Contents

- Aim
- Main Python Methods
- Data Processing Steps
 - Step 1: Retrieve original counts table
 - Step 2: Retrieve original metadata table
 - Step 3: Create dictionary from metadata table
 - Step 4: Calculate total read counts per sample
 - Step 5: Extract counts for sample group HM1->KO
 - Step 6: Normalize count values for sample group HM1->KOO
 - Step 7: Calculate Spearman Correlation Coefficients for each sample pair
 - Step 8: Generate final figure
 - Step 9: Compare original and regenerated figures

Aim: Replicate Figure 5D

Main Python Methods

```
search result = re.search(taxa target, taxa query)
   if search result:
       final result = True
   return final result
# Calculate Pearson correlation coefficients from input set of samples
def get inter corr values(input df):
   tup list column names = [(col1, col2) for col1 in input df.columns for col
2 in input df.columns if input df.columns.get loc(col2) > input df.columns.get
_loc(col1)]
  corr values = [stats.pearsonr(input df.loc[:, tup[0]], input df.loc[:, tup
[1]]).statistic \
           for tup in tup list column names]
   # Remove nan values
   corr values = [val for val in corr values if not np.isnan(val)]
   return corr values
# Retrieve tab delimited file
def read csv file(file path, skiprows=None, header = 0, sep = '\t', index col=
   df = pd.read csv(file path, skiprows=skiprows, sep=sep, header=header, ind
ex col=index col)
   return df
# Create dictionary from metadata table
def get dict from metadata(input df):
   mydict = {}
   for row in input df.iterrows():
       obj = row[1]
       sample id = obj['SampleID']
       key = obj['FMTGroupFMTsourcegtRecipientbackground']
       if key not in mydict:
           mydict[key] = [sample id]
          mydict[key].append(sample id)
   return mydict
# Normalize sample count values
def get norm counts(input df, ser sample count sums):
   overall mean count = ser sample count sums.mean()
   df norm logged = pd.DataFrame()
   for col name in input df.columns:
       df norm logged.loc[:, col name] = \
       np.log10(((input df.loc[:, col name] / ser sample count sums[col name
]) * overall mean count) + 1)
   return df norm logged
# Get current working directory
current working dir = os.getcwd()
# original counts table
asv tbl file path = os.path.join(current working dir, 'asv biom-with-taxonomy.
txt')
# original metadata table
metadata file path = os.path.join(current working dir, 'mappingMetadata.txt')
```

Data Processing Steps

Step 1: Retrieve original counts table

```
In [2]: df_asv = read_csv_file(asv_tbl_file_path, 1)
    df_asv
```

Out[2]:

	#OTU ID	1gKO.1	1gKO.2	1gKO.3	1gWT.1	1gWT.2	1gWT.3	2gKO.1
0	1ba8c796d07406783c96d016a6a5cace	13615.0	16637.0	17148.0	20227.0	23630.0	25656.0	14832.0
1	a6c38249aff7768283faf6cfbdeb05a8	26439.0	30129.0	19743.0	8955.0	10759.0	7074.0	18489.0
2	062f38ff92cfaee0654200b6f5be5ddf	7451.0	8774.0	8754.0	174.0	214.0	148.0	21958.0
3	1183cc23f552d81e63c93ca9fcba2f2c	225.0	223.0	184.0	13762.0	16856.0	18692.0	269.0
4	5e15ecfb579e72bf87c0bea3920bbf42	10108.0	12117.0	8633.0	10027.0	11910.0	7424.0	5979.0
4070	92bb8f4683ef5c8651e7d34dbb37ab2e	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4071	92f09070a4fd5786bb34e756217e6ee1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4072	919b82324c41ed0046323c63aa1550da	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4073	dbc0dad15ec1c8ad9d826cab94e18696	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4074	1ff2d07d10264c23dc43e08d3097cd7c	0.0	0.0	0.0	0.0	0.0	0.0	0.0

4075 rows × 112 columns

```
In [3]: df_asv = read_csv_file(asv_tbl_file_path, 1)
    df_asv = df_asv.astype({col:'int32' for col in df_asv.columns[1:-1] }, copy=Fa
    lse)
    df_asv
```

Out[3]:

