

Today's Agenda

Icebreaker (10 minutes)

Week 2 Overview + Q&A (30 minutes)

Breakout Groups: Big Picture Questions (20 minutes)

Class Discussion (10 minutes)

Break (10 minutes)

Breakout Groups: Lab Assignment Working Session (80 minutes)

Working Session Debrief (10 minutes)

Concluding Remarks & Survey (10 minutes)

Icebreaker: "Get Pumped!"

Icebreaker: Get Pumped!

Objectives:

 Share a "pump up song" that inspires, builds your confidence, or otherwise brings you energy

Icebreaker: Get Pumped! Instructions

- Think about your own "pump up song". Remember, this song might:
 - o Inspire you, give you energy, or confidence
 - Be related to a personal value that is important to you
 - Remind you of a person, place, or thing
- Once you've picked your Pump Up Song, enter it into the Google Form linked in the chat. The Break Through Tech team will make a playlist with your Pump Up Songs for upcoming Maker Day and other events!
- When you're finished, share your Pump Up Song in the chat and why it gives you energy.

https://forms.gle/R8PvWbCTn1oKgFZV8

Icebreaker: Get Pumped! Share out

- Who wants to share a clip from their "Pump Up" song?
- Why is this song meaningful to you?

https://docs.google.com/spreadsheets/d/1-

Ef6Wsrd5dipaxsWoyq4ktpFvbKJ1A3XuJB6KclGRwQ/edit?resourceke

y#gid=1549963278

Week 2 Overview + Q&A

Week 2 Overview

This week you explored a number of topics. To refresh your memory, your goals were to:

- Build a data set suitable for ML applications.
- Create an appropriate label for supervised learning.
- Create features that are suitable for ML applications.
- Use exploratory analysis to understand your data.
- Identify and fix issues with your data.

Recap: ML Life Cycle

CRISP-DM

 Cross-Industry Standard Process for Data Mining

Data Matrix

Rows: data points

Columns: features/attributes

Sample dataset

Name	Income	Credit Score	Occupation	Job Sector	Loan Status
John Doe	\$76,000	650	Engineer	Engineering	Good
Gill Bates	\$85,000	760	Nurse	Healthcare	Defaulted
Jane Doe	"95000.00"	0	Banker	Financial	Good
John Doe	\$76,000	650	Engineer	Engineering	Good
Melon Usk		810	Flight Attendant	Transportation	Excellent
Barren Wuffet	5000/mo	35000	Contractor	Construction	Defaulted

Sample vs. Population

- Population:
 - All the data points, e.g., everyone
- Samples:
 - A subset of data points, e.g., the ones in your database

Data Exploration

- Understand your data
 - What are input and what are output
 - Statistics summary from the data, e.g., mean, standard deviation
 - Visualization of the data, e.g., scatter plot, histogram

Sample dataset

Name	Income	Credit Score	Occupation	Job Sector	Loan Status
John Doe	\$76,000	650	Engineer	Engineering	Good
Gill Bates	\$85,000	760	Nurse	Healthcare	Defaulted
Jane Doe	"95000.00"	0	Banker	Financial	Good
John Doe	\$76,000	650	Engineer	Engineering	Good
Melon Usk		810	Flight Attendant	Transportation	Excellent
Barren Wuffet	5000/mo	35000	Contractor	Construction	Defaulted

Data Preparation/Data preprocessing

- What we want for a supervised task?
 - $\circ \quad D = \{(x, y)\}\$
 - Examples:
 - Salary prediction: x are a collection of features related to salary; y is salary

—	F	eature	s ——		Label
Position	Experience	Skill	Country	City	Salary (\$)
Developer	0	1	USA	New York	103100
Developer	1	1	USA	New York	104900
Developer	2	1	USA	New York	106800
Developer	3	1	USA	New York	108700
Developer	4	1	USA	New York	110400
Developer	5	1	USA	New York	112300
Developer	6	1	USA	New York	114200
Developer	7	1	USA	New York	116100
Developer	8	1	USA	New York	117800
Developer	9	1	USA	New York	119700
Developer	10	1	USA	New York	121600

https://www.i2tutorials.com/what-do-you-mean-by-features-and-labels-in-a-dataset/

Feature Engineering

• Turn everything into a nice numerical matrix

Technique	Description	Input	Output
Binary indicators	Transform data to binary based on meeting a true/false condition	Categorical/Numeric	Binary (0/1)
One-hot-encoding	Transform K categories into K-1 binary indicators	Categorical	Binary (0/1)
Functional Transforms	Transform a numeric input X into a new numeric value based on f(X)	Numeric	Numeric
Interaction Terms	Take the multiplication of two numeric types	Numeric	Numeric

