ЛЕКЦИЯ 14.

ОРТОГОНАЛЬНЫЕ МНОГОЧЛЕНЫ. ОБЩИЕ СВОЙСТВА

Пусть на некотором промежутке (a;b) действительной оси задана весовая функция $\rho(x) \ge 0$. На множестве непрерывных действительных функций введем *скалярное произведение*:

$$(f_1, f_2) = \int_a^b \rho(x) f_1(x) f_2(x) dx.$$
 (1)

Определение 1. Две функции $f_1(x)$, $f_2(x)$ называются ортогональными, если их скалярное произведение равно нулю.

Говорят, что функции $\varphi_1(x)$, $\varphi_2(x)$,..., $\varphi_n(x)$ образуют *ортогональную* систему, если они попарно ортогональны, т.е. $(\varphi_n, \varphi_m) = 0$, $n \neq m$

Пусть $\{\psi_n\}_{n=1}^{\infty}$ — система линейно независимых функций. Тогда ее можно ортогонализовать относительно скалярного произведения (1):

$$\varphi_{1}(x) = \psi_{1}(x),$$

$$\varphi_{2}(x) = \psi_{2}(x) - \frac{(\psi_{2}, \varphi_{1})}{(\varphi_{1}, \varphi_{1})} \varphi_{1}(x),$$

$$\varphi_{n}(x) = \psi_{n}(x) - \sum_{k=1}^{n-1} \frac{(\psi_{n}, \varphi_{k})}{(\varphi_{k}, \varphi_{k})} \varphi_{k}(x).$$
(2)

Преобразование (2) называется процессом ортогонализации Шмидта.

Лемма. При любом n система многочленов

$$1, x, x^2, \dots, x^n$$
 (3)

линейно независима на заданном отрезке [a;b].

Доказательство: Пусть система (3) линейно зависима. Тогда существуют числа $c_0, c_1, c_2,, c_n$ не все равные нулю такие, что

$$c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n = 0 \quad \forall x \in [a; b].$$

Выберем на отрезке [a;b](n+1) различных точек:

$$a < x_1 < x_2 < \dots < x_{n+1} < b$$
.

Тогда

$$\begin{cases} c_0 + c_1 x_1 + c_2 x_1^2 + \dots + c_n x_1^m = 0 \\ c_0 + c_1 x_2 + c_2 x_2^2 + \dots + c_n x_2^m = 0 \\ \dots & \dots & \dots \\ c_0 + c_1 x_{n+1} + c_2 x_{n+1}^2 + \dots + c_n x_{n+1}^m = 0 \end{cases}$$

$$(4)$$

Система (4) является однородной системой линейных уравнений относительно $c_0, c_1, c_2,, c_n$. Ее определителем является *определитель* Вандермонда Δ . Так как все точки $x_1, x_2, ..., x_{n+1}$ различны, то $\Delta \neq 0$, следовательно, система (4) имеет только нулевое решение $c_0 = c_1 = c_2 = = c_n = 0$. Полученное противоречие означает, что предположение о линейной зависимости системы (3) неверно и эта система линейно независима

Процесс ортогонализации системы (3) на различных промежутках числовой оси с различными весовыми функциями приводит к следующим системам классических ортогональных многочленов:

[a;b]	$\rho(x)$	Обозначение	Название
L / J	, ()		многочлена
[-1;1]	1	$P_n(x)$	Лежандра
$(-\infty;+\infty)$	$e^{-x^2/2}$	$H_n(x)$	Эрмита
(-1;1)	$\frac{1}{\sqrt{1-x^2}}$	$T_n(x)$	Чебышева
(0;+∞)	$x^{\alpha}e^{-x}, \alpha > -1$	$L_n^{\alpha}(x)$	Лагерра

Пусть $\{p_n\}_{n=1}^{\infty}$ — ортогональная система многочленов, полученная из системы (3) с помощью ортогонализации (2). Укажем ряд общих свойств:

Свойство 1. $p_n(x)$ – многочлен степени n .

Свойство 2. x^k есть линейная комбинация $p_0(x), p_1(x), ..., p_k(x)$.

Свойство 3. Следующие три формы ортогональности эквивалентны:

(a)
$$\int_{a}^{b} \rho(x) p_n(x) p_m(x) dx = 0, n \neq m, n, m = 0, 1, 2, ...$$

(b)
$$\int_{a}^{b} \rho(x) p_n(x) x^k dx = 0$$
, $n = 1, 2, ..., k = 0, 1, ..., n - 1$

(c)
$$\int_{a}^{b} \rho(x) p_{n}(x) G_{n-1}(x) dx = 0$$
, $n = 1, 2, ..., G_{n-1}(x)$ – произвольный

многочлен степени не выше n-1.

Доказательство: (a) \Rightarrow (b) Согласно свойству 2

$$x^{k} = \alpha_{0} p_{0}(x) + \alpha_{1} p_{1}(x) + ... + \alpha_{k} p_{k}(x), k = 0,1,2,...,n-1.$$

Следовательно,

$$(p_n, x^k) = (p_n, \alpha_0 p_0 + \alpha_1 p_1 + \dots + \alpha_k p_k) =$$

$$= \alpha_0 (p_n, p_0) + \alpha_1 (p_n, p_1) + \dots + \alpha_k (p_n, p_k) = 0.$$

 $(b) \Longrightarrow (c)$ импликация очевидна.

(c) \Rightarrow (a) Пусть для определенности m < n. Из (c) следует, что $\left(p_n, x^k\right) = 0, \ k = 0, 1, 2, ..., n-1$. Так как

$$p_m(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + ... + \beta_m x^m$$
,

то $(p_n, p_m) = 0$.

