

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2010/2011 – 3rd Year Examination – Semester 5

IT5503: Computer Graphics & Image Processing Structured Question Paper

11th, March, 2011 (TWO HOURS)

To be completed by th	e candid	date	
BIT Examination	Index	No:	

Important Instructions:

- The duration of the paper is **2 (Two) hours**.
- The medium of instruction and questions is English.
- This paper has 4 questions and 12 pages.
- Answer all 4 questions: Each question carries 25 marks.
- Write your answers in English using the space provided in this question paper.
- Do not tear off any part of this answer book.
- Under no circumstances may this book, used or unused, be removed from the Examination Hall by a candidate.
- Note that questions appear on both sides of the paper.
 If a page is not printed, please inform the supervisor immediately.
- Non-programmable Calculators may be used.

_			_			
(JI	uest	เดท	SΑ	ทรง	ver	ed

Indicate by a cross (x), (e.g. X) the numbers of the questions answered.

		Question	number	'S	
To be completed by the candidate by marking a cross (x).	1	2	3	4	
To be completed by the examiners:					

				Index No:	•••••
Brief	y explain 4 (four) ap	plication areas of c	omputer graphi	ics.	
					(4 ma
ANS	WER IN THIS BO	<u>x</u>			
	Any 4 of the foll	owing:			
	1. CAD	applications			
	2. Educ	ation			
	3. Enter	tainment (games)			
	4. Film	and Video Creatio	on .		
	5. Virtu	al Reality			
	6. Adve	rtising			
	7. Fine	Arts			
Expla	in the two terms 'wi	ndows' and 'viewp	orts' in comput	er graphics app	olications.
ANS	WER IN THIS BO	<u>x</u>			
· · ✓	A window is a wo	rld coordinate are	ea selected for	disnlav	
✓	A viewport is a se				ndow is map
✓	The window defin	nes what is to be d	lisplayed and t	the viewport d	efines where
	to be displayed.				
✓				_	_
	For a 2D picture				_
		elect a single area			_

Index	No:							
muex	INO:	 						

(c) A point at position (X_w, Y_w) in the window is mapped into position (X_v, Y_v) in the associated viewport. Derive the equations for the viewport position of (X_v, Y_v) using normalized coordinates.

(*Hint:* the coordinates (Xw_{min}, Yw_{min}) and (Xw_{max}, Yw_{max}) define the rectangle of the window and coordinates (Xv_{min}, Yv_{min}) and (Xv_{max}, Yv_{max}) define the rectangle of the viewport.)

(6 marks)

Xw - Xwmin	Xv - Xvmin
Xwmax - Xwmin	Xvmax - Xvmin
Yw - Yw _{min} =	Yv - Yvmin
Yw_{max} - Yw_{min}	$\mathbf{Y}\mathbf{v}_{\mathbf{max}}$ - $\mathbf{Y}\mathbf{v}_{\mathbf{min}}$
We can rewrite ab	
$\mathbf{X}\mathbf{v} = [(\mathbf{X}\mathbf{v}_{\text{max}} - \mathbf{X}\mathbf{v}_{\text{m}})]$	$_{\mathrm{in}})/(\mathbf{X}\mathbf{w}_{\mathrm{max}} - \mathbf{X}\mathbf{w}_{\mathrm{min}})] * (\mathbf{X}\mathbf{w} - \mathbf{X}\mathbf{w}_{\mathrm{min}}) + \mathbf{X}\mathbf{v}_{\mathrm{min}})$
Similarly for Y,	
$\mathbf{Y}\mathbf{v} = [(\mathbf{Y}\mathbf{v}_{\max} - \mathbf{Y}\mathbf{v}_{\max})]$	$_{\text{in}}) / (Yw_{\text{max}} - Yw_{\text{min}})] * (Yw - Yw_{\text{min}}) + Yv_{\text{min}})$

Index	No:								

(d) Draw a flow chart to show the steps involved in a typical 3D Graphics Viewing Pipeline

(5 marks)

