2. RAMDE – Requirements and Model-driven Engineering

David Pereira José Proença

MScCCSE 2021/22

CISTER – ISEP Porto, Portugal

https://cister-labs.github.io/ramde2122

Recalling Natural Deduction Rules

in First Order Logic

Which are the new rules (on top of Propositional Logic)?

Elimination rule for \forall

If we know that $\forall x, \varphi$ holds, then we can conclude that φ holds for a specific term t

$$\frac{\forall x \, \varphi}{\varphi[t/x]} \, \forall \mathbf{E}$$

Introduction rule for \forall

If we assume some term t and we are able to prove that $\varphi[t/x]$ then we can conclude that $\forall x, \varphi$.

$$egin{array}{c} [t] & dots \ rac{arphi[t/x]}{orall x\,arphi[t/x]}\,orall \mathbf{I} \end{array}$$

Which are the new rules (on top of Propositional Logic)?

Elimination rule for \exists

If we know that $\exists x, \varphi$ holds, and if assuming term t and $\varphi[t/x]$ we can deduce ψ , then we can prove ψ overall.

$$\begin{array}{ccc} & & [t & \varphi[t/x]] \\ & & \vdots \\ & & \psi \end{array} \exists \mathbf{E}$$

Introduction rule for ∃

If we assume some term t and we are able to prove that $\varphi[t/x]$ then we can conclude that $\forall x, \varphi$.

$$\frac{\varphi[t/x]}{\exists x, \varphi}$$
 $\exists I$

Which are the new rules (on top of Propositional Logic)?

Elimination rule for =

If we know that two terms t_1 and t_2 are equal and that $\varphi[t_1/x]$ holds, then $\varphi[t_1/x]$ must also hold.

$$\frac{t_1=t_2}{\varphi[t_2/x]} = \mathbf{E}$$

Introduction rule for =

If we assume some term t and we are able to prove that $\varphi[t/x]$ then we can conclude that $\forall x, \varphi$.

$$\overline{t=t}=$$

Practical Exercises

$$1 \quad \forall x (R(x) \land Q(x))$$

$$\begin{array}{c|c}
1 & \forall x (R(x) \land Q(x)) \\
2 & v & R(v) \land Q(v)
\end{array}$$
 $\forall E, 1$

$$\begin{array}{c|cccc}
1 & \forall x (R(x) \land Q(x)) \\
2 & v & R(v) \land Q(v) \\
3 & R(v) & \land E, 2
\end{array}$$

$$\begin{array}{c|cccc}
1 & \forall x (R(x) \land Q(x)) \\
2 & v & R(v) \land Q(v) \\
3 & R(v) & \land E, 2 \\
4 & \forall x R(x) & \forall I, 2-3
\end{array}$$

$$\begin{array}{c|cccc}
1 & \forall x (R(x) \land Q(x)) \\
2 & v & R(v) \land Q(v) \\
3 & R(v) & \land E, 2 \\
4 & \forall x R(x) & \forall I, 2-3 \\
5 & v & R(v) \land Q(v) & \forall E, 1
\end{array}$$

$$\begin{array}{c|cccc}
1 & \forall x (R(x) \land Q(x)) \\
2 & v & R(v) \land Q(v) \\
3 & R(v) & \land E, 2 \\
4 & \forall x R(x) & \forall I, 2-3 \\
5 & v & R(v) \land Q(v) & \forall E, 1 \\
6 & Q(v) & \land E, 5
\end{array}$$

$$\begin{array}{c|cccc}
1 & \forall x (R(x) \land Q(x)) \\
2 & v & R(v) \land Q(v) \\
3 & R(v) & \land E, 2 \\
4 & \forall x R(x) & \forall I, 2-3 \\
5 & v & R(v) \land Q(v) & \forall E, 1 \\
6 & Q(v) & \land E, 5 \\
7 & \forall x Q(x) & \forall I, 5-7
\end{array}$$

$$\begin{array}{c|cccc}
1 & \forall x (R(x) \land Q(x)) \\
2 & v & R(v) \land Q(v) & \forall E, 1 \\
3 & R(v) & \land E, 2
\end{array}$$

$$\begin{array}{c|ccccc}
4 & \forall x R(x) & \forall I, 2-3 \\
5 & v & R(v) \land Q(v) & \forall E, 1 \\
6 & Q(v) & \land E, 5
\end{array}$$

$$\begin{array}{c|cccc}
7 & \forall x Q(x) & \forall I, 5-7 \\
8 & \forall x R(x) \land \forall x Q(x) & \land I, 4, 8
\end{array}$$

