3. Principles of QM

Axiomatic principles

State vector axiom: State vector at t is ket $\psi(t)$, or $|\psi\rangle$, bra state. **Probability axiom:** Given a system in state $|\psi\rangle$, a measurement will find it in state $|\phi\rangle$ with probability amplitude $\langle \phi | \psi \rangle$.

Hermitian operator axiom: Physical observable is represented by a linear and Hermitian operator.

Measurement axiom: Measurement of a physical observable results in eigenvalue of observable. Observable \widehat{A} , we have $\widehat{A}|a\rangle = a|a\rangle$, where a is eigenvalue and $|a\rangle$ is eigenvector. Measurement of the physical quantity represented by \widehat{A} collapses the state $|\psi\rangle$ before measurement into an eigenstate $|a\rangle$ of \widehat{A} .

Time evolution axiom: $i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \widehat{H} |\psi(t)\rangle$, w/o consider x or p.

State vector is neither in position nor momentum space.

Basis vectors:
$$|0\rangle = \begin{bmatrix} 0\\ 1\\ 0\\ 0 \end{bmatrix}$$
, $|1\rangle = \begin{bmatrix} 0\\ 1\\ 0\\ 0 \end{bmatrix}$, $|n\rangle = \begin{bmatrix} 0\\ 0\\ 1\\ 1 \end{bmatrix}$ (in n th pos).

Linearity: Because the SE is linear, given two states $|\psi_1(t)\rangle$ and $|\psi_2(t)\rangle$, $|\psi(t)\rangle = c_1 |\psi_1(t)\rangle + c_2 |\psi_2(t)\rangle$ is also a sol. (c's are complex).

Properties of a vector space

Dual vector space
$$c|\psi\rangle$$
 is mapped to $c*\langle\psi|$. Given a vector, $|\psi\rangle=\left|\begin{array}{c} : \\ \alpha \\ : \end{array}\right|$, the

dual vector is
$$\langle \psi | = \begin{bmatrix} \cdots & \alpha^* & \cdots \end{bmatrix}$$
.

Dual basis vectors are
$$\langle 0| = \begin{bmatrix} 1 & 0 & \cdots \end{bmatrix}, \cdots, \langle n| \begin{bmatrix} 0 & \cdots & 1 \end{bmatrix}$$
.

Inner product:
$$\langle \phi | \psi \rangle = c$$
, where c is complex.

 $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle^* \rightarrow \langle \psi | \psi \rangle$ is real, positive, and finite for a normalizable ket vector. Can choose $\langle \psi | \psi \rangle = 1$. $\langle \psi_m | \psi_n \rangle = \delta_{mn}$

Operators

A matrix operator \widehat{A} acting on a state vector $|\psi\rangle$ transforms it into another state vector $|\phi\rangle$. $\widehat{A}|\psi\rangle = |\phi\rangle$. It is linear.

Properties of operators

Hermitian conjugate (Hermitian adjoint) operator in the dual space

Hermitian adjoint operator \widehat{A}^{\dagger} acts on the dual vector $\langle \psi |$ from the right as $\langle \psi | \widehat{A}^{\dagger} \rangle$, where $\widehat{A}^{\dagger} = (\widehat{A})^{T*}$.

$$(\widehat{A}|\psi\rangle)^{\dagger} = |\psi\rangle^{\dagger} \widehat{A}^{\dagger} = \langle\psi|\widehat{A}^{\dagger} \quad \langle\psi| = |\psi\rangle^{\dagger} \quad \langle\psi|^{\dagger} = |\psi\rangle \\ (\widehat{A}\widehat{B})^{\dagger} = (\widehat{A}\widehat{B})^{T*} = (\widehat{B}^T\widehat{A}^T)^* = \widehat{B}^{T*} \widehat{A}^{T*} = \widehat{B}^{\dagger} \widehat{A}^{\dagger}, \quad (c\widehat{A})^{\dagger} = c^* \widehat{A}^{\dagger}$$

Outer product operators: $|\psi\rangle\langle\phi|$ $[|\psi\rangle\langle\phi|]\chi\rangle = |\psi\rangle\langle\phi|\chi\rangle$

Matrix elements of operators

$$\langle \phi | \widehat{A} | \psi \rangle$$
 (complex num)

Hermitian equiv to complex conj $\langle \phi | \hat{A} | \psi \rangle^{\dagger} = \langle \psi | \hat{A}^{\dagger} | \phi \rangle = \langle \phi | \hat{A} | \psi \rangle^{*}$

