# DAVID WIEDEMANN

# ANALYSEI

# **Table des matières**

| 1 | Int | Introduction  |  |   |
|---|-----|---------------|--|---|
|   | 1.1 | Buts du Cours |  | 3 |

# 2 Definir $\mathbb{R}$ 4

# **≠** List of Theorems

| 1 | <b>■</b> Theorem (env400)                      | 3 |
|---|------------------------------------------------|---|
| 2 | 🛊 Lemma (Lemme)                                | 3 |
|   |                                                | 3 |
|   |                                                | 4 |
| 3 | • Axiom (Nombres Reels)                        | 4 |
| 4 | 🛊 Lemma (Theorem name)                         | 5 |
|   |                                                | 5 |
| 5 | ♦ Proposition (Annulation de l'element neutre) | 5 |
|   |                                                | 5 |
| 6 | ► Corollary (x fois moins 1 egale -x)          | 5 |
|   |                                                | 6 |
| 7 | • Axiom (Nombres Reels II)                     | 6 |
| 8 | Corollary (mama test)                          | 6 |



## 1.1 Buts du Cours

#### Officiel:

Suites, series, fonctions, derivees, integrales, ...

#### **Secrets:**

Apprendre le raisonnement rigoureux

Creativite

Esprit Critique

Ne croyez rien tant que c'est pas prouve

On construit sur ce qu'on a fait, on recommence pas toujours a 0, par rapport a d'autres domaines(lettres par exemple)

# Theorem 1 (env. -400)

Il n'existe aucin nombre (fraction) x tel que  $x^2 = 2$ .

Ca contredit pythagore nn?

On va demontrer le theoreme. 1

1. On demontre d'abord un lemme

2. Il se pourrait qu'il y ait 13 valeurs

pour  $\sqrt{2}$ 

### Lemma 2 (Lemme)

Soit  $n \in \mathbb{N}$  Alors n pair  $\iff n^2$  pair.

# Proof

 $\Rightarrow$  Si n pair  $\Rightarrow n^2$  pair.

Hyp. 
$$n = 2m(m \in \mathbb{N})$$

Donc 
$$n^2 = 4m^2$$
, pair.

Par l'absurde, n impair.  $n = 2k + 1 (k \in \mathbb{N})$ .

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

impair. Donc si n est impair, alors  $n^2$  est forcement impair. Ab-

#### Proof

Supposons par l'absurde  $\exists x$  t.q.  $x^2=2$  et  $x=\frac{a}{b}(a,b\in\mathbb{Z},b\neq0)$ .

On peut supposer a et b non tous pairs.(sinon reduire).

$$x^2 = 2 \Rightarrow \frac{a^2}{h^2} = 2 \Rightarrow a^2 = 2b^2 \Rightarrow a^2$$

pair.

Lemme : a pair, i.e.  $a = 2n(n \in \mathbb{N})$ .

$$a^2 = 4n^2 = 2b^2 \Rightarrow 2n^2 = b^2$$
, i.e.  $b^2$  pair.

Lemme : *b* pair.

Donc *a* et *b* sont les deux pairs, on a une contradiction.

4

En conclusion, le theoreme est bel et bien vrai, et contredit donc pythagore. Donc les fractions ( $\mathbb{Q}$ ) ne suffisent pas a decrire/mesurer les longueurs geometriques. Il faut les nombres reels, on les comprends seulement vraiment depuis 2 siecles.

C'est important de chercher ce genre d'erreurs.

Prochain but : definir les nombres reels ( $\mathbb{R}$ ). L'interaction entre les fractions et les nombres reels.

# Definir R

On commence avec la definition axiomatique des nombres reels.

### Axiom 3 (Nombres Reels)

 $\mathbb{R}$  est un corps, en d'autres termes :

Ils sont munis de deux operations : plus et fois.

- Associativite  $x + (y + z) = (x + y) + z(x, y, z \in \mathbb{R})^{1}$
- Commutativite x + y = y + x.
- Il existe un element neutre 0 t.q. 0 + x = x,  $x \in \mathbb{R}$ . <sup>2</sup>
- Distributivite x(yz) = (xy)z

- L'associativite n'est pas forcement vraie(octonions)
- Il y a aucune difference entre les regles pour l'addition que pour la multiplication.

— Il existe un element inverse, unique  $-x \in \mathbb{R}$  t.q. x + (-x) = 0

Remarque : Il existe beaucoup d'autres corps que  $\mathbb{R}$ , par exemple

 $\mathbb{Q}, \mathbb{C}, \{0, 1, 2\} \mod 3$ 

Attention:  $\{0,1,2,3\} \mod 4$  n'est pas un corps!

Presque tous marchent, ils satisfont 8 des 9 axiomes.

♣ Lemma 4 (Theorem name)

 $\forall x \exists ! y \ t.q. \ x + y = 0.$ 

Proof

Supposons x + y = 0 = x + y'

A voir : y = y'.

$$y = y + 0 = y + (x + y') = (y + x) + y'$$

$$= (x + y) + y' = 0 + y' = y'$$

CQFD.

Exercice

Demontrer que 0 est unique.

♦ Proposition 5 (Annulation de l'element neutre)

 $0 \cdot x = 0$ 

Proof

$$x = x \cdot 1 = x(1+0) = x \cdot 1 + x \cdot 0 = x + x \cdot 0$$

$$0 = x + (-x) = x + (-x) + x \cdot 0$$

$$\Rightarrow 0 = x \cdot 0$$

3

3. 
$$a - b = a + (-b)$$

## Corollary 6 (x fois moins 1 egale -x)

$$x + x \cdot (-1) = 0$$

#### Proof

A voir :  $x \cdot (-1)$  satisfait les proprietes de -x.

Or

$$x + x(-1) = x(1-1) = x \cdot 0 = 0.$$

#### Exercice

Montrer que  $\forall x : -(-x) = x$  et que ceci implique (-a)(-b) = ab.

Rien de tout ca n'a quelque chose a voir avec  $\mathbb{R}$ .

Il nous faut plus d'axiomes!!

## • Axiom 7 (Nombres Reels II)

 $\mathbb R$  est un corps ordonne. Ce qui revient a dire que les assertions suivantes sont verifiees.

- $x \le y$  et  $y \le z$  impliquent  $x \le z$
- $-(x \le yety \le x) \Rightarrow x = y$
- pour tout couple de nombres reels x et y: ou bien  $x \le y$  ou bien  $x \ge y$ .

### Exemple de corps ordonnnes :

(1)  $\mathbb{R}$ , (2)  $\mathbb{Q}$ , (3)  $\{0,1,2\}$  mod 3 n'est pas un corps ordonne.

#### **Exercice**

$$x \le y \iff -x \ge -y$$
 Exercice

$$x \le y \text{ et } z \ge 0 \Rightarrow xz \le yz$$

$$x \le y \text{ et } z \le 0 \Rightarrow xz \ge yz.$$

Il nous manque encore un axiome, et c'est le dernier : pour mercredi!