

Tema III: Experimental Modal Analysis

Módulo: MÓDULO FUNDAMENTAL: CALIDAD Y DAÑO

Materia: Análisis Modal y Detección de Defectos

Enrique García Macías
enriquegm@ugr.es
Departamento de Mecánica de Estructuras e
Ingeniería Hidráulica

Desarrollo del curso

		FECHA		HORA	PROFESOR	TEMA	
Clase 1	Lunes	1	febrero	9:30-11:30	EGM	1	Introducción: Análisis modal dentro del marco del mantenimiento de la salud estructural.
Clase 2	Lunes	8	febrero	9:30-11:30	EGM	2	Fuentes de deterioro, patologías estructurales, y tecnologías de monitorización.
Clase 3	Lunes	15	febrero	9:30-11:30	EGM	3	Taller: procesamiento de señales.
Clase 4	Lunes	22	febrero	9:30-11:30	EGM	4	Análisis modal experimental.
Clase 5	Lunes	15	marzo	9:30-11:30	EGM	5	Análisis modal operacional.
Clase 6	Lunes	12	abril	9:30-11:30	EGM	6	Análisis modal operacional automatizado. Práctica de labotatorio I.
Clase 7	Lunes	19	abril	9:30-11:30	EGM	7	Taller: Identificación del daño estructural.
Clase 8	Lunes	26	abril	9:30-11:30	RCT	8	Técnicas de identificación dinámica basadas en análisis modal operacional.
Clase 9	Lunes	26	abril	12:00-14:00	RCT	9	Práctica de laboratorio II: Test de vibración ambiental.
Clase 10	Martes	27	abril	9:30-11:30	RCT	10	Casos de estudio.
Clase 11	Martes	27	abril	12:00-14:00	RCT		Presentación de trabajos.

ENTREGA DE TRABAJOS Y EVALUACIÓN

Del 3 al 28 de mayo

ÍNDICE

- Repaso fundamentos básicos de dinámica de estructuras.
- ☐ EMA vs OMA.
- ☐ Fundamentos teóricos de EMA.
- ☐ Práctica de identificación modal mediante EMA.

Repaso fundamentos básicos de

dinámica de estructuras.

$$\xi = \frac{c}{2m\omega} \qquad \omega = \sqrt{\frac{k}{m}} \qquad \omega_d = \omega\sqrt{1 - \xi^2}$$

SDOF

$$m\ddot{x} + c\dot{x} + kx = p(t)$$

$$m\ddot{x} + c\dot{x} + kx = 0$$

Free vibrations

$$x(t) = e^{-\xi \omega t} [A \cos(\omega_d t) + B \sin(\omega_d t)]$$

$$BC \qquad A = u_o \\ B = \frac{v_{o+\xi\omega A}}{\omega_d}$$

SDOF_Dynamic_system.py

$$m\ddot{x} + c\dot{x} + kx = p_o \sin(w_f t)$$

$$x_h(t) = e^{-\xi \omega t} [A \cos(\omega_d t) + B \sin(\omega_d t)]$$

$$x_p(t) = C_1 \sin(w_f t) + C_2 \cos(w_f t)$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$\omega_d = \omega \sqrt{1 - \xi^2}$$

$$\left[-C_1 w_f^2 + C_2 w_f(2\xi\omega) + C_1 \omega^2\right] \cos w_f t + \left[-C_2 w_f^2 - C_1 w_f(2\xi\omega) + C_2 \omega^2 - \frac{p_o}{m}\right] \sin w_f t = 0$$

$$-C_1 w_f^2 + C_2 w_f(2\xi\omega) + C_1 \omega^2 = 0$$

$$-C_2 w_f^2 - C_1 w_f(2\xi\omega) + C_2 \omega^2 - \frac{p_o}{m} = 0$$

$$-C_1 w_f^2 + C_2 w_f(2\xi\omega) + C_1 \omega^2 = 0$$

$$-C_2 w_f^2 - C_1 w_f(2\xi\omega) + C_2 \omega^2 - \frac{p_o}{m} = 0$$

$$C_1 = \frac{p_0}{k} \left[-\frac{2\xi\beta}{(1-\beta^2) + (2\xi\beta)^2} \right]$$