Ex2. Build a proof of $\forall x (R(x) \rightarrow Q(x)) \vdash \forall x \underline{R(x)} \rightarrow \forall x \underline{Q(x)}$

$$1 \quad \forall x (R(x) \to Q(x))$$

$$\begin{array}{c|c}
1 & \forall x (R(x) \to Q(x)) \\
2 & \forall x R(x)
\end{array}$$

$$\begin{array}{c|cccc}
1 & \forall x (R(x) \to Q(x)) \\
2 & & & \\
\hline
3 & & & V & R(v) \to Q(v)
\end{array}$$

$$\forall x R(x) \\
v & R(v) \to Q(v) \qquad \forall E, 1$$

$$\begin{array}{c|cccc}
1 & \forall x (R(x) \to Q(x)) \\
2 & & & \\
\hline
3 & & & \\
4 & & & \\
\hline
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

$$\begin{array}{c|cccc}
1 & \forall x (R(x) \to Q(x)) \\
2 & & & \\
\hline
3 & & & \\
4 & & & \\
5 & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
\forall x R(x) \\
\hline
v & R(v) \to Q(v) & \forall E, 1 \\
R(v) & \forall E, 2 \\
\hline
Q(v) & \Rightarrow E, 3, 4
\end{array}$$

$$\begin{array}{c|cccc}
1 & \forall x (R(x) \to Q(x)) \\
2 & & & \\
\hline
 & & \\
3 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

1	$\forall x (R(x) \to Q(x))$							
2	$\forall x R(x)$							
3		V	$R(v) \rightarrow Q(v)$	∀E, 1				
4			R(v)	∀E, 2				
5			Q(v)	⇒E, 3, 4				
6	$\forall x Q(x)$			∀I, 3–5				
7	$\forall x$	P(x)	⇒I, 2–6					

$$1 \quad \exists x (R(x) \to Q(x))$$

$$\begin{array}{c|c}
1 & \exists x (R(x) \to Q(x)) \\
2 & \exists x R(x)
\end{array}$$

$$\begin{array}{c|c}
1 & \exists x (R(x) \to Q(x)) \\
2 & \exists x R(x) \\
\hline
 & v \mid R(v) \to Q(v)
\end{array}$$

$$\begin{array}{c|c}
1 & \exists x (R(x) \to Q(x)) \\
2 & \exists x R(x) \\
3 & v & R(v) \to Q(v) \\
4 & R(v) & R(v)
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists x (R(x) \to Q(x)) \\
2 & & & \\
3 & & & \\
4 & & & \\
5 & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
 & \exists x R(x) \\
\hline
 & & & \\
\hline$$

1	$\exists x (R(x) \to Q(x))$										
2		$\exists x$	R(x)							
3		V	R($\overline{(v)} ightarrow Q(v)$							
4				R(v)							
5				Q(v)		⇒E, 3,	4				
5				$\exists x Q(x)$		∃I, 5					

$$\begin{array}{c|cccc}
1 & \exists x (R(x) \to Q(x)) \\
2 & & \exists x R(x) \\
3 & & v & R(v) \to Q(v) \\
4 & & & & & \\
5 & & & & & \\
6 & & & & & \\
7 & & & & & \\
3xQ(x) & & \Rightarrow E, 3, 4 \\
& \exists x Q(x) & & \exists I, 5 \\
& \exists x Q(x) & & \exists E, 2, 4-6
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists x (R(x) \to Q(x)) \\
2 & & \exists x R(x) \\
3 & & v & R(v) \to Q(v) \\
4 & & & & & & \\
5 & & & & & & \\
6 & & & & & & \\
7 & & & & & & \\
8 & & & \exists x Q(x) & & \exists I, 5 \\
7 & & & & \exists x Q(x) & & \exists E, 2, 4-6 \\
8 & & & \exists x Q(x) & & \exists E, 1, 3-7 \\
9 & & \exists x P(x) \to \exists x Q(x) & & \Rightarrow I, 2-8
\end{array}$$

