Projeto 2

Arthur Assis Gonçalves cc22300@g.unicamp.br

Vinícius Dos Santos Andrade cc22333@g.unicamp.br

TI327 - Tópicos em Inteligência Artificial Prof. Dr. Guilherme Macedo Colégio Técnico de Campinas - UNICAMP

Sumário

1	Intr	odução	4
2	Des	crição	5
	2.1	Descrição 1º problema	5
	2.2	Descrição 2º problema	5
	2.3	Descrição 3º problema	6
	2.4	Descrição 4º problema	6
	2.5	Descrição 5º problema	6
	2.6	Descrição 7º problema	7
3	Des	envolvimento	8
	3.1	Código 1º problema	8
	3.2	Código 2º problema	11
	3.3	Código 3º problema	12
	3.4	Código 4º problema	13
	3.5	Código 5º problema	14
	3.6	Código 7º problema	15
4	ultados	16	
	4.1	Testes Computacionais	16
	4.2	Experimento	17
		4.2.1 Ferramentas e Justificativas	17
		4.2.2 Objetivos	17
		4.2.3 Parâmetros e Resultados	18

5	Ref	erências Bibliográficas				31
	4.8	Solução 7º Problema	 	 	 	30
	4.7	Solução 5º Problema	 	 	 	27
	4.6	Solução 4º Problema	 	 	 	25
	4.5	Solução 3º Problema	 	 	 	23
	4.4	Solução 2º Problema	 	 	 	21
	4.3	Solução 1º Problema	 	 	 	19

1 Introdução

A otimização linear, é uma técnica matemática utilizada para maximizar ou minimizar uma função linear sujeita a um conjunto de restrições lineares. Este método encontra aplicações em diversas áreas como economia, engenharia, logística e pesquisa operacional, sendo essencial para a tomada de decisões eficientes e racionais.

Apesar de sua extensa aplicação, a otimização possui algumas limitações. Os problemas relacionados à modelagem, solução e interpretação dos resultados podem impactar significativamente a eficiência e a aplicabilidade dos métodos de otimização linear. Entre os desafios mais comuns estão a complexidade computacional de grandes modelos, a dificuldade em lidar com dados imprecisos ou incompletos e as limitações inerentes das suposições de linearidade.

As funções de otimização são descritas de forma genérica por:

minimizar
$$c^T x$$

sujeito a $Ax = b$ (1)
 $x \in \mathbb{R}^+$

Neste relatório, apresentamos a implementação do método Simplex em Python para resolver problemas de otimização linear, seguido da aplicação desse método em vários problemas de teste.

2 Descrição

Nesta seção, apresentaremos os problemas propostos no Projeto 2 da disciplina TI327 - Tópicos em Inteligência Artificial, ministrada pelo Prof. Dr. Guilherme Macedo. Os respectivos códigos utilizados para cada um dos seis problemas serão detalhados na seção 2.2,

2.1 Descrição 1º problema

Minimizar:
$$5x_1 + x_2$$

Sujeito a:

$$2x_1+x_2 \geq 6,$$

$$x_1+x_2 \geq 4$$
,

$$x_1 + 5x_2 \ge 10$$
,

$$x_1, x_2 \geq 0.$$

2.2 Descrição 2º problema

Minimizar:
$$2x_1 - 3x_2$$

Sujeito a:

$$x_1+2x_2 \leq 6,$$

$$2x_1-x_2 \leq 8,$$

$$x_1, x_2 \ge 0.$$

2.3 Descrição 3º problema

Minimizar:
$$15(x_1 + 2x_2) + 11(x_2 - x_3)$$

Sujeito a:

$$3x_1 \geq x_1 + x_2 + x_3$$
,

$$0 \le x_j \le 1$$
, $j = 1, 2, 3$.

