#### REDES DE COMPUTADORES E INTERNET



#### 3° ANO MEEC 2022/2023-3°P

### GUIA DE TESTES COM ÁRVORES ACTIVADAS REMOTAMENTE

19MAR2023 19:00

# Testes com árvores activadas remotamente na máquina 'tejo'

O presente guia contém os procedimentos para activação remota de árvores para testes na máquina 'tejo' do laboratório LT5. Estas árvores, activadas automaticamente a pedido dos alunos, vão servir como apoio ao aperfeiçoamento e autoavaliação da sua aplicação de projecto 'cot' a qual pode assim interagir com árvores já inicializadas.

Para que os testes de cada grupo possam ocorrer em simultâneo e sem interferência com os demais grupos, está em execução na máquina 'tejo' um servidor TCP concorrente no porto 59011, capaz de activar isoladamente para qualquer grupo as referidas árvores e ainda fornecer os relatórios de interacção resultantes dos testes efectuados. Em cada sessão de teste são activados cinco componentes: Um servidor de nós e duas árvores separadas na máquina 'tejo'. Uma das árvores (rede 001) terá apenas um nó, possuindo a outra árvore (rede 002) três nós como se ilustra na figura.



No momento da activação da sessão o servidor fornece os seguintes dados relevantes à condução dos testes:

- Porto de acesso ao servidor de nós
- Porto de acesso ao nó da rede 001
- Portos de acesso a cada um dos nós da rede 002.
- Código de acesso aos relatórios da experiência.

Os endereços IP de acesso aos componentes da experiência são:

193.136.138.142 - endereço público da máquina tejo.tecnico.ulisboa.pt

ou

192.168.1.1 - endereço privado da máquina 'tejo' na rede privada do LT5

consoante os testes sejam efectuados a partir da rede pública ou da rede do LT5, respectivamente.

Durante a execução das suas experiências os alunos podem:

- Ligar os seus nós a qualquer um dos nós das redes 001 e 002.
- Executar comandos nos seus nós em interacção com os nós das árvores 001 e 002.
- Executar comandos nos nós iniciais das árvores 001 e 002 como se tivessem acesso ao teclado do 'tejo'.
- Solicitar relatórios que mostram os resultados das interações observados nos nós iniciais das árvores 001 e 002.

Condições iniciais da experiência:

Dos quatro nós apenas os nós da rede 002 se encontram registados no servidor.

Os nós 001.01 e 002.01 são inicializados com 11 objectos cada consistindo em nomes de cidades por ordem alfabética.

O nó 002.02 é inicializado com 26 objectos consistindo em nomes de animais por ordem alfabética.

O nó 002.03 é inicializado com 23 objectos consistindo em nomes de elementos químicos por ordem alfabética.

Assim se pretende facilitar o seguimento das pesquisas lançadas a partir de qualquer dos nós das redes iniciais ou nó adicionado posteriormente às redes iniciais.

## Activação da bancada de testes

Para activar a bancada de testes, os alunos executam o seguinte comando (por invocação de nc/TCP) no terminal Linux:

echo "GGG" | nc tejo.tecnico.ulisboa.pt 59011 > init.html

onde GGG é o número de grupo (fénix) em formato fixo de 3 dígitos (com zeros à esquerda sempre que necessário) e init.html é o nome de um ficheiro que vai receber dados importantes sobre a experiência: Os portos de contacto dos cinco componentes da experiência e o código de acesso exclusivo para obtenção dos relatórios.

#### Obtenção de relatórios

Os alunos podem pedir dois tipos de relatório:

- Relatório parcial centrado num dos nós 001.01, 002.01, 002.02 e 002.03 à sua escolha.
- Relatório global da actividade dos quatro nós.

O relatório parcial centrado num dos nós é pedido por execução do seguinte comando:

#### echo "RPnnnnnn\_ppppp" | nc tejo.tecnico.ulisboa.pt 59011 > rep.html

onde n<br/>nnnnnn é o código de acesso sempre em formato fixo de 7 dígitos, e p<br/>pppp é o porto de contacto do nó em causa. O resultado ficará gravado no ficheiro rep.html<br/> que pode ser aberto com um browser de internet.

O relatório global é pedido por execução do seguinte comando:

#### echo "RGnnnnnn" | nc tejo.tecnico.ulisboa.pt 59011 > rep.html

Caso todos os elementos da experiência (servidor de nós e os quatro nós) fiquem inactivos por mais de 10 minutos, a experiência é desactivada automaticamente com a consequente desactivação do servidor de nós e dos quatro nós. No entanto, é aconselhável que o grupo desactive a experiência quando terminar usando o comando:

#### echo "FINnnnnnn" | nc tejo.tecnico.ulisboa.pt 59011

Os alunos devem activar experiências exclusivamente com o seu número de grupo para evitar interferir com experiências dos colegas. As designações dos ficheiros de relatório acima referidos ficam ao critério dos alunos.

