C

Sistemas Inteligentes

Tema 5.1: Árboles de decisión

Curso 2024-25

Índice

Árboles de decisión

- Planteamiento del problema
- Entropía y ganancia de la información
- Ejemplo

Algoritmo ID3

- **Funcionamiento**
- Ejemplo detallado
- **Extensiones**
- **Ejercicios**

Árboles de decisión

Características:

- Estructura para clasificación de vectores de atributos.
- Establece **en qué orden** verificar los atributos para conseguir la clasificación del vector de entrada.
- Para componer dicho orden se eligen primero aquellos atributos que mejor ganancia de información prometen a efectos de descubrir la clase del vector de entrada.
- Es interesante aprenderlos a partir de un conjunto de vectores

Ejemplo "concesión de créditos"

Cliente	Moroso	Antigü (años)	Ingres (€/mes)	T.fijo	Conceder
1	si	>5	600-1200	si	no
2	no	<1	600-1200	si	si
3	si	1-5	>1200	si	no
4	no	>5	>1200	no	sí
5	no	<1	>1200	si	sí
6	si	1-5	600-1200	si	no
7	no	1-5	>1200	sí	si
8	no	<1	<600	si	no
9	no	>5	600-1200	no	no
10	si	1-5	<600	no	no

- Aprendizaje:
 - ¿Por qué atributo comenzar primero?
 - Esquema voraz: elegir uno y filtrar recursivamente.

Entropía

Definición:

- Medida del grado de incertidumbre asociado a una distribución de probabilidad.
- En una distribución uniforme, todos los valores son igualmente probables Pi = 1/N y por tanto la entropía es máxima, lo cual indica máxima incertidumbre.
- Por el contrario, en una distribución pico en la que Pi = 1 y Pj=0, para todo j≠i la entropía es mínima lo cual indica mínima incertidumbre o sea máxima información.
- Notación E para variables binarias:
 - E[1+,1-] =1
 - E[1+,0]=0

$$-1.0\log 2(1.0) - 0.0\log 2(0.0) = 0$$

Universidad de Alicante Universitat d'Alacant

Entropía condicionada

- Definición:
 - Entropía de la distribución de Y condicionada a X.
 - Una entropía condicionada menor que E(Y) indica que el conocimiento de X mejora la información que se dispone sobre Y

$$E(Y \mid X) = \sum_{i} P(X = x_i) E(Y \mid X = x_i)$$

Ejercicio entropía

- Tenemos una tabla donde se relaciona Y con X. Por ejemplo...
- Calcula E(Y):

$$\sum_{i \in C} -p_i \log_2 p_i$$

- ¿P(Y)?
 - P(Y=Yes) = 4/8 = 0.5
 - P(Y=No) = 4/8 = 0.5
- ¿E(Y)?
 - E[4+,4-]
 - (-0.5*log2(0.5))+(-0.5*log2(0.5))= 1

Х	Υ
Math	Yes
Hist.	No
CS	Yes
Math	No
Math	No
CS	Yes
Hist.	No
Math	Yes

Ejercicio entropía

Calcula E(Y|X):

$$E(Y \mid X) = \sum_{i} P(X = x_i) E(Y \mid X = x_i)$$

- ¿P(X)?
 - P(X=Math) = 4/8 = 0.5
 - P(X=Hist) = 2/8 = 0.25
 - P(X=CS) = 2/8 = 0.25
- ¿E(Y|X)?
 - P(X=Math)*E(Y|X=Math)+ P(X=Hist)*E(Y|X=Hist)+ P(X=CS)*E(Y|X=CS)
- ¿E(Y|X=Math)?
 - E[2+,2-]
 - -P(Y=yes|X=Math)*log2(P(Y=yes|X=Math))-P(Y=no|X=Math)*log2(P(Y=no|X=Math))=
 - -2/4*log2(2/4)-2/4*log2(2/4)=1