$$C_2 = \frac{p_0}{k} \left[-\frac{1-\beta^2}{(1-\beta^2) + (2\xi\beta)^2} \right]$$

$$\beta = \frac{w_f}{\omega}$$

$$p(t)$$

$$x_{p}(t) = p \sin(w_{f}t + \theta) \rightarrow p = \frac{p_{o}}{k} \left[(1 - \beta^{2}) + (2\xi\beta)^{2} \right]^{-1/2}$$

$$\frac{p_{o}}{k} \left[\frac{+2\xi\beta}{(1 - \beta^{2})^{2} + (2\xi\beta)^{2}} \right] \left[-\exp(i\overline{\omega}t) \right]$$

Dynamic amplification factor

$$m\ddot{x} + c\dot{x} + kx = p_o \sin(w_f t)$$

$$x(t) = x_h(t) + x_p(t) \qquad \text{harmonic}$$

$$= e^{-\xi \omega t} [A \cos(\omega_d t) + B \sin(\omega_d t)] \qquad \text{response}$$

$$+ \frac{p_o}{k} \left[\frac{1}{(1 - \beta^2) + (2\xi \beta)^2} \right] [(1 - \beta^2) \sin(w_f t) - 2\xi \beta \cos(w_f t)]$$

EMA vs OMA.

https://www.sensequake.com/blog-ambient-vibration-test

Cunha, A., & Caetano, E. (2006). Experimental modal analysis of civil engineering structures. Sound & Vibration 40(6)

Experimental Modal Analysis (EMA)

Operational Modal Analysis (OMA)

Mechanical Engineering

- → Artificial excitation
- ☐ Impact hammer shaker
- ☐ Controlled blast
- ☐ Well defined measured input
- □ Artificial excitation
- □ Scratching device
- ☐ Air flow
- □ Acoustic emissions
- □ Unknown signal
- □ Random in time and space

Civil Engineering

- □ Artificial excitation
- ☐ Hydraulic shaker
- ☐ Drop weights
- Pull back tests
- ☐ Eccentric shakers and exciters
- ☐ Well-defined measured, or un-measured input
- ☐ Controlled Blasts
- Natural Excitation
- ☐ Wind
- Waves
- □ Traffic
- ☐ Unknown signal
- □ Random in time and space with some spatial correlation

Remarks

- -Sensors (accelerometers, or velocity/displacement sensors) cannot be located at nodes.
- -The ability of the system for detecting damage depends on its capacity for identifying high-frequency modes.

Advantages/Disadvantages

- -Global damage identification.
- -Local structural pathologies with limited effect on the overall stiffness of structures may go unnoticed.
- -Damping (energy dissipation mechanisms) is very sensitive to damage, however its identification is highly dependent on the level of modal excitation and it is usually subject to high levels of uncertainty.
- -Non-Destructive.
- -It is not necessary to access difficult locations.
- -OMA The normal operating conditions of the structure remain unaltered Minimum intrusiveness.
- -OMA Readily applicable for continuous monitoring of structures.

Análisis Modal Experimental

Procedimiento a través del cual se caracteriza el comportamiento dinámico de una estructura en términos de sus propiedades modales

- Frecuencias de resonancia
- **Tasas de amortiguamiento**
- Modos de vibración

Análisis Modal Experimental

1. Medir FRFs

2. Estimar polos del sistema

3. Modos de vibración

4. Validación

Métodos de excitación en EMA

Impact hammer

Shaker

Hydraulic actuator

https://www.youtube.com/watch?v=tBRjPN8m6zE

https://www.youtube.com/watch?v=d3U_m4XOtg

https://www.youtube.com/watch?v=y2nG5uCGoRs&feature=share &fbclid=IwAR12W2yuyYOU7mr_P6XEKFWqVuNoV4elLbLSQ_ Gii1QH9m34G83Cb4DftaY

Vibrodyne

https://www.youtube.com/watch?v=gmWFK-vT6_Q&t=23s

16

Fundamentos teóricos de EMA (pdf)

