Sanitized Copy Approved for Release 2010/03/11 : CIA-RDP80T00246A037100400001-5

INFORMATION REPORT INFORMATION REPORT

CENTRAL INTELLIGENCE AGENCY

This material contains information affecting the National Defense of the United States within the meaning of the Espio

TATE X	ARMY X NAVY				R
		1			
		ı			*
		S-E-C-R	?-E-T		25
					•
* * * * * * * * * * * * * * * * * * * *	Company of the Compan				
	The state of the s				
					207
	Distribution of A	ttachment (5 bound	documents in Germ	an):	25X
	for the months of January report is the equipment use	January, February, prefaced by an expect at the various loads to has a foreward	, March, April, and planatory foreword ocations to make t	May 1957. T which descri he observatio	he bes ns.
	observation repor	ts prepared by the	Heinrich Hertz In	adio propagat	ion
PLACE & DATE ACQ.	COURGE EVALUA			Rul#	?33 25
DATE OF INFO.		3	REFERENCES	RD	25X
	January to May 19		NO. PAGES REQUIREMENT NO.	1	
SUBJECT		nstitute, East Berl n Observations durin		1 SEP 18	57
	East Germany		REPORT		
COUNTRY					

Beobachtungsergebnisse

Ionosphäre
Solare Radiostrahlung
UKW-Ausbreitung

Heinrich-Hertz-Institut für Schwingungsforschung

Deutschen Akademie der Wissenschaften zu Berlin

Unclassified

Beobachtungsergebnisse

Inhalt:	Seite
Inhaltsverzeichnis	5 3
Monatsübersicht März 1957	54
Graphische Monatsübersicht Februar/März 1957	55
Messung der Radiostrahlung der Sonne in Berlin⇔Adlershof	,
Tägliche Daten 1500 MHz Tägliche Daten 9400 MHz Strahlungsausbrüche 1500 MHz Strahlungsausbrüche 9400 MHz Registrierkurve eines Strahlungsausbruches	56 57 58 59 60
Messung der ionosphärischen Absorption in Juliusruh/Rügen	61
Mögel-Dellinger-Effekte und Sonneneruptionseffekte auf Längstwelle in Neustrelitz unter Verwendung von Vergleichswerten des Meteorologischen Observatoriums Kühlungsborn	62
Erdmagnetismus - Mitteilungen des Adolf-Schmidt- Observatoriums, Niemegk	
Erdmagnetische Aktivitätszahlen und Kennziffern Zweite erdmagnetische Kennziffern	6 3 64
Beobachtung der Sender WWV in Neustrelitz	
Graphische Darstellung	65–67
Feldstärkemessungen der Sender WWV in Neustrelitz Meßwerte	6 8 7 1
UKW-Überreichweiten	
Faldstänkomossungen in Neustnelits	72 <u></u> ማል

Monatsübersicht März 1957

Die ruhige Tendenz der radiofrequenten Strahlung der Sonne ist auch im März vorherrschend. Während bei 3 cm Wellenlänge im ganzen Monat keine Variationen auftraten, steigt bei 20 cm Wellenzen länge die Intensität der Strahlung in der Zeit vom 7. bis 13. März mit den Sonnenfleckenrelativzahlen an, ohne jedoch in der zweiten Monatshälfte wesentlich abzufallen. Die beobachteten Strahlungsausbrüche dieses Monats waren von geringer Intensität.

Bei der KW-Ausbreitung zeigten sich am 2. März die Auswirkungen eines sehr kräftigen Ionosphärensturmes in erheblicher Verringerung der übertragenen Frequenzbereiche. Dem Störungseinsatz ging eine starke erdmagnetische Unruhe, beginnend in den Abendstunden des 1. März, voraus, die auch am 2. März anhielt. Ein besonders hoher Wert der ionosphärischen Absorption wurde am 5. März in Julius-ruh/Rügen gemessen. Eine weitere Störung der KW-Ausbreitung wurde am 11. März beobachtet. Auch dieser Störung ging eine erdmagnetische Unruhe am 10. März voraus. Weitere Ausbreitungsstörungen wurden am 28. und 30. März beobachtet. Entsprechend der 27-tägigen Rotationsperiode der Sonne kann es sich hier um eine Wiederholungsstörung zu dem Sturm am 2. März handeln.

Die UKW-Ausbreitung im März war im allgemeinen starken Schwankungen unterworfen. So wurden die verhältnismäßig hohen Feldstärkewerte am Anfang des Monats von Tag zu Tag durch Einbrüche unterbrochen. Im letzten Drittel des Monats sanken die Werte ab und erreichten auf der 450 km-Strecke Feldberg - Neustrelitz teilweise nur die Empfindlichkeitsgrenze der Apparatur.

Sanitized Copy Approved for Release 2010/03/11 : CIA-RDP80T00246A037100400001-5

Radiofrequenzstrahlung der Sonne Messungen der Station Berlin-Adlershof Tägliche Daten Monat März 1957 Frequenz: 1500 MHz

Tag		នt	rahl	Lung	W Hz n	2.	10-2	22		Tages- mittel	Bemerkungen
GMT	. 7 8	8 9	9 10	10 11	11 12	12 13	13 14	14 15	15 16		
1. 2. 3. 4. 5.	•	95 93 89 92	94 94 90 88 92	93 95 89 90	90 95 88 88 93	90 93 86 90 93	92 93 86 91 97	91 9 3 - 95	90	91 93 88 89 94	
6. 7. 8. 9. 10.	-	94 80 87 89	93 82 87 90 91	94 78 88 88 91	94 77 89 91 90	92 78 92 91	94 79 91	93 83 87		9 3 79 89 90 91	
11. 12. 13. 14. 15.		93 99 107 112 110	95 101 108 111 111	101 100 109 111 110	99 100 112 111 110	99 102 116 111 108	112 112	116	103	98 101 111 111 108	
16. 17. 18. 19.	102		110 105 105 101	105	103 104 103	104 106 96 104	102	102 98	101	110 104 104 103 102	
21. 22. 23. 24. 25.	104 100 102	104 96	101 104 98 105 102	104 100 102	101 104 102 100 99	101	102 99 106	102	101	101 101 99 102 102	
26. 27. 28. 29. 30.	هبت	99 101 101 106 102	102	108	110	104 114	104 116	98 107 102 116	96 106 101 117	98 103 102 111 102	
31.	فنتنه		æ	104	103	100	102	102	429	102	
	Mon	atsm	itte	1:						99,2	•

Radiofrequenzstrahlung der Sonne Messungen der Station Berlin-Adlershof Tägliche Daten Monat März 1957 Frequenz: 9400 MHz

Tag		Strahlung W 10-22								Tages- mittel	Bemerkungen
GMT	7 8	9		10 11	11 12	12	13				
1. 23. 4. 5.		28 <u>5</u> 268	265 285 268 270	278 268 270	275 270 270	270 273 270	275 268 270	275 268	250	267 276 270 268 265	
6. 7. 8. 9. 10.	273	273	265 265 265	268 270 (245)	273 273 (245)	283 270 -	268 278 - -	270 273 -	260 273 - -	268 273 271 - 271	
11. 12. 13. 14.	-	275 283 2 6 3	278 278 283 268 268	275 275 275	278 275 270	275 283 268	283 285 270	280 285 268	273 283	276 278 281 270 264	•
16. 17. 18. 19. 20.	265	253 268	268 258 263 265	268 260	258 265 260	475 258 265	265 258 268	258 265	258	268 265 260 264 262	
21. 22. 23. 24. 25.	283 280 -	285 278 260	280 285 278 253 278	283 275 250	285 278 248	283	283	283	28ŏ - 263	281 283 278 253 272	
26. 27. 28. 29.	ببه نټ	270	250 278 270	288	295	42	-	268 280 - -		260 279 282 274	
51.	***	45.0		•		حث	69	-	agas-	-	
	Mone	atsmi	Lttel	. :						271	