X	Υ
Math	Yes
Hist.	No
CS	Yes
Math	No
Math	No
CS	Yes
Hist.	No
Math	Yes

Ejercicio entropía

Una entropía condicionada **menor** que E(Y) indica que el conocimiento de X mejora la información que se dispone sobre Y

$$E(Y \mid X) = \sum_{i} P(X = x_i) E(Y \mid X = x_i)$$

X	$Prob(X = x_i)$	$E(Y \mid X = x_i)$
Math	0.5	1
History	0.25	0
CS	0.25	0

X	Υ
Math	Yes
Hist.	No
CS	Yes
Math	No
Math	No
CS	Yes
Hist.	No
Math	Yes

$$E(Y|X) = 0.5*1 + 0.25*0 + 0.25*0$$

$$E(Y|X) = 0.5*1 + 0.25*0 + 0.25*0$$

Ganancia de información

- Definición:
 - Medida de cuanto ayuda el conocer el valor de una variable aleatoria X para conocer el verdadero valor de otra Y.
 - En nuestro caso, X es un atributo de un ejemplo dado mientras que Y es la clase a la que pertenece el ejemplo.
 - Una alta ganancia implica que el atributo X permite reducir la incertidumbre de la clasificación del ejemplo de entrada.
 - Se suele dar en bits
- En nuestro ejemplo nos indica que conocer X reduce la incertidumbre de Y

$IG(Y \mid$	X	=E(Y)	Y)-E	(Y)	X
\ \ \ \ \		1	/	1	

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

$$E(Y) = 1$$

$$E(Y|X) = 0.5$$

$$IG(Y \mid X) = 1 - 0.5 = 0.5bits$$

Algoritmo recursivo

Algoritmo ID3(ejemplos, atributos)

- 1: if atributos = \emptyset o MISMACLASE(ejemplos) then
- $C \leftarrow \text{CLASEMAYORITARIA}(ejemplos)$
- $N \leftarrow \text{CREARNODOHOJA}(C)$
- 4: **else**
- GANANCIA(ejemplos, A) $a_{mejor} \leftarrow \operatorname{argmax}$ 5: $A \in atributos$
- $N \leftarrow \text{CREARNODO}(a_{max})$ 6:
- for cada $v_i \in VALORES(a_{max})$ do
- $ejemplos_{v_i} \leftarrow \{\text{elementos de ejemplos con valor } v_i \text{ para } a_{max}\}$ 8:
- $\widetilde{ANADIRHIJO}(N, ID3(ejemplos_{v_i}, atributos a_{max}))$ 9:
- 10: **Devolver** N

Aplicación al ejemplo

Cliente	Moroso	Antigü (años)	Ingres (€/mes)	T.fijo	Conceder
1	si	>5	600-1200	si	no
2	no	<1	600-1200	si	si
3	si	1-5	>1200	si	no
4	no	>5	>1200	no	sí
5	no	<1	>1200	si	sí
6	si	1-5	600-1200	si	no
7	no	1-5	>1200	sí	si
8	no	<1	<600	si	no
9	no	>5	600-1200	no	no
10	si	1-5	<600	no	no

- Atributos $A = \{Moroso, Antigüedad, Ingresos, Fijo\},$ (corresponden a posibles estados de la variable X).
- Y = ConcederCrédito
- ¿Cual tiene mayor Ganancia? (línea 5 del algoritmo)
 - Calculemos la E(Y) (la necesitamos para después)

$$E(S) = \sum_{i \in C} -p_i log_2 p_i$$

$$E(Y) = E[4+,6-] = -0.4\log_2(0.4) - 0.6\log_2(0.6) = 0.971$$

Aplicación al ejemplo

Cliente	Moroso	Antigü (años)	Ingres (€/mes)	T.fijo	Conceder
1	si	>5	600-1200	si	no
2	no	<1	600-1200	si	si
3	si	1-5	>1200	si	no
4	no	>5	>1200	no	sí
5	no	<1	>1200	si	sí
6	si	1-5	600-1200	si	no
7	no	1-5	>1200	sí	si
8	no	<1	<600	si	no
9	no	>5	600-1200	no	no
10	si	1-5	<600	no	no

- ¿Cual tiene mayor Ganancia (línea 5 del algoritmo)?
 - Calcular para cada a ∈ A
 - IG(Y | X=a)
 - Recordemos que $IG(Y \mid X) = E(Y) E(Y \mid X)$
 - Empecemos por Antigüedad...

