Assignment 3

- (1) The input to this problem is the times for every hour between 5:00 AM and 1:00 PM inclusive. The output is temperature predicted for that particular time.
- (2) The activation function used is a supervised learning method using least mean squared gradient descent. This algorithm was chosen because the trend in the training data set is linear and a least mean squared gradient descent approach made the most sense.

(3) Training Error

Output(Desired)	Output(Actual)	Absolute Error
60.0	57.427	2.573
63.0	62.081	0.918
70.0	66.735	3.265
73.0	71.389	1.610
78.0	76.044	1.956
81.5	80.698	0.802
85.1	85.352	0.252
87.0	90.006	3.006
90.0	94.660	4.660
60.5	57.427	3.073
62.0	62.081	0.081
69.7	66.735	2.965
73.1	71.390	1.710
77.5	76.044	1.456
81.0	80.698	0.302
84.8	85.352	0.552
86.2	90.006	3.806

94.661	2.661
57.427	1.573
62.081	1.119
66.735	2.265
71.390	2.760
76.044	3.056
80.698	1.902
85.352	0.848
90.006	1.906
94.661	3.561
	57.427 62.081 66.735 71.390 76.044 80.698 85.352 90.006

(4)

Testing Error

Output (desired)	Output (actual)	Absolute Error
59.5	57.427	2.073
64.0	62.081	1.919
68.7	66.735	1.965
73.65	71.390	2.260
78.43	76.044	2.386
82.0	80.698	1.302
85.2	85.352	0.152
87.0	90.006	3.006
90.67	94.661	3.991

(5)

Iterations: 500

Learning rate: 0.00062 Data preprocessing: none

- (6) Yes, with more iterations the weights converge to values that more accurately predict the fourth day's temperatures.
- (7) Yes, because the neural network can analyze the problem with more levels of abstraction than a single decision unit.

Weights:

W0 = 34.156

W1 = 4.654