Caches II, Floating Point

Discussion 6: October 1, 2018

Code Analysis

Given the follow chunk of code, analyze the hit rate given that we have a byteaddressed computer with a total memory of 1 MiB. It also features a 16 KiB Direct-Mapped cache with 1 KiB blocks.

```
#define NUM_INTS 8192 // 2^13
int A[NUM_INTS]; // A lives at 0x10000
int i, total = 0;
for (i = 0; i < NUM_INTS; i += 128) {
    A[i] = i; // Line 1
}
for (i = 0; i < NUM_INTS; i += 128) {
    total += A[i]; // Line 2
}
```

How many bits make up a memory address on this computer?

We take $\log_2(1 \text{ MiB}) = \log_2(2^{20}) = 20$ Total menory space

What is the T:I:O breakdown? Size of a block conclusion of the second Tag = 20 - 4 - 10 = 6Calculate the cache hit rate for the line marked Line 1:

1.3

ns there are 2 accesses 1028 bytes A ache block. Resulting 2 where each it a The integer accesses are 4*128 = 512 bytes apart, which means there are 2 accesses per block. The first accesses in each block is a compulsory cache miss, but the second is a hit because A[i] and A[i+128] are in the same cache block. Resulting \angle in a hit rate of 50%.

Calculate the cache hit rate for the line marked Line 2:

The size of A is $8192*4=2^{15}$ bytes. This is exactly twice the size of our cache. At the end of Line 1, we have the second half of A inside our cache, but Line 2 starts with the first half of A. Thus, we cannot reuse any of the cache data brought in from Line 1 and must start from the beginning. Thus our hit rate is the same as Line 1 since we access memory in the same exact way as Line 1. We don't have to consider cache hits for total, as the compiler will most likely store it in a register. Resulting in a hit rate of 50%.

2 **AMAT**

Recall that AMAT stands for Average Memory Access Time. The main formula for

AMAT = Hit Time + Miss Rate * Miss Penalty Global is calculated as: 4 All a access that missed at that I will be also have two types of miss rates, global and local. Global is calculated as: 4 All a access that missed at that I will be a considered as the constant of th Fraction of ALL accesses that missed at that level over all accesses total. Whereas Lot we fall mass & level local is calculated: Fraction of ALL access that missed at that level over all access HK all access HK to that level total. to that level total.

An L2\$, out of 100 total accesses to the cache system, missed 20 times. What is the global miss rate of L2\$?

$$\frac{20}{100} = 20\%$$

If L1\$ had a miss rate of 50%, what is the local miss rate of L2\$?

 $\frac{20}{50\%*100} = \frac{20}{50} = 40\%$. We know that L2\$ is accessed when L1\$ misses, so if L1\$ misses 50% of the time, that means we access L2\$ 50 times.

Suppose your system consists of:

- 1. An L1\$ that hits in 2 cycles and has a local miss rate of 20%
- 2. An L2\$ that hits in 15 cycles and has a global miss rate of 5%
- 3. Main memory hits in 100 cycles

What is the local miss rate of L2\$?

L2\$ Local miss rate =
$$\frac{\text{Global Miss Rate}}{\text{L1$\$ Miss Rate}} = \frac{5\%}{20\%} = 0.25 = 25\%$$

What is the AMAT of the system?

AMAT =
$$2 + 20\% \times 15 + 5\% \times 100 = 10$$
 cycles (using global miss rates)
Alternatively, AMAT = $2 + 20\% \times (15 + 25\% \times 100) = 10$ cycles
Suppose we want to reduce the AMAT of the system to 8 cycles or lower by adding

2.5 in a L3\$. If the L3\$ has a local miss rate of 30%, what is the largest hit time that the L3\$ can have?

Let H = hit time of the cache. Using the AMAT equation, we can write: $2 + 20\% * (15 + 25\% * (H + 30\% * 100)) \le 8$ Solving for H, we find that $H \leq 30$. So the largest hit time is 30 cycles.

