Algorithmik I

Mitschrift

8. März 2011

Inhaltsverzeichnis

1 Elementares über Graphen

1

1 Elementares über Graphen

Definition 1.1 Ein ungerichteter Graph ist ein Paar G = (V, E), mit V, E Mengen. V heißt Menge von Knoten, E heißt Menge von Kanten. Außerdem gibt es eine Funktion $i: E \to \mathcal{P}(V)$ mit $\mathcal{P}(V) = 2^V$ (Potenzmenge) und $0 < i(e) \le 2$. i gibt die Endpunkte einer Kante an.

Ist $i(e) = \{u, v\}$, so heißen u, v Endpunkte von e. Ist $i(e_1) = i(e_2)$, so heißen e_1, e_2 parallel. Ist |i(e)| = 1, so heißt e Schleife.

Der Grad eines Knotens v, grad(v), ist die Anzahl der Kanten, für die v Endpunkt ist, wobei Schleifen doppelt gezählt werden. Ist grad(v) = 0, so heißt v isoliert.

Ein Graph heißt endlich, wenn V und E endlich sind.

Beispiel

Beispiel Unendliche Graphen

unendlich viele Kanten

Bemerkung In einem endlichen Graph ist die Anzahl der Knoten mit ungeradem Gradgerade.

Beweis Sei $V = \{v_1, \ldots, v_n\}$, dann ist $\sum_{i=1}^n \operatorname{grad}(v_i) = 2|E|$. Denn: starten wir mit $G = (V, \emptyset)$ und fügen die Kanten nacheinander ein, dann erhöht das Einfügen den Grad beider beteiligten Knoten um jeweils 1. Handelt es sich bei der Kante um eine Schleife, wir der Grad des Knotens um 2 erhöht.

Seien o.E. $v_1 \dots v_j$ mit geradem Grad und $v_{j+1} \dots v_n$ mit ungeradem Grad. $\sum_{l=1}^{j} \operatorname{grad}(v_l)$ ist eine gerade Zahl. Über alle Knoten summiert ergibt sich auch eine gerade Zahl 2|E|.

$$2|E| = \sum_{i=1}^{n} grad(v_i) = \underbrace{\sum_{i=1}^{j} grad(v_i)}_{gerade} + \underbrace{\sum_{i=j+1}^{n} \underbrace{grad(v_i)}_{aerade}}_{aerade}$$

Damit $\sum_{i=j+1}^{n} grad(v_i)$ gerade ist, muss die Anzahl dieser ungeraden Knoten gerade sein.

Definition 1.2 Sei G = (V, E) ein Graph. Sind v_1, v_2 die Endpunkte von e, so heißen v_1, v_2 benachbart. Ein Weg in G ist eine Folge von Kanten e_1, e_2, \ldots , so dass gilt:

- 1. $\forall i$ gilt: e_i, e_{i+1} haben einen gemeinsamen Endpunkt.
- 2. ist e_i keine Schleife und weder erste noch letzte Kante, so hat e_i einen Knoten mit e_{i-1} gemeinsam und den anderen mit e_{i+1} .

Beispiel

Definition 1.3 Ein Weg wird auch folgendermaßen dargestellt:

$$v_1 \stackrel{e_1}{-} v_2 \stackrel{e_2}{-} v_2 \stackrel{e_3}{-} v_3 \stackrel{\cdots}{-} \cdots \stackrel{e_{n-1}}{-} v_n$$

In diesem Weg entspricht e_2 einer Schleife an v_2 . Ist dieser abgebildete Weg endlich, so heißen v_1 Anfangspunkt und v_n Endpunkt. Die Länge eines Weges ist gleich der Anzahl der Kanten, die er enthält.

Ein Kreis (Zyklus) ist ein Weg, dessen Anfangspunkt und Endpunkt gleich sind. Ein Weg heißt einfach, wenn jeder Knoten höchstens einmal vorkommt.

Ein Kreis der Länge $\neq 2$ heißt einfach, wenn jeder Knoten außer Anfangs- und Endpunkt höchstens einmal vorkommt.

Ein Kreis der Länge 2 heißt einfach, wenn die beiden Kanten verschieden sind, und wenn jeder Knoten außer dem Start/Endpunkt höchstens einmal vorkommt und der Start/Endpunkt sonst nirgends.

Beispiel

Definition 1.4 Ein Graph G = (V, E) heißt zusammenhängend, wenn es zwischen je zwei Knoten in V einen Weg gibt, der sie verbindet, d.h. einer der Knoten ist Anfangspunkt und einer ist Endpunkt.

Es gibt für jeden Knoten v der Menge V einen Weg zu v der Länge 0.

Definition 1.5 Sei G = (V, E) ein zusammenhängender Graph. Ein Knoten $a \in V$ heißt Separationspunkt, wenn es Knoten u und v gibt, so dass jeder Weg zwischen u und v über den Knoten a führt.

Hat G einen Separationspunkt, so heißt der Graph separabel, ansonsten unseparabel. Eine Kante e heißt Brücke, wenn es zwei Knoten u, v gibt, so dass jeder Weg von u nach v über die Kante e läuft.

