Problem Sheet 01

Viet Duc Nguyen (395220)

Exercise 1

Given a chart $\varphi:U\to V$ and $\tilde{\varphi}:\tilde{U}\to V$. Let $\tau:\varphi^{-1}\circ\tilde{\varphi}$ be the coordinate transformation between the charts. We want to show that

$$\det \tilde{g}(y) = |\det D(\tau(y))|^2 \det g(\tau(y))$$

where g, \tilde{g} denotes the Gramian matrix of $\varphi, \tilde{\varphi}$ respectively.

Proof.

$$\begin{split} \det \tilde{g}(y) &= \det(D\tilde{\varphi}(y)^T D\varphi(y)) = \det(D(\varphi \circ \tau)(y))^2 = \det(D\varphi(\tau(y)) D\tau(y))^2 \\ &= \det g(\tau(y)) |\det D\tau(y)|^2 \end{split}$$

Next we want to show that the integral over a manifold is independent of the chart φ . Define:

$$I(f) = \int_{U} f(\varphi(x)) \sqrt{\det g(x)} dx.$$

Proof.

$$\begin{split} I(f) &= \int_{\tilde{U}} f(\tilde{\varphi}(x)) \sqrt{\det \tilde{g}(x)} dx = \int_{\tilde{U}} f(\varphi(\tau(x))) \sqrt{\det D(\tau(x))^2 \det g(\tau(x))} dx \\ &= \int_{U} f(\varphi(y)) \sqrt{\det g(y)} dy. \end{split}$$

Exercise 2

To show: Let $U \subset \mathbb{R}^d$ and $f \in C^0(U)$, $u \in C^2(U)$. For every $\varphi \in C_c^\infty(U)$ it holds

$$\int_{U} u\Delta\varphi dx = \int_{U} f\varphi dx$$

iff $\Delta u = f$.

Proof. First, notice that for $f \in C^2(U)$ and $g \in C^2_c(U)$:

$$\int_{U} D_{i}^{2} f g dx = -\int_{U} D_{i} f D_{i} g dx = \int_{U} f D_{i}^{2} g dx$$

Summing over i yields

$$\int_{U} \Delta f g dx = -\int_{U} \langle \nabla f, \nabla g \rangle dx = \int_{U} f \Delta g dx.$$

Let $\delta u = f$, then

$$\int_{U} u\Delta\varphi dx = \int_{U} \Delta u\varphi dx = \int_{U} f\varphi dx.$$

Now, let $\int_U u\Delta\varphi dx = \int_U f\varphi dx$. We know that

$$\int_{U} u \Delta \varphi dx = \int_{U} \Delta u \varphi dx = \int_{U} f \varphi dx$$

Thus, $\int_U (\Delta u - f) \varphi dx = 0$ for every $\varphi \in C_c^\infty(U)$. So, $\Delta u = f$ after a well known lemma. For completeness, we will state this lemma.

Let $h\in C(U)$. If $\int_U h(x)g(x)dx=0$ for every $g\in C_c^\infty(U)$ then h(x)=0 for all $x\in U$.

Exercise 3

Consider the sequences

$$g_n(x) = \frac{2}{\pi} \arctan(nx)$$
 and $f_n(x) = \int_0^x \sqrt{g_n(t)} dt$

Goal: $(f_n)_n$ is a Cauchy sequence in $(C_0^1[0,1], ||\cdot||_{\nabla})$ but does not converge in this metric space.

To show that $(f_n)_n$ is indeed a Cauchy sequence observe that

$$||f_n - f_m||_{\nabla}^2 = \int_0^1 (f'_n(x) - f'_m(x))^2 dx \le \int_0^1 (f'_n(x))^2 + (f'_m(x))^2 dx$$

$$\le \int_0^1 |g_n(x) - g_m(x)| dx$$

We show that $(g_n)_n$ is a Cauchy sequence with standard norm $|\cdot|$. Let $\epsilon > 0$ and wlog n > m:

$$\forall x > \epsilon : |g_n(x) - g_m(x)| \le |1 - g_m(x)| \le |1 - g_m(\epsilon)| \to 0 \quad \text{für } m \to \infty.$$

Thus,

$$||f_n - f_m||_{\nabla}^2 \le \int_0^1 |g_n(x) - g_m(x)| dx \le \epsilon + |1 - g_m(\epsilon)|$$

So, $(f_n)_n$ is a Cauchy sequence with respect to $||\cdot||_{\nabla}$.

Assume $f_n \to f \in C_0^1[0,1]$. Then, f(0) = 0 because $f(0) = \int_0^0 f'(x) dx = 0$ for a $f' \in C^0[0,1]$. Nun ist f stetig und somit gibt es ein $\delta > 0$, sodass f(x) < 1 für alle $0 \le x < \delta$.

https://math.stackexchange.com/questions/1932023/is-c1a-b-with-the-norm-left-f-right-1 1935026?noredirect=1#comment3975378_1935026

Fail.

