

Evolutionary Computing

PGS.TS Huỳnh Thị Thanh Bình

Email: binhht@soict.hust.edu.vn

Nội dung

- Tổng quan về bài toán tối ưu
- Tổng quan về Tính toán tiến hóa

- Tất cả các bài toán trong thực tế đều có thể phát biểu dưới dạng bài toán tối ưu
- Bài toán tối ưu là các bài toán mà chúng ta cần đi tìm kiếm một lời tốt nhất (min hoặc max) trong tập các lời giải có thể
- Mỗi bài toán tối ưu gồm 2 thành phần (X,f)
 - X: tập các lời giải khả thi (không gian tìm kiếm)
 - f là hàm mục tiêu của bài toán cần tối thiểu (minimize)
 - Mục tiêu tìm của bài toán là tìm sao cho

- : Giá trị tối ưu
- : Tập các lời giải tối ưu
- Phân loại bài toán tối ưu theo số lượng hàm mục tiêu
 - Bài toán có 01 hàm mục tiêu: => Bài toán tối ưu đơn mục tiêu (single-objective problem)
 - Bài toán có hai hoặc ba hàm mục tiêu => Bài toán tối ưu đa mục tiêu (multi-objective problem)
 - Bài toán có số mục tiêu >= 4 => Bài toán tối ưu nhiều mục tiêu (many-objective problem)

- Phân loại bài toán tối ưu theo lý thuyết tính toán
 - P: Tồn tại thuật toán có thể giải trong thời gian đa thức
 - NP: Có thể kiểm tra lời giải trong thời gian đa thức

- Tại sao bài toán tối ưu khó?
 - Kích thước không gian tìm kiếm: LỚN
 - Không gian tìm kiếm phức tạp

- Tại sao bài toán tối ưu khó?
 - Constraints của không gian lời giải.
 - Hàm mục tiêu thay đổi theo thời gian (dynamic, non-stationary optimization problems).
 - Conflict giữa nhiều mục tiêu- Pareto optimality

- Các hướng tiếp cận giải bài toán tối ưu
 - Sử dụng thuật toán chính xác
 - Sử dụng thuật toán xấp xỉ gần đúng
- Hầu hết các bài toán tối trong thực tế là bài toán NP-Khó => hướng sử dụng các thuật toán chính xác là không khả thi
 - => Khóa học này trình bày các kỹ thuật tìm kiếm xấp xỉ thông minh dựa trên các quá trình tự nhiên để giải bài toán tối ưu khó!

Tổng quan về Tính toán tiến hóa

Tổng quan về Tính toán tiến hóa

- Tính toán tiến hóa nghiên cứu các giải thuật tối ưu tìm kiếm dựa trên học thuyết tiến hóa của Darwin
- Các giải thuật này gọi là tên chung là Giải thuật tiến hóa (Evolutionary Algorithms – EAs)
- EAs là thuật toán ngẫu nhiên dựa trên quần thể
- Tốc độ nhanh, hiệu quả
- Xử lý các bài toán tối ưu liên tục, rời rạc, tìm cực trị hàm đa biến, phi tuyến, không khả vi, multi-modal,....
- Cho chất lượng lời giải tốt trong thời gian chấp nhận được
- Đang được sử dụng rộng rãi trong việc giải quyết các bài toán tối ưu NP-Khó, NP-đầy đủ

Tổng quan về Tính toán tiến hóa

[1] Engelbrecht, Andries P. *Computational intelligence: an introduction*. John Wiley & Sons, 2007.

Các hội thảo, tạp chí đầu ngành

EVOLUTIONARY
COMPUTATION

WIPO Technology Trends 2019 Artificial Intelligence

WIPO: World Intellectual Property
Organization

Al techniques

Al functional applications

Các track trong Tính toán tiến hóa

- EC in Game
- EC in Healthcare and E-health
- EC in Vehicles and Transportation Systems
- EC in Cyber Security
- EC in Data Mining
- EC in Big Data
- EC in Dynamic and Uncertain Environments
- EC for Engineering Solutions
- EC in Multimedia Signal and Vision Processing
- EC in Feature Analysis, Selection and Learning in Image and Pattern Recognition

Ứng dụng của Tính toán tiến hóa

- Planning: routing optimization and scheduling;
- Design: neural network architectures and structural optimization;
- Control: controllers for game engines, and visual guidance systems for robots;
- classification and clustering;
- function approximation and time series modeling;
- Regression;
- Composing music; and
- Data mining.

