FEUILLE D'EXERCICE 1

Exercice 1 – constraposée de formule

1. $P\Rightarrow Q\,:$ Il est midi donc j'ai faim

 $\neg Q \Rightarrow \neg P$: Il n'est pas midi donc je n'ai pas faim

 $Q \Rightarrow P\,$: J'ai faim donc il est midi

 $\neg P \Rightarrow \neg Q\,:$ Je n'ai pas faim donc il n'est pas midi

2. table de vérité:

P	Q	$P \Rightarrow Q$	$\neg Q \Rightarrow \neg P$	$Q \Rightarrow P$	$\neg P \Rightarrow \neg Q$
0	0	1	1	1	1
0	1	1	1	0	0
1	0	0	0	1	1
1	1	1	1	1	1

3. Non car si P est faux alors Q peut être vrai ou faux on ne sais pas.

Exercice 2 – Table de vérité

1.
$$(P \land Q \Rightarrow R) \Leftrightarrow ((P \land Q) \Rightarrow R)$$

 $(P \Rightarrow Q \Rightarrow R) \Leftrightarrow (P \Rightarrow (Q \Rightarrow R))$

2. Table de vérité :

Р	Q	R	$P \wedge Q \Rightarrow R$	$P \Rightarrow Q \Rightarrow R$
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

3. $(P \lor Q \Rightarrow R) \Leftrightarrow ((P \lor Q) \Rightarrow R)$

$$((P \Rightarrow R) \land (Q \Rightarrow R)) \Leftrightarrow ((P \Rightarrow R) \land (Q \Rightarrow R))$$

(() (-0// ((
Р	Q	R	$P \lor Q \Rightarrow R$	$(P \Rightarrow R) \land (Q \Rightarrow R)$
0	0	0	1	1
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

Exercice 3 – Enigme

1.
$$\neg P_1 \wedge \neg P_2$$

2.
$$(P_1 \wedge \neg P_2) \vee (P_2 \wedge \neg P_1)$$

3.
$$I_1 = P_1$$

$$I_2 = \neg P_2$$

$$I_3 = \neg P_1$$

$$I_3 = \neg P_1$$

4. Le portrai est dans le coffre 2.

Exercice 4 – "Les personnes qui aiment la montagne aiment aussi al campagne"

- 1. On ne peut rien dir
- 2. On ne peut rien dir

- 3. $(a) \Leftrightarrow (c)$ et (b) est équivalentes à l'affirmation du logicien.
- 4. logicien : (aime-montagne) \Rightarrow (aime-campagne)
 - (a) : \neg (aime-montagne) $\Rightarrow \neg$ (aime-campagne)
 - (b) : \neg (aime-campagne) $\Rightarrow \neg$ (aime-montagne)
 - (c): (aime-campagne) \Rightarrow (aime-montagne)
- 5. \neg ((aime-montagne) \Rightarrow (aime-campagne)) (aime-montagne) $\land \neg$ (aime-campagne)

Exercice 5 – Calcul booléen et programmation

- 1. il y a 3 entrée possible donc il y a 2³ entrées possibles.
- 2. table de vérité pour "a", "b", "c", "d"

p	q	r	"a"	"b"	"c"	"ď"
0	0	0	1	0	1	1
0	0	1	1	1	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	1	0	1
1	1	0	1	1	0	1
1	1	1	1	1	0	1

On pourra afficher "a", "b", "d"

3. $verif(P) = verif \ aux(\top, P)$

$$\begin{cases} verif_aux(C,elt) &= sat(C) \\ verif_aux(D,\text{if } C \text{ then } P_1 \text{ else } P_2) &= verif_aux(D \land C,P_1) \land verif_aux(D \land \neg C,P_2) \end{cases}$$

4. Il est bien décidable car on a réussi à faire une fonction qui vérifie ça (verif).

Exercice 6 - Formalisation logique

- B(x), H(x), V(X): le dragon x est bleu, est heureux, vole

- 1. (a) $\forall x, B(x) \Rightarrow V(x)$ $\exists x, B(x) \land V(x)$
 - (b) $\forall x, \exists p, m, \neg (p = m) \land P(p, x) \land P(m, x)$
 - (c) $\forall x, (\forall e, P(x, e) \Rightarrow V(e) \Rightarrow H(x))$
 - (d) $\forall x, (\exists p, P(p, x) \Rightarrow B(p) \Rightarrow B(x))$
 - (e) $\forall x, (\neg H(x) \Rightarrow \neg V(x))$
- 2. (a) Un dragon qui vole n'a qu'un seul enfant.
 - (b) Tous dragon à au moin un fils heureux.
 - (c) Il existe un dragon heureux qui est fils de tous les dragons.

Exercice 7 - Enigme:

- 1. Soit A, B, C des varaibles propositionnelle vrai si Albert, Bernard et Charles prennent un dessert.
 - (a) $A \Rightarrow B$
 - (b) $(B \vee C) \wedge (\neg B \vee \neg C)$
 - (c) $A \vee C$
 - (d) $C \Rightarrow A$

2. Table de vérité :

A	В	C	$A \Rightarrow B$	$(B \vee C) \wedge (\neg B \vee \neg C)$	$A \lor C$	$C \Rightarrow A$
0	0	0	1	0	0	1
0	0	1	1	1	1	0
0	1	0	1	1	0	1
0	1	1	1	0	1	0
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	1	1
1	1	1	1	0	1	1

On voit que les affirmation sont vrai seulement quand Albert et Bernard prennent un dessert seulement.

3. Non car chaques affirmations donnent une information en plus.

Exercice 8 - Partiel 2012

- 1. B: vrai si il boit D: vrai si il dort
 - M: vrai si il mange
 C: vrai si il content
- 2. (a) On sait qu'il est content aujourd'hui (5). Avec la (2) on a $B \Rightarrow \neg C \land D$ or $\neg C \land D$ est fausse donc pour que l'affirmation soit vrai il faut avoir $\neg B$. On peut donc affirmer qu'il n'a pas bu.
 - (b) On peut dir qu'il n'a pas ni mangé (3) ni dormi (1) avec le même résonnment sur les formules associées.