Probabilités

Jérémy Meynier

Exercice 1

Soient X et Y deux variables aléatoires réelles indépendantes, de lois binomiales B(n,p) et B(m,p) respectivement. On pose S=X+Y. Calculer P(X=x|S=s)

Exercice 2

Lors d'une rencontre d'athlétisme, la barre est montée d'un cran après chaque saut réussi par le concurrent. Quand un saut est raté, la compétition d'arrête pour le sauteur. Celui-là a, pour le saut n, une chance sur n de réussir le saut. On appelle X le rang du dernier saut réussi.

- 1. Quelle est la loi de X?
- 2. Vérifier qu'il s'agit d'une variable aléatoire
- 3. Calculer l'espérance et la variance de X

Exercice 3

Soit $\lambda>0, a>0$ et $a\neq 1$. On suppose que (X,Y) a une loi de probabilité définie par $\mathrm{P}(X=i\cap Y=j)=\frac{\lambda a^i}{j!},\ 0\leq i\leq j$

- 1. Déterminer la loi de Y
- 2. Déterminer λ pour qu'il s'agisse bien d'une loi de couples.
- 3. X et Y sont-elles indépendantes?

Exercice 4

Soient X et Y deux variables aléatoires réelles indépendantes. $Y \sim P(\lambda)$, X suit une loi uniforme sur $\{1,2\}$, et Z = XY.

- 1. Déterminer la loi de ${\cal Z}$
- 2. Calculer $\mathbb{E}(Z)$ et Var(Z)
- 3. Calculer la probabilité que Z soit paire

Jérémy Meynier 2

Exercice 5

Soient X et Y deux variables aléatoires réelles indépendantes suivant une loi géométrique de paramètres respectifs a et b, et Z = Y - X.

- 1. Trouver la loi de Z
- 2. Calculer $P(X \leq Y)$

Exercice 6

On lance une pièce équilibrée consécutivement. On s'arrête dès que deux piles successifs sont apparus. X est le nombre de lancers jusqu'à l'arrêt. Trouver la loi de X

Exercice 7

Soient X, Y des variables aléatoires indépendantes suivant une loi de Poisson de paramètre $\lambda \in \mathbb{R}^{+*}$.

- 1. Déterminer la fonction génératrice de X et 3Y
- 2. En déduire la fonction génératrice de Z = X + 3Y
- 3. En déduire $\mathbb{E}(Z)$ et $\mathbb{V}(Z)$
- 4. X et Z sont-elles indépendantes? Donner alors le coefficient de correlation linéraire $\rho(X,Z)$
- 5. Montrer que la loi de Z s'écrit $\mathbb{P}(Z=n)=A_ne^{-2\lambda}$ avec A_n ne faisant pas intervenir d'exponentielle.
- 6. Trouver le minimum de $f(t) = \mathbb{V}(X + tZ)$

Exercice 8

Un point M se déplace dans un plan muni d'un repère (O, \vec{i}, \vec{j}) . Au départ, M est au point O. À chaque instant il se déplace d'un pas dans l'une des quatres directions $(\vec{i}, -\vec{i}, \vec{j}, -\vec{j})$. Ses coordonnées après n déplacements sont des variables aléatoires réelles X_n, Y_n .

- 1. Calculer $\mathbb{P}(X_n = n), \mathbb{P}(Y_n = n), \mathbb{P}(Y_n = n \cap X_n = n)$. X_n et Y_n sont-elles indépendantes?
- 2. Trouver une relation entre $\mathbb{E}(X_{n+1}^2)$ et $\mathbb{E}(X_n^2)$. Calculer $\mathbb{E}(X_n^2)$.
- 3. Calculer $\mathbb{P}(Y_n = 0 \cap X_n = 0)$