

- $I. D = D^T$
- 2. 互换行列式某两行(例)、行列式改变符号
- 3. 行到式有两形(例)完全相同.则行到式为零
- 4. n 所行引式,每个元素都两个数和的形式,可以拆成 2 1 的个行列式的和
- 5、Ak=0 积 A 为暑零阵.

$$7. \begin{pmatrix} 0 \times \cdots \times \\ \vdots \\ 0 \cdots \cdots 0 \end{pmatrix} = \begin{pmatrix} 0 \cdots & 0 \\ \vdots \\ 0 \cdots & 0 \end{pmatrix}$$

$$\{(A^{T})^{T} = A + B^{T} + B^{T} + B^{T} + A^{T} + A$$

9.
$$|A^{T}| = |A|$$
 $|kA| = k^{n}|A|$ $|AB| = |A||B|$

10. 伴随矩阵

$$A \cdot A^* = A^* \cdot A = |A| \cdot E$$
 $A^* = |A| \cdot A^{-1}$

1A*| = |A| n-1 [|A*| = | |A| · A-1 | = |A| n · |A-1 | = |A| n-1]

$$(A^*)^{-1} = (|A| \cdot A^{-1})^{-1} = \frac{1}{|A|} \cdot (A^{-1})^{-1} = \frac{1}{|A|} A$$
 $(A^{-1})^* = |A^{-1}| \cdot (A^{-1})^{-1} = \frac{1}{|A|} A$

$$(A^{-1})^* = |A^{-1}| \cdot (A^{-1})^{-1} = \frac{1}{|A|} A$$

$$(A^*)^{-1} = (A^{-1})^*$$
 $(A^*)^{\top} = (A^{\top})^*$

$$(A^*)^T = (A^T)^*$$

$$(A^*)^* = |A|^{h-2} - A$$
 $(AB)^* = B^* \cdot A^*$ $(kA)^* = k^{h-1} kA^*$

$$(AB)^* = B^* \cdot A^*$$

13.
$$|A^{-1}|^{-1} = A$$

15、若A可逆、K+D、KA也可逆、且(KA)-1= + A-1

16. 若A.B为n阶可逆、AB可逆、且(AB)-1=B-1A-1

19. 矩阵分块:A·B > A的列分和B的行分保持-致

$$21.$$
 A_{NXN} B_{NXM} $=$ A_{NN} 0 $=$ $|A_{N}|$ $|A_{NN}|$ $|A_{NN}$

22.
$$\begin{vmatrix} 0 & A_{n\times n} \end{vmatrix} = \begin{vmatrix} B_{n\times m} & A_{n\times n} \end{vmatrix} = (-1)^{\frac{1}{m\times n}} \begin{vmatrix} A_{n\times n} \end{vmatrix} = (-1)^{\frac{1}{m\times n}} \end{vmatrix} = (-1)^{\frac{1}{m\times n}} \begin{vmatrix} A_{n\times n} \end{vmatrix} = (-1)^{\frac{1}{m\times n}} \begin{vmatrix} A_{n\times n} \end{vmatrix} = (-1)^{\frac{1}{m\times n}} \end{vmatrix} = (-1)^{\frac{1}{m\times n}} \begin{vmatrix} A_{n\times n} \end{vmatrix} = (-1)$$

$$\frac{23.}{0} \left(\begin{array}{c} A & C \\ 0 \end{array} \right)^{-1} = \left(\begin{array}{c} A^{-1} & -A^{-1}CB^{-1} \\ 0 & B^{-1} \end{array} \right) \left(\begin{array}{c} A & 0 \\ C & B \end{array} \right)^{-1} = \left(\begin{array}{c} A^{-1} & 0 \\ -B^{+}CA^{-1} & B^{-1} \end{array} \right)$$

24. 对 A 左乘初等矩阵, 行初等变换 右乘初等矩阵, 引初等变换

25.
$$E(i,j)^{-1} = E(i,j)$$
 $E(i,(k))^{-1} = E(i,k)$ $E(i,j(k)) = E(i,j(k))$

$$E(1,2) \times E(2,3) = C \qquad X = E(1,2)^{-1} C E(2,3)^{-1} = E(1,2) C E(2,3)$$

2b. Amxn, K所子式个数: Cm·Cn. k=1, 2, ... min { m, n }

27. Amxn 各阶子式个数: El Ch. Ch
$28. R(A^T) = R(A)$
29. \$ A + 0、此时 R(A) = & N
30. Max { R(A) , R(B) } < R(A, B) < R(A) + R(B)
31. R(AB) < min {R(A). R(B)},
32、R(A) < R(A.b) → 无解 R(A) = R(A.b) = N 有呢 - 解
R(A) = R(A,b) < n 有无穷多解
33. Aman Xnxl = 0
33. Amxn Xnxl = 0
34. Aman Bras = 0 mas R(A) + R(B) < n
35 N元齐次线性方程组 AX=0 S R(A)=N 只有0解
35 n元齐次线性方程组 AX=0 S R(A)=n 只有0解 R(A) < n 有非0解 有无名多解
(RIA)=RIA.b) < h 有无穷多解
RIA) < RIA, b) 无解
36. 矢E 阵 A 5 B 等价: PA Q = B
<u> </u>
可 <u>互相线性表</u> 示
37、若同量组β,,β,β,可由同量组以,,从2,···从m线性表示.则R(β,,β,,β,)
$\langle R(d_1, d_2, d_m)$
38、线性相关 R(A) < N 线性无关 R(A) = N
IAI=0

