给定 n, k,求出长度为 n-k 的值域在 [1, n] 且所有连续子段和都不是 n 的倍数的整数数列的数量,对 998244353 取模。

 $1 \leq k \leq rac{n}{4} < n < 998244353$

T2

给定 n 个点 (s_i, a_i) , 以及一个数 d。 你需要重新排列这些点的编号,使得有效的点尽可能多。

我们按如下过程计算有效的点:按编号从小到大考虑每个点 (s_i,a_i) ,如果 $s_i \geq d$,则这个点有效,d 变成 $\max(a_i,d)$ 。

 $1 \leq n \leq 5 imes 10^5, 0 \leq s_i, a_i, d \leq 10^9$,

T3

给定 n 个点的图,点编号为 $0,1,\ldots,n-1$,初始时 $\forall 0 \leq i < n-1$,有 i 到 i+1 的边权为 0 的有向边,这些边不能删除。

现在 $\forall i \neq j$,加入一条从 i 到 j 的边权为 [i > j] - [i < j] 的边,删去这条边需要花费 $a_{i,j}$ 。

现在你需要删去若干条边,使得最后图中不存在负环,求最小花费。

 $3 \leq n \leq 500, 1 \leq a_{i,j} \leq 10^9$.

T4

给定 $h \times w$ 的网格,第 0 列和第 w-1 列相邻(即 (i,0) 的左边是 (i,w-1),(i,w-1) 的右边是 (i,0)),有若干个格子是墙,若干个格子上有豆子。两个玩家轮流操作,选择一个豆子向下/左/右移动一格。一个格子可以存在多个豆子,豆子不能移动到墙或者网格外,豆子不能被移动到其曾经到过的格子(包括其初始位置)。不能移动者判负,求先手必胜还是后手必胜。

 $1 \le h, w \le 1000$.

T5

给定两个长度相同的字符串 A,B。你每次操作可以选择若干个下标 $p_1 < p_2 < \cdots < p_m$ 以及一个字符 y,满足 $A_{p_1} = A_{p_2} = \cdots = A_{p_m}$,然后把 $A_{p_1},A_{p_2},\ldots,A_{p_m}$ 都修改成 y。求最小操作次数,使得 A=B。

T 组数据测试。

 $1 \leq T \leq 10, 1 \leq |A|, \sum |A| \leq 10^5$, A,B 只由小写字母 $a \sim t$ 组成。

T6

给定 n 个长方形 $S_i = \{(x, y) : l_i \leq x \leq r_i, d_i \leq y \leq u_i\}$ 。

问有几个三元组 i < j < k 满足 S_i, S_j, S_k 两两无交。

 $1 \leq n \leq 2 imes 10^5$, $\{l_i\}, \{r_i\}$ 这 2n 个数两两不同, $\{u_i\}, \{d_i\}$ 这 2n 个数两两不同。

T7

给定一个长度为 n 的只由小写字母组成的字符串 s_i 。对于每个 s_i 以及字符 c,如果 $k=\min\{j:j>i,s_j=c\}$ 存在,则令 i 向 k 连一条有向边;如果 $k=\max\{j:j< i,s_j=c\}$ 存在,则令 i 向 k 连一条有向边。

定义 dis(i,j) 为从 i 走到 j 的最小边数,你需要求出 $\sum_{i=1}^n \sum_{j=1}^n dis(i,j)$ 。 $1 \leq n \leq 10^5$ 。

T8

你有 R 个红球和 B 个蓝球,你需要求出最大的 K,使得你可以把这些球分在 K 个箱子,且假设第 i 个箱子有 r_i 个红球, b_i 个蓝球,满足: $\forall i, r_i > 0 \lor b_i > 0$, $\forall i \neq j, r_i \neq r_j \lor b_i \neq b_j$, $\sum r_i = R \land \sum b_i = B$ 。

 $1 \le R, B \le 10^9$.

