

Team 14: RF Triangulation Bi-Weekly Update 3

Josh Broyles, Brandon Stokes, Jack Parkinson, Kathleen Hutchinson

Sponsor: Max Lesser

TA: Souryendu Das

Project Summary

Biologists have struggled being able to collect data on wildlife's location, habitat use, and breeding patterns without getting directly involved with the animal they're tracking.

Radio Frequency Triangulation allows a user to track a known frequency (such as a previously tagged animal) within the triangulated area of three antennas by using a motor to successfully pinpoint the strongest signal.

Helpful to study both invasive and threatened wildlife, our RF Triangulation system will focus on being able to accurately track a transmitter within a 150 meter radius with >10% error.

Integrated System Diagram

Ideally, our system will have one transmitter and three receivers.

The figure to the right shows a **completed transmitter**.

In the future, three receivers of *relatively the same form* will be created to connect to the transmitter.

The only differences between will be *three* added modules that are essential to the stepper motor and data transmission through *LTE*.

Due to power supply failure, the receiver is still in progress to be finished.

Transmitter

Josh Broyles

Accomplishments since last update 39 hrs of effort	Ongoing progress/problems and plans until the next presentation						
Validated Transmitter Power	N/A						
Completed Radio Housing							
Working signal transmission to receiver side							

Transmitter

Josh Broyles

Transmitter Line Regulation

Receiver: Antenna & Motor

Jack Parkinson

Accomplishments since last update 26 hrs of effort	Ongoing progress/problems and plans until the next presentation
Finalized Antenna Design	Write code for stepper motor based off of the blinky code
Got Blinky code working on an offboard ESP32	Get red badge
Soldered on about half the PCB for testing	Buy parts for antenna
	Help Kat with the PCB problems and integration between our systems

Receiver: ESP32 & Modules

Kathleen Hutchinson

Accomplishments since last update 39 hrs of effort	Ongoing progress/problems and plans until the next presentation
Failed power validation	Buying parts PCB design part 2
Connected Josh's XBEE, to my XBEE, through ESP32, onto Pycom to Brandon	Problems: buck converter inductor XBee output

Receiver Load Regulation 0.3 0.2 lout 0.1 0.0 -3.3 3.519 3.52 3.502 3.58 3.66 vout vin lout vout 11.996 3.3 0 3.519 0.1 3.52 0.15 3.502 0.2 3.58 0.248 3.66 0.3 temp problem 0.35

Receiver Line Regulation

Receiver: ESP32 & Modules

Kathleen Hutchinson


```
30.620995, -96.340089
running
b'30.620995,-96.340089'
30.620995, -96.340089
running
b'320995,-96.340089'
320995, -96.340089
running
b'30.620995,-96.340089'
30.620995, -96.340089
running
b'30.620995,-96.340089'
30.620995,-96.340089
running
b'30.620995,-96.340089'
30.620995,-96.340089
running
b'30.620995,-96.340089'
30.620995,-96.340089
running
```


Database & GUI

Brandon Stokes

Accomplishments since last update 21 hrs of effort	Ongoing progress/problems and plans until the next presentation
 Completed integration with Kathleen and the communication between our systems Tested app error handling for receiver off angle and location 	Continue to work with transitioning from WiFi to LTE

Database & GUI

Brandon Stokes


```
from machine import UART
     import time
     import pycom
     pycom.heartbeat(False)
8
     while True:
9
         print("running")
10
         uart = UART(1, baudrate=9600, pins=('P21','P20')) # voor esp
         strMsg = ''
         uart.write('esp32 check \r')
12
13
         time.sleep(1)
14
         if uart.any() > 0:
15
             strMsg = uart.read()
16
17
             print(strMsg)
18
19
20
             #print(strMsg)
21
22
             strMsg = "noData"
23
24
            print(strMsg)
        #time.sleep(2)
26
27
28
```


Time taken for dataset 5 is 2.518

Execution Plan

	1/24/23	1/31/23	2/7/23	2/14/23	2/21/23	2/28/23	3/7/23	3/14/23	3/21/23	3/28/23	4/4/23	4/11/23	4/18/23	4/23/23	4/29/23
Ring out PCB									1						
Test Radio Distance							,	9							
Finish Programing MCU															
Assemble PCB															
Validate PCB								J							
Validate Messages to Receivers															
Finalize Schematic/PCB Design															
Order/Print PCB															
Program Modules															
Validate PCB				- 1											
Finish ESP32															
Connect Antenna								2							
Finalize Antenna Design															
Order/ Build Antenna															
Test Antenna															
Test Motor Controller															
Database to Single Table															
Rework out of bounds situation															
Finish Pycom															
Add Error checking to data															
Integrate Reciever Modules															
Test Inter-Communication															
Complete System Validation															
Final Demo															
Final Report				i i											

Validation Plan

Paragraph	Test Name	Success Criteria	Methodology	Status	Responsible Engineer	
3.2.1.1	LTE Stability	The LTE does not drop more than 1 time per 5 minutes and shall reconnect within 20s.	System is put into default operational state (tracking transmitter) and left to run for 30 minutes while Pycom tracks LTE connection	UNTESTED	Brandon Stokes Kathleen Hutchinson	
3.2.1.2	Antenna Characterization	Physical antenna has a gain of at least 7 in the direction of the antenna.	UNTESTED	Jack Parkinson		
3.2.1.3	Motor accuracy	he motor can turn with speed and precision while the carrying we weight of the reciever PCB and antenna. After connecting the system to the motor, it will spin with vairying speeds and steps and be stopped to check accuracy and time.			Jack Parkinson	
3.2.1.4	System Connection	The time it takes to connect and transmit data between the GUI, transmitter, and receiver shall be 30s.	UNTESTED	Brandon Stokes Kathleen Hutchinson		
3.2.1.5	Operation Time	System operates continuously on battery power for 30 minutes.	UNTESTED	Full Team		
3.2.1.6	Detection Range	The detection range shall be an 150m radius from transmitter to a single receiver.	Receiver antenna will be place 150 meters from transmitter and be able to detect and step towards the signal transmitted.	UNTESTED	Josh Broyles Jack Parkinson Kathleen Hutchinson	
3.2.2.1	Mass	The weight of the system shall be at max 271bs. Measure receiver unit with digital scale.			Jack Parkinson	
3.2.3.1.1	Input Voltage	The input voltage level for the ESP32 and MSP430 shall be 3.3V	Use F. Load to validate line and load regulation	TESTED	Josh Broyles	
3.2.3.1.1 Input voltage	mput vonage	The input voltage level for the ESF32 and WSF430 shall be 3.3 v	Ose E-Load to validate line and load regulation	UNTESTED	Kathleen Hutchinson	
3.2.3.1.2	Input Voltage (Motor)	The input voltage level for the DRV811PWPR (motor driver) shall be 12V.	Use multimeter to validate input voltage levels	UNTESTED	Jack Parkinson	
N/A	Full System Demo	A user of system is able to accurately track the transmitter in an open space with a positional error of less than <10%.	System runs start signal to receivers which tracktransmitter's strongest signal with the motor, both stationary and moving, which sends data to GUI that outputs an accurate map with an error of <10% calculated through GPS points.	UNTESTED	Full Team	

Thank you for your attention!

Feel free to ask us questions