TABLE I BASIC CHARACTERISTICS OF PUBLIC DATASETS OF FALLS AND ACTIVITIES OF DAILY LIVING (ADLS)

Dataset Name	Subjects (Age Range)	(Age Device Used	Sampling Rate	Number of Types of ADLs/Falls	of Position of Sensing Points
MobiFall [5] [6]	25 (22–47 years)	Samsung Galaxy S3, A-BMA220, G-MPU-6050	50 Hz	9/4	Waist-mounted using belt clip
HAR [16]	30 (19–48 years)	Samsung Galaxy S II smart- phone, Accel, Gyro	50 Hz	6/NA	Smartphone attached via a belt or pouch
mHealth [18]	10 (N/A)	Shimmer2 wearable sensors, Accel, Gyro	50 Hz	12/NA	Chest Sensor, Left Ankle Sensor, Right Lower Arm Sensor
HARTH [19]	22 (NA)	Accel, Gyro	50 Hz	12/NA	Sensors were attached to the right thigh and lower back
HAR70+ [21]	15 (70-95 years)	Accel, Gyro	50 Hz	8/NA	Sensors were attached to the Lower back and thigh
WEDAFALL [25]	15 (70-95 years)	Fitbit Sense smartwatch sensor data, Accel, Gyro, HR, EE, Orientation Sensor	5–50 Hz	350 fall trials from young participants and 157 fall trials from elderly participants, totaling 507 falls/619 activities of daily living (ADLs)	Wrist
SmartFallDataSet [26]	7 Smartwatch, 7 Notch, Multiple Farseeing (21–55 years Smartwatch, 20–35 years Notch, Elderly Farseeing)	Microsoft Band 2 smartwatch, Notch Motion Sensors, Farsee- ing Sensors, Skin Temp Sen- sor, GPS Sensor	31.25 Hz (Smartwatch), Variable (Notch), 20– 100 Hz resampled to 31.25 Hz (Farseeing)	91 falls + 90 ADLs (Smartwatch), 107 falls + 2,456 ADLs (Notch), 23 falls + 27,412 ADLs (Farseeing)	Wrist (Smartwatch and Notch), Torso (Farseeing)
Sisfall [28]	38: 23 young adults (19–30 years), 15 elderly (60–75 years)	Smartphones Custom-built embedded device with Accel (ADXL345, MMA8451Q) and Gyro (ITG3200)	200 Hz	19/15	Waist
FARSEEING [30]	2000 (19–30 years young adults, 60–75 years elderly)	Samsung Galaxy S3, Accel, Gyro, and Mag	100 Hz (73%) and 20 Hz (27%)	NA/208	Lower back (L5 vertebrae, 72%) and thigh (28%)
UPFall [32]	17 (18-24 years)	Mbientlab MetaSensor IMUs, NeuroSky MindWave EEG Headset, Microsoft LifeCam Cinema Cameras	100 Hz (73%) and 20 Hz (27%)	6/5	Left wrist, under the neck, right pocket, waist (belt), left ankle, Forehead

Dataset Name	Subjects (Age Range)	(Age Device Used	Sampling Rate	Number of Types of Position of Sensing Points ADLs/Falls	Position of Sensing Points
FALLAID [33] [34] 15 (NA)	15 (NA)	Accel, Gyro, Mag, Baro	Accel and Gyro: 238 Hz, Mag: 80 Hz, Baro: 10 Hz	44/35	Waist, Wrist, and Neck
UMAFALL [36]	17 (19–48 years)	IMUs and an Optical Motion 50 Hz Capture System	50 Hz	5/4	Chest, Waist, Wrist, Ankle
Mendeley data [37]	1 (NA) (Millions of sensor readings collected at a frequency of 1 Hz over six months)	1 (NA) (Millions of PIR Sensors, FSR, Reed sensor readings col- Switches, Photocell Light lected at a frequency Sensors, Temp and Humidity of 1 Hz over six Sensors, Smart Plugs months)	1 Hz	6/5	Installed in rooms and hall-ways to detect movement, Placed on beds, couches, and chairs to monitor pressure variations, Mounted on doors, cabinets, and the fridge to record usage patterns, Distributed throughout the home for environmental monitoring.
Ecare [38]	NA (NA)	Smartphone, Fitbit Smartwatch, ESP32 for IPS	NA	6/4	Smartphone (placed in the trouser pocket), 4 SensorTags placed on: Ankle (foot motion and fall detection), Wrist (hand and upper body movement tracking), Chest (central body orientation reference), Waist (core movement detection for balance monitoring)

