FORÅR 2017 EKSAMEN

MADS STEINER KRISTENSEN - 201405230

AARHUS UNIVERSITY - AARHUS SCHOOL OF ENGINEERING

TABLE OF CONTENTS

```
2.2 BETINGET SANDSYNLIGHED......4
2.3 REGN HØJST EN DAG.......4
3.3 ENSEMBLE MIDDELVÆRDI OG VARIANS.......6
4.3 ESTIMERING AF VARIANSEN FOR FORSKELLEN......8
clc
clear
addpath('[0] Library');
Color = load("colors.mat");
smp = load("library.mat");
```

1 STOKASTISKE VARIABLE

En diskret stokastisk variabel Xhar følgende fordelingsfunktion $F_X(x)$.

1.1 GYLDIG FORDELINGSFUNKTION

For at bestemme om $F_{X(x)}$ er en gyldig fordeligsfunktion anvendes, at

$$\lim_{x \to \infty} F_X(x) = 1$$

Det antages at outputtet af fordelingsfunktione ikke antager værdier større end 12a, der gælder følgende.

$$\lim_{x \to \infty} F_X(x) = 12a$$

Dermed givet det, at

$$a = \frac{1}{12}$$

Fordelingsfunktionen er dermed gældende for værdien af a leg med $\frac{1}{12}$.

1.2 TÆTHEDSFUNKTION

For at bestemme tæthedsfunktione $f_X(x)$ anvendes, at størrelse af trinene i fordelingsfunktion er tæthedsfunktionen. Dermed opnåes, at

$$f_X(x) = \left\{ \begin{array}{l} 3a & x = -4 \\ 3a & x = -2 \\ 3a & x = 0 \\ 2a & x = 2 \\ 1a & x = 4 \\ 0 & \text{ellers} \end{array} \right\}$$

1.3 MIDDELVÆRDI

For at bestemme middelværdien anvendes, at

$$\overline{X} = E[X] = \sum_{i=1}^{n} x_i \cdot f_X(x_i)$$

ans = $-\frac{5}{6}$

Middelværdien er dermed bestemt til at være $-\frac{5}{6}$.

1.4 VARIANS

For at bestemme variansen anvendes, at

$$Var(X) = \sigma_x^2 = E[X^2] - E[X]^2$$

```
EstimationXSquared = 0;

for n = 1:length(P)
    EstimationXSquared = EstimationXSquared + (X(n)^2 * P(n));
end

VarianceX = EstimationXSquared - EstimationX^2
```

VarianceX = 6.3056

Variansen er dermed bestemt til at være 6.3056.

2 SANDSYNLIGHED

I juni måned (30 dage) regner det i gennemsnit 20% af dagene i den første halvdel af måneden og 30% af dagene i den sidste halvdel af måneden.

```
A: REGN - \overline{A}: IKKE REGN
B: 1. HALVDEL - \overline{B}: 2. HALVDEL
```

$$P(A|B) = 0.2$$

$$P(A|\overline{B}) = 0.3$$

$$P(B) = P(\overline{B}) = 0.5$$

2.1 ANTAL DAGE

Først findes den totale sandsynlighed for A, givet ved

$$P(A) = P(A|B) \cdot P(B) + P(A|\overline{B}) \cdot P(\overline{B})$$

```
DaysInMonth = 30;

AGivenB = 0.2;
AGivenNotB = 0.3;
B = 0.5;

NotB = 0.5;

A = AGivenB * B + AGivenNotB * NotB;
DaysWithRain = A * 30
```

DaysWithRain = 7.5000

Dermed er det bestemt at der regner i gennemsnit 7.5 i juni måned.

2.2 BETINGET SANDSYNLIGHED

For at bestemme sandsynligheden for at være i den sidste del af måneden givet at der er regnvejr anvendes, at

$$P(\overline{B}|A) = \frac{P(A|\overline{B}) \cdot P(\overline{B})}{P(A)}$$

```
NotBGivenA = (AGivenNotB * B) / A
```

NotBGivenA = 0.6000

Dermed er sandsynligheden bestemt til at være 0.6 altså 60%.

2.3 REGN HØJST EN DAG

For at bestemme sandsynligheden for højst en dag med regnes observeres, at

$$P(\text{dage} \le 1 | B) = P(0 \text{ dage} | B) + P(1 \text{ dag} | B)$$

Dertil anvendes ikke sorteret rækkefølge uden tilbagelægning. Succes ses som

$$P(A|B) = p = 0.2$$

hvor fiasko ses som

$$P(\overline{A}|B) = 1 - p = 0.8$$

Sandsynligheden kan bestemmes som

$$P(k) = \frac{n!}{k! \cdot (n-k)!} p^k q^{n-k}$$

```
DaysWithinHalfMonth = DaysInMonth / 2;

Bernoulli = @(k, n) (factorial(n) / (factorial(k) * factorial(n-k))) * (AGivenB^k) * ((1-AGivenBoulli(1, 15) + Bernoulli(0, 15))

ans = 0.1671
```

Dermed er sandsynligheden for regn højst en dag bestemt til at være 0.1671 altså 16.71%.

3 STOKASTISK PROCESS

En kontinuert stokastisk process X(t) givet ved

$$X(t) = (-1)^n + W$$

hvor W er i.i.d. Gaussisk fordelte stokastiske variable W ~ N(0, 0.25) og n uafhængigt kan antage værdierne 0 og 1 med lige stor sandsynlighed. (0, 0.25), og n uafhængigt kan .

