0. Taula de continguts

- 0. Taula de continguts
- 1. Introducció
- 2. Dades del problema
- 3. Pla de treball
- 4. Objectius i metodologia
- 5. Preprocessament de les dades
- 6. Anàlisi exploratori
- 7. Ajustament d'un MLGz numèric
 - 7.1 Selecció de variables
 - o 7.2 Validació del model
- 8. Ajustament d'un MLGz binari
 - 8.1 Diagnòstic i solució de separació
 - 8.2 Ajustament del model inicial
 - 8.3 Validació del model
 - 8.4 Possibles millores
 - 8.4.1 Dades agregades per binomis
 - 8.4.2 Model amb dues pendents
 - 8.4.3 Link probit
 - 8.5 Corba ROC i AUC
- 9. Sèries temporals
 - 9.1 Introducció
 - 9.2 Anàlisi exploratori
 - 9.3 Transformacions
 - 9.3.1 Canvi d'escala
 - 9.3.2 Diferència estacional

1. Introducció

En aquest projecte, hem decidit treballar amb la base de dades *Predict Students' Dropout and Academic Success*, perquè volem aprofundir en l'abandonament i l'èxit acadèmic a la universitat, un tema que considerem d'especial interès, no només pel fet que ens toca de ben a prop, sinó també, perquè tenint en compte les pautes d'aquest projecte, aconseguirem un model que ens pugui predir, de manera força fiable, quin perfil d'estudiant hauria de deixar o acabar una carrera universitària. Aquest aspecte del treball és el que més ens ha motivat a escollir aquest perfil de dataset. En concret, aquest dataset està format per més de 4000 registres d'estudiants universitaris i prop de quaranta variables demogràfiques, socials i acadèmiques. Totes aquestes variables són les que ens permeten poder portar a terme el projecte que tenim al cap, ja que és cert que el tema ens interessa, però també havíem de trobar un dataset que seguis els requisits necessaris per poder fer aquest treball.

Ens interessa especialment la riquesa de la informació disponible, pel fet que tenim accés a dades que a priori poden semblar molt poc rellevant, però que potser, posteriorment acabem trobant una correlació molt més forta de la que ens esperaríem inicialment. Això és un aspecte molt positiu sobre les variables que ens hi podem trobar en el dataset. L'altra cara de la moneda podria ser que ens podem trobar en una situació que ens passi just el contrari. Donem per fet que la importància de certs factors alhora d'un bon rendiment acadèmic, com per exemple les hores de son diàries d'un estudiant, però realment podem dir per estadística que aquest és el cas? Doncs aquestes qüestions són les que creiem que podem resoldre en aquest treball.

2. Dades del problema

Les dades provenen del repositori públic UCI Machine Learning Repository, un lloc molt conegut per compartir conjunts de dades per a pràctiques i investigació en aprenentatge automàtic. El nom del nostre dataset és: *Predict Students' Dropout and Academic Success*. Aquest dataset l'hem extret de: enllaç El fitxer conté informació de 4.424 estudiants d'una universitat portuguesa i s'utilitza per estudiar quins factors influeixen en el fet que un alumne continuï, abandoni o tingui èxit en els seus estudis. Per obtenir les dades es descarrega un fitxer que ens proporciona la pàgina web, la dataset. Aquesta és la versió original o "en brut". Quan es llegeix aquest arxiu, gairebé totes les variables surten com a numèriques encara que no ho siguin, perquè algunes són codis de categories. També hi ha valors amb coma decimal (per exemple en notes o índexs econòmics), que poden donar problemes en programes que només entenen el punt com a separador decimal. La informació hi és tota, però no és fàcil d'interpretar directament sense un pas de neteja. Tenint en compte tots aquest detalls, i sense deixar enrere el fet del valors nuls, sabem que haurem de fer una dataset "netejada" amb tots aquest detalls modificats de manera que ens faciliti la feina alhora de poder-la usar.

El conjunt de dades original té un total de 4.424 registres, una mida que és més que ¡suficient per treballarhi ja que supera de llarg els 500 recomanats com a mínim. En relació amb les variables, el dataset en té 37. Quan es carrega tal com està, el programa interpreta 36 d'aquestes columnes com a numèriques i només una com a qualitativa. Ara bé, cal remarcar que aquesta classificació no és del tot correcta: moltes de les columnes que apareixen com a numèriques en realitat són variables categòriques codificades amb números, com ara l'estat civil o el tipus de modalitat d'aplicació. Dins d'aquestes variables, es poden identificar vuit columnes que són clarament binàries, és a dir, que només tenen dos valors possibles. Alguns exemples són el gènere, si l'estudiant té beca, si és internacional, si té deutes amb la universitat o si presenta necessitats educatives especials. Pel que fa a les variables qualitatives, en la versió original només n'apareix una, però en realitat n'hi ha unes quantes més que es troben codificades com a números i que caldria recodificar perquè es tractin com a categories reals. En aquest conjunt de dades no hi ha cap variable de tipus data, de manera que no es pot fer directament una anàlisi de sèries temporals. Si es volgués afegir aquest tipus d'anàlisi, caldria incorporar una columna amb informació temporal, com ara l'any acadèmic o el semestre, o bé utilitzar un altre dataset amb dates. Finalment, pel que fa a la qualitat de les dades, el conjunt és complet: no hi ha valors perduts en cap de les variables. Això vol dir que el percentatge de missing és del 0% tant per variable com en el conjunt sencer de la matriu de dades.

3. Pla de treball

Ens hem dividit la feina entre aquestes tasques:

- 1. **Preparació i organització (22/09 29/09)**: Preparar l'entorn de treball, assignar rols i establir estructura de carpetes i repositoris.
- 2. **Introducció i Pla (29/09 01/10)**: Redactar objectius del projecte, motivació, pla general i identificació de riscos inicials.
- 3. **Preprocessament i EDA (01/10 17/10)**: Netejar dades, calcular estadístiques descriptives i generar visualitzacions exploratòries.
- 4. **Models i sèries temporals (GLMz + TS) (13/10 22/10)**: Ajustar models GLM i sèries temporals, validar resultats i interpretar coeficients.
- 5. **Redacció i revisió PDF Report (21/10 27/10)**: Documentar resultats parcials i figures, revisar coherència i generar PDF provisional.
- 6. **Preparar i revisar Presentació (27/10 30/10)**: Seleccionar contingut clau, dissenyar diapositives i revisar visualment la presentació final.
- 7. PCA (31/10 06/11): Dur a terme anàlisi de components principals
- 8. Clustering jeràrquic (04/11 10/11): Aplicar clustering jeràrquic.
- 9. Clustering particional (10/11 14/11): Aplicar clustering particional.
- 10. **Profiling & tests estadístics (17/11 01/12)**: Analitzar distribució de variables i aplicar testsestadístics.
- 11. **Redacció final + presentació (01/12 16/12)**: Integrar tots els resultats, redactar conclusions, generar PDF final i empaquetar arxius entregables.

També hem establert un risk plan per anticipar possibles problemes i tenir estratègies per mitigar-los. Aquest pla inclou la identificació de riscos, l'avaluació del seu impacte i probabilitat, així com les mesures preventives i correctives que es poden implementar:

Risc	Com prevenir	Com gestionar	
Repartiment desigual de la feina	Definir responsabilitats clares des del començament	Reassignar tasques en reunions de seguiment	
Problemes de gestió del temps	Crear un calendari intern amb dies de marge	Prioritzar tasques crítiques i reduir abast si cal	
Errors de programari o fitxers malmesos	Guardar arxius al núvol amb control de versions (Google Drive, GitHub)	Recuperar la darrera còpia de seguretat i redistribuir la feina	
Mala interpretació de proves estadístiques	Revisar els mètodes estadístics en grup	Repetir l'anàlisi o consultar el professor	
Fallades de comunicació	Utilitzar un sol canal principal de comunicació (grup de WhatsApp)	El coordinador (Ferran Òdena) resumeix i comparteix les novetats	
Un membre no pot assistir a la presentació	Cada diapositiva assignada a almenys dos membres	Un altre membre cobreix la part de la persona absent	
Inconsistències d'estil en l'informe	Usar una plantilla compartida per a l'escriptura	Assignar un editor per unificar el document final	

Conflictes dins l'equip	Establir rols	clars i	prendre	Demanar	mediació	al
	decisions per consens			professor		

4. Objectius i metodologia

Els objectius principals que volem assolir amb aquest projecte són els següents:

- Entendre millor el perquè de l'abandonament i l'èxit acadèmic a la universitat, mitjançant les tècniques d'estadística que ens proporciona aquesta assignatura.
- Descobrir patrons, relacions i diferències entre estudiants buscar com diferentes característiques poden influenciar l'abandonament acadèmic.
- Practicar i consolidar els nostres coneixements en preprocessament, anàlisi descriptiva i modelització, aplicant conceptes que hem après durant el curs.
- Fer una proposta que es pugui fer servir per trobar possibles comportaments en l'àmbit educatiu que ens serveixin per abaixar aquestes xifres d'abandonament..
- En l'àmbit de sèries temporals, volem entendre l'impacte de les dades o actituds anteriors en el comportament d'aquesta mateixa dada en un futur, de manera que poguem predir certes variables.

