FINAL PRESENTATION

TEAM 13

Smart Mirror System for Skin health care

INTRODUCTION TO SOFTWARE ENGINEERING TEAM 13

조재훈, VINCENT PAN, 박민서, 설채은, 이재혁, 정민석, 백송현

SYSTEM REQUIREMENT SPECIFICATION

INDEX - SRS

- Introduction
- Overall Description
- Specific Requirements
- System model
- Architecture
- System Evoluition
- Supporting documents

INTRODUCTION

SRS

INTRODUCTION

Software Requirements Specification for Smart Mirror System for Skin health care

- Scope: Smart mirror H/W + S/W + Mobile Application
- Uses the built-in camera in the smart mirror to objectively check the condition of an individual's skin
- Serves as an IoT device that displays simple information through the built-in display
- With the mobile application, it is possible to inquire the skin diagnosis record and check it in various forms

OVERALL DESCRIPTION

SRS

OVERALL DESCRIPTION – System Interface

Server

DatabaseManagement

Data format

Communication

AWS Instance

mongoDB

JSON

AWS Instance

OVERALL DESCRIPTION – SW Interface

 Application will be compatible with smart phone with at least Android OS 7.0 or iOS 15.0

OVERALL DESCRIPTION - User Characteristics

System manager

Identify and manage the overall structure and data flow of the system

User

Users with accounts using Smart Mirror

SPECIFIC REQUIREMENTS

SRS

SPECIFIC REQUIREMENTS – EXTERNAL INTERFACE REQUIREMENTS

User Interfaces(Application)

SPECIFIC REQUIREMENTS – EXTERNAL INTERFACE REQUIREMENTS

User Interfaces(Application)

SPECIFIC REQUIREMENTS – EXTERNAL INTERFACE REQUIREMENTS

User Interfaces(Mirror)

Smart Mirror System for Skin health care

SPECIFIC REQUIREMENTS – FUNCTIONAL REQUIREMENTS

UseCase

 Based on the functions of login, sign up, record inquiry, past record storage, and diagnosis result.

Data Flow

- Database Schema
- Data Flow Diagram

Data Relationship Diagram Customer Userid: string User SmartMirrorInfo mirrorid: string Userid: string mirrorid: strina registerDate: date Password: string userProfile: URL manufactureDate: date LoginStatus: bool address: string DLversion: string isConnected: bool RRN: string email: string Diagnostic Result Userid: string Location Userid: strina mirrorid: string historyid: string diagnosedid: string Userid: strina uploadedImage: URL diseaseid: string location: string uploadedDate: date diagnosedinfo: string permission: boo detected_diseaes: string[] iscorrect: bool other contents: string DiseaseInformatio Detected Disease diseaseid: string diseaseInfo: string

Data Relationship Diagram

SPECIFIC REQUIREMENTS

Product requirements

- UsabilityRequirement
- Performance Requirement
- SecurityRequirement

Organizational requirements

- Environmental Requirement
- OperationRequirement
- DevelopmentRequirement

External requirements

- RegulatoryRequirement
- EthicalRequirement
- Safety/SecurityRequirement

Logical Database requirements

Store and manage necessary data using mongoDB service

SYSTEM MODEL

SRS

SYSTEM MODEL – INTERACTION MODEL

Context model diagram

SYSTEM MODEL – INTERACTION MODEL

Sequence model diagram

SYSTEM MODEL – STRUCTURAL MODEL

SYSTEM MODEL – BEHAVIORAL MODEL

Deactivated >● do: Ban using functions Only role in original mirror Turn Activated do : Allow mirror to use several functions Touch Camera button Camera Touch Finish with turn on re-shot button do : Take a user's photo Touch analyze button Analyzing do : Predict & Analyze skin state

User's Image data state

Activity Diagram

State Diagram

ARCHITECTURE

SRS

ARCHITECTURE

MVC Pattern

SYSTEM EVOLUTION

SRS

SYSTEM EVOLUTION

■ Gesture recognition instead of touching display

Hardware evolution: Deep learning server hardware improvements

■ Hardware evolution: **Camera performance** improvements

■ Emotion Analysis & Mental illness through facial expression recognition

SYSTEM DESIGN SPECIFICATION

INDEX - SDS

- Introduction
- Overall Architecture
- Backend Architecture
- Frontend Architecture
- Al Architecture
- Testing Plan
- Development Plan