Ex4. Build a proof of $\exists x \neg Q(x) \vdash \neg \forall x Q(x)$

Ex4. Build a proof of $\exists x \neg Q(x) \vdash \neg \forall x Q(x)$

$$1 \quad \exists x \neg Q(x)$$

Ex4. Build a proof of $\exists x \neg Q(x) \vdash \neg \forall x Q(x)$

$$\begin{array}{c|c}
1 & \exists x \neg Q(x) \\
\hline
2 & \forall x Q(x)
\end{array}$$

$$\begin{array}{c|c}
1 & \exists x \neg Q(x) \\
2 & \forall x Q(x) \\
3 & v & \neg Q(v)
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists x \neg Q(x) \\
2 & & \forall x Q(x) \\
3 & & v & \neg Q(v) \\
4 & & Q(v) & \forall E, 2
\end{array}$$

1
$$\neg \exists x \neg Q(x)$$

$$\begin{array}{c|c}
1 & \neg \exists x \neg Q(x) \\
2 & \neg \forall x Q(x)
\end{array}$$

```
\begin{array}{c|c}
1 & \neg \exists x \neg Q(x) \\
2 & | \neg \forall x Q(x) \\
\hline
    v | | \neg Q(v)
\end{array}
```

$$\begin{array}{c|cccc}
1 & \neg \exists x \neg Q(x) \\
2 & & & \\
3 & & & \\
4 & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
1 & \neg \exists x \neg Q(x) \\
2 & & \neg \forall x Q(x) \\
3 & & v & \neg Q(v) \\
4 & & \exists x \neg Q(x) & \exists I, 3 \\
5 & & \bot & \bot I, 1, 4
\end{array}$$

```
\begin{array}{c|cccc}
1 & \neg \exists x \neg Q(x) \\
2 & & & & \\
3 & & & & \\
4 & & & & \\
5 & & & & \\
6 & & & & \\
7 & & & & \\
\end{array}

\begin{array}{c|cccc}
\neg \forall x Q(x) \\
\hline
v & & & \\
\hline
\neg Q(v) \\
\hline
\exists x \neg Q(x) \\
\hline
\exists x \neg Q(x) \\
\hline
\neg Q(v) \\
\hline
\neg A, 3-5 \\
\hline
Q(v) \\
\hline
\neg E, 6
```

1	7	x¬(Q(x))	
2		$\neg \forall$	/xQ((x)	
3		v		$\neg Q(v)$	
4				$\exists x \neg Q(x)$	∃I, 3
5				_	⊥I, 1, 4
6				$^{\neg}Q(v)$	¬I, 3–5
7			Q((v)	¬E, 6
8		$\forall x Q(x)$			∀I, 3–7

1	$\neg \exists x \neg Q(x)$				
2		$\neg \forall$	/xQ((x)	
3		v		$\neg Q(v)$	
4				$\exists x \neg Q(x)$	∃I, 3
5				上	⊥I, 1, 4
6				$\neg Q(v)$	¬I, 3–5
7			Q((v)	¬E, 6
8		$\forall x$	Q(x)	∀I, 3–7
9		\perp			⊥I, 2, 8

1	¬∃	$x \neg 0$	Q(x))	
2		$\neg \forall$	/xQ((x)	
3		v		$\neg Q(v)$	
4				$\exists x \neg Q(x)$	∃I, 3
5				上	⊥I, 1, 4
6				$\neg Q(v)$	¬I, 3–5
7			Q((v)	¬E, 6
8		$\forall x$	Q(x)	∀I, 3–7
9		_			⊥I, 2, 8
10		$\neg\neg \forall x Q(x)$			¬I, 2−9

1	$\neg \exists x \neg Q(x)$			
2	$\neg \forall x Q(x)$			
3	$V \mid \neg Q(V)$			
4	$\exists x \neg Q(x)$	∃I, 3		
5		⊥I, 1, 4		
6	$\neg \neg Q(v)$	¬I, 3–5		
7	Q(v)	¬E, 6		
8	$\forall x Q(x)$	∀I, 3–7		
9		⊥I, 2, 8		
10	$\neg\neg\forall xQ(x)$	¬I, 2−9		
11	$\forall x Q(x)$	¬E, 10		

