

nRF24Z1-EVB

1. General description

This document describes the **nRF24Z1-EVBOARD** and its use with the Nordic Semiconductor **nRF24Z1** Single Chip 2.4 GHz RF Audio streamer.

Figure 1: The nRF24Z1-EVBOARD

There are two versions of the nRF24Z1-EVBOARD. One is fitted with the nRF24Z1 in audio receiver (ARX) mode (Figure 1, top) the other with the nRF24Z1 set in audio transmitter (ATX) mode (Figure 1, bottom). The two boards are also populated differently in the audio front end section. The reason for the differences will be explained further in the following sections.

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89 Revision: 1.3 Page 1 of 27 May 2005

2. Introduction

The Evaluation Board for the **nRF24Z1** Single Chip 2.4 GHz RF audio streamer has been developed to enable customers to test functionality, run communication and verify the performance parameters of the device. This document describes the usage of the **nRF24Z1-EVBOARD**.

The **nRF24Z1-EVBOARD** is intended for evaluation and development purposes only. It is not intended for incorporation into an end product.

3. Getting started

The **nRF24Z1-EVBOARD** V1-0 is shipped with an EEPROM programmer and emulator (programming dongle). The nRF programming dongle enables you to download register settings and access the control link offered by **nRF24Z1**.

The following equipment is needed to work efficiently with the **nRF24Z1-EVBOARD**:

- PC with 1 free USB port
- Z1config PC software (supplied)
- 1 nRF EEPROM programmer and emulator (supplied)
- Two 2.0 V 3.6V or one 4.6 12V DC voltage supply
- 1 male A/B USB cable (supplied)

To evaluate the performance of the device the following instrumentation should be available:

- Audio source, analog or digital. Analog audio input is AC coupled, with a maximum swing of 2.6Vpp (0.9Vrms). Minimum input resistance is $10k\Omega$. Digital audio input is via S/PDIF RCA phono connector (0.5Vpp,75Ω)
- Audio amplifier and loudspeakers. Analog audio out is 2.1Vpp (0.75Vrms) at a load of $5k\Omega$. Digital audio output is via S/PDIF RCA phono connector (0.5Vpp,75 Ω)
- Oscilloscope
- 2.4 GHz Spectrum analyzer

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89 Revision: 1.3 Page 2 of 27 May 2005

4. Programming dongle description

The programming dongle is fitted 'on-top' (Figure 2) of the **nRF24Z1-EVBOARD** and controlled through PC software. The **Z1config** software is documented in Z1config user manual [1].

The dongle will mainly be fitted on the **nRF24Z1** audio transmitter (ATX) board. Through this interface the user also has full control of the audio receiver board through the control/data RF link offered by **nRF24Z1**. The dongle needs to be connected to the audio receiver board only if default configuration in the audio receiver EEPROM is to be changed.

Figure 2: **nRF24Z1-EVBOARD** with programming dongle

4.1. Supply

Main power supply is fed to the nRF programming dongle through the USB interface (J101). Supply voltage to the **nRF24Z1-EVBOARD** interface stage runs through J102 from the **nRF24Z1-EVBOARD**. The programming dongle must hence be plugged in the EVBOARD connector JP2 in order to have proper signal levels on J102.

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89 Revision: 1.3 Page 3 of 27 May 2005

4.2. nRF24Z1-EVBOARD interface

The pin-out of the interface (J102) to the **nRF24Z1-EVBOARD** can be found under the **nRF24Z1-EVBOARD** description (EVBOARD connector JP2). The PC interface (J101) is a standard USB B-connector interface.

4.3. USB addressing (S101)

The dongle has an option to use 2 different USB addresses set by S101. This option is only needed if the same USB hub is to interface two dongles. The position of S101 is hence not important in the **nRF24Z1-EVKIT** unless you have two audio transmitter boards connected to the same PC (2 different EVKIT's) at the same time.

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89 Revision: 1.3 Page 4 of 27 May 2005

5. nRF24Z1-EVBOARD DESCRIPTION

Figure 3 shows the block diagram of the **nRF24Z1-EVBOARD**.

Further details can be found in appendix 1 (circuit diagram and PCB layout) and appendix 2 (component list).

