

# CAI 4104/6108 — Machine Learning Engineering: Neural Networks

Prof. Vincent Bindschaedler

Spring 2024

### History of Neural Networks



- (Artificial) Neural Networks
  - Large class of models / architecture
  - Loosely inspired by the biology of our brains

#### Timeline

- 1943: McCulloch and Pitts. "A logical calculus of the ideas immanent in nervous activity." Bulletin of Mathematical Biophysics.
- 1958: Perceptron algorithm
- 1960s: backpropagation derived by many researchers independently
- 1980s: application of backpropagation to multi-layer neural networks by Rumelhart, Hinton and Williams (1986) and Yann Lecun in his PhD thesis (1987)
- 2010s: deep learning revolution
  - greater availability of data; more computational power; techniques to overcome difficulty of training deep neural networks; fast implementations on GPUs, etc.

# **Neural Network Terminology**





## A Simple Neural Network



- Consider a single neuron / unit
  - The model is  $h_{\boldsymbol{w},b}(\boldsymbol{x}) = f(\boldsymbol{w} \cdot \boldsymbol{x} + b)$ 
    - What if we take f to be the identity function?
      - That is: f(z) = z
    - What if we take f to be the sigmoid / logistic function?
      - That is:  $f(z) = 1/(1+e^{-z})$

#### The Perceptron

- Invented by Frank Rosenblatt in 1957
  - "The Perceptron—a perceiving and recognizing automaton". Report 85-460-1. Cornell Aeronautical Laboratory
- A different neuronal architecture called a threshold linear unit (TLU)
  - No bias term
  - With a step activation function. For example:
    - heaviside(z) = 0 if  $z \le 0$ , 1 otherwise ( $z \ge 1$ ); or sign(z)



## Components



- Types of Layers
  - Dense (i.e., fully-connected)
  - Convolutional
  - Recurrent
- Activation Functions
  - Identity / Linear (or none): f(z) = z
  - Sigmoid:  $f(z) = 1/(1+e^{-z})$
  - TanH:  $f(z) = (e^z e^{-z}) / (e^z + e^{-z})$
  - ReLU:  $f(z) = \max(0, z)$
  - Softmax:  $f(z_j) = \exp(z_j/T) / \sum_i \exp(z_i/T)$ 
    - Note: in that case the activation function is over an entire layer, not a single unit
- Loss
  - Whatever you like (e.g., squared error loss) as long as it's differentiable
    - Note: make sure the loss function and activation function of the output layer are consistent with each other!



# **Examples & Special Cases**



- Single neuron?
  - Linear regression
    - One layer neural network with a single neuron with a linear activation function and MSE as loss function
  - (Binary) Logistic regression
    - One layer neural network with a single neuron with a sigmoid activation function and binary cross-entropy as loss function
- Multi-Layer Perceptron (MLP)
  - Input layer (passthrough)
  - One or more hidden layers
  - Output layer
- Neural network with multiple layers all with linear activation
  - Q: Good idea?
    - No. A linear function of a linear function is still a linear function!

## **Training Neural Networks**



#### Backpropagation:

- Reverse pass to measure error and propagate error gradient backwards in the network
  - Using gradient descent to update the parameters





Adjust the weights (parameters) to decrease the loss

# Backpropagation



#### Seminal Paper:

"Learning representations by back-propagating errors."
 Rumelhart, Hinton, and Williams. Nature 1986.





#### Terminology

- Backpropagation: how to compute the gradients efficiently
- Gradient descent: how to update the parameters to minimize the loss given the gradient

#### Algorithm: given a mini-batch B

- Compute the forward pass for the mini-batch B saving the intermediate results at each layer
- Compute the loss on the mini-batch B (compares output of network to labels/targets → error)
- Backwards pass: computes the per-weight gradients (error contribution) layer by layer
  - \* This is done using the chain rule (if z depends on y and y depends on x:  $dz/dx = dz/dy \cdot dy/dx$ )
- (Stochastic) gradient descent: update the weights based on the gradients

## Backpropagation: Illustration





output:  $a^{(l)}_{j} = f^{(l)}(z^{(l)}_{j})$ 

$$z^{(l)}{}_{j} = \sum_{i} w^{(l)}{}_{ij} a^{(l-1)}{}_{i} + b^{(l)}{}_{j}$$

- How should we update  $w^{(l)}_{ij}$ ?
  - Based on  $\partial L/\partial w^{(l)}{}_{ij}$  where L is the loss
  - How to compute  $\partial L/\partial w^{(l)}_{ij}$ ?
    - \* Activation output  $f^{(l)}$  is a function of  $z^{(l)}{}_j$  and  $z^{(l)}{}_j$  is a function of  $w^{(l)}{}_{ij}$
    - \* Chain rule:  $\partial L/\partial w^{(l)}_{ij} = \partial L/\partial z^{(l)}_{j} \cdot \partial z^{(l)}_{j}/\partial w^{(l)}_{ij}$
    - \*  $\partial z^{(l)}_{j}/\partial w^{(l)}_{ij}=a^{(l-1)}_{i}$
  - If we let  $\delta^{(l)}_{j} = \partial L/\partial z^{(l)}_{j}$ , we see that  $\delta^{(l-1)}_{i}$  depends on  $\delta^{(l)}_{j}$ 
    - So we can compute the gradients right to left (i.e., backwards)

#### When To Use Neural Networks?



- You have a complex learning task or complex data
  - For many problems, neural networks provide the best performance (for some tasks performance is better than humans)
    - E.g.: image classification / captioning tasks
    - E.g.: speech recognition
    - E.g.: natural language modeling
- When should you NOT use a neural network?
  - If you can solve your problem with a simple model (e.g., linear model, decision tree, SVM)
  - If you do not have a lot of data
    - \* Neural networks (esp. deep neural networks) require a lot of data to achieve good performance
  - You need an explainable/interpretable model
    - Note: there exists techniques to explain decisions from neural networks

# Universality of Neural Network



- Universal Approximation Theorems
  - (Feed-forward) Neural networks can approximately represent any function
  - Arbitrary width; bounded depth:
    - \* True even if we have a single hidden layer as long as it can have arbitrarily many units
  - Bounded width; arbitrary depth:
    - True even if we have layers of bounded width, as long as the network can have arbitrarily many layer





#### **Neural Network Architecture?**



- Pitfall: inconsistent activation function of output layer with the loss function
  - Examples:
    - Multiclass classification with cross-entropy loss, softmax activation for output layer => Okay
    - Regression with MSE as loss, tanh as activation for output layer => Fail
    - Regression with MSE as loss, linear activation for output layer => Okay
- Tip: the "funnel"
  - For supervised learning we typically have large input feature vectors and small output vectors
    - We should make the network look like a funnel
- Example: Multiclass classification with 10 classes and m=100 input features.
  - The network could look like this:
    - (Input, hidden layer 1, hidden layer 2, hidden layer 3, output layer)
      - 100, 64, 32, 16, 10
    - Activations:
      - Output: Softmax
      - Elsewhere: ReLU



#### **Next Time**



■ Wednesday (2/28): Lecture

- Upcoming:
  - Homework 3 will be out soon