WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU

1. Opis teoretyczny do ćwiczenia

zamieszczony jest na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

2. Opis układu pomiarowego

STANOWISKO A

Rysunek 1. Zestaw pomiarowy do wyznaczania przerwy energetycznej germanu - konfiguracja A.

Zestaw doświadczalny do wyznaczenia przerwy energetycznej za pomocą pomiarów rezystancji przedstawiono na Rysunku 1. Badana próbka o wymiarach około $(2\times2\times20)$ mm³ została wycięta z monokrystalicznego walca germanu (monokryształ germanu ma rezystywność $\rho=0,60~\Omega$ m). Po mechanicznym wypolerowaniu i obróbce chemicznej wykonywano kontakty elektryczne. W tym celu na dłuższym jej boku wtopiono próżniowo w temperaturze 600° C stop Pb+10% In. Powstała w ten sposób próbka germanu domieszkowanego ($n \neq p$). W zakresie wysokich temperaturach intensywność termicznej generacji nośników ładunku osiąga tak dużą wydajność (jednocześnie nośników domieszkowanych z temperaturą nie przebywa), że półprzewodnik staje się samoistnym.

Badana próbka umieszczona jest wewnątrz pieca rezystorowego. Cienkie druciki przylutowane do kontaktów elektrycznych próbki połączone są z precyzyjnym cyfrowym miernikiem rezystancji. Temperatura próbki mierzona jest za pomocą przecechowanej termopary Cu - Konstantan podłączonej do miernika. Temperaturę pieca można regulować zmieniając natężenie prądu płynącego przez taśmę rezystorową pieca.

STANOWISKO B

Rysunek 2. Zestaw pomiarowy do wyznaczania przerwy energetycznej germanu - konfiguracja B.

Zestaw doświadczalny do wyznaczenia przerwy energetycznej za pomocą pomiarów napięcia na próbce przedstawiono na Rysunku 2. Badana próbka germanu niedomieszkowanego o wymiarach (10x1x20) mm³ została przylutowana do płyty i umieszczona na stałe w ramce pomiarowej za pomocą rowka. Ramka została umieszczona na statywie. Moduł jest połączony bezpośrednio z napięciem przemiennym 12 V zasilacza podłączonym do gniazda znajdującego się na tylnej ściance ramki pomiarowej. Napięcie na próbce zmierzymy za pomocą miernika cyfrowego podłączonego bezpośrednio do ramki pomiarowej (dwóch dolnych gniazd z przodu ramki). Natężenie prądu i temperaturę można łatwo odczytać na zintegrowanym wyświetlaczu ramki. Zmianę trybu wyświetlania możemy zmienić za pomocą przycisku "Display" znajdującego się z tyłu ramki pomiarowej. Natężenie prądu płynącego przez próbkę regulowane jest za pomocą potencjometru regulującego prąd I_p znajdującego się po lewej stronie ramki pomiarowej (pod wyświetlaczem). Należy unikać natężeń prądu powyżej 5 mA, ponieważ może to doprowadzić do samodzielnego ogrzewania próbki, które spowoduje fałszowanie wyników pomiarów. Ogrzewanie próbki jest możliwe dzięki cewce nagrzewającej, którą włączamy i wyłączamy przyciskiem "On/Off" znajdującym się na tylnej ściance ramki.

3. Przeprowadzenie pomiarów

STANOWISKO A

Uwaga: Można wybrać jeden z dwóch sposobów zmian temperatury próbki:

- szybko podnosić jej temperaturę wówczas należy wykonać pomiary podczas ogrzewania i schładzania oraz obliczyć wartość średnią,
- powoli podnosić jej temperaturę wówczas pomiar przy schładzaniu pieca jest zbyteczny (nie obserwuje się "histerezy" otrzymanych wyników).
 - 1. Zaznajomić się z układem pomiarowym. Zmierzyć i zapisać rezystancję półprzewodnika w temperaturze pokojowej (na początku zajęć) bez włączonego zasilania.
 - 2. Włączyć zasilacz i regulować prąd płynący przez piec tak, aby uzyskać szybkość ogrzewania około 3°C/min. Optymalny sposób powolnego ogrzewania został przedstawiony w tabeli pomiarowej.
 - 3. Zmierzyć i zapisać rezystancję półprzewodnika w kolejnych temperaturach podczas ogrzewania, co około 5°C.

Uwaga: Nie przekraczać natężenia zasilania 1,1 A oraz nie przekraczać temperatury 120°C!

