Theory of Computer Games

Homework 1 Report (Fall 2023)

學生:許家銓 學號:R12922080

作業檔案內容:

1. Compilation and Execution

(1) 編譯方法

```
$ ls
Makefile report.pdf src/
$ make
g++ -std=c++11 -03 -Wall -Wextra src/main.cpp -o agent
g++ -std=c++11 -02 -Wall -Wextra src/verifier.cpp src/ewn.cpp -o verifier
$ ls
agent* Makefile report.pdf src/ verifier*
```

編譯完後會生成兩個執行檔,agent為作業所要求的程式,verifier則是用來測試agent輸出合法性的程式。

(2) 執行方法

```
# 單獨執行解題的agent
$ ./agent < [input data]
# 使用verifier執行agent 測試是否合法
$ ./verifier ./agent [input data]
```

2. A* Algorithm and Implementation

這次作業我所使用的演算法為**A* Algorithm**。為了方便說明,我們先了解題目內容與使用的 components。

作業題目要求程式找出一款單人愛因斯坦棋的最佳解,因此我們將遊戲過程分解。除了初始盤面,每次遊戲多下一步就會形成一個新的state(盤面),而一個state會包含三個重要資訊:**棋子的位置(pos)**、**目前的**

步數(n_plies)以及盤面分數(state value),這些都是我們在使用A*時相當重要的資訊。

在使用A*時我們主要會用到兩個Container:

- **Hash Table**:用來記錄state pos的hash value是否已經被尋訪過,並被用來對應到這個pos中的最佳 state。
- **Priority Queue (pq)**:用來排序並儲存要計算與處理的state,insert的值為state pos的hash value,並會根據hash table中的最佳state的state value進行排序。

在A*的過程中,每次我都會從pq中找到目前盤面分數最高(state value最小)的state S,接著對每一個S的下一步S'做檢查:

- 如果S'抵達終點,那就紀錄下來作為目前的最佳解
- 如果S'還未抵達終點,就先確認S'的pos有沒有在Hash Table裡,沒有的話就做為新的state將S'放進ng
- 如果是,則會去確認Hash Table中的state與S'的n_plies誰比較小,若S'比較小就將Hash Table中的 state更新為S'

因此大致上的流程如下:

```
pq.push(hash value of initial state pos);
hash_table[hash value of initial state pos] = initial state;
while (pq is not empty)
                      // pq中分數最高的hash_value
 cur_hash = pq.top()
 cur = hash_table[hash_value] // hash_value對應到的最佳state
 for cur能下的每一步move {
   cur' = cur + move
   if cur'到終點 且比目前記錄的解還好 {
     將cur'紀錄為最佳解
   else if cur'的位置已經出現在hash_table了 {
     if cur'的盤面分數比較高:
       cur hash value = cur'位置的hash value
      hash_table[_cur_hash_value] = cur'; // 更新hash_table的最佳解
   else if cur'的位置沒有出現在hash_table {
     _cur_hash_value = cur'位置的hash_value
     hash_table[_cur_hash_value] = cur'; // 新增hash_table的最佳解
     pq.insert(_cur_hash_value);
                                      // 放入pq運算
   }
 }
}
```

3. Tricks, Heuristic, Experiments and Findings

這段我會說明我為了優化程式的執行所使用的tricks和heuristic functions,並最終結合出前面所述的state value。

(1) Moves Generated

由於終點很明確的在棋盤的右下方,因此在大多數情況下向右下方走對盤面比較有利。

於是我稍微調動了function中回傳可能步數的順序,讓A*在執行時會用以下順序優先執行可以到達的 state:向右下走→向右/下→向左下/向右上→向左/上→向左上走。

以下我實驗了兩種不同走法順序的時間:

單位:ns	11.in	21.in	22.in	31.in	32.in
上述順序	176900	2608000	13458800	770174400	5011800
將順序反過來	278200	9690400	33394000	776471500	3226700

可以發現大多時候右下優先策略會優於左上優先策略,且值得一提的是在21.in與22.in兩筆資料中,右下優先策略在第一時間就找到最佳解,而左上優先策略則是先找到了次優解,而後才找到最佳解。