Radiofrequenzstrahlung der Sonne Messungen der Station Berlin-Adlershof Strahlungsausbrüche Monat März 1957 Frequenz: 1500 MHz

Tag	Beginn GMT	Dauer	Zeit des Maximums GMT	Type	₩ Hz m ² •10 ⁻²²	Größe bezo- gen auf den Stundenmit- telwert	Bemerk.
3.	11.59 12.11 12.24 13.18 13.21	= 30 - 30 - 40 2 = 2	11.59 12.11 12.24 13.18 13.21	SD SD SD CD SD	89 94 103 114 94	1,03 1,09 1,20 1,33 1,10	
11.	15,28	2 -	15.28,5	CD	111	1,14	·
13.	8.57	- 20	8.57	. SD	140	1,29	
18.	10.30 10.33	2 -	10.30 10.33	SD SD	121 112	1,17 1,08	
29.	10.24	6 -	10,25	SĎ	173	1,62	

Radiofrequenzstrahlung der Sonne Messungen der Station Berlin-Adlershof Strahlungsausbrüche Monat März 1957 Frequenz: 9400 MHz

Tag	Beginn GMT	Dauer		Туре	₩ Hz m² •10 ⁻²²	Größe bezo- gen auf den Stundenmit- telwert	Bemerk.
2.	11.46	1 -	11.46	SD	290	1,05	
3.	12.11 12.23 12.54 12.57 13.18	1 - 2 - 30 - 30 2 - 1 -	12.11 12.24 12.54 12.57 13.18 13.19 13.21	CD CD SD SD CD	288 310 283 290 296 288 288	1,06 1,14 1,04 1,08 1,09 1,07	
11.	15.07	1 -	15.07	SD	290	1,06	
13.	8.56 13.51	1 - 3 30	8.56 13.51 13.52 13.53,5	SD	303 303 330 305	1,07 1,06 1,16 1,07	
16.	8.53,5 8.57 9.36 10.14	5 1 30 30 4 -	8.54 8.57 9.38 10.16	CD SD CD CD	290 295 300 293	1,06 1,08 1,12 1,09	
28.	9•39	8 🕶	9•39 9•43	CD	328 315	1,18 1,13	
29.	10.24	29 =	10.25	CD	548	1,99	

Ionosphärische Mittags-Absorption auf 3,86 MHz Messungen der Station Juliusruh/Rügen

März 1957

Mittlere Dämpfung zwischen 11.00 und 13.00 MEZ

Tag	r(qp)	Tag	L(db)
1.	11	16.	188
2.	F	17.	18
3.	17	18.	178
4.	(10)	19.	19
5.	(27)	20.	88
6.	17	21.	188
7.	16	22.	118
8.	19	23.	188
9.	9F	24.	19
10.	19	25.	20
11.	F	26.	13
12.	18	27.	148
13.	18	28.	C
14.	>22	29.	C
15.	238	30.	18
		31.	В

Mögel-Dellinger-Effekte (S.I.D.) Sonneneruptionseffekte (S.E.A.)

Messungen der Station Neustrelitz

Mitteilungen über S.E.A.

Messungen des Met. Obs. Kühlungsborn

	S.I.D.		S. E. A.		
Tag	Neustrelitz	Neustrelitz	Kül	lungsborn	1
	2614 kHz	20,2 kHz	14 kHz	27 kHz	40 kHz
3.	06.57 0 10		ت	2	6 57
	(15.10) (1 30)	င	ധ	Q.	65
	17.12 1 40	co	œ	e n	=
4.	 هنه	(10.39) (2 36)	-	مت	u
21.	11.46 1 10	(11.44) (3.42)	a w	5 00	carb
27.	08.48 1 30	.	ũ	E)	.
28.	10.12 2 60	10.08 2 27	10.12 0 15	10.12 0 15	10.12 0 15
29。	10.20 2 xx	10.27 3 37	10.26 2 125	10.26 2 125	10.26 2 125
	.	11.16 3 34		zu den 2 11.30, 1	
	E	11。 5 5 3 45	t =	-	cap
30.	11.52 1 20	11.52 1 8	æ	<u> </u>	æ
31.	GES	11,08 2 .22	ü	11.06 0 15	11.06 0 15

Erdmagnetische Aktivitätszahlen und Kennziffern Messungen des Adolf-Schmidt-Observatoriums für Erdmagnetismus Niemegk

Tag	n	F	A _K	Σĸη		^K 1
1. 2. 3. 4. 5.	1 2 1 1 0	0.5 1.5 1 0.5 0.5	19 83 24 9 14	22 47 29 17 22	2111 5776 4343 3322 4222	3455 5566 3543 2113 3243
6. 7. 8. 9. 10.	11111	0.5 0.5 0.5 1.5	15 10 16 18 47	23 18 22 25 38	4223 2112 4132 3432 4345	3432 2433 31 44 2434 6556
11. 12. 13. 14. 15.	0 1 0 1	0.5 0.5 0.5 0	8 8 10 3 14	14 15 17 8 20	4221 2333 0122 1112 3222	2111 2200 2433 1101 1235
16. 17. 18. 19. 20.	1 0 1 1	1 0.5 0.5 0.5 0.5	33 17 10 10	32 24 18 17 19	5442 3332 2223 2121 3322	3365 3523 3123 2243 2124
21. 22. 23. 24. 25.	1 1 1 1 1 1	1 0.5 0.5 0.5 0.5	17 22 17 12 14	22 28 25 19 22	1221 4333 4323 3222 3433	3544 3435 3433 1144 4221
26. 27. 28. 29. 30.	1 1 1 1 1	0.5 1 1 1	15 29 42 54 18	20 30 32 39 23	1113 3323 7644 3544 5431	3335 4456 4421 6755 22 2 4
31.	1	0.5	20	27	3333	3444

Zweite erdmagnetische Kennziffern K₂ Messungen des Adolf-Schmidt-Observatoriums für Erdmagnetismus Niemegk

März 1957

Tag	0-3	3-6	6-9	9-12	12-15	15-18	18-2 1	21-0
1.	1001	1001	1001	1001	1001	1012	1012	1012
2.	1012	2023	2023	2013	2023	1022	232 2	2322
3.	2012	2012	3012	1001	1002	2211	1012	1111
4.	1002	1002	1001	1001	1001	1001	1001	1002
5.	1002	1001	1001	1001	1002	1001	1101	1002
6. 7. 8. 9.	2111 1001 1201 1002 2002	1001 1001 1001 1002 1012	1001 1001 1001 1002 2012	1001 1001 1001 1001 3022	1002 1001 1001 1001 3023	2101 1111 1001 2012 2012	1001 1002 1002 2012 2023	1001 1002 2211 1201 2312
11.	2012	1001	2001	1001	1001	1001	1001	1001
12.	1001	1001	2001	1001	1001	1001	1000	1000
13.	1000	1001	1001	1001	1001	1012	1001	1002
14.	1001	1001	1001	1001	1001	1001	1000	1001
15.	1001	1001	1001	1001	1001	1001	1002	2012
16.	2012	3012	3012	1001	1002	2002	2312	2211
17.	2001	1001	1002	1001	2001	2201	1001	1002
18.	1001	1001	2001	1002	1002	1001	1001	1001
19.	1001	1001	1001	1001	1001	1001	2111	1002
20.	1002	1002	1001	1001	1001	1001	1001	2111
21.	1001	1001	1001	1001	1012	1012	1012	2012
22.	2002	2002	2002	2012	2012	2012	2012	2012
23.	1012	1012	1001	2002	2002	1002	2002	2002
24.	1002	1001	2001	1001	1001	1001	2211	2012
25.	1012	2211	1011	1002	2002	1002	1001	1001
26.	1001	2001	2001	2012	2012	2012	2012	1211
27.	1012	1001	1001	2002	2012	2012	2012	2023
28.	2023	3023	3012	2012	2012	2012	2001	1001
29.	2002	3012	3012	2012	3023	3023	2022	2312
30.	2322	2012	2002	2001	1001	1001	1001	2111
31.	1001	1002	2001	1002	1002	2211	2211	1112

