Лабораторная работа №5: отчет.

вероятностные алгоритмы проверки чисел на простоту

Евдокимов Максим Михайлович. Группа - НФИмд-01-24.

Содержание

Цели и задачи работы	4
Цель лабораторной работы	4
Задание	4
Теоретическое введение	5
Тест Ферма	5
Алгоритм действий:	5
Сравнение:	5
Символ Якоби	5
Свойства символа Якоби	6
Тест Соловея-Штрассена	7
Алгоритм действий:	7
Сравнение:	7
Тест Миллера-Рабина	7
Алгоритм действий:	7
Сравнение:	8
Вывод:	8
Ход работы	9
Подготовка	9
Алгоритм теста Ферма	10
Результат 1	11
Алгоритм вычисления символа Якоби	11
Результат 2	13
Алгоритм теста Соловэя-Штрассена	14
Результат 3	15
Алгоритм теста Миллера-Рабина	16
Результат 4	18
Выводы по проделанной работе	19
Вывод	19
Chucok hutenatyny	20

Список иллюстраций

1	Случайная тестовая группа
2	Код теста Ферма
3	Результат шифра Цезаря
4	Код вычисления символа Якоби
5	Результат вычисления символа Якоби
6	Код теста Соловэя-Штрассена
7	Результат теста Соловэя-Штрассена
8	Код теста Миллера-Рабина 1
9	Код теста Миллера-Рабина 2
10	Результат теста Миллера-Рабина

Цели и задачи работы

Цель лабораторной работы

Вероятностные алгоритмы проверки чисел на простоту

Задание

- 1. Реализовать алгоритм теста Ферма.
- 2. Реализовать алгоритм вычисления символа Якоби.
- 3. Реализовать алгоритм теста Соловэя-Штрассена.
- 4. Реализовать алгоритм теста Миллера-Рабина.

Теоретическое введение

Тест Ферма

Тест Ферма основан на малой теореме Ферма, которая утверждает, что если n- простое число, то для любого целого a такого, что $1 \le a < n$, выполняется: $a^{n-1} \equiv 1 \mod n$

Алгоритм действий:

- 1. Выбрать случайное число a такое, что $1 \le a < n$.
- 2. Вычислить $a^{n-1} \mod n$.
- 3. Если $a^{n-1}\not\equiv 1\mod n$, то n- составное.
- 4. Если $a^{n-1} \equiv 1 \mod n$ \$, то n вероятно простое.

Сравнение:

- Плюсы: Простой и быстрый.
- Минусы: Подвержен "числам Кармайкла" составным числам, которые проходят тест для всех a.

Символ Якоби

Символ Якоби — это обобщение символа Лежандра на случай, когда знаменатель является нечетным составным числом. Символ Якоби $(\frac{a}{n})$ определяется для

целого числа a и нечетного натурального числа n.

Если n — простое число, то символ Якоби совпадает с символом Лежандра. Символ Лежандра $(\frac{a}{p})$ определяется для целого числа a и простого числа p и указывает, является ли a квадратичным вычетом по модулю p.

Свойства символа Якоби

1. Мультипликативность:

$$(\frac{ab}{n}) = (\frac{a}{n})(\frac{b}{n})$$

2. Симметрия:

$$\left(\frac{a}{n}\right) = \left(\frac{a \mod n}{n}\right)$$

3. Квадратичный закон взаимности:

Для нечетных натуральных чисел a и b:

$$(\frac{a}{b})(\frac{b}{a}) = (-1)^{\frac{(a-1)(b-1)}{4}}$$

4. Свойства для a=-1 и a=2:

$$\left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}}$$

$$\left(\frac{2}{n}\right) = (-1)^{\frac{n^2 - 1}{8}}$$

Тест Соловея-Штрассена

Тест Соловея-Штрассена использует символ Якоби и малую теорему Ферма для определения вероятности простоты числа.

Алгоритм действий:

- 1. Выбрать случайное число a такое, что $1 \leq a < n$.
- 2. Вычислить символ Якоби $\left(\frac{a}{n}\right)$.
- 3. Вычислить $a^{(n-1)/2} \mod n$.
- 4. Если $(\frac{a}{n}) \not\equiv a^{(n-1)/2} \mod n$, то n- составное.
- 5. Если $(\frac{a}{n}) \equiv a^{(n-1)/2} \mod n$, то n вероятно простое.