A l'hora de fer el treball en grup, a l'inici del treball ens vam dividir la feina de manera força equitativa. Però, com estàvem treballant paral·lelament amb parts en les quals les nostres tasques influenciaven directament altres tasques d'altres companys, vam decidir que la millor manera de tenir-ho tot ordenat i disponible en qualsevol moment i per qualsevol membre del grup era fer un repositori de GitHub, amb tots els nostres resultats, codis i conclusions. Això ens ha facilitat la feina d'una manera bastant considerable, i per tant hem pogut treballar de manera eficient i alhora de manera paral·lela en el treball. Aquest repositori està disponible a: enllaç A l'hora de fer els scripts i els gràfics hem fet servir R, i els hem organitzat mitjançant arxius R Markdown, com a les sessions de laboratori, que també hem fet servir com a una referència alhora de fer servir R i de saber com executar i modificar certs models.

5. Preprocessament de les dades

Aquesta part correspon a l'script preprocessing.rmd. Als tres primers punts de l'script netegem noms de columnes, i recodifiquem múltiples variables a factors amb nivells i etiquetes coherents, després comprovem valors buits i duplicitats i generem un informe exploratori inicial amb SmartEDA, amb el qual ens guiarem a l'hora d'actuar als següents passos. També verifiquem files amb NA i files duplicades.

Al punt 4, eliminem *outliers*, basant-nos en el que hem pogut veure a l'informe general. En concret, es marquen:

- Edat en el moment de la inscripció (Age_at_enrollment): superior a 30 anys.
- Ordre de sol·licitud (Application_order): superior a 7.
- Nota de la qualificació prèvia (Previous_qualification_grade): Superior a 170.
- Nota d'admissió (Admission_grade): superior a 150.
- Nombre d'unitats curriculars (1r i 2n semestre):
 - Matriculades (*_enrolled): superior a 10.
 - Avaluades (*_evaluations): superior a 10.
 - Aprovades (*_approved): superior a 10.

Aquest procés garanteix la coherència i la plausibilitat de les dades, eliminant valors inusuals o impossibles que podrien distorsionar les anàlisis posteriors. Per exemple, per la variable Admission_grade, hem pogut observar els següents canvis:

Sample Quantiles Sample Quantiles 2 0 2 Theoretical Quantiles

Sample Organities Sample Organities Admission_grade Organities Theoretical Quantiles

Figura 2: Variable numèrica admisson_grade després del preprocessament

En el punt 5 i amb ajuda del nostre informe inicial, hem identificat diverses variables que representen quantitats discretes. Aquestes variables s'han transformat en variables categòriques amb valors compresos entre 0 i 10. Les variables afectades són les següents:

- Application_order
- Curricular_units_1st_sem_enrolled
- Curricular_units_2nd_sem_enrolled
- Curricular_units_1st_sem_evaluations
- Curricular_units_2nd_sem_evaluations
- Curricular_units_1st_sem_approved
- Curricular_units_2nd_sem_approved

També, hem processat les variables relacionades amb els crèdits i les avaluacions pendents per convertirles en variables binàries (on qualsevol valor superior a 0 es codifica com "1"):

- Curricular units 1st sem credited
- Curricular_units_2nd_sem_credited
- Curricular_units_1st_sem_without_evaluations
- Curricular_units_2nd_sem_without_evaluations

Aquests canvis permeten una millor interpretació i anàlisi de les dades, facilitant l'aplicació de tècniques estadístiques i models predictius que requereixen variables categòriques. Finalment, al punt 6, hem guardat el dataset netejat i preprocessat en un nou fitxer CSV anomenat clean-data.csv, que serà utilitzat per a les anàlisis posteriors.

6. Anàlisi exploratori

cal canviar Quan mirem el conjunt de dades, veiem que hi ha diferents tipus de variables, algunes numèriques i d'altres categòriques. En general, les numèriques no segueixen del tot una forma "normal", algunes tenen valors molt agrupats i d'altres tenen punts que surten bastant del que seria esperable. Els gràfics de densitat i els boxplots mostren que hi ha bastants valors atípics i que les distribucions són força diferents entre variables, cosa que indica que no totes representen la informació de la mateixa manera. En alguns casos, hi ha variables amb una dispersió molt alta i altres molt concentrades, cosa que pot complicar una mica les anàlisis o la creació de models. Pel que fa a les variables categòriques, podem veure que no

estan gaire equilibrades. Hi ha algunes categories molt freqüents, mentre que en tenim d'altres que gairebé no apareixen. Això pot fer que els resultats no siguin del tot justos, perquè el model podria donar més importància a les categories que tenen més dades i passar per alt les que en tenen poques, creant un biaix que s'hauria de tenir en compte a l'hora de fer models o prediccions.

Quan mirem les relacions entre variables, podem veure que n'hi ha algunes que estan bastant relacionades. Els boxplots mostren diferències clares entre grups i els scatterplots deixen veure certs patrons que podrien ser útils més endavant. Tot això, ens fa pensar que hi ha variables amb una influència real sobre la variable resposta. En resum, el conjunt de dades és interessant, amb tendències clares i relacions útils, però també amb desequilibris i valors extrems que caldrà tenir en compte abans de fer models més avançats o prediccions.

7. Ajustament d'un MLGz numèric

El nostre objectiu és modelar i validar un model lineal generalitzat, amb Admission_grade com a resposta numèrica. Partim carregant les nostres dades netejades i preprocessades, assegurant-nos que totes les variables estan en el format correcte. Comencem fent un histograma de la variable resposta per entendre la seva distribució i identificar possibles transformacions necessàries amb la comanda hist(data\$Admission_grade):

Figura 3: Histograma de la variable Admisssion grade

Continuem fent un ajustament inicial d'un model lineal generalitzat amb la família gaussiana i el link identitat, utilitzant totes les variables excepte la variable 'Target'. Aquest model ens servirà com a punt de partida per a la selecció de variables i l'avaluació del rendiment. El construïm el model amb la comanda següent:

```
model <- glm(Admission_grade ~ . - Target, data = data, family = gaussian())</pre>
```

També construïm un model nul per tenir una referència bàsica i amb l'objectiu de comparar-lo amb el model complet. El model nul només inclou l'intercept i ens permet avaluar la millora que aporta el model amb totes les variables. El construïm amb la comanda següent:

```
model_nul <- glm(Admission_grade ~ 1, data = data, family = gaussian)</pre>
```

Executem un test òmnibus o ANOVA per comparar el model complet amb el model nul, utilitzant anova(model_nul, model, test="Chisq"). Aquest test ens ajudarà a determinar si el model complet ofereix una millora significativa en la predicció de la variable resposta en comparació amb el model nul. Obtenim els resultats següents:

```
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2389 145767

2 2534 307211 -145 -161444 < 2.2e-16 ***
```

Veiem que el nostre model redueix la deviància en 161444 respecte el model nul, i el test de Chi-quadrat dona un p-valor extremadament petit. Això vol dir que el nostre model amb variables explicatives millora significativament l'ajust.

7.1 Selecció de variables

Per a començar a buscar el nostre model final, caldrà que eliminem les variables que no aporten informació rellevant i volem eliminar variables redundants, per quedar-nos amb un model més simple que s'ajusti de forma similar. Per això, ens guiarem amb els resultats que ens dona la pròpia construcció del model complet, on podem veure en consola les variables més explicatives i les que tenen menys pes, que són:

- Variables amb significació molt alta (***): Application_mode, Course, Previous_qualification, Previous_qualification_grade, Age_at_enrollment, Unemployment_rate.
- Variables amb significació alta (**): Application_order, Curricular_units_1st_sem_evaluations, GDP.

Aquest model l'anomenarem model_1, que, comparant-lo amb el model complet amb un altre test ANOVA, ens dóna els següents resultats:

```
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2489 155505

2 2389 145767 100 9738.5 0.0001416 ***
```

Podem plantejar les següents hipòtesis:

- **Hipòtesi nul·la** H_0 : El model simple (model_1) és suficient. Les variables addicionals del model complet no milloren l'ajust de manera significativa.
- **Hipòtesi alternativa** H_1 : El model complet (model_complet) ajusta les dades significativament millor que el model simple.