TABLE II OVERVIEW OF DATASETS

Dataset Name	ML Algorithm	DL Algorithm	Feature Extraction	Evaluation Measures	Limitations
MobiFall [5] [6]	Decision Trees, RF,SVM,k- NN,NB,Gradient Boosting	CNN,RNN,LSTM,Transformers Autoencoders,CNN+LSTM	Time-Domain Features, Frequency-Domain Features	Accuracy, Sensitiv- ity, Specificity, F1-Score	Participant Diversity and Variability,Overfitting Risks,Data Imbalance
HAR [16] [17]	RF.KNN, Decision Trees,Gradient Boosting	CNN,RNN,LSTM	Time-domain signals (mean, standard deviation, skewness, kurtosis) Frequency-domain features (energy, entropy, correlation),Derived Features (Jerk, angular acceleration, magnitude of acceleration.)	Accuracy P, R, and F1-Score, Confusion Matrix, Cross-Validation	Device Dependency,Restricted Activity Range, missing the variety seen in real-world scenarios. Sensor NoisE, Fixed Position
mHealth	SVM,RF,KNN,DT	CNNs, RNNs/LSTM, Transformers, Autoencoders	TDF,FDF,Posture Analysis	Accuracy P, R, and F1-Score,ROC-AUC Score,Latency	Noise Sensitivity, User Variability, Real-time Constraints
НАКТН [20]	SVM,RF,KNN,Logistic Regression	CNN, RNN, LSTM	TDF,FDF,Posture Analysis	Accuracy P, R, and F1-Score,ROC-AUC Score,Latency	Noise Sensitivity, User Variability, Real-time Constraints
HAR70+ [21] [24]	SVM,RF,KNN,DT	CNNs, BiLSTM, ResNet	TDF,FDF,Posture Analysis	Accuracy P, R, and F1-Score,ROC-AUC Score,Mean Absolute Error (MAE),False Alarm Rate (FAR)	Data Imbalance ,Noise,Computational Complexity and Energy Constraints,False Alarms and Privacy Issues
WEDAFALL [25] [7]	SVM,RF,KNN,DT	CNNs, BiLSTM, Hybrid CNN- LSTM,Transformer-Based Models,Stacked Autoencoders	TDF,FDF,Statistical Features: Correlation between movements, zero-crossing rates	Accuracy P, R, and F1-Score,ROC-AUC Score,MAE,False Alarm Rate	Only One Sensor ,Staged Falls,Limited Participants,Class Imbalance
SmartFallDataSet [26] [27]	SVM,NB	RNN with GRU	TDE, FDF	Accuracy P, R, and F1-Score,ROC-AUC Score,MAE,False Alarm Rate ,statistical features	Class Imbal- ance,Environmental Noise,User-Specific Differences
Sisfall [29]	SVM,KNN,RF,DT	CNN,LSTM	TDE,FDF	Accuracy P, R, and F1-Score,ROC-AUC Score	Variability in Falls,Data Imbalance,Sensor Placement

Dataset Name	ML Algorithm	DL Algorithm	Feature Extraction	Evaluation Measures	Limitations
FARSEEING [30] [31] [6]	Decision Trees, RF,SVM,k- NN,XGBoost,LightGBM,LR	CNN,RNN,LSTM,Autoencoders	TDF, FOPF,Statistical Features.	Accuracy,P,R Sensitivity,Specificity ,F1-Score	Limited Data Quantity,Data Imbalance,Variability in Sensor Placement,Noise and Missing Data,Lack of Standardization
UPFALL [32]	SVM,KNN, Decision Trees,	CNN,RNN,L.STM,Autoencoder	Time-domain signals (mean, standard deviation, skewness, kurtosis) Frequency-domain features (energy, entropy, correlation), Activity-Specific Features	Accuracy P, R, and F1-Score, Confusion Matrix, Cross-Validation	Noise Sensitivity,User Variability,Computational Cost,Real-time Constraints,False Alarms
FALLAID [34]	SVM	CNN,LSTM	Horizontal Acceleration Magnitude, Dynamic Thresholding	Sensitivity, Specificity	Simulated Falls,Sensor Placement,Battery Life,False Positives
UMAFALL [36]	SVM,RF,DT,KNN	CNN,RNN,LSTM	TDF,FDF,Posture and Transition Analysis	Accuracy,F1-score Sensitivity, Specificity	Sensor Data Quality ,Computational Complex- ity,Generalization Issues
Mendeley data [37]	K-Means Clustering ,DBSCAN,Isolation For- est,DT,RF,SVM	CNN,LSTM	Extracted Features: Sensor activation patterns, duration, frequency, and contextual interactions	Accuracy P, R, and F1-Score,ROC-AUC Score	Single Participant,Limited Activity Scope,No Multi- User Data,Data Labeling Challenges
Ecare [38]	KNN,DT,RF,SVM	CNN,LSTM	mean, standard deviation, and signal magnitude vector	accuracy, precision, recall, and F1-score.	sensor placement constraints, lack of diverse participants, and real-world noise interference

