Decision tree

① ID3

Iterative Decotomises.

(Entropy)

(2) CART

Classification and Regression tree. (Giri impurity)

-	•		,		111/201/9/
Day	outlook	Temp	Humid	wind	De Usion.
1	5	H	H	W	N
2.	1	H	H	2	N
3	0	+	7 How H	·w	
4	R	M	# 	I W W	9
5	R	(N	W	<u>Y</u>
6	R		N	S	
7	0	C	N	S	N 4.
9	S	M	WH.	W	N -
16	S	C	N' .	W	10
11	R	M	N	W	9
12		M	N	5	1
13	0	15141	H	S	y
14 21		M	H	0	N.
				4	

outlook (S -> Sunny overcast Humidity (H -> High N -> Normal R > Rain play Y - Yes Temp (H -> Hot wind (W -> weak N -> mild S -> Strong

 $E = -\sum_{i=1}^{n} P_i \times \log(P_i)$

$$E_3 = -P_{c_1} \log(P_{c_1}) - P_{c_2} \log(P_{c_2}) - P_{c_3} \log(P_{c_3})$$

$$G = \left[-\sum_{i=1}^{n} \rho_{i}^{2} \right]$$

Example

pure split

". Zero No.

_	
fi Ci	Decision
CI	N .
(2	4
C_1	4
C	N
, C ₁	4
C_2	9
C_1	4
C_1	N
C2	Y

checking Impurity of f.

$$H(S) = E_A = -\sum_{i=1}^{n} P_i \times log(P_i)$$

$$= - Py \log(Py) - PN \log_2(PN)$$

$$= -\frac{3}{6} \log_2(\frac{3}{6}) - \frac{3}{6} \log_2(\frac{3}{6})$$

$$=-2\times\frac{3}{6}\frac{\log(3/6)}{(6)}$$
 $=-\log\frac{1}{2}=0$

$$E_{B} = -\frac{3}{3} \log_{2}(P_{y}) - P_{N} \log_{2}(P_{N})$$

$$= -\frac{3}{3} \log_{2}(1) - O \times \log_{2}(0).$$

$$= -\log_2(1),$$

Gini impurity

GA =
$$1 - \sum_{i=1}^{n} P_i^2 = 1 - (P_y^2 + P_n^2)$$

$$= 1 - \left(\frac{3}{6}\right)^2 + \left(\frac{3}{6}\right)^2$$

$$= 1 - \left(\frac{1}{4} + \frac{1}{4}\right) = 1 - \frac{1}{2} = \frac{1}{2}$$

$$G_{B} = 1 - \left[P_{Y}^{2} + P_{N}^{2}\right] - \left(1^{2} + 0^{2}\right)$$

1 Probability

$$G = 1 - \left(\frac{4}{12}\right)^2 + \left(\frac{8}{12}\right)^2 = 1 - \left(\frac{1}{9} + \frac{9}{9}\right)^2$$

$$= 1 - \frac{5}{9}$$

$$= \frac{9}{9}$$

$$= \frac{9}{9}$$

$$= \frac{9}{9}$$

$$= \frac{9}{9}$$

$$G = 1 - \left(\frac{8}{10}\right)^2 + \left(\frac{2}{10}\right)^2 = 1 - \left(\frac{16}{25} + \frac{1}{25}\right)$$

$$= 1 - 17$$

$$= 8/25$$

$$(4 = 0.32)$$

Information Gain

1) Entropy

Grain(
$$s,f$$
) = $H(s) - \sum |s_v| H(s_v)$.

$$H(S) = - P_{y} \log_{2}(P_{y}) - P_{N} (\log_{2}(P_{N}))$$

= $-\frac{9}{19} \log_{2}(\frac{9}{19}) - \frac{5}{19} \log_{2}(\frac{5}{19})$

$$\frac{= 0.41 - (-0.53)}{[H(s)] = 0.94]}$$

$$E_A = -6/8 \log(6/8) - \frac{2}{8} \log(2/8)$$

Gain(s,f1) = 0.94 -
$$\left[\frac{8}{14} \times 0.81 + \frac{6}{14} \times 1.0.\right]$$

Gain
$$(s, f_2) = 0.94 - (\frac{6}{14} \times 0.99 + \frac{8}{14} \times 1)$$

f2 will be better as 2007 feature.