(2) Step Need

假設現在的state走了n_plies步,那最少還要幾步才會走到終點呢?一個顯而易見的lower bound就是目標 棋到終點的最短距離,若沒有目標棋就是離終點最近的棋到終點的最短距離。而我在這邊給這個最短距離 命名為Step Need。

對於每個state,他最終的答案都不會小於n_plies加上step_need,兩者的和越小,他到達最佳解的可能性就越大。因此我先定義state_value = n_plies + step_need,以此做為我最初的state_value。另外當目標棋已經被吃掉,就不存在step_need,此時的step_need就會設為是MAX_MOVES+1,作為最大的upper bound。

為了證明這個方法在多數時候有用,我跑了下面兩種state value的比較:

state_value	11.in	21.in	22.in	31.in	32.in
n_plies	605600	1568794800	1433454800	3803519400	1619734300
n_plies+step_need	173800	90007800	69588200	701071500	67291400

從這邊就可以發現,在使用step_need作為lower bound的參考後,跑的速度有明顯變快許多。

(3) Valid Moves

接下來要考慮到state_value中最後一個參數,valid_move。根據愛因斯坦棋會吃棋的特性,吃得越多,給予其他棋子移動的機會就越大,而一個簡單的參考依據就是目前目標棋在sequence中能夠移動的步數有多少,也就是valid move。若目標棋能夠移動的次數越多,那相對來說就更容易到達最佳解。而因為valid move是越多越好,因此在state value中為負數,結合前面的Step Need可得:

state value = n plies + step need - valid move

那一樣我們跑了valid_move的一些實驗來觀察valid_move的影響

state_value	11.in	21.in	22.in	31.in	32.in
-------------	-------	-------	-------	-------	-------

n_plies+step_need	173800	90007800	69588200	701071500	67291400
n_plies+valid_move	435500	TLE	TLE	3119874100	TLE
All	162800	2413700	16095700	753630300	6181500

這邊先註明,11.in與31.in並沒有goal piece,因此兩者的valid move只會回傳0。

而將11與31移除的話可以發現,step_need的影響比valid_move大很多,若沒有step_need的bound,多 出來的部分運算量甚至會導致在部分測資上TLE。但在有step_need的前提下,valid_move在那些有goal piece的測資上所展現的優化是非常可觀的,有些測資甚至快了10倍找到最佳解,因此這是一個相當有用 的heuristic value。

至此,state_value已經被定型為n_plies + step_need - valid_move了。而接下來的優化會著重在程式與演算法本身的優化。

(4) Hash Value of State

在前面的演算法中有提到,我在pq裡面放的是hash value,但最一開始我是直接將整個state的class放進去裡面,也就是:

- priority_queue<EWN, vector<EWN>, game_cmp> pq;
- unordered_set<EWN, ewnHash, ewnHashEqual> vis;

這當中unordered set作為hash table,會將state的position跟n plies都一起hash進去,公式如下:

```
class ewnHash {
public:
    size_t operator()(const EWN& cur)const {
        std::hash<int> hasher;
        size_t seed = 0;
        seed ^= hasher(cur.pos[1]) + 0x9e3779b9 + (seed<<6) + (seed >> 2);
        seed ^= hasher(cur.pos[2]) + 0x9e3779b9 + (seed<<6) + (seed >> 2);
        seed ^= hasher(cur.pos[3]) + 0x9e3779b9 + (seed<<6) + (seed >> 2);
        seed ^= hasher(cur.pos[4]) + 0x9e3779b9 + (seed<<6) + (seed >> 2);
        seed ^= hasher(cur.pos[5]) + 0x9e3779b9 + (seed<<6) + (seed >> 2);
        seed ^= hasher(cur.pos[6]) + 0x9e3779b9 + (seed<<6) + (seed >> 2);
        // TODO: remove n_plies from hash
        seed ^= hasher(cur.n_plies) + 0x9e3779b9 + (seed<<6) + (seed >> 2);
        return seed;
}
```

這樣的好處是不會經過太多hashing的處理,但會需要在pq中大量的request memory space導致 overhead。因此此時的agent表現也相當不理想:

