High-Level Design Document (HLD): Crack Detection System

1. Objective

This High-Level Design (HLD) outlines the architecture, components, interactions, and system design decisions for a local, containerized MLOps application that performs crack detection in images using a deep learning Attention U-Net model. The system supports real-time inference, user feedback for retraining, version-controlled data and model tracking, and full observability with monitoring dashboards—all running locally via Docker Compose.

2. Architectural Overview

The system follows a **modular microservices architecture**. It comprises the following interconnected services:

Component	Technology	Containerized	Port
Frontend	Streamlit	Yes	8500
Backend	FastAPI	Yes	8000
Model Training	PyTorch, DVC	Manual/Script	N/A
Monitoring	Prometheus, Grafana	Yes	9090/3000
Experiment Tracking	MLflow	Local Volume	N/A
System Metrics	Windows Exporter	Yes/Host	N/A

All services run locally in isolation within containers, with inter-service communication handled via HTTP and shared Docker volumes.

3. Component Breakdown

3.1 Frontend (Streamlit)

- Purpose: Provides a UI for users to upload images, view predictions, and optionally flag unsatisfactory results.
- Functionality:
 - o Accepts image files via form input.
 - o Sends POST requests to the FastAPI backend for:
 - /predict: to fetch crack segmentation.
 - /save-for-retrain: to submit feedback images.
- Ports & Networking:
 - Exposed on port 8500.

o Communicates internally with the backend via Docker bridge network.

3.2 Backend API (FastAPI)

- Purpose: Hosts the trained deep learning model and exposes RESTful API endpoints.
- Endpoints:
 - o GET /ping service health check.
 - o POST /predict inference endpoint.
 - o POST /save-for-retrain stores feedback images.
 - o GET /metrics exposes Prometheus-formatted metrics.
- Model: PyTorch Attention U-Net loaded from models/ directory.
- Observability: Instrumented with prometheus fastapi instrumentator.
- Ports & Networking:
 - o Exposed on port **8000**.
 - o Mounted volumes:
 - ./models/ for loading/saving models.
 - ./model_retrain/ for feedback image storage.
 - ./logs/ and ./mlruns/ for logging and MLflow output.

3.3 Retraining Pipeline

- Execution: Triggered manually via CLI:
- python model_retrain/run_retrain_pipeline.py
- Functionality:
 - o Detects newly submitted feedback images in model retrain data/images/.
 - o Uses train.py from src/ to retrain model.
 - o Logs metrics and models to MLflow.
 - o Tracks datasets and models using DVC.
- Versioning:
 - o DVC remote: .dvc storage/
 - o Artifacts tracked: training data, feedback data, model weights.
- Outputs:
 - o Updated model written to ./models/
 - o New MLflow experiment recorded in ./mlruns/

3.4 Monitoring Stack

- Prometheus:
 - o Scrapes backend metrics from /metrics every 5 seconds.
 - o Scrapes host metrics via Windows Exporter (disk, CPU, memory, network).
- Grafana:
 - Visualizes:
 - API usage (request rate, latency, error codes).

- System metrics from Windows Exporter.
- o Preconfigured with dashboards located in

monitoring/grafana/dashboards/.

3.5 Experiment Management

- MLflow:
 - Logs parameters, metrics, and model artifacts.
 - o Uses ./mlruns/ volume for storage.
- **DVC**:
 - o Tracks datasets, models, and pipeline stages.
 - o $\,$ Uses .dvc_storage/ as the local DVC remote.

4. Data Flow

- 1. User uploads image through Streamlit UI.
- 2. UI sends image via POST /predict to FastAPI.
- 3. Backend returns segmentation mask generated by the PyTorch model.
- 4. If prediction is unsatisfactory:
 - o User submits the image via POST /save-for-retrain.
 - Backend stores the image in model retrain/model retrain data/images/.
- 5. Metrics for each request are exposed to Prometheus.
- 6. Prometheus scrapes and sends metrics to Grafana.
- 7. Retraining pipeline, when triggered, reads feedback images, retrains model, and updates models/.

5. Deployment and Orchestration

- All services are defined in docker-compose.yml and launched with:
- docker-compose up --build
- Volumes are mapped for:
 - o Model weights
 - o Logs
 - o Feedback data
 - o MLflow runs
- Network:
 - o All services are on a shared bridge network app-network.

6. Testing

- Unit and integration tests located in tests/:
 - o test api.py: Tests backend REST endpoints.
 - o test_metrics.py: Verifies exposed Prometheus metrics.
 - o test train.py: Validates model training logic.
 - o test save.py: Ensures feedback saving is functional.
- Executed manually or via CI trigger:
- python tests/test *.py

7. Security and Robustness

- Input validation for uploaded images in backend.
- Exception handling and logging implemented in both frontend and backend.
- Retry logic (if needed) for Prometheus scrapes.
- Model retraining includes integrity checks for dataset completeness.

8. Key Design Choices and Rationale

Decision Area	Choice	Rationale
Deployment	Docker Compose	Simplifies local orchestration
Frontend	Streamlit	Lightweight UI for fast prototyping
Backend	FastAPI	High-performance REST API, async support
Model Format	PyTorch .pth	Easy to load and retrain
Feedback Storage	Shared volume + file system	Keeps system local and flexible
Observability	Prometheus + Grafana	Industry standard, easy integration
Experiment Tracking	MLflow	Lightweight, open-source
Versioning	DVC	Git-like reproducibility and traceability

9. Folder Structure

```
backend/ # FastAPI inference API
frontend/ # Streamlit UI
model_retrain/ # Retraining logic and feedback data
src/ # Core ML logic and utilities
tests/ # Test scripts for API and training
models/ # DVC-tracked model artifacts
data/ # Datasets (train/test)
.dvc_storage/ # Local remote for DVC
mlruns/ # MLflow experiment runs
monitoring/ # Prometheus and Grafana config
docker-compose.yml # Full stack orchestration
```

10. Next Steps and Recommendations

- Implement auto-trigger for retraining via feedback image count threshold.
- Improve Graphana Dashboards
- Containerize MLflow server and expose via port 5000