Giải thuật tiến hóa

- Giải thuật tiến hóa (Evolutionary Algorithms- EAs) được hình thành dựa trên quan niệm :
- "Quá trình tiến hoá tự nhiên là quá trình hoàn hảo nhất, hợp lý nhất và tự nó đã mang tính tối ưu"
- Các thế hệ sau luôn có xu hướng phát triển và hoàn thiện hơn thế hệ trước.

Giải thuật tiến hóa

- Tiến hóa tự nhiên duy trì nhờ hai quá trình cơ bản:
 - Sinh sản:
 - Các đặc tính di truyền tốt của cá thể cha và mẹ được di truyền cùng nhau vào các thế hệ con (lai ghép)
 - Đảm bảo được sự đa dạng của quần thể (đột biến)
 - Chọn lọc tự nhiên:
 - Các cá thể khỏe mạnh hơn, thích nghi hơn với môi trường => tồn tại.
 - Không thích nghi được với môi trường => bị đào thải.
- Các giải thuật tiến hóa cũng mô phỏng hai quá trình này.

Sơ đồ chung của EAs

Mô hình thuật toán tiến hóa

```
BEGIN
 INITIALISE population with random candidate solutions;
 EVALUATE each candidate;
 REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO
   1 SELECT parents;
   2 RECOMBINE pairs of parents;
   3 MUTATE the resulting offspring;
   4 EVALUATE new candidates:
   5 SELECT individuals for the next generation;
 UD
END
```

Các thành phần của EAs

- Mã hóa biểu diễn
- Hàm định giá (thích nghi)
- Quần thể
- Cơ chế chọn cha mẹ
- Toán tử sinh sản (lai ghép và đột biến)
- Cơ chế lựa chọn sinh tồn (sự thay thế)
- Điều kiện dừng

Mã hóa biểu diễn

- Phân biệt kiểu hình và kiểu di truyền
 - Kiểu di truyền là biểu diễn mã hóa lời giải của bài toán không gian kiểu di truyền.
 - Kiểu hình là lời giải của bài toán tương ứng kiểu

di truyền Ví dụ bài toán 8 con hậu:

Kiểu hình:

1 cấu trúc bảng

Mã hóa biểu diễn

- Phân biệt kiểu hình (phenontype) và kiểu di truyền (genontype)
 - Kiểu di truyền là biểu diễn mã hóa lời giải của bài toán không gian kiểu di truyền.
 - Kiểu hình là lời giải của bài toán tương ứng kiểu di truyền
- Quá trình mã hóa: kiểu hình => kiểu di truyền (1-n)
- Quá trình giải mã: kiểu di truyền => kiểu hình (1-1)
- Để tìm được tối ưu toàn cục, phải đảm bảo luôn tồn tại một mã hóa có kiểu hình biểu diễn được

Hàm đánh giá

- Hàm đánh giá cho biết mức độ thích nghi của cá thể đối với môi trường
- Giá trị độ thích nghi càng cao, các cá thể có khả năng sinh tồn và cơ hội tham gia vào quá trình sinh sản càng lớn
- Độ thích nghi cho biết mức độ tốt của lời giải tương ứng với biểu diễn cá thể
- Thông thường, hàm thích nghi được tính thông qua hàm chi phí lời giải của bài toán
- VD fitness(individual) = 1 cost(individual)Hoặc fitness(individual) = 1/cost(individual)

Quần thể

- Quần thể là một tập hợp các cá thể.
- Số lượng cá thể trong quần thể thường cố định
- Sự đa dạng của quần thể được thể hiện qua:
 - Sự đa dạng giá trị thích nghi
 - Đa dạng về kiểu di truyền
 - Đa dạng về kiểu hình
- Quá trình chọn lọc cá thể sinh tồn ở thế hệ tiếp theo được thực hiện trên quần thể

Cơ chế chọn lọc cha mẹ

- Xác suất lựa chọn các cá thể làm cha mẹ dựa trên giá trị độ thích nghi của chúng.
- Một số cơ chế chọn lựa cha mẹ:
 - Lựa chọn ngẫu nhiên
 - Lựa chọn theo thứ hạng
 - Lựa chọn theo thể thức giao đấu
 - Lựa họn theo bánh xe roulete

Toán tử lai ghép

- Là quá trình hình thành các NST mới ở cá thể con dựa trên các NST của cha mẹ.
- Các NST ở cá thể con sinh ra bằng cách ghép một hay nhiều đoạn gene của hai hay nhiều NST cha mẹ với nhau
- Các cá thể lai ghép với xác suất
- Ví din Toán từ lai nhón một cắt

