# INF721

2024/2



# Deep Learning

L18: Transformers (Part II)

## Logistics

#### **Announcements**

- ▶ PA4 is due tonight! 11:59pm
- ▶ Midterm Exam II has been pushed back to Nov 25th

#### **Last Lecture**

- ▶ Problems with RNNs
- ▶ Transformers
  - Self-attention
  - Multi-head Attention
  - Positional Embedding
  - Masked Multi-head



### Lecture Outline

- Contextual Word Embeddings
- ► General Pre-Training (GPT)
  - ▶ Fine-tuning
  - Gerating Text
  - ChatGPT
- ▶ Bidirectional Encoder Representations from Transformers (BERT)
  - Masked Language Model
  - Word and Sentence Embedding



## Contextual Word Embeddings

Models like Word2Vec and Glove learn a static Embedding Matrix E, so they can't consider the context of a word to produce it's embedded vector.

|            | Man  | Mows | n King | Queen | Vbble | Orange |
|------------|------|------|--------|-------|-------|--------|
|            | -1   | 1    | -0.95  | 0.97  | 0.00  | 0.01   |
| E =        | 0.01 | 0.02 | 0.93   | 0.95  | -0.01 | 0.00   |
| <b>L</b> – | 0.03 | 0.02 | 0.7    | 0.69  | 0.03  | -0.02  |
|            | 0.04 | 0.01 | 0.02   | 0.01  | 0.95  | 0.97   |

$$E \cdot o_{6257} = \begin{bmatrix} 0.01 \\ 0.00 \\ -0.02 \\ 0.97 \\ ... \end{bmatrix}$$

For example, the word **apple** will have the same representation in both sentences:

"I want a glass of **apple** juice"

"I work at **apple**"

▶ But they have completely different meanings, because of their different context.



## Contextual Word Embeddings

Transformers learn contextual representations via self-attention!





**GPT** 

We can learn contextual embeddings using either the **Encoder** or the **Decoder** to train a Language Model!



#### Language Model based on the Transformer Decoder

1. Train a language model in unlabelled text

No need for another Multihead attention layer because we are not doing translation!





#### Language Model based on the Transformer Decoder

- 1. Train a language model in unlabelled text
- 2. Freeze the model up to the last transformer block and use it to extract contextual embeddings





#### Language Model based on the Transformer Decoder

- 1. Train a language model in unlabelled text
- 2. Freeze the model up to the last transformer block and use it to extract contextual embeddings
- 3. **Substitute** the Language Model head by a **Classification** head (e.g., sentiment analysis)





#### Language Model based on the Transformer Decoder

- 1. Train a language model in unlabelled text
- 2. Freeze the model up to the last transformer block and use it to extract contextual embeddings
- 3. Substitute the Language Model head by a Classification head (e.g., sentiment analysis)

Step 1. is called **pre-training!** 

Step 3. is called **fine-tuning!** 





## Bytepair Encoding (BTE)

GPT (and many other transformer models) uses the Byteapair Encoding (BPE) algorithm to optimize the English Vocabulary, turning comon patters into single tokens.

▶ BPE is like building a dictionary of common word pieces by repeatedly combining the most frequent pairs of characters or subwords.

```
Text: "low lower lowest"
Initial: l o w _ l o w e r _ l o w e s t

Merges:
    1.(l,o) → "lo": "lo w _ lo w e r _ lo w e s t"
    2.(lo,w) → "low": "low _ low e r _ low e s t"
    3.(e,r) → "er": "low _ low er _ low e s t"
```



## Generating Text with GPT

GPT is a language model and thus it can generate text similarly to RNN-based language models

- 1. Start your sequence with  $x_1 = \langle SOS \rangle$
- 2. Sample the next word using the probability distribution given by GPT:



3. Concatenate the sampled word  $x_2$  to your current sentence and sample from the model again:



Repeat steps 2. and 3. until the < EOS > token is sampled.



### **GPT Evolution Over Time**

|                         | GPT 1(2018)                                                                                                               | GPT 2 (2019)                                                                                                                                                                   | GPT 3 (2020)                                                                                                                                                          | GPT 3.5 (2022)                                                                                                                        | GPT 4 (2023)                                                                                                                                   |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters              | 117M                                                                                                                      | 1.5B                                                                                                                                                                           | 175B                                                                                                                                                                  | ~175B                                                                                                                                 | Estimated ~1.8T                                                                                                                                |
| N° of Decoder<br>Blocks | 12                                                                                                                        | 48                                                                                                                                                                             | 96                                                                                                                                                                    | ~96                                                                                                                                   | Unknown                                                                                                                                        |
| Pre-training<br>Dataset | 5GB (~0.5B Tokens)                                                                                                        | 40GB (~8B tokens)                                                                                                                                                              | 570 GB (~300B tokens)                                                                                                                                                 | 570 GB (~300B tokens)                                                                                                                 | Unknown                                                                                                                                        |
| Main<br>Contribution    | Introduced generative pretraining for transformers, showing decent results on text classification and sentiment analysis. | Generated coherent long-<br>form text and exhibited<br>surprising zero-shot<br>learning abilities, like<br>translation and<br>summarization without<br>specific task training. | Showed impressive few-shot, zero-shot, and multi-task learning capabilities.  Could perform tasks like question-answering, text generation, and even code generation. | Improved performance in language understanding and generation.  Reduced bias, hallucination, and increased coherence in long outputs. | Demonstrated strong multi-modal capabilities (image and text input), exhibited higher reasoning abilities, and improved complex task handling. |





