Assignment no. 6

Title: Dynamic programming 1

Problem statement:

Implement the standard matrix chain multiplication problem

The dimensions of a chain of n matrices M_1 , M_2 , ..., M_n that are to be multiplied, are given as a sequence $A = <a_0, a_1, a_2, ..., a_{n+1}>$. The dimension of the matrix M_i is $a_{i-1}X$ a_i . The goal is to find the most efficient way to multiply these matrices together such that the total number of element multiplications is minimum.

Tasks:

- a. Solve the problem using dynamic programming techniques.
- b. Print the sequence of multiplications by clearly placing parenthesis around the matrices.

Example:

Input: A = {10, 20, 30} Output: 6000

Explanation: There are only two matrices of dimensions 10×20 and 20×30 . So, there is only one way to multiply the matrices, the cost of which is 10*20*30 = 6000.

Input: A= {40, 20, 30, 10, 30}

Output: 26000

Explanation: 20*30*10 + 40*20*10 + 40*10*30 = 26000.