2.4 Descrição 4º problema

Minimizar: $10(x_3 + x_4)$

Sujeito a:

$$\sum_{j=1}^{4} x_j \qquad = 400$$

$$x_j - 2x_{j+1} \ge 0, \quad j = 1, 2, 3,$$

$$x_j \ge 0, \quad j = 1, 2, 3.$$

2.5 Descrição 5º problema

Maximizar: $-5x_1 + 3(x_1 + x_3)$

Sujeito a:

$$x_j + 1 \le x_{j+1}, \quad j = 1, 2,$$

$$\sum_{j=1}^{3} x_j = 12,$$

$$x_j \ge 0$$
, $j = 1, 2, 3$.

2.6 Descrição 7º problema

Maximizar:
$$9x_1 + 5x_2$$

Sujeito a:

$$\sin\left(\frac{k}{13}\right)x_1 + \cos\left(\frac{k}{13}\right)x_2 \le 7, \quad k = 1, \dots, 13$$

$$x_1, x_2 \geq 0$$

3 Desenvolvimento

3.1 Código 1º problema

```
1 from scipy.optimize import linprog
2 import numpy as np
4 def problema_1():
      c = [5, 1]
      A = [[-2, -1],
          [-1, -1],
          [-1, -5]]
      b = [-6, -4, -10]
      x0_bounds = (0, None)
11
      x1\_bounds = (0, None)
12
      res = linprog(
          с,
15
          A_ub=A,
          b_ub=b,
17
          bounds = [x0_bounds, x1_bounds],
          method='highs',
          options={'disp': False}
21
22
      print(f'A solução otima deste problema foi x* = ({res.x[0]:.0f}, {res.}
     x[1]:.0f) com f(x*) = \{res.fun:.0f\}.')
24
      plot_2d_problema_1(res)
25
      plot_3d_problema_1(res)
      return res
```

Este código foi desenvolvido para solucionar o primeiro problema proposto na seção 2.1. Adotamos essa abordagem para resolver todos os problemas apresentados, alterando apenas nos casos em que o objetivo era a maximização; para esses, os coeficientes da função objetivo foram invertidos.

O código inicia com a definição dos coeficientes da função objetivo que será minimizada, representada pela lista

$$c = [5, 1],$$

onde a função objetivo é dada por

$$f(x) = 5x_1 + x_2.$$

Em seguida, estabelece-se a matriz A, contendo os coeficientes das restrições de desigualdade, onde cada linha corresponde a uma restrição e cada coluna, a uma variável. As restrições definidas são

$$-2x_1 - x_2 \le -6,$$

$$-x_1 - x_2 \le -4,$$

$$-x_1 - 5x_2 \le -10,$$

que podem ser reescritas como

$$2x_1 + x_2 \ge 6$$
,
 $x_1 + x_2 \ge 4$,
 $x_1 + 5x_2 \ge 10$,

respectivamente.

O vetor

$$b = [-6, -4, -10]$$

contém os termos independentes das restrições de desigualdade. Os limites das variáveis são definidos pelos pares

$$x0_bounds = (0, None),$$

 $x1_bounds = (0, None),$

garantindo que ambas as variáveis sejam não-negativas, ou seja,

$$x_1 \ge 0 \text{ e } x_2 \ge 0.$$

A resolução do problema de programação linear é realizada através da função linprog, utilizando o solver 'highs'. Os parâmetros fornecidos incluem os coeficientes da função objetivo, a matriz de restrições, os termos independentes, os limites das variáveis e o método de otimização escolhido. Após a resolução, a solução ótima é apresentada, onde os valores das variáveis x_1 e x_2 são exibidos juntamente com o valor da função objetivo f(x).

Por fim, o código invoca funções para a plotagem de gráficos bidimensionais e tridimensionais que ilustram a solução ótima encontrada e retorna o objeto contendo os resultados da otimização, que inclui tanto a solução ótima quanto o valor da função objetivo.

