Universidade Federal do Rio Grande do Sul Escola de Engenharia

ENG10001 Circuitos Elétricos I-C

Trabalho Bônus 1 Associação de Quadripolos

Pedro Lubaszewski Lima (00341810)

Turma A

Sumário

1.1	Circuitos Sorteados	2
2.1	Circuito Equivalente de Thevénin da Entrada	4
3.1	Análise da Associação de Quadripolos	7
	3.1.1 Representação dos Circuitos	7
	3.1.2 Parâmetros do Quadripolo Q2	7
	3.1.3 Parâmetros do Quadripolo Q1	
	3.1.4 União dos Quadripolos	7
4.1	Circuito Equivalente de Norton da Saída	8
5.1	Ganho de Tensão da Saída V_2/V_1	1(
6.1	Exemplos	11

1.1 Circuitos Sorteados

Primeiramente, com o meu número de matrícula $0\ 0\ 3\ 4\ 1\ 8\ 1\ 0$, observa-se os seguintes dígitos sorteadores:

- $N_1 = 3$;
- $N_2 = 4;$
- $N_3 = 1;$
- $N_4 = 8;$
- $N_5 = 1$;
- $N_6 = 0$.

A partir deles, sabe-se que os circuito a serem analisados são os seguintes:

• Circuito de Entrada:

Figura 1: Circuito de Entrada 2

• Primeira Topologia de Quadripolo:

Figura 2: Topologia de Quadripolo 2 (Q1)

• Segunda Topologia de Quadripolo:

Figura 3: Topologia de Quadripolo 3 (Q2)

• Associação dos Quadripolos:

Figura 4: Associação dos Quadripolos Q1 e Q2

• Circuito de Saída:

Figura 5: Circuito de Saída 1

2.1 Circuito Equivalente de Thevénin da Entrada

Partindo do circuito de entrada sorteado (figura 1), pode-se adotar a estratégia de transformação de fontes repetidas vezes até chegar-se no circuito equivalente de Thevénin:

⊸B

Assim, com a sequência ilustrada acima, chegou-se ao circuito equivalente de Thevénin da entrada com $V_{TH}=\frac{27}{2}{\rm V}=13,5{\rm V}$ e $R_{TH}=\frac{95}{22}\Omega=4,3\overline{18}\Omega.$

3.1 Análise da Associação de Quadripolos

3.1.1 Representação dos Circuitos

Dada a associação de quadripolos sorteada, é mais prudente representar ambos os quadripolos com os parâmetros a, visto que o quadripolo equivalente apresenta parâmetros da seguinte forma:

$$a_{11} = a'_{11}a''_{11} + a'_{12}a''_{21}$$

$$a_{12} = a'_{11}a''_{12} + a'_{12}a''_{22}$$

$$a_{21} = a'_{21}a''_{11} + a'_{22}a''_{21}$$

$$a_{22} = a'_{21}a''_{12} + a'_{22}a''_{22}$$

Onde o primeiro quadripolo (Q2) da figura 4 tem os parâmetros $a^{'}$ e o segundo quadripolo (Q1) tem os parâmetros $a^{''}$. Além disso, os parâmetros a representam as variáveis dos quadripolos da seguinte maneira:

$$V_1 = a_{11}V_2 - a_{12}I_2$$
$$I_1 = a_{21}V_2 - a_{22}I_2$$

- 3.1.2 Parâmetros do Quadripolo Q2
- 3.1.3 Parâmetros do Quadripolo Q1
- 3.1.4 União dos Quadripolos

4.1 Circuito Equivalente de Norton da Saída

Partindo do circuito de saída sorteado (figura 5), sabe-se de cara que, por não haver nenhuma fonte de tensão ou de corrente independente, a corrente de Norton é $I_N=0$ A. Para determinar-se o valor de R_N , pode-se colocar uma fonte indepedente na saída e medir a outra grandeza sobre essa, visto que $R_N=\frac{V_F}{I_F}$. Para esse circuito em específico, colocar-se-á uma fonte de corrente de $I_F=1$ A para cima e medir-se-á a tensão V_F sobre ela:

Nesse caso, com essa fonte de corrente, forçou-se I=1A. Por conta disso, do outro lado do circuito, obteve-se que a primeira fonte de corrente controlada fornece ou consome $0.5 \cdot I = 0.5 \cdot 1A = 0.5A$.

A partir dessa informação, no nó V_A , obtém-se que a corrente I_R sobre o resistor de 500Ω se dá por:

$$0.5 \cdot I = I_R + 10^{-3} \cdot V$$

$$\Rightarrow I_R = 0.5 \cdot I - 10^{-3} \cdot V$$

$$\Rightarrow I_R = 0.5A - 10^{-3} \cdot V$$

Com essa informação, como, em resistores, $V = R \cdot I$:

$$V = I_R \cdot 500\Omega$$

$$\Rightarrow V = (0.5A - 10^{-3} \cdot V) \cdot 500\Omega$$

$$\Rightarrow V = 250V - 0.5 \cdot V$$

$$\Rightarrow 1.5 \cdot V = 250V$$

$$\Rightarrow V = \frac{500}{3}V$$

Com essa informação, basta retornar para o outro lado do circuito e determinar a tensão V_F através de Lei das Malhas:

$$-V_F + I \cdot 100\Omega + 0.5 \cdot V = 0$$

$$\Rightarrow V_F = I \cdot 100\Omega + 0.5 \cdot V$$

$$\Rightarrow V_F = 1A \cdot 100\Omega + 0.5 \cdot \frac{500}{3}V$$

$$\Rightarrow V_F = 100V + \frac{250}{3}V$$

$$\Rightarrow V_F = \frac{550}{3}V$$

Logo, a partir dessa tensão, pode-se determinar por fim o valor de R_N :

$$R_N = \frac{V_F}{I_F}$$

$$\Rightarrow R_N = \frac{\frac{550}{3} \text{V}}{1 \text{A}}$$

$$\Rightarrow R_N = \frac{550}{3} \Omega = 183, \overline{3}\Omega$$

Ou seja, o circuito equivalente Norton da saída é o seguinte:

5.1 Ganho de Tensão da Saída V_2/V_1

6.1 Exemplos

Figura 6: Violin Plot de Consumo Médio

Modelo	Média dos MSE	Desvio Padrão dos MSE
kNN	5,4293	2,3616
Random Forest	1,9517	1,1847
Regressão Linear	1,6631	0,9758
Redes Neurais	1,8377	1,0418
SVM	3,3739	1,3368

Tabela 1: Médias e Desvios Padrões dos MSE