最大重みクリークの効率的抽出アルゴリズムとその評価

富田悦次, 若井康, 今松憲一*

電気通信大学 電気通信学部 情報通信工学科 (* 現在,富士通(株))

あらまし ある種の数理問題は重み付きグラフの最大重みクリーク抽出問題としてモデル化される. そこで本稿では、最大重みクリークを効率良く抽出する改良した分枝限定アルゴリズムを提唱する. この分枝限定のためには、単純な逐次近似彩色を用いている. 本アルゴリズムは、いくつかの重み付きランダムグラフに対する比較実験により評価を行い、良好な結果を得ている.

An Efficient Algorithm for Finding a Maximum Weight Clique and its Experimental Evaluations

Etsuji Tomita, Yasushi Wakai, and Ken'ichi Imamatsu Department of Information and Communication Engineering, The University of Electro-Communications

Abstract Certain problems can be formulated as a maximum weight clique problem in a weighted graph. Then we propose an improved efficient branch and bound algorithm for finding a maximum weight clique. We have shown its effectiveness by computer simulations for several weighted random graphs.

1. はじめに

多くの数理問題がグラフの最大クリーク抽出問題としてモデル化され、いくつかの最大クリーク抽出アルゴリズムが提案されている([1]~[3],あるいはその引用文献).更に、同問題を一般化したものとして、各節点に重みが付与されたグラフを対象とし、その中で節点重みの総和が最大になるクリーク(最大重みクリーク)の抽出問題も重要となってきている([1]).たとえば、RNAの二次構造予測問題の基本部分を最大重みクリーク抽出問題として表現することも出来([4]~[7])、最大重みクリークを抽出するためのアルゴリズムもいくつか発表されている([1],[8],[9]等).

本稿では、文献[2]の分枝限定アルゴリズムを基にしたアルゴリズム([9])を更に改良し、効率的な最大重みクリーク抽出アルゴリズムを提唱し、実験的評価により、その有効性を示す.

ここで、対象とする無向グラフGは節点集合V、枝集合Eの順序対としてG=(V,E)と表す. V 中の各節点v には実数値の重みw(v) が与えられているとし、 $V' \subseteq V$ 中の節点重みの総和を、その集合V'の重み $w(V') = \sum_{v \in V'} w(v)$ とする. G 中のクリークG(Q)

のうち、w(Q) が最大であるものを最大重み クリークといい、その重みを $\omega(G,w)$ と表 す. その他の諸定義及び記法は、文献 [2],[9] に従う.

2. 分枝限定法

まず、小さいクリークから出発してより大きいクリークを逐次求めていく手順を、深さ優先探索により、最大であると確認できるものが見出されるまで続けていく方法[2]を基本とする.ここで、解の探索領域を小さくするために、何らかの方法を用いて分枝を限定することが効率化の重要な指標となる.

着目節点の隣接節点集合から次々と部分問題である節点集合 V' を構成していくとき、その重みw(V') を求めることにより、基本的な分枝限定アルゴリズムが得られる.

3. クリーク重みの上界

重みを考慮しない最大クリーク抽出問題に 於いて,文献[2]で提案されたアルゴリズム MCLIQ は単純な逐次近似彩色を用いるこ とで,分枝限定を強化して探索分枝数を減 少し,かつ,これに伴う計算量の増大を抑え て総実行時間を短縮することに成功してい る.これを参考にして,出来るだけ単純かつ 効果の大きい分枝限定を考察する. さて、あるグラフG=(V,E)を逐次近似彩色(sequential coloring)するには、並べられた節点の先頭から順に、隣接した節点には異なった色番号(正整数)で彩色するとの条件下で、逐次最小の色番号を与えていく、そこで、最大色番号(近似彩色数)が $\tilde{\chi}$ で、色番号iの節点集合(独立節点集合)が C_i $(i=1,2,\cdots,\tilde{\chi})$ となったとする、ここで、節点 $v\in C_i$ は色番号k(v)=i をもつという、ここで、

