CSC3001 PQ5

12

Base Case. $a_0 = 1 = 2^0$.

Inductive Step. Suppose $a_k = 2^k$ for all $k \le n$. Then

$$a_{n+1} = 1 + \sum_{i=0}^n a_i = 1 + 2^0 + 2^1 + \ldots + 2^n = 1 + \frac{1 - 2^{n+1}}{-1} = 2^{n+1}. \quad \Box$$

13

Induction on $n \geq 0$.

Base Case. $0 = d \cdot 0 + 0$.

Inductive Step. Suppose n = dq + r with d > 0 and $0 \le r < d$. Then

$$n+1 = dq + (r+1).$$

If r + 1 < d we are done. If $r + 1 \ge d$, we have

$$n+1 = d(q+1) + (r+1-d)$$

with $0 \le r+1-d < 1 < d$. \square

14

Fix any m. Induction on n:

Base Case. For $m \times 1$, clearly we need exactly m-1 splits. So

$$\#\text{splits}_1 = m - 1 \ge m \cdot 1 - 1.$$

Inductive Step. Suppose for $m \times n$ the number of splits is

$$\#\mathrm{splits}_n \geq mn-1.$$

Then in order to divide up $m \times (n+1)$, we need at least m+1 splits to separate the chocolate bar into one $m \times n$ bar and m unit squares. So

$$\#\text{splits}_{n+1} \ge m+1+\#\text{splits}_n = m(n+1) \ge m(n+1)-1.$$

Assume n is the least non-zero integer s.t. $1+2+\ldots+n\neq n(n+1)/2$. Then $1+2+\ldots+(n-1)\neq n(n+1)/2-n=(n-1)n/2$, contradicting the minimality of n.

19

Proceed by strong induction on n.

Clearly $F_0=0\leq \phi^{-1}.$ Suppose $F_k\leq \phi^{k-1}$ for all $k\leq n.$ Then

$$F_{n+1} = F_{n-1} + F_n \le \phi^{n-2} + \phi^{n-1} = \phi^{n-2}(1+\phi) \le \phi^n$$

where the last inequality follows from the fact that $1+\phi=\phi^2$. $\ \square$