

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

## «МИРЭА – Российский технологический университет»

## ИНСТИТУТ КИБЕРНЕТИКИ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

# Лабораторная работа 3

по курсу «Системы массового обслуживания»

#### ВАРИАНТ 44

| Тема: | ««Многоканальные системы массового обслуживания |
|-------|-------------------------------------------------|
|       | с бесконечной очередью»                         |

Выполнил: Студент 4-го курса Мусатов Д. Ю

Группа: КМБО-03-18

## Содержание

| 1        | Зад | цание                                               | 3  |
|----------|-----|-----------------------------------------------------|----|
| <b>2</b> | Teo | ретическая часть                                    | 7  |
|          | 2.1 | Многоканальные СМО $(M M n)$ с бесконечной очередью | 7  |
|          | 2.2 | Описание рассматриваемых СМО                        | 8  |
|          | 2.3 | Средства языка программирования                     | 8  |
| 3        | Рез | ультаты рассчётов                                   | 9  |
|          | 3.1 | Система массового обслуживания (D M 13)             | 9  |
|          | 3.2 | Система массового обслуживания (M D 13)             |    |
|          | 3.3 | Система массового обслуживания (M M 13)             | 19 |
| 4        | Ана | ализ результатов                                    | 24 |
|          | 4.1 | Система массового обслуживания (D M 13)             | 24 |
|          | 4.2 | Система массового обслуживания (M D 13)             | 26 |
|          | 4.3 | Система массового обслуживания (M M 13)             | 28 |
| 5        | Спі | исок литературы                                     | 30 |
| 6        | Прі | иложение                                            | 31 |

Содержание 2

#### 1 Задание

В рассматриваемых системах массового обслуживания (СМО) состояние в любой момент времени t характеризуется числом заявок, находящихся в СМО. Для всех СМО задано количество приборов n, все приборы пронумерованы.

Событием в развитии СМО является переход из одного состояния в другое. События могут быть двух типов: 1 - появление в системе новой заявки, 2— завершение обслуживания заявки прибором (при этом данный прибор освобождается, и, если есть заявки в очереди, то первая из них поступает сразу же на обслуживание в этот прибор). Если при появлении в системе новой заявки есть свободные приборы, то она сразу же принимается на обслуживание свободным прибором с наименьшим номером, в противном случае заявка становится в очередь типа FIFO.

I. Система массового обслуживания (D|M|n).

#### Дано:

- время между приходом заявок  $\Delta T_3$  (заданная постоянная величина);
- параметр  $\mu$  показательного распределения времени обслуживания заявки каждым прибором.

В момент поступлении каждой заявки на обслуживание в прибор определяется время её обслуживания  $t_{\text{обсл}}$  в соответствии с показательным законом распределения с заданным параметром  $\mu$ .

Предполагается, что в начальный момент времени t=0 в СМО нет заявок, т.е. состояние системы 0, и через заданное время  $\Delta T_3$  в СМО поступит первая заявка (произойдет событие с номером 1). Момент наступления первого события (типа 1) равен  $t_{\rm co6}(1)=\Delta T_3$ , в этот момент определяется время обслуживания  $t_{\rm o6cn}(1)$  заявки 1 в соответствии с показательным законом распределения с параметром  $\mu$ . После события 1 система находится в состоянии 1.

II. Система массового обслуживания (M|D|n).

#### Дано:

- среднее число заявок  $\lambda$ , поступающих за единицу времени (время между приходом заявок имеет показательное распределение с параметром  $\lambda$ );
- $\bullet$  время обслуживания заявки прибором  $T_{\rm of}$  (заданная постоянная величина).

Предполагается, что в начальный момент времени t=0 система находится в состоянии 0 и в этот момент определяется время поступления в систему первой заявки  $t_3(1)$  в соответствии с показательным законом распределения с параметром  $\lambda$ .

# **III.** Система массового обслуживания (M|M|n). Дано:

- среднее число заявок  $\lambda$ , поступающих за единицу времени (время между приходом заявок имеет показательное распределение с параметром  $\lambda$  );
- параметр  $\mu$  показательного распределения времени обслуживания заявки каждым прибором.

Предполагается, что в начальный момент времени t=0 система находится в состоянии 0 и в этот момент определяется время поступления в систему первой заявки  $t_3(1)$  в соответствии с показательным законом распределения с параметром  $\lambda$ , а в момент поступления каждой заявки на обслуживание в прибор определяется время её обслуживания  $t_{\text{обсл}}(1)$  в соответствии с показательным законом распределения с параметром  $\mu$ .

#### Требуется:

- 1. Провести моделирование первых 100 событий в развитии каждой системы.
- 2. Составить таблицу 1 с данными о событиях:
  - номер события l;
  - момент наступления события  $t_{coo}(l)$ ;
  - тип события Туре(l);
  - состояние СМО C(l) после события l минимальное оставшееся время  $t_{\text{осмин}}(l)$  обслуживания приборами заявок после события l (если после события все приборы свободны, то  $t_{\text{осмин}}(l) = -1$ )
  - время ожидания  $t_{o3}(l)$ , через которое после события l в СМО появится новая заявка;
  - номер заявки j(l), участвующей в событии l.
- 3. Составить таблицу 2 с данными о всех поступивших заявках:
  - номер заявки j;
  - момент  $t_3(j)$  появления заявки j в СМО;
  - номер места в очереди q(j), на которое попала заявка j (если заявка сразу начала обслуживаться, то номер места в очереди q(j) = 0);
  - время пребывания заявки в очереди  $t_{o4}(j)$
  - момент начала обслуживания заявки  $t_{\text{ноб}}(j)$ ;

- ullet время обслуживания заявки  $t_{
  m oбсл}(j)$
- ullet момент  $t_{\text{коб}}(j)$  окончания обслуживания заявки j и выхода её из СМО.
- 4. Составить таблицу 3 с данными о приборах:
  - номер прибора k;
  - общее число заявок N(k), поступивших на обслуживание в данный прибор на интервале  $[0, t_{\cos}(100)]$ ;
  - общее время занятости прибора  $t_{\text{зан}}(k)$  на интервале  $[0, t_{\cos}(100)]$ .
  - коэффициент простоя прибора на интервале  $[0, t_{co6} (100)]$  (отношение времени простоя прибора на интервале  $[0, t_{co6} (100)]$  к  $t_{co6} (100)$ );

#### 5. Найти:

- число заявок J(100), поступивших в СМО на интервале  $[0, t_{coo}(100)]$ ;
- число JF(100) полностью обслуженных заявок на интервале  $[0, t_{\cos}(100)]$ ;
- среднее число заявок, находившихся в СМО, на интервале  $[0, t_{\text{соб}}(100)]$ , которое находится по формуле  $\bar{z}(100) = \frac{1}{100} \sum_{l=1}^{100} z(l)$ , где z(l) число заявок в СМО после события l;
- среднее время пребывания заявок в очереди на интервале  $[0, t_{\text{соб}}(100)]$ , которое находится по формуле  $\bar{t}_{\text{оч}}(100) = \frac{1}{JF(100)} \sum_{j=1}^{JF(100)} t_{\text{оч}}(j)$ ; среднее время пребывания заявок в СМО на интервале  $[0, t_{\text{соб}}(100)]$ , которое находится по формуле  $\bar{t}_{CMO}(100) = \frac{1}{JF(100)} \sum_{j=1}^{JF(100)} [t_{\text{коб}}(j) t_3(j)]$

Для СМО (D|M|n) и (M|D|n) составить таблицу относительных частот пребывания СМО в состояниях следующего вида:

| i | $v_i(100)$ |
|---|------------|
| 0 | $v_0(100)$ |
| 1 | $v_1(100)$ |
|   |            |

где i - состояние СМО,  $v_i(100)$  - отношение числа попаданий СМО в состояние i за 100 событий к 100.

Для СМО(M|M|n) найти первые значения стационарных вероятностей состояний  $(r_0, r_1, r_2, \ldots, r_M)$ , где  $M = \max\{C(l), l = 1, \ldots, 100\}$  и составить таблицу относительных частот пребывания СМО в состояниях следующего вида:

| i | $r_i$                | $v_i(100)$                | $ v_i(100) - r_i $                    |
|---|----------------------|---------------------------|---------------------------------------|
| 0 | $r_0$                | $v_0(100)$                | $ v_0(100) - r_0 $                    |
| 1 | $r_1$                | $v_1(100)$                | $ v_1(100) - r_1 $                    |
|   |                      |                           |                                       |
| M | $r_M$                | $v_M(100)$                | $ v_M(100) - r_M $                    |
|   | $\sum_{i=0}^{M} r_i$ | $\sum_{i=0}^{M} v_i(100)$ | $\max\left\{ v_i(100) - r_i \right\}$ |

Вывод результатов проводить с округлением до 0,00001.

#### 2 Теоретическая часть

#### 2.1 Многоканальные СМО (M|M|n) с бесконечной очередью

Имеется n-канальная СМО с неограниченной очередью. Поток заявок, поступающих в СМО, имеет интенсивность  $\lambda$ , а поток обслуживания – интенсивность  $\mu$ . Система может находиться в одном из состояний  $S_0, S_1, S_2, \ldots, S_k, \ldots, S_n, \ldots$ , нумеруемых по числу заявок, находящихся в СМО:  $S_0$  – в системе нет заявок (все каналы свободны);  $S_1$  – занят один канал, остальные свободны;  $S_2$  – заняты два канала, остальные свободны; ...  $S_k$  – занято k каналов, остальные свободны; ...  $S_n$  – заняты все n каналов (очереди нет);  $S_{n+1}$  – заняты все n каналов, в очереди одна заявка; ...  $S_{n+l}$  – заняты все n каналов, n заявок стоит в очереди, и т.д.

Граф состояний системы



Формулы для многоканальной СМО (M|M|n):

• Стационарные вероятности состояний:

$$r_0 = \left\{ \sum_{k=0}^{n-1} \frac{\rho^k}{k!} + \frac{\rho^n}{n!} \cdot \frac{1}{1-\nu} \right\}^{-1}$$
 
$$r_k = \frac{\rho^k}{k!} r_0, \quad 1 \le k \le n$$
 
$$r_{n+l} = \nu^l \cdot r_n = \nu^l \cdot \frac{\rho^n}{n!} \cdot r_0, l \ge 1$$
 где  $\rho = \frac{\lambda}{\mu}, \quad \nu = \frac{\lambda}{n\mu} = \frac{\rho}{n}$ 

• Среднее число занятых приборов:

$$\overline{k} = \rho = \frac{\lambda}{\mu}$$

• Средняя длина очереди:

$$\bar{r} = \frac{\nu r_n}{(1 - v)^2}$$

• Среднее время пребывания заявок в очереди:

$$\bar{t}_{\text{OH}} = \frac{r_n}{n\mu(1-\nu)^2} = \frac{n\mu r_n}{(n\mu-\lambda)^2}$$

• Среднее время пребывания заявок в СМО:

$$\bar{t}_{\rm cmo} = \bar{t}_{\rm oq} + \frac{1}{\mu}$$

#### 2.2 Описание рассматриваемых СМО

В рассматриваемых системах массового обслуживания (СМО) состояние в любой момент времени t характеризуется числом заявок, находящихся в СМО. Для всех СМО количество приборов n, все, приборы пронумерованы.