H(s) = 0.94

=Dsolution of problem on First page. Total y and N = D 4=9 Doutlook feature. (4=9, N=5) outlook (24/3N). (44/0N) over, cast. Sunny Rain (44/ON) (24/3N) (34/5N)H(S) = - \(Pi \ log_2 (Pi) = - Py log, (Py) - PN log, (PN) = - 9 1092 (9/14) - 5/14 log2 (5/14) H(s) = 0.94 Esynny = - Py log_ (Py) - PN log_ (PN) $= -\frac{2}{5} \log_2(2/5) - \frac{3}{5} \log_2(3/5)$ = 0.971 Erain = - 3/5 log_(3/5) - 2/5 log_(2/5) = 0.971 Evercast = $-\frac{4}{4} \log_2(\frac{4}{4}) - \frac{0}{4} \log_2(\frac{0}{4}) = 0$ Gain (s, outlook) = H(s) - Z [sv] x H(sv). $=0.94-\left(\frac{5}{14}\times0.971+\frac{5}{14}\times0.971+\frac{4}{111}\times0\right)$

(rain (s, outlook) = 6-246

(34, IN)

E Hot =
$$-\frac{9}{4} \log_2(\frac{9}{4}) - \frac{9}{4} \log_2(\frac{9}{4})$$

= $-\frac{2}{4} \log_2(\frac{2}{4}) - \frac{2}{4} \log_2(\frac{2}{4})$
= 1

$$E \text{ mild} = -\frac{4}{6} \log (4/6) - \frac{2}{6} \log (2/6)$$

$$= 0.918$$

$$E(old = -\frac{3}{4} \log(3/4) - \frac{1}{4} \log(4/4)$$

$$= 0.811$$

Gain (s, Temp) = HIT
$$\geq \frac{|sv|}{|s|} \times H(sv)$$

= 0.94- $\left(\frac{4}{14} \times 1 + \frac{6}{14} \times 0.918 + \frac{4}{14} \times 0.811\right)$
= 0.029

Strong 34/3N

$$E_{\text{High}} = - Py \log_2(Py) - PN \log_2(Pm)$$

$$= -\frac{3}{7} \log_2(3/7) - \frac{4}{7} \log_2(4/7)$$

$$= 0.985$$

$$\frac{\text{E Normal} = -\frac{6}{7} \log_2(6/7) - \frac{1}{7} \log_2(1/7)}{= 0.59}$$

Estrong =
$$-\frac{3}{6}\log_2(3/6) - 3/6\log_2(3/6)$$

= 1
Gain (,wind) = 0.94 - (8 x 0.81) + 6 x 1).

·· Gain (s, outlook) is Highest ie 0.246

.: our root node is outlook

* Now Doing calculations for Decision Node(Sunny)

* for 24 and 3N.

$$H(s) = -P_1 \log_2(P_1) - P_N \log_2(P_N)$$

$$= -\frac{2}{5} \log_2(\frac{2}{5}) - \frac{3}{5} \log_2(\frac{3}{5})$$

$$H(s) = 0.97$$

outlook	Temp	Humid	wind	Decision
5	H	H	W	l. N
5.	H	H	S	N
. S	1 / 1	UH	W	N
<u>S</u>	()	N	· · · · · · · · · · · · · · · · · · ·	Y
S	<u> </u>	N	S	4

Temp (24,3N)

Hot mild (001.

$$(04,2N)$$
 (1N,14) (14,0N)

 $E_{Hot} = 0 - \frac{2}{2} \log_2(2/2) = 0$
 $E_{mild} = 1$ Gain (5, Temp) = $0.97 - (\frac{2}{5} \times 0 + \frac{2}{5} \times 1 + \frac{1}{5} \times 0)$
 $E_{cool} = 0$

Humid (24,3N)

 $= 0.57$

Gain (s, Humid) =
$$0.97 - (0+0)$$

= 0.97

Gain(s, wind) =
$$0.97 - \left(\frac{3}{5} \times 0.918 + \frac{2}{5} \times 1\right)$$

- · : Gain(s, Humid) is Highest ie (0'97)

 : Gambes Humid is our Decision
 - Node for Sunny.
- 2) for overcast there won't be any Decision node because we have already reached leaf node for Overcast
- (3) Now Doing calculations for Derision Node (Rain) (34 and 2N)

, . Okra e Alipa

outlook	Temp	Humid	wind	Decision
R	M	H	, W	4
R	C	7	W	y
R	<u> </u>	N	S	N
R	M	N	· W	4
R.	M	Н	·S	N.

$$H(s) = -\frac{3}{5} \log_2(3/5) - \frac{2}{5} \log_2(2/5) = 0.97.$$

$$E_{\text{mild}} = -\frac{2}{3} \log_2(\frac{2}{3}) - \frac{1}{3} \log_2(\frac{1}{3}) = 0.918$$

Gain(s, Temp) =
$$0.97 - (0 + \frac{3}{5} \times 0.918 + 0)$$

= 0.4192

Gain(s, Humid) =
$$0.97 - (0 + \frac{3}{5} \times 0.918) = 0.4192$$

wind (34,2N) (3) stoong weak (04,20)(34,0N) Eweak = 0 Estrong = 0 Gain (s, wind) = 0.97 - (0+0) = 0.97. . Grain (s, wind) is Highest : wind is Rain. our decision node for (9475N) final Outlook / Root node Solution (47/0N) (34/2N) (24/3N) pecision Rain. SUNNY L Decision lover cast node (24/3N) (34/2N) Humid Play = Wind Yes. Peafnode (24,0N) (04/3N) (04/2N) (34/0N) High Normal Weak Stoong Play = Play = Play = play= No YES Yes NO. 1 Leaf node Leaf node Leaf node Treafrode