UTN – FRBA INGENIERIA EN SISTEMAS DE INFORMACION

Cátedra: SIMULACION

Docentes: Ing. Gladys Alfiero, Ing. Erica M. Milin, Ing. Silvia Quiroga

Trabajo Práctico Nro. 5 Ejemplos - Primer Parcial Tema II

- 1. Explicar y graficar el concepto de "Simulación y Toma de Decisiones".
- 2. Resolver la función de densidad de probabilidad f(x) = sen x definida den el intervalo (0, "a")
- 1.a. Encontrar el valor de "a" y redefinir el intervalo
- 1.b. Desarrollar por el método más conveniente.
- 1.c. Diagramar la rutina correspondiente.
- **3.** Analizar el sistema que se indica a continuación, clasificar las variables, definir la tabla de eventos independientes y la tabla de eventos futuros:

Se conocen los intervalos de Arribo (IA) y de despegue (ID) de aviones de chico, mediano y gran porte de un aeropuerto que está por ser ampliado. La ampliación consiste en la construcción de una determinada cantidad de pistas adicionales que ayudarán a descongestionar el tráfico aeronáutico en el aeropuerto.

Se necesita optimizar la cantidad de pistas a construir, debe tener tomando en cuenta la siguiente tabla de tiempos de despegue y aterrizaje, según el tamaño de la aeronave.

Tipo de Avión	Tiempo en Despegar	Tiempo en Aterrizar
Chico (Hasta 10 pasajeros)	120 seg.	200 seg.
Mediano (Hasta 100 pasajeros)	400 seg.	490 seg.
Grande (Más 100 pasajeros)	900 seg.	1200 seg.

Se sabe que la probabilidad de que sea una nave chica es del 50%, una nave mediana es del 30% y una nave grande, el 20%. Sabiendo que los domingos el tráfico se reduce a la mitad, y que los controladores aéreos envían a los aviones, no importa su tamaño, a la pista donde tendrán que esperar menos en el caso del despegue y del aterrizaje. Y en caso de igualdad de tiempos, el controlador enviará al avión a cualquier pista. Se pide: Promedio de espera para el despegue.

4. Analizar el sistema que se indica a continuación, clasificar las variables, definir la tabla de eventos independientes y la tabla de eventos futuros:

Ricky tiene una cuenta de e-mail ricky@UTN.FRBA.com.ar donde el servidor le permite alojar mensajes.

Se conoce el intervalo entre arribos de mensajes a su cuenta (Fdp1) y el intervalo (Fdp2) en el cual Ricky lee todos sus e-mails (luego de leerlos se borran automáticamente). También se conoce el tiempo de mantenimiento del servidor (Fdp3), tiempo que es contabilizado a partir de detectarse 100 mensajes. Ese mantenimiento se realiza si hay en ese momento 100 mensajes o más Se borra entonces una cantidad fija CF de mensajes y, si luego de esto, sigue habiendo más de 100 mensajes se borra una cantidad variable CV que corresponde a un porcentaje de la cantidad de e-mails en exceso.

Se desea conocer el porcentaje de e-mails borrados por el servidor, y la cantidad de mantenimientos realizados, a fin de establecer la mejor combinación de CF y CV.

5. Diagramar el modelo del ejercicio del punto 3.