$$z(v) = w(v) + \sum_{i=1}^{\tilde{\chi}} \max_{u \in \Gamma(v) \cap C_i} w(u)$$

とおいたとき、z(v) は節点 v を含むクリー クの重みの上界を与える. 従って, 既に見出 されている最大のクリーク重み $w(Q_{max})$ お よび探索過程の完全部分グラフG(Q),Q \subset $\Gamma(v)$ の重み w(Q) について, $z(v) + w(Q) \le$ $w(Q_{max})$ であるとき,節点v は $w(Q_{max})$ よ り重いクリークに含まれ得ない.この時,即 座に $V := V - \{v\}$ として, 節点v を削除し てよい. この上界 z(v) を出来るだけ小さく 抑えるためには、節点 v に隣接する節点の うち z(v) に与える影響が大きい重みの大き な節点は、できるだけ少ない個数の Ci に集 中していることが望ましい.ここで,節点の 重みと隣接状況が独立であるとすると、重 みの大きい節点から逐次近似彩色を施して いけば、特に隣接状況に比べ重みの影響が 大きい場合は、z(v)が小さくなることが期 待できる. 従って、最初に節点を重みの非増 大順に整列 (sort) し、重みの大きい節点 vから出来るだけ小さい色番号 k(v) を与える ものとする.

前記の様な逐次近似彩色と上界 z(v) を求める操作を出来るだけ効率良く遂行するため, z(v) を

$$z(v) = x(v) + y(v),$$
 $x(v) = \sum_{i=1}^{k(v)} \max_{u \in \Gamma(v) \cap C_i} w(u),$ 但し, $k(v) = 1$ のときは, $\Gamma(v) \cap C_1 = \phi$ より, $x(v) = 0$,

$$y(v) = w(v) + \sum_{i=k(v)+1}^{\tilde{\chi}} \max_{u \in F(v) \cap C_i} w(u),$$

但し $k(v) = \tilde{\chi}$ のときは y(v) = w(v).

の様に分割して考える.

すると、x(v) を求めるためにはv の色番号 k(v) よりも大きい色番号をもつ節点は無影響であるので、出来る限り小さい色番号からによる逐次近似彩色の進行と並行して x(v) を得ることが出来る。同様にして、y(v) を求めるためには、逐次近似彩色が終了後、k(v) よりも大きい色番号を持つ部分だけに関して計算を行えばよい。

ここで、 C_i の中の節点の並び順も重みの非増大順になるようにし、節点間の隣接検査もその順に従うものとすれば、x(v) を求める時、節点 $v \notin C_i$ に対して最初に見つかった隣接節点 $u \in C_i$ が直ちに $\max_{u \in \Gamma(v) \cap C_i} w(u)$ なる値を持つ節点となる. 次に y(v) を求める際も同様であり、極めて単純な操作で済む。

4. 無駄な彩色の削減

ある探索過程で最大重みクリークQが見出されているとする。その部分問題に対する節点集合Sに近似彩色の手続きを実行している途中において、節点集合S内で既に彩色操作が済んだ節点集合を $S^+=\{v_1,...,v_i\}$ とし、

$$cmw(S^+) = \max_{u \in S^+} \{x(u) + w(u)\}$$

とおく. 更に、まだ彩色操作を行っていない 節点集合を $S''=S-S^+$ とおく. このとき、 最後まで近似彩色の手続きを実行して得ら れる cmw を $\operatorname{cmw}(S)$ とすると

$$\operatorname{cmw}(S) \le \operatorname{cmw}(S^+) + w(S'')$$

の不等式が成立する. 従って,もし

$$w(Q) + \operatorname{cmw}(S^+) + w(S'') \le w(Q_{max})$$

のようになった場合、

$$w(Q) + \max_{a \in S} \{x(a) + w(a)\} \le w(Q_{max})$$

が導かれる。よって、この節点集合 $Q \cup S$ は $w(Q_{max})$ より重いクリークは含まない。そこで、これ以上の近似彩色の操作は無駄であり、この時点で近似彩色の操作を中止する。