Figure 3: Block diagram of the nRF24Z1-EVBOARD

Due to the significant difference in functionality when the **nRF24Z1** is configured in audio transmitter mode (found at audio source side like the CD player) and in audio receiver mode (loud speaker side) the two EVBOARD's in the EVKIT are preset as audio transmitter and receiver. The audio section of the two versions of the EVBOARD are populated differently (S/PDIF and ADC/DAC section), but note that the section around **nRF24Z1** (device and external components) are identical on the two boards.

To enable convenient control of the **nRF24Z1-EVBOARD** from a computer, a MUX (Altera PLD) is put on the **nRF24Z1-EVBOARD** to ease PC interfacing with **nRF24Z1** and the on board EEPROM. The on board mux is hence only for EVBOARD versatility and not needed in a final design.

5.1. Supply (J101, J103, J104)

Power supply and ground is fed to the **nRF2Z1-EVBOARD** either trough on-board voltage regulators (connector J101) or directly from external supplies (J103, J104). J101 is the primary VDD to be used with the **nRF24Z1-EVBOARD**.

If jumper JP101 (leave JP102) are removed, connector J104 supplies, supply to all circuitry except on the board ADC/DAC. J104 supplies VDDA, analog power for the on board ADC or

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89 Revision: 1.3 Page 5 of 27 May 2005

DAC. Supply on J104 is of course only needed if the analog audio front ends (ADC/DAC) are used.

S101 is the board ON/OFF switch for power fed through J101.

Note that VDD fed through J103 and J104 are fed directly to the circuitry ON/OFF must hence be managed from the power supplies.

ON is shown by lit green LED's. Note that if the supply voltage is ~2.0 V the light from the LED will be weak.

Please note the voltage limitations on the connectors. The on-board voltage regulator accepts an input voltage between 4.5 and 12 V, the regulated output voltage is 3.3V.

For device testing over the supply range (2.0 - 3.6V), J103 and J104 must be utilized. The voltage on these two connectors must always be equal, and there is NO protection on these VDD inputs. Pay special attention to the max value (3.6V) since this is also the absolute maximum rating of the **nRF24Z1**.

NOTE:

Voltages above 3.6V on J104 for extended time will destroy the **nRF24Z1**!

5.2. RESET

A **nRF24Z1** reset is forced either by pressing the RESET button (S1) on the PCB or manually trough the PC software to the on board EEPROM via the USB dongle connected to JP2.

When the **nRF24Z1** is reset, configuration data is re-loaded from external memory and new RF link initialization is started.

In a final application external reset circuitry is not necessary, the reset circuitry on the EVBOARD is included to force re-load of configuration data and re-initialization of link during testing.

5.3. nRF24Z1 voltage and current measurements (JP13)

To enable accurate measurement of **nRF24Z1** current consumption a jumper (JP13) is put in the **nRF24Z1** supply line. This jumper is never to be removed, except when replaced by an ampere meter for measurements. The exact supply voltage to the **nRF24Z1** can also be measured on JP13.

5.4. I/O ports

For convenience, the digital I/O signals of the **nRF24Z1** are routed to separate connectors depending on functionality. Due to sharing of pins and different functionality in audio transmitter and audio receiver mode the same signals can be found in multiple connectors.

All signals can be accessed on JP10.

5.5. **AUDIO I/O**

The available audio interfaces of the **nRF24Z1** are available on separate connectors on the EVBOARD. The components in the **nRF24Z1-EVBOARD** audio section (grayed out in *Figure 3*) will vary depending on the mode (audio transmitter or receiver) the fitted **nRF24Z1** is set in.

NOTE:

Only one of the audio interfaces (I2S or S/PDIF) may be used at one time.

5.5.1. S/PDIF (J4)

The **nRF24Z1** SPDIO pin offers timing wise true S/PDIF input in audio transmitter (ATX) mode and similar output in audio receiver (ARX) mode. The SPDIO pin operates however with CMOS signal level so to get a true S/PDIF coax signal (0.5Vpp @ 75 Ω) a level shift and impedance match must be done. This is realized on board on the **nRF24Z1-EVBOARD** and connector J4 hence offers a true S/PDIF coax interface to external equipment.