Событием в развитии СМО является переход нз одного состояния в другое. События могут быть двух типов: 1 - появление в СМО новой заявки, 2 - завершение обслуживания заявки прибором (при этом прибор освобождается н, если есть заявки в очереди, то первая нз них поступает сразу же на обслуживание в прибор). Если при появлении в СМО новой заявки прибор свободен, то она сразу же принимается на обслуживание прибором, в противном случае заявка становится в очередь типа FIFO.

#### 2.3 Средства языка программирования

В программе расчёта был использован язык программирования Python. Работа осуществлялась в среде Jupyter Notebook.

Функции, использованные в ходе работы:

- numpy.random.exponential (1/x)— генерация случайной величины или случайной выборки из показательного распределения;
  - $\operatorname{round}(x,n)$  округление числа x до n-ого знака

## 3 Результаты рассчётов

## 3.1 Система массового обслуживания (D|M|13)

Вариант №44.

Начальные данные:  $\Delta T_3 = 0.21, \;\; \mu = 0.405$ 

Таблица 1.

| l  | $t_{\cos}(l)$ | Type(l) | C(l) | $t_{ m oct}$ | $t_{\text{ож3}}$ | j(l) |
|----|---------------|---------|------|--------------|------------------|------|
| 1  | 0.21          | 1       | 1    | 1.3588       | 0.21             | 1    |
| 2  | 0.42          | 1       | 2    | 1.1488       | 0.21             | 2    |
| 3  | 0.63          | 1       | 3    | 0.53371      | 0.21             | 3    |
| 4  | 0.84          | 1       | 4    | 0.32371      | 0.21             | 4    |
| 5  | 1.05          | 1       | 5    | 0.11371      | 0.21             | 5    |
| 6  | 1.16371       | 2       | 4    | 0.40509      | 0.09629          | 3    |
| 7  | 1.26          | 1       | 5    | 0.3088       | 0.21             | 6    |
| 8  | 1.47          | 1       | 6    | 0.0988       | 0.21             | 7    |
| 9  | 1.5688        | 2       | 5    | 1.16726      | 0.1112           | 1    |
| 10 | 1.68          | 1       | 6    | 1.05606      | 0.21             | 8    |
| 11 | 1.89          | 1       | 7    | 0.84606      | 0.21             | 9    |
| 12 | 2.1           | 1       | 8    | 0.63606      | 0.21             | 10   |
| 13 | 2.31          | 1       | 9    | 0.42606      | 0.21             | 11   |
| 14 | 2.52          | 1       | 10   | 0.21606      | 0.21             | 12   |
| 15 | 2.73          | 1       | 11   | 0.00606      | 0.21             | 13   |
| 16 | 2.73606       | 2       | 10   | 0.44868      | 0.20394          | 5    |
| 17 | 2.94          | 1       | 11   | 0.24474      | 0.21             | 14   |
| 18 | 3.15          | 1       | 12   | 0.03474      | 0.21             | 15   |
| 19 | 3.18474       | 2       | 11   | 0.21337      | 0.17526          | 10   |
| 20 | 3.36          | 1       | 12   | 0.03811      | 0.21             | 16   |
| 21 | 3.39811       | 2       | 11   | 0.2319       | 0.17189          | 7    |
| 22 | 3.57          | 1       | 12   | 0.06001      | 0.21             | 17   |
| 23 | 3.63001       | 2       | 11   | 0.26114      | 0.14999          | 16   |
| 24 | 3.78          | 1       | 12   | 0.11115      | 0.21             | 18   |
| 25 | 3.89115       | 2       | 11   | 0.00999      | 0.09885          | 11   |
| 26 | 3.90114       | 2       | 10   | 0.26278      | 0.08886          | 17   |

| l  | $t_{\cos}(l)$ | Type(l) | C(l) | $t_{ m oct}$ | $t_{\text{ожз}}$ | j(l) |
|----|---------------|---------|------|--------------|------------------|------|
| 27 | 3.99          | 1       | 11   | 0.17392      | 0.21             | 19   |
| 28 | 4.16392       | 2       | 10   | 0.63865      | 0.03608          | 9    |
| 29 | 4.2           | 1       | 11   | 0.60257      | 0.21             | 20   |
| 30 | 4.41          | 1       | 12   | 0.39257      | 0.21             | 21   |
| 31 | 4.62          | 1       | 13   | 0.18257      | 0.21             | 22   |
| 32 | 4.80257       | 2       | 12   | 0.31628      | 0.02743          | 4    |
| 33 | 4.83          | 1       | 13   | 0.28885      | 0.21             | 23   |
| 34 | 5.04          | 1       | 14   | 0.07885      | 0.21             | 24   |
| 35 | 5.11885       | 2       | 13   | 0.31407      | 0.13115          | 24   |
| 36 | 5.25          | 1       | 14   | 0.18292      | 0.21             | 25   |
| 37 | 5.43292       | 2       | 13   | 0.01045      | 0.02708          | 25   |
| 38 | 5.44337       | 2       | 12   | 0.18784      | 0.01663          | 6    |
| 39 | 5.46          | 1       | 13   | 0.17121      | 0.21             | 26   |
| 40 | 5.63121       | 2       | 12   | 0.1167       | 0.03879          | 12   |
| 41 | 5.67          | 1       | 13   | 0.07791      | 0.21             | 27   |
| 42 | 5.74791       | 2       | 12   | 0.1642       | 0.13209          | 8    |
| 43 | 5.88          | 1       | 13   | 0.03211      | 0.21             | 28   |
| 44 | 5.91211       | 2       | 12   | 0.10495      | 0.17789          | 19   |
| 45 | 6.01706       | 2       | 11   | 0.16687      | 0.07294          | 26   |
| 46 | 6.09          | 1       | 12   | 0.09393      | 0.21             | 29   |
| 47 | 6.18393       | 2       | 11   | 0.03608      | 0.11607          | 13   |
| 48 | 6.22001       | 2       | 10   | 0.03545      | 0.07999          | 18   |
| 49 | 6.25546       | 2       | 9    | 0.1377       | 0.04454          | 21   |
| 50 | 6.3           | 1       | 10   | 0.09316      | 0.21             | 30   |
| 51 | 6.39316       | 2       | 9    | 0.19637      | 0.11684          | 14   |
| 52 | 6.51          | 1       | 10   | 0.07953      | 0.21             | 31   |
| 53 | 6.58953       | 2       | 9    | 0.21615      | 0.13047          | 22   |
| 54 | 6.72          | 1       | 10   | 0.08568      | 0.21             | 32   |
| 55 | 6.80568       | 2       | 9    | 0.43452      | 0.12432          | 25   |
| 56 | 6.93          | 1       | 10   | 0.3102       | 0.21             | 33   |
| 57 | 7.14          | 1       | 11   | 0.1002       | 0.21             | 34   |
| 58 | 7.2402        | 2       | 10   | 0.65502      | 0.1098           | 29   |
| 59 | 7.35          | 1       | 11   | 0.37055      | 0.21             | 35   |
| 60 | 7.56          | 1       | 12   | 0.16055      | 0.21             | 36   |
| 61 | 7.72055       | 2       | 11   | 0.17467      | 0.04945          | 35   |
| 62 | 7.77          | 1       | 12   | 0.12522      | 0.21             | 37   |
| 63 | 7.89522       | 2       | 11   | 0.00519      | 0.08478          | 31   |

| l   | $t_{\rm co6}(l)$ | Type(l) | C(l) | $t_{ m oct}$ | $t_{\text{ож3}}$ | j(l) |
|-----|------------------|---------|------|--------------|------------------|------|
| 64  | 7.90041          | 2       | 10   | 0.11507      | 0.07959          | 28   |
| 65  | 7.98             | 1       | 11   | 0.03548      | 0.21             | 38   |
| 66  | 8.01548          | 2       | 10   | 0.69457      | 0.17452          | 15   |
| 67  | 8.19             | 1       | 11   | 0.17365      | 0.21             | 39   |
| 68  | 8.36365          | 2       | 10   | 0.3464       | 0.03635          | 39   |
| 69  | 8.4              | 1       | 11   | 0.31005      | 0.21             | 40   |
| 70  | 8.61             | 1       | 12   | 0.10005      | 0.21             | 41   |
| 71  | 8.71005          | 2       | 11   | 0.41308      | 0.10995          | 34   |
| 72  | 8.82             | 1       | 12   | 0.30313      | 0.21             | 42   |
| 73  | 9.03             | 1       | 13   | 0.09313      | 0.21             | 43   |
| 74  | 9.12313          | 2       | 12   | 0.19089      | 0.11687          | 30   |
| 75  | 9.24             | 1       | 13   | 0.07402      | 0.21             | 44   |
| 76  | 9.31402          | 2       | 12   | 0.08487      | 0.13598          | 42   |
| 77  | 9.39889          | 2       | 11   | 0.35095      | 0.05111          | 33   |
| 78  | 9.45             | 1       | 12   | 0.29984      | 0.21             | 45   |
| 79  | 9.66             | 1       | 13   | 0.08984      | 0.21             | 46   |
| 80  | 9.74984          | 2       | 12   | 0.27168      | 0.12016          | 23   |
| 81  | 9.87             | 1       | 13   | 0.15152      | 0.21             | 47   |
| 82  | 10.02152         | 2       | 12   | 0.49221      | 0.05848          | 32   |
| 83  | 10.08            | 1       | 13   | 0.43373      | 0.21             | 48   |
| 84  | 10.29            | 1       | 14   | 0.22373      | 0.21             | 49   |
| 85  | 10.5             | 1       | 15   | 0.01373      | 0.21             | 50   |
| 86  | 10.51373         | 2       | 14   | 0.38257      | 0.19627          | 49   |
| 87  | 10.71            | 1       | 15   | 0.1863       | 0.21             | 51   |
| 88  | 10.8963          | 2       | 14   | 0.06279      | 0.0237           | 50   |
| 89  | 10.92            | 1       | 15   | 0.03909      | 0.21             | 52   |
| 90  | 10.95909         | 2       | 14   | 0.11686      | 0.17091          | 51   |
| 91  | 11.07595         | 2       | 13   | 0.09517      | 0.05405          | 52   |
| 92  | 11.13            | 1       | 14   | 0.04112      | 0.21             | 53   |
| 93  | 11.17112         | 2       | 13   | 0.07064      | 0.16888          | 53   |
| 94  | 11.24176         | 2       | 12   | 0.05753      | 0.09824          | 24   |
| 95  | 11.29929         | 2       | 11   | 0.4973       | 0.04071          | 52   |
| 96  | 11.34            | 1       | 12   | 0.45659      | 0.21             | 54   |
| 97  | 11.55            | 1       | 13   | 0.24659      | 0.21             | 55   |
| 98  | 11.76            | 1       | 14   | 0.03659      | 0.21             | 56   |
| 99  | 11.79659         | 2       | 13   | 0.1144       | 0.17341          | 56   |
| 100 | 11.91099         | 2       | 12   | 0.65534      | 0.05901          | 38   |

Таблица 2.

