Branden Fitelson

October 1, 2014

1 Warm-Up: Triviality for the Truth-Functional Conditional

If the indicative conditional $P \to Q$ is *truth-functional* (i.e., if the truth-value of $P \to Q$ is a function of the truth-values of its antecedent P and its consequent Q), then it must be equivalent to the material conditional $P \supset Q$. This is because \supset is the only binary truth-function \star that satisfies the following three logical constraints (which are basic constraints that must be satisfied by any conditional connective).

- (1) *Modus Ponens* in valid (*i.e.*, P and $P \star Q$ always jointly entail Q).
- (2) Affirming the consequent is *not* valid (*i.e.*, Q and $P \star Q$ do *not* always jointly entail P).
- (3) $P \star P$ is a logical truth.

It is a good exercise in truth-functional logic to prove the claim that the only binary truth-function \star that satisfies (1)–(3) is the material conditional connective \supset . Here are all of the 16 possible binary truth-functions. I've given them all names or descriptions. [Only a few of these names were made up by me.]

P	Q	Т	NAND	<u> </u>	$\sim P$	FI (⊂)	$\sim Q$	=	NOR	\ \	NIFF	Q	NFI	P	NIF	&	
T	T	T	F	T	F	T	F	Т	F	T	F	T	F	T	F	T	F
T	F	T	T	F	F	Т	T	F	F	Т	T	F	F	T	Т	F	F
F	T	T	T	T	T	F	F	F	F	Т	T	T	Т	F	F	F	F
F	F	T	T	T	T	T	T	T	T	F	F	F	F	F	F	F	F
(1)?			Yes													
(2	:)?			Yes													
(3)?				Yes													

So, if $P \to Q$ is truth-functional, then we have the following constraint on any rational credence function:

Truth-Functionality.
$$cr(P \rightarrow Q) = cr(P \supset Q) = cr(\sim P \lor Q)$$
.

One intuitive proposal for the way we should assign credence/probability to an indicative conditional is: the probability of an indicative conditional is equal to the conditional probability of its consequent given its antecedent. Formally, I will refer to this proposal as **The Equation**.

The Equation.
$$cr(P \rightarrow Q) = cr(Q \mid P)$$
.

Our first triviality result involves the combination of **Truth-Functionality** + **The Equation**. If we combine these two ideas about the indicative conditional, then we are led to the following (simple) triviality result.

Triviality #1. Truth-Functionality + The Equation
$$\Rightarrow$$
 either $cr(P) = 1$ or $cr(P \rightarrow Q) = 1$.

I will now give an algebraic proof of **Triviality #1**. The generic stochastic truth-table representation of the class of probabilistic credence functions $cr(\cdot)$ over the four states determined by P, Q is as follows.

_ <i>P</i>	Q	cr(·)		
T	T	а		
T	F	b		
F	T	С		
F	F	d		

Given this setup, the conjunction of Truth-Functionality and The Equation jointly entail

$$\operatorname{cr}(P \to Q) = \operatorname{cr}(Q \mid P) = \frac{a}{a+b} = 1 - b = \operatorname{cr}(\sim P \lor Q) = \operatorname{cr}(P \supset Q)$$

Cross-multiplying (and expanding and simplifying) this equation yields

$$0 = b \cdot (1 - (a + b)) = \operatorname{cr}(\sim(P \supset Q)) \cdot \operatorname{cr}(\sim P) = \operatorname{cr}(\sim(P \to Q)) \cdot \operatorname{cr}(\sim P)$$

There are only two ways this equation can hold: *either* $\operatorname{cr}(\sim(P \to Q)) = 0$ *or* $\operatorname{cr}(\sim P) = 0$. In other words, **Truth-Functionality** and **The Equation** jointly entail that *either* $\operatorname{cr}(P \to Q) = 1$ *or* $\operatorname{cr}(P) = 1$. *QED*

It goes without saying that **Triviality** #1 is a *very strong* triviality result. It implies that if **Truth-Functionality** and **The Equation** are both true, then, *for every* P and Q that feature as the antecedent and consequent of some indicative conditional $P \rightarrow Q$, one should *either* (a) be certain that the indicative conditional $P \rightarrow Q$ is true *or* (b) be certain that P is true. This is clearly not a rational requirement (in general). So, this means that **Truth-Functionality** and **The Equation** *cannot both be true*. The natural thing to do at this point is to give up **Truth-Functionality**, and try to hold on to **The Equation** for a *non*-truth-functional interpretation of the indicative conditional. Unfortunately, as we'll see in the next section, this response runs into a triviality result of its own.

