

Bayesian Network

Zahoor Tanoli (PhD)

CUI Attock Campus

Naïve Bayes

- Founded on Bayes' Rule for probabilistic inference
- Update probability of hypotheses based on evidence
- •Choose hypothesis with the maximum probability after the evidence has been incorporated
- Algorithm is particularly useful for domains with lots of features

Bayesian Classifier - Basic Equation

Bayes' Rule

$$p(h \mid d) = \frac{P(d \mid h)P(h)}{P(d)}$$

Who is who in Bayes' rule

P(h): prior belief (probability of hypothesis h before seeing any data)

 $P(d \mid h)$: likelihood (probability of the data if the hypothesis h is true)

 $P(d) = \sum_{h} P(d \mid h)P(h)$: data evidence (marginal probability of the data)

P(h | d): posterior (probability of hypothesis h after having seen the data d)

f ₁	f ₂	f ₃	f ₄	у
0	1	1	0	1
0	0	1	1	1
1	0	1	0	1
0	0	1	1	1
0	0	0	0	1
1	0	0	1	0
1	1	0	1	0
1	0	0	0	0
1	1	0	1	0
1	0	1	1	0

 $R_1(1,1) = 1/5$: fraction of all positive examples that have feature 1 on $R_1(0,1) = 4/5$: fraction of all positive examples that have feature 1 off

f ₁	f ₂	f ₃	f ₄	y
0	1	1	0	1
0	0	1	1	1
1	0	1	0	1
0	0	1	1	1
0	0	0	0	1
1	0	0	1	0
1	1	0	1	0
1	0	0	0	0
1	1	0	1	0
1	0	1	1	0

 $R_1(1,1) = 1/5$: fraction of all positive examples that have feature 1 on $R_1(0,1) = 4/5$: fraction of all positive examples that have feature 1 off

 $R_1(1,0) = 5/5$: fraction of all negative examples that have feature 1 on $R_1(0,0) = 0/5$: fraction of all negative examples that have feature 1 off

f ₁	f ₂	f_3	f ₄	у
0	1	1	0	1
0	0	1	1	1
1	0	1	0	1
0	0	1	1	1
0	0	0	0	1
1	0	0	1	0
1	1	0	1	0
1	0	0	0	0
1	1	0	1	0
1	0	1	1	0

$R_1(1,1) = 1/5$	$R_1(0,1) = 4/5$
$R_1(1,0) = 5/5$	$R_1(0,0) = 0/5$
$R_2(1,1) = 1/5$	$R_2(0,1) = 4/5$
$R_2(1,0) = 2/5$	$R_2(0,0) = 3/5$
$R_3(1,1) = 4/5$	$R_3(0,1) = 1/5$
$R_3(1,0) = 1/5$	$R_3(0,0) = 4/5$
$R_4(1,1) = 2/5$	$R_4(0,1) = 3/5$
$R_4(1,0) = 4/5$	$R_4(0,0) = 1/5$

Prediction

These R values actually represent the hypothesis and is used to classify the new input.

$$R_1(1,1) = 1/5$$
 $R_1(0,1) = 4/5$
 $R_1(1,0) = 5/5$ $R_1(0,0) = 0/5$
 $R_2(1,1) = 1/5$ $R_2(0,1) = 4/5$
 $R_2(1,0) = 2/5$ $R_2(0,0) = 3/5$
 $R_3(1,1) = 4/5$ $R_3(0,1) = 1/5$
 $R_3(1,0) = 1/5$ $R_3(0,0) = 4/5$
 $R_4(1,1) = 2/5$ $R_4(0,1) = 3/5$
 $R_4(1,0) = 4/5$ $R_4(0,0) = 1/5$

New
$$x = <0,0,1,1>$$

 $S(1) = R_1(0,1) * R_2(0,1) * R_3(1,1) * R_4(1,1) = .205$
 $S(0) = R_1(0,0) * R_2(0,0) * R_3(1,0) * R_4(1,0) = 0$
 $S(1) > S(0)$, so predict class 1

Example: Play Tennis

Pla	ıуT	ennis:	training	examp]	les
				1	

	J		0 1		
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Bayesian Classifier - Modified Basic Equation