| j  | $t_{3}(j)$ | q(j) | $t_{	ext{ou}}(j)$ | $t_{ m HOO}$ | $t_{ m o6c}$ | $t_{ m koo}$ |
|----|------------|------|-------------------|--------------|--------------|--------------|
| 1  | 0.21       | 0    | 0                 | 0.21         | 1.3588       | 1.5688       |
| 2  | 0.42       | 0    | 0                 | 0.42         | 5.01292      | 5.43292      |
| 3  | 0.63       | 0    | 0                 | 0.63         | 0.53371      | 1.16371      |
| 4  | 0.84       | 0    | 0                 | 0.84         | 3.96257      | 4.80257      |
| 5  | 1.05       | 0    | 0                 | 1.05         | 1.68606      | 2.73606      |
| 6  | 1.26       | 0    | 0                 | 1.26         | 4.18337      | 5.44337      |
| 7  | 1.47       | 0    | 0                 | 1.47         | 1.92811      | 3.39811      |
| 8  | 1.68       | 0    | 0                 | 1.68         | 4.06791      | 5.74791      |
| 9  | 1.89       | 0    | 0                 | 1.89         | 2.27392      | 4.16392      |
| 10 | 2.1        | 0    | 0                 | 2.1          | 1.08474      | 3.18474      |
| 11 | 2.31       | 0    | 0                 | 2.31         | 1.58115      | 3.89115      |
| 12 | 2.52       | 0    | 0                 | 2.52         | 3.11121      | 5.63121      |
| 13 | 2.73       | 0    | 0                 | 2.73         | 3.45393      | 6.18393      |
| 14 | 2.94       | 0    | 0                 | 2.94         | 3.45316      | 6.39316      |
| 15 | 3.15       | 0    | 0                 | 3.15         | 4.86548      | 8.01548      |
| 16 | 3.36       | 0    | 0                 | 3.36         | 0.27001      | 3.63001      |
| 17 | 3.57       | 0    | 0                 | 3.57         | 0.33114      | 3.90114      |
| 18 | 3.78       | 0    | 0                 | 3.78         | 2.44001      | 6.22001      |
| 19 | 3.99       | 0    | 0                 | 3.99         | 1.92211      | 5.91211      |
| 20 | 4.2        | 0    | 0                 | 4.2          | 0.91885      | 5.11885      |
| 21 | 4.41       | 0    | 0                 | 4.41         | 1.84546      | 6.25546      |
| 22 | 4.62       | 0    | 0                 | 4.62         | 1.96953      | 6.58953      |
| 23 | 4.83       | 0    | 0                 | 4.83         | 4.91984      | 9.74984      |
| 24 | 5.04       | 1    | 0.07885           | 5.11885      | 6.12291      | 11.24176     |
| 25 | 5.25       | 1    | 0.18292           | 5.43292      | 1.37276      | 6.80568      |
| 26 | 5.46       | 0    | 0                 | 5.46         | 0.55706      | 6.01706      |

| j  | $t_{\scriptscriptstyle 3}(j)$ | q(j) | $t_{	ext{oq}}(j)$ | $t_{ m ho6}$ | $t_{ m oбcл}$ | $t_{ m koo}$ |
|----|-------------------------------|------|-------------------|--------------|---------------|--------------|
| 27 | 5.67                          | 0    | 0                 | 5.67         | 7.73433       | 13.40433     |
| 28 | 5.88                          | 0    | 0                 | 5.88         | 2.02041       | 7.90041      |
| 29 | 6.09                          | 0    | 0                 | 6.09         | 1.1502        | 7.2402       |
| 30 | 6.3                           | 0    | 0                 | 6.3          | 2.82313       | 9.12313      |
| 31 | 6.51                          | 0    | 0                 | 6.51         | 1.38522       | 7.89522      |
| 32 | 6.72                          | 0    | 0                 | 6.72         | 3.30152       | 10.02152     |
| 33 | 6.93                          | 0    | 0                 | 6.93         | 2.46889       | 9.39889      |
| 34 | 7.14                          | 0    | 0                 | 7.14         | 1.57005       | 8.71005      |
| 35 | 7.35                          | 0    | 0                 | 7.35         | 0.37055       | 7.72055      |
| 36 | 7.56                          | 0    | 0                 | 7.56         | 7.31119       | 14.87119     |
| 37 | 7.77                          | 0    | 0                 | 7.77         | 10.62705      | 18.39705     |
| 38 | 7.98                          | 0    | 0                 | 7.98         | 3.93099       | 11.91099     |
| 39 | 8.19                          | 0    | 0                 | 8.19         | 0.17365       | 8.36365      |
| 40 | 8.4                           | 0    | 0                 | 8.4          | 4.92875       | 13.32875     |
| 41 | 8.61                          | 0    | 0                 | 8.61         | 2.2863        | 10.8963      |
| 42 | 8.82                          | 0    | 0                 | 8.82         | 0.49402       | 9.31402      |
| 43 | 9.03                          | 0    | 0                 | 9.03         | 3.53633       | 12.56633     |
| 44 | 9.24                          | 0    | 0                 | 9.24         | 4.94253       | 14.18253     |
| 45 | 9.45                          | 0    | 0                 | 9.45         | 5.26098       | 14.71098     |
| 46 | 9.66                          | 0    | 0                 | 9.66         | 0.85373       | 10.51373     |
| 47 | 9.87                          | 0    | 0                 | 9.87         | 1.92659       | 11.79659     |
| 48 | 10.08                         | 0    | 0                 | 10.08        | 0.99595       | 11.07595     |
| 49 | 10.29                         | 1    | 0.22373           | 10.51373     | 0.44536       | 10.95909     |
| 50 | 10.5                          | 2    | 0.3963            | 10.8963      | 0.27482       | 11.17112     |
| 51 | 10.71                         | 2    | 0.24909           | 10.95909     | 4.95224       | 15.91133     |
| 52 | 10.92                         | 2    | 0.15595           | 11.07595     | 0.22334       | 11.29929     |
| 53 | 11.13                         | 1    | 0.04112           | 11.17112     | 1.77613       | 12.94725     |
| 54 | 11.34                         | 0    | 0                 | 11.34        | 2.14014       | 13.48014     |
| 55 | 11.55                         | 0    | 0                 | 11.55        | 3.65135       | 15.20135     |
| 56 | 11.76                         | 1    | 0.03659           | 11.79659     | 1.93727       | 13.73386     |

## 3.2 Система массового обслуживания (M|D|13).

Вариант №44.

Начальные данные:  $\lambda = 5.203, T_{\text{of}} = 2.468$ 

#### Таблица 1.

| l  | $t_{\cos}(l)$ | Type(l) | C(l) | $t_{\text{ост}}$ | $t_{\text{ож3}}$ | j(l) |
|----|---------------|---------|------|------------------|------------------|------|
| 1  | 0.60867       | 1       | 1    | 2.468            | 0.02144          | 1    |
| 2  | 0.63011       | 1       | 2    | 2.44656          | 0.18013          | 2    |
| 3  | 0.81024       | 1       | 3    | 2.26643          | 0.2594           | 3    |
| 4  | 1.06964       | 1       | 4    | 2.00703          | 0.11954          | 4    |
| 5  | 1.18918       | 1       | 5    | 1.88749          | 0.00763          | 5    |
| 6  | 1.19681       | 1       | 6    | 1.87986          | 0.04539          | 6    |
| 7  | 1.2422        | 1       | 7    | 1.83447          | 0.29624          | 7    |
| 8  | 1.53844       | 1       | 8    | 1.53823          | 0.10011          | 8    |
| 9  | 1.63855       | 1       | 9    | 1.43812          | 0.6757           | 9    |
| 10 | 2.31425       | 1       | 10   | 0.76242          | 0.01047          | 10   |
| 11 | 2.32472       | 1       | 11   | 0.75195          | 0.10622          | 11   |
| 12 | 2.43094       | 1       | 12   | 0.64573          | 0.01339          | 12   |
| 13 | 2.44433       | 1       | 13   | 0.63234          | 0.2067           | 13   |
| 14 | 2.65103       | 1       | 14   | 0.42564          | 0.07466          | 14   |
| 15 | 2.72569       | 1       | 15   | 0.35098          | 0.21568          | 15   |
| 16 | 2.94137       | 1       | 16   | 0.1353           | 0.13537          | 16   |
| 17 | 3.07667       | 2       | 15   | 0.02144          | 7e-05            | 14   |
| 18 | 3.07674       | 1       | 16   | 0.02137          | 0.22669          | 17   |
| 19 | 3.09811       | 2       | 15   | 0.18013          | 0.20532          | 15   |
| 20 | 3.27824       | 2       | 14   | 0.2594           | 0.02519          | 16   |
| 21 | 3.30343       | 1       | 15   | 0.23421          | 0.09662          | 18   |
| 22 | 3.40005       | 1       | 16   | 0.13759          | 0.11254          | 19   |
| 23 | 3.51259       | 1       | 17   | 0.02505          | 0.06808          | 20   |
| 24 | 3.53764       | 2       | 16   | 0.11954          | 0.04303          | 17   |
| 25 | 3.58067       | 1       | 17   | 0.07651          | 0.42216          | 21   |
| 26 | 3.65718       | 2       | 16   | 0.00763          | 0.34565          | 18   |

| l  | $t_{\cos}(l)$ | Type(l) | C(l) | $t_{ m oct}$ | $t_{ m ox3}$ | j(l) |
|----|---------------|---------|------|--------------|--------------|------|
| 27 | 3.66481       | 2       | 15   | 0.04539      | 0.33802      | 19   |
| 28 | 3.7102        | 2       | 14   | 0.29624      | 0.29263      | 20   |
| 29 | 4.00283       | 1       | 15   | 0.00361      | 0.02469      | 22   |
| 30 | 4.00644       | 2       | 14   | 0.10011      | 0.02108      | 21   |
| 31 | 4.02752       | 1       | 15   | 0.07903      | 0.02497      | 23   |
| 32 | 4.05249       | 1       | 16   | 0.05406      | 0.16037      | 24   |
| 33 | 4.10655       | 2       | 15   | 0.6757       | 0.10631      | 22   |
| 34 | 4.21286       | 1       | 16   | 0.56939      | 0.07614      | 25   |
| 35 | 4.289         | 1       | 17   | 0.49325      | 0.03384      | 26   |
| 36 | 4.32284       | 1       | 18   | 0.45941      | 0.325        | 27   |
| 37 | 4.64784       | 1       | 19   | 0.13441      | 0.05581      | 28   |
| 38 | 4.70365       | 1       | 20   | 0.0786       | 0.25199      | 29   |
| 39 | 4.78225       | 2       | 19   | 0.01047      | 0.17339      | 23   |
| 40 | 4.79272       | 2       | 18   | 0.10622      | 0.16292      | 24   |
| 41 | 4.89894       | 2       | 17   | 0.01339      | 0.0567       | 25   |
| 42 | 4.91233       | 2       | 16   | 0.63234      | 0.04331      | 26   |
| 43 | 4.95564       | 1       | 17   | 0.58903      | 0.00202      | 30   |
| 44 | 4.95766       | 1       | 18   | 0.58701      | 0.05029      | 31   |
| 45 | 5.00795       | 1       | 19   | 0.53672      | 0.2709       | 32   |
| 46 | 5.27885       | 1       | 20   | 0.26582      | 0.15504      | 33   |
| 47 | 5.43389       | 1       | 21   | 0.11078      | 0.28455      | 34   |
| 48 | 5.54467       | 2       | 20   | 0.02144      | 0.17377      | 27   |
| 49 | 5.56611       | 2       | 19   | 0.18013      | 0.15233      | 28   |
| 50 | 5.71844       | 1       | 20   | 0.0278       | 0.2863       | 35   |
| 51 | 5.74624       | 2       | 19   | 0.2594       | 0.2585       | 29   |
| 52 | 6.00474       | 1       | 20   | 0.0009       | 0.02752      | 36   |
| 53 | 6.00564       | 2       | 19   | 0.11954      | 0.02662      | 30   |
| 54 | 6.03226       | 1       | 20   | 0.09292      | 0.13054      | 37   |
| 55 | 6.12518       | 2       | 19   | 0.00763      | 0.03762      | 31   |
| 56 | 6.13281       | 2       | 18   | 0.04539      | 0.02999      | 32   |
| 57 | 6.1628        | 1       | 19   | 0.0154       | 0.09608      | 38   |
| 58 | 6.1782        | 2       | 18   | 0.29624      | 0.08068      | 33   |
| 59 | 6.25888       | 1       | 19   | 0.21556      | 0.74768      | 39   |
| 60 | 6.47444       | 2       | 18   | 0.10011      | 0.53212      | 34   |
| 61 | 6.57455       | 2       | 17   | 0.6757       | 0.43201      | 35   |
| 62 | 7.00656       | 1       | 18   | 0.24369      | 0.15114      | 40   |
| 63 | 7.1577        | 1       | 19   | 0.09255      | 0.27069      | 41   |