Hermitian operators: $\widehat{A}^{\dagger} = \widehat{A}$, so given $\widehat{A}|\phi\rangle$ in the vector space, we have $\langle \psi | \widehat{A}^{\dagger} = \langle \phi | \widehat{A} \text{ in the dual vector space.} \rangle$

Matrix elements of a Hermitian operator

$$\langle \phi | \widehat{A} | \psi \rangle^{\dagger} = \langle \phi | \widehat{A} | \psi \rangle^{*} = \langle \psi | \widehat{A}^{\dagger} | \phi \rangle = \langle \psi | \widehat{A} | \phi \rangle$$

Hermitian operator, real expectation vals:
$$\langle \psi | \widehat{A} | \phi \rangle^* = \langle \psi | \widehat{A} | \phi \rangle \equiv \langle \widehat{A} \rangle$$

Same result whether \widehat{A} acts to right or left: $\langle \phi | \widehat{A} | \psi \rangle = \langle \phi | \widehat{A}^{\dagger} | \psi \rangle$

Eigenvals and eigenvecs of Hermitian operators: $\widehat{A}|a_n\rangle = a_n|a_n\rangle$

Normalized eigvecs $\langle a_m | a_n \rangle = \delta_{mn}$. Gram-Schmidt, degenerate evec.

Completeness of eigenvector of a Hermitian operator Set $|a_n\rangle$ is complete if $\sum_n |\langle a_n | \psi \rangle|^2 = 1$. $\sum_n |a_n \rangle \langle a_n| = 1$ (identity operator) Continuous spectra of a Hermitian operator

Hermitian operator \widehat{A} , $\widehat{A}|a\rangle = a|a\rangle$, where a is continuous.

$$\int da'\langle a'| \widehat{A}|a\rangle = a \int da'\langle a'|a\rangle = \int da'a'\langle a'|a\rangle \rightarrow \langle a'|a\rangle = \delta(a'-a)$$
 Continuous condition:
$$\int da|a\rangle\langle a| = 1$$

Gram-Schmidt orthogonalization procedure

Eigval (like energy level) is n-fold degenerate: n states w same eigval. Orthogonal eigenstates ightarrow no degeneracy.

1. Normalize each state and define $\alpha_i = \frac{\alpha_i}{\sqrt{\langle a_i | a_i \rangle}}$. 2. $|\alpha_1' \rangle = |\alpha_1 \rangle$.

3.
$$|\alpha_2'\rangle = \frac{|\alpha_2\rangle - |\alpha_1\rangle\langle\alpha_1|\alpha_2\rangle}{\sqrt{\langle\alpha_2|\alpha_2\rangle - \langle\alpha_1|\alpha_2\rangle\langle\alpha_2|\alpha_1\rangle}} = \frac{\sqrt{\langle\alpha_1|\alpha_1\rangle}}{\sqrt{1 - \langle\alpha_1|\alpha_2\rangle\langle\alpha_2|\alpha_1\rangle}}$$

4. Subtract components of $|\alpha_3\rangle$ along $|\alpha_1\rangle$ and $|\alpha_2\rangle$,

 $|\alpha_3\rangle - |\alpha_1\rangle\langle\alpha_1|\alpha_3\rangle - |\alpha_2\rangle\langle\alpha_2|\alpha_3\rangle$, normalize and promote to $|\alpha_3'\rangle$ Position and momentum representation

State vector $|\psi(t)\rangle$ in position space (scalar): $\langle \vec{r}|\psi(x,t)\rangle \equiv \psi(\vec{r},t)$ $\langle \psi | \hat{\vec{p}} | \psi \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \langle \psi | \hat{\vec{r}} | \psi \rangle m$

Representation of momentum operator in position space: $\hat{\vec{p}} = -i\hbar \vec{\nabla} \cdot \langle x|\hat{p}|x'\rangle = -i\hbar \frac{\partial}{\partial x} \delta(x-x') = -i\hbar \frac{\partial}{\partial x} \langle x|x'\rangle.$ $\widehat{p} = -i\hbar \frac{\partial}{\partial x}$ is Hermitian, $\frac{\partial}{\partial x}$ is not.

$$\langle x|\widehat{p}|p\rangle = p\langle x|p\rangle = -i\hbar \frac{\partial}{\partial x}\langle x|p\rangle. \text{ The solution is } \langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{\frac{i}{\hbar}px}.$$

In 3D,
$$\langle \vec{r} | \vec{p} \rangle = \frac{1}{(2\pi\hbar)^{3/2}} e^{\frac{i}{\hbar} \vec{p} \vec{r}}$$
.

