Cours 2: La gestion des fichiers

Plan du cours

Notion des Fichiers Organisations
Physiques

Système de Gestion de Fichiers SGF

Technique d'Allocation sur

le Disque

Optimisation des Performances & Sécurité

Section 1: Notion des Fichiers

Notion de Fichiers

Définition

Un fichier est une unité de stockage logique de l'information Des contenus pouvant être de différents types, en particulier

- ► Texte
- ► Son
- ► Image
- ▶ Vidéos
- Nommage de fichier = Nom Fichier + Extension Fichier
- Ex. Etudiant.doc

Attributs des fichiers:

Création, Ecriture/lecture, Supression, Concatenation,...

Fichiers comme abstraction de ressources

Un fichier:

- Abstraction des propriétés physiques des dispositifs de stockage
- Les fichiers sont utilisés pour représenter des données sur des dispositifs de stockage (par exemple un disque)
- La correspondance est établie par un SE

Les opérations sur les Fichiers

3

Fichier: Point d'entrée-sortie

Informations sur les fichiers

stat(), fstat()

Création ou acquisition des droits de lecture/ écriture d'un fichier existant et attribution d'un Identifiant unique { descripteur de fichier}

open()

Opérations lecture/ écriture, positionnement

read(), write(), lseek()

Partage/verrouillement d'un fichier

• dup2(), fcntl()

Fermeture

close()

Destruction d'un fichier

unlink()

Bibliothèque d'E/S standard

2

Bibliothèque d'E/S: gère des appels système liés aux E/S.

Portabilité

- o Prise en charge des E/S génériques pour les programmes C
- Implémentations spécifiques pour différents systèmes d'exploitation hôte
- Invoque les appels système spécifiques au SE pour les E/S

Abstraction pour les programmes C

Concept de flux, Entrée ligne par ligne, Sortie formatée

Notion de Fichier

Question Quelle abstraction le programme utilise-t-il pour accéder à un fichier sur le disque?

- a) Le chemin d'accès du fichier et son nom
- b) Une séquence de blocs contigus sur le disque
- c) Un ensemble de blocs non-contigus sur le disque
- d) Un numéro de secteur et de cylindre sur le disque
- e) FAT-16
- f) FAT-32
- g) Aucune de ces réponses

Section 2: Organisations physiques

Vue logique vs Vue physique

5

Abstraction

Le **SGF** est vue comme une arborescence de dossiers/ fichiers

Implémentation ??

- Représentation des fichiers
- Il faut un élément hardware -> persistance

Exp. Secteur= 512 KB

Question: Comment implémenter ce type d'abstraction par le SE

Allocation du disque : le bloc physique

6

L'unité d'allocation sur le disque dur est le bloc physique. Un bloc physique est composé de 1 à n secteurs exemple :

1 bloc = 2 secteurs de 512 octets soit 1 kB.

Les opérations de lecture et d'écriture du SGF se font bloc par bloc.

Organisations physiques: Le gestionnaire du cache -

7

Blocs

- Chargement d'un bloc b:
 - si le bloc b est dans le cache, retourner son numéro de slot.
 - sinon s'il y a un slot libre dans le cache, chargé le bloc du disque
 - sinon choisir un slot à vider (l'écrire sur disque) et le remplacer par b
- Stratégies de remplacement: LRU, FIFO, ...

Organisations physiques Cas des <u>données structurées</u>

5

- Fichier = ensemble de blocs
- chaque bloc renferme un ensemble d'enregistrements un enregistrement peut être de taille fixe ou variable (longueur de champs, nombre de champs)
- Facteur de blockage: Nombre enregistrement par bloc

 Clustering: rassembler dans le même bloc, les enreg susceptibles d'être traités ensembles.

tuple identfier (TID) concept [N° Bloc , Offset]

Besoin des utilisateurs

9

- 1. Chaque utilisateur doit pouvoir créer, Supprimer, lire, écrire et modifier des fichiers
- 2. Chaque utilisateur peut avoir un accès contrôlé aux fichiers
- ... Manipulation des fichiers et des dossiers