Bayesian Classifier - Probabilities for the weather data

Frequency Tables

Outlook	l	No	Yes
Sunny	l	3	2
Overcast	I	0	4
Rainy	I	2	3

Temp.	l	No	Yes
Hot		2	2
Mild		2	4
Cool		1	3

Yes
3
6

I	No	Yes
	2	6
	3	3
	 	2

Outlook	I	No	Yes
Sunny	l	3/5	2/9
Overcast	I	0/5	4/9
Rainy		2/5	3/9

Temp.		No	Yes
Hot		2/5	2/9
Mild		2/5	4/9
Cool	 	1/5	3/9

Humidity	/	No	Yes
High	ı	4/5	3/9
Normal		1/5	6/9

Windy		No	Yes
False	I	2/5	6/9
True	I	3/5	3/9

Likelihood Tables

Bayesian Classifier - Predicting a new day

Outlook	Temp.	Humidity	Windy	Play	
sunny	cool	high	true	?	

Rainy

2/5

3/9

Cool

1/5

3/9

Spam Classification Example

...and we also received
spam (unwanted
messages that are usually
scams or unsolicited
advertisements)...

So, the first thing we do is make a histogram of all the words that occur in the normal messages from friends and family.

p(**Dear** | **Spam**) =
$$\frac{2}{7}$$
 = 0.29

Because we have calculated the probabilities of discrete, individual words, and not the probability of something continuous, like weight or height, these **Probabilities** are also called **Likelihoods**.

$$p(Dear | S) = 0.29$$

$$p(Lunch | S) = 0.00$$

$$p(Money | S) = 0.57$$

And we want to decide if is a normal message or spam.

For example, since 8 of the 12 messages are normal messages, our initial guess will be 0.67.

TERMINOLOGY ALERT!!!!

The initial guess that we observe a Normal messages is called a Prior Probability.

Dear Friend

Now we just plug in the values that we worked out earlier and do the math...

$$p(N) \times p(Dear \mid N) \times p(Friend \mid N)$$

Dear Friend

However, technically, it is proportional to the probability that the message is normal, given that it says Dear Friend.

 $0.67 \times 0.47 \times 0.29 = 0.09 \propto p(N | Dear Friend)$

p(Dear | N) = 0.47p(N) = 0.67

...and the probability that the word **Friend** occurs in spam

$$p(S) \times p(Dear | S) \times p(Friend | S)$$

$$p(Dear | N) = 0.47$$

p(**Friend**
$$|$$
 N $) = 0.29$

$$p(Lunch | N) = 0.18$$

$$p(Money | N) = 0.06$$

$$p(N) \times p(Dear \mid N) \times p(Friend \mid N) = 0.09$$

$$p(S) \times p(Dear \mid S) \times p(Friend \mid S) = 0.01$$

$$p(Dear | S) = 0.29$$

$$p(Lunch | S) = 0.00$$

$$p(Money | S) = 0.57$$

$$p(S) = 0.33$$

Bayesian Classifier - zero frequency problem

What if a descriptor value doesn't occur with every class value

 Remedy: add 1 to the count for every descriptor-class combination (Laplace Estimator)

Outlook	I	No	Yes
Sunny	I	3+1	2+1
Overcast	I	0+1	4+1
Rainy	I	2+1	3+1

Temp.	l	No	Yes
Hot		2+1	2+1
Mild		2+1	4+1
Cool		1+1	3+1

Humidity		No	Yes
High	I	4+1	3+1
Normal		1+1	6+1

Windy	I	No	Yes
False		2+1	6+1
True		3+1	3+1

Bayesian Classifier - Missing values

- Training: instance is not included in frequency count for attribute value-class combination
- Testing: attribute will be omitted from calculation

Example:

Outlook	Temp.	Humidity	Windy	Play
?	cool	high	true	?

$$P(yes|X) = \frac{2/9}{2} \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238$$

$$P(no|X) = \frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{5}{14} = 0.0343$$

$$P(yes|X) = 0.0238/(0.0238+0.0343) = 0.41$$

$$P(\mathbf{no}|X) = 0.0343/(0.0238+0.0343) = 0.59$$

Laplace Correction

Avoid getting 1 or 0 as an answer

•
$$R_{j}(1,1) = \frac{\#(x_{j}^{j} = 1 \land y_{j}^{j} = 1) + 1}{\#(y_{j}^{j} = 1) + 2}$$

