Optimizavimo metodai. Paskaitų konspektas Rimantas Grigutis

6 paskaita. Skaitiniai besąlyginiai optimizavimo metodai. Vienmatė optimizacija. Intervalo dalijimo pusiau metodas

Uždavinys.

Rasti vieno kintamojo funkcijos f(x) minimumą, t.y. tokį $x^* \in \mathbf{R}$, kad $f(x^*) = \min_{x \in \mathbf{R}} f(x)$.

Pastaba 6.1

- 1) Vieno kintamojo funkcijų minimumo taško paieškos metodams yra būdinga tai, kad pačioje pradžioje yra nurodomas pradinis intervalas $L_0 = [a_0; b_0]$, kuriame yra ieškomasis minimumo taškas.
- 2) Dauguma vieno kintamojo funkcijų minimumo taško paieškos metodų yra pritaikyti unimoduliarioms funkcijoms.

Apibrėžimas 6.2

Funkcija f(x) vadinama unimoduliaria intervale $L_0 = [a_0; b_0]$, jei ji įgyja globaliai minimalią reikšmę vienintėliame intervalo L_0 taške x^* . Beto, intevale $(a_0; x^*)$ funkcija yra griežtai mažėjanti, o intervale $(x^*; b_0)$ - griežtai didėjanti.

Swanno(W.H.Swann) algoritmas pradinam intervalui rasti.

 $\check{Z}ingsnis$ 1. Apibrėžti pradinius parametrus: x^0 - pradinį tašką, t>0 - žingsnio dydį, k=0;

 $\check{Z}ingsnis\ 2$. Apsakaičiuoti funkcijos reikšmes trijuose taškuose: $x^0-t, x^0, x^0+t;$ $\check{Z}ingsnis\ 3$. Patrikrinti algoritmo pabaigos sąlygas:

- a) Jei $f(x^0 t) \ge f(x^0) \le f(x^0 + t)$, tai pradinis intervalas yra surastas: $[a_0; b_0] = [x^0 t; x^0 + t]$;
- b) Jei $f(x^0 t) \le f(x^0) \ge f(x^0 + t)$, tai funkcija nėra unimoduliari ir pradinio intervalo negalima surasti. Skaičiavimai nutraukiami ir siūloma pasrinkti kitą x^0 ;
 - c) Jeigu algoritmo pabaigos sąlyga nevykdoma pereiti Žingsnio 4. Žingsnis 4. Apibrėžiamas dydis Δ :
- a) Jei $f(x^0 t) \ge f(x^0) \ge f(x^0 + t)$, tai $\Delta = t; a_0 = x^0; x^1 = x^0 + t; k = 1;$
- b) Jei $f(x^0 t) \le f(x^0) \le f(x^0 + t)$, tai $\Delta = -t; b_0 = x^0; x^1 = x^0 t; k = 1;$

Žingsnis 5. Randame sekanti taška: $x^{k+1} = x^k + 2^k \Delta$;

Žingsnis 6. Patikrinti funkcijos mažėjimo sąlygą:

- a) jei $f(x^{k+1}) < f(x^k)$ ir $\Delta = t$, tai $a_0 = x^k$;. b) jei $f(x^{k+1}) < f(x^k)$ ir $\Delta = -t$, tai $b_0 = x^k$;

Abiejais atvejais priskiriame k := k + 1 ir pereiti prie $\check{Z}ingsnio\ 5$.

c) jei $f\left(x^{k+1}\right)\geq f\left(x^k\right)$, tai algoritmas yra baigiamas. Jei $\Delta=t$, tai $b_0=x^{k+1}$; jei $\Delta=-t$, tai $a_0=x^{k+1}$.

Rezultatas yra intervalas $[a_0; b_0]$, kuris ir yra pradinis intervalas L_0 .

Pavyzdys 6.3

Intervalo dalijimo pusiau metodas

Algorimas

Žingsnis 1. Rasti pradinį intervalą $L_0 = [a_0; b_0]$ ir apibrėžti norimą tikslumą skaičiumi t > 0.

Žingsnis 2. Apibrėžti k=0.

Žingsnis 3. Apskaičiuoti vidurio tašką $x_k^c = \frac{a_k + b_k}{2}$, $|L_{2k}| = b_k - a_k$, $f(x_k^c)$.

Žingsnis 4. Apskaičiuoti taškus: $y_k = a_k + \frac{|L_{2k}|}{4}, z_k = b_k - \frac{|L_{2k}|}{4}, f(x_k),$

Taškai y_k, x_k^c, z_k dalija intervalą $[a_k; b_k]$ į keturias lygias dalis.

Žingsnis 5. Palyginti reikšmes $f(y_k)$ ir $f(x_k^c)$:

a) jei $f(y_k) < f(x_k^c)$, tai pašalinus intervalą $(x_k^c; b_k]$ priskirti $b_{k+1} =$ $x_k^c, a_{k+1} = a_k$. Naujojo intervalo vidurio tašku tampa $y_k : x_{k+1}^c = y_k$.

Pereiti prie Žingsnio 7.

b) jei $f(y_k) \ge f(x_k^c)$, tai pereiti prie Žingsnio 6.

Žingsnis 6. Palyginti reikšmes $f(z_k)$ ir $f(x_k^c)$:

a) jei $f(z_k) < f(x_k^c)$, tai pašalinus intervalą $[a_k; x_k^c)$ priskirti $a_{k+1} = x_k^c, b_{k+1} = b_k$.. Naujojo intervalo vidurio tašku tampa $z_k : x_{k+1}^c = z_k$.

Pereiti prie *Žingsnio 7*.

b) jei $f\left(y_k\right) \geq f\left(x_k^c\right)$, tai pašalinus intervalus $\left[a_k;y_k\right),\left(z_k;b_k\right]$ priskirti $a_{k+1}=y_k,b_{k+1}=z_k$. Naujojo intervalo vidurio tašku lieka $x_k^c:x_{k+1}^c=x_k^c$.

Žingsnis 7. Apskaičiuoti $|L_{2(k+1)}| = |b_{k+1} - a_{k+1}|$ ir patikrinti algoritmo pabaigos sąlygas:

a) jei $|L_{2(k+1)}| < l$, tai algorimas baigiamas ir $x^* \in L_{2(k+1)} = [a_{k+1}; b_{k+1}]$. Minimumo apytislę reikšmę galima imti šio intervalo vidurio tašką $x^* = x_{k+1}^c$;

b) jei $|L_{2(k+1)}| \ge l$, tai priskirti k := k+1 ir pereiti prie Žingsnio 4.

Pavyzdys 6.4