| l   | $t_{\cos}(l)$ | Type(l) | C(l) | $t_{ m oct}$ | $t_{\text{ож3}}$ | j(l) |
|-----|---------------|---------|------|--------------|------------------|------|
| 64  | 7.25025       | 2       | 18   | 0.01047      | 0.17814          | 36   |
| 65  | 7.26072       | 2       | 17   | 0.10622      | 0.16767          | 37   |
| 66  | 7.36694       | 2       | 16   | 0.01339      | 0.06145          | 38   |
| 67  | 7.38033       | 2       | 15   | 0.63234      | 0.04806          | 39   |
| 68  | 7.42839       | 1       | 16   | 0.58428      | 0.00643          | 42   |
| 69  | 7.43482       | 1       | 17   | 0.57785      | 0.56254          | 43   |
| 70  | 7.99736       | 1       | 18   | 0.01531      | 0.37372          | 44   |
| 71  | 8.01267       | 2       | 17   | 0.02144      | 0.35841          | 40   |
| 72  | 8.03411       | 2       | 16   | 0.18013      | 0.33697          | 41   |
| 73  | 8.21424       | 2       | 15   | 0.2594       | 0.15684          | 42   |
| 74  | 8.37108       | 1       | 16   | 0.10256      | 0.0262           | 45   |
| 75  | 8.39728       | 1       | 17   | 0.07636      | 0.13279          | 46   |
| 76  | 8.47364       | 2       | 16   | 0.11954      | 0.05643          | 43   |
| 77  | 8.53007       | 1       | 17   | 0.06311      | 0.10905          | 47   |
| 78  | 8.59318       | 2       | 16   | 0.00763      | 0.04594          | 44   |
| 79  | 8.60081       | 2       | 15   | 0.04539      | 0.03831          | 45   |
| 80  | 8.63912       | 1       | 16   | 0.00708      | 0.01157          | 48   |
| 81  | 8.6462        | 2       | 15   | 0.29624      | 0.00449          | 46   |
| 82  | 8.65069       | 1       | 16   | 0.29175      | 0.04083          | 49   |
| 83  | 8.69152       | 1       | 17   | 0.25092      | 0.03206          | 50   |
| 84  | 8.72358       | 1       | 18   | 0.21886      | 0.14384          | 51   |
| 85  | 8.86742       | 1       | 19   | 0.07502      | 0.12482          | 52   |
| 86  | 8.94244       | 2       | 18   | 0.10011      | 0.0498           | 47   |
| 87  | 8.99224       | 1       | 19   | 0.05031      | 0.01365          | 53   |
| 88  | 9.00589       | 1       | 20   | 0.03666      | 0.39237          | 54   |
| 89  | 9.04255       | 2       | 19   | 0.6757       | 0.35571          | 48   |
| 90  | 9.39826       | 1       | 20   | 0.31999      | 0.3792           | 55   |
| 91  | 9.71825       | 2       | 19   | 0.01047      | 0.05921          | 49   |
| 92  | 9.72872       | 2       | 18   | 0.10622      | 0.04874          | 50   |
| 93  | 9.77746       | 1       | 19   | 0.05748      | 0.28079          | 56   |
| 94  | 9.83494       | 2       | 18   | 0.01339      | 0.22331          | 51   |
| 95  | 9.84833       | 2       | 17   | 0.63234      | 0.20992          | 52   |
| 96  | 10.05825      | 1       | 18   | 0.42242      | 0.02274          | 57   |
| 97  | 10.08099      | 1       | 19   | 0.39968      | 0.1033           | 58   |
| 98  | 10.18429      | 1       | 20   | 0.29638      | 0.08896          | 59   |
| 99  | 10.27325      | 1       | 21   | 0.20742      | 0.05194          | 60   |
| 100 | 10.32519      | 1       | 22   | 0.15548      | 0.02161          | 61   |

Таблица 2.

| j  | $t_3(j)$ | q(j) | $t_{\text{oq}}(j)$ | $t_{\text{HOO}}$ | $t_{ m obc}$ | $t_{\rm koo}$ |
|----|----------|------|--------------------|------------------|--------------|---------------|
| 1  | 0.60867  | 0    | 0                  | 0.60867          | 2.468        | 3.07667       |
| 2  | 0.63011  | 0    | 0                  | 0.63011          | 2.468        | 3.09811       |
| 3  | 0.81024  | 0    | 0                  | 0.81024          | 2.468        | 3.27824       |
| 4  | 1.06964  | 0    | 0                  | 1.06964          | 2.468        | 3.53764       |
| 5  | 1.18918  | 0    | 0                  | 1.18918          | 2.468        | 3.65718       |
| 6  | 1.19681  | 0    | 0                  | 1.19681          | 2.468        | 3.66481       |
| 7  | 1.2422   | 0    | 0                  | 1.2422           | 2.468        | 3.7102        |
| 8  | 1.53844  | 0    | 0                  | 1.53844          | 2.468        | 4.00644       |
| 9  | 1.63855  | 0    | 0                  | 1.63855          | 2.468        | 4.10655       |
| 10 | 2.31425  | 0    | 0                  | 2.31425          | 2.468        | 4.78225       |
| 11 | 2.32472  | 0    | 0                  | 2.32472          | 2.468        | 4.79272       |
| 12 | 2.43094  | 0    | 0                  | 2.43094          | 2.468        | 4.89894       |
| 13 | 2.44433  | 0    | 0                  | 2.44433          | 2.468        | 4.91233       |
| 14 | 2.65103  | 1    | 0.42564            | 3.07667          | 2.468        | 5.54467       |
| 15 | 2.72569  | 2    | 0.37242            | 3.09811          | 2.468        | 5.56611       |
| 16 | 2.94137  | 3    | 0.33687            | 3.27824          | 2.468        | 5.74624       |
| 17 | 3.07674  | 3    | 0.4609             | 3.53764          | 2.468        | 6.00564       |
| 18 | 3.30343  | 2    | 0.35375            | 3.65718          | 2.468        | 6.12518       |
| 19 | 3.40005  | 3    | 0.26476            | 3.66481          | 2.468        | 6.13281       |
| 20 | 3.51259  | 4    | 0.19761            | 3.7102           | 2.468        | 6.1782        |
| 21 | 3.58067  | 4    | 0.42577            | 4.00644          | 2.468        | 6.47444       |
| 22 | 4.00283  | 2    | 0.10372            | 4.10655          | 2.468        | 6.57455       |
| 23 | 4.02752  | 2    | 0.75473            | 4.78225          | 2.468        | 7.25025       |
| 24 | 4.05249  | 3    | 0.74023            | 4.79272          | 2.468        | 7.26072       |
| 25 | 4.21286  | 3    | 0.68608            | 4.89894          | 2.468        | 7.36694       |
| 26 | 4.289    | 4    | 0.62333            | 4.91233          | 2.468        | 7.38033       |

| j  | $t_{\scriptscriptstyle 3}(j)$ | q(j) | $t_{\text{oq}}(j)$ | $t_{	ext{hof}}$ | $t_{ m oбc}$ | $t_{ m koo}$ |
|----|-------------------------------|------|--------------------|-----------------|--------------|--------------|
| 27 | 4.32284                       | 5    | 1.22183            | 5.54467         | 2.468        | 8.01267      |
| 28 | 4.64784                       | 6    | 0.91827            | 5.56611         | 2.468        | 8.03411      |
| 29 | 4.70365                       | 7    | 1.04259            | 5.74624         | 2.468        | 8.21424      |
| 30 | 4.95564                       | 4    | 1.05               | 6.00564         | 2.468        | 8.47364      |
| 31 | 4.95766                       | 5    | 1.16752            | 6.12518         | 2.468        | 8.59318      |
| 32 | 5.00795                       | 6    | 1.12486            | 6.13281         | 2.468        | 8.60081      |
| 33 | 5.27885                       | 7    | 0.89935            | 6.1782          | 2.468        | 8.6462       |
| 34 | 5.43389                       | 8    | 1.04055            | 6.47444         | 2.468        | 8.94244      |
| 35 | 5.71844                       | 7    | 0.85611            | 6.57455         | 2.468        | 9.04255      |
| 36 | 6.00474                       | 7    | 1.24551            | 7.25025         | 2.468        | 9.71825      |
| 37 | 6.03226                       | 7    | 1.22846            | 7.26072         | 2.468        | 9.72872      |
| 38 | 6.1628                        | 6    | 1.20414            | 7.36694         | 2.468        | 9.83494      |
| 39 | 6.25888                       | 6    | 1.12145            | 7.38033         | 2.468        | 9.84833      |
| 40 | 7.00656                       | 5    | 1.00611            | 8.01267         | 2.468        | 10.48067     |
| 41 | 7.1577                        | 6    | 0.87641            | 8.03411         | 2.468        | 10.50211     |
| 42 | 7.42839                       | 3    | 0.78585            | 8.21424         | 2.468        | 10.68224     |
| 43 | 7.43482                       | 4    | 1.03882            | 8.47364         | 2.468        | 10.94164     |
| 44 | 7.99736                       | 5    | 0.59582            | 8.59318         | 2.468        | 11.06118     |
| 45 | 8.37108                       | 3    | 0.22973            | 8.60081         | 2.468        | 11.06881     |
| 46 | 8.39728                       | 4    | 0.24892            | 8.6462          | 2.468        | 11.1142      |
| 47 | 8.53007                       | 4    | 0.41237            | 8.94244         | 2.468        | 11.41044     |
| 48 | 8.63912                       | 3    | 0.40343            | 9.04255         | 2.468        | 11.51055     |
| 49 | 8.65069                       | 3    | 1.06756            | 9.71825         | 2.468        | 12.18625     |
| 50 | 8.69152                       | 4    | 1.0372             | 9.72872         | 2.468        | 12.19672     |
| 51 | 8.72358                       | 5    | 1.11136            | 9.83494         | 2.468        | 12.30294     |
| 52 | 8.86742                       | 6    | 0.98091            | 9.84833         | 2.468        | 12.31633     |
| 53 | 8.99224                       | 6    | -1                 | -1              | -1           | -1           |
| 54 | 9.00589                       | 7    | -1                 | -1              | -1           | -1           |
| 55 | 9.39826                       | 7    | -1                 | -1              | -1           | -1           |
| 56 | 9.77746                       | 6    | -1                 | -1              | -1           | -1           |
| 57 | 10.05825                      | 5    | -1                 | -1              | -1           | -1           |
| 58 | 10.08099                      | 6    | -1                 | -1              | -1           | -1           |
| 59 | 10.18429                      | 7    | -1                 | -1              | -1           | -1           |
| 60 | 10.27325                      | 8    | -1                 | -1              | -1           | -1           |
| 61 | 10.32519                      | 9    | -1                 | -1              | -1           | -1           |

## 3.3 Система массового обслуживания (M|M|13).

Вариант №44.