Els resultats mostren que l'augment de la deviància és de 9738.5 (que ja en si ens fa veure que les variables excloses en el model simplificat tenen, en conjunt, un poder explicatiu significatiu) amb un p-valor de 0.0001416, que és molt petit. Això ens porta a rebutjar l'hipòtesi nul·la i acceptar l'hipòtesi alternativa. Per tant, el model complet ajusta les dades significativament millor que el model simple. Descartem doncs, el model simple i seguim amb el model complet.

Però necessitem un model més senzill, així que seguim eliminant variables amb poca significació. El trobarem amb la funció step() de R, que ens ajuda a fer una selecció automàtica de variables basada en el criteri d'informació d'Akaike (AIC). Aquesta funció prova diferents combinacions de variables, afegint o eliminant-les, i selecciona el model que minimitza l'AIC, que és una mesura que equilibra la qualitat de l'ajust amb la complexitat del model. Així, podem trobar un model que sigui tant precís com senzill. Llavors, executem la comanda següent: model_final <- step(model, direction = "both")

Aquest procés ens porta a un model final que anomenarem model_final, que inclou només les variables que aporten informació rellevant per predir Admission_grade. Aquest model és més manejable i interpretable, mantenint al mateix temps una bona capacitat predictiva. Un cop obtenim aquest model final, el comparem amb el model complet utilitzant un altre test ANOVA per veure si la simplificació ha afectat significativament l'ajust del model. Els resultats són els següents:

```
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2389 145767

2 2465 150821 -76 -5054.3 0.2768
```

També tornem a plantejar les següents hipòtesis:

- **Hipòtesi nul·la** H_0 : El model final (model_final) és suficient. Les variables addicionals del model complet no milloren l'ajust de manera significativa.
- **Hipòtesi alternativa** H_1 : El model complet (model_complet) ajusta les dades significativament millor que el model final.

Els resultats mostren que la reducció de la deviància és de -5054.3 amb un p-valor de 0.2768, que és molt gran. Això ens porta a no rebutjar l'hipòtesi nul·la. Per tant, el model final ajusta les dades de manera similar al model complet. Així doncs, acceptem el model final com a model definitiu per predir Admission_grade. I per acabar-nos-en d'assegurar, mirem la puntuació AIC dels dos models:

AIC del model complet: 17759.37AIC del model final: 17693.77

Veiem que l'AIC del model final és menor que el del complet, la qual cosa reforça la nostra decisió d'escollir el model final. Un AIC més baix indica un millor equilibri entre l'ajust del model i la seva complexitat, fent que el model final sigui preferible per a la predicció de Admission_grade.

7.2 Validació del model

Per a la validació del nostre model, visualitzem diferents gràfics i els analitzem:

• Gràfic de residus vs. valors ajustats: Aquest gràfic ens ajuda a veure si hi ha algun patró en els residus. Si els residus estan distribuïts aleatòriament al voltant de zero, això indica que el model s'ajusta bé. Si veiem algun patró, podria indicar que el model no està capturant alguna relació important. Executem la comanda residualPlot(model_final), de la llibreria car per generar aquest gràfic:

Figura 4: Gràfic de residus vs. valors ajustats

El gràfic de residus de Pearson contra el predictor lineal suggereix un ajust global raonable: la dispersió és força simètrica al voltant de 0 i la corba suau resta gairebé horitzontal, cosa coherent amb variància aproximadament constant en l'escala del link i absència de patrons forts visibles. Es detecten algunes observacions extremes i una lleugera inflexió als extrems de l'eix x, que podrien indicar petites no linealitats localitzades o efectes de límit, però no s'hi aprecia un patró en embut clar d'heteroscedasticitat. Amb aquestes observacions doncs, podem dir que el model sembla ajustar raonablement bé la major part de les dades.

Altres gràfics de residus: Generem també gràfics addicional de residus contra cadascun dels
predictors de primer ordre del model, utilitzant residus de tipus Pearson, per comprovar si hi ha algun
patró específic relacionat amb alguna variable en particular. Utilitzem la comanda
residualPlots(model_final) de la llibreria car per generar aquests gràfics:

Figura 5: Residus de Pearson varis

Figura 7: Residus de Pearson varis

Figura 8: Residus de Pearson varis

Figura 6: Residus de Pearson varis

Pel que fa aquests gràfics, el patró global és compatible amb un ajust raonable del GLM: la línia suau es manté molt a prop de 0 en la majoria de panells i els residus es dispersen de manera bastant simètrica, sense evidència clara d'heteroscedasticitat en forma d'embut ni de curvatures marcades persistents. Podem concloure que:

- Per les variables contínues de rendiment acadèmic: als panells de Curricular_units_1st_sem_grade, Curricular_units_2nd_sem_grade i Previous_qualification_grade, la línia suau resta propera a 0 i la nuvolositat és densa però sense tendències fortes; això suggereix que el link capta raonablement la relació mitjana amb aquestes covariables, malgrat alguns punts extrems que convé revisar com a potencials outliers.
- Pels indicadors macro com Unemployment_rate, Inflation_rate: es veuen bandes verticals (per valors repetits) amb variància relativament estable i línia suau plana; no s'aprecien patrons sistemàtics de biaix en aquests predictors i, per tant, no hi ha senyals clares d'heteroscedasticitat associada al nivell d'aquests índexs.
- Pels factors categòrics grans Application_mode, Course, Previous_qualification, Nacionality: la línia de referència es manté al voltant de 0 a la majoria de nivells; hi ha alguns grups amb pocs casos o dispersió desigual que mostren caixes més amples o valors atípics, però en general no es detecten patrons sistemàtics de desviació que indiquin problemes d'ajust.

En resum, els gràfics no revelen violacions greus; el model sembla ben especificat en l'escala del link, amb possibles millores menors centrades en la gestió d'outliers.

• InfluencePlot de la Ilibreria car": La llibreria car també ofereix la funció influencePlot() per visualitzar l'impacte de les observacions individuals en el model. Aquest gràfic ens dona 3 mesures clau: l'eix x són els hat values, és a dir, l'apalancament de cada observació; l'eix y són els residus estandarditzats; i la mida dels punts representa la distància de Cook, que mesura l'efecte global d'eliminar una observació en els paràmetres del model. Executem la comanda influencePlot(model final) per generar aquest gràfic:

Figura 9: Influence Plot del model final

La majoria d'observacions tenen leverage molt baix (hat-value pròxim a 0) i residus dins de l'interval [-2,2], per tant no són problemàtiques ni per error ni per palanca, és a dir, la combinació de predictors d'aquella observació és "central" dins el núvol de dades Un grup petit de punts apareix cap a hat-values entre 0.2 i 0.6 amb residus moderats; aquestes bombolles són més grans, indicant distància de Cook més alta i, per tant, potencial influència sobre els coeficients del model. Els punts etiquetats: 2459, 859, 1608, 237, han superat algun llindar "noteworthy" en residu, leverage o Cook's D i, per això, el car els marca automàticament; aquests són candidats prioritaris a revisió del registre, valors extrems o combinacions inusuals de predictors. Tot així, cap d'aquests punts no té un leverage extremadament alt (per exemple, >0.8) ni residus fora de l'interval [-4,4], per tant no semblen ser influències desproporcionades que distorsionin greument l'ajust global del model.

Per tant, com a conclusió de la validació, el model sembla ajustar bé les dades sense violacions greus dels supòsits. Hi ha algunes observacions amb certa influència que convé revisar, però en general el model és robust i adequat per a la predicció de Admission grade.

8. Ajustament d'un MLGz binari

L'objectiu d'aquest apartat és ajustar un model lineal generalitzat (MLGz) per a una variable resposta binària, on la resposta representa si l'estudiant abandona (dropout) o segueix/gradua (enrolled o graduated). Com que la variable Target té tres categories (enrolled, graduated, dropout), la convertirem en una variable binària per a aquest model específic. Assignarem el valor 1 a dropout i el valor 0 a les altres dues categories (enrolled i graduated):

Per començar, fem un anàlisi exploratori de la nova variable resposta binària target en funció de les possibles variables explicatives. Utilitzem gràfics de barres per a les variables categòriques i boxplots per a les variables numèriques, per veure com es distribueixen els valors de target en funció d'aquestes variables. Això ens ajudarà a identificar quines variables podrien tenir una influència significativa en la probabilitat d'abandonament. En color verd tenim els estudiants que no abandonen (target = 0) i en vermell els que abandonen (target = 1).

