Semi-supervised Medical Image Segmentation via Dual-task Consistency

Why need semi-supervised learning?

Problems

- deep learning with Convolutional Neural Networks (CNNs) highly depends on the availability of a large set of training images with manual annotations given by experts and lacks of generalization.
- a large set of manual annotations is expensive and labor-intensive, which has become the main obstacle for developing deep leaning models for medical image segmentation tasks.

Methods

- weakly-supervised methods(e.g. image-level labels, sparse pixel-level annotations, bounding boxes)
- semi-supervised methods (learning from limited labeled data and larger unlabeled data)
- Self-supervised learning (using pretext tasks to learn in a fully-supervised manner)
- Intelligent interactive segmentation tools (combining user interaction with deep neural network to perform image segmentation interactively)

Existing-methods (1): Mean-teacher model[1]

Existing-methods (2): Shape-aware semi-supervised model[2]

[2] Li et al. Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images. In MICCAI 2020

Limitations of existing methods

- Computational-Cost (Training and Testing)
 - Time-consuming (performing forward many times)
 - GPU-consuming (computation graph needs to retain)
- Network
 - Very complex (one encoder, many decoders, or many encoders-decoders)
 - Parameters, not efficient
- Consistency[3]
 - data-level (transformation/augmentation)
 - model-level (perturbation/dropout)
 - task level?

Implicitly modeling

Explicitly modeling

Method

Overview of the proposed dual-task consistency framework

Method (1)

Dual-task-consistency

- Level set function

Level set function
$$- \text{ Geometric constraints and shape prior } \mathcal{T}(x) = \begin{cases} -\inf_{y \in \partial S} \|x - y\|_2, & x \in \mathcal{S}_{\text{in}} \\ 0, & x \in \partial \mathcal{S} \\ +\inf_{y \in \partial S} \|x - y\|_2, & x \in \mathcal{S}_{\text{out}} \end{cases}$$

 $\mathcal{L}_{DTC}(\mathbf{x}) = \sum_{\mathbf{x}_i \in \mathcal{D}} \left\| f_1(\mathbf{x}_i) - \mathcal{T}^{-1} \left(f_2(\mathbf{x}_i) \right) \right\|^2$

 $= \sum_{i=1}^{n} \|f_1(\mathbf{x}_i) - \sigma(k \cdot f_2(\mathbf{x}_i))\|^2$

- Task transformation
 - Level set function to segmentation
 - Differentiable way

$$\mathcal{T}^{-1}(z) = \frac{1}{1 + e^{-k \cdot z}} = \sigma(k \cdot z) \rightarrow \frac{\partial \mathcal{T}^{-1}}{\mathrm{d}z} = \left(\frac{1}{1 + e^{-k \cdot z}}\right)'$$
$$= k \cdot \frac{1}{1 + e^{-kz}} \cdot \left(1 - \frac{1}{1 + e^{-kz}}\right)$$

- Dual-task-consistency loss
 - Regularization of supervised learning
 - Learning from unlabeled data
 - Embedding shape and geometric constraints for semi-supervised learning

Method (2)

Semi-supervised learning through DTC

Algorithm 1 Semi-supervised training through Dual-task consistency,

Input: $\mathbf{x}_i \in \mathcal{D}_l + \mathcal{D}_n, \mathbf{y}_i \in \mathcal{D}_l$

Output: Dual-task model's parameter θ_1 for segmentation head, θ_2 for level-set function (LSF) head and θ for shared-weights backbone network

