1. En motor mottar 4 kJ varmeenergi fra et 600 K varmereservoar, utfører en mengde arbeid og dumper deretter 2 kJ varmeenergi til et 200 K varmereservoar. Finn ut om denne motoren er en Carnot-motor eller ikke.

$$Q_{in} = Q_H = 4.0 \text{ kJ}$$

 $Q_{out} = Q_C = 2.0 \text{ kJ}$

$$T_H = 600 \text{ K}$$

 $T_C = 200 \text{ K}$

Carnot engine efficiency:

$$\eta_c = 1 - \frac{T_C}{T_H} = 1 - \frac{200 \, K}{600 \, K} = 0.667$$

Efficiency of this engine:

$$\eta = 1 - \frac{Q_C}{Q_H} = 1 - \frac{2.0 \ kJ}{4.0 \ kJ} = 0.50$$

This is not a carnot engine

2. en maskin følger n = 0.16 mol monatomic ideell gass en syklus som vist i figuren.

Start tilstanden er: P1 = 400 kPa, V1 = 0.001 m³, T1 = 300 K

Steg 1 -> 2

Varme tilføres ved konstant volumet slik at trykk og temperatur stiger til P2, T2

Steg 2 -> 3

Gassen ekspanderer adiabatisk til en tilstand med: P3 = 100 kPa, $V3 = 0.004 \text{ m}^3$, T3 = 300 K Steg $3 \rightarrow 1$

Kompresjon ved konstant temperatur til tilstanden 1.

monatomic ideell gass har $\gamma = 5/3$

a) Bruk adiabatlikningen PV^y = konstant til å beregne P2, Regn ut T2

The process 2-3 is adiabatic and we can use PV^{γ} = konstant

$$P_2V_2^{\gamma} = P_3V_3^{\gamma}$$

Solve for P₂

$$P_2 = P_3 \left(\frac{V_3}{V_2}\right)^{\gamma} = 100kPa \left(\frac{4.0 \times 10^{-3}m^3}{1.0 \times 10^{-3}m^3}\right)^{5/3} = 1008 kPa$$

To find T2 we can use PV = nRT which holds at all points, and V_1 = V_2

$$\frac{P_1V_1}{P_2V_2} = \frac{nRT_1}{nRT_2}$$

Solve for T₂

$$T_2 = T_1 \left(\frac{P_2}{P_1} \right) = 300 \, K \left(\frac{1008 \, kPa}{400 \, kPa} \right) = 756 \, K$$

b) Regn ut varmen Q_{12} fra 1 til 2, og Q_{31} fra 3 til 1

 Q_{12} is the heat added to raise the pressure from P_1 to P_2 Apply the first law to this process:

$$\Delta U_{12} = Q_{12} - W_{12}$$

The work is zero, the process is constant volume and no work is done.

 $W_{12} = 0$ and this gives $Q_{12} = \Delta U_{12}$

$$U = \frac{3}{2}nRT$$

$$\Delta U_{12} = \frac{3}{2} nR(T_2 - T_1) = \frac{3}{2} (0.16 \, mol) \left(8.31 \, \frac{J}{mol \cdot K} \right) (756 \, K - 300 \, K) = 910 \, J$$

$$Q_{12} = \Delta U_{12} = 910 \text{ J}$$

3-1 is an isothermal process at $T_3 = T_1 = 300$ K.

For an isothermal process: $\Delta U_{31} = 0$

Apply the first law to this process:

$$\Delta U_{31} = Q_{31} - W_{31}$$

$$Q_{31} = W_{31}$$

The work done is given by:

$$W = \int P dV = nRT \int_{V_3}^{V_1} \frac{1}{V} dV = nRT \ln \left(\frac{V_1}{V_3}\right)$$

$$Q_{31} = 0.16 \, mol \cdot 8.31 \, \frac{J}{mol \cdot K} \cdot 300 \, K \, \ln \left(\frac{0.001 \, m^3}{0.004 \, m^3} \right) = -553 \, J$$

Q₃₁ is negative, heat is removed to maintain constant temperature during compression.