### Inserção directa de comandos nos nós das árvores iniciais

Não tendo acesso por teclado aos nós que inicialmente compõem as árvores 001 e 002 os alunos podem no entanto enviar comandos aos referidos nós (usando no por UDP) com a seguinte composição:

echo "com" | nc -u -w $\emptyset$  tejo.tecnico.ulisboa.pt port

onde com é um dos comandos possíveis como será descrito adiante e a opção -w $\emptyset$  faz com que a mensagem seja enviada ao nó instantaneamente sem entrar na interface do comando nc. O inteiro port é o número do porto de contacto do nó em causa.

Segue-se a lista dos comandos que podem ser inseridos nos nós iniciais das árvores 001 e 002. Os comandos **load** e **cn** excedem o conjunto dos comandos pedidos no enunciado do projecto.

leave - Apenas o nó 001.01 executa este comando

djoin net id bootid bootTCP - Apenas o cot inicial da rede 001 executa este comando, e só após a execução de leave. O nó não executará djoin tendo como alvo outro nó na máquina 'tejo'. Este comando só pode ser usado para fazer ingressar o nó numa árvore que os alunos tenham já constituída exterior à máquina 'tejo'. E os contactos dos nós alvo podem ser IP/port dos computadores do LT5, ou de computadores na rede pública. Caso os IP/port alvo estejam no domicílio dos alunos é necessário configurar a funcionalidade de port forwarding no respectivo router de acesso à rede pública.

get dest name - Todos os nós executam este comando desde que tenham nós vizinhos e dest seja uma identificação diferente da do

nó no qual o comando é inserido.

load fname - Todos os nós aceitam este comando para carregar nomes de objectos contidos no ficheiro com designação fname. O nome fname pode ser um de três: cities.txt, animals.txt ou elements.txt - em qualquer dos nós das redes 001 e 002.

sn - Todos os nós aceitam este comando

st - Todos os nós aceitam este comando

sr - Todos os nós aceitam este comando

cr - Todos os nós aceitam este comando, para limpeza da tabela de expedição no nó em causa.

cn - Todos os nós aceitam este comando, para limpeza da lista de objectos no nó em causa.

Os nós não enviam qualquer mensagem de resposta à inserção remota dos comandos acima referidos. Apenas será possível perceber o resultado dos comandos, descarregando um relatório que inclua o nó em causa.

### Testes típicos

Nesta secção exemplificam-se alguns testes típicos que podem ser úteis no âmbito da autoavaliação. Os testes aqui ilustrados podem ser divididos em duas categorias:

- Testes de topologia
- Testes de pesquisa e encaminhamento

A rede 001 é mais adequada para os testes de topologia. Para além de ser possível ligar outros nós ao nó 001.01, é possível executar leave

do mesmo e fazê-lo ingressar em redes constituídas fora da máquina 'tejo'.

A rede 002 está mais orientada para testes de pesquisa e encaminhamento. Os nós dessa rede não executam **leave** aceitando apenas a adição de nós que lhes sejam internos. Nos nós adicionados à rede 002 podem ser activadas pesquisas tendo como alvo os nós iniciais da rede 002, podendo observar-se o conteúdo das tabelas de expedição nos mesmos.

Por outro lado podem ser iniciadas pesquisas nos nós iniciais da rede 002 tendo como alvo nós posteriormente adicionados e observar as modificações induzidas nas tabelas de expedição dos nós adicionados à rede inicial.

Os nós da bancada de testes são instâncias independentes da aplicação cot, podendo assumir um de quatro estados figurando nos relatórios pelo que importa aqui esclarecer:

NONODE - estado da aplicação *cot* recém-activada ou após a execução com sucesso de **leave**. Não é considerado nó por não possuir identificação.

SINGLE - estado do nó após ingresso numa rede sem nós. É o estado do nó fundador da rede.

ANCHOR - estado do nó tal como definido no enunciado do projecto.

COMMON - Nó que não está no estado SINGLE nem no estado ANCHOR

O nó 001.01 encontra-se inicialmente no estado SINGLE.

O nó 002.01 encontra-se no estado ANCHOR. É considerado âncora passivo pois nunca será cliente TCP.

O nó 002.02 encontra-se no estado ANCHOR. É considerado âncora activo pois ingressou na rede 002 por contacto com o nó 002.01

O nó 002.03 está inicialmente no estado COMMON.

Logo após activarem a bancada de testes, os alunos devem solicitar um relatório global e analisá-lo para se familiarizarem com o formato de apresentação. Os valores inteiros constantes no final da linha 'Status'- associados às abreviaturas "U: TL: TC": representam os socket descriptors do servidor UDP (que apenas os nós da bancada possuem), do canal listen de TCP e do socket cliente TCP, do nó respectivamente.

