${\rm SEEM}~5580$

Final Exam

Name:

December 11, 2014

This is a closed book, closed notes test. **CUHK student honor code applies to this test.** There are a total of 6 problems.

1. (10 points) Recall that a discrete time stochastic process $X = \{X_n : n = 0, 1, 2, ...\}$ in state space S satisfies the Markov property if

$$\mathbb{P}\{X_{n+1} = j | X_0 = i_0, X_1 = i_1, \dots, X_n = i\} = \mathbb{P}\{X_{n+1} = j | X_n = i\}$$

for each $n \ge 0$ and $i_0, i_1, \ldots i_{n-1}, i, j \in S$. Toss a fair coin sequentially. Let $\xi_i = 1$ if the *i*th toss lands a head and $\xi_i = 0$ otherwise. Let $Y_0 = 0, Y_1 = \xi_1$ and $Y_n = \xi_n + \xi_{n-1}$ for $n \ge 2$. Does $Y = \{Y_n : n = 0, 1, 2, \ldots, \}$ satisfy the Markov property? Prove your assertion.

2. (20 points) Consider an inventory system. The weekly demands $\{D_i : i = 1, ...\}$ are iid following distribution

$$\begin{array}{c|cccc} d & 0 & 1 & 2 \\ \hline \mathbb{P}\{D_i = d\} & .2 & .5 & .3 \end{array}$$

Suppose the inventory policy is (s, S) with s = 0 and S = 2. Namely, by the end of Friday, if inventory becomes empty, order 2 item. Otherwise, do not order. Unsatisfied demand during a week is lost. Find the long run fraction of weeks when demand is not satisfied. Express your answer in terms the stationary distribution of a DTMC (Discrete-Time Markov Chain). You do not need to compute the stationary distribution. But you need to define the DTMC precisely and explain why the stationary distribution exists and is unique.

- 3. (20 points; 5 points each question) A call center has four phone lines and two agents. Call arrival to the call center follows a Poisson process with rate 2 calls per minute. Calls that receive a busy signal are lost. The processing times are i.i.d exponentially distributed with mean 1 minute.
 - (a) Model the system by a continuous time Markov chain. Specify the state space. Clearly describe the meaning of each state. Specify the generator matrix.
 - (b) What is the long-run fraction of time that there are two calls in the system?
 - (c) What is the long-run average number of waiting calls, excluding those in service, in the system?
 - (d) What is the throughput (the rate at which completed calls leaves the call center) of the call center?

- 4. (20 points; 5 points each question) Let $\{N(t): t \geq 0\}$ be a Poisson process with rate λ , and $\{N(t): t \geq 0\}$ models customer arrivals to a service center. Let ξ_i be the inter-arrival time between (i-1)-th and i-th customers. For each statement, say "true" or "false" and explain your answers. Assume throughout that t > 0 is fixed but arbitrary.
 - (a) N(t) has a Poisson distribution with mean λ .
 - (b) ξ_i has an exponential distribution with mean λ for each i.
 - (c) $\xi_{N(t)+1}$ has an exponential distribution.
 - (d) $\xi_{N(t)+2}$ has an exponential distribution.

5. (20 points; 5 points each question) Let ξ_1, ξ_2, \ldots be a sequence of independent, identically distributed random variables. Suppose $\mathbb{P}(\xi_1 = 1) = 1 - \mathbb{P}(\xi_1 = -1) = p \in (0, 1)$. Define $S_0 = 0$ and $S_n = \sum_{i=1}^n \xi_i$ for $n \geq 1$. For fixed integers a > 0 and b > 0, define

$$\tau = \inf\{k \geq 1 : \xi_k = 1\} \quad \text{and} \quad T = \inf\{k \geq 0 : S_k \in \{a, -b\}\}$$

- (a) Is τ a stopping time for $\{S_n : n \ge 1\}$? Explain why or why not.
- (b) Suppose p = 0.5. Calculate $\mathbb{E}[S_{\tau}]$.
- (c) Suppose p = 0.5. Compute $\mathbb{P}(S_T = a)$.
- (d) Suppose $p \neq 0.5$. Compute $\mathbb{P}(S_T = a)$.

- 6. (10 points) Suppose $\{B(t): t \geq 0\}$ is a standard Brownian motion. Suppose Z is a standard normal random variable with mean 0 and variance 1. Define $Y(t) = \sqrt{t} \cdot Z$ for $t \geq 0$. For each statement, say "true" or "false". No explanations are needed. Assume throughout that t > 0 is fixed but arbitrary.
 - (a) (3 points) The process $\{Y(t): t \geq 0\}$ is a standard Brownian motion.
 - (b) (4 points) $\max_{0 \le s \le t} B(s)$ and |B(t)| have the same distribution.
 - (c) (3 points) $B(t) \min_{0 \le s \le t} B(s)$ and |B(t)| have the same distribution.

(this page is left blank)