End Behavior

What happens at the far left and right of a graph is called **end behavior**.

Investigate the connection between the degree of the polynomial, the sign of its leading coefficient and its end behavior by graphing the functions on your calculator and completing this table.

	Polynomial function	$n(\mathbf{r}) - \mathbf{r}^{\mathbf{r}} + 3\mathbf{r}^{\mathbf{s}}$		$p(x) = x^4 - 2x^3$		$p(x) = x^3 - 2x^2$		$p(x) = -2x^3 + 6x^2$	
	Graph			***************************************					
	Degree	even	odd	even	odd	even	odd	even	odd
	Leading Coefficient	positive	negative	positive	negative	positive	negative	positive	negative
	End Behavior	Left end	Right end	Left end	Right end	Left end	Right end	Left end	Right end
)		rises	rises	rises	rises	rises	rises	rises	rises
\lfloor		falls	falls	falls	falls	falls	falls	falls	falls

Come up with some rules for determining end behavior from the degree and leading coefficient:

·	•	•	

Examples:

End behavior	Degree Lead coefficient		Left	right
$f(x) = x^2(3x - 5)^2$				
$f(x) = -3x^5 + 4x^2 - 12$				
$g(x) = 3x^2 - 2x^3 + 4x$				
$h(x) = -3(x+2)^2(x-3)^2$				

Possible Degree

へして idf (んし igg points to find the possible degrees of the following polynomials. Use end behavior and

