a direita
11
12
                sum += freq[v];
13
                freq[v]++;
14
                r++;
15
            }
16
            void advance l(int v) { // Mover o 'l' do range para a direita
17
                freq[v]--;
18
                sum = freq[v];
19
                1++;
20
21
            void back_r(int v) { // Mover o 'r' do range para a esquerda
22
                freq[v]--;
23
                sum = freq[v];
24
                r--;
25
26
            void clear(int n) { // Limpar range
27
                1 = 0;
28
                r = -1;
29
                sum = 0;
30
                freq.assign(n + 5, 0);
31
            }
32
        } s;
33
34
        vi dp before, dp cur;
35
        void compute(int 1, int r, int optl, int optr) {
36
            if (l > r) \{ return; \}
37
            int mid = (l + r) \gg 1;
            pair < ll, int > best = \{0, -1\}; // \{INF, -1\}  se quiser minimizar
38
39
            while (s.l < optl) { s.advance l(v[s.l]); }
40
41
            while (s.l > optl) { s.back l(v[s.l - 1]); }
            while (s.r < mid) \{ s.advance_r(v[s.r + 1]); \}
42
43
            while (s.r > mid) \{ s.back_r(v[s.r]); \}
44
45
            vi removed;
            for (int i = optl; i \le min(mid, optr); i++) {
46
                best = min(best, \{(i ? dp\_before[i-1] : 0) + s.sum, i\}); // min() se
47
                    quiser minimizar
48
                removed.push back(v[s.1]);
                s.advance l(v[s.1]);
49
50
51
            for (int rem : removed) { s.back l(v[s.l-1]); }
52
53
            dp cur[mid] = best.first;
54
            int opt = best.second;
55
            compute(1, mid - 1, optl, opt);
56
            compute(mid + 1, r, opt, optr);
57
       }
58
59
        ll solve(int n, int k) {
60
            dp_before.assign(n, 0);
```

```
61
            dp cur.assign(n, 0);
62
            s.clear(n);
            for (int i = 0; i < n; i++) {
63
64
                s.advance_r(v[i]);
                dp_before[i] = s.sum;
65
66
            for (int i = 1; i < k; i++) {
67
68
                s.clear(n);
                compute (0, n - 1, 0, n - 1);
69
70
                dp before = dp cur;
71
            return dp_before[n-1];
72
73
        }
74
   };
```

4.17 Busca Binaria Paralela

4.18 Busca Binária Paralela

Faz a busca binária para múltiplas consultas quando a busca binária é muito pesada.

- Complexidade de tempo: $O((N+Q)\log(N) * O(F))$, onde N é o tamanho do espaço de busca, Q é o número de consultas e O(F), o custo de avaliação da função.

```
1
   namespace parallel_binary_search {
 2
        typedef tuple < int, int, long long, long long > query; //{value, id, l, r}
 3
 4
        vector < query > queries [1123456];
                                                                  // pode ser um mapa se
            for muito esparso
 5
        long long ans [1123456];
                                                                  // definir pro tamanho
           das queries
 6
        long long 1, r, mid;
 7
        int id = 0;
8
        void set_lim_search(long long n) {
9
            1 = 0;
10
            r = n;
            mid = (1 + r) / 2;
11
12
        }
13
        void add query(long long v) { queries[mid].push back({v, id++, l, r}); }
14
15
16
        void advance search(long long v) {
17
            // advance search
        }
18
19
        bool satisfies (long long mid, int v, long long 1, long long r) {
20
21
            // implement the evaluation
        }
22
23
24
        bool get ans() {
25
            // implement the get ans
26
        }
27
        void parallel binary search (long long l, long long r) {
28
29
30
            bool go = 1;
31
            \mathbf{while} \ (go) \ \{
32
                 go = 0;
                 int i = 0; // outra logica se for usar um mapa
33
```