INTRODUCTION

SDS

INTRODUCTION

- Overall design and function of the software described in SRS to implement the skin diagnosis function of the smart mirror.
- Diagram: Class, Sequence, Activity, State, Context
- Applied Tools: Word, Draw.io

SDS

System Organization – Overall system Architecture

System Organization – Context Diagram

System Organization – Sequence Diagram

System Organization – Use Case Diagram

SYSTEM ARCHITECTURE - FRONTEND

SDS

SYSTEM ARCHITECTURE – FRONTEND (MOBILE)

System Component – Profile

Class Diagram

Sequence Diagram

SYSTEM ARCHITECTURE – FRONTEND (MOBILE)

System Component – AnalysisRecord

Class Diagram

SYSTEM ARCHITECTURE – FRONTEND (MOBILE)

System Component – Comparison

Sequence Diagram

SYSTEM ARCHITECTURE – FRONTEND (MOBILE)

System Component – StateRecord

Class Diagram

Sequence Diagram

SYSTEM ARCHITECTURE – FRONTEND(MIRROR)

System Component – Analysis

Class Diagram

Sequence Diagram

SYSTEM ARCHITECTURE – FRONTEND(MIRROR)

System Component – Result

Sequence Diagram

Class Diagram

SYSTEM ARCHITECTURE – FRONTEND

Protocol

Frontend system of mobile application and smart mirror communicates with backend server and Al system through **HTTP**.

Both Request and Response use **JSON** format.

SDS

Overall Architecture

Class Diagram

Product information used in Al System

Name	Description
GPU	NVIDIA GeForce RTX 3060
Python	3.7.11 version, conda 4.10.3 version
Library	PyTorch 1.9.1 version, Numpy 1.21.2 version
CUDA	CUDA Toolkit 11.1.0

Pre-processing System

Pre-trainingSystem

Request the current AI Model (Facial Recognition)

Transfer the current AI Model (Facial Recognition)

Execute Normalization, Splitting

SYSTEM ARCHITECTURE - AI

Training System usingUser's data System

SDS

Overall Architecture of Backend System

Overall Architecture of Backend System

Realtime System

Diagnosis System

History System

Synchronize System

TESTING PLAN

SDS

Smart Mirror System for Skin health care

TESTING PLAN — TESTING POLICY

Devlopment Test: Performance, Reliability, Security

 Release Test: Test whether the implemented application can be used by users as planned or not

■ User Test: About 30 test users will be selected and the test environment will be configured so that users can use the skin diagnosis function at their homes for 2 weeks.

TESTING PLAN – TESTING POLICY

- Test Case: Will be written so that developers can check the three tasks that they are targeting: functionality, performance, and unexpected access.
 - Testing for use in unplanned directions
 - Testing inducing overload of AI server with multi-user access
 - Testing in an unstable network environment
 - Testing in an environment with smart mirror installed

DEVELOPMENT PLAN

SDS

DEVELOPMENT PLAN - FRONTEND

- Adobe Illustrator: Used to create background images and icons that make up the Smart Mirror UI
- Adobe Xd: Used to design and visualize UI/UX for mobile applications
- Xcode: Used to create an iPhone version of a mobile application that assists the smart mirror system
- Android Studio: Used to create an Android version of a mobile application that assists the smart mirror system

DEVELOPMENT PLAN - BACKEND

- mongoDB Used to store user information, photo data, and diagnosis result information of the smart mirror system
- Node.js Used to configure Javascript based servers
- Jenkins Used to build a continuous integration and continuous delivery environment for software development

DEVELOPMENT PLAN - AI

Python-based open source machine learning library

DEVELOPMENT PLAN - CONSTRAINTS

- Access rights must be required for smart mirrors and user devices such as camera and internal data access, and changes in rights must be possible within the device.
- The camera and display options of the smart mirror can be adjusted for uniformity of data, and user consent must be obtained for this.
- User's data is classified as a kind of medical data, so security needs to be paid more attention.
- The user's photo for skin diagnosis must be taken only through the smart mirror, and the data uniformity must be ensured by flexibly changing the smart mirror's settings.
- The skin diagnosis results of the smart mirror are for reference only and have no legal effect.
- The UI of the smart mirror and mobile application should be intuitive for easy use, and the arrangement, control method and overall process of objects should be considered for UX improvement.

THANK YOU

TEAM 13

INTRODUCTION TO SOFTWARE ENGINEERING TEAM 13

조재훈, VINCENT PAN, 박민서, 설채은, 이재혁, 정민석, 백송현