Notes on Yoshida (2006)

2020年3月6日

Notation

- $\mathbf{M}((S, A) \to (T, B)) := \{f : S \to T : f は (A, B) 可測関数\}$
- *C(S)*: *S* 上の連続関数全ての集合

1 零集合・可測修正・完備化

§1.5 測度零集合

特に断らない場合 (S, A, µ) は測度空間.

Definition 1.1 (零集合). $\emptyset \in \mathcal{A} \subseteq 2^S$, $\mu: \mathcal{A} \to \mathbb{R}_+$: 非負単調とする.

$$N \subseteq S$$
: μ - 零集合 $\stackrel{\Delta}{\Longleftrightarrow} \exists \widetilde{N} \in \mathcal{A}$; $N \subseteq \widetilde{N}$, $\mu(\widetilde{N}) = 0$.

u- 零集合全体を \mathcal{N}^{μ} で表す.

- 測度ゼロの集合の部分集合が零集合. 零集合の中には測度が未定義のものもありうることに注意.
- 零集合の可算無限和は零集合.

Example 1.1 (\mathbb{R}^d のルベーグ測度の性質).

- $S \subseteq \mathbb{R}^d$, $\mathscr{B}(\mathbb{R}^d) \subseteq A$ とし, (S, A, μ) を測度空間とする.
- - これは例えば $S\coloneqq\mathbb{R}$, $\mathcal{A}\coloneqq\mathscr{B}(\mathbb{R})$ のときは成立.
- このとき, 零集合の内点の集合は空集合, i.e., $N \in \mathcal{N}^{\mu} \implies N^{\circ} = \emptyset$.
 - $-x \in N^{\circ}$ とすると、 $\exists r; B(x,r) \cap S \subseteq N$ より矛盾.
 - これは、 $\overline{S} = \overline{S \setminus N}$ を含意.
- $f,g \in C(S)$, f = g, μ -a.e. ならば、 $\forall x \in S$; f(x) = g(x).
 - 仮に $\exists x \in S$; f(x) = g(x) だとする.
 - 連続性より、ある開区間 I 上で $f \neq g$ である.

– I は内点を持つため、零集合でない. これは f=g, μ –a.e. に矛盾.

Definition 1.2 (μ -a.e.). $A \in \mathcal{A}$, $x \in A$ に関する命題 P(x) を考える. $A_1 \coloneqq \{x \in A : P(x)$ が真 $\}$ としたとき、

$$P(x)$$
 は $A \perp \mu$ -a.e. で成立 $\stackrel{\Delta}{\Longleftrightarrow} A \setminus A_1 \in \mathcal{N}^{\mu}$

§2.3 可測修正

- しばしば、 $S \perp$, μ -a.e. で定義される関数が出てくる.
 - 例: S 上で定義された可測関数列 $(f_n)_n$ について、 $f = \lim_n f_n$ が、 μ -a.e. で収束先を持つとき.
- そのような関数についても、S上の可測関数と同様に積分の議論を行える.

Definition 1.3 (μ -a.e. に定義された可測関数, 可測修正). $N \in \mathcal{N}^{\mu}$, $f: S \setminus N \to \mathbb{K}$ とする,

f が μ -a.e. に定義された可測関数 $\stackrel{\Delta}{\Longleftrightarrow} S$ 上の可測関数 \widetilde{f} で $f=\widetilde{f}$ となるものが存在.

$$\stackrel{(*)}{\Longleftrightarrow} \exists N_1 \in \mathcal{N}^{\mu}; \ N \subseteq N_1, \ f|_{S \setminus N_1}$$
が $S \setminus N_1$ 上の可測関数

• \widetilde{f} を f の可測修正という.

(*) の証明:

- \Longrightarrow) $N_1 := N \cup \{x \in S : f(x) \neq \widetilde{f}(x)\}$ とすれば良い.
 - $S_0 \subseteq S, f \in \mathbb{M}(S \to \mathbb{K})$ に対し、 $f|_{S_0} \in \mathbb{M}(S_0, \mathcal{A}|_{S_0})$ であることに注意.
- \iff) $\widetilde{N} \in \mathcal{N}^{\mu} \cap \mathcal{A}$ s.t. $N_1 \subseteq \widetilde{N}$ をとり, \widetilde{f} が \widetilde{N} 上で定値, $S \setminus N$ 上で f と同じ値をとるとすればよい.
 - $-\widetilde{f}$ が S 上可測であることは、上記の注意より $f|_{S\setminus\widetilde{N}}$ が $(S\setminus\widetilde{N},\mathcal{A}|_{S\setminus\widetilde{N}})$ 上可測であることから従う.
- μ -a.e. に定義された関数の和や極限も μ -a.e. に定義される.
- *u*-a.e. に定義された関数の積分を、その可測修正の積分として定義する.
 - $-\mu$ -a.e. に定義された関数 f が A 上可積分 $\stackrel{\Delta}{\Longleftrightarrow} f$ の可測修正 $\stackrel{\sim}{f}$ が A 上可積分

$$\int_A f \mathrm{d}\mu := \int_A \widetilde{f} \mathrm{d}\mu.$$

§3 完備化

- 測度の完備化ってどういうときに必要になるの?
 - Riemann 積分との関係を考えるとき?
 - * 累次積分とかでも大事に. (完備測度版の Fubini の定理)
 - 完備じゃない測度だとどういうまずいことが起きるの?

Definition 1.4 (完備な測度). 測度 μ が完備 $\stackrel{\Delta}{\Longleftrightarrow} \mathcal{N}^{\mu} \subset \mathcal{A}$.

2

• 任意の測度は、 A に零集合を「加える」ことで完備化できる.

Proposition 1.1 (測度の完備化). .

1.

$$\mathcal{A}^{\mu} := \{ B \subseteq S \colon \underbrace{\exists A, \widetilde{A} \in \mathcal{A}; \ A \subseteq B \subseteq \widetilde{A}, \ \mu(\widetilde{A} \setminus A) = 0}_{(\star)} \}$$
$$= \sigma(\mathcal{A} \cup \mathcal{N}^{\mu}).$$

- 2. (\star) を満たす $B \in \mathcal{A}^{\mu}$, A, $\widetilde{A} \in \mathcal{A}$ に対し, $\mu^{*}(B) \coloneqq \mu(A)$ と定めると, $(\mathcal{A}^{\mu}, \mu^{*})$ は測度になる.
- $3. \ \mathcal{N}^{\mu^*} = \mathcal{N}^{\mu}.$ よって, $(\mathcal{A}^{\mu}, \mu^*)$ は完備な測度.
- $4. (\mathcal{B}, \nu): S$ 上の測度, $\mathcal{A} \subseteq \mathcal{B}, \nu|_{\mathcal{A}} = \mu$ のとき,

$$(\mathcal{B}, \nu)$$
: 完備 $\Longrightarrow \mathcal{A}^{\mu} \subseteq \mathcal{B} \Longrightarrow \nu|_{\mathcal{A}^{\mu}} = \mu^*$.

- (A^{μ}, μ^*) を (A, μ) の完備化と呼ぶ.
 - 完備化 (A^{μ}, μ^*) は,元の測度 (A, μ) を含む完備な測度の中で最小なものであり,元の測度を含む任意の完備な測度に置いて, A^{μ} 上の測度は一意に定まる.
- 完備化された A^{μ} 内の任意の集合 B に対し、 μ -測度 0 の差を除いて一致するような集合 $A \in \mathcal{A}$ が存在.
- 同様の性質が A-可測関数と A^μ 可測関数の間にも成立.

Proposition 1.2. $g: S \to \overline{\mathbb{R}}$ について,以下の命題は同値:

- 1. g: A^μ-可測
- 2. $\exists f, \widetilde{f}; f, \widetilde{f}: \mathcal{A}^{\mu}$ -可測, $f \leq g \leq \widetilde{f}, \mu(f \neq \widetilde{f}) = 0$
- 3. $\exists f$; f: A-可測, f = g, μ -a.e.

