Universidade de Aveiro Teste de Sistemas Digitais **Junho 2004**

2h30m

NOME	
N.M	Curso

Questão	cot	а	b	C	d
1	0,5				
2	0,5 0,5				
3	0,5				
4	0,5 1,5				
5	1,5				
6	1,5				
7	1				
8	1				
9	1,5				
10	1,5				

Parte I (10 valores)

NOTE BEM: Para cada questão proposta existem quatro alternativas de resposta, das quais apenas uma é completamente correcta. Deve assinalar uma e uma só resposta, fazendo um X na célula correspondente na tabela do canto superior. No caso de se enganar, pode anular a resposta assinalada desenhando um circulo a cheio sobre o X . Cada cada questão errada desconta 1/3 da cotação que lhe estiver atribuída. Cada questão não respondida vale 0.

- Num sistema de numeração binário com os símbolos $\{0,1\}$ e de base 2i em que i é a unidade imaginária a sequência 1101 correponde ao número
 - a. -8 + 2i
 - b. -4 + 2i
 - c. -3 8i
 - d. Nenhuma das anteriores
- Para o código binário de Hamming da tabela ao lado é possível
 - a. Corrigir 2 erros
 - b. Corrigir 1 erro e detectar ainda outro
 - c. Corrigir apenas 1 erro
 - d. Nenhuma das anteriores
- A função $f(x, y) = x \oplus y \oplus xy$ é a mesma que
 - a. x + y
 - b. $\overline{y} + x$
 - c. x + y
 - d. Nenhuma das anteriores

0	0	0	0	0	
		0			
0	0	1	1	1	
		0			
0	1	0	0	1	
		1			
0	1	1	1	0	
		1			
1	0	0	1	0	
		1			
1	0	1	0	1	
		1			
1	1	0	1	1	
		0			
1	1	1	0	0	
		0			

- Dada a seguinte função booleana $F = x_1 x_2 x_3 + \overline{x_1} (x_2 + x_3)$ é verdade que
 - a. $F = \overline{F^D}$

 - b. $F = F^{D}$ c. $F = (\overline{F})^{D}$
 - d. Nunhuma das anteriores

A 3ª forma canónica da função booleana $f(x_0, x_1, x_2) = x_0 \oplus x_1 \oplus x_2 \oplus x_1 \oplus x_2 \oplus x_1 \oplus x_2 \oplus$

a.
$$\overline{x}_2 \overline{x}_1 x_0 + \overline{x}_2 x_1 \overline{x}_0 + x_2 \overline{x}_1 \overline{x}_0 + x_2 x_1 \overline{x}_0$$

b.
$$\overline{\overline{x_2}\overline{x_1}x_0} \cdot \overline{x_2}x_1\overline{x_0} \cdot \overline{x_2}\overline{x_1}\overline{x}_0 \cdot \overline{x_2}x_1\overline{x}_0$$
c.
$$\overline{\overline{x_2}\overline{x_1}\overline{x_0}} \cdot \overline{x_2}x_1\overline{x_0} \cdot \overline{x_2}\overline{x_1}\overline{x}_0 \cdot \overline{x_2}x_1x_0$$

c.
$$\overline{\overline{x}_2}\overline{x_1}\overline{x_0} \cdot \overline{\overline{x}_2}\overline{x_1}\overline{x_0} \cdot \overline{x_2}\overline{x_1}\overline{x_0} \cdot \overline{x_2}\overline{x_1}\overline{x_0}$$

d. Nenhuma das anteriores

A forma mais simples da função booleana $f(x_0, x_1, x_2) = x_0 \oplus x_1 \oplus x_2 \oplus x_1 x_2 \notin$

- a. $x_0 \oplus (x_1 + x_2)$
- b. $x_0 \oplus (x_1 x_2)$
- c. $x_0 \oplus (\overline{x}_1 + \overline{x}_2)$
- d. Nenhuma das anteriores

A função combinatória F(A,B,C,D) é um detector de

- a. Múltiplos de 4
- b. Múltiplos de 3
- c. Múltiplos de 5
- d. Nenhuma das anteriores