Plötzliche Sturmausbrüche (S.C.C.) Messungen des Adolf-Schmidt-Observatoriums Niemegk

Tag	Zeit
10.	00,24
29.	03。37

Feldstärkemessungen (µV/m) der Sender WWV Messungen der Station Neustreliez

Dat,	MHz	00	02	04	06	08	10	12	14	16	18	20	22.	Ē	Σĸ	R
1. 3. 57	2,5 10 15 25 25	8,8 31 30	55 55 52	75 50 38	x 78 105 22	x 70 60 <	16 16 10	4,0 5,3	3,4 3,3 X	4,0 4,3 x	7,6 8,8 x	7,6 14 x	4,2 x	x 22 26 22 3,0 x	24	153
2.	2,5 10 15 25 25	9,10	19 14 1,0	x 21 7,5 <	23 26 25 25 25 25 25 25 25 25 25 25 25 25 25		\ X	8 4 4 9 9	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6,4		2,4 =	2,4 2,4	4,5 3,1 1,0	49	164
4.0	2,5 10 15 20 25	5,8 7,5 8,0	35 12 7,2	20 16 42	9,0 27 36	12 34	0 0 V	ી ! \ 8 2,8	1,3	0 1 9 V	1,3 x	9,8 11	4,0 4,2	x 6,3 6,5 3,7 1,4	21	127
5.	2,5 10 15 20 25	25 5,0 9,6	28 12 20	17 14 26	17 26 7,8	x 15 x		3) ::: X	5,8 4,5 x	4,0 x	13 7,5 x		¥,1 1,2	x 8,7 6,3 9,2 1,3	25	125
6.	2,5 10 15 20 25	20 11 2,6	30 13 4,8	x 53 8,5 3,2	20 12 4,8	5,0	5, 8	7,3	8,8 3, 5	3,8 X	2,0 x	6,4 3,5	x 6,5 7,0	x 11 4,7 4,3 1,7	24	146
7.	2,5 10 15 20 25	19 13 5,6	35 18 5,8	x 43 15 2,6	15 9,0 x	8,0 6,0	X	3,5	5,0 6,0	4,0 5,3	2,5	9,2 4,0	15 5,9	9,3 6,5 4,9 1,8	21	146
8.	2,5 10 15 20 25	35 10 2,0	23 17 9,6	x 45 18 x	18 35 x	12 x	2,1 4	5,5		✓X	2,0 11 x	2 V 13 11	13 9,0	x 11 8,9 4,5 2,3	25	143

	, MHz	00	02	04	06	0 8	10	12	14	16	18	50	. 22	Ē	Σĸ	R
9. 3. 57	2,550 150 150 25	24 9,5 5,0	x 34 25 4,6	20 17 6,8	55 37 13	21 X	2,2 5,2	2,8 2,0	5,8 6,8 x	5,8 x	7,8 x	8,4	0,9	X 10 10 5,7 1,9	26	180
11.	2,550505	X 10 <	12 <	X 17	38 6,5		8 0 🗸 3 3 0		1,8	x 7,3	8,3 x	8,6 2,0	15 12	6,48,96 X	17	210
12.	2,5 10 150 25	18 42 18 1	22 40 6,4	10 14	7,3 47 x	7,5 x	4,0	4,8 8,0	3,3 x	3,8 6,0 x	1,8 x	5,8 15 x	9,5 42 6,3	4,8 14 8,9 3,4	14	224
13.	2,5 10 15 20 25	6,5 30 24 4,3	19 26 11	16 11 6,0	6,8 8,5 11	3,1 x	4,6 4,6	3,5 x	5,2 7,0 x	6,0 7,5 x	5,2 5,5 x	2,6 4,3	2,4 6,6 3,5	4,4 6,8 8,2 3,0	17	2 28
14.	2,5 10 15 20 25	7,3 25 8,4 2,5	5,8 23 7,0	9,3	12 8,5 x	5,0 17	3,1 6,4	5,6 4,8	6,0 x	7,0 x	9,6 13	16 8,0 x	3,0 34 30	2,9 6,6 12 5,9	9	164
15.	2,5 10 15 20 25	6,8 19 44 5,0	17 21 36	17 33 x	7,0 - 19 44	11 30	13	15	2,5 x		1,5 x		6,0 3,2	4,0 9,1 1,5 1,5	22	161
16.	2 5 5 10 15 20 25	18 24 8,2	20 15 12	20 16 15	7,0 33 32	# 40 8,0	4,6	6,6 7,0	2,8 x	3,8 x	3,0 x		3,8 7,0 9,8	5,3 11 11 1,4	34	146
18.	2,5 10 15 20 25	9,0 18 2,8	10 26 X	24 8,5 x	6,3 42 18	15 x	14	6,0	2,8	5,5 x	11 8,0 x	16 10 x	7,5 22 4,0	4,1 11 11 3,2		148

Dat	MHz	00	02	04	06	08	10	12	14	16	18	20	22	Ē	$\sum_{\mathbb{K}}$	R
19. 3. 57	2,5505	19 20 30 V	18 19 22 V	¥4 44 44 16 V	48 16 28	28 x	1 1 4 4 1	5,5 x	9,6 4,5	x 22 x	12 15	30 10	11 12	X 11 12 18 4,8 X	19	150
20.	2,50505 11205	50 33 16 < -	¥3 23 32 <	20 47 6,0	6,0 20 15	14 X		6,2 7,3	9,5 x	6,0 5,5	6,4 5,8 x	- - - - - 16 -	8,5 9,0 7,8	9,9 12 11 4,3	21	110
21.	2,550505	38 75 28 6,0	24 60 30 <	23 8,5 9,0	7,0 70 56 <	38 12 <	- < x 3,8	7,8 X	5,0 3,5	5,6 6,0	6,2 6,8 x	4,2 1,8	- 13 4,4	7.7 22 16 3,0	25	128
22,	2,50505	22 33 5,2	25 21 5,4	40 13 x	5,8 11 x	3,3 x		9,5 X	7,4 5,5	5,0 -	5,6 13	10 4,0	11 9,4 -	7,7 7,7 6,2 2,8	29	137
23.	550505 2 1205	21 40 5, 1	28 36 4,0	x 34 8,5	8,3 21 x	11 x	3,1 x	4,4 5,0	3,5 x	2,0 x	3,5 x	12 6,3	30 -	7,6 10 9,3 1,7	24	152
25.	2,50505 1505	30 42 16 V	22 25 16	16 18	20 32	12 4,4	## ## ## ## ## ## ## ## ## ## ## ## ##	1 1 1 4 4 1	2,8	6,8	6,2 1,5	9,8 6,5	13 12 3,0	6,2 11 9,0 1,8		160
26.	2,50505	12 31 17 2,3	17 55 14	10 41 36	1.9 110 26	11 x	15· 2,0	5,0 13 X	6,6 5,5	5,8 7,0 x	8,2 6,8 x	5,6 11 x	10 16 5,0	3,4 22 14 4,4	24	171 -
27.	2,55 10 150 25	9,5 14 28 -	11 16 19	36 21 x	8,3 42 x	4,6 6,0	er X	2,8	x 10	1,3	10 5,0 x	7,6	4,3 4,8	5,4 8,5 1,8 1,8	33	154