Modos complejos

Modos complejos

Fundamentos teóricos de EMA - Ejercicios

Sistema de 2 GDL con amortiguamiento general

$$m_1 = m_2 = 2 \text{ kg}$$

$$C_1 = 3\frac{N}{m/s}, C_2 = 1\frac{N}{m/s}, C_3 = 4\frac{N}{m/s}$$

$$k_1 = 4000 \frac{N}{m}, k_2 = 2000 \frac{N}{m}, k_3 = 4000 \frac{N}{m}$$

Determinar:

- Polos del sistema
- Modos de vibración
- Matrices de residuos
- Factores de contribución modal

Ecuaciones del movimiento

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} + \begin{bmatrix} 4 & -1 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} \begin{bmatrix} 6000 & -2000 \\ -2000 & 6000 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = F$$

$$p^{2} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(p) + p \begin{bmatrix} 4 & -1 \\ -1 & 5 \end{bmatrix} X(p) + \begin{bmatrix} 6000 & -2000 \\ -2000 & 6000 \end{bmatrix} X(p) = F(p)$$

$$Z = \begin{bmatrix} 2p^2 + 4p + 6000 & -p - 2000 \\ -p - 2000 & 2p^2 + 5p + 6000 \end{bmatrix}$$

$$H(p) = \frac{\text{Adj}[Z(p)]}{\text{Det}[Z(p)]} = \begin{bmatrix} \frac{2p^2 + 5p + 6000}{4p^4 + 18p^3 + 24019p^2 + 50000p + 32000000} & \frac{p + 2000}{4p^4 + 18p^3 + 24019p^2 + 50000p + 32000000} \\ \frac{p + 2000}{4p^4 + 18p^3 + 24019p^2 + 50000p + 32000000} & \frac{2(p^2 + 2p + 3000)}{4p^4 + 18p^3 + 24019p^2 + 50000p + 32000000} \end{bmatrix}$$

$$\begin{array}{c} p + 2000 \\ 4p^4 + 18p^3 + 24019p^2 + 50000p + 320000000 \\ 2(p^2 + 2p + 3000) \\ 4p^4 + 18p^3 + 24019p^2 + 50000p + 320000000 \end{array}$$

Ecuaciones del movimiento

En oposición de fase

En fase

$$\begin{pmatrix} p \begin{bmatrix} 0 & \mathbf{M} \\ \mathbf{M} & 0 \end{bmatrix} + \begin{bmatrix} -\mathbf{M} & 0 \\ 0 & \mathbf{K} \end{bmatrix} \end{pmatrix} \mathbf{Y}(p) = \begin{bmatrix} 0 \\ \mathbf{F}(p) \end{bmatrix}$$

$$\left(p \begin{bmatrix} 0 & \mathbf{M} \\ \mathbf{M} & 0 \end{bmatrix} + \begin{bmatrix} -\mathbf{M} & 0 \\ 0 & \mathbf{K} \end{bmatrix}\right) \mathbf{Y}(p) = \begin{bmatrix} 0 \\ \mathbf{F}(p) \end{bmatrix} \qquad p \cdot A + B = \begin{bmatrix} -2 & 0 & 2p & 0 \\ 0 & -2 & 0 & 2p \\ 2p & 0 & 4p + 6000 & -p - 2000 \\ 0 & 2p & -p - 2000 & 5p + 6000 \end{bmatrix}$$

Autovalores

$$\Lambda = \begin{bmatrix} -1.37499 + 63.2296i & 0 & 0 & 0 \\ 0 & -1.37499 - 63.2296i & 0 & 0 \\ 0 & 0 & -0.875012 + 44.7135i & 0 \\ 0 & 0 & 0 & -0.875012 - 44.7135i \end{bmatrix}$$

$$\lambda_{1} = -1.37499 + 63.2296i \qquad \lambda_{1} = 63.2446 \angle 91.2457^{\circ}$$

$$\lambda_{1} = -1.37499 + 63.2296i \qquad \lambda_{1} = 63.2446 \angle 91.2457^{\circ}$$