```
34
                           for (auto &vec : queries) {
35
                                  advance_search(i++);
36
                                   for (auto q : vec) {
                                         {\bf auto} \ [\, v \, , \ {\rm id} \ , \ l \ , \ r \, ] \ = \ q \, ;
37
                                          \quad \textbf{if} \ (1 > r) \ \{ \ \textbf{continue} \, ; \ \}
38
39
                                         go = 1;
40
                                          // return while satisfies
41
                                          if (satisfies(i, v, l, r)) {
42
                                                 ans[i] = get_ans();
43
                                                 long long mid = (i + 1) / 2;
                                                 \mathrm{queries}\,[\,\mathrm{mid}\,] \;=\; \mathrm{query}\,(\,v\,,\;\;\mathrm{id}\,\,,\;\;l\,\,,\;\;i\,\,-\,\,1\,)\,;
44
45
                                                 \mathbf{long} \ \mathbf{long} \ \mathbf{mid} = (\mathbf{i} + \mathbf{r}) \ / \ 2;
46
                                                 {\tt queries}\,[\,{\tt mid}\,] \;=\; {\tt query}\,(\,v\,,\;\; {\tt id}\,\,,\;\; {\tt i}\,\,+\,\,1\,,\;\; r\,)\,;
47
48
49
                                  }
50
                                  vec.clear();
                           }
51
52
                    }
53
             }
54
     } // namespace name
```

4.19 DP de Permutacao

4.20 DP de Permutação

Otimização do problema do Caixeiro Viajante

* Complexidade de tempo: $O(n^2 * 2^n)$

Para rodar a função basta setar a matriz de adjacência 'dist' e chamar solve(0,0,n).

```
long double dp[\lim][1 \ll \lim];
4
   int \lim Mask = (1 \ll \lim) - 1; // 2**(maximo de itens) - 1
5
   long double solve (int atual, int mask, int n) {
       if (dp[atual][mask] != 0) { return dp[atual][mask]; }
7
       if (mask = (1 << n) - 1) {
8
9
          return dp[atual][mask] = 0; // o que fazer quando chega no final
10
       }
11
12
      long double res = 1e13; // pode ser maior se precisar
13
       for (int i = 0; i < n; i++) {
          if (!(mask & (1 << i))) {
14
15
              long double aux = solve(i, mask | (1 << i), n);
              if (mask) { aux += dist[atual][i]; }
16
17
              res = min(res, aux);
18
19
20
      return dp[atual][mask] = res;
21
```

4.21 Convex Hull Trick

4.22 Convex Hull Trick

Otimização de DP onde se mantém as retas que formam um Convex Hull em uma estrutura que permite consultar qual o melhor valor para um determinado x.

Só funciona quando as retas são monotônicas. Caso não forem, usar LiChao Tree para guardar as retas

Complexidade de tempo:

- Inserir reta: O(1) amortizado - Consultar x: O(log(N)) - Consultar x quando x tem crescimento monotônico: O(1)

```
const 11 \text{ INF} = 1e18 + 18;
   bool op(ll a, ll b) {
        return a >= b; // either >= or <=
 3
 4
   }
   struct line {
5
6
        11 a, b;
7
        11 \operatorname{get}(11 x) \{ \operatorname{return} a * x + b; \}
        11 intersect(line 1) {
8
            return (1.b - b + a - 1.a) / (a - 1.a); // rounds up for integer only
9
        }
10
11
    };
12
   deque<pair<line , ll>>> fila;
   void add line(ll a, ll b) {
13
        line nova = \{a, b\};
14
15
        if (!fila.empty() && fila.back().first.a == a && fila.back().first.b == b) {
            return; }
16
        while (!fila.empty() && op(fila.back().second,
            nova.intersect(fila.back().first))) { fila.pop back(); }
        11 x = fila.empty() ? -INF : nova.intersect(fila.back().first);
17
        fila.emplace back(nova, x);
18
19
   }
20
   ll get binary search(ll x) {
21
        int esq = 0, dir = fila.size() - 1, r = -1;
22
        while (esq \ll dir) {
            int mid = (esq + dir) / 2;
23
            if (op(x, fila[mid].second)) {
24
25
                 esq = mid + 1;
26
                 r = mid;
27
            } else {
28
                 dir = mid - 1;
29
30
31
        return fila [r]. first.get(x);
32
33
   // O(1), use only when QUERIES are monotonic!
34
   ll get(ll x) 
35
        while (fila.size() \ge 2 \&\& op(x, fila[1].second)) \{ fila.pop front(); \}
36
        return fila.front().first.get(x);
37
   }
```

5 Matemática

5.1 Sum of floor(n div i)

5.2 Soma do floor(n / i)

Computa o somatório de n dividido de 1 a n (divisão arredondado pra baixo).

- Complexidade de tempo: O(sqrt(n)).

