Math. - ES 2 - CORRECTION

EXERCICE 1

On considère l'application u définie sur \mathbb{R}^3 par

$$u((x,y,z)) = (3y - 2z; -6x + 9y - 4z; -6x + 6y - z)$$

On pose : $p = 3 \operatorname{Id}_3 - u$, $q = u - 2 \operatorname{Id}_3$, $F = \operatorname{Ker}(p)$, et $G = \operatorname{Ker}(q)$ où Id_3 désigne l'application identité de \mathbb{R}^3 .

1a. Montrer que u est un endomorphisme de \mathbb{R}^3 et qu'il vérifie

$$u^2 - 5u + 6 \operatorname{Id}_3 = 0$$

On a clairement, $\forall (\lambda, (a, b, c), (x, y, z)) \in \mathbb{R} \times (\mathbb{R}^3)^2$, $u(\lambda(a, b, c) + (x, y, z)) = \lambda u((a; b; c)) + u((x, y, z))$.

De plus,
$$\forall (x,y,z) \in \mathbb{R}^3, u(u(x,y,z))) = u\left((3y-2z; -6x+9y-4z; -6x+6y-z)\right) = (a;b;c)$$
 où : $a = 3(-6x+9y-4z) - 2(-6x+6y-z) = -6x+15y-10z$, û $b = -6(3y-2z) + 9(-6x+9y-4z) - 4(-6x+6y-z) = -30x+39y+20z$ et $c = -6(3y-2z) + 6(-6x+9y-4z) - (-6x+6y-z) = -30x+30y-11z$ On obtient $\forall (x,y,z) \in \mathbb{R}^3$: $u(u((x,y,z))) - 5u((x,y,z)) + 6(x,y,z) = (a;b;c) + (6x-15y+10z; 30x-39y-20z; 30x-30y+11z) = (0,0,0)$ On a donc bien $u^2 - 5u + 6\operatorname{Id}_3 = 0$

b. En déduire que u est un automorphisme de \mathbb{R}^3 , et expliciter $u^{-1}((x,y,z))$.

La question précédente donne :
$$u \circ \left(\frac{1}{6}(5\mathrm{Id}_3 - u)\right) = \mathrm{Id}_3$$

donc $u \in \mathrm{Aut}(\mathbb{R}^3)$ et $\forall (x, y, z) \in \mathbb{R}^3$:
$$u^{-1}((x, y, z)) = \frac{1}{6}\left((5x, 5y, 5z) - (3y - 2z; -6x + 9y - 4z; -6x + 6y - z)\right) = \left(\frac{5}{6}x - \frac{1}{2}y + \frac{1}{3}z; x - \frac{2}{3}y + \frac{2}{3}z; x - y + z\right)$$

2a. Montrer que

$$u \circ q = q \circ u = 3 q$$
 et $u \circ p = p \circ u = 2p$

On remarque tout d'abord que p et q étant des combinaisons linéaires de puissances de u elles commutent avec u. En utilisant le résultat de la question $\mathbf{1.a}$, on a :

$$u \circ q = u \circ (u - 2\operatorname{Id}_3) = u^2 - 2u = 5u - 6\operatorname{Id}_3 - 2u = 3u - 6\operatorname{Id}_3 = 3q = q \circ u$$

 $u \circ p = u \circ (3\operatorname{Id}_3 - u) = 3u - u^2 = 3u - 5u + 6\operatorname{Id}_3 = -2u + 6\operatorname{Id}_3 = 2p = p \circ u$

b. En déduire que

$$\forall n \in \mathbb{N}, \quad u^n = 3^n q + 2^n p$$

Pour $n \in \mathbb{N}$, on note $H_n : u^n = 3^n q + 2^n p$

 $\triangleright p + q = \mathrm{Id}_3$ donc H_0 est vérifiée.

⊳ Soit $n \in \mathbb{N}$; on suppose H_n vérifiée. On a, par linéarité de u: $u^{n+1} = u \circ u^n = u \circ (3^n q + 2^n p) = 3^n u \circ q + 2^n u \circ p = 3^n (3q) + 2^n (2p) = 3^{n+1} q + 2^{n+1} p$ Ainsi H_{n+1} est vérifiée.

Par principe de récurrence, H_n est vérifiée pour tout $n \in \mathbb{N}$.

Vérifier que cette relation est aussi vraie pour n=-1. En déduire que

$$\forall n \in \mathbb{Z}, \quad u^n = 3^n q + 2^n p$$

- Pour $n \in \mathbb{N}^*$, on note $H'_n : u^{-n} = 3^{-n}q + 2^{-n}p$. \triangleright D'après la question **1.b**, on a : $u^{-1} = \frac{5}{6} \mathrm{Id}_3 \frac{1}{6} u = \frac{1}{3} (u 2 \mathrm{Id}_3) + \frac{1}{2} (3 \mathrm{Id}_3 u)$ donc la propriété H'_n est vraie pour n=1 (et la propriété H_n est donc vraie pour n=-1). \triangleright Soit $n \in \mathbb{N}^*$. On suppose H'_n vraie.

