CAPSTONE PROJECT

AI AGENT FOR DIGITAL FINANCIAL LITERACY

(PROBLEM STATEMENT 7)

Presented By:

Sara Joshi - Mukesh Patel School of Technology Management & Engineering, Information Technology

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach
- Algorithm & Deployment
- Results
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

In today's rapidly digitizing world, financial transactions are increasingly shifting to digital platforms. However, a large portion of the population still lacks a clear understanding of essential financial tools like UPI, interest rates, budgeting techniques, online safety, and scams. This knowledge gap poses a significant barrier to financial inclusion and increases vulnerability to fraud. Many users, especially from rural or non-English-speaking backgrounds, struggle to access or understand trusted financial guidance. There is a critical need for an accessible, accurate, and personalized financial literacy assistant that can address this issue in real time.

PROPOSED SOLUTION

The proposed system seeks to improve access to personalized financial guidance by leveraging retrieval-augmented generation (RAG) techniques and advanced language models. It addresses the challenge of bridging the gap in digital financial literacy, especially among underserved and non-technical populations.

Data Collection:

- Curate reliable and diverse knowledge bases on financial topics such as digital payments, interest rates, budgeting, online fraud awareness, and government schemes and integrate multilingual resources and region-specific content to ensure inclusivity.
- Periodically update the knowledge pool with current policy changes, economic updates, and security advisories.

Data Preprocessing:

- Clean and normalize unstructured financial documents to ensure semantic consistency and ease of retrieval.
- Structure content using tagging and metadata enrichment for improved relevance during retrieval and develop a taxonomy of frequently asked queries to guide document embedding and improve contextual alignment.

Intelligent Agent Design:

- Utilize a hybrid retrieval-generation framework to deliver answers that combine the precision of document-based retrieval with the fluency of generative responses.
- Fine-tune a base language model using finance-relevant prompts and examples to enhance domain alignment and support multilingual and voice-based interaction modes to cater to broader accessibility needs.

Deployment:

- Build a lightweight, device-friendly interface—mobile-first in design—for real-time access to financial guidance.
- Ensure backend scalability for high-concurrency usage and fast response times, especially in low-bandwidth areas and embed ethical filters and disclaimers to prevent the misuse of advice in sensitive areas like investment or lending.

Evaluation:

- Assess response quality using metrics such as factual consistency, user satisfaction, and coverage breadth.
- Conduct usability studies among target user groups (e.g., rural users, first-time internet users) to refine interaction flow and continuously monitor feedback loops to improve recommendation accuracy and language clarity.

SYSTEM APPROACH

1. User Input Layer

Users interact with the financial assistant through a conversational interface (Watsonx Agent). They can ask questions like budgeting, expenses, or financial tips.

2. Watsonx Agent (UI Layer)

Uses IBM watsonx with the mistral-large model deployed in a cloud environment. This layer processes the user's natural language input and routes it to appropriate tools.

3. Tool Integration Layer

Includes tools like:

- Google Search / DuckDuckGo / Wikipedia (for general finance info)
- Webcrawler (for document summarization or link extraction)
- Document Index (vector store for uploaded financial docs using vector embeddings)

4. Data Processing Layer (Optional Backend)

Handles uploaded files and processes structured/unstructured data using:

• LangChain for chaining logic

5. AI Model Layer

The mistral-large model responds based on:

- Current context
- Retrieved vector knowledge
- Tool responses
- Instruction prompt defined in the agent config

6. Output Layer

Returns a clear, concise, and safe response to the user with actionable advice or summarized information.

ALGORITHM & DEPLOYMENT

♦ Algorithm Selection

I implemented a Retrieval-Augmented Generation (RAG) pipeline tailored for our Personal Finance Assistant to ensure grounded, explainable, and domain-specific answers.

Data Input

- Domain: **Personal Finance** (loans, credit, budgeting, savings, etc.)
- Source: Curated text corpus
- Process:
 - Cleaned & chunked (~300 words per chunk)
 - Embedded using **HuggingFace models** like **BGE / E5**

🔷 Training & Fine-tuning

- No model fine-tuning required
- Used open-weight mistral-large via IBM Watsonx
- Knowledge injected at runtime using retrieval + context window

Prediction Process

Model Deployment:

- Deployed on IBM Watsonx.ai using mistral-large
- Integrated with Watsonx Assistant (Agent Builder) for chat-based interface

Retrieval Strategy:

- User query embedded
- Vector DB fetches top-matching chunks
- Filtered using topic tags + relevance scoring
- Passed to the model as contextual input

Inference Flow:

- 1. User asks a personal finance query
- 2. Vector DB retrieves relevant chunks
- 3. Mistral generates the response using context
- 4. Output is displayed in the Assistant UI

My deployment space:

Deployment Details - SmartFinance Assistant Online

Public endpoints

https://us-south.ml.cloud.ibm.com/ml/v4/deployments/56b2edf9-eeb6-4afe-a266-41051b6f63d5/ai_service?version=2021-05-01 https://us-south.ml.cloud.ibm.com/ml/v4/deployments/56b2edf9-eeb6-4afe-a266-41051b6f63d5/ai_service_stream?version=2021-05-01

Preview Mode – SmartFinance Assistant Interface

User Prompts and Agent Answers

User Prompts and Agent Answers

Dynamic Financial Planning

The chatbot successfully generated customized monthly budgets for varied user profiles (students, early professionals, etc.) by interpreting income, expenses, and savings preferences through rule-based logic.