```
\mathbf{const} \ \mathbf{int} \ \mathbf{MOD} = 1e9 + 7 \ ;
                                                   9
1
                                                           i --;
                                                  10
2
                                                           for (int j = 1; n/(j+1) >= i; j++) {
3
   long long sumoffloor(long long n){
                                                                answer += (((n/j - n/(j+1)) \%
                                                  11
        long long answer = 0, i;
                                                                   MOD) * j) \% MOD;
5
        for (i = 1; i*i \le n; i++) {
                                                  12
                                                                answer %= MOD;
6
            answer += n/i;
                                                  13
7
             answer %= MOD;
                                                  14
                                                           return
                                                                    answer;
        }
                                                  15
```

5.3 Primos

5.4 Primos

5.5 Crivo de Eratóstenes

Computa a primalidade de todos os números até N, quase tão rápido quanto o crivo linear.

- Complexidade de tempo: O(N * log(log(N)))

Demora 1 segundo para LIM igual a $3 * 10^7$.

5.6 Miller-Rabin

Teste de primalidade garantido para números menores do que 2⁶4.

- Complexidade de tempo: O(log(N))

5.7 Teste Ingênuo

Computa a primalidade de um número N.

- Complexidade de tempo: $O(N^{(1/2)})$

```
vector<bool> sieve(int n){
                                                                                if(is prime[i])
1
2
          vector<bool> is_prime(n+5, true);
                                                                                 \label{eq:for_sol} \mbox{for } (\mbox{long long } j \ = \ \mbox{i} \ * \ \mbox{i} \ ; \ \ j \ <
          is \ \_prime [0] = \mathbf{false};
3
                                                                                      n; j += i
                                                                 8
                                                                                       is_prime[j] = false;
4
          is_prime[1] = false;
          long long sq = sqrt(n+5);
5
                                                                           return is_prime;
          \mathbf{for}(\mathbf{long}\ \mathbf{long}\ \mathrm{i}\ =\ 2;\ \mathrm{i}\ <=\ \mathrm{sq};\ \mathrm{i}++)\ 10
6
                                                                     }
1
    bool is prime(int n) {
                                                                 3
                                                                                 if (n \% d = 0) return false;
2
          \mathbf{for}^{-}(\mathbf{long}\ \mathbf{long}\ d=2;\ d*d <=n;
                                                                 4
                                                                           return true;
                                                                     }
                                                                 5
               d++)
```

```
long long power(long long base, long long e, long long mod) {
 2
        long long result = 1;
        base %= mod;
 3
 4
        while (e) {
             if (e & 1) result = (__int128)result * base % mod;
 5
 6
             base = (\_int128) base * base % mod;
7
             e >>= 1;
8
9
        return result;
10
    }
11
    bool is composite (long long n, long long a, long long d, int s) {
12
13
        \mathbf{long} \ \mathbf{long} \ \mathbf{x} = \mathbf{power}(\mathbf{a}, \ \mathbf{d}, \ \mathbf{n});
        if (x = 1 \mid | x = n - 1) return false;
14
15
        for (int r = 1; r < s; r++) {
16
             x = (\_int128)x * x % n;
17
             if (x = n - 1) return false;
18
19
        return true;
20
    }
21
22
    bool miller_rabin(long long n) {
        if (n < 2) return false;
23
24
        int r = 0;
        long long d = n - 1;
25
        while ((d \& 1) == 0) d >>= 1, ++r;
26
        for (int a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
27
             if (n == a) return true;
28
29
             if (is composite(n, a, d, r)) return false;
30
31
        return true;
32
   }
```

5.8 NTT

5.9 Numeric Theoric Transformation

Computa multiplicação de polinômino; **Somente para inteiros**.

- Complexidade de tempo: O(N * log(N))

Constantes finais devem ser menor do que 10^9 . Para constantes entre 10^9 e 10^{18} é necessário codar também [big_convolution](big_convolution.cpp).

```
typedef long long 11;
    typedef vector<ll> poly;
 ^{2}
 3
    11 \mod [3] = \{998244353LL, 1004535809LL, 1092616193LL\};
 4
    11 \text{ root} [3] = \{102292LL, 12289LL, 23747LL\};
 5
    11 \text{ root}_1[3] = \{116744195LL, 313564925LL, 642907570LL\};
 6
7
    11 \text{ root } pw[3] = \{1LL \ll 23, 1LL \ll 21, 1LL \ll 21\};
 8
9
    11 modInv(11 b, 11 m) {
         11 e = m - 2;
10
         11 \text{ res} = 1;
11
         while (e) {
12
13
             if (e \& 1) res = (res * b) \% m;
14
             e /= 2;
             b = (b * b) \% m;
15
         }
16
```

