ANALISIS SENTIMEN MASYARAKAT INDONESIA TERHADAP JAKLINGKO MENGGUNAKAN MODEL LSTM DAN BERT

Hamdan Azani¹, Adhistianita Safira Husna², Gloria Natasya Irene Sidebang³, Kemas Rahmat Saleh Wiharja⁴

¹Fakultas Informatika Universitas Telkom, Bandung, 40257, email: hamdapesat@gmail.com
²Fakultas Informatika Universitas Telkom, Bandung, 40257, email: adhisti.anita@gmail.com
³Fakultas Informatika Universitas Telkom, Bandung, 40257, email: glorianatasyaaa@gmail.com
⁴Fakultas Informatika Universitas Telkom, Bandung, 40257, email: bagindokemas@telkomuniversity.ac.id

ABSTRAK

Jaklingko—sistem yang tergolong baru untuk pembayaran terintegrasi untuk transportasi di DKI Jakarta, tentu saja memiliki banyak hal yang harus diperbaiki atau dipertahankan untuk mempermudah transportasi masyarakat Indonesia terutama masyarakat DKI Jakarta untuk saat ini. Sistem pembayaran terintegrasi ini tentunya berkontribusi besar dalam mewujudkan pembangunan Indonesia maju dan berkelanjutan. Dalam mewujudkan hal tersebut, tim peneliti melakukan penelitian terhadap sentimen masyarakat Indonesia dengan beberapa metode NLP yang ada terhadap adanya sistem Jaklingko saat ini pada platform media sosial Twitter dengan data yang diperoleh dari bulan Mei hingga Juni 2023 dengan jumlah 1200 dan diberi 3 label yaitu netral, positif dan negatif yang mempunyai ketidakseimbangan pada data dengan label 0 berjumlah jauh lebih besar disbanding label 1 dan label 2. Model yang digunakan ialah model berbasis LSTM dan BERT yang mana model BERT sudah di-pretraining dengan Bahasa Indonesia (Indo-BERT). Dalam penelitian ini, diperoleh model terbaik berdasarkan metrik presisi macro average ialah Bi-LSTM dengan skor 66%, model terbaik berdasarkan metrik recall macro average ialah IndoBERT-base dengan skor 67%, model terbaik berdasarkan metrik skor f-1 macro average ialah IndoBERT-tweet dengan skor 64% dan model terbaik berdasarkan metrik akurasi ialah Bi-LSTM dengan skor 73%.

Kata Kunci: Jaklingko, Sentimen, Twitter, NLP, LSTM, BERT, Indo-BERT

Latar Belakang

DKI Jakarta merupakan salah satu metropolitan yang terpadat di Indonesia dengan jumlah penduduk sebesar 10,68 juta jiwa Luas wilayah Provinsi DKI Jakarta, berdasarkan SK Gubernur Nomor 171 tahun 2007, adalah berupa daratan seluas 662,33 km² [1].

Dalam hal transportasi publik, saat ini DKI Jakarta telah memiliki beberapa moda transportasi publik yang dikelola oleh pemerintah pusat dan pemerintah daerah. Empat moda berbasis rel, seperti MRT, LRT, KRL dan Kereta Bandara serta satu moda berbasis jalan, yaitu BRT Transjakarta. Kelima moda transportasi publik tersebut mencapai 32% dai total pergerakan transportasi di tahun 2019 [2].

Sebagai salah satu upaya integrasi antarmoda dan sebagai penedakatan kepada smart city, PT Transjakarta memperluas layanan dengan berkolaborasi bersama pengelola angkutan paratransit eksisting atau kerap disebut angkot yang kemudian diperkenalkan ulang

kepada publik dengan nama "Mikrotrans JakLingko". Mikrtorans memiliki skema pembelian layanan rupiah/kilometer, para pengemudi Mikrotrans JakLingko memperoleh pendapatan rutin per bulan. Sedangkan para penumpang mendapatkan kenyamanan karena layanan angkutan kota menjadi lebih tepat waktu serta dengan skema pembayaran yang lebih terintegrasi [2].

