CS244: Theory of Computation

Fu Song ShanghaiTech University

Fall 2020

Course Information

What is This Course About?
Automata and Languages
Computability Theory
Complexity Theory

About This Course

Mathematical Preliminaries (Chapter 0
Mathematical Notations

Course Information

Instructor: Fu Song

Homepage: faculty.sist.shanghaitech.edu.cn/faculty/songfu

Office: room 1A-504C, SIST Building Email: songfu@shanghaitech.edu.cn

► TAs: Yedi Zhang, Jianzhong Liu, Pengfei Gao, Songqing Ye(Volunteer)

 HOs: Monday 20:00-21:00 by Songqing, Wednesday 19:00-20:00 by Yedi, Friday 19:00-20:00 by Jianzhong

(a) Yedi Zhang

(b) Pengfei Gao

(c) Jianzhong Liu

(d) Songqing Ye

Course Information

- ► Textbook: Introduction to the Theory of Computation (3rd Ed.), Michael Sipser, MIT, 2012
- Discussion, Slides and Homework: PIAZZA https://piazza.com/shanghaitech.edu.cn/fall2020/cs244
- ▶ Preliminaries (optional): algorithms and discrete mathematics
- ► Grading: Quiz 5%, HW 20%, Midterm 25%, Final exam 50%
- Extra credit of final grades: from 1 point upto 100 points depending upon your technical report (e.g. proposing new useful models and studying decision problems thereof, solving some important or long-stand open problem, etc., 2-3 students per group)

Course Information

What is This Course About?

Automata and Languages Computability Theory Complexity Theory

About This Course

Mathematical Preliminaries (Chapter 0)

Mathematical Notations Proofs and Types of Proofs

What is This Course About?

- ► This course is about the fundamental capabilities and limitations of computers/computation
- ► This course covers 3 areas, which make up the theory of computation:
 - Automata and Languages
 - Computability Theory
 - Complexity Theory

Course Information

What is This Course About?

Automata and Languages

Computability Theory

Complexity Theory

About This Course

Mathematical Preliminaries (Chapter 0 Mathematical Notations Proofs and Types of Proofs

Automata and Languages

- ► Introduces models of computation
 - We will study variants of automata and grammars
 - Each model determines what can be expressed, as we will see in Part I of this course
 - Will allow us to become familiar with simple models before we move on to more complex models like a Turing machine
 - ► Given a model, we can examine computability and complexity

Course Information

What is This Course About?

Automata and Languages Computability Theory Complexity Theory

About This Course

Mathematical Preliminaries (Chapter 0)

Mathematical Notations Proofs and Types of Proofs

Computability Theory

- ► A major mathematical discovery in 1930s
 - Certain problems Cannot be solved by computers
 - That is, they have no algorithmic solution
- We can ask what a model can and cannot do
 - As it turns out, a simple model of a computer, Turing machine, can do everything that a computer can do
 - So we can use a Turing machine to determine what a computer can and cannot do (i.e., compute)

Course Information

What is This Course About?

Automata and Languages Computability Theory Complexity Theory

About This Course

Mathematical Preliminaries (Chapter 0)

Mathematical Notations
Proofs and Types of Proofs

Complexity Theory

- ► How hard is a problem?
- You might already know a lot about this
 - How to determine the time and/or space complexity of most simple algorithms, e.g., Big-O notation
- We take one step forward and study more complexity-classes, e.g., P, NP, PSPACE

Course Information

What is This Course About?
Automata and Languages
Computability Theory
Complexity Theory

About This Course

Mathematical Preliminaries (Chapter 0 Mathematical Notations Proofs and Types of Proofs

About This Course

- ► Theory of Computation traditionally considered challenging
 - ▶ I expect (and hope) that you will find this to be true!
- ► A very different kind of course
 - ► In many ways, a pure theory course, but very grounded (the models of computation are not abstract at all)
 - ▶ Proofs are an integral part of the course, although I and the text both rely on informal proofs, but the reasoning must still be clear