```
17
        return res;
18
    }
19
20
    void ntt(poly &a, bool invert, int id) {
21
         11 \ n = (11)a.size(), m = mod[id];
22
         for (11 i = 1, j = 0; i < n; ++i)
23
             ll bit = n \gg 1;
24
             for (; j >= bit; bit >>= 1) j -= bit;
25
             i += bit;
26
             if \ (i < j) \ swap(a[i], \ a[j]);\\
27
         for (ll len = 2, wlen; len \langle = n; len \langle = 1 \rangle) {
28
29
             wlen = invert ? root_1[id] : root[id];
             30
31
             for (ll i = 0; i < n; i += len) {
32
                  11 \ w = 1;
33
                  for (ll j = 0; j < len / 2; j++) {
                       11 u = a[i + j], v = (a[i + j + len / 2] * w) \% m;
34
                      \begin{array}{lll} a\,[\,i\,\,+\,\,j\,\,] \,\,=\,\,(\,u\,\,+\,\,v\,)\,\,\,\%\,\,m; \\ a\,[\,i\,\,+\,\,j\,\,+\,\,l\,e\,n\,\,/\,\,2\,] \,\,=\,\,(\,u\,\,-\,\,v\,\,+\,m)\,\,\,\%\,\,m; \end{array}
35
36
37
                      w = (w * wlen) \% m;
                  }
38
             }
39
40
41
         if (invert) {
42
             11 \text{ inv} = \text{modInv}(n, m);
             for (11 i = 0; i < n; i++) a[i] = (a[i] * inv) % m;
43
44
         }
45
    }
46
47
    poly convolution (poly a, poly b, int id = 0) \{
48
         11 n = 1LL, len = (1LL + a.size() + b.size());
49
         while (n < len) n *= 2;
50
         a.resize(n);
51
        b.resize(n);
         n\,t\,t\,(\,a\,,\ 0\,,\ i\,d\,)\;;
52
         ntt(b, 0, id);
53
54
         poly answer(n);
55
         for (11 i = 0; i < n; i++) answer[i] = (a[i] * b[i]);
         ntt(answer, 1, id);
56
57
        return answer;
58
   }
1
    ll mod_mul(ll a, ll b, ll m){ return (__int128) a * b % m;}
2
3
    11 ext gcd(11 a, 11 b, 11 &x, 11 &y)
4
         if(!b){
5
             x = 1; y = 0;
 6
             return a;
 7
         }else{
8
             11 g = ext_gcd(b, a\%b, y, x);
9
             y = a/b * x;
10
             return g;
         }
11
12
    }
13
    // convolution mod 1,097,572,091,361,755,137
14
    poly big_convolution(poly a, poly b){
15
16
         poly r0, r1, answer;
17
         r0 = convolution(a, b, 1);
18
        r1 = convolution(a, b, 2);
```

```
19
                                                                       11 s, r, p = mod[1] * mod[2];
20
                                                                       \operatorname{ext} \operatorname{gcd} (\operatorname{mod} [1], \operatorname{mod} [2], r, s);
21
 22
23
                                                                       answer.resize(r0.size());
24
                                                                       \mathbf{for}(\mathbf{int} \ i = 0; \ i < (\mathbf{int}) \ \mathbf{answer.size}(); \ i++)
                                                                                                           answer[i] = (mod_mul((s*mod[2]+p)\%p, r0[i], p) + mod_mul((r*mod[1]+p)\%p, r0[i], p) + mod_mul((r*mod[
25
                                                                                                                                          r1[i], p) + p) \% p;
26
27
                                                                     return answer;
 28
                                }
```

5.10 Totiente de Euler

5.11 Totiente de Euler

5.12 Totiente de Euler (Phi) para um número

Computa o totiente para um único número N.

- Complexidade de tempo: $O(N^{(1/2)})$

5.13 Totiente de Euler (Phi) entre 1 e N

Computa o totiente entre 1 e N.

- Complexidade de tempo: O(N * log(log(N)))