Начальные данные:  $\lambda = 5.203, \ \mu = 0.405$ 

#### Таблица 1.

| l  | $t_{\cos}(l)$ | Type(l) | C(l) | $t_{\text{oct}}$ | $t_{\text{ож3}}$ | j(l) |
|----|---------------|---------|------|------------------|------------------|------|
| 1  | 0.10921       | 1       | 1    | 3.47964          | 0.09382          | 1    |
| 2  | 0.20303       | 1       | 2    | 0.12719          | 0.46524          | 2    |
| 3  | 0.33022       | 2       | 1    | 3.25863          | 0.33805          | 2    |
| 4  | 0.66827       | 1       | 2    | 0.08427          | 0.08142          | 3    |
| 5  | 0.74969       | 1       | 3    | 0.00285          | 0.42644          | 4    |
| 6  | 0.75254       | 2       | 2    | 2.83631          | 0.42359          | 3    |
| 7  | 1.17613       | 1       | 3    | 2.41272          | 0.22314          | 5    |
| 8  | 1.39927       | 1       | 4    | 2.18958          | 0.1912           | 6    |
| 9  | 1.59047       | 1       | 5    | 1.99838          | 0.12387          | 7    |
| 10 | 1.71434       | 1       | 6    | 0.44497          | 0.03114          | 8    |
| 11 | 1.74548       | 1       | 7    | 0.41383          | 0.73516          | 9    |
| 12 | 2.15931       | 2       | 6    | 1.24722          | 0.32133          | 8    |
| 13 | 2.48064       | 1       | 7    | 0.92589          | 0.31035          | 10   |
| 14 | 2.79099       | 1       | 8    | 0.27828          | 0.26775          | 11   |
| 15 | 3.05874       | 1       | 9    | 0.01053          | 0.1312           | 12   |
| 16 | 3.06927       | 2       | 8    | 0.33726          | 0.12067          | 11   |
| 17 | 3.18994       | 1       | 9    | 0.21659          | 0.24611          | 13   |
| 18 | 3.40653       | 2       | 8    | 0.18232          | 0.02952          | 9    |
| 19 | 3.43605       | 1       | 9    | 0.1528           | 0.04397          | 14   |
| 20 | 3.48002       | 1       | 10   | 0.10883          | 0.2667           | 15   |
| 21 | 3.58885       | 2       | 9    | 0.22529          | 0.15787          | 1    |
| 22 | 3.74672       | 1       | 10   | 0.06742          | 0.62103          | 16   |
| 23 | 3.81414       | 2       | 9    | 0.01677          | 0.55361          | 14   |
| 24 | 3.83091       | 2       | 8    | 0.15046          | 0.53684          | 15   |
| 25 | 3.98137       | 2       | 7    | 0.25742          | 0.38638          | 16   |
| 26 | 4.23879       | 2       | 6    | 0.00713          | 0.12896          | 4    |

| l  | $t_{\cos}(l)$ | Type(l) | C(l) | $t_{ m oct}$ | $t_{\text{ож3}}$ | j(l) |
|----|---------------|---------|------|--------------|------------------|------|
| 27 | 4.24592       | 2       | 5    | 1.46336      | 0.12183          | 13   |
| 28 | 4.36775       | 1       | 6    | 1.34153      | 0.38188          | 17   |
| 29 | 4.74963       | 1       | 7    | 0.95965      | 0.31913          | 18   |
| 30 | 5.06876       | 1       | 8    | 0.64052      | 0.86924          | 19   |
| 31 | 5.70928       | 2       | 7    | 0.02193      | 0.22872          | 10   |
| 32 | 5.73121       | 2       | 6    | 0.33457      | 0.20679          | 5    |
| 33 | 5.938         | 1       | 7    | 0.12778      | 0.16732          | 20   |
| 34 | 6.06578       | 2       | 6    | 0.04058      | 0.03954          | 19   |
| 35 | 6.10532       | 1       | 7    | 0.00104      | 0.07643          | 21   |
| 36 | 6.10636       | 2       | 6    | 0.03027      | 0.07539          | 17   |
| 37 | 6.13663       | 2       | 5    | 0.02897      | 0.04512          | 21   |
| 38 | 6.1656        | 2       | 4    | 0.79497      | 0.01615          | 12   |
| 39 | 6.18175       | 1       | 5    | 0.77882      | 1.34427          | 22   |
| 40 | 6.96057       | 2       | 4    | 0.86475      | 0.56545          | 7    |
| 41 | 7.52602       | 1       | 5    | 0.2993       | 0.43274          | 23   |
| 42 | 7.82532       | 2       | 4    | 0.32628      | 0.13344          | 22   |
| 43 | 7.95876       | 1       | 5    | 0.19284      | 0.08882          | 24   |
| 44 | 8.04758       | 1       | 6    | 0.00918      | 0.28646          | 25   |
| 45 | 8.05676       | 2       | 5    | 0.09484      | 0.27728          | 25   |
| 46 | 8.1516        | 2       | 4    | 0.25154      | 0.18244          | 20   |
| 47 | 8.33404       | 1       | 5    | 0.0691       | 0.21657          | 26   |
| 48 | 8.40314       | 2       | 4    | 0.07251      | 0.14747          | 23   |
| 49 | 8.47565       | 2       | 3    | 0.37037      | 0.07496          | 18   |
| 50 | 8.55061       | 1       | 4    | 0.29541      | 0.01914          | 27   |
| 51 | 8.56975       | 1       | 5    | 0.27627      | 0.94658          | 28   |
| 52 | 8.84602       | 2       | 4    | 2.30717      | 0.67031          | 6    |
| 53 | 9.51633       | 1       | 5    | 0.17891      | 0.25245          | 29   |
| 54 | 9.69524       | 2       | 4    | 1.45795      | 0.07354          | 29   |
| 55 | 9.76878       | 1       | 5    | 0.11612      | 0.73163          | 30   |
| 56 | 9.8849        | 2       | 4    | 1.26829      | 0.61551          | 30   |
| 57 | 10.50041      | 1       | 5    | 0.65278      | 0.66067          | 31   |
| 58 | 11.15319      | 2       | 4    | 0.49629      | 0.00789          | 26   |
| 59 | 11.16108      | 1       | 5    | 0.4884       | 0.35734          | 32   |
| 60 | 11.51842      | 1       | 6    | 0.13106      | 0.12318          | 33   |
| 61 | 11.6416       | 1       | 7    | 0.00788      | 0.28366          | 34   |
| 62 | 11.64948      | 2       | 6    | 0.44551      | 0.27578          | 27   |
| 63 | 11.92526      | 1       | 7    | 0.16973      | 0.6736           | 35   |

| l   | $t_{\cos}(l)$ | Type(l) | C(l) | $t_{ m oct}$ | $t_{ m ow3}$ | j(l) |
|-----|---------------|---------|------|--------------|--------------|------|
| 64  | 12.09499      | 2       | 6    | 0.31844      | 0.50387      | 24   |
| 65  | 12.41343      | 2       | 5    | 0.05076      | 0.18543      | 28   |
| 66  | 12.46419      | 2       | 4    | 0.18817      | 0.13467      | 33   |
| 67  | 12.59886      | 1       | 5    | 0.0535       | 0.12303      | 36   |
| 68  | 12.65236      | 2       | 4    | 1.00887      | 0.06953      | 35   |
| 69  | 12.72189      | 1       | 5    | 0.5636       | 0.14859      | 37   |
| 70  | 12.87048      | 1       | 6    | 0.41501      | 0.04847      | 38   |
| 71  | 12.91895      | 1       | 7    | 0.36654      | 0.21102      | 39   |
| 72  | 13.12997      | 1       | 8    | 0.15552      | 0.1257       | 40   |
| 73  | 13.25567      | 1       | 9    | 0.02982      | 0.30784      | 41   |
| 74  | 13.28549      | 2       | 8    | 0.37574      | 0.27802      | 37   |
| 75  | 13.56351      | 1       | 9    | 0.09772      | 0.18484      | 42   |
| 76  | 13.66123      | 2       | 8    | 0.48301      | 0.08712      | 36   |
| 77  | 13.74835      | 1       | 9    | 0.39589      | 0.13775      | 43   |
| 78  | 13.8861       | 1       | 10   | 0.25814      | 0.0249       | 44   |
| 79  | 13.911        | 1       | 11   | 0.23324      | 0.08658      | 45   |
| 80  | 13.99758      | 1       | 12   | 0.14666      | 0.06317      | 46   |
| 81  | 14.06075      | 1       | 13   | 0.08349      | 0.29313      | 47   |
| 82  | 14.14424      | 2       | 12   | 0.27715      | 0.20964      | 31   |
| 83  | 14.35388      | 1       | 13   | 0.06751      | 0.2348       | 48   |
| 84  | 14.42139      | 2       | 12   | 0.56281      | 0.16729      | 40   |
| 85  | 14.58868      | 1       | 13   | 0.39552      | 0.03018      | 49   |
| 86  | 14.61886      | 1       | 14   | 0.36534      | 0.18688      | 50   |
| 87  | 14.80574      | 1       | 15   | 0.17846      | 0.27634      | 51   |
| 88  | 14.9842       | 2       | 14   | 0.04966      | 0.09788      | 50   |
| 89  | 15.03386      | 2       | 13   | 0.07285      | 0.04822      | 51   |
| 90  | 15.08208      | 1       | 14   | 0.02463      | 0.0419       | 52   |
| 91  | 15.10671      | 2       | 13   | 0.33697      | 0.01727      | 52   |
| 92  | 15.12398      | 1       | 14   | 0.3197       | 0.16052      | 53   |
| 93  | 15.2845       | 1       | 15   | 0.15918      | 0.04128      | 54   |
| 94  | 15.32578      | 1       | 16   | 0.1179       | 0.24907      | 55   |
| 95  | 15.44368      | 2       | 15   | 0.15504      | 0.13117      | 53   |
| 96  | 15.57485      | 1       | 16   | 0.02387      | 0.05788      | 56   |
| 97  | 15.59872      | 2       | 15   | 0.00779      | 0.03401      | 54   |
| 98  | 15.60651      | 2       | 14   | 0.08235      | 0.02622      | 55   |
| 99  | 15.63273      | 1       | 15   | 0.05613      | 0.23305      | 57   |
| 100 | 15.68886      | 2       | 14   | 0.44867      | 0.17692      | 56   |

