LMA0001 – Lógica Matemática Aula 07 Consequência Lógica

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2020

Um dos objetivos da lógica é identificar quando podemos afirmar novos fatos com base em fatos já conhecidos.

A lógica, inicialmente, foi desenvolvida como e estudo da argumentação. De como uma conclusão pode ser dada a partir de premissas.

Em outras palavras, quando uma fórmula é consequência de outra fórmula ou de um conjunto de fórmulas (também chamado **teoria**)?

Dada a teoria $\Gamma = \{A, B, C, \ldots\}$, usamos a sintaxe

$$\Gamma \models X$$

para dizer X é consequência lógica da teoria Γ . Caso contrário, escrevemos $\Gamma \nvDash X$.

Notação:

1. Por conveniência, é comum omitirmos $\{\}$ quando descrevemos Γ :

$$\{A, B, C\} \models X = A, B, C \models X$$

2. Quando queremos aumentar um Γ já existente, utilizamos uma vírgula para denotar união de conjuntos:

$$\Gamma \cup \{D\} \models X = \Gamma, D \models X$$

3. Quando uma valoração $\mathcal V$ satisfaz **todas** as fórmulas de Γ , escrevemos que $\mathcal V$ satisfaz Γ , ou então

$$\mathcal{V}(\Gamma) = 1$$

Nota: assumimos que $\mathcal{V}(\varnothing) = 1$.

Na lógica proposicional, temos

$$\Gamma \vDash X$$

se, e somente se,

toda valoração que satisfaz Γ também satisfaz X.

Note que a definição de consequência lógica é dada em termos de valorações e satisfazibilidade.

Podemos usar o método da tabela-verdade para confirmar ou refutar $\Gamma \vDash X$.

Testaremos a afirmação $p \lor q \to r \vDash p \to r$.

Testaremos a afirmação $p \lor q \rightarrow r \models p \rightarrow r$.

p	q	r	$p \lor q$	$p \lor q \rightarrow r$	$p \rightarrow r$	
0	0	0	0	1	1	
0	0	1	0	1	1	
0	1	0	1	0	1	
0	1	1	1	1	1	
1	0	0	1	0	0	
1	0	1	1	1	1	
1	1	0	1	0	0	
1	1	1	1	1	1	

Sempre que $p \lor q \to r$ é satisfeito, $p \to r$ também é: **afirmação válida!**

Testaremos a afirmação $p \lor q \rightarrow r \models p \rightarrow r$.

p	q	r	$p \lor q$	$p \lor q \rightarrow r$	$p \rightarrow r$
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	0	0
1	1	1	1	1	1

Testaremos a afirmação $p \land q \rightarrow r \vDash p \rightarrow r$.

Testaremos a afirmação $p \land q \rightarrow r \models p \rightarrow r$.

	p	q	r	$p \wedge q$	$p \wedge q \rightarrow r$	$p \rightarrow r$
١	0	0	0	0	1	1
	0	0	1	0	1	1
	0	1	0	0	1	1
	0	1	1	0	1	1
	1	0	0	0	1	0
	1	0	1	0	1	1
	1	1	0	1	0	0
	1	1	1	1	1	1

Testaremos a afirmação $p \land q \rightarrow r \vdash p \rightarrow r$.

q	r	$p \wedge q$	$p \wedge q \rightarrow r$	$p \rightarrow r$
0	0	0	1	1
0	1	0	1	1
1	0	0	1	1
1	1	0	1	1
0	0	0	1	0
0	1	0	1	1
1	0	1	0	0
1	1	1	1	1
	~	0 0 0 1	0 0 0 0 1 0 1 0 0 1 1 0	0 1 0 1 1 0 0 1 1 1 0 1

Problema, pois valoração p=1, q=0, r=0 satisfaz $p \wedge q \rightarrow r$ mas não satisfaz $p \rightarrow r$: afirmação inválida!

Teorema da dedução

Pela definição de consequência, percebam que há similaridades entre a afirmação $A \models B$ e a implicação $A \rightarrow B$.

O seguinte teorema estabelece formalmente esta similaridade:

Teorema da dedução:

$$\Gamma$$
, $A \models B$ se, e somente se $\Gamma \models A \rightarrow B$

Prova: temos que mostrar que obtemos a afirmação da direita a partir da esquerda, e vice-versa.

1. Supomos que Γ , $A \models B$.

- 1. Supomos que Γ , $A \models B$.
- 2. Considere uma valoração $\mathcal V$ tal que $\mathcal V(\Gamma)=1$.

- 1. Supomos que Γ , $A \models B$.
- 2. Considere uma valoração $\mathcal V$ tal que $\mathcal V(\Gamma)=1$.
- 3. Dois casos possíveis:
 - V(A) = 0.
 - V(A) = 1.

- 1. Supomos que Γ , $A \models B$.
- 2. Considere uma valoração $\mathcal V$ tal que $\mathcal V(\Gamma)=1$.
- 3. Dois casos possíveis:
 - $\mathcal{V}(A) = 0$. Portanto, $\mathcal{V}(A \to B) = 1$, pela tabela da implicação.
 - V(A) = 1.

- 1. Supomos que Γ , $A \models B$.
- 2. Considere uma valoração $\mathcal V$ tal que $\mathcal V(\Gamma)=1$.
- 3. Dois casos possíveis:
 - $\mathcal{V}(A) = 0$. Portanto, $\mathcal{V}(A \to B) = 1$, pela tabela da implicação.
 - V(A) = 1. Portanto, $V(\Gamma, A) = 1$.

