

CS/IS F214 Logic in Computer Science

MODULE: PROPOSITIONAL LOGIC

Satisfiability and Validity

Validity

- A propositional logic formula φ is said to be valid if it is TRUE for all valuations
 - i.e. for any assignment of truth values to the atomic propositions occurring in it, ϕ will evaluate to TRUE
- This can be formally stated as
 - |= ф
- A valid formula is also referred to as a tautology.
- (Trivial) Question:
 - If you construct a combinational circuit for a valid formula φ, what will be its output?

Satisfiability

- A propositional logic formula φ is said to be satisfiable if there is at least one valuation for which it is TRUE
 - i.e. for at least one assignment of truth values to the atomic propositions occurring in it, φ will evaluate to TRUE
- This can be formally stated as follows:
 - If p_1 , p_2 , ..., p_n are the atomic propositions in ϕ , then there exists a combination L_1 , L_2 , ..., L_n such that

$$L_1, L_2, ..., L_n = \phi$$

where each L_i is p_i or $\neg p_i$

Satisfiability

- Given a combinational circuit C for a propositional logic formula φ:
 - if ϕ is satisfiable what can you say about C?
 - if ϕ is not satisfiable what can you say about C?

Satisfiability and Validity

- Is there a relation between satisfiability and validity?
 - Consider a formula φ
 - If ϕ is valid, is it satisfiable?
 - If ϕ is satisfiable, is it valid?
 - Consider a formula φ:
 - If ϕ is valid, what can you say about $\neg \phi$?
 - If ϕ is satisfiable, what can you say about $\neg \phi$?