Examples

- Occupation
 - o If there are 5 occupations in total, make a 5-dimensional binary vector (10000, 01000, etc.)
- Income
 - Make a log transformation

Sample dataset

Name	Income	Credit Score	Occupation	Job Sector	Loan Status
John Doe	\$76,000	650	Engineer	Engineering	Good
Gill Bates	\$85,000	760	Nurse	Healthcare	Defaulted
Jane Doe	"95000.00"	0	Banker	Financial	Good
John Doe	\$76,000	650	Engineer	Engineering	Good
Melon Usk		810	Flight Attendant	Transportation	Excellent
Barren Wuffet	5000/mo	35000	Contractor	Construction	Defaulted

More examples

Problem: Recommend new twitter users that I should follow

Why do I follow someone? -

- 1. This person looks interesting.
- 2. The person posts about topics that I am interested in.
- 3. This person followed me.
- 4. People I follow also follow this person
- 5. This person is very popular with a lot of followers

TwitterID	topic_overlap_pct	user_follows_me	num_follows_follow	num_followers
1234	0.1	0	5	1199
1345	0.2	0	1	230
1099	0.7	1	24	100
2011	0.8	1	46	10145
2900	0.5	0	51	51454

Know your data again

Basic statistics using Pandas describe()

Visualization – univariate plotting

Histogram

Visualization – bivariate plotting

Scatter plot

Dependency between variables

- Correlation and Covariance
- Mutual information

Data cleaning

Outlier detection

25

Data cleaning

Missing values

Lowest effort - Deletion: drop the record or column

Modest effort - Imputation: replace MV with mean or median

Most effort - Interpolation: predict MV with $E[X|X^{\prime}]$

Pandas DataFrame: Common Methods:

- DataFrames
 - df.head(10)
 - Properties:
 - df.shape
 - df.index
 - df.loc[5]
 - df.dtypes returns type of each column

Sampling:

- Taking a Sample of Data
 - indices = np.random.choice(df.index, size=100, replace=False)df_subset = df.loc[indices]
 - df_subset = df.sample(100)

- Filtering data
 - condition1 = df['workclass'] == 'Private' returns series of True/False values
 - condition2 = df_subset['sex_selfID'].isnull() returns True/False values
 - df filter = df[condition1 & ~condition2]
- Groups within a column
 - df_subset['sex_selfID'].unique() returns unique values in column
 - counts = df_subset['sex_selfID'].value_counts()
 - df_subset.groupby(['sex_selfID', 'label']).size()
- Modifying/Merging labels
 - condition = columns_not_self_employed & columns_not_null
 df['workclass'] = np.where(condition, 'Not-self-emp', df['workclass'])

```
Copy code
  python
  import pandas as pd
  data = {'workclass': ['Private', 'Self-emp', 'Private', 'Self-emp', 'Private'
          'sex_selfID': ['Male', 'Female', None, 'Male', 'Female'],
          'age': [25, 30, 35, 40, 45]}
  df = pd.DataFrame(data)
  condition1 = df['workclass'] == 'Private'
  condition2 = df['sex_selfID'].isnull()
  df_filter = df[condition1 & ~condition2]
  print(df_filter)
Output:
                                                                   Copy code
  vbnet
    workclass sex_selfID age
     Private
                    Male
     Private
                    None
     Private
                  Female
```

- Filtering data
 - condition1 = df['workclass'] == 'Private' returns series of True/False values
 - condition2 = df_subset['sex_selfID'].isnull() returns True/False values
 - df_filter = df[condition1 & ~condition2]
- Groups within a column
 - df_subset['sex_selfID'].unique() returns unique values in column
 - counts = df_subset['sex_selfID'].value_counts()
 - df_subset.groupby(['sex_selfID', 'label']).size()
- Modifying/Merging labels
 - condition = columns_not_self_employed & columns_not_null
 df['workclass'] = np.where(condition, 'Not-self-emp', df['workclass'])

```
Copy code
 python
 import pandas as pd
 data = {'sex_selfID': ['Male', 'Male', 'Female', 'Female', 'Male', 'Female'
          'label': ['A', 'B', 'A', 'A', 'B', 'B', 'A']}
 df_subset = pd.DataFrame(data)
 counts = df_subset['sex_selfID'].value_counts()
 print(counts)
Output:
                                                                  Copy code
 vbnet
 Female
 Male
 Non-Binary 1
 Name: sex_selfID, dtype: int64
```

```
Copy code
            python
             import pandas as pd
            data = {'sex_selfID': ['Male', 'Male', 'Female', 'Female', 'Male', 'Female', 'Fem
                                                                   'label': ['A', 'B', 'A', 'A', 'B', 'B', 'A']}
            df = pd.DataFrame(data)
            grouped_data = df.groupby(['sex_selfID', 'label']).size()
            print(grouped_data)
Output:
                                                                                                                                                                                                                                                                                                                                                                                                                                                               Copy code
            css
             sex_selfID label
            Female
                                                                                           В
            Male
                                                                                           В
            Non-Binary A
            dtype: int64
```

