Cálculo Diferencial e Integral I

1ª Ficha de problemas

Princípio de indução matemática. O axioma do supremo e suas consequências

- 1. Usando o princípio de indução matemática, demonstre as seguintes afirmações:
 - a) $2^{2n} + 2$ é múltiplo de 3, qualquer que seja $n \in \mathbb{N}$
 - b) $n < 2^n, n \in \mathbb{N}$

c)

$$\sum_{k=1}^{n} (2k-1) = n^2, \qquad n \in \mathbb{N}$$

d)

$$\frac{1}{1.2} + \frac{1}{2.3} + \ldots + \frac{1}{n(n+1)} = \frac{n}{n+1}, \quad n \in \mathbb{N}$$

2. Mostre que o conjunto

$${x \in \mathbb{R}: |x-2| + |x+1| < 5}$$

é limitado.

3. Considere os seguintes conjuntos:

$$A = \{x \in \mathbb{R} : |x| + 1 > 2x\}$$
 $B = \{x \in \mathbb{R} : x^4 + 3x^3 + 2x^2 \le 0\}$ $C = \mathbb{R} \setminus \mathbb{Q}$

- (a) Mostre que $A =]-\infty, 1[$ e $B = [-2, -1] \cup \{0\}$. Verifique se os conjuntos $A, B, C, A \cap B \cap C$, são majorados ou minorados e caso sejam, indique em \mathbb{R} o conjunto dos majorantes e dos minorantes dos mesmos.
- (b) Caso existam, determine em \mathbb{R} o supremo, infimo, máximo e minimo de cada um dos conjuntos $A, B, C, A \cap B \cap C$.
- 4. Mostre que, se X e Y são subconjuntos de \mathbb{R} , tais que, sup $X > \inf Y$, existem $x \in X$ e $y \in Y$, tais que, y < x