Calculo detallado

Cliente	Moroso	Antigü (años)	Ingres (€/mes)	T.fijo	Conceder
1	si	>5	600-1200	si	no
2	no	<1	600-1200	si	si
3	si	1-5	>1200	si	no
4	no	>5	>1200	no	sí
5	no	<1	>1200	si	sí
6	si	1-5	600-1200	si	no
7	no	1-5	>1200	sí	si
8	no	<1	<600	si	no
9	no	>5	600-1200	no	no
10	si	1-5	<600	no	no

- \mathbf{X} =Antigüedad, \mathbf{x}_i son sus posibles atributos
- - P(Antigüedad<1)*E(Y|Antigüedad<1)+
 P(Antigüedad=1-5)*E(Y|Antigüedad=1-5)+
 P(Antigüedad>5)*E(Y|Antigüedad>5)
 - Observamos la tabla para las probabilidades del atributo:
 - P(Antigüedad<1) =3/10 = 0.3 P(Antigüedad=1-5)=0.4 P(Antigüedad>5)= 0.3

Calculo detallado

Cliente	Moroso	Antigü (años)	Ingres (€/mes)	T.fijo	Conceder
1	si	>5	600-1200	si	no
2	no	<1	600-1200	si	si
3	si	1-5	>1200	si	no
4	no	>5	>1200	no	sí
5	no	<1	>1200	si	sí
6	si	1-5	600-1200	si	no
7	no	1-5	>1200	sí	si
8	no	<1	<600	si	no
9	no	>5	600-1200	no	no
10	si	1-5	<600	no	no

E(Y|X=Antigüedad<1)=</p>

$$-$$
 E[2+,1-]= -2/3log2(2/3)-1/3log2(1/3)= 0.9183

$$E(S) = \sum_{i \in C} -p_i log_2 p_i$$

Continuamos con el resto...

- $E(Y|X=S1-5) = -1/4\log_2(1/4) 3/4\log_2(3/4) = 0.811$
- $E(Y|X=S>5) = -1/3\log 2(1/3) 2/3\log 2(2/3) = 0.9183$

Calculo detallado

- ¿Cual tiene mayor Ganancia (línea 5 del algoritmo)?
 - Calcular para cada a ∈ A
 - *IG(Y | X=a)*

- Recordemos que
$$IG(Y|X) = E(Y) - E(Y|X)$$
- $E(Y \mid X) = \sum_i \mathrm{P}(X = x_i) E(Y \mid X = x_i)$

Para Antigüedad:

```
P(Antigüedad=S<1)=0.3,

P(Antigüedad=S1-5)=0.4,

P(Antigüedad=S>5)=0.3

E(Y|X=S<1) = -2/3log2(2/3)-1/3log2(1/3)= 0.9183

E(Y|X=S1-5)= -1/4log2(1/4)-3/4log2(3/4)= 0.811

E(Y|X=S>5) = -1/3log2(1/3)-2/3log2(2/3)= 0.9183

E(Y|X=S<1)*0.3 = 0.2755

E(Y|X=S1-5)*0.4 = 0.3244

E(Y|X=S>5)*0.3 = 0.2755

E(Y|X=Antigüedad) = 0.2755 + 0.3244 + 0.2755 = 0.8754
```

Notación árbol y recuento rápido

Cliente	Moroso	X=Antigü (años)	Ingres (€/mes)	T.fijo	Y=Conceder
1	si	>5	600-1200	si	no
2	no	<1	600-1200	si	si
3	si	1-5	>1200	si	no
4	no	>5	>1200	no	sí
5	no	<1	>1200	si	sí
6	si	1-5	600-1200	si	no
7	no	1-5	>1200	sí	si
8	no	<1	<600	si	no
9	no	>5	600-1200	no	no
10	si	1-5	<600	no	no

