Hardware considerations Electric Power Steering

EPS Workshop China

Power on Demand Electric Power Steering

- Demand oriented torque controlled electric motor
- Reduced Average Power Consumption down to < 50W

Total Equivalent Electric Power Saving ~ 250 W

 CO_2 -reduction ~ 5.9 g/km

Application requirements Power Steering

- Basic requirements to power stage
 - 3-phase motor drive
 - 100-160A phase current
 - Field oriented control
 - mostly 12V application
 - High functional safety

Drive high currents

Measure current precice

Second switch-off path

- Trends
 - has to work at lower supply voltages
 - (only one shunt for current measurement)
 - increasing accuracy of current measurement
 - highest efficient usage of motor (0...100% duty cycle)
 - fulfill ASIL D safety requirement in application

Agenda

- Application requirements EPS (Permanent Magnet Synchronous Motor)
 - Driving high currents
 - ☐ Spikes: Why they are harmful
 - Layout recommendations
 - ☐ Requirements to MOSFETs and Driver ICs
 - Measure Current precisely
 - ☐ How many shunts to use?
 - How does it work with one shunt
 - □ Requirements for driver IC
 - ☐ What to consider with IFX OpAmps in driver ICs
 - Functional Safety: Second switch off path
 - ☐ Star-Point relay vs. MOSFETs

Basic function of each Power Bridge

- Task of the bridge
 - Switch voltage at phase
 - Let current commutate
 - Current jumps from LS to HS MOSFET and vice versa

Example MOSFET 1 and 2 switching

- Example: MOSFET 1 and 6 on
 - ☐ Switch off 1: Current flow changes
 - ☐ Current will be freewheeling in Diode of MOSFET 2

Example MOSFET 1 and 2 switching Current shape

- Current from battery smoothened by inductance of ∏-filter (~µH)
 - □ ~ 1A/µs
- Current in Motor smoothened by motor inductance (~50µH)
 - \square ~ 0,2 A/ μ s
- Current in marked area jumps from 0 to motor current
 - □ ~ 1000A/µs
 - □ 10 nH together with 1000A/us are creating 10V Spikes

Why are voltage spikes critical?

- Examples for Problems in Motor drives:
 - □ Unwanted Short circuit detection (noise)
 - □ Violation of maximum ratings of the components
 - ☐ Electro-magnetic noise
- Consequences
 - Motor does not run reliably
 - ☐ Destruction of components
 - ☐ Disturbance of analog signals
 - ☐ EMC Problems

Commutations means generating dl/dt in the "red path"

L is the sum of the inductances in the red path.

U is generated by switching off a MOSFET

$$\frac{dI}{dt} = -\frac{U}{L}$$

Example 1:

- Current flows from motor to LS switch
- 2) LS switch is switched off
- Current flows over diode of HS switch

Voltages in red are related to GND Voltages in black are relative voltages

di/dt across stray inductances cause:

- Over and under voltages
- EMC noise
- ... result in high component costs

→ keep stray inductances small !!!

Example 2:

- Current flows from motor to HS switch
- 2) HS switch is switched off
- Current flows over diode of LS switch

- How to identify stray inductivities
 - ☐ Find out the current path on the PCB
 - □ Investigate the Area which is created by this path

- The smaller the area the better
 - No long distances !!

What can be done to avoid stray inductivities?

- Place all components in the red area close together
 - ☐ HS + LS MOSFET
 - □ DC Link capacitor (Elko + ceramic cap)
 - ☐ Shunt
- Avoid thin connections
 - □ Parallel wires have lower inductance as a single wire

- If possible:
 - □ Optimize each half-bridge for itself
 - ☐ One cap per half-bridge needed

Reducing stray inductances and ohmic resistances

More possibilities

- Use of GND and VBB planes
- "guided" current flow

Generated electro-magnetic field compensate in some distance

Planes add "capacitance" all over the current path = smoothens over and under voltages

Reducing stray inductances and ohmic resistances

Example 1: Optimized Half Bridge = 3 shunts

- Minimize the distances in the red path
- Use LOW ESR / low ESL capacitors
- Avoid vias (resistance)

26.09.20

Reducing stray inductances and ohmic resistances

Example with common shunt

- Use of GND and VBB planes
- Current flows back from shunt to capacitor through GND plane

GND and VBB planes are good heat sinks as well!