5. アルゴリズム

```
procedure MWCL+ (G = (V, E), w)
   begin
      global Q_{max} := \phi, Q := \phi
      WEXTend(V)
     output Q_{max}
   end{ of MWCL+}
 procedure WEXTend(V)
   begin
     WNELimin(V, y, w(Q_{max}) - w(Q))
     while V \neq \phi do
        v := the 1st vertex in V
        if w(Q) + y(v) > w(Q_{max}) then
          Q := Q \cup \{v\}
          V' := V \cap \varGamma(v)
          if V' \neq \phi then WEXTend(V')
          else if w(Q) > w(Q_{max}) then
            Q_{max} := Q fi
          Q:=Q-\{v\}
        V := V - \{v\}
     od
   end {of WEXTend}
```

図 1. MWCL+

前章までの考察に基づいて、最大重みクリークを抽出する新しいアルゴリズム MWCL+(図.1)を提唱する.逐次近似彩色を用いてクリーク重みの上界を得る手続きを、WNELimin(図.2)に示す.このとき、 $x(v)+y(v)+w(Q) \le w(Q_{max})$ のようなvであれば、その節点vは削除される.また、節点の重みが一定($\Re=0$)の場合はごく単純なものにおきかえるようにしている.

procedure WNELimin(V, y, l)

```
\begin{aligned} & \mathbf{begin} \\ & \widetilde{\chi} := 1, & \text{cmw} := 0 \\ & C_1 := \phi, C_2 := \phi \\ & \text{sort } V \text{ in non-increasing weight} \\ & \Re := & \max_{v \in V} w(v) - \min_{u \in V} w(u) \\ & \text{while } V \neq \phi \quad \mathbf{do} \\ & \text{if } w(Q) + & \text{cmw} + w(V) \leq w(Q_{max}) \end{aligned}
```

```
then
         goto End fi
      v := the 1st vertex in V
      k := 1, x(v) := 0
      while C_k \cap \Gamma(v) \neq \phi do
            u := \text{the 1st vertex in } C_k \cap \Gamma(v)
            x(v) := x(v) + w(u)
            k := k + 1
      od
      if cmw < x(v) + w(v) then
         cmw := x(v) + w(v)
      if k > \widetilde{\chi} then
         \widetilde{\chi} := k, C_{k+1} := \phi fi
      C_k := C_k \cup \{v\}
      V := V - \{v\}
   od
   if \Re > 0 then
      for k := 1 to \widetilde{\chi} do
         while C_k \neq \phi do
           v := the 1st vertex in C_k
           y(v) := w(v)
           for h := k + 1 to \widetilde{\chi} do
              u := the 1st vertex in
              C_h \cap \Gamma(v)
              y(v) := y(v) + w(u)
           if x(v) + y(v) > l then
              V := V \cup \{v\} fi
           C_k := C_k - \{v\}
        od
     od
   else
     V := C_{\widetilde{\chi}} \cup \cdots \cup C_2 \cup C_1
     for all v \in V do
        y(v) := x(v) + w(v)
      od
  fi
  End:
end {of WNELimin}
     図 2. WNELimin
```

6. 計算機実験

前節に示したアルゴリズムの性能評価を 計算機実験により行う. 対象とするグラフ は、すべてランダムグラフとする. なお, 計 算機環境として,CPU PentiumII 266MHz Memory 128MB を搭載した AT 互換機に Linux をインストールしたものを使用し、アルゴリズムの実働化には C 言語を使用した. このときのプログラムのコンパイルは gcc -O2 で行なった.

節点数と枝の存在確率の異なる各グラフの実行結果を表 $1.\sim 2$. に示す. 表中の n,p とはそれぞれ節点数, 枝の存在確率のことであり, 測定値は5つのランダムグラフに対する実行結果の平均である. また, グラフ中の節点の重みは, 文献 [8] などと同様に, 正整数 $1\sim 10$ の一様乱数から与えている.

この結果,Babel[8]のアルゴリズムより探索分枝数は多いが,実行時間では高速であることが確認できた.

