## EE 302: Control Systems

## Tutorial 2

## 31 January, 2020

- 1. Comment on the Linearity and time invariance properties of the system whose dynamics are given by following equations
  - (a) y(t) = ax(t) + c
  - (b)  $y(t) = t^2 x^2(t)$
  - (c)  $y(t) = \frac{d}{dt}x(t) + \int_0^t x(t)dt + x(t)$
  - (d)  $y(t) = t^2 x(t)$
  - (e)  $\frac{d^2x}{dt^2} \mu(1-x^2)\frac{dx}{dt} + x = 0$  (Van der Pol oscillator dynamics equation)
- 2. Draw the pole-map on the complex plane for each of the following transfer functions. Comment on the nature of these responses (overdamped, underdamped, or undamped)
  - (a)  $\frac{2}{s^2+4}$  (Deduce the peak time T<sub>p</sub> and percentage overshoot %OS)
  - (b)  $\frac{10}{s^2+3s+2}$  (Deduce the 2% settling time  $T_s$ )
- 3. Deduce the peak time (if any), percent overshoot, 2% settling time of the step response for the system with transfer function  $G(s) = \frac{1}{s^2 + 8s + 16}$ . Also comment if it is overdamped, underdamped or undamped.
- 4. Find the transfer function of the second-order system that yields a 12.3% overshoot and a settling time of 1 sec.
- 5. Find transfer function of a second order system whose damping ratio is 0.707 and settling time 0.5 sec.
- 6. Find the step response y(t) of second order system given by  $\frac{Y(s)}{U(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n + \omega_n^2}$  and with help of y(t), find expression for peak time and peak overshoot when  $\zeta < 1$ .
- 7. Derive the expression for voltage across capacitor  $V_c(t)$  in the series RLC circuit given below. For what vales of resistance,  $V_c(t)$  will behave a) under damped b) over damped c) critically damped.



8. For the motor, load and torque-speed curve (for motor parameter evaluation) shown, find the transfer function  $G(s) = \frac{\theta_L(s)}{E_a(s)}$ 



9. For the rotational system shown, find the transfer function  $G(s) = \frac{\theta_2(s)}{T(s)}$ 



10. Compare the qualitative behaviour in terms of settling time, damping ratio, overshoot etc. among the 2nd order systems A, B, C, D whose pole locations are given.