```
vector < int > phi_1_to_n(int n)  {
1
                                                                     5
                                                                                       for (int j = i; j \ll n; j += i)
2
          vector < int > phi(n + 1);
                                                                                             phi[j] — phi[j] / i;
3
          for (int i = 0; i \le n; i++) phi[i]
                                                                                }
                                                                                return phi;
          \mathbf{for} \hspace{0.2cm} (\hspace{0.2cm} \mathbf{int} \hspace{0.2cm} i \hspace{0.2cm} = \hspace{0.2cm} 2; \hspace{0.2cm} i \hspace{0.2cm} < \hspace{0.2cm} n \hspace{0.2cm} ; \hspace{0.2cm} i \hspace{0.2cm} + \hspace{0.2cm} ) \hspace{0.2cm} \mathbf{if}
                                                                          }
4
                (phi[i] == i) {
    int phi(int n) {
                                                                     7
                                                                                       }
1
2
          int result = n;
3
          for (int i = 2; i*i \le n; i++) {
                                                                                if (n > 1) result -= result / n;
                 if (n \% i = 0) {
                                                                    10
                                                                                return result;
4
                        while (n \% i == 0) n /= i;
5
                        result —= result / i;
```

5.14 Exponenciação Modular Rápida

5.15 Exponenciação modular rápida

Computa $(base^exp)\%mod$. - Complexidade de tempo: O(log(exp)). - Complexidade de espaço: O(1)

```
11 exp_mod(11 base, 11 exp){
                                                           b = (b * b) \% MOD;
                                               5
1
2
       11 b = base, res = 1;
                                               6
                                                           \exp /= 2;
3
                                               7
       while (exp) {
           if(exp \& 1) res = (res * b) \%
4
                                                      return res;
               MOD;
                                                  }
```

5.16 Eliminação Gaussiana

5.17 Eliminação Gaussiana

Método de eliminação gaussiana para resolução de sistemas lineares.

- Complexidade de tempo: $O(n^3)$.

Dica: Se os valores forem apenas 0 e 1 o algoritmo [gauss_mod2](gauss_mod2.cpp) é muito mais rápido.

```
const double EPS = 1e-9;
   const int INF = 2; // it doesn't actually have to be infinity or a big number
4
   int gauss (vector < vector < double >> a, vector < double > & ans) {
5
        int n = (int) a.size();
6
        int m = (int) a[0]. size() - 1;
7
8
        vector < int > where (m, -1);
9
        for (int col=0, row=0; col<m && row<n; ++col) {
10
            int sel = row;
11
            for (int i=row; i<n; ++i)
12
                if (abs (a[i][col]) > abs (a[sel][col]))
13
                     sel = i;
            if (abs (a[sel][col]) < EPS)
14
15
                continue;
16
            for (int i=col; i<=m; ++i)
17
                swap (a[sel][i], a[row][i]);
18
            where [col] = row;
19
20
            for (int i=0; i< n; ++i)
21
                if (i != row) {
22
                     double c = a[i][col] / a[row][col];
23
                     for (int j=col; j<=m; ++j)
24
                         a[i][j] = a[row][j] * c;
25
                }
26
            ++row;
27
        }
28
29
        ans.assign (m, 0);
30
        for (int i=0; i < m; ++i)
31
            if (where [i] != -1)
32
                ans[i] = a[where[i]][m] / a[where[i]][i];
33
        for (int i=0; i< n; ++i) {
34
            double sum = 0;
35
            for (int j=0; j < m; ++j)
36
                sum += ans[j] * a[i][j];
37
            if (abs (sum - a[i][m]) > EPS)
38
                return 0;
39
        }
40
        for (int i=0; i < m; ++i)
41
42
            if (where [i] = -1)
43
                return INF;
44
        return 1;
45
   }
   const int N = 105;
1
2
   const int INF = 2; // tanto faz
3
   // n -> numero de equações, m -> numero de variaveis
```