Tetapi Mikrotrans Jaklingko masih dalam tahap pengembangan yang mana membutuhkan masukan berupa tingkat kesukaan masyarakat terhadap projek Mikrotrans Jaklingko yang masih dapat dianggap baru ini.

Masyrakat DKI Jakarta memiliki opininya masing masing mengenai Mikrotrans Jaklingko ini, Opini masyarakat ini berdasarkan pengalaman masyarakat sendiri ketika menaiki angkutan umum yang terintegrasi dengan Jaklingko sebagaimana contohnya ditunjukkan pada cuitan Twitter berikut

Gambar 1. Contoh Opini Masyarakat mengenai Miktrotrans Jaklingko

Oleh karena itu, penilitian ini dilakukan untuk melakukan analisis sentiment masyarakat terhadap MikroTrans Jaklingko yang mana dapat membantu pemerintah daerah DKI Jakarta untuk meningkatkan kualitas transportasi MikroTrans Jaklingko kedepannya.

Tujuan Penelitian

Penelitian yang dilakukan bertujuan:

- 1. Menganalisis sentiment masyarakat di twitter terhadap MikroTrans Jaklingo;
- 2. Membandingkan model terbaik yang digunakan untuk menganalisis sentiment masyarakat terhadap MikroTrans Jaklingo.
- 3. Mewujudkan pembangunan Indonesia yang maju dan berkelanjutan

Manfaat Penelitian

Manfaat dilakukannya penelitian ini:

- Pemerintah daerah DKI Jakarta dapat menetahui kualitas pelayanan yang masyarakat rasakan terhadap mikroTrans Jaklingo;
- Membantu permerintah daerah DKI Jakarta untuk meningkatkan akspek pelayanan mirkoTrans Jaklingo;
- 3. Mendukung pembangunan Indonesia maju dan berkelanjutan khususnya pada sektor transportasi.

Batasan Masalah

Dataset yang digunakan pada penelitian ini adalah data teks Berbahasa Indonesia yang diambil dari platform *twitter*. Proses anotasi pada penelitian ini dibatasi menjadi tiga kategori sentiment yaitu netral (0), positif (1), dan negatif (2). Kemudian, batasan lain terdapat pada pengolahan data yang digunakan yaitu tidak selalu dapat menangani permasalahan salah ketik atau *misspelling*.

Kajian Terkait

Pada penelitian sebelumnya, Rianti dkk. melakukan penelitian dengan metode LSTM untuk memprediksi kata

selanjutnya dengan epoch 200 dan akurasi 75% dan loss 55% [1]. Selain itu, pada penelitian Pradana dan Santoso didapatkan LSTM dengan akurasi 89,8% dan loss 22,6% [2] dan Bi-LSTM dengan akurasi 90% dan loss 22%.

Solusi

Dalam penelitian ini, tim peneliti akan membangun model dengan arsitektur LSTM dan model lain yaitu BERT (*Bidirectional Encoder Representations from Transformers*) yang merupakan *pre-trained* model yang menguji konteks dari relasi antar kata atau subkata dalam teks ^[3] dengan submodel yang tim peneliti gunakan yaitu Indo-BERT. Dengan hipotesis null (H0) model Indo-BERT tidak lebih baik dari model LSTM dan hipotesis alternatif (H1) model Indo-BERT mameluke akurasi sama dengan atau lebih baik dari model LSTM.