3.1 REALISERING

Skitsering af realiseringen laves i matlab.

```
t = 0:1:5;
mu = 0;
sigma = sqrt(0.25);
Realisation = [[],[],[]];
for n = 1:3
    Realisation(n, :) = (-1)^{(randi([0, 1]))} + (ones(1, length(t))) * (sigma * randn + mu));
end
figure(1)
plot(t, Realisation(1, :));
hold on
plot(t, Realisation(2, :));
plot(t, Realisation(3, :));
grid on
title('Realisering')
ylabel('X(t)')
xlabel('t')
hold off
```


3.2 MIDDEL OG VARIANS AF REALISERING

```
Real.Mean = mean(Realisation(1, :));
Real.Variance = round(var(Realisation(1, :)), 10);
Real
```

Real = struct with fields:

Mean: 0.8630

Variance: 0

Middelværdi og variansen for en udvalgt realisering er bestemt til at være værdierne vist ovenfor.

3.3 ENSEMBLE MIDDELVÆRDI OG VARIANS

For at bestemme middelværdien for ensemble anvendes, at

$$E[X(t)] = E[(-1)^n + W] = E[(-1)^n] + E[W]$$

$$E[X(t)] = (-1)^0 \cdot P(n = 0) + (-1)^1 \cdot P(n = 1) + E[W]$$

$$P(n = 0) = P(n = 1) = \frac{1}{2}$$

Ensemble.MeanValue =
$$((-1)^0) * 1/2 + ((-1)^1) * 1/2 + mu;$$

Variansen kan bestemmes som

$$Var(X(t)) = Var[(-1)^n + W] = Var[(-1)^n] + Var[W]$$

$$\operatorname{Var}[X(t)] = E\left[\left((-1)^n\right)^2\right] - E\left[(-1)^n\right]^2 + \operatorname{Var}[W]$$

```
Ensemble = struct with fields:
    MeanValue: 0
    Variance: 1.2500
```

Dermed er middelværdien bestemt til at være 0 og variansen bestemt til at være 1.25.

3.4 PROCESSEN

Processen er WSS da middelværdien og variansen er uafhængig af tiden. Dog er processen ikke ergodisk da den temporale middelværdi samt varians er forskellige fra ensemble værdierne.

4 STATISTIK

En kvalitetskontrol måler præcisionen af to forskellige typer gps'er. For begge typer blev målt afvigelsen mellem deres faktiske position d_{faktisk} og gps'ens angivelse d_{gps} .

$$d_i = |d_{i,gps} - d_{i,faktisk}|$$

Det kan antages at afvigelserne er normalfordelte. Der er testet 10 gps enheder af type 1 og 12 gps enheder af type 2. For type 1 var middelafvigelsen $\hat{\mu_1} = 5.21m$ med en estimeret varians $s_1^2 = 1.33m^2$. For type 2 var middelafvigelsen $\hat{\mu_2} = 4.18m$ med en estimeret varians $s_2^2 = 0.89m^2$.

4.1 HYPOTESER

Der opstilles en hypotese test for at bestemme om middelværdien af de to grupper er den samme.

$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

4.2 ESTIMERING AF FORSKEL I MIDDELVÆRDI

Estimeringen af forskellen i middelværdierne kan bestemmes som følgende.

$$\widehat{\delta} = |\overline{x_1} - \overline{x_2}|$$

Forskellen i middelværdierne er bestemt til at være 1.03.

4.3 ESTIMERING AF VARIANSEN FOR FORSKELLEN

For at bestemme forskellen i variansen anvendes, at

$$s^{2} = \frac{1}{n_{1} + n_{2} - 2} \left[(n_{1} - 1) \cdot s_{1}^{2} + (n_{2} - 1) \cdot s_{2}^{2} \right]$$

```
PooledVariance = (1 / (TypeOne.Amount + TypeTwo.Amount -2)) ...
* ((TypeOne.Amount - 1)*TypeOne.Variance + (TypeTwo.Amount -1)*TypeTwo.Variance)
```

PooledVariance = 1.0880

Forskellen i variansen er dermed bestemt til at være 1.088.

4.4 T-TEST

Der anvendes nu en t-test til test af hypotesen. For at undersøge om NULL hypotesen kan afvises med et signifikansniveau på 0.05 anvendes, at

$$t = \frac{(\overline{x_1} - \overline{x_2}) - \delta}{s \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, \quad p = 2 \cdot (1 - t_{\text{cdf}}(|t|, n_1 + n_2 - 2))$$

```
t = (Delta - 0) / (sqrt(PooledVariance) * sqrt(1/TypeOne.Amount + 1/TypeTwo.Amount));
p = 2 * (1 - tcdf(abs(t), TypeOne.Amount + TypeTwo.Amount -2))
```

p = 0.0319

NULL hypotesen kan afvises da p < 0.05.

4.5 KONFIDENSINTERVAL

For at finde 95% konfidens intervallet for δ anyendes, at

$$\delta_{\pm} = (\overline{x_1} - \overline{x_2}) \pm t_0 \cdot s \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

```
TZero = tinv(0.975, TypeOne.Amount + TypeTwo.Amount - 2);
Step = TZero * sqrt(PooledVariance) * sqrt(1/TypeOne.Amount + 1/TypeTwo.Amount);
Interval.Min = Delta - Step;
Interval.Max = Delta + Step;
Interval
```

Interval = struct with fields:
 Min: 0.0984

Max: 1.9616

Konfidensintervallet for δ er dermed bestemt til at være [0.0984; 1.9616].