Definition 1.6 Ein Graph G = (V, E) ohne Schleifen heißt bipartit (zweigeteilt), wenn es Mengen $V_1, V_2 \subseteq V$ gibt, so dass für jede Kante gilt: ein Endpunkt liegt in V_1 , der andere in V_2 .

Beispiel

Definition 1.7 Ein gerichteter Graph ist ein Paar G = (V, E) mit der Menge der Knoten V, der Menge der Kanten E und der Abbildung $i : E \to V \times V$. Ist i(e) = (u, v), so heißt u Anfangspunkt und v Endpunkt von e.

Ist $i(e_1) = i(e_2)$, so heißen e_1 und e_2 parallel. Ist $u \neq v$ und $i(e_1) = (u, v)$ und $i(e_2) = (v, u)$, so heißen e_1, e_2 antiparallel. Ist i(e) = (v, v), so heißt e Schleife.

- $g_{out}(u)$: Anzahl der Kanten, die u als Startpunkt haben. (Ausgrad)
- $g_{in}(u)$: Anzahl der Kanten, die u als Endpunkt haben. (Ingrad)

Bemerkung Für jeden gerichteten Graph mit $V = \{v_1, v_2, \dots, v_n\}$ gilt:

$$\sum_{i=1}^{n} g_{in}(v_i) = \sum_{i=1}^{n} g_{out}(v_i)$$

Begründung: Starte mit dem Graph ohne Kanten. Füge nacheinander alle Kanten ein. Das Einfügen einer Kante e trägt zur Summe auf der linken Seite und zur Summe auf der rechten Seite je 1 bei.

Definition 1.8 Ein gerichteter Weg ist eine Folge von Kanten e_1, e_2, \ldots, e_n , so dass $\forall i \in \{1, \ldots, n-1\}$ gilt: der Endpunkt von e_i ist der Anfangspunkt von e_{i+1} .

Ein endlicher gerichteter Weg heißt Kreis (Zyklus), wenn Anfangspunkt und Endpunkt übereinstimmen. Ein einfacher Weg ist ein Weg, in dem jeder Knoten nur einmal vorkommt.

Ein gerichteter Kreis heißt einfach, wenn kein Knoten außer Anfangs- und Endpunkt mehrfach vorkommt.

Definition 1.9 Ein Graph (gerichtet oder ungerichtet) heißt einfach, wenn er keine parallelen Kanten besitzt.

Definition 1.10 Ein ungerichteter Graph G heißt Kreisfrei, wenn er keinen einfachen Kreis enthält. G heißt Baum, wenn G kreisfrei und zusammenhängend ist.

Definition 1.11 Sei G = (V, E) ein gerichteter Graph. Ein Knoten $v \in V$ heißt Wurzel, wenn von v alle Knoten $w \in V$ aus v erreichbar sind, d.h. $\forall w$ existiert ein gerichteter Weg von v nach w. G heißt gerichteter Baum, wenn G eine Wurzel besitzt und der zugrundeliegende ungerichtete Graph ein Baum ist.

Bemerkung G ist gerichteter Baum genau dann wenn

- 1. der zugrundeliegende ungerichtete Graph kreisfrei ist,
- 2. einer der Knoten $r \in V$ die Bedingung $g_{in}(r) = 0$ erfüllt,
- 3. alle anderen Knoten $v \in V$ die Bedingung $g_{in}(v) = 1$ erfüllen.

Definition 1.12 Sei G ein gerichteter Graph, $v_1, v_2 \in V$. Ein Knoten $v \in V$ heißt übergeordnet für v_1, v_2 , wenn es einen Weg von v nach v_1 und v_2 gibt.

G heißt übergeordnet, wenn es für je zwei Knoten v_1, v_2 einen Knoten v gibt, der für sie übergeordnet ist.

- 1. Bäume (endlich oder unendlich) sind übergeordnet.
- 2. $\bigcirc \leftarrow \bigcirc \leftarrow \bigcirc \leftarrow \dots$ ist übergeordnet.
- 3. Jeder Graph mit Wurzel ist übergeordnet.

Bemerkung Jeder endliche übergeordnete Graph hat eine Wurzel.

Definition 1.13 Sei G = (V, E) ein gerichteter Graph. Ein Knoten $v \in V$ heißt Quelle, wenn $g_{in}(v) = 0$, und Senke, wenn $g_{out}(v) = 0$.

Index

```
Ausgrad, 4
Baum, 4
    gerichtet, 4
Endpunkte, 1
Grad, 1
Graph, 1
    übergeordnet, 5
    bipartit, 3
    einfach, 4
    gerichtet, 4
    kreisfrei, 4
    separabel, 3
    zusammenhängend, 3
Ingrad, 4
Knoten
    übergeordnet, 5
Kreis, 3
    einfach, 3, 4
    gerichtet, 4
Parallelität, 1, 4
Quelle, 5
Schleife, 2, 4
Senke, 5
Separationspunkt, 3
Weg, 2
    einfach, 3, 4
    gerichtet, 4
Wurzel, 4
Zyklus, 3
```