3.2 Código 2º problema

```
def problema_2():
      c = [-2, 3]
      A = [[1, 2],
          [2, -1]]
      b = [6, 8]
      x0\_bounds = (0, None) # x1 >= 0
      x1\_bounds = (0, None) # x2 >= 0
      res = linprog(
10
          с,
          A_ub=A,
          b_ub=b,
13
          bounds = [x0_bounds, x1_bounds],
          method='highs',
15
          options={'disp': False}
      )
18
      print(f'A solucao otima deste problema e x* = ({res.x[0]:.0f}, {res.x})
     [1]:.0f) com f(x*) = {-res.fun:.0f}.')
20
      plot_2d_problema_2(res)
21
      plot_3d_problema_2(res)
22
23
      return res
```

3.3 Código 3º problema

```
def problema_3():
      c = [-15, -41, 11] # Original: 15x1 + 41x2 - 11x3
      A = [[-2, -1, -1]]
      b = [-3]
      x_{bounds} = [(0, 1), (0, 1), (0, 1)]
      res = linprog(
          с,
          A_ub=A,
          b_ub=b,
11
          bounds=x_bounds,
          method='highs',
13
          options={'disp': False}
      )
       print(f'A solucao otima deste problema e x* = ({res.x[0]:.0f}, {res.x})
     [1]:.0f}, {res.x[2]:.0f}) com f(x*) = {-res.fun:.0f}.')
      plot_2d_problema_3(res)
19
      plot_3d_problema_3(res)
21
      return res
22
```

3.4 Código 4º problema

```
def problema_4():
      c = [0, 0, 10, 10]
      A_ub = [
          [-1, 2, 0, 0],
          [0, -1, 2, 0],
          [0, 0, -1, 2]
      ]
      b_ub = [0, 0, 0]
      A_{eq} = [[1, 1, 1, 1]]
10
      b_eq = [400]
11
      bounds = [(0, None), (0, None), (0, None), (0, None)]
13
15
      res = linprog(
          с,
          A_ub = A_ub,
          b_ub=b_ub,
          A_eq=A_eq,
20
          b_eq=b_eq,
          bounds=bounds,
          method='highs',
23
          options={'disp': False}
      )
      print(f'A solucao otima deste problema e x* = ({res.x[0]:.0f}, {res.x})
     [1]:.0f, {res.x[2]:.0f}, {res.x[3]:.0f}) com f(x*) = \{res.fun:.0f\}.')
28
      plot_2d_problema_4(res)
29
      plot_3d_problema_4(res)
      return res
32
```

3.5 Código 5º problema

```
def problema_5():
      c = [2, -3, -3]
      A_ub = [
          [1, -1, 0],
          [0, 1, -1]
      ]
      b_ub = [-1, -1]
      A_{eq} = [[1, 1, 1]]
      b_eq = [12]
      bounds = [(0, None), (0, None), (0, None)]
11
      res = linprog(
13
          с,
          A_ub = A_ub,
          b_ub=b_ub,
          A_eq=A_eq,
          b_eq=b_eq,
          bounds=bounds,
          method='highs',
20
          options={'disp': False}
      )
22
      if res.success:
23
          x_{opt} = res.x
          f_{opt} = -res.fun
          print(f"A solucao otima deste problema e x* = (\{x_{opt}[0]:.0f\}, \{
     x_{opt}[1]:.0f, {x_{opt}[2]:.0f}) com f(x*) = {f_{opt}:.2f}.")
27
          plot_2d_problema_5(res)
          plot_3d_problema_5(res)
29
      else:
          print("0 problema de otimizacao nao encontrou uma solucao viavel."
      return res
```

