Topological Spaces and Continuous Functions

Topological Space

A **topology** on a set X is a collection $\mathcal T$ of subsets of X having the following properties:

- (1) \varnothing and X are in \mathcal{T} .
- (2) The union of the elements of any subcollection of \mathcal{T} is in \mathcal{T} .
- (3) The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

Definition

Suppose \mathcal{T} and \mathcal{T}' are two topologies on a given set X. If $\mathcal{T}'\supset \mathcal{T}$, we say that \mathcal{T}' is finer than \mathcal{T} ; if \mathcal{T}' properly contains \mathcal{T} , we say that \mathcal{T}' is strictly finer than \mathcal{T} . We also say that \mathcal{T} is coarser than \mathcal{T}' , or strictly coarser, in these two respective situations. We say that \mathcal{T} is comparable with \mathcal{T}' if either $\mathcal{T}'\supset \mathcal{T}$ or $\mathcal{T}\supset \mathcal{T}'$.

Basis for a Topology

If X is a set, a **basis** for a topology on X is a collection $\mathcal B$ of subsets of X (called **basis elements**) such that

- (1) For each $x \in X$, there is at least one basis element B containing x.
- (2) If X belongs to the intersection of two basis elements B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subset B_1 \cap B_2$.

Lemma 13.1

Let X be a set; let \mathcal{B} be a basis for topology \mathcal{T} on X. Then \mathcal{T} equals the set of all unions of elements of \mathcal{B} .

Lemma 13.2

Let X be a topological space. Suppose that $\mathcal C$ is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C of $\mathcal C$ such that $x\in C\subset U$. Then $\mathcal C$ is a basis for the topology of X.

Lemma 13.3

Let \mathcal{B} and \mathcal{B}' be bases for the topologies \mathcal{T} and \mathcal{T}' , respectively, on X. Then the following are equivalent

- (1) \mathcal{T}' is finer than \mathcal{T}
- (2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.

Definition

If \mathcal{B} the collection of all open intervals in the real line,

$$(a,b) = \{x | a < x < b\}$$

the topology generated by $\mathcal B$ is called the *standard topology* on the real line. Whenever we consider $\mathbb R$, we shall suppose it is given this topology unless we specifically state otherwise. If $\mathcal B'$ is the collection of all half-open intervals of the form

$$[a,b) = \{x | a \le x < b\}$$

, the topology generated by \mathcal{B}' is called the **lower limit topology** on \mathbb{R} denoted \mathbb{R}_l . Let K denote all numbers of the form 1/n, for $n \in \mathbb{Z}_+$, and let \mathcal{B}'' be the collection of all open intervals (a,b), along with all sets of the form (a,b)-K. The topology generated by \mathcal{B}'' will be called the **K-topology** on \mathbb{R} denoted by \mathbb{R}_K .