(x) Construct Devision tree for The following transactions using ID3

TID Refund	Martial Status	Taxable in come	Cheat
1 Yes No No No Yes No No No No No No No	Single Married Single Married Divorced Single Married Single Single	125K 100K 70K 120K 95K 220K 220K 75K 90K	NN NN NO YES

Let Consider attribute Tarableincome

Sort The Values of attribute Taxable in tome

Cheat

6015 -> NO

7015 -> NO

755 -> NO

755 -> NO

7655 -> Yes of Change in The

8515 -> Yes of Target Concept

Value

9015 -> Yes of Change in the

1005 -> NO

1905 -> NO

1955 -> NO

In Thin,

Le should picks a Threshold, C, That

Produces the greatest Information gain.

Produces the greatest Examples That

The dentihing adjacent examples That

There in Their target classification.

Prom Thin, Godon Thresolds are

C1 = $\frac{7515+8515}{2}$ = 80

C2 = $\frac{97.5}{2}$

Now. Le gane to Colmate Information Gain on attribute Taxable Income Lat there Thresolan C,= 80 $C_2 = 97.5$ Lets Consider C1 Before That, Calculate Entropy (D). Entropy (1) = - E Pilog2 Pi (Info(o))

 $= - \left(\frac{3}{10} \right) \log_2 \left(\frac{3}{10} \right) + \left(\frac{7}{10} \right) \log_2 \left(\frac{7}{10} \right) \right)$ 0.88 bitis

Info (D)

Tarkable income

Lot
$$C_1 \ge 8015$$

$$= \frac{2}{j-1} \frac{|D_j|}{|D|} Info(D_j)$$

$$= \left(\frac{7}{10}\right) Info(D) + \left(\frac{3}{10}\right) Info(D) + \left(\frac{3}{10}\right) Info(D)$$

$$=\frac{7}{10}\left[-\frac{3}{7}\log_{1}\frac{3}{7}-\frac{4}{7}\log_{2}\frac{4}{7}\right]$$

$$+\frac{3}{10}\left[-\frac{9}{3}\log_{2}(\frac{9}{3})-\frac{3}{3}\log_{2}(\frac{3}{3})\right]$$

$$= 0.88 - 0.68 \\
= 0.30$$

$$= \oint \frac{2}{5} \frac{|D_j|}{|D|} \operatorname{Info}(D_j)$$

$$\int_{-1}^{2} \frac{|D_j|}{|D|} \int_{-1}^{2} \frac{|D_j|}{|D|} \int_{$$

$$= \left(\frac{1+10}{10}\right) \left[-\left(\frac{0}{4}\right) \log_{2}\left(\frac{0}{4}\right) - \left(\frac{4}{4}\right) \log_{2}\left(\frac{4}{4}\right)\right]$$

$$\left(\frac{6}{10}\right)\left[-\left(\frac{3}{6}\right)\log_{1}\left(\frac{3}{6}\right)-\left(\frac{3}{6}\right)\log_{2}\left(\frac{3}{6}\right)\right]$$

Went Consider attribut Mortial Status

$$= \frac{4}{10} \left[-\frac{2}{4} \log_2(\frac{2}{4}) - \frac{2}{4} \log_2(\frac{2}{4}) \right]$$

$$+ \frac{4}{10} \left[-\frac{2}{4} \log_2(\frac{2}{4}) - \frac{2}{4} \log_2(\frac{2}{4}) \right]$$

$$+ \frac{2}{10} \left[-\frac{1}{4} \log_2(\frac{1}{4}) - \frac{1}{4} \log_2(\frac{1}{4}) \right]$$

$$= 0.4 + 0.2$$

$$= 0.6 \qquad \text{Gain} \left(\text{Manifal Skln} \right)$$

$$= 0.88 - 0.6$$

Scanned with CamScanner

Went Consider attribute Perfund Info(1) Refund = \frac{2}{5} \left[Dj] Info (D) = Dyer Into (Dyn) + 1 DNO (Info (DNO) $=\left(\frac{3}{10}\right)\left[-\left(\frac{0}{3}\right)\log_{2}\left(\frac{0}{3}\right)-\left(\frac{3}{3}\right)\log_{2}\left(\frac{3}{3}\right)\right]$ $+\left(\frac{7}{10}\right)\left[-\left(\frac{3}{7}\right)^{10}g_{2}\left(\frac{3}{7}\right)-\left(\frac{4}{7}\right)^{10}g_{2}\left(\frac{7}{4}\right)\right]$ 0.68