	#OTU ID	1gKO.1	1gKO.2	1gKO.3	1gWT.1	1gWT.2	1gWT.3	2gKO.1
0	1ba8c796d07406783c96d016a6a5cace	13615	16637	17148	20227	23630	25656	14832
1	a6c38249aff7768283faf6cfbdeb05a8	26439	30129	19743	8955	10759	7074	18489
2	062f38ff92cfaee0654200b6f5be5ddf	7451	8774	8754	174	214	148	21958

3	1183cc23f552d81e63c93ca9fcba2f2c	225	223	184	13762	16856	18692	269
4	5e15ecfb579e72bf87c0bea3920bbf42	10108	12117	8633	10027	11910	7424	5979
4070	92bb8f4683ef5c8651e7d34dbb37ab2e	0	0	0	0	0	0	0
4071	92f09070a4fd5786bb34e756217e6ee1	0	0	0	0	0	0	0
4072	919b82324c41ed0046323c63aa1550da	0	0	0	0	0	0	0
4073	dbc0dad15ec1c8ad9d826cab94e18696	0	0	0	0	0	0	0
4074	1ff2d07d10264c23dc43e08d3097cd7c	0	0	0	0	0	0	0

4075 rows × 112 columns

Step 2: Retrieve original metadata table

```
In [4]: df_metadata = read_csv_file(metadata_file_path)
    df_metadata
```

Out[4]:

	SampleID	UniversalCageNumber	Background	FMTGroupFMTsourcegtRecipientbackground	Passage
0	F8-1	F8-cage-1	129.IL10KO	1gKOgtKO	8
1	F8-2	F8-cage-1	129.IL10KO	1gKOgtKO	8
2	F8-3	F8-cage-2	129.IL10KO	1gKOgtKO	8
3	F8-4	F8-cage-2	129.IL10KO	1gKOgtKO	8
4	F8-5	F8-cage-3	129.IL10KO	1gKOgtKO	8
105	1gWT.2	NaN	NaN	1gWTinput	1gWT
106	1gWT.3	NaN	NaN	1gWTinput	1gWT
107	2gWT.1	NaN	NaN	2gWTinput	2gWT
108	2gWT.2	NaN	NaN	2gWTinput	2gWT
109	2gWT.3	NaN	NaN	2gWTinput	2gWT

110 rows × 8 columns

Step 3: Create dictionary from metadata table

```
In [5]: dict_metadata = get_dict_from_metadata(df_metadata)
    dict_metadata.keys()
```

Out[5]: dict_keys(['1gKOgtKO', '2gKOgtKO', '1gWTgtKO', '1gWTgtWT', '2gWTgtWT', 'hFM T.1.2.3.gtKO', 'hFMT.3.4.5.gtKO', 'hFMT.1.2.3.gtWT', 'hFMT.1.2.3.input', 'hF MT.3.4.5.input', '1gKOinput', '2gKOinput', '1gWTinput', '2gWTinput'])

Step 4: Calculate total read counts per sample

```
In [6]: sample count sums = df asv.iloc[:, 1:-1].sum(axis=0)
        sample count sums
Out[6]: 1gKO.1
                   118256
       1gKO.2
                   141891
        1gKO.3
                   123292
        1gWT.1
                   119717
        1gWT.2
                   146158
       h1-2-3.2
                   135326
       h1-2-3.3 133745
       h3-4-5.1
                  129613
       h3-4-5.2
                  140316
       h3-4-5.3 132984
       Length: 110, dtype: int64
```

Step 5: Extract counts for sample group HM1->KO

```
In [7]: # 'hFMT.1.2.3.gtKO' --> 'HM1->KO'
key_name = 'hFMT.1.2.3.gtKO'
group_columns = dict_metadata[key_name]
group_columns.extend(['#OTU ID', 'taxonomy'])
key_name = 'hFMT.1.2.3.gtKO'
HM1_KO = df_asv[[col_name for col_name in group_columns]]
HM1_KO
```

Out[7]:

	F3-7	F3-8	F3-9	F3-10	F3-11	F3-12	F1-7	F1-8	F1-9	F1-10	F1-11	F1-12	F1-13	F
0	10097	574	12959	18737	17857	12650	10738	9576	7304	14409	14382	8787	7694	
1	35102	51633	31840	22887	20446	33188	23565	21707	12802	26719	5701	15715	25125	
2	1328	91	2203	189	182	244	33299	13739	53077	17570	34094	18922	19204	4
3	137	315	305	134	221	290	203	348	363	238	219	205	255	
4	34960	13573	4109	3811	1155	28938	1144	6973	666	8230	1287	11346	13195	
4070	0	0	0	0	0	0	0	0	0	0	0	0	0	
4071	0	0	0	0	0	0	0	0	0	0	0	0	0	
4072	0	0	0	0	0	0	0	0	0	0	0	0	0	
4073	0	0	0	0	0	0	0	0	0	0	0	0	0	
4074	0	0	0	0	0	0	0	0	0	0	0	0	0	

