

ESRF | The European Synchrotron

Modelling synchrotron radiation beamlines with OASYS

Transport of power in a Beamline

Juan Reyes Herrera juan.reyes-herrera@esrf.fr

Advanced Analysis & Precision Unit, MEG/ISDD, ESRF

June 8th 2023

Transport of power in a Beamline

Outline:

Source emission: Flux and power spectra.

Optical elements: characteristics and absorbed power.

Flux and power that arrive to the sample

Simulation of source emission

Source spectrum (Photon flux or power vs Energy)

XOPPY

INPUT FOR THE SIMULATIONS

Electron beam parameters

XOPPY: Sources

Bending magnet or insertion device characteristics

Source spectrum

Undulator emission simulation

Undulator Spectrum

$$K \equiv \frac{eB_0\lambda_u}{2\pi mc} = 0.9337B_0[T]\lambda_u[cm]$$

$$\lambda_n = \frac{\lambda_u}{2\gamma^2 n} \left(1 + \frac{K^2}{2} + \gamma^2 \boldsymbol{\theta}^2 \right)$$

Undulator emission simulation

XOPPY

$$\lambda_n = \frac{\lambda_u}{2\gamma^2 n} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right)$$

Undulator emission simulation (gap)

$$K = 0.9337B_0[T]\lambda_u[cm]$$

$$B_0 = a * e^{(-b\pi * \frac{gap}{\lambda_u})}$$

Simulation of source emission

Undulator power density (power vs x, y)

Undulator spectral flux density (*flux/power* vs *x*, *y*, *E*)

Wiggler spectral flux density (flux/power vs x, y, E)

Simulation of source emission

Undulator spectral flux density (flux/power vs x, y, E)

Undulator Radiation

Wiggler spectral flux density (flux/power vs x, y, E)

Power transport on a beamline

Optical components that could be present in a beamline:

Undulator power density (*Power* vs x, y)

For example, this tool is very useful to get the heat load on a slit:

Water cooled beamline slit

Undulator power density (Power vs x, y)

In most of the beamlines at the ESRF the are horizontal slits at 16 m from the source:

Undulator Power Density

Power transport on a beamline

Optical components that could be present in a beamline:

Filter (window) absorption

Filters of different thickness

Filters of different materials

Power absorbed by a filter

Heat load on filters @ 23 m with a projection of 2 mm x 1 mm:

Material	Thickness [μm]	Absorbed Power [W]
Be	300	19
Diamond	300	40

material & density

Power absorbed by a filter

Heat load on filters @ 23 m with a projection of 2 mm x 1 mm:

Diamond (300 µm)

Mirror absorption

Same material, different angles

Same angle, different coatings

Mirror absorption

Power absorbed by a mirror

Heat load on mirrors @ 30 m:

SRCALC-IDPOWER

Si (7 mrad)

Diamond (100 μ m) + Rh (3 mrad)

Other optical elements in XOPPY

Multilayers

$$m\lambda = 2d_{M}sen\theta \sqrt{1 - \frac{2\bar{\delta}}{sen^{2}\theta}}$$

Other optical elements in XOPPY

Crystals

Bragg or reflection

Double crystal monochromator

Rocking curve

XOPPY FOR SESAME SOURCES

XOPPY FOR SESAME SOURCES

Example: Spectral flux at the white beam slits

Flux at sample estimation: SESAME MS

XOPPY

End of First Part

Calculation of flux at the sample position

Example of getting the flux at the sample position:

*see photon transport section

Power transport on a beamline

Optical components that could be present in a beamline:

Absorption power by mirror