3.6 Código 7º problema

```
def problema_7():
      c = [-9, -5]
      A_ub = np.array([[np.sin(k / 13), np.cos(k / 13)] for k in range(1, 13)]
     14)])
      b_ub = np.array([7] * 13)
      bounds = [(0, None), (0, None)] # x1 >= 0, x2 >= 0
      res = linprog(
          с,
          A_ub = A_ub,
          b_ub=b_ub,
          bounds=bounds,
12
          method='highs',
          options={'disp': False}
      ) [
      ]
17
      if res.success:
          plot_2d_problema_7(res)
19
          plot_3d_problema_7(res)
          print(r'A solucao otima deste problema e x* = (\{:.2f\}, \{:.2f\})
22
     com $f(x*) = {:.2f}$.'.format(res.x[0], res.x[1], -res.fun))
      else:
          print("Otimizacao falhou. Status:", res.status)
          print("Mensagem:", res.message)
      return res
```

4 Resultados

4.1 Testes Computacionais

Os testes foram realizados em dois dispositivos distintos:

• Notebook

- CPU: Intel Core i5 12500H

- RAM: 8 GB DDR5

- GPU: NVIDIA GeForce RTX 3050 Laptop

• Desktop

- CPU: AMD Ryzen 3 3300X

- RAM: 2 x 8 GB DDR4

- GPU: NVIDIA GeForce GTX 1660 SUPER

4.2 Experimento

Para a realização dos experimentos, utilizamos a IDE PyCharm Professional 2024.1.3 (build 241.17890.14) com a versão 3.12.3 do Python. A biblioteca central para a análise foi a SciPy 1.13.1, explorando a função linprog(method='highs') para a resolução eficiente dos problemas de programação linear.

4.2.1 Ferramentas e Justificativas

A escolha da função linprog(method='highs') se deve à sua capacidade de selecionar automaticamente o solver mais adequado entre o método dual simplex revisado ('highs-ds') e o método de ponto interior ('highs-ipm'), ambos da biblioteca **HIGHS**. Essa abordagem híbrida garante robustez, precisão e desempenho na resolução de problemas de programação linear, mesmo em larga escala.

Além disso, a função linprog oferece uma interface intuitiva para definir a função objetivo, as restrições e os parâmetros do problema, facilitando a implementação e análise dos resultados.

4.2.2 Objetivos

Com este experimento, buscamos:

- 1. Resolver de forma eficiente e precisa os problemas de otimização linear propostos.
- 2. Validar a implementação do método Simplex.
- 3. Avaliar o desempenho da biblioteca SciPy na resolução de problemas de otimização.

4.2.3 Parâmetros e Resultados

Os parâmetros utilizados na função linprog foram:

- c: Vetor de coeficientes da função objetivo.
- A_ub: Matriz de coeficientes das restrições de desigualdade.
- b_ub: Vetor de termos independentes das restrições de desigualdade.
- bounds: Tupla definindo os limites das variáveis de decisão.
- method: Método de resolução ('highs').
- options: Opções adicionais, como exibição de mensagens ('disp').

A função linprog retorna um objeto OptimizeResult contendo:

- x: Valores ótimos das variáveis de decisão.
- fun: Valor ótimo da função objetivo.
- success: Indicador de sucesso na resolução.
- status: Código de status da otimização.
- message: Mensagem sobre o resultado.

4.3 Solução 1º Problema

A figura 2 representa graficamente o problema em 3D, assim mostrando a região factível, definida pelas restrições, e a superfície da função objetivo. A solução ótima é destacada como um ponto e conectada ao plano xy por uma linha tracejada.

Dessa forma, é possível verificar que a solução ótima para esse problema é:

$$x^* = (0,6) \operatorname{com} f(x^*) = 6$$

Figura 1: Plot 2D 1° Problema

Figura 2: Plot 3D 1° Problema

4.4 Solução 2º Problema

A figura 4 representa graficamente o problema em 3D, dessa forma exibe a região factível do Problema 2, definida pelas restrições, e a superfície da função objetivo. A solução ótima é destacada como um ponto e conectada ao plano xy por uma linha tracejada.