4075 rows × 17 columns

```
In [8]: target phylum = 'p Verrucomicrobiota'
         df Verrucomicrobiota = HM1 KO[HM1 KO.taxonomy.apply(lambda x: filter rows(x, t
         arget phylum))]
         print('Number of rows: {}'.format(len(df Verrucomicrobiota.index)))
         print('Columns: {}'.format(', '.join(df Verrucomicrobiota.columns)))
         Number of rows: 24
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15, #OTU ID, taxonomy
In [9]: target phylum = 'p Firmicutes'
         df Firmicutes = HM1 KO[HM1 KO.taxonomy.apply(lambda x: filter rows(x, target p
         print('Number of rows: {}'.format(len(df Firmicutes.index)))
         print('Columns: {}'.format(', '.join(df Firmicutes.columns)))
         Number of rows: 830
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15, #OTU ID, taxonomy
In [10]: | target phylum = 'p Proteobacteria'
         df Proteobacteria = HM1 KO[HM1 KO.taxonomy.apply(lambda x: filter rows(x, targ
         et phylum))]
         print('Number of rows: {}'.format(len(df Proteobacteria.index)))
         print('Columns: {}'.format(', '.join(df Proteobacteria.columns)))
         Number of rows: 51
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15, #OTU ID, taxonomy
In [11]: | target phylum = 'p Bacteroidota'
         df Bacteroidota = HM1 KO[HM1 KO.taxonomy.apply(lambda x: filter rows(x, target
         _phylum))]
         print('Number of rows: {}'.format(len(df Bacteroidota.index)))
         print('Columns: {}'.format(', '.join(df Bacteroidota.columns)))
         Number of rows: 91
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15, #OTU ID, taxonomy
In [12]: target phylum = 'p Actinobacteriota'
         df Actinobacteriota = HM1 KO[HM1 KO.taxonomy.apply(lambda x: filter rows(x, ta
         rget phylum))]
         print('Number of rows: {}'.format(len(df Actinobacteriota.index)))
         print('Columns: {}'.format(', '.join(df_Actinobacteriota.columns)))
         Number of rows: 71
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15, #OTU ID, taxonomy
In [13]: target phylum = 'p Fusobacteriota'
         df Fusobacteriota = HM1 KO[HM1 KO.taxonomy.apply(lambda x: filter rows(x, targ
         print('Number of rows: {}'.format(len(df Fusobacteriota.index)))
         print('Columns: {}'.format(', '.join(df Fusobacteriota.columns)))
```

```
Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15, #OTU ID, taxonomy
In [14]: target phylum = 'p Patescibacteria'
         df Patescibacteria = HM1 KO[HM1 KO.taxonomy.apply(lambda x: filter rows(x, tar
         get phylum))]
         print('Number of rows: {}'.format(len(df Patescibacteria.index)))
         print('Columns: {}'.format(', '.join(df Patescibacteria.columns)))
         Number of rows: 3
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15, #OTU ID, taxonomy
In [15]: target phylum = 'p Campilobacterota'
         df Campilobacterota = HM1 KO[HM1 KO.taxonomy.apply(lambda x: filter rows(x, ta
         rget phylum))]
         print('Number of rows: {}'.format(len(df Campilobacterota.index)))
         print('Columns: {}'.format(', '.join(df Campilobacterota.columns)))
         Number of rows: 3
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15, #OTU ID, taxonomy
In [16]: target phylum = 'Unassigned'
         df Unassigned = HM1 KO[HM1 KO.taxonomy.apply(lambda x: filter rows(x, target p
         print('Number of rows: {:,}'.format(len(df Unassigned.index)))
         print('Columns: {}'.format(', '.join(df Unassigned.columns)))
         Number of rows: 2,196
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15, #OTU ID, taxonomy
         Step 6: Normalize count values for sample group
         HM1->KO
In [17]: df Verrucomicrobiota norm = get norm counts(df Verrucomicrobiota.iloc[:, :-2]
         ], sample count sums)
         print('Number of rows: {}'.format(len(df Verrucomicrobiota norm.index)))
         print('Columns: {}'.format(', '.join(df_Verrucomicrobiota norm.columns)))
         Number of rows: 24
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15
In [18]: df Firmicutes norm = get norm counts(df Firmicutes.iloc[:, :-2], sample count
         sums)
         print('Number of rows: {}'.format(len(df Firmicutes norm.index)))
         print('Columns: {}'.format(', '.join(df Firmicutes norm.columns)))
         Number of rows: 830
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15
In [19]: df Proteobacteria norm = get norm counts(df Proteobacteria.iloc[:, :-2], samp
         le count sums)
```