```
// a[i][j] para j em [0, m - 1] \rightarrow coeficiente da variavel j na iesima equação
   // a[i][j] para j == m -> resultado da equação da iesima linha
   // ans -> bitset vazio, que retornara a solucao do sistema (caso exista)
7
8
   int gauss (vector<br/>bitset<N>>a, int n, int m, bitset<N>& ans) {
9
        vector < int > where (m, -1);
10
        {f for} \ ({f int} \ {f col} = 0\,, \ {f row} = 0; \ {f col} < {f m} \ \&\& \ {f row} < {f n}; \ {f col} + +) \ \{
11
12
             for (int i = row; i < n; i++){
                 if (a[i][col]) {
13
                      swap (a[i], a[row]);
14
15
                      break;
16
17
             if (!a[row][col]) continue;
18
19
             where [col] = row;
20
21
             for (int i = 0; i < n; i++){
                 if (i != row && a[i][col]) a[i] ^= a[row];
22
23
24
            row++;
25
        }
26
27
        for (int i = 0; i < m; i++){
28
             if (where [i] != -1) {
                 ans[i] = a[where[i]][m] / a[where[i]][i];
29
30
31
32
        for (int i = 0; i < n; i++){
33
             int sum = 0;
34
             for (int j = 0; j < m; j++){
35
                 sum += ans[j] * a[i][j];
36
             if (abs(sum - a[i][m]) > 0) return 0; // Sem solucao
37
        }
38
39
40
        for (int i = 0; i < m; i++){
             if (where [i] = -1) return INF; // Infinitas solucoes
41
42
        return 1; // Unica solucao (retornada no bitset ans)
43
44 }
```

5.18 Inverso Modular

5.19 Modular Inverse

The modular inverse of an integer a is another integer x such that a * x is congruent to 1 (mod MOD).

5.20 Modular Inverse

Calculates the modular inverse of a.

Uses the [exp_mod](/Matemática/Exponenciação%20Modular%20Rápida/exp_mod.cpp) algorithm, thus expects MOD to be prime.

^{*} Time Complexity: O(log(MOD)). * Space Complexity: O(1).

5.21 Modular Inverse by Extended GDC

Calculates the modular inverse of a.

Uses the [extended_gcd](/Matemática/GCD/extended_gcd.cpp) algorithm, thus expects MOD to be coprime with a.

Returns -1 if this assumption is broken.

* Time Complexity: O(log(MOD)). * Space Complexity: O(1).

5.22 Modular Inverse for 1 to MAX

Calculates the modular inverse for all numbers between 1 and MAX.

expects MOD to be prime.

* Time Complexity: O(MAX). * Space Complexity: O(MAX).

5.23 Modular Inverse for all powers

Let b be any integer.

Calculates the modular inverse for all powers of b between b^0 and b^MAX.

Needs you calculate beforehand the modular inverse of b, for 2 it is always (MOD+1)/2.

expects MOD to be coprime with b.

* Time Complexity: O(MAX). * Space Complexity: O(MAX).

```
11 inv [MAX];
                                             5
                                                    for (int i = 2; i < MAX; i++)
1
                                             6
2
                                                         inv[i] = m - (m/i) * inv[m\%i] \%
3
  void compute inv(const ll m=MOD) {
       inv[1] = 1;
                                             7
                                                }
1
  const 11 INVB = (MOD + 1) / 2; // Modular inverse of the base, for 2 it is
      (MOD+1)/2
2
  ll inv[MAX]; // Modular inverse of b^i
3
4
5
  void compute inv() {
6
       inv[0] = 1;
7
       for (int i = 1; i < MAX; i++)
8
           inv[i] = inv[i-1] * INVB \% MOD;
9
  }
  ll inv(ll a) { return exp mod(a,
                                                   MOD-2); }
  int inv(int a) {
                                             4
                                                    if (g == 1) return (x \% m + m) \% m;
1
2
                                                    return -1;
       int g = extended_gcd(a, MOD, x, y); 6
3
                                               }
```

5.24 GCD

5.25 Máximo divisor comum

5.26 Algoritmo de Euclides

Computa o Máximo Divisor Comum (MDC em português; GCD em inglês).

- Complexidade de tempo: O(log(n))

Mais demorado que usar a função do compilador C++ __gcd(a,b).

5.27 Algoritmo de Euclides Estendido

Algoritmo extendido de euclides que computa o Máximo Divisor Comum e os valores x e y tal que a * x + b * $y = \gcd(a, b)$.

- Complexidade de tempo: O(log(n))

```
1 \hspace{0.1cm} \textbf{long long} \hspace{0.1cm} \gcd(\textbf{long long} \hspace{0.1cm} a, \hspace{0.1cm} \textbf{long long} \hspace{0.1cm} b) \{ \hspace{0.1cm} \textbf{return} \hspace{0.1cm} (b == 0) \hspace{0.1cm} ? \hspace{0.1cm} a \hspace{0.1cm} : \hspace{0.1cm} \gcd(b, \hspace{0.1cm} a\%b); \hspace{0.1cm} \}
```

```
1
  int extended_gcd(int a, int b, int& x,
                                                        tie(y, y1) = make\_tuple(y1, y -
      int& y) {
                                                           q * y1);
                                                        tie(a, b) = make tuple(b, a - q)
2
      x = 1, y = 0;
                                             8
      int x1 = 0, y1 = 1;
3
                                                            * b);
       while (b) {
                                             9
4
           int q = a / b;
                                            10
                                                    return a;
5
           tie(x, x1) = make\_tuple(x1, x-11)
6
              q * x1);
   11 extended gcd(11 a, 11 b, 11& x, 11&
1
                                                            y, x);
      y) {
                                                        y = a / b * x;
2
       if(b = 0)
                                                        return g;
3
           x = 1; y = 0; return a;
                                             8
                                                    }
```

}

5.28 Teorema do Resto Chinês

4

}else{

5.29 Teorema do Resto Chinês