2 Tryiality for Non-Truth-Functional Indicative Conditionals

If **The Equation** is true *in virtue of the meaning* of the indicative conditional, then it seems plausible that **The Equation** should *continue to hold, even when* $cr(\cdot)$ *is conditionalized on some third proposition* X — provided that X is compatible with the antecedent P of the indicative conditional $P \rightarrow Q$. That is, it seems plausible that the following, more general ("resilient") form of **The Equation** should also hold.

The Resilient Equation. $cr(P \rightarrow Q \mid X) = cr(Q \mid P \& X)$, provided that cr(P & X) > 0.

Unfortunately, The Resilient Equation (all by itself) leads to the following triviality result.

Triviality #2. The Resilient Equation
$$\iff$$
 cr $(P \& (Q \equiv (P \rightarrow Q))) = 1.^1$

Here is an algebraic proof of **Triviality** #2. The generic stochastic truth-table representation of the class of probabilistic credence functions $cr(\cdot)$ over the eight states determined by $P, Q, P \rightarrow Q$ is as follows.

P	Q	$P \rightarrow Q$	cr(·)
T	T	T	а
T	T	F	b
T	F	T	С
T	F	F	d
F	T	T	е
F	T	F	f
F	F	T	g
F	F	F	h

We will now prove a *stronger* claim than **Triviality** #2. It turns out that one does not need the full strength of **The Resilient Equation** here. That is, one does not need to conditionalize on *all* X's such that cr(P & X) > 0 in order to derive this (strongest) triviality result from **The Resilient Equation**. In fact, all we need are *three instances* of **The Resilient Equation**. I will now work my way up to **Triviality** #2 — in three stages.

¹Strictly speaking, the \Leftarrow direction of **Triviality** #2 also requires cr(P & Q) > 0 and $cr(P \& \sim Q) > 0$. This is clarified in the proof.

2.1 Stage 1: The $\sim Q$ -instance of The Resilient Equation

Consider the following instance of **The Resilient Equation**, where $X := \sim Q$.

The Resilient Equation $_{\sim Q}$. $\operatorname{cr}(P \to Q \mid \sim Q) = \operatorname{cr}(Q \mid P \& \sim Q)$, provided that $\operatorname{cr}(P \& \sim Q) > 0$.

Algebraically, **The Resilient Equation** $_{\sim Q}$ is equivalent to the following (assuming cr($P \& \sim Q$) > 0).

$$\operatorname{cr}(P \to Q \mid \sim Q) = \frac{\operatorname{cr}((P \to Q) \& \sim Q)}{\operatorname{cr}(\sim Q)} = \frac{c + g}{c + d + g + h} = 0 = \operatorname{cr}(Q \mid P \& \sim Q)$$

This equation will be true iff c + g = 0, which implies that c and g must both be equal to zero. The effect of **The Resilient Equation** $_{\sim Q}$ is therefore reflected in the following revised stochastic truth-table.

P	Q	$P \rightarrow Q$	cr(·)
T	T	T	а
T	T	F	b
T	F	T	0
T	F	F	d
F	T	T	e
F	T	F	f
F	F	T	0
F	F	F	h

2.2 Stage 2: The $P \supset Q$ -instance of The Resilient Equation

Consider the following instance of **The Resilient Equation**, where $X := P \supset Q$.

The Resilient Equation $_{P\supset Q}$. $\operatorname{cr}(P\to Q\,|\,P\supset Q)=\operatorname{cr}(Q\,|\,P\&(P\supset Q))$, provided that $\operatorname{cr}(P\&(P\supset Q))>0$.

Algebraically, **The Resilient Equation** $_{P\supset Q}$ is equivalent to the following (assuming $\operatorname{cr}(P \& (P\supset Q))>0$).

$$\operatorname{cr}(P \to Q \mid P \supset Q) = \frac{\operatorname{cr}((P \to Q) \& (P \supset Q))}{\operatorname{cr}(P \supset Q)} = \frac{a + e}{a + b + e + f + h} = 1 = \operatorname{cr}(Q \mid P \& (P \supset Q))$$

Cross-multiplying (and expanding and simplifying) this equation yields

$$0 = b + f + h$$

This equation will be true iff b, f and h are all equal to zero. The effects of **The Resilient Equation** $_{\sim Q}$ + **The Resilient Equation** $_{P\supset Q}$ are reflected in the following revised stochastic truth-table.

