Konrad Staniszewski DNN lab7

1 Residual connections

```
def forward(self, x):
result = f(x)
return g(result + x)
```

Important notes:

 \bullet In general it should be possible for elements of x/result to have positive and negative values.

Imagine for example that both result and x are constrained to be positive. Then the norm of the output is increasing - can be unstable.

 $\bullet\,$ g - in our case ReLU

Konrad Staniszewski DNN lab7

2 UNet

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

Figure 1: Figure taken from Ronneberger et.al. U-Net: Convolutional Networks for Biomedical Image Segmentation

2.1 ConvTranspose

Standard : Gather with weights

$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{1,4}$	$x_{1,1}$		$x_{1,2}$	$x_{1,3}$	$x_{1,4}$
-----------	-----------	-----------	-----------	-----------	--	-----------	-----------	-----------

$$x_{2,1}$$
 $x_{2,2}$ $x_{2,3}$ $x_{2,4}$ $x_{2,1}$ $x_{2,2}$ $x_{2,3}$ $x_{2,4}$

 $y_{1,1}$ $y_{1,1}$

$$y_{1,1}$$
 $y_{1,1}$

$$\begin{bmatrix} x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \end{bmatrix}$$
 $\begin{bmatrix} x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \end{bmatrix}$

$$x_{2,1}$$
 $x_{2,2}$ $x_{2,3}$ $x_{2,4}$ $x_{2,1}$ $x_{2,2}$ $x_{2,3}$ $x_{2,4}$

Transpose: scatter with weights

$$x_{1,1}$$
 $x_{1,2}$ $x_{1,3}$ $x_{1,4}$ $x_{1,1}$ $x_{1,2}$ $x_{1,3}$ $x_{1,4}$

$$x_{2,1}$$
 $x_{2,2}$ $x_{2,3}$ $x_{2,4}$ $x_{2,1}$ $x_{2,1}$ $x_{2,2}$ $x_{2,3}$ $x_{2,4}$

$$y_{1,1}$$
 $y_{1,1}$

 $[x_{1,1}]$ $[x_{1,2}]$ $[x_{1,3}]$ $[x_{1,4}]$ $[x_{1,1}]$ $[x_{1,2}]$ $[x_{1,3}]$ $[x_{1,4}]$