Soluții probleme temă

Problema 1. În primul rând $(\mathbb{N}, +)$, (\mathbb{N}, \max) , $(\mathbb{N}, \operatorname{c.m.m.m.c})$ sunt monoizi. Notăm cu c.m.m.m.c $\{a,b\}=[a,b]$. Elementul neutru pentru adunare este 0, ca și pentru operația max. Pentru $[\ ,\]$ elementul neutru este 1. Adunarea este asociativă. Pentru a două operație pe \mathbb{N} avem $\max\{\max\{a,b\},c\}=\max\{a,b,c\}=\max\{a,\max\{b,c\}\}\}$. Similar pentru operația de luare a c.m.m.m.c. Avem deci trei monoizi.

Dacă presupunem că $f:(\mathbb{N},+) \longrightarrow (\mathbb{N},\max)$ este izomorfism atunci $f(2a)=f(a+a)=\max\{f(a),f(a)\}=f(a),$ pentru orice $a\in\mathbb{N}^*$. Deci f nu este injectiv. Contradicție.

Similar, dacă presupunem că $g:(\mathbb{N},+)\longrightarrow(\mathbb{N},\text{c.m.m.m.c})$ este izomorfism, atunci g(2a)=g(a+a)=[g(a),g(a)]=g(a), pentru orice $a\in\mathbb{N}^*$. Deci g nu este injectiv. Contradicție.

Doi monoizi izomorfi trebuie să aibă proprietăți similare. Pentru orice $a, b \in \mathbb{N} \Rightarrow \max\{a, b\} \in \{a, b\}$, dar $[a, b] \notin \{a, b\}$ în general. Deci nici ultimii doi monoizi nu sunt izomorfi.

Problema 2. $(\mathbb{N}, +)$ este monoidul liber generat de un element, acesta fiind 1.

Considerăm $f:(\mathbb{N},+)\longrightarrow (\mathbb{N},+)$ morfism. Atunci f(0)=0 și $f(1)=a\in\mathbb{N}.$ f(2)=f(1+1)=f(1)+f(1)=2a. Se demonstrează foarte uor prin inducție că $f(n)=n\cdot a.$ Deci $\mathrm{End}(\mathbb{N},+)=\{f:\mathbb{N}\longrightarrow\mathbb{N}\mid f\mathrm{morfism}\}=\mathbb{N}.$

Fie acum $g:(\mathbb{N},\max) \longrightarrow (\mathbb{N},\max)$ morfism. Pentru $i < j; i, j \in \mathbb{N}^*$ avem $g(\max\{i,j\}) = \max\{g(i),g(j)\} \Leftrightarrow g(j) = \max\{g(i),g(j)\} \Rightarrow g(i) \leqslant g(j)$.

Am obținut $\operatorname{End}(\mathbb{N}, \max) = \{g : \mathbb{N} \longrightarrow \mathbb{N} \mid g \text{ crescătoare}\}.$

Fie $h:(\mathbb{N},+)\longrightarrow (\mathbb{N},\max)$ morfism. $h(1)=a,h(2)=h(1+1)=\max\{h(1),h(1)\}=h(1).$ Se demonstrează h(n)=h(1).

Deci Hom $((\mathbb{N}, +), (\mathbb{N}, \max)) = \{h : \mathbb{N} \longrightarrow \mathbb{N} \mid h(0) = 0, h(n) = a, \forall n \in \mathbb{N}^*\}$

Fie $k: (\mathbb{N}, \max) \longrightarrow (\mathbb{N}, +)$ morfism, atunci $k(\max\{i, i\}) = k(i) + k(i) \Leftrightarrow k(i) = k(i) + k(i), \forall i \in \mathbb{N} \Rightarrow k(i) = 0.$

Deci $\operatorname{Hom}((\mathbb{N}, \max), (\mathbb{N}, +)) = \{0\}, \text{ morfismul nul.}$

Problema 3. Dacă $f: (\mathbb{N}, \max) \longrightarrow (\mathcal{P}(\mathbb{N}), \cup)$ este morfism de monoizi atunci $f(0) = \emptyset$ şi $f(i) = A_i \subset \mathbb{N}$. Mai mult pentru $i < j; i, j \in \mathbb{N}^*, f(\max\{i, j\}) = f(i) \cup f(j) \Leftrightarrow f(i) = f(i) \cup f(j) \Leftrightarrow A_i = A_i \cup A_j \Rightarrow A_i \subseteq A_j$. Dar f dorim să fie injectiv deci pentru $i \neq j \Rightarrow A_i \neq A_j$. Avem astfel pentru $i < j, A_i \subsetneq A_j$.

