Hao's Guide - Algorithm Crash Course - Divide and Conquer

Introduction

When it comes to divide and conquer, the purpose of these questions is to "eliminate redundancies in process". These redundancies are removed by splitting the variables of a problem into smaller more manageable chunks. Redundancies in these cases are removing the additional repeated steps in finding your answer. This is left semi-vague for unlike the other topics, there are not necessarily a clear step by step approach to tackling these problems.

Divide and Conquer

What is it

As mentioned, divide and conquer is the process of splitting a problem into smaller manageable space in hopes to remove redundancy in certain processing. However, the question then becomes:

- How do I split the data?
- What sort of redundancy?

Typically, the algorithm which exist for finding the solution to a D&C problem is quite obvious. However, the challenge is to re-work the algorithm in such a way that you can find the solution much faster. There are no hard steps of finding this, but a good general mindset to have is:

- 1. What is the obvious naive method?
- 2. What is the naive algorithm doing that is completely unnecessary/repeated?
- 3. How do I remove the repetition by dividing the space?

The celebrity search

You are an foreign exchange student who was just invited to a bitch'n party and you are excited as you heard from a friend that a celebrity might be there and you want to meet them. At the party, you notice a lot of people but forget those nerds, you want to meet the celebrity.

The criteria for being a celebrity (both need to be satisfied):

- Everybody knows the Celebrity
- The Celebrity knows nobody there

Since your english is absolute trash, you cannot ask the obvious questions: "Who is the celebrity?" or "Are you the celebrity?". The only thing you know how to ask is "Do you (Person

What is the fastest way to find whether a celebrity is at the party and if so who it is?

Like all divide and conquer question. Let's first figure out the naive method.

Naive Method

Suppose there were 5 people in the party: A, B, C, D, E. The most obvious way is to slowly build up a table of connection and see who knows who and who doesn't. Let's start with person A, you ask them:

- "Does A know B?"
- "Does A know C?"
- "Does A know D?"
- "Does A know E?"

Then you move on to the next person, Person B and ask them for their connection with everybody else. Now this is a very valid algorithm and it will always work.

So since you are asking 5 people 4 question each time, the time complexity is hence O(20), if we are generalising, the algorithm has a O(n(n-1)) time complexity or $O(n^2)$ once we simplified.

Redundancies

Now can you spot what sort of questions were unnecessary? Consider the potential answer to those questions: Does X know Y? Yes or No. Remember, that a celebrity knows nobody but everybody know them.

Can you figure the elimination you can carry out?

If person A answer Yes to the question, recognise that they have actually violated one of the properties of being a celebrity: "The Celebrity knows nobody there". Hence you can eliminate A as a potential celebrity candidate!

Same goes for if they answer No to the question, recognise that the person who you ask if the Person A have a connection to have themselves violated the other property of being a celebrity: "Everybody knows the Celebrity"!

Eliminating Redundancies

As mentioned since you are removing 1 person from the pool of potential candidate per question asked, you can find the most likely candidate by asking n-1 questions.

However, we haven't satisfy the criterias ust yet. While we have figured out who is the most likely candidate, you need to ensure you satisfy the criteria that they know *nobody* and *everybody* knows them!. To do so you need to ask everybody if they know the celebrity, which is n - 1 questions and the potential celebrity if they know anybody which is an additional n - 1 questions.

Hence the final time complexity of this algorithm is O((n-1) + (n-1) + (n-1)) = O(3n - 3) which is in turn O(n). Significantly less time than the original $O(n^2)$ method!