U.S. DEPARTMENT OF COMMERCE National Technical Information Service

AD-A035 926

HANDBOOK ON MATERIALS FOR SUPERCONDUCTING
MACHINERY
INCLUDES DATA SHEETS FOR FIRST AND SECOND
SUPPLEMENTS, NOVEMBER 1975 AND JANUARY 1977

BATTELLE COLUMBUS LABORATORIES, OHIO

JANUARY 1977

HANDBOOK ON MATERIALS FOR SUPERCONDUCTING MACHINERY

Mechanical, Thermal, Electrical, and Magnetic Properties of Structural Materials Including Data Sheets for the First and Second Supplements

Includes Data Sheets for First and Second Supplements

November 1975 and January 1977

Sponsored by

Advanced Research Projects Agency ARPA Order No. 2569 Program Code 4D10 Contract No. CST-8303

1. 1. 1.

Contract Monitor
Cryogenics Division
National Bureau of Standards
Boulder, Colorado 80302

January 1977

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

METALS AND CERAMICS INFORMATION CENTER
BATTELLE

Columbus Laboratories 505 King Avenue Columbus, Ohio 43201

A Department of Defense Information Analysis Center

SECURITY CLASSIFICATION OF THIS PAGE (When Puta Entered)

	REPORT DE	OCUMENTATION	PAGE		READ INSTRUCTIONS ORE COMPLETING FORM
1. 6	REFORT NUMBER		2. GOVT ACCESSION NO.	1	NT'S CATALOG NUMBER
	MCIC-HB-04S2				
	TITLE (and Subritte)		<u> </u>	S. TYPE O	F REPORT & PERIOD COVERED
	Second Supplement to	the Handbook on	Materials for		ipplement to a Handbook
	Superconducting Machi		Waterials for		ovember 1975-November 19
	Superconducting Macin	inici y			MING ORG. REPORT NUMBER
7. /	AUTHOR(s)			B. CONTRA	CT OR GRANT NUMBER(s)
1	H. J. Hucek, K. E. Wilk	es, K. R. Hanby, a	nd J. K. Thompson		
					CST-8303
1					
9. f	PERFORMING ORGANIZATION	NAME AND ADDRESS		10. PROGS	AM ELEMENT, PROJECT, TASK
[Ceramic Materials Secti	on			
1	Battelle's Columbus La	boratories			
11.	Columbus Ohio 43201	E AND ADDRESS		12. REPOR	TOATE
	National Bureau of Star	ndards		Ja	nuary_1977
1	Cryogenics Division-Be	oulder, Colorado			R OF PAGES
i				85	
14.	MONITORING AGENCY NAME	& ADDRESS(if differen	nt from Controlling Office)	15. SECUR	ITY CLASS. (of this report)
1					
1					nclassified
1				15a, DECL SCHE	ASSIFICATION DOWNGRADING
	DISTRIBUTION STATEMENT			<u> </u>	
			ic release-distribution		
17.	DISTRIBUTION STATEMENT	(of the abstract entered	in Block 20, it different tro	m Report)	
				· ·	
15	SUPPLEMENTARY NOTES				
19	KEY WORDS (Continue on feve	rse side il necesserv a	nd identify by block number.)	
, , , , , , , , , , , , , , , , , , ,	Cryogenics	Thermal expansion			Stainless steels
	Low temperature tests		Copper and Cu	•	Titanium and Ti alloys
	Mechanical properties	Electrical resistivi		unoys	Special metals and alloys
	Thermal conductivity	Magnetic Propert			Polymers
	Thermal conductivity	Magnetic i Topert	Composite Mate	ariale	Weldments
20	ABSTRACT (Continue on rever	rse side il necessary an		11019	Weightents
	The major objective of			supplement	and the Handbook, is
					oncepts in superconducting
					cal, and magnetic properties
					nent that will be exposed
7	to cryogenic temperature	· · · · · · · · · · · · · · · · · · ·		ie numbei	is from compliations of
	data in the temperature	range o to 300 K.			
					(Continued)

20. (Continued)

Materials for inclusion in this Handbook include the following'

Aluminum and aluminum alloys
Copper and copper alloys
Nickel alloys
Alloy steels
Stainless steels
Titanium and titanium alloys
Special metal and alloys
Polymers
Composite materials
Weldments.

SECOND SUPPLEMENT

to

HANDBOOK ON MATERIALS FOR SUPERCONDUCTING MACHINERY - FIRST EDITION MCIC-HB-04

The original Handbook was prepared by Battelle's Columbus Laboratories under Advanced Research Projects Agency (ARPA) sponsorship, monitored by the Cryogenics Division of the National Bureau of Standards, and published by the Metals and Ceramics Information Center (MCIC). This second supplement was prepared under the same sponsorship to update the information in the initial publication.

This supplement, as does the original handbook, contains information on the mechanical, thermal, electrical, and magnetic properties of selected structural materials that might be considered for components of superconducting machinery. Since this information is primarily intended for designers of equipment that will be exposed to cryogenic temperatures, the data are presented as "best-value" numbers from compilations of data in the temperature range 0 to 300 K.

This second supplement contains a new title page, a Foreword to the Second Supplement, an updated Table of Contents, new sheets for Sections 1 through 12, a new list of references, and new Bibliography pages.

INSERTING THE NEW DATA SHEETS IN THE HANDBOOK-

The procedure for inserting the new data sheets in the Handbook is as follows:

Section 1.0	Replace the single page in this section
Section 2.0	Replace the entire section (15 pages, 8 sheets)
Section 3.0	Replace the entire section (20 pages, 10 sheets)
Section 4.0	Replace or insert the indicated 233 pages (119 sheets)
Section 5.0	Replace or insert the indicated 62 pages (36 sheets)
Section 6.0	Replace or insert the indicated 117 pages (60 sheets)
Section 7.0	Replace or insert the indicated 77 pages (41 sheets) Delete pages 7.1.1-0.1, 7.1.1-0.2, 7.1.1-2.1 through 7.1.1-2.12, and 7.1.1-4.1
Section 8.0	Replace or insert the indicated 141 pages (75 sheets)
Section 9.0	Replace or insert the indicated 66 pages (35 sheets)
Section 10.0	Replace or insert the indicated 18 pages (10 sheets)

Section 11.0

This is a new section on Composites; the new divider

and the new data sheets should be added,

(29 pages, 17 sheets)

Section 12.0

Replace or insert the indicated 18 pages (11 sheets)

Reference and Bibliography

Replace pages R-1 through R-16, B-1, B-7 through B-22, B-53 through B-55 and add pages R-17 through R-23

and B-56 through B-58

The enclosed descriptive sticker is for the front of the binder just below the date.

KEEPING YOUR HANDBOOK UP TO DATE-

So that we may continue to keep all holders of the Handbook on Materials for Superconducting Machinery advised of supplements and new reference data, a registry of the locations of all copies is being maintained. To assist us in keeping these records, we ask that you complete and return one of the following self-addressed postcards upon initial receipt of this Supplement. If responsibility of this copy of the Handbook is transferred to another party, please use one of the postcards to advise us of the change. (Please indicate that the previous card should be removed from our records). If there are no postcards available, please write to MCIC at the address below.

ADDITIONAL INFORMATION-

Any questions on the Handbook data or request for additional data should be addressed to the attention of Mr. Harold J. Hucek, Manager of Publications at:

Metals and Ceramics Information Center Battelle's Columbus Laboratories 505 King Avenue Columbus, Ohio 43201

BUSINESS REPLY MAIL

First Class Permit No. 4 Columbus, Oblo

No Postage Stamp Necessary If Mailed in the United States

BUSINESS REPLY MAIL

First Class Paralt No. 4

Calumbus, Oblo

No Pustage Stamp Necessary If Mailed in the United States

Metals and Ceramics Information Center Aftention Mr. James Lynch, Associate Manager Battelle's Columbus Laboratories 505 King Avenue Columbus, Ohio 43201

FOREWORD

The research program that has led to the preparation of this Handbook was supported by the Advanced Research Projects Agency (ARPA) of the Department of Defense, with Dr. Edward C. Van Reuth as Project Monitor. The Handbook preparation task was subcontracted to Battelle Columbus by the Cryogenics Division of the National Bureau of Standards under Contract No.CST-8303 with Dr. Richard P. Reed as Program Manager and Contract Monitor.

The research program was conducted under ARPA Order No. 2569 and Program Code 4D10 by the Metals and Ceramics Information Center (MCIC) with K. R. Hanby and H. J. Hucek as Program Managers, and E. A. Eldridge and J. K. Thompson as Principal Investigators.

Contract No. CST-8303 includes two tasks. Task I provided for the compilation of low temperature property data on selected materials for structural applications in superconducting machinery and has resulted in the production of this Handbook. Task II provided for research on the thermal expansion and specific heats at low temperatures for selected structural alloys. Available data obtained on Task II are incorporated in this edition of the Handbook. Additional data from other concurrent ARPA/NBS programs are included in the First and Second Revisions. The effective date for initiation of the program was September 10, 1973, and the contract expiration date was January 15, 1977.

DISCLAIMER

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or of the U. S. Government.

CONTENTS

Section	
1.0	Introduction
2.0 2.1 2.2 2.3 2.4	Explanation of Data Collection and Presentation Mechanical Properties Thermal Properties Electrical Properties Magnetic Properties
3.0	Selected Materials for Data Collection
4.0 4.1.0 4.1.1 4.2.0 4.2.1 4.2.2 4.2.3 4.3.0 4.3.1 4.3.2 4.4.0 4.4.1 4.5.0 4.5.1 4.5.2 4.5.3	Aluminum and Aluminum Alloys Unalloyed Aluminum 99.99 Aluminum 1100 Aluminum 2000 Series Aluminum Alloys 2014 Aluminum Alloy 2219 Aluminum Alloy 2024 Aluminum Alloy 5000 Series Aluminum Alloys 5083 Aluminum Alloy 5456-0 Aluminum Alloy 6000 Series Aluminum Alloy 6000 Series Aluminum Alloy 7000 Series Aluminum Alloy 7000 Series Aluminum Alloy 7000 Aluminum Alloy 7005 Aluminum Alloy
5.0 5.1.0 5.1.1 5.1.2 5.1.3 5.1.4 5.2.0 5.2.1 5.2.2 5.2.4 5.3.0 5.3.1 5.3.2 5.3.3 5.4.0 5.4.1 5.4.2 5.5.0	Copper and Copper Alloys 99.9+ Coppers 99.96 Copper Electrolytic Tough Pitch Copper OFHC Copper Phosphorized Copper Copper-Zinc Alloys 80 Copper-20 Zinc Alloy 70 Copper-30 Zinc Alloy 90 Copper-10 Zinc Alloy Copper-Nickel Alloys 90 Copper-10 Nickel Alloy 80 Copper-20 Nickel Alloy 70 Copper-30 Nickel Alloy Copper-Beryllium Alloys Copper-Beryllium (1.6-1.8Be) Alloy Copper-Beryllium (1.8-2.0Be) Alloy
5.5.1 5.5.2	95 Copper-5 Tin Alloy 92 Copper-8 Tin Alloy

90 Copper-10 Tin Alloy

5.5.3

CONTENTS (Continued)

Section	
5.6.0	Copper-Zirconium Alloys
5.6.1	Copper-0.2 Zirconium (AmZirc) Alloy
5.7.0	Copper-Chromium-Cadmium Alloys
5.7.1	Copper-0.4 Chromium-0.4 Cadmium Alloy (PD-135)
5.9.1	Copper-Aluminum Alloys
6.0	Nickel Alloys
6.1.0	Nickel-Copper Alloys
6.1.1	K-Monel (K-500)
6.2.0	Nickel-Chromium-Iron Alloys
6.2.1	Inconel 600
6.2.2	Inconel X-750
6.2.3	Inconel 718
6.2.4	Inconel 706
6.3.0	Controlled Expansion Alloys
6.3.1	Invar 36
6.3.2	Ni-Span C
6.3.3	Unnamed INCO LEA Alloy
6.4.0	Pure Nickel
6.4.1	High-Purity Nickel
6.4.2	"A" Nickel
7.0	Alloy Steels
7.1.0	Nickel Steels
7.1.1	9 Nickel Steel
7.1.2	18 Nickel (200) Maraging Steel
7.3.0	Carbon Steels
7.3.1	1010 Steel
7.4.0	Other Ferrous Materials
7.4.1	Armco Iron
7.4.3	5 Nickel Steel
7.4.4	Iron (47-50)Nickel Alloy
8.0	Stainless Steels
8.1.0	300 Series Stainless Steel
8.1.1	Type 301 Stainless Steel
8.1.2	Type 304 Stainless Steel
8.1.3	Type 304L Stainless Steel
8.1.4	Type 310 Stainless Steel
8.1.5	Type 316 Stainless Steel
8.1.6	Type 321 Stainless Steel
8.1.7	Type 303 Stainless Steel
8.1.8	Type 310S Stainless Steel
8.1.9	Type 347 Stainless Steel
8.1.10	Type 410 Stainless Steel
Q 1 11	Type 416 Stainless Steel

CONTENTS (Continued)

Section	
8.2.0	Other Stainless Steels
8.2.1	Type A-286 Stainless Steel
8.2.2	Kromarc-58 Stainless Steel
8.2.3	Armeo 21-6-9
8.2.4	Armco 22-13-5
9.0	Titanium and Titanium Alloys
9.1.0	Unalloyed Titanium
9.1.1	Titanium-65A
9.1.2	Titanium-75A
9.2.0	Alpha Titanium Alloys
9.2.1	Ti-5Al-2.5Sn Alloy (Normal Interstitial Content)
9.2.2	Ti-5Al-2.5Sn (ELI) Alloy
9.3.0	Alpha-Beta Titanium Alloys
9.3.1	Ti-6Al-4V (ELI) Alloy
9.3.2	Ti-6Al-4V Alloy (Normal Interstitial Content)
10.0	Special Metals and Alloys
10.1.0	Niobium and Niobium Alloys
10.1.1	Niobium
10.1.2	Nb ₃ Sn
10.1.3	Niobium-Zirconium Alloy
10.1.4	Niobium-Titanium Alloy
10.2.1	V ₃ Ga
10.3.1	Magnesium Alloys
11.0	Composites
11.1.1	Glass-Epoxy (181/Epon 828CL)
11.1.2	Glass-Epoxy (1581/E-787 [58-68R])
11.1.3	Glass-Epoxy (S-901/NASA Resin 2)
11.2.1	Boron-Epoxy (4.0 mil Boron/2387)
11.2.2	Boron-Epoxy (5.6 mil Boron/2387)
11.3.1	Graphite-Epoxy (AS/NASA Resin 2)
11.3.2	Graphite Epoxy (HT-S/X-904)
11.4.1	3oron-Aluminum (5.6 mil Boron/6061)
12.0	Polymers
12.1.0	Ethylene-Base Polymers
12.1.1	Polyethylene (PE)
12.1.2	Polychlorotrifluoroethylene (PCTFE)
12.1.3	Polytetrafluoroethylene (PTFE)
12.2.1	Polymethylmethacrylate (PMM)
12.3.1	Polystyrene (PS)
12.4.1	Polyvinylacetate

References & Bibliography

10<

HANDBOOK ON MATERIALS FOR SUPERCONDUCTING MACHINERY

1.0 INTRODUCTION

Recent advancements in the development of superconducting machinery have demonstrated that superconducting generators, motors, transmission lines, and other electrical equipment are more efficient, occupy less space for equivalent capacity, and have other advantages over more conventional equipment. Because of these advantages, there is considerable incentive to develop superconducting systems for certain military applications. New ship propulsion systems which are being developed by the Navy represent major developments in superconducting generators, motors, and controls. These developments involve considerable new design technology and environments that may expose the components to cryogenic temperatures as low as 4 K. Exposure of structural materials to such low temperatures affects the mechanical and physical properties of the materials. The purpose of the Handbook is to provide a ready reference for designers on the effects of low temperatures on the properties of structural materials that will be considered in developing new designs for superconducting machinery. Formats for presentation of the mechanical, thermal, electrical, and magnetic property data are intended to provide best-value data for the designer based on currently available information. The data also may be used by engineers in selecting materials for certain cryogenic applications. The current list of materials was selected based on available information and suitability for such applications. All data are based on current state-of-the-art information.

2.0 EXPLANATION OF DATA COLLECTION AND PRESENTATION

The structural materials property data presented in this Handbook are based on compilations of data collected from documents in the files of the Metals and Ceramics Information Center (MCIC). These documents either were originally part of the data base of MCIC or were acquired as a result of a search of the accessions of the Cryogenic Data Center, Cryogenics Division, National Bureau of Standards, Boulder, Colorado. Documents from which the data were obtained are listed in the Reference section according to MCIC accession number. The Bibliography, which includes cited data references, lists over 900 citations on properties and applications of the selected materials. The 18 references for the composite materials are listed at the end of Section 11, Composites. When more detailed information is needed than the best-value data presented in later sections of this Handbook, the original sources of the data should be consulted.

Data from the original sources were collected on the selected materials (discussed in Section 3) within the following categories over the temperature range 0 to 300 K:

- (a) Mechanical properties (Includes weld properties)
- (b) Thermal properties

Thermal conductivity*

Thermal expansion

Specific Heat

- (c) Electrical resistivity
- (d) Magnetoresistance
- (e) Magnetic properties.

2.1 Mechanical Properties

After compiling the available mechanical property data from the original sources, the major objective was to reduce the data on metals, welds, composites, and polymers to best values and to present the best-value data in formats that could be used effectively by designers in developing new concepts in superconducting machinery. In general, the available data for any of the parameters was not sufficient for any material in the cryogenic range to permit a statistical analysis to yield A or B basis (minimum design) values as in MIL-HDBK-5. However, judgment was used in analyzing the available data in order to arrive at best-value numbers for the various parameters based on the available data. The best-value numbers are averages obtained usually from a series of tests from one or more sources on individual specimens. From some sources, only average data and not individual specimen data were available for the mechanical property parameters. If information was available on the number of specimens tested in obtaining the original average value, the number of specimens was taken into consideration in arriving at the overall average or best value. If information was not available on the number of specimens tested in arriving at an original average value, the average value reported was considered the same as that for a single specimen in calculating the overall average. If tensile ultimate strength or tensile yield strength data were available for eight or more replicate specimens, standard deviations were determined and are included in the tabulations. If the original input data include average values, the results will not be true standard deviations, but will be the best that can be determined from the available sources.

^{*} Data include the effects of magnetic fields on thermal conductivity.

Data that were not representative of normally produced material (i.e., material with unusual impurity levels, unusual grain sizes, etc.) were not included in the compilations. Furthermore, if the heat treatment, form, or dimensions (thickness, diameter, etc.) of the material were not given or if specimen orientation or other significant information on the specimens or test methods was not given in the original source, the data were omitted from the compilations. When data points occurred outside the range of the usual scatter of data points (outriders), the original source was reviewed to determine any unusual factors that would contribute to the variation. Such an examination usually provided a basis for omitting the outriding points.

Typical formats for compiling best values for mechanical property parameters for metals, alloys, and polymers are shown in Tables 2.1, 2.2, and 2.3. The same formats were used to report weld data when it was available. The parameters in Table 2.1 are for tensile properties. Most of the available mechanical property data at cryogenic temperatures is limited to tensile data. When compressive, shear, impact, fracture toughness, and/or fatigue data were available for any of the materials, the corresponding formats in Tables 2.2 and/or 2.3 were used in recording the best-value data.

Typical formats for compiling best values for mechanical properties of composite materials are shown in Tables 2.4, 2.5, and 2.6. Data are reported for uniaxial laminates and for woven-cloth reinforced composites. Uniaxial laminate data include key mechanical properties required for prediction of crossply properties using macromechanical composite theory, whenever such data were available.

The highly-anisotropic mechanical properties of composite materials require referencing of the properties to the direction of fiber reinforcement. Tensile, compressive and impact data, Tables 2.4 and 2.5, are reported for longitudinal and transverse directions of uniaxial composites. The sheet-normal direction is included in the compressive data format. This refers to loading directions parallel to and at right angles to the fiber direction, plus a direction normal to the plane of pressing in sheet material (presscure direction). For composites reinforced with woven cloth, the longitudinal direction is taken as the warp direction and the transverse direction is taken as the fill direction. Crossply composites frequently display an initial and secondary modulus during the initial load cycle; consequently, both moduli and the strength corresponding to the change in modulus are reported when data were available. Most composite data are reported as average and minimum reported values. However, compressive strength data are reported as maximum, average, and minimum values. Here, the maximum value is the most significant, as the average of compressive strength data tends to become strongly biased toward low values due to experimental difficulties.

Composite interlaminar shear refers to shear between adjacent layers in a layered laminate. Composite in-plane shear refers to shear between parallel fibers in the plane of the fibers.

Available composite fatigue data are presented graphically in the format shown in Table 2.6. In many applications, the useful fatigue life of composite structures will be limited by a decrease in modulus rather than ultimate fracture. The format of Table 2.6 permits data on modulus decrement to be included when available.

Data on Tables 2.4, 2.5, and 2.6 reflect best values from flat coupons, rods or bulk specimens produced from preimpregnated tape except where noted. References are provided for each value to facilitate consulation of the original source for additional information on test procedures.

It is possible to fabricate composites with widely varying fiber volume fractions and widely varying properties. Most available data have been generated for the nominal fiber volume fractions reported in the tables, corresponding to the fiber content in off-the-shelf preimpregnated materials.

In most instances, the property data were added to the original compilation tables only when such data were reported for tests at 77 K (-320 F) or lower. When test data were reported for tests at 77 K or lower, all of the test data in the range 0 to 300 K were added to the original compilation tables. This method of selecting the data eliminated much of the data that would not be significant when considering cryogenic properties.

The headings in the tables indicate the alloy, welding method, polymer, or composite designation from the list presented in Section 3. If a specification was identified for the material, the specification is identified in the heading. For metals and alloys and welds, thicknesses or diameters of the material in the form identified are given in the heading for limited ranges, since the size may have a significant effect on the properties. The size ranges are as follows:

Sheet, Plate, and Flat Forgings and Extrusions (Thickness):

Up to 0.099 cm (0.039 in.) 0.100 to 0.319 cm (0.040 to 0.125 in.) 0.320 to 0.634 cm (0.126 to 0.249 in.) 0.635 to 1.269 cm (0.250 to 0.499 in.) 1.270 to 2.540 cm (0.500 to 1.000 in.) 2.541 to 5.080 cm (1.001 to 2.000 in.) Over 5.080 cm (2.000 in.)

Bar Stock, Forged Stock, and Non-Flat Extrusions (Diameter or Thickness):

Up to 2.540 cm (1.000 in.) 2.541 to 5.080 cm (1.001 to 2.000 in.) Over 5.080 cm (2.000 in.)

Data for the same alloy type and thickness range may be available for several different heat treatments and/or mill processing conditions. Data for the alloy are presented for these various conditions if they might be considered for components which will be exposed to low temperatures in service.

The first column in the mechanical property tables indicates the parameters and units. Bold face type is used for the parameters and best-value numbers (indicated as "Avg") so they will stand out from the other numbers. The next column in the tables is for room temperature data which usually are obtained in the range 291 to 300 K (65 to 80 F). The heading for this column is 297 K (75 F). Another key temperature range for low temperature mechanical property tests is obtained by cooling an organic liquid with dry ice. Indicated temperatures for this type of low-temperature bath are 200 to 193 K (-100 to -112 F). To simplify the tabulations, tests made in dry-ice baths are indicated at 195 K (-108 F). Tests made with the specimens in liquid nitrogen, liquid hydrogen, and liquid helium are indicated at 77 K (-320 F), 20 K (-423 F), and 4 K (-452 F), respectively. For test data obtained at intermediate temperatures such as 144 K (-200 F), the data are presented in separate columns with the testing temperature indicated in the column heading.

The primary units in the tables are SI units with corresponding English units in parentheses. Values for stress and energy in SI units were generally converted from English units. In most instances, the average values in English units were not rounded off until after converting to the SI units. The English units were then rounded off usually to three digits for presentation in the tables. Because the English units were rounded off after conversion, conversion of the three-digit numbers will not always result in the corresponding converted SI units in the tables.

Abbreviations used in the mechanical property tables have the following meanings:

TUS - Tensile ultimate strength

TPL - Tensile proportional limit

TYS - Tensile yield strength

Elong. - Elongation

RA - Reduction in area

E - Young's modulus

E₁ - Initial Young's modulus (composites)

E₂ - Secondary Young's modulus (composites)

SE₁ - Strength at transition between E₁ and E₂

NTS - Notched tensile strength

CUS - Compressive ultimate strength

CPL - Compressive proportional limit

E_C - Elastic modulus in compression

SUS - Shear ultimate strength

SPL - Shear proportional limit

G - Shear modulus

Long. - Longitudinal orientation

Trans. - Transverse orientation

- Plane strain intensity factor obtained on precracked bend or compact

specimens according to ASTM E399

Flane strain stress intensity factor obtained on part-through surface-crack specimens (requirements for validity of these tests have not been established, but selected data are included in the compilations to indicate the trends in the results that have been obtained according to the current state of the art)

SN - The greatest stress which can be sustained for a given number of cycles without fracture

Hz - Hertz, number of cycles per second

R - Fatigue ratio, algebraic ratio of the minimum stress to the maximum stress in one cycle

K_t - Stress concentration factor

S-N

Curves - Plots of stress against number of cycles to failure on testing.

Overall average data (best-value) for tensile and yield strengths of selected materials are plotted in graphical formats to show trends in these properties over the temperature range from 0 to 300 K. If a need occurs for comparing the tensile properties of several materials over this temperature range, the appropriate graphs may be copied and additional data from tables for other materials may be added to achieve the comparisons that are desired.

2.2 Thermal Properties

Low temperature data (in the 0 to 300 K range) on the thermal conductivity, thermal expansion, and specific heat of materials identified in Section 3 have been collected and organized. The data are representative for metals in the annealed condition and for composites in the as-fabricated condition, unless otherwise noted. All the available thermal property data for the various metals and alloys were plotted and curves were visually fitted. Data read from these curves are presented in tables at selected temperatures in both SI and English units according to the format shown in Table 2.7. Data for composite materials obtained directly from the referenced literature is presented in the format of Table 2.8. The English units are shown in parentheses. Data recorded in the superconducting state are marked (s) while data recorded in the normal state are marked (n).

Thermal conductivity and specific heat data were expanded in the low temperature range by the use of log-log plots. In some areas, extra curves were included to further expand the lower temperature data for better readability.

The thermal expansion data have been referenced to 273 K (32 F). The trends of the thermal expansion data did not change rapidly at the lower temperatures and therefore there was no need to expand the data in the low temperature range.

Impurities, heat treatment, and other conditions affect the low temperature properties of the materials. In some cases, curves showing the effects of these variations are included on the same graph.

Table 2.9 is a list of conversion factors that can be used to convert data to SI units or other familiar units.

2.3 Electrical Resistivity

The electrical resistivity of materials listed in Section 3 have been collected and organized in the temperature range from 0 to 300 K. The data are representative for metals and alloys in the annealed condition and for composites in the as-fabricated condition, unless otherwise noted. The data for the various metals and alloys were plotted and curves were visually fitted. Data read from these curves are presented in tables at selected temperatures in both SI and English units along with the thermal properties in the format shown in Table 2.7. Data for composite materials obtained directly from the referenced literature are presented in the format in Table 2.8.

Electrical resistivity data were expanded in the low temperature range by using log-log plots.

Impurities, variation in heat treatment, and other conditions affect the low temperature electrical resistivity of the materials. Several graphs show how these variables affect the electrical resistivity at low temperatures.

A list of conversion factors for electrical resistivity are also included in Table 2.9.

2.4 Magnetic Properties

Structural Materials

For the structural materials of specific interest in the development of superconducting machinery, some efforts to determine their magnetic properties have been noted for at least the last 25 years. However, recent interest in cryogenic structural applications has brought forth a resurgence of magnetic property determinations. Most of the data available from the scientific and technical literature is either in the form of magnetization (M) determinations or magnetic susceptibility (k or χ) determinations at various cryogenic temperatures of research interest. This is the case because the magnetic permeability (μ) of these materials generally differs from unity by only a very small amount (in cgsem units).

If available from the literature, values of k are reported in the magnetic property tables in this Handbook, since in some cases they provide a more useful alternative to μ . The volume susceptibility, k, is obtained from reported values of χ , the mass susceptibility, by multiplying the latter by the density of the material, ρ . Values of k are given in mksa units (as used in the SI system) which are 4π times the cgsem units generally used in the scientific literature. In some cases, particularly where no variation in μ may be discerned within computational limits, χ is also reported in the tables.

In the magnetic property tables, μ is also reported in mksa units. To obtain μ in mksa units, μ in cgsem units is multiplied by $4\pi \times 10^{-7}$. In the cgsem system, $\mu = 4\pi k + 1$. Therefore,

$$\mu_{\text{mksa}} = (4\pi k_{\text{cgsem}} + 1) 4\pi \times 10^{-7}$$
.

For the structural materials of interest, this relation produces extremely small numerical values of μ , but these satisfy the criterion of the consistent use of SI units for the principal values reported in the tables. It may be noted from the magnetic property tables that μ is somewhat dependent on the magnetizing force (H) applied to the material, even for the materials that have a low value of intrinsic magnetism. It may also be noted that copper is diamagnetic, producing magnetic moments that oppose the applied magnetic field; hence, the susceptibilities are shown with a negative sign.

Superconductive Materials

In correlating property data for a given superconductive material, or group of materials, to achieve optimum design in superconducting machinery, it is desirable to have data on critical current density (J_C) versus temperature (for a given applied magnetic field) or on critical field (H_C) versus temperature (for a given current density). Although a large research effort has been carried out during the past decade to determine the superconducting properties of various materials of technical interest, nearly all of the data produced has been in the form of J_C versus H (for a given temperature). The majority of this experimental data was obtained at 4.2 K. Although working with these data may require considerable extrapolation on the part of the design engineer, it is all that the scientific literature provides at the present time. Therefore, most of the superconducting property data presented in this Handbook is in the form of plots of J_C versus H. Data on the critical (or transition) temperature has been given if available. It may be noted from the data presented that superconductivity is a very structure-sensitive property for any given composition.

Alloy	Designation:

Specification:

Form: Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)			
Tension, Longitudinal TUS, MN/m² (ksi)(a) Av Mit Std. Deviation				N
TYS, MN/m² (ksi) Std. Deviation Av				
Elong, percent Av				
RA, percent Av. Mid No. of Spec. (No. of Heats)				
E, GN/m ² (10 ⁶ psi) Av				
No. of Spec. (No. of Heats) Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi) K _t = Mir No. of Spec. (No. of Heats)		3 11 1		
NTS, MN/m ² (ksi) K _t = Min No. of Spec. (No. of Heats)				
Tension, Transverse TUS, MN/m² (ksi) Std. Deviation				
TYS, MN/m² (ksi) Ave Mir Std. Deviation				
Elong, percent Av				
RA, percent Ave Mir No. of Spec. (No. of Heats)				
E, GN/m ² (10 ⁶ psi) Av				
No of Spec. (No. of Heats)				
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi) Av K _t = Mir No. of Spec. (No. of Heats)				
NTS, MN/m ² (ksi) 'K _t = Mir No. of Spec. (No. of Heats)				

(a) Ksi x 6.895 = MN/m²

18<

Alloy	Design	ation:

Specification: Form: Thickness, cm (in.): Condition:

Testing Temperature, K ((F)	297 (75)				
Compression, Longitudin	al					
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of F						
Ec, GN /m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of F	Heats)			ļ		
Compression, Transverse						
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of I						
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of I						
Shear						
SUS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of I						
G, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of I	Heats)		l)		- 22 g	
Impact, Charpy V						
Long., J(ft-lb) ^(a)	Avg Min					
No. of Spec. (No. of I						
Trans., J(ft-lb)	Avg Min					
No. of Spec. (No. of h						
Fracture Toughness						
K _{Ic} MN/m ^{3/2} (ksi√ in.) (t	Avg Min					
Orientation: — No. of Spec. (No. of I	Heats)					
K _{1E} , MN/m ^{3/2} (ksi√in.)	Avg					
(From PTSC spec.)(No. of Spec. (No. of I	-)Min					

References:

- (a) Ft-Ib x 1.356 = Joules. (b) Ksi $\sqrt{\ \text{in. x 1.093}}$ = MN^{3/2}.

Alloy Designation	Alloy	Design	ation
-------------------	-------	--------	-------

Specification: Form: Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)			
Fatigue, Axial Loading				
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)				
Ratio S _N /TUS at 10 ⁵ cycles				
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)				
Ratio SN/TUS at 10 ⁶ cycles				
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)			H	
Ratio S _N /TUS at 10 ⁷ cycles				
Fatigue, Flexural Loading SN at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency With R = and K _t = No. of S-N Curves (No. of Heats)				
Ratio S _N /TUS at 10 ⁵ cycles				
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency With R = and K ₂ = No. of S-N Curves (No. of Heats)				
Ratio S _N /TUS at 10 ⁶ cycles				
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)		\		
Ratio SN/TUS at 10 ⁷ cycles				

References:

Composite Class:	Туре:	
Specification:	Fiber:	
Layup:	Matrix:	
Nominal fiber volume fraction:	Nominal density:	
Nominal ply thickness:	Comments:	

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Tension, Longitudinal (0°)	(a)											
TUS, MN/m ² (ksi)	Avg Min											
References:												
E ₁ , GN/m ² (10 ⁶ psi)	Avg Min											
References:												
SE ₁ , MN/m ² (ksi) References:	Avg Min											
E ₂ GN/m ² (10 ⁶ psi) References:	Avg Min											
TPL, MN/m ² (ksi)	Avg					l				ł		
References:	Min											
Failure Strain, 10-3	Avg Min											
References:												
Poisson's Ratio												
References:												
NTS, MN/m ² (ksi) K _t = Raferences:	Avg Min											
NTS, MN/m ² (ksi) K _t = References: Tensi Tension, Transverse (90°)	Avg Min											
TUS, MN/m ² (ksi)	Avg Min											
References:												
E ₁ , GN/m ² (10 ⁶ psi)	Avg Min											
References:												
SE ₁ , MN/m ² (ksi) References:	Avg Min											
E ₂ , GN/m ² (10 ⁶ psi)	Avg									[
References:	Min											
TPL, MN/m² (ksi) References:	Avg Min											
Failure Strain, 10 ⁻³	Avg Min											
References:												
Poisson's Ratio												
References:												
NTS, MN/m ² (ksi) K _t = References:	Avg Min											
NTS, MN/m ² (ksi)	Avg				2.0	0-10						
K _t = References:	Min											

TABLE 2.5

Composite Class:	Type:	
Specification:	Fiber:	
Layup:	Matrix:	
Nominal fiber volume fraction:	Nominal density:	
Nominal ply thickness:	Comments:	

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20_	(-423)	4	(-452)		-
Compression, Longitudinal (0)°)(a)											
CUS, MN/m ² (ksi)	Max											
	Avg Min											
References:												
CPL, MN/m ² (ksi)	Max											
	Avg Min											
References:	141111		1									1
E, GN/m ² (10 ⁶ psi)	Avg											
References:	Min											
	(h)						1					
Compression, Transverse (90°												
CUS, MN/m ² (ksi)	Max Avg						1					
References:	Min											
	200											1
CPL, MN/m ² (ksi)	Max Avg											
	Min											
References:												
E, GN/m ² (10 ⁶ psi)	Avg Min											
References:							1					
In-Plane Shear			1									
SUS, MN/m ² (ksi)	Avg		1									
	Min											
References:							1					1
SPL, MN/m ² (ksi)	Avg Min								-			
References:					Ì							
G, GN/m ² (10 ⁶ psi)	Avg		1				1					
References:	Min											
Interlaminar Shear												
SUS, MN/m ² (ksi)	A				į		1					ļ
505, MN/M* (K\$I)	Avg Min											
References:							1					
SPL, MN/m ² (ksi)	Avg		j				j					İ
References:	Min											
G, GN/m ² (10 ⁶ psi)	Avg											
	Min		4									
References:									ĺ			
Impact, Charpy V(Cv), Izod(I	1											
Long., (0°) J (ft-lb) (a)	Avg											
References:	Min						ľ				ĺ	1
Trans., (90°) J (ft-lb)(b)	Avg										ļ	
	Min											
References:	1000				1							
Sheet, Normal, J (ft-lb)(c)	Avg Min										13/4	
References:				2.0	0-11							
(a) Warp direction in woven of (b) Fill direction in woven of (c) Press cure direction.				2,	.,						22<	

TABLE 2.6

Composite Class: Type:

Specification: Fiber:

Layup: Matrix:

Nominal fiber volume fraction: Nominal density:

Nominal ply thickness: Comments:

Fatigue

Load orientation:

Load direction:

Alloy Designation	on:
-------------------	-----

Specification: Form: Dimension: Condition:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m-1 K-1 Btu hr-1 ft-1 F-1												
No. of Spec.							1					
References:												
Thermal Expansion (T ₂₇₃ to T Longitudinal	2											
Percent No. of Spec.												
References:			·									
Titriti di Cost.												
Specific Heat			Į						1			
Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹												
No. of Spec.												
References:												
Electrical Resistivity											1	
Ohm m												
Ohm circular mil ft ⁻¹												
No. of Spec.												
References:												

Туре:	
Fiber:	
Matrix:	
Nominal density:	
Comments:	
	Fiber: Matrix: Nominal density:

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Thermal Conductivity											
Longitudinal (0°)(a) Watts m ⁻¹ K ⁻¹ Avg Btu hr ⁻¹ ft ⁻¹ F ⁻¹ Avg References:											
Transverse (90°)(b) Watts m-1 K-1 Avg Btu hr-1 ft-1 F-1 Avg References:											
Sheet Normal (c) Watts m ⁻¹ K ⁻¹ Avg											
Thermal Expansion			1		Ì				l		
Longitudinal (0°) ^(a) 10 ⁻⁶ ΔL/L Avg References:	1										
Transverse (90°)(b) 10 ⁻⁶ Δ L/L Avg References:											
Sheet Normal(c) 10-6 \(\Delta \) 'L Avg References:											1
Specific Heat											
Joules kg ⁻¹ K ⁻¹ Avg Btu lb ⁻¹ F ⁻¹ Avg References:											
Electrical Resistivity											
Longitudinal (0°)(a) Ohm m Avg References:											
Transverse (90°)(b) Ohm m Avg References:											
Sheet Normal ^(c) Ohm m Avg References:											

(b) Fill direction in woven cltoh.
(c) Press cure direction.

TABLE 2.7

Conversion Factors

Temperature (IPTS)

°F = 9/5 °C + 32 = 9/5 (°K-273.15) + 32 = °R · 459.67 °K = 5/9 (°F + 459.67) = °C + 273.15 = 5/9 °R

To Convert To	From	Multiply By
Thermal Conduc	tivity and Magnetothermal Conductivity	(Thermochemical Units)
*Watts m ⁻¹ K ⁻¹	Btu hr 1 ft 1 F - 1 Btu in. hr 1 ft 2 F - 1 Cal sec 1 cm - 1 C - 1 Watts cm - 1 C - 1	1.730 1.441 x 10 ⁻¹ 4.184 x 10 ² 1 x 10 ²
Btu hr-1 ft-1 F-1	*Watts m-1 K-1 Watts cm-1 C-1 Cal sec-1 cm-1 C-1 Btu in. hr-1 ft-2 F-1	5.782 x 10 ⁻¹ 57.82 2.419 x 10 ² 8.333 x 10 ⁻²
	Specific Heat (Thermochemical Units	
*Joules kg-1 K-1	Btu lb-1 F-1 Cal g-1 C-1	4.184 x 10 ³ 4.184 x 10 ³
Btu Ib-1 F-1	*Joules kg-1 K-1 Cal g-1 C-1	2.390 x 10-4 1
	Thermal Expansion	
Percent	*m m·1 in. in1 cm cm ⁻ 1	1 x 102 1 x 102 1 x 102
	Electrical Resistivity	
Ohm m	Ohm circular mil ft ⁻¹ Ohm cm	1.662 x 10 ⁻⁹ 1 x 10 ⁻²
Ohm circular mil ft ⁻¹	*Ohm m Ohm cm	6.015 x 10 ⁸ 6.015 x 10 ⁶

^{*} SI Units

3.0 SELECTED MATERIALS FOR DATA COLLECTION

Materials selected for data collection for the second revision of this Handbook are presented in Table 3.1. These materials have been selected from the following classes of materials:

Aluminum and aluminum alloys
Copper and copper alloys
Nickel alloys
Alloy steels
Stainless steels
Titanium and titanium alloys
Special metals and alloys
Composites
Polymers

The two major factors that were considered in selecting these materials were (1) is the material suitable for certain cryogenic components or does it have certain intrinsic properties at cryogenic temperatures for superconducting machinery? and (2) are property data available on the material at cryogenic temperatures?

This second revision also includes properties of welded materials where information was available. When data is reported, the welding method, the type of filler metal, test direction, and test material (i.e., weld metal, or base material plus weld metal) is given.

Because of certain aerospace applications, a considerable amount of data at cryogenic temperatures are available in the literature on alloys such as 2219 aluminum alloy, Type 301 stainless steel, and Ti-5Al-2.5Sn alloy. For other materials, applicable data from the literature may be limited to a few references or may not be available.

The heat treatments and/or processing conditions for the selected alloys are intended to represent conditions that would be most appropriate for cryogenic applications, e.g., conditions that would yield a suitable degree of toughness at cryogenic temperatures. At the same time, the condition of the alloy should be such that it represents a reasonable strength level for the alloy. As an example, mechanical property data are presented for welded Ti-6Al-4V (ELI) alloy in the solution-treated, annealed condition. The annealed alloy has better toughness and develops high strength at very low temperatures. Both the extra low interstitial (ELI) and the normal interstitial content versions of the alloy are considered although the alloy with normal interstitial levels has lower ductility and toughness.

The materials listed in Table 3.1 are divided into numbered sections and subsections to permit adding other materials within each section and subsection while retaining the same numbering system for presenting the data.

The numbering system used for the metals and alloys is carried through to the tables and graphs with additional code letters to identify the properties presented. The code letters are as follows:

ME Mechanical properties

C Thermal conductivity

E Thermal expansion

S Specific heat

R Electrical resistivity

TR Combined thermal and resistance properties

MR Magnetoresistance

MA Magnetic properties

Thus, the first graph on thermal conductivity of 1100 aluminum will be Figure 4.1.4-C1. The alloy code number 4.1.4 is for 1100 aluminum, the C indicates thermal conductivity, and the 1 is for the first figure of the series. Figures for thermal conductivity of 1100 aluminum for any temper will be found in this series. The data on welded alloys are indicated in the mechanical properties (ME) sections of the appropriate alloy section.

TABLE 3.1. NOMINAL COMPOSITIONS OF ALLOYS AND CORRESPONDING SECTION NUMBERS

ection 1.0.0	Aluminum and		Alloys						
4.1.0	Unalloyed	Unified No.			Cos	mposition in	Weight Perc	ent ^(a)	1
	Aluminum	System	Si	Cu	Mn	Mg	Cr	Zn	Others
4.1.1	99.99AI	A91199							
4.1.2	EC	A91145							(99.45 min AI)
1.1.3	1050	A91050	0.25	0.05	0.05	0.05		0.05	(99.50 min AI), 0.40Fe
.1.4	1100	A91100	1.0(Si+Fe)	0.05-0.20	0.05			0.10	(99.00 min AI)
2.0	2000 Series								
.2.1	2014	A92014	0.5-1.2	3.9-5.0	0.4-1.2	0.2-0.8	0,10	0.25	0.7Fe, 0.15Ti
.2.2	2219	A92219	0.20	5.8-6.8	0.2-0.4	0.02		0.10	0.3Fe, 0.02-0.10Ti
.2.3	2024	A92024		4.5	0.6	1.5			
.3.0	5000 Series								
4.3.1	5083	A95083	0.40	0.10	0.4-1.0	4.0-4.9	0.05-0.25	0.25	0.4Fe, 0.15Ti
4.3.2	5456	A95456		0.15	0.7	0.5	0,15		
1.4.0	6000 Series								
4.4.1	6061	A96061	0.4-0.8	0.15-0.40	0.15	0.8-1.2	0.04-0.35	0.25	0.7Fe, 0.15Ti
4.5.0	7000 Series								
4.5.1	7039	A97039	0.30 max	0.10 max	0.25	2.8	9.20	4.0	0.4 max Fe, 0.10 max T
4.5.2	7005	A97005	0.35 max	0.10 max	0.2-0.7	1.0-1.8	0.06-0.20	4.2-5.0	0.01-0.06Ti, 0.06-0.20Zr 0.35 max Fe
1.5.3	7006	-	0.10	0.04	0.22	2.24	0.12	4.10	0.17Fe, 0.01Ti
5.0.0	Copper and Cop	oper Alloys	CDA			Compositio	on in Weight	Percent ^(a)	
5.1.0	99.9+Cu		No.	Cu	Рь	Fe	Zn		Others
1.1	99.96Cu	C10100	101	99.96+				0.0003	max P, 0.001 max Pb
1.2	Electrolytic Tough Pitch	C11000	110	99.9+					,
1.3	OFHC	C10200	102	99.95					
1.4	Phosphorized	C12200	122	99.9+				0.02P	
	i nospiionzeu	012200	144	33.31				0.021	
2.0	Cu-Zn Alloys								
.2.1	80Cu-20Zn	C24000	240		5 max	0.05 max	20		
.2.2	70Cu-30Zn	C26000	260		7 max	0.05 max	30		
.2.4	90Cu-10Zn	C22000	220	90 0.0	5 max	0,05 max	10		
.3.0	Cu-Ni Alloys								
.3.1	90Cu-10Ni	C70600	706		5 max	1.0			9.0-11.0Ni
.3.2	80Cu-20Ni	C71000	710		5 max	1.0 max	1.0 max		: Mn, 19.0-23.0Ni
.3.3	70Cu-30Ni	C71500	715	Bal. 0.0	5 max	0.4-0.7	1.0 max	1.0 max	: Mn, 29.0-33.0Ni
.4.0	Cu-Be Alloys								
5.4.1	Cu Be(1.6-1.8)	C17000	170	Bal.					e, 0.2040Co
5.4.2	Cu-Be(1.8-2.0)	C17200	172	Bal.					3e, 0.20 min (Ni+Co) nax (Ni+Co+Fe)
5.5.0	Cu-Sn Alloys								
.5.1	95Cu-5Sn	C51800	518	Bal. 0.0	2 max			4.0-6.05	in, 0.10-0.35P
5.2	92Cu-8Sn	C52100	521		5 max	0.10 max	0.20 max		in, 0.03-0.35P
5.3	90Cu-10Sn	C52400	524	Bal. 0.0	5 max	0.10 max	0.20 max	9.0-11.0	Sn, 0.03-0.35P
6.0	Cu-Zr Alloy								
.6.1	Cu-0,2Zr (Amzirc)	C15000	150	99.8				0.10-0.2	20Zr
5.7.0	Cu-Cr-Cd Alloy			0.1				0.40.	AOA (Tables)
.7.1	Cu-0,4Cr-0.4Cd (PD-135)	_	~	Bal.				U.4Cr, 0	.4Cd (Te deox.)

⁽a) max = maximum, min = minimum.

Section 5.8.0	Cu-Al ₂ O ₃										
0.0.0	Alloys										
5.8.1	Cu+0.2Al2O3	(AL-10)	-	Bal.				0.2	Al ₂ O ₃ disper	sion	
5.8.2	Cu+0.7Al2O3	(AL-35)		Bal.				0.3	Al ₂ O ₃ disper	sion	
5.8.3	Cu+1.1Al2O3	(AL-60)	-	Bal,				1.1	Al2O3 disper	sion	
	(GlidCop										
	Alloys)										
5.9.1	Cu-A!	C61400							0-8.0AI, 1 0 mi 01 max Pb, 2.!		x Zn
6.0.0	Nickel and Cobe	it Alloys									
		Unified						(0)			
		No.			Compos	ition in We					
61.0	Ni-Cu Alloy	System	Ni	Cr	Fe	-	Si C	Othe			
6.1.1	K Monel (K-500)	N05500	Bal.		1.0	0.6 0.	15 0.15	29.5Cu, 2.8	AI, 0.5Ti		
6.2.0	Ni-Cr-Fe Alloys										
6.2.1	Inconel 600	N06600	Bal.	15.8	7.2	0.2 0.	2 0.04	0.10Cu			
6.2.2	Inconel X-750	N07750	Bal.	15.0	6.75	0.7	0.04	0.8AI, 2.5Ti	, 0,85Nb		
6.2.3	Inconel 718	N07718	Bal.	18.6	18.5	_			, 5.0Nb, 3.1M	D	
6.2.4	Inconel 706	N09706	39-44	16	Bal.	0.35 0.		0.35 max Al			
6.3.0	Controlled E-					max m	ex max	3Nb, 1.5-2.0	Ti		
0.3.0	Controlled Ex- pension Alloys										
6.3.1	Invar 36		36		Bal.						
6.3.2	Ni-Span C	_	42.1 (Ni+0	(c) 5.4	48.4	0.40		2.4Ti, 0.65A	.1		
6.3.3	Unnamed Inco	_	39.6	, 0.4	55.4		12 0.01	0.22AI, 1.46			
0.0.0	LEA Alloy		55.5		55.4	0.22		2.90Nb+Ta			
6.4.0	Pure Nickels										
6.4.1	High-Purity Ni	_									
6.4.2	Nickel "A"	_									
7.0.0	Alloy Steels				Соп	nposition in	Weight Pe	rcent ^(a)			
7.1.0	Nickel Steels		C max	Mn max	P max	S max	Si	Ni	Others		
7.1.1	9-Ni Steel	_	0.13	0.80	0.035	0.04	0.15-0.30	8.5-9.5			
7.1.2	18Ni(200)	_	0.03	0.10	0.01	0.01	0.10	17-19	8.5Co, 3.25M	Лo,	
	Maraging								0.20Ti, 0.10)AI	
7.2.0	Fe-Si Steel										
7.2.1	Transformer										
	Steel										
7.3.0	Carbon Steels	C10100	0.00.0.10	0.20.0.00	0.040	0.050					
7 3.1	AISI 1010	G10100	0.08-0.13	04,0-08,11	0,040	0.050					
7.4.0	Other Farrous N	laterials									
7.4.1	Armco Iron			0 20 0 00	0.025	0.035	0.2-0.35	5,0	[0.20-0.35Mo	0.05-0.124	
7.4.3	5-Ni Steel	Ma	0.15	0.30-0.60	0.035	0.035	0.2-0.35	0,0	0.02 max Ni		',
7,4.4	Iron (47-50)Ni A	Alloy									
8.0.0	Stainless Steels		C	Mn	P max	Com S	position in Si	Weight Pero	ent ^(a)	Mo	Others
8.1.0 8.1.1	300 Series AISI 301	\$30100		2.0 max		0.03 max		16-18	6-8	.,,,,	Culais
8.1.2	AISI 304	S30400		2.0 max		0.03 max	1.0 may	18-20	8-10.5		
8.1.3	AISI 304L	S30403		2.0 max		0.03 max		18-20	8-12		
8.1.4	AISI 310	\$31000		2.0 max		0.03 max		24-26	19-22		
8.1.5	AISI 316	S31600		2.0 max		0.03 max		16-18	10-14	2.0-3.0	
8.1.6	AISI 316	S32100		2.0 max		0.03 max		17-19	9-12	2.3-0.0	(5xC)Ti min
8.1.7	AISI 303	S30300		2.0 max		0.16 min	1.0 max	17-19	8-10	0.6 max	
			0.00		0.5			24.00	40.00	(or Zr)	
8.1.8	AISI 3105	S31008		2.0 max		0.03 max		24-26	19-22		(+0C) NIL : T
8.1.9	AISI 347	\$34700		2.0 max		0.03 max		17-19	9-13		(10×C)Nb+Ta
8.1.10 8.1.11	AISI 410 AISI 416	\$41000 \$41600	0.15 0.15	1.0 max 1.25 max		0.03 max	1.0 max 1.0 max	11.5-13.5 12-14		0.6 max	0.153 mln
			5,75	r.a.o max	0.00						
8.2.0 8.2.1	Other Stainless A-286	Steels K66286	0.05	1,4			0.4	15	26	1.25	0.2AI, 2.15Ti,
0.4.1		1100200	0.00	.,-							0.003B, 0.3V
8.2.2	Kromarc-58(b)	-	0.03	9.3	0.005	0.005	0.05	15.5	23	2.2	0.02AI, 0.008Zr,
			2.55	00		max		10 0 04 5	5535		0.016B, 0.16V, 0.1
			D OR may	8.0-10.0				19.0-21.5	5.5-7.5		
8.2.3 8.2.4	Armoo 21-6-9 Armoo 22-13-5	_		4.0-6.0			1.0 max		11.5-13.5	1.5-3.0	0.1-0.3Nb, 0.1-

9.2.0 Alpha Ti Alloys 9.2.1 Ti-5Al-2.5Sn	Section 9.0.0	Titanium and	Titanium Alloy	ys					111			
9.1.1 TI-65A 9.1.2 TI-75A 9.2.0 Apha Ti Allovy 9.2.1 Ti-6Al-2Ssn(c)	910	I hallowed Ti		A1								
9.1.2 Ti-76A 2.0 Alpha Ti Alloys 9.2.1 Ti-56A:2.55n ^(c) 4.0-6.0 2.0-3.0 0.50 0.20 0.15 0.07 0.020 0.30 9.2.2 Ti-56A:2.55n 4.7-6.6 2.0-3.0 0.20 0.12 0.08 0.06 0.0175 9.3.0 Alpha-Beta Ti Alloy 9.3.1 Ti-6A:4-1/4 5.5-6.5 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.05 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.05 0.015 (ELI) (CI) Ti-6A:4-1/4 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.05 0.05 0.05 0.05 0.05 0.05				AI	<u> 5n</u>		re mex	U max				Mn mex
9.2.1 Ti-5Al-2,5Sn (ELI) (d) 4.7-5.6 2.0-3.0 0.50 0.20 0.15 0.07 0.020 0.30 9.22 Ti-5Al-2,5Sn (ELI) (d) 4.7-5.6 2.0-3.0 0.20 0.12 0.08 0.05 0.0175 0.07 0.020 0.30 9.30 Alpha-Bets Ti Alloy (ELI) (d) 5.5-6.5 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (d) (eLI) (eLI) (eLI) (eLI) (eLI) (eLI) (eLI) (eLI) (eLI) (e	9.1.2							0.40				
Ti-SAI-2,ESS (ELI) (dd) 9.3.0 Alpha-Beta Ti Alloy 9.3.1 Ti-SAI-24 5.5-6.5 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 5.5-6.5 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 5.5-6.5 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 5.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI) (dd) 9.3.2 Ti-SAI-4V 6.5-6.75 3.5-4.5 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.	9.2.0	Alpha Ti Alloy	/s									
Ti-5Al-2, SSn (ELI)(d) 9.3.0 Alphe-Beta Ti Alloy 9.3.1 Ti-6Al-4V 5.5-6.5 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI)(d) 9.3.2 Ti-6Al-4V(c) 5.5-6.5 3.5-4.5 0.15 0.13 0.08 0.05 0.015 (ELI)(d) 9.3.2 Ti-6Al-4V(c) 5.5-6.75 3.5-4.5 10.0.0 Special Metals and Alloys 10.1.0 Nb and Nb Alloys 10.1.1 Nb_5n 10.1.2 Nb_5n 10.1.3 Nb-2r 10.1.1 Nb-Ti 10.1.5 Nb-Ti-Cu composites 10.2.1 V _G a Alloys AZ3H(SAI, 12n, 0.2Mn) Mg-Al-Mn Alloy 11.0.0 Gless-Epoxy 11.1.1 [81/Fpox 828] 11.1.2 [81/Fpox 828] 11.1.3 Seyon/NaSA Resin 2 11.2.0 Boron-Epoxy 11.3.1 AS/NaSA Resin 2 11.3.1 AS/NaSA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 Seyon-Rosin S	9.2.1	Ti-5Al-2.5Sn(c	•)	4.0-6.0	2.0-3.0		0.50	0.20	0.15	0.07	0.020	0.30
Alloy 1-6Al-4V 1-6Al-	9.2.2	Ti-5Al-2,5Sn (ELI) ^(d)	•	4.7-5.6	2.0-3.0		0.20	0.12	80.0	0.05		
9.3.1 Ti-6AI-4V	9.3.0											
9.3.2 Ti-6Al-AV ^(c) 5.56.75 3.5-4.5 10.0.0 Special Metals and Alloys 10.1.0 Nb and Nb Alloys 10.1.1 Nb 10.1.2 Nb ₃ Sn 10.1.3 Nb-Zr 10.1.4 Nb-Ti 10.1.5 Nb-Ti+Cu composites 10.2.0 V-Ga Alloys V-Ga Alloys V-3Ga 10.3.1 Magnesium Alloy AZ318 (3Al, 12n, 0.2Mn) Mg-Al-Mn Alloy 11.0.0 Composites 11.1.0 Glass-Epoxy 11.1.1 181/Epox 928 11.1.2 181/E-787 (58-68R) 11.1.3 S-901/NASA Resin 2 11.2.2 50 mil Boron/2387 11.3.0 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 1.5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene PCTFE Polyethoroxifiluoroethylene 12.1.1 PTFE Polyetvrilmoroethylene Polymetrijuroethylene Polymetrijuroethylene Polystyrene	9.3.1	Ti-6Al-4V	į	6.5-6.5		3.5-4.5	0.15	0.13	0.08	0.05	0.015	
10.1.0 Nb and Nb Alloys Nb Nb Nb Nb Nb Nb Nb N	9.3.2	Ti-6AI-4V(c)	,	5.5-6.75		3.5-4.5						
10.1.1 Nb 10.1.2 Nb ₃ Sn 10.1.3 Nb-Zr 10.1.4 Nb-Ti 10.1.5 Nb-Ti+Cu composites 10.2.0 V-Ge Alloys 10.2.1 V ₃ Ga 10.3.1 Magnesium Alloy AZ31B (3AL, 1Zn, 0,2Mn) Mg-Al-Mn Alloy 11.0.0 Composites 11.1.0 Gisse-Epoxy 11.1.1 181/Epox 828 11.1.2 1581/E-787 (58-68R) 11.1.3 5-901/NASA Resin 2 11.2.1 4.0 mil Boron/2387 11.3.1 Graphite-Epoxy 11.3.1 Graphite-Epoxy 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PGTFE Polyethorotrifluoroethylene 12.1.3 PTFE Polyetrafluoroethylene 12.3.1 PS Polyetyrene	10.0.0	•										
10.1.2 Nb ₃ Sn 10.1.3 Nb-Zr 10.1.5 Nb-Ti+Cu composites 10.2.0 V-Ga Alloys 10.2.1 V ₃ Ga 10.3.1 Magnesium Alloy AZ318 (3Al, 1Zn, 0,2Mn) Mg-Al-Mn Alloy 11.0.0 Composites 11.1.0 Gisse-Epoxy 11.1.1 181/Epox 828 11.1.2 1581/E-787 (58-68R) 11.1.3 S-901/NASA Resin 2 11.2.0 Boron-Epoxy 11.2.1 4.0 mil Boron/2387 11.2.2 5.0 mil Boron/2387 11.3.2 NT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyetvafluoroethylene 12.1.2 PTFE Polyetvafluoroethylene 12.1.3 PTFE Polyetvafluoroethylene 12.1.1 PS Polyetverne	10.1.0	Nb and Nb All	loys									
10.1.3 Nb-Zr 10.1.4 Nb-Ti 10.1.5 Nb-Ti+Cu composites 10.2.0 V-Ga Alloys 10.2.1 V ₃ Ga 10.3.1 Magnesium Alloy AZ31B (3AI, 1Zn, 0.2Mn) Mg-Al-Mn Alloy 11.0.0 Composites 11.1.0 Giase-Epoxy 11.1.1 181/Epox 828 11.1.2 1581/E-787 (58-68R) 11.1.3 S-901/NASA Resin 2 11.2.0 Boron-Epoxy 11.2.1 4.0 mil Boron/2387 11.2.2 5.0 mil Boron/2387 11.3.3 AS/NASA Resin 2 11.3.0 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychyloroethylene 12.1.3 PTFE Polyetrafluoroethylene 12.1.1 PS Polyettylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene	10.1.1	Nb										
10.1.4 Nb-Ti 10.1.5 Nb-Ti+Cu composites 10.2.0 V-Ga Alloys 10.2.1 V ₃ Ga 10.3.1 Magnesium Alloy AZ31B (3AI, 1Zn, 0,2Mn) Mg-Al-Mn Alloy 11.0.0 Composites 11.1.0 Gise-Epoxy 11.1.1 181/Epox 828 11.1.2 1581/E-787 (58-68R) 11.1.3 S-901/NASA Resin 2 11.2.0 Boron-Epoxy 11.2.1 4,0 mil Boron/2387 11.2.2 5,0 mil Boron/2387 11.3.3 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polyethylene 12.1.3 PTFE Polyetrafluoroethylene 12.1.1 PTFE Polyetrafluoroethylene 12.2.1 PMM Polymethylmethacrylete 12.3.1 PS Polyetrene	10.1.2	Nb ₃ Sn										
10.1.5 Nb-Ti+Cu composites 10.2.0 V-Ga Alloys 10.2.1 V ₃ Ga 10.3.1 Magnesium Alloy AZ31B (3AI, 1Zn, 0,2Mn) Mg-Al-Mn Alloy 11.0.0 Composites 11.1.0 Glee-Epoxy 11.1.1 181/Epox 828 11.1.2 1581/E-787 (58-68R) 11.1.3 S-901/NASA Resin 2 11.2.0 Boron-Epoxy 11.2.1 (4) mil Boron/2387 11.2.2 5.0 mil Boron/2387 11.3.3 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polyetrafluoroethylene 12.2.1 PMM Polymethylenehacrylate 12.2.1 PM Polymethylenehacrylate 12.3.1 PS Polyetyrene	10.1.3											
Composites	10.1.4	Nb-Ti										
10.2.0 V-Ga Alloys 10.2.1 V ₃ Ga 10.3.1 Magnesium Alloy AZ31B (3AI, 1Zn, 0.2Mn) Mg-Al-Mn Alloy 11.0.0 Composites 11.1.0 Is1/Epox 828 11.1.1 1581/E-787 (58-68R) 11.1.2 1581/E-787 (58-68R) 11.1.3 S-901/NASA Resin 2 11.2.0 Boron-Epoxy 11.2.1 4.0 mil Boron/2387 11.2.2 5.0 mil Boron/2387 11.3.1 AS/NASA Resin 2 11.3.2 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polyetrafluoroethylene 12.1.1 PF Polyetrafluoroethylene 12.2.1 PM Polymethylimethacrylate 12.2.1 PM Polymethylimethacrylate 12.3.1 PS Polystyrene	10.1.5	Nb-Ti+Cu										
10.2.1 V ₃ Ga 10.3.1 Magnesium Alloy AZ31R (3AI, 1Zn, 0.2Mn) Mg-AI-Mn Alloy 11.0.0 Composites 11.1.0 Glass-Epoxy 11.1.1 181/Epox 828 11.1.2 1581/E-787 (58-68R) 11.1.3 S-901/NASA Resin 2 11.2.0 Boron-Epoxy 11.2.1 4.0 mil Boron/2387 11.2.2 5.0 mil Boron/2387 11.3.0 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polyetrafluoroethylene 12.1.1 PTFE Polyetylene 12.2.1 PMM Polymethylmethacrylate 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene		composites										
10.3.1 Magnesium Alloy AZ318 (3AI, 1Zn, 0.2Mn) Mg-AI-Mn Alloy 11.0.0 Composites 11.1.1 181/Epox 828 11.1.2 1581/E-787 (58-68R) 11.1.3 S-901/NASA Resin 2 11.2.0 Boron-Epoxy 11.2.1 4.0 mil Boron/2387 11.3.1 4.0 mil Boron/2387 11.3.2 Grephite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 AT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polyethylene 12.1.3 PTFE Polyetrafluoroethylene 12.1.1 PTFE Polyetrafluoroethylene 12.2.1 PMM Polymethacrylate 12.3.1 PS Polystyrene												
AZ31B (3AI, 1Zn, 0,2Mn) Mg-Al-Mn Alloy 11.0.0 Composites 11.1.1 B1/Epox 828 11.1.2 1581/E-787 (58-68R) 11.1.3 S-901/NASA Resin 2 11.2.0 Boron-Epoxy 11.2.1 4.0 mil Boron/2387 11.2.2 5.0 mil Boron/2387 11.3.0 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polyetrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene												
Mg-Al-Mn Alloy 11.0.0 Composites 11.1.0 Gless-Epoxy 11.1.1 181/Epox 828 11.1.2 1581/E-787 (58-68R) 11.1.3 S-901/NASA Resin 2 11.2.0 Boron-Epoxy 11.2.1 4.0 mil Boron/2387 11.2.2 5.0 mil Boron/2387 11.3.0 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polyettrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene	10.3,1											
11.1.0 Glass-Epoxy 11.1.1 181/Epox 828 11.1.2 1581/E-787 (58-68R) 11.1.3 S-901/NASA Resin 2 11.2.0 Boron-Epoxy 11.2.1 4.0 mil Boron/2387 11.2.2 5.0 mil Boron/2387 11.3.0 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polytetrafluoroethylene 12.1.3 PTFE Polytetrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene												
11.1.1 181/Epox 828 11.1.2 1581/E-787 (58-68R) 11.1.3 S-901/NASA Resin 2 11.2.0 Boron-Epoxy 11.2.1 4.0 mil Boron/2387 11.2.2 5.0 mil Boron/2387 11.3.0 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polychlorotrifluoroethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polymethylmethacrylate 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene	11.0.0	Composites										
11.1.1 181/Epox 828 11.1.2 1581/E-787 (58-68R) 11.1.3 S-901/NASA Resin 2 11.2.0 Boron-Epoxy 11.2.1 4.0 mil Boron/2387 11.2.2 5.0 mil Boron/2387 11.3.0 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polychlorotrifluoroethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polymethylmethacrylate 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene	11 1 0	Glass-Enoxy										
11.1.2 1581/E-787 (58-68R) 11.1.3 S-901/NASA Resin 2 11.2.0 Boron-Epoxy 11.2.1 4.0 mil Boron/2387 11.2.2 5.0 mil Boron/2387 11.3.0 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polyetrafluoroethylene 12.1.3 PTFE Polyetrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene												
11.1.3 S-901/NASA Resin 2 11.2.0 Boron-Epoxy 11.2.1 4.0 mil Boron/2387 11.2.2 5.0 mil Boron/2387 11.3.0 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polyetrafluoroethylene 12.1.3 PTFE Polyetrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene		•										
11.2.1												
11.2.2 5.0 mil Boron/2387 11.3.0 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polytetrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene	11.2.0	Boron-Epoxy										
11.3.0 Graphite-Epoxy 11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polytetrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene		4.0 mil Boron/	/2387									
11.3.1 AS/NASA Resin 2 11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polytetrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene	11.2.2	5.0 mil Boron/	/2387									
11.3.2 HT-S/X-904 11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polytetrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene												
11.4.0 Boron-Aluminum 11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polytetrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene		AS/NASA Res	sin 2									
11.4.1 5.6 mil Boron/6061 12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polytetrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene	11.3.2	HT-S/X-904										
12.0.0 Polymers 12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polytetrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene												
12.1.1 PE Polyethylene 12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polytetrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene			0001									
12.1.2 PCTFE Polychlorotrifluoroethylene 12.1.3 PTFE Polytetrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene												
12.1.3 PTFE Polytetrafluoroethylene 12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene												
12.2.1 PMM Polymethylmethacrylate 12.3.1 PS Polystyrene												
12.3.1 PS Polystyrene												
					ate							
12.4.1 PVA Polyvinylacetate												

⁽a) max = maximum, min = minimum. (c) Normal interstitial contest. (d) ELI = extra low interstitial type.

TABLE 12 INDEX TO METALS AND ALLOYS, FORMS, THICKNESSES, CONDITIONS, AND PROPERTIES FOR DATA REPORTED IN THIRD REVISED EDITION

	į									Mechan	Mechanical Properties						1		- 1	Thermal-Electrical Properties	rical ricopers			70007
1	.,						Weld Propert			1	naile	S		Fracture		Moduli	<u> </u>	ပ	Magneto		ø	Œ	MR	1 1
10 10 10 10 10 10 10 10	Meterial	Code	Form	Thickness (I				ءَ ج		Ultimet				KIC. KIE.	ND/ap						Specific	Electrical Resistivity	Magneto- Resistance	Prop P
######################################	Abenimum Altoys Aluminum Aluminum		70	u	Polestine A				M.E.						6	_	٤			=	161696	<u> </u>		
1	7577		1						1	1 61								-						
	X0-H112			ı w	H112	MIG	1100	AW	E Z	-	-	-												
The control of the	90		Bar	L 1	0 (¥ :	2,F1						,	•							
	38		D .		00				ž							m	Ħ		,F1,F2	1,61	1,F1,F2			
10 10 10 10 10 10 10 10	1478	1	Sheer	<	T6				ME	-							E	1				-		
	478		Sheer	a o a	8 t	5	7043	30.4	¥ 2	2,4		**			3,6	2								
10 10 10 10 10 10 10 10	14.T6		, Tes	a as	5 5	16	2014	A W	¥ E	- 2	4.2													
10 10 10 10 10 10 10 10	14.76		Sheet	00 (2	51	2319	AW	¥.	4.3					F3									
10 10 10 10 10 10 10 10	4T6		Sheer	a U	9 2	2	4043	A A	¥ ¥	4 10														
Color Property Color Pro	416		Sheet	o	9 ;	716	4043	AW	M.	5.1														
10 10 10 10 10 10 10 10	410		Pless	۵ د	2 st	9 0	716	¥ ¥	₩ W	5.2														
Color Fig. Color	4T6		Plate	٥٥	92	M	6043	¥ Y	¥	5,4														
Column C	4.76		Plate	٥	16	MIG	5356	AW	ME	5.5														
Column C	476		Plate	O 4.	7.87	5 X	2558	AW	M M	5.6 6.				_										
4.21 Plane E 1782 11G 4040 AW ME 9.1 Fed 4.21 Plane F 7 To 4040 AW ME 9.1 Fed 4.22 Plane F 7 To 4040 AW ME 9.1 Fed 4.23 Plane G 7 To 4040 AW ME 9.3 Fed 4.24 Plane G 7 To 4040 AW ME 9.3 Fed 4.25 Plane G 7 To 4040 AW ME 9.3 Fed 4.25 Plane G 7 To 4040 AW ME 9.3 Fed 4.25 Plane G 7 To 4040 AW ME 9.4 Fed 4.25 Pl	4-T661		Plate	ш	1987				Z E	0 00	60			· თ										
Color Colo	4.162		Plate	wı	162	51	2319	AW	¥.	1.6					Z									
4.21 Savet 8 178 Mile 10 10 10 10 10 10 10 10 10 10 10 10 10	4T661		Para Para	u C	162	2	200	A	¥ ¥	9.5	0	c			7									
14.23 Sweet A 714 ME 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4T6			.	3 2				34	10.		?												
4.23 Sweet A 13	416	-	Forging		T6				ME	=														
4.23 Shear 8 173 S	413		S See C	∢ •	£ 1				¥ 2	~ °														
4.23 Photo 6 774 ME 4 4 4.23 Photo 6 774 ME 6 6 6 4.23 Bar F 774 ME 7 7 7 4.23 Bar F 775 ME 7 7 4.24 Bar F 775 ME 7 7 4.25 Shart B 775 ME 7 7 4.27 Shart B 775 ME	£13		Shear	(ap	, p				ME	4 15														
4.23 Bar F 174 4.24 Bar F 174 4.25 Bar F 174 4.25 Bar F 174 4.27 Bar F 174 4.28 B	4136		See .	co u	136				W II	4 u	₹ (
4.23 Bar F 174 4.23 Bar G 1786 4.23 Bar F 178 4.23 Bar G 1786 4.23 Bar F 178 4.23 Bar G 1786 4.22 Share B 1787 4.23 Share B 1787 4.24 Share B 1787 4.25 Share B 1787 4.27 Share B 1787 4.28 Share B 1787 4.28 Share B 1787 4.29 Share B 1787 4.20 Share	4-T4		Plan	و ر	3 4				Z E	9														
1	4-TBS1		Plette	9 1	1851				M.	~	7													
4.23 Bar F 1786 ME 10 111 TR 1,F1 1,F1 2,F1 1,F1 2, L1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.T4		Bar	Ł LL	2 2				υ u. Σ Σ	20			ø											
42.3 Bar F 1786 ME 12 11 TR 1/F1 1/F1 1/F1 1/F1 2.2	4186		Bar	. u.	186				Z	10			,											
The color of the	4-196		ž š	u. (186				¥ :	:	•	,	Ξ											
42.2 Sheet A TB7 42.2 Sheet B TEZ MIG 2219 AW ME 7.2 Sheet B TEZ MIG 2219 TG AW ME 7.2 Sheet B TEZ MIG 2219 AW ME 7.2 Sheet B TEZ MIG 2219 AW ME 7.3 Sheet B TEZ MIG 2219 AW ME 7.3 TG AW ME 7.4 TA AW ME 7.5 Sheet B TEZ MIG 2219 AW ME 7.5 TG AW ME 7.1 TG AW AW ME 7.1 TG AW ME 7.1 TG AW AW AW ME 7.1 TG AW AW AW AW AW AW	0		Ī	,	0				Ē	7		v					E.			1,F1		1,F1		
422 Shart A TB7 ME 1 422 Shart B TB2 ME 2 19 AW ME 73 422 Shart B TB2 ME 2219 AW ME 73 422 Shart B TB2 ME 2319 AW ME 73 422 Shart B TB2 ME 2319 AW ME 73 422 Shart B TB2 ME 2319 AW ME 73 422 Shart B TB2 ME 2319 AW ME 73 422 Shart B TB2 ME 2319 AW ME 73 422 Shart B TB2 ME 2319 AW ME 73 422 Shart B TB2 ME 2319 AW ME 73 422 Shart B TB2 ME 2319 AW ME 73 422 Shart B TB3 ME 2319 AW ME 73 422 Shart B TB3 ME 2319 AW ME 73 422 Shart B TB3 ME 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 422 Shart B TB3 TG 2319 AW ME 73 423 Shart B TB3 TG 2319 AW ME 73 424 Shart B TB3 TG 2319 AW ME 73 425 Shart B TB3 TG 2319 AW ME 73 425 Shart B TB3 TG 2319 AW ME 73 426 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 428 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 427 Shart B TB3 TG 2319 AW ME 73 428 Shart B TB3 TG 2319 AW ME 73 428 Shart B TB3 TG 2319 AW ME 73 428 Shart B TB3 TG 2319 AW ME 73 429 AW ME 73 420 Shart B TB3 TG 2319 AW ME 73 420 Shart B TB3 TG 2319 AW ME 73 420 Shart B TB3 TG 2319 AW ME 73 420 Shart B TG 2319 AW ME 73 420 Shart B TG 2319 AW ME 73 420 Shart B TG 2310 AW	24.T4	4.2.3			7. 2												E P				2,F1	2,62		
4.22 Shart A T87 ME 1 4.22 Shart B T81 4.22 Shart B T82 4.22 Shart B T82 4.22 Shart B T82 4.22 Shart B T82 4.22 Shart B T76 4.22 Shart B T78 4.23 Shart B T78 4.24 Shart B T78 4.25 Shart B T78 4	24-T86	423			. 2 6												<u> </u>			4,F2		2, 4, 7, 7,		
4.2.2 Share B 752 4.2.2 Share B 752 4.2.2 Share B 753 4.2.2 Share B 753 4.2.2 Share B 753 4.2.2 Share B 754 4.2.2 Share B 752 4.2.2 Share B 752 4.2.2 Share B 752 4.2.2 Share B 752 4.2.2 Share B 753 4.2.2 Share S 753 4.2.3 Share	19.187		Sheet	«	T87				ME	(
4.2.2 Sharet 8 T81 4.2.2 Sharet 8 T87 4.2.2 Sharet 8 T64 4.2.2 Sharet 8 T62 4.2.2 Sharet 8 T64 4.2.2 Sharet 8 T64 <td>19.762</td> <td></td> <td>5 5</td> <td>10 60</td> <td>162</td> <td></td> <td></td> <td></td> <td>¥ ¥</td> <td>N 65</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	19.762		5 5	10 60	162				¥ ¥	N 65					•									
4.2.2 Shart B TB77 ME 6 6 4.2.2 Shart B TG6-66 TG 2319 AW ME 7.3 4.2.2 Shart B TG TG 2319 AW ME 7.3 4.2.2 Shart B TG2 MIG 2319 HTA ME 7.4 7.4 4.2.2 Shart B TG2 TIG 2319 HTA ME 7.5 7.7 4.2.2 Shart B TG2 TIG 2319 AW ME 7.3 7.7 4.2.2 Shart B TB1 MIG 2319 AW ME 7.10 7.10 4.2.2 Shart B TB1 TIG 2319 AW ME 7.10 4.2.2 Shart B TB1 TIG 2319 AW ME 7.10 4.2.2 Shart B TB1 TIG 2319 AW ME 7.10 4.2.2 Shart B TB1	19-181		Sheart		181				W	S														
4.2.2 Sheet B 131	19-787		Tage of	6 0 c	187				¥ :	9					7									
4.2.2 Sharet 8 TG TIG 2319 AW ME 7.3 A 7.4	19-T31		Sheet	o co	19E#0	116	2319	AW	¥ ¥	. 7														
4.2.2 Sheet 8 182 MIG 2319 162 ME 75 75 42.2 Sheet 8 162 MIG 2319 1762 ME 75 75 75 42.2 Sheet 8 1762 171G 2319 1762 ME 7.8 7.8 42.2 Sheet 8 1761 MIG 2319 1762 ME 7.8 42.2 Sheet 8 1761 MIG 2319 1762 ME 7.9 42.2 Sheet 8 1761 MIG 2319 AW ME 7.10 42.2 Sheet 8 1781 MIG 2319 AW ME 7.10 42.2 Sheet 8 1781 171G 2319 AW ME 7.10 42.2 Sheet 8 1781 171G 2319 AW ME 7.11 42.2 Sheet 8 1781 171G 2319 AW ME 7.12 42.2 Sheet 9 1781 171G 2319 AW ME 7.12 42.2 Sheet	19-16		Sheer	60	16	116	2319	AW	ME	7.3														
4.2.2 Shaper 8 TR2 T1G 2319 AW ME 7.8 16.2.2 Shaper 8 TR2 T1G 2319 AW ME 7.8 17.2 Me 7.8 17.1 Me 7.1 Me 7.	9162		Speed	m oc	291	9 C	2319	T62	¥ 1	7.4		4												
4.2.2 Sheet B T62 T1G 2319 T62 IAE 7.7 4.2.2 Sheet B T62 T1G 2319 T62 ME 7.8 4.2.2 Sheet B T781 MIG 2319 Aw ME 7.9 4.2.2 Sheet B T781 MIG 2319 Aw ME 7.10 4.2.2 Sheet B T781 T1G 2319 Aw ME 7.11 4.2.2 Sheet B T781 T1G 2319 Aw ME 7.11 4.2.2 Sheet B T781 T1G 2319 Aw ME 7.12 4.2.2 Sheet B T781 T1G 2319 Aw ME 7.12 4.2.2 Sheet B T781 T1G 2319 T81 ME 7.13	19-162		Sheer		162	116	2319	WA	Z.	7.6		9												
4.2.2 Sheet B TB1 MIG 2319 AW ME 79 Aged ME 710 Aged ME 711 Aged ME 712 Aged ME 713 Aged M	19.162		1	5 0 0	182	5 5	2319	28 55	E S	7.7	7	7												
4.2.2 Sheet 8 781 MIG 2319 Aged ME 7.10 4.2.2 Sheet 8 781 TIG 2319 AW ME 7.11 4.2.2 Sheet 8 781 TIG 2319 AW ME 7.12 4.2.2 Sheet 8 781 TIG 2319 T81 ME 7.13	19-181		Sheet	. 60	<u> </u>	MIG	2319	AN.	Ξ	2.00		o,												
4.2.2 Sheet 8 T81 T1G 2319 AW ME 7.12 4.2.2 Sheet 8 T81 T1G 2319 T81 ME 7.13 4.2.2 Sheet 8 T87 T1G 2319 AW ME 7.13 4.2.2 Sheet 8 T87 T1G 2319 T81 ME 7.13	19-781		Sheet	60 6	ě	MIG	2319	Aged	₩;	7.10	7	10												
4.2.2 Shert B T81 T1G 2319 T81 ME 7.13	19.781		Sheer	0 60	<u> </u>	2 2	2319	* *	ש ע ב	7.12														
10 CHAMPS 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19-781		Sheer	m (181	TIG	2319	T81	N.	7.13														

TABLE 3.2 INDEX TO METALS AND ALLOYS, FORMS, THICKNESSES, CONDITIONS, AND PROPERTIES FOR DATA REPORTED IN THIRD REVISED EDITION

Sheet Impact Touchant Expects Expect										Mechanical Properties	Properties							Thermal-Ele	Thermal-Electrical Properties	•	Properties
Column C														Fracture		Dynamic					M. gnetic
		;					Weld Pro	sertios		Tensile		Shear		Toughness			S				_
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Marterial	Code		Code		Process				Prop 1			Charpy <	KIC, KIE, JIC	N-S NP/ep		Prop Ther			_	
2.22 Swell 6	2219-187	4.2.2		20	187	MIG	2319	Aged	ME	7.15		9									
1,000 1,00	2219-18/	4.2.2		1 0 (181	9 9	2319	AW V	E S	7.16 7.	16										
422 Plane D 1989 422 Plane E 1989 422 Plane E 1989 422 Plane E 1989 422 Plane E 1989 423 Plane E 1989 424 Plane E 1989 425 Plane E 1989 426 Plane E 1989 427 Plane E 1989 428 Plane E 1989 428 Plane E 1989 429 Plane E 1989 420 Plane E 1989 420 Plane E 1989 421 Plane E 1989 422 Plane E 1989 423 Plane E 1989 424 Plane E 1989 425 Plane E 1989 426 Plane E 1989 427 Plane E 1989 428 Plane E 1989 429 Plane E 1989 420 Plane E 1989 421 Plane E 1989 422 Plane E 1989 423 Plane E 1989 424 Plane E 1989 425 Plane E 1989 426 Plane E 1989 427 Plane E 1989 428 Plane E 1989 429 Plane E 1989 420 Plane E 1989 421 Plane E 1989 422 Plane E 1989 423 Plane E 1989 424 Plane E 1989 425 Plane E 1989 426 Plane E 1989 427 Plane E 1989 428 Plane E 1989 429 Plane E 1989 420 Plane E 1989 421 Plane E 1989 422 Plane E 1989 423 Plane E 1989 424 Plane E 1989 425 Plane E 1989 426 Plane E 1989 427 Plane E 1989 428 Plane E 1989 429 Plane E 1989 420 Plane E 1989 421 Plane E 1989 422 Plane E 1989 423 Plane E 1989 424 Plane E 1989 425 Plane E 1989 426 Plane E 1989 427 Plane E 1989 428 Plane E 1989 429 Plane E 1989 420 Plane E 1989 421 Plane E 1989 422 Plane E 1989 423 Plane E 1989 424 Plane E 1989 425 Plane E 1989 426 Plane E 1989 427 Plane E 1989 428 Plane E 1989 429 Plane E 1989 420 Plane E 1989 421 Plane E 1989 422 Plane E 1989 423 Plane E 1989 424 Plane E 1989 425 Plane E 1989 426 Plane E 1989 427 Plane E 1989 428 Plane E 1989 429 Plane E 1989 420 Plane E 1989 421 Plane E 1989 421 Plane E 1989 422 Plane E 1989 423 Plane E 1989 424 Plane E 1989 425 Plane E 1989 426 Plane E 1989 427 Plane E 1989 428 Plane E 1989 429 Plane E 1989 420 Plane E 1989 421 Plane E 1989 422 Plane E 1989 423 Plane E 1989 424 Plane E 1989 425 Plane E 1989 426 Plane E 1989 427 Plane E 1989 428 Plane E 1989 429 Plane E 1989 420 Plane E 1989 421 Plane E 1989 422 Plane E 1989 423 Plane E 1989 424 Plane E 1989 425 Plane E 1989 426 Plane E 1989 427 Plane E 1989 428 Plane E	2219-181	422		٥	181	2			ME		00										
Color Colo	2219-T87	4.2.2		0	T87				Z.												
Column C	2219-T6E46	4.2.2		٥	T6E46	· i		!	Z.		17										
Color Colo	7919-0	4.2.2		.	100	2	2319	Ī	Z Z				;	2							
4.22 Phrs. E	2219-T6E46	422		, w	T6E46				, W				2	•							
422 Pares E 17644 TIG 2319 AW NE 123 4 AW NE 124	2219-T851	4.2.2		w	T851				ME	2		2									
Column C	2719-T6E46	4.2.2		ш	T6E46	TIG	2319	AW	ME	2.3											
Care Property Care Pro	Z19.T62	4.2.2		w (162	S S	2319	AW		12.4											
Column C	2219-181	4.22		w t	181	5 K	2319	MA.		125											
4.22 Phree E Tig MIG 2319 HT MIG 2319 HT MIG 128 128 128 142 14	2219-187	422		u w	187	2 5	2319	Aged AW		2.0	12	,									
4.2.2 Plane E 7787 TIG 2319 AW ME 123 129 129 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2219-T87	422		w	T87	S W	2319	Ŧ		2.8	!										
4.22 Plane E 187 TIG Nove AW ME 12.10 12.10 13.10 14.22 Plane C 22 Plane C 2	2219-T87	4.2.2		w.	T87	TIG	2319	AW				6									
4.22 Plane G	2219-T87	4.2.2		ш	187	116	None	AW													
4.22 Plane G TRE-0 AM ME 15.2 16.2 4.22 Plane H T181 MIG 2319 AW ME 16.19 16.19 16.19 4.22 Plane H T181 MIG 2319 AW ME 18.19 16.19 16.19 4.22 Plane H T187 MIG 2319 AW ME 21.2 21.2 4.22 Plane H T187 MIG 2319 AW ME 21.3 21.4 4.22 Plane H T187 MIG 2319 AW ME 21.3 21.4 4.22 Plane H T187 MIG 2319 AW ME 21.2 21.5 4.22 Plane H T187 MIG 2319 AW ME 21.6 21.6 4.21 Plane D MIG 2319 AW ME 21.6 21.8 21.8 4.21 Plane E H1113 MIG	2219.187	4.2.2		ט נ	187									35							
4.22 Plate 6 Tight MIG 2319 AW ME 18:3 18:19 18:19 18:19 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2219-16E46	4.7.2		5 (16:40					5.7	+	,									
4.22 Pletes H T81	2219-1861	422		o 0	1851	MIG	2319	WA		5.3	0	7									
4.2.2 Phene	2219-781	4.2.2		I	181					6.17											
4.22 Sheet A+H T87 MIG 2319 AW ME 21.1 2.1.2 2.1	2219-T87	4.2.2		I	187							19									
1.5 1.5	2219-T87	4.2.2		Ą	T87					2											
1.22 Plate H 1787 E8 2.319 AAP ME 2.11 2.12 2.12 2.12 2.12 2.13	7010100			1	101				777												
4.2.2 Plate H TB7 EB 2399 AW ME 21.2 21.2 21.2 21.3 42.2 Plate 42.2 Plate H TB7 MIG 2399 AWM ME 21.6 21.3 21.6 <td>2219-T81</td> <td>422</td> <td></td> <td>: 1</td> <td>181</td> <td>MiG</td> <td>2319</td> <td>WA</td> <td></td> <td>1.1</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2219-T81	422		: 1	181	MiG	2319	WA		1.1				-							
4.2.2 Plate H TB7 EB 2319 Aged ME 21.3 21.3 4.2.2 Plate H TB7 MIG 2319 Aged ME 21.5 21.6 4.2.2 Plate H TB7 MIG 2319 Aged ME 21.5 21.6 4.2.2 Plate H TB7 Pulse 2319 Aged ME 21.5 21.7 4.2.2 Plate H TB7 Pulse 2319 Aged ME 21.8 21.8 4.2.2 Plate H TB7 Pulse 2319 Aged ME 21.8 21.8 4.2.1 Sheet H TB7 Pulse 2319 Aged ME 21.8 21.9 4.3.1 Sheet B H TB7 Pulse 2319 Aged ME 21.8 21.9 4.3.1 Sheet B H TB7 AW ME 3.1 AW ME 3.1 AW ME 3.1 AW ME 3.1 BW 4.3.1 BW	2219-T87	422		I	T87	EB	2319	AW			.2										
4.2.2 Plane H 187 MIG 2319 Apr MIE 215 216 4.2.2 Plane H 187 MIG 2319 Apr ME 215 216 4.2.2 Plane H 187 Pulse 2319 Apr ME 21 216 216 4.2.2 Plane H 187 Pulse 2319 Apr ME 21 216 219 4.2.1 Plane H 187 Pulse 2319 Apr ME 21 219 219 4.3.1 Plane D H113 MIG 5183 AW ME 21 219 22 4.3.1 Plane E H113 MIG 5183 AW ME 3.1 22 4.3.1 Plane E H113 MIG 5183 AW ME 3.4 3.4 3.4 4.3.1 Plane E H121 MIG 5183 AW ME 3.6 4.3 3.4	2219-187	42.2		ı	787	E.B	2319	Aged			٠.										
1.52 Piese H Tig	2219187	4.2.2		. 1	18/	5 E	2319	AW			4, 0										
4.2.2 Plate H T87 Polise 2319 AW ME 21.7 21.7 4.2.2 Plate H T87 Pulse 2319 Aged ME 21.8 21.8 4.3.1 Sheat H T87 Pulse 2319 Aged ME 21.8 21.8 4.3.1 Plate H T87 Pulse 2319 Aged ME 21 21.9 4.3.1 Plate H T13 MIG 5183 AW ME 3.1 3.1 2.2 4.3.1 Plate H H113 MIG 5183 AW ME 3.3 A 3.3 A 2.2 4.3.1 Plate H H113 MIG 5183 AW ME 3.5 AW ME 3.5 AW ME 3.6 AW ME 3.6 AW ME 3.6 AW AW AW ME 3.6 AW <td>2219.187</td> <td>422</td> <td></td> <td>: 1</td> <td>187</td> <td>W.</td> <td>2319</td> <td>Aged</td> <td></td> <td></td> <td>ú</td> <td></td> <td></td> <td>21.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2219.187	422		: 1	187	W.	2319	Aged			ú			21.6							
4.2.2 Plate H TB7 Pulse 2319 Aged ME 21.8 21.8 21.8 21.8 21.8 21.9 <	2219-187	422		I	187	Pelse	2319	AW			7.										
4.2.2 Plate TrG	2219-T87	4.2.2		ī	187	Pals	2319	Aged			α										
4.2.2 Plate H TB7 Pulse 2319 Aged ME 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td>TIG</td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td>						TIG					,										
4.31 Shreet 8 H38 MIG 5183 AW ME 1 1 2 2 2 4.31 Plate 2 2 2 2 2 2 2 2 3.3 4.31 Plate 1 1 1 1 1 1 2 3 4 4 4	2219-T87	4.2.2		I	187	Pulse TIG	2319	Aged	M.					21.9							
4.3.1 Plane D H113 MIG 5183 AW ME 2 2 2 4.3.1 Plane 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 2 3 <t< td=""><td>S083-H38</td><td>4.3.1</td><td>1</td><td>80</td><td>н38</td><td></td><td></td><td></td><td>ME</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	S083-H38	4.3.1	1	80	н38				ME		-										
19 Plate 19 19 19 19 19 19 19 1	5083-H113	4.3.1		٥٥	H113	(•	NE S						2						
4.3.1 Plate E 0 MIG 5983 AW ME 3.1 3.2<	5083H113	43.1		۵ ۵	H113	N S	5183	X X	и ц 2 2						2.2						
4.3.1 Plates E 0 MIG 5583 AW 3.1 3.3 4.3.1 Plate E H113 MIG 5566 AW ME 3.2 3.3 4.3.1 Plate E H321 MIG 5566 AW ME 3.4 3.3 4.3.1 Plate E H321 MIG 5366 AW ME 3.6 4.3.1 Plate E H321 MIG 5366 AW ME 3.6 4.3.1 Plate E H113 MIG 5366 AW ME 3.6 4.3.1 Plate E H113 MIG 5366 AW ME 3.6 4.3.1 Plate E H113 MIG 5183 AW ME 3.6 4.3.1 Plate E H321 AW 5183 AW ME 3.6 4.3.2 Sheet B H24 TIG 4043 AW AW 3.6 4.3.2 Sheet B H24 <td>5083-0</td> <td>4.3.1</td> <td></td> <td>) W</td> <td>0</td> <td>,</td> <td>3</td> <td></td> <td>ME</td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	5083-0	4.3.1) W	0	,	3		ME		6				1						
A	5063-0	4.3.1		נט נ	0	5IW	5183	•	M :	3.1	3.1										
4.3.1 Plate E H321 MIG 5183 AW ME 3.4 3.4 4.3.1 Plate E H321 MIG 5183 AW ME 3.5 3.5 4.3.1 Plate G O MIG 5566 AW ME 3.5 3.6 4.3.1 Plate G O MIG 5566 AW ME 3.6 3.6 4.3.1 Plate G O MIG 5566 AW ME 3.6 3.6 4.3.1 Plate E H113 ME ME 6 6 4.3.1 Plate E H113 ME ME 9 6 4.3.1 Plate H O MIG 5183 AW ME 9 4.3.1 Plate H O MIG 5183 AW ME 9 4.3.2 Shert B H24 TIG 4043 AW A 4 4.3.2 Shert B H324	5083-H113	4.3.1		שע	511	2 2	5556 5556	A A	Z Z	3.2					3.3						
4.3.1 Plate E H321 MIG 5356 AW ME 35 35 4.3.1 Plate G O MIG 5556 AW ME 36 36 4.3.1 Plate G O MIG 5556 AW ME 36 36 4.3.1 Plate G O MIG 5596 AW ME 38 36 4.3.1 Plate G O MIG 5596 AW ME 38 36 4.3.1 Plate E H113 ME A ME 5 5 4.3.1 Plate H O MIG 5183 AW ME 3 A 4.3.1 Plate H O MIG 5183 AW ME 9.1 A 4.3.2 Sheet B H24 TIG 4043 AW A 4 4 4.3.2 Sheet B H32.1 ME 3 A 4 4	5083-H321	4.3.1		ıwı	H321	N S	5183	¥ X	M.	3.4	3.4				?						
4.3.1 Plates E H321 MIG 5556 AW ME 3.6 3.6 4.3.1 Plates G O MIG 5183 AW ME 3.8 4.3.1 Plates G O MIG 5356 AW ME 3.8 4.3.1 Plates E H113 ME 5 5 4.3.1 Plates E H113 ME 5 5 4.3.1 Plates H O MIG 5183 AW ME 9.1 4.3.2 Plates H O MIG 5183 AW ME 9.1 4.3.2 Short B O MIG 5183 AW ME 9.1 4.3.2 Short B H24 TIG 4043 AW ME 3 2 2 4.3.2 Short B H321 ME 4 4 4	5083-H321	4.3.1		ш	H321	MIG	5356	AW	NE N	3.5	3.5										
4.3.1 Plate G 0 MIG 5356 AW ME 3.7 4.3.1 Plate E H113 ME 5 5 4.3.1 Plate E H132 ME 5 6 4.3.1 Plate E H132 ME 7 7 4.3.1 Plate E H132 ME 9 4.3.1 Plate H 0 MIG 5183 AW ME 9 4.3.2 Short B H24 T1G 4043 AW ME 3 4.3.2 Short B H24 T1G 4043 AW ME 3 4.3.2 Short B H321 ME 444 AW ME 3	5083 H 721	4.3.		ш (H321	S S	5556	AW	M.	9.6	3.6										
4.3.1 Plate Plate Description ME 4 A </td <td>5083-0</td> <td>5.00</td> <td></td> <td>9 0</td> <td>00</td> <td>2 2</td> <td>5356</td> <td>A A</td> <td>¥ 3</td> <td>.8</td> <td></td>	5083-0	5.00		9 0	00	2 2	5356	A A	¥ 3	.8											
4.3.1 Plate E H113 ME 5 5 4.3.1 Plate E H13 ME 6 ME 4.3.1 Plate E H321 4.3.1 Plate H O MIG 5183 AW ME 9.1 4.3.2 Short B H24 T1G 4043 AW ME 3 4.3.2 Short B H321 4.3.2 Short B H321 4.3.2 Short B H324 4.3.2 Short B H324 4.3.3 Short B H324 4.3.3 Short B H324 4.3.4 Short B H324 4.3.5 Short B H327	5083-0	4.3.1		B/H	0				Z.	-											
4.3.1 Plate E OTI 2 ME D D ME D D ME D D D D	2000				-																
4.3.1 Plate E H113 ME 7 7 6 4.3.1 Plate H 0 MIG 5183 AW ME 9. 4.3.2 Plate H 0 MIG 5183 AW ME 9.1 4.3.2 Short B H24 TIG 4043 AW ME 3 4.3.2 Short B H34 TIG 4043 AW ME 3 4.3.2 Short B H324 MG MG ME 9.1 6.3.4 Short B H324 MG	5083-0	4.3.1		u u	20				Σ Σ Ψ Ψ	0	2				LC.	-					
43.1 Plate H O MIG 5183 AW ME 9 43.1 Plate H O MIG 5183 AW ME 9 43.2 Sheet B V A MIG 5183 AW ME 9 43.2 Sheet B H24 TIG 4043 AW ME 1 43.2 Sheet B H24 TIG 4043 AW ME 1 43.2 Sheet B H24 TIG 4043 AW ME 1	5083-H113	4.3.1		w.	H113				Σ												
4.3.1 Plate H O MIG 5183 AW ME 9.1 4.3.1 Plate H O MIG 5183 AW ME 9.1 4.3.2 Sheet B O MIG 4043 AW ME 1 4.3.2 Sheet B H24 TIG 4043 AW ME 4 4.3.2 Sheet B H24 TIG 4043 AW ME 4	5083-H321	4.3.1		ш;	H321				WE.		7										
4.3.1 Figure 11 0 MIG 5183 AW ME 9.1 4.3.2 Sheet 8 0 ME 1 4.3.2 Sheet 8 H24 TIG 4043 AW ME 2 4.3.2 Sheet 8 H24 TIG 4043 AW ME 3 4.3.2 Sheet 8 H24	5083-0	4.3.1		I I	0 0																
4.3.2 Sheet 8 O ME 1 2 A A A A A A A A A A A A A A A A A A	50830	4.3.1		=	00	MIG	5183	AW		. 5											
4.3.2 Sheet B H24 TIG 4043 AW ME 2 2 4.3.2 Sheet B H24 TIG 4043 AW ME 4 4.3.2 Sheet B H321	5456-0	4.3.2			0						-										
4.3.2 Sheet 8 H321 NE	5466-H24	4.3.2		80 G	H24	110	4043	3			2										
	5466-H321	4.3.2		o co	H321	2					4										

TABLE 3.2 INDEX TO METALS AND ALLOYS, FORMS, THICKNESSES, CONDITIONS, AND PROPERTIES FOR DATA REPORTED IN THIRD REVISED EDITION

·					Weld Prope	riles		Tensile		Shear	Impact	Fracture Toughness Fatigue		Dynamic Moduli(b)	u ?	2	Magneto	ш	s	Œ	M.	Hon
Material	Marii Code Form	Thickness ⁽¹⁾ m Code	Condition[c,d,e)	e) Process(i)	Filler F	Post-Weid(k) Treatment	P. 09	Ultimate Elastic Prop Prop	Elastic Prop NTS	SUS S	Charpy		1 2	a) ag	Prop	d.		Thermal	Specific	A A	Magneto- Resistance	Prop Perm Cods Suspe
5458-H321		8	H321	TIG	5556	AW	ME 5		2													
	4.3.2 Sheet	as os	H343 H343	116	5.35.6	WA	ME 100	9					F1,F2	2								
		60	Н343	TIG	5556	WA	ME 8						F3									
		٥٥	00						თ	9												
5456-H321		۵۵	H321				Z Z			2 =												
		ш	0				ME 12		12													
		w u	H321					_	13				3									
		u u	H321	MIG	5556	AW	ME 15						<u> </u>									
		В	H321	MIG	9229	AW							16									
		w u	H343	O.W.	9368	43.00			17													
		שוש	H343	2 5	5356	AW	ME 19															
5456-H321	4.3.2 Plate	U	H321						20													
	- (CHOLL I				1		-						-	-						
	4.4.1 Sheer	∢ ∢	* *				ME 0.1		0.0													
9061-16	-	< <	16																			
9061-T6	-	00 1	16					~					,									
061-16	4.4.1 Speed	10 00	9 7	M	4043	WA	ME N		3.5				m									
9061-T4	4.4.1 Sheet	65	14	N N	4043	16		. ~	3.2													
061-T6		6 0 (9 1	WIO I	4043	AW			3.3													
061-76	4.4.1 Plate	1 0 C	9 9	2	4043	AW	ME 3.4		4													
91.190	4.4.1 Plate	0	16							2	9											
061.76	4.4.1 Plate	ய	16	2	4043	30		Ξ.	5													
061-T6	4.4.1 Plate	w	9	N S	4043	Ė	ME 6.	6.2	6.2													
061-76	4.4.1 Plate	ш	7.6 T.	S E	5356	¥ F		e -	6.3													
1991-1991		0	T661	,	}				7													
2061-T651	4.4.1 Plate	ĊΨ	T651								œ											
9T-190	_		16				ME FI				10											
2061-T6	4.4.1 Bar		910										=									
3061-74	- ~		- F					- 2														
	4.4.1 Rod		191				ME 11	11.3														
	4.4.1 Forgin	g.	9 9						2						Ħ			-		-		
		80	16				ME 1		-													
		m m	TRRI						2 .					7								
	4.5.2 Plate	ı	T6351				ME 2.2		2.2													
			T5351				- I		8													
7006-T6	4.5.3 Sheer	60 0	76						- c													
	4.5.3 Sheet	0 00	3 3	(1)			ME 3		v 63													
	4.5.1 Sheet	4	16						-													
		6 3 6	16				ME 2	2	2				•									
		o 00	16	MIG		Aged			63				ກ									
		8	16	Fusion	-	AW		2														
	_	O	161		E PAIG		ME 4															
7039-T61	4.5.1 Sheet	U (161	116	None	AW	ME 4.															
		۵ د	16.761	2	None	Aged	ME 4.2	7	LC.													
	_	Q	76	MIG	5083	Aged		-	υĊ													

TABLE AZ INDEX TO METALS AND ALLOYS, FORMS, THICKNESSES, CONDITIONS, AND PROPERTIES FOR DATA REPORTED IN THIRD REVISED EDITION

Thickness (I)			-	- Carlon	Mechanical Properties						1	3	- 1	Thermal Electrical Properties	al Properties		-	Properties
fo de	W	ed ies			Tensile	Shear	Impact		Fatigue	Dynamic Moduli(b)				ш	ø	œ	A.R.	
- T L- U	Process(i)	Filler Po	Post-Weld ^(K)	Prop Ultimat Code Prop	Ultimate Elastic Prop Prop NTS		Charpy V		N.S NP/ep	я, в, о,	Prop Code	Cond.	Cond.	Thermal	Specific	Electrical Resistivity	Magneto- Resistance	Code Sussept
T64 1				ME 5.4 ME 6,F1	100											10		
				WE 6.1	9													
	MIG 5039		Apad	ME 6.2	9 9													
				WE 6.4	6.4													
					6.5													
				ME 6.6	9.6													
	0000		****	ME 6.7) u													
16.61					9 60													
	MIG 5039		AW	9														
				WE 7	7													
191				Z.			_	80										
				ME 8.1	80.1													
				6	6													
					10													
19				11	=													
19					12													
											H	1,F1		1,F1		1,F1		
											E						F1,F2,F3	
peled												1,61		1,F1	1,F1,F2	1,F1,F2		
Etched, CD,																		MA
paled																		MA 2
Pema																		
pojed																		
Annealed																		
To the state of				101														
annewled																		
person				ME 2														
CR																		
HR, annu yled			-	ME 3,F1														
HR, snnesied,			_	ME 4														
CR																		
Annealed											Œ	1,61						
Annealed				4E 1 F1					V6.	-								
3. annealed			_															
HR, annealed,				ME 3														
CR																		
HR, annealed				ME 4														
Tr, anneseo,																		
Ceres reliment				8 37	4													
000000000000000000000000000000000000000																		
Hand drawer					,													
Agend drawn				- O	•													
Vac appealed				9 0	c													
Daipainie					n													
Cold drawn				ME 20,F1	9													
Annealed											4₽	1,F1	1,F2	1,F1	•	1,F1	1,F1	
Annealed							i											MA
annealed																		
HR, annealed,				ME 2														
pelaeuna			-	NE 3														
HR, Phinested,			_	ME 4														
Annealed			_		5													
Annealed				ME F1		9												
drawn					7 7													

State Stat								Mec	Mechanical Properties						,	Thermal Electrical Properties	al Properties			Megnetic
Mart 1 2 2 7 7 7 7 7 7 7 7	Wald Properties	Weld Properties	Weld Properties	Weld Properties	Weld Properties				Tensile						Magneto		S	œ	Æ	Magnetic
1 2 2 TR	Condition(C.d.e) Process(i) Alloy Treatment	Thickness ¹ : Code Condition(C.d.e) Process ⁽¹⁾ Alloy Treatment	Condition(C.d.e) Process(i) Alloy Treatment	F.ller Post Weld's J Process(1) Alloy Treatment	Post Weld's			Prop Ultin		SUS G		Np/ep			al Thermal		Specific	Resettivity		
1		Annasled	Annasled											- 1						
1 2 7 78 1,51	5.2.1 Annealed	Annealed	Annealed											- 1			1,61			
1 2 2 7 7 7 7 7 7 7 7	Special 20 00 00 00 00 00 00 00 00 00 00 00 00	60 60	Stress relieved																	
1 2 2 TR 1/3 1/5	5.2.2 dar F 3.4 hard 5.2.2 Bar F 3.4 hard	ւաւա	3/4 hard 3/4 hard							4										
			Annealtus				- 1	ł						TR1 1,F1	2,F2					
1 2 2 TR 1, F1		Annesled	Annealed											TR 1,F1			1,F1			
1	52.4 Bar F Annealed 5.2.4 Bar Annealed 5.2.4 Annealed		Annealed Annealed Annealed						-								1,F1,F2	1,5		
1	Strip		Annested																	MA F1
THE 1/FT 1/FT 1/FT 1/FT 1/FT 1/FT 1/FT 1/FT	5.3.1 Plate E Annealed	ய	Annealed																	
1 1 0 2 TR 1,F1 1,F1 3 4 TR 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F			Annesled Homogenized														1,51	1,41		MA .
0.1 TR 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F	5.3.2 Plate E Annealed MtG 80Cu-2::Ni AW 5.3.2 Plate E Annexised MtG 80Cu-2::Ni AW	E Annealed MiG 80Cu-20Ni	MIG 80Cu-20NR	80Cu-20Ni		AW														
1 1 2 TR 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F	Plate E	E Annealed MJG 70Cu-30Ni	MIG 70Cu-30Ni	70Cu-30Ni		AW		j			2.0									
1	F Arnealed F Annealed An ealed	F Arnealed F Annealed An ealed							-							1,F1		1,51		
2 5 1 2 6 6 6 6 7 7 7 7 8 1 5 1 1 1 1 2 TR 1 5 1 1 5 1 1 5 1 1 1 1 1 1 1 1 1 1 1		≪ 0	AT FTA					M 2					0.1							
9 9, F1 5	Sheet 8	0 00	1/2 H																	
9, F1 6 6 6 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8		eo e0,	1/2 HT					ME G	m											
9, F1 9 TR 1, F1 1	Bar F	u u	STA																	
9,F1 9 TR 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 2,F1 2 3	. 11. 0		Cold drawn																	
1 1 1 2 TR 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F	Bar		Cold drawn,																	
1 1 1 2 TR 1,F1 1 1 TR 1,F1 1 1	5.4.2 Age hardened	aged Age hardened	aged Age hardened													1,F1		1,F1		
1 1 1 2 TR 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F	5.5.1 Bar F Cold drawn 5.5.1 Bar F Cold drawn		Cold drawn Cold drawn																	
1 1 1 2 TR 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F	Bar F		Annesing Full hard				1		-					¥ ;		14.				
1 1 1 2 TR 1,F1 1,F1 1,F1 1,F1 2,F1 3	5.5.3	Attrested	Arrivated											E E		1,F1	F. E.			
1 1 1 2 TR 1,F1 1,F1 1,F1 1,F1 2,F1 3	5.6.1 Bar F Anneled, cold crawn,		Annesled, cold grawn,				3		-											
1 1 1 2 TR 1,F1 1,F1 1,F1 1,F1 2,F1 2,F1 3	5.6.1 Bar F Annealed,		aged Annealed,					ME		6										
1 1 1 2 TR 1,F1 1,F1 1,F1 1,F1 2,F1 3	cold drawn, aged	cold drawn, aged	cold drawn, aged																	
1 1 1 2 TR 1,F1 1,F1 1,F1 1,F1 2,F1 3	5.7.1 Extrusion F Aged 5.7.1	u.	Aged						-					Œ		1,1				
1,F1 1 1 1 1 3 3	5.9.1 Bar F Annesied 5.9.1 Bar F Annesied		Annesied				1			<u> </u>										
1,F1 1 2,F1 2	5.9.1		Annesled							'				- 1		1,F1		1,F1		
	Nickel Alloys K Monel (K-500) 6.1.1 Sheet A Aged K Monel (K-500) 6.1.1 Sheet B Aged K Monel (K-500) 6.1.1 Sheet B Aged	∢ ໝ ໝ	Aged Aged Aged									·								

TABLE 3.2 INDEX TO METALS AND ALLOYS, FORMS, THICKNESSES, CONDITIONS, AND PROPERTIES FOR DATA REPORTED IN THIRD REVISED EDITION

Faligue Modulib C Madulib C Madu						-				Mariante de la como de	2011						1		I hermal E. actrical Properties	LIGHTIME			
10 10 10 10 10 10 10 10							Mala Benne			1				1	Dynamic			၁	u	u	a	8	Megn
10 20 20 20 20 20 20 20	Material	Code				Process(1)	1	Post Weld(k) Treatment	Prop U	Humate Elest Prop Prop				da/da	E, G,						Electrical	Magneto- Resistance	
11 2004 2 10 10 10 10 10 10 10	K Monel (K-590) K Monel (K-500)	1	1	80 80	Annealed Annealed	116	K Monel	AW	1	2.3	3.1												
1 1 1 1 1 1 1 1 1 1	K Monel (K-500) K Monel (K-500)			co co	Annealed CR (1/2 H),	116	K Monei	Aged															
11 12 12 12 13 14 15 15 15 15 15 15 15	K Monel (K-500)	6.1		60	aged CR (1/2 H),				ME					3.5									
10 10 10 10 10 10 10 10	K Monel (K-500)			80	Aged	TIG	K Monel	AW		¥													
10 10 10 10 10 10 10 10	K Monel (K 500) K Monel (K 500)			LL LL	Aged					±,		S											
	K Monel (K-500)			u.	Aged				ш ∑					9									
10 10 10 10 10 10 10 10	K Monet (K-500)				Aged											Æ			F.				
10 10 10 10 10 10 10 10	Income 600	6.2.1	1	4	CR																		
	Inconel 600	6.2.1		∢ u	Cold drawn						m			2									
1.2.2 Shell A	Incomet 600	62.1		u. u	Cold drawn							4											
Column C	Out of the last	200	1							1	1												
52 Sheet A Anchoshood, ME 3 3 3 4 52 Sheet B Anchoshood, ME 3 3 3 4 52 Sheet B Anchoshood, ME 41 3 3 3 4 52 Sheet B Anchoshood, ME 41 42 44 52 Sheet B Anchoshood TiG Incompt Angle ME 41 44 52 Sheet B Anchoshood TiG Incompt Angle ME 41 44 52 Sheet B Anchoshood TiG Incompt Angle ME 41 44 52 Sheet B Anchoshood TiG Incompt Angle ME 44 52 Sheet B Anchoshood TiG Incompt Angle ME 5 5 52 Sheet B Anchoshood TiG Incompt Angle ME 5 5 52 Sheet B Anchoshood TiG Incompt ME 5 5 53 Sheet B Anchoshood TiG Incompt ME 5 5 54 Sheet B Anchoshood TiG Incompt ME 5 5 55 Sheet B Anchoshood TiG Incompt Tig TiG Incompt Tig	OC / C INIONII	7.7.0		(aged.				ب ا		-												
6.2.2 Sheet 8 Annealed Anneal	Income X-750	6.2.2		∢	Annealed,				ME					2									
State Bandarised Tight	Income! X-750	6.22		6 0	Annealed.						e												
6.2.2 Sheet 8 Annealed 71G Income Any ME 41 6.2.2 Sheet 8 Annealed 71G Income ME 43 Annealed 71G Income ME 43 6.2.2 Sheet 8 Vacanian 71G Income Apad ME 43 Annealed 71G Income Apad ME 43 6.2.2 Plate 0 Annealed 71G Income Apad ME 5 5 6	Inconel X-750	6.2.2		80	Annealed,				ME					4									
6.22 Sheet 8 Annealed 71G N.7990 Awd ME 4.3 6.22 Sheet 8 Annealed 71G N.7990 Awd ME 4.3 6.22 Sheet 8 Annealed 71G N.7990 Awd ME 4.4 6.22 Sheet 8 Annealed 71G N.7990 Awd ME 4.4 6.22 Sheet 9 Annealed 71G N.7990 Awd ME 6.1 6.22 Sheet 9 Annealed N.7990 Awd ME 6.1 6.22 Sheet 9 Annealed N.7990 Awd ME 7.5 6.23 Sheet 9 Awd ME 7.5 6.24 Sheet 9 Awd ME 7.5 6.25 Sheet 9 Awd M	Inconel X-750	6.2.2		œ	Annealed	716	Inconel	AW															
6.2.2 Sheet 8 Annaelled, 245.050. Vice ann. 11G Informed 1 11G Informed 2 25 Plets 0 Annaelled, 245.050. Vice ann. 11G Informed 2 25 Plets 0 Annaelled, 245.050. Vice ann. 11G Informed 2 25 Plets 0 Annaelled, 245.050. Vice ann. 11G Informed 2 25 Plets 0 Annaelled, 245.050. Vice ann. 246.050. Vice annaelled, 245.050. Vice ann. 246.050.	Inconel X-750	6.2.2		60	Annealed	TIG	X-750 Inconel	Ayed		.2													
6.2.2 Plate D Wee, Junt. 71G 1169 Viec, Junt. 11G 11G 11G 11G 11G 11G 11G 11G 11G 11	Inconel X-750	6.2.2		60	Annealed	TIG	X-750 Inconet	Aged		3													
6.22 Plate D Americal D American D Americal	Incomel X-750	6.2.2		φ	Vac. ann.,	TIG	x-750 In 69	Vac. ann.,															
6.2 Plate D Anneaded addressed	Inconel X-750	62.2		٥	aged Annealed,			page			S												
6.2.2 Plante D HPIP/STDA ME 6.1 6.1 F2 6.2.2 Plante D HPIP/STDA ME 6.2	Inconel X-750	6.2 2		٥	aged Annealed,				ME			9											
6.2.2 Bar F Annesled, aged ME 62 6.2 6.2.2 Bar F Annesled, aged ME 7,F1 6.2 6.2.2 Bar Annesled, aged ME 101 10.1 10.3 F2,F4 6.2.2 Bar F Complex ME 103 10.3 F5 F2,F4 6.2.2 Bar H ST*** TTG In 69 AW ME 103 10.3 F5 6.2.2 Bar H ST*** TTG In 69 AW ME 103 10.5 F5 6.2.2 Bar H ST*** Vec., EB Norm AW ME 103 10.6 10.6 6.2.2 Bar H ST*** Vec., EB Norm AW ME 103 10.0 10.10 6.2.2 Bar H ST*** Vec., EB Norm AW ME 103 10.10 10.10 6.2.2 Forging STDA Ame ME 103 10.10 10.10 10.10 6.2.2 Forging STDA ME 11 1,F1 1,F1 1,F1 1,F1 MA 6.2.2 Forging STDA ME 11 1,	Inconel X-750	6.2.2		۵	Page					-	6.1			F2									
6.22 Bar F Complex ME 101 10.1 10.1 F2.54 6.22 Bar F Complex ME 102 10.3 F5.54 6.22 Bar F Complex ME 103 10.3 F5.54 6.22 Bar H ST TIG In 69 AW ME 103 10.3 F5.54 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 10.3 F5.5 6.22 Bar H ST ST, aged ME 10.3 10.3 F5.54 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.22 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.23 Stock ST Vex. EB None ST, aged ME 10.3 F5.5 6.24 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5 6.25 Bar H ST Vex. EB None ST, aged ME 10.3 F5.5	Inconel X:750 Inconel X:750	6.2.2		۵ س	HIP/STDA Annesled.					.2 F1	6.2												
6.22 Bar F Complex 6.22 Bar F Complex 6.22 Bar G Complex 6.22 Bar H ST TIG In 69 AW ME 103 10.1 F5. 6.22 Bar H ST Vec., EB None AW ME 103 10.3 F5. 6.22 Bar H ST Vec., EB None ST, aged ME 103 10.0 10.0 6.22 Bar H ST ST ST Med ME 104 10.0 10.0 10.0 6.22 Bar H ST ST ST Med ME 105 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Inconel X-750	6.2.2			aged Annealed,							80											
6.2.2 Bar F Complex ME 10 10.1 F3f4 6.2.2 Bar G Complex ME 10.3 10.3 F5f4 6.2.2 Bar H ST T1G In 69 AW ME 10.3 F5f4 6.2.2 Bar H ST Vec., EB None AW ME 10.7 10.7 6.2.2 Bar H ST Vec., EB None AW ME 10.0 10.10 6.2.2 Bar H ST Vec., EB None AW ME 10.1 10.10 6.2.2 Bar H ST DA None AW ME 10.1 10.10 10.10 6.2.2 Bar H ST DA ME 1.7 1.7 1.7 1.7 6.2.2 Forging G ST DA ME 1.2 1.7 1.7 1.7 MA 6.2.2 Forging G ST DA ME 1.7 1.7 1.7 1.7 MA </td <td>Inconel X-750</td> <td>6.2.2</td> <td></td> <td>u.</td> <td>aged Complex</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Inconel X-750	6.2.2		u.	aged Complex									6									
6.2.2 Bar H ST NE 10.3 10.3 10.3 FS 6.2.2 Bar H ST T1G In 69 AW ME 10.6 In 64 FS 6.2.2 Bar H ST Vec., EB None AW ME 10.6 In 65 In 66 In 66 In 66 In 66 In 67 In 66 In 67 In 66 In 67 In 67 In 67 In 66 In 67	Income X-750	62.2		u. c	Complex					010	10.1			F3 F4									
6.22 Bar H ST TIG in 69 AW ME 10.4 10.4 6.22 Bar H ST TIG in 69 AW ME 10.4 10.5 10.6 6.22 Bar H ST Vec., EB None ST, aged ME 10.5 10.8 10.8 6.22 Bar H ST Vec., EB None ST, aged ME 10.9 10.9 6.22 Bar H ST Vec., EB None ST, aged ME 10.9 10.9 6.22 Bar H ST Vec., EB None ST, aged ME 10.9 10.9 6.22 Forging Aged Vec., EB None ME 10.1 10.10 10.0 10.0 6.22 Forging G STDA ME 12.1 1.F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,	Incorel X-750	6.2.2		· I	ts					0.3	10.3			F5.									
6.22 Bar H ST TiG In 69 AW MF 106 106 6.22 Bar H ST Voc., ER None AW ME 103 107 6.22 Bar H ST Voc., EB None AW ME 103 108 6.22 Bar H ST Voc., EB None AW ME 103 108 6.22 Forging Aged Voc., EB None AW ME 11 1010 6.22 Forging G STDA ME 12 1.F1 1,F1 1,F1 1,F1 1,F1 1,F1 MA 6.22 Rod STDA ME 12 1.F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1	Inconel X-750 Inconel X-750	6.2.2		ιt	, ts	T16		AW		0.4	10.5												
6.2.2 Bar H ST Vec, E8 None St, aged ME 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	Incore! X-750	6.2.2		r	Complex	TIG		AW		9.0	10.6												
6.2.2 Bar H ST Vec., E8 None ST, aged ME 10.9 10.9 6.2.2 Foreign 6.2.2 Fo	Income X-750	6.2.2		c x	. ts	Vac., EB		AW Aged		0.8	10.8												
6.2.2 Foreigner Good Aged Mee 11 ME 12 12 6.2.2 Foreigner Good STDA ME 12:1 12 TR 1,F1 1,F1 1,F1 1,F1 MA 6.2.2 Foreigner Good STDA ME 12:1 ME 12:1 1,F1 1,F1 1,F1 1,F1 MA 6.2.2 Foreigner Good STDA Mee 1:1 ME 1:1 1 MA MA MA MA 6.2.3 Sheet A Amenied Good A Amenied Good ME 1:1 1:1 1:1 MA MA	Inconel X-750 Inconel X-750	6.2.2		II	ST. seed	Vac. EB		ST, aged AW		0.9	10.10												
6.2.2 Forging G STDA ME 12.1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,	Income! X-75G	6.2.2			Aged					_													
6.2.2 Forging G STDA ME 12.2 TR 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F	Inconel X-750	62.2			STDA					2.1		7											
6.22 Rod ST MA STDA ME 1 1 ME 1 M	Incomel X-750	6.2.2			STDA				ME				12.2				1.61	-			1 61		
6.2.3 Sheet A Annealid aged ME 1 1 ME 1 1 1 6.2.3 Sheet A Annealid aged MF 1 1 1	Inconel X-750 Inconel X-750	6.22			STDA													•					
The state of the s	Income 718	6.2.3		4	Annealed, aged				ME 1		- :												

TABLE 3.2 INDEX TO METALS AND ALLOYS, FORMS, THICKNESSES CONDITIONS, AND PROPERTIES FOR DATA REPORTED IN THIRD REVISED EDITION

Magnetic	Magnetic	Bussept.																													151251							1				
-		Prop Code																													4											
	₹	Magneto																																								
	œ	Electrical Resistivity																													1,61							1,F1				1
roperties	S	Specific E Heat Re																													-							1				-
Thermal-Electrical Properties	ш	Thermst Sp Expansion																													_											
Thermal	فِ ا	101																													1,F			į	-			1,F1			1	
	Megneto																														1,F2											
	٥	Prop Thermal Code Cond.																													F.							:				
	12 m			,																											H.			F				Ħ			Ĕ	
	Dynamic Moduli(b)	В, С,	!																																		~					
	Fatigue	da/dN S-N									ů	7	io.									F4	œ																	2		
	- 25		i																1	E.				ŭ	6.00														U)			
	Fracture 1 Toughness	Charpy KIC, KIE, V JiC																								13			16.2	18.4	į		7	4								
																										13		16							0.1	;						-
	Shear							0	_																					~												
roperties		Elastic Prop NTS			c. 6	-	<u> </u>	_	-		c	า 🔻		5.1							ď	5		;	12	:	15	18.1		16.3		-	m									
Mechanical Propertie	Tensile	Ultimate Elestic Prop Prop					1.8		1.11		r	ກ		5.1		r.	;		6.2	6,6			00	-																		
Me		Prop Urci Code Pr	2.5	4.4		_	m n	1.20	1.11	1.13		л м		п 5,7	5.3	т. 19. г. 4. г.		6.1		6.3		7,F1	∞	10,F1	. 2		# E	я 15		E 16.3	,	-	m				E,		~	lu.	63	-
			¥ ¥	M	ž	ME	×	Σ	M	Σ	ME	Z	2	2 2	¥	¥ 2	¥.	led, ME	W	Z Z	1	¥ 3	¥ ¥	M	ž	Σ:	Z Z	Z Z	×	ME		ž:	¥ ¥	¥	¥ ₩		Z Z		¥	Z	ME	N.
	8	Post-Weid(k) Treatment	A ged	Aged	Aow		N: V	Aged	WA	Aged				WA		W A	Ċ	Anneale	Aged	Aged Aged	W									STA			STA	STA	AW	Relieve						
	Weld Propert	Filler	None	OUE	euo euo	?	900	None	4	None				Proposel 718		Inconel 718		Inconel 718	Inconel 718	None Inconet 718	Proposi 718	or a lauron								Inconel 718			conel 718	Inconel 718	Invar 36							
		Process(i)						TIG DIA		110				716		716				EB N										116			T1G 1		T16							
		Condition(C,d.el p	71G								pede 'pe	d, aged	pede 'pe			Annealed, aged T			į.	₩ ~	1		Annealed, aged	pege 'pe	od, aged	pede 'pe	page, pe	page 'pa					۲	F-			UMB	2	resled,	resled,	Aged, tempered	-
		- 1	Annesled	Annesle	Annesia	20% CM	20% CA	20% CM	30% CF	30% CF	Annesh	Annesh	Annesie	চচ	Annesia	Anneste	Annesk		TS	t. ts	Anneal	Annealed,	Anneale	Annesti	Annesk	Anneak	Anneak	Anneak	STA	ნ ნ	Annesled	STA	2 ts	STOA		:	Cold drawn	Annealed	CR, and	CR, and	Aged, c	Annealed
		Thickness (II) Code	٧ «	4	4 4	A	< 4	(∢	< 4	(∢	C) 0	n 00	60	a a	0 00	ao a	0	3	w.	шш	Ų	VШ	u. u.	0	1 1 S	H/9	E/H	E/H	I	II		I	ı I	ı	w w		u. µ.		∢	*	u.	8
		Form																	te.	2 2		g .		Buildi	Diriging Control	guidu	Du ion	guida	Quip	Forging	- 5	Forging	60.60	Forging	ite t		. 7		3	Sheet		Sher.
		Code	6.2.3 Sheet 6.2.3 Sheet													6.2.3 Sheet				6.2.3 Plate 6.2.3 Piste			6.2.3 Bar 6.2.3 Bar								6.2.3 6.2.3 Rod	6.2.4 Fo	6.2.4 Fo	6.2.4 For	6.3.1 Plate 6.3.1 Plate		6.3.1 Bar 6.3.1 Rod	- 1	6.3.2 Sheet	6.3.2 She	6.3.2 Ear 6.3.2	
15		Material																																								
		3	Inconel 718 Inconel 718	neonel 7	Inconel 718	reonel 7	Incornel 718	Incomel 718	Inconel 718	Income 718	Incomel 718	Income 718	Income! 7	Incoret 718	Income 718	Incornel 718	Income 718	Income! 7	Inconel 7	Incomel 718 Incomel 718	7 landon	nconel 7	Incore 718	nconel 7	nconel 7	Flancon	nconel 7	nconst 7	nconel 7	nconel 7	Inconel 718 Inconel 7,8	nconel	noone 7	Income 706	Invar 36		Inver 36	Invar 36	Ni-Span	Ni-Spen C	Ni-Span C	AI COIN

TABLE 3.2 INDEX TO METALS AND ALLOYS, FORMS, THICKNESSES, CONDITIONS, AND PROPERTIES FOR DATA REPORTED IN THIRD REVISED EDITION

The column The																							
Market M							Weld Propert	ı		Tensile			F Impact To	racture	Fatigue	Modulifb				s	Œ	MR	Megrer
Column C	Material	Code 1	Form	Thickness(I) Code				Post-Weld(k) Treatment		Itimate El		SUS	Charpy K	C Kie.	N-S ND/s	Ε, G,	Prop The	nd. Cond.				Magneto- Resistance	12500
10 10 10 10 10 10 10 10	INCO LEA		hoet	U	Mill annealed				ME 3										-				
Column	INCO LEA		Tate	٥٥	Annealed, oyen						t ro												
Column	INCO LEA			٥	Annealed				ME				9										
Column C	INCO LEA	6.3.3		200	Annealed, aged				ME 7		1		to										
11	INCO LEA	6.3.3		0	Annealed, aged						6		1										
Column C	INCO LEA			۵:	Annealed, aged						;		0,										
	INCO LEA		Yate	c z	STA STA						=		-	1.1									
Column C	INCO LEA		lar	ıL	Annesled, aged					2	12								ě				
Column C	WACO LEA	- 1							-1								-1		1				
1 2 2 2 2 2 2 2 2 2	Nickel		Sar	u.	Hot finished													_	1,F1	1,F1,F2	1,F1		
11 2004 A A A A A A A A A	"A" Nickel		theet	A	Annealed					-							1						
711 30ms A 517VO	A. Nickel		Sar	ц,	Annealed													-	1,61				
	Alloy Steels																						
1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	9Ni Steel		Theet	4	STWO				W.														
	SNi Steel		Sheet	20 0	STWO										7								
	9Ni Steel		Sheet	o en	2N+T								4										
11 Plate D Oly Mark Oly	9Ni Steel		Sheet	60	N+T				ΨE						Ω.								
	9Ni Steel		Plate	٥٥	0+T																		
	9Ni Steel		Hate	۵ ۵	0+1								80										
	9Ni Steel		Plate	0	7+0	MIG	Accounted	AW	ME				6										
11 Plate D	9Ni Steel		Plate	٥	Q+1	MIG		AW		0													
	9Ni Steel		Plate	o	0+1	Shielded		¥×		_													
The control of the	9Ni Steel		Plate	ه ه	2N+T	MIG	Incoweld	AW	M.E.				13										
11 12 12 13 14 15 15 15 15 15 15 15	200				,		A-covered																
11 Place E 2N+7	9Ni Steel		Plate v	u u	1+0					đ			15										
11 Plate E	9Ni Steel		Plans	ш (ZN+T					9			:										
Till Plate E 20+7 MiG Inocovered AW ME 20 19	SNI Steel		Piete	w u	T+0				M M				-		ar.								
1,11 Plate E 274+7 MIG 10,000 AW ME 20	9N; Steel		Plate	ш	2N+1				N.						19								
11 Plate E Chief C Chief C Chief C C C C C C C C C	9Ni Steel		Piate	ш	ZN+T	MIG	A-covered	¥.	ME				20										
1.11 Plate G Griff ME 22 23 1.11 Plate G Griff ME 24 25 25 1.11 Plate G Griff ME 24 25 25 27 1.11 Plate H Girt ME 24 25 27 27 1.11 Plate H Girt ME 28 1 28 1 27 1.11 Forging H Girt ME 24 27 27 1.11 Forging H Girt ME 15 1 1 1.11 Forging H Girt ME 15 1 1 1.11 Plate H ZNHT ME 15 1 1 1.11 Plate E STA ME 15 1 1 1.12 Plate E Agrid ME 15 1 1 1.13 Plate E Agrid ME 15 1 1 1.14 Plate E Agrid ME 15 1 1 1.15 Plate E Agrid ME 15 1 1 1.17 Plate E Agrid ME 15 1 1 1.18 ME 15 1 1 1 1.19 ME 15 1 1 1 1.19 ME 15 1 1 1 1.19 ME 15 1 1 1 1.10 ME 15 1 1 1 1.11 MA Mindeled ME ME 15 1 1 1.11 ME 15 ME 15 ME 15 ME 15 ME 15 1.12 Plate E Agrid ME 15 M	9Ni Steel		Plate	ш	ZN+T	Ø IĞ	In 92	AW					21										
11 Plate G 2N+T	SN: Steel		Nate State	5 C	÷ ÷					7			23										
7.1.1 Plane	9Ni Steel		Plate	9	ZN+T								2										
7.1.1 Plate H G4T 7.1.2 Plate E S74 7.1.3 Plate	9Nr Steel		Plate	0	ZN+T								25	_	.5								
7.1.1 Plate F 2N+1 NE 28 F1 2.7 2.7 7.1.1 Forging H Q+T NE 29 30 7.1.1 Forging H Q+T NE 20 30 7.1.1 Plate H 2N+T NE 1.F 1.F 1.F 1.F 7.1.1 Plate D Ammeted aged TiG 18Ni maring AW NE 1.F 1. 3 8.1.2 Plate E Ammeted Am	SNi Steel		Plate	.	- t-5					9													
7.1.1 Forging H Q+T ME 29 30 ME 29 31 ME 20	9Ni Steel		381	C rr	2N+1					3.F.1													
7.1.1 Forging H Ot+T NME 30 TR 1,F1 1,F1 NMA	9Ni Steef		Forging	I	0+T																		
7.1.1 Plate	9Ni Steel		Forging	I	D+1				¥ :				30										
7.1.1 Plate	9Ni Steel		Forging	_	2N+T				Z.				31						100				
Annew Control Annew Co	9N: Steel		Plate	I	ZN+T																		
All	18Ni(200) Marag.	7.1.2	Plate	0	Annealed, aged				1		-												
Me 2,71 Plate E 51A ME 2,71 ME 3,71 ME 3,71 ME 3,71 ME 4,71 ME	18Ni(200) Marag.	7.1.2	late	٥	Aged	716	18Ni marag.	AW			-												
Mursq. 7.1.2 Plate E Anneeled, ME 3.1 3.1 Mursq. 7.1.2 Plate E Aged T1G 18Ni mersq. AW ME 3.1 3.1 Mursq. 7.1.2 Plate H Anneeled, ME 4	18Ni (200) Marag.	7.1.2	late	u u	STA																		
aged TiG 18Ni merag. AW ME 3.1 3.1 Merag. AW ME 4.4 3.1 3.1 Merag. AW ME 4.2 Plane H Annealed, ME 4.2 Merage Merage. AW ME 4.2 Merage Merage. AW ME 4.2 Merage. AW Merage. AW ME 4.2 Merage. AW	18Ni(200) Marag.	712	late	u w	Annesled,								8										
Marag. 7.1.2 Plate E Aged TIG 18Ni manag. AW ME 3.1 Marag. 7.1.2 Plate H Annealed,					page																		
	18Ni(200) Marag. 18Ni(200) Marag.	7.1.2	late	ш з	Aged	116	18Ni marag.	AM			_												

TABLE 3.2 INDEX TO METALS AND ALLOYS, FORMS, THIC; NESSES, CONDITIONS, AND PROPERTIES FOR DATA REPORTED IN THIRD REVISED ENITION

Material Code Form Code Condition(c,d.e) Process(1) 18N(1200) Matros, 7.1.2 Plate Annealed			Mechanica	Mechanical Properties						7.	Thermal-Electrical Properties	I Properties		Properties
Mart Code Form Code Condition(cd.et.et.et.et.et.et.et.et.et.et.et.et.et.	Weld Properties		Tenrile		Chart Innere	Fracture		Dynamic add. 1: (b)	٠	၁	u	٠	0	Megra
Nate 9- 7-12 Plate H Annoaled	Filler Afloy	Post-Weld(k) Pr	Prop Ultimate Elastic Code Prop Prop	NTS		KIC. KIE.	N-S NP/sp		Prop Thermal Code Cond.	Thermal Cond.	Thermal	3 7	ical R	arto- Prop Perm.
1.31		ME		7		5								
7.4.1 Bar								-	TR 1,F1					
741 Bar F Annealed Annealed 743 Plate D OTR TIG 743 Plate D OTR TIG 743 Plate D OTR MIG 743 Plate E OTR MIG 743 Plate E OTR MIG 743 Plate E OTR MIG 743 Plate G OTR MIG 81.1 Sheet A OR (1/2H) 81.1 Sheet A OR (1/2H) 81.1 Sheet A OR (1/4H) 81.1 Sheet B OR OR 81.1 Sheet B OR OR 81.1 Sheet B OR OR 81.1 Sheet A OR 81.2 Sheet A OR 81.2 Sheet A OR 81.2 Sheet A OR 81.3 Sheet A OR 8									17,F1					
7.4.3 Plate D OTR Pulse 7.4.3 Plate D OTR Pulse 7.4.3 Plate E OTR Pulse 7.4.3 Plate E OTR Pulse 7.4.3 Plate E OTR Pulse 7.4.3 Plate G OTR Pulse 8.1.1 Sheet A CR (11/2H) 8.1.1 Sheet A CR (11/2H) 8.1.1 Sheet A CR (11/2H) 8.1.1 Sheet B CR (11/4 H) 8.1.1 Sheet B CR (11/4 H) 8.1.1 Sheet C CR (11/4 H) 8.1.1 Sheet B CR (11/4 H) 8.1.1 Sheet C CR (11/4 H) 8.1.1 Sheet B CR (11/4 H) 8.1.1 Sheet B CR (11/4 H) 8.1.1 Sheet C CR (11/4 H) 8.1.1 Sheet B CR (11/4 H) 8.1.2 Sheet A CR (11/4 H) 8.1.3 Sheet B CR (11/4 H) 8.1.3 Sheet B CR (11/4 H) 8.1.3 Sheet B CR (11/4 H) 8.1.3 Sheet A CR		ME	-						TB 1F1				161	
74.3 Plate D OTR Pulse 74.3 Plate D OTR Pulse 74.3 Plate E OTR MIG 74.3 Plate E OTR MIG 74.3 Plate E OTR MIG 74.3 Plate G OTR Pulse 74.3 Plate G OTR Pulse 81.1 Sheet A OTR Shortended 81.1 Sheet A CR (1/2H) 81.1 Sheet A CR (1/2H) 81.1 Sheet B CR (XH) 81.1 Sheet B CR (XH) 81.1 Sheet C CR (XH) 81.1 Sheet B CR (XH) 81.1 Sheet C CR (XH) 81.2 Sheet A CR (XH) 81.2 Sheet A CR (XH) 81.3 Sheet A CR (XH) 81.2 Sheet A CR (XH) 81.3 Sheet		×					-							
74.3 Plate D OTR Nicholad 74.3 Plate E OTR Nicholad 74.3 Plate E OTR Nicholad 74.3 Plate E OTR Nicholad 74.3 Plate G OTR Nicholad 81.1 Sheet A OR (1/2H) 81.1 Sheet A OR (1/2H) 81.1 Sheet A OR (1/4H) 81.1 Sheet A OR (1/4H) 81.1 Sheet B OR (1/4H) 81.2 Sheet B OR OR (1/4H) 81.3 Sheet A OR OR (1/4H) 81.4 Sheet A OR OR OR OR 81.5 Sheet A OR OR OR 81.5 Sheet A OR OR OR 81.5 Sheet A OR 81.5 Sheet A OR OR 81.5 Sheet A OR OR 81.5 Sheet A OR 81.5 Sheet	26 uj	AW ME	11 11		2	2	٣							
74.3 Plate E OTR Pulse 74.3 Plate E OTR Pulse 74.3 Plate G OTR Pulse 81.1 Sheet A OTR TIG 81.1 Sheet A OTR TIG 81.1 Sheet A OTR TIG 81.1 Sheet B OTR OTR 81.1 Sheet B OTR 81.2 Sheet A OTR 81.2 Sheet A OTR 81.2 Sheet A OTR 81.2 Sheet A OTR 81.3 Sheet B OTR 81.3 Sheet A	Diswood		ı tı				. 4							
7.4.3 Plate E OTR MIG 7.4.3 Plate E OTR MIG 7.4.3 Plate G OTR MIG 7.4.3 Plate G OTR MIG 7.4.3 Plate G OTR Submerged 7.4.3 Plate G OTR Submerged 7.4.3 Plate G OTR Submerged 8.1.1 Sheet A CR (1/2H) 8.1.1 Sheet A CR (1/2H) 8.1.1 Sheet A CR (1/2H) 8.1.1 Sheet A CR (1/4 H) 8.1.1 Sheet B CR (1/4 H) 8.1.1 Sheet B CR (1/4 H) 8.1.1 Sheet B CR (1/4 H) 8.1.2 Sheet B CR (1/4 H) 8.1.3 Sheet B CR (1/4 H) 8.1.4 Sheet B CR (1/4 H) 8.1.5 Sheet A CR (1/4 H) 8.1.7 Sheet B CR (1/4 H) 8.1.8 Sheet A CR (1/4 H) 8.1.9 Sheet A CR (1/4 H) 8.1.1 Sheet A CR (1/4 H) 8.1.2 Sheet A CR (1/4 H) 8.1.3 Sheet A CR CR (1/4 H) 8.1.3 Sheet A CR CR (1/4 H) 8.1.3 Sheet A CR CR CR CR CR CR CR	B-covered						I							
74.3 Plate E GTR Pulse 74.3 Plate G GTR MIG 74.3 Plate G GTR Pulse 81.1 Sheet A CR (1/2H) 81.1 Sheet A CR (1/4 H) 81.1 Sheet B CR (1/4 H) 81.1 Sheet B CR (1/4 H) 81.1 Sheet C Cryostretched, and CR (1/4 H) 81.1 Sheet B CR (1/4 H) 81.2 Sheet A CR (1/4 H) 81.3 Sheet A Annealed 81.2 Sheet A CR (1/4 H) 81.2 Sheet A Annealed 81.2 Sheet A CR (1/4 H) 81.3 Sheet A Annealed 81.2 Sheet A CR (1/4 H) 81.3 Sheet A Annealed 81.3 Sheet A CR (1/4 Annealed 81.3 Sheet A Annealed 81.3 Sheet A CR (1/4 Annealed 81.3 Sheet A Annealed 81.3 Sheet A CR (1/4 Annealed 81.3 Sheet A Annealed 81.3 Sheet A CR (1/4 Annealed 81.3 Sheet A Annealed 81.3 Sheet A CR (1/4 Annealed 81.3 Sheet A Annealed 81.3 Sheet A CR (1/4 Annealed 81.3 Sheet A Annealed 81.3 Sheet A CR (1/4 Annealed 81.3 Sheet A CR (1/4 Annealed 81.3 Sheet A CR (1/4 Annealed 81.3 Sheet A Annealed 81.3 Sheet A CR (1/4 Annealed 81.3 Sheet A CR (1/4 Annealed 81.3 Sheet A CR (1/4 Annealed 81.3 Sheet A Annealed 81.3 Sheet A Annealed 81.3 Sheet A CR (1/4 Annealed 81.3 Sheet A Annealed 81.3 Sheet A Annealed		Z Z	. II.		9									
74.3 Plate G GTR MIG 74.3 Plate G GTR Pulse 74.3 Plate G GTR Submerged 74.3 Plate G GTR Submerged 74.3 Plate G GTR Submerged 81.1 Sheet A CR H 81.1 Sheet A CR H 81.1 Sheet A CR CR H 81.1 Sheet A CR CR H 81.1 Sheet B CR CR CR 81.1 Sheet B CR CR CR 81.1 Sheet B CR CR 81.1 Sheet CR CR 81.2 Sheet CR CR 81.2 Sheet CR CR 81.3 Sheet CR CR CR CR 81.3 Sheet CR CR CR CR CR 81.3 Sheet CR CR CR CR CR CR CR C	In 92 A	AW MA			,									
74.3 Pitte G GTR Pulse Mile Mi		Σ	00	60										
7.4.3 Plate G OTR Submerged	In 92	AW ME	10 52		o	თ								
2.4.3 Annealed ARC Annealed ARC Annealed	In 82	AW	ш		Ξ									
1.4.2 Annealed Annealed St. Sheet A CR (1/2H) 8.1.1 Sheet A CR (1/2H) 8.1.1 Sheet A CR (1/4 H) 8.1.1 Sheet A CR (1/4 H) 8.1.1 Sheet A CR (1/4 H) 8.1.1 Sheet B CR (1/4 H) 8.1.1 Sheet B CR (1/4 H) 8.1.1 Sheet CR (1/4 H) 8.1.1 Sheet CR (1/4 H) 8.1.1 Sheet CR (1/4 H) 8.1.2 Sheet B Cryostretched 8.1.3 Sheet A CR (H) 8.1.2 Sheet A CR (H) 8.1.2 Sheet A CR (H) 8.1.3 Sheet CR (H) 8.1.3 Sheet A CR (H) 8.1.3 Sheet A CR (H) 8.1.4 Sheet A CR (H) 8.1.5 Sheet A								,						
8.11 Sheet									H, H					
8.11 Sheet								T.	1,F1	1,F2	1,61		1,F1	
8.11 Sheet A CR (1/12H) 8.11 Sheet A CR (XH) 8.11 Sheet B CR (XH) 8.12 Sheet A Annealed 8.12 Sheet A Annealed 8.12 Sheet A CR (XH) 8.13 Sheet A Annealed 8.13 Sheet A Annealed 8.13 Sheet A Annealed 8.13 Sheet A CR (XH) 8.14 Sheet A CR (XH) 8.15 Sheet A CR (XH) 8.16 CR (XH) 8.17 Sheet A CR (XH) 8.18 Sheet A CR (XH) 8.19 Sheet A CR (XH) 8.11 Sheet A CR (XH) 8.11 Sheet A CR (XH) 8.12 Sheet A CR (XH) 8.13 Sheet A CR (XH) 8.14 Sheet A CR (XH) 8.15 Sheet A CR (XH) 8.15 Sheet A CR (XH) 8.16 CR (XH) 8.17 Sheet A CR (XH) 8.11 Sheet A CR (XH) 8.11 Sheet A CR (
8.1.1 Sheet A CR (XH) 8.1.1 Sheet A CR 71G 8.1.1 Sheet A CR 77G 8.1.1 Sheet A CR 71G 8.1.1 Sheet B CR (H) 8.1.1 Sheet B CR (H) 8.1.1 Sheet B CR (H) 8.1.1 Sheet C Cryotretched, 8.1.1 Sheet CR (H) 8.1.1 Sheet B CR (H) 8.1.1 Sheet B CR (H) 8.1.1 Sheet B CR (H) 8.1.2 Sheet A Annealed 8.1.3 Sheet A CR (H) 8.1.3 Sheet A C		M M	2.F1	2										
8.1.1 Sheet A CR 711G 8.1.1 Sheet A CR 711G 8.1.1 Sheet B CR (1.14 H) TIG 8.1.1 Sheet B CR (1.14 H) TIG 8.1.1 Sheet B CR (1.14 H) TIG 8.1.1 Sheet C CR (1.14 H) TIG 8.1.1 Sheet B CR (1.14 H) TIG 8.1.2 Sheet A CR (H) TIG 8.1.2 Sheet A CR (H) TIG 8.1.2 Sheet A CR (H) Annealed B Sheet B CR (H) Annealed B Sheet A CR (H) Annealed B Sheet B CR (H) Annealed B Sheet A CR (H) Annealed B Sheet B CR (H) Annealed B Sheet A CR (H) Annealed B Sheet B Sh			· m	8			4,F2							
8.1.1 Sheet A Cyorrecthed, TIG B.1.1 Sheet B Cyorrecthed, Sheet B CR (1/4 H) TIG B.1.1 Sheet B CR (1/4 H) TIG B.1.1 Sheet C CR (1/4 H) TIG B.1.1 Sheet C CR (1/4 H) TIG B.1.1 Sheet B CR (1/4 H) TIG B.1.2 Sheet A Annealed Annealed B.1.2 Sheet A CR (H) TIG B.1.2 Sheet A Annealed CR (H) TIG B.1.2 Sheet A Annealed B.1.2 Sheet A CR (H) TIG B.1.2 Sheet A CR (H) TIG B.1.2 Sheet A CR (H) Annealed B.1.3	None A	AW M												
8.1.1 Sheet 8 CR (1/4 H) 8.1.1 Sheet 8 CR (1/4 H) 8.1.1 Sheet C CR (1/4 H) 8.1.1 Sheet C CR (1/4 H) 8.1.1 Sheet B CR (1/4 H) 8.1.1 Sheet B Cryostretched, MIG 8.1.1 Sheet B Cryostretched, MIG 8.1.2 Sheet A CR (H) 8.1.3 Sheet A CR (H)			£.4				S							
8.11 Sheet 8 CR (114 H) 8.11 Sheet 8 CR (114 H) 8.11 Sheet 8 CR (114 H) 8.11 Sheet C CR (114 H) 8.11 Sheet C CR (114 H) 8.11 Sheet B CR (114 H) 8.12 Sheet A CR (H) 8.13 Sheet A CR (H)			;				2							
8.1.1 Sheet 8 CR (XH) 8.1.1 Sheet 8 CR (XH) 8.1.1 Sheet C Cryostretched 8.1.1 Sheet B Cryostretched, 8.1.1 Sheet B Cryostretched, 8.1.2 Sheet A Annealed 8.1.2 Sheet A Annealed 8.1.2 Sheet A Annealed 8.1.3 Sheet A Annealed 8.1.4 Sheet A Annealed 8.1.5 Sheet A CR 8.1.5		≅ ₹	رب دن دن دن	ın «										
8.11 Sheet C Gryotretched			7,F1	7 7										
8.11 Plate D Annealed MIG 8.12 Plate C Cryotecthed, aged 8.13 Sheet B Gryotecthed, aged 8.12 Sheet A Annealed Annealed 8.12 Plate G Annealed 8.12 Plate B Annealed Annealed 8.12 Plate B Annealed Annealed 8.12 Plate B Annealed WG 8.13 Sheet A Annealed Annealed 8.12 Plate B Annealed WG 8.13 Sheet A Annealed WG 8.13 Sheet A C R 8.13 Sheet A C C R 8.13 Sheet C C C C R 8.13 Sheet C C C C C C C C C C C C C C C C C C	None	WA WA	7.1	13										
8.1.1 Plate E Cryostretched, MIG aged E 1.1 Sheet B Cryostretched, aged Annealed Annealed Annealed B 1.2 Sheet A CR (H) T1G 8.1.2 Sheet A CR (H) Annealed B 1.2 Plate B Annealed Annealed B 1.2 Plate B Annealed Annealed B 1.2 Plate Annealed Annealed B 1.2 Plate Annealed Annealed B 1.2 Bar E Annealed Annealed B 1.3 Sheet A CR Annealed B 1.3 Sheet A CR Annealed WIG B 1.3 Sheet A CR Annealed B 1.3 Sheet B 1.3 Sheet A CR Annealed B 1.3 Sheet B 1.3 Sheet B 1.3 Sheet B 1.3 Sheet B 1.3 Shee				ω !	თ									
8.1.7 Bar F Annealed 8.1.7 Sheet A CR (H) 8.1.2 Sheet A Annealed 8.1.2 Plate G Annealed 8.1.2 Plate H Annealed 8.1.2 Bar E Annealed 8.1.3 Sheet A CR (H) 8.1	Type 308 Te	Tempered ME		9.1			ú							
8.1.7 Sheet A CR (H) 8.1.2 Sheet A CR (H) 8.1.2 Sheet A CR (H) 8.1.2 Sheet B Annesied 8.1.2 Plate B Annesied 8.1.2 Plate G Annesied 8.1.2 Plate E Annesied 8.1.2 Plate Annesied 8.1.2 Sheet A CR (H) 8.1.3 Sheet A CR (H) 8								ì	,		į			
8.1.7 8.1.2 Sheet A CR (H) 8.1.2 Sheet B Annesied 8.1.2 Flate B Annesied 8.1.2 Plate G Annesied 8.1.2 Plate H Annesied 8.1.2 Plate Annesied 8.1.3 Sheet A CR (H)		Ā	-		,						-			
8.1.2 Sheet A CR (H) 8.1.2 Sheet A CR (H) 8.1.2 Sheet B Annealed 8.1.2 Plate D Annealed 8.1.2 Plate H Annealed 8.1.2 Plate H Annealed 8.1.2 Bar E Annealed 8.1.2 Sheet A CR Annealed 8.1.3 Sheet A CR Annealed 8.1.3 Sheet A CR CR Annealed 8.1.3 Sheet A CR								T	~		1,81	-	1,F1	
8.1.2 Sheet 8 Annealed 8.1.2 Sheet 8 Annealed 8.1.2 Plate 10 Annealed 8.1.2 Plate 11 Annealed 8.1.2 Bar E Annealed 8.1.2 Bar E Annealed 8.1.2 Sheet A CR 8.1.3		ME		-										
8.1.2 Plate D Annesied 8.1.2 Plate G Annesied 8.1.2 Plate E Annesied 8.1.2 Bar E Annesied 8.1.2 Rod F Annesied 8.1.3 Sheet A CR R TIG 8.1.3 Sheet A CR R TIG	A anom	2 2	2,F1	2										
8.1.2 Plate G Annesied 8.1.2 Plate E Annesied 8.1.2 Rod F Annesied 8.1.3 Sheet A CR		₹:			3.1									
8.1.2 Bar E Annesied 8.1.2 Rod F Annesied 8.1.3 Sheet A CR R8.13 Sheet A C		2 2			,	5	£							
8.1.2 Rod F Annesied 8.1.3 Sheet A CR 8.1.3 Sheet A CR 8.1.3 Sheet A CR 8.1.3 Sheet A CR 8.1.3 Sheet B CR		Σ	4.F1	4	3.5									
81.3 Sheat A CR 81.3 Sheat A CR 81.3 Sheat A CR 81.3 Sheat A CR 81.3 Sheat A CR								Ħ	1,61	1,F2	1,F1	_	1,F1	
81.3 Sheet A CR TIG		1	- 1											MA
8.1.3 Sheet A	None	AW ME	E 0.1											
1		2 3												
8.1.3 Sheet B		2 3		-										
00.1.3 Sheet B		2 :	1.2											

TABLE 3.2 INDEX TO METALS AND ALLOYS, FORMS, THICKNESSES, CONDITIONS, AND PROPERTIES FOR DATA REPORTED IN THIRD REVISED EDITION

Magnetic	Magnatic	Prop Perm., Code Sussept	MA 1		. MA 1	MA 1,F1	- Y	MA 2 1 3 2 1			
	E E	Magneto- Resistance									
	œ	ical vity	1,FI		1,51	£.	Ē,	19.1	13,1	£ £	
Propertie	S	Specific				1.51					
Thermal-Electrical Properties	ш	Tel Cost	1,41		1,61	2	1,51	1,61	14,1	F) F)	
ş	Magneto										
	U	Thermal Cond.			1,F1,F2 1,F1	13,1		L .	13.1	1,F1	
	183		£		T.	Œ	£	T.	Ĕ	E E	
	Dynam	E, G.	F2,F21		F2,F2.1						
	Fations	da/dN S.N	F3	73,F4	F2,F	EE		F2 2	5, 4 F		ဖ
	Fracture	KIC, KIE,				j	E				
	mosci	Charpy >	2		33		6,		7.1 10	2 2	
		SUS C							9		
Serties.		NTS		0.02 0.03 1.06 1.06 1.00 1.00 1.00 1.00 1.00 1.00	4	- 0	3.1	- n	7.7		3,4,5
Mechanical Properties	Tensile	Ultimate Elastic Prop Prep	~	2.2	4			-	-		
Mecha			2,F1	001 001 001 001 001 001 001 001 001 001	4, F 1	2 2	1,F1 1,1 2,F1 3,1 4,F1	13,5 13,5 14,6 14,6	27 2 27 20		1,2,F1 3,4,F1 5.1 5.2
		Prop Code	∑ 5 ∑ m m m	**************************************	Z Z	Z Z Z	A ARRE	A 8 8 A	MARK ARE	ME	2 Z Z Z
		Post-Weld(k) Treatment		AW AW Tempered			AW Tempered	AW	Tempered		AW Age Hardened
	Weld Properties	Filler Alloy		Nane Type 310			Type 347	Unk.	Type 347		A-286 A-350
		Process(i)		71G			MIG	11G	MIG		T16
		Condition(c.d.e)	STA Annealed Annealed Annealed Annealed		Annealed Annealed Annealed Annealed, WC	Annealed ST, WQ ST, FC Annealed ST, WQ ST, FC	No.	Annealed Annealed Annealed Annealed Annealed Annealed Annealed, WQ	Annested Annested HR, annested, Pickled Annested, WQ Unk. Annested	Tempered	STA STA Annealed Annealed
		Thickness ⁽¹⁾ Code	ozu u	< < < < < < < ∞ ∞ ∞ m m m m m m m m m m					ፈወዐ ጠጠቷ ም	և	< ∞ ∞ ∞
		Form	22. 0	Sheet Sheet	. p	Sheet Forging Forging Rod Rod	Sheet Sheet Plate Plate Plate Ref Rod	Sheet Sheet Plate Bar Hod Bells	Sheet Sheet Plate Plate Plate Bar	_	Sy Speet
		Mer'i Code	8.1.3 Plate 8.1.3 Plate 8.1.3 Bar 8.1.3 Rod	8 8 1.4 Special State	8.1.4 Plate 8.1.4 Sar 8.1.4 Rod	8.1.8 Forg 8.1.8 Forg 8.1.8 Forg 8.1.8 Rod 8.1.8 Rod		8.1.6 Sheet 8.1.6 Sheet 8.1.6 Place 8.1.6 Bar 8.1.6 Bar 8.1.6 Bar 8.1.6 Bar 8.1.6 Bar	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.1.10 Bar 8.1.10 8.1.11 Ber 8.1.11	82.1 82.1 82.1 82.1 82.1 82.1 82.1 82.1
		Material	Type 304L Type 304L Type 304L Type 304L	Type 310 Type 310	Type 310 Type 310 Type 310	Type 310S Type 310S Type 310S Type 310S Type 310S Type 310S	Type 316	Type 321 Type 321 Type 321 Type 321 Type 321 Type 321	Type 347	Type 410 Type 416 Type 416 Type 416	A-286 A-286 A-286 A-286

TABLE 3.2 INDEX TO METALS AND ALLOYS, FORMS, THICKNESSES, CONDITIONS, AND PROPERTIES FOR DATA REPORTED IN HIRD REVISED EDITION

Az86 B.2.1 Sheet A286 8.2.1 Sheet A286 8.2.1 Sheet A286 8.2.1 Plass A286 8.2.1 Bar A00 8.2.2 Bar Kromarc-58 8.2.2 Plate Kromarc-58 8.2.2 Plate Armco 216-9 8.2.3 Plate Armco 216-9 8.2.3 </th <th>F</th> <th></th> <th>Magnet</th>	F																	Magnet
Code Forest Code Forest State Stat				Wald Depression	,		Tanaille				Dynamic		C)	u	·	0	97	
8.2.1 Sheat 8.2.1 Plates 8.2.1 Plates 8.2.1 Barr 8.2.1 Barr 8.2.1 Barr 8.2.1 Barr 8.2.2 Sheat 8.2.2 Sheat 8.2.2 Plates 8.2.2 Plates 8.2.3 Plates 8.2.3 Plates 8.2.2 Plates 8.2.2 Plates 8.2.3 Plates 8.2.4 Plates 8.2	Code	Condition(c.d.e)	Processifi	Filler	Post-Weld(k) Treatment	Prop Ultin	Prop Ultimate Elastic Code Prop Prop NTS	SUS C	Charpy Kic, KiE,	da/dN S-N		Prop 1	Thermal Thermal Cond. Cond	- 4	Specific	1	è 2	Prop Perm. Code Susse
8.2.1 Sheet 8.2.1 Plane 8.2.1 Plane 8.2.1 Plane 8.2.1 Plane 8.2.1 Plane 8.2.2 Sheet 8.2.2 Plane 8.2.3 Plane 8.2.4	8	Age	TIG	A-286	AW	ME 5.3				F1.1								
8.2.1 Phase 8.2.1 Barr 8.2.1 Barr 8.2.1 Pare 8.2.1 Pare 8.2.2 Sheet 8.2.2 Sheet 8.2.2 Phase 8.2.2 Phase 8.2.3 Phase 8.2.2 Phase 8.2.3 Phase 8.2.3 Phase 8.2.3 Phase 8.2.2 Rod 8.2.2 Rod 8.2.3 Phase 8.2.3 Phase 8.2.4 Phase 8.	60	Mardened STA	TIG	Hastelloy	AW	ME 5.4												
8.2.1 Bar 8.2.1 Bar 8.2.1 Bar 8.2.1 Bar 8.2.1 Bar 8.2.2 Sheet 8.2.2 Sheet 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Rod 8.2.2 Rod 8.2.3 Sheet 8.2.2 Plate 8.2.2 Rod 8.2.3 Plate 8.2.3 Plate 8.2.3 Sheet 8.2.2 Rod 8.2.3 Sheet 8.2.3 Plate 8.2.3 Plate 8.2.3 Sheet 8.2.3 Plate 8.2.3 Slate 8.2.3 Plate 8.2.3 Slate 8.2.3 Slate 8.2.3 Slate 8.2.3 Slate 8.2.4 Plate 8.2.4 Plate	٥	STA						9										
8.2.1 Bar 8.2.1 Bar 8.2.1 Bar 8.2.1 Rod 8.2.2 Sheet 8.2.2 Sheet 8.2.2 Plate 8.2.2 Rod 8.2.2 Rod 8.2.3 Rod 8.2.4 Rod	'nπ	STA CW agent				ME 7,8,F1	F1 8 7,8	0	000	F3.1								
82.1 Plate 82.1 Rod 82.1 Rod 82.2 Sheet 82.2 Sheet 82.2 Sheet 82.2 Plate 82.2 Plate 82.2 Plate 82.2 Plate 82.2 Plate 82.2 Plate 82.2 Plate 82.2 Plate 82.3 Plate 82.4	. I	STA					n		11	7.								
8.2.1 Rod 8.2.1 Rod 8.2.2 Sheet 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Rod 8.2.2 Rod 8.2.2 Rod 8.2.2 Rod 8.2.3 Plate 8.2.3 Rod 8.2.3 Rod 8.	9 6	4				ME				F2								
8.2.1 Rod 8.2.2 Shert 8.2.2 Shert 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Rod 8.2.2 Rod 8.2.2 Rod 8.2.3 Plate 8.2.2 Rod 8.2.3 Plate 8.2.3 Rod 8.2.3	0	Annealed				ž Ž				?								
8.2.1 Rod 8.2.2 Sheet 8.2.2 Sheet 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Rod 8.2.2 Rod 8.2.3 Plate 8.2.3 Plate 8.2.3 Rod 8.2.3 Sheet 8.2.3 Sheet 8.2.4 Sheet 8.		Age										E 5	1,F1	,		1,51		
8.2.2 Sheet 8.2.2 Sheet 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Rod 8.2.2 Rod 8.2.2 Rod 8.2.2 Rod 8.2.3 Plate 8.2.3 Plate 8.2.4 Plate 8.	u.	ST										<u>r</u>		F,				MA F1
8.2.2 Sheet 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Rod 8.2.2 Rod 8.2.3 Plate 8.2.3 Plate 8.2.4 Plat	8	Annealed				1												
8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Rod 8.2.2 Rod 8.2.3 Plate 8.2.3 Plate 8.2.3 Plate 8.2.3 State 7004 8.2.4 Plate 8.2.4 Plate	20 45	Annealed, CH				ME 2,3,5,F1												
8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.2 Plate 8.2.3 Rod 8.2.3 Plate 8.2.3 Plate 8.2.3 Plate 8.2.3 Shert 8.2.3 Shert 8.2.4 Plate	w	ST, WQ							F2									
8.2.2 Plate 8.2.2 Plate 8.2.2 Rod 8.2.2 Rod 8.2.2 Rod 8.2.3 Plate 8.2.3 Plate 8.2.3 Plate 8.2.3 Shert 8.2.3 Shert 8.2.4 Plate	ш	Cold					6		F2									
8.2.2 Plate 8.2.2 Plate 8.2.2 Rod 8.2.2 Rod 8.2.3 Plate 8.2.3 Plate 8.2.3 Plate 8.2.3 Sheet 8.2.3 Sheet 8.2.4 Plate 8.2.4 Plate	w	-	TIG	Kromarc-58	AW	ME 10	01											
8.2.2 Plate 8.2.2 Rod 8.2.2 Rod 8.2.3 Plate 8.2.3 Plate 8.2.3 Plate 8.2.3 Shert 8.2.3 Shert 8.2.4 Plate 8.2.4 Plate	w			Kromerc-58			=											
8.2.2 Rod 8.2.2 Rod 8.2.3 Plate 8.2.3 Plate 8.2.3 Plate 8.2.3 Shert 70ed 8.2.4 Plate 8.2.4 Plate	w		TiG	Kromarc-58	AW	ME 12	12											
8.2.2 Rod 8.2.3 Plate 8.2.3 Plate 8.2.3 Shert 8.2.3 Shert 8.2.4 Plate 8.2.4 Plate 8.2.4 Plate		ST, 0										TR ,	1,61	1,F1	1,51	1,51		
8.2.2 Rod 8.2.3 Plate 8.2.3 Plate 8.2.3 Sher rod 8.2.4 Plate 8.2.4 Plate		S Pla																MA 2
8.2.3 Plate 8.2.3 Plate 8.2.3 Bar 8.2.3 Shert rod 8.2.4 Plate 8.2.4 Plate		çec Cect																
8.2.3 Plate 8.2.3 Plate 8.2.3 Sert 8.2.3 Shert rod 8.2.4 Plate		Cold	2		A.W													MA 3,4,5
8.2.3 Plate 8.2.3 Sheet rod rod 8.2.4 Plate	g	Double				ME 0.1												
8.2.3 Sheet 8.2.3 Sheet rod 8.2.4 Plate	,	annealed																
8.2.3 Sheet rod 8.2.4 Plate 8.2.4	E 14.	Annealed, wo				- W			7	ũ								
82.4	pue	Various																- AM
8.2.4	c	Simulated				MF ,			2									1
)	braze							•									
		Furnace brazed										TR 1,F1	-			1,61		
Titanium and																		
Ti-65A 9.1.1 Bar	u.	Annealed				ME 1	-											
	9	Annesied				- 1												
Titanium (h)	∢	Annealed				ME 1,F1	-					TR 1,F1	-	1,51	1,F1,F2	1,F1		
	< 4	Annealed				ME 1,F1	-			F2								
9.2	∢ ∢	20% CR				ME 1.1	1.7											
	₹	50% CR				ME 1.3												
9.2.1	∢:	Annealed	TIG	None	AW	ME 1.4	•											
9.2.1	n co	20% CR				ME 2.1	2.2											
9.2.1	60		TIG	None	AW													
	ш ա	Annealed				ME 2.3	2.3	4										
9.2.1	u	Annealed							•	2								
Ti-5AI-2.5Sn(N) 9.2.1 Bar	u I	Annealed				ME 5			ū	ũ								
9.2.1		Vac. annealed							ń	ì								
		As forged				ME 6,F1	91											
3.4.1	J	As torged				ME												

.