ŋ	1
•	

Dat	MHz	00	02	04	06	08	10	12	14	16.	18	20	22	Ē	Σĸ	R
28.	2,550 10 10 25 25	13 5,0 V -	16 V	38 31 -	X < < -	1 1 7 1 1		4,0	1,8	4,2	4,0 3,8	6,8	2.8 28	6,1 6,2 1,7 1,7	34	146
29.	2,55 10 150 25	5,3 11 24	15 16 5,0	16 22 4	1,9 10 4	17 6,2	4,5 6,6	4,0 3,3	5,5	5,6 -	3,4 1,0	1,8	2,6	3,27 6,79 4,98	40	154
30.	2,550 105 1025	9,5 4,6 2,0	11 7,5 4	23 10 -	8,3 8,0 x	×	- x	- - x	- x <	- x < x	3,3 x	11 11	13 28 2,5	4,362 8,24 x	32	172

Sanitized Copy Approved for Release 2010/03/11 : CIA-RDP80T00246A037100400001-5

Sanitized Copy Approved for Release 2010/03/11: CIA-RDP80T00246A037100400001-5

Sanitized Copy Approved for Release 2010/03/11: CIA-RDP80T00246A037100400001-5

Beobachtungsergebnisse

Ionosphäre
Solare Radiostrahlung
UKW-Ausbreitung

Heinrich-Hertz-Institut für Schwingungsforschung

der

Deutschen Akademie der Wissenschaften zu Berlin

Unclassified

31

Beobachtungsergebnisse

Februar 1957

Inhalt:	Seite
Inhaltsverzeichnis	31
Monatsübersicht Februar 1957	32
Graphische Monatsübersicht Januar/Februar 1957	33
Messung der Radiostrahlung der Sonne in Berlin-Adlershof	
Tägliche Daten 1500 MHz Tägliche Daten 9400 MHz Strahlungsausbrüche 1500 MHz Strahlungsausbrüche 9400 MHz Markante Strahlungsausbrüche	34 35 36 37 38
Messung der ionosphärischen Absorption in Juliusruh/Rügen	39
Mögel-Dellinger-Effekte und Sonneneruptionseffekte auf Längstwelle in Neustrelitz unter Verwendung von Vergleichswerten des Meteorologischen Observatoriums Kühlungsborn	40
Erdmagnetismus - Mitteilungen des Adolf-Schmidt- Observatoriums, Niemegk	
Erdmagnetische Aktivitätszahlen und Kennziffern Zweite erdmagnetische Kennziffern	41 42
Beobachtung der Sender WWV in Neustrelitz Graphische Darstellung	43-45
Feldstärkemessungen der Sender WWV in Neustrelitz Meßwerte	46-48
UKW_Uberreichweiten	
Feldstärkemessungen in Neustrelitz	49-51

Monatsübersicht Februar 1957

Der Verlauf der radiofrequenten Strahlung der Sonne ist im Monat Februar verhältnismäßig konstant. Sämtliche Tagesmittelwerte liegen sowohl bei $\lambda=3.2$ cm als auch bei $\lambda=20$ cm innerhalb eines Bereiches von $\pm 7\%$ des Monatsmittelwertes. Die Strahlungsausbrüche waren in diesem Zeitraum durchweg von geringer Intensität.

Auch in der transatlantischen Kurzwellenausbreitung zeigte der Monat Februar keine besonderen Erscheinungen bis auf die Störungen am 5. und 24. 2., an denen die hohen Frequenzen ausfielen.

Die UKW-Feldstärkewerte lagen im Februar wesentlich unter denen des Vormonats. Bei den größeren Strecken wurde zwischen dem 8. und 17. teilweise nur die Empfindlichkeitsgrenze der Empfangsapparate erreicht. Gegen Ende des Monats trat ein leichter Anstieg ein.

Sanitized Copy Approved for Release 2010/03/11: CIA-RDP80T00246A037100400001-5

34

Radiofrequenzstrahlung der Sonne Tägliche Daten Monat Februar 1957

Frequenz: 1500 MHz

Tag		Stral	ılung	Hz	<u>n</u> 2	10	.2 2	Tages- mittel	Bemerkungen
e-e-refusions/generale-residence	GMT S	9	10 11	11 12	12 13	13 14	14 15	illar aggigneranjan senh - enge senher enhassanhassaggi	
1. 2. 3. 4. 5.	102 - 93 92	99	97 97 95 89	98 100 94 93 89	97 97 93 93	98 95 93 90	خشت و مستق حست خست خست مستن	99 98 93 94 90	
6. 7. 8. 9. 10.	93 91 102 98	90 102 97	89 89 100 96 99	90 88 100 97 98	93 91 100 96 97	91 93 99 96 95	91 97	91 90 100 97 97	
11. 12. 13. 14.	95 98 95	95	93 93 96 94	93 95 89 93 95	98 96 87 93 96	98 95 89 94 95	90 93 93	95 96 92 95 95	
16. 17. 18. 19. 20.	98 97 94	99	93 100 93 93 89	93 97 93 93 88	94 93 93 93 87	94 93 93 93 86	93 93 93 93 83	94 96 93 93 87	
21. 22. 23. 24. 25.	87 100 89	89	88 88 98 93 87	84 89 97 92 90	84 87 94 90 88	85 85 93 89	84 85 92 87 89	86 87 95 90 89	
26. 27. 28.	85 92	92 87 92	89 87 93	91 89 91	91 90 86	92 90 86	92 84	91 89 87	
	Mor	atsmi	Lttel	. :				93	

Radiofrequenzstrahlung der Sonne Tägliche Daten Monat Februar 1957

Frequenz: 9400 MHz

Tag		Tages- Bemerkungen mittel
GMT	7 8 9 10 11 12 13 14 8 9 10 11 12 13 14 15	
1. 2. 3. 4. 5.	270 275 268 265 270 - 250 250 243 - 270 270 280 275 - 270 275 277 268 273 273 -	
6. 7. 8. 9. 10.	263 265 273 273 265 265 263 - - 273 282 277 284 277 - - 282 284 282 277 270 273 - - 265 265 270 267 267 272 - - 265 270 273 270 -	278
11. 12. 13. 14. 15.	- 263 268 273 283 275 268 - 268 268 268 270 268 273 - 263 263 260 260 263 263 260 270 273 270 268 263 260 260 260 260 260 260	269 262
16. 17. 18. 19. 20.	- 260 258 253 250 250 245 - 263 260 260 260 260 258 - 278 278 280 283 285 273 263 - 270 268 268 265 265 268 260 - 263 265 260 260 263 255	260 277
21. 22. 23. 24. 25.	- 258 263 260 260 260 258 255 - 273 270 273 273 273 273 - 273 273 273 275 283 - 273 273 273 275 273 - 260 260 258 258 260 263 263	259 273 276 273 260
26. 27. 28.	- 280 278 268 268 258 250 - 270 268 263 260 258 - - 263 263 260 265 260 265	264 263
	Monatsmittel:	268

Radiofrequenzstrahlung der Sonne Strahlungsausbrüche Monat Februar 1957

Frequenz: 1500 MHz

Tag	Beginn GMT	Dauer min.sec.	Zeit des Maximums GMT	Туре	W Hz m ² ° 10 ⁻²²	Größe be- zogen auf Bemer den Tages- mittelwert	k.
4.	13.30	1 30	13.31	CD	100	1,07	
6。	8.59 11.49	1 40 3 40	8.59 11.50	SD CD	102 113	1,11 1,25	
7。	11.45 11.5 2	5 20 1 30	11.46 11.52,5	CD SD	186 116	2,11 1,31	
8.	10.53,5 15.50	5 1 40 >5 -	10.54 15.53	SD CD	111 176	1,11 1,77	
26.	9 .1 9 13 . 55	1 - 7 20	9.19,5 13.56	SD CD	118 113	1,29 1,22	
28.	14.28	- 30	14.28	CD	108	1,29	