1
$$\forall x Q(x)$$

$$\begin{array}{c|c}
1 & \forall x Q(x) \\
2 & \exists x \neg Q(x)
\end{array}$$

$$\begin{array}{c|cccc}
1 & \forall x Q(x) \\
2 & & \exists x \neg Q(x) \\
3 & & \neg \forall x Q(x) & \text{Ex4., 1}
\end{array}$$

$$\begin{array}{c|cccc}
1 & \forall x Q(x) \\
2 & \exists x \neg Q(x) \\
3 & \neg \forall x Q(x) & \text{Ex4., 1} \\
4 & \bot & \bot \text{I, 1, 3}
\end{array}$$

$$\begin{array}{c|cccc}
1 & \forall x Q(x) \\
2 & & \exists x \neg Q(x) \\
3 & & \neg \forall x Q(x) & \text{Ex4., 1} \\
4 & & \bot & \bot \text{I, 1, 3} \\
5 & & \neg \exists x Q(x) & \neg \text{I, 2-4}
\end{array}$$

$$1 \qquad \exists x (P(x) \land Q(x))$$

- 1 $\exists x (P(x) \land Q(x))$
- $2 \qquad \forall x (P(x) \to R(x))$

$$\begin{array}{c|c}
1 & \exists x (P(x) \land Q(x)) \\
2 & \forall x (P(x) \to R(x))
\end{array}$$

$$V P(v) \wedge Q(v)$$

$$\begin{array}{c|cccc}
1 & \exists x (P(x) \land Q(x)) \\
2 & \forall x (P(x) \to R(x)) \\
3 & v & P(v) \land Q(v) \\
4 & P(v) & \land E, 3
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists x (P(x) \land Q(x)) \\
2 & \forall x (P(x) \to R(x)) \\
3 & v & P(v) \land Q(v) \\
4 & P(v) \to R(v) & \land E, 3 \\
5 & P(v) \to R(v) & \forall E, 2
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists x (P(x) \land Q(x)) \\
2 & \forall x (P(x) \to R(x)) \\
3 & v & P(v) \land Q(v) \\
4 & P(v) & \land E, 3 \\
5 & P(v) \to R(v) & \forall E, 2 \\
6 & R(v) & \Rightarrow E, 4, 5
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists x (P(x) \land Q(x)) \\
2 & \forall x (P(x) \rightarrow R(x)) \\
3 & v & P(v) \land Q(v) \\
4 & P(v) \rightarrow R(v) & \land E, 3 \\
5 & P(v) \rightarrow R(v) & \forall E, 2 \\
6 & R(v) & \Rightarrow E, 4, 5 \\
7 & Q(v) & \land E, 3
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists x (P(x) \land Q(x)) \\
2 & \forall x (P(x) \rightarrow R(x)) \\
3 & v & P(v) \land Q(v) \\
4 & P(v) & \land E, 3 \\
5 & P(v) \rightarrow R(v) & \forall E, 2 \\
6 & R(v) & \Rightarrow E, 4, 5 \\
7 & Q(v) & \land E, 3 \\
8 & R(v) \land Q(v) & \land I, 6, 7
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists x(P(x) \land Q(x)) \\
2 & \forall x(P(x) \to R(x)) \\
3 & v & P(v) \land Q(v) \\
4 & P(v) & \land E, 3 \\
5 & P(v) \to R(v) & \forall E, 2 \\
6 & R(v) & \Rightarrow E, 4, 5 \\
7 & Q(v) & \land E, 3 \\
8 & R(v) \land Q(v) & \land I, 6, 7 \\
9 & \exists x(R(x) \land Q(x)) & \exists I, 8
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists x(P(x) \land Q(x)) \\
2 & \forall x(P(x) \to R(x)) \\
3 & v & P(v) \land Q(v) \\
4 & P(v) & \land E, 3 \\
5 & P(v) \to R(v) & \forall E, 2 \\
6 & R(v) & \Rightarrow E, 4, 5 \\
7 & Q(v) & \land E, 3 \\
8 & R(v) \land Q(v) & \land I, 6, 7 \\
9 & \exists x(R(x) \land Q(x)) & \exists I, 8 \\
10 & \exists x(R(x) \land Q(x)) & \exists E, 1, 3-9
\end{array}$$