TABLE 3.2 INDEX TO METALS AND ALLOYS, FORMS, THICKNESSES, CONDITIONS, AND PROPERTIES FOR DATA REPORTED IN THIRD REVISED EDITION

	Code From Code									¥.	Mechanical Properties	operties				ľ				Thermal-Electrical Properties	al Propertie			Properties
1	Marie Code			٠			3	Weld Properti			Tensile				Ohness Fat		duli(b)	O	Magneto	ш	s	Œ	A.	Bioment
15.20 September Automated Commission	Marcheled	Material		Form	Thickness(II) Code	Condition(c.d.e)		Filler		Prop Ult Code P	imate Ela rop Pro	etic op NTS	sus G	harpy Kic	, KiE, Ic de/dN			op Therms de Cond.	Cond.	Thermal	Specific			
March Marc	State	Ti-5Al-2.55n(N) Ti-5Al-2.55n(N)		Builing	I	Annealed Annealed				1	80						F				1,61	1,61		
25.5 Seet 8 A According 10 Nove And 10 Nov	10 1 1 1 1 1 1 1 1 1	Ti-5Ai-2.5Sn(ELI))	heet	4	Annealed				ME	-	-												
Second Common C	10 1 1 1 1 1 1 1 1 1	Ti-5Al-2.5Sn(ELI)		į	< ∞	Annealed	2	None	A.	ME 7,2	^	,												
Second Compared	9.22 Sweet 8 Annowabed 71G 17-5A12-SSn AW ME 21 3.1 3.2 9.22 Sweet C Annowabed 71G 17-5A12-SSn AW ME 21 3.1 3.2 9.22 Sweet C Annowabed 71G 17-5A12-SSn AW ME 21 3.1 3.2 9.22 Prints D Annowabed 71G None AW ME 5.1 6.2 9.9 9.0 9.22 Prints D Annowabed 71G None AW ME 6.1 11 1.0 9.22 Prints D Annowabed 71G None AW ME 7.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	Ti-5Ai-2.5Sn(ELI)		1	o 00	Annealed				ME F1	4	•				e								
March Marc	10 1 1 1 1 1 1 1 1 1	Ti-5Al-2.5Sn(ELI)		heet	65 (Annealed	TIG	Ti-5Al-2.55n	AW	ME 3.1	3.1													
10 1 1 1 1 1 1 1 1 1	10,000 1,0	T-5A-2.550(ELI)		ij	2 C	Annealed	2	None	AM	ME 3.2	•	3.2												
State Compared Tight 2550 AW Mile State St	10	Ti-5Al-2.5Sn(EL1)		1	U	Annealed				ME				2										
10 10 10 10 10 10 10 10	10	Ti-5Al-2.5Sn(ELI)		Teet	0 0	Annealed	116	Ti-5At-2,5Sn	AW		S.													
10 10 10 10 10 10 10 10	Accessed Tion Accessed Tio	Ti-5Ai-2,55n(ELI)		100	0 0	Annealed				-	۵		7											
March Marc	2.2. Plate E Annealed TIG Nove AW ME 81 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Ti-5AI-2.5Sn(ELI)		ate	٥	Annealed	TIG	None	AW															
10 10 10 10 10 10 10 10	92.2 Bare F Annealed S Annealed An	Ti-5Al-2.5Sn(ELI)		910	w u	Annealed	OI.	None	744	ME 8	00													
10 10 10 10 10 10 10 10	14 15 17 17 17 17 17 17 17	Ti-5Al-2.5Sn(EL1)			ų LL	Annealed	2	NO.		ME 9	o	6												
10 1 1 1 1 1 1 1 1 1	9.2.2 Forging F As forged As forged ME 13 No. 13 N	Ti-5AI-2.5Sn(ELI)		2	u.	Annealed				ME F1						10								
9 2.2 Ferring Allogate National Nationa	10 12 13 14 15 15 15 15 15 15 15	Ti-5Al-2.5Sn(ELI)		Duling	L L	As forged				ME :		= :												
Mail	9.2.2 Ferruging Automoded	T-5Al-2 5Sn(ELI)		State		As forced						4 17												
10 1 1 1 1 1 1 1 1 1	## 15 15 15 15 15 15 15 15	Ti-5AI-2.5Sn(ELI)		Burging		As forged								14										
13 Sheet A Antonesided	9.3.1 Sheet B Annealed Annealed Stress B Annealed Tig Ti-6Al-4V (ELI) AW ME 21 1 1 1 1 2 2 2 2 3.1 Sheet B Annealed Tig Ti-6Al-4V (ELI) AW ME 21 1 2 2 3.1 Page D Annealed Tig Ti-6Al-4V (ELI) AW ME 21 1 5 6 6.1 Annealed Stress D Annealed Tig Ti-6Al-4V (ELI) AW ME 2 1 5 6 6.1 Annealed Stress D Annealed Tig Ti-6Al-4V (ELI) AW ME 2 1 1 7 6 6.1 Annealed Stress ME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ti-5Al-2.5Sn(EL1)	- ł	Ktrusion		As extruded				- 1		15												
State Stat	13.11 Sheet B	Ti-SAI-4V(ELI)		heet	∢ :	Annealed					-	- 1												
9.17 Para D	9.31 Plate D	Ti-6AI-4V(ELI)		heer	n an	STA	116	Ti-6Al-4V	AW		_	7												
9.31 Pire D	9.3.1 Plates D Annealed TiG Ti-GAI-dViELI) AW ME 4.1 ME 5.1 9.3.1 Plates D Annealed TiG Ti-GAI-dViELI) AW ME 5.1 S 9.3.1 Plates D Annealed TiG Ti-GAI-dV Stress ME 2 9.3.2 Sheet B STA TiG Ti-GAI-dV AW ME 6 9.3.2 Sheet B STA TiG Ti-GAI-dV AW ME 6 9.3.2 Sheet B STA TiG Ti-GAI-dV AW ME 6 9.3.2 Sheet B STA TiG Ti-GAI-dV AW ME 6 9.3.2 Sheet B Stress TiG Ti-GAI-dV AW ME 6 9.3.2 Sheet B Stress TiG Ti-GAI-dV AW ME 6 9.3.2 Sheet B Stress TiG Ti-GAI-dV AW ME 6 9.3.2 Sheet B Stress TiG Ti-GAI-dV AW ME 6 9.3.2 Sheet B Stress TiG Ti-GAI-dV AW ME 6 9.3.2 Sheet B Stress TiG Ti-GAI-dV AW ME 6 9.3.2 Sheet B Stress TiG Ti-GAI-dV AW ME 7 9.3.2 Sheet B Stress TiG Ti-GAI-dV AW ME 6 9.3.3 Sheet B Stress TiG Ti-GAI-dV AW ME 7 9.3.4 Sheet B Stress TiG Ti-GAI-dV AW ME 7 9.3.5 Sheet B Stress TiG Ti-GAI-dV AW ME 7 9.3.6 Sheet B Stress TiG Ti-GAI-dV AW ME 7 9.3.7 Sheet B Stress TiG Ti-GAI-dV AW ME 7 9.3.8 Sheet B Stress TiG Ti-GAI-dV AW ME 7 9.3.9 Sheet Stress TiG Ti-GAI-dV AW ME 7 9.3.1 Sheet Stress TiG Ti-GAI-dV AW ME 7 9.3.2 Sheet Stress TiG Ti-GAI-dV AW Sheet TiG TiG Ti-GAI-dV AW Sheet TiG	Ti-6AI-4V(ELI)		ate	۵	Annealed)																	
19.25 Sept. P. Annested 1.5 Fold-AVELII AVM MR 47 5 6 6.1 F2 F2 F2 F2 F2 F2 F2 F	9.3.1 Bar F Annesied 115 1-6A 4V1EL AW ME 4.1 5 5 5 9.3.1 Bar F Annesied 115 1-6A 4V Stress ME 7 7 6.1 9.3.2 Sheet A Annesied TiG Ti-6A 4V Stress ME 1 1 1 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 2 1 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 2 1 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 6 1 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 6 1 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 6 1 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 6 1 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 6 1 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 6 1 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 6 1 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 6 1 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 6 1 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 7 7 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 7 7 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 7 7 9.3.2 Sheet B STA TiG Ti-6A 4V Stress ME 7 7 9.3.2 Sheet B Stress TiG Ti-6A 4V Stress ME 7 7 9.3.2 Sheet B Stress TiG Ti-6A 4V Stress ME 7 7 9.3.2 Sheet B Stress TiG Ti-6A 4V Stress ME 7 7 9.3.3 Sheet Stress TiG Ti-6A 4V Stress ME 7 7 9.3.4 Sheet Stress TiG Ti-6A 4V TiG	Ti-6AI-4V(ELI)		late	٥	Annesled		i						4										
9.3.1 Forging F Annesied ME 7F1 7 6.1 F2 9.3.2 Sheet A 5TA TiG Ti-6Al-4V Shress ME 1 1 9.3.2 Sheet A 5TA TiG Ti-6Al-4V Shress ME 1 1 9.3.2 Sheet B Annesied ME 2 3 3 9.3.2 Sheet B Annesied ME 5 3 3 9.3.2 Sheet B Annesied ME 5 3 3 9.3.2 Sheet B Annesied ME 6 5 7 9.3.2 Sheet B Annesied ME 6 6 7 9.3.2 Sheet B Annesied ME 6 7 7 9.3.2 Sheet B Annesied ME 6 7 7 9.3.2 Sheet B Annesied ME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101.1 101.4 101.1 10.1	T-6A -4V(EL1)		lette	Ω w	Annealed	9	Ti-6AI-4V (EL																
9.3.1 Forging F Africated ME 7F1 7 6.1 TR 1F1 1F1 9.3.1 Forging E Africated Africated ME 1 1 TR 1F1 1F1 <td>9.3.1 Forging F Annealed ME 7,F1 7 6.1 9.3.1 Forging E Antraeled Antraeled ME 7 7 6.1 9.3.2 Sheet A STA TIG Ti-6Al-4V Stress ME 1 7 9.3.2 Sheet B STA TIG Ti-6Al-4V Stress ME 3 3 3 3 9.3.2 Sheet B STA TIG Ti-6Al-4V Stress ME 3<</td> <td>Ti-6AI-4V(ELI)</td> <td></td> <td></td> <td>ı u</td> <td>Annesled</td> <td></td> <td></td> <td></td> <td></td> <td>n</td> <td></td> <td>9</td> <td></td> <td>F2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	9.3.1 Forging F Annealed ME 7,F1 7 6.1 9.3.1 Forging E Antraeled Antraeled ME 7 7 6.1 9.3.2 Sheet A STA TIG Ti-6Al-4V Stress ME 1 7 9.3.2 Sheet B STA TIG Ti-6Al-4V Stress ME 3 3 3 3 9.3.2 Sheet B STA TIG Ti-6Al-4V Stress ME 3<	Ti-6AI-4V(ELI)			ı u	Annesled					n		9		F2									
State	9.3.1 Forging E At lorged At lorged ME 1 1 9.3.2 Sheet A TIG Ti-6Al-4V Stress ME 1 1 9.3.2 Sheet B STA TIG Ti-6Al-4V Stress ME 2 3 9.3.2 Sheet B STA TIG Ti-6Al-4V Stress ME 3 3 9.3.2 Sheet B Annealed TIG Ti-6Al-4V Stress ME 5 7 9.3.2 Plate D Stress TIG Ti-6Al-4V Annealed ME 9 9 9.3.2 Plate D Stress TIG Ti-6Al-4V Annealed ME 9 9 9.3.2 Plate D Stress TIG Ti-6Al-4V Annealed ME 9 9 9.3.2 Plate D Stress TI-6Al-4V Annealed ME 10 ME 11 9.3.2 Plate D Annealed Annealed ME 11 ME 11 10.1.3 D Annealed Annealed ME 34 <	Ti-BAI-4V(ELI)		bustion	u I	Annealed								6.1										
9.3.2 Sheet A STA TIG Ti-6AL4V Stress ME 1 1 9.3.2 Sheet B STA TIG Ti-6AL4V AW ME 3 3 3 3 9.3.2 Sheet B Annealed TIG Ti-6AL4V AW ME 5 7	9.3.2 Sheet A STA TIG TI-6AI-4V Stress ME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ti-GAL-4V(ELI)		Building	u	As forged Annealed					_						1		1,51			1,F1		
9.3.2 Sheet A TiG Ti-6Ai-4V Stress ME 2 9.3.2 Sheet B STA relevand TiG Ti-6Ai-4V Stress ME 2 9.3.2 Sheet B Annealed TiG Ti-6Ai-4V Stress ME 5 9.3.2 Sheet B STA TiG Ti-6Ai-4V Ark ME 6 9.3.2 Sheet B STA TiG Ti-6Ai-4V Ark ME 6 9.3.2 Plate D Stress TiG Ti-6Ai-4V Ark ME 7 7 9.3.2 Plate C STA Annealed ME 9 9.3.2 Plate C STA Annealed ME 10 10 10 10 11 11 11 11 11 11 11 11 11	9.3.2 Sheet A TiG Ti-6Ai-4V Stress ME 2 9.3.2 Sheet B STA TiG Ti-6Ai-4V Stress ME 3 3 9.3.2 Sheet B STA TiG Ti-6Ai-4V Stress ME 4 3 3 9.3.2 Plate D Annesled TiG Ti-6Ai-4V Air ME 4 3 3 9.3.2 Plate D Stress TiG Ti-6Ai-4V Air ME 6 7 7 9.3.2 Plate D Stress TiG Ti-6Ai-4V Air ME 9 7	Ti-6At-4V(N)		heer	4	STA				ME	-													
93.2 Sheet 8 STA Annealed 5.1 FeAl-4V Annealed 5.2 Feat 6.2 Annealed 5.2 Feat 6.2 Annealed 5.2 Feat 6.2 Fea	9.3.2 Sheet 8 STA 9.3.2 Sheet 8 STA 9.3.2 Sheet 8 STA 9.3.2 Sheet 8 STA 11G Ti-6Al-4V Aw ME 4 9.3.2 Plate D Annesled ME 6 9.3.2 Plate D STRA 9.3.2 Plate D STRA 9.3.2 Plate E STA 9.3.3 Plate E STA 9.3 Plate E STA 9.	Ti-6AI-4V(N)		heet	٠.		716	TI-641-4V	Stress	ME 2														
9.3.2 Sheet B Annesied TiG Ti-6Al-4V Aliesed ME 4 9.3.2 Plate D STA TiG Ti-6Al-4V Aliesed ME 5 9.3.2 Plate D STA TiG Ti-6Al-4V Aliesed ME 6 9.3.2 Plate D STR-A TiG ME 6 7 9.3.2 Plate D Stress TiG TiG ME 9 9.3.2 Plate E Annesied ME 10 10 9.3.2 Plate F Annesied ME 11 11 TR 1,F1 1,F1 9.3.2 Plate F Annesied ME 11 11 11 1F1 1,F1 1,F1 1,F1,F2 10.1.3 Annesied ME 11 11 11 1R 1,F1 1,F1 1,F1,F2 10.1.4 Min F Annesied ME 1 1 1,F1 1,F1 1,F1	9.3.2 Sheet B Annealed TIG Ti-6Al-4V ANN ME 4 9.3.2 Sheet B STA TIG Ti-6Al-4V ANE 4 9.3.2 Plate D STA ME 7 7 9.3.2 Plate D STA ME 7 7 9.3.2 Plate F STA ME 8 7 7 9.3.2 Plate F STA ME 10 ME 10 9.3.2 Plate F Annealed ME 10 ME 10 9.3.2 Plate F Annealed ME 10 ME 11 10.1.3 Annealed Annealed ME 11 11 10.1.3 MI Annealed ME 1 10.1.4 Bar F Annealed ME 3 10.1.4 Mire F ME 3 10.1.4 Mire ME 3 Male	TI-GAL-4V(N)		heer	60	STA			Lelieved	ME 3	m	m												
9.3.2 Plate D Annealed ME 6 7 7 7 7 7 7 8 15 16 1 16 14 4	9.3.2 Plate D Anneled ME 6 7 7 8 13.2 Plate D Sires Ticked ME 6 7 7 8 13.2 Plate D Sires Ticked ME 6 9.3.2 Plate D Sires Ticked ME 6 9.3.2 Plate D Sires Ticked ME 9 13.2 Plate E STA Anneled ME 11 11 11 11 11 11 11 11 11 11 11 11 11	T-GAL-AV(N)		heer	co c	Annealed	TIG	Ti-6A1-4V	AW															
9.3.2 Plate D STATE STATE Annealed ME 6 7 7 8 8 9 8 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	9.3.2 Plate D STATE STATE NEED Annealed NE 6 9.3.2 Plate D STATE STATE NEED Annealed NE 6 9.3.2 Plate C STATE NEED Annealed NE 9 9.3.2 Plate E STATE Annealed NE 9 NEED Annealed NE 10 11 11 11 11 11 11 11 11 11 11 11 11	(All A TIPOLI			0	<u> </u>	2	2	relieved															
9.3.2 Plate D SirsA TiG Ti-6Al-4V Air ME 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9.3.2 Plate D SIRA TIG TI-BAI-AV Air ME 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Ti-6AL-4V(N)		fate	٥	Annealed																		
9.3.2 Parts E STA Annealed ME 9 TR 1/F1 F2 TR	9.3.2 Plate E STA Indiand Indiand ME 9 9.3.2 Part F Annealed ME 10 9.3.2 Annealed Annealed ME 11 11 10.1.1 Annealed ME 11 11 10.1.3 Annealed ME 11 11 10.1.4 Bar F Annealed ME 1 10.1.4 Mire Number Mire Number ME 1 10.1.4 Mire Number Mire Number Mire Number ME 1 10.1.4 Mire Number Mi	Ti-6AL4V(N)		ate	ه د	Stress	716	Ti-6AI-4V	Ą		1													
9.3.2 Figure E 5/4 Annealed ME 10 10 10 TR 1/F1 1/F1 1/F1 1/F1 1/F1 1/F1 1/F1 1/F	9.3.2 Figure 5 21A Annealed ME 10 11 11 11 11 11 11 11 11 11 11 11 11				ı	relieved			relieved															
9.3.2 Figing Annealed ME 11 11 11 TR 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F1 1,F	9.3.2 Figing Annealed ME 11 11 10.1.1 10.1.2 10.1.3 10.1.4 Bar F Annealed ME 1 10.1.4 Wire Mine F Annealed ME 2 10.1.4 Wire Mine S ME 5 10.1.4 Mine ME 1 10.1.5 ME 5 10.1.5 ME	Ti-bal-av(N)		late N	IJ LL	Annealed						ç												
9.3.2 Annealed TR	9.3.2 Annealed 10.1.3 10.1.3 10.1.4 Bar F Annealed 10.1.4 Wire 10.1.4 Wire 10.1.4 Wire 10.1.5 Wire 10.	Ti-8AI-4V(N)		Guida		Annealed						=												
10.1.5	10.1.5 10.1.3 10.1.3 10.1.4 Bar F Annealed ME 1 10.1.4 Wire ME 3.4 10.1.4 Wire ME 5 10.1.4 Wire ME 5 10.1.4 Wire ME 1 10.1.4 Wire ME 1 10.1.4 Wire ME 1	Ti-6AI-4V(N)	9.3.2			Annealed											Ε.			1,F1		1,51		
10.1.3 TR 15.1.52 TR 15.1.	10.1.2 10.1.3 10.1.3 10.1.4 Bar F Annasted ME 1 10.1.4 Bar F Annasted ME 2 10.1.4 Wire Mile 1 10.1.4 Wire Mile 5 10.1.4 Wire ME 1 10.1.4 Wire F1	Special Metals	101														ř				F3,F4	3		
10.1.2 10.1.3 10.1.3 10.1.4 Bar F Annealed ME 1 1 TR 2,F3,F4 10.1.4 Bar F Annealed ME 2 2 10.1.4 Mire ME 54 10.1.4 Mire F1 TR 2,F3,F4 TTR 3,F3,F4 TTR 3,F4 TTR	10.1.2 10.1.3 10.1.4 Bar F Annealed ME 1 10.1.4 Bar F Annealed ME 2 10.1.4 Mire ME 3.4 10.1.4 Wire ME 5.4																	- 1	-	1	74'14'	1,7		
101.3 TR 1.51.5 TR 2.53.54 101.4 Bar F Annealed ME 1 1 TR 2.53.54 101.4 Bar F Annealed ME 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.1.3 10.1.3 10.1.4 Bar F Annealed ME 1 10.1.4 Bar F Annealed ME 2 10.1.4 Wire Mine 5 10.1.4 Wire ME 5 10.1		10.1.2														1	- [2					
10.1.4 Bar F Annelled ME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.14 Bar F Annealed ME 1 10.14 Bar F Annealed ME 2 10.14 Mire ME 2 10.14 Mire ME 3 ME 5 10.14 Mire ME 5 10.14 Mire ME 5 ME	<u>.</u>	10.1.3														<u> </u>		~					
10.1.4 Bar F Annested ME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.14 Bar F Annealed ME 1 10.14 Bar F Annealed ME 3,4 10.1.4 Wire ME 5 10.1.4 Mire ME 5 10.1.4 Mire ME 5 10.1.4 ME 71		1	!						1							1	1						
10.1.4 Wire FI TR TR TTR TO 10.1.4 Wire FI TR	101.4 Wre ME	TI-TNB TI-TINB ND-TI-Zr			ı. u.	Annealed						- 7												
TH TH		Nb-35Ti(+Zr) Ti-Nb(to 4% Nb)		2																				
		Ti-9Nb	10.1.4														<u> </u>			1,F1				

TABLE 3.2 INDEX TO METALS AND ALLOYS, FORMS, THICKNESSES, CONDITIONS, AND PROPERTIES FOR DATA REPORTED IN THIRD REVISED EDITION

								ž	Mechanical Properties	Propert	1								Thermal Electrical Properties	trical Propert	*		Prop	erties
						Weld Properties			Tensile		Š	ser Impa	Fracti et Toughr	Jess Fatigu	Dyn Modu	il(p)	U	Magnet	E L	s	æ	MR		Magnetic
Metarial	Mar'l Code	Form	Thickness (II) Code	Thickness(1) Form Code Condition(C,d,e) Process(i)	Process(i)	Filler	Post-Weld ^(k) Prop Ultimate Elestic Treatment Code Prop Prop	Prop U Code	Prop	Elestic	NTS SI	JS Cher	Py KIC. K	satment Code Prop Disimate Elastic SUS Charpy K.C. Kig. satment Code Prop Prop NTS G V J.C da/dN S.N B.p Code Cond. Cond. Expansion	, 8, m	, a	Se Cond	tel Therm	Therma Expansion	Specific in Heat		Electrical Magneto- Prop Perm., Resistivity Resistance Code Sussept	Prop Code	Perm.
Ti-26Nb	10.1.4															FF	TR		3,53					
Nb-45Ti Nb-48Ti	10.1.4															FF	<u> </u>		5,F5 6,F6					
V Ga Alloys V3Ga	10.2.1			Annealed												F	Æ		1,F1	1,F1 1,F1,F2,F3	1 1			
Magnesium Alloys Az318 Mg-Ai-Mn alloy	10.3.1			Annested Quenched												F	TR 1,F1						MA F1	F

| Numbers containing an "F" prefix refer to figure numbers, others refer to table numbers. Each table or figure number to containing an "F" prefix refer to figure numbers of the major of

TABLE 3.3 INDEX TO POLYMERS, FORMS, CONDITIONS, AND PROPERTIES FOR DATA REPORTED IN THIRD REVISED EDITION

					7			•	Sechanica	Mechanical Properties							Thermaf	Thermal-Electrical Properties	serties.				
											Fracture		Dynamic				ပ				2	M. gnetic Properties	Ties
	1					Tensile		Compress.	Shear	Impact	Toughness		Moduli			U	Magneto-	ш	s	Œ			Perm.
Material	Code	Form(b)	Condition	Code	Ultimate Prop.	Flastic Props.	STN	CVS, E _c	SUS.	Charpy	KIC, KIC.	Fatigue da/dN S-N	E, G,	FUS, FYS	Frop.	Thermal Cond.		Thermal			0 40 0 40	Megnetic	Sussept.
Polymers ^(a) PE	12.1.1	Am	Crystallinity, %							pozi					Ħ.			1,F1	1,F1				
Tre	12.1.2	ħ	37 6.40 0	ME		~																	
PCTIFE	12.1.2	¥	52.6-55.0	×	. 2	2			- 6														
TFE	12.1.2	xt	57.6-60.0	¥					•	e													
TFE	12.1.2	×	67.6-70.0	ME	*	4			4	· G													
TFE	12.1.2	Am													T.	1,F1		1,61	1,F1				
FE	12.1.3	×	47.6-50.0	ME	-	-		-	2					1.2									
FE	12.1.3	×	50.1-52.5	ME	m	60			4	*				4.5									
FE	12,1,3	×	55.1-57.5	ME				ĸ															
FE	12,1,3	×	57.6-60.0	ME	9	9																	
FE	12.1.3	×t	66.1-67.5	ME	^	1			00					7.8									
FE	12.1.3	ם	67.6-70.0	Z.	an			o,															
FE	12.1.3	×t	70.1-72.5	ME						10													
PTFE	12.1.3	Am	1												Æ	1,61		1,51	1,61		AM		-
PMM	12.2.1	Am													E	1.51		1.61	19				
	12.31	Am														Ē		14,					
PVA	12.4.1	Am													E E	1							ļ

(a) PCTFE = polychlorotrifluoroethylene; PTFE - polytetrafluoroethylene; PE = polyethylene; PMM = polymethylmethacrylete; PS = polystyrene.

(b) xt = crystalline; Am = amorphous.

TABLE 3.4 INDEX TO COMPOSITES, LAYUPS, AND PROPERTIES FOR DATA REPORTED IN THIRD REVISION EDITION

Material Material	1								Tensile(a)	-		Mecha	Mechanical Properties		Compression(b)	(9)		Shear(c)		monet	Fatious (d)	1		Inernal-Electrical Properties	Sparties.	
Compositesty 110.0 Compositesty 110.0 ME 1 2 <	1	Material	Met'i Code	Lay Up	Code	TUS	£1		£2	I b	Failure Strain	Poisson's Ratio	NTS	cus	GP.	w		3PL		Charpy, Izod	N.	Prop Code	Thermal Conductivity	Thermal Expansion	Specific Heat	Electrical Resistivity
1581/E-787168-68R) 11.12 Cloth ME 1 1 1 1 2 2 2 2 2 2	00222	Composites Sales-Epoxy 181/EPON 828 181/EPON 828	11.00	Cloth Cloth Cloth	₹	_	, - 2	-	-					2		8					£	표	-	-	-	
S901/NASA Resin 2 11.1.3 Tape ME I </td <td>1 255</td> <td>1581/E-787(58-68R) (581/E-787(58-68R) (581/E-787(58-68R)</td> <td>11.12</td> <td>Cloth Cloth</td> <td>ME</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>2</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td>ᄠ</td> <td>•</td> <td>9</td> <td>-</td> <td></td>	1 255	1581/E-787(58-68R) (581/E-787(58-68R) (581/E-787(58-68R)	11.12	Cloth Cloth	ME	-	-				-		-	2			2					ᄠ	•	9	-	
Boron-Epaxy 11.2.0 rape ME 1 1 1 1 2 2 2 2 2 2 FI 4 Mil B/2387 11.2.1 rape Tape ME 1 1 1 1 2 2 2 2 2 7 5 6 MI 3 5 2 3 8 8 8 8 11.4.1 1 1	क क	1901/NASA Resin 2 1901/NASA Resin 2	11.1.3	Tape	ME	-	-			-	~	-		2	2	2	7		2	2		TR		-		
11.2.2 Tape ME 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Q 4 4	Seron-Epoxy I Mil 8/2387 I Mil 8/2387	112.0	Tape Tape	Σ	-		-		1	-	-		8	2	2	2		2		Ξ	Ē	-	-	-	-
Graphite-Eboxy 11.30 Tape ME 1 1 1 2	ம்மி	5.6 Mil 8/2387 5.6 Mil 8/2387	11.2.2	Tape	ME	-	-			-	-	-		2	2	2			2			TR.	1			ā
HT-SiX-904 11.3.2 Tape ME 1 1 1 1 2 2 2 2 2 2 2 HT-SiX-904 11.3.1 Tape ME 1 1 1 1 2 2 2 2 2 2 2 2 2 7 F1	5 ∢	Graphite-Epoxy AS/NASA Resin 2	11.30	Таре	Æ	-	-			-	-	-		2	2	2	2									
Boron-Aluminum 11.4.0 5.6 Mil 8/9061 11.4.1 Tape ME 1 1 1 1 2 2 2 2 2 F F1 5.6 Mil 8/9061 11.4.1 Tape		4T-S/X-904 4T-S/X-904	11.32	Tape Tape	ME	-	-				-	-		2		2	2					Æ	-	-	-	-
		Boron-Aluminum 5.6 Mil 8/6061 5.6 Mil 8/6061	11.4.0	Tape	ME	-	-			~	~	~		0	C)	N	0		6	!	£	Ħ			-	

⁽a) TUS = tentile uttimate strength

E1 = initial Young's modulus

SE₁ = strength at transition between E₁ and E₂

E₂ = seconders Young's modulus

F2L = tentile proportional limit

NTS = control estaive uttimate strength

(b) CUS = compressive uttimate strength

(c) SUS = sheer undurate strength

SPL = sheer proportional limit

E = elestic modulus

(d) sheer modulus

(d) SN Curves = plots of stress against number of cycles to failure on testing

INDEX TO MATERIAL CODES FOR SECTION 4.0

ALUMINUM AND ALUMINUM ALLOYS

MATERIALS	MATERIAL CODE
ALUMINUM	4.1.1
1099	4.1.4
1100	4.1.4
2014	4.2.1
2024	4.2.3
2219	4.2.2
5083	4.3.1
5456	4.3.2
6061	4.4.1
7005	4.5.2
7006	4.5.3
7039	4.5.1

FIGURE 4.1.1-MEO.1. FATIGUE LIFE CURVES FOR AXIAL LOADING ON SPECIMENS OF 99.99% ALUMINUM ROD 0.160 cm (0.056 in.) DIAMETER AT CYCLE FREQUENCIES OF 225 HERTZ AT R = -1 [90214]

Alloy Designation:

Aluminum

Specification: Form: Dimension: Condition:

Annealed

Condition:	Anneale	d											
Testing Temp	perature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Con	ductivity (1)												
RRR-30000	Watts m-1 K-1 Btu hr-1 ft-1 F-1	236	(136) (136)	302	(175)	1230	(711)	14000	(8090)	59500	(34400)	96400	(55700)
RRR-10000	Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹	236	(136)	302	(175)	1230	(711)	13200	(7630)	39000	(22500)	36500	(21100)
RRR-3000	Watts m-1 K-1 Btu hr-1 ft-1 F-1	236	(136)	302	(175)	1230	(711)	11100	(6420)	19100	(11000)	11600	(6710)
RRR-1000	Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹	236	(136)	301	(174)	1210	(700)	7020	(4060)	8150	(4710)	3960	(2290)
RRR-300	Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹ Watts m ⁻¹ K ⁻¹	235	(136)	299	(173)	1140	(659)	3570	(2060)	2770	(1600)	1200	(694)
RRR-100 No. of S	Btu hr-1 ft-1 F-1	234	(135)	293	(169)	920	(532)	1560	(902)	963	(557)	398	(230)
	s: 90170, 90224												
Thermal Exp Longitudinal	pansion (T ₂₇₃ to T)												
Percent No. of S	Spec.	0 5		-0.325 5		-0.361 6		-0.368 6		- 0.368		-0.368 2	
90208, 9045	s: 40911, 48571, 8, 90323, 90366									į			
Specific Heat Joules kg	1 K-1	860		480		142		8.8		1.5		0.33	
Btu lb-1 F No. of S	Spec.	3	(0.206)	3	(0.115)	3	(0.0339)	2	0.00210)	4	0.00036)	5	0,000079
Reference	s: 49011, 42219, 90223, 90328												
RRR-30000		2.43 x	10 ⁻⁸ (14.6)	4,60·x	10 ⁻⁹ (2.77)		10 ⁻¹⁰ 2.98 x 10 ⁻¹)	7,02 x (4.3	₁₀ ·12 31 x 10·3)	1,00 x	10 ⁻¹² .02 x 10 ⁻⁴)	8.15 x ¹ (4.9	10 ⁻¹³ 0 x 10 ⁻⁴)
RRR-10000		2,43 x	(14.6)	4.60 x	(2.77)	(10 ⁻¹⁰ 2.99 x 10 ⁻¹)		20 x 10 ⁻³)	2.62 x (1	.58 x 10-3)		6 x 10-3)
RRR-3000	Ohm m Ohm circular mil ft	2.43 x	(14.6)	4.61 x	(2.77)	(10 ⁻¹⁰ 3.03 x 10 ⁻¹)		60 x 10-3)		.99 x 10·3)	8.10 x 1 (4.8 2.43 x 1	7 x 10-3)
RRR-1000	Ohm m Ohm circular mil ft	2.43 x 2.44 x	(14.6)	4.63 x	(2.78)	(: 10 ⁻¹⁰ 3.12 x 10 ⁻¹) : 10 ⁻¹⁰	3.05 x (1.8 8.74 x	33 x 10·2)	2,45 x (1 8,14 x	.47 x 10-2)		6 x 10-2)
RRR-300 RRR-100	Ohm m Ohm circular mil ft		(14.7)	4.85 x	(2.82)	(3.46 x 10 ⁻¹)		26 x 10-2)		.90 x 10-2)		8 x 10-2
No. of S	Ohm circular mil ft		(14.7)	4.55 X	(2.92)	(4.45 x 10 ⁻¹)		52 x 10 ⁻¹)		.47 × 10 ⁻¹)		7 x 10 ⁻¹)
	s: 90178, 90209, 90224, 96886												

En .

FIGURE 4.1.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR ALUMINUM

FIGURE 4.1.1-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR ALUMINUM

TABLE 4.1.1-MA1

Alloy Designation: High-Purity Aluminum

Specification: Impurities, ppm: 30Mg, 5Fe, 3Si, 2Cd, 1Cu, 1Na, 1Ag

Form: Cylindrical rod Diameter, cm (in.): 0.4 (0.0157)

Condition: Argon arc melted, vacuum homogenized at a temperature

just below the solidus for about 7 days and quenched in ice water. Machined specimens were vacuum strain

annealed for about 24 hours.

The temperature dependence of the magnetic susceptibilities (χ) of pure aluminum and an aluminum-silicon alloy is shown in the figure.

(a)

o: Pure aluminum, Taylor (1961).

1. • : Pure aluminum.

2. • : Aluminum + 0.85% silicon.

Reference: 90493

TABLE 4.1.4-ME1

Alloy Designation: 1099-H14 Aluminum

Specification:

Form:

Plate

Thickness, cm (in.): Condition: 1.270 to 2.540 (0.500 to 1.000)

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	20 (-423)	4 (-452)	
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg	91.0 (13.2)	102 (14.8)	159 (23.1)	289 (41.9)	332 (48.1)	
Std. Deviation	Min						
TYS, MN/m ² (ksi)	Avg	86.2 (12.5)	86.9 (12.6)	98.6 (14.3)	106 (15.4)	130 (18.9)	
Std. Deviation	Min						
Elong, percent	Avg Min	22.6	38.4	57.2	60.5	46.7	
RA, percent	Avg	84	83	81	79	56	
No. of Spec. (No. of Hea	Min ats)	(1)	(1)	(1)	(1)	(1)	
E, GN/m ² (10 ⁶ psi)	Avg						
No. of Spec. (No. of Hea	Min ats)						
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi) K _t =	Avg Min						
No. of Spec. (No. of Hea		1					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ats)						
Tension, Transverse							
TUS, MN/m ² (ksi)	Avg Min						
Std. Deviation							
TYS, MN/m ² (ksi)	Avg Min						
Std. Deviation							
Elong, percent	Avg Min						
RA, percent	Avg						
No. of Spec. (No. of Hea	Min ets)						
E, GN/m ² (10 ⁶ psi)	Avg						
No. of Spec. (No. of Hea	Min its)						
Poisson's Ratio							
Vork Hardening Coef							
NTS, MN/m ² (ksi)	Avg						
K _t = No. of Spec. (No. of Hea	Min ets)						
NTS, MN/m ² (ksi)	Avg						
K _t = No. of Spec. (No. of Hea	Min its)						
References: 72563							53

TABLE 7.1.4-ME1.1

1100-Aluminum Alloy (Weld Metal) Alloy Designation:

Specification:

Form: Plate-MIG welded, 1100 Al filler
Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: Plate: H112; weld metal tested as welded

Testing Temperature, K (F)	297 (75)		77 (-320)			
Tension, Longitudinal						
TUS, MN/m ² (ksi) Avg						
Min Std Deviation						
TYS, MN/m² (ksi) Avg						
Std. Deviation						
Elong, percent Avg						
RA, percer.* Avg	4					
Min No of Spec. (No. of Heats)					2 11	
E, GN/m ² (10 ⁶ psi) Avg		p a				
No of Spec. (No. of Heats)				21		
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)						,
NTS, MN/m ² (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)		Į.				
Tension, Transverse						
TUS, MN/m² (ksi) Avg	80.0 (11.6)	- 11	157 (22.8)			
Std Deviation						
TYS, MN/m ² (ksi) Avg			55 (8.0)			
Std. Deviation						
Elong, percent Avg			31.0			
RA, percent Avg	5.0		9.0		= = 1	
No. of Spec. (No. of Heats)			1			
E, GN/m ² (10 ⁶ psi) Avg		= =				
No. of Spec. (No. of Heats)						
Poisson's Ratio					1	
Work Hardening Coef				1		
NTS, MN/m ² (ksi) Avg K _t = 16 Min			222 (32.2)			
No of Spec. (No. of Heats)	1		1			
NTS, MN/m ² (ksi) Avg K _t = Min						

TABLE 4.1.4-ME2

Alloy Designation:

1100-O Aluminum

Specification: Form: Diameter: Condition:

Up to 2.540 cm (1.000 in.) Annealed (0) (ASTM Grain size 3.5)

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)	
Tension, Longitudinal										
TUS, MN/m ² (ksi)	Avg Min	93.1 92.4	(13.5) (13.4)	114	(16.5) (16.1)	191 188	(27.7) (27.3)	328 327	(47.6) (47.4)	
Std. Deviation			, , ,							
TYS, MN/m ² (ksi)	Avg	48	(6.9)	50	(7.2)	62	(9.0)	65	(9.4)	
Std. Deviation	Min	45	(6.5)	49	(7.1)	61	(8.9)	64	(9.3)	
Elong, percent	Avg		45.9	1	50.0	\$	56.4		54.2 52.6	
	Min		44.1		47.4		55.8		52.0	
RA, percent	Avg Min	•	88.4 86.8		85.6 85.6		81.2 79.7		60.0 57.8	
No. of Spec. (No. of Hea		3	(1)	3	(1)	3	(1)	2	11,	
E, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of Hea										
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m ² (ksi)	Avg					}				
K _t = No. of Spec. (No. of Hea	Min ats)									
NTS, MN/m ² (ksi)	Avg			1						
K _t = No. of Spec. (No. of Hea	Min ats)	1								

References: 54986

TABLE 4.1.4-ME3

Alloy Designation: 1100-0 Aluminum

Specification:

Form: Rod

Thickness, cm (in.): Up to 2.540 (1.000)
Condition: Annealed (0) 620 K (650 F), FC

Testing Temperature, K (F)		297 (75)	200 (-103)	100 (-280)	"0" (-460)		
Compression, Longitudinal						17.0	
CYS, MN/m ² (ksi)	Avg			- 11			
No. of Spec. (No. of Hea	Min its)						
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of Hea							
Compression, Transverse				:			
CYS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of Hea					,		
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of Hea							
Shear(a)						{	
SUS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of Hea						-	
G, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of Hea	ets)						
Dynamic Modul:							
E, GN/m ² (10 ⁶ psi)	Avg Min	69.4 (10.1)	72.8 (10.6)	75.8 (11.0)	76.9 (11.2)		
G, GN/m ² (10 ⁶ psi)	Avg Min	25.9 (3.76)	27.3 (3.96)	28.5 (4.13)	28.9 (4.14))	
B, GN/m ² (10 ⁶ psi)	Avg Min	72.4 (10.5)	73.8 (10.7)	74.9 (10.9)	75.1 (10.9)		
Poisson's Ratio	Avg Min	0.340	0.336	0.331	0.329		
No. of Spec.		1	1	1	1		
Impact, Charpy V							
Long., Nm(ft-lb)	Avg Min						
No, of Spec. (No, of Hea	1						
Trans., Nm(ft-lb)	Avg Min						
No. of Spec. (No. of Hea							
Fracture Toughness(b)							
Kle MN/m ^{3/2} (ksi√in.)	Avg Min						
Orientation — No of Spec. (No. of Hea							
KIE, MN/m ^{3/2} (ksi/ in.) (From PTSC spec.)(— No of Spec. (No. of Her	Avg)Min			10			

⁽a) Indicate specimen design and orientation for shear specimens:

(b) Indicate specimen design for K_{1c} data:

FIGURE 4.1-ME1. EFFECT OF TEMPERATURE ON THE STRENGTH OF UNALLOYED ALUMINUM

Alloy Designation:

Aluminum 1100-0

Specification: Form: Dimension: Condition:

Annealed (0)

Testing Temperature K (F)	273 (32)	100 (-280)	50 (-370)	20 (-423)	10 (-442)	4 (-452)
Thermal Conductivity RRR-32.6 Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹ RRR-14 Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹ No. of Spec. References: 90111, 90225, 96888	225* (130)* 205 (119)	310* (179)* 228 (132) 2	520* (301)* 315 (182) 2	493 225 (130) 3	270 113 (65)	117 45 (26.0)
Thermal Expansion (T273 to T) Longitudinal Percent No. of Spec. References: 48134	0	-0.315 1	-0.355 1	-0.364 1		
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹ No. of Spec. References:						
Electrical Resistivity RRR-32.6 Ohm m Ohm circular mil ft ⁻¹ RRR-14 Ohm m Ohm circular mil ft ⁻¹ No. of Spec. References: 79561, 90111	2.67 x 10 ⁻⁸ (16.1) 2.80 x 10 ⁻⁸ (16.8)	5.10 x 10 ⁻⁹ (3.07) 6.43 x 10 ⁻⁹ (3.87) 2	1.70 x 10 ⁻⁹ (1.02) 2.87 x 10 ⁻⁹ (1.73)	8.40 x 10 ⁻¹⁰ (0.505) 2.11 x 10 ⁻⁹ (1.27)	8.20 x 10 ⁻¹⁰ (0.493) 2.03 x 10 ⁻⁹ (1.22)	8.20 x 10 ⁻¹⁰ (0.493) 2.00 x 10 ⁻⁹ (1.20)
Magnetothermal Conductivity RRR-32.6 Watts m-1 K-1 Btu hr-1 ft-1F-1	225* (130)* 224* (130)* 222* (128)* 220*	310* (179)* 260* (150)* 240* (139)* 230* (133)*	520* (301)* 340* (196)* 275* (159)* 240*	493 (285) 377 (218) 273 (158) 243 (141)	270 (156) 247 (143) 215 (124) 198 (114)	117 (67.6) 112 (64.8) 98.3 (56.8) 81.7 (47.2)

^{*} Extrapolated and Interpolated.

FIGURE 4.1.4-CO.1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOYS

FIGURE 4.1.4-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 1100-0

FIGURE 4.1.4-C2. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 1100-0 AT SEVERAL MAGENTIC FIELD STRENGTHS (RRR-32.6)

4.1.4-5.1 (11/76)

614

THERMAL EXPANSION VERSUS TEMPERATURE FOR ALUMINUM ALLOY 1100-0 FIGURE 4, 1, 4-E1.

FIGURE 4.1.4-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 1100-0 63<

FIGURE 4.1.4-R2. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 1100-0

64<

4.1.4-7.1 (11/76)

Alloy Designation:

2014-T6 Aluminum Alloy

Specification:

AMS-4029A, ASTM B209

Up to 0.099 (0.039) T6 Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297 (75)	 77	(-320)	20	(-423)	 ļ	
Tension, Longitudinal								
TUS, MN/m ² (ksi)	Avg Min	483 (70.0)	562	(81.5)	681 669	(98.8) (97.0)		
Std Deviation					003	(57.0)		
TYS, MN/m ² (ksi)	Avg Min	427 (62.0)	510	(74.0)	543 517	(78.8) (75.0)		
Std. Deviation						(70.0)		
Elong, percent	Avg Min	9.0		10.8		14 13		
RA, percent	Avg Min							
No. of Spec. (No. of Heats)	(1)		(1)	3	(1)	1	
E, GN/m ² (10 ⁶ psi)	Avg !							
No. of Spec. (No. of Heats								
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m ² (ksi) K _t =	Avg Min							
No. of Spec. (No. of Heats)							
NTS, MN/m ² (ksi) $K_t =$ No. of Spec. (No. of Heats	Avg Min							
Tension, Transverse								
TUS, MN/m ² (ksi)	Avg Min	476 (69.0)	559	(81.1)	674 661	(97.8) (95.8)		
Std. Deviation								
TYS, MN/m ² (ksi)	Avg Min	421 (61.0)	485	(70.4)	520 517	(75.4) (75.0)		
Std. Deviation								
Flong, percent	Avg Min	9.0		11.3		1 5		
RA, percent	Avg							
No. of Spec. (No. of Heats	Min	(1)		(1)	2	(1)		
E, GN/m ² (10 ⁶ psi)	Avg							
No. of Spec. (No. of Heats	Min							
oisson's Ratio								
ork Hardening Coef								
ITS, MN/m ² (ksi)	Avg							
Kt = No. of Spec. (No. of Heats)	Min							
ITS, MN/m ² (ksi)	Avg							2
Kt = No. of Spec. (No. of Heats)	Min							

Alloy Designation:

2014-T6 Aluminum Alloy

Specification:

AMS-4029A, ASTM B209

Form:

m: Sheet

0.100 to 0.319 (0.040 to 0.125)

Thickness, cm (in.): Condition:

T6

Testing Temperature, K (F)	297 (75)	195 (-108)	144 (-200)	77 (-320)	20 (-423)	4 (-452)
Tension, Longitudinal						
	g 490 (71.1)	515 (74.7)	524 (76.0)	585 (84.9)	687 (99.7)	669 (97.0)
Std Deviation	12.6 (1.83)	489 (70.9) 1.10 (1.59)		558 (81.0) 13.0 (1.88)	664 (93.9) 18.2 (2.64)	
	rg 445 (64.6) in 413 (59.9)	472 (68.8) 447 (64.9)	490 (71.0)	52.0 (75.4) 496 (72.0)	572 (85.0) 534 (77.4)	
Std. Deviation	12.7 (1.87)	9.3 (1.35)		13.6 (1.97)	18.4 (2.67)	
	9.8 9.5 6.5	9.6 5.5	9.3	11.6 7.0	12.8 8.0	10.4
·	/g					
No. of Spec. (No. of Heats)	22 (11)	12 (6)	(1)	23 (11)	19 (9)	(1)
	70.5 (10.2) 66.2 (9.6)	74.5 (10.8) 66.9 (9.7)	-	80.7 (11.7) 74.5 (10.8)	83.4 (12.1) 75.8 (11.0)	
No. of Spec. (No. of Heats)	0.29	0.32		0.25	0,25	
Poisson's Ratio	0.29	0.32		0.25	0.25	
Work Hardening Coef						
	rg 518 (75.1) in 511 (74.1) 7 (2)	537 (77.9) 528 (76.6) 7 (2)		581 (84.2) 549 (79.6) 7 (2)	652 (94.5) 581 (84.2) 7 (2)	
NTS, MN/m ² (ksi) A K _t = 19+ N No. of Spec. (No. of Heats)	446 (64.7) 431 (62.5) 6 (2)	418 (60.7) 363 (52.6) 5 (1)		392 (56.9) 354 (79.6) 6 (2)	512 (74.2) 454 (65.8) 6 (2)	
Tension, Transverse	(2)			(2)	(2)	
TUS, MN/m ² (ksi) A	n 457 (66.3)	511 (74.1) 485 (70.3)		587 (85.1) 550 (79.7)	693 (100.5) 648 (94.0)	
Std. Deviation	10.1 (1.46)	10.6 (1.54)		15.2 (2.20)	18.6 (2.70)	
TYS, MN/m ² (ksi) A Std. Deviation		451 (85.4) 429 (62.2) 11.0 (1.59)		501 (72.6) 460 (66.7) 26.8 (3.88)	565 (82.0) 505 (73.2) 22.5 (3.26)	
Elong, percent A	g 10.2	9,8 6.5		11.6 4.5	12,9 7.5	
RA, percent A	~ 1					
No. of Spec. (No. of Heats)	15 (7)	11 (4)		16 (7)	15 (6)	
E, GN/m ² (10 ⁶ psi) A	g 71.4 (* 4) n 66.9 (/)	73.8 (10.7) 66.2 (9.6)		80.0 (11.6) 71.0 (10.3)	82.1 (11.9) 71.7 (10.4)	
No of Spec. (No. of Heats)	9 (3)	7 (2)		10 (3)	8 (3)	
Poisson's Ratio	0.27	0.32		0.26	0.23	
Work Hardening Coef						
NTS, MN/m ² (ksi) A $K_t = M$ No of Spec. (No. of Heats)			522	543 (78.7) 522 (75.7) 8 (2)	608 (88.2) 564 (81.8) 8 (2)	
NTS, MN/m ² (ksi) A K _t = M No. of Spec. (No. of Heats)				430 (62.4) 366 (53.1) 6 (2)	478 (69.4) 403 (58.4) 6 (2)	

References: 42002, 47334, 51156, 58024, 58000, 69310, 69800, 70906, 80104, 90073, 90076, 90188, 48652

66<

Alloy Designation:

2014 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-MIG welded, 4043 Al filler 0.100 to 0.319 (0.040 to 0.125)

Sheet: T6; weld metal toxed as welded

Testing Temperature, K (F)	297 (75)	77 (-320)	20 (-423)	
	vg 319 (46.3)	420 (60.9)	414 (60.0)	
Std. Deviation	vg 261 (37.8)	323 (46.8)	352 (51.0)	
	fin			
M	vg 2.8	2.0	1.2	
	vg	3 (1)	3 (1)	
	vg in			
Poisson's Ratio Work Hardening Coef				
NTS, MN/m ² (ksi) Av K _f = 15 Mi	in	315 (45.7)	351 (50.9)	
No. of Spec. (No. of Heats) NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats)	- 1	3 (1)	3 (1)	
Tension, Transverse TUS, MN/m² (ksi) Av		421 (61.1)	410 (59.4)	† 1
Std. Deviation TYS, MN/m² (ksi) Std. Deviation Av		328 (47.6)	360 (52.2)	
Elong, percent Av		2.1	1.2	
RA, percent Av Mi No. of Spec. (No. of Heats)		3 (1)	3 (1)	
E, GN/m ² (10 ⁶ psi) Av	79			
No. of Spec. (No. of Heats) Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi) Av $K_t = Mi$ No. of Spec. (No. of Heats)	•			
NTS, MN/m^2 (ksi) Av $K_t = Mr$ No. of Spec. (No. of Heats)	•			

Alloy Designation:

2014 Aluminum Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, 2014 Al filler 0.100 to 0.319 (0.040 to 0.125) Sheet: T6; weld metal tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)	77 (-320)	20 (-423)	
Tension, Longitudinal TUS, MN/m ² (ksi) Std Deviation	Avg Min	290 (42.0)	330 (47.9)	314 (45.6)	
TYS, MN/m ² (ksi) Std Deviation	Avg Min	234 (34.0)	240 (34.8)	218 (31.6)	
Elong, percent	Avg Min	1.2	1.0	1.0	
RA, percent No. of Spec. (No. of He	Avg Min				
E, GN/m ² (10 ⁶ psi)	Avg Min	74.5 (10.8)	84.1 (12.2)	96.5 (14.0)	
No. of Spec. (No. of He	eats)	1			
Poisson's Ratio		0.31	0.31		
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min ats)				
Tension, Transverse TUS, MN/m ² (ksi) Std. Deviation	Avg Min				
TYS, MN/m² (ksi) Std Deviation	Avg Min				
Elong, percent	Avg Min				
RA, percent	Avg Min				
E, GN/m ² (10 ⁶ psi)	Avg				
	Min				
No of Spec. (No. of He	a13)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min ats)				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min				

Alloy Designation:

2014 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-TIG welded, 2319 Al filler 0.100 to 0.319 (0.040 to 0.125) Sheet: T6; weld metal tested as welded

Testing Temperature, K (F)		297	(75)	200	(-100)	144	(-200)	77	(-320)	20	(-423)	4	(-452)
Tension, Longitudinal													
TUS, MN/m ² (ksi)	Avg	379	(54.9)	390	(56.5)	393	(57.0)	440	(63.8)	499	(72.4)	552	(80.0)
Std. Deviation	Min	353	(51.2)	368	(53.4)			416 15.8	(60.3)	430	(62.3) (5.02)		
		17.7	(2.56)	15.2	(2.21)			15.6	(2.29)	34.0	(5.02)		
TYS, MN/m ² (ksi)	Avg	290	(42.1)	284	(41.2)	292	(42.4)	332	(48.1)	448	(65.0)	422	(61.2)
Std. Deviation	Min					}				1		1	
e. 45 52165.													
Elong, percent	Avg Min		2.3 1.5		1.6 1.0		1.1		1.4 0.5		1.4 1.0		2.4
DA													
RA, percent	Avg Min												
No. of Spec. (No. of Hea	its)	12	(4)	9	(3)	1		12	(4)	15	(4)	1	
E, GN/m ² (10 ⁶ psi)	Avg												
	Min												
No. of Spec. (No. of Hea	3(\$)												
Poisson's Ratio													
Work Hardening Coef													
NTS, MN/m² (ksi)	A												
$K_{t} = (Ks)$	Avg Min							1					
No. of Spec. (No. of Hea													
NTS, MN/m ² (ksi)	Avg											-	
K _t =	Min							Ì					
No. of Spec. (No. of Hea	its)							1					
Tension, Transverse													
TUS, MN/m ² (ksi)	Avg	404	(58.6)	401	(58.2)			453	(65.7)	509	(73.8)		
Std Deviation	Min	396	(57.5)	400	(58.0)			439	(63.6)	483	(70,1)		
TYS, MN/m ² (ksi)	Avg Min												
Std. Deviation													
Elong, percent	Avg		1.8		1.5				1.0		1.3		
g, F	Min		1.5		1.0				1.0		1.0		
RA, percent	Avg							1					
	Min								1				
No. of Spec. (No. of Hea	its)	5	(1)	5	(1)			5	(1)	5	(1)		
E, GN/m ² (10 ⁶ psi)	Avg												
No of Spec. (No. of Hea	Min its}												
Poisson's Ratio													
Work Hardening Coef													
NTS, MN/m² (ksi)	Avg												
K _t =	Min												
No. of Spec. (No. of Hea	its)												
NTS, MN/m² (ksi)	Avg												
Kt =	Min	1											

Alloy Designation: 2014 Aluminur. Alloy (Weld Metal)

Specification:

Thickness, cm (in.): Condition:

Sheet-TIG welded, 4043 filler 0.100 to 0.319 (0.040 to 0.125) Sheet: T6; weld metal tested as welded

Testing Temperature, K (F)	29	7 (75)	195	(-108)	77	(-320)	20	(-423)	-
Tension, Longitudinal										
TUS, MN/m ² (ksi)	Avg Min	363 352	(52.7) (51.1)	372 363	(54.0) (52.7)	42.5 406	(61.7) (58.9)	479 471	(69.4) (68.3)	
Std Deviation			(1.39)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(2.22)			
TYS, MN/m ² 1	Avg Min	241 234	(34.9) (34.0)			395 392	(57.3) (56.9)			
Std Deviation	14.11	254	(54.0)			002	100.07			
Elong, percent	Avg		1.7 1.0		1.4 1.0		0.7 0.5		0.6 0.0	
RA, percent	Avg									
No of Spec. (No. of He	Min ats)	11	(3)	5	(1)	11	(2)	5	(3)	
E, GN/m ² (10 ⁶ psi)	Avg									
No. of Spec. (No. of He	Min ats)									
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m² (ksi)	Avg									
K _t = No. of Spec. (No. of Hea	Min ets)									
NTS, MN/m² (ksi)	Avg									
K _t = No. of Spec. (No. of Hea	Min ats)									
Tension, Transverse										
TUS, MN/m ² (ksi)	Avg Min	365 357	(53.0) (51.8)	371 365	(53.8) (52.9)	439 425	(63.7) (61.7)	480 463	(69.6) (67.2)	
Std Deviation										
TYS, MN/m² (ksi)	Avg Min									
Std. Deviation										
Elong, percent	Avg Min		1.8 1.5		1.3 1.0		0.8 0.5		0.9 0.5	
RA, percent	Avg									
No. of Spec (No. of Hea	Min ats)	9	(3)	8	(2)	9	(3)	8	(2)	
F. GN/m ² (10 ⁶ psi)	Avg									
No of Spec. (No. of Hea	Min ats)									
Poisson's Ratio										
Nork Hardening Coef										
NTS, MN/m ² (ksi)	Avg									
K _t = No. of Spec. (No. of Hea	Min ats)									
NTS, MN/m² (ksi)	Avg									
K _t = No. of Spec. (No. of Hea	Min					1				

Alloy Designation:

2014 Aluminum Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet-TIG welded, 4043 filler 0.100 to 0.319 (0.040 to 0.125) Sheet: T62; weld metal tested as welded

Testing Temperature, K (F)		29	7 (75)	195	(-108)	77	(-320)	20	(-423)		
Tension, Longitudinal (to tr	ansverse										
TUS, MN/m ² (ksi)	Avg Min	368	(53.4)	345	(50.0)	421	(61.1)	454	(65.8)		
Std. Deviation											
TYS, MN/m ² (ksi)	Avg Min										
Std Deviation											
Elong, percent	Avg Min										
RA, percent	Avg										
	Min	_	(4)		441		(1)		(1)		
No of Spec. (No. of Hea	ats)	3	(1)	3	(1)	3	(1)	3	(1)		72
E, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of Hea											
Poisson's Ratio											
Work Hardening Coef											
NTS, MN/m ² (ksi)	Avg										
Kt = No. of Spec. (No. of Hea	Min ets)										
NTS, MN/m ² (ksi)	Avg										
K _t = No. of Spec. (No. of Hea	Min ats)										
Tension, Transverse											
TUS, MN/m ² (ksi)	Avg Min										
Std. Deviation											
TYS, MN/m ² (ksi)	Avg Mir.										
Std Deviation	WIII,										
Elong, percent	Avg Min										
RA, percent	Avg									1	
No. of Spec. (No. of Hea	Min										
E, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of Hea	its)										
oisson's Ratio											
Vork Hardening Coef											
NTS, MN/m² (ksi)	Avg										
K _t = No. of Spec. (No. of Hea	Min its)										
ITS, MN/m² (ksi)	Avg										
Kt = No. of Spec. (No. of Hea	Min										

Alloy Designation: 2014-T6 Aluminum Alloy

Specification: AMS-4029A, ASTM B209

Form:

Form: Sheet
Thickness, cm (in.): 0.320 to 0.634 (0.126 to 0.249)
Condition: T6

Testing Temperature, K (F)	297	(75)	77	(-320)	20	(-423)		
Tension, Longitudinal						20			
TUS, MN/m ² (ksi)	Avg Min	498 487	(72.3) (70.7)	590 578	(85.5) (83.9)	662 630	(96.0) (91.4)	[
Std Deviation		5.0	(0.72)	7.6	(1.10)	16.5	(2.40)		
TYS, MN/m ² (ksi)	Avg Min	443 418	(64.2) (60.6)	505 483	(73.2) (70.1)	573 550	(83.0) (79.7)		
Std. Deviation		13.4	(1.95)	24.0		13.0	(1.89)		
Elong, percent	Avg Min		9.8 7.0		11.6 9.0		9.8 3.8		
RA, percent	Avg Min								
No. of Spec. (No. of He		65		65		24			
E, GN/m ² (10 ⁶ psi)	Avg Min								
No. of Spec. (No. of He	ats)								
Poisson's Ratio									
Nork Hardening Coef									
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min ats)								
NTS, MN/m² (ksi) K _t = No. of Spec. (No. of He	Avg Min								
Tension, Transverse									
US, MN/m ² (ksi)	Avg								
Std. Deviation	Min								
YS, MN/m ² (ksi)	Avg Min								
Std Deviation									
long, percent	Avg Min								
RA, percent	Avg Min								
No. of Spec. (No. of Hea									
, GN/m ² (10 ⁶ psi)	Avg								
No of Spec. (No. of Hea	Min ets)								
oisson's Ratio									
ork Hardening Coef									
ITS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min								
ITS, MN/m² (ksi)									
K _t = No of Spec. (No. of Hea	Avg Min		-						

Alloy Designation:

2014 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-TIG welded, 4043 filler 0.320 to 0.634 (0.126 to 0.249) Sheet: T6; weld metal tested as welded

Testing Temperature, K (F)	29	7 (75)	 7	7	(-320)	 			
Tension, Longitudinal						14				
TUS, MN/m ² (ksi)	Avg	334	(48.5)		96	(57.4)				
Std Deviation	Min	324	(47.0)	3	84	(55.7)				
TYS, MN/m ² (ksi)	Avg Min	236 236	(34.3) (34.2)		93 86	(57.0) (56.0)				
Std. Deviation	WIII	230	(34.2)		.00	(30.0)				
Elong, percent	Avg Min									
RA, percent	Avg Min									
No of Spec. (No. of He		3	(1)	5	•	(1)				
E, GN/m ² (10 ⁶ psi)	Avg Min									
No of Spec. (No. of He										
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min									
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min									
Tension, Transv vse										
TUS, MN/m ² (ksi)	Avg Min									
Std. Deviation	141111									
TYS, MN/m ² (ksi)	Avg Min									
Std Deviation								i		
Elong, percent	Avg Min									
RA, percent	Avg Min									
No. of Spec. (No. of He										
E, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of Hea										
Poisson's Ratio								}		
Work Hardening Coef										
NTS, MN/m² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ats)									
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min								87 TZ	

Alloy Designation:

2014 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-MIG welded, 716 filler 0.635 to 1.219 (0.250 to 0.449) Plate: T6; weld metal tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	-	297 (75)		77	(-320)		
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg	301 (43.7)		341	(49.5)		
Std Deviation	Min	294 (42.6)		336	(48.7)		
TYS, MN/m ² (ksi)	Avg	213 (30.9)		239	(34.6)		
Std. Deviation	Min	205 (29.7)		237	(34.4)		
		4.5			4.5		
fong, percent	Avg Min	1,5 1.5			1.5 1.0		
24		_					
RA, percent	Avg Min						}
No. of Spec. (No. of Hea		5 (1)		2	(1)		
E, GN/m ² (10 ⁶ psi)	Avg			ļ			
	Min						
No. of Spec. (No. of Hea	its)						
Poisson's Ratio							
Vork Hardening Coef							
NTS, MN/m ² (ksi) K _t =	Avg Min					_	
No. of Spec. (No. of Hea							
NTS, MN/m² (ksi)	Avg			}			
K _t =	Min						
No. of Spec. (No. of Hea	its)	1					
ension, Transverse							
IUS, MN/m² (ksi)	Avg						
Std Deviation	Min						
		1		Ì			
'YS, MN/m ² (ksi)	Avg Min						
Std Deviation				ĺ			
long, percent	Avg						
nong, person	Min		İ				
RA, percent	Avg						
	Min						
No. of Spec. (No. of Hea	ts)						
, GN/m ² (10 ⁶ psi)	Avg						
No of Spec. (No. of Hea	Min tel						
	13/						
oisson's Ratio							
York Hardening Coef							
ITS, MN/m² (ksi)	Avg						
Kt =	Min				Ш		
No of Spec. (No. of Hea	ts)						
ITS, MN/m² (ksi)	Avg						
Kt =	Min						

Alloy Designation:

2014 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Plate-MIG welded, 2319 filler 0.635 to 1.269 (0.250 to 0.449) Plate: T6; weld metal tested as welded

Testing Temperature, K (F)	297 (75)	77 (-320)	
Tension, Longitudinal			
TUS, MN/m ² (ksi) Avg	283 (41.0) 234 (34.0)	344 (49.9) 334 (48.4)	
Std Deviation	254 (54.0)	334 (40.4)	
TYS, MN/m ² (ksi) Avg	197 (28.6) 188 (27.3)	264 (38.3) 259 (37.6)	
Std Deviation			
Elong, percent Avg Min	1.0	1.5 1.5	
RA, percent Avg			
No of Spec. (No. of Heats)	5 (1)	2 (1)	
E, GN/m ² (10 ⁶ psi) Avg Min No_of Spec. (No_of Heats)			
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m² (ksi) Avg			
$K_t = Min$ No. of Spec. (No of Heats)			
NTS, MN/m ² (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)			
Tension, Transverse			
TUS, MN/m ² (ksi) Avg			
Std. Deviation			
TYS, MN/m ² (ksi) Avg Min	_		
Std. Deviation			
Elong, percent Avg Min			
RA, percent Avg			
No. of Spec. (No. of Heats)			
E, GN/m ² (10 ⁶ psi) Avg			
No of Spec. (No. of Heats)			
Poisson's Ratio			
Nork Hardening Coef			11
NTS, MN/m² (ksi) Avg Kt ≠ Min No. of Spec. (No. of Heats)			
NTS, MN/m ² (ksi) Avg K _t = Min			

Alloy Designation:

2014 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-MIG welded, 4043 filler 0.635 to 1.269 (0.250 to 0.449) Plate: T6; weld metal tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297 (75)			77	(-320)		
Tension, Longitudinal								
TUS, MN/m ² (ksi)	Avg 25				310	(45.0)		
Std Deviation	Min 24				303	(43.9)		
TYS, MN/m ² (ksi)					201	(20.2)		
1 1 5, WIV/M- (KSI)	Avg Min	(23.1) (19.4)			201 171	(29.2) (24.8)		
Std Deviation		(2.95)						
Elong, percent	Avg	2.4				1.6		
	Min	2.0				1.0		
RA, percent	Avg							
No of Spec. (No, of Heats,	Min 10	3 (2)			4	(2)		
E, GN/m ² (10 ⁶ psi)	Avg							
	Min							
No. of Spec. (No. of Heats,)							
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m² (ksi)	Avg							
K _t =	Min							
No. of Spec. (No. of Heats))							
NTS, MN/m ² (ksi)	Avg Min		1					
K _t = No. of Spec. (No. of Heats)								
Tension, Transverse								
TUS, MN/m ² (ksi)	Avg							
Std Deviation	Min							
TYS, MN/m ² (ksi)	Avg Min							
Std Deviation								
Elong, percent	Avg				1			
	Min							
	Avg							
No. of Spec. (No. of Heats)	Min)				1		12	
E, GN/m ² (10 ⁶ psi)	Avg							
	Min							
No of Spec. (No of Heats)	,							
Poisson's Ratio								
Work Hardening Coef							2000	
NTS, MN/m² (ksi)	Avg							
K _t =	Min							
No of Spec. (No of Heats)								
	Avg Min							
Kt = No of Spec. (No. of Heats)				Í				

Alloy Designation:

2014 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-MIG welded, 5356 filler 0.635 to 1.269 (0.250 to 0.449)

Thickness, cm (in.): Condition:

Plate: T6; weld metal tested as welded

Testing Temperature, K (F)		297 (75)		77	(-320)	ļ		
Tension, Longitudinal						1		
2	Avg 2	43 (35.3)		333	(48.3)			
Std Deviation	Min 1	56 (22.6)		332	(48.1)			
		77 (25.6) 69 (24.5)		205 190	(29.8) (27.6)			
Std. Deviation		(2)		,,,,	(27.07			
	Avg Min	1.9 1.0			2.5 1.0			
	Avg Min							
No of Spec. (No. of Heats)		(1)		2	(1)			
	Avg Min							
No. of Spec. (No of Heats)								
Poisson's Ratio								
Work Hardening Coef								1
	Avg Min							
	Avg Min							
Tension, Transverse								
TUS, MN/m ² (ksi)	Avg							
Std Deviation	Min							
	Avg Min						ł	
Std. Deviation								1
	Avg Min							
	Avg							
No. of Spec. (No. of Heats)	Min							
	Avg Min							
No. of Spec. (No. of Heats)	VIIII		1					
oisson's Ratio								
Vork Hardening Coef								
	Avg Min							
							1	
	Avg Min							

Alloy Designation:

2014 Aluminum Alloy (Weld Metal)

Specification:

Plate-MIG welded, 556 filler

Thickness, cm (in.): Condition:

0.635 to 1.269 (0.250 to 0.449) Plate: T6; weld metal tested as welded

Testing Temperature, K (I	F)	297 (75)		77 (-320)	
Tension, Longitudinal		E			
TUS, MN/m ² (ksi)	Avg Min	225 (32.6) 160 (23.2)		323 (46.9) 314 (45.5)	
Std Deviation	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100 (20.2)		011 (30.0)	
TYS, MN/m ² (ksi)	Avg	(25.4)		219 (31.7)	
Std. Deviation	Min	(24.3)		205 (29.7)	
Elong, percent	Ava	1.6		2.0	
Liong, porcent	Avg Min	1.6 1.0		2.0	
RA, percent	Avg				
No. of Spec. (No. of Hi	Min eats)	5 (1)		2 (1)	
E, GN/m ² (10 ⁶ psi)	Avg				
	Min				
No. of Spec. (No. of H	eats)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg	11	ļ		
K _t = No. of Spec. (No. of He	Min eats)				
NTS, MN/m ² (ksi)	pvA				ļ
Kt = No. of Spec. (No. of He	Min Pats)				
	outs,				
Tension, Transverse TUS, MN/m ² (ksi)	Avg				
Std. Deviation	Min				
TYS, MN/m ² (ksi)	V.				
	Avg Min				
Std. Deviation					
Elong, percent	Avg Min				
DA secont					
RA, percent	Avg Min				
No of Spec. (No. of He	eats)				
E, GN/m ² (10 ⁶ psi)	Avg				
No. of Spec. (No. of He	eats)		-		
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg				
K _t = No. of Spec. (No. of He	Min				100
NTS, MN/m ² (ksi)					
NTS, MN/m² (ksi) Kt =	Avg Min				
No. of Spec. (No. of He					

Alloy Designation: 2014-T62 Aluminum Alloy

Specification:

Form: Plate
Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: T62

Testing Temperature, K (F)	1	297	(75)	 	77	(-320)	20	(-423)	 	
Tension, Longitudinal									- 1	
TUS, MN/m ² (ksi)	Avg Min	476	(69.0)		572	(83.0)	648	(94.0)		
Std. Deviation										
TYS, MN/m ² (ksi)	Avg Min	427	(62.0)		496	(72.0)	524	(76.0)		
Std. Deviation										
Elong, percent	Avg Min	9)			11				
RA, percent	Avg									
No. of Spec. (No. of Hea	Min its)		(1)			(1)		(1)		
E, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of Hea										
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min									
NTS, MN/m ² (ksi)								П		
$K_t =$ No. of Spec. (No. of Hea	Avg Min ts)									
Tension, Transverse										
TUS, MN/m ² (ksi) Std. Deviation	Avg Min									
TYS, MN/m ² (ksi) Std. Deviation	Avg Min									
							. 1			
Elong, percent	Avg Min									
RA, percent	Avg Min									
No. of Spec. (No. of Heat	ts)									
E, GN/m ² (10 ⁶ psi)	Avg Min			1						
No of Spec, (No. of Heat	ts)									
Poisson's Ratio										
Vork Hardening Coef										
ITS, MN/m ² (ksi)	Avg									
K _t = No. of Spec. (No. of Heat	Min s)									
ITS, MN/m ² (ksi)	Avg									
K _t = No. of Spec. (No. of Heat	Min s)									100
eferences: 79816										79

Alloy Designation: 2014-T62 Aluminum Alloy

Specification:

Form: Thickness, cm (in.): Plate 1.270 to 2.540 (0.500 to 1.000)

Condition: T62

Testing Temperature, K (F)	297	(75)		77_	(-320)	20	(-423)		
Compression, Longitudinal										
CYS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of He										
Ec, GN/m ² (10 ⁶ psi)	Avg Min						:			
No. of Spec. (No. of He	ats)									
Compression, Transverse					ĺ					
CYS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of He	ats)							1		
Ec, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of He	ats)									
Shear (a)										
SUS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of He	ats)									
G, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of He	ats)				ļ		1			
Impact, Charpy V										
Long., Nm(ft-lb)	Avg Min									
No. of Spec. (No. of He										
Trans., Nm(ft-lb)	Avg									
No. of Spec. (No. of He		1								
Fracture Toughness(b)										
K _{Ic} MN/m ^{3/2} (ksi√ in.)	Avg Min									
Orientation — No. of Spec. (No. of He	ats)		*							
K _{IE} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(L —	Avg	44.0	(40.3)		43.1	(39.4)	53.3	(48.8)		
No. of Spec. (No. of He		1	(1)		42.0	(38.4)	1	(1)		

References: 79816

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{IC} data:

Alloy Designation: 2014-T651 Aluminum Alloy

Specification: AMS-4014, ASTM B209

Form: Plate
Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: T651

Testing Temperature, K (F)	297 (75)	77 (-320)	20 (-423)	4 (-452)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	456 (66.2)	579 (84.0)	659 (95.6)	658 (95.4)
Std Deviation	Min	430 (62.4)			656 (95.1)
TYS, MN/m ² (ksi)	Avg Min	420 (60.9) 396 (57.5)	525 (76.1)	553 (80.2)	564 (81.8) 563 (81.7)
Std. Deviation		(07.07			303 (81.77
Elong, percent	Avg Min	12.2 11.0	12.0	15.0	12.8 12.5
RA, percent	Avg Min	33.2 24.0	22	23	19.5 19
No. of Spec. (No. of He		6 (2)	(1)	(1)	2 (1)
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of He	ats)				
Poisson's Ratio					
Nork Hardening Coef					
NTS, MN/m ² (k _i i)	Avg	548 (79.5)			
$K_t = 6.4$ No. of Spec. (No. of He	Min ets)	529 (76.7) 5 (1)			
NTS, MN/m ² (ksi) K _t = 16	Avg Min	571 (82.8)	687 (99.6)	710 (103)	712 (103)
No. of Spec. (No. of Hea		(1)	(1)	(1)	
Tension, Transverse					
US, MN/m ² (ksi)	Avg Min	479 (69.5)	587 (85.1)	665 (96.4)	668 (96.9) 668 (96.9)
Std Deviation					
TYS, MN/m ² (ksi)	Avg Min	432 (62.7)	513 (74.4)	534 (77.4)	585 (84.8)
Std. Deviation					
long, percent	Avg Min	8.8	9.0	11.0	10.2 10.0
RA, percent	Avg Min	16	12	15	12
No. of Spec. (No. of Hea		(1)	(1)	(1)	2 (1)
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hea					
oisson's Ratio					
York Hardening Cocf					
ITS, MN/m ² (ksi)	Avg	550 (79.8)	573 (83.1)		646 (93.7)
$K_t = 16$ No of Spec. (No. o. Hea	Min its)	(1)	(1)		(1)
ITS, MN/m ² (ksi)	Avg				
K _t =	Min				

Alloy Designation: 2014-T651 Aluminum Alloy

AMS-4014, ASTM B209 Specification:

Form: Thickness, cm (in.): Plate 1.270 to 2.540 (0.500 to 1.000)

Condition:

Testing Temperature, K (F)	297	(75)	77	(-320)			
Compression, Longitudina	1							
CYS, MN/m ² (ksi)	Avg Min							
No. of Spec. (No. of H		}				I		
Ec, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of H	eats)							
Compression, Transverse		1	1			. 1		
CYS, MN/m ² (ksi)	Avg Min					1		
No. of Spec. (No. of H						1		
Ec, GN/m ² (10 ⁶ psi)	Avg Min	į						
No. of Spec. (No. of H	leats)							
Shear(a)								
SUS, MN/m ² (ksi)	Avg Min				ļ	<u> </u>		
No. of Spec. (No. of H	leats)							
G, GN/m ² (10 ⁶ psi)	Avg Min				1			
No. of Spec. (No. of H	leats)						1	}
Impact, Charpy V								
Long., Nm(ft-lb)	Avg Min		j]
No of Spec. (No. of H		l						
Trans., Nm(ft-Ib)	Avg Min							
No of Spec. (No. of H								
Fracture Toughness(b)			}					
$K_{lc} MN/m^{3/2} (ksi \sqrt{in.})$	Avg Min	23.2 22.6	(21.2) (20.7)	28.5	(26.1)			
Orientation T - L No. of Spec. (No. of H	leats)	5	(1)		(1)			Ť _
KIE, MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(Avg -)Mın							
No. of Spec. (No. of H								

References: 80995

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1c} data: Notched bend specimens

Alloy Designation:

2014 Auminum Alloy (Weld Metal)

Specification:

Form:

Plate-TIG welded, 2319 alloy filler 1.270 to 2.540 (0.500 to 1.000) 2614-T62: Plate, tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F	=)	29	7 (75)		 	77	(-320)	20	(-423)		
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg Min	330 326	(47.8)* (47.3)			383 376	(55.5) (54.6)	437 432	(63.4) (62. 7)		
Std Deviation											
TYS, MN/m ² (ksi) Std Deviation	Avg Min	179 179	(26.0) (26.0)			228 226	(33.1) (32.8)	300 296	(43.5) (42.9)		
Elong, percent	Avg Min		15 14				10 10				
RA, percent	Avg Min									1	
No. of Spec. (No. of He	eats)	2				2		2			
E, GN/m ² (10 ⁶ psi) No of Spec. (No of He	Avg Min										
Poisson's Ratio	,										
Work Hardening Coef											
NTS, MN/m ² (ksi)	A										
$K_t = $ No. of Spec. (No. of He	Avg Min eats)										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min										
Tension, Transverse											
TUS, MN/m ² (ksi)	Avg Min										
Std Deviation											
TYS, MN/m² (ksi) Std Deviation	Av ₃ Min										
Elong, percent	Avg Min										
RA, percent	Avg Min										
No. of Spec. (No. of He											
E, GN/m ² (10 ⁶ psi) No. of Spec. (No. of He	Avg Min										
Poisson's Ratio	a co										
Work Hardening Coef											
NTS, MN/m ² (ksi)	Aue										
NTS, MN/m² (ksi) Kt = No of Spec (No. of Heat	Avg Min ats)										
NTS, MN/m ² (ksi) K _t =	Avg Min										
No of Spec. (No of Hea	ats)									0	

References: 75531

^{*} Both specimens broke in HAZ outside weld metal.

Alloy Designation:

2014 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-TIG welded, 4043 alloy filler

Thickness, cm (in.): Condition: 1.270 to 2.540 (0.500 to 1.000) 2014-T62: Plate; tested as welded

Testing Temperature, K (F)	29	7 (75)		77	(-320)	20	(-423)	
Tension, Longitudinal					1				
TUS, MN/m ² (ksi)	Avg	317	(46.0)		382	(55.4)	436	(63.2)	
Std Deviation	Min	303	(43.9)		366	(53.1)	419	(60.8)	
TYS, MN/m ² (ksi)	Avg Min	198 197	(28.7) (28.5)		2 4 4 242	(35.4) (35.1)	261 252	(37.8) (36.5)	
Std Deviation									
Elong, percent	Avg Min		10 6			8 6			
RA, percent	Avg Min								
No. of Spec. (No. of Hea	ats)	2			2		2		
E, GN/m ² (10 ⁶ psi)	Avg Min								
No. of Spec. (No. of Hea	ats)								
Poisson's Ratio									
Work Hardening Coef									
NTS, MN/m² (ksi)	Avg								1
K _t = No. of Spec. (No. of Hea	Min ats)								
N7S MN/m ² (ksi) K _t =	Avg Min								
No of Spec. (No. of He	ets)								
Tension, Transverse									
TUS, MN/m ² (ksi) Std. Deviation	Avg Min								
TYS, MN/m² (ksi)	A				i				
Std. Deviation	Avg Min								
Elong, percent	Avg Min								
RA, percent	Avg Min								
No of Spec. (No. of Hea									
E, GN/m ² (10 ⁶ psi)	Avg Min						r		
No. of Spec. (No. of Hea									
Poisson's Ratio									
Work Hardening Coef							ĺ		
NTS, MN/m ² (ksi) K _t = No of Spec. (No. of Hea	Avg Min								
NTS, MN/m ² (ksi)	Avg								
K _t = No of Spec (No of Hea	Min ets)								

Alloy Designation:

2014-T651 Aluminum Alloy

Specification:

Form:

Thickness, cm (in.): Condition:

Plate 2.541 to 5.080 (1.001 to 2.000) T651

Testing Temperature, K (F)	297 (75)	77 (-320)
Tension, Longitudinal		
TUS, MN/m ² (ksi) Avg	476 (69.0)	579 (84.0)
Std Deviation Min	=	
TYS, MN/m² (ksi) Avg Min	438 (63.5)	525 (76.1)
Std Deviation		
Elong, percent Avg	10.2	12.0
RA, percent Avg		
No of Spec. (No, of Heats)	1	1
E, GN/m ² (10 ⁶ psi) Avg Min No_of Spec. (No. of Heats)		
Poisson's Ratio		
Work Hardening Coef		
NTS, MN/m^2 (ksi) Avg $K_t = 2.4$ Min No. of Spec. (No. of Heats)	603 (87.4) 521 (75.6) 2 (1)	537 (103) 619 (89.8) 2 (1)
NTS, MN/m ² (ksi) Avg K _t = 13.3 Min No of Spec. (No of Heats)	538 (78.1) 506 (75.6) 2 (1)	638 (92.6) 619 (89.8) 2 (1)
Tension, Transverse		
TUS, MN/m ² (ksi) Avg	479 (69.5)	587 (85.1)
Std. Deviation		
TY., MN/m ² (ksi) Avg	432 (62.7)	513 (74.4)
Std Deviation		
Elong, percent Avg.	8.8	9.0
RA, percent Avg		
No. of Spec. (No. of Heats)	1	1
E, GN/m ² (10 ⁶ psi) Avg		
No of Spec. (No of Heats)		
oisson's Ratio		
Vork Hardening Coef		
NTS, MN/m ² (ksi) Avg	590 (85.5)	695 (100.8)
Kt = 2.4 Min No of Spec (No of Heats)	521 (75.6) 2 (1)	610 (88.4) 2 (1)
NTS, MN/m^2 (ksi) Avg $K_t = 13.3$ Mea	527 (76.4) 503 (72.9)	581 (84.2) 573 (83.1)

61

2014-T6 Aluminum Alloy Alloy Designation:

Specification: AMS-4121C, QQ-A-225, ASTM B211

Form: Diameter: Condition: Bar Up to 2.54 (1.000) T6

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)		4	(-452)	
Tension, Longitudinal											
TUS, MN/m ² (ksi)	Avg	513	(74.4)	520	(75.4)	581	(84.2)		814	(118)	
	Min	481	(69 8)	506	(73.4)	555	(80.5)				
Std Deviation								,		j	
TYS, MN/m ² (ksi)	Avg	458	(66.4)	456	(66.1)	498	(72.2)		703	(102)	
Ctd Downton	Min	415	(60.2)	443	(643)	474	(68.7)				
Std Deviation									4		
Elong, percent	Avg		16		13		15	U			
	Min		15				15				
RA, percent	Avg		32.7		28.2		29.3				
No. 1 Company	Min		32.5	2	(1)		27.5		3	(1)	
No of Spec (No. of He	ats)	5	(2)	3	(1)	6	(2)		3	(1)	
E, GN/m ² (10 ⁶ psi)	Avg	72.2	(10.5)		(11.8)	79.2	(11.5)		82.0	(11.9)	
No. of Spec. (No. of He	Min	66 2 5	(9 6) (2)	80.0	(11.6)	73 8	(10.7)		3	(1)	
No. of Spec. (No. of He	d(2)	5	(2)]	(1)		121	1		117	
Poisson's Ratio											
Work Hardening Coef											
									1		
NTS, MN/m ² (ksi)	Avg					1			1		
K _t = No. of Spec. (No. of He	Min ats)									1	
									}	}	
NTS, MN/m^2 (ksi) $K_t =$	Avg Min									- 1	
No. of Spec. (No. of He									- }		
Tension, Transverse											
TUS, MN/m ² (ksi)	Avg										
7 03, WHY III - (K3I)	Min										
Std. Deviation											
TYS, MN/m ² (ksi)	Avg									[
	Min									l	
Std Deviation											
Elong, percent	Avg										
	Min					ĺ					
RA, percent	Avg					İ					
	Min										
No. of Spec. (No. of He	ats)										
E, GN/m ² (10 ⁶ psi)	Avg										
No of Coo- (No -())	Min										
No of Spec. (No. of Hea	ats)					Ť					
Poisson's Ratio											
Work Hardening Coef								177			
NTS, MN/m ² (ksi)	Avg										
K _t = No of Spec (No. of Hea	Min ats)										
NTS, MN/m ² (ksi)	Avg Min										
K _t = No of Spec (No of Hea						1					

FIGURE 4.2.1-ME2. FATIGUE LIFE CURVES FOR AXIAL LOADII

LONGITUDINAL SPECIMENS OF 2014-T6 ALU
NUM ALLOY SHEET 0.152 CM (0.060 IN.) THICK

AT CYCLIC FREQUENCIES OF 3.3 AND 0.27 HERTZ

AT R = 0.14

Reference: 70906

FIGURE 4.2.1-ME3. FATIGUE LIFE CURVES FOR AXIAL LOADING ON WELD METAL SPECIMENS FROM TIG-WELDED 2014-T6 ALUMINUM ALLOY 0.254 cm (0.100 in.) THICK SHEET AT R = -1

FIGURE 4.2.1-ME4. FATIGUE CRACK GROWTH NATE OF 2014-T62 ALUMINUM ALLOY PLATE, TIG-WELDED [75521] [Plate thickness 2.540 cm (1.000 in.), machined to 1.27 cm (0.500 in.) or 1.59 cm (0.625 in.) in vicinity of weld before welding]

TABLE 4.2.1-TR1

Alloy Designation: 2014-T6 Aluminum Alloy

Specification:
Form:
Dimension:
Condition: -T6

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity									10		6.0	
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹	160	(92.5)	103	(59.6)	72	(41.6)	32	(18.5)	16	(9.25)	6.3	(3.64)
No. of Spec.	1	(92.5)	1	(35.0)	3	(41.0)	3	(10.5)	1	13.231	1	(5.04)
References: 90218											ļ	
Thermal Expansion (T273 to T) Longitudinal												
Percent	0		-0,312		-0.335		1		ĺ			
No. of Spec.	1		1		1				}			
References: 48571					}						}	
Specific Heat					}							
Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F-1												
No of Spec.		Ĭ							1			
References:									ł			
Electrical Resistivity (1)												
Ohm m	4.25 x	10-8	2.15 x	10-8	1.65 x	10-8	1.51 x	10-8	1.50 x	10-8	1.50 >	10-8
Ohm circular mil ft-1		(25.6)		(12.9)		(9.92)	•	(9.14)		(9.02)		(9.02)
No. of Spec.	1		1		1		1		1		1	
References: 79561	ł								j			

(1) T-651 Temper

FIGURE 4.2.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 2014-T6

THERMAL EXPANSION VERSUS TEMPERATURE FOR ALUMINUM ALLOY 2014-T6 FIGURE 4.2.1-E1.

Alloy Designation: 2219-T81 Aluminum Alloy

Specification: MIL-A-892CA, ASTM B209

Form:

Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: T81

Testing Temperature, K (F)	297	(75)	195	(-108)	77_	(-320)	20	(-423)	
Tension, Longitudinal										
TUS, MN/m ² (ksi)	Avg	447	(64.8)	481	(69.8)	566	(82.1)	667	(96.8)	
Std. Deviation	Min	43.8	(63.6)	460	(66.8)	553	(80.2)	600	(87.0)	
ard Deviation		9 03	(1.31)	14.3	(2.07)	12.3	(1.79)	27.1	(3.93)	
TYS, MN/m ² (ksi)	Avg	348	(50.4)	374	(54.3)	423	(61.3)	476	(69.0)	
Std. Deviation	Min	339 6.69	(49.2) (0.97)	362 10.9	(52.5) (1.58)	413 8,13	(59.9) (1.18)	439 20.7	(63.7) (3.00)	
		17,00	(0/	10.5	(1.00)					
Elong, percent	Avg Min		3.8 4.3		9.1 3.5	1	8.8	13. 7.		
	IVIIII		•.0	,	J. O		0.0	/.		
RA, percent	Avg					1				
No of Spec. (No of He	Min ats)	12	(5)	10	(4)	10	(4)	14	(6)	
E, GN/m ² (10 ⁶ psi)	Avg Min	68.5 64.1	(9.94) (9.3)	72.4 66.9	(10.5) (9.7)	80.0 73.1	(11.6) (10.6)	82.0 76.5	(11.9) (11.1)	
No of Spec. INO of He		8	(2)	7	(2)	7	(2)	5	(2)	
Poisson's Ratio			1 227		1 225	Ι,	225	6.2	,	
		- ').327).335).335	6.3	·	
Work Hardening Coef										
NTS, MN/m ² (ksi)	Avg	427	(62.0)	459	(66.6)	514	(74.5)	565	(82.0)	
$K_1 = 6.3$	Min	416		442	(64.1)	498	(72.2)	483	(70.1)	
No. of Spec. (No. of He	HS)	11	(3)	7	(2)	7	(2)	9	(3)	
NTS, MN/m ² (ksi)	Avg	363	(52.6)		(50.9)	414	(60.0)	467	(67.8)	
K _t ≈ 19 No. of Spec. (No. of Hea	Min ats)	349 5	(50.6)	335	(48.6) (1)	399	(57.9) (1)	458 5	(66.4)	
Tension, Transverse TUS, MN/m ² (ksi)		450	/CF 21	400	(70.0)	FC2	(01 C)	672	(07.6)	
105, WIN/M~ (KSI)	Avg	450 436	(65.2) (63.2)	488 478	(70.8) (69.3)	563 555	(81.6) (80.5)	673 625	(97.6) (90.7)	
Std Deviation		8.07	(1_17)	7.31	(1.06)	13.2	(1.92)	22.0	(3,19)	
TYS, MN/m ² (ksi)	Avg	341	(49.5)	367	(53.2)	414	(60.0)	466	(67.6)	
	Min	322	(46.7)	330	(47.9)	405	(58.8)	452	(65.6)	
Std. Deviation		10.5	(1.52)	14.8	(2.15)	12.7	(1.84)	10.8	(1.57)	
Elong, percent	Avg		9.7		9.6	1	10.1	1	12.1	
	Min	,	7.3	8	3.0		7.0		6.0	
RA, percent	Avg									
No of Spec. (No. of Hei	Min ars)	11	(4)	10	(4)	10	(4)	9	(4)	
E, GN/m ² (10 ⁶ psi)	Avg	69.0 66.2	(10.0) (9.6)	73.8 70.3	(10.7) (10.2)	79.3 73.8	(11.5) (10.7)	81.4 74.5	(11.8) (10.8)	
No of Spec, (No of Hea		8	(2)	7	(2)	7	(2)	5	(2)	
Poisson's Ratio		(0.325		0.325		.335	c	0.34	
			·							
Work Hardening Coef										
NTS, MN/m ² (ksi)	Avg	432	(62.6)		(65.2)	514	(74.5)	590	(85.6)	
K _t = 6.3 No of Spec. (No of Hea	Min	412	(60.9) (2)	440 7	(63.8) (2)	504	(73.1)	567 7	(82.3)	
	1657		121		127			1	127	
NTS, MN/m ² (ksi,	Avg	363	(52.6)		(46.7)	392	(56.9)	423	(61.2)	
$K_t = 19$	Min	353	(51.2)	318	(46.1)	354	(51.4)	392	(56.8)	

Alloy Designation:

2219-T87 Aluminum Alloy

Specification:

MIL-A-8920A, ASTM B209

Form:

Sheet

Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: T87

Testing Temperature, K (F)		297	(75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)
Tension, Longitudinal											
TUS, MN/m ² (ksi)	Avg Min	471 458	(68.3) (66.4)	5 04 489	(73.1) (70.9)	513	(74.4)	589 562	(85.4) (81.5)	685 647	(99.4) (93.9)
Std. Deviation	.,,,,,	9.1	(1.32)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ļ		18.2	(2.64)	19,7	(2.85)
TYS, MN/m ² (ksi)	Avg Min	388 372	(56.3) (53.9)	410 379	(59.5) (55.0)	427	(61.9)	474 421	(68.8) (61.0)	501 469	(72.6) (68.0)
Std. Deviation		8.6	(1.24)		,			36.5	(5.30)	4.0	(3.05)
Elong, percent	Avg Min	9	.5		9.8 6		12.5		1.5 7.0	14 8	. 8 .5
RA, percent	Avg Min										
No. of Spec. (No. of Hea		24	(10)	7	(3)	3	(1)	20	(8)	20	(10)
E, GN/m ² (10 ⁶ psi)	Avg Min	73.8 70.3	(10.7) (10.2)		(10.5) (10.1)			80.7 73.8	(11.7) (10.7)	85.5 75.2	(12.4) (10.9)
No. of Spec. (No. of Hea		5	(4)	2	(1)			6	(4)	8	(4)
Poisson's Ratio		0	.30		0.24			C	0.28	0	.27
Work Hardening Coef											
NTS, MN/ m^2 (ksi) $K_t = 6.3$	Avg Min	480 475	(69.7) (68.9)	514 512	(74.6) (74.2)			589 586	(85.4) (85.0)	658 656	(95.5) (95.1)
No. of Spec. (No. of Hea		2	(1)	2	(1)			2	(1)	2	(1)
NTS, MN/m ² (ksi) $K_t = 10$	Avg Min	441 437	(64.0) (63.4)					523 519	(75.8) (75.3)	532 508	(77.2) (73.7)
No. of Spec. (No. of Hea		2	(2)					2	(2)	2	(2)
NTS, MN/ m^2 (ksi) $K_t = 22$	Avg Min	321	(46.5)	378	(54.8)	354	(51.3)	426	(61.8)	461	(67.0)
No. of Spec. (No. of Hea		3	(1)	3	(1)	3	(1)	3	(1)	3	(1)
Tension, Transverse									(00.71)	704	400 0
TUS, MN/m ² (ksi)	Avg Min	473 452	(68.9) (65.5)	506 ⁻	(73.4) (70.1)			598 571	(86.7) (82.8)	701 648	(101.6) (94.0)
Std. Deviation		12.5	(1.81)					17.2	(2.49)	23.4	(3.39)
TYS, MN/m ² (ksi)	Avg	388 356	(56.3) (51.7)	404 374	(58.6) (54.3)			467 432	(67.8) (62. 7)	507 463	(73.5) (67.2)
Std. Deviation		15.7	(2.28)					22.0	(3.20)	23.7	(3.43)
Elong, percent	Avg Min	1	. 0 .0		7.9 6.5				9.9 6.0		2. 8 2.5
RA, percent	Avg Min										
No. of Spec. (No. of Hea		13	(7)	4	(2)			10	(6)	15	(8)
E, GN/m ² (10 ⁶ psi)	Avg Min	73.8 67.6	(10.7) (9.8)		(11.9) (11.7)			84.8 77.2	(12.3) (11.2)	83.4 75.8	(12.1) (11.0)
No of Spec. (No. of Hea		4	(3)	2	(1)			6	(3)	7	(3)
Poisson's Ratio		0	.31		0.30			(0.24	(.27
Nork Hardening Coef											
NTS, MN/m ² (ksi) $K_t = 6.3$	Avg Min	480 474	(69.7)		(73.6) (72.5)			577 576	(83.7) (83.6)	656 656	(95.2) (95.1)
No of Spec. (No. of Hea		2	(1)	2	(1)			2	(1)	2	(1)
NTS, MN/m ² (ksi)	Avg	433	(62.8)					505	(73.3)	554	(80.3)
Kt = 10 No of Spec. (No. of Hea	Min	432	(2)	ì		1		503	(2)	528	(76.€). (2)

Alloy Designation: 2219-T87 Aluminum Alloy

 Specification:
 MIL-A-8920 A, ASTM B209

 Form:
 Sheet

 Thickness, cm (in.):
 0.100 to 0.319 (0.040 to 0.125)

 Condition:
 T87

Testing Temperature, K (F)	297	(75)	77	(-320)	20	(-423)		
Fatigue, Axial Loading								
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _t = 1	207	(30)	221	(32)	358	(52)		
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)		
Ratio S _N /TUS at 10 ⁵ cycles	0.4	45	-).38	0.5	3		
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz	152	(22)	117- 172	(17 to 25)	276	(40)		
with R =-1 and K _t = 1 No of S·N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)		
Ratio S _N /TUS at 10 ⁶ cycles	0.3	32	0.22	to 0.29	0.4	0		
S_N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No_of S.N Curves (No_of Heats)								
Ratio S _N /TUS at 10 ⁷ cycles								
Fatigue, Axial Loading, Notched Spe	ecimens							
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K ₁ = 3.5	75.8	(11.0)	75.8	(11.0)	100	(14.5)		
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)		
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K ₁ = 3.5	51.7	(7.5)	48.2	(7.0)	55.2	(8.0)		
No of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)		
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency With H - and K _t =								

References: 53308, 56753, 58024, 61996

Alloy Designation:

2219-T6E46

Specification:

Form:

Sheet

Thickness, cm (in.): Condition:

0.100 to 0.319 (0.040 to 0.125) T6E46

Testing Temperature, K (F)		297 (75)	 77 (-320)		
Tension, Longitudinal TUS, MN/m ² (ksi) Std. Deviation	Avg Min			;	
TYS, MN/m ² (ksi) Std. Deviation	Avg Min				
Elong, percent	Avg Min				
RA, percent	Avg Min				
No. of Spec. (No. of Hea	ts)				
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hea	its)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min				
NTS, MÑ/m² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg Min	455 (66)	558 (81)		
Std. Deviation					ĺ
TYS, MN/m ² (ksi)	Avg Min	331 (48)	393 (57)		=
Std. Deviation					
Elong, percent	Avg Min	12	13		
RA, percent	Avg Min				
No. of Spec. (No. of Hea		1	1	İ	
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hea	ts)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min				
NTS, MN/m ² (ksi) 'K _t =	Avg Min				

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, 2319 Al filler 0.100 to 0.319 (0.040 to 0.125)

Thickness, cm (in.): Condition:

Sheet-T31, weld metal tested as welded

Testing Temperature K (F)		29	7 (75)	 77	(-320)	20	(-423)		
Tension, Longitudinal				}		1			
TUS, MN/m ² (ksi)	Avg Min	320	(46.4)	381	(55.3)	446	(64.7)		
Std. Deviation	WILL								
TYS, MN/m ² (ksi)	Avg								
Std. Deviation	Min								
Elong, percent	Avg							1	
DA narrat	Min								
RA, percent	Avg Min				(4)		4.45		
No. of Spec. (No. of Hea	ts)	3	(1)	3	(1)	3	(1)		
E, GN/m ² (10 ⁶ psi)	Avg Min								
No. of Spec. (No. of Hea	ts)								
Poisson's Ratio									
Work Hardening Coef									
NTS, MN/m ² (ksi)	Avg								
K _t = No. of Spec. (No. of Hea	Min ts)								
NTS, MN/m ² (ksi)	Avg								
K _t = No. of Spec. (No. of Hea	iVin ts)								
Tension, Transverse		200							
TUS, MN/m ² (ksi)	Avg Min								
Std Deviation									
TYS, MN/m ² (ksi)	Avg Min								
Std. Deviation	Willi								
Elong, percent	Avg								
	Min								
RA, percent	Avg Min			è					
No. of Spec. (No. of Hea	ts)								
E, GN/m ² (10 ⁶ psi)	Avg								
No of Spec. (No of Hea	ts)								
Poisson's Ratio									
Work Hardening Coef									
NTS, MN/m ² (ksi)	Avg							1	
K _t = No. of Spec. (No. of Hea	Min ts)								
NTS, MN/m ² (ksi)	Avg								
K _t = No. of Spec. (No. of Hea	Min ts)								

References: 51156

9.7<

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, 2319 Al filler 0.100 to 0.319 (0.040 to 0.125) Sheet-T6, weld metal tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	29	7 (75)	200	(-100)	144	(-200)	77	(-320)	20	(-423)	4	(-452)
Tension, Longitudinal													
TUS, MN/m ² (ksi)	Avg Min	296	(43.0)	319	(46.3)	351	(50.9)	427	(62.0)	510	(73.9)	518	(75.1)
Std Deviation													
TYS, MN/m ² (ksi)	Avg Min	209	(30.3)	210	(30.4)	234	(33.9)	273	(39.6)	362	(52.5)	349	(50.6)
Std Deviation													
Elong, percent	Avg Min		2.0		2.0		2.0		2.0		3.3		2.3
RA, percent	Avg Min												
No. of Spec. (No. of He		3	(1)	3	(1)	3	(1)	3	(1)	3	(1)	3	(1)
E, GN/m ² (10 ⁶ psi)	Avg Min												
No. of Spec. (No. of He	ats)												
Poisson's Ratio								ŀ					
Work Hardening Coef	A												
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min ats)												
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min												
Tension, Transverse													
TUS, MN/m ² (ksi)	Avg Min												
Std. Deviation													
TYS, MN/m ² (ksi)	Avg Min												
Std. Deviation													
Elong, percent	Avg Min												
RA, percent	Avg Min												
No. of Spec. (No. of Hea													
E, GN/m ² (10 ⁶ psi)	Avg Min									1			
No. of Spec. (No. of Hea													
Poisson's Ratio								l					
Work Hardening Coef													
NTS, MN/m ² (ksi) K _t =	Avg Min												
No. of Spec. (No. of Hea													
NTS, MN/m ² (ksi) K _t =	Avg Min	j		1									

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet-MIG welded, 2319 Al filler 0.100 to 0.319 (0.040 to 0.126) Sheet-T62; Re-heet treated and aged to T62 after welding

Testing Temperature, K (F)		29	7 (75)	195	(-108)	77	(-320)			
Tension, Longitudinal (grain)										
TUS, MN/m ² (ksi)	Avg Min	418	(60.6)	459	(66.5)	521	(75.6)			
Std. Deviation										
TYS, MN/m ² (ksi)	Ang	289	(41.9)	321	(46.5)	361	(52.3)			
Std. Deviation	Min									
Elong, percent	Avg		7.9		9.2		8.9			
DA WARREN	Min									
RA, percent	Avg Min						(0)			
No. of Spec. (No. of Heats	;)	4	(2)	2	(1)	4	(2)			
E, GN/m ² (10 ⁶ psi)	Avg Min	79.3 75.8	(11.5) (11.0)				(12.3) (11.2)			
No. of Spec. (No. of Heats	;)	2	(1)			2	(1)			
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m ² (ksi)	Avg	583	(84.5)	529	(90.8)	681	(98.7)			
$K_t = 23.4$ No. of Spec. (No. of Heats	Min)	2	(1)	2	(1)	2	(1)			
NTS, MN/m ² (ksi)	Avg									
K _t = No. of Spec. (No. of Heats	Min ()									
Tension, Transverse										
TUS, MN/m ² (ksi)	Avg Min	:								
Std Deviation										
TYS, MN/m ² (ksi)	Avg Min									
Std. Deviation	IVALET									
Elong, percent	Avg									
	Min								İ	
RA, percent	Avg									
No. of Spec. (No. of Heats	:)									
E, GN/m ² (10 ⁶ psi)	Avg Min			1						
No. of Spec. (No. of Heats										
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m ² (ksi)	Avg									
K _t = No. of Spec. (No. of Heats	Min }									
NTS, MN/m² (ksi)	Avg									
K _t = No. of Spec, (No. of Heats	Min									

References: 87612, 90069 99<

Alloy Designation:

2219 Aluminum Alloy (Weld idetal)

Specification:

Sheet-MIG welded, 2319 Al filler

Thickness, cm (in.): Condition:

0.100 to 0.319 (0.040 to 0.125) T62 Sheet, tested as welded, heat treated [808 K (995 F) 4 hr, WQ; and aged RT-96 hr, 463 K (375 F)-36 hr]

Testing Temperature, K (F	297	7 (75)	77 (-320)	
Tension, Longitudinal				
TUS, MN/m ² (ksi)		(60.2)	508 (73.7)	
Std Deviation	Min 412	(59.8)	501 (72.7)	
TYS, MN/m ² (ksi)		(41.4) (41.0)	355 (51.5) 355 (51.5)	
Std. Deviation	Min 283	(41.0)	333 (51.3)	
FILLS LISTON		v.5	8.0	
Elong, percent		5.6	6.3	
04				
RA, percent	Avg Min			
No. of Spec, (No. of He	eats) 2	(1)	2 (1)	
E, GN/m ² (10 ⁶ psi)	Avg 79.3	(11.5)	84.8 (12.3)	
	Min 75.8	(11.0)	77.2 (11.2)	
No. of Spec (No. of He	earts) 2	(1)	2 (1)	
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi) K _t =	Avg Min			
No. of Spec. (No. of He				
NTS, MN/m² (ksi)	Avg			
K _t =	Min	8		
No. of Spec, (No. of He	eats)			
Tension, Transverse				
TUS, MN/m ² (ksi)	Avg Min			
Std. Deviation	IVIIII			
TYS MN/m ² (ksi)	Avg			
7.5 mm/m (K31)	Min			
Std. Deviation				_1
Elong, percent	Avg			
	Min			
RA, percent	Avg			
No. of Spec. (No. of He	Min Pats)			
			1	
E, GN/m ² (10 ⁶ psi)	Avg Mun			
No. of Spec. (No. of He	Min eats)			
Poisson's Ratio				
			1 11	
Work Hardening Coef			ì	
NTS, MN/m ² (ksi)	Avg			
Kt = No. of Spec, (No. of He	Min			
		1		
NTS, MN/m ² (ksi)	Avg Min			
K _t = No. of Spec. (No. of He				

References:

87612

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-TIG welded, 2319 Al filler 0.100 to 0.319 (0.040 to 0.125) Sheet-T62, tested as welded

Testing Temperature, K (F)	29	7 (75)	77	(-320)	20	(-423)	
Tension, Longitudinal (grain TUS, MN/m ² (ksi)	in) Avg	313	(45.4)	372	(54.0)	436	(63.2)	
Std. Deviation	Min							
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	210	(30.5)	274	(39.7)	345	(50.0)	
Elong, percent	Avg Min		2.7		2.3		6.0	
RA, percent	Avg Min							
No. of Spec. (No. of He	ats)	6	(2)	6	(2)	6	(2)	
E, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of He	eats)							
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m ² (ksi) $K_t = 30.3$ No. of Spec. (No. of He	Avg Min ats)	326	(47.3)	390	(56.5)	408	(59.2)	
NTS, MN/m² (ksi) K _t = No. of Spec. (No. of He	Avg Min							
Tension, Transverse (grain)								
TUS, MN/m ² (ksi)	Avg Min	312	(45.2)	401	(58.1)	414	(60.0)	
Std Deviation								
TYS, MN/m ² (ksi)	Avg Min	212	(8.08)	245	(35.6)	286	(41.5)	
Std. Deviation								
Elong, percent	Avg Min							
RA, percent	Avg Min							
No. of Spec. (No. of Hea		3	(1)	3	(1)	3	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of He								1 1
Poisson's Ratio								
Nork Hardening Coef								
NTS, MN/m ² (ksi) $K_t = 30.3$	Avg Min		(44.9)	391	(56.7)		(59.8)	
No. of Spec. (No. of Hea		3	(1)	3	(1)	3	(1)	
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min							

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, 2319 Al filler 0.100 to 0.319 (0.040 to 0.125)

Thickness, cm (in.): Condition:

T62 sheet, welded, re-heat treated to T62, tested

Testing Temperature, K (F	F)	297 (75)	 77 (-320)	20 (-423)		
Tension, Longitudinal(grai	in)					
TUS, MN/m ² (ksi)	Avg Min	417 (60.5)	518 (75.2)	563 (81.6)		
Std Deviation						
TYS, MN/m ² (ksi) Std Deviation	Avg Min	300 (43.5)	357 (51.8)	403 (58.5)		7.0
Elong, percent	Avg Min	7.5	7.5	4.0		
RA, percent	Avg Min				-	
No. of Spec. (No. of He		3 (,)	3 (1)	3 (1)		
E, GN/m ² (10 ⁶ psi)	Avg Min	. A				
No. of Spec. (No. of He						
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi) $K_t = 30.3$	Avg Min	410 (59.5)	503 (73.0)	543 (78.7)		
No. of Spec. (No. of He		3 (1)	3 (1)	3 (1)		
NTS, MN/m ² (ksi) K _t = No of Spec. (No. of He	Avg Min eats)					
Tension, Transverse (grain)					
TUS, MN/m ² (ksi)	Avg Min	415 (60.2)	509 (73.8)	547 (79.4)		
Std. Deviation						
TYS, MN/m ² (ksi)	Avg Min	295 (42.8)	352 (51.1)	394 (57.1)		
Std. Deviation						
Elong, percent	Avg Min	9.2	6.2	4.3		
RA, percent	Avg					
No. of Spec. (No. of He	Min eats)					
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He						
Poisson's Ratio						
Nork Hardening Coef						
NTS, MN/m^2 (ksi) $K_t = 30.3$	Avg Min	400 (58.0)	483 (70.0)	513 (74.4)		
No. of Spec. (No. of He		3 (1)	3 (1)	3 (1)		
NTS, MN/m ² (ksi) K _t =	Avg Min					
No. of Spec. (No. of He						

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, 2319 Al filler 0.100 to 0.319 (0.040 to 0.125) T62 Sheet welded, re-heat treated to T62, tested

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		29	7 (75)	195	(-108)	77	(-320)	20	(-423)		
Tension, L to T (grain)											
TUS, MN/m ² (ksi)	Avg	349	(50.6)	321	(46.5)	423	(61.3)	459	(66.6)		
Std Deviation	Min					Г				4	
TYS, MN/m² (ksi)	Avg										
Std. Deviation	Min										
Fiong, percent	Avg Min										
RA, percent	Avg										
No. of Spec. (No. of Heat	Min ts)	3	(1)	3	(1)	3	(1)	3	(1)		
E, GN/m ² (10 ⁶ psi)	Avg Min										= 1
No. of Spec. (No. of Heat											
Poisson's Ratio											
Work Hardening Coef											
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min										
NTS, MN/m² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min										
Tension, Transverse		r									
TUS, MN/m ² (ksi)	Avg										
Std Deviation.	Min										
TYS, MN/m² (ksi)	Avg Min										
Std. Deviation											
Elong, percent	Avg Min										
RA, percent	Avg Min										
No. of Spec. (No. of Heat								1			
E, GN/m ² (10 ⁶ psi)	Avg Min										1
No. of Spec. (No. of Heat											
oisson's Ratio											
Nork Hardening Coef											
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min										
NTS, MN/m² (ksi)	Avg										
K _t = No. of Spec. (No. of Heat:	Min										

References: 51156

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-MIG welded, 2319 Al filler 0.100 to 0.319 (0.040 to 0.125) T81 Sheet- tested as welded

Testing Temperature, K (F)	29	7 (75)	195	(-108)	77	(-320)		
Tension, Longitudinal TUS, MN/m ² (ksi) Std. Deviation	Avg Min							Ħ.	
TYS, MN/m ² (ksi) Std. Deviation	Avg Min							7	
Elong, percent	Avg Min								
RA, percent	Avg Min								
No. of Spec. (No. of He	ats)								
E, GN/m ² (106 psi)	Avg Min					11			
No. of Spec. (No. of He	ats)								
Poisson's Ratio									
Work Hardening Coef									
NTS, MN/m^2 (ksi) $K_t =$ No. of Spec. (No. of He	Avg Min								
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min								
Tension, Transverse(grain)									
TUS, MN/m ² (ksi)	Avg Min	321	(46.6)	335	(48.6)	467	(67.8)		
Std. Deviation									
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	229	(33.2)	232	(33.6)	269	(39.0)		
Elong, percent	Avg Min		1.8		2.2		3.2		
RA, percent	Avg								
No. of Spec. (No. of He	Min ats)	2	(1)	2	(1)	2	(1)		
E, GN/m ² (10 ⁶ psi)	Avg								
No. of Spec. (No. of Hea	Min ats)								
Poisson's Ratio									-
Work Hardening Coef									
NTS, MN/m ² (ksi)	Avg	391	(56.7)	416	(60.3)	470	(68.2)		
K _t = 23.4 No. of Spec. (No. of Hea	Min	2	(1)	2	(1)	2	(1)		
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Health	Avg Min								

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Sheet-MIG welded, 2319 Al filler 0.100 to 0.319 (0.040 to 0.125) T81 Sheet-welded, aged, tested

Thickness, cm (in.): Condition:

Tension, Longitudinal TUS, MN/m² (ksi) Std. Deviation Avg Min									
Min Std. Deviation							1	1	
Std. Deviation									
	ĺ								
TYS, MN/m ² (ksi) Avg									
Std. Deviation									
Elong, percent Avg									
RA, percent Avg									
Min 3. of Spec. (No. of Heats)									
E, GN/m ² (10 ⁶ psi) Avg									
No. of Spec. (No. of Heats)									
Poisson's Ratio									
Work Hardening Coef									
NTS, MN/m^2 (ksi) Avg $K_t = Min$									
No. of Spec. (No. of Heats)									
NTS, MN/m^2 (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)									
Tension, Transverse (grain)					1				
TUS, MN/m ² (ksi) Avg	334	(48.4)	348	(50.4)	463	(67.2)			
Min Std. Deviation	334	(40.4)	3.0	(50.4)	100	(07.2)			
TYS, MN/m ² (ksi) Avg	277	(40,2)	331	(48.0)	344	(49.9)			
Min Std. Deviation									
Elong, percent Avg Min		1.5		8.0		2.2			
RA, percent Avg Min									
No. of Spec. (No. of Heats)	2	(1)	2	(1)	2	(1)			
E, GN/m ² (10 ⁶ psi) Avg Min									
No. of Spec. (No. of Heats)									
Poisson's Ratio		ř							
Work Hardening Coef									
NTS, MN/m^2 (ksi) Avg $K_t = 23.4$ Min	396	(57.5)	447	(64.8)	470	(68.1)			
No. of Spec. (No. of Heats)	2	(1)	2	(1)	2	(1)			
NTS, MN/m ² (ksi) Avg K ₁ = Min No. of Spec. (No. of Heats)									

References: 90069

5 4 1 4 Y

TABLE 4,2.2-7.11

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-TIG welded, 2319 Al filler 0.100 to 0.319 (0.040 to 0.125) T81 She2t, tested as welded

Testing Temperature, K (F)	297 (75)	200 (-100)	77 (-320)	20 (-423)	
Tension, Longitudinal TUS, MN/m² (ksi) Av		332 (48.1) 316 (45.9)	425 (61.6) 405 (58.7)	474 (68.7)	
Std. Deviation TYS, MN/m² (ksi) Av					
Mi Std. Deviation					
Elong, percent Av		3.3 2.5	2.5 2.0	1.7 1.6	
RA, percent Av					
No. of Spec. (No. of Heats)	8 (2)	8 (2)	8 (2)	11 (3)	
E, GN/m ² (10 ⁶ psi) Av Mi No. of Spec. (No. of Heats)					
Poisson's Ratio					
Nork Hardening Coef					
NTS, MN/m ² (ksi) Av $K_t =$ Min No. of Spec. (No. of Heats)					
NTS, MN/m^2 (ksi) Av $K_t = Mi$ No. of Spec. (No. of Heats)					
Tension, Transverse					
FUS, MN/m ² (ksi) Av Mil Std. Deviation		313 (45.4) 310 (44.9)	397 (57.6) 388 (56.3)	462 (67.0)	
TYS, MN/m ² (ksi) Av					
Mil Std. Deviation	1				
Elong, percent Av		1.7 1.0	2.5 2.5	0.8 0.0	
RA, percent Av					
No. of Spec. (No. of Heats)	5 (1)	5 (1)	5 (1)	8 (2)	
GN/m ² (10 ⁶ psi) Av					
No. of Spec. (No. of Heats)					
Poisson's Ratio					_
Nork Hardening Coef					
NTS, MN/m ² (ksi) Av. $K_t = Mii$ No. of Spec. (No. of Heats)	1				
NTS, MN/m^2 (ksi) Av $K_t = Mi$					

Alloy Designation:

2219 Alumnium Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-TIG welded, 2319 Al filler 0.100 to 0.319 (0.040 to 0.125) T81 Sheet, tested as welded

Testing Temperature, K (F)	29	97 (75)	77	(-320)	20	(-423)		
	Avg 324 Min	(47.0)	405	(58.8)	451	(65.4)		
TYS, MN/m² (ksi)	Avg Min							
	Avg Min							
	Avg Min							
No. of Spec. (No. of Heats)		(1)	3	(1)	3	(1)	4	
	Avg Min							
No. of Spec. (No. of Heats)								
Poisson's Ratio								
Work Hardening Coef								
	Avg							
K _t = No. of Spec. (No. of Heats)	Min							
	Avg Min							
Tension, Transverse		i						
	Avg Min	i						
Std. Deviation								
	Avg							
Std. Deviation	Min							
	Avg Min							
	Avg Min							
No. of Spec. (No. of Heats)								
	Avg Min							
No. of Spec. (No. of Heats)								
Poisson's Ratio								
Work Hardening Coef								
Kt =	Avg Min							
No. of Spec. (No. of Heats)						1		
	Avg Min							

References: 51156

107<

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, 2319 Al filler

Thickness, cm (in.): Condition:

0.100 to 0.319 (0.040 to 0.125) T81 Sheet, welded, re-heat treated to T81, tested

Testing Temperature, K (F)	2	97 (75)	195	(-108)	77	(-320)	20	(-423)	
Tension, L to T (grain) TUS, MN/m ² (ksi) An		(49.1)	328	(47.5)	428	(62.1)	449	(65.1)	
Std. Deviation			1						
TYS, MN/m ² (ksi) A Std. Deviation									
Elong, percent A	-								
RA, percent A	- 1								
M No. of Spec. (No. of Heats)	3	(1)	3	(1)	3	(1)	3	(1)	
E, GN/m ² (10 ⁶ psi) A									
No. of Spec. (No. of Heats)									
Poisson's Ratio									
Work Hardening Coef									
NTS, MN/m ² (ksi) Av $K_t = M$ No. of Spec. (No. of Heats)									
NTS, MN/m^2 (ksi) Av $K_t = Mi$ No. of Spec. (No. of Heats)									
Tension, Transverse	- 1								
TUS, MN/m ² (ksi) Av									
Std. Deviation					1		1		
TYS, MN/m² (ksi) Av Mi Std. Deviation	-								
Elong, percent Av									
RA, percent Av									
No. of Spec. (No. of Heats)									
E, GN/m ² (10 ⁶ psi) Av									
No of Spec. (No. of Heats)	"								
Poisson's Ratio									
Work Hardening Coef									
NTS, MN/m ² (ksi) Av $K_t = Mi$ No. of Spec. (No. of Heats)									
NTS, MN/m^2 (ksi) Av $K_t = Mi$ No. of Spec. (No. of Heats)									

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Sheet-MIG welded, 2319 Al filler 0.100 to 0.319 (0.040 to 0.125)

Thickness, cm (in.): Condition:

T87 Sheet, tested as welded

Testing Temperature, K (F)	29	7 (75)	195_	(-108)	77	(-320)	 	 -
Λ	Avg Min							
Std. Deviation			122					
	Avg Min							
	Avg //in							
RA, percent A	Avg							
No of Spec. (No. of Heats)	Ain							
	Avg Min							
No. of Spec. (No. of Heats)								
Poisson's Ratio								
Nork Hardening Coef								
	Avg Min							
	Nyg fiin							
Tension, Transverse								
N	Nyg 319	(46.2)	334	(48.5)	463	(67.2)		
Std. Deviation								
N	Avg 219	(31.8)	23.9	(34.6)	256	(37.0)		
Sto. Deviation	1							
	Nyg Min	2.2		2.0		3.5		
	lvg 1:n							
No. of Spec. (No. of Heats)	2	(1)	2	(1)	2	(1)		
N	Nvg fin							
No. of Spec. (No. of Heats)								
oisson's Ratio								27
York Hardening Coef								
	368 1in	(53.4)	445	(64.6) (1)	476	(69.1) (1)		=-'1
	2	(1)	-	(1)	1	(1)		
	lin :							

References: 90069

109<

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Sheet-MIG welded, 2319 Al filler 0.100 to 0.319 (0.040 to 0.125)

Thickness, cm (in.): Condition:

T87 Sheet, welded, aged, tested

ting Temperature, K (F)	297 (75)	195 (-108)	77 (-320)		
sion, Longitudinal						
S, MN/m² (ksi)	Avg					
Std. Deviation	Min					
S, MN/m ² (ksi)	Avg					
Std. Deviation	Min					
ng, percent	Avg					
3 , p.s. co	Min					
, percent	Avg					
lo. of Spec. (No. of Hea	Min ets)					
GN/m ² (10 ⁶ psi)	Avg					
No. of Spec. (No. of Hea	Min ats)			7.1		
sson's Ratio						
k Hardening Coef						
S, MN/m² (ksi)	Avg				F4 11	
(_t =	Min					
o. of Spec. (No. of Hea	ets)					
S, MN/m² (ksi)	Avg					
t = o. of Spec. (No. of Hea	Min ats)					
ion, Transverse						
MN/m² (ksi)	Avg	363 (52.6)	376 (54.6)	482 (69.9)		
I. Deviation	Min					
, MN/m² (ksi)	Avg	279 (40.4)	281 (40.7)	310 (45.0)		
d. Deviation	Min					
n percent	Aug					
g, percent	Avg Min					
percent	Avg	2.0	1.5	2.0		
of Spec. (No. of Hea	Min ets)	2 (1)	2 (1)			
N/m ² (10 ⁶ psi)	Avg					
o, of Spec. (No. of Hea	ets)					1 = 1
en's Ratio						
Hardening Coef		147				
i, MN/m² (ksi)	Avg	381 (55.2)	414 (60.1)	445 (64.6)		
t = 23.4 o.,of:Spec. (No. of Hea	Min ets)	0				
MN/m² (ksi)	Avg					
t =	Min					
 o. of Spec. (No. of Hea 	its)					

Alloy Derignation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, 2319 Al filler 0.100 to 0.319 (0.640 to 0.125) T87 Sheet, tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F	·)	297 (75)	200 (-100)	77 (-320)	20 (-423)	
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg	312 (45.3)	341 (49.5)	402 (58.3)	482 (69.9)	
Std. Deviation	Min	258 (37.4) 35.3 (5.12)	334 (48.5)	361 (52.3) 30.8 (4.47)	441 (64.0) 30.3 (4.40)	
TYS, MN/m ² (ksi)	Avg	202 (29.3)		286 (41.5)	276 (40.1)	
Std. Deviation	Min	172 (25.0) 20.1 (2.93)		200 (29.0) 77.9 (11.3)	184 (26.7)	
Elong, percent	Avg	2.4	3.7	3.2	2.1	
	Min	1.3	3.0	2.0	0.5	
RA, percent	Avg Min	28.5		23.2		
No. of Spec. (No. of He		21 (7)	3 (1)	18 (6)	16 (5)	
E, GN/m ² (10 ⁶ psi)	Avg Min	67 (9.7) 61 (8.9)		93.8 (13.6) 1	102 (14.8) 1	
No. of Spec. (No. of He	æts)					
Poisson's Ratio		0.21		0.26	0.29	
Work Hardening Coef						
NTS, MN/m² (ksi)	Avg				1 = 1	
K _t = No. of Spec. (No. of He	Min eats)					
NTS, MN/m² (ksi)	Avg		1	}		
K _t = No. of Spec. (No. of He	Min ats)					
Tension, Transverse						
TUS, MN/m ² (ksi)	Avg					
Std. Deviation	Min					
TYS, MN/m ² (ksi)	Avg					
Std. Deviation	Min					
Elong, percent	Avg					
	Min		_ '			
RA, percent	Avg Min					
No. of Spec. (No. of He						
E, GN/m ² (10 ⁶ psi)	Avg					
No. of Spec. (No. of He	Min ats)					
oisson's Ratio						
York Hardening Coef						
NTS, MN/m² (ksi)	Avg					
Kt = No. of Spec. (No. of He	Min ats)					
NTS, MN/m ² (ksi)	Avg			}	11	
K _t = No. of Spec. (No. of He	Min ats)					

References: 53308, 69310, 69800, 84318, 84319, 89983, 90078

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, 2319 Alloy filler 0.320 to 0.634 (0.126 to 0.249) T87 Sheet, tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		29	7 (75)			77	(-320)	
Tension, Longitudinal								
TUS, MN/m ² (ksi)	Avg	312	(45.3)			411	(59.6)	
Std. Deviation	Min	310	(45.0)			407	(59.0)	
TYS, MN/m ² (ksi)	Avg Min	184 178	(26.7)			338 335	(49.0) (48.6)	
Std. Deviation	141111	178	(25.8)			333	(40.0)	
Elong, percent	Avg Min							
RA, percent	Avg Min							
No. of Spec. (No. of Hear		4	(1)			5	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of Hear	ts)							
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m^2 (ksi) $K_t =$ No. of Spec. (No. of Heat	A.vg Min ts)							
NTS, MN/m ² (ksi) $K_t =$ No of Spec. (No. of Hear	Avg Min							
Tension, Transverse								
TUS, MN/m ² (ksi)	Avg Min							
Std. Deviation	,,,,,,							
TYS, MN/m ² (ksi)	Avg Min				2			
td. Deviation								
Elong, percent	Avg Min							
RA, percent	Avg Min							*
No. of Spec. (No. of Hear								
E, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of Heat								
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min							
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hear	Avg Min							

Alloy Designation: 2219-T81 Aluminum Alloy

Specification: MIL-A-8920A, ASTM B209

Form: Plate
Thickness, cm (in.): 0.635 to 1.27 (0.250 to 0.499)
Condition: T81

Testing Temperature, K (F)		297 (75)	20 (-423)	
Tension, Longitudinal	1			
TUS, MN/m ² (ksi)	Avg	442 (64.1)	652 (94.6)	
Std Deviation	Min			
TYS, MN/m ² (ksi)	Avg	343 (49.8)	483 (70.0)	
Std Deviation	141111			
Elong, percent	Avg	8.5	13	
	Min			
RA, percent	Avg	20.5	25.6	
No. of Spec. (No. of Heats	Min	1 (1)	25.1	
	′	,	2 111	
E, GN/m ² (10 ⁶ psi)	Avg Min			
No. of Spec. (No. of Heats				
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m² (ksi)	Avg	420 (61)	483 (70.1)	
$K_t = 6.3$	Min	394 (57.1)	480 (69.7)	
No. of Spec. (No. of Heats)	1	4 (1)	2 (1)	
NTS, MN/m ² (ksi)	Avg			
K _t = No. of Spec. (No. of Heats)	Min			
Tension, Transverse TUS, MN/m ² (ksi)	A			
105, MIN/M= (KSI)	Avg			
Std Deviation				
TYS, MN/m ² (ksi)	Avg			
Std. Deviation	Min			
Elong, percent	Avg Min			
	Avg Min			
No. of Spec. (No. of Heats)				
E, GN/m ² (10 ⁶ psi)	Avg			
No of Spec. (No. of Heats)	Min			
	´			
Poisson's Ratio				
Work Hardening Coef				
	Avg			
K _t = No. of Spec. (No. of Heats)	Min			
	Avg Min			37.74
No of Spec. (No. of Heats)				2.4

References: 66080

113< 4.2.2-8 (11/74)

Alloy Designation:

2219-T81 Aluminum Alloy

Specification:

MIL-A-8920 A, ASTM B209

Form:

Plate 0.635 to 1.27 (0.250 to 0.499) T81

Thickness, cm (in.): Condition:

Testing Temperature, K (F	-)	297	(75)		20 (-423	3)	
Compression, Longitudinal							
CYS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of He							1
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of He							
Compression, Transverse							
CYS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of He	eats)						
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of He							_
Shear(a)							
SUS, MN/m ² (ksi)	Avg Min	256	(37.2)		498 (72.3	0)	
No. of Spec. (No. of He	eats)					1	
G, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of He	eats)						
Impact, Charpy V				}			
Long., Nm(ft-lb)	Avg						
No. of Spec. (No. of He	Min eats)						i
Trans., Nm(ft-lb)	Avg						1.
No. of Spec. (No. of He				}			
Fracture Toughness(b)							
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min						
Orientation — No. of Spec. (No. of He	eats)						
KIE, MN/m3/2(ksi/in.)	Avg						
(From PTSC spec.)(No. of Spec. (No. of He	-)Min eats)						

References: 56754

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for $K_{\parallel C}$ data:

Alloy Designation: 2219-T87 Aluminum Alloy

Specification: MIL-A-8920A, ASTM B209

Form: Plate
Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)
Condition: T87

Testing Temperature, K (F)	297	(75)	77	(-320)	20	(-423)		
Tension, Longitudinal								
TUS, MN/m ² (ksi) Avg	463	(67.2)	578	(83.8)	671	(97.3)		
Min Std. Deviation	458	(66.4)	576	(83.5)	665	(96.5)		
TYS, MN/m ² (ksi) Avg	380 376	(55.1)	458 454	(66.4)	487	(70.6)		
Std. Deviation	370	(54.5)	454	(65.9)	485	(70.3)		
Elong, percent Avg Min		10.8 10.7		12.5 12.2		14.2 12.5		
RA, percent Avg		į						
No. of Spec. (No. of Heats)		(2)		(2)		(2)		
E, GN/m ² (10 ⁶ psi) Avg Min								
No. of Spec. (No. of Heats)		ł	4					
oisson's Ratio								
Nork Hardening Coef								
NTS, MN/m ² (ksi) Avg K _t = 10 Min No. of Spec. (No. of Heats)	454 452	(65.8) (65.6) (2)	547 540	(79.4) (78.3) (2)	578 574	(83.8) (83.2) (2)		
NTS, MN/m^2 (ksi) Avg Min								
No. of Spec. (No. of Heats)								
Tension, Transverse TUS, MN/m ² (ksi) Avg	467	(67.8)	590	(85.6)	684	(99.2)		
Min	464	(67.3)	585	(84.9)	678	(98.4)		
Std. Deviation								
TYS, MN/m ² (ksi) Avg	378	(54.8) (54.3)	454 449	(65.9) (65.1)	480 476	(69.7) (69.0)		
Std. Deviation								
Elong, percent Avg Min		10.4 9.8		11.6 11.2		14.6 14.3		
RA, percent Avg								
Min No. of Spec. (No. of Heats)		(2)		(2)		(2)		
E, GN/m ² (10 ⁶ psi) Avg								
No. of Spec (No. of Heats)								
oisson's Ratio								
Vork Hardening Coef								
	448	(65.0)	544 540	(78.9) (78.3)	567 564	(82.2) (81.8)		
NTS, MN/m ² (ksi) Avg K _t = 10 Min No. of Spec. (No. of Heats)	447	(64.8) (2)		(2)		(2)		

Alloy Designation:

2219-T6E46

Specification:

Thickness, cm (in.): Condition:

Plate 0.635 to 1.269 (0.250 to 0.449) T6E46, Aged from T42 condition at 450 K (350 F), 12 hr.

Testing Temperature, K (F)	29	7 (75)	195	(-108)	77	(-320)	20	(-423)		
Tension, Longitudinal										70	
TUS, MN/m ² (ksi)	Avg	432	(62.7)	450	(65.3)	539	(78.2)	625	(90.6)		
Std. Doubles	Min	430	(62.4)	429	(62.2)	517	(75.0)	580	(84.1)		
Std Deviation						1					
TYS, MN/m ² (ksi)	Avg	312	(45.3)	330	(47.8)	370	(53.6)	405	(58.8)		
Std. Deviation	Min	309	(44.9)	303	(44.0)	361	(52.4)	391	(56.7)		
Elong, percent	Avg		16.5		1.7		24.3		(24.0)		
	Min	· ·	14.0	4	21.0		22.0		(21.0)		
RA, percent	Avg										
No. of Spec. (No. of He	Min eats)	3	(1)	3	(1)	4	(1)	3	(1)		
E, GN/m ² (10 ⁶ psi)	Avg Min	71.0 64	(10.3) (9.3)	75.2 73.1	(10.9) (10.6)	80.7 77.9	(11.7) (11.3)		(11.3) (10.6)		
No. of Spec. (No. of He		3	(1)	3	(1)	4	(1)	3	(1)		
Poisson's Ratio											
, Oladon's Matio											
Work Hardening Coef											
NTS, MN/m² (ksi)	Avg										
K _t =	Min			Ì							
No. of Spec. (No. of He	ats)										
NTS, MN/m² (ksi)	Avg										
K _t = No. of Spec. (No. of He	Min										
140. 01 Spec. (140, 01 Fie	id (5)										
Tension, Transverse											
TUS, MN/m ² (ksi)	Avg Min	453 449	(65.7) (65.1)	479 463	(69.5)	549 543	(79.6) (78.7)	655 627	(95.0) (90.9)		
Std. Deviation	IAIIII	443	(05.1)	403	(67.2)	543	(70.7)	027	(50.5)		
TYS, MN/m ² (ksi)	A	222	/40.1\	250	(EO 7)	394	/EZ 1\	435	(62.1)		
1 13, MIA/III- (KSI)	Avg Min	332 325	(48.1) (47.2)	350 344	(50.7) (49.9)	389	(57.1) (56.4)		(63.1) (62.4)	1	
Std. Deviation											
Elong, percent	Avg		14.3	1	16.5		16.8	1	16.5		
	Min		14.0	•	15.0		16.0		6.0	ŀ	
RA, percent	Ave			ļ							
	Min										
No. of Spec. (No. of He	ats)	3	(1)	3	(1)	3	(1)	3	(1)		
E, GN/m ² (10 ⁶ psi)	Avg	75.8	(11.0)	76.5	(11.1)	80.0	(11.6)	78.6	(11.4)		1 1
No. of Spec. (No. of He	Min	74.5	(10.8)	69.0	(10.0)	76.5 3	(11.1)	67.6	(9.8)		
No. of Spec, (No. of He	d(3)	3	(1)	3	(1)	13	(1)	13	(1)		
Poisson's Ratio								1			
Work Hardening Coef											ı
NTS, MN/m ² (ksi) K _t =	Avg Min										
No. of Spec. (No. of He											
NTS, MN/m² (ksi)	Avg										
K _t =	Min										
No. of Spec. (No. of He	ats)	1									

TABLE 4,2.2-ME10.2

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Plate-TIG welded, 2319 Alloy filler 0.635 to 1.269 (0.250 to 0.449) 2219-0 Plate: tested as welded and heat treated to T6E46 [T42 + 450 K (350 F), 12 hr.

Testing Temperature, K (F)	297 (75)	77 (-320)	20 (-423)
Tension, Longitudinal			
TUS, MN/m ² (ksi) A	/g 473 (68.6)	522 (75.7)	652 (94.6)
Std. Deviation	in 470 (68.2)	500 (72.5)	613 (88.9)
	348 (50.4) in 343 (49.8)	380 (55.1) 378 (54.8)	452 (65.5) 431 (62.5)
Std. Deviation			
Elong, percent A M		10.5 7.5	10.9 7.5
RA, percent A	- 1		
No. of Spec. (No. of Heats)	3 (1)	3 (1)	4 (1)
E, GN/m ² (10 ⁶ psi) A			
No. of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
VIG, MN/m ² (ksi) A	- 1		
$K_t = M$ No. of Spec. (No. of Heats)	n		
NTS, MN/m ² ksi) A			
$K_t = M$ No. of Spec. (No. of Heats)	n		
Tension, Transverse	_ = 1		
TUS, MN/m ² (ksi) A			
Std. Deviation			
TYS, MN/m ² (ksi) A			
Std. Deviation			
Elong, percent A	- 1		
RA, percent A			
M. No. of Spec. (No. of Heats)	n		
E, GN/m ² (10 ⁶ psi) A	- 1		
No. of Spec. (No. of Heats)			
Poisson's Ratio			1 1
Vork Hardening Coef			1
NTS, MN/m ² (ksi) Av K _t = M	- 1		
No. of Spec. (No. of Heats)			
NTS, MN/m^2 (ksi) Av $K_t = M$	- 1		4

Alloy Designation: 2219-T87 Aluminum Alloy

Specification: MIL-A-8920A, ASTM B209

Form:

Plate 1.27 to 2.54 (0.500 to 1.000) T87 Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297	(75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)	4	(-452)
Tension, Longitudinal													
TUS, MN/m ² (ksi)	Avg	460	(66.8)	496	(72.0)	513	(74.4)	578	(83.8)	676	(98.1)	674	(97.8)
Std Deviation	Min	432	(62.6)	483	(70.1)	507	(73.5)	559	(81.1)	655		672	(97.5)
Std. Deviation		13.5	(1.96)	9.6	(1.40)			11.8	(1.72)	17.5	(2.54)		
TYS, MN/m ² (ksi)	Avg	376	(54.6)	409	(59.3)	427	(61.9)	456	(66.2)	496		512	(74.2)
Cad Davis	Min	350	(50.8)	393	(57.0)	420	(60.9)	434	(62.9)	470	(68.1)	505	(73.2)
Std. Deviation		11.9	(1.73)	9.8	(1.43)			12.5	(1.82)	15.5	(2.25)		
Elong, percent	Avg		13.4	13.			12.5		15.2	16.			15.2
	Min		9.7	12.	5		12.0	1	11.0	12.	0		15.0
RA, percent	Avg	:	30.4	27.	8			1 2	29.2	26.	2] ;	23
	Min		24.0	26.					0.82	25.			22
No. of Spec. (No. of Hea	ts)	31	(12)	7	(4)	2	(1)	26	(11)	24	(10)	2	(1)
E, GN/m ² (10 ⁶ psi)	Avg	68.1	(9.88)					77.2	(11.2)	84.1	(12.2)		
	Min	63.4	(9.2)					71.0	(10.3)	72.4	(10.5)		
No. of Spec. (No. of Hea	ts)	14	(3)					12	(3)	11	(3)		
Poisson's Ratio			0.33					().33	0.3	7		
Work Handonian Cast													
Work Hardening Coef													
NTS, MN/m² (ksi)	Avg	463	(67.2)					558	(81.0)	583	(84.5)		
K _t = 10	Min	459	(66.6)					556	(80.7)	_	(0)		
No. of Spec. (No. of Hea	ts)	2	(2)					2	(2)	2	(2)	(
NTS, MN/m ² (ksi)	Avg	567	(82.3)	571	(82.8)			631	(91.5)	707	(102.5	690	(100)
$K_t = 16$	Min												
No. of Spec. (No. of Hea	ts)												
Tension, Transverse			11.										
TUS, MN/m ² (ksi)	Avg	468	(67.9)	494	(71.7)			585	(84.8)	689	(99.9)		
Ctd Douisting	Min	460 6.2	(66.7) (0.90)	491	(71.2)			565 12.3	(81.9) (1.78)	638 16.9	(92.5) (2.45)		
Std. Deviation		0.2	(0.307					12.5	(1.70)	10.5	(2.40)		
TYS, MN/m² (ksi)	Avg	378	(54.9)	393	(57.0)			455	(66.0)	493	(71.5)		
Std. Deviation	Min	365	(53.0)	378	(54.8)	ŀ		10.3	(64.0) (1.49)	458 17.5	(66.5) (2.54)		
Std. Deviation			(1.21)					10.5	(1.45)	17.5	(2.04)		
Elong, percent	Avg		10.8	12.		}		·	12.0	13.			
	Min		7.5	11	1	İ			9.3	9.	8 .		
RA, percent	Avg		22.5	19.	8			:	20.7	19.	8		
	Min		13.0	16.					14.0	12.			
No. of Spec. (No. of Hear	ts)	29	(12)	4	(2)			28	(12)	25	(10)		
E, GN/m ² (10 ⁶ psi)	Avg	70.3	(10.2)					78.6	(11.4)	88.2	(12.8)		
	Min		(9.4)						(10.6)		(10.3)		
No. of Spec. (No. of Hear	ts)	16	(4)					15	(4)	13	(3)		
Poisson's Ratio			0.34						0.33	0.3	8		
Mark Handanies Cost													
Nork Hardening Coef													
NTS, MN/m ² (ksi)	Avg	456	(66.2)					524	(76.0)	554	(80.3)		
K _t = 10	Min	449	(65.1)					520	(75.4)	547	(79.3)		
No. of Spec. (No. of Hear	ts)	2	(2)			(1		2	(2)	2	(2)		
NTS, MN/m ² (ksi)	Avg					F							
K ₁ =	Min												

References: 62292, 64373, 64658, 66167, 72563, 84319, 90169, 90184 4.2.2-11 (11/74)

Alloy Designation:

2219-T87 Aluminum Alloy

Specification:

MIL-A-8920 A, ASTM B209

Form:

Thickness, cm (in.):

Plate 1.27 to 2.54 (0.500 to 1.000) T87

Condition:

Testing Temperature, K (F)	297	(75)	77	(-320)	20	(-423)	
Compression, Longitudinal								
CYS, MN/m ² (ksi)	Avg Min							
No. of Spec. (No. of He	ats)							
Ec, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of He	ats)							
Compression, Transverse								
CYS, MN/m ² (ksi)	Avg Min							
No. of Spec. (No. of He								
Ec, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of He	ats)		1		1			
Shear(a)								
SUS, MN/m ² (ksi)	Avg Min							
No. of Spec. (No. of He	ats)							
G, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of He	ats)							
Impact, Charpy V				1			- 1	
Long., J(ft-lb)	Avg Min		= "			8 7.4	(5.9) (5.5)	
No. of Spec. (No. of He						6	(1)	
Trans., J(ft-lb)	Avg Min							
No. of Spec. (No. of He	ats)							
Fracture Toughness(b)								
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min							
Orientation. — No. of Spec. (No. of He	ats)							
K _{IE} , MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(T —	Avg S.)Min	45.2 38 4	(41.4) (35.1)	48.5 36.4	(44.4) (33.3)			
No of Spec. (No. of He	ats)	8	(3)	7	(3)			

References: 5€ 50, 84319

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{I_C} data:

Alloy Designation:

2219-T6E46

Specification:

Thickness, cm (in.): Condition:

Plate 1.270 to 2.540 (0.500 to 1.000) T6E46 [Aged from T42 condition at 450 K (350 F), 12hr.]

Testing Temperature, K (F	-)	297	(75)	195	(-108)	77	(-320)	20	(-423)		
Tension, Longitudinal TUS, MN/m ² (ksi) Std. Deviation	Avg Min										
TYS, MN/m ² (ksi) Std. Deviation	Avg Min										
Elong, percent	Avg Min										
RA, percent	Avg Min			:							
No. of Spec. (No. of He	eats)										
E, GN/m ² (10 ⁶ psi) No. of Spec. (No. of He	Avg Min										
	2015/										
Poisson's Ratio											
Work Hardening Coef											
NTS, MN/m^2 (ksi) $K_t =$ No. of Spec. (No. of He	Avg Min eats)										
NTS, MN/m ² (ksi) K ₁ = No. of Spec. (No. of He	Avg Min eats)										
Tension, Transverse											
TUS, MN/m² (ksi) Std. Deviation	Avg Min	452 445	(65.5) (64.6)			531 507	(77.0) (73.6)	638 597	(92.5) (86.6)		
	1000										
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	314 305	(45.6) (44.2)			369 350	(53.5) (50.8)	419 403	(60.8) (58.4)		
Elong, percent	Avg Min		5.2 5.0				18.0 16.5		1 8.8 18.5	-	
RA, percent	Avg										
No. of Spec. (No. of He	Min	3	(1)			3	(1)	3	(1)		
								١			
E, GN/m ² (106 psi) No. of Spec. (No. of He	Avg Min eats)	79.3 72.4 3	(11.5) (10.5) (1)				(11.6) (10.8) (1)				
Poisson's Ratio											
Work Hardening Coei											
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min										

Alloy Designation:

2219-T851

Specification:

Form:

Thickness, cm (in.): Condition:

Plate 1.270 to 2.540 (0.500 to 1.000) T851

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	20 (-423)	4 (-452)	
Tension, Longitudinal						
TUS, MN/m ² (ksi) Av		492 (71.4)	569 (82.5)	659 (95.6)	660 (95 .7) 657 (95 .3)	
Std. Deviation					057 (80.5)	
TYS, MN/m ² (ksi) Av		397 (57.6)	440 (63.8)	474 (68.8)	485 (70.3) 476 (69.0)	
Std. Deviation						
Elong, percent Av Mi		11.5	13.8	16.0	15,0 14.0	
RA, percent Av		28	30	28	25.5	
Mi No. of Spec. (No. of Heats)	1	1	1	1	25.0	
E, GN/m ² (10 ⁶ psi) Av						
No. of Spec. (No. of Heats)		-4				
oisson's Ratio						
ork Hardening Coef						
TS, MN/m ² (ksi) Av $K_t = 16 \qquad Mi$		581 (84,3)	652 (94.5)	714 (103.5)	704 (102.1)	
No. of Spec. (No. of Heats)	1	1	1	1	1	
TTS, MN/m ² (ksi) Av $K_t = Min$ No. of Spec. (No. of Heats)	·					
ension, Transverse					000 (05.7)	
US, MN/m² (ksi) Av Mil Std. Deviation		490 (71.0)	572 (83.0)	667 (96.7)	660 (95.7) 658 (95.5)	
YS, MN/m² (ksi) Av		379 (55.0)	421 (61.1)	465 (67.5)	481 (69.8)	
Std. Deviation					479 (69.5)	
long, percent Av		10.5	12.2	15.8	13.0 12.5	
RA, percent Av		22	24	25	20.5 20.0	
No. of Spec. (No. of Heats)					2 (1)	
, GN/m ² (10 ⁶ psi) Av Mi						
No. of Spec. (No. of Heats)						
oisson's Ratio						
fork Hardening Coef						
ITS, MN/m ² (ksi) Av $K_t = 16$ Min No. of Spec. (No. of Heats)		562 (81.5)	624 (90.5)	665 (96.5)	665 (96.5) 1	
ITS, MN/m^2 (ksi) Av Min						

References: 72563 121<

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-TIG welded, 2319 Alloy filler 1.270 to 2.540 (0.500 to 1.000) T6E48* Plate, tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297 (75)	195 (-108)		77 (-320)	20 (-423)	
Tension, Longitudinal TUS, MN/m² (ksi)	Avg	259 (37.5)	273 (39.6)		331 (48.0)	413 (59.9)	
Std. Deviation	Min	239 (34.6)	249 (36.1)		274 (39.8)	386 (56.0)	
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	154 (22.4) 147 (21.3)	165 (24.0) 157 (22.7)		184 (26.7) 171 (24.8)	265 (38.4) 249 (36.1)	
Elong, percent	Avg Min	4.5 3.0	4.4 3.0		3.9 2.0	3.6 3.0	
RA, percent	Avg Min	4 (1)	4 (1)		4 (1)	4 (1)	
No. of Spec. (No. of Heats E, GN/m ² (10 ⁶ psi)	Avg	4 (1)	4 (1)		" "		
No. of Spec. (No. of Heats	Min						
Poisson's Ratio			10	-			
Work Hardening Coef							
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min						
Tension, Transverse							
TUS, MN/m ² (ksi)	Avg Min						
Std. Deviation TYS, MN/m² (ksi)	Avg						
Std. Deviation	Min	La A					
Elong, percent	Avg Min						
RA, percent	Avg Min						
No. of Spec. (No. of Heats							
E, GN/m ² (10 ⁶ psi)	Avg Min			100			
No. of Spec. (No. of Heats)						
Poisson's Ratio							
Work Hardening Coef						2	
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min)						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min						

References: 58761 * T42 + 450 K (350 F), 12 hr.

4.2.2-12.3 (11/76)

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-MIG welded, 2310 Alloy filler 1.270 to 2.540 (0.500 to 1.000) T62 Plate, welded and tested as heat treated to T62

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	4 (-452)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	396 (57.3)	416 (60.4)	475 (68.9)	496 (72.0)
Std Deviation	Min				
TYS, MN/m ² (ksi)	Avg	277 (40.2)	279 (40.5)	321 (46.6)	356 (51.5)
Std. Deviation	Min				
					25
Elong, percent	Avg Min	7.5	6.5	5.5	3.5
0.4					_
RA, percent	Avg Min	7	8	6	5
No. of Spec. (No. of He		1	1	1	1
E, GN/m ² (10 ⁶ psi)	Avg				
	Min			14-	
No. of Spec. (No. of He	ats)			THE STEEL STEEL	
Poisson's Ratio			1		
Work Hardening Coef					
NTS, MN/m ² (ksi) K _ž ==	Avg Min				
No. of Spec. (No. of Hea					
NTS, MN/m² (ksi)	Avg				
K _t =	Min				
No. of Spec. (No. of Heat	ats)				
Tension, Transverse					
TUS, MN/m² (ksi)	Avg Min	399 (57.9)	437 (63.4)	512 (74.2)	
Std. Deviation	141111				
TYS, MN/m² (ksi)	Avg	287 (41.6)	311 (45.1)	352 (51.0)	
	Min	207 (41.07	311 (45.17	002 (01.0)	
Std. Deviation					
Elong, percent	Avg	4.8	8.3	7.0	
	Min				
RA, percent	Avg	4	7	8	
No. of Spec. (No. of Hea	Min ats)	2 (1)	2 (1)	2 (1)	
		'''	2 \\ \\ \\	• '''	
E, GN/m ² (10 ⁶ psi)	Avg Min	4			
No. of Spec. (No. of Hea					
Poisson's Ratio					
Nork Hardening Coef					
NTS, MN/m ² (ksi)	Avg				
K _t = No. of Spec. (No. of Hea	Min ats)				
NTS, MiN/m ² (ksi) K _t =	Avg Min				
No. of Spec. (No. of Hea					1

Alloy Designation: 2219 Aluminum Alloy (Weld Metal)

Specification:

Form: Plate-MIG welded, 2319 Alloy filler
Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: T81 Plate, tested as welded

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	
Tension, Longitudinal				
TUS, MN/m ² (ksi) A				
Std. Deviation				
TYS, MN/m ² (ksi) A	rg			
Std. Deviation				
Elong, percent A		Y.		
RA, percent A	T			
No. of Spec. (No. of Heats)				
E, GN/m ² (10 ⁶ psi) A				
No. of Spec. (No. of Heats)				
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m^2 (ksi) A M	~			
No. of Spec. (No. of Heats)				
NTS, MN/m^2 (ksi) A $K_t = M$ No. of Spec. (No. of Heats)				
Tension, Transverse				122
TUS, MN/m ² (ksi) A		285 (41.4)	372 (54.0)	
Std. Deviation				
TYS, MN/m ² (ksi) A		177 (25.6)	204 (29.6)	
Std. Deviation				
Elong, percent A		5.2	4.0	
RA, percent A		3	2	
No. of Spec. (No. of Heats)	1	1	1	
E, GN/m ² (10 ⁶ psi) A:				
No. of Spec. (No. of Heats)				
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi) Av K _t = Mi No. of Spec. (No. of Heats)	-			
NTS, MN/m ² (ksi) Av	9			
K _t = M No, of Spec. (No. of Heats)				

References: 90069

124<

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-MIG welded, 2319 Alloy filler 1.270 to 2.540 (0.500 to 1.000)

Thickness, cm (in.): Condition:

T81 Plate, tested as welded and aged to T81

Testing Temperature, K (F)	297 (75)	195 (-108)	 77 (-320)		
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg					
Std Deviation	Min					
TYS, MN/m ² (ksi)	Avg					
	Min					
Std. Deviation			1			
Elong, percent	Avg					
	Min					
RA, percent	Avg					
No. of Spec. (No. of He	Min ats)				, ,	
E, GN/m ² (10 ⁶ psi)	Avg					
	Min					
No. of Spec. (No. of He	ats)				.11	
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi) K _t =	Avg Min					
No. of Spec. (No. of He	ats)		1			
NTS, MN/m ² (ksi)	Avg				1_, = ::::	
K _t = No. of Spec. (No. of He	Min ate)] [
	ats/					1
Tension, Transverse						
TUS, MN/m ² (ksi)	Avg Min	330 (47.8)	357 (51.8)	450 (65.2)		
Std Deviation						
TYS, MN/m ² (ksi)	Avg	262 (38.0)	276 (40.0)	323 (46.8)		
Std. Deviation	Min					
Std. Deviation		_				
Elong, percent	Avg Min	3.0	3.0	4.8		
RA, percent	Avg Min	2	2			
No. of Spec. (No. of He		1	1	1		
E, GN/m ² (10 ⁶ psi)	Avy					
No. of Spec. (No. of He	Min ate)					
	1(3)					11 2
Poisson's Ratio				_		
Nork Hardening Coef						
NTS, MN/m² (ksi)	Avg					
K _t =	Min					
No. of Spec. (No. of He	ats)					
NTS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of Hea	Min					

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-MiG welded, 2319 Alloy filler 1.270 to 2.540 (0.500 to 1.000) T87 Plate, tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		29	7 (75)	196	(-106)	144	(-200)	77	(-320)	20	(-423)	
Tension, Longitudinal												
TUS, MN/m ² (ksi)	Avg Min	282 259	(40.9) (37.5)	285 285	(41.4) (41.3)	310 308	(45.0) (44.7)	393 365	(57.0) (53.0)	427 425	(61.9) (61.6)	1
Std Deviation			(01.0)		,,,,,,,				(00,0)		,	
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	170 118	(24.6) (17.1)	172 163	(25.0) (23.6)	196 189	(28.4) (27.4)	204 153	(29.6) (22.2)	268 267	(38.8) (38.7)	
			- 0	}							4.0	
Elong, percent	Avg Min		5. 2 3.0		4.5 3.5		5.3 5.0		7.6 3.0	-	4.0 3.5	
RA, percent	Avg	1	5.7		(4)		/41		8.3		/41	
No. of Spec. (No. of Hea	Min ats)	6	(2)	2	(1)	2	(1)	8	(2)	2	(1)	Ì
E, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of Hea	ats)											
Poisson's Ratio						1						
Work Hardening Coef												
NTS, MN/m ² (ksi) K _t = 13.2 No. of Spec. (No. of Hea	Avg Min			249	(36.1) 1			299	(43.3) 1			
NTS, inN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min											
Tension, Transverse										l		
TUS, MN/m ² (ksi)	Avg Min	279	(40.4)	287	(41.6)			390	(56.6)			
Std. Deviation TYS, MN/m ² (ksi)	A	470	/OF 0\	100	(07.0)			201	(20.2)			ł
	Avg Min	172	(25.0)	192	(27.8)			201	(29.2)			
Std. Deviation												
Elong, percent	Avg Min		5.2		6.2				3.5			
RA, percent	Avg Min								2			
No. of Spec. (No. of Hea		2	(1)	2	(1)			2	(1)			
E, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of Hea												
Poisson's Ratio												
Work Hardening Coef												
NTS, MN/m ² (ksi) K _t = No. of Spec (No. of Hea	Avg Min											
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min											

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-MIG welded, 2319 Alloy filler 1.270 to 2.540 (0.500 to 1.000) T87 Plate, tested as welded and heat treated to T87

Thickness, cm (in.):

Condition:

	297 (75)	195 (-108)		77 (-320)		
Avg		_				
Min						
Ava						
Min						
Avg						
Min						
Avg						
1.37						
Avg						
		0-2				
- 7						
Aug						1
			4			
		1				}
Ava						
Min						
its)						
Avg	324 (47.	341 (49.5)		425 (61.7)		
Min						
Avg	234 (34.	0) 239 (34.6)		272 (39.4)		
MIII						
1000						
	3.5	3.8		3.2		
141111			1			
Avg	2	2		2		
	2 (1)	2 (1)		2 (1)		
		1				
				1		
			Ţ			
				1) 1		
				_ 1		
Avg						
Min						
its)						
Avg						
Min		1	94	A 5 6 5 5		
	Avg Min Avg Min Avg Min Avg Min Avg Min ats) Avg Min A	Avg Min Avg Mi	Avg Min Avg Min Avg Min ats) Avg Min Avg Min ats) Avg Min ats) Avg Min ats) Avg Min ats) Avg Min ats) Avg Min ats) Avg Min ats) Avg Min ats) Avg Min ats) Avg Min ats) Avg Min ats Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg	Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Avg Min Avg Avg Avg Min Avg Avg Avg Min Avg Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Min Avg Avg Avg Min Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg	Avg Min Avg Min Avg Min Avg Min its) Avg Min its) Avg Min its) Avg Min its) Avg Min its) Avg Min its) Avg Min its) Avg Min its) Avg Min	Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min tts) Avg Min Avg Min Avg Min Avg Min Avg Min Avg Avg Min Avg Avg Min Avg 234 (34.0) 239 (34.6) Avg Min Avg Avg Min Avg 2 2 2 Itsl Avg Min 2 (1) 2 (1) Avg Min Avg Avg Min ttsl Avg Avg Min ttsl Avg Avg Min ttsl Avg Avg Min ttsl Avg Avg Min ttsl Avg Avg Min ttsl Avg Avg Min ttsl Avg Avg Min ttsl Avg Avg Min ttsl Avg Avg Min ttsl Avg Avg Min ttsl Avg Avg Min ttsl

References: 90069

1274

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-TIC welded, 2319 filier 1.270 to 2.540 (0.500 to 1.000) T87 Plate, tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)	195 (-108)	144 (-200)	77 (-320)	20 (-423)	
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg	276 (40.0)	283 (41.0)	301 (43.6)	409 (59.3)		
Cod Dovins's	Min	172 (25.0)	279 (40.5)	277 (40.2)	383 (55.5)		
Std. Deviation					1		
TYS, MN/m ² (ksi)	Avg	163 (23.8)	171 (24.8)	181 (26.2)	192 (27.8)		
Std. Dovintion	Min	108 (15.8)	165 (24.0)	170 (24.6)	162 (23.5)		
Std. Deviation			ll ll				
Elong, percent	Avg	6.5	4.5	4.9	9.5		
	Min	4.0	40	3.0	4.0		
RA, percent	Avg	25.6			22.1		
No. of Co.o. (No. of 1)	Min	22.2			19.8		
No. of Spec. (No. of He	ats)	8 (3)	2 (1)	4 (1)	9 (3)		
E, GN/m ² (10 ⁶ psi)	Avg			İ			
No. of Spec. (No. of He	Min ats)						
140. Of Spec. (NO. Of He	4(3)						
Poisson's Ratio							
Nork Hardening Coef			1			1	
		000 (00 =:		004 (40.7)	000 (40.0)		
NTS, MN/m ² (ksi) K _t = 13.2	Avg Min	266 (38.6)		281 (40.7)	323 (46.8)		
No. of Spec. (No. of Fie		1		1	1		
NTS, MN/m² (ksi)	A						
K ₁ =	Avg Min						
No. of Spec. (No. of He							
Tension, Transverse							
TUS, MN/m ² (ksi)	Avg	276 (40)			386 (56)	462 (67)	
	Min	12.0					
Std. Deviation						1	
TYS, MN/m ² (ksi)	Avg	138 (20)		Ì	172 (25)	193 (28)	
	Min			1			
Std. Deviation				Ì	1	1	
Elong, percent	Avg	8			9	11	
	Min						
RA, percent	Avg			ĺ	İ	1	
	Min				1.		
No. of Spec. (No. of He	ats)	1			1	1	
E, GN/m ² (10 ⁶ psi)	Avg		11 12 12	i			
No of Spec /No of Ho	Min						
No. of Spec. (No. of He	0(3)			1	1		
Poisson's Ratio							
Nork Hardening Coef							
NTS, MN/m ² (ksi)	Avg Min						
K _t ≈ No. of Spec. (No. of He							
NTS, MN/m ² (ksi)	Avg				1		
K _t = No. of Spec, {No, of He					1	1	

Alloy Designation:

2219 Aluminum Alloy (Weid Metal)

Specification:

Form:

Plate-TIG welded, no filler 1.270 to 2.540 (0.500 to 1.000) T87 Plate, tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)	 	77 (-320)	20 (-423)	
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg	282 (40.9)		387 (56.2)	461 (66.8)	
	Min	249 (26.1)		274 (39.7)	432 (62.6)	
Std. Deviation			0.	46.3 (6.72)		
TYS, MN/m² (ksi)	Avg	141 (20.4)		181 (26.3)	245 (35.5)	
Std. Deviation	Min	102 (14.8)	=	148 (21.4) 27.5 (3.99)	213 (30.9)	
Elong, percent	Avg	12.9		12.7	4.0	
	Min	5.0		6.5		
RA, percent	Avg	21.3		21.7	9	
No. of Spec. (No. of He	Min ats)	12.9 8 (3)		13	4 (2)	
, GN/m ² (10 ⁶ psi)	Avg	66 (9.5)		76.5 (11.1)	67.6 (9.8)	
	Min					
No. of Spec. (No. of He	ats)	2 (1)		2 (1)	2 (1)	
oisson's Ratio		0.33		0.20	0.36	
Vork Hardening Coef						
NTS, MN/ITI ² (ksi)	Avg					
K _t = No. of Spec. (No. of He	Min					
ITS, MN/m² (ksi)	Avg					
Kt = No, of Spec. (No. of He	Min ats)	ļ				
ension, Transverse						
US, MN/m ² (ksi)	Avg					
	Min					
Std. Deviation						
TYS, MN/m ² (ksi)	Avg Min					
Std. Deviation	IVIIII					
long, percent	Avg					
	Min					
RA, percent	Avg					
No. of Spec. (No. of He	Min ats)					
, GN/m ² (10 ⁶ psi)	Avg		-			
No. of Spec. (No. of He	Min ats)					
oisson's Ratio						
Vork Hardening Coef						
ITS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of He	Min ats)					
ITS, MN/m² (ksi)	Avg					
Kt =	Min			1		
No. of Spec. (No. of He	ets)		1	1	4	·0-
eferences: 76455, 8431	8, 89983	3			1	29<

Alloy Designation: 2219-T87 Aluminum Alloy

Specification: MIL-A-8920A, ASTM B209

Form: Plate
Thickness, cm (in.): 2.541 to 5.080 (1.001 to 2.000)
Condition: T87

Testing Temperature, K (F)		297	(75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)
Tension, Longitudinal											
TUS, MN/m ² (ksi)	Avg	469		536	(77.7)	573	(83.1)	596	(86.4)	695	(100.8)
Std Deviation	Min	448 15.2	(65.0) (2.20)					573 19.2	(83.1) (2.79)	680 10.7	(98.7) (1.56)
TYS, MN/m ² (ksi)	Avg	383	(55.6)	433	(62.8)	475	(68.9)	469	(68.0)	510	(74.0)
Std Deviation	Min	361 16.0	(52.4) (2.32)					441 22.5	(64,0) (3.26)	496 9.5	(71.9) (1.38)
Elong, percent	Avg Min		1 1.2		14		13		1 4 10.5		13.4 7.5
RA, percent	Avg Min										
No. of Spec. (No. of Hea		10	(4)	3	(1)	3	(1)	10	(4)	10	(4)
E, GN/m ² (10 ⁶ psi)	Avg Min	67.7	(9.82)					75.2 73.1	(10.9) (10.6)	77.2 73.7	(11.2) (10.7)
No. of Spec. (No. of Hea		65.5 5	(9.50)					5	(1)	3	(1)
oisson's Ratio											
Vork Hardening Coef	1.3										
NTS, MN/m² (ksi)	Avg	480	(69.6)					561	(81.4)	601	(87.2)
K _t = 10 No. of Spec. (No. of Hea	Min its)	478 2	(69.4) (1)					548 2	(79.5) (1)	598 2	(86.7) (1)
ITS, MN/m^2 (ksi) $K_t \approx 21.6$	Avg Min	363	(52.6)	405	(58.7)	396	(57.4)	449	(65.1)	455	(66.0)
No. of Spec. (No. of Hea		3	(1)	3	(1)	3	(1)	3	(1)	3	(1)
ension, Transverse											
US, MN/m ² (ksi)	Avg	467	(67.8)	518	(75.2)	540	(78.4)	585	(84.9)	683	(99.0)
Std Deviation	Min	14 9	(64.4) (2.16)					547 20.9	(79.4) (3.04)	659 17.4	(95.6) (2.53)
YS, MN/m² (ksi)	Avg	381	(55.2)	424	(61.5)	444	(64.4)	459	(66.6)	498	(72.2)
Stil Deviation	Min	353 18.5	(51.2) (2.69)					433 21.7	(62.8) (3.15)	478 18.5	(69.4) (2.68)
long, percent	Avg		9.4		8.5		9		10.6 7.0		10.6
	Min		3.0								6.3
RA, percent	Avg Min		16						18		22 19
No. of Spec. (No. of Hea		13	(5)	3	(1)	3	(1)	13	(6)	14	(6)
, GN/m ² (10 ⁶ psi)	Avg Min	70.3 69.5	(10.2) (10.1)					75.8 72.4	(11.0) (10.5)	78.6 75.2	
No. of Spec. (No. of Hear		4	(1)					5	(1)	5	(1)
oisson's Ratio											
ork Hardening Coef											
ITS, MN/m ² (ksi)	Avg	448	(65.0)					536	(77.8)	545	(79.1)
Kt = 10 No. of Spec. (No. of Heat	Min ts)	414	(60.1) (1)					494 2	(71.7)	514	(74,6)
ITS, MN/m^2 (ksi) $K_t = 21.6$	Avg	350	(50.8)	364	(52.8)	356	(51.7)	396	(57.5)	378	(54.8)
N+ = 21.0	Min			3	(1)	3	(1)	3	(1)	3	(1)

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-EB welded, 2319 Alloy filler Over 5.080 (2.000) T87 Plate, tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	29	7 (75)		77 (-320)		
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg 236	(34.2)		361 (52.3)		
Std. Deviation	Min 132	(19.2)		254 (36.8)		
TYS, MN/m ² (ksi)	Avg 132 Min 116	(19.1) (16.8)		172 (24.9) 145 (21.0)		
Std. Deviation		(10.0)		1.10 (2.1.0)		
Elong, percent	Avg					
	Min					
RA, percent	Avg					
No. of Spec. (No. of Hea	Min 10	/1)		6 (1)		
	its) 10	(1)		6 (1)		
E, GN/m ² (10 ⁶ psi)	Avg 74.5 Min 63.4	(10.8) (9.2)		84.1 (12.2) 77.9 (11.3)		
No. of Spec. (No. of Hea		(1)		4 (1)		
Poisson's Ratio						
					Ц.	1 2
Work Hardening Coef						
NTS, MN/m² (ksi)	Avg					
K _t = No. of Spec. (No. of Hea	Min its)					
NTS, MN/m² (ksi)						}
K _t =	Avg Min				111	
No. of Spec. (No. of Hea	its)					
Tension, Transverse						
TUS, MN/in ² (ksi)	Avg					
Std. Deviation	Min				1	
TYS, MN/m ² (ksi)	Acces					
1 75, MM/M~ (KSI)	Avg Min				}	
Std Deviation						
Elong, percent	Avg					
	Min	ł				
RA, percent	Avg					
No. of Spec. (No. of Hea	Min its)					
E, GN/m ² (10 ⁶ psi)	Avg					
	Min					
No. of Spec. (No. of Hea	ts)					=+
Poisson's Ratio						
Work Hardening Coef			11			
NTS, MN/m ² (ksi) K _t =	Avg Min		T p Q			
No. of Spec. (No. of Hea						
NTS, MN/m ² (kgi)	Avg					
Kt =	Min				1	

References: 88109

1315

Alloy Designation:

2219 A'uminum Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Plate-EB welded, 2319 Alloy filler Over 5.080 (2.000) T87 Plate, tested as welded and aged at 436 K (325 F) 24 hr.