Putem lua $f: \mathbb{N} \longrightarrow \mathbb{N}, f(n) = [n] = \{1, 2, \dots, n\}.$

Probleme seminar

 $U(\mathbb{Z}_n,\cdot)=\{\hat{x}\mid x\in\mathbb{Z},(x,n)=1\}=\{\hat{x}\mid \exists \hat{y}\in\mathbb{Z} \text{ cu } \hat{x}\hat{y}=\hat{1}\},$ grupul unităților din $(\mathbb{Z}_n,\cdot).$ $U(\mathbb{Z}_n,\cdot)$ este subgrup al monoidului $(\mathbb{Z}_n,\cdot).$ $|U(\mathbb{Z}_n)|=\varphi(n)=n(1-\frac{1}{p_1})\dots(1-\frac{1}{p_s}),$ unde descompunerea în factori primi a numărului n este $p_1^{r_1}\cdots p_s^{r_s}.$

1

Problema 0. Să se scrie tabla legii de compoziție a grupului $U(\mathbb{Z}_6,\cdot)$.

Soluție: $U(\mathbb{Z}_6) = \{\hat{1}, \hat{5}\}$. $6 = 2 \cdot 3$, deci $|U(\mathbb{Z}_6)| = 6 \cdot (1 - \frac{1}{2})(1 - \frac{1}{3}) = 2$. Tabla legii de compoziție este:

$$\begin{array}{c|cccc} \cdot & \hat{1} & \hat{5} \\ \hline \hat{1} & \hat{1} & \hat{5} \\ \hat{5} & \hat{5} & \hat{1} \end{array}$$

Vedem că aceasta este similară cu tabla adunării lui $(\mathbb{Z}_2, +)$. $\mathbb{Z}_2 = \{\hat{0}, \hat{1}\}$ și avem $\begin{array}{c|c} + & \hat{0} & \hat{1} \\ \hline & \hat{0} & \hat{1} & \hat{1} \\ \hat{1} & \hat{1} & \hat{0} \end{array}$

Problema 1. Să se scrie tabla legii de compoziție a grupului $U(\mathbb{Z}_8, \cdot)$.

Soluție: $U(\mathbb{Z}_8) = \{\hat{1}, \hat{3}, \hat{5}, \hat{7}\}$. $8 = 2^3$, deci $|U(\mathbb{Z}_8)| = 8 \cdot (1 - \frac{1}{2}) = 4$. Tabla legii de compoziție este:

Problema 2. Să se scrie tabla legii de compoziție a grupului $U(\mathbb{Z}_{10},\cdot)$.

Soluție: $U(\mathbb{Z}_{10}) = \{\hat{1}, \hat{3}, \hat{7}, \hat{9}\}$. $10 = 2 \cdot 5$, deci $|U(\mathbb{Z}_{10})| = 10 \cdot (1 - \frac{1}{2})(1 - \frac{1}{5}) = 4$. Tabla legii de compoziție este:

Se vede că tabla înmulțirii grupului $U(\mathbb{Z}_8,\cdot)$ este diferită de tabla grupului $U(\mathbb{Z}_{10},\cdot)$.

Problema 3. Să se scrie tabla legii de compoziție a grupului $U(\mathbb{Z}_{12},\cdot)$.

Soluție: $U(\mathbb{Z}_{12}) = {\hat{1}, \hat{5}, \hat{7}, \hat{11}}$. $12 = 2^2 \cdot 3$, deci $|U(\mathbb{Z}_{12})| = 12 \cdot (1 - \frac{1}{2})(1 - \frac{1}{3}) = 4$. Tabla legii de compoziție este:

Se vede că tabla înmulțirii grupului $U(\mathbb{Z}_8,\cdot)$ este similară cu tabla grupului $U(\mathbb{Z}_{12},\cdot)$.

Problema 4. Să se scrie tabla legii de compoziție $(\mathbb{Z}_4, +)$.

Soluție: $\mathbb{Z}_4 = \{\hat{0}, \hat{1}, \hat{2}, \hat{3}\}$. Tabla adunării este:

Se vede că această tablă este similară cu tabla în mulțirii pe $U(\mathbb{Z}_{10})$.

Problema 5. Să se scrie tabla legii de compoziție a grupului diedral D_3 .