 $P(Antiguedad=S<1)=\frac{1+2/10}{0.3}$, P(Antiguedad=S1-5)=0.4, P(Antiguedad=S>5)=0.3

```
E(Y|X=S<1) = E[2+,1-] = -2/3\log 2(2/3)-1/3\log 2(1/3) = 0.9183

E(Y|X=S1-5) = E[1+,3-] = -1/4\log 2(1/4)-3/4\log 2(3/4) = 0.811

E(Y|X=S>5) = E[1+,2-] = -1/3\log 2(1/3)-2/3\log 2(2/3) = 0.9183
```

```
E(Y|X=S<1)*0.3 = 0.2755

E(Y|X=S1-5)*0.4 = 0.3244

E(Y|X=S>5)*0.3 = 0.2755
```

```
E(Y|X=Antiguedad) = 0.2755 + 0.3244 + 0.2755 = 0.8754
```

Ganancia = 0.971 - 0.8754 = 0.09

Continuamos con moroso...

Cliente	X=Moroso	Antigü (años)	Ingres (€/mes)	T.fijo	Y=Conceder
1	si	>5	600-1200	si	no
2	no	<1	600-1200	si	si
3	si	1-5	>1200	si	no
4	no	>5	>1200	no	sí
5	no	<1	>1200	si	sí
6	si	1-5	600-1200	si	no
7	no	1-5	>1200	sí	si
8	no	<1	<600	si	no
9	no	>5	600-1200	no	no
10	si	1-5	<600	no	no

$$E(Moroso) = -0.4*log2(0.4)-0.6*log2(0.6)=0,971$$

$$P(Moroso+)=0.4$$
, $P(Moroso-)=0.6$

$$E(Y|X=Moroso+)=0$$

 $E(Y|X=Moroso-)=-4/6*log2(4/6)-2/6*log2(2/6)=0,918$

$$E(Y|X=Moroso) = P(Moroso+)*E(Y|X=Moroso+) + P(Moroso-)*E(Y|X=Moroso-) = 0.4*0+0.6*0.918=0,9508$$

Ganancia =
$$0.971 - 0.551 = 0.42$$

El de más ganancia es Moroso Se crea el nodo (línea 6)

- El resultado de la línea 5 es Moroso
- Para todos los valores de moroso (+,-) crear subconjunto de ejemplo (línea 8)
- Llamar recursivamente a ID3 (línea 9) eliminando el atributo moroso

Algoritmo ID3(ejemplos, atributos)

```
1: if atributos = \emptyset o MISMACLASE(ejemplos) then
        C \leftarrow \text{CLASEMAYORITARIA}(ejemplos)
        N \leftarrow \text{CREARNODOHOJA}(C)
 4: else
        a_{mejor} \leftarrow \operatorname{argmax} \operatorname{GANANCIA}(ejemplos, A)
                     A \in atributos
        N \leftarrow \text{CREARNODO}(a_{max})
        for cada v_i \in VALORES(a_{max}) do
 7:
             ejemplos_{v_i} \leftarrow \{elementos de ejemplos con valor <math>v_i para a_{max}\}
 8:
             \tilde{ANADIRHIJO}(N, ID3(ejemplos_{v_i}, atributos - a_{max}))
10: Devolver N
```


Cliente	Moroso	Antigü (años)	Ingres (€/mes)	T.fijo	Y=Conceder
1	si	>5	600-1200	si	no
2	no	<1	600-1200	si	si
3	si	1-5	>1200	si	no
4	no	>5	>1200	no	sí
5	no	<1	>1200	si	sí
6	si	1-5	600-1200	si	no
7	no	1-5	>1200	sí	si
8	no	<1	<600	si	no
9	no	>5	600-1200	no	no
10	si	1-5	<600	no	no

 Para todos los valores de moroso (+,-) crear subconjunto de ejemplo (línea 8)

Moroso+				
Cliente	Antigü (años)	Ingres (€/mes)	T.fijo	Conceder
1	>5	600-1200	si	no
3	1-5	>1200	si	no
6	1-5	600-1200	si	no
10	1-5	<600	no	no

