Homework 3 CS534 Machine Learning, Fall 2021

This homework will explore validation and model selection procedures using regularized logistic regression models and nested cross validation.

Problem 1 - Cross validation (60 points)

This elastic-net regularized logistic regression model is derived by minimizing the negative log likelihood function for samples $(x_i, g_i), g_i \in \{1, 2\}$

$$\max_{\beta,\beta_0} \ell(\beta,\beta_0) = \max_{\beta,\beta_0} \frac{1}{N} \sum_{i=1}^{N} \{ I(g_i - 1) \log p(x_i) + I(g_i - 2) \log (1 - p(x_i)) \} - \lambda P_{\alpha}(\beta),$$

where the regularization penalty $P_{\alpha}(\beta) = (1-\alpha)\frac{1}{2}\|\beta\|_2^2 + \alpha\|\beta\|_1$ is a function of the free parameters λ, α , and where the indicator function I(0) = 1 and zero elsewhere. The weight λ determines the magnitude of regularization, and the mixing parameter α determines the proportion of the penalty allocated to the 1 and 2 norms. The mixing parameter α is often not chosen through cross validation but just set using intuition or experience, where the weight λ is typically determined through cross validation.

In this problem you will use a built-in function for elastic-net logistic regression. The mixing parameter will be fixed $\alpha = 0.95$ and you will search for the optimal regularization weight lambda in the range $\lambda \in [0, 100]$. These are often spaced on a logarithmic scale at 100 or more intervals.

Perform a **nested** cross validation using five folds to determine the optimal regularization weight and report test error. In each step, 4/5 of the data will be used for training and validation, and 1/5 will be used to report test error.

1.a. Validation diagram (20 points) Draw a diagram of the cross validation where you indicate which samples are in training, testing, and validation in each of the 5 nested folds. Depict both the inner and outer loops of the nested CV. Indicate clearly how the data is segmented, and the fraction of the data used in each segment.

1.b. Model selection (20 points) For each outer CV fold, generate a plot of the classification error on the validation set as a function of the sequence of λ values (five plots total). Use the inner CV folds to calculate standard deviations of the error $\sigma_E(\lambda)$ at each λ , as well as the mean error $\mu_E(\lambda)$.

Choose the optimal lambda λ^* as the largest λ within 1-standard deviation of the minimum average error

$$\lambda_{min} = \underset{\lambda}{\operatorname{argmin}} \mu_E(\lambda),$$

$$\lambda^* = \max\{\lambda\} \text{ subject to } \lambda \leq \mu_E(\lambda_{min}) + \sigma_E(\lambda_{min})$$

In each plot, indicate $\mu_E(\lambda)$ with a solid black line, and the intervals of variance $\mu_E(\lambda) \pm \sigma_E(\lambda)$ in red, $\mu_E(\lambda_{min})$ as a blue point and $\mu_E(\lambda^*)$ as a green point.

1.c. Test error (20 points) Generate a box plot of the five test errors generated by cross-validation. Display the validation errors $\mu_E(\lambda *)$ in two additional boxplots in the same graph (there are 20 training errors and 20 validation errors). Compare and discuss the errors.

Problem 2 - Elastic net logistic regression (40 points)

Implement the elastic net regression algorithm using the soft-thresholding and iterative reweighted least-squares approach described in Friedman 2010. This problem can be solved by optimizing the penalized negative log likelihood

$$\min \ell(\beta, \beta_0) = \frac{1}{N} \sum_{i=1}^{N} \{ I(g_i - 1) \log p(x_i) + I(g_i - 2) \log (1 - p(x_i)) \} - \lambda P_{\alpha}(\beta),$$

where the indicator function I(0) = 1 and zero elsewhere, and $p(x_i)$ represents the class probability

$$\Pr(G = 1 | X = x_i) = p(x_i) = \frac{1}{1 + e^{-(\beta_0 + x_i^T \beta)}}.$$

A quadratic approximation of this likelihood ℓ_Q can be used to transform this problem into a weighted least-squares problem with weights w_i and response z_i (see Equation 10 in Friedman paper)

$$\ell_Q(\beta, \beta_0) = -\frac{1}{2N} \sum_{i=1}^N w_i (z_i - \beta_0 - x_i^T \beta)^2.$$

where

$$z_i = \tilde{\beta}_0 + x_i^T \tilde{\beta} + \frac{y_i - \tilde{p}(x_i)}{w_i},$$

$$w_i = \tilde{p}(x_i)(1 - \tilde{p}(x_i)).$$

2.a. Solution path

Implement this algorithm using the mixing parameter $\alpha = 0.95$ and plot the solution path $\beta(\lambda)$ for a sequence of 1000 logarithmically spaced λ in the range $\lambda \in [1, 100]$. Label each feature j using text on the plot at the point where β_j enters the model (when this model coefficient becomes non-zero).

Notes

- Understanding the approach at a high-level is important. You are going to solve the quadratic approximation repeatedly using equation 10 from the paper, and at each iteration you will recalculate z_i, w_i to update the quadratic approximation ℓ_Q .
- You will generate a solution for each value of λ . A fixed number of iterations is the easiest approach for deciding when each problem is solved (50 worked for me).
- To accelerate convergence you can use a warm-starting technique. Start with the largest λ which will have the fewest non-zero coefficients. Use the solution of this regularization level as the start for the next smallest lambda, etc.
- This problem has some numerical issues that need to be addressed. The weights, w_i can shrink to zero and cause NaN values where used in division. The parameters β will continue to grow in an attempt to push the probabilities p_i to zero or one. For this reason, you can clamp these to 0, 1 once they are within a reasonable distance (say 1e 5). The solutions may also become unstable when the regularization gets too small (this will be apparent in the solution path plot).