Further noise reduction

The Seven Deadly Sins

- 1. Place MOSFETs far from each other
- 2. Use Elko with high ESR and ESL
- 3. Forget to place ceramic caps in parallel
- 4. Place Elko or ceramic cap far from MOSFETs
- 5. Use thin connections
- 6. Forget that shunt is part of the critical path
- 7. Optimize the wrong paths (battery or motor connection)

Additional effects leading to over and under voltages:

Stray inductances
 Over and under voltages (L x di/dt)

 Power dissipation

Ohmic parasitics
 Over and under voltages
 Power dissipation

Snappy diodes of MOSFETs
 High dl/dt
 Over and under voltages
 EMC noise

Choice of MOSFETs

- Use MOSFETs with a soft recovery behavior (not snappy)
- Problem: Specifications of MOSFETs do not provide this information (Qrr and trr are only indications)
- Proposal: Test your choice of MOSFETs in EMC tests to see the difference

• IFX MOSFETs (OptiMOS™-T) get usually good feedback!

EMC characteristics results comparison OptiMOS™-T2 MOSFET vs competitor infineon

Cross Current in MOSFET Inverter

- PWM in an MOSFET inverter
 - Low side MOSFET is switchedON → VDS of HS2 rises fast
 - C_{DG} and C_{GS} act as capacitive voltage divider
 - \blacksquare Rising VGS caused by C_{DG} and C_{GS}
 - High side MOSFET switches "on" a bit
 - I_cross might flow

Cross Current in MOSFET Inverter

$$V_{GS} \approx \frac{V_{DS}}{\left(\frac{C_{GS}}{C_{GD}}\right)}$$

- If V_{GS} exceeds Vgs(th) → current will flow across the entire bridge leg → Cross Current
- The higher C_{GS} / C_{DG} the less cross current
- C_{GS} / C_{DG} of OptiMOSTM-T2 is 8x higher than competition

Application requirements Power Steering

■ 160A B6-Bridge

- Between 1-2mOhm MOSFET
- 40V Normal Level (Vgs(th)>2.5V)
- high current rating package
- Low gate charge
- automotive qualified
- Low feedback of VDS to VGS

IPB180N04S3-02 or IPB180N04-00

e.g.	IPB180N04-	00
RDSon	$0,98$ m Ω ma	x @ RT
Idrain	180A	720A peak !!
RthJC	0,5 K/W	good cooling
Qgtot	220 nC	low gate charge
Qgd	29 nC	low feedback to gate!
Orr	132nC	good EMC behavior

Application requirements Power Steering

- 160A B6-Bridge -> Diver Requirements
 - powerful output stage up to 1.5A
 - Robust to positive and negative spikes +/-7V at SL
 - Separate Source connections 4
 - Floating output stages 4

TLE7183 3-Phase Driver IC for 12V

TLE718x 3-Phase Driver IC for 12V

TLE718x Gate voltages at low supply voltages

Conditions:

 $V_S = 5.5 ... 12 V$

 $Q_G = 130 \text{ nC}$

f = 20 kHz

(Max. UV limit on CB1: 8.3 V)

0...100% duty cycle

full supply voltage reaches motor

highest efficient usage of motor (costs + space)

TLE7189 3-Phase Driver IC for 12V

TLE7185 Simplified 3-phase driver IC

Features

- B6 MOS Bridge driver
 - □ ~10 Ohm output stages for MOSFETs up to 100A (300mA Gate current)
 - □ 0-95% duty cycle (bootstrap principle)
 - □ Adj. Short circuit detection level 0.3-2V
 - □ Adj. Dead time
 - Low quiescent current mode 20uA
 - □ 2 bit diagnostic
 - □ Separate Source pin for each MOSFET
 - ☐ Functional range 5.5 to 33V
- Charge pump to boost the supply voltage
- P-DSO36-Exposed pad allows TA up to 140°C

Optimized for applications running at 5.5V supply

BLDC Drive for Fans and pumps (and EPS) TLE7184

BLDC Drives ASSP- Approach TLE7184

low cost

- Features
 - B6 MOS Bridge driver
 - □ ~10 Ohm output stages for MOSFETs up to 100A
 - Works down to 7V
 - □ OpAmp (UGBW 20Mhz / <1.5mV)</p>
 - □ 0-94% duty cycle (bootstrap principle)
 - Protection functions
 - 5 or 3.3V 70mA LDO to support 8 and 16bit uCs
 - PWM interface
 - Precise analog and digital temperature sense
 - Specific Logic
 - VDH switch (disconnects circuit from battery sleep mode)

Simplified ECU for BLDC Motors

infineon

Agenda

- Application requirements EPS (Permanent Magnet Synchronous Motor)
 - Driving high currents
 - ¬ Spikes: Why they are harmful
 - Layout recommendations
 - Requirements to MOSFETs and Driver ICs
 - Measure Current precisely
 - ¬ How many shunts to use?
 - How does it work with one shunt
 - Requirements for driver IC
 - ¬ What to consider with IFX OpAmps in driver ICs
 - □ Functional Safety: Second switch off path
 - ¬ Star-Point relay vs. MOSFETs

