Summary / Cheat-sheet for discrete state space Markov Chains

Property	Discrete time Markov chain	Continuous time Markov chain	Property
Stochastic Process	Sequence $(X_n : n \in \mathbb{N}_0)$	Family $(X_t:t\geq 0)$	Stochastic Process
Markov Process	For all $A \subset S$ and all $s_0, \dots, s_n \in S$, we have $P(X_{n+1} \in A \mid X_n = s_n, \dots, X_0 = s_0) = P(X_{n+1} \in A \mid X_n = s_n)$	For all $A \subset S$, $t_0 < t_1 < \cdots < t_n \in [0, \infty)$, and all $s_0, \ldots, s_n \in S$, we have $P\big(X_{t_{n+1}} \in A \ \big X_{t_n} = s_n, \ldots, X_{t_0} = s_0\big) = P(X_{t_{n+1}} \in A \ \big X_{t_n} = s_n\big)$	Markov Process
Homogeneous	$P(X_{n+k} \in A X_n = s) = P(X_k \in A X_0 = s)$	$P(X_{t+u} \in A \mid X_u = s) = P(X_t \in A \mid X_0 = s)$	Homogeneous
Path Space	$\mathcal{S}^{\mathbb{N}}$ (Think of a sequence of integers)	Space of right-continuous paths (constant until a jump happens, continuous after the jump)	Path Space
Transition function	$p_n(x, y) = P(X_n = y X_0 = x) = P(X_{n+k} = y X_k = x)$	$p_t(x, y) = P(X_t = y X_0 = x) = P(X_{t+u} = y X_u = x)$	Transition function
Chapman-Kolmogorov equations	$p_{k+n}(x,y) = \sum_{z \in S} p_k(x,z) p_n(z,y), \forall n,k \in \mathbb{N}_0, x,y \in S$	$p_{t+u}(x,y) = \sum_{z \in S} p_t(x,z) p_u(z,y), \forall t, u \ge 0, x, y \in S$	Chapman- Kolmogorov equations
Transition Matrix	Matrix P with $P(x, y) = p_1(x, y) = p(x, y)$ Size of P is the same of state space	Matrix G with $G = \frac{d}{dt}P_t(x,y)$ evaluated at $t=0$ Size of G is the same of state space	Generator
Eigenvalues and eigenvectors	P is stochastic and we have $P 1>= 1>$ so 1 is an eigenvalue with right-eigenvector $ 1>$	G verifies $G 1>= 0>$ so 0 is an eigenvalue with right- eigenvector $ 1>$	Eigenvalues and eigenvectors
Distribution at time n	$<\pi_n =<\pi_0 P^n$	$P_t = \exp(tG) = \sum_{k=0}^{\infty} \frac{t^k}{k!} G^k$ and $\langle \pi_t = \langle \pi_0 \exp(tG) \rangle$	Distribution at time t
Stationary distribution	Left-eigenvector, solves $<\pi P=<\pi $ Can show uniqueness if irreducible and S finite using PF Thm	Left-eigenvector, solves $<\pi ~G=<0 $ Can show uniqueness if irreducible and S finite using PF	Stationary distribution
Reversible distribution	$\pi(x)p(x,y) = \pi(y)p(y,x)$ for all $x,y \in S$	$\pi(x)g(x,y) = \pi(y)g(y,x)$ for all $x, y \in S$	Reversible distribution
Irreducible MC	For all $x, y \in S$, $p_n(x, y) > 0$ for some n	For all $x, y \in S$, $p_t(x, y) > 0$ for some t	Irreducible MC
Eigenvector representation	$<\pi_n =<\pi_0 v_1>\lambda_1^n< u_1 +\cdots+<\pi_0 v_L>\lambda_L^n< u_L $ And $ \lambda_i \leq 1$ so as $n\to\infty$ $<\pi_n \to<\pi =< u_1 $	$ <\pi_t = <\pi_0 v_1>e^{\lambda_1 t} < u_1 +\dots+<\pi_0 v_L>e^{\lambda_L t} < u_L $ And $\lambda i \leq 0$ so as $t\to\infty$ $<\pi_n \to<\pi =< u_1 $	Eigenvector representation
Transition rates	Same as transition function	$p_{\Delta t}(x,y) = \delta_{x,y} + g(x,y)\Delta t + o(\Delta t)$	Transition rates
Ergodicity	$\frac{1}{N}\sum_{n=1}^{N}f(X_t)\to E_\pi(f)\text{as} N\to\infty$ where expectation is taken with respect to stat. dist. π	$\int_0^T f(X_t) \ dt \to E_\pi(f) \text{as} T \to \infty$ where expectation is taken with respect to stat. dist. π	Ergodicity
Time-reversal	If stationary, we can write a time-reversed DTMC $Y_n = X_{-n}$ $p^Y(x,y) = \frac{\pi(y)}{\pi(x)} p^X(y,x)$	If stationary, we can write a time-reversed DTMC $Y_t = X_{-t}$ $g^Y(x,y) = \frac{\pi(y)}{\pi(x)} g^X(y,x)$	Time-reversal

For **Continuous time Markov chains only**, we have a few more definitions:

- Holding time $W_x = \inf\{t > 0 : X_t \neq x\}$ is the time the chain spends in x
 - \circ We proved that W_x is exponentially distributed with mean $\frac{1}{|g(x,x)|}$
 - We also showed that if $g(x,x) \neq 0$ the chain jumps from x to y after time W_x with probability $\frac{g(x,y)}{|g(x,x)|}$.
- Jump times J_0 , J_1 , ... are the times at which the chain jumps.
 - We saw that $J_n = \sum_{k=0}^{n-1} W_k$.
- Jump chain $(Y_n: n \in \mathbb{N}_0)$ with $Y_n = X_{I_n}$ is a discrete time Markov chain that tells us where the chain is before each jump.
 - o If g(x,x) < 0 it has transition function $p(x,y) = \frac{g(x,y)}{|g(x,x)|}$ if $y \neq x$ and 0 otherwise (Y_{n+1}) is **always** different that Y_n because the jump chain only changes when the original chain jumps).
 - o If g(x,x) < 0 then $p(x,y) = \delta_{x,y}$.
- We saw how to use this to simulate CTMCs

For countably infinite state spaces, we can also define the following:

- Return time $T_x = \inf\{t > J_1 : X_t = x\}$ or for DTMCs $T_x = \inf\{n > 1 : X_n = x\}$
 - o A state is transient if $P(T_x = \infty | X_0 = x) > 0$ (once the chain leaves x, it never returns)
 - \circ A state is null recurrent if $P(T_x < \infty | X_0 = x) = 1$ and $E(T_x | X_0 = x) = \infty$ (once the chain leaves x it can return but very likely after an infinite time)
 - \circ A state is positive recurrent if $P(T_x < \infty | X_0 = x) = 1$ and $E(T_x | X_0 = x) < \infty$ (once the chain leaves x it can return and will after a finite time
- We saw that in this case we need a chain to be positive recurrent (in addition to irreducible) to guarantee existence and uniqueness of a stationary distribution.
- Explosion time $J_{\infty} = \lim_{n \to \infty} J_n$ is the time after giving an infinite amount of jumps
 - We said that the chain is non-explosive if $P(J_{\infty} = \infty) = 1$ and explosive otherwise
 - o Being explosive means the chain can jump an infinite amount of times in finite time (which is hard to simulate) and I showed you an example.