- 1: $f_1(x)$ = segmentation task branch with shared parameter θ and segmentation head's parameter θ_1
- 2: $f_2(x) = \text{LSF}$ task branch with shared parameter θ and LSF head's parameter θ_2
- 3: **while** stopping criterion not met: **do**
- 4: Sample batch $b_l = (\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{D}_l$ and $b = b_l + b_u$, where $b_u = \mathbf{x}_i \in \mathcal{D}_u$
- 5: Generating LSF ground truth $\mathcal{T}(\mathbf{y}_i)$ according to Equation. 1
- 6: Computing dual-task predictions $f_1(\mathbf{x}_i)$ and $f_2(\mathbf{x}_i)$, $i \in \{1, ..., N\}$ where N denotes the batch size
- 7: Applying task transform layer $\mathcal{T}^{-1}(f_2(\mathbf{x}_i))$ according to Equation. 2
- 8: $\mathcal{L}_{DTC}(\mathbf{x}) = \frac{1}{|b|} \sum_{\mathbf{x}_i \in b} \left\| f_1(\mathbf{x}_i) \mathcal{T}^{-1} \left(f_2(\mathbf{x}_i) \right) \right\|^2$
- 9: $\mathcal{L}_{LSF}(\mathbf{x}, \mathbf{y}) = \frac{1}{|b_l|} \sum_{\mathbf{x}_i, \mathbf{y}_i \in b_l} ||f_2(\mathbf{x}_i) \mathcal{T}(\mathbf{y}_i)||^2$
- 10: $\mathcal{L}_{Seg}(\mathbf{x}, \mathbf{y}) = 1 \frac{1}{|b_l|} \sum_{\mathbf{x}_i, \mathbf{y}_i \in b_l} 2 \frac{\sum_{f_1(\mathbf{x}_i) \mathbf{y}_i}}{\sum_{f_1(\mathbf{x}_i) + \sum \mathbf{y}_i}}$
- 11: $\mathcal{L}_{total} = \mathcal{L}_{Seq} + \mathcal{L}_{LSF} + \lambda_d \mathcal{L}_{DTC}$
- 12: Computing gradient of loss function \mathcal{L}_{total} and update network parameters θ_1 , θ_2 and θ by back propagation.
- 13: end while
- 14: **return** θ_1 , θ_2 and θ

$$\mathcal{L}_{Seg}(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathcal{D}_{l}} \mathcal{L}_{Dice}(\mathbf{x}_{i}, \mathbf{y}_{i})$$

$$= \sum_{\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathcal{D}_{l}} \left(1 - \frac{2 \sum_{x_{j} \in \mathbf{x}_{i}, y_{j} \in \mathbf{y}_{i}} f_{1}(x_{i}) y_{i}}{\sum_{x_{j} \in \mathbf{x}_{i}, y_{j} \in \mathbf{y}_{i}} f_{1}(x_{j}) + \sum_{y_{j} \in \mathbf{y}_{i}} y_{j}}\right)$$

$$\mathcal{L}_{LSF}(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{x}_i, \mathbf{y}_i \in \mathcal{D}_l} \|f_2(\mathbf{x}_i) - \mathcal{T}(\mathbf{y}_i)\|^2$$

$$\mathcal{L}_{total} = \mathcal{L}_{Seg} + \mathcal{L}_{LSF} + \lambda_d \mathcal{L}_{DTC}$$

$$\lambda_d(t) = e^{\left(-5\left(1 - \frac{t}{t_{max}}\right)^2\right)}$$

Experiments

Dataset and Metrics

- Pancreas CT data
 - 82 cases
 - 62 volumes for training
 - 20 volumes for testing
 - Semi-supervised setting (20% cases with labeled, 80% without labeled)
- Left Atrium MRI data
 - 100 cases
 - 80 volumes for training
 - 20 volumes for testing
 - Semi-supervised setting (20% cases with labeled, 80% without labeled)
- Evaluation Metrics
 - Dice and Jaccard
 - ASD and HD₉₅

Experiments (1)