Toán tử đột biến

- Là hiện tượng cá thể con mang một (số) tính trạng không có trong mã di truyền của cha mẹ
- Xác suất xảy ra đột biến nhỏ hơn rất nhiều xác suất lai ghép
- Toán tử đột biến giúp đảm bảo tính đa dạng cả quần thể

Cơ chế đấu tranh sinh tồn

- Là cơ chế chọn ra các cá thể mang đi sinh tồn ở thế hệ tiếp theo
- Các cơ chế đấu tranh sinh tồn:
 - Chọn lọc dựa vào tuổi: Loại bỏ các cá thể tồn tại lâu trong quần thể => đảm bảo tính đa dạng, tránh tư tưởng "cổ hủ"
 - Chọn lọc theo thứ hạng, giữ lại cá thể ưu tú=> giữ được xu hướng tăng trưởng của quần thể ổn định
 - Nạp lại hoàn toàn
 - Nap lai ngẫu nhiên
 - Nạp lại một phần
 - Có thể sử dụng các phương thức ở bước lựa chọn bố mẹ

Điều kiện dừng

- Điều kiện dừng của thuật toán thường thỏa mãn như sau:
 - Sau một số thế hệ nhất định, thuật toán không cải thiện chất lượng lời giải
 - Sau một số thế hệ nhất định
 - Thuật toán sử dụng hết lượng phép tính đánh giá cố định

Các biến thể EAs phổ biến

- Giải thuật di truyền Genetic Algorithm
- Tiến hóa sai phân Different Evolutionary Algorithm
- Chién lược tiến hóa Evolution Strategies
- Lập trình tiến hóa Evolution Programming
- Lập trình di truyền Genetic Programming
- Tiến hóa đa nhiệm Multifactorial Evolutionary Algorithm

Giải thuật di truyền

- Đối tượng:
 - Tối ưu hóa rời rạc
- Đặc điểm:

Representation	Binary strings v.v
Recombination	N-point or uniform
Mutation	Bitwise bit-flipping with fixed probability
Parent selection	Fitness-Proportionate
Survivor selection	All children replace parents
Speciality	Emphasis on crossover

Lập trình di truyền

- Đối tượng:
 - Học máy (Xây dựng các công thức, dự đoán v.v)
- Đặc điểm:

Representation	Tree structures		
Recombination	Exchange of subtrees		
Mutation	Random change in trees		
Parent selection	Fitness proportional		
Survivor selection	Generational replacement		
Representation	Tree structures		

Chiến lược tiến hóa

- Đối tượng:
 - Tối tham số thực
- Đặc điểm:

Representation	Real-valued vectors		
Recombination	Discrete or intermediary		
Mutation	Gaussian perturbation		
Parent selection	Uniform random		
Survivor selection	(,) or (+)		
Specialty	Self-adaptation of mutation step sizes		

Lập trình tiến hóa

- Đối tượng:
 - Học máy sử dụng máy trạng thái xác định
 - Tői u ső numercial optimization
- Đặc điểm:

Representation	Real-valued vectors			
Recombination	None			
Mutation	Gaussian perturbation			
Parent selection	Deterministic			
Survivor selection	Probabilistic (+)			
Specialty	Self-adaptation of mutation step sizes (in meta-EP)			

So sánh các biến thể

	Lập trình tiến hóa (EP)	Chiến lược tiến hóa (EG)	Lập trình di truyền (GP)	Giải thuật di truyền (GA)
Áp dụng	Học máy, tối ưu số	Tối ưu số	CT học máy	Tối ưu hóa rời rạ
Mã hóa NST	Véc tơ giá trị thực	Véc tơ giá trị thực	Cây	Xâu nhị phân v.v
Lai ghép	Không	Riêng biệt hoặc trung gian	Trao đổi cây con	N-point, đồn nhất v.v
Đột biến	Phân phối Gauss	Phân phối Gauss	Thay đổi nút	Đảo bít v.v
Chọn lọc cha mẹ	1 cha sinh 1 con	Ngẫu nhiên hay cố định	Dựa trên fitness	Dựa trên fitness
Đấu tranh sinh tồn	(+)	(,) or (+)	Thay thế toàn bộ	Nhiều cách
Đặc biệt	Tự thích nghi	Tự thích nghi	Cây	Lai ghép

Thanks for your attention