37

Radiofrequenzstrahlung der Sonne Strahlungsausbrüche Monat Februar 1957

Frequens: 9400 MHs

Tag	G W il Besting		Zeit des Maximums GMT	Туре	W 2°10 ⁻²	2 Größe be- 2 zogen auf Bemerk. den Tages- mittelwert
7.	9.14 9.38 10.03 10.27 10.35	6 = 2 = 1 40 1 20 3 30 29 =	9.18 9.39 10.03 10.27 10.38 11.47	OD OD OD OD	313 288 290 297 295 354	1,15 1,05 1,03 1,05 1,05 1,28
8.	10.53 15.50	2 15 >5 -	10.54 15.53	ad Cd	307 570	1,09 2,09
13.	11.02 12.50 13.55	- 30 14 - 5 -	11.02 12.52 13.57	SD OD CD	298 275 278	1,14 1,05 1,06
14.	8,55	2 -	8.55	SD	293	1,09
26.	9.17 13.55	8 - 10 -	9.20 13.57	CD	323 318	1,15 1,23
28.	13.49 14.28	- 30 - 30	13.49 14.28	SD SD	275 280	1,06 1,06

Strahlungsausbruch der Sonne 1957 Februar 7

gemessen vom Heinrich Hertz Institut der Deutschen Akademie der Wissenschaften Berlin-Adlershof

Ionosphärische Mittags-Absorption auf 3,86 MHz

Messungen der Station Juliusruh/Rügen

Februar 1957

Mittlere Dämpfung zwischen 11.00 und 13.00 MEZ

Tag	L(db)	Tag	L(db)
1. 2. 3. 4. 5.	14 12 >19 >16 >15	16. 17. 18. 19. 20.	C 14 14 16 keine Messung
6. 7. 8. 9. 10.	13 15 14 14 13	21. 22. 23. 24. 25.	n n n 113
11. 12. 13. 14. 15.	(14) (14) F 11 19 C	26. 27. 28.	19 13 12

40

Mögel-Dellinger-Effekte (S.I.D.) und Sonneneruptionseffekte (S.E.A.) - Messungen der Station Neustrelitz

-Mitteilungen über S.E.A. - Messungen des Meteorologischen Observatoriums Kühlungsborn

Februar 1957

	S.I.D.	i	S. E. A.		
Tag	Neustrelitz 2614 kHz	Neustrelitz 20,2 kHz	Kül 14 kHz	nlungsborn 27 kHz	40 kHz
2.	يت	x	13.58 1 25	13.58 0 25	
4.	gue	11.56 2 31	-	_	-
	~	14.03 3 41	cus	•	-
8.	-	15•51 3 22	663 3	15•52 1 50	
10.	08 . 15 2 10	08 . 15 3 45	08 . 16 0 25	08.16 0 25	
12.		14.30 2 xx	-	44	-
18.	08.00 1 20	_	cas	œ	
	08•50 1 35	08.42 3 17	08•43 0 15	08 _• 43 1 15	08.43 1 15
	tuna.	14•33 3 21	14•32 0 25	14.32 1 25	14.32 0 25
	COMP	15.30 3 42	s ep		-
19.		_	08.20 at	sgeprägte	s Maximum
24.		13.10 1 24	3204	13.12 0 30	13.12 1 30
	<u>.</u>	16.02 2 21		-	-
25•	ىتە	07 . 54 1 22			
	diss	09.39 3 21	09.44 0 15	09•44 0 15	09 . 44 1 15
		15.41 0 13	æ	-	-
26.	•	10.34 2 66		ىن	
	13.58 3 60	13.57 3 42	13.56 2 40	13.56 3 40	13.56 3 40
28.	_	<u> </u>	gau	12 . 16 0 10	12.16 0 10
	l	ı	ļ		1

41

Erdmagnetische Aktivitätszahlen und Kennziffern Messungen des Adolf-Schmidt-Observatoriums für Erdmagnetismus Niemegk

Februar 1957

Tag	s.	F	$A_{K} \sum K_{1}$	K ₁
1. 2. 3. 4.	0 0 1 1	0.5 0.5 0.5 1	6 14 10 17 15 20 28 30 30 32	2212 2131 1112 3333 2211 2354 4223 5545 5533 5344
6. 7. 8. 9.	0 0 0	0.5 0.5 0.5 0.5	6 14 7 13 6 13 7 14 5 10	3122 2211 0013 2223 2112 1222 2211 1232 3113 1001
11. 12. 13. 14. 15.	1 1 0 0	0.5 0.5 1 0.5 0.5	8 16 12 21 42 34 6 13 12 18	1212 2422 2322 2343 3434 5573 2232 1120 0033 3324
16. 17. 18. 19. 20.	0 1 1 1	0.5 0.5 0.5 0.5 0.5	7 14 13 21 19 25 26 30 15 23	0112 2332 2123 3334 4223 3353 4343 3355 4323 3224
21. 22. 23. 24. 25.	1 1 1 0	0.5 0.5 0.5 1 0.5	29 32 20 27 28 29 35 32 7 13	4343 455 4 4333 3443 4322 3465 6644 43 3 2 33 22 2100
2 6. 27. 28.	0 0	0 0.5 0	4 10 7 14 2 5	2111 2111 2322 0131 0000 1112

42

Zweite erdmagnetische Kennziffern K2

Messungen des Adolf-Schmidt-Observatoriums für Erdmagnetismus Niemegk

Februar 1957

Tag	0-3	3⊶6	6-9	9-12	12-15	15-18	18-21	21-0
1.	1001	1001	1001	1001	1001	1001	1101	1001
2.	1001	1001	1001	1001	1002	1011	1111	1002
3.	1001	1001	1001	1001	1001	1001	2211	1012
4.	2002	1001	1001	1002	2211	2212	2211	2211
5.	1012	2012	2011	2012	2012	1022	1012	1101
6. 7. 8. 9.	1002 1000 1001 1001 1001	1001 1000 1001 1001 1001	1001 1001 1001 1001 1001	1001 1002 1001 1001 1001	1001 1001 1001 1001 1001	1001 1001 1001 1001 1000	1001 1001 1001 1001 1000	1001 1001 1001 1001 1001
11.	1001	1001	1001	1001	1001	1211	1001	2001
12.	1001	2002	2001	1001	1001	1001	1012	1001
13.	1002	1211	1001	3012	2012	3012	3312	1002
14.	1001	1001	2001	1001	1001	1001	1001	1000
15.	1000	1000	1001	1002	1001	1001	1001	2101
16.	1000	1001	1001	1001	1011	1002	1001	1001
17.	1001	1001	1001	1001	1002	1001	1002	2002
18.	1002	1001	1001	1002	1002	1002	2201	1012
19.	1002	1001	2002	2001	1002	1002	2312	2212
20.	1012	1002	1001	1001	1001	1001	1001	2101
21.	1012	1011	1002	2001	2211	2211	2211	2211
22.	2002	2002	2002	2002	2002	1002	1012	1012
23.	1002	1002	1001	1001	1001	2002	2322	1023
24.	2023	2013	2012	2012	2002	1002	1002	1001
25.	1002	1001	1001	1001	1001	1001	1000	1000
26.	1001	1001	1001	1001	1001	1001	1001	1001
27.	1001	1001	1001	1001	1000	1001	1001	1001
28.	1000	1000	1000	1000	1001	1001	1001	1001