The Effects of Different Tasks for Full Supervised Learning

Comparison of different tasks on Pancreas-CT dataset

Method	Scans used			N	Cost			
	Labeled	Unlabeled	Dice (%)	Jaccard (%)	ASD (voxel)	95HD (voxel)	Params (M)	Training time (h)
Seg	12	0	70.63	56.72	6.29	22.54	9.44	2.1
LSF	12	0	71.78	57.55	6.31	20.74	9.44	2.1
Seg + LSF	12	0	73.08	58.65	4.47	18.04	9.44	2.2
Seg + LSF + DTC	12	0	74.84	60.78	2.17	9.34	9.44	2.3
Seg	62	0	81.78	69.65	1.34	5.13	9.44	2.3
LSF	62	0	82.25	70.23	1.18	5.19	9.44	2.5
Seg + LSF	62	0	82.46	70.61	1.22	4.97	9.44	2.5
Seg + LSF + DTC	62	0	82.80	71.05	1.45	4.67	9.44	2.5

Experiments (2)

The Effectiveness of DTC for Semi-Supervised Learning

Effectiveness

- Utilizing the unlabeled data and brings performance gains.
- Outperforms fully-supervised baseline.
- Promising potential for further clinical use

Experiments (3)

Comparison with state-of-the-art methods

Comparison of different tasks on Pancreas-CT dataset

Method	Scans used			N	Cost			
Wiethod	Labeled	Unlabeled	Dice (%)	Jaccard (%)	ASD (voxel)	95HD (voxel)	Params (M)	Training time (h)
VNet	12	0	70.63	56.72	6.29	22.54	9.44	2.1
VNet	62	0	81.78	69.65	1.34	5.13	9.44	2.3
MT (NeurIPS'17)	12	50	75.85	61.98	3.40	12.59	9.44	2.9
DAN (MICCAI'17)	12	50	76.74	63.29	2.97	11.13	12.09	3.3
Entropy Mini (CVPR'19)	12	50	75.31	61.73	3.88	11.72	9.44	2.2
UA-MT (MICCAI'19)	12	50	77.26	63.82	3.06	11.90	9.44	3.9
CCT (CVPR'20)	12	50	76.58	62.76	3.69	12.92	15.65	4.1
SASSNet (MICCAI'20)	12	50	77.66	64.08	3.05	10.93	20.46	3.9
Ours	12	50	78.27	64.75	2.25	8.36	9.44	2.5

Experiments (3)

Comparison with state-of-the-art methods

Comparison of different tasks on Left-Atrium-MRI dataset

Method	Scans used			N	Cost			
Wethod	Labeled	Unlabeled	Dice (%)	Jaccard (%)	ASD (voxel)	95HD (voxel)	Params (M)	Training time (h)
VNet	16	0	86.03	73.26	5.75	17.93	9.44	1.8
VNet	80	0	91.14	83.32	1.52	5.75	9.44	2.0
MT(NeurIPS'17)	16	64	88.23	79.29	2.73	10.64	9.44	3.2
DAN (MICCAI'17)	16	64	87.52	78.29	2.42	9.01	12.09	3.7
Entropy Mini (CVPR'19)	16	64	88.45	79.51	3.72	14.14	9.44	1.9
UA-MT (MICCAI'19)	16	64	88.88	80.21	2.26	7.32	9.44	3.6
CCT (CVPR'20)	16	64	88.83	80.06	2.49	8.44	15.65	3.9
SASSNet (MICCAI'20)	16	64	89.27	80.82	3.13	8.83	20.46	4.4
Ours	16	64	89.42	80.98	2.10	7.32	9.44	2.2

Discussion & Conclusion

- Why semi-supervised learning
 - Hard to obtain large-scale labeled data
 - Unlabeled data easy to collect

- Proposed framework
 - Dual-Task-Consistency improves full supervised learning performance
 - Dual-Task-Consistency is useful for semi-supervised learning
 - Task-level consistency is a explicitly modeling method

Future works

- Consistency
 - Data-level (many works have done)
 - Model-level (some works can be found, also can do (single model and single forward))
 - Task-level (worth to explore)
 - Can be used to solve domain generalization
- How to design consistency task
 - Task-transformation must be Differentiable!!!
 - Task-specific (depends on your data, key-points and edge, and others)
 - Relationship (can jointly learn)

Thanks for your attention

QQA