Таблица 2.

| j  | $t_3(j)$ | q(j) | $t_{oq}(j)$ | $t_{\text{HO}6}$ | $t_{ m oбcл}$ | $t_{\rm koo}$ |
|----|----------|------|-------------|------------------|---------------|---------------|
| 1  | 0.10921  | 0    | 0           | 0.10921          | 3.47964       | 3.58885       |
| 2  | 0.20303  | 0    | 0           | 0.20303          | 0.12719       | 0.33022       |
| 3  | 0.66827  | 0    | 0           | 0.66827          | 0.08427       | 0.75254       |
| 4  | 0.74969  | 0    | 0           | 0.74969          | 3.4891        | 4.23879       |
| 5  | 1.17613  | 0    | 0           | 1.17613          | 4.55508       | 5.73121       |
| 6  | 1.39927  | 0    | 0           | 1.39927          | 7.44675       | 8.84602       |
| 7  | 1.59047  | 0    | 0           | 1.59047          | 5.3701        | 6.96057       |
| 8  | 1.71434  | 0    | 0           | 1.71434          | 0.44497       | 2.15931       |
| 9  | 1.74548  | 0    | 0           | 1.74548          | 1.66105       | 3.40653       |
| 10 | 2.48064  | 0    | 0           | 2.48064          | 3.22864       | 5.70928       |
| 11 | 2.79099  | 0    | 0           | 2.79099          | 0.27828       | 3.06927       |
| 12 | 3.05874  | 0    | 0           | 3.05874          | 3.10686       | 6.1656        |
| 13 | 3.18994  | 0    | 0           | 3.18994          | 1.05598       | 4.24592       |
| 14 | 3.43605  | 0    | 0           | 3.43605          | 0.37809       | 3.81414       |
| 15 | 3.48002  | 0    | 0           | 3.48002          | 0.35089       | 3.83091       |
| 16 | 3.74672  | 0    | 0           | 3.74672          | 0.23465       | 3.98137       |
| 17 | 4.36775  | 0    | 0           | 4.36775          | 1.73861       | 6.10636       |
| 18 | 4.74963  | 0    | 0           | 4.74963          | 3.72602       | 8.47565       |
| 19 | 5.06876  | 0    | 0           | 5.06876          | 0.99702       | 6.06578       |
| 20 | 5.938    | 0    | 0           | 5.938            | 2.2136        | 8.1516        |
| 21 | 6.10532  | 0    | 0           | 6.10532          | 0.03131       | 6.13663       |
| 22 | 6.18175  | 0    | 0           | 6.18175          | 1.64357       | 7.82532       |
| 23 | 7.52602  | 0    | 0           | 7.52602          | 0.87712       | 8.40314       |
| 24 | 7.95876  | 0    | 0           | 7.95876          | 4.13623       | 12.09499      |
| 25 | 8.04758  | 0    | 0           | 8.04758          | 0.00918       | 8.05676       |
| 26 | 8.33404  | 0    | 0           | 8.33404          | 2.81915       | 11.15319      |

| j  | $t_{3}(j)$ | q(j) | $t_{	ext{oq}}(j)$ | $t_{	ext{ho6}}$ | $t_{ m oбcл}$ | $t_{ m ko6}$ |
|----|------------|------|-------------------|-----------------|---------------|--------------|
| 27 | 8.55061    | 0    | 0                 | 8.55061         | 3.09887       | 11.64948     |
| 28 | 8.56975    | 0    | 0                 | 8.56975         | 3.84368       | 12.41343     |
| 29 | 9.51633    | 0    | 0                 | 9.51633         | 0.17891       | 9.69524      |
| 30 | 9.76878    | 0    | 0                 | 9.76878         | 0.11612       | 9.8849       |
| 31 | 10.50041   | 0    | 0                 | 10.50041        | 3.64383       | 14.14424     |
| 32 | 11.16108   | 0    | 0                 | 11.16108        | 8.29455       | 19.45563     |
| 33 | 11.51842   | 0    | 0                 | 11.51842        | 0.94577       | 12.46419     |
| 34 | 11.6416    | 0    | 0                 | 11.6416         | 7.65509       | 19.29669     |
| 35 | 11.92526   | 0    | 0                 | 11.92526        | 0.7271        | 12.65236     |
| 36 | 12.59886   | 0    | 0                 | 12.59886        | 1.06237       | 13.66123     |
| 37 | 12.72189   | 0    | 0                 | 12.72189        | 0.5636        | 13.28549     |
| 38 | 12.87048   | 0    | 0                 | 12.87048        | 5.45739       | 18.32787     |
| 39 | 12.91895   | 0    | 0                 | 12.91895        | 2.52473       | 15.44368     |
| 40 | 13.12997   | 0    | 0                 | 13.12997        | 1.29142       | 14.42139     |
| 41 | 13.25567   | 0    | 0                 | 13.25567        | 1.72853       | 14.9842      |
| 42 | 13.56351   | 0    | 0                 | 13.56351        | 2.03521       | 15.59872     |
| 43 | 13.74835   | 0    | 0                 | 13.74835        | 1.28551       | 15.03386     |
| 44 | 13.8861    | 0    | 0                 | 13.8861         | 2.25143       | 16.13753     |
| 45 | 13.911     | 0    | 0                 | 13.911          | 3.46575       | 17.37675     |
| 46 | 13.99758   | 0    | 0                 | 13.99758        | 1.10913       | 15.10671     |
| 47 | 14.06075   | 0    | 0                 | 14.06075        | 8.96309       | 23.02384     |
| 48 | 14.35388   | 0    | 0                 | 14.35388        | 1.33498       | 15.68886     |
| 49 | 14.58868   | 0    | 0                 | 14.58868        | 8.36216       | 22.95084     |
| 50 | 14.61886   | 1    | 0.36534           | 14.9842         | 1.76737       | 16.75157     |
| 51 | 14.80574   | 2    | 0.22812           | 15.03386        | 7.94222       | 22.97608     |
| 52 | 15.08208   | 1    | 0.02463           | 15.10671        | 3.80194       | 18.90865     |
| 53 | 15.12398   | 1    | 0.3197            | 15.44368        | 2.06161       | 17.50529     |
| 54 | 15.2845    | 2    | 0.31422           | 15.59872        | 0.00779       | 15.60651     |
| 55 | 15.32578   | 3    | 0.28073           | 15.60651        | 0.60758       | 16.21409     |
| 56 | 15.57485   | 3    | 0.11401           | 15.68886        | 3.08857       | 18.77743     |
| 57 | 15.63273   | 2    | -1                | -1              | -1            | -1           |

## 4 Анализ результатов

#### 4.1 Система массового обслуживания (D|M|13)

Таблица 3.

| k  | N(k) | $t_{	ext{\tiny 3AH}}$ | $k_{ m npoct}$ |
|----|------|-----------------------|----------------|
| 1  | 4    | 11.37811              | 0.04474        |
| 2  | 4    | 11.31556              | 0.04999        |
| 3  | 6    | 10.93588              | 0.08187        |
| 4  | 4    | 10.9234               | 0.08291        |
| 5  | 5    | 10.20908              | 0.14289        |
| 6  | 5    | 9.67548               | 0.18768        |
| 7  | 4    | 9.88667               | 0.16995        |
| 8  | 7    | 8.67656               | 0.27155        |
| 9  | 7    | 7.74167               | 0.35004        |
| 10 | 2    | 9.3522                | 0.21483        |
| 11 | 2    | 7.80492               | 0.34473        |
| 12 | 4    | 8.16647               | 0.31438        |
| 13 | 2    | 4.85052               | 0.59277        |

- Число заявок, поступивших в СМО на интервале  $[0, t_{\cos}(100)]$  : 56;
- Число полностью обслуженных заявок на интервале  $[0, t_{coo}(100)]: 44;$
- Среднее число заявок, находившихся в СМО, на интервале  $[0, t_{\cos}(100)]$  : 7.14;
- Среднее время пребывания заявок в очереди на интервале  $[0, t_{\text{cof}}(100)]$ : 0.03101;
- Среднее время пребывания заявок в СМО на интервале  $[0, t_{\text{cof}}(100)]$  : 2.11271;

Таблица 4.

| i  | u(i) |
|----|------|
| 0  | 0.0  |
| 1  | 0.01 |
| 2  | 0.01 |
| 3  | 0.01 |
| 4  | 0.02 |
| 5  | 0.03 |
| 6  | 0.02 |
| 7  | 0.01 |
| 8  | 0.01 |
| 9  | 0.05 |
| 10 | 0.13 |
| 11 | 0.2  |
| 12 | 0.23 |
| 13 | 0.16 |
| 14 | 0.08 |
| 15 | 0.03 |
|    |      |

## 4.2 Система массового обслуживания (M|D|13)

Таблица 3.

| k  | N(k) | $t_{ m 3aH}$ | $k_{\text{прост}}$ |
|----|------|--------------|--------------------|
| 1  | 4    | 9.71652      | 0.05895            |
| 2  | 4    | 9.69508      | 0.06103            |
| 3  | 4    | 9.51495      | 0.07847            |
| 4  | 4    | 9.25555      | 0.1036             |
| 5  | 4    | 9.13601      | 0.11517            |
| 6  | 4    | 9.12838      | 0.11591            |
| 7  | 4    | 9.08299      | 0.12031            |
| 8  | 4    | 8.78675      | 0.149              |
| 9  | 4    | 8.68664      | 0.15869            |
| 10 | 4    | 8.01094      | 0.22414            |
| 11 | 4    | 8.00047      | 0.22515            |
| 12 | 4    | 7.89425      | 0.23544            |
| 13 | 4    | 7.88086      | 0.23673            |

- Число заявок, поступивших в СМО на интервале  $[0, t_{\cos}(100)]$  : 61;
- Число полностью обслуженных заявок на интервале  $[0, t_{\cos}(100)]$  : 39;
- Среднее число заявок, находившихся в СМО, на интервале  $[0, t_{\text{соб}}(100)]$ : 16.04;
- Среднее время пребывания заявок в очереди на интервале  $[0, t_{cof}(100)]$ : 0.52977;
- Среднее время пребывания заявок в СМО на интервале  $[0, t_{coo}(100)]$ : 2.9774;

Таблица 4.

| i  | u(i) |
|----|------|
| 0  | 0.0  |
| 1  | 0.01 |
| 2  | 0.01 |
| 3  | 0.01 |
| 4  | 0.01 |
| 5  | 0.01 |
| 6  | 0.01 |
| 7  | 0.01 |
| 8  | 0.01 |
| 9  | 0.01 |
| 10 | 0.01 |
| 11 | 0.01 |
| 12 | 0.01 |
| 13 | 0.01 |
| 14 | 0.04 |
| 15 | 0.12 |
| 16 | 0.16 |
| 17 | 0.13 |
| 18 | 0.14 |
| 19 | 0.16 |
| 20 | 0.09 |
| 21 | 0.02 |
| 22 | 0.01 |
|    |      |

## 4.3 Система массового обслуживания (M|M|13)

Таблица 3.