Système de gestion de fichiers (SGF)

- Implements file abstraction (including APIs for file types)
 - Implements directory <u>structure</u> for organizing files
 - File management involves operations on external devices & memory

Organisations physiques:

Le problème:

- Comment l'implémenter ?
 - Disque → partition
 Début de disque → table des partitions
 Chaque partition à un SGF
 - Premier région: gère les données
 Fichier
 Données → organisation en blocs
 - Deuxième région : gère les métadonnées
 Stocker dune manière persistante dans le disque
 Réserver par le SE

Organisations physiques

Section 3 : Système de gestion de fichiers (SGF)

C'est quoi un SGF?

12

Un Système de gestion de fichiers abrégé FS (file system) est une structure qui permet de stocker, d'organiser des données sur un support : Disque magnétique (HDD), SSD, RAM, USB, DVD,...

Les tâches d'un SGF

13

- ☐ Interface conviviale pour manipuler les fichiers
- ☐ Le stockage des fichiers dans le disque dur
- ☐ La gestion d'espace libres sur le disque dur
- ☐ La gestions des fichiers dans un environnement muti-utilisateur
- ☐ Les données d'utilitaire pour le diagnostic, la récupération en cas d'erreurs, l'organisation des fichiers

14

Composantes du SGF

Système de gestion de fichiers (SGF)

Improving Linux System Performance with I/O Scheduler Tuning

Changing the I/O Scheduler

```
/sys/block/<disk device>/queue/scheduler file.

# cat /sys/block/sda/queue/scheduler
noop [deadline] cfq
```

/sys/block/<disk device>/queue/scheduler file with the new I/O scheduler selection.

```
# echo "cfq" > /sys/block/sda/queue/scheduler
# cat /sys/block/sda/queue/scheduler
noop deadline [cfq]
```

Source: https://blog.codeship.com/linux-io-scheduler-tuning/

Section 4: Techniques d'allocation des blocs physiques

16

Différentes méthodes pour allouer un fichier physique

- Allocation contiguë (séquentielle simple) ;
- Allocation par blocs chaînés ;
- Allocation indexée.
- Direct ou par Hachage

17

Organisation - blocs contigus

Entrée de répertoire :

- adresse du premier bloc
- et longueur (en nombre de blocs)

L'entrée d'un répertoire dans un système qui applique l'allocation séquentielle a la structure suivante:

Nom du fichier	Attributs	Adresse du fich	ier Longueur
----------------	-----------	-----------------	--------------

Allocation contigüe Avantages et inconvénients

18

Problème de création d'un fichier

- Comment gérer plusieurs fichiers qui grandissent simultanément?
- ■Nécessité de réserver un nombre fixe de blocs à la création.
- Combien de blocs réserver?

- Avantage : accès rapide,
- Désavantage : fragmentation du disque, nécessite de rouler un "défragmenteur" pour pouvoir trouver de l'espace pour une nouvelle création de fichier.

AAAAAAA BBBBB CCCCCCCCCCC DDDD Si on veut créer un fichier de 7

octets, il faut déplacer au moins 2 fichiers.

Allocation contiguë

Résumé

19

Principe

- Fichiers stockés par blocs contigus sur le disque
- Temps de positionnement des têtes est minimal
- Entrée de répertoire : adresse du premier bloc et longueur (en nombre de blocs)
- Accès direct et séquentiel facile à implémenter : il suffit de mémoriser l'adresse du premier bloc
- **Gestion de l'espace libre** : Techniques : Fragmentation externe, Bit map, compactage etc.

Problème majeur : fichiers de taille variable

- Trop d'espace : fragmentation interne
- Pas assez d'espace : déplacement (coûteux) du fichier. Pas toujours possible.

Utilisation actuelle: CD / DVD-ROM

Allocation chainée

Définition

- Elle consiste à allouer des blocs chaînés entre eux aux fichiers.
- Un fichier peut désormais être éparpillé sur le disque puisque chaque bloc permet de retrouver le bloc suivant.