We can write the normalized wavefunction of definite position in momentum

space, $\langle p|x\rangle=\langle x|p\rangle^*$. So, $\langle p|x\rangle=\frac{1}{\sqrt{2\pi\hbar}}e^{-\frac{i}{\hbar}px}$ (particle moving to the left, or with momentum -p, in the momentum space).

Operators and wavefunction in position representation

Position and momentum operators in pos space: $\hat{\vec{r}} = \vec{r}$, $\hat{\vec{p}} = -i\hbar \vec{\nabla}$.

 \widehat{r} is Hermitian and $\langle \phi | \widehat{r}^{\dagger} | \psi \rangle = \langle \phi | \widehat{r} | \psi \rangle$.

$$\widehat{O}(\widehat{r},\widehat{p}) = \widehat{O}(r,-i\hbar \vec{\nabla})$$

The expectation val of the observable should be indep of representation. In state $\psi(t)$, $\langle \widehat{O} \rangle = \langle \psi(t) | \widehat{O} | \psi(t) \rangle$.

Insert
$$\int d^2 \vec{r} |\vec{r}\rangle \langle \vec{r}| = 1$$
 to get $\langle \hat{O} \rangle = \int d^2 \vec{r} \langle \psi(t) | \vec{r}\rangle \langle \vec{r}| \hat{O} | \psi(t) \rangle$
 $\psi(\vec{r},t) = \langle \vec{r} | \psi(t) \rangle, \qquad \psi(\vec{r},t)^* = \langle \vec{r} | \psi(t) \rangle^* = \langle \psi(t) | \vec{r} \rangle,$

$\langle \vec{r}|\hat{O}|\psi(t)\rangle = \hat{O}(\vec{r}, -i\hbar\vec{\nabla})\psi(\vec{r}, t), \langle \vec{O}\rangle = \int d^3\vec{r}\psi(\vec{r}, t)^*\vec{O}(\vec{r}, -i\hbar\vec{\nabla})\psi(\vec{r}, t)$ Operators and wavefunction in momentum representation

$$\hat{\vec{r}} = i\hbar \vec{\nabla}_{\vec{p}}$$
, or in 1D, $\hat{x} = i\hbar \frac{\partial}{\partial n}$, $\hat{\vec{p}} = \vec{p}$, where $\vec{p}^* = \vec{p}$.

$$\begin{array}{l} \widehat{\widehat{O}}\left(\widehat{r},\widehat{\overrightarrow{p}}\right) = \widehat{O}(i\hbar\vec{\nabla}_{\overrightarrow{p}},\overrightarrow{p}) \\ \langle \widehat{O} \rangle = \langle \psi(t) | \widehat{O} | \psi(t) \rangle \rightarrow \langle \widehat{O} \rangle = \int d^2\overrightarrow{p} \langle \psi(t) | \overrightarrow{p} \rangle \langle \overrightarrow{p} | \widehat{O} | \psi(t) \rangle , \\ \psi(\overrightarrow{p},t) = \langle \overrightarrow{p} | \psi(t) \rangle , \qquad \psi(\overrightarrow{p},t)^* = \langle \overrightarrow{p} \psi(t) \rangle^* = \langle \psi(t) | \overrightarrow{p} \rangle \\ \langle \overrightarrow{p} | \widehat{O} | \psi(t) \rangle = \widehat{O}(i\hbar\vec{\nabla}_{\overrightarrow{p}},\overrightarrow{p}), \langle \overrightarrow{O} \rangle = \int d^3\overrightarrow{p} \psi(\overrightarrow{p},t)^* \widehat{O}(i\hbar\vec{\nabla}_{\overrightarrow{p}},\overrightarrow{p}) \psi(\overrightarrow{p},t). \end{array}$$

$$i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle=\widehat{H}|\psi(t)\rangle, \text{ where }\widehat{H}=\frac{\widehat{\vec{p}}^2}{2m}+V(\widehat{\vec{r}},t) \text{ becomes } i\hbar\frac{\partial\psi(\vec{r},t)}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\psi(\vec{r},t)+V(\vec{r},t)\psi(\vec{r},t)$$

Commuting operators

If $[\widehat{A}, \widehat{B}] = 0$ and the states are nondegenerate, $|\psi\rangle$ is a simultaneous eigenstate of \widehat{A} and \widehat{B} .

$$|\psi\rangle = |ab\rangle$$
, and $\widehat{A}|ab\rangle = a|ab\rangle$, $\widehat{B}|ab\rangle = b|ab\rangle$

Non-commuting operators and the general uncertainty principle

$$(\Delta A)^2 (\Delta B)^2 \ge (\frac{1}{2i} \langle [\widehat{A}, \widehat{B}] \rangle)^2$$

Cannot construct simulatneous eigenstates (which correspond to definite eigenvalues) of non-commuting observables.

