

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» $(ДВ\Phi Y)$

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Направление 02.03.03 «Математическое обеспечение и администрирование информационных систем»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ «В-ДЕРЕВО ПОРЯДКА 2» ПО ДИСЦИПЛИНЕ «СТРУКТУРЫ И АЛГОРИТМЫ КОМПЬЮТЕРНОЙ ОБРАБОТКИ ДАННЫХ»

Выполнил студент группы Б9119-02.03.03техпро
Марков А.В.
Проверил к.т.н., доцент кафедры ПММУ и ПО
Остроухова С.Н.

Содержание

1	Описание	2
2	Спецификация 2.1 Поля класса ВТree	3
	2.2 Методы класса BTree	3
3	Тестирование	4

1 Описание

Цель лабораторной работы: разработать собственный класс BTree для работы с B-деревьями порядка 2 со следующим необходимым пакетом методов:

- 2. деструктор;
- 3. добавление;
- 4. удаление;
- 5. поиск;
- 6. печать.

2 Спецификация

2.1 Поля класса ВТгее

- 1. root ссылка на корень дерева типа Node < data > *, где:
 - Node структура узла дерева;
 - data тип данных шаблона дерева.

2.2 Методы класса ВТгее

1. Конструктор

BTree::BTree() — инициализирует root значением nullptr.

2. Деструктор

 $BTree::\sim BTree()$ — рекурсивно очищает выделенную память, начиная с root.

3. Добавление

bool BTree::add(data key) — добавляет элемент шаблонного типа в структуру дерева. Если такой же элемент уже находится в дереве, то элемент не добавляется, и в таком случае возвращается false. В ином случае возвращается true.

4. Удаление

bool BTree::remove(data key) — удаляет элемент шаблонного типа из структуры дерева. Если такого элемента не существует в дереве, то элемент не удаляется, и в таком случае возвращается false. В ином случае возвращается true.

5. Поиск

bool BTree::find(data key) – рекурсивно ищет по всем узлам дерева элемент с таким же значением. Если такой элемент не существует в дереве, то возвращается false. В ином случае возвращается true.

6. Печать

void BTree::print() — выводит в консоль визуальное представление дерева (корень отрисовывается слева, а листья дерева — справа). Если дерево пусто, то в консоль выводится следующее сообщение: «B-Tree is empty».

3 Тестирование

Таблица 1: Тестирование конструктора

Тестовая ситуация	Входные данные	Выходные данные
Создание пустого дерева	BTree btree	<pre>btree: { root = nullptr; }</pre>

Таблица 2: Тестирование деструктора

Тестовая ситуация	Входные данные	Выходные данные
Удаление пустого дере- ва	<pre>btree: { root = nullptr; }</pre>	<pre>btree: { root = nullptr; }</pre>
Удаление непустого дерева	<pre>btree: { root = 0x00000001; }</pre>	<pre>btree: { root = nullptr; }</pre>

Таблица 3: Тестирование добавления

Тестовая ситуация	Входные данные	Выходные данные
Добавление в пустое дерево	btree: B-tree is empty key: 1	btree: 1 return: true
Добавление в непустое дерево	btree: 1 key: 2	btree: 2 1 return: true

Таблица 3: Тестирование добавления

Тестовая ситуация	Входные данные	Выходные данные
Переполнение в корневом узле	btree: 3 2 1 key: 4	btree: 3 4 2 1 return: true
Переполнение на 2-м уровне	btree: 7 8 6 5 4 3 2 1 key: 9	btree:
Добавление существу- ющего ключа	btree: 1 key: 1	btree: 1 return: false

Таблица 4: Тестирование удаления

Тестовая ситуация	Входные данные	Выходные данные
Удаление, не приводящее к перебалансиров- ке	btree:	btree: 16 19 15 11 10 3 2 0 1 return: true

Таблица 4: Тестирование удаления

Тестовая ситуация	Входные данные	Выходные данные
Удаление, приводящее к перебалансировке	btree:	btree:
Удаление последнего элемента	btree: 10 key: 10	btree: B-tree is empty return: true
Удаление несуществу- ющего элемента	btree:	btree:

Таблица 5: Тестирование поиска

Тестовая ситуация	Входные данные	Выходные данные
Поиск минимального элемента в дереве	btree:	return: true

Таблица 5: Тестирование поиска

Тестовая ситуация	Входные данные	Выходные данные
Поиск максимального элемента в дереве	btree: 16 19 15 11 10 3 5 2 0 1 key: 19	return: true
Поиск не минимального го и не максимального элемента в дереве	btree: 16 19 15 11 10 3 5 2 0 1 key: 15	return: true
Поиск несуществующего элемента в дереве	btree: 16 19 15 11 10 3 5 2 0 1 key: 53	return: false

Таблица 6: Тестирование печати

Тестовая ситуация	Входные данные	Выходные данные
Печать пустого дерева	<pre>btree: { root = nullptr; }</pre>	out: B-tree is empty

Таблица 6: Тестирование печати

Тестовая ситуация	Входные данные	Выходные данные
Печать одного элемента	btree: 10	out: 10
Печать нескольких элементов в корневом узле	btree: 3 2 1	out: 1 2 3
Печать 2-го уровня	btree: 7 8 6 5 4 3 2 1	out: 2 4 6 1 3 5 7 8
Печать 3-го уровня	btree:	out: 10 2 1 3 7 15 11 14 16 24
Печать пустого дерева	<pre>btree: { root = nullptr; }</pre>	out: B-tree is empty