Dataset yang Digunakan

Data yang tim peneliti gunakan merupakan data yang diperoleh dari platform media sosial Twitter dengan menggunakan *tool* Tweet-Harvest [4] dan keyword pencarian "jaklingko" dengan jangka waktu bulan Mei hingga Juni 2023, diperoleh data yang terdiri dari 1200 baris dengan 12 kolom 'created_at' (dibuat pada), 'id_str' (ID String), 'full_text' (teks unggahan), 'quote_count' (jumlah diteruskan dengan komentar), 'reply_count' (jumlah balasan), 'retweet_count' (jumlah diteruskan), 'favorite_count' (jumlah difavoritkan), 'lang' (bahasa), 'username' (nama pengguna), hingga 'tweet_url' (*link tweet*) sebagai berikut dan dengan statistik atau perincian jumlah setiap datasetnya sebagai berikut

created_at	id_str	full_text			
Thu Jun 29	167444	gw banget lagi terus naik			
15:55:25	648275	jaklingko gratis ke pelni			
+0000	230310				
2023	8				
Thu Jun 29	167445	Ya mesti dibuat Stasiun			
16:20:00	266940	baru, karna Stasiun			
+0000	523315	terdekat di Ancol Halte			
2023	2	Busway JIS mesti di			
		aktifkan dan terintegrasi			
		dengan JakLingko JIS			
		memang perlu diperbaiki			
		di beberapa aspek			
Thu Jun 29	167443	Nilai tauladan yg bisa			
15:27:06	935346	diambil dari nunggu			

		1
+0000	308710	jaklingko jam segini
2023	5	adalah yakin dan sabar
		kalau pasti ada jaklingko
		yg masih lewat
Thu Jun 29	167443	keluar rs, nunggu
15:01:29	290909	jaklingko bentar lgsg ada,
+0000	534208	nunggu di halte buat naik
2023	7	tj bentar, lgsg ada jg,
		transit nunggu bentar lg
		lgsg ada jg dannnn itu
		semua lowong alias ga ada
		tu war duduk makasiiiii
		yg long weekend aku
		happy ko hehe, soalnya
		sepi dan aman
Thu Jun 29	167442	@PT_Transjakarta min
14:41:36	790261	kartu jaklingko ini bisa
+0000	051392	buat masuk ragunan ga
2023	0	ya?
		https://t.co/UtetMyJghQ

Tabel 1. Dataset yang Diperoleh dari Twitter

	Kelas 0	Kelas 1	Kelas 2	Total
Data Latih	660	134	167	961
Data	83	17	21	121
Validasi				
Data Uji	82	16	20	118
Total	825	167	208	1200

Tabel 2. Rincian Perolehan Dataset

Metode Penelitian

Metode yang tim peneliti gunakan ditunjukkan pada flowchart sebagai berikut

Gambar 2. Tahapan Penelitian Data

Perbedaan penelitian kali ini dengan penelitian terkait sebelumnya adalah pada penggunaan tokenisasi dengan library Transformers untuk digunakan pada model BERT dan tentu saja model yang digunakan yang juga memiliki perbedaan pada model yang digunakan yaitu ditambah menggunakan *pre-trained* model BERT.

Pra-Pemrosesan Data

Langkah pertama untuk pra-pemrosesan data adalah pembersihan data yaitu imputasi atau drop kolom selain kolom 'full_text', penghapusan duplikasi yang merupakan tanda cuitan diteruskan ulang, *username* (@username), *emoticon*, simbol (@, *, &, ^, %, dsb.), dan karakter untuk baris baru yaitu "\n" menggunakan Regular Expression (RegEx) yaitu dengan *library* re.

Kemudian, dilanjutkan dengan pelabelan data dengan sentimen netral (tidak berhubungan dengan jaklingko) dengan label kelas 0, positif dengan label kelas 1, dan negatif dengan label kelas 2 hingga diperoleh data bersih dengan label yang kemudian dipisah menjadi 80% data latih, 10% data validasi, dan 10% uji.