5.5.2. I2S (JP1)

The **nRF24Z1** I2S interface can be accessed directly on JP1.

JP8 pin #	Signal name	Comment
1	MCLK	256x sample rate clock to ADC
		or DAC
2	GND	
3	CLK	I2S bit clock
4	GND	
5	WS	I2S word clock
6	GND	
7	DATA	I2S data
8	GND	
9	REQ	I2S data request
10	GND	

Table 1 nRF24Z1-EVBOARD JP1 I2S interface pin out

The **nRF24Z1-EVBOARD** connector JP1 offers a interface compatible with industry standard audio ADC and DAC's.

5.5.3. Analog line I/O (JP9, J2, J3)

By fitting jumpers on JP9 the I2S bus is also fed to an on board stereo ADC (ATX board) or a stereo DAC (ARX board). When using the on-board data converters left and right analog line I/O signals can be fed through J2 and J3 RCA connectors.

- Analog audio input is AC coupled, with a maximum swing of 2.6Vpp (0.9Vrms).
 Minimum input resistance is 10kΩ.
- Analog audio out is 2.1Vpp (0.75Vrms) at a load of $5k\Omega$.

5.5.4. DATA CONVERTER CONTROL (S2)

S2 switch	Signal name
DIV	ADC MCLK divide
DIF	ADC digital audio format
DEEM	DAC de-emphasize
PCS	DAC mode
MUTE	DAC mute
SFOR1	DAC digital audio format bit 1
SFOR0	DAC digital audio format bit 0

Table 2 nRF24Z1-EVBOARD JP1 I2S interface pin out

The audio transmitter board is equipped with a Crystal CS5333 AD converter [3] and the audio receiver board is equipped with a Philips UDA1334TS DA converter [4].

S2 provides access to various controls settings for the ADC and DAC. Please refer to the respective datasheets ([3], [4]).

Setting all S2 switches to ON, gives default function in ADC and DAC.

5.6. SERIAL CONTROL INTERFACES

5.6.1. Selecting control interface (S3)

The **nRF24Z1** can be controlled as a slave on either SPI or 2-wire external serial interface. The SSEL pin selects which. In a final application this pin is clamped either high or low, but on the EVBOARD it is controlled by a switch found in S3. S3 also contains a switch setting one of two possible addresses **nRF24Z1** answers to as 2-wire slave.

S3 switch name	Switch OFF	Switch ON	Functionality
SSEL	2-wire	SPI	Selects serial control interface
MZ ADR	Address bit	Address bit	Setting nRF24Z1 2-wire slave address. See
	a= 1	a = 0	nRF24Z1 product specification [2] for
			further details.

Table 3: nRF24Z1-EVBOARD, S3 functionality

5.6.2. SPI (JP4, JP5)

The SPI master and slave ports of nRF24Z1 are routed to JP4 and JP5.

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89 Revision: 1.3 Page 8 of 27 May 2005

In audio transmitter mode the SPI master is intended for connection of external memory (FLASH or EEPROM) holding configuration register data. This memory is connected through the MUX on the **nRF24Z1-EVBOARD**.

In audio receiver mode the SPI master port is controlled via the RF control channel offered between two **nRF24Z1** linked to each other. Please refer to the **nRF24Z1** product specification [2] for further details. To interface multiple slave units, GPIO pins (connector JP8) must be used as additional chip selects.

JP4 pin #	Signal name	Functionality
1	VDD	Power supply
2	MSCK	SPI master clock
3	MMOSI	SPI master out slave in
4	MCSN	SPI master chip select (active low)
5	MMISO	SPI Master in slave out
6	GND	Ground

Table 4: nRF24Z1-EVBOARD, JP4 SPI master pin out

The SPI slave port (JP5), enable external control of the **nRF24Z1** from a micro controller in audio transmitter mode.

In **nRF24Z1** audio receiver mode the SPI slave pins are used as GPIO (connector JP8), JP5 is hence not mounted on the **nRF24Z1** audio receiver mode board.