About This Course

- ► The only way to learn this material is by doing problems
 - You should expect to spend several hours per week on homework
 - ► You should expect to read parts of the text 2-4 times
 - You should not give up after 10 minutes if you are stumped by a problem

	1小时之内		1-3小时		3-5小时		5-7小时		7-9小时		9小时以上	
,	人数	比例	人数	比例	人数	比例	人数	比例	人数	比例	人数	比例
	0	0.00%	1	25.00%	0	0.00%	3	75.00%	0	0.00%	0	0.00%

(a) Graduate Students

1小时之内		1-3小时		3-5小时		5-7小时		7-9小时		9小时以上	
人数	比例	人数	比例	人数	比例	人数	比例	人数	比例	人数	比例
0	0.00%	0	0.00%	2	22.22%	6	66.67%	1	11.11%	0	0.00%

(b) Undergraduate Students

Grades of Spring 2019

A+, A, A, A-, B+, B

Figure: Graduate Students

Figure: Undergraduate Students

Course Information

What is This Course About?
Automata and Languages
Computability Theory
Complexity Theory

About This Course

Mathematical Preliminaries (Chapter 0)

Mathematical Notations
Proofs and Types of Proofs

Mathematical Preliminaries

- Mathematical Notations
 - Sets
 - Sequences and Tuples
 - Functions and Relations
 - Graphs
 - ► Finite and Infinite Words
 - ► Finite and Infinite Trees
 - Boolean Logic
- Proofs and Types of Proofs

Course Information

What is This Course About?
Automata and Languages
Computability Theory
Complexity Theory

About This Course

Mathematical Preliminaries (Chapter 0)
Mathematical Notations
Proofs and Types of Proofs

Sets

- A set is a group of objects, order doesn't matter
 - ► The objects are called elements or members
 - Examples
 - ► Finite set: {1, 3, 5}
 - ▶ Infinite set: $\{1,3,5,\cdots\}$, or $\{x \mid x \in \mathbb{Z} \land x \pmod{2} \neq 0\}$
 - You should know these operators/concepts
 - ▶ Subset: $A \subseteq B$ or $A \subset B$
 - Cardinality: Number elements in set (|A|) (injective, surjective, bijections)
 - ▶ Intersection $(A \cap B)$, Union $(A \cup B)$, Difference (A B) and Complement (\overline{A})
 - ▶ DeMorgan's Laws: $\overline{A \cap B} \equiv \overline{A} \cup \overline{B}$, $\overline{A \cup B} \equiv \overline{A} \cap \overline{B}$
 - ► Emptyset: ∅
 - Venn Diagrams: can be used to visualize sets
 - Powersets: All possible subsets of a set
 - ► E.g. $S = \{a, b, c\}$, $2^S = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$
 - In general, what is the cardinality of 2^{S} ? $|2^{S}| = 2^{|S|}$

Sequences and Tuples

- A sequence is a list of objects, order matters
 - ► Examples: (1, 3, 5) and (3, 1, 5)
- ▶ In this course we will use term tuple instead
 - \triangleright (1, 3, 5) is a 3-tuple
 - ► a *k*-tuple has *k* elements
- Cartesian product (a.k.a. cross project) is an operation on sets but yields a set of tuples
 - Example: if $A = \{1, 2\}$ and $B = \{x, y, z\}$, then $A \times B = \{(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)\}$
 - ▶ If we have k sets A_1, A_2, \ldots, A_k , we can take the Cartesian product $A_1 \times A_2 \cdots \times A_k$ which is the set of all k-tuples (a_1, a_2, \cdots, a_k) where $a_i \in A_i$
 - \triangleright We can take Cartesian product of a set with itself A^k represents