Principe

- Fichier = chaîne non contiguë de blocs disque
- Chaque bloc se termine par un pointeur sur le bloc suivant
- Une entrée de répertoire contient un pointeur sur le premier bloc

Allocation chainée

Avantages

Pas de fragmentation externe puisque tous les blocs peuvent être alloués

Pas de limite de taille

Inconvénients

Accès au fichier est séquentiel: On commence le parcours à partir du début du fichier même si on a récemment chargé les blocs

Fiabilité: perte de pointeur critique -> on se retrouve dans une autre zone mémoire

Solutions : **listes doublement chaînées**, reproduction du nom de fichier et numéro de bloc dans chaque bloc etc. Coûteux dans tous les cas.

Organisation - index de blocs hiérarchisés

22

Notion de inode

L' i-node (Index NODE ou nœud d'index en Français),

Concept très ancien (année 50)

- Appliquer dans tous les SF
 - Inode
 - Date
 - droits d'accès
 - Taille de ficher
 - •
 - Référencer les différents blocs (pointeurs)
- Allouer un fichier
 - Allouer i-node
 - Allouer un ficher

Structure d'un I-noeuds

Organisation - index de blocs hiérarchisés

Un i-node est une structure représentant :

- a) un processus
- b) un espace d'adressage
- c) un fichier
- d) une partition
- e) un système de fichiers
- f) un périphérique

Structure d'un inode:

Metadata

24

- le type (le type du fichier, un entier dont la valeur est <u>0 pour un fichier</u> et <u>1 pour un répertoire</u>,
- Le nombre de liens (voir après),
- UID (User Identification): numéro d'utilisateur du propriétaire
- GlD (Group Identification) : numéro du groupe propriétaire
- Taille du fichier en octets
- Adresses des blocs de données (qui contiennent le fichier)
- Droits du fichier
- Date du dernier accès
- date de la dernière modification
- date de création

Structure des i-node

Exemple: Unix

Question ?

27

Comment implémenter les répertoires ?

On rappelle que les *inodes* sous BSD permettent d'adresser 12 blocs, 3 tables de niveau 1, 1 table de niveau 2 et 1 table de niveau 3. Chaque table a 1024 entrées, et occupe elle même 1 bloc.

Quelle est, en nombre de blocs, la quantité maximale des données que peut contenir un fichier ?

Organisations physiques: - Hachage -

• Utilisation d'une fonction *h* pour le calcul du n° de bloc

29

Organisations physiques: - Hachage -

On calcule la position d'un enregistrement d'après la clé.

Utilisation d'une fonction h pour le calcul du n° de bloc

- une fonction de hachage h associe des valeurs de clé à des adresses de bloc
- h doit répartir uniformément les enregistrements dans les n blocs alloués à la structure
- recherche d'un enregistrement => calcul de l'endroit où il se trouve.

hachage: Exemple (1/2)

On veut créer une structure de hachage pour nos 16 films

(hyp.: 4 enregistrements par bloc)

- on alloue 5 blocs (pour garder une marge de manœuvre
- un répertoire à 5 entrées (0 à 4) pointe vers les blocs
- On définit la fonction

$$h(titre) = rang(titre [0]) mod 5$$

hachage: Exemple (2/2)

31

h(titre) = rang(titre [0]) mod 5

 $h(nouveau \ titre) = (18 \ mod \ 5) = 3$

Techniques d'allocation des blocs physiques

Section 5 : Optimisation des Performances & Sécurité

Optimisation des Performances

33

Optimisation des Performances

Technique des performances E/S

Objectif: Réduire les opérations E/S disque

Classique Algorithme

d'ordonnancement

- FCFS, SSTF, SCAN
- C-SCAN, C-L OOK

- Programmer les E/S
- Buffer
- RAID
- ..

