

Riemannian and Complex Geometry

Lecturers Daniel Galviz & Bowen Liu Teaching Assistants: Anis Bousclet & Julian Alzate PhysicsLatam.com/RC

Submission deadline: 01 October 2025, 5:59 pm (GMT-4)

— Exercises —

1.1 Topological spaces

Exercise 1.1. Let the closed interval X = [0,1] with the topology induced from \mathbb{R} . Define the equivalence relation \sim on X by:

$$x \sim y$$
 iff $\begin{cases} x = y, & \text{if } x, y \in (0, 1), \\ x, y \in \{0, 1\}. \end{cases}$

Denote by $X/_{\sim}$ the set of equivalence classes, and give it the quotient topology:

$$\tau = \{ U \subseteq X/_{\sim} \mid \pi^{-1}(U) \text{ is open in } X \},$$

where $\pi: X \to X/_{\sim}$ is the continuous projection sending each point to its equivalence class. Show that

- (1) $X/_{\sim}$ is a topological space;
- (2) The map $f: X/_{\sim} \to S^1 \subset \mathbb{R}^2$ defined by

$$f([x]) = (\cos(2\pi x), \sin(2\pi x))$$

is a well-defined bijective and continuous map, and the inverse is also continuous.

Thus $X/_{\sim}$ is homeomorphic to S^1 .

Exercise 1.2. Give a convincing argument (without proof) for why a disjoint union of an uncountable number of copies of \mathbb{R} is locally Euclidean and Hausdorff, but not second-countable.

1.2 Smooth manifolds

Exercise 1.3. Show that the general linear group $GL(n,\mathbb{R})$ is a smooth manifold and compute its dimension.

Exercise 1.4. In $\mathbb{C}^{n+1} \setminus \{0\}$, we define the following equivalence relation: for $x, y \in \mathbb{C}^{n+1} \setminus \{0\}$, $x \sim y$ if and only if there exists $\lambda \in \mathbb{C}^* := \mathbb{C} \setminus \{0\}$ such that $x = \lambda y$. The *complex projective space* is the quotient space

$$\mathbb{CP}^n := (\mathbb{C}^{n+1} \setminus \{0\})/_{\sim}.$$

We write $[z_0 : \cdots : z_n] \in \mathbb{CP}^n$ for the equivalence class of (z_0, \ldots, z_n) in \mathbb{CP}^n .

- (a) For i = 0, 1, ..., n, let $U_i = \{[z_0, ..., z_n] \in \mathbb{CP}^n : z_i \neq 0\}$. Show that U_i is open in \mathbb{CP}^n for all i = 0, ..., n, and $\mathbb{CP}^n = \bigcup_{i=0}^n U_i$.
- (b) For i = 0, ..., n, define $\phi_i : U_i \to \mathbb{C}^n$ by

$$\phi_i([z_0:\dots:z_n]) = \left(\frac{z_0}{z_i},\dots,\frac{z_{i-1}}{z_i},\frac{z_{i+1}}{z_i},\dots,\frac{z_n}{z_i}\right).$$

Show that $\phi_i: U_i \to \mathbb{C}^n$ is a homeomorphism and that $\phi_i \circ \phi_i^{-1}: \mathbb{C}^n \to \mathbb{C}^n$ is of class C^{∞} .

(c) Making the identification $\mathbb{C}^n \cong \mathbb{R}^{2n}$ by $(x_1 + \sqrt{-1}y_1, \dots, x_n + \sqrt{-1}y_n) \mapsto (x_1, y_1, \dots, x_n, y_n)$, and conclude that \mathbb{CP}^n is a differentiable manifold of real dimension 2n which is compact and connected.

Remark 1.1. The real projective space \mathbb{RP}^n is defined in the same way by replacing \mathbb{C} by \mathbb{R} .

Exercise 1.5. Which of the following subsets of \mathbb{R}^2 are topological manifolds when endowed with the subset topology from \mathbb{R}^2 ? Argue without precise proof.