Ex8. Build a proof of $\forall x \forall y (x = y \rightarrow f(x) = f(y))$

Ex8. Build a proof of $\forall x \forall y (x = y \rightarrow f(x) = f(y))$

$$1 \quad | \ u \ | \ v \ | \quad \underline{ \ } \ u = v$$

Ex8. Build a proof of $\forall x \forall y (x = y \rightarrow f(x) = f(y))$

$$\begin{array}{c|cccc}
1 & u & v \\
2 & \neg(f(u) = f(v))
\end{array}$$

$$\begin{array}{c|cccc}
1 & u & v \\
2 & & & \\
3 & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
u = v \\
\hline
-(f(u) = f(v)) \\
\hline
f(u) = f(u) & = 1
\end{array}$$

1	и	V	u = v	
2			$\neg(f(u)=f(v))$	
3			f(u)=f(u)	=I
4			f(u)=f(v)	=E, 1, 3
5			上	⊥I, 2–4
6			$\neg\neg(f(u)=f(v))$	¬I, 2–5
7			f(u)=f(v)	¬E, 6

1
$$\forall x P(a, x, x)$$

$$\begin{array}{c|c}
1 & \forall x P(a, x, x) \\
2 & \forall x \forall y \forall z (P(x, y, z) \rightarrow P(f(x), y, f(z)))
\end{array}$$

$$orall x P(a,x,x) \ orall x orall y \forall x P(a,x,x)
ightarrow P(f(x),y,f(z))) \ P(a,a,a) \ orall E, 1$$

$$\begin{array}{ccc}
1 & \forall x P(a, x, x) \\
2 & \forall x \forall y \forall z (P(x, y, z) \rightarrow P(f(x), y, f(z))) \\
3 & P(a, a, a) & \forall E, 1 \\
4 & \forall y \forall z (P(a, y, z) \rightarrow P(f(a), y, f(z))) & \forall E, 2
\end{array}$$

$$\begin{array}{ccc}
1 & \forall x P(a, x, x) \\
2 & \forall x \forall y \forall z (P(x, y, z) \rightarrow P(f(x), y, f(z))) \\
3 & P(a, a, a) & \forall E, 1 \\
4 & \forall y \forall z (P(a, y, z) \rightarrow P(f(a), y, f(z))) & \forall E, 2 \\
5 & \forall z (P(a, a, z) \rightarrow P(f(a), a, f(z))) & \forall E, 4
\end{array}$$

$$\begin{array}{ccc}
1 & \forall x P(a, x, x) \\
2 & \forall x \forall y \forall z (P(x, y, z) \rightarrow P(f(x), y, f(z))) \\
3 & P(a, a, a) & \forall E, 1 \\
4 & \forall y \forall z (P(a, y, z) \rightarrow P(f(a), y, f(z))) & \forall E, 2 \\
5 & \forall z (P(a, a, z) \rightarrow P(f(a), a, f(z))) & \forall E, 4 \\
6 & P(a, a, a) \rightarrow P(f(a), a, f(a)) & \forall E, 5
\end{array}$$

1
$$\forall x P(a, x, x)$$

2 $\forall x \forall y \forall z (P(x, y, z) \rightarrow P(f(x), y, f(z)))$
3 $P(a, a, a)$ $\forall E, 1$
4 $\forall y \forall z (P(a, y, z) \rightarrow P(f(a), y, f(z)))$ $\forall E, 2$
5 $\forall z (P(a, a, z) \rightarrow P(f(a), a, f(z)))$ $\forall E, 4$
6 $P(a, a, a) \rightarrow P(f(a), a, f(a))$ $\forall E, 5$
7 $P(f(a), a, f(a))$ $\Rightarrow E, 3, 6$

$$1 \quad | \exists x \exists y (H(x,y) \lor H(y,x))$$

$$\begin{array}{c|c}
1 & \exists x \exists y (H(x,y) \lor H(y,x)) \\
2 & \neg \exists x H(x,x)
\end{array}$$

- $\begin{array}{c|c}
 1 & \exists x \exists y (H(x,y) \lor H(y,x)) \\
 2 & \neg \exists x H(x,x) \\
 3 & u \mid v \mid u = v
 \end{array}$

8 | | | | :

8
9
10
$$H(v,u)$$
 $\exists x H(x,x)$
 $\exists I, 10$

8
9
10
11
12
13
14
15
$$|H(v,u)|$$
 $H(v,v)$
 $=E, 3, 9$
 $\exists xH(x,x)$
 $\exists I, 10$
 \bot
 \bot
 $\lor E, 4, 5-8, 9-12$
 $\exists E, 1, 4-13$
 $\lnot (u = v)$
 $\lnot I, 3-14$