JP5 pin #	Signal name	Functionality
1	VDD	Power supply
2	SSCK	SPI slave clock
3	SMOSI	master out slave in
4	SCSN	chip select (active low)
5	SMISO	Master in slave out
6	GND	Ground

Table 5: nRF24Z1-EVBOARD, JP5 SPI slave pin out

5.6.3. 2-wire (JP6, JP7)

The 2-wire master and slave ports of **nRF24Z1** are routed to JP6 and JP7. The 2 wire interfaces of **nRF24Z1** are compatible with I2C.

In audio transmitter mode the 2-wire master is intended for connection of external memory (FLASH or EEPROM) holding configuration register data. This memory is connected on the SPI on the EVBOARD.

In audio receiver mode the 2-wire master port is controlled via the RF control channel offered between two **nRF24Z1** linked to each other. Please refer to the **nRF24Z1** product specification [2] for further details. Multiple 2-wire slaves can hence be connected to JP6

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89 Revision: 1.3 Page 9 of 27 May 2005

JP6 pin #	Signal name	Functionality
1	MSCL	2-wire master clock
2	VDD	Power supply
3	MSDA	2-wire master serial data
4	GND	Ground

Table 6: nRF24Z1-EVBOARD, JP6 2-wire master pin out

The 2-wire slave port (JP7), enable external control of the **nRF24Z1** in audio transmitter (ATX) mode.

In **nRF24Z1** audio receiver (ARX) mode these pins are used as GPIO (connector JP8), JP7 is hence not mounted on the **nRF24Z1** ARX board.

JP7 pin #	Signal name	Functionality
1	SSCL	2-wire slave clock
2	VDD	Power supply
3	SSDA	2-wire slave serial data
4	GND	Ground

Table 7: nRF24Z1-EVBOARD, JP7 2-wire slave pin out

5.6.4. **GPIO (JP8)**

The **nRF24Z1** offers a number of GPIO pins. The number and functionality of these pins differs between **nRF24Z1** audio transmitter and audio receiver mode.

Audio transmitter:

2 inputs (3 if 2-wire serial interface is used) DD[0-2], the level on these inputs are recreated on DO[0-2] on a connected **nRF24Z1** in ARX mode.

Audio receiver:

4 inputs DI[0-3] level on these inputs are mirrored in registers in a linked **nRF24Z1** in ATX.

4 outputs DO[0-3]; DO[0-2] are reflecting the input level on DI[0-2] on a linked **nRF24Z1** in audio transmitter mode. DO[3] can be controlled from a linked audio transmitter or set up as a PWM output.

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89 Revision: 1.3 Page 10 of 27 May 2005

Please refer to **nRF24Z1** product specification [2].

JP8 pin #	Signal	name	Comment
	Audio	Audio	
	transmitter	receiver	
1	VDD	VDD	
2	TEST	TEST	Must be left open
3	DD0	DI0	
4	DD1	DI1	
5	DI2 (SMOSI)	DI2	SMOSI if SPI control interface is selected
6	SCSN/SADR	DI3	
7	SSCK/SSCL	DO0	
8	SMISO/SSDA	DO1	
9	SSEL	DO2	
10	IRQ	DO3/PWM	
11	TEST	TEST	Must be left open
12	GND	GND	

Table 8: nRF24Z1-EVBOARD, JP8 GPIO pin out

As can be seen in *Table 8*, pin 5-10 in JP8 is GPIO in audio receiver mode but carries the serial slave interface when in audio transmitter. The serial slave interfaces are also available at connector JP5 and JP7.

5.6.5. PC interface (JP2)

JP2 enables **nRF24Z1-EVBOARD** control from PC software. JP2 only interacts with the MUX, and only the USB dongle supplied with the EVKIT must be plugged in here.

The pin out of JP2 is listed in table Table 9.

Pin number	Pin name	Comment
1	VDD	nRF24Z1-EVBOARD supply voltage
2	VER	nRF24Z1-EVBOARD rev. code
3	DG_CSCNTRL	
4	DG_CSN	
5	DG_SO	
6	DG_WPN	
7	DG_SI	
8	DG_SCK	
9	RESET	
10	GND	

Table 9 nRF24Z1-EVBOARD J7 pin out

Note:

For the USB dongle / evboard to function properly, **nRF24Z1-EVBOARD** supply voltage must be turned on.