P	Q	$P \rightarrow Q$	cr(·)
T	T	T	а
T	T	F	0
T	F	T	0
T	F	F	d
F	T	T	е
F	T	F	0
F	F	T	0
F	F	F	0

2.3 Stage 3: The \top -instance of The Resilient Equation — *i.e.*, The Equation *Itself*

Consider the following instance of **The Resilient Equation**, where $X := \top$.

The Resilient Equation $_{\top}$. $\operatorname{cr}(P \to Q \mid \top) = \operatorname{cr}(Q \mid P \& \top)$, provided that $\operatorname{cr}(P \& \top) > 0$.

Of course, The Resilient Equation $_{\perp}$ is just The Equation itself. Algebraically, The Equation is now

$$\operatorname{cr}(P \to Q) = a + e = \frac{a}{a+d} = \operatorname{cr}(Q \mid P)$$

Cross-multiplying (and expanding and simplifying) this equation yields the following quadratic equation

$$a^2 + ad + ae + de - a = 0$$

Recall, we are assuming (from Stage 1) that $cr(P \& \sim Q) > 0$. That is, we are assuming that d > 0. As it happens, when d > 0, the quadratic equation above is satisfied *iff* e = 0, d = 1 - a, and $a, d \in (0, 1)$. The effects of **The Resilient Equation** $_{\sim Q}$ + **The Resilient Equation** $_{P \supset Q}$ + **The Equation** are reflected in the following (final) *single-parameter* stochastic truth-table, where $a \in (0, 1)$.

P	Q	$P \rightarrow Q$	cr(·)
T	T	T	а
T	T	F	0
T	F	T	0
T	F	F	1 – a
F	T	T	0
F	T	F	0
F	F	T	0
F	F	F	0

In other words, The Resilient Equation $_{\sim Q}$ + The Resilient Equation $_{P\supset Q}$ + The Equation jointly entail that the only two states which can be assigned non-zero credence are $P \& Q \& (P \to Q)$ and $P \& \sim Q \& \sim (P \to Q)$. This is equivalent to saying that the proposition $P \& (Q \equiv (P \to Q))$ must receive maximal credence. QED

Triviality #2 is quite strong. It implies that, for *every* P and Q that feature as the antecedent and consequent of some indicative conditional $P \to Q$, both P and the material biconditional $Q \equiv (P \to Q)$ must receive maximal credence. This is clearly not (generally) a rational requirement. Therefore, at least one of our three assumptions **The Resilient Equation** $_{\sim Q}$, **The Resilient Equation** $_{P \supset Q}$, and **The Equation** must be false. It seems very difficult to rationalize rejecting any of these assumptions, if **The Equation** really does capture an essential feature of the way we ought to assign credences to indicative conditionals. So, it seems that — although it sounds plausible, initially — **The Equation** cannot ultimately be correct.

3 Epilogue: Why Triviality #2 is The Strongest (Lewisian) Triviality Result

I mentioned in passing that **Triviality** #2 is *the strongest* triviality result of its kind. Here's what I mean. If one assumes *all* of the instances of **The Resilient Equation**, then this *still* (*only*) implies **Triviality** #2. That is, adding further instances of **The Resilient Equation** to the three we used above *does not add any additional constraints to* $cr(\cdot)$. This can be shown algebraically by proving that the conjunction of *all* (191) instances of **The Resilient Equation** (where *X* ranges over the 256 propositions in the Boolean algebra generated by $P, Q, P \rightarrow Q$) is equivalent to the conjunction of the *three* instances of **The Resilient Equation** that we used above (and this also secures the \Leftarrow direction of **Triviality** #2).

²This is a good exercise in high-school algebra. But, it is easily verified using *Mathematica* (see *fn.* 2).

 $^{^3}$ This can easily be verified using *Mathematica*. I have a *Mathematica* (version 10) notebook which verifies that **Triviality #2** is — in this sense — *the strongest* (Lewisian) triviality result for the indicative conditional.