Design and Analysis of Algorithms

L38: FIFO Branch and Bound 0-1 Knapsack Problem

Dr. Ram P Rustagi Sem IV (2020-Even) Dept of CSE, KSIT rprustagi@ksit.edu.in

Resources

- Text book 2: Horowitz
 - Sec <u>8.2</u>
- Text book 1: Levitin
 - -Sec 12.1, **12.2**
- R1: Introduction to Algorithms
 - Cormen et al.
- Youtube link for lecture recording
 - https://www.youtube.com/watch?v=Ns8018Vzkrl

0-1 Knapsack Problem

- Knapsack problem:
 - maximize $\Sigma_{1 \leq i \leq n}$ $\forall_i x_i$,
 - subject to $\Sigma_{1 \leq i \leq n} \ w_i x_i \leq m$
 - x_i is 0 or 1, and $1 \le i \le n$
 - Note: All the weights w_i 's and knapsack capacity m are integers, but values v_i 's can be real numbers.
- 0−1 knapsack is a maximization problem
 - Branch and Bound solves minimization problem.
 - So convert knapsack to minimization problem

BB Search: State Space Tree

- Three possible implementation of search space
 - Depends upon how the list $\ \bot$ of live nodes is implemented
- L is Queue i.e. FIFO (First In First Out)
 - E-nodes are removed in the order they are added
 - Also called BFS (Breadth First search)
- L is Stack i.e. LIFO (Last in First Out)
 - E-nodes are removed in the reverse order it is added
 - Also called D-search (Depth First search)
- L is Heap (can be min or max heap)
 - E-nodes are removed as min (or max) value
 - Called Least Cost (LC) Search

0-1 Knapsack Problem

- Convert knapsack maximization to minimization minimize $-\Sigma_{1 \le i \le n} \ v_i x_i$, (call it cost)
 - -it maximizes $\Sigma_{1 \leq i \leq n} \ v_i x_i$ (values)
 - subject to $\Sigma_{1 \le i \le n} w_i x_i \le m$ (knapsack constraint)
- State space tree formation
 - Using fixed tuple size, one variable for each weight
 - Each variable has two values 0 or 1
 - Thus, Each node has two children
 - Using variable tuple size, uses the index of weight
 - Can be easily built from fixed tuple size case

0-1 Knapsack Implementation

- Define $\hat{c}(x)$: a heuristic value for c(x)
 - cost till the first node which doesn't fit the knapsack
 - Thus, include its partial value to max the knapsack
- Define u(x): an upper bound for node x.
 - the cost till the first node which doesn't fit the knapsack, but without including the partial value.
- Thus, two functions follows the constraints for node x $\hat{c}(x) \le c(x) \le u(x)$
- Maintain single upper variable.
 - This indicates the best value i.e. minimum cost solution achieved so far.
- Thus, for any node when ĉ(x) >upper
 - Discard that path (i.e. kill that node), prune the tree

Example: FIFOBB

- Consider knapsack instance with n=4, m=15, and
 - values (v_1, v_2, v_3, v_4) =(10, 10, 12, 18), and
 - weights $(w_1, w_2, w_3, w_4) = (2, 4, 6, 9)$
 - Fixed implementation implies 4 tuple varaibles
 - x_1 , x_2 , x_3 , x_4 and each can take value 0 or 1.
- Using fixed tuple implementation, trace FIFOBB
- First In First Out (FIFO) approach
 - Among live nodes, choose that node to explore (E-node) which was added first to queue
 - and not the least cost.