$$\underbrace{A \times A \times A \cdots \times A}_{k}$$

Functions

- ► A function maps an input to a (single) output
 - ightharpoonup f(a) = b, f maps a to b
- ► The set of possible inputs is the domain and the set of possible outputs is the range
 - ightharpoonup f: D o R
 - D is the domain of f and R is the range of f
- ▶ The function $f: D \rightarrow R$ is
 - ▶ a total function if $\forall a \in D$: f(a) is defined, otherwise partial function
 - ► a bijective function if
 - ▶ is total
 - $\forall a, a' \in D, a \neq a' \rightarrow f(a) \neq f(a') \text{ (injective)}$
 - ▶ $\forall b \in R.\exists a \in D \text{ such that } f(a) = b \text{ (surjection)}$

Big-O Notation

- ▶ Given two total functions $f, g : \mathbb{N} \to \mathbb{N}$
 - ▶ f(n) = O(g(n)), if $\exists c, d \ge 1$ such that $\forall n \ge d$, $f(n) \le c \cdot g(n)$ g(n) is an upper bound for f(n)
 - ▶ $f(n) = \Omega(g(n))$, if $\exists c, d \ge 1$ such that $\forall n \ge d, c \cdot f(n) \ge g(n)$ g(n) is a lower bound for f(n)
 - $f(n) = \Theta(g(n))$, if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$
- $f(n) = \Omega(g(n)) \text{ iff } g(n) = O(f(n))$
- ▶ The big-O notation compares the rate of growth of functions rather than their values, so when $f(n) = \Theta(g(n))$, f(n) and g(n) have the same rates of growth, but can be very different in their values.

Relations

- ► A predicate is a function with range { *True*, *False*}
 - Example: even(4) = True
- A (*k*-ary) relation is a predicate whose domain is a set of *k*-tuples $A_1 \times A_2 \times A_3 \cdots \times A_k$
 - ▶ If k = 2, then binary relation (e.g., =, <, ···)
 - ► Can just list what is true (e.g., even(4))
- ▶ A (k-ary) relation R can be seen as a set of k-tuples, e.g., $R \subseteq A_1 \times A_2 \times A_3 \cdots \times A_k$,

$$(a_1, \cdots a_k) \in R$$
 iff $R(a_1, \cdots a_k) = True$

Equivalence Relations

- ► An equivalence relation *R* is a binary relation over a domain *D* satisfying the following three properties:
 - ► Reflexive: x R x
 - ► Symmetric: x R y iff y R x
 - ightharpoonup Transitive: if x R y and y R z, then x R z
 - ► Try =, <

Equivalence Classes

For every element x ∈ D, an equivalence relation R over a domain D induces an equivalence class:

$$[\![x]\!]_R := \{x' \in D \mid x \ R \ x'\}$$

- ► Suppose $R = \{(1,1), (2,2), (1,2), (2,1), (3,3), (4,4), (3,4), (4,3)\}$
- $[1]_R = \{1, 2\}$
- $[3]_R = ? {3,4}$
- $\forall x, y \in D$, either $[x]_R = [y]_R$ or $[x]_R \cap [y]_R = \emptyset$ (Why?)
- A binary relation R over D is a partial order if it is reflexive, transitive, and antisymmetric $(x R y \land y R x \Rightarrow x = y)$
- A binary relation R over D is a total order (a.k.a. linear order) if it is a partial order and $\forall x, y \in D$, either x R y or y R x.

