

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

CHEMISTRY 5070/22

Paper 2 Theory

October/November 2013
1 hour 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Section A

For Examiner's Use

Answer **all** the questions in this section in the spaces provided.

The total mark for this section is 45.

A1 Choose from the following elements to answer the questions below.

chlorine
hydrogen
iron
lithium
nickel
nitrogen
oxygen
potassium
silver
sulfur
vanadium

zinc

Each element can be used once, more than once or not at all.

Which element

(a)	is liberated at the anode when an aqueous solution of potassium sulfate is electrolysed,
	[1]
(b)	is used as a catalyst in the manufacture of margarine,
	[1]
(c)	is a non-metallic solid, an atom of which contains only six valency electrons,
	[1]
(d)	is higher than sodium in the reactivity series,
	[1]
(e)	is in Period 5 of the Periodic Table,
	[1]
(f)	forms a white oxide which is amphoteric?
	[1]

[Total: 6]

A2 Carboxylic acids are a homologous series containing the –CO₂H group. The table shows some properties of the first four carboxylic acids in the series.

For Examiner's Use

carboxylic acid	molecular formula	density in g/cm ³	boiling point in °C
methanoic acid	CH ₂ O ₂	1.220	101
	C ₂ H ₄ O ₂	1.049	118
propanoic acid	C ₃ H ₆ O ₂	0.993	141
butanoic acid	C ₄ H ₈ O ₂	0.958	165

(a)	(i)	Describe how the density of these carboxylic acids varies with the number of carbon atoms in the molecule.
		[1]
	(ii)	Name the carboxylic acid with the molecular formula ${\rm C_2H_4O_2}.$
		[1]
	(iii)	Draw the structure of propanoic acid, showing all atoms and bonds.
		[1]
(b)		next carboxylic acid in this homologous series is pentanoic acid. tanoic acid has five carbon atoms.
	(i)	Deduce the molecular formula for pentanoic acid.
		[1]
	(ii)	Suggest a value for the boiling point of pentanoic acid.
		°C [1]
(c)	Buta	anoic acid, $C_3H_7CO_2H$, reacts with sodium to form a salt and a gas.
	(i)	Name the gas.
		[1]
	(::\ <u>)</u>	
	(ii)	Give the formula of the salt.
		[1]

[Total: 11]

(d)		ers are formed when carboxylic acids react with alcohols. reaction is catalysed by hydrogen ions.					
	(i)	Describe and explain the effect of a catalyst on reaction rate.					
		[2]					
	(ii)	State one commercial use of esters.					
		[1]					
	(iii)	The structure of an ester is shown below.					
		O H H H 					
		Name this ester.					
		[1]					

А3	Silic	icon is an element in Group IV of the Periodic Table.							
	(a)	Give	Give the electronic configuration for a silicon atom.						
			[1]						
	(b)	Silic	Silicon has three naturally occurring isotopes.						
		Complete the following table for two of these isotopes.							
			isotope	²⁸ Si	³⁰ Si				
			number of protons						
		,	number of electrons						
			number of neutrons						
						[3]			
	(c)	Silic	con reacts with chlorine of	on heating to form silico	$\operatorname{pn}(IV)$ chloride, $\operatorname{SiC} l_4$.				
		Cor	struct an equation for th	is reaction.					
						[1]			
	(d)	Cilia	oon(IV) oblorido io o oim	olo molocular compoun	d	[.]			
	(d)		con(IV) chloride is a simp	·					
		(i) Suggest two physical properties of silicon(IV) chloride other than solubility.							
			1						
			2			[2]			
		(ii) Draw a 'dot-and-cross' diagram for silicon(IV) chloride. You only need to show the outer shell electrons for each atom.							

(e) Silicon(IV) chloride reacts with water to form silicon(IV) oxide. Part of the structure of silicon(IV) oxide is shown below.

For Examiner's Use

point.	why silicon(1v) oxide has a very high meiting
	[2]

[Total: 11]

Α4	The	The carbon cycle regulates the amount of carbon dioxide in the atmosphere.				
	(a)	(i)	State two processes which release carbon dioxide into the atmosphere.			
			1			
			2[2]			
		(ii)	Name one process which removes carbon dioxide from the atmosphere.			
			[1]			
	(b)	Car	bon dioxide is a greenhouse gas.			
		(i)	What is the meaning of the term greenhouse gas?			
			[1]			
		(ii)	Name another greenhouse gas and give a natural source of this gas.			
			name			
			source[2]			
	(c)	Car	bon dioxide dissolves in water to form a weakly acidic solution.			
			$CO_2(g) + H_2O(I) \rightleftharpoons HCO_3^-(aq) + H^+(aq)$			
		(i)	What is the meaning of the term weak acid?			
			[1]			
		(ii)	Describe how you could measure the pH of this solution other than by using a pH meter.			
			[2]			
	(d)	wate	lium hydrogencarbonate, NaHCO ₃ , decomposes on heating to form a carbonate, er and a gas which turns limewater milky. Instruct an equation for this reaction.			

