2018年京港大学生大数据建模大赛

周世逸

一、背景信息介绍

传统音乐

需要下载

需有大量储存记忆量

比较单一乏味

串流音乐

□ 只要连上网就可以即时享受音乐

- 不占手机记忆容量多功能(有推荐功能,看视频)
- 递送成本几乎为零,销售单曲不会增加成本

利用少量的金钱购买聆听大量绑售音乐的权利

串流音乐市场

国际唱片交流协会在2017公布全球音乐产业 年缔造了173亿美元的营收

在173亿美元的营收中,有38%来自串流音乐(66亿美元)

串流音乐营收也第一次超越实体唱片销售

成为全球音乐产业的销售主力

IFPI还估计全球已有1.76亿名付费串流用户

串流音乐大致分为两种

付款音乐平台利用用户大 数据和月费方式赚取金钱

KKBOX

Spotify

免费音乐平台和广告商 合作,赚取广告费

Mixer Box

酷播音樂

华语歌曲数量最完整的音乐串流平台

多达4000多万的歌曲

高达117亿的累积点播次数

透过大数据了解用户聆听行为 ——

除了可以更加精准推荐音 乐外,也可以帮助唱片公 司在宣传上调整策略

有名人或乐团建立电台播歌给粉丝 听,也可以自己当DJ,公开目前正 在收听的歌曲, 朋友便能同步聆听

KKBOX的特点和使用

可以自订心情,时间, 类型产生播放清单

人工推荐歌单

依照类别如Techno, British Rock, 流行等等列出固定的推荐歌曲新闻或专栏相关歌曲:

自新新闻内容或名人专栏,皆会在内 容中置放相关歌曲

KKBOX的特点和使用

2.1 性别分布

gender	frequency	percent
0	7893	45.93%
1	4453	25.91%
2	4840	28.16%
total	17186	100.00%

2.2 城市分布

city	frequency	percent
1	7232	42.08%
13	2433	14.16%
5	1725	10.04%
4	1109	6.45%
15	1036	6.03%
22	958	5.57%
6	589	3.43%
14	475	2.76%
12	301	1.75%
9	204	1.19%
8	182	1.06%
11	173	1.01%
18	173	1.01%
10	141	0.82%
3	130	0.76%
21	125	0.73%
17	98	0.57%
7	58	0.34%
20	18	0.10%
16	18	0.10%
19	8	0.05%
total	17186	100.00%

2.3 年龄分布

X轴: 年龄 Y轴: 频率

2.4 性别与年龄的关系

3.1 語言与城市

3.2 性别与风格

3.3 年龄与风格

3.4 年龄与发行年份

经过分析

不能确定数据为用户听某首歌曲的总时长

再观察不同用户的frequency的分布情况

Freq与time的分布状况具有一定 的相似性

进一步作出二者之间的散点

图发现其具有明显的正相关关系

用freq来代替time作为衡量用户 喜爱听歌程度的变量

以此为依据对用户进行划分。

- 。 Rank 1 低頻使用者
- Rank 2 中頻使用者
- Rank 3 高頻使用者
- Rank 4 非常高頻使用者

(頻率少於20, 33.26%)

(頻率20-299, 65.5%)

(頻率300-400, 0.8%)

(頻率400以上, 0.4%)

(1) rank与年龄

	年龄
Rank 1	2 - 73
Rank 2	2 - 74
Rank 3	17 -56
Rank 4	17 - 63

(3) rank与风格

	风格
Top 5	125
Top 4	124
Top 3	47
Top 2	162
Top 1	35

(4) rank与操作

4.3 推荐方式简述

知道他们的信息基本上只有注册时填写的基本信息

新用户 以及 Rank 1

而从第二部分, 用户基本信息对其听歌偏好影响较小

有利于帮助用户探 索其喜欢的风格

对此类用户推荐时,主要 参考当前不同风格中较为 流行的歌曲 4.3 推荐方式简述

主要的目标人群

Rank 2 与 Rank 3 具有升级为rank 4的潜力

操作信息可能不足以 提供丰富的信息

因此通过构建 模型的方式对 其进行推荐

其非常喜爱用该app听歌

Rank 4

可以从中得到 其非常丰富的 历史信息

> 并且他们听歌 的种类与风格 已涉及很多

对于该类用户的推荐则 着重于对其未听过风格 的探索

4.4 模型构建

4.4 模型构建

Prefer=P (difference) * P (frequency)