1. The viewing transform takes vertices in the world coordinates into viewing coordinates. 2. The clipping operation eliminates the graphics outside the specified view volume. 3. The appropriate projection transformation to project 3D graphics in the view volume onto the view plane should be carried out. 4. The final two steps in this pipeline are the standard final processes in a two dimensional pipeline. 5. These involve transforming the view window contents on to the viewport (the part of the display surface selected) and then transforming these coordinates into physical device coordinates.	ANSWER IN THIS BOX	
 coordinates. The clipping operation eliminates the graphics outside the specified view volume. The appropriate projection transformation to project 3D graphics in the view volume onto the view plane should be carried out. The final two steps in this pipeline are the standard final processes in a two dimensional pipeline. These involve transforming the view window contents on to the viewport (the part of the display surface selected) and then transforming these coordinates into physical 	Modelling Viewing Transform Transform Transform Transform Transform Transform Transform Transform Transform	
 The appropriate projection transformation to project 3D graphics in the view volume onto the view plane should be carried out. The final two steps in this pipeline are the standard final processes in a two dimensional pipeline. These involve transforming the view window contents on to the viewport (the part of the display surface selected) and then transforming these coordinates into physical 	_	ving
onto the view plane should be carried out. 4. The final two steps in this pipeline are the standard final processes in a two dimensional pipeline. 5. These involve transforming the view window contents on to the viewport (the part of the display surface selected) and then transforming these coordinates into physical	2. The clipping operation eliminates the graphics outside the specified view volume.	
4. The final two steps in this pipeline are the standard final processes in a two dimensional pipeline.5. These involve transforming the view window contents on to the viewport (the part of the display surface selected) and then transforming these coordinates into physical	3. The appropriate projection transformation to project 3D graphics in the view vol	ume
dimensional pipeline. 5. These involve transforming the view window contents on to the viewport (the part of the display surface selected) and then transforming these coordinates into physical	onto the view plane should be carried out.	
5. These involve transforming the view window contents on to the viewport (the part of the display surface selected) and then transforming these coordinates into physical	4. The final two steps in this pipeline are the standard final processes in a	two
the display surface selected) and then transforming these coordinates into physical	dimensional pipeline.	
device coordinates.		sical
	device coordinates.	

Index	No.								
muex	INO:	 							

(e) Name and briefly explain the three components of illumination that are used to calculate shading for an opaque surface?

(6 marks)

ANSWER IN THIS BOX

- **1. Ambient light-** combination of light reflections from various surfaces to produce a uniform illumination
- **2. Diffuse reflection-** the reflection of light from a surface such that an incident ray is reflected at many angles
- **3. Specular reflection-** the mirror-like reflection of light from a surface, in which light from a single incoming direction is reflected into a single outgoing direction

																																				-	 	 	-					
 	 	 		 	 	 	 -	 -	 -	 	 	 -	-	 -	 -	-	 	-	-	 -	-	 -	 	-	 	-	 -	 -	 -	 	 -	 	 	 	 -	 -	 	 	-	 -	 	 	 	-
 	 	 	-	 	 	 	 -	 _	 -	 	 	 	-	 _	 	_	 	-	-	 	_	 -	 	-	 	-	 -	 -	 -	 	 -	 	 	 	 -	 -	 	 	-	 _	 	 	 	-

2) (a) Give the formula for a Cubic Bezier curve.

(3 marks)

ANSWER IN THIS BOX

Four points A, B, C and D in the plane or in three-dimensional space define a cubic Bézier curve.

$$P(u) = \sum_{k=0}^{\infty} P_k^{3} C_k u^k (1-u)^{3-k}$$

= $P_0 (1-u)^3 + P_1 3u(1-u)^2 + P_2 3u^2 (1-u) + P_3 u^3$

Index	No:										

(b) Write down the cubic Bezier curve in matrix form.

(4 marks)

ANSWER IN THIS BOX

$$P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P0 \\ P1 \\ P2 \\ P3 \end{bmatrix}$$

(c) Find the parametric representation of any point (x(u), y(u)) on the Bézier curve which starts at (2,2) and ends at (4,1) and has control points (0,1) and (3,-1) respectively.

(6 marks)

ANSWER IN THIS BOX

$$\mathbf{x}(\mathbf{u}) = \begin{bmatrix} 1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 3 \\ 4 \end{bmatrix}$$

$$y(u) = \begin{bmatrix} 1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \\ 1 \end{bmatrix}$$

$$(x(u), y(u)) = (2-6u+15u^2-7u^3, 2-3u-3u^2+5u^3)$$

ve the conditions necessary for two Bezier curves to join with following characteristics	Derive th
i) C0-continuity ii) C1-continuity iii) C2-continuity	(ii) C
(6 mark	
WER IN THIS BOX	ANSWE
C0-continuity: two curve segments have the same coordinates at the boundary point.	(i)
i) C1-continuity: parametric first derivatives are proportional at the intersection of two successive sections.	(ii)
ii) C2-continuity: the first and second parametric derivatives of the two cursections are proportional at their boundary.	(iii)
O Computer Graphics, curves are represented using a parametric representation rath a mathematical (analytical) representation. Why are parametric curves preferred ovolygonal representation?	than a m
a mathematical (analytical) representation. Why are parametric curves preferred ov	than a m
a mathematical (analytical) representation. Why are parametric curves preferred ovolygonal representation?	han a m he polyg
a mathematical (analytical) representation. Why are parametric curves preferred ovolygonal representation? (6 mark WER IN THIS BOX 3 of the following:	ANSWE
a mathematical (analytical) representation. Why are parametric curves preferred overlygonal representation? (6 mark) (6 mark) (8 of the following: ✓ Because of tiny size, automatic detail resolution and scalability	ANSWE
a mathematical (analytical) representation. Why are parametric curves preferred overlygonal representation? (6 mark WER IN THIS BOX 3 of the following: ✓ Because of tiny size, automatic detail resolution and scalability ✓ Computationally less expensive as mathematical representation involves no	ANSWE
a mathematical (analytical) representation. Why are parametric curves preferred overlygonal representation? (6 mark) (6 mark) (8 of the following: ✓ Because of tiny size, automatic detail resolution and scalability ✓ Computationally less expensive as mathematical representation involves no linear function evaluations	ANSWE
a mathematical (analytical) representation. Why are parametric curves preferred overlygonal representation? (6 mark WER IN THIS BOX 3 of the following: ✓ Because of tiny size, automatic detail resolution and scalability ✓ Computationally less expensive as mathematical representation involves no	ANSWE