Masked Language Model based on the Transformer Encoder

1. Train a language model in unlabelled text

Unlike GPT, looks at both left and right context

Positional Encoding  $\{1,...,T_{\chi}\}$ 



<CLS> I want a <MASK> of apple juice.

Devlin et al. 2018, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



Masked Language Model based on the Transformer Encoder

- l. Train a language model in unlabelled text
- 2. Freeze the model up to the last transformer block and use it to extract contextual embeddings





Encoder Nx



#### Masked Language Model based on the Transformer Encoder

- 1. Train a language model in unlabelled text
- 2. Freeze the model up to the last transformer block and use it to extract contextual embeddings
- S. **Substitute** the Language Model head by a **Classification** head (e.g., sentiment analysis)

Positional Encoding  $\{1,...,T_x\}$ 





Encoder Nx



#### Masked Language Model based on the Transformer Encoder

- 1. Train a language model in unlabelled text
- 2. Freeze the model up to the last transformer block and use it to extract contextual embeddings
- 3. Substitute the Language Model head by a Classification head (e.g., sentiment analysis)

BERT can't generate text because it is not a regular language model!

Positional Encoding  $\{1,...,T_x\}$ 



### BERT Evolution Over Time

|                         | BERT (Base)                                                                                                                                                          | BERT (Large)                                                                                                                            | RoBERTa                                                                                                                                                     | DistilBERT                                                                                                                                                                            | ALBERT (Large)                                                                                                                                                           |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters              | 110M                                                                                                                                                                 | 340M                                                                                                                                    | 355M                                                                                                                                                        | 66M                                                                                                                                                                                   | 18M                                                                                                                                                                      |
| N° of Decoder<br>Blocks | 12 encoder layers, 12<br>attention heads                                                                                                                             | 24 encoder layers, 16<br>attention heads                                                                                                | 24 encoder layers, 16<br>attention heads                                                                                                                    | 6 encoder layers, 12<br>attention heads                                                                                                                                               | 12 encoder layers, 12<br>attention heads (shared<br>weights)                                                                                                             |
| Pre-training<br>Dataset | 16 GB (~3.3B tokens)                                                                                                                                                 | 16 GB (~3.3B tokens)                                                                                                                    | 160 GB (~33 B tokens)                                                                                                                                       | 16 GB (~3.3B tokens)                                                                                                                                                                  | 16 GB (~3.3B tokens)                                                                                                                                                     |
| Main<br>Contribution    | Introduced bidirectional pretraining, greatly improved performance on NLP benchmarks like GLUE, SQuAD, and others. It became a foundation for many downstream tasks. | Same as BERT Base but with higher capacity, resulting in improved performance across NLP tasks, though with greater computational cost. | Tweaked BERT's training process (e.g., longer training), resulting in better performance on NLP benchmarks. Achieved stateof-the-art results on many tasks. | A distilled version of BERT, with 40% fewer parameters and 60% faster inference, while retaining 97% of BERT's performance on downstream tasks. Efficient for real-time applications. | Optimized for parameter efficiency by sharing layers and factorizing embedding parameters. Achieved performance close to BERT Large with significantly fewer parameters. |



Devlin et al. 2018, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Liu et al. 2019, RoBERTa: A Robustly Optimized BERT Pretraining Approach Sanh et al. 2019, DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter Lan et al. 2019, ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

### BERTimbau

BERTimbau is a bert model especially pretrained for the Brazillian Portuguese language:

|                      | BERTimbau Base                                                                                                             | BERTimbau Large                                                                                                                                |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameters           | 117M                                                                                                                       | 1.5B                                                                                                                                           |  |
| Nº of Decoder Blocks | 12                                                                                                                         | 48                                                                                                                                             |  |
| Pre-training Dataset | 5GB (~0.5B Tokens)                                                                                                         | 40GB (~8B tokens)                                                                                                                              |  |
| Pre-training Dataset | First large-scale pre-trained model for Brazilian<br>Portuguese. Comparable to BERT base for<br>Portuguese language tasks. | Larger version with increased capacity, achieving better performance on tasks requiring more linguistic nuance and complex text understanding. |  |

Vocabulary specifically optimized for Portuguese morphology (and includes Portuguese-specific tokens and accents)



## Extracting BERT Contextual Embeddings

There are different methods to extract contextual word embeddings from BERT





<SOS>I want a glass of apple juice<EOS>

### Next Lecture

L19: Transfer Learning

Exploiting large unlabelled dataset to improve performance of supervised learning models