5.6.6. RF I/O (J1)

For convenient connection of the differential antenna output/input pins to a single ended antenna or 50Ω test equipment, a differential to single ended matching network is included. This network matches the 50Ω single end antenna or 50Ω test equipment impedance at the SMA connector J1 to the recommended differential load impedance at the nRF24Z1's RF I/O stage (pins ANT1 & ANT2). The employed matching network introduces an insertion loss of approximately 1dB at 2.4 GHz..

6. REFERENCES

- [1] Z1config user manual, Nordic Semiconductor
- [2] nRF24Z1-prelim-rev1_2.doc, Nordic Semiconductor
- [3] Cirrus Logic: http://www.cirrus.com/en/products/pro/areas/mixedsig_av.html
- [4] Philips Semiconductor:

http://www.semiconductors.philips.com/pip/UDA1334TS_N1.html

Please see http://www.nordicsemi.no for latest version of documents from Nordic Semiconductor

Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89 Revision: 1.3 Page 12 of 27 May 2005

APPENDIX 1: CIRCUIT DIAGRAM AND PCB LAYOUT

Nordic Semiconductor ASA Revision: 1.3

Top silkscreen

Top signal layer

Phone +47 72 89 89 00 -

Bottom signal layer

Figure 4 nRF24Z1-EVBOARD Circuit diagram and PCB layout

There are no components in bottom layer. The board is 4 layers with a ground plane in inner-layer 1 and a split power plane (VDD and VDDA) in inner-layer 2.

nRF24Z1 Evaluation board

APPENDIX 2: COMPONENT LIST

Designator	Description	Part Type	Footprint	Comment
C1	Capacitor Ceramic	15pF	0603	
C2	Capacitor Ceramic	15pF	0903	
C3	Capacitor Ceramic	2.2nF	0603	
C4	Capacitor Ceramic	4.7pF	0603	
C5	Capacitor Ceramic	1.0pF	0603	
C6	Capacitor Ceramic	1.0pF	0603	
C7	Capacitor Ceramic	2.2pF	0603	replaced by a 0 ohm resistor
C8	Capacitor Ceramic	1.5pF	0603	
C9	Capacitor Ceramic	10nF	0603	
C10	Capacitor Ceramic	1nF	0603	
C11	Capacitor Ceramic	33nF	0603	
C12	Capacitor Ceramic	10nF	0603	only for TX, not mounted on RX
C13	Capacitor Tantalum	0.47uF	3216	only for TX, not mounted on RX
C14	Capacitor Tantalum	1uF	3216	only for TX, not mounted on RX
C15	Capacitor Tantalum	1uF	3216	only for TX, not mounted on RX
C16	Capacitor Ceramic	10nF	0603	only for TX, not mounted on RX
C17	Capacitor Tantalum	0.47uF	3216	only for TX, not mounted on RX
C18	Capacitor Ceramic	100nF	0603	only for TX, not mounted on RX
C19	Capacitor Tantalum	1uF	3216	only for TX, not mounted on RX
C20	Capacitor Ceramic	100nF	0603	only for TX, not mounted on RX
C21	Capacitor Tantalum	1uF	3216	only for TX, not mounted on RX
C22	Capacitor Ceramic	10nF	0603	only for RX, not mounted on TX
C23	Capacitor Tantalum	47uF	7343	only for RX, not mounted on TX
C24	Capacitor Tantalum	47uF	7343	only for RX, not mounted on TX
C25	Capacitor Ceramic	100nF	0603	only for RX, not mounted on TX
C26	Capacitor Tantalum	47uF	7343	only for RX, not mounted on TX
C27	Capacitor Ceramic	100nF	0603	only for RX, not mounted on TX
C28	Capacitor Ceramic	10nF	0603	only for RX, not mounted on TX