Index	No:	 	 	 			

3)	(a)	Give 4	applica	tions of	Digital	Image !	Processin	g

(04)	Ma	rks
(VT	1 11 4	TIZO

ANSWER IN THIS BOX

- 1. Character recognition
- 2. Medical image analysis
- 3. Finger print recognition
- 4. Desk top publishing
- 5. Industrial object quality control

- (b) Explain briefly the following two noise removal techniques
 - (i) Neighbourhood averaging
 - (ii) Median filtering

(06 marks)

	(oo marks)
ANSWER IN THIS BOX	
(i) Neighbourhood averaging	
Replace the center pixel value of a neighbourhood with the average grey-let neighbourhood.	vel value of the
$g(x,y)=1/n \sum f(i,j)$ $(i,j) \in S$ where S is a neighbourhood of (x,y) and n is the number of pixels in S .	
(ii) Replace the center pixel value of a neighbourhood with the median grey-leven neighbourhood.	el value of the

Index	No:								
mucx	INO.								

(d)	Calculate the new pixel values of the shaded pixel of the following image when the above
	two techniques are applied separately using a 3x3 neighbourhood. Give steps of your
	calculations.

3	4	6	5	4
4	5	7	6	5
7	8	0	4	6
8	7	6	5	7
9	7	8	9	8

(06 marks)

ANSWER IN THIS BOX	
(i) value = (3+4+6+4+5+7+7+8	8+7)/9 = 51/9 = 5.7 = 5
(ii) value = median (3,4,4,5, 6,	(7,7,7,8) = 6

(e) Segmentation of an image into useful regions is an important operation in image analysis. Name two image segmentation techniques.

(04 marks)

ANS	WER IN	THIS BOX	<u>X</u>		 	 	 	
(1)	Thresh	old based	segmenta	ntion	 	 	 	
(ii)	Pixel a	ggregatio	n		 	 	 	

		(05 n
	ANSWER IN THIS BOX	
	Histogram equalization	
(a)	What operation is achieved by convoluting an image with the following	g mask?
	1 0 -1	
	2 0 -2	
	1 0 -1	
		(04 ma
	ANSWER IN THIS BOX	
	Horizontal line detection	
Ī		
(b)	Give another 3x3 mask which can be used to detect edges in an image given in (a).	together with the
	given in (a).	(04 m
	ANSWER IN THIS BOX	
	1 2 1	
	-1 -2 -1	

Index No:

Index	No.									
maex	INO:	 			 					

(c)	Give steps of detect	non of edges us	sing the	Lapiac	ran opera	tor.	(06 marks)
	ANSWER IN TH	IS BOX					
	(1) Convolute the	e image with d	igital I	∠aplaci	an filter		
		0	-1	0			
		-1	4	-1			
		0	-1	0			
	(2) Identify zero-	crossings as ed	lge poi	nts.			
(d)	If n ₁ and n ₂ denote the same information (the one characterize	on, write the for					e first data set
							(05 marks)
	ANSWER IN TH	IS BOX					
	D = 1 1/C						
	$R_D = 1 - 1/C_R$						
	where C _R = n₁/n₂						

	Index No:	
О	tline the difference between Lossy and Lossless data compressions.	
		(04 ma
		(0 1 111)
ΑI	SWER IN THIS BOX	
	sy compression techniques reduce the image quality and Lossless technique uce the image quality	es will
		sion
	ne one Lossless image compression technique and one Lossy image compress	
tec	ne one Lossless image compression technique and one Lossy image compress nnique.	
tec	ne one Lossless image compression technique and one Lossy image compress	sion (02 m
Al	ne one Lossless image compression technique and one Lossy image compress nnique.	
Al	me one Lossless image compression technique and one Lossy image compressionique. SWER IN THIS BOX	
Al	me one Lossless image compression technique and one Lossy image compressionique. SWER IN THIS BOX	
ted Al	me one Lossless image compression technique and one Lossy image compressionique. SWER IN THIS BOX	
Al Lo	me one Lossless image compression technique and one Lossy image compressionique. SWER IN THIS BOX	
Al Lo	me one Lossless image compression technique and one Lossy image compressionique. SWER IN THIS BOX Ssless – Run length encoding, BMP	
Al Lo	me one Lossless image compression technique and one Lossy image compressionique. SWER IN THIS BOX Ssless – Run length encoding, BMP	
Al Lo	me one Lossless image compression technique and one Lossy image compressionique. SWER IN THIS BOX Ssless – Run length encoding, BMP	
Al Lo	me one Lossless image compression technique and one Lossy image compressionique. SWER IN THIS BOX Ssless – Run length encoding, BMP	