full_text	text_clean	class
@thesoultrembles Hai Kak.	mohon maaf atas	0
Mohon maaf atas kendala	kendala alami	
yang dialami, mengenai	kena saldo	
saldo yang terpotong 2x	potong sila lapor	
silahkan laporkan ke nomor	nomor customer	
Customer Care Jaklingko	care jaklingko	
yang dapat dihubungi :	hubung whatsap	
Whatsap: 0812-6000-1440	phone email	
Phone: 02129223034	custonercare	
Email: custonercare@	terima kasih	
jaklingkoindonesia.co.id .		
Terima kasih ^SJ		
@geugouia Dari asrama ke	asrama tamini	1
tamini naik JakLingko	naik jaklingko	
malah lebih murah lagi	murah ribu abis	
cuma 10rb abisnya 😅		
Sopir2 jaklingko skrng	sopir jaklingko	2
jutek2 bgt bjirrr	sekarang galak	
	banget bjirrr	

Tabel 3. Contoh Dataset Hasil Pra-Pemrosesan sebelum Tokenisasi

Kemudian dilanjutkan dengan pra-pemrosesan lainnya hingga seperti *case folding, stemming*, dan lematisasi sehingga menghasilkan kata dasar seperti pada kolom 'text_clean' tabel di atas dan dilanjutkan dengan *feature engineering* untuk model BERT dengan *encoding* dan tokenisasi menggunakan library Transformers hingga pembagian data kembali seperti sebelumnya untuk data latih, validasi, dan uji.

Eksplorasi Data

Setelah melalui pra-pemrosesan data, didapatkan kata dasar yang menunjukkan apresiasi dan respon positif dari adanya jaklingko seperti kata pakai, naik, terima kasih, gratis, guna, dan masih banyak lagi

Gambar 3. Distribusi Kata Dasar Dataset

Jaklingko yang merupakan kata kunci pencarian data tim peneliti tentu saja menjadi kata terbanyak muncul pada dataset. Dengan tidak menyertakan jaklingko, tim peneliti juga melihat persebaran sepuluh kata dasar teratas yang muncul (sebelum pra-pemrosesan merupakan kata dengan prefix, postfix, atau confix yang beragam).

Gambar 4. Sepuluh Kata Teratas yang Muncul

Model

Model yang digunakan pada penelitian ini ialah model berbasis LSTM dan model berbasi BERT yang mana tiap model akan dilakukan pendekatannya masing masing untuk mencari model paling efektif.

LSTM

Pada model LSTM hanya menggunakan 1 *layer* dan akan dilakukan *training* dengan jumlah 30 *epoch*. Model dengan arsitektur dasar LSTM akan dilakukan modfikasi sehingga dapat dilakukan pendekatan lain yaitu penggabungan dengan CNN, pendekatan *bidirectional* dan pendekatan dengan *stacked layer* [8].

BERT

Untuk model dengan arsitektur BERT akan dilakukan fine-tuning pada pretrained model berbahasa Indonesia dengan model yang biasa dikenal sebagai IndoBERT [9]. juga variasi IndoBERT-tweet Digunakan menggunakan data bersumber dari media sosial twitter untuk pretraining modelnya [10]. Sedangkan ALBERT menggunakan data teks korpus dari berbagai sumber dengan teknik training Factorized **Embedding** Parameterization [11].

Metrik Evaluasi

Metrik evaluasi yang digunakan pada penelitian ini ialah presisi, recall, skor f-1 dan akurasi dan nilai presisi, recall dan skor f-1 dihitung juga nilai *macro average*nya untuk setiap label. Persamaan yang digunakan untuk metrik evaluasi ini sebagai berikut: [12]

$$presisi = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

$$skor f1 = \frac{2 \times presisi \times recall}{presisi + recall}$$

$$akurasi = \frac{TP + TN}{TP + TN + FP + FN}$$

Hasil Pengujian

Hasil dari pengujian yang sudah dilakukan diringkas hasil metrik evaluasi berdasarkan model yang digunakan dan tabel dari hasilnya dapat dilihat pada tabel 3.