Graphs

- ightharpoonup A directed graph G is a tuple (V, E), where
 - V is a set of vertices
 - $ightharpoonup E \subseteq V \times V$ is a set of edges that are 2-tuples
- ightharpoonup A undirected graph G is a tuple (V, E), where
 - V is a set of vertices
 - ▶ $E \subseteq \{\{v_1, v_2\} \mid v_1, v_2 \in V\}$ is a set of edges that are 2-sets
- Notations:
 - ▶ The degree of a vertex (for undirected graph) is the number of edges touching it, $degree(v) := |\{v' \in V \mid \{v, v'\} \in E\}|$
 - The in-degree (resp. out-degree) of a vertex (for directed graph), indegree(v) := $|\{v' \in V \mid (v', v) \in E\}|$ and outdegree(v) := $|\{v' \in V \mid (v, v') \in E\}|$
 - A path is a sequence of nodes connected by edges
 - A simple path does not repeat nodes
 - A path is a cycle if it starts and ends at same node
 - A simple cycle repeats only first and last node
 - ▶ A graph is a unranked tree if it is connected and has no simple cycles

Finite and Infinite Words

- ightharpoonup An alphabet Σ is any non-empty finite set
 - Members of the alphabet are (alphabet) symbols (or letters)
 - $\Sigma_1 = \{0,1\}$
- ► A finite word (string in textbook) over an alphabet is a finite sequence of symbols from the alphabet
 - ▶ 0100 is a string from Σ_1 and cat is a string from Σ_2
 - ▶ The length of a string w, |w| is its number of symbols
 - ▶ If |w| = n, then w can be written as $w_0 w_1 \cdots w_{n-1}$, where $w_i \in \Sigma$
 - ▶ The empty string, ε , has length 0
 - Strings can be concatenated,
 - ww' is string w concatenated with string w'
 - A string w can be concatenated with itself k times, denoted by w^k
- A ω-word over an alphabet is an infinite sequence of symbols from the alphabet, e.g., $(01)^{\omega}$

Finite and Infinite Trees

- Finite ranked trees
 - ▶ Ranked alphabet Σ : Rank function $rank : \Sigma \to \mathbb{N}$.
 - \triangleright E.g., every node labeled by σ has $rank(\sigma)$ children
 - ▶ Tree domain: A nonempty finite subset D of \mathbb{N}^* such that
 - ▶ if $xi \in D$ for some $i \in \mathbb{N}$, then $x \in D$, i.e., $x \in \mathbb{N}^*$
 - ▶ if $xi \in D$ for some $i \in \mathbb{N}$ and $x \in D$, then $xj \in D$ for any $j \leq i$.
 - ▶ Ranked trees: A Σ -tree is a mapping $t: D \to \Sigma$ such that

$$\forall x \in D, rank(t(x)) = |\max\{i \mid xi \in D\}|.$$

Finite and Infinite Trees: continued

- Finite unranked trees
 - Alphabet Σ is unranked
 - ightharpoonup E.g., every node labeled by σ can have an arbitrary number of children
 - ▶ Unranked trees: A mapping $t: D \to \Sigma$ (no rank constraints).

▶ ω-trees (ranked or unranked): a mapping $t : \mathbb{N}^* \to Σ$.

Formal Languages and Closure Properties

- Formal languages
 A set of finite words, ω-words, finite trees, etc.
- ► Language-theoretical operations
 - ▶ Union: $L_1 \cup L_2$,
 - ▶ Intersection: $L_1 \cap L_2$,
 - ▶ Complementation: $\Sigma^* \setminus L$, $\Sigma^{\omega} \setminus L$, . . .
 - ▶ Homomorphism: A mapping $h: \Sigma \to \Pi \cup \{\varepsilon\}$.

Boolean Logic

- Boolean logic is a mathematical system built around True and False or 0 and 1
- ▶ Below are the Boolean operators, which can be defined by a truth

table								
\wedge	and/conjunction	$1 \wedge 1 \equiv 1$; else 0						
\vee	or/disjunctions	$0 \lor 0 \equiv 0$; else 1						
\neg	not	$ eg 1 \equiv 0; \ eg 0 \equiv 1$						
\rightarrow	implication	$1 ightarrow 0 \equiv 0$; else 1						
\leftrightarrow	equality/biimplication	$1 \leftrightarrow 1 \equiv 1$; $0 \leftrightarrow 0 \equiv 1$; else 0						

