Quantitative Cellular and Molecular Biology Laboratory Computational Biology Department Comp Bio 02-261 Spring 2019

Lab 3 – Microbiome Analysis Lab February 8, 2019

Microbiome Sequencing

- Extract DNA
- Amplify 16S ribosomal RNA gene (found in all bacteria)
 - How can we do this for multiple species?
- Sequence copies of amplified 16S gene DNA

Programming Tasks

- Implement function for matching of experimental read to known 16S gene
- 2. Implement alignment free sequence matching
- 3. Plot accuracy curves for different size k-mers (k=1,3,5,7,9,11)
- 4. Generate plots showing relative distributions of bacteria types in different microbiomes
- 5. Write function to BLAST unmatched sample sequences

What are you provided with?

- Sample sequencing reads organized by sample number
- All known 16S genes (n=20,486; average bp = 1350)
- Code with some helper functions implemented for you already. (n=332,649; average bp = 397)

1. Implement function for matching of experimental read to known 16S gene

- For a given sample sequence:
 - Determine 16S sequence with greatest local alignment

- Alignment Free Sequence Matching
 - Matching two sequences based on the relative presence or absence of k-mers
 - *k*-mer = substring of length k
 - Example:
 - ACTGA -> 1-mer -> [A,C,T,G]
 - ACTGA -> 2-mer -> [AC, CT, TG, GA]
 - ACTGA -> 3-mer -> [ACT,CTG,TGA]
 - ACTGA -> 4-mer -> [ACTG,CTGA]

- Simple Alignment Free Sequence Matching Algorithm
 - 1. Convert each sequence to k-mer sets
 - 2. Calculate Jaccard index of the pair of sets

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Count k-mers in both A and B
Count k-mers in A and/or B

$$0 \le J(A, B) \le 1$$

- Determine similarity of Sequences A and B
- A = ACTGGA
- B = CGTGAG

- Example: Determine similarity of Sequences A and B (k=2)
 - A = ACTGGA
 - B = CGTGAG

Count k-mers in both A and B
Count k-mers in A and/or B

- Example: Determine similarity of Sequences A and B (k=2)
 - A = ACTGGA -> [AC, CT, TG, GG, GA]
 - B = CGTGAG -> [CG, GT, TG, GA, AG]

Count k-mers in both A and B
Count k-mers in A and/or B

- Example: Determine similarity of Sequences A and B (k=2)
 - A = ACTGGA -> [AC, CT, TG, GG, GA]
 - B = CGTGAG -> [CG, GT, TG, GA, AG]

$$\frac{[TG, GA]}{[AC, CT, TG, GG, GA, CG, GT, AG]} = \frac{2}{8}$$

Count k-mers in both A and B
Count k-mers in A and/or B

Issues with this approach?

- Example: Determine similarity of Sequences A and B (k=2)
 - A = ACTGGA -> [AC, CT, TG, GG, GA]
 - B = CGTGAG -> [CG, GT, TG, GA, AG]

$$\frac{[TG, GA]}{[AC, CT, TG, GG, GA, CG, GT, AG]} = \frac{2}{8}$$

Count k-mers in both A and B
Count k-mers in A and/or B

Issues with this approach?

What if sequences are different lengths?
(You solve this.)
How do we threshold?
(Task 3)

3. Plot accuracy curves for different size k-mers across different thresholds (k=1,3,5,7,9,11)

- Accuracy assessment:
 - How do we determine truth?
 - At what level of J(A,B) (or your similar function) do we consider the sequences matched?

3. Plot accuracy curves for different size k-mers across different thresholds (k=1,3,5,7,9,11)

- Accuracy assessment:
 - How do we determine truth?
 - "True" match is the 16s sequence with the best alignment score (>90% of highest possible score) when compared to our sample sequence.
 - At what level of J(A,B) (or your similar function) do we consider the sequences matched?
 - It depends...

Sample Sequence	Alignment Score	Alignment Best Match	K-mer Score	K-mer Best Match
1	0.96	16s_133	0.85	16s_133
2	0.80	16s_14	0.72	16s_124
3	0.97	16s_17	0.86	16s_17
4	0.83	16s_19	0.73	16s_19
5	0.95	16s_135	0.82	16s_1325
6	0.87	16s_12	0.80	16s_102

Sample Sequence	Alignment Score	Alignment Best Match	K-mer Score	K-mer Best Match
1	0.96	16s_133	0.85	16s_133
2	0.80	16s_14	0.72	16s_124
3	0.97	16s_17	0.86	16s_17
4	0.83	16s_19	0.73	16s_19
5	0.95	16s_135	0.82	16s_1325
6	0.87	16s_12	0.80	16s_102

Establish Truth: Set Alignment Threshold to 0.9.