Number of rows: 11

```
print('Number of rows: {}'.format(len(df Proteobacteria norm.index)))
         print('Columns: {}'.format(', '.join(df Proteobacteria norm.columns)))
         Number of rows: 51
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15
In [20]: df Bacteroidota norm = get norm counts(df Bacteroidota.iloc[:, :-2], sample c
         ount sums)
         print('Number of rows: {}'.format(len(df Bacteroidota norm.index)))
         print('Columns: {}'.format(', '.join(df Bacteroidota norm.columns)))
         Number of rows: 91
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15
In [21]: df Actinobacteriota norm = get norm counts(df Actinobacteriota.iloc[:, :-2],
         sample count sums)
         print('Number of rows: {}'.format(len(df Actinobacteriota norm.index)))
         print('Columns: {}'.format(', '.join(df Actinobacteriota norm.columns)))
         Number of rows: 71
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15
In [22]: df Fusobacteriota norm = get norm counts(df Fusobacteriota.iloc[:, :-2], samp
         le count sums)
         print('Number of rows: {}'.format(len(df Fusobacteriota norm.index)))
         print('Columns: {}'.format(', '.join(df Fusobacteriota norm.columns)))
         Number of rows: 11
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15
In [23]: df Unassigned norm = get norm counts(df Unassigned.iloc[:, :-2], sample count
         sums)
         print('Number of rows: {:,}'.format(len(df Unassigned norm.index)))
         print('Columns: {}'.format(', '.join(df Unassigned norm.columns)))
         Number of rows: 2,196
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15
In [24]: df Patescibacteria norm = get norm counts(df Patescibacteria.iloc[:, :-2], sa
         mple count sums)
         print('Number of rows: {:,}'.format(len(df Patescibacteria norm.index)))
         print('Columns: {}'.format(', '.join(df Patescibacteria norm.columns)))
         Number of rows: 3
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15
In [25]: df Campilobacterota norm = get norm counts(df Campilobacterota.iloc[:, :-2],
         sample count sums)
         print('Number of rows: {:,}'.format(len(df Campilobacterota norm.index)))
         print('Columns: {}'.format(', '.join(df_Campilobacterota norm.columns)))
         Number of rows: 3
         Columns: F3-7, F3-8, F3-9, F3-10, F3-11, F3-12, F1-7, F1-8, F1-9, F1-10, F1-
         11, F1-12, F1-13, F1-14, F1-15
```

Step 7: Calculate Spearman Correlation Coefficients for each sample pair

Step 8: Generate final figure

```
In [27]: data = [corr Verrucomicrobiota norm,
                      norm Firmicutes norm,
                      corr Proteobacteria norm,
                      corr Bacteroidota norm,
                      corr Actinobacteriota norm,
                      corr Fusobacteriota norm,
                      corr Unassigned norm,
                      corr Patescibacteria norm,
                      corr Campilobacterota norm]
         x tick labels = ['Verrucomicrobiota',
                           'Firmicutes',
                           'Proteobacteria',
                           'Bacteroidota',
                           'Actinobacteriota',
                           'Fusobacteriota',
                           'Unassigned',
                           'Patescibacteria',
                           'Campilobacterota']
         fig, ax = plt.subplots(figsize=(9, 3))
         ax.boxplot(data, widths=0.8)
         ax.set title('Regenerated Figure 5D')
         ax.set yticks([0.2, 0.4, 0.6, 0.8, 1.0])
         ax.set xticklabels(x tick labels,
                             rotation=0, fontsize=6)
         plt.show()
```


Step 9: Compare original and regenerated figures