On a : $u \circ q = 3q$ donc $\frac{1}{3}q = u^{-1} \circ q$ et $u \circ p = 2p$ donc $\frac{1}{2}p = u^{-1} \circ p$, d'où :

$$u^{-(n+1)} = u^{-1} \circ u^{-n} = u^{-1} \circ \left(3^{-n}q + 2^{-n}p\right) = 3^{-n}u^{-1} \circ q + 2^{-n}u^{-1} \circ p = 3^{-n}\left(\frac{1}{3}q\right) + 2^{-n}\left(\frac{1}{2}p\right) = 3^{-(n+1)}q + 2^{-(n+1)}p$$

Ainsi H'_{n+1} est vérifiée

Par principe de récurrence, H'_n est vérifiée pour tout $n \in \mathbb{N}^*$ et par suite, H_n est vérifiée pour tout $n \in \mathbb{Z}$.

Montrer que F est un plan vectoriel, que G est une droite vectorielle et que $\mathbb{R}^3 = F \oplus G$.

 $(x,y,z) \in F \Leftrightarrow (3y-2z; -6x+9y-4z; -6x+6y-z) = (3x,3y,3z) \Leftrightarrow 3x-3y+2z = 0$ On a donc $F = \text{Vect}\{(1, 1, 0), (-2, 0, 3)\};$

$$(x,y,z) \in G \Leftrightarrow (3y-2z; -6x+9y-4z; -6x+6y-z) = (2x,2y,2z) \Leftrightarrow \begin{cases} 2x-3y+2z=0 \\ 6x-7y+4z=0 \\ 6x-6y+3z=0 \end{cases}$$

$$\Leftrightarrow \left\{ \begin{array}{l} 2x - 3y + 2z = 0 \\ y - z = 0 \end{array} \right.$$
 On a donc $G = \operatorname{Vect}\left\{(1, 2, 2)\right\}$

$$\begin{pmatrix} 1 & -2 & 1 \\ 1 & 0 & 2 \\ 0 & 3 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & 1 \\ 0 & 3 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{matrice de rang 3.}$$

Les vecteurs des bases de F et G réunis forment donc une famille libre de cardinal 3, on en déduit que $F \oplus G = \mathbb{R}^3$.

Montrer que p et q sont des projecteurs et que $p \circ q = q \circ p = 0$

On a: $p \circ p = 9Id_3 - 6u + u^2 = 9Id_3 - 6u + 5u - 6Id_3 = 3Id_3 - u = p$;

 $q \circ q = 4\mathrm{Id}_3 - 4u + u^2 = 4\mathrm{Id}_3 - 4u + 5u - 6\mathrm{Id}_3 = u - 2\mathrm{Id}_3 = q.$

On en déduit que p et q sont des projecteurs.

De plus, p et q étant des combinaisons linéaires de puissances de u ils commutent, et on a : $p \circ q = -6\operatorname{Id}_3 + 5u - u^2 = -6\operatorname{Id}_3 + 5u - 5u + 6\operatorname{Id}_3 = 0.$

Montrer que p est la projection sur G parallèlement à F et que q est la projection sur F parallèlement à G.

On sait que p est la projection sur Im(p) parallèlement à Ker(p) et que $\text{Im}(p) \oplus \text{Ker}(p) = \mathbb{R}^3$.

Comme $q \circ p = 0$, on en déduit que $\text{Im}(p) \subset \text{Ker}(q)$. De plus, F et G étant supplémentaires, de même que F et Im(p) on en déduit que $\dim(G) = \dim(\text{Im}(p))$ et par suite que Im(p) = G.

On démontre de même que q est la projection sur F parallèlement à G.

4. On considère trois suites $(x_n), (y_n)$ et (z_n) vérifiant pour tout $n \in \mathbb{N}$:

$$\begin{cases} x_{n+1} = 3y_n - 2z_n \\ y_{n+1} = -6x_n + 9y_n - 4z_n \\ z_{n+1} = -6x_n + 6y_n - z_n \end{cases}$$

avec x_0, y_0 et z_0 dans \mathbb{R} . Exprimer x_n, y_n et z_n en fonction de x_0, y_0, z_0 et n, pour tout $n \in \mathbb{N}$.

On note, pour
$$n \in \mathbb{N}, X_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$$
 et $A = \begin{pmatrix} 0 & 3 & -2 \\ -6 & 9 & -4 \\ -6 & 6 & -1 \end{pmatrix}$. On a pour $n \in \mathbb{N}, X_{n+1} = AX_n$.

On remarque de A est la matrice de u dans la base canonique, donc pour $n \in \mathbb{N}$, A^n est la matrice de u^n dans la base canonique.