Info (D)

Petund
$$\stackrel{\vee}{\mathcal{E}} | D_j | \int_{\mathbb{R}^n} f_{\mathcal{D}}(D_j)$$

$$= \frac{1}{2} | D_{NO} | \int_{\mathbb{R}^n} f_{\mathcal{D}}(D_{NO})$$

$$= \frac{6}{6} \left[-\frac{3}{6} \log_2(\frac{3}{6}) - \frac{3}{6} \log_2(\frac{3}{6}) \right]$$

$$= \frac{4}{6} \left[-\frac{3}{6} \log_2(\frac{3}{6}) - \frac{3}{6} \log_2(\frac{3}{6}) \right]$$

Info (D)

Frankli

$$= \frac{3}{6} \left[-\frac{3}{2} \log_2(\frac{3}{6}) - \left(\frac{3}{2} \log_2(\frac{3}{6}) \right) - \left(\frac{3}{2} \log_2(\frac{3}{6}) \right) - \left(\frac{3}{2} \log_2(\frac{3}{6}) \right) \right]$$

$$= \frac{3}{6} \left[-\frac{3}{2} \log_2(\frac{3}{6}) - \left(\frac{3}{2} \log_2(\frac{3}{6}) \right) - \frac{3}{2} \log_2(\frac{3}{6}) \right]$$

$$= \frac{3}{6} \left[-\frac{1}{2} \log_2(\frac{3}{6}) - \frac{3}{2} \log_2(\frac{3}{6}) \right]$$

$$= \frac{3}{6} \left[-\frac{1}{2} \log_2(\frac{3}{6}) - \frac{3}{2} \log_2(\frac{3}{6}) \right]$$

$$= \frac{3}{6} \left[-\frac{1}{2} \log_2(\frac{3}{6}) - \frac{3}{2} \log_2(\frac{3}{6}) \right]$$

$$= \frac{3}{6} \left[-\frac{1}{2} \log_2(\frac{3}{6}) - \frac{3}{2} \log_2(\frac{3}{6}) \right]$$

$$= \frac{3}{6} \left[-\frac{1}{2} \log_2(\frac{3}{6}) - \frac{3}{2} \log_2(\frac{3}{6}) \right]$$

$$= \frac{3}{6} \left[-\frac{1}{2} \log_2(\frac{3}{6}) - \frac{3}{2} \log_2(\frac{3}{6}) \right]$$

$$= \frac{3}{6} \left[-\frac{1}{2} \log_2(\frac{3}{6}) - \frac{3}{2} \log_2(\frac{3}{6}) \right]$$

$$= \frac{3}{6} \left[-\frac{1}{2} \log_2(\frac{3}{6}) - \frac{3}{2} \log_2(\frac{3}{6}) \right]$$

$$= \frac{3}{6} \left[-\frac{1}{2} \log_2(\frac{3}{6}) - \frac{3}{2} \log_2(\frac{3}{6}) \right]$$

$$= \frac{3}{6} \left[-\frac{1}{2} \log_2(\frac{3}{6}) - \frac{3}{2} \log_2(\frac{3}{6}) \right]$$

$$= \frac{3}{6} \left[-\frac{1}{2} \log_2(\frac{3}{6}) - \frac{3}{2} \log_2(\frac{3}{6}) \right]$$

$$= \frac{3}{6} \left[-\frac{1}{2} \log_2(\frac{3}{6}) - \frac{3}{2} \log_2(\frac{3}{6}) \right]$$

Scanned with CamScanner