Startup Machine Learning: Bootstrapping a fraud detection system

Michael Manapat Stripe @mlmanapat

- About me: Engineering Manager of the Machine Learning Products Team at Stripe
- About Stripe: Payments infrastructure for the internet

```
curl https://api.stripe.com/v1/charges \
    -u sk_test_BQokikJ0vBiI2HlWgH4olfQ2: \
    -d amount=400 \
    -d currency=usd \
    -d "description=Charge for test@example.com" \
    -d "source[object]=card" \
    -d "source[number]=42424242424242" \
    -d "source[exp_month]=12" \
    -d "source[exp_year]=2016" \
    -d "source[cvc]=123"
```

Fraud

- Card numbers are stolen by hacking, malware, etc.
- "Dumps" are sold in "carding" forums
- Fraudsters use numbers in dumps to buy goods, which they then resell
- Cardholders dispute transactions
- Merchant ends up bearing cost of fraud

Dispute/Inquire about this Charge

Machine Learning

- We want to detect fraud in real-time
- Imagine we had a black box "classifier" which we fed all the properties we have for a transaction (e.g., amount)
- The black box responds with the probability that the transaction is fraudulent
- We use the black box elsewhere in our system: e.g., Stripe's API will query it for every transaction and immediately declines a charge if the probability of fraud is high enough

Input data

```
fraudulent, charge_time, amount, card_country, card_use_24h False, 2015-12-31T23:59:59Z, 20484, US, 0 False, 2015-12-31T23:59:59Z, 1211, US, 0 False, 2015-12-31T23:59:59Z, 8396, US, 1 False, 2015-12-31T23:59:59Z, 2359, US, 0 False, 2015-12-31T23:59:59Z, 1480, US, 3 False, 2015-12-31T23:59:59Z, 535, US, 3 False, 2015-12-31T23:59:59Z, 1632, US, 0 False, 2015-12-31T23:59:59Z, 10305, US, 1 False, 2015-12-31T23:59:59Z, 2783, US, 0 False, 2015-12-31T23:59:59Z, 2783, US, 0
```

Choosing the "features" (feature engineering) is a hard problem that we won't cover here

First attempt

Probability(fraud) = $a \times \text{amount} + b \times \text{card_use_24h} + \dots + Z$

Two issues:

- Probability(fraud) needs to be between 0 and 1
- card_country is not numerical (it's "categorical")

Logistic regression

 Instead of modeling p = Probability(fraud) as a linear function, we model the log-odds of fraud

$$\log\left(\frac{p}{1-p}\right) = a \times \text{amount} + b \times \text{card_use_24h} + \dots + Z$$

p is a sigmoidal function of the right side

$$p = \frac{\exp(a \times \text{amount} + b \times \text{card_use_24h} + \dots + Z)}{1 + \exp(a \times \text{amount} + b \times \text{card_use_24h} + \dots + Z)}$$

$$\frac{\sum_{a=0}^{0.8} a \times a}{\sum_{a=0}^{0.8} a \times a}$$

Categorical variables

- If we have a variable that takes one of N discrete values, we "encode" that by adding N - 1 "dummy" variables
- Ex: Let's say card_country can be "AU," "GB," or "US." We add booleans for "card = AU" and "card = GB"
- We don't want a linear relationship among variables

Our final model is

$$\log\left(\frac{p}{1-p}\right) = a \times \text{amount} + b \times \text{card_use_24h} + c \times (\text{country} = \text{AU}) + d \times (\text{country} = \text{GB}) + Z$$

Fitting a regression

$$\log\left(\frac{p}{1-p}\right) = a \times \text{amount} + b \times \text{card_use_24h} + c \times (\text{country} = \text{AU}) + d \times (\text{country} = \text{GB}) + Z$$

- Guess values for a, b, c, d, and Z
- Compute the "likelihood" of the training observations given these values for the parameters

$$\mathscr{E}(a, b, c, d, Z) = \prod_{\text{fraud}} p(x_i) \prod_{\text{not fraud}} (1 - p(x_j))$$

 Find a, b, c, d, and Z that maximize likelihood (optimization problem—gradient descent)

import pandas as pd

```
data = pd.read_csv('data.csv')
```

data.head()

	fraudulent	charge_time	amount	card_country	card_use_24h
0	False	2015-12-31T23:59:59Z	20484	US	0
1	False	2015-12-31T23:59:59Z	1211	US	0
2	False	2015-12-31T23:59:59Z	8396	US	1
3	False	2015-12-31T23:59:59Z	2359	US	0
4	False	2015-12-31T23:59:59Z	1480	US	3

data.fraudulent.value_counts()

False 45174 True 44219

Name: fraudulent, dtype: int64

data.card_country.value_counts()