Une récurrence immédiate donne pour tout $n \in \mathbb{N}, X_n = A^n X_0$.

$$X_{n} = \begin{pmatrix} -2 \times 3^{n} + 3 \times 2^{n} & 3 \times 3^{n} - 3 \times 2^{n} & -2 \times 3^{n} + 2 \times 2^{n} \\ -6 \times 3^{n} + 6 \times 2^{n} & 7 \times 3^{n} - 6 \times 2^{n} & -4 \times 3^{n} + 4 \times 2^{n} \\ -6 \times 3^{n} + 6 \times 2^{n} & 6 \times 3^{n} - 6 \times 2^{n} & -3 \times 3^{n} + 4 \times 2^{n} \end{pmatrix} \begin{pmatrix} x_{0} \\ y_{0} \\ z_{0} \end{pmatrix}.$$

D'après la question **2.b**, on a
$$A^n = 3^n(A - 2I_3) + 2^n(A - 2I_3)$$
 donc on obtient :
$$X_n = \begin{pmatrix} -2 \times 3^n + 3 \times 2^n & 3 \times 3^n - 3 \times 2^n & -2 \times 3^n + 2 \times 2^n \\ -6 \times 3^n + 6 \times 2^n & 7 \times 3^n - 6 \times 2^n & -4 \times 3^n + 4 \times 2^n \\ -6 \times 3^n + 6 \times 2^n & 6 \times 3^n - 6 \times 2^n & -3 \times 3^n + 4 \times 2^n \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}.$$
 Finalement, pour $n \in \mathbb{N}$,
$$\begin{cases} x_n = (-2 \times 3^n + 3 \times 2^n)x_0 + (3^{n+1} - 3 \times 2^n)y_0 + (-2 \times 3^n + 2^{n+1})z_0 \\ y_n = (-2 \times 3^{n+1} + 3 \times 2^{n+1})x_0 + (7 \times 3^n - 3 \times 2^{n+1})y_0 + (-4 \times 3^n + 2^{n+2})z_0 \\ z_n = (-2 \times 3^{n+1})x_0 + (3 \times 2^{n+1})y_0 + (2 \times 3^{n+1} - 3 \times 2^{n+1})y_0 + (-3^{n+1} + 2^{n+2})z_0 \end{cases}$$

EXERCICE 2

On se place dans $\mathbb{C}[X]$, et on note

$$A = X^4 - 1 \qquad \text{et} \qquad B = X^4 - X$$

On note f l'application qui à un polynôme P de $\mathbb{C}_3[X]$ associe le reste de la division euclidienne de AP par B.

1. Montrer que f est un endomorphisme de $\mathbb{C}_3[X]$.

Par définition de la division euclidienne de deux polynômes, on a le degré du reste strictement inférieur au degré du diviseur. On a donc $\deg(f(P)) < \deg(B)$ donc f est à valeurs dans $\mathbb{C}_3[X]$.

De plus, $\forall (\lambda, P, Q) \in \mathbb{C} \times \mathbb{C}_3[X]^2$, on note $AP = BQ_1 + R_1$ et $AQ = BQ_2 + R_2$ avec $\deg(R_1) \leq 3$ et $deg(R_2) \leq 3$ les divisions euclidiennes de AP et AQ par B.

On a: $A(\lambda P + Q) = B(\lambda Q_1 + Q_2) + \lambda R_1 + R_2$ avec $\deg(\lambda R_1 + R_2) \le \max(\deg(\lambda R_1), \deg(R_2)) \le 3$. Par unicité de la division euclidienne, on en déduit que $f(\lambda P + Q) = \lambda R_1 + R_2 = \lambda f(P) + f(Q)$ donc que f est linéaire.

Finalement, on a bien $f \in \mathcal{L}(\mathbb{C}_3[X])$.

2. Déterminer le noyau de f.

 $P \in \text{Ker}(f)$ si, et seulement si le reste de la division euclidienne de AP par B est nul donc si B divise AP.

0 et 1 sont des racines évidentes de B, et on obtient directement dans $\mathbb{R}[X]$ la factorisation

 $B = X(X-1)(X^2+X+1)$; les racines de A sont les racines quatrièmes de l'unité et on obtient directement dans $\mathbb{R}[X]$ la factorisation $A = (X-1)(X+1)(X^2+1)$. On a donc :

$$P \in \text{Ker}(f) \Leftrightarrow \exists Q \in \mathbb{C}_3[X], (X-1)(X+1)(X^2+1)P = X(X-1)(X^2+X+1)Q$$

$$\Leftrightarrow \exists Q \in \mathbb{C}_3[X], (X+1)(X^2+1)P = X(X^2+X+1)Q \Leftrightarrow \exists \lambda \in \mathbb{C}, P = \lambda X(X^2+X+1)$$

car -1, i et -i ne sont pas des racines de $X(X^2 + X + 1)$ donc ce sont des racines de Q et P est de degré au plus 3.