	Model	Presisi			Recall			F-1						
NO		Label 0	Label 1	Label 2	Macro Average	Label 0	Label 1	Label 2	Macro Average	Label 0	Label 1	Label 2	Macro Averag e	Akura si
1	LSTM	73%	15%	33%	40%	86%	14%	15%	38%	79%	15%	21%	38%	62%
2	LSTM-CNN	78%	38%	49%	55%	83%	30%	43%	52%	80%	33%	46%	53%	70%
3	Bi-LSTM	79%	37%	81%	66%	88%	26%	45%	53%	83%	30%	52%	55%	73%
4	Stacked LSTM	70%	0%	0%	23%	100%	0%	0%	33%	83%	0%	0%	28%	70%
5	IndoBERT- base	83%	42%	57%	61%	78%	42%	80%	67%	80%	42%	67%	63%	71%
6	IndoBERT- large	76%	42%	64%	61%	96%	53%	50%	67%	76%	47%	56%	60%	68%
7	IndoBERT- emotion- classification	73%	47%	71%	64%	78%	43%	62%	61%	75%	45%	67%	62%	68%
8	IndoBERT- tweet	83%	42%	64%	63%	78%	53%	64%	65%	80%	47%	64%	64%	72%
9	IndoBERT- distilled- optimized-for- classification	87%	32%	50%	56%	75%	55%	58%	63%	81%	40%	54%	58%	71%
10	ALBERT	100%	0%	0%	33%	66%	0%	0%	22%	79%	0%	0%	26%	66%

Tabel 4. Hasil Pengujian setiap Model

Analisis

Dari 1200 data yang digunakan dalam pengujian ini, hasil yang didapatkan setelah pengujian menunjukkan ciri dari ketidakseimbangan yang mana hasil pada label 0 cenderung memiliki performansi yang lebih baik daripada label lainnya. Hal ini dikarenakan pada dataset yang digunakan memiliki ketidak seimbangan pada datanya yang mana data dengan label 0 memiliki jumlah yang lebih banyak ketimbang data dengan label 1 dan label 2.

Gambar 5. Grafik batang jumlah label pada dataset

Hal ini sangat berdampak pada pengujian model, contohnya pada model *Stacked* LSTM dan ALBERT yang mana memiliki bias yang sangat kuat kepada label 0 sehingga menghasilkan presisi 100% untuk model ALBERT dan *recall* 100% untuk model stacked LSTM pada label 0, tetapi memiliki presisi dan *recall* dengan nilai 0% pada label 1 dan label 2 untuk ke dua model.

Model dengan pendekatan BERT cenderung memiliki nilai presisi, *recall* dan f-1 yang lebih tinggi pada label 1 dan label 2, yang menandakan bahwa model ini memiliki bias yang lebih rendah daripada model dengan pendekatan LSTM. Tetapi karena nilai matrik evaluasinya masih rendah menandakan bahwa model dengan pendekatan BERT juga masih terpengaruh oleh ketidak seimbangan data.

Pendekatan bidirectional pada model LSTM meningkatkan kualitas model tersebut yang dapat dilihat pada metrik evaluasinya yang mana macro average dari Bi-LSTM meningkat sebesar 26% pada presisi, 15% pada recall dan 17% pada skor F-1 dibandingkan dengan model LSTM saja, sedangkan pendekatan stacked pada model LSTM membuat model Stacked LSTM menjadi semakin bias kepada label 0, dan pendekatan LSTM-CNN juga meningkatkan kualitas model tersebut yang dapat dilihat pada metrik evaluasinya yang mana macro average dari Stacked LSTM meningkat sebesar 15% pada presisi, 14% pada recall dan 15% pada skor F-1 dibandingkan dengan model LSTM saja.

Sedangkan pada model berbasis BERT dapat dilihat secara garis besar model pretraining IndoBERT-tweet memiliki hasil yang lebih bagus dibandingkan model pretraining berbasis BERT lainnya, yang mana IndoBERT-tweet unggul dalam akurasi dan *macro average* presisi, *recall* dan f-1 skor dibandingkan dengan model pretraining BERT lainnya terkecuali pada IndoBERT-emotion-classification yang mana terdapat perbedaan 1% pada *macro average* presisi.

