4. FUNÇÕES REAIS DE VARIÁVEL REAL (SOLUÇÕES)

4.1.

- a) $D_f =]-\infty, -\sqrt{3}] \cup [\sqrt{3}, +\infty[;$ b) $D_f =]-1, 0];$ c) $D_f = \mathbb{R};$

d) $D_f =]-2, 2[;$

- e) $D_f = [-2, 2[; f) D_f = \mathbb{R}^-;$

- $p(g) D_f =]1, +\infty[$;
- h) $D_f = [-1, sen1[;$
- i) $D_f = \left\{ x \in \mathbb{R} : x \neq \frac{k\pi}{2}, k \in \mathbb{R} \right\}.$

- a) f é impar; b) f não é par nem impar. c) f é par;

- d) f é par; e) f é impar;

f) f não é par nem ímpar.

4.3.

- a) $f^{-1}(x) = \frac{x-3}{2}$ e $D_{f^{-1}} = \mathbb{R}$;
- b) $f^{-1}(x) = 2e^x$ e $D_{f^{-1}} = \mathbb{R}$;
- c) $f^{-1}(x) = \frac{1}{2}tg \ x \ e \ D_{f^{-1}} = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right].$
- **4.4.** a) $D_f = \left[-\frac{1}{2}, \frac{1}{2} \right], \ D'_f = \left[-\frac{5\pi}{4}, \frac{7\pi}{4} \right] \ e \ x = \frac{1}{2} sen\left(\frac{\pi}{12} \right);$
 - b) $f^{-1}(x) = \frac{1}{2} sen\left(\frac{\pi}{12} \frac{x}{3}\right);$

c) x = 0.

- **4.5.** $f(0) = \frac{1}{6}$ e $x \in \left[\ln \left(\frac{2}{3} \right), +\infty \right].$
- **4.6.** a) $D_f = \mathbb{R} \setminus \{1\}$ e $D'_f =]2, 3[\cup]3, +\infty[;$ b) $x = 2 + e^{-2}$.

4.8.

- a) 2; b) 0; c) 1; d) $na^{n-1}, n \in \mathbb{N}, a \in \mathbb{R};$ e) $\frac{4}{3}$;

$$f) \frac{4}{3};$$

$$f) \ \frac{4}{3}; \qquad g) \ 0; \qquad h) \ \frac{1}{2}; \qquad i) \ 0; \qquad j) \ \frac{3}{2};$$

$$k) \ 1; \qquad l) \ 0; \qquad m) \ \frac{1}{3}; \qquad n) \ \frac{1}{2}; \qquad o) \ e;$$

$$j) \frac{3}{2};$$

$$m) \frac{1}{3}$$

$$n) \frac{1}{2}$$

$$o)$$
 e

q) não existe.

4.9. a)
$$f(0^-) = 0$$
, $f(0^+) = 1$ e $\sharp \lim_{x \to 0} f(x)$; b) $g(0^-) = -\infty$, $g(0^+) = 0$ e $\sharp \lim_{x \to 0} g(x)$.

b)
$$g(0^-) = -\infty$$
, $g(0^+) = 0$ e $\#\lim_{x \to 0} g(x)$.

4.12.

$$c) + \infty$$

$$d)$$
 0;

$$e)$$
 1;

$$g) \frac{2}{3}$$

a) 1; b) k; c)
$$+\infty$$
; d) 0; e) 1;
f) 1; g) $\frac{2}{3}$; h) 0; i) $\frac{-1}{4}$.

4.14.

- a) contínua em $\mathbb{R}\setminus\{0\}$;
- b) contínua em \mathbb{R} ;
- c) contínua em \mathbb{R}^+ ;
- $d) \ \ {\rm contínua\ em}\ \mathbb{R}\backslash\left\{k\pi,k\in\mathbb{Z}\right\}; \qquad \qquad e) \ \ {\rm contínua\ em}\ \mathbb{R}\backslash\left\{0\right\}; \qquad \qquad f) \ \ {\rm contínua\ em}\ \mathbb{R};$

- g) contínua em $\mathbb{R}\setminus\{4\}$;
- h) contínua em \mathbb{R} ;
- i) contínua em \mathbb{R} .

4.15. a) A função i não é prolongável;

b)
$$F(x) = \begin{cases} \frac{x^4 + x^2}{x^4 + 3x} & \text{se } x \neq 0, \\ 0 & \text{se } x = 0. \end{cases}$$

4.17.
$$m = \frac{1}{4}$$
.

4.18.
$$a = -3 \text{ e } b = 4$$

4.18.
$$a = -3 \text{ e } b = 4.$$
 4.19. $m = 0 \text{ e } k = -\frac{1}{2}.$

4.20.
$$a) r = \frac{\pi}{2}.$$

b) contínua em
$$\mathbb{R} \setminus \{-1\}$$
.

c)
$$D_f' = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
, tem supremo e máximo igual a $\frac{\pi}{2}$ e tem ínfimo e mínimo igual a $-\frac{\pi}{2}$.

d)
$$\lim_{x \to -\infty} f(x) = 0$$
 e $\lim_{x \to +\infty} f(x)$ não existe.

4.21. a) contínuas nos respectivos domínios.

b)
$$F(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{se } x \neq 0, \\ 0 & \text{se } x = 0. \end{cases}$$
 e g não é prolongável.

- **4.22.** a) $D_f = [0, 1[\cup]1, +\infty[$.
 - b) $\lim_{x \to +\infty} f(x) = 0$, $\lim_{x \to 1^{-}} f(x) = -\infty$ e $\lim_{x \to 1^{+}} f(x) = +\infty$.
 - c) $D'_f = \mathbb{R}$.
 - d) Por exemplo, $u_n = 1 \frac{1}{n}$ e $v_n = n$.
- **4.23.** *f* é continua no seu domínio e

$$F(x) = \begin{cases} \ln|x+2| + arctg\left(\frac{1}{x}\right) - \ln 2 & \text{se } x \le 0, \\ tg\left(\frac{\pi}{4}x\right) - \frac{\pi}{2} & \text{se } 0 < x < 1, \\ e^{x-1} + \frac{\pi}{4} & \text{se } x > 1. \end{cases}$$

- **4.27.** a) a = 2 e b = 0.
- **4.28.** a) g(0) = 0 e g(3) = 3.
 - b) F.
 - c) Não.
- **4.29.** b) Por exemplo, $f(x) = \frac{x+1}{2}$.
- **4.30.** a) F; b) V; c) V; d) F.