ENSC 2113 Engineering Mechanics: Statics

Stresses

Stresses in Structural Members:

What you have learned this semester will be applied in future engineering courses, such as *Strength of Materials* ...

<u>Stresses</u> are based on type of applied loading & structural properties of a member ...

<u>Stresses</u> have units of <u>force per unit area</u> (k/in², N/m², ...) ...

Stresses & Degrees of Freedom:

6 types of stress can exist in a structural member. These stresses correspond to the 6 internal forces & moments:

Internal Force	Associated Stres	ss Symbol
P_z	Axial (T or C)	f_a
V_x, V_y	Shear	f_{vx} f_{vy}
M_x , M_y	Bending	f_{bx} f_{by}
M_z	Torsion	T

Axial Stress:

<u>Axial stress</u> is the force per unit area (*T* or *C*) along the length of the structural member and is

found using the eqn:

$$f_a = \frac{P}{A}$$

where,

P = axial force (T or C)

A = cross-sectional area

Axial Stress is constant across depth of section ...

Shear Stress:

Shear stress is the force per unit area perpendicular to the direction of the structural mbr and is found using the eqn:

$$f_{v} = \frac{VQ}{I t}$$

where,

V = shear force

Q = 1st moment of the cross-sectional area

// = moment of inertia

t = thickness of web

Shear stress is not constant across depth of section...

Shear Stress is dependent on cross-section:

Shear stress distribution across depth of a mbr is dependent on the shape of the section ...

Rectangular shape

I - shape

Each of these *shear stress* distributions can be found using the eqn:

$$f_{V} = \frac{VQ}{I t}$$

Shear Stress:

For W-shapes and T-shapes, the average shear stress (Direct stress) can be found using eqn:

$$f_{v} = \frac{V}{A_{web}}$$

where,

V = shear force

 A_{web} = area of the web

$$= d \cdot t_w$$

Bending Stress:

The bending stress in a structural mbr is based on the moment and section modulus and can be found using eqn:

$$f_b = \underline{M} = \underline{M}$$

$$S \qquad (I/c)$$

where,

M = moment

S = section modulus

= *I/c*

I = Moment of Inertia

c = distance from centroid to extreme fiber

Bending stress varies linearly across depth...

Homework: BONUS Homework - 40 pts possible ...

Determine the max. average shear stress, the max. bending stress, and the max. axial stress in the structural mbr shown. The supports are a hinge at **A**, and a roller at **B**.

SECTION

Procedures for solving for stresses:

- 1. Draw **FBD** and solve for support reactions
- 2. Draw Shear & Moment Diagrams
- 3. Determine max. axial & shear force and max. moment
- 4. Determine centroid location of structural section
- 5. Determine distance to extreme fiber, **c**
- 6. Calculate Area & Moment of Inertia for section
- 7. Calculate axial, shear and bending stresses ...