表 1. 平均実行時間 (単位 ms)

双 1. 十岁天门时间 (平匝 IIIS)					
\overline{n}	p	重み	MWCL+	Babel	
100	0.3	44.8	2	22	
	0.5	65.6	10	76	
	0.7	101.8	40	368	
200	0.3	52.2	10	156	
	0.5	79.6	118	1,558	
	0.7	125.4	3,096	27,267	
300	0.3	59.8	54	716	
	0.5	89.4	880	10,722	
	0.7	142.6	70,118	649,824	
400	0.3	62.4	142	2,354	
	0.5	96.4	3,404	44,886	
	0.7	155.0	542,842	5,756,054	
500	0.3	66.2	342	5,580	
	0.5	98.6	13,980	186,918	
	0.7	164.4	4,417,614	45,407,002	
600	0.3	67.6	762	12,288	
	0.5	105.6	39,598	576,466	
700	0.3	71.4	1,336	22,776	
	0.5	109.0	93,712	1,395,206	

表 2. 探索分枝数

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	X 2: \$KXX XX					
$ \begin{bmatrix} 0.5 & 65.6 & 190 & 79 \\ 0.7 & 101.8 & 783 & 242 \\ 200 & 0.3 & 52.2 & 366 & 142 \\ 0.5 & 79.6 & 2,434 & 1,285 \\ 0.7 & 125.4 & 44,179 & 10,608 \\ 300 & 0.3 & 59.8 & 1,287 & 433 \\ 0.5 & 89.4 & 15,059 & 5,833 \\ 0.7 & 142.6 & 790,468 & 194,991 \\ 400 & 0.3 & 62.4 & 3,173 & 1,660 \\ 400 & 0.3 & 62.4 & 47,026 & 19,686 \\ 0.7 & 155.0 & 4,672,023 & 1,348,642 \\ \end{bmatrix} $			重み	MWCL+		
$ \begin{bmatrix} 0.7 & 101.8 & 783 & 242 \\ 200 & 0.3 & 52.2 & 366 & 142 \\ 0.5 & 79.6 & 2,434 & 1,285 \\ 0.7 & 125.4 & 44,179 & 10,608 \\ 300 & 0.3 & 59.8 & 1,287 & 433 \\ 0.5 & 89.4 & 15,059 & 5,833 \\ 0.7 & 142.6 & 790,468 & 194,991 \\ 400 & 0.3 & 62.4 & 3,173 & 1,660 \\ 400 & 0.3 & 62.4 & 47,026 & 19,686 \\ 0.7 & 155.0 & 4,672,023 & 1,348,642 \\ \end{bmatrix} $	100	0.3	44.8	71	56	
$ \begin{vmatrix} 200 & 0.3 & 52.2 & 366 & 142 \\ 0.5 & 79.6 & 2,434 & 1,285 \\ 0.7 & 125.4 & 44,179 & 10,608 \\ 300 & 0.3 & 59.8 & 1,287 & 433 \\ 0.5 & 89.4 & 15,059 & 5,833 \\ 0.7 & 142.6 & 790,468 & 194,991 \\ 400 & 0.3 & 62.4 & 3,173 & 1,660 \\ 0.5 & 96.4 & 47,026 & 19,686 \\ 0.7 & 155.0 & 4,672,023 & 1,348,642 \\ \end{vmatrix} $		0.5	65.6	190	79	
$ \begin{vmatrix} 0.5 & 79.6 & 2,434 & 1,285 \\ 0.7 & 125.4 & 44,179 & 10,608 \\ 0.3 & 59.8 & 1,287 & 433 \\ 0.5 & 89.4 & 15,059 & 5,833 \\ 0.7 & 142.6 & 790,468 & 194,991 \\ 400 & 0.3 & 62.4 & 3,173 & 1,660 \\ 0.5 & 96.4 & 47,026 & 19,686 \\ 0.7 & 155.0 & 4,672,023 & 1,348,642 \end{vmatrix} $		0.7	101.8	783	242	
$ \begin{bmatrix} 0.7 & 125.4 & 44,179 & 10,608 \\ 0.3 & 59.8 & 1,287 & 433 \\ 0.5 & 89.4 & 15,059 & 5,833 \\ 0.7 & 142.6 & 790,468 & 194,991 \\ 400 & 0.3 & 62.4 & 3,173 & 1,660 \\ 0.5 & 96.4 & 47,026 & 19,686 \\ 0.7 & 155.0 & 4,672,023 & 1,348,642 \\ \end{bmatrix} $	200	0.3	52.2	366	142	
$ \begin{vmatrix} 300 & 0.3 & 59.8 & 1,287 & 433 \\ 0.5 & 89.4 & 15,059 & 5,833 \\ 0.7 & 142.6 & 790,468 & 194,991 \\ 400 & 0.3 & 62.4 & 3,173 & 1,660 \\ 0.5 & 96.4 & 47,026 & 19,686 \\ 0.7 & 155.0 & 4,672,023 & 1,348,642 \end{vmatrix} $		0.5	79.6	2,434	1,285	
$ \begin{vmatrix} 300 & 0.3 & 59.8 & 1,287 & 433 \\ 0.5 & 89.4 & 15,059 & 5,833 \\ 0.7 & 142.6 & 790,468 & 194,991 \\ 400 & 0.3 & 62.4 & 3,173 & 1,660 \\ 0.5 & 96.4 & 47,026 & 19,686 \\ 0.7 & 155.0 & 4,672,023 & 1,348,642 \end{vmatrix} $		0.7	125.4	44,179	10,608	
$ \begin{vmatrix} 0.7 & 142.6 & 790,468 & 194,991 \\ 400 & 0.3 & 62.4 & 3,173 & 1,660 \\ 0.5 & 96.4 & 47,026 & 19,686 \\ 0.7 & 155.0 & 4,672,023 & 1,348,642 \end{vmatrix} $	300	0.3	59.8	1,287		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.5	89.4	15,059	5,833	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.7	142.6	790,468	194,991	
0.7 155.0 4,672,023 1,348,642	400	0.3	62.4	3,173	1,660	
0.7 155.0 4,672,023 1,348,642		0.5	96.4	47,026	19,686	
500 0.3 66.2 6,269 4,462		0.7	155.0	4,672,023		
	500	0.3	66.2	6,269	4,462	
0.5 98.6 182,725 85,459		0.5	98.6			
0.7 164.4 34,717,884 9,300,920		0.7	164.4	34,717,884	9,300,920	
600 0.3 67.6 12,991 10,491	600	0.3	67.6		10,491	
0.5 105.6 466,430 229,652	1	$\mid 0.5 \mid$	105.6	466,430	229,652	
700 0.3 71.4 20,054 17,212	700	0.3	71.4		17,212	
0.5 109.0 997,549 517,339		0.5	109.0	997,549	517,339	