1

2. Consider $f_n(x) = 2\sqrt{x + \frac{1}{n}}$. It is differentiable with $f'_n(x) = \frac{1}{\sqrt{x + \frac{1}{n}}}$. Thus, $f_n \in C_0^1[0, 1]$.

Let's see if this is a Cauchy sequence. Consider

$$||f_n - f_m||_{\nabla}^2 = \int_0^1 \left(\frac{1}{\sqrt{x + \frac{1}{n}}} - \frac{1}{\sqrt{x + \frac{1}{m}}}\right)^2$$

$$= \int_0^1 \frac{1}{x + \frac{1}{n}} - \frac{2}{\sqrt{(x + \frac{1}{n})(x + \frac{1}{m})}} + \frac{1}{x + \frac{1}{m}} dx$$

$$= \int_0^1 \frac{1}{x + \frac{1}{n}} - \frac{2}{\sqrt{x^2 + x \frac{m + n}{mn} + \frac{1}{nm}}} + \frac{1}{x + \frac{1}{m}} dx$$

$$\leq \left[\ln(x + \frac{1}{n})\right]_0^1 + \left[\ln(x + \frac{1}{m})\right]_0^1$$

This is no good. Overestimated too generously.

Assume that $f_n \to f$ with $f \in C_0^1[0,1]$. For every $\epsilon > 0$ we find $N \ge \mathbb{N}$ such that for all $n \ge N$:

$$||f_n - f||_{\nabla}^2 = \int_0^1 \left(\frac{1}{\sqrt{x + \frac{1}{n}}} - f'(x) \right)^2 dx = \int_0^1 \frac{1}{x + \frac{1}{n}} - \frac{2f'(x)}{\sqrt{x + \frac{1}{n}}} + f'(x)^2 dx < \epsilon$$

Because f' is continuous on [0, 1] we can estimate the left hand side term with

$$\int_0^1 \frac{1}{x + \frac{1}{n}} - \frac{2c}{\sqrt{x + \frac{1}{n}}} < \epsilon,$$

where $c = \inf_{x \in [0,1]} f'(x)$. Integrating then yields

$$[\ln(x+\frac{1}{n})]_0^1 - 4c[\sqrt{x+\frac{1}{n}}]_0^1 = \underbrace{\ln(1+\frac{1}{n})}_{\to 0} - \underbrace{\ln(\frac{1}{n})}_{\to -\infty} - 4c\underbrace{\sqrt{1+\frac{1}{n}}}_{\to 1} - 4c\underbrace{\sqrt{\frac{1}{n}}}_{\to 0}$$

As we see, increasing n will lead to a value bigger than ϵ . Thus, f is not in $C_0^1[0,1]$.

3.

Exercise 4

- It holds $\mu(\emptyset) = 0$. To see this, consider the sequence $A_n = \emptyset$. It holds $A_{n+1} \subset A_n$ and $\bigcap A_n = \emptyset$. Thus, $\mu(A_n) = \mu(\emptyset) \to 0$ implies $\mu(\emptyset) = 0$.
- We show the *monotonicity* of μ . Let $A \subset B$. We know that

$$B = (A \cap B)\dot{\cup}(B \setminus A).$$

So, $\mu(B) = \mu(A \cap B) + \mu(B \setminus A) \ge \mu(A)$. We only needed *finite additivty* and the *positivity* of μ to show the monotonicity.

• Now to the σ -additivity. Let $A_i \in \mathcal{A}$, A_i and A_j be pairwise disjoint and $A = \bigcup_{i=1}^{\infty} A_i$. Define the sequence

$$B_n = \bigcup_{i=n}^{\infty} A_i.$$

It holds the following properties:

$$-B_{n+1}\subset B_n$$

$$-\bigcap B_n=\emptyset$$

$$- B_1 = A$$

From the first two properties it follows that

$$\lim_{n\to\infty}\mu(B_n)=\lim_{n\to\infty}\mu(\bigcup_{i=n}^\infty A_n)=0.$$

We see that $A = B_n \dot{\cup} \bigcup_{i=1}^{n-1} A_i$.

$$\mu(A) = \mu(B_n) + \mu(\bigcup_{i=1}^{n-1} A_i), \quad \forall n \in \mathbb{N}$$

$$\Downarrow \text{ limit}$$

$$= \lim_{n \to \infty} \mu(B_n) + \mu(\bigcup_{i=1}^n A_i)$$
$$= \lim_{n \to \infty} \mu(\bigcup_{i=1}^n A_i)$$

↓ finite additivity

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \mu(A_i)$$

$$=\sum_{i=1}^{\infty}\mu(A_i)<\infty$$
 due to monotonicity