Exercice 11.2

On donne un point A, une droite d et un plan α . Construire un segment AB orthogonal à la droite d et tel que B soit un point de cote z=3 du plan α .

Solution géométrique 1

• Si AB est orthogonal à la droite d, alors B appartient au plan β passant par A et perpendiculaire à d.

- Le point B appartient au plan α et au plan β . Il appartient donc à la droite d'intersection i de ces deux plans.
- Le point B est le point de cote z=3 de la droite i.

Solution géométrique 2

- Si AB est orthogonal à la droite d, alors B appartient au plan β passant par A et perpendiculaire à d.
- Le point B est de cote z=3 et il appartient au plan α . Il appartient donc à la droite horizontale h de cote z=3 du plan α .
- Le point B est le point d'intersection de h et de β .

Solution géométrique 1

Soit h l'horizontale de β passant par A. Elle est orthogonale à la droite d.

Les traces de β sont perpendiculaires aux projections de d et β'' passe par la deuxième trace de h.

La droite d'intersection i des plans α et β est définie par ses traces.

Le point B est le point de cote z=3 de la droite i.

