

CVPR 2014 Tutorial on Visual SLAMLarge Scale – Reducing Computational Cost

Michael Kaess

kaess@cmu.edu

The Robotics Institute
Carnegie Mellon University

Large-Scale Visual SLAM

Computational cost grows with time

Two approaches to reduce cost:

- Formulation
 - Keyframes
 - Submaps
 - Reduced pose graph

- Cut old data
- Sparsification

Large-Scale Visual SLAM

Computational cost grows with time

Two approaches to reduce cost:

- Formulation
 - Keyframes
 - Submaps
 - Reduced pose graph

- Cut old data
- Sparsification

Reduced pose graph

- Key-frame approach
- Reuses existing poses
- Grows with explored space, not time
- Partitions the environment
 - Maintains a set of poses that cover all the partitions

Reduced Pose Graph (step n) - Construction

In general, not revisiting exactly same poses

Standard pose graph:

Reduced Pose Graph (step n+1)

In general, not revisiting exactly same poses

Standard pose graph:

New pose is added

Reduced Pose Graph (step n+2)

Avoiding inconsistency

Second loop closure to x_j to avoid double use of constraint

Standard pose graph:

Reduced Pose Graph (step n+3)

Avoiding inconsistency

Constraint between x_i and x_i added

Omitting short odometry links

Standard pose graph:

Long-term Visual Mapping

MIT Stata Center Dataset (publicly available)

Duration: 6 months

Operation time: 9 hours

Distance travelled: 11 km (about 7 miles)

VO keyframes: 630K

Reduced Pose Graph – Second Floor

Comparison of full vs reduced pose graph

- 4 Hours of data
- Reduced pose graph
 # Poses 1363
 Mean error 0.44m

Full pose graph
 # Poses 28520
 Mean error 0.37m

Timing (approx. 9 hours of mission)

Reduced Pose Graph – 10 Floors

iSAM optimizes reduced pose graph

Reduced Pose Graph

Map of 10 floors

 Accelerometer used to detect elevator transitions

 iSAM optimizes RPG to achieve real-time

Large-Scale Visual SLAM

Computational cost grows with time

Two approaches to reduce cost:

- Formulation
 - Keyframes
 - Submaps
 - Reduced pose graph

- Cut old data
- Sparsification

Sparsification: Factor Graph Node Removal

- Control complexity of performing inference in graph
 - Long-term multi-session SLAM
 - Reduces the size of graph
 - Storage and transmission
- Graph maintenance
 - Forgetting old views

Sparsification: Factor Graph Node Removal

Remove node from graph \rightarrow marginalize variable from distribution

Original Graph

Dense Node Removal (Marginalization)

Sparse-Approximate Node Removal

Generic Linear Constraint Node Removal

(a) Original Graph

(b) Node Marginalization

(c) Chow-Liu Tree Approx.

(d) Conservative Approx.

Chow-Liu Tree minimizes KLD

$$\mathcal{D}_{KL}\left(\mathcal{N}^{-1}(\boldsymbol{\eta}_t, \Lambda_t) \| \mathcal{N}^{-1}(\tilde{\boldsymbol{\eta}}_t, \tilde{\Lambda}_t)\right) = \frac{1}{2} \left(\operatorname{tr}(\tilde{\Lambda}_t \Lambda_t^{-1}) + \frac{\ln |\Lambda_t|}{\ln |\tilde{\Lambda}_t|} - \dim(\boldsymbol{\eta}_t) \right)$$

(d) Conservative Approx.

Chow-Liu Tree minimizes KLD

$$\mathcal{D}_{KL}\left(\mathcal{N}^{-1}(\boldsymbol{\eta}_t, \boldsymbol{\Lambda}_t) \| \mathcal{N}^{-1}(\tilde{\boldsymbol{\eta}}_t, \tilde{\boldsymbol{\Lambda}}_t)\right) = \frac{1}{2} \left(\operatorname{tr}(\tilde{\boldsymbol{\Lambda}}_t \boldsymbol{\Lambda}_t^{-1}) + \frac{\ln |\boldsymbol{\Lambda}_t|}{\ln |\tilde{\boldsymbol{\Lambda}}_t|} - \dim(\boldsymbol{\eta}_t) \right)$$

Often results in a slightly overconfident estimate

- Why care about overconfident estimates?
 - Overconfidence in pose or obstacle location → unsafe paths
 - Overconfidence in pose or landmark location \rightarrow failed data association

- Propose method to ensure conservative approximation
- Start with CLT which minimizes the KLD and then numerically adjust it to produce a conservative estimate

Sparse Approximate GLC:

Ensuring Conservative Approximations

- Constrained convex optimization problem
- Minimize the KLD

$$\mathcal{D}_{KL}\left(\mathcal{N}^{-1}(\boldsymbol{\eta}_t, \Lambda_t) \| \mathcal{N}^{-1}(\tilde{\boldsymbol{\eta}}_t, \tilde{\Lambda}_t)\right) = \frac{1}{2} \left(\operatorname{tr}(\tilde{\Lambda}_t \Lambda_t^{-1}) + \frac{\ln |\Lambda_t|}{\ln |\tilde{\Lambda}_t|} - \dim(\boldsymbol{\eta}_t) \right)$$

$$f_{KL}(\tilde{\Lambda}_t) = \operatorname{tr}(\tilde{\Lambda}_t \Lambda_t^{-1}) - \ln |\tilde{\Lambda}_t|$$