- 1. Supomos que Γ , $A \models B$.
- 2. Considere uma valoração $\mathcal V$ tal que $\mathcal V(\Gamma)=1.$
- 3. Dois casos possíveis:
 - $\mathcal{V}(A) = 0$. Portanto, $\mathcal{V}(A \to B) = 1$, pela tabela da implicação.
 - $\mathcal{V}(A)=1$. Portanto, $\mathcal{V}(\Gamma,A)=1$. Como $\Gamma,A \vDash B$, temos que $\mathcal{V}(B)=1$.

- 1. Supomos que Γ , $A \models B$.
- 2. Considere uma valoração $\mathcal V$ tal que $\mathcal V(\Gamma)=1.$
- 3. Dois casos possíveis:
 - V(A) = 0. Portanto, $V(A \to B) = 1$, pela tabela da implicação.
 - $\mathcal{V}(A) = 1$. Portanto, $\mathcal{V}(\Gamma, A) = 1$. Como $\Gamma, A \vDash B$, temos que $\mathcal{V}(B) = 1$. Finalmente, $\mathcal{V}(A \to B) = 1$, pela tabela da implicação.

- 1. Supomos que Γ , $A \models B$.
- 2. Considere uma valoração $\mathcal V$ tal que $\mathcal V(\Gamma)=1.$
- 3. Dois casos possíveis:
 - $\mathcal{V}(A) = 0$. Portanto, $\mathcal{V}(A \to B) = 1$, pela tabela da implicação.
 - $\mathcal{V}(A) = 1$. Portanto, $\mathcal{V}(\Gamma, A) = 1$. Como $\Gamma, A \vDash B$, temos que $\mathcal{V}(B) = 1$. Finalmente, $\mathcal{V}(A \to B) = 1$, pela tabela da implicação.
- 4. Portanto, temos $\Gamma \vDash A \rightarrow B$.

1. Supomos que $\Gamma \vDash A \rightarrow B$.

- 1. Supomos que $\Gamma \vDash A \rightarrow B$.
- 2. Considere uma valoração $\mathcal V$ tal que $\mathcal V(\Gamma)=\mathcal V(A)=1.$

- 1. Supomos que $\Gamma \vDash A \rightarrow B$.
- 2. Considere uma valoração $\mathcal V$ tal que $\mathcal V(\Gamma)=\mathcal V(A)=1.$
- 3. Assuma (para contradição) que $\mathcal{V}(B)=0$.

- 1. Supomos que $\Gamma \vDash A \rightarrow B$.
- 2. Considere uma valoração $\mathcal V$ tal que $\mathcal V(\Gamma)=\mathcal V(A)=1.$
- 3. Assuma (para contradição) que V(B) = 0.
- 4. Pela tabela da implicação, $\mathcal{V}(A \to B) = 0$.

- 1. Supomos que $\Gamma \vDash A \rightarrow B$.
- 2. Considere uma valoração $\mathcal V$ tal que $\mathcal V(\Gamma)=\mathcal V(A)=1.$
- 3. Assuma (para contradição) que V(B) = 0.
- 4. Pela tabela da implicação, $\mathcal{V}(A \to B) = 0$. Mas como $\mathcal{V}(\Gamma) = 1$, e temos $\Gamma \vDash A \to B$ pela suposição 1, então $\mathcal{V}(A \to B) = 1$.

- 1. Supomos que $\Gamma \vDash A \rightarrow B$.
- 2. Considere uma valoração $\mathcal V$ tal que $\mathcal V(\Gamma)=\mathcal V(A)=1.$
- 3. Assuma (para contradição) que V(B) = 0.
- 4. Pela tabela da implicação, $\mathcal{V}(A \to B) = 0$. Mas como $\mathcal{V}(\Gamma) = 1$, e temos $\Gamma \vDash A \to B$ pela suposição 1, então $\mathcal{V}(A \to B) = 1$.
- 5. Como chegamos a uma contradição ao assumir $\mathcal{V}(B)=0$, esta afirmação está errada, e o correto é afirmar o seu oposto: $\mathcal{V}(B)=1$.

- 1. Supomos que $\Gamma \vDash A \rightarrow B$.
- 2. Considere uma valoração $\mathcal V$ tal que $\mathcal V(\Gamma)=\mathcal V(A)=1.$
- 3. Assuma (para contradição) que V(B) = 0.
- 4. Pela tabela da implicação, $\mathcal{V}(A \to B) = 0$. Mas como $\mathcal{V}(\Gamma) = 1$, e temos $\Gamma \vDash A \to B$ pela suposição 1, então $\mathcal{V}(A \to B) = 1$.
- 5. Como chegamos a uma contradição ao assumir $\mathcal{V}(B)=0$, esta afirmação está errada, e o correto é afirmar o seu oposto: $\mathcal{V}(B)=1$.
- 6. Portanto, temos Γ , $A \models B$.

Exercícios

Prove ou refute as seguintes consequências lógicas, usando tabela-verdade:

$$2 \neg p \rightarrow \neg q \vDash p \rightarrow q$$

6
$$\neg(p \land q) \models \neg p \land \neg q$$

6
$$\neg(p \lor q) \models \neg p \land \neg q$$

Exercícios (2)

As seguintes consequências lógicas refletem métodos de prova famosos, portanto é interessante confirmar sua validade. Mostre que tais afirmações estão corretas através do método da tabela-verdade:

- $\textbf{1} \textit{ Modus Ponens} : p \rightarrow q, p \vDash q$
- **2** Modus Tollens: $p \rightarrow q$, $\neg q \models \neg p$
- **3** Reductio ad Absurdum (contradição): $\neg p \rightarrow q$, $\neg q \models p$