Objectif : La Sécurité et l'intégrité des données

- Deux aspects:
 - Journal des transactions
 - Fichier log
 - recovery backup
 - Vérification de la cohérence

Sécurité

	Е
2.	L
	_

Octal	Decimal	Permission	Representation		ation
000	0(0+0+0)	No Permission	-	-	-
001	1(0+0+1)	Execute	-	-	X
010	2(0+2+0)	Write	-	w	-
011	3(0+2+1)	Write + Execute	-	w	X
100	4(4+0+0)	Read	r	-	-
101	5(4+0+1)	Read + Execute	r	-	X
110	6(4+2+0)	Read + Write	r	w	-
111	7(4+2+1)	Read + Write + Execute	r	w	X

- Difference between a Directory and File Permissions:
- The first character identifies the file type : dash () indicates a normal file and d denotes it is a directory.
- -rw-r--r- drwxr-xr-x

Optimisation des Performances & Sécurité

36

Quel ensemble de permissions permet à tous les utilisateurs d'afficher le contenu d'un répertoire?

- a) rwx--x--x
- b) rwxr--r—
- c) rwx-w-w
- d) rw-rw-rw
- e) r--r--r—

Atelier – Etudes des commandes de gestion de fichiers

Commande usuelles (répértoires, fichiers) :

37

1-Fichiers sous Unix:

Commande	Utilisation	
Chmod	Change les droits d'accès à un fichier	
Стр	comparaison de fichiers	
Diff	affiche la différence entre deux fichiers	
Basename	affiche le nom du fichier	
File	donne le type de fichier	
Find	chercher fichier	
Getfalc	affiche les informations du fichier	
Grep	cherche texte dans fichier	
Head	affiche les premières lignes d'un fichier	
Ln	création de lien vers un fichier	
Mv	renomme ou déplace un fichier	
Rm	supprime un fichier	
Tail	affiche la fin d'un fichier	
Wc	compte le nombre de lignes, de mots et de caractères dans un fichier	

2- Commandes des répertoires :

Commandes	Utilisation	
Dirname	extrait le chemin d'une commande	
Dir	affiche la liste des fichiers et répertoires	
Ls	affiche la liste des fichiers et répertoires	
Cd	changer de répertoire	
Dircmp	compare deux répertoires	
Rewinddir	Revenir au début du répertoire(déplacement)	
Rmdir	supprime répertoire	
Mkdir	création de répertoire	
Pwd	Retrouver le répertoire courant	
Seekdir	permet de sauter à une position donnée	
Telldir	renvoie la position courante	
Scandir	sélectionne une partie du contenu d'un répertoire, la trie et fournit son contenu dans une table allouée automatiquement	

Bibliographie

Bibliographie

LIVRES ET COURS :

Systèmes d'exploitation et programmation système par Yves PAGNOTTE

Programmation système en C sous Linux par Christophe Blaess

Le système de fichiers Ext2 par Rémy Card ;Remy.Card@linux.org

Initiation au système Unix par D.E. Menacer

Programmation SystèmeUNIX Rev G.1, Janv 99

Document non révisable SI-220RevG.1

Guide étudiant Solaris 2.x

GUIDE du KornShell sous UNIX (HP-UX 8.0, SUNOS 5.1, AIX 3.2) par Jean François Pujol août 93

Les systemes de gestion de fichiers par Ivan Boule (2007/2008)

Introduction au système UNIX : C. Méhat -D. Mascré - M. Mayero, Département

R&T,IUTdeVilletaneuse

Introductionau système UNIXGTR 2001-02 :Emmanuel Viennet ,viennet@lipn.univ-paris13.fr

A Fast File System for UNIX Marshall Kirk McKusick, William N. Joy⁺, Samuel J. Leffler[‡], Robert S. Fabry

SGF de S. Laporte

Linux System Programming by Robert Love

TP Archi & Syst d'Exploitation Par Volatiana RALAMBONDRAINY – Samy FOUILLEUX

• Liens internet:

http://www.linux-france.org/article/sys/ext3fs/

http://www.freebsd.org/.

http://www.gentoo.org/doc/en/articles/afig-ct-ext3-intro.xml

http://en.wikipedia.org/wiki/Unix_File_System

http://www-gtr.iutv.univ-paris13.fr/Cours

http://www.africacomputing.org