Сравнение:

- **Плюсы:** Более надежный, чем тест Ферма, так как не подвержен "числам Кармайкла".
- Минусы: Требует вычисления символа Якоби, что может быть сложнее.

Тест Миллера-Рабина

Тест Миллера-Рабина — это вероятностный тест, основанный на расширении малой теоремы Ферма и использующий свойства квадратичных вычетов.

Алгоритм действий:

- 1. Представить n-1 как $2^s \cdot d$, где d нечетное.
- 2. Выбрать случайное число a такое, что $1 \le a < n$.
- 3. Вычислить $a^d \mod n$.
- 4. Если $a^d \equiv 1 \mod n$ или $a^d \equiv -1 \mod n$, то n вероятно простое.
- 5. Иначе, вычислить $a^{2^r \cdot d} \mod n$ для r = 1, 2, ..., s 1.

- 6. Если для какого-то r выполняется $a^{2^r \cdot d} \equiv -1 \mod n$, то n вероятно простое.
- 7. Если ни одно из условий не выполняется, то n- составное.

Сравнение:

- Плюсы: Один из самых надежных вероятностных тестов, не подвержен "числам Кармайкла".
- Минусы: Требует больше вычислений, чем тест Ферма.

Вывод:

- Тест Ферма простой, но подвержен "числам Кармайкла".
- **Тест Соловея-Штрассена** более надежный, чем Ферма, но требует вычисления символа Якоби.
- **Тест Миллера-Рабина** самый надежный из трех, но требует больше вычислений.

Каждый из этих тестов дает вероятностный результат, и для подтверждения простоты числа обычно используют несколько итераций теста.

Ход работы

Подготовка

Так для тестирования работы кода я создал простой шаблон генерирующий наше случайное число для проверки, а также необходимые для каждого алгоритма коэффициент или параметр который гарантированно меньше исходного, но не меньше 1.

```
2 tests = Matrix(undef, 0, 2)
     p = rand(3:10000)
     k = rand(1:p)
      tests = vcat(tests, [p, k]')
8 tests
10×2 Matrix{Any}:
3846 3655
9603 4874
2116 1347
 288 2
   5
  55
         8
3379 1591
      2043
8752 1625
```

Рис. 1: Случайная тестовая группа

Алгоритм теста Ферма

```
# 1. Απεορυπη πεςπα Φερμα
function fermat_test(n::Int, k::Int=5)

if n <= 1
return false
elseif n <= 3
return true
end

for _ in 1:k
    a = rand(2:n-2)
    if powermod(a, n-1, n) != 1
    return false
end

return true
end

println("Tect Φερμα:")
for i in 1:size(tests)[1]
    t = fermat_test(tests[i, 1], tests[i, 2])
println("Число ", tests[i, 1], t ? "" : " HE", " простое.")
end</pre>
```

Рис. 2: Код теста Ферма

```
Тест Ферма:
Число 3846 НЕ простое.
Число 9603 НЕ простое.
Число 2116 НЕ простое.
Число 288 НЕ простое.
Число 5 простое.
Число 55 НЕ простое.
Число 3379 НЕ простое.
Число 6637 простое.
Число 8752 НЕ простое.
Число 67 простое.
```

Рис. 3: Результат шифра Цезаря

Алгоритм вычисления символа Якоби

Если посмотреть на полученный результаты может показаться что при данных значениях нет ни одного число которое при использовании теста Соловэя-Штрассена. Для проверки рассмотрим случай номер 5 при значениях n = 5 (число для проверки) и a = 3 (случайное число) оба при этом оказались простыми.

- 1. Начнём с символа Якоби: 3/5; 5 простое и совпадает с символом Лежандра который вычисляем как $5/3 \Rightarrow 2/3$ а, так как 2 = mod(3) и не является квадратом по модулю 3 то $2/3 = -1 \Rightarrow 3/5 \Rightarrow -1$
- 2. Теперь вычислим $a^{(n-1)/2} * \mod n \Rightarrow 3^{(5-1)/2} * \mod 5 \Rightarrow 3^2 * mod 5 = 4$
- 3. Сравним: -1 и 4 не ровны значит чисто по тесту Соловея-Штрассена при а = 3 и n = 5, n не простое. При других значениях a возможно он даст правильный ответ, но не здесь.

```
# 2. Απεορυπε βωνυκεινα κανθοπα Яκοδυ

function jacobi_symbol(n::Int, a::Int=5)

if n < 0 || iseven(n)

return "He ποσχοσματ η четное."

end

a %= n

g = 1

while a != 0

while iseven(a)

a >>= 1

if (n % 8) in [3, 5]

g = -g

end

a, n = n, a

if a % 4 == 3 & n % 4 == 3

g = -g

end

a %= n

end

a %= n

end

println("Cимвол Якоби:")

for i in 1:size(tests)[1]

t = jacobi_symbol(tests[i, 1]), " и a = ", tests[i, 2], " символ Якоби = ", t)

end

println("При n = ", tests[i, 1], " и a = ", tests[i, 2], " символ Якоби = ", t)

end

println("При n = ", tests[i, 1], " и a = ", tests[i, 2], " символ Якоби = ", t)

end
```