A 5		student reacts magnesium ribbon with excess hydrochloric acid. ne follows the course of the reaction by measuring the volume of gas produced against ne.					
	(a)	Writ	te the equation for the reaction of magnesium with hydrochloric acid.				
		[1]					
	(b)	(i)	On the axes below draw a sketch graph to show how the volume of gas produced during the reaction varies with time and label this line 'A'. Label the axes with the appropriate units.				
			[2]				
		(ii)	The student then carries out the experiment at a lower temperature. All the other conditions remain the same.				
			On the axes above draw another line to show how the volume of gas produced varies with time and label this line 'B'. [1]				
	(c)	Ма	gnesium reacts with carbon to form the compound magnesium carbide.				
		Calo	culate the percentage by mass of magnesium in magnesium carbide, ${ m MgC}_2$.				
			[2]				
			[Total: 6]				

Section B

For Examiner's Use

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

В6	Aluı	minium is extracted from purified bauxite by electrolysis.						
	(a)		scribe how this electrolysis is carried out and construct equations for the reactions turring at both the anode and cathode.					
			[4]					
	(b)	Wh	at properties of aluminium make it useful for					
		(i)	making aircraft,					
		(ii)	making electricity cables[2]					
	(c)	Alu	minium is high in the reactivity series.					
		(i)	Explain why aluminium does not react with aqueous copper(II) sulfate.					
			[2]					
		(ii)	When a few drops of aqueous sodium chloride are added to a mixture of aluminium and aqueous copper(II) sulfate, a vigorous reaction occurs.					
			$copper(II)$ sulfate + aluminium \rightarrow aluminium sulfate + $copper$					
			What type of reaction is this?					
			[1]					
		(iii)	State the formula of aluminium sulfate.					
			[1]					
			[Total: 10]					

[Turn over

B7	Ethene is an	unsaturated	hydrocarbon

(a)	What is the	meaning of	each of these	terms?
-----	-------------	------------	---------------	--------

unsaturated	
hydrocarbon	[2]

- **(b)** Ethene can be manufactured by cracking.
 - (i) State the conditions used for cracking.

(ii) Construct an equation for the cracking of tetradecane, $\rm C_{14}H_{30}$, to form ethene and one other hydrocarbon.

- (c) Alkenes such as ethene can undergo addition polymerisation.
 - (i) State one use of poly(ethene).

(ii) The diagram below shows a section of a polymer chain.

Deduce the structure of the monomer which is used to make this polymer.

[1]

(d) Ethanol can be manufactured by the catalytic addition of steam to ethene.

For Examiner's Use

$$C_2H_4 + H_2O \rightarrow C_2H_5OH$$

If the reactants are not recycled, only 5% of the ethene is converted to ethanol.

Calculate the mass of ethanol formed from 0.4 tonnes of ethene when only 5% of the ethene is converted to ethanol.

[1 tonne is 1 000 000 grams]

mass of ethanoltonnes [3]

[Total: 10]

		2HI(g)	\iff H ₂ (g) + I ₂ (g)	$\Delta H = + 9.6 \text{ kJ/mol}$	
(a)	Wh	nat is meant by th	ne term <i>dynamic equilibri</i> u	ım?	
(b)		e table shows the 25°C and 450°C		, $\rm H_2(g)$ and $\rm I_2(g)$ in the equilibri	ium mixtu
		substance	concentration at 25 °C / mol/dm ³	concentration at 450 °C / mol/dm ³	
		HI(g)	0.94	0.79	
		H ₂ (g)	0.033	0.11	
		$I_2(g)$	0.033	0.11	
	(i)	The tube has a	volume of 50 cm ³ .		
	(i)			n the equilibrium mixture at 25°	°C.
	(i)			n the equilibrium mixture at 25°	C.
	(i)			n the equilibrium mixture at 25°	
	(i) (ii)	Calculate the n	explain the differences in t	n the equilibrium mixture at 25°	
		Calculate the n	explain the differences in t		nd produc
		Calculate the n	explain the differences in t	he concentrations of reactant a	nd produc
		Calculate the n	explain the differences in t	he concentrations of reactant a	nd produc
		Calculate the n	explain the differences in t	he concentrations of reactant a	nd produc

[Total: 10]

(c)	On your diagram la • the products,	by profile diagram for the decomposition of hydrogen iodide. beln ange of the reaction, ΔH .	
	energy	reactants	
		progress of reaction	[2]
(d)	An aqueous solution	n of hydrogen iodide contains iodide ions.	
	Describe a test for	odide ions.	

