Лабораторная работа №6

Математическое моделирование

Данзанова С.3.

16 марта 2024 год

Российский университет дружбы народов, Москва, Россия

Докладчик

- Данзанова Саяна Зоригтоевна
- Студентка группы НПИбд-01-21
- Студ. билет 1032217624
- Российский университет дружбы народов

Цель лабораторной работы

Изучить и построить модель эпидемии.

Теоретическое введние. Построение математической модели (1)

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t)>I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Теоретическое введние. Построение математической модели (2)

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$rac{dS}{dt} = egin{cases} -lpha S & ext{, если } I(t) > I^* \ 0 & ext{, если } I(t) \leq I^* \end{cases}$$

Теоретическое введние. Построение математической модели (3)

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, то есть:

$$rac{dI}{dt} = egin{cases} lpha S - eta I & ext{,если } I(t) > I^* \ -eta I & ext{,если } I(t) \leq I^* \end{cases}$$

Теоретическое введние. Построение математической модели (4)

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни):

$$\frac{dR}{dt} = \beta I$$

Теоретическое введние. Построение математической модели (5)

Постоянные пропорциональности α, β - это коэффициенты заболеваемости и выздоровления соответственно. Для того, чтобы решения соответствующих уравнений определялось однозначно. необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0) = 0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) < I^*$ и $I(0) > I^*$

Задание лабораторной работы. Вариант 30

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=11700) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0) = 270, А число здоровых людей с иммунитетом к болезни R(0) = 49. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0) = N - I(0) - R(0). Постройте графики изменения числа особей в каждой из трех групп.

Рассмотрите, как будет протекать эпидемия в случае:

- 1. $I(0) \leq I^*$
- 2. $I(0) > I^*$

Задачи:

Построить графики изменения числа особей в каждой из трех групп S, I, R. Рассмотреть, как будет протекать эпидемия в случаях:

- 1. $I(0) \leq I^*$
- 2. $I(0) > I^*$

Ход выполнения

лабораторной работы

Математическая модель

По представленному выше теоретическому материалу были составлены модели на обоих языках программирования.

Результаты работы кода на Julia и Open Modelica для случая

(графики численности особей трех групп $S,\,I,\,R$, когда больные изолированы)

Рис. 1: "График, построенный на языке

Рис. 2: "График, построенный на языке Open Modelica"

Результаты работы кода на Julia и Open Modelica для случая $I(0) < I^*$

(графики численности особей трех групп $S,\,I,\,R$, когда больные могут заражать особей группы S)

Рис. 3: "График, построенный на языке

Рис. 4: "График, построенный на языке Open Modelica"

13/16

Анализ полученных результатов. Сравнение языков.

- В итоге проделанной работы мы построили графики зависимости численности особей трех групп S, I, R для случаев, когда больные изолированы и когда они могут заражать особей группы S.
- Построение модели эпидемии на языке OpenModelica занимает значительно меньше строк, чем аналогичное построение на Julia.
 Кроме того, построения на языке OpenModelica проводятся относительно значения времени t по умолчанию, что упрощает нашу работу.

Вывод

В ходе выполнения лабораторной работы была изучена модель эпидемии и построена модель на языках Julia и Open Modelica.

Список литературы. Библиография

- [1] Документация по Julia: https://docs.julialang.org/en/v1/
- [2] Документация по OpenModelica: https://openmodelica.org/
- [3] Решение дифференциальных уравнений: https://www.wolframalpha.com/
- [4] Конструирование эпидемиологических моделей: https://habr.com/ru/post/551682/