$$\cdot R_{j}(0,1) = 1 - R_{j}(1,1)$$

•
$$R_{j}(1,0) = \#(x_{j}^{j} = 1 \land y^{j} = 0) + 1$$

($y^{j} = 0$) + 2

$$\cdot R_i(0,0) = 1 - R_i(1,0)$$

Example with Correction

f ₁	f ₂	f_3	f ₄	у
0	1	1	0	1
0	0	1	1	1
1	0	1	0	1
0	0	1	1	1
0	0	0	0	1
1	0	0	1	0
1	1	0	1	0
1	0	0	0	0
1	1	0	1	0
1	0	1	1	0

$$R_1(1,1) = 2/7$$
 $R_1(0,1) = 5/7$ $R_1(1,0) = 6/7$ $R_1(0,0) = 1/7$ $R_2(1,1) = 2/7$ $R_2(0,1) = 5/7$ $R_2(1,0) = 3/7$ $R_2(0,0) = 4/7$ $R_3(1,1) = 5/7$ $R_3(1,0) = 2/7$ $R_3(0,1) = 2/7$ $R_3(0,0) = 5/7$ $R_4(1,1) = 3/7$ $R_4(0,1) = 4/7$ $R_4(1,0) = 5/7$

Prediction with correction

$$R_1(1,1) = 2/7$$
 $R_1(0,1) = 5/7$ $R_1(1,0) = 6/7$ $R_1(0,0) = 1/7$ $R_2(1,1) = 2/7$ $R_2(0,1) = 5/7$ $R_2(1,0) = 3/7$ $R_2(0,0) = 4/7$ $R_3(1,1) = 5/7$ $R_3(0,1) = 2/7$ $R_3(1,0) = 2/7$ $R_4(1,1) = 3/7$ $R_4(0,1) = 4/7$ $R_4(1,0) = 5/7$ $R_4(0,0) = 2/7$

New x = < 0,0,1,1>
S(1) =
$$R_1(0,1) * R_2(0,1) * R_3(1,1) * R_4(1,1) = .156$$

S(0) = $R_1(0,0) * R_2(0,0) * R_3(1,0) * R_4(1,0) = .017$
S(1) > S(0), so predict class 1

Bayesian Classifier in Medicine

Cough

$$P(Cold \mid Cough) = \frac{P(Cold)P(Cough \mid Cold)}{P(Cough)}$$

Total number of patients = 1000

Total number of patients with Cold = 400P(Cold) = 400/1000 = 0.4

Total number of patients with Cough = 600P(Cough) = 600/1000 = 0.6

Total number of patients with Cough & Cold = 120 P(Cough/Cold) = 120/400 = 0.3

$$P(Cold/Cough) = (0.4 * 0.3) / 0.6 = 0.2$$

Bayesian Classifier in Medicine

$$P(Flu \mid Cough) = \frac{P(Flu)P(Cough \mid Flu)}{P(Cough)}$$

Total number of patients = 1000

Total number of Flu = 200 P(Flu) = 200/1000 = 0.2

Total number of Cough = 600P(Cough) = 600/1000 = 0.6

Total number of patients with Cough & Flu = 200 P(Cough/Flu) = 200/200 = 1.0

$$P(Flu/Cough) = (0.2 * 1.0) / 0.6 = 0.33$$

Does patient have cancer or not?

- A patient takes a lab test and the result comes back positive. It is known that the test returns a correct positive result in only 98% of the cases and a correct negative result in only 97% of the cases. Furthermore, only 0.008 of the entire population has this disease.
 - 1. What is the probability that this patient has cancer?
 - 2. What is the probability that he does not have cancer?
 - 3. What is the diagnosis?

```
hypothesis1: 'cancer'
hypothesis2:'¬cancer' } hypothesis space H
-data: '+'
1.P(cancer \mid +) = \frac{P(+ \mid cancer)P(cancer)}{P(+)} = \frac{\dots}{\dots} = \dots
      P(+|cancer) = 0.98
      P(cancer) = 0.008
     P(+) = P(+ | cancer)P(cancer) + P(+ | \neg cancer)P(\neg cancer)
           P(+ | \neg cancer) = 0.03
           P(\neg cancer) = \dots
```

$$2.P(\neg cancer \mid +) = \dots$$

3.Diagnosis??

Bayesian Classifier - Discussion

- One of the most used model in AI and ML
- However adding too many redundant variables will cause problem
- Works with any data type (nominal and numerical)
- Show a clear statistical picture of the descriptor-class or input/output relationship