

Shah et al, NeurIPS 2020

Presented by: {Richard Zhu, Abishek Sridhar, Simon Seo, Rebecca Yu, Selina Carter} (Group 1)

ML-715 (Fall 2022)

Conundrum:

- Conundrum:
 - ✓ Simpler models generalize well: good results on test data

- Conundrum:
 - ✓ Simpler models generalize well: good results on test data
 - ⇒ simplicity = good

- Conundrum:
 - ✓ Simpler models generalize well: good results on test data
 - ⇒ simplicity = good
 - ➤ But, NNs are not "robust": poor results on noisy data or outliers¹

- Conundrum:
 - ✓ Simpler models generalize well: good results on test data

- But, NNs are not "robust": poor results on noisy data or outliers
 - → noisy data = bad

Conundrum:

× But, NNs are **not "robust":** poor results on noisy data or outliers¹

→ noisy data = bad

Conundrum:

✓ Simpler models generalize well: good results on test data

⇒ simplicity = good

But, NNs are **not "robust":** poor results on noisy data or outliers¹
 → noisy data = bad

The <u>reason</u>: NNs lead to "**extreme** simplicity bias," i.e., reliance exclusively on simple features, even when more complex features are better predictors.

• Suppose we have $\{(x_i, y_i)\}_{i=1}^n, x_i \in \mathbb{R}^2, y_i \in \{0, 1\}$

• Suppose we have $\{(x_i, y_i)\}_{i=1}^n, x_i \in \mathbb{R}^2, y_i \in \{0, 1\}$

We want to maximize the margin.

• Suppose we have $\{(x_i, y_i)\}_{i=1}^n$, $x_i \in \mathbb{R}^2$, $y_i \in \{0, 1\}$

We want to maximize the margin.

• Suppose we have $\{(x_i, y_i)\}_{i=1}^n, x_i \in \mathbb{R}^2, y_i \in \{0, 1\}$

But neural nets prefer simple classifiers!

LMS: Overlapped linear and "slab" features

LMS: Overlapped linear and "slab" features

LMS: Overlapped linear and "slab" features

LMS: Overlapped linear and "slab" features

Assumptions

- One hidden-layer NN, k hidden neurons
- ReLU activation
- Dimension $d > \Omega(\sqrt{k} \log k)$ (dimension is **big**)
- Hinge loss
- SGD
- LSN data
- O(1) iterations: single pass over training data

Assumptions

- One hidden-layer NN, k hidden neurons
- ReLU activation
- Dimension $d > \Omega(\sqrt{k} \log k)$ (dimension is **big**)
- Hinge loss
- SGD
- LSN data
- O(1) iterations: single pass over training data

Assumptions

- One hidden-layer NN, k hidden neurons
- ReLU activation
- Dimension $d > \Omega(\sqrt{k} \log k)$ (dimension is **big**)
- Hinge loss
- SGD
- LSN data
- O(1) iterations: single pass over training data

Assumptions

- One hidden-layer NN, k hidden neurons
- **ReLU** activation
- Dimension $d > \Omega(\sqrt{k} \log k)$ (dimension is **big**)
- Hinge loss
- SGD
- LSN data
- O(1) iterations: single pass over training data

⇒ the learned weights are:

$$|w_{1j}| = \frac{2}{\sqrt{k}} \left(1 - \frac{c}{\sqrt{\log d}}\right) + O\left(\frac{1}{\sqrt{dk} \log d}\right), \quad |w_{2,j}| = O\left(\frac{1}{\sqrt{dk} \log d}\right), \quad |w_{3:d,j}|| = O\left(\frac{1}{\sqrt{k} \log d}\right)$$

$$|w_{3:d,j}|| = O\left(\frac{1}{\sqrt{k} \log d}\right)$$

$$|w_{2,j}| = O\left(\frac{1}{\sqrt{dk}\log d}\right),$$
Slab Coordinate

$$\|w_{3:d,j}\| = O\left(\frac{1}{\sqrt{k}\log d}\right)$$

$$d-2 \text{Noise Coordinates}$$

1 Missing: No experiments using LSN and real-world datasets

Missing: No experiments using LSN and real-world datasets

The paper's goal: bridge the gap between theory and practice.

Missing: *No* experiments using LSN and real-world datasets

The paper's goal: bridge the gap between theory and practice.

But, the results might not hold for real-world datasets.

- Real-world data have highly correlated features and noise.¹
- But datasets in the paper have many **independent** feature coordinates.

1) Missing: *No* experiments using LSN and real-world datasets

• The paper's goal: bridge the gap between theory and practice. $\stackrel{ extbf{T}}{=}$

But, the results might not hold for real-world datasets.