11.in	21.in	22.in	31.in	32.in
262200	7101900	131255400	TLE	72877600

多數測資除了跑得相對慢,在那些沒有valid_move優化的測資(31.in)也會TLE。因此我之後先嘗試了將 priority queue裡面的內容換成hash_value,並同時為了減少memory overhead,我在最一開始先建立了一個global的buffer避免大量的request空間,而為了對應hash value與buffer中state的index,我也將 unordered_set改成了unordered_map。因此結構變成了:

- priority_queue<size_t, vector<size_t>, game_cmp> pq;
- unordered_map<size_t, int> vis;: key為hash value, value為在buffer中的index

而與前面原本的方法比較之下:

pq	11.in	21.in	22.in	31.in	32.in
class	262200	7101900	131255400	TLE	72877600
hash_value	329700	92791700	63392300	3078959000	36420400

可以發現雖然在某些測資下表現並不會變好,但當測資大小變大,優化的效果就會變得更明顯。最顯著的 變化也就是31.in能夠跑進5秒鐘內了。

(5) Hash Value of Position

而雖然前者說能夠跑進5秒鐘,但在多次的測試之下依舊是相當不穩定,有時候甚至會需要跑到5.1秒。因此我持續優化目前的演算法。

在向同樣有修此課的同學**郭恩銘**討論過後,我得到了一個非常特別的想法,就是將n_plies的內容從 hash_value中移除,hash_value只存目前的盤面。這樣的做法可以減少state的數量,進而增加每個 container運算的速度,而這樣看似直接的解方,其實會遇到很多問題。

首先,在愛因斯坦棋中,同樣的盤面不代表同樣的state,因為能夠下的棋子不一定會一樣,隨著n_plies 的不同,兩個state的變化也會不一樣,因此這必須要納入考量。同時原先一個state只會對應到一個 hash_value,現在由於只存position,同樣的hash_value會對應到多個state,hash table中key與value的 對應就要重新handle,並判斷現在的hash value應該存哪個state。

我最後實際的做法是讓hash table只存score最好的state,如果之後遇到同樣的position就比較互相的 score,並讓hash table去儲存score最好的state。因此可以發現在前面的演算法中,我已經有handle遇到 visited的hash_value時要更新hash_table。而實際上的表現如下:

time	11.in	21.in	22.in	31.in	32.in
hash pos and n_plies	329700	92791700	63392300	3078959000	36420400
hash pos only	206000	2687300	13195400	688868400	5246300
state num	11.in	21.in	22.in	31.in	32.in
hash pos and n_plies	1488677	2537418	2852379	2891835	2672616
hash pos only	133627	2370941	2284875	2296214	2792595

可以發現,只hash position的情況下速度會有驚人的提升,而若比較state的數量,在多數情況下也有變少。

雖然結果是好的,但只取最好的score也有可能導致一些最佳解無法被得到。

假設存在一條最佳解會經過同樣的position兩次,令第一個state為A,第二個為B,則當我們遇到B state的時候,由於position相同,B的n_plies又比A大,因此B的hash value會被認作是次佳解,前面的演算法就不會將其放入pq中,連帶導致這條最佳解無法被探索到。

由於這個問題的存在,使得我一開始卡在hash_table的更新很久,到此刻也沒有想到能夠避免此狀況發生的方法。但換個角度思考,就算發生了,他對performance的傷害會有多少?

假設A與B中間多走了k步,是否有可能換個順序不經過B走到存在的解?若這k步造成的分布不影響A與B中間特定子的關係,或許存在同樣長的路線也能夠到達最佳解。而若A與B中間每顆棋子的位置都必須固定,那也可以透過多出至多一個period的方式將棋子的位置平移得到新的state。最重要的是雖然得到的是次佳解,但此次作業的評分標準中,避免TLE才是最重要的事情,因此我選擇去犧牲掉這種可能性的最佳解。

4. Final Result

以下是我最終在每筆測資上得到的結果:

data	Final Solution Solving Time	Steps
11.in	203600	5
12.in	407500	9
13.in	2206100	9
14.in	2780900	10
21.in	2235900	13
22.in	13604100	13
23.in	398270700	12
31.in	706438100	13
32.in	4898900	14
33.in	18695400	16