Linear Algebra Test #4

Test #4 will cover WebWork assignments 9, 10 and the class notes for Cramer's Rule (pages 74 to 76) and Section 6 – Vectors (pages 86 to 111), along with the problems done in class for those sections. A formula sheet will be provided.

The breakdown for Test #4 is as follows (out of 35 points):

7 pts – Vector arithmetic (3 questions)

12 pts – Applications of Vectors (3 questions)

6 pts – Proof with vectors

10 pts – Solve a system of linear equations using Cramer's rule

Good luck!

Linear Algebra – 105

Formula sheet

$$\cos\theta = \frac{\vec{u} \cdot \vec{w}}{\|\vec{u}\| \|\vec{w}\|}$$

Area of parallelogram: $\|\vec{v} \times \vec{w}\|$

Volume of parallelepiped: $|\vec{u} \cdot (\vec{v} \times \vec{w})|$

Linear Algebra Vector Operations

VECTOR OPERATIONS

Operations: Addition, Subtraction, Scalar Multiplication, Norm, Dot Product, Cross Product, Scalar Triple Product

Ex 1) Given the points P, Q, R and S (shown below), construct vectors $\vec{u} = \overrightarrow{PQ}$ and $\vec{w} = \overrightarrow{RS}$ and then perform the following operations:

- a. $\vec{u} + \vec{w}$
- b. $\vec{u} \vec{w}$
- c. $\frac{1}{4}\overrightarrow{W}$
- d. $3\vec{w} 2\vec{u}$

Ex 2) Consider the vectors $\vec{a} = (1,0,2)$, $\vec{b} = (-1,-3,3)$ and $\vec{c} = (0,4,5)$. Find the following, if possible. If it is not possible, explain why not.

	<u>→</u>		
a.	3 <i>b</i>	_	$2\bar{c}$

b.	4 <i>ā</i>
b.	4a

c.
$$4(\vec{a}\cdot\vec{c})$$

\mathbf{u} . $\mathbf{c} \times \mathbf{u}$	d.	$\vec{c} \times \vec{a}$
---	----	--------------------------

f.
$$(\vec{a} \cdot \vec{b}) \cdot \vec{c}$$

g.
$$2\vec{a} \cdot 5\vec{c} + ||\vec{a}||\vec{b}$$

h. $(\vec{a} \cdot \vec{b}) \times \vec{c}$		
i. $\vec{a} \cdot (\vec{b} \times \vec{c})$		
,		

ANGLE BETWEEN VECTORS

Ex 1) Let $\vec{u} =$	(1, -5, 4) and	$\vec{w} = (-2,3,2)$). Find the ar	ngle between	\vec{u} and \vec{w}	

(3,0,2), B(4,3,0)	and C (0,1, 1).		

APPLICATION OF VECTORS

Types: Area, Volume
Ex 1) Find the area of the triangle with vertices $P(0, -2, -2)$, $Q(5, -1, 3)$ and $R(7, 0, 6)$.

S(16,4,10).	rea of the parallelog	(, , , , ,	• • • • • • • • • • • • • • • • • • • •	. ,

Ex 3) Given $\vec{u} = (5,1,-2)$, $\vec{v} = (-3,-1,-3)$ and $\vec{w} = (2,-3,-3)$	Ex 3)	Given $\vec{u} = 0$	(5,1,-2)	$\vec{v} = 0$	(-3, -1)	, -3) and	$\vec{w} =$	(2, -	-3, -	-3	
---	-------	---------------------	----------	---------------	----------	-----------	-------------	-------	-------	----	--

a. Find the volume of the parallelepiped whose adjacent edges are defined by the vectors \vec{u} , \vec{v} and \vec{w}

·	·	

b. Are the vectors \vec{a} , \vec{b} and \vec{c} coplanar? Explain.

b. Are the points A, B, C and D co	planar? Explain.

VECTOR PROOFS

Ex 1) Let \vec{u} and \vec{w} be vectors in \mathbb{R}^2 and k be a scalar. Prove that $k(\vec{u} + \vec{w}) = k\vec{u} + k\vec{w}$				

Ex 2) Let	\vec{u} be a vector	in \mathbb{R}^2 and k	be a scalar.	Prove that	$ k\vec{u} = k $	$\ \vec{u}\ $	

Ex 3) Let \vec{u} and \vec{w} be vectors in \mathbb{R}^2 and k be a scalar. Prove that $(k\vec{u}) \cdot \vec{w} = k(\vec{u} \cdot \vec{w})$					

Ex 4) Let \vec{u} be a vector in \mathbb{R}^2 and c and d be scalars. Prove that $(c+d)\vec{u} = c\vec{u} + d\vec{u}$				

(x 5) Let $(u, 1)$	\vec{v} and \vec{w} be vectors	in \mathbb{R}^2 . Prove t	that $u \cdot (v + w)$	$\dot{v} = \dot{u} \cdot \dot{v} + \dot{u} \cdot \dot{v}$	W

CRAMER'S RULE

Ex 1) Find the general solution of the following system of linear equations by using Cramer's rule.
2x - 4y + z = 1
-x+y-z=2
x - 2y = 1

Linear Algebra – 105	Cramer's Rule

Ex 2) Find the general solution of the following system of linear equations by using Cramer's rule. x-2y+6z=0

x - 2y + 6z = 0
-4x + 9y - 23z = -3
2x - 4y + 10z = 1

Linear Algebra – 105	Cramer's Rule