© UCLES 2013 5070/22/O/N/13 **[Turn over**

В9	The	con	npounds ammonium nitrate and ammonium sulfate are both fertilisers.	For
	(a)	Exp	plain why farmers add these fertilisers to soils.	Examiner's Use
			[1]	
	(b)	Am	monium sulfate can be prepared by adding sulfuric acid to aqueous ammonia.	
		Cor	nstruct the equation for this reaction.	
			[1]	
	(c)	Exc	ess acidity in soils can be treated by adding calcium hydroxide.	
		(i)	Give the formula of the ion present in calcium hydroxide which causes it to be alkaline.	
			[1]	
		(ii)	Explain why adding calcium hydroxide causes loss of nitrogen from fertilisers such as ammonium nitrate, which have been previously added to the soil.	
			[2]	
	(d)	A s	tudent titrated 10.0 cm ³ of aqueous calcium hydroxide with hydrochloric acid.	
			$Ca(OH)_2(aq) + 2HCl(aq) \rightarrow CaCl_2(aq) + 2H_2O(l)$	
			equired 4.00cm^3 of 0.0100mol/dm^3 hydrochloric acid to neutralise 10.0cm^3 of leous calcium hydroxide.	
		Cal	culate the concentration of the calcium hydroxide.	
			mol/ dm ³ [3]	

For Examiner's Use		(e)
	[2]	
	[Total: 10]	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2013

DATA SHEET
The Periodic Table of the Elements

1																									
		0	4	Helium		Ne	Neon 10	40	Αr	Argon 18	84	궃	Krypton 36	131	Xe	Xenon 54	222	Ru	Radon 86				175	Ľ	Lutetium
		IIV			19	ш	Fluorine 9	35.5	CI	Chlorine 17	80	Ā	Bromine 35	127	Π	lodine 53	210	Αŧ	Astatine 85				173	Υp	Ytterbium
		IN			16	0	Oxygen 8	32	S		62	Se	Selenium 34	128	<u>e</u>	Tellurium 52	209	Ъ	Polonium 84				169	Ę	Thulium
		۸			41	z	Nitrogen 7	31	△	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Ξ	Bismuth 83				167	ш	Erbium
		IV			12	ပ	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	Tin 50	207	Pb	Lead 82				165	운	Holmium
		≡			=	m	Boron 5	27	ΝI	Aluminium 13	70	Сa	Gallium 31	115	In	Indium 49	204	<i>1</i> 1	Thallium 81				162	٥	Dysprosium
S												Zu	Zinc 30	112	ပ်	Cadmium 48	201	Hg	Mercury 80				159	Д	Terbium
Element											64	ე ე	Copper 29	108	Ag	Silver 47	197	Αn	Gold 79				157	Вq	Gadolinium
e of the	Group										59	Z	Nickel 28	106	Pd	Palladium 46	195	Ŧ	Platinum 78				152	Ш	Europium
dic Table	Gro										59	ပိ	Cobalt 27	103	絽	Rhodium 45	192	ĭ	Iridium 77				150	Sm	Samarinm
The Periodic Table of the Elements			- 3	Hydrogen	-						56	Б	Iron 26	101	Bu	Ruthenium 44	190	SO.	Osmium 76				147	Pm	Promethium
F					_						55	Mn	Manganese 25		ည	Technetium 43	186	Re	Rhenium 75				144	Š	Neodymium
											52	ပ်	Chromium 24	96	Mo	Molybdenum 42	184	≽	Tungsten 74				141	ሗ	Praseodymium
											51	>	Vanadium 23	93	qN	Niobium 41	181	<u>a</u>	Tantalum 73				140	S	Cerium
											48	F	Titanium 22	91	Zr	Zirconium 40	178	Ξ	Hafnium 72						
											45	Sc	Scandium 21	88	>	Yttrium 39	139	Ľa	Lanthanum 57 *	227	Actinium	+ 68	d series	o origo	מבונים
		=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	s	Strontium 38	137	Ва	Barium 56	226	Radium	88	* 58-71 Lanthanoid series	+ 90-103 Actionid series	ACIII OIG
		_			7	=	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85	Rb	Rubidium 37	133	Cs	Caesium 55	223	Francium	87	* 58–71	+ 00-10;	2 00
2013	3											50	70/22	/0/	NI/1	3									

anoid series	140 Ce	141 Q	144 N	147 Pm	150 Sm	152 Eu	157 Gd	159 Tb	162 Dv	165 Ho	167 Er	169 Tm	173 Yb	175
Told series	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63		Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
a = relative atomic mass	232	231	238	237	244	243	247	247	251	252	257	258	259	260
X = atomic symbol	드	Ра	⊃	N O	Pu	Am	CB	BK	₽	Es	FB	Md	8	בֿ
b = atomic (proton) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrenciu 103

Key

The volume of one mole of any gas is 24dm³ at room temperature and pressure (r.t.p.).