 Can prove equality using truth tables, e.g., DeMorgan's law and Distributive law

Course Information

What is This Course About?
Automata and Languages
Computability Theory
Complexity Theory

About This Course

Mathematical Preliminaries (Chapter 0)
Mathematical Notations
Proofs and Types of Proofs

Proofs and Types of Proofs

- Proofs are a big part of this class
- A proof is a convincing logical argument
 - Proofs in this class need to be clear, but not very formal
 - ► The books proofs are often informal, using English, so it isn't just that we are being lazy
- Types of Proofs
 - ▶ $A \Leftrightarrow B$ means A if and only if (iff) B
 - ▶ Prove $A \Rightarrow B$ and prove $B \Rightarrow A$
 - Disproof by counterexample (prove false via an example)
 - Proof by construction (main proof technique we will use)
 - Proof by contradiction
 - Proof by induction

- ▶ For any two sets A and B, prove $\overline{A \cap B} \equiv \overline{A} \cup \overline{B}$
- ▶ The proof of $\overline{A \cup B} \equiv \overline{A} \cap \overline{B}$ refers to Theorem 0.20, page 20
- ▶ What proof technique to use? Any ideas
- ▶ Prove in each direction:
 - ► First prove forward direction, then backward directions, (e.g., show if element *x* is in one of the sets then it is in the other)
 - We will do in words, as formal as possible formal definitions of each operator

Proof Example 1: Proof (\Rightarrow)

- ▶ Assume $x \in \overline{A \cap B}$, we show that $x \in \overline{A} \cup \overline{B}$
- 1. $x \in \overline{A \cap B}$
- $2. \Rightarrow x \notin A \cap B$
- 3. \Rightarrow $(x \notin A) \lor (x \notin B)$
- 4. \Rightarrow $(x \in \overline{A}) \lor (x \in \overline{B})$
- $5. \Rightarrow x \in \overline{A} \cup \overline{B}$

[Assumption]

[Def. of complement]

[Def. of intersection]

[Def. of complement]

[Def. of union]

Proof Example 1: Proof (\Leftarrow)

- ▶ Assume $x \in \overline{A} \cup \overline{B}$, we show that $x \in \overline{A \cap B}$
- 1. $x \in \overline{A} \cup \overline{B}$

2.
$$\Rightarrow (x \in \overline{A}) \lor (x \in \overline{B})$$

- 3. \Rightarrow $(x \notin A) \lor (x \notin B)$
- $4. \Rightarrow x \notin A \cap B$
- 5. $\Rightarrow x \in \overline{A \cap B}$

[Assumption]

[Def. of union]

[Def. of complement]

[Def. of intersection]

[Def. of complement]

- Prove or disprove: All prime numbers are odd
- ▶ What proof technique to use? Any ideas
- ▶ Disproof by counterexample uses three steps:
 - 1. State false: Not all prime numbers are odd
 - 2. Give a counterexample: consider the number 2
 - 3. Explain why your counterexample is a counterexample
 - $ightharpoonup 2 = 2 \times 1$, so 2 is even
 - 2 has only two factors 2 and 1, so it is prime

- Prove for every even number n > 2, there is a 3-regular undirected graph with n vertices (Theorem 0.22, page 21)
 - ► A undirected graph is *k*-regular if every vertex has degree *k*
- ▶ What proof technique to use? Any ideas
- Proof by construction
 - Many theorems say that a specific type of object exists. One way to prove it exists is by constructing it.
 - May sound weird, but this is by far the most common proof technique we will use in this course
 - We may be asked to show that some property is true. We may need to construct a model which makes it clear that this property is true

- ▶ Can you construct such a graph for n = 4, 6, 8?
 - ► Try now (Hint: place the vertices into a circle)
 - Can you find a pattern?
 - Generalize the pattern and that is the proof
- Solution
 - Place the vertices in a circle and then connect each node to the ones next to it, which gives us a 2-regular graph
 - ▶ Then connect each node to the one opposite it and you are done
 - This is guaranteed to work because if the number of nodes is even, the opposite node will always get hit exactly once
 - Note: if it was odd, this would not work

