Two cell bubble model

Knowns: Tensions, retractile and protrusive forces, drag coefficient (t_1 , t_2 , t_{cc} , f, ζ) **Key unknowns**:

- Speed (v)
- Morphology (angles $(\alpha_1, \alpha_2, \beta_1, \beta_2, w, \gamma, x)$, radii (r_1, r_2, r_{cc}) , h)

Numerical algorithm:

Guess v

Guess W

Find α_1 , α_2 from force balance at the front and rear

- (@ front: protrusive forces are balanced by tension)
- (@ rear: retractile forces are balanced by tension)

Find β_1 , β_2 from force balance at the top of the cell-cell Interaction region

Given $\alpha_1, \alpha_2, \beta_1, \beta_2$ to find r_1 and r_2 from area conservation

From Laplace's Law compute intracellular pressures (p_1, p_2)

Pressure difference is used to compute the radius of curvature at the cell-cell interface (r_{cc})

Compute h_1 and h_2 from trigonometry (given w and r_{cc})

If h_1 is different from h_2 , adjust w

From force balance at the bottom of the cell-cell interaction region, compute velocity. If velocity is different from initial guess, **adjust** *v*

(1) Equal tensions in the two cells

$$T_1 = 1 \text{ Alpha}_1 = 71.0513 \text{ Beta}_1 = 8.7415$$
 $T_2 = 1 \text{ Alpha}_2 = 69.823 \text{ Beta}_2 = 8.5123$

Gamma = 91.6489, w = 0.11459, v = 0.087778, h = 0.58882, t_{cc} = 0.3

1.5

0.5

-0.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(2) 10% higher tension in trailer cell