

GEOMETRÍA Capítulo 4

APLICACIONES DE LA CONGRUENCIA

MOTIVATING | STRATEGY

APLICACIONES DE LA CONGRUENCIA

Se cumple: PQ = QR

También: OQ =OR

Calcular x + y

Por teorema:

$$x = 5$$

$$y = 7$$

$$x = 12$$

TEOREMA DE LA BASE MEDIA

Nota:

Todo triangulo tiene tres bases medias, uno relativo a cada lado.

Ejemplo: Del gráfico, calcule y.

Se observa que \overline{PQ} es base media

$$12 = \frac{y}{2}$$
$$y = 24$$

TEOREMA DE LA MEDIATRIZ

Del gráfico:

 \overrightarrow{L} : Mediatriz del \overline{AB}

Nota:

Al tener un triangulo isósceles, trazar la **altura** hacia la base para obtener una **mediana** y **bisectriz**.

TEOREMA DE LA MEDIANA RELATIVA A LA HIPOTENUSA

BM: Mediana relativa a la hipotenusa.

Ejemplo:

Si \overline{BM} es mediana, halle el valor de x.

• Entonces:

$$3x + 3x = 2x+8$$

$$4x = 8$$

$$x = 2u$$

TRIÁNGULOS RECTÁNGULOS NOTABLES

Notable de 45° y 45°

Notable de 37° y 53°

Notable de 30° y 60°

1. En el gráfico, halle BH.

Resolución

- Piden: BH
- Se traza la altura BP

Por teorema de la bisectriz

$$BH = BP = 6$$

$$BH = 6$$

2. En un triángulo ABC, donde la m \pm BCA = 40°, la mediatriz de \overline{AC} intersecta a \overline{BC} en P, tal que AB = PC. Halle la m \pm ABP.

3. En el gráfico, halle el valor de x.

Resolución

- Piden: x
- Trazamos MN
- MN: Base media del ΔABC.

$$MN = \frac{AC}{2} = \frac{2a}{2}$$

$$MN = a$$

▲MNT: Isósceles

$$x = 80^{\circ}$$

4. En un triángulo rectángulo ABC recto en B, se ubican los puntos D en \overline{AC} y E en \overline{BC} , tal que: AD = DC = BE y m $\not ABED = 70^\circ$. Halle la m $\not AEDC$.

5. En el gráfico, AB = 2 y BC = 1. Halle el valor de x.

6. En la figura se observa una antena 5G que está sujeta a dos cables, si BD es bisectriz del ángulo ABC. Calcule la medida del ángulo BCD.

Resolución

Trazamos la altura \overline{DP} :

$$DA = DP = a$$

$$BA = BP = b$$

$$PC = a$$

En el gráfico: DP = PC

△DPC: Notable 45°- 45°

$$x = 45^{\circ}$$

7. En la figura halle la altura del edificio.