| k  | N(k) | $t_{	exttt{3aH}}$ | $k_{ m npoct}$ |
|----|------|-------------------|----------------|
| 1  | 8    | 14.23558          | 0.09263        |
| 2  | 6    | 14.32707          | 0.0868         |
| 3  | 8    | 13.73004          | 0.12485        |
| 4  | 6    | 12.72059          | 0.1892         |
| 5  | 4    | 12.90928          | 0.17717        |
| 6  | 7    | 7.42978           | 0.52643        |
| 7  | 4    | 7.08342           | 0.54851        |
| 8  | 4    | 3.72586           | 0.76252        |
| 9  | 3    | 5.54005           | 0.64688        |
| 10 | 2    | 2.15365           | 0.86273        |
| 11 | 1    | 1.77786           | 0.88668        |
| 12 | 2    | 1.69128           | 0.8922         |
| 13 | 1    | 1.62811           | 0.89623        |

- Число заявок, поступивших в СМО на интервале  $[0, t_{\cos}(100)]$ : 57;
- Число полностью обслуженных заявок на интервале  $[0, t_{\cos}(100)]: 43;$
- Среднее число заявок, находившихся в СМО, на интервале  $[0, t_{\cos}(100)]$ : 5.52;
- Среднее время пребывания заявок в очереди на интервале  $[0, t_{cof}(100)]$ : 0.01504;
- Среднее время пребывания заявок в СМО на интервале  $[0, t_{\text{cof}}(100)]$  : 1.84407;

Таблица 4.

| i  | $r_i$   | $\nu_i(100)$ | $ \nu_i(100) - r_i $ |
|----|---------|--------------|----------------------|
| 0  | 0.0     | 0.0          | 0.0                  |
| 1  | 0.0     | 0.02         | 0.02                 |
| 2  | 0.00002 | 0.03         | 0.02998              |
| 3  | 0.00009 | 0.03         | 0.02991              |
| 4  | 0.0003  | 0.13         | 0.1297               |
| 5  | 0.00078 | 0.16         | 0.15922              |
| 6  | 0.00168 | 0.12         | 0.11832              |
| 7  | 0.00308 | 0.1          | 0.09692              |
| 8  | 0.00494 | 0.08         | 0.07506              |
| 9  | 0.00706 | 0.08         | 0.07294              |
| 10 | 0.00906 | 0.03         | 0.02094              |
| 11 | 0.01059 | 0.01         | 0.00059              |
| 12 | 0.01133 | 0.03         | 0.01867              |
| 13 | 0.0112  | 0.05         | 0.0388               |
| 14 | 0.01107 | 0.06         | 0.04893              |
| 15 | 0.01094 | 0.05         | 0.03906              |
| 16 | 0.01081 | 0.02         | 0.00919              |
|    | 0.09295 | 1            | 0.15922              |

#### 5 Список литературы

- 1. Гнеденко Б.В., Коваленко И.Н. Введение в теорию массового обслуживания. М.: ЛКИ,  $2021-400~\rm c.$
- 2. Кирпичников А.П. Методы прикладной теории массового обслуживания. <br/>– М.: URSS,  $2018-224~{\rm c}.$
- 3. Ивченко Г.И., Каштанов В.А., Коваленко И.Н. Теория массового обслуживания. М.: URSS,  $2012-304~\mathrm{c}.$
- 4. Смирнов С.Н. Введение в прикладную теорию массового обслуживания. М.: Гелиос APB,  $2016-176~\mathrm{c}$ .
- 5. Лобузов А.А., Гумляева С.Д., Норин Н.В. Задачи по теории случайных процессов. М.: МИРЭА, 1993 68 с.
- 6. Алпатов Ю. Н. Моделирование процессов и систем управления. СПб: Лань, 2021 140 с.
- 7. Самусевич Г. А. Моделирование процессов функционирования СМО. М.: Издательство Юрайт, 2021-117 с.