Assim é possível verificar que a solução ótima para o problema é:

$$x^* = (4,0) \operatorname{com} f(x^*) = 8$$

Figura 3: Plot 2D 2° Problema

Figura 4: Plot 3D 2° Problema

4.5 Solução 3º Problema

A figura 6 representa graficamente o problema em 3D, assim mostrando a região factível, definida pelas restrições, e a superfície da função objetivo. A solução ótima é destacada como um ponto.

Dessa forma é possível verificar que a solução ótima para esse problema é:

$$x^* = (1, 1, 0) \text{ com } f(x^*) = 56$$

Figura 5: Plot 2D 3° Problema

Figura 6: Plot 3D 3° Problema

4.6 Solução 4º Problema

A figura 8 representa graficamente o problema em 3D, assim mostrando a região factível, definida pelas restrições, e a superfície da função objetivo. A solução ótima é destacada como um ponto.

Dessa forma é possível verificar que a solução ótima para esse problema é:

$$x^* = (400, 0, 0, 0) \text{ com } f(x^*) = 0$$

Figura 7: Plot 2D 4° Problema

Figura 8: Plot 3D 4° Problema

4.7 Solução 5º Problema

A figura 12 representa graficamente o problema em 3D, assim mostrando a região factível, definida pelas restrições, e a superfície da função objetivo. A solução ótima é destacada como um ponto.

Dessa forma é possível verificar que a solução ótima para esse problema é:

$$x^* = (0, 1, 11) \text{ com } f(x^*) = 36$$

Figura 9: 5° Problema 2D: x1 vs x2 (x3 fixo)

Figura 10: 5° Problema 2D: x1 vs x3 (x2 fixo)

Figura 11: 5° Problema: x2 vs x3 (x1 fixo)

Figura 12: Plot 3D

4.8 Solução 7º Problema

Figura 13: Plot 7

5 Referências Bibliográficas

- [1] Huangfu, Q., Galabova, I., Feldmeier, M., and Hall, J. A. J. "HiGHS high performance software for linear optimization." https://highs.dev/
- [2] Huangfu, Q. and Hall, J. A. J. "Parallelizing the dual revised simplex method." Mathematical Programming Computation, 10 (1), 119-142, 2018. DOI: 10.1007/s12532-017-0130-5
- [3] Harris, Paula MJ. "Pivot selection methods of the Devex LP code." Mathematical programming 5.1 (1973): 1-28.
- [4] Goldfarb, Donald, and John Ker Reid. "A practicable steepest-edge simplex algorithm." Mathematical Programming 12.1 (1977): 361-371.
- [5] Virtanen, P. et al., 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), pp.261-272.
- [6] SciPy documentation. https://docs.scipy.org/doc/scipy/reference/. Acessado em [data de acesso].
- [7] Dantzig, George B. Linear programming and extensions. Rand Corporation Research Study. Princeton Univ. Press, Princeton, NJ, 1963.
- [8] Hillier, S.H. and Lieberman, G.J. "Introduction to Mathematical Programming". McGraw-Hill, 1995. Chapter 4.
- [9] Bland, Robert G. "New finite pivoting rules for the simplex method." Mathematics of Operations Research 2 (1977): 103-107.
- [10] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm." High performance optimization. Springer US, 2000. 197-232.

- [11] Andersen, Erling D. "Finding all linearly dependent rows in large-scale linear programming." Optimization Methods and Software 6.3 (1995): 219-227.
- [12] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear Programming based on Newton's Method." Unpublished Course Notes, March 2004. Accessed February 25, 2017. https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf
- [13] Fourer, Robert. "Solving Linear Programs by Interior-Point Methods." Unpublished Course Notes, August 26, 2005. Accessed February 25, 2017. http://www.4er.org/CourseNotes/Book
- [14] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear programming." Mathematical Programming 71.2 (1995): 221-245.
- [15] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear programming." Athena Scientific 1 (1997): 997.
- [16] Andersen, Erling D., et al. Implementation of interior point methods for large scale linear programming. HEC/Universite de Geneve, 1996.