Soluție: $D_3 = \{1 = \mathrm{id}_{\triangle}, \rho, \rho^2, s_1, s_2, s_3\}$, unde ρ este rotația în sens antiorar cu 120° în jurul centrului triunghiului echilateral, iar s_j reprezintă reflecția față de mediatoarea l_j care trece prin vârful j al triunghiului echilateral 123. Operația \circ este compunerea funcțiilor care sunt și izometrii ale planului, compunere care este asociativă și are ca element neutru $1 = \mathrm{id}_{\triangle}$. De exemplu $\rho s_1 = \rho \circ s_1$, prima dată aplicăm s_1 și apoi ρ .

0	1	ho	$ ho^2$	s_1	s_2	s_3
			0			
1	1	$\rho_{\hat{\rho}}$	$ ho^2$	-	s_2	s_3
ρ	ρ	$\dot{ ho}^2$		$\rho s_1 = s_3$		
ρ^2	ρ^2	1	ho	$\rho^2 s_1 = s_2$		$\rho^2 s_3 = s_1$
s_1	s_1			$s_1^2 = 1$		
s_2	s_2	$s_2 \rho = s_3$	$s_2 \rho^2 = s_1$	$s_2 s_1 = \rho^2$	$s_2^2 = 1$	$s_2s_3=\rho$
s_3	s_3	$s_3 \rho = s_1$	$s_3 \rho^2 = s_2$	$s_3s_1=\rho$	$s_3 s_2 = \rho^2$	$s_3^2 = 1$
			$0 \mid 1 \mid a$	ρ^2 s_1 s_2	So	

0	1	ρ	$ ho^2$	s_1	s_2	s_3
			0			
1	1	ρ	ρ^2	s_1	s_2	s_3
ρ	ρ	$ ho^2$	1	s_3	s_1	s_2
$ ho^2$	$\begin{vmatrix} 1 \\ \rho \\ \rho^2 \\ s_1 \\ s_2 \\ s_3 \end{vmatrix}$	1	ρ	s_2	s_3	s_1
s_1	s_1	s_2	s_3	1	ρ	$ ho^2$
s_2	s_2	s_3	s_1	$ ho^2$	1	ρ
s_3	s_3	s_1	s_2	ho	ρ^2	1

Problema 6. Să se demonstreze că orice grup G în care $x^2 = 1$ pentru orice $x \in G$ este abelian.

Soluție: Dacă în grupul G avem $x^2=1$, înmulțind această relație cu x^{-1} obținem $x^2x^{-1}=1\cdot x^{-1}\Leftrightarrow 1\cdot x=x^{-1}\Leftrightarrow x=x^{-1}$. Scriem relația din ipoteză pentru xy, unde x,y sunt arbitrare în G. Avem $(xy)^2=1\Leftrightarrow (xy)(xy)=1$. Înmulțim la stânga cu x^{-1} și la dreapta cu y^{-1} și obținem $yx=x^{-1}y^{-1}=xy$. Deci grupul este abelian (comutativ).

Problema 7. Pe mulțimea (-1, 1) considerăm operația $x * y = \frac{x+y}{1+xy}$. Să se demonstreze că ((-1,1),*) este grup.

Soluție: Arătăm că (-1, 1) este parte stabilă pentru *. $x \in (-1,1) \Leftrightarrow |x| < 1$. Deci pentru |x| < 1 şi $|y| < 1 \Rightarrow |x| \cdot |y| < 1 \Leftrightarrow |xy| < 1 \Leftrightarrow -1 < xy < 1 \Leftrightarrow 0 < 1 + xy < 2$. În particular $1 + xy \neq 0$.

Arătăm că x*y+1>0. $x*y+1=\frac{x+y}{1+xy}+1=\frac{x+y+1+xy}{1+xy}=\frac{(1+x)(1+y)}{1+xy}$. Fiecare paranteză a numărătorului cât și numitorul sunt pozitive, deci $x*y+1>0 \Leftrightarrow -1 < x*y$. Pentru x*y-1<0 avem: $x*y+1=\frac{x+y}{1+xy}-1=\frac{x+y-1-xy}{1+xy}=-\frac{(1-x)(1-y)}{1+xy}$. Fiecare paranteză a numărătorului este strict pozitivă, ca și numitorul. Deci fracția este strict negativă. Astfel x * y < 1.

Asociativitate: $(x*y)*z = \frac{\frac{x+y}{1+xy}+z}{1+\frac{x+y}{1+xy}z} = \frac{x+y+z+xyz}{1+xy+xz+yz} = x*(y*z)$. Elementul neutru este 0.

Inversul fiecărui element $x \in (-1,1)$ este -x.

Cu toate acestea ((-1,1),*).