

O que vamos aprender

Árvore de Decisão (Decision Trees)

Floresta Aleatória (Random Forest)

Gradient Boosting

Resumão de R

```
train_control <- trainControl(
   method = "cv"
   ,number = 5
   ,verboseIter = TRUE
   ,classProbs = TRUE
   ,summaryFunction = myTwoClassSummary
   ,allowParallel = FALSE
)</pre>
```

```
library(rpart)

tune_grid_tree <- expand.grid(
   cp = c(0.1, 0.5, 1, 2, 5, 10)
)

modelo_tree <- train(
   Survived ~ .
   ,data = titanic_train
   ,method = "rpart"
   ,trControl = train_control
   ,tuneGrid = tune_grid_tree
)</pre>
```

```
library(randomForest)

tune_grid_rf <- expand.grid(
  mtry = c(5, 15, 30, 60, 120, 200, 500)
)

modelo_rf <- train(
  Survived ~ .
   ,data = titanic_train
   ,method = "rf"
   ,trControl = train_control
   ,tuneGrid = tune_grid_rf
)</pre>
```

```
library(xgboost)
tune_grid_xgb <- expand.grid(</pre>
  nrounds = c(500, 1000, 1500, 2000),
 \max_{depth} = c(3, 6, 9, 12),
  eta = c(0.01, 0.05, 0.1),
  gamma = c(0.01, 0.1, 0.5, 1),
  colsample_bytree = c(0.6, 0.7, 0.8, 0.9),
  min_child_weight = c(1, 10, 100, 1000),
  subsample = c(0.6, 0.7, 0.8, 0.9)
modelo_xgb <- train(</pre>
 Survived ~ .
  ,data = titanic_train
  ,method = "xgbTree"
  ,trControl = train_control
  ,tuneGrid = tune_grid_xgb
```


Árvore de Decisão

Anatomia

$$Y \approx f(X)$$

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

P(sim) = 0/2P(folha) = 2/6 $Y \approx 0\%$

P(sim) = 3/6P(no) = 6/6Sim Glicose < 111? Não P(sim) = 3/4 $P(n\acute{o}) = 4/6$ Glicose < 162? Não Sim P(sim) = 1/2P(sim) = 2/2P(folha) = 2/6P(folha) = 2/6 $Y \approx 100\%$ $Y \approx 50\%$

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Esquerda	Direita	GINI	Entropia	Melhor
1	5	0,6	0,8	NÃO
2	4	1,5	1,9	SIM
4	2	1,5	1,9	SIM
5	1	0,6	0,8	NÃO
4	2	0,0	0,0	NÃO
	1 2 4 5	1 5 2 4 4 2 5 1	1 5 0,6 2 4 1,5 4 2 1,5 5 1 0,6	1 5 0,6 0,8 2 4 1,5 1,9 4 2 1,5 1,9 5 1 0,6 0,8

Ganho de informação: (Information Gain)

 $IG(P, lado) = N.Impureza(P) - N_{esq}.Impureza(P, esq) - N_{dir}.Impureza(P, dir)$

Medidas de impureza mais comuns:

Impureza	Tarefa	Fórmula	Descrição
GINI	Classificação	$1-\sum p_i^2$	p_i é a proporção do rótulo $i, i = 1,, C$.
Entropia	Classificação	$-\sum p_i \log(p_i)$	p_i é a proporção do rótulo $i, i = 1,, C$.
Variância	Regressão	$\frac{1}{N}\sum(y_k - \hat{y}_k)^2$	y_k é o observado e \hat{y}_k é a média da folha.

Fonte: spark.apache.org/docs/1.3.0/mllib-decision-tree.html

Qual "pergunta" é a melhor? I ou II?

Qual quebra é a melhor? I ou II?

Exemplo usando GINI como medida de IMPUREZA

Exercício

Exemplo usando GINI como medida de IMPUREZA


```
P(sim) = 3/6
                    P(no) = 6/6
                     Glicose < 111?
             Sim
                                     Não
    P(sim) = 0/2
                                    P(sim) = 3/4
    P(folha) = 2/6
                                    P(folha) = 4/6
                                      Y \approx 75\%
       Y \approx 0\%
GINI(II) =
GINI(II) =
```

Exercício (resposta)

Exemplo usando GINI como medida de IMPUREZA

Hiperparâmtros do pacote 'rpart' do R

maxdepth – Profundidade: quanto mais profunda a árvore for, maior risco de overfitting.

minsplit – Quantidade mínima de observações dentro de um nó para se considerar dividir em duas folhas novas. Quanto menor, maior risco de overfitting.

minbucket – Quantidade mínima de observações dentro das novas folhas para se considerar dividir. Quanto menor, maior risco de overfitting.

Hiperparâmtros do pacote `rpart` do R

maxdepth – Profundidade: quanto mais profunda a árvore for, maior risco de overfitting.

minsplit – Quantidade mínima de observações dentro de um nó para se considerar dividir em duas folhas novas. Quanto menor, maior risco de overfitting.

minbucket – Quantidade mínima de observações dentro das novas folhas para se considerar dividir. Quanto menor, maior risco de overfitting.