Feldstärkemessungen (µV/m) der Sender WWV

Messungen der Station Neustrelitz - Februs 355

	MHz	00	02	04	06	08	10	12	14	16	18	20	22	Ë	Σĸ	R
1. 2. 57	20 25	16 10 7,0 2,0	34 12 20 <	30 24 13 <-	35 13 x	15 5,6 <	- X	- 6,3 x	5,6 3,8	6,2 6,8	11 18 x	8,5 24 12	10 20 19 4,3	10 8,5 11 4,2	16	105
2.	2,5 10 15 20 25	12 26 8,4 2,0	9,0 16 5,4	16 14 6,0	3,6	9,8 20 13	4,1 4,6 V	6,0 7,0	4,5 x	3,6 2,3 x	7,6	5,8 2,0	8,3 13 7,0	9,5 9,7 6,5 1,9	19	114
4.	2,5 5 10 15 20	10 11 5,6	14 8,5 12 <	15 10 10	21 7,5 X	1,0 28 14	5,5 8,0 <	4,5	3,5	## ## ## ##	- < < < <	6,2	¥,5 6,4	5,5 6,9 0,7	33	103
5.	2,50 150 1050	21 10 4,2	25 9,0 <	20 4,3	9,8	2,4 4,4	0,9	4,6 4	4,6	5,8	1,0 V	11441	10 2,7 V	7.8 2.4 2.3	33	94
6.	20 25	22 6,0 4,2	33 7,0 3,6	8,0 8,0	11 2,1	6,8 5,5 4,0		5,0 5,0	5,5	4,2 5,0	6,2 6,8 x	5,8 3,0	6,5 11 3,6	7,3,3,3,2 X	15	110
7.	20 25	< i	7,0 4,5	5,5 3,8	13 V = =	< 14 x	1 1 2 1 1	10 5,0	5,3 x	- x 6,8 x	x 13 x	- V 5,0	1,2 9,0 2,8	3,0 4,1 2,6	13	123
	25	<u> </u>	V 1	5,0 7,5 5,6	45 15 4,8	12 12 12		<pre>11 6,0 x</pre>	2,8 5,8	3,4 2,8	18 7,0	- 12 3,3	7,5 12 5,0	7,5 5,4 7,0 2,1	17	136
9.	2,5 10 15 20 25	18 12 10	20 9,5 11	9,0 14	25 < X	2,0 37 11	8,0 1,2	x 5,4 4,3	7,0 11 X	8,3 x	20 18 x	- < 5,8 1,8	17 29 3,4	7,5 9,5 8,1 3,6	16	144

																47
Dat	MHz	00	02	04	06	08	10	12	14	16	18	20	22	Ĕ	2k	R
11. 2. 57	2,5 10 15 20 25	19 16 13	- x x x	24 8,0 x	33 25 14	3,5 110 18	20 20 20	12 7,0	12 11	9,0 7,0	5,3 x	8,8 8,0	26 4,8	8,0 19 12 3,2	19	113
12.	2,5 10 15 20 25	13 36 3,0	14 17 2,8	6,3	16 5,0 X	x 8,2	10		3,8 6,5 x	1,4	2,8 4,3	8,0	8,4	4,5 5,2 4,4 2,2	23	116
13.	2,5 5 10 15 20 25	28 8,5 4,4	19 11 9,6	8,8 9,0 x	9,5 4,0 x	16 14 <	- - 11 1,3		5,4	5,2 5,0	6,6 6,8		12 4,6 <	7,4		100
14.	2,5 5 10 15 20 25	5,8 12 3,2	8,3 15 1,8	12 10 V	9,8 11 x	3,3	- - X	4,8	5,5			11	14 10 <	4,0 2,6	16	115
15.	10 15 20 25		24 25 <	28 45	23 33	2,3 7,8 14	E-	- - - 4,0	## X	: 4,0	6,3	5,2 4,5	25 13	7.8 13.7 1,7	19	120
16.	2,5 10 15 20 25	3,5 15 7,4	5,0 27 12	8,5 24 4,0	33 16	· <	6,0	9,3	5,4	, c=	9,2	15 5,8	18	8,0	17	139
18.		4,5	•	< =		. X	5,6	_ -	, ,	5,6 2 5,6 0 6,0	8,8 7,8	, c	7,3	- 2	<u> </u>	120
19	2,5 10 10 20 21	10 10 10 10 10 10 10 10 10 10 10 10 10 1	-	25 + 7,0 + 3	5 16 5,0 E		;	9,6	5 12 5 5,	2 5 5,	x x 5 10	0 <	10 2	< 2,	ي	в 109
20		20050	8 1 5 1 < 9,	3 23 0 29 6 1	و حد	2 6,0 8 12	2	< 3,	=	a	< 5, 5	6 18 < 2,	- 1 - 1 - 5	O,	X 2 2 4 8 X	2 90

Dat	MHz	00	02	04	06	08	10	12	14	16	18	20	22	Ē	∑ĸ	R
21. 2. 57	20 25	22 9,5 4,0	38 < x	58 2,0 42	18 < 32		5,4	3. 8,5	7,6	5,4 12	5,8 8,3	4,6 4,8	8,8 9,0	12 2,1 13 3,0	33	111
22.	2,5 5 10 15 20 25	21 14 X	7,5 4,6	15 4,4 x	5,3	7,5 x	2,3 X	5,6 2,3	5,5 x	5,0 x	4,0 7,0	12 1,8	5,0 7,0 13	5,0 4,6 6,5 1,8	31	115
23.	2,5 10 15 20 25	23 19 7,8 <	30 25 5,0	24 21 I	21 24 x	20 18	0 0 4 0 0	7,0	7,0	7,0 x	5,3 x	10 / / 10 10		8,2 9,0 4,4 2,2	30	126
25.	2,5 10 15 20 25	24 12 <	29 8,0 <	23 < x	53 28	1 1 1 1 1 1	0 0 0 0 0	5,2 5,8	13 6,5	9,8 6,8	5,6 9,0	4,3 19 10	14 32 <	11 5,5 7,7 3,2	15	127
2 6.	2,5 5 10 15 20 25	17 23 66	22 15 28	22 27 11	33 140 X	13	4,4	6,6 8,0	2,2 6,8	16 4,5	11 7,3	5,5 19 7,3	15 36 < 0	8,5 19 18 2,8	10	128
27.	2,5 5 10 15 20 25	18 12 32 <	28 28 38 <	25 40 22 8,0	45 20 42 5,3	28 50 < =	5 10	10	5,0	8,0 X	15 6,5	60	5,0 12 6,8	11 12 26 5,6	14	133
28.	2,5 10 15 20 25	10 70 48 <	25 45 20 < 0	45 38 16	\$ 60 90 32	60 x	+,4	10	6,3	4,3	3. 3. 3. 3. 3.	26 25	7,0	13 26 13 4,5	9	126

Beobachtungsergebnisse

Ionosphäre
Solare Radiostrahlung
UKW-Ausbreitung

Heinrich-Hertz-Institut für Schwingungsforschung der

Deutschen Akademie der Wissenschaften zu Berlin

Unclassified

(31) AG 308/56/DDR/Vb/1599 05

Beobachtungsergebnisse

Inhalt:	Seite
Inhaltsverzeichnis	113
Monatsübersicht Mai 1957	114
Graphische Monatsübersicht April/Mai 1957	115
Radiofrequenzstrahlung der Sonne Messungen in Berlin-Adlershof Tägliche Daten 1500 MHz Tägliche Daten 9400 MHz Strahlungsausbrüche 1500 MHz Strahlungsausbrüche 2900 MHz Strahlungsausbrüche 9400 MHz Registrierkurven eines Strahlungsausbruches	116 117 118 119 120 121
Ionosphärendaten - Messungen in Juliusruh/Rügen Symbole Mittagsabsorption Median-Werte Graphische Darstellung der Median-Werte Stündliche Werte foE Stündliche Werte foEs Stündliche Werte foF1 Stündliche Werte foF2 Stündliche Werte (M3000)F2	122 123 124 125 126–127 128–129 130–131 132–133
Mögel-Dellinger-Effekte (S.I.D.) auf Kurzwelle und Sonneneruptionseffekte (S.E.A.) auf Längstwelle - Messungen in Neustrelitz, Vergleichswerte des Meteoro- logischen Observatoriums Kühlungsborn	136138
Erdmagnetismus - Mitteilungen des Adolf-Schmidt- Observatoriums Niemegk Erdmagnetische Aktivitätszahlen und Kennziffern Zweite erdmagnetische Kennziffern und Plötzliche Sturmausbrüche (S.S.C.)	139 140 140
KW-Ausbreitung - Messungen in Neustrelitz Feldstärkemessungen der Sender WWV, Meßwerte Hörbarkeit der Sender WWV, graphische Darstellung	141-144 145
UKW-Überreichweiten Feldstärkemessungen in Neustrelitz	146-148

Monatsübersicht Mai 1957

Die Radiofrequenzstrahlung der Sonne folgt in ihrem Verlauf sowohl bei 20 cm wie bei 3 cm Wellenlänge im wesentlichen dem Gang der Sonnenfleckenrelativzahl. Die Strahlungsausbrüche waren im allgemeinen von geringer Intensität, stärkere Ausbrüche traten zwischen dem 16. und 18. Mai auf.