On en déduit que $Ker(f) = Vect\{X^3 + X^2 + X\}.$

3. Quelle est la dimension de $\operatorname{Im}(f)$? Montrer que $\operatorname{Im}(f) = (X-1)\mathbb{C}_2[X]$.

Le théorème du rang donne $\dim(\operatorname{Im}(f)) = 4 - 1 = 3$. De plus $f(X^0) = X - 1$, $f(X) = X^2 - X = X(X - 1)$, $f(X^2) = X^3 - X^2 = X^2(X - 1)$; ces polynômes formant une famille de polynômes de $\operatorname{Im}(f)$ échelonnée en degrés et de cardinal 3, ils en constituent donc une base. Ainsi tout vecteur de $\operatorname{Im}(f)$ en est une combinaison linéaire et donc s'écrit sous la forme $(X - 1)(a + bX + cX^2)$ ce qui donne le résultat attendu.

4. Déterminer les quatre racines z_1, z_2, z_3 et z_4 de B.

Les racines de B sont $z_1 = 0, z_2 = 1, z_3 = e^{i\frac{2\pi}{3}} = j$ et $z_4 = e^{-i\frac{2\pi}{3}} = \bar{j}$.

5. Montrer qu'en posant $P_k = \frac{B}{X - z_k}$ pour $k \in [1, 4]$, la famille (P_1, P_2, P_3, P_4) est une base de $\mathbb{C}_3[X]$.

Soit $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbb{C}^4$. $\lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3 + \lambda_4 P_4 = 0 \Rightarrow \forall n \in [1, 4], \lambda_1 P_1(z_n) + \lambda_2 P_2(z_n) + \lambda_3 P_3(z_n) + \lambda_4 P_4(z_n) = 0$ Pour $n \in [1, 4], z_n$ est racine de P_k si et seulement si $n \neq k$, on a donc $\forall n \in [1, 4], \lambda_n = 0$. Ainsi la famille est libre, de cardinal 4, c'est donc une base de $\mathbb{C}_3[X]$.

6. Montrer que $f(P_k) = (z_k - 1)P_k$, et en déduire la matrice de f dans la base (P_1, P_2, P_3, P_4) .

On a A = B + X - 1 donc pour $k \in [1, 4]$, $AP_k = BP_k + XP_k - P_k$ et $(X - z_k)P_k = B$. On en déduit que $AP_k = BP_k + B + z_kP_k - P_k = (P_k + 1)B + (z_k - 1)P_k$, avec $z_k - 1 = 0$ si k = 2 et $\deg((z_k - 1)P_k) \le \deg(P_k) < \deg(B)$ sinon; c'est donc la division euclidienne de AP_k par B et on a $f(P_k) = (z_k - 1)P_k$. On en déduit la matrice de f dans la base (P_1, P_2, P_3, P_4) :

$$\operatorname{mat}_{(P_1, P_2, P_3, P_4)}(f) = \begin{pmatrix} -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & \mathbf{j} - 1 & 0\\ 0 & 0 & 0 & \overline{\mathbf{j}} - 1 \end{pmatrix}$$

EXERCICE 3

On se place dans l'espace muni d'un repère orthonormé direct. On considère la droite $\mathcal D$ admettant pour représentation paramétrique :

$$\begin{cases} x = 4 + 2t \\ y = 3 + t \\ z = 1 + t \end{cases}$$

On note H le projeté orthogonal de O, centre du repère, sur \mathscr{D} .

1a. Expliciter la distance d(t) du point O au point M(t) de \mathcal{D} de paramètre t.

$$\forall t \in \mathbb{R}, \quad d(t) = \sqrt{(4+2t)^2 + (3+t)^2 + (1+t)^2} = \sqrt{6t^2 + 24t + 26}.$$

b. Déterminer la valeur de t pour laquelle la distance précédente est minimale. On la note t_0 . A quoi correspond le point $M(t_0)$ de $\mathscr D$ ainsi déterminé?

La distance est minimale lorsque $6t^2 + 24t + 26$ est minimal, c'est-à-dire pour t tel que 12t + 24 = 0, soit $t_0 = -2$. M(-2) est le point H.

2a. Montrer que le plan \mathscr{P} d'équation x - 2z - 2 = 0 contient la droite \mathscr{D} .

 $\forall t \in \mathbb{R}$, (4+2t)-2(1+t)=2 donc les coordonnées des points de \mathscr{D} vérifient l'équation de \mathscr{P} d'où $\mathscr{D} \subset \mathscr{P}$.

b. Déterminer une équation cartésienne du plan \mathscr{R} contenant \mathscr{D} et perpendiculaire à \mathscr{P} .

On rappelle que deux plans sont perpendiculaires si les vecteurs normaux de l'un sont orthogonaux aux vecteurs normaux de l'autre.