Time evolution of expectation value of an operator and Ehrenfest's theorem

Ehrenfest's theorem: how observable \widehat{O} 's expectation value in state $|\psi(t)\rangle$

evolves in time,
$$\frac{\mathrm{d}}{\mathrm{d}t}\langle \hat{O} \rangle = \langle \frac{\partial \hat{O}}{\partial t} \rangle + \frac{i}{\hbar}\langle [\hat{H},\hat{O}] \rangle$$

For $\widehat{O}=\widehat{\vec{p}}$ and a Hamiltonian that is TI, $\frac{\mathrm{d}}{\mathrm{d}t}\langle\widehat{\vec{p}}\rangle=-\langle\vec{\nabla}V(\widehat{\vec{r}})\rangle$, which is just Newton's Second Law! → QM contains all of classical mech.

The simple harmonic oscillator

$$\widehat{H} = \frac{\vec{p}^2}{2m} + \frac{1}{2}m\omega^2 \widehat{x}$$

$$\begin{array}{|c|c|} \widehat{H} = \frac{\vec{p}^2}{2m} + \frac{1}{2}m\omega^2\widehat{x}^2 \\ \textbf{Raising and lowering operators} \\ \textbf{Lowering op: } \widehat{a} = \sqrt{\frac{m\omega}{2\hbar}}(\widehat{x} + \frac{i}{m\omega}\widehat{p}), \, \textbf{Raising op: } \widehat{a}^\dagger = \sqrt{\frac{m\omega}{2\hbar}}(\widehat{x} - \frac{i}{m\omega}\widehat{p}). \end{array}$$

$$[\widehat{a}, \widehat{a}^{\dagger}] = 1 \qquad \widehat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\widehat{a}^{\dagger} + \widehat{a}), \ \widehat{p} = i\sqrt{\frac{m\omega\hbar}{2}} (\widehat{a}^{\dagger} - \widehat{a})$$

$$\widehat{H}=(\widehat{N}+rac{1}{2})\hbar\omega$$
, where $\widehat{N}=\widehat{a}^{\dagger}\widehat{a}$. Now \widehat{N} is Hermitian, and $\widehat{N}|n\rangle=n|n\rangle$ $[\widehat{N},\widehat{a}]=-\widehat{a},\,[\widehat{N},\widehat{a}^{\dagger}]=\widehat{a}^{\dagger}$

$$\widehat{N}(\widehat{a}|n\rangle) = (n-1)(\widehat{a}|n\rangle), \ \widehat{N}(\widehat{a}^{\dagger}|n\rangle) = (n+1)(\widehat{a}^{\dagger}|n\rangle)$$

Normalized number state vectors Energy levels are not degenerate, so
$$|n-1\rangle = c_n \widehat{a} |n\rangle \to c_n = \frac{1}{\sqrt{n}} \to \widehat{a} |n\rangle = \sqrt{n} |n-1\rangle.$$

$$|n+1\rangle = d_n \hat{a}^{\dagger} |n\rangle \rightarrow d_n = \frac{1}{\sqrt{n+1}} \rightarrow \hat{a}^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$$

Ground state:
$$|0\rangle$$
, excited state: $|n\rangle=\frac{(\hat{a}^{\dagger})^n}{\sqrt{n!}}|0\rangle$, $n=0,1,2,\dots$

$$\begin{split} \langle n'|\hat{x}|n\rangle &= \sqrt{\frac{\hbar}{2m\omega}} \langle n'|(\hat{a}^{\dagger} + \hat{a})|n\rangle = \sqrt{\frac{\hbar}{2m\omega}} (\sqrt{n+1}\delta_{n',n+1} + \sqrt{n}\delta_{n',n-1}) \\ \langle n'|\hat{p}|n\rangle &= i\sqrt{\frac{m\omega\hbar}{2}} \langle n'|(\hat{a}^{\dagger} - \hat{a})|n\rangle = i\sqrt{\frac{m\omega\hbar}{2}} (\sqrt{n+1}\delta_{n',n+1} - \sqrt{n}\delta_{n',n-1}) \end{split}$$

Wavefunctions in position representation

Classical simple harmonic oscillator

The quantum simple harmonic oscillator and coherent state

4. Three-dimensional systems

Three-dimensional infinite square well

The Schrödinger equation in spherical coordinates

Orbital angular momentum

Spherical harmonics