Рис. 4: Код вычисления символа Якоби

```
Символ Якоби:
При п = 3846 и а = 3655 символ Якоби = Не подходит п четное.
При п = 9603 и а = 4874 символ Якоби = -1
При п = 2116 и а = 1347 символ Якоби = Не подходит п четное.
При п = 288 и а = 2 символ Якоби = Не подходит п четное.
При п = 5 и а = 3 символ Якоби = 0
При п = 55 и а = 8 символ Якоби = 0
При п = 3379 и а = 1591 символ Якоби = 1
При п = 6637 и а = 2043 символ Якоби = -1
При п = 8752 и а = 1625 символ Якоби = Не подходит п четное.
При п = 67 и а = 54 символ Якоби = -1
```

Рис. 5: Результат вычисления символа Якоби

Алгоритм теста Соловэя-Штрассена

```
# 3. Anzopumm mecma Conoθ3π-WmpacceHa
function solovay_strassen_test(n::Int, k::Int=5)
if n <= 1
    return false
elseif n <= 3
    return true
end

for _ in 1:k
    a = rand(2:n-2)
    x = jacobi_symbol(n, a)
    if typeof(x) == String
        return x

end

if x == 0 || powermod(a, (n-1) ÷ 2, n) != x % n
    return false
end
end
return true
end

println("Tect Conob3π-WTpacceHa:")
for i in 1:size(tests)[1]
    t = solovay_strassen_test(tests[i, 1], tests[i, 2], ": ", t)
end

println("При n = ", tests[i, 1], " и k = ", tests[i, 2], ": ", t)
end</pre>
```

Рис. 6: Код теста Соловэя-Штрассена

```
Тест Соловэя-Штрассена:
При п = 3846 и k = 3655: Не подходит п четное.
При п = 9603 и k = 4874: false
При п = 2116 и k = 1347: Не подходит п четное.
При п = 288 и k = 2: Не подходит п четное.
При п = 5 и k = 3: false
При п = 55 и k = 8: false
При п = 3379 и k = 1591: false
При п = 6637 и k = 2043: false
При п = 8752 и k = 1625: Не подходит п четное.
При п = 67 и k = 54: false
```

Рис. 7: Результат теста Соловэя-Штрассена

Алгоритм теста Миллера-Рабина

Рис. 8: Код теста Миллера-Рабина 1

```
30 end
31
32 if x != n - 1
33 return false
34 end
35 end
36 return true
37 end
38
39 println("Тест Миллера-Рабина:")
40 for i in 1:size(tests)[1]
41 t = miller_rabin_test(tests[i, 1], tests[i, 2])
42 println("Число ", tests[i, 1], t ? "" : " HE", " простое.")
43 end
```

Рис. 9: Код теста Миллера-Рабина 2

```
Тест Миллера-Рабина:
Число 3846 НЕ простое.
Число 9603 НЕ простое.
Число 2116 НЕ простое.
Число 288 НЕ простое.
Число 5 простое.
Число 55 НЕ простое.
Число 3379 НЕ простое.
Число 6637 простое.
Число 8752 НЕ простое.
Число 67 простое.
```

Рис. 10: Результат теста Миллера-Рабина

Выводы по проделанной работе

Вывод

В ходе выполнения лабораторной работе выли изучены такие способы определение простоты числа как алгоритм теста Ферма, алгоритм теста Миллера-Рабина и алгоритм теста Соловэя-Штрассена, и алгоритм вычисления символа Якоби.

Список литературы

- 1. Свойства символа Якоби и Тест на простоту Соловея-Штрассена
- 2. Метод Соловея Штрассена для проверки на простоту
- 3. Primality Test | Set 3 (Miller–Rabin)
- 4. Тесты Ферма и Миллера-Рабина на простоту
- 5. Алгоритм Соловея-Штрассена