On note $\mathscr{D} = S + \operatorname{Vect}(\overrightarrow{u})$ où S est le point de coordonnées (4;3;1) et \overrightarrow{u} le vecteur de coordonnées (2;1;1).

Le plan \mathcal{R} contenant \mathcal{D} , il passe par le point S et admet le vecteur \overrightarrow{u} pour vecteur directeur.

Comme il est perpendiculaire à \mathscr{P} le vecteur \overrightarrow{n} de coordonnées (1;0;-2) normal à \mathscr{P} est un vecteur directeur de \mathscr{R} .

 \overrightarrow{u} et \overrightarrow{n} n'étant clairement pas colinéaires, le plan \mathscr{R} admet pour vecteur normal le vecteur $\overrightarrow{u} \wedge \overrightarrow{n}$ qui a pour coordonnées (-2;5;-1).

Finalement, \mathscr{R} admet pour équation cartésienne -2(x-4)+5(y-3)-(z-1)=0 soit encore : 2x-5y+z+6=0.

c. Calculer les distances de O à \mathscr{P} et de O à \mathscr{R} .

$$d(O, \mathscr{P}) = \frac{|-2|}{\sqrt{1^2 + 2^2}} = \frac{2}{\sqrt{5}}, \qquad d(O, \mathscr{R}) = \frac{|6|}{\sqrt{2^2 + 5^2 + 1^2}} = \frac{6}{\sqrt{30}}.$$

d. On note A et A' les projetés orthogonaux de O sur \mathscr{P} et \mathscr{R} respectivement. Justifier que les points O, A, A' et H sont coplanaires et donner la nature du quadrilatère OAHA'.

Par construction, le vecteur \overrightarrow{u} précédemment donné (qui dirige \mathscr{D}) est orthogonal à \overrightarrow{OA} , à $\overrightarrow{OA'}$ et à \overrightarrow{OH} . On en déduit que les points O, A, A' et H sont dans un plan orthogonal à \mathscr{D} . De plus, (OA) est orthogonale à \mathscr{P} donc à (AH) et (OA') est orthogonale à \mathscr{R} donc à (A'H). On en déduit que le quadrilatère OAHA' est un rectangle.

- **3.** Calculer la distance de O à \mathcal{D} des trois façons suivantes :
 - a. en utilisant la formule de la distance d'un point à une droite figurant dans le cours;

$$d(O, \mathscr{D}) = \frac{\|\overrightarrow{u} \wedge \overrightarrow{OA}\|}{\|\overrightarrow{u}\|} = \frac{\sqrt{2^2 + (-2)^2 + (-2)^2}}{\sqrt{2^2 + 1 + 1}} = \sqrt{2}.$$

b. en utilisant la question **1**;

Le point H est M(-2); il a pour coordonnées (0,1,-1); on a : $d(O,\mathcal{D}) = OH = \sqrt{2}$.

c. en utilisant la question 2.

Dans le rectangle OAHA', le théorème de Pythagore donne :

$$d(O, \mathscr{D}) = OH = \sqrt{OA'^2 + OA^2} = \sqrt{d(O, \mathscr{P})^2 + d(O, \mathscr{R})^2} = \sqrt{2}.$$

PROBLÈME

On s'intéresse à la fonction zêta de Riemann, une fonction définie par la relation suivante :

$$\forall \alpha \in]1, +\infty[, \quad \zeta(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} = \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k^{\alpha}}$$

La première partie contient des résultats qui seront exploités dans les deux autres.

Dans la deuxième partie, on prouve l'existence de $\zeta(\alpha)$ puis dans la suivante, on montre que :

$$\zeta(2) = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Partie I: résultats préliminaires

1. Trigonométrie

Soient a,b dans \mathbb{R} . Déterminer la partie imaginaire de $e^{\mathrm{i}a}e^{\mathrm{i}b}$ de deux façons, puis montrer que

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

En déduire que

$$\sin(a)\cos(b) = \frac{1}{2}\left(\sin(a+b) + \sin(a-b)\right)$$

 $e^{\mathrm{i}a}e^{\mathrm{i}b} = (\cos(a) + \mathrm{i}\sin(a))(\cos(b) + \mathrm{i}\sin(b)) \text{ donc } \mathrm{Im}\left(e^{\mathrm{i}a}e^{\mathrm{i}b}\right) = \cos(a)\sin(b) + \sin(a)\cos(b).$

De plus, $e^{ia}e^{ib} = e^{i(a+b)}$ donc $\operatorname{Im}\left(e^{ia}e^{ib}\right) = \sin(a+b)$.

On en déduit la première égalité, par unicité de la partie imaginaire d'un nombre complexe. De celle-ci on obtient : $\sin(a-b) = \sin(a)\cos(-b) + \cos(a)\sin(-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$, puis par somme : $\sin(a+b) + \sin(a-b) = 2\sin(a)\cos(b)$ d'où la deuxième égalité.