Nordic Semiconductor ASA Revision: 1.3

nRF24Z1 Evaluation board

C29	Capacitor Tantalum	47uF	7343	only for RX, not mounted on TX
C30	Capacitor Ceramic	100nF	0603	only for RX, not mounted on TX
C31	Capacitor Tantalum	47uF	7343	only for RX, not mounted on TX
C32	Capacitor Ceramic	10nF	0903	
C33	Capacitor Ceramic	10nF	0603	only for TX, not mounted on RX
C34	Capacitor Ceramic	10nF	8090	
C35	Capacitor Ceramic	10nF	0603	
C36	Capacitor Ceramic	10nF	0603	
C37	Capacitor Ceramic	10nF	0603	
C38	Capacitor Ceramic	10nF	0603	
C39	Capacitor Ceramic	100nF	0603	only for RX, not mounted on TX
C40	Capacitor Ceramic	22pF	0603	
C41	Capacitor Ceramic	100nF	0603	only for TX, not mounted on RX
C101	Capacitor Tantalum	2.2uF	3216	
C102	Capacitor Ceramic	100nF	0603	
C103	Capacitor Tantalum	1uF	3216	
C104	Capacitor Ceramic	10nF	0603	
C105	Capacitor Tantalum	10uF	3216	
C106	Capacitor Ceramic	100nF	0603	
C107	Capacitor Tantalum	1uF	3216	
C108	Capacitor Ceramic	10nF	0603	
C109	Capacitor Tantalum	10uF	3216	
C110	Capacitor Ceramic	100nF	0603	
D1	LED, yellow	If, $max = 30mA$	LED_1206	
D2	LED, yellow	If, $max = 30mA$	LED_1206	
D101	LED, green	If, $max = 30mA$	LED_1206	
D102	LED, green	If, $max = 30mA$	LED_1206	
D103	LED, green	If, $max = 30mA$	LED_1206	
J1	RFI/O	SMA connector	through-hole	

nRF24Z1 Evaluation board

only for TX, not mounted on RX only for TX, not mounted on RX $_{\rm NC}$ through-hole SOT-23D SOT-23D 0603 0603 0603 0603 3.3nH, TOKO, LL1608-FS3N3S 3.3nH, TOKO, LL1608-FS3N3S 10nH, TOKO, LL1608-FS10NJ Pin-header, 2.54 pitch, 2x3 pin Pin-header, 2.54 pitch, 2x3 pin Pin-header, 2.54 pitch, 2x2 pin Pin-header, 2.54 pitch, 2x2 pin Pin-header, 2.54 pitch, 2x6 pin Pin-header, 2.54 pitch, 2x4 pin Pin-header, 2.54 pitch, 2x5 pin Pin-header, 2.54 pitch, 2x5 pin Pin-header, 2.54 pitch, 2x1 pin Pin-header, 2.54 pitch, 2x1 pin Pin-header, 2.54 pitch, 2x1 pin Pin-header, 2.54 pitch, 3x1 pin Flat Cable Connector, 10 pin Flat Cable Connector, 10 pin RCA connector RCA connector RCA connector Soldering tag Soldering tag FDV303N FDV303N 2 pin 2 pin 2 pin 2-Wire Interface Master Connector Programming Interface Connector 2-Wire Interface Slave Connector Right Channel Analog Connector Left Channel Analog Connector SPI Interface Master Connector SPI Interface Slave Connector PLD Programming Interface Audio Codec I2S Connector RS232 Interface Connector Measurement Connector Measurement Connector 12S Interface Connector S/PDIF Connector **DMOS N-channel DMOS N-channel** Power Connector Power Connector Power Connector Chip Inductor Chip Inductor Chip Inductor Chip Inductor VDD nRF Connector Testpoint Testpoint VDDA VDDE JP102 JP101 JP13 JP10JP12 J102 J104 J103 JP11 J101 JP3 JP4JP5 JP6 JP7 JP8JP9 JP2JP1 3 62 L2 L3 7 Γ J3 7

nRF24Z1 Evaluation board

1M	0603	
22k	0603	
1k	0603	
NC	090	NC
NC	0603	NC
NC	0603	NC
100k	0603	
150ohm	0603	
150ohm	0603	
NC	090	NC
NC	0903	NC
NC	0603	NC
33k	0603	only for TX, not mounted on RX
33k	0603	only for TX, not mounted on RX
10k	0603	
75ohm	0603	only for TX, not mounted on RX
100 ohm	0603	only for TX, not mounted on RX
10k	0603	only for TX, not mounted on RX
10k	0603	only for TX, not mounted on RX
0ohm	0603	only for TX, not mounted on RX
00hm	0603	only for RX, not mounted on TX
1000hm	0603	only for RX, not mounted on TX
240ohm	0603	only for RX, not mounted on TX
100k	0603	
33k	0603	
00hm	0603	
NC	0603	ZN

