题号	_		三	四	总成绩
满分	15	21	48	16	
得分					

得 分

一、单项选择题(每小题 3 分, 共 15 分)

1.	下面说法中,	正确的人	卜 数是	()
1.				-	/

- 1) 两个子空间正交,则它们的和一定是直和:
- 2) 复数域作为实数域上的线性空间是 2 维的:
- 3) 两个子空间和的维数等于它们各自维数的和;
- 4) n 维欧氏空间 V 的每一个子空间 W 都存在唯一的正交补.

A) 4; B) 3; C) 2; D)

- 2、下列关于有限维线性空间 V 中线性变换 T 的说法错误的是()
- A. T的值域与核都是 T的不变子空间; B. T是单射当且仅当 T是满射;
- C. T 在两组不同基下的矩阵相似; D. T 的值域与核的和等于 V.
- - A) A有n个线性无关的特征向量; B) A的初等因子都是一次的;
 - C) A有n个不同的特征值;
- D) A 的不变因子没有重根.
- 4. 下面这些 λ-矩阵中, 可逆的是()

$$\text{A)} \quad \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}; \qquad \text{B)} \quad \begin{pmatrix} \lambda & \lambda \\ 1 & \lambda \end{pmatrix}; \qquad \text{C)} \quad \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}; \qquad \text{D)} \quad \begin{pmatrix} \lambda & 1 \\ 1 & \lambda \end{pmatrix}.$$

5. 设A 是n 维欧式空间中某组基的度量矩阵,则以下不可能是 A 的迹(trA,即 A 的主对角线元素之和)的是()

得 分

二、填空题(每空3分,共21分)

1. 已知
$$3$$
 阶 λ –矩阵, $A(\lambda) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda(\lambda-1) \end{pmatrix}$,则 $A(\lambda)$ 的不变因子是_____

2. 设 $\varepsilon_1 = (1,0,0)$, $\varepsilon_2 = (0,1,0)$, $\varepsilon_3 = (0,0,1)$ 及 $\eta_1 = (1,2,3)$, $\eta_2 = (0,1,2)$, $\eta_3 = (0,0,1)$ 是线性空间 \mathbb{R}^3 中两组基,则从第一组基到第二组基的过渡矩阵为

_________,向量
$$\alpha$$
 = (1,3,6) 在第二组基下的坐标为______

- 3. 设 $V = \{A \in P^{n \times n} \mid A \text{ 是对称矩阵}\}$,则V 是线性空间且 $\dim V = \underline{\hspace{1cm}}$
- 4. 若矩阵 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}$ 与矩阵 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 相似,则 x =_______
- 5. 若线性变换 \emph{A} 在基 $\emph{\varepsilon}_1,\emph{\varepsilon}_2,\emph{\varepsilon}_3$ 下的矩阵为 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$,则 \emph{A} 在基 $\emph{\varepsilon}_3,\emph{\varepsilon}_2,\emph{\varepsilon}_1$ 下的矩阵

6. 设欧氏空间
$$\mathbb{R}^{2\times 1}$$
 中的内积为 $(\alpha,\beta)=\alpha^TA\beta$, $A=\begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$, 则基 $\varepsilon_1=\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\varepsilon_2=\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

在此内积之下的度量矩阵为 _____

得 分

三、计算题(共48分)

1. (12分)设P是一个数域,记V,是由向量

$$\alpha_1 = (1, 0, 0, 0), \ \alpha_2 = (0, 1, 0, 0),$$

生成的 P^4 的子空间,即 $V_1 = L(\alpha_1, \alpha_2)$. 记 V_2 是由向量

$$\beta_1 = (0, 0, 1, 1), \ \beta_2 = (1, 1, 1, 1).$$

生成的 P^4 的子空间,即 $V_2 = L(\beta_1, \beta_2)$.

- (1) 求 $V_1 \cap V_2$ 的维数和一组基.
- (2) 求 $V_1 + V_2$ 的维数和一组基.

- 2. (12 分) 已知 $P^{2\times 2}$ 的线性变换 $\sigma(X) = MX$, $\forall X \in P^{2\times 2}$, $M = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$,
- (1) 求 σ 在基 $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_{12} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_{22} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ 下的矩阵.
- (2) 求 σ 的值域的维数和一组基,以及 σ 的核的维数和一组基.

$$3$$
、(10 分) 设 $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ 为复系数矩阵,

- (1) 求 $\lambda E A$ 的各阶行列式因子;
- (2) 求 A 的初等因子;
- (3) 求 A 的若尔当标准形.

4. (14分)已知实二次型

$$f(x_1, x_2, x_3) = ax_1^2 + x_2^2 + x_3^2 - 2x_1x_2 - 2x_1x_3 - 2x_2x_3$$

的矩阵的特征值之和是 3.

- (1) 求参数 a, 并写出该实二次型的矩阵;
- (2) 用正交线性替换将上述二次型化为标准型.

得 分

四. 证明题 (16分)

1. $(8\,
m eta)$ 设 σ 是 4 维线性空间 V 上的线性变换, 且 σ 在基 $lpha_1,lpha_2,lpha_3,lpha_4$ 下的矩阵为

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}.$$

证明: V 的包含 α_1 的 σ 不变子空间只有V 本身.

2. (8分) 设 σ 是n维欧氏空间V的对称变换,即 σ 是V的线性变换,且对任意 $\alpha, \beta \in V$ 都有 $(\sigma(\alpha), \beta) = (\alpha, \sigma(\beta))$.

证明: σ 的像子空间 $Im\sigma$ 是 σ 的核子空间 $ker\sigma$ 的正交补子空间.

	单	槅	纸	
姓名:			学号:	