Após a realização com sucesso das experiências aqui descritas, sugere-se que os alunos montem experiências idênticas exclusivamente suportadas nas suas aplicações *cot*.

Os testes exemplificados seguem uma lógica de complexidade crescente devendo alguns deles ser executados em sequência.

Após a realização com sucesso das experiências aqui descritas, sugere-se que os alunos montem experiências idênticas exclusivamente suportadas nas suas aplicações *cot*.

#### Testes de topologia

- 1 Adicione um nó com id==02 à rede 001 por ligação ao nó 001.01. O nó adicionado deve ficar com o estatuto de âncora, bem como o nó 001.01. Observe o relatório centrado no nó 001.01.
- 2 Repita o teste nº 1. De seguida execute **leave** no nó 001.01. Para fazer o ex-nó 001.01 regressar ao seu estado original deverá terminar a experiência com a mensagem 'FIN...', reiniciando-a de seguida.
- 3 Adicione em sucessão quatro nós ao nó 001.01 com as identificações 02, 03, 04 e 05. No final da operação peça e analise um relatório centrado no nó 001.01, verificando a topologia que se formou. Não altere a configuração obtida.
- 4 Após a realização do teste nº 3 execute **leave** no nó 001.01 e observe o estado em que ficaram os quatro nós por si adicionados. Faça o ex-nó 001.01 regressar ao estado inicial.
- 5 Com o nó 001.01 no seu estado inicial, ligue-lhe um nó com id==02, ficando ambos como âncoras. De seguida, ligue três nós ao seu nó 001.02. De seguida execute **leave** no nó 001.01 e observe o estado em que ficaram todos os nós por si adicionados.
- 6 Com o nó 001.01 no seu estado inicial, execute **leave** no mesmo e constitua uma rede sua iniciando apenas um nó exterior ao 'tejo'. Faça ingressar o ex-nó do 'tejo' na sua rede exterior ao 'tejo' nele executando o comando **djoin** apropriado. De seguida, ligue vários nós a esse nó (ex 001.01 do 'tejo') para serem seus nós internos. Execute **leave** no nó do 'tejo' e observe os resultados e a topologia final da sua rede. Peça um relatório centrado no nó do 'tejo' para observar todos os passos anteriores à execução do último comando **leave**.
- 7 Com o nó 001.01 no seu estado inicial, execute **leave** no mesmo e constitua uma rede sua iniciando apenas um nó exterior ao 'tejo'. Faça ingressar o ex-nó do 'tejo' na sua rede exterior ao 'tejo' nele executando o comando **djoin** apropriado. De seguida, ligue vários nós ao nó fundador da sua rede exterior ao 'tejo' para serem nós internos desse nó. Execute **leave** no nó do 'tejo' e observe os resultados e a topologia final da sua rede. Peça um relatório centrado no nó do 'tejo' para observar todos os passos anteriores à execução do último comando **leave**.

#### Testes de pesquisa e expedição

8 - Na rede 002 faça ingressar em sequência os nós com identificações 04, 05 e 06 de acordo com o ilustrado na figura abaixo. Em seguida lance uma pesquisa por execução de um comando **get** apropriado com origem no nó 03, e destino no nó 04 pedindo um objecto que o nó 04 não possui. Observe as tabelas de expedição em todos os nós da rede e mantenha a experiência activa.



- 9 Após a realização do teste nº 8 repita em sequência buscas partindo do nó 03 com destino aos nós 05 e 06 pedindo objectos que eles não possuem. Verifique ao longo desta experiências a evolução de todas as tabelas de expedição. Mantenha a experiência activa.
- 10 Sobre a mesma rede utilizada nos testes 8 e 9: Proceda à limpeza das tabelas de expedição de todos os nós da rede. Inverta o sentido das buscas, pedindo em sequência, com origem nos nós 04, 05 e 06 e por esta ordem, e com destino no nó 03 objectos que não existem no nó 03. Observe a evolução das tabelas de expedição em todos os nós da rede e mantenha a montagem.
- 11 Limpe as tabelas de expedição de todos os nós da rede e repita os testes números 8, 9 e 10, mas agora procurando por objectos que existem no(s) destino(s).
- 12 Faça terminar a bancada de testes utilizada nos números anteriores, dê início a nova experiência e construa a rede ilustrada na figura abaixo.



13 - Faça as seguintes pesquisas por objectos existentes nos nós de destino. Do nó 09 para o nó 05. Do nó 10 para o nó 05. Do nó 11 para o nó 05. Do nó 06 para o nó 03. Do nó 07 para o nó 02. Do nó 08 para o nó 01. Analize a evolução de todas as tabelas de expedição. Não altere a experiência agora terminada.

14 - Após o teste nº 13 remova em sequência os nós 09, 10, 11 e 05 por execução de **leave** em cada um deles. Após cada remoção analize as alterações produzidas em todas as tabelas de expedição em consequência da difusão das mensagens **WITHDRAW**.