REFERENCES

- [1] Ministry of Statistics and Programme Implementation, "DataViz," Government of India. [Online]. Available: https://mospi.gov.in/dataviz
- [2] World Health Organization, "Falls," WHO Fact Sheets, Feb. 21, 2024. [Online]. Available: ttps://www.who.int/news-room/fact-sheets/ detail/falls
- [3] Ghosh, S., Ghosh, S. K. (2023). FEEL: FEderated LEarning Framework for ELderly Healthcare Using Edge-IoMT. IEEE Transactions on Computational Social Systems, 10(4), 1800–1809. https://doi.org/10.1109/TCSS.2022.3233300
- [4] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, "A Comprehensive Survey on Transfer Learning," *arXiv preprint arXiv:1911.02685*, Nov. 2019. [Online]. Available: http://arxiv.org/abs/1911.02685
- [5] G. Vavoulas, C. Chatzaki, T. Malliotakis, M. Pediaditis, and M. Tsiknakis, "The MobiAct dataset: Recognition of activities of daily living using smartphones," in *Proc. 2nd Int. Conf. Inf. Commun. Technol. Ageing Well e-Health (ICT4AWE)*, 2016, pp. 143–151, doi:10.5220/ 0005792401430151.
- [6] Y. Yehowlong, "MobiAct Dataset v2.0 MobiFall Dataset v2.0," GitHub Repository, 2020. [Online]. Available: https://github.com/yehowlong/MobiAct_Dataset_v2.0-MobiFall_Dataset_v2.0/blob/main/DataDescribe.txt.
- [7] V. Fula and P. Moreno, "Wrist-Based Fall Detection: Towards Generalization across Datasets," *Sensors*, vol. 24, no. 5, Mar. 2024, doi: 10.3390/s24051679.
- [8] A. Ustad, A. Logacjov, S. Ø. Trollebø, P. Thingstad, B. Vereijken, K. Bach, and N. S. Maroni, "Validation of an Activity Type Recognition Model Classifying Daily Physical Behavior in Older Adults: The HAR70+ Model," Sensors, vol. 23, no. 5, Art. no. 2368, Mar. 2023, doi: 10.3390/s23052368.
- [9] Y. Li, Z. Zuo, and J. Pan, "Sensor-based fall detection using a combination model of a temporal convolutional network and a gated recurrent unit," *Future Generation Computer Systems*, vol. 139, pp. 53–63, Feb. 2023, doi: 10.1016/j.future.2022.09.011.
- [10] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Dept. Fakultät für Informatik, Tech. Univ. Munich, Munich, Ger-many, Tech. Rep. FKI-207-95, Aug. 1995.d
- [11] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available: http://www.bioinf.jku.at/publications/older/2604.pdf
- [12] E. Casilari, J. A. Santoyo-Ramón, and J. M. Cano-García, "Analysis of public datasets for wearable fall detection systems," Sensors (Switzerland), vol. 17, no. 7, 2017, doi: 10.3390/s17071513.
- [13] F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to Forget: Continual Prediction with LSTM," Technical Report, 1999.
- [14] D. Mohan, D. Z. Al-Hamid, P. H. J. Chong, K. L. K. Sudheera, J. Gutierrez, H. C. B. Chan, and H. Li, "Artificial Intelligence and IoT in Elderly Fall Prevention: A Review," IEEE Sensors Journal, vol. 24, no. 4, pp. 4181-4198, Feb. 2024, doi: 10.1109/JSEN.2023.3344605.
- [15] Z. Wang, Z. Yang, and T. Dong, "A review of wearable technologies for elderly care that can accurately track indoor position, recognize physical activities and monitor vital signs in real time," Sensors (Switzerland), vol. 17, no. 2, 2017, doi: 10.3390/s17020341.
- [16] M. Verleysen, ESANN 2013: 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning: Bruges, Belgium, April 24-25-26, 2013: Proceedings. Ciaco - i6doc.com, 2013, p. 581.
- [17] H. Zeng, H. Nguyen, B. Yu, and M. Meng, "Understanding Human Activity Using Deep Learning Networks with Wearable Sensors," in IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5844-5853, 2021.
- [18] O. Banos et al., "mHealthDroid: A novel framework for agile development of mobile health applications," in Ambient Assisted Living and Daily Activities, L. Pecchia, L. L. Chen, C. Nugent, and J. Bravo, Eds. Cham: Springer, 2014, vol. 8868, Lecture Notes in Computer Science, pp. 91–98.
- [19] J. Beach, "HARTH Dataset," Kaggle, 2023. [Online]. Available: https://www.kaggle.com/datasets/joebeachcapital/harth-dataset.
- [20] A. Logacjov, K. Bach, A. Kongsvold, H. B. Bårdstu, and P. J. Mork, "HARTH: A human activity recognition dataset for machine learning," Sensors, vol. 21, no. 23, p. 7853, Dec. 2021. doi: 10.3390/s21237853.

