

CS 412 Intro. to Data Mining

Chapter 10. Cluster Analysis: Basic Concepts and Methods

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods

- Hierarchical Methods
- Density- and Grid-Based Methods
- Evaluation of Clustering
- Summary

Partitioning-Based Clustering Methods

- Basic Concepts of Partitioning Algorithms
- The K-Means Clustering Method
- Initialization of K-Means Clustering
- The K-Medoids Clustering Method
- The K-Medians and K-Modes Clustering Methods
- The Kernel K-Means Clustering Method

Partitioning Algorithms: Basic Concepts

- Partitioning method: Discovering the groupings in the data by optimizing a specific objective function and iteratively improving the quality of partitions
- □ K-partitioning method: Partitioning a dataset D of n objects into a set of K clusters so that an objective function is optimized (e.g., the sum of squared distances is minimized, where c_k is the centroid or medoid of cluster C_k)
 - A typical objective function: Sum of Squared Errors (SSE)

$$SSE(C) = \sum_{k=1}^{K} \sum_{x_{i \in C_{k}}} ||x_{i} - c_{k}||^{2}$$

- □ Problem definition: Given *K*, find a partition of *K clusters* that optimizes the chosen partitioning criterion
 - Global optimal: Needs to exhaustively enumerate all partitions
 - Heuristic methods (i.e., greedy algorithms): K-Means, K-Medians, K-Medoids, etc.

The K-Means Clustering Method

- K-Means (MacQueen'67, Lloyd'57/'82)
 - Each cluster is represented by the center of the cluster
- Given K, the number of clusters, the K-Means clustering algorithm is outlined as follows
 - Select *K* points as initial centroids
 - Repeat, ~ on The photon solver man
 - Form K clusters by assigning each point to its closest centroid
 - Re-compute the centroids (i.e., *mean point*) of each cluster
 - Until convergence criterion is satisfied
- Different kinds of measures can be used
 - ☐ Manhattan distance (L₁ norm), Euclidean distance (L₂ norm), Cosine similarity

Example: K-Means Clustering

Select *K* points as initial centroids

Repeat

- Form K clusters by assigning each point to its closest centroid
- Re-compute the centroids (i.e., mean point) of each cluster

Until convergence criterion is satisfied

Discussion on the K-Means Method

- **Efficiency**: O(tKn) where n: # of objects, K: # of clusters, and t: # of iterations
 - □ Normally, *K*, *t* << *n*; thus, an efficient method
- K-means clustering often terminates at a local optimal
 - Initialization can be important to find high-quality clusters
- **Need to specify** *K*, the *number* of clusters, in advance
 - There are ways to automatically determine the "best" K
 - ☐ In practice, one often runs a range of values and selected the "best" K value
- Sensitive to noisy data and outliers
 - □ Variations: Using K-medians, K-medoids, etc.
- K-means is applicable only to objects in a continuous n-dimensional space
 - Using the K-modes for categorical data
- Not suitable to discover clusters with non-convex shapes
 - Using density-based clustering, kernel K-means, etc.

Variations of *K-Means*

- ☐ There are many variants of the *K-Means* method, varying in different aspects
 - Choosing better initial centroid estimates
 - □ K-means++, Intelligent K-Means, Genetic K-Means

To be discussed in this lecture

- Choosing different representative prototypes for the clusters
 - □ K-Medoids, K-Medians, K-Modes

To be discussed in this lecture

- Applying feature transformation techniques
 - ☐ Weighted K-Means, Kernel K-Means

To be discussed in this lecture

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods
- Hierarchical Methods

- Density- and Grid-Based Methods
- Evaluation of Clustering
- Summary

Hierarchical Clustering Methods

- Basic Concepts of Hierarchical Algorithms
- Agglomerative Clustering Algorithms
- Divisive Clustering Algorithms
- Extensions to Hierarchical Clustering
- BIRCH: A Micro-Clustering-Based Approach
- CURE: Exploring Well-Scattered Representative Points
- CHAMELEON: Graph Partitioning on the KNN Graph of the Data
- Probabilistic Hierarchical Clustering

Hierarchical Clustering: Basic Concepts

- Hierarchical clustering
 - Generate a clustering hierarchy (drawn as a dendrogram)
 - Not required to specify *K*, the number of clusters
 - More deterministic
 - No iterative refinement
- Two categories of algorithms:

- **Agglomerative**: Start with singleton clusters, continuously merge two clusters at a time to build a **bottom-up** hierarchy of clusters
- □ **Divisive:** Start with a huge macro-cluster, split it continuously into two groups, generating a **top-down** hierarchy of clusters

Dendrogram: Shows How Clusters are Merged

- Dendrogram: Decompose a set of data objects into a tree of clusters by multi-level nested partitioning
- A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected component</u> forms a cluster

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: An Introduction
- Partitioning Methods
- **Hierarchical Methods**
- Density- and Grid-Based Methods
- Evaluation of Clustering

Summary

Clustering Validation

- Clustering Validation: Basic Concepts
- Clustering Evaluation: Measuring Clustering Quality
- External Measures for Clustering Validation
 - I: Matching-Based Measures
 - ☐ II: Entropy-Based Measures
 - ☐ III: Pairwise Measures
- Internal Measures for Clustering Validation
- Relative Measures
- Cluster Stability
- Clustering Tendency

Clustering Validation and Assessment

WAMS in Clustering in min sully in & suite

- Major issues on clustering validation and assessment
 - □ Ciustering evaluation
 - Evaluating the goodness of the clustering
 - Clustering stability
 - To understand the sensitivity of the clustering result to various algorithm parameters, e.g., # of clusters
 - Clustering tendency
 - Assess the suitability of clustering, i.e., whether the data has any inherent grouping structure

Measuring Clustering Quality

- □ Clustering Evaluation: Evaluating the goodness of clustering results
 - No commonly recognized best suitable measure in practice
- ☐ Three categorization of measures: External, internal, and relative
 - **External**: Supervised, employ criteria not inherent to the dataset
 - □ Compare a clustering against prior or expert-specified knowledge (i.e., the ground truth) using certain clustering quality measure
 - ☐ Internal: Unsupervised, criteria derived from data itself
 - Evaluate the goodness of a clustering by considering how well the clusters are separated and how compact the clusters are, e.g., silhouette coefficient
 - Relative: Directly compare different clusterings, usually those obtained via different parameter settings for the same algorithm

Measuring Clustering Quality: External Methods

- \Box Given the **ground truth** T, Q(C, T) is the **quality measure** for a clustering C
- \square Q(C, T) is good if it satisfies the following **four** essential criteria
 - Cluster homogeneity
 - ☐ The purer, the better
 - Cluster completeness

- (AAAA) (BABA) X
 (AAAA) (BB) (AA) /
- Assign objects belonging to the same category in the ground truth to the same cluster
- Rag bag better than alien
 - □ Putting a heterogeneous object into a pure cluster should be penalized more than putting it into a *rag bag* (i.e., "miscellaneous" or "other" category)
- Small cluster preservation
 - Splitting a small category into pieces is more harmful than splitting a large category into pieces

Commonly Used External Measures

- Matching-based measures
- (To be covered)
- Purity, maximum matching, F-measure
- Entropy-Based Measures
 - Conditional entropy

(To be covered)

Normalized mutual information (NMI)

(To be covered)

- Variation of information
- Pairwise measures

(To be covered)

- Four possibilities: True positive (TP), FN, FP, TN
- ☐ Jaccard coefficient, Rand statistic, Fowlkes-Mallow measure
- Correlation measures
 - Discretized Huber static, normalized discretized Huber static

Matching-Based Measures (I): Purity vs. Maximum Matching

- **Purity**: Quantifies the extent that cluster C_i contains points only from one (ground truth) partition: $purity_i = \frac{1}{n} \max_{j=1}^{\kappa} \{n_{ij}\}$
 - Total purity of clustering C:

$$purity = \sum_{i=1}^{r} \frac{n_i}{n} purity_i = \frac{1}{n} \sum_{i=1}^{r} \max_{j=1}^{k} \{n_{ij}\}$$

- Perfect clustering if purity = 1 and r = k (the number of clusters obtained is the same as that in the ground truth)
- \square Ex. 1 (green or orange): $purity_1 = 30/50$; $purity_2 = 20/25$; $purity_3 = 25/25$; purity = (30 + 20 + 25)/100 = 0.75
- Two clusters may share the same majority partition
- Maximum matching: Only one cluster can match one partition
 - Match: Pairwise matching, weight $w(e_{ij}) = n_{ij}$ $w(M) = \sum_{e \in M} w(e)$ Maximum weight matching: $match = \arg\max_{M} \{\frac{w(M)}{n}\}$
 - - Ex2. (green) match = purity = 0.75; (orange) match = 0.65 > 0.6

$C \setminus T$	T ₁	T ₂	T ₃	Sum
C_1	0	20	30	50
C_2	0	20	5	25
C_3	25	0	0	25
m_{j}	25	40	35	100

C_3	25	0	0	25
m_j	25	40	35	100
C\T	T ₁	T ₂	T ₃	Sum
C_1	0	30	20	50
C_2	0	20	5	25
C_3	25	0	0	25
m_i	25	50	25	100

Matching-Based Measures (II): F-Measure

- **Precision**: The fraction of points in C_i from the majority partition T_{i} (i.e., the same as purity), where j_i is the partition that contains the maximum # of points from C_i $prec_{i} = \frac{1}{n_{i}} \max_{j=1}^{k} \{n_{ij}\} = \frac{n_{ij_{i}}}{n_{i}}$
 - Ex. For the green table
 - \square prec₁ = 30/50; prec₂ = 20/25; prec₃ = 25/25
- **Recall**: The fraction of point in partition T_i shared in common with cluster C_i , where $m_{j_i} = |T_{j_i}|$ $recall_i = \frac{n_{ij_i}}{|T_i|} = \frac{n_{ij_i}}{m_{i}}$
 - Ex. For the green table
 - \square recall₁ = 30/35; recall₂ = 20/40; recall₃ = 25/25
- □ **F-measure** for C_i : The harmonic means of $prec_i$ and $recall_i$: $F_i = \frac{2n_{ij_i}}{r_i}$
- □ F-measure for clustering *C*: average of all clusters: $F = \frac{1}{r} \sum_{i=1}^{r} F_{i}$ ■ Ex. For the green table
 - \Box $F_1 = 60/85$; $F_2 = 40/65$; $F_3 = 1$; F = 0.774

$C \setminus T$	T ₁	T ₂	T ₃	Sum
C_1	0	20	30	50
C_2	0	20	5	25
C_3	25	0	0	25
m_j	25	40	35	100

Entropy-Based Measures (I): Conditional Entropy

- Entropy of clustering *C*: $H(\mathcal{C}) = -\sum_{i=1}^{r} p_{C_i} \log p_{C_i}$ $p_{C_i} = \frac{n_i}{n}$ (i.e., the probability of cluster C_i)
- □ Entropy of partitioning T: $H(T) = -\sum_{j=1}^{k} p_{T_i} \log p_{T_j}$ □ Entropy of T with respect to cluster C_i : $H(T|C_i) = -\sum_{i=1}^{k} (\frac{n_{ij}}{n_i}) \log(\frac{n_{ij}}{n_i})$
- □ Conditional entropy of T with respect to
 - clustering C: $H(\mathcal{T}|\mathcal{C}) = -\sum_{i=1}^r (\frac{n_i}{n}) H(\mathcal{T}|C_i) = -\sum_{i=1}^r \sum_{j=1}^r p_{ij} \log(\frac{p_{ij}}{p_{C_i}})$ The more a cluster's members are split into different partitions, the higher the conditional entropy
 - For a perfect clustering, the conditional entropy value is 0, where the worst possible conditional entropy value is log k

$$H(\mathcal{T}|\mathcal{C}) = -\sum_{i=1}^{r} \sum_{j=1}^{k} p_{ij} (\log p_{ij} - \log p_{C_i}) = -\sum_{i=1}^{r} \sum_{j=1}^{k} p_{ij} \log p_{ij} + \sum_{i=1}^{r} (\log p_{C_i} \sum_{j=1}^{k} p_{ij})$$

$$= -\sum_{i=1}^{r} \sum_{j=1}^{k} p_{ij} \log p_{ij} + \sum_{i=1}^{r} (p_{C_i} \log p_{C_i}) = H(\mathcal{C}, \mathcal{T}) - H(\mathcal{C})$$

Entropy-Based Measures (II): Normalized Mutual Information (NMI)

■ Mutual information:

- Quantifies the amount of shared info between $I(C,T) = \sum_{i=1}^{r} \sum_{j=1}^{k} p_{ij} \log(\frac{p_{ij}}{p_{C_i} \cdot p_{T_j}})$ the clustering C and partitioning T
- \square Measures the dependency between the observed joint probability p_{ij} of C and T, and the expected joint probability p_{Ci} . p_{Tj} under the independence assumption
- When C and T are independent, $p_{ij} = p_{Ci} \cdot p_{Tj}$, I(C, T) = 0. However, there is no upper bound on the mutual information
- Normalized mutual information (NMI)

$$NMI(\mathcal{C},\mathcal{T}) = \sqrt{\frac{I(\mathcal{C},\mathcal{T})}{H(\mathcal{C})} \cdot \frac{I(\mathcal{C},\mathcal{T})}{H(\mathcal{T})}} = \frac{I(\mathcal{C},\mathcal{T})}{\sqrt{H(\mathcal{C}) \cdot H(\mathcal{T})}}$$

□ Value range of NMI: [0,1]. Value close to 1 indicates a good clustering

Pairwise Measures: Four Possibilities for Truth Assignment

- □ Four possibilities based on the agreement between cluster label and partition label
 - □ TP: true positive—Two points \mathbf{x}_i and \mathbf{x}_j belong to the same partition T, and they also in the same cluster C

Ground Truth T

Cluster C₁

$$TP = |\{(\mathbf{x}_i, \mathbf{x}_i) : y_i = y_i \text{ and } \hat{y}_i = \hat{y}_i\}|$$

where y_i : the true partition label, and \hat{y}_i : the cluster label for point \mathbf{x}_i

- □ *FN*: false negative: $FN = |\{(\mathbf{x}_i, \mathbf{x}_j) : y_i = y_j \text{ and } \hat{y}_i \neq \hat{y}_j\}|$
- □ FP: false positive $FP = |\{(\mathbf{x}_i, \mathbf{x}_j) : y_i \neq y_j \text{ and } \hat{y}_i = \hat{y}_j\}|$
- □ *TN*: true negative $TN = |\{(\mathbf{x}_i, \mathbf{x}_j) : y_i \neq y_j \text{ and } \hat{y}_i \neq \hat{y}_j\}|$
- Calculate the four measures:

$$TP = \sum_{i=1}^{r} \sum_{j=1}^{k} {n_{ij} \choose 2} = \frac{1}{2} \left(\left(\sum_{i=1}^{r} \sum_{j=1}^{k} n_{ij}^{2} \right) - n \right) \quad FN = \sum_{j=1}^{k} {m_{j} \choose 2} - TP$$

$$FP = \sum_{i=1}^{r} {n_{i} \choose 2} - TP \quad TN = N - (TP + FN + FP) = \frac{1}{2} \left(n^{2} - \sum_{i=1}^{r} n_{i}^{2} - \sum_{j=1}^{k} m_{j}^{2} + \sum_{i=1}^{r} \sum_{j=1}^{k} n_{ij}^{2} \right)$$

Pairwise Measures: Jaccard Coefficient and Rand Statistic

- ☐ Jaccard coefficient: Fraction of true positive point pairs, but after ignoring the true negatives (thus asymmetric)
 - □ Jaccard = TP/(TP + FN + FP) [i.e., denominator ignores TN]
 - □ Perfect clustering: Jaccard = 1
- Rand Statistic:
 - \square Rand = (TP + TN)/N
 - Symmetric; perfect clustering: Rand = 1
- **□** Fowlkes-Mallow Measure:
 - Geometric mean of precision and recall

$$FM = \sqrt{prec \times recall} = \frac{TP}{\sqrt{(TP + FN)(TP + FP)}}$$

☐ Using the above formulas, one can calculate all the measures for the green table (leave as an exercise)

C\T	T ₁	T ₂	T ₃	Sum
C_1	0	20	30	50
C_2	0	20	5	25
C_3	25	0	0	25
m_j	25	40	35	100

Internal Measures (I): BetaCV Measure

- □ A trade-off in maximizing intra-cluster compactness and inter-cluster separation
- \square Given a clustering $C = \{C_1, \ldots, C_k\}$ with k clusters, cluster C_i containing $n_i = |C_i|$ points
 - Let W(S, R) be sum of weights on all edges with one vertex in S and the other in R

 - The sum of all the intra-cluster weights over all clusters: $W_{in} = \frac{1}{2} \sum_{i=1}^{k} W(C_i, C_i)$ The sum of all the inter-cluster weights: $W_{out} = \frac{1}{2} \sum_{i=1}^{k} W(C_i, \overline{C_i}) = \sum_{i=1}^{k-1} \sum_{i>i} W(C_i, C_i)$
 - The number of distinct intra-cluster edges: $N_{in} = \sum_{i=1}^{k} {n_i \choose 2}$
 - The number of distinct inter-cluster edges: $N_{out} = \sum_{i=1}^{k-1} \sum_{j=1}^{k} n_i n_j$

- Beta-CV measure: $BetaCV = \frac{W_{in} / N_{in}}{W_{out} / N_{out}}$
 - The ratio of the mean intra-cluster distance to the mean inter-cluster distance
 - The smaller, the better the clustering

Internal Measures (II): Normalized Cut and Modularity

- Normalized cut: $NC = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{vol(C_i)} = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{W(C_i, V)} = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{W(C_i, C_i) + W(C_i, \overline{C_i})} = \sum_{i=1}^{k} \frac{1}{\frac{W(C_i, \overline{C_i})}{W(C_i, \overline{C_i})} + 1}$ where $vol(C_i) = W(C_i, V)$ is the volume of cluster C_i
 - ☐ The higher normalized cut value, the better the clustering

- **Modularity** (for graph clustering) $Q = \sum_{i=1}^{k} \left(\frac{W(C_i, C_i)}{W(V, V)} \left(\frac{W(C_i, V)}{W(V, V)} \right)^2 \right)$ Modularity Q is defined as
 - where $W(V,V) = \sum_{i=1}^{k} W(C_{i},V) = \sum_{i=1}^{k} W(C_{i},C_{i}) + \sum_{i=1}^{k} W(C_{i},\overline{C_{i}}) = 2(W_{in} + W_{out})$
 - \square Modularity measures the difference between the observed and expected fraction of weights on edges within the clusters.
 - The smaller the value, the better the clustering—the intra-cluster distances are lower than expected

Relative Measure

- □ Relative measure: Directly compare different clusterings, usually those obtained via different parameter settings for the same algorithm
- □ Silhouette coefficient as an internal measure: Check cluster cohesion and separation
 - For each point \mathbf{x}_i , its silhouette coefficient s_i is: $s_i = \frac{\mu_{out}^{min}(\mathbf{x}_i) \mu_{in}(\mathbf{x}_i)}{\max\{\mu_{out}^{min}(\mathbf{x}_i), \mu_{in}(\mathbf{x}_i)\}}$ where $\mu_{in}(\mathbf{x}_i)$ is the mean distance from \mathbf{x}_i to points in its own cluster $\mu_{out}^{min}(\mathbf{x}_i)$ is the mean distance from \mathbf{x}_i to points in its closest cluster
 - Silhouette coefficient (SC) is the mean values of s_i across all the points: $SC = \frac{1}{n} \sum_{i=1}^{n} s_i$
 - ☐ SC close to +1 implies good clustering
 - □ Points are close to their own clusters but far from other clusters
- □ Silhouette coefficient as a relative measure: Estimate the # of clusters in the data

$$SC_i = \frac{1}{n_i} \sum_{x_i \in C_i} s_j$$
 Pick the k value that yields the best clustering, i.e., yielding high values for SC and SC_i ($1 \le i \le k$)

Cluster Stability

- Clusterings obtained from several datasets sampled from the same underlying distribution as **D** should be similar or "stable"
- Typical approach:
 - ☐ Find good parameter values for a given clustering algorithm
- \square Example: Find a good value of k, the correct number of clusters
- \square A **bootstrapping approach** to find the best value of k (judged on stability)
 - ☐ Generate *t* samples of size *n* by sampling from *D* with replacement
 - \Box For each sample D_i , run the same clustering algorithm with k values from 2 to k_{max}
 - □ Compare the distance between all pairs of clusterings $C_k(\mathbf{D}_i)$ and $C_k(\mathbf{D}_j)$ via some distance function
 - \Box Compute the expected pairwise distance for each value of k
 - The value k^* that exhibits the least deviation between the clusterings obtained from the resampled datasets is the best choice for k since it exhibits the most stability