3 Floating Point

The IEEE 754 standard defines a binary representation for floating point values using three fields:

- The sign determines the sign of the number (0 for positive, 1 for negative)
- The exponent is in biased notation with a bias of 127
- The significand or mantissa is akin to unsigned, but used to store a fraction instead of an integer

The below table shows the bit breakdown for the single precision (32-bit) representation.

1	8	23	
Sign	Exponent	ent Mantissa/Significand/Fraction	

For normalized floats:

Value = $(-1)^{Sign} * 2^{Exp-Bias} * 1.significand_2$

For denormalized floats:

Value = $(-1)^{Sign} * 2^{Exp-Bias+1} * 0$.significand₂

SIGNAFINAL 13	(for bit in nth position)
67. 5(0+1)	(from left to right)
21. 2	

Exponent	Significand	Meaning	
0	Anything	Denorm	
1-254	Anything	Normal	
255	0	Infinity	
255	Nonzero	NaN	

How many zeroes can be represented using a float? 3.1

8,25 get matissa 9,25×2=05 0 0.5×2=(1).0 0 ×2=0

Or D1 = 0.25,0

0.5625 x2=12175 1

9×2= 0

What is the largest finite positive value that can be stored using a single precision 5/gn 2 0

float? Sign
$$\geq 0$$

 $0 \times 7F7FFFFF = (2-2^{-23}) * 2^{127}$ Expant $= 254$
Multiply $= 254$
What is the smallest positive value that can be stored using a single precision float

What is the smallest positive value that can be stored using a single precision float?

For 39,5675: 3.3

$$0 \times 000000001 = 2^{-23} * 2^{-126}$$

What is the smallest positive normalized value that can be stored using a single $0.125 \times 2 = 0.25$ 0 precision float? $0.25 \times 2 = 0.5$ 0 $0.5 \cdot 2 = 0.5$ 0 $0.5 \cdot 2 = 0.5$ 0 $0.5 \cdot 2 = 0.5$

$$0 \times 00800000 = 2^{-126}$$

Cover the following numbers from binary to decimal or from decimal to binary:

0x00000000

3.5

15-p-Bas= 1000,012

$$(2^{-12} + 2^{-13} + 2^{-14} + 2^{-15}) * 2^{-126}$$

Extra Stuff on Caches!

• 0xFF94BEEF

Expont 13 all onest Man h3 su 12 nonzers. NaN

0xFF800000 Export 1) allowest na tissa 13 zero. sign is on song afre.

Heres some practice involving a 2-way set associative cache. This time we have an 8-bit address space, 8 B blocks, and a cache size of 32 B. Classify each of the

4 Caches II, Floating Point

following accesses as a cache hit (H), cache miss (M) or cache miss with replacement (R). For any misses, list out which type of miss it is.

Address	T/I/O	Hit, Miss, Replace
0b0000 0100		
0b0000 0101		
0b0110 1000		
0b1100 1000		
0b0110 1000		
0b1101 1101		
0b0100 0101		peners Standicand Maluage
0b0000 0100		and the subtress of
0b1100 1000		III III III III III III III III III II

```
1 0b0000 0100
                  Tag 0000, Index 0, Offset 100 - M, Compulsory
2 0b0000 0101
                  Tag 0000, Index 0, Offset 101 - H
3 0b0110 1000
                  Tag 0110, Index 1, Offset 000 - M, Compulsory
                  Tag 1100, Index 1, Offset 000 - M, Compulsory
$ 0b1100 1000
5 0b0110 1000
                  Tag 0110, Index 1, Offset 000 - H
                  Tag 1101, Index 1, Offset 101 - R, Compulsory
6 0b1101 1101
7. 0b0100 0101
                  Tag 0100, Index 0, Offset 101 - M, Compulsory
8 0b0000 0100
                  Tag 0000, Index 0, Offset 100 - H
  0b1100 1000
                  Tag 1100, Index 1, Offset 000 - R, Capacity
```

[4.2] What is the hit rate of our above accesses?

$$\frac{3 \text{ hits}}{9 \text{ accesses}} = \frac{1}{3} \text{ hit rate}$$