2. Arc moitié

Pour $\theta \in \mathbb{R}$, écrire $e^{i\theta} - 1$ et $e^{i\theta} + 1$ sous la forme $\rho e^{i\alpha}$ avec $\rho, \alpha \in \mathbb{R}$.

$$e^{i\theta} + 1 = e^{i\frac{\theta}{2}} \left(e^{i\frac{\theta}{2}} + e^{-i\frac{\theta}{2}} \right) = e^{i\frac{\theta}{2}} 2 \cos\left(\frac{\theta}{2}\right)$$

et
$$e^{i\theta} - 1 = e^{i\frac{\theta}{2}} \left(e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}} \right) = e^{i\frac{\theta}{2}} 2i \sin\left(\frac{\theta}{2}\right) = 2\sin\left(\frac{\theta}{2}\right) e^{i\left(\frac{\theta+\pi}{2}\right)}$$

3. Méthode des rectangles

Soit f une fonction continue et décroissante sur $[1, +\infty[$. Montrer que :

$$\forall k \in \mathbb{N}^*, \quad f(k+1) \le \int_k^{k+1} f(t) dt \le f(k)$$

et en déduire, à l'aide d'une intégrale de f, un encadrement de

$$S_n = \sum_{k=1}^n f(k)$$

f étant une fonction décroissante, pour $k \in \mathbb{N}^*$ et $\forall t \in [k,k+1], f(k+1) \leq f(t) \leq f(k)$ donc, par croissance de l'intégrale : $f(k+1) \le \int_{L}^{k+1} f(t) dt \le f(k)$.

En sommant membres à membres, et en appliquant la relation de Chasles, on obtient pour $n \in \mathbb{N}^*$:

$$\sum_{k=1}^{n-1} f(k+1) \le \int_1^n f(t) dt \le \sum_{k=1}^{n-1} f(k).$$

Un changement d'indice dans la première somme permet d'obtenir : $S_n - f(1) \le \int_0^n f(t) dt \le S_n - f(n)$ puis:

$$\int_{1}^{n} f(t)dt + f(n) \le S_n \le \int_{1}^{n} f(t)dt + f(1)$$

Lemme de Riemann-Lebesgue

Soit $f \in \mathcal{C}^1([a,b],\mathbb{R})$, avec $a \leq b$, et $\lambda \in \mathbb{R}_+^*$. Démontrer que :

$$\left| \int_{a}^{b} f(t) \sin(\lambda t) dt \right| \leq \frac{1}{\lambda} \left(|f(a)| + |f(b)| + \int_{a}^{b} |f'(t)| dt \right)$$

et en déduire que :

$$\lim_{\lambda \to +\infty} \int_{a}^{b} f(t) \sin(\lambda t) dt = 0$$

f étant de classe \mathscr{C}^1 sur [a,b] de même que la fonction $t\mapsto -\frac{\cos(\lambda t)}{\lambda}$ le théorème d'intégration par

$$\int_{a}^{b} f(t) \sin(\lambda t) dt = \left[-\frac{\cos(\lambda t)}{\lambda} f(t) \right]_{a}^{b} + \int_{a}^{b} f'(t) \frac{\cos(\lambda t)}{\lambda} dt = \frac{1}{\lambda} \left(f(a) \cos(\lambda a) - f(b) \cos(\lambda b) + \int_{a}^{b} f'(t) \cos(\lambda t) dt \right).$$
On a donc :
$$\left| \int_{a}^{b} f(t) \sin(\lambda t) dt \right| \leq \frac{1}{\lambda} \left(|f(a) \cos(\lambda a)| + |f(b) \cos(\lambda b)| + \int_{a}^{b} |f'(t) \cos(\lambda t)| dt \right)$$

puis, en majorant le cosinus par $1: \left| \int_a^b f(t) \sin(\lambda t) dt \right| \le \frac{1}{\lambda} \underbrace{\left(|f(a)| + |f(b)| + \int_a^b |f'(t)| dt \right)}.$

On a $\lim_{\lambda \to +\infty} \frac{M}{\lambda} = 0$ donc le théorème d'encadrement donne $\lim_{\lambda \to +\infty} \int_a^b f(t) \sin(\lambda t) dt = 0$.

Partie II : existence de $\zeta(2)$

Soit $\alpha > 1$. On souhaite montrer que $\sum \frac{1}{n^{\alpha}}$ converge. On pose $S_n = \sum_{k=1}^{n} \frac{1}{k^{\alpha}}$.

