MINISTERE DE L'ENSEIGNEMENT SUPERIEUR

ISSTECOA BAFOUSSAM

.....

REPUBLIQUE DU CAMEROUN

Paix-Travail-Patrie

.....

EXAMEN DE MACHINES ELECTRIQUES 1

ANNEE ACADEMIQUE: 2019/2020

SEMESTRE 1

SPECIALITES: CIR, ER, ET, MAB, MEI & MSE

NIVEAU: BTS 2

DUREE: 3HEURES

ENSEIGNANT: TCHOUDO EDDY

EXERCICE 1 Moteur série en traction électrique (3+1+1=5pts)

Les caractéristiques d'un moteur à excitation série équipant une rame de métro sont :

Résistance de l'induit : Résistance de l'inducteur :

Le flux est proportionnel au courant dans l'inducteur.

1. Pour le fonctionnement nominal, on donne :

 $U_n = 800V$; $I_n = 410A$; $N_n = 1300 \text{ tr/min } C_{un} = 2200Nm$.

Calculer

- a) La puissance utile P_u .
- b) La puissance électromagnétique P_{em} .
- c) Les pertes mécaniques et magnétiques P_m .
- d) Les pertes par effet Joule P_i .
- e) Le couple électromagnétique $C_{\acute{e}m}$
- f) Le rendement η %.
- 2. On procède au démarrage du moteur sous une tension réduite. Le courant absorbé est de 800*A*. Pour ce régime, déterminer :
 - a) La tension d'alimentation U_d .
 - b) Le couple électromagnétique correspondant.
- 3. On utilise maintenant une résistance R_d de démarrage permettant de limiter I_d la valeur $(2I_n)$. Calculer
 - a) La résistance de démarrage R_d .
 - b) Le couple de démarrage C_d .

EXERCICE 2 Transformateur monophasé de distribution (1+2+3+1,5+0,5X3=9pts)

On dispose d'un transformateur monophasé de distribution :

S = 120KVA, 15KV/220V pour une fréquence de 50Hz.

Dans un essai à vide sous une tension nominale : $U_{20}=228\,V, I_{10}=0, 5A$ et $P_{10}=600W$.

L'essai en court-circuit sous une tension réduite a donné :

$$U_{1cc} = 485 \, V, I_{2cc} = 820 A, P_{1cc} = 3100 W.$$

- 1. Sachant que la section nette du noyau est de $s=160cm^2$ et que l'induction maximale $B_{max}=1,147T$. Déduire alors les nombres de spires au primaire et au secondaire.
- 2. Pour le fonctionnement à vide, déterminer le facteur de puissance $cos \varphi_{10}$, la puissance magnétisante Q_{10} et l'angle d'avance d'hystérésis α_0 .
- 3. Donner le schéma équivalent ramené au secondaire avec l'hypothèse de KAPP en fonction de (R_f , X_m , m, R_s , X_s).
- 4. Calculer, pour le courant secondaire nominal I_{2n} , la tensionaux bornes d'un récepteur de facteur de puissance successivement égal à : 1 ; 0,8 AR ; 0,8 AV.
- 5. Pour quel type de charge la chute de tension est-elle nulle?
- 6. Calculer le facteur de puissance nominal de ce transformateur.
- 7. Pour quel courant secondaire le rendement est-il maximal?

EXERCICE 3 Transformateur monophasé de distribution (0,5+0,75+0,5+0,5+1+0,5+1,5=6pts)

Le schéma de la figure 1 représente un banc d'essai des machines à courant continu : un moteur à excitation série qui entraîne une génératrice à excitation indépendante. Cette génératrice alimente une charge résistive R.

1. Peut-on démarrer le moteur si la génératrice n'est pas chargée (K ouvert Figure-1-)? Pourquoi.

2. Etude du moteur :

L'essai à vide du moteur (effectué à la vitesse 500 tr/mn) a donnée les mesures suivantes :

E (V)	108	202	326	383	418
I (A)	25	50	100	150	200

E : f.c.é.m du moteur

I : courant d'excitation du moteur série

Les pertes constantes du moteur p_{cm} sont exprimées par la relation : $p_{cm} = 7.10^{-7}$. N². I²

en Watt. (I : courant d'induit en A, N vitesse de rotation en tr/mn)

La somme des résistances induit et inducteur du moteur (RM+ r_M) est égale à $0,1\,\Omega$.

On ferme l'interrupteur K et on démarre ensuite le moteur. Le moteur absorbe en régime permanent $I_M = 100 \, A$, sous une tension constante $U_M = 440 \, V$.

- **2.1.** Evaluer la vitesse de rotation **N** du moteur ainsi que son couple utile **Cu** fourni à la génératrice.
- **2.2.** Déterminer la puissance utile **Pum** et le couple électromagnétique **Cem** du moteur fourni à la génératrice.
- 2.3. Calculer les pertes joules Pjm du moteur.
- **2.4.** Evaluer le rendement du moteur η %.
- 3. Etude de la génératrice : Elle est entraînée par le moteur série déjà étudié.

La résistance de l'induit de la génératrice \mathbf{RG} est égale à $0,1\Omega$. La résistance de l'inducteur $\mathbf{rg} = 20\Omega$. La f.é.m. Eg de la génératrice varie en fonction du courant d'excitation \mathbf{ig} et de la vitesse de rotation \mathbf{N} selon la relation $\mathbf{Eg} = \mathbf{0,16.ig.N}$. L'inducteur étant alimenté par une tension continue de 50 V.

- **3.1.** Déterminer le courant d'excitation de la génératrice. Déduire sa f.é.m. Eg.
- **3.2.** Sachant que la charge absorbe un courant I_G de 160 A, déterminer la tension d'induit de cette génératrice.
- **3.3.** Déterminer la puissance absorbée Pa de la génératrice, la puissance utile Pu. Evaluer alors le rendement de cette machine ηg %.