Figura 10: Anàlisi exploratori

Figura 11: Anàlisi exploratori

En destaquem dos fets:

 Sembla que hi ha variables que semblarien ser més rellevants per predir l'abandonament, com ara Previous_qualification_grade o Admission_grade, on es veu que els estudiants que abandonen tenen notes més baixes en aquestes variables.
 Això podria indicar que el rendiment acadèmic és un factor important en la decisió d'abandonar els estudis. Trobem que algunes categories de variables com course, Mother_s_occupation o Father_s_occupation, entre d'altres, tenen proporcions molt altres o del 100%, cosa que podria provocar separació completa en el model i dificultar l'ajustament. Haurem de tenir-ho en compte a l'hora de seleccionar les variables per al model i hauríem de considerar eliminar o agrupar aquestes categories per evitar problemes d'ajustament.

Un cop vist això, procedim a ajustar un model lineal generalitzat amb la família binomial i el link logit, utilitzant totes les variables explicatives disponibles, és a dir, ajustant el model complet. Aquest model ens permetrà estimar la probabilitat d'abandonament en funció de les diferents característiques dels estudiants. També construïm un model nul per tenir una referència bàsica i amb l'objectiu de comparar-lo amb el model complet. El model nul només inclou l'intercept i ens permet avaluar la millora que aporta el model amb totes les variables.

El construïm amb la comanda següent:

```
model_complet <- glm(target ~ ., data = base, family = binomial(link = "logit"))
model_nul <- glm(target ~ 1, data = base, family = binomial(link = "logit"))</pre>
```

Fent això però, obtenim un missatge d'advertència que ens indica:

```
Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

Aquest missatge ens indica que, a l'hora d'ajustar el model, s'han trobat probabilitats ajustades que són exactament 0 o 1. És a dir, per algunes combinacions de les variables explicatives, el model prediu amb total certesa que un estudiant abandonarà o no abandonarà els estudis. Com sospitavem a l'anàlisi exploratori, això pot ser degut a la presència de categories amb proporcions molt extremes o del 100% en algunes variables, cosa que provoca separació completa en el model. Aquesta situació pot dificultar l'ajustament del model i afectar la seva capacitat predictiva. Intentem diagnosticar doncs, si hi ha separació o quasi-separació en les dades i on, i si en trobem, intentem solucionar-ho d'alguna manera

8.1 Diagnòstic i solució de separació

Per a veure si les nostres dades tenen separació o quasi-separació, utilitzarem la funció detect_separation() de la llibreria detectseparation. Aquesta funció ens permet identificar si hi ha problemes de separació en les dades que poden afectar l'ajustament del model i en quines variables es produeixen aquests problemes. Aquesta funció requereix de la matriu de covariables de totes les variables explicatives i del vector de la variable resposta binària, és a dir, els valors de la variable target. Executem la comanda següent:

```
X <- model.matrix(target ~ ., data = base) # Matriu de covariables
y <- base$target
det <- detect_separation(X, y, family = binomial())</pre>
```

L'objecte det conté informació sobre la presència de separació en les dades. Podem examinar els resultats per veure si hi ha problemes de separació i quines variables estan implicades. Segons aquest objecte, trobem que hi ha separació completa en les següents variables:

- Application_mode
- Course
- Previous_qualification
- Nacionality

- Mother_s_occupation
- Father_s_occupation
- Marital status

Com podem veure, són variables amb un alt nombre de categories. Per tant, pensem que la separació es deu a la presència de categories amb poques observacions i que totes tenen el mateix valor de la variable resposta. Una possible solució per evitar aquest problema és agrupar les categories amb poques observacions en una categoria anomenada "Other". D'aquesta manera, podem reduir el nombre de categories i evitar que hi hagi categories amb poques observacions que puguin causar separació completa en el model. Implementem aquesta possible solució fent ús de la funció fct_lump_min() de la llibreria forcats, que ens permet agrupar les categories amb menys d'un nombre mínim d'observacions en una categoria anomenada "Other". Agrupem amb un llindar de 150 observacions per a cada variable problemàtica, per tal d'assegurar-nos que cada categoria tingui una representació suficient en les dades. Apliquem aquesta funció a cadascuna de les variables problemàtiques:

```
Application_mode = fct_lump_min(Application_mode, min = 150, other_level = "Other")
```

Fets aquests canvis, tornem a provar de diagnosticar la separació en les dades utilitzant de nou la funció detect_separation(). Si ja no hi ha problemes de separació. Ara ens retorna que no hi ha separació completa en les dades, cosa que indica que la nostra solució ha estat efectiva. Ara que aparentment hem solucionat el problema de separació, podem procedir a ajustar el model lineal generalitzat.

8.2 Ajustament del model inicial

Ajustem de nou el model complet i el model nul amb les dades modificades, utilitzant la mateixa comanda que abans:

```
model_complet <- glm(target ~ ., data = base, family = binomial(link = "logit"))
model_nul <- glm(target ~ 1, data = base, family = binomial(link = "logit"))</pre>
```

Executem un test ANOVA comparant el model complet amb el model nul per veure si el model complet ofereix una millora significativa en la predicció de la variable resposta en comparació amb el model nul. Per tant, executem la comanda anova(model_nul, model_complet, test="Chisq"). Obtenim els resultats següents:

```
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2456 1333.4

2 2534 2884.1 -78 -1550.6 < 2.2e-16 ***
```

Podem veure que el nostre model redueix la deviància en 1550.6 respecte el model nul, i el test de Chiquadrat dona un p-valor extremadament petit. Això vol dir que el nostre model amb variables explicatives millora significativament l'ajust.

Del model complet, executem un test òmnibus o ANOVA amb test de ràtio de versemblança amb la comanda anova(model_complet, test = "LR") per obtenir una visió general de la significació global del model. Dels resultats obtingut escollirem els predictors més rellevants per al nostre model final. Els predictors seleccionats són els següents:

- Course
- Application_mode
- Mother s qualification

- Father_s_occupation
- Debtor
- Tuition_fees_up_to_date
- Scholarship_holder
- Age_at_enrollment
- Curricular_units_1st_sem_approved
- Curricular units 2nd sem enrolled
- Curricular_units_2nd_sem_approved
- Unemployment rate

S'han seleccionat aquests predictors perquè, d'una banda, mostren una contribució clara a la reducció de la deviància segons proves de raó de versemblança (variables amb grans caigudes de deviance i p-valors molt petits com Course, Application_mode, Debtor, Tuition_fees_up_to_date i els indicadors de rendiment acadèmic Curricular_units_*, especialment els approved), i, de l'altra, permeten un model estable evitant redundàncies dins de blocs altament correlacionats; així, es prioritzen approved del 1r i 2n semestre com a mesures més informatives de progrés, es manté només un indicador de càrrega del 2n semestre (enrolled) per no solapar-se amb "evaluations", i s'inclouen factors administratius robustos (Debtor, Tuition_fees_up_to_date, Scholarship_holder) junt amb variables demogràfiques i de context amb efecte consistent (Age_at_enrollment, Unemployment_rate), mentre que predictors amb senyal feble o redundant es deixen fora excepte si milloren criteris d'informació (AIC/BIC) o són necessaris com a controls teòrics (p. ex., Mother_s_qualification, Father_s_occupation), verificant que la combinació final minimitzi la colinealitat i mantingui interpretabilitat per a contrastos concrets via comparacions jeràrquiques.

Doncs, el model inicial m0.1 serà:

Del que primer de tot fem un test ANOVA entre el model nul i aquest model inicial m0.1 per veure si hi ha una millora significativa:

Per a saber si aquest model és millor que el model complet, plantegem les següents hipòtesis:

- **Hipòtesi nul·la** H_0 : El model inicial (m0.1) és suficient. Les variables addicionals del model complet no milloren l'ajust de manera significativa.
- **Hipòtesi alternativa** H_1 : El model complet (model_complet) ajusta les dades significativament millor que el model inicial.

Com que els resultats mostren que la reducció de la deviància és de -47.102 amb un p-valor de 0.03202, que és menor que 0.05, hauríem de rebutjar l'hipòtesi nul·la i acceptar l'hipòtesi alternativa. Però com que no hi ha tanta diferència de deviància entre els dos models, i per tal de tenir un model més senzill, acceptem el model inicial m0.1 com a model possible per a la predicció de l'abandonament.

Per assegurar-nos que aquest model és el millor, utilitzem la funció step() de R per fer una selecció automàtica de variables basada en el criteri BIC. Aquesta funció prova diferents combinacions de variables, afegint o eliminant-les, i selecciona el model que minimitza el BIC. Executem la comanda següent:

```
m0.2 <- step(model_complet, direction = "backward", trace = FALSE)</pre>
```

Un cop obtingut aquest model final m0.2, els comprarem amb el model inicial m0.1 utilitzant les puntuacions AIC i BIC:

```
AIC(model_complet, m0.1, m0.2)
BIC(model_complet, m0.1, m0.2)
```

Dels que podem construir la següent taula de resultats:

Model	df	AIC	BIC
model_complet	54	1491.845	1807.094
m0.1	26	1478.341	1630.128
m0.2	34	1467.215	1665.705

El model m0.2 té l'AIC més baix, amb una diferència de 11.126 respecte m0.1 i de 24.630 respecte el complet, que es considera evidència clara a favor de m0.2 en comparació de models basada en informació. Però en BIC, m0.1 és lleugerament millor que m0.2 per la penalització més severa a la complexitat. Com que l'objectiu és tenir un model predictiu precís però també manejable, i la diferència d'AIC és no és tant significativa, escollim m0.1 com a model final per a la predicció de l'abandonament.

8.3 Validació del model

Començarem amb una validació gràfica del model: Generem gràfics de residus, tant per les variables categòriques com per les numèriques:

Amb la comanda residualPlots(m0.1, terms = \sim 1, type = "pearson", fitted = TRUE) obtenim gràfics de residus de Pearson contra els valors ajustats:

Figura 12: Gràfic de residus de Pearson vs. valors ajustats

En general,podem veure el patró central és força pla al voltant de 0 i no mostra tendències fortes, cosa coherent amb un ajust global raonable del GLM binomial amb link logit. Podem veure la presencia de dos valors amb residus alts, que poden indicar outliers o observacions amb certa influència, però en conjunt no hi ha patrons sistemàtics evidents que suggereixin problemes greus d'especificació del model. La dispersió dels residus sembla relativament estable al llarg de l'escala dels valors ajustats.

Pel que fa als residus per cada predictor, visualitzem els gràfics:

Figura 13: Residus de Pearson de la variable Age_at_enrollement

Figura 14: Residus de Pearson de la variable Curricular_units_1st_sem_approved

Figura 15: Residus de Pearson de la variable Curricular_units_2nd_sem_enrolled

Figura 16: Residus de Pearson de la variable Curricular_units_2nd_sem_approved

No hi ha patrons sistemàtics, tot i que s'observa lleu no-linealitat en variables com Curricular_units_1st_sem_approved, Curricular_units_2nd_sem_enrolled i Curricular_units_2nd_sem_approved.

Mirem els boxplots de residus per a les variables categòriques:

Figura 17: Residus de Pearson per variables categòriques

Figura 18: Residus de Pearson per variables categòriques

En general, els boxplots mostren que la majoria de les categories tenen residus centrats al voltant de 0, cosa que indica un bon ajust del model. No obstant això, algunes categories presenten una dispersió més gran o valors atípics, cosa que podria suggerir la necessitat d'una revisió addicional o d'una possible transformació de les variables.

Finalment, utilitzem la funció influencePlot() de la llibreria car per visualitzar l'impacte de les observacions individuals en el model:

Figura 19: Influence Plot del model m0.1

La majoria d'observacions tenen leverage baix (<0.03) i residus dins de l'interval aproximat [-2,2], amb valors de Cook's D_i petits (escala superior mostra màxim al voltant de 0.01), cosa que indica que no hi ha punts amb influència desmesurada sobre l'ajust global. Els punts etiquetats (p. ex., 226, 1346, 1185, 2135) destaquen per leverage o residus una mica més grans, però continuen per sota de llindars normals i, visualment, no creuen de manera clara línies de referència extremes; no semblen comprometre el model.

8.4 Possibles millores

Tot i que gràficament veiem que tenim un model prou bo, intentem millorar-lo de dues maneres

8.4.1 Dades agregades per binomis

Per les variables:

- Curricular_units_1st_sem_approved
- Curricular units 2nd sem enrolled
- Curricular_units_2nd_sem_approved

Creem una base de dades agregada (df1, df2, df3), on s'han agrupat les observacions segons el valor de la variable corresponent. Això permet analitzar la relació entre la variable i la resposta binària (dropout sí/no) en una escala més agregada i estable estadísticament. Per a cada grup, calculem el nombre d'estudiants que han abandonat. L'objectiu és obtenir, per a cada valor possible de la variable, el nombre d'alumnes que han abandonat ypos i els que no han abandonat yneg:

```
df1 <- with(base, aggregate(
    x = cbind(ypos = target, yneg = 1 - target),
    by = list(units1 = Curricular_units_1st_sem_approved),
    FUN = sum
))</pre>
```

Ajustem un model binomial amb aquesta nova base de dades agregada:

```
m1 <- glm(cbind(ypos, yneg) ~ units1, data = df1, family = binomial(link='logit'))</pre>
```

Fem això per a les tres variables i analitzem els resultats. Mitjançant els gràfics de residus (residualPlots(m1), residualPlots(m2), residualPlots(m3)), comprovem visualment si aquesta relació és adequada o si apareixen patrons que suggereixen una forma corbada. En cas afirmatiu, podríem considerar afegir termes quadràtics o polinòmics per capturar millor la relació no lineal entre la variable i la probabilitat d'abandonament.

Per la variable Curricular_units_1st_sem_approved:

Aggregated: units1

Figura 20: Gràfic de residus de Pearson vs. valors ajustats

Com que mostra un patró clarament no lineal, provem de descobrir quina pot ser la millor transformació. Provarem amb diferents termes polinòmics i veurem quin s'ajusta millor:

Comparant els AIC dels diferents models, trobem que el model amb terme polinòmic d'ordre 4 és el que té l'AIC més baix:

Model	df	AIC	BIC
m1.1	2	61.10337	61.70854
m1.2	3	58.97480	59.88255
m1.3	4	56.85660	58.06694
m1.4	5	54.11044	55.62336

També executem els tests Òmnibus consecutius per veure si cada model millora significativament respecte l'anterior:

```
anova(m1.1, m1.2, test = "Chisq")
anova(m1.2, m1.3, test = "Chisq")
anova(m1.3, m1.4, test = "Chisq")
```

Obtenim els següents resultats:

```
Model 1: cbind(ypos, yneg) ~ units1
Model 2: cbind(ypos, yneg) ~ poly(units1, 2)
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
               13.8119
          7
                9.6833 1
                           4.1286 0.04217 *
Model 1: cbind(ypos, yneg) ~ poly(units1, 2)
Model 2: cbind(ypos, yneg) ~ poly(units1, 3)
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
          7
                9.6833
1
                5.5651 1
                          4.1182 0.04242 *
Model 1: cbind(ypos, yneg) ~ poly(units1, 3)
Model 2: cbind(ypos, yneg) ~ poly(units1, 4)
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
          6
                5.5651
                           4.7462 0.02936 *
          5
2
                0.8190 1
```

Observem que cada model millora significativament respecte l'anterior, ja que tots tenen p-valors menors que 0.05 i consecutivament menors. Per tant, si anem rebutjant hipòtesis nul·les H_0 que podem anar plantejant, escollim el model m1.4 amb terme polinòmic d'ordre 4 com a millor model per a la variable Curricular_units_1st_sem_approved.

Per la variable Curricular_units_2nd_sem_enrolled:

Figura 21: Gràfic de residus de Pearson vs. valors ajustats

Com que s'observa curvatura, provem termes polinòmics de diferent ordre i comparem quin s'ajusta millor:

```
m2.1 <- glm(cbind(ypos,yneg) ~ units2e, data = df2, family = binomial)
m2.2 <- glm(cbind(ypos,yneg) ~ poly(units2e, 2), data = df2, family = binomial)</pre>
```

```
m2.3 <- glm(cbind(ypos,yneg) ~ poly(units2e, 3), data = df2, family = binomial)
m2.4 <- glm(cbind(ypos,yneg) ~ poly(units2e, 4), data = df2, family = binomial)</pre>
```

Comparant AIC/BIC, el polinomi d'ordre 3 (m2.3) és el millor:

Model	df	AIC	BIC
m2.1	2	105.29389	105.89906
m2.2	3	72.62200	73.52975
m2.3	4	54.41665	55.62699
m2.4	5	56.38317	57.89610

També fem els tests Òmnibus entre models imbricats:

```
anova(m2.1, m2.2, test = "Chisq")
anova(m2.2, m2.3, test = "Chisq")
anova(m2.3, m2.4, test = "Chisq")
```

Obtenim els següents resultats:

```
Model 1: cbind(ypos, yneg) ~ units2e
Model 2: cbind(ypos, yneg) ~ poly(units2e, 2)
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
        8
1
              66.099
        7
              31.427 1 34.672 3.902e-09 ***
Model 1: cbind(ypos, yneg) ~ poly(units2e, 2)
Model 2: cbind(ypos, yneg) ~ poly(units2e, 3)
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
        7
1
              31.427
        6
              11.222 1 20.205 6.956e-06 ***
_____
Model 1: cbind(ypos, yneg) ~ poly(units2e, 3)
Model 2: cbind(ypos, yneg) ~ poly(units2e, 4)
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
         6
              11.222
        5
              11.188 1 0.033475 0.8548
```

Observem que els dos primers models milloren significativament respecte l'anterior, però el quart no aporta millora significativa respecte el tercer (p-valor alt). Per tant, escollim el model m2.3 amb terme polinòmic d'ordre 3 com a millor model per a la variable Curricular_units_2nd_sem_enrolled.

Per la variable Curricular_units_2nd_sem_approved:

Aggregated: units2a

Figura 22: Gràfic de residus de Pearson vs. valors ajustats

S'exploren polinomis d'ordre creixent i es compara el seu ajust:

```
m3.1 <- glm(cbind(ypos,yneg) ~ units2a, data = df3, family = binomial)
m3.2 <- glm(cbind(ypos,yneg) ~ poly(units2a, 2), data = df3, family = binomial)
m3.3 <- glm(cbind(ypos,yneg) ~ poly(units2a, 3), data = df3, family = binomial)
m3.4 <- glm(cbind(ypos,yneg) ~ poly(units2a, 4), data = df3, family = binomial)</pre>
```

AIC/BIC indiquen que el cúbic (m3.3) és el millor:

Model	df	AIC	BIC
m3.1	2	62.23186	62.83703
m3.2	3	62.09034	62.99809
m3.3	4	55.77421	56.98455
m3.4	5	57.63726	59.15018

També es realitzen tests Òmnibus:

```
anova(m3.1, m3.2, test = "Chisq")
anova(m3.2, m3.3, test = "Chisq")
anova(m3.3, m3.4, test = "Chisq")
```

Obtenim els següents resultats:

```
Model 1: cbind(ypos, yneg) ~ units2a
Model 2: cbind(ypos, yneg) ~ poly(units2a, 2)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
```

```
13.547
  2
         7
               11.405 1 2.1415
                                   0.1434
Model 1: cbind(ypos, yneg) ~ poly(units2a, 2)
Model 2: cbind(ypos, yneg) ~ poly(units2a, 3)
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
         7
               11.405
               3.089
                       1 8.3161
                                   0.003929 **
Model 1: cbind(ypos, yneg) ~ poly(units2a, 3)
Model 2: cbind(ypos, yneg) ~ poly(units2a, 4)
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
               3.0894
               2.9524
                        1 0.13696 0.7113
```

Observem que només el pas del segon al tercer model és significatiu (p-valor < 0.05). Per tant, escollim el model m3.3 amb terme polinòmic d'ordre 3 com a millor model per a la variable $Curricular_units_2nd_sem_approved$.

Un cop tenim els tres models amb les transformacions adequades per a cada variable, tornem a visualitzar els gràfics de residus per assegurar-nos que ara no hi ha patrons sistemàtics.

Per a la variable Curricular_units_1st_sem_approved:

Figura 23: Residus ajustats per a la variable

Curricular_units_1st_sem_approved

La línia magenta mostra una corba suau amb una sola pujada i baixada, i després s'estabilitza al voltant de zero. El quart ordre millora clarament el lineal; tot i no ser completament recta, la tendència principal s'ha corregit. És acceptable

Per a la variable Curricular_units_2nd_sem_enrolled:

Figura 24: Residus ajustats per a la variable Curricular_units_2nd_sem_enrolled

Aquí la línia és més irregular, amb oscil·lacions o una doble corba. Indica que la relació és més complexa i el polinomi d'ordre 3 l'ha capturat massa ajustat, és a dir, n'ha fet el que es coneix com a overfitting. No és acceptable.

Per a la variable Curricular_units_2nd_sem_approved:

Figura 25: Residus ajustats per a la variable

Curricular_units_2nd_sem_approved

Hi ha una forma lleu però consistent, sense observar patrons forts, amb una relació no estrictament lineal, però ben captada. Per tant, sembla adequat i acceptable

Per tant, composem un nou model final m0.3 que inclogui només aquelles transformacions que considerem acceptables:

Generem els gràfics de residus per aquest nou model m0.3:

Observem que el patró central és força pla al voltant de 0 i no mostra tendències fortes, cosa coherent amb un ajust global raonable del GLM binomial amb link logit. La dispersió dels residus sembla relativament estable al llarg de l'escala dels valors ajustats. Els termes polinòmics milloren lleugerament la linealitat local, però no de manera dramàtica.

També mirem ara si aquest model és millor que el model inicial m0.1 mitjançant una comparació de AIC i BIC:

```
AIC(m0.1, m0.3)
BIC(m0.1, m0.3)
```

Obtenim els següents resultats:

Model	df	AIC	BIC
m0.1	26	1478.341	1630.128
m0.3	30	1485.137	1648.600

Observem que el model m0.3 té un AIC i BIC més alts que el model m0.1, indicant que no ofereix una millora en l'ajust del model tot i les transformacions aplicades. Per tant, mantenim el model m0.1 com a model final per a la predicció de l'abandonament.

8.4.2 Model amb dues pendents

Tot i que el model m0.3 incorporava termes polinòmics per millorar la representació de la relació no lineal amb les variables acadèmiques, els gràfics de residus mostraven encara certes desviacions als extrems. Aquest patró suggeria que la relació entre el nombre d'assignatures aprovades i la probabilitat de *dropout* no és uniforme a tot el rang de valors, sinó que podria canviar a partir d'un determinat punt. Per explorar aquesta hipòtesi, s'ha plantejat un model amb dues pendents, que permet diferenciar el comportament de la relació abans i després d'un llindar concret. Es tracta d'establir un llindar que separi dues regions en la variable acadèmica, on la relació amb la probabilitat de *dropout* pot tenir diferents pendents. Dividim en dos trams les dues variables: cada variable contínua en dos trams (≤ 5 vs > 5 i ≤ 4 vs > 4) i en fem factors binaris.

```
base$Iunits1 <- as.factor(ifelse(base$Curricular_units_1st_sem_approved <= 5, 0, 1))
base$Iunits2a <- as.factor(ifelse(base$Curricular_units_2nd_sem_approved <= 4, 0, 1))</pre>
```

Això implica:

- Per al primer semestre, es distingeix entre estudiants amb ≤ 5 assignatures aprovades (nivell baix) i > 5 assignatures aprovades (nivell alt).
- Per al segon semestre, el punt de tall s'ha fixat en 4 assignatures aprovades, observat com a possible canvi de tendència en els gràfics previs.

Aquesta separació és afegida al model com a interaccions amb les variables originals, permetent així que la pendent de la relació pugui variar segons el tram en què es trobi l'estudiant. Ajustem un nou model logístic m0.5 que incorpora aquestes interaccions:

D'aquest model m0.5, realitzem una comparació amb el model inicial m0.1 i el model m0.3 mitjançant AIC i BIC, ja que no podem fer un test Òmnibus entre models no imbricats:

```
AIC(m0.1, m0.3, m0.5)
BIC(m0.1, m0.3, m0.5)
```

Obtenim els següents resultats:

Model	df	AIC	BIC
m0.1	26	1478.341	1630.128
m0.3	30	1485.137	1648.600
m0.5	32	1584.098	1788.427

Observem que el model m0.5 té un AIC i BIC més alts que els models m0.1 i m0.3, indicant que no ofereix una millora en l'ajust del model tot i la incorporació de les interaccions amb dues pendents. El model m0.5, amb dues pendents i interaccions, permet una millor flexibilitat teòrica en la relació entre el rendiment acadèmic i el risc de *dropout*, però no aporta una millora significativa ni en ajust ni en criteris d'informació respecte als altres models. En conseqüència, es manté el model m0.1 com a opció òptima per la seva simplicitat i eficiència, ja que descriu adequadament la variabilitat de la resposta amb menys paràmetres i millor penalització segons BIC.

8.4.3 Link probit

Finalment, provem d'ajustar el model final m0.1 però amb un link probit en lloc del logit per veure si hi ha millores en l'ajust:

```
Age_at_enrollment +
Curricular_units_1st_sem_approved +
Curricular_units_2nd_sem_enrolled +
Curricular_units_2nd_sem_approved +
Unemployment_rate,
data = base,
family = binomial(link = "probit"))
```

Comparem els models m0.1 (logit) i m probit (probit) mitjançant un test Òmnibus:

```
anova(m0.1, m_probit, test = "Chisq")
```

Obtenim els següents resultats:

```
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2509 1426.3

2 2512 1448.6 -3 -22.272 5.727e-05 ***
```

Plantegem les següents hipòtesis:

- **Hipòtesi nul·la** H_0 : No hi ha diferència significativa en l'ajust entre el model logit (m0.1) i el model probit (m_probit).
- Hipòtesi alternativa H_1 : Hi ha una diferència significativa en l'ajust entre els dos models.

Com que el p-valor és molt petit (5.727e-05 < 0.05), rebutgem l'hipòtesi nul·la i acceptem l'hipòtesi alternativa. Això indica que hi ha una diferència significativa en l'ajust entre els dos models. Observem que la reducció de la deviància és negativa (-22.272), cosa que indica que el model logit (m0.1) té una millor ajust que el model probit (m_probit).

També comparem els AIC i BIC dels dos models:

```
AIC(m0.1, m_probit)
BIC(m0.1, m_probit)
```

Obtenim els següents resultats:

Model	df	AIC	BIC
m0.1	26	1478.341	1630.128
m_probit	26	1494.613	1628.886

El model probit té un AIC més alt i un BIC lleugerament més baix, indicant que el model logit ofereix un pitjor ajust a les dades però amb una penalització més baixa per la complexitat del model, però la diferència és minima (de dos punts). En conseqüència, mantenim el model logit m0.1 com a model final per a la predicció de l'abandonament.

8.5 Corba ROC i AUC

Per avaluar la capacitat predictiva del model final m0.1, generem la corba ROC (Receiver Operating Characteristic) i calculem l'AUC (Area Under the Curve). La corba ROC mostra la relació entre la taxa de veritables positius (sensibilitat) i la taxa de falsos positius (1 - especificitat) a diferents llindars de classificació. La AUC quantifica la capacitat del model per distingir entre les dues classes (abandonament sí/no).

Utilitzem la llibreria pROC per generar la corba ROC i calcular l'AUC:

```
p_hat <- predict(m0.1, newdata = base, type = "response")

pred <- prediction(p_hat, base$target)
perf <- performance(pred, "tpr", "fpr") # TPR vs FPR = ROC
plot(perf, col = "#d62728", lwd = 2, main = "ROC - best_mod (ROCR)")
abline(0, 1, lty = 2, col = "grey50")</pre>
```

La corba ROC resultant és la següent:

Figura 27: Corba ROC del model final m0.1

La corba ROC mostra una bona capacitat predictiva, ja que es troba per sobre de la línia de referència (diagonal).

Per calcular l'AUC, utilitzem el següent codi:

```
auc_perf <- performance(pred, "auc")
auc_value <- as.numeric(auc_perf@y.values)
auc_value</pre>
```

Obtenim un valor d'AUC de 0.9220703, indicant que el model té una excel·lent capacitat per distingir entre estudiants que abandonen i els que no ho fan. Un AUC proper a 1 suggereix que el model és molt efectiu en la classificació correcta de les observacions.

9. Sèries temporals

9.1 Introducció

En el cas de sèries temporals, no hem pogut fer servir el mateix model, a causa de la falta de la variable de temps, per tant, hem buscat un model que seguís els requisits proposats per la guia del treball, i seguidament que també ens despertés un cert interès. En aquest cas, hem optat per un gust més personal, els cotxes. El nostre dataset tracta sobre la venda de cotxes mensual, de l'any 1960-1968.

Hem escollit aquest dataset també, per saber si en la venda de cotxes hi ha una tendència o una explicació estadística, ja que d'aquesta manera, els mateixos concessionaris de cotxes poden fer una predicció de cotxes venuts, i els fabricants també podrien fer-ne una per saber el nombre de cotxes que s'haurien de fabricar de manera estimada. Per tant, creiem que és un tema força interessant, i que és informació molt útil per un sector de la indústria. És cert que és informació bastant antiga, però no vol dir que les tendències hagin canviat. Això també podria arribar a ser un aspecte interessant a l'hora d'estudiar el comportament dels mercats actuals amb els de fa més de seixanta anys.

9.2 Anàlisi exploratori

Per començar amb l'anàlisi exploratori, hem carregat les llibreries necessàries i el dataset. Un cop fet això, fem un plot de la sèrie temporal per veure com es comporten les vendes al llarg del temps. El farem mitjançant la llibreria ggp1ot2 de R:

```
Car_sales_ts <- ts(car_sales$Sales, start = c(1960, 1), frequency = 12)
plot(Car_sales_ts)</pre>
```

El gràfic resultant és el següent:

Figura 28: Sèrie temporal de les vendes mensuals de cotxes

Podem observar clarament pujades i baixades amb una tendència a l'alça i patrons que es repeteixen cada any (estacionalitat). Aquest comportament ens indica que la mitjana i la variància canvien al llarg del temps, així que abans de fer una anàlisi estadística o prediccions caldrà transformar la sèrie: normalitzar la variància, eliminar la tendència i treure l'efecte estacional. Aquests passos seran bàsics per a poder aplicar models clàssics de sèries temporals i assegurar resultats fiables.

Per fer això, primer fer la descomposició de la sèrie temporal utilitzant la funció decompose() de R, que ens permet separar la sèrie en components de tendència, estacionalitat i residus. Això ens ajudarà a entendre millor els patrons presents en les dades i a preparar-les per a l'anàlisi posterior. Abans però, farem la conversió de la columna Month a format Date amb la funció as.Date(). També farem una transformació logarítmica de la sèrie per estabilitzar la variància:

```
Ln_sales <- log(car_sales_ts)
plot(Ln_sales)
decomposada <- decompose(lnsales)
plot(decomposada)</pre>
```

El gràfic resultant de la descomposició és el següent:

Decomposition of additive time series

Figura 29: Descomposició de la sèrie temporal de vendes mensuals de cotxes

La descomposició d'una sèrie temporal és **fonamental** perquè ens permet veure clarament de què està formada la sèrie: la tendència general, el patró estacional que es repeteix cada any i la part aleatòria o soroll. En aquest gràfic es veu tot: la línia "trend" mostra com la mitjana de vendes creix al llarg dels anys (tendència), la línia "seasonal" reflecteix els cicles anuals molt marcats (estacionalitat) i la línia "random" ens ensenya les fluctuacions més imprevisibles. Això ens indica que, per poder modelitzar i fer bones previsions amb aquestes dades, caldrà eliminar la tendència i l'estacionalitat perquè la part aleatòria sigui l'única protagonista: només així la sèrie serà estacionària i preparada per aplicar-hi models com ARIMA o predicció clàssica.

Per determinar si la sèrie de vendes mensuals de cotxes és estacionària, comencem representant gràficament les dades. Primer representem la sèrie log-transformada. Ho fem perquè la transformació logarítmica ajuda a estabilitzar la variància, especialment quan les dades mostren una tendència creixent com en aquest cas. Executant el codi següent:

```
ln_sales <- log(car_sales_ts)
plot(ln_sales, main = "Log(Vendes mensuals de cotxes)", ylab = "Log(Vendes)", xlab = "Any"</pre>
```

Obtenim el següent gràfic:

Log(Vendes mensuals de cotxes

Figura 30: Sèrie temporal log-transformada de les vendes mensuals de cotxes

On s'aprecien clarament un creixement sostingut en el nivell mig (tendència) i cicles estacionals repetits. Això indica, visualment, que la sèrie no és estacionària, ja que la seva mitjana i els patrons de variància canvien amb el temps.

A continuació, utilitzem la diferenciació d'ordre 12, que elimina els patrons estacionals anuals. Executem el següent codi:

```
d12_ln_sales <- diff(ln_sales, lag = 12)
plot(d12_ln_sales, main = "Diferenciació d'ordre 12", ylab = "Diferència lag 12", xlab = "</pre>
```

El gràfic resultant és el següent:

Diferenciació d'ordre 12

Figura 31: Sèrie temporal després de la diferenciació d'ordre 12

Podem veure que la sèrie resultant ja no presenta estacionalitat visible, però encara pot persistir certa tendència. Per eliminar completament la tendència, apliquem una diferenciació d'ordre 1 addicional sobre la sèrie diferenciada d'ordre 12. Executem el següent codi:

```
d1d12_ln_sales <- diff(d12_ln_sales, lag = 1)
plot(d1d12_ln_sales, main = "Diferenciació doble (lag 1 i 12)", ylab = "Diferència lag 1 i</pre>
```

El gràfic resultant és el següent:

Diferenciació doble (lag 1 i 12)

Figura 32: Sèrie temporal després de la diferenciació d'ordre 1 i 12

El gràfic resultant mostra una sèrie amb mitjana i variància estables i sense cap tendència o patró clar identificable. Això és indicatiu que la sèrie transformada és ara pràcticament estacionària: ha desaparegut tant la tendència com l'estacionalitat, i les fluctuacions semblen aleatòries al voltant del zero

9.3 Transformacions

9.3.1 Canvi d'escala

Per a diagnosticar si la sèrie temporal té heterocedasticitat, podem utilitzar diversos mètodes gràfics i estadístics. En el nostre cas, farem el gràfic de la mitjana mòbil i la variància mòbil per observar si hi ha canvis en la dispersió al llarg del temps. Si la variància depèn del nivell de la sèrie, això indicaria heterocedasticitat.

Per a calcular les mitjanes i variàncies mòbils, fixem primer un període de finestra, per exemple, 12 mesos (un any):

```
group_size <- 12
n <- length(sales)
num_groups <- floor(n / group_size)</pre>
```

Després, calculem la mitjana i la variància mòbils per a cada grup de 12 mesos amb un bucle:

```
for (i in 1:num_groups) {
  group <- sales[((i-1)*group_size + 1):(i*group_size)]</pre>
```

```
means[i] <- mean(group)
vars[i] <- var(group)
}</pre>
```

Finalment, representem gràficament les mitjanes i variàncies mòbils:

El gràfic resultant és el següent:

Figura 33: Gràfic de mitjana vs. variància mòbil

El gràfic Mean-Variance mostra que, a mesura que augmenta la mitjana de vendes dins de cada grup, la variància també creix. Aquesta relació positiva indica clarament que la variància no és constant al llarg del temps, sinó que depèn del nivell de la mitjana de la sèrie. Aquesta situació es coneix com a heteroscedasticitat i no és pròpia d'una sèrie estacionària. Quan s'observa aquest comportament, cal aplicar transformacions, com la logarítmica, per aconseguir estabilitzar la variància abans de continuar analitzant o modelitzant la sèrie.

També podem visualtizar els boxplots de les vendes anuals per veure si hi ha diferències en la dispersió de les vendes entre els diferents anys. Això ens pot donar una idea de si la variància canvia al llarg del temps. Ho fem amb la llibreria ggp1ot2 i el resultat és el següent:

Figura 34: Boxplots de les vendes mensuals de cotxes per any

En dividir la sèrie de vendes mensuals de cotxes en grups d'un any i representar-ne el boxplot per cada període, s'observa que l'alçada de les caixes (IQR) augmenta progressivament a mesura que avança el temps. Aquesta major variabilitat en els grups amb valors mitjans més alts indica que la variància no és constant al llarg del temps. Per això, és necessari aplicar una transformació d'escala, com la logarítmica o com la de Box-Cox, per estabilitzar la variància abans de continuar amb l'anàlisi de la sèrie temporal.

Per aplicar la tranformació logarítmica, utilitzem la funció log() de R. Primer apliquem la transformació logarítmica a les vendes mensuals i després representem els boxplots anuals després de la transformació, que resulta en el següent gràfic:

Figura 35: Boxplots de les vendes mensuals de cotxes per any després de la transformació logarítmica

Amb la gràfica del boxplot de log(vendes) per períodes d'un any, es pot concloure que la variància s'ha estabilitzat: les caixes (IQR) són molt més uniformes entre els diferents grups anuals, i la diferència d'alçada respecte als primers anys pràcticament ha desaparegut. Això vol dir que la transformació logarítmica ha estat efectiva per aconseguir variància aproximadament constant a la sèrie, fet que permet aplicar mètodes d'anàlisi estacionària amb més garanties de validesa estadística.

Per aplicar la transfromació Box-Cox, utilitzem la funció BoxCox.lambda() de la llibreria forecast per trobar el millor valor de lambda per a la transformació Box-Cox. Primer estima el valor de lambda amb BoxCox.lambda(), que ens retorna 0.9700565 i després aplica la transformació amb la funció BoxCox(), de que obtenim el següent gràfic de boxplots anuals després de la transformació:

Figura 36: Boxplots de les vendes mensuals de cotxes per any després de la transformació Box-Cox

En el cas de la nostra base de dades de vendes mensuals de cotxes, la variància augmenta amb la mitjana: això es veu clarament en els boxplots anuals, on les caixes són més altes a mesura que les vendes creixen. Si només fem el logaritme, podem estabilitzar bastant la variància, però la transformació Box-Cox és millor perquè busca automàticament quin tipus de transformació s'adapta millor als nostres valors. Això fa que la variància sigui encara més estable i la sèrie sigui més fàcil d'analitzar o de modelar després. Així, per les nostres dades, Box-Cox és la millor opció per aconseguir una sèrie més homogènia i adequada per a l'anàlisi de sèries temporals.

9.3.2 Diferència estacional

Per eliminar l'estacionalitat de la sèrie temporal de vendes mensuals de cotxes, utilitzem la diferenciació estacional. Aquesta tècnica consisteix a restar els valors de la sèrie amb els valors corresponents del mateix període en l'any anterior. Això ajuda a eliminar els patrons estacionals que es repeteixen cada any. Després d'aplicar la diferenciació estacional d'ordre 12, podem analitzar les funcions d'autocorrelació (ACF) i autocorrelació parcial (PACF) per veure si encara hi ha estacionalitat residual. Per fer-ho, utilitzem la funció diff() de R amb un lag de 12:

```
sales_d12 <- diff(sales_ts, lag = 12)
acf(sales_d12, ylim = c(-1, 1), lag.max = (40), main = "ACF diferència estacional")
pacf(sales_d12, ylim = c(-1, 1), lag.max = (40), main = "PACF diferència estacional")</pre>
```

Els gràfics resultants són els següents:

Figura 37: Funció d'autocorrelació (ACF) després de la diferenciació estacional

Figura 38: Funció d'autocorrelació parcial (PACF) després de la diferenciació estacional

Podem veure que gairebé totes les barres es situen dins dels límits de significació. Això indica que el patró estacional anual s'ha eliminat i la sèrie ja no presenta les dependències regulars que tenia inicialment. Aquesta transformació ha convertit la sèrie de vendes mensuals de cotxes en una sèrie molt més homogènia i pròxima a l'estacionarietat, la qual cosa la fa més adequada per a l'anàlisi estadística i la modelització amb models ARIMA i similars.

També podem visualitzar la sèrie temporal després d'aplicar la diferència regular d'ordre 1 per eliminar la tendència. Utilitzem la funció diff() de R amb un lag de 1:

```
diff1 <- diff(sales_ts, lag = 1)
plot(diff1, main = "Diferència regular (ordre 1)")</pre>
```

El gràfic resultant és el següent:

Diferència regular (ordre 1)

Figura 39: Sèrie temporal després de la diferenciació regular d'ordre 1

Després d'aplicar la diferenciació regular d'ordre 1, s'obté una sèrie que ja no mostra una tendència clara al llarg del temps. Ara, les variacions s'acumulen de forma irregular al voltant del zero i la mitjana de la sèrie es manté estable. Això vol dir que la diferenciació ha eliminat l'efecte de la tendència i la sèrie està més a prop de ser estacionària: és a dir, té una mitjana constant i pot ser utilitzada per a models com ARIMA on aquesta propietat és fonamental.

Analitzem també les funcions d'autocorrelació (ACF) i autocorrelació parcial (PACF) després d'aplicar la diferenciació regular d'ordre 1 per veure si encara hi ha dependències temporals. Utilitzem el següent codi:

```
acf(ser_boxcox, lag.max = 40, ylim = c(-1,1), main = "ACF mostra vendes cotxes")
pacf(ser_boxcox, lag.max = 40, ylim = c(-1,1), main = "PACF mostra vendes cotxes")
```

Els gràfics resultants són els següents:

Figura 40: Funció d'autocorrelació (ACF) després de la diferenciació regular

Figura 41: Funció d'autocorrelació parcial (PACF) després de la diferenciació regular

Després d'analitzar els gràfics d'ACF i PACF, es pot concloure que la sèrie de vendes mensuals, un cop diferenciada correctament, mostra un comportament pròxim a un AR(1): la PACF té un pic important al primer lag i després decau ràpidament, mentre que la ACF decau suaument i no talla en sec. Això indica que la dependència principal de la sèrie respecte a valors anteriors és autoregressiva d'ordre 1, i no de tipus mitjana mòbil. Aquest resultat serveix de base per escollir l'estructura del model ARIMA més adequat.