```
Resolve em O(n * log(n)) o sistema **(x = rem
```

i% modi)** para i entre *0* e *n*

 $11 g = \text{extended } \gcd(b, a \% b,$

5.30 Generalizado!!! Retorna -1 se a resposta não existir

```
1 ll extended_gcd(ll a , ll b , ll& x , ll& y ) {
2     if(b == 0){
3         x = 1; y = 0; return a;
4     }else{
5         ll g = extended_gcd(b, a % b, y, x);
```

```
6
                       y = a / b * x;
 7
                       return g;
 8
               }
 9
      }
10
11
      ll crt (vector<ll> rem , vector<ll> mod ) {
12
               int n = rem. size();
13
               if(n = 0) return 0;
                   _{\rm int}128 \ {
m ans} = {
m rem}[0] \ , \ {
m m} = {
m mod}[0];
14
15
               for(int i = 1; i < n ; i++) 
16
                        11 x , y;
                        \label{eq:gcd} \begin{array}{lll} \texttt{ll} & \texttt{g} = \texttt{extended\_gcd} \, (\texttt{mod}[\, \texttt{i} \, \texttt{]} & \texttt{,} & \texttt{m}, & \texttt{x} & \texttt{,} & \texttt{y}) \end{array} ;
17
                        if ((ans - rem[i]) \% g != 0) return -1;
18
                       \begin{array}{l} ans \, = \, ans \, + \, (\,\_\,int128\,)\,1* \, \, (rem\,[\,i\,] \, - \, ans\,) \, * \, (m \, / \, \, g) \, * \, y\,; \\ m \, = \, (\,\_\,int128\,)\,(mod\,[\,i\,] \, / \, \, g) \, * \, (m \, / \, \, g) \, * \, g\,; \end{array}
19
20
21
                        ans = (ans \% m + m)\%m;
22
               }
23
               return ans;
24
```

5.31 Fatoração

5.32 Fatoração

5.33 Fatoração Simples

Fatora um número N.

- Complexidade de tempo: $O(\sqrt{n})$

5.34 Crivo Linear

Pré-computa todos os fatores primos até MAX. Utilizado para fatorar um número N menor que MAX.

- Complexidade de tempo: Pré-processamento O(MAX) - Complexidade de tempo: Fatoraração O(quantidade de fatores de N) - Complexidade de espaço: O(MAX)

5.35 Fatoração Rápida

Utiliza Pollar-Rho e Miller-Rabin (ver em Primos) para fatorar um número N.

- Complexidade de tempo: $O(N^{1/4} \cdot log(N))$

5.36 Pollard-Rho

Descobre um divisor de um número N.

- Complexidade de tempo: $O(N^{1/4} \cdot log(N))$ - Complexidade de espaço: $O(N^{1/2})$

```
vector < int > factorize (int n) {
                                              6
                                                                 n /= d;
1
2
        vector<int> factors;
                                              7
3
        for (long long d = 2; d * d \le n;
                                              8
                                                       if (n != 1) factors.push back(n);
                                                       return factors;
            d++)
              while (n \% d == 0)
                                                 }
4
                                              10
5
                   factors.push back(d);
```