- Filtering data
 - condition1 = df['workclass'] == 'Private' returns series of True/False values
 - condition2 = df_subset['sex_selfID'].isnull() returns True/False values
 - df filter = df[condition1 & ~condition2]
- Groups within a column
 - df_subset['sex_selfID'].unique() returns unique values in column
 - counts = df_subset['sex_selfID'].value_counts()
 - df_subset.groupby(['sex_selfID', 'label']).size()
- Modifying/Merging labels
 - condition = columns_not_self_employed & columns_not_null
 df['workclass'] = np.where(condition, 'Not-self-emp', df['workclass'])

```
Copy cod
 python
  import pandas as pd
 import numpy as np
 data = {'workclass': ['Private', 'Self-emp', None, 'Private', 'Self-emp']
         'age': [25, 30, 35, 40, 45]}
 df = pd.DataFrame(data)
 columns_not_self_employed = df['workclass'] != 'Self-emp'
 columns_not_null = df['workclass'].notnull()
  condition = columns_not_self_employed & columns_not_null
 df['workclass'] = np.where(condition, 'Not-self-emp', df['workclass'])
 print(df)
Output:
                                                                  Copy coo
 rust
        workclass age
 0 Not-self-emp
        Self-emp
             None
    Not-self-emp
        Self-emp
```

Create Labels and Features: Clean and Convert Data

- Cast column to type int
 - df['col'] = df['col'].astype(int)
- Creating new sample that doesn't include original sample
 - df_never_sampled = df.drop(labels=df_subset.index, axis=0, inplace=False)
 - df = df.drop(['col1', col2'], axis=1) drop col1 and col2 from <math>df
- Ordering categorical data
 edu = ['Preschool', '1st-4th', '5th-6th', '7th-8th', '9th', '10th', '1th', '12th', 'HS-grad', 'Prof-school', 'Assoc-acdm', 'Assoc-voc', 'Some-college', 'Bachelors', 'Masters', 'Doctorate']
 df['education'] = pd.Categorical(df['education'], ordered=True, categories=edu)
- Converting categorical data to binary (Feature engineering: one-hot encoding)
 - df_binary = pd.get_dummies(df)

python			🖺 Сору со	de
import pa	ndas as pd			
# Sample	DataFrame			
		elors', 'Masters', 'H	S-grad', 'Doctorate', 'Ba	ache
df = pd.D	ataFrame(data)			
# Define	education categorie	es for ordering		
edu = ['P	reschool', '1st-4th	n', '5th-6th', '7th-8	th', '9th', '10th', '11th	η',
• • • • • • • • • • • • • • • • • • •		n to ordered categori		
df['educa	cion'] = pd.Categor	rical(df['education']	, ordered=True, categorie	es=e
# Perform	one-hot encoding			
	= pd.get_dummies(d	if)		
-	1 0 -			
<pre>print(df_</pre>	oinary)			
Output:				
			🖺 Сору со	de
	11		t	
ion_Some-co			asters education_Doctora	ate
	0 0	1 0	0 1	
	0	0	0	
	0	0	0	
	0	1	0	

Explore Your Data: Common Data Exploration Functions

- df.describe() returns per column statistics about df
- Finding column with highest variance
 - df_summ = df.describe()
 - df_summ.loc['std'].idxmax(axis=1)
 - df summ.idxmax(axis = 1)['std']
- Does any column have negative values
 - np.any(df_summ.loc['min'] < 0)
 - np.any(condition)

```
M df summ = df.describe()
In [11]:
    Out[11]:
                               age
                                          fnlwgt education-num
                                                                    capital-gain capital-loss hours-per-week
                 count 7000.000000 7.000000e+03
                                                      7000.000000
                                                                    7000.000000
                                                                                7000.000000
                                                                                                  7000.000000
                          38.596714 1.924335e+05
                                                                                                    40.107143
                mean
                                                                    1079.000429
                                                                                   84.970286
                                                                                                    12.323946
                   std
                          13.745594 1.063365e+05
                                                         2.580982
                                                                    7011.160679
                                                                                  400.142351
                  min
                          17.000000 1.882700e+04
                                                         1.000000
                                                                       0.000000
                                                                                    0.000000
                                                                                                     1.000000
                  25%
                          28.000000 1.202478e+05
                                                         9.000000
                                                                       0.000000
                                                                                    0.000000
                                                                                                    40.000000
                          37.000000 1.821170e+05
                                                        10.000000
                                                                       0.000000
                                                                                    0.000000
                                                                                                    40.000000
                  75%
                          47.000000 2.402370e+05
                                                        12.000000
                                                                                                    45.000000
                                                                       0.000000
                                                                                    0.000000
                  max
                          90.000000 1.268339e+06
                                                        16.000000
                                                                  99999.000000
                                                                                4356.000000
                                                                                                    99.000000
```