Moroso-				
Cliente	Antigü (años)	Ingres (€/mes)	T.fijo	Conceder
2	<1	600-1200	si	si
4	>5	>1200	no	sí
5	<1	>1200	si	sí
7	1-5	>1200	sí	si
8	<1	<600	si	no
9	>5	600-1200	no	no

- Ahora para cada rama aplicaríamos ID3.
 - Moroso+
 - ¡Todos los ejemplos tienen Conceder a No!
 - Por la línea 1 (MISMACLASE) todos los ejemplos llevan a la misma conclusión.
 - No expandimos por tanto más en esta rama y la hoja es NO concecer
- Continuamos con Moroso-

Moroso+				
Cliente	Antigü (años)	Ingres (€/mes)	T.fijo	Conceder
1	>5	600-1200	si	no
3	1-5	>1200	si	no
6	1-5	600-1200	si	no
10	1-5	<600	no	no

```
Algoritmo ID3(ejemplos, atributos)
```

```
1: if atributos = \emptyset o MISMACLASE(ejemplos) then

2: C \leftarrow \text{CLASEMAYORITARIA}(ejemplos)

3: N \leftarrow \text{CREARNODOHOJA}(C)

4: else

5: a_{mejor} \leftarrow \underset{A \in \text{atributos}}{\operatorname{argmax}} \text{GANANCIA}(ejemplos, A)

6: N \leftarrow \text{CREARNODO}(a_{max})

7: for cada v_i \in \text{VALORES}(a_{max}) do

8: ejemplos_{v_i} \leftarrow \{\text{elementos de ejemplos con valor } v_i \text{ para } a_{max} \}

9: A\tilde{\text{NADIRHIJO}}(N, \text{ID3}(ejemplos_{v_i}, atributos - a_{max}))

10: Devolver N
```


- Continuamos con Moroso-
 - ¿Ganancia(T.fijo)?

Moroso-				
Cliente	Antigü (años)	Ingres (€/mes)	T.fijo	Conceder
2	<1	600-1200	si	si
4	>5	>1200	no	sí
5	<1	>1200	si	sí
7	1-5	>1200	sí	si
8	<1	<600	si	no
9	>5	600-1200	no	no

Y obtenemos este árbol

Extensiones del algoritmo

Extensiones:

• Atributos numéricos: ID3 sólo trabaja con atributos discretos. Si se usan atributos continuos hay que descomponerlos en rangos. Para ello se ordenan los ejemplos según el valor y se toman como puntos límite los puntos medios de aquellos en que se cambie de clase.

<u>825 950 1150</u>										
Ejemplo	8	10	6	2	1	9	3	5	4	7
Ingresos	450	530	650	800	850	1050	1250	1400	1600	3000
Crédito	no	no	no	no	sí	no	sí	sí	sí	sí

• Atributos con gran número de valores. Se forman grupos pequeños de ejemplos que pueden ser homogéneos por casualidad. Debe introducirse un elemento corrector que penalice atributos con un elevado número de valores (ganancia normalizada):

$$G_N(S, A) = \frac{G(S, A)}{\sum_{v_i \in V(A)} -p_{v_i} \log_2 p_{v_i}}$$

Sobre-entrenamiento. Comprobación de capacidad de generalización.

Ejercicios

Objetivo: Dado el conjunto de entrenamiento, aprender el concepto "Días en los que se juega al tenis" obteniendo el árbol de decisión mediante el algoritmo ID3