US 84494 GB 2754 AU 2145

Name: card_country, dtype: int64

pandas brings R-like data frames to Python

```
encoded_countries = pd.get_dummies(data.card_country, prefix='cc_')
```

encoded_countries.head()

	cc_AU	cc_GB	cc_US
0	0	0	1
1	0	0	1
2	0	0	1
3	0	0	1
4	0	0	1

data = data.join(encoded_countries)

data.head()

	fraudulent	charge_time	amount	card_country	card_use_24h	ccAU	cc_GB	cc_US
0	False	2015-12-31T23:59:59Z	20484	US	0	0	0	1
1	False	2015-12-31T23:59:59Z	1211	US	0	0	0	1
2	False	2015-12-31T23:59:59Z	8396	US	1	0	0	1
3	False	2015-12-31T23:59:59Z	2359	US	0	0	0	1
4	False	2015-12-31T23:59:59Z	1480	US	3	0	0	1

y = data.fraudulent

```
X = data[['amount', 'card_use_24h', 'cc_AU', 'cc_GB']]
```

```
from sklearn.cross_validation import train_test_split
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
```

- We want models to generalize well, i.e., to give accurate predictions on new data
- We don't want to "overfit" to randomness in the data we use to train the model, so we evaluate our performance on data not used to generate the model

Logistic Regression from sklearn.linear_model import LogisticRegression lr_model = LogisticRegression().fit(X_train, y_train) lr_model.coef_

array([[4.62586221e-06, 3.53495554e-02, 4.28936114e-03, 2.49802503e-03]])

lr_model.intercept_

array([-0.0157345])

$$\log\left(\frac{p}{1-p}\right) = 4.63 \times 10^{-6} \times \text{amount} + 0.035 \times \text{card_use_24h} + 0.0043 \times (\text{cc_AU} = 1) + 0.0025 \times (\text{cc_GB} = 1) - 0.016$$

Evaluating the model - ROC, AUC

from sklearn.metrics import roc_curve, roc_auc_score

fpr, tpr, thresholds = roc_curve(y_test, y_test_scores_lr)

FPR = fraction of non-fraud predicted to be fraud

TPR = fraction of fraud predicted to be fraud

```
roc_auc_score(y_test, y_test_scores_lr)
```

Nonlinear models

- (Logistic) regressions are linear models: if you double one input value, the log-odds also double
- What if the impact of amount depends on another variable? For example, maybe larger amounts are more predictive of fraud for GB cards.*
- What if the effect of amount is nonlinear? For example, maybe small and large charges are more likely to be fraudulent than charges with moderate amounts.

Decision Trees

Fitting a decision tree

- Start with a node (first node is all the data)
- Pick the split that maximizes the decrease in Gini 2p(1-p) (weighted by size of child nodes)
- Example gain:
 (0.4998) (
 (41064/59893) * 0.4765 +
 (18829/59893) * 0.4132)
 = 0.043
- Continue recursively until stopping criterion reached

Random forests

- Decision trees are "easy" to overfit
- We train N trees, each on a (bootstrapped) sample of the training data
- At each split, we only consider a subset of the available features—say, sqrt(total # of features) of them
- This reduces correlation among the trees
- The score is the average of the score produced by each tree

```
# Decision Tree
from sklearn.tree import DecisionTreeClassifier
dt model = DecisionTreeClassifier(
    max depth=3, min samples_split=20).fit(X_train, y_train)
y test scores dt = [x[1] for x in dt model.predict proba(X test)]
roc auc score(y test, y test scores dt)
0.69289424199670357
# Random Forest
from sklearn.ensemble import RandomForestClassifier
rf model = RandomForestClassifier(
    n estimators=100, min samples leaf=100).fit(X train, y train)
y_test_scores_rf = [x[1] for x in rf_model.predict_proba(X_test)]
roc auc score(y test, y test scores rf)
0.73611360329083841
```

Choosing methods

- Use regression if: the relationship between the target and the inputs is linear, or you want to be able to isolate the impact of each variable on the target
- Use a tree/forest if: there are complex dependencies between inputs or the impact on the target of an input is nonlinear

James, Witten, Hastie, Tibshirani Introduction to Statistical Learning

Where do you stick the model?

- Make model scoring a service: work common to all model evaluations happens in one place (e.g., logging of scores and feature values for later analysis)
- Easier option: save Python model objects and have scoring be a Python service (e.g., with Tornado)
 - Advantages: easy to set-up
 - Disadvantages: all the problems with pickling, another production runtime (if you're not already using Python), GIL (no concurrent model evaluation)

Other option: create (custom) serialization format, save models in Python, and load in a service in a different language (e.g., Scala/Go)

- Advantages: Runtime consistency, fun evaluation optimizations (e.g, concurrently scoring all the trees in a forest), type checking
- Disadvantages: Have to write serializer/deserializer (PMML is a "standard" but no scikit support)

Better if your RPC protocol supports type-checking (e.g. protobuf or thrift)!

Harder problems

- Feature engineering: figuring out what inputs are valuable to the model (e.g., the "card_use_24h" input)
- Getting data into the right format in production: say you generate training data on Hadoop—what do you do in production?
- Evaluating the production model performance and training new models? (Counterfactual evaluation)

Thanks

@mlmanapat

Slides, Jupyter notebook, data, and related talks at http://mlmanapat.com

Shameless plug: Stripe is hiring engineers and data scientists