1. Montrer que :

$$\forall n \in \mathbb{N}^*, \quad S_n \le \frac{\alpha}{\alpha - 1}$$

Pour $\alpha > 1$, la fonction $t \mapsto \frac{1}{t^{\alpha}}$ est continue et décroissante sur $[1, +\infty[$ donc d'après la méthode des rectangles, on a pour $n \in \mathbb{N}^*$: $S_n \leq \int_1^n \frac{1}{t^{\alpha}} + 1 = \underbrace{\frac{1}{(1-\alpha) \, n^{\alpha-1}}}_{0} + \frac{1}{\alpha-1} + 1 \leq \frac{\alpha}{\alpha-1}.$

$$S_n \le \int_1^n \frac{1}{t^{\alpha}} + 1 = \underbrace{\frac{1}{(1-\alpha)n^{\alpha-1}}}_{\le 0} + \frac{1}{\alpha-1} + 1 \le \frac{\alpha}{\alpha-1}.$$

2. En déduire que $\sum \frac{1}{n^{\alpha}}$ converge, et que sa somme notée $\zeta(\alpha)$ est dans $\left|\frac{1}{\alpha-1}, \frac{\alpha}{\alpha-1}\right|$.

 S_n est la somme partielle d'une série positive, et elle est majorée donc la série converge et sa somme est majorée par $\frac{\alpha}{\alpha-1}$.

La méthode des rectangles donne également : $\int_{1}^{n} \frac{1}{t^{\alpha}} dt + \frac{1}{n^{\alpha}} \leq S_n d$ 'où $\frac{1}{\alpha - 1} - \frac{1}{(\alpha - 1)n^{\alpha - 1}} + \frac{1}{n^{\alpha}} \leq S_n$

Ainsi, par passage à la limite, on obtient : $\frac{1}{\alpha - 1} \le \lim_{n \to +\infty} S_n$. Finalement, on a bien la convergence de la série et l'encadrement de sa somme.

Partie III : un calcul de $\zeta(2)$

1a. Pour $n \in \mathbb{N}^*$, calculer :

$$\int_0^{\pi} t \cos(nt) dt \qquad \text{et} \qquad \int_0^{\pi} t^2 \cos(nt) dt$$

On pourra intégrer par parties.

Les fonctions $t \mapsto t, t \mapsto t^2, t \mapsto \frac{\sin(nt)}{n}$ et $t \mapsto -\frac{\cos(nt)}{n}$ sont de classe \mathscr{C}^1 sur $[0, \pi]$ donc le théorème

$$\begin{aligned} &\text{d'intégration par parties donne}: \\ &\int_0^\pi t \cos(nt) \mathrm{d}t = \left[\frac{\sin(nt)}{n}t\right]_0^\pi - \frac{1}{n} \int_0^\pi \sin(nt) \mathrm{d}t = \frac{1}{n^2} \left[\cos(nt)\right]_0^\pi = \frac{(-1)^n - 1}{n^2} \\ &\int_0^\pi t^2 \cos(nt) \mathrm{d}t = \left[\frac{\sin(nt)}{n}t^2\right]_0^\pi - \frac{2}{n} \int_0^\pi t \sin(nt) \mathrm{d}t = -\frac{2}{n} \left(\left[-\frac{\cos(nt)}{n}t\right]_0^\pi + \frac{1}{n} \int_0^\pi \cos(nt) \mathrm{d}t\right) = \frac{2\pi}{n^2} (-1)^n - \frac{2}{n^3} [\sin(nt)]_0^\pi = \frac{2\pi}{n^2} (-1)^n \end{aligned}$$

b. Trouver alors deux réels a et b tels que :

$$\forall n \in \mathbb{N}^*, \quad \int_0^{\pi} (at^2 + bt) \cos(nt) dt = \frac{1}{n^2}$$

$$a = \frac{1}{2\pi}$$
 et $b = -1$.

2. Soient $n \in \mathbb{N}^*, t \in \mathbb{R}$ et

$$C_n(t) = \sum_{k=1}^{n} \cos(kt)$$

Montrer que pour $t \in \mathbb{R} \setminus 2\pi\mathbb{Z}$:

$$C_n(t) = -\frac{1}{2} + \frac{\sin\left(\frac{2n+1}{2}t\right)}{2\sin\left(\frac{t}{2}\right)}$$

Pour
$$t \in \mathbb{R} \setminus 2\pi\mathbb{Z}$$
, on a $e^{it} \neq 1$ d'où, en utilisant le résultat **I.2**, pour $n \in \mathbb{N}^*$:
$$C_n(t) = \operatorname{Re}\left(\sum_{k=1}^n e^{ikt}\right) = \operatorname{Re}\left(e^{it}\frac{1 - e^{int}}{1 - e^{it}}\right) = \operatorname{Re}\left(e^{it}\frac{\sin\left(\frac{nt}{2}\right)e^{i\frac{nt}{2}}}{\sin\left(\frac{t}{2}\right)e^{i\frac{t}{2}}}\right) = \cos\left(\frac{n+1}{2}t\right)\frac{\sin\left(\frac{nt}{2}\right)e^{it}}{\sin\left(\frac{t}{2}\right)e^{it}}$$

d'où, en utilisant $\mathbf{I.2}: C_n(t) = \frac{\sin\left(\frac{2n+1}{2}t\right) - \sin\left(\frac{t}{2}\right)}{2\sin\left(\frac{t}{2}\right)} = -\frac{1}{2} + \frac{\sin\left(\frac{2n+1}{2}t\right)}{2\sin\left(\frac{t}{2}\right)}.$

3. En déduire que :

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6} + \int_0^\pi \varphi(t) \sin\left(\frac{2n+1}{2}t\right) dt$$

où φ est une fonction définie et continue sur $[0,\pi]$ que l'on précisera.

