## Intro to fluids

• Knudsen Number:  $\lambda = \frac{k_B T}{\sqrt{2\pi} d^2 P}$ ,  $K_n = \frac{\lambda}{L}$ ,  $K_n \leq 0.01$  for continuum

• Rate of Shearing Strain:  $\dot{\gamma} = \frac{d\beta}{dt} = \frac{du}{dy}$ 

• Shearing Stress:  $\tau = \mu \dot{\gamma}$  for Newtonian Fluids

• Kinematic Viscosity:  $\nu = \frac{\mu}{\rho}$ 

• Reynold's Number:  $\frac{\rho VD}{\mu}$ 

• Sutherland Equation (gases):  $\mu = \frac{CT^{3/2}}{T+S}$ 

• Andrade Equation (liquids):  $\mu = De^{\frac{B}{T}}$ 

• Bulk Modulus:  $E_v=-rac{dp}{dV/V}=rac{dp}{d
ho/
ho}$  , Compressibility:  $\kappa=rac{1}{E_v}$ 

• For polytropic process  $\frac{P}{\rho^x}$  Bulk Modulus:  $E_v = xP$ 

• Speed of Sound:  $c = \sqrt{\frac{dp}{d\rho}} = \sqrt{\frac{E_v}{\rho}} = \sqrt{\gamma RT}$ 

• Excess Pressure:  $p = \frac{2T}{R}$  for Soap:  $p = \frac{4T}{R}$ 

• Height in a capillary:  $h = \frac{2T\cos\theta}{\gamma R}$  ( $\gamma$  is specific wt.)

## Fluid statics

 $\bullet$  For the wedge:  $P_y-P_s=$   $\rho \frac{\delta y}{2}a_y,$   $P_z-P_s=$   $\rho \frac{\delta z}{2}(a_z+g)$ 

• Surface Force:  $\delta F_s = -\nabla P(\delta x \delta y \delta z)$ , Body Force:  $\delta W = -\gamma (\delta x \delta y \delta z) \hat{k}$ 

• Using Newton's 2nd Law:  $-\nabla P - \gamma \hat{k} = \rho \hat{a}$ 

• Incompressible fluids:  $P_2 - P_1 = \rho g h$ , For compressible fluids:  $\frac{dp}{dz} = -\rho g = -\frac{pg}{RT}$ 

• Troposphere:  $T = T_a - \beta z$ 

• Resultant force Centroid  $\int y dA = y_c A$ , Centre of pressure  $y_R = \frac{\int y^2 dA}{y_c A}$ 

• Centre of pressures:  $y_R = \frac{I_{xc}}{y_c A} + y_c$ ,  $x_R = \frac{I_{xyc}}{y_c A} + x_c$ 

• Metacentric height:  $GM = \frac{I_0}{V_{submerged}} - CG$ 

• Stability: MG > 0 (stable); MG < 0 (unstable)



Figure 1: Moment of inertias for some systems