	1	2	3	4
V	10	10	12	18
W	2	4	6	9

n=4, m=15

• start node 1:

```
\hat{c}(x): w_1, w_2, \text{ and } w_3 \text{ contributes fully, } w_4 \text{ exceeds knapsack} \hat{c}=-(10+10+12+((15-12)/9)*18))=-38 u(x): w_1, w_2, \text{ and } w_3 \text{ contributes fully, } w_4 \text{ exceeds knapsack} u=-(10+10+12+0)=-32] upper=-32
```

- This node is live node (ĉ≤upper) and only node so far,
- Explore this node, two children
 - $x_1=1$ (include w_1), $x_1=0$ (exclude w_1)

n=4, m=15

- node $2: x_1=1$
 - $\hat{c}(x): w_1, w_2, and w_3$ contributes fully, w_4 exceeds knapsack $\hat{c} = -(10+10+12+((15-12)/9)*18)) = -38$
 - $u(x): w_1, w_2, and w_3$ contributes fully, w_4 exceeds knapsack u=-(10+10+12+0)=-32
 - $\hat{c}(x)$, u(x), upper don't change
- node $3: x_1=0$ (partial weight of w_4 becomes 15-10=5)

$$\hat{c}=-(0+10+12+((15-10)/9)*18))=-32$$

 $u=-(0+10+12+0)=-22$

- upper remains -32 (doesn't change)
- Lives nodes: {2,3},(ĉ(x) ≤upper)

n=4, m=15

- Using FIFO for {2,3} live nodes, next E-node is 2.
- Explore node 2.
 - $x_2=1$ (node 4), and $x_2=0$ (node 5)
- Node 4:

$$\hat{c}=-(10+10+12+((15-12)/9)*18))=-38$$

 $u=-(10+10+12+0)=-32$

upper remains same and doesn't change

n=4, m=15

• Node 5 (partial weight of w_4 becomes 15-(2+6)=7) $\hat{c}=-(10+0+12+((15-8)/9)*18))=-36$

$$u=-(10+0+12+(15-6)/9)$$

 $u=-(10+0+12+0)=-22$

upper remains same and doesn't change

- Lives nodes now: {3,4,5}; (c(x) ≤upper)
- E-node using FIFO is 3. Explore it
 - $x_2=1$ (node 6), and $x_2=0$ (node 7)

• Node 6 $(x_2=1)$

$$\hat{c}=-(0+10+12+((15-10)/9)*18))=-32$$

 $u=-(0+10+12+0)=-22$

upper remains same and doesn't change

• Node 7 $(x_2=0)$ $\hat{c}=-(0+0+12+18))=-30$ u=-(0+0+12+18)=-30 $\hat{c}(7)$ >upper, thus kill this node

- Lives nodes now: {4,5,6}; (c(x) ≤upper)
- Next E-node: 4

• Node 8
$$(x_3=1)$$

$$\hat{c}=-(10+10+12+$$
 $((15-12)/9)*18))=-38$
 $u=-(10+10+12+0)=-32$

upper remains same

• Node 9 $(x_3=0)$ $\hat{c}=-(10+10+0+15=-38)$ u=-(10+10+0+18)=-38upper is updated to -38

DAA/Backtracking, Branch&Bound, NP-Complete

- Since upper is updated to -38,
 - Nodes 5, 6 are killed, as
 - their cost ĉ(x) >upper
- Thus, live nodes are {8,9}
- Next E-node to explore: 8

start

Can't consider it.

Exceeds knapsack capacity.

• Node 11

$$\hat{c} = -(10+10+12+0) = -32$$

 $u = -(10+10+12+0) = -32$

- The cost $\hat{c}(11)$ >upper
 - Thus, this node is killed
- Next Enode to explore : 9

start

n=4, m=15

- - $x_4=1$ (node 12)
 - $x_4=0$ (node 13)
- $\hat{c} = -(10+10+0+18) = -38$ u=-(10+10+0+18)=-38upper remains same

 $\hat{c} = -32$

 $\hat{c} = -38$ 11 = -38

u = -32

13

• **Node** 13

$$\hat{c} = -(10+10+0+0) = -20$$

 $u = -(10+10+0+0) = -20$

- **The cost** ĉ (13) > upper
 - Thus, this node is killed
- The only node left is 12
 - which is answer node

 $\hat{c} = -38$ u = -38

- Node 12 is answer node
- The tuple is (1, 1, 0, 1)
- Knapsack cost = -38,
 - Hence value = 38
- Same answer as LCBB approach
 - Though involves more computation.

u = -38

- FIFO Branch and Bound for 0−1 Knapsack problem
- Need to do more (exploration) computation as comparted to LCBB.