- [21] Hayat, Ahatsham Morgado-Dias, F. Bhuyan, Bikram Tomar, Ravi. (2022). Human Activity Recognition for Elderly People Using Machine and Deep Learning Approaches. Information (Switzerland). https://doi. org/10.3390/info13060275
- [22] Vasudavan, Hemalata Balakrishnan, Sumathi Murugesan, R.K.. (2021). A Study on Activity Recognition Technology for Elderly Care. International Journal of Current Research and Review.
- [23] S. Aarthi and S. Juliet, "A Comprehensive Study on Human Activity Recognition," 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India, 2021, pp. 59-63
- [24] A. Tanwar, "Adult Subjects (70-95 Years) Activity Recognition," Kaggle, 2023. [Online]. Available: https://www.kaggle.com/datasets/anshtanwar/ adult-subjects-70-95-years-activity-recognition.
- [25] V. Fula and P. Moreno, "Wrist-Based Fall Detection: Towards Generalization across Datasets," Sensors, vol. 24, no. 5, p. 1679, Mar. 2024
- [26] T. R. Mauldin, M. E. Canby, V. Metsis, A. H. H. Ngu, and C. C. Rivera, "SmartFall: A smartwatch-based fall detection system using deep learning," IEEE Sensors Journal, vol. 18, no. 10, p. 3363, Oct. 2018.
- [27] T. R. Mauldin, M. E. Canby, V. Metsis, A. H. H. Ngu, and C. C. Rivera, "SmartFall Dataset," Texas State University, 2018. [Online]. Available: https://userweb.cs.txstate.edu/~hn12/data/SmartFallDataSet/.
- [28] A. Sucerquia, J. D. López, and J. F. Vargas-Bonilla, "SisFall: A fall and movement dataset," IEEE Sensors Journal, vol. 17, no. 1, p. 198, Jan. 2017
- [29] F. A. Rashid, K. Sandrasegaran, and X. Kong, "Simulation of SisFall Dataset for Fall Detection Using MATLAB Classifier Algorithms," in IEEE Proc. Int. Symp. Parallel Archit., Algorithms and Program. (PAAP), Dec. 2021, pp. 62–68
- [30] FARSEEING, "FARSEEING Research Project," [Online].https://farseeingresearch.eu/.
- [31] J. Klenk et al., "The FARSEEING real-world fall repository: A large-scale collaborative database to collect and share sensor signals from real-world falls," Eur. Rev. Aging Phys. Act., vol. 13, no. 1, p. 8, Oct. 2016
- [32] L. Martínez-Villaseñor, H. Ponce, J. Brieva, E. Moya-Albor, J. Núñez-Martínez, and C. Peñafort-Asturiano, "UP-Fall Detection Dataset: A multimodal approach," Sensors (Switzerland), vol. 19, no. 9, p. 1988, May 2019.
- [33] A. Sharma and P. Kumar, "Human Fall Analysis with FallAllD Dataset using Machine Learning Approach," IEEE Conference Publication, 2024
- [34] M. Saleh, M. Abbas, and R. L. B. Jeannès, "FallAllD: An Open Dataset of Human Falls and Activities of Daily Living for Classical and Deep Learning Applications," IEEE Sensors Journal, 2022.
- [35] A. K. Tripathi, R. Bhardwaj, and M. Hanmandlu, "FallAllD: A comprehensive dataset of human falls and activities of daily living," IEEE Dataport, 2023. [Online]. Available: https://ieee-dataport.org/open-access/fallalld-comprehensive-dataset-human-falls-and-activities-daily-living.
- [36] Zheng, Yu, et al., "UMAFall: A Multisensor Dataset for the Research on Automatic Fall Detection," IEEE Sensors Journal, 2016
- [37] G. Chimamiwa, M. Alirezaie, F. Pecora, and A. Loutfi, "Multi-sensor dataset of human activities in a smart home environment," Data in Brief, Elsevier Journal vol. 34, p. 106632, Feb. 2021.
- [38] Elderly-Care, "Ecare: A project for elderly care," GitHub, 2025. [Online]. Available: https://github.com/Elderly-Care/Ecare.
- [39] R. Igual, C. Medrano, and I. Plaza, "A comparison of public datasets for acceleration-based fall detection," Med. Eng. Phys., vol. 37, no. 9, pp. 870–878, Sep. 2015