P3585

SEAT No. :			
[Total	No. of Pages	:	5

[5152]-509

S.E. (Civil) (Semester - II) STRUCTURALANALYSIS - I

(2015 Pattern)

Time: 2 Hours]

[Max. Marks : 50]

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicates full marks.
- 4) Assume suitable data, if necessary.
- 5) Use of electronic pocket calculator is allowed.
- Q1) a) Derive equation to determine slope at 'A' by Macaulay's method. 'El' is constant. [L=a+b][6]

b) Analyze the continuous beam shown below by Clapeyron's theorem[6]

P.T.O.

Q2) a) Find slope and deflection at point 'B' for cantilever beam by conjugate beam method [6]

b) Analyze the beam by Castigliano's second theorem

[6]

Q3) a) A pin jointed truss as shown below is loaded by a vertical load of 104kN. Find the vertical deflection of joint 'E'. The axial flexibility of all members is 0.3mm/kN.

b) A beam shown below is subjected to a uniformly distributed load of 100 kN/m which may occupy any position of girder ABCD. Calculate

Q4) a) Analyze the truss as shown below, if support 'B' sinks by 2mm $A=400\text{mm}^2$, $E=2x10^5\text{MPa}$. [6]

b) For the cantilever beam shown below, calculate reactions at fixed end and shear force and bending moment at 'C' by influence line diagram method. Also draw influence line diagrams [6]

- Q5) A three hinged parabolic arch is loaded and supported as shown in figure below. Determine [13]
 - a) Support reactions
 - b) Normal thrust and radial shear at a distance of 12m from support 'A'.

Q6) Prove $H = \frac{\int Myd_s}{\int y^2d_s}$ and determine horizontal thrust for concentrated load 'W' at crown of two hinged parabolic arch. [13]

Q7) a) For the portal frame shown below draw various mechanisms possible.[4]

b) For the cross section of the beam shown below find the shape factor and plastic moment if permissible stress in compression and tension is 250MPa. [9]

Q8) a) For the cross section shown below, find the shape factor [9]

b) Write a note on elastic-plastic bending

[4]

 ω