c) Regn ut arbeidet W_{23} fra 2 til 3, og W_{31} fra 3 til 1 Work is done in processes 2-3 and 3-1. For 2-3 this is an adiabatic process Q23 = 0 Apply the first law:

$$\Delta U_{23} = Q_{23} - W_{23}$$

$$\Delta U_{23} = -W_{23} \quad \text{and} \quad W_{23} = -\Delta U_{23}$$

$$\Delta U_{23} = 3/2 \text{ nR}(T_3 - T_2) = 3/2 \cdot 0.16 \text{ mol} \cdot (300 \text{ K} - 756 \text{ K}) = -910 \text{ J}$$

$$W_{23} = -\Delta U_{23} = 910 \text{ J}$$

For 3 – 1 this is an isotherm process and the first law gives

$$W_{31} = Q_{31}$$

Which we calculated in part b)

$$W_{31} = Q_{31} = -553 J$$

d) Finn maskinens virkningsgrad

The efficiency is given by

$$\eta = \frac{\text{work}}{Q_{\text{in}}}$$

Work = net work done in the cycle = $W_{23} + W_{31} = 910 J - 553 J = 357 J$

 Q_{in} = heat added = Q_{12} = 910 J

$$\eta = \frac{357 \text{ J}}{910 \text{ J}} = 0.389 = 39\%$$

3. Et PV-diagrammet er vist nedenfor. Kretsprosessen gjennomføres reversibelt. Prosessene $1\rightarrow 2$ og $3\rightarrow 4$ er isoterme. Systemet består av 1 mol av en to-atom ideell gass. Du får oppgitt at T2 = 600 K og T3 = 402 K. For to-atom ideell gass: U = 5/2 nRT

Fyll inn alle tallene i tabellen

Process 1-2 is an isothermal expansion from V_1 to V_2 . $\Delta U_{12}=0$ and the first law $\Delta U=Q-W$ leads to $Q_{12}=W_{12}$

$$W_{12} = \int P dV = nRT \int_{V_1}^{V_2} \frac{1}{V} dV = nRT \ln \left(\frac{V_2}{V_1}\right)$$

 $W_{12} = 1.0 \text{ mol} \cdot 8.314 \text{ J/mol K} \cdot 600 \text{ K} \cdot \ln(0.04 \text{ m}^3/0.02 \text{ m}^3) = 3.46 \text{ kJ}$

$$Q_{12} = W_{12} = 3.46 \text{ kJ}$$

Process 2-3 is isochoric with $\Delta V =$ and $W_{23} = 0$ The first law leads to $\Delta U_{23} = Q_{23}$

Since it is a diatomic gas the internal energy is

$$U_{23} = \frac{5}{2}nRT$$

$$\Delta U_{23} = \frac{5}{2} nR \Delta T = \frac{5}{2} nR (T_3 - T_2)$$

$$\Delta U_{23} = \frac{5}{2} \cdot 1.0 \text{ mol } \cdot 8.314^{\text{J}} / \text{mol K} (402 \text{ K} - 600 \text{K}) = -4.12 \text{ kJ}$$

$$Q_{23} = U_{23} = -4.12 \text{ kJ}$$

Process 3-4 is isothermal: $\Delta U_{34} = 0$ and $Q_{34} = W_{34}$

$$W_{34} = \int PdV = nRT \int_{V_3}^{V_4} \frac{1}{V} dV = nRT \ln \left(\frac{V_4}{V_3}\right)$$

$$W_{34} = 1.0 \text{ mol} \cdot 8.314 \text{ J/mol K} \cdot 402 \text{ K} \cdot \ln(0.02 \text{ m}^3/ 0.04 \text{ m}^3) = -2.32 \text{ kJ}$$

$$Q_{34} = W_{34} = -2.32 \text{ kJ}$$

Process 4 – 1 is isochoric: ΔV =0 and W_{41} = 0 The first law leads to ΔU_{41} = Q_{41}

$$\Delta U_{41} = \frac{5}{2} nR \Delta T = \frac{5}{2} nR (T_1 - T_4)$$

$$\Delta U_{41} = \frac{5}{2} \cdot 1.0 \text{ mol } \cdot 8.314 \text{ J/mol K} (600 \text{ K} - 402 \text{K}) = 4.12 \text{ kJ}$$

$$Q_{41} = U_{41} = 4.12 \text{ kJ}$$

	W [kJ]	Q [kJ]	ΔU [kJ]
1 -> 2 isotherm	3.46	3.46	0
2 -> 3 isochor	0	-4.12	-4.12
3 -> 4 isotherm	-2.32	-2.32	0
4 -> 1 isochor	0	4.12	4.12
Full cycle	1.14	1.14	0

Net work done in a full cycle = net heat input in a full cycle Net change in internal energy = 0 for a full cycle