Sample Sequence	Alignment Score	Alignment Best Match	K-mer Score	K-mer Best Match
1	0.96	16s_133	0.85	16s_133
2	0.80	16s_14	0.72	16s_124 ★
3	0.97	16s_17	0.86	16s_17
4	0.83	16s_19	0.73	16s_19 ★
5	0.95	16s_135	0.82	16s_1325
6	0.87	16s_12	0.80	16s_102

Establish Truth:
Set Alignment
Threshold to 0.9.

3/6 correct!

Establish Predictions: Set k-mer score threshold to 0.87.

Sample Sequence	Alignment Score	Alignment Best Match	K-mer Score	K-mer Best Match
1	0.96	16s_133	0.85	16s_133 🜟
2	0.80	16s_14	0.72	16s_124
3	0.97	16s_17	0.86	16s_17 🜟
4	0.83	16s_19	0.73	16s_19
5	0.95	16s_135	0.82	16s_1325
6	0.87	16s_12	0.80	16s_102

Establish Truth:
Set Alignment
Threshold to 0.9.

2/6 correct!

Establish Predictions: Set k-mer score threshold to 0.71.

Sample Sequence	Alignment Score	Alignment Best Match	K-mer Score	K-mer Best Match
1	0.96	16s_133	0.85	16s_133 🜟
2	0.80	16s_14	0.72	16s_124 ★
3	0.97	16s_17	0.86	16s_17 🜟
4	0.83	16s_19	0.73	16s_19 ★
5	0.95	16s_135	0.82	16s_1325
6	0.87	16s_12	0.80	16s_102 ★

Establish Truth: Set Alignment Threshold to 0.9.

5/6 correct!

Establish Predictions: Set k-mer score threshold to 0.81.

Sample Sequence	Alignment Score	Alignment Best Match	K-mer Score	K-mer Best Match
1	0.96	16s_133	0.85	16s_133 🜟
2	0.80	16s_14	0.72	16s_124 🜟
3	0.97	16s_17	0.86	16s_17 🜟
4	0.83	16s_19	0.73	16s_19 ★
5	0.95	16s_135	0.82	16s_1325
6	0.87	16s_12	0.80	16s_102 **

Establish Truth: Set Alignment Threshold to 0.9. Different thresholds will yield different accuracies. We need to check a lot of thresholds to determine what is best.

5/6 correct!

Establish Predictions: Set k-mer score threshold to 0.81.

Parameter Selection Plot

• What is the best K and k-mer match score threshold?

If runtime is an issue, you may reduce the size of the libraries. Stick to at least 100 sequences in each library.

- 4. Generate plots showing relative distributions of bacteria types in different microbiomes
- For each sample location, calculate mixture fractions for each phylum.
 - Use GetPhylum(16s_seq_id) function to give you the phylum based on the ID.
 - Multiple samples for each location should be averaged after mixture fractions are calculated for final mixture.
- Plot these results in some interesting way.

5. Write function to BLAST unmatched sample sequences

- Some sequences are unmatched.
- What can we do about this?
 - BLAST -> Basic Local Alignment Search Tool
 - Align our sequence of interest against every an enormous set of publicly available data.
 - Mystery sequence:

5. Write function to BLAST unmatched sample sequences

Some sequences are unmatched.

12 unit:

- Write a function to BLAST unmatched sample sequences and return species information for best hit
 - In Anaconda Console: conda install -c conda-forge biopython
 - http://biopython.org/DIST/docs/tutorial/Tutorial.html

9 unit:

- Manually BLAST an unmatched sequence
 - https://blast.ncbi.nlm.nih.gov/Blast.cgi

What to turn in?

- Task 1: code
- Task 2: code
- Task 3: code and plot
- Task 4:
 - Code, plot, and caption
 - Look up (google, Wikipedia, etc.) one of the interesting phyla and write a paragraph about it and why you suspect it was discovered in these quantities
- Task 5:
 - 12 unit: code, paragraph describing top hit of one unmatched sequence
 - 9 unit: screenshot of BLAST result, paragraph describing top hit of one unmatched sequence (include sequence identifier)

Due: February 20