Testing Temperature, K (F)	297	(75)			77	(-320)		
Tension, Longitudinal									
TUS, MN/m ² (ksi)	Avg Min	288 161	(41.8) (23.4)			416 349	(60.2) (50.6)		
Std. Deviation	IVII(I	, , , , ,	(23.4)			340	(50.07	_	
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	187 163	(27.1) (23.6)			254 242	(36.9) (35.1)		
Elong, percent	Avg Min	15							
RA, percent	Avg								
No. of Spec. (No. of Hea	Min ats)	8	(1)			5	(1)		
E, GN/m ² (10 ⁶ psi) No. of Spec. (No. of Hea	Avg Min	74.5 73.1 4	(10.8) (10.6) (1)			81.3 80.0 3	(11.8) (11.6) (1)		
Poisson's Ratio				1 "			,		
Work Hardening Coef									
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min								
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min								
Tension, Transverse									
FUS, MN/m ² (ksi) Std. Deviation	Avg Min							I A	
rys, MN/m ² (ksi)	Avg						-		
Std. Deviation	Min							L	
Elong, percent	Avg Min			=	11				
RA, percent	Avg Min				20.0				
No. of Spec. (No. of Hea									
E, GN/m ² (10 ⁶ psi)	Avg Min								
No. of Spec. (No. of Head of the Poisson's Ratio	213/								
Vork Hardening Coef									
NTS, MN/m² (ksi) K _t =	Avg Min							·	
No. of Spec. (No. of Hea	ets)				£				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min								

TABLE 4,2,2-ME14

Alloy Designation: 2219-T87 Aluminum Alloy

Specification: MIL-A-8920A, ASTM B209

Form: Plate

Thickness, cm (in.): 2.541 to 5.080 (1.001 to 2.000)
Condition: T87

Testing Temperature, K (F)	297	(75)	 77	(-320)	20	(-423)	
Tension, Short Transverse								
TUS, MN/m ² (ksi)	Avg Min	441	(64)	523	(75.9)	544	(78.9)	
Std. Deviation		-4				l		
TYS, MN/m ² (ksi)	Avg	374	(54.3)	524	(76.0)	532	(77.1)	
Std. Deviation	Min							
Elong, percent	Avg		4.3		2.7		1.3	
	Min		(1)		(1)	i	(1)	
RA, percent	Avg Min							
No. of Spec. (No. of H				- [
E, GN/m ² (10 ⁶ psi)	Avg							
No. of Spec. (No. of H	Min eats)							
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m ² (ksi)	Avg			1				
$K_t =$ No. of Spec. (No. of H	Min eats)							
NTS, MN/m ² (ksi)	Avg							
K _t = No. of Spec. (No. of H	Min eats)							

References: 64658

Alloy Designation: 2219-T67 Aluminum Alloy

Specification: Form: MIL-A-8920A, ASTM B209

Plate 2.541 tc 5.080 (1.001 to 2.000) T87 Thickness, cm (in.):

Condition:

Testing Temperature, K (F)		297	(75)		77	(-320)	20	(-423)		
Compression, Longitudinal										
CYS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of Hea										
Ec, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of Hea	ets)	- 12	1							
Compression, Transverse										
CYS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of Hea	ats)							-		
Ec, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of Heat										
Shear(a)			11							
SUS, MN/m ² (ksi)	Avg Min				2					
No. of Spec. (No. of Hea			1					1	1 1	
G, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of Hea	ats)									
Impact, Charpy V								1		
Long., Nm(ft-lb)	Avg Min									
No. of Spec. (No. of Hea			Ì						į	
Trans., Nm(ft-lb)	Avg Min						1			
No. of Spec. (No. of Hea			1					1		
Fracture Toughness(b)			1				1			
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min					1				
Orientation: — No. of Spec. (No. of Hea			-							
K _{1E} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(T — No. of Spec. (No. of Hex		40.3 39.2	(36.9) (35.9) (4)		45.5 44.3 6	(41.6) (17.5) (3)	48.2 46.9 5	(44.3) (42.9) (2)		

References: 84319, 84320

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{IC} data:

TABLE 5.2.2-ME15.1

Alloy Designation: 2219-T6E46

Specification:

Form:

Plate 2.541 to 5.080 (1.001 to 2.000) T6E46 [Aged from T42 condition of 450 K (360 F), 12 hr.] Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297 (75)	 77 (-3	(20)	20 (-423)		
	Avg						
Std. Deviation	Min						
	Avg				Ш		
Std. Deviation	Min						
	Avg Min		-11				
	Avg		4				
No. of Spec. (No. of Heats)	Min						
	Avg Min						
No. of Spec. (No. of Heats)							
Poisson's Ratio							
Work Hardening Coef							
	Avg Min						
	Avg Min						
Tension, Transverse			20				
	Avg 44 Min 43			8.5) 6.7)	671 (97.3) 665 (96.5)		
	Avg 30			1.1)	403 (58.4)		
Std. Deviation	Min 29	6 (43.0)	340 (4	9.3)	388 (56.3)		
	Avg Min	17.3 16.0	20.3 19.0		16.7 15.0		
	Avg Min						
No. of Spec. (No. of Heats)		(1)	3 (1))	3 (1)	4	
	Avg Min						
No. of Spec. (No. of Heats)							
Poisson's Ratio							
Work Hardening Coef							
	Avg Min						
	A						
	Avg Min					1884	

References: 58761

1:5<

Alloy Designation:

2219-T62

Specification:

Form:

Thickness, cm (in.): Condition:

Plate 2,541 to 5,080 (1,001 to 2,000) T62

Testing Temperature, K (F)		297 (7	5)	 77	(-320)			-	
Tension, Longitudinal TUS, MN/m² (ksi) Std. Deviation	Avg Min								
TYS, MN/m ² (ksi) Std. Deviation	Avg Min								
Elong, percent	Avg Min								
RA, percent	Avg Min					-			
No. of Spec. (No. of Heats E, GN/m ² (10 ⁶ psi)	S) Avg								
No. of Spec. (No. of Heats	Min					:			
Poisson's Ratio									
Work Hardening Coef									
NTS, MN/m ² (ksi) $K_t =$ No. of Spec. (No. of Heats	Avg Min s)								
NTS, MN/m² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min s)								
Tension, Transverse TUS, MN/m² (ksi) Std. Deviation	Avg Min	423 (6	61.3)	523	(75.9)				
TYS, MN/m ² (ksi)	Avg	292 (4	12.3)	330	(47.9)				
Std. Deviation	Min					76			
Elong, percent	Avg Min	12.0	•		14.0				
RA, percent	Avg Min								
No. of Spec. (No. of Heats	s)	1	ł	1		= 11			
E, GN/m ² (10 ⁶ psi) No. of Spec. (No. of Heats	Avg Min								
Poisson's Ratio	"		Ì						
Work Hardening Coef									
NTS, MN/m ² (ksi) $K_t = 6.3$ No. of Spec. (No. of Heats	Avg Min	494 (1	71.6)	603	(87.5)		į.		
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min						=		

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Pists-MIG welded, 2319 Alloy filler 2.541 to 5.080 (1.001 to 2.000)

Thickness, cm (in.): Condition:

T851 Plate, tested as welded

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	4 (-452)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	225 (32.7)	281 (40,8)	368 (61.7)	411 (59.6)
Std. Deviation	Min				
TYS, MN/m ² (ksi)	Avg	185 (29.8)	172 (25.0)	193 (28.0)	277 (40.2)
Std. Deviation	Min	100 (25.0)	172 (20.0)	155 (3515)	1 (10.2)
oto. Deviation					
Elong, percent	Avg Min	2.0	4.0	3.5	2.5
RA, percent	Avg	5	15	10	10
No. of Spec. (No. of Heats	Min s)	1	1	1	1
E, GN/m ² (10 ⁶ psi)	Avg				
No. of Spec (No. of Heats	Min s)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg				
K _t =	Min				
No. of Spec. (No. of Heats	3)				1
NTS, MN/m ² (ksi)	Ävg				
K _t ≈ No. of Spec. (No. of Heats	Min :)				
Tension, Transverse					
TUS, MN/m² (ksi)	Avg		F		1
Std. Deviation	Min				
TYS, MN/m² (ksi)	Avg				
	Min				
Std. Deviation					
Elong, percent	Avg				1
	Min			1	
RA, percent	Avg				
	Min				
No. of Spec. (No. of Heats)				
E, GN/m ² (10 ⁶ psi)	Avg				
No. of Spec. (No. of Heats	Min)				
Poisson's Ratio					
Nork Hardening Coef					
NTS, MN/m² (ksi)	Avg	211 2			
Kt =	Min				
No. of Spec. (No. of Heats))	1,61			
NTS, MN/m² (icsi)	CVA				
Kt =	Min				
No. of Spec. (No. of Heats))		1	13	المار
References: 90072				7.0	115

Alloy Designation: 2219-T81 Aluminum Alloy

Specification: MIL-A-8920A, ASTM B209
Form: Plate
Thickness, cm (in.): Condition: Over 5.080 (2.000)
T81

Testing Temperature, K (F))	297 (75)	77 (-329)		
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	445 (64.5)	576 (83.5)		
Std Deviation	Min				
TYS, MN/m ² (ksi)	Avg	348 (50.5)	436 (63.3)		
Std. Deviation	Min				
Elong, percent	Avg Min	9	10		
RA percent	Avg	16	17		
No. of Spec. (No. of Hea	Min				
E, GN/m ² (10 ⁸ psi)	Avg				
No. of Spec. (No. of Hea	Min ats)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg				
K_t = No. of Spec. (No. of Hea	Min ats)				
NTS, MN/m ² (ksi)	Avg				
K _t = No. of Spec. (No. of Hea	Min ets)				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg Min	440 (63.9)	511 (74.1)		
Std. Deviation				11	
TYS, MN/m ² (ksi)	Avg	337 (48.9)	399 (57.9)	1	
Std. Deviation	Min				
Elong, percent	Avg	6	3		
	Min			<u> </u>	
RA, percent	Avg Min	9	7		
No, of Spec. (No. of Hea					
E, GN/m ² (10 ⁶ psi)	Avg				
No. of Spec. (No. of Hea	Min its)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg				127
K _t = No. of Spec. (No. of Hea	Min its)				
NTS, MN/m² (ksi) K _t =	Avg Min				
No. of Spec. (No. of Hea					1

References: 62292

4.2.2-16 (11/74)

Alloy Designation: 2219-T81 Aluminum Alloy

Specification: MIL-A-8920A, ASTM B209

Form: Plate
Thickness, cm (in.): Over 5.080 (2.000)
Condition: T81

Testing Temperature, K	(F)	297	(75)	77 (-320)	
Tension, Short Transvers	<u>e</u>				
TUS, MN/m ² (ksi)	Avg Min	402	(58.3)	487 (70.6)	
Std Deviation			_		
TYS, MN/m ² (ksi)	Avg Min	335	(48.6)	382 (55.4)	
Std. Deviation					
Elong, percent	Avg			3	
	Min				
RA, percent	Avg	:	B (1)	3 (1)	
No. of Spec. (No. of H	Min Heats)		(1)	(17	
E, GN/m ² (10 ⁶ psi)	Avg Min		- 1	. 7	
No. of Spec. (No. of h					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg				
K _t = No. of Spec. (No. of F	Min leats)				
NTS, MN/m ² (ksi)	Avg				
Kt = No. of Spec. (No. of h	Min leats)				

References: 62292

Alloy Designation: 2219-T87 Aluminum Alloy

Specification: MIL-A-8920A, ASTM B209

Form: Plate
Thickness, cm (in.): Over 5.080 (2.000)
Condition: T87

Testing Temperature, K (F)	297 (75)	77 (-320)	20 (-423)	
Tension, Longitudinal TUS, MN/m² (ksi) A	472 (68.5)	591 (85.7)	676 (98.1)	
M Std. Deviation		560 (81.2) 21.1 (3.06)	576 (83.6) 47.9 (6.95)	
TYS, MN/m ² (ksi) A M Std. Deviation		465 (67.5) 428 (62.1) 23.8 (3.45)	512 (74.3) 490 (71.0) 28.8 (4.18)	
Elong, percent A		10.9 5.8	10.4 4.7	
RA, percent A	15.1	23.1 19	15,9 13.4	
No. of Spec. (No. of Heats)	11 (3)	10 (3)	10 (3)	
E, GN/m ² (10 ⁶ psi) Av M No. of Spec. (No. of Heats)		92.4 (13.4) 73.8 (10.7) 3 (1)	80.0 (11.6) 73.1 (10.6) 2 (1)	
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi) Av $K_t = 10$ Mi No. of Spec. (No. of Heats)		547 (79.3) 517 (75. 0) 5 (1)	586 (85.0) 556 (80.6) 5 (1)	
NTS, MN/m^2 (ksi) Av $K_t = Mi$ No. of Spec. (No. of Heats)				
Tension, Transverse				
TUS, MN/m² (ksi) Av Mi Std. Deviation		585 (84.8) 554 (80.4) 15.9 (2.31)	664 (96.3) 595 (86.3) 39.7 (5.76)	
TYS, MN/m² (ksi) Ay	382 (55.4)	451 (65.4) 427 (61.9)	491 (71.2) 474 (68.8)	
Std. Deviation	7.0 (1.02)	15.7 (2.27)	20.2 (2.93)	
Elong, percent Av		9.1 4.7	8.6 4.8	
RA, percent Av Mi No. of Spec. (No. of Heats)		15.9 9 11 (3)	12.5 11.1 10 (3)	
E, GN/m ² (10 ⁵ psi) Av		83.4 (12.1)	70.3 (10.2)	
No. of Spec. (No. of Heats)		67.6 (9.8) 4 (1)	64.8 (9.4) 3 (1)	
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi) Av $K_t = 10$ Mi No. of Spec. (No. of Heets)		435 (63.1) 404 (58.6) 5 (1)	452 (65.5) 438 (63.6) 5 (1)	
NTS, MN/m² (ksi) Av K _t =				

Alloy Designation: 2219-T87 Aluminum Alloy

Specification: MIL-A-8920A, ASTM B209

Form: Plate
Thickness, cm (in.): Over 5.080 (2.000)
Condition: 737

Testing Temperature, K (F)	297	(75)	77	(-320)	20	(-423)	
Tension, Short Transverse		470	(00.5)	500	(77.0)		(70.4)	
TUS, MN/m ² (ksi)	Avg Min	472 445	(68.5) (64.6)	533 459	(77.3) (66.6)	545 449	(79.1) (65.1)	
Std. Deviation								
TYS, MN/m ² (ksi)	Avg Min	376 375	(54.5) (54.4)		(65.5) (59.9)	483 480	(70.0) (69.6)	
Std. Deviation	IVIIII	0.0	(0.0)		(00.0)	,,,,	(00.07	
Elong, percent	Avg		7.8	1				
	Min		7.0					
RA, percent	Avg Min		7.4 6.7		5.5			
No. of Spec. (No. of He		4	(2)	3	(2)	3	(2)	
E, GN/m ² (10 ⁶ psi)	Avg	72.4	(10.5)		(9.3)			
No. of Spec. (No. of He	Min eats)	70.3 4	(10.2) (1)	2	(8.0) (1)			
Poisson's Ratio								
Work Hardening Coef							_	
NTS, MN/m ² (ksi)	Avg	283	(41.1)	322	(46.7)	362	(52.5)	
$K_t = 10$ No. of Spec. (No. of He	Min eats)		(1)	1	(1)		(1)	Ì
NTS, MN/m² (ksi)	Avg							
K _t =	Min							
No. of Spec. (No. of He	eats)							

References: 64658, 93338

Alloy Designation: 2219-T87 Aluminum Alloy

Results of Boeing program to determine design allowable properties

Form: Sheet and Plate

Thickness, cm (in.): 0.081 to 10.2 (0.032 to 4.00)
Condition: 787

99% P, 95% C, F _{tu} (a) TYS, MN/m² (ksi) Avg 99% P, 95% C, F _{ty} (a) Elong, percent Avg Min RA, percent Avg Min No of Spec. (No. of Heats) E, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg	474 443	(68.7)						
99% P, 95% C, F _{tu} (a) TYS, MN/m² (ksi) Avg 99% P, 95% C, F _{ty} (a) Elong, percent Avg Min RA, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse		(68.7)						
99% P, 95% C, F _{tu} (a) TYS, MN/m² (ksi) Avg 99% P, 95% C, F _{ty} (a) Elong, percent Avg Min RA, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse			578	(83.8)	685	(99.3)	1	
TYS, MN/m² (ksi) Avg 99% P, 95% C, Fty (a) Elong, percent Avg Min RA, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse		(64.3)	537	(77.9)	625	(90.5)	1	
Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) NTS, MN/m² (ksi) No. of Spec. (No. of Heats) NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi)								
Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) NTS, MN/m² (ksi) No. of Spec. (No. of Heats) NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi)	201	156.71	454	(CE O)	400	(72.2)		
Elong, percent RA, percent No. of Spec. (No. of Heats) E, GN/m² (106 psi) No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Kt = Min No. of Spec. (No. of Heats) Tension, Transverse	391 354	(56.7) (51.4)	410	(65.9) (59.4)	498 454	(65.8)		
RA, percent RA, percent Avg Min No. of Spec. (No. of Heats) Foisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) NTS, MN/m² (ksi) NtS, MN/m² (ksi) NtS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse		,,,,,,,	1	(00)		,		
RA, percent RA, percent Avg Min No. of Spec. (No. of Heats) Foisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) NTS, MN/m² (ksi) NtS, MN/m² (ksi) NtS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse								
RA, percent No. of Spec. (No. of Heats) E, GN/m² (106 psi) No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Kt = Min No. of Spec. (No. of Heats) Tension, Transverse								
Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse		į			}	1	Į.	
No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse		Ì						
E, GN/m² (106 psi) No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) NTS, MN/m² (ksi) NTS, MN/m² (ksi) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse								
Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse		İ						
No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse								
Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse								
Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse								
NTS, MN/m ² (ksi) Kt = Min No. of Spec. (No. of Heats) NTS, MN/m ² (ksi) Kt = Min No. of Spec. (No. of Heats) Tension, Transverse			1			1		
NTS, MN/m ² (ksi) Kt = Min No. of Spec. (No. of Heats) NTS, MN/m ² (ksi) Kt = Min No. of Spec. (No. of Heats) Tension, Transverse			1					
K_t = Min No. of Spec. (No. of Heats) NTS, MN/m ² (ksi) Avg K_t = Min No. of Spec. (No. of Heats) Tension, Transverse			(
K_t = Min No. of Spec. (No. of Heats) NTS, MN/m ² (ksi) Avg K_t = Min No. of Spec. (No. of Heats) Tension, Transverse								
No. of Spec. (No. of Heats) NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) Tension, Transverse			ļ — —					
K _t = Min No. of Spec. (No. of Heats) Tension, Transverse								
K _t = Min No. of Spec. (No. of Heats) Tension, Transverse						1		
No. of Spec. (No. of Heats) Tension, Transverse								
			ì			1		
			1					
99% P, 95% C, F _{tu} (a)				(0.4.0)				
33% 1, 33% C, 1 [U	476 445	(69.0) (64.6)	585 543	(84.8) (78.7)	692 649	(100.4) (94.1)		
	445	(04.07	0.0	(70.77	045	10 1.17	ļ	
2						170.0	\	
	388 350	(56.2) (50.7)	454 412	(65.9) (59.8)	495 446	(71.8) (64.7)		
οσιο τη σουσ σ, της	550	(50.77	1.2	(00.0)	1	(0 /	}	
						l	ı	
Elong, percent Avg			1			-		
iviii)			ļ			1	ļ	
RA, percent Avg			1					
Min					1	}	{	
No. of Spec. (No. of Heats)			1					
E, GN/m ² (10 ⁶ psi) Avg			}			j	1	
Min								
No. of Spec. (No. of Heats)			1			Ì		
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m² (ksi) Avg			1					
Kt = Min								
No. of Spec. (No. of Heats)								
NTS, MN/m² (ksi) Avg								
NTS, MN/m² (ksi) Avg Kt = Min							1	
No of Spec. (No. of Heats))			

References: 84319

(a) "A" values corresponding to 99 percent probability, 95 percent confidence level.

4.2.2-20 (11/74)

Alloy Designation:

2219-T87 Aluminum Alloy

Specification:

MIL-A-8920A, ASTM B209

Form:

Plate Over 5.080 (2.000) T87

Thickness, cm (in.) Condition:

Testing Temperature, K (F)	297	(75)	 77	(-320)	20	(-423)		
Compression, Longitudinal								
CYS, MN/m ² (ksi) Avg								
No. of Spec. (No. of Heats)	1							
Ec, GN/m ² (10 ⁶ psi) Avg Mir								
No. of Spec. (No. of Heats)								
Compression, Transverse								
CYS, MN/m ² (ksi) Avg								
No. of Spec. (No. of Heats)		1	- 1		1			
Ec, GN/m ² (10 ⁶ psi) Avg		111						
No. of Spec. (No. of Heats)								
Shear(a)								
SUS, MN/m ² (ksi) Ave								
No. of Spec. (No. of Heats)								
G, GN/m ² (10 ⁶ psi) Avg								
No. of Spec. (No. of Heats)								
Impact, Charpy V			- 6					
Long., Nm(ft-lb) Avg								
No. of Spec. (No. of Heats)								
Trans., Nm(ft-lb) Avg								
No. of Spec. (No. of Heats)								
Fracture Toughness(b)								
K _{1c} MN/m ^{3/2} (ksi√in.) Avg Bend Specimens Min		(36.3) (36.2)	46.3 45.5		52.5 51.6	(48.0) (47.2)		
Orientation: $T - S$ No. of Spec. (No. of Heats)	2	(1)	2	(1)	2	(1)		
K _{Ic} MN/m ^{3/2} (ksi / in.) Avg		(26.2)	34.3		37.2	(34.0)		
Compact Specimens Mir Orientation: T - S		(26.1)	34.2		36.1	(33.0)		
No. of Spec. (No. of Heats)	2	(1)	2	(1)	2	(1)		
KIE, MN/m3/2(ksi/in.) Ave		(45.3)	52.7			12 11		
(From PTSC spec.)(T - S)Mir No. of Spec. (No. of Heats)	43.0	(39.3)	43.6 6	(39.9) (2)				
KIE, MN/m3/2(ksi/in.) Av		(48.7)	52.7 59.1	(55.3) (54)				
(From PTSC spec.)(-)Mir No. of Spec. (No. of Heats)	50.3	· (1)	6	(2)				

References: 84319, 93338

⁽a) Indicate specimen design and orientation for sheer specimens: (b) Indicate specimen design for K_{IG} data:

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Plate-MIG welded, 2319 Alloy filler over 5.080 (2.000) T81 Plate, tested as welded

Testing Temperature, K (F		297 (75)		77 (-320)	
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg Min	268 (38.9)		315 (45.7)	
Std. Deviation					
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	140 (20.3)		164 (23.8)	
Elong, percent	Avg Min	8		7	
RA, percent	Avg M n	15		9	
No. of Spec. (No. of Hea		1		1	
E, GN/m ² (10 ⁶ psi) No. of Spec. (No. of Hea	Avg Min				n ' =
Poisson's Ratio	2.0,				
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min				-
Tension, Transverse TUS, MN/m ² (ksi)	Avg				-
Std. Deviation	Min				Î
TYS, MN/m ² (ksi) Std. Deviation	Avg Min				= ■
Elong, percent	Avg Min				
RA, percent	Avg Min				
No. of Spec. (No. of Hea					
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hea	its)		20		A
Poisson's Ratio					
Vork Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min its)				
NTS, MN/m² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min				

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-MIG welded, 2319 Alloy filler Over 5.080 (2.000) T87 Plate, tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297 (75)		77 (-320)	
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg 23	36 (34.2)		261 (37.9)	
		96 (28.4)		219 (31.7)	
Std. Deviation					
TYS, MN/m ² (ksi)		39 (20.1)		171 (24.8)	1
Cod Davissian	Min 1	15 (16.7)		152 (22.0)	
Std. Deviation		ţ			
Elong, percent	Avg				
	Min				
RA, percent	Avg				
	Min				
No. of Spec. (No. of Hea	ets) 8	(1)	7.	5 (1)	
E, GN/m ² (10 ⁶ psi)	Avg 7	1.0 (10.3)		80.7 (11.7)	
N . (0 /N ///	Min 66	6.2 (9.6)		78.6 (11.4)	
No. of Spec. (No. of Hea	its) 8	(1)		5 (1)	
Poisson's Ratio					
Work Hardening Coef					
WORK PREFUGING COST					
NTS, MN/m² (ksi)	Avg				
K _t = No. of Spec. (No. of Hea	Min				
	1(0)				
NTS, MN/m² (ksi)	Avg				
K _t = No. of Spec. (No. of Hea	Min				
140. Of Spec. (140, of flea	113/				
Tension, Transverse					
TUS, MN/m² (ksi)	Avg				
Std. Deviation	Min				
TYS, MN/m² (ksi)	Avg Min				
Std. Deviation	141117		1		
FI					
Elong, percent	Avg Min	1			
RA, percent	Avg Min				
No. of Spec. (No. of Hea					
	-				
E, GN/m ² (10 ⁶ psi)	Ave Min				
No. of Spec. (No. of Hea					
Poisson's Ratio					
ruisson s nauo					
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg				
Kt =	Min	Ì			
No. of Spec. (No. of Hea	ts)				
NTS, MN/m ² (ksi)	Avg				
Kt =	Min				
No. of Spec. (No. of Hea	ts)				115<
References: 88109					3

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Plate-MIG welded, 2319 Alloy filler Over 5.080 (2.000) T87 plate, tested as welded and aged at 436 K (325 F) 24 hr.

Testing Temperature, K (F)	297 (7	75)	ļ	77	(-320)	ļ
Tension, Longitudinal							
TUS, MN/m ² (ksi)			40.1)		305	(44.2)	
Std Deviation	Min	243 (35.2)		213	(30.9)	
TYS, MN/m ² (ksi)			24.1)		226	(32.8)	
Std. Deviation	Min	141 (20.4)		186	(27.0)	
Etail							
Elong, percent	Avg Min						
							}
RA, percent	Avg Min						
No. of Spec. (No. of He		4 (1)		5	(1)	
E, GN/m ² (10 ⁶ psi)	Avg	66 (9.5)		80.0	(11.6)	
	Min	58 (8.4)		77.9	(11.3)	
No. of Spec. (No. of He	eats)	4 (1)		5	(1)	
Poisson's Ratio							
Work Hardening Coef	1						
· · · · · · · · · · · · · · · · · · ·							
NTS, MN/m ² (ksi) K _t =	Avg Min						
No. of Spec. (No. of He							
NTS, MN/m² (ksi)	Avg						
K _t =	Min		1				
No. of Spec. (No. of He	eats						
Tension, Transverse							
TUS, MN/m ² (ksi)	Avg				j		
Std. Deviation	Min						
TYS, MN/m ² (ksi)	Avg Min						
Std. Deviation					}		
Elong, percent	Avg						
Libray, persent	Min						
RA, percent	Avg						
	Min						
No. of Spec. (No. of He	eats)				1		
E, GN/m ² (10 ⁶ psi)	Avg						
	Min						
No. of Spec. (No. of He	:4(2)						
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi)	Ava						
N15, MN/m² (KSI) K _t =	Avg Min						
No. of Spec. (No. of He	ats)						
NTS, MN/m ² (ksi)	Avg						
K _t =	Min						
No of Spec. (No. of He	ats)				1		

Alky Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.):

Condition:

Plate-MIG welded, 2319 Alloy filler Over 5.080 (2.000) T87 Plate, tested as welded and agod at 436 K (325 F) 24 hr.

Testing Temperature, K (F	•)	297 (75)		77 (-320)	
Compression, Longitudinal					
CYS, MN/m ² (ksi)	Avg Min				
No. of Spec. (No. of He					
Ec, GN/m ² (10 ⁶ psi)	Avg Min			 4.	
No. of Spec. (No. of He	eats)				
Compression, Transverse					
CYS, MN/m² (ksi)	Avg Min				
No. of Spec. (No. of He					
Ec, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of He	eats)				
Shear(a)					
SUS, MN/m ² (ksi)	Avg Min				
No. of Spec. (No. of He	eats)				
G, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of He	eats)				
Impact, Charpy V					
Long., Nm(ft-lb)	Avg Min				
No. of Spec. (No. of He			:		
Trans., Nm(ft-lb)	Avg Min				
No. of Spec. (No. of He					
Fracture Toughness(b)	i	17			
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min				
Orientation: — No. of Spec. (No. of He	eats)				
K _{IE} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(–		33.7 (30.9) 30.1 (27.6)		33.7 (30.9) 30.7 (28.1)	
No. of Spec. (No. of He	eats)	5 (1)		4 (1)	

References: 88109

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{IC} data:

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-Pulse TIG welded, 2319 Alloy filler Over 5.080 (2.000) T87 Plate, tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	29	7 (75)	77	(-320)		
Tension, Longitudinal						
TUS, MN ¹ ² (ksi)	vg 290 lin 263	(42.0) (38.2)	375 320	(54.4) (46.4)		
Std. Deviation						
	vg 145	(21.0) (18.0)	189 161	(27.4) (23.3)		
Std. Deviation					111,	
=	ivg lin			_ "		
	ivg					1.0
No. of Spec. (No. of Heats)	8	(1)	4	(1)		
N	vg 73.1 lin 71.0	(10.6) (10.3)	84.8 82.1	(12.3) (11.9)	87	
No. of Spec. (No. of Heats)	8	(1)	4	(1)		
Poisson's Ratio						
Work Hardening Coef						
	ivg tin					
	vg lin					
Tension, Transverse						
TUS, MN/m ² (ksi)	vg					
Std. Deviation	lin					
	lin l					
Std. Deviation						
	lin l					
	lin l					
No. of Spec. (No. of Heats)					RI	1
	vg lin					
No of Spec. (No. of Heats)			10			
Poisson's Ratio						
Vork Hardening Coef						
K _t =	ivg lin					
No. of Spec. (No. of Heats)						
	lin					

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Plate-TIG welded, 2319 Alloy filler Over 5.080 (2.000) T87 Plate, tested as welded and aged at 436 K (325 F) 24 hr.

Testing Temperature, K (F)	297	(75)	 	77	(-320-	
Tension, Longitudinal							
TUS, MN/m ² (ksi)		306	(44.7)		337	(48.9)	
Std. Deviation	Min	305	(44.2)		231	(33.5)	
TYS, MN/m² (ksi)		1 92 178	(27.8) (25.8)		224 197	(32.5) (28.5)	
Std. Deviation			,,,,,,			,	}
Elong, percent	Avg					İ	ł
	Min					i	{
RA, percent	Avg Min		1				}
No. of Spec. (No. of He	ats)	4	(1)		4	(1)	
E, GN/m ² (10 ⁶ psi)	Min	77.2 73.1	(11.2) (10.6)		88.3 78.6	(12.8) (11.4)	
No. of Spec. (No. of He	ats)	4	(1)		3	(1)	
oisson's Ratio			1				
Nork Hardening Coef							
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min ats)						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ats)						
Tension, Transverse							
TUS, MN/m ² (ksi)	Avg Min						
Std. Deviation							
FYS, MN/m ² (ksi) Std. Deviation	Avg Min						
					1	}	
Elong, percent	Avg Min						
RA, percent	Avg Min						
No. of Spec. (No. of Hea							
E, GN/m ² (10 ⁶ psi)	Avg						
No. of Spec. (No. of Hea	Min ats)						
oisson's Ratio							
Vork Hardening Coef							
NTS, MN/m² (ksi)	Avg		ļ				1
K _t = No. of Spec. (No. of Hea	Min ats)						
NTS, MN/m² (ksi) K _t =	Avg Min					2	1
No. of Spec. (No. of Hea							

Alloy Designation:

2219 Aluminum Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.):

Condition:

Plate-Pulse TIG welded, 2319 Alloy filler Over 5.080 (2.000) T87 Plate, tested as welded and aged at 436 K (325 F) 24 hr.

Testing Temperature, K (F	=)	297 (75)		77 (-320)	
Compression, Longitudina					
CYS, MN/m ² (ksi)	Avg Min				
No. of Spec. (No. of He					
Ec, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of He	eats)				
Compression, Transverse			1	1	
CYS, MN/m ² (ksi)	Avg Min				
No. of Spec. (No. of H					
Ec, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of H					ļ
Shear(a)					
SUS, MN/m ² (ksi)	Avg Min				
No. of Spec. (No. of H	eats)				
G, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of H	eats)	i			
Impact, Charpy V			i		
Long., Nm(ft-lb)	Avg Min				
No. of Spec. (No. of H					
Trans., Nm(ft-lb)	Avg Min				
No. of Spec. (No. of H			150		
Fracture Toughness(b)					
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min		i		
Orientation: — No. of Spec. (No. of H	eats)				
KIE, MN/m ^{3/2} (ksi/jin.) (From PTSC spec.)(-	Avg -)Min	44.0 (40.3) 39.7 (36.4)		41.5 (38.0) 40.7 (37.3)	
No. of Spec. (No. of H		39.7 (36.4)		3 (1)	

References: 88109

F.

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1c} data:

Alloy Designation: 2219-T852 Aluminum Alloy

Specification: QQ-A-367F

Form: Forgings
Thickness, cm (in.): Over 5.080 (2.000)
Condition: T852

Testing Temperature, K (F	:)	297 (75)	77	(-330)		ļ
Tension, Radial						
TUS, MN/m ² (ksi)	Avg	446 (64.7)	543	(78.8)	1 =	
Std. Deviation	Min					1111
TYS, MN/m² (ksi)	Avg	333 (48.3)	395	(57.4)	-	
	Min	,,,,,				
Std. Deviation						
Elong, percent	Avg Min	13		15		
RA, percent	Avg	25	\ ,	36		
	Min	20				İ
No. of Spec. (No. of He	eats)		- 1			
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He						
Poisson's Ratio						
Vork Hardening Coef						l
NTS, MN/m² (ksi)	Avg					
K _t = No. of Spec. (No. of He	Min		}	ļ	4	
						1
NTS, MN/m ² (ksi) K _t =	Avg Min	1				
No. of Spec. (No. of He						
ension, Tangential						
FUS, MN/m ² (ksi)	Avg Min	448 (65.0)	540	(78.4)		
Std. Deviation	,,,,,,					
TYS, MN/m ² (ksi)	Avg	345 (50.1)	399	(57.9)		
Std. Deviation	Min					
	A	10		14		
Elong, percent	Avg Min	10		"		
RA, percent	Avg	17		25		
No. of Spec. (No. of He	Min				€	
E, GN/m ² (10 ⁶ psi)						
	Avg Min					
No of Spec. (No. of He	ats)					
oisson's Ratio						
Vork Hardening Coef						
NTS, MN/m ² (ksi)	Avg					
Kt = No. of Spec. (No. of He	Min ats)				1	
NTS, MN/m ² (ksi)	Avg					
K _t =	Min		i			4 15

FIGURE 4.2.2-ME3. EFFECT OF TEMPERATURE ON THE STRENGTH OF 2219-T87 SHEET AND PLATE FROM BOEING PROGRAM TO DETERMINE DESIGN ALLOWABLE PROPERTIES (84319)

FIGURE 4.2.2-ME4. FATIGUE LIFE CURVES FOR AXIAL LOADING ON NOTCHED SPECIMENS FROM ALUMINUM 2219-T6E46 PLATE 1.9 cm (1.25 in.) THICK [58761]

4.2.2-27.1 (11/76)

FIGURE 4.2.2-ME4.1. AXIAL FATIGUE LIFE CURVES FOR LOADING ON WELD METAL SPECIMENS FROM TIG WELDED 2219-T62 ALUMINUM ALLOY 0.100 to 0.319 cm (0.040 to 0.125 in.) THICK SHEET AT R = .1 (2319 ALLOY FILLER) [Transverse weld orientation] [61996]

FIGURE 4.2.2-ME5. FATIGUE LIFE CURVES FOR AXIAL LOADING ON WELD METAL SPECIMENS FROM TIG WELDED 2219-T87 ALUMINUM ALLOY 0.254 cm (0.100 in.) THICK SHEET AT R = -1(2319 ALLOY FILLER) [Transverse weld orientation] [53308]

FIGURE 4.2.2-ME6. FATIGUE CRACK GROWTH RATE OF 2219-T87 ALUMINUM ALLOY PLATE [Crack priented to propagate in plane of longitudinal rolling direction and long transverse direction] [93338]

FIGURE 4.2.2-ME7. FATIGUE CRACK GROWTH RATE OF 2219-T87 ALUMINUM ALLOY PLATE [Crack orientation T-S: crack plane parallel to rolling direction; propagation through the plate thickness] [89716]

FIGURE 4.2.2-ME8. FATIGUE CRACK GROWTH RATE OF 2219-T87 ALUMINUM ALLOY PLATE AT ROOM TEMPERATURE AND -20 K (-423 F) [Crack orientation T-S: crack plane parallel to rolling direction, propagation through the plate thickness] [86296]

FIGURE 4.2.2-ME9. FATIGUE CRACK GROWHT RATE OF 2219-T87 ALUMINUM ALLOY PLATE AT 77 K (-320 F) [Crack orientation T-S: crack plane parallel to rolling direction, propagation through the plate thickness] [89716]

4.2.2-27.6 (11/76)

: 1 1

2219-T87 Plate

FIGURE 4.2.2-ME10. FATIGUE CRACK GROWTH RATE OF 2219-T87 ALUMINUM ALLOY PLATE EB AND MIG WELDED (2319 ALLOY FILLER) [Transverse weld orientation] [88109] Plate thickness=8.25 cm (3.25 in.); Specimen thickness=5.08 cm (2.00 in.)

Stress Intensity Factor Range, AK, MN/m^{3/2}

44 66 8811

2.2

22

44 66 110

101

FIGURE 4.2.2-ME11. FATIGUE COACK GROWTH RATE OF 2219-T62 ALUMINUM ALLOY [Crack orientation L-S: crack plane transverse to rolling direction, propagation through the plate thickness] [87612]

4.2.2-27.8 (11/76)

FIGURE 4.2.2-ME12. FATIGUE CRACK GROWTH RATE OF 2219 ALUMINUM ALLOY PLATE MIG WELDED (2319 ALLOY FILLER), HEAT TREATED TO T62, AND TESTED [Transverse weld crientation] [87612]

TABLE 4.2.2-TR1

Alloy Designation: 2219-T81 Aluminum Alloy

Specification: Form: Dimension: Condition: -T81

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m-1 K-1	118		68		45.5		26.3					
Btu hr-1 ft-1 F-1	1.10	(68.2)	•	(39.3)	45.5	(26.3)	20.5	(15.2)				
No. of Spec.	1	(02)	1	(00.0)	1	(20.0)	1	(10.2)			İ	
References: 90218												
Thermal Expansion (T ₂₇₃ to T) Longitudinal								1				
Percent	0		-0.313		-0.346		-0.350				[
No. of Spec.	1	}	1		1		1				1	
References: 48571												
Specific Heat		ļ										
Joules ka-1 K-1		1										
Joules kg ⁻¹ K-1 Btu lb ⁻¹ F-1												
No. of Spec.	1	{										
References:												
Electrical Resistivity												
Ohm m												
Ohm circular mil ft ⁻¹		1			!							
No. of Spec.												
References:												

Alloy Designation:

2024-T3 Aluminum Alloy

Specification:

QQ-A-355 Sheet Up to 0.099 (0.039) T3

Form:

Thickness, cm (in.): Condition:

Testing Temperature, K (F	}	297	(75)	195	(-108)		77	(-320)	20	(-423)	
Tension, Longitudinal											
TUS, MN/m ² (ksi)	Avs	468	(67.9)	484	(70.2)		600	(87.0)	758	(110)	
Std Deviation	Min	467	(67.8)	482	(69.9)		594	(86.1)	752	(109)	
TYS, MN/m ² (ksi)	Avg	327	(47.4)	337	(48.9)		420	(60.9)	504	(73.1)	
Std Deviation	Min	324	(47.0)	332	(48.1)		415	(60.2)	489	(70.9)	
Elong, percent	Avg		18		21			22		17	
	Min		18		20			22		14	
RA, percent	Avg										
No. of Spec. (No. of He	Min ats)	3	(1)	3	(1)		3	(1)	3	(1)	
E, GN/m ² (10 ⁶ psi)	Avg	70.3	(10.2)	72.4	(10.5)		75.2	(10.9)	78.6	(11.4)	
No. of Spec. (No. of Hea	Min ats)	3	(1)	3	(1)		3	(1)	3	(1)	
oisson's Ratio											
Vork Hardening Coef											
ITS, MN/m ² (ksi)	Avg	415	(60.2)	422	(61.2)		525	(76.2)	612	(88.8)	
K _t = 6.3 No. of Spec. (No. of Hea	Min	412	(59.8)	414	(60.0)		520	(75.4)	585 4	(84.8) (1)	
		3	(1)	3	(1)		1	(1)	1	(17	
ITS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min ats)										
ension, Transverse											
US, MN/m ² (ksi)	Avg	454	(65.8)	467	(67.8)		575	(83.4)	738	(107)	
Std Deviation	Min	451	(65.4)	467	(67.7)		574	(83.2)	731	(106)	
YS, MN/m ² (ksi)	Avg	303	(43.9)	307	(44.5)		387	(56.1)	476	(69.0)	
Sto Deviation	Min	302	(43.8)	303	(44.0)		384	(55.7)	475	(68.9)	
	A		40					22		• 0	
long, percent	Avg Min		18 18		21 21			22 22		18 17	
RA, percent	Avg										
No. of Spe_ (No. of Hea	Min ats)	2	(1)	2	(1)	1	2	(1)	2	(1)	
, GN/m ² (10 ⁶ psi)	Avg	71.0	(10.3)	73.1	(10.6)		75.8	(11.0)	79.3	(11.5)	
No of Spec. (No of Hea	Min	2	(1)	2	(1)		2	(1)	2	(1)	
oisson's Ratio											
ork Hardening Coef											
iTS, MN/m² (ksi)	Avg	434	(67.0)	433	(62.8)		515	(74.7)	598	(86.8)	
$K_1 = 6.3$ No. of Spec (No. of Hea	Min	434	(62.9) (62.6)	433	(62.7)		510	(73.9)	589	(85.4)	
ITS, MN/m ² (ksi)	Avg										
Kt = No of Spec. (No. of Hea	Min (1							- V.

References: 90073, 90078

Alloy Designation:

2024-T4 Aluminum Alloy

Specification:

QQ-A-355

Specification;	GG-A-DD
Form:	Sheet
Thickness, cm (in.):	Up to 0.099 (0.039)
Condition:	T4

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	
Tension, Longitudinal										
TUS, MN/m ² (ksi)	Avg	467	(67.7)	481	(69.8)	585 578	(84.9)	738 710	(107) (103)	
Std Deviation	Min	461	(66.9)	480	(69.6)	378	(83.9)	/10	(103)	
TYS, MN/m ² (ksi)	Avg	295	(42.8)	301	(43.7)	373	(54.1)	505	(73.3)	
Std. Deviation	Min	294	(42.6)	296	(43.0)	361	(52.4)	489	(70.9)	
Elong, percent	Avg	1	9		.22		27		6	
	Min	1	9		20		24	1	2	
RA, percent	Avg									
No. of Spec. (No. of Heats	Min }	3	(1)	3	(1)	3	(1)	3	(1)	
. GN/m ² (10 ⁶ psi)	Avg	73.8	(10.7)	73.7	(10.7)	77.2	(11.2)	80.0	(11.6)	
No. of Spec. (No. of Heats	Min)	3	(1)	3	(1)	3	(1)	3	(1)	
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m ² (ksi)	Avg	407	(59.0)	419	(60.7)	496	(71.9)	609	(88.3)	
K _t = 6.3 No. of Spec. (No of Heats	Min)	402 3	(58.3) (1)	414 3	(60.1) (1)	491 3	(71.2) (1)	588	(85.3) (1)	
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min									
Tension, Transverse										
TUS, MN/m ² (ksi)	Avg	463	(67.1)	469	(68.0)	564 561	(81.8) (81.3)	669 650	(97.1) (94.3)	
Std Deviation	Min	447	(64.8)	463	(67.2)	30.	(01.5)	000	(5 1.5)	
TYS, MN/m ² (ksi)	Avg	286	(41.5)	294	(42.7)	370	(53.6)	465	(67.5)	
Std. Deviation	Min	279	(40.5)	292	(42.4)	369	(53.5)	461	(66.8)	
Elong, percent	Avg Min		20 20		24 23	:	19 16		1 0 10	
RA, percent	Avg									
No. of Spec. (No. of Heats	Min)	2	(1)	2	(1)	2	(1)	2	(1)	
E, GN/m ² (10 ⁶ psi)	Avg	71.7	(10.4)	73.7	(10.7)	75.8	(11.0)	80.0	(11.6)	
No of Spec. (No. of Heats	Min .)	2	(1)	3	(1)	2	(1)	2	(1)	
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m ² (ksi)	Avg	396	(57.5)	406	(58.9)	470	(68.2)	589	(85.4)	
K _t = 6.3 No. of Spec. (No. of Heats	Min)	396	(57.5)			453	(65.7)	587	(85.1)	
NTS, MN/m² (ksi)	Avg									
Kt = No. of Spec. (No. of Heats	Min s)									

Alloy Designation:

2024-T3 Aluminum Alloy

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet 0.100 to 0.319 (0.040 to 0.125) T3

Testing Temperature, K (F))	297	(75)	195	(-108)	122	(-240)	77	(-320)		
Tension, Longitudinal TUS, MN/m ² (ksi) Std Deviation	Avg Min	467 459	(67.8) (66 .6)	490	(71.0)	517	(75.0)	566 565	(82.1) (82.0)		
FYS, MN/m² (ksi) Std Devation	Avg Min	306 303	(44.4) (44.0)	310	(45.0)	345	(50.0)	377 372	(54.7) (54.0)		
Elong, percent	Avg Miti		0.0 0.0		13.0	-	11.5		18.8 11.0		
RA, percent No. of Spec. (No. of Hea	Ave Min	2	(2)	1		1		2	(2)		
., GN/m² (10 ⁶ psi)	Avg Min		(2)						\-'		
No of Spec (No. of Head											
Vork Hardening Coef											
NTS, MN/m^2 (ksi) $K_t = 11.1$ No. of Spec. (No. of Hea	Avg Min	406 399 2	(58.9) (57.8) (2)	427	(62.0)	462	(67.0)	487 470 2	(70.6) (68.2) (2)		
NTS, MN/m ² (ksi) K _t = 15.0 No. of Spec. (No. of Hea	Avg Min	376	(54.6)					44 5	(64.6)		
ension, Transverse											
Std Deviation	Avg Min										
YS, MN/m² (ksi)	Avg Min										
Std Deviation											
long, percent	Avg Min										
IA, percent	Avg Min										
No of Spec (No. of Hea											
, GN/m² (10⁶ psi) No. of Spec. (No. of Hea	Avg Min									₹	
oisson's Ratio											
ork Hardening Coef											
ITS, MN/m ² (ksi) K _t = No of Spec. (No. of Hea	Avg Min										
ITS, MN/m² (ksi) K _t =	Avg Min										

Alloy Designation:

2024-T86 Aluminum Alloy

Specification:

Form:

Thickness, cm (in.): Condition:

0.100 to 0.319 (0.040 to 0.125) T86

Testing Temperature, K (F.)	297 (75)		77 (-320)		
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg	523 (75.8)		629 (91.2)		
Std Deviation	Min					
TYS, MN/m ² (ksi)	Avg	492 (71.3)		576 (83.5)		
Sta Deviation	Min					
Elong, percent	Avg Min	5.2		8.0		
RA, percent	Avg Min					
No of Spec. (No. of Hea		1		1		
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Hea	ets)		_			
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m^2 (ksi) $K_t = 11.1$	Avg Min	444 (64.4)		449 (65.1)		
No. of Spec. (No. of Hea		1		1		
NTS, MN/m ² (ksi)	Avg	456 (66.2)		488 (70.8)		
$K_t = 15$ No. of Spec. (No. of Hea	Min ats)	1		1		
Tension, Transverse						
TUS, MN/m ² (ksi)	Avg Min					
Std. Deviation						
TYS, MN/m ² (ksi)	Avg Min				i	
Std Deviation	IVIIII				1	
Elong, percent	Avg Min					
RA, percent	Avg					
No. of Spec. (No. of Hea	Min					
E, GN/m ² (10 ⁶ psi)	Ava					
	Min	}				
No. of Spec. (No. of Hea	ets)					
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi) K _t = ;	Avg Min					
No. of Spec. (No. of Hea						
NTS, MN/m ² (ksi)	Avg					
K _t = No of Spec. (No. of Hea						

16'7<

Alloy Designation:

2024-T351 Aluminum Alloy

Specification:

Form:

Plate 1.270 to 2.540 (0.500 to 1.000) T351

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)	 	20 (-423)	
Tension, Longitudinal				
TUS, MN/m ² (ksi) Avg	463 (67.1) 456 (66.1)		738 (107) 724 (105)	
Std Deviation				
TYS, MN/m ² (ksi) Avg Min Std Deviation	347 (50.3) 343 (49.7)		532 (77.2) 523 (75.9)	
Std Deviation				
Elong, percent Avg	21.6 20		22.3 17	
RA, percent Avg Min	28.2 23		20.3 18	
No of Spec (No. of Heats)	5 (1)		5 (1)	
E, GN/m ² (10 ⁶ psi) Avg				
No of Spec. (No. of Heats)				
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi) Avg	502 (72.8)		659 (95.6)	
K _t = 6.4 Min No of Spec. (No of Heats)	481 (69.8) 5 (1)		574 (83.2) 5 (1)	
NTS, MN/m² (ksi) Avg				
K _t ≈ Min No. of Spec. (No. of Heats)				
Tension, Transverse				
TUS, MN/m ² (ksi) Avg				
Std Deviation				
TYS, MN/m ² (ksi) Avg				
Std Deviation				
Elong, percent Avg				
RA, percent Avg				
Min No. of Spec (No. of Heats)				
E, GN/m ² (10 ⁶ psi) Avg				
No of Spec. (No of Heats)				
Poisson's Ratio				
Work Hardening Coef	1			
NTS, MN/m ² (ksi) Avg				
K _t = Min No. of Spec. (No. of Heats)				
NTS, MN/m^2 (ksi) Avg $K_t = Min$				

Alloy Designation:

2024-T4 Aluminum Alloy

Specification:

QQ-A-355

Form:

Plate

Thickness, cm (in.): Condition:

TA

2.541 to 5.080 (1.001 to 2.000)

Testing Temperature, K (F) 297 (75) (-108)(-320)20 (-423)195 77 Tension, Longitudinal TUS, MN/m² (ksi) 651 (94.4)480 (69.6)(80.8)Avg 467 (67.7)557 (79.2)632 (91.6)Min 451 (65.4)474 (68.7)546 Std Deviation (1.45)(1.61)12.6 (1.82)13.4 11.1 TYS, MN/m2 (ksi) 377 (54.7)459 (66.5)556 (80.6)Avg 367 (53.3)359 (52.1)(53.6)445 (64.6)550 (79.8)Std Deviation 8.07 $\{1.17\}$ 7.10 (1.03)10.0 (1.45)17.2 7.9 Elong, percent 11.3 17.1 Avg 11.5 15.5 6 5 RA, percent 17 11 Avg 2 Min 12 11 No. of Spec. (No. of Heats) (2)(2) 9 (2) 9 (2) E, GN/m² (106 psi) Avg (72.4) (10.5) 73.1 (10.6)75.2 (10.9)80.0 (11.6)No. of Spec. (No. of Heats) 3 (1) (1)3 (1) 3 (1) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) (97.4)478 508 (73.7)581 (84.3)672 Avg (69.3) $K_t = 6.3$ No. of Spec. (No. of Heats) (59.8) Min 412 437 (63.4)529 (76.7)(87.9)(2) (2) (2) (2) NTS, MN/m2 (ksi) Avg K_t = No of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) (80.6)(93.6)458 645 461 (66.9)(66.4)556 Avg (80.4)450 (65.3)554 Min 457 (66.3)Std Deviation TYS, MN/m2 (ksi) 312 350 (50.7)(69.4)Avg 314 (4F.5) (45.2)312 (45.3)Min Std Deviation Elong, percent Avg 16 16 15 12 Min 16 RA, percent 12 15 15 No. of Spec. (No. of Heats) (1) (1) (1) 1 E, GN/m² (10⁶ psi) (10.6)73.1 79.3 (11.5) (10.6)76.5 (11.1) 73.1 Avg No. of Spec. (No. of Heats) 1 Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg 525 (76.2)534 (77.4)620 (89.9)(95) $K_t = 6.3$ No of Spec. (No, of Heats) (74.4)(89.4)(95)(75.3)NTS, MN/m2 (ksi) Avg Kt = No of Spec, (No. of Heats)

References: 51070, 90073, 90078

169<

Alloy Designation:

2024-T851 Aluminum Alloy

Specification:

Form: Thickness, cm (in.): Condition:	Plate 2.541 t T851	to 5.080	(1.001	to 2.00	0)
Testing Temperature, K (F)		297 (75)	195	. (

Testing Temperature, K (F)		29	7 (75)	195	(-108)	 77	(-320)	4	(-452)
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg Min	496	(72.0)	536	(77.8)	688	(99.8)	720	(104.4)
Std Deviation									
TYS, MN/m ² (ksi) Std Deviation	Avg Min	454	(65.8)	492	(71.3)	574	(83.3)	625	(90.7)
Elong, percent	Avg Min		7.8		6.0	7	7.7		9.5
RA, percent	Avg	1	7		14	13	3	1.	4
No of Spec. (No. of Heat	Min s)	1		1		1		1	
E, GN/m ² (10 ⁶ psi)	Avg Min								
No. of Spec. (No. of Heat									
Poisson's Ratio									
Work Hardening Coef									
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min	578	(83.8)	581	(84.2)	623	(90.4)	733	(106.3)
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat:	Avg Min							:	
Tension, Transverse									
TUS, MN/m ² (ksi) Std Deviation	Avg Min	488	(70.8)	524	(76.0)	605	(87.7)		
TYS, MN/m ² (ksi)	Avg Min	444	(64.4)	477	(69.2)	545	(79.0)		
Std Deviation	72.11.1								
Elong, percent	Avg Min		7.2		6.8	7	7.5		
RA, percent	Avg Min								
No. of Spec (No. of Heat		1		1		1			
E, GN/m ² (10 ⁶ psi)	Avg								
No of Spec. (No. of Heats	Min s)								
Poisson's Ratio									
Work Hardening Coef									
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min						Ĭ.		
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min								,

References: 72563, 80995

Alloy Designation:

2024-T4 Aluminum Alloy

Specification:

Form:

Thickness, cm (in.): Condition:

Up to 2.540 (1.000) T4

Testing Temperature, K (F)		297	(75)	195	(-108)	122	(-240)	77	(-320)	20	(-423)	4	(-452)
Tension, Longitudinal													
TUS, MN/m ² (ksi)	Avg Min	488 483	(70.8) (70.0)	502 488	(72.8) (70.8)	538	(78.0)	616 600	(89.4) (87.0)	752 752	(109) (109)	738	(107)
Std Deviation						1							
TYS, MN/m² (ksi)	Avg Min	363 345	(52.6) (50.0)	365 354	(52.9) (51.4)	379	(55 0)	470 441	(68.1) (64.0)	586 586	(85) (85)	524	(76)
Std Deviation													
Elong, percent	Avg Min		2 0,2 9.5		20.8 20.0		20.0		18.8 15.0		7.5 5.0		0.0
RA, percent	Avg Min	,	9.7 6.6		25.8 24.3		22.6		18.1 16.5		8,6 8.0	:	8.02
No. of Spec. (No. of Heats	5)	3	(2)	3	(2)	1		3	(2)	2	(1)	1	
E, GN/m ² (10 ⁶ psi)	Avg Min												
No. of Spec. (No. of Heats	3))					
Poisson's Ratio													
Work Hardening Coef								1					
NTS, MN/m ² (ksi) K _t =	Avg Min												
No. of Spec. (No. of Heats	;)							1					
NTS, MN/m² (ksi) K _t =	Avg Min												
No. of Spec. (No. of Heats	;)												
Tension, Transverse						ļ							
TUS, MN/m ² (ksi)	Avg Min							ļ					
Std. Deviation													
TYS, MN/m² (ksi)	Avg												
Std. Deviation	Min												
Elong, percent	Avg Min												
RA, percent	Avg Min											1	
No. of Spec. (No. of Heats				1		1							
E, GN/m ² (10 ⁶ psi)	Avg Min											1	
No. of Spec. (No. of Heats													
Poisson's Ratio													
Work Hardening Coef													
NTS, MN/m² (ksi) Kt =	Avg Min												
No. of Spec. (No. of Heats	,								19				
NTS, MN/m ² (ksi) K _t =	Avg Min	,											

Alloy Designation:

2024-T4 Aluminum Alloy

Specification:

Form: Thickness, cm (in.): Condition:

Bar Up to 2,540 (1.000) T4

Testing Temperature, K (F)		297	7 (75)	195	(-108)	122	(-240)	77	(-320)	
Compression, Longitudinal										
CYS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of Hea						Ì				
Ec, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of Hea	ats)									
Compression, Transverse		1				1				
CYS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of Hea	ats)									
Ec, G%, m ² (10 ⁶ psi)	Avg Min									
No. of Spec (No. of Hea	ats)									
Shear(a)										
SUS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of Hea	ats)									
G, (N/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of Hea	ats)									
Impact, Charpy V										
Long., Nm(ft-lb)	Avg Min	12.8	(9.4)	12.2	(9.0)	10.1	(7.4)	8.7	(6.4)	
No. of Spec. (No. of He	ats)	1		1		1		1		
Trans., Nm(ft-lb)	Avg Min									
No. of Spec. (No. of Hea										ļ
Fracture Toughness (b)										
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min					-				
Orientation — No. of Spec. (No. of He	ats)	, -								
K _{1E} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(— No. of Spec. (No. of He	Avg)Min ats)									

References: 47334

 ⁽a) Indicate specimen design and orientation for shear specimens:
 (b) Indicate specimen design for K_{IC} data:

Alloy Designation:

2024-T86 Aluminum Alloy

Specification:

Form:

Thickness, cm (in.): Condition:

Up to 2.540 (1.000) T86

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	20 (-423)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	512 (74.2) 510 (73.9)	552 (80.0) 551 (79.9)	633 (91.8) 628 (91.1)	723 (104.9) 720 (104.4)
Std Deviation	19(11)	7.5 (70.07	,,,,,,	,5,7,7	
TYS, MN/m ² (ksi)	Avg Min	494 (71.6) 493 (71.5)	526 (76.3) 525 (76.1)	590 (85.6) 590 (85.5)	643 (93.2) 641 (93.0)
Std Deviation					
Elong, percent	Avg Min	9.5 9.3	9.4 9.1	10.7 10.6	15.1 14.6
RA, percent	Avg Min	26.6 25.7	23.2 22.3	21.4 20.8	24.4 23.1
No. of Spec. (No. of Heat		4 (1)	2 (1)	2 (1)	2 (1)
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hear	ts)				•
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min				
NTS, MN/m ² (ksi) $K_t =$ No. of Spec. (No. of Heat	Avg Min				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg Min				
Std. Deviation			1		
TYS, MN/m ² (ksi)	Avg Min				
Std. Deviation		1			
Elong, percent	Avg Min				1=
RA, percent	Avg				
No. of Spec (No. of Heat	Min ts)				
E, GN/m ² (10 ⁶ psi)	Avg Min			-	
No of Spec. (No. of Heat	s)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min		1 = 11		
NTS, MN/m² (ksi)	Avg				
K _t = No. of Spec. (No. of Heat	Min	. (

Alloy Designation:

2024-T86 Aluminum Alloy

Specification: Form:

Thickness, cm (in.): Condition:

Up to 2.540 (1.000) T86

Testing Temperature, K (F)		297	(75)	195	(-108)		77	(-320)			
Compression, Longitudinal											
CYS, MN/m ² (ksi)	Avg Min			1							
No. of Spec. (No. of Hea	ats)								1		
Ec, GN/m^2 (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of Hea	ats)										
Compression, Transverse											
CYS, MN/m ² (ksi)	Avg Min										
No. of Spec. (No. of Hea											
Ec, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of Hea											
Shear(a)											
SUS, MN/m ² (ksi)	Avg Min					:					
No. of Spec. (No. of Hea	ats)										
G, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of Hea	ats)										
Impact, Charpy V											
Long., Nm(ft-lb)	Avg Min	4.8 4.1	(3.5) (3.0)	4.1 4.1	(3.0) (3.0)		4.8 4.8	(3.5) (3.5)			
No. of Spec. (No of Hea		4	(1)	4	(1)		3	(1)			
Trans., Nm(ft-lb)	Avg Min										
No of Spec. (No of Hea											
Fracture Toughness(b)											
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min										
Orientation — No. of Spec. (No. of Hea	ats)										
KIE, MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(— No. of Spec. (No. of Hea	Avg)Min										

54986 References:

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1c} data:

Alloy Designation:

2024-T351 Aluminum Alloy

Specification:

Form: Thickness, cm (in.): Condition:

Bar 2.541 to 5.080 (1.001 to 2.000) T351

Testing Temperature, K (F)	297 (75)	77 (-320)	
Tension, Longitudinal			
	Avg 479 (69.4)	610 (88.5)	
Std Deviation	7111		
	Avg 365 (53.0)	478 (69.3)	
Std Deviation	/lin		====
	lvg 19.5	19.0	
	Ain		
	Avg Ain		
No. of Spec. (No. of Heats)	1	1	
	Avg Ain		
No. of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
	vg 562 (81.5)	682 (98.9)	
$K_t = 2.4$ No. of Spec. (No. of Heats)	fin 507 (73.6) 2 (1)	599 (86.9) 2 (1)	
	vg 518 (75.2)	625 (90.6)	
$K_t = 13.3$ No. of Spec. (No. of Heats)	1in 479 (69.5) 2 (1)	553 (80.2) 2 (1)	
Tension, Transverse			
	wg 472 (68.4)	594 (86.1)	
Std. Deviation			
	vg 327 (47.4)	428 (62.1)	1
Std. Deviation	1in		
	17.2	14.5	
	ivg lin		
No. of Spec. (No. of Heats)	1]1	
	vg lin		
No. of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
	vg 544 (78.9)	654 (94.8)	
K _t = 2.4 No. of Spec. (No. of Heats)	1 499 (72.4) 2 (1)	576 (83.6) 2 (1)	
	vg 497 (72.1)	595 (86.3)	
$K_t = 13.3$ No. of Spec. (No. of Heats)	lin 463 (67.2) 2 (1)	545 (79.1) 2 (1)	

TABLE 4.2.3-TR1

Alloy Designation:

2024-0 Aluminum Alloy

Specification:

Form: Dimension: Condition:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452
Thermal Conductivity												
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹	184	(106)	158	(01.4)	150	(86.7)	77.9	(45.0)	39.5	(22.0)		
No. of Spec.	1	(106)	1	(91.4)	1	(00.7)	1	(45.0)	1	(22.8)		
References: 90195					ľ				'			
Thermal Expansion (T273 to T) Longitudinal												
Percent	0		-0.303		-0.342		-0.348		-0.348		-0.348	
No. of Spec.	1		1		1		1		1		1	
References: 74405												
Specific Heat												
Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹												
No. of Spec.												
References:												
Electrical Resistivity												
Ohm m	3.26 x	10-8	1.15 x 1	10-8	0.700 x	10-8	0.608 x	10-8	0.605 x	10-8	0.605 x	10-8
Ohm circular mil ft ⁻¹		(19.6)		(6.92)		(4.21)	-	(3.66)		(3.64)		(3.64)
No. of Spec.	13		13		13		13		13		13	
References: 90164, 90195												
	l .											

FIGURE 4.2.3-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 2024-0

FIGURE 4.2.3-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR ALUMINUM ALLOY 2024-0

FIGURE 4.2.3-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 2024-0

TABLE 4.2.3-TR2

Alloy Designation: 2024-T4 Aluminum Alloy

Specification: Form: Dimension:

Condition:	T4											
Testing Temperature K (F)	273 (;	32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹ No of Spec References: 90225			64.5	(37.3)	39.0 1	(22.6)	17.0 1	(9.83)	8.32 1	(4.81)	3.15	(1.82)
Thermal Expansion (T ₂₇₃ to T) Longitudinal Percent No. of Spec. References:												
Specific Heat Joules kg-1 K-1 Btu Ib-1 F-1 No of Spec References: 90223	828 (0	0.198)	530	(0.127)								
Ohm m Ohm circular mil ft ⁻¹ No. of Spec. References: 90164	5.54 x 10 ⁻⁸ (5	33.3)	3.60 x	10 ⁻⁸ (21.6)	3.20 x	10 ⁻⁸ (19.2)	3.08 x	10-8 (18.5)	3.08 x	10 ⁻⁸ (18.5)	3.08 x	(10 ⁻⁸ (18.5)

FIGURE 4.2.3-C2. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 2024-T4

FIGURE 4.2.3-S1. SPECIFIC HEAT VERSUS TEMPERATURE FOR ALUMINUM ALLOY 2024-T4

FIGURE 4.2.3-R2. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 2024-T4

TABLE 4.2.3-TR3

Alloy Designation:

2024-T6 Aluminum Alloy

Specification:

Form: Dimension: Condition:

Τ€

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m-1 K-1 Btu hr-1 ft-1 F-1												
No of Spec												
References:												
Thermal Expansion (T ₂₇₃ to T)												
Longitudinal							1					
Percent												
No of Spec.												
References:												
Specific Heat												
Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹							}					
No of Spec												
References:												
							1					
Electrical Resistivity												
Ohm m	4.61 x		2.47 x		2.05 x		1.99 x		1.93 x		1.98 x	
Ohm circular mil ft ⁻¹	1	(27.7)		(14.9)		(12.3)		(12.0)		(11.9)		(11.9)
No of Spec	3		3		3		3		3		3	
References: 90164												

¢ ;

FIGURE 4.2.3-R3. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 2024-T6

TABLE 4.2.3-TR4

Alloy Designation:

2024-T86 Aluminum Alloy

Specification:

Form: Dimension: Condition:

Testing Temperature K (F)	273 (32)	100 (-280)	50 (-370)	20 (-423)	10 (-442)	4 (-452)
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F-1 No of Spec References: 90195	150 (86.5)	101 (58.4)	71.1 (41.1)	31.8 (18.4)	15.7 (9.08)	
Thermal Expansion (T ₂₇₃ to T) Longitudinal Percent No. of Spec References: 74405	0	-0.308 1	-0.348 1	-0.353 1	-0.353 1	-0.353 1
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹ No. of Spec References:						
Ohm m Ohm circular mil ft ⁻¹ No of Spec References: 90164, 90195	4.22 x 10 ⁻⁸ (25.4)	2.13 x 10 ⁻⁸ (12.8)	1.69 x 10 ⁻⁸ (10.2)	1.59 x 10 ⁻⁸ (9.56)	1.59 x 10 ⁻⁸ (9.56)	1.59 x 10 ⁻⁸ (9.56)

FIGURE 4.2.3-C3. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 2024-T86

FIGURE 4.2.3-E2. THERMAL EXPANSION VERSUS TEMPERATURE FOR ALUMINUM ALLOY 2024-T86

FIGURE 4.2.3-R4. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 2024-T86

Alloy Designation: 5083 Aluminum Alloy (Weld Metal)

Specification:

Plate-MIG welded, 5183 Alloy filler Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)
Condition: 5083-H113 Plate, tested as welded

Testing Temperature, K (F)	297	(75)		77	(-320)		
Tension, Longitudinal								
TUS, MN/m ² (ksi)	Avg		1					
Std. Deviation	Min							
TYS, MN/m ² (ksi)	Avg							
Std. Deviation	Min							
Elong, percent	Avg Min							
RA, percent	Avg							
No. of Spec. (No. of He	Min eats)							
E, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of He						İ		
Poisson's Ratio						İ		
Work Hardening Coef						ļ		
NTS, MN/m² (ksi)	Avg							
K _t = No. of Spec. (No. of He	Min eats)		ĺ			l		
NTS, MN/m² (ksi)	Avg							
K _t = No. of Spec. (No. of He	Min eats)		j					
Tension, Transverse			Ì]		
TUS, MN/m ² (ksi)	Avg Min	285	(41.3)		409	(59.3)		
Std. Deviation						1		
TYS, MN/m ² (ksi)	Avg Min	141	(20.4)		177	(25.7)		
Std. Deviation	1							
Elong, percent	Avg Min	16	.3		2	1.9		
RA, percent	Avg Min							
No. of Spec. (No. of He		3	(1)		9	(1)		
E, GN/m ² (10 ⁶ psi)	Avg							
No. of Spec, (No. of He	Min eats)							
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m ² (ksi)	Avg							
Kt = No of Spec. (No. of He	Min eats)							
NTS, MN/m² (ksi) K _t =	Avg Min							
No of Spec. (No. of He								

Alloy Designation:

6083 Aluminum Alloy (Weld Metal)

Specification:

Form: 1 hickness, cm (in.): Plate-MIG welded, 5183 Alloy filler 0.635 to 1.269 (0.250 to 0.499) 5083-H113 Plate, tested as welded

Condition:

Testing Temperature, K (F)	297	(76)		77	(-320)	
Fatigue, Axiel Loading						
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency With R = and K _t = No. of S-N Curves (No. of Heats)						
Ratio SN/TUS at 10 ⁵ cycles						
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)	ľ					
Ratio S _N /TUS at 10 ⁶ cycles		ĺ				
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency with R = and K _t = No. of S-N Curves (No. of Heats)						
Ratio S _N /TUS at 10 ⁷ cycles						
Fatigue, Flexural Loading						
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency With R = -1 and K _t =	141	(20.5)		171	(24.8)	
No. of S-N Curves (No. of Heats)	2	(1)		2	(1)	
Ratio S _N /TUS at 10 ⁵ cycles				*	ĺ	
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency With R = _1 and K _t =	89.6	(13.0)		130	(18.8)	
No. of S-N Curves (No. of Heats)	2	(1)		2	(1)	
Ratio S _N /TUS at 10 ⁶ cycles						
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _t =	60.3	(8.75)		98.6	(14.3)	
No. of S-N Curves (No. of Heats)	2	(1)		2	(1)	
Ratio S _N /TUS at 10 ⁷ cycles						

11083 References:

. :

Alloy Designation: 5083-O Aluminum Alloy

Specification:

Form:

Form: Plate
Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: Annealed (0)

Testing Temperature, K (F)		297	(75)	144	(-200)	116	(-250)	77_	(-320)	20	(-423)	4	(-452)
Tension, Longitudinal													
TUS, MN/m ² (ksi)	Avg Min	319 314	(46.3) (45.5)	347	(50.3)	376	(54.6)	436 425	(63.3) (61.7)	587 582	(85.2) (84.4)	557 556	(80.8)
Std. Deviation													
1	Avg Min	143 138	(20.7) (20.0)	142	(20.6)	150	(21.7)	159 154	(23.0) (22.4)	174 172	(25.2) (25.0)	179 179	(25.8) (25.8)
Std. Deviation								ļ					
	Avg Min).2 3.0	:	31.4		33.1		34.4 31.0		32 30		32 32
RA, percent	Avg	29	9.3		15.6		43.2	3	36.2		24.3		33.1
No. of Spec. (No. of Heats)	Min	13	(4)	6	(1)	6	(1)	12	29 (4)	3	(1)	3	31.7 (1)
					,		,		117				
	Avg Min												
Poisson's Ratio													
Nork Hardening Coef													
		254	/E4 4\					400	(EQ.4)	400	(EQ 2)	420	(60.2)
K _t = 14	Avg Min	354 330	(51.4) (47.8)					409 393	(59. 4) (57. 0)	409 406	(59.3) (59.0)	430 419	(62.3) (60.8)
No. of Spec. (No. of Heats)		6	(2)			}		5	(2)	3	(1)	3	(1)
	Avg Min	336	(48.8)	376	(54.5)	387	(56.2)	408	(59.2)				
Tension, Transverse													
	Avg Min	316	(45.8)	340	(49.3)	367	(53.3)	426	(62.8)			[
Std. Deviation				,									
	Avg Min	143	(20.7)	144	(20.9)	150	(21.8)	160	(23.2)				
Std. Deviation													
	Avg Vin	2:	3.3	;	31.3		32.9	3	34.1				
	Avg	32	2.7	,	40.4		38.8	3	34.3				
No. of Spec. (No. of Heats)	√lin	7	(2)	6	(1)	6	(1)	7	(2)				
•	Avg Vin												
No. of Spec. (No. of Heats)			1										
oisson's Ratio													
Vork Hardening Coef													
	Avg /lin	323	(46.8)	359	(52.0)	372	(53.9)	388	(56.3)				
No. of Spec. (No. of Heats)		6	(1)	6	(1)	6	(1)	6	(1)	-			
	Avg /lin												

References: 39134, 48561, 90187, 90190

Alloy Designation: 5083 Aluminum Alloy (Weld Metal)

Specification:

Form: Plats-MIG welded, 5183 Alloy filler
Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: 5083-O Plate, tested as welded

Testing Temperature, K (F)		297	(75)	195	(-108)	144	(-200)	116	(-250)	77	(-320)	4	(-452)
Tension, Longitudinal													
TUS, MN/m ² (ksi)	Avg	301	(43.7)	303	(43.9)	337	(48.9)	372	(54.0)	416	(60.4)	381	(55.3)
Std. Deviation	Min	293	(42.5)							401	(58.2)		
TYS, MN/m² (ksi)	Avg	151	(21.9)	143	(20.7)	161	(23.4)	169	(24.5)	175	(25.4)	174	(25.2)
Std. Deviation	Min	139	(28.1)							154	(22.4)		
Elong, percent	Avg Min		B.4 7.4	3	31.0		21.6	1	29.5		20.8 19.0	1	27.0
RA, percent	Avg Min	3:	3.7	4	14		31.3	3	37.5		22.0 20	:	37
No. of Spec. (No. of Heat		4	(2)	1		3	(1)	3	(1)	4	(2)	1	
E, GN/m ² (10 ⁶ psi)	Avg Min												
No. of Spec. (No. of Heat								3					
oisson's Ratio													
Vork Hardening Coef													
ITS, MN/m ² (ksi) $K_t = 15-16$	Avg Min	314 308	(45.5) (44.7)	344	(49.9)	349	(50.6)	370	(53.6)	365 345	(52.9) (50.1)	372	(53.9)
No. of Spec. (No. of Heats		4	(2)	1		3	(1)	3	(1)	4	(2)	1	
TS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat:	Avg Min s)												
ension, Transverse								1					
'US, MN/m ² (ksi)	Avg Min												
Std. Deviation													
YS, MN/m ² (ksi)	Avg Min												
Std. Deviation													
long, percent	Avg Min												
A, percent	Avg Min									}		1	
No. of Spec. (No. of Heats			14										
, GN/m ² (10 ⁶ psi)	Avg Min												
No. of Spec, (No. of Heats													
oisson's Ratio													
ork Hardening Coef													
TS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min												
TS, MN/m² (ksi)	Avg												
K _t = No. of Spec. (No. of Heats	Min i)												

References:

90072, 90187

Alloy Designation: 5083 Aluminum Alloy (Weld Metal)

Specification:

Form: Plate-MIG welded, 5556 Alloy filler
Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: 5083-H113 Plate, tested as welded

Testing Temperature, K (F)		297 (75)		77 (-320)	
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	284 (4	1.2)	414 (60.1)	
Std. Deviation	Min				
TYS, MN/m² (ksi)	Avg Min	146 (2	1.2)	170 (24.7)	
Std. Deviation					
Elong, percent	Avg Min	12.5		20.0	
RA, percent	Avg Min				
No. of Spec. (No. of Hea		1		1	
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hea					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg				
K _t = No. of Spec. (No. of Hear	Min ts)				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg Min				
Std. Deviation					
TYS, MN/m ² (ksi)	Avg Min				
Std. Deviation					
Elong, percent	Avg Min				
RA, percent	Avg Min				
No. of Spec. (No. of Hear					
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Heat					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi) K _t =	Avg Min				
No. of Spec. (No. of Hear	(s)			1	
NTS, MN/m ² (ksi) K _t =	Avg Min				

References: 48787

Alloy Designation: 508

5083 Aluminum Atloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Plate-MIG welded, 5556 Alloy filler 1.270 to 2.540 (0.500 to 1.000) 5083-H113 Plate, testeri as welded

resting Temperature, K (F)	297 (75)	77 (-320)	
Fatigue, Axial Loading			
No at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency With R = 0 and K ₁ =	193 (28.0)	221 (32.0)	
No. of S-N Curves (No. of Heats)	1	1	
latio SN/TUS at 10 ⁵ cycles			
N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = 0 and K _t =	138 (20.0)	179 (26.0)	
No. of S-N Curves (No. of Heats)	1	1	
atio S _N /TUS at 10 ⁶ cycles			
N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency With R = and K _t = No. of S·N Curves (No. of Heats)			
atio S _N /TUS at 10 ⁷ cycles			
atigue, Flexural Loading			
N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency With R = and K _t = No. of S-N Curves (No. of Heats)			
atio S _N /TUS at 10 ⁵ cycles			
N at 10 ⁶ cycles, MN/m ² (ksi)			
Loading frequency Hz with R = and K _t =			
No. of S-N Curves (No. of Heats)			
atio S _N /TUS at 10 ⁶ cycles			
N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency with R = and K _t = No. of S-N Curves (No. of Heats)			
latio SN/TUS at 10 ⁷ cycles			

References: 48787

Alloy Designation: 5083 Aluminum Alloy (Weld Metal)

Specification:

Condition:

Form: Plate-MIG welded, 5183 Alloy filler Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000) 5083-H321 Plate, tested as welded

sting Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	4 (-452)
nsion, Longitudinal				
	Avg 305 (44.2)	324 (47.0)	446 (64.7)	456 (66.1)
	/lin			
Std. Deviation				
'S, MN/m ² (ksi)	Avg 179 (26.0)	181 (26.2)	217 (31.4)	246 (35.7)
Std. Deviation	/lin			
ota, Deviation				
ong, percent	Avg 14.0	19.0	19.0	9.0
	Ain			
, percent	Avg 39	48	23	14
	/lin			
lo. of Spec. (No. of Heats)	1	1	1	1 1
GN/m ² (10 ⁶ psi)	Avg			
	/lin			
lo. of Spec. (No. of Heats)				
son's Ratio				
de Mandanina Conf				
k Hardening Coef				
, MN/m ² (ksi)	lvg 376 (54.5)	410 (59.5)	430 (62.4)	405 (58.8)
	/lin 1	1	1	1
, of Spec. (No. of Heats)	·		(
	lvg			
. of Spec. (No. of Heats)	⁄lin			
			_1	
on, Transverse				
	Avg Min			
I. Deviation	"""			
2				
	Avg fin			
d. Deviation				
7				
	Avg Min			
•	Avg Min			
o. of Spec. (No. of Heats)				
GN/m ² (10 ⁶ psi)	lvg			
	Min			
o. of Spec. (No. of Heats)				
on's Ratio				
Hardening Coef				
MN/m ² (ksi)	lvg	[11]		
- 1	1in			
o. of Spec. (No. of Heats)				
i, MN/m ² (ksi)	lvg			
t =	fin			
. of Spec. (No. of Heats)	1	1		196<
				4 ()()

Alloy Designation: 5083 Aluminum Alloy (Weld Metal)

Specification:

Form: Plate-MIG welded, 5358 Alloy filler
Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: 5083-H321 Plate, tested as welded

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	4 (-452)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	286 (41.5)	303 (43.9)	427 (61.9)	455 (66.0)
Std. Deviation	Min				
TYS, MN/m ² (ksi)	Avg Min	168 (24.3)	186 (27.0)	201 (29.1)	235 (34.1)
Std. Deviation					
Elong, percent	Avg Min	13.5	14.5	15.5	9.0
RA, percent	Avg Min	47	52	33	17
No. of Spec. (No. of He		1	1	1	1
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of He	æts)				
Poisson's Ratio					
Nork Hardening Coef					
NTS, MN/m ² (ksi) K _t = 16	Avg	371 (53.8)	396 (57.5)	418 (60.6)	398 (57.7)
No. of Spec. (No. of He	Min eats)	1	1	1	1
NTS, MN/m² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg Min				
Std. Deviation					
'YS, MN/m ² (ksi)	Avg Min				
Std. Deviation					
Elong, percent	Avg Min				
RA, percent	Avg Min				
No. of Spec. (No. of He					
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of He					
oisson's Ratio					
Vork Hardening Coef					
NTS, MN/m ² (ksi)	Avg				
Kt = No. of Spec. (No. of He	Min eats)				
NTS, MN/m ² (ksi) K _t =	Av. Min	The state of the s			
No. of Spec. (No. of He					39

Alloy Designation: 5083 Aluminum Alloy (Weld Metal)

Specification:

Form: Plate-MIG welded, 5556 Alloy filler
Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: 5083-H321 Plate, tested as welded

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	4 (-452)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg Min	306 (44.4)	319 (46.3)	450 (65.3)	474 (68.8)
Std Deviation					
TYS, MN/m ² (ksi)	Avg Min	177 (25.6)	184 (26.7)	211 (30.6)	239 (34.6)
Std. Deviation					
Elong, percent	Avg Min	14.0	18.5	20.5	13.0
RA, percent	Avg Min	36	46	26	17
No. of Spec. (No. of Hea		1	1	1	1
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hea	ats)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = 16 No. of Spec. (No. of He	Avg Min	370 (53.7)	401 (58.1)	417 (60.5)	399 (57.9)
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min				
Tension, Transverse TUS, MN/m ² (ksi)	Avg Min				
Std. Deviation					
TYS, MN/m ² (ksi) Std. Deviation	Avg Min				
Elong, percent	Avg Min				
RA, percent	Ауд				
No, of Spec. (No. of He	Min ets)			1	
E, GN/m ² (10 ⁶ psi)	Avg				
No. of Spec. (No. of He	Min ats)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min				
NTS, MN/m² (ksi) K _t =	Avg Min				
No. of Spec. (No. of He	ats)				100
References: 90072					198<

Alloy Designation: 5083-O Aluminum Alloy (Weld Metal)

Specification:

Form: Plate-MiG welded, 5183 Alloy filler
Thickness, cm (in.): 2.541 to 5.080 (1.001 to 2.000)
Condition: 5083-O Plate, tested as welded

Testing Temperature, K (I	-)	297 (75)	77 (-320)	
Tension, Longitudinal		205 (42.5)	419 (60.8)	
TUS, MN/m ² (ksi)	Avg Min	295 (42.8) 280 (40.6)	405 (58.8)	
Std. Deviation	IVIIII	200 (10.0)		
TYS, MN/m ² (ksi)	Avg	146 (21.2)	177 (25 6)	
	Min	129 (18.7)	160 (23.2)	1
Std. Deviation				
Elong, percent	Avg	22.5	24.5	
	Min	17.7	20.8	
RA, percent	ДVЭ			
	Min		1	
No. of Spec. (No. of H	eats)	10 (1)	10 (1)	
E, GN/m ² (10 ⁶ psi)	Avg			
	Min			
No. of Spec. (No. of He	eats)			
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m² (ksi)	Avg			
K _t =	Min			\
No. of Spec. (No. of He	eats)			
NTS, MN/m ² (ksi)	Avg			
K _t =	Min			1
No. of Spec. (No. of He	eats)			
Tension, Transverse				
TUS, MN/m ² (ksi)	Avg			
	Min			
Std. Deviation		i		
TYS, MN/m ² (ksi)	Avg			
0.4.6.1.1	Min			
Std. Deviation				
Elong, percent	Avg			
	Min			
RA, percent	Avg			
No. of Cons. (No. of 11	Min			
No. of Spec. (No. of H	eats)			
E, GN/m ² (10 ⁶ psi)	Avg			
No. of Spec. (No. of He	Min eats)			
Poisson's Ratio			1	
Work Hardening Coef				
NTS, MN/m ² (ksi)	Avg		1	
K _t =	Min			
No. of Spec. (No. of He	eats)			
NTS, MN/m ² (ksi)	Avg		1	
K _t =	Min			1

199<

References: 96694

1 . 1

Alloy Designation: 5083-O Aluminum Alloy (Weld Metal)

Specification:

Form: Plate-MIG welded, 5356 Alloy filler
Thickness, cm (in.): 2.541 to 5.080 (1.001 to 2.000)
Condition: 5083-O Plate, tested as welded

Testing Temperature, K (F)	297 (75)	77 (-320)
Tension, Longitudinal		
TUS, MN/m ² (ksi)	Avg 291 (42.2)	407 (59.1)
Std. Deviation	Min 288 (41.7)	387 (\$6.2)
	Ava 145 (21.2)	172 (24.9)
	Avg 145 (21.2) Min 142 (20.6)	172 (24.5)
Std. Deviation		
	Avg 17.9 Min 16.1	23.2 20.5
RA, percent	Avg	
	Min 4 (1)	4 (1)
	Avg Min	
No. of Spec. (No. of Heats)		
Poisson's Ratio		
Work Hardening Coef		
	Avg	
$K_1 =$ No. of Spec. (No. of Heats)	Min	
NTS, MN/m² (ksi)	Avg	
K _t = No. of Spec. (No. of Heats)	Min	
Tension, Transverse TUS, MN/m ² (ksi)	Avg	
	Min	
Std. Deviation		
	Avg Min	
Std. Deviation	*****	
Elong, percent	Avg	
	Min	
RA, percent	Avg	
No. of Spec. (No. of Heats)	Min	
	Avg Min	
No. of Spec. (No. of Heats)		
Poisson's Ratio		
Work Hardening Coef		
	Avg	
Kt = No. of Spec. (No. of Heats)	Min	
	Avg	1,000
	Min	1000 1293
		200<
leferences: 96694		&UU-

TABLE 4.3.1-ME4. RESULTS OF ALCOA ANALYSIS FOR DEVELOPMENT OF MAXIMUM ALLOWABLE DESIGN STRESSES^(a) FOR 5083-0 SHEET AND PLATE AT CRYOGENIC TEMPERATURES (90174)

	sting							20			
	erature	Min.Tl		Min, TL		Min.		Min. TYS		Design S	
K	F	MN/m ²	Ksi	MN/m ²	Ksi	MN/m ²	Ksi	MN/m ²	Ksi	MN/m ²	Ksi
			Thick	ness 0.130	to 3.810	cm (0.051	to 1.500	in.)			
297	75	276	40.0	69.0	10.0	124	18.0	82.7	12.0	69.0	10.0
255	0	276	40.0	69.0	10.0	124	18.0	82.7	12.0	69.0	10.0
227	-50	276	40.0	69.0	10.0	124	18.0	82.7	12.0	69.0	10.0
200	-100	278	40.4	69.6	10.1	124	18.0	82.7	12.0	69.6	10.1
172	-150	285	41.4	71.7	10.4	126	18.3	84.1	12.2	71.7	10.4
144	-200	302	43.8	75.8	11.0	129	18.7	86.2	12.5	75.8	11.0
117	-250	332	48.2	82.7	12.0	133	19.3	88.9	12.9	82.7	12.0
111	-260	340	49.3	84.8	12.3	134	19.4	88.9	12.9	84.8	12.3
89	-300	368	53.3	91.7	13.3	136	19.8	91.0	13.2	91.0	13.2
77	-320	381	55.2	95.2	13.8	138	20.1	92.4	13.4	92.4	13.4
			Thick	ness 3.811	to 7.620	cm (1.501	to 3.000	in.)			
207	75	200	20.0	66.9	0.7	117	17.0	77.9	11.3	66.9	9.7
297	75	269	39.0		9.7	117	17.0	77.9 77.9	11.3	66.9	9.7
255	0	269	39.0	66.9	9.7		17.0				
227	-50	270	39.1	67.6	9.8	117 117	17.0	77.9 77.9	11.3 11.3	67.6 67.6	9.8 9.8
200 172	-100 -150	272 278	39.4 40.4	67.6 69.6	9.8 10.1	118	17.0	79.3	11.5	69.6	10.1
						121	17.2	80.7	11.7	73.8	10.7
144 117	-200 -250	294	42.7	73.8	10.7 11.8	125	18.2	83.4	12.1	81.4	11.8
		324	47.0	81.4				84.1			
111	-260	332	48.1	82.7	12.0	126	18.3		12.2	82.7	12.0
89 77	-300 -320	358 371	52.0 53.8	89.6 92.4	13.0 13.4	129 130	18.7 18.9	86.2 86.9	12.5 12.6	86.2 86.9	12.5 12.6
	3.23			ness 7.621					,_,		
			- 11101	7.021	12.70	0 0,111 (0,100	. 10 0.00	<u> </u>			
297	75	262	38.0	65.5	9.5	110	16.0	73.8	10.7	65.5	9.5
255	0	262	38.0	65.5	9.5	110	16.0	73.8	10.7	65.5	9.5
227	-50	263	38.1	65.5	9.5	110	16.0	73.8	10.7	65.5	9.5
200	-100	265	38.4	66.2	9.6	110	16.0	73.8	10.7	66.2	9.6
172	-150	272	39.4	67.6	9.8	112	16.2	74.5	10.8	67.2	9.8
144	-200	287	41.6	71.7	10.4	114	16.6	76.5	11.1	71.7	10.4
117	-250	316	45.8	78.6	11.4	118	17.1	78.6	11.4	78.6	11.4
111	-260	323	46.8	80.7	11.7	118	17.2	79.3	11.5	79.3	11.5
89	-300	350	50.7	87.6	12.7	121	17.6	80.7	11.7	80.7	11.7
77	-320	362	52.5	90.3	13.1	123	17.8	82.0	11.9	82.0	11.9

⁽a) Allowable design stresses are determined on the basis of the lower of (1) one-fourth of the minimum tensile strength or (2) two-thirds of the minimum yield strength. Classical statistical methods were not used in reduction of the data.

Alloy Designation: 5083-0 Aluminum Alloy

Specification:

Form: Plate
Thickness, cm (in.): Over 5.080 (2.000)
Condition: Annealed (0)

TUS, MN/m ² (ksi) Avg 297 (43.1) 383 (55.5) 412 (59.7) 374 (54.3) Std. Deviation TYS, MN/m ² (ksi) Avg 132 (19.1) 151 (21.9) 148 (21.5) 141 (20.5) Std. Deviation	Testing Temperature, K (F)	297	(75)	110	(-260)	77	(-320)		
Std. Deviation TYS, MN/m² (ksi) Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) Pisson's Ratio Min No. of Spec. (No. of Heats) TYS, MN/m² (ksi) Avg K ₊ = Min No. of Spec. (No. of Heats) TYS, MN/m² (ksi) Avg K ₊ = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) TYS, MN/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) TYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) TYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) TYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) TYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) Tys, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) No. of Spec. (No. of Heats)	Tension, Longitudinal									
TYS, MN/m² (ksi) Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Tys, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) Torsion, Transverse TUS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tys, MN/m² (ksi) Avg Min Std. Deviation Tys, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Tys, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Tys, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Tys, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Tys, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Tys, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Tys, MN/m² (No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Min Nork Hardening Coef NTS, MN/m² (ksi) Avg Mi	TUS, MN/m ² (ksi)				383	(55.5)				
Elong, percent Avg 22.3 31.7 15.0 15.0 RA, percent Avg 16.8 37.0 29.5 19.9 (4) RA, percent Avg 16.8 37.0 29.5 19.9 (4) Ro, of Spec. (No, of Heats) Poisson's Ratio Work Hardening Coef Min No, of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K; Min No, of Spec. (No. of Heats) Std. Deviation TVS, MN/m² (ksi) Avg Min No, of Spec. (No. of Heats) Std. Deviation TVS, MN/m² (ksi) Avg Min No, of Spec. (No. of Heats) Std. Deviation TVS, MN/m² (ksi) Avg Min No, of Spec. (No. of Heats) Std. Deviation TVS, MN/m² (ksi) Avg Min No, of Spec. (No. of Heats) RA, percent Avg 18.3 29.8 22.5 15.5 15.5 RA, percent Avg Min No, of Spec. (No. of Heats) RA, percent Avg 14. 3 (2) 8 (4) Elong, percent Avg 14. 3 (2) 8 (4) Elong, percent Avg 14. 3 (2) 8 (4) Elong, percent Avg 14. 3 (2) 8 (4) Elong, percent Avg 14. 3 (2) 8 (4) RA, percent Avg 15. 5 15.5 RA, percent Avg Nin No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)	Std. Deviation	Min	273	(39.6)			3/4	(54.3)		
Etiong, percent Avg Min 15.0 RAA, percent Avg Min No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) Poisson's Ratio Min No. of Spec. (No. of Heats)	TYS, MN/m ² (ksi)	Avg	132	(19.1)	151	(21.9)				
Ayg No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Ayg K₁ = Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) NTS, MN/m² (ksi) Ayg K₁ = Min No. of Spec. (No. of Heats) Poisson's Ratio No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) Poisson's Ratio No. of Spec. (No. of Heats)	Std. Dev _i ation	Min	121	(17.6)			141	(20.5)		
Min No. of Spec. (No. of Heats) E, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio North Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) TYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) TYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) TYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) THARA, percent Avg Min No. of Spec. (No. of Heats) THARA, percent Avg Min No. of Spec. (No. of Heats) THARA, percent Avg Min No. of Spec. (No. of Heats) THARA, percent Avg Min No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) North Hardening Coef North Hardening Coef North Min No. of Spec. (No. of Heats) North Min No. of Spec. (No. of Heats) North Min No. of Spec. (No. of Heats) North Min No. of Spec. (No. of Heats) North Min No. of Spec. (No. of Heats) North Min No. of Spec. (No. of Heats) North Min No. of Spec. (No. of Heats) North Min No. of Spec. (No. of Heats) North Min No. of Spec. (No. of Heats) North Min No. of Spec. (No. of Heats) North Min No. of Spec. (No. of Heats) North Min No. of Spec. (No. of Heats) North Min No. of Spec. (No. of Heats) North Min No. of Spec. (No. of Heats)	Elong, percent				31	.7				
No. of Spec. (No. of Heats) E, GN/m² (106 pxi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) Tension, Transverse Tension, Transverse Tension, Transverse Trys, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) TYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) TYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Tys, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) RA, percent Avg Min No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats)	RA, percent				37	.0				
E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) TYS, MN/m² (ksi) Avg 133 (19.3) Std. Deviation TYS, MN/m² (ksi) Avg 12.1 (17.5) Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) THE STORY (No. of Heats) THE STORY (No. of Heats) No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef VTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) Nork Hardening Coef VTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)	No of Spec (No of He		g		3	(2)	9			
Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef Nort Hardening Coef Nort Hardening Coef Nort Hardening Coef Nort Min No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) Poisson's Ratio Nort Hardening Coef N				117		ŗ-,		,",		
Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min Min No. of Spec. (No. of Heats) Avg Kt = Min Min No. of Spec. (No. of Heats) Avg Kt = Min Min No. of Spec. (No. of Heats) Avg Kt = Min Min No. of Spec. (No. of Heats)		Min								
Nork Hardening Coef NTS, MN/m² (ksi) Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Fension, Transverse FUS, MN/m² (ksi) Std. Deviation FYS, MN/m² (ksi) Avg Min Std. Deviation FYS, MN/m² (ksi) Avg Min Std. Deviation FYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats)	No. of Spec. (No. of He	ats)								
NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg Std. Deviation TYS, MN/m² (ksi) Avg Min No. do Spec. (No. of Heats) Elong, percent Avg Min No. of Spec. (No. of Heats) Elong, Percent Avg Min No. of Spec. (No. of Heats) Elong, Percent Avg Min No. of Spec. (No. of Heats) Elong Nord (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats)	Poisson's Ratio									
K _t = Min No. of Spec. (No. of Heats) Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) K _t = Min No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats) Intersion, Transverse (TUS, MN/m² (ksi) Avg Std. Deviation Avg Min No. of Spec. (No. of Heats) 133 (19.3) 157 (22.7) 150 (21.8) 141 (20.4) Std. Deviation Avg Min No. of Spec. (No. of Heats) 18.3 (2) 15.5 (22.7) 15.5 (22.7) 15.5 (22.7) 15.5 (22.7) 15.5 (22.7) 15.5 (22.7) 15.5 (22.7) 16.5 (22.	Nork Hardening Coef									
K ₁ = Min No. of Spec. (No. of Heats) Min No. of Spec. (No. of Heats) NTS, MN/m2 (ksi) Avg K ₁ = Min No. of Spec. (No. of Heats) Tension, Transverse Avg Min No. of Spec. (No. of Heats) TUS, MN/m2 (ksi) Avg Min No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats) 157 (22.7) 150 (21.8) 141 (20.4) Std. Deviation Avg Min No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats) 29.8 (2) Special No. of Spec. (No. of Heats) 22.7 (2) Special No. of Spec. (No. of Heats) RA, percent No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats) NTS, MN/m2 (ksi) No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats)	NTS, MN/m ² (ksi)	Avg						ĺ		
NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Fension, Transverse TUS, MN/m² (ksi) Avg Min Std. Deviation FYS, MN/m² (ksi) Avg Min Std. Deviation FYS, MN/m² (ksi) Avg Min Std. Deviation FYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) FOSSOn's Ratio No. of Spec. (No. of Heats) Poisson's Ratio Nor, M/m² (ksi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Nor, M/m² (ksi) Avg Min No. of Spec. (No. of Heats) Nor, M/m² (ksi) Avg Min No. of Spec. (No. of Heats) Nor, M/m² (ksi) Avg Min No. of Spec. (No. of Heats) Nor, M/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Nor, M/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Nor, M/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Nor, M/m² (ksi) Avg Kt = Min Nor, Min Min No. of Spec. (No. of Heats)	K _t =	Min								
K _t = Min No. of Spec. (No. of Heats) Fension, Transverse FUS, MN/m² (ksi) Avg Min 262 (38.0) Std. Deviation 133 (19.3) 121 (17.5) FYS, MN/m² (ksi) Avg Min 121 (17.5) Std. Deviation 18.3 (19.3) 121 (17.5) Elong, percent Avg Min 14 (20.4) No. of Spec. (No. of Heats) 22.7 (14 (20.4) No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Avg K _t = Min No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats)	No. of Spec. (No. of He	ats)								
No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg Min 262 (38.0) 396 (57.4) 387 (56.1) 351 (50.9) Std. Deviation TYS, MN/m² (ksi) Avg Min 121 (17.5) 157 (22.7) 150 (21.8) 141 (20.4) 141 (2			}							
Tension, Transverse TUS, MN/m² (ksi)										
TUS, MN/m² (ksi) Std. Deviation TYS, MN/m² (ksi) Std. Deviation Avg Min Std. Deviation Avg Min Std. Deviation Elüng, percent Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats)		013)								
Std. Deviation Std.				(40.71)	000	/5° 4\	207	(50.1)		
Std. Deviation TYS, MN/m² (ksi) Avg Min 121 (17.5) Std. Deviation Elong, percent Avg Min 14 (20.4) RA, percent Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)	TUS, MN/m² (ksi)				396	(57.4)				
Std. Deviation Std. Deviation	Std. Deviation									
Std. Deviation Std. Deviation	TYS. MN/m² (ksi)	Ava	133	(19.3)	157	(22.7)	150	(21.8)	7.	
Elong, percent Avg Min RA, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Kt = Min No. of Spec. (No. of Heats)						,,				
Min RA, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats)	Std. Deviation									
RA, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats)	Elong, percent	Avg		18.3	29	.3				
Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats)		Min		14				15.5		
No. of Spec. (No. of Heats) E, GN/m² (10 ⁶ psi) No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats)	RA, percent	_			28	.7				
Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min	No. of Spec. (No. of He		11		3	(2)	8	(4)		
No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min	E, GN/m ² (10 ⁶ psi)									
Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min	No. of Spec. (No. of He							1		
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) NTS, MN/m ² (ksi) Avg K _t = Min	Poisson's Ratio									
Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min	Work Hardening Coef									
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	NTS, MN/m ² (ksi)	Ava								
NTS, MN/m² (ksi) Avg Kt = Min	K _t =	Min								
K _t = Min	No. of Spec. (No. of He	ats)								
		_								11/4/30

Alloy Designation: 5083-0 Aluminum Alloy

Specification:

Form: Plate
Thickness, cm (in.): Over 5.080 (2.000)
Condition: Annealed (0)

Testing Temperature, K (F)		297	(75)	110	(-260)	77	(-320)				
Tension, Short Transverse											
TUS, MN/m ² (ksi)	Avg	268	(38.8)	323	(46.8)		(48.1)	` <u>. </u>			
Std. Deviation	Min	245	(35.6)			316	(45.8)				
TYS, MN/m ² (ksi)	Avg	127	(18.4)	156	(22.6)	144	(20.9)				
Std. Deviation	Min	116	(16.8)			135	(19.6)				
Elong, percent	Avg		11.0		10.0		11,38				
	Min		10				9.5				
RA, percent	Avg Min		11.5 11		11.0		12.0 11				
No. of Spec. (No. of Heats		5	(3)		(1)	5	(3)				
E, GN/m ² (10 ⁶ psi)	Avg										
No. of Spec. (No. of Heat	Min s)										
Poisson's Ratio											
Work Hardening Coef											
NTS, MN/m² (ksi)	Avg							-			
K _t = No, of Spec. (No, of Heats	Min s)	П									
NTS, MN/m ² (ksi)	Avg										
K _t = No. of Spec. (No. of Heat:	Min s)										
References: 90176, 96691									1	1	

1 . .

5083 Aluminum Alloy (Weld Metal) Alloy Designation:

Specification:

References:

90176, 96690

Form: Plate-MIG welded, 5183 Alloy filler
Thickness, cm (in.): Over 5.080 (2.000)
Condition: 5083-O Plate, tested as welded

Testing Temperature, K (F)	297 (75)	111 (-260)	77 (-320)	
Tension, Longitudinal TUS, MN/m² (ksi)	.vg 283 (41.0)	368 (53.4)	394 (57.1)	
	vg 283 (41.0) tin 247 (35.8) 17.7 (2.57)	339 (49.2)	341 (49.4) 29.9 (4.34)	
	159 (23.0) 144 (20.9) 9.38 (1.36)	131 (26.3) 160 (23.2)	185 (26.8) 167 (24.2) 12.6 (1.82)	
Elong, percent A	vg 15.4	18.9 11.0	18.3 9.8	
RA, percent A	vg 22.4	24.8	20.1	
No. of Spec. (No. of Heats)	tin 12 (3)	6 (2)	12 (3)	
	vg			
No. of Spec. (No. of Heats)	lin			
Poisson's Ratio				
Nork Hardening Coef				
•	vg lin			
	ivg			
Tension, Transverse				
	in			
TYS, MN/m² (ksi) A	vg			
Std. Deviation	lin			
	vg lin			
	vg lin			
No. of Spec (No. of Heats)				
	vg lin			
No. of Spec. (No. of Heats)		1	Ŧ	
oisson's Ratio				
Vork Hardening Coef				
	vg lin			
NTS, MN/m ² (ksi) A	vg lin			4 31315

FIGURE 4.3.1-ME1. EFFECT OF TEMPERATURE ON THE STRENGTH OF 5083 ALUMINUM ALLOY

.

FIGURE 4.3.1-ME2. FATIGUE-CRACK GROWTH RATE OF 5083-0 ALUMINUM ALLOY AT 4 K(94208D)

FIGURE 4.3.1-ME3. FATIGUE CRACK GROWTH RATE OF 5083-O ALUMINUM ALLOY PLATE [90175, 96691]

FIGURE 4.3.1-ME4. FATIGUE CRACK GROWTH RATE OF 5083-O ALUMINUM PLATE MIG WELDED (5183 ALLOY FILLER) [90175]

TABLE 4.3.1-TR1

Alloy Designation: 5083-O Aluminum Alloy

Specification: Form: Dimension:

Condition: Annealed (-0), H113

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity (-0) Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ fr ⁻¹ F-1 No. of Spec. References: 90225			62	(36.8)	38	(22.0)	17.3 1	(10.0)	8.5	(4.9)		
Thermal Expansion (T ₂₇₃ to T) Longitudinal (-H113) Percent No. of Spec. References: 74405 Specific Heat Joules kg ⁻¹ K ⁻¹ Btu tb ⁻¹ F ⁻¹ No. of Spec.	0 1		-0.32 1		-0.36 1		-0.385 1		-0.366			
References: Electrical Resistivity (-0, -H113) Ohm m Ohm circular mil ft ⁻¹ No. of Spec. References: 79561, 90164	5.70 x	10 ⁻⁸ (34.3)	3.60 x	10 ⁻⁸ (21.7)	3.20 x ⁻	10 ⁻⁸ (19.3)	3.05 x	10 ⁻⁸ (1.76)	3.05 x	10 ⁻⁸ (1.76)	3.05	× 10 ⁻⁸ (1.76)

TABLE 4.3.2-ME1

Alloy Designation:

5456-0 Aluminum Alloy

Specification:

Thickness, cm (in.): Condition:

Sheet 0.100 to 0.319 (0.040 to 0.125) 0

Testing Temperature, K (F)	297 (75)			77 (-320)	20 (-423)	
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg Min	351 (50.9)				587 (85.1)	
Std Deviation	14111)						
TYS, MN/m² (ksi)	Avg Min	183 (26.5)				210 (30.5)	
Std. Deviation	, , , , ,						
Elong, percent	Avg Min	16.8				24.8	
RA, percent	Avg	26.1				25.4	
No. of Spec. (No. of H	Min eats)	2 (1)				2 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of H							
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi) $K_t = 6.3$	Avg Min	332 (48.1)		1		307 (44.5)	
No. of Spec. (No. of He		4 (1)				4 (1)	
NTS, MN/m ² (ksi) K _t =	Avg Min						
No. of Spec. (No. of He					1		
Tension, Transverse							
TUS, MN/m ² (ksi)	Avg Min	323 (46.9)	Į.		440 (63.8)		
Std. Deviation							
TYS, MN/m ² (ksi)	Avg Min	177 (25.7)			200 (29.0)		
Std. Deviation							
Elong, percent	Avg Min	24.2			40.5		
RA, percent	Avg						
No. of Spec. (No. of He	Min leats)	1					
E, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of He							
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi) K _t = 11,1	Avg Min	287 (41.6)			296 (43.0)		
No. of Spec. (No. of He		1			1		
NTS, MN/m² (ksi)	Avg	274 (39.7)			305 (44.3)		
K _t = 15 No. of Spec. (No. of He	Min eats)	1			1		
References: 56755, 901	I RR	·				21)<

TABLE 4.3.2-ME2

Alloy Designation:

5456-H24 Aluminum Alloy

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet 0.100 to 0.319 (0.040 to 0.125) H24

Testing Temperature, K (F)		297 (75)	77 (-320)	20 (-423)
Tension, Longitudinal	1			
TUS, MN/m ² (ksi)	Avg	376 (54.5)	518 (75.1)	596 (86.4) 589 (85.4)
Std Deviation	Min			(337.1)
TYS, MN/m ² (ksi)	Avg	289 (41.9)	382 (55.4)	389 (56.4) 379 (55.0)
Std. Deviation	Min			379 (55.0)
Elong, percent	Avg	13.7	13.2	7.7
	Min			7.5
RA, percent	Avg Min			
No. of Spec. (No. of Heat	s)	1	1	5 (1)
E, GN/m ² (10 ⁶ psi)	Avg Min		80.0 (11.6)	88.3 (12.8)
No. of Spec. (No. of Heat			1	1
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m² (ksi)	Avg			
K _t = No. of Spec. (No. of Heat	Min s)			
NTS, MN/m ² (ksi)	Avg			
K _t = No. of Spec. (No. of Heat	Min s)			
Tension, Transverse	1			
TUS, MN/m ² (ksi)	Avg Min	376 (54.6)	475 (68.9)	571 (82.8) 557 (80.8)
Std. Deviation				
TYS, MN/m² (ksi)	Avg	274 (39.8)	330 (47.9)	384 (55.7) 384 (55.7)
Std. Deviation	Min			
Elong, percent	Avg	11.6	8.9	8.0
	Min			
RA, percent	Avg Min			
No. of Spec. (No. of Heat		2 (2)	2 (2)	2 (1)
E, GN/m ² (10 ⁶ psi)	Avg Min			
No. of Spec. (No. of Heat				
Poisson's Ratio				1
Nork Hardening Coef				_ !_
NTS, MN/m² (ksi)	Avg	343 (49.7)	331 (48.0)	L .
Kt = 11.1 No of Spec. (No. of Heat	Min s)	1	1	
NTS, MN/m² (ksi)	Avg	313 (45.4)	325 (47.2)	
K _t = 15	Min			

* 4

. 1 2 . .

TABLE 4.3.2-ME3

Alloy Designation:

5456 Aluminum Alloy (Weld Metal)

Specification:

Thickness, cm (in.): Condition: Sheet-TIG welded, 4043 Alloy filler 0.100 to 0.319 (0.040 to 0.125) 5456-H24 TIG welded and tested

Testing Temperature, K (F)	297 (75)			77	(-320)	20	(-423)
Tension, Longitudinal							
TUS, MN/m ² (ksi) Avg		5 - 1		409	(59.3)	372 353	(54.0) (51.2)
Std. Deviation							
TYS, MN/m ² (ksi) Avg			-				
Std. Deviation							
Elong, percent Avg							
RA, percent Avg Min							
No. of Spec. (No. of Heats)	1			1		10	(1)
E, GN/m ² (10 ⁶ psi) Avg Min							
No. of Spec. (No. of Heats)							
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)							
NTS, MN/m ² (ksi) Avg $K_t = $ Min No. of Spec. (No. of Heats)							
Tension, Transverse							
TUS, MN/m ² (ksi) Avg Min Std. Deviation	351 (50.9)			411	(59.6)	387 372	(56.1) (54.0)
TYS, MN/m² (ksi) Avg							
Min Std. Deviation							
Elong, percent Avg							
RA, percent Avg							
No. of Spec. (No. of Heats)	1			1		4	(1)
E, GN/m ² (10 ⁶ psi) Avg							
No. of Spec. (No. of Heats)							
Poisson's Ratio							- 1-
Work Hardening Coef							
NTS, MN/m^2 (ksi) Avg $K_t = Min$ No, of Spec. (No. of Heats)							
NTS, MN/m² (ksi) Avg	V.						
Kt = Min No. of Spec. (No. of Heats)							24.2-

TABLE 4.3.2-ME4

Alloy Designation:

5456-H321 Aluminum Alloy

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet 0.100 to 0.319 (0.040 to 0.125) H321

Testing Temperature, K (F)	297 (75)	7	7 (-320)	20 (-423)	
Tension, Longitudinal					
TUS, MN/m ² (ksi) Avg	396 (57.4)	5	28 (76.6)	665 (96.4)	
Std Deviation					
TYS, MN/m ² (ksi) Avg	272 (39.5)	з	22 (46.7)	363 (52.6)	
Std. Deviation				[
Elong, percent Avg	14.5		26.8	21.7	
RA, percent Avg					
No. of Spec. (No. of Heats)	3 (1)	3	(1)	3 (1)	
E, GN/m ² (10 ⁶ psi) Avg					
No. of Spec. (No. of Heats)					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) Avg K _t = 30.3 Min	328 (47.6)	3	63 (52.7)	392 (56.9)	
No. of Spec. (No. of Heats)	3 (1)	3	(1)	3 (1)	
NTS, MN/ \ln^2 (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)					
Tension, Transverse					
TUS, MN/m ² (ksi) Avg	399 (57.9)	5	(72.5)	613 (88.9)	
Std. Deviation					
TYS, MN/m² (ksi) Avg	273 (39.6)	3	322 (46.7)	373 (54.1)	
Std. Deviation					
Elong, percent Avg	17.5		23,5	14.8	
RA, percent Avg					
No. of Spec. (No. of Heats)	173				
E, GN/m ² (10 ⁶ psi) Avg Min					
No. of Spec. (No. of Heats)					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi) Avg	332 (48.2)		366 (53.1)	389 (56.4)	
K _t = 30.3 Min No. of Spec. (No. of Heats)	3 (1)	3	3 (1)	3 (1)	
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec ² (No. of Heats)					

TABLE 4.3.2-ME5

Alloy Designation:

5456 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition:

Sheet-TIG welded, 5556 Alloy filler 0.100 to 0.319 (0.040 to 0.125) 5456-H321 Sheet, welded and tested

Testing Temperature, K (F)	297 (75)			(-320)	20	(-423)
Fension, Longitudinal						
TUS, MN/m ² (ksi) Avg	358 (32.6)		439	(63.7)	407	(59.1)
Std Deviation						
TYS, MN/m ² (ksi) Avg Min	225 (32.6)		260	(37.7)	341	(49.5)
Std. Deviation						
long, percent Avg Min	13.0		1	5.8		3.5
RA, percent Avg						
No. of Spec. (No. of Heats)	3 (1)		3	(1)	3	(1)
, GN/m ² (10 ⁶ psi) Avg Min						
No. of Spec. (No. of Heats)						
oisson's Ratio						
ork Hardening Coef						
ITS, MN/m ² (ksi) Avg	375 (54.4)		412	(59.7)	412	(59.7)
K _t = 30.3 Min No. of Spec. (No. of Heats)	3 (1)		3	(1)	3	(1)
TS, MN/m ² (ksi) Avg						
K _t = Min No. of Spec. (No. of Heats)						
ension, Transverse						
US, MN/m ² (ksi) Avg Min	375 (51.7)		435	(63.1)	428	(62.1)
Std. Deviation						
YS, MN/m ² (ksi) Avg	209 (30.3)		247	(35.8)	379	(55.0)
Std. Deviation			İ			
ong, percent Avg Min	8.5		3	9.5		5.0
A, percent Avg						
No. of Spec. (No. of Heats)	3 (1)		3	(1)	3	(1)
GN/m ² (10 ⁶ psi) Avg						
No. of Spec. (No. of Heats)						
isson's Ratio						
ork Hardening Coef						
rs, MN/m² (ksi) Avg	357 (51.8)	11	394	(57.1)	384	(55.7)
K _t = 30.3 Min No. of Spec. (No. of Heats)	3 (1)		3	(1)	3	(1)
TS, MN/m ² (ksi) Avg K _t = Min						
No. of Spec. (No. of Heats)						ا

1

Alloy Designation:

5456-H343 Aluminum Alloy

Specification:

Form:

Sheet 0.100 to 0.319 (0.040 to 0.125) H343 Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297	(75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)	4	(-452
Tension, Longitudinal													
TUS, MN/m ² (ksi)	Avg Min	395 389	(57.3) (56.4)	401 393	(58.2) (57.0)	427	(62.0)	510 488	(73.9) (70.8)	592 554	(85.9) (80.4)		(86.5
Std Deviation		5.31	(0.77)					10.0	(1.45)	26.6	(3.86)		
	Avg Min	323 298 19.9	(46.8) (43.2) (2.88)	344 310	(49.9) (45.0)	324	(47.0)	377 348 23.7	(54.7) (50.5) (8.43)	412 372 33.4	(59.8) (5 3.9) (4 .84)		(57.0
-	Avg Min		.4 .0		9.9 9.3		11.7	1	1.5 7.0		9.4 8.0		9.5
	Avg												
No. of Spec. (No. of Heats)	Min	9	(3)	6	(2)	1		9	(3)	9	(3)	1	
	Avg Min	71.7 70.3	(10.4) (10.2) (2)	73.8 69.6 5	(10.7) (10.1) (1)			73.8 70.3 6	(10.7) (10.2) (2)	77.9 75.2 6	(11.3) (10.9) (2)		
Poisson's Ratio													
Nork Hardening Coef				Ì									
NTS, MN/m² (ksi)	Avg	405	(58.8)					489	(70.9)	542	(78.6)		
	Min	402 3	(58.3) (1)					485	(70.4) (1)	535	(77.6) (1)		
	Avg Min	393 390 5	(57.0) (56.6) (1)	394 392 5	(57.2) (56.8) (1)			444 442 5	(64.4) (64.1) (1)	472 463 5	(68.5) (67.1) (1)		
Tension, Transverse													
TUS, MN/m ² (ksi)	Avg Min	403 401	(58.4) (58.1)	401 394	(58.1) (57.2)			499 496	(72.4) (72.0)	566 527	(82.1) (76.4)		
Std. Deviation TYS, MN/m ² (ksi)	Avg	297	(43.1)	302	(43.8)			356	(51.7)	390	(56.5)		
Std. Deviation	Min	296	(43.0)	299	(43.3)			348	(50.5)	376	(54.5)		
	Avg Min).7).5	1	11.2 10,5			t .	12.0 11.5		7.7 5.0		
	Avg Min												
No. of Spec. (No. of Heats)	- 1	5	(1)	5	(1)			5	(1)	5	(1)		
	Avg Min	70.3 69.0	(10.2) (56.7)	73.1 383	(10.6) (55.6)			73.1 394	(10.6) (57.2)	80.7 413	(11.7) (59.9)		
No. of Spec. (No. of Heats)		5	(1)	5	(1)			5	(1)	5	(1)		
oisson's Ratio													
Nork Hardening Coef	1												
	Avg Min	395	(57.3)	392	(56.9)			410	(59.4)	422	(61.2)		
	Avg Min												

Alloy Designation:

5456 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-TIG welded, 5356 Alloy filler 0.100 to 0.319 (0.040 to 0.125) 5456-H343 Sheet, welded and tested

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	20 (-423)	
Tension, Longitudinal		1.			
rus, MN/m² (ksi) Avg	365 (53.0) 363 (52.6)	363 (52.6) 360 (52.2)	471 (68.3) 469 (68.0)	457 (66.3) 439 (63.7)	
Std Deviation	(555,	(52.2)	100 (00.0)		
T/S, MN/m ² (ksi) Avg			18		
Std. Deviation					
Elong, percent Avg	4.9 4.5	4.9 4.5	9.0 9.ບ	2.5 1.5	
RA, percent Avg		- '-			
Min No. of Spec. (No. of Heats)	5 (1)	5 (1)	5 (1)	5 (1)	
e, GN/m ² (10 ⁶ psi) Avg	İ		:		
Min No. of Spec. (No. of Heats)	1	j			
oisson's Ratio		1 11 =	E D		
Vork Hardening Coef		- 1			
NTS, MN/m ² (ksi) K _t = Min No. of Spec. (No. of Heats)					
VTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)					
ension, Transverse					
TUS, MN/m ² (ksi) Avg Min Std. Deviation	354 (51.4) 353 (51.2)	34% (50.4) 281 (40.8)	450 (65.3) 441 (64.0)	459 (66.6) 44C (63.8)	
'YS, MN/m² (ksi) Avg					
Min Std. Deviation					
long, percent Avg	4.2 3.5	4.6 4.5	7.4 6.0	3.2 2.5	
AA, percent Avg					
No. of Spec. (No. of Heats)	5 (1)	5 (1)	5 (1)	5 (1)	
, GN/m ² (10 ⁶ psi) Avg Min					
No. of Spec. (No. of Heats)					
oisson's Ratio					
York Hardening Coef					
ITS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)			1		
ITS, MN/m ² (ksi) Avg K _t = Min					

References: 48652

21654

Alloy Designation:

5456 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-TIG welded, 5556 Alloy filler 0.100 to 0.319 (0.040 to 0.125) 5456-H343 welded and tested

Testing Temperature, K (F)		297	(75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)	4	(-452)
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg	342	(49.6)	328	(47.5)	368	(53.4)	422	(61.2)	403	(58.5)	443	(64.2)
Std. Deviation	Min	330	(47.9)					399	(57.8)	364	(52.8)		
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	199	(28.7)	207	(30.0)	214	(31.0)	240	(34.8)	272	(39.5)	264	(38.3)
Elong, percent	Avg Min		4.6		5.3		6.3		6.9		3.5		4.3
RA, percent	Avg Min												
No. of Spec. (No. of Heats		6	(2)	3	(1)	3	(1)	6	(2)	9	(2)	3	(1)
E, GN/m ² (10 ⁶ psi) No. of Spec. (No. of Heats	Avg Min												
Poisson's Ratio													
Work Hardening Coef													
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min					;							
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min												
Tension, Transverse												ł	
TUS, MN/m ² (ksi)	Avg Min							73					
Std. Deviation]	
TYS, MN/m ² (ksi)	Avg Min									Г			
Std. Deviation						Í		ĺ					
Elong, percent	Avg Min			1									
RA, percent	Avg Min												
No. of Spec. (No. of Heats													
E, GN/m ² (10 ⁶ psi)	Avg Min											,	
No. of Spec. (No. of Heats	1												
Poisson's Ratio													
Work Hardening Coef													
NTS, MN/m² (ksi) Kt = No. of Spec. (No. of Heats	Avg Min												
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min												

Alloy Designation:

5456-0 Aluminum Alloy

Specification:

Form:

Plate 0.635 to 1.269 (0.250 to 0.449) 0 Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)	20 (423)
Tension, Longitudinal		
TUS, MN/m ² (ksi) Avg	351 (50.9) 346 (50.2)	587 (85.1) 583 (84.6)
Std. Deviation	340 (30.2)	365 (64.6)
TYS, 'AN/m ² (ksi) Avg	183 (26.5)	210 (30.5)
Min Std. Deviation	179 (25.9)	203 (29.5)
Elong, percent Avg	16.8 16.0	24.8 23.5
RA, percent Avg	26.1 26.0	25.5 22.9
No. of Spec. (No. of Heats)	2 (1)	2 (1)
E, GN/m ² (10 ⁶ psi) Avg		
No of Spec. (No. of Heats)		
Poisson's Ratio		
Work Hardening Coef		
NTS, MN/m^2 (ksi) Avg $K_t = 6.3$ Min No. of Spec. (No. of Heats)	332 (48.1) 325 (47.2) 4 (1)	305 (44.3) 305 (44.3) 2 (1)
NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)		
Tension, Transverse		
TUS, MN/m ² (ksi) Avg Min Std. Deviation		
TYS, MN/m ² (ksi) Avg		
Min Std. Deviation		
Elong, percent Avg		
RA, percent Avg		
No. of Spec. (No. of Heats)		
E, GN/m ² (10 ⁶ psi) Avg Min		
No. of Spec. (No. of Heats)		
Poisson's Ratio		
Work Hardening Coef		
NTS, MN/ m^2 (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)		
2		et à
NTS, MN/m ² (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)		5.4 c).

Alloy Designation:

5456-0 Aluminum Alloy

Specification:

Form: Thickness, cm (in.): Condition:

0.635 to 1.269 (0.250 to 0.499)

Testing Temperature, K (F)	297 (75)	20 (-423)
Compression, Longitudinal		
CYS, MN/m ² (ksi) Av	- 1	
No. of Spec. (No. of Heats)		
Ec, GN/m ² (10 ⁶ psi) Av Mi No. of Spec. (No. of Heats)	- 1	
Compression, Transverse		
CYS, MN/m² (ksi) No. of Spec. (No. of Heats)	- 1	
Ec, GN/m ² (10 ⁶ psi) Av	- 1	
No. of Spec. (No. of Heats)		
Shear (a) SUS, MN/m² (ksi) Av	210 (30.4)	407 (59.0)
Mi	n	
No. of Spec. (No. of Heats)	7 (1)	7 (1)
G, GN/m ² (10 ⁶ psi) Av		
No. of Spec. (No. of Heats)		
Impact, Charpy V		
Long., Nm(ft-lb) Av	- 1	
No. of Spec. (No. of Heats)	n	
Trans., Nm(ft-lb) Av		
No. of Spec. (No. of Heats)	'	
Fracture Toughness(b)		
K _{Ic} MN/m ^{3/2} (ksi√in.) Av	*	
Orientation: — No. of Spec. (No. of Heats)		
Kie, MN/m ^{3/2} (ksi√in.) Av (From PTSC spec.)(—)Mi No. of Spec. (No. of Heats)		

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{IC} data:

Alloy Designation:

5456-H321 Aluminum Alloy

Specification: Form:

Plate 0.635 to 1.269 (0.250 to 0.499) H321

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)	 	20 (-423)	
Compression, Longitudinal					
CYS, MN/m ² (ksi)	Avg Min				
No. of Spec. (No. of He	eats)			12.5	
Ec, GN/m ² (10 ⁶ psi) No. of Spec. (No. of He	Avg Min				
Compression, Transverse	.013/			D = 1	
CYS, MN/m ² (ksi)	Avg Min				
No. of Spec. (No. of He	ats)				
Ec, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of He					
Shear(a)					
SUS, MN/m ² (ksi)	Avg Min	228 (33.0)		443 (64.3)	
No. of Spec. (No. of He	eats)	7 (1)		7 (1)	
G, GN/m ² (10 ⁶ psi)	Avg Min				-
No. of Spec. (No. of He	eats)				
Impact, Charpy V					
Long., Nm(ft-lb)	Avg Min				
No. of Spec. (No. of He					
Trans., Nm(ft-lb)	Avg				
No. of Spec. (No. of He	Min ats)				
Fracture Toughness(b)	İ				
Kłc MN/m ^{3/2} (ksi√in.)	Avg Min				
Orientation: -					
No. of Spec. (No. of He	ats)				
K _{IE} , MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(—	Avg)Min				
No. of Spec. (No. of He				1	

References: 56754

market fix -

⁽a) Indicate specimen design and orientation for sheer specimens: (b) Indicate specimen design for $K_{\rm IC}$ data:

Alloy Designation: 5456-0 Aluminum Alloy

Specification:

Form:

Plate 1.270 to 2.540 (0.500 to 1.000) 0 Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	4 (-452)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	338 (49.0)	339 (49.1)	455 (66.0)	203 (29.5)
Std. Deviation	Min				
TYS, MN/m ² (ksi)	Avg	160 (23.2)	163 (23.6)	180 (26.1)	203 (29,5)
Std Deviation	Min				
Elong, percent	Avg Min	21.8	26.5	34.5	30.7
RA, percent	Avg	31	43	35	24
No. of Spec. (No. of Hea	Min ts)	1	1	1	1
E, GN/m ² (10 ⁶ psi)	Avg Min				
No, of Spec. (No, of Hea	ts)				
Poisson's Ratio					
Vork Hardening Coef					
NTS, MN/m ² (ksi) K _t = 16	Avg Min	351 (50.9)		411 (59.6)	420 (60.9)
No. of Spec. (No. of Hea		1	1	1	1
ITS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ts)				
Tension, Transverse			Ì		ľ
TUS, MN/m ² (ksi)	Avg				
Std. Deviation	Min				
TYS, MN/m² (ksi)	Avg Min				
Std. Deviation					
Elong, percent	Avg Min				
RA, percent	Avg	144.			
No. of Spec. (No. of Hea	Min ts)				
E, GN/m ² (10 ⁶ psi)	Avg				
No. of Spec. (No. of Hea	Min				
oisson's Ratio					
fork Hardening Coef					
iTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min				
ITS, MN/m ² (ksi)	Avg				
Kt = No. of Spec. (No. of Hea	Min				

Alloy Designation:

5456-H321 Aluminum Alloy

Specification:

Form:

Plate

Thickness, cm (in.): Condition:

1.270 to 2.540 (0.500 to 1.000) H321

	297	(75)	195	(-108)		77	(-320)	20	(-423)	4	(-452)
Avg	353	(51.2)	379	(55.0)		492	(71.3) (68.9)	636	(92.2) (90.2)	638	(92.6
	338	(43.2)				1,,,	(00.0)	022	(55.2)	Ì	
Avg Min	235 225	(34.1)	236	(34.3)		275 273	(39.9) (39.6)	303 273	(43.9) (39.6)	321	(46.5
	-										
Avg Min				20.5		1			18.2 14	2	3.6
Avg				31		1	28		16.8 15	2	5
its)	7	(3)	1			2	(2)	5	(1)	1	
Avg Min											
its)											
Avg Min	411 403	(59.6) (58.4)						461 392	(66.8) (56.8)		
its)	5	(1)						5	(1)		
Avg Min	412	(59.7)				456	(66.2)			523	(75.8
(ts)	('				'	
Avg											
Min											
Avg				4							
MILL											
Avg Min											
Avg											
its)											
Avg Min											
ts)			17								
Avg Min											
ts)											
Avg					1					7-3	
Min			1			1		1		1	
	Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Mi	Avg 353 Min 339 Avg 235 Min 225 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1 Avg Min 1	Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Mi	Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Mi	Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Mi	Avg Min Avg Min Avg Min Avg Min Avg Min (ts) Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min (ts) Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Av	Avg Min 235 (51.2) 379 (55.0) 492 475 Avg 235 (34.1) 236 (34.3) 275 273 Avg 13.5 20.5 11 Avg Min 11 Avg Min 7 7 (3) 1 Avg Min 412 (59.7) Min 11 Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Its) Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Av	Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Mi	Avg Min 2353 (51.2) 379 (55.0) 492 (71.3) 636 (68.9) 622 (71.3) 636 (68.9) 622 (71.3) 636 (68.9) 622 (71.3) 636 (68.9) 622 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 636 (71.3) 63	Avg 363 (61.2) 379 (55.0) 492 (71.3) 636 (92.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (68.9) 622 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90.2) 475 (90	Avg 363 (51.2) 379 (55.0) 492 (71.3) 636 (92.2) 638 Avg 235 (34.1) 236 (34.3) 275 (39.9) 303 (43.9) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6) 273 (39.6

Alloy Designation:

5456-H321 Aluminum Alloy

Specification:

Form: Thickness, cm (in.): Condition:

Plate 1.270 to 2.540 (0.500 to1.000) H321

Testing Temperature, K (F)	297 (75)	77	(-320)	
Fatigue, Axia. Louding				
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = 0 and K _f =	290 (42.0)	324	(47.0)	
No. of S-N Curves (No. of Heats)	1	1		
Ratio S _N /TUS at 10 ⁵ cycles				
S _N at 10 ⁶ cycles, fMN/m ² (ksi) Loading frequency Hz with R = 0 and K _t =	248 (36.0)	283	(41.0)	
No. of S-N Curves (No. of Heats)	1	1		
Ratio S _N /TUS at 10 ⁶ cycles				
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)				
Ratio S _N /TUS at 10 ⁷ cycles				
Fatigue, Flexural Loading				
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)				
Ratio S _N /TUS at 10 ⁵ cycles				
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency With R = and K _t = No. of S-N Curves (No. of Heats)				
Ratio S _N /TUS at 10 ⁶ cycles				
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)				
Ratio S _N /TUS at 10 ⁷ cycles				

Alloy Designation:

5455 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-MIG welded, 5556 Alloy filler 1.270 to 2.540 (0.500 to 1.000) 5456-H321 Plate, welded and tested

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)	77 (-320)	
ension, Longitudinal			
	Avg 308 (44.6)	407 (59.0)	
Std Deviation	Min		
	Avg 155 (22.5)	181 (26.2)	
Std Deviation	Min		
	Avg 13.0 Min	14.5	
	Avg Min		
No. of Spec. (No. of Heats)	1	1	
	Avg Min		
No. of Spec. (No. of Heats)			
oisson's Ratio			
ork Hardening Coef			
	Avg		
TS, MN/m² (ksi)	Avg		
K _t = No. of Spec. (No. of Heats)	Ain		
ension, Transverse			
1	Avg		
Std. Deviation			
	Avg		
Std. Deviation			
	Avg Ain		
	Avg /		
No. of Spec. (No. of Heats)			
	Avg		
No. of Spec. (No. of Heats)			
oisson's Ratio			
ork Hardening Coef			
	lvg:		
K _t = No. of Spec. (No. of Heats)	Ain		
	Avg Ain		
No. of Spec. (No. of Heats)			
eferences: 48787		224<	

Alloy Designation:

5456 Aluminum Alloy (Weld Metal)

Specification:

Condition:

Form: Thickness, cm (in.): Plate-MIG welded, 5556 Alloy filler 1.270 to 2.540 (0.500 to 1.000) 5456-H321 Plate, welded and tested

Testing Temperature, K (F)	297	7 (75)		77	(-320)	
Fatigue, Axial Loading						
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency With R = 0 and K _t =	207	(30.0)		241	(35.0)	
No. of S-N Curves (No. of Heats)	1			1		
Ratio S _N /TUS at 10 ⁵ cycles						
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = 0 and K _t =	159	(23.0)		209	(30.0)	
No. of S-N Curves (No. of Heats)	1			1		
Ratio S _N /TUS at 10 ⁶ cycles						
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz						
with R = and K _t = No. of S-N Curves (No. of Heats)						
Ratio S _N /TUS at 10 ⁷ cycles						
Fatigue, Flexural Loading						
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz						
with R = and K _t = No. of S-N Curves (No. of Heats)						
Ratio S _N /TUS at 10 ⁵ cycles						
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz						
with R = and K _t = No. of S-N Curves (No. of Heats)						
Ratio SN/TUS at 10 ⁶ cycles						
S _N at 10 ⁷ cycles, MN/m ² (ksi)						
Loading frequency Hz with R = and K _t =						
No. of S-N Curves (No. of Heats)						
Ratio S _N /TUS at 10 ⁷ cycles						1.

Alloy Designation:

5456-H343 Aluminum Alloy

Specification:

Thickness, cm (in.): Condition:

Plate 1,270 to 2,540 (0,500 to 1,000) H343

Testing Temperature, K (F)	297 (75)	196 (-108)	144 (-200)	77 (-320)	20 (-423)
Tension, Longitudinal					
TUS, MN/m ² (ksi) Avg	387 (56.1) 385 (55.9)	383 (55.6)	416 (60.3)	497 (72.1) 491 (71.2)	516 (74.8)
Std Deviation	(00.5)			(71.2)	
TYS, MN/m ² (ksi) Avg Min Std. Deviation	30C (44.4) 305 (44.2)	308 (44.6)	326 (47.3)	361 (52.3) 360 (52.2)	378 (54.8)
Elong, percent Avg	1 0.2 10.0	12.5	15.5	13.9 11.0	7.0
RA, percent Avg					
No. of Spec. (No. of Heats)	3 (1)	1	1	3 (1)	1
E, GN/m ² (10 ⁶ psi) Avg					
No. of Spec. (No. of Heats)					
Poisson's Ratio					
Vork Hardening Coef					
NTS, MN/m^2 (ksi) Avg $K_t = 13.2$ Min	367 (53.3)	360 (52.2)	373 (54.1) 372 (54.0)	422 (61.2)	
No. of Spec. (No. of Heats)	1	1	2 (1)	1	
NTS, MN/m ² (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)					
ension, Transverse					
TUS, MN/m ² (ksi) Avg Min					
Std. Deviation					
YS, MN/m² (ksi) Avg Min					
Std. Deviation					
Elong, percent Avg Min					
RA, percent Avg					
No. of Spec. (No. of Heats)					
E, GN/m ² (10 ⁶ psi) Avg					
No. of Spec. (No. of Heats)					
oisson's Ratio					
Vork Hardening Coef					
ITS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)					
ITS, MN/nt ² (ksi) Avg		Y			

References: 90184

226<

Alloy Designation:

5456 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Plate-MIG welded, 5356 Alloy filler 1.270 to 2.540 (0.500 to 1.000) 5456-H343 Plate, welded and tested

Testing Temperature, K (F))	297	(75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)	
Tension, Longitudinal												
TUS, MN/m ² (ksi)	Avg Min	270 242	(39.1) (35.1)	269 250	(39.0) (36.2)	300 275	(43.5) (39.9)	319 304	(46.3) (44.1)	319 290	(46.2) (42.1)	
Std. Deviation												
TYS, MN/m ² (ksi)	Avg Min	1 77 170	(25.6) (24.6)	1 84 184	(26.7) (26.7)	194 183	(28.1) (26.5)	210 200	(30.5) (29.0)	228 217	(33.1) (31.5)	
Std. Deviation												
Elong, percent	Avg Min		4.5 3.5		5.8 5.5		6.0 5.0		4.9 4.8		4.0 3.5	
RA, percent	Avg Min							11				
No. of Spec. (No. of Hea		3	(1)	2	(1)	2	(1)	3	(1)	3	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min	7		<u></u>								
No. of Spec. (No. of Hea	ats)			į								
Poisson's Ratio												
Work Hardening Coef												
NTS, MN/m² (ksi)	Avg							}				
K _t = No. of Spec. (No. of Hea	Min ats)											
NTS, MN/m² (ksi)	Avg											
K _t = No. of Spec. (No. of Hea	Min ats)							i				
Tension, Transverse												
TUS, MN/m ² (ksi)	Avg Min											
Std. Deviation	1											
TYS, MN/m² (ksi)	Avg Min			}								
Std. Deviation				,								
Elong, percent	Avg Min											
RA, percent	Avg											
No. of Spec. (No. of Hea	Min ets)											
E, GN/m ² (10 ⁶ psi)	Avg											
No. of Spec. (No. of Hea	Min :											
Poisson's Ratio												
Vork Hardening Coef										}		
NTS, MN/m ² (ksi)	Ауд											
K _t = No. of Spec. (No. of Hea	Min ats)											
NTS, MN/m ² (ksi)	Avg											
K _t = No. of Spec. (No. of Hea	Min its)			174								}

Alloy Designation:

5456 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Plate-TIG welded, 5356 Alloy filler 1.270 to 2.540 (0.500 to 1.000) 5456-H343 Plate, welded and tested

Testing Temperature, K (F)	297	(75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)	
Tension, Longitudinal											
TUS, MN/m ² (ksi) Avg		(41.6)	315	(45.7)	299	(43.4)	352	(51.1)	345	(50.0)	
Std. Deviation	251	(36.4)	314	(45.5)	283	(41.1)	296	(42.9)	326	(47.3)	
TYS, MN/m ² (ksi) Avg		(26.3) (25.8)	179 172	(25.9) (25.0)	192 185	(27.8) (26.8)	214 206	(31.0) (29.9)	228 223	(33.0) (32.4)	
Std. Deviation	""	(23.0)		(25.0)	100	(20.0)	100	(20,5)		,,	
Elong, percent Avg		6.5 5.0		8.5 7.0		6.3 6.0	I	5.5 3.0		4.0 3.5	
RA, percent Avg											
Min No. of Spec. (No. of Heats)	4	(1)	2	(1)	4	(1)	4	(1)	2	(1)	
E, GN/m ² (10 ⁶ psi) Avg											
No. of Spec. (No. of Heats)											
Poisson's Ratio											
Nork Hardening Coef											
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)											
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)	ŧ										
Tension, Transverse											
TUS, MN/m ² (ksi) Avg Min	L .										
Std. Deviation											
TYS, MN/m ² (ksi) Avg Min											
Std. Deviation											
Elong, percent Avg Min											
RA, percent Avg											
No. of Spec. (No. of Heats)											
E, GN/m ² (10 ⁶ psi) Avg		•									
No. of Spec. (No. of Heats)											
oisson's Ratio											
York Hardening Coef											
NTS, MN/m^2 (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)											
NTS, MN/m ² (ksi) Avg K _t = Min No, of Spec. (No. of Heats)											

Alloy Designation:

5456-H321 Aluminum Alloy

Specification:

Form:

Thickness, cm (in.): Condition:

Plate 2.541 to 5.080 (1.001 to 2.000) H321

Testing Temperature, K (F)	297 (7	75)	 77 (-320)	
Tension, Longitudinal				
		(55.4)	506 (73.4)	
Std. Deviation	Min			
		(35.8)	288 (41,8)	
Std. Deviation	Min			
Elong, percent	Avg 13.	2	26.0	
	Min			
	Avg Min		-	
No. of Spec. (No. of Heats)	1	}	1	
	Avg			
No. of Spec. (No. of Heats)	Min			
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m² (ksi)	Avg 430	(62.4)	558 (81.0)	
	Min 2	(1)	2 (1)	
	Avg 412	(59.7)	486 (70.5)	
	Min	(1)	2 (1)	
Tension, Transverse	-			
	Avg 382	(55.4)	483 (70.0)	
Std. Deviation	Min			
TYS, MN/m ² (ksi)	Avy 230	(33.3)	259 (37.5)	
	Min			
	Avg 16.	5	25.0	
	Min			
	Avg		1	
No. of Spec. (No. of Heats)	Min 1		1	
	Avg			
No. of Spec. (No. of Heats)	viin			
Poisson's Ratio				
Work Hardening Coef				
	Avg 430	(62.3)	541 (78.4)	
	Viin 2	(1)	2 (1)	
	Avg 405	(58.7)	472 (68.4)	
	Min		2 (1)	

FIGURE 4.3.2-ME1. FATIGUE LIFE CURVES FOR AXIAL LOADING ON SMOOTH SPECIMENS OF 5456-H343 ALUMINUM ALLOY SHEET 0.254 cm (0.100 in.) THICK AT CYCLIC FREQUENCY OF 1833 Hz AT R = .1[61996]

FIGURE 4.3.2-ME2. FATIGUE LIFE CURVES FOR AXIAL LOADING ON SPECIMENS OF 5456-H343 ALUMINUM ALLOY SHEET 0.254 cm (0.100 in.) THICK, TIG WELDED (5556 ALLOY FILLER) AND TESTED AT CYCLIC FREQUENCY OF 1833 Hz [61996]

TABLE 4.3.2-TR1

Alloy Designation:

5456-H343 Aluminum Alloy

Specification: Form: Dimension: Condition:

H343

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹ No. of Spec. References: 90218	109	(63.0)	64.0	(37.0)	44. 0	(25.4)	27.0	(15.6)				
Thermal Expansion (T ₂₇₃ to T) Longitudinal Percent No. of Spec. References: 48571	0.00		-0.332 1		-0.364 1		-0.367 1		-0.367 1		-0.367 1	
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu Ib ⁻¹ F ⁻¹ No. of Spec. References:												
Ohm m Ohm circular mil ft-1 No. of Spec. References: 90164	5.92 x 10	0-8 (35.6)	3.80 x 1	0-8	3.35 x 1	0-8 (22.9)	3.26 x 1	10 ⁻⁸ (19.6)	3.26 x 1	0 ⁻⁸ (19.6)	3.26 x 1	10-8 (19.6)

FIGURE 4.3.2-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 5456-H343

FIGURE 4.2.3-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR ALUMINUM ALLOY 5456-H343

FIGURE 4.2.3-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 5456

¢ .

TABLE 4.4.1-ME0.1

Alloy Designation:

6061-T4 Aluminum Alloy

Specification:

QQ-A-327 Sheet Up to 0.099 (0.039) T4

Form:

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		29	7 (75)	195	(-108)	 77	(-320)	20	(-423)	
Tension, Longitudinal										
TUS, MN/m ² (ksi)	Avg	279	(40.5)	305	(44.2)	400	(58.0)	598	(86.8)	
Std Deviation	Min	277	(40.2)	301	(43.6)	399	(57.9)	597	(86.6)	
TYS, MN/m ² (ksi)	Avg Min	211 210	(30.6) (30.4)	221 217	(32.0) (31.5)	259 256	(37.5) (37.2)	325 320	(47.2) (46.4)	
Std Deviation			(00.17		(0)					
Elong, percent	Avg Min	l .	17.2 17.0		0.3	t t	8.7 7.5		31.2 31.0	
IA, percent	Avg									
	Min		441		(4)	,	(1)	,	(1)	
No. of Spec. (No. of Hea	its)	3	(1)	3	(1)	3	(1)	3	(1)	
, GN/m ² (10 ⁶ psi)	Avg									
No of Spec. (No. of Hea	its)									
oisson's Ratio										
ork Hardening Coef										
ITS, MN/m ² (ksi)	Avg	283	(41.0)	292	(42.4)	353	(51.2)	427	(62.0)	
$K_t = 6.3$ No. of Spec. (No. of Hea	Min ts)	276 2	(40.1) (1)	290 3	(42.1)	345	(50. 0) (1)	423 3	(61.8)	
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min									
ension, Transverse										
US, MN/m ² (ksi)	Avg Min	274 272	(39.7) (39.4)	300 299	(43.5) (43.3)	392 390	(56.9) (56.5)	636 635	(92.3) (92.1)	
Std. Deviation										
YS, MN/m ² (ksi)	Avg Min	181 180	(26.3) (26.1)	201 200	(29.1) (29.0)	217 211	(31.5) (30.6)	294 290	(42.6) (42.0)	
Std. Deviation										
long, percent	Avg Min		17.3 17.0		0.0		9.0 8.0		34.3 34.0	
A, percent	Avg Min									
No. of Spec. (No. of Hea		2	(1)	2	(1)	2	(1)	2	(1)	
, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of Hear						1				
oisson's Ratio										
ork Hardening Coef										
TS, MN/m ² (ksi) K _t = 6.3 No. of Spec. (No. of Hea	Avg Min	271 265 3	(39.3) (38.4) (1)	288 284 2	(41.8) (41.2) (1)	352 348 2	(51.1) (50.5) (1)	432 427 2	(62.6) (62.0) (1)	
TS, MN/m ² (ksi) K _t =	Avg Min									
No of Spec. (No of Heat	ts)	I.			}	1				230

Alloy Designation:

6061-T4 Aluminum Alloy

Specification:

Form:

Sheet 0,100 to 0,219 (0.040 to 0,125) T4 Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)		77 (-320)	
Tension, Longitudinal				
TUS, MN/m ² (ksi)	vg 282 (40.9)		419 (60.7)	
Std Deviation	tin 265 (38.4)		394 (57.1)	
	ivg 159 (23.0)		209 (30.3) 192 (27.8)	
Std Deviation				
	vg 21.3 hn 17		33.8 25	
	vg			
No of Spec. (No. of Heats)	6 (2)		6 (2)	
E, GN/m ² (10 ⁶ psi) A	vg			
No. of Spec. (No. of Heats)	lin			
Poisson's Ratio				17
Work Hardening Coef				
NTS, MN/m² (ksi) A	vg 297 (43.1)		414 (60.0)	
	288 (41.7) 6 (2)		403 (58.5) 6 (2)	
	vg lin			
Tension, Transverse				
N	vg 279 (40.5) 265 (38.4)		403 (58.4) 396 (57.5)	
Std Deviation				
N	vg 155 (22.5) In 146 (21.2)		197 (28.5) 194 (28.1)	
Std. Deviation				
	vg 23.8		34.3 32	
	vg in			
No. of Spec. (No. of Heats)	6 (2)		6 (2)	
N	vg In			
No. of Spec. (No. of Heats)				
Poisson's Ratio				
Work Hardening Coef				
	vg 293 (42.5)		392 (56.8)	
K _t = 3 M No of Spec. (No. of Heats)	in 285 (41.4) 6 (2)		350 (50.7) 6 (2)	
NTS, MN/m² (ksi) A	vg			
	in		3	

Alloy Designation:

6061-T6 Aluminum Alloy

Specification:

AMS-4027G, QQ-A-250/11D

Form:

Thickness, cm (in.): Condition:

Sheet 0.100 to 0.318 (0.040 to 0.125)

T6

Testiny Temperature, K (F)	297 (75)		77 (-320)	20 (-423)	
Fatigue, Flexural Loading, Surface I	inish 150 rms, Ro	ckwell B 39			
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _t = 1	172 (25)		255 (37)	275 (40)	
No. of S-N Curves (No. of Heats)	1 (1)		1 (1)	1 (1)	
Ratio S _N /TUS at 10 ⁵ cycles	0.60		0.66	0.58	
S_N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _t = 1	158 (23)		220 (32)	234 (34)	
No of S-N Curves (No. of Heats)	1 (1)		1 (1)	1 (1)	
Ratio S _N /TUS at 10 ⁶ cycles	0.55		0.57	0.49	
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _t = 1	152 (22)		214 (31)		
No. of S-N Curves (No. of Heats)	1 (1)		1 (1)		
Ratio S _N /TUS at 10 ⁷ cycles	0.52		0.55		
Fatigue, Flexural Loading, Surface I	inish 20 rms, Roc	kwell B 44			
S_N at 10^5 cycles, MN/m^2 (ksi) Loading frequency Hz with R = -1 and K _t = 1	186 (27)		255 (37)	290 (42)	
No. of S-N Curves (No. of Heats)	1 (1)		1 (1)	1 (1)	
Ratio S _N /TUS at 10 ⁵ cycles	0.63		0.65	0.60	
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R =-1 and K _t = 1	165 (24)		228 (33)	228 (33)	
No. of S-N Curves (No. of Heats)	1 (1)		1 (1)	1 (1)	
Ratio S _N /TUS at 10 ⁶ cycles	0.57		0.58	0.47	
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _t = 1	152 (22)		200 (29)		
No. of S-N Curves (No. of Heats)	1 (1)		1 (1)	1 (1)	
Ratio SN/TUS at 107 cycles	0.51		0.51		

Alloy Designation:

6061 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-MIG welded, 4043 Alloy filler 0.100 to 0.319 (0.040 to 0.125) 6061-T4 Sheet, welded and tested as welded

Testing Temperature, K (F)		297 (75)		77 (-320)	
Tension, Longitudinal	l				
TUS, MN/m ² (ksi)		248 (35.9)		375 (54.4)	
Std Deviation	Min	240 (34.8)		367 (53.2)	
TYS, MN/m ² (ksi)		138 (20.0)		179 (25.9)	
Std. Deviation	Min	128 (18.5)		167 (24.2)	
Elong, percent	Avg	12.3		19.4	
24	Min	10		18	
RA, percent	Avg Min				
No. of Spec. (No. of Heats) (6 (2)		5 (2)	
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Heats					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg	176 (25.5)		224 (54.5)	
K _t = 3 No. of Spec. (No. of Heats	Min	161 (23.4) 4 (2)		195 (29.3) 3 (2)	
NTS, MN/m² (ksi) K _t =	Avg Min				
No. of Spec. (No. of Heats					
Tension, Transverse					
TUS, MN/m ² (ksi)		236 (34.2) 225 (32.6)		376 (54.5) 369 (53.5)	
Std Deviation		(02.0)		(50.5)	
TYS, MN/m ² (ksi)		136 (19.7) 129 (18.7)		197 (28.5) 181 (26.2)	
Std. Deviation	IVIIII	129 (10.7)	-=	101 (20.2)	
Elong, percent	Avg Min	11.5 8		16 5	
RA, percent	Avg				
No. of Spec. (No. of Heats)	Min	6 (2)		5 (2)	
E, GN/m ² (10 ⁶ psi)	Avg	- 1			
No of Spec. (No. of Heats)	Min				
Poisson's Ratio					
Nork Hardening Coef					
	-	189 (27.4)		223 (32.3)	
K _t = 3 No of Spec. (No. of Heats)		179 (26.0) 6 (2)	. 7	213 (30.9) 6 (2)	
	Avg				
K _t = No of Spec. (No. of Heats)	Min				

Alloy Designation:

6061 Aluminum Alloy (Weld Metal)

Specification:

Form:

Sheet-MIG welded, 4043 Alloy filler 0.100 to 0.319 (0.040 to 0.125) 6061-T4 Sheet, welded, aged to T6, and tested

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)		77 (-320)	
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	304 (44.1)		397 (57.6)	
Std Deviation	Min	274 (39.7)		386 (56.0)	
TYS, MN/m² (ksi)	Avg	277 (40.2)		326 (47.3)	
Std. Deviation	Min	254 (36.8)		316 (45.9)	
Elong, percent	Avg	4.5		5.2 2	
RA, percent	Avg Min			127	
No. of Spec. (No. of H		8 (2)		7 (2)	
E, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec. (No. of H					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg	249 (36.1)		284 (41.2)	
K _t = 3 No. of Spec. (No. of H	Min eats)	225 (32.7) 5 (2)		263 (38.1) 6 (2)	
NTS, MN/m ² (ksi)	Avg			Ì	
K _t = No. of Spec. (No. of H	Min leats)				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg	301 (43.6)		399 (57.9) 349 (50.6)	
Std Deviation	Min	283 (41.0)		343 (30.0)	
TYS, MN/m ² (ksi)	Avg	262 (38.0)		332 (48.2)	
Std. Deviation	Min	208 (30.1)		348 (50.5)	
				5.9	
Elong, percent	Avg Min	4.4 3		1.5	
RA, percent	Avg				
	Min	7 (2)		8 (2)	
No. of Spec. (No. of H	eats)	7 (2)		6 (2)	
E, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec. (No. of He					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg	250 (36.2)	4	290 (42.0)	
$K_{\uparrow} = 3$ No. of Spec. (No. of He	Min eats)	232 (33.6) 5 (2)		259 (37.5) 5 (2)	
NTS, MN/m ² (ksi)	Avg				
Kt =	Min				

Alloy Designation:

6061 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-MtG welded, 4043 Alloy filler 0.100 to 0.319 (0.040 to 0.125) 6061-T6 Sheet, welded and tested

Testing Temperature, K (F)	297 (75)	77 (-320)	20 (-423)
Tension, Longitudinal			
TUS, MN/m ² (ksi) A		327 (47.4)	452 (65.5)
Std Deviation			
TYS, MN/m ² (ksi) A Std. Deviation		199 (28.8)	221 (32.0)
Elong, percent A	-	10.5	10.8
RA, percent A	- 1		
No. of Spec. (No. of Heats)	3 (1)	3 (1)	3 (1)
E, GN/m ² (10 ⁶ psi) And M Mo. of Spec. (No. of Heats)			
oisson's Ratio			
Verk Hardening Coef			
NTS, MN/m ² (ksi) A		262 (38.0)	288 (41.8)
K _t = 30.3 M No. of Spec. (No. of Heats)	n 3 (1)	3 (1)	3 (1)
ITS, MN/m² (ksi) Av K _t = Mi No. of Spec. (No. of Heats)			
ension, Transverse			
'US, MN/m ² (ksi) Av		325 (47.2)	413 (59.9)
Std. Deviation			
'YS, MN/m² (ksi) As		196 (28.4)	413 (59.9)
Std. Deviation			
long, percent Av Mi		8.5	6.5
A, percent Av			
No. of Spec. (No. of Heats)	3 (1)	3 (1)	3 (1)
, GN/m ² (10 ⁶ psi) Av			
No. of Spec. (No. of Heats)			
oisson's Ratio			
ork Hardening Coef			-
TS, MN/m ² (ksi) Av $K_t = M_1$ No. of Spec. (No. of Heats)	- 1		
TS, MN/m ² (ksi) Av K _t = Mi No. of Spec. (No. of Heats)		F	

Alloy Designation:

6061 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-TIG welded, 4043 Alloy filler 0.100 to 0.319 (0.040 to 0.125) 6061-T6 Sheet, welded and tested

Testing Temperature, K (F)	297	(75)		77	(-320)	20	(-423)	
Tension, Longitudinal									
rus, MN/m² (ksi)	Avg Min	203	(29.4)		308	(44.6)	412 410	(59.7) (59.4)	
Std. Deviation	MILL				ļ			,,,,,	
TYS, MN/m ² (ksi)	Avg								
Std. Deviation	Min								
long, percent	Avg				1				
	Min		i						
RA, percent	Avg								
No. of Spec. (No. of H	Min eats)	1			1		6*	(1)	
E, GN/m ² (10 ⁶ psi)	Avg								
No. of Spec. (No. of H	M:n leats)								
oisson's Ratio									
Vork Hardening Coef							ŀ		
ITS, MN/m² (ksi)	Avg							ļ	
K _t = No. of Spec. (No. of H	Min eats)								
ITS, MN/m² (ksi)	Avg								
Kt = No. of Spec. (No. of He	Min eats)								
ension, Transverse									
US, MN/m ² (ksi)	Avg Min	201	(29.2)		310	(44.9)			
Std. Deviation	74111								
YS, MN/m² (ksi)	Avg Min				ļ				
Std. Deviation	WIIII								
long, percent	Avg Min								
IA, percent	Avg								
	Min	1			1				
No. of Spec. (No. of He		'		41	,				
, GN/m ² (10 ⁶ psi)	Avg Min								
No of Spec, (No. of He	eats)								
oisson's Ratio									
fork Hardening Coef									
NTS, MN/m² (ksi)	Avg								
Kt = No. of Spec. (No. of He	Min eats)								
ITS, MN/m² (ksi)	Avg				ì				
K _t = No. of Spec. (No. of He	Min								

42002

References: 42002
* 6 specimens tested at 20 K (-423 F) each had longitudinal grain orientation on one side of the weld, transverse on the other.

6061-T6 Aluminum Alloy Alloy Designation:

Specification: AMS-4027G, QQ-A-250/11D

Form: Plate
Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)
T6

Testing Temperature, K (F)	297	(75)		20	(-423)		
Tension, Longitudinal								
TUS, MN/m ² (ksi)	Avg	310	(45.0)		496	(72.0)		
Std Deviation	Min	309	(44.8)		494	(71.6)		
TYS, MN/m ² (ksi)	Avg	288	(41.9)		362	(52.5)		
Std. Deviation	Min	288	(41.8)		358	(52.0)		
Elong, percent	Avg Min		11.5			23.8 22.5		
RA, percent	Avg Min		33.6 32.4			33.6 33.1		
No of Spec. (No. of Hea		2	(1)		2	(1)		
E, GN/m ² (10 ⁶ psi)	Avg Min						ŀ	
No. of Spec. (No. of Hea	ets)							
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m ² (ksi)	Avg	303	(44.0)		421	(61.0)		
$K_t = 6.3$ No. of Spec. (No. of Hea	Min ats)	292 4	(42.3) (1)		414	(60.0)		
NTS, MN/m ² (ksi)	Avg							
$K_t =$ No. of Spec, (No. of Hea	Min ats)							
Tension, Transverse								
TUS, MN/m ² (ksi)	Avg						- 1	
Std Deviation	Min							
TYS, MN/m ² (ksi)	Avg Min							
Std Deviation	Willi							
Elong, percent	Avg Min							
RA, percent	Avg							
No. of Spec. (No of Hea	Min (
E, GN/m ² (10 ⁶ psi)	Avg			ļ				
No. of Spec. (No. of Hea	ots)							
Poisson's Ratio					}			
Work Hardening Coef								
NTS, MN/m ² (ksi)	Avg		111					
K _t ≠ No. of Spec. (No. of Hea	Min its)							
NTS, MN/m ² (ksi)	Avg							
K _t = No of Spec. (No. of Hea	Min							

Alloy Designation:

6061 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Plate-MIG welded, 4043 Alloy filler 1.270 to 2.540 (0.500 to 1.000) 6061-T6 Plate, welded and tested

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	4 (-452)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	214 (31.0)	239 (34.6)	303 (44.0)	339 (49.1)
Std Deviation	Min			, II , II	
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	144 (20.9)	163 (23.6)	178 (25.8)	259 (37.6)
Elong, percent	Avg	6.0	6.0	5.5	4.5
BA	Min	19	19	12	9
RA, percent	Avg				
No. of Spec. (No of Heat	ts)	1	1	1	1
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Heat	ts)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg	234 (34.0)	266 (38.6)	273 (39.6)	275 (39.9)
K _t = 16 No. of Spec. (No. of Heat	Min (s)	1	1	1	1
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg				
Std Deviation	Min				
TYS, MN/m ² (ksi)	Avg				
Std. Deviation	Min				
Elong, percent	Avg Min				
RA, percent	Avg Min				
No. of Spec. (No. of Heat					
E, GN/m ² (10 ⁶ psi)	Avg				
No of Spec. (No. of Heat	s)	:			
Poisson's Ratio					
Work Hardening Coef					7
NTS, MN/m² (ksi) K _t = No of Spec. (No. of Heat	Avg Min				
NTS, MN/m² (ksi) K _t =	Avg Min				
No. of Spec. (No. of Heat	s)	i		1	

Alloy Designation:

6061 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-MIG welded, 4043 Alloy filler 1.270 to 2.540 (0.500 to 1.000) 6061-T6 Plate, welded, heat treated to T6, and tested

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	4 (-452)
Tension, Longitudinal					
	Avg 29	5 (43.3)	330 (47.8)	395 (57.3)	452 (65.6)
Std Deviation					
	Avg 24	8 (35.9)	264 (38.3)	292 (42.3)	309 (44.8)
Std Deviation	Min				
	Avg	11.0	21.5	16.5	15.0
	Min		20	12	16
	Avg Min	44	38	12	
No of Spec. (No. of Heats)	1		1	1	[1
	Avg Min				
No of Spec. (No. of Heats)					
Poisson's Ratio					
Nork Hardening Coef					
	Avg 39	6 (57.5)	424 (61.5)	447 (64.8)	463 (67.2)
$K_t = 16$ No. of Spec. (No. of Heats)	Min 1		1	1	= 1
NTS, MN/m² (ksi)	Avg				
K _t = No. of Spec. (No. of Heats)	Min				
Tension, Transverse					
	Avg Min				
Std Deviation	101111				
	Avg				
Std. Deviation	Min				
Elong, percent	Avg				
	Min				
	Avg Min				
No. of Spec. (No. of Heats)					
	Avg Min				
No of Spec. (No. of Heats)					
oisson's Ratio					
Vork Hardening Coef					
	Avg				
K _t = No of Spec. (No. of Heats)	Min				
	Avg				
K _t = No of Spec, (No. of Heats)	Min	1 1			

Alloy Designation:

6061 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Plate-MIG welded, 5356 Alloy filler 1.270 to 2.540 (0.500 to 1.000) 6061-T6 Plate, welded and tested

Testing Temperature, K (I	F)	297 (75)	195 (-108)	77 (-320)	4 (-452)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	225 (32.7)	256 (37.1)	324 (47.0)	398 (57.7)
Std Deviation	Min				
TYS, MN/m ² (ksi)	Avg Min	156 (22.6)	170 (24.7)	188 (27.3)	243 (35.3)
Std Deviation	144111				
Elong, percent	Avg Min	8.0	9.0	13.5	13.5
RA, percent	Avg	31	36	39	24
No. of Spec. (No. of He	Min eats)	1	1	1 =	1
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec (No. of He					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg	323 (46.9)	345 (50.1)	373 (54.1)	367 (53.3)
$K_t = 16$ No. of Spec. (No. of He	Min eats)	1	1	1	1
NTS, MN/m² (ksi)	Avg				
K _t = No. of Spec. (No. of He	Min eats)				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg Min				
Std Deviation					
TYS, MN/m² (ksi)	Avg				
Std Deviation	Min				
Elong, percent	Avg Min				
RA, percent	Avg Min				
No. of Spec. (No. of He					
E, GN/m ² (10 ⁶ psi)	Avg				
No. of Spec. (No. of He	eats)				
Poisson's Ratio					
Nork Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min				
Tag. Of Spec. (140, Of File	30(3)			E 1	246<

Alloy Designation:

6061 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Plate-MIG welded, 5356 Alloy filler 1.270 to 2.540 (0.500 to 1.000) 6061-T6 Plate, welded, heat treated to T6, and tested

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	4 (-452)
Tension, Longitudinal				
TUS, MN/m ² (ksi)	Avg 279 (40.5)	320 (46.4)	394 (57.1)	476 (69.1)
Std Deviation	VIIII			
	Avg 202 (29.3)	242 (35.1)	234 (33.9)	307 (44.5)
Std Deviation				
	Avg 9.5 Min	12.0	20.0	19.0
	Avg 33	44	29	24
No of Spec. (No. of Heats)	1	1	1	1
	Avg Min			
No. of Spec. (No. of Heats)				
Poisson's Ratio				
Work Hardening Coef				
	Avg	399 (57.8)	458 (66.4)	419 (60.8)
K _t = 16 No. of Spec. (No. of Heats)	Min	1	1	1
	Avg Min			
Tension, Transverse				
TUS, MN/m ² (ksi)	Avg			
Std. Deviation	Ain			
	λvg		= =	
Std. Deviation	<i>A</i> in			
	Avg Min			
	Avg Min			
No. of Spec. (No. of Heats)				
	Avg			
No of Spec. (No of Heats)				
Poisson's Ratio				
Nork Hardening Coef				
and the second s	Avg //in			
	Avg Min			

Alloy Designation: 6061-T6 Aluminum Alloy

Specification:

QQ-A-325B

Form:

Diameter: Condition:

Up to 2.54 cm (1.000 in.) T6

Testing Temperature, K (F)		297	(75)	195	(-108)	122	(-240)	77	(-320)	20	(-423)	4	(-452)
Tension, Longitudinal								ļ	ļ				
TUS, MN/m ² (ksi)	Avg Min	523 305	(46.8) (44.2)	344 332	(49.9) (48.1)	407	(59)	429 412	(61.5) (59.7)	522 520	(75.7) (75.4)	572	(83.0)
Std Deviation													
TYS, MN/m ² (ksi)	Avg Min	288 270	(41.8) (39.2)	294 277	(42.6) (40.2)	338	(49.0)	339 310	(49.2) (45.0)	370 356	(53.7) (51.7)	400	(58.0)
Std Deviation							-0.0		20.0				
Elong, percent	Avg Min		17.6 15.3	1	19.6 16.5		19.0	1	23.8 19.0		29.9 29.0		22.0
RA, percent	Avg Min		53.8 50	ł .	52.5 50	4	45.5		47.2 41.6		44.6 43.4		39.2
No. of Spec. (No. of Hea		8	(4)	5	(3)		(1)	8	(4)	5	(2)		(1)
E, GN/m ² (10 ⁶ psi)	Avg Min												
No. of Spec. (No. of Hea	its)-												
oisson's Ratio													
Vork Hardening Coef													
T S, MN/m² (ksi) K_t = No. of Spec. (No. of Hea	Avg Min its)												
ITS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min												
ension, Transverse													
US, MN/m ² (ksi)	Avg Min												
Std Deviation													
YS, MN/m ² (ksi)	Avg Min								Ì				
Std. Deviation													
long, percent	Avg Min												
IA, percent	Avg Min												
No. of Spec. (No. of Hea	1								İ				
, GN/m ² (10 ⁶ psi)	Avg Min												
No of Spec. (No of Hea	1												
oisson's Ratio													
ork Hardening Coef													
TS, MN/m ² (ksi) K _t # No. of Spec. (No. of Hea	Avg Min ts)												
TS, MN/m ² (ksi) Kt = No of Spec. (No. of Hea	Avg Min												

Alloy Designation:

6061-T6 Aluminum Alloy

Specification: Form:

QQ-A-325B

Bar

Up to 2.54 cm (1.000 in.)