Nordic Semiconductor ASA Revision: 1.3

nRF24Z1 Evaluation board

only for TX, not mounted on RX only for TX, not mounted on RX only for RX, not mounted on TX only for TX, not mounted on RX only for TX, not mounted on RX only for RX, not mounted on TX only for RX, not mounted on TX only for RX, not mounted on TX only for TX, not mounted on RX only for TX, not mounted on RX only for RX, not mounted on TX only for TX, not mounted on RX N NC NC0603 150ohm 150ohm 1000hm 10hm 00hm 220k 220k 100k 47k 10k 10k 10k 47k NC 10k 10k 10k 10k 10k 10k 47k47k47k $_{\rm NC}$ $_{\rm NC}$ 10k 1k 11 11 1k 1k Resistor R33 R34 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R52 R53 R55 R56 R57 R58 R59 R60 R62 R63 R51 R61

Nordic Semiconductor ASA Revision: 1.3

nRF24Z1 Evaluation board

R65	Resistor	100ohm	0603	only for RX, not mounted on TX
R66	Resistor	47ohm	0603	only for RX, not mounted on TX
R67	Resistor	1ohm	6090	only for RX, not mounted on TX
R68	Resistor	0ohm	0603	only for TX, not mounted on RX
R69	Resistor	0ohm	0903	only for RX, not mounted on TX
R101	Resistor	39ohm	0603	
R102	Resistor	39ohm	0603	
R103	Resistor	39ohm	0903	
S1	RESET, Push button	Alps, SKHUAD		
S2	DIL switch	NDIR-07ST	through-hole	
S3	DIL switch	NDIR-02ST	through-hole	only for TX, not mounted on RX
S101	Power, Slide switch	Eao, 1K2	through-hole	
		nRF24Z1	QFN 36L	
U2	EEPROM	Microchip, 25AA640	SO-8	
U3	Programmable Logic Device	Altera, EPM3032ATC44-4/7/10	44-pin TQFP	
U4	Hex Inverter	74HCU04	SO14	
US	1:1 Pulse Transformer	PE-65812		
90	Cirrus Logic, Stereo A/D Converter	CS5333	16L TSSOP	only for TX, not mounted on RX
U7	Philips, Stereo D/A Converter	UDA1334TS	SSOP16	only for RX, not mounted on TX
U8	Philips, 3-state bus buffer/line driver	7HAHC1G125	SOT353-5	
U101	Linear Voltage Regulator	LT1763CS8-3.3	SO-8	
U102	Linear Voltage Regulator	LT1763CS8-3.3	8-OS	

Table 10: nRF24Z1-EVBOARD component list

OFM

16MHz

Crystal

X

The nRF24Z1-EVBOARD is manufactured on a 1.6mm thick, 4 layer, FR4 substrate.

1. LIABILITY DISCLAIMER

Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to improve reliability, function or design. Nordic Semiconductor does not assume any liability arising out of the application or use of any product or circuits described herein.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Nordic Semiconductor ASA customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such improper use or sale.

User manual, Revision: 1.3, Date: 2005-05-02.

User manual Note order code: nRF24Z1-EVB 20050502

All rights reserved ®. Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.

YOUR NOTES

Nordic Semiconductor ASA Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Revision: 1.3 Page 26 of 27

Nordic Semiconductor - World Wide Distributors

For Your nearest dealer, please see http://www.nordicsemi.no

Main Office:

Vestre Rosten 81, N-7075 Tiller, Norway Phone: +47 72 89 89 00, Fax: +47 72 89 89 89

Visit the Nordic Semiconductor ASA website at http://www.nordicsemi.no