謝辞 討論,協力をいただいた本学若月光 夫助手,元卒研生鄭戴勇氏(現,三菱マテリ アル)に感謝します.本研究は文部省科学研 究費の補助を受けている.

参考文献

- [1] P. M. Pardalos and J. Xue: "The maximum clique problems," J. Global Optimization, vol. 4, pp.301-328 (1994).
- [2] 富田悦次, 今松憲一, 木幡康宏, 若月光 夫: "最大クリークを抽出する単純で効 率的な分枝限定アルゴリズムと実験的 評価," 信学論 (D-I), vol. J79- D-I, no.1, pp.1-8 (1996).
- [3] 富田悦次,平賀直仁,若月光夫: "最 大クリーク抽出アルゴリズムの効率化 とその評価," 情処研報, MPS24-1, pp.1-4 (1999).
- [4] 秋山泰, 古谷立美: "対称相互結合型ニューラルネットを用いた大規模な RNA の二次構造予測," 信学技報 NC90-62, pp.57-64 (1991).
- [5] 田中健夫, 若月光夫, 富田悦次: "最 大重みクリークの近似抽出解法による RNAの二次構造予測,"信学会情報・シ ステムソサイエティ大会, D-10 (1995).
- [6] 若月光夫,田中健夫,富田悦次:"最大重みクリーク抽出アルゴリズムのRNAの二次構造予測への適用,"情処52回大会,3U-9 (1996).
- [7] 田中健夫, 若月光夫, 富田悦次: "組合せ最適化手法によるシュノードノット構造を含んだ RNA の二次構造予測," 情処研報, MPS10-4, pp.25-32 (1996).
- [8] L. Babel: "A fast algorithm for the maximum weight clique problem," Computing. vol. 52, no.1,pp.31-38 (1994).
- [9] 今松憲一, 富田悦次, 若月光夫: "近似彩色を用いた単純な最大重みクリーク抽出アルゴリズム," 電通大紀要, vol. 8, no.1, pp.17-21 (1995).