Subject to conservative constraint (difference is PSD)

$$\tilde{\Sigma} > \Sigma \quad \Leftrightarrow \quad \Lambda > \tilde{\Lambda}$$

- Constrained convex optimization problem
- Minimize the KLD

$$\mathcal{D}_{KL}\left(\mathcal{N}^{-1}(\boldsymbol{\eta}_t, \Lambda_t) \| \mathcal{N}^{-1}(\tilde{\boldsymbol{\eta}}_t, \tilde{\Lambda}_t)\right) = \frac{1}{2} \left(\operatorname{tr}(\tilde{\Lambda}_t \Lambda_t^{-1}) + \frac{\ln |\Lambda_t|}{\ln |\tilde{\Lambda}_t|} - \dim(\boldsymbol{\eta}_t) \right)$$

$$f_{KL}(\tilde{\Lambda}_t) = \operatorname{tr}(\tilde{\Lambda}_t \Lambda_t^{-1}) - \ln |\tilde{\Lambda}_t|$$

Subject to conservative constraint (difference is PSD)

$$ilde{\Sigma} \geq \Sigma \quad \Leftrightarrow \quad \Lambda \geq ilde{\Lambda}$$

• Start with the Chow-Liu Tree

- Consider three methods
 - Covariance Intersection

- Weighted Factors
- Weighted Eigenvalues
- Convex semidefinite programs

WEV

Chow-Liu Tree Approximation

All proposed methods start with the CLT

$$\mathcal{N}^{-1}(\boldsymbol{\eta}_t, \Lambda_t) \approx \mathcal{N}^{-1}(\tilde{\boldsymbol{\eta}}_t, \tilde{\Lambda}_{\text{CLT}}) = \prod_i p(\mathbf{x}_i | \mathbf{x}_{\text{p}(i)})$$
$$\tilde{\Lambda}_{\text{CLT}} = \sum_i \Psi_i$$

Covariance Intersection

[Julier and Uhlmann, 1997]

Convex combination of correlated factors

$$\tilde{\Lambda}_{\mathrm{CI}}(\mathbf{w}) = \sum_{i} w_{i} \Psi_{i}$$
 minimize $f_{KL}(\tilde{\Lambda}_{\mathrm{CI}}(\mathbf{w}))$ subject to $\sum_{i} w_{i} = 1$

Weighted Factors

Replace constraint that weights sum to one

$$\tilde{\Lambda}_{\mathrm{WF}}(\mathbf{w}) = \sum_{i} w_{i} \Psi_{i}$$
 minimize $f_{KL}(\tilde{\Lambda}_{\mathrm{WF}}(\mathbf{w}))$ subject to $0 \leq w_{i} \leq 1, \ \forall i$ $\Lambda_{t} \geq \tilde{\Lambda}_{\mathrm{WF}}(\mathbf{w})$

Weighted Eigenvalues

Modify each eigenvalue of each factor

$$\tilde{\Lambda}_{\text{WEV}}(\mathbf{w}) = \sum_{i} \sum_{j=1}^{q_i} w_j^i \lambda_j^i \mathbf{u}_j^i \mathbf{u}_j^i^{\top} \qquad \text{minimize} \quad f_{KL}(\tilde{\Lambda}_{\text{WEV}}(\mathbf{w}))$$

$$= \sum_{k} w_k \lambda_k \mathbf{u}_k \mathbf{u}_k^{\top} \qquad \text{subject to} \quad 0 \le w_k \le 1, \ \forall k$$

$$= \sum_{k} w_k \lambda_k \mathbf{u}_k \mathbf{u}_k^{\top} \qquad \qquad \Lambda_t \ge \tilde{\Lambda}_{\text{WEV}}(\mathbf{w}).$$

Conservative GLC: Experimental Results

Dataset	Node Types	Factor Types	# Nodes	# Factors
Intel Lab	3-DOF pose	3-DOF odom., 3-DOF laser scan-matching	910	4,454
Killian Court	3-DOF pose	3-DOF odom., 3-DOF laser scan-matching	1,941	2,191
Victoria Park	3-DOF pose, 2-DOF lm.	3-DOF odom., 2-DOF landmark observation	7,120	10,609
Duderstadt Center	6-DOF pose	6-DOF odom., 6-DOF laser scan-matching	552	1,774
EECS Building	6-DOF pose	6-DOF odom., 6-DOF laser scan-matching	611	2,134
USS Saratoga	6-DOF pose	6-DOF odom., 5-DOF mono-vis., 1-DOF depth	1,513	5,433

(a) Intel Lab

(b) Killian Court

(c) Victoria Park

(d) Duderstadt Center

(e) EECS Building

(f) USS Saratoga

Conservative GLC: Experimental Results

- Remove percentage of evenly spaced nodes from each graph
- Cl very conservative
- WF and WEV approach performance of CLT
 - for most graphs
- Room improvement for Intel
 - Higher density of connectivity
 - All factor same strength