- Real-world data have highly correlated features and noise.¹
- But datasets in the paper have many independent feature coordinates.

- Their theorem uses LSN, but their experiments do not.
 - Paper leaves out certain failing cases.

2 Limitation: Extreme SB occurs only in *large dimensions*

Extreme SB is not universal.

→ Observation: extreme SB does *not* occur for datasets with *small* dimensions.

2

Limitation: Extreme SB occurs only in *large dimensions*

Extreme SB is not universal.

→ Observation: extreme SB does *not* occur for datasets with *small* dimensions.

Limitation: Extreme SB occurs only in *large dimensions*

Extreme SB is not universal.

→ Observation: extreme SB does *not* occur for datasets with *small* dimensions.

Limitation: Extreme SB occurs only in *large dimensions*

Extreme SB is not universal.

→ Observation: extreme SB does *not* occur for datasets with *small* dimensions.

Why?

- * NN used in paper was too small.
- * Toy dataset had uncorrelated noise.

Limitation: Extreme SB occurs only in *large dimensions*

Extreme SB is not universal.

→ Observation: extreme SB does *not* occur for datasets with *small* dimensions.

Why?

- NN used in paper was too small.
- Toy dataset had uncorrelated noise.

Going forward... → Explore theorems explaining extreme SB for smaller dimensions.

Observation:

Changing noise distribution can reduce extreme SB.

Observation:

Changing noise distribution can reduce extreme SB.

Observation:

Changing noise distribution can reduce extreme SB.

Observation:

Changing noise distribution can reduce extreme SB.

Why?

- * Maybe due to high variance of noise.
- ***** GD methods are sensitive to noise distribution for convergence.

Observation:

Changing noise distribution can reduce extreme SB.

Why?

- * Maybe due to high variance of noise.
- ***** GD methods are sensitive to noise distribution for convergence.

Going forward...

- Explore effect of real-world noise distribution on extreme SB.
- Explore Gaussian noise removal techniques (like smoothening).

4 Questionable assumption: NN must be *small*

Theorem: assumes 1 hidden layer NN.

- Theorem: assumes 1 hidden layer NN.
- Experimental data, on LMS data:

- Theorem: assumes 1 hidden layer NN.
- Experimental data, on LMS data:
 - **Authors**: (100,1)-FCN learns a simple classifier.

- Theorem: assumes 1 hidden layer NN.
- Experimental data, on LMS data:
 - **Authors**: (100,1)-FCN learns a simple classifier.
 - Ours: (300, 2)-FCN learns a complex, perfect classifier.

Questionable assumption: NN must be *small*

- Theorem: assumes 1 hidden layer NN.
- Experimental data, on LMS data:
 - Authors: (100,1)-FCN learns a simple classifier.
 - **Ours**: (300, 2)-FCN learns a complex, perfect classifier.

Why?

* "Complex" features become simpler to classify in deeper layers.

Questionable assumption: NN must be *small*

- Theorem: assumes 1 hidden layer NN.
- Experimental data, on LMS data:
 - Authors: (100,1)-FCN learns a simple classifier.
 - **Ours**: (300, 2)-FCN learns a complex, perfect classifier.

Why?

* "Complex" features become simpler to classify in deeper layers.²

Going forward... → Explore theorems explaining Extreme SB for larger NNs.

5 **Unexplained**: Weights *after* the first training epoch

• Theorem shows results after a *single* epoch of training.

5 **Unexplained**: Weights *after* the first training epoch

• Theorem shows results after a *single* epoch of training.

Why?

* Updates to certain feature weights can take precedence after several epochs (depending on loss surface).

5 **Unexplained**: Weights *after* the first training epoch

• Theorem shows results after a *single* epoch of training.

Why?

* Updates to certain feature weights can take precedence after several epochs (depending on loss surface).

Going forward...

- Analyze what happens when NN is trained until convergence.
- Prove validity of theorem to subsequent stages of training.

Summary

	Critique	How and why this might happen	Future work and how to pursue this
1	They don't experiment with LSN data	* Mysterious	→ Do experiment with LSN data
2	Result requires Gaussian noise	High variance of noiseGD fails to find optimal path	 Explore real-world noise distribution on extreme SB Gaussian noise removal techniques
3	Result requires large dimension	Small model used in paperToy dataset had uncorrelated noise	→ Theorems explaining extreme SB for smaller dimensions
4	They assume a small NN	* "Complex" features become simpler to classify in deeper layers	→ Explore theorems explaining extreme SB for larger NNs
5	Theorem assumed a single epoch	* Updates to certain feature weights can take precedence after several epochs	 Further training of NN Prove validity of theorem for more epochs