Due: Thursday 9:00pm, Oct. 29, 2020

NOTE: For all of the homework in this course, do not use the problem-related OpenCV API (neither built-in nor library) to solve your problem.

- 1. Bit Plane(C/C++) (20%; Figure, 10%; Discussion, 10%)
 - (1) Hide baboon_256.raw in lena_256.raw and save the file as lena_with_baboon.raw. Explain your method. Try not to visually alter baboon_256.raw and lena_256.raw as much as you can. Show your results of lena_with_baboon.raw. Calculate MSE and PNSR of your lena_with_baboon.raw with respect to the original lena_256.raw. Your design should have the PSNR value as high as possible in both (1) & (2). (Figure, 5%; Discussion,5%)
 - (2) Extract your modified baboon_256.raw from lena_with_baboon.raw. Calculate MSE and PNSR of your extracted baboon_256.raw with respect to the original baboon_256.raw. Your design should have the PSNR value as high as possible in both (1) & (2). (Figure, 5%; Discussion,5%)
- 2. Bit-plane and Negative(C/C++)(20%;Figure, 10%; Discussion, 10%)
 - (a). Synthesize eight bit-plane images (a512x512.raw,...,h512x512.raw) back to the original image (original.raw). The bit-plane images are given in random order (e.g, not from MSB to LSB) and some of them have been processed by the image negative effect. (Figure, 5%; Discussion, 5%)

original.raw

- Grey Level Transformation(30%; Figure, 15%; Discussion, 15%)
 Use the following methods to adjust the darkened image livingroom_d512 and the whiten image cameraman_b512.raw to improve their contrast.
 - (a). Log transformation(c=100 and c=20):
 - (b). Power-Law transformation ($\gamma = 0.2$ and $\gamma = 10$, Try different c to discuss the effects):

- 4. Histogram Equalization (C/C++) (30%; Figure, 15%; Discussion, 15%)
 - (a). Plot the histograms of the livingroom_d512.raw and cameraman_b512.raw. Discuss the difference among these histograms. You have to implement your own histogram function but you can use OpenCV to plot it. (Figure, 10%; Discussion, 5%)
 - (b). Perform histogram equalization (implement your own function) on *cameraman_b512.raw* and *livingroom_d512*. Plot their histograms and compare the histograms before and after histogram equalization. Discuss the outcome with (a). (Figure, 10%; Discussion, 5%)