- ▶ Prove $\sqrt{2}$ is irrational
- ▶ What proof technique to use? Any ideas
- ▶ Proof by contradiction uses three steps:
 - 1. first assume that the statement P is false
 - 2. then show that leads to a contradiction
 - 3. therefore, statement P must be true

- ▶ Prove $\sqrt{2}$ is irrational
- Assume $\sqrt{2}$ is rational
 - 1. $\sqrt{2}$ is rational
 - 2. $\Rightarrow \sqrt{2} \equiv \frac{m}{n}$ for some integers m, n. Without loss of generality, we assume that $\frac{m}{n}$ is in lowest terms (i.e., reduced fraction)
 - 3. $\Rightarrow n \times \sqrt{2} \equiv m$
 - 4. \Rightarrow 2 × $n^2 \equiv m^2$
 - 5. \Rightarrow m is even, let $m = 2 \times k$
 - 6. $\Rightarrow n^2 \equiv 2 \times k^2$
 - 7. \Rightarrow *n* is even, let $n = 2 \times h$
 - 8. $\Rightarrow \sqrt{2} \equiv \frac{m}{n} \equiv \frac{2 \times k}{2 \times h} \equiv \frac{k}{h}$
 - 9. $\Rightarrow \frac{m}{n}$ is not in lowest terms, resulting in a contradiction

Discussion

Pigeonhole principle: prove for every integer n, if n+1 objects are put into n boxes, then at least one box must contain 2 or more objects

- Prove for every (undirected) graph G = (V, E), the sum of degrees of all vertices is even, i.e., $\sum_{v \in V} \text{degree}(v)$ is even
- What proof technique to use? Any ideas
- Proof by induction uses three steps:
 - 1. Base case(s): one or more particular cases that represent the most basic case (e.g. |E| = 0, or |E| = 0 and |E| = 1)
 - 2. Induction hypothesis: assumption that we would like to be based on
 - Weak induction: assume the step that you are currently stepping on holds (e.g. let's assume that |E| = n holds)
 - Strong induction: assume the steps that you have stepped on before including the current one holds (e.g. let's assume that |E| = i holds for all $0 < i \le n$)
 - 3. Inductive Step: prove that the next step based on the induction hypothesis holds (e.g. |E|=n+1 holds)

- ▶ Prove for every (undirected) graph G = (V, E), the sum of degrees of all vertices is even, i.e., $\sum_{v \in V} \text{degree}(v)$ is even
- ▶ Proof by induction uses three steps:
 - 1. Base case: $|E| = 0 \Rightarrow \sum_{v \in V} \text{degree}(v) = 0$, and 0 is even
 - 2. Induction hypothesis: assume the statement holds when |E| = n
 - 3. Inductive Step: |E| = n + 1. When adding an edge into E, it is by definition between two vertices (but can be the same), each vertex then has its degree increase by 1, or 2 overall. Hence, $\sum_{v \in V} \text{degree}(v)$ is even.

Course Information

What is This Course About?
Automata and Languages
Computability Theory
Complexity Theory

About This Course

Mathematical Preliminaries (Chapter 0 Mathematical Notations Proofs and Types of Proofs

- Mathematical Notation
 - Sets
 - Sequences and Tuples
 - ► Functions and Relations
 - Graphs
 - Strings and Languages
 - Boolean Logic
- Proofs and Types of Proofs
 - \triangleright $A \Leftrightarrow B$ means A iff B
 - ▶ Prove $A \Rightarrow B$ and prove $B \Rightarrow A$
 - Disproof by counterexample (prove false via an example)
 - Proof by construction (main proof technique we will use)
 - Proof by contradiction
 - Proof by induction