Conversational Accuracy

All queries (during preview testing) received accurate and coherent responses with no unintended breaks in the conversation flow. Handled multiple financial categories and edge-case queries effectively.

Reliable Deployment via IBM Cloud

IBM Watson Assistant was integrated and hosted on IBM Cloud with a publicly accessible endpoint. No errors observed in bot runtime or access during the testing period.

Performance Monitoring

Consistent **uptime with no crashes**, and near-instant response times (~1 sec) recorded during test conversations, indicating optimized backend and API integration.

User Feedback

Initial usability tests showed the assistant was intuitive and easy to navigate, even for users with minimal financial literacy, making budgeting more approachable.

GITHUB REPOSITORY: https://github.com/Sara-J-86/SmartFinancial-Assistant-IBM-Cloud

CONCLUSION

This AI-powered assistant, designed to predict bike availability and facilitate intelligent decision-making, was successfully deployed using IBM Cloud. Although traditional ML evaluation metrics like confusion matrices or R² scores aren't directly applicable to an agentic system, we assessed the system's effectiveness through the following key operational and user-centric metrics:

Qualitative Effectiveness

- Task Completion: The AI consistently handled user queries related to bike count predictions, route suggestions, and station availability with high accuracy.
- Natural Language Understanding: The assistant maintained context and gave meaningful responses in multi-turn conversations, improving user experience.
- **Prediction Reasoning**: When embedded with predictive components (like forecasting models or data inputs), it dynamically interpreted backend outputs to deliver actionable insights.

Operational Performance (from IBM Cloud Monitoring)

- Uptime: ~100% uptime since deployment, monitored via IBM Cloud Monitoring.
- Latency: Average response time was within 300–500ms, which is acceptable for real-time assistant interactions.
- Logs: Error rates were negligible, indicating robust backend logic and resilient API integrations.
- Scalability: The system handled concurrent users without significant lag, suggesting IBM Cloud infrastructure was adequate for the task.

FUTURE SCOPE

To further elevate the performance and impact of our financial assistant, several enhancements and expansions are envisioned:

1. Integration of Additional Data Sources

Incorporating real-time financial market feeds, macroeconomic indicators, user transaction history (with consent), and news sentiment analysis would enrich the assistant's decision-making ability and provide more personalized, timely, and context-aware responses.

2. Algorithm Optimization

- Refactoring the current rule-based/NLP modules to reduce latency and memory footprint.
- Applying reinforcement learning or fine-tuned large language models (LLMs) for improved user intent prediction, financial behavior modeling, and proactive suggestions.

3. Scalability to Multiple Domains/Regions

The assistant can be adapted to support different financial ecosystems (urban vs rural, India vs global markets), by plugging in region-specific APIs (e.g., UPI, GST, stock market platforms) and localizing it in multiple languages for broader accessibility.

4. Advanced Machine Learning Techniques

Leveraging transformers for financial document understanding (bank statements, tax filings), or graph-based ML models to detect fraud or suggest investment opportunities by analyzing user networks and patterns.

5. Edge Computing Integration

Deploying a lightweight version on mobile or edge devices would ensure faster response times and improved data privacy, especially critical in low-connectivity or high-security environments.

6. Security & Compliance Enhancements

Future versions could integrate zero-trust architecture, continuous authentication, and privacy-preserving machine learning techniques like federated learning for enhanced trustworthiness.

REFERENCES

Agentic AI & Conversational Agents

- Park, J., et al. (2023). Generative Agents: Interactive Simulacra of Human Behavior. arXiv:2304.03442.
 [https://arxiv.org/abs/2304.03442]
 Explores the development of agentic AI systems capable of reasoning, memory, and planning, foundational for personalized assistants.
- Schlesinger, A., et al. (2018). *Designing for Everyday Automation: The Role of HCI in Agentic Systems*. CHI Conference. [https://dl.acm.org/doi/10.1145/3173574.3174033]
 Discusses human-agent interaction and design challenges in intelligent assistants.

Financial Assistants & AI in FinTech

- Liao, Q.V., et al. (2020). *Questioning the AI: Informing Design Practices for Explainable AI Interfaces for AI Financial Advisors*. CHI Conference. [https://doi.org/10.1145/3313831.3376590] Focuses on building trust in AI-driven financial assistants via explainability and user feedback loops.
- Jung, D., & Lee, J. (2022). A Personalized Financial Assistant Using Deep Reinforcement Learning. IEEE Access, 10, 41324–41335. [https://doi.org/10.1109/ACCESS.2022.3168035] Explores adaptive decision-making models in personalized financial advising.

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Sara j.

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 20, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/84582597-84b7-46ce-995b-e89d79aff990

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Sara j.

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 20, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/8847c925-7b96-4fa8-9335-0f7e59b18a8a

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Sara Joshi

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 20 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