Kesimpulan

Penilitian ini berhasil membangun model untuk melakukan klasifikasi sentimen dengan mengeksplorasi 10 model yang ditraining menggunakan dataset dari sosial media yang berjumlah 1200 dengan label netral, positif dan negatif. Berdasarkan hasil pengujian, dapat dilihat bahwa model terbaik berdasarkan metrik presisi *macro average* ialah Bi-LSTM dengan skor 66%, model terbaik

berdasarkan metrik *recall macro average* ialah IndoBERT-base dengan skor 67%, model terbaik berdasarkan metrik skor f-1 macro average ialah IndoBERT-tweet dengan skor 64% dan model terbaik berdasarkan metrik akurasi ialah Bi-LSTM dengan skor 73%, walaupun masih terdapat bias terhadap sentiment netral dikarenakan ketidak seimbangan pada dataset yang digunakan. Klasifikasi sentimen masyarakat terhadap jaklingko diperlukan untuk membantu pemerintah DKI Jakarta untuk meningkatkan kualitas jaklingko dengan lebih mudah mengetahui sentimen publik yang dapat digunakan sebagai feedback bagi pemerintah.

Referensi

- [1] BPS. Diakses pada 7 Juli 2023 dari https://jakarta.bps.go.id/publication/2023/02/28/fd35 https://jakarta.bps.go.id/publication/2023/02/28/fd35 fcb5d10a1e03f0d71348/provinsi-dki-jakarta-dalam-angka-2023.html
- [2] Dharmawan, H. (2022). Hubungan Antara Integrasi Layanan Paratransit Terhadap Jumlah Pengguna Bus Rapid Transit: Studi Kasus Mikrotrans Transjakarta. Jurnal Transportasi Multimoda, Vol. 20 (2022): 19-25
- [2] Pradana, F. & Santoso, H. (2021). Perbandingan Model Deep Learning untuk Klasifikasi Sentiment Analysis dengan Teknik Natural Languange Processing. https://jurnal.unmer.ac.id/index.php/jtmi
- [3] Horev, Rani. (2018). BERT Explained: State of the art language model for NLP. https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
- [4] Satria, H. (2023). Tweet Harvest (Twitter Crawler). https://github.com/helmisatria/tweet-harvest
- [5] JakLingko. Diakses pada 7 Juli 2023 dari https://www.jaklingkoindonesia.co.id/id
- Delvin, J., Chang, M., Lee, K., dan Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association Linguistics: Human Computational Language Technologies, Volume 1 (Long and Short Papers), Association for Computational Linguistics. DOI:https://doi.org/10.18653/v1/n19-1423
- [8] Rianti, A., Widodo, S., Dhani, A. & Bima, F. (2022). Next Word Prediction using LSTM, Journal Of

- Information Technology And Its Utilization, Volume 5, Issue 1.
- [9] Wilie, B., Vincentio, K., Winata, G. I., Cahyawijaya, S., Li, X., Lim, Z. Y., Soleman, S., Mahendra, R., Fung, P., Bahar, S., Purwarianti, A. (2020). IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding. https://arxiv.org/abs/2009.05387
- [10] Koto, F., Han, J., & Baldwin, T. (2021). IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effective Domain-Specific Vocabulary Initialization. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics.
 - DOI:https://doi.org/10.18653/v1/2021.emnlp-main.833
- [11] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R. (2019). ALBERT: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS. Publikasi jurnal pada konferensi ICLR 2020
- [12] Ikegami, A., Darmawan, I. D. (2022). Analisis Sentimen dan Pemodelan Topik Ulasan Aplikasi Noice Menggunakan XGBoost dan LDA. JNATIA Volume 1, Nomor 1, November 2022