Relativamente ao circuito da figura podemos dizer que se trata dum flip-flop

- a. Edge-triggered JK desde que $X = \overline{Q}$ e Y = Q
- b. Edge-triggered JK desde que X = Q e $Y = \overline{Q}$
- c. *Master-Slave JK* desde que $X = \overline{Q}$ e Y = Q
- d. Nenhuma das anteriores

Considere uma máquina de estados finitos com uma entrada x e implementada com flip-flops D a partir das seguintes equações de excitação:

 $D_2=Q_2\oplus xQ_1Q_0,\quad D_1=Q_1\oplus (X+Q_0),\quad D_0=\overline{Q}_0$. A mesma máquina implementada com flip-flops T deveria ter as seguintes equações de excitação

a.
$$T_2 = Q_2 + xQ_1Q_0$$
, $T_1 = Q_1 + (X + Q_0)$, $T_0 = \overline{Q}_0$

b.
$$T_2 = xQ_1Q_0$$
, $T_1 = (X + Q_0)$, $T_0 = \overline{Q}_0$

c.
$$T_2 = xQ_1Q_0$$
, $T_1 = (X + Q_0)$, $T_0 = 1$

d. Nenhuma das anteriores

10 A máquina de estados correspondente à tabela seguinte, terá, após a fase de redução do número de estados:

- a. 8 estados
- b. 7 estados
- c. 6 estados
- d. 5 estados

Q	Q+		Y1	Υ0
	(X=0)	(X=1)		
Α	С	A	0	0
В	G	Н	0	1
C	H	E	0	0
D	H	F	0	0
E	D	F	0	0
F	D	E	0	0
G	A	В	1	1
Н	D	В	1	1

Parte II (10 valores)

- 1) Pretende-se implementar um contador binário decrescente módulo 8 com programação paralela síncrona
 - a) Projecte o contador básico com flip-flops T sem incluir ainda a lógica para programação paralela síncrona.
 - b) Altere o circuito de forma a introduzir a lógica de programação paralela c 1,5 síncrona. Recorra a multiplexers e lógica elementar que achar conveniente. Desenhe cuidadosamente o circuito...
 - c) Sejam T_{su}=10ns, T_h=5ns, T_{phl} = 15ns, T_{plh}=20ns os tempos de *setup*, *hold* e propagação dos flip-flops. Considerando que as portas elementares apresentam um tempo de atraso de 5 ns determine o tempo de atraso máximo dos multiplexers para que o contador seja capaz de funcionar a 20 MHz.
- 2) Considere um pequeno sistema de computação série baseado numa *Logic Function Unit* combinatória, um conversor série-paralelo e uma unidade de controlo. O sistema opera sobre 2 entradas série X_i , e Y_i , e armazena os sucessivos resultados no registo de deslocamento.
 - a) De acordo com a tabela funcional implemente a *Logic Function Unit* recorrendo a blocos combinatórios seus conhecidos e lógica elementar.

no estado "zero")

end

Figura 1: Sistema de computação série

Prob. 1

a b

с **Prob. 2**

а

b

1,5

b) Elabore o diagrama de estados da unidade de controlo de modo a que seja executado o seguinte algoritmo sobre operandos de 8 bits: (O sinal de RESET é assíncrono e coloca a unidade de controlo

while (1) do for
$$i:=1$$
 to 8 do begin if $(i \le 4)$ and (Z_{i-1}) then $Z_i := X_i \oplus Y_i$; elseif $(i = 5)$ then $Z_i := \overline{X_i \square Y_i}$; else $(i = 6)$ then $Z_i := \overline{X_i \square Y_i}$; else $Z_i := 1$

$\mathbf{S}_2 \mathbf{S}_1 \mathbf{S}_0$	OUT
0 0 0	0
0 0 1	1
0 1 0	$A_i \oplus B_i$
0 1 1	$\overline{A_i \oplus B_i}$
1 0 0	$A_i + B_i$
1 0 1	$\overline{A_i + B_i}$
1 1 0	$A_i \square B_i$
1 1 1	$\overline{A_i \square B_i}$

Tabela 1: Tabela funcional da LFU

c) Implemente a unidade de controlo recorrendo a uma PROM e a flip-flops *D*. Especifique as dimensões da PROM bem como o respectivo conteúdo. Desenhe cuidadosamente o circuito.