Diameter: Condition:

Testing Temperature, K (F)		297	(75)	195	(-108)	122	(-240)	77	(-320)	 10	(-441)
Compression, Longitudinal											
CYS, MN/m ² (ksi)	Avg Min										
No. of Spec, (No. of Heat											
Ec, GN/m ² (10 ⁶ psi)	Avg Min								1		
No. of Spec. (No. of Heat	s)										
Compression, Transverse		1									
CYS, MN/m ² (ksi)	Avg Min										
No. of Spec. (No. of Heat	(s)]]							
Ec, GN/m ² (10 ⁶ psi)	Avg					[1]					
No. of Spec. (No. of Heat											
Shear(a)											
SUS, MN/m ² (ksi)	Avg Min										
No. of Spec. (No. of Heat											
G, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of Heat									}		
Impact, Charpy V				İ							
Long., J(ft-lb)	Avg	17.1	(12.6)	17.6	(13.0)	17.5	(12.9)	17.2	(12.7)	17	(12.6)
No. of Spec. (No. of Heat	Min s)										
Trans., J(ft-lb)	Avg										
No. of Spec. (No. of Heat											
Fracture Toughness(b)											
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min										
Orientation -	IVIIII										
No. of Spec. (No. of Heat	s)										
KIE, MN/m ^{3/2} (ksi/in.)	Avg										
(From PTSC spec.)(- No. of Spec. (No. of Heat)Min										

References: 47311, 47334

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1c} data:

Alloy Designation:

6061-T6 Aluminum Alloy

Specification:

QQ-A-325 B

Form:

Bar Up to 2.54 cm (1.000 in.) T6

Diameter: Condition:

Testing Temperature, K (F)	297 (75)	77 (-320)		
Fatigue, Axial Loading				
S_N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)				
Ratio S _N /TUS at 10 ⁵ cycles				
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency 28 Hz with R = 0 and K _f = 1	193 (28)	331 (48)		
No of S-N Curves (No. of Heats)	1 (1)	1 (1)		
Ratio S _N /TUS at 10 ⁶ cycles	0.58	0.76		
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency 28 Hz with R = 0 and K _t = 1	145 (21)	296 (43)	E ,	
No. of S-N Curves (No. of Heats)	1 (1)	1 (1)		
Ratio S _N /TUS at 10 ⁷ cycles	0.44	0.68		
Fatigue, Flexural Loading				
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)				
Ratio S _N /TUS at 10 ⁵ cycles				
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)			t de	
Ratio S _N /TUS at 10 ⁶ cycles				
S_N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)				
Ratio S _N /TUS at 10 ⁷ cycles				

TABLE 4.4.1-ME11.1

Alloy Designation:

6061-0 Aluminum Alley

Specification:

Form:

Thickness, cm (in.): Condition:

Rod Up to 2.540 (1.000) 0

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	123 (17.8	138 (20.0)	228 (33.1)	
Std. Deviation	Min				
TYS, MN/m ² (ksi)	Avg Min	43 (6.2)	50 (7.2)	58 (8.4)	
Std. Deviation					
Elong, percent	Avg Min		40.5	48.5	
RA, percent	Avg	72	74	67	
No. of Spec. (No. of Heat		1	1	1	
E, GN/m ² (10 ⁶ psi)	Avg			_	
No. of Spec. (No. of Heal					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t =	Avg				
No. of Spec. (No. of Heat					
NTS, MN/m ² (ksi) K _t =	Avg Min	ĺ			
No. of Spec. (No. of Heat					
Tension, Transverse		į			
TUS, MN/m ² (ksi)	Avç Mun				
Std. Deviation		ļ			
TYS, MN/m ² (ksi)	Avg Min				
Std Deviation		3.0			
Elong, percent	Avg Min				
RA, percent	Avg				
No. of Spec. (No. of Heat	Min (s)				
E, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec. (No. of Heat					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg Min				
Kt = No of Spec. (No. of Heat					
NTS, MN/m² (ksi) K _t =	Avg Min				
No of Spec. (No. of Heat					

TABLE 4.4.1-ME11.2

Alloy Designation:

6061-T4 Aluminum Alloy

Specification:

Form:

Thickness, cm (in.): Condition:

Rod Up to 2.540 (1.000) T4

Testing Temperature, K (F)	297 (75)	195 (-108)		77 (-320)	
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg	278 (40	3) 304 (44.1)		399 (57.9)	
Std Deviation	Min					
TYS, MN/m ² (ksi)	Avg	150 (21	8) 160 (23.2)		203 (29.4)	
Sta Deviation	Min					
Elong, percent	Avg Min		32.5		36.6	
RA, percent	Avg	57	54		41	
No of Spec. (No. of He	Min eats)	1	1		1	
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He						
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of He	Min ats)					
NTS, MN/m ² (ksi) K _t = No_of Spec. (No_of He	Avg Min					
Tension, Transverse						
TUS, MN/m ² (ksi)	Avg Min	ļ				
Std Deviation	141111	i				
TYS, MN/m ² (ksi)	Avg Min					
Std Deviation						
Elong, percent	Avg Min			7		
RA, percent	Avg Min					
No. of Spec. (No. of He	ats)					
E, GN/m ² (10 ⁶ psi)	Avg Min					
No of Spec. (No. of He						
Poisson's Ratio						
Work Hardening Coef						= =
NTS, MN/m ² (ksi) K _t = No of Spec. (No. of He	Avg Min ats)					
NTS, MN/m ² (ksi) Kt = No. of Spec. (No. of He	Avg Min					

TABLE 4.4.1-ME11.3

Alloy Designation:

6061-T91 Aluminum Alloy

Specification:

Form: Thickness, cm (in.): Condition:

Rod Up to 2.540 (1.000) T91

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	
Tension, Longitudinal				
TUS, MN/m ² (ksi)	Avg 392 (56.8) Min 381 (55.2)	431 (62.5) 414 (60.0)	509 (73.8) 490 (71.1)	
Std Deviation			3.28	
1	Avg 387 (56.1) Min 376 (54.6)	415 (60.2) 398 (57.7)	472 (68.4) 448 (65.0)	
Std. Deviation				
	Avg Min	4.4 4.2	15.3 15.3	
	Avg 38.5	39.5 37	38 37	
No of Spec. (No. of Heats)	2 (1)	2 (1)	2 (1)	
	Avg Min			
Poisson's Ratio				
Work Hardening Coef				
	Avg Ain			
	Avg Ain			
Tension, Transverse				
TUS, MN/m ² (ksi)	Avg Min			
Std Deviation				
,	Avg Min			
Std Deviation				
	Avg /lin			
	Avg Ain			
	lvg			
	nn l			
Poisson's Ratio		1		
Nork Hardening Coef				
	din			
	avg fin			

TABLE 4.4.1-ME12

Alloy Designation: 6061

6061-T6 Aluminum Alloy

Specification:

AMS-4127

Form:

Forgings, rolled rings and other shapes

Thickness, cm (in.): Condition:

T

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	 	
Tension, Longitudinal											
TUS, MN/m ² (ksi)	Avg	310	(44.9)		(50.6)	434	(63.0)	499	(72.4)		
Std Deviation	Min	285	(41.4)	323	(46.9)	415	(60.2)	440	(63.8)		
TYS, MN/m ² (ksi)	Avg	275	(39.9)		(43.7)	326	(47.3)	379	(54.9)		
Std Deviation	Min	255	(37.0)	295	(42.8)	305	(44.2)	352	(51.1)		
Elong, percent	Avg		19.8		19.8		24.5 24.0		24.9 23.0		
na umini.	Min		19.0		17.0						
RA, percent	Avg Min		51.5 34.9		50.8 38.0		41.5 34.3		38.6 32.8		
No of Spec. (No. of Hea	its)	6	(2)	6	(2)	6	(2)	6	(2)		
E, GN/m ² (10 ⁶ psi)	Avg										
No. of Spec. (No. of Hea	Min ats)										
Poisson's Ratio											
Nork Hardening Coef											
NTS, MN/m ² (ksi)	Avg	436	(63.3)	463	(67.2)	542	(78.6)	562	(81.5)		
K _t = 6 to 8 No. of Spec. (No. of Hea	Min	431 4	(62.5) (1)	451 4	(65.4) (1)	536 4	(77.8) (1)	529 4	(76.7) (1)		
NTS, MN/m² (ksi)	Avg							}			
K _t = No. of Spec. (No. of Hea	Min (
ension, Transverse											
TUS, MN/m ² (ksi)	Avg									П	
Std Deviation	Min .										
TYS, MN/m ² (ksi)	Avg										
Std. Deviation	Min										
Elong, percent	Avg										
-iong, percent	Min										
RA, percent	Avg										
No. of Spec. (No. of Hea	Min ts)										
E, GN/m ² (10 ⁶ psi)	Avg										
No of Spec. (No. of Hea	Min ts)										
oisson's Ratio											
Vork Hardening Coef											
NTS, MN/m² (ksi)	Avg										
K _t = No. of Spec. (No. of Hea	Min ts)										
ITS, MN/m ² (ksi)	Avg										
Kt =	Min										

Alloy Designation:

7039-T6 Aluminum Alloy

Specification: Form: Thickness, cm (in.): Condition:

Sheet 0.100 to 0.319 (0.040 to 0.125) T6

Testing Temperature, K (F)	297	(75)	77	(-320)	20	(-423)		
Fatigue, Axial Loading (R = -1)								
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K ₁ = 1	138	(20)	214	(31)	276	(40)		
No of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)		
Ratio S _N /TUS at 10 ⁶ cycles	0.3	31	(0.40		0.43		
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R =-1 and K ₁ = 6.3	48.2	(7)	48.2	(7)	62.1	(9)		
No of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)		
0 406 441/ 2///	07.0	(5.5)	70.7	(40.7)	70.0	(44.5)		
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency With R = -1 and K _t = 8	37.9	(5.5)	73.7	(10.7)	79.3	(11.5)		
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)		
Fatigue, Axial Loading (R = 0.01)								
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)								
Ratio S _N /TUS at 10 ⁵ cycles								
natio 3N/103 at 10 Cycles								
S_N at 106 cycles, MN/m ² (ksi) Loading frequency Hz with R = 0.01 and K _t = 1	228	(33)	331	(48)	441	(64)	28	
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)		
Ratio S _N /TUS at 10 ⁶ cycles	0.9	51	(0.61	(0.67		
S_N at 10^7 cycles, MN/m^2 (ksi) Loading frequency Hz with R = and K _t No. of S-N Curves (No. of Heals)								
Ratio S _N /TUS at 10 ⁷ cycles								

References: 58024, 61996

Alloy Designation:

7039 Aluminum Alloy (Weld Metal)

Specification:

Form:

Sheet-MIG welded, 5183 Alloy filler 0.100 to 0.319 (0.040 to 0.125) 7039-T6 Sheet; welded natural aged 15-30 days, and tested

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)		77 (-320)	
Tension, Longitudinal TUS, MN/m² (ksi) Std Deviation Avg			391 (56.7)	
TYS, MN/m ² (ksi) Av. Mii Std. Deviation			299 (43.4)	
Elong, percent Av			3.8	
RA, percent Av				
No. of Spec. (No. of Heats)	1		1	
E, GN/m ² (10 ⁶ psi) Ave Mir No. of Spec. (No. of Heats)				11
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi) Avg $K_t = 6.3$ Mir No. of Spec. (No. of Heats)			434 (63.0)	
NTS, MN/m ² (ksi) Avg $K_t = M_{tr}$ No. of Spec. (No. of Heats)				
Tension, Transverse TUS, MN/m² (ksi) Std Deviation Ave				
TYS, MN/m ² (ksi) Avy Mir Std. Deviation				
Elong, percent Av				
RA, percent Av				ļ
No. of Spec. (No. of Heats) E, GN/m ² (10 ⁶ psi) Ave				
No. of Spec. (No. of Heats)				
Poisson's Ratio				
Nork Hardening Coef				
NTS, MN/m ² (ksi) Avy $K_t = Mir$ No of Soco (No of Heats)				
No. of Spec. (No. of Heats) NTS, MN/m^2 (ksi) $K_t = Mir$				

Alloy Designation:

7039 Aluminum Altoy (Weld Metal)

Specification:

Form:

Sheet-"Fusion" welded, filler not specified

Thickness, cm (in.): Condition: 0.100 to 0.319 (0.040 to 0.125) 7039-T6 Sheet, welded and tested

Testing Temperature, K (F)	297 (7	5) 195	(-108)		7?	(-320)	20	(-423)	
N		388 (33.9) 378			405 361	(58.8) (52.9)	354 303	(51.4) (43.9)	
	.vg lin								
Elong, percent A	vg 9.1		8.4 4.0			7.2 6.0		0.9 0.5	
RA, percent A	vg								
No. of Spec. (No. of Heats)	5 (1	5	(1)		5	(1)	5	(1)	
	v g								
Poisson's Ratio									
Nork Hardening Coef									
	vg in								
	v g in								
Tension, Transverse	070 17		(50.0)		404	(EQ.6)	202	/FC 0)	
		5 4.9) 387 54.4) 371	1		404 390	(58.6) (56.6)	392 381	(56.9) (55.3)	
	vg								
	in								
	yg 9.4 in 8.0		9.4 7.0			5.6 6.0		0.7 0.5	
M	/g in 5 (*	1) 5	(1)		5	(1)	5	(1)	
No. of Spec. (No. of Heats) E, GN/m ² (10 ⁶ psi) A			(")		J	(1)	5	.,,	
M No of Spec. (No of Heats)	7 1								
oisson's Ratio									
Vork Hardening Coef				П					
NTS, MN/m ² (ksi) Ar $K_t = M$ No. of Spec. (No. of Heats)	/g In								
NTS, MN/m^2 (ksi) A: $K_t = M$	-								

References: 56261

257<

Alloy Designation: 7039-T61 Aluminum Alloy

Specification:

Form:

Form: Sheet
Thickness, cm (in.): 0.320 to 0.634 (0.126 to 0.249)
Condition: T61

Testing Temperature, K (F)		297	(75)	77	(-320)			
Tension, Longitudinal								
TUS, MN/m ² (ksi)	Avg	400	(58.0)	494	(71.7)			
Std Deviation	Min							
TYS, MN/m ² (ksi)	Avg Min	326	(47.3)	366	(53.1)			
Std. Deviation	Willi							
Elong, percent	Avg		14.5		18.1			
3 , 4	Min							
RA, percent	Avg							
	Min	_	(1)		(2)			
No of Spec. (No. of Hea	its)	3	(1)	3	(1)			
E, GN/m ² (106 psi)	Avg							
No. of Spec. (No. of Hea	Min its)							
Poisson's Ratio								
roisson's Natio								
Work Hardening Coef					=			
NTS, MN/m ² (ksi)	Avg					4		
K _t = No. of Spec. (No. of Hea	Min							
	(5)							
NTS, MN/m ² (ksi)	Avg Min							
K _t = No. of Spec. (No. of Hea								
Tension, Transverse								
TUS, MN/m ² (ksi)	Avg	409	(59.3)	532	(77.2)			
	Min		· - ·					
Std. Deviation			-,					
TYS, MN/m ² (ksi)	Avg	328	(47.6)	384	(55.7)			
Std Deviation	Min							
Elan assant	Aug		12.9		15.5			
Elong, percent	Avg Min		12.9		15.5			
RA, percent	Avg		=			1		
	Min							
No. of Spec. (No. of Hea	ts)	3	(1)	3	(1)			
E, GN/m ² (10 ⁶ psi)	Avg						3	
No. of Spec. (No. of Hea	Min (
					1			
Poisson's Ratio				-				
Work Hardening Coef					- 1			
NTS, MN/m ² (ksi)	Avg							
Kt =	Min							
No of Spec. (No. of Hea	15)							
NTS, MN/m ² (ksi)	Avg							
K _t = No of Spec. (No. of Hea	Min							

Alloy Designation:

7039 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-TIG welded, no filler 0.320 to 0.634 (0.126 to 0.249) 7039-T61 Sheet, welded and tested

Testing Temperature, K (F)	297 (75)	71 (-320)	
Tension, Longitudinal			
TUS, MN/m ² (ksi) Avg	317 (46.0)	422 (61.2)	
Std Deviation			
TYS, MN/m ² (ksi) Avg Min Std Deviation	177 (25.6)	209 (30.3)	
Elong, percent Avg	(9.6	(14.5	
Min			
RA, percent Avg			
No of Spec (No. of Heats)	2 (1)	3 (1)	
E, GN/m ² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m^2 (ksi) Avg $K_t = Min$			
No. of Spec. (No. of Heats)			
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)			
Tension, Transverse			
TUS, MN/m ² (ksi) Avg Min Std Deviation			
TYS, MN/m ² (ksi) Avg Min Std. Deviation			
Elong, percent Avg Min	1 101		
RA, percent Avg			
No. of Spec. (No. of Heats)			
E, GN/m ² (10 ⁶ psi) Avg Min			
No. of Spec. (No. of Heats)			
oisson's Ratio			
Nork Hardening Coef			
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)			
NTS, MN/m^2 (ksi) Avg $K_t = Min$			

Alloy Designation:

7039 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-TIG welded, no filler 0.320 to 0.634 (0.126 to 0.249)

7039-T61 Sheet, welded, natural aged 15 days, and tested

Testing Temperature, K (F)	297	7 (75)		77 (-320)		
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg Min	353	(51.2)		445 (64.6)		
Std Deviation	Willi						
TYS, MN/m ² (ksi)	Avg Min	210	(30.4)	1	254 (36.9)		
Std. Deviation		}					
Elong, percent	Avg Min	(11.4		(14)		
RA, percent	Avg Min						
No. of Spec. (No. of He		2	(1)		3 (1)		
E, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of He	eats)	}	= -]]		
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi)	Avg				1		
No. of Spec. (No. of He	Min eats)					!	
NTS, MN/m ² (ksi)	Avg						
K_t = No. of Spec. (No. of He	Min eats)						
Tension, Transverse							
TUS, MN/m ² (ksi)	Avg Min	Ì					
Std. Deviation	WIIII						
TYS, MN/m ² (ksi)	Avg Min				}		
Std. Deviation	141111						
Elong, percent	Avg Min						
RA, percent	Avg						
No. of Spec. (No. of He	Min eats)						
E, GN/m ² (10 ⁶ psi)	Avg Min						
No of Spec. (No. of He							
Poisson's Ratio					}		
Work Hardening Coef							
NTS, MN/m ² (ksi)	Avg				}		
Kt = No. of Spec. (No. of He	Min ats)						
NTS, MN/m ² (ksi)	Avg						
Kt = No of Spec. (No. of He	Min ats)				}		

Alloy Designation: 7039-T6, T61 Aluminum Alloy

Specification: AMS-4024A, MIL-A-8877

Form:

Plate 0.635 to 1.269 (0.250 to 0.499) T6, T61 Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297	(75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)	
Tension, Longitudinal												
TUS, MN/m ² (ksi)	Avg	429	(62.3)	478	(69.3)	501	(72.7)	549	(79.7)	654	(94.8)	
Std Deviation	Min	402	(58.3)					523	(75.9)			
TYS, MN/m ² (ksi)	Avg	372	(53.9)	427	(62.0)	449	(65.1)	438	(63.7)	504	(73.1)	
Std. Deviation	Min	328	(47.5)					378	(54.8)			
Elong, percent	Avg		16.3		12.7		12.7		18.4		15.7	
	Min		12.5						14.1			
RA, percent	Avg Min					İ						
No. of Spec. (No. of He		7	(3)		(1)		(1)	7	(3)		(1)	
E, GN/m ² (10 ⁶ psi)	Avg							1				
No. of Spec. (No. of He	Min eats)											
Poisson's Ratio												
Work Hardening Coef												
NTS, MN/m ² (ksi)	Avg	503	(72.9)					561	(81.4)			
$K_t = 6.3$ No. of Spec. (No. of He	Min ats)	3	(1)					3	(1)			
NTS, MN/m² (ksi)	Avg	483	(70.0)	510	(73.9)	521	(75.6)	557	(80.8)	560	(81.2)	
K _t = 10 No. of Spec. (No. of He	Min ats)		(1)		(1)		(1)		(1)		(1)	
Tension, Transverse												
TUS, MN/m ² (ksi)	Avg	434 401	(63.0) (58.2)	479	(69.5)	514	(74.5)	566 539	(82.1) (78.2)	651	(94.4)	
Std. Deviation	Min	401	(30.2)					339	(70.2)			
TYS, MN/m² (ksi)	Avg	369	(53.5)	426	(61.8)	450	(65.2)	439	(63.7)	518	(75.2)	
Std. Deviation	Min	325	(47.2)					385	(55.9)			
Elong, percent	Avg		14.5		11.0		12.1		15.4		11.7	
3,	Min		10.5						11.3			
RA, percent	Avg Min											
No. of Spec. (No. of He		7	(3)		(1)		(1)	7	(3)		(1)	
E, GN/m ² (10 ⁶ psi)	Avg											
No, of Spec. (No. of He	Min ats)											
Poisson's Ratio												
Vork Hardening Coef												
NTS, MN/m ² (ksi)	Avg	504	(73.1)					539	(78.2)			
K _t = 6.3 No. of Spec. (No. of He	Min ats)	3	(1)					3	(1)			
NTS, MN/m² (ksi)	Avg	483	(70.1)	507	(73.5)	516	(74.9)	506	(73.4)	494	(71.6)	
K _t = 10 No of Spec. (No. of He	Min		(1)		(1)	1	(1)		(1)		(1)	

* 1 , 1

Alloy Designation:

7039 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-MIG welded, 5083 Alloy filler 0.635 to 1.269 (0.250 to 0.499) 7039-T6 Plate, welded, natural aged 15 days, and tested

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297 (75)		77 (-320)		
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg Min	362 (51.1)		433 (62.8)		
Std Deviation TYS, MN/m ² (ksi)	Avg	203 (29.4)		254 (36.8)		
Std. Deviation	Min					
Elong, percent	Avg Min	14.0		14.0		
RA, percent	Avg Min			1		
No of Spec. (No. of Heats)	}	4 (1)		4 (1)		
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec, (No. of Heats))					j
Poisson's Ratio			7			
Work Hardening Coef						
	Avg Min	399 (57.9)		411 (59.6)		
No. of Spec. (No. of Heats)		4 (1)		4 (1)		
	Avg Min				_	
Tension, Transverse		1				
	Avg Min		Ш			
Std Deviation		Í	j			
	Avg Min					
Std Deviation						
	Avg Min					
	Avg Min					
No. of Spec. (No. of Heats)						
	Avg Min					
No. of Spec. (No. of Heats)						
Poisson's Ratio						
Nork Hardening Coef				El		
	Avg Min					
	Avg Min					

Alloy Designation:

7039 Aluminum Alloy (Weld Metal)

Specification:

Plate-TIG welded, 5030 Alloy filler 0.635 to 1.269 (0.250 to 0.499)

Thickness, cm (in.): Condition:

7039-T6 Plate, welded, natural aged 15 days, and tested

Testing Temperature, K (F)	297 (75)	77 (-320)	
Tension, Longitudinal			
TUS, MN/m ² (ksi)	Avg 361 (52.4)	380 (55.1)	
Std Deviation	Min 348 (50.5)	362 (52.5)	
	Avg 220 (31.9) Min 214 (31.0)	266 (38.6) 260 (37.7)	
Std Deviation			
	Avg 10.2 Min 9.3	5.0 4.0	
	Avg		
No of Spec. (No. of Heats)	Min 8 (2)	8 (2)	
	Avg Min		
No of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
	Avg 345 (50.1)	348 (50.4)	
$K_t = 6.3$ No. of Spec. (No. of Heats)	Min 8 (2)	8 (2)	
	Avg Min		
Tension, Transverse			
	Avg Min		
Std. Deviation			
	Avg Vin		
Std. Deviation			
	Avg Min		
	Avg Vin		
No of Spec. (No. of Heats)			
	Avg Vin		
No. of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
•	Avg Min		
	Avg		
K _t = No. of Spec. (No. of Heats)	Min		

Alloy Designation:

7039 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-TIG welded, no filler

Thickness, cm (in.): Condition:

0.635 to 1.269 (0.250 to 0.499) 7039-T6 Plate, welded, natural aged 15 days, and tested

Testing Temperature, K (F)	297 (75)	;	77 (-320)		
Tension, Longitudinal					
TUS, MN/m ² (ksi) Avg		4	120 (60.9)		
Min Std Deviation					
TYS, MN/m ² (ksi) Av			268 (38.9)	=	
Std. Deviation					
Elong, percent Avg			7.5		
RA, percent Avg					
No. of Spec (No. of Heats)	4 (1)	4	(1)		
E, GN/m ² (10 ⁶ psi) Avg					
No. of Spec. (No. of Heats)					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi) Avg	355 (51.5)	:	354 (51.4)		
K _t ≈ 6.3 Min No. of Spec. (No. of Heats)	4 (1)		4 (1)		
NTS, MN/m ² (ksi) Avg $K_t = $ Min No. of Spec. (No. of Heats)					
Tension, Transverse					
TUS, MN/m ² (ksi) Avg					
Std. Deviation					
TYS, MN/m ² (ksi) Avg					
Std Deviation					ļ
Elong, percent Avg					
RA, percent Avg					
Min No. of Spec. (No. of Heats)					
E, GN/m ² (10 ⁶ psi) Avg					
Min No. of Spec. (No. of Heats)					
Poisson's Ratio					
Nork Hardening Coef		H I			
NTS, MN/m² (ksi) Avg					
K _t ≈ Min No of Spec. (No. of Heats)					
NTS, MN/m^2 (ksi) Avg $K_t = Min$					

264<

Alloy Designation:

7039 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-MIG welded, 5039 Alloy filler 0.635 to 1.269 (0.250 to J.499) 7039-T64 Plate, welded and tested

Thickness, cm (in.): Condition:

Testing Temperature, K (I	F)	297 (75)	77 (-320)	
Tension, Longitudinal			11	
TUS, MN/m ² (ksi)	Avg	359 (52)	448 (65)	
Std Deviation	Min			
TYS, MN/m² (ksi)	Avg	224 (32.5)	279 (40.5)	
Std Deviation	Min			
Elong, percent	Avg Min	8.0	6.8	
RA, percent	Avg			
No. of Spec. (No. of He	Min Pats)	1	1	
E, GN/m ² (10 ⁶ psi)	Avg			
No of Spec (No. of He	Min eats)			
Poisson's Ratio				
Vork Hardening Coef				
NTS, MN/m ² (ksi)	Avg			
K _t = No. of Spec. (No. of He	Min eats)			
NTS, MN/m ² (ksi)	Avg		11	
K _t = No. of Spec. (No. of He	Min eats)			
Tension, Transverse				
TUS, MN/m² (ksi)	Avg			
Std Deviation	Min			
TYS, MN/m² (ksi)	Avg Min			
Std. Deviation	141111			
Elong, percent	Avg Min			
RA, percent	Avg Min			
No. of Spec. (No. of He				
E, GN/m ² (10 ⁶ psi)	Avg Min			
No of Spec. (No. of He				
Poisson's Ratio				
Vork Hardening Coef				
NTS, MN/m² (ksi) K _t =	Avg Min			
No of Spec. (No. of He				
NTS, MN/m² (ksi)	Avg			
K _t =	Min			

* * * * * * *

7039-T6, T61 Aluminum Alloy Alloy Designation:

Specification: AMS-4024A, MIL-A-8877

Form:

Thickness, cm (in.): Condition: 1.270 to 2.540 (0.500 to 1.000) T6, T61

Testing Temperature, K (F)	297	(75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)
Tension, Longitudinal										
TUS, MN/m ² (ksi) Avg	43 ? 407	(63.4) (59.1)	486 445	(70.5) (64.6)	507 467	(73.5) (67.7)	589 525	(85.4) (76.2)	675 623	(97.9) (90.4)
Std Deviation	29.3	(4.25)	1				18.6	(2.70)	34.7	(5.04)
TYS, MN/m ² (ksi) Avg Min Std Deviation	396 352 31.7	(57.4) (51.0) (4.60)	429 381	(62.2) (55.3)	446 399	(64.7) (57.9)	477 432 33.8	(69.2) (62.7) (4.91)	516 466	(74.9) (67.6)
Elong, percent Avg Min		13.5 11.8		14.0 13.3		14.5 14.2		16.6 15.7		14.0 12.0
RA, percent Avg										
Min No. of Spec. (No. of Heats)	15	(5)	3	(1)	3	(1)	15	(5)	9	(3)
E, GN/m ² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats)										
Poisson's Ratio										
Nork Hardening Coef										
NTS, MN/m^2 (ksi) Avg $K_t = 6.3 \qquad Min$	634	(91.9)					645	(93.5)		
No. of Spec. (No. of Heats)		(2)					}	(2)		
NTS, MN/m ² (ksi) Avg $K_t = 10$ Min No. of Spec. (No. of Heats)	530 486 3	(76.8) (70.5) (1)	553 512 3	(80.2) (74.2) (1)	563 532 3	(81.7) (77.2) (1)	561 550 3	(81.4) (79.7) (1)	553 534 3	(80.2) (77.5) (1)
Tension, Transverse			1							
TUS, MN/m² (ksi) Avg	445 405	(64.6) (58.7)	484 442	(70.2) (64.1)	510 467	(73.9) (67.7)	578 528	(83.9) (76.6)	658 611	(95.5) (88.6)
Std. Deviation	28.7	(4.17)					21.1	(3.06)	19.7	(2.86)
YS, MN/m ² (ksi) Avg Min Std. Deviation	384 346 31.4	(55.7) (50.2) (4.55)	416 377	(60.3) (54,7)	432 394	(62.6) (57.1)	464 423 37.4	(67.3) (61.4) (5.43)	491 441 42.7	(71.2) (63.9) (6.20)
long, percent Avg Min		13.1 11.8		12.6 12.0	1	12.8 10.7		13.6 10.0	11. 8.	
RA, percent Avg								11		
No. of Spec. (No. of Heats)	15	(5)	3	(1)	3	(1)	15	(5)	9	(3)
, GN/m ² (10 ⁶ psi) Avg Min										
No. of Spec. (No. of Heats)										
oisson's Ratio										
ork Hardening Coef										
NTS, MN/m ² (ksi) Avg : K _t = 6.3 Min No of Spec. (No, of Heats)	621 787 6	(90.0) (85.2) (2)					607 594 6	(88.0) (86.1) (2)		
NTS, MN/m ² (ksi) Avg	510	(74.0)	525	(76.2)	534	(77.4)	520	(75.4)	498	(72.3) (70.8)

Alloy Designation:

7039 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Plate-MIG welded, 5039 Alloy filler 1.270 to 2.540 (0.500 to 1.000) 7039-T6 Plate, welded, natural aged 15 days, and tested

Testing Temperature, K (F)		297	(75)		77	(-320)		
Tension, Longitudinal								
TUS, MN/m ² (ksi)	Avg Min	356	(51.7)		44	6 (64.7)		
Std Deviation		200	(22.2)			0 (40.4)		
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	223	(32.3)		27	9 (40.4)		
Elong, percent	Avg Min	8	3.2			6.7		
RA, percent	Avg							
No. of Spec. (No. of Flea	Min its)	4	(1)		4	(1)		
E, GN/m ² (10 ⁶ psi)	Avg Min						in	
No. of Spec. (No. of Hea	ts)							
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m ² (ksi) K _t = 6.3	Avg Min	413	(59.9)		43			
No. of Spec. (No. of Hea	ts)	4	(1)		4	(1)		
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ts)							
Tension, Transverse								
TUS, MN/m ² (ksi) Std. Deviation	Avg Min							
TYS, MN/m ² (ksi)	Avg							
Std Deviation	Min							
Elong, percent	Avg Min							
RA, percent	Avg Min						1 _ 1	
No. of Spec. (No. of Hea								
E, GN/m ² (10 ⁶ psi)	Avg Min							
No of Spec. (No. of Heat						11		
Poisson's Ratio								
Vork Hardening Coef								
NTS, MN/m ² (ksi) $K_t =$ No. of Spec. (No. of Heat	Avg Min							
NTS, MN/m ² (ksi)	Avg Min					h		
K _t = No. of Spec. (No. of Heat								

References: 90082

267<

- (a) ·

Alloy Designation:

7039 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate-MIG welded, 5183 Alloy filler

Thickness, cm (in.): Condition:

1.270 to 2.540 (0.500 to 1.000) 7039-T6 Plate, welded, natural aged 15 days, and tested

Testing Temperature, K (F)		297	(75)		77	(-320)	ļ
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg	294	(42.6)		419	(60.8)	
Std Deviation							
TYS, MN/m ² (ksi)	Avg Min	169	(24.5)		205	(29.7)	
Std. Deviation							
Elong, percent	Avg Min	!	9.8			10.2	ĺ
RA, percent	Avg Min						
No of Spec. (No. of Hea	its)	4	(1)		4	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of Hea							
Poisson's Ratio			E.				
Nork Hardening Coef							
NTS, MN/m^2 (ksi) $K_t = 6.3$	Avg Min	355	(51.5)		406	(58.9)	
No. of Spec. (No. of Hea	its)	4	(1)		4	(1)	
NTS, MN/m ² (ksi) K _t =	Avg Min						
No of Spec. (No. of Hea					ļ		
Tension, Transverse							
rus, MN/m² (ksi)	Avg Min						
Std Deviation							
TYS, MN/m ² (ksi)	Avg Min						
Std. Deviation							
Elong, percent	Avg Min						
RA, percent	Avg Min		1				
No. of Spe., (No. of Hea			1				
, GN/m ² (10 ⁶ psi)	Avg Min						
No of Spec. (No. of Hea							
oisson's Ratio			=]	1			
ork Hardening Coef							
ITS, MN/m² (ksi)	Avg						
K _t = No of Spec. (No. of Hea	Min ts)						
ITS, MN/m² (ksi)	Avg						
Kt = No of Spec. (No. of Hea	Min ts)		1				

Alloy Designation:

7039 Aluminum Alloy

Specification:

Form:

Plate-TIG welded, 5039 Alloy filler 1.270 to 2.540 (0.500 to 1.000) 7039-T6 Plate, welded, natural aged 15 days, and tested

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)		77 (-320)		
Tension, Longitudinal					
TUS, MN/m ² (ksi) A			441 (64.0)		
Std Deviation	in 343 (49.8)		432 (62.6)		
	vg 217 (31.5)		266 (38.6)		
Std Deviation	in 215 (31.2)		263 (38.2)		
Elong, percent A			6.7 4.0		
RA, percent A	•				
No of Spec. (No. of Heats)	8 (2)	·	8 (2)		
E, GN/m ² (10 ⁶ psi) A					
No of Spec. (No. of Heats)					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi) Av			328 (47.6)		
Kt = 6.3 M No. of Spec. (No. of Heats)	334 (48.5) 8 (2)		321 (46.6) 8 (2)		
NTS, MN/m ² (ksi) Av $K_t = M_t$ No. of Spec. (No. of Heats)					
Tension, Transverse				[
TUS, MN/m ² (ksi) A	- 1				
Std Deviation	n				
TYS, MN/m² (ksi) A	rg				
Std Deviation	n				
Elong, percent Av	- 1				
RA, percent Av					
No. of Spec. (No. of Heats)			}		
E, GN/m ² (10 ⁶ psi) Av	-				
No of Spec. (No. of Heats)	n				
Poisson's Ratio					
Nork Hardening Coef					
NTS, MN/m ² (ksi) Av K _t = Mi No. of Spec. (No. of Heats)	7.00				
NTS, MN/m^2 (ksi) Av $K_t = Mi$ No of Spec. (No. of Heats)					

Alloy Designation:

7039 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Plate-TIG welded, 5183 Alloy filler

1.270 to 2.540 (0.500 to 1.000) 7039-T6 Plate, welded, natural aged 15 days, and tested

Testing Temperature, K (F)		297 (75)			77	(-320)	
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg	342 (49.6)			441	(64.0)	1
Std Deviation	Min		=_	7			
TYS, MN/m ² (ksi)	Avg Min	200 (29.0)			250	(36.2)	
Std Deviation	WIII						
Elong, percent	Avg Min	12.0			1	12.0	
RA, percent	Avg						
No. of Spec. (No. of Heats	Min s)	4 (1)			4	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of Heats							
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m² (ksi) K _t = 6.3	Avg Min	319 (46.2)			328	(47.6)	
No. of Spec. (No. of Heats		4 (1)			4	(1)	
NTS, MN/m ² (ksi) $K_t =$ No. of Spec. (No. of Heats	Avg Min s)						
Tension, Transverse							
TUS, MN/m ² (ksi)	Avg Min						
Std Deviation							
TYS, MN/m² (ksi)	Avg Min						
Std. Deviation					ı		
Elong, percent	Avg Min						
RA, percent	Avg Min						
No. of Spec. (No. of Heats							
E, GN/m ² (10 ⁶ psi)	Avg Min						
No of Spec. (No. of Heats							
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi) K _t = No of Spec. (No. of Heats	Avg Min						
NTS, MN/m² (ksi)	Avg						
K _t = No of Spec. (No. of Heats	Min						

References: 90082

270<

Alloy Designation:

7039 Aluminum Alloy (Weld Metal)

Specification:

P

Plate-TIG welded, no filler

Thickness, cm (in.): Condition:

Form:

1.270 to 2.540 (0.500 to 1.000) 7039-T6 Plate, welded, natural aged 15 days, and tested

Testing Temperature, K (F)	297 (75)	77 (-320)	
Tension, Longitudinal TUS, MN/m² (ksi) Avg	370 (53.7)	443 (64.2)	
Std Deviation			
TYS, MN/m ² (ksi) Avg Min Std. Deviation	237 (34.4)	290 (42.1)	
Elong, percent Avg	11.2	9.1	
RA, percent Avg			
Min No of Spec. (No. of Heats)	4 (1)	4 (1)	
E, GN/m ² (10 ⁶ psi) Avg			
No. of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m ² (ksi) Avg $K_t = 6.3$ Min	359 (52.0)	365 (52.9)	
No. of Spec. (No. of Heats)	4 (1)	4 (1)	
NTS, MN/m^2 (ksi) Avg $K_t = Min$ No. of Spec (No. of Heats)			
Tension, Transverse			
rus, MN/m² (ksi) Avg	1		
Std. Deviation TYS, MN/m ² (ksi) Avg			
TYS, MN/m² (ksi) Avg Min Std. Deviation			
Elong, percent Avg			
Mın			
RA, percent Avg Min No. of Spec. (No. of Heats)			
E, GN/m ² (10 ⁶ psi) Avg			
No, of Spec. (No of Heats)			
Poisson's Ratio			
Nork Hardening Coef		11 ¹² 11	
NTS, MN/m^2 (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)		H .	
NTS, MN/m ² (ksi) Avg K _t = Min			

Alloy Designation:

7039 Aluminum Alloy (Weld Metal)

Specification:

Form:

Plate 11G welded, 5039 Alloy filler

Thickness, cm (in.):

Condition:

1.270 to 2.540 (0.500 to 1.000) 7039-T61 Plate, welded, natural aged 27 days, and tested

9 (52.1) (1)		402 249 3 374 3	(58.3) (36.1) 9.3 12.3 (1)	376 3 327 3	(54.5) (2.2 3.5 (1) (47.9) (1)	
9.3 22.7 (1)		374	9.3 12.3 (1)	3	3.5 (1) (47.9)	
22.7 (1) 9 (52.1)		374	(1) (1) (54.2)	3	3.5 (1) (47.9)	
9 (52.1)		374	(1)	327	(47.9)	
9 (52.1)		374	(54.2)	327	(47.9)	
(1)		3	(1)	3	(1)	
					1	
=						

References: 90082

Alloy Designation:

7039-T6151 Aluminum Alloy

Specification:

Form:

Plate 1.270 to 2.540 (0.500 to 1.000) T6151

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297	7 (75)	144	(-200)	116	(-250)	77	(-320)	4	(-452)
Tension, Longitudinal											
TUS, MN/m ² (ksi)	Avg Min	405	(58.8)	471	(68.3)	498	(72.2)	550	(79.8)	649	(94.2)
Std Deviation											
TYS, MN/m ² (ksi)	Avg	334	(48.5)	364	(52.8)	380	(55.1)	401	(58.2)	476	(69.0)
Std Deviation											
Elong, percent	Avg Min	1	14.9		15.1		15.7		16.3	1	5.5
RA, percent	Avg	3	88.1		33.0		31.4		28.1	2	22
No of Spec (No. of Heat	Min s)	7	(2)	6	{1}	6	(1)	7	(2)	1	
E, GN/m ² (10 ⁶ psi)	Avg										
No of Spec. (No. of Heat	Min s)										
Poisson's Ratio											
Nork Hardening Coef											
NTS, MN/m^2 (ksi) $K_t = 15-16$	Avg Min	525	(76.1)	562	(81.5)	576	(83.5)	587	(85.2)	614	(89,1
No. of Spec. (No. of Heat	s)	7	(2)	6	(1)	6	(1)	7	(2)	1	
NTS, MN/m ² (ksi) $K_t =$ No of Spec. (No of Heats	Avg Min s)										
Tension, Transverse		222	(53.6)		(07.4)	****	(== a)		177 01		100.00
CUS, MN/m ² (ksi) Std. Deviation	Avg Min	399	(57.8)	463	(67.1)	490	(71.1)	532	(77.2)	626	(90.8)
TYS, MN/m ² (ksi)	Avg	325	(47.2)	360	(52.2)	371	(53.8)	396	(57.5)	455	(66.0)
Std. Deviation	Min										
Elong, percent	Avg Min	1	14.1		14.3		14.8		15.7	1	2.5
RA, percent	Avg	3	34.6		29.9	:	28.3		26.5	1	5
No of Spec (No. of Heats	Min s)	7	(2)	6	(1)	6	(1)	7	(2)	1	
E, GN/m ² (10 ⁶ psi)	Avg Min										
No of Spec. (No of Heats											
oisson's Ratio											
Vork Hardening Coef											
ITS, MN/m^2 (ksi) $K_t = 15.16$	Avg Min	518	(75.1)	554	(80.4)	562	(81.5)	564	(81.8)	586	(85.0)
No of Spec (No of Heats		7	(2)	6	(1)	6	(1)	7	(2)	1	
ITS, MN/m ² (ksi) K _t = No of Spec. INo of Heats	Avg Min										

References.

90070, 90187

2735

Altoy Designation:

7039 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Plate-MIG welded, 5039 Alloy filler 1.270 to 2.540 (0.500 to 1.000) 7039-T6151 Plate, welded and tested

Testing Temperature, K (F)		297	(75)	144	(-200)	114	(-250)	77	(-320)		_
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg	357	(51.8)	385	(55.8)	414	(60.1)	422	(61.2)		
Std Deviation	Min										
TYS, MN/m ² (ksi) Std Deviation	Avg Min	236	(34.3)	259	(37.6)	272	(39.4)	279	(40.5)		
Elong, percent	Avg Min	1	0.0		9.3		1.9		5.7		
RA, percent	Avg Min				18.8		14.7		12.7		
No. of Spec. (No. of Heat		6	(1)	6	(1)	6	(1)	6	(1)		
E, GN/m ² (10 ⁶ psi)	Avg Min										
No of Spec. (No. of Hea	ats)										
Poisson's Ratio						ł					
Work Hardening Coef											
NTS, MN/m ² (ksi) K _t = 15	Avg Min	406	(58.9)	431	(62.5)	422	(61.2)	412	(59.7)		
No. of Spec. (No. of Hea		6	(1)	6	(1)	6	(1)	6	(1)		
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ats)										
Tension, Transverse								ĺ			
TUS, MN/m ² (ksi)	Avg Min										
Std_Deviation						1					
TYS, MN/m ² (ksi) Std Deviation	Avg Min										
	_	ĺ									
Elong, percent	Avg Min			ł							
RA, percent	Avg Min										
No. of Spec. (No. of Hea	ets)			1		1				i	
E, GN/m ² (106 psi)	Avg Min			į							
No. of Spec, (No. of Hea	ats)	1									
Poisson's Ratio											
Work Hardening Coef											
NTS, MN/m ² (ksi) K _t = No of Spec. (No. of Hea	Avg Min										
NTS, MN/m ² (ksi)	Avg										
K _t = No of Spec. (No of Hea	Min										

Alloy Designation:

7039-T6151 Aluminum Alloy

Specification:

Form:

Plate 1.270 to 2.540 (0.500 to 1.000) T6351 Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	4 (-452)
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg Min	463 (67.2)	520 (75.4)	610 (88.4)	711 (103.1)
Std Deviation	IVIIII				
TYS, MN/m ² (ksi) Std Deviation	Avg Min	390 (56.5)	428 (62.1)	467 (67.8)	527 (76.4)
Elong, percent	Avg Min	14.5	14.5	17.0	17.5
RA, percent	Avg	32	23	20	19
No. of Spec. (No. of Hea	Min ts)	1	1	1	1
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hea	151				
Nork Hardening Coef					
NTS, MN/m² (ksi)	Avg	611 (88.6)	634 (91.9)	589 (85.9)	617 (89.5)
K _t = 16 No. of Spec. (No. of Hea	Min ts)	1	1	1	1
NTS, MN/m ² (ksi) K _t = No of Spec. (No of Hea	Avg Min				
Tension, Transverse					
FUS, MN/m ² (ksi) Std Deviation	Avg Min	459 (66.5)	502 (72.8)	601 (87.1)	699 (101.4)
TYS, MN/m ² (ksi)	Avg	390 (56.6)	423 (61.4)	476 (69.0)	536 (77.7)
Std Deviation	Min				
Elong, percent	Avg Min	13.0	12.5	13.5	13.0
RA, percent	Avg Min	33	23	19	15
No. of Spec. (No. of Hea		1	1	1	1
, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec. (No. of Hea					
oisson's Ratio					
Vork Hardening Coef					
NTS, MN/m^2 (ksi) $K_t = 16$ No of Spec (No of Hea	Avg Min	607 (88.0)	584 (84.7)	518 (75.1)	556 (80.6)
ITS, MN/m ² (ksi) K _t = No of Spec (No of Hea	Avg Min				

References: 90070

275

Alloy Designation:

7039 Aluminum Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Plate-MIG welded, 5039 Alloy filler 1.270 to 2.540 (0.500 to 1.000) 7039-T64 Plate, welded and tested

Testing Temperature, K (F)		297 (75)		77 (-320)	
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	359 (52)		448 (65)	
Std Deviation	Min				
TYS, MN/m ² (ksi)	Avg Min	224 (32.5)		279 (40.5)	
Std Deviation	141111				
Elong, percent	Avg Min	8.0		6.8	
RA, percent	Avg				
No. of Spec. (No. of Heat	Min ts)	1		1	
E, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec. (No. of Heat	ts)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg	1 1			
K _t = No. of Spec. (No. of Hear	Min				
		1		}	
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min ts)				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg				
Std Deviation	Min				
TYS, MN/m ² (ksi)	Avg				
Std Deviation	Min				
Elong, percent	Avg Min				
RA, percent	Avg Min				
No. of Spec (No. of Heat					
E, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec. (No of Heat					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg				
K _t = No of Spec. (No. of Heat	Min s)				
NTS, MN/m ² (ksi)	Avg			1	
Kt = No of Spec (No of Heat					

Alloy Designation:

7039-T64 Aluminum Alloy

Specification:

Form:

Plate

Thickness, cm (in.): Condition: 2.541 to 5.080 (1.001 to 2.000) T64

T6-

Testing Temperature, K (F)	29	7 (75)	77	(-320)	I	
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg	448	(65.0)	586	(85.0)		
Std Deviation	Min						
TYS, MN/m ² (ksi)	Avg Min	400	(58.0)	490	(71.0)		
Std Deviation			1				
Elong, percent	Avg Min		14		17		
RA, percent	Avg Min						
No of Spec. (No. of He		1		1			
E, GN/m ² (10 ⁶ psi)	Avg Min						
No of Spec. (No. of He							
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m² (ksi)	Avg	676	(98)	690	(100)		
$K_t = 6.3$ No. of Spec. (No. of He	Min ats)	1		1			
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He.	Avg Min						
Tension, Transverse							
TUS, MN/m ² (ksi)	Avg						
Std_Deviation	Min						
TYS, MN/m ² (ksi)	Avg						
Std Deviation	Min						
Elong, percent	Avg Min						
RA, percent	Avg Min						
No of Spec. (No. of Hea							
E, GN/m ² (10 ⁶ psi)	Avg Min						
No of Spec. (No. of Hea							
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi) K _t =	Avg Min			П			
No. of Spec. (No. of Hea	etS)						
NTS, MN/m ² (ksi) K _t = No of Spec. (No. of Hea	Avg Min						

TABLE 4.5.2-ME2.1

Alloy Designation:

7005-T6351 Aluminum Alloy

Specification:

Form:

the state of the second of the

Plate

Thickness, cm (in.): Condition:

1.270 to 2.540 (0.500 to 1.000)

T6351

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	4 (-452)
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg	392 (56.8)	451 (65.4)	538 (78.0)	606 (87.9)
Std Deviation	Min				
TYS, MN/m ² (ksi)	Avg Min	341 (49.4)	363 (52.7)	409 (59.3)	441 (63.9)
Std. Deviation	IVIIII				
Elong, percent	Avg Min	18.0	16.5	18.0	16.5
RA, percent	Avg	50	41	34	29
No of Spec (No of Hi	Min eats)	1	1	1	1
E, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec (No of H					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m^2 (ksi) $K_t = 16$	Avg Min	561 (81.3)	610 (88.4)	678 (98.3)	689 (39.9)
No. of Spec. (No. of He	eats)	1	1	1	1
NTS, MN/m² (ksi) K _t = No of Spec. (No. of He	Avg Min eats)				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg Min	378 (54.8)	442 (64.1)	517 (75.0)	583 (84.6)
Std. Deviation		200 (47.7)		100 (50.0)	404 (04.4)
TYS, MN/m ² (ksi)	Avg Min	329 (47.7)	368 (53.4)	402 (58.3)	421 (61.1)
Std Deviation					
Elong, percent	Avg Min	17.5	16.2	17,8	18.0
RA, percent	Avg Min	48	42	32	31
No of Spec. (No. of He		1	1	1	1
E, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec (No of He	eats)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = 16 No of Spec. (No. of He	Avg Min	561 (81.4	610 (88.4)	663 (96.2)	685 (99.4)
NTS, MN/m ² (ksi)	Avg				
K _t = No of Spec (No of He	Min				
			10		21,233

References:

90070

278<

TABLE 4.5.2-ME2.2

Alloy Designation:

7005-T6351 Aluminum Alloy

Specification:

Plate Over 5.080 (2.000) T6351

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	4 (-452)
Tension, Longi' a linal TUS, MN/m ² (ksi)	Avg	363 (52.6)	423 (61.4)	486 (70.5)	590 (85.6)
Std Deviation	Min				
TYS, MN/m ² (ksi)	Avg Min	317 (46.0)	351 (50.9)	370 (53.7)	420 (60.9)
Std Deviation					
Elong, percent	Avg Min	19.8	18.0	19.0	19.5
RA, percent	Avg	52	44	34	25
No of Spec (No. of He	Min eats)	1	1	1	1
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of He					
Poisson's Ratio					
Vork Hardening Coef					
HTS, MN/m ² (ksi) $K_t = 16$	Avg Min	546 (79.2)	596 (86.4)	643 (93.2)	652 (94.6)
No. of Spec. (No of He ITS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min				
Tension, Transverse	(d12)				
FUS, MN/m ² (ksi) Std. Deviation	Avg Min	367 (53.3)	427 (61.9)	502 (72.8)	595 (86.3)
YS, MN/m ² (ksi)	Avg	320 (46.4)	353 (51.2)	394 (57.1)	432 (62.7)
Std. Deviation	Min				
long, percent	Avg Min	18.0	14,8	16.5	16.5
RA, percent	Avg Min	44	33	25	20
No. of Spec. (No. of He		1	1	1	1
, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of He	ats)				
oisson's Ratio					
lork Hardening Coef	Avg	547 (79.4)	596 (86.4)	620 (89.9)	632 (91.6)
K _t = 16 No of Spec. (No. of He	Min	1	1	1	1
ITS, MN/m² (ksi)	Avg				
Kt = No of Spec (No of He	Min				

INDEX TO MATERIAL CODES FOR SECTION 5.0

COPPER AND COPPER ALLOYS

MATERIALS	MATERIAL CODE
COPPER, 99.96+	5.1.1
ELECTROLYTIC TOUGH PITCH Cu	5.1.2
OFHC COPPER	5.1.3
COPPER, PHOSPHORIZED	5.1.4
80Cu-20Zn	5.2.1
70Cu-30Zn	5.2.2
65Cu-35Zn	5.2.3
90Cu-10Zn	5.2.4
COPPER-NICKEL ALLOYS	5.3.0
90Cu-10Ni	5.3.1
80Cu-20Ni	5.3.2
70Cu-30Ni	5.3.3
Cu-Be	5.4.2
95Cu-5Sn	5.5.1
92Cu-8Sn	5.5.2
90Cu-10Sn	5.5.3
COPPER-ZIRCONIUM ALLOYS	5.6.1
COPPER-CHROMIUM-CADMIUM ALLOYS	5.7.1
COPPER-ALUMINUM ALLOYS	5.9.1

TABLE 5.1.1-TR1

Alloy Designation:

Copper

Specification: Form: Dimension: Condition:

Annealed

Testing Tempe	rature, K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Condi	uctivity(1)												
RRR-3000 V	Natts m·1 K-1	401		483		1330		10700		27200		18300	
	Stu hr-1 ft-1 F-1		(232)		(279)		(769)		(6190)		(15700)		(10600
RRR-1000 V	Natts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F-1	401	(222)	482	(270)	1250	(222)	8370	(4040)	12500	(7220)	6230	(2600)
	Watts m ⁻¹ K ⁻¹	400	(232)	479	(279)	1130	(723)	5010	(4840)	4350	(7230)	1880	(3600)
	Stu hr ⁻¹ ft ⁻¹ F-1	100	(231)		(277)		(653)	00.0	(2900)		(2520)		(1090)
	Watts m ⁻¹ K ⁻¹	397		469		979		2380		1520		623	
RRR-30 \	Btu hr ⁻¹ ft ⁻¹ F ⁻¹ Watts m ⁻¹ K ⁻¹	389	(230)	438	(271)	740	(566)	834	(1380)	452	(879)	183	(360)
	Btu hr.1 ft.1 F.1	309	(225)	430	(253)	/40	(428)	634	(482)	453	(262)	103	(106)
No. of Sp			,	1	,		,,		(,		
References:	90170, 90224												
hermal Expar	nsion (T ₂₇₃ to T)												
ongitudinal													
Percent		0		-0.252		0.290		-0.293		-0.293		-0.293	
No. of Sp		5		5		5		5		3		3	
References: ,0208, 90336	40911, 48571, 90458												
pecific Heat	30430												
Joules kg-1	K-1	375		248		95		7		0.92		0.11	
Btu Ib-1 F-1			(0.0896)	}	(0.0593)		(0.0227)		0.00167)	(0.	000220)	(0.0	000263)
No. of Sp	ec.	5		5		4		8		6		7	
	40911, 42219,			i									
lo223, 90247, lectrical Resis	90249, 90339	1		ļ									
RRR-30000		1.55 x	10-8	3.50 x	10-9	5.01 v	10-10	8.52 x	10-12	7.32 x	10-13	5.19 x	10-13
NNN-30000	Ohm circular mil ft-1	1,55 Å	(9.32)	3.30 %	(2.11)		.01 x 10 ⁻¹		2 x 10-3)		0 x 10-4)		2 × 10-4
RRR-10000		1.55 x		3.50 x			10-10	9.55 x	10-12	1.77 x		1.55 x	
	Ohm circular mil ft ⁻¹	01	(9.32)		(2.11)		12 x 10 ⁻¹)		4×10^{-3}		6 x 10 ⁻³)		2 x 10 ⁻⁴
RRR-3000		1.55 x		3.51 x			10-10	1.32 x	10 ⁻¹¹ 4 x 10 ⁻³)	5.38 x	10-12 4 x 10-3)	5.17 x	10 [.] 12 1 x 10 ^{.3}
RRR-1000	Ohm circular mil ft ⁻¹	1.55 x	(9.32) 10 ⁻⁸	3.52 x	(2.11) (10 ⁻⁹		14 x 10 ⁻¹) 10 ⁻ 10	2.35 x		1.57 x		1.55 x	
	Ohm circular mil ft-1	1,00 %	(9.32)	, ,,,,,	(2.12)		0 x 10-1)		1 x 10 ⁻²)		4 x 10-3)		2 x 10-3
RRR-300	Ohm m	1.56 x		3.55 x			10.10	5.98 x		5.12 ×	-	5.18 x	
DDD 100	Ohm circular mil ft ⁻¹	1.57 x	(9.38)	3.66 x	(2.14)	(3.3	12 x 10 ⁻¹) 10 ⁻ 10	(3.6 1.65 x	0 x 10 ⁻²)	(3,1: 1,57 x	3 x 10 ⁻²)	(3.12 1.57 x	2 x 10 ⁻²
RRR-100	Ohm m Ohm circular mil ft ⁻¹	1.57 X	(9.44)	3.00 x	(2.20)		5 x 10 ⁻¹)		2 x 10·2)		4 x 10 ⁻²)		4 x 10 ^{.2}
RRR-30	Ohm m	1.60 x		4.03 >	10.9	1.03 x		5.42 x		5.35 x		5.34 x	
	Ohm circular mil ft ⁻¹		(9.62)		(2.42)	(6.2	10×10^{-1}	(3.2	6 x 10 ⁻¹ }	(3.2	2 x 10 ⁻¹)	(3.2	1 x 10 ⁻¹
No. of Sp													
References:	90111, 90125, 90178, 96886												
lagnetotherma	al Conductivity]							
RRR-1520	tesla										i		
Watts m-1 K								11700		17300			
Btu hr-1 ft-1	F-1								(6765)		(10002)		
Watts m ⁻¹ K Btu hr ⁻¹ ft ⁻¹	-1 1 c-1							5500	(2100)	6500	/27E01		
Watts m-1 K	.1 2								(3180)	4800	(3758)		
Btu hr-1 ft-1	F-1										(2775)		
Watts m-1 K	-1 4							3700		4500			
Btu hr-1 ft-1	F-1								(2139)		(2602)		
Watts m ⁻¹ K Btu hr ⁻¹ ft ⁻¹	-1 8 1							3100	(1702)	3800	(2107)		
No. of Sp								1	(1792)	1	(2197)		
	94208							'		'			

TABLE 5.1.1-TR1 (Cont.)

Alloy Designation: Copper

Specification:

Form:

Dimension: Condition:

Annealed

Testing Temp	erature, K (F)		20	(-423)	10	(-442)	4	(-452)
Magnetoresist	ance(2)							
H = 1 Tesla							1	
RRR-30006	Ohm m		5.49 x	10-11	3.38 x	10-11	3.12	c 10-11
	Ohm circular mil ft ⁻¹			x 10 ⁻²)		3 x 10·2)		38 x 10-
RRR-1000			5.62 x	10-11	4.07 x			10-11
	Ohm circular mil ft ⁻¹			3 x 10-2)		5 x 10 ⁻²)	(2.3	38 x 10-
RRR-3000	Ohm m		6.06 x		5.01 x	10-11	4.97	10-11
	Ohm circular mil ft-1					1 x 10 ⁻²)		99 x 10
RRR-1000	Ohm m		7.15 x	10-11	6.34 x	10-11	6.32	10-11
	Ohm circular mil ft ⁻¹		(4.30) x 10 ^{.2})	(3.8	1 x 10 ⁻² }		30x 10 ⁻²
RRR-300	Ohm m		1.07 x		9.96 x	10.11		10-11
	Ohm circular mil ft ⁻¹		(6.44	4 x 10 ⁻²)		9 x 10 ⁻²)	(5.9	98 x 10
RRR-100	Ohm m		2.09 x		2.01 x			(10 ⁻¹⁰
	Ohm circular mil ft ⁻¹					1×10^{-1}		21 x 10°
RRR-30	Ohm m		5.80 x		5.72 x			(10 ⁻¹⁷
	Ohm circular mil ft ⁻¹		(3.4	9 x 10 ⁻¹)	(3.4	4 x 10 ⁻¹)	(3.4	44 x 10 ⁻
H = 10 Test	a			40				40
RRR-30000	Ohm m		3.50 x		1.75 x			10-10
	Ohm circular mil ft ⁻¹			1 x 10 ⁻¹)		5 x 10 ⁻¹)		26 x 10
RRR-10000	Ohm m		3.59 x		2.33 x			10-10
	Ohm circular mil ft ⁻¹	•				0×10^{-1}		35 x 10
RRR-3000			3.83 x		3.15 x			10-10
	Ohm circular mil ft ⁻¹			x 10 ⁻¹)		9 x 10 ⁻¹)		38 x 10
RRR-1000			4.30 x		3.97 x			10-10
	Ohm circular mil ft ⁻¹			× 10 ⁻¹)		9 x 10 ⁻¹)		38 x 10
RRR-300	Ohm m		5.14 x		5.01 x			10.10
	Ohm circular mil ft ⁻¹	1		9 x 10·1)		10-1)		01 x 10
RRR-100	Ohm m		6.48 x		6.40 x			10-10
	Ohm circular mil ft ⁻¹			0×10^{-1}		5 x 10 ⁻¹)		35 x 10°
RRR-30	Ohm m		1.03 x		1.02 x			10-9
	Ohm circular mil ft ⁻¹			0×10^{-1}		4 x 10 ⁻¹)	,	14 x 10 ⁻
No. of Sp			8		8		8	
References:	96887							
			1.				1	

(1) Interpolated from numerous data using theoretical correlations.

(2) The electrical magnetoresistance of pure copper and of OFHC copper can be represented on a universal curve, called a Kohler plot, which is shown in Figure 5.1.1-MR1. The curve can be represented by the equation:

$$\log_{e} \left(\frac{\rho(H,T) - \rho(O,T)}{\rho(O,T)} \right) = a_{0} + a_{1} \log_{e} \left[H \cdot \frac{\rho(0,273 \text{ K})}{\rho(O,T)} \right] + a_{2} \left\{ \log_{e} \left[H \cdot \frac{\rho(0,273 \text{ K})}{\rho(O,T)} \right] \right\}^{2}$$

Where $\rho(H,T)$ = electrical resistivity at magnetic field H, and at temperature T. If the field H is given in tesla, then the constants have the values:

The plot is valid over the temperature range 4-35 K, and over the magnetic field range 0-10 tesla.

2845

FIGURE 5.1.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATUE FOR COPPER

FIGURE 5.1.1-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR COPPER

5.1.1-7 (11/76)

FIGURE 5.1.1-MR1. TRANSVERSE MAGNETORESISTANCE (ELECTRICAL) OF COPPER (REDUCED KOHLER PLOT)

FIGURE 5.1.1-MR2. TRANSVERSE MAGNETORESISTANCE OF COPPER AT 1 TESLA

1 " "

FIGURE 5.1.1-MR3. TRANSVERSE MAGNETORESISTANCE OF COPPER AT 10 TESLA 5.1.1-7.3 (11/76)

TABLE 5.1.1-MA1

Alloy Designation: 99.999 Cu (<1 ppm Fe or Ni)*

Specification:

Form:

Wire

Diameter, cm (in.):

0.03 (0.0118)

Condition:

Cold drawn, etched, and annealed.

Temperature, K (F)	Mass Susceptibility, χ (cgsem)	Volume Suscepti- bility, k (mksa)	Permeability, μ (mksa)
1.450 (-457)	-0.673 x 10 ⁻⁷	-75.71 x 10 ⁻⁷	~ 12.57 x 10 ⁻⁷
2.155 (-456)	-0.706 x 10 ⁻⁷	-79.43 x 10 ⁻⁷	~ 12.57 x 10 ⁻⁷
3.003 (-454)	-0.735 x 10 ⁻⁷	-82.69 x 10 ⁻⁷	~ 12.57 x 10 ⁻⁷
4.187 (-452)	-0.771 x 10 ⁻⁷	-86.74 × 10 ⁻⁷	~ 12.57 x 10 ⁻⁷
10 ± 1 (-442)	-0.795 x 10 ⁻⁷	-89.44 x 10 ⁻⁷	~ 12.57 x 10 ⁻⁷
13.8 (-434)	-0.802 x 10 ⁻⁷	-90.23 x 10 ⁻⁷	~ 12.57 x 10 ⁻⁷
16.3 (-430)	-0.812 x 10 ⁻⁷	-91.35 x 10 ⁻⁷	~ 12.57 x 10 ⁻⁷
18.1 (-427)	-0.816 x 10 ⁻⁷	-91.80 x 10 ⁻⁷	~ 12.57 x 10 ⁻⁷
20.2 (-423)	-0.821 x 10 ⁻⁷	-92.36 x 10 ⁻⁷	~ 12.57 × 10 ⁻⁷
77 (-321)	-0.816 x 10 ⁻⁷	-91.80 x 10 ⁻⁷	~ 12.57 x 10 ⁻⁷
300 (80)	-0.830 x 10 ⁻⁷	-93.38 x 10 ⁻⁷	~ 12.57 x 10 ⁻⁷

Reference: 96873

^{*} American Smelting and Refining Company.

FIGURE 5. 1.2-ME1. EFFECT OF TEMPERATURE ON THE STRENGTH OF ELECTROLYTIC TOUGH PITCH COPPER

TABLE 5.1.2-TR1

Alloy Designation: Copper-Electrolytic Tough Pitch

Specification: CDA No. 110

Form:

Dimension: Condition: Annealed

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452
Thermal Conductivity Watts m-1 K-1 Btu hr-1 ft-1 F-1 No of Spec. References: 90244, 90300 Thermal Expansion (T273 to T) Longitudinal			445	(257)	880	(509)	1320	(763)	750	(434)	325	(188)
Percent No. of Spec. References:												
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹ No of Spec. References:												
Ohm m Ohm circular mil ft-1 No of Spec. References:												

FIGURE 5.1.3-ME1. EFFECT OF TEMPERATURE ON THE STRENGTH OF OFHC Cu

TABLE 5.1.3-TR1

Alloy Designation:

Copper-OFHC

Specification: Form:

CDA No. 102

Thickness, cm (in.): Condition:

Annealed

Testing Temperat	ture, K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conduc	tivity												
RRR-107 W B	Vatts m ⁻¹ K ⁻¹ Itu hr ⁻¹ ft ⁻¹ F ⁻¹ Vatts m ⁻¹ K ⁻¹ Itu hr ⁻¹ ft ⁻¹ F ⁻¹	412 406*	(238) (235)*	480 460*	(278) (266) •	1150 1000*	(665) (578)*	4050 2150	(2340) (1240)	3230 1450	(1870) (838)		
	Vatts m ⁻¹ K-1 Itu hr-1 ft-1 F-1	400	(231)	440	(254)	820	(474)	900	(520)	460	(266)	183	(106)
No. of Spec References: 9		2		2		2		3		3		1	
Thermal Expansi	ion (T ₂₇₃ to T)			ļ									
Longitudinal													
Percent		0		-0.252		0.288		-0.295		0.295			
No. of Spec		3		3		4		4		1		1	
References: 9	0202, 90252, 0366, 90459												
Specific Heat													
Joules kg-1 K-	1	380		245		95		7.2		0.85		0.099	1
Btu lb-1 F-1			(0.091)		(0.0586		(0.0227)	(0	0.00172)		.000203)	(0.	0000239
No. of Spec		2		2		1		2		3		3	
References: 9-	0223, 90259, 4206									}			
Electrical Resisting	vity												
RRR-250 Ohn	n m	1.55 x	10-8	3.54 x		5.82 x	10-10	8.10 x			10-11		
Ohm	n circular mil ft ⁻¹		(9.32)		(2.13)		(0.350)		7×10^{-2}	(4.3	9 x 10-2)		40
RRR-97 Uhm	n m	1.55 x	10 ⁻⁸	3.40 x	10 ^{.9}	5.10 x	10-10	1.72 x	10-10	1.65 x	10-10	1.60	x 10 ⁻¹⁰
	n circular mil ft ⁻¹		(9.32)		(2.05)	1	(0.307)	1	(0.103)	[_	(0.0992)	((0.096
No. of Spec. References: 7		3		3		3		3		3			
Magnetothermal													
	Н												
Watts m-1 K-1	tesla	1		ł				2180		1450		1	
Btu hr-1 ft-1 F	1							2100	(1260)	1450	(838)	ł	
Watts m-1 K-1	1	ļ		}				2060	(1200)	1250	(030)		
Btu hr 1 ft-1 F	:-1							2000	(1191)	1200	(723)	1	
Watts m·1 K·1								1880	(,	1080	(,	1	
Btu hr-1 ft-1 F	:-1	1		1				1	(1087)		(824)	ľ	
Watts m-1 K-1								1530		940		ţ	
Btu hr-1 ft-1 F	:-1			1					(885)		(544)	1	
Watts m-1 K-1	8							1202		730		l	
Btu hr-1 ft-1 F	:-1	l		Į					(695)		(422)	j	
No. of Spec.								1		i		l	
References: 9	4206												
Magnetoresistance	e(2)												
	Н					ĺ						ĺ	
	tesla	1		l					11		11		11
Ohm m	0	-		1		1		8.32 x			10-11	7.52	x 10-11
Ohm circular n									0 x 10 ⁻²)	(4.5	4 x 10·2)		52 x 10
Ohm m	11							1.29 x			10-10		x 10-10
Ohm circular m								E 49	6 x 10 ⁻²) 10-10		14 x 10 ⁻²) 10-10	E 27	34 x 10 x 10-10
Ohm m Ohm circular m	10							5.48 x		5.37 x			(0.323)
								,	(0.330)	1	(0.323)		(0.323)
No. of Spec.								1		1		1	
References: 96	000/	1		1		5							

⁽¹⁾ RRR-107. (2) RRR-207. Extrapolated.

TABLE 4.3.1-ME3.6

Alloy Designation: 5083 Aluminum Alloy (Weld Metal)

Specification:

Form: Plate-MIG welded, 5556 Alloy filler
Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: 5083-H321 Plate, tested as welded

Testing Temperature, K (F	=)	297 (75)	195 (-108)	77 (-320)	4 (-452)
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg	306 (44.4)	319 (46.3)	450 (65.3)	474 (68.8)
Std Deviation	Min				
TYS, MN/m ² (ksi)	Avg Min	177 (25.6)	184 (26.7)	211 (30.6)	239 (34.6)
Std. Deviation	IVIIII		7		
Elong, percent	Avg Min	14.0	18.5	20.5	13.0
RA, percent	Avg Min	36	46	26	17
No. of Spec. (No. of He		1	1	1	1
E, GN/m ² (10 ⁶ psi)	Avg				
No. of Spec. (No. of He	eats)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = 16 No. of Spec. (No. of He	Avg Min eats)	370 (53.7)	401 (58.1)	417 (60.5)	399 (57.9)
NTS, MN/m ² (ksi)	Avg				
K_{t} = No. of Spec. (No. of He	Min				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg Min				
Std Deviation					
TYS, MN/m ² (ksi)	Avg				
Std Deviation	Min				
Elong, percent	Avg Min				
RA, percent	Avg Min				
No. of Spec. (No. of He					
E, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec, (No. of He	eats)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg Min				
Kt = No. of Spec. (No. of He					
NTS, MN/m² (ksi) K _t =	Avg Min), — — — — — — — — — — — — — — — — — — —	
No of Spec. (No. of He	eats)				032

TABLE 4.3.1-ME3.7

Alloy Designation: 5083-O Aluminum Alloy (Weld Metal)

Specification:

Form: Plate-MIG welded, 5183 Alloy filler
Thickness, cm (in.): 2.541 to 5.080 (1.001 to 2.000)
Condition: 5083-O Plate, tested as welded

Testing Temperature, K (F)		297	(75)		77 (-320)	
Tension, Longitudinal TUS, MN/m ² (ksi) Std. Deviation	Avg Min	295 280	(42.8) (40.6)		419 (60.8) 405 (58.8)	
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	146 129	(21.2) (18.7)	_=	177 (25.6) 160 (23.2)	
Elong, percent	Avg Min		2.5 7.7		24.5 20.8	11 1
RA, percent No. of Spec. (No. of Heat:	Avg Min	10	(1)		10 (1)	9
E, GN/m ² (10 ⁶ psi)	Avg Min	10	.,			
No. of Spec. (No. of Heat:	s)					
oisson's Ratio						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat:	Avg Min		111			
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat:	Avg Min					
Tension, Transverse TUS, MN/m ² (ksi)		i				
Std. Deviation	Avg Min					
YS, MN/m ² (ksi)	Avg Min					
Std. Deviation	Avg					
A, percent	Min Avg					
No. of Spec. (No. of Heats	Min s)					
, GN/m ² (10 ⁶ pri)	Avg Min					
No. of Spec. (No. of Heats	5)					
ork Hardening Coef						1
TS, MN/m² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min					
ITS, MN/m ² (ksi) K _t =	Avg Min					

FIGURE 5.1.3-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR OFHIC COPPER
5.1.3-13 (11/76)

1.3

FIGURE 5.1.3-C2. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR OFHC COPPER AT SEVERAL MAGNETIC FIELD STRENGTHS

5.1.3-14 (11/75)

296<

FIGURE 5.1.3-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR OFHC COPPER

43

FIGURE 5.1.3-MR1. MAGNETORESISTANCE VERSUS TEMPERATURE FOR OFHC COPPER
5.1.3-17.1 (11/76)

198<

TABLE 5.1.3-MA1

Alloy Designation: OFHC Cu

Specification:

Form:

Rod

Diameter, cm (in.):

0.9 (0.354)

Condition:

Heavily etched and air cooled after annealing at 823 K

(550 C) for 7 days

Temperature, K (F)	Mass Susceptibility, χ (cgsem)	Volume Suscepti- bility, k (mksa)	Permeability, μ (mksa)
6.6 (-447)	-0.836 × 10 ⁻⁷	-89.32 × 10 ⁻⁷	~12.57 x 10 ⁻⁷
22.6 (-418)	-0.856 x 10 ⁻⁷	-91.46 x 10 ⁻⁷	~12.57 x 10 ⁻⁷
30.8 (-404)	-0.863 × 10 ⁻⁷	-92.21 x 10 ⁻⁷	~12.57 x 10 ⁻⁷
40.5 (-386)	-0.869 x 10 ⁻⁷	-92.85 x 10 ⁻⁷	~12.57 x 10 ⁻⁷
48.2 (-372)	-0.872 x 10 ⁻⁷	-93.17 x 10 ⁻⁷	~12.57 x 10 ⁻⁷
62.0 (-347)	-0.873 x 10 ⁻⁷	-93.28 x 10 ⁻⁷	~12.57 x 10 ⁻⁷
80.0 (-315)	-0.872 x 10 ⁻⁷	-93.17 x 10 ⁻⁷	~12.57 x 10 ⁻⁷
98.8 (-281)	-0.869 x 10 ⁻⁷	-92.85 x 10 ⁻⁷	~12.57 x 10 ⁻⁷
128.0 (-229)	-0.869 × 10 ⁻⁷	-92.85 x 10 ⁻⁷	~12.57 x 10 ⁻⁷
160.1 (-171)	-0.867 × 10 ⁻⁷	-92.63 x 10 ⁻⁷	~12.57 x 10 ⁻⁷
208.0 (-85.0)	-0.863 × 10 ⁻⁷	-92.21 x 10 ⁻⁷	~12.57 x 10 ⁻⁷
247.5 (-13.9)	-0.859 x 10 ⁻⁷	-91.78 x 10 ⁻⁷	~12.57 x 10 ⁻⁷
292.0 (66.2)	-0.855 x 10 ⁻⁷	-91.35 x 10 ⁻⁷	~12.57 x 10 ⁻⁷

Reference: 90467

TABLE 5.1.4-TR1

Alloy Designation: Copper-Phosphorized

Specification: CDA No. 122 Form:

Dimension: Condition:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m-1 K-1	201		140		92		43		20.2			
Btu hr-1 ft-1 F-1	1	(116)	2	(80.9)	2	(53.2)	2	(24.9)	2	(11.7)		
No of Spec. References: 90224, 90330			2		2		2		2			
Thermal Expansion (T273 to T) Longitudinal									İ			
l'ercent									})	
No. of Spec.					1		l					
References:	}				ł				1			
Specific Heat					}							
Joules kg-1 K-1												
Btu lb-1 F-1	ĺ				1		ł				1	
No. of Spec.							Ì					
References:					1							
Electrical Resistivity												
Ohm m												
Ohm circular mil ft ⁻¹ No. of Spec.												
References:												

FIGURE 5.1.4-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR PHOSPHORIZED COPPER

301<

5.1.4-10 (11/74)

FIGURE 5.2.2-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR COPPER ALLOY 70 Cu-30 Zn 5.2.2-7 (11/74)

TABLE 5.2.2-TR2

Alloy Designation: 70Cu-30Ni Alloy CDA No. 715 Specification: Form: Dimension: Condition: Anneeled 50 4 (-452) 273 (-280) (-370)10 (-442)Testing Temperature K (F) (32)100 20 (-423)Thermal Conductivity Watts m-1 K-1 Btu hr-1 ft-1 F-1 5.02 2.09 (1.21)(290)No. of Spec. References: 90224 Thermal Expansion (T₂₇₃ to T) Longitudinal Percent No. of Spec. References: Specific Heat Joules kg⁻¹ K⁻¹ Btu lb⁻¹ F⁻¹ No. of Spec. References: **Electrical Resistivity** Ohm m Ohm circular mil ft-1 No. of Spec. References:

FIGURE 5.2.2-C2. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR COPPER ALLOY 70Cu-30Ni

TABLE 5.2.4-ME1

Alloy Designation:

90Cu-10Zn Alloy (Commercial Bronze)

Specification:

CDA No. 220

Form:

Up to 2.540 (1.000) Annealed

Thickness, cm (in.): Condition:

265 (38.5) 66.2 (9.6)	70.3 (10.2)		381 (55.2) 91.0 (13.2)	505 (73.2)	470 (68.2)
66.2 (9.6)					470 (68.2)
	70.3 (10.2)		91.0 (13.2)	100 /15 61	
	70.3 (10.2)		91.0 (13.2)	100 /15 61	
56				108 (15.6)	103 (15.0)
56	1				
	57		86	95	91
84	80		78	73	73
1	1		1	1	1
104 (15.1)	113 (16.4)		122 (17.7)	124 (18.0)	125 (18.1)
1	1		1	1	1
	- 1				
		11			
344 (49.9)	383 (55.6)	D.K	477 (69.2)	526 (76.3)	544 (78.9)
1	1		1	1	1_
			,		
	}				
	344 (49.9)	344 (49.9) 383 (55.6)	344 (49.9) 383 (55.6)	344 (49.9) 383 (55.6) 477 (69.2) 1 1 1	344 (49.9) 383 (55.6) 477 (69.2) 526 (76.3) 1 1 1

TABLE 5.2.4-ME2

Alloy Designation:

90Cu-10Zn Alloy (Commercial Bronze)

Specification:

CDA No. 220

Form: Thickness, cm (in.): Condition:

Up to 2.540 (1.000) Annealed

Testing Temperature, K (F)	297	(75)	195	(-108)		77	(-320)	20	(-423)	
Compression, Longitudina	1										
CYS, MN/m ² (ksi)	Avg Min										
No. of Spec. (No. of H						'					
Ec, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of H	eats)										
Compression, Transverse											
CYS, MN/m ² (ksi)	Avg Min										
No. of Spec. (No. of H										- 1	
Ec, GN/m ² (10 ⁶ psi)	Avg Min	.									
No. of Spec. (No. of H	eats)										
Shear(a)											
SUS, MN/m ² (ksi)	Avg Min										
No. of Spec. (No. of H	eats)										
G, GN/m ² (10 ⁶ psi)	Avg Min	45.4	(6.59)	48.1	(6.97)		49.9	(7.24)	50.8	(7.37)	
No. of Spec. (No. of H	eats)	1		1			1		1		
impact, Charpy V											
Long., Nm(ft-lb)	Avg .	152	(112)	135	(114)		152	(112)	156	(115)	
No. of Spec. (No. of H		1		1			1		1		İ
Trans., Nm(ft-lb)	Avg Min										
No. of Spec. (No. of H				ļ						i	
Fracture Toughness(b)					1						
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min										
Orientation. — No. of Spec. (No. of H	ea(s)										
K _{1E} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(- No, of Spec. (No. of H	Avg -)Min										

References: 90375

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{I_C} data:

Alloy Designation:

90Cu-10Zn Alloy

Specification:

CDA No. 220

Form: Dimension:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m-1 K-1					82.0		42.0		19.0		6.10	
Btu hr-1 ft-1 F-1						(47.4)		(24.3)		(11.0)	2	(3.53)
No of Spec.	1				2		2		2		2	
References: 90224, 90317		1										
Thermal Expansion (T273 to T)												
Longitudina!	1				İ		-					
Percent												
No. of Spec.		J										
References:												
Specific Heat												
Joules kg ⁻¹ K ⁻¹	376		259		105		8.0		0.87		0.096	
Btu lb-1 F-1	(8.49 x 10·2	(6.1	9 x 10 ⁻²)	(2.5	1 x 10 ⁻²)	1.9	1 x 10 ⁻³)	(2.	08×10^{-4}	(2.2	9 x 10 ⁻⁵
No. of Spec.	1		1		1		1		1		1	
References: 90223, 90314								-				
Electrical Resistivity												
Ohm m	3.90 x	10-8	2.45 x	10-8	2.05 x 1	10-8	1.98 x	10-8	1.98 x	10-8	1.98 x	10-8
Ohm circular mil ft-1		(23.5)		(14.7)		(12.3)		(11.9)		(11.9)		(11.9)
No. of Spec.	3		3		3		3		3		2	
References: 79561, 90317, 90348												

FIGURE 5.2.4-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR COPPER ALLOY 90Cu-10Zn

3085

5.2.4-4 (11/76)

FIGURE 5.2.4-S1. SPECIFIC HEAT VERSUS TEMPERATURE FOR COPPER ALLOY 90Cu-10Zn

FIGURE 5.2.4-S2. SPECIFIC HEAT VERSUS TEMPERATURE FOR COPPER ALLOY 90Cu-10Zn 5.2.4-6 (11/76)

FIGURE 5.2.4-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR COPPER ALLOY 90Cu-10Zn 31%

FIGURE 5.2.4-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR COPPER ALLOY 90Cu-10Zn

TABLE 5.3.1-ME0.1

Alloy Designation:

90Cu-10Ni Alloy

Specification:

CDA No. 706

Form:

Thickness, cm (in.): Condition:

1.270 to 2.540 (0.500 to 1.000) Annealed (assumed)

Testing Temperature, K (F)		297	(75)	220	(-60)	173	(-150)	123	(-240)	77	(-320)	
Tension, Longitudinal												
TUS, MN/m ² (ksi)	Avg Min	312	(45.3)	331	(48.0)	355	(51.5)	359	(52.1)	437	(63.4)	
Std Deviation	.,,,,,										П	
TYS, MN/m ² (ksi)	Avg Min	278	(40.3)	285	(41,4)	294	(42.7)	299	(43.3)	321	(46.6)	
Std Deviation												
Elong, perc∉nt	Avg Min	37	7		38	4	12		42		46	
RA, percent	Avg Min	6	B.5		65		7.5	1	64		50.5	
No. of Spec. (No. of Hea		1		1		1		1		1		
E, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of Hea	ts)											
oisson's Ratio												
Nork Hardening Coef												
NTS, MN/m^2 (ksi) $K_t \approx$ No. of Spec. (No. of Hea	Avg Min ts)											
NTS, MN/m ² (ksi) $K_t =$ No. of Spec. (No. of Hea	Avg Min ts)										·	
Tension, Transverse											1	
TUS, MN/m ² (ksi)	Avg Min											
Std. Deviation						}						
YS, MN/m ² (ksi)	Avg Min											
Std. Deviation												
Elong, percent	Avg Min					}						
RA, percent	Avg Min											
No. of Spec. (No. of Hea												
E, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of Hea												
oisson's Ratio												
ork Hardening Coef										{		
ITS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min											
VTS, MN/m ² (ksi) K _t =	Avg Min					ĺ						

TABLE 5.3.1-TR1

Alloy Designation: 90Cu-10Ni Alloy

Specification: Form: Dimension: Condition:

CDA No. 706

Testnig Temperature K (F)	273 (32)	100 (-280)	50 (-370)	20 (-423)	10 (-442)	4 (-452)
Thermal Conductivity						
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹			32.5 (18.8)	16.7 (9.66)	5,80 (3.35)	1,30 (0.752
No. of Spec.			2	2	2	2
References: 90318, 96875						
Thermal Expansion (T ₂₇₃ to T) Longitudinal				<u> </u>		
Percent					ĺ	
No. of Spec.						
References:						
Specific Heat						
Joules kg ⁻¹ K ⁻¹						0.112
Btu lb-1 F-1						(0.0000268
No of Spec References: 90223						1
References: 90223						
Electrical Resistivity						
Ohm m	16.4 × 10 ⁻⁸	15.1 x 10 ⁻⁸	14.6 x 10 ⁻⁸	14.1 x 10 ⁻⁸	14.0 × 10 ⁻⁸	14.0 x 10 ⁻⁸
Ohm circular mil ft ⁻¹	(98.6)	(90.8)	(87.8)	(84.8)	(84.2)	(84.2)
No of Spec.	3	3	3	3	1	1
References: 79561, 90224, 90318						

FIGURE 5.3.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERTURE FOR COPPER ALLOY 90Cu-10Ni

TABLE 5.3.2-ME1

Alloy Designation:

80Cu-20Ni Alloy

Specification:

CDA No. 710

Form:

Plate

Thickness, cm (in.): Condition:

1,270 to 2,540 (0,500 to 1,000) Annealed (assumed)

Testing Temperature. K (F)		297	(75)	220	(-60)	173	(-150)	123	(-240)	77	(-320)	
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg	299	(43.3)	332	(48.2)	363	(52.6)	387	(56.1)	469	(68.0)	
Std. Deviation	Min	200	(30.0)		(40.6)		(02.0)		(00,	1.00	(00.0)	
TYS, MN/m² (ksi)	Avg											
Std. Deviation	Min											
Elong, percent	Avg Min	5	6	!	57		57	1	55		56	
RA, percent	Avg	7	0.0		68.5		66.0	1 9	63.0		57.0	
No of Spec. (No. of Heats	Min	1		1		1		1		1		
E, GN/m ² (10 ⁶ psi)	Avg											
No. of Spec. (No. of Heat	Min s)											
Poisson's Ratio												
Work Hardening Coef												
NTS, MN/m² (ksi)	Avg							1				1
K _t = No. of Spec. (No. of Heats	Min s)							}				
NTS, MN/m² (ksi) K _t =	Avg Min											
No. of Spec. (No. of Heats												
Tension, Transverse										1		
TUS, MN/m ² (ksi)	Avg Min											
Std. Deviation								1		Í		
TYS, MN/m ² (ksi)	Avg Min											
Std. Deviation				1		1		ł				1
Elong, percent	Avg Min											
RA, percent	Avg Min											
No. of Spec. (No. of Heats				ĺ		b		1				
E, GN/m ² (10 ⁶ psi)	Avg Min			ŀ								
No. of Spec. (No. of Heats												
Poisson's Ratio												
Nork Hardening Coef												
NTS, MN/m² (ksi) K _t =	Avg Min											
No. of Spec. (No. of Heats	;)											
NTS, MN/m² (ksi) Kt =	Avg Min											
D	(Attill			1		1		1		1		1

. .

TABLE 5.3.2-ME2

Alloy Designation:

89Cu-20Ni Alloy (Weld Metal)

Specification:

CDA No. 710 Plate-MIG welded, 80Cu-20Ni Alloy filler 1.270 to 2.540 (0.500 to 1.000)

Form: Thickness, cm (in.):

Condition:

Plate tested as welded

Testing Temperature, K (f	F)	297 (75)	173	(-150)	123	(-240)			
Compression, Longitudina									
CYS, MN/m ² (ksi)	Avg Min				1				
No. of Spec. (No. of He									
Ec, GN/m ² (10 ⁶ psi)	Avg Min)
No. of Spec. (No. of H.	eats)				1			}	
Compression, Transverse	į								
CYS, MN/m ² (ksi)	Avg								1
No of Spec. (No. of H	Min eats)								
Ec, GN/m ² (10 ⁶ psi)	Avg Min								
No. of Spec. (No. of H	eats)								
Shear(a)									
SUS, MN/m ² (ksi)	Avg Min								
No. of Spec. (No. of H									
G, GN/m ² (10 ⁶ psí)	Avg Min								
No. of Spec. (No. of H	eats)				1				
Impact, Charpy V	1		1		1		}		
Long., Nm(ft-lb)	Avg Min		92	(68)	92.9	(68.5)			
No. of Spec. (No. of He									
Trans., Nm(ft-lb)	Avg Min								
No. of Spec. (No. of H									
Fracture Toughness(b)									
KIc MN/m ^{3/2} (ksi√in.)	Avg Min								
Orientation — No. of Spec. (No. of Hi	eats)								
KIE, MN/m3/2(ksi/ in.)	Avg								
(From PTSC spec.)(- No. of Spec. (No. of H									

References: 96683

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1c} data:

Alloy Designation:

80Cu-20Ni Alloy

Specification:

CDA No. 710

Form:

Dimension: Condition:

Annealed

Condition:		nealed	T				,		1			
Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m ⁻¹ K ⁻¹			1				10.20		4.10		0.950	
Btu hr ⁻¹ ft ⁻¹ F ⁻¹ No. of Spec.	(ļ		l		2	(590)	2	(2.37)	2	(0.549
References: 90170, 96875							•		-		•	
Thermal Expansion (T272 to T) Longitudinal											{	
Percent			1		1						ł	
No of Spec.			1								{	
References:			1									
Specific Heat]		}		İ	
Joules kg ⁻¹ K ⁻¹)		ļ							
Btu Ib-1 F-1	}				}		j				1	
No. of Spec. References:	}						}					
neieratios.	}				1]			
Electrical Resistivity]			
Ohm m			1		j]			
Ohm circular mil ft ⁻¹			Į		ļ							
No. of Spec. References:	l											
1 10 101 011003.												
									1			

FIGURE 5.3.2-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR COPPER ALLOY 80Cu-20Ni

TABLE 5.3.3-ME0.1

Alloy Designation:

70Cu-30Ni Alloy

Specification:

CDA No. 715

Form:

Plate

Thickness, cm (in.): Condition:

1.270 to 2.540 (0.500 to 1.000) Annealed (assumed)

Testing Temperature, K (F)	297 (75)	220 (-60)	173 (-150)	123 (-240)	77 (-320)	
Tension, Longitudinal						
TUS, MN/m ² (ksi)	vg 288 (41.8)	321 (46.6)	348 (50,4)	382 (55.4)	435 (63.1)	
Std Deviation	1in	7 10 70				
	lvg					
Sid Deviation	1in					
	lin 57	59	60	63	70	
	wg 80.0	79.5	77.5	76.5	76.0	
No of Spec. (No of Heats)	1	1	1	1	1	
	lvg fin					
No of Spec. (No. of Heats)						
oisson's Ratio						
Vork Hardening Coef						
NTS, MN/m ² (ksi)	vg					
	lin					
	vg lin		= '			
ension, Transverse US, MN/m ² (ksi) A	vg					
	in					
YS, MN/m ² (ksi) A	vg				-	
Std. Deviation	lin					
	vg lin					
	vg					
No. of Spec. (No. of Heats)	in					
	vg lin					
No of Spec. (No of Heats)						
oisson's Ratio						
ork Hardening Coef					1	
	vg					
$K_t = M$ No of Spec. (No. of Heats)	in					
TS, MN/m² (ksi) A	vg					
	in					321

TABLE 5.3.3-ME0.2

Alloy Designation:

70Cu-30Ni Alloy (Weld Metal)

Specification:

CDA No. 715

Form:

Plate-MIG welded, 70Cu-30Ni Alloy filler 1.270 to 2.540 (0.500 to 1.000) Plate tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (I	F)	297 (75)	173 (-	150)	123	(-240)		
Compression, Longitudina								
CYS, MN/m ² (ksi)	Avg Min						:	1 2
No. of Spec. (No. of H					}		1	1
Ec, GN/m ² (10 ⁶ psi)	Avg Min						1111	
No. of Spec. (No. of H	eats)				1			
Compression, Transverse								
CYS, MN/m ² (ksi)	Avg							}
No. of Spec. (No. of H	eats)				}			
Ec, GN/m ² (10 ⁶ psi)	Avg Min							
No of Spec. (No. of H								
Shear(a)								
SUS, MN/m ² (ksi)	Avg Min							
No. of Spec. (No. of H	eats)							
G, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of H					}			
Impact, Charpy V								
Long., Nm(ft-lb)	Avg Min		104 (77)	110	(81)		
No. of Spec. (No. of H								
Trans., Nm(ft-lb)	Avg Min							
No. of Spec. (No. of H								
Fracture Toughness(b)					1			
K _{Ic} MN/m ^{3/2} (ksi√ in.)	Avg Min							
Orientation: — No. of Spec. (No. of H								
K _{1E} , MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(- No, of Spec. (No. of H							_11	1 1 251

References: 96683

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{IC} data:

Alloy Designation:

70Cu-30Ni

Specification: Form:

Dimension:

Annealed

Condition:	Anne	aled										
Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹							9.32	(5.39)	4.22	(2.44)	1.1	(0.64)
No of Spec. References: 96888					}		1		1		1	
					11		111					
Thermal Expansion (T273 to T) Longitudinal												
Percent	0		-0.222		-0.248		-0.252		-0.252		0.252	
No of Spec. References: 90336	1		1		1		1		1		}	
Specific Heat									1		1	
Joules kg ⁻¹ K ⁻¹ Btu ib ⁻¹ F ⁻¹												
No of Spec. References:												
Electrical Resistivity			1		j							
Ohm m	38.4 x 10)·8	36.9 x 10-8		36.6 x 1	8-0	36.5 x	10-8	36.4 x	10-8	36.4 x 1	0-8
Ohm circular mil ft ⁻¹	1,	(231)	1 (22	(2)	1	(220)	,	(220)	,	(219)	,	(219)
No. of Spec. References: 79561			1						'		,	
Magnetothermal Conductivity (1					1							

⁽¹⁾ The application of magnetic fields up to 8 tesla produced no detectable effect on the thermal conductivity.

FIGURE 5.3.3-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR COPPER ALLOY 70Cu-30Ni

FIGURE 5.3.3-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR COPPER ALLOY 70Cu-30Ni

FIGURE 5.3.3-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR COPPER ALLOY 70Cu-30Ni

TABLE 5.4.2-ME0.1

Alloy Designation:

Cu-Be (1.8-2.0) Alloy

Specification:

CDA No. 172

Form:

Sheet

Thickness, cm (in.): Condition:

Up to 0.099 (0.039) AT (600 F, 3 hr, AC)

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	20 (-423)	
Fatigue, Axial Loading					
S _N at 10 ^S cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)					
Ratio S _N /TUS at 10 ⁵ cycles					
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No of S-N Curves (No of Heats)					
Ratio S _N /TUS at 10 ⁶ cycles					
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S N Curves (No. of Heats)					
Ratio S _N /TUS at 10 ⁷ cycles			5		
atigue, Flexural Loading					
N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency 30 Hz (a) with R = -1 and K _t = No of S-N Curves (No. of Heats)	648 (94)	689 (100)	779 (113)	1076 (156)	
Ratio SN/TIJS at 10 ⁵ cycles					
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency 30 Hz (a) with R =-1 and K _t = No. of S-N Curves (No. of Heats)	414 (60)	469 (68)	517 (75)	724 (105)	
Ratio SN/TUS at 10 ⁶ cycles					
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)					
Ratio S _N /TUS at 10 ⁷ cycles					

References: 45001

(a) Frequency = 58Hz for tests at 20 K

TABLE 5.5.1-TR1

Alloy Designation:

95Cu-5Sn Alloy (Phosphor Bronze A)

Specification: Form: **CDA No. 518**

Dimension: Condition:

Annealed except as noted

Testing Temperature K (F)	273	(32)	100 (-280)	50 (-37	0) 20	(-423)	10	(-442)	4	(-452)
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F-1 No. of Spec. References:											
Thermal Expansion (T ₂₇₃ to T) Longitudinal (1)											
Percent No. of Spec. References: 74405	0		-0.252 1		-0.291 1	-0	0.297	-0.297 1		-0,297 1	
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu Ib ⁻¹ F ⁻¹ No of Spec. References:											
Electrical Resistivity		9			222 228			0.50	- 0	0.50	. 0
Ohm m Ohm circular mil ft ⁻¹ No. of Spec. References: 79561	10.48	(63.0)	9.08 x 10 ⁻⁸ (54		8.70 x 10 ⁻⁸ (52.		3.58 x 10 ⁻⁸ (51.6)	8.58 x 1	(51.6)	8,59 x 10	(5 1 .7)

(1) Spring, cold drawn 85%

FIGURE 5.5.1-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR COPPER ALLOY 95Cu-5Sn

528<

5.5.1-4 (11/76)

F;GURE 5.5.1-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR COPPER ALLOY 95Cu-5Sn

TABLE 5.5.2-TR1

Alloy Designation: 92Cu-8Sn Alloy

C52100

Specification:

CDA-521

Form: Dimension:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m-1 K-1 Btu hr-1 ft-1 F-1												
No of Spec.												
References:			[
Thermal Expansion (T273 to T) Longitudinal												
Percent	Ì		i									
No. of Spec.												
References:					1		1					
Specific Heat												
Joules kg ⁻¹ K ⁻¹									1.08		0.07	
Btu lb-1 F-1			1				ì		(0.	.000258)	(0.	.0000167
No. of Spec.)								1		1	
References: 94206												
Electrical Resistivity			1									
Ohm m												
Ohm circular mil ft-1			Ī									
No. of Spec.			Į]	
References:											1	

FIGURE 5.5.2-S1. SPECIFIC HEAT VERSUS TEMPERATURE FOR COPPER ALLOY 92Cu-8Sn

5.5.2-4 (11/75)

Alloy Designation:

90Cu-10Sn Alloy

Specification: Form: Dimension:

CDA No. 524

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity Watts m-1 K-1 Btu hr-1 ft-1 F-1 No. of Spec. References: Thermal Expansion (T273 to T) Longitudinal Percent No. of Spec. References: 94206 Specific Heat Joules kg-1 K-1 Btu lb-1 F-1 No of Spec. References: 94206 Electrical Resistivity Ohm m Ohm circular mil ft-1 No. of Spec. References:	0 1	(32)	-0.263 1	(-280)	-0.314	(-370)	-0.330 1	(-423)	-0.352 1	(-442) 86 × 10 ⁻⁴)	-0.333 1	(-452)

(1) 89Cu-11Sn, as cast

FIGURE 5.5.3-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR COPPER ALLOY 90Cu-10Sn

FIGURE 5.5.3-S1. SPECIFIC HEAT VERSUS TEMPERATURE FOR COPPER ALLOY 90Cu-10Sn

TABLE 5.7.1-ME1

Cu-Cr-Cd/PHT (PD-135) Alloy Designation:

Specification:

Form:

Extrusion

Thickness, cm (in.): 1.59 (0.625) to 2.54 (1.000)

Condition: Extruded from 20.3 cm (8-inch) hillet at 1227 K (1750 F),

Precipitation hardened 1 hr at 866 K (1100 F)

Preci	pitation	harden	ed 1 hr at	866 K	(1100 F)					
Testing Temperature, K (F)	297	(75)	77	(-320)	4	(-452)			
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg Min	350	(50.8)	478	(69.3)	523	(75.8)			
Std Deviation TYS, MN/m ² (ksi)	Avg Min	243	(35.3)	263	(38.1)	255	(37.0)			
Std. Deviation Elong, percent	Avg Min		32.0	٧.	40.2	5	9.8			
RA, percent No. of Spec. (No. of He	Avg Min		73.4		71.2	6	7.8			
E, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of He Poisson's Ratio	ats)									
Work Hardening Coef										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ats)	436	(63.3)	622	(90.2)	694	(100.7)			
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ats)									
Tension, Transverse TUS, MN/m ² (ksi) Std Deviation	Avg Min									
TYS, MN/m² (ksi)	Avg Min									
Std Deviation Elong, percent	Avg Min									
RA, percent No. of Spec (No. of Hea	Avg Min									
E, GN/m ² (10 ⁶ psi)	Avg Min									
No of Spec. (No. of Hea	ets)									
oisson's Ratio										
Vork Hardening Coef										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ets)									
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min									
INO OF Spec. (INO, OF Field	1(3)	1				ı	ı	1	1	

References: 94208G

TABLE 5.7.1-TR1

Alloy Designation:

Cu-Cr-Cd (PD-135)

Specification:

Form: Dimension: Condition:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4 (-45
Thermal Conductivity Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹ No. of Spec. References:											
Thermal Expansion (T ₂₇₃ to T) Longitudinal											
Percent No. of Spec. References: 95168	0		-0.249 1								
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹ No. of Spec.					ļ Į						
References: Electrical Resistivity											
Ohm m Ohm circular mil ft ⁻¹ No. of Spec.											
References:											

FIGURE 5.7.1-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR Cu-Cr-Cd (PD-135) ALLOY

TABLE 5.9.1-ME1

Alloy Designation:

Cu-Al Alloy (Aluminum Bronze D)

Specification:

CDA No. 614

Form:

Bar

Thickness, cm (in.): Condition:

Up to 2.540 (1.000) Annealed

Testing Temperature, K (F)	29	7 (75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)
Tension, Longitudinal										
TUS, MN/m ² (ksi) Av		(83.2)	617	(89.5)	729	(105.8)	872	(126.4)	927	(134.5)
Std Deviation										
TYS, MN/m ² (ksi) Av		(59.4)	447	(64.8)	479	(69.5)	556	(80.6)	568	(82.4)
std Deviation	"									
Elong, percent Av		40		45		52		48		52
RA, percent Av	-	66		71		64		58		59
No of Spec. (No. of Heats)	1		1		1		1		1	
E, GN/m ² (10 ⁶ psi) Av Mi		(15.8)	111	(16.1)	112	(16.3)	112	(16.3)	112	(16.3)
No. of Spec. (No. of Heats)	1		1		1		1		1	
oisson's Ratio							ļ			
Vork Hardening Coef										
$ \begin{array}{ll} \text{ATS, MN/m}^2 \text{ (ksi)} & \text{Av} \\ \text{K}_t = 5.0 & \text{Mi} \end{array} $	- 1	(122.5)	919	(133.3)	1021	(148.1)	1202	(174.3)	1109	(160.8)
$K_t = 5.0$ Mi No. of Spec. (No. of Heats)	1		1		1		1		1	
ITS, MN/m ² (ksi) Av K _t = Mi No. of Spec. (No. of Heats)										
ension, Transverse										
'US, MN/m² (ksi) Av	- (
Std. Deviation				ŀ						
YS, MN/m ² (ksi) Av	-)			1						
Std. Deviation					ĺ					
Flong, percent Av	-									
IA, percent Av										
No. of Spec. (No. of Heats)	'				į					
, GN/m ² (10 ⁶ psi) Av									11 _	
No. of Spec. (No. of Heats)										
oisson's Ratio										
Fork Hardening Coef										
HTS, MN/m ² (ksi) Av K _t = Mil No. of Spec. (No. of Heats)										
ITS, MN/m ² (ksi) Av										
$K_t = Mil$ No. of Spec. (No. of Heats)				ļ					- 1	

TABLE 5.9.1-ME2

Alloy Designation:

Cu-Al Alloy (Aluminum Bronze D)

CDA No. 614

Specification: Form: Thickness, cm (in.): Condition:

Up to 2.540 (1.000) Annealed

Testing Temperature, K (F		297 (7	5)	195	(-108)		77	(-320)	20	(-423)	
Compression, Longitudina	1								i		
CYS, MN/m ² (ksi)	Avg Min	=_		}							
No. of Spec. (No. of He											
Ec, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of H	eats)			[{				
Compression, Transverse							- }				
CYS, MN/m ² (ksi)	Avg Min					l.					
No. of Spec. (No. of He						1					
Ec, GN/=12 (10 ⁶ psi)	Avg Min	14									
No. of Spec. (No. of He	eats)								Ì		
Shear(a)											
SUS, MN/m ² (ksi)	Avg Min								}		
No. of Spec. (No. of H	eats)										
G, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of H	eats)					}	}		ł		
impact, Charpy V						1					
Long., Nm(ft-lb)	Avg Min	149 ((110)	136	(100)	1_	98	(72)	89	(66)	
No. of Spec. (No. of He		1		1			1		1		
Trans., Nm(ft-lb)	Avg Min										
No. of Spec. (No. of He									ļ		
Fracture Toughness(b)											
K _{Ic} MN/m ^{3/2} (ksi√ in.)	Avg Min										
Orientation: — No. of Spec. (No. of He	eats)										
KIE, MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(-	Avg -)Min										
No. of Spec. (No. of He									1		

References: 90375

⁽a) Indicate specimen design and orientation for sheer specimens:
(b) Indicate specimen design for K_{IC} data:

TABLE 5.9.1-TR1

Alloy Designation:

Aluminum Bronze

Specification:

Form: Dimension:

Condition:

Annealed

Testing Temperature K (F)	273 (32)	100 (-280) 50 (-370)	20 (-423)	10 (-442)	4 (-452)
				-		
Thermal Conductivity						
Watts m-1 K-1(1)	{	}				2.10
Btu hr-1 ft-1 F-1						(1.21)
No. of Spec. References: 90170						
Thermal Expansion (T273 to T) Longitudinal						
Percent (2)	0	0.240	-0.277	-0.282	-0.283	
No. of Spec.	1	1	1	1	1	
References: 74405	-					
Specific Heat						
Jou'as kg-1 K-1						
Btu lb-1 F-1						
No. of Spec.		(
References:	10				1	
Electrical Resistivity						
Ohm m(3)	18.4 × 10 ⁻⁸	16.2 x 10 ⁻⁸	15.8 x 10 ⁻⁸	15.6 x 10 ⁻⁸	15.7 x 10 ⁻⁸	15.7 x 10 ⁻⁸
Ohm circular mil ft ⁻¹	(111)	(97.4)	(95.0)	(93.8)	(94.4)	(94.4)
Ohm m ⁽⁴⁾	16.2 × 10 ⁻⁸	14.2 x 10 ⁻⁸	13.8 x 10 ⁻⁸	13.8 x 10 ⁻⁸	13.8 x 10 ⁻⁸	12.9 x 10 ⁻⁸
Ohm circular mil ft ⁻¹	(97.4)	(85.4)	(83.0)	(83.0)	(83.0)	(83.6)
No. of Spec. (No. of Heats) References: 79561	1	2	-	2	_	

⁽¹⁾ Cu + 4.5-6.1Al. (2) 90.95Cu, 6.57Al, 2.13Fe. (3) 81Cu, 9.95Al, 5.20Ni, 3.35Fe, 0.3Mn (4) 91Cu, 6.57Al, 2.13Fe

FIGURE 5.9.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR COPPER ALLOY ALUMINUM BRONZE (Cu + 4.0-7.0AI)

5.9.1-5 (11/76)

FIGURE 5.9.1-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR COPPER ALLOY ALUMINUM BRONZE (90.95Cu, 6.57AI, 2.13Fe)

FIGURE 5.9.1-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR COPPER ALLOY ALUMINUM BRONZE

INDEX TO MATERIAL CODES FOR SECTION 6.0

NICKEL AND NICKEL ALLOYS

MATERIALS	MATERIAL CODE
K MONEL (K-500)	6.1.1
INCONEL 600	6.2.1
INCONEL X-750	6.2.2
INCONEL 718	6.2.3
INCONEL 706	6.2.4
INVAR 36	6.3.1
Ni-SPAN C	6.3.2
INCO LEA	6.3.3
NICKEL	6.4.1
"A" NICKEL	6.4.2

K Monel (K-500) Nickel-Base Alloy Alloy Designation:

Specification: Form:

QQ-N-286

Sheet

Thickness, cm (in.):

Condition:

0.100 to 0.319 (0.040 - 0.125) Aged 867 K (1100 F) 16 hr + controlled cooling cycle

Testing Temperature, K (F)	297	(75)	77	(-320)	20	(-423)		
Fatigue, Flexural Loading, Surface f	inish 90	rms						
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz	517	(75)	607	(88)	634	(92)		
with $R = -1$ and $K_t = 1$ No of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)		
Ratio S _N /TUS at 10 ⁵ cycles	0.9	50	} ,	0.50		0.47		
S_N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _f = 1	379	(55)	393	(57)	476	(69)		
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)		
Ratio S _N /TUS at 10 ⁶ cycles	0.3	37	(0.32		0.36		
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _t = 1	345	(50)	352	(51)				
No. of S N Curves (No. of Heats)	1	(1)	1	(1)		ł		
Ratio S _N /TUS at 10 ⁷ cycles	0,3	34	(0.29		1		
Fatigue, Flexural Loading, Surface I	Finish 16	rms					1 - 3	
S_N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _t = 1	586	(85)	662	(96)	745	(108)		
No. of S-N Curves (No. of Heats)	1	(1)	1	{1}	1	(1)		
Ratio S _N /TUS at 10 ⁵ cycles	0.9	56	= 0	0.53).55		
S_N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K ₁ = 1	379	(55)	469	(68)	579	(84)		
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)		
Ratio S _N /TUS at 10 ⁶ cycles	0.3	36		0.38	- 1	0.43		
S_N at 10^7 cycles, MN/m^2 (ksi) Loading frequency Hz w:th $R = -1$ and $K_f = 1$	324	(47)	448	(65)				
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)				
Ratio S _N /TUS at 10 ⁷ cycles	0.3	31		0.36				

References: 33417

Alloy Designation:

K Monel (K-500) Nickel-Base Alloy

Specification:

Form:

Sheet 0.100 to 0.319 (0.040 to 0.125) Annealed

Thickness, cm (in.): Condition:

esting Temperature, K (F)	297 (75)	195 (-108)	144 (-200)	77 (-320)	20 (-423)
Tension, Longitudinal					
TUS, MN/m ² (ksi) Avg	656 (95.1)	72.81 (105.6)	789.5 (114.5)	919.8 (13.34)	1048 (152.0)
Std Deviation					
TYS, MN/m ² (ksi) Avg Min Std Deviation	314 (45.6)	349 (50.6)	390 (56.6)	448 (65.0)	515 (74.7)
Elong, percent Avg Min	38.8	40.0	41.0	48.0	43.3
RA, percent Avg					
No. of Spec. (No. of Heats)	3 (1)	3 (1)	3 (1)	3 (1)	3 (1)
, GN/m ² (10 ⁶ psi) Avg					
No. of Spec. (No. of Heats)					
oisson's Ratio					
Ork Hardening Coef					
NTS, MN/m ² (ksi) Avg	623 (90.3)	690,2 (100.1)	754.3 (109.4)	832.9 (120.8)	897.7 (130.3)
K _t = 10 Min No, of Spec. (No. of Heats)	3 (1)	3 (1)	3 (1)	3 (1)	3 (1)
TS, MN/m^2 (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)					
ension, Transverse					
US, MN/m² (ksi) Avg	656 (95.2)	737.1 (106.9)	992.9 (144.0)	913.6 (132.5)	105.5 (153.0)
Min Std Deviation					
/S, MN/m ² (ksi) Avg Min	316 (45.8)	360 (52.2)	395 (57.3)	439 (63.6)	574 (83.2)
Std Deviation					
ong, percent Avg Min	36.5	40.5	40.5	44.7	42.5
A, percent Avg				}	
Min No. of Spec. (No. of Heats)	3 (1)	3 (1)	3 (1)	3 (1)	3 (1)
GN/m ² (10 ⁶ psi) Avg					
No of Spec. (No of Heats)					
isson's Ratio					
ork Hardening Coef					
TS, MN/m ² (ksi) Avg					
K _t = Min No. of Spec. (No. of Heats)					
ITS, MN/m^2 (ksi) Avg $K_t = Min$					

References: 90181

Alloy Designation:

K Monel (K-500) Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, K-Monel filler 0.100 to 0.319 (0.040 to 0.125)

Thickness, cm (in.): Condition: Annealed Sheet, tested as welded

Testing Temperature, K (F))	29	7 (75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)	
Tension, Longitudinal												
TUS, MN/m ² (ksi)	Avg	652	(94.6)	729,5	(105.8)	788.1	(114.3)	941.8	(136.6)	1106	(160.4)	
Std Deviation												
TYS, MN/m ² (ksi) Std Deviation	Avg Min	328	(47.5)	376	(54.5)	399	(57.9)	481	(69.8)	610	(88.5)	
Elong, percent	A		32.2	36	5.7	3	5.5	41	1.0	3	6.8	
ciong, parcent	Avg Min		JE.L	3.	,		0.0	'			.0.0	
RA, percent	Avg Min											
No. of Spec. (No. of Hea		3	(1)	3	(1)	3	(1)	3	(1)	3	(1)	
E, GN/m ² (10 ⁶ psi)	Avg											
No. of Spec. (No. of Hea	Min ats)											
Poisson's Ratio								:				
Work Hardening Coef												
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ats)											
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min											
Fension, Transverse												
TUS, MN/m ² (ksi) Std. Deviation	Avg Min											
ΓΥS, MN/m² (ksi)	Avg											
Std. Deviation	Min											
Elong, percent	Avg Min											
RA, percent	Avg											
No. of Spec. (No. of Hea	Min ats)											
E, GN/m ² (10 ⁶ psi)	Avg											
No of Spec. (No. of Hea	Min ats)											
oisson's Ratio												
York Hardening Coef												
(TS, MN/m² (ksi) K _t = No of Spec (No. of Hea	Avg Min ets)											
NTS, MN/m ² (ksi) K _t =	Avg Min											

Alloy Designation:

K Monel (K-500) Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-TIG welded, K-Monel filler 0.100 to 0.319 (0.040 to 0.125) Annealed sheet, welded, then age hardened and tested

Testing Temperature, K (F)		297	(75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)	
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg Min	1049	(152.1)	1114	(161.5)	1138	(165.0)	1252	(181.6)	1364	(197.9)	
Std Deviation						237					12.20.41	
TYS, MN/m ² (ksi) Std Deviation	Avg Min	759.1	(110.1)	828.8	(120.2)	841.9	(122.1)	924.6	(134.1)	1007	(146.1)	
Elong, percent	Avg Min	1:	9.0	21	1.2	2	20.7	26	6.0	2	4.3	
RA, percent	Avg Min											
No. of Spec. (No. of Heat		3	(1)	3	(1)	3	(1)	3	(1)	3	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min											
No of Spec (No. of Heat							11					ļ
Poisson's Ratio												
Work Hardening Coef		l										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min					·						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min									٦		
Tension, Transverse												
TUS, MN/m ² (ksi) Std. Deviation	Avg Min											
TYS, MN/m² (ksi)	Avg											
Std Deviation	Min											
Elong, percent	Avg Min											
RA, percent	Avg Min											
No. of Spec. (No. of Heat												
E, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of Heat												
Poisson's Ratio							,					
Work Hardening Coef												
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min											
NTS, MN/m ² (ksi)	Avg											
K _t = No. of Spec. (No. of Heat	Min											

References: 90181

3485

6.1.1-3.3 (11/76)

Alloy Designation:

K Monel (K-500) Nickel-Base Alloy

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet 0.100 to 0.319 (0.040 to 0.125) Cold rolled, ½ hard and age hardened

sting Temperature, K (F)	297 (75)		20 (-423)
nsion, Longitudinal				
JS, MN/m ² (ksi)	Avg Min	1250 (182)		1640 (238)
Std. Deviation				
'S, MN/m ² (ksi)	Avg Min	1120 (163)		1430 (208)
Std. Deviation				
ong, percent	Avg Min	8.5		15.0
, percent	Avg			
lo. of Spec. (No. of H	Min eats)	1		1
GN/m ² (10 ⁶ psi)	Avg Min	180 (26)		219 (30)
o of Spec. (No. of H	eats)			
son's Ratio				
Hardening Coef				
S, MN/m² (ksi)	Avg			
t [≈] a. of Spec. (No. of He	Min eats)			
S, MN/m² (ksi) St =	Avg Min			
t ~ o. of Spec. (No. of He				
ion, Transverse				
, MN/m² (ksi)	Avg Min			
J. Deviation				
MN/m ² (ksi)	Avg Min			
d. Deviation				
g, percent	Avg Min			
percent	Avg Min			
of Spec. (No. of He				
N/m ² (10 ⁶ psi)	Avg Min			
of Spec. (No. of He				
on's Ratio				
Hardening Coef				
MN/m² (ksi)	Avg Min			
o, of Spec. (No. of He				
, MN/m² (ksi)	Avg			
t = o of Spec. (No. of He	Min Pats)			

Alloy Designation:

K Monel (K-500) Nickel-Base Alloy

Specification: Form:

Thickness, cm (in.): Condition:

Sheet 0.100 to 0.319 (0.040 to 0.125) Cold rolled, ½ hard and age hardened

Testing Temperature, K (F)	29	7 (75)	195	(-108)	77	(-320)	20	(-423)	
Fatigue, Axial Loading									
S_N at 10^5 cycles, MN/m^2 (ksi) Loading frequency 30^{la} /Hz with R = -1 and K_t = 1 No. of S.N. Curves (No. of Heats)	620	(90)	690	(100)	720	(105)	979	(142)	
Ratio S _N /TUS at 10 ⁵ cycles	380	(55)	460	(67)	480	(69)	696	(101)	
S_N at 10^6 cycles, MN/m^2 (ksi) Loading frequency $30^{(a)}$ Hz with R = -1 and K _t = 1 No of S-N Curves (No of Heats)	380	(55)	460	(67)	480	(69)	696	(101)	
Ratio S _N /TUS at 10 ⁶ cycles	}								
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency With R = and K _t = No. of S.N. Curves (No. of Heats)									
Ratio S _N /TUS at 10 ⁷ cycles									
Fatigue, Flexural Loading									
S_N at 10^5 cycles, MN/m^2 (ksi) Loading frequency $30^{(a)}$ Hz with R = -1 and K _t = 3.1 No. of S.N. Curves (No. of Fleats)	460	(66)	510	(74)	570	(82)	660	(95)	
Ratio S _N /TUS at 10 ⁵ cycles									
S_N at 10^6 cycles, MN/m^2 (ksi) Loading frequency $30^{\{a\}}Hz$ with R = -1 and K _t = 3.1 No. of S·N Curves (No. of Heats)	270	(39)	300	(43)	330	(48)	330	(48)	
Ratio S _N /TUS at 10 ⁶ cycles									
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S N Curves (No. of Heats)									
Ratio S _N /TUS at 10 ⁷ cycles									

References: 49048

(a) Frequency = 58 Hz for tests at 20 K (-423 F)

Alloy Designation:

K Monel (K-500) Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in): Condition: Sheet-TIG welded, K-Monel filler 0.100 to 0.319 (0.040 to 0.125) Age-hardened sheet, tested as welded

Testing Temperature, K (F)	29	7 (75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)	
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg Min	683	(99.0)	757.7	(109.9)	819.1	(118.8)	921.8	(133.7)	1096	(158.9)	
Std Deviation												
TYS, MN/m ² (ksi) Std Deviation	Avg Min	432	(62.7)	516	(74.9)	585	(84.9)	643	(93.2)	743.9	(107.9)	
Elong, percent	Avg Min		8.2	8	.7		8.7	9	.5	1	0.0	
AA, percent	Avg			}				,				
No. of Spec. (No. of He	Min ats)	3	(1)	3	(1)	3	(1)	3	(1)	3	(1)	
, GN/m ² (10 ⁶ psí)	Avg											
No. of Spec. (No. of He	Min ats)						'					
oisson's Ratio												
Vork Hardening Coef												
ITS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min											
ITS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min						=					
ension, Transverse				1								
Std Deviation	Avg Min					}						
YS, MN/m ² (ksi)	A											
Std. Deviation	Avg Min											
long, percent	Avg Min											
IA, percent	Avg Min											
No. of Spec. (No. of He												
, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of He	ats)											
oisson's Ratio												
ork Hardening Coef												
TS, MN/m ² (ksi) K _t = No of Spec. (No. of He	Avg Min ets)											
TS, MN/m ² (ksi) K _t =	Avg Min											

Alloy Designation: K Monel (K-500) Nickel-Base Alloy

Specification: QQ-N-286A

Form: Bar

Diameter: Condition: Up to 2.54 cm (1.000 in.) Aged 867 K (1100 F) 21 hr, 811 K (1000 F) 8 hr, AC

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	20 (-423)		
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg	1082 (157)	1225 (178)	1295 (138)	1417 (206)		
Std Deviation	Min	1048 (152) 41.7 (6.05)	1214 (176)	1255 (182)	1379 (200)	Ì	
TYS, MN/m ² (ksi)	Avg Min	703 (102) 634 (92)	893 (130) 887 (129)	865 (125) 800 (116)	9 39 (136) 862 (125)		
Std. Deviation		65.2 (9.46)	,,,,,,	,,,,,,	, , , ,		
Elong, percent	Avg	28	28.6	32	36.4		
	Min	24	27.3	28	33.8		
	Avg	53.7	54.3	54.3	52.4		
No. of Spec. (No. of Heats)	Min	51 13 (3)	54.2 3 (1)	54.3 8 (2)	52.1 5 (2)		
E, GN/m ² (106 psi)	Avg						
	Min						
No. of Spec. (No. of Heats)							
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi)	Avg						
K _t = No. of Spec. (No. of Heats)	Min						
	Avg Min				j		
No. of Spec. (No. of Heats)							
Tension, Transverse							
	Avg Min						
Std. Deviation					•		
TYS, MN/m ² (ksi)	Avg						
Std Deviation	Min		31				
	Avg Min				į į		
RA, percent	Avg						
	Min						
No of Spec (No. of Heats)							
	Avg Min		•				
No. of Spec. (No. of Heats)							
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m² (ksi)	Avg						
K _t =	Min						
No. of Spec. (No. of Heats)						1	
The following of the control of the	Avg Min						
K _t = No. of Spec. (No. of Heats)							

FIGURE 6.1.1-ME1. FFFECT OF TEMPERATURE ON THE STRENGTH OF K MONEL (K-500)

TABLE 6.1.1-TR1

Alloy Designation:

K-Monel Nickel Alloy

Specification: Form: Dimension: Condition:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m-1 K-1 Btu hr-1 ft-1 F-1												
No. of Spec.												
References:												
Thermal Expansion (T273 to T Longitudinal	1						13					
Percent	0		-0.195		-0.220		-0.223					
No. of Spec.	1		1		1		1					
References: 48134												
Specific Heat	1				İ							
Joules kg ⁻¹ K ⁻¹												
Btu lb-1 F-1			i				ŀ					
No. of Spec. References:							1				l	
neterations:												
Electrical Resistivity											ļ	
Ohm m												
Ohm circular mil ft ⁻¹												
No. of Spec.												
References:												
			1									

. .

FIGURE 6.1.1-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR K-MONEL (AGE-HARDENED)

TABLE 6.1.1-MA1

Alloy Designation:

"K" Monel

N05500

Specification:

66.0Ni-29.0Cu-0.9Fe-0.85Mn-1.0Si-0.15O

Form:

Rod

Diameter:

Not given

Condition:

As indicated in table below

Magnetic Permability at Room Temperature $(H = 0.2k_{Oe})$

Condition	Permeability
Soft*	12.58×10^{-7}
Soft and age hardened**	12.59×10^{-7}
Cold drawn 20 percent	12.58×10^{-7}
Cold drawn 20 percent and age hardened	12.59×10^{-7}
Cold drawn 50 percent	12.58×10^{-7}
Cold drawn 50 percent and age hardened	12.59 x 10 ⁻⁷

Reference: 90220

- * Quenched in water following 45 minutes at 1550 F (1116 K).
- ** Sixteen hours at 1080 F (855 K), furnace-cooled to 800 F (700 K) at 15deg F per hour and air-cooled.

FIGURE 6.2.1-ME1. EFFECT OF TEMPERATURE ON THE STRENGTH OF INCONEL 600

Alloy Designation:

Inconel 600

Specification:

Form:

Rod

Diameter, cm (in.):

0.37 (0.145)

Condition:

Solution annealed

Test Temperature:

4.2 K (-452 F)

Measured permeability at room temperature = 12.82×10^{-7}

Curie Temperature:

148.5 K (-192 F)

FIGURE 6.2.1-MA1. MAGNETIZATION VALUES FOR INCONEL 600 [96871]

Alloy Designation:

Inconel X-750 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded Inconel X-750 filler 0.100 to 0.319 (0.040 to 0.125)

Thickness, cm (in.): Condition:

Annealed sheet welded and tested as welded

Testing Temperature, K (F)	297	(75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)	
Tension, Longitudinal												
TUS, MN/m ² (ksi)	Avg Min	779.1	(113.0)	857.7	(124.4)	908.0	(131.7)	1033	(149.8)	1107	(160.6)	
Std Deviation									= 11			100
TYS, MN/m ² (ksi)	Avg Min	372	(54.0)	405	(58.7)	434	(63.0)	478	(69.3)	510	(74.0)	
Std Deviation											1	
Elong, percent	Avg Min	44	0.8	44	1.2	4	4.7	49	9.7	3	0.8	
RA, percent	Avg Min		T \			}						
No. of Spec. (No. of He		3	(1)	3	(1)	3	(1)	3	(1)	3	(1)	
E, GN/m ² (10 ⁶ psi)	Avg											
No of Spec. (No. of He	ats)											
Poisson's Ratio												
Work Hardening Coef										1		
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ats)								ı			
NTS, MN/m² (ksi)	Avg		1			!				ſ		
K _t = No. of Spec. (No. of Hea	Min ats)								i			
Tension, Transverse		,		:			12					
FUS, MN/m ² (ksi) Std Deviation	Avg Min											
TYS, MN/m ² (ksi)	Avg Min											
Std. Deviation			- 1			ĺ						
Elong, percent	Avg Min											
RA, percent	Avg Min											
No. of Spec. (No. of Hea												
E, GN/m ² (10 ⁶ psi)	Avg Min											
No of Spec. (No. of Hea								1				
Poisson's Ratio												
Vork Hardening Coef												
NTS, MN/m ² (ksi) K _t =	Avg Min											
No. of Spec (No. of Hea												J-5-00-1
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min											
References: 58060			-				1				-1	59<

TABLE 6.2,2-ME4.2

Alloy Designation: Inconel X-750 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, Inconel X-750 filler 0.100 to 0.319 (0.040 to 0.125)

Thickness, cm (in.): Condition:

Annealed sheet, welded, weldment aged 20 hr @ 1300 F, then tested

Testing Temperature, K (F)		297	(75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)	
Tension, Longitudinal												
TUS, MN/m ² (ksi)	Avg	1249	(187.1)	1347	(195.4)	915.6	(204.2)	1542	(223.7)	1661	(240.9)	
Sta Deviation	Min	Ì										
TYS, MN/m ² (ksi)	Avg Min	864.6	(125.4)	915.6	(132.8)	940.4	(136.4)	946.7	(137.3)	1017	(147.5)	
Std Deviation	IVIIII	}		ļ								
Elong, percent	Avg Min	2:	2.5	24	1.3	2	3.5	29	9.7	2	8.0	
RA, percent	Avg Min						:					
No. of Spec. (No. of Heat	s)	3	(1)	3	(1)	3	(1)	3	(1)	3	(1)	
E, GN/m ² (10 ⁶ psi)	Avg											
No. of Spec. (No. of Heat												
Poisson's Ratio												
Work Hardening Coef									- 10	p)		
NTS, MN/m ² (ksi) K _t =	Avg Min							_				
No. of Spec. (No. of Heats								,				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No of Heats	Avg Min											
	,											
Tension, Transverse TUS, MN/m ² (ksi)	Avg			1								
Std Deviation	Min											
TYS, MN/m² (ksi)	Avg											
Std Deviation	Min			Ì								
Elong, percent	Avg Min											
RA, percent	Avg Min											
No. of Spec (No. of Heats												
E, GN/m ² (10 ⁶ psi)	Avg Min											
No of Spec. (No of Heats												
Poisson's Ratio												
Work Hardening Coef												
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min											
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min											

Alloy Designation:

Inconel X-750 Nickel-Base Alloy (Weld Metal)

Specification:

Thickness, cm (in.): Condition:

Sheet-TIG welded, Inconel X-750 filler 0.100 to 0.319 (0.040 to 0.125) Anne≥led Sheet, aged 20 hr @ 1300 F, welded, tested as welded

ting Temperature, K	F) 2	7 (75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)
nsion, Longitudinal										
S, MN/m ² (ksi)	Avg Min 825	3 (119.7)	928.0	(134.6)	988.7	(143.4)	1087	(157.7)	1220	(176.9)
Std. Deviation	·VIIII									
S, MN/m ² (ksi)	Avg 498	(72.3)	592	(85.9)	645	(93.5)	678	(98.3)	793.6	(115.1)
ota. Deviation								_		
ng, percent	Avg Min	8.5	10	0.2	1	0.7	14	1.0	1,	4.5
, percent	Avg Min									
No. of Spec. (No. of		(1)	3	(1)	3	(1)	3	(1)	3	(1)
GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of										
sson's Ratio										
rk Hardening Coef										
S, MN/m² (ksi)	Avg									
(_t = No. of Spec. (No. of	Min									
S, MN/m² (ksi) (_t = No. of Spec. (No. of	Avg Min leats)									
sion, Transverse										į
S, MN/m ² (ksi)	Avg Min									
td. Deviation										
S, MN/m² (ksi)	Avg Min									
td Deviation										
ng, percent	Avg Min									
, percent	Avg Min									
No. of Spec. (No. of										
GN/m ² (10 ⁶ psi)	Avg Min									
lo of Spec. (No of										
son's Ratio							1			
k Hardening Coef										
S, MN/m² (ksi)	Avg									
t = lo of Spec. (No. of	Min eats)									
S, MN/m² (ksi)	Avg Min									
it = lo of Spec. (No. of 5, MN/m² (ksi)	Min (eats)									

Alloy Designation:

Inconel X-750 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, Inco weld 69 filler alloy

Thickness, cm (in.): Condition:

0.100 to 0.319 (0.040 to 0.125)

Vacuum annealed 1325 K (1925 F) 30 min + rapid FC with N₂ gas; heated in air 978 K (1300 F) 20 hr,

AC, after welding, then tested

Testing Temperature, K (F		297 (75)		77 (-320)	
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	1172 (170.0)		1438 (208.5)	
Std Deviation	Min	1165 (168.9)		1421 (206.1)	
TYS, MN/m ² (ksi)	Avg	768.8 (111.5)		850.8 (123.4)	1
Std. Deviation	Min	768.1 (111.4)		846.7 (122.8)	
Elong, percent	Avg Min	14.0 14.0		19.4 18.8	
RA, percent	Avg				
No. of Spec. (No. of He	Min ats)	2 (1)		2 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min	211 (30.6) 205 (29.7)		214 (31.0) 213 (30.9)	
No. of Spec. (No. of He		2 (1)		2 (1)	
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg				
Kt ≈ No. of Spec. (No. of He	Min ats)		1		
NTS, MN/m ² (ksi)	Avg				
K _t ≈ No. of Spec. (No. of Hea	Min ats)				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg				
Std Deviation	Min				
TYS, MN/m ² (ksi)	Avg				
Std. Deviation	Min				
Elong, percent	Avg Min				
RA, percent	Avg Min				
No. of Spec. (No. of Hea	ets)				
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hea					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg				
$K_t =$ No. of Spec. (No. of Hea	Min its)				
NTS, MN/m² (ksi)	Avg				
K _t =	Min	1	1	The state of the s	

Alloy Designation:

Inconel X-750 Nickel-Base Alloy (Weld Metla)

Specification:

Form:

Thickness, cm (in.): Condition:

Bar-T1G welded, Inco weld 69 filler Over 5.080 (2.000) Solution treated 1255 K (1800 F), 1 hr, AC, weld, tested as welded

Testing Temperature, K (F)	297 (75)	77 (-320)	4 (-452)
Tension, Longitudinal				
TUS, MN/m ² (ksi)	Avg Min	838.4 (121.6)	987.3 (143.2)	1603 (145.5)
Std Deviation				
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	627 (91.0)	717.1 (104.0)	750.2 (108.8)
Elong, percent	Avg Min	13.3	13.6	12.7
RA, percent	Avg	27.0	22.0	17.1
No. of Spec. (No. of H		1	1	
E, GN/m ² (10 ⁶ psi)	Avg			
No. of Spec. (No. of H				1
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi)	Avg	1098 (159.2)	1393 (202.0)	1475 (214.0)
K _t = 10 No. of Spec. (No. of He	Min eats)	1	1	1
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)			
Tension, Transverse				
TUS, MN/m² (ksi) Std. Deviation	Avg Min			
TYS, MN/m ² (ksi)	Avg Min		1	
Std. Deviation				
Elong, percent	Avg Min			
RA, percent	Avg Min			
No. of Spec. (No. of He	eats)			
E, GN/m ² (10 ⁶ psi)	Avg Min			
No of Spec. (No. of He				
oisson's Ratio				
Vork Hardening Coef				
ITS, MN/m² (ksi) K _t =	Avg Min			
No of Spec. (No. of He	eats)			
NTS, MN/m² (ksi) Kt =	Avg Min			
No. of Spec. (No. of He				363<

Alloy Designation:

Inconel X-750 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Bar-TIG welded, Inco weld 69 filler
Over 5.080 (2.000)
Solution treated 1255 K (1800 F) 1 hr, AC; age 1005 K (1350 F) 8 hr, FC to 994 K (1150 F), 8 hr,
AC, weld and tested as welded

esting Temperature, K (F)		297 (75)		77 (-320)	4 (-452)
ension, Longitudinal US, MN/m ² (ksi)	Avg Min	840.4 (121.9)	•	968.7 (140.5)	992.9 (144.0
Std. Deviation					
YS, MN/m ² (ksi) Std. Deviation	Avg Min	649 (94.1)		800.5 (116.1)	861.8 (125.0
long, percent	Avg Min	8.2		5.5	4.8
A, percent	Avg Min	27.0		17.0	14.5
No of Spec. (No. of Heats		1		1	1
, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec. (No. of Heats oisson's Ratio)				
ork Hardening Coef	ı				
TS, MN/m ² (ksi) K _t = 10 No. of Spec. (No. of Heats	Avg Min	1172 (170.0)		1434 (208.0)	1485 (215,4
TS, MN/m ² (ksi) K _t = No of Spec. (No. of Heats)	Avg Min				
ension, Transverse	!				;
	Avg Min				
Std Deviation YS, MN/m ² (ksi)	•				į
	Avg Min				
• .	Avg Min				
	Avg				
	Min				
GN/m ² (10 ⁶ psi)	Avg				
No of Spec. (No. of Heats)	Mīn)				
oisson's Ratio					
ork Hardening Coef					
•	Avg Min				
TS, MN/m² (ksi)	Avg Min				

References: 94208

Alloy Designation:

Inconel X-750 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Bar, TIG welded, Inco weld 69 filler

Thickness, cm (in.): Condition:

Over 5.080 (2.000)

Solution treated 1255 K (1800 F) 1 hr, AC; weld, Solution treated weldment 1255 K (1800 F) 1 hr, AC, age 1005 K (1350 F) 8 hr, FC to 994 K (1150 F) 8hr, AC, test

Testing Temperature, K (I	F)	297 (75)	77 (-320)	4 (-452)
Tension, Longitudinal				
TUS, MN/m ² (ksi)	Avg Min	1096 (159.0)	1109 (160.8)	1124 (163.0)
Std Deviation				
TYS, MN/m ² (ksi)	Avg Mm	856.3 (124.3)	930.8 (135.0)	958.4 (139.0)
Std Deviation				
Elong, percent	Avg Mm	9.0	5.6	5.5
RA, percent	Avg Min	11.9	9.2	8.7
No of Spec (No of He	eats)	1	1	1
E, GN/m ² (10 ⁶ psi)	Avg Min			
No. of Spec. (No. of He	eats)			
Work Hardening Coef				
NTS, MN/m ² (ksi) K _t = 10	Avg	1571 (227.8)	1710 (248.0)	1629 (236.2)
No. of Spec. (No. of He		1		'
NTS, MN/m ² (ksi) K _t = No of Spec. (No. of He	Avg Min ats)			
Tension, Transverse				
TUS, MN/m ² (ksi) Std. Deviation	Avg Min			
TYS, MN/m² (ksi)	Avg			1
Std Deviation	Min			ļ
Elong, percent	Avg Min			
RA, percent	Avg Min			
No of Spec. (No of He				
E, GN/m ² (10 ⁶ psi)	Avg			
No of Spec. (No of He				
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/in ² (ksi) K _t = No of Spec. (No. of He	Avg Min Pats)			
NTS, MN/m² (ksi) K _t =	Avg Min			7

References: 94208

.65<

Alloy Designation:

Inconel X-750 Nickel-Base Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Bar, Vac. E 3. Weld, no filler Over 5.080 (2.000)

Solution treated 1255 K (1800 F) 1 hr, AC; weld, tested as welded

Testing Temperature, K (F)		297 (75)		77 (-320)	4 (-452)
Tension, Longitudinal			_		
TUS, MN/m ² (ksi)	Avg	772.2 (112.0)		948.0 (137.5)	966.0 (140.1)
Std Deviation	Min		, I		
TYS, MN/m ² (ksi)	Avg Min	552 (80.0)		677 (98.2)	730.8 (106.0)
Std Deviation					
Elong, percent	Avg Min	8.0		11.8	11.6
RA, percent	Avg Min	30.8		25.0	19.6
No of Spec. (No. of Heat	s)	1		1	1
E, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec. (No. of Heal					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg	1009 (146.3)		1227 (178.0)	1337 (193.9)
K _t = 10 No. of Spec. (No. of Heat	Min s)	1		1	1
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min				
Tension, Transverse)		
TUS, MN/m ² (ksi)	Avg				
Std Deviation	Min				
TYS, MN/m ² (ksi)	Avg				
Std. Deviation	Min				
Elong, percent	Avg Min				
RA, percent	Avg Min				
No. of Spec. (No. of Heat					
E, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec. (No. of Heat					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min				
NTS, MN/m ² (ksi)	Avg		1		
K _t = No of Spec. (No. of Heat	Min				

Alloy Designation:

Inconel X-750 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Bar, Vac. E. B. Weld, no filler
Over 5.080 (2.000)
Solution treated 1255 K (1800 F) 1 hr, AC; weld, solution treated weldment 1255 K (1800 F) 1 hr, AC, age 1005 K (1350 F) 8 hr, FC to 994 K (1150 F) 8 hr, AC, tested Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)	77 (-320)	4 (-452)
Tension, Longitudinal				
TUS, MN/m ² (ksi)	Avg	1089 (157.9)	1082 (156.9)	1062 (154.1)
Std Deviation	Min			
TYS, MN/m ² (ksi)	Avg	841.9 (122.1)	903.2 (131.0)	913.6 (132.5)
Std Deviation	Min			
Elong, percent	A	10.0	6.4	7.1
ciong, percent	Avg Min	10.0		
RA, percent	Avg	10.3	8.7	8.7
	Min			
No of Spec, (No. of He	eats)	1	1	1
E, GN/m ² (10 ⁶ psi)	Avg			
No. of Spec. (No. of He	Min eats)			
	}			
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi)	Avg	1496 (217.0)	163.3 (236.9)	1684 (244.2)
K _t = 10	Min			
No. of Spec. (No. of He	ats)	1	1	1
NTS, MN/m ² (ksi)	Avg			
K _t = No. of Spec. (No. of He	Min ats)			
Tension, Transverse TUS, MN/m ² (ksi)	Avg			
	Min			
Std. Deviation				
TYS, MN/m2 (ksi)	Avg			
Std. Deviation	Min			
Elong, percent	Avg Min			
RA, percent	Avg Min			
No. of Spec. (No. of He				
E, GN/m ² (10 ⁶ psi)	Avg			
	Min			
No. of Spec. (No. of He	ats)			
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m² (ksi)	Avg			1 1
K _t =	Min			
No of Spec. (No, of He	ats)			
NTS, MN/m² (ksi)	Avg			
K _t =	Min			

Alloy Designation:

Inconel X-750 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Bar, Vac. E.B. Weld, no filler Over 5.080 (2.000)

Thickness, cm (in.):

Condition:

Solution treated 1255 K (1800 F) 1 hr, AC; Age 1005 K (1350 F) 8 hr, FC to 994 K (1150 F) 8 hr, AC, weld and tested as welded

	AC, w	eld and t	ested as we	ided				
Testing Temperature, K (F)		297	(75)			77 (-320)	4	(-452)
Tension, Longitudinal								
TUS, MN/m ² (ksi)	Avg Min	806.7	(117.0)			920.5 (133.5)	936.3	(135.8)
Std. Deviation	IVIIII							
TYS, MN/m ² (ksi)	Avg Min	594	(86.2)			751.5 (109.0)	779.8	(111.8)
Std. Deviation	191111							
Elong, percent	Avg Min	3	3.2			2.6		3.0
RA, percent	Avg Min	30	0.3			11.4	1	0.3
No. of Spec. (No. of Hea	ts)	1				1	1	
E, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of Hea	ts)							
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m ² (ksi) K _t = 10	Avg Min	1070	(155.2)			1320 (191.5)	1403	(203.5)
No. of Spec. (No. of Hea		1				1	1	
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ts)							
Tension, Transverse			1					
TUS, MN/m ² (ksi)	Avg Min							
Std. Deviation								
TYS, MN/m ² (ksi)	Avg Min							
Std. Deviation								
Elong, percent	Avg Min							
RA, percent	Avg Min							
No. of Spec. (No. of Hea								
E, GN/m ² (10 ⁶ psi)	Avg Min							
No of Spec. (No. of Hear								
oisson's Ratio								
York Hardening Coef								
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min							
NTS, MN/m ² (ksi) K _t =	Avg Min							
No. of Spec. (No. of Heat		1			l	1		

References: 94208

368<

FIGURE 6.2.2-ME5. FATIGUE CRACK GROWTH RATES OF INCOMEL X-750(94208G)

FIGURE 6.2.2-ME6. FATIGUE CRACK GROWTH RATE OF INCONEL X-750 NICKEL-BASE ALLOY SHEET [Annealed in vacuum, 1325 K (1925 F) 30 min + rapid furnace quenched with N₂ gas; heated in air at 978 K (1300 F) 20 hours, air cooled] [87612]

FIGURE 6.2.2-ME7. FATIGUE CRACK GROWTH RATE OF INCONEL X-750 NICKEL-BASE ALLOY SHEET TIG WELDED USING INCO WELD 69 FILLER [Weld specimens annealed in vacuum 1325 K (1925 F) 30 min + rapid furnace quenched with N₂ gas; heated in air at 978 K (1300 F) 20 hours, air cooled prior to testing] [87612]

TABLE 6.2.2-TR1

Alloy Designation: Inconel X 750 Nickel Alloy

Specification: Form: Dimension:

Condition: Solution Treated and Double Aged

Festing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m ⁻¹ K ⁻¹	11.4	1	9.27		7.51		3.62		1.61			
Btu hr-1 ft-1 F-1		(6.59)		(5.36)		(4.34)		(2.09)		(0.93)		
Watts m-1 K-1(a)	11.4		9.27		7.66		3.93		1.81			
Btu hr-1 ft-1 F-1(a)		(6.59)		(5.36)		(4.43)		(2.27)		(1.05)	!	
No. of Spec.	2		2		2		2		2			
References: 94206, 94208												
Thermal Expansion (T ₂₇₃ to T)												
Longitudinal		1		1111					†)	
Percent	0		-0.186		-0.212		-0.220		-0.222			
No. of Spec.	ĭ	1	1		1		1		1		1	
References: 95168									•			
No. 161-11-1		j.					ļ					
Specific Heat	77.	}					7.40		272		1 00	
Joules kg ⁻¹ K ⁻¹	440	(0.105)	230	(5.50 x 10 ⁻²	91*	2.17 x 10 ⁻²)	7.10	.70 x 10 ⁻³)	2,73	5.52 x 10 ⁻⁴)	1.09	2.61 x 10
Btu lb-1 F-1		(0.105)		(5.50 x 10 2		2.17 X 10 -1	4	.70 x 10 °/	4	1.52 X 10 ')	4	2.01 X 10
No. of Spec.	4	1	4		0		4] 4		"	
References: 95168							}		}			
Electrical Resistivity							Į					
Ohm m	122.6 x 1	0-8	118.8	x 10 ⁻⁸	117.3	x 10 ⁻⁸	117.1	k 10 ^{.8}	117.4	к 10 ^{.8}	(
Ohm circular mil ft ⁻¹		(737)		(715)		(706)		(704)		(706)		
Ohm m (a)	126.7 x 1	0-8	124.4	x 10 ⁻⁸	123.9	x 10 ⁻⁸	123.8 >	c 10 ⁻⁸	124.0 >			
Ohm circular mil ft-1(a)		(762)		(748)		(745)	1	(745)		(746)		
No. of Spec.	2		2		່ 2		2		2		'	

⁽a) Solution treated.
* Extrapolated.

FIGURE 6.2.2-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR INCONEL X-750 NICKEL-BASE ALLOY

FIGURE 6.2.2-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR INCONEL X-750 NICKEL-BASE ALLOY

6.2.2-15 (11/76)

FIGURE 6.2.2-S1. SPECIFIC HEAT VERSUS TEMPERATURE FOR INCONEL X-750 NICKEL-BASE ALLOY

FIGURE 6.2.2-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR INCONEL X-750 NICKEL-BASE ALLOY

TABLE 6.2.2-MA1

Alloy Designation:

Inconel X-750

N07750

Specification:

IN X-750 ST

Form:

Rod

Dimension, cm(in.): Not given

Condition:

ST: Heated at 1800 F (1255 K) for 1 hr. and air cooled

Curie temperature:

~130K (-225 F)

Peak induction, B_s: 0.1433T (tesla)

MAGNETIC MOMENT AS A FUNCTION OF THE EXTERNAL FIELD AT LOW LOW TEMPERATURES

MAGNETIC MOMENT AS A FUNCTION OF THE EXTERNAL FIELD

Reference: 94206

TABLE 6.2.2-MA2

Alloy Designation:

Inconel X-750

N07750

Specification:

IN X-750 STDA

Form:

Rod

Dimension, cm(in.): Not given

Condition:

STDA: solution treated, double aged, strained

Curie temperature:

~130K (-225 F)

Peak induction, Bs,

at 4.2 K:

0.1477T (tesla)(strained)

MAGNETIC MOMENT AS A FUNCTION OF THE EXTERNAL FIELD

MAGNETIC MOMENT AS A FUNCTION OF THE EXTERNAL FIELD

Reference: 94206

TABLE 6.2.2-MA3

Alloy Designation:

Inconel X-750

N07750

Specification:

IN X-750 STDA

Form:

Rod

Dimension, cm(in.): Not given

Condition:

STDA: solution treated, double aged, unstrained

Curie temperature: ~130K (-255 F)

Peak induction, Bs,

at 412 K:

0.1552T (tesla)

MAGNETIC MOMENT AS A FUNCTION OF THE EXTERNAL FIELD

MAGNETIC MOMENT AS A FUNCTION OF THE EXTERNAL FIELD AT LOW **TEMPERATURES**

Reference: 94206

17:15

FIGURE 6.2.2-MA1. MAGNETIC MOMENT (EXTRAPOLATED) AS A FUNCTION OF TEMPERATURE

Alloy Designation: Inconel 718 Nickel-Base Alloy

Specification:

AMS-5662B

Form:

Sheet

Thickness, cm (in.): Up to 0.099 cm (0.039 in.)

Condition: Annealed, aged 992 K (1325 F) 8 hr, FC, 11 K (20 F) 1 hr to 895 K (1150 F), held at 895 K (1150 F) for total aging time of 18 hr, AC

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)	ļ		
ension, Longitudinal											
US, MN/m ² (ksi)	Avg 1331	(193)	1476	(214)	1675	(243)	1910	(277)			
Std. Deviation											
	Avg 1089	(158)	1179	(171)	1296	(188)	1420	(206)			
Std. Deviation											
The state of the s	Avg Vin	20.9	2	3		28.8	25	5.6			
-	Avg										
No. of Spec. (No. of Heats)	8	(3)	3	(1)	8	(3)	8	(3)			
	Avg Min				}						
No. of Spec. (No. of Heats)	VIIII										
oisson's Ratio											
Vork Hardening Coef											
	Avg 1407	(204)	1524	(221)	1593	(231)	1855	(269)			
No. of Spec. (No. of Heats)	8	(3)	3	(1)	8	(3)	8	(3)			
	Avg din										
ension, Transverse			j				_				
'US, MN/m ² (ksi) A	Avg 1320	(192)	1469	(213)	167	5 (243)	1855	(269)			
Std. Deviation											
	Avg 1089	(158)	1172	(170)	1280	6 (186)	1376	(200)			
Std. Deviation					1						
	Avg Min	20.3	2	23		24	2	4			
- · ·	lvg fin										
No. of Spec. (No. of Heats)	8	(3)			3	(1)	6	(2)	6	(2)	
	lvg fin										
No. of Spec. (No. of Heats)											
oisson's Ratio											
ork Hardening Coef											
		(203)	1538	(223)	1579	(229)	1820	(264)			
K _t = 6.3 No. of Spec. (No. of Heats)	fin 6	(2)	3	(1)	6	(2)	6	(2)	1		e
	lvg										
Kt = N			1								{

Alloy Designation:

Inconel 718 Nickel-Base Alloy

Specification:

Form: Thickness, cm (in.): Condition:

Sheet Up to 0 099 (0.039) Annealed 1260 K (1810 F) 6 min

Testing Temperature, K (F)	297 (75)		77 (-320)	20 (-423)	
Tension, Longitudinal					
	vg 896 (130)		1241 (180)	1351 (196)	
N	fin 889 (129)		1241 (180)	1324 (192)	
Std Deviation	1	1	ł		
TYS, MN/m ² (ksi)	Avg 411 (59.6)		610 (88.4)	687 (99.7)	
N	fin 407 (59.1)	1	607 (88.0)	685 (99.9)	
Std. Deviation		}		1	
Elong, percent A	vg 48.5		57.0	48.5	
	47.5		56.5	48.0	
RA, percent A	\vg	1			
	1in	1		1	
No. of Spec. (No. of Heats)	2 (1)	1	2 (1)	2 (1)	
E, GN/m ² (10 ⁶ psi)	lvg				
٨	n l			1	
No. of Spec. (No. of Heats)					
Poisson's Ratio		1	1		
			1		
Work Hardening Coef	1		Ì		
NTS, MN/m² (ksi)	vg 752 (109)	1	993 (144)	1089 (158)	
$K_t = 6.3$	fin 738 (107)	1	972 (141)	1069 (155)	
No. of Spec. (No. of Heats)	2 (1)		2 (1)	3 (1)	
NTS, MN/m ² (ksi)	.vg	1		}	
	fin }			1	
No. of Spec. (No. of Heats)		1		1	
Tension, Transverse	{	1		1	
	vg 883 (128)	1		1096 (159)	
Std. Deviation	1in 876 (127)		ĺ	1096 (159)	
Std. Deviation]	
	vg 397 (57.6)	1		1	
Std. Deviation	1in 391 (56.7)				
Stu, Deviation			}		
	48.8				
N	1in 48.0	1			
	vg			1	
	1in 2 (1)			2 (1)	
No of Spec. (No. of Heats)	(1)			'''	
	vg				
No of Spec. (No. of Heats)	tin				
THO OT OPEC. (INO. OT HEALS)					
Poisson's Ratio					
Work Hardening Coef				}	
				}	
	vg 752 (109)		,		
K _t = 6.3 No of Spec (No. of Heats)	fin 752 (109) 2 (1)	1			
		1			
	lin				
K _t = ^	1111	1	ł .	1	

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet-TIG welded, no filler Up to 0.099 (0.039) Annealed Sheet welded, aged^(a), and tested as aged

Testing Temperature, K (F)	297 (75)	 _	77 (-320)	
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg Min	1240 (179.8) 1193 (173.0)		1551 (225.0) 1482 (205.0)	
Std. Deviation	PVIIII	1193 (173.0)	, 7 =	1402 (200.0)	
TYS, MN/m ² (ksi)	Avg Min	1080 (156.6) 1041 (151.0)		1309 (189.8) 1262 (183.0)	
Std. Deviation					
Elong, percent	Avg Min	3.6 3.0		6.6 4.0	
RA, percent	Avg Min				_ 1_1
No. of Spec. (No. of He		6 (2)		6 (2)	
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of He	ats)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (kai)	Avg				
Kt ≈ No. of Spec. (No. of He	Min ats)				
NTS, MN/m ² (ksi)	Avg				
K _t = No. of Spec. (No. of He	Min ats)	1			
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg Min				
Std. Deviation					
TYS, Mai/-2 (ksi)	Avg Min				
Std. Deviation					
Elong, percent	Avg Min				
RA, percent	Avg				
No. of Spec. (No. of Hea	Min ats)				
E, GN/m ² (10 ⁶ psi)	Avg				
No. of Spec. (No. of Hea	Min				
oisson's Ratio	-5,				
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg				
K _t = No. of Spec. (No. of Hea	Min ats)				
NTS, MN/m² (ksi)	Avg				
K _t = No. of Spec. (No. of Hea	Min atel				

References: 86577

References: 66577
(a) Aging treatment: 990 K (1325 F) 4 hr, FC to 895 K (1150 F) 4 hr, AC 6.2.3-1.2 (11/76)

:83<

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet-TIG welded, no filler Up to 0.099 (0.039) Annealed sheet, welded, aged $^{(a)}$, and tested as aged

Testing Temperature, K (F)		297 (75)		77 (-320)	
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	1273 (184.6)		1640 (237.9)	
Std. Deviation	Min	1220 (177.0)		1610 (233.5)	
TYS, MN/m ² (ksi)	Avg	1109 (160.9)		1420 (206.0)	
Std. Deviation	Min	1048 (152.0)		1379 (200.0)	
Elong, percent	Avg Min	3.8 3.0		7.0 6.5	
RA, percent	Avg Min				=
No. of Spec. (No. of Hear	ts)	6 (2)		2 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hea	ts)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg				
K _t = No. of Spec. (No. of Hear	Min ts)				
NTS, MN/m² (ksi)	Avg				
$K_t =$ No. of Spec. (No. of Heat	Min ts)				= 1 10
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg				
Std. Deviation	Min				
TYS, MN/m² (ksi)	Avg Min				
Std. Deviation					
Elong, percent	Avg Mín				
RA, percent	Avg				
No. of Spec. (No. of Hear	Min ts)		П		
E, GN/m² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hear					
Poisson's Ratio					
Work Hardening Coef				7	
NTS, MN/m² (ksi)	Avg				
K _t = No. of Speć. (No. of Heat	Min ts)				
NTS, MN/m² (ksi)	Avg	2.0			
Kt = No. of Spec. (No. of Heat	Min				

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, no filler Up to 0.099 (0.039)

Thickness, cm (in.): Condition:

Annealed sheet, welded, aged (a), and tested as aged

Testing Temperature, K (F	=)	297 (75)	 77 (-320)	
Tension, Longitudinal				
TUS, MN/m ² (ksi)		1291 (187.3) 1213 (176.0)	1657 (240.3) 1617 (234.5)	
Std. Deviation		1210 (170.07		
TYS, MN/m ² (ksi) Std. Deviation		1094 (158.6) 1007 (146.0)	1332 (193.2) 1276 (185.0)	
		4.0	5.5	
Elong, percent	Min	4.8 3.0	4.0	
RA, percent	Avg Min			
No. of Spec. (No. of He		5 (2)	3 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min			
No. of Spec. (No. of He				
Poisson's Ratio				
Nork Hardening Coef				
NTS, MN/m² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)			
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)		 - Q	n
Tension, Transverse				
TUS, MN/m ² (ksi)	Avg Min			
Std. Deviation	1.0			
TYS, MN/m ² (ksi)	Avg Min			
Std. Deviation				
long, percent	Avg Min			
RA, percent	Avg Min			
No. of Spec. (No. of He				
E, GN/m ² (10 ⁶ psi)	Avg Min			
No. of Spec. (No. of He				
oisson's Ratio				
Vork Hardening Coef				
NTS, MN/m² (ksi) K _t = No. of Spec. (No. of He	Avg Min		E	h 1
NTS, MN/m² (ksi) K _t =	Avg Min			

Rcierences: 66577

(a) Aging treatment: 1034 K (1400 F) 10 hr, FC to 922 K (1200 F) 10 hr, AC 6.2.3-1.4 (11/76)

385<

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet-TIG welded, no filler Up to 0.099 (0.039) Annealed sheet, aged^(a), welded, tested as welded

Testing Temperature, K (F)		297 (75)		77	(-320)	20	(-423)	
Tension, Longitudinal								
TUS, MN/m ² (ksi)	Avg	896.3 (130.0)		1156	(167.7)		(187.7)	
Std Deviation	Min	892.8 (129.5)		1146	(166.2)	1275	(184.9)	
	1							
TYS, MN/m² (ksi)	Avg	599 (86.9)					(133.9)	
Std. Deviation	Min	595 (86.3)		7/9.8	(113.1)	894.9	(129.8)	
e		40	}	,	-			
Elong, percent	Avg Min	4.0		3 .			2.8 2.5	
RA, percent	Avg Min							
No. of Spec. (No. of Heats		3 (1)		3	(1)	3	(1)	
E, GN/m ² (10 ⁶ psi)	Avg		1					
	Min							
No. of Spec. (No. of Heats	s)							
Poisson's Ratio								
Node Handa II. O. 6			ĺ				1	
Work Hardening Coef								
NTS, MN/m² (ksi)	Avg	687 (99.7)	1				(141.8)	
K _t = 6.3 No. of Spec. (No. of Heats	Min	677 (98.3) 3 (1)		841.2	(122.0) (1)	997.3	(137.4) (1)	
	"	3 (1)		"	(1)	,	``' }	
NTS, MN/m ² (ksi) K _t =	Avg							
No. of Spec. (No. of Heats								
Tension, Transverse TUS, MN/m ² (ksi)	Avg							
103, MI4/III- (KM)	Min							
Std Deviation				}			1	
TYS, MN/m² (ksi)	Avg							
Std. Dovintion	Min							
Std. Deviation							[
Elong, percent	Avg							
	Min							
RA, percent	Avg							
No. of Spec. (No. of Heats	Min)							
E, GN/m ² (10 ⁶ psi)	Avg Min	1						
No. of Spec. (No. of Heats								
Poisson's Ratio								
Nork Hardening Coef	1							
NTS, MN/m² (ksi)	Avg							
K _t = No. of Spec. (No. of Heats	Min		i					
	,							
NTS, MN/m ² (ksi)	Avg							
K _t = No. of Spec. (No. of Heats	Min							

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, no filler

Thickness, cm (in.): Condition:

Up to 0.099 (0.039)
Annoaled sheet, aged^(a), welded, weldment aged^(a), and tested as aged

Testing Temperature, K (F)		297 (7	75)	 	77	(-320)	20	(-423)		
Tension, Longitudinal										
TUS, MN/m ² (ksi)	Avg		190.6)		1558	(225.9)		(250.7)		
Std. Deviation	Min	1302 (188.8)		1534	(222.5)	1664	(241.4)		
TYS, MN/m ² (ksi)	Avg Min		166.9) 165.4)		1290 1273	(1 87.1) (184.7)	1	(204.9) (202.3)		
Std. Deviation						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,		
Elong, percent	Avg Min	4.8				3.3 3.0		5,0 1,5		
RA, percent	Avg									
No. of Spec. (No. of Heat:	Min s)	3 (1)		3	(1)	3	(1)	53	
E, GN/m ² (10 ⁶ psi)	Avg Min	āj							I	
No. of Spec. (No. of Heat										
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m ² (ksi)	Avg	1196 (173.5)		1321	(191.6)		(209.0)		
$K_t = 6.3$ No. of Spec. (No. of Heat:	Min	1131 (164.0)		1252 3	(181.6) (1)	1418 3	(205.7) (1)		
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min									
Tension, Transverse										
TUS, MN/m ² (ksi)	Avg Min									
Std. Deviation										
TYS, MN/m ² (ksi)	Avg Min									
Std. Deviation			Į		1					
Elong, përcent	Avg Min									
RA, percent	Avg Min									
No. of Spec. (No. of Heats	s)									
E, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of Heats	s)		1							
Poisson's Ratio							j			
Work Hardening Coef										
NTS, MN/m ² (ksi) K _t =	Avg Min									
No. of Spec. (No. of Heats	5)									
NTS, MN/m ² (ksi) K _t =	Avg Min									

References: 59345

(a) Aging treatment before and after welding: 990 K (1325 F) 8 hr, FC to 895 k (1150 F) 10 hr, AC 6.2.3-1.6 (11/76)

1.87<

Alloy Designation:

Inconel 7.18 Nickel-Base Alloy

Specification:

Thickness, cm (in.):

Sheet Up to 0.099 (0.039) 20% cold worked

Condition:	20%

Testing Temperature, K (F)		297 (75)		77 (-320)	20 (-423)	
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg	1069 (155)		1407 (204)	1558 (226)	
Std. Deviation	Min	1055 (153)		1393 (202)	1551 (225)	
TYS, MN/m ² (ksi)	Avg	917 (133)		1124 (163)	1227 (178)	
Std. Deviation	Min	917 (133)		1096 (159)	1213 (176)	
Elong, percent	Avg Min	21.5 21.0		32.0 32.0	36.2 36.0	
RA, percent	Avg					
No. of Spec. (No. of Heat	Min s)	2 (1)		2 (1)		
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Heat					1	
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avg	1117 (162)		1420 (206)	1538 (223)	
K _t = 6.3 No. of Spec. (No. of Heat	Min s)	1117 (162)		1420 (206)	1524 (221) 3 (1)	
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min					
Tension, Transverse						
TUS, MN/m ² (ksi)	Avg Min	1055 (153) 1055 (153)			1538 (223) 1531 (222)	
Std. Deviation						
TYS, MN/m ² (ksi)	Avg Min	841 (122) 834 (121)				
Std. Deviation						
Elong, percent	Avg Min	24.0 24.0				
RA, percent	Avg Min					
No. of Spec. (No. of Heat		2 (1)			2 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec, (No. of Heat						
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi) K _t = 6.3 No. of Spec. (No. of Heat	Avg Min	1103 (160) 1082 (157) 2 (1)				
		2 (1)				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min					
140. Of Spec. (140, Of Fleat	3/	1	1	1		

Alloy Designation:

Inconet 718 Nicket-Base Alloy

Specification:

Form:

Sheet

Thickness, cm (in.): Condition:

Up to 0.099 (0.039) 20% cold worked and aged 950 K (1250 F) 8 hr, FC to 894 K (1150 F) 10 hr, AC

Testing Temperature, K (F)		297 (75)		 77 (-320)	20 (-423)	
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg	1400 (203)	ļ	1848 (268)	2075 (301)	
Std. Deviation	Min	1393 (202)		1848 (268)	2062 (299)	
TYS, MN/m ² (ksi)	Avg	1310 (190)		1544 (224)	1710 (248)	
Std. Deviation	Min	1310 (190)		1538 (223)	1703 (247)	
Elong, percent	Avg	12.5		20.2	21.8	
	Min	12.0		20.0	21.5	
RA, percent	Avg				1	
No, of Spec. (No, of Hea	Min ats)	2 (1)	ļ	2 (1)		
E, GN/m ² (10 ⁶ psi)		206 (29.9)]		224 (32.5)	
	Avg Min	205 (29.7)			217 (31.4)	
No. of Spec. (No. of Hea	ats)	2 (1)			2 (1)	
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m² (ksi)	Avg	1552 (225)		1931 (280)	2034 (295)	
$K_t = 6.3$	Min	1538 (223)		1924 (279)	1979 (287)	
No. of Spec. (No. of Hea	its)	2 (1)		2 (1)	2 (1)	
NTS, MN/m ² (ksi)	Avg Min				į į	
K _t = No. of Spec. (No. of Hea						
Tension, Transverse						
TUS, MN/m ² (ksi)	Avg	1372 (199)		1		
Std. Deviation	Min	1365 (198)				
TYS, MN/m² (ksi)	Avg Min	1241 (180) 1227 (178)		}	1	
Std. Deviation						
Elong, percent	Avg	12.0				
	Min	12.0				
RA, percent	Avg					
No. of Spec. (No. of Hea	Min ats)	2 (1)				
E, GN/m ² (10 ⁶ psi)	Avg					
	Min					
No. of Spec. (No. of Hea	its)					
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m² (ksi)	Avg	1524 (221)				
$K_{t} = 6.3$	Min	1510 (219) 2 (1)				
No. of Spec. (No. of Hea		4 ("				
NTS, MN/m ² (ksi)	Avg Min					
K _t = No. of Spec. (No. of Hea					1	

59345 References:

:89<

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-TIG welded, no filler Up to 0.099 (0.039)

20% cold worked sheet, aged (a), welded, and tested as welded

Testing Temperature, K (F		297 (75)		77	(-320)	20	(-423)	
Tension, Longitudinal								
TUS, MN/m ² (ksi)	Avg	905.9 (13 .4)			(171.6)		(190.1)	
Ctd Downton	Min	901.8 (130.8)		1174	(170.3)	1302	(188.9)	
Std. Deviation	1							
TYS, MN/m ² (ksi)	Avg	601 (87.1)					(130.8)	
Cad Da at a	Min	594 (86.1)		775.7	(112.5)	893.6	(129.6)	
Std Deviation								
long, percent	Avg	4.2		3.8			2,8	
	Min	4.0		3.5	5	3	2.5	
A, percent	Avg			1				
	Min				(4)			
No. of Spec. (No. of He	ats)	3 (1)		3	(1)	3	(1)	
, GN/m ² (10 ⁶ psi)	Avg							
N= =4.5=== (N= =4.1);	Min							
No. of Spec. (No. of He	ats)							
oisson's Ratio								
ork Hardening Coef				-				
TS, MN/m ² (ksi)	Avg	732.2 (106.2)			(130.7)		(146.0)	
K _t = 6.3 No. of Spec. (No. of Hea	Min ats)	692.2 (100.4) 3 (1)		868.1	(125.9) (1)	976.3 3	(141.6) (1)	
	a(s)	3 (1)		13	(1)	٦	`''	
TS, MN/m ² (ksi)	Avg		}					
K _t = No. of Spec, (No. of He	Min (}				
140. 01 Spec, (140. 01 11e	0(3)							
ension, Transverse						ĺ		
US, MN/m ² (ksi)	Avg						1	
Std. Deviation	Min					}		
						1		
YS, MN/m ² (ksi)	Avg			1				
Std. Deviation	Min					ļ		
	100.00000		}			ļ		
long, percent	Avg			Ì				
	Min) [=					
A, percent	Avg							
No. of Spec. (No. of He	Min ats)							
	0.31							
, GN/m ² (10 ⁶ psi)	Avg							
No. of Spec. (No. of He	Min ats)		1. =					
oisson's Ratio								
fork Hardening Coef			C = E =					
ITS, MN/m ² (ksi)	Avg Min							
Kt = No. of Spec. (No. of He								
ITS, MN/m ² (ksi)	Avg							
K _t = No. of Spec. (No. of He								

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, no filler Up to 0.099 (0.039)

Thickness, cm (in.): Condition:

20% cold worked sheet, aged^(a), welded, weldment aged^(a), and tested as aged

Testing Temperature, K (F)	297 (75)	77	(-320)	20 (-423)	
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg	1336 (193.8)	164			
Std. Deviation	Min	1311 (190.1)	163	31 (236.5)	1689 (244.9)	
TYS, MN/m ² (ksi)	Avg Min	1196 (173.4) 1183 (171.6)	131 134			
Std Deviation	771111	1100 (171.0)	"	10 (104.4)	1007 (202.07	
Elong, percent	Avg Min	2.2 2.0		3.0 3.0	2.0 1.5	
RA, percent	Avg					
No. of Spec. (No. of He	Min eats)	3 (1)	3	(1)	3 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He						
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avj	1254 (181.9)	133		1440 (203.1)	
K _t = 6.3 No. of Spec. (No. of He	Min eats)	1180 (171.1) 3 (1)	129	93 (187.6) (1)	1396 (202.4) 3 (1)	
NTS, MN/m² (ksi) K _t =	Avg Min					
No. of Spec. (No. of He	ats)					
Tension, Transverse					1	
TUS, MN/m ² (ksi)	Avg Min					
Std. Deviation						
TYS, MN/m ² (ksi)	Avg Min					
Std. Deviation						
Elong, percent	Avg					
	Min					
RA, percent	Avg Min					
No. of Spec. (No. of He	eats)					
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He						
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of He	Min eats)					
NTS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of He	Min					

Alloy Designation:

Inconel 718 Nickel-Base Alloy

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet Up to 0.099 (0.039) 30% cold rolled and aged

Testing Temperature, K (F)		297 ((75)	195	(-108)		77	(-320)	20	(-423)	
Tension, Longitudinal											
TUS, MN/m ² (ksi)	Avg	1586	(230)	1717	(249)		2013	(292)	2130	(309)	
Std Deviation	Min	1572	(228)	1703	(247)		1993	(289)	2089	(303)	
TYS, MN/m ² (ksi)	Avg Min	1503 1496	(218) (217)	1 586 1558	(230) (226)		1786 1779	(259) (258)	1855 1841	(764) (267)	
Std. Deviation		1400	(217)	1335	(220)		.,,,	(250)		(2077	
Elong, percent	Avg Min	7. 6.	.1 .5).9).5			5.7 5.0	1	14.6 11.5	
RA, percent	Avg Min										
No. of Spec. (No. of Hea		5	(1)	5	(1)		5	(1)	5	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min	209 206	(30.3) (29.9)	210 204	(30.5) (29.6)		221 216	(32.0) (31.3)	223 221	(32.4) (32.0)	
No. of Spec. (No. of Hea		5	(1)	5	(1)		5	(1)	5	(1)	
Poisson's Ratio											
Work Hardening Coef											
NTS, MN/m² (ksi)	Avg	1710	(248)	1841	(267)		2013	(292)	2130	(309)	
$K_t = 6.3$ No. of Spec. (No. of Hea	Min ts)	1696 5	(246) (1)	1827 5	(265) (1)		1965 5	(285) (1)	2089 5	(303)	
NTS, MN/m² (ksi)	Avg	1482	(215)	1455	(211)		1579	(229)	1737	(252)	
K _t = 19 No. of Spec. (No. of Hea	Min ts)	1448 5	(210) (1)	1393	(202) (1)		1531 5	(222) (1)	1572 5	(228) (1)	
Tension, Transverse											
TUS, MN/m ² (ksi)	Avg Min	1538 1531	(223) (222)	1669 1662	(242) (241)		1882 1848	(2 73) (268)	2034 2027	(295) (294)	
Std. Deviation											
TYS, MN/m ² (ksi)	Avg Min	1420 1407	(206) (204)	1503 1475	(218) (214)		1641 1613	(238) (234)	1731 1703	(251) (247)	
Std. Deviation											
Elong, percent	Avg Min		. 0 .5		3.4 3.0			3.3 1.5		16.0 12.0	
RA, percent	Avg Min										
No. of Spec. (No. of Hea		5	(1)	5	(1)		5	(1)	5	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min	209 207	(30.3) (30:0)	210 202	(30.4) (29.3)		219 217	(31.7) (31.4)	225 222	(32.6) (32.2)	
No. of Spec. (No. of Hea	ts)	5	(1)	5	(1)		5	(1)	5	(1)	
Poisson's Ratio											
Work Hardening Coef											
NTS, MN/m ² (ksi)	Avg	1710	(248)	1806	(262)		1965	(285)	2075	(301)	
K _t = 6.3 No. of Spec. (No. of Hea	Min ts)	1675 5	(243) (1)	1800 5	(261) (1)		1931	(280) (1)	1944	(282) (1)	
NTS, MN/m ² (ksi)	Avg	1455	(211)	1358	(197)	9	1434	(208)	1662	(241)	
	Min	1407	(204)	1303	(189)		1338	(194)	1538	(223)	

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet-TIG welded, no filler Up to 0.099 (0.039) 30% cold rolled and aged, sheet welded and tested as welded

Testing Temperature, K (F	F)	297	(75)	195	(-108)	77	(-320-	20	(-423)	
Tension, Longitudinal										
TUS, MN/m ² (ksi)	Avg Min	779 738	(113) (107)	993 951	(144) (138)	1172 1131	(170) (164)	1062 951	(154) (138)	
Std. Deviation	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	700	(107)	33.	(100)	1	(104)		(1.55)	
TYS, MN/m ² (ksi)	Avg Min									
Std. Deviation	l				1	1				
Elong, percent	Avg Min	2.1 1.5		3.0 1.0		1.9 1.0		0.6 0.0		
RA, percent	Avg Min									
No. of Spec. (No. of He		5	(1)	5	(1)	5	(1)	5	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of He	eats)									
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)									
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)									
Tension, Transverse										
TUS, MN/m ² (ksi)	Avg	772	(112)	896	(130)	1000	(145)	1007	(146)	
Std. Deviation	Min	729	(105)	827	(120)	979	(142)	958	(139)	
TYS, MN/m² (ksi)	Avg									
Std. Deviation	Min									
Elong, percent	Avg Min		2.7 2.5		1.6 1.0), 9).5		9 ,9 0.5	
RA, percent	Avg Min									
No. of Spec. (No. of He	eats)	5	(1)	5	(1)	5	(1)	5	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of He	eats)							;		
Poisson's fixtio										
Work Hardening Coef										1
NTS, MN/m² (ksi) K _t =	Avg Min									
No. of Spec. (No. of He										
NTS, MN/m² (ksi)	Avg									
K _t =	Min									
No. of Spec. (No. of He	eats)			l	l	1		1	49.	سروا

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet-TIG welded, no filler Up to 0.099 (0.039) 30% cold rolled and aged sheet, welded, aged and tested as aged

Testing Temperature, K (F)		297 (75)	195	(-108)	77	(-320)	20	(-423)	
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg	1324	(192)	1427	(207)	1600	(232)	1779	(258)	
Std Deviation	Min	1310	(190)	1379	(200)	1503	(218)	1751	(254)	
TYS, MN/m ² (ksi)	Avg Min				ł					
Std. Deviation	141111									
Elong, percent	Avg Min	1.6 1.5		1.5 1.5		1.8 1.0		1.2		
RA, percent	Avg Min									
No. of Spec. (No. of Hea	ts)	5	(1)	5	(1)	5	(1)	5	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min				ĺ					
No. of Spec. (No. of Hea	its)				j					
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min									
NTS, MN/m ² (ksi) $K_t =$ No. of Spec. (No. of Hea	Avg Min			<u> </u>						
Tension, Transverse					}					
TUS, MN/m ² (ksi) Std. Deviation	Avg Min	1269 1255	(184) (182)	1386 1358	(201) (197)	1572 1524	(228) (221)	1717 1689	(249) (245)	
TYS, MN/m ² (ksi)	Avg									
Std. Deviation	Min				}			}		
Elong, percent	Avg Min		. 6 .5		1.5 1.5		. 2 .0		1.0 1.0	
RA, percent	Avg							1		
No. of Spec. (No. of Hea	Min ts)	5	(1)	5	(1)	5	(1)	5	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of Hea	ts)									
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	A.vg Min									
NTS, MN/m ² (ksi) K _t =	Avg Min									
No. of Spec. (No. of Hea					ł					1

References: 60578

394<

Alloy Designation: Inconel 718 Nickel-Base Alloy

AMS-5596C Sheet Specification:

Form:

Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: Annealed, aged 1034 K (1400 F) 10 hr, FC, 920 K (1200 F) 10 hr, AC

Testing Temperature, K (F)	297 (75)	77 (-320) 20 (-423)	
Tension, Longitudinal			
TUS, MN/m ² (ksi) A		1634 (237) 1825 (265)	
Std Deviation	n 1269 (184) 42.0 (6.10)	1448 (210) 1772 (257) 110 (16)	
TYC, MN/m ² (ksi) A		1282 (186) 1422 (206) 1148 (166) 1386 (201)	
Std Deviation	74.5 (19.8)	1148 (166) 1386 (201) 98.6 (14.3)	
Elong, percent A		17.7 15.7 13	
RA, percent A			
No. of Spec. (No. of Heats)	8 (2)	9 (2) 6 (1)	, F
E, GN/m ² (10 ⁶ psi) A			
No. of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m ² (ksi) Av	g		
$K_t = M^2$ No. of Spec. (No. of Heats)	n		
$ \begin{aligned} & \text{NTS, MN/m}^2 \text{ (ksi)} & \text{Av} \\ & \text{K}_t = & \text{Mi} \\ & \text{No. of Spec (No. of Heats)} \end{aligned} $			
Tension, Transverse			
TUS, MN/m ² (ksi) Av			
Std. Deviation			
TYS, MN/m² (ksi) Av			
Std. Deviation			
Elong, percent Av			
RA, percent Av			
No. of Spec. (No of Heats)			
E, GN/m ² (10 ⁶ psi) Av Mi			
No. of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m ² (ksi) Av K _t = Mi			
No. of Spec. (No. of Heats)			
NTS, MN/m ² (ksi) Av K _t = Mid		L	
No. of Spec. (No. of Heats)	1		

Alloy Designation: Inconel 718 Nickel-Base Alloy

AMS-5596 C

N07718

Specification: Form:

Thickness, cm (in.): Condition:

Sheet
0.100 to 0.319 (0.040 - 0.125)
Annealed 1340 K (1950 F), AC, aged 1034 K (1400 F) 10 hr, FC, 920 K (1200 F) 10 hr, AC

Testing Temperature, K (F)	297	(75)	77	(-320)	20	(-423)	
Fatigue, Flexural Loading, Surface F	inish 64	rms					
	1	0.000		(0.0)		(227)	
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency 30-40 Hz with R = -1 and K _t = 1	607	(88)	662	(96)	807	(117)	
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)	
Ratio S _N /TUS at 10 ^S cycles	0.4	6	-	0.40	0.4	5	
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency 30-40Hz with R =-1 and K _t = 1	400	(58)	455	(66)	524	(7€-	
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)	
Ratio S _N /TUS at 10 ⁶ cycles	0.3	0		0.27	0.2	9	
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency 30-40 Hz with R = -1 and K ₁ = 1	324	(47)	427	(62)			
No of S-N Curves (No. of Heats)	1	(1)	1	(1)			
Ratio S _N /TUS at 10 ⁷ cycles	0.2	4		0.26			
Fatigue, Flexural Loading, Surface I	inish 11	rms					
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency 30-40 Hz with R = -1 and K _t = 1	717	(104)	800	(116)	1020	(148)	
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)	
Ratio S _N /TUS at 10 ⁵ cycles	0.5	2		0.46	0.5	5	
S_N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency 30-40Hz with R = -1 and K _t = 1	496	(72)	579	(84)	703	(102)	
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)	
Ratio S _N /TUS at 10 ⁶ cycles	0.3	6		0.33	0.3	8	
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency 30-40 Hz with R = -1 and K ₁ = 1	434	(63)	476	(69)			
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)			
Ratio SN/TUS at 107 cycles	0.3	2		0.27			201

Alloy Designation:

Inconel 718 Nickel-Base Alloy

Specification:

Thickness, cm (in.): Condition:

C.100 to 0.319 (0.040 to 0.125) Annealed (solution treated)

Testing Temperature, K (F)	297 (75)		77 (-320)	20 (-423)	
Tension, Longitudinal					
TUS, MN/m ² (ksi) Avg	880.5 (127.7) 833.6 (120.9)		1222 (177;2) 1151 (166.9)		
Std. Deviation					
TYS, MN/m ² (ksi) Avg Min Std. Deviation	549 (79.6) 516 (74.8)		745.3 (108.1) 681 (98.8)	722.6 (104.8) 687 (99.6)	
Elong, parcent Avg	41.8 37.0		51.3 43.0	56.0 52.5	
RA, percent Avg					
Min No. of Spec. (No. of Heats)	6 (2)		6 (2)	3 (1)	
E, GN/m ² (10 ⁶ psi) Avg	203 (29.5)		211 (30.6)	211 (30.6)	
Min No. of Spec. (No. of Heats)	3 (1)		3 (1)	3 (1)	
Poisson's Ratio					
York Hardening Coef					
NTS, MN/m ² (ksi) Avg K _t = 3.5 Min No. of Spec. (No. of Heats)	828.8 (120.2) 828.1 (120.1) 3 (1)		1105 (160.3) 1104 (160.1) 3 (1)		
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)					
Tension, Transverse					
TUS, MN/m² (ksi) Avg Min	914.2 (132.6) 908.0 (131.7)		1242 (180.2) 1223 (177.4)		
Std. Deviation	355.5 (151.7)		, , , , , , , , , , , , , , , , , , , ,		
TYS, MN/m² (ksi) Avg Min	590 (85.5) 584 (84.7)		775.0 (112.4) 770.8 (111.8)		
Std. Deviation					
Elong, percent Avg Min	39.0 38.0		47.8 44.0		
RA, percent Avg					
Min No. of Spec. (No. of Heats)	3 (1)	27	3 (1)		
E, GN/m ² (10 ⁶ psi) Avg Min					
No. of Spec. (No. of Heats)				1 1	
oisson's Ratio					
Vork Hardening Coef					
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)					
NTS, MN/m ² (ksi) Avg K _t = Min					

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet-TIG welded, 718-Alloy filler 0.100 to 0.319 (0.040 to 0.125) Solution treated sheet, TIG welded and tested as welded

Tension, Longitudinal TUS, MM/m² (ksi)	Testing Temperature, K (F)	297 (75)	77	(-320)	20	(-423)
TUS, MN/m² (ksi) Sid Deviation TYS, MN/m² (ksi) Avg Min RA, percent Mrs, of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K₂ = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, Mit/m² (ksi) Avg Min Sid. Deviation TYS, MN/m² (ksi) Avg Min Sid. Deviation Avg Min No. of Spec. (No. of Heats) Poisson's Retio Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Poisson's Retio Nork Hardening Coef NTS, MN/m² (ksi) Avg No. of Spec. (No. of Heats) Poisson's Retio Nork Hardening Coef NTS, MN/m² (ksi) Avg No. of Spec. (No. of Heats) Poisson's Retio Nork Hardening Coef NTS, MN/m² (ksi) Avg No. of Spec. (No. of Heats) Poisson's Retio Nork Hardening Coef NTS, MN/m² (ksi) Avg No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats)	Tension, Longitudinal					
TYS, MN/m² (ksi) Avg Min RA, percent Avg Min RA, percent Avg Min No. of Spec. (No. of Heats) F, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) Tendon, Transverse TUS, Mil/m² (ksi) Avg Min Std. Deviation Avg Min Std. Deviation Avg Min RA, percent Avg Min No. of Spec. (No. of Heats) F, GN/m² (106 psi) Avg Min Std. Deviation Avg Min No. of Spec. (No. of Heats) Forson's Ratio Avg Min No. of Spec. (No. of Heats) Forson's Ratio Nor Min RA, percent Avg Min No. of Spec. (No. of Heats) Poisson's Ratio North Hardening Coef NTS, MN/m² (ksi) Avg No. of Spec. (No. of Heats) Poisson's Ratio North Hardening Coef NTS, MN/m² (ksi) Avg No. of Spec. (No. of Heats) Poisson's Ratio North Hardening Coef NTS, MN/m² (ksi) Avg No. of Spec. (No. of Heats) Poisson's Ratio North Hardening Coef NTS, MN/m² (ksi) Avg No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg No. of Spec. (No. of Heats)						
TYS, MN/m² (ksi) Avg Min Stid. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats) Tension, Transverse TUS, Mi/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)		838.4 (121.6)	1077	(156.2)	1202	(174.4)
Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) E, GN/m2 (106 ps) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef Min No. of Spec. (No. of Heats) Avg K; = Min No. of Spec. (No. of Heats) Min No. of Spec. (No. of Heats) Avg K; = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, Mi/m2 (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) E, GN/m2 (106 psi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m2 (ksi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m2 (ksi) Avg No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m2 (ksi) Avg No. of Spec. (No. of Heats) NTS, MN/m2 (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m2 (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m2 (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m2 (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m2 (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m2 (ksi) Avg Min NTS, MN/m2 (ksi) Avg						
Std. Deviation Elong, parcent Avg Min RA, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) Poison's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) Tension, Transverse Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation Elong, parcent Avg Min No. of Spec. (No. of Heats) Elong, parcent Avg Min No. of Spec. (No. of Heats) E, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) Poison's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Poison's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Poison's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)			= 1	т :		
Min No. of Spec. (No. of Heats) 6, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) 70 isson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Fension, Transverse TUS, Mit/m² (ksi) Avg Min No. of Spec. (No. of Heats) Forsion Avg Min No. of Spec. (No. of Heats) Forsion Avg Min No. of Spec. (No. of Heats) Forsion Avg Min No. of Spec. (No. of Heats) Forsion's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats)						
Min No. of Spec. (No. of Heats) 6, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) 70 isson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Fension, Transverse TUS, Mit/m² (ksi) Avg Min No. of Spec. (No. of Heats) Forsion Avg Min No. of Spec. (No. of Heats) Forsion Avg Min No. of Spec. (No. of Heats) Forsion Avg Min No. of Spec. (No. of Heats) Forsion's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) Nork Hardening Coef NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats)	Elong, percent Δνε					-
Min No. of Spec. (No. of Heats) E, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, Mil/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) E, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef Work Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)						
Min No. of Spec. (No. of Heats) E, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Tension, Transverse TUS, Mri/m² (ksi) Avg Min No. of Spec. (No. of Heats) Elong, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg MTS, MN/m² (ksi) Avg NTS, MN/m² (ksi) Avg	RA, percent Avg					
E, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K; = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Nin Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)	Min	2 (1)		(1)	2	(1)
Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K₂ Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef Nork Hardening Coef Nork Headening Coef Nork Hardening Coef Nork Hardening Coef Nork Min No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) Nork Hardening Coef Nork Hardening Coef Nork Hardening Coef Nork Min No. of Spec. (No. of Heats) Nork Min No. of Spec. (No. of Heats) Nork Min No. of Spec. (No. of Heats) Nork Min No. of Spec. (No. of Heats) Nork Min No. of Spec. (No. of Heats) Nork Min No. of Spec. (No. of Heats) Nork Min No. of Spec. (No. of Heats) Nork Min No. of Spec. (No. of Heats) Nork Min No. of Spec. (No. of Heats) Nork Min No. of Spec. (No. of Heats) Nork Min No. of Spec. (No. of Heats) Nork Min No. of Spec. (No. of Heats)		3 (1)	3	(1)	3	1112
No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats)						
Work Hardening Coef NTS, MN/m² (ksi) Avg K ₁ = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K ₂ = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Retio Work Hardening Coef NTS, MN/m² (ksi) Avg K ₁ = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K ₂ = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K ₃ = Min No. of Spec. (No. of Heats)						
Work Hardening Coef NTS, MN/m² (ksi) Avg K ₁ = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K ₂ = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Retio Work Hardening Coef NTS, MN/m² (ksi) Avg K ₁ = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K ₂ = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K ₃ = Min No. of Spec. (No. of Heats)	Poisson's Ratio					
NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K₂ = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MN/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K₁ = Min No. of Spec. (No. of Heats)						1
K _t = Min No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) Tension, Transverse TUS, MRI/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) Work Hardening Coef NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)				į		
No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MR/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) Avg K _t = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)	NTS, MN/m ² (ksi) Avg					
K _t = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MRV/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) Nork Mork Hardening Coef NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)	No. of Spec. (No. of Heats)	}				
K _t = Min No. of Spec. (No. of Heats) Tension, Transverse TUS, MRV/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) Elong, Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)	NTS. MN/m² (ksi) Ava					
Tension, Transverse TUS, MN/m² (ksi) Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats)	K _t = Min					
TUS, MP/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats) No. of Spec. (No. of Heats) No. of Spec. (No. of Heats)	No. of Spec. (No. of Heats)					
Min Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) TYS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)						
Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) North Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats) North Hardening Coef NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)						
Std. Deviation Elong, percent Avg Min RA, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats)						
Std. Deviation Elong, percent Avg Min RA, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats)	TYS, MN/m ² (ksi) Avg					
Elong, percent Avg Min RA, percent Avg Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)	Min					
Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)	Std. Deviation					
RA, percent Min No. of Spec. (No. of Heats) E, GN/m² (10 ⁶ psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats)						
Min No. of Spec. (No. of Heats) E, GN/m² (106 psi) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)						
No. of Spec. (No. of Heats) E, GN/m² (106 psi) Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)				_		
Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min Min No. of Spec. (No. of Heats)						
Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min Min No. of Spec. (No. of Heats)	E, GN/m ² (10 ⁶ psi) Avg					
Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Min Min Min No. of Spec. (No. of Heats)	Min					
Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg						
NTS, MN/m² (ksi) Kt = Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg	1.4365012					
K _t = Min No. of Spec. (No. of Heats) VTS, MN/m ² (ksi) Avg	Work Hardening Coef					
No. of Spec. (No. of Heats) VTS, MN/m ² (ksi) Avg				H.		
NTS, MN/m ² (ksi) Avg						
K = Min			14			
No. of Spec. (No. of Heats)						
						398<

Alloy Designation:

Inconel 718 Nickel-Base Alloy

Specification:

Thickness, cm (in.): Condition:

Sheet 0.100 to 0.319 (0.040 to 6.125) Annaled 1283 K (1850 F), aged 1075 K (1360 F)

Testing Temperature, K (F)	297 (75)	20 (423)
Tension, Longitudinal		
TUS, MN/m ² (ksi) Av		1940 (281.3) 1935 (280.7)
Std Deviation		
TYS, MN/m ² (ksi) At Mi Std. Deviation		1460 (211.7) 1454 (210.9)
Elong, percent Av		18.4 18.6
RA, percent Av		
No. of Spec. (No. of Heats)	3 (1)	3 (1)
E, GN/m ² (10 ⁶ psi) Av Mi		
No. of Spec. (No. of Heats)		
Poisson's Ratio		<u></u>
Work Hardening Coef		
NTS, MN/m ² (ksi) Av $K_t = Mi$ No. of Spec. (No. of Heats)		
NTS, MN/m ² (ksi) Av $K_t = Mi$ No. of Spec. (No. of Heats)		
Tension, Transverse		
TUS, MN/m ² (ksi) Av		
Std. Deviation		
TYS, MN/m² (ksi) Av Mi		
Std. Deviation		
Elong, percent Av Mi	• •	
RA, percent Av		
No. of Spec. (No. of Heats)		
E, GN/m ² (10 ⁶ psi) Av	1 1	
No of Spec. (No. of Heats)		
Poisson's Ratio		
Work Hardening Coef		
NTS, MN/m^2 (ksi) Av $K_t = Mi$		
No. of Spec. (No. of Heats)		
NTS, MN/m ² (ksi) Av $K_{\uparrow} = Mi$ No. of Spec. (No. of Heats)		

Alloy Designation:

Inconel 718 Nicks!-Base Alloy (Weid Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet-TIG welded, 718-Alloy filler 0.100 to 0.319 (0.040 to 0.125) Sheet annealed at 1283 K (1850 F), aged at 1075 K (1360 F), welded, and tested as welded

Testing Temperature, K (F)	297 (75)		20 (-423)	
Tension, Longitudinal				
TUS, MN/m ² (ksi)	Avg 1411 (204	7)	1794 (260.2)	
	Min 1407 (204.	0)	1784 (258.7)	
Std. Deviation				
TYS, MN/m ² (ksi)	Avg 1241 (180		1517 (220.0)	
Cod De levies	Min 1234 (179.	0)	1483 (215.1)	
Std. Deviation				
Elong, percent	Avg 9.3		4.6	
	Min 8.0		4.0	
RA, percent	Avg			
11 I	Min		3 (1)	
No. of Spec. (No. of Heats) 3 (1)]	
E, GN/m ² (10 ⁶ psi)	Avg			
No of Cook (No of Head	Min			
No. of Spec. (No. of Heats	,			
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi)	Avg			
K _t = No. of Spec. (No. of Heats	Min)			
NTS, MN/m ² (ksi) K _t =	Avg Min		4 IE	
No. of Spec. (No. of Heats				
• · · · · · · · · · · · · · · · · · · ·				
Tension, Transverse TUS, MN/m ² (ksi)	Aug			
105, miv/m= (ksi)	Avg Min			
Std. Deviation				
TYS, MN/m ² (ksi)	Avg		1	
	Min			
Std. Deviation				
Elong, percent	Avg			
	Min		1 1	
RA, percent	Avg			
	Min			
No. of Spec. (No. of Heats				
E, GN/m ² (10 ⁶ psi)	Avg			
	Min			
No. of Spec. (No. of Heats				
Poisson's Ratio				
Work Hardenine Coef				
Work Hardening Coef				
NTS, MN/m ² (ksi)	Avg			
K _t = No. of Spec. (No. of Heats	Min			
NTS, MN/m² (ksi)	Avg Min			
Kt =				

References: 78611

400<

Alloy Designation: Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Sheet-TIG welded, 718 Alloy filler

Thickness, cm (in.): Condition:

0.100 to 0.319 (0.040 to 0.125) Sheet annealed 1225 K (1752 F) 1 hr, AC; aged 992 K (1325 F) 8 hr, FC to 895 K (1150 F) 8 hr, AC; welded, and tested as welded

welded, and tested as welded							
Testing Temperature, K (F)		297 (75)			77 (-320)	20 (-423)	
Tension, Longitudinal TUS, MN/m² (ksi) Std. Deviation	Avg Min	779.1 (113.0)			1060 (152)	869 (126)	
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	552 (80.0)			807 (117)	493 (71.5)	
Elong, percent	Avg Min	4.0			3.2	4.1	
RA, percent No. of Spec. (No. of Heats)	Avg Min	1			1	1	
E, GN/m ² (10 ⁶ psi)	Avg Min	201 (29.2)			211 (30.6)	194 (28.2)	
No. of Spec. (No. of Heats))	0.25			0.23	0.34	
Poisson's Ratio Work Hardening Coef		0.25			0.23	0.54	
NTS, MN/m ² (ksi)	Avg Min						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats)	Avg Min						
Tension, Transverse							
TUS, MN/m² (ksi) Std. Deviation	Avg Min						
TYS, MN/m ² (ksi)	Avg						
Std. Deviation	Min						
Elong, percent	Avg Min						
	Avg Min					110	
No. of Spec. (No. of Heats))						
	Avg Min					THE !	
No. of Spec. (No. of Heats)							
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats)	Avg Min						
	Avg Min						

Alloy Designation: Inconel 718 Nickel-Base Alloy

Specification: AMS-5597A

Form: Plate

Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)

Condition: Annealed 1340 (1950 F) 1 hr, AC, aged 1034 K (1400 F) 10 hr, FC to 920 K (1200 F), held at 920 K (1200 F) for total aging time of 20 hr, AC

Testing Temperature, K (F))	297 (75)		77 (-320)	
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	1251 (182)		1502 (218)	
Std. Deviation	Min	1239 (180)		1467 (213)	
		9.31 (1.35)		18.5 (2.68)	
TYS, MN/m ² (ksi)	Avg	1014 (147)		1196 (174)	
Std Deviation	Min	995 (144) 13.1 (1.90)		1172 (170) 23.0 (3.34)	
Elong, percent	Avg Min	16.7 15		14.6 13	
RA, percent	Avg	U == [
No of Spec. (No. of Hea	Min ets)	10 (1)		10 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hea					
Poisson's Ratio					
Work Hardening Coef					
NTS, MiN/m ² (ksi)	Avg				
K _t = No. of Spec. (No. of Hea	Min				
	1(5)		١.		
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ats!				
Tension, Transverse			11		
TUS, MN/m ² (ksi)	Avg				
Std. Deviation	Min	1 11			
TYS, MN/m ² (ksi)	Avg Min				
Std. Deviation	Willi				
Elong, percent	Avg Min				
RA, percent	Avg				
No. of Spec. (No. of Hea	Min its)				9 - 9
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hea					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min				
NTS, MN/m² (ksi)	Avg				
K _t ≠ No. of Spec. (No. of Hea	Min				

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Plate-T.3 welded, 718 Alloy filler 0.635 to 1.269 (0.250 to 0.499)

Condition:

Plate TIG welded, weldment annealed 1340 K (1960 F) 1 hr, AC, aged 1034 K (1400 F) 10 hr, FC to 920 K (1200 F) 10 hr, AC, and tested as aged

Testing Temperature, K (I	F)	297 (75)	20 (-423)
Tension, Longitudinal			
TUS, MN/m ² (ksi)	Avg	1273 (184.7)	1556 (225.7)
Std Deviation	Min	1262 (183.0)	1527 (221.4)
TYS, MN/m ² (ksi)	Avg Min	1072 (155.5) 1055 (153.0)	1237 (179.4) 1207 (175.1)
Std Deviation	14,111	1000 (100.0)	
Elong, percent	Avg	16	13.8
	Min	15	11.5
RA, percent	Avg		
No of Spec. (No, of He	Min eats)	7 (1) ^(a)	3 (1)
E, GN/m ² (10 ⁶ psi)	Avg Min		
No. of Spec. (No. of He			
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m ² (ksi)	Avg		
K _t =	Min		
No. of Spec. (No. of He	eats)	1 1	
NTS, MN/m ² (si)	Avg		
K _t = No. of Spec. (No. of He	Min eats)		
Tension, Transverse			
TUS, MN/m ² (ksi)	Avg		
	Min		
Std. Deviation			
TYS, MN/m ² (ksi)	Avg		
Std. Deviation	Min		
Elong, percent	Avg Min		
RA, percent	Avg		
na, percent	Min		
No. of Spec. (No. of He	eats)		
E, GN/m ² (10 ⁶ psi)	Avg		
No. of Spec. (No. of He	Min (eats)		
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m² (ksi)	Avg		
K _t =	Min		
No. of Spec. (No. of He	eats)		
NTS, MN/m ² (ksi)	Ava		
Kt = No. of Spec. (No. of He	Min asts)		

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Plate-TIG welded, 718 Alloy filler
1.270 to 2.540 (0.500 to 1.000)
Plate solution treated 1228 K (1750 F) ½ hr, AC; welded, weldment aged at 992 K (1325 F) 8 hr, FC to 895 K (1150 F) 8 hr, AC; tested as aged

Testing Temperature, K (F)	297 (75)	77 (-320)	
Tension, Longitudinal			
TUS, MN/m ² (ksi) A	g 1320 (192	1540 (223)	
M		1410 (205)	
Std. Deviation			
	/g 1110 (161	1210 (176)	
Std. Deviation	in 1030 (149	1170 (169)	
Elong, percent A			
M	m		
RA, percent A	- 1		
No. of Spec. (No. of Heats)	7 (3)	4 (2)	
E, GN/m ² (10 ⁶ psi) A M		236 (34.2) 214 (31.1)	
No. of Spec. (No. of Heats)	7 (3)	3 (2)	
Poisson's Ratio			
Work Hardening Coef			4-1
NTS, MN/m ² (ksi)	9		
K _t = M No. of Spec. (No of Heats)	n		
NTS, MN/m ² (ksi) A	~ 1		
$K_t = M$ No. of Spec. (No. of Heats)	f1		
Tension, Transverse TUS, MN/m ² (ksi) A			
TUS, MN/m² (ksi) An M			
Std. Deviation			
TYS, MN/m² (ksi) A	g P		
М	- 1		
Std. Deviation			
Elong, percent A	- 1		12
М	n		
RA, percent A			
M No. of Spec. (No. of Heats)	n		
		1	1
E, GN/m ² (10 ⁶ psi) A	-		
No. of Spec. (No. of Heats)	"		
Poisson's Ratio			
Onser 5 natio			
Nork Hardening Coef			
NTS, MN/m ² (ksi) A	g		
K _t = M	_		
No. of Spec. (No. of Heats)			
NTS, MN/m² (ksi) A	~	4	
Kt = Mi No. of Spec. (No. of Heats)	n		
IND OF SORE INO OF MEATS)			

Alloy Designation: Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Plate-EB welded, no filler 1.270 to 2.540 (0.500 to 1.000)

Thickness, cm (in.): Condition:

Plate solution treated 1228 K (1750 F) ½ hr, AC; welded, weldment aged at 992 K (1325 F) 8 hr, AC; tested as aged

tested	as aged		
Testing Temperature, K (F)	297 (75)	77 (-320)	
Tension, Longitudinal			
TUS, MN/m ² (ksi) Avg	1420 (206)	1540 (224)	
Min Std Deviation	1360 (197)	1450 (211)	:
TYS, MN/m ² (ksi) Avg	1110 (161)	1330 (193)	
Min Std. Deviation	1090 (158)		
Elong, percent Avg Min			
RA, percent Avg			
No. of Spec. (No. of Heats)	5 (2)		
E, GN/m ² (10 ⁶ psi) Avg Min	212 (30.7) 203 (29.4)	214 (31.0)	
No. of Spec. (No. of Heats)	5 (2)	1	
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m^2 (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)			
NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats)			
Tension, Transverse			
TUS, MN/m ² (ksi) Avg			
Std. Deviation			
TYS, MN/m ² (ksi) Avg Min			
Std. Deviation			
Elong, percent Avg Min			
RA, percent Avg			
No. of Spec. (No. of Heats)			
E, GN/m ² (10 ⁶ psi) Avg			
Min No. of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m ² (ksi) Avg $K_t = $ Min No. of Spec. (No. of Heats)			
NTS, MN/m² (ksi) Kt = Min No. of Spec. (No. of Heats)			

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Plate-Plasma-Arc Welded, 718 Alloy filler 1.270 to 2.540 (0.500 to 1.000)

Thickness, cm (in.): Condition:

Plate solution treated 1228 K (1750 F) ½ hr, AC; welded, weldment aged at 992 K (1325 F) 8 hr, FC to 895 K (1150 F) 8 hr, AC; tested as aged

Testing Temperature, K (F)	207 (75)	895 K (1150 F) 8 hr, AC; tested 8		77 (200)	· · · · · · · · · · · · · · · · · · ·	
rosting reimperature, K (r)	297 (75)			77 (-320)		
Tension, Longitudinal TUS, MN/m ² (ksi) Std. Deviation	/g 1340 (195) in 1340 (194)			1550 (225) 1500 (218)		
TYS, MN/m² (ksi) A	rg 1100 (159) in 1090 (158)			1390 (202) 1380 (200)		
Elong, percent A	rg in					
RA, percent A	/g					
No. of Spec. (No. of Heats)	2 (1)			2 (1)		
	rg 230 (33.4 in 221 (32.1 2 (1)			221 (32.0) 201 (29.2) 2 (1)		
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m^2 (ksi) A $K_t = M$ No. of Spec. (No. of Heats)						
NTS, MN/m² (ksi) A	/g					
	/g					
Std. Deviation						
	/g					
Std Deviation						
	/g in					
	/9 in					
No. of Spec. (No. of Heats)						
	rg in		}			
No. of Spec. (No. of Heats)						
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m^2 (ksi) A $K_t = M$ No. of Spec. (No. of Heats)	- 1					
NTS, MN/m ² (ksi) K _t = M No. of Spec. (No. of Heats)						1

Alloy Designation: Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Plate-TIG welded, 718 Alloy filler 1.270 to 2.540 (0.500 to 1.000)

Plate annealed 1340 K (1950 F) 1 hr, AC; aged 8-10 hr 970 K (1350 F), FC to 922 K (1200 F) total aging time of 20 hr, AC; welded, tested as welded

K _t = 6.3 Min No. of Spec. (No. of Heats) 95 4 4 NTS, MN/m² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)				
Std. Deviation TYS, MN/m² (ksi) Std. Deviation Elong, percent RA, percent No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Kt = 6.3 Nin No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats)				
Std. Deviation Elong, percent Avg Min RA, percent No. of Spec. (No. of Heats) E, GN/m² (106 psi) No of Spec. (No, of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Kt = 6.3 Nin No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats)				
RA, percent No. of Spec. (No. of Heats) E, GN/m² (106 psi) No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Kt = 6.3 Min No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats)				
No. of Spec. (No. of Heats) RA, percent No. of Spec. (No. of Heats) E, GN/m² (106 psi) No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Kt = 6.3 Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats)				
No. of Spec. (No. of Heats) E, GN/m² (106 psi) No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Kt = 6.3 No. of Spec. (No. of Heats) Avg Kt = Min No. of Spec. (No. of Heats)				
Poisson's Ratio No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = 6.3 Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats)				
No. of Spec. (No. of Heats) Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = 6.3 Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats)				
Poisson's Ratio Nork Hardening Coef NTS, MN/m² (ksi) Avg Kt = 6.3 Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats)				
Nork Hardening Coef NTS, MN/m² (ksi) Avg $K_t = 6.3$ Min No. of Spec. (No. of Heats) NTS, MN/m² (ksi) Avg $K_t =$ Min No. of Spec. (No. of Heats)				
NTS, MN/m^2 (ksi) Avg $K_t = 6.3$ Min No. of Spec. (No. of Heats) 4 NTS, MN/m^2 (ksi) Avg $K_t =$ Min No. of Spec. (No. of Heats)				
Kt = 6.3 Min No. of Spec. (No. of Heats) 93 NTS, MN/m² (ksi) Avg Min No. of Spec. (No. of Heats)				
K _t = Min No. of Spec. (No. of Heats)	69.4 (140.6) 30.8 (135.0) (1)		1299 (188.4) 1245 (180.5) 6 (1)	
Tension, Transverse				
TUS, MN/m² (ksi) Avg				
Std. Deviation				
TYS, MN/m ² (ksi) Avg				
Std. Deviation			1-11-	
Elong, rercent Avg				
RA, percent Avg				
No. of Spec. (No. of Heats)				
E, GN/m ² (10 ⁶ psi) Avg				
No. of Spec. (No. of Heats)				
oisson's Ratio				
Vork Hardening Coef				
NTS, MN/m ² (ksi) Avg				
K _t = Min No. of Spec. (No. of Heats)				
NTS, MN/m ² (ksi) Avg K _t = Min				

Alloy Designation: Inconst 718 Nickel-Base Alloy

Specification: AMS-5662 B

Form: Forgings (thick section)

Thickness, cm (in.): 2.5 to 10 cm (1.0 to 4.0 in.)

Condition: Annealed 1255 K (1800 F) 45 min, AC, aged 992 K (1325 F) 8 hr, AC to 895 K (1150 F), held at 895 K (1150 F) for total aging time of 18 hr, AC

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
		,,		,,							
rus, MN/m ² (ksi) An M		(194) (186)	1350 1340	(196) (194)	1634 1617	(237) (234)	1679 1573	(244) (228)	1813 1800	(263) (261)	
Std. Deviation											
TYS, MN/m ² (ksi) And M	- 1	(167) (163)	1189 1178	(172) (171)	1296 1243	(188) (180)	1320 1270	(192) (184)	1407 1372	(204) (199)	
				_		الالا					
long, percent A	- 1	23.7 14.3		9 8		2 6.0 20.2		18.2 16).6).5	
A, percent A	-	35.4 16.8		4.6 3.5	1	4.3 8.9	3	1 1.5 8.5	16	0.2 6.3	
No. of Spec. (No. of Heats)	7	(2)	4	(1)	6	(2)	4	(1)	2	(1)	
F, GN/m ² (10 ⁶ psi) Av M No. of Spec. (No. of Heats)											
Disson's Ratio						i					
ork Hardening Coef						•			İ		
ITS, MN/m ² (ksi) Av K _t = 6.3 Mi No. of Spec. (No. of Heats)		(295) (288)	2168 2148	(314) (312)	2352 2277	(341) (330)	2392 2352	(347) (341)			
ITS, MN/m^2 (ksi) Av $K_t = M$ No. of Spec. (No. of Heats)											
ension, Transverse			1								
US, MN/m ² (ksi) At Mi Std. Deviation			1363 1344	(198) (195)	1631 1600	(236) (232)	1743 1736	(253) (252)			
YS, MN/m² (ksi) Av			1188	(172)	1287 1272	(187) (184)	1354 1333	(1 96) (193)			
Std. Deviation	n 1138	(165)	1179	(171)	1272	(104)	1330	(130)			
long, percent Av	• ;	18.5 18		22.2 20		.7.5 .5		24.5			
RA, percent Av Mi No. of Spec. (No. of Heats)		28 27.5 (1)		34.8 31 (1)		19.1 36.5 (1)		29.8 23.5 (1)			
	_										
, GN/m ² (10 ⁶ psi) Av Mi No of Spec. (No. of Heats)											
oisson's Ratio											
ork Hardening Coef											1 cal
TS, MN/m ² (ksi) Av K _t = 6.3 Mi No. of Spec. (No. of Heats)	-		2062 2056 4		2237 2216 4	(324) (321) (1)	2296 2262 4	(333) (328) (1)			
ITS, MN/m ² (ksi) Av	-										

References: 82966, 95168

Alloy Designation: Inconel 718 Nickel-Base Alloy

Specification:

AMS-5662B

Form: Forgings (thick section)
Thickness, cm (in.): 2.5 to 10 cm (1.0 to 4.0 in.)
Condition: Annealed 1255 K (1800 F) 45 min, AC, aged 992 K (1325 F) 8 hr, AC to 895 K (1150 F), held at 895 K (1150 F) for total aging time of 19 hr, AC

Testing Temperature, K	(F)	297	(75)	195	(-108)	77	(-320)	20	(-423)		
Tension, Short Transvers	e						1				
TUS, MN/m ² (ksi)	Avg Min	1289 1274	(187) (185)	1371 1354	(199) (196)	1579 1537	(229) (223)	1635 1573	(237) (228)		
Std Deviation	IVIII)	1274	(105)	1354	(190)	1557	(223)	15/3	(220)		
TYS, MN/m ² (ksi)	Avg	1144	(166)	1202	(174)	1288	(187)	1344	(195)		
Std. Deviation	Min	1124	(163)	1189	(172)	1271	(184)	1326	(192)		
long, percent	Avg	1	7		7.2		4	1	3.8		
	Min	1	4	1	3	1	2	1	1		
RA, percent	Avg Min		3 7 5		2	1	2		1.8 8	ĺ	
No. of Spec. (No. of F		4	(1)	4	(1)	4	(1)	4	(1)	Ì	
E, GN/m ² (10 ⁶ psi)	Avg										
No. of Spec, (No. of H	Min leats)				ì		Ì				
Poisson's Ratio					-						
Nork Hardening Coef											
NTS, MN/m ² (ksi)	Avg	1865	(270)	1889	(274)	2057	(298)	1968	(286)		
$K_t = 6.3$ No. of Spec. (No. of H	Min leats)	1803 4	(262) (1)	1800 4	(261) (1)	1995 4	(289) (1)	1909 4	(277) (1)		
NTS, MN/m ² (ksi)	Avg				(2)						
K _t = No. of Spec. (No. of H	Min leats)										

Alloy Designation: Inconel 718 Nickel-Base Alloy

Specification: AMS-5662 B

Form: Thickness, cm (in.):

Annesded 5 Forgings (thick section)
2.5 to 10 cm (1.0 to 4.0 in.)
Annealed 1255 K (1800 F) 45 min, AC, aged 922 K (1325 F) 8 hr, AC to 895 K (1150 F), held at 920 K (1200 F) for total aging time of 20 hr, AC Condition:

Testing emperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	_
Compression, Longitudinal												
CYS, MN/m ² (ksi)	Avg Min											
No. of Spec. (No. of Heat		}										
Ec, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of Heat	s)					ļ						
Compression, Transverse												
CYS, MN/m ² (ksi)	Avg Min											
No. of Spec. (No. of Heat		-										
Ec, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of Heat												
Shear(a)												
SUS, MN/m ² (ksi)	Avg Min											
No. of Spec. (No. of Heat	s)											
G, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of Heat	s)											
Impact, Charpy V												
Long., J(ft-lb)	Avg	85.4	(63)	66.4	(49)	66.4 54.2	(49) (40)	58.3 56.9	(43) (42)			
No. of Spec. (No. of Heat	Min (s)	82.7 4	(61) (1)	65.1	(48) (1)	4	(1)	4	(1)			
Short Transverse, J(ft-lb)	Avg	36.6	(27)	23.7 21.7	(17.5) (16)	28.5 19.0	(21) (14)	40.7 35.2	(30) (26)			
No. of Spec. (No. of Heat	Min (s)	35.2 5	(26)	4	(1)	5	(1)	4	(1)			
Fracture Toughness(b)												
K _{Ic} MN/m ^{3/2} (ksi√ in.)	Avg Min	96.3 91.5	(87.8) (83.4)	106 100	(95.6) (91.2)	103.2 96.5	(94) (88.0)			112.3 104	(1 02.3) (94.8)	
Orientation: T — S No. of Spec. (No. of Heat	(2:	3	(1)	2	(1)	3	(1)			3	(1)	
K _{1E} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(— No. of Spec. (No. of Heat	Avg)Min											

References: 82966, 95168

3 6 7

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1C} data: CT

Inconel 718 Nickel-Base Alloy Alloy Designation:

Specification: AMS-5664 A

Form: Thickness, cm (in.): Condition:

Forgings (thick section)
2.5 to 10 cm (1.0 to 4.0 in.)
Annealed 1340 K (1950 F) 1 hr, AC, aged 1034 K (1400 F) 10 hr, FC to 920 K (1200 F), held at 920 K (1200 F) for total aging time of 20 hr, AC

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)		
Tension, Longitudinal		4055	1.05	45=			10:				
TUS, MN/m ² (ksi) Std Deviation	Avg Min		(190) (181)	1371 1366	(199) (198)	1640 1627	(238) (236)	1695 1627	(246) (236)		
TYS, MN/m ² (k ··)	Avg Min		(151) (144)	1132 1130	(164) (164)	1212 1200	(176) (174)	1338 1249	(194) (181)		
Std. Deviation		07	41		7.0				.		
Elong, percent	Avg Min	27 .		E .	2 7.2 26		1.8 7	1	5.6 3		
RA, percent	Avg Min	41 . 36	.7		4.1		6.4 0.5		5.8 2 7		
No of Spec. (No. of Hea			(2)	4	(1)	4	(1)	7	(2)		
E, GN/m ² (10 ⁶ psi) No. of Spec. (No. of Hea	Avg Min ats)										
oisson's Ratio				i							
Vork Hardening Coef											
NTS, MN/m^2 (ksi) $K_t = 6.3$ No. of Spec. (No. of Hea	Avg Min	1800	(275) (261) (2)	2063 2036 4	(299) (295) (1)	2276 2246 4	(330) (326) (1)	2295 2223	(333) (322) (2)	1.	
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min										
Tension, Transverse							(0.00)				
TUS, MN/m ² (ksi) Std. Deviation	Avg Mir		(184) (183)	1360 1355	(197) (196)	1622 1613	(235) (234)	1672 1523	(2 42) (221)		
YS, MN/m ² (ksi)	Avg	1009	(146)	1139	(165)	1229	(178)	1277	(185)		
Std. Deviation	Min		(145)	1125	(163)	1222	(177)	1270	(184)		
long, percent	Avg Min	23 . 18.			9.2 0		6.2 3		2.2 8		
RA, percent	Avg	30 . 22	5	2 2	2.2		6.1 4.5		5.0 0.5		
No. of Spec. (No. of Hea	Min ets)		(1)	4	(1)	4	(1)	4	(1)		
, GN/m ² (10 ⁶ psi)	Avg										
No. of Spec. (No. of Hea									Ē		
oisson's Ratio											
Vork Hardening Coef	A	1975	(26E)	1061	(284)	2167	(314)	2206	(320)		
ITS, MN/m ² (ksi) K _t = 6.3 No. of Spec. (No. of Hea	Avg Min its)	1757	(265) (255) (1)	1961 1933 4	(284) (280) (1)	2167 2089 4	(303)	2153	(312) (1)		
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min										

Alloy Designation:

Inconel 718 Nickel-Base Alloy

Specification:

Form:

Thickness, cm (in.): Condition:

Forgings (thick section)
Over 10 cm (4.0 in)
Solution treated 1225 K (1800 F) 1 hr, AC; aged 992 K (1325 F) 8 hr, FC to 895 K (1150 F) 8 hr, AC

Testing Temperature, k ir	-)	297 (75)		77 (-320)	4 (-452)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	1347 (195.4)		1640 (237.8)	1670 (242,2)
Std. Deviation	Min		;		
TYS, MN/m ² (ksi)	Avg Min	1164 (168.8)		1344 (194.9)	1406 (203.9)
Std. Deviation	IVIIII				
Elong, percent	Avg Min	12.0		10.1	9.4
RA, percent	Avg Min	14.8		9.1	10.0
No. of Spec. (No. of He		1		1	1
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of He					
oisson's Ratio					
York Hardening Coef					
ITS, MN/m ² (ksi)	Avg	1749 (253.6)		1876 (272.1)	1927 (279.5)
K _t = 10 No. of Spec. (No. of He	Min	1		1	
iTS, MN/m² (ksi)	Avg				
Kt = No. of Spec. (No. of He	Min eats)				
ension, Transverse					
TUS, MN/m ² (ksi)	Avg				
Std. Deviation	Min				
YS, MN/m ² (ksi)	Avg				
Std. Deviation	Min				-
Elong, percent	Avg				
	Min				
RA, percent	Avg Min				
No. of Spec. (No. of He					
E, GN/m ² (10 ⁶ psi)	Ayg Min				
No. of Spec. (No. of He					
oisson's Ratio				1910	
Vork Hardening Coef					
ITS, MN/m ² (ksi)	Avg				
K _t = No. of Spec. (No. of He	Min eats)	- 13			
ITS, MN/m ² (ksi)	Avg			}	
K _t = No. of Spec. (No. of He	Min				

Alloy Designation:

inconel 718 Nickel-Base Alloy

Specification:

Form:

Forgings (thick section) Over 10 (4.0)

Thickness, cm (in.):

Condition:

Soltuion treated 1255 K (1800 F) 1 hr, AC; aged 922 k (1325 F) 8 hr, FC to 895 K (1150 F) 8 hr, AC

Testing Temperature, K (F)	297 (75)		4 (452)
Compression, Longitudiral			
CYS, MN/m ² (ksi)	Avg Min		
No. of Spec. (No. or Hear	ts)		
Ec, GN/m ² (10 ⁶ psi)	Avg Min		
No. of Spec. (No. of Hear	ts)		
Compression, Transverse			
CYS, MN/m ² (ksi)	Avg Min		
No. of Spec. (No. of Hear			
Ec. GN/m ² (10 ⁶ psi)	Avg Min		
No. of Spec. (No. of Hea			
Shear(a)			
SUS, MN/m ² (ksi)	Avg Min		
No. of Spec. (No. of Hea	ts)		
G, GN/m ² (10 ⁶ psi)	Avg Min		
No. of Spec. (No. of Hear	ts)		
Impact, Charpy V			
Long., Nm(ft-lb)	Avg Min		
No. of Spec. (No. of Hea	ts)		
Trans., Nm(ft-lb)	Avg Min		
No. of Spec. (No. of Hea			
Fracture Toughness(b)			
J _{Ic} MN/m (inlb/in. ²)	Avg Min 0.021 (120)		0.027 (152)
Orientation: — No. of Spec. (No. of Hea	ts) 1		1
	13/		
K _{IE} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(—	Avg)Min		
No. of Spec. (No. of Hea			

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1c} data:

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weid Metal)

Specification:

Form:

Forgings (thick section), TIG welded, Alloy 718 filler

Over 10 (4.0)

Thickness, cm (in.): Condition:

Soltuion treated 1255 K (1800 F) 1 hr, AC; welded, weldment solution treated 1265 K (1800 F) 1 hr, AC; aged 992 K (1325 F) 8 hr, FC to 895 K (1150 F) 8 hr, AC; tested as aged

Testing Temperature, K (F	=}	297 (75)	}	77 (-320)	 4 (-452)
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg	1259 (182.6)		1436 (208.2)	1651 (239.4)
Std. Deviation	Min				
TYS, MN/m ² (ksi)	Avg Min	1094 (158.6)		1281 (185.8)	1273 (184.6)
Std. Deviation			П		
Elong, percent	Avg Min	1.7		1.8	28.2
RA, percent	Avg Min	5.7		4.3	33.5
No. of Spec. (No. of He		1		1	1
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of He	eats)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = 10	Avg Min	1391 (201.8)		1470 (213.2)	2282 (330.9)
No. of Spec. (No. of He	eats)	1			
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min				
Tension, Transverse	2007				
TUS, MN/m ² (ksi)	Avg				
Std. Deviation	Min				
TYS, MN/m² (ksi)	Avg Min				
Std. Deviation					Ì
Elong, percent	Avg Min		11 1		
RA, percent	Avg				
No. of Spec. (No. of He	Min		1		
E, GN/m ² (10 ⁶ psi)	Avg				
	Min				
No. of Spec. (No. of He	2015)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t =	Avg Min				
No. of Spec. (No. of He					
NTS, MN/m ² (ksi)	Avg				
K _t = No of Spec. (No. of He	Min eats)				

Alloy Designation:

Inconel 718 Nickel-Base Alloy (Weld Metal)

Specification:

Form:

Forgings (thick section) -TIG welded, Alloy 718 filler Over 10 (4.0)

Thickness, cm (in.): Condition:

Solution treated 1255 K (1800 F) 1 hr, AC; welded, weldment solution treated 1255 K (1800 F), 1 hr, AC; aged 922 K (1325 F) 8 hr, FC to 895 K (1150 F) 8 hr, AC; tested as aged

Testing Temperature, K (F)	297 (75)		77 (-320)	4 (-452)
Compression, Longitudinal				
CYS, MN/m ² (ksi) Av				
No. of Spec. (No. of Heats)				
Ec, GN /m ² (10 ⁶ psi) Av Mi	· 1			
No. of Spec. (No. of Heats)				
Compression, Transverse				
CYS, MN/m² (ksi) Av	- 1			
No. of Spec. (No. of Heats)				
Ec, GN/m ² (10 ⁶ psi) Av Mi				
No. of Spec. (No. of Heats)				
Shear(a)				
SUS, MN/m ² (ksi) Av Mi	-			
No. of Spec. (No. of Heats)				}
G, GN/m ² (10 ⁶ psi) Av Mi	- 1			
No. of Spec. (No. of Heats)				}
Impact, Charpy V		Ì		
Long., Nm(ft-lb) Av	- 1			
No. of Spec. (No. of Heats)				
Trans., Nm(ft-lb) Av	- 1	11		
No. of Spec. (No. of Heats)				
Fracture Toughness(b)				
K _{Ic} MN/m ^{3/2} (ksi√in.) Av Mi	- 1		51.5 (46.5)	52,1 (47,1)
Orientation: — No. of Spec. (No. of Heats)		П		
KIE, MN/m3/2(ksi/in.) Av				
(From PTSC spec.)(—)Mi No. of Spec. (No. of Heats)				

References: 95168

1 4: :

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for $K_{\rm IC}$ data:

FIGURE 6.2.3-ME3. AXIAL FATIGUE LIFE CURVES FOR LOADING ON SPECIMENS OF SOLUTION TREATED INCONEL 718 NICKEL ALLOY SHEET 0.25 cm (0.100 in.) THICK [61996]

6.2.3-18.2 (11/76)

FIGURE 6.2.3-ME4. AXIAL FATIGUE LIFE CURVES FOR LOADING ON SPECIMENS OF INCONEL 718 SHEET ANNEALED, TIG WELDED (718 ALLOY FILLER), AND TESTED AS WELDED [61996]

FIGURE 6.2.3-ME5. FATIGUE CRACK GROWTH RATE OF WELDED AND UNWELDED INCONEL 718 NICKEL-BASE ALLOY PLATE [Plate solution treated 1228 K (1750 F) ½ hr, AC; welded, weldment aged at 992 K (1325 F) 8 hr, FC to 895 K (1150 F), AC; tested as aged, unwelded plate aged by same treatment] [90717]

FIGURE 6.2.3-ME6. AXIAL FATIGUE LIFE CURVES FOR LOADING ON SPECIMENS OF NOTCHED AND UNNOTCHED INCONEL 718 BAR, 1.270 cm (0.500 in.) DIAMETER [Heat treatment: solution treated, then aged 922 K (1324 F) 8 hr, FC 2 hr 895 K (1150 F) 8 hr, AC] [95168]

FIGURE 6.2.3-ME7. FATIGUE CRACK GROWTH RATE IN LARGE FORGINGS [2 to 10 cm (1 to 4 in.) DIAMETER] OF INCONEL 718 NICKEL-BASE ALLOY [Heat treatment: solution treated 1255 K (1800 F) 3/4 hr, AC; aged 992 K (1325 F) 8 hr, FC to 895 K (1150 F) 10 hr, AC]

FIGURE 6.2.3-ME8. FATIGUE CRACK GROWTH RATE IN LARGE FORGINGS [OVER 10 cm (4 in.) DIAMETER] OF INCONEL 718 NICKEL-BASE ALLOY [Heat treatment: solution treated 1255 K (1800 F) 1 hr, AC; aged 992 K (1325 F) 8 hr, FC to 895 K (1150 F) 8 hr, AC]

TABLE 6.2.3-TR1

Alloy Designation:

Inconel 718 Nickel Alloy

N07718

Specification:

Dimension:

Condition: Annealed except as noted below

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹ No. of Spec. References: 82097, 77044	9.3	(5.38)	7.0 2	(4.05)	5.3	(3.06)	2.95	(1.71)	1.48	(0.856)		
Watts m ⁻¹ K ⁻¹ (1) Btu hr ⁻¹ ft ⁻¹ F-1 No. of Spec. References: 96885	10.9	(6.30)	7.09	(4.10)	5.05	(2.92)	2.40	(1.39)	1.08	(0.624)		
Thermal Expansion (T ₂₇₃ to T) Longitudine! (T)		3										
Percent No. of Spec. References: 74405 , 70525 , 94208	0 3		- 3.183 3		-0.208 2		-0.213 2		-0.213 2		-0.213 2	
Specific Heat Joules kg-1 K-1 Btu Ib-1 F-1 No. of Spec. References:												
Electrical Resistivity												
Ohm m Ohm circular mil ft ⁻¹ No. of Spec. References: 79561, 82097, 90164, 77044, 94206	125 x	10 ⁻⁸ (752)	120 x 1	0 ⁻⁸ (722)	119 x 1	0 ⁻⁸ (716)	118 x 1	10 ⁻⁸ (710)	118 x 1	0 ⁻⁸ (710)	118 x 10	0 ⁻⁸ (710)
Ohm m ⁽¹⁾ Ohm circular mil ft ⁻¹ No. of Spec. References: 96885	1.14 x 1	10 ⁻⁸ (686)	1.09 x 1	0-8 (656)	1.08 × 1	0-8 (650)	1.08 x 1	(650)	1.08 x 1	0-8 (650)		

Magnetothermal Conductivity
Watts m-1 K-1 H H Tesla 0 Watts m⁻¹ K⁻¹ Btu hr⁻¹ ft⁻¹ F⁻¹ Watts m⁻¹ K⁻¹ Btu hr⁻¹ ft⁻¹ F⁻¹ No. of Spec. References: 94208

1.15 (0.664)

1.19 (0.636)

(1) Age Hardened

4224

FIGURE 6.2.3-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR INCONEL 718 NICKEL ALLOY
6.2.3-20 (11/74)

Alloy Designation: Inconel 718

Specification: IN 718 STDA

Form: Rod

Dimension, cm(in.): Not given

Condition: STDA: solution treated, double aged

Peak induction, Bs,

at 4.2K: 0.1335T (tesla)

Curie TEmperature: ~130K (-225 F)

MAGNETIC MOMENT AS A FUNCTION OF EXTERNAL FIELD AT LOW TEMPERATURES

MAGNETIC MOMENT AS A FUNCTION OF EXTERNAL FIELD

Reference: 94206

1245

Alloy Designation:

Inconel 718 Nickel-Base Alloy

Specification:

Form:

Rod

Diameter, cm (in.):

0.37 (0.145)

Condition:

Solution annealed

Test Temperature:

4.2 K (-452 F)

FIGURE 6.2.3-MA2. MAGNETIZATION VERSUS APPLIED MAGNETIC FIELD FOR INCONEL 718 NICKEL-BASE ALLOY [96871]

Alloy Designation:

Inconel 706 Nickel-Ease Alfoy

Specification:

Form:

Thickness, cm (in.): Condition:

Forging
Over 5.080 (2.000)
Solution treated 1256 K (1800 F) 1 hr, AC, aged 1006 K (1350 F) 8 hr, FC to 895 K (1150 F) 8 hr, AC

Testing Temperature, K (F)	297 (75)	77 (-320)	4 (-452)
Tension, Longitudinal			
TUS, MN/m ² (ksi) Av		1574 (228.3)	1673 (242.7)
Std. Deviation			
TYS, MN/m ² (ksi) Av		1203 (174.5)	1250 (181.3)
Std. Deviation			
Elong, percent Av	-	28.7	30,2
RA, percent Av	- 1	33.3	33.3
No. of Spec. (No. of Heats)	2 (2)	2 (2)	2 (2)
E, GN/m ² (10 ⁶ psi) Av Mi No. of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m² (ksi) Av	1876 (272.1)	2176 (315.4)	2250 (326.3)
Kt = 10 Mi No. of Spec. (No. of Heats)	2 (2)	2 (2)	2 (2)
NTS, MN/m^2 (ksi) Av $K_t = Mi$ No. of Spec. (No. of Heats)			
Tension, Transverse			
TUS, MN/m² (ksi) Av			
Std. Deviation			
FYS, MN/m ² (ksi) Av Mi			
Std. Deviation			
Elong, percent Av			
AA, percent Av			
No. of Spec. (No. of Heats)			
E, GN/m ² (10 ⁶ psi) Av Mii			
No. of Spec. (No. of Heats)			
Poisson's Ratio			
Vork Hardening Coef			
NTS, MN/m ² (ksi) Av K _t = Mil No. of Spec. (No. of Heats)			
NTS, MN/m ² (ksi) Av K _t = Min No of Spec. (No. of Heats)			

Alloy Designation:

Inconel 706 Nickel-Base Alloy

Specification:

Thickness, cm (in.):

Forging Over 5.080 (2.000)

Condition:

Solution treated 1255 K (1800 F) 1 hr, AC; aged 1006 K (1350 F) 8 hr, FC to 895 K (1150 F), AC

Testing Temperature, K (F)		297 (75)			4 (-452)
Compression, Longitudinal					
CYS, MN/m ² (ksi)	Avg Min				
No. of Spec. (No. of Heats					
Ec, GN/m ² (10 ⁶ psi)	Avg Min	111			
No. of Spec. (No. of Heats					
Compression, Transverse					
CYS, MN/m ² (ksi)	Avg Min				
No. of Spec. (No. of Heats	s)				
Ec, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Heats					
Shear(a)					
SUS, MN/m ² (ksi)	Avg Min				
No. of Spec. (No. of Heats	s)				
G, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Heats					
Impact, Charpy V					
Long., Nm(ft-lb)	Avg Min				
No. of Spec. (No. of Heat					
Trans., Nm(ft-lb)	Avg Min				
No. of Spec. (No. of Heat				_	
Fracture Toughness(b)					
J _{Ic} MN/m (inlb/in. ²)	Avg 0 Min	.064 (364)			0.106 (607)
Orientation: — No. of Spec. (No. of Heat	s) 2	(1)			2 (1)
K _{IE} , MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(— No. of Spec. (No. of Heat	Avg)Min				

⁽a) Indicate specimen design and orientation for sheer specimens: (b) Indicate specimen design for K_{IC} data:

TABLE 6,2.4-ME3

Alloy Designation:

Inconel 706 Nickel-Bass Alloy (Weld Metal)

Specification:

Form:

Forging-TIG welded, Alloy 718 filler Over 5.080 (2.000)

Thickness, cm (in.): Condition:

Solution treated 1255 K (1800 F) 1 hr, AC; welded, weldment soltuion treated 1255 K (1800 F) 1 hr, AC; aged 1006 K (1350 F) 8 hr, FC to 895 K (1150 F) 8 hr, AC; tested as aged

Testing Temperature, K (F)		297 (75)		77 (-320)	4 (-452)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg Min	1111 (161.2)		1295 (187.8)	1370 (198.7)
Std. Deviation	14(11)				
TYS, MM/m ² (ksi) Std Deviation	Avg Min	1000 (145.0)		1174 (170.3)	1222 (177.2)
Glong, percent	Avg Min	1.7		3.8	4.0
RA, percent	Avg	5.4	100	4.4	5.7
No. of Spec. (No. of Hea	Min ts)	1		1	1
E, GN/m ² (10 ⁶ psi)	Avg				
No. of Spec. (No. of Hea					
oisson's Ratio					
Vork Hardening Coef					
NTS, MN/m^2 (ksi) $K_t = 10$ No. of Spec. (No. of Heat	Avg Min	1 627 (236.0)		1757 (254.8)	1884 (273.2
NTS, MN/m ² (ksi) $K_t =$ No. of Spec. (No. of Heat	Awg Min ts)				
Tension, Transverse					
Std. Deviation	Avg Min				
'YS, MN/m ² (ksi)	Avg				
Std. Deviation	Min				=
Elong, percent	Avg Min			= =	
RA, percent	Avg Min				
No of Spec. (No. of Heat					
, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Heat					
oisson's Ratio					
fork Hardening Coef					
ITS, MN/m² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min				
ITS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min				

References: 95168

4:8<

Alloy Designation:

Inconel 706 Nickel-Base Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.):

Condition:

Forging-TIG welded, Alloy 718 filler
Over 5.080 (2.000)
Solution treated 1255 K (1800 F) 1 hr, AC; welded, weldment solution treated 1255 K (1800 F) 1 hr, AC; aged 1056 K (1350 F) 8 hr, FC to 895 K (1150 F), AC, tested as aged

Compression, Longitudinal CYS, MN/m² (ksi) No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats) Avg Min No. of Spec. (No. of Heats)					
No. of Spec. (No. of Heats) Ec, GN/m ² (10 ⁶ psi) Avg Min					
Ec, GN/m ² (10 ⁶ psi) Avg Min					
Min	_				
No. of Spec. (No. of Heats)					
			1		
Compression, Transverse			1		
CYS, MN/m ² (ksi) Avg Min					
No. of Spec. (No. of Heats)					
Ec, GN/m ² (10 ⁶ psi) Avg Min					
No. of Spec. (No. of Heats)					
Shear(a)					
SUS, MN/m ² (ksi) Avg Min					
No. of Spec. (No. of Heats)					
G, GN/m ² (10 ⁶ psi) Avg Min					
No. of Spec. (No. of Heats)	ļ				
mpact, Charpy V					
Long., Nm(ft-lb) Avg					
No. of Spec. (No. of Heats)		-			
Frans., Nm(ft-lb) Avg					
No. of Spec. (No. of Heats)					
racture Toughness(b)				=	
(_{Ic} MN/m ^{3/2} (ksi√in.) Avg Min					58,7 (53,0
Orientation: — No. of Spec. (No. of Heats)					(1)
(_{IE} , MN/m ^{3/2} (ksi√in.) Avg					
(From PTSC spec.)(-)Min No. of Spec. (No. of Heats)					

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for $K_{1\text{C}}$ data:

FIGURE 6.2.4-ME1. FATIGUE CRACK GROWTH RATE IN FORGINGS [OVER 5.080 cm (2.000 in.) DIAMETER] OF INCONEL 706 NICKEL-BASE ALLOY [Heat treatment: solution treated 1255 K (1800 F) 1 hr, AC, aged 1006 K (1350 F) 8 hr, FC to 895 K (1150 F) 8 hr, AC] [95168]

TABLE 6.2.4-TR1

Alloy Designation:

Inconel 706 Nickel Alloy

Specification: Form: Dimension: Condition:

Solution trested and double aged

Testing Temperature K (F)	273	(32)	100 (-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity											
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F-1 No. of Spec. References:											
Thermal Expansion (T ₂₇₃ to T) Longitudinal											
Percent	0		-0.194	-0.220		-0.227		-0.228			
No. of Spec. References: 95168	2		2	2		2		2			
Specific Heat											
Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹	470	(0.442)	245	100*	39 x 10 ⁻²)	9.60	(2.20 x 10 ⁻³)	3.70	3.84 x 10 ⁻⁴)	1.52	(3.63 x 10 ⁻⁴
No. of Spec.	2	(0.112)	(5.86 x 10 ⁻²)	0 12.	39 X 10 -	2	(2.20 X 10 °)	2 "	3,04 X IU 1/	2	(3.03 X 10 ·
References: 95168, 96888	-									_	
Electrical Resistivity											
Ohm m				i		l					
Ohm circular mil ft-1											
No. of Spec. References:						}					
* Extrapolated.				i							

FIGURE 6.2.4-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR INCONEL 706 NICKEL ALLOY

FIGURE 6.2.4-S1. SPECIFIC HEAT VERSUS TEMPERATURE FOR INCONEL 706 NICKEL ALLOY
6.2.4-8 (11/76)

TABLE 6.3.1-ME0.1

Alloy Designation:

Invar 36 Controlled Expension Alloy (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Plate-TIG welded, Invar 36 filler 1.270 to 2.540 (0.500 to 1.000) Plate welded and tested as welded

	ļ				
	Ì				
				_	
(70)	50 (3)	7)	38 (28)		
	1		1		
		İ			
				= ,	
	(70)				

⁽a) Indicate specimen design and orientation for sheer specimens: (b) Indicate specimen design for $K_{\rm IC}$ data:

TABLE 6,3.1-ME0.2

Alloy Designation:

Invar 36 Controlled Expansion Alloy (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition:

Plate-TIG welded, Invar 36 filler 1.270 to 2.540 (0.500 to 1.000)
Plate welded, weldment stress relieved 922 K (1200 F) 1½ hr, AC; tested as stress relieved

Testing Temperature, K (F)		297 (75)	155	(-108)		77	(-320)		
Compression, Longitudinal										
CYS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of Heat										
Ec, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of Heat	s)					4,				
Compression, Transverse				}						
CYS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of Heat	s)			1						
Ec, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of Heat	s)	4		1						
Shear(a)				ļ						
SUS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of Heat	s)			1						
G, GN/m ² (10 ⁶ psi)	Avg Min	}				}	}			
No. of Spec. (No. of Heat	s)			ļ			•			
Impact, Charpy V										
Long., Nm(t-lb)	Avg Min	104	77)	56	(41)		39	(29)		
No. of Spec. (No. of Heat	s)	1		1			1			
Trans., Nm(ft-lb)	Avg Min									
No. of Spec. (No. of Heat										
Fracture Toughness(b)										
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min									
Orientation: — No. of Spec. (No. of Heat	s)									
KIE, MN/m3/2(ksi/jin.) (From PTSC spec.)(-	Avg)Min									
No. of Sper (No. of Heat										

⁽a) Indicate specimen design and orientation for sheer specimens: (b) Indicate specimen design for K_{IC} data:

Alloy Designation:

Inco Low-Expansion Alloy (unnamed)

Specification:

Thickness, cm (in.): Condition:

Plate 0.635 to 1.269 (0.250 to 0.499) Annealed

Testing Temperature, K (F)	297 (75)	77 (-320)			
ension, Longitudinal					
2	Avg				
	Min				
Std. Deviation					
	Avg				
Std. Deviation	Min				
ota. Deviation				1	
	Avg	1 1	į .		
	Min	1			
	Avg				
No. of Spec. (No. of Heats)	Min		İ		
	Avg Min				
No. of Spec. (No. of Heats)					
oisson's Ratio					
Vork Hardening Coef					
ITS, MN/m² (ksi)	Avg				
K _t =	Min				
No. of Spec. (No. of Heats)					
ITS, MN/m ² (ksi)	Avg				
	Min				
No. of Spec. (No. of Heats)					
ension, i ransverse	,				
'US, MN/m ² (ksi)	Avg 627 (91)	993 (144)			
Std Deviation	Min 621 (90)	972 (141)			
	Avg 359 (57) Min 352 (51)	655 (95) 655 (95)			
Std. Deviation	332 (31)	000 (00)	1		
long percent	0.00	37			1
• • •	Avg 44 Min 43	32			
	Avg Min				
No. of Spec. (No. of Heats)	2	2			
, GN/m ² (10 ⁶ psi)	Avg			1.	
	Min				
No. of Spec. (No. of Heats)					
oisson's Ratio					
fork Hardening Coef					
		was s			
	Avg 476 (69) Min 448 (65)	876 (127) 848 (123)			100
K _t = 20 No. of Spec. (No. of Heats)	2	2			1
				- V4	
	Avg Min				1
No. of Spec. (No. of Heats)					
				.1	65

Alloy Designation:

Inco Low-Expansion Alloy (unnamed)

Specification:

Form: Thickness, cm (in.):

Plate 0.635 to 1.269 (0.250 to 0.499)

Condition:

Annealed

Testing Temperature, K (F)	297 (75)	77 (-320)				
Compression, Longitudina				4			
CYS, MN/m ² (ksi)	Avg Min		14				
No. of Spec. (No. of H							
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of H	eats)					1	-
Compression, Transverse						1 =	
CYS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of H							
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of H	eats)						
Shear(a)			}				
SUS, MN/m ² (ksi)	Avg Min			:			
No. of Spec. (No. of H	eats)		j				
G, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of H	eats)						
Impact, Charpy V*							
Long., Nm(ft-lb)	Avg Min	81.4 (60) 77.3 (57)	60.0 (44)				
No. of Spec. (No. of H		2	1				
Trans., Nm(ft-lb)	Avg Min						
No. of Spec. (No. of H							
Fracture Toughness(b)					March 1		
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min						
Orientation. — No. of Spec. (No. of H							
K _{IE} , MN/m3/2(ksi√in.) (From PTSC spec.)(No. of Spec. (No. of H	Avg -)Min						

References: 65184

(a) Indicate specimen design and orientation for sheer specimens:
(b) Indicate specimen design for K_{IC} data:

* Half-size specimens

437<

Alloy Designation:

Inco Low-Expansion Alloy (unnamed)

Specification:

Form:

Plete

Thickness, cm (in.): Condition:

0.635 to 1.269 (0.250 to 0.499)

Annealed + Aged 922-936 K (1200-1225 F) 8-16 hr.

Testing Temperature, K (F)	297 (75)	77 (-320)				
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg						
Std. Deviation	Min						
TYS, MN/m ² (ksi)	Avg						
	Min						Ì
Std. Deviation							
Elong, percent	Avg						
	Min						
RA, percent	Avg Min						
No. of Spec. (No. of H							
E, GN/m ² (10 ⁶ psi)	Avg						
No. of Spec. (No. of H	Min						
	W(3)						
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi)	Avg						
K _t = No. of Spec. (No. of H	Min eate)						# I
					Ì		
NTS, MN/m ² (ksi) K _t =	Avg Min						
No. of Spec. (No. of H							
Tension, Transverse							
TUS, MN/m ² (ksi)	Avg	1138 (165)	1558 (226) 1531 (222)				
Std Deviation	Min	951 (138)	1551 (222)				
TYS, MN/m ² (ksi)	Avg	910 (132)	1213 (176)				
	Min	834 (121)	1165 (169)				
Std. Deviation							
Elong, percent	Avg Min	20 16	20 11				
440		10					
RA, percent	Avg Min						
No. of Spec. (No. of He		6	6				
E, GN/m ² (10 ⁶ psi)	Avg						
No. of Spec. (No. of He	Min : eats)						
					1 =		
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi)	Avg	1138 (165)	1365 (198)				
K _t = 20 No. of Spec. (No. of He	Min eats)	1082 (157) 6	1310 (190)				
NTS, MN/m² (ksi)	Avg						
K _t =	Min						
No. of Spec. (No. of He	eats)			1	1	1 1	1

Alloy Designation:

Inco Low-Expansion Alloy (unnamed)

Specification:

Form:

Thickness, cm (in.):

0.635 to 1.269 (0.250 to 0.499)

Condition:

Annealed + Aged 922-936 K (1200-1225 F) 8-16 hr.

Testing Temperature, K (F	=)	297 (75)	77 (-320)	20 (-423)		
Compression, Longitudinal						
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of He	eats)					
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He	eats)					
Compression, Transverse						
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of He	eats)					
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He	eats)					
Shear(a)					8	
SUS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of He	eats)					
G, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He	eats)					
Impact, Charpy V*						
Long., Nm(ft-lb)	Avg	24.0 (17.7)	15.9 (11.7)	16.3 (12)		
No. of Spec. (No. of He	Min eats)	16.3 (12) 10	14.9 (11) 6	14.9 (11) 4		
Trans., Nm(ft-lb)	Avg Min					
No. of Spec. (No. of He	eats)					
Fracture Toughness(b)	1					
K _{J¢} MN/m ^{3/2} (ksì√ in.)	Avg Min					
Orientation: — No. of Spec. (No. of Hi	cats)					
K _{IE} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(-	Avg					
(From PTSC spec.)(- No. of Spec. (No. of He						

⁽a) Indicate specimen design and orientation for sheer specimens:
(b) Indicate specimen design for K₁₆ data:

^{*} Half-size specimens

Alloy Designation:

Inco Low-Expansion Alloy (unnamed)

Specification:

Form:

Thickness, cm (in.):

Condition:

Plate 0.635 to 1.269 (0.250 to 0.499) Annealed 1255 K (1800 F) 0.5 hr., AC + aged 950-964 K (1250-1275 F) 4 hr.

Testing Temperature, K (F)]	297 (75)	77 (-320)					
Tension, Longitudinal								
TUS, MN/m ² (ksi)	Avg Min							
Std. Deviation	.,,,,,,							
TYS, MN/m ² (ksi)	Avg							
Std. Deviation	Min							
Elong, percent	Avg							
	Min							
RA, percent	Avg							
No. of Spec. (No. of Hea	Min (ts)							
	1							
E, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of Hea								
Poisson's Ratio								
Work Hardening Coef								III
NTS, MN/m ² (ksi)	Avg							
K _t =	Min							
No. of Spec. (No. of Hea	tsi					- 1		
NTS, MN/m ² (ksi)	Avg							
K _t = No. of Spec. (No. of Hea	Min ts)							
Tension, Transverse								
TUS, MN/m ² (ksi)	Avg	1062 (154)	1434 (208)		1			
Std. Deviation	Min	1048 (152)	1393 (202)					
				ļ		-		
TYS, MN/m ² (ksi)	Avg Min	814 (118) 800 (116)	1117 (162) 1103 (160)			[
Std. Deviation	IVIIII	300 (110)	1103 (100)					
Flong, percent	Avg	24	21					
r long, percent	Min	22	14		1 1	ш		
RA, percent	Avg							
No. of Spec. (No. of Hea	Min	2	2					
		2	4					
E, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of Hear								
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m² (ksi)	Avg	1027 (149)	1282 (186)					
Kt = 20	Min	1020 (148)	1276 (185) 2	1			35 1.	
No. of Spec. (No. of Hear	(5)	2	2					
NTS, MN/m ² (ksi)	Avg					1		
K _t = No. of Spec. (No. of Hear	Min							

Alloy Designation:

Inco Low-Expansion Alloy (unnamed)

Specification:

Plate

Form: Thickness, cm (in.):

Condition:

0.635 to 1.269 (0.250 to 0.499) Annealed 1255 K (1800 F) 0.5 hr., AC + aged 950-964 K (1250-1275 F) 4hr.

Testing Temperature, K (F)	297 (75)	77 (-320)	20 (-423)		
Compression, Longitudina	d					
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of H	eats)					
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of H	eats)					
Compression, Transverse	1					
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of H						
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of H	eats)		:			
Shear(a)						
SUS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of H	eats)					
G, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of H	eats)					
Impact, Charpy V*						
Long., Nm(ft-lb)	Avg Min	28.5 (21) 27.1 (20)	20.3 (15) 19.0 (14)	20.3 (15) 20.3 (15)		
No. of Spec. (No. of H		4	2	2		
Trans., Nm(ft-lb)	Avg Min				=	
No. of Spec. (No. of H						
Fracture Toughness(b)						
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min					
Orientation: -						
No. of Spec. (No. of H	eats)					
KIE, MN/m3/2(ksi/in.) (From PTSC spec.)(Avg)Min					
No. of Spec. (No. of H						

References: 65184

4414

⁽a) Indicate specimen design and orientation for shear specimens:
(b) Indicate specimen design for K_{IC} data:

^{*} Half-size specimens

Alloy Designation:

Inco Low-Expansion Alloy (unnamed)

Specification:

Form:

Plate Over 5.080 (2.000) Thickness, cm (ir..): Condition:

Solution treated 1255 K (1300 F) 1 hr., AC; aged 936 K (1225 F) 8 hr., AC

Testing Temperature, K (F)		297 (75)	77 (-320)	4 (-452)			
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg Min	314.4 (145.6)	1317 (191.0)	1339 (194.2)			
Std. Deviation							
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	918.4 (133.2)	1207 (175.0)	1282 (185.9)		11	
Elong, percent	Avg Min	1.0	1.9	0.7			
RA, percent	Avg Min	6.0	3.5	3.8	1 _		
No. of Spec. (No. of Hea							
E, GN/m ² (10 ⁶ psi)	Avg Min			h	-		
No. of Spec. (No. of Hea							
Poisson's Patio							
Work Hardening Coef							
NTS, MN/m ² (ksi) K _t =	Avg Min	1368 (198.4)	1641 (238.0)	1615 (234.3)			
No. of Spec. (No. of Hea	its)	Į.					
NTS, MN/m ² (ksi) $K_t =$ No. of Spec. (No. of Hea	Avg Min		11				
Tension, Transverse							
TUS, MN/m ² (ksi) Std. Deviation	Avg Min						
TYS, MN/m ² (ksi)	•						
	Avg Min						
Std. Deviation							
Elong, percent	Avg Min						
RA, percent	Avg Min						
No. of Spec. (No. of Hea							
E, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of Hea							
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min						

Alloy Designation:

Inco Low Expansion Alloy (Unnamed)

Specification:

Form:

Thickness, cm (in.):

Plate Over 5.080 (2.000)

Condition: Solution treated 1255 K (1800 F) 1 hr, AC; aged 936 K (1225 F) 8 hr, AC

Testing Temperature, K (F)	297 (75)				 4 (-452)
Compression, Longitudinal					
CYS, MN/m ² (ksi) Av	- 1		b L I		
No. of Spec. (No. of Heats)					
Ec, GN/m ² (10 ⁶ pei) Av	- 1				
No. of Spec. (No. of Heats)					
Compression, Transverse					
CYS, MN/m ² (ksi) Av Mi	•				
No. of Spec. (No. of Heats)					
Ec, GN/m ² (10 ⁶ psi) Av	- 1				
No. of Spec. (No. of Heats)					
Shear(a)			1		
SUS, MN/m ² (ksi) Av	•				
No. of Spec. (No. of Heats)				=	
G. GN/m ² (10 ⁶ psi) Av	~				
No. of Spec. (No. of Heats)					
Impact, Charpy V					
Long., Nm(ft-lb) Av	-				
No. of Spec. (No. of Heats)					
Trans., Nm(ft-lb) Av					
No. of Spec. (No. of Heats)					
Fracture Toughness(b)					
J _{Ic} MN/m (inlb/in. ²) Av					0.034 (195)
Orientation: -		1			
No. of Spec. (No. of Heats)					
K _{IE} , MN/m ^{3/2} (ksi/in.) Av (From PTSC spec.)(- 1				

⁽a) Indicate specimen design and orientation for sheer specimens: (b) Indicate specimen design for K_{1c} data:

Alloy Designation: Inco Low-Expansion Alloy (unnamed)

Specification:

Form:

Thickness, cm (in.): Condition:

Bar Up to 2.540 (1.000) Annealed 1255 K (1800 F) 0.5 hr., AC; aged 936 K (1225 F) 8 hr.

Testing Temperature, K (F)		297 (75)	77 (-320)			
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg Min					
Std. Deviation TYS, MN/m ² (ksi)	A					
Std. Deviation	Avg Min					
Elong, percent	Avg Min					
RA, percent	Avg		_ =			
No. of Spec. (No. of Heat	Min					
E, GN/m ² (10 ⁶ psi)	Avg					
No. of Spec. (No. of Hear	Min ts)					
Poisson's Ratio						
Vork Hardening Coef						
NTS, MN/m^2 (ksi) $K_t =$ No. of Spec. (No. of Heat	Avg Min					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min				ĺ	
Tension, Transverse					į.	
TUS, MN/m ² (ksi)	Avg Min	1234 (179)	1648 (239)			
Std. Deviation						
YS, MN/m ² (ksi)	Avg Min	896 (130)	1338 (194)			
Std. Deviation					ŀ	
long, percent	Avg Min	19	20			
RA, percent	Avg Min		Ш			
No. of Spec. (No. of Heat		1	[1]			
, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Heat	s)					
oisson's Ratio						
Vork Hardening Coef		1000 (045)	2454 (242)			
NTS, MN/m² (ksi) K _t = No. of Spec, (No. of Heat	Avg Min s)	1689 (245) 1	2151 (312)			
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min					

References: 65184

441<

TABLE 6.3.3-TR1

Alloy Designation:

Inco Controlled-Expansion Alloy

Specification: Form: Dimension:

Condition:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Watts m-1 K-1 Btu hr-1 ft-1 F-1 No. of Spec. References: 94206	11.6	(6.71)	6.30	(3.64)	1.34	(0.775)	1.20 1	(0.694)	0.54 1	(0.312)		
Thermal Expansion (T ₂₇₃ to T) Longitudinal Percent No. of Spec. References: 94206	0		-0.068 1		-0.081 1		-0.083 1		-0.083 1			
Specific Heat Joules kg-1 K-1 Btu Ib-1 F-1 No. of Spec. References: 94206									2.95 (0.000705)	1.12	(0.000268
Chm m Ohm circular mil ft ⁻¹ No. of Spec. References: 94206	94 x 10 ⁻	8 (565)	76 x 10	-8 (457)	71.5 x 1	0 ⁻⁸ (430)	70 x 10 ⁻	8 (421)	70 x 10)-8 (421)		

FIGURE 6.3.3-ME1. FATIGUE CRACK GROWTH RATE OF 7.6 cm (3 in.) THICK INCO LEA PLATE [Heat treatment: solution treated 1.255 K (1800 F) 1 hr, AC; aged 936 K (1225 F) 8 hr, AC]

FIGURE 6.3.3-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR INCO CONTROLLED EXPANSION ALLOY

447<

TABLE 6.4.1-ME1

Alloy Designation:

Nickel-High Purity (99.99%)

Specification:

Form:

Thickness, cm (in.): Condition:

Bar Up to 2.540 (1.000) Hot-finished

Testing Temperature, K (F)	297 (75)	77 (-320)	4 (-452)
Tension, Longitudinal				
TUS, MN/m ² (ksi)	Avg Min	366.1 (53.1)	492.9 (71.5)	734.3 (106)
Std Deviation	14:114			
TYS, MN/m ² (ksi)	Avg Min	173.1 (25.1)	219.3 (31.8)	225.5 (3.27)
Std_ Deviation				
Elong, percent	Avg Min			
RA, percent	Avg			
No. of Spec. (No. of He	Min ats)	2 or 3 (1)	2 or 3 (1)	2 or 3 (1)
E, GN/m ² (10 ⁶ psi)	Avg	206.8 (30.0)	222.7 (32.3)	224.0 (32.5)
No. of Spec. (No. of He	Min ats)	2 or 3 (1)	2 or 3 (1)	2 or 3 (1)
Poisson's Ratio		0.310	0.310	0.303
Work Hardening Coef				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min			
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min			
Tension, Transverse				
TUS, MN/m² (ksi) Std. Deviation	Avg Min			
TYS, MN/m ² (ksi) Std. Deviation	Avg Min			
Elong, percent	Avg Min			
RA, percent	Avg Min			
No. of Spec. (No. of Hea				
E, GN/m ² (10 ⁶ psi)	Avg			
No. of Spec. (No. of Her	ats)			
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min			
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Health	Avg Min			v • • • • • • • • • • • • • • • • • • •

TABLE 6.4.1-TR1

Alloy Designation:

High Purity Nickel

Specification: Form: Dimensions:

Condition:

Annealed

273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
94	(54,4)	165	(95)	380	(220)	1650	(954)	2600	(1500)	2000	(1160
94	(54.4)	165	(95)	380	(220)	1530	(885)	1670	(966)	960	(555)
94	(54.4)	160	(92)	340	(197)	710	(410)	610	(353)	265	(153)
94		160		335		365		217	(126)	87	(50.3
88		140		200		185		101		44	(25.4)
-	(00.0)	2	(01)	4	(110)	4	(107)	5	(00,17)	5	(,)
		ĺ									
		-0 17%		n 196		199		0 199		-0.199	
1		1		1		1		1		1	
										= =	
429	(0.103)	232 (5.54	x 10 ⁻²)	68.2 (1.6	3 x 10 ⁻²)	5.80 (1.3	9 x 10 ⁻³)	1.62	7 x 10 ⁻⁴)		0 x 10
1		1		1		1		1		4	
						1			- 44		
	(37.3)		(6.02)		(0.914)	(6.6	8 x 10·2)	(2.1	7×10^{-2}	(1.2	5 x 10
	(37.4)		(6.08)		(882.0)	(9.1	4 :: 10-2)	(4.3	3 x 10·2)	(3.7	3 x 10
	(37.4)		(6.14)		(1.03)		(0.179)		(0.128)		(0.12
	(37.7)	[(6.38)		(1.28)		(0.431)		(0.377)		(0.37)
			(7.28)	3.64 x		2.23 x	10 ⁻⁹ (1.34)		(1.29))	(1.29)
6.89 x	10-8	1.69 x		8.39 x	10-9	6.96 x		6.89 x		6.89 x	10 ⁻⁹ (4.14)
		ľ	,,,,,,,	l	(0.00,	ł		ł	• • • • • • • • • • • • • • • • • • • •	}	
								j			
										1	
	94 94 94 94 88 - 0 1 429 1 6.20 x 6.21 x 6.22 x 6.26 x 6.41 x	94 (54.4) 94 (54.4) 94 (54.4) 94 (54.4) 88 (50.9) 0 1 429 (0.103) 1 6.20 × 10-8 (37.3) 6.21 × 10-8 (37.4) 6.26 × 10-8 (37.4) 6.26 × 10-8 (37.7) 6.41 × 10-8	94 (54.4) 94 (54.4) 94 (54.4) 94 (54.4) 88 (50.9) - 2 0 -0.175 1 1 429 (0.103) 7 232 (5.54 6.20 × 10-8 (37.3) 6.21 × 10-8 (37.4) 6.22 × 10-8 (37.4) 6.26 × 10-8 (37.7) 6.41 × 10-8 (38.6) 6.89 × 10-8 1.69 ×	94 (54.4) 165 (95) 94 (54.4) 165 (95) 94 (54.4) 160 (92) 94 (54.4) 88 (50.9) - 2 0 140 (81) - 2 0 -0.175 1 1 429 (0.103) 7 6.20 × 10-8 (37.3) 6.21 × 10-8 (37.4) 6.22 × 10-8 (37.4) 6.26 × 10-8 (37.4) 6.26 × 10-8 (37.4) 6.26 × 10-8 (6.08) 1.06 × 10-8 (6.14) 1.06 × 10-8 (6.38) 1.21 × 10-8 (7.28) 6.89 × 10-8 1.69 × 10-8	94 (54.4) 165 (95) 380 (54.4) 94 (54.4) 160 (92) 335 (54.4) 88 (50.9) - 2 (6.02) 1 (94 (54.4) 165 (95) 380 (220) 94 (54.4) 160 (95) 340 (197) 94 (54.4) (92) 335 (194) 88 (50.9) - 140 (81) - 2 0 1 - 0.176 1 1 429 (0.103) 232 (5.54 x 10-2) 1 1	94 (54.4) 165 (95) (220) 1530 (54.4) 94 (6.608) (6.22 × 10-8 (37.4) 6.26 × 10-8 (38.6) (6.89 × 10-8] 1.69 × 10-8 (38.6) 6.89 × 10-8] 1.65 (95) (220) 1530 (220) 1530 (220) 1530 (220) 1530 (220) 1530 (220) 1530 (220) 1530 (220) 1530 (220) 1530 (220) 1530 (220) 1530 (220) 1530 (220) 1530 (220) 160 (92) 160 (197) 335 (194) 185 (194) 185 (116) 200 (116) 200 (116) 200 (116) 200 (116) 200 (116) 200 (116) 200 (116) 200 (116) 200 (116) 200 (116) 200 (116) 200 (116) 200 (116) 200 (11.63 × 10-2) 100 (11.63 × 10-2) 100 (11.63 × 10-2) 100 (11.63 × 10-2)	94 (54.4) 165 (95) 380 (220) (954) 94 (54.4) (95) 380 (220) (885) 94 (54.4) (92) (197) (410) 94 (54.4) (92) (197) 335 (211) 88 (50.9) 2 (81) 200 (16) (16) (17) 2 4 (16) 200 (16) (16) (17) 4 (17) 4 (17) 4 (18) 200 (116) (17) 4 (18) (107) 4 (18) (107) 4 (18) (107) 4 (103) (1.39 × 10-3) 1 (1.39 × 10-3) 1 (1.39 × 10-3) 1 (1.39 × 10-3) 1 (1.39 × 10-3) 1 (1.39 × 10-10 (9.914) 1.56 × 10-9 (9.914) 1.52 × 10-10 (9.914) 1.52 × 10-10 (9.914) 1.52 × 10-10 (9.914) 1.52 × 10-10 (9.914) 1.52 × 10-10 (9.914) 1.52 × 10-10 (9.914) 1.52 × 10-10 (9.914) 1.530 (954) 1.62 × 10-8 (1.63 × 10-2) 1 (1.39 × 10-3) 1 (1.39 × 10-3) 1 (1.39 × 10-10) 1.52 × 10-10 (9.914) 1.52 × 10-10 (9.914) 1.52 × 10-10 (9.914) 1.530 (954) 1.58 × 10-9 (1.39 × 10-10) 1.59 × 10-10 (9.914) 1.50 × 10-9 (1.34) 1.69 × 10-8 (3.64 × 10-9) 1.21 × 10-8 (3.68) 1.21 × 10-8 (3.68) 1.69 × 10-8 (3.99 × 10-9) 1.300 (1.39) 1.310 (1.31) 1.320 (1.31) 1.320 (1.32) 1.341 (1.32) 1.341 (1.34) 1.341 (1.34) 1.340 (1.34) 1.341 (1.34) 1.341 (1.34) 1.340 (1.34) 1.341 (1.34) 1.340 (1.34) 1.341 (1.34) 1.341 (1.34) 1.341 (1.34) 1.341 (1.34) 1.342 (1.34) 1.341 (1.34) 1.342 (1.34) 1.343 (1.34) 1.341 (1.34) 1.340 (1.34) 1.341 (1.34) 1.340 (1.34) 1.341 (1.34) 1.340 (1.34) 1.34	94 (54.4) (95) (95) (220) (954) (1670 (885) (1670 (954)) (1670 (885))	94 (54.4) (95) (37.4) (6.18) (6.89 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.28 t) -8 (37.4) (6.38 t) -8 (37.4) (6.38 t) -8 (37.4) (6.38 t) -8 (37.4) (6.38 t) -8 (37.4) (6.38 t) -9 (38.6) (37.4) (6.38 t) -9 (38.6) (38.6) (38.6) (38.8 t) -8 (38.6) (38.8 t) -8 (38.8 t)	94 (54.4) 165 (95) 380 (220) 1530 (885) 1670 960 (964) 160 (954) 1

⁽¹⁾ Interpolated from original data using theoretical correlations.

FIGURE 6.4.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR HIGH PURITY NICKEL

FIGURE 6.4.1-E1. THERMAL EXPANSION VERSUS TEMPERATURE FCR HIGH PURITY NICKEL

FIGURE 6.4.1-S1. SPECIFIC HEAT VERSUS TEMPERATURE FOR HIGH PURITY NICKEL

FIGURE 6.4.1-S2. SPECIFIC HEAT VERSUS TEMPERATURE FOR HIGH PURITY NICKEL

6.4.1-6 (11/76)

FIGURE 6.4.1-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR HIGH PURITY NICKEL

TABLE 6.4.2-ME1

Alloy Designation:

"A" Nickel

Specification:

Form:

Sheet

Thickness, cm (in.): Condition:

Up to 0.099 (0.039) Annealed

Testing Temperature, K (F)		297 (75)			20 (-423)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	430 (62)			738 (107)
Std Deviation	Min				
TYS, MN/m² (ksi)	Avg	97 (14)			230 (33)
Std. Deviation	Min				
Elong, percent	Avg Min	43.4			36.0
RA, percent	Avg				
No. of Spec. (No. of Hea	Min ts)	1			1
E, GN/m ² (10 ⁶ psi)	Avg Min	200 (29)			230 (33)
No. of Spec. (No. of Hea		1			1
oisson's Ratio					
Nork Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hear	Avg Min				
NTS, MN/m ² (ksi) $K_t \approx$ No. of Spec. (No. of Heat	Avg Min				
Fension, Transverse	,				
TUS, MN/m ² (ksi)	Avg Min			1	
Std Deviation					
TYS, MN/m ² (ksi)	Avg Min				
Std. Deviation					
Elong, percent	Avg Min		¦ _=		
RA, percent	Avg Min				1 = 1
No. of Spec. (No. of Heat					
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Heat					
oisson's Ratio					
Vork Hardening Coef					-
NTS, MN/m ² (ksi) $K_t =$ No. of Spec. (No. of Heat	Avg Min				
NTS, MN/m² (ksi)	Avg				
K _t = No. of Spec. (No. of Heat	Min				

TABLE 6.4.2-ME2

Alloy Designation:

"A" Nickel

Specification:

Form: Thickness, cm (in.): Condition:

Bar Up to 2.540 (1.000) Annealed

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	20 (-423)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	439 (63.7)	488 (70.8)	641 (93.0)	771.5 (111.9) 768.1 (111.4)
Std Deviation	Min	432 (62.7)	482 (69.9)	636 (92.2)	700.3 (111.4)
TYS, MN/m ² (ksi)	Avg Min	144 (20.9) 141 (20.4)	152 (22.0) 145 (21.1)	197 (28.5) 196 (28.4)	265 (38.4) 157 (37.3)
Std. Deviation					,
Elong, percent	Avg Min	48.4 47.8	50.3 48.8	61.2 60.7	5 9.2 59.1
RA, percent	Avg Min	66.2 66.2	65.6 63.5	75.2 74.3	67.8 67.5
No of Spec. (No. of Heats		3 (1)	3 (1)	3 (1)	3 (1)
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Heats	s)				
Poisson's Ratio					
Nork Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg : Min				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min				
Tension, Transverse					
TUS, MN/m² (ksi)	Avg Min				
Std. Deviation					
TYS, MN/m ² (ksi)	Avg Min				
Std. Deviation					
Elong, percent	Avg Min		==		
RA, percent	Avg Min				
No. of Spec (No. of Heats					
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Heats					
oisson's Ratio			•		
Vork Hardening Coef					
NTS, MN/m² (ksi)	Avg				The
K _t = No. of Spec. (No. of Heats	Min i)				
NTS, MN/m ² (ksi) K _t =	Avg Min				

FIGURE 6.4.2-ME1. FATIGUE LIFE CURVES FOR FLEXURAL LOADING ON NOTCHED (K $_{\rm T}$ = 3.0) AND UNNOTCHED SPECIMENS OF ANNEALED "A" NICKEL 0.053 cm (0.021 in.) THICK [49048]

TABLE 6.4.2-TR1

Alloy Designation:

"A" Nickel

Specification: Form: Dimension: Condition:

Condition:											1	
Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m-1 K-1 Btu hr 1 ft-1 F-1					51.0	(29.5)	25.0	(14.5)				
No. of Spec.					1	,,	1	15500				
References:	1				}		1					
Thermal Expansion (T ₂₇₃ to T) Longitudinal												
Percent	0		-0.178		-0.200		-0,205					
No. of Spec.	1		1		2		2					
References: 48134, 90366							1					
Specific Heat												
Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹												
No. of Spec.												
References:												
Electrical Resistivity					•							
Ohm m	1				1)		j			
Ohm circular mil ft ⁻¹]	
No. of Spec.												
References:												
(1) 99.4 Ni, as forged.												

FIGURE 6.4.2-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR NICKEL "A"

FIGURE 6.4.2-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR NICKEL "A"

INDEX TO MATERIAL CODES FOR SECTION 7.0

ALLOY STEELS

MATERIALS	MATERIAL CODE
9Ni STEEL	7.1.1
18Ni (200) MARAGING	7.1.2
1010 STEEL	7.3.1
ARMCO IRON	7.4.1
5Ni STEEL	7.4.3
Fe (47-50) Ni	7.4.4

Alloy Designation:

9Ni Steel

Specification:

ASTM A553-I

Thickness, cm (in.): Condition:

Sheet Up to 0.099 (0.039) 1075 K (1475 F), WQ; 840-1080 K (1050-1125 F), ac or WQ

Testing Temperature, K (F)	297 (75)	77 (-320)	
Fatigue, Axial Loading			
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _t = 3.1 No. of S-N Curves (No. of Heats)	415 (60)	450 (65)	
Ratio S _N /TUS at 10 ⁵ cycles			
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁶ cycles			
S_N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _t = 3.1 No. of S·N Curves (No. of Heats) Ratio S_N/TUS at 10 ⁷ cycles	195 (28)	175 (25)	
Fatigue, Flexural Loading			
I.oading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁵ cycles			
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁶ cycles			
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁷ cycles			

Alloy Designation:

9Ni Steel

Specification:

ASTM A553-I

Form: Thickness, cm (in.):

Condition:

Sheet
0.100 to 0.319 (0.040 to 0.125)
1075 K (1475 F), WQ; 840-1080 K (1050-1125 F), AC or WQ

Testing Temperature, K (F)	297 (75)	77 (-320)	
Fatigue, Axial Loading			
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _t = 1 No. of S-N Curves (No. of Heats)	365 (53)	455 (66)	
Ratio S _N /TUS at 10 ⁵ cycles			
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁶ cycles			
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _t = 1 No. of S-N Curves (No. of Heats)	255 (37)	360 (52)	
Ratio S _N /TUS at 10 ⁷ cycles			
Fatigue, Flexural Loading			
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)			
Ratio SN/TUS at 10 ⁵ cycles			
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁶ cycles			
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁷ cycles			

Alloy Designation:

9Ni Steel

Specification:

ASTM A353

Form:

Sheet

Thickness, cm (in.): Condition:

0.100 to 0.319 (0.040 to 0.125)

Double normalized at 1175 K (1650 F) and 1060 K (1450 F) and tempered at 840 K (1050 F)

Testing Temperature, K (F	•)	297 (75)	77 (-320)	20 (-423)	4 (-452)	
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg	882 (128)	1190 (172)	1503 (218)	1590 (231)	
Std Deviation	Min					
TYS, MN/m ² (ksi)	Avg Min	558 (81.0)	1010 (146)	1096 (159)	1430 (208)	
Std. Deviation						
Elong, percent	Avg Min	17.3	29.6	11.5	21.2	
RA, percent	Avg		66.8		59.1	
No. of Spec. (No. of He	Min eats)	(1)	1	(1)	1	
E, GN/m ² (10 ⁶ psi)	Avg					
No. of Spec. (No. of He	Min eats)					
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of He	Min ats)					
NTS, MN/m ² (ksi) K _t =	Avg Min					
No. of Spec. (No. of He	ats)					
Tension, Transverse						
TUS, MN/m ² (ksi) Std. Deviation	Avg Min					
			1			
TYS, MN/m ² (ksi)	Avg Min					
Std. Deviation						
Elong, percent	Avg Min					
RA, percent	Avy					
No. of Spec. (No. of He	Min ats)					
E, GN/m ² (10 ⁶ psi)	Avg					
No. of Spec. (No. of Hea	Min ats)				l	
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of Hea	Min ats)					
NTS, MN/m² (ksi) K _t =	Avg Min					100
No. of Spec. (No. of Hea						

Alloy Designation:

9Ni Steel

Specification:

ASTM A353

Form: Sheet
Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: Double normalized as 1175 W. (2010) Double normalized at 1175 K (1650 F) and 1060 K (1450 F) and tempered at 840 K (1050 F)

Testing Temperature, K (F)	297 (75)					4	(-452)
Compression, Longitudinal				1			
CYS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of Heats))						
Ec, GN /m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No of Heats))						
Compression, Transverse							
CYS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of Heats))						
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No of Spec. (No. of Heats))						
Shear (a)							
SUS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of Heats))						
G, GN/m ² (10 ⁶ psi)	Avg Min						
No of Spec. (No. of Heats)	ļ					
Impact, Charpy V							
Long., Nm(ft-lb)	Avg Min						
No. of Spec. (No. of Heats)		ļ					
Trans., Nm(ft-lb)	Avg		1				
No of Spec. (No of Heats))						
Fracture Toughness(b)							
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min					87	(73)
Orientation: T – L No. of Spec. (No. of Heats))		1			1	
K _{IE} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(—) No. of Spec. (No. of Heats)	Avg				0		

- (a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1c} data:

Alloy Designation: 9Ni Steel

ASTM A353 Specification:

Form: Sheet

Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)

Condition: Double normalized at 1175 K (1650 F), and 1060 K (1450 F), and tempered at 840 K (1050 F)

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)		
Fatigue, Axial Loading										
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S. N. Curves (No. of Heats)										
Ratio S _N /TUS at 10 ⁵ cycles	l								ł	
S_N at 10^6 cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No of S-N Curves (No of Heats)										
Ratio SN/TUS at 10 ⁶ cycles										
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency With R = and K _t = No of S-N Curves (No of Heats)										
Ratio S _N /TUS at 10 ⁷ cycles										
Fatigue, Flexural Loading										
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz	407	(59)	448	(65)	448	(65)	400	(58)		
with R = -1 and K _t = 3.1 No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)	1	(1)		
S _N at 10^6 cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _t = 3.1	255	(37)	317	(46)	255	(37)	255	(37)		
No_of S-N Curves (No_of Heats)	1	(1)	1	(1)	1	(1)	1	(1)		
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S.N. Curves (No. of Heats)										
Ratio S _N /TUS at 10 ⁷ cycles										

Alloy Designation:

9Ni Steel

Specification:

A553-I

Form:

Thickness, cm (in.): Condition:

Plate 0.635 to 1.269 (0.250 to 0.499) 1075 K (1475 F), WQ, 840 K (1050 F), AC or WQ

Testing Temperature, K (f	F)	297 (75)	77 (-320)		
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	779 (113)	1172 (170)		
Std Deviation	Min	765 (111)	1158 (168)		H
TYS, MN/m ² (ksi)	Avg Min	731 (106) 724 (105)	972 (141)		
Std Deviation	1				
Elong, percent	Avg Min	21			
RA, percent	Avg Min				
No of Spec. (No. of He		2(2)	2(2)		
E, GN/m ² (10 ⁶ psi)	Avg Min		-		
No. of Spec. (No. of Hi					
Poisson's Ratio			1		
Work Hardening Coef					
NTS, MN/m² (ksi) Kt ≈ No. of Spec. (No. of He	Avg Min eats)				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)				
Tension, Transverse	j				
TUS, MN/m ² (ksi)	Avg				
Std Deviation	Min				
TYS, MN/m ² (ksi)	Avg				
Std. Deviation	Min				
Elong, percent	Avg Min				
RA, percent	Avg				
No. of Spec. (No. of He	Min (eats)				
E, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec. (No of He	+				
Poisson's Fratio					
Work Hardening Coef	П				
NTS, MN/m ² (ksi) K _t =	Avg Min				
No of Spec (No. of He					
NTS, MN/m ² (ksi) K _t =	Avg Min				
No of Spec (No of He					

Alloy Designation:

9Ni Steel

Specification:

A353

Form:

Thickness, cm (in.): Condition:

Plate 0.635 to 1.269 (0.250 to 0.499)

Double normalized at 1175 K (1650 F) and 1060 K (1450 F) and tempered at 840 K (1050 F)

						1
TUS, MN/m ² (ksi)						1
N		38 (107) 24 (105)	1164 (169)	1594 (231)		
Std Deviation						
		34 (92.0) 17 (89.5)	847 (123)	1434 (208)		
Std Deviation						
	Avg //in	35.8		21.2		
RA, percent A	λvg			59.1		
No of Spec. (No of Heats)	Ain .	2(2)	1	1		
	Avg					
No of Spec. (No. of Heats)	<i>A</i> lin				=	
Poisson's Ratio					П	
Nork Hardening Coef						
K _t = N	Avg //in					
No of Spec. (No. of Heats)						
	Avg //in					
Tension, Transverse						
N	Avg Ain					
Std. Deviation						
N	Avg Ain					
Std. Deviatic						
	Avg Ain				П	
	Avg					
No. of Spec. (No. of Heats)	/////					
	Avg					
No. of Spec. (No. of Heats)						
Poisson's Ratio						
Vork Hardening Coef						
•	Avg Ain					
VTS, MN/m² (ksi) A	lvg Min					

Alloy Designation:

9Ni Steel

Specification:

ASTM a553-I

Form: Thickness, cm (in.): Plate

Condition:

0.635 to 1.269 (0.250 to 0.499) 1075 K (1475 F), WQ; 840 K (1050 F), AC or WQ

Testing Temperature, K (Fi	297	(75)		77	(-320)	
Compression, Longitudina	<u>af</u>						
CYS, MN/m ² (ksi)	Avg Min	1					
No. of Spec. (No. of H							
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No of Spec. (No. of H	leats)						
Compression, Transverse			1			- 1	
CYS, MN/m ² (ksi)	Avg Min		1				
No. of Spec. (No. of H							
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No of Spec. (No. of H							
Shear(a)							
SUS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of H	leats)					}	
G, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of H	łeats)					1	
Impact, Charpy V							
Long., Nm(ft-lb)	Avg	115	(85.1)		52.3	(38.7)	
No of Spec (No of H	Min leats)	9	(77)		43 9	(32)	
Trans., Nm(ft-lb)	Avg Min	89.5 80	(66.3) (59)		42.9 35	(31.8) (26)	
No. of Spec. (No. of H		9	(1)		9	(1)	
Fracture Toughness(b)				-1			
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min						
Orientation. — No. of Spec. (No. of F	leats)						
KIE, MN/m ^{3/2} (ksi/jin.) (From PTSC spec.)(Avg –)Min						
No. of Spec. (No. of H							

 ⁽a) Indicate specimen design and orientation for shear specimens:
 (b) Indicate specimen design for K_{1c} data:

9 Vi Steel (Weld Metal) Alloy Designation:

Specification: Form:

ASTM A553-1

Thickness, cm (in.):

Plate-MIG Welded, Inco Weld A covered electrode

0.635 to 1.269 (0.250 to 0.499)

Condition:

Plate 1075 K (1475 F), WQ; 840 K (1050 F), AC or WQ; welded; tested as welded

Testing Temperature, K (F	-)	297 (75)		77 (-320)	
Compression, Longitudinal					
CYS, MN/m ² (ksi)	Avg				
No. of Spec. (No. of He					
Ec, GN/m ² (10 ⁶ psi)	Avg				
No. of Spec. (No. of He	eats)				
Compression, Transverse					
CY3, MN/m ² (ksi)	Avg Min				
No. of Spec. (No. of He					
Ec, GN/m ² (10 ⁶ psi)	Avg Min	ł			
No of Spec. (No. of He					
Shear(a)			'		
SUS, MN/m ² (kci)	Avg Min				
No. of Spec. (No. of He	eats)	ĺ			
G, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec. (No. of He	eats)	Ì			
Impact, Charpy V					1
Long., Nm(ft-lb)	Avg			58.1 (43.0)	
No. of Spec. (No. of He				>1	
Trans., Nm(ft-lb)	Avg Min				1
No. of Spec. (No. of He					
Fracture Toughness(b)					
K _{1c} MN/m ^{3/2} (ksi√in.)	Avg Min	}			}
Orientation. — No. of Spec. (No. of He	eats)				
K _{(E} , MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(-	Avg -)Min				
No. of Spec. (No. of He				_	

⁽a) Indicate specimen design and orientation for shear specimens:

⁽b) Indicate specimen design for K_{1c} data:

* A corresponding average Charpy-V impact value of 48.6 Nm (36.0 ft-lb) was measured for stress-relieved speciments of the same type.

9Ni Steel (Weld Metal) Alloy Designation:

Specification:

ASTM A553-I

Form: Plate-Pulse MIG Welded, Inconel 92 filler alloy Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)

Condition:

Plate 1075 K (1475 F), WQ; 840 K (1050 F), AC or WQ; Welded; tested as welded

Testing Temperature, K (F)		297 (75)	77 (-320)	
Tension, Longitudinal				
TUS, MN/m ² (ksi)	Avg			
Stif Deviation	Min .			
TYS, MN/m ² (ksi)	Avg			
Std Deviation				
Elong, percent	Avg Min			
RA, percent	Avg Min			
No of Spec (No of Hear				
E, GN/m ² (10 ⁶ psi)	Avg Min		i.	
No of Spec. (No. of Hea			1	
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi)	Avg			
K _t = No. of Spec. (No. of Hear	Min (s)			
NTS, MN/m ² (ksi) K _t = No of Spec (No of Hear	Avg Min			
Tension, Transverse				
TUS, MN/m ² (ksi)	Avg	718.4 (104.2)	885.3 (128.4)	
Std Deviation	Min	699.1 (101.4)		
TYS, MN/m² (ksi)	Avg Min			
Std Deviation	IVIIII			
Elong, percent	Avg Min			
RA, percent	Avg Min			
No. of Spec. (No. of Heat		2 (1)	1	
E, GN/m ² (10 ⁶ psi)	Avg Min			
No of Spec. (No of Heat				
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min			
	0.71			
NTS, MN/m ² (ksi) K _t = No of Spec (No of Heat	Min			

Alloy Designation: 9Ni Steel (Weld Metal)

Specification: ASTM A553-I

Form: Plate-shielded MIG welded, Incoweld B filler alloy

Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)
Condition: Plate 1075 K (1475 F), WQ; 840 K (1050 F), AC or WQ; welded; tested as welded

Testing Temperature, K (F)	297 (75)	77 (-320)
Tension, Longitudinal		
TUS, MN/m ² (ksi) Avg		
Std Deviation Min		
TYS, MN/m ² (ksi) Avg		
Std Deviation		
Elong, percent Avg Min		
RA, percent Avg		
Min No of Spec. (No. of Heats)		
E, GN/m ² (10 ⁶ psi) Avg		
No. of Spec. (No. of Heats)		
Poisson's Ratio		
Work Hardening Coef		
NTS, MN/m ² (ksi) Avg		
K _t = Min No. of Spec. (No. of Heats)		
NTS, MN/m ² (ksi) Avg K ₁ = Min		
K _t = Min No of Spec. (No. of Heats)		
Tension, Transverse		
TUS, MN/m ² (ksi) Avg Min	718.4 (104.2) 690.9 (100.2)	919.1 (133.3) 896.3 (130.0)
Std Deviation		
TYS, MN/m ² (ksi) Avg		
Std. Deviation		
Elong, percent Avg		
RA, percent Avg		
No. of Spec. (No. of Heats)	2 (1)	2 (1)
E, GN/m ² (10 ⁶ psi) Avg		
No of Spec. (No. of Heats)		
Poisson's Ratio		
Work Hardening Coef		
NTS, MN/m ² (ksi) Avg		
Kt = Min No of Spec (No. of Heats)		
NTS, MN/m² (ksi) Avg		
K _t = Min No of Spec. (No. of Heats)		

Alloy Designation: 9Ni Steel

Specification: Form:

ASTM A353

Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)

Condition: Double normalized at 1175 K (1650 F) and 1060 K (1450 F) and tempered at 840 K (1050 F)

Testing Temperature, K (F)	29	7 (75)	77 (-320)	
Compression, Longitudinal				
CYS, MN/m ² (ksi)	Avg			
No of Spec (No of Hea				
Ec, GN /m ² (10 ⁶ psi)	Avg Min			
No of Spec (No of Hea				
Compression, Transverse				
CYS, MN/m ² (ksi)	Avg Min			}
No of Spec (No of Hea				
Ec, GN/m ² (10 ⁶ psi)	Avg Min			
No of Spec (No. of Hea				
Shear ^(a)				
SUS, MN/m ² (ksi)	Avg Min			
No of Spec. (No. of Hea				
G, GN/m ² (10 ⁶ psi)	Avg Min			
No of Spec. (No. of Hea	ats)			
Impact, Charpy V	j			
Long., Nm(ft-lb)	Avg 109 Min 106	(80.8) (78)	45.6 (33.7) 37 (27)	
No of Spec (No. of Hea	1	(1)	6 (1)	}
Trans., Nm(ft-lb)	Avg 91.4	(67.5)	37.6 (27.8)	
No of Spec (No of He	Min 85 9ts) 6	(63)	32 (24) 6 (1)	
Fracture Toughness(b)				
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min			
Orientation — No of Spec. (No, of Hea	ats)			
K _{1E} , MN/m ^{3/2} (ksi√in.)	Avg			
(From PTSC spec.)(- No. of Spec. (No. of Hea)Min			

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{IC} data:

Alloy Designation: 9Ni Steel (Weld Metal)

Specification: ASTM A353

Form: Plate-MIG welded, Incoweld A covered electrode

Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)

Condition: Plate, Double Normalized at 1175 K (1650 F) and 1060 K (1450 F) and tempered at 840 K (1050 F); welded;

tested as welded

tested as t	Melded			
Testing Temperature, K (F)	297 (75)		77 (-320)	
Compression, Longitudinal				
CYS, MN/m ² (ksi) Av	•			
No of Spec (No of Heats)				
Ec, GN/m ² (10 ⁶ psi) As				
No of Spec. (No of Heats)				
Compression, Transverse				
CYS, MN/m ² (ksi) A	- 1	0		
No of Spec (No. of Heats)				
Ec, GN/m ² (10 ⁶ psi) A	*			
No. of Spec (No. of Heats)				
Shear(a)				
SUS, MN/m ² (ksi) A	•			
No. of Spec. (No. of Heats)				
G, GN/m ² (10 ⁶ psi) A	•			
No of Spec. (No. of Heats)				
Impact, Charpy V				
Long., Nm(ft-lb) A	• 1		47.9 (35.5)*	
No. of Spec. (No of Heats)			>1	
Trans., Nm(ft-lb)				
No. of Spec. (No. of Heats)	"			
Fracture Toughness(b)				
K _{Ic} MN/m ^{3/2} (ksi√in.) A	vg In			
Orientation.				
No. of Spec. (No. of Heats)				
K _{1E} , MN/m ^{3/2} (ksi/in.) Ar (From PTSC spec.)(–)M	7			
No. of Spec. (No. of Heats)				

⁽a) Indicate specimen design and orientation for shear specimens:

⁽b) Indicate specimen design for K_{1c} data:

* A corresponding averages Charpy-V impact value of 59.4 Nm (44.0 ft-lb) was measured for stress-relieved specimens of the same type.

Alloy Designation:

9Ni Steel

Specification:

A553-I

Form:

Thickness, cm (in.): Condition:

Plate 1.270 to 2.540 (0.500 to 1.000) 1075 K (1475 F), WQ; 840 K (1050 F), AC or WQ

Testing Temperature, K (F)		297 (75)	173 (-150	123 (-240)	77 (-320)	
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg	772 (112)	917 (133)	972 (141)	1151 (167)	
Std Deviation	Min	710 (103) 31,5 (4.57)			1062 (154) 57 (8.3)	
TYS, MN/m ² (ksi)	Avg Min	710 (103) 590 (86.1)	834 (121)	862 (125)	986 (143) 841 (122)	
Std Deviation		38.6 (5.60)			82,1 (11.9)	
Elong, percent	Avg Min	28.0 20.0	17,9	17.9	24.4 20.4	
RA, percent	Avg Min	66.7 49.0	43.9	42.3	37.6	
No of Spec (No of Hea		39 (7)	4 (2)	4 (2)	12 (5)	
E, GN/m ² (10 ⁶ psi)	Avg Min					
No of Spec. (No of Hea				3		
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m² (ksi)	Avg					
K _t = No. of Spec. (No. of Hea	Min		14			
NTS, MN/m ² (ksi)	Avg					
K _t = No of Spec. (No of Hea	Min its)					
Tension, Transverse	}		}			
TUS, MN/m ² (ksi) Std. Deviation	Avg Min					
TYS, MN/m ² (ksi)	Avg					
Std. Deviation	Min					
Elong, percent	Avg Min					
RA, percent	Avg Min					
No. of Spec. (No. of Hea						
E, GN/m ² (10 ⁶ psi)	Avg Min					
No of Spec. (No of Hea			}			
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m² (ksi)	Avg				}	
K _t = No of Spec (No of Hea	Min (ts)					
NTS, MN/m ² (ksi)	Avg					
Kt = No of Spec. (No of Hea				1		

Alloy Designation:

9Ni Steel

Specification:

A553-1

Form: Thickness, cm (in.):

Plate 1.270 to 2.540 (0.500 to 1.000) 1075 K (1475 F), WQ, 840 K (1050 F), AC or WQ Condition:

Testing Temperature, K (F)	297 (75)	77 (-320)	
Compression, Longitudinal			
CYS, MN/m ² (ksi) Avg			
No. of Spec. (No. of Heats)			
Ec, GN /m ² (10 ⁶ psi) Avg			
Min No. of Spec. (No. of Heats)			
Compression, Transverse			
CYS, MN/m ² (ksi) Avg			
Min No of Spec. (No. of Heats)			
Ec, GN/m ² (10 ⁶ psi) Avg			
Min No. of Spec. (No. of Heats)			
Shear(a)			
SUS, MN/m ² (ksi) Avg	ļ	ļ	
Min No. of Spec. (No. of Heats)			
G, GN/m ² (10 ⁶ psi) Avg			
Min No of Spec. (No. of Heats)			
Impact, Charpy V			
Long., Nm(ft-lb) Avg	153 (113)	71.4 (52.9)	
Min No of Spec. (No. of Heats)	1	39.3 (29) 12 (5)	
Trans., Nm(ft-lb) Avg	107 (79)	34.3 (25.4)	
No of Spec. (No of Heats)	1	30 (22) 7 (2)	
Fracture Toughness(b)			
K _{Ic} MN/m ^{3/2} (ksi√in.) Avg Min			
Orientation -			
No. of Spec. (No. of Heats)			
K _{1E} , MN/m ^{3/2} (ksi√in.) Avg (From PTSC spec.)(–)Min			
No. of Spec. (No. of Heats)		1	1

References: 41531, 92996, 96686, 96700

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{IC} data:

Alloy Designation:

9Ni Steel

Specification:

A 353 Plate

Form:

Thickness, cm (in.):

Condition:

1.270 to 2.540 (0.500 to 1.000)

Double normalized at 1175 K (1650 F) and 1060 K (1450 F) and tempered at 840 K (1050 F)

Testing Temperature, K (F)	297 (75)	 173	(-150)	123	(-240)	77	(-320)	20	(-423)
Tension, Longitudinal									
TUS, MN/m ² (ksi) Avg		906.7	(131.5)	979	(142)	1179	(171)	1390	(202)
Std Deviation	710 (103) 35.8 (4.90)					1089	(158)	1330	(193)
TYS, MN/m² (ksi) Std Deviation Avg Min		782.6	(113.5)	834	(121)	945 793	(137) (115)	1210 1140	(175) (166)
Elong, percent Avg	29.1	10	6.9		16.9		3.3 8.3	1	8.0 9
Min	23.0								
RA, percent Avg		59	9.7		61.0	5	6.0	3	9.6 7
No of Spec (No. of Heats)	16 (7)	4	(2)	4	(2)	11	(4)	5	(1)
E, GN/m ² (10 ⁶ psi) Avg Min						4			
No. of Spec. (No. of Heats)									
Poisson's Ratio									
Work Hardening Coef									
NTS, MN/m^2 (ksi) Avg $K_t = 6.4$ Min No of Spec. (No. of Heats)	945 (137) 938 (136) 5 (1)							1310 1210 5	(190) (176) (1)
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)									
Tension, Transverse									
TUS, MN/m ² (ksi) Avg Min				{					
Std Deviation									
TYS, MN/m² (ksi) Avg									
Std Deviation									
Elong, percent Avg Min									
RA, percent Avg									
Min No of Spec (No. of Heats)									
E, GN/m ² (10 ⁶ psi) Avg									
Min No. of Spec. (No. of Heats)									
Poisson's Ratio									
Nork Hardening Coef									
NTS, MN/m ² (ksi) Avg $K_t = Min$ No of Spec (No of Heats)		1							
NTS, MN/m^2 (ksi) Avg $K_t \approx M_{\rm ID}$									

Alloy Designation:

9Ni Steel

Specification:

A353

Form:

Plate

Thickness, cm (in.):

1.270 to 2.540 (0.500 to 1.000)

Condition:

Double normalized at 1175 K (1650 F) and 1060 K (1450 F) and tempered at 840 K (1050 F)

Testing Temperature, K (F)		297	(75)	163	(-165)	77	(-320)	
Compression, Longitudinal							1	
CYS, MN/m ² (kJi)	Avg Min		}					
No. of Spec. (No. of Hea	ets)					111		
Ec, GN/m ² (10 ⁶ psi)	Avg Min						1	
No. of Spec. (No. of Hea	its)							
Compression, Transverse								
CYS, MN/m ² (ksi)	Avg Min						j	
No. of Spec. (No. of Hea							}	
Ec, GN/m ² (10 ⁶ psi)	Avg Min							
No of Spec (No. of Hea								
Shear(a)								
SUS, MN/m ² (ksi)	Avg Min							
No. of Spec. (No. of Hea	ats)		į					
G, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of Hea	ets)							
Impact, Charpy V								
Long., Nm(ft-lb)	Avg Min	157	(116)	74	(55)	47.1 36.6	(34.9) (27.0)	1
No. of Spec. (No. of Hea	ets)	1	1	1		8	(5)	
Trans., Nm(ft-lb)	Avg Min	130 1	(95)			41	(30)	
No. of Spec. (No. of Hea		,1						
Fracture Toughness(b)			{				- [
K _{1c} MN/m ^{3/2} (ksi√in.)	Avg Min							
Orientation — No of Spec. (No. of He	ets)							
K _{IE} , MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(— No. of Spec. (No. of He								

References: 41531, 91978, 92996

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{IC} data:

Alloy Designation: 9Ni Steel

Specification:

ASTM A553-I

Form: Plate
Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: 1075 K (1475 F), WQ; 840 K (1050 F), AC or WQ

Testing Temperature, K (F)	297 (75)	77 (-320)	
Fatigue, Flexural Loading			
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No of S N Curves (No of Heats)			
Ratio S _N /TUS at 10 ⁵ cycles			
SN at 106 cycles, MN/m ² (ksi)			
Loading frequency 60. Hz	539 (78.2)	613 (88.9)	
with $R = -1$ and $K_t = 1$ No of S-N Curves (No of Heats)	1	1	
Ratio S _N /TUS at 10 ⁶ cycles	0.66	0.75	
S _N at 10 ⁷ cycles, MN/m ² (ksi)			
Loading frequency 60, Hz	495 (71.8)		
with R = -1 and K _t = 1 No of S-N Curves (No. of Heats)	1		
Ratio S _N /TUS at 10 ⁷ cycles	0.61		
Fatigue, Flexural Loading			
S _N at 10 ⁵ cycles, MN/m ² (ksi)			
Loading frequency Hz with R = and K _t = No of S N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁵ cycles			
SN at 10° cycles, MN/m²(ksi)			
Loading frequency 60. Hz	225 (32.7)	402 (58.3)	
with R = -1 and K _t = 7.1 No. of S-N Curves (No of Heats)	1	1	
Ratio SN/TUS at 106 cycles	0.28	0.49	
SN at 107 cycles, MN/m ² (ksi)			
Loading frequency 60, Hz	221 (32.0)		
with R = -1 and K _t = 7.1 No. of S-N Curves (No. of Heats)	1		
Ratio S _N /TUS at 10 ⁷ cycles	0.27		

Alloy Designation: 9Ni Steel

Specification: ASTM A353

Form: Plate

Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)

Condition: Double normalized at 1175 K (1650 F) and 1060 K (1450 F) and tempered at 840 K (1050 F)

Testing Temperature, K (F)	297 (75)	77 (-320)	
Fatigue, Flexural Loading			
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁵ cycles			
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency 60. Hz with R = -1 and K _t = 1 No of S-N Curves (No of Heats)	578 (83.9)	608 (88.2)	
Ratio S _N /TUS at 10 ⁶ cycles	0.70	0.74	
S_N at 10^7 cycles, MN/m^2 (ksi) Loading frequency 60. Hz with R = -1 and K_t = 1 No of S-N Curves (No of Heats)	544 (78.9) 1		
Ratio S _N /TUS at 10 ⁷ cycles	0.66		
Fatigue, Flexural Loading			
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S·N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁵ cycles			
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency 60, Hz with R = -1 and K _t = 7.1	245 (35.6)	466 (67.6)	
No. of S-N Curves (No. of Heats)	1	1	
Ratio S _N /TUS at 10 ⁶ cycles	0.30	0.57	
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency 60. Hz with R = -1 and K ₁ = 7.1	235 (34.1)		
No. of S-N Curves (No. of Heats)	1		
Ratio SN/TUS at 107 cycles	0.29		

Alloy Designation: 9Ni Steel (Weld Metal)

Specification:

ASTM A353

Form:

Plate-MIG welded, Incoweld A covered electrode

Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)

Condition:

Plate-Double normalized at 1175 K (1650 F) and 1060 K (1450 F) and tempered at 840 K (1050 F); welded;

tested as welded

Testing Temperature, K (F	=)	297 (75)			77 (-320)	
Compression, Longitudinal						
CYS, MN/m ² (ksi)	Avg Min					
No of Spec. (No of He						
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He	eats)					
Compression, Transverse				{		
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of He	eats)					
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No of Spec. (No of He						
Shear (a)						
SUS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of He	eats)					
G, GN/m ² (10 ⁶ psi)	Avg Min					
No of Spec. (No of He	eats)					
Impact, Charpy V	ì		1			1
Long., Nm(ft-lb)	Avg Min				89 (66)* 81 (60)	-
No of Spec (No of Hi					>1	
Trans., Nm(ft-lb)	Avg Min					
No of Spec. (No of He						
Fracture Toughness(b)	12					
KJc MN/m ^{3/2} (ksi√in.)	Avg Min					
Orientation — No of Spec. (No. of He	eats)					
K _{IE} , MN/m ^{3/2} (ksi√in.)	Avg					
(From PTSC spec.)(No. of Spec. (No of He						

⁽a) Indicate specimen design and orientation for shear specimens:

⁽b) Indicate specimen design for K_{1c} data:
A corresponding average Charpy-V impact value of 99 Nm (73 ft-lb) was measured for stress-relieved specimens.

Alloy Designation: 9Ni Steel (Weld Metal)

Specification:

ASTM A353

Form:

Plate-MIG welded, Inconel 92, filler

Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)

Condition:

Plate-Double normalized at 1175 K (1650 F) and 1060 K (1450 F) and tempered at 840 K (1050 F); welded;

tested as welded

Testing Temperature, K (F)	297 (75)			77 (-320)		
Compression, Longitudina							
CYS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of H	eats)		į	į			
Ec, GN /m ² (10 ⁶ psi)	Avg Min						
No of Spec. (No of H	eats)					}	
Compression, Transverse		l					
CYS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of H			54				
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No of Spec. (No. of H	eats)		Ì				
Shear(a)			-				
SUS, MN/m ² (ksi)	Avg Min			ļ			
No of Spec. (No. of H							
G, GN/m ² (10 ⁶ psi)	Avg Min						}
No. of Spec. (No. of H							
Impact, Charpy V	ł						
Long., Nm(ft-lb)	Avg Min				134 (99)* 130 (96)		1
No. of Spec. (No. of H			Ì	J	>1		1
Trans., Nm(ft-lb)	Avg Min						ĺ
No. of Spec. (No. of H							
Fracture Toughness(b)			ŀ				
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min						
Orientation - No of Spec. (No. of H							
	E012)						
KIE, MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(No. of Spec. (No. of H	Avg -)Min eats)			-			

⁽a) Indicate specimen design and orientation for shear specimens:
(b) Indicate specimen design for K_{IC} data:
• A corresponding average Charpy-V impact value of 130 Nm (96 ft-lb) was measured for stress-relieved specimens.

Alloy Designation:

9Ni Steel

Specification:

Form: Thickness, cm (in.): Condition:

A553-I Plate 2.541 to 5.080 (1.001 to 2.000) 1075 K (1475 F),WQ; 840 K (1050 F), AC or WQ

Testing Temperature, K (F)		297 (75)	123	(-240)	108 (-265)	77 (-320)	
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg	765 (111)	1007	(146)	1034 (150)	1124 (163)	
	Min	710 (103)	924	(134)	965 (140)	1062 (154)	
Std. Deviation		30.1 (4.36)	}				
TYS, MN/m ² (ksi)	Avg	710 (103)	910	(132)	924 (134)	1000 (145)	
	Min	650 (94)	820	(119)	841 (122)	940 (134)	
Std Deviation		40.5 (5.87)				~-	
Elong, percent	Avg	25.7				26.0	
	Min	22.0	-	-	= ==	~-	
RA, percent	Avg	73.5					
	Min	72.0				5.0	
No of Spec. (No. of Heat	s) (15(6)	3	(3)	4(4)	5(4)	
E, GN/m ² (10 ⁶ psi)	Avg				ļ]	
	Min						
No. of Spec. (No. of Heat	S)						
Poisson's Ratio			111				
Work Hardening Coef							
2			1		}		
NTS, MN/m ² (ksi)	Avg				}		
K _t = No. of Spec. (No. of Heat:	Min						
	37				(
NTS, MN/m ² (ksi)	Avg				t III	1	
K _t = No. of Spec. (No. of Heat	Min s)		}				
	,						
Tension, Transverse							
TUS, MN/m ² (ksi)	Avg Min						
Std. Deviation							
TVO 4431/2 (1-3)			1				
TYS, MN/m ² (ksi)	Avg Min				n –		
Std. Deviation						11	
Clone percent	Avg						
Elong, percent	Min						
			1		1		
RA, percent	Avg						
No. of Spec (No. of Heat							
E, GN/m ² (10 ⁶ psi)	A						
E, Gra/m= (10° psi)	Avg Min		1		1	1	
No of Spec. (No. of Heat	s)		i				
Poisson's Ratio			1				
					}		
Work Hardening Coef							
NTS, MN/m ² (ksi)	Avg						
K _t =	Min						
No of Spec. (No. of Heat	s)						
NTS, MN/m ² (ksi)	Avg						
K _t =	Min						
No. of Spec. (No. of Heat	s)					ł	

Alloy Designation:

9Ni Steel

Specification:

A553-I

Thickness, cm (in.): Condition:

Plate 2.541 to 5.080 (1.001 to 2.000) 1075 K (1475 F), WQ; 840 K (1050 F), AC or WQ

Testing Temperature, K (F	1	297	(75)	 123	(-240)	108	(-265)	77	(-320)	
Compression, Longitudinal										
CYS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of He						}				
Ec, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of He	eats)									
Compression, Transverse			Ì					1		
CYS, MN/m ² (ksi)	Avg Min					}				
No. of Spec. (No. of He			= [
Ec, GN/m ² (10 ⁶ psi)	Avg Min		1							
No. of Spec. (No. of H				{		1				
Shear(a)				1					}	
SUS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of H	eats)								1	
G, GN/m ² (10 ⁶ psi)	Avg Min									
No of Spec. (No. of H	eats)									
Impact, Charpy V						1				
Long., Nm(ft-lb)	Avg Min	132 127	(97.8) (94.1)	102 70.1	(75.6) (51.9)	92.5 68.0	(68.5) (50.4)	70.2 49.0	(52.0) (36.3)	
No. of Spec, (No. of H		2	(2)	3	(3)	4	(4)	5	(5)	
Trans., Nm(ft·lb)	Avg									
No. of Spec. (No. of H	Min eats)									
Fracture Toughness(b)										
KIC MN/m3/2(ksi/in.)	Avg Min									
Orientation: -	eate)									
No. of Spec. (No. of H	ed(S)									
	Avg -)Min									
No. of Spec. (No. of H	eats)			1		ł		1		

References: 91978, 92996

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1C} data:

Alloy Designation:

9Ni Steel

Specification:

A 353

Form:

Thickness, cm (in.): Condition:

Plate 2.541 to 5.080 (1.001 to 2.000)

Double normalized at 1175 K (1650 F) and 1060 K (1450 F) and tempered at 840 K (1050 F)

Testing Temperature, K (F)	29	7 (75)		123	(-240)	108	(-265)	77	(-320)	
Tension, Longitudinal TUS, MN/m² (ksi) Std. Deviation	752 682	(109) (98.9)		1076 1091	(156) (151)	1090 1020	(158) (148)	1160 1090	(1 68) (158)	
	vg 647 498	(93.9) (72.2)		862 834	(125) (121)	841 717	(122) (104)	917 793	(133) (115)	
Elong, percent A	/g	23.7		_				1	-	
	/g			-	-	-		-	-	
No of Spec. (No of Heats)	5	(4)		2	(2)	3	(3)	3	(2)	
	r g in									
Poisson's Ratio										
Work Hardening Coef									-	
NTS, MN/m ² (ksi) A $K_t = M$ No. of Spec. (No. of Heats)	/g in									
	/g									
Tension, Transverse										
TUS, MN/m ² (ksi) A	/ g									
Std Deviation										
TYS, MN/m ² (ksi) A Std Deviation	rg in									
	/g		=							
RA, percent A	/g									
Mo. of Spec. (No. of Heats)	ın									
	19									
No of Spec. (No. of Heats)	in									
Poisson's Ratio										
Nork Hardening Coef										
NTS, MN/m^2 (ksi) A $K_t = M$ No of Spec. (No. of Heats)	-									
NTS, MN/m ² (ksi) A K _t = M										

Alloy Designation:

9Ni Steel

Specification:

A 353

Form:

Plate

Thickness, cm (in.): Condition:

2.541 to 5.080 (1.001 to 2.000)

Double normalized at 1175 K (1650 F) and 1060 K (1450 F) and tempered at 840 K (1050 F)

Testing Temperature, K (F)	297 (75)		 123	(-240)	108	(-265)	77	(-320)	
Compression, Longitudinal						140				
CYS, MN/m ² (ksi)	Avg Min								1	
No. of Spec. (No. of He	eats)									
Ec, GN/m ² (10 ⁶ psi)	Avg Min								ł	
No. of Spec. (No. of He	eats)								}	
Compression, Transverse									ł	
CYS, MN/m ² (ksi)	Avg Min		1			į				
No. of Spec. (No. of He										
Ec, GN/m ² (10 ⁶ psi)	Avg Min									
No of Spec. (No, of He	eats)								[
Shear(a)			1					ĺ	ĺ	
SUS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of He	eats)							-	,	
G, GN/m ² (10 ⁶ psi)	Avg Min									
No of Spec. (No. of He	eats)								i	
Impact, Charpy V			1]	
Long., Nm(ft-lb)	Avg	109 (80	7)	102	(75.6)	70.7	(52.4)	53.3	(39.5)	
No, of Spec. (No, of He	Min eats)	1		88.0	(65.2) (2)	52.0 4	(38.5) (4)	37.0 4	(27.4)	
Trans., Nm(ft-lb)	Avg Min									
No. of Spec. (No. of He									4	
Fracture Toughness(b)			İ						1	
K _{Ic} MN/m ^{3/2} (ksi√ in.)	Avg Min									
Orientation — No. of Spec. (No. of He	eats)									
K _{1E} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(–	Avg -)Min									
No. of Spec. (No. of He										

References: 91978, 92996

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{10} data:

Alloy Designation:

9Ni Steel

Specification:

A553-I

Form:

Thickness, cm (in.): Condition:

Plate
Over 5.080 (2.000)
1075 K (1475 F), WQ; 840 K (1050 F), AC or WQ

Testing Temperature, K (F)		297 (75)	108	(-265)	77 (-320)	
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg	758 (110)			1165 (169)	
Std Deviation	Min	710 (103)			1131 (164)	
TYS, MN/m ² (ksi)	Avg	628 (91.1) 600 (87.0)	834	(121)	869 (126) 841 (122)	
Std Deviation	141111	000 (07.07			047 (722)	
Elong, percent	Avg	31.7			30.0	
3.1	Min	27.0			29.0	
RA, percent	Avg	66.0				
No of Spec. (No, of Heat	Min	5 (5)	1		6 (6)	
	.5)					
E, GN/m ² (10 ⁶ psi)	Avg Min					
No of Spec. (No. of Heat						
Poisson's Ratio						
		}				
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avg		1			
K _t = No. of Spec. (No. of Heat	Min (s)					
NTS, MN/m2 (ksi)	Avg					
K _t =	Min					ĺ
No of Spec. (No of Heat	(s)		1			
Tension, Transverse						
TUS, MN/m ² (ksi)	Avg Min					
Std. Deviation	(4111					
TYS, MN/m ² (ksi)	Avg					
	Min					
Std Deviation						
Elong, percent	Avg					
RA, percent	Avg					
No. of Spec. (No. of Heat						
E, GN/m ² (10 ⁶ psi)	Avg					
No of Spec. (No of Heat	Min					
	.5/					
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avg					
Kt =	Min					
No. of Spec. (No. of Heat	S)					
NTS, MN/m ² (ksi)	Avg					
Kt = No of Spec. (No of Heat	Min s)					

Alloy Designation:

9Ni Steel

Specification:

A553-I

Form: Thickness, cm (in.): Condition:

Plate over 5,080 (2,000) 1075 K (1475 F), WQ, 840 K (1050 F), AC or WQ

Testing Temperature, K (F	1	297 (75)	 108	(-265)	77	(-320)			
Compression, Longitudinal					}				
CYS, MN/m ² (ksi)	Avg Min]				
No. of Spec. (No. of He									
Ec, GN/m ² (10 ⁶ psi)	Avg Min						11		
No. of Spec. (No. of He	ea(s)							1	
Compression, Transverse]								
CYS, MN/m ² (ksi)	Avg Min								
No. of Spec. (No. of Hi									
Ec, GN/m ² (10 ⁶ psi)	Avg Min								
No of Spec. (No. of H	eats)							[
Shear(a)			}						
SUS, MN/m ² (ksi)	Avg Min								
No. of Spec. (No. of He	eats)				ĺ				
G, GN/m ² (10 ⁶ psi)	Avg Min								
No. of Spec. (No. of H	eats)		1		Ì				
Impact, Charpy V			}		(1	
Long., Nm(ft-lb)	Avg Min		76.0	(56.3)	100 66.0	(74.4) (48.9)			
No. of Spec. (No. of H			1		4	(4)		1	
Trans., Nm(ft-lb)	Avg Min	Ì							
No. of Spec. (No. of H									
Fracture Toughness(b)					}				
J _{{c} KJ/m ² (inlb/in. ²)	Avg Min		430 422	(75.3) (73.9)	111 76	(19.4) (13.3)			
Orientation -			>1		>1				
No. of Spec, (No. of H	eats)								
K _{1E} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(-	Avg -)Min								
No. of Spec. (No. of H			1						

References: 92296, 96684

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1C} data:

Alloy Designation: 9Ni Steel

Specification: ASTM A353 Bar

Form:

Diameter: Condition: Up to 2.540 cm (1.000 in.) Double normalized at 1175 K (1650 F) and 1060 K (1450 F) and tempered at 840 K (1050 F)

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)	
Tension, Longitudinal										
TUS, MN/m ² (ksi)	Avg	865 855	(125)	1010	(146)	1235 1219	(179) (177)	1509 1501	(219) (218)	- Y
Std Deviation	Min	855	(124)	1005	(146)	1219	(1//)	1501	12101	
TYS, MN/m ² (ksi)	Avg	816	(118)	894	(130)	1101	(160)	1436	(208)	
Std Deviation	Min	808	(117)	880	(128)	1098	(159)	1423	(206)	
Elong, percent	Avg		24.2 23.8		25.4		6.7 5 7		8.3 3.5	
RA, percent	Avg		70.4	(67 <i>.</i> 5	6	0.6	4	7.8	
No of Spec. (No. of He	Min ats)	2	70.3	2	67.3 (1)	3	9.6	3	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min									
No of Spec. (No. of He										
Poisson's Ratio										
Work Hardening Coef									ł	
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min									
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min									

Alloy Designation: 9Ni Steel

 Specification:
 ASTM A553-I

 Form:
 Forgings

 Thickness, cm (in.):
 Over 5.080 (2.000)

 Condition:
 1075 K (1475 F), WQ; 840 K (1050 F), AC or WQ

Testing Temperature, K (F)	297	(75)	123	(-240)	108	(-265)	77	(-320)		
Tension, Longitudinal											
TUS, MN/m ² (ksi)	Avg Min	770	(112)	1060	(154)	1090	(158)	1210	(176)		
Std Deviation											
TYS, MN/m² (ksi)	Avg Min	650	(94)	770	(112)	800	(116)	920	(133)		
Std. Deviation											
Elong, percent	Avg Min										
RA, percent	Avg Min										
No. of Spec. (No. of Hea											
E, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of Hea											
Poisson's Ratio											
Work Hardening Coef											
NTS, MN/m ² (ksi)	Avg										
$K_t =$ No. of Spec. (No. of Hea	Min ats)										
NTS, MN/m^2 (ksi) $K_t =$	Avg Min										
No. of Spec. (No. of Hea											
Tension, Transverse											
TUS, MN/m ² (ksi)	Avg Min										
Std Deviation	A										
TYS, MN/m ² (ksi)	Avg Min										
Std. Deviation						1				1 1	
Elong, percent	Avg Min										
RA, percent	Avg Min										
No. of Spec. (No. of Hea											
E, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of Hea				ĺ							
Poisson's Ratio											
Work Hardening Coef											
NTS, MN/m² (ksi) K _t ≈ No. of Spec. (No. of Hea	Avg Min ets)										
NTS, MN/m ² (ksi)	Avg										
Kt = No. of Spec. (No. of Hea											

References: 91978

4901<

Alloy Designation:

9Ni Steel

Specification: Form:

ASTM A553-1

Thickness, cm (in.):

Condition:

Forgings Over 5.080 (2.000) 1075 K (1475 F), WQ; 840 K (1050 F), AC or WQ

Testing Temperature, K (F	-)	297 (75)	123 (-240) 108 (-265)	77 (-320)	
Compression, Longitudinal						
CYS, MN/m ² (ksi)	Avg Min		}			
No. of Spec. (No. of He	eats)	111				
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He	eats)		ł			
Compression, Transverse						
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of He	eats)					
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No of Spec. (No. of He	eats)					
Shear(a)				Ì		
SUS, MN/m ² (ksi)	Avg Min			_		
No. of Spec. (No. of He	eats)			1		
C, GN/m ² (10 ⁶ psi)	Avg Min]			
No. of Spec. (No. of He	eats)		}			
Impact, Charpy V]	}		
Long., Nm(ft-lb)	Avg Min	150 (111)	130 (96)	130 (96)	120 (89)	
No. of Spec. (No. of He		1	1	1	1	
Trans., Nm(ft-lb)	Avg Min					
No. of Spec. (No. of He						
Fracture Toughness(b)						
K _{1c} MN/m ^{3/2} (ksi/in.)	Avg Min					
Orientation: — Na. of Spec. (No. of He	eats)			= 1		
K _{1E} , MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(-	Avg -)Min					
No. of Spec. (No. of He						

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{IC} data:

Alloy Designation: 9Ni Steel

Specification:

ASTM A353

Form: Thickness, cm (in.): Condition:

Forgings Over 5.080 (2.000) Double normalized at 1175 K (1650 F) and 1060 K (1450 F) and tempered at 840 K (1050 F)

Testing Temperature, K (F)		297 (75)		108	(-265)	77	(-320)		
Compression, Longitudinal									
CYS, MN/m ² (ksi)	Avg Min							=	
No. of Spec. (No. of Hea	its)								
Ec, GN/m ² (10 ⁶ psi)	Avg Min								
No. of Spec. (No. of Hea	its)								
Compression, Transverse	ı			_					
CYS, MN/m ² (ksi)	Avg								
No. of Spec. (No. of Hea	ats)								
Ec, GN/m ² (10 ⁶ psi)	Avg Min								
No. of Spec. (No. of Hea	ets)								
Shear(a)	1								
SUS, MN/m ² (ksi)	Avg Min								
No. of Spec. (No. of Hea	ets)								
G, GN/m ² (10 ⁶ psi)	Avg Min								
No of Spec. (No. of Hea									
Impact, Charpy V	1								
Long., Nm(ft-lb)	Avg Min			66	(49)	73 48	(99) (65)		
No. of Spec. (No. of Hea				1		2	(2)		
Trans., Nm(ft-lb)	Avg Min								
No. of Spec. (No. of Hea									
Fracture Toughness(b)						[
K _{lc} MN/m ^{3/2} (ksi√ in.)	Avg Min								
Orientation: -									1
No. of Spec. (No. of Hea	ats)								
K _{IE} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(—	Avg)Min								
No. of Spec. (No. of Hea	ats)		1			Į.		ł:	1

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for $K_{\rm IC}$ data:

FIGURE 7.1.1-ME1. EFFECT OF TEMPERATURE ON THE STRENGTH OF 9Ni STEEL

FIGURE 7.1.1-ME2. FATIGUE CRACK GROWTH RATES OF 9Ni STEEL (ASTM A553-I) AT 297, 77 AND 4 K(94208D)

FIGURE 7.1.1-ME3. FATIGUE CRACK GROWTH RATE OF 9NI STEEL (ASTM 553-I) AT ROOM TEMPERATURE, 110 K (-261 F) and 77 K (-320 F) [96686]

FIGURE 7.1.1-ME4. FATIGUE LIFE CURVES FOR FLEXURAL (ROTATING BEAM) LOADING ON 1.269 cm (0.25 in.)-THICK NOTCHED SPECIMENS OF WELDED AND UNWELDED 9NI STEEL AT 77 K (-320 F) [88112]

TABLE 7.1.1-TR1

Alloy Designation: 9Ni Steel

Specification: ASTM A353

Specification: Form: Dimension: Condition:

Condition: Double Normalized and Tempered

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹ No. of Spec References: 90537	28.5	(16.5)	16.2	(9.37)								
Thermal Expansion (T ₂₇₃ to T) Longitudinal									ļ ļ			
Percent No. of Spec. References: 90537	0		- 0.16 1								;	
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu Ib ⁻¹ F ⁻¹ No of Spec. References:												
Ohm m Ohm circular mil ft ⁻¹ No of Spec. References:												

. . .

FIGURE 7.1.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR 9-Ni STEEL

7.1.1-37 (11/76)

493<

THERMAL EXPANSION VERSUS TEMPERATURE FOR 9 Ni STEEL FIGURE 7.1.1-E1.

Alloy Designation: 9Ni Steel

Specification:

ASTM A353

Form:

Plate

Thickness, max; cm (in.): 5.08 (2.0)

Condition:

Double normalized and tempered

Testing Temper- ature, K (F)	293 (68)	273 (32)	+73 (-148)	87 (-303)
Magnetic Properties				
Susceptibility, k	0.21	0.22	0.25	0.28
Permeability*, μ	15.21 × 10 ⁻⁷	15.28 x 10 ⁻⁷	15.68 × 10 ⁻⁷	16.08 × 10 ⁻⁷
Reference: 90537		1		

 $[*]B_{S}/H; H = 16,700 Oe$

Alloy Designation: 18Ni (200) Maraging Steel

Specification:

Form: Plate
Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)
Condition: Annealed 1090 K (1500 F) 1 hr, AC, aged 756 K (900 F) 3 or 4 hr

Testing Temperature, K (I	F)	297	(75)		77	(-320)	20	(-423)		
Tension, Longitudinal							i			11
TUS, MN/m ² (ksi)	Avg	1486	(216)		1952	(283)	2121	(308)		
Std. Deviation	Min	1470	(213)		1930	(280)	2050	(297)		
TYS, MN/m ² (ksi)	Avg Min	1449 1380	(210) (200)		1882 1855	(273) (269)	2115 2040	(307) (296)	1	
Std. Deviation	IVIIII	1300	(200)		1000	(203)	2040	(290)		
Elong, percent	Avg Min	9			8		5	167		
RA, percent	Avg Min									
No. of Spec. (No. of H		5	(2)		5	(2)	3	(1)		
E, GN/m ² (10 ⁶ psi)	Avg Min	186 185	(27.0) (26.9)		202 201	(29.3) (29.1)				
No. of Spec. (No. of H		2	(1)		2	(1)				
Poisson's Ratio										
Work Hardening Coef										· —
MTS, MN/m ² (ksi) K _t = 6.3 No. of Spec. (No. of He	Avg Min eats)	1850 1830 5	(268) (265) (1)		2450 2310 9	(355) (335) (1)	2480 2360 6	(359) (342) (1)		
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)							`		
Tension, Transverse]			i					_
TUS, MN/m ² (ksi)	Avg Min									
Std. Deviation				1	İ					
TYS, MN/m ² (ksi)	Avg Min									
Std. Deviation										
Elong, percent	Avg Min									
RA, percent	Avg Min			ļ						
No. of Spec. (No. of He										
E, GN/m ² (10 ⁶ psi)	Avg Min									
No. of Spec. (No. of He										
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)									V.
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min									

TABLE 7.1.2-ME1.1

Alloy Designation: 18Ni (200) Maraging Steel (Weld Metal)

Specification:

Form: Plate-TIG welded, 18Ni Maraging steel filler
Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)
Condition: Plate aged 760 K (905 F) 4 hr, AC; welded, tested as welded

Testing Temperature, K (F)	297 (75)	77 (-320)	
Tension, Longitudinal			
TUS, MN/m ² (ksi) Avg	1490 (216)	1900 (275)	
Std Deviation Min	1480 (215)	1850 (269)	
TYS, MN/m ² (ksi) Avg	1440 (209) 1430 (208)	1750 (254) 1590 (230)	
Std Deviation			
Elong, percent Avg Min			
RA, percent Avg			
No of Spec. (No. of Heats)	2 (1)	6 (1)	
E, CN/m ² (10 ⁶ psi) Avg	177 (25.7)	194 (28.2) 181 (26.2)	
No. of Spec. (No. of Heats)	1	5 (1)	
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m ² (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)			
Tension, Transverse			
TUS, MN/m ² (ksi) Avg Min Std. Deviation	F		
TYS, MN/m ² (ksi) Avg			
Min Std. Deviation			
Elong, percent Avg Min			
RA, percent Avg			
No. of Spec. (No. of Heats)			
E, GN/m ² (10 ⁶ psi) Avg Min			
No. of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m ² (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)			
NTS, MN/m^2 (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)			

References: 90115

502<

TABLE 7.1.2-ME2

Alloy Designation: 18Ni (200) Maraging Steel

Specification:

Form: Plate
Thickness cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: Solution treated and aged at 760 K (905 F) 4 hr

Testing Temperature, K (F)	297 (75)	 77 (-320)	
Tension, Longitudinal			
TUS, MN/m ² (ksi) Av	1569 (228)	2019 (293)	
Std Deviation	1530 (222)	1980 (288)	
TYS, MN/m ² (ksi) Av		1951 (283) 1910 (277)	
Std Deviation	1470 (2107	1510 (277)	
Elong, percent Av		13 12	
RA, percent Av			
No. of Spec. (No. of Heats)	4 (2)	4 (2)	
E, GN/m ² (10 ⁶ psi) Av		195 (23.2) 192 (27.9)	
No of Spec (No. of Heats)	4 (2)	4 (2)	
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m^2 (ksi) Av $K_t = Min$			
No. of Spec. (No. of Heats)			
NTS, MN/m ² (ksi) Av $K_t = MH$ No. of Spec. (No of Heats)			
Tension, Transverse			
TUS, MN/m ² (ksi) Av			
Std. Deviation			
TYS, MN/m ² (ksi) Av			
Std. Deviation			
Elong, percent Av			
RA, percent Av			
No. of Spec. (No. of Heats)			
E, GN/m ² (10 ⁶ psi) Av Mi			
No. of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m ² (ksi) Av			
Kt = Mil No of Spec. (No. of Heats)			
NTS, MN/m ² (ksi) Av			
K _t = Mil No of Spec. (No. of Heats)	1		
References: 90115	1	1	503<

Alloy Designation:

18Ni (200) Maraging Steel

Specification:

Form: Thickness, cm (in.): Condition:

Plate 1.270 to 2.540 (0.500 to 1.000) Aged at 760 K (905 F) 3 hr.

Testing Temperature, K (F	=)	297 (75)	77 (-320)				
Tension, Longitudinal						.00	
TUS, MN/m ² (ksi)	Avg		2274 (329.8)				
Std. Deviation	Min		2250 (326.4)				
TYS, MN/m ² (ksi)	Avg		2214 (321.1)				
Std. Deviation	Min		2198 (318.8)				
Elong, percent	Avg Min		6.4 6.0				
RA, percent	Avg		45.0	1		{	
No. of Spec. (No. of He	Min eats)		40.7				
E, GN/m ² (10 ⁶ psi)	Avg						
No. of Spec. (No. of He	Min eats)						
Poisson's Ratio							
Work Har ening Coef							
NTS, MN/m2 (ksi)	Avg			į			
K_t = No. of Spec. (No. of He	Min eats)						
NTS, MN/m ² (ksi)	Avg		1				
K _t = No. of Spec. (No. of He	Min eats)						
Tension, Transverse	1						
TUS, MN/m ² (ksi)	Avg						
Std. Deviation	Min						
TYS, MN/m ² (ksi)	Avg						{
Std Deviation	Min				1		
							ł
Elong, percent	Avg M₁n						
RA, percent	Avg					1	
No. of Spec. (No. of He	Min						
E, GN/m ² (10 ⁶ psi)	Avg		F. 1				
No. of Spec. (No. of He	Min eats)						
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi)	Avg						
K _t = No. of Spec. (No. of He	Min eats)						
NTS, MN/m ² (ksi)	Avg						
K _t ≈ No of Spec, (No. of He	Min eats)		1				

TABLE 7.1.2-ME3

Alloy Designation:

18Ni (200) Maraging Steel

Specification:

Form:

Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)

Condition:

Annealed and aged at 760 K (905 F) 3-4 hr.

Testing Temperature, K (F)	297 (75)	77 (-320)			
Compression, Longitudinal						
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of He	eats)					
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He	eats)					
Compression, Transverse						
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of He	eats)					
Ec, GN/m ² (10 ⁶ psi)	Avg Min			111		
No. of Spec. (No. of He	eats)					
Shear(a)						
SUS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of He	eats)					
G, GN/m ² (10 ⁶ psi)	Avg Min					
No of Spec. (No. of He	eats)					
Impact, Charpy V	ļ				j	
Long., Nm(ft-lb)	Avg Min			}		
No. of Spec. (No. of He	eats)					1
Trans., Nm(ft-lb)	Avg Min		7-	пп		
No. of Spec. (No. of He	eats)					
Fracture Toughness(b)	1					
K _{1c} MN/m ^{3/2} (ksi√in.)	Avg Min		36.8 (40.2) 28.8 (31.6)			
Orientation: — No. of Spec. (No. of He	atc)		10 (2)			
	20(5)		10 (2)			
K _{1E} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(- No. of Spec. (No. of He			77.4 (70.8) 68.7 (62.9) 6 (2)			

 ⁽a) Indicate specimen design and orientation for shear specimens:
 (b) Indicate specimen design for K_{IC} data. Compact Tension

TABLE 7.1.2-ME3.1

Alloy Designation: 18Ni (200) Maraging Steel (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Plate-TIG welded, 18Ni Maraging steel filler 1.270 to 2.540 (0.500 to 1.000) Plate aged 760 K (905 F) 4 hr, AC; welded, tested as welded

Testing Temperature, K (F)	297	(75)		17	77	(-320)	
Tension, Longitudinal							
TUS, MN/m ² (ksi) Avg		(221)			1980	(287)	
Std Deviation Min	1517	(220)			1970	(286)	
TYS, MN/m ² (ksi) Avg Min Std. Deviation		(204) (200)		1	1850	(269)	
Elong, percent Avg							
RA, percent Avg			Ì				
No. of Spec. (No. of Heats)	3	(1)		2	2	(1)	
E, GN/m ² (10 ⁶ psi) Avg	172	(26.1) (25.0)			180 170	(26.1) (24.6)	
No. of Spec. (No. of Heats)	3	(1)					
Poisson's Ratio				Ш			
Work Hardening Coef			}				
NTS, MN/m^2 (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)							
NTS, MN/m^2 (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)							
Tension, Transverse							
TUS, MN/m² (ksi) Avg							
Std Deviation				_ ' =			
TYS, MN/m² (ksi) Avg Min							
Std Deviation							
Elong, percent Avg							
RA, percent Avg							
No. of Spec. (No. of Heats)							
E, GN/m ² (10 ⁶ psi) Avg							1
No. of Spec. (No. of Heats)			ĺ				
Poisson's Ratio							
Vork Hardening Coef							
NTS, MN/m^2 (ksi) Avg $K_t = Min$							
No. of Spec. (No. of Heats)				į			
NTS, MN/r_0^2 (ksi) Avg $K_t = Min$						1	

TABLE 7.1.2-ME4

Alloy Designation: 18Ni (200) Maraging Steel

Specification:

Form:

Plate

Thickness, cm (in.): Over 5.080 (2.000)
Condition: Annealed 1175 K (1650 F) 2 hr, AC, annealed 1060 K (1450 F) 2 hr, AC, aged 756 K (900 F) 2 hr

Testing Temperature K (F)		297 (75)	195 (-108)	77 (-320)		
	Avg Min					
Std Deviation		1				
TYS, MN/m ² (ksi) Std. Deviation	Avg Min					
Elong, percent	Avg Min					
A, percent	Avg					
No. of Spec. (No. of Heats)	Min)					
, GN/m ² (10 ⁶ psi)	Avg					
No. of Spec. (No. of Heats)						
oisson's Ratio						
ork Hardening Coef						
	Avg Min					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats)	Avg Min					
ension, Transverse						
	Avg Min	1460 (212)	1610 (234)	1930 (280)		
Std. Deviation						
	Avg Min	1420 (206)	1580 (230)	1870 (271)		
Std. Deviation						
• .	Avg Min					
RA, percent	Avg	66	64	60		
No. of Spec. (No. of Heats)		2 (1)	2 (1)	2 (1)		
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Heats)			1			
oisson's Ratio						
ork Hardening Coef						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats)	Avg Min					
NTS, MN/m ² (ksi) K _t = No of Spec. (No. of Heats)	Ava					

TABLE 7.1.2-ME5

Alloy Designation: 18Ni (200) Maraging Steel

Specification:

Form:

Plate Over 5.080 (2.000) Thickness, cm (in.):

Annealed 1175 K (1650 F) 2 hr, AC, annealed 1060 K (1450 F) 2 hr, AC, aged 756 K (900 F) 2 hr Condition:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	 	-
Compression, Longitudinal									
CYS, MN/m ² (ksi)	Avg								
No. of Spec. (No. of Hea									
Ec, GN/m ² (10 ⁶ psi)	Avg Min								
No of Spec. (No. of Hea	ts)					ŧ		}	
Compression, Transverse						}			
CYS, MN/m ² (ksi)	Avg								
No of Spec. (No. of Hea									
Ec, GN/m ² (10 ⁶ psi)	Avg Min								
No. of Spec. (No. of Hea	ts)								
Shear(a)									
SUS, MN/m² (ksi) No of Spec. (No. of Hea	Avg Min								
G, GN/m ² (10 ⁶ psi)	Avg								
No of Spec. (No. of Hea	Min								
Impact, Charpy V						1			
Long., Nm(ft-lb)	Avg							ì	
No. of Spec. (No. of Hea	Min its)								
Trans., Nm(ft-lb)	Avg Min							}	}
No. of Spec. (No of Hea									
Fracture Toughness(b)									
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min	186 184	(170) (168)	179 173	(164) (158)	85.0 80.3	(78.7) (73.5)		
Orientation T - L No. of Spec. (No. of Hea		3	(1)	3	(1)	3	(1)		
KIE, MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(— No of Spec. (No of Hea	Avg)Min								

References: 80994

(a) Indicate specimen design and orientation for shear specimens:

(b) Indicate specimen design for K_{IC} data: Precracked bend specimens.

FIGURE 7.1.2-ME1. EFFECT OF TEMPERATURE ON THE STRENGTH OF 18Ni (200) MARAGING STEEL PLATE

TABLE 7.1.2-TR1

Alloy Designation:

Iron Alloy 18Ni (200) Maraging Steel

Specification: Form: Dimension: Condition:

273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452
15.2 14.2	(8.79) (8.21)	8.1 7.7	(4.7)	6.7 6.5	(3.9)	2.0	(1.2)	1.0	(0.58)	0.37	(0.21)
2		2		2		2		2		2	
								•			
				Ì							
	15.2 14.2	15.2 (8.79) 14.2 (8.21)	15.2 8.1 (8.79) 14.2 7.7 (8.21)	15.2 8.1 (4.7) 14.2 (8.21) 7.7 (4.4)	15.2 (8.79) (4.7) (4.4) 6.5 (8.21) (4.4)	15.2 (8.79) (4.7) (3.9) 14.2 (8.21) (4.4) (5.5 (3.8)	15.2 (8.79) (4.7) (3.9) (1.9 (8.21) (4.4) (3.8)	15.2 (8.79) (4.7) (3.9) (1.2) (1.1) (8.21) (8.21) (4.4) (3.8) (3.8) (1.1)	15.2 (8.79) (4.7) (3.9) (1.2) (1.1) (4.4) (3.8) (1.1)	15.2 (8.79) (4.7) (3.9) (1.2) (0.58) (1.1) (0.53) (1.1)	15.2 (8.79) (4.7) (3.9) (1.2) (0.58) (1.1) (0.53) (0.53) (1.1) (0.53)

⁽¹⁾ Material measured was Iron Alloy 18Ni (300) Maraging Steel.
(2) Perpendicular to Plate.
(3) In rolling direction.

FIGURE 7.1.2-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR IRON ALLOY 18NI (200) MARAGING STEEL (Material measured was Iron Alloy 18Ni (300) Maraging Steel) 51 / <

Alloy Designation:

1010 Steel

G-10100

Specification: Form: Dimension: Condition:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity Watts m-1 K-1 Btu hr-1 ft-1 F-1 No of Spec. References: 90224	66.0	(38.2)										
Thermal Expansion (T273 to T) Longitudinal											İ	
Percent No. of Spec. References:												
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu Ib ⁻¹ F ⁻¹ No. of Spec. References:												
Ohm m Ohm circular mil ft ⁻¹ No. of Spec. References:												

FIGURE 7.3.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR 1010 STEEL

7.3.1-2 (11/76)

Alloy Designation: Armco Iron

Specification:

Form:

Thickness, cm (in.): Condition:

Bar Up to 2.540 (1.000) Annealed and furnace cooled to 0.025 mm (10⁻⁵ in.) grain diam.

Testing Temperature, K (F)	297 (75)	26	(-412)	24	(416)	17	(-429)	12	(-440)	4	(-452)
Tension, Longitudinal												
TUS, MN/m2 (ksi)	Avg Min											
Std Deviation	MILL											
TYS, MN/m ² (ksi)	Avg Min		879.1	(127.5)	893.6	(129.6)	809.4	(117.4)	923.2	(133.9)	935.6 909.4	(135 .7
Std Deviation								1.				
Elong, percent	Avg				İ							
■ M. = 11 = 00	Min				}							
RA, percent	Avg Min											
No. of Spec, (No. of He	eats)		1		1		1		1		4	(1)
E, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of He												
Poisson's Ratio					İ							
Work Hardening Coef												
NTS, MN/m ² (ksi)	Avg)							
K_t = No. of Spec. (No. of He	Min eats)											
NTS, MN/m ² (ksi)	Avg											
$K_t =$ No. of Spec. (No. of He	Min (eats)											
Tension, Transverse											}	
TUS, MN/m ² (ksi)	Avg Min											
Std. Deviation												
TYS, MN/m ² (ksi)	Avg							1			1	
Std Deviation	Min				}		111				j	
Elong, percent	Avg Min											
RA, percent	Avg											
No. of Spec. (No. of He	Min eats)											
E, GN/m ² (10 ⁶ psi)	Avg											
No of Spec. (No. of He	Min sets)											
Poisson's Ratio												
Work Hardening Coef												
NTS, MN/m ² (ksi)	Avg											
Kt = No. of Spec. (No. of He	Min eats)											
NTS, MN/m ² (ksi)	Avg											
K _t =	Min eats)										1 :	

TABLE 7.4.1-TR1

Alloy Designation:

Armco Iron

Specification: Form:

Dimension: Condition:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-37C)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m-1 K-1	76,1		95.4		112		67.5		34.2			
Btu hr ⁻¹ ft ⁻¹ F-1 No of Spec.	3	(44.0)	3	(55.2)	3	(64.8)	3	(39.0)	3	(19.8)		
References: 90230	3		3		3		3		"		1	
Thermal Expansion (T ₂₇₃ to T) ongitudinal		:										
Percent												
No. of Spec. References:												
The remeda,												
pecific Heat												
Joules kg ⁻¹ K ⁻¹												
Btu Ib-1 F-1 No. of Spec.												
References:												
lectrical Resistivity												
Ohm m	9.59 x 10	-8	2.08 x	10 ⁻⁸	9.05 x 1	0.9	7.49 x 1	0-9	7.43 x	10 ⁻⁹	7.43 x	10 ⁻⁹
Ohm circu'ar mil ft ⁻¹		(57.7)	-	(12.5)		(5.44)		(4.51)		(4.47)		(4.47)
No. of Spec. References: 90230, 96877	4		4		4		4		4		3	
30230, 30077	1								}		}	

FIGURE 7.4.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR ARMCO IRON

FIGURE 7.4.1-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR ARMCO IRON

54.7-4 (11/76)

Alloy Designation:

5Ni Steel

Specification:

ASTM A645

Form: Plate
Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)
Condition: Quenched, temperized, and reversion annealed per spec.

Testing Temperature, K (F)	297 (75)		77 (-320)	
Fatigue, Axial Loading		}		
S _N at 10 ⁵ cycler, MN/m ² (ksi) Loading frequency Hz with, R = and K _t = No. of S-N Curves (No. of Heats)				
Ratio S _N /TUS at 10 ⁵ cycles				
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No of S-N Curves (No. of Heats)				= -
Ratio S _N /TUS at 10 ⁶ cycles				
$S_{f\downarrow}$ at 10^7 cycles, MM/m^2 (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)				
Ratio S _N /TUS at 10 ⁷ cycles				
Fatigue, Flexural Loading				
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)				
Ratio S _N /TUS at 10 ⁵ cycles				
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency 166 Hz with R = -1 and K _t = 2.7 No. of S-N Curves (No. of Heats)			228 (33.0)	
Ratio S _N /TUS at 10 ⁷ cycles			0,21	
S _N at 10 ⁸ cycles, MN/m ² (ksi) Loading frequency 166 Hz with R = -1 and K _t = 2.7 No. of S-N Curves (No. of Heats)			200 (29)	
Ratio S _N /TUS at 10 ⁸ cycles			0.18	

Alloy Designation: 5Ni Steel

ASTM A645 Specification:

Form: Plate

Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)

Condition: Quenched, temperized and reversion annealed per spec.

Testing Temperature, K (F))	297 (75)	 105	(-270)	77	(-320)		
Compression, Longitudinal								
CYS, MN/m ² (ksi)	Avg Min							
No. of Spec. (No. of He	ats)		ì					
Ec, GN /m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of He	ats)							
Compression, Transverse	1		İ				1	
CYS, MN/m ² (ksi)	Avg Min							
No. of Spec. (No. of He	ats)							
Ec, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of He	ats)		Ì					
Shear(a)					i			
SUS, MN/m ² (ksi)	Avg Min							
No. of Spec. (No. of He	eats)				}		(
G, GN/m ² (10 ⁶ psi)	Avg Min				j			
No. of Spec. (No. of He	ats)		}				į	
Impact, Charpy V *	1				}		ĺ	
Long., Nm(ft-lb)	Avg Min		65.3 58	(49.4) (43)	63.5 55	(47.0) (41)		
No. of Spec. (No. of He	ats)		5	(1)	6	(1)		
Trans., Nm(ft-lb)	Avg Min		54.0 43	(40.0) (32.0)	51.3 41	(38.0) (30)		
No. of Spec. (No. of He			5	(1)	6	(1)	ĺ	
Fracture Toughness(b)								
K _{Ic} MN/m ^{3/2} (ksi√ in.)	Avg Min		67.2 57.1	(384) (326)	7.7 6.1	(44) (35)		
Orientation. — No. of Spec. (No. of He	ats)		2	>1	>	·1		
K _{JE} , MN/m ^{3/2} (ksi/jin.) (From PTSC spec.)(—	Avg)Min							
No. of Spec. (No. of He								

Referances: 96684, 96687

 ⁽a) Indicate specimen design and orientation for shear specimens:
 (b) Indicate specimen design for K_{1c} data:
 Data are for half-size specimens; for full-size specimens, average longitudinal values are given as 81 Nm (60 ft-lb) and 112 Nm (83.0 ft-lb) for temperatures of 105 K and 77 K, respectively.

Alloy Designation: 5Ni Steel

Specification:

ASTM A645 Plate-Pulsed MIG welded, Inconel 92 filler 0.635 to 1.269 (0.250 to 0.499)

Form: Thickness, cm (in.):

Condition:

Plate Quenched, temperized, and reversion annealed per spec.; welded, and tested as welded

Testing Temperature, K (F)	297 (75)	77 (-320)	
Fatigue, Axial Loading			
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency With R = and K _t =			
No of S-N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁵ cycles			
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁶ cycles			
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁷ cycles			
Fatigue, Flexural Loading			
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁵ cycles			
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency 166 Hz with R = .1 and K _t = 2.7 No. of S·N Curves (No. of Heats)		255 (37)	
Ratio S _N /TUS at 10 ⁷ cycles		0.28	
S _N at 10 ⁸ cycles, MN/m ² (ksi) Loading frequency 166 Hz with R = -1 and K _t = 2.7 No. of S-N Curves (No. of Heats)		1	
Ratio S _N /TUS at 10 ⁸ cycles		0.27	

5Ni Steel (Weld Metal) Alloy Designation:

ASTM A645 Plate-shielded MIG welded (Incoweld Bm covered electrode) 0.635 to 1.269 (0.250 to 0.499)

Specification: Form: Thickness, cm (in.):

Condition:

Quenched, temperized, and reversion annealed per spec.; welded, tested as welded

Testing Temperature, K (F)	297 (75)	77 (-320)	
Fatigue, Axial Loading			
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No of S N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁵ cycles			
S_N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁶ cycles			
S_N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No of S-N Curves (No. of Heats)			
Ratio S _N /TUS at 10 ⁷ cycles			
Fatigue, Flexural Loading SN at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S.N. Curves (No. of Heats)			
Ratio S _N /TUS at 1G ⁵ cycles			==
SN at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency 166 Hz with R = .1 and K _t = 2.7 No. of S-N Curves (No. of Heats)		255 (37)	
Ratio S _N /TUS at 16 ⁷ cycles		0.28	
S _N at 10 ^S cycles, MN/m ² (ksi) Loading frequency 166Hz with R = .1 and K _t = 2.7 No. of S-N Curves (No. of Heats)		241 (35)	
Ratio S _N /TUS at 10 ⁸ cycles	==	0.27	

Alloy Designation: 5Ni Steel

ASTM A645 Specification:

Form: Plate

Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: Quenched, temperized, and reversion annealed per spec.

Testing Temperature, K (F	-)	297 (75)	77 (-320)	
Tension, Longitudinal				
TUS, MN/m ² (ksi)	Avg	724 (105)	1120 (163)	
Std Deviation	Min	689 (100) 21,2 (3.07)	1110 (160)	
YS, MN/m ² (ksi)	Avg	572 (82.9)	807 (117)	
Std. Deviation	Min	490 (71) 45.0 (6.53)	745 (108)	
Elong, percent	Avg	31.2	31.0	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Min	28	29	
RA, percent	Avg	72.8		
No of Spec. (No of He	Min eats)	13 (2)	5 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min			
No of Spec. No. of He				
Poissor's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi)	Avg		1 1	
K_t = No. of Spec. (No. of He	Min eats)			
NTS, MN/m ² (ksi)	Avg			
Kt =	Min			
No. of Spec. (No. of He Tension, Transverse	eatsi			
TU3, MN/m ² (ksi)	Avg			
Std Deviation	Min			
TYS, MN/m ² (ksi)	Avg			
Std Deviation				
Elong, percent	Avg			
	Min			
RA, percent	Avg			
No. of Spec. (No. of He	Min eats)			
E, GN/m ² (10 ⁶ psi)	Avg			
No of Spec. (No. of He	Min eats)			
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi)	Avg			
Kt ≈ No of Spec. (No. of He	Min eats)			
NTS, MN/m ² (ksi)	Avg			
Kt = No of Spec. (No. of He	Min			- 100

Alloy Designation:

5Ni Steel

Specification:

ASTM A645

Form:

Plate

Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: Quenched, temperized, and reversion annealed per spec.

			(-270)		(-320)			
								= 1
	_				10 11			
		}						
'								
		}						
	11							
		1						
		1			1			
1								
		1						
				ł				
		130	(98)	119 105	(88.5) (78)			
		1		6	(1)			
		110	(84) (76)	61. 7	(45.7) (28)			
		2	(1)	6	(1)			
		1		{	ĺ			
			130 1 1 110 100 2	130 (98) 1 110 (84) 100 (76) 2 (1)	130 (98) 119 105 1 (84) 61.7 100 (76) 38 2 (1) 6	130 (98) 119 (88.5) 105 (78) 1 (6 (1) 110 (84) 61.7 (45.7) 100 (76) 38 (28) 2 (1) 6 (1)	130 (98) 119 (88.5) 105 (78) 1 6 (1) 110 (84) 61.7 (45.7) 100 (76) 38 (28) 2 (1) 6 (1)	130 (98) 119 (88.5) 105 (78) 1 (10 (84) 61.7 (45.7) 100 (76) 38 (28) 2 (1) 6 (1)

References: 96686, 96687

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{Ic} data:

Alloy Designation:

5Ni Steel

Specification:

ASTM A645

Form:

Plate-Pulse MIG welded, Inconel 92(1) filler

Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: Quenched, temperized, and rever

Quenched, temperized, and reversion annealed per spec.; welded, and tested as welded

Testing Temperature, K (F)		297 (75)	195	(-108)	144	(-200)	77 (-320)	
Tension, Longitudinal					1			
TUS, MN/m ² (ksi)	Avg Min			(115.9) (115.7)		(124.0) (123.4)	979.1 (142.0) 978.4 (141.9)	
Std Deviation								
TYS, MN/m ² (ksi)	Avg Min							
Std. Deviation								
Elong, percent	Avg Mit.							
RA, percent	Avg Min							
No. of Spec. (No. of Heats			2	(1)	2	(1)	2 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of Heats	s)							
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m ² (ksi) K _t =	Avg Min							
No. of Spec. (No. of Heats								
NTS, MN/m ² (ksi) K _t =	Avg Min							
No. of Spec. (No. of Heats								
Tension, Transverse								
TUS, MN/m ² (ksi) Std Deviation	Avg Min							
TYS, MN/m ² (ksi)	Avg					П		
Std Deviation	Min							
Elong, percent	Avg							
	Min							
RA, percent	Avg Mia						E	
No. of Spec. (No. of Heats	- 1							
E, GN/m ² (10 ⁶ psi)	Avg Min							
No of Spec. (No of Heats								
oisson's Ratio								
Verk Hardening Coef								
NTS, MN/m ² (ksi)	Avg Min							
K _t = No. of Spec. (No. of Heats							TI .	
NTS, MN/m ² (ksi)	Avg							
Kt = No. of Spec. (No. of Heats	Min							

Alloy Designation: 5Ni Steel

Specification: ASTM A645

Plate

Thickness, cm (in.): Condition: 2.541 to 5.080 (1.001 to 2.000)

Quenched, tempered, and reversion annealed per spec.

Testing Temperature, K (F)	297	(75)	195	(-108)	110	(-270)	77 (-3	20)	
Tension, Longitudinal										
TUS, MN/m ² (ksi)	Avg Min	708.8 687	(102.8 (99.6)	843.9	(122.4)	930.8	(135.0)	1137 (164 1136 (164		
Std Deviation	MILI	00,	(55.5)					1100 (10	,	
TYS, MN/m ² (ksi)	Avg	487 468	(70.6) (67.9)	434	(63.0)	572 521	(82.9) (75.6)	726.0 (109 719.8 (104		
Std. Deviation										
Elong, percent	Avg Min	32 29	2.0		30	1	28	29.5 29		
RA, percent	Avg Min	69).7)		70	6	68	62		
No. of Spec. (No of He		4	(3)	1		2	(2)	3 (3)		
E, GN/m ² (10 ⁶ psi)	Avg Min	198	(28.7)					212 (30.	7)	=
No. of Spec. (No. of He	ats)	1						1		
Poisson's Ratio										
Nork Hardening Coef										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ats)									
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min	:								
Tension, Transverse						-			-	
TUS, MN/m ² (ksi)	Avg Min						ŧ			
Std Deviation										
TYS, MN/m ² (ksi)	Avg Min									
Std. Deviation										
Elong, percent	Avg Min									
RA, percent	Avg Min									
No. of Spec. (No. of Hea		}								
E, GN/m ² (10 ⁶ psi)	Avg Min									
No of Spec, (No. of Hea										
oisson's Ratio										
Nork Hardening Coef		1								
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ats)									
NTS, MN/m² (ksi) K _t =	Avg Min									

Alloy Designation:

5Ni Steel

Specification:

ASTM A645

Form: Plate
Thickness, cm (in.): 2.541 to 5.080 (1.001 to 2.000)

Condition:

Quenched, temperized, and reversion annealed per spec.

Testing Temperature, K (F)	297 (75)	195	(-108)	110	(-270)	77	(-320)		4	(-452)
Compression, Longitudinal											
CYS, MN/m ² (ksi)	Avg Min				}					77—	
No. of Spec. (No. of He											
Ec, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of He	eats)										
Compression, Transverse							ł				
CYS, MN/m ² (ksi)	Avg Min										
No. of Spec. (No. of He	1										
Ec, GN/m ² (10 ⁶ psi)	Avg Min										
No of Spec. (No. of He	eats)										
Shear(a)											
SUS, MN/m ² (ksi)	Avg Min									Ì	
No. of Spec. (No. of He	eats)				•						
G, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of H	eats)								}		
Impact, Charpy V											
Long., Nm(ft-lb)	Avg Min					(85.7) (84)		(58. 7) (57)			
No of Spec. (No. of He	eats)				3	(1)	3	(1)			
Trans., Nm(ft-lb)	Avg Min					(89.7) (82)		(40.0) (36)	 		
No of Spec. (No. of He					3	(1)	3	(1)		1	
Fracture Toughness(b)										-	
J _{Ic} KJ/m ² (inlb/in. ²)	Avg Min	(1270	D)	(925) (400)		(971) (774)		(176) (91)			(865) (710)
Orientation: — No. of Spec. (No. of He	(atee	4 (1)	4	(2)	3	(1)	4	(2)		2	(1)
	5015/	4 (1)	7	(2)		\ • <i>1</i>		121		1	117
K _{1E} , MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(- No. of Spec. (No. of He	Avg -)Min						i i				

References: 96684, 96699

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{IC} data:

Alloy Designation:

5Ni Steel (Weld Metal)

Specification: ASTM A645
Form: Plate Pulse MIG welded, Inconel 92 filler
Thickness, cm (in.): 2.541 to 5.080 (1.001 to 2.000)

Condition:

Quenched, temperized, and reversion annealed per spec.; welded, tested as welded

Testing Temperature, K (F)		297 (75)	195	(-108)	144	(-200)	77 (-320)	
Tension, Longitudinal								
TiJS, MN/m ² (ksi)	Avg		788.1	(114.3)		(131.5) (128.8)	1010 (146.5) 994.9 (144.3)	
Std Deviation								
TYS, MN/m ² (ksi) Std. Deviation	Avg Min							
Elong, percent	Avg Min							
RA, percent	Avg				}			
No of Spec. (No. of Heat	Min s)		1		2	(1)	2 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of Heat								
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat:	Avg Min							
NTS, MN/m ² (ksi) K _t = No of Spec. (No of Heat	Avg Min							
Tension, Transverse			ļ					[
TUS, MN/m² (ksi) Std Deviation	Avg Min							
								III III
TYS, MN/m² (ksi) Std Deviation	Avg Min							
Elong, percent	Avg Min							
RA, percent	Avg							
No. of Spec. (No. of Heats	Min s)		}					
E, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of Heat:	1							
Poisson's Ratio	l							
Work Hardening Coef								
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min							
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min							

Alloy Designation:

5Ni Steel

Specification:

ASTM A645

Form: Plate-Submerged arc welded, Inco 82 electrode, Incoflux 4
Thickness, cm (in.): 2.541 to 5.080 (1.001 to 2.000)

Condition:

Quenched, temperized, and reversion annealed; welded, tested as welded

Testing Temperature, K (I	F)	297 (75)		77 (-320)		
Compression, Longitudina	!					Ì
CYS, MN/m ² (ksi)	Avg Min			}		
No. of Spec. (No. of H						
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He	eats)					
Compression, Transverse	1					
CYS, MN/m ² (ksi)	Avg Min	1				
No. of Spec. (No. of H						
Ec, GN/m ² (10 ⁶ psi)	Avg Min				}	
No. of Spec. (No. of H	eats)					
Shear(a)	1					
SUS, MN/m ² (ksi)	Avg Min					
No of Spec. (No. of H	eats)					
G, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of H	eats)					
Impact, Charpy V	-					
Long., Nm(ft-lb)	Avg Min			85.6 (63.4) 50 (37)		
No. of Spec. (No. of H				8 (1)		
Trans., Nm(ft-lb)	Avg Min					
No. of Spec. (No of H						
Fracture Toughness(b)						
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min					
Orientation —	/220					
No. of Spec. (No. of H	eats)					
(Avg -)Min					
No. of Spec. (No. of H	eats)		1		1	1

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{IC} data:

FIGURE 7.4.3-ME1. FATIGUE CRACK GROWTH RATE CURVES FOR 5NI STEEL (ASTM A645)
PLATE AT ROOM TEMPERATURE, 110 K, and 77 K [96686]
Heat Treatment: Quenched, temperized, and reversion annealed per spec.

5:9<

FIGURE 7.4.3-ME2. FATIGUE CRACK GROWTH RATE CURVES FOR 5NI STEEL (ASTM A645)
PLATE AT ROOM TEMPERATURE, 110 K, and 77 K [96699]

TABLE 7.4.3-TR1

Alloy Designation:

Iron Alloy Fe-5Ni

Specification:

Form: Dimension: Condition:

Testing Temperature K (F)	273	(32)	00r	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m ⁻¹ K ⁻¹	37.5		22.0		13.0	-11	5.70		2.80		1.00	
Btu hr-1 ft-1 F-1		(21.7)		(12.7)		(7.52)	2	(3.30)	2	(1.62)	2	(0.578)
No of Spec. References: 90170	2		2		2		2		2		2	
Thermal Expansion (T273 to T) Longitudinal												
Percent												
No. of Spec	1				1						1	
References:	1											
Specific Heat	1											
Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹												
				-							1	
No of Spec. References:							ł				ļ	
11010101003.												
Electrical Resistivity											ĺ	
Ohm m												
Ohm circular mil ft ⁻¹											[
No. of Spec. References:	1						0					

FIGURE 7.4.3-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR IRON ALLOY Fe-5Ni

Alloy Designation:

Fe(47-50)Ni Alloy

Specification: Form: Dimension: Condition:

Testing Temperature K (F)		273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity													
Watts m-1 K-1 (1) Btu hr-1 ft-1 F-1		20 0	(11.6)	13.9	(8.04)	8.70	(5.03)	4.00	(2.31)	2.00	(1.16)	0.72	(0.42)
Watts m ⁻¹ K-1(2) Btu hr ⁻¹ ft ⁻¹ F-1 No. of Spec. References: 96888		16.7 2	(9.66)	11.3	(6.53)	7,10	(4.11)	3.35	(1.94)	1.70	(0.98)	0.61	(0.35)
Thermal Expansion (T ₂₇₃ t Longitudinal	<u>ю Т)</u>												
Percent No of Spec. References: 74405		0		-0.151 1		-0.172 1		-0.175 1		-0.175 1		-0.175 1	
Specific Heat													
Joules kg ⁻¹ K ⁻¹ Btu Ib ⁻¹ F ⁻¹													
No of Spec. References:													
Electrical Resistivity													
Ohm m Ohm circular mil ft-1 No of Spec. References: 79561		39.2 x	10 ⁻⁸ (236)	21.0 x	10-8 (126)	18.4 x	10 ⁻⁸ (111)	17.6 x	10 ^{.8} (106)	17.5 x	10 ⁻⁸ (105)	17.4 x 1	(105)
Magnetothermal	Н,									}			
W Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ it ⁻¹ F ⁻¹	tesla 0							3.60	(2.08)	2.00	(1.16)	0.76	(0.44)
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹	2							3.50	(2.02)	1.92	(1.11)	0.73	(0.42)
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹	4							3.50	(2.02)	1.92	(1.11)	0.73	(0.42)
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹	8							1	(2.02)	1.92	(1.11)	0.73	(0.42)
No. of Spec. References: 96888								,				'	

⁽¹⁾ High Perm 49Fe-97.5Ni (perpendicular to plate) (2) High Perm 49Fe-47.5Ni (in rolling direction)

FIGURE 7.4.4-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR IRON ALLOY Fe(47-50)Ni

7.4.4-2 (11/76)

FIGURE 7.4.4-C2. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR IRON ALLOY Fe(47-50)NI AT SEVERAL MAGNETIC FIELDS

FIGURE 7.4.4-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR IRON ALLOY Fe(47-50)Ni

7.4.4-4 (11/76)

FIGURE 7.4.4-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR IRON ALLOY (47-50)Ni

INDEX TO MATERIAL CODES FOR SECTION 8.0

STAINLESS STEELS

MATERIALS	MATERIAL CODE
TYPE 301	8.1.1
TYPE 303	8.1.7
TYPE 304	8.1.2
TYPE 304L	8.1.3
TYPE 310	8.1.4
TYPE 310S	8.1.8
TYPE 316	8.1.5
TYPE 321	8.1.6
TYPE 347	8.1.9
TYPE 410	8.1.10
TYPE 416	8.1.11
A-286	8.2.1
KROMARC-58	8.2.2
ARMCO 21-6-9	8.2.3
ARMCO 22-13-5	8.2.4

TABLE 8.1.1-ME3

Alloy Designation:

Type 301 Stainless Steel

S30100

Specification:

MIL-S-5059

Form:

Sheet

Thickness, cm (in.): Up to 0.099 (0.039)
Condition: Extra hard (XH) cold

Extra hard (XH) cold rolled (60 percent or more reduction)

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	
Tension, Longitudinal										į
TUS, MN/m2 (ksi)	Avg	1558	(226)	1735	(252)	2241	(325)	2234	(324)	1
Std Deviation	Min	1393 123.3	(202) (17.88)	1662 64.3	(241) (9.33)	2041 91.7	(296) (13.30)	1937	(281) (20.85)	
TYS, MN/m ² (ksi)	Avg	1455	(211)	1543	(224)	1765	(256)	1951	(283)	
Std Deviation	Min	1241	(180) (19.08)	1427 90.9	(207) (13.2)	1462	(212) (25.77)	1393	(202) (34.94)	
Elong, percent	Avg Min		5.6 .0		7.3 4	20	0.1		8.4 0.5	
RA, percent	Avg		.0				•		0.5	
	Min									1
No. of Spec. (No. of Hea	ts)	64	(14)	11	(3)	45	(11)	74	(15)	
E, GN/m ² (10 ⁶ psi)	Avg Min	180 168	(26.15) (24.4)	190 180	(27.5) (26.1)	189.6 177.8	(28.5) (25.8)	202 179.3	(29.29) (26.0)	
No. of Spec. (No. of Hea	ts)	23	(4)	5	(1)	23	(4)	29	(4)	
Poisson's Ratio				ĺ						
Work Hardening Coef										
NTS, MN/m ² (ksi)	Avg	1602	(232)	1720	(250)	2034	(295)	1078	(301)	İ
K _t = 6.3 No. of Spec. (No. of Hea	Min	1427 32	(207) (8)	1710 7	(248) (2)	1868 22	(271) (6)	1882 27	(273) (8)	
NTS, MN/m ² (ksi)	Avg	1404	(203.7)	1430	(207)	1503	(218)	1342	(194.7)	ļ
K _t = 19+ No of Spec. (No. of Hea	Min ts)	1034	(150) (5)	1269 5	(184) (1)	1255 26	(182) (3)	931 23	(135) (3)	
Tension, Transverse		}								
TUS, MN/m ² (ksi)	Avg	1673	(242.71	1835	(266)	2269.7	(329.2)	2299	(333.46)	
Cad Daysana	Min	1496	(217)	1827	(265)	2130.5	(309)	2048	(297)	
Std. Deviation		153.5	(22.27)	10.8	(1.57)	80.8	(11.72)	100.6	(14.59)	
TYS, MN/m ² (ksi)	Avg	1383 1165	(200.58 (169)	1318 1207	(191) (175)	1 700	(246.63 (219)	2 003 1560	(290.56) (232)	
Std. Deviation		191	(27.69)	70.3	(10.2)		(24.62)			
Elong, percent	Avg Min	1	. 0 5.0	I	1,9 1.0		6.2 2.0	ı	6.0 1.0	
RA, percent	Avg								i	
No. of Spec. (No. of Hea	Min ts)	38	(10)	7	(2)	27	(6)	39	(9)	
E, GN/m ² (10 ⁶ psi)	Avg Min		(29.82) (26.2)	204 193	(29.5) (28.0)	217 190	(31,52) (27.6)	224 196	(32.48) (28.4)	
No. of Spec. (No. of Hea		17	(2)	5	(1)	17	(2)	17	(2)	
Poisson's Ratio								}		
Work Hardening Coef										
NTS, MN/m^2 (ksi) $K_t = 6.3$	Avg Min	1492 1324	(216) (192)	1541 1420	(224) (206)	1728 1462	(251) (212)	1549 1393	(225) (202)	
No. of Spec. (No. of Hea		17	(6)	8	(2)	16	(5)	16	(4)	
NTS, MN/m ² (ksi)	Avg	1067	(154.75	1001	(145)	948	(137.5)	896	(130)	
$K_t = 19+$	Min	744.6	(108)	924	(134)	758.4	(110)	669	(97)	

References: 39077, 40953, 48652, 49088, 54986, 57635, 59767, 59901, 61918, 70906, 73890

TABLE 8.1.1-ME4

Type 301 Stainless Steel Alloy Designation:

Specification: MIL-S-5059

Form: Sheet
Thickness, cm (in.): Up to 0.099 (0.039)
Condition: Extra hard (XH) cold rolled (60 percent or more reduction)

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)	
Fatigue, Flexural Loading									
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R =-1 and K _t = 1	717	(104)	724	(105)	945	(137)	738	(107)	
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)	1	(1)	
Ratio SN/1 US at 10 ⁵ cycles	0.	47		0.42	(0.43		0.33	
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = -1 and K _t = 1	496	(72)	448	(65)	793	(115)	669	(97)	
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)	1	(1)	
Ratio S _N /TUS at 10 ⁶ cycles	0.	33		0.26		0.36		0.30	
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No_of S·N Curves (No_of Heats) Ratio S _N /TUS at 10 ⁷ cycles Fatigue, Flexural Loading, Notched	Specim	ens							
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency With R = -1 and K _t = 3.1	386	(56)	469	(68)	455	(66)	345	(50)	
No of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)	1	(1)	
S _N at 19 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with B = -1 and K ₀ = 3.1	172	(25)	214	(31)	303	(44)			:
	172	(25)	214	(31)	303	(44) (1)	1	(1)	
Loading frequency Hz with R = -1 and K _t = 3.1							1	(1)	

References: 49048

TABLE 8.1,1-ME4.1

Alloy Designation: Type 301 Stainless Steel (Weld Metal)

S30100

Specification:

Form: Sheet-TIG welded, no filler
Thickness, cm (in.): Up to 0.099 (0.039)
Condition: Up to 40% cold rolled, welded, and tested as welded

Testing Temperature, K (F)		29	7 (75)	195	(-108)		77	(-320)	20	(-423)	
Tension, Longitudinal											
TUS, MN/m ² (ksi)	Avg	924	(134)	1470	(214)		1940		1770	(236)	
Std Deviation	Min	917	(133)	1450	(211)		1890	(274)	1720	(250)	
TYS, MN/m ² (ksi)	Avg										
Std Deviation	Min										
Elong, percent	Avg Min		21 20		18 17			1 4 14		3	
RA, percent	Avg										
No of Spec. (No. of Heat	Min	3	(1)	5	(1)		4	(1)	3	(1)	
E, GN/m ² (10 ⁶ psi)	Avg		***					1-1		,	
	Min										
No of Spec. (No. of Heat	S}										
Poisson's Ratio											
Work Hardening Coef											
NTS, MN/m ² (ksi)	Avg								1		
K _t = No. of Spec. (No. of Heat	Min s)										
NTS, MN/m ² (ksi)	Avg			I			Ì		İ		
K _t = No. of Spec. (No. of Heat	Min s)										
Tension, Transverse									1		1
TUS, MN/m ² (ksi)	Avg										
Std Deviation	141111										
TYS, MN/m ² (ksi)	Avg										
Std Deviation	Min										
Elong, percent	Avg Min										
RA, percent	Avg					_					11
No. of Spec. (No. of Heat	Min s)								1		
E, GN/m ² (10 ⁶ psi)	Avg										
No. of Spec. (No. of Heat	Min s)										
Poisson's Ratio											
Work Hardening Coef											
NTS, MN/m ² (ksi)	Avg										
K _t = No of Spec. (No. of Heat:	Min s)										
NTS, MN/m² (ksi)	Avg										
K _t = No of Spec. (No of Heat:	Min			1							

TABLE 8.1.1-ME4,2

Alloy Designation:

Type 301 Stainless Steel (Weld Metal)

\$30100

Specification:

Form: Sheet-TIG welded, no filler
Thickness, cm (in.): Up to 0.099 (0.039)
Condition: Up to 0.099 welded and tested as welded

Testing Temperature, K (F)	297 (75) ٧	195 (-108)	77 (-320)	20 (-423)	
Tension, Longitudinal					
TUS, MN/m ² (ksi) Av.		1489 (215.9) 1427 ^ (207)	2 909 (2 91.4) 1944 (282)	1536 (222.8) 1220 (177)	
Std Deviation	81.4 (11.8)	46.4 (6.73)	46.7 (6.77)	161 (23.3)	
TYS, MN/m ² (ksi) Av					
Std Deviation					
Elong, percent Av.		7.2 5.0	13.8 10.0	2.7 1.0	
RA, percent Av					
No of Spec. (No. of Heats)	15 (5)	11 (3)	15 (5)	16 (5)	
E, GN/m ² (10 ⁶ psi) Av	,				
Mil No. of Spec. (No. of Heats)					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m^2 (ksi) Av $K_t = Mir$					
No. of Spec. (No. of Heats)	'				
NTS, MN/m ² (ksi) Av. $K_t = Mir$ No. of Spec. (No. of Heats)					
Tension, Transverse					
TUS, MN/m ² (ksi) Avg Mir Std. Deviation		1489 (215.9) 1448 (210)	1980 (287.2) 1944 (282) 27.7 (4.02)	1461 (211.9) 1179 (171) 190 (27.6)	
TYS, MN/m² (ksi) Avg					
Mir Std Deviation					
	20	0.0	7.0	4.0	
Elong, percent Avg		3.6 2.0	7.6 4.0	1.6 1.0	
RA, percent Avg					
No. of Spec. (No. of Heats)	10 (4)	7 (2)	10 (4)	10 (4)	
E, GN/m ² (10 ⁶ psi) Avg					
No. of Spec. (No. of Heats)					
Poisson's Ratio					
Nork Hardening Coef					
NTS, MN/m² (ksi) Avg					
K _t = Min No of Spec. (No. of Heats)	4				
NTS, MN/m² (ksi) Avg					
K _t = Min No. of Spec. (No. of Heats)					

References: 39429, 48652

TABLE 8.1.1-ME4.3

Alloy Designation: Type 301 Stainless Steel (Weld Metal) S30100

Specification:

Form:

Sheet-TIG welded, no filler

Thickness, cm (in.): Condition:

Up to 0.099 (0.039)
Sheet 80% cold rolled, welded, and tested as welded

Testing Temperature, K (F)	29	7 (75)		ļ	77	(-320)	20	(-423)	
	Avg 917 Min 889	(133) (129)			1940 1920	(281) (278)		(284) (267)	
Std Deviation									
	Avg Min								
Std. Deviation					1				
	Avg Min	10 6				4 2		5	
	Avg								
No of Spec. (No. of Heats)	Min 3	(1)			4	(1)	2	(1)	
	Avg Min								
No. of Spec. (No. of Heats)									
Poisson's Ratio					1				
Work Hardening Coef									
	Avg Min								
NTS, MN/m² (ksi)	Avg Min								
Tension, Transverse							1		
TUS, MN/m ² (ksi)	Avg Min								
Std. Deviation	į			3 7-5					
	Avg Min								
Std Deviation			}						
-	Avg Min								
	Avg Min								
No. of Spec. (No. of Heats)									
	Avg Min								
No. of Spec. (No. of Heats)									
Poisson's Ratio									
Work Hardening Coef									
	Avg Min								
NTS, MN/m² (ksi)	Avg								
K _t = I No of Spec. (No. of Heats)	Min								

TABLE 8.1.1-ME4.4

Alloy Designation: Type 301 Stainless Steel S30100

Specification:

Form: Sheet

Thickness, cm (in.): Up to 0.099 (0.039)

Condition: Cryostretched to 932 MN/m² (135 ksi) at 77 K (-320 F); simulated resin cure cycled 340 K (150 F) 3 hr. +

Std Deviation TYS, MN/m² (ksi) Std Deviation Elong, percent RA, percent No. of Spec. (No. of Heats) E, GN/m² (106 psi)	Avg 140 Min 137 Avg 119 Min 116 Avg Min Avg Min 3 Avg 144 Min 132	9 (173.9) 5 (169.0) 13.6		77 (-320) 1955 (283.5) 1931 (280.0) 1351 (195.9) 1310 (190.0) 23.4	
TUS, MN/m ² (ksi) Std Deviation TYS, MN/m ² (ksi) Std Deviation Elong, percent RA, percent No. of Spec. (No. of Heats) E, GN/m ² (10 ⁶ psi)	Avg 119 Min Avg Min Avg Min Avg Min 132 Avg 144 Min 132	9 (173.9) 5 (169.0) 13.6		1931 (280.0) 1351 (195.9) 1310 (190.0)	
TUS, MN/m ² (ksi) Std Deviation TYS, MN/m ² (ksi) Std Deviation Elong, percent RA, percent No. of Spec. (No. of Heats) E, GN/m ² (10 ⁶ psi)	Avg 119 Min Avg Min Avg Min Avg Min 132 Avg 144 Min 132	9 (173.9) 5 (169.0) 13.6		1931 (280.0) 1351 (195.9) 1310 (190.0)	
Std Deviation TYS, MN/m² (ksi) Std Deviation Elong, percent RA, percent No. of Spec. (No. of Heats) E, GN/m² (106 psi)	Avg Min Avg Min) 3 Avg 144 Min 132	9 (173.9) 5 (169.0) 13.6		1310 (190.0)	
Std. Deviation Elong, percent RA, percent No. of Spec. (No. of Heats) E, GN/m ² (10 ⁶ psi)	Avg Min Avg Min) 3 Avg 144 Min 132	13.6		1310 (190.0)	
Elong, percent RA, percent No. of Spec. (No. of Heats) E, GN/m ² (10 ⁶ psi)	Avg Min) 3 Avg Min) 3 Avg 144 Min 132	13.6			
RA, percent No. of Spec. (No. of Heats) E, GN/m ² (10 ⁶ psi)	Avg Min 3 Avg 144 Min 132	(1)		23.4	
No. of Spec. (No. of Heats) E, GN/m ² (10 ⁶ psi)	Min 3 Avg 144 Min 132			1	
No. of Spec. (No. of Heats) E, GN/m ² (10 ⁶ psi)	Avg 144 Min 132		i		
	Min 132	(00.0)	,	2 (1)	
No of Spec. (No. of Heats)) 3			168 (24.4) 138 (20.0)	
		(1)		12 (1)	
Poisson's Ratio		1			
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg				
K _t = No. of Spec. (No. of Heats)	Min)				
	Avg				
K _t = No. of Spec. (No. of Heats)	Min)				
Tension, Transverse					
	Avg				
Std Deviation	Min				
	Avg Min				
Std. Deviation		1			
	Avg Min				
	Avg Min				
No. of Spec. (No. of Heats))				
•	Avg				
No. of Spec. (No. of Heats)			}		
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg				
	Min				
	Avg Min				

References: 87612

(a) Specimens subjected to simulated sizing load to 1442 MN/m² (209.2 ksi) at 77 K (-320 F) prior to room temperature tests.

TABLE 8.1.1-ME7

Type 301 Stainless Steel Alloy Designation:

Specification: MIL-S-5059C Form: Sheet

Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: Extra hard (XH) cold rolled

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Tension, Longitudinal												
TUS, MN/m ² (ksi)	Avg	1431	(208)	1678	(243)	2210	(320)	2212	(321)	2140	(310)	
Std Deviation	Min	1351 59.9	(196) (8.69)	1655 16.7	(240) (2.43)	73.1	(296) (10.6)	2151 42.7	(312) (6.20)	2103	(305)	
TYS, MN/m ² (ksi)	Avg Min	1267 1138	(184) (165)	1258 1207	(182) (175)	1459 1207	(212) (175)	1658 1489	(240) (216)	1934 1882	(280) (273)	
Std Deviation		75.8	(11.0)	51.7	(7.50)	147	(21.3)	132	(19.1)			
Elong, percent	A.g Min		1.8 4		7.3 6		3 6		6.8 5	2	2.3	
RA, percent	Avg			ĺ								
No. of Spec. (No. of He	Min ats)	20	(7)	13	(5)	18	(7)	14	(5)	3	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min	172 171	(25.0) (24.8)	172 167	(25.0) (24.3)	166 165	(24.1) (23.9)	178 162	(25.8) (23.5)			
No. of Spec. (No. of He		3	(1)	3	(1)	3	(1)	3	(1)			
Poisson's Ratio												
Work Hardening Coef												
NTS, MN/m ² (ksi)	Avg	1604	(233)	1641	(238)	1857	(269)	1700	(246)			
$K_t = 6.3$ No. of Spec. (No. of He	Min ats)	1510	(219)	1572	(228) (4)	1793	(260) (4)	1413	(205)			ga
NTS, $MM/\pi i^2$ (ksi) $K_1 = 19+$	Avg Min	1517	(220)			1627	(236)	1606	(233)			
No of Spec. (No. of He		3	(1)			3	(1)	3	(1)			
Tension, Transverse					= -,							
TUS, MN/m ² (ksi)	Avg	1505	(218)	1713	(248)	2125	(308)	2053	(298)			
Std. Deviation	Min	1476 29 0	(214) (4 21)	1689 20.8	(245) (3.02)	1841 146	(267) (21.2)	1717 166	(249) (24.1)			
TYS, MN/m ² (ksi)	Avg Min	1189 1158	(172) (168)	1178 1165	(171) (169)	1416 1255	(205)	1666 1489	(242) (216)			
Std Deviation		28.1	(4.07)	9.4	(1.36)	153	(22.2)	145	(21.0)			
Elong, percent	Avg Min	9 7	.4	1	23.7 23		9.5	2	.3			
RA, percent	Avg Min											
No. of Spec. (No. of Hea		9	(4)	8	(3)	10	(4)	9	(4)			
E, GN/m ² (10 ⁶ psi)	Avg Min											
No of Spec. (No of Hea												
Poisson's Ratio												
Work Hardening Coef												
NTS, MN/m ² (ksi) $K_t = 6.3$ No. of Spec. (No. of Hea	Avg Min	1551 1455 6	(225) (211) (3)	1626 1600 8	(236) (232) (3)	1644 1531 6	(238) (222) (3)	1119 1069 6	(162) (155) (3)			
NTS, MN/m² (ksi)	Avg	1138	(165)			1117	(162)	958	(139)			
$K_{t} = 19+$ No of Spec. (No. of Hea	Min	3	(1)			3	(1)	3	(1)			54.5<
Pafaranas: 27146 20420		40000		7								949

TABLE 8.1.1-ME7.1

Alloy Designation:

Type 301 Stainless Steel (Weld Metal)

S30100

Specification:

Form:

Sheet-TIG welded, no filler

Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)

Condition:

Sheet 60% cold rolled, welded, and tested as welded

Testing Temperature, K (F	=)	297	(75)	195	(-108)	 77	(-320)	20	(-423)	
Tension, Longitudinal										
TUS, MN/m ² (ksi)	Avg	957.7	(138.9)	1486	(215.5)	2006	(290.9)	1824	(264.5)	
Std Deviation	Min	924 21.9	(134) (3.18)	1475 6.7	(214) (0.97)	1965 30.2	(285) (4.38)		(199) (31.3)	
TYS, MN/m ² (ksi)	Avg			}						
Std Deviation	Min							Į.		
Elong, percent	Avg Min). 7 3.5		18.7 16		1 8.4 15	9	.58	
PA, percent	Avg									
No of Spec. (No. of He	Min eats)	13	(1)	13	(1)	13	(1)	13	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min									ļ
No. of Spec. (No. of He						1				{ {
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m ² (ksi)	Avg									
$K_t =$ No. of Spec. (No. of He	Min eats)					Ì				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min									
Tension, Transverse										
TUS, MN/m ² (ksi)	Avg Min									
Std. Deviation										
TYS, MN/m ² (ksi)	Avg									
Std. Deviation				1						
Elong, percent	Avg Mtn									
RA, percent	Avg Min									
No. of Spec. (No. of He										
E, GN/m ² (10 ⁶ psi)	Avg Min									1
No of Spec. (No. of He								11		
Poisson's Ratio										
Work Hardening Coef										
NTS, MN/m ² (ksi) K _t =	Avg Min									
No. of Spec. (No. of He										
NTS, MN/m ² (ksi) K _t =	Avg Min eats)									

TABLE 8.1.1-ME7.2

Alloy Designation: Type 301 Stainless Steel S30100

Specification:

Form:

Sheet

Thickness, cm (in.): 0.320 to 0.634 (0.126 to 0.249)
Condition: Cryogenically stretched at 77 K (-320 F)

Testing Temperature, K (F)	297 (75)		77 (-320)	20 (-423)
Tension, Longitudinal				
TUS, MN/m ² (ksi)	in 1686 (244.5)		2138 (310.1) 2123 (307.9)	1453 (355.8) 2392 (346.9)
Std Deviation				
	Nyg 1649 (239.1)		2113 (306.4) 2085 (302.4)	2418 (350.7) 2356 (341.7)
Std. Deviation				
	7.8 7.0		12.3 9.0	3.5 2.8
	wg 34.8		41.1 35.9	30.0 27.4
No. of Spec. (No. of Heats)	6 (1)		6 (1)	6 (1)
	wg 188 (27.2)		204 (29.6)	204 (29.6)
No of Spec. (No. of Heats)	6 (1)		6 (1)	6 (1)
Poisson's Ratio	0.32		0.28	0.37
Work Hardening Coef				P.
	vg lin			
No. of Spec. (No. of Heats)				
	lvg lin			
Tension, Transverse				
N	wg 1662 (241.1) 1 1624 (235.6)		2174 (315.3) 2158 (313.0)	2435 (353.2) 2408 (349.3)
Std. Deviation				
	wg 1579 (229.0) In 1565 (227.0)		2077 (301.2) 2051 (297.5)	2328 (337.7) 2269 (329.1)
Std. Deviation				
	7.1 5.8		11.6 11.0	3.3 2.8
	vg 28.1 fin 22.8		31.1 28.4	11.0 6.7
No. of Spec. (No. of Heats)	6 (1)		6 (1)	5 (1)
	vg 190 (27.6)		204 (29.6)	205 (29.7)
No of Spec. (No. of Heats)	6 (1)		6 (1)	5 (1)
Poisson's Ratio	0.31	_	0.30	0.32
Work Hardening Coef				
and the second s	vg in			
	vg lin			

TABLE 8.1.1-ME8

Alloy Designation. Type 301 Stainless Steel

Specification:

Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: Annealed

Testing Temperature, K (F)	297 (75)		166 (-160)	77 (-320)	4 (-452)
Tension, Longitudinal					
TUS, MN/m ² (ksi) Avg	958 (139)		1475 (214)	1860 (270)	2030 (294)
Min Std. Deviation					
TYS, MN/m ² (ksi) Avg					
Std Deviation Min					
Elong, percent Avg Min	53		33	32	26
RA, percent Avg	68		61	53	47
No. of Spec. (No. of Heats)	(1)	0.1	(1)	(1)	(1)
E, GN/m ² (10 ⁶ psi) Avg Min		Ш			
No. of Spec. (No. of Heats)		11			
Poisson's Ratio		1			
Work Hardening Coef					
NTS, MN/m ² (ksi) Avg K _t = 6.3 Min	662 (96.0)		1300 (188)	993 (144)	924 (134)
No. of Spec. (No. of Heats)	(1)	}	(1)	(1)	(1)
NTS, MN/m ² (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)					
Tension, Transverse					
TUS, MN/m ² (ksi) Avg Min					,
Std Deviation					
TYS, MN/m ² (ksi) Avg					
Std Deviation					
Elong, percent Avg					
RA, percent Avg					
No. of Spec. (No. of Heats)					
E, GN/m ² (10 ⁶ psi) Avg					
No. of Spec. (No. of Heats)					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)					
NTS, MN/m² (ksi) Avg Kt = Min					

TABLE 8.1.1-ME9

Alloy Designation:

Type 301 Stainless Steel

Specification:

Form:

1.270 to 2.540 (0.500 to 1.000) Annealed

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297	(75)	133	(-220)	120	(-244)	73	(-328)	10	(-441)	
Compression, Longitudinal												
CYS, MN/m ² (ksi)	Avg											
No. of Spec. (No. of Heats	Min s)											
Ec, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of Heats	s)											
Compression, Transverse						}			ļ		1	
CYS, MN/m² (ksi)	Avg					}						
No. of Spec. (No. of Heats	Min s)											
Ec, GN/m ² (10 ⁶ psi)	Avg											
No. of Spec. (No. of Heats									1		}	
Shear ^(a)												
SUS, MN/m ² (ksi)	Avg										}	
No. of Spec. (No. of Heats						}						
G, GN/m ² (10 ⁶ psi)	Avg								ļ		}	
No. of Spec. (No. of Heat:	s)											
Impact, Charpy V, Testing T	emp.	İ		Ì					ł			
Long., J(ft-lb)	Avg	294+	(217+)	294+	(217+)	144	(106)	144	(106)	111	(82)	
No of Spec. (No. of Heats			(1)		(1)		(1)	}	(1)		(1)	
Trans., J(ft-lb)	Avg Min											
No of Spec. (No. of Heats												
Fracture Toughness(b)												
K _{Jc} MN/m ^{3/2} (ksi√ in.)	Avg Min			E								
Orientation No. of Spec. (No. of Heat:	s)											
KIE, MN/m ^{3/2} (ksi/jin.) (From PTSC spec.)(Avg)Min											

References: 52856

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1c} data:

TABLE 8.1.1-ME9.1

Alloy Designation:

Type 301 Stainless Steel

S30100

Specification:

Thickness, cm (in.): Condition:

Plate-MIG welded, type 308 electrode 1.270 to 2.540 (0.500 to 1.000) Plate Welded, annealed 1366 K (2000 F) one hr, WQ, and tested as quenched

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	4 (-452)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	612 (88.7)	1082 (157.0)	1296 (188.0)	1269 (184.0)
Std Deviation	Min				
TYS, MN/m ² (ksi)	Avg Min				
Std Deviation	IAHII				
Elong, percent	Avg Min	34.0	25.0	16.0	15.0
RA, percent	Avg Min	58.0	41.0	21.0	19.5
No. of Spec (No. of Hea	ts)	1	1	1	1
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hea	ts)				
Poisson's Ratio					
Nork Hardening Coef					
NTS, MN/m² (ksi)	Avg	648 (94.0)	858.4 (124.5)	941.1 (136.5)	1124 (163.0)
$K_t = 6.3$ No. of Spec. (No. of Hea	Min ts)	1	1	1	1
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ts)				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg Min				
Std. Deviation					
TYS, MN/m² (ksi)	Avg Min				
Std. Deviation					
Elong, percent	Avg Min				
RA, percent	Avg Min				
No. of Spec. (No. of Hea	ts)				
E, GN/m ² (10 ⁶ psi)	Avg Min				
No of Spec (No of Hea					
oisson's Ratio					
Vork Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min				
					1
NTS, MN/m ² (ksi) $K_t =$ No of Spec. (No. of Heal	Avg Min ts)				

References: 52856

559<

FIGURE 8. 1, 1-ME1. EFFECT OF TEMPERATURE ON THE STRENGTH OF TYPE 301 STAINLESS STEEL

FIGURE 8.1.1-ME2. FATIGUE LIFE CURVES FOR AXIAL LOADING ON LONGITUDINAL SPECIMENS OF EXTRA HARD COLD ROLLED TYPE 301 STAINLESS STEEL SHEET 0.056 CM (0.022 IN.) THICK AT FREQUENCIES OF 3.3 AND 0.27 HERTZ AT R = 0.14

Reference: 70906

FIGURE 8.1.1-ME3. FATIGUE CRACK GROWTH RATE CURVES FOR SPECIMENS OF CRYOSTRETCHED 301 STAINLESS STEEL AT ROOM TEMPERATURE AND 77 K (-320 F) [87612]

[sheet cryostretched to 932 MN/m 2 (135 ksi) at 77 k (-320 F); simulated resin cure cycle 340 K (150 F) 3 hr + 420 K (300 F) 5 hr]

TABLE 8.1.1-TR1

Alloy Designation: Type 301 Stainless Steel

Specification: Form: Dimension: Condition: Annealed

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452
Thermal Conductivity Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F-1 No of Spec. References:												
Thermal Expansion (T ₂₇₃ to T) Longitudinal												
Percent No of Spec References: 48571, 90208	0 2		- 0.211		-0.230 1		-0.232 1					
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu Ib ⁻¹ F ⁻¹ No. of Spec. References:	000											
Ohm m Ohm circular mil ft ⁻¹ No. of Spec. References:												

TABLE 8.1.2-ME1

Alloy Designation: Type 304 Stainless Steel

Specification: AMS-5513, MIL-S-5059C

Form: She

Thickness, cm (in.): Up to 0.099 (0.039)
Condition: Hard cold rolled

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)			
Tension, Longitudinal												
TUS, MN/m ² (ksi)	Avg	1320	(191)	1469	(213)	1904	(276)	2015	(292)			
Std. Deviation	Min	1310	(190)	1455	(211)	1882	(273)	1910	(277)			
		1102	(172)	1206	(100)	1424	(200)	1550	(226)			
TYS, MN/m ² (ksi)	Avg	1193	(173) (170)	1296 1248	(188) (181)	1434 1358	(208) (197)	1558	(226) (212)			
Std Deviation				İ				}				
Elong, percent	Avg		2.7		.6		8.6		.8			
	Min	2	1.5	8	1.5	2	8	1	.5			
RA, percent	Avg											
No. of Spec. (No. of He	Min ats)	5	(1)	5	(1)	5	(1)	6	(1)			
E, GN/m ² (10 ⁶ psi)	Avg	178	(25.9)	185	(26.9)	201	(29.1)	210	(30.5)			
L, GIV/III- (10- psi)	Min	174	(25.3)	182	(26.4)	198	(28.8)	204	(29.6)		ł	
No of Spec. (No. of He	ats)	5	(1)	5	(1)	5	(1)	5	(1)		Ì	
Poisson's Ratio												
Work Hardening Coef								ļ		•		
NTS, MN/m ² (ksi)	Avg	1462	(212)	1593	(231)	1910	(277)	2158	(313)			
$K_t = 6.3$	Min	1420	(206)	1572	(228)	1889	(274)	2117	(307)			
No. of Spec. (No. of Hea	ats)	5	(1)	5	(1)	5	(1)	5	{1}		1	
NTS, MN/m ² (ksi)	Avg	1158	(168)	1303	(189)	1620	(235)	1585	(230)			
$K_t = 19+$ No. of Spec. (No. of Hea	Min ats)	1117	(162)	1268	(184)	1565	(227)	1524 5	(221)		1	
	1007				(- /				, . ,		-	
Tension, Transverse TUS, MN/m ² (ksi)	Ava	1438	(209)	1601	(232)	1868	(271)	2155	(313)		1	
103, 14114/111- (KSI)	Avg Min	1427	(207)	1565	(227)	1848	(268)	2130	(309)			
Std Deviation												
TYS, MN/m ² (ksi)	Avg	1179	(171)	1331	(193)	1476	(214)	1558	(226)			
Std Deviation	Min	1165	(169)	1296	(188)	1462	(212)	1517	(220)			
						1 .		١.	•			
Elong, percent	Avg Min		. 9 l.5		7.1 8.0	1	2.9 1.5		.0			
RA, percent	Avg			İ								
	Min											
No. of Spec. (No. of Hea	ats)	5	(1)	5	(1)	5	(1)	5	(1)			
E, GN/m ² (10 ⁶ psi)	Avg	193	(28.0)		(28.9)	207	(30.0)	214	(31.1)			
No of Spec. (No of Hea	Min ats)	189 5	(27.4)	195	(28.3) (1)	204 5	(29.6)	209 5	(30.3)			
Poisson's Ratio												
											1	
Work Hardening Coef												
NTS, MN/m ² (ksi)	Avg	1200	(174)	1400	(203)	1689	(245)	1903	(276)			
K _t = 6.3 No. of Spec. (No. of Hea	Min ats)	1144 5	(166)	1338	(194)	1668	(242)	1855 5	(269)			
NTS, MN/m^2 (ksi) $K_t = 19+$	Avg Min	1124 1062	(1 63)	1269 1220	(184) (177)	1544 1462	(224) (212)	1572 1503	(228) (218)			
No of Spec. (No of Hea		5	(1)	5	(1)	5	(1)	5	(1)			

TABLE 8.1.2-ME1.1

Alloy Designation: Type 304 Stainless Steel (Weld Metal)

S30400

Specification:

Form:

Sheet-TIG Welded, no filler

Thickness, cm (in.): Up to 0.099 (0.039)
Condition: 70% cold rolled, welded, and tested as welded

Testing Temperature, K (F)	297	7 (75)	195	(-108)	 77	(-320)	20	(-423)	
Tension, Longitudinal										
TUS, MN/m ² (ksi)	Avg	677	(98.2)		(177)	1675	(243)	1827	(265)	
Std Deviation	Min	653	(94.7)	1200	(174)	1653	(240)	1806	(262	
TYS, MN/m ² (ksi)	Avg Min									
Std. Deviation	141111									
Elong, percent	Avg Min		1.7 1.0		2.3 2.0		2. 2 1.5		2. 8 2.0	
RA, percent	Avg Min									
No. of Spec. (No. of He		5	(1)	5	(1)	5	(1)	5	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min				l.					
No. of Spec. (No. of He										
Poisson's Ratio										
Work Hardening Coef									j	
NTS, MN/m² (ksi) K _t = No. of Spec. (No. of He	Avg Min ats)									
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min									
Tension, Transverse										
TUS, MN/m ² (ksi) Std. Deviation	Avg Min	703 684	(102) (100)	1240 1230	(180) (179)	1717 1710	(249) (248)	2000 1972	(290) (286)	
TYS, MN/m ² (ksi)	Avg									
Std. Deviation	Min									
Elong, percent	Avg Min		2.3 2.0		2.0 1.5		2.3 2.0		2.7 2.0	
RA, percent	Avg Min					}				
No, of Spec. (No. of Hea		5	(1)	5	(1)	5	(1)	5	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min									
No of Spec. (No. of Hea										
oisson's Ratio										
Vork Hardening Coef										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min									
NTS, MN/m² (ksi) Kt =	Avg Min									

References: 56261

TABLE 8.1.2-M22

Type 304 Stainless Steel Alloy Designation:

Specification: AMS-5513, MIL-S-5059

Form:

Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: Annealed

Tension, Longitudinal TUS, MN/m² (ksi) Std Deviation TYS, MN/m² (ksi) Avg Min	658 655 293	(95.5) (95.0)	1627					
			1620	(236) (235)	1800	(261)	1703	(247)
Std Deviation	283	(42.5) (41.0)	379 372	(55.0) (54.0)	427 421	(62.0) (61.0)	569 552	(82.5) (80.0)
Elong, percent Avg		75 70		11. 5 89		i 1		30 30
RA, percent Avg Min No of Spec. (No. of Heats)	4	(2)	4	(2)	4	(2)	4	(2)
E, GN/m ² (10 ⁶ psi) Avg				,		,		
No. of Spec. (No. of Heats) Poisson's Ratio								
Nork Hardening Coef		}						
NTS, MN/m ² (ksi) Avg K _t = 5.2 Min No. of Spec. (No. of Heats)	720 710 4	(104) (103) (2)	1444 1406 4	(210) (204) (2)	1*58 1089 4	(168) (158) (2)	1227 1200 4	(178) (174) (2)
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)								
Tension, Transverse								
TUS, MN/m² (ksi) Std Deviation Avg Min						Ì		
TYS, MN/m² (ksi) Avg								
Std. Deviation .			1 1		Ì			
Elong, percent Avg								
RA, percent Avg Min No of Spec. (No. of Heats)								
E, GN/m ² (10 ⁶ psi) Avg						4		
No of Spec. (No. of Heats)								
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m ² (ksi) Avg $K_t \approx$ Min No. of Spec. (No. of Heats)								
NTS, MN/m ² (ksi) Avg K _t = Min								

TABLE 8.1.2-ME3

S30400

Alloy Designation: Type 304 Stainless Steel

AMS-5513, MIL-S-5059

Plate

Specification:

Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)
Condition: Annealed

Testing Temperature, K (F)	297 (75)		77	(-320)	20	(-423)	
Tension, Longitudinal							
TUS, MN/m ² (ksi) Av			1586	(230)	1724.6 (2 1682 (2	250.13) 244)	
Std Deviation	11.4 (1.65)				17 (2	2,47)	
TYS, MN/m² (ksi) Av Mi Std. Deviation			377	(54.7)	410 (5	59.4)	
std. Deviation							
Elong, percent Av			3	9			
RA, percent Av							
No of Spec. (No. of Heats)	9 (2)		1	(1)	8 (2	2)	
E, GN/m ² (10 ⁶ psi) Av Mi							
No. of Spec. (No. of Heats)		•					
Poisson's Ratio							
Work Vardening Coef							
NTS, MN/m ² (ksi) Av							
$K_t = M_{11}$ No. of Spec. (No. of Heats)							
NTS, MN/m^2 (ksi) Av. $K_t = Mil$							
No. of Spec. (No. of Heats)						- 1	
Tension, Transverse							
TUS, MN/m ² (ksi) Av			1620	(235)	1482 (2	215)	
Std. Deviation							
TYS, MN/m ² (ksi) Av	- 1		401	(58.1)	364 (5	52.8)	
Std. Deviation	}						
Elong, percent Av			4	2			
RA, percent Av							
No. of Spec. (No. of Heats)	2 (1)		1	(1)	1 (1)	
E, GN/m ² (10 ⁶ psi) Av							
No. of Spec. (No. of Heats)						ļ	
Poisson's Ratio			Ì				
Work Hardening Coef			į.				
NTS, MN/m ² (ksi) Av						Ì	
K _t = Mir No. of Spec. (No. of Heats)							
NTS, MN/m ² (ksi) Av							
K _t = Mir		i					

TABLE 8.1.2-ME3.1

Alloy Designation:

Type 304 Stainless Steel

S30400

Specification:

Form:

Plate 0.635 to 1.269 (0.250 to 0.499) Annealed Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297	(75)			20 (-42	23)
Compression, Longitudinal							
CYS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of Hea							
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of Hea							
Compression, Transverse							
CYS, MN/m ² (ksi)	Avg						
No. of Spec. (No. of Hea	Min its)						
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of Hea							
Shear(a)							
SUS, MN/m ² (ksi)	Avg Min	490	(71.1)			972.2 (14	1.0)
No. of Spec. (No. of Hea	its)	7	(1)			7 (1)	
G, GN/m ² (10 ⁶ psi)	Avg Min						
No of Spec. (No. of Hea	its}				}		
Impact, Charpy V							
Long., Nm(ft-lb)	Avg Min						
No. of Spec. (No. of Hea							
Trans., Nm(ft-lb)	Avg						
No. of Spec. (No. of Hea	Min its)						
Fracture Toughness(b)							
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min						
Orientation: — No. of Spec. (No. of Hea	its)						
K _{IE} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(–	Avg)Min						
No. of Spec. (No. of Hea	its)						

References: 56754

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1c} data:

TABLE 8.1.2-ME3.2

Alloy Designation:

Type 304 Stainless Steel

S30400

Specification:

Form: Thickness, cm (in.): Condition: Plate Over 5.080 (2.000) Annealed

Testing Temperature, K (F))	297 (75)	20 (-423)			
Compression, Longitudinal						
CYS, MN/m ² (ksi)	Avg Min		11			
No. of Spec. (No. of Hea	ats)					
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Hea	ats)					
Compression, Transverse						
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of Hea						
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He	ats)					
Shear(a)	1					
SUS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of Heat	ats)			İ	le (
G, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Hea	ats)			ĺ		
Impact, Charpy V						-
Long., Nm(ft-lb)	Avg Min		124 (91.5)			
No. of Spec. (No. of He	ats)		1			
Trans., Nm(ft-lb)	Avg Min		115 (85)			
No, of Spec. (No. of He			1		j	
Fracture Toughness(b)						
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min					
Orientation. —						
No, of Spec. (No. of Hea	ats)					
K _{IE} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(— No. of Spec. (No. of Hea	Avg)Min ats)		}			

References: 94205

 ⁽a) Indicate specimen design and orientation for shear specimens:
 (b) Indicate specimen design for K_{IC} data:

TABLE 8.1.2-ME4

S30400

Alloy Designation:

Type 304 Stainless Steel

AMS-5639A, QQ-S-763

Specification: Form:

Bar

Diameter: Condition:

Up to 2.54 cm (1.000 in.) Annealed

Testing Temperature, K (F) (-240)77 (-320)20 (-423)(-452) 297 (75)195 (-108)122 Tension, Longitudinal TUS, MN/m² (ksi) (92.8) 1151 1338 (194) 1522 (221)1864 (270)1721 (250) 640 (167)Avg 1751 (254)572 1041 1420 (206)1668 (242)Min (83.0)(151)Std Deviation 91.7 99.3 (14.4)52.6 (7.63) 41.3 (5.99)(13.3)TYS, MN/m2 (ksi) (33.9) 298 (43.2)282 (40.9)418 (60.6)402 (58.2 Avg 234 179 (26.0) 276 (40.0)200 (29.0)358 (52.0)379 (55.0 Min Std. Deviation 26.7 (3.87)49.6 (7.20)40.9 (5.93)15.1 (2.19 46.0 45.0 26.9 30.1 75.8 50.3 Elong, percent Avg 50 46 41 12 26 Min 73.9 66.5 53.5 55.3 81.8 75.8 RA, percent Avg 50 49.8 55 76 75 12 22 (6) (4) (2) No. of Spec. (No. of Heats) 26 (7) (3) (1) E, GN/m² (10⁶ psi) Avg No. of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef 1879 (289)NTS, MN/m² (ksi) 910 (132)1584 (230)1993 1741 (252) (272)Avg K_t = 3 No. of Spec. (No. of Heats) 903 (131)1579 (229)1951 (283)1724 (250)1813 (263)(2) 9 (2) (2) 8 (2) 4 (1) 1053 NTS, MN/m2 (ksi) 708 (103)(153)1117 (162)Avg (102) (152)(158) 1048 703 1089 Kt = 14 No. of Spec. (No. of Heats) (1) 3 (1) 3 (1) Tension, Transverse TUS, MN/m² (ksi) Avg Min Std. Deviation TYS, MN/m² (ksi) Avg Min Std. Deviation Elong, percent Avg Min RA, percent Ava No. of Spec. (No. of Heats) E, GN/m² (10⁶ psi) No of Spec. (No. of Heats) Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi) Avg Kt = No. of Spec. (No. of Heats) NTS, MN/m² (ksi) No. of Spec. (No. of Heats)

FIGURE 8.1.2-ME1. EFFECT OF TEMPERATURE ON THE STRENGTH OF TYPE 304 STAINLESS STEEL

8.1.2-5 (11/74)

Alloy Designation: Type 304 Stainless Steel \$30400

Specification: Form: Dimension: Condition:

Condition: Annealed

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m ⁻¹ K ⁻¹	14.7		9.5		5.7		1.95		0.78			
Btu hr ⁻¹ ft ⁻¹ F ⁻¹ No. of Spec.	1	(8.50)	1	(5.49)	1	(3.30)	1	(1.13)	1	(0.451)		
References: 40911			'=				'		ļ '			
Thermal Expansion (T ₂₇₃ to T Longitudinal)											
Percent	0		-0.230		-0.261		-0.264		-0.264		-0.264	
No of Spec.	2		2		2		2		2		2	
References: 90208, 90336	1				-							
Specific Heat												
Joules kg ⁻¹ K ⁻¹ Btu Ib ⁻¹ F-1												
No of Spec. References:									1			
mererences.												
Electrical Resistivity												
Ohm m												
Ohm circular mil ft ⁻¹												
No. of Spec. References: 79561			ĺ									
7,010,07,003, 7,000.												
Magnetothermal Conductivity									1			
tesla,												
Watts m-1 K-1 0							2.20		0.95		0.40	
Btu hr-1 ft-1 F-1								(1.27)		(0.55)		(0.23)
Watts m ⁻¹ K ⁻¹ 8							2.00		0.90		0.35	
Btu hr-1 ft-1 F-1								(1.16)		(0.52)		(0.20)
No. of Spec.							1		1		1	
References: 95168									1			

FIGURE 8, 1, 2-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR TYPE 304 STAINLESS STEEL 56 :<

8.1.2-7 (11/74)

Type 304

FIGURE 8.1.2-C2. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR TYPE 304 STAINLESS STEEL AT DIFFERENT MAGNETIC FIELD STRENGTHS

FIGURE 8.1.2-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR TYPE 304 STAINLESS STEEL

TABLE 8.1.3-ME0.1

Alloy Designation:

Type 304L Stainless Steel

\$40503

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet Up to 0.099 (0.039) Cold rolled 50%

Testing Temperature, K (F	=)	297 (75)	195 (-108)	77 (-320)	20 (-423)		
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg	1241 (180)	1379 (200)	1669 (242)	1896 (275)	1	
Std Deviation	Min						
TYS, MN/m ² (ksi)	Avg	1089 (158)	1234 (179)	1344 (195)	1613 (234)		ļ
Std Deviation							
Elong, percent	Avg Min	2.5	4.5	76.5	1.5		
RA, percent	Avg Min						
No of Spec (No. of He	eats)	5	5	5	5		
E, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of He	eats)						
Poisson's Ratio							
Work Hardening Coef	1						
NTS, MN/m ² (ksi)	Avg Min	1372 (199)	1510 (219)	1841 (267)	2137 (310)		
K _t ≈ No. of Spec (No. of He		5	5	5	5		
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min						
Tension, Transverse					i		
TUS, MN/m ² (ksi)	Avg		}			ĺ	
Std. Deviation	Min				1		
TYS, MN/m ² (ksi)	Avg						
Std Deviation							ł
Elong, percent	Avg Min						
RA, percent	Avg Min			}			
No. of Spec. (No. of He							
E, GN/m ² (10 ⁶ psi)	Avg Min						
No of Spec, (No of He							
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi) K _t = No of Spec. (No of He	Avg Min eats)						
NTS, MN/m ² (ksi)	Avg						
Kt = No of Spec. (No of He	Min lats)						

TABLE 8.1.3-ME0.2

Alloy Designation: Type 304L Stainless Steel (Weld Metal)

S40503

Specification:

Form: Sheet-TIG welded, no filler
Thickness, cm (in.): Up to 0.099 (0.039)
Condition: Sheet 50% cold reduced, welded, tested as welded

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320) 20 (-423)
Tension, Longitudinal		E70 (00 c)	1007 (146.0)	1502 (217.0) 1757 (254.0)
		570 (82.6) 523 (75.9)	1007 (146.0) 958 (139)	1502 (217.9) 1757 (254.9) 1480 (215) 1710 (248)
•	A			
	Avg Min			
	Avg Min	1.9 1.5	2.5 1.5	3.3 2.0 3.0
	Avg			
No of Spec. (No. of Heats)	Min	8 (2)	8 (2)	8 (2) 8 (2)
	Avg Min			
oisson's Ratio				
Vork Hardening Coef	}			
	Avg Min			
NTS, MN/m² (ksi)	Avg Min			
Tension, Transverse				
	Avg Min	549 (79.6) 496 (71.9)	988.7 (143.4) 924 (134)	1487 (215.7) 1882 (272.9) 1380 (200) 1800 (261)
	Avg			
	Min			
Elong, percent .	Avg M.n	1.6 1	2.5 2	2.9 3.5 2 2.0
	Avg			
No. of Spec (No. of Heats)	Min	8 (2)	8 (2)	8 (2) 8 (2)
	Avg Min			
No. of Spec. (No. of Heats)				
oisson's Ratio				
Vork Hardening Coef				
	Avg Min			
NTS, MN/m ² (ksi)	Avg Min			

TABLE 8.1.3-ME0.3

Alloy Designation: Type 304L Stainless Steel S40503

2.0

8,0

Specification:

Thickness, cm (in.): Up to 0.099 (0.039) Condition: 70% cold reduced

Testing Temperature, K (F	F)	297 (75)	77 (-320)	20 (-423)	
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg Min	1320 (191)	1780 (258)	2050 (298)	
Stif Deviation					
TYS, MN/m² (ksi)	Avg Min	1210 (176)	1630 (237)	1810 (262)	
Std. Deviation					
Elong, percent	Avg Mm	2.0	1.5	1.0	
RA, percent	Avg				
No of Spec (No of He	dats)	1	1	1	
E, GN/m ² (10 ⁶ psi)	Avg Man		1		
No of Spec (No of He	eats)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg				
K _t = No of Spec. (No. of He	Min eats)				
NTS, MN/m ² (ksi)	Avg				
K _t = No of Spec. (No of He	Min eats)				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg Min	1490 (216)	1930 (280)	2270 (329)	
Std Deviation					
TYS, MN/m ² (ksi)	Avg Min	1250 (182)	1700 (247)	2040 (296)	
				1	

NTS, MN/m2 (ksi)

Std Deviation Elong, percent

E, GN/m² (10⁶ psi)

Poisson's Ratio Work Hardening Coef NTS, MN/m² (ksi)

No. of Spec (No. of Heats)

No of Spec (No of Heats)

Kt = No of Spec (No of Heats)

Kt = No of Spec (No of Heats)

RA, percent

Avg

Avg

3.0

TABLE 8.1.3-ME1

Alloy Designation:

Type 304L Stainless Steel

\$40503

Specification:

AMS-5611A, MIL-S-4043

Sheet

Form: Thickness, cm (in.): Condition:

0.100 to 0.319 (0.040 to 0.125) Annealed

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Tension, Longitudinal												
TUS, MN/m ² (ksi)	Avg	661	(95.9)	977	(142)	1464	(212)	1748	(254)	1589	(230)	
	Min	620	(90.0)	896	(130)	1406	(204)	1738	(252)	1538	(223)	
Std Deviation	1	27.2	(3.95)	60.4	(8.76)	34.7	(5.03)	12.2	(1.77)	43.0	(6.23)	
TYS, MN/m ² (ksi)	Avg	295	(42.8)	248	(36.0)	273	(39.6)	307	(44.5)	403	(58.5)	
0.1.0	Min	262	(38.0)	200	(29.0)	200	(29.0)	200	(29.0)	317	(46.0)	
Std. Deviation		16.6	(2.41)	43.3	(6.28)	43.6	(6.32)	65.3	(9.48)	47.1	(6.83)	
Elong, percent	Avg		55.8	L .	2.8		6.8		3.2	29		
	Min	4	12	4	12	3	33	2	7	24		
RA, percent	Avg										- 1	
No. 160 - 181 - 1811	Min	16	(4)		(2)	16	(4)	8	(4)	12	(4)	
No. of Spec. (No. of He	ats)	16	(4)	8	(2)	16	(4)	0	(4)	12	(4)	
E, GN/m ² (10 ⁶ psi)	Avg			1					- !		1	
No of Seas /No of Ho	Min											
No. of Spec. (No. of He	a(s)											
Poisson's Ratio												
Nork Hardening Coef												
NTS, MN/m² (ksi)	A	734	(106)	1030	/1E0\	1417	(206)	1287	(187)	1460	(212)	
$K_2 = 5.2$	Avg Min	634	(92.0)	1030	(1 50) (149)	1351	(196)	1227	(178)	1386	(212)	
No. of Spec. (No. of Hea		16	(4)	4	(1)	16	(4)	14	(4)	12	(3)	
NTS, MN/m² (ksi)	Avg			1							}	
K ₁ =	Min											
No. of Spec. (No. of Hea	ats)										1	
Tension, Transverse												
TUS, MN/m ² (ksi)	Avg									1536	(223)	
	Min			}						1400	(203)	
Std. Deviation												
TYS, MN/m ² (ksi)	Avg									410	(59.5)	
	Min									386	(56.0)	
Std Deviation												
long, percent	Avg								1		4.8	
	Min									3	34	
RA, percent	Avg											
No of Cook this of the	Min									5	(1)	
No. of Spec. (No. of Hea	15/									J	(1)	
, GN/m ² (10 ⁶ psi)	Avg											
No. of Spec. (No. of Hea	Min											
oisson's Ratio												
Vork Hardening Coef												
NTS, MN/m² (ksi) K _t =	Avg Min											
No. of Spec. (No. of Hea												
ITS, MN/m² (ksi)	A											
K _t =	Avg Min											
No. of Spec, (No. of Hea											1	

TABLE 8.1.3-ME1.1

Alloy Designation:

Type 304L Stainless Steel

\$40503

Specification:

Form:

Sheet

Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: 40% cold reduced

Testing Temperature, K (I	F)	297 (75)	77 (-320) 20 (-423)
Tension, Longitudinal TUS, MN/m ² (ksi) Std Deviation	Avg Min	1030 (150)	1720 (250) 1630 (236)
TYS, MN/m ² (ksi) Std Deviation	Avg Min	793 (115)	1030 (150) 1160 (168)
Elong, percent	Avg Min	7.5	30.5 31.0
RA, percent	Avg Min		
No of Spec (No of Hi	eats)	1	1 1
E, GN/m ² (106 psi) No. of Spec. (No. of He	Avg Min		
Poisson's Ratio	ea(s)		
Vork Hardening Coef			
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min		
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min		
Tension, Transverse TUS, MN/m ² (ksi)	Avg	1090 (158)	1680 (244) 1510 (219)
Std Deviation	Min	1090 (136)	1000 (224)
TYS, MN/m ² (ksi)	Avg Min	924 (134)	1100 (160) 1200 (174)
Std Deviation			
Elong, percent	Avg Min	8.5	32.0
RA, percent No. of Spec. (No. of He	Avg Min	1	
E, GN/m ² (10 ⁶ psi)	Avg		
No of Spec. (No of He	Min		
Poisson's Ratio			
Vork Hardening Coef			
NTS, MN/m ² (ksi) K _t = No of Spec (No. of Hi	Avg Min eats)		
NTS, MN/m² (ksi)	Avg		
Kt = No of Spec (No of Hi	Min eats)		

References: 90068

TABLE 8.1.3-ME2.1

Alloy Designation: Type 304L Stainless Steel

\$40503

Specification:

Form: Sheet
Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: 60% reduced reduced

Testing Temperature, K (F	-)	297 (75)	77 (-320)	20 (-423)
Tension, Longitudinal				
TUS, MN/m ² (ksi)	Avg	1270 (184)	1790 (260)	1770 (256)
Std Deviation	Min			
TYS, MN/m ² (ksi)	Avg Min	1010 (146)	1260 (183)	1520 (221)
Std Deviation				
Elong, percent	Avg Min	5.5	28.5	5.0
RA, percent	Avg Min			}
No of Spec. (No, of He		1	1	1
E, GN/m ² (10 ⁶ psi)	Avg Min			
No of Spec. (No. of Hi				
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi)	Avg			
K _t = No of Spec. (No. of He	Min eats)			
NTS, MN/m ² (ksi)	Avg			
K _t = No. of Spec. (No. of He	Min eats)			
Tension, Transverse				
TUS, MN/m ² (ksi)	Avg Min	1300 (188)	1720 (250)	1840 (267)
Std Deviation				
TYS, MN/m ² (ksi)	Avg	1100 (160)	1390 (202)	1670 (242)
Std. Deviation				
Elong, percent	Avg Min	6.2	25.8	2.2
RA, percent	Avg Min			
No. of Spec. (No. of He		1	1	1
E, GN/m ² (10 ⁶ psi)	Avg Min			
No of Spec. (No of He				
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi)	Avg			
Kt = No. of Spec. (No. of He	Min eats)			
NTS, MN/m ² (ksi)	Avg Min			
K _t = No of Spec. (No. of He				

TABLE 8.1.3-ME1.3

\$40503 Alloy Designation: Type 304L Stainless Steel

Specification:

Form: Sheet

Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: 70% cold reduced

Testing Temperature, K (F)	297 (75)		77 (-320)	20 (-423)	
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg	1330 (193)		1760 (255)	1920 (279)	
Std Deviation	Min					
TYS, MN/m ² (ksi)	Avg Min	938 (136)		1430 (208)	1720 (249)	
Std Deviation						
Elong, percent	Avg Min	4.0		26.0	2.5	
RA, percent	Avg Min					
No of Spec. (No. of He		1		1	1	
E, GN/m ² (10 ⁶ psi)	Avg					
No. of Spec (No. of He	Min ats)					
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avg				T	
Kt = No. of Spec. (No. of He	Min ats)					
NTS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of He.	Min ats)					
Tension, Transverse						
TUS, MN/m ² (ksi)	Avg Min	1390 (202)		1850 (269)	2210 (320)	
Std Deviation						
TYS, MN/m ² (ksi)	Avg Min	1190 (172)		1550 (225)	1840 (267)	
Std Deviation	IVIIII					
Elong, percent	Avg Min	4.5		23.0	1.7	
RA, percent	Avg Min		1			
No. of Spec. (No of He		1		1	1	
E, GN/m ² (10 ⁶ psi)	Avg					
No. of Spec. (No. of He	Min ats)		В ,			
Poisson's Ratio			-		+	
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avg					
K _t ≠ No. of Spec. (No. of He	Min ats)					
NTS, MN/m ² (ksi)	Avg					
K _t =	Min	1				

Type 304L Plate

TABLE 8.1.3-ME1.4

Alloy Designation:

Type 304L Stainless Steel

\$40503

Specification:

Form: Thickness, cm (in.): Condition:

Plate Over 5.080 (2.000) Annealed

Testing Temperature, K (F)		297 (75)	77 (-320)	20 (-423)		
Compression, Longitudinal						
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of Heats)						
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Heats)						
Compression, Transverse						
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of Heats)					1	
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Heats)						
Shear(a)						
SUS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of Heats)						
G, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Heats))					
Impact, Charpy V						
Long., Nm(ft-lb)	Avg Min		90.8 (67)	89.5 (66)		
No. of Spec. (No. of Heats			1	1		
Trans., Nm(ft-lb)	Avg Min					
No of Spec. (No. of Heats						1
Fracture Toughness(b)						
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min					
Orientation -						
No. of Spec. (No. of Heats)					
KIE, MN/m3/2(ksi/in.)	Avg					
(From PTSC spec.)(— No. of Spec. (No. of Heats)Min		1			

References: 94205

(a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{IC} data:

TABLE 8.1.3-ME2

Alloy Designation:

Type 304L Stainless Steel

Specification:

AMS-5647B, QQ-S-763

Form:

Bar Up to 2.54 cm (1.000 in.) Annealed Diameter: Condition:

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Tension, Longitudinal												
TUS, MN/m ² (ksi)	Ανg	659	(95.5)	1055	(153)	1509	(219)	1882	(273)	1660	(241)	
Std. Deviation	Min	572	(83.0)	1048	(152)	1427	(207)	1882	(273)	1620	(235)	
TYS, MN/m ² (ksi)	Avg Min	406 391	(58.9) (56.7)	433 421	(62.8) (6 1.1)	460 453	(66.6) (65.7)	522 520	(75.8) (75.4)	547 537	(79.4) (77.9)	
Std. Deviation	IVIII	551	(50.77	721	(01.77	733	103.77	320	(73.4)	337	(77.5)	
Elong, percent	Avg		78.0	6	9.8	4	2.9	4	2.1	33.9	9	
	Min		77		7.6		2.3		86.7	33.0		
RA, percent	Avg		81.2	7	3.9	6	5.9	4	1.2	55.0	6	
No. =6.5=== (N===6.11)	Min	6	79	4 7	(2)	6		4	8.6	54.0		
No. of Spec. (No. of He	ats)	5	(3)	4	(2)	6	(3)	4	(2)	5	(3)	
E, GN/m ² (10 ⁶ psi)	Avg	190	(27.6)			205	(29.7)			201	(29.2)	
No. of Spec. (No. of He	Min ats)											
Poisson's Ratio												
Nork Hardening Coef	WII 1											
NTS, MN/m² (ksi)	Avg										1	
K _t = No. of Spec. (No. of He	Min											
	ats)											
NTS, MN/m ² (ksi)	Avg Min											
K _t = No. of Spec. (No. of Hea									1			
Tension, Transverse				Į								
TUS, MN/m ² (ksi)	Avg											
	Min											
Std Deviation												
TYS, MN/m ² (ksi)	Avg											
Std Deviation	Min								Ī			
Elong, percent	Avg Min						= 1				1	
						-						
RA, percent	Avg Min											
No. of Spec. (No. of Hea												
E, GN/m ² (10 ⁶ psi)	Avg											
	Min					(
No. of Spec. (No of Hea	ats)											
Poisson's Ratio												
Nork Hardening Coef												
NTS, MN/m² (ksi)	Avg											
K _t =	Min										7. 11	
No. of Spec. (No. of Hea	ets)								1			
NTS, MN/m ² (ksi)	Avg											
Kt =	Min											

References: 48128, 54986, 89543

575<

FIGURE 8.1.3-ME1. EFFECT OF TEMPERATURE ON THE STRENGTH OF TYPE 304L STAINLESS STEEL

FIGURE 8.1.3-ME2. AXIAL FATIGUE LIFE CURVES FOR SMOOTH 304L STAINLESS STEEL BAR [Up to 2.540 cm (1.000 in.) diameter] [95168]

FIGURE 8.1.3-ME2.1. AXIAL FATIGUE LIFE CURVES FOR NOTCHED ANNEALED 304L STAINLESS STEEL BAR [95168] [Up to 2.540 cm (1.000 in.) diameter]

573<

8.1.3-4.1 (11/76)

FIGURE 8.1.3-ME3. FATIGUE CRACK GROWTH RATE PROPERTIES OF 304L STAINLESS STEEL AT 77K AND 4K (-320F AND -452F)(94206A)

TABLE 8.1.3-TR1

Alloy Designation:

Type 304L Stainless Steel

\$40503

Specification: Form: Dimension: Condition:

								led	Annea		Condition:
4 (-452)	(-442)	10	(-423)	20	(-370)	50	(-280)	100	(32)	273	Testing Temperature K (F)
											Thermal Conductivity
											Watts m-1 K-1 Btu hr-1 ft-1 F-1
					ļ						No. of Spec.
								1			References:
											Thermal Expansion (T ₂₇₃ to T)
											Longitudinal
				-0.275	-	-0.268		-0,234		0	Percent
		1		1		1		1		1	No. of Spec.
											References: 48134
											Specific Heat
								I			Joules kg ⁻¹ K ⁻¹
											Btu lb-1 F-1
											No of Spec.
						ĺ					References:
											Electrical Resistivity
49.0 x 10 ⁻⁸	10-8	49.0 x	0-8	49.0 x 1	10-8	50.5 x	10-8	54.5 x 1	10-8	70.0 x	Ohm m
(295)	(295)		(295)	1111414	(304)		(328)		(421)		Ohm circular mil ft-1
1		1		1		1		1		1	No of Spec.
						1					References:
1		49.0 x		49.0 x 1	-	50.5 x		54.5 x 1		70.0 x	Ohm m Ohm circular mil ft-1 No of Spec.

FIGURE 8.1.3-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR TYPE 304L STAINLESS STEEL

Alloy Designation: Type 310 Stainless Steel

\$31000

Specification:

Form:

Sheet

Thickness, cm (in.): Up to 0.009 (0.039) Condition: Cold rolled 40%

Testing Temperature, K (F)		297 (75)	196 (-108)	77 (-320)	20 (-423)	
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg Min	1051.5 (152.5) 1048 (152)	1174 (170.3) 1172 (170)	1515.5 (219.8) 1496 (217)	1873 (271.7) 1806 (262)	=
Std. Deviation	141111	- 1327				
TYS, MN/m ² (ksi)	Avg Min	949.4 (137.7) 944.6 (137.7)	1075.6 (156) 1048 (152)	1248 (181) 1192.8 (173)	1382 (200.5) 1255 (182)	
Std. Deviation		-			-	
Elong, percent	Avg Min	3.5 3.0	13.3 13.0	24,0 22.0	28.5 28.0	
RA, percent	Avg Min					
No. of Spec. (No. of Hea		4 (1)	4 (1)	5 (1)	3 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Hea						
oisson's Ratio						
Vork Hardening Coef						
NTS, MN/m² (ksi)	Avg	1197.6 (173.7)		1629 (236.3)	1898 (275.3)	
K _t = 6.3 No. of Spec. (No. of Hea	Min ts)	1151.4 (167) 6 (1)		1599.6 (232) 3 (1)	1896 (275) 3 (1)	
NTS, MN/m ² (ksi)	Avg					
K _t ≈ No. of Spec. (No. of Hea	Min ts)					
ension, Transverse						
TUS, MN/m ² (ksi)	Avg Min		1237.6 (179.5) 1234.2 (179)		1813.3 (263) 1806.4 (262)	
Std. Deviation					-	
TYS, MN/m² (ksi)	Avg Min		1037.6 (150.5) 1027.3 (149)		1503 (218) (218)	
Std. Deviation	14011					
Elong, percent	Avg Min		11.5 11.0		25.5 25.0	
RA, percent	Avg Min					
No. of Spec. (No. of Hea			2 (1)		2 (1)	
, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Hea	ts)	1				
oisson's Ratio						
fork Hardening Coef						
ITS, MN/m ² (ksi)	Avg				2023 (293.5)	
$K_t = 6.3$ No. of Spec. (No. of Hea	Min ts)				2006 (291)	
VTS, MN/m ² (ksi)	Avg					
Kt =	Min	1				

\$31000

Alloy Designation: Type 310 Stainless Steel

Specification:

Form:

Sheet

Thickness, cm (in.): Up to 0.099 (0.039) Condition: Cold rolled 60%

1202 (174.3) (165 (169) 1055 (153) 1048 (152) 3.33 3.00 3 (1)		1413 1386	(205) (201) (205) (201) 7.0 (1) (247.7) (247) (1)	1603 1593 1 1	(276) (272) (232.5) (231) 8.50 8.00 (1) (296) (295) (1)		
1165 (169) 1055 (153) 1048 (152) 3.33 3.00 3 (1)		1606. 1413 1386 1 1 1 3	5 (233) (205) (201) 7.0 (1) (247.7) (247)	1603 1593 1593 3	(272) (232.5) (231) 8.50 8.00 (1) (296) (295)		
3.33 3.00 3 (1)		1413 1386 1 1 1 3	(205) (201) 7.0 7.00 (1) (247.7) (247)	1603 1593 1593 1 1 1	(232.5) (231) 8.50 8.00 (1) (296) (295)		
3.33 3.00 3 (1) 1243 (180.3) 1234 (179)		1386 1 1 3	(201) 7.0 7.00 (1) (247.7) (247)	1593 1 1 3 2041 2034	(231) 8.50 8.00 (1) (296) (295)		
3.00 3 (1) 1243 (180.3) 1234 (179)		1708 1703	7.00 (1) (247.7) (247)	3 2041 2034	(296) (295)		
3.00 3 (1) 1243 (180.3) 1234 (179)		1708 1703	7.00 (1) (247.7) (247)	3 2041 2034	(296) (295)		
1 243 (180.3) 1234 (179)		1708 1703	(247.7) (247)	2041 2034	(296) (295)		
1 243 (180.3) 1234 (179)		1708 1703	(247.7) (247)	2041 2034	(296) (295)		
1234 (179)		1703	(247)	2034	(295)		
1234 (179)		1703	(247)	2034	(295)		
1234 (179)		1703	(247)	2034	(295)		
1234 (179)		1703	(247)	2034	(295)		
1234 (179)		1703	(247)	2034	(295)		
					J		
				1968	(285.5)		
				1958	(284) 		
					(226.5) (215)		
				1			
					6.00 6.00		
				2	(1)		
		11					
				2103	(305)		
					2103	2103 (305)	2103 (305)

Alloy Designation: Type 310 Stainless Steel

S31000

Specification:

Form:

Sheet

Thickness, cm (in.): Up to 0.099 (0.039) Condition: Cold rolled 75%

Testing Temperature, K (F	=)	297	(75)	195	(-108)	77	(-320)	20	(-423)
Tension, Longitudinal									
TUS, MN/m ² (ksi)	Avg	1178.6	(170,94)	1404	(203.63)	1718.6	(249.27)	2002	(290.39)
Std. Deviation	Min	1220 163.5	(177) (38.22)		(201) (1.41)	1654.7 35	(240) (5.08)	1930.5 37	(280) (5.40)
TYS, MN/m ² (ksi)	Avg		(159.67)		(187)				(259)
Std. Deviation	Min	1048 30.8	(152) (4.47)		(182) (4.63)	1448 44.3	(210) (6.42)	1737.5 33.9	(252) (4.92)
Elong, percent	Avg Min		64 0		1 .38 2.00		0.23 8.00		0.42 1.00
RA, percent	Avg								
No. of Spec. (No. of He	Min eats)	18	(3)	8	(2)	11	(3)	18	(3)
E, GN/m ² (10 ⁶ psi)	Avg	175	(25.4)		(25.5)	182	(26.4)	195	(28.3)
No. of Spec. (No. of He	Min eats)	162 5	(23.5) (1)	165.5 5	(24.0) (1)	175.8 5	(25.5) (1)	186.8 5	(27.1) (1)
Poisson's Ratio									
Work Hardening Coef									
NTS, MN/m ² (ksi)	Avg	1356	(196.7)	1530.	6 (222)	1901	(275.7)	2230	(323.5)
$K_t = 6.3$	Min		(194)		(217)	1848	(268)	2144	(311)
No. of Spec. (No. of He	eats)	15	(3)	8	(2)	11	(2)	15	(3)
NTS, MN/m ² (ksi)	Avg	1107	(160.6)	1270	(184.2)	1473	(213.6)	1446.5	(209.8)
K _t = 19+	Min	1048	(152)	1151	(167)	1317	(191)	1303	(189)
No. of Spec. (No. of He	eats)	5	(1)	5	(1)	5	(1)	5	(1)
Tension, Transverse									
TUS, MN/m ² (ksi)	Avg	1375	(199.36)	1544	(224.0)	1878	(272.43)	2145.6	(311.19)
	Min	1358	(197)	1537.	5 (223)	1861.6	(270)	2054.6	(298)
Std. Deviation		9.6	(1.39)					47.5	(6.89)
TYS, MN/m ² (ksi)	Avg	1107	(160.6)	1291	4 (187.3)	1526	(22.13)	1796	(260.5)
	Min	1048	(152)	1213.	5 (176)	1475.5	(214)	1668.5	(242)
Std. Deviation		25.2	(3.64)					82.7	(11.99)
Elong, percent	Avg	3	.71	7	.43	9.	50	9	.37
	Min	3	.00	6	.50	7.	50	1	.00
RA, percent	Avg								
No. of Spec. (No. of He	Min eats)	14	(3)	7	(2)	7	(2)	16	(3)
E, GN/m ² (10 ⁶ psi)	Avg	194	(28.1)		(27.6)	194	(28.2)	201	(29.12)
No. of Spec. (No. of He	Min eats)	186 4	(27.0) (1)	179.3 5	(26.0) (1)	187.5 5	(27.2) (1)	187 5	(27.1) (1)
Poisson's Ratio									
Nork Hardening Coef									
NTS, MN/m ² (ksi)	Avg	1370	7 (198.8)	1639	.6 (237.8)	2045	(296.6)	2196	(318.5)
Kt =	Min	1303	(189)	1558	(226)	1993	(289)	1999.5	(290)
No. of Spec. (No. of He	eats)	11	(3)	7	(2)	7	(2)	13	(3)
NTS, MN/m ² (ksi)	Avg	834.3	(121)	1097	.6 (159.2)	1209	(175.4)	1322	(191.8)
K _t =	Min	799.8	(116)	1013.	5 (147)	1110	(161)	1186	(172)
No. of Spec. (No. of He	ats)	5	(1)	5	(1)	5	(1)	5	(1)

Alloy Designation: Type 310 Stainless Steel (Weld Metal)

\$31000

Specification:

Form:

Sheet-TIG welded, no filler

Thickness, cm (in.): Up to 0.099 (0.039)
Condition: Sheet 75% cold reduced, welded, tested as welded

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	20 (-423)	
Tension, Longitudinal TUS, MN/m ² (ksi) Av		758 (110)	1120 (163)	1420 (206)	
Std Deviation	592 (85.8)	731 (106)	1090 (158)	1380 (200)	
TYS, MN/m² (ksi) Std. Deviation					
Elong, percent Av		2.2	2.3	2.1 1.5	
RA, percent Av					
No. of Spec. (No. of mats)	8 (2)	8 (2)	8 (2)	8 (2)	
E, GN/m ² (10 ⁶ psi) Av Mi					
No. of Spec. (No. of Heats)					
Poisson's Ratio					
Nork Hardening Coef			11		
NTS, MN/m ² (ksi) Av. K _t = Mir No. of Spec. (No. of Heats)					
NTS, MN/m ² (ksi) Av. $K_{\xi} = Mir$ No. of Spec. (No. of Heats)					
Tension, Transverse					
TUS, MN/m ² (ksi) Av Mir Std. Deviation		765 (111) 752 (109)	1150 (167) 1140 (166)	1340 (195) 1290 (187)	
TYS, MN/m² (ksi) Av					
Mir Std. Deviation					
Elong, percent Av		2.1	2.2 2	2.0 1.5	
RA, percent Av					
No. of Spec. (No. of Heats)	8 (2)	۶ (2)	8 (2)	8 (2)	
, GN/m ² (10 ⁶ psi) Av _i					
No, of Spec. (No. of Heats)					
oisson's Ratio			1 2		
ork Hardening Coef					
ITS, MN/m² (ksi) Avg Kt = Mir No. of Spec. (No. of Heats)					
VTS, MN/m ² (ksi) Avg					

Alloy Designation.

Type 310 Stainless Steel

S31000

Specification:

Form: Sheet
Thickness, cm (in.): Up to 0.099 (0.039)
Condition: 80-85% cold worked

Testing Temperature, K (F)	297 (75)		20 (-423)
Tension, Longitudinal			
TUS, MN/m ² (ksi) A			2060 (299)
Std Deviation	n 1300 (188)		2030 (295)
TYS, MN/m ² (ksi)	• 1		1740 (253)
Std. Deviation	in 1140 (166)		1720 (249)
Elong, percent A			8.1 6.5
RA, percent A			0.0
M	in		6 (1)
No. of Spec. (No. of Heats)	4 (1)		6 (1)
E, GN/m ² (10 ⁶ psi) A M			
No. of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m ² (ksi) A			2170 (315)
K _t = 6.3 M No. of Spec. (No. of Heats)	n 1330 (193) 4 (1)		2090 (303) 6 (1)
NTS, MN/m ² (ksi) A			
Kt = M No. of Spec. (No. of Heats)	n		
Tension, Transverse			
TUS, MN/m ² (ksi) A			
Std. Deviation			
TYS, MN/m ² (ksi) A	-		
Std. Deviation	n		
Elong, percent A	rg		
M	n		
RA, percent A	-		
No. of Spec. (No. of Heats)		= "	
E, GN/m ² (10 ⁶ psi) A			
No. of Spec. (No. of Heats)			
Poisson's Ratio			
Work Hardening Coef			
NTS, MN/m² (ksi)	-		
K _t = M No. of Spec. (No. of Heats)	n		
NTS, MN/m² (ksi) A	rg		
K _t = M	n		
No. of Spet. (No. of Heats)			5863

Alloy Designation: Type 310 Stainless Steel

\$31000

Specification:

Form:

Thickness, cm (in.): Up to 0.099 (0.039) Condition: 90-92% Cold worked

Testing Temperature, K (F)		297 (75)			20 (-423)	
Tension, Longitudinal						
TUS, MN/m ² (ksi)		370 (199)			2140 (310)	
Std. Deviation	Min 1	360 (198)			2120 (307)	
1 /S, MN/m ² (ksi)	Avg 1	170 (170)			1840 (267)	
Std. Deviation	Min 1	150 (167)			1810 (262)	
Elong, percent	Avg	1.3			4.9	
	Min	1.0		- +-	4.5	
RA, percent	Avg Min					
No. of Spec. (No. of Heats	s) 6	(1)			7 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Heats						
Poisson's Ratio						
Work Hardening Coef			r=			
NTS, MN/m ² (ksi)		360 (197)			2040 (296) 1800 (261)	
K _t = 6.3 No. of Spec. (No. of Heats		320 (191)			7 (1)	
NTS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of Heats	Min s)					
Tension, Transverse						
TUS, MN/m ² (ksi)	Avg Min					
Std. Deviation						
TYS, MN/m² (ksi)	Avg					
Std. Deviation	Min					
Elong, percent	Avg			11. = 1		
	Min					
RA, percent	Avg Min					
No. of Spec. (No. of Heats						
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Heats						
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avg					
K _t ≈ No. of Spec. (No. of Heats	Min s)					
NTS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of Heats	Min					

Alloy Designation: Type 310 Stainless Steel

\$31000

Specification:

AMS 5521B

Form: Sheet
Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: Cold rolled 3/4 hard

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	20 (-423)
Tension, Longitudinal				
TUS, MN/m² (ksi) Ave		1267 (183.8)	1619 (234.8	
S.d. Deviation	1124 (163.0)	1258 (182.5)	1603 (232.5) 1669 (242.0)
TYS, MN/m ² (ksi) Ave		1140 (165.4)	1444 (209.5	
Std. Deviation	979.1 (142.0)	1111 (161.2)	1434 (208.0) 1517 (220.0)
Elong, percent Avg		7.2 7.0	12.8 12.5	2.0 2.0
RA, percent Avg				
Min No. of Spec. (No. of Heats)				
E, GN/m ² (10 ⁶ psi) Ave	211 (30.6)	217 (31.5)	223 (32.4)	230 (33.4)
Mir No. of Spec. (No. of Heats)	211 (30.6) 2 (1)	216 (31.3) 2 (1)	219 (31.8) 2 (1)	230 (33.3) 2 (1)
Poisson's Ratio	0.29	0.30	0.20	0.20
Nork Hardening Coef				
NTS, MN/m² (ksi) Avg	6			
K _t = Min No. of Spec. (No. of Heats)				
NTS, MN/m ² (ks) Avg			ĺ	
K _t = Min No. of Spec. (No. of Heats)				
Tension, Transverse			2 = 1	
TUS, MN/m ² (ksi) Avg Min		1356 (196.6) 1342 (194.7)	1636 (237.3 1627 (236.0	
Std. Deviation	1214 (170.17	1042 (104.7)	1027 (200.0	, , , , , , , , , , , , , , , , , , , ,
TYS, MN/m ² (ksi) Avg		1059 (153.6)	1384 (200.8	
Std. Deviation	987.3 (143.2)	999.7 (145.0)	1379 (200.0	1575 (228.5)
Elong, percent Avg		6.5	9,1	2.5
Min	2.1	4.0	6.5	2.5
RA, percent Avg				
No. of Spec. (No. of Heats)	2 (1)	2 (1)	2 (1)	2 (1)
E, GN/m ² (10 ⁶ psi) Avg		214 (31.0)	222 (32.3) 221 (32.1)	215 (31.2) 214 (31.0)
No. of Spec. (No. of Heats)	210 (30.4)	214 (31.0)	2 (1)	2 (1)
oisson's Ratio	0.30	0.30	0.30	0.30
Vork Hardening Coef				
NTS, MN/m ² (ksi) Avg				
K _t = Min No. of Spec. (No. of Heats)				
NTS, MN/m² (ksi) Avg				

References: 61688

583<

Alloy Designation: Type 310 Stainless Steel (Weld Metal) \$31000

Specification:

AMS 5521B

Form: Sheet-TIG welded, 310 stainless-steel filler
Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: Cold rolled to 3/4 hard, welded, tested as welded

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	
Tension, Longitudinal					
TUS, MN/m² (ksi)	Avg	530 (76.8)	722.6 (104.8)	1026 (148.8)	
Cod Contract	Min	514 (74.6)	713.6 (103.5)	1017 (147.5)	
Std. Deviation					
TYS, MN/m ² (ksi)	Avg	380 (55.1)	523 (75.9)	751.5 (109.0)	
Out Desirely	Min	362 (52.5)	517 (75.0)	751.5 (109.0)	
Std. Deviation					
Elong, percent	Avg	4.3	3.8	4.0	
	Min	4.0	3.5	4.0	
RA, percent	Avg				
	Min				
No. of Spec. (No. of Hea	its)	2 (1)	2 (1)	2 (1)	
E, GN/m ² (10 ⁶ psi)	Avg	181 (26.2)	187 (27.1)	199 (28.8)	
No. of Spec. (No. of Hea	Min	179 (26.0)	184 (26.7)	194 (28.1)	
No. of Spec. (No. of Hea	Its)	2 (1)	2 (1)	2 (1)	
Poisson's Ratio		0.32	0.33	0.29	
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg				ļ
K _t = No. of Spec. (No. of Hea	Min				
	1.37				ĺ
NTS, MN/m² (ksi)	Avg				
K _t =	Min				1
No. of Spec. (No. of Hea	its)				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg				
	Min				l l
Std. Deviation					= j
TYS, MN/m ² (ksi)	Avg				
	Min	11			
Std. Deviation		1			
Elong, percent	Avg				_ =
	Min	}			
RA, percent	Avg				
	Min				
No. of Spec. (No. of Hea	its)				
E, GN/m ² (10 ⁶ psi)	Avg				
-, -,	Min	ì			
No. of Spec. (No. of Hea	ts)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg				
Kt =	Min				
No. of Spec. (No. of Hea	its)	}			
NTS, MN/m² (ksi)	Avg				

Alloy Designation: Type 310 Stainless Steel

Specification:

Form:

Form: Plate
Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Annealed

9 (82.5) 60 78.5 (1) 2 (109) (1)	793 (115) 79 75.5 (1)	80 69.5 (1)	(1)	1303 (189) 63 55.0 (1)
78.5 (1) 2 (109)	79 75.5 (1)	80	(1)	63 55.0
78.5 (1) 2 (109)	75.5 (1)	69.5	(1)	55.0
78.5 (1) 2 (109)	75.5 (1)	69.5	(1)	55.0
78.5 (1) 2 (109)	75.5 (1)	69.5	(1)	55.0
78.5 (1) 2 (109)	75.5 (1)	69.5	(1)	55.0
(1)	(1)		(1)	
2 (109)		(1)	(1)	(1)
	1014 (147)			
	1014 (147)			
	1014 (147)			
	1014 (147)		. 4	
	1014 (147)			
(1)		1365 (198)		1654 (240)
	(1)	(1)		(1)
			7.	
		9.1		
			7	

References: 52856

Alloy Designation: Type 310 Stainless Steel (Weld Metal)

S31000

Specification:

Form:

Plate-MIG welded, type 310-covered electrode

Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000 Condition: Plate welded, weldment annealed 1422 K (2100 F) 1 hr, WQ, tested as quenched

Testing Temperature, K (F)	297 (75)	168 (-156)	77 (-320)	4 (-452)
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg Min	564 (81.8)	810.1 (117.5)	1095 (158.8)	1271 (184.4)
Std. Deviation	141111				
TYS, MN/m ² (ksi)	Avg Min				
Std. Deviation	Willi				
Elong, percent	Avg Min	62.0	66.0	61.0	50.0
RA, percent	Avg Min	78.0	75.0	52.0	47.0
No. of Spec. (No. of He		1	1	1	1
E, GN/m ² (10 ⁸ psi)	Avg Min				
No. of Spec. (No. of He					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg	755.0 (109.5)	996.3 (144.5)	1303 (189.0)	1641 (238.0)
$K_t = 6.3$ No. of Spec. (No. of He	Min ats)	t .	1	1	1
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)				
Tension, Transversa					
TUS, MN/m ² (ksi) Std. Deviation	Avg Min				=_
TYS, MN/m ² (ksi)	Avg				
Std. Deviation	Min				
Elong, percent	Avg Min				
RA, percent	Avg Min				
No. of Spec. (No. of He					
E, GN/m ² (10 ⁶ psi)	∕ivg Min				
No of Spec. (No. of He					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min				
NTS, MN/m ² (ksi) Kt = No. of Spec. (No. of He	Avg Min				

Alloy Designation:

Type 310 Stainless Steel

S31000

Specification:

Thickness, cm (in.): Condition:

Plate 2.541 to 5.080 (1.001 to 2.000) Annealed

Testing Temperature, K (F)	297 (75)	77 (-320)	4 (-452)		
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg	545 (79)	1055 (153)	1179 (171)		
Std Deviation	Min				_114	
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	241 (35)	545 (79)	765 (111)		
Elong, percent	Avg Min					
RA, percent	Avg Min					
No. of Spec. (No. of H	eats)	2	2	1		
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of H	eats)					
oisson's Ratio						
Vork Hardening Coef						-
NTS, MN/m ² (ksi) $K_t =$ No. of Spec. (No. of H	Avg Min eats)					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of H	Avg Min eats)					
Tension, Transverse						
FUS, MN/m² (ksi) Std. Deviation	Avg Min					
TYS, MN/m² (ksi)	Avg					
Std. Deviation	Min					
Elong, percent	Avg Min					
RA, percent	Avg				11	
No. of Spec. (No. of He	Min					
, GN/m ² (10 ⁶ psi)	Avg					
No of Spec. (No. of He	Min eats)					
oisson's Ratio						
ork Hardening Coef						
ITS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)					
iTS, MN/m² (ksi) K _t =	Avg Min			111		

Alloy Designation:

Type 310 Stainless Steel

S31000

Specification:

Form:

Thickness, cm (in.): Condition:

Plate Over 5.080 (2.000) Annealed

Testing Temperature, K (F.)	297 (76)	77 (-320)	20 (-423)		
Compression, Longitudinal						
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of He						
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He	eats)					
Compression, Transverse						
CYS, MN/m ² (ksi)	Avg					
No. of Spec. (No. of He	Min eats)					
Ec, GN/m ² (10 ⁶ pei)	Avg Min					
No. of Spec. (No. of He	eats)				7.	
Shear(a)						
SUS, MN/m ² (ksi)	Avg Min					=
No. of Spec. (No. of He	eats)					
G, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He	ats)		1	}	}	1
impact, Charpy V						
Long., Nm(ft-lb)	Avg Min		122 (90)	117 (86.5)		
No. of Spec. (No. of He	eats)					
Trans., Nm(ft-lb)	Avg Min		118 (87)	115 (85)		
No. of Spec. (No. of He	ats)					
Fracture Toughness(b)						
K _{Ic} MN/m ^{3/2} (ksi√ in.)	Avg Min					
Orientation: — No. of Spec. (No. of He	eats)					
K _{IE} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(—	Avg)Min					
No. of Spec. (No. of He						

References: 94205

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{IC} data:

TABLE 8.1,4-ME4

Alloy Designation: Type 310 Stainless Steel

\$31000

Specification:

Form:

Diameter: Condition:

Up to 2.540 cm (1.000 in.) Annealed

Bar

sting Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)
nsion, Longitudinal											
IS, MN/m² (ksi)	Avg Min	585	(84.8)	738 738	(107) (107)	1091 1082	(158)	1390 1248	(201.6) (181)	1303 1289	(189) (187)
Std. Deviation	IVIIII	542 23	(78.6) (3.35)	/30	(107)	1002	(157)		(15.0)	1209	(10//
'S, MN/m² (ksi)	Avg	338	(49.07		(43.9)	520	(75.5)	851.5	(123.5)	717	(104)
Std. Deviation	Min	217 112.6	(31.5) (16.33	300	(43.5)	512	(74.3)	685 138	(99.3) (20.02)	703	(102)
ong, percent	Avg Min		49.7 42.0		71.5 69.8		7.7 6.6		4.0 1.9	19	19.8
A, percent	Ача		75.6		68.0		9.6		8.5		11.0
No. of Spec. (No. of He	Min eats)	9	70.2 (3)	2	67.7 (1)	3	6.2 (2)	8 3	4.1 (2)	2	(1)
GN/m ² (10 ⁶ psi)	Avg					206	(29.9)			206	(29.9)
No. of Spec. (No. of He	Min eats)					3	(1)	1		3	(1)
isson's Ratio			0.287			0	.303			c	.296
rk Hardening Coef											
S, MN/m ² (ksi)	Avg	779	(113)	986	(143)	1441	(209)	1772	(257)	1786	(259)
% = 3 No. of Spec. (No. of He)	Min ats)	2	(1)	2	(1)	2	(1)	2	(1)	2	(1)
S, MN/m ² (ksi) K _t = 6.4	Avg Min	775 758	(112.4 (110.0					1300 1089	(188.6) (158.0)		
No. of Spec. (No. of He		5	(1)					5	(1)		
sion, Transverse											
s, MN/m² (ksi) td. Deviation	Avg Min										
, MN/m ² (ksi)	Avg										
td. Deviation	Min										
ng, percent	Avg										
ny, parcent	Min		-						İ		
, percent	Avg Min										
lo. of Spec. (No. of He											
GN/m ² (10 ⁶ psi)	Avg Min										
lo. of Spec. (No. of Hea											
son's Ratio											
k Hardening Coef											
S, MN/m² (ksi) C _t =	Avg Min										
lo. of Spec. (No. of Hea											
S, MN/m² (ksi) C _t =	Avg Min										
No. of Spec. (No. of Hea											

FIGURE 8.1.4-ME1. EFFECT OF TEMPERATURE ON THE STRENGTH OF TYPE 310 STAINLESS STEEL

FIGURE 8.1.4-ME2. AXIAL FATIGUE LIFE CURVES FOR NOTCHED 310 STAINLESS STEEL BAR [Up to 2.540 cm (1.000 in.) diameter] [94208A, 95168]

8.1.4-6.1 (11/76)

8.1.4-6.2 (11/76)

TABLE 8.1,5-ME1

Alloy Designation: Type 316 Stainless Steel

Specification:

Form:

Sheet Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: Annealed

Testing Temperature, K (F)		297 (75)	20 (-423)	
Tension, Longitudinal				
TUS, MN/m ² (ksi)	Avg	596 (86.4)	1576 (229)	
Std. Deviation	Min	592 (85.9)	1510 (219)	
TYS, MN/m ² (ksi)	Avg	275 (39.8)	666 (96.6)	
Std. Deviation	Min	273 (39.6)	660 (95.8)	
Elong, percent	Avg Min	60.5 60	55.3 48	
RA, percent	Avg Min			
No. of Spec. (No. of Hea		3 (1)	3 (1)	
E, GN/m ² (10 ⁶ psi)	Avg			
No. of Spec. (No. of Hea	Min ats)	1 - 1 - 1		
Poisson's Ratio				
Work Hardening Coef				
NIS, MN/m ² (ksi)	Avg			
K _t = No. of Spec. (No. of Hea	Min its)			
NTS, MN/m ² (ksi)	Avg			
K _t = No. of Spec. (No. of Hea	Min ats)			
Tension, Transverse				
TUS, MN/m ² (ksi)	Avg			
Std. Deviation	Min			
TYS, MN/m ² (ksi)	Avg			
Std. Deviation	Min			
Elong, percent	Avg			
ciong, percent	Min			
RA, percent	Avg			
No. of Spec. (No. of Hea	Min ats)			
E, GN/m ² (10 ⁶ psi)	Avg Min			
No. of Spec. (No. of Hea				
Poisson's Ratio		E		
Work Hardening Coef				
NTS, MN/m ² (ksi)	Avg			
K _t = No. of Spec. (No. of Hea	Min its)			
NTS, MN/m ² (ksi)	Avg			
K _t = No. of Spec. (No. of Hea	Min			

References: 33262

8.1.5-1 (11/74)

TABLE 8.1.5-ME1.1

Alloy Designation:

Type 316 Stainless Steel (Weld Metal)

Specification:

Form:

Sheet-TIG weided, Type 347 filler 0.100 to 0.319 (0.040 to 0.125) Annealed sheet welded and tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297	(75)					20	(-423)	
Tension, Longitudinal										
TUS, MN/m ² (ksi)		554	(80.4)					1314	(190.6)	
Std. Deviation	Min	533	(77.31					1225	(177.7)	
	Avg Min									
Std Deviation										
	Avg Min								,	
	Avg Min									
No. of Spec. (No. of Heats)		2	(1)			1.7		2	(1)	
	Avg Min									
Poisson's Ratio	'									
Work Hardening Coef										
	A		ł							
	Avg Min			I						
	Avg Min									
Tension, Transverse						13.7				
	Avg Min									
Std. Deviation										
	Avg Min									
Elong, percent	Avg Min									
RA, percent	Avg									
No. of Spec. (No. of Heats)	Min						- 1		_ 11	
	Avg Min									
No. of Spec. (No. of Heats)										1
Poisson's Ratio										
Nork Hardening Coef										
	Avg Min									
	Avg									
	Min									

TABLE 8.1.5-ME2

Alloy Designation: Type 316 Stainless Steel

Specification:

Form: Plate
Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: Annealed

Testing Temperature, K (F)	297 (75)	170 (-154)	77 (-320)	4 (-452)
Tension, Longitudinal				
TUS, MN/m ² (ksi) Avg	579 (84.0)	869 (126)	1227 (178)	1461 (212)
Std. Deviation				
TYS, MN/m ² (ksi) Avg				
Std Deviation				
Elong, percent Avg Min	76	81	64	54
RA, percent Avg	73.5	74.5	68.0	55.0
No. of Spec. (No. of Heats)	(1)	(1)	(1)	(1)
E, GN/m ² (10 ⁶ psi) Avg				
No. of Spec. (No. of Heats)				
Poisson's Ratio			k	
Work Hardening Coef	606 (101)	1020 (148)	1400 (202)	1559 (226)
NTS, MN/m ² (ksi) Avg K _t = 6.3 Min No. of Spec. (No. of Heats)	696 (101)	1020 (148)	1400 (203)	1558 (226)
NTS, MN/m^2 (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)				
Tension, Transverse				
TUS, MN/m ² (ksi) Avg Min Std. Deviation				
TYS, MN/m² (ksi) Avg				
Std. Deviation				
Elong, percent Avg				
RA, percent Avg Min No. of Spec. (No. of Heats)				
E, GN/m ² (10 ⁶ psi) Avg				
No. of Spec. (No. of Heats)				
oisson's Ratio				
Work Hardening Coef				
NTS, MN/m^2 (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)				
NTS, MN/m^2 (ksi) Avg $K_t = Min$				

TABLE 8.1.5-ME3

Alloy Designation: Type 316 Stainless Steel

Specification:

Form: Plate
Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: Annealed

Testing Temperature, K (F)		297	(75)	233	(-40)	195	(-108)	153	(-184)	77	(-320)	10	(-442)
Compression, Longitudinal													
CYS, MN/m ² (ksi)	Avg Min												
No. of Spec. (No. of Hea													
Ec, GN/m ² (10 ⁶ psi)	Avg Min												
No. of Spec. (No. of Hea	ats)												
Compression, Transverse		1											
CYS, MN/m ² (ksi)	Avg Min												
No. of Spec. (No. of Hea	ats)				1								
Ec, GN/m ² (10 ⁶ psi)	Avg Min												
No. of Spec. (No. of Hea													
Shear(a)													
SUS, MN/m ² (ksi)	Avg Min								Ц				
No. of Spec. (No. of Hea	ets)												
G, GN/m ² (10 ⁶ psi)	Avg Min												
No. of Spec. (No. of Hea	ats)			Ì	1				1				
Impact, Charpy V, Testing	Temp.												
Long., J(ft-lb)	Avg Min	192	(142)	210	(155)	168	(124)	146	(108)	146	(108)	132	(97)
No. of Spec. (No. of Hea													
Trans., J(ft-lb)	Avg												
No. of Spec. (No. of Hea													
Fracture Toughness(b)													
K _{Ic} MN/m ^{3/2} (ksi√ in.)	Avg Min												
Orientation: — No. of Spec. (No. of Hea	ats)												
K _{IE} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(—	Avg)Min												
No. of Spec. (No. of Hea													

References: 52856

⁽a) Indicate specimen design and crientation for shear specimens: (b) Indicate specimen design for $K_{\rm IC}$ data:

TABLE 8.1.5 ME3.1

Alloy Designation: Type 316 Stainless Steel (Weld Metal)

Specification:

Plate-MIG welded, type 316 covered electrode

Thickness, cm (in.): Condition:

1.270 to 2.540 (0.500 to 1.000) Plate welded, annealed 1366 K (2000 F) 1 hr, WQ, tested as quenched

Testing Temperature, K (F)	297 (75)	168 (-156)	77 (-320)	4 (-452)
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg Min	553 (80.2)	855.0 (124.0)	1176 (170.5)	1382 (200.5)
Std Deviation					
TYS, MN/m ² (ksi) Std Deviation	Avg Min		1		
Elong, percent	Avg	55.0	60.0	53.0	50.0
RA, percent	Avg	60.0	51.5	54.0	43.0
No of Spec, (No of H	Min cats)				
E, GN/m ² (10 ⁶ psi)	Avg				
No. of Spec. (No. of H		72			
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = 6.3 No. of Sec. (No. of He	Avg Min	699.8 (101.5)	868.7 (126.0)	1127 (163.5)	1351 (196.0)
NTS, MN/m ² (ksi) K _t = No of Spec. (No. of Hi	Avg Min eats)				
Tension, Transverse					
TUS, MN/m² (ksi) Std Deviation	Avg Min				
TYS, MN/m² (ksi)	Avg				
Std Deviation	Min				
Elong, percent	, . √g Min				
RA, percent	Avg Min				
No. of Spec (No. of He					
E, GN/m ² (10 ⁶ psi)	Avg				
No of Spec. (No of Hi	eats)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)				
NTS, MN/m² (ksi) K _t =	Avg				

TABLE 8.1.5-ME4

Alloy Designation: Type 316 Stainless Steel

Specification:

Form:

Bar Up to 2.540 cm (1.000 in.) Annealed

Diameter: Condition:

Testing Temperature, K (F)	297 (75)	195 (-108)	122 (-240)	77 (-320)		4 (-452)
Tension, Longitudinal						
TUS, MN/m ² (ksi) Avg	647 (93.9)	910 (132)	1110 (161)	1269 (184)		1489 (216)
Min Std. Deviation						
TYS, MN/m ² (ksi) Avg						
Std. Deviation						
Elong, percent Avg Min	47	59	60	59		52
RA, percent Avg	37.5	38.0	77.7	76.2		59.7
No. of Spec. (No. of Heats)	(1)	(1)	(1)	(1)		(1)
E, GN/m ² (10 ⁶ psi) Avg						
No. of Spec. (No. of Heats)						1
Poisson's Ratio						
Nork Hardening Coef					11	
NTS, MN/m² (ksi) Avg						
K _t = Min No. of Spec. (No. of Heats)						
NTS, MN/m² (ksi) Avg				12	-	
K _t = Min No, of Spec. (No. of Heats)						
Tension, Transverse					п	
TUS, MN/m ² (ksi) Avg						i
Std. Deviation			: _ 'n (21120	
FYS, MN/m ² (ksi) Avg		1				
Std. Deviation						
Elong, percent Avg						
Min						
RA, percent Avg						
No. of Spec. (No. of Heats)						
, GN/m ² (10 ⁶ psi) Avg						
Min No of Spec. (No. of Heats)		8				
oisson's Ratio						
Vork Hardening Coef						
iTS, MN/m ² (ksi) Avg						
K _t = Min No. of Spec. (No. of Heats)						
ITS, MN/m² (ksi) Avg						

TABLE 8.1.6-ME2.1

Alloy Designation:

Type 321 Stainless Steel (Weld Metal)

Specification:

Form:

Sheet-TIG welded, filler not specified 0.100 to 0.319 (0.040 to 0.125) Annealed sheet welded and tested as welded Thickness, cm (in.): Condition:

Testing Temperature, K (F)	2	97 (75)		77	(-320)	20 (-423)	
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg sys	(86.7)		1413	(205.0)	893.6 (129.6)	
Std. Deviation	Min 597	(86.6)		1367	(198.3)	792.9 (115.0)	
TYS, MN/m² (ksi)	Avg						
Std. Deviation	Min						
Elong, percent	Avg Min						
RA, percent	Avg						
No. of Spec. (No. of Heat	Min 3	(1)		3	(1)	3 (1)	
E, GN/m ² (10 ⁶ psi)	Avg						
No. of Spec. (No. of Heat	Min s)						
Poisson's Ratio							
Nork Hardening Coef							
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min						
Tension, Transverse							
rus, MN/m² (ksi)	Avg Min						
Std. Deviation				1			
TYS, MN/m² (ksi)	Avg Min						
Std. Deviation	10111		1 10				
Elong, percent	Avg Min		_ = =				
RA, percent	Avg Min						
No. of Spec. (No. of Heat							
E, GN/m ² (10 ⁶ psi)	Avg Min	11 8					
No. of Spec. (No. of Heat:							
oisson's Ratio							
Vork Hardening Coef						14	
NTS, MN/m² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min s)						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min						

TABLE 8.1.6-ME3

Alloy Designation: Type 321 Stainless Steel

Specification:

Form: Plate

Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)
Condition: Annealed

Testing Temperature, K (F)	297 (75)		20 (-423)	
Tension, Longitudinal				
TUS, MN/m ² (ksi)	vg 560 (81.2)		1494 (217)	
Std. Deviation	in 543 (78.7)		1453 (211)	
TYS, MN/m ² (ksi)	vg 236 (34.3)		393 (57.0)	
Std. Deviation	in 205 (29.8)		386 (56.0)	
	vg 58.2 in 57.5	ll E	30.4 28.2	
	vg 65.4 in 63.8	1.0	51.6 51.3	
No. of Spec. (No. of Heats)	2 (1)		2 (1)	
	vg in			
No. of Spec. (No. of Heats)				
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m² (ksi) A	vg 581 (84.3)		733 (106)	
	in 579 (84.0) 3 (1)	3 1	696 (101) 2 (1)	
NTS, MN/m² (ksi) A	,g			
	in			
Tension, Transverse				
TUS, MN/m ² (ksi) A	/g			
Std. Deviation	in (
TYS, MN/m ² (ksi) A				
Std. Deviation	in			
Elong, percent A				
Elong, percent A M				
RA, percent A				14
No. of Spec. (No. of Heats)				
E, GN/m ² (10 ⁶ psi) A	•		Barrier Barrier	81
No. of Spec. (No. of Heats)				
oisson's Ratio				
Vork Hardening Coef				
NTS, MN/m ² (ksi) A				
$K_t = M$ No. of Spec. (No. of Heats)	n	1111		
NTS, MN/m ² (ksi) A				
K _t = M No of Spec. (No. of Heats)	"			

TABLE 8.1.6-ME4

Alloy Designation: Type 321 Stainless Steel

Specification:

Form:

Diameter: Condition:

Bar Up to 2.54 cm (1.000 in.) Annealed

Testing Temperature, K (F	=)	297	(75)	195	(-108)	77	(-320)	20	(-423)		
Tension, Longitudinal											
TUS, MN/m ² (ksi)	Avg Min	673 670	(97.6) (97.2)	1054 1043	(153) (151)	1537 1516	(223) (220)	1862 1844	(270) (267)		
Std Deviation											
TYS, MN/m ² (ksi)	Avg Min	429 425	(62.2) (61.6)	385 371	(55.9) (53.8)	451 445	(65.4) (64.6)	403 402	(58.5) (58.3)		
Std. Deviation											
Elong, percent	Avg Min		55.1 64.5		15.7 14.6		7.9 7.1	3	4.7		
					20.7				2.6		
RA, percent	Avg Min		9.4 8.4		72.7 71.8		0.0 3.3	4	3.6		
No of Spec. (No of He	eats)	2	(1)	3	(1)	4	(1)	2	(1)		
E, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of He											
Poisson's Ratio											
Vork Hardening Coef											
NTS, MN/m² (ksi)	Avg										
K _t =	Min										
No of Spec. (No. of He	eats)										
NTS, MN/m ² (ksi)	Avg										
K _t = No. of Spec. (No. of He	Min eats)										
ension, Transverse											
'US, MN/m ² (ksi)	Avg Min					=					
Std. Deviation											
TYS, MN/m ² (ksi)	Avg									C	
	Min										
Std. Deviation											
long, percent	Avg										
	Min					-					
A, percent	Avg Min					A					
No. of Spec. (No. of He											
E, GN/m ² (10 ⁶ psi)	Avg Min										
No of Spec. (No. of He											
oisson's Ratio											
ork Hardening Coef											
ITS, MN/m² (ksi)	Avg										
K _t =	Min										
No. of Spec. (No. of He	a(S)										
ITS, MN/m ² (ksi)	Avg										
Kt = No of Spec. (No of He	Min late										
THO OT SPEC. (NO OT HE	0(3)							1		Care.	141

FIGURE 8.1.6-ME1. EFFECT OF TEMPERATURE ON THE STRENGTH OF TYPE 321 STAINLESS STEEL

0

FIGURE 8.1.6-ME2. AXIAL FATIGUE LIFE CURVES FOR 321 (ANNEALED) STAINLESS STEEL ALLOY SHEET 0.230 cm (0.090 in.) THICK, AS WELDED [TIG welded; filler not specified] [61996]

TABLE 8.1.6-TR1

Alloy Designation: Type 321 Stainless Steel

Specification:
Form:
Dimension:
Condition: Annealed

Testing Temperature K (F)	273 (3	2) 100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Watts m-1 K-1 Btu hr-1 ft-1 F-1 No. of Spec. References:											
Thermal Expansion (T ₂₇₃ to T) Longitudinal											
Percent No. of Spec. References: 48134, 69332	0 2	- 0.232		- 0.267		-0.268 2		-0.269		-0.269	
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu Ib ⁻¹ F ⁻¹ No. of Spec. References:											
Electrical Resistivity											
Ohm m Ohm circular mil ft ⁻¹ No. of Spec. References: 79561	74.0 × 10 ⁻⁸ (4-1	57.5 x	10 ⁻⁸ (346)	53.5 x 10	-8 (322)	53.0 x 1	0 ⁻⁸ (319)	53.0 x 1	0 ⁻⁸ (319)	53.0 x 1	10 ⁻⁸ (319)

TABLE 8.1.7-TR1

Alloy Designation:

Type 363 Stainless Steel

Specification: orm: Dimension: Condition:

Testing Temperature K (F)	273 (32)	100 (-28	0) 50	(-370)	20	(-423)	10	(-442)	4	(-452
Thermal Conductivity Watts m-1 K-1 Btu hr-1 ft-1 F-1 No. of Spec. References: Thermal Expension (T273 to T) Longitudinal										
Percent No. of Spec. References: 48134 Specific Heat Joules kg-1 K-1 Btu lb-1 F-1 No. of Spec. References:	0	-0.233 1	-0.263		-0.267 1					
Ohm m Ohm circular mil ft ⁻¹ No. of Spec. References: 79561, 90318	71.2 x 10 ⁻⁸ (428)	53.7 x 10 ⁻⁸ (323)	50 x 10	-8 (301)	50 x 10	-8 (301)	50 x 10	ე-8 (301)	50 x 1	0 ⁻⁸ (301)

FIGURE 8.1.7-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR TYPE 303 STAINLESS STEEL

FIGURE 3.1.7-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR TYPE 303 STAINLESS STEEL

TABLE 8.1.8-ME0.1

A'loy Designation: Type 310S Stainless Steel

S31008

Specification:

Form: Sheet
Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: Annealed

Testing Temperature, K (F)		297 (75)					4	(-452)
Tension, Longitudinal								
TUS, MN/m ² (ksi)	Avg						1230	(178)
Std Deviation	Min						1140	(165)
	1			1				
TYS, MN/m ² (ksi)	Avg						772	(112)
Std Deviation	Min						738	(197)
	ĺ							
Elong, percent	Avg							59 54
	604H1							•
RA, percent	Avg							
No. of Spec. (No. of Hea	Min ats)					1	4	(1)
E, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of Hea					A			
					1 1			
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m² (ksi)	Avg							
K _t =	Min							
No. of Spec. (No. of Hea	its)							
NTS, MN/m ² (ksi)	Avg							
K _t =	Min							
No. of Spec. (No. of Hea	ets)							
Tension, Transverse			1	1				
TUS, MN/m² (ksi)	Avg						1280	(186)
Std. Deviation	Min						1260	(183)
TYS, MN/m² (ksi)	Avg						800	(116)
Std. Deviation	Min			ļ			772	(112)
Elong, percent	Avg Min							58 56
	IVIIII							50
RA, percent	Avg			i				
No. of Spec. (No. of Hea	Min (ts)						3	(1)
E, GN/m ² (10 ⁶ psi)	Avg Min							
No of Spec. (No. of Hea								
Poisson's Ratio								
OISSON S MAILO					57=			
Work Hardening Coef								
NTS, MN/m² (ksi)	Avg							
K _t =	Min							
No. of Spec. (No. of Hea	its)							
NTS, MN/m ² (ksi)	Avg							
K _t =	Min							
No. of Spec. (No. of Hea	its)	·		.1	1			

TABLE 8.1.8-ME1

Alloy Designation:

Type 310S Stainless Steel

\$31008

Specification:

Form:

Thickness, cm (in.): Condition:

Forging Up to 2.540 (1.000) Solution Treated 1365 K (2000 F) 1 hr., WQ

(STQ)

Testing Temperature, K (F)		297 (75)	77 (-320)	4 (-452)		
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg Min	585 (84.8)	1098 (159.2)	1303 (189.0)		
Std. Deviation						
TYS, MN/m ² (ksi)	Avg Min	261 (37.9)	604 (87.6)	817 (118.5)		
Std. Deviation						
Elong, percent	Avg Min	53.8	71.8	64.3		
RA, percent	Avg Min	70.7	51.6	44.6		
No. of Spec. (No. of Hea						
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Hea						
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m² (ksi) Kt = No. of Spec. (No. of Hea	Avg Min	798 (115.8)	1355 (196.5)	1598 (231.8)		
NTS, MN/m ² (ksi)	Avg			1		
$K_t =$ No. of Spec. (No. of Hea	Min its)					
Tension, Transverse						
TUS, MN/m ² (ksi)	Avg					
Std. Deviation	Min					
TYS, MN/m ² (ksi)	Avg					
Std. Deviation	Min					
Elong, percent	Avg Min					
RA, percent	Avg					
No. of Spec. (No. of Hea	Min ts)					
E, GN/m ² (10 ⁶ psi)	Avg				+	
No. of Spec. (No. of Hea	Min ts)					
Poisson's Ratio						
₩ork Hardening Coef				†		
NTS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of Hea	Min ts)		11			
NTS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of Hea	Min ts)					

TABLE 8.1.9 ME2

Alloy Designation:

Type 310S Stainless Steel

S3160R

Specification:

Thickness, cm (in.): Condition:

Forging
Up to 2.540 (1.000)
Solution Treated 1365 K (2000 F) 1 hr., FC to 700 K (800 F) 30 min., AC

(STFC)

Testing Temperature, K (I	F) '	297 (75)	77 (-320)	4 (-452)		-	
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg Min	578 (83.8)	1034 (150.0)	1300 (188.5)			
Std. Deviation TYS, MN/m ² (ksi)	Avg Min	226 (32.8)	574 (83.2)	817 (118.5)			
Std Deviation Elong, percent	Avg Min	57.2	48.6	61.0			
RA, percent	/.vg Min	62.2	31.2	43.6			
No. of Spec. (No. of He E, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of He	eats)						
Work Hardening Coef							
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)	763 (110.6)	1198 (173.8)	1472 (213.5)	121		
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)						
Tension, Transverse							
TUS, MN/m ² (ksi)	Avg Min						
Std. Deviation 'YS, M V/m² (ksi)	Avg						
Std. Deviation	Min						
Elong, percent	Avg Min					П	
No. of Spec. (No of He	Avg Min eats)						
E, GN/m ² (10 ⁶ psi)	Avg						
No. of Spec. (No. of He	Min eats)						
oisson's Ratio							
Vork Hardening Coef							
ITS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min						
ITS, MN/m² (ksi) K _t = No. of Spec. (No. of He	Avg Min						

References: 94206E 94208G

FIGURE 8.1.8-ME1. FATIGUE CARCK GROWTH RATE PROPERTIES OF AISI 310S STAINLESS STEEL AT 77K AND 4K (-320F AND -452F)(94208G)

TABLE 8.1.8 TR1

Alloy Designation:

Type 310S Stainless Steel

\$31008

Specification: Form:

Form: Dimension: Condition:

Testing Temperature K (F)	273 (32)	100 (-280)	50 (-370)	20 (-423)	10 (-442)	4 (-452)
Thermal Conductivity Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F-1	12.4	8.10 (4.68)	5.35	2.30	1.15	
No. of Spec	(7.17)	1 (4.00)	(3.09)	(1.33)	(0.665)	
References: 94206						
Thermal Expansion (T ₂₇₃ to T) Longitudinal						
Percent No. of Spec.						
References:						
Specific Heat						
Joules kg ⁻¹ K ⁻¹	480	255	105*	12.1	5.36 (1.28 x 10 ⁻³)	2.24
Btu lb-1 F-1	(0.115)	(6.09 x 10 ⁻²)	(2,51 x 10 ⁻²)	(2.89 x 10 ⁻³)	(1.28 x 10 ⁻³)	(5.35 x 10 ⁻⁴
No. of Spec. References: 90202, 94208, 95168 Electrical Resistivity	2	2	9	.2	2	2
Ohm m	90 x 10 ⁻⁸	78 x 10 ⁻⁸	74 × 10-8	71 × 10 ⁻⁸	70 x 10 ⁻⁸	70 x 10 ⁻⁸
Ohm circular mil ft ⁻¹	(541)	(469)	(445)	(427)	(421)	(421)
No. of Spec. References: 94260, 94208	2	2	2	2	2	2
* Extrapolated	-					

FIGURE 8.1.8-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR TYPE 310 STAINLESS STEEL

613<

FIGURE 8.1.8-S1. SPECIFIC HEAT VERSUS TEMPERATURE FOR TYPE 310S STAINLESS STEEL

FIGURE 8.1.8-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR TYPE 310S STAINLESS STEEL

TABLE 8.1.9-ME7

Alloy Designation:

Type 347 Stainless Steel

S34700

Specification:

Form:

Plate 1.270 to 2.540 (0.500 to 1.000) Annealed 2000 F 1 hr., WQ

Thickness, cm (in.): Condition:

Average grain diameter 0.013mm

Testing Temperature, K (F)	297 (75)	168 (-76)	77 (-320)	4 (-452)	 ļ
Tension, Longitudinal TUS, MN/m ² (ksi) Ave		982 (142.5) 962 (139.6)	1322 (191.7) 1296 (188.0)	1560 (232.0)	
Std Deviation					
TYS, MN/m ² (ksi) Av Mir Std. Deviation		465 (67.4)	493 (71.6)		
Elong, percent Avg		50.0 47.0	43.0 38.0	41.0	
RA, percent Avg	66.3	61.9 58.8	46.8 34.6 2 (2)	49.0 1 (1)	
No of Spec. (No. of Heats)	2 (2)	2 (2)	2 (2)	1 (1)	
E, GN/m ² (10 ⁶ psi) Av ₁ Mir No. of Spec. (No. of Heats)					
Poisson's Ratio		=			
Work Hardening Coef					
NTS, MN/m ² (ksi) Av		1114 (161.5)	1200 (174.0)	1351 (196.0)	
K _t = 6.3 Mir No. of Spec. (No. of Heats)	1	1	1	1	
NTS, MN/m^2 (ksi) Avg $K_t = Mir$ No. of Spec. (No. of Heats)					
Tension, Transverse					
TUS, MN/m² (ksi) Avg Mir Std Deviation					
TYS, MN/m² (ksi) Avs					
Mir Std. Deviation					
Elong, percent Avg					
RA, percent Av					
No. of Spec. (No. of Heats)					
E, GN/m ² (10 ⁶ psi) Avg					1 5
No. of Spec. (No. of Heats)			1		
oisson's Ratio					
Nork Hardening Coef					
NTS, MN/m ² (ksi) Avg K _t * Mir No. of Spec (No. of Heats)					
NTS, MN/m ² (ksi) Avg K _t = Mir					

TABLE 8.1.9-ME7.1

Alloy Designation:

Type 347 Stainless Steel

S34700

Specification:

Form:

Thickness, cm (in.): Condition:

1.270 to 2.540 (0.506 to 1.000) Commercially treated, softed, descaled

Testing Temperature, K (F)		297	(75)	223	(-58)	173	(-148)	148	(-193)	123	(-240)	77	(-320)
Compression, Longitudinal													
CYS, MN/m ² (ksi)	Avg Min												
No. of Spec. (No. of Hea								1					
Ec, GN/m ² (106 psi)	Avg Min												
No. of Spec. (No. of Hea	ats)												
Compression, Transverse								ļ .					
CYS, MN/m ² (ksi)	Avg Min			111									
No. of Spec. (No. of Hea													
Ec, GN/m ² (10 ⁶ psi)	Avg Min												
No. of Spec. (No. of Hea	ats)							111					
Shear(a)						7							
SUS, MN/m ² (ksi)	Avg Min												
No. of Spec. (No. of Hea	ats)												
G, GN/m ² (10 ⁶ psi)	Avg Min												
No. of Spec. (No. of He	ats)												
Impact, Charpy V													
Long., Nm(ft-lb)	Avg Min	120 110	(87) (83)	140 130	(105) (99)	140	(105)	120	(92)	120	(91)		(83) (80)
No. of Spec. (No. of Hea		2	(1)	2	(1)	1		1		1		3	(1)
Trans., Nm(ft-lb)	Avg Min												
No of Spec. (No. of Hea													
Fracture Toughness(b)													
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min												
Orientation — No. of Spec. (No. of Hea	ets)												
K _{1E} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(— No. of Spec. (No. of Hea	Avg)Min												

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{I_C} data:

TABLE 8.1.9-ME7.2

Alloy Designation: Type 347 Stainless Steel (Weld Metal)

S34700

Specification:

Plate-MIG welded, type 347 covered electrode Form:

Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000)
Condition: Plate welded, annealed 1366 K (2000 F) 1 hr, WQ, tested as quenched

Testing Temperature, K (F)		297 (75)	168 (-156)	77 (-320)	4 (-452)
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg Min	634 (92.0)	1034 (150.0)	1358 (197.0)	1505(227.0)
Std. Deviation					
TYS, MN/m ² (ksi) Std. Deviation	Avg Min				
Elong, percent	Avg Min	59.0	62.0	48.0	41.0
RA, percent	Avg Min	68.5	66.5	60.5	41.0
No. of Spec. (No. of Heats))	1	1	1	1 = 1
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Heats	,				- 11
Poisson's Ratio					
Work Hardening Coef					= =
	Avg Min	761.9 (110.5)	899.7 (130.5)	1045 (151.5)	1200(174.0)
No. of Spec. (No. of Heats))	1	1	1	1
NTS, MN/m ² (ksi) $K_t =$ No. of Spec. (No. of Heats)	Avg Min				
Tension, Transverse			- 24 11		-
	Avg Min				
	Avg Min				
Std. Deviation	1	}			
	Avg Min				
	Avg Min				
No. of Spec. (No. of Heats)			1		
	Avg Min				
No. of Spec. (No. of Heats)					
Poisson's Ratio					
Vork Hardening Coef					
	Avg Min				
NTS, MN/m² (ksi)	Avg Min		Α.//		

TABLE 8.1.9-ME8

Alloy Designation:

Type 347 Stainless Steel

\$34700

Specification:

Plate

Form: Thickness, cm (in.): Condition:

over 5.080 (2.000)

Annealed

Testing Temperature, K (F	F)	297 (75)	90 (-300)	20 (-423)			
Compression, Longitudina			7.				
CYS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of He	eats)						
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of He	eats)						
Compression, Transverse							
CYS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of He					-	4	
Ec, GN/m ² (10 ⁶ psi)	Avg Min		9			1	
No. of Spec. (No. of He			4			- N - H	
Shear(a)							
SUS, MN/m ² (ksi)	Avg Min					1	
No. of Spec. (No. of H	eats)						
G, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of He	eats)		1				
Impact, Charpy V							
Long., Nm(ft-lb)	Avg Min		104 (77)	80.0 (59)			
No. of Spec. (No. of He							
Trans., Nm(ft-lb)	Avg Min		78.6 (58)	71.9 (53)			
No. of Spec. (No. of He							
Fracture Toughness(b)							
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min						
Orientation: — No. of Spec. (No. of He	eats)				- 11		
KIE, MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(- No. of Spec. (No. of H	Avg -)Min eats)						

⁽a) Indicate specimen design and orientation for wheer specimens: (b) Indicate specimen design for K_{1c} data:

FIGURE 8.1.9-ME1. UNNOTCHED (K $_{\rm T}$ $^{\rm a}$ 1) FLEXURE FATIGUE BEHAVIOR OF ANNEALED 347 STAINLESS STEEL SHEET (Up to 0.099cm [0.039 in.])49048

TABLE 8.1.9-TR1

Alloy Designation:

Type 347 Stainless Steel

S34700

Specification:

Form:

Dimension.
Condition:

Testing Temperature K (F)	273 (32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452
Thermal Conductivity Watts m-1 K-1(1) Btu hr-1 ft-1 F-1 No. of Spec. References: 90193 Thermal Expension (T273 to T)	13.6 (7.86)	9.04	(5.23)	5.65	(3.27)	2.18	(1.26)	0.926	(0.535)		
Percent No. of Spec. References: 69332	0	-0.234 1		-0.266 1		-0.267 1		-0.267 1		- 0.267 1	
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹ No. of Spec. References:											
Electrical Resistivity				11,							
Ohm m ⁽¹⁾ Ohm circular mil ft ⁻¹	74.4 x 10 ⁻⁸ (448)	58.6 x 10	-8 (352)	54.7 x 1	0 ⁻⁸ (329)	54.4 x 1	0 ⁻⁸ (327)	54.4 x 1	0 ⁻⁸ (327)		
Ohm m ⁽²⁾ Ohm circular mil ft ⁻¹ No. of Spec. References: 79561, 90193	70.8 x 10 ⁻⁸ (426)	54.0 x 10	₎ -8 (325)	50.2 x 1	₀ -8 (302)	50.0 x 1	0 ⁻⁸ (301)	50.1 x 1	0 ⁻⁸ (301)	50.1 x 1	0 ⁻⁸ (301)

⁽¹⁾ Triple brazed condition.(2) Annealed.

8.1.9 13 (11/76)

FIGURE 8.1.9-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR TYPE 347 STAINLESS STEEL

FIGURE 8.1.9-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR TYPE 347
STAINLESS STEEL

6:3<

TABLE 8.1.10-ME1

Alloy Designation:

Type 410 Stainless Steel

Specification:

Form:

Thickness, cm (in.): Up to 2.540 (1.000)

Condition: Heat treated 1255 K (1800 F) 1 hr, OQ, tempered 644 K (700 F) 4 hr, AC

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	20 (-423)
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg	1383 (200.6)	1463 (212.2)	1821 (264.1) 1785 (258.9)	
Std Deviation	Min	1342 (194.7)	1419 (205.8)	1785 (256.9)	2176 (315.9)
TYS, MN/m ² (ksi) Std Deviation	Avg Mın	1383 (200.6) 1342 (194.7)	1463 (212.2) 1419 (205.8)	1821 (264.1) 1785 (258.9)	
Elong, percent	Avg Min	14.3 13.9	15.1 13.8	5.8 5.4	0.8 0.7
RA, percent	Avg	67.2	64.4	20.6	5.6
No. of Spec. (No. of Hea	Min ets)	66.2 3 (1)	63.2 3 (1)	20.6	5.2
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hea	ets)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ats)				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ats)				
Tension, Transverse			f		
TUS, MN/m ² (ksi) Std. Deviation	Avg Min				
TYS, MN/m² (ksi)	Avg	Ш			
Std. Deviation	Min				
Elong, percent	Avg Min				
RA, percent No. of Spec. (No. of Hea	Avg Min				
E, GN/m ² (10 ⁶ psi)	Avg				
No. of Spec. (No. of Hea	Min				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t =	Avg Min				
No. of Spec. (No. of Hea NTS, MN/m ² (ksi)	Avg				
K _t = No. of Spec. (No. of Hea	Min		7		

TABLE 8.1.10-ME2

Alloy Designation:

Type 410 Stainless Steel

Specification:

Form:

Thickness, cm (in.):

Condition:

Up to 2.540 (1.000) Heat treated 1255 K (1800 F) 1 hr, OQ, tempered 644 K (700 F) 4 hr, AC

Testing Temperature, K (F)	297	(75)	195	(-108)		77	(-320)	
Compression, Longitudina	1								
CYS, MN/m ² (ksi)	Avg						ļ		17
No. of Spec. (No. of H	Min eats)								
Ec, GN/m ² (10 ⁶ psi)	Avg Min								12
No of Spec. (No. of H							1		1
Compression, Transverse				1					
CYS, MN/m ² (ksi)	Avg Min								
No. of Spec. (No. of H							Ì		
Ec, GN/m ² (10 ⁶ psi)	Avg Min								
No. of Spec. (No. of H							- {		
Shear(a)									
SUS, MN/m ² (ksi)	Avg Min								
No. of Spec. (No. of H				ł			-		
G, GN/m ² (10 ⁶ psi)	Avg Min								
No. of Spec, (No. of H	eats)	1		l			-		
Impact, Charpy V							1		
Long., Nm(ft-lb)	Avg	30.4	(22.5)	12.8	(9.5)		3.4	(2.5)	
No. of Spec. (No. of H	Min eats)	22.3 7	(16.5) (1)	8.1	(6.0) (1)		2.7 5	(2.0) (1)	
Trans., Nm(ft-lb)	Avg Min								
No. of Spec. (No. of H						ı			
Fracture Toughness(b)									
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min								
Orientation: — No. of Spec. (No. of H	eats)								
K _{IE} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(-No. of Spec. (No. of H	Avg -)Min								

⁽a) Indicate specimen design and orientation for sheer specimens: (b) Indicate specimen design for K_{10} data:

TABLE 8.1.10-TR1

loy Designation:

Type 410 Stainless Steel

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity Watts m-1 K-1 Btu hr-1 ft-1 F-1 No of Spec. References: 90224 Thermal Expansion (T ₂₇₃ to T) Longitudinal	27.2	(15.7)	21.1	(12.3)	13.1	(7.57)						
Percent No of Spec. References: 48571, 90226 Specific Heat Joules kg-1 K-1 Btu lb-1 F-1 No of Spec. References:	0 2		-0.144		-0.155		-0.156 2		-0.156 2		-0.156 2	
Ohm m Ohm circular mil ft-1 No. of Spec. References: 79561	5,50 × 10	₎ .7 (336)	4.12 x 1	0 ⁻⁷ (248)	3.86 x 1	0·7 (232)	3.82 x	10 ⁻⁷ (230)	3.82 x 1	0 ⁻⁷ (230)	3.82 x 1	0-7 (230)

FIGURE 8.1.10-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR TYPE 410 STAINLESS STEEL

60 1

8.1.10-4 (11/76)

FIGURE 8.1.10-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR TYPE 410 STAINLESS STEEL

8.1.10-5 (1/76)

60 (<

FIGURE 8.1.10-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR TYPE 410 STAINLESS STEEL

6:5<

8.1.10-6 (11/76)

TABLE 8.1.11-ME1

Alloy Designation: Type 416 Stainless Steel

Specification:

Form:

Bar

Thickness, cm (in.): Condition:

Up to 2.540 (1.000)
Heat treated 1355 K (1800 F) 1 hr, OQ, tempered 644 K (700 F) 4 hr, AC

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	20 (-423)	
Tension, Longitudinal					
TUS, MN/m ² (ksi) A		1504 (218.1)	1800 (261.1)		
Std Deviation	in 1388 (201.3)	1498 (217.3)	1781 (258.3)	2000 (290.1)	
TYS, MN/m ² (ksi) A	/g 1200 (174.1)	1259 (182.6)	1598 (231.8)	2017 (292.6)	
Std Deviation	n 1142 (165.6)	1257 (182.3)	1587 (230.2)	2000 (290.1)	
Elona anno A	15.1	15.4	9.2	0.4	
Elong, percent Av		15.4 15.3	8.2	0.4	
RA, percent A	g 53.3	52.0	23.5	2.3	
Mo of Spec. (No. of Heats)	n 52.2 3 (1)	51.6	18.2	2.1	
E, GN/m ² (10 ⁶ psi) A					
No. of Spec. (No. of Heats)					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) Av	- 1				
$K_t = M_t$ No. of Spec. (No. of Heats)	n				
NTS, MN/m ² (ksi) Av	g				
$K_t = M_t$ No. of Spec. (No of Heats)	n				
Tension, Transverse					
TUS, MN/m ² (ksi) Av					
Std. Deviation	n				
TYS, MN/m ² (ksi) Av	g				
Std. Deviation	n				
Elong, percent Av	ra l				
Mi	-				
RA, percent A					
No. of Spec. (No. of Heats)					
E, GN/m ² (10 ⁶ psi) A					
No. of Spec. (No. of Heats)					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi) Av	7				
K _t ≠ Mi No. of Spec. (No. of Heats)	n				
NTS, MN/m² (ksi) Av	· ·				
$K_t = M_t$	- 1				

TABLE 8.1.11-M1.2

Alloy Designation:

Type 416 Stainless Steel

Specification:

Form: Thickness, cm (in.): Condition:

Testing Temperature, K (I	F)	297 (75) 195	(-108)	 77 (-320)	
Compression, Longitudina						
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of H					}	
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of H	eats)					
Compression, Transverse			- 1			=
CYS, MN/m ² (ksi)	Avg					
No. of Spec. (No. of H	Min eats)				Ye	
Ec, GN/m ² (10 ⁶ psi)	Avg Min		111			
No. of Spec. (No. of H	eats)					
Shear(a)						
SUS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of H	eats)					
G, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of H	eats)		Į.			
Impact, Charpy V						
Long., Nm(ft-lb)	Avg	45.4 (33		(10.0)	3.4 (2.5)	
No. of Spec. (No. of H	Min eats)	45.2 (33 3 (1)		(9.5) (1)	2.7 (2.0) 5 (1)	
Trans., Nm(ft-lb)	Avg Min					
No. of Spec. (No. of H	eats)					
Fracture Toughness(b)						
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min					
Orientation: — No. of Spec. (No. of H	eats)					
KIE, MN/m3/2(ksi/in.) (From PTSC spec.)(No. of Spec. (No. of H						

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1c} data:

TABLE 8.1.11-TR1

Alloy Designation:

Type 41€ Stainless Steel

Specification: Form: Dimension: Condition:

Testing Temperature K (F)	273	(32)	100 (-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity Watts m-1 K-1 Btu hr-1 ft-1 F-1 No. of Spec. References:												
Thermal Expansion (T ₂₇₃ to T)(Longitudinal)											
Percent No. of Spec. References: 48134	0 1		-0.148 1		-0.164 1		-0.167 1					
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu Ib ⁻¹ F ⁻¹ No of Spec References:												
Electrical Resistivity (2)												
Ohm m Ohm circular mil ft ⁻¹ No. of Spec. References: 79561	6.62 x 1	10 ⁻⁷ (398)	5.46 x 10 ⁻⁷	328)	5.27 x 1	g-7 (317)	5.23 x 1	0 ⁻⁷ (315)	5.23 x	10 ⁻⁷ (315)	5.23 x 1	10 ⁻⁷ (315)
(1) Hot-rolled. (2) Hardened.												

FIGURE 8.1.11-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR TYPE 416 STAINLESS STEEL (Hot-rolled)

FIGURE 8.1.11-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR TYPE 416 STAINLESS STEEL (Hardened)

TABLE 8.2.1-ME1

Alloy Designation: A-286 Stainless Steel

Specification:

Form: Sheet

Thickness, cm (in.): Up to 0.099 (0.039)
Condition: Up to 0.099 (0.039)
Annealed 1255 K (1800 F) 30 min, WQ, aged 865 K (1100 F) 16 hr, AC

Testing Temperature, K (F)	29	7 (75)	77	(-320)	20	(-423)		
Tension, Longitudinal								
TUS, MN/m ² (ksi)	Avg 11	09 (161)	1486	(216)	1714	(249)	}	
Std Deviation	Min 109	98 (159)	1475	(214)	1711	(248)		
	Avg 63		796	(115)	915 910	(133) (132)		
Std. Deviation	Min 61	8 (89.7)	780	(113)	910	(132)		
Elass assessed	A	17.7		5.3	,	4.7		
	Avg Min	17.0		5.0		2.0		
RA, percent	Avg							
	Min							
No. of Spec. (No. of Heats)	3	(1)	3	(1)	3	(1)		
E, GN/m ² (10 ⁶ psi)	Avg							
No. of Spec. (No. of Heats)	Min							
No. of Spec. (No. of Fleats)								
Poisson's Ratio								
Work Hardening Coef					1		}	
NTS, MN/m ² (ksi)	Avg 10	62 (154)	1271	(184)	1528	(222)		
	Vin 10	44 (151)	1239	(180)	1517	(220)		
No. of Spec. (No. of Heats)		3 (1)	3	(1)	3	(1)		
	Avg 10		1212	(176)	1377	(200)		
K _t = 6.3 No. of Spec. (No. of Heats)	Min 10	11 (147)	1191	(173)	1359	(197) (1)		
No. of Spec. (No. of Heats)	, i] 3	111) "	/ ()		
Tension, Transverse				(0.0)				
•	-	02 (160) 98 (159)	1468	(213) (213)			П	
Std. Deviation								
TYS, MN/m ² (ksi)	Avg 65	9 (95.6)	868	(126)				
	Min 64		838	(122)			i i	
Std. Deviation	-							
	Avg	22.0		9.8				
	Min	22.0	2	7.0			İ	1
	Avg				İ			
No. of Spec. (No. of Heats)	Min 2	(1)	2	(1)				
		('')	1	()				
	Avg Min							
No. of Spec. (No. of Heats)					İ			
Poisson's Ratio								
Work Hardening Coef								
	-	11 (161)	1338	(194)				
K _t = 3.2 No. of Spec. (No. of Heats)	Min	1 (1)	1	(1)				
	Avg 10 Min	80 (157)	1282	(186)				
No. of Spec. (No. of Heats)		1 (1)	1	(1)				1111

FIGURE 8.2.1-ME1.1. AXIAL FATIGUE PROPERTIES OF WELDED A-286 STAINLESS STEEL SHEET 0.319 cm (0.125 in.) THICK (STA Sheet TIG Welded, Hastelloy W filler, Tested as Welded) [61996]

64...<

TABLE 8.2.1-ME2

Alloy Designation: A-286 Stainless Steel

Specification:

Form: Sheet
Thickness, cm (in.): Up to 0.099 (0.039)
Condition: Annealed 1255 K (1800 F) 30 min, WQ, aged 990 K (1325 F) 16 hr, AC

Testing Temperature, K (F)	297 (75)	 77 (-320)	20 (-423)		
Tension, Longitudinal					
	vg 1034 (150)	1400 (203)	1603 (232)		
Std Deviation	in 1028 (149)	1397 (203)	1586 (230)		
TYS, MN/m ² (ksi)	vg 668 (96.9)	839 (122)	956 (139)		
N	in 658 (95.5)	793 (115)	945 (137)		
Std Deviation					
	vg 14.5	22.3	17.7		
N	in 13.5	21.0	17.0		
	vg In				
No of Spec. (No. of Heats)	3 (1)	3 (1)	3 (1)		
E, GN/m ² (10 ⁶ psi)	vg				
N	in				
No. of Spec. (No. of Heats)			1 1		
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) A	vg 1050 (152)	1241 (180)			
K _t = 3.2	in 1047 (152)	1197 (174)			
No. of Spec. (No. of Heats)	3 (1)	3 (1)			
	vg 1015 (147) in 1014 (147)	1228 (178) 1211 (176)	1401 (203) 1393 (202)		
No. of Spec. (No. of Heats)	2 (1)	3 (1)	3 (1)		
Tension, Transverse			:		
-	vg 1042 (151)	1382 (200)			
M Std. Deviation	in 1036 (150)	1362 (198)			
					İ
	rg 729 (106) in 720 (105)	889 (129) 878 (127)			
Std Deviation					
Elong, percent A	vg 19.3	27.0			
M	in 190	26 0			
	vg			4	
No. of Spec. (No. of Heats)	2 (1)	2 (1)			
0 0					
	/g in				
No of Spec. (No. of Heats)					
Poisson's Ratio					
Work Hardening Coef					
	/g 1081 (157)	1919 (191)			
NTS, MN/m^2 (ksi) A $K_t = 3.2$ M	in				
No. of Spec. (No. of Heats)	1 (1)	1 (1)		100 000	
NTS, MN/m ² (ksi) A	- 1	1296 (188)		XIII	
K _t = 6.3 M No of Spec. (No. of Heats)	n 1 (1)	1 (1)			0.
100000000000000000000000000000000000000			1		64 ;<

TABLE 8.2.1-ME5

A-286 Stainless Steel Alloy Designation:

Specification:

Form:

Thickness, cm (in.):

Sheet 0.100 to 0.319 (0.040 to 0.125) Annealed 1255 K (1800 F) 30 min, WQ or AQ, aged 990 K (1325 F) 16 hr, AC Condition:

Testing Temperature, K (F)	297	(75)	77	(-320)	20	(-423)	
Fatigue, Flexural Loading, Surface F	inish 72	rms					
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency 30-40 Hz with R = -1 and K _t = 1	538	(78)	703	(102)	772	(112)	
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)	
Ratio S _N /TUS at 10 ⁵ cycles	C	0.52	0.5	2	0.5	2	
S_N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency 30-40 Hz with R = -1 and K _t = 1	427	(62)	579	(84)	586	(85)	7.3
No of S-N Curves (No of Heats)	1	(1)	1	(1)	1	(1)	
Ratio SN/TUS at 10 ⁶ cycles	C	0.42	0.4	3	0.4	0	
S _{N ui} 10 ⁷ cycles, MN/m ² (ksi) Loading frequency 30-40 Hz with R = -1 and K _t = 1	400	(58)	517	(75)			
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)			
Ratio S _N /TUS at 10 ⁷ cycles	C	0.39	0.3	в			
Fatigue, Flexural Loading, Surface F	 Finish 10	rms				1	
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency 30-40 Hz with R =-1 and K _t =1	593	(86)	758	(110)	869	(126)	
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)	
Ratio S _N /TUS at 10 ⁵ cycles	C	0.56	0.5	5	0.5	5	
S_N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency 30-40 Hz with R = -1 and K _t = 1	496	(72)	703	(102)	779	(113)	
No of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)	
Ratio S _N /TUS at 10 ⁶ cycles	(0.47	0.5	1	0.5	0	
	434	(63)	676	(98)			
S_N at 10^7 cycles, MN/m ² (ksi) Loading frequency 30-40 Hz with R = -1 and K _t = 1				,			
	1	(1)	1	(1)			

Alloy Designation:

A-286 Stainless Steel (Weld Metal)

K66286

Specification:

Form:

Sheet-TIG welded, A-286 filler

Thickness, cm (in.): Condition: 0.100 to 0.319 (0.040 to 0.125) Annealed sheet welded, tested as welded

Testing Temperature, K (F)	297 (75)	195 (-108)	144 (-200)	77 (-320)	4 (-423)	
Tension, Longitudinal						
TUS, MN/m ² (ksi) Avg	641 (93.0)	727.4 (105.5)	801.2 (116.2)	981.8 (142.4)	1068 (154.9)	
Std. Deviation						
TYS, MN/m ² (ksi) Avg Min Std. Deviation	301 (43.7)	354 (51.4)	412 (59.8)	507 (73.6)	613 (88,9)	
Elong, percent Avg	34.0	33.0	42.2	47.0	32.0	
Min						
RA, percent Avg					1	
No. of Spec. (No. of Heats)	1	1	1	1	1	
E, GN/m ² (10 ⁶ psi) Avg Min						
No. of Spec. (No. of Heats) Poisson's Ratio						
Nork Hardening Coef						
NTS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats) Include the special specia						
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)				-		
Tension, Transverse						
TUS, MN/m ² (ksi) Avg Min						
Std. Deviation						
TYS, MN/m ² (ksi) Avg Min						
Std. Deviation						
Elong, percent Avg Min						
RA, percent Avg						
Min No. of Spec. (No. of Heats)						
E, GN/m ² (10 ⁶ psi) Avg Min						
No. of Spec. (No. of Heats)						
oisson's Ratio						
Vork Hardening Coef						
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)		i.				
NTS, MN/m^2 (ksi) Avg $K_t = Min$						

TABLE 8.2.1-ME5.2

Alloy Designation: A-286 Stainless Steel (Weld Metal) X66286

Specification:

Form: Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)

Sheet-TIG welded, A-286 filler

Condition: Annealed sheet welded, age hardened, and tested as aged

Testing Temperature, K (F)	297	(75)	195	(-108)	144	(-200)	77 (-32	0) 20	(-423)	
Tension, Longitudinal											
TUS, MN/m ² (ksi)	Avg Min	861.2	(124.9)	930.8	(135.0)	1007	(146.0)	1145 (166	5.1) 1286	(186.5)	
Std Deviation	IVIIII										
TYS, MN/m ² (ksi)	Avg Min	601	(87.2)	610	(88.9)	669	(97.0)	743.9 (10	7.9) 866.0	(125.6)	
Std. Deviation											
Elong, percent	Avg Min	1	1.0	1	3.2	1	2.8	15.8		15.3	
RA, percent	Avg										
No. of Spec. (No. of He	Min ats)	1		1		1		1	1		
E, GN/m ² (106 psi)	Avg										
Nc. of Spec. (No. of He	Min ats)										
oisson's Ratio											
Vork Hardening Coef											
NTS, MN/m² (ksi)	Avg										
K _t = No. of Spec. (No. of He	Min ats)										
NTS, MN/m ² (ksi)	Avg										
K _t = No. of Spec. (No. of He	Min ats)										
Tension, Transverse											
TUS, MN/m ² (ksi)	Avg Min										
Std. Deviation											
「YS, MN/m² (ksi)	Avg Min										
Std. Deviation											
Elong, percent	Avg Min										
RA, percent	Avg										
No. of Spec. (No. of He	Min ats)										
E, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of He											
oisson's Ratio											
Vork Hardening Coef											
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min ats)										
NTS, MN/m² (kri)	Avg										5
Kt =	Min										

TABLE 8.2.1-ME5.3

Alloy Designation:

A-286 Stainless Steel (Weld Metal)

K66286

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet-TIG welded, A-286 filler 0.100 to 0.319 (0.040 to 0.125) Age hardened sheet welded, and tested as welded

Testing Temperature, K (F)		29	7 (75)	915	(-108)	144	(-200)	77	(-320)	20	(-423)	
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg	685	(99.3)	780.5	5 (113.2)	877.7	(127.3)	948.0) (137.5)	1069	(155.1)	
Std. Deviation	Min											
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	386	(56.0)	472	(68.4)	543	(78,8)	601	(87.2)	717.1	(104.0)	
Elong, percent	Avg Min		8.8	1	B.0	1	11.0	9	0.0		7.8	
RA, percent	Avg											
No. of Spec. (No. of Heats	Min)	1		1		1		1		1		
E, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of Heats												
Poisson's Ratio												
Work Hardening Coef												
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min											
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min											
Tension, Transverse												
TUS, MN/m ² (ksi) Std. Deviation	Avg Min											
TYS, MN/m² (ksi)	Avg											,
Std. Deviation	Min											
Elong, percent	Avg Min											
RA, percent	Avg Min											
No. of Spec. (No. of Heats												
E, GN/m ² (10 ⁶ psi)	Avg Min											
No of Spec. (No. of Heats												
Poisson's Ratio												
Nork Hardening Coef												
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats)	Avg Min											
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats)	Avg Min									1		

TABLE 8.2.1-ME5.4

Alloy Designation:

A-286 Stainless Steel (Weld Metal)

Specification:

Form:

Sheet-TIG welded, Hastelloy W filler 0.100 to 0.319 (0.040 to 0.125) STA sheet welded and tested as welded

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)		77 (-320)	20 (-423)	
Tension, Longitudinal					
TUS, MN/m ² (ksi) Avg	608 (88.2) 605 (87.8)		886.7 (128.6) 835.6 (121.2)	1005 (145.8) 1004 (145.6)	
Std. Deviation	000 (07.07		303.0 (121.2)	1001 (110.0)	
TYS, MN/m ² (ksi) Avg Min					
Std. Deviation					
Elong, percent Avg Min					
RA, percent Avg					
Min No. of Spec. (No. of Heats)	3 (1)		3 (1)	3 (1)	
E, GN/m ² (10 ⁶ psi) Avg					
Min No. of Spec. (No. of Heats)					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m^2 (ksi) Avg $K_t = Min$					
No. of Spec. (No. of Heats)					
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)					
Tension, Transverse			14.11		
TUS, MN/m ² (ksi) Avg					
Std. Deviation					
TYS, MN/m ² (ksi) Avg Min					
Std. Deviation					
Elong, percent Avg Min		1 T			
RA, percent Avg					
Min No. of Spec. (No. of Heats)					
E, 3N/m ² (10 ⁶ psi) Avg Min					
No. of Spec. (No. of Heats)					
Poisson's Ratio					
Nork Hardening Coef					
NTS, MN/m ² (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)					
NTS, MN/m^2 (ksi) Avg $K_t = Min$					

TABLE 8.2.1-ME6

Alloy Designation: A-286 Stainless Steel

Specification:

Form: Plate
Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)

Condition: Annealed 1255 K (1800 F) I.5 hr, AC, aged 1006 K (1350 F) 16 hr, AC

Testing Temperature, K (F))	297	(75)	195	(-108)	77	(-320)	20	(-423)		
Compression, Longitudinal											
CYS, MN/m ² (ksi)	Avg Min										
No. of Spec. (No. of He											
Ec, GN/m ² (10 ⁶ psi)	Avg Min					1					
No. of Spec. (No. of He	ats)										
Compression, Transverse											
CYS, MN/m ² (ksi)	Avg Min										
No. of Spec. (No. of He	ats)							9			
Ec, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of He	ats)										
Shear(a)											
SUS, MN/m ² (ksi)	Avg Min	696	(101)	593	(86.0)	731	(106)	1158	(168)		
No. of Spec. (No. of He	ats)		(1)		(1)		(1)		(1)		
G, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of He	ats)	}		ļ				}		}	
Impact, Charpy V											
Long., Nm(ft-lb)	Avg Min										
No. of Spec. (No. of He	ats)										
Trans., Nm(ft-lb)	Avg Min										
No. of Spec. (No. of He											
Fracture Toughness(b)											
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min										
Orientation. — No. of Spec. (No. of He											
K _{IE} , MN/m ^{3/2} (ksi√in.) (From PTSC spec.)(~	Avg)Min										
No. of Spec. (No. of He											

⁽a) Indicate specimen design and orientation for shear specimens: 0.394 cm (0.155 in.) diameter (b) Indicate specimen design for K_{1c} data:

TABLE 8.2.1-ME9

Alloy Designation: A-286 Stainless Steel

Specification:

AMS-5735

Form:

Bar

Diameter:

Condition:

Up to 2.54 cm (1.000 in.)
Annealed 1255 K (1800 F) 1.5 hr, AC, aged 992 to 1006 K (1325 to 1350 F) 16 hr, AC

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	 	
Compression, Longitudinal									
CYS, MN/m ² (ksi)	Avg							- 1	
No. of Spec. (No. of Hea	Min ets)								
Ec, GN/m 2 (10 $^{\ell}$ $_{psi}$)	Avg								
No of Spec (No of He	sts)								
Compression, Transverse									
CYS, MN/m ² (ksi)	Avg								
No of Spec (No. of He									
Ec, GN/m ² (10 ⁶ psi)	Avg Min								
No. of Spec. (No. of He									
Shear (a)									
SUS, MN/m ² (ksi)	Avg								
No. of Spec. (No. of He	ats)								
G, GN/m ² (10 ⁶ psi)	Avg								
No of Spec. (No. of He	ats)								
Impact, Charpy V									
Long., J(ft-lb)	Avg Min	75.2 74.6	(55.5)	77.3 74.6	(57.0) (55.0)	70.8 70.5	(52.2) (52.0)		
No. of Spec. (No of He		3	(1)	3	(1)	3	(1)		
Trans., J(ft-lb)	Avg Min								
No. of Spec. (No. of He									
Fracture Toughness(b)									
K _{1c} MN/m ^{3/2} (ksi√in.)	Avg Min								
Orientation –									
No. of Spec. (No. of He	ets)								
KIE, MN/m3/2(ksi/in.)	Avg								
(From PTSC spec.)(— No. of Spec. (No. of He									

- (a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{IC} data:

TABLE 8.2.1-ME9.1

Alloy Designation:

A-286 Stainless Steel

K66286

Specification:

Form:

Thickness, cm (in.): Condition:

Bar Un to 2.540 (1.000) Cold worked 40% (min.) and aged

Testing Temperature, K (F)	297	(75)	195	(-108)	144	(-200)	77	(-320)	20	(-423)
Fension, Longitudinal FUS, MN/m² (ksi) Avg Min Std Deviation	1382	(200.5)	1500	(217.5)	1570	(227.6)	1761	(255.9)	1938	(281.1)
YS, MN/m ² (ksi) Avg Min Std. Deviation	1288	(186.8)	1372	(199.0)	1420	(206.0)	1531	(222,1)	1681	(243.8)
Elong, percent Avg		13.1	1	6.0	1	16.2	1:	9.5		19.3
RA, percent Avg		41.9	4	2.4	12	12 0	4	0.1		33.9
No. of Spec. (No. of Heats)	12	(4)	10	(3)	11	(2)	14	(4)	17	(4)
, GN/m ² (10 ⁶ psi) Avg Min	207	(30.0)	210	(30.4)	213	(30 9)	226	(32.8)	224	(32.5)
No. of Spec. (No. of Heats)	7	(2)	5	(1)	5	(1)	2	(1)	3	(1)
oisson's Ratio										ļ
Vork Hardening Coef										
NTS, MN/m^2 (ksi) Avg $K_t = 10 \qquad Min$	2164	(313.8)					2266	(328.7)	2388	(346.3)
No. of Spec. (No. of Heats)	2	(1)					2	(1)	3	(1)
ITS, MN/m² (ksi) Avg Kt = Min No. of Spec. (No. of Heats)										
Tension, Transvers										
US, MN/m ² (ksi) Avg Min										
Std. Deviation										
YS, MN/m ² (ksi) Avg Min										
Std. Deviation										
long, percent Avg Min										
A, percent Avg										
No, of Spec. (No, of Heats)										
, GN/m ² (10 ⁶ psi) Avg Min										
No. of Spec. (No. of Heats)					i					
oisson's Ratio										
ork Hardening Coef										
ATS, MN/m ² (ksi) Avg K _t = Min										
No. of Spec. (No. of Heats)										
NTS, MN/m^2 (ksi) Avg $K_t = Min$										

References: 80755

65%

8.2.1-9.1 (11/76)

TABLE 8.2.1-ME9.2

Alloy Designation: K66286 A-286 Stainless Steel

Specification:

Form:

Thickness, cm (in.):

Bar Up to 2.540 (1.000) Cold worked 40% (min.) and aged Condition:

Testing Temperature, K (F)		297 (75)		 77 (-320)	
Compression, Longitudinal					
CYS, MN/m ² (ksi)	Avg Min]		
No. of Spec. (No. of Heat			}		
Ec, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Heat	is)				
Compression, Transverse					
CYS, MN/m ² (ksi)	Avg Min				
No. of Spec. (No. of Hear	ts)				
Ec, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hear	ts)	1		}	
Shear (a)					
SUS, MN/m ² (ksi)	Avg Min	763.9 (110.8)		1042 (151.1)	
No. of Spec. (No. of Hear	ts)	4 (1)		3 (1)	
G, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hear	ts)	1			
Impact, Charpy V			ł		
Long., Nm(ft-lb)	Avg Min	27.7 (26.5)		26.6 (19.7)	
No. of Spec. (No. of Hea	ts)	11 (3)		11 (3)	
Trans., Nm(ft-lb)	Avg Min				
No. of Spec. (No. of Hea	ts)		j		
Fracture Toughness(b)			1		
K _{Ic} MN/m ^{3/2} (ksì√ in.)	Avg Min				
Orientation: — No. of Spec. (No. of Hea	ts)				
KIE, MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(—	Avg)Min				
No. of Spec. (No. of Hea		1		1	

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{Ic} data:

TABLE 8.2.1-ME10

Alloy Designation:

A-286 Stainless Steel

K66286

Specification:

Form:

Square Bar Over 5.080 (2.000)

Thickness, cm (in.): Condition:

Solution treated 1170 K (1650 F) 2 hr., OQ + aged 1005 K (1350 F) 16hr., AC

Testing Temperature, K (F)	297 (75)	77 (-320)	4 (-452)		
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg					
Std Deviation	Min					
TYS, MN/m ² (ksi)	Avg					
Std. Deviation						
Elong, percent	Avg Min					
RA, percent	Avg Min					_
No of Spec. (No. of He	eats)					
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He	eats)					
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)					
NTS, MN/m ² (ksi) Kt = No. of Spec. (No. of He	Avg Min eats)					
Tension, Transverse						
TUS, MN/m ² (ksi) Std. Deviation	Avg Min	607 (88) 572 (83)	745 (108) 734 (106.5)	889 (129) 887 (128.7)		
TYS, MN/m ² (ksi)	Avg					
Std. Deviation	Min					
Elong, percent	Avg Min					
RA, percent	Avg Min					
No. of Spec. (No. of He		2 (1)	2 (1)	2 (1)		
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He	eats)					
Poissen's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min					
NTS, MN/m ² (ksi) 4 K _t =	Avg Min					
No. of Spec. (No. of He	eats)				1	1

FIGURE 8.2.1-ME2.1. AXIAL FATIGUE LIFE CURVES FOR 1.27 cm (0.50 in.) DIAMETER BAR OF SOLUTION TREATED AND AGED A-286 STAINLESS STEEL[95168]

FIGURE 8.2.1-ME2: FATIGUE CRACK GROWTH RATE PROPERTIES OF A-286 STAINLESS STEEL AT 77K AND 4K (-320F AND -452F)(94206A)

FIGURE 8.2.1-ME3. FATIGUE CRACK GROWTH RATES OF A-286 ALLOY (ASTM A453) AT 4K (-452F)(94208D)

FIGURE 8.2.1-ME4. FATIGUE CRACK GROWTH RATES FOR A-286 AT 297K, 77K, AND 4K (75F, -320F, AND -452F) (94208E)

Alloy Designation: A-286 Stainless Steel K66286

Specification:

Form: Rod

Diameter, cm (in.): 0.37 (0.145)

Condition: Solution annealed

Test Temperature: 4.2 K (-452 F)

FIGURE 8.2.1-MA1. MAGNETIZATION VERSUS APPLIED MAGNETIC FIELD FOR A-286 STAINLESS STEEL [96871]

Alloy Designation: Kromarc 58 Stainless Steel (Weld Metal)

Specification:

Form:

Plate-T['](G welded, Kromar: 58 filler 1.270 to 2.540 (0.500 to 1.000) Plate heated 1255 K (1800 F) 1 hr, WQ, welded, and tested as welded Thickness, cm (in.): Condition:

Testing Temperature, K (F	-)	297 (75)*		77 (-320)	4 (-452)
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg Min	915.6 (132.8)		1321 (191.6)	1438 (208.6)
Std Deviation	141()1				
TYS, MN/m ² (ksi)	Avg Min	498 (72.3)		852.2 (123.6)	1060 (153.8)
Std. Deviation	,				
Elong, percent	Avg Min	35.9		45.6	33.4
RA, percent	Avg	60.8		41.4	40.6
No. of Spec. (No. of He		1		1	1
E, GN/m ² (10 ⁶ psi)	Avg				
No. of Spec. (No. of Lie	eats)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m^2 (ksi) $K_t = 10$	Avg Min	1153 (167.3)		1908 (276.8)	2173 (315.2)
No. of Spec. (No. of He	eats)	1		1	1
NTS, MN/m ² (ksi) K _t =	Avg Min				
No. of Spec. (No. of He					
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg Min				
Std. Deviation					
TYS, MN/m ² (ksi)	Avg Min				
Std. Deviation			ļ		
Elong, percent	Avg Min				
RA, percent	Avg				
No. of Spec. (No. of He	Min				
E, GN/m ² (10 ⁶ psi)	Avg		ļ		
No. of Spec. (No. of He	Min eats)				
Poisson's Ratio			-		}
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg				
K _t = No. of Spec. (No. of He	Min eats)				
NTS, MN/m ² (ksi)	Avg				
Kt = No of Spec. (No of He	Min				

References: 94208

65:35

^{*} Room-temperature specimens fractures in base metal.

