MATH 15910 - Problem Set 2

Sohini Banerjee

October 11, 2023

1

1.1

We define $f:A\mapsto A$ where $f(x)=x^2$ and A is the set of all integers. To determine if f is injective, we must show that if $a\epsilon A$ and $b\epsilon A$ and f(a)=f(b), then a=b. This means f(a)=f(b) and so $a^2=b^2$. This is not true if a=2 and b=-2, for example since $f(2)=2^2=4$ and $f(-2)=(-2)^2=4$. Thus, the function is not injective. To determine if f is surjective, we must show that for all $y\epsilon A$, there is an x such that f(x)=y. $f(x)=x^2\geq 0$, so if y=-1, there is no such $x\epsilon A$ where $x^2=-1$. Thus, the function is not surjective. Since the function is not both injective and surjective, it is not bijective.

1.2

We define $f:A\mapsto A$ where $f(x)=x^2$ and A is the set of all positive integers. To determine if f is injective, we must show that if $a\epsilon A$ and $b\epsilon A$ and f(a)=f(b), then a=b. This means f(a)=f(b) and so $a^2=b^2$. A is positive integers, so this means a=b since the $\sqrt{a^2}=a$ and $\sqrt{b^2}=b$. Thus, the function is injective. To determine if f is surjective, we must show that for all $y\epsilon A$, there is an x such that f(x)=y. If y=2, there is no such $x\epsilon A$ where $x^2=2$ because $x=\sqrt{2}\notin A$ as A is the set of all positive integers. Thus, the function is not surjective. Since the function is not both injective and surjective, it is not bijective.

1.3

We define $f:A\mapsto B$ where f(x)=2x and A is the set of all odd integers and B is the set of all even integers. To determine if f is injective, we must show that if $a\in A$ and $b\in A$ and f(a)=f(b), then a=b. This means f(a)=f(b) and so 2a=2b and a=b. Thus, the function is injective. To determine if f is surjective, we must show that for all $y\in A$, there is an x such that f(x)=y. A consists of odd numbers only, so if y=8, then x=4 but $4\notin A$. Thus, the function is not surjective. Since the function is not both injective and surjective, it is not bijective.

2.1

We must show that if $f: A \mapsto B$ is a bijection, there exists a function $g: B \mapsto A$ that is also a bijection. To do so, we can show $f: A \mapsto B$ has an inverse f^{-1} and that f^{-1} is bijective.

- f has an inverse if and only if for all $a\epsilon A$, $f^{-1}(f(a))=a$ and for all $b\epsilon B$, $f(f^{-1}(b))=b$. For any $y\epsilon B$, we know that $f^{-1}(y)$ exists (because f is surjective) and is unique (because f is injective), so we can let $f^{-1}(y)=x$. Thus, $f^{-1}(f(x))=f^{-1}(y)=x$ and $f(f^{-1}(y))=f(x)=y$, so $f:A\mapsto B$ has an inverse $f^{-1}:B\mapsto A$. We can denote $g=f^{-1}$ where $g:B\mapsto A$.
- g is bijective if and only if it is injective and surjective. For some $y_1 \epsilon B$ and $y_2 \epsilon B$, if $g(y_1) = g(y_2)$, we can let an $x \epsilon A$ such that $g(y_1) = x$ and $g(y_2) = x$, meaning $f(x) = y_1$ and $f(x) = y_2$ (since f and g are inverses of each other). Because f is a function, a given x cannot map to multiple y values, so $y_1 = y_2$. Thus, we have shown that if $g(y_1) = g(y_2)$, then $y_1 = y_2$, so g must be injective. For any $a \epsilon A$, we must show that there exists $b \epsilon B$ such that g(b) = a. Because f is a function, all $a \epsilon A$ maps to some $b \epsilon B$, so there exists a $b \epsilon B$ such that g(b) = a. Thus, g, or f^{-1} is also a bijective function because it is both injective and surjective.

From above, we know that if f is a bijective function, and we let $g = f^{-1}$, g is bijective. Thus, there exists a bijective function $g: B \mapsto A$. Similarly, we have shown that for all $a \in A$, $f^{-1}(f(a)) = a$ and for all $b \in B$, $f(f^{-1}(b)) = b$ (from determining that the bijective function f has an inverse). This is equivalent to noting that for all $a \in A$, g(f(a)) = a and for all $b \in B$, f(g(b)) = b, which proves that both $f \circ g: B \mapsto B$ and $g \circ f: A \mapsto A$ are identity maps.

