Solving the Time Dependent Schrödinger Equation using the Crank-Nicolson Method

Ryan Hill

November 15, 2020

The time dependent Schrödinger equation for the wavefunction ψ of a particle of mass m moving in a potential energy V(x,t) is:

$$i\hbar \frac{\partial}{\partial t}\psi = \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x,t) + V(x,t)\psi(x,t)$$

In this program I calculated the time dependent propogation of an electron wavepacket through a potential barrier. I performed the calculation in a region of L=500 Angstroms. I started with an initial (complex valued) Gaussian wave function (for an electron) of:

$$\psi(x, t = 0) = \exp\left[-\left(\frac{x - 0.3L}{s}\right)^2 + ixk_0\right]$$

with a width of s = 10 Angstroms and average wavenumber $k_0 = 1$ Angstroms⁻¹. The potential energy V(x) models a one dimensional crystal surface with periodic peaks to mimic atomic layers in the crystal:

$$V(x) = V_1 \left[0.75 - \cos \left(\frac{x - x_0}{\omega_x} \right) \right]$$
 for $x > x_0$

= 0 otherwise

where $V_1 = 2.0$ eV, $x_0 = 0.5L$, and $\omega_x = 5$ Angstroms.

I used the Crank-Nicolson method for my calculations. The Crank-Nicolson method is a finite difference method that can be used to solve partial differential equations. It is stable and accurate to $\mathcal{O}(\Delta t^2)$ globally.

A finite difference form of the Schrödinger equation for use in the Crank-Nicolson method is:

$$\psi(x - \Delta x, t + \Delta t) + \left[\frac{2m\omega i}{\hbar} - 2 - \frac{2m\Delta x^2}{\hbar^2}V(x)\right]\psi(x, t + \Delta t) + \psi(x + \Delta x, t + \Delta t)$$

where $\omega = 2\Delta x^2/\Delta t$, Δx is the sampling size in space and Δt is the sampling size in time. For this problem the Crank-Nicolson equation has the form:

$$a_j \psi(x_{j-1}, t_{n+1}) + b_j \psi(x_j, t_{n+1}) + c_j (\psi(x_{j+1}, t_{n+1})) = d_j$$

which can be written as a tri-diagonal matrix equation. As shown in the equation above, the Crank-Nicolson involves solving a set of simultaneous equations. $\psi_i = \psi(x_i, t_{n+1})$ are the unknowns to be found. The two endpoints ψ_{-1} and ψ_{N_x} are fixed at 0.

Her are plots of the potential, the real and imaginary parts of ψ , and $|\psi|^2$ at t=0:

Solving for the propogation of the wave packet as a function of time using the Crank-Nicolson method produced the following plots for $|\psi|^2$ at times $t=0.5\times 10^{-14}$, $t=1.0\times 10^{-14}$, $t=1.5\times 10^{-14}$, $t=2.5\times 10^{-14}$ seconds:

