CMSC 231: Discrete Mathematics Practice Exam #1 Fall 2017

- This review exam has *not* been tested for length. The real exam might be shorter or longer.
- You will be able to bring one standard sheet of US-letter-sized paper with notes. The notes may appear on both sides of the sheet.
- No calculators or other electronic devices will be allowed on the exam.
- Several questions ask you to write negations. Simply writing a "not" on the outside of a statement does not qualify as a correct answer; you must use De Morgan's laws to propagate the negation.

Definitions:

- ullet Z is the set of all integers
- If S is a set, then S^+ is the members of S that are greater than 0.
- A function F from a set A to a set B is a relation with domain A and co-domain B that satisfies the following two properties:
 - 1. For every element x in A, there is an element y in B such that $(x,y) \in F$.
 - 2. For all elements x in A and y and z in B, if $(x,y) \in F$ and $(x,z) \in F$, then y = z.

- 1. For each pair of sets below, state whether they are equal or not. If you wish, you may include a short explanation of why you think your answer is correct, but a correct answer with no explanation still receives full credit.
 - (a) $\{x \in \mathbb{Z} \mid (1 < x < 10) \land (x \text{ is prime})\}\$ $\{2, 3, 5, 7\}$ equal
 - (b) $\{1, 2, 3\}$ $\{x \in \mathbb{Z} \mid 0 < x^2 < 10\}$ not equal
 - $\begin{array}{c} \text{(c) } \{\{1\},\{2\}\} \\ \{2,1\} \\ \textbf{not equal} \end{array}$
 - (d) Assume $B = \{1,2,3\}$ and C = the set of all possible sets of integers. $\{x \in C \mid x \subseteq B\}$ $\{\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$ equal
 - (e) Assume $M = \{1, 2, 3\}$ and $N = \{4, 5\}$. $\{(x, y) \in (M \times N) \mid (2 < x) \land (2 < y)\}$ $\{(4, 3), (5, 3)\}$ not equal

2. Each problem below ends with a boxed statement. Indicate whether the boxed statement is true or false. If you wish, you may include a short explanation of why you think your answer is correct, but a correct answer with no explanation still receives full credit.

You may assume the following definitions:

$$R = \{1, 2, 3, 4\}$$
 $S = \{-2, -1, 0, 1, 2\}$ $T = \{1, 3, 5, 7, 9\}$

- (a) Assume $U = \{(x, y) \in (R \times S) \mid x + y = 0\}$. 2 U 1 true
- (b) Assume U as above. 3 U 3 false
- (c) Assume U as above. 2 U 2 false
- (d) Assume U as above. U is a function from R to S false
- (e) Assume $V = \{(x, y) \in (S \times T) \mid 2x = y\}$. 0 V 1 false
- (f) Assume V as above. 1 V 1 false
- (g) Assume V as above. V is a function from S to T false
- (h) Assume $W = \{(x, y) \in (R \times T) \mid 2x 1 = y\}$. 2 **true**
- (i) Assume W as above. 4 W 9 false
- (j) Assume W as above. \boxed{W} is a function from R to T true

3.	Assuming the	e definitions	below,	write	out	each	sentence	using	symbolic
	notation, wit	h no words.							

p = "It's raining" q = "It's Wednesday" r = "It's October"

(a) It's a rainy Wednesday.

 $p \wedge q$

(b) It's October, but it's neither Wednesday nor raining out. $\boxed{r \wedge \sim\!\! q \wedge \sim\!\! p}$

- (a) I have math class and computer science class today. I do not have math class or I do not have computer science class today.
- (b) I love to eat cookies but not peanut butter.

 I do not love to eat cookies or I love to eat peanut butter.

(c) I am wearing red or green socks today.

I am not wearing red socks and I am not wearing green socks today.

5. Give the *converse*, *inverse*, *contrapositive* and *negation* (using De Morgan's laws) of the following:

$$(p \land \sim q) \to r$$

- (a) Converse: $r \to (p \land \sim q)$
- (b) Inverse: $(\sim p \lor q) \to \sim r$
- (d) Negation: $(p \land \sim q) \land \sim r$

6. Prove the following logical equivalence, using the rules of Boolean algebra (a truth table is not an acceptable answer):

$$(p \lor q) \land \sim p \equiv (q \land \sim p)$$

$$\begin{array}{ll} (p\vee q)\wedge \sim p & \equiv (p\wedge \sim p)\vee (q\wedge \sim p) & \text{distributive law} \\ & \equiv \mathbf{c}\vee (q\wedge \sim p) & \text{negation law} \\ & \equiv (q\wedge \sim p) & \text{identity law} \end{array}$$

7. Draw a digital circuit corresponding to the Boolean formula below:

$$(\sim p \land q) \lor (p \land (q \lor r))$$

8. (a) Add the following binary numbers. Write the result as a 4-bit number, dropping any bits that overflow.

$$\begin{array}{c} 1 \ 0 \ 1 \ 1 \\ + \ 0 \ 1 \ 1 \ 0 \end{array}$$

0001

(b) Rewrite the addition problem above in decimal notation, interpreting any number greater than 7_{10} as a two's-complement negative number. (This is 4-bit two's-complement.) If the sum in decimal does not match the sum in binary, explain why.

$$(-5) + 6 = 1$$

9. For each of the following statements, rewrite the statement formally (using \forall and \exists), and write the negation of the statement both in English and in formal mathematics. You may assume these definitions:

C =the set of all Bryn Mawr classes

len(x) = the meeting length of a class x, in hours

cs(x) = class x is a computer science class

math(x) = class x is a math class

prereq(x, y) = class x is a prerequisite for class y

(a) All classes at Bryn Mawr meet for at least 2 hours.

Written formally: $\forall (x \in C), \text{len}(x) \geq 2$

Negated formally: $\exists (x \in C), len(x) < 2$

Negated informally: Some class at Bryn Mawr meets for less than 2 hours.

(b) Every class at Bryn Mawr has at least one prerequisite class at Bryn Mawr.

Written formally: $\forall (x \in C), \exists (y \in C), prereq(y, x)$

Negated formally: $\exists (x \in C), \forall (y \in C), \sim prereq(y, x)$

Negated informally: Some class at Bryn Mawr has no prerequisite class at Bryn Mawr.

(c) One computer science class at Bryn Mawr has every math class as prerequisites.

Written formally: $\exists (x \in C), cs(x) \land \forall (y \in C), math(y) \rightarrow prereq(y, x)$

Negated formally:
$$\forall (x \in C), cs(x) \to \exists (y \in C), math(y) \land \sim prereq(y, x)$$

Negated informally: Every computer science class at Bryn Mawr has at least one math class that is not its prerequisite.

(d) There is a math class at Bryn Mawr that is the prerequisite for all computer science courses.

Written formally:
$$\exists (x \in C), \text{math}(c) \land \forall (y \in C), \text{cs}(y) \rightarrow \text{prereq}(x, y)$$

Negated formally:
$$\forall (x \in C), \text{math}(c) \to \exists (y \in C), \text{cs}(y) \land \sim \text{prereq}(x, y)$$

Negated informally: Every math class at Bryn Mawr has at least one computer science class that it is not a prerequisite of.

Definition: If r is a real number, then r is rational iff:

$$\exists (a \in \mathbb{Z}), \exists (b \in \mathbb{Z}), (r = \frac{a}{b}) \land (b \neq 0)$$

10. Prove: The product of any two rational numbers is a rational number. See book solution 4.2.15.

Definition: If n is an integer, then n is odd iff:

$$\exists (k \in \mathbb{Z}), n = 2k + 1$$

Definition: If x is a real number, then the *ceiling* of x, written $\lceil x \rceil$, is defined as follows:

$$\lceil x \rceil = n$$
 means $(n-1 < x \le n) \land (n \in \mathbb{Z})$

11. Prove: For all odd integers n, $\lceil n/2 \rceil = (n+1)/2$.

<u>Proof:</u> Let n be any odd integer. [We must show that $\lceil \frac{n}{2} \rceil = \frac{n+1}{2}$.] By definition of odd, n = 2k+1 for some integer k. The left-hand side of the equation to be proved is

On the other hand, the right-hand side of the equation to be proved is

$$\begin{array}{lll} \frac{n+1}{2} & = & \frac{(2k+1)+1}{2} & \text{by substitution} \\ & = & \frac{2k+2}{2} \\ & = & \frac{2(k+1)}{2} \\ & = & k+1 & \text{by algebra.} \end{array}$$

Thus both the left- and right-hand sides of the equation to be proved equal k+1, and so both are equal to each other. In other words, $\lceil n/2 \rceil = (n+1)/2$ [as was to be shown].