Theoretische Informatik

WS 2022/23

Übungsblatt 2

21. Okt. 2022

Quickies

- 1. Es gelte $\Sigma = \{a, b\}$. Geben Sie die folgende Mengen oder Zahlen an: $\{ax \mid x \in \Sigma^*\} \cap \{xb \mid x \in \Sigma^*\}, \Sigma \times \Sigma, \Sigma^* \cap \Sigma^2$
- 2. Ist N ein gültiges Alphabet? Kurze Begründung.

Aufgabe 1

Es ist in dieser Aufgabe ausreichend, Automaten durch Graphen zu spezifizieren. Wir betrachten die aus der Vorlesung bekannten Automaten M_1 für die Sprache

$$L_1 \equiv \{w \mid w \text{ beginnt mit 1 und endet mit o}\}\$$

und M_2 für die Sprache

$$L_2 \equiv \{(ab)^n \mid n \in \mathbb{N}\}.$$

- 1. Erweitern Sie M_1 auf das Alphabet $\{0,1\} \cup \Sigma'$ mit $|\Sigma'| > 0$ und $\{0,1\} \cap \Sigma' = \emptyset$, so dass die Bedingungen für Wortanfang und -ende weiterhin gelten.
- 2. Modifizieren Sie den Automaten M_2 , so dass er für $n \in \mathbb{N}_0$ anstelle von $n \in \mathbb{N}$ arbeitet.
- 3. Geben Sie Automaten für die Sprachen $L_3 \equiv \{ab^n \mid n \in \mathbb{N}\}$ und $L_3 \equiv \{a^nb^m \mid n,m \in \mathbb{N}\}$ an.

Aufgabe 2

Betrachten Sie folgenden deterministischen endlichen Automaten:

- 1. Geben Sie eine *vollständige* formale Charakterisierung des Automaten M mit Hilfe des 5-Tupels $(Q, \Sigma, \delta, q_0, F)$ an.
- 2. Verwenden Sie die Funktion δ , um *formal sauber* zu zeigen, dass das Wort »0010« akzeptiert und das Wort »0111« abgelehnt wird.

Aufgabe 3

Betrachten Sie die induktiv erweiterte Übergangsfunktion $\hat{\delta}$ für deterministische endliche Automaten.

- 1. Geben Sie eine alternative Definition an, die den jeweils ersten Buchstaben eines Wortes mit Hilfe der δ -Funktion bearbeitet.
- 2. Geben Sie eine Version an, die für Wörter gerader Länge den Zustand des Automatens nach Lesen des Wortes angibt, und die für alle Wörter ungerader Länge ⊥ liefert.

Aufgabe 4

Betrachten Sie die in der Vorlesung besprochene Grammatik für die Sprache $\{a^nb^nc^n\mid n\in\mathbb{N}\}.$

- 1. Geben Sie eine Ableitungssequenz an, die in eine »Sackgasse« läuft, d.h. die in einer Kette von Terminal- und Nicht-Terminal-Symbolen endet, die nicht mehr weiter durch Anwendung von Produktionsregeln verändert werden kann.
- 2. Erweitern Sie die Grammatik G so, dass die Sprache

$$L_1 = \{a^{2n}b^nc^n \mid n \in \mathbb{N}\}\$$

generiert wird. Zeigen Sie die Ableitungssequenz für das Wort »aaaaaabbbccc«

3. Geben Sie eine nach *k* parametrisierte Grammatik an, die die Sprache

$$L_2(k) = \{ \mathbf{a}^{kn} \mathbf{b}^n \mathbf{c}^n \mid n \in \mathbb{N} \}$$

für $k \in \mathbb{N}$ generiert.