MA3505 Multivariate Statistics Project 1

April 25, 2016

- 1 Introduction and exploratory data analysis for the variables.
- 2 Analysis to answer each research question
- 2.1 Question 1
- 2.2 Question 2
- 2.3 Question 3

2.3.1 Cleveland

From running variance inflation factor we get the following

years	cigs	chol	htn	trestbps	ср	sex	age
2.315459	2.346224	1.326342	1.734144	2.935706	1.683710	2.379469	2.070591
prop	dig	ekgyr	ekgday	$_{ m ekgmo}$	restecg	famhist	$_{ m fbs}$
1.679766	1.296383	78.992867	3.357399	14.903816	1.338021	1.291443	1.281244
thalrest	thalach	met	thaltime	thaldur	diuretic	pro	nitr
1.713892	2.868773	10.328475	1.422540	9.549788	1.480903	1.415979	1.546570
${\tt rldv5e}$	slope	oldpeak	xhypo	exang	trestbpd	$_{ m tpeakbpd}$	$_{ m tpeakbps}$
1.557587	2.291928	2.831028	1.870852	1.734917	2.785971	2.173463	2.829387
laddist	ladprox	lmt	cyr	cday	cmo	thal	ca
1.526869	1.496650	1.401270	80.511913	3.413846	15.389866	2.051953	1.841289
				rcadist	rcaprox	om1	$_{\rm cxmain}$
				1.835745	1.764053	1.789705	1.543251

Here we see the variables, ekgmo, ekgyr, cmo and cyr are collinear with other variables in the model.

From PCA we have the following importance of variables:

Importance of components:						
	Comp.1	Comp . 2	Comp.3	Comp . 4	$\operatorname{Comp}.5$	
Standard deviation	2.3133041	1.80044630	1.68730136	1.60245102	1.51366282	
Proportion of Variance	0.1216222	0.07367288	0.06470422	0.05836021	0.05207216	
Cumulative Proportion	0.1216222	0.19529506	0.25999929	0.31835950	0.37043166	
	Comp. 6	Comp. 7	Comp. 8	Comp.9	Comp. 10	
Standard deviation	1.34915434	1.29424733	1.26446407	1.19770134	1.15778216	
Proportion of Variance	0.04136858	0.03806991	0.03633794	0.03260201	0.03046499	
Cumulative Proportion	0.41180024	0.44987015	0.48620809	0.51881010	0.54927509	
	Comp. 11	Comp.12	Comp. 13	Comp. 14	Comp. 15	
Standard deviation	1.14128616	1.12936676	1.09814804	1.05554851	1.0455419	
Proportion of Variance	0.02960305	0.02898794	0.02740748	0.02532233	0.0248445	
Cumulative Proportion	0.57887814	0.60786608	0.63527356	0.66059589	0.6854404	
	Comp.16	Comp.17	Comp.18	Comp.19	Comp.20	
Standard deviation	1.0311984	0.95973900	0.92955111	0.91309717	0.8878647	
Proportion of Variance	0.0241675	0.02093407	0.01963785	0.01894878	0.0179160	

Cumulative Proportion	$0.7096079 \ 0.73054196 \ 0.75017981 \ 0.76912859 \ 0.7870446$
	Comp.21 Comp.22 Comp.23 Comp.24 Comp.25
Standard deviation	0.87569299 0.8660316 0.84281890 0.82420668 0.80847278
Proportion of Variance	$0.01742814 \ 0.0170457 \ 0.01614417 \ 0.01543901 \ 0.01485519$
Cumulative Proportion	$0.80447273 \ \ 0.8215184 \ \ 0.83766260 \ \ 0.85310161 \ \ 0.86795680$
	Comp. 26 Comp. 27 Comp. 28 Comp. 29 Comp. 30
Standard deviation	$0.7714\overline{5}114$ 0.75097291 0.7317500 $0.6947\overline{3}103$ 0.68409574
Proportion of Variance	0.01352584 0.01281728 0.0121695 0.01096935 0.01063607
Cumulative Proportion	$0.88148264 \ \ 0.89429992 \ \ 0.9064694 \ \ 0.91743877 \ \ 0.92807483$
	Comp.31 Comp.32 Comp.33 Comp.34
Standard deviation	$0.645436007 \ \ 0.630410565 \ \ 0.601172308 \ \ 0.576105461$
Proportion of Variance	$0.009467901 \ \ 0.009032215 \ \ 0.008213821 \ \ 0.007543125$
Cumulative Proportion	$0.937542734 \ \ 0.946574949 \ \ 0.954788771 \ \ 0.962331896$
	Comp.35 Comp.36 Comp.37 Comp.38
Standard deviation	0.549458611 0.529360490 0.511247676 0.466306978
Proportion of Variance	$0.006861472\ \ 0.006368694\ \ 0.005940322\ \ 0.004941868$
Cumulative Proportion	$0.969193368 \ \ 0.975562062 \ \ 0.981502384 \ \ 0.986444252$
	Comp. 39 Comp. 40 Comp. 41 Comp. 42
Standard deviation	$0.454444269 \ \ 0.396139455 \ \ 0.368040283 \ \ 0.232178628$
Proportion of Variance	0.004693627 0.003566511 0.003078492 0.001225157
Cumulative Proportion	$0.991137879 \ \ 0.994704390 \ \ 0.997782882 \ \ 0.999008039$
	Comp.43 $Comp.44$
Standard deviation	$0.1936567249 \ 0.0783795601$
Proportion of Variance	$0.0008523393 \ 0.0001396217$
Cumulative Proportion	$0.9998603783 \ 1.0000000000$

Here we see that it is need for first 21 components in order to keep 80% of the variance.

- 2.3.2 Hungary
- 2.3.3 Longbeach
- 2.3.4 Switzerland
- 2.4 Question 4
- 3 Summary