Проверка статистических гипотез

Грауэр Л.В.

Статистические гипотезы

Гипотеза о равенстве математических ожиданий двух генеральных совокупностей

Гипотеза о равенстве дисперсий нескольких генеральных совокупностей

Гипотеза о законе распределения генеральной совокупности

Гипотеза об однородности выборки

Гипотеза о наличии аномальных результатов наблюдений (выбросов)

Гипотеза о независимости двух случайных величин

Статистической гипотезой называется предположение о виде или свойствах генерального или выборочного распределений, которое можно проверить статистическими методами на основе имеющейся выборки.

- простая гипотеза
- сложная гипотеза

Критерий значимости

$$\xi$$
, $F_{\xi}(x)$ $X_{[n]}$

- $H_0: F_{\xi}(x) = F_0(x)$.
- \vdash $H_1: F_{\xi}(x) = F_1(x).$

По выборке $X_{[n]}$ требуется принять решение об истинности гипотезы H_0 при гипотезе H_1 .

Правило проверки статистической гипотезы при некоторой фиксированной альтернативе называется статистическим критерием.

Статистикой критерия значимости называется статистика, по значениям которой судят о справедливости выдвинутой гипотезы.

Уровень значимости

Уровнем значимости α называется столь малая вероятность, что событие с такой вероятностью является практически невозможной.

Критической областью критерия называется подобласть области значений статистики критерия, вероятность попадания в которую для этой статистики при условии истинности нулевой гипотезы равна уровню значимости.

Схема проверки статистических гипотез, α

- Формулируем нулевую и альтернативную гипотезу
- Задаем уровень значимости
- Выбираем критерий и статистику критерия
- Строим критическую область при условии справедливости нулевой гипотезы
- ▶ Вычисляем выборочное значение статистики
- ▶ Проверяем, принадлежит ли выборочное значение статистики критической области
- ▶ Принимаем статистическое решение

р-значение

Пусть
$$Z$$
, $F_Z(\cdot|H_0)$
 $X_{[n]}$, $H_0 \Rightarrow z(X_{[n]})$

p-значением (p-value) называется статистика, равная вероятности того, что статистика критерия примет значение такое же как $z(X_{[n]})$ или более "экстремальное" при условии, что верна нулевая гипотеза.

Схема проверки статистических гипотез, p-value

- Формулируем нулевую и альтернативную гипотезы
- ▶ Задаем уровень значимости
- Выбираем критерий и статистику критерия
- ▶ Вычисляем выборочное значение статистики критерия
- ▶ Вычисляем соответствующее p-value
- ► Сравниваем p-value с уровнем значимости
- ▶ Принимаем статистическое решение

Ошибки 1го и 2го рода

Ошибка первого рода — отклонить гипотезу H_0 , когда она верна, вероятность ошибки первого рода α определяется равенством:

Ошибка второго рода — принять гипотезу H_0 , когда верна H_1 , вероятность ошибки второго рода β определяется равенством:

Мощность критерия

$$\gamma = 1 - \beta = P\left\{Z \in V_k | H_1\right\}$$

Критерий называется несмещенным, если выполняется условие

$$\gamma > \alpha$$
.

Нерандомизированный и рандомизированный критерии

$$\varphi(x) = I\{x \in S\}$$
Нерандомизированный критерий имеет вид:

- Если $\varphi(X_{[n]}) = 1$, тогда отвергаем H_0 , принимаем H_1 .
- lacktriangle Если $arphi(X_{[n]})=0$, тогда принимаем H_0 , отвергаем H_1 .

$$\varphi(x) = P\left\{\bar{H}_0/X_{[n]} = x\right\}$$
Рандомизированный критерий:

- lacktriangle с вероятностью $1-arphi(X_{[n]})$ следует принимать гипотезу H_0
- ightharpoonup с вероятностью $\varphi(X_{[n]})$ принимать гипотезу H_1 .

$$\varphi(x)$$
 — критическая функция

Задача построения оптимального критерия

Зададим α_0

$$egin{cases} lpha_0\geqslantlpha(\mathcal{S}),\ \gamma(\mathcal{S})
ightarrow ext{max}\,. \end{cases}$$

Проверка двух простых статистических гипотез

- ▶ $H_0: F_{\xi}(x) = F_0(x)$.
- \vdash $H_1: F_{\xi}(x) = F_1(x).$

 $F_0(x)$ и $F_1(x)$ полностью известны.

По $X_{[n]}$ требуется принять решение об истинности H_0 при H_1 .

Лемма Неймана-Пирсона

При фиксированной вероятности ошибки первого рода $lpha_0 \in (0,1)$ наиболее мощный критерий имеет критическую функцию $arphi^*$ вида

$$arphi^*(x) = egin{cases} 1, & ext{если } L_1(x) > cL_0(x); \ arepsilon, & ext{если } L_1(x) = cL_0(x); \ 0, & ext{если } L_1(x) < cL_0(x), \end{cases}$$

где

$$L_0(x)=\prod_{i=1}^n f_0(x_i)$$
 соответствует H_0 , $L_1(x)=\prod_{i=1}^n f_1(x_i)$ соответствует H_1 . Константы c и $arepsilon$ — решения уравнения $lpha(arphi^*)=lpha_0$.