Die KW-Ausbreitungsverhältnisse waren in der zweiten Maihälfte im ganzen gesehen besser als in der Zeit vom 1. bis 10. Mai. Das ist offentsichtlich nicht durch eine größere Störtätigkeit in der ersten Maihälfte, sondern vor allem durch höhere Nachttiefstwerte der Grenzfrequenzen in der zweiten Monatshälfte zu erklären. Am Monatsende wurden mittlere erdmagnetisch-ionosphärische Störungen am 26. und 30. Mai beobachtet. Mögel-Dellinger-Effekte traten vor allem in der zweiten und dritten Dekade auf.

Bei der UKW-Ausbreitung wurden im Mai im allgemeinen keine höheren Feldstärkewerte beobachtet. Zwischen dem 4. und 10. Mai trat dazu noch ein merklicher Abfall auf allen Strecken ein. Die Schwankungen der Tagesmittelwerte waren verhältnismäßig gering. Die seit einiger Zeit festgestellten, niedrigen Feldstärkewerte auf der Strecke Ochsenkopf – Neustrelitz dürften nicht auf Ausbreitungsvorgänge zurückzuführen sein, es wird hier eine Veränderung der Strahlungsleistung vermutet.

Radiofrequenzstrahlung der Sonne Messungen der Station Berlin-Adlershof Tägliche Daten Monat Mai 1957 Frequenz: 1500 MHz

Tag	ter destiljenen en		ali Physia Physia Agus v A	Str	ahlu	ng -	w z m ²	• 1	0-22			Tages-	Bemerk.
GMT	7 8	8 9			11 12	12 13					17 18		
1. 2. 3. 45.	100	4 *	99 107	103	95 100 104	95 101	101 96 106 106	95 101			104	101 98 101 106 111	
6. 7. 8. 9. 10.	1 1 9	102	103	104 107 124	104 110 122	105 112 116	108 111	109 109 115	109	103 109 114 113	653 643 643	105 107 110 118 115	
11, 12, 13, 14, 15,	117 119	114 119	115 120	114 118	113 113 119	114 116 121	112 113 116 121 122	112 123	ت 123	112 125	114	111 114 114 120 121	
16. 17. 18. 19. 20.	113 113 113	113 111 113	112 110 113	115 111 110	116 110 110	117	E3	115		114 - 132		108 113 111 112 124	
21 , 22, 23, 24, 25,	111 108 104	111 109 107	106 105	108	107 106	108	126 111 108 102	112	111 107	-		117 111 108 105 104	
26. 27. 28. 29. 30.	90 90 87 95	94 92 89 92	98 93 89 89	98 94 90 89 89	95 91 92 88	93 97 82 87	96 99 83 90	96 82 87	98 84 89	84 86	86	96 95 87 88 91	
31.	95 Mona	95 itsmi	95 ttel	96 . :	96	101	104	99	100	101	98	98	

Radiofrequenzstrahlung der Sonn Messungen der Station Berlin-Adlershof Tägliche Daten Monat Mai 1957 Frequenz: 9400 MHz

Tag			St	rahlı	ung -	W Hz m'	5	10 ²	2			Tages- mittel	Bemerk.
GMT	7 8	8 9	9 10			12 13							
1. 2. 3. 4. 5.	260	253 257 267	257 257 273	265 257 255 283 260	250 250 260	253 260	253	243	245	253	243 257	262 251 259 2 6 5 267	r
6. 7. 8. 9. 10.	275 295	2 73 290	275 287	267 280 280 287 283	283 283 285	265 283 283	263 283 280	267 285 277	277 277	280	26 <u>3</u> 280	267 273 283 285 283	
11. 12. 13. 14. 15.	290 290	287 293	285 295	280 287 295 297	270 287 290	277 287 287	283 297	283 295 310	280 287 305	275 303	297	285 277 287 297 295	
16. 17. 18. 19. 20.	277	280 290 280	277 280	290 275 283 277 263	270 287 273	273 277	273 280	280	280	2.80	275	277 283 278	
21. 22. 23. 24. 25.	265 270	27 <i>5</i> 257 265	270 265 265	287 265 260 267 267	250 253 263	250 253	265 240 250	250 250 250	257	263	267 257	267	
26. 27. 28. 29. 30.	267	265	257 257	267 263 255 253 270	263 265 250 253	263 265 257 250	263 267 253 270	267 257 270	267 260 265	267 260 257	263 257 250	265 265 258 259 270	
31.	290	287	293	290	283	275	277	277	267	270	270	280	
	Mone	temi	[tte]	L:								273	

Radiofrequenzstrahlung der Sonne Messungen der Station Berlin-Adlershof Strahlungsausbrüche Monat Mai 1957 Frequenz: 1500 MHz

-			· ·					
Tag	Beginn GMT		Zeit des Maximums GMT	Туре	W Hz m ²	•10 ⁻²²	Größe bezo- gen auf den Stundenmit- telwert	Bemerk.
7•	08.55 10.18 10.25 10.35 10.39	1 20 4 ~ 5 ~ 1 20 9 20	08.56 10.21 10.28 10.35 10.43	SD CD CD SD CD	111 120 133 133 175		1,09 1,16 1,28 1,28 1,69	
10.	10.08 12.54	2 40 7 -	10.09,5 12.56	CD SD	126 128		1,11 1,11	
14.	13.25 14.06 14.24	6 40 8 - 5 -	13.26,5 14.09 14.26	SĎ CD SD	131 156 157		1,08 1,26 1,27	
16.	12.43	5 -	12.45	CD	16 6		1,54	
17.	16.02	4 -	16.03	CD	159		1,41	
18.	08.10	6 -	08.13	CD	243		2,17	
21.	08,20	4 -	08.22 } 08.23 }	CD	134 135		1,19 1,20	
22.	13.15 13.19 16.15	2 - 2 20 2 -	13.15,5 13.20 16.16	SD CD SD	126 128 119		1,14 1,16 1,07	
23.	13.54	2 30	13.55	SD	124		1,15	

Radiofrequenzstrahlung der Sonne Messungen der Station Berlin-Adlershof Strahlungsausbrüche Monat Mai 1957 Frequenz: 2900 MHz

Tag	Beginn GMT	Dauer	Zeit des Maximums GMT	Туре	₩ Hz m ² •10 ⁻²²	Größe bezo- gen auf den Stundenmit- telwert	Bemerk.
7•	08.55 10.19 10.26 10.40	3 40 6 - 6 - 9 -	08.56,5 10.21 10.27,5 10.43	CD CD CD SD	 	1,19 1,05 1,08 1,16	
10.	12.55	5 -	12.57	SD	-	1,10	
13.	12.38	1 40	12.38,5	SD	•	1,02	
14.	13.26 14.18 14.24	4 2 4 40	13.27 14.19 14.26	SD SD CD	<u> </u>	1,04 1,02 1,06	
15.	12.37	3 -	12.38	SD	439	1,35	
16.	12.43	9 -	12.47	CD	45	1,34	
17.	16.03	7 -	16.04	CD	***	1,10	
18.	08,10	8 ~	08.12	CD	40	1,42	
21.	08,22	~ 40	08,22	SD	6 55	1,03	
22.	13.15 13.19	2 - 3 -	13.16 13.20	SD CD	650 €50	1,16 1,14	
23.	13.55	3 ~	13.55	SD	æ	1,32	