8
9
10
11
12
13
14
15
$$\neg (u = v)$$
 $\exists x \neg (u = y)$
 $\exists (x, u) \rightarrow (x \neg v)$
 $\exists (x, u) \rightarrow (x \neg v)$

8
9
10
11
12
13
14
15
$$\neg (u = v)$$
 $\exists x \exists y \neg (x = y)$

:

 $H(v, u)$
 $H(v, v)$
 $= E, 3, 9$
 $\exists x, H(x, x)$
 $\exists I, 10$
 \bot
 \bot
 $\lor E, 4, 5-8, 9-12$
 $\exists E, 1, 4-13$
 $\lnot I, 3-14$
 $\exists I, 15$
 $\exists x \exists y \neg (x = y)$
 $\exists I, 16$

Ex11. Build a proof of $\exists y \exists x Q(y,x) \vdash \exists x \exists y Q(y,x)$

Ex11. Build a proof of $\exists y \exists x Q(y,x) \vdash \exists x \exists y Q(y,x)$

$$1 \quad \exists y \exists x Q(y,x)$$

$$\begin{array}{c|c}
1 & \exists y \exists x Q(y, x) \\
u & \exists x Q(u, x)
\end{array}$$

$$\begin{array}{c|cc}
1 & \exists y \exists x Q(y, x) \\
2 & u & \exists x Q(u, x) \\
3 & v & Q(u, v)
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists y \exists x Q(y, x) \\
2 & u & \exists x Q(u, x) \\
3 & v & Q(u, v) \\
4 & \exists y Q(y, v) & \exists I, 3
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists y \exists x Q(y, x) \\
2 & u & \exists x Q(u, x) \\
3 & v & Q(u, v) \\
4 & \exists y Q(y, v) & \exists I, 3 \\
5 & \exists y Q(y, v) & \exists E, 2, 3-4
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists y \exists x Q(y, x) \\
2 & u & \exists x Q(u, x) \\
3 & v & Q(u, v) \\
4 & & \exists y Q(y, v) & \exists I, 3 \\
5 & \exists y Q(y, v) & \exists E, 2, 3-4 \\
6 & \exists x \exists y Q(y, x) & \exists I, 5
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists y \exists x Q(y, x) \\
2 & u & \exists x Q(u, x) \\
3 & v & Q(u, v) \\
4 & & \exists y Q(y, v) & \exists I, 3 \\
5 & & \exists y Q(y, v) & \exists E, 2, 3-4 \\
6 & & \exists x \exists y Q(y, x) & \exists I, 5 \\
7 & \exists x \exists y Q(y, x) & \exists E, 1, 2-6
\end{array}$$

$$\begin{array}{c|c}
1 & \exists x P(x) \to \forall x R(x) \\
\hline
u & P(u)
\end{array}$$

$$\begin{array}{c|cccc}
1 & & \exists x P(x) \to \forall x R(x) \\
2 & & & & \\
3 & & & & \\
\end{array}$$

∃I, 2

$$\begin{array}{c|cccc}
1 & & \exists x P(x) \to \forall x R(x) \\
2 & & u & P(u) \\
3 & & \exists x P(x) & \exists I, 2 \\
4 & & \forall x R(x) & \Rightarrow E, 1, 3
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists x P(x) \to \forall x R(x) \\
2 & u & P(u) \\
3 & \exists x P(x) & \exists I, 2 \\
4 & \forall x R(x) & \Rightarrow E, 1, 3 \\
5 & R(u) & \forall E, 4
\end{array}$$