- 4. Jeżeli pozwala na to czas: nastawić na zasilaczu zerowy prąd i wyłączyć zasilacz. Zmierzyć i zapisać rezystancję półprzewodnika podczas chłodzenia dla tych samych temperatur co przy ogrzewaniu.
- 5. Zapisać parametry stanowiska i niepewności pomiarowe.

STANOWISKO B

Uwaga: Ze względu na szybkie nagrzewanie próbki pomiary wykonujemy tylko podczas chłodzenia.

- 1. Zaznajomić się z układem pomiarowym. Za pomocą potencjometrów znajdujących się na zasilaczu ustawić wartości napięcia i natężenia prądu na 0. Włączyć zasilacz.
- 2. Zmierzyć i zapisać napięcie na próbce odczytane z woltomierza w temperaturze pokojowej bez włączonego zasilania.
- 3. Za pomocą przycisku "Display" znajdującym się z tyłu ramki pomiarowej przełączyć tryb pracy wyświetlacza na natężenie. Ustawić wartość natężenia prądu za pomocą potencjometru regulującego prąd płynący przez próbkę I_n na wartość 5 mA.
- 4. Za pomocą przycisku "Display" przełączyć tryb pracy wyświetlacza na temperaturę. Włączyć cewkę nagrzewającą próbkę za pomocą przycisku "On/Off" znajdującym się z tyłu ramki pomiarowej. Po osiągnięciu temperatury max 120°C wyłączyć cewkę za pomocą przycisku "On/Off".

Uwagi: Nie przekraczać temperatury 120°C! By osiągnąć temperaturę 120°C cewkę można wyłączyć przy około 115°C. Podczas ogrzewania można sprawdzać czy natężenie prądu płynącego przez próbkę (5mA) jest stałe.

- 5. Zmierzyć i zapisać zmiany napięcia na próbce w funkcji temperatury co około 5°C podczas chłodzenia aż do osiągnięcia temperatury pokojowej.
- 6. Zapisać parametry stanowiska i niepewności pomiarowe.

4. Opracowanie wyników pomiarów

0. (*) TYLKO DLA STANOWISKA B: Korzystając z prawa Ohma R = U/I, gdzie U to zmierzone wartości napięć, a $I = I_p$, wyznaczyć wartości rezystancji R dla wszystkich temperatur.

RESZTA OPRACOWANIA OBOWIĄZUJE DLA OBU STANOWISK

Wykonanie wykresu zależności rezystancji próbki od temperatury

- 1. Przeliczyć punkty pomiarowe: wyznaczyć ln(R) oraz odwrotność temperatury 1/T, a do obliczeń przyjąć wartości rezystancji podane w Ω (nie $k\Omega$), a temperatury w K (nie ${}^{\circ}C$).
- 2. Zaznaczyć punkty pomiarowe zależności $ln(R) = f(\frac{1}{T})$ na wykresie. Zaznaczanie niepewności pomiarowych nie jest konieczne. Zinterpretować przebieg wykresu.
- 3. Funkcja $\ln(R) = f(\frac{1}{T})$ otrzymana z eksperymentu nie musi być proporcjonalna w całym zakresie stosowanych temperatur. Warunek liniowości powyższego wzoru jest spełniony tylko dla wystarczająco wysokich temperatur w przypadku półprzewodników domieszkowanych. Wybrać jedynie punkty z zakresu liniowego powyższej zależności (np. 5 7 punktów) i poprowadzić przez nie prostą $y = \bar{a}x + \bar{b}$ metodą najmniejszych kwadratów Gaussa, gdzie x = 1/T, a $y = \ln(R)$. Wyznaczyć parametry prostej oraz ich niepewności korzystając ze wzorów:

$$\bar{a} = \frac{(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i) - n(\sum_{i=1}^{n} x_i y_i)}{(\sum_{i=1}^{n} x_i)^2 - n(\sum_{i=1}^{n} x_i^2)}, \qquad \bar{b} = \frac{(\sum_{i=1}^{n} y_i) - \bar{a}(\sum_{i=1}^{n} x_i)}{n},$$

$$u(\bar{a}) = \sigma_{\bar{a}} = \sqrt{\frac{n}{n-2} \frac{(\sum_{i=1}^{n} y_i^2) - \bar{a}(\sum_{i=1}^{n} x_i y_i) - \bar{b}(\sum_{i=1}^{n} y_i)}{n(\sum_{i=1}^{n} x_i^2) - (\sum_{i=1}^{n} x_i)^2}}, \qquad u(\bar{b}) = \sigma_{\bar{b}} = \sigma_{\bar{a}} \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}.$$

Prostą wraz z wyznaczonymi parametrami nanieść na wykres.

