$12a_{0724} \ (K12a_{0724})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{53} - u^{52} + \dots - u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 53 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{53} - u^{52} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{9} + 2u^{7} + u^{5} - 2u^{3} - u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ -u^{8} - 2u^{6} - 2u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{20} - 5u^{18} - 11u^{16} - 10u^{14} + 2u^{12} + 13u^{10} + 9u^{8} - 2u^{6} - 5u^{4} - u^{2} + 1 \\ -u^{22} - 6u^{20} - 17u^{18} - 26u^{16} - 20u^{14} + 13u^{10} + 10u^{8} + 3u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{23} + 6u^{21} + \dots + 6u^{5} + 2u^{3} \\ -u^{23} - 7u^{21} + \dots - 3u^{5} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{51} + 14u^{49} + \dots - u^{3} - 2u \\ u^{52} - u^{51} + \dots + 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{52} 4u^{51} + \cdots 8u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{53} + 31u^{52} + \dots + 3u - 1$
c_2, c_8	$u^{53} - u^{52} + \dots - u - 1$
c_3, c_4, c_7 c_9	$u^{53} + u^{52} + \dots + 17u - 5$
c_5, c_6, c_{11}	$u^{53} - u^{52} + \dots - 3u - 1$
c_{10}, c_{12}	$u^{53} + 3u^{52} + \dots - 15u - 3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{53} - 17y^{52} + \dots + 35y - 1$
c_2, c_8	$y^{53} + 31y^{52} + \dots + 3y - 1$
c_3, c_4, c_7 c_9	$y^{53} - 65y^{52} + \dots + 899y - 25$
c_5, c_6, c_{11}	$y^{53} - 45y^{52} + \dots + 3y - 1$
c_{10}, c_{12}	$y^{53} + 23y^{52} + \dots + 39y - 9$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.128755 + 1.019230I	-4.90434 - 2.79376I	-17.4626 + 3.5787I
u = -0.128755 - 1.019230I	-4.90434 + 2.79376I	-17.4626 - 3.5787I
u = -0.911842	-15.0851	-15.7790
u = 0.452670 + 0.785816I	-0.74858 + 5.61733I	-7.84958 - 7.79371I
u = 0.452670 - 0.785816I	-0.74858 - 5.61733I	-7.84958 + 7.79371I
u = 0.904077 + 0.035348I	-10.76820 - 8.15829I	-12.92275 + 4.70754I
u = 0.904077 - 0.035348I	-10.76820 + 8.15829I	-12.92275 - 4.70754I
u = -0.894263 + 0.030410I	-5.73332 + 4.23818I	-8.49578 - 3.55105I
u = -0.894263 - 0.030410I	-5.73332 - 4.23818I	-8.49578 + 3.55105I
u = -0.435840 + 1.018520I	-3.18288 - 2.63277I	-11.73208 + 4.34581I
u = -0.435840 - 1.018520I	-3.18288 + 2.63277I	-11.73208 - 4.34581I
u = 0.270662 + 1.080700I	-1.60759 + 0.28866I	-11.63603 + 0.60703I
u = 0.270662 - 1.080700I	-1.60759 - 0.28866I	-11.63603 - 0.60703I
u = 0.885161 + 0.012504I	-7.93829 - 0.20732I	-11.52979 - 0.97702I
u = 0.885161 - 0.012504I	-7.93829 + 0.20732I	-11.52979 + 0.97702I
u = -0.366265 + 1.058630I	-3.39452 - 3.18652I	-15.1026 + 5.9997I
u = -0.366265 - 1.058630I	-3.39452 + 3.18652I	-15.1026 - 5.9997I