1
$$\exists x P(x) \rightarrow \forall x R(x)$$

2 $u \mid P(u)$
3 $\exists x P(x)$
4 $\forall x R(x)$
5 $R(u)$
6 $P(u) \rightarrow Q(u)$
7 $\forall x (P(x) \rightarrow Q(x))$
 $\exists I, 2$
 $\Rightarrow E, 1, 3$
 $\forall E, 4$
 $\Rightarrow I, 2-5$
 $\forall x (P(x) \rightarrow Q(x))$

$$1 \quad \bigg| \quad \bigg| \quad x = f(y)$$

$$\begin{array}{c|c}
1 & x = f(y) \\
\hline
u & P(x, u)
\end{array}$$

$$\begin{array}{c|cccc}
1 & x = f(y) \\
2 & u & P(x, u) \\
3 & P(f(y), u) & =E, 1, 2
\end{array}$$

$$\begin{array}{c|cccc}
1 & x = f(y) \\
2 & u & P(x, u) \\
3 & P(f(y), u) & =E, 1, 2 \\
4 & P(x, u) \rightarrow P(f(y), u) & \Rightarrow I, 2-3
\end{array}$$

$$\begin{array}{c|cccc}
1 & x = f(y) \\
2 & u & P(x, u) \\
3 & P(f(y), u) & =E, 1, 2 \\
4 & P(x, u) \rightarrow P(f(y), u) & \Rightarrow I, 2-3 \\
5 & \forall z (P(x, z) \rightarrow P(f(y), z)) & \forall I, 2-4
\end{array}$$

$$\begin{array}{c|cccc}
1 & & & & & \\
2 & & & & & \\
3 & & & & & \\
4 & & & & & \\
5 & & & & \\
6 & & & & \\
\end{array}$$

$$\begin{array}{c|ccccc}
x = f(y) \\
\hline
P(x, u) \\
P(f(y), u) \\
\hline
P(x, u) \rightarrow P(f(y), u) \\
\Rightarrow I, 2-3 \\
\forall z(P(x, z) \rightarrow P(f(y), z)) \\
\forall I, 2-4 \\
\Rightarrow I, 1-5
\end{array}$$

$$1 \quad | a | b | c | d | \quad a = b$$

1 | a | b | c | d |
$$a = b$$

2 | 3 | 4 | $f(a,c) = f(a,c)$ = | = | E, 1, 3 | $f(a,c) = f(b,c)$ = | E, 1, 3 | $f(a,c) = f(b,d)$ = | E, 2, 4 | $c = d \rightarrow f(a,c) = f(b,d)$ | $c = d \rightarrow f(a,c) = f(b,d)$ | $c = b \rightarrow (c = d \rightarrow f(a,c) = f(b,d))$ | $c = b \rightarrow (c = d \rightarrow f(a,c)$

1 | a | b | c | d |
$$a = b$$

2 | 3 | 4 | $f(a,c) = f(a,c)$ = | = | E, 1, 3 | $f(a,c) = f(b,c)$ = | E, 2, 4 | $c = d \rightarrow f(a,c) = f(b,d)$ = | E, 2, 4 | $c = d \rightarrow f(a,c) = f(b,d)$ = | H, 1-6 | $\forall v(a = b \rightarrow (c = v \rightarrow f(a,c) = f(b,v)))$ | $\forall I, T$ | $\forall u \forall v(a = u \rightarrow (c = v \rightarrow f(a,c) = f(u,v)))$ | $\forall I, S$ | $\forall I, S$

```
=E, 1, 3
                                f(a,c) = f(b,d)
c = d \rightarrow f(a,c) = f(b,d)
\Rightarrow 1, 2-5
5
6
                               a = b \rightarrow (c = d \rightarrow f(a, c) = f(b, d)) \RightarrowI, 1-6
                        \forall v(a=b\rightarrow (c=v\rightarrow f(a,c)=f(b,v)))
8
                                                                                               ∀I, 7
9
                    \forall u \forall v (a = u \rightarrow (c = v \rightarrow f(a, c) = f(u, v)))
                                                                                               ∀I, 8
             \forall y \forall u \forall v (a = u \rightarrow (y = v \rightarrow f(a, y) = f(u, v)))
10
                                                                                               ∀I, 9
11
        \forall x \forall y \forall u \forall v (x = u \rightarrow (y = v \rightarrow f(x, y) = f(u, v)))
                                                                                               ∀I, 10
```