- 用户对一类歌曲的兴趣相较于总 体的评估
 - 得出该用户在全体用户中对此类型 歌曲的相对偏好程度

- 对用户自身相较于收听的其他歌曲 在某一种类上收听频率的评估
- 得出用户对某一类软件的偏好程度

4.4 模型构建

对于P (difference)

先计算D, D=用户听一类型歌的频率-所有用户听一类型歌的平均频率

再将D带入
$$p = \frac{1}{1+e^{-D}}$$

对于P(frequency)

P (frequency) = 用户收听一类型 歌的频率

(用户收听某一风格歌曲的次数/ 用户听歌总次数)

在实际操作时…

通过大型计算设备计算出所有用户对于某种类型的歌曲 所得prefer的平均值,记为PO 之后我们便可以计算出某一用户对于此一类型歌曲的prefer*,与PO比较

若prefer*>=P0,便推荐, 若prefer*<P0,便不推荐

4.4 推荐模型构建

m sno	first_genre_id	Pl	P2	P
301	125	1.0000	0.9300	0.9300
28789	125	0.9957	0.8704	0.8667
4474	125	0.9885	0.8070	0.7977
29973	125	0.9984	0.6857	0.6846
30241	66	0.8241	0.1034	0.0853
33013	47	0.9956	0.1324	0.1318
28540	124	0.0000	0.0435	0.0000
7532	47	0.0712	0.0055	0.0004
1785	122	0.0489	0.0000	0.0000

附录

```
Data<-read.csv("Data.csv",header=TRUE,stringsAsFactors=FALSE)
data<-subset(Data,Frequency=="rank 2"
             &(first_genre_id==0|first_genre_id==35|
               first_genre_id==40|first_genre_id==47|
               first_genre_id==66|first_genre_id==111|
               first_genre_id==122|first_genre_id==124|
               first_genre_id==125|first_genre_id==162))
yonghu_fengge<-data[,c("msno","first_genre_id")]</pre>
vonghu_fengge<-as.data.frame(table(vonghu_fengge))</pre>
fengge<-data[,c("first_genre_id")]</pre>
fengge<-as.data.frame(table(fengge))</pre>
head(fengge)
fengge$Freq<-fengge$Freq/11236
colnames(fengge)<-c("first_genre_id","avg")</pre>
yonghu_fengge_avg<-merge(yonghu_fengge,fengge,by=c("first_genre_id","first_genre_id"))</pre>
yonghu_fengge_avg$p<-yonghu_fengge_avg$avg-yonghu_fengge_avg$Freg
yonghu_fengge_avgP1<-1/(1+exp(yonghu_fengge_avgp))
yonghu<-data[,c("msno")]</pre>
yonghu<-as.data.frame(table(yonghu))</pre>
colnames(vonghu)<-c("msno")
colnames(yonghu)<-c("msno","total")</pre>
yonghu_fengge_total<-merge(yonghu_fengge,yonghu,by=c("msno","msno"))</pre>
vonghu_fengge_total$P2<-vonghu_fengge_total$Freq/vonghu_fengge_total$total</pre>
yonghu_fengge_avg1<-yonghu_fengge_avg[,c("msno","first_genre_id","Freq","P1")]</pre>
yonghu_fengge_total1<-yonghu_fengge_total[,c("msno","first_genre_id","Freq"."P2")]
yonghu_fengge_P<-merge(yonghu_fengge_avg1,yonghu_fengge_total1,by=c("msno","first_genre_id"))</pre>
yonghu_fengge_P$P<-(yonghu_fengge_P$P1)*(yonghu_fengge_P$P2)
head(vonghu_fengge_P)
```

● ● ...