2.2

We must show that the composition of bijections is also a bijection, meaning is is injective and surjective. Let us assume for some $x_1 \epsilon A$ and $x_2 \epsilon B$, $(g \circ f)(x_1) = (g \circ f)(x_2)$. We must show that then $x_1 = x_2$. We can rewrite the equality as $g(f(x_1)) = g(f(x_2))$. Since g is injective, we know that $f(x_1) = f(x_2)$, and since f is injective, we know that $x_1 = x_2$. Thus, we have shown that $g \circ f$ is an injective function since if $g(f(x_1)) = g(f(x_2))$, then $x_1 = x_2$. Now, we must show that $g \circ f$ is surjective. For any $c \in C$, there must be some $a \in A$ such that $(g \circ f)(a) = c$, or g(f(a)) = c. We know that g is surjective, so there exists some $b \in B$ such that g(b) = c. Similarly, since f is surjective, there exists some $a \in A$ such that f(a) = b. Thus, we have shown that $g \circ f$ is a surjective function since there exists some $a \in A$ such that g(f(a)) = c. Because $g \circ f$ is injective and surjective, it is also bijective.

2.3

For R to be an equivalence relation, it must satisfy the reflexive, symmetric, and transitive properties.

- Reflexive: For any $x \in X$, $(x, x) \in R$ because there must exist a bijection between a set and itself. A set and itself have the same number of elements, so it is possible to produce a bijection by mapping each element of x to itself, such as through the identity map $f: x \mapsto x$. For $a_1 \in x$ and $a_2 \in x$, where $f(a_1) = f(a_2)$, we know that $f(a_1) = a_1$ and $f(a_2) = a_2$, so $a_1 = a_2$, so f must be injective. Similarly, for any $f(a_2) = a_2$ and $f(a_2) = a_2$ such that $f(a_2) = a_2$ so $f(a_2) = a_2$ and $f(a_2) = a_3$ such that $f(a_3) = a_3$ s
- Symmetric: For $x \in X$ and $y \in X$, where $(x, y) \in R$, then $(y, x) \in R$. If there is a bijection $f: x \mapsto y$, we can produce a bijection $g: y \mapsto x$ where $g = f^{-1}$. In question 2.1, we have shown that if f is bijective, there is a function g where $g = f^{-1}$ and that g is also bijective, so $(y, x) \in R$.
- Transitive: For $x \in X$, $y \in Y$, and $z \in Z$, where $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$. If there a bijection $f: x \mapsto y$ and $g: y \mapsto z$, then we must show that $g \circ f: x \mapsto z$ is also a bijection. In question 2.2, we have shown that the composition of bijective functions is also a bijection, so $(x, z) \in R$.

3

The cardinality of S is the number of subsets formed from a set A where #A = n. That means, #S is the sum of the number of subsets formed of size 0 to n. This is equivalent to $\sum_{k=0}^{n} \binom{n}{k}$, where k is the number of elements in a particular subset and $\binom{n}{k}$ is the number of ways we can pick k elements from n elements. The binomial theorem states $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$. To match the latter with the total number of subsets $\sum_{k=0}^n \binom{n}{k}$, $a^{n-k}b^k$ must always evaluate to 1, and this works if a=1 and b=1. Plugging in these into $(a+b)^n$, we get that the $(1+1)^n = \sum_{k=0}^n \binom{n}{k}$, so $\boxed{\#S=2^n}$.

4

The pigeonhole principle states that if set #A = m and #B = n, where A is the set of 29 candies and B is the set of 4 people, and $f: A \mapsto B$ is a function, then for some $b \in B$, or some person, $\#(f^{-1}(b)) \ge \lceil \frac{m}{n} \rceil$. Specifically, for m candies and n people, there exists a person who will be distributed at least $\lceil \frac{m}{n} \rceil$ candies. In this case, m = 29 and n = 4, so there exists a person who will get at least $\lceil \frac{29}{4} \rceil = \lceil 7.25 \rceil = \boxed{8 \text{ candies}}$.