SOLUTIONS FOR TOPOLOGY WRITTEN BY J.MUNKRES

JAEMIN OH

Date: July 9, 2020.

1

JAEMIN OH

35. The Tietze Extension Theorem

Problem (1).

2

Let A, B be disjoint closed subspace of X. Define f as following:

$$f(x) = \begin{cases} 0 & \text{if } x \in A \\ 1 & \text{if } x \in B \end{cases}$$

Then $f: A \cup B \rightarrow [0,1]$ is continuous (by pasting lemma).

By Tietze extension theorem, we can extend f to $\overline{f}: X \to [0,1]$. This \overline{f} is what we can get from Urysohn lemma.

Problem (5).

- (a) Let (X, A, f) be given. Since $f: A \to \mathbb{R}^J$, $f_{\alpha}: A \to \mathbb{R}$. Apply the Tietze extension theorem to $f_{\underline{\alpha}}$. Then we get continuous function $\overline{f}: X \to \mathbb{R}^J$ which satisfies $(\overline{f})_{\alpha} = \overline{f_{\alpha}}$. This \overline{f} is what we want.
- (b) Without loss of generality, we can assume that Y is a retract of \mathbb{R}^J . Let $f: A \to Y$ be a continuous function. By expanding codomain, we can get $f': A \to \mathbb{R}^J$ which is continuous. Let \overline{f} be the extension of f'. Then $r \circ \overline{f}$ is continuous extension of f where f' is a retraction of f' into f'.

Problem (6).

- (a) Let h be a homeomorphism of Y_o onto Y. Since Y has universal extension property, we can extend h to $\overline{h}: X \to Y$ which is continuous. Then $h^{-1} \circ \overline{h}$ is the retraction of X into Y_o .
- (b) Note that (b) of problem 5 still holds if we replace \mathbb{R}^J to $[0,1]^J$. Fix $y \in Y$ and choose neighborhood V_y of y. By Urysohn lemma, there is a continuous function f_y such that $f_y(y) = 1$ and vanishes outside of V_y . Let $F(x) = (f_y(x))_{y \in Y}$. Then F is imbedding of Y into $[0,1]^Y$ by theorem 34.2.

Since F is imbedding of Y into $[0,1]^J$, $F(Y) \cong Y$. Now, it is sufficient to show that F(Y) is retract of $[0,1]^J$. But it follows directly by (b) of problem 5 since F(Y) is compact hence closed, $[0,1]^J$ is compact Hausdorff hence normal.