1
$$\exists x \forall y (P(x) \land (P(y) \rightarrow y = x))$$

```
 \begin{vmatrix} \exists x \forall y (P(x) \land (P(y) \to y = x)) \\ a \mid b \mid P(a) \land P(b) \end{vmatrix}
```

```
\begin{vmatrix}
\exists x \forall y (P(x) \land (P(y) \to y = x)) \\
2 & | a | b | & | P(a) \land P(b) \\
\hline P(a) \land (P(b) \to b = a)
\end{vmatrix}
```

```
\begin{vmatrix}
\exists x \forall y (P(x) \land (P(y) \to y = x)) \\
2 & | a | | b | | P(a) \land P(b) \\
\hline
 | P(b) | P(b) | | P(b) |

AE, 2
```

$$\begin{array}{c|cccc}
1 & \exists x \forall y (P(x) \land (P(y) \rightarrow y = x)) \\
2 & a & b & P(a) \land P(b) \\
3 & & P(b) \rightarrow b = a
\end{array}$$

$$\begin{array}{c|ccccc}
P(b) \rightarrow b = a & \land E, 2 \\
\hline
P(b) \rightarrow b = a & \land E, 3
\end{array}$$

$$\begin{array}{c|cccc}
1 & \exists x \forall y (P(x) \land (P(y) \rightarrow y = x)) \\
2 & a & b & P(a) \land P(b) \\
3 & & P(b) \rightarrow b = a \\
5 & & b & AE, 2 \\
P(b) \rightarrow b = a & AE, 3 \\
b = a & \Rightarrow E, 4, 5
\end{array}$$

$$\begin{array}{c|ccccc}
1 & \exists x \forall y (P(x) \land (P(y) \rightarrow y = x)) \\
2 & a & b & P(a) \land P(b) \\
3 & & P(a) \land (P(b) \rightarrow b = a) \\
4 & & P(b) \rightarrow b = a & \land E, 3 \\
6 & & AE, 3 & \land E, 4, 5 \\
7 & & BE, 4, 5
\end{array}$$

$$\begin{array}{c|ccccc}
1 & \exists x \forall y (P(x) \land (P(y) \rightarrow y = x)) \\
2 & a & b & P(a) \land P(b) \\
3 & & P(b) \rightarrow b = a \\
5 & & P(b) \rightarrow b = a \\
6 & & P(b) \rightarrow b = a \\
7 & & b = b \\
8 & & AE, 4, 5 \\
9 & & AE, 4, 5 \\
9 & & AE, 4, 5 \\
9 & & BE, 4, 5 \\
9 & & BE, 6, 7$$

```
\exists x \forall y (P(x) \land (P(y) \rightarrow y = x))
                     P(a) \wedge P(b)
                          P(a) \wedge (P(b) \rightarrow b = a)
                          P(b)
                                                               ∧E, 2
                          P(b) \rightarrow b = a
                                                              ∧E, 3
6
                          b = a
                                                               ⇒E, 4, 5
                          b = b
                                                               =E, 6, 7
                          a = b
                     a = b
                                                              ∃E, 1, 3–8
                 (P(a) \wedge P(b)) \rightarrow a = b
                                                               ⇒I, 2–9
10
```

```
\exists x \forall y (P(x) \land (P(y) \rightarrow y = x))
                      P(a) \wedge P(b)
                           P(a) \wedge (P(b) \rightarrow b = a)
                                                                ∧E, 2
                           P(b)
                           P(b) \rightarrow b = a
                                                               ∧E, 3
6
                           b = a
                                                                ⇒E, 4, 5
                           b = b
                                                                =E, 6, 7
                           a = b
                      a = b
                                                               ∃E, 1, 3–8
                                                              ⇒I, 2-9
10
                 (P(a) \wedge P(b)) \rightarrow a = b
11
            \forall y((P(a) \land P(y)) \rightarrow a = y)
                                                                ∀I. 10
```

```
\exists x \forall y (P(x) \land (P(y) \rightarrow y = x))
                       P(a) \wedge P(b)
                            P(a) \wedge (P(b) \rightarrow b = a)
                            P(b)
                                                                  ∧E, 2
                            P(b) \rightarrow b = a
                                                                  ∧E, 3
6
                                                                  ⇒E, 4, 5
                            b = a
                            b = b
                            a = b
                                                                  =E, 6, 7
                       a = b
                                                                  ∃E, 1, 3–8
10
                  (P(a) \wedge P(b)) \rightarrow a = b
                                                                ⇒I, 2-9
11
            \forall y((P(a) \land P(y)) \rightarrow a = y)
                                                                  ∀I, 10
       \forall x \forall y ((P(x) \land P(y)) \rightarrow x = y)
                                                                  ∀I. 11
```