Alloy Designation: Kromarc 58 Stainless Steel (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition:

Plate-TIG welded, Kromarc 58 filler

1.270 to 2.540 (0.500 to 1.000)
Plate-cold worked 30%, welded, and tested as welded

Testing Temperature, K (F)	297 (75)		77 (-320)		4 (-452)
Tension, Longitudinal TUS, MN/m ² (ksi)	Avg	957.0 (138.8)		1303 (189.0)		1415 (205.3)
Std Deviation	Min					
TYS, MN/m ² (ksi)	Avg	828.1 (120.1)		1111 (161.2)		1269 (184.1)
Std. Deviation	Min				•	
Elong, percent	Avg Min	12.9		12.6		11.4
RA, percent	Avg	57.6		45.7		42.7
No. of Spec. (No. of He	Min ats)	1		1		1
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He	ats)					
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi) $K_t = 10$ No. of Spec. (No. of Heat	Avg Min ets)	1108 (160.7)		1919 (278.3)		2149 (311.7)
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min					
Tension, Transverse						
TUS, MN/m ² (ksi) Std. Deviation	Avg Min					
TYS, MN/m ² (ksi)	Avg					
Std. Deviation	Min					
Elong, percent	Avg Min					
RA, percent	Avg Min					
No. of Spec. (No. of Hea						
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Hea						
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min					
NTS, MN/m² (ksi)	Avg					
K _t = No. of Spec. (No. of Hea	Min its)					

94208

66, <

Alloy Designation:

Kromarc 58 Stainless Steel (Weld Metal)

Specification:

Form:

Plate-TIG welded, Kromarc 58 filler

Thickness, cm (in.): Condition: 1.270 to 2.540 (0.500 to 1.000) Plate-cold worked 30%, welded, and tested as welded

Testing Temperature, K (F)	297 (75)	77 (-320)	4 (-452)
Tension, Longitudinal				
TUS, MN/m ² (ksi)	Avg	1223 (177.4)	1474 (213.8)	1571 (227.9)
Std Deviation	Min			
				1000 (001 4)
TYS, MN/m ² (ksi)	Avg Min	1138 (165.0)	1260 (182.8)	1389 (201.4)
Std. Deviation				
Elong, percent	Avg	8.0	17.5	13.4
	Min			
RA, percent	Avg	43.6	37.6	33.9
No. of Spec. (No. of He	Min eats)	1	1	1
E, GN/m ² (10 ⁶ psi)				
	Avg Min			
No. of Spec. (No. of He	eats)			
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m² (ksi)	Avg	1547 (224.4)	2216 (321.4)	2366 (343.2)
$K_{t} = 10$	Min			
No. of Spec. (No. of He	ats)	1	1	1
NTS, MN/m ² (ksi)	Avg			ļ
K _t = No. of Spec. (No. of He	Min ats)			
Tension, Transverse TUS, MN/m ² (ksi)	Avg			
	Min			
Std. Deviation				
TYS, MN/m² (ksi)	Avg			
Std. Deviation	Min			ŀ
F(A			
Elong, percent	Avg Min			
RA, percent	Avg			
	Min			
No. of Spec. (No. of He	ats)			
E, GN/m ² (10 ⁶ psi)	Avg Min			
No of Spec. (No. of He				
Poisson's Ratio				
Work Hardening Coef		1111111		
NTS, MN/m ² (ksi)	Avg Min			
K _t = No. of Spec. (No. of He				
NTS, MN/m² (ksi)	Avg			
K _t =	Min			1

FIGURE 8.2.2-ME1. EFFECT OF TEMPERATURE ON THE STRENGTH OF KROMARC 58 STAINLESS STEEL SHEET

FIGURE 8.2.2-ME2. FATIGUE CRACK GROWTH RATE PROPERTIES OF KROMARC 58 STAINLESS STEEL AT 77K AND 4K (-320F AND -452F) (94208G)

66 ,<

TABLE 8.2.2-TR1

Alloy Designation: Kromarc 58 Stainless Steel

pecification:
Form:
Dimension:
Condition: Solution Treated and Quenched

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m-1 K-1 Btu hr-1 ft-1 F-1	11.5	(6.65)	6.8	(3.93)	4.2	(2.43)	1.55	(0.000)	0.72	(0.416)		
No. of Spec.	1	(0.00)	1	(3.93)	1	(2.43)	1	(0.896)	1	(0.416)		
References: 94206												
Thermal Expansion (T ₂₇₃ to T) Longitudinal												
Percent	0		-0.238		-0.270		-0.274		-0.275		-0.275	
No. of Spec. References: 47125, 90202	2		2		1		1		1		1	
Specific Heat												
Joules kg ⁻¹ K ⁻¹									4.25		1.62	
Btu lb-1 F-1										0102)		000387)
No of Spec. References: 90202, 94206									2		2	
Electrical Resistivity												
Ohm m	96 x 1	0-8	84 x 10 ⁻⁸		82 x 10	8	82 x 10-8)	82 x 10	В	82 x 10	-8
Ohm circular mil ft ⁻¹		(577)		(505)		(493)		(493)		(493)		(493)
No of Spec. References: 94206	1		1		1		1		1		1	

FIGURE 8.2.2-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR KROMARC 58 STAINLESS STEEL

66.5<

FIGURE 8.2.2-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR KROMARC 58 STAINLESS STEEL

Alloy Designation: Kromarc 58 Stainless Steel

Specification:

Form:

Rod

Dimension, cm(in.):

Not given

Condition:

STQ: solution treated and quenched (1800 F [1255 K]

1 hr. and water quenched)

FIGURE 8.2.2-MA1.1. MAGNETIC MOMENT AS A FUNCTION OF THE EXTERNAL FIELD

FIGURE 8.2.2-MA1.2. MAGNETIC MOMENT AS A FUNCTION OF THE EXTERNAL FIELD

FIGURE 8.2.2-MA1.3. MAGNETIC MOMENT AS A FUNCTION OF THE EXTERNAL FIELD

FIGURE 8.2.2-MA1.4. MAGNETIC MOMENT AT 13 k Oe AS A FUNCTION OF THE TEMPERATURE

* 1 tesla = 10kOe Reference 94206

667<

Alloy Designation:

Kromarc 58 Stainless Steel

Form:

Rod

Dimension, cm (in.): Not given

Condition:

CW: cold worked to about 30 percent reduction in thickness

FIGURE 8.2.2-MA2.1. MAGNETIC MOMENT AS A FUNCTION OF THE EXTERNAL FIELD

FIGURE 8.2.2-MA2.2. MAGNETIC MOMENT AS A FUNCTION OF THE EXTERNAL FIELD

FIGURE 8.2.2-MA2.3. MAGNETIC MOMENT AT 13 k Oe AS A FUNCTION OF THE TEMPERATURE

Alloy Designation: Kromarc 58 Stainless Steel

Specification: Kromarc 58 GTAW

Form: Rod

Dimension, cm (in.): 0.305 (0.12)

Condition: Gas tungsten arc welded (GTAW)

Alloy Designation:

Kromarc 58 Stainless Steel

Specification:

58 GTAW/CW

Form:

Rod

Dimension, cm (in.):

0.305 (0.12)

Condition:

GTAW/CW: Gas tungsten arc welded and cold worked to

about 30% reduction in thickness

MAGNETIC MOMENT AS A FUNCTION OF THE EXTERNAL FIELD [94206]

Alloy Designation: Kromarc 58 Stainless Steel

Specification: Kromarc 58 CW/GTAW

Form: Rod

Dimension, cm (in.): 0.305 (0.12)

Condition: CW/GTAW: Cold worked to about 30% reduction in thickness

and gas tungsten arc welded

Neel Temperature: ~40 K (-387 F)

MAGNETIC MOMENT AS A FUNCTION OF THE EXTERNAL FIELD [94206]

TABLE 8.2.3-ME0.1

Alloy Designation: Armoo 21-6-9 Stainless Steel

Specification:

Thickness, cm (in.): Condition:

2.541 to 5.080 (1.000 to 2.000) Annealed 1283 K (1850 F) 1½ hr, AC; annealed 1366 K (2000 F) 1½ hr, WQ

Testing Temperature, K (F)	297 (75)			77 (-320)	4	(-452)
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg	701 (102)		- 8	1474 (213.8)		4 (237.0)
Std Deviation	Min	696 (101)	1,7		1462 (212.1)	163	3 (236.9)
TYS, MN/m² (ksi)	Avg	358 (51.2)			899 (130)	124	1 (180.0)
Std. Deviation	Min	350 (50.8)			886 (129)	122	4 (177.5)
Elong, percent	Avg Min	61 61			43 42		16
RA, percent	Avg	78 78			37 32		40
No of Spec. (No. of Hea		2 (1)			2 (1)	2	(1)
E, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of Hea	ets)	2					
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi)	Avg Min						
K _t = No. of Spec. (No. of Hea						ļ.	
NTS, MN/m ² (ksi)	Avg						
Kt = No. of Spec. (No. of Hea	Min ats)						
Tension, Transverse							
TUS, MN/m ² (ksi)	Avg Min						
Std. Deviation		[
TYS, MN/m ² (ksi)	Avg Min						
Std. Deviation							
Elong, percent	Avg Min				1		
RA, percent	Avg						
No. of Spec. (No. of Hea	Min						
E, GN/m ² (10 ⁶ psi)	Avg						
No. of Spec. (No. of Hea	Min						
Poisson's Ratio	113/						
					18		
Vork Hardening Coef							
NTS, MN/m ² (ksi)	Avg Min						
K _t = No. of Spec. (No. of Hea							
NTS, MN/m ² (ksi)	Avg						
K _t = No. of Spec. (No. of Hea	Min		3				

TABLE 8.2.3-ME1

Alloy Designation:

Armco 21-6-9 Stainless Steel

Specification:

Thickness, cm (in.): Condition:

Over 5.080 (2.000) Annealed 1340 K (1950 F) 1 hr., WQ

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	20 (-423)		
Tension, Longitudinal							
TUS, MN/m ² (ksi)	Avg	702 (101.8)	899 (130.4)	1510 (219.0)	1662 (241.0)		
Std. Deviation	Min	688 (99.8)	889 (129.0)	1503 (218.0)	1579 (229.0)		
TYS, MN/m ² (ksi)	Avg Min	385 (55.9) 374 (54.2)	589 (85.4) 565 (82.0)	971 (140.9) 899 (130.4)	1219 (176.8) 1108 (160.7)		
Std. Deviation							
Elong, percent	Avg Min	54.5 54.0	60.0 60.0	41.0 37.0	16.0*		
RA, percent	Avg Min	79.6 78.4	74.8 73.5	32.8 32.0	46.0 22.0		
No. of Spec, (No. of He		4 (1)	2 (1)	2 (1)	2 (1)		
E, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of He							
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi)	Avg				j		
K _t =	Min				,		
No. of Spec. (No. of He	eats)						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min eats)				•		
Tension, Transverse							
TUS, MN/m ² (ksi)	Avg Min	704 (102.1) 698 (101.2)	917 (133.0) 907 (131.5)	1444 (209.5) 1400 (203.0)	1682 (244.0) 1675 (243.0)		
Std. Deviation					1		
TYS, MN/m ² (ksi)	Avg Min	392 (56.9) 374 (54.2)	581 (84.3) 502 (81.5)	962 (139.5) 889 (129.0)	1248 (181.0) 1148 (166.5)		
Std. Deviation							
Elong, percent	Avg Min	51.0 47.0	58.0 57.0	34.0*	16.0 15.0		
RA, percent	Avg Min	71.8 65.0	70.3 69.5	27.8 24.0	24.3 20.5		
No. of Spec. (No. of He		4 (1)	2 (1)	2 (1)	2 (1)		T
E, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of He	eats)				[[27.22	
Poisson's Ratio							
Work Hardening Coef					ł .		
NTS, MN/m ² (ksi) K _t =	Avg Min						
No. of Spec. (No. of He	eats)						
NTS, MN/m ² (ksi) K ₁ =	Avg Min			2			
No. of Spec. (No. of He	ats)		1	1	}		

References: 83166

8.2.3-1 (11/75)

One specimen only

TABLE 8.2.3-ME2

Alloy Designation:

Armco 21-6-9 Stainless Steel

Specification:

Form:

Plate Over 5.080 (2.000) Thickness, cm (in.):

Condition:

Annealed 1340 K (1950 F) 1 hr., WQ

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	2- (-423)		
Compression, Longitudinal							
CYS, MN/m² (ksi)	Avg Min						
No. of Spec. (No. of He	eats)						
Ec, GN/m ² (10 ⁶ pai)	Avg Min						
No. of Spec. (No. of He	eats)						
Compression, Transverse							
CYS, MN/m² (ksi)	Avg Min						
No. of Spec. (No. of He							
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of He	eats)						
Shear(a)							
SUS, MN/m ² (ksi)	Avg Min		-1-				
No. of Spec. (No. of He	eats)						
G, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of He	eats)						
Impact, Charpy V						7.4	
Long., Nm(ft-lb)	Avg Min	325 ⁺ (240 ⁺) 325 ⁺ (240 ⁺)	289 (213) 286 (211)	129 (95) 122 (90)	98 (72) 		
No. of Spec. (No. of He		2 (1)	2 (1)	2 (1)	1		
Trans., Nm(ft-lb)	Avg Min	278 (205.3) 260 (192.0)	198 (146) 198 (146)	78 (57.5) 68 (50)	64 (47.0) 56 (41.0)		
No. of Spec. (No. of He		2 (1)	2 (1)	2 (1)	2 (1)		
Fracture Toughness(b)							
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg Min						
Orientation: — No. of Spec. (No. of He	eats)			14			
KIE, MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(No. of Spec. (No. of He							

⁽a) Indicate specimen design and orientation for sheer specimens: (b) Indicate specimen design for K_{IC} data:

FIGURE 8.2.3-ME1. AXIAL FATIGUE-LIFE CURVES FOR 1.270 cm (0.500 in.) DIAMETER NOTCHED AND UNNOTCHED BAR SPECIMENS OF ANNEALED 21-6-9 STAINLESS STEEL [95168]

TABLE 8.2.4-TR1

Alloy Designation:

Fe-22Cr-13Ni-5Mn

Specification: Form: Dimension: Condition:

Furnace brazed

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452
Thermal Conductivity Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹ No of Spec. References: 90196	12.6	(7.29)	8.00	(4.63)	5.12	(2.96)	2.17	(1.25)	0.991	(0.573)		
Thermal Expansion (T ₂₇₃ to T Longitudinal Percent No. of Spec. References:	2											
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹ No. of Spec. References:												
Ohm m Ohm circular mil ft ⁻¹ No of Spec. References: 90196	80.0 x	10 ⁻⁸ (481)	65.8 x	10 ⁻⁸ (396)	62.4 x	10 ⁻⁸ (375)	62.1 x	10 ⁻⁸ (374)	62.1 x	10 ⁻⁸ (374)	62.2 x	10 ⁻⁸ (374)

STATE OF

FIGURE 8.2.4-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR FE-22CR-13NI-5MN ALLOY (Furnace Brazed Condition)

FIGURE 8.2.4-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR FE-22CR-13NI-5MN ALLOY (Furnace Brazed Condition)

INDEX TO MATERIAL CODES FOR SECTION 9.0

TITANIUM AND TITANIUM ALLOYS

MATERIALS	MATERIAL CODE
Ti-65A	9.1.1
Ti-75A	9.1.2
Ti-5AI-2.5Sn (NORMAL INTERSTITIAL CONTENT)	9.2.1
Ti-5Al-2.5Sn (ELI)	9.2.2
Ti-6AI-4V (ELI)	9.3.1
Ti-6AI-4V (NORMAL INTERSTITIAL CONTENT)	9.3.2

TABLE 9.2.1-ME1

Alloy Designation: Ti-5Al-2.5Sn (Normal Interstitial Content)

Specification:

Form:

Sheet

Thickness, cm (in.): Up to 0.099 (0.039) Condition: Annealed

)	297	(75)	195	(-108)	77	(-320)	20	(-423)			
Avg	844	(122)	1037	(150)	1347	(195)	1686	(245)			
Min	745 62.8	(108)	993 55.2	(144) (8.00)	1234 78.6	(179)	1517 88 9	(220) (12.9)			
Avg	785	(114)	957	(139)	1275	(185)	1576	(228)			
Min	703 49 8	(102) (7.23)	889 50 2	(129) (7 28)	1186 52 1	(172) (7.56)	1427 87.6	(207) (12.7)			
Avg Min					1						
Avg											
	21	(9)	8	(2)	12	(3)	23	(9)			
Avg	106	(15.4)	114 109			(17.7)	127	(18.5)			
	10	(2)	5	(1)	9	(2)	8	(2)			
		J									
Avg	1121	(163)	1233	(179)	1644	(238)	1480	(215)			
Min ats)	1014 12	(7)	1131	(164)	1600	(232)	1338	(194) {			
Avg	947	(137)	976 860	(142)	956	(139)	831 758	(120)			
	7	(2)	5	(1)	5	(125)	8	(2)			
Avg Min	872 807	(126) (117)	1016 979	(147) (142)	1398 1344	(203) (195)	1695 1579	(246)			
	40.8	(5.92)	43.4	(6.29)	55.9	(8.11)	63.3	(9 18)			
Avg	819	(119)	966	(140)	1317	(191)	1589	(230)			
Min	765 33.6	(4.87)	938 33 4	(4 84)	1262 49.6	(183) (7 ₁ 19)	1510 40.7	(219) (5.90)			
Avg							1				
			/.:			J					
Min	10	/7)	7	(2)	-	(2)	10	(6)			
Avg Min	104 101	(15.1) (14.7)	122 112			(18.3) (17.2)	134 128	(19.4) (18.5)			
	5	(1)	5	(1)	5	(1)	5	(1)			
Avg	1144	(166)	1248	(181)	1626	(236)	1448	(210)			
	1041	(6)	1200 7	(2)	1606	(233)	1255 12	(182)			
Avg	952	(138)	1138			(126)	767	(111)		1	
Min	876	(127)	945	(137)	827	(120)	683	(99)			
	Avg Min ats) Avg Min Avg Min ats) Avg Min Avg Min ats) Avg Min ats) Avg Min ats) Avg Min ats) Avg Min ats) Avg Min ats) Avg Min Avg Min ats) Avg Min Avg Min ats) Avg Min Avg Min ats)	Avg 785 Min 703 49.8 Avg 785 Min 1 Avg Min 1 Avg Min 21 Avg Min 21 Avg Min 21 Avg Min 31 Avg Min 42 Avg Min 42 Avg Min 42 Avg Min 4848 7 Avg Min 40.8 Avg Min 1 Avg 952	Avg Min ats) 21 (9) Avg Min 21 (103) Avg Min 21 (102) Avg Min 21 (9) Avg Min 21 (9) Avg Min 21 (163) Avg Min 21 (163) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (17) Avg Min 21 (165) Avg Min 21 (166) Avg Min 21 (166) Avg Min 21 (166) Avg 952 (138)	Avg Min ats) 21 (9) 8 Avg Min 21 (163) 55.2 Avg 785 (114) 957 703 (102) 889 50.2 Avg Min 12 12 12 Avg Min 21 (9) 8 Avg Min 93 (13.5) 109 5ats) 106 (15.4) 114 Avg Min 1014 (147) 109 ats) 27 (7) 6 Avg Min 22 (7) 6 Avg Min 102 (137) 869 Avg Min 24 (123) 869 Avg Min 25 (126) 1016 Avg Min 807 (117) 40.8 (5.92) 43.4 Avg Min 25 (126) 1016 Min 807 (117) 979 40.8 (5.92) 43.4 Avg Min 11 7.5 Avg Min 11 7.5 Avg Min 11 7.5 Avg Min 11 7.5 Avg Min 11 7.5 Avg Min 11 7.5 Avg Min 11 7.5 Avg Min 11 7.5 Avg Min 11 7.5 Avg Min 11 7.5 Avg Min 11 7.5 Avg Min 11 7.5 Avg Min 11 7.5 Avg Min 11 7.5 Avg Min 11 7.5 Avg Min 11 81 1200 Avg 952 (138) 1138	Avg Min Avg Min 1014 (147) Avg Min Ats) Avg B77 (137) Avg Min Avg Min Ats) Avg Min Avg Min Avg Min Ats) Avg Min Avg Min Ats) Avg Min Avg Min Ats) Avg Min Ats) Avg Min Avg Min Ats) Avg Min Ats Min A	Avg Min 21 (163) 125 (172) 1347 Avg Min 785 (114) 957 (139) 1275 Avg Min 12 (163) 12.5 (12.5 (11) 12.5 (12) 12.5 (11) 12.5 (11) 12.5 (12) 12.5 (11) 12.5 (12) 12.5 (11) 12.5 (12) 12.5 (11) 12.5 (12) 12.5 (11) 12.5 (12) 12.5 (11) 12.5 (12) 12.5 (11) 12.5 (12) 12.5 (Avg Min 21 (108) 993 (144) 1234 (179) 78.6 (111.4) Avg 785 (114) 957 (139) 1275 (186) 1186 (172) 49.8 (7.23) 50.2 (7.28) 52.1 (7.56) Avg Min 12 13.6 12.5 11. Avg Min 21 (19) 8 (2) 12 (3) Avg Min 21 (19) 8 (2) 12 (3) Avg Min 10 (15.4) 114 (16.6) 122 (17.7) 117 (17.0) 93 (13.5) 10 (2) 5 (1) 9 (2) Avg Min 10 (2) 5 (1) 9 (2) 5 (1) 117 (17.0) 9 (2) Avg Min 10 (2) 5 (1) 9 (2) 5 (1) 10 (2) 5 (1) 10 (2) 6 (2) 6 (2) Avg Min 10 (2) 5 (1) 9 (2) 6 (2) 6 (2) 6 (2) Avg Min 10 (2) 5 (1) 5 (1) 5 (1) 5 (1) 5 (1) Avg Min 10 (2) 5 (1) 5 (1) 5 (1) 5 (1) 5 (1) 6 (2) 6	Avg Min 21 (163)	Avg Min 21 (163)	Avg Min 62.8 (114) 993 (144) 1234 (179) 1517 (220) 62.8 (9.11) 55.2 (8.00) 78.6 (11.4) 88.9 (12.9) 62.8 (7.23) 65.2 (7.28) 52.1 (7.56) 87.6 (12.7) 63.2 (7.28) 62.1 (7.56) 87.6 (12.7) 64.8 (12.7) 65.2 (7.28) 62.1 (7.56) 87.6 (12.7) 64.8 (12.5) 64.8 (12.5) 65.2 (7.28) 62.1 (7.56) 87.6 (12.7) 64.8 (12.5) 64.8 (12.5) 65.2 (7.28) 62.1 (7.56) 87.6 (12.7) 64.8 (12.5) 64.8 (12.5) 65.2 (7.28) 62.1 (7.56) 87.6 (12.7) 65.2 (7.28) 62.1 (7.56) 87.6 (12.7) 64.8 (12.5) 65.2 (7.28) 62.1 (7.56) 87.6 (12.7) 65.2 (7.28) 62.1 (7.56) 87.6 (12.7) 87.	Avg Min (122) 844 (122) (108) 1037 (150) 1347 (195) (195) 1686 (245) (245) Min (22) 745 (108) 993 (144) 1234 (179) 1617 (220) Avg Min (122) 889 (123) 1186 (172) 1427 (207) Avg Min (122) 889 (129) 1186 (172) 1427 (207) Avg Min (123) 152 13.6 (12.5) 13.6 (12.7) 13.6 (12.7) Avg Min (123) 106 (15.4) 114 (16.6) 122 (17.7) 127 (18.5) Avg Min (123) 106 (15.4) 114 (16.6) 122 (17.7) 127 (18.5) Avg Min (123) 100 (2) 5 (1) 9 (2) 16 (16.9) 3 (135) 10 (2) 5 (1) 9 (2) 18 (2) Avg Min (177) 1014 (147) 1131 (164) 1600 (232) 1338 (194) 4 (127) 1131 (164) 1600 (232) 1338 (194) 4 (127) 1131 (164) 1600 (232) 1338 (194) 4 (127) 113 (164) 1600 (232) 1338 (194) 4 (127) 10 (147) 10 (147) 10 (147)

TABLE 9.2.1-ME1.1

Alloy Designation:

Ti-5Al-2.5Sn (Nominal Interstitial Content)

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet Up to 0.099 (0.039) 20% cold rolled

Testing Temperature, K (F)	\Box	297 (75)	20 (-425)	
	Avg Min	827 (120)	1634 (237)	
	Avg Min	710 (103)	1365 (198)	
Elong, percent	Avg Min	8	6	
	Avg Min			
	Avg	1 (1)	1 (1)	
No. of Spec. (No. of Heats)	Min)			
Poisson's Ratio Nork Hardening Coef				
$K_{t} = 6.3$	Min	1014 (147)	1634 (237)	
No. of Spec. (No. of Heats) VTS, MN/m ² (ksi)	Avg	1 (1)	1 (1)	
No. of Spec. (No. of Heats) Tension, Transverse	Min			
ΓUS, MN/m ² (ksi)	Avg Min	827 (120)	1600 (232)	
TYS, MN/m ² (ksi)	Avg Min	674 (97.8)	1393 (202)	
Std. Deviation				
	Avg Min	9	6	
	Avg Min	1 (1)	1 (1)	
	Avg Min			
No. of Spec. (No. of Heats)				
ork Hardening Coef				
	Min	1082 (157) 1 (1)	1820 (264) 1 (1)	
	Avg Min			

TABLE 9.2.1-ME1.2

Alloy Designation:

Ti-5Al-2.5Sn (Nominal Interstitial Content)

Specification:

Sheet

Form: Thickness, cm (in.):

Up to 0.099 (0.039)

Condition:	40% cold rolled					
Testing Temperature	, K (F)	297 (7				

Testing Temperature, K (F)	297	(75)	20	(-423)	
Tension, Longitudinal					
	889 gv	(127)	1641	(238)	
Std. Deviation	in				
	vg 745	(108)	1427	(207)	
Std. Deviation					
	vg 7			4	
	rg in				
No. of Spec. (No. of Heats)	1	(1)	1	(1)	
M	rg in				
No. of Spec. (No. of Heats)					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m^2 (ksi) A $K_t = 6.3$ M		(134)	1131	(164)	
No. of Spec. (No. of Heats)	1	(1)	1	(1)	
	/g in				
Tension, Transverse					
TUS, MN/m ² (ksi) A Std. Deviation	889	(129)	1627	(236)	
TYS, MN/m ² (ksi) A	/a				
M Std. Deviation					
Elong, percent A	-	3		9	
RA, percent A	- 1				
No. of Spec. (No. of Heats)	1	(1)	1	(1)	
	rg in				
No of Sprc. (No. of Heats)					
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) A K _t = 6.3 M	n	(162)		(249)	
No. of Spec. (No. of Heats)	1	(1)	1	(1)	
NTS, MN/m^2 (ksi) A: $K_t = M$ No. of Spec. (No. of Heats)					

TABLE 9.2.1-ME1.3

Alloy Designation:

Ti-5Al-2.5Sn (Nominal Interstitial Content)

Specification:

Form:

Up to 0.099 (0.039) 50% cold rolled

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)			20	(423)		-
Tension, Longitudinal TUS, MN/m ² (ksi) A				1579	(229)		
Std Deviation	n j						
TYS, MN/m ² (ksi) A				1400	(203)		
Std. Deviation	n						
Elong, percent Av	- 1				1		
RA, percent Av	- 1						
No. cf Spec. (No. of Heats)	1 (1)		1	1	(1)		
E, GN/m ² (10 ⁶ psi) Av Mi							
No. of Spec. (No. of Heats)	"						
Poisson's Ratio	1						
Work Hardening Coef	1						
NTS, MN/m^2 (ksi) Av $K_t = 6.3$ Mi		1 1		986	(143)		
No. of Spec. (No. of Heats)	1 (1)			1	(1)		
NTS, MN/m ² (ksi) Av $K_t = Mi$ No. of Spec. (No. of Heats)							
Tension, Transverse							
TUS, MN/m ² (ksi) Av		1139		1613	(234)		
Std. Deviation							i
TYS, MN/m ² (ksi) Av Mi				1462	(212)		
Std. Deviation							
Elong, percent Av Mi					9		
RA, percent Av							
No. of Spec. (No. of Heats)	1 (1)			1	(1)		
E, GN/m ² (10 ⁶ psi) Av Mi						= 3"	
No. of Spec. (No. of Heats)							
Poisson's Ratio							
Nork Hardening Coef							
NTS, MN/m ² (ksi) Av $K_t = 6.3$ Mi. No. of Spec. (No. of Heats)				15 38	(223)		
NTS, MN/m ² (ksi) Av					, . ,		
$K_t = Mi$ No. of Spec. (No. of Heats)	. (/ F				

2570

TABLE 9.2.1-ME1.4

Alloy Designation:

Ti-5AI-2,5Sn (Weld Metal)

Specification:

Form:

Sheet-TIG welded, no filler Up to 0.099 (0.039) Annealed

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	20 (-423)
Tension, Longitudinal				
TUS, MN/m ² (ksi)	wg 816 (118.4) 765 (111.0)	1004 (145.6) 1000 (145.0)	1320 (191.4) 1241 (180.0)	1657.5 (240.4) 1482.4 (215.0)
Std. Deviation	33.8 (4.91)	, , , , , , ,	66 (9.57)	139 (20.17)
	lin .		_= 1	
Std. Deviation				
	vg 8.3 lin 1.0	14.4 12.5	6.6 1.5	2.8 1.0
	vg lin			
No. of Spec. (No. of Heats)	15 (3)	5 (1)	10 (1)	15 (3)
	vg tin			
Poisson's Ratio				
Work Hardening Coef				
	vg			
$K_t = N$ No. of Spec. (No. of Heats)	lin	п, Т,		
	vg lin			
Tension, Transverse				
TUS, MN/m ² (ksi) A	vg 818 (118.6) in 779 (113.0)	978 (141.8) 965 (140.0)	1292 (187.4) 1186 (172.0)	1573 (228,2) 1331 (193.0)
Std. Deviation	18.75 (2.72)	1	83.1 (12.05)	143 (20.75)
	vg in			
	vg 7.5	12.1	6.2	3.0
	in 1.0	11.0	0.5	1.0
	vg in			1
No. of Spec. (No. of Heats)	10 (1)	5 (1)	10 (1)	10 (1)
	vg in			
No. of Spec. (No. of Heats)				
oisson's Ratio				
ork Hardening Coef				
· ·	rg in			
	rg in			
References: 40128, 48652, 59	150			68

Alloy Designation: Ti-5Al-2.5Sn (Nominal Interstitial Content)

Specification:

Form: Sheet
Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: Annealed

186 (172) 165 (169) 9.3 3 (1) 303 (189) 3 (1) 207 (175)	1276 (1 106 (1 1327 (1 1186 (1 126 (1 13.6 4.6 21 (8 1622 (2 1586 (2 15 (6 1186 (1 3 (1	185) 156 15.4) 158 172) 146 6 6 3 8) 31 235) 138 230) 111 6) 21	5 (13.85 (23.54)8 (213) (15.36 7.82 2.00 (7) (7) (2 (200) 0 (161) (1) (1) (1) (1)		(146) (1)
9.3 9.3 3 (1) 303 (189) 3 (1) 207 (175)	1276 (1 106 (1 1327 (1 1186 (1 126 (1 13.6 4.6 21 (8 1622 (2 1586 (2 15 (6 1186 (1 3 (1	185) 156 15.4) 95. 192) 146 172) 146 6 6 8) 31 235) 138 230) 111 6) 21 172) 106	66 (230) 5 (13.85 (23.54) 8 (213) (15.36 7.82 2.00 (7) (7) (2) (200) 0 (161) (1) (1) (1)	1007 3	(146) (1)
9.3 3 (1) 303 (189) 3 (1) 207 (175)	106 (1 1327 (1 1186 (1 126 (1 13.6 4.6 21 (8 1622 (2 1586 (2 15 (6 1186 (1 3 (1	15.4) 95. 192) 146 172) 146 6 6 8) 31 235) 138 230) 111 6) 21 172) 106 1) 3	5 (13.85 (23.54)8 (213) (15.36 7.82 2.00 (7) (7) (2 (200) 0 (161) (1) (1) (1) (1)	1007	(146) (1)
9.3 3 (1) 303 (189) 3 (1) 207 (175)	1186 (1 126 (1 13.6 4.6 21 (8 1622 (2 1586 (2 15 (6 1186 (1 3 (1	172) 146 18.3) 6 6 6 8) 31 235) 138 230) 111 172) 106 1) 3	8 (213) (15.36 7.82 2.00 (7) (7) (161) (1) (1) (1) (1) (1)	1007	(146) (1)
3 (1) 303 (189) 3 (1) 207 (175)	1186 (1 126 (1 13.6 4.6 21 (8 1622 (2 1586 (2 15 (6 1186 (1 3 (1	172) 146 18.3) 6 6 6 8) 31 235) 138 230) 111 172) 106 1) 3	8 (213) (15.36 7.82 2.00 (7) (7) (161) (1) (1) (1) (1) (1)	1007	(146) (1)
3 (1) 303 (189) 3 (1) 207 (175)	1622 (2 1586 (2 15 (6 1186 (1	235) 138 230) 111 6) 21 172) 106 1) 3	2.00 (7) 2 (200) 0 (161) (1) 2 (154) (1) 8 (238)	1007	(146) (1)
303 (189) 3 (1) 207 (175)	1622 (2 1586 (2 15 (6 1186 (1	235) 138 230) 111 6) 21 172) 106 1) 3	2 (200) 0 (161) (1) 2 (154) (1)	1007	(146) (1)
303 (189) 3 (1) 207 (175)	1622 (2 1586 (2 15 (6 1186 (1	235) 138 230) 111 6) 21 172) 106 1) 3	2 (200) 0 (161) (1) 2 (154) (1)	1007	(146) (1)
3 (1) 207 (175)	1586 (2 15 (6 1186 (1 3 (1	230)	0 (161) () 2 (154) (1)	3	(1)
3 (1) 207 (175)	1586 (2 15 (6 1186 (1 3 (1	230)	0 (161) () 2 (154) (1)	3	(1)
3 (1) 207 (175)	1586 (2 15 (6 1186 (1 3 (1	230)	0 (161) () 2 (154) (1)	3	(1)
3 (1) 207 (175)	1586 (2 15 (6 1186 (1 3 (1	230)	0 (161) () 2 (154) (1)	3	(1)
3 (1) 207 (175)	1586 (2 15 (6 1186 (1 3 (1	230)	0 (161) () 2 (154) (1)	3	(1)
3 (1) 207 (175)	1586 (2 15 (6 1186 (1 3 (1	230)	0 (161) () 2 (154) (1)	3	(1)
3 (1) 207 (175)	1186 (1 3 (1	172) 106 1) 3 213) 163	(1) (1) (2) (238)	3	(1)
3 (1) 207 (175)	3 (1	1) 3 213) 163	(1)	3	(1)
207 (175)		213) 163	8 (238)		
	1469 (2			1593	
	1469 (2			1593	
		160		1.000	(231)
			0 (232)		
200 (174)	1434 (2	208) 163	5 (237)		
10.7	410	.		Ι.	
10.7	13.2		6.3		1.5
3 (1)	3 (1	1) 4	(2)	3	(1)
		113	1 (164)		
			(1)		
	ļ				
	3 (1)	3 (1) 3 (1131 (164)	1131 (164)

TABLE 9.2.1-ME2.1

Alloy Designation:

Ti-5AI-2.5Sn (Nominal Interstitial Content)

Specification:

Form:

Sheet

0.100 to 0.319 (0.040 to 0.125)

Thickness, cm (in.): Condition: 20% cold rolled

Testing Temperature, K (F))	297	(75)		20	(-423)		
Tension, Longitudinal								
TUS, MN/m ² (ksi)	Avg	1000	(145)		1889	(274)		
Std Deviation	WIII							
TYS, MN/m² (ksi)	Avg	862	(125)		1682	(244)		
Std. Deviation	Min							
Elong, percent	Avg Min	9				4		
RA, percent	Avg Min							
No. of Spec. (No. of Hea		1	(1)		1	(1)		
E, GN/m ² (10 ⁶ psi)	Avg Min							
No. of Spec. (No. of He	ats)							
Poisson's Ratio								
Work Hardening Coef		2						
NTS, MN/m² (ksi)	Avg	1303	(189)		1586	(230)		
K _t = 6.3 No. of Spec. (No. of Hea	Min ats)	1	(1)		1	(1)		
NTS, MN/m² (ksi)	Avg							
K _t = No. of Spec. (No. of Hea	Min ats)							
Tension, Transverse								
TUS, MN/m ² (ksi)	Avg Min							
Std. Deviation	141111							
TYS, MN/m² (ksi)	Avg							
Std. Deviation	Min							
Elong, percent	Avg	Ì						
	Min							
RA, percent	Avg Min							
No. of Spec. (No. of Hea								
E, GN/m ² (10 ⁶ psi)	Avg							
No. of Spec. (No. of Hea	Min its)							
oisson's Ratio								
Vork Hardening Coef								
NTS, MN/m ² (ksi)	Avg							
K _t = No. of Spec. (No. of Hea	Min its)							
NTS, MN/m ² (ksi)	Avg							
K _t = No. of Spec. (No. of Hea	Min its)							

References: 90171

TABLE 9.2.1-ME2.2

Alloy Designation:

Ti-5AI-2,5Sn (Nominal Interstitial Content) (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition:

Sheet-TIG welded, no filler 0.100 to 0.319 (0.040 to 0.125) Annealed

Testing Temperature, K (F)		297 (75)	195 (-108)	77 (-320)	20 (-423)	
		334 (121) 327 (120)	976 (141.5) 972 (141.0)	1326 (192.3) 1310 (190.0)	1644 (238.4) 1551 (225.0)	
	Avg Min					
	Avg Min	12.3 11.0	11.0 10.0	8.0 2.0	3.7 0.0	
	Avg Min					
No. of Spec. (No. of Heats)		3 (1)	2 (1)	3 (1)	5 (2)	
	Avg Min					
No. of Spec. (No. of Heats)			}]	}	
Poisson's Ratio						
Work Hardening Coef				l III		
	Avg Min					
	Avg Min					
Tension, Transverse]			
TUS, MN/m ² (ksi)	Avg				}	
Std. Deviation			}	}		
	Avg Min			2		
Std. Deviation						
	Avg Min					
	Avg Vin					
No. of Spec. (No. of Heats)	1		ļ			
	Avg					
No. of Spec. (No. of Heats)						
Poisson's Ratio						
Work Hardening Coef						
	Avg Viin					
	Avg Viin					

TABLE 9.2.1-ME2.3

Alloy Designation:

Ti-5Al-2.5Sn (Nominal Intersitial Content)

Specification:

Form:

1.270 to 2.540 (0.500 to 1.000) Annealed

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297 (75)	77 (-320)	20 (-423)	
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	917 (133)	1438 (208.6)	1	
Std Deviation	Min	914 (132.6)	1429 (207.3)	1577 (228.7)	
TYS, MN/m ² (ksi)	Avg	876 (127)	1358 (197)	1502 (217.8)	
Std. Deviation	Min	875 (126.9)	1341 (194.5)	1485 (215.4)	
Elong, percent	Avg Min				
RA, percent	Avg	38.0 32.8	32.0 31.7	16.6 12.4	
No. of Spec. (No. of Heats	.)	2 (1)	2 (1)	2 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min			133 (19.3) 132 (19.2)	
No. of Spec. (No. of Heats)			2 (1)	
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg				
K _t = No. of Spec. (No. of Heats	Min)				= [
	Avg				
K _t = No. of Spec. (No. of Heats)	Min)				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg			W	
Std. Deviation	Min				
TYS, MN/m² (ksi)	Avg Min				
Std. Deviation					
	Avg Min				
RA, percent	Avg				
No. of Spec. (No. of Heats)	Min)				
	Avg				
No of Spec. (No of Heats)	Min)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m² (ksi)	Avg				
	Min				
	Avg Min			-	
No. of Spec. (No. of Heats)					

Ti-5Al-2.5Sn (Normal Interstitial Content) Alloy Designation:

Specification:

Form: Diameter: Condition: Bar Up to 2.54 cm (1.000 in.) Annealed

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	17	(-430)	4	(-452)
Tension, Longitudinal													
TUS, MN/m ² (ksi)	Avg	910	(132)	1088	(158)		(204.5)	1774	(257)	1551	(225)	1475	(214)
Std. Deviation	Min	862	(125)	1062	(154)	1344	(195)	1731	(251)	1469	(213)	1475	(214)
TYS, MN/m ² (ksi)	Avg Min	862 827	(125) (120)	1032 1020	(1 50) (148)		(187.5) (159)	1721 1668	(250) (242)	1413 1379	(205) (200)	1413 1413	(205) (205)
Std. Deviation													
Elong, percent	Avg Min		15.8 12		3.2 2		2.0 0	8	.7		3.7 2.0		
RA, percent	Avg Min		35.8 25	2	1 3	2		1	5 7	3.	1		
No. of Spec. (No. of Heat	s)	6	(3)	4	(2)	6	(3)	3	(2)	4	(1)	2	(1)
E, GN/m ² (10 ⁶ psi) No. of Spec. (No. of Heat	Avg Min	119 119 2	(17.3) (17.3) (1)			126 126 2	(18.3) (18.3) (1)			:		129 129	(18.7) (18.7)
Poisson's Ratio	"		.289				.287					2	(1) .287
		•	.209			"	.207					"	.20/
Work Hardening Coef										ł			
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min s)												
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heat	Avg Min s)												
Tension, Transverse			ĺ										
TUS, MN/m ² (ksi)	Avg Min												
Std. Deviation													
TYS, MN/m ² (ksi)	Avg Min												
Std. Deviation													
Elong, percent	Avg Min												
na percent	Avg												
No. of Spec. (No. of Heat:	Min s)											1	
E, GN/m ² (10 ⁶ psi)	Avg												
No of Spec. (No of Heat	Min s)												
Poisson's Ratio					1								
Work Hardening Coef													
NTS, MN/m² (ksi)	Avg												
Kt ≠ No. of Spec. (No. of Heats	Min s)												
NTS, MN/m² (ksi) K _t =	Avg Min				9								

Alloy Designation: Ti-5Al-2.5Sn (Normal Interstitial Content

Specification:

Form:

Up to 2.540 cm (1.000 in.) Annealed Diameter:

Condition:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)			
Compression, Longitudinal										
CYS, MN/m ² (ksi)	Avg									
No. of Spec. (No. of Heat										
Ec, GN/m ² (10 ⁶ psi)	Avg	1								
No. of Spec. (No. of Heat									İ	
Compression, Transverse						ļ				
CYS, MN/m ² (ksi)	Avg Min									
No. of Spec. (No. of Heat										
Ec, GN/m ² (10 ⁶ psi)	Avg							_		
No. of Spec. (No. of Heat										
Shear ^(a)										
SUS, MN/m ² (ksi)	Avg Min	1							ł	
No. of Spec. (No. of Heat										
G, GN/m ² (10 ⁶ psi)	Avg									
No. of Spec. (No. of Heat										
Impact, Charpy V										
Long., J(ft-lb)	Avg Min	23.9 23.7	(17.6) (17.5)		(14.3) (13.5)	15.2 14.2	(11.2) (10.5)			
No. of Spec. (No. of Heat		3	(1)	3	(1)	3	(1)			
Trans., J(ft-lb)	Avg									
No. of Spec. (No. of Heat										
Fracture Toughness(b)										
K _{Ic} MN/m ^{3/2} (ksi√in.)	Avg									
Orientation – No. of Spec. (No. of Heat										
KIE, MN/m ^{3/2} (ksi√in.)	Avg									
(From PTSC spec.)(No. of Spec. (No. of Heat)Min (s)									

References: 54986

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1c} data:

Ti-5AI-2.5Sn

FIGURE 9.2.1-ME8. AXIAL FATIGUE LIFE CURVES FOR UNNOTCHED 5AI-2.5Sn (ANNEALED) TITANIUM ALLOY [58024]

FIGURE 9.2.1-ME9. AXIAL FATIGUE LIFE CURVES FOR NOTCHED 5AI-2.5Sn (ANNEALED) TITANIUM ALLOY [58024]

FIGURE 9.2.1-ME10. AXIAL FATIGUE LIFE CURVES FOR 5AI-2.5Sn (ANNEALED) TITANIUM ALLOY SHEFT AS WELDED [TIG welded; parent metal filler] [58024]

9.2.1-12.5 (11/76)

47

TABLE 9.2.1-TR1

Alloy Designation: Ti-5Al-2.5Sn Alloy

Specification: Form: Dimension:

Condition:

Annealed

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(423)	10	(-442)	4	(-452)
Thermal Conductivity Watts m-1 K-1 Btu hr-1 ft-1 F-1 No. of Spec. References: 96885 Thermal Expension (T273 to T) Longitudinal	7.79	(4.50)	4.83	(2.79)	3.59	(2.08)	1.95	(1.13)	0.996	(0.576)		
Percent No. of Spec. References: 94206 Specific Heet	3		-0.128 3		-0.147 3		-0.152 2		- 0.152		- 0.153	
Joules kg ⁻¹ K ⁻¹ Btu Ib ⁻¹ F ⁻¹ No. of Spec. References:												
Chemical Resistivity Ohm circular mil ft ⁻¹ No. of Spec. References: 96885	161 x	10 ⁻⁸ (968)	142 x 1	0 ⁻⁸ (854)	137 x 1	0-8 (824)	136 x 1	(818)	136 x '	10 ⁻⁸ (818)	136 x 1	0-8 (818) ,

FIGURE 9.2.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR Ti-5AI-2.5Sn ALLOY

FIGURE 9.2.1-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR Ti-5AI-2.5Sn ALLOY

FIGURE 9.2.1-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR Ti-5AI-2.5Sn ALLOY

Alloy Designation: Ti-5Al-2.5Sn (ELI)

Specification:

Form:

Sheet

Thickness, cm (in.): Up to 0.099 (0.039)
Condition: Annealed

Annealed

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)	
Tension, Longitudinal										
TUS, MN/m ² (ksi)	Avg	779	(113)	933	(135)	1276	(185)	1537	(223)	
Std Deviation	Min	654 55.8	(94.9) (8.10)	889	(129)	1227 31.8	(178) (4.62)	1363 80.6	(198) (11.7)	
		35.0	(0 10)			31.0	(4.02)	00.0	111.77	
TYS, MN/m ² (ksi)	Avg	721	(105)	855	(124)	1186	(172)	1429	(207)	
Std. Deviation	Min	652 53.6	(94.6) (7.78)	807	(117)	30.1	(162) (4.37)	1317 76.2	(191)	
F1										
Elong, percent	Avg Min		16.6	14.: 11	3	,	5.8 0		0.6	
24										
RA, percent	Avg Min									
No. of Spec. (No. of H	eats)	41	(16)	3	(3)	21	(7)	46	(16)	
E, GN/m ² (10 ⁶ psi)	Avg	111	(16.1)			127	(18.5)	131	(19.0)	
	Min	108	(15.7)			123	(17.8)	118	(17.1)	
No. of Spec. (No. of H	eats)	7	(2)			10	(2)	11	(2)	
Poisson's Ratio		(0.416			C	.364	C	.328	
Work Hardening Coef										
NITC MANUE 2 11 3		1000	1450)	4650	(400)	45.00	(005)	4554	10.15	
NTS, MN/m ² (ksi) $K_t = 6.3$	Avg Min	1031 869	(1 50) (126)	1156 1096	(168) (159)	1549	(225) (209)	1691 1413	(245) (205)	
No. of Spec. (No. of He		26	(11)	3	(3)	7	(5)	26	(11)	
NTS, MN/m ² (ksi)	Avg	820	(119)					900	(131)	
K _t = 19	Min		443						(4)	
No. of Spec. (No. of He	eats)	1	(1)			у т		3	(1)	
Tension, Transverse										
TUS, MN/m² (ksi)	Avg Min	799 654	(116) (94.9)	926 896	(134) (130)	1288	(187)	1566	(227)	
Std Deviation	IVIIII	60 4	(8.76)	050	(130)	1220 37.5	(177) (5.44)	1441 60.2	(209) (8.73)	
TYS, MN/m² (ksi)	Avg	749	(109)	857	(124)	1226	(178)	1471	(213)	
	Min	637	(92.4)	827	(120)	1138	(165)	1310	(190)	
Std. Deviation		64.3	(9.33)			46.8	(6 79)	75.8	(11.0)	
Elong, percent	Avg		5.3		4.7		6.8	9	.4	
	Min	1	3.5	1	2	1	6	2		
RA, percent	Avg							:		
No. of Spec. (No. of He	Min	18	(10)	3	(3)	8	(4)	19	(10)	
		10	(10)	J	(0)	3	(-4)	13	(10)	
E, GN/m ² (10 ⁶ psi)	Avg Min									
No of Spec. (No. of He										
Poisson's Ratio										
Nork Hardening Coef										
NTS, MN/m ² (ksi)	Avg	1090	(158)	1220	(177)	1620	(235)	1627	(236)	
$K_t = 6.3$ No. of Spec. (No. of He	Min ats)	876 11	(127) (7)	11 7 9	(171) (3)	1538 5	(223) (4)	1434	(208)	
		910								
ITS, MN/m ² (ksi) K _t = 19	Avg Min	810 807	(118) (117)					869 800	(126) (116)	
	ats)	2	(1)					3	(1)	

References: 45136, 48652, 50498, 53354, 59159, 66103, 66886, 68968, 69759 9.2.2-1 (11/74)

Alloy Designation:

Ti-5AI-2.5Sn(ELI) (Weld Metal)

Specification:

Form:

Sheet-TIG welded, no filler Up to 0.099 (0.039) Annealed

Thickness, cm (in.): Condition:

Testing Temperature, K (F)	297 (75)		77	(-320)	20	(-423)	
Tension, Longitudinal TUS, MN/m² (ksi) Std Deviation Avg			1 262 1 262	(183) (183)	1528 1386 26.7	(221.6) (201.0) (11.13)	
TYS, MN/m ² (ksi) Av Mii Std. Deviation							
Elong, percent Avg			1	2.0 2.0		2.65 2.00	
RA, percent Ave				/11	25	(2)	
No. of Spec. (No. of Heats) E, GN/m ² (10 ⁶ psi) Avg	11 (3)		1	(1)	35	(3)	- 11
Mir No. of Spec. (No. of Heats)							
Poisson's Ratio							
Work Hardening Coef							
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)							
NTS, MN/m ² (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)							
Tension, Transverse							
TUS, MN/m ² (ksi) Avg Min Std. Deviation			1234 1234	(179) (179)		5 (214) 5 (214)	
TYS, MN/m ² (ksi) Avg							
Std Deviation							
Elong, percent Avg				1.6 1.6	1	1.0 1.0	
RA, percent Avg						1	
No. of Spec. (No. of Heats)	1 (1)		1	(1)	1	(1)	
E, GN/m ² (10 ⁶ psi) Avg Min						20	
No of Spec. (No. of Heats)	1 1						
Poisson's Ratio							
Work Hardening Coef		<u> </u>					
NTS, MN/m ² (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)							
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)							

Alloy Designation: Ti-5Al-2,5Sn (ELI)

Specification:

Form:

Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: Annualed

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)		
Tension, Longitudinal											
TUS, MN/m ² (ksi)	Avg	812	(118)	985	(143)	1313	(190)	1599	(232)		
0.1.0	Min	758	(110)	910	(132)	1234	(179)	1429	(207)		
Std. Deviation		41.6	(6.03)	69.6	(10_1)	53.2	(7.72)	91_7	(13.3)		
TYS, MN/m ² (ksi)	Avg	752	(109)	905	(131)	1230	(178)	1475	(214)		
Std. Deviation	Min	696 37.9	(101) (5.50)	814 56.8	(118) (8.24)	1158	(168) (8.11)	1331 91.7	(193) (13.3)		
Std. Deviation		3/ 5	(5.50)	30.0	(0.24)	33.5	(0.11)	91.7	(13.3)	1	
Elong, percent	Avg		5.5	1	4.8	1	5.4	1	.5		
	Min		€5		5.5		3.0	'	5		
RA, percent	Avg										
No. of Spec. (No. of Heat	Min s)	24	(10)	7	(4)	25	(11)	29	(11)		
E, GN/m ² (10 ⁶ psi)	Avg Min	114 108	(16.6) (15.7)	124 124	(18.0) (18.0)	129 120	(18.8) (17.4)	134 131	(19.4) (19.0)		
No. of Spec. (No. of Heat		10	(5)	2	(1)	10	(4)	5	(2)		
Poisson's Ratio							. 24		24		
LOIZOU 2 LIALIO			0.32	,	.285	,	.31	"	.34		
Work Hardening Coef											
NTS, MN/m² (ksi)	Avg	1089	(158)			1613	(234)	1769	(257)		
$K_t = 3.5$	Min	1089	(158)			1551	(225)	1-65	(227)		
No of Spec. (No. of Heat	s)	3	(1)			3	(1)	3	(1)		
NTS, MN/m ² (ksi)	Avg	1076	(156)	1227	(178)	1567	(227)	1640	(238)		
$K_1 = 6.3$	Min	1048	(152)	1200	(174)	1531	(222)	1372	(199)		
No. of Spec. (No. of Heat	s)	11	(5)	5	(3)	11	(5)	14	(6)		
Tension, Transverse											
TUS, MN/m ² (ksi)	Avg	817	(118)	986	(143)	1308	(190)	1576	(228)		
Std. Deviation	Min	758 52.3	(110) (7.59)	910	(132)	1326 64 2	(179) (9.31)	1402	(203) (19.4)		
TYS, MN/m ² (ksi)	Avg Min	776 703	(112) (102)	936 896	(136) (130)	1244 1189	(180) (172)	1473 1386	(214) (201)		
Std. Deviation		44.4	(6.44)	030	(130)	52.2	(7.57)	82.7	(12.0)		
Elona parant	A.40		2.2		.1		2.2		.1		
Eiong, percent	Avg Min		6.5		.5		1.5		.5		
RA, percent	Avg Min										
No. of Spec. (No. of Heat		9	(6)	6	(4)	9	(6)	10	(5)		
E, GN/m ² (10 ⁶ psi)	Avg	110	(16.0)	127	(18.4)	125	(18.1)	138	(20.1)		
c, die/iii= (10- psi)	Min		(15.5)		(18.4)		(17.0)	1	(19.6)		
No. of Spec. (No. of Heat	s)	4	(2)	2	(1)	4	(2)	2	(1)		
Poisson's Ratio		o	.305	0.3	05	0	.275	0	.315		
Node Mandanie - Coof											
Work Hardening Coef											
NTS, MN/m² (ksi)	Avg	1105	(160)		(188)	1529	(222)	1439			
$K_t = 6.3$ No. of Spec. (No. of Heats	Min	1089 3	(158)	1289	(187)	1462	(212)	1220	(177) (3)		
			1.7	-	1/		107		4529		
NTS, MN/m ² (ksi)	Avg										
K _t =	Min s)										

Ti-5Al-2.5Sn (ELI) Alloy Designation:

Specification:

Form: Thickness, cm (in.): Condition: Sheet 0.100 to 0.319 (0.040 to 0.125) Annealed

Testing Temperature, K (F)	297	(75)	77	(-3.20)	20	(-423)		
Fatigue, Axial Loading								
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = 0.01 and K _f = 1	586	(85)	827	(120)	965	(140)		
No. of S-N Curves (No. of Heats)	1	(1)	1	(1)	1	(1)		
Ratio S _N /TUS at 10 ⁵ cycles		0.73		0 65	0.6	0		
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = 0.01 and K _t = 1	483	(70)	827	(120)	882	(128)		
No of S.N. Curves (No of Heats)	1	(1)	1	(1)	1	(1)		
Ratio S _N /TUS at 10 ⁶ cycles		υ.60		0.65	0.5	5		
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = 0.01 and K _t = 1	496	(72)	814	(118)	758	(110)		
No. of S.N. Curves (No. of Heats)	1	(1)	1	(1)	1	(1)		
Ratio S _N /TUS at 10 ⁶ cycles		0.62		0.62	0.4	8		
Fatigue, Flexual Loading								
S_N at 10 ⁵ cycles, $MN/m^2(ksi)$ Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)								
Ratio S _N /TUS at 10 ⁵ cycles								
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency 12 with R = and K _t = No. of S-N Curves (No. of Heats)							,	
Ratio S _N /TUS at 10 ⁶ cycles								
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No of S-N Curves (No of Heats)								
Ratio S _N /TUS at 10 ⁷ cycles								

References: 53308, 56753, 58024

Alloy Designation:

Ti-5Al-2.5Sn (ELI) (Weld Metal)

Specification:

Form:

Sheet-TIG welded, Ti-5AI-2.5Sn filler 0.100 to 0.319 (0.040 to 0.125)

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Tension, Longitudinal											V.	
TUS, MN/m ² (ksi)	Avg	820 770	(119.0) (111.7)	1086 1086	(157.5) (157.5)		(190.6) (181.6)		(231.3) (216.9)	1627 1627	(236.0) (236.0)	
Std Deviation												
TYS, MN/m ² (ksi)	Avg Min	905 905	(131.2) (131.2)	1047 1047	(151.9) (151.9)	1 444 1444	(209.5) (209.5)		(239.2) (239.2)			
Std. Deviation												
Elong, percent	Avg Min		1.0 1.0		0.0 0.0		0,0 5.0		6.2 6.2		1.5 1.5	
RA, percent	Avg Min	 			7							
No. of Spec. (No. of Heats		4	(2)	1	(1)	4	(2)	4	(2)	1	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of Heats	s)											
Poisson's Ratio												
Work Hardening Coef												
NTS, MN/m² (ksi) K _t ≈	Avg Min											
No. of Spec. (No. of Heats	;)											
NTS, MN/m ² (ksi) $K_t \approx$ No. of Spec. (No. of Heats	Avg Min											
Tension, Transverse												
TUS, MN/m² (ksi)	Avg Min	789 776	(114.5) (112.5)			1262 1247	(183.0) (180.9)		(199.7) (194.1)			
Std. Deviation												
TYS, MN/m ² (ksi)	Avg Min	736 722	(106.8) (104.8)			1187 1178	(172.2) (170.9)					
Std. Deviation											11	
Elong, percent	Avg Min		7 0 6.0				9.0 8.0					
RA, percent	Avg Min			7								
No. of Spec. (No. of Heats		2	(1)			3	(1)	2	(1)			
E, GN/m ² (10 ⁶ psi)	Avg Min	111.0	(16.3) (16.1)			117.9	(17.9) (17.1)					
No of Spec. (No. of Heats	i)	2	(1)			3	(1)					
Poisson's Ratio		(0.350	1		O	.340		0.340			
Vork Hardening Coef												
NTS, MN/m ² (ksi) K _t = No of Spec. (No. of Heats	Avg Min											
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min											1
References: 58024, 58060			,	N.				1		'	3	70. <

Alloy Designation:

Ti-5AI-2.5SN (ELI)(Weld Metal)

Specification:

Form:

Sheet-TIG welded, no filler 0.100 to 0.319 (0.040 to 0.125) Annealed

Thickness, cm (in.): Condition:

Testing Temperature, K (F	-)	297 (75)	 77 (-320)	20 (423)	
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg	852 (123.6)	1338 (194.1)		8)	
0.4.0	Min	805 (116.8)	1305 (189.3)	1593 (231.	0)	
Std Deviation		37.3 (5.41)	25.2 (3.66)		1	
TYS, MN/m ² (ksi)	Avg	767 (111.2)	1241 (180)	1457 (211.	3)	
	Min	731 (106.0)	1227 (178)	1420 (206.	0)	
Std Deviation		22.5 (3.27)	12.4 (1.80)			
Elong, percent	Avg	16.1	5.2			
	Min	16.1	5.2			
RA, percent	Avg	44.0	13.0			
	Min	44.0	13.0			
No. of Spec. (No. of He	eats)	9 (2)	9 (2)	6 (1)		
E, GN/m ² (10 ⁶ psi)	Avg					
No. of Co. (A)	Min	[[1		
No. of Spec. (No. of He	eats)					
Poisson's Ratio		!	i			
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avg	896 (130)	1372 (199)			
$K_t = 6$ No. of Spec. (No. of He	Min	896 (130) 3 (1)	1372 (199) 3 (1)			
	21(3)	,,,,				
NTS, MN/m ² (ksi)	Avg	1	ļ			
K _t = No. of Spec. (No. of He	Min eats)	7				
	,	1				
Tension, Transverse)
TUS, MN/m² (ksi)	Avg Min					
Std Deviation	141111					1
TYS, MN/m² (ksi)		1				
ITS, MIN/Mª (KSI)	Avg	1 }				
Std Deviation		1				
Elong parame	A	1				
Flong, percent	Avg	1 1			1	
- N. P. P. P. P. P. P. P. P. P. P. P. P. P.			0			
RA, percent	Avg Min					
No of Spec. (No. of He		1	, t			
E, GN/m ² (10 ⁶ psi)	Aum					
E, GN/m= (10° ps/	Avg Min		i	_ =		1
No of Spec. (No. of He	ats)					1
Poisson's Ratio						1
						1
Work Hardening Coef						
NTS, MN/m² (ksi)	Avg					
K _t ≈	Min					
No. of Spec. (No. of He	ats)					
NTS, MN/m ² (ksi)	Avg					
Kt =	Min					
No. of Spec. (No. of He	ats)	1	1	1		1

Alloy Designation: Ti-5Al-2.5Sn (ELI)

Specification:

Form: Sheet

Thickness, cm (in.): 0.320 to 0.634 (0.126 to 0.249)
Condition: Annealed

Testing Temperature, K (F)	297 (75	5) 77	(-320)	20 (-423)	
Tension, Longitudinal					
TUS, MN/m ² (ksi) A	vg 807 (11			1519 (220) 1434 (208)	
Std Deviation					
N	vg 764 (11 in 758 (11			1459 (212) 1420 (206)	
Std Deviation					1
	16.5		15.6 12	5.7 4	
RA, percent A	vg				
M	in				
No of Spec. (No. of Heats)	5 (2)	7	(4)	8 (4)	_ b
	- 1	6.0)			
No. of Spec. (No. of Heats)	in 110 (16 2 (1)	30) 20	(17.4) (1)		
nisson's Ratio	0.33		0.36	0.42	
Vork Hardening Coef					
iTS, MN/m² (ksi) A	/g				
K _t = M No. of Spec. (No. of Heats)	- 1				
	vg				1
$K_t = M$ No. of Spec. (No. of Heats)	in				= =
ension, Transverse					
	/g 798 (11			1419 (206)	
Std Deviation	in 793 (11	15) 128	0 (186)	1400 (203)	
'YS, MN/m² (ksi) A	/g 779 (11	13)	7 (178)	1391 (202)	
M				1377 (200)	11
Std. Deviation					
long, percent A	rg 17		15 15		
RA, percent A					
No. of Spec. (No. of Heats)	2 (1)	2	(1)	2 (1)	
, GN/m ² (10 ⁶ psi) A		5.7) 128 126		7-7-	
No of Spec. (No of Heats)	2 (1)		(1)		
oisson's Ratio		V			
Vork Hardening Coef					
ITS, MN/m ² (ksi) A					
K _t = M No. of Spec. (No. of Heats)	n				
The state of the s					, 4
ITS, MN/m^2 (ksi) A: $K_t = M$	-				

Alloy Designation: Ti-5Al-2.5Sn (ELI)

Specification:

Form: Sheet
Thickness, cm (in.): 0.320 to 0.634 (0.126 to 0.249)
Condition: Annealed

Testing Temperature, K (F	•)	297 (75)		20 (-423)		
Compression, Longitudinal						
CYS, MN/m ² (ksi)	Avg Min					
No. of Spec. (No. of He	eats)					
Ec, GN /m ² (10 ⁶ psi)	Avg Min	E. 4111 -				
No. of Spec. (No. of He	eats)					
Compression, Transverse				100	Ty.	
CYS, MN/m ² (ksi)	Avg					
No of Spec. (No. of He						
Ec, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of He	eats)	15		1		
Shear(a)						
SUS, MN/m ² (ksi)	Avg Min	1.10				
No. of Spec. (No. of He	eats)					
G, GN/m ² (10 ⁶ psi)	Avg Min					
No of Spec. (No. of He	eats)					
Impact, Charpy V						
Long., Nm(ft-lb)	Avg Min					
No of Spec. (No. of He	eats)					
Trans., Nm(ft-lb)	Avg Min					
No. of Spec. (No. of He						
Fracture Toughness(b)				100 m2 m2		
K _{fc} MN/m ^{3/2} (ksi√ in.)	Avg Min					
Orientation — No. of Spec. (No. of He	eats)					
KIE, MN/m³/2(ksi/in.)	Avg			56.9 (52.1)		
(From PTSC spec.)(L -	S)Min			51.8 (47.4)		
No. of Spec. (No. of He	æts)		1	3 (1)		

References: 84320

⁽a) Indicate specimen design and orientation for shear specimens: (b) indicate specimen design for K_{1c} data:

Alloy Designation:

Ti-SAI-2.5SN(ELI) (Weld Metal)

Specification:

Form:

Sheet-TIG welded, 17-5AI-2.5Sn filler 0.320 to 0.634 (0.126 to 0.249) Annealed

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297 (75)	77 (-320)	20 (-423)	
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg Min				
Std Deviation	IVIIII				
TYS, MN/m ² (ksi)	Avg				
Std. Deviation	Min				
Elong, percent	Avg				
DA	Min				
RA, percent	Avg Min				
No of Spec. (No. of Hea	ts)				
E, GN/m ² (10 ⁶ psi)	Avg Min		Ц., Ц.		
No. of Spec. (No. of Hea					
Poisson's Ratio			П		
Work Hardening Coef				, -	
NTS, MN/m ² (ksi)	Avg			i u	
K_t = No. of Spec. (No. of Hea	Min ts)				
NTS, MN/m ² (ksi)	Avg		100 2		
K _t = No. of Spec. (No. of Hear	Min ts)	"			
Tension, Transverse					
TUS, MN/m ² (ksi)		807 (117.1) 804 (116.6)	1277 (185.2) 1277 (185.2)		
Std Deviation		(1.0.0)	1277 (100.2)	1555 (252.1)	
TYS, MN/m² (ksi)		764 (110.8)	1215 (176.3)		
Std Deviation	Min	764 (110.8)	1215 (176.3)		
Elong, percent	Avg	11.5	11.9		
	Min	11.0	10.0		
RA, percent	Avg Min	39 37	22 20	21 21	
No. of Spec. (No. of Heat		2 (1)	2 (1)	2 (1)	
E, GN/m ² (10 ⁶ psi)		126 (18.3) 123 (17.9)	130 (18.8) 128 (18.6)		
No. of Spec. (No. of Heat		2 (1)	2 (1)		
Poisson's Ratio		0.270	0.260	0.250	
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg				
K _t = No. of Spec. (No. of Heat	Min (s)			7 - 1	
NTS, MN/m ² (ksi)	Avg				
K _t = No. of Spec. (No. of Heat	Min				

Alloy Designation:

Ti-5A1-2.5Sn (ELI)

Specification:

Form:

Plate Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)
Condition: Annealed

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)		
Tension, Longitudinal								Ъ.			
TUS, MN/m ² (ksi)	Avg Min	820 789	(118.9) (114.5)	910	(132)	1280 1220	(185.6) (177)	1506 1441	(218.4) (209)		
Std Deviation											
TYS, MN/m ² (ksi)	Avg	754 689	(109.4) (100)	869	(126)	1199 1175	(174) (170.5)	1375 1344	(199.4) (195)		
Std. Deviation		-	-			31.8	(4.62)	41.9	(6.08)		
Elong, percent	Avg Min		18.7 14		24		2.4 8	8	3.1		
RA, percent	Avg Min										
No of Spec (No. of Hea		7	(4)		(1)	7	(4)	7	(4)		
E, GN/m ² (10 ⁶ psi)	Avg								1		
No. of Spec. (No. of Hea											
Poisson's Ratio											
Work Hardening Coef			0.076		0.058						
NTS, MN/m ² (ksi) K _t =	Avg Min										
No, of Spec. (No, of Hea	ats)										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min ats)					}					
Tension, Transverse			Ì								
TUS, MN/mi ² (ksi)	Avg	809	(117)	912	(132)	1261	(183)	1473	(214)	1	
Std. Deviation	Min	786	(114)	903	(131)	1251	(181)	1400	(203)		
TYS, MN/m² (ksi)	Avg	740	(107)	884	(128)	1203	(174)		(190)		
Std. Deviation	Min	706	(102)	869	(126)			1248	(181)	1	
Sto. Deviation		ļ									
Elong, percent	Avg Min		21.3 15.5		21.8 21.3		3.4 2.7		7.1		
RA, percent	Avg									1	
No. of Spec. (No. of Hea	Min ets)	3	(2)	2	(1)	8	(2)	6	(3)		
E, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of Hea	ets)										
oisson's Ratio											
Nork Hardening Coef			0.063		0.037						
MTS, MN/m² (ksi)	Avg										
K _t = No. of Spec. (No. of Hea	Min ats)										
NTS, MN/m² (ksi) K _t =	Avg Min										

References: 56755, 64969, 79816, 80996, 84321, 96685

Alloy Designation: Ti-5 Al-2.5Sn (ELI)

Specification: MIL-T-9046 C, Class 3
Form: Plate
Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)

Condition: Annealed

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)		
Compression, Longitudinal										
CYS, MN/m ² (ksi) Avg								Ш	0.0	
No. of Spec. (No. of Heats)										
Ec, GN /m ² (10 ⁶ psi) Avg										
No. of Spec. (No. of Heats)									- 1	
Compression, Transverse			Į						U.	
CYS, MN/m ² (ksi) Avg										
No. of Spec. (No. of Heats)										
Ec, GN/m ² (10 ⁶ psi) Avg	•									
No of Spec. (No. of Heats)										
Shear (a)										
SUS, MN/m² (ksi) Avg Transverse Specimens Min		(86.1)	758	(110)	979	(142)	903	(131)		l
No. of Spec. (No. of Hea.s)	4	(1)	4	(1)	4	(1)	4	(1)		
G, GN/m ² (10 ⁶ psi) Avg										
No. of Spec. (No. of Heats)	1 6									
Impact, Charpy V			ĺ							
Long., Nm(rt-lb) Avg	1									
No. of Spec. (No. of Heats)					ŀ					
Trans., Nm(ft-lb) Avg										
No. of Spec. (No. of Heats)										
Fracture Toughness(b)										
K _{1c} MN/m ^{3/2} (ksi√in.) Avg										
Orientation: — No. of Spec. (No. of Heats)										
KIE, MN/m ^{3/2} (ksi√in.) Avg (From PTSC spec.)(

References: 65182

(a) Indicate specimen design and orientation for shear specimens: 0.394 cm (0.155 in.) diameter (b) Indicate specimen design for K_{IC} data:

Alloy Designation:

Ti-5AI-2.5SN(ELI)(Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Plate-TIG welded, no filler 0.635 to 1.269 (0.250 to 0.499) Annealed

Testing Temperature, K (F)	297 (75)	77 (-320)	20 (-423)		
Tension, Longitudinal					
TUS, MN/m ² (ksi) Avg	869 (126) 869 (126)	1324 (192) 1324 (192)	1551 (225.0) 1529 (221.8)		
Std Deviation					
TYS, MN/m ² (ksi) Avg	807 (117) 807 (117)	1269 (184) 1269 (184)	1406 (204) 1406 (204)		
Std. Deviation			44		
Elong, percent Avg Min	11.0 11.0	9.0 9.0	7.4 6.2		
RA, percent Avg			24.6		
Min No. of Spec. (No. of Heats)	1 (1)	1 (1)	21.1 3 (2)		
E, GN/m ² (10 ⁶ psi) Avg Min					
No. of Spec. (No. of Heats)	1				
Poisson a Ratio					
Work Hardening Coef				6-11-12	
NTS, MN/m ² (ksi) Avg K _t = Min No. of Spec. (No. of Heats)					
NTS, MN/m^2 (ksi) Avg $K_t = Min$ No. of Spec. (No. of Heats)					
Tension, Transverse					
TUS, MN/m ² (ksi) Avg					
Min Std. Deviation					
TYS, MN/m ² (ksi) Avg					
Std. Deviation					
Elong, percent Avg Min		1 (1)			
RA, percent Avg					
No. of Spec. (No. of Heats)					
E, GN/m ² (10 ⁶ psi) Avg			= =		
Min No. of Spec. (No. of Heats)					
oisson's Ratio					
Vork Hardening Coef					
ITS, MN/m ² (ksi) Avg					
No. of Spec. (No. of Heats)				10	-
ITS, MN/m ² (ksi) Avg K _t = Min					

Alloy Designation: Ti-5AI-2,5Sn (E1.1)

Specification:

Form: Plate

Thickness, cm (in.): 1.270 to 2.540 (0.500 to 1.000) Condition: Annealed

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)		
Tension, Longitudinal											
TUS, MN/m ² (ksi)		7 65 745	(111) (108)	905 889	(131) (129)	1247 1213	(180.8) (176)	1438 1386	(208.5) (201)		
Std Deviation		43	(100)	000	(120)	12.0	(170)	1000	(201)		
TYS, MN/m ² (ksi)		702 683	(101.8) (99)	859 854	(124) (124)	1204 1176	(1 74.7) (170.6)		(291.5) (187)	=	
Std Deviation						12	(1.76)	46	(6.68)		
Elong, rercent	Avg Min		32.8 14.0		22.4 22.2	2	8.0 8.0		7.0 3.0	5 I	
RA, percent	Avg Min		43.2 42.6		40.4 38.7		5.8 4.8		81.6 31.2		
No. of Spec. (No. of Heats) !	5	(3)	2	(1)	5	(3)	5	(3)		
E, GN/m ² (10 ⁶ psi)	Avg Min										
No. of Spec. (No. of Heats Poisson's Ratio)		1								
Work Hardening Coef			0.067		0.049	0	.060				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min)										
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min					<u> </u>					
Tension, Transvarse											
TUS, MN/m² (ksi)		776 776	(112) (112)	906 887	(131) (129)	1234 1230	(179) (178)	1542 1513	(224) (219)		
Std. Deviation			j								
FYS, MN/m ² (ksi) Std. Deviation	-	696 696	(101)	855	(124)	1165	(174.5) (169) (1.95)	1420 1400 21.5	(206) (203) (3.12)		
Elong, percent	Avg		24.6		20.6		1.4		7.8		
	Min		23 1		20	2	0				
RA, percent	Avg Min		42.8 41.9		39.6 38.7	3	6.8 6.5		81.5 31.2		
No. of Spec. (No. of Heats		2	(1)	2	(1)	13	(2)	15	(2)		
E, GN/m ² (10 ⁶ psi) No of Spec. (No. of Heats	Avg Min										
Poisson's Ratio											
			0.063		0.054						
Nork Hardening Coef NTS, MN/m ² (ksi)	Avg		0.062		0.054						
$K_t = No. \text{ of Spec. (No. of Heats.)}$	Min										
NTS, MN/m ² (ksi) K _t =	Avg Min										

Alloy Designation:

Ti-5Al-2.5Sn(ELI)(Weld Metal)

Specification:

Form:

Plate-TIG welded, no filler 1.270 to 2.540 (0.500 to 1.000)

Thickness, cm (in.): Condition:

Tested as welded

Testing Temperature, K (F)	297 (75)	77 (-320)	20 (-423)	
Tension, Longitudinal				
TUS, MN/m ² (ksi) A		1158 (168.0)		
Std Deviation	n 809 (117.3)	1149 (166.7)	1481 (214.8)	
TYS, MN/m ² (ksi) A		1027 (149) 993 (144)		
Std. Deviation	177 (104)	993 (194)		1
Elong, percent A		12.1 12.0	8.0 8.0	
RA, percent A	- 1	17.4 17.4	32.4 32.4	
No of Spec. (No. of Heats)	1 (1)	2 (1)	1 (1)	
E, GN/m ² (10 ⁶ psi) A				
No of Spec. (No. of Heats)				
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m^2 (ksi) A $K_t = M$ No. of Spec. (No. of Heats)				
NTS, MN/m^2 (ksi) At $K_t = M$ No. of Spec. (No. of Heats)				
Tension, Transverse				
TUS, MN/m ² (ksi) A				
Std. Deviation				
TYS, MN/m² (ksi) A	- (
Std. Deviation				
Elong, percent A				
RA, percent A				
No. of Spec. (No. of Heats)				
E, GN/m ² (10 ⁶ psi) A				
No of Spec (No. of Heats)				
oisson's Ratio				171
Nork Hardening Coef				
NTS, MN/m ² (ksi) Av K _t = Mi No. of Spec. (No. of Heats)				
NTS, MN/m ² (ksi) A: $K_t = Mi$ No. of Spec. (No. of Heats)				

Alloy Designation: Ti-5Al-2.5Sn (ELI)

Specification:

Form:

Up to 2.54 cm (1.000 in.) Annealed Diameter: Condition:

Testing Temperature, K (F)	297 (75)	77 (-320)	20 (423)	17 (-430)	4 (-452)
Tension, Longitudinal TUS, MN/m ² (ksi) Std. Deviation		1376 (200) 1317 (191) 57.7 (8.37)	1531 (222) 1503 (218)	1575 (228.4) 1538 (223) 33.6 (4.88)	1476 (214)
TYS, MN/m ² (ksi) Av	814 (118)	1260 (183)	1455 (211)	1477 (214.2)	1413 (205)
Std. Deviation	717 (104) 37.1 (5.38)	1096 (159) 128 (18.6)	1427 (207)	1400 (203) 51.7 (7.5)	
Elong, percent Avg	,	12.2 8	5.7 3	9.7 . 0	
RA, percent Ave	1 1			32.3 32	
No of Spec. (No. of Heats)	14 (4)	9 (3)	3 (1)	10 (2)	3 (1)
E, GN/m ² (10 ⁶ psi) Ave Mir No. of Spec. (No. of Heats)		126 (18.3) 3 (1)			129 (18.7) 3 (1)
Poisson's Ratio	0.289	0.287			0.287
Nork Hardening Coef				<u> </u> 	
NTS, MN/m ² (ksi) Avg $K_t = 6.4$ Mir No. of Spec. (No. of Heats)		N.A.		1842 (267) 1800 (261) 5 (1)	
NTS, MN/m^2 (ksi), Avg $K_t = Mir$ No. of Spec. (No. of Heats)					
Tension, Transverse					
TUS, MN/m ² (ksi) Avg Mir Std. Deviation			1		
TYS, MN/m² (ksi) Avç	1				
Std Deviation					
Elong, percent Ave					
RA, percent Ave			П		
No. of Spec. (No. of Heats)					
E, GN/m ² (10 ⁶ psi) Avg			ļ		
No. of Spec. (No. of Heats) Poisson's Ratio					
Nork Hardening Coef					
NTS, MN/m ² (ksi) Avg					
No of Spec. (No. of Heats)					
NTS, MN/m^2 (ksi) Avg $K_t = Mir$ No. of Spec. (No. of Heats)					

Alloy Designation:

Ti-5Al-2.5Sn (ELI)

Specification: Form: Thickness, cm (in.): Condition:

Up to 2.54 cm (1.000 in.) Annealed

Testing Temperature, K (F)	297	(75)	77	(-320)	20	(-423)	
Fatigue, Axial Loading, Surface Fini	sh 32 m	ns					
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency 28 Hz with R = 0 and K ₁ = 1	807	(117)	1207	(175)	1076	(156)	
No of S-N Curves (No of Heats)	1	(1)	1	(1)	1	(1)	
Ratio S _N /TUS at 10 ⁵ cycles	- 0	0.92	0).91		0.70	
S _N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency 28 Hz with R = 0 and K _t = 1	758	(110)	986	(143)	924	(134)	
No of S-N Curves (No of Heats)	1	(1)	1	(1)	1	(1)	
Ratio S _N /TUS at 10 ⁶ cycles	C	0.87	C).74		0.60	
S _N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency 28 Hz with R = 0 and K _t = 1	717	(104)	882	(128)		3	
No of S-N Curves (No of Heats)	1	(1)	1	(1)			
Ratio S _N /TUS at 10 ⁷ cycles	c	0.82		0.66			
Fatigue, Flexural Loading			1				
S _N at 10 ⁵ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)							
Ratio S _N /TUS at 10 ⁵ cycles							
S_N at 10 ⁶ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K ₁ = No. of S-N Curves (Nc. of Heats)							
Ratio S _N /TUS at 10 ⁶ cycles						ł	
S_N at 10 ⁷ cycles, MN/m ² (ksi) Loading frequency Hz with R = and K _t = No. of S-N Curves (No. of Heats)							
Ratio S _N /TUS at 10 ⁷ cycles							

References: 83417

TABLE 9.3.1-ME1

Alloy Designation: Ti-6AI-4V (ELI)

Specification:

Sheet Form:

Thickness, cm (in.): Up to 0.099 (0.039)
Condition: Annealed

esting Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	
ension, Longitudinal										
US, MN/m ² (ksi)	Avg	958	(139)	1165	(169)	1489	(216)	1744	(253)	_]
Std Deviation	Min	855 54	(124) (7.85)	1131	(164)	1351 67	(196) (9.73)	1531 91	(222)	
rys, MN/m ² (ksi)	Avg	889	(129)	1118	(162)	1393	(202)	1682	(244)	
	Min	827	(120)	1117	(162)	1207	(175)	1462	(212)	
Std. Deviation		49	(7.07)			114	(16.47)	79	(11.40)	
long, percent	Avg		.14		0.5		0.75		.20	
	Min	10			7	5	,	1		
RA, percent	Avg									
No. of Spec. (No. of Heat	Min s)	1	(3)	5	(1)	13	(3)	14	(4)	
, GN/m ² (10 ⁶ psi)										
:, GN/mº (10º psi)	Avg	110 109	(16.0) (15.8)	115 111	(16.7) (16.1)	119	(17.3) (16.5)	132 128	(19.1) (18.6)	
No. of Spec. (No. of Heat		5	(1)	5	(1)	5	(1)	5	(1)	
oisson's Ratio										
ork Hardening Coef										
ITS, MN/m ² (ksi)	Avg	1131	(164)	1291	(187)	1517	(220)	1689	(245)	1
$K_t = 6.3$ No. of Spec. (No. of Heats	Min s)	1020 7	(148)	1248 5	(181)	1462 7	(212) (2)	1386	(201))
ITS, MN/m ² (ksi) K _t = 19	Avg Min	945 869	(1 37) (126)	814 724	(118) (105)	889 807	(129) (117)	855 807	(124) (117)	
No of Spec. (No. of Heats		5	(1)	5	(1)	5	(1)	5	(1)	
ension, Transverse										
US, MN/m ² (ksi)	Avg	912	(132)	1129	(164)	1472	(214)	1763	(256)	
Std. Deviation	Min	814	(118)	1123	(163)	1379	(200)	1627 100	(236)	
									(14.5)	
YS, MN/m ² (ksi)	Avg Min	857 800	(124) (116)	1064 1054	(154) (153)	1428 1331	(207) (193)	1715 1613	(249) (234)	
Std Deviation	141111	000	(1101	1004	(1001	1001	(150)	1013	(201)	
long, percent	Avg		3.1		3.7	1	2.6		.,	
iong, Porcein	Min		2.5		2.5		7.5	2		
IA, percent	Avg									
	Min						101		(0)	
No. of Spec. (No. of Heats	5)	7	(2)	5	(1)	7	(2)	9	(2)	
, GN/m ² (10 ⁶ psi)	Avg	108	(15.7)	111	(16.1)		(17.2)	131	(19.1)	
No of Spec. (No. of Heats	Min	105 5	(15.3)	109	(15.8)	114	(16.5) (1)	126 5	(18.3)	
	.,	,		7	1.,		1.7			
oisson's Ratio										
ork Hardening Coef										
TS, MN/m ² (ksi)	Avg	1094	(159)	1247	(181)	1488	(216)	1845	(268)	
K _t = 6.3 No. of Spec. (No. of Heats	Min 1	1082 5	(157) (1)	1241 5	(180)	1393	(202)	1813	(263)	
	,									
ITS, MN/m ² (ksi) K _t = 19	Avg Min	841 786	(122)	809 807	(117) (117)	1001 979	(145) (142)	793 745	(115) (108)	
No. of Spec. (No. of Heats		5	(1)	5	(1)	5	(1)	5	(1)	

References: 47125, 51527, 90185

TABLE 9.3.1-ME2

Alloy Designation: Ti-6AI-4V (ELI)

Specification:

Form:

Thickness, cm (in.): 0.100 to 0.319 (0.040 to 0.125)
Condition: Annealed

Testing Temperature, K (F)	297	(75)	195_	(-108)	122	(-240)	77	(-320)	20	(-423)	
Tension, Longitudinal			1									
TUS, MN/m ² (ksi)	Avg	958	(138.9)		(165.9)	1324	(192)		(218.5)		(258)	
Std Deviation	Min	896 40.7	(130) (5.9)	1107	(160.5)				(215) (1.72)		(249) (4.99)	
		40.7	(5.5)					12	(1.72)	34.4	(4.55)	
TYS, MN/m ² (ksi)	Avg	889	(128.9)		(157)			l .	(210)		(249)	
Std Deviation	Min	841 35	(122) (5.09)	1053	(152.8)			34	(202) (4.97)	41.4	(239)	
Elong, percent	Avg Min	71	.28	8.1 2.5		8		2	.50	1.	98 7	
	i											
RA, percent	Avg Min		İ									
No. of Spec. (No. of He		9	(5)	6	(4)		(1)	10	(5)	9	(4)	
E, GN/m ² (10 ⁶ psi)	Avg	112	(16.3)	112	(16.4)			122	(17.7)	124	(18.0)	
	Min		(15.8)		(16.3)				(17.3)		(17.2)	
No. of Spec. (No. of He	ats)	2	(1)	2	(1)			3	(1)	3	(1)	
Poisson's Ratio		0	.21	0.3	24			0	.20	0.1	8	
Work Hardening Coef												
		440-	(450.0)	445-	(407)			1.00	(202)	4000	(190)	
NTS, MN/m^2 (ksi) $K_t = 6.3$	Avg Min		(160.3) (157)		(167) (164)				(203) (181)		(189) (162)	
No. of Spec. (No. of He		6	(3)	3	(2)			6	(3)	6	(3)	
NTS, MN/m ² (ksi)	Avg	1048	(152)	1138	(165)	1202	(177)	1193	(173)			
$K_t = 10 - 11.2$	Min		- (2)		(1)				(1)		- 1	
No of Spec. (No. of Hea	ats)		(1)		(1)		(1)		(1)			
Tension, Transverse												
TUS, MN/m ² (ksi)	Ave Min		(1 45.6) (136)		(173.7) (168)				(220.7) (214)		(251.6)	
Std Deviation		330	(130)	1150	(100)			1470	12147	1000	(202)	
TYS, MN/m² (ksi)	Avg	944	(137)	1149	(166.6)			1691	(216.3)	1682	(244)	
. 1 0, mm/m (N31)	Min		(128)		(160)				(210.3)		(230)	
Std Deviation											12.1	
Elong, percent	Avg	7	2.2	10.	9			1	0	1	.94	
	Min	1	0	10					5	1		
RA, percent	Avg											
No. of Spec. (No. of He	Min ats)	5	(2)	5	(3)			7	(3)	7	(3)	
E, GN/m ² (10 ⁶ psi)	Avg Min		(16.3) 5 (15.9)		(16.8) (16.4)				(19.3) (17.4)	134 127	(19.4) (18.4)	
No of Spec. (No. of Hea	1		(1)	3	(1)			3	(1)	3	(1)	
Poisson's Ratio		0	.27	0.:	25			0.	24	0.2	20	
Work Hardening Coef			ļ									
The second second												
NTS, MN/m ² (ksi)	Avg		(169)		(184.7)			,	(201.5)		(182) (168)	
$K_t = 6.3$ No. of Spec. (No. of Hea	Min ats)	4	(2)	3	(181) (2)			4	(182) (2)	4	(2)	
NTS, MN/m² (ksi)												
N 1 S, MIN/M ² (KSI) K _t =	Avg Min											
No. of Spec. (No. of Hea		N.	ŀ									

TABLE 9.3.1-ME2.1

Alloy Designation:

Ti-6Al-4V(ELI) (Weld Metal)

Specification:

Form:

Sheet-TIG welded, Ti-6AI-4V filler 0.100 to 0.319 (0.040 to 0.125)

Thickness, cm (in.): Condition:

Soltuion treated and aged (1660 F/5 min, WQ; 1000 F/4 hours, AC)

Testing Temperature, K (F)	297 (75)		77	(-320)	20	(-423)		
Tension, Longitudinal								
TUS, MN/m ² (ksi) Avg	1027 (14		1615	(234.3)	1898	(275.3)		
Std Deviation Min	1020 (14	8)	1598	(231.8)	1850	(268.3)		
TYS, MN/m ² (ksi) Avg								
Std Deviation								
Elong, percent Avg Min								
RA, percent Avg								
No. of Spec. (No. of Heats)	3 (2)		4	(2)	4	(2)		
E, GN/m ² (10 ⁶ psi) Avg								
No of Spec. (No of Heats)							. J II	
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m² (ksi) Avg								
K _t = Min No of Spec. (No. of Heats)								
$\label{eq:NTS_MN/m2} \begin{array}{ll} \text{NTS, MN/m}^2 \text{ (ksi)} & \text{Avg} \\ \text{K}_t = & \text{Min} \\ \text{No of Spec. (No. of Heats)} \end{array}$								
Tension, Transverse								
TUS, MN/m ² (ksi) Avg								
Std Deviation								
TYS, MN/m ² (ksi) Avg								
Std. Deviation	,							
Elong, percent Avg Min								
RA, percent Avg			1	8				
No. of Spec. (No. of Heats)								
E, GN/m ² (10 ⁶ psi) Avg Min								
No of Spec. (No. of Heats)								
Poisson's Ratio								
Work Hardening Coef								
NTS, MN/m ² (ksi) Avg Kt = Min No. of Spec. (No. of Linets)								

TABLE 9.3.1-ME3

Ti-6AI-4V (ELI) Alloy Designation:

Specification:

Plate Form:

Thickness, em (in.): 0.635 to 1.269 (0.250 to 0.499)
Condition: Annealed

Testing Temperature, K (F)	297 (75)	77 (-320)	20 (-423)		
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Ng 892 (129.4) In 858 (124.5)	1418 (205.7) 1362 (197.6)	1640 (237.8) 1626 (235.8)		
Std Deviation					
	wg 841 (122)	1331 (193)	16/1 (232.2) 1599 (232.0)		
Std. Deviation					
	ivg 14,7	7.7 6			
	avg 37	17 13	8.5 6		
No of Spec. (No. of Heats)	1 (2)	4 (2)	3 (2)		
N	wg fin	E.			
No. of Spec. (No. of Heats)					
Poisson's Ratio					
Work Hardening Coef					
	vg hn				
K _t = No. of Spec. (No. of Heats)	13/1				
	vg lin				
Tension, Transverse				100	
TUS, MN/m ² (ksi)	vg 867 (125.8) tin 862 (125.0)	1363 (197.7) 1362 (197.5)	1617 (234.6) 1597 (231.6)		
Std Deviation					
	vg 841 (122)	1331 (193)	1575 (228.5) 1553 (225.3)		
			_		
. .	vg 15.5 lin 15	6			
	vg 44	19	9 8		
No. of Spec. (No. of Heats)	2 (2)	2 (2)	2 (2)		
	vg lin				
No. of Spec. (No. of Heats)					
Poisson's Ratio					
Work Hardening Coef					
K _t =	vg lin				
No. of Spec. (No. of Heats)					
	vg lin				

TABLE 9.3.1-ME4

Alloy Designation: Ti 6AI-4V (ELI)

Specification:

Form: Plate
Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)

Condition:

Annealed

Testing Temperature, K (F))	297	(75)		77 (-320)	20 (-423)	
Compression, Longitudinal							
CYS, MN/m ² (ksi)	Avg						
No. of Spec. (No. of Hea			j				
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec, (No. of Hea	ats)						
Compression, Transverse							
CYS, MN/m ² (ksi)	Avg						
No. of Srisc. (No. of Hea	ats)						
Ec, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of Hea	ats)	ļ					
Shear(a)				,			
SUS, MN/m ² (ksi)	Avg Min						
No. of Spec. (No. of Hea	ats)						
G, GN/m ² (10 ⁶ psi)	Avg Min						
No. of Spec. (No. of Hea	ats)						
Impact, Charpy V							
Long., Nm(ft-lb)	Avg Min		ļ				
No. of Spec, (No. of Hea							
Trans., Nm(ft-lb)	∴ rg Min						
No. of Spec. (No. of Hea							
Fracture Toughness(b)			1				İ
K _{1c} MN/m ^{3/2} (ksi√in.)	Avg Min						
Orientation: — No. of Spec. (No. of Hea	ats)						
K _{IE} , MN/m ^{3/2} (ksi/in.) (From PTSC spec.)(L -	Avg S)Min	85.2	(78)		77.3 (70.7) 71.0 (65.0)	57.2 (52.3) 54.6 (50.0)	
No. of Spec. (No. of Hea			(1)		3 (1)	3 (1)	

References: 79816

⁽a) Indicate specimen design and orientation for shear specimens: (b) Indicate specimen design for K_{1c} data:

TABLE 9.3.1-ME4.1

Alloy Designation:

Ti-SAL-V(ELI) (Weld Metal)

Specification:

Form:

Plate-TIG welded, Ti-6AI-4V(ELI) filler 0.635 to 1.269 (0.250 to 0.499) Annealed, tested as welded

Thickness, cm (in.):

Condition:		

Testing Temperature, K (F))	297 (75)		77 (-320)	20 (-423)	
Tension, Longitudinal				1000	7001 12170	
TUS, MN/m ² (ksi)	Avg	994 (114.2) 993 (144.0)		1524 (221.0) 1521 (220.6)	1674 (242.8) 1642 (238.2)	
Std Deviation	Min	993 (144.0)		1321 (220.0)	1042 (200.27	
TYS, MN/m ² (ksi)	Avg	916 (132.9) 909 (131.8)		1480 (214.6) 1473 (213.7)		
Std Deviation	Min	303 (131.0)		1476 (2.0.7)		}
Elong, percent	Avg Min	6.7 6.0		4.3 4.0		
RA, percent	Avg	14.7		13.7	13.5	
No. of Spec. (No. of Hea	Min ats)	3 (1)		3 (1)	3 (1)	
E, GN/m ² (10 ⁶ psi)	Avg					
No. of Spec. (No. of Hea	Min ats)					
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of Hea	Min ats)					
NTS, MN/m ² (ksi)	Avg	11 ,2			}	
K _t = No. of Spec. (No. of Hea	Min ats)					
Tension, Transverse						
TUS, MN/m ² (ksi)	Avg Min					
Std. Deviation						
TYS, MN/m ² (ksi)	Avg					
Std. Deviation	MINI					
Elong, percent	Avg Min					
RA, percent	Avg Min					
No. of Spec. (No. of Hea						
E, GN/m ² (10 ^{fi} psi)	Avg Min		= 7			
No of Spec. (No of Hea						
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of Hea	Min ats)					
NTS, MN/m ² (ksi) K _t =	Avg				- /	
No. of Spec. (No. of Hea				1		

FIGURE 9.3.1-ME2. FATIGUE CRACK GROWTH RATES FOR Ti-6AI-4V (ELI) ALLOY AT 4K, 76K, 200K AND 295K (-452F, -321F, -103F AND 73F)(94208C)

TABLE 9.3.1-TR1

Alloy Designation:

Ti-6Al-4V(ELI) Alloy

Specification: Form: Dimension: Condition:

Testing Temperature K	(F)	273 (32)	100 (-280)	50 (-370)	20 (-423)	10	(-442)	14	(-452)
Thermal Conductivity Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹ No. of Spec. References: 96888					1.58 (0.91)	0.90	(0.52)	0.43	(0.25)
Thermal Expansion (T2 Longitudinal	73 to T)								
Percent No. of Spec. References:									
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu Ib ⁻¹ F ⁻¹ No. of Spec. References:									
Ohm m Ohm circular mil ft ⁻¹ No. of Spec. References: 79561	r	156 x 10 ⁻⁸ (938)	139 x 10 ⁻⁸ (836)	135 x 10 ⁻⁸ (812)	133 x 10 ⁻⁸ (800)				
Magnetothermal Conductivity	H								
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹	0				1.58 (0.91)	0.90	(0.52)	0.43	(0.25)
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹	1				1.57 (0.91)	0.89	(0.51)	0.39	(0.23)
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹	4				1.56 (0.90)	0.87	(0.50)	0.38	(0.22)
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹ No. of Spec.	8				1.56 (0.90)	0.86	(0.50)	0,35	(0.20)
References: 96888						1			

FIGURE 9.3.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR Ti-6AI-4V(ELI) ALLOY

FIGURE 9.3.1-C2. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR Ti-6AI-4V(ELI) ALLOY AT SEVERAL MAGNETIC FIELDS

FIGURE 9.3.1-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR Ti-6AI-4V(ELI) ALLOY

Alloy Designation:

Ti-6AI-4V (Nominal Interstitial Content)

Specification:

Form:

Sheet

Thickness, cm (in.): Condition:

Up to 0.099 (0.039) STA

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)		
Tension, Longitudinal											
TUS, MN/m ² (ksi)	Avg	1151	(167)	1344.5	5 (195)	1737.5	(252)	1950.5	(282.9)		
Std Deviation	Min										
TYS, MN/m² (ksi)	Avg	1052	(152.6)	1253	(181.7)	1648	(239)	1900	(275.6)		
Std. Deviation	Min										
		_				_					
Elong, percent	Avg Min	/	'.9	5	.0	5.	.9	2.7			
RA, percent	Avg	32	2.3			21.	.0	15.8			
	Min										
No. of Spec. (No. of He											
E, GN/m ² (10 ⁶ psi)	Avg Min	114	(16.6)	116	(16.8)	125	(18.2)	123	(17.9)		
No. of Spec. (No. of He											
Poisson's Ratio		0.	300			0.2	290	0.28	10		
Work Hardening Coef											
NTS, MN/m² (ksi)	Avg									•	
K _t = No. of Spec. (No. of He	Min						İ		ĺ		
									Ì		
NTS, MN/m ² (ksi) K _t =	Avg Min								Ì		
No. of Spec. (No. of He	ats)								}		
Tension, Transverse			4455 5		1000 -		10.45	4000	(220.0)		
TUS, MN/m ² (ksi)	Avg Min	1169	(169.5)	1404	(203.7)	1696	(246)	1929	(279.8)		
Std. Deviation											
TYS, MN/m² (ksi)	Avg	1082	(157)	1303	(189)	1619	(234.8)	1855	(269)		
Std. Deviation	Min										
Elong, percent	Avg		5.9	4	.6	4	.5	2,5	,		
	Min										
RA, percent	Avg	29	9.9			21	.4	16.9	•		
No. of Spec. (No. of He	Min ats)			1							
E, GN/m ² (10 ⁶ psi)	Avg	123	(17.9)	121	(17.5)	127	(18.4)	132	(19.1)		
No. of Spec. (No. of He	Min										
			310			0.5	300	0.27	70		
Poisson's Ratio		0.	510			0.5		0.27			
Nork Hardening Coef											
NTS, MN/m ² (ksi) K _t =	Avg Man										
No. of Spec. (No. of He											
NTS, MN/m² (ksi)	Avg							11			
K _t =	Min										

Alloy Designation:

Ti-6AI-4V (Weld Metal)

Specification:

Form:

Thickness, cm (in.): Condition:

Sheet-TIG welded, Ti-6AI-4V filler
Up to 0.099 (0.039)
Post weld treatment, stress relieved in vacuum furnace at 811 K (1000 F) for 4 hours

Testing Temperature, K (F	F)	297 (75)	 	20 (-423)		
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg					
Std. Deviation	Min					
TYS, MN/m ² (ksi)						
1 7 5, MIN/m² (ksi)	Avg Min					
Std. Deviation	******					
Elong, percent	Avg					
•	Min					
RA, percent	Avg					
No. of Co. (N). (61)	Min					
No. of Spec. (No. of He	eats)					
E, GN/m ² (10 ⁶ psi)	Avg			1		
No. of Spec. (No. of He	Min eats)	İ				
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi)	Avg					
K _t = No. of Spec. (No. of He	Min	1			j	
					9	
NTS, MN/m ² (ksi) K _t =	Avg Min					
No. of Spec. (No. of He						
Tension, Transverse						
TUS, MN/m ² (ksi)	Avg	1099 (159.4)		1910 (277)		
Std Deviation	Min	1083 (157.1)		1870 (271.2)		
TYS, MN/m² (ksi)	Avg Min	1078 (156.3) 1054 (152.8)	i	1910 (277) 1870 (271.2)		
Std. Deviation	IVIIII	1054 (152.8)		1070 (271.2)		
Elong, percent	Avg					
ciong, porcent	Min					
RA, percent	Avg	0.4		0.75		
	Min	0.3		0.50		
No. of Spec. (No. of He	eats)	2 (1)		2 (1)		
E, GN/m ² (10 ⁶ psi)	Avg			-		
No. of Spec. (No. of He	Min ats)					
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m² (ksi)	Avg					
K _t ≈ No. of Spec. (No. of He	Min					
NTS, MN/m ² (ksi) K _t =	Avg Min					
No of Spec, (No. of He						

Alloy Designation:

Ti-6AI-4V (Nominal Intersitital Content)

Specification:

Form:

Sheet 0.100 to 0.319 (0.040 to 0.125) STA

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)		
Tension, Longitudinal				11123							
TUS, MN/m ² (ksi)	Avg	1112	(161.3)	1330	(192.9)	1679	(243.6)	1826	(264.9)		
	Min	938	(136.0)	1112	(161.3)	1504	(218.1)	1468	(213.0)		
Std. Deviation		107	(15.53)	139	(20.21)	129	(18.71)	220	(31.94)		
TYS, MN/m² (ksi)	Avg	1030	(149.4)	1200	(174.0)		(229.8)	1693	(245.6)		
Std. Deviation	Min	876	(127.0)	834 184	(121.0) (26.65)	1172	(170.0) (25.72)	1296 255	(188.0)	1	
Std. Deviation		101	(14.69)	104	(20.05)	'''	(25.72)	255	137.01		
Elong, percent	Avg	1	1.6	1	5.7	l .	7.7		.9	ł	
	Min		5.8	ľ	2.5		3.8	1	.0		
RA, percent	Avg	1	31.1		3.5		7.5	25			
No. of Spec. (No. of Heat	Min	17	24.5 (9)	9 16	5.1 (5)	14	0.8 (7)	15 18	.0 (8)		
	.5)	''	(5)	ľ							
E, GN/m ² (10 ⁶ psi)	Avg	112	(16.2)	117	(16.9)	122	(17.7) (17.5)	126 113	(18.3)		
No. of Spec. (No. of Heat	Min	104 9	(15.1) (5)	114	(16.6) (2)	7	(3)	10	(4)		
		ļ							the same		
Poisson's Ratio		0	.333					0.3	368		
Work Hardening Coef											
NTS, MN/m² (ksi)	Avg	1333	(193.4)	1517	(220)	1932	(280.2)	2077	(301.3)		
	_Min	1296	(188.0)	1489	(216)	1682	(244.0)	1773	(257.1)	[
No. of Spec. (No. of Heat	s)	6	(2)	3	(1)	5	(2)	6	(2)		
NTS, MN/m² (ksi)	Avg	1172	(170)			1444	(209.5)	1262	(275.6)		
$K_t = 6.3$	Min	1172	(170)			1351	(196.0)	1193	(173)		
No. of Spec. (No. of Heat	s)	2	(1)			2	(1)	2	(1)		
Tension, Transverse											
TUS, MN/m ² (ksi)	Avg	1174	(170.3)	1326	(192.3)		(243.5)	1900	(275.6)		
Std. Deviation	Min	1034 65	(150.0) (9.44)	1175	(170.4)	1489	(216.0)	1668	(241.9)		
							taa-:		(225.5)		
TYS, MN/m ² (ksi)	Avg Min	1076 876	(156.0) (127.0)	1202 979	(174.4) (142.0)		(230) (194)	1801 1656	(261.2) (240.2)		
Std. Deviation	141111	81.4	(11.81)	3,3	(172.0)	100,	(104)		, 2 . 3 . 2 /		
Class and	A		0.5		s 4		7.6	,	.0		
Liong, percent	Avg Min	1	0.5 6.0		5. 4 5.0		4.0	1	.0		
RA, percent	Avg Min		1. 7 2.3)					
No. of Spec. (No. of Heat		10	(5)	5	(3)	5	(3)	3	(2)		
E, GN/m ² (10 ⁶ psi)	Avg	112	(16.3)	114	(16.6)	119	(17.3)	125	(18,1)		
	Min	104	(15.1)	113	(16.4)	116	(16.9)				
No. of Spec. (No. of Heat	s)	7	(3)	3	(1)	3	(1)	1	(1)		
Poisson's Ratio		0	.309					0.3	372		
Nork Hardening Coef											
NTS, MN/m² (ksi)	Avg										
K _t =	Min				11-11						
No. of Spec. (No. of Heat	s)										
NTS, MN/m² (ksi)	Avg						1				
K _t =	Min							1			

References: 37146, 47311, 49048, 49088, 58024, 58060, 78652, 89983, 90172, 90185

Alloy Designation:

Ti-6Al-4V (Nominal Interstitial Content) (Weld Metal)

Specification:

Form: Thickness, cm (in.): Condition: Sheet-TIG welded, Ti-6AI-4V filler 0.100 to 0.319 (0.040 to 0.125) Annealed

Testing Temperature, K (F)		29	7 (75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Tension, Longitudinal		ļ										
TUS, MN/m ² (ksi)	Avg Min	967 956	(140.3) (138.6)	1130 1102	(1 63.9) (159.8)		(220.6) (220.3)	1740 1584	(252,4) (229,7)	1663	(241.2)	
Std. Deviation			,,,,,,,,		(10010)		,		,			
TYS, MN/m ² (ksi)	Avg Min	916	(132.9)	1071	(155.4)	1495	(216.8)	1562	(226.6)			
Std. Deviation												
Elong, percent	Avg Min		8.7 7.5		.0 .0		3.6 7.3		. 0 .0		1.0 1.0	
RA, percent	Avg Min											
No. of Spec. (No. of Hea		2	(2)	2	(2)	2	(2)	2	(2)	1	(1)	
E, GN/m ² (10 ⁶ psi)	Avg											
No. of Spec. (No. of Hea	Min ets)							ĺ				
oisson's Ratio												
Vork Hardening Coef				ĺ				=				
NTS, MN/m² (ksi)	Avg											
K _t ≈ No. of Spec. (No. of Hea	Min ats)						ļ					
NTS, MN/m ² (ksi) K _t =	Avg Min							}				
No. of Spec. (No. of Hea	ets)							ļ				
Tension, Transverse		j						ļ				
rus, MN/m² (ksi)	Avg Min			ļ								
Std Deviation												
rys, MN/m² (ksi)	Avg Min						1					
Std Deviation												
Elong, percent	Avg Min											
RA, percent	Avg											
No. of Spec. (No. of Hea												
E, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of Hea												
oisson's Ratio												
Vork Hardening Coef												
MTS, MN/m ² (ksi) K _t =	Avg Min											
No. of Spec. (No. of Hea	its)											
NTS, MN/m ² (ksi) K _t =	Avg											

Alloy Designation:

Ti-6Al-4V (Nominal Interstitial Content) (Weld Metal)

Specification:

Form:

Sheet-TIG welded, Ti-6AI-4V filler 0.100 to 0.319 (0.040 to 0.125)

Thickness, cm (in.): Condition:

STA, post weld treated, stress relieved in a vacuum furnace at 811 K (1000 F) for 4 hours

Testing Temperature, K (F	F)	297 (75)		20 (-423)	
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	1119 (162.3)		1962 (283.1) 1927 (279.5)	
Std Deviation	Min	1113 (161.5)		1927 (279.5)	
TYS, MN/m ² (ksi)	Avg Min	1093 (158.5) 1082 (157.0)		1952 (283.1) 1927 (279.5)	
Std. Deviation					
Elong, percent	Avg	1.0 0.6		1.5 1.5	
RA, percent	Avg Min				
No. of Spec. (No. of He		2 (1)		2 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of He	eats)				
Poisson's Ratio					
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of He	Avg Min				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg Min				
Std. Deviation					
「YS, MN/m² (ksi)	Avg Min				
Std. Deviation					
Elong, percent	Avg Min				
RA, percent	Avg Min				
No. of Spec. (No. of He	eats)				
E, GN/m ² (10 ⁶ psi)	Avg Min		Í		
No. of Spec. (No. of He					
oisson's Ratio					
Vork Hardening Coef					
NTS, MN/m² (ksi) K _t = No. of Spec. (No. of He	Avg Min				
NT ⁽⁾ , MN/m ² (ksi)	Avg				
K _t = No. of Spec. (No. of He	Min ats)			1	

References: 89983

Alloy Designation: Ti-6Al-4V Alloy

Specification: MIL-T-9046 F, Type III, Composition C

Plate

Thickness, cm (in.): 0.635 to 1.269 (0.250 to 0.499)
Condition: Annealed

esting Temperature, K (F)		297 (75)	77 (320)		
ension, Longitudinal US, MN/m ² (ksi)	Avg Min	917 (133. 0 905 (131.3			
Std. Deviation					
YS, MN/m ² (ksi) Std Deviation	Avg Min	838 (121. 6 828 (120.			
long, percent	Avg	18.5	20.1		
	Min	18.1	17.3		
A, percent	Avg Min	14.2 13.4	12.3 9.9		
No. of Spec. (No. of Hea	ts)	3(1)	3(1)		
, GN/m ² (10 ⁶ psi)	Avg Min				
No_of Spec. (No. of Hea	ts)				
oisson's Ratio					
ork Hardening Coef					
TS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min				
TS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min				
ension, Transverse					
US, MN/m ² (ksi)	Avg Min			4	
Std. Deviation					
YS, MN/m ² (ksi)	Avg Min				
Std. Deviation			i		
ong, percent	Avg Min				
A, percent	Avg Min				
No. of Spec. (No. of Hea	ts)				
GN/m ² (10 ⁶ psi)	Avg Min				
No. of Spec. (No. of Hea	ts)				
sson's Ratio				1 4	
rk Hardening Coef					
TS, MN/m² (ksi) K _t = No. of Spec. (No. of Hea	Avg Min				
TS, MN/m² (ksi) K _t =	Avg Min		Ī		

Alloy Designation:

Ti-6Al-4V (Nominal Interstitial Content)

Specification:

Form:

Plate 0.635 to 1.269 (0.250 to 0.499) STA Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297 (75)	77 (-320)	20 (-423)	
Tension, Longitudinal					
TUS, MN/m ² (ksi)	Avg	1158 (168.0)	1734 (251.5)	1758 (255.0)	
Std Deviation	Min	1120 (162.4)	1703 (247.0)	1398 (202.8)	
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	1062 (154) 1022 (148.2)	1620 (235) 1544 (224)	1937 (281) 1855 (269)	
Elong, percent	Avg Min	6.2 3.0	8.0 3.0	3.0 3.0	
RA, percent	Avg Min	17.4 4.0	14.6 4.0	17.3 15.9	
No. of Spec, (No. of Heat	s)	5 (3)	3 (2)	5 (3)	
E, GN/m ² (10 ⁶ psi) No of Spec. (No. of Heat	Avg Min	114 (16.6) 108 (15.6)	133 (19.25) 132 (19.20)	123 (17.89) 120 (17.40) 3 (2)	
No of Spec. (No. of Heat	.\$}	3 (2)	2 (1)		
Pc sson's Ratio		0.300	0.290	0.270	
Work Hardening Coef					
NTS, MN/m ² (ksi)	Avg				
K _t = No. of Spec, (No. of Heat:	Min s)			in	1 3
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min s)				
Tension, Transverse					
TUS, MN/m ² (ksi)	Avg Min	1172 (170.0) 1129 (163.8)	1710 (248) 1689 (245)	1779 (258) 1531 (222)	
Std. Deviation					
TYS, MN/m ² (ksi)	Avg Min	1082 (157.0) 1055 (153.1)	1620 (235) 1558 (226)	1855 (269) 1800 (261)	
Std Daviation					
Elong, percent	Avg Min	6.0	4.8	2.7	
RA, percent	Avg	16.7	16.2	16.3	
No. of Spec. (No. of Heats	Min s)	5 (3)	3 (2)	14.6 5 (3)	
E, GN/m ² (10 ⁶ psi)	Avg Min	122 (17.67)	134 (19.4)	132 (19.1)	
No. of Spec, (No. of Heats	s)				
Poisson's Ratio		0.310	0.300	0.270	
Work Hardening Coef					
NTS, MN/m ² (ksi) K _t = No, of Spec. (No. of Heats	Avg Min s)				
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min				

References:

89716, 89983, 91696

Alloy Designation:

Ti-6Al-4V (Nominal Interstitial Content) (Weld Metal)

Specification:

Form:

Plate-TIG welded, Ti-6AI-4V filler

Thickness, cm (in.): Condition:

0.635 to 1.269 (0.250 to 0.499) Stress relieved, 1300 F, 1 hour at Temp., air colled after welding

Testing Temperature, K (F)	297 (75)	77 (-320)	
Tension, Longitudinal				
TUS, MN/m ² (ksi)	Avg	967 (140.3)	1516 (219.9)	
Std. Deviation	Min	961 (139.4)	1500 (217.6)	
TYS, MN/m ² (ksi)	Avg			
Std. Deviation	Min			
Elong, percent	Avg	12.0	14.3	
	Min	11.0	11.5	
RA, percent	Avg Min			
No. of Spec. (No. of He		4 (1)	3 (1)	
E, GN/m ² (10 ⁶ psi)	Avg Min			
No. of Sput. (No of He				
Prisson's Ratio				
Work Hardening Coef				
NTS, MN/m² (ksi)	Avg			
K _t = No. of Spec. (No. of He	Min ats)			
NTS, MN/m ² (ksi)	Avg			
K _t = No. of Spec. (No. of He	Min ats)			
Tension, Transverse				
TUS, MN/m ² (ksi)	Avg Min			
Std. Deviation				
TYS MN/m ² (ksi)	Avg Min			
Std. Deviation	Willi			
Elong, percent	Avg Min			
RA, percent	Avg			
No. of Spec. (No. of He	Min ats)			
E, GN/m ² (19 ⁶ psi)	Avg Min			
No of Spec. (No. of He				
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi)	Avg			
K _t = No. of Spec. (No. of He	Min ats)			
NTS, MN/m ² (ksi)	Avg			
Kt = No of Spec. (No. of He	Min			

Alloy Designation:

Ti-6AI-4V (Nominal Interstitial Content)

Specification:

Form:

Thickness, cm (in.): Condition:

Plate 1.270 to 2.540 (0.500 to 1.000) STA

Testing Temperature, K (F)	297 (75)	195 (-108)	77 (-320)	
Tension, Longitudinal				
TUS, MN/m ² (ksi) Av			1544 (224) 1542 (223.7)	
Std Deviation				
TYS, MN/m ² (ksi) Av Mi Std. Deviation		1228 (178.1) 1228 (178.1)		
Elong, percent Av			8.0 7.5	
RA, percent Av			19.7	
Mi No. of Spec. (No. of Heats)	9.0	3 (1)	17.9 14 (3)	
E, GN/m ² (10 ⁶ psi) Av Mi				
No. of Spec. (No. of Heats)				
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi) Av $K_t = Mi$ No. of Spec. (No. of Heats)				
NTS, MN/m ² (ksi) Av K _t = Min No. of Spec, (No. of Heats)				
Tension, Transverse				
TUS, MN/m ² (ksi) Av				
Std. Deviation				
FYS, MN/m ² (ksi) Av				
Std. Deviation				
Elong, percent Av Mil				
RA, percent Av.	9.0			
No. of Spec. (No. of Heats)	1 (1)			
E, GN/m ² (10 ⁶ psi) Av Mil No. of Spec. (No. of Heats)				
Poisson's Ratio				
Work Hardening Coef				
NTS, MN/m ² (ksi) Av				
No. of Spec. (No. of Heats)				
NTS, MN/m ² (ksi) Av K _t = Min				

References:

55916, 76411, 80994, 91696

Alloy Designation:

Ti-6Al-4V (Nominal Interstitial Content)

Specification:

Form:

Bar Up to 2.540 (1.000) Annealed

Thickness, cm (in.): Condition:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Tension, Longitudinal												
TUS, M _I N/m ² (ksi)	Avg Min	1077 923	(1 56.2) (133.8)	1308 1153	(189.7) (167.2)	1709 1524	(247.9) (221.0)	1854 1717	(268.9) (249.0)	1708 1708	(248) (248)	
Std. Deviation		214	(31.01)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,	73.4	(10.65)			
TYS, MN/m ² (ksi) Std. Deviation	Avg Min	935 883 29.5	(135.6) (128.0) (4.28)	1124 1112	(163.0) (161.3)		(225) (214)	1751 1572 129	(25.4) (228) (18.67)	1655 1655	(240) (240)	
Elong, percent	Avg Min	1	4.5 2.0		3.2 2.0	1	11.1 9.0		3.6 1.9	1	4.0 4.0	-
RA, percent	Avg Min	1	6. 4 2.0). 8 3.5		38.7 32.5		7.1 2.7		12.0 12.0	
No. of Spec. (No. of Hea	ts;	12	(4)	7	(3)	7	(3)	18	(4)	,	(1)	
E, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of Hea												
Poisson's Ratio												
Work Hardening Coef												
NTS, MN/m^2 (ksi) $K_t = 6.4$ No. of Spec. (No. of Hear	Avg Min ts)	1271 1262 5	(184.4) (183.0) (1)					1942 1875 5	(281.6) (272.0) (1)			
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Hear	Avg Min ts)											
Tension, Transverse												
TUS, MN/m ² (ksi) Std. Deviation	Avg Min						ļ	11				
TYS, MN/m² (ksi)	Avg											
Std. Deviation	Min											
Elong, percent	Avg Min											
RA, percent	Avg Min											
No. of Spec. (No. of Heat									11			
E, GN/m ² (10 ⁶ psi)	Avg Min											
No. of Spec. (No. of Heat	ts)											
oisson's Ratio												
Vork Hardening Coef												
NTS, MN/m^2 (ksi) $K_t =$ No. of Spec. (No. of Heal	Avg Min											
NTS, MN/m² (ksi) K _t =	Avg Min											

Alloy Designation:

Ti-6Al-4V (Nominal Interstitial Content)

Specification:

Form:

Forgings

Thickness, cm (in.): Condition:

Annealed

Testing Temperature, K (F)	297 (75)		77 (-320)	20 (-423)		
Tension, Longitudinal						
TUS, MN/m ² (ksi)	Avg 1166 (169		1703 (247)	1780 (258.1)		
Std. Deviation	Min 1014 (147	.0)	1606 (233)	1686 (244.5) 37.2 (5.4)		
TYS, MN/m² (ksi)	Avg 1034 (150		1620 (235)	1655 (240)		
Std. Deviation	Min 896 (130	"	1565 (227)	1420 (206) 56 (8.1)		
Elong, percent	Avg 16.0 Min 10.0		8.2 3.8		40	
RA, percent	Avg 35.1 Min 15.0		23.4 7.4	26.8 18.8		
No. of Spec. (No. of Heats			3 (2)	82 (7)		
E, GN/m ² (10 ⁶ psi)	Avg Min		- ×	(21.6) (18.5)		
No. of Spec. (No. of Heats	5)			82 (7)		
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi) $K_t = 6.3$ No. of Spec. (No. of Heats	Avg Min		1689 (245) 1631 (236.5) 2 (1)			
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min	,				
Tension, Transverse			7			
TUS, MN/m ² (ksi)	Avg 1069 (158 Min 1069 (158		1689 (245) 1689 (245)			
Std. Deviation						
TYS, MN/m ² (ksi)	Avg 917 (133 Min 917 (133		1627 (236) 1627 (236)			
Std. Deviation						
Elong, percent	Avg 26.0 Min 26.0		12.0 12.0			
RA, percent	Avg 36.0		23.0 23.0			
No. of Spec. (No. of Heats	Min 36.0 1 (1)		1 (1)			
E, GN/m ² (10 ⁶ psi)	Avg Min					
No. of Spec. (No. of Heats	;)			= ,=		
Poisson's Ratio						
Work Hardening Coef						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min					
No. of Spec. (No. of Heats						
NTS, MN/m ² (ksi) K _t = No. of Spec. (No. of Heats	Avg Min	1				

References: 49088, 90117, 90185

FIGURE 9.3.2-ME1. AXIAL FATIGUE LIFE CURVES FOR UNNOTCHED 6AI-4V (SOLUTION TREATED AND AGED) TITANIUM ALLOY [58024]

FIGURE 9.3.2-ME2. AXIAL FATIGUE LIFE CURVES FOR NOTCHED 6A!-4V (SOLUTION TREATED AND AGED)
TITANIUM ALLOY [58024]

FIGURE 9.3.2-ME3. AXIAL FATIGUE LIFE CURVES FOR WELDED 6AI-4V (SOLUTION TREATED AND AGED) TITANIUM ALLOY [TIG welded; parent metal filler] [58024]

FIGURE 9.3.2-ME4. FLEXURAL FATIGUE LIFE CURVES FOR ANNEALED 6AI-4V TITANIUM [49048]

9.3.2-11.5 (11/76)

FIGURE 9.3.2-ME5. FLEXURAL FATIGUE LIFE CURVES FOR ANNEALED NOTCHED 6AI-4V TITANIUM [49048]

FIGURE 9.3.2-ME6. FLEXURAL FATIGUE LIFE CURVES FOR ANNEALED 6AI-4V TITANIUM [49048]

TABLE 9.3.1-TR1

Alloy Designation: Ti-6Al-4V Alloy

Specification:

Form: Dimension: Condition:

Annealed

Testing Temperature K (F)	273 (32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹ No. of Spec. References:											
Thermal Expansion (T ₂₇₃ to T) Longitudinal											
Percent No. of Spec. References: 48570, 90223	0 3	- 0.132 3		-0.150		-0.152 1					
Specific Heat Joule: 'kg-1 K-1 Btu lb-1 F-1 No. of Spec. References:											
Electrical Resistivity								}			
Ohm m Ohm circular mil ft ⁻¹ No. of Spec. References: 79561	160 x 10 ⁻⁸ (962)	145 x 10	₀ -8 (872)	140 x 10	0 ⁻⁸ (842)	138 x	10 ⁻⁸ (830)) 			

THERMAL EXPANSION VERSUS TEMPERATURE FOR Ti-6 Al-4 V ALLOY FIGURE 9.3.2-E1.

FIGURE 9.3.2-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR Ti-6 Al-4 V ALLOY

9.3.2-14 (11/76)

INDEX TO MATERIAL CODES FOR SECTION 10.0

SPECIAL METALS

MATERIALS	MATERIAL CODE
NIOBIUM	10.1.1
Nb ₃ Sn	10.1.2
NIOBIUM-ZIRCONIUM ALLOYS	10.1.3
TITANIUM-NIOBIUM ALLOYS	10.1.4
V ₃ Ga	10.2.1
MAGNESIUM ALLOYS-AZ31B	10.3.1

TABLE 10.1.3-TR1

Alloy Designation: Nb-0.2Zr Alloy

Specification: Form: Dimension:

Condition:

Testing Temperature K (F)	273	(3:2)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m-1 K-1											18.0(n	(a)
Bu hr-1 ft-1 F-1											4.2(s)	(10.4(n))
No of Spec									}		1	(2.43(s))
References: 90341												
Thermal Expansion (T ₂₇₃ to T) Longitudinal												
Percent												
No of Spec.												
References:												
Specific Heat												
Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹												
No of Spec.							1.7					
References:												
Electrical Resistivity												
Ohm m												
Ohm circular mil ft ⁻¹												
No. of Spec References:							}			- 11		

(a) n Normal state (b) s Superconducting state

FIGURE 10.1.3-C1. THERMAL CONDUCTIVITY VERSUS TEM-PERATURE FOR Nb-0.2 Zr ALLOY -SUPERCONDUCTING STATE

7475

10.1.3-2 (11/74)

FIGURE 10.1.3-C2. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR Nb-0.2 Zr ALLOY - NORMAL STATE

10.1.3-3 (11/76)

TABLE 10.1.3-TR2

Alloy Designation: Nb-2Zr Alloy

Specification: Form: Dimension: Condition:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4 (-452)
Thermal Conductivity											
Watts m ⁻¹ K ⁻¹											17.0(n)(a) 4.05(s)(b)
Btu hr-1 ft-1 F-1											(9.83(n)) (2.34(s))
No of Spec.							ł				1
References: 90341							:				
Thermal Expansion (T ₂₇₃ to T)											
Longitudinal											
Percent											
No. of Spec. References:											
neterences:											
Specific Heat					L						
Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F-1											
No. of Spec.											•
References:											
Electrical Resistivity											
Ohm m											
Ohm circular mil ft ⁻¹									Į.		}
No. of Spec.			1						ŀ		
References:											

(a) n Normal state (b) s Superconducting state

TABLE 10.1.4-TR5

Alloy Designation:

Nb-45Ti

Specification: Form: Dimension: Condition:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹ No. of Spec. References:												
Thermal Expansion (T ₂₇₃ to T) Longitudinal			-									
Percent No. of Spec. References: 95168	0		-0.137 1		-0.163 1		-0.168 1		-0.169 1		-0.169 1	
Specific Heat Joules kg-1 K-1 Btu lb-1 F-1 No of Spec. References:			}									
E'ectrical Resistivity												
Ohm m Ohm circular mil ft-1 No of Spec.												

FIGURE 10.1 4-E5. THERMAL EXPANSION VERSUS TEMPERATURE FOR Nb-45Ti ALLOY

Alloy Designation:

Nb-48Ti

Specification: Form: Dimension: Condition:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity Watts m-1 K-1 Btu hr-1 ft-1 F-1 No of Spec References: Thermal Expansion (T273 to T) Longitudinal												
Percent No. of Spec. References: 95168 Specific Heat Joules kg-1 K-1 Btu lb-1 F-1 No of Spec. References:	0 1		-0.140 1		-0.163 1		-0.171 1		-0.172 1		-0.174 1	
Ohm m Ohm circular mil ft-1 No. of Spec. References:												

FIGURE 10.1.4-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR Nb-48Ti ALLOY

TABLE 10.2.1-TR1

Alloy Designation:

V₃Ga

Specification: Form:

Dimension:

Condition:

Testing Temperature K (F)	273 (32)	100 (-280)	50 (-370)	20 (-423)	10 (-442)	4 (-452)
Thermal Conductivity Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F-1 No of Spec. References:						
Thermal Expansion (T ₂₇₃ to T) Longitudinal						
Percent	0	-0.140	-0.162	-0.168	-0.169	0.139
No. of Seec. References: 96878	1	1	1	1	1	1
Specific Heat					5.813(n)	1.914(n)
Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹ No of Spec. References: 96876				18.96 (4.529 x 10 ⁻³)	7.22 (s) [1.389 x 10 ⁻³ (n) [1.73 x 10 ⁻³ (s)]	0.196(s) [4.57 x 10 ⁻⁴ (i [4.68 x 10 ⁻⁵ (s
Electrical Resistivity						
Ohm m	185 x 10 ⁻⁸	149 x 10 ⁻⁸	139 x 10 ⁻⁸	132 x 10 ⁻⁸	129 x 10 ⁻⁸	127 x 10 ⁻⁸
Ohm circular mil ft ⁻¹	(1110)	(896)	(836)		(776)	(764)
No of Spec. References: 96879	1	1	1	1	1	1
(n) Normal State (s) Superconducting State						

FIGURE 10.2.1-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR V₃Ga

FIGURE 10.2.1-S1. SPECIFIC HEAT VERSUS TEMPERATURE FOR V_3G_{θ} -- SUPERCONDUCTING STATE

FIGURE 10.2.1-S2. SPECIFIC HEAT VERSUS TEMPERATURE FOR V_3G_{θ} - SUPERCONDUCTING STATE

7.77

10.2.1-4 (11/76)

FIGURE 10.2.1-S3. SPECIFIC HEAT VERSUS TEMPERATURE FOR $V_3 G_a \sim NORMAL\ STATE$

FIGURE 10.2.1-R1. ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR V₃Ga -- NORMAL STATE

75.15

10.2.1-6 (11/76)

Alloy Designation:

Magnesium Alloy AZ 31-B

Specification: Form: Dimension: Condition:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m-1 K-1(1)	72.0											
Btu hr-1 ft-1 F-1		(4.16)										
No of Spec	1											
References: 90224												
Thermal Expansion (T ₂₇₃ to T)												
Longitudinal												
Percent												
No. of Spec												
References:											1	
Specific Heat												
Joules ka-1 K-1												
Joules kg ⁻¹ K ⁻¹ Btu Ib ⁻¹ F ⁻¹												
No of Spec												
References:												
Electrical Resistivity												
Ohm m												
Ohm circular mil ft-1												
No. of Spec.		I			M.							
References:												
(1) AN-M-29(approximately same composition as AZ 31-E					-		ı		1			

FIGURE 10.3.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR MAGNESIUM ALLOY AZ 31-B (AN-M-29)

Alloy Designation: Magnesium Alloys with Al and Mn

Specification:

Form: Not given

Dimension, cm(in.): Not given

Condition: Quenched from 475 C (887 F)

FIGURE 10.3.1-MA1. VALUES OF THE MASS SUSCEPTIBILITY, x_{cgsem}, FOR SEVERAL TERNARY AND BINARY ALLOYS OF MAGNESIUM. THE LOWER CURVE IS FOR THE BINARY ALLOYS WITH ALUMINUM, WHILE THE UPPER CURVE REPRESENTS THE ADDITION OF A FIXED CONCENTRATION OF MANGANESE OF APPROXIMATELY 0.04 WEIGHT PERCENT [96874]

INDEX TO MATERIAL CODES FOR SECTION 11.0

COMPOSITES

MATERIALS	MATERIAL CODE
GLASS-EPOXY	11.1.0
181/EPON 828	11.1.1
1581/U-787(58-68R)	11.1.2
S-901/NASA RESIN 2	11.1.3
BORON-EPOXY	11.2.0
4 MIL BORON/2387	11.2,1
5.6 MIL BORON/2387	11.2,2
GRAPHITE-EPOXY	11.3.0
AS/NASA RESIN 2	11.3.1
HT-S/X-904	11.3,2
BORON-ALUMINUM	11.4.0
5.6 MIL BORON/6061AI	11.4.1

TABLE 11.1.1-ME1

Composite Class: Glass-Epoxy

Type: 181/Epon 828 (CL)

Specification: Layup: Balanca-weave cloth (57 x 54 count) Nominal fiber volume fraction: Nominal ply thickness: 0.254 mm (0.010 in.)

Fiber: S-994 with HTS finish Matrix: Epon 828(CL) Nominal density: 1.83 g/cm³ (0.066 lbs/in.³)

Comments:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Tension, Longitudinal (0°)(a)												
TUS, MN/m² (ksi)	Avg Min	345	(50)	427	(62)	634	(92)	676	(98)			
References: 15												
E ₁ , GN/m ² (10 ⁶ psi)	Avg Min	24.2	(3.51)	26.4	(3.83)	28.6	(4.15)	31.3	(4.54)			
References: 15												
SE ₁ , MN/m ² (ksi)	Avg Min	152	(22)	138	(20)	179	(26)	234	(34)			
References: 15						1						
E ₂ GN/m ² (10 ⁶ psi)	Avg Min	17.1	(2.48)	17.6	(2.56)	17.0	(2.47)	18.2	(2.64)			
References: 15					,	1						
TPL, MN/m ² (ksi) References:	Avg Min											
Failure Strain, 10-3	Avg Min											į.
References:										}		
Poisson's Ratio												
References:				1								
NTS, MN/m ² (ksi) K _t = References:	Avg Min											
NTS, MN/m ² (ksi) K _t = References:	Avg Min											
Tension, Transverse (90°)(b)												
TUS, MN/m ² (ksi)	Avg Min											
References:												
E ₁ , GN/m ² (10 ⁶ psi)	Avg Min					d.						
References:						Ì						
SE ₁ , MN/m ² (ksi) References:	Avg Min			<u> </u>								
E ₂ , GN/m ² (10 ⁶ psi)	Avg					1						
References:	Min											
TPL, MN/m ² (ksi)	A											+
References:	Avg Min											
Failure Strain, 10 ⁻³	Avg Min							1				
References:	(4)(1)					}						
Poisson's Ratio												
References:												
NTS, MN/m ² (ksi) K _t = References:	Avg Min				11,1.1-1	(11/76)						
NTS, MN/m ² (ksi) K _t = References:	Avg Min											76 :<
(a) Warp direction in woven of												

TABLE 11.1.1-ME2

Type: 181/Epon 828(CL)

Specification:

Composite Class: Glass-Epoxy

Layup: Balance-weave cloth (57 x 54 count) Nominal fiber volume fraction: Nominal ply thickness: 0.254 mm (0.010 in.)

Fiber: S-994 with HTS finish Matrix: Epon 828(CL) Nominal density: 1.83 g/cm³ (0.066 lb/in.³) Comments:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20_	(-423)	4	(-452)	
Compression, Longitudinal ((a) (a)	}					T.					
CUS, MN/m² (ksi)	Max Avg Min	300	(43.5)	589	(85.4)	758	(109.9)	750	(108.8)			
References: 15	141111			1								
CPL, MN/m² (ksi)	Max Avg Min											
References:	(4)111											ł
E, GN/m ² (10 ⁶ psi)	Avg Min	23.1	(3.36)	22.9	(3.33)	28.0	(4.07)	29.4	(4.26)			
References: 15												
Compression, Transverse (90)°)(b)											
CUS, MN/m ² (ksi)	Max Avg Min											
References:						}		}				1 8
CPL, MN/m ² (ksi)	Max Avg											
References:	Min					ĺ						
E, GN/m ² (10 ⁶ psi)	Avg Min											
References:						-)				
In-Plane Shear												
SUS, MN/m ² (ksi)	Avg Min											
References:				}								
SPL, MN/m ² (ksi) References:	Avg Min											
G, GN/m ² (10 ⁶ psi)	Avg Min											
References:		ł		1								
Interlaminar Shear		ļ]				
SUS, MN/m ² (ksi) References:	Avg Min											
SPL, MN/m ² (ksi)		}										
References:	Avg Min											
G, GN/m ² (10 ⁶ psi)	Avg Min											
References:												
Impact, Charpy V(Cv), Izod(<u>(I)</u>											
Long., (0°) J (ft-lb) ^(a) References:	Avg Min											
Trans., (90°) J (ft-lb)(b)	A					1						
References:	Avg Min											
Sheet, Normal, J (ft-lb)(c)	Avg Min											
References:					11,1,1-2	(11/76)	i i					
(a) Warp direction in woven (b) Fill direction in woven c (c) Press cure direction.												

76.,<

Composite Class: Glass-Epoxy Type: 181/Epon 828(CL)

Specification: Fiber: S-994 with HTS finish

Layup: Balance-weave cloth (57 x 54 count) Matrix: Epon 828(CL)

Nominal fiber volume fraction: Nominal density: 1.83 g/cm³ (0.066 lb/in³)

Nominal ply thickness: 0,254 mm (0.010 in.) Comments:

Fatigue

Load orientation: parallel to warp or fill

Load direction: tension-tension

(1) Min. load 5% of tus.

FIGURE 11.1.1-ME1. FATIGUE LIFE CYCLE FOR GLASS-EPOXY

TABLE 11.1.1-TR1

Composite Class: Glass-Epoxy

Type: 181/Epon 828(CL)

Specification:

Layup: Balance-weeve cloth (57 x 54 count)
Nominal fiber volume fraction:
Nominal ply thickness: 0,254 mm (0.010 in.)

Fiber: S-994 with HTS finish Matrix: Epon 828(CL) Nominal density: 1.83 g/cm³ (0.066 lb/in.³)

Comments:

	297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Avg Avg	0.50 0.29		0.44 0.25		0.26 0.15		0.20 0.12				
Avg Avg	0.50 0.29		0.44 0.25		0.26 0.15		0.20 0.16				
Avg Avg	0.35 0.20		0.30 0.17		0.20 0.12		0.15 0.087				
Avg	o		-1300		-2700						
Avg	0		-1300		-2700						
Avg											
Avg Avg	880 2100		640 1500		240 580						
									1		
Avg											
Avg											
Avg											
	Avg Avg Avg Avg Avg Avg Avg Avg Avg	Avg 0.50 Avg 0.50 Avg 0.29 Avg 0.35 Avg 0.20 Avg 0 Avg 0 Avg 0 Avg 0 Avg Avg 2100	Avg 0.50 Avg 0.50 Avg 0.29 Avg 0.35 Avg 0 Avg 0 Avg 0 Avg 0 Avg 0 Avg 0 Avg Avg 2100 Avg Avg 2100	Avg 0.50 0.44 0.25 Avg 0.50 0.44 0.25 Avg 0.50 0.44 0.29 Avg 0.35 0.30 0.17 Avg 0 -1300 Avg 0 -1300 Avg Avg 2100 640 1500 Avg Avg Avg 2100	Avg 0.50 0.44 0.25 Avg 0.50 0.44 0.25 Avg 0.50 0.44 0.25 Avg 0.35 0.30 0.17 Avg 0 -1300 Avg 0 -1300 Avg Avg 2100 1500	Avg 0.50 0.44 0.26 0.15 Avg 0.50 0.44 0.26 0.15 Avg 0.29 0.25 0.15 Avg 0.35 0.30 0.20 Avg 0.20 0.17 0.12 Avg 0 -1300 -2700 Avg 0 -1300 -2700 Avg Avg 2100 1500 580	Avg 0.50	Avg 0.50 0.44 0.26 0.15 0.12 Avg 0.50 0.44 0.26 0.20 Avg 0.29 0.25 0.15 0.16 Avg 0.35 0.30 0.20 0.12 Avg 0.20 0.17 0.12 Avg 0 -1300 -2700 Avg Avg 2100 1500 580	Avg 0.50	Avg 0.50	Avg 0.50

⁽b) Fill direction in woven cltoh.

⁽c) Press cure direction.
(1) Nominal data for glass cloth-epoxy

TABLE 11.1.2-ME1

Composite Class: Glass-Epoxy

Type: 1581/E-787 (58-68R)

Specification: Layup: Balance-weave cloth (57 x 54 count) Nominal fiber volume fraction: 0.63 Nominal ply thickness: 0.216 mm (0.0085 in.)

Fiber: S-901 Matrix: E-787 (58-68R) Nominal density: 1.769 g/cm³ (0.064 lb/in.³) Comments:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)		
Tension, Longitudinal (0°)(a)													
TUS, MN/m ² (ksi) References: 18	Avg Min	634 613	(92) (89)	793 765	(115) (111)	999 944	(1 45) (137)	951 896	(138) (130)				
E ₁ , GN/m ² (10 ⁶ psi)	Avg Min	22.7	(3.29) (3.18)	24.1 23.2	(3.50) (3.37)	26.8 22.5	(3.98) (3.26)	29.4 26.7	(4,27) (3.88)				
References: 18	IVIIII	21.0	(3.10)	23.2	(3.37)	22.5	(3.20)	20.7	(0.00)				
SE ₁ , MN/m ² (ksi)	Avg Min												
References:										}			
E ₂ GN/m ² (10 ⁶ psi)	Avg Min												
References:	-]		,									
TPL, MN/m ² (ksi) References:	Avg Min												
Failure Strain, 10 ⁻³	Avg Min	33.7 32.5		41.1 40.3		50.1 48.5		48.1 45.0					
References: 18													
Poisson's Ratio													
References:													
NTS, MN/m ² (ksi) K _t = 3 References: 18	Avg Min	489 469	(71) (68)	607 593	(88) (86)	786 731	(114) (106)	813 793	(118) (115)				
NTS, MN/m ² (ksi) K _t = References:	Avg Min												
Tension, Transverse (90°)(b)		İ											
TUS, MN/m ² (ksi)	Avg Min	586 558	(85) (81)	683 620	(99) (90)	882 862	(128) (125)	813 806	(118) (117)				
References: 18													
E ₁ , GN/m ² (10 ⁶ psi) References: 18	Avg Min	21.8 21.6	(3.17) (3.13)	23.0 22.5	(3.34) (3.26)	27.4 26.6	(3.97) (3.86)	28.8 27.8	(4.18) (4.04)				
SE ₁ , MN/m ² (ksi) References:	Ava Min												
E ₂ , GN/m ² (10 ⁶ psi)	Avg Min												
TPL, MN/m ² (ksi)	Avg Min									_			
References:			-										
Failure Strain, 10 ⁻³ References: 18	Avg Min	33.0 31.5		39.6 36.0		46.4 44.0		44.5 43.5					
													-
Poisson's Ratio												1	
References:			1,000	0.000		75.EE			44.5				
NTS, MN/m ² (ksi) K _t = References: 18	Avg Min	469 455	(68) (66)	558 538	(81) (78)	689 655	(100) (95)	723 710	(105) (103)				İ
NTS, MN/m ² (ksi)	Avg				11.1.2-1	(11/76)						70.30	
K _t = References:	Min	(h)										7 63<	
(a) Warp direction in woven of (b) Fill direction in woven of													

TABLE 11.1.2-ME2

Composite Class: Glass-Epoxy

Type: 1581/E-787 (58-68R)

Specification:
Leyup: Balance-weave cloth (57 x 54 count)
Nominal fiber volume fraction: 0.63
Nominal ply thickness: 0.216 mm (0.0085 in.)

Fiber: S-901 Matrix: E-787 (58-68R) Nominal density: 1.769 g/cm³ (0.064 lb/in.³) Comments:

Testing Temperature, K (·	297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)
Compression, Longitudina	ii (0°)(a)	}									
CUS, MN/m ² (ksi)	Max Avg	476 434 400	(69) (63)	600 552 503	(87) (80)	745 710 655	(108) (103) (95)	807 751 696	(117) (109) (101)		
References: 18	Min	1400	(58)	303	(73)	055	(33)	030	(101)		
CPL, MN/m ² (ksi)	Max Avg Min										
References:								1		1	
E, GN/m ² (10 ⁶ psi) References:	Avg Min										
Compression, Transverse (90°1(b)							}			
CUS, MN/m ² (ksi)	Max Avg Min	421 414 393	(61) (60) (57)	565 510 455	(82) (74) (66)	717 648 607	(104) (94) (88)	738 689 662	(107) (100) (96)		
References: 18			, ,								
CPL, MN/m ² (ksi)	Max Avg										
References:	Min										
E, GN/m ² (10 ⁶ psi)	Avg										
References:	Min										
In-Plane Shear											
SUS, MN/m ² (ksi)	Avg Min									11	
References:											
SPL, MN/m ² (ksi) References:	Avg Min										
G, GN/m ² (10 ⁶ psi)	Avg										
References:	Min										
nterlaminar Shear											
SUS, MN/m ² (ksi)	Avg Min	54.4 50.3	(7.9) (7.3)	68.9 53.8	(10.0) (7.8)	89.6 84.1	(13.0) (12.2)	77.2 71.0	(11.2) (10.3)		
References: 18											
SPL, MN/m ² (ksi) References:	Avg Min										
G, GN/m ² (10 ⁶ psi)	Avg Min										
References:											
mpact, Charpy V(Cv), Izo	d(1)										
.ong., (0°) J (ft-lb) (a)	Avg Min										
References: rans., (90°) J (ft-lb)(b)	Avg										
References:	Min										
iheet, Normal, J (ft-lb)(c)	Avg				18						
References:	Min				11.1.2-2	(11/76)					
a) Warp direction in woven b) Fill direction in woven c) Press cure direction.	en cloth. cloth.										

TABLE 11.1.2-TR1

Composite Class: Glass-Epoxy

Type: 1581/E-787 (58-68R)

Specification: Layup: Balance-weave cloth (57 x 54 count) Nominal fiber volume fraction: 0.63 Nominal ply thickness: 0.216 mm (0.0085 in.)

Fiber: S-901 Matrix: E-787 (58-68R) Nominal density: 1.769 g/cm³ (0.064 lb/in.³) Comments:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Thermal Conductivity												
Longitudinal (0°)(a) (1)		,		1		j						
Watts m-1 K-1	Avg	0.50		0.44		0.26		0.20				
Btu hr-1 ft-1 F-1	Ava	0.29		0.25		0.15		0.12				
References: 16	CAA	7.20		0.20		0.15		0,,1		1		
Transverse (90°)(b) (1)								ł		1		
Watts m-1 K-1	Avg	0.50		0.44		0.26		0.20		İ	i	
Btu hr-1 ft-1 F-1	Avg	0.29		0.25		0.15		0.16				
References: 16	- AAA	0.20		0.20		0.10		0.10				
Sheet Normal(c)(1)								l			_ [
Watts m-1 K-1	Avg	0.35		0.30		0.20		0.15				
Btu hr-1 ft-1 F-1	Avg	0.20		0.17		0.12		0.087				
References: 16	WAR	0.20		J,		J2		0.007				
Thermal Expension												
Longitudinal (0°)(a)												
10-6 AL/L	7000			1122		2140		-2463		2400		
	Avg	0		-1123		-2140		-2403		-2490		
References: 18												
Transverse (90°)(b)												
10-6 ∆ L/L	Avg	0		-1077		-2033		-2323		-2343		
References: 18											ľ	
Sheet Normal(c)				1							1	
10 ⁻⁶ Δ L/L	Avg							1				
References:								l		•		
Specific Heat				1								
Joules kg ⁻¹ K ⁻¹ (1)		000		040		240						
Joules kg ⁻ K ⁻ \ \ \ \ Btu lb-1 F-1	Avg	880		640		240						
	Avg	2100		1500		580						
References: 16												
Electrical Resistivity												
Longitudinal (0°)(a)												
Ohm m	Avg			1								
References:				1								
Transverse (90°)(b)				1								
Ohm m	Avg											
References:	₩.											
Sheet Normal(c)												
Ohm m	Avg			1								
References:	MAÑ			1								
		l									- 1	

⁽b) Fill direction in woven cltoh.

⁽c) Press cure direction.
(1) Nominal data for glass cloth-epoxy.

TABLE 11.1.3-ME1

Composite Class: Glass-Epoxy

Type: S-901/NASA Resin 2

Specification:
Layup: Uniaxial tape
Nominal fiber volume fraction: 0.6
Nominal ply thickness: 0.21 mm (0.083 in.)

Fiber: S-901 Matrix: NASA Resin 2(-11) Nominel density: 2.9 g/cm³ (0.07 lb/in.³) Comments:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
fension, Longitudinal (0°)(a)												
TUS, MN/m ² (ksi) References: 8, 10, 11	Avg	1420 1192	(206) (173)			1953 1716	(283) (249)	1820 1606	(264) (233)	1937 1744	(281) (253)	
£ ₁ , GN/m ² (10 ⁶ psi)	Avg Min	58.7 55.4	(8.51) (8.05)			62.8 57.9	(9.11) (8.40)	77.9 71.0	(11.30) (10.30)	60.1 57.6	(8.73) (8.35)	
References: 8, 10, 11	14/11/	35.4	(0.00)			07.0	(0.40)	71.0	(10.50)	37.0	(5.55)	
SE ₁ , MN/m ² (ksi)	Avg											
References:												
E ₂ GN/m ² (10 ⁶ psi)	Avg Min							1 =				
References:												
TPL, MN/m ² (ksi) ⁽¹⁾	Avg Min											
References:												
Failure Strain, 10 ⁻³	Avg Min	28.0 27.0				31.5 27.0		24.0		30.3 27.0		
References: 8, 10												
Poisson's Ratio References: 8		0.268				0.269				0.290	-	
NTS, MN/m ² (ksi) K _t = References:	Avg Min											
NTS, MN/m ² (ksi) K _t = References:	Avg Min	-										
Tension, Transverse (90°)(b)	i							1				
TUS, MN/m ² (ksi)	Avg	46.9	(6.8)			93.7	(13.6)			78.6	(11.4)	
References: 8	Min	44.1	(6.4)			78.6	(11.4)			65.5	(9.5)	
E ₁ , GN/m ² (10 ⁶ psi)	Avg Min	12.4 11.7	(1.80) (1.69)			21.2 18.1	(3.07) (2.63)			22.0 19.5	(3.20) (2.82)	
References: 8			(1.00)				(2.00)				(2.52)	
SE ₁ , MN/m ² (ksi)	Avg Min					3					=	
References:				- 62								
E ₂ , GN/m ² (10 ⁶ psi)	Avg Min											
References:								İ	1		ļ	
TPL, MN/m ² (ksi)	Avg Min	13.8 9.0	(2.0) (1.3)	П.		}						
References: 8												
Failure Strain, 10 ⁻³ References: 8	Avg Min	6.3 5.0				4.0 3.0				3.7 3.0		
		0.057				0.098				0.106		
Poisson's Ratio References: 8		0.057				0.096				0.100		
NTS, MN/m ² (ksi) K _t =	Avg Min											
References:					11.1.3-1	(11/76)						
ITS, MN/m ² (ksi) K _t = References:	Avg Min											
a) Warp direction in woven c b) Fill direction in woven clo 1) Essentially linear to fractu	th.										775.	<

TABLE 11.1.3-ME2

Composite Class: Glass-Epoxy

Type: S-901/NASA Resin 2

Specification: Layup: Uniaxial tape Nominal fiber volume fraction: 0.6 Nominal ply thickness: 0.21 mm (0.0083 in.)

Fiber: S-901
Matrix: NASA Resin 2⁽⁻¹¹⁾
Nominal density: 2.0 g/cm³ (0.07 lb/in³)
Comments:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)
Compression, Longitudinal	(O _c)(y)										
CUS, MN/m ² (ksi)	Max	562	(81.6)			1648 1356	(239) (196)			1544 1420	(224) (206)
	Avg Min	503 472	(73.0) (68.5)			1034	(150)			1309	(190)
References: 8	.41111	-	,, -,								
CPL, MN/m ² (ksi)	Max					447	(64.8)			380	(55.2)
	Avg					313	(45.5)			312	(45.2)
References: 8	Min					178	(25.8)			243	(35.3)
E, GN/m ² (10 ⁶ psi)	Avg	50.6	(7.34)			63.6	(9.23)	}		60.5	(8.77)
L, Giv/iii- (10- psi)	Min	40.5	(5.87)			48.3	(7.00)			53.8	(7.81)
References: 8				1							
Compression, Transverse (9)	0°)(b)	1		1							
CUS, MN/m ² (ksi)	Max	105	(15.3)			311	(45.1)			299	(43.4)
	Avg Min	98.6 93.8	(14.3) (13.6)			276	(40.1) (34.0)			262	(38.1)
References: 8	14(11)	03.0	(13.0)				(5 1.0)				,_ 5.57
CPL, MN/m ² (ksi)	Max	55.0	(7.97)			131	(19.0)				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Avg	45.0	(6.53)			114	(16.5)				
References: 8	Min	38.0	(5.51)			92	(13.4)				
E, GN/m ² (10 ⁶ psi)	Avg	11.3	(1.63)			22.8	(3.31)			31.3	(4.54)
	Min	9.8	(1.42)			19.8	(2.87)			27.2	(3.95)
References: 8										1	
In-Plane Shear											
SUS, MN/m ² (ksi)	Avg									1	
References:	Min										
SPL, MN/m ² (ksi)											
ort, MIN/M= (KSI)	Avg Min										
References:											
G, GN/m ² (10 ⁶ psi)	Avg	6.2	(0.90)			11.0	(1.60)			12.9	(1.87)
References: 8	Mín						-				-
nterlaminar Shear	1.15	20.0	(4 22)			64.3	(9.33)	61.0	(8.84)		
SUS, MN/m ² (ksi)	Avg Min	29.8 28.7	(4.32) (4.16)			58.3	(8.45)	58.3	(8.46)		
References: 11											
SPL, MN/m ² (ksi)	Avg										
References:	Min										
G, GN/m ² (10 ⁶ psi)	A										
а, ом/ні≃ (точ ря/	Avg Min										
References:											
mpact, Charpy V(Cv), Izod	(1)										
.ong., (0°) J (ft-lb)(a)	Avg	111	(82)(1)			91	(67)(1)				
References: 10	Min					-	-				
rans., (90°) J (ft-lb) ^(b)	Avg Min										
References:		}								}	
Sheet, Normal, J (ft-lb)(c)	Avg										
References:	Min				11.1.3-2	(11/76)					
a) Warp direction in wovenb) Fill direction in woven											
c) Press cure direction.								1			

TABLE 11.1.3-TR1

Composite Class: Glass-Epoxy

Type: S-901/NASA Resin 2

Specification: Layup; Uniaxial tape Nominal fiber volume fraction: 0.6 Nominal ply thickness: 0.21 mm (0.0083 in.)

Fiber: S-901 Matrix: NASA Resin 2(-11) Nominal density: 2.0 g/cm³ (0.07 lb/in.³) Comments:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Thermal Conductivity												
Longitudinal (0°) ⁽⁸⁾ Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F- ¹ References:	Avg Avg											
Transverse (90°){b} Watts m-1 K-1 Btu hr-1 ft-1 F-1 References:	Avg Avg											
Sheet Normal(c) Wests m ⁻¹ K ⁻¹ Beu hr ⁻¹ ft ⁻¹ References:	Avg Avg											
Thermal Expension												
Longitudinal (0°)(a) 10-6 ΔL/L References: 11	Avg	0		-260		-440		-480				
Transverse (90°)(b) 10-6 Δ L/L References: 11	Avg	0		-2770		-3610		-4100				
Sheet Normal ^(c) 10 ⁻⁶ Δ L/L References:	Avg											
Specific Heat						ļ						
	Avg Avg											
Electrical Resistivity												
Longitudinal (0°) ^(a) Ohm m References:	Avg											1
Transverse (90°)(b) Ohm m References:	Avg											
Sheet Normal ^(c) Ohm m References:	Avg											

⁽b) Fill direction in woven cltoh.

⁽c) Press cure direction.

TABLE 11.2.1-ME1

Composite Class: Boron-Epoxy

Type: 4.0 mil Boron/2387

Specification: 5505/4 Layup: Uniaxial tape Nominal fiber volume fraction: 0.50 Nominal ply thickness: 0.132 mm (0.0052 in.)

Fiber: 4.0 mil boron on tungsten
Matrix: 2387
Nominal density: 2.006 g/cm³ (0.0725 lb/in.³)
Comments: Specification SP-272 essentially equivalent properties (4.0 mil boron/PR-279)

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)		
Tension, Longitudinal (0°)(a)													
TUS, MN/m² (ksi)	Avg	1427	(207)			1502	(218)	1406	(204)				
References: 1, 2, 3	Min	1296	(188)	l Pa		1460	(212)						
E ₁ , GN/m ² (10 ⁶ psi)	Avg Min	206.8	(30)			220.6	(32)	227.5	(33)				
References: 3	IVIII	-											
SI ₁ , MN/m ² (ksi)	Avg Min												
References:													
E ₂ GN/m ² (10 ⁶ psi)	Avg Min												
References:													
TPL, MN/m ² (ksi) (1)	Avg Min												
References:													
Failure Strain, 10 ⁻³ References: 4, 5	Avg Min	6.41 6.26											
Poisson's Ratio		0.219						ĺ					
References: 6													
NTS, MN/m² (ksi)	Avg					1		{		\			
K _t = References:	Min												
NTS, MN/m ² (ksi)	Avg											ĺ	
K _t = References:	Min												
Tension, Transverse (90°)(b)													
TUS, MN/m ² (ksi)	Avg Min	7.10 62.0	(10.30) (9.0)	70.7	(10.25) 	65.2 62.0	(9.46) (9.0)	48.3	(7. 0 0) 				
References: 1, 3													
E ₁ , GN/m ² (10 ⁶ psi)	Avg Min	20.3 18.6	(2.95) (2.70)			32.4	(4.7)	34.5	(5.0)				
References: 3, 4, 5													
SE ₁ , MN/m ² (ksi) References:	Avg Min	11											
E ₂ , GN/m ² (10 ⁶ psi)	Avg									ļ		1	
References:	Min												
TPL, MN/m ² (ksi)	Avg	23.4	(3.4)										
References: 4, 5	Min	-											
Failure Strain, 10 ⁻³	Avg Min	4.49 4.10											
References: 4,5													
Poisson's Ratio		0.032											
References: 6													
NTS, MN/m ² (ksi)	Avg												
K _t = References:	Min						11.2.1-1	(11/76)					
NTS, MN/m ² (ksi) K _t = References:	Avg Min											77	:<
(a) Warp direction in woven of (b) Fill direction in woven of (1) Essentially linear to fracti	oth.												

TABLE 11.2.1-ME2

Composite Class: Boron-Epoxy

Type: 4.0 mil Boron/2387

Specification: 5505/4 Layup: Uniaxial tape Nominal fiber volume fraction: 0.50 Nominal ply thickness: 0.132 mm (0.0052 in.)

Fiber: 4.0 mil boron on tungsten
Matrix: 2387
Nominal density: 2.006 g/cm³ (0.0725 lb/in³)
Comments: Specification SP-272 essentailly equivalent properties (4.0 mil boron/PR-279)

	Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
	Compression, Longitudinal (0	°)(a)											
	CUS, MN/m ² (ksi)	Max Avg	2456	(362) (356)			3026	(439)	3736	 (542)			
	References: 3, 4, 5	Min	1820	(264)									
	CPL, MN/m ² (ksi)	Max Avg Min	1530	(222)									
	References: 4,5	141111											
	E, GN/m ² (10 ⁶ psi) References: 3, 4, 5	Avg Min	206 193	(30) (28)			227	(33)	214	(31)			
		. /6.1			:								
	Compression, Transverse (90°				ì						1		
	CUS, MN/m ² (ksi)	Max Avg Min	310 283 255	(45) (41) (37)			524	(76)					
	References: 3, 4, 5								1				
	CPL, MN/m ² (ksi)	Max Avg Min	100	(14.5)									
	References: 4	14,,,,,											
	E, GN/m ² (10 ⁶ psi)	Avg Min	22.4 20.6	(3.25) (3.00)			40.0	(5.80)					
	References: 3,4				1								
	In-Plane Shear		}		1				\				
	SUS, MN/m ² (ksi) References: 4	Avg Min	131 129	(18.95) (18.70)									
	SPL, MN/m ² (ksi)	A											
	References:	Avg Min											
				(0.03)									
	G, GN/m ² (10 ⁶ psi) References: 4	Avg Min	6.41	(0.93)									
	Interlaminar Shear		05.4	(12.0)			120	(17.5)	120	(20)			
	SUS, MN/m ² (ksi) References: 1, 2, 3	Avg Min	95.1 90.3	(13.8) (13.1)			120	(17.5)	138	(20)			
	SPL, MN/m ² (ksi) References:	Avg Min											
	G, GN/m ² (10 ⁶ psi)	Avg Min										1	
	References:												
	Impact, Charpy V(Cv), Izod(1)	•											
		Avg Min											
		Avg Min											
	Sheet, Normal, J (ft-lb)(c)	Avg											
7.5<		Min						11.2.1-2	 (11/76)			
	(a) Warp direction in woven of (b) Fill direction in woven clo (c) Press cure direction.	loth. th.											

Composite Class: Boron-Epoxy

Type: 4.0 mil Boron/2387

Specification: 5505/4

Fiber: 4.0 mil boron on tungsten

Layup: Uniaxial tape

Matrix: 2387

Nominal fiber volume fraction: 0.50

Nominal density: 2.006 g/cm³ (0.0725 lb/in.³)

Nominal ply thickness: 0.132 mm (0.0052 in.)

Comments: Specification SP-272 essentially equivalent

properties (4.0 mil boron/PR-279)

Fatigue

Load orientation: 0° (uniaxial)

Load direction: tension-tension

FIGURE 11.2.1-ME1. FATIGUE LIFE CYCLE FOR BORON-EPOXY

TABLE 11.2.1-TR1

Composite Class: Boron-Epoxy

Type: 4.0 mil Boron/2387

Specification: 5505/4

Layup: Uniaxial tape Nominal fiber volume fraction: 0,50 Nominal ply thickness: 0,132 mm (0,0052 in.)

Fiber: 4.0 mil boron on tungsten

Metrix: 2387

Nominal density: 2.006 g/cm³ (0.0725 lb/in.³)

Comments: Specification SP-272 essentially equivalent properties (4.0 mil boron/PR-279)

Testing Temperature, K (F	-)	297 (75)	195	(-108)	77	(-320)	20	(423)	0	(-452)	
Thermal Conductivity											
Longitudinal (0°)(a) Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹ References: 1, 3	Avg Avg	1.82 1.05	1.61 0.93		1.55 0.89						
Transverse (90°)(b) Watts m·1 K·1 Btu hr·1 ft·1 F·1 References: 3	Avg Avg	1.04 0.6	0.86 0.5		0.43 0.27						
Sheet Normal(c) Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F-1 References: 1,3	Avg Avg	0.68 0.39	0.60 0.35		0.40 0.23						
Thermal Expansion											
Longitudinal (0°)(a) 10-6 ∆L/L References: 1, 3	Avg	0	-300		-460						
Transverse (90°)(b) 10-6 Δ L/L References: 1, 3	Avg	o	-1800		-2700						
Sheet Normal ^(c) 10 ⁻⁶ Δ L/L References: 3	Avg	0	-1600		-2800						
Specific Heat											1
Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹ References: 1, 3	Avg Avg	1150 2740	700 1670		325 776						
Electrical Resistivity											
Lonyitudinal (0°)(a) Ohm m References:	Avg										
Transverse (90°)(b) Ohm m References:	Avg	Springer of the springer of th									
Sheet Normal ^(c) Ohm m References: 1	Avg	109									
(a) Warp direction in wove (b) Fill direction in woven											

⁽b) Fill direction in woven cltch.

⁽c) Press cure direction.

TABLE 11.2.2-ME1

Composite Class: Boron-Epoxy

Type: 5.6 mil Boron/2387

Specification: 5505/5.6 Layup: Uniaxial tape Nominal fiber volume fraction: 0.50 Nominal ply thickness: 0.1905 mm (0.0075 in.)

Fiber: 5.6 mil boron on tungsten Matrix: 2387

Nominal density: 1.94 g/cm³ (0.07 lb/in,³)
Comments: Specification SP-296 essentially equivalent properties
(5.6 mil Boron/PR 286)

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Tension, Longitudinal (0°)(a)												
TUS, MN/m ² (ksi)	Avg Min	1630 1580	(237) (229)			1680 1610	(243) (234)			1820 1770	(263) (257)	
Refarences: 7												
E ₁ , GN/m ² (10 ⁶ psi)	Avg Min	231 227	(33.5) (32.9)			233	(33.9) (33.2)			238 234	(34.5) (34.0)	
References: 7												
SE ₁ , MN/m ² (ksi)	Avg Min									<u> </u>		
References:												
E ₂ GN/m ² (10 ⁶ psi) References:	Avg Min											
TPL, MN/m ² (ksi) (1)	Avg	1										
	Min											
References:	10.00											
Failure Strain, 10 ⁻³ References: 7	Avg Min	7.3 7.0				8.0 7.0				8.0		
		0.228				0.241		1		0.239		
Poisson's Ratio 0.228		0.228				0.241		ł		0.233		
References: 7								İ			- 1	
NTS, MN/m ² (ksi) K _t = References:	Avg Min											
NTS, MN/m ² (ksi) K _t = References:	Avg Min											
Tension, Transverse (90°)(b)												
TUS, MN/m ² (ksi)	Avg	47.0	(6.81)			49.0	(7.09)			41.4	(6.01)	
References: 7	Min	43.4	(6.29)			45.2	(6.56)			30.3	(4.40)	
E ₁ , GN/m ² (10 ⁶ psi)	Avg Min	17.5 16.3	(2.54) (2.36)			31.2 28.9	(4.53) (4.19)			35.8 33.9	(5.19) (4.92)	
References: 7												
SE ₁ , MN/m ² (ksi)	Avg Min							×				
References:										1		
E ₂ , GN/m ² (10 ⁶ psi) References:	Avg Min											
				1				ļ				
TPL, MN/m ² (ksi) ⁽¹⁾	Avg Min	34.4 24.2	(4.99) (3.50)									
References: 7				1				ł				
Failure Strain, 10 ⁻³ References: 7	Avg Min	2.7				1.5				1.2		
		0.047				0.033				0.034		
Poisson's Ratio		0.017				0.033				0.034		
References: 7												
NTS, MN/m ² (ksi) K _t = References:	Avg Min											
NTS, MN/m ² (ksi)	A				11.2.2.1	(11/76)				}		
NTS, MN/m² (ksi; K _t = References:	Avg Min										P	7705
(a) Warp direction in woven (b) Fill direction in woven cl (1) Essentially linear to fract	oth,											

TABLE 11.2.2-ME2

Composite Class: Boron-Epoxy

Type: 5.6 mil Boron/2387

Specification: 5505/5.6 Layup: Uniaxial tapa Nominal fiber volume fraction: 0.50 Nominal ply thickness: 0.1905 mm (0.0075 in.)

Fiber: 5.6 mil boron on tungsten
Matrix: 2387
Nominal density: 1.94 g/cm³ (0.07 lb/in,³)
Comments: Specification SP-296 essentially equivalent properties (5.6 mil Boron/PR 286)

•	-0.4.	297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)
Compression, Longitudinal	(0°)(a)										4=6-1
CUS, MN/m ² (ksi)	Max	1								3660 2723	(531) (395)
	Avg Min										,
References:											
CPL, MN/m ² (ksi) (1)	Max										
	Avg Min										
References:	141111										
E, GN/m ² (10 ⁶ psi)	Avg	214	(31)			228	(33)			241	(35)
	Min					-	-			-	-
References: 8	- 163										
Compression, Transverse (90)°)(D)										
CUS, MN/m ² (ksi)	Max Avg	223 192	(32.3) (27.9)			456 357	(66.2) (54.5)			452 427	(65.5) (62.0)
	Min	141	(20.5)			180	(26.1)			408	(59.2)
References: 8		ł									
CPL, MN/m ² (ksi) (1)	Max		(14.1)			338	(49.0)				
	Avg Min	71.6 39.5	(10.4) (5.7)			241 166	(35.0) (24 1)	j			
References: 8											
E, GN/m ² (10 ⁶ psi)	Avg	19.3	(2.80)			39.2	(5.69)			40.3	(5.85)
References: 8	Min	13.3	(2.02)			37.7	(5.46)			37.8	(5.49)
In-Plane Shear										į	
SUS, MiN/m ² (ksi)	Avg Min										
References:	,,,,										
SPL, MN/m ² (ksi)	Avg										
References:	Min										
		4 70	(0 eg)			9.19	(1.33)			9.28	(1.35)
G, GN/m ² (10 ⁶ psi)	Avg Min	4.72	(0.68) (0.62)			8.82	(1.28)			9.09	(1.32)
References: 7,8											
Interlaminar Shear											
SUS, MN/m ² (ksi)	Avg										
References:	Min										
SPL, MN/m ² (ksi)	Δσ									ļ	
	Avg Min										
References:				}							
G, GN/m ² (10 ⁶ ,1si)	Avg										
References:	Min										
Impact, Charpy V(Cv), Izod(1)										
Long., (0°) J (ft-lb) (a)	-										
Long., to 19 (16-18) (4)	Avg										
References:											
Trans., (90°) J (ft-lb) ^(b)	Avg										
References:	Min										
Sheet, Normal, J (ft-lb)(c)	Avg										
Scient, Normal, 9 (IT-ID)	Min					1					
References.					11.2.2-2	(11/76)					
(a) Warp direction in woven	cloth.										
(b) Fill direction in woven c	loth.	1		1							

TABLE 11.2.2-TR1

Composite Class: Boron-Epoxy

Type: 5.6 mil Boron/2387

Specification: 5505/6.6 Layup: Uniaxial taps Nominal fiber volume fraction: 0.50 Nominal ply thickness: 0.1905 mm (0.0075 in.)

Fiber: 5.6 mil boron on tungsten Matrix: 2387

Nominal density: 1.94 g/cm³ (0.07 lb/in.³)

Comments: Specification SP-296 essentially equivalent properties (5.6 mil Boron/PR 286)

Testing Temperature, K (F)	297	7 (75)	195	(-108)	77 (-3	20) 20	(-423)	4 (-452)	
Thermal Conductivity									
	Avg 1.03 Avg 0.59		1.11 0.64		0.913 (82 l 0.528 (82 l			0.178 (7.8 K) 0.103 (7.8 K)	
	Avg 0.5		0.553 0.320		0.466 (86.7 0.269 (86.7			0.174 (14.7 K) 0.100 (14.7 K)	
	Avg Avg								
Thermal Expansion									
Longitudinal (0°)(a) 10-6 ΔL/L References:	Avg								
Transverse (90°)(b) 10 ⁻⁶ Δ L/L References:	Avg								
Sheet Normal ^(c) 10 ⁻⁶ Δ L/L References:	Avg								
Specific Heat									
	Avg Avg								
Electrical Resistivity									
Longitudinal (0°)(a) Ohm m References:	Avg								
Transverse (90°)(b) Ohm m References:	Avg								
Sheet Normal ^(c) Ohm m References:	Avg								

⁽b) Fill direction in woven cltoh.

⁽c) Press cure direction.

TABLE 11.3.1-ME1

Composite Class: Graphite-Epoxy

Type: AS/NASA Resin 2

Specification: Layup: Uniaxial tape Nominal fiber volume fraction: 0.6 Nominal ply thickness: 0.207 mm (0.008 in.)

Fiber: Type AS graphite
Matrix: NASA Resin 2⁽⁻¹¹⁾
Nominal density: 1.52 g/cm³ (0.055 lb/in.³)
Comments:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Tension, Longitudinal (0°)(a)												
TUS, MN/m ² (ksi) References: 8	Avg Min	1300 1190	(190) (173)			1230 1213	(178) (176)			1300 1260	(1 90) (163)	
E ₁ , GN/m ² (10 ⁶ psi) (2)	Avg Min	117 112	(17.0) (16.3)			101 94	(14.7) (13.6)			116 107	(16.9) (15.5)	
References: 8 SE ₁ , MN/m ² (ksi)	Avg											
References:	Min											
E ₂ GN/m ² (10 ⁶ psi)	Avg Min											
TPL, MN/m ² (ksi) ⁽¹⁾	Avg Min											
References:	14141	ŢII										
Failure Strain, 10 ⁻³	Avg Min	9.3 9.0				9.3 9.0				9.0 9.0		
References: 8												
Poisson's Ratio		0.347				0.299				0.340		
References: 8 NTS, MN/m ² (ksi)	Avg	,										
K _t = References:	Min											
NTS, MN/m ² (ksi) K _t = References:	Avg Min											
Tension, Transverse (90°)(b)												
TUS, MN/m ² (ksi)	Avg Min	12.8 10.1	(1.86) (1.47)			2.44 1.62	(0. 354) (0.235)			3.04 2.37	(0. 441) (0.344)	
References: 8		7 70	(4.42)			10.00	(4.50)			11 2E	(1.63)	
T ₁ , GN/m ² (10 ⁶ psi)	Avg Min	7.79 7.10	(1.13)			9.65	(1.58) (1.40)				(1.50)	
SE ₁ , MN/m ² (ksi)	Avg Min	11		1.								
References:								ĺ				
E ₂ , GN/m ² (10 ⁶ psi)	Avg Min											
References:								}				
TPL, MN/m ² (ksi) ⁽¹⁾ References:	Avg Min											
Failure Strain, 10 ⁻³	Avg	2.0				0.2				0.3		
References: 8	Min	2.0				0.2				0.2		
Poisson's Ratio		0.022				0.030				0.029		
References: 8												
NTS, MN/m ² (ksi) K _t = References:	Avg Min				11.3.1-1	(11/76)						
NTS, MN/m ² (ksi) K _t = References:	Avg Min											78).
(a) Warp direction in woven of (b) Fill direction in woven ck (1) Essentially linear to fracti (2) Secondary modulus detection	oth.	4 GN/m	² (1-2 x	10 ⁶) hic	gher.							• • • • • • • • • • • • • • • • • • • •

Composite Class: Graphite-Epoxy

Type: AS/NASA Resin 2

Specification:
Layup: Uniaxial tape
Nominal fiber volume (raction: 0.6
Nominal ply thickness: 0.207 mm (0.008 in.)

Fiber: Type AS graphite
Matrix: NASA Resin 2⁽⁻¹¹⁾
Nominal density: 1.52 g/cm³ (0.055 lb/in.³)
Comments:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)
Compression, Longitudinal (0°)(a)										
CUS, MN/m ² (ksi)	Max	561	(81.2)			1229	(178)			883	(128)
	Avg Min	531 496	(77.0) (71.9)			897 668	(130) (97)			694 600	(100) (87)
References: 8	*******	,,,,	(, 1.0)			000	(07)			000	,,,,
CPL, MN/m ² (ksi)	Max	356	(51.5)	1		504	(73.1)			377	(54.7)
	Avg	283	(41.0)			450	(65.4)			374	(54.2) (53.7)
References: 8	Min	225	(32.6)	}		395	(57.3)			370	(55.7)
E, GN/m ² (10 ⁶ psi)	Avg	129	(18.7)			122	(17.7)			125	(18.1)
	Min	125	(18.1)	1		110	(16.0)			124	(18.0)
References: 8											
Compression, Transverse (90	°)(b)										
CUS, MN/m ² (ksi)	Max Avg	104 89	(15.1) (12.8)			151 136	(21.9) (19.8)			150 130	(21.8) (19.0)
	Min	71	(10.3)			125	(18.1)			100	(14.4)
References: 8											
CPL, MN/m ² (ksi)	Max					116 95	(16.8) (13.8)			72 68	(10.5) (9.8)
	Avg Min					80	(11.5)			65	(9.4)
References: 8											
E, GN/m ² (10 ⁶ psi)	Avg	11.0	(1.59)			15.3	(2.21)			16.1	(2.34)
References: 8	Min	10.8	(1.57)			13.1	(1.89)			14.4	('.09)
In-Plane Shear											
SUS, MN/m ² (ksi)	Avg	4.14	(0.60)			4.48	(0.65)			5.30	(0.77)
	Min					-	-			-	
References: 7											
SPL, MN/m ² (ksi)	Avg Min										
References:											
G, GN/m ² (10 ⁶ psi)	Avg										
References:	Min										
Interlaminar Shear											
SUS, MN/m ² (ksi)	A										
	Avg Min										
References:											
SPL, MN/m ² (ksi)	Avg										
References:	Min										
G, GN/m ² (10 ⁶ psi)	Avg										
References:	Min	-									
MINISTER STATE											
Impact, Charpy V(Cv), Izod(I	_	F									
Long., (0°) J (ft-lb) (a)	Avg Min										
References:		1									
Trans., (90°) J (ft-lb)(b)	Avg										
References:	Min										
Sheet, Normal, J (ft-lb)(c)	Avg										
	Min				11.3.1-2	(11/76)					
References:								117			
(a) Warp direction in woven (b) Fill direction in woven clo	cloth.										
In Fill direction in woven cit	otn.										

TABLE 11.3.2-ME1

Composite Class: Graphite-Epoxy

Type: HT-S/X-904

Specification: Layup: Uniaxial tape Nominal fiber volume fraction: 0.60 Nominal ply thickness: 0.127 mm (0.005 in.)

Fiber: HT-S Matrix: X-904 Nominel density: 1.65 g/cm³ (0.0595 lb/in.³) Comments:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Tension, Longitudinal (0°)(a)												
TUS, MN/m ² (ksi)	Avg Min	1296	(188)			1013	(147)					
References: 1	14(11)											
E_1 , GN/m^2 (10 ⁶ psi)	Avg	138	(20.0)			140	(20.3)					
References: 1	Min					'						
SE ₁ , MN/m ² (ksi)	Avg											
References:	Min											
E ₂ GN/m ² (10 ⁶ psi)	Avg											
References:	Min	-										
TPL, MN/m ² (ksi)	Avg											
References:	Min											
Failure Strain, 10-3	Avg	9.0				7.3						
References: 1	Min					ware made						
Poisson's Ratio		0.32				0.35		1				
References: 1												
NTS, MN/m ² (ksi) K _t = References:	Avg Min											
NTS, MN/m ² (ksi) K _t = References:	Avg Min											1=
Tension, Transverse (90°)(b)												
TUS, MN/m ² (ksi) References: 1	Avg Min	16.5	(2. 4) 			24.1	(3.5)					
E ₁ , GN/m ² (10 ⁶ psi)	Avg	7.86	(1.14)			10.96	(1.59)					
References: 1	Min											
SE ₁ , MN/m ² (ksi)	Avg											
References:	Min											
E ₂ , GN/m ² (10 ⁶ psi)	Avg											
References:	Min											
TPL, MN/m ² (ksi)	Avg Min											
References:		2.0				2,1		ł				
Failure Strain, 10 ⁻³	Avg Min											
References: 1		0.01				0.02						
Poisson's Ratio		0.01				0,02						
NTS, MN/m ² (ksi) K _t =	Avg Min											=
References:				2	11.3.2-1	(11/76)						185 Jan 19
NTS, MN/m ² (ksi) K _t = References:	Avg Min											78 .
(a) Warp direction in woven of										1		

TABLE 11.3.2-ME2

Composite Class: Graphite-Epoxy

Type: HT-S/X-904

78:5

Specification: Layup: Uniaxial tape Nominal fiber volume fraction: 0.60 Nominal ply thickness: 0.127 mm (0.005 in.)

Fiber: HT-S Matrix: X-904 Nominal density: 1.65 g/cm³ (0.0595 lb/in.³) Comments:

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20_	(-423)	4	(-452)	
Compression, Longitudinal (0°)(a)											
CUS, MN/m ² (ksi)	Max Avg	787	(114)			1371	(199)					
References: 1	Min	ł	-							ł		
CPL, MN/m ² (ksi)	Max Avg			Ì				; (
References:	Min											
E, GN/m ² (10 ⁶ psi)	Avg	136	(19.8)			128	(18.6)					
References: 1	Min					-	-					
Compression, Transverse (90	ı∘ı(b)							-				
CUS, MN/m ² (ksi)	Max						_					
	Avg Min	150	(21.8)			253	(36.7)					
References: 1												
CPL, MN/m ² (ksi)	Max Avg Min											
References:	(4(1)))						
E, GN/m ² (10 ⁶ psi)	Avg Min	10.4	(1.51) 			17.2	(2.50)	}				
References: 1				1								
In-Plane Shear								ļ				
SUS, MN/m ² (ksi) References:	Avg Min											
SPL, MN/m ² (ksi))		Ì								
SPL, MN/m² (ksi) References:	Avg Min											
G, GN/m ² (10 ⁶ psi)	Avg											
References:	Min											
Interlaminar Shear				İ								
SUS, MN/m ² (ksi)	Avg Min	95.8	(13.9)			120	(17.4)					
References: 1										ļ		
SPL, MN/m ² (ksi)	Avg Min											
References: G, GN/m ² (10 ⁶ psi)												
References:	Avg Min											
Impact, Charpy V(Cv), Izod(1)											
Long., (0°) J (ft-lh) ^(a)	Avg Min											
References:												
Trans., (90°) J (ft-lb)(b)	Avg Min											
References:												
Sheat, Normal, J (ft-lb) ^(c)	Avg Min											
References:					11,3.2-2	(11/76)						
(a) Warp direction in: woven (b) Fill direction in woven of (c) Press cure direction.												

TABLE 11.3.2-TR1

Composite Class: Graphite-Epoxy

Type: HT-S/X-904

Specification: Layup: Uniaxial tape Nominal fiber volume fraction: 0.60 Nominal ply thickness: 0.127 mm (0.005 in.)

Fiber: HT-S Matrix: X-904

Nominal density: 1.65 g/cm³ (0.0595 lb/in.³)

Comments:

Testing Temperature, K (F)		297 (75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Thermal Conductivity											
Longitudina! (0°)(a) Watts m-1 K-1 Btu hr-1 ft-1 F-1 References: 1	evA	13.55 7.83	11.50 6.64		4.30 2.48						
Transverse (90°)(b) Watts sm ⁻¹ K·1 Btu hr ⁻¹ ft ⁻¹ F·1 References: 1	Avg Avg	0.660 0.381	0,50 5 0,291		0.267 0.154				7		
Sheet Normal ^(c) Watts wi ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F-1 References:	Avg Avg										
Thermal Expansion											
Longitudinal $(0^{\circ})^{\{a\}}$ 10 ⁻⁶ Δ L/L References: 1	Avg	0	+13.9		+41.6						
Transverse (90°)(b) 10-6 Δ L/L References: 1	Avg	0	-1270		-2500						
Sheet Normal ^(c) 10 ⁻⁶ Δ L/L References:	Avg										
Specific Heat										1	
Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹ References: 1	Avg Avg	890 2125	629 1492		304 726						
Electrical Resistivity											
Longitudinal (0°) ^(a) Ohm m References: 1	Avg	0.3-70*			0.4-90	•					
Transverse (90°)(b) Ohm m References: 1	Avg	190			220						
Sheet Normal ^(c) Ohm m References: 1	Avg	1600			1900						

⁽b) Fill direction in woven cltch.

⁽c) Press cure direction.

Electrical resistivity in fiber direction strongly affected by fiber volume, fiber distribution and moisture content of composite.

TABLE 11.4.1-ME1

Composite Class: Boron-Aluminum

Type: 5.6 mil Boron/6061

Specification: Layup: Uniaxial tape Nominal fiber volume fraction: 0.47

Nominal ply thickness: 0,180 mm (0.007 in.)

Fiber: 5.6 mil boron on tungsten Matrix: 6061 Aluminum

Nominal density: 2.66 g/cm³ (0.095 lb/in.³) Comments: F Temper, diffusion bonded

Testing Temperature, K (F)		297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Tension, Longitudinal (0°)(a)												
TUS, MN/m ² (ksi)	Avg Min	1310 1206	(190) (175)			1 630 1585	(237) (230)			1 606 14 9 6	(233) (217)	
References: 6, 7											-	
E ₁ , GN/m ² (10 ⁶ psi)	Avg Min	205 194	(29.8) (28.1)			196 186	(28.5) (27.0)			204 191	(29.5) (27.7)	
References: 6,7]									1	
SE ₁ , MN/m ² (ksi)	Avg Min											
References:								1				
E ₂ GN/m ² (10 ⁶ psi)	Avg Min											
References:								11				
TPL, MN/m ² (ksi) ⁽¹⁾	Avg Min							ļ				
References:						1						
Failure Strain, 10 ⁻³ References: 6, 7	Avg Min	6.20 6.00			•	7.75 7.00				7.75 7.00		
						224				0.24		
Poisson's Ratio		0.29				0.34				0.34		
References: 6, 7												
NTS, MN/m ² (ksi) K _t ≈ Refer∋nces:	Avg Min											
NTS, MN/m ² (ksi) K _t ≈ References:	Avg Min									= 1		
Tension, Transverse (90°)(b)		}										
TUS, MN/m ² (ksi)	Avg Min	163 145	(23.6) (21.1)			244 229	(35.4) (33.2)			276 273	(40.0) (39.6)	
References: 6,7												
E ₁ , GN/m ² (10 ⁶ psi)	Avg Min	156 138	(22.6) (20.0)			123 100	(18.5) (14.6)			150 118	(21.8) (17.1)	
References: 6,7												
SE ₁ , MN/m ² (ksi) References:	Avg Min											
]	
E ₂ , GN/m ² (10 ⁶ psi) References:	Avg Min											
TPL, MN/m ² (ksi)	Avg	66.2	(9.6)			76.0	(11.0)			72.1	(10.5)	
References: 6, 7	Min	53.7	(7.8)			64.8	(9.4)			50.3	(7.3)	
Failure Strain, 10 ⁻³	Avg Min	6.3 4.9				8.3 8.0				8.7 8.0		
References: 6,7												
Poisson's Ratio		0.22				0.22				0.25		
References: 6,7												
NTS, MN/m² (ksi) Kt =	Avg Min											
References:					11.4.1-1	(11/76)						
NTS, MN/m ² (ksi) K _t = References;	Avg Min											7865
(a) Warp direction in woven of (b) Fill direction in woven of (1) Essentially linear to fraction	oth.											

TABLE 11.4.1-ME2

Composite Class: Boron-Aluminum

Type: 5.6 mil Boron/6061

Specification: Layup: Uniaxial tape Nominal fiber volume fraction: 0.47 Nominal ply thickness: 0.180 mm (0.007 in.)