u = -0.438529 + 0.736447I	3.30946 - 1.89439I	-2.29810 + 4.47995I
u = -0.438529 - 0.736447I	3.30946 + 1.89439I	-2.29810 - 4.47995I
u = 0.459270 + 1.056820I	-0.23945 + 6.31415I	-8.00000 - 7.97292I
u = 0.459270 - 1.056820I	-0.23945 - 6.31415I	-8.00000 + 7.97292I
u = -0.271764 + 1.127110I	-6.33973 + 3.10223I	-16.8942 - 2.0365I
u = -0.271764 - 1.127110I	-6.33973 - 3.10223I	-16.8942 + 2.0365I
u = -0.471846 + 1.075850I	-4.85947 - 10.15110I	-13.4245 + 9.4204I
u = -0.471846 - 1.075850I	-4.85947 + 10.15110I	-13.4245 - 9.4204I
u = 0.147653 + 0.799603I	-0.621747 + 0.938340I	-10.16569 - 6.80292I
u = 0.147653 - 0.799603I	-0.621747 - 0.938340I	-10.16569 + 6.80292I
u = 0.443085 + 0.672743I	-0.43986 - 1.77287I	-6.55805 - 0.17659I
u = 0.443085 - 0.672743I	-0.43986 + 1.77287I	-6.55805 + 0.17659I
u = 0.386940 + 1.130380I	-9.24218 + 3.74726I	-18.6066 + 0.I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.386940 - 1.130380I	-9.24218 - 3.74726I	-18.6066 + 0.I
u = -0.626369 + 0.230684I	-2.49578 + 5.92364I	-10.03468 - 5.69400I
u = -0.626369 - 0.230684I	-2.49578 - 5.92364I	-10.03468 + 5.69400I
u = 0.461426 + 1.259080I	-11.80210 + 4.57211I	0
u = 0.461426 - 1.259080I	-11.80210 - 4.57211I	0
u = 0.474991 + 1.254660I	-11.70120 + 5.05761I	0
u = 0.474991 - 1.254660I	-11.70120 - 5.05761I	0
u = -0.452029 + 1.266230I	-9.69650 - 0.52013I	0
u = -0.452029 - 1.266230I	-9.69650 + 0.52013I	0
u = -0.485137 + 1.256070I	-9.45189 - 9.16998I	0
u = -0.485137 - 1.256070I	-9.45189 + 9.16998I	0
u = 0.450332 + 1.273070I	-14.7839 - 3.3745I	0
u = 0.450332 - 1.273070I	-14.7839 + 3.3745I	0
u = 0.489645 + 1.259800I	-14.4913 + 13.1415I	0
u = 0.489645 - 1.259800I	-14.4913 - 13.1415I	0
u = 0.647347	-6.05533	-14.6560
u = -0.472487 + 1.271320I	-18.9745 - 4.9215I	0
u = -0.472487 - 1.271320I	-18.9745 + 4.9215I	0
u = 0.573524 + 0.250742I	1.98282 - 2.24507I	-4.39655 + 3.93832I
u = 0.573524 - 0.250742I	1.98282 + 2.24507I	-4.39655 - 3.93832I
u = -0.505614 + 0.326260I	-1.29579 - 1.22009I	-7.56412 + 0.50390I
u = -0.505614 - 0.326260I	-1.29579 + 1.22009I	-7.56412 - 0.50390I
u = -0.436579	-0.780224	-12.8270

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{53} + 31u^{52} + \dots + 3u - 1$
c_2, c_8	$u^{53} - u^{52} + \dots - u - 1$
c_3, c_4, c_7 c_9	$u^{53} + u^{52} + \dots + 17u - 5$
c_5, c_6, c_{11}	$u^{53} - u^{52} + \dots - 3u - 1$
c_{10}, c_{12}	$u^{53} + 3u^{52} + \dots - 15u - 3$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{53} - 17y^{52} + \dots + 35y - 1$
c_2, c_8	$y^{53} + 31y^{52} + \dots + 3y - 1$
c_3, c_4, c_7 c_9	$y^{53} - 65y^{52} + \dots + 899y - 25$
c_5, c_6, c_{11}	$y^{53} - 45y^{52} + \dots + 3y - 1$
c_{10}, c_{12}	$y^{53} + 23y^{52} + \dots + 39y - 9$