Proof. (1) \Rightarrow (2): g を単関数の和で表すのがポイント.

Proposition 1.3 (完備測度の下での可測性を保証する十分条件). $\phi \in \mathbb{M}((S, A) \to (T, B))$ とする. 次の条件 が満たされるならば, $\phi \in \mathbb{M}((S, A^{\mu}) \to (T, B^{\nu}))$.

$$B \in \mathcal{B}, \nu(B) = 0 \implies \mu(\phi^{-1}(B)) = 0.$$

■Lebesgue 測度

- $(\mathcal{B}(\mathbb{R}^d), \mu)$ を $\mathcal{B}(\mathbb{R}^d)$ 上の Lebesgue 測度とする.
- $(\mathcal{B}(\mathbb{R}^d), \mu)$ の完備化 (\mathcal{L}^d, μ^*) を \mathbb{R}^d 上の Lebesgue 測度という.
 - $-A \subseteq \mathbb{R}^d$: Lebesgue 可測 $\stackrel{\Delta}{\Longleftrightarrow} A \in \mathcal{L}^d$.
 - $-S \subseteq \mathbb{R}^d$, $T = \mathbb{R}$, $\overline{\mathbb{R}}$, \mathbb{C} とする.
 - $-\mathcal{L}^d(S) := \mathcal{L}^d|_S$
 - $-f: S \to T$: Lebesgue 可測 $\stackrel{\Delta}{\Longleftrightarrow} f: \mathcal{L}^d(S)/\mathcal{B}(T)$ -可測
 - $-f: S \to T$: Borel 可測 $\stackrel{\Delta}{\Longleftrightarrow} f: \mathcal{B}(S)/\mathcal{B}(T)$ -可測

Example 1.2. $\mu(\partial A) = 0 \implies A \in \mathcal{L}^d$. (::) $\overline{A} \setminus A^\circ = \partial A$, 開集合と閉集合は $\mathcal{B}(\mathbb{R}^d)$ に属する.

• 次の命題は、フーリエ解析とかするときに重要になる(らしい.)

Proposition 1.4 (Lebesgue 測度の平行移動不変性).

$$\forall B \in \mathcal{L}^d \ \forall c \in \mathbb{R}^d; \ \mu^*(c+B) = \mu^*(B).$$

Proof.

- $\phi: x \mapsto x c$ とすれば, $c + B = \phi^{-1}(B)$ であることを使う. - $\nu(B) := \mu(\phi^{-1}(B)) = \mu(c + B)$ とし, ν と μ が \mathcal{L}^d 上で一致することを示したい.
- ullet まず $B\in \mathcal{B}(\mathbb{R}^d)$ 上で成立することを示す.
 - 測度の一致を示すための常套手段: 基本集合 $\mathcal{I}^d|_{\mathbb{R}^d}$ の下での一致を示す.
- \mathcal{L}^d 上での成立は、完備測度の一意性より従う。

• 完備化が大事な理由の一つは、(おそらく)次の定理を得るため.

• μ を Lebesgue 測度 (完備) とする.

Theorem 1.1 (Riemann 積分と Lebesgue 積分の関係). $f := \mathbb{R}^d \to \mathbb{R}$ を有界関数とする. このとき, $(1) \iff (2) \implies (3)$

1. f の不連続点全体は μ-零集合

- 2. f は Riemann 可積分
- 3. $f \in L^1(\mu)$, $\int_{\mathbb{R}^d} f d\mu = Riemann$ 積分の値.

Proof. memo: 例えば, $(2) \Longrightarrow (3)$ を示す際,「 $\underline{f} = f = \overline{f}$ であり,かつ, $\underline{f},\overline{f}$ が可測ならば,f が可測」を示す必要が出てくる.これは完備測度だから可能. (完備化する前の $(\mathcal{B}(\mathbb{R}^d),\mu)$ で頑張ろうとすると,f の可測性が示せず, $\int f \mathrm{d}\mu$ がそのままでは定義できなくなる?)