Non-linear Genetic Effects for Complex Traits

Yu-Wei Chen, Zhengtong Liu, Jacob Wallin

Introduction

- Polygenic Risk Score
 - Common method of evaluating association between genotypes and phenotypes
 - Captures linear relationship
- BANN (Biologically Annotated Neural Networks)
 - Machine learning model that can capture non-linear relationships
 - Interpretable statistical output
- VIPRS (Variational Inference of Polygenic Risk Scores)
 - Very efficient, uses VI instead of MCMC for posterior inference

Biologically Annotated Neural Networks (BANNs)

Kernel BANNs

(B)

Modified Model:

$$m{y} = \sum_{g=1}^c (m{X}_g m{ heta}_g + m{1}b_g^{(1)}) w_g^{(1)} + \sum_{g=1}^c h(m{X}_g) m{w}_g^{(2)} + m{1}b^{(2)}$$

SNP Layer and SNP-set Level (linear):

$$m{y}_{linear} = \sum_{g=1}^{c} (m{X}_g m{ heta}_g + \mathbf{1} b_g^{(1)}) w_g^{(1)} + \mathbf{1} b^{(2)}$$

SNP-set Level (nonlinear):

$$oldsymbol{y}_{nonlinear} = oldsymbol{y} - oldsymbol{\hat{y}}_{linear}$$

$$oldsymbol{y}_{nonlinear} = \sum_{g=1}^{c} h(oldsymbol{X}_g) oldsymbol{w}_g^{(2)}$$

Simulation Design

We assume

$$\mathbf{y} = \sum_{c \in C} \mathbf{x}_c \theta_c + \mathbf{W} \boldsymbol{\varphi} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \tau^2 \mathbf{I}),$$

where $\boldsymbol{\theta} \sim \mathcal{N}(\mathbf{0}_{c \times 1}, \boldsymbol{I}_{c \times c})$ is the additive effect size, $\mathbf{W} \sim \mathcal{N}(\mathbf{0}_{n \times e}, \boldsymbol{I}_{n \times n})$ represents the pairwise interactions between causal SNPs with corresponding effects $\boldsymbol{\varphi} \sim \mathcal{N}(\mathbf{0}_{e \times 1}, \boldsymbol{I}_{e \times e})$ (e is the number of epistasis effects).

For simplicity, we assume $V[\mathbf{y}] = 1$, so the broad-sense heritability $H^2 = V[\sum \mathbf{x}_c \theta_c] + V[\mathbf{W}\boldsymbol{\varphi}]$. The additive effect makes up ρ while the pairwise interaction makes up $(1 - \rho)$ of the genetic variance, so the data is rescaled such that $V[\sum \mathbf{x}_c \theta_c] = \rho H^2$ and $V[\mathbf{W}\boldsymbol{\varphi}] = (1 - \rho)H^2$. With the constraint that $V[\mathbf{y}] = 1$, the noise is rescaled so that $V[\boldsymbol{\epsilon}] = 1 - H^2$.

Preliminary Results

- Phenotypic Variance Explained (PVE)
 - \circ Ground truth: $H^2=0.6$
 - SNP Layer, SNP-set Layer (linear), SNP-set Layer (nonlinear):
 0.48887597222414664, 0.4525421533848896, 0.1233089950726313

- Posterior Inclusion Probability (PIP)
 - Ground truth: First 10 SNPs are causal ones

VIPRS

PRS methods that operate on GWAS summary statistics and sparse Bayesian methods have shown competitive predictive ability.

- 1. Markov Chain Monte Carlo (MCMC) for posterior inference: computationally inefficient
- 2. Variational Inference:
 - a. Propose a simple parametric distribution $q(\beta, s)$
 - b. Optimize the parameters to match the true posterior as closely as possible
 - Closeness between the true posterior and the proposed distribution is measured by the Kullback-Leibler (KL) divergence and maximizing ELBO (Evidence Lower BOund)

VIPRS Design

- GWAS
 summary
 statistics for
 trait of interest
- Linkage-Disequil-ibrium (LD)matrices

Standard Linear Model:

$$\mathbf{y} = \mathbf{X}\mathbf{\beta} + \boldsymbol{\epsilon}$$
 With inferred posterior distribution:

$$p(\beta \mid \mathbf{X}, \mathbf{y}, \mathbf{\theta}) = \frac{p(\mathbf{y} \mid \mathbf{X}, \beta, \mathbf{\theta})p(\beta \mid \mathbf{\theta})}{\int p(\mathbf{y} \mid \mathbf{X}, \beta, \mathbf{\theta})p(\beta \mid \mathbf{\theta})d\beta}$$

Assign Spike and Slab Prior:

$$\beta_j \sim \pi \mathcal{N}(\beta_j; 0, \sigma_{\beta}^2) + (1 - \pi)\delta_0$$

Variational Inference:

$$q(\boldsymbol{\beta}, \mathbf{s}) = \prod_{j}^{M} q(\beta_{j}, s_{j}) = \prod_{j}^{M} \mathcal{N}(\beta_{j}; \mu_{j}, \sigma_{j}^{2}) Bern(s_{j}; \gamma_{j})$$

Example Results

• Examine posterior estimates for the model parameters

	CHR	SNP	A1	A2	BETA	PIP	VAR_BETA
0	22	rs131538	Α	G	-1.061113e-05	0.014341	3.336974e-08
1	22	rs9605903	C	T	1.118776e-05	0.014497	3.423175e-08
2	22	rs5746647	G	T	-2.928591e-07	0.012277	2.175343e-08
3	22	rs16980739	T	C	-2.519748e-05	0.019512	6.657493e-08
4	22	rs9605923	Α	T	1.276606e-05	0.015085	3.797483e-08
•••	***	2772	•••	•••	=posterior mean	18.5	=variance.
15930	22	rs8137951	A	G	-1.235467e-05	0.014874	3.645719e-08
15931	22	rs2301584	A	G	-8.020855e-04	0.237438	2.486760e-06
15932	22	rs3810648	G	Α	2.263451e-05	0.018560	5.996763e-08
15933	22	rs2285395	A	G	5.651122e-06	0.012978	2.556586e-08
15934	22	rs28729663	Α	G	-5.423681e-06	0.013021	2.585062e-08

	Parameter	Value
0	Residual_variance	9.942623e-01
1	Heritability	5.618044e-03
2	Proportion_causal	2.282775e-02
3	Average_effect_variance	2.789654e-07
4	sigma_beta	1.222045e-05

Comparisons

	BANNs	VIPRS			
	Bayesian paradigm				
Similarity	Same prior assumption				
	Variational approximation				
	Two layers, interpretable statistical output	One layer, computation efficiency			
Differences	Relies on gene range information	GWAS summary statistics Scalable and flexible			
	Worse performance on sparse data	Able to perform train-test split on data			

Thanks!