FLUID FLOW

Conceptual Questions

- 17. Prairie dogs live in underground burrows with at least two entrances. They ventilate their burrows by building a mound around one entrance, which is open to a stream of air. A second entrance at ground level is open to almost stagnant air. Use Bernoulli's principle to explain how this construction creates air flow through the burrow.
- **18.** Municipal water supplies are often provided by reservoirs built on high ground. Why does water from such a reservoir flow more rapidly out of a faucet on the ground floor of a building than out of an identical faucet on a higher floor?
- **19.** If air from a hair dryer is blown over the top of a table-tennis ball, the ball can be suspended in air. Explain how this suspension is possible.

MIXED REVIEW

- **20.** An engineer weighs a sample of mercury ($\rho = 13.6 \times 10^3 \text{ kg/m}^3$) and finds that the weight of the sample is 4.5 N. What is the sample's volume?
- **21.** About how much force is exerted by the atmosphere on 1.00 km² of land at sea level?
- **22.** A 70.0 kg man sits in a 5.0 kg chair so that his weight is evenly distributed on the legs of the chair. Assume that each leg makes contact with the floor over a circular area with a radius of 1.0 cm. What is the pressure exerted on the floor by each leg?
- **23.** A frog in a hemispherical bowl, as shown below, just floats in a fluid with a density of 1.35×10^3 kg/m³. If the bowl has a radius of 6.00 cm and negligible mass, what is the mass of the frog?

- **24.** When a load of 1.0×10^6 N is placed on a battleship, the ship sinks only 2.5 cm in the water. Estimate the cross-sectional area of the ship at water level. (Hint: See **Table 1** for the density of sea water.)
- 25. A 1.0 kg beaker containing 2.0 kg of oil with a density of 916 kg/m³ rests on a scale. A 2.0 kg block of iron is suspended from a spring scale and completely submerged in the oil, as shown at right. Find the equilibrium readings of both scales. (Hint: See **Table 1** for the density of iron.)

- **26.** A raft is constructed of wood having a density of 600.0 kg/m^3 . The surface area of the bottom of the raft is 5.7 m², and the volume of the raft is 0.60 m^3 . When the raft is placed in fresh water having a density of $1.0 \times 10^3 \text{ kg/m}^3$, how deep is the bottom of the raft below water level?
- **27.** A physics book has a height of 26 cm, a width of 21 cm, and a thickness of 3.5 cm.
 - **a.** What is the density of the physics book if it weighs 19 N?
 - **b.** Find the pressure that the physics book exerts on a desktop when the book lies face up.
 - **c.** Find the pressure that the physics book exerts on the surface of a desktop when the book is balanced on its spine.
- **28.** A natural-gas pipeline with a diameter of 0.250 m delivers 1.55 m³ of gas per second. What is the flow speed of the gas?
- **29.** A 2.0 cm thick bar of soap is floating in water, with 1.5 cm of the bar underwater. Bath oil with a density of 900.0 kg/m³ is added and floats on top of the water. How high on the side of the bar will the oil reach when the soap is floating in only the oil?
- **30.** Which dam must be stronger, one that holds back 1.0×10^5 m³ of water 10 m deep or one that holds back 1.0×10^3 m³ of water 20 m deep?