$$\lambda_{2} = -1.37499 - 63.2296i \qquad \lambda_{2} = 63.2446 \angle -91.2457^{\circ}$$

$$\lambda_{3} = -0.875012 + 44.7135i \qquad \lambda_{3} = 44.7221 \angle 91.1211^{\circ}$$

$$\lambda_{4} = -0.875012 - 44.7135i \qquad \lambda_{4} = 44.7221 \angle -91.1211^{\circ}$$

$$\left(p \begin{bmatrix} 0 & \mathbf{M} \\ \mathbf{M} & 0 \end{bmatrix} + \begin{bmatrix} -\mathbf{M} & 0 \\ 0 & \mathbf{K} \end{bmatrix}\right) \mathbf{Y}(p) = \begin{bmatrix} 0 \\ \mathbf{F}(p) \end{bmatrix} \qquad p \cdot A + B = \begin{bmatrix} -2 & 0 & 2p & 0 \\ 0 & -2 & 0 & 2p \\ 2p & 0 & 4p + 6000 & -p - 2000 \\ 0 & 2p & -p - 2000 & 5p + 6000 \end{bmatrix}$$

Autovalores

$$\omega_1^d = 63.2296 \text{ rad/s}$$
 $\omega_1 = 63.2446 \text{ rad/s}$ $\zeta_1 = 0.0217408$ $\omega_2^d = -63.2296 \text{ rad/s}$ $\omega_2 = 63.2446 \text{ rad/s}$ $\zeta_2 = 0.0217408$ $\omega_3^d = 44.7135 \text{ rad/s}$ $\omega_3 = 44.7221 \text{ rad/s}$ $\zeta_3 = 0.0195655$ $\omega_4^d = -44.7135 \text{ rad/s}$ $\omega_4 = 44.7221 \text{ rad/s}$ $\zeta_4 = 0.0195655$

$$p \cdot A + B = \begin{bmatrix} -2 & 0 & 2p & 0 \\ 0 & -2 & 0 & 2p \\ 2p & 0 & 4p + 6000 & -p - 2000 \\ 0 & 2p & -p - 2000 & 5p + 6000 \end{bmatrix}$$

Autovectores

-0.706874747861719 + 0.0111794444518016i0.707073663439352 0.000419717239670559 + 0.0111703610548922i-0.000243062098281271 - 0.0111773485135086i

-0.706874747861719 - 0.0111794444518016i0.7070736634393520.000419717239670559 - 0.0111703610548922i-0.000243062098281271 + 0.0111773485135086i

0.7069411285354250.706874822414759 - 0.00790516995109802i-0.000309281218296151 - 0.015804411179221i-0.000485980584153942 - 0.0157994703862086i

0.7069411285354250.706874822414759 + 0.00790516995109802i-0.000309281218296151 + 0.015804411179221i-0.000485980584153942 + 0.0157994703862086i

$$\begin{pmatrix} p \begin{bmatrix} 0 & \mathbf{M} \\ \mathbf{M} & 0 \end{bmatrix} + \begin{bmatrix} -\mathbf{M} & 0 \\ 0 & \mathbf{K} \end{bmatrix} \end{pmatrix} \mathbf{Y}(p) = \begin{bmatrix} 0 \\ \mathbf{F}(p) \end{bmatrix} \qquad p \cdot \mathbf{A} + \mathbf{B} = \begin{bmatrix} -2 & 0 & 2p & 0 \\ 0 & -2 & 0 & 2p \\ 2p & 0 & 4p + 6000 & -p - 2000 \\ 0 & 2p & -p - 2000 & 5p + 6000 \end{bmatrix}$$

$$p \cdot A + B = \begin{bmatrix} -2 & 0 & 2p & 0\\ 0 & -2 & 0 & 2p\\ 2p & 0 & 4p + 6000 & -p - 2000\\ 0 & 2p & -p - 2000 & 5p + 6000 \end{bmatrix}$$

Autovectores

-0.706874747861719 + 0.0111794444518016i0.707073663439352 0.000419717239670559 + 0.0111703610548922i-0.000243062098281271 - 0.0111773485135086i

-0.706874747861719 - 0.0111794444518016i0.7070736634393520.000419717239670559 - 0.0111703610548922i-0.000243062098281271 + 0.0111773485135086i

0.7069411285354250.706874822414759 - 0.00790516995109802i-0.000309281218296151 - 0.015804411179221i-0.000485980584153942 - 0.0157994703862086i

0.7069411285354250.706874822414759 + 0.00790516995109802i-0.000309281218296151 + 0.015804411179221i-0.000485980584153942 + 0.0157994703862086i

Matrices de residuos

$$A_{1} = (3.12661 \cdot 10^{-8} + 9.88245 \cdot 10^{-7}i) \begin{bmatrix} -1999.06 - 31.6119i & 1998.63 + 63.2296i \\ 1998.63 + 63.2296i & -1997.69 - 94.8415i \end{bmatrix}$$

$$A_{2} = (3.12661 \cdot 10^{-8} - 9.88245 \cdot 10^{-7}i) \begin{bmatrix} -1999.06 + 31.6119i & 1998.63 - 63.2296i \\ 1998.63 - 63.2296i & -1997.69 + 94.8415i \end{bmatrix}$$

$$A_{3} = (-3.12661 \cdot 10^{-8} - 1.39783 \cdot 10^{-6}i) \begin{bmatrix} 1998.56 + 67.0682i & 1999.13 + 44.7135i \\ 1999.13 + 44.7135i & 1999.44 + 22.3547i \end{bmatrix}$$

$$A_{4} = (-3.12661 \cdot 10^{-8} + 1.39783 \cdot 10^{-6}i) \begin{bmatrix} 1998.56 - 67.0682i & 1999.13 - 44.7135i \\ 1999.13 - 44.7135i & 1999.44 - 22.3547i \end{bmatrix}$$

Factores de contribución modal

$$\begin{aligned} Q_1 &= -0.937557 + 15.7925i \\ Q_2 &= -0.937557 - 15.7925i \\ Q_3 &= -0.562756 + 11.1751i \end{aligned} \qquad \begin{aligned} Q_2 \cdot \psi \cdot \psi^T &= (-0.937557 + 15.7925i) \cdot \begin{bmatrix} -0.000124601 + 9.37679 \cdot 10^{-6}i & 0.000124753 - 7.40642 \cdot 10^{-6}i \\ 0.000124753 - 7.40642 \cdot 10^{-6}i & -0.000124874 + 5.43358 \cdot 10^{-6}i \end{bmatrix} = \\ &= \begin{bmatrix} -3.12627 \cdot 10^{-5} - 0.00197655i & 2.92845 \cdot 10^{-9} + 0.00197711i \\ 2.92845 \cdot 10^{-9} + 0.00197711i & 3.12666 \cdot 10^{-5} - 0.00197717i \end{bmatrix} \\ A_1 &= \begin{bmatrix} -3.12627 \cdot 10^{-5} - 0.00197655i & 2.94571 \cdot 10^{-9} + 0.00197711i \\ 2.94571 \cdot 10^{-9} + 0.00197711i & 3.12666 \cdot 10^{-5} - 0.00197717i \end{bmatrix} \end{aligned}$$

$$m_1 = m_2 = 2 \text{ kg}$$

$$C_1 = 3\frac{N}{m/s}, C_2 = 2\frac{N}{m/s}, C_3 = 3\frac{N}{m/s}$$

$$k_1 = 4000 \frac{N}{m}, k_2 = 2000 \frac{N}{m}, k_3 = 4000 \frac{N}{m}$$

Determinar:

- Polos del sistema
- Modos de vibración
- Matrices de residuos
- Factores de contribución modal

$$C = \alpha \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} + \beta \begin{bmatrix} 6000 & -2000 \\ -2000 & 6000 \end{bmatrix} = \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix}$$

$$\alpha = -\frac{1}{2}1/s$$

$$\beta = \frac{1}{1000} \frac{1}{s}$$

Determinar:

- Polos del sistema
- Modos de vibración
- Matrices de residuos
- Factores de contribución modal

Autovalores/Autovectores

$$\lambda_1 = -1.75 + 63.2213i = 63.2456 \angle 91.5856^{\circ}$$

$$\lambda_2 = -1.75 - 63.2213i = 63.2456 \angle -91.5856^{\circ}$$

$$\lambda_3 = -0.75 + 44.7151i = 44.7214 \angle 90.9609^{\circ}$$

$$\lambda_4 = -0.75 - 44.7151i = 44.7214 \angle -90.9609^{\circ}$$

$$\label{eq:Abs} \begin{split} \operatorname{Abs}(\lambda_1) &= \begin{bmatrix} 0.707018409408262\\ 0.707018409408263\\ 0.0111789426069976\\ 0.0111789426069976 \end{bmatrix}, \ \operatorname{Ang}(\lambda_1) \begin{bmatrix} 180.0\\ 0.0\\ 88.4144274491374\\ -91.5855725508626 \end{bmatrix} [^\circ] \\ \operatorname{Abs}(\lambda_2) &= \begin{bmatrix} 0.707018409408262\\ 0.707018409408263\\ 0.0111789426069976\\ 0.0111789426069976 \end{bmatrix}, \ \operatorname{Ang}(\lambda_2) \begin{bmatrix} -180.0\\ 0.0\\ -88.4144274491374\\ 91.5855725508626 \end{bmatrix} [^\circ] \\ \operatorname{Abs}(\lambda_3) &= \begin{bmatrix} 0.706930070754903\\ 0.015807436935467\\ 0.015807436935467\\ 0.015807436935467 \end{bmatrix}, \ \operatorname{Ang}(\lambda_3) \begin{bmatrix} 0.0\\ 3.97368448908243 \cdot 10^{-14}\\ -90.9609244805382\\ -90.9609244805381 \end{bmatrix} [^\circ] \\ \operatorname{Abs}(\lambda_4) &= \begin{bmatrix} 0.706930070754903\\ 0.706930070754902\\ 0.015807436935467 \end{bmatrix}, \ \operatorname{Ang}(\lambda_4) \begin{bmatrix} 0.0\\ -3.97368448908243 \cdot 10^{-14}\\ 90.9609244805382 \end{bmatrix} [^\circ] \\ \begin{bmatrix} 0.0\\ -3.97368448908243 \cdot 10^{-14}\\ 90.9609244805382 \end{bmatrix} [^\circ] \\ \end{bmatrix} [^\circ] \\ \begin{bmatrix} 0.0\\ -3.97368448908243 \cdot 10^{-14}\\ 90.9609244805382 \end{bmatrix} [^\circ] \\ \end{bmatrix} [^\circ] \\ \begin{bmatrix} 0.0\\ -3.97368448908243 \cdot 10^{-14}\\ 90.9609244805382 \end{bmatrix} [^\circ] \\ \end{bmatrix} [^\circ] \\ \end{bmatrix}$$

[0.015807436935467]

90.9609244805381

Sistema de 2 GDL sin amortiguamiento

$$m_1 = m_2 = 2 \text{ kg}$$

$$C_1 = 0 \frac{N}{m/s}, C_2 = 0 \frac{N}{m/s}, C_3 = 0 \frac{N}{m/s}$$

$$k_1 = 4000 \frac{N}{m}, k_2 = 2000 \frac{N}{m}, k_3 = 4000 \frac{N}{m}$$

Determinar:

- Polos del sistema
- Modos de vibración
- Matrices de residuos
- Factores de contribución modal

Autovalores/Autovectores

$$\lambda_1 = 63.2456i = 63.2456 \angle 90.0^{\circ}$$

$$\lambda_2 = -63.2456i = 63.2456 \angle -90.0^{\circ}$$

$$\lambda_3 = 4.71845 \cdot 10^{-15} + 44.7214i = 44.7214 \angle 90.0^{\circ}$$

$$\lambda_4 = 4.71845 \cdot 10^{-15} - 44.7214i = 44.7214 \angle -90.0^{\circ}$$