D'après la question **III.1.b** et par linéarité de l'intégrale on a, pour
$$n \in \mathbb{N}^*$$

$$\sum_{k=1}^n \frac{1}{k^2} = \sum_{k=1}^n \left(\int_0^\pi \left(\frac{t^2}{2\pi} - t \right) \cos(kt) dt \right) = \frac{1}{2} \int_0^\pi \left(\frac{t^2}{2\pi} - t \right) C_n(t) dt$$

D'après la question **III.2.**, pour $t \in]0,\pi], C_n(t) = -\frac{1}{2} + \frac{\sin(\frac{2n+1}{2}t)}{2\sin(\frac{t}{2})}$ avec $\frac{\sin(\frac{2n+1}{2}t)}{2\sin(\frac{t}{2})} \sim \frac{\frac{2n+1}{2}t}{2\frac{t}{2}}$,

ainsi
$$\lim_{t \to 0} \frac{\sin\left(\frac{2n+1}{2}t\right)}{2\sin\left(\frac{t}{2}\right)} = n + \frac{1}{2} \text{ donc } \lim_{t \to 0} \left(-\frac{1}{2} + \frac{\sin\left(\frac{2n+1}{2}t\right)}{2\sin\left(\frac{t}{2}\right)}\right) = C_n(0).$$

On a donc:
$$\sum_{k=1}^{n} \frac{1}{k^2} = \underbrace{-\frac{1}{2} \int_{0}^{\pi} \left(\frac{t^2}{2\pi} - t\right) dt}_{\int_{0}^{\pi} \varphi(t) \sin\left(\frac{2n+1}{2}t\right) dt} + \underbrace{\frac{1}{2} \int_{0}^{\pi} \left(\frac{t^2}{2\pi} - t\right) \frac{\sin\left(\frac{2n+1}{2}t\right)}{\sin\left(\frac{t}{2}\right)} dt}_{\int_{0}^{\pi} \varphi(t) \sin\left(\frac{2n+1}{2}t\right) dt}$$
avec $\varphi(t) = \begin{cases} \frac{1}{2\sin\left(\frac{t}{2}\right)} \left(\frac{t^2}{2\pi} - t\right) & \text{si } t \neq 0 \\ -1 & \text{si } t = 0 \end{cases}$
Par les théorèmes généraux, φ est continue sur $]0,\pi]$ et comme $\sin(t) \underset{t \to 0}{\sim} t$ on a $\varphi(t) \underset{t \to 0}{\sim} -1$ donc φ est continue en 0 .

avec
$$\varphi(t) = \begin{cases} \frac{1}{2\sin\left(\frac{t}{2}\right)} \left(\frac{t^2}{2\pi} - t\right) & \text{si } t \neq 0 \\ -1 & \text{si } t = 0 \end{cases}$$

est continue en 0.

4. Montrer que la fonction φ est de classe \mathscr{C}^1 sur $[0,\pi]$.

Par les théorèmes généraux, la fonction φ est de classe \mathscr{C}^1 sur $]0,\pi]$.

De plus, pour
$$t \in]0, \pi], \varphi'(t) = \frac{1}{2} \frac{\left(\frac{t}{\pi} - 1\right)\sin\left(\frac{t}{2}\right) - \frac{1}{2}\left(\frac{t^2}{2\pi} - t\right)\cos\left(\frac{t}{2}\right)}{\sin^2\left(\frac{t}{2}\right)}, \text{ d'où :}$$

$$\varphi'(t) \underset{t \to 0}{=} \frac{1}{2} \frac{\left(\frac{t}{\pi} - 1\right) \left(\frac{t}{2} + o(t^2)\right) - \frac{1}{2} \left(\frac{t^2}{2\pi} - t\right) (1 + o(t))}{\left(\frac{t}{2} + o(t)\right)^2} \underset{t \to 0}{=} \frac{1}{2} \frac{\frac{t^2}{2\pi} - \frac{t}{2} - \frac{t^2}{4\pi} + \frac{t}{2} + o(t^2)}{\frac{t^2}{4} (1 + o(1))} \underset{t \to 0}{=} \frac{1}{2\pi} + o(1).$$

On déduit du théorème de la limite de la dérivée que φ est de classe

5. Conclure.

Le lemme de Riemann-Lebesgue donne $\lim_{n\to+\infty}\int_0^\pi \varphi(t)\sin\left(\frac{2n+1}{2}t\right)dt=0$ et par suite

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$$