Przy wyznaczaniu parametrów prostych zaleca się wykonanie tabeli zawierającym kolumny z poszczególnymi wartościami x_i , y_i , x_i^2 , y_i^2 , $x_i y_i$ oraz ich sumy w celu uniknięcia błędów przy przetwarzaniu wartości mierzonych.

Wyznaczenie przerwy energetycznej wraz z niepewnościami

- 4. Na podstawie prostej wyznaczonej w pkt. 3, która reprezentuje równanie $\ln R = \frac{E_g}{2k} \left(\frac{1}{T}\right) + \ln R_o$ obliczyć szerokość przerwy energetycznej $E_g = \bar{a} \cdot 2 \cdot k$, gdzie k stała Boltzmanna ($k = 1,381 * 10^{-23} \left[\frac{J}{K}\right]$ lub $k = 8,617 * 10^{-5} \left[\frac{eV}{K}\right]$).
- 5. Wyznaczyć niepewność standardową szerokości przerwy energetycznej $u(E_g)$: $u(E_g) = |2 \cdot k \cdot u(\bar{a})|$.
- 6. Wyznaczyć niepewność względną $u_r(E_g)$: $u_r(E_g) = \frac{u(E_g)}{E_g}$
- 7. Wyznaczyć niepewność rozszerzoną $U(E_g)$: $U(E_g) = 2 * u(E_g)$.

5. Podsumowanie

- 1. Zgodnie z regułami prezentacji wyników zestawić wyznaczone wielkości:
 - E_g , $u(E_g)$, $u_r(E_g)$, $U(E_g)$ oraz wartości odniesienia;
- 2. Przeanalizować uzyskane rezultaty pod kątem występowania i przyczyn błędów grubych, systematycznych i przypadkowych:
- a) czy spełniona jest relacja $u_r(E_q) < 0.1$,
- b) czy spełniona jest relacja $\left|E_{g\ odniesienie}-E_{g}\right| < U(E_{g}),$
- c) rozkład punktów na charakterystyce względem wyznaczonej prostej.
- 3. Synteza.
- a) Wyciągnąć wnioski pod kątem występowania błędów grubych, systematycznych i przypadkowych oraz przyczyn ich występowania.
- b) Zaproponować działania zmierzające do podniesienia dokładności wykonywanych pomiarów.
- c) Wyjaśnić czy cel ćwiczenia:
- wyznaczenie przerwy energetycznej germanu, został osiągnięty.

6. Przykładowe pytania

Zamieszczone są na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

- 1. Omówić mechanizm powstawania pasm energetycznych w ciałach stałych.
- 2. Podać podział ciał stałych ze względu na ich właściwości elektryczne.
- 3. Omówić strukturę pasmową półprzewodnika samoistnego.
- 4. Zinterpretować zależność konduktywności półprzewodnika od temperatury.
- 5. Jak wyznaczyć przerwę energetyczną półprzewodnika?
- 6. Zdefiniować pojęcia: koncentracja nośników, ruchliwość nośników, dziura, półprzewodnik samoistny.

Zadania dodatkowe do wyznaczenia i analizy:

- Wyznaczyć i zapisać na wykresie współczynnik korelacji $R = \frac{\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i-\bar{x})^2\sum_{i=1}^{n}(y_i-\bar{y})^2}}$. Wyciągnąć wnioski.
- Przeanalizować, czy na wykresie widoczna jest zależność charakterystyczna dla półprzewodnika samoistnego. Wyznaczyć odpowiednie wielkości, poddać je analizie i wyciągnąć wnioski.

Pon	niary wykon	ali:										
1.		teoretyczne alicznego geri		-	-	•	• •	•				
2.	Parametry	stanowiska	(wartości	i ni	epewności)	: wymiar	ry próbki	2×2×20	mm³	lub	10x1x20	mm³,

3. Pomiary i uwagi do ich wykonania:

STANOWISKO A					
Natężenie prądu	Temperatura T	Rezystancja R []			
I [A]	[°C]	Ogrzewanie	Chłodzenie		
	15				
	20				
	25				
0,5	30				
	35				
	40				
	45				
	50				
0.7	55				
0,7	60				
	65				
	70				
	75				
0.0	80				
0,9	85				
	90				
	95				
1,1	100				
Nie przekraczeń	105				
przekraczać 1,1 A!	110				
Nie	115				
przekraczać 120°C!	120				

STANOWISKO B				
Temperatura T [°C] Nie przekraczać				
120°C!	tylko chłodzenie			
120				
115				
110				
105				
100				
95				
90				
85				
80				
75				
70				
65				
60				
55				
50				
45				
40				
35				
30				
25				
20				
15				

Data i podpis osoby prowadzące	
--------------------------------	--