Explore Your Data: Visualize Data using Seaborn and Matplotlib

- Histogram, Pairplot, and Barplot
 - sns.histplot(data=df, x="age")
 - sns.pairplot(data=df, hue='label') pairwise scatterplots of each pair of columns, and color by 'label'
 - sns.pairplot(data=df, kind='kde', corner=True) use kernel density estimator type plot
 - sns.barplot(data = df_sub, x='education',' y='label') shows average of labels for each value of x
- Editing figure
 - plt.figure(figsize=(13,7)) set width, height in inches
 - plt.ylim(0, 600) can use this to zoom in on a smaller region of the y axis
 - plt.xticks(rotation=45)

Explore Your Data: Correlation

- df.corr()['label'] returns correlation of each feature with the label
 - exclude = ['label', 'non_winsorized_label']corrs = df.corr()['label'].drop(exclude, axis=0)
- Sort correlations in descending order
 corrs_sorted = corrs.sort_values(ascending=False)
 col_names = corrs_sorted.index returns column names in descending order of correlation with label.

Finding Outliers and Missing Data: Replacing Outliers

- Value corresponding to x percentile.
 - val = np.percentile(df['col_name'], x)
- Scipy to winsorize data (remove outliers)
 - scipy.stats as stats
 - df['col-win'] = stats.mstats.winsorize(df['col'], limits=[0.01, 0.01]) replace lower and top 1% with values at 1% and 99% respectively.
- zscore = (value mean)/std measures how far away each point is from the mean zscore of 1 means point is 1 std away from mean.
 - zscores = stats.zscore(df['col'])

Finding Outliers and Missing Data: Replacing Missing Values

- Find and count missing values
 - df.isnull()
 - nan_count = np.sum(df.isnull())
- Replace missing values with mean mean_ages=df['age'].mean() df['age'].fillna(value=mean_ages, inplace=True)

Questions & Answers

What questions do you have about the online content this week?

Breakout Groups: Big Picture Questions

Big Picture Questions

You have 20 minutes to discuss the following questions within your breakout groups:

- Why is data preparation so important to the machine learning development process?
- Considering that data preparation often takes the majority of model development time, how would you communicate to stakeholders (bosses, product managers, leadership, etc.) why you need to budget time for data preparation?
- What does it mean to have a "modeling dataset"?
- What is the difference between nominal data and ordinal data? Explain with an example.
- Why is data visualization an important part of the data preparation process?
- Name a few libraries used for data analysis and visualization and explain when you would use each library.

Class Discussion

Class Discussion: Responses to Big Picture Questions

Let's hear your classmates' responses.

Break!

Breakout Groups: Lab Assignment

Lab 2

In this lab, you will:

- Load data and identify the number of records & columns
- Remove features that are not currently useful for analysis
- Modify features to make sure they are machine-comprehensible
- Build a new regression label column by winsorizing outliers
- Replace all missing values with means
- Identify two variables with the highest correlation with the label
- Build appropriate bivariate plots between the highest correlated features and the label

Lab 2

Working Session Debrief

Lab Debrief

So far,

- What did you enjoy about this lab?
- What did you find difficult about this lab?
- What questions do you still have about this lab?
- How did you approach problem-solving during the exercise?
- What would you do differently if you were to repeat the exercise?

Concluding Remarks

Concluding Remarks

- Key takeaways
- Additional resources

Next week

In the following week, you will:

- Define the core foundational elements of model training and evaluation
- Develop intuition for different classes of algorithms
- Analyze the mechanics of two popular supervised learning algorithms: decision trees and k-nearest neighbors
- Develop intuition on trade-offs between different algorithmic choices

And in the lab, you will:

- Convert categorical features to one-hot encoded values.
- Train decision tree classifiers with various hyperparameter values.
- Train KNN classifiers with various hyperparameter values.
- Visualize the models' accuracies.

Content + Lab Feedback Survey

Content + Lab Feedback Survey

To complete your lab, please answer the following questions about BOTH your online modules and your lab experience. Your input will help pay it forward to the Break Through Tech student community by enabling us to continuously improve the learning experience that we provide to our community.

Thank you for your thoughtful feedback!

https://forms.gle/xdfN3Vy1BYMUHFvu8