39. 矩阵A功成行最简非要元所在列构成列向量组最大无关组
40. 同量组 b_1,b_2 , b_1 能由同量组 $a_1,a_2,$ a_m 线性表示的充分必要条件是
$R(a_1, a_2,, a_m) = R(a_1, a_m, b_1, b_k)$
41. 若同量组B能由同量组A线性表示,则 RB < RA.
42.齐次方程组Amxn×=0 解向量组的最大无关组称为基础解系.
43. 基础证系中解质量组的个数 (n-r)个元关解质量
$44. R(A) = R(A^{\dagger}) \qquad 0 \leq R(A_{mxn}) \leq \min\{m, n\}$
A~B⇒ R(A)= R(B) P、R 可遂 R (PAR)= R(A) (A.B同型) R (A±B) ≤ R(A) + R(B)
$RIAB$) $\leq min \leq RIA$). RIB) $Amxn Bnxt = 0$. RIA) $+ RIB$) $\leq N$
45. y,, y2是Ax=b的解.则f=y,-y2是对应齐次线性方程组的解
41、特解, 百由未知量取1
47. [x,y] = x ^T y = x ₁ y, + x ₂ y ₂ + ··· + × _n y _n 内积
[x, x] = 0 <> X = 0
x = \(\big[x,x] = \(\sigma_i^2 + \sigma_i^2 + \sigma_i + \sigma_i^2\)
単位化が成り
48. $\vec{a} \cdot \vec{b} = \vec{a} \vec{b} \cos\theta \Rightarrow \cos\theta = \frac{\vec{a} \cdot \vec{b}}{ \vec{a} \vec{b} } \Rightarrow \theta = avc\cos\frac{\vec{a} \cdot \vec{b}}{ \vec{a} \vec{b} }$
[x,y]=D. X.y 正交
49、两两正交的非零局量组称为正交后量组
正交后量组一定线性无关 线性无关 50. 施密特正交劢 $\beta_1 = \alpha_1$ $\beta_2 = \alpha_2 - \frac{[\alpha_2, \beta_1]}{[\beta_1, \beta_1]}\beta_1$ $\beta_3 = \alpha_3 - \frac{[\alpha_3, \beta_1]}{[\beta_1, \beta_1]}\beta_1 - \frac{[\alpha_3, \beta_2]}{[\beta_2, \beta_2]}\beta_1$
$50.$ 施密特正交加 $\beta_1 = \lambda_1$ $\beta_2 = \lambda_2 - \frac{(\lambda_2, \beta_1)}{(\beta_1, \beta_1)}\beta_1$ $\beta_3 = \lambda_3 - \frac{(\lambda_3, \beta_1)}{(\beta_1, \beta_1)}\beta_1 - \frac{(\lambda_3, \beta_2)}{(\beta_2, \beta_2)}\beta_1$
51、满足A ^T ·A=E(A ⁻¹ =A ^T), 积A为正交降
52.正交降. 行(列) 向量两两正交.长度为1

53. A为正交阵、A ⁻¹ 也为正交阵				
A为正交阵,B为正交阵,AB也是正交阵				
54. Ax=7x 12. 14. 14. 14. 14. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16				
55、(A-ΛE) <=0 → (A-ΛE) ×=0 有非雲解 . R(A-ΛE) < N . A-ΛE = 0				
56. A*x = IAIA-1 x = 1A1 x				
$A^* + 3A - 2E = -2A^{-1} + 3A - 2E = -\frac{2}{3} + 3A - 2$				
57、A*的特值 \ 1A1 (A*)* = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
KA是KA的特T	直 凡·是A·的特	值 是A-1的特征值		
58. P-IAP=B 称A5B相队矩阵 A5B相队则A5B-定等价				
① 行到式相同、具有相同的可逆性				
A = B ,有相同的秩 P(A)=P(B)				
9有相同的特征多项式 [A-7E]=1B-7E] 莎相同 tr				
$59. tr = \alpha_{11} + \alpha_{22} + \cdots + \alpha_{nn} = \lambda_1 + \lambda_2 + \cdots + \lambda_n$				
$ A = \lambda_1 \cdot \lambda_2 \cdot \cdots \lambda_n$				
60. A、B为n阶矩阵,若存在可逆阵C.使B=CTAC、积A5B合同				
P - A P = B	PTAP=B	PAQ=B		
相似	合同	等价		
61、若A5B合同、则 RIA) = R(B)				
若A为对称阵、CTAC=A、称A合同对角Tb				
62. 对称阵A正定 < 2000 A的各阶顺序子式为正				
A 负定 < is A 奇数阶主子式为负、 偶数阶主子式为正				
·				