Fiber: 5.6 mil boron on tungsten
Matrix: 6061 Aluminum
Nominal density: 2.66 g/cm³ (0.095 lb/in.³)
Comments: F Temper, diffusion bonded

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Compression, Longitudinal (0°)(a)					77.					-	
CUS, MN/m ² (ksi) ⁽¹⁾ Max	2475	(359)			2868	(416)			3260	(473)	
Avg	1980 1455	(287) (211)			2068 1393	(300) (202)			2900 2600	(421)	
Min References: 8, 12, 13	1455	(211)			1555	(202)			2000	(0	
CPL, MN/m ² (ksi) ⁽²⁾ Max Avg										- 1	
Min References:										1	
E, GN/m ² (10 ⁶ psi) ^(1, 3) Avg	(228)	(33)								1	
References: 6	}										
Compression, Transverse (90°)(b)											
CUS, MN/m ² (ksi) ⁽¹⁾ Max Avg Min	321 275 249	(46.6) (39.8) (36.1)			456 436 387	(66.2) (63.2) (56.1)			656 623 582	(95.1) (90.3) (84.5)	
References: 8, 12, 13											
CPL, MN/m ² (ksi) ⁽¹⁾ Max Avg Min	59.4 57.7 54.9	(8.61) (8.37) (7.97)			96.7 87.3 81.8	(14.0) (12.7) (11.9)			113 108 101	(16.4) (15.7) (14.6)	
References: 8	-										
E, GN/m ² (10 ⁶ psi) ⁽¹⁾ Avg Min References: 8, 12, 13	150 107	(21.8) (15.5)			124 89	(18.0) (12.9)			101 90	(14.6) (13.0)	
	1								1		
In-Plane Shear		100 =1	1		100	(22 E)	}				
SUS, MN/m ² (ksi) Avg Min References: 12	1 55 89	(22.5) (12.9)			162	(23.5) (19.8)					
SPL, MN/m ² (ksi) Avg											
Min References:											
G, GN/m ² (10 ⁶ psi) Avg Min References: 12	58 57	(8.4) (8.3)									
							{			1	
Interlaminar Shear	124	(10)	1		132	(19.1)	l				
SUS, MN/m ² (ksi) Avg Min References: 6, 14	97	(18) (14)			132						
SPL, MN/m ² (ksi) Avg Min											
References:											
G, GN/m ² (10 ⁶ っぱ) Avg Min References:											
Impact, Charpy V(Cv), Izod(I)											
Long., (0°) J (ft-lb) (a) Avg											
References:			1								
Trans., (90°) J (ft-lb)(b) Avg Min											
References:											
Sheet, Normal, J (ft-lb) (c) Avg Min References:				11.4.1-2	(11/76)						
(a) Warp direction in woven cloth. (b) Fill direction in woven cloth. (c) Press cure direction. (1) Sandwich beam data not includ (2) Essentially linear to fracture.	5 d.										

7875

⁽²⁾ Essentially linear to fracture.
(3) 297 K data may be used conservatively at low temperatures.

Composite Class: Boron-Aluminum

Type: 5.6 mil Boron/6061

Specification:

Layup: Uniaxial tape

Nominal fiber volume fraction: 0.47

Nominal ply thickness: 0.180 mm (0.007 in.)

Fiber: 5.6 mil boron on tungsten

Matrix: 6061 aluminum

Nominal density: $2.66 \text{ g/cm}^3 (0.095 \text{ lb/in.}^3)$

Comments: F Temper, diffusion bonded

Fatigue

Load orientation: 0° (uniaxial)

Load direction: tension-tension

FIGURE 11.4.1-ME1. FATIGUE LIFE CYCLE FOR BORON-ALUMINUM

TABLE 11.4.1-TR1

Composite Class: Boron-Aluminum

Type: 5.6 mil Boron/6061

Specification:

Layup: Uniaxial tape
Nominal fiber volume fraction: 0.47
Nominal ply thickness: 0.180 mm (0.007 in.)

Fiber: 5.6 mil boron on tungsten Matrix: 6061 Aluminum

Nominal density: 2.66 g/cm³ (0.095 lb/in.³) Comments: F Temper, diffusion bonded

Testing Temperature, K (F)	297	(75)	195	(-108)	77	(-320)	20	(-423)	4	(-452)	
Thermal Conductivity											
Longitudinal (0°)(a) Watts m-1 K-1 Avg Btu hr-1 ft-1 F-1 Avg References:											
Transverse (90°)(b) Watts en 1 K-1 Avg Etu hr 1 ft 1 F-1 Avg References:											
Sheet Normai ^(c) Watts s n· ¹ K· ¹ Avg Btu hr ⁻¹ ft· ¹ F· ¹ Avg Refer ances :											
Thermal Expansion					İ						
Lon_ (udinal (0°)(a) 10 ^S ΔL/L Avg References: 1,14	0				-460				-740		
Transverse (90°)(b) 10-6 Δ L/L Ave References: 1,14	o				-2240				-3380	•	
Sheet Normal ^(c) 10 ⁻⁶ Δ L/L Avg References:											
Specific Heat			1								
Joules kg ⁻¹ K ⁻¹ Avg Btu lb ⁻¹ F ⁻¹ Avg References: 14					440 1050						
Electrical Resistivity Longitudinal (N°)(a) Ohm m Avg References:											
Transverse (90°)(b) Ohm m Avg References:									1.		
Sheet Normal ^(c) Ohm m Avg References:											

⁽b) Fill direction in woven cltch.

⁽c) Press cure direction.

References

- Hertz, J., Christian, J. L., and Varlas, M., "Advanced Composite Applications for Spacecraft and Missiles, Phase I Final Report, Vol. II: Material Development", AFML-TR 71-186, Vol. 2 (March 1972) AD 893715L.
- Hertz, J., "Investigation into the High-Temperature Strength Degradation of Fiber-Reinforced Resin Composites During Ambient Aging", General Dynamics/Convair Report No. GDCA-DBG73-005 (June 1973).
- Nadler, M. A., Yoshino, S. Y., and Darms, F. J., "Boron/Epoxy Support Strut for Non-Integral Cryogenic Tankage", North American Rockwell Space Division Report SD 68-99501 (February 1969).
- Kaminski, B. E., Lemon, G. H., and McKague, E. L., "Development of Engineering Data for Advanced Composite Materials-Vol. 1, Static and Thermo Physical Properties", AFML-TR 70-108 (October 1972).
- 5. "Development of Engineering Data on the Mechanical and Physical Properties of Advanced Composite Materials", AFML-TR 72-205, Part ! (September 1972).
- 6. "Advanced Composites Design Guide, 3rd Ed., Vol. IV: Materials", AFML, Wright-Patterson AFB, Ohio (January 1973).
- 7. "Materials Research for Super Conducting Machinery", Semi-Annual Technical Report IV, Advanced Research Projects Agency (1975).
- 8. Unpublished data, Cryogenic Division, National Bureau of Standards, Boulder, Colorado.
- 9. Hust, J. G., "Thermal Conductivity of Transverse and Longitudinal Boron-Epoxy", Cryogenics Division-NBS Institute for Basic Standards Laboratory Note 75-4 (August 1, 1975).
- 10. Lewis, A. and Bush, G. E., "Improved Cryogenic Resin-Glass Filament-Wound Composites", NASA CR-72163 (March 1967) N67-31856.
- 11. Soffer, L. M. and Molho, R., "Cryogenic Resins for Glass Filament-Wound Composites", NASA CR-72114 (January 1967) N67-25076.
- Miller, M. F., Christian, J. L., and Wenhold, W. F., "Design, Manufacture, Development, Test and Evaluation of Boron/Aluminum for Space Shuttle Components", NAS 8-27738, General Dynamics/Convair Report GDCA-DBG 73-06 (August 1973).
- 13. Hofer, K. E., Jr., Reo, N., and Larsen, D., "Development of Engineering Data on the Mechanical and Physical Properties of Advanced Composite Materials", AFML-TR 72-205, Part II, AFML, WPAFB, Ohio (February 1974).
- Christian, J. L. and Campbell, M. D., "Mechanical and Physical Properties of Several Advanced Metal-Matrix Composite Materials", Advances in Cryogenic Engineering, Vol. 18, K. D. Timmerhaus, Ed., Plenum Press, New York (1973), p. 175.

- 15. Brink, N. O., "Determination of the Performance of Plastic Laminates Under Cryogenic Temperatures", ASD-TDR-62-794, Air Force Systems Command, WPAFB, Ohio (August 1962) AD 288944.
- 16. Kasen, M. B., "Mechanical and Thermal Properties of Filamentary-Reinforced Structural Composites at Cryogenic Temperatures-I: Glass-Reinforced Composites", Cryogenics J., Vol. 15, (N06) (June 1975), p.327.
- 17. Steinhauer, R. A., "Linear Thermal Expansion of 828CL 181 Cloth Laminate", Douglas Aircraft Company, M&P Lab Report MP 11, 979 (August 1961).
- Toth, L. W., Boller, T. J., Butcher, I. R., Kariotis, A. H., and Yoder, F. D., "Program for the Evaluation of Structural Reinforced Plastic Materials at Cryogenic Temperatures", NASA CR-80061 (Final), George C. Marshall Space Flight Center, Huntsville, Alabama (August 1966) N67-12051.

INDEX TO MATERIAL CODES FOR SECTION 12.0

POLYMERS

MATERIALS	MATERIAL CODE
POLYETHYLENE (PE)	12,1,1
POLYTETRAFLUOROETHYLENE (PTFE)	12.1.2
POLYCHLOROTRIFLUOROETHYLENE (PCTFE)	12,1,3
POLYMETHYLMETHACRYLATE (PMM)	12.2.1
POLYSTYRENE (PS)	12.3.1
POLYVINYLACETATE (PVA)	12.4.1

TABLE 12.1.2-ME5

Polychlorotrifluoroethylene (PCTFE) Alloy Designation:

Specification:
Form:
Thickness, cm (in.):
Condition:
Crystallinity, percent: 67.6-70.0

Testing Temperature, K (F)	297297 (7	75)	195	(-108)		77	(-320)	20	(-423)	
E _{f1} , GN/m ² (10 ⁶ psi)	Avg Min										
E_{f2} , GN/m^2 (10 ⁶ psi)	Avg Min										
No. of Spec,											
Impact											
Charpy, V, J (ft-lb)J/m (ft-lb/in.) No. of Spec. No. of Spec	Avg Min										
Izod, J/m (ft-lb/in.) No. of Spec.	Avg Min		. 10)).93)	55.5 52.9	(1.00)		58.2 52.9	(1.10) (1.00)	65.6 59.2	(1.24) (1.12)	
Hardness											
Rockwell	Avg Min										
References: 90205											
						}					
		ļ									
											3.
		ļ									

TABLE 12.1.2-TR1

Alloy Designation:

Polychlorotrifluoroethylene (Kel-F)

Specification: Form: Dimension: Condition:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity												
Watts m-1 K-1	0.130		0.09		0.079		0.054	(0.000)	0.038	(0.000)	0.0190	(0.011)
Btu hr-1 ft-1 F-1	1	(0.075)	_	(0.057)	1	(0.046)	1	(0.031)	1	(0.022)	1	(0.011)
No. of Spec. Pofe: ances: 90205, 96881			•									
Thermal Expansion (T ₂₇₃ to T) Longitudinal										52 H		
Percent	0		-0,725		-0.860							
No. of Spec.	1	ì	1		1							
References: 94202					1							
Specific Heat	ļ											
Joules kg-1 K-1		[3.72	6 x 10-4
Btu 16-1 F-1		ł									1	6 X 10 ·
No of Spec. References: 96881												
Electrical Resistivity												
Ohm m	1	}										
Ohm circular mil ft ⁻¹		ļ			ļ							
No. of Spec.												
References:	1	-										

FIGURE 12.1.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR POLYCHLOROTRIFLUORDETHYLENE (KEL-F)

FIGURE 12.1.2-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR POLYCHLOROTRIFLUOROETHYLENE(KEL-F)

FIGURE 12.1.2-S1. SPECIFIC HEAT VERSUS TEMPERATURE FOR POLYCHLOROTRIFLUOROETHYLENE (KEL-F)

TABLE 12.1.3-TR1

Alloy Designation:

Polytetrafluoroethylene (Teflon)

Specification:

Form: Dimension: Condition:

Amorphous

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity Watts m-1 K-1 Btu hr-1 ft-1 F-1 No. of Spec References: 96881											0.032	(0.018)
Thermal Expansion (T ₂₇₃ to T) Longitudinal												
Percent No. of Spec References: 94202	O		- 1.48		-1.57							
Specific Heat Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹ No of Spec. References: 94196, 94203	940	(0.225)	380	(0.0908)	200	(0.0478)	75	(0.0179)	20.5	(0.00490)	2.2	(0.000526)
Ohm m Ohm circular mil ft ⁻¹ No. of Spec. References:												

FIGURE 12.1.3-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR POLYTETRAFLUOROETHYLENE (TEFLON)

TABLE 12.1.3-MA1

Polymer Designation: Polytetrafluo.oethylene (Teflon)

Specification:

Form:

Rod

Diameter, cm(in.):

~1 (?)

Condition:

As received, with treatment in boiling aqua regia to remove surface impurities

Volume Susceptibility (k)* as a Function of Temperature and Field Strength

Temperature,			
K (F)	Low	Medium	Infinite
6.1 (-448)	-105.0 × 10 ⁻⁷	-106.9 x 10 ⁻⁷	-108.8 x 10
16.8 (-429)	-107.6 x 10 ⁻⁷	-109.2 x 10 ⁻⁷	-110.4 x 10-7
30.0 (-405)	-109.5 x 10 ⁻⁷	-110.4 x 10 ⁻⁷	-111.4 x 10-7
48.8 (-372)	-109.9 x 10 ⁻⁷	-110.9 x 10 ⁻⁷	-111.9 x 10-7
64.7 (-343)	-110.2 x 10 ⁻⁷	-111.0 x 10 ⁻⁷	-111.9 x 10-7
81.7 (-312)	-109.3 x 10 ⁻⁷	-109.9 x 10 ⁻⁷	-110.5 x 10
102.1 (-275)	-109.6 x 10 ⁻⁷	-110.1 x 10 ⁻⁷	-110.7 × 10
152.5 (-185)	-109.9 x 10 ⁻⁷	-110.4 x 10 ⁻⁷	-110.8 x 10-7
194.8 (-109)	-110.1 x 10 ⁻⁷	-109.8 x 10 ⁻⁷	-110.9 x 10
255.2 (-0.3)	-110.1 x 10 ⁻⁷	-110.3 × 10 ⁻⁷	-110.5 x 10
292.0 (66)	-110.0 x 10 ⁻⁷	-110.1 x 10 ⁻⁷	-110.3 x 10-7

Note: $\mu_{mksa} \sim 12.57 \times 10^{-7}$ for all values of k.

Reference: 96890

^{*} in mksa units.

TABLE 12.2.1-TR1

Alloy Designation: Polymethylmethacrylate (Plexiglas)

Specification: Form: Dimension: Condition:

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity Watts m-1 K-1 Btu hr-1 ft-1 F-1 No of Spec References: 96872, 96880, 96889		e de la companya de l									0.052 4	(0.030)
Thermal Expansion (T ₂₇₃ to T) Longitudinal Percent No of Spec References:												
Specific Heat Joules kg-1 K-1 Btu Ib-1 F-1 No of Spec References: 94201, 94203	1280	(0.306)	550	(0.131)	275	(0.0657)	79	(0.0189)	22	(0.00526)	2.4	(0.000574)
Ohm m Ohm circular mil ft ⁻¹ No. of Spec. References:												

FIGURE 12.2.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR POLYMETHYLMETHACRYLATE (AMORPHOUS)

80...<

12.2.1-1.1 (11/76)

FIGURE 12.2.1-S1. SPECIFIC HEAT VERSUS TEMPERATURE FOR POLYMETHYLMETHACRYLATE (PLEXIGLAS)

TABLE 12.3.1-TR1

Alloy Designation: Polystyrene

Specification:

Form: Dimension:

No of Spec References: 96872,96880, 96882 Thermal Expansion (T273 to T) Longitudinal Percent No of Spec References: 96883 1	Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Btu hr ⁻¹ ft ⁻¹ F ⁻¹ No of Spec References: 96872, 96880, 96882 Thermal Expansion (T ₂₇₃ to T) Longitudinal Percent No of Spec References: 96883 Specific Heat Joules kg ⁻¹ K ⁻¹ 1130 455 270 (0.109) (0.0645) Z 2 2 2 2 2 2 2 2 2	Thermal Conductivity												
No of Spec References: 96872, 96880, 96882 Thermal Expansion (T273 to T) Longitudinal Percent No of Spec References: 96883 1	Watts m ⁻¹ K ⁻¹ Btu hr ⁻¹ ft ⁻¹ F ⁻¹											0.0266	(0.0154)
Percent												3	
Congitudinal]											
No of Spec References: 96883 Specific Heat Joules kg ⁻¹ K ⁻¹ 1130 455 270 102 32 5.1 8tu 1b ⁻¹ F ⁻¹ (0.270) (0.109) (0.0645) 2 2 2 2 2 2 2 2 3 2 3 3													
References: 96883 Specific Heat Joules kg ⁻¹ K ⁻¹ Btu lb ⁻¹ F ⁻¹ No. of Spec. References: 94200, 94203 Electrical Resistivity Ohm m Chm circular in it ft ⁻¹ No. of Spec.	Percent	0.00		-1.00		-1.23		-1.31		-1.31		-1.32	
Specific Heat Joules kg ⁻¹ K ⁻¹ 1130 455 270 102 32 5.1 (0.00122 1 1 1 1 1 1 1 1 1		1		1		1		1		1		1	
Joules kg ⁻¹ K ⁻¹	References: 96883												
Btu lb ⁻¹ F ⁻¹ No. of Spec. References: 94200, 94203 Electrical Resistivity Ohm m Chm circular in it ft ⁻¹ No. of Spec.	Specific Heat												
No. of Spec. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Joules kg ⁻¹ K ⁻¹	1130		455		273		102		32		5.1	
References: 94200, 94203 Electrical Resistivity Ohm m Chm circular in 11 ft ⁻¹ No of Spec.			(0.270)		(0.109)		(0.0645)		(0.0244)		(0.00765)		(0.00122)
Electrical Resistivity Ohm m Chm circular n 11 ft ⁻¹ No of Spec.		2		2		2		2		2		1	
Ohm m Chm circular in it ft ⁻¹ No of Spec.	References: 94200, 94203												
Ohm circular n 1 ft ⁻¹ No of Spec.	Electrical Resistivity												
No of Spec.	Ohm m									-			
Deferences													
Aeterices:	References:		1										

FIGURE 12.3.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR POLYSTYRENE (AMORPHOUS)

FIGURE 12.3.1-E1. THERMAL EXPANSION VERSUS TEMPERATURE FOR POLYSTYRENE (AMORPHOUS)

FIGURE 12.3.1-S1. SPECIFIC HEAT VERSUS TEMPERATURE FOR POLYSTYRENE

Alloy Designation:

POLYVINYLACETATE

Specification:

Form: Dimension: Condition:

AMORPHOUS

Testing Temperature K (F)	273	(32)	100	(-280)	50	(-370)	20	(-423)	10	(-442)	4	(-452)
Thermal Conductivity (1)												
Watts m ⁻¹ K ⁻¹											0.0179	
Btu hr-1 ft-1 F-1]									(0.010
No of Spec.											1	
References: 96872									l			
Thermal Expansion (T273 to T)					-							
Longitudinal	-											
Percent			1									
Ng_of Spec.												
References:												
Specific Heat												
Joules kg ⁻¹ K ⁻¹			1									
Btu lb-1 F-1												
No of Spec.	1		}		12							
References:												
Charles I Burton In												
Electrical Resistivity												
Ohm m												
Ohm circular mil ft ⁻¹ No. of Spec.												
References:	100											
	1											
(1) Density = 1.20 g/cm ³					l		ļ					
Molecular Weight=105,000												

FIGURE 12.4.1-C1. THERMAL CONDUCTIVITY VERSUS TEMPERATURE FOR POLYVINYLACETATE (AMORPHOUS)

REFERENCES

- 26638 Kemp, W.R.G., Klemens, P. G., and White, G. K., "Thermal and Electrical Conductivities of Iron, Nickel, Titanium, and Zirconium at Low Temperatures", Australian Journal of Physics, 9 (2), 180-188 (June 1956).
- 29830 McGee, R. L. and Campbell, J. E., "The Mechanical Properties of Certain Aircraft Structural Metals at Very Low Temperatures", Technical Report ASD-TR-58-386, Battelle Memorial Institute (November, 1958).
- Baughman, R. A., "Gas Atmosphere Effects on Materials", Final Report, R59FPD456, General Electric Company, WPAFB Contract AF 33(616)-5667 (June 15, 1959).
- 35611 Belton J. H., Godby, L. L., and Taft, B. L., "Materials for Use at Liquid Hydrogen Temperatures", Paper presented at the Sixty-Third Annual ASTM Meeting, Atlantic City, N. J., June 26-July 1, 1963.
- DeSisto, T. S., "The True-Stress True-Strain Properties of Titanium and Titanium Alloys as a Function of Temperature and Strain Rate", Technical Report WAL TR-405.2/4, Watertown Arsenal (March, 1960).
- 37146 Rice, L. P., Campbell, J. E., and Simmons, W. F., "The Evaluation of the Effects of Very Low Temperatures on the Properties of Aircraft and Missile Metals", WADD-TR-60-254, Battelle Memorial Institute, Contract AF 33(616)-6345 (June, 1960).
- 38611 Belton, J. H., Godby, L. L., and Taft, B. L., "Materials for Use at Liquid Hydrogen Temperatures", ASTM Special Technical Publication No. 287, 108-121 (June 30, 1960).
- Watson J. F. and Christian, J. L., "Mechanical Properties of High-Strength 301 Stainless Steel Sheet at 70°, -320°, and -423°F in the Base Metal and Welded Joint Configuration", ASTM Special Technical Publication No. 287, 136-149 (June 30, 1960).
- 39134 Kaufman, J. G. and Johnson, E. W., "New Data on Aluminum Alloys for Cryogenic Applications", Proceedings of the 1960 Cryogenic Engineering Conference, 637-649 (1961).
- 39414 Kropp, C. J. and Foor, E. R., "Mechanical Properties of Heat Treated A-286 Alloy at Various Testing Temperatures, Status Report No. 3", Technical Report MRG-157, Convair-Astronautics/General Dynamics (June 8, 1960).
- 39429 Watson J. F. and Christian, J. L., "The Effect of Cryogenic Temperatures on the Mechanical Properties of High Strength Sheet Alloys (Cold Worked Austenitic Stainless Steels)", Technical Report ERR-AN-003, Convair-Astronautics/General Dynamics (May 16, 1960).
- 39871 Guntner, C. J. and Reed, R. P., "Mechnical Properties of Four Austenitic Stainless Steels at Temperatures Between 300° and 20°K", Proceedings of the 1960 Cryogenic Engineering Conference, 565-576 (1961).
- 40004 DeSisto, T. S. and Carr, L. C., "Low Temperature Mechanical Properties of 300 Series Stainless Steel and Titanium", Proceedings of the 1960 Cryogenic Engineering Conference 577-586 (1961).

81 : <

- 40128 Christian, J. L., "Mechanical Properties of Titanium and Titanium Alloys at Cryogenic Temperatures", Technical Report MRG-189, Convair-Astronautics/General Dynamics (October 14, 1960).
- Johnson, V. J., "A Compendium of the Properties of Materials at Low Temperatures (Phase I). Part II. Properties of Solids", WADD-TR-60-56, Part II, NBS, WPAFB Contract AF 33(616)-58-4 (October, 1960).
- 40953 Hanson, M. P., "Smooth and Sharp-Notch Tensile Properties of Cold-Reduced AISI 301 and 304L Stainless Steel Sheet at 75°, -320°, and -423°F", NASA TN D-592, Lewis Research Center (February, 1961).
- Markovich, R. and Schwartzberg, F., "Testing Techniques and Evaluation of Materials For Use at Liquid Hydrogen Temperatures", Technical Report R-61-4, The Martin Company (February, 1961).
- 42219 Corruccini, R. J. and Gniewek, J. J., "Specific Heats and Enthalpies of Technical Solids at Low Temperatures", NBS Monograph 21 (October 3, 1960).
- Anon., "Final Results from Operation Cryogenics", International Nickel Company, Inc. (1961).
- Chafey, J. E., "Compilation of Materials Research Data", Technical Report AE-62-0138-2, General Dynamics, Contract AF 33(616)-7984 (September, 1961).
- 45001 Favor, R. J., and Gideon, D. N., "Investigation of Fatigue Behavior of Certain Alloys in the Temperature Range: Room Temperature to 423 F", ASD-TR-61-132, Battelle Memorial Institute, Contract AF 33(616)-6888 (June 1961).
- 45136 Christian, J. L., "Determination of the Effect of Oxygen Content on the Mechanical Properties of Titanium 5Al-2.5Sn Alloy at Room and Cryogenic Temperatures", Technical Report MRG-266, General Dynamics (October 20, 1961).
- DeSisto, T. S. and Carr, F. L., "Low Temperature Mechanical Properties of 300 Series Stainless Steels and Titanium", Technical Report WAL TR-323.4/1, Watertown Arsenal (December, 1961).
- Hurlich, A., "Materials Requirements for Cryogenic Temperature Applications", Paper presented at the ASM 1962 Golden Gate Metals Conference (February 15-17, 1962).
- 47125 Hanson, M. P. and Richards, H. T., "Smooth and Sharp-Notch Property Variations for Several Heats of Ti-6Al-4V Sheet at Room and Cryogenic Temperatures", NASA Technical Note D-1282 (May, 1962).
- 47311 Hickey, C. F., Jr., "Mechanical Properties of Titanium and Aluminum Alloys at Cryogenic Temperatures", Technical Report WAL-TR-340.2/1, Watertown Arsenal (March, 1962).
- Hickey, C. F., Jr., "Mechanical Properties of Titanium and Aluminum Alloys at Cryogenic Temperatures", Preprint of paper presented at the Sixty-Fifth Annual ASTM Meeting (June 25-29, 1962).
- King, E. J., "Cryogenic Properties of 2014-T6 and A-286. Phase II", Technical Report BLR-61-35-M, Bell Aerosystems Company, Contract AF 33(657)-8555 (June, 1962).

- 48128 Guntner, C. J. and Reed, R. P., "The Effect of Experimental Variables Including the Martensitic Transformation on the Low-Temperature Mechanical Properties of Austenitic Stainless Steels", Transactions of the ASM, 55, 399-419 (September, 1962).
- 48134 Arp, V., Wilson, J. H., Winrich, L., and Sikora, P., "Thermal Expansion of Some Engineering Materials From 20° to 293°K", Cryogenics, 2 (4), 1-6 (June, 1962).
- 48561 Rice, L. P., Campbell, J. E., and Simmons, W. F., "The Tensile Property Evaluation of One 5000-Series Aluminum Alloys at the Temperature of Liquid Helium", Proceedings of the 1962 Cryogenic Engineering Conference, 671-677 (1963).
- Ziegler, W. T., Mullins, J. C., and Hwa, S.C.P., "Specific Heat and Thermal Conductivity of Four Commercial Titanium Alloys From 20° to 300°K", Proceedings of the 1962 Cryogenic Engineering Conference, 268-277 (1963).
- Rhodes, B. L., Moeller, C. E., Hopkins, V., and Marx, T. I., "Thermal Expansion of Several Technical Metals From -255° to 300°C", Proceedings of the 1962 Cryogenic Engineering Conference, 278-286 (1963).
- 48652 Christian, J. L., "Physical and Mechanical Properties of Pressure Vessel Materials for Application in a Cryogenic Environment", ASD-TDR-62-258, General Dynamics, Contract AF 33(616)-7719 (March, 1962).
- 48787 Kaufman, J. G., and Nelson, F. G., "Cryogenic Temperatures up Fatigue Strengths of Al-Mg Alloys", Space/Aeronautics, 38 (1), 91-93 + 96 (July 1962).
- 49048 Gideon, D. N., Favor, R. J., Koppenhafer, A., Grover, H. J., and McClure, M., "Investigation of Notch Fatigue Behavior of Certain Alloys in the Temperature Range of Room Temperature to -423°F", ASD-TDR-62-351, Battelle Memorial Institute, WPAFB Contract AF 33(616)-6888 (August, 1962).
- 49088 Watson, J. F., Christian, J. L., and Hertz, J., "Selection of Materials for Cryogenic Applications in Missiles and Aerospace Vehicles", Technical Report GDA-MRG-132-1, General Dynamics (February, 1960).
- 49225 Anon., "Titanium for Liquid Hydrogen Applications. Investigation of the Influence of Chemistry on Low Temperature Behavior of Titanium Alloys", Data Sheets EFE, Titanium Metals Corporation of America (May, 1962).
- Hilsen R. R., Yen, C. S., and Whiteson, B. V., "Low Cycle Fatigue of Ti-6Al-4V at -423 F", Paper No. 48 presented at the American Society for Testing and Materials Meeting, Los Angeles, California (October 1-5, 1962).
- 49971 Christian, J. L., "The Effects of Cold Rolling on the Mechanical Properties of Type 310 Stainless Steel at Room and Cryogenic Temperatures", Technical Report AR-592-1-329, General Dynamics (July 24, 1962).
- 50498 Christian, J. L., Hurlich, A., Chafey, J. E., and Watson, J. F., "Mechanical Properties of Titanium-5Al-2.5Sn Alloy at Room and Cryogenic Temperatures", Technical Report AR-592-1-373, Astronautics/General Dynamics (1963).
- 51070 Christian, J. L., "Mechanical Properties of High-Strength Sheet Materials at Cryogenic Temperatures", Technical Report ERR AN 255, Astronautics/General Dynamics (November 28, 1962).

81 :<

- Schwartzberg, F. R. and Keys, R. D., "Mechanical Properties of 2000 Series Aluminum Alloys at Cryogenic Temperatures", Technical Report R-61-32, The Martin Company (October, 1961).
- 51527 Christian, J. L. and Hurlich, A., "Physical and Mechanical Properties of Pressure Vessel Materials for Application in a Cryogenic Environment. Part II", ASD-TDR-62-258, Part II, Astronautics/General Dynamics, WPAFB Contract AF 33(616)-7719 (April, 1963).
- DeSisto, T. S., "Low Temperature Mechanical Properties of Base and Weld Deposits of Selected Austenitic Stainless Steels", Technical Report AMRA-TR-63-08, Watertown Arsenal (July, 1963).
- King, E. J., "Investigation of Aluminum Alloy 6061-T4, T6 Welded and Unwelded", Technical Report BLR-61-40-M, Bell Aerosystems Company, Contract AF 33(657)-8555 (December, 1961).
- 53308 Schwartzberg, F. R., Keys, R. D., Brown, M. J., and Reightler, C. L., "Determination of Low-Temperature Fatigue Properties of Aluminum and Titanium Alloys", NASA CR-63-29, The Martin Company, Contract NAS 8-2631 (July, 1963).
- Christian, J. L. and Kerr, J. R., "Selection of Optimum Materials for Use in Liquid-Hydrogen-Fueled Aerospace Vehicles", ASD-TDR-63-798, Astronautics/General Dynamics, WPAFB Contract 33(657)-9445 (October, 1963).
- Morgan, W. R., "Low Temperature Mechanical Properties of A-286 Alloy and Its Weldments", Technical Report IN-P&VE-M-62-4, NASA George C. Marshall Space Flight Center (1962).
- Anderson, W. A., Kaufman, J. G., and Kane, J. E., "Notch Sensitivity of Aluminum-Zinc-Magnesium Alloys at Cryogenic Temperatures", Proceedings of the 1963 Cryogenic Engineering Conference, 104-111 (1964).
- Warren, K. A. and Reed, R. P., "Tensile and Impact Properties of Selected Materials From 20° to 300°K", National Bureau of Standards Monograph 63 (June 28, 1963).
- Wroth, R. S., "Effect of Filler Metal Chemistry on the Mechanical Properties of Weldments in 2014-T6 Aluminum", Technical Report SM-43090, Douglas Aircraft Company (1963).
- Brisbane, A. W., "The Influence of Loading Rate and Stress Concentration Factors on Notch Properties of Three Sheet Alloys at Room Temperature, -78°C, and -196°C", Proceedings of the 1962 Cryogenic Engineering Conference, 641-653 (1963).
- Tiffany, C. F., and Lorenz, P. M., "An Investigation of Low-Cycle Fatigue Failures Using Applied Fracture Mechanics", ML-TDR-64-53, The Boeing Company WPAFB Contract AF 33(657)-10251 (May 1964).
- DeSisto, T. S. and Carr, F. L., "The Influence of Subzero Rolling on the Tensile Properties of Commercially Pure Titanium", Technical Report AMRA Th-64-47, Watertown Arsenal (December, 1964).
- Christian, J. L., Yang, C. T., and Witzell, W. E., "Physical and Mechanical Properties of Pressure Vessel Material for Application in a Cryogenic Environment", Summary Report GD/A 63-0818-3, Astronautics/General Dynamics, Contract AF 33(657)-11289, Phase II (May 15, 1964).

- Anon., "Cryogenic Tensile Properties of Ti-5Al-2.5Sn", Technical Report M-2135, Aerojet-General Corporation (May 14, 1963).
- Kiefer, T. F., Keys, D. R., and Schwartzberg, F. R., "Charpy Impact Testing at 20°K", Proceedings of the 1964 Cryogenic Engineering Conference, 56-62 (1965).
- Kiefer, T. F. and Keys, R. D., "Fatigue Behavior of Aluminum and Titanium Sheet Materials Down to -423° F", Proceedings of the 1964 Cryogenic Engineering Conference, 1-13 (1965).
- Weleff, W., Emmons, W. F., and McQueen, H. S., "Shear Strength of Several Alloys at Liquid-Hydrogen Temperatures", Proceedings of the 1964 Cryogenic Engineering Conference, 50-55 (1965).
- Weleff, W., McQueen, H. S., and Emmons, W. F., "Cryogenic Tensile Properties of Selected Aerospace Materials", Proceedings of the 1964 Cryogenic Engineering Conference, 14-25 (1965).
- Orange, T. W., "Tensile Coupon Tests of Cryoformed AISI 301 Stainless-Steel Pressure Vessels at Cryogenic Temperatures", NASA Technical Note NASA TN D-2202 (October, 1964).
- Schwartzberg, F. R., Kiefer, T. F., and Keys, R. D., "Determination of Low-Temperature Fatigue Properties of Structural Metal Alloys", Final Report, The Martin Company, Contract NAS 8-2631 (October, 1964).
- 58060 Martin, H. L., "Effects of Low Temperatures on Structural Metals", Technical Report NASA SP-5012 (December, 1964).
- Eichenberger, T. W., "Mechanical Property and Fracture Toughness Evaluation of 2219-T6E46 for Cryogenic Applications", Final Report D2-81287, Boeing Company, Contract AF 33(615)-1624 (July 16, 1964).
- Shannon, J. L., Jr. and Brown, W. F. Jr., "Effects of Several Alloy Production and Fabrication Variables on the Sharp Notch Properties of 5Al-2.5Sn-Ti Sheet at Liquid Hydrogen Temperatures", Paper presented at the Annual ASTM Meeting, Atlantic City, N. J. (June 23, 1963).
- 59345 Girton, L. D., "Evaluation of Sheet Alloy 718 for Formed and Welded Missile Parts", Technical Report GD/A-ERR-AN-656, General Dynamics/Astronautics (December 1964).
- 59767 Gruner, J. D., "Additional Information Pertaining to the Effects of Chemical Milling on the Mechanical Properties of Cold Rolled Stainless Steel", Technical Report AR 592-1-521, Astronautics/General Dynamics (April 16, 1964).
- Gruner, J. D., "The Effects of Chemical Milling and Chemically Milled Steps on the Mechanical Properties of Type 301 EH and Type 310 EH Stainless Steels at Room and Liquid Hydrogen Temperatures", Technical Report AR-592-1-473, Convair/General Dynamics (July 3, 1963).
- Christian, J. L., Yang, C. T., and Witzell, W. E., "Physical and Mechanical Properties of Pressure Vessel Materials for Application in a Cryogenic Environment. Part III", Technical Report ASD-TDR-62-258-Part 3, General Dynamics, Contract AF-33(657)-11289 (December 1964).

- McClaren, S. W. and Foreman, C. R., "Cryogenic Design Data for Materials Subjected to Uniaxial and Multiaxial Stress Field", Technical Report AFML-TR-65-140, Ling-Temco-Vought, Incorporated, Contract AF 33(615)-1329 (May, 1965).
- 61918 Pierce, W. S., "Strength Comparison of Flawed Single-Layer and Multilayer AISI 301 Stainless-Steel Pressure Vessels at Cryogenic Temperatures", NASA Technical Note NASA TN D-2949, NASA Lewis Research Center (October 1965).
- Kiefer, T. F., Keys, R. D., and Schwartzberg, F. R., "Determination of Low-Temperature Fatigue Properties of Structural Metal Alloys", Final Report, The Martin Company, Contract NAS 8-11300 (October, 1965).
- 62292 Lorenz, P. M., "Fracture Toughness and Subcritical Flaw Growth Characteristics of Saturn SI-C Tankage Materials", Technical Report D2-22802, Boeing Company, Contract NAS 8-5608 (April 6, 1964).
- Nelson, F. G., Kaufman, J. G., and Holt, M., "Fracture Characteristics of Welds in Aluminum Alloys", Metals Engineering Quarterly, <u>6</u> (1), 48-55 (February 1966).
- 63649 Betts, R. D., "Weld Efficiencies for Inconel 718 TIG Welds. Weld Efficiencies of Inconel 718 Gas Tungsten Arc Welds in the -423° to 1500°F Temperature Range", Final Report MPR-5-175-363, North American Aviation, Incorporated (July 27, 1965).
- Anon., "Armco 21-6-9 Stainless Steel", Product Data Bulletin S-10A, Armco Steel Corporation (1964).
- 64353 Weiss, V., and Roy A., "Further Material Evaluation for Supersonic Transport Aircraft", Final Report, S.U.R.I. Report MET. E. 873-6312-F, Syracuse University Research Institute, Contract NASr-43 (December 1963).
- Schwanbeck, C. A., "Effect of Nuclear Radiation on Materials at Cryogenic Temperatures", Final Report, NASA CR-54881, Lockheed-Georgia Company, Contracts NAS 3-7987 and NASw-114 (January, 1965).
- Denaburg, C. R., "Low Temperature Mechanical Properties of Aluminum Alloy 2219-T87, 0.040-Inch Thick Sheet Through 5.000-Inch Thick Plate", NASA TM X-53332 (September 14, 1965).
- 64969 Carman, C. M., Forney, J. W., and Katlin, J. M., "Plane Strain Fracture Toughness and Mechanical Properties of 5Al-2.5Sn ELI Titanium at Room and Cryogenic Temperatures", Final Report, NASA CR-54296, Frankford Arsenal, NASA Purchase Order C6860A (April, 1966).
- 65177 Christian, J. L., "Mechanical Properties of Several Nickel-Base Alloys at Room and Cryogenic Temperatures", Proceedings of the 1966 Cryogenic Engineering Conference, 520-530 (1967).
- Weleff, W., "Radiation Effects on Shear Strength of Several Alloys at Liquid Hydrogen Environment", Proceedings of the 1966 Cryogenic Engineering Conference, 544-556 (1967).

- 65184 Eiselstein, H. L., "An Age-Hardenable, Low-Expansion Alloy for Cryogenic Service", Proceedings of the 1966 Cryogenic Engineering Conference, 508-519 (1967).
- Witherell, C. E., 'Welding Nickel-Iron Alloys of the Invar Type', Welding Journal, Welding Research Supplement, 43, 161s-169s (April 1964).
- Stinnett, W. D., "Cryogenic Tensile Properties of Selected Materials", Research Report 2712, NASA CR-71751, Aerojet-General Corporation, AEC-NASA Contract SNP-1 (January 1, 1946).
- Ferguson, C. W., "Hypervelocity Impact Effects on Liquid Hydrogen Tanks", Final Report, NASA CR-54852, Douglas Missile & Space Systems, Contract NAS-3-4193 (March 31, 1966).
- 66167 Carman, C. M., Forney, J. W., and Katlin, J. M., "Plane Strain Fracture Toughness of 2219-T87 Aluminum Alloy at Room And Cryogenic Temperatures", Technical Report R-1821, NASA CR-54297, Frankford Arsenal, NASA Purchase Order C6860A (August, 1966).
- Tiffany, C. F., Lorenz, P. M., and Hall, L. R., "Investigation of Plane-Strain Flaw Growth in Thick-Walled Tanks", Final Report, NASA CR-54837, Boeing Company, Contract NAS 3-4194 (February, 1966).
- Tilley, E. B., "Evaluation of Inconel 718 Alloy", Technical Report RDR 1181-2, International Harvester Company (June 1, 1965).
- Kropp, C. J., "The Development of a Superior Titanium-Base Alloy for Cryogenic Applications", Technical Report AFML-TR-65-308, Volume II, Convair/General Dynamics, Contract AF 33(615)-1361 (September, 1966).
- 67747 Christian, J. L., Gruner, J. D., and Girton, L. D., "The Effects of Cold Rolling on the Mechanical Properties of Type 310 Stainless Steel at Room and Cryogenic Temperatures", Technical Report AR-592-1-365, NASA CR-54614, Astronautics/General Dynamics (November 27, 1962).
- 67769 Robinson, I. B., and Baysinger, F. R., "Welding Aluminum Alloy 7039", Welding Journal Research Supplement, 45, 433s-444s (October 1966).
- Sullivan, T. L., "Uniaxial and Biaxial Fracture Toughness of Extra-Low-Interstitial 5AI-2:5Sn Titanium Alloy Sheet at 20°K", NASA Technical Note NASA TN D-4016 (June, 1967).
- 69021 Inouye, F. T., Hunt, V., Janser, G. R., and Frick, V., "Application of Alloy 718 in M-1 Engine Components", Technical Report NASA CR-788, Aerojet-General Corporation, Contract NAS 3-2555 (June, 1967).
- Beck, E. J. and Mallon J. A., "Common Bulkhead Joint Developments and Evaluation", Final Report, NASA CR-66-47, The Martin Company, Contract NAS 8-20125 (July, 1966).
- 69332 Horton, J. C., Smith, C. F., and Ruff, R. C., "Low Temperature Thermal Expansion of Structural Metals", Technical Memorandum NASA TM X-53436 (April 18, 1966).

- 69759 Eitman, D. A. and Rawe, R. A., "Plane Stress Cyclic Flaw Growth of 2219-T87 Aluminum and 5Al-2.5Sn ELI Titanium Alloys at Room and Cryogenic Temperatures", Final Report, NASA CR-54956, Douglas Aircraft Company, Contract NAS 3-4192 (September 1, 1962).
- 69800 McClaren, S. W., Foreman, C. R., and Grabinski, J. F., "Biaxial Strength Characteristics of Selected Alloys in a Cryogenic Environment", Final Report 2-53420/6R-2279, NASA CR-65412, LTV Aerospace Corporation, Contract NAS 9-3873 (May 6, 1966).
- Janser, G. R., "Summary of Materials Technology of M-1 Engine", Technical Report AGC 8800-64, NASA CR-54961, Aerojet-General Corporation, Contract NAS 3-2555 (July 22, 1966).
- 70906 Nachtigall, A. J., Klima, S. J., and Freche, J. C., "Fatigue of Liquid Rocket Engine Metals at Cryogenic Temperatures to -425°F (4°K)", NASA Technical Note NASA TIN D-4274 (December, 1967).
- 71237 Malin, C. O., "Low Temperature Properties of Selected Cast and Wrought Aerospace Alloys", Materials and Processes Technical Report MPTR 6-176A-8, Rocketdyne/North American (1968).
- 72563 Kaufman, J. G., Bagardus, K. O., and Wanderer, E. T., "Tensile Properties and Notch Toughness of Aluminum Alloys at -452°F in Liquid Helium", Proceedings of the 1967 Cryogenic Engineering Conference, 294-308 (1968).
- 73890 Smith, G. W., "Centaur Biaxial Fatigue Tests—Model 55", Technical Report AE62-0866, Astronautics/General Dynamics, Contract AF 18(600)-1775 (October 15, 1962).
- 74405 Clark, A. F., "Low Temperature Thermal Expansion of Some Metallic Alloys", Cryogenics, 8 (5), 282-289 (October, 1968).
- 75531 Hall, L. R., "Plane-Strain Cyclic Flaw Growth in 2014-T62 Aluminum and 6AI-4V (ELI) Titanium", NASA CR-72396, Boeing Company, Contract NAS 3-7993 (November 1968).
- Wessel, E. T., Clark, W. G., and Wilson, W. K., "Engineering Methods for the Design and Selection of Materials Against Fracture", Final Technical Report, Westinghouse Research Laboratories (June 24, 1966).
- Pyle, R., Schillinger, D. E., and Carman, C. M., "Plane Strain Fracture Toughness and Mechanical Properties of 2219-T87 Aluminum and 5AI-2.5Sn ELI Titanium Alloy Weldments and One-Inch Thick 5AI-2.5Sn ELI Titanium Alloy Plate", FA Report R-1897, NASA CR-72154, Frankford Arsenal (September 1968).
- 76974 Susukida, H., Ando, T., and Tsuji, I., "Characteristics of 9% Nickel Steel for Low Temperature Service", Technical Report No. MTB010053, Mitsubishi Heavy Industries Ltd. (October 1967).
- 77044 Hust, J. G. and Powell, R. L., "Thermal Conductivity of Aerospace Alloys at Cryogenic Temperatures", Proceedings of the 8th Conference on Thermal Conductivity, Purdue University (October 7-10, 1968).
- 77930 Nachtigall, A. J., "Comparison of Tensile Properties of 304L and 310S Stainless Steels in Liquid Helium", NASA Technical Memorandum NASA TM X-52703 (October 30, 1969).

- 77998 Shogan, R. P., "Tensile Properties of Irradiated Ti-5%AI-2.5%Sn ELI at Cryogenic Temperatures", Technical Report WANL-TME-1860, Westinghouse Electric Company (November 1968).
- 78611 Pettit, D. E., Feddersen, C. E., and Mindlin, H., "Flaw Growth Behavior of Inconel 718 at Room and Cryogenic Temperatures", NASA CR-101942, Final Report, Battelle Memorial Institute, Contract NAS 9-7689 (March 1970).
- 78652 Younger, C. L. and Haley, F. A., "Irradiation Effect at Cryogenic Temperature on Tensile Properties of Titanium and Titanium-Base Alloys", Technical Memorandum NASA TM X-52772 (1970).
- 79301 Rawe, R. A., "Biaxial Strength of MIG- and TIG-Welded 2016-T6 at 70°, -320° and -423°F", Technical Report NASA CR-109904, Douglas Aircraft Company, Contract NAS 7-101 (May 24, 1968).
- 79385 Moskalenko, V. A., Puptsova, V. N., and Ul'yanov, R. A., "Strength and Ductility of Titanium Alloys at Low Temperatures", Metal Science and Heat Treatment, (6), 464-466 (June, 1970).
- 79561 Clark, A. F., Childs, G. E., and Wallace, G. H., "Electrical Resistivity of Some Engineering Alloys at Low Temperatures", Cryogenics, 10 (4), 295-305 (August, 1970).
- 79816 Hall, L. R. and Finger, R. W., "Fracture and Fatigue Growth of Partially Embedded Flaws", Proceedings of the Air Force Conference on Fatigue and Fracture of Aircraft Structures and Materials, 235-262 (December, 1969).
- 79857 Tiffany, C. F., Masters, J. N., and Bixler, W. D., "Investigation of Crack Growth Threshold of Inconel 718 Exposed to High Pressure Oxygen", Technical Report NASA CR-108485, Boeing Company, Contract NAS 9-10913 (August, 1970).
- Orange, T. W., Sullivan, T. L., and Calfo, F. D., "Fracture of Thin Sections Containing Through and Part-Through Cracks", ASTM Special Technical Publication 496 (August, 1971).
- 80755 Montano, J. W., "An Evaluation of the Mechanical and Stress Corrosion Properties of Cold Worked A-286 Alloy", NASA Technical Memorandum NASA TM X-64569 (February 12, 1971).
- 80994 Vishnevsky, C. and Steigerwald, E. A., "Plane Strain Fracture Toughness of Some Cryogenic Materials at Room And Subzero Temperatures", ASTM Special Technical Publication 496 (August, 1971).
- Nelson, F. G. and Kaufman, J. G., "Plane Strain Fracture Toughness of Aluminum Alloys at Room and Subzero Temperatures", ASTM Special Technical Publication 496 (August, 1971).
- 80996 Hall, L. R., "Influence of Specimen Design in Plane Strain Fracture Toughness Testing", ASTM Special Technical Publication 496 (August, 1971).
- 81726 Sullivan, T. L., "Behavior of Ti-5Al-2.5Sn ELI Titanium Alloy Sheet Parent and Weld Metal in the Presence of Cracks at 20°K", NASA Technical Note NASA TN D-6544 (November, 1971).

8135

- Hust, J. G. and Sparks, L. L., "Thermal Conductivity, Electrical Resistivity, and Thermopower of Aerospace Alloys From 4° to 300°K: III. Annealed Inconel 718", NBS Technical Report 9775 (November 24, 1970).
- 82534 Larbalestier, D. C. and King, H. W., "Non Magnetic Stainless Steels for Cryogenic Purposes", Technical Report RHEL/R 217, Imperial College, London (January, 1971).
- 82916 Schwartzberg, F. R., Keys, R. D., and Kiefer, T. F., "Cryogenic Alloy Screening", Interim Report NASA CR-72617, Martin Marietta Corporation, Contract NAS 3-11203 (February 1970).
- 82966 Malin, C. O., "Low-Temperature Properties of Large Inconel 718 Forgings", Reportable Item Submission Number MFS-18244, Rocketdyne/North American, Contract NASw-16 (June 14, 1968).
- Malin, C. O., "Low-Temperature Properties of Armco 21-6-9 Alloy (Cr-Ni-Mn)", Reportable Item Submission Number MFS-18243, Rocketdyne/North American (June14, 1968).
- 83169 Green, E. F., "Low-Temperature Properties of 18-Percent Nickel (200-Grade) Maraging Steel Plate", Reportable Item Submission Number MFS-18281, Rocketdyne/North American, Contract NASw-16 (July 3, 1968).
- 83417 Schmidt, E. H., "Fatigue Properties of Sheet, Bar, and Cast Metallic Materials for Cryogenic Applications", Technical Report R-7564, Rocketdyne/North American, Contract NAS 3-18734 (August 30, 1968).
- Montano, J. W. "The Effects of Solution Treatment on the Mechanical Properties of Age-Hardened A-286 Bar Stock at Elevated and Cryogenic Temperatures", NASA Technical Memorandum NASA TM X-64638 (February 16, 1972).
- 84318 Masters, J. N., Haese, W. P., and Finger, R. W., "Investigation of Deep Flaws in Thin Walled Tanks", Final Report D2-121696-1, NASA CR-72606, Boeing Company, Contract NAS 3-10290 (December, 1969).
- 84319 Engstrom, W. L., "Determination of Design Allowable Properties Fracture of 2219-T87 Aluminum Alloy", Technical Report D180-14480-1, NASA CR-115388, Boeing Company, Contract NAS 9-10364 (March, 1972).
- Tiffany, C. F., Lorenz, P. M., and Shah, R. C., "Extended Loading of Cryogenic Tanks", Final Report, NASA CR-72252, Boeing Company, Contract NAS 3-6290 (July, 1967).
- Hall, L. R., and Finger, R. W., "Investigation of Flaw Geometry and Loading Effects on Plane Strain Fracture in Metallic Structures", Final Report, NASA CR-72659, Boeing Company, Contract NAS 3-12016 (December 18, 1971).
- Hall, L. R. and Bixler, W. D., "Subcritical Crack Growth of Selected Aerospace Pressure Vessel Materials", Technical Report D 180-14855-1, NASA CR-120834, Boeing Company Contract NAS 3-12044 (December, 1972).

- Hall, L. R. and Finger, R. W., "Stress Corrosion Cracking and Fatigue Crack Growth Studies Pertinent to Spacecraft and Booster Pressure Vessels", Technical Report D180-15018-1, NASA CR-120823, Boeing Company, Contract NAS 3-12003 (December, 1972).
- Hall, L. R. and Finger, R. W., "Fracture and Crack Growth Resistance Studies of 304 Stainless Steel Weldments Relating to Retesting of Cryogenic Vessels", Final Report, NASA CR-121025, Boeing Company, Contract NAS 3-12003 (December, 1972).
- Gasanov, M. A., Romashev, L. N., and Fakidov, I. G., "Magnetic Properties of Stainless Steel Kh18N10T", The Physics of Metals and Metallography, 33 (2), 190-191 (1972).
- Bixler, W. D., "Development of a Fracture Control Method for Composite Tanks With Load Sharing Liners", Final Report D180-15296-1, NASA CR-120918, Boeing Company, Contract NAS 3-14380 (March, 1973).
- 88109 Forman, R. G., Glorioso, S. V., and Medlock, J. D., "Flaw Growth Behavior in Thick Welded Plates of 2219-T87 Aluminum at Room and Cryogenic Temperatures", NASA Technical Note NASA-TN-D-7377 (August 1973).
- 88112 Sarno, D. A., McCabe, D. E., Sr., and Heberling, T. G., "Fatigue and Fracture Toughness Properties of 9% Nickel at LNG Temperatures", Transactions of the ASME, Series B, Journal of Engineering for Industry, 95 (4), 1069-1075 (November 1973).
- 88439 Reuter, W. G., "Fracture Toughness of Ti-5Al-2.5Sn ELI Forgings at -423°F", Memoranda and Material R&D Report, Aerojet-General Corporation (January 26, 1971).
- Naimon, E. R., Weston, W. F., and Ledbetter, H. M., "Elastic Properties of Two Titanium Alloys at Low Temperatures", Cryogenics, 14 (5), 246-249 (May, 1974).
- Nachtigall, A. J., "Strain-Cycling Fatigue Behavior of Ten Structural Metals Tested in Liquid Helium (4°K), in Liquid Nitrogen (78°K), and in Ambient Air (300°K)", NASA Technical Note NASA TN D-7532 (February, 1974).
- Masters, J. N., Bixler, W. D., and Finger, R. W., "Fracture Characteristics of Structural Aerospace Alloys Containing Deep Surface Flaws", Final Report, NASA CR-134587, Boeing Aerospace Company, Contract NAS 3-14341 (December 1973).
- 89983 Masters, J. N., Engstrom, W. L., and Bixler, W. D., "Deep Flaws in Weldments of Aluminum and Titanium", Final Report, NASA CR-134649, Boeing Aerospace Company, Contract NAS 3-14386 (April 1974).
- 90068 Schwartzberg, F., Agricola, K., and Hauser, R., "Properties of Missile Materials at Cryogenic Temperatures", Technical Report, Martin Company (May 1960).
- 90069 Kaufman, J. G., Nelson, F. G., and Johnson, E. W., "Properties of Aluminum Alloy 2219 Sheet, Plate, and Welded Joints at Low Temperatures", Proceedings of the 1962 Cryogenic Engineering Conference, 661-670 (1963).
- 90070 Kaufman, J. G., and Wanderer, E. T., "Tensile Properties and Notch Toughness of Some 7XXX Alloys at -452 F", Proceedings of the 1970 Cryogenic Engineering Conference, 27-36 (1971).

- 90072 Nelson, F. G., Kaufman, J. G., and Wanderer, E. T., "Tensile Properties and Notch Toughness of Groove Welds in Wrought and Cast Aluminum Alloys at Cryogenic Temperatures", Proceedings of the 1968 Cryogenic Engineering Conference, 71-82 (1969).
- 90073 Christian, J. L. and Watson, J. F., "Mechanical Properties of Several 2000 and 6000 Series Aluminum Alloys", Proceedings of the 1964 Cryogenic Engineering Conference, 63-76 (1965).
- 90075 DeMoney, F. W., "Effect of Aging on the Tensile Properties of Alloy 7039 GTA Welds at Low Temperatures", Proceedings of the 1966 Cryogenic Engineering Conference, 500-507 (1967).
- 90076 Hanson, M. P., Stickley, G. W., and Richards, H. T., "Sharp-Notch Behavior of Some High-Strength Sheet Aluminum Alloys and Welded Joints at 75°, -320°, and -423°F", ASTM Special Technical Publication No. 287 (June, 1960).
- 90078 Christian, J. L., "Mechanical Properties of Aluminum Alloys at Cryogenic Temperatures," Technical Report MRG-190, Convair-Astronautics/General Dynamics (December 2, 1960).
- 90079 Watson, J. F. and Christian, J. L., "Low-Temperature Properties of K-Monel, Inconel—X, Rene 41, Haynes 25, and Hastelloy B Sheet Alloys", Paper presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, New York, N. Y. (November 26-December 1, 1961).
- 90081 Ottlyk, A. A., "Cryogenic Tensile Properties of .040 Gage 301XH Stainless Steel", Test Progress Report, SLML-60-414, EWA 59202, Boeing Company (October 28, 1960).
- 90082 DeMoney, F. W., "Proposed Case for Aluminum Alloy 7039-T61 &-T6151", submitted to the ASME Boiler & Pressure Vessel Code Committee (October 24, 1963).
- 90u83 DeMoney, F. W. and Wolfer, G. C., "The Fatigue Properties of Aluminum Alloy 5083-H113 Plate and Butt Weldments at 75°F and -300°F", Paper presented at the 1960 Cryogenic Engineering Conference, Boulder, Colorado (August, 1960).
- 90084 Anon., "Weldabie/Heat-Treatable Aluminum Alloy 7039", Manufacturers' Literature, Kaiser Aluminum & Chemical Corporation (June, 1965).
- 90087 Larbalestier, D. C. and King, H. W., "Austenitic Stainless Steels at Cryogenic Temperatures. 1-Structural Stability and Magnetic Properties", Cryogenics, 13 (3), 160-168 (March, 1973).
- 90104 Morgan, W. R., "Low Temperature Mechanical Properties of Inconel 718 and AM 355", Internal Note IN-P&VE-M-66-2, NASA George C. Marshall Space Flight Center (January 31, 1966).
- 90107 Morgan, W. R., "Low Temperature Mechanical Properties of Aluminum Alloy 7039-T6 Sheet and Plate", Internal Note IN-P&VE-M-66-6, NASA George C. Marshall Space Flight Center (November 14, 1966).
- 90111 Goodzeit, C. L., "Optimization of Gas-Cooled Superconducting Magnet Leads. A Method for General Materials", Informal Report BNL 17233, PDD-72-1, Brookhaven National Laboratory (September 18, 1972).

80%5

- 90115 Killpatrick, D. H., Corn, D. L., and Stoeckinger, G. R., "Cryogenic Fracture Toughness cf 18 Nickel 200-Grade Maraging Steel Plate and Welds", MDAC Paper WD 2030 presented to the American Society of Metals 1973 Western Conference, Los Angeles, California (March 12, 1973).
- 90117 Davis, R. J., and France, E. J., "Cryogenic Tensile Properties of Ti-6Al-4V Forgings", Industrial Applications Flash Sheet MFS-12533, Douglas Aircraft Company, Contract NAS 7-101 (November 8, 1966).
- 90123 Hull, F. C., "Cryogenic Tensile Properties of Cold Rolled Kromarc 58 Stainless Steel Sheet", Technical Research Report 67-1D6-KROMA-R1, Westinghouse Research Laboratories (May 23, 1967).
- 90125 Park, O. E., Fulk, M. M., and Reynolds, M. M., "Low Temperature Electrical Resistance of Fifteen Commercial Conductors", Proceedings of the 1954 Cryogenic Engineering Conference, 101-102 (1955).
- 90133 Koshelev, P. F., Mikheev, V. S., and Nikitin, P. N., "The Mechanical Properties of Titanium Alloys With Vanadium and Columbium at Low Temperatures", Metal Science and Heat Treatment, 14 (2), 111-113 (February, 1972).
- 90159 Geil, G. W. and Carwile, N. L., "Tensile Properties of Copper, Nickel, and Some Copper-Nickel Alloys at Low Temperatures", NBS Circular 520, 67 (May 7, 1952).
- 90164 Clark, A. F. and Tryon, P. V., "Material Variability as Measured by Low Temperature Electrical Resistivity", Cryogenics, 12 (6), 451-461 (December, 1972).
- 90169 Lenhart, H. G., "Cryogenic Research Tensile Properties of 2219-T87 Aluminum Alloy Plate at Room and Cryogenic Temperatures", Test Progress Report SLML-60-473, Boeing Company (December 6, 1960).
- 90170 Childs, G. E., Ericks, L. J., and Powell, R. L., "Thermal Conductivity of Solids at Room Temperature and Below. A Review and Compilation of the Literature", NBS Monograph 131 (September, 1973).
- 90171 Hooper, A. F., and Christian, J. L., "Mechanical Properties of Titanium 5AI-2.5Sn Alloy at Room and Cryogenic Temperatures", Technical Report, General Dynamics, Contract AF 33(616)-7984 (March 1963).
- 90172 Anon., "Determination of Design Data for Heat-Treated Titanium Alloy Sheet. Volume 3. Tables of Data Collected", Technical Report ASD-TDR-62-335 V3, Lockheed Aircraft Corporation, Contract AF 33(616)-6346 (December 1962).
- 90174 Bogardus, K. O. and Malcolm, R. C., "Design Stresses for 5083-0 and 5183 Welds at Cryogenic Temperatures", Manuscript submitted for publication by ASTM (received during June, 1974).
- 90175 Kelsey, R. A., Nordmark, G. E., and Clark, J. W., "Fatigue Crack Growth in Aluminum Alloy 5083-0 Thick Plate and Welds for Liquefied Natural Gas Tanks", ASTM Special Technical Publication 556, 159-185 (July 1974).

- 90176 Kaufman, J. G., Nelson, F. G., and Wygonik, R. H., "Large Scale Fracture Toughness Tests of Thick 5083-0 Plate and 5183 Welded Panels at Room Temperature,—260°, and —320°F", ASTM Special Technical Publication 556, 125-158 (July, 1974).
- 90178 Hall, L. A., "Survey of Electrical Resistivity Measurements on 16 Pure Metals in the Temperature Range 0° to 273°K", NBS Technical Note 365 (February, 1968).
- 90180 Morgan, W. R., "Mechanical Properties of 2219-T87 Alloy Plate at Room and Cryogenic Temperatures", Internal Note IN-P&VE-M-62-9, NASA George C. Marshall Space Flight Center (October 5, 1962).
- 90181 Morgan, W. R., "Low Temperature Mechanical Properties of K-Monel Alloy and Its Weldments", Internal Note IN-P&VE-M-62-8, NASA George C. Marshall Space Flight Center (August 28, 1962).
- 90183 Lovoy, C. V., "Low Temperature Mechanical Properties of X-2020-T6 and 2219-T6 Aluminum Sheet Alloys", Internal Note IN-P&VE-M-62-3, NASA George C. Marshall Space Flight Center (May 5, 1962).
- 90184 Cataldo, C. E., "Weldability Studies of 5456-H343 and 2219-T87 Aluminum Alloy Plates", Internal Note IN-P&VE-M-62-2, NASA George C. Marshall Space Flight Center (April 2, 1962).
- 90185 Christian, J. L., and Hurlich, A., "Mechanical Properties of Titanium Alloys at Cryogenic Temperatures", Proceedings of the 1967 Cryogenic Engineering Conference, 318-333 (1968).
- 90187 Lake, R. L., DeMoney, F. W., and Eiber, R. J., "Burst Tests of Pre-Flawed Welded Aluminum Alloy Pressure Vessels at -220 F", Proceedings of the 1967 Cryogenic Engineering Conference, 278-293 (1968).
- 90188 Kaufman, J. G., and Johnson, E. W., "Notch Sensitivity of Aluminum Alloy Sheet and Plate at -320 F Based Upon Notch-Yield Ratio", Proceedings of the 1962 Cryogenic Engineering Conference, 678-685 (1963).
- 90189 DeMoney, F. W. and Wolfer, G. C., "Tensile and Impact Properties of 7075-T6 and 7079-T6 Plate, Hand Forgings, and Tensile Properties of Plate MIG Weldments Between 75° and -320°F", Proceedings of the 1961 Cryogenic Engineering Conference, 466-477 (1962).
- 90190 Rice, L. P., Campbell, J. E., and Simmons, W. F., "Tensile Behavior of Parent Metal and Welded 5000-Series Aluminum-Alloy Plate at Room and Cryogenic Temperatures", Proceedings of the 1961 Cryogenic Engineering Conference, 478-489 (1962).
- 90193 Hust, J. G., "Thermal Conductivity, Electrical Resistivity, and Thermopower of Aerospace Alloys from 4 to 300 K: II. AISI 347 Stainless Steel", Technical Report 9772, NBS (October 27, 1970).
- 90194 Hust, J. G. and Sparks, L. L., "Thermal Conductivity, Electrical Resistivity, and Thermopower of Aerospace Alloys From 4° to 300°K: IV. A-286 Stainless Steel", Technical Report 9789, NBS (April 6, 1971).

- 90195 Hust, J. G., and Sparks, L. L., "Thermal Conductivity, Electrical Resistivity, and Thermopower of Aerospace Alloys from 4 to 300 K: V. Aluminum 2024", Technical Report 9790, NBS (April 8, 1971).
- 90200 Bowers, W. D., "Cryogenic Tensile Properties of Inconel 718", Technical Report M-2131, Aerojet-General Corporation (April 18, 1963).
- 90202 VanReuth, E. C. and Reed, R. P., "Materials Research in Support of Superconducting Machinery", Semi-Annual Technical Report for September 1, 1973 to March 1, 1974 (March, 1974).
- 90203 Kaufman, J. G., "Mechanical Properties of Plain and Welded 6061 Aluminum Alloy at Subzero Temperatures", Technical Report 9-60-26, Aluminum Company of America (July 1960).
- 90205 Schramm, R. E., Clark, A. F., and Reed, R. P., "A Compilation and Evaluation of Mechanical, Thermal, and Electrical Properties of Selected Polymers", NBS Monograph 132 (September, 1973).
- 90206 Hall, L. A. and Germann, F.E.E., "Survey of Electrical Resistivity Measurements on 8 Additional Pure Metals in the Temperature Range 0° to 273°K", Technical Note 365-1, NBS (August, 1970).
- 90208 Cc.ruccini, R. J. and Gniewek, J. J., "Thermal Expansion of Technical Solids at Low Temperatures", National Bureau of Standards Monograph 29 (May 19, 1961).
- 90209 Fickett, F. R., "Aluminum. 1. A Review of Resistive Mechanisms in Aluminum", Cryogenics, 11 (5), 349-367 (October 1971).
- 90214 McCammon, R. D., and Rosenberg, H. M., "The Fatigue and Ultimate Tensile Strengths of Metals Between 4.2 and 293 K", Proceedings of the Royal Society (London), <u>A242</u>, 203-211 (1957).
- 90217 White, G. K., and Woods, S. B., "Electrical and Thermal Resistivity of the Transition Elements at Low Temperatures", Philosophical Transactions of the Royal Society of London, <u>A251</u> (995), 273-302 (1959).
- 90218 Rhodes, B. L., Moeller, C. E., and Sauer, H. J., "An Apparatus for Determining Thermal Conductivity of Solids From 20° to 600°K", Cryogenics, <u>5</u> (1), 17-20 (February, 1965).
- 90219 De Nobel, J., "Heat Conductivity of Steels and a Few Other Metals at Low Temperatures", Physica, 17 (5), 551-562 (May 1951).
- 90220 Betty, B. B. and Mudge, W. A., "Some Engineering Properties of Nickel and High-Nickel Alloys", Mechanical Engineering, 67 (2), 123-129 (February, 1945).
- 90223 Touloukian, Y. S. and Buyco, E. H., "Thermophysical Properties of Matter. Volume 4. Specific Heat, Metallic Elements, and Alloys", Plenum Press, N. Y. (1970).
- 90224 Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., "Thermophysical Properties of Matter, Volume 1. Thermal Conductivity, Metallic Elements and Alloys", Plenum Press, N. Y. (1970).

- Powell, R. L., Hall, W. J., and Roder, H. M., "Low-Temperature Transport Properties of Commercial Metals and Alloys. II. Aluminums", Journal of Applied Physics, 31 (3), 496-503 (March, 1960).
- Johnston, H. L., Altman, H. W., and Rubin, T., "Coefficients of Thermal Expansions of Alloys at Low Temperatures", Journal of Chemical and Engineering Data, 10 (3), 241-242 (1965).
- 90230 Hust, J. G., "Thermal Conductivity Standard Reference Materials from 4 to 300 K. I. Armco Iron", Technical Report 9740, NBS (August 1969).
- 90244 Connella, M. J., Deck, R. J., and Morriss, R. H., "Microstructural Effects in Critical Fields of Niobium Films", Journal of Applied Physics, 41 (13), 5346-5348 (December, 1970).
- Osborne, D. W., Flotow, H. E., and Schreiner, F., "Calibration and Use of Germanium Resistance Thermometers for Precise Heat Capacity Measurements from 1 to 25 K. High Purity Copper for Interlaboratory Heat Capacity Comparisons", The Review of Scientific Instruments, 38 (2), 159-168 (February 1967).
- 90249 Martin, D. L., "Specific Heats of Copper, Silver, and Gold Below 30 K", Physical Review, 141 (2), 576-582 (January 1966).
- 90252 Hahn, T. A., "Standards, Copper, Methods. Thermal Expansion of Copper From 20° to 800°K Standard Reference Material 736", Journal of Applied Physics, 41 (13), 5096-5101 (December, 1970).
- 90259 Chang, Y. A. and Hultgren, R., "The Dilation Contribution to the Heat Capacity of Copper and Alpha-Brass at Elevated Temperatures", The Journal of Physical Chemistry, 69 (12), 4162-4165 (December, 1965).
- Upthegrove, C. and Burghoff, H. L., "Elevated-Temperative Properties of Coppers and Copper-Base Alloys", ASTM Special Technical Publication No. 181 (1956).
- 90300 Powell, R. L., Roder, H. M., and Rogers, W. M., "Low-Temperature Thermal Conductivity of Some Commercial Coppers", Journal of Applied Physics, <u>28</u> (11), 1282-1288 (November 1957).
- 90302 McClintock, R. M., Van Gundy, D. A., and Kropschot, R. H., "Low-Temperature Tensile Properties of Copper and Four Bronzes", ASTM Bulletin, (240), 47-50 (September, 1959).
- 90306 Mikheyev, V. S., Pustovoytova, T. G., Sokolov, V. S., and Shnyrev, G. D., "Strength and Ductility of Ti-Nb-Zr Alloys at -196°C and at +20°C", Russian Metallurgy (Izv. Akad, Nauk SSSR Metal.) (4), 125-126 (1970).
- 90310 Alekseevskii, N. E., Dubrovin, A. V., Mikhailov, N. N., Sokolov, V. I., and Fedotov, L. N., "Principal Properties of Superconducting Wire Made From an Alloy of the 65BT Type in Samples and Solenoids", Soviet Physics-Doklady, 11 (11), 993-996 (May, 1967).
- 90314 Rayne, J. A., "Heat Capacity of Alpha Brasses Below 4.2 K", Physical Review, 108 (1), 22-25 (October 1, 1957).

- 90317 Kemp, W.R.G., Klemens, P. G., Tainsh, R. J., and White, G. K., "The Electrical and Thermal Conductivities of Some Brasses at Low Temperatures", Acta Metallurgica, <u>5</u> (6), 303-309 (June 1957).
- 90318 Estermann, I. and Zimmerman, J. E., "Heat Conduction in Alloys at Low Temperatures", Journal of Applied Physics, 23 (5), 578-588 (May, 1952).
- 90322 Powell, R. L., Roder, H. M., and Hall, W. J., "Low-Temperature Transport Properties of Copper and Its Dilute Alloys: Pure Copper, Annealed and Cold-Drawn", Physical Review, 115 (2), 314-323 (July 15, 1959).
- 90323 Gibbons, D. F., "Thermal Expansion of Some Crystals with the Diamond Structure", Physical Review, 112 (1), 136-140 (October 1, 1958).
- 90328 Phillips. N. E., "Heat Capacity of Aluminum Between 0.1°K and 4.0°K", Physical Review, <u>114</u> (3), 676-685 (May 1, 1959).
- 90336 Beenakker, J.J.M., and Swenson, C. A., "Total Thermal Contractions of Some Technical Metals to 4.2°K", Review of Scientific Instruments, 26 (12), 1204-1205 (December, 1955).
- 90339 Martin, D. L., "The Specific Heat of Copper From 20° to 300°K", Canadian Journal of Physics, 38 (1), 17-24 (1960).
- 90341 Radhakrishna, P., and Nielsen, M., "Thermal Conductivity of Niobium-Zirconium Alloys at Low Temperatures", Physics Letters, <u>6</u> (1), 36-38 (August 15, 1963).
- Van Der Hoeven, J. C., Jr. and Keesom, P. H., "Specific Heat of Niobium Between 0.4° and 4.2°K", Physical Review, <u>134</u> (5A), A1320-A1321 (June 1, 1964).
- 90348 Henry, W. G., and Schroeder, P. A., "The Low-Temperature Resistivities and Thermopowers of Alpha-Phase Copper-Zinc Alloys", Canadian Journal of Physics, 41, 1076-1093 (1963).
- 90355 Richards, J. T., and Brick, R. M., "Mechanical Properties of Beryllium Copper at Subzero Temperatures", Journal of Metals, <u>6</u> (5), 574-580 (May, 1954).
- 90366 Fraser, D. B. and Hallett, A.C.H., "The Coefficient of Thermal Expansion of Various Cubic Metals Below 100°K", Canadian Journal of Physics, 43 (2), 193-219 (February, 1965).
- 90370 Dixon, M., Hoare, F. E., Holden, T. M., and Moody, D. E., "The Low Temperature Specific Heats of Some Pure Metals (Cu, Ag, Pt, Al, Ni, Fe, Co)", Proceedings of the Royal Society London, A285 (1403), 561-580 (1965).
- 90375 Reed, R. P. and Mikesell, R. P., "Low-Termperature (295° to 4°K) Mechanical Properties of Selected Copper Alloys", Journal of Materials, <u>2</u> (2), 370-392 (June, 1967).
- 90447 Cheeke, J.D.N., Hebral, B., and Richard, J., "Kapitza Resistance Between the Transition Metals Fe, Co, and Ni and Superfluid Helium", Journal of Low Temperature Physics, 12 (3/4), 359-373 (1973).

- 90458 Bijl, D. and Pullan, H., "A Nev. Method for Measuring the Thermal Expansion of Solids at Low Temperatures: The Thermal Expansion of Copper and Aluminum and the Gruneisen Rule", Physica, 21, 285-298 (1955).
- 90459 Rubin, T., Altman, H. W., and Johnston, H. L., "Coefficients of Thermal Expansion of Solids at Low Temperatures. I. The Thermal Expansion of Copper From 15° to 300°K", American Chemical Society, 76, 5289-5293 (November 5, 1954).
- 90467 Hurd, C. M., "A Magnetic Susceptibility Apparatus for Weakly Magnetic Metals, and the Susceptibility of Pure Copper in the Range 6°-300°K", Cryogenics, <u>6</u> (5), 264-269 (October, 1966).
- 90476 Pugh, E. W., Coles, B. R., Arrott, A., and Goldman, J. E., "Magnetic Susceptibility of Dilute Alloys of Nickel In Copper Between 2.5°K and 295°K", Physical Review, 105 (3), 814-818 (February 1, 1957).
- 90477 Van Itterbeek, A., and Duchateau, W., "Measurements on the Magnetic Susceptibility of White Tin and Copper Down to Liquid Helium Temperatures", Physica, <u>23</u>, 169-172 (1957).
- 90491 Pugh, E. W. and Ryan, F. M., "Magnetic Susceptibility of Copper-Nickel and Silver-Palladium Alloys at Low Temperatures", Physical Review, 111 (4), 1038-1042 (August 15, 1958).
- 90493 Blythe, H. J., Holden, T. M., Dixon, M., and Hoare, F. E., "The Magnetic and Thermal Properties of Some Aluminum-Rich Binary Alloys", Philosophical Magazine, Series 8, 11 (110), 235-250 (February, 1965).
- 90494 Kondorskii, E. I. and Sedov, V. L., "Antiferromagnetism of the Gamma Phase of Iron", Soviet Physics (JETP), 8 (35), 1104-1105 (1959).
- 90499 Sekula, S. T. and Boom R. W., "Longitudinal Critical Currents in Cold-Drawn Superconducting Alloys", Applied Physics Letters, 2 (5), 102-104 (March 1, 1963).
- 20524 Larbalestier, D. C. and King, H. W., "Problems With Stainless Steel Formers for Superconducting Magnets", Cryogenics, 10 (5), 410-412 (October, 1970).
- 90537 Anon., "9% Nickel Steel for Low Temperature Service", Manufacturers' Literature, A-263, 5M 10-73 (5C 1-72) 3749, International Nickel Company, Incorporated (no date given).
- 90624 McDaniel, R. H., Bradford, E. W., Lewis, J. H., and Wattier, J. B., "NERVA Irradiation Program—GTR 23- Volume I—Combined Effects of Reactor Radiation and Cryogenic Temperature on NERVA Structural Materials", NASA CR-137267, General Dynamics Corporation, Contract AF 29(601)-7077 (January, 1973).
- 90717 Forman, R. G., "Crack-Growth Behavior in Thick Welded Plates of Inconel 718 at Room and Cryogenic Temperatures", NASA Technical Note, NASA TN D-7665, Lyndon B. Johnson Space Center (May 1974).
- 91494 Jin, S., Hwang, S. K., and Morris, J. W., Jr., "Comparative Fracture Toughness Testing of Cryogenic Alloys at Liquid Helium Temperature", Technical Report TR-5, University of California, Contract N00014-69- A-0200-1062 (August 1974).

- 91696 Shah, R. C., "Effects of Proof Loads and Combined Mode Loadings on Fracture and Flaw Growth Characteristics of Aerospace Alloys", NASA CR-134611, Technical Report D180-17997-1, Boeing Company, Contract NAS 3-14346 (March 1974).
- 91793 Van Stone, R. H., Low, J. R., Jr., and Shannon, J. L., Jr., "The Effect of Microstructure on the Fracture Toughness of Titanium Alloys", NASA Technical Report 2-Ti, Carnegie-Mellon University, NASA Research Grant 39-087-047 (December 1974).
- 91978 Haynes, A. G., Firth, K., Hollox, G. E., and Buchan, J., "Strength and Fracture Toughness of Nickel Containing Steels, ASTM STP 579, 288-323 (1975).
- 92996 Pense, A. W. and Stout, R. D., "Fracture Toughness and Related Characteristics of the Cryogenic Nickel Steels", WRC Bulletin, No. 205, 1-43 (May, 1975).
- 93338 Witzell, W. E., "Crack Growth Behavior of 2219-T87 Aluminum Alloy from 20 K (-423 F) to 422 K (300 F)", CASD-NAS-73-011, NASA CR-134047, General Dynamics, Contract NAS 9-12445 (August 1973).
- 94195 Fedorov, G. V. and Ryabinina, N. M., "Hall Effect, Magnetic Susceptibility and Resistivity of Cu-Ni Alloys", Physics of Metals And Metallography, 29 (1), 82-86 (1970).
- 94196 Furukawa, G. T., McCoskey, R. E., and King, G. J., "Calorimetric Properties of Polytetrafluoroethylene(Teflon) From 0° to 365°K", Journal of Research of the National Bureau of Standards, 49 (4), 273-278 (October, 1952).
- 94197 Jin, S., Morris, J. W., Jr., and Zackay, V. F., "An Iron-Nickel-Titanium Alloy With Outstanding Toughness at Cryogenic Temperatures", Advances in Cryogenic Engineering, 19, 379-384 (1974).
- 94198 Tucker, J. E., "Heat Capacity on Polyethylene in the Temperature Range of 2.4° to 30°K", Doctorial Thesis, U.S. Naval Postgraduate School (May, 1966).
- 94199 Warfield, R. W. and Petree, M. C., "Thermodynamic Properties of Polyethylene", Technical Report NOLTR 61-92, U.S. Naval Ordinance Laboratory (October, 1961).
- 94200 Warfield, R. W. and Petree, M. C., "Thermodynamic Properties of Polystyrene and Styrene", NAVWEPS Report 7352, U.S. Naval Ordinance Laboratory (September 21, 1960).
- 94201 Warfield, R. W. and Petree, M. C., "Thermodynamic Properties of Polymethyl Methacrylate and Methyl Methacrylate", NOLTR 62-98, U.S. Naval Ordinance Laboratory (January 17, 1962).
- 94202 Mowers, R. E., "Program of Testing Nonmetallic Materials at Cryogenic Temperatures", Final Report, Technical Documentary Report RTD-TDR-63-11, Rocketdyne/North American Aviation, Incorporated, Contract AF 04(611)-6354 (December 30, 1962).
- 94203 Wunderlich, B., "Heat Capacities of Linear High Polymers", Technical Report No. i7, Rensselaer Polytechnic Institute, Contract Nonr-591(19) (November, 1968).
- 94204 Hurlich, A. and Scheck, W. G., "Evaluation and Application of Stainless Steels in Cryogenic Environments", Advances in the Technology of Stainless Steels and Related to Alloys, ASTM Special Technical Publication No. 369, 127-135 (1963).

- 94205 Brickner, K. G., "Stainless Steels for Room And Cryogenic Temperatures", Metals Engineering Quarterly, 8 (2), 1-29 (May, 1968).
- 94206 Clark, A. F., Reed, R. P., and Van Reuth, E. C., "Materials Research in Support of Superconducting Machinery-II", Second Semi-Annual Technical Report, NBS (March 1, 1974—September 1, 1974).
- 94206A Schwartzberg, F. R., "Study of Fracture Behavior of Metals for Superconducting Applications", Second Annual Technical Report MCR-74-89, Martin Marietta Corporation (October, 1974).
- 94206B Tobler, R. L., Mikesell, R. P., Durcholz, R. L., and Reed, R. P., "Fatigue and Fracture Toughness Testing at Cryogenic Temperatures", Semi-Annual Report, NBS (October, 1974).
- 94206C Ledbetter, H. M., Naimon, E. R., and Weston, W. F., "Elastic Properties of Engineering Materials at Cryogenic Temperatures", Semi-Annual Report, NBS (October, 1974).
- 94206D Naimon, E. R., Weston, W. F., and Ledbetter, H. M., "Elastic Properties of Two Titanium Alloys at Low Temperatures", Cryogenics, 14, 246-249 (1974).
- 94206E Lessmann, G. G., Kossowsky, R., Logsdon, W. A., et al, "Structural Materials For Cryogenic Applications", Second Semi-Annual Technical Report, Westinghouse Electric Corporation (September 9, 1974).
- 94207 Ledbetter, H. M., Naimon, E. R., and Weston, W. F., "Low-Temperature Elastic Properties of Invar", Paper D-3 presented at the Cryogenic Engineering—International Cryogenics Materials Joint Conference, Queens University, Kingston, Canada (July 22-25, 1975).
- 94208 Reed, R. P., Clark, A. F., and Van Reuth, E. C., "Materials Research in Support of Superconducting Machinery-III", Third Semi-Annual Technical Report, NBS-ARPA (September 1, 1974—March 1, 1975).
- 94208A Schwartzberg, F. R. and Kiefer, T., "Study of Fracture Behavior of Metals for Superconducting Applications", Semi-Annual Technical Report, MCR-74-89 (Issue 3), Martin Marietta Corporation (April, 1975).
- 94208B Fowlkes, C. W. and Tobler, R. L., "Fracture Testing and Results for a Ti-6Al-4V Alloy at Liquid Helium Temperature", Technical Report, NBS (1974).
- 94208C Tobler, R. L., "Fatigue Crack Growth and J-Integral Fracture Parameters of Ti-6Al-4V at Ambient and Cryogenic Temperatures", Technical Report, NBS (1974).
- 94208D Tobler, R. L. and Reed, R. P., "Fatigue Crack Growth Rates of Structural Alloys at Four Kelvin", Technical Report, NBS (1974-1975).
- 94208E Reed, R. P., Tobler, R. L., and Mikesell, R. P., "The Fracture Toughness and Fatigue Crack Growth Rate of an Fe-Ni-Cr Superalloy at 298°, 76° and 4°K", Technical Report, NBS (1974-1975).
- 94208F Weston, W. F. and Ledbetter, H. M., "Low-Temperature Elastic Properties of a Nickel-Chromium-Iron-Molybdenum Alloy", Technical Report, NBS (1974-1975).
- 94208G Wells, J. M., Kossowsky, R., Logsdon, W. A., and Daniel, M. R., "Structural Materials for Cryogenic Applications", Third Semi-Annual Technical Report, Westinghouse Electric Corporation (March 10, 1975).

- 95168 Clark, A. F., Reed, R. P., and Van Reuth, E. C., "Materials Research in Support of Superconducting Machinery-IV", Fourth Semi-Annual Technical Report, National Bureau of Standards (October 1975).
- 96682 McRickard, S. P., "Twinning Deformation in Iron at 4 K", Physica Status Solidi, <u>18</u> (1), 89-97 (November 1, 1966).
- 96683 Lismer, R. E., "Properties of Some Alloys and Weld Metal Deposits at Low Temperatures", Welding and Metal Fabrication, 30 (1), 19-27 (January 1962).
- 96684 Murayama, N., Pense, A. W., and Stout, R. D., "The Fracture Toughness of Cryogenic Steels", Paper F-2 presented at the Cryogenic Engineering International Cryogenics Materials Joint Conference, Queens University, Kingston, Canada (July 22-25, 1975).
- 96685 Carman, C. M., and Katlin, J. M., "Plane Strain Fracture Toughness and Mechanical Properties of 5Al-2.5Sn ELI and Commercial Titanium Alloys at Room and Cryogenic Temperatures", ASTM STP 432, 124-144 (1968).
- 96686 Bucci, R. J., Greene, B. N., and Paris, P. C., "Fatigue Crack Propagation and Fracture Toughness of 5Ni and 9Ni Steels at Cryogenic Temperatures", ASTM STP 536, 206-228 (1973).
- 96687 Sarno, D. A., Bruner, J. P., and Kampschaefer, G. E., "Fracture Toughness of 5% Nickel Steel Weldments", Welding Journal, 39 (11), 486s-494s (November 1974).
- 96688 Lismer, R. E., "The Properties of Some Metals and Alloys at Low Temperatures", Journal of the Institute of Metals, 89, 145-161 (1960/1961).
- 96690 Kelsey, R. A., Wygonik, R. H., and Tenge, P., "Crack Growth and Fracture of Thick 5083-0 Plate Under Liquefied Natural Gas Ship Spectrum Loading", ASTM STP 579, 44-79 (1975).
- 96691 Person, N. L., and Wolfer, G. C., "Fatigue Crack Growth Rate of Thick 5083-0 Plate at Room and Low Temperatures", ASTM STP 579, 80-95 (1975).
- 20694 Zinkham, R. E., and Ashton, R. F., "Strength and Fracture of 5083-0 Aluminum Weld-Ments", ASTM STP 579, 159-175 (1975).
- 96699 Tobler, R. L., Mikesell, R. P., Burcholz, R. L., and Reed, R. P., "Low Temperature Fracture Behavior of Iron-Nickel Alloy Steels", ASTM STP 579, 261-287 (1975).
- 96700 Nachtigall, A. J., "Strain-Cycling Fatigue Behavior of Ten Structural Metals Tested in Liquid Helium, Liquid Nitrogen, and Ambient Air", ASTM STP 579, 378-396 (1975).
- 96871 Efferson, K. R., and Leonard, W. J., "Magnetic Properties of Some Structural Materials Used in Cryogenic Applications", Report ORNL-4150, Oak Ridge National Lab, Contract W-7405-ENG-26 (September 1967).
- 96872 Chou, C. L., Salinger, G. L., and Chiang, Y. C., "Thermal Conductivity of Some Amorphous Polymers Below 4 K", Journal of Applied Physics, 41 (2), 597-603 (February 1970).
- 96873 Bowers, R., "Magnetic Susceptibility of Copper Metal at Low Temperatures", Physical Review, 102 (6), 1486-1488 (June 15, 1956).

- 96874 Collings, E. W., Hedgcock, F. T., et al, "Magnetic and Electrical Properties of Some Ternary Mg-Mn-Al Alloys at Low Temperatures", Philosophical Magazine, Series 8, 10 (103), 159-167 (July 1964).
- 96875 Linz, R. J., Bouley, A. C., Klaffky, R. W., et al, "The Electrical and Thermal Conductivities of Cu-4, 10, and 20 At. % Ni from 1-25 K", IEEE Transactions on Magnetics, MAG-11 (2), 305-308 (March 1975).
- 96876 Morin, F. J., Maita, J. P., Williams, H. J., et al, "Heat Capacity Evidence for a Large Degree of Superconductivity in V₃Ga in High Magnetic Fields", Physical Review Letters, <u>8</u> (7), 275-277 (April 1, 1962).
- 96877 Fulkerson, W., Moore, J. P., and McElroy, D. L., "Comparison of the Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of a High-Purity Iron and an Armco Iron to 1000 C", Journal of Applied Physics, 37 (7), 2639-2653 (June 1966).
- 96878 Vold, C. L., and Richards, L. E., "Low Temperature Thermal Expansion of A-15 Vanadium-Gallium Alloys", Materials Research Bulletin, 9 (2), 83-88 (February 1974).
- 96879 Golovashkin, A. I., Levchenko, I. S., Leskova, T. A., et al, "Optical and Electrical Properties of Cast, Superconducting Alloys of Vanadium-Gallium", Physics of Metals and Metallography, 36 (6), 56-65 (1973).
- 96880 Reese, W., "Low-Temperature Thermal Conductivity of Amorphous Polymers: Polystyrene and Polymethylmethacrylate", Journal of Applied Physics, 37 (2), 864-868 (February 1966).
- 96881 Reese, W., and Tucker, J. E., "Thermal Conductivity and Specific Heat of Some Polymers Between 4.5 K and 1 K", Journal of Chemical Physics, 43 (1), 105-114 (July 1, 1965).
- 96882 Reese, W., Higgins, P. J., and Rostine, G. W., "Effects of Radiation-Induced Cross-Links on the Low-Temperature Thermal Properties of Polystyrene", Journal of Applied Physics, 39 (3), 1800-1802 (February 15, 1968).
- 96883 McCammon, R. D., and Saba, R. G., "Dielectric Properties of Polystyrene and Some Polychlorostyrenes from 4 K to Room Temperature", Journal of Polymer Science, Part A-2, 7, 1721-1733 (1969).
- Gupta, K. P., Cheng, C. H., and Beck, P. A., "Low-Temperature Specific Heat of F.C.C. Alloys of 3d-Transition Elements", Journal of Physics and Chemistry of Solids, <u>25</u>, 73-83 (1964).
- 96885 Hust, J. G., Weitzel, D. H., and Powell, R. L., "Thermal Conductivity, Electrical Resistivity, and Thermopower of Aerospace Alloys from 4 to 300 K", Journal of Research of the National Bureau of Standards, Applied Physics and Chemistry, <u>75A</u> (4), 269-277 (July-August 1971).
- 96886 Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965).
- 96887 Fickett, F. R., "A Preliminary Investigation of the Behavior of High Purity Copper in High Magnetic Fields", Annual Report, INCRA Project No. 186, NBS, International Copper Research Association (June 1972).
- 96888 Reed, R. P., Ledbetter, H. M., and Van Reuth, E. C., "Materials Research in Support of Superconducting Machinery-V", Fifth Semi-Annual Technical Report, National Bureau of Standards (April 1976).

- 96889 Galstan, G. N., "Effects of Polymer Chain Orientation Upon the Thermal Conductivity of Polymethyl Methacrylate at Liquid Nitrogen Temperatures", Doctoral Thesis, U. S. Naval Postgraduate School (May 1966).
- 96890 Hurd, C. M., "Low Temperature Magnetic Susceptibility of Pyrex, Fused Quartz, and Polytetrafluoroethylene", Review of Scientific Instruments, 37 (4), 515-516 (April 1966).

8335

BIBLIOGRAPHY

- 7010 Spretnak, J. W., Fontana, M. G., and Brooks, H. E., "Notched and Unnotched Tensile and Fatigue Properties of Ten Engineering Alloys at 25°C and -196°C", Transactions of the ASM, 43, 547-570 (1951).
- 8472 Mendelssohn, K., and Rosenberg, H. M., "The Thermal Conductivity of Metals at Low Temperatures. II. The Transition Elements", Proceedings of the Physical Society (London), A65, Part 6, 388-394 (June 1, 1952).
- 11953 Mendelssohn, K., and Rosenberg, H. M., "The Thermal Conductivity of Metals at Low Temperatures. I. The Elements of Groups 1, 2 and 3", Proceedings of the Physical Society (London), A65, Part 6, 385-388 (June 1, 1952).
- 26638 Kemp, W.R.G., Klemens, P. G., and White, G. K., "Thermal and Electrical Conductivities of Iron, Nickel, Titanium, and Zirconium at Low Temperatures", Australian Journal of Physics, 9 (2), 180-188 (June 1956).
- 29424 Lucks, C. F., and Deem, H. W., "Thermal Properties of Thirteen Metals", American Society for Testing Materials, ASTM Special Technical Publication No. 227 (February 1958).
- 29830 McGee, R. L., and Campbell, J. E., "The Mechanical Properties of Certain Aircraft Structural Metals at Very Low Temperatures", Technical Report ASD-TR-58-386, Battelle Memorial Institute (November 1958).
- Furman, D. E., "Thermal Expansion Characteristics of Stainless Steels Between -300° and 1000°F", Journal of Metals, 188 (4), 688-691 (April 1950).
- 32444 Krivobok, V. N., "Properties of Austenitic Stainless Steels at Low Temperatures", National Bureau of Standards Circular 520, 112-136 (May 7, 1952).
- Baughman, R. A., "Gas Atmosphere Effects on Materials", Final Report, R59FPD456, General Electric Company, WPAFB Contract AF 33(616)-5667 (June 15, 1959).
- 34348 Armstrong, T. N., Gross, J. H., and Brien, R. E., "Properties Affecting Suitability of 9 Percent Nickel Steel for Low-Temperature Service", Welding Journal Research Supplement, 38, 57-s through 70-s (February 1959).
- 35502 Krivobok, V. N., and Thomas, R. ū., Jr., "Impact Tests of Welded Austenitic Stainless Steel", Welding Journal Research Supplement, 29 (9), 493s-495s (September 1950).
- Belton, J. H., Godby, L. L., and Taft, B. L., "Materials for Use at Liquid Hydrogen Temperatures", Paper presented at the Sixty-Third Annual ASTM Meeting, Atlantic City, N. J., June 26-July 1, 1963.
- Anon., "Properties of Titanium Alloys at Cryogenic Temperatures", Convair-Astronautics/General Dynamics, Paper presented at the MAB Meeting (January 1960).
- DeSisto, T. S., "The True-Stress True-Strain Properties of Titanium and Titanium Alloys as a Function of Temperature and Strain Rate", Technical Report WAL TR-405.2/4, Watertown Arsenal (March 1960).

- 37146 Rice, L. P., Campbell, J. E., and Simmons, W. F., "The Evaluation of the Effects of Very Low Temperatures on the Properties of Aircraft and Missile Metals", WADD-TR-60-254, Battelle Memorial Institute, Contract AF 33(616)-6345 (June 1960).
- Espey, G. B., Jones, M. H., and Brown, W. F., Jr., "Sharp-Edge-Notch Tensile Characteristics of Several High-Strength Titanium Sheet Alloys at Room and Cryogenic Temperatures", ASTM Special Technical Publication No. 287, 74-107 (June 30, 1960).
- Watson, J. F., and Christian, J. L., "The Effect of Cryogenic Temperatures on the Mechanical Properties of High Strength Sheet Alloys (Nonferrous Alloys)", Technical Report ERR-AN-002, Convair-Astronautics/General Dynamics (April 13, 1960).
- Watson, J. F., and Christian, J. L., "Low-Temperature Properties of Cold-Rolled AISI ypes 301, 302, 304ELC, and 310 Stainless Steel Sheet", ASTM Special Technical Publication No. 287, 170-195 (June 30, 1960).
- 38611 Belton, J. H., Godby, L. L., and Taft, B. L., "Materials for Use at Liquid Hydrogen Temperature", ASTM Special Technical Publication No. 287, 108-121 (June 30, 1960).
- 39077 Watson, J. F., and Christian, J. L., "Mechanical Properties of High-Strength 301 Stainless Steel Sheet at 70°, -320°, and -423°F in the Base Metal and Welded Joint Configuration", ASTM Special Technical Publication No. 287, 136-149 (June 30, 1960).
- 39134 Kaufman, J. G., and Johnson, E. W., "New Data on Aluminum Alloys for Cryogenic Applications", Pt Reedings of the 1960 Cryogenic Engineering Conference, 637-649 (1961).
- 39412 Christian, J. L., and Watson, J. F., "Mechanical Properties of Inconel X Sheet at 78°, -100°, -320°, and -423°F", Technical Report MRG-150, Convair-Astronautics/General Dynamics (April 20, 1960).
- 39414 Kropp, C. J., and Foor, E. R., "Mechanical Properties of Heat Treated A-286 Alloy at Various Testing Temperatures, Status Report No. 3", Technical Report MRG-157, Convair-Astronautics/General Dynamics (June 8, 1960).
- Watson, J. F., and Christian, J. L., "The Effect of Cryogenic Temperatures on the Mechanical Properties of High Strength Sheet Alloys (Cold Worked Austenitic Stainless Steels)", Technical Report ERR-AN-003, Convair-Astronautics/General Dynamics (May 16, 1960).
- 39871 Guntner, C. J., and Reed, R. P., "Mechanical Properties of Four Austenitic Stainless Steels at Temperatures Between 300° and 20°K", Proceedings of the 1960 Cryogenic Engineering Conference, 565-576 (1961).
- 40004 DeSisto, T. S., and Carr, L. C., "Low Temperature Mechanical Properties of 300 Series Stainless Steel and Titanium", Proceedings of the 1960 Cryogenic Engineering Conference, 577-586 (1961).
- 40128 Christian, J. L., "Mechanical Properties of Titanium and Titanium Alloys at Cryogenic Temperatures", Technical Report MRG-189, Convair-Astronautics/General Dynamics (October 14, 1960).

8 . 1 <

- Tiffany, C. F., Lorenz, P. M., Southworth, H. L., Pall, F. A., Ottlyk, A. A., Fleming, F. C., and Robinson, V. R., "Investigation of Low-Cycle Fatigue Failures Using Applied Fracture Mechanics", Technical Progress Report, Boeing Company, WPAFB Contract AF 33(657)-10251 (October 1963).
- Keys, R. D., and Schwartzberg, F. R., "Techniques for Axial Testing of Sheet Materials Down to -423°F", Paper presented at the Sixty-Sixth Meeting of the American Society for Testing and Materials, Atlantic City, New Jersey (June 23-28, 1963).
- 53308 Schwartzberg, F. R., Keys, R. D., Brown, M. J., and Reightler, C. L., "Determination of Low-Temperature Fatigue Properties of Aluminum and Titanium Alloys", NASA CR-63-29, The Martin Company, Contract NAS 8-2631 (July 1963).
- Christian, J. L., and Kerr, J. R., "Selection of Optimum Materials for Use in Liquid-Hydrogen-Fueled Aerospace Vehicles", ASD-TDR-63-798, Astronautics/General Dynamics, WPAFB Contract AF 33(657)-9445 (October 1963).
- Morgan, W. R., "Low Temperature Mechanical Properties of A-286 Alloy and Its Weldments", Technical Report IN-P&VE-M-62-4, NASA George C. Marshall Space Flight Center (1962).
- DeMoney, F. W., "Performance of a New Cryogenic Aluminum Alloy, 7039", Proceedings of the 1963 Cryogenic Engineering Conference, 112-123 (1964).
- Anderson, W. A., Kaufman, J. G., and Kane, J. E., "Notch Sensitivity of Aluminum-Zinc-Magnesium Alloys at Cryogenic Temperatures", Proceedings of the 1963 Cryogenic Engineering Conference, 104-111 (1964).
- Kendall, E. G., "Metals and Alloys for Cryogenic Applications A Review", Technical Report SSD-63-371, Aerospace Corporation, Contract AF 04(695)-269 (January 1964).
- Pendleberry, S. L., "Fracture Strength of 6Al-4V-Ti, 5Al-2.5Sn-Ti, and 2014-T6 Al Sheet Containing Shallow Cracks at Room Temperature and -423°F", Transactions of the ASM, 56, 744-752 (1963).
- Warren, K. A., and Reed, R. P., "Tensile and Impact Properties of Selected Materials From 20° to 300° K", National Bureau of Standards Monograph 63 (June 28, 1963).
- Wroth, R. S., "Effect of Filler Metal Chemistry on the Mechanical Properties of Weldments in 2014-T6 Aluminum", Technical Report SM-43090, Douglas Aircraft Company (1963).
- Brisbane, A. W., "The Influence of Loading Rate and Stress Concentration Factors on Notch Properties of Three Sheet Alloys at Room Temperature, -78°C, and -196°C", Proceedings of the 1962 Cryogenic Engineering Conference, 641-653 (1963).
- Keys, R. D., and Schwartzberg, F. R., "Axial Fatigue Testing of Sheet Materials Down to -423°F", Materials Research and Standards, 4 (5), 222-224 (May 1964).
- Tiffany, C. F., and Lorenz, P. M., "An Investigation of Low-Cycle Fatigue Failures Using Applied Fracture Mechanics", ML-TDR-64-53, The Boeing Company, WPAFB Contract AF 33(657)-10251 (May 1964).

- DeSisto, T. S., and Carr, F. L., "The Influence of Subzero Rolling on the Tensile Properties of Commercially Pure Titanium", Technical Report AMRA TR-64-47, Watertown Arsenal (December 1964).
- Weiman, S. M., "Cryogenic Properties of Seven Experimental Titanium Alloys", R&D Technical Report SM-44674, Douglas Aircraft Company, Inc. (March 17, 1964).
- Christian, J. L., Yang, C. T., and Witzell, W. E., "Physical and Mechanical Properties of Pressure Vessel Material for Application in a Cryogenic Environment", Summary Report GD/A 63-0818-3, Astronautics/General Dynamics, Contract AF 33(657)-11289, Phase II (May 15, 1964).
- Anon., "Cryogenic Tensile Properties of Ti-5Al-2.5Sn", Technical Report M-2135, Aerojet-General Corporation (May 14, 1963).
- Kiefer, T. F., Keys, D. R., and Schwartzberg, F. R., "Charpy Impact Testing at 20°K", Proceedings of the 1964 Cryogenic Engineering Conference, 56-62 (1965).
- Miller, P. C., "Metallurgical Evaluation of a New Aluminum Casting Alloy Developed for Space Vehicle Use at Cryogenic Temperatures", Proceedings of the 1964 Cryogenic Engineering Conference, 37-45 (1965).
- Kiefer, T. F., and Keys, R. D., "Fatigue Behavior of Aluminum and Titanium Sheet Materials Down to -423°F", Proceedings of the 1964 Cryogenic Engineering Conference, 1-13 (1965).
- Weleff, W., Emmons, W. F., and McQueen, H. S., "Shear Strength of Several Alloys at Liquid-Hydrogen Temperatures", Proceedings of the 1964 Cryogenic Engineering Conference, 50-55 (1965).
- Weleff, W., McQueen, H. S., and Emmons, W. F., "Cryogenic Tensile Properties of Selected Aerospace Materials", Proceedings of the 1964 Cryogenic Engineering Conference, 14-25 (1965).
- Martin, W. J., Matsuda, T., and Kaluza, E. F., "Study of Titanium Alloy Tankage at Cryogenic Temperatures", Technical Report SM-43116, Douglas Aircraft Company (May 1964).
- 57031 Hulm, J. K., "Fundamentals of Superconductivity", Cryogenic Engineering, Chapter 8, 251-290, John Wiley & Sons, Inc., N. Y. (1963).
- 57146 Inouye, F. T., "Inconel 718 Mechanical Properties at -423°F", Technical Report 64-132, Aerojet-General Corporation (January 31, 1964).
- Bowers, W. D., "Cryogenic Tensile Properties of 18% Ni-Co-Mo Steel", Technical Report M-2132, Aerojet-General Corporation (March 19, 1963).
- Alper, R. H., "Development of High Strength Alloys by Cryogenic Stretchforming", Final Report, Part I, Arde-Portland, Inc., Contract NOw 63-0387-c (September 17, 1964).
- 57525 Campbell, J. E., "Aluminum Alloys for Cryogenic Service", Materials Research & Standards, 4 (10), 540-548 (October 1964).

- Orange, T. W., "Tensile Coupon Tests of Cryoformed AISI 301 Stainless-Steel Pressure Vessels at Cryogenic Temperatures", NASA Technical Note NASA TN D-2202 (October 1964).
- 57829 Christian, J. L., "Effects of Chemistry and Processing on the Mechanical Properties of Engineering Alloys at Cryogenic Temperatures", Metals Engineering Quarterly, 4 (3), 53-63 (August 1964).
- 57977 Kamm, G. N., and Alers, G. A., "Low-Temperature Elastic Moduli of Aluminum", Journal of Applied Physics, 35 (2), 327-330 (February 1964).
- Burdekin, F. M., "The Fracture Strength of Welded 3-1/2% and 9% Nickel Steels at Low Temperature", British Welding Journal, 11, 586-592 (November 1964).
- Schwartzberg, F. R., Kiefer, T. F., and Keys, R. D., "Determination of Low-Temperature Fatigue Properties of Structural Metal Alloys", Final Report, The Martin Company, Contract NAS 8-2631 (October 1964).
- 58060 Martin, H. L., "Effects of Low Temperatures on Structural Metals", Technical Report NASA SP-5012 (December 1964).
- 58692 Cataldo, C. E., "The Effects of Liquid Hydrogen on Mechanical Properties of Materials", Technical Report DSN-TN3-60, Redstone Arsenal (March 1960).
- Eichenberger, T. W., "Mechanical Property and Fracture Toughness Evaluation of 2219-T6E46 for Cryogenic Applications", Final Report D2-81287, Boeing Company, Contract AF 33(615)-1624 (July 16, 1964).
- Shannon, J. L., Jr., and Brown, W. F., Jr., "Effects of Several Alloy Production and Fabrication Variables on the Sharp Notch Properties of 5AI-2.5Sn-Ti Sheet at Liquid Hydrogen Temperature", Paper presented at the Annual ASTM Meeting, Atlantic City, N. J. (June 23, 1963).
- 59345 Girton, L. D., "Evaluation of Sheet Alloy 718 for Formed and Welded Missile Parts", Technical Report GD/A-ERR-AN-656, General Dynamics/Astronautics (December 1964).
- Mishler, H. W., "Steels for Piping Systems With Maximum Pressures of 10,000 psi, and Operating Between -150° and +150°F", Technical Report RSIC-327, Battelle Memorial Institute, Contract DA-01-021-AMC-203Z (November 1964).
- Hooper, A. F., and Christian, J., "Evaluation of 2017-T4, 2117-T4, and 5056-H32 Aluminum Alloys at Cryogenic Temperatures", Technical Report AR-592-1-375, General Dynamics, Contract AF 33(616)-7984 (March 1963).
- 59767 Gruner, J. D., "Additional Information Pertaining to the Effects of Chemical Milling on the Mechanical Properties of Cold Rolled Stainless Steel", Technical Report AR 592-1-521, Astronautics/General Dynamics (April 16, 1964).
- Gruner, J. D., "The Effects of Chemical Milling and Chemically Milled Steps on the Mechanical Properties of Type 301 EH and Type 310 EH Stainless Steels at Room and Liquid Hydrogen Temperatures", Technical Report AR-592-1-473, Convair/General Dynamics (July 3, 1963).

- Denaburg, C. R., "Low Temperature Mechanical Properties of 8AI-1Mo-1V Titanium Alloys and Composite Weldments", Technical Memorandum NASA TM X-53178 (December 11, 1964).
- 60578 Christian, J. L., Yang, C. T., and Witzell, W. E., "Physical and Mechanical Properties of Pressure Vessel Materials for Application in a Cryogenic Environment. Part III", Technical Report ASD-TDR-62-258-Part 3, General Dynamics, Contract AF 33(657)-11289 (December 1964).
- DeSisto, T. S., and Hickey, C. F., Jr., "Low-Temperature Mechanical Properties and Fracture Toughness of Ti-6Al-6V-2Sn", Technical Report AMRA-TR-65-17 (July 1965).
- 60698 Kula, E. B., and DeSisto, T. S., "Plastic Behavior of Metals at Cryogenic Temperatures", Technical Report AMRA TR -65-32, Watertown Arsenal (December 1965).
- Kramer, B. E., "Development of High Strength, Brazed Aluminum Honeycomb Sandwich Composites Adaptable for Both Elevated and Cryogenic Temperature Applications", Summary Annual Report ER-802, Aeronca Manufacturing Corporation, Contract NAS 8-5445 (January 15, 1965).
- Anon., "Development of Stress Relief Treatments for High Strength Aluminum Alloys", Quarterly Progress Report No. 6, Manlabs, Inc., Contract NAS 1-1091 (June 1965).
- McClaren, S. W., and Foreman, C. R., "Cryogenic Design Data for Materials Subjected to Uniaxial and Multiaxial Stress Field", Technical Report AFML-TR-65-140, Ling-Temco-Vought, Inc., Contract AF 33(615)-1329 (May 1965).
- 61918 Pierce, W. S., "Strength Comparison of Flawed Single-Layer and Multilayer AISI 301 Stainless-Steel Pressure Vessels at Cryogenic Temperatures", NASA Technical Note NASA TN D-2949, NASA Lewis Research Center (October 1965).
- Kiefer, T. F., Keys, R. D., and Schwartzberg, F. R., "Determination of Low-Temperature Fatigue Properties of Structural Metal Alloys", Final Report, The Martin Company, Contract NAS 8-11300 (October 1965).
- 62084 Hunsicker, H. Y., and Hess, J. H., "New Weldable High-Strength Aluminum Alloys for Cryogenic Service", Proceedings of the 1965 Cryogenic Engineering Conference, 423-435 (1966).
- 62292 Lorenz, P. M., "Fracture Toughness and Subcritical Flaw Growth Characteristics of Saturn SI-C Tankage Materials", Technical Report D2-22802, Boeing Company, Contract NAS 8-5608 (April 6, 1964).
- 62491 Kropp, C. J., "Development of a Superior Titanium-Base Alloy for Cryogenic Applications", Fifth Quarterly Progress Report, Convair/General Dynamics (November 1, 1965).
- 62857 Carman, C. M., Armiento, D. F., and Markus, H., "Plane-Strain Fracture Toughness of High-Strength Aluminum Alloys", Transactions of the ASME, <u>87</u> (4), 904-916 (December 1965).
- Tryon, R. W., "The Development of a Superior Titanium-Base Alloy for Cryogenic Applications", Technical Report AFML-TR-65-308, Volume I, Convair/General Dynamics, Contract AF 33(615)-1361 (October 1965).

- Gain, B. R., 'The Effect of Temperature on Cycle Dependent Deformation', Technical Report AFML-TR-65-288, University of Illinois, Contract AF 33(657)-10822 (August 1965).
- Orange, T. W., "Effect of Cold Reduction and Thermal Treatment on Tensile Properties of a Nickel-2 Percent Beryllium Alloy at Cryogenic Temperatures", NASA Technical Note NASA TN D-3196 (January 1966).
- 63160 Martin, H. L., and Imgram, A. G., "Effects of Low Temperature on Structural Metals", Journal of Metals, 17 (7), 735-741 (July 1965).
- Nelson, F. G., Kaufman, J. G., and Holt, M., "Fracture Characteristics of Welds in Aluminum Alloys", Metals Engineering Quarterly, <u>6</u> (1), 48-55 (February 1966).
- Betts, R. D., "Weld Efficiencies for Inconel 718 TIG Welds. Weld Efficiencies of Inconel 718 Gas Tungsten Arc Welds in the -423° to 1500°F Temperature Range", Final Report MPR-5-175-363, North American Aviation, Inc. (July 27, 1965).
- Anon., "Low Temperature Properties of a Large Inconel 718 Forging for Two Heat Treated Conditions", Technical Report MPR-5-175-08, Rocketdyne/North American Aviation (January 7, 1965).
- 63857 Anon., "Low Temperature and Cryogenic Steels", Trade Literature, United States Steel (March 1966).
- Anon., "Armco 21-6-9 Stainless Steel", Product Data Bulletin S-10A, Armco Steel Corporation (1964).
- Weiss, V., and Roy, A., "Further Material Evaluation for Supersonic Transport Aircraft", Final Report, S.U.R.I. Report MET. E. 873-6312-F, Syracuse University Research Institute, Contract NASr-43 (December 1963).
- 64373 Schwanbeck, C. A., "Effect of Nuclear Radiation on Materials at Cryogenic Temperatures", Final Report, NASA CR-54881, Lockheed-Georgia Company, Contracts NAS 3-7987 and NASw-114 (January 1965).
- Denaburg, C. R., "Low Temperature Mechanical Properties of Aluminum Alloy 2219-T87, 0.040-Inch Thick Sheet Through 5.000-Inch Thick Plate", NASA TM X-53332 (September 14, 1965).
- Morgan, W. R., "Low Temperature Mechanical Properties of HP 9-4-25 Alloy", Technical Memorandum NASA TM X-53302 (July 23, 1965).
- 64796 Morris, E. E., Darms, F. J., and Landes, R. E., "Low-Cycle, High-Strain Fatigue Resistance of Candidate Materials Appendix C", Topical Report NASA CR-54855, Aerojet-General Corporation, Contract NAS 3-6292 (April 1966).
- 64969 Carman, C. M., Forney, J. W., and Katlin, J. M., "Plane Strain Fracture Toughness and Mechanical Properties of 5AI-2.5Sn ELI Titanium at Room and Cryogenic Temperatures", Final Report, NASA CR-54296, Frankford Arsenal, NASA Purchase Order C6860A (April 1966).
- 65112 Inouye, F. T., "Properties of Large 7079 Aluminum Alloy Forgings in a Cryogenic Environment", Technical Report NASA-CR-513, Aerojet-General Corporation, Contract NAS 3-2555 (July 1966).

- 65177 Christian, J. L., "Mechanical Properties of Several Nickel-Base Alloys at Room and Cryogenic Temperatures", Proceedings of the 1966 Cryogenic Engineering Conference, 520-530 (1967).
- Peterson, N. M., "A Statistical Analysis of Aluminum Welds Tested at Cryogenic Temperatures", Proceedings of the 1966 Cryogenic Engineering Conference, 496-499 (1967).
- 65180 Corn, D. L., "Cryogenic Properties of 18Ni-9Co-5Mo and 18Ni-7Co-5Mo Maraging Steel Sheet", Proceedings of the 1966 Cryogenic Engineering Conference, 532-543 (1967).
- 65181 Coursen, J. W., Kaufman, J. G., and Sicha, W. E., "Notch Toughness of Some Aluminum Alloy Castings at Cryogenic Temperatures", Proceedings of the 1966 Cryogenic Engineering Conference, 473-483 (1967).
- Weleff, W., "Radiation Effects on Shear Strength of Several Alloys at Liquid Hydrogen Environment", Proceedings of the 1966 Cryogenic Engineering Conference, 544-556 (1967).
- 65183 Schwartzberg, F. R., "A Review of Cryogenic Fracture Toughness Behavior", Proceedings of the 1966 Cryogenic Engineering Conference, 458-472 (1967).
- 65184 Eiselstein, H. L., "An Age-Hardenable, Low-Expansion Alloy for Cryogenic Service", Proceedings of the 1966 Cryogenic Engineering Conference, 508-519 (1967).
- Bukh, A., "Band of the Boundary of Fatigue With Other Mechanical Properties on Metal", Translation of Mashinostroenie (4), 20-23 (1964).
- Montano, J. W., "Low Temperature Mechanical Properties of High Strength A-286 Bolts", Technical Memorandum NASA TM X-53407 (March 9, 1966).
- Witherell, C. E., "Welding Nickel-Iron Alloys of the Invar Type", Welding Journal, Welding Research Supplement, 43, 161s-169s (April 1964).
- Stinnett, W. D., "Cryogenic Tensile Properties of Selected Materials", Research Report 2712, NASA CR-71751, Aerojet-General Corporation, AEC-NASA Contract SNP-1 (January 1, 1946).
- Ferguson, C. W., "Hypervelocity Impact Effects on Liquid Hydrogen Tanks", Final Report, NASA CR-54852, Douglas Missile & Space Systems, Contract NAS 3-4193 (March 31, 1966).
- Carman, C. M., Forney, J. W., and Katlin, J. M., "Plane Strain Fracture Toughness of 2219-T87 Aluminum Alloy at Room and Cryogenic Temperatures", Technical Report R-1821, NASA CR-54297, Frankford Arsenal, NASA Purchase Order C6860A (August 1966).
- Tifrany, C. F., Lorenz, P. M., and Hall, L. R., "Investigation of Plane-Strain Flaw Growth in Thick-Walled Tanks", Final Report, NASA CR-54837, Boeing Company, Contract NAS 3-4194 (February 1966).
- Tilley, E. B., "Evaluation of Inconel 718 Alloy", Technical Report RDR 1181-2, International Harvester Company (June 1, 1965).
- Kropp, C. J., "The Development of a Superior Titanium-Base Alloy for Cryogenic Applications", Technical Report AFML-TR-65-308, Volume II, Convair/General Dynamics, Contract AF 33(615)-1361 (September 1966).

- 67290 Christian, J., "Mechanical Properties of Hastelloy Sheet Alloy R-235 at Cryogenic Temperatures", Technical Report MRG-300, NASA CR-54598, Convair/General Dynamics (March 19, 1962).
- 67303 Gill, R. S., "Comparative Tensile and Fatigue Properties at Room Temperature and at –423°F of Some Welded Centaur Tank Joint Configurations", Technical Report NASA CR-54689, General Dynamics, Contract NAS 3-3232 (October 11, 1963).
- 67392 Runsicker, H. Y., and Hess, J. H., "New Weldable High Strength Aluminum Alloys for Cryogenic Service", Technical Report NASA CR-71534, Aluminum Corporation of America, Contract NAS 8-5452 (1966).
- 67747 Christian, J. L., Gruner, J. D., and Girton, L. D., "The Effects of Cold Rolling on the Mechanical Properties of Type 310 Stainless Steel at Room and Cryogenic Temperatures", Technical Report AR-592-1-365, NASA CR-54614, Astronautics/General Dynamics (November 27, 1962).
- 67749 Iannelli, A. A., and Rizzitano, F. J., "Notched Properties of High-Strength Alloys at Various Load Rates and Temperatures", Technical Report AMRA TR-66-13, Army Materials Research Agency (July 1966).
- 67769 Robinson, I. B., and Baysinger, F. R., "Welding Aluminum Alloy 7039", Welding Journal Research Supplement, 45, 433-s through 444-s (October 1966).
- 67891 Christian, J. L., "Problems, Properties and Selection of Structural Metals for Use in Cryogenic Environment", Technical Report W 7-6.1 presented at the 1967 Westec Conference (March 13-17, 1967).
- Kramer, B. E., and Potter, D. Y., "Development of High Strength, Brazed Aluminum, Honeycomb Sandwich Composites Adaptable for Both Elevated and Cryogenic Temperature Applications. Volume II — Manufacturing and Testing", Final Report ER-986, Aeronca, Inc., Contract NAS 8-5445 (September 30, 1966).
- Westerlund, R. W., and Rogers, R. W., Jr., "Development of a High Strength Aluminum Alloy, Readily Weldable in Plate Thicknesses, and Suitable for Application at -423°F (-253°C)", Annual Report, Aluminum Company of America, Contract NAS 8-5452 (April 1967).
- Sullivan, T. L., "Uniaxial and Biaxial Fracture Toughness of Extra-Low-Interstitial 5AI-2.5Sn Titanium Alloy Sheet at 20°K", NASA Technical Note NASA TN-D-4016 (June 1967).
- 69021 Inouye, F. T., Hunt, V., Janser, G. R., and Frick, V., "Application of Alloy 718 in M-1 Engine Components", Technical Report NASA CR-788, Aerojet-General Corporation, Contract NAS 3-2555 (June 1967).
- 69310 Beck, E. J., and Mallon, J. A., "Common Bulkhead Joint Developments and Evaluation", Final Report, NASA CR-66-47, The Martin Company, Contract NAS 8-20125 (July 1966).
- 69332 Horton, J. C., Smith, C. F., and Ruff, R. C., "Low Temperature Thermal Expansion of Structural Metals", Technical Memorandum NASA TM X-53436 (April 18, 1966).

- 69563 Crane, C. H., Torgerson, R. T., Lovell, D. T., and Baginski, W. A., "Study of Dissimilar Metal Joining by Solid State Welding", Final Report, NASA CR-82460, Boeing Company, Contract NAS 8-20156 (October 1, 1966).
- 69759 Eitman, D. A., and Rawe, R. A., "Plane Stress Cyclic Flaw Growth of 2219-T87 Aluminum and 5Al-2.5Sn ELI Titanium Alloys at Room and Crogenic Temperatures", Final Report, NASA CR-54956, Douglas Aircraft Company, Contract NAS 3-4192 (September 1, 1966).
- 69800 McClaren, S. W., Foreman, C. R., and Grabinski, J. F., "Biaxial Strength Characteristics of Selected Alloys in a Cryogenic Environment", Final Report 2-53420/6R-2279, NASA CR-65412, LTV Aerospace Corporation, Contract NAS 9-3873 (May 6, 1966).
- Janser, G. R., "Summary of Materials Technology of M-1 Engine", Technical Report AGC 8800-64, NASA CR-54961, Aerojet-General Corporation, Contract NAS 3-2555 (July 22, 1966).
- 70906 Nachtigall, A. J., Klima, S. J., and Freche, J. C., "Fatigue of Liquid Rocket Engine Metals at Cryogenic Temperatures to -425°F (4°K)", NASA Technical Note NASA TN D-4274 (December 1967).
- 71237 Malin, C. O., "Low Temperature Properties of Selected Cast and Wrought Aerospace Alloys", Materials and Processes Technical Report MPTR 6-176A-8, Rocketdyne/North American (1968).
- Jones, R. L., and Conrad, H., "The Effect of Temperature on the Yield Stress of Commercial Purity Alpha-Titanium", Acta Metallurgica, 15, 649-650 (April 1967).
- 72427 Wigley, D. A., "Mechanical Properties of Materials at Low Temperatures", Cryogenics, 8 (1), 3-12 (February 1968).
- 72563 Kaufman, J. G., Bagardus, K. O., and Wanderer, E. T., "Tensile Properties and Notch Toughness of Aluminum Alloys at -452°F in Liquid Helium", Proceedings of the 1967 Cryogenic Engineering Conference, 294-308 (1968).
- 72742 Anon., "Mechanical and Physical Properties of the Austenitic Chromium-Nickel Stainless Steels at Subzero Temperatures", Trade Literature, The International Nickel Company, Inc. (July 1968).
- 73817 Anon., "The Behavior of Structural Materials at Extremely Low Temperatures", Technical Report, Rocket Propulsion Establishment (1968).
- 73890 Smith, G. W., "Centaur Biaxial Fatigue Tests Model 55", Technical Report AE62-0866, Astronautics/General Dynamics, Contract AF 18(600)-1775 (October 15, 1962).
- 74405 Clark, A. F., "Low Temperature Thermal Expansion of Some Metallic Alloys", Cryogenics, 8 (5), 282-289 (October 1968).
- Zoller, P., Decker, P. R., and Dillinger, J. R., "Anomalous Low-Temperature Specific Heat of Austenitic Stainless Steels", Journal of Applied Physics, 40 (4), 1964-1966 (March 15, 1969).
- Pittinato, G. F., "The Reactivity of Hydrogen With Ti-6AI-4V Under Fatigue Cycling at Ambient and Cryogenic Temperatures", Transactions of the ASM Quarterly, 62 (2), 410-417 (June 1969).

- 75531 Hall, L. R., "Plane-Strain Cyclic Flaw Growth in 2014-T62 Aluminum and 6Al-4V (ELI) Titanium", NASA CR -72396, Boeing Company, Contract NAS 3-7993 (November 1968).
- Wessel, E. T., Clark, W. G., and Wilson, W. K., "Engineering Methods for the Design and Selection of Materials Against Fracture", Final Technical Report, Westinghouse Research Laboratories (June 24, 1966).
- Pyle, R., Schillinger, D. E., and Carman, C. M., "Plane Strain Fracture Toughness and Mechanical Properties of 2219-T87 Aluminum and 5AI-2.5Sn (ELI) Titanium Alloy Weldments and One-Inch Thick 5AI-2.5Sn (ELI) Titanium Alloy Plate", FA Report R 1897, NASA CR-72154, Frankford Arsenal (September 1968).
- Koshelev, P. F., Ilina, R. I., and Nikitina, M. F., "Mechanical Properties of Aluminum Alloys at Low Temperatures", Translation of Mashinostroenie (USSR), (6), 86-94 (1968).
- Susukida, H., Ando, T., and Tsuji, I., "Characteristics of 9% Nickel Steel for Low Temperature Service", Technical Report No. MTB010053, Mitsubishi Heavy Industries Ltd. (October 1967).
- 77044 Hust, J. G., and Powell, R. L., "Thermal Conductivity of Aerospace Alloys at Cryogenic Temperatures", Proceedings of the 8th Conference on Thermal Conductivity, Purdue University (October 7-10, 1968).
- 77185 Frederick, S. F., and Hanna, W. D., "Fracture Toughness and Deformation of Titanium Alloys at Low Temperatures", Metallurgical Transactions, 1 (2), 347-352 (February 1970).
- 77737 McLean, K. O., "Low Temperature Thermal Expansion of Copper, Silver, Gold, and Aluminum", Ph.D. Dissertation, Iowa State University (November 1969).
- 77930 Nachtigall, A. J., "Comparison of Tensile Properties of 304L and 310S Stainless Steels in Liquid Helium", NASA Technical Memorandum NASA TM X-52703 (October 30, 1969).
- 77998 Shogan, R. P., "Tensile Properties of Irradiated Ti-5%Al-2.5%Sn ELI at Cryogenic Temperatures", Technical Report WANL-TME-1860, Westinghouse Electric Company (November 1968).
- Rapp, O., "Superconductivity and Lattice Parameters in the Zirconium-Molybdenum, Zirconium-Tungsten, Hafnium-Molybdenum and Hafnium-Tungsten Alloy Systems", Journal of the Less-Common Metals, 21 (1), 27-44 (May 1970).
- 78527 Roberts, B. W., "Superconductive Materials and Some of Their Properties", NBS Technical Note 482 (May 1969).
- 78611 Pettit, D. E., Feddersen, C. E., and Mindlin, H., "Flaw Growth Behavior of Inconel 718 at Room and Cryogenic Temperatures", NASA CR-101942, Final Report, Battelle Memorial Institute, Contract NAS 9-7689 (March 1970).
- Younger, C. L., and Haley, F. A., "Irradiation Effect at Cryogenic Temperature on Tensile Properties of Titanium and Titanium-Base Alloys", Technical Memorandum NASA TM X-52772 (1970).

- 7884 Hempel, M., "The Fatigue Properties of Titanium and Titanium Alloys. Part I. The Fatigue Strength at Low and High Temperatures", Technical Report RAE-Library Trans-1400, TRC-BR-18776, Royal Aircraft Establishment (January 1970).
- 78893 Hafstrom, J. W., and MacVicar, M.L.A., "The Second Energy Gap in Superconducting Niobium", Technical Report No. 3, MIT, Contract N00014-67-A-0204-0041 (September 24, 1970).
- Rawe, R. A., "Biaxial Strength of MIG- and TIG-Welded 2014-T6 at 70°, -320° and -423°F", Technical Report NASA CR-109904, Douglas Aircraft Company, Contract NAS 7-101 (May 24, 1968).
- 79385 Moskalenko, V. A., Puptsova, V. N., and Ul'yanov, R. A., "Strength and Ductility of Titanium Alloys at Low Temperatures", Metal Science and Heat Treatment, (6), 464-466 (June 1970).
- 79425 Clark, A. F., Childs, G. E., and Wallace, G. H., "Low-Temperature Electrical Resistivity of Some Engineering Alloys", Proceedings of the 1969 Cryogenic Engineering Conference, 85-90 (1970).
- 79561 Clark, A. F., Childs, G. E., and Wallace, G. H., "Electrical Resistivity of Some Engineering Alloys at Low Temperatures", Cryogenics, 10 (4), 295-305 (August 1970).
- 79761 Schultz, R. A., "ALCOA Aluminum Alloy 2021", Manufacturers' Literature, Aluminum Company of America (April 1968).
- 79816 Hall, L. R., and Finger, R. W., "Fracture and Fatigue Growth of Partially Embedded Flaws", Proceedings of the Air Force Conference on Fatigue and Fracture of Aircraft Structures and Materials, 235-262 (December 1969).
- 79857 Tiffany, C. F., Masters, J. N., and Bixler, W. D., "Investigation of Crack Growth Threshold of Inconel 718 Exposed to High Pressure Oxygen", Technical Report NASA CR-108485, Boeing Company, Contract NAS 9-10913 (August 1970).
- 79942 Buchanan, D. P., and Kellum, T. L., "Weldability Study of Aluminum Alloy X2020-T8E31", Technical Report ASD-ASTN-1273, Teledyne Brown Engineering Company, Contract NAS 8-20073 (February 1971).
- Schwartzberg, F. R., Keys, R. D., and Kiefer, T. F., "Cryogenic Alloy Screening", Final Report, NASA CR-72733, The Martin Company, Contract NAS 3-11203 (November 1970).
- Orange, T. W., Sullivan, T. L., and Calfo, F. D., "Fracture of Thin Sections Containing Through and Part-Through Cracks", ASTM Special Technical Publication 496 (August 1971).
- Hill, D. C., and Rose, R. M., "Superconductivity and Dislocation Cell Structure in Niobium: Stress Effects", Metallurgical Transactions, 2 (5), 1433-1437 (May 1971).
- 80755 Montano, J. W., "An Evaluation of the Mechanical and Stress Corrosion Properties of Cold Worked A-286 Alloy", NASA Technical Memorandum NASA TM X-64569 (February 12, 1971).
- Hust, J. G., and Clark, A. F., "The Lorenz Ratio as a Tool for Predicting the Thermal Conductivity of Metals and Alloys", Materials Research and Standards, 11 (8), 22-24 (August 1971).

- 80873 Herzog, R. G., Osgood, S. H., and Lighty, D., "Properties of Cryogenically-Worked Materials", Cryogenics & Industrial Gases, 7 (6), 25-29 (November/December 1972).
- 80994 Vishnevsky, C., and Steigerwald, E. A., "Plane Strain Fracture Toughness of Some Cryogenic Materials at Room and Subzero Temperatures", ASTM Special Technical Publication 496 (August 1971).
- Nelson, F. G., and Kaufman, J. G., "Plane Strain Fracture Toughness of Aluminum Alloys at Room and Subzero Temperatures", ASTM Special Technical Publication 496 (August 1971).
- 80996 Hall, L. R., "Influence of Specimen Design in Plane Strain Fracture Toughness Testing", ASTM Special Technical Publication 496 (August 1971).
- 81676 Grigsby, D. L., "Niobium Alloys and Compounds", Data Sheet Report DS-148, Hughes Aircraft, Contract AF 33(615)-2460 (January 28, 1966).
- 81726 Sullivan, T. L., "Behavior of Ti-5Al-2.5Sn ELI Titanium Alloy Sheet Parent and Weld Metal in the Presence of Cracks at 20°K", NASA Technical Note NASA TN D-6544 (November 1971).
- 82075 Clark, A. F., and Kropschot, R. H., "Low Temperature Specific Heat and Thermal Expansion of Alloys", Proc. Comm. 1, Conf. on Cryophysics and Cyroengineering, Tokyo, Japan (September 11-12, 1970).
- Hust, J. G., and Sparks, L. L., "Thermal Conductivity, Electrical Resistivity, and Thermopower of Aerospace Alloys From 4° to 300°K: III. Annealed Inconel 718", NBS Technical Report 9775 (November 24, 1970).
- Fickett, F. R., "Magne oresistance of Very Pure Polycrystalline Aluminum", Physical Review B, 3 (6), 1941-1352 (March 15, 1971).
- 82534 Larbalestier, D. C., and Kirg, H. W., "Non Magnetic Stainless Steels for Cryogenic Purposes", Technical Repo t RHEL/R 217, Imperial College, London (January 1971).
- 82916 Schwartzberg, F. R., Keys, R. D., and Kiefer, T. F., "Cryogenic Alloy Screening", Interim Report NASA CR-72617, Martin Marietta Corporation, Contract NAS 3-11203 (February 1970).
- 82964 Malin, C. O., "Low-Temperature Properties of Free-Machining 300-Series CRES", Reportable Item Submission Number MFS-18241, Rocketdyne/North American, Contract NASw-16 (June 14, 1968).
- Malin, C. O., "Low-Temperature Properties of Cast Inconel 718", Reportable Item Submission Number MFS-18240, Rocketdyne/North American, Contract NASw-16 (June 14, 1968).
- Malin, C. O., "Low-Temperature Properties of Large Inconel 718 Forgings", Reportable Item Submission Number MFS-18244, Rocketdyne/North American, Contract NASw-16 (June 14, 1968).
- Malin, C. O., "Low-Temperature Properties of Cast 310 and 347 CRES", Reportable Item Submission Number MFS-18235, Rocketdyne/North American, Contract NASw-16 (June 21, 1968).

9.5.

- 83069 Chandrasekaran, V., Narasimhan, S., and Werstler, D., "A Study of Phase Transformations and Superconductivity", Annual Progress Report RLO-2225-T13-9, University of Washington, Contract AT(45-1)-2225 (October 15, 1971).
- Halchak, J. A., "Low-Temperature Properties of Forgings of Titanium 5AI-2.5Sn Alloy (ELI)", Reportable Item Submission Number MFS-18245, Rocketdyne/North American, Contract NASw-16 (June 21, 1968).
- 83166 Malin, C. O., "Low-Temperature Properties of Armco 21-6-9 Alloy (Cr-Ni-Mn)", Reportable Item Submission Number MFS-18243, Rocketdyne/North American (June 14, 1968).
- 83168 Green, E. F., "Low-Temperature Properties of 9-Percent Nickel, 4-Percent Cobalt (HP9-4-25) High-Strength Steel Forged Block and Plate", Reportable Item Submission Number MFS-18282, Rocketdyne/North American, Contract NASw-16 (July 5, 1968).
- 83169 Green, E. F., "Low-Temperature Properties of 18-Percent Nickel (200-Grade) Maraging Steel Plate", Reportable Item Submission Number MFS-18281, Rocketdyne/North American, Contract NASw-16 (July 3, 1968).
- 83171 Malin, C. O., "Low-Temperature Properties of Cast A-286", Reportable Item Submission Number MFS-18237, Rocketdyne/North American (June 14, 1968).
- 83411 Romiy, H. L., "Guaranteed Minimum Mechanical Properties, Type 310 Stainless Steel Welded With Inconel 92 (Incoweld A) Filler Alloy, at Cryogenic Temperatures", Materials and Processes Report MPR 7-176A-101, Rocketdyne/North American (June 13, 1967).
- 83417 Schmidt, E. H., "Fatigue Properties of Sheet, Bar, and Cast Metallic Materials for Cryogenic Applications", Technical Report R-7564, Rocketdyne/North American, Contract NAS 8-18734 (August 30, 1968).
- 83474 Vozilkin, V. A., Buynov, N. N., and Bychkov, Y. F., "The Electron Microscopic Study of the Structure of the Superconducting Alloy Ti-22Nb", The Physics of Metals and Metallography, 30 (4), 82-90 (1970).
- Huettich, N. J., Pense, A. W., and Stout, R. D., "The Toughness of 2-1/4% and 3-1/2% Nickel Steels", WRC (Welding Research Council) Bulletin 165 (September 1971).
- Hartbower, C. E., Reuter, W. G., and Morais, C. F., "Correlation of Stress-Wave-Emission Characteristics With Fracture in Aluminum Alloys", Technical Report NASA CR-2072, Aerojet Solid Propulsion Company, Contract NAS 8-21405 (July 1972).
- Montano, J. W., "The Effects of Solution Treatment on the Mechanical Properties of Age-Hardened A-286 Bar Stock at Elevated and Cryogenic Temperature", NASA Technical Memorandum NASA TM X-64638 (February 16, 1972).
- 84014 Tom, T., "Application of Powder Metallurgy Process in the Formation of Nb(sub 3)Al Superconductor", Summary Report LBL-188, University of California, Contract W-7405-Eng-48 (December 1971).
- 84318 Masters, J. N., Haese, W. P., and Finger, R. W., "Investigation of Deep Flaws in Thin Walled Tanks", Final Report D2-121696-1, NASA CR-72606, Boeing Company, Contract NAS 3-10290 (December 1969).

- Engstrom, W. L., "Determination of Design Allowable Properties Fracture of 2219-T87 Aluminum Alloy", Technical Report D180 14480-1, NASA CR-115388, Boeing Company, Contract NAS 9-10364 (March 1972).
- Tiffany, C. F., Lorenz, P. M., and Shah, R. C., "Extended Loading of Cryogenic Tanks", Final Report, NASA CR-72252, Boeing Company, Contract NAS 3-6290 (July 1967).
- Hall, L. R., and Finger, R. W., "Investigation of Flaw Geometry and Loading Effects on Plane Strain Fracture in Metallic Structures", Final Report, NASA CR-72659, Boeing Company, Contract NAS 3-12016 (December 18, 1971).
- Feddersen, C. E., "Fracture Behavior of Surface-Cracked Tension Elements", AIAA Journal, 9 (12), 2309-2313 (December 1971).
- Shoemaker, A. K., and Rolfe, S. T., "The Static and Dynamic Low-Temperature Crack-Toughness Performance of Seven Structural Steels", Engineering Fracture Mechanics, 2, 319-339 (1971).
- Luhman, T. S., Taggart, R., and Polonis, D. H., "Magnetic Hysteresis Studies of Superconducting Beta Stabilized Titanium Alloys", Scripta Metallurgica, <u>6</u> (11), 1055-1060 (November 1972).
- Midgley, P., Thackray, R. W., and Herrick, D.A.R., "The Effect of Heat Treatment and Fabrication Processes on the Tensile Properties of the Aluminum Alloy Hiduminium 48 in the Temperature Range 293°K to 20°K", Technical Report 70/10, Rocket Propulsion Establishment (October 1970).
- 84743 Collings, B. W., and Grog, K. C., "Electronic Effects Due to Micro-Inhomogeneities in Metastable Solid Solution Alloys", Interim Report AFC3R-TR-72-1279, Battelle Memorial Institute, Research Grant AFOSR-71-2084 (June 23, 1972).
- Sekula, S. T., and Kernohan, R. H., "AC Studies of a Superconducting Nb-52Ti Alloy", Summary Report, CONF-720513-4, Union Carbide (April 1972).
- Hust, J. G., and Sparks, L. L., "Thermal Conductivity of Austenitic Stainless Steel, SRM 735, From 5 to 280 K", Summary Report, NBS-SP-260-35, NBS (April 1972).
- Finlayson, T. R., and Milne, I., "The Critical Current Density of Deformed and Annealed Superconducting Nb-26% Zr and Nb-32% Zr and Its Dependence on the Amount of Deformation", Journal of Materials Science, 7 (12), 1391-1400 (December 1972).
- Westrup, R. W., "Establishment of Design Criteria for Acceptable Failure Modes and Fail Safe Considerations for the Space Shuttle Structural System", Final Report SD72-SH-0046, NASA CR-123725, North American, Contract NAS 8-27269 (June 1, 1972).
- 85738 Somasundaram, R., and Toth, L. R., "Studies of Superconducting Thin Film Carbides and Nitrides", Final Report, University of Minnesota, Contract DAAK02-70-C-0181 (July 1971).
- Schlosser, S., Johnson, A. A., and Mukherjee, K., 'The Low Temperature Tensile Properties of Surface Oxidized Polycrystalline Molybdenum', Materials Science and Engineering, 11 (2), 81-86 (February 1973).

- Janocko, M. A., Jones, C. K., and Gavaler, J. R., "Investigations of Superconducting Interactions and Amorphous Semiconductors", Final Report, NASA CR-129524, Westinghouse Electric Corporation, Contract NASw-1760 (October 1972).
- 85971 Laurence, J., Worzala, F. J., and Yang, W. J., "Fabrication Studies of Nb(Sub 3)Al Superconductors", Paper presented at the Fourth International Cryogenic Engineering Conference, Eindhoven, Netherlands (May 24-26, 1972).
- 86296 Hall, L. R., and Bixler, W. D., "Subcritical Crack Growth of Selected Aerospace Pressure Vessel Materials", Technical Report D180-14855-1, NASA CR-120834, Boeing Company, Contract NAS 3-12044 (December 1972).
- Ho, C. Y., "Thermophysical Properties Information Analysis Center: A Continuing Systematic Program on Tables of Thermophysical Properties of Materials", Final Report AMMRC CTR-73-5, Purdue University, Contract F33615-71-C-1182 (January 1973).
- Krainskii, I. S., and Shchegolev, I. F., "Properties of Welded Joints Between Wires of Nb-Zr-Ti and Nb + Ti Alloys", Cryogenics, 13 (2), 106-107 (February 1973).
- Hall, L. R., and Finger, R. W., "Stress Corrosion Cracking and Fatigue Crack Growth Studies Pertinent to Spacecraft and Booster Pressure Vessels", Technical Report D180-15018-1, NASA CR-120823, Boeing Company, Contract NAS 3-12003 (December 1972).
- 87223 Hall, L. R., and Finger, R. W., "Fracture and Crack Growth Resistance Studies of 304 Stainless Steel Weldments Relating to Retesting of Cryogenic Vessels", Final Report, NASA CR-121025, Boeing Company, Contract NAS 3-12003 (December 1972).
- Gille, J. P., "Development of Advanced Material Composites for Use as Internal Insulation for LH₂ Tanks (Gas Layer Concept)", Final Report, MCR-72-130, NASA CR-124222, Martin Marietta Corporation, Contract NAS 8-25974 (July 1972).
- 87479 Gasanov, M. A., Romashev, L. N., and Fakidov, I. G., "Magnetic Properties of Stainless Steel Kh18N10T", The Physics of Metals and Metallography, 33 (2), 190-191 (1972).
- Witcomb, M. J., and Dew-Hughes, D., "Superconductivity of Heat-Treated Nb-65 at.% Ti Alloy", Journal of Materials Science, 8 (10), 1383-1400 (October 1973).
- Bixler, W. D., "Development of a Fracture Control Method for Composite Tanks With Load Sharing Liners", Final Report D180-15296-1, NASA CR-120918, Boeing Company, Contract NAS 3-14380 (March 1973).
- Okazaki, K., and Conrad, H., "Effects of Interstitial Content and Grain Size on the Strength of Titanium at Low Temperature", Acta Metallurgica, 21, 1117-1129 (August 1973).
- Stutius, W., and Dillinger, J. R., "Magnetic and Thermal Properties of Some Austenitic Stainless Steels at Low Temperatures", Journal of Applied Physics, 44 (6), 2887-2888 (June 1973).
- 87777 Garde, A. M., Aigeltinger, E., and Reed-Hill, R. E., "Relationship Between Deformation Twinning and the Stress-Strain Behavior of Polycrystalline Titanium and Zirconium at 77°K", Metallurgical Transactions, 4 (10), 2461-2468 (October 1973).

- 87816 Anon., "New Ni-Fe-Co Alloy Combats Stresses", Metal Progress, 104 (5), 7 (October 1973).
- 88109 Forman, R. G., Glorioso, S. V., and Medlock, J. D., "Flaw Growth Behavior in Thick Welded Plates of 2219-T87 Aluminum at Room and Cryogenic Temperatures", NASA Technical Note NASA-TN-D-7377 (August 1973).
- Sarno, D. A., McCabe, D. E., Sr., and Heberling, T. G., "Fatigue and Fracture Toughness Properties of 9 Percent Nickel Steel at LNG Temperatures", Transactions of the ASME, Series B, Journal of Engineering for Industry, 95 (4), 1069-1075 (November 1973).
- Wolff, E. G., Lepper, R., and Mills, G. J., "Relationships Between Microstructure, Superconductivity and Mechanical Properties of Ti-6Al-4V", Titanium Science and Technology, Volume II, 843-858, Plenum Press, N. Y. (1973).
- Reuter, W. G., "Fracture Toughness of Ti-5Al-2.5Sn ELI Forgings at -423°F", Memoranda and Material R&D Report, Aerojet-General Corporation (January 26, 1971).
- 88757 McCracken, G. M., and Blow, S., "The Shielding of Superconducting Magnets in a Fusion Reactor", Summary Report, CLM-R-120, Culham Laboratory, UKAEA Research Group (1972).
- 88966 Tharby, R. H., Heath, D. J., and Flannery, J. W., "The Welding of 9 Percent Nickel Steel A Review of the Current Practices", Paper presented at the Welding Institute's International Conference, Welding Low Temperature Containment Plant, London, England (November 20-22, 1973).
- 89523 Madhava, N. M., and Armstrong, R. W., "Discontinuous Twinning of Titanium at 4.2°K", Metallurgical Transactions, 5 (6), 1517-1519 (June 1974).
- Naimon, E. R., Weston, W. F., and Ledbetter, H. M., "Elastic Properties of Two Titanium Alloys at Low Temperatures", Cryogenics, 14 (5), 246-249 (May 1974).
- Nachtigall, A. J., "Strain-Cycling Fatigue Behavior of Ten Structural Metals Tested in Liquid Helium (4°K), in Liquid Nitrogen (78°K), and in Ambient Air (300°K)", NASA Technical Note NASA TN D-7532 (February 1974).
- 89681 Gulyaev, A. P., Lebedev, D. V., and Gadzhibalaev, G. A., "Strength and Ductility of Austenitic Cr-Ni and Cr-Mn Steels at Low Temperatures", Metal Science and Heat Treatment, 15 (11-12), 1051-1055 (November-December 1973).
- Masters, J. N., Bixler, W. D., and Finger, R. W., "Fracture Characteristics of Structural Aerospace Alloys Containing Deep Surface Flaws", Final Report NASA CR-134587, Boeing Aerospace Company, Contract NAS 3-14341 (December 1973).
- 89747 Gasanov, M. A., and Fakidov, I. G., "Thermal Expansion, Young's Modulus and Magnetostriction of a Stainless Iron-Chromium-Nickel Alloy in the Range 80-280°K", Physics of Metals and Metallography, 35 (3), 200-202 (1973).
- 89983 Masters, J. N., Engstrom, W. L., and Bixler, W. D., "Deep Flaws in Weldments of Aluminum and Titanium", Final Report, NASA CR-134649, Boeing Aerospace Company, Contract NAS 3-14386 (April 1974).

- 90067 Kaufman, J. G., Holt, M., and Wanderer, E. T., "Aluminum Alloys for Cryogenic Temperatures", Paper presented at the Cryogenic Engineering Symposium of the Canadian Chemical Conference, Toronto, Canada (June 7, 1967).
- 90068 Schwartzberg, F., Agricola, K., and Hauser, R., "Properties of Missile Materials at Cryogenic Temperatures", Technical Report, Martin Company (May 1960).
- 90069 Kaufman, J. G., Nelson, F. G., and Johnson, E. W., "Properties of Aluminum Alloy 2219 Sheet, Plate, and Welded Joints at Low Temperatures", Proceedings of the 1962 Cryogenic Engineering Conference, 661-670 (1963).
- 90070 Kaufman, J. G., and Wanderer, E. T., "Tensile Properties and Notch Toughness of Some 7XXX Alloys at -452°F", Proceedings of the 1970 Cryogenic Engineering Conference, 27-36 (1971).
- 90071 Armstrong, P. E., and Eash, D. T., "Simultaneous Measurement of Young's Modulus and Shear Modulus at Low Temperatures", Proceedings of the 1968 Cryogenic Engineering Conference, 64-70 (1969).
- 90072 Nelson, F. G., Kaufman, J. G., and Wanderer, E. T., "Tensile Properties and Notch Toughness of Groove Welds in Wrought and Cast Aluminum Alloys at Cryogenic Temperatures", Proceedings of the 1968 Cryogenic Engineering Conference, 71-82 (1969).
- 90073 Christian, J. L., and Watson, J. F., "Mechanical Properties of Several 2000 and 6000 Series Aluminum Alloys", Proceedings of the 1964 Cryogenic Engineering Conference, 63-76 (1965).
- Fox, D. K., and Pryle, W. H., "Test Apparatus and Tensile Properties of Niobium-Zirconium Superconductor Alloy Wire in the Temperature Range 300° to 4.2°K", Proceedings of the 1963 Cryogenic Engineering Conference, 124-130 (1964).
- 90075 DeMoney, F. W., "Effect of Aging on the Tensile Properties of Alloy 7039 GTA Welds at Low Temperatures", Proceedings of the 1966 Cryogenic Engineering Conference, 500-507 (1967).
- 90076 Hanson, M. P., Stickley, G. W., and Richards, H. T., "Sharp-Notch Behavior of Some High-Strength Sheet Aluminum Alloys and Welded Joints at 75°, -320°, and -423°F", ASTM Special Technical Publication No. 287 (June 1960).
- 90077 Lucas, W. R., and Cataldo, C. E., "Some Low-Temperature Properties of Aluminum-Alloy Weldments", ASTM Special Technical Publication No. 287 (June 1960).
- 90078 Christian, J. L., "Mechanical Properties of Aluminum Alloys at Cryogenic Temperatures", Technical Report MRG-190, Convair-Astronautics/General Dynamics (December 2, 1960).
- 90079 Watson, J. F., and Christian, J. L., "Low-Temperature Properties of K-Monel, Inconel-X, Rene 41, Haynes 25, and Hastelloy B Sheet Alloys", Paper presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, New York, N. Y. (November 26-December 1, 1961).
- 90080 DeSisto, T. S., "Low Temperature Charpy True Stress-Strain and Notched Tensile Properties of Base Metal and Weld Deposits of AISI Type 301, 310, 316 and 347 Stainless Steels", Paper presented at the Annual ASTM Meeting, New York (June 1962).

- 90533 Cordea, J. N., Frisby, D. L., and Kampschaefer, G. E., "5% Nickel: New Steel Seeks LNG Niche", Cryogenics and Industrial Gases, 7 (6), 15-21 (November/December 1972).
- 90534 Bell, J. H., Jr., "Materials of Construction", Cryogenic Engineering, Chapter 6, 131-167, Prentice-Hall, Inc., New Jersey (1963).
- 90535 Fluornoy, R. W., "Aluminum Alloys for Cryogenic Equipment", Light Metal Age, 19, 10-12+28 (April 1962).
- Anon., "9% Nickel Steel for Low Temperature Service", Manufacturers' Literature 25C 2-60 3749 A-263, International Nickel Company, Inc. (no date given).
- 90537 Anon., "9% Nickel Steel for Low Temperature Service", Manufacturers Literature, A-263, 5M 10-73 (5C 1-72) 3749, International Nickel Company, Inc. (no date given).
- 90538 Suenaga, M., and Sampson, W. B., "A Comparative Study of Superconducting Composite Conductors With Filaments of A-15 Compounds", BNL 17222, Brookhaven National Laboratory (received October 9, 1973).
- 90539 Fuller, P. D., and McLagan, J. N., "Storage and Transfer of Cryogenic Fluids", Applied Cryogenic Engineering, Chapter 9, 249, John Wiley & Sons, Inc., New York (1962).
- 90540 Buchhold, T. A., "Applications of Superconductivity", Cryogenic Engineering, Chapter 9, 291-310, John Wiley & Sons, Inc., New York (1963).
- 90624 McDaniel, R. H., Bradford, E. W., Lewis, J. H., and Wattier, J. B., "NERVA Irradiation Program—GTR 23- Volume I—Combined Effects of Reactor Radiation and Cryogenic Temperature on NERVA Structural Materials", NASA CR-137267, General Dynamics Corporation, Contract AF 29(601)-7077 (January, 1973).
- 90717 Forman, R. G., "Crack-Growth Behavior in Thick Welded Plates of Inconel 718 at Room and Cryogenic Temperatures", NASA Technical Note NASA TN D-7665, Lyndon B. Johnson Space Center (May 1974).
- 91494 Jin, S., Hwang, S. K., and Morris, J. W., Jr., "Comparative Fracture Toughness Testing of Cryogenic Alloys at Liquid Helium Temperature", Technical Report TR-5, University of California, Contract N00014-69-A-1062 (August 1974).
- 91696 Shah, R. C., "Effects of Proof Loads and Combined Mode Loadings on Fracture and Flaw Growth Characteristics of Serospace Alloys", NASA CR-134611, Technical Report D 180-17997-1, Boeing Company, Contract NAS 3-14346 (March 1974).
- 91793 Wan Stone, R. H., Low, J. R., Jr., and Shannon, J. L., Jr., "The Effect of Microstructure on the Fracture Toughness of Titanium Alloys", NASA Technical Report 2-Ti, Carnegie-Mellon University, NASA Research Grant 39-087-047 (December 1974).
- 91978 Haynes, A. G., Firth, L., Hollox, G. E., and Buchan, J., "Strength and Fracture Toughness of Nickel Containing Steels", ASTM STP 579, 288-323 (1975).
- 92996 Pense, A. W. and Stout, R. D., "Fracture Toughness and Related Characteristics of the Cryogenic Nickel Steels", WRC Bulletin, No. 205, 1-43 (May, 1975).

- 93338 Witzell, W. E., "Crack Growth Behavior of 2219-T87 Aluminum Alloy From 20 K (-423 F) to 422 K (300 F)", CASD-NAS-73-011, Nasa CR-134047, General Dynamics, Contract NAS 9-12445 (August 1973).
- 94195 Fedorov, G. V. and Ryabinina, N. M., "Hall Effect, Magnetic Susceptibility and Resistivity of Cu-Ni Alleys", Physics of Metals and Metallography, 29 (1), 82-86 (1970).
- 94196 Furukawa, G. T., McCoskey, R. E., and King, G. J., "Calorimetric Properties of Polytetra-fluoroethylene(Teflon) From 0° to 365°K", Journal of Research of the National Bureau of Standards, 49 (4), 273-278 (October, 1952).
- 94197 Jin, S., Morris, J. W., Jr., and Zackay, V. F., "An Iron-Nickel-Titanium Alloy With Outstanding Toughness at Cryogenic Temperatures", Advances in Cryogenic Engineering, 19, 379-384 (1974).
- 94198 Tucker, J. E., "Heat Capacity on Polyethylene in the Temperature Range of 2.4° to 30°K", Doctorial Thesis, U.S. Naval Postgraduate School (May, 1966).
- 94199 Warfield, R. W. and Petree, M. C., "Thermodynamic Properties of Polyethylene", Technical Report NOLTR 61-92, U.S. Naval Ordinance Laboratory (October, 1961).
- 94200 Warfield, R. W. and Petree, M. C., "Thermodynamic Properties of Polystyrene and Styrene", NAVWEPS Report 7352, U.S. Naval Ordinance Laboratory (September 21, 1960).
- 94201 Warfield, R. W. and Petree, M. C., "Thermodynamic Properties of Polymethyl Methacrylate and Methyl Methacrylate", NOLTR 62-98, U.S. Naval Ordinance Laboratory (January 17, 1962).
- 94202 Mowers, R. E., "Program of Testing Nonmetallic Materials at Cryogenic Temperatures", Final Report, Technical Documentary Report RTD-TDR-63-11, Rocketdyne/North American Aviation, Incorporated, Contract AF 04(611)-6354 (December 30, 1962).
- 94°03 Wunderlich, B., "Heat Capacities of Linear High Polymers", Technical Report No. 17, Rensselaer Polytechnic Institute, Contract Nonr-591(19) (November, 1968).
- 94204 Hurlich, A. and Scheck, W. G., "Evaluation and Application of Stainless Steels in Cryogenic Environments", Advances in the Technology of Stainless Steels and Related to Alloys, ASTM Special Technical Pulication No. 369, 127-135 (1963).
- 94205 Brickner, K. G., "Stainless Steels for Room and Cryogenic Temperatures", Metals Engineering Quarterly, <u>8</u> (2), 1-29 (May, 1968).
- 94206 Clark, A. F., Reed, R. P., and Van Reuth, E. C., "Materials Research in Support of Superconducting Machinery-II", Second Semi-Annual Technical Report, NBS (March 1, 1974—September 1, 1974).
- 94206A Schwartzberg, F. R., "Study of Fracture Behavior of Metals for Superconducting Applications", Second Annual Technical Report MCR-74-89, Martin Marietta Corporation (October, 1974).
- 94206B Tobler, R. L., Mikesell, R. P., Durcholz, R. L., and Reed, R. P., "Fatigue and Fracture Toughness Testing at Cryogenic Temperatures", Semi-Annual Report. NBS (October, 1974).

- 94206C Ledbetter, H. M., Naimon, E. R., and Weston, W. F., "Elastic Properties of Engineering Materials at Cryogenic Temperatures", Semi-Annual Report, NBS (October 1974).
- 94206D Naimon, E. R., Weston, W. F., and Ledbetter, H. M., "Elastic Properties of Two Titanium Alloys at Low Temperatures", Cryogenics, 14, 246-249 (1974).
- 94206E Lessmann, G. G., Kossowsky, R., Logsdon, W. A., et al, "Structural Materials For Cryogenic Applications", Second Semi-Annual Technical Report, Westinghouse Electric Corporation (September 9, 1974).
- 94207 Ledbetter, H. M., Naimon, E. R., and Weston, W. F., "Low-Temperature Elastic Properties of Invar", Paper D-3 presented at the Cryogenic Engineering—International Cryogenics Materials Joint Conference, Queens University, Kingston, Canada (July 22-25, 1975).
- 94208 Reed, R. P., Clark, A. F., and Van Reuth, E. C., "Materials Research in Support of Super-conducting Machinery-III", Third Semi-Annual Technical Report, NBS-ARPA (September 1, 1974—March 1, 1975).
- 94208A Schwartzberg, F. R. and Kiefer, T., "Study of Fracture Behavior of Metals for Superconducting Applications", Semi-Annual Technical Report, MCR-74-89 (Issue 3), Martin Marietta Corporation (April, 1975).
- 94208B Fowlkes, C. W. and Tobler, R. L., "Fracture Testing and Results for a Ti-6Al-4V Alloy at Liquid Helium Temperature", Technical Report, NBS (1974).
- 94208C Tobler, R. L., "Fatigue Crack Growth and J-Integral Fracture Parameters of Ti-6Al-4V at Ambient and Cryogenic Temperatures", Technical Report, NBS (1974).
- 94208D Tobler, R. L., and Reed, R. P., "Fatigue Crack Growth Rates of Structural Alloys at Four Kelvin", Technical Report, NBS (1974-1975).
- 94208E Reed, R. P., Tobler, R. L., and Mikesell, R. P., "The Fracture Toughness and Fatigue Crack Growth Rate of an Fe-Ni-Cr Superalloy at 298°, 76° and 4°K", Technical Report, NBS (1974-1975).
- 94208F Weston, W. F. and Ledbetter, H. M., "Low-Temperature Elastic Properties of a Nickel-Chromium-Iron-Molybdenum Alloy", Technical Report, NBS (1974-1975).
- 94208G Wells, J. M., Kossowsky, R., Logsdon, W. A., and Daniel, M. R., "Structural Materials for Cryogenic Applications", Third Semi-Annual Technical Report, Westinghouse Electric Corporatio (March 10, 1975).
- 95168 Clark, A. F., Reed, R. P., and Van Reuth, E. C., "Materials Research in Support of Superconducting Machinery-IV", Fourth Semi-Annual Technical Report, National Bureau of Standards (October 1975).
- 95168A Jelinek, F. J., and Collings, E. W., "Low-Temperature Thermal Expansion and Specific Heat Properties of Structural Muterials", Technical Report, Battelle's Columbus Laboratories, Contract CST-8303 (October 20, 1975).
- 95168B Schwartzberg, F. R., and Kiefer, T., "Study of Fracture Behavior of Metals for Superconducting Applications", MCR-74-89 (Issue 4), Martin Marietta Corporation, Contract CST-830* (November 1975).

- 95168C Ledbetter, H. M., Naimon, E. R., and Weston, W. F., "Elastic Properties of Engineering Materials at Cryogenic Temperatures", Technical Report, NBS (October 1975), pp 71-110.
- 95168D Tobler, R. L., Read, D. T., and Reed, R. P., "Fatigue Resistance and Fracture Toughness of Engineering Materials at Cryogenic Temperatures", Technical Report, NBS (October 1975), pp 111-150.
- 95168E Sparks, L. L., "Magnetothermal Conductivity", Technical Report, NBS (October 1975), pp 151-170.
- 95168F Hust, J. G., "Thermal Conductivity", Technical Report, NBS (October 1975), pp 171-186.
- 95168G Logsdon, W. A., Kossowsky, R., Daniel, M. R., and Wells, J. M., "Structural Materials for Cryogenic Applications", Technical Report, Westinghouse Electric Corporation, ARPA Order 2569, CST-8304 (1975).
- 96682 McRickard, S. B., "Twinning Deformation in Iron at 4 K", Physica Status Solidi, <u>18</u> (1), 89-97 (November 1, 1966).
- 96683 Lismer, R. E., "Properties of Some Alloys and Weld Metal Deposits at Low Temperatures", Welding and Metal Fabrication, 30 (1), 19-27 (January 1962).
- 96684 Murayama, N., Pense, A. W., and Stout, R. D., "The Fracture Toughness of Cryogenic Steels", Paper F-2 presented at the Cryogenic Engineering International Cryogenics Materials Joint Conference, Queens University, Kingston, Canada (July 22-25, 1975).
- 96685 Carman, C. M., and Katlin, J. M., "Plane Strain Fracture Toughness and Mechanical Froperties of 5AI-2.5Sn ELI and Commercial Titanium Alloys at Room and Cryogenic Temperatures", ASTM STP 432, 124-144 (1968).
- 96686 Bucci, R. J., Greene, B. N., and Paris, P. C., "Fatigue Crack Propagation and Fracture Toughness of 5Ni and 9Ni Steels at Cryogenic Temperatures", ASTM STP 536, 206-228 (1973).
- 96687 Sarno, D. A., Bruner, J. P., and Kampschaefer, G. E., "Fracture Toughness of 5% Nickel Steel Weldments", Welding Journal, 39 (11), 486s-494s (November 1974).
- Lismer, R. E., "The Properties of Some Metals and Alloys at Low Temperatures", Journal of the Institute of Metals, <u>89</u>, 145-161 (1960/1961).
- 96690 Kelsey, R. A., Wygonik, R. H., and Tenge, P., "Crack Growth and Fracture of Thick 5083-0 Plate Under Eiquefied Natural Gas Ship Spectrum Loading", ASTM ATP 579, 44-79 (1975).
- 96691 Person, N. L., and Wolfer, G. C., "Fatigue Crack Growth Rate of Thick 5083-0 Plate at Room and Low Temperatures", ASTM STP 579, 80-95 (1975).

- 96699 Tobler, R. L., Mikesell, R. P., Burcholz, R. L., and Reed, R. P., "Low Temperature Fracture Behavior of Iron-Nickel Alloy Steels", ASTM STP 579, 261-287 (1975).
- 96700 Nachtigall, A. J., "Strain-Cycling Fatigue Behavior of Ten Structural Metals Tested in Liquid Helium, Liquid Nitrogen, and Ambient Air", ASTM STP 579, 378-396 (1975).
- 96871 Efferson, K. R., and Leonard, W. J., "Magnetic Properties of Some Structural Materials Used in Cryogenic Applications", Report ORNL-4150, Oak Ridge National Lab, Contract W-7405-ENG-26 (September 1967).
- 96872 Choy, C. L., Salinger, G. L., and Chiang, Y. C., "Thermal Conductivity of Some Amorphous Polymers Below 4 K", Journal of Applied Physics, 41 (2), 597-603 (February 1970).
- Bowers, R., "Magnetic Susceptibility of Copper Metal at Low Temperatures", Physical Review, 102 (6), 1486-1488 (June 15, 1956).
- 96874 Collings, E. W., Hedgcock, F. T., et al, "Magnetic and Electrical Properties of Some Ternary Mg-Mn-Al Alloys at Low Temperatures", Philosophical Magazine, Series 8, 10 (103), 159-167 (July 1964).
- 96875 Linz, R. J., Bouley, A. C., Klatfky, R. W., et al, "The Electrical and Thermal Conductivities of Cu-4, 10, and 20 At. % Ni from 1-25 K", IEEE Transactions on Magnetics, MAG-11 (2), 305-308 (March 1975).
- 96876 Morin, F. J., Maita, J. P., Williams, H. J., et al, "Heat Capacity Evidence for a Large Degree of Superconductivity in V₃Ga in High Magnetic Fields", Physical Review Letters, <u>8</u> (7), 275-277 (April 1, 1962).
- 96877 Fulkerson, W., Moore, J. P., and McElroy, D. L., "Comparison of the Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of a High-Purity Iron and an Armco Iron to 1000 C", Journal of Applied Physics, 37 (7), 2639-2653 (June 1966).
- 96878 Vold, C. L., and Richards, I., E., "Low Temperature Thermal Expansion of A-15 Vanadium-Gallium Alloys", Materials Research Bulletin, 9 (2), 83-88 (February 1974).
- 96879 Golovashkin, A. I., Levchenko, I. S., Leskova, T. A., et al, "Optical and Electrical Properties of Cast, Superconducting Alloys of Vanadium-Gallium", Physics of Metals and Metallography, 36 (6), 56-65 (1973).
- 96880 Reese, W., "Low-Temperature Thermal Conductivity of Amorphous Polymers: Polystyrene and Polymethylmethacrylate", Journal of Applied Physics, 37 (2), 864-868 (February 1966).
- 96881 Reese, W., and Tucker, J. E., "Thermal Conductivity and Specific Heat of Some Polymers Between 4.5 K and 1 K", Journal of Chemical Physics, 43 (1), 105-114 (July 1, 1965).
- 96882 Reese, W., Higgins, P. J., and Rostine, G. W., "Effects of Radiation-Induced Cross-Links on the Low-Temperature Thermal Properties of Polystyrene", Journal of Applied Physics, 39 (3), 1800-1802 (February 15, 1968).
- 96883 McCammon, R. D., and Saba, R. G., "Dielectric Properties of Polystyrene and Some Polychlorostyrenes from 4 K to Room Temperature", Journal of Polymer Science, Part A-2, 7, 1721-1733 (1969).

- 96884 Gupta, K. P., Cheng, C. H., and Beck, P. A., "Low-Temperature Specific Heat of F.C.C. Alloys of 3d-Transition Elements", Journal of Physics and Chemistry of Solids, <u>25</u>, 73-83 (1964).
- 96885 Hust, J. G., Weitzel, D. H., and Powell, R. L., "Thermal Conductivity, Electrical Resistivity, and Thermopower of Aerospace Alloys from 4 to 300 K", Journal of Research of the National Bureau of Standards, Applied Physics and Chemistry, 75A (4), 269-277 (July-August 1971).
- 96886 Meaden, G. T., Electrical Resistance of Metals, Plenum Press, New York (1965).
- 96887 Fickett, F. R., "A Preliminary Investigation of the Behavior of High Purity Copper in High Magnetic Fields", Annual Report, INCRA Project No. 186, NBS, International Copper Research Association (June 1972).
- 96888 Reed, R. P., Ledbetter, H. M., and Van Reuth, E. C., "Materials Research in Support of Superconducting Machinery-V", Fifth Semi-Annual Technical Report, National Bureau of Standards (April 1976).
- 96889 Galstan, G. N., "Effects of Polymer Chain Orientation Upon the Thermal Conductivity of Polymethyl Methacrylate at Liquid Nitrogen Temperatures", Doctoral Thesis, U. S. Naval Postgraduate School (May 1966).
- 96890 Hurd, C. M., "Low Temperature Magnetic Susceptibility of Pyrex, Fused Quartz, and Polytetrafiuoroethylene", Review of Scientific Instruments, <u>37</u> (4), 515-516 (April 1966).

BEST SELLERS

FROM NATIONAL TECHNICAL INFORMATION SERVICE

State Implementation Plan Emission Regulations for Sulfur Oxides: Fuel Combustion

PB-251 174/PAT 82 p PC\$5.00/MF\$3.00

Compilation of Air Pollutant Emission Factors. Supplement No. 6

PB-254 274/PAT 59 p PC\$4.50/MF\$3.00

Energy-Economy Relationships

PB-255 171/PAT 313 p PC\$9.75/MF\$3.00

Environmental Impacts of Virgin and Recycled Steel and Aluminum

PB-253 487/PAT 124 p PC\$5.50/MF\$3.00

Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors—Health, Safety and Environment. Executive Summary

PB-256 487/PAT 33 p PC\$4.00/MF\$3.00

Regional Comparison of Savings from Various Residential Energy Conservation Strategies

ORNL-TM-5146/PAT 70 p PC\$4.50/MF\$3.00

Residential Hot Water Solar Energy Storage Subsystems

PB-252 685/PAT 117 p PC\$5.50/MF\$3.00

Directory of Federal Energy Data Sources. Computer Products and Recurring Publications

PB-254 163/PAT 84 p PC\$5.00/MF\$3.00

Quality Assurance Handbook for Air Pollution Measurement Systems. Volume I. Principles

PB-254 658/PAT 379 p PC\$10.75/MF\$3.00

Uranium Reserves, Resources, and Production PB-254 896/PAT 18 p PC\$3.50/MF\$3.00

National Petroleum Product Supply and Demand, 1976-1978

PB-254 969/PAT 249 p PC\$8.00/MF\$3.00

Scientific and Technical Data Base for Criteria and Hazardous Pollutants— 1975 ERC/RTP Review PB-253 942/PAT 464 p PC\$12.00/MF\$3.00

Markets and Technology for Recovering Energy from Solid Waste

PB-253 326/PAT 37 p PC\$4.00/MF\$3.00

Evaluation of Pollution Control in Fossil Fuel Conversion Processes

PB-255 842/PAT 305 p PC\$9.75/MF\$3.00

Common Environmental Terms. A Glossary PB-254 630/PAT 25 p PC\$3.50/MF\$3.00

Availability of Conventional Energy Resources Materials—Coal

PB-255 798/PAT 17 p PC\$3.50/MF\$3.00

HOW TO ORDER

When you indicate the method of payment, please note if a purchase order is not accompanied by payment, you will be billed an additional \$5.00 ship and bill charge. And please include the card expiration date when using American Express.

Normal delivery time takes three to five weeks. It is vital that you order by number

(703) 557-4650 TELEX 89-9405

or your order will be manually filled, insuring a delay. You can opt for airmail delivery for \$2.00 North American continent; \$3.00 outside North American continent charge per item. Just check the Airmail Service box. If you're really pressed for time, call the NTIS Rush Handling Service (703)557-4700. For a \$10.00 charge per item, your order will be airmailed within 48 hours. Or, you can pick up your order in the Washington Information Center & Bookstore or at our Springfield Operations Center within 24 hours for a \$6.00 per item charge.

You may also place your order by telephone or if you have an NTIS Deposit Account or an American Express card order through TELEX. The order desk number is (703) 557-4650 and the TELEX number is 89-9405.

Thank you for your interest in NTIS. We appreciate your order.

Enter Grand Total

METHOD OF PAYMENT Charge my NTIS deposit account no. Purchase order no. Check enclosed for \$ Bill me. Add \$5.00 per order and sign bel able outside North American continent.) Charge to my American Express Card acco	ow. (Not avail-	SS			
Card expiration date	Item Number	Quan Paper Copy (PC)	tity	Unit Price*	Total Price
Clip and mail to National Technical Information Service U.S. DEPARTMENT OF COMMERCE Springfield, Va. 22161	All prices subject to chabove are accurate as o		es	Sub Total Additional Charge	

Foreign Prices on Request