Свойство 4. На интервале (a;b) функция $p_n(x)$ имеет ровно n различных вещественных корней.

Доказательство: Так как $(p_n,1)=0$, n=1,2,..., то $p_n(x)$ меняет знак на интервале (a;b). Следовательно, функция $p_n(x)$ имеет хотя бы один корень на интервале (a;b). Пусть число таких корней k, k < n. Обозначим их $x_1, x_2,..., x_k: a < x_1 < x_2 < ... < x_k < b$ (в каждой точке $x_i (i=1,2,...,k)$ многочлен $p_n(x)$ меняет знак). Тогда $p_n(x)(x-x_1)(x-x_2)...(x-x_k)$ не меняет знак на интервале (a;b). Но с другой стороны, если k < n, то в силу свойства 3

$$\int_{a}^{b} \rho(x) p_{n}(x) (x-x_{1})(x-x_{2})...(x-x_{k}) dx = 0,$$

что возможно лишь в случае, если знак подынтегрального выражения меняется. Поэтому $k \ge n$. Но многочлен $p_n(x)$ не может иметь более n корней. Следовательно, k=n.

Свойство 5. Для каждой системы ортогональных многочленов имеет место формула Родрига:

$$p_n(x) = \frac{1}{K_n \cdot \rho(x)} \cdot \frac{d^n}{dx^n} \Big[\rho(x) q^n(x) \Big], \tag{5}$$

где $K_n = const, \ q(x)$ – фиксированный многочлен, не зависящий от n , $\rho(x)$ – весовая функция ($\rho(x) \ge 0$).

Свойство 6. Каждый многочлен из заданной системы ортогональных многочленов удовлетворяет дифференциальному уравнению

$$a(x)y''(x) + b(x)y'(x) + \lambda_n y(x) = 0,$$
 (6)

где a(x), b(x) – многочлены, не зависящие от n , λ_n – числа;

Свойство 7. Для любых трех последовательно взятых ортогональных многочленов из заданной системы функций $\{p_n(x)\}_{n=1}^{\infty}$ справедливо рекуррентное соотношение вида:

$$p_n(x) = (A_n x + B_n) p_{n-1}(x) + C_n p_{n-2}(x), \ n = 2,3,...$$
 (7)

 A_n, B_n, C_n — некоторые константы.

$$p_n(x) - A_n x p_{n-1}(x) = D_0 p_0(x) + \dots + D_{n-1} p_{n-1}(x).$$
 (8)

Далее, согласно свойству 3

$$(xp_{n-1}, p_k) = (p_{n-1}, xp_k) = 0, k = 0, 1, 2, ..., n-3$$

Будем умножать обе части (8) скалярно на $p_0, p_1, ..., p_{n-3}$. Получим:

$$(D_0 p_0, p_0) = 0 \Rightarrow D_0 = 0;$$

$$(D_1 p_1, p_1) = 0 \Rightarrow D_1 = 0;$$

$$(D_{n-3}p_{n-3}, p_{n-3}) = 0 \Rightarrow D_{n-3} = 0.$$

Тогда из (8) следует

$$p_n(x) - A_n x p_{n-1}(x) = D_{n-2} p_{n-2}(x) + D_{n-1} p_{n-1}(x),$$

откуда и получаем рекуррентное соотношение (7).

Проиллюстрируем общие свойства ортогональных многочленов на примере *многочленов Лежандра*, рассмотренных в предыдущей лекции.

1. Формула Родрига (5) для многочленов Лежандра $P_n(x)$ имеет вид:

$$P_n(x) = \frac{1}{2^n n!} \cdot \frac{d^n}{dx^n} \left[\left(x^2 - 1 \right)^n \right], n = 0, 1, 2, \dots$$
 (9)

Здесь
$$K_n = 2^n n!, \rho(x) = 1, q(x) = x^2 - 1.$$

2. Многочлен Лежандра $P_n(x)$ является решением дифференциального уравнения вида (6):

$$\frac{d}{dx} \left[\left(1 - x^2 \right) y'(x) \right] = -n(n+1) y(x) \Leftrightarrow$$

$$\left(1 - x^2 \right) y''(x) - 2xy'(x) + n(n+1) y(x) = 0, \tag{10}$$

в котором $a(x) = 1 - x^2$, b(x) = -2x, $\lambda_n = n(n+1)$.

3. Для многочленов Лежандра справедливо рекуррентное соотношение вида (7):

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x), n = 1, 2, \dots \Leftrightarrow$$

$$P_n(x) = \frac{(2n-1)}{n}xP_{n-1}(x) - \frac{n-1}{n}P_{n-2}(x), n = 2, 3, \dots$$
(11)

Здесь
$$A_n = \frac{2n-1}{n}, B_n = 0, C_n = -\frac{n-1}{n}.$$

4. Свойство ортогональности для многочленов Лежандра имеет вид:

$$(P_n, P_m) = \int_{-1}^{1} P_n(x) P_m(x) dx = \begin{cases} 0, & m \neq n, \\ 2/(2n+1), & m = n. \end{cases}$$

5. Функция

$$W(x,h) = \frac{1}{\sqrt{1 - 2hx + h^2}}, x \in [-1;1], h \in (-1;1)$$
 (12)

является производящей функцией многочленов Лежандра, т.е.

$$W(x,h) = \sum_{n=0}^{\infty} P_n(x)h^n, x \in [-1;1], h \in (-1;1).$$
 (13)