```
namespace sieve {
 1
 2
          const int MAX = 1e4;
          \quad \textbf{int} \quad \text{lp}\left[\text{MAX}\!+\!1\right], \quad \text{factor}\left[\text{MAX}\!+\!1\right];
 3
 4
          vector <int> pr;
          void build() {
 5
 6
               for (int i = 2; i \ll MAX; ++i) {
 7
                     if (lp[i] = 0) {
 8
                          lp[i] = i;
 9
                          pr.push back(i);
10
                     for (int j = 0; i * pr[j] <= MAX; ++j) {
11
                          lp[i * pr[j]] = pr[j];
12
13
                          factor[i * pr[j]] = i;
                          \quad \textbf{if} \ (\operatorname{pr}[\, j \,] \ = \ \operatorname{lp}[\, i \,]) \ \ \textbf{break};
14
15
16
               }
17
          }
          vector < int > factorize (int x) {
18
               if (x < 2) return \{\};
19
20
               vector <int> v;
21
               for (int lpx = lp[x]; x >= lpx; x = factor[x]) v.emplace back(lp[x]);
22
               return v;
23
          }
24
    }
    long long mod mul(long long a, long long b, long long m) {
 2
           return (__int128)a * b % m;
 3
    }
 4
    long long pollard rho(long long n) {
       auto f = [n](long long x) \{ return mod_mul(x, x, n) + 1; \};
 6
       long long x = 0, y = 0, t = 30, prd = 2, i = 1, q;
 7
       while (t++\% 40 | | \_gcd(prd, n) == 1) {
 8
          if (x = y) x = ++i, y = f(x);
 9
10
          \mathbf{if} \ \left( \left( \mathbf{q} = \mathbf{mod}_{\mathbf{mul}}(\mathbf{prd} \ , \ \mathbf{max}(\mathbf{x}, \mathbf{y}) \ - \ \mathbf{min}(\mathbf{x}, \mathbf{y}) \ , \ \mathbf{n} \right) \right) \right) \ \mathbf{prd} \ = \ \mathbf{q} \ ;
          x = f(x), y = f(f(y));
11
12
13
       return __gcd(prd, n);
14
    }
                                                          6
                                                                   if (miller_rabin(n)) return {n};
    // usa miller_rabin.cpp!! olhar em
         matematica/primos
                                                          7
                                                                   long long x = pollard rho(n);
    // usa pollar rho.cpp!! olhar em
                                                                   auto l = factorize(x), r =
 2
         matematica/fatoracao
                                                                        factorize(n / x);
 3
                                                          9
                                                                   l.insert(l.end(), all(r));
    vector<long long> factorize (long long
                                                         10
                                                                   return 1;
                                                              }
                                                         11
         n) {
 5
          if (n = 1) return \{\};
```

5.37 FFT

5.38 Transformada rápida de Fourier

Computa multiplicação de polinômio.

- Complexidade de tempo (caso médio): O(N * log(N)) - Complexidade de tempo (considerando alto overhead): $O(n*log^2(n)*log(log(n)))$

Garante que não haja erro de precisão para polinômios com grau até $3 * 10^5$ e constantes até 10^6 .

```
typedef complex<double> cd;
   typedef vector < cd> poly;
   const double PI = acos(-1);
5
   void fft(poly& a, bool invert = 0){
6
        int n = a.size(), log_n = 0;
7
        while ((1 << log_n) < n) log_n++;
8
9
        for (int i = 1, j = 0; i < n; ++i)
10
            int bit = n >> 1;
             for( ; j >= bit; bit >>= 1) j -= bit;
11
12
             j += bit;
13
             if (i < j) swap(a[i], a[j]);
14
        }
15
16
        double angle = 2*PI/n * (invert ? -1 : 1);
17
        poly root (n/2);
        for (int i = 0; i < n/2; ++i) root [i] = cd(cos(angle*i), sin(angle*i));
18
19
        for (long long len = 2; len \leq n; len \leq 1){
20
21
             long long step = n/len;
22
            long long aux = len / 2;
23
             for (long long i = 0; i < n; i+=len)
                 for (int j = 0; j < aux; ++j){
24
25
                     \operatorname{cd} u = a[i+j], v = a[i+j+aux]*\operatorname{root}[\operatorname{step}*j];
26
                     a[i+j] = u + v;
27
                     a[i+j+aux] = u - v;
28
                 }
29
30
        if(invert) for(int i = 0; i < n; ++i)
31
            a[i] /= n;
32
   }
33
   vector < long long > convolution (vector < long long > & a, vector < long long > & b) {
34
        int n = 1, len = a.size() + b.size();
35
36
        \mathbf{while}(n < len) n <<= 1;
37
        a.resize(n); b.resize(n);
38
        poly fft a(a.begin(), a.end()); fft(fft a);
39
        poly fft_b(b.begin(), b.end()); fft(fft_b);
40
41
        poly c(n);
42
        for (int i = 0; i < n; ++i) c[i] = fft a[i] * fft b[i];
43
        fft (c, 1);
44
45
        vector < long long > res(n);
        for(int i = 0; i < n; ++i) res[i] = round(c[i].real()); // res = c[i].real();
46
            se for vector de double
           while (size (res) > 1 && res.back() == 0) res.pop_back(); // apenas para
47
            quando os zeros direita nao importarem
48
        return res;
49
   }
```