Листинг 1: main.py

```
import matplotlib.pyplot as plt
 2 import numpy as np
 3 import math
     import plotly graph objects as go
     import copy
     import xlsxwriter
     import pandas as pd
     from texttable import Texttable
     from tabulate import tabulate
     import latextable
      def savetable(array, numberOfTable):
                  table = Texttable()
13
14
                  table.set cols align(["c"] * len(array[0]))
15
                  table.set_cols_dtype(['t'] * len(array[0]))
16
                  table.set_deco(Texttable.HEADER | Texttable.VLINES | Texttable.HLINES)
17
                  table.add_rows(array)
18
19
                  path = "C:/Users/Danila/Documents/Study/7 semestor/Queuing systems/3-
20
                            hd lab/Report/table " + str(numberOfTable) + ".tex"
                  my_file = open(path, 'w+')
21
                  my file.write(latextable.draw_latex(table))
22
                  my file.close()
23
                  return
24
25
      def gen wait time(lambda m):
26
                  return round (np.random.exponential (1/lambda m),5)
27
      def gen_serv_time(myu):
29
                  return round (np.random.exponential (1/myu),5)
30
31
      class SMO:
32
                  def \__init\__(self, m\_flag, n, m\_delt\_T = 0, m\_delt\_proc = 0, m\_lambda = 0, m\_delt\_proc = 0, m\_lambda = 0, m\_delt\_proc = 0, m\_lambda = 0, m\_delt\_proc = 0, m\_d
33
                            0, m myu = 0):
                               self.event counter = 1 #счётчик событий
34
                               self.SMO table = [] #Таблица данных СМО (Таблица 1)
35
                               self.queue = [] #очередь заявок по номерам в СМО
36
                               self.SMO counter app = 1 #количество заявок в СМО
37
```

```
self.m Application = [] #список заявок (Таблица 1)
38
           self.SMO condition = [0,1]
30
           self.SMO_counter_avr = self.SMO_counter_app #параметр для нахождения
40
              среднего числа заявок в СМО
           self.quantity Unit = n
           self.flag = m_flag
42
           self.units = []
           self.remaining time unit = [] #массив времени обработки заявки
44
           for i in range(n):
                    self.remaining time unit.append(-1)
46
                    self.units.append(Unit(m flag, m delt proc, m myu))
           self.remaining time = self.units[0].start work(0) #оставшееся время
48
              обслуживания (в момент инициализации равно времени обслуживания)
           self.remaining time unit [0] = self.remaining time
49
           self.remaining index = 0
50
           if self.flag == 1:
               if m delt T == 0 or m myu == 0:
                    print("incorrect parameters entered")
                    return
54
               self.delt T = m delt T #постоянное время ожидания заявки
55
               self.time event now = m delt T #время текущего события
56
               self.wait app time = m delt T #оставшееся время ожидания заявки
57
               self.m Application.append(Application(round(self.
                  time event now,5),0,round(self.time event now,5),round(self
                   .remaining time,5), self.remaining index))
               self.SMO_table.append([self.event_counter,round(self.
59
                  time event now, 5), 1, self. SMO counter app, round (self.
                   remaining time,5), round(self.wait app time,5),1]) #номер
                  события, время события, тип события, кол-во заявок в СМО, оставщесяя время
                  обработки, оставшееся время ожидания заявки, номер заявки виновной в
                  событии
               return
60
           elif self.flag == 2:
61
               if m_delt_proc == 0 or m lambda == 0:
62
                    print("incorrect parameters entered")
63
               self.lambda_m = m_lambda \#параметр для генерации времени ожидания
65
                  заявки по закону показательного распределения
                                        gen wait time(self.lambda m) #оставшееся
               self.wait app time =
66
                  время ожидания заявки(в момент инициализации равно времени ожидания)
               self.time event now = gen wait time(self.lambda m) #время
                   текущего события
               self.m Application.append(Application(round(self.
68
                  time event now,5),0,round(self.time event now,5),round(self
                   .remaining time,5), self.remaining index))
               self.SMO table.append([self.event counter, round(self.
69
                  time event now, 5), 1, self. SMO counter app, round (self.
```

```
remaining_time,5), round(self.wait_app_time,5),1]) #номер
                    события, время события, тип события, кол-во заявок в СМО, оставщесяя время
                    обработки, оставшееся время ожидания заявки, номер заявки виновной в
                return
70
            elif self.flag == 3:
71
                if m lambda == 0 or m myu == 0:
72
                     print("incorrect parameters entered")
73
                     return
74
                self.lambda_m = m_lambda #параметр для генерации времени ожидания
75
                    заявки по закону показательного распределения
                self.wait app time = gen wait time(self.lambda m) #оставшееся
                    время ожидания заявки(в момент инициализации равно времени ожидания)
                self.time event now = gen wait time(self.lambda m) #время
                    текущего события
                self.m Application.append(Appliccation(round(self.
                    time event now,5),0,round(self.time event now,5),round(self
                    .remaining time,5), self.remaining index))
                self.SMO table.append([self.event counter, round(self.
79
                    time event now, 5), 1, self. SMO counter app, round (self.
                    remaining time,5), round (self.wait app time,5),1]) #номер
                    события, время события, тип события, кол-во заявок в СМО, оставщесяя время
                    обработки, оставшееся время ожидания заявки, номер заявки виновной в
                return
80
            else:
81
                print("m flag - incorrect parameters entered")
82
                return
83
84
       def min rem time(self):
85
            min v = max(self.remaining time unit)
86
            index = -1
87
            for i in range(self.quantity Unit):
88
                if min v >= self.remaining time unit[i] and self.
89
                    remaining_time_unit[i] >= 0 :
                         min v = self.remaining time unit[i]
90
                         index = i
91
            if \min v < 0:
92
                return -1,-1
93
            return min v, index
94
95
       def need q(self):
96
            check free = min(self.remaining time unit)
97
            if check free > 0: #количество заявок в СМО больше чем количество приборов
98
                self.queue.append(len(self.m Application))
99
                return 0 , -1
100
            else:
101
```

```
index = next(x[0] 	ext{ for } x 	ext{ in enumerate}(self.remaining time unit)
102
                     if x[1] < 0
                self.remaining_time_unit[index] = self.units[index].start_work
103
                    (len(self.m Application))
                return 1, index
104
105
106
       def gen event(self):
107
            if self.remaining time > self.wait app time:#заявка придёт раньше, чем
108
               предыдущая закончит обрабатываться
                self.time event now += self.wait app time
109
                self.event counter += 1
110
                for i in range (self.quantity Unit):
111
                     self.remaining time unit[i] -= self.wait app time
112
                if self.flag == 1:
113
                     self.wait app time = self.delt T
114
                else:
115
                     self.wait app time = gen wait time(self.lambda m)
116
                self.SMO counter app += 1
117
                flag free, index free = self.need q()
118
                if (self.SMO counter app+1) > len(self.SMO condition):
119
                     self.SMO condition.append(1)
120
                else:
121
                     self.SMO condition[self.SMO counter app] += 1
122
                self.SMO counter avr += self.SMO counter app #параметр для
                   нахождения среднего числа заявок в СМО
                if(flag free == 0):
124
                     self.m Application.append(Application(round(self.
125
                        time event now, 5), len(self.queue), -1, -1)
                else:
126
                     self.m Application.append(Appliccation(round(self.
127
                        time event now, 5), 0, round(self.time event now, 5), round(
                        self.remaining_time_unit[index_free],5),index_free))
                self.remaining time, self.remaining index = self.min rem time
128
                    ()
                self.SMO table.append([self.event counter, round(self.
129
                   time_event_now,5),1,self.SMO_counter_app,round(self.
                    remaining time, 5), round(self.wait app time, 5), len(self.
                    m_Application)]) #номер события, время события, тип события, кол-во
                   заявок в СМО, оставщесяя время обработки, оставшееся время ожидания
                   заявки, номер заявки виновной в событии
            else:
130
                #СМО закончила обрабатывать заявку и либо берёт из очереди, либо стоит и ждёт
131
                   len (self.queue) > 0: #тот прибор, который освободился берёт из
132
                   очереди виновница заявка ушедшая
```

```
self.event counter += 1
133
                    self.time event now += self.remaining time
134
                    self.wait_app_time -= self.remaining_time
135
                    for i in range (self.quantity Unit):
136
                         self.remaining time unit[i] -= self.remaining time
137
                    self.SMO counter app -= 1
138
                    self.SMO_condition[self.SMO_counter_app] += 1
139
                    helper = (self.queue).pop(0)
140
                    self.remaining_time_unit[self.remaining index] = self.
141
                        units[self.remaining_index].start_work(helper)
                    self.SMO counter avr += self.SMO counter app #параметр для
142
                        нахождения среднего числа заявок в СМО
                    self.m Application[helper].start serv(round(self.
                        time event now, 5), round(self.remaining time unit[self.
                        remaining index ], 5), self.remaining index)
                    self.remaining time, self.remaining index = self.
                        min rem time()
                    self.SMO table.append([self.event counter, round(self.
145
                        time event now, 5), 2, self. SMO counter app, round (self.
                        remaining time, 5), round(self.wait app time, 5), helper
                        +1]) #номер события, время события, тип события, кол-во заявок в
                        СМО, оставщесяя время обработки, оставшееся время ожидания заявки,
                        номер заявки виновной в событии
                elif self.remaining time !=-1:
146
                    self.event counter += 1
147
                    self.time event now += self.remaining time
148
                    self.wait app time —= self.remaining time
149
                    for i in range (self.quantity Unit):
150
                         self.remaining time unit[i] -= self.remaining time
151
                    self.remaining time unit[self.remaining index]=-1
152
                    self.SMO counter app -= 1
153
                    active app = self.units[self.remaining index].last app()+1
154
                    self.SMO condition[self.SMO counter app] += 1
155
                    self.remaining time, self.remaining index = self.
156
                        min rem time()
                    self.SMO table.append([self.event counter, round(self.
157
                        time event now, 5), 2, self. SMO counter app, round (self.
                        remaining time, 5), round (self.wait app time, 5),
                        active _app]) #номер события, время события, тип события, кол-во
                        заявок в СМО, оставщесяя время обработки, оставшееся время ожидания
                        заявки, номер заявки виновной в событии
                else:
                    self.time event now += self.wait app time
159
                    self.event counter += 1
160
                    self.SMO counter app += 1
161
```

```
self.SMO_condition[self.SMO_counter_app] += 1
162
                    self.SMO_counter_avr += self.SMO_counter app #параметр для
163
                        нахождения среднего числа заявок в СМО
                    active app = len(self.m Application)+1
164
                    self.remaining time = self.units[0].start work(active app)
165
                         #оставшееся время обслуживания(в момент инициализации равно
                        времени обслуживания)
                     self.remaining time unit[0] = self.remaining time
                    self.remaining_index = 0
167
                    if self.flag == 1:
168
                         self.wait\_app\_time = self.delt\_T
169
                    else:
170
                         self.wait app time = gen wait time(self.lambda m)
171
                    self.m Application.append(Application(round(self.
                        time event now, 5), 0, round(self.time event now, 5), round(
                        self.remaining_time,5), self.remaining_index))
                     self.SMO table.append([self.event counter, round(self.
173
                        time event now, 5), 1, self. SMO counter app, round (self.
                        remaining time, 5), round (self.wait app time, 5),
                        active app]) #номер события, время события, тип события, кол-во
                        заявок в СМО, оставщесяя время обработки, оставшееся время ожидания
                        заявки, номер заявки виновной в событи
           return 1
175
       def save data(self):
176
           Table 2 = []
177
           time que avr = 0
           time SMO avr = 0
           Table 3 = []
180
           Table_4 = []
           i = 0
182
           App_stop_in_work = \{\}
184
           for i in range(len(self.m Application)):
185
                if self.m_Application[i].time_end_serv <= round(self.</pre>
                   time event now,5) and self.m Application[i].time end serv
                   != -1:
                    time SMO avr += round((self.m Application[i].time end serv
187
                        -self.m_Application[i].time_coming),5)
                    i += 1
                elif self.m Application[i].time end serv!=-1:
189
                    App stop in work[self.m Application[i].number unit] = self
190
                        .m Application[i].time end serv-self.time event now
                       для учёта непроработавшего времени приборов
           #print(j)
191
```

```
192
193
           for i in range(self.quantity Unit):
194
               if i in App_stop_in_work.keys():
195
                   Table 3.append([i+1,self.units[i].app_counter,round(self.
196
                       units[i].work_time-App_stop_in_work[i],5),round((self.
                       time_event_now-self.units[i].work_time+App_stop_in_work
                       [i])/self.time_event_now,5)])
               else:
197
                   Table_3.append([i+1, self.units[i].app_counter, round(self
198
                       .units[i].work time,5), round((self.time event now-self
                       .units[i].work time)/self.time event now, 5)])
199
           if self.flag != 3:
200
               for i in range(len(self.SMO_condition)):
201
                    Table 4.append([i,round(self.SMO condition[i]/self.
202
                       event_counter,5)])
           else:
203
               nyu=self.lambda m/(self.quantity Unit*self.units[0].myu)
204
               p=self.lambda_m/self.units[0].myu
205
               r = (p**self.quantity Unit)/(np.math.factorial(self.
206
                  quantity Unit)*(1-nyu))
               for i in range(self.quantity Unit):
207
                   r = (p**i)/np.math.factorial(i)
208
               r_0 = 1/r_0
209
               r k=[r 0]
210
               for i in range(1, len(self.SMO_condition)):
211
                    if self.quantity Unit >= i:
212
                        r_k.append((p**i)*r_0/np.math.factorial(i))
213
                    else:
214
                        r_k.append((nyu**(i-self.quantity_Unit))*r_k[self.
215
                           quantity_Unit])
               for i in range(len(self.SMO condition)):
216
                    Table 4.append([i, round(r k[i], 5), round(self.
217
                       SMO condition[i]/self.event counter,5), round(np.fabs((
                       self.SMO_condition[i]/self.event_counter)-r_k[i]),5)])
218
219
220
           for i in range(len(self.m Application)):
221
               time_que_avr += round(self.m_Application[i].time_in_queue,5)
222
               Table 2.append([i+1,round(self.m Application[i].time coming,5)
223
                   , self.m_Application[i].number_in_queue, round(self.
```

```
m_Application[i].time_in_queue,5), round(self.m_Application
                    [i].time start serv,5), round(self.m Application[i].
                    time_serv,5), round(self.m_Application[i].time_end_serv,5)
                    ])
224
            print("CMO имеетвид ")
225
            if self.flag == 1:
226
                 {\tt savetable} \, (\, {\tt self.SMO\_table} \, , 1\, \underline{\hspace{0.1cm}} 1)
227
                 savetable (Table 2,1 2)
228
                 savetable (Table_3,1_3)
229
                 savetable (Table 4,1 4)
230
                 print("(D|M|1)")
231
            elif self.flag == 2:
232
                 savetable (self.SMO\_table, 2\_1)
233
                 savetable (Table 2,2 2)
234
                 savetable (Table 3,23)
235
                 savetable (Table 4,24)
236
                 print("(M|D|1)")
237
            else:
238
                 savetable (self.SMO_table,3_1)
239
                 savetable (Table 2,3 2)
240
                 savetable (Table 3,3 3)
241
                 savetable (Table 4,3 4)
242
                 print("(M|M|1)")
243
244
            print("\числоп заявок :")
245
            print(len(self.m_Application))
246
            print("\числоп полностьюобслуженныхзаявок
247
            print(j)
248
            print("\cpеднееn числозаявоквсистеме
249
            print(round(self.SMO_counter_avr/self.event_counter,5))
250
            print("\cpеднееn времяпребываниязаявоквочереди
251
            print(round(time que avr/j,5))
252
                                                                           :")
            print("\cpеднееn времяпребываниязаявоквСМОнаинтервале
253
            print(round(time SMO avr/j,5))
254
255
256
257
   class Application:
258
       def init (self, m time coming, m number in queue, m time start serv,
259
           m time serv, m number unit=-1):
            self.time coming = m time coming
260
            self.number in queue = m number in queue
261
```

```
self.number_unit = m_number_unit
262
            if m number in queue == 0:
263
                self.time_in_queue = 0
264
           else:
265
                self.time in queue =-1
266
            self.time_start_serv = m_time_start_serv
267
            self.time_serv = m_time_serv
268
            if m time start serv == -1:
269
                self.time end serv = -1
270
           else:
271
                self.time end serv = m time start serv+m time serv
272
       def start_serv(self,m_time_start_serv, m_time_serv, m_number_unit):
273
            self.time_in_queue = m_time_start_serv-self.time_coming
274
            self.time_start_serv = m_time_start_serv
275
            self.time_serv = m_time_serv
276
            self.number unit = m number unit
277
            self.time_end_serv = m_time_start_serv+m_time_serv
278
279
   class Unit:
280
       def __init__(self , m_flag , m_delt_proc = 0 , m_myu = 0) :
281
            self.numbers app = []
282
            self.work time = 0
283
            self.app counter = 0 #счётчик заявок поступивших в прибор
284
            self.flag = m flag #Флаг - вид СМО: 1(D,M,1); 2(M,D,1); 3(M,M,1)
285
            if m flag == 2:
286
                self.delt proc = m delt proc
287
           else:
288
                self.myu = m myu
289
       def start_work(self, number_app):
290
            self.numbers app.append(number app)
291
            self.app counter += 1
292
            if self.flag == 2:
293
                self.work time += self.delt proc
294
                return(self.delt proc)
295
            else:
296
                work_time = gen_serv_time(self.myu)
297
                self.work time += work time
298
                return(work_time)
299
300
       def last app(self):
301
            return self.numbers app [len (self.numbers app) -1]
302
303
304
```

```
def SMO_start(number_of_SMO, number_of_events, quantity_units, m_delt_T=0,
       m delt proc=0, m lambda=0, m myu=0):
       my_SMO=SMO(number_of_SMO, quantity_units,m_delt_T, m_delt_proc,
306
          m_lambda, m_myu)
       while my_SMO.event_counter<number_of_events:</pre>
307
           my_SMO.gen_event()
308
       my_SMO.save_data()
309
       return 1
310
311
  def main():
312
       delt_T = 0.21
313
       delt process=2.468
314
       lambda_m=1.082
315
       myu = 0.405
316
       n=13
317
       SMO_start(1, 100, n, delt_T, delt_process, lambda_m, myu)
318
       SMO_start(2, 100, n, delt_T, delt_process, lambda_m, myu)
319
       SMO_start(3, 100, n, delt_T, delt_process, lambda_m, myu)
320
       return 1
321
322
  main()
```