EJ.	Cielo	TEMPERATURA	HUMEDAD	VIENTO	JUGARTENIS
D_1	SOLEADO	ALTA	ALTA	DÉBIL	-
D_2	SOLEADO	\mathbf{A} LTA	\mathbf{A} LTA	FUERTE	-
D_3	Nublado	\mathbf{A} LTA	\mathbf{A} LTA	DÉBIL	+
D_4	LLUVIA	Suave	\mathbf{A} LTA	DÉBIL	+
D_5	LLUVIA	Baja	NORMAL	DÉBIL	+
D_6	LLUVIA	Baja	NORMAL	FUERTE	-
D ₇	Nublado	Baja	NORMAL	FUERTE	+
D ₈	SOLEADO	Suave	\mathbf{A} LTA	DÉBIL	-
D ₉	SOLEADO	Baja	Normal	DÉBIL	+
D ₁₀	LLUVIA	SUAVE	NORMAL	DÉBIL	+
D ₁₁	SOLEADO	Suave	NORMAL	FUERTE	+
D ₁₂	Nublado	SUAVE	\mathbf{A} LTA	FUERTE	+
D ₁₃	Nublado	\mathbf{A} LTA	Normal	DÉBIL	+
D ₁₄	LLUVIA	Suave	ALTA	FUERTE	-

Ejercicios

Ejercicios

- Entropía inicial: $Ent([9^+, 5^-]) = 0.94$
- Selección del atributo para el nodo raíz:
 - Ganancia(D,Humedad) = $0.94 \frac{7}{14} \cdot \text{Ent}([3^+, 4^-]) \frac{7}{14} \cdot \text{Ent}([6^+, 1^-]) = 0.151$
 - Ganancia(D,VIENTO) = $0.94 \frac{8}{14} \cdot \text{Ent}([6^+, 2^-]) \frac{6}{14} \cdot \text{Ent}([3^+, 3^-]) = 0.048$
 - Ganancia(D,Cielo) = $0.94 \frac{5}{14} \cdot \text{Ent}([2^+, 3^-]) \frac{4}{14} \cdot \text{Ent}([4^+, 0^-]) \frac{5}{14} \cdot \text{Ent}([3^+, 2^-]) = 0.246 \text{ (mejor atributo)}$
 - Ganancia(D,Temperatura) = $0.94 \frac{4}{14} \cdot \text{Ent}([2^+, 2^-]) \frac{6}{14} \cdot \text{Ent}([4^+, 2^-]) \frac{4}{14} \cdot \text{Ent}([3^+, 1^-]) = 0.02$
- El atributo seleccionado es CIELO

Ejercicios

Árbol parcialmente construido:

Ejercicios

- Selección del atributo para el nodo CIELO=SOLEADO
- $D_{\text{Soleado}} = \{D_1, D_2, D_8, D_9, D_{11}\}$ con entropía $\text{Ent}([2^+, 3^-]) = 0,971$
 - Ganancia(D_{SOLEADO} , HUMEDAD) = $0.971 \frac{3}{5} \cdot 0 \frac{2}{5} \cdot 0 = 0.971$ (mejor atributo)
 - Ganancia (D_{SOLEADO} , TEMPERATURA) = 0,971 $-\frac{2}{5} \cdot 0 \frac{2}{5} \cdot 1 \frac{1}{5} \cdot 0 = 0,570$
 - Ganancia (D_{SOLEADO} , VIENTO) = 0,971 $-\frac{2}{5} \cdot 1 \frac{3}{5} \cdot 0$,918 = 0,019
- El atributo seleccionado es Humedad

Ejercicios

- Selección del atributo para el nodo CIELO=LLUVIA:
- $D_{\text{LLUVIA}} = \{D_4, D_5, D_6, D_{10}, D_{14}\}$ con entropía $\text{Ent}([3^+, 2^-]) = 0.971$
 - Ganancia (D_{LLUVIA} , HUMEDAD) = 0,971 $-\frac{2}{5} \cdot 1 \frac{3}{5} \cdot 0$,918 = 0,820
 - Ganancia(D_{LLUVIA} , TEMPERATURA) = $0.971 \frac{3}{5} \cdot 0.918 \frac{2}{5} \cdot 1 = 0.820$
 - Ganancia(D_{LLUVIA} , VIENTO) = $0.971 \frac{3}{5} \cdot 0 \frac{2}{5} \cdot 0 = 0.971$ (mejor atributo)
- El atributo seleccionado es VIENTO

Ejercicios

Árbol finalmente aprendido:

