EVRP数学公式完整版

● 概述

本文档包含EVRP(电动车辆路径规划问题)的完整数学公式体系,适用于Mathpix Markdown插件,可直接用于PPT和学术论文。

₩ 符号定义

集合和索引

• \$V = {0, 1, 2, ..., n}\$: 所有节点集合, 0表示配送中心

• \$C = {1, 2, ..., n}\$: 客户节点集合

• \$F\$: 充电站节点集合

• \$K\$: 车辆集合

• \$(i,j)\$: 从节点\$i\$到节点\$j\$的边

参数

符号	含义	单位
\$Q\$	车辆最大载重容量	kg
\$B\$	车辆电池最大容量	kWh
\$d_{ij}\$	节点\$i\$到节点\$j\$的距离	km
\$q_i\$	客户\$i\$的需求量	kg
\$e_{ij}\$	从节点\$i\$到节点\$j\$的能耗	kWh
\$t_{ij}\$	从节点\$i\$到节点\$j\$的行驶时间	h
\$s_i\$	在节点\$i\$的服务时间	h
\$c_{ij}\$	从节点\$i\$到节点\$j\$的行驶成本	元
\$\gamma\$	单位充电成本	元/kWh
\$\beta\$	单位时间成本	元/h

决策变量

符号	类型	含义
\$x_{ijk}\$	二进制	车辆\$k\$是否从节点\$i\$直接到节点\$j\$
\$y_{ik}\$	连续	车辆\$k\$到达节点\$i\$时的剩余载重
\$b_{ik}\$	连续	车辆\$k\$到达节点\$i\$时的剩余电量
\$u_{ik}\$	连续	车辆\$k\$在节点\$i\$的充电量

符号 类型 含义

\$t_{ik}\$ 连续 车辆\$k\$到达节点\$i\$的时间

● 目标函数

主目标函数

最小化总成本: $\sum_{k \in \mathbb{Z}} x_{ijk} + \sum_{k \in \mathbb{Z}$

分解目标

- 1. 距离成本: \$C_{dist} = \sum_{k \in K} \sum_{i \in V} \sum_{j \in V} d_{ij} \cdot c_{unit} \cdot x_{ijk}\$
- 2. 充电成本: \$C_{charge} = \sum_{k \in K} \sum_{i \in F} \gamma \cdot u_{ik}\$
- 3. **时间成本**: \$C_{time} = \sum_{k \in K} \sum_{i \in V} \sum_{j \in V} t_{ij} \cdot c_{time} \cdot x_{ijk}\$

4 约束条件

1. 客户访问约束

每个客户被访问一次: \$\sum_{k \in K} \sum_{i \in V} x_{ijk} = 1, \quad \forall j \in C\$

2. 流量守恒约束

车辆平衡: \$\sum_{i \in V} x_{ijk} - \sum_{j \in V} x_{jik} = 0, \quad \forall k \in K, \forall i \in V\$

3. 载重容量约束

车辆载重限制: \$q_i \leq y_{ik} \leq Q, \quad \forall k \in K, \forall i \in V\$ \$y_{jk} \leq y_{ik} - q_i x_{ijk} + Q(1 - x_{ijk}), \quad \forall k \in K, \forall i, j \in V\$

4. 电池容量约束

电量始终≥0: \$0 \leq b_{ik} \leq B, \quad \forall k \in K, \forall i \in V\$ \$b_{jk} \leq b_{ik} - e_{ij} x_{ijk} + B(1 - x_{ijk}), \quad \forall k \in K, \forall i,j \in V\$

5. 充电站约束

充电站可多次访问: \$b_{ik} + u_{ik} \leq B, \quad \forall k \in K, \forall i \in F\$

6. 路径连续性约束

从配送中心出发并返回: $\sum_{j \in V} x_{0jk} = 1$, \quad \forall k \in K\$ \sum_{i \in V} \setminus {0}} x_{i \in V} = 1, \quad \forall k \in K\$

7. 时间窗约束(可选)

\$t_{jk} \geq t_{ik} + s_i + t_{ij} - M(1 - x_{ijk}), \quad \forall k \in K, \forall i,j \in V\$ \$a_i \leq t_{ik} \leq b_i, \quad \forall k \in K, \forall i \in C\$ 其中 \$[a_i, b_i]\$ 是客户 \$i\$ 的时间窗,\$M\$ 是足够大的常数

♂ 遗传算法公式

适应度函数

对于个体\$s\$: \$f(s) = \frac{1}{Z(s) + \alpha \cdot P(s)}\$

选择操作

锦标赛选择: \$P_{select}(i) = \frac{f(i)}{\sum_{j=1}^{t}f(j)}\$

排序选择: \$P_{select}(i) = \frac{2-s+2(s-1)\frac{i-1}{N-1}}{N}\$

变异操作

交换变异: \$\text{Swap}(\pi, i, j): \pi[i] \leftrightarrow \pi[j]\$

插入变异: \$\text{Insert}(\pi, i, j): \text{move } \pi[i] \text{ to position } j\$

反转变异: \$\text{Reverse}(\pi, i, j): \text{reverse subsequence } [i, j]\$

✓ 性能评估指标

收敛性指标

- 1. 收敛代数: \$G_{conv} = \min{g \mid |f_{best}(g) f_{best}(g-\Delta)| < \epsilon \cdot f_{best}(g)}\$
- 2. 改进率: \$\text{Improvement} = \frac{f_{initial}} f_{final}}{f_{initial}} \times 100%\$
- 3. 收敛速率: \$\lambda = -\frac{1}{G} \ln\left(\frac{f_G f_{\infty}}{f_0 f_{\infty}}\right)\$

算法质量指标

- 1. 最优性差距: \$\text{Gap} = \frac{f_{alg} f_{opt}}{f_{opt}} \times 100%\$
- 2. 鲁棒性: \$\text{Robustness} = \frac{\sigma}{\mu} \times 100%\$
- 3. 计算效率: \$\text{Efficiency} = \frac{\text{CPU时间}}{\text{问题规模}} \times 100%\$

统计检验

t检验: t = \frac{\bar{f}{GA} - \bar{f}{\baseline}}{\sqrt{\frac{s_{GA}^2}{n_{GA}} + \frac{s_{baseline}^2}{n_{baseline}}}}\$

○ 充电策略公式

充电判断条件

- 1. 电量安全约束: \$b_{current} < \alpha \cdot B\$
- 2. **可达性约束**: \$b_{current} < e_{i,j} + \beta \cdot B\$
- 3. 充电量决策: 完全充电: \$\nu_{charge} = B b_{current}\$

部分充电: \$\nu_{min} = \max{e_{total} - b_{current}, 0}\$

智能充电: \$\nu^* = \arg\min_{\nu \in [0, B - b_{current}]} C_{total}(\nu)\$

充电时间

\$t_{charge} = \frac{\nu}{r_{charge}}\$

充电站选择

 $f^* = \arg\min_{f \in F} \left(d_{current,f} + \lambda_{current,f} + \gamma_{f} + \gamma_{f} + \gamma_{f} \right)$

■ 复杂度分析

■ 复杂度分析

时间复杂度

• 路径评估: \$O(n^2)\$

• 选择操作: \$O(N \log N)\$

交叉操作: \$O(n)\$变异操作: \$O(n)\$

• 整体算法: \$O(G \cdot P \cdot n^2)\$

空间复杂度

• 种群存储: \$O(P \cdot n)\$

• 辅助数组: \$O(n^2)\$

• 总空间: \$O(P \cdot n + n^2)\$

◎ 实际应用公式

成本计算实例

距离成本: \$C_{dist} = \sum_{i=1}^{n-1} d_{i,i+1} \cdot c_{fuel}\$

充电成本: \$C_{charge} = \sum_{i \in \text{charging stations}} \Delta E_i \cdot c_{electricity}\$

时间成本: \$C_{time} = \sum_{i=1}^{n} t_i \cdot c_{driver}\$

环保效益

碳排放减少: \$\Delta CO_2 = \sum_{i=1}^{n} d_i \cdot (e_{gasoline} - e_{electric}) \cdot \text{conversion factor}\$

🗎 参数推荐值

参数 	推荐值	说明
种群大小	\$P = 100\$	平衡计算效率和解质量

参数	推荐值	说明
最大代数	\$G = 500\$	确保充分收敛
交叉率	\$p_c = 0.8\$	保持种群多样性
变异率	\$p_m = 0.1\$	避免早熟收敛
精英比例	\$\epsilon = 0.05\$	保留最优解
锦标赛大小	\$t = 3\$	中等选择压力
惩罚系数	\$\alpha = 10^6\$	强约束处理

麼 公式使用说明

Mathpix兼容性

所有公式使用标准LaTeX语法,兼容Mathpix Markdown:

行内公式: \$...\$行间公式: \$\$...\$\$

• 对齐环境: \begin{align}...\end{align}

复制粘贴

可直接复制到支持LaTeX的编辑器中使用,包括:

- Typora
- VSCode + Markdown插件
- Jupyter Notebook
- Overleaf

文档版本: v2.0 更新时间: 2024年 兼容: Mathpix Markdown