Hiperparâmtros do pacote 'rpart' do R

maxdepth – Profundidade: quanto mais profunda a árvore for, maior risco de overfitting.

minsplit – Quantidade mínima de observações dentro de um nó para se considerar dividir em duas folhas novas. Quanto menor, maior risco de overfitting.

minbucket – Ouantidade mínima de observações dentro das novas folhas para se considerar dividir. Quanto menor, maior risco de overfitting.

Hiperparâmtros do pacote 'rpart' do R

maxdepth – Profundidade: quanto mais profunda a árvore for, maior risco de overfitting.

minsplit – Quantidade mínima de observações dentro de um nó para se considerar dividir em duas folhas novas. Quanto menor, maior risco de overfitting.

minbucket – Quantidade mínima de observações dentro das novas folhas para se considerar dividir. Quanto menor, maior risco de overfitting.

CP – Complexity Parameter

$$R_{cp}(T) = R(T) + cp * |T| * R(T_1)$$

- Quanto maior o CP menos quebras a árvore vai ter.
- Selecionamos o tamanho de árvore ideal variando o CP (por meio de cross-validation!).

Ao R...

Comentários e mais um pouco de intuição

- O exemplo foi dado com variável resposta (diabetes) de apenas duas classes: SIM e NÃO. Poderia ter mais, por exemplo: o dígito escrito em uma imagem. A variável resposta teria 10 classes possíveis que seriam os algarismos de 0 a 9.
- A variável explicativa hipertensão apresentava apenas duas classes também, mas poderia apresentar mais.
 Nesse caso, os algoritmos de árvores têm de decidir como fazer as PERGUNTAS. <u>Esse link da Freakonometrics</u> apresenta a heurística mais utilizada nesse caso.
- As figuras são duas representações diferentes para um mesmo modelo de árvore. Nesse caso as variáveis explicativas Years e Hits são ambas contínuas e poderiam ser visualizadas num gráfico de dispersão. As regiões R1, R2 e R3 correspondem às folhas da árvore apresentada no gráfico de cima.

Relação Viés-Variância (Bias-Variance tradeoff)

Erro de predição esperado =

$$E\left(Y - \hat{f}(x_0)\right)^2 =$$

$$E\left(f(x_0) + \epsilon - \hat{f}(x_0)\right)^2 =$$

$$[E\hat{f}(x_0) - f(x_0)]^2 + E[\hat{f}(x_0) - E\hat{f}(x_0)]^2 + Var(\epsilon) =$$

 $Vi\acute{e}s^2 + Variância + Erro Irredutível$

Relação Viés-Variância (Bias-Variance tradeoff)

Erro de predição esperado =

$$E\left(Y - \hat{f}(x_0)\right)^2 =$$

$$E\left(f(x_0) + \epsilon - \hat{f}(x_0)\right)^2 =$$

$$[E\hat{f}(x_0) - f(x_0)]^2 + E[\hat{f}(x_0) - E\hat{f}(x_0)]^2 + Var(\epsilon) =$$

 $Vi\acute{e}s^2 + Variância + Erro Irredutível$

Random Forest

Random Forest

- Random Forest é a combinação de "palpites" de um monte de árvores de decisão.
- É um algoritmo de uma classe especial de ENSEMBLE: BAGGING.
- ENSEMBLE: mistura de 2 ou mais modelos. ESL p 605
- BAGGING: Bootstrap AGGregation ESL p 282
- Diferencial para os BAGGINs tradicionais: Sorteia as colunas também

Algoritmo:

- 1) Sorteie B conjuntos de observações da base D
- 2) Para cada conjunto b de B, sorteie m variáveis de D
- 3) Para cada uma das B sub-bases geradas por (b, m) construa uma árvore de decisão
- 4) Para previsão final, agregue as previsões individuais de cada uma das B árvore.

Hiperparâmtros do pacote `randomForest` do R

ntree – Número de árvores (amostras bootstrap) para treinar. Não afeta muito o overfitting.

mtry – Quantidade de variáveis (colunas) sorteadas por árvore. Tem que testar via cross-validation, pois é afetado pela razão entre #variáveis boas e #ruído.

nodesize – Análogo ao **minsplit** do `rpart`. Quantidade mínima de observações no nó para poder dividir.

OBS: random forest não usa CP. Ele permite que as árvores cresçam indeterminadamente, condicionadas apenas pelo **nodesize**.

Importância das Variáveis (variable importance)

- A importância de uma certa variável X é calculara (na maioria das vezes) pela média dos ganhos de informação das quebras feitas por aquela variável.
- O gráfico ao lado mostra uma escala de 0 a 100. É a maneira como se costuma apresentar a importância da variável uma vez que a média do ganho de informação é difícil de interpretar.
- No R: varImp(modelo)

Ao R...

- Exercício do Titanic
- Gradient Boosting FSL p 337
- Gráfico de Dependência Parcial