Application trends Current measurement

- Options
 - □ 2 or 3 shunts at the Source of the MOSFETs
 - □ Single shunt in common GND
 - □ 2 shunts in phase

Bridge Driver ICs - Electric Power Steering Features overview

Shunt configurations	2 shunts @ Sources of low side MOSFETS	3 shunts @ Sources of low side MOSFETS	1 shunt in common GND	2 shunts in the phase connections
Costs	0	-	+	-
Power Dissipations	-		+	
Space	-		+	-
Easy to measure	+	++	0	- (common mode)
Redundancy	-	Yes	-	-
Verification of measurement	against motor model	directly	against motor model	against motor model
Supported by IFX driver ICs	TLE7189	TLE7189	TLE7183 / 84 / 86	No

■ Europe: 1 shunt in GND / 2 shunts @ source

■ Japan: Often 3 shunts in GND

How to measure with 1 shunt Short times to measure

Example center aligned PWM

- 2 phase currents can be measured
- 3rd phase current can be calculated

How to measure with 1 shunt Problem Zones @ space vector modulation

Only one current can be measured

Work around Short times to measure

■ t1 is too short do measure current -> dt helps

Motor sees the same vector!

Application requirements Power Steering

Current measurement

- Only one shunt for cost reasons
- very short time to measure current
- increasing accuracy requirements
- high current in application lead to negative spikes at shunt

■ input range +/-5V spikes

high bandwidth typ. 20 MHz UGBW

low input offset

high CMRR

down to $\pm/-1.5$ mV

> 60db minimum

TLE7183 / 89 / 84 /86

TLE7189F 3-Phase Driver IC for 12V

infineon

Agenda

- Application requirements EPS (Permanent Magnet Synchronous Motor)
 - Driving high currents
 - ¬ Spikes: Why they are harmful
 - Layout recommendations
 - Requirements to MOSFETs and Driver ICs
 - Measure Current precisely
 - ¬ How many shunts to use?
 - → How does it work with one shunt
 - Requirements for driver IC
 - ¬ What to consider with IFX OpAmps in driver ICs
 - ☐ Functional Safety: Second switch off path
 - ¬ Star-Point relay vs. MOSFETs

Task of starpoint relay @ PMSM: Avoid currents like shown to avoid breaking

Product Features (Please use the Product Drawing for all design activity

Product Type Features:

- · Product Designation = High Current Solutions
- Series = V23135

Electrical Characteristics:

- Nominal Voltage (VDC) = 12
- Rated Current @ 85° C (A) = 90
- Coil Resistance (Ω) = 150
- High Power Relays >75A = Yes
- Contact Switching Current Min. (mA) = 1000
- . Contact Switching Voltage Max. (VDC) = See Load Limit Curve
- Coil Rated Power (W) = 0.96

Body Features:

- Mounting Bracket(s) = Without
- Length (mm [in]) = 32.30 [1.272]
- Width (mm [in]) = 18.30 [0.720]
- Height (mm [in]) = 18.70 [0.736]
- Weight (g [oz]) = 30.00 [1.058]

■ Remove why?

- □ Too big
- □ Too expensive
- □ Not robust enough (produces fails over lifetimes)

Alternative

- ☐ Use MOSFETs to disconnect phases
- ☐ But: In emergency case no freewheeling path
- ☐ High avalanche robustness of MOSFET required
- ☐ Or: Intelligent MOSFET switch off strategy
- ☐ Charge pump of driver can be used for supply

- But be careful
- Many patents around
- **■** E.g.:

(10) International Publication Number 141 142 WO 2010/116182 A1 Failure Detection Circuit Snubber Monitoring Circuit Circuit 170 Inverter Control Circuit 110 Motor 104 Switching Means Control Circuit 101 Fig. 2

(10) Patent No.: US 7,019,479 B2

TLE 7189 SIL 3 supporting features

"Single failure does not cause short in bridge or motor operation"

FTA for TLE7189 proves:

TLE7189 "Driver"

Philosophy

Use TLE718X and add SIL3 related supervision: "sleeping bug is excluded by repeated testing"

- ⇒ VCC check (monitors the uC supply)
- **⇒** Test function for VCC check
- **⇒** SC-Detection (monitors short circuit of MOSFET)
- ⇒ Test function for SC-Detection at 0A
- ⇒ High voltage inputs (18V)
- "Common mode failure analysis" (FTA) available, tailored to the FMEA and the FTA of the target system

Electric Power Steering Requirements vs Products

■ Integrated 5 or 3.3V Vreg

<70mA

infineon

We commit. We innovate. We partner. We create value.