- $M_1 := \{(x, |x|) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$
- $M_2 := \{(x, \pm |x|) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$
- $M_3 := \{(x,y) \in \mathbb{R}^2 \mid y = 0 \text{ or } y = \frac{1}{m} \text{ for some } m \in \mathbb{N} \}$
- $M_4 := \{(x,y) \in \mathbb{R}^2 \mid y = \frac{1}{m} \text{ for some } m \in \mathbb{N}\}$

Exercise 1.6. Let M be the boundary of the standard cube $[-1,1]^2$ in \mathbb{R}^2 , i.e.

$$M := \{(x, \pm 1) \in \mathbb{R}^2 \mid |x| \le 1\} \cup \{(\pm 1, y) \in \mathbb{R}^2 \mid |y| \le 1\},\$$

equipped with the subset topology of \mathbb{R}^2 .

- 1. Show that M is a topological manifold.
- 2. Can one find a smooth atlas on M containing the four charts below? Prove your answer.

$$\varphi_{+}: \{(1,y) \mid |y| < 1\} \to \mathbb{R}, \quad (1,y) \mapsto y$$

$$\varphi_{-}: \{(-1,y) \mid |y| < 1\} \to \mathbb{R}, \quad (-1,y) \mapsto y$$

$$\psi_{+}: \{(x,1) \mid |x| < 1\} \to \mathbb{R}, \quad (x,1) \mapsto x$$

$$\psi_{-}: \{(x,-1) \mid |x| < 1\} \to \mathbb{R}, \quad (x,-1) \mapsto x$$

Exercise 1.7. Give a topological manifold with two different smooth structures. Can you find one with uncountably many different smooth structures?

1.3 Smooth maps

Exercise 1.8. Let M, N be smooth manifolds and let $\{(U_{\alpha}, \varphi_{\alpha})\}$ and $\{(V_{\beta}, \psi_{\beta})\}$ be smooth at lases for M and N, respectively. Show that a map $f: M \to N$ is smooth if, for each α and β , the map $\psi_{\beta} \circ f \circ \varphi_{\alpha}^{-1}$ is smooth on its domain of definition.

Exercise 1.9. Show that being diffeomorphic defines an equivalence relation on smooth manifolds.

Exercise 1.10. Let $\mathbb{T} = \mathbb{S}^1 \times \mathbb{S}^1$ be the torus and α be any irrational number. Show that the map $f : \mathbb{R} \to \mathbb{T}$ by

$$f(t) = (e^{2\pi\sqrt{-1}t}, e^{2\pi\sqrt{-1}t\alpha})$$
(1.1)

is a smooth injective immersion, but not an embedding.

Exercise 1.11. Considering the map

$$f \colon \operatorname{GL}(n,\mathbb{R}) \to \mathbb{R}$$

 $A \mapsto \det A.$

Show that f is a smooth map and the special linear group $\mathrm{SL}(n,\mathbb{R})=f^{-1}(1)$ is a submanifold of $\mathrm{GL}(n,\mathbb{R})$. Compute the dimension of $\mathrm{SL}(n,\mathbb{R})$.

Exercise 1.12. Show that \mathbb{CP}^1 is diffeomorphic to \mathbb{S}^2 .

Exercise 1.13. Define

$$f: \mathbb{RP}^2 \to \mathbb{R}^4$$

 $[x:y:z] \mapsto \frac{1}{x^2 + y^2 + z^2} (x^2 - y^2, xy, xz, yz).$

Show that f is an embedding of \mathbb{RP}^2 into \mathbb{R}^4 .

1.4 Tangent bundle and cotangent bundle

Exercise 1.14. Compute the transition function for $T\mathbb{S}^2$ associated with the two local trivializations determined by stereographic coordinates.

Exercise 1.15. Show that $T\mathbb{S}^1 \cong \mathbb{S}^1 \times \mathbb{R}$.