Radiofrequenzstrahlung der Sonne Messungen der Station Berlin-Adlershof Strahlungsausbrüche Monat Mai 1957 Frequenz: 9400 MHz

Tag	Beginn	Dauer	Zeit des Maximums	Туре	₩ ·10 ⁻²²	Größe bezo- gen auf den Bemerk.
	GMT	min.sec.	GMT		Hz m²	Stundenmit- telwert
7.	10.18 10.26 10.42	3 30 4 - 2 -	10.19 10.28 10.43	CD CD SD	308 315 310	1,10 1,13 1,11
10.	10.08	2 ~	10.09	SÕ	300	1,06
13.	11.25 12.56 15.15	23 - 50 - 27 -	11.35 13.13 15.16	SD CD SD	310 325 308	1,08 1,13 1,07
14.	14.18 14.27 16.56	2 - 1 - 6 -	14.19 14.27,5 16.57	SD SD SD	333 333 328	1,07 1,07 1,08
16.	12.43	20 -	12.45	CD	500	1,74
18.	08.10	8 -	08.12	CD	465	1,60
22.	13.15	10 -	13.16	CD	285	1,07
23.	13.54	2 30	13.54,5	SD	257	1,07
29.	06.57	2 -	06.57	CD	287	1,06

Radiofrequensstrahlung der Sonne

Messung der Station Berlin-Adlershof

Sanitized Copy Approved for Release 2010/03/11: CIA-RDP80T00246A037100400001-5

Symbole und ihre Bedeutung

Erläuternde Symbole (stehen e i n z e l n oder h i n t e r einem numerischen Wert)

- A Ausfall oder Beeinflussung wegen einer niedrigeren dünnen Schicht (z.B. Es)
- B Ausfall oder Beeinflussung wegen Absorption in der Nähe von f-min
- C Ausfall oder Beeinflussung aus einem beliebigen, nicht ionosphärischem Grunde
- D Ausfall oder Beeinflussung, weil Grenzfrequenz den Senderbereich übersteigt
- E Ausfall oder Beeinflussung, weil Grenzfrequenz unterhalb des Senderbereiches liegt
- F Ausfall oder Beeinflussung durch Streuecho
- G Ausfall oder Beeinflussung durch zu geringe Ionisationsdichte der Schicht
- H Ausfall oder Beeinflussung wegen Schichtung innerhalb der Schicht
- J Ordentliche Komponente von der außerordentlichen Komponente abgeleitet
- L Ausfall oder Beeinflussung, weil die Meßspur zwischen den Schichten keine eindeutige Spitze aufweist
- N Messung kann nicht genau interpretiert werden (z.B. infolge Schrägechos)
- O Messung beruht auf der ordentlichen Komponente
- R Ausfall oder Beeinflussung durch Absorption in der Nähe der Grenzfrequenz
- S Ausfall oder Beeinflussung durch atmosphärische oder fremde Störungen
- T Wert aus einer Folge von Beobachtungen bestimmt, da Einzelbeobachtung zweifelhaft
- V Beeinflussung durch Aufspaltung in der Nähe der Grenzfrequenz
- W Scheinbare Höhe übersteigt den Bereich des Senders
- X Messung beruht auf der außerordentlichen Komponente
- Y Intermittierende Meßspur
- Z Dritte Komponente sichtbar
- + keine Messung

Charakterisierende Symbole (stehen vor einem numerischen Wert)

- D größer als ...
- E kleiner als...
- I Fehlender Wert wurde durch einen interpolierten Wert ersetzt
- U Unsicherer oder zweifelhafter numerischer Wert

Folgen in den Tabellen in einer Zeile ein numerischer Wert mit einem erläuternden Symbol und ein numerischer Wert mit einem charakterisierenden Symbol aufeinander, so wird aus drucktechnischen Gründen das erläuternde Symbol weggelassen.

Ionosphärische Mittags-Absorption auf 3,86 MHz

Messungen der Station Juliusruh/Rügen

Mai 1957

Auf Meßfrequenz 3,86 MHz im Mai wegen Nachbarschaft der krit. Frequenz der E-Schicht keine Meßwerte der Mittags-Absorption angebbar.

Ab Juni erfolgt Absorptionsmessung auf 3,18 MHs.

Ionosphärendaten Messungen der Station Juliusruh/Rügen

Median-Werte

MEZ	foE	foEs	foF1	foF2	(M3000) F2
00				7,1	2,4
01				7,0	2,5
02				6,6	2,45
03				6,2	
04				6,2	
05	2,15			6,7	2,55
06	2,60			7,1	2,6
07	3,00			7,8	2,6
80	3,30	4,0		7,5	2,45
09	3,50	5 , 3		7,7	2,45
10	3,60	4,9		7,9	
11	•	• •		7,8	
12				8,4	
13				8,3	2,45
14				8,4	
15				8,4	
16				8,2	2,55
17	3,00			8,1	2,55
18	2,65			8,1	2,6
19	2,20	3,9		8,3	2,65
20				8,0	2,7
21				7,6	2,6
22				7,5	2,45
23				7,4	2,35

<u>Ionosphärendaten</u> Messungen der Station Juliusruh/Rügen Median - Werte Mai 1957

. 26

Ionosphärendaten Messungen der Station Juliusruh/Rügen

Stündliche Werte foE

Dat./MEZ	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100
1. 2. 3. 4. 5.	SSESN	E E E N	E C E E N	E C E E N	E C 1,2 2,25 1,1	1,6	2,3 C 2,3 2,55	2,6 Č	3,1	3,4 C 3,5 N	3,6 3,5 3,75	3,6 C 3,7 C N
6. 7. 8. 9. 10.	S N + +	E E + +	E N + +	E N + +	1,35 N + +	1,75 N + +	2,6 2,4 + +	0 2,75 + + +	C + + + + +	C + + +	C + + +	C + + +
11. 12. 13. 14. 15.	+ + E E	+ + N B	+ + B E S	+ + C E S	† † 1.7	+ 2,3 2,1 C	+ 2,5 2,6	+ + A 2,85	+ + 3,2 3,2 C	+ 3,3 A C	+ + c 3,5 R	+ + 3,5 3,6 3,8
16. 17. 18. 19. 20.	S C A S	C A C A S	C A C A S	C A C E E	C 1,6 C A A	C 2,15 C 2,2	C 2,65 C 2,7 2,65	C 3,15 C 3,0 2,85	C 3,6 C 3,25 3,3	C C C 3,5	C C 3,65 Å R	7.9 A A R
21. 22. 23. 24. 25.	A A A E E	C A A E C	S A A C C	E A A C C	C F 1,3 C C	1,7 2,1 C C	2,65 2,5 C C	2,9 C 3,2 3,2	3,3	3,4 C 3,6 3,6	3,45 c 3,8 u c	R C 3,9
26. 27. 28. 29. 30.	C E C S	C E C A	E E C C	000	1,6 1,4 C C	2,1 2,2 U 2,5 C 2,3	2,5 2,8 2,6 2,8	3,0 3,1 3,1 0	3,3 3,4 3,3 0	C	5,6 C	3,7 3,6 C C
31.	S	s c	,8	1,3	C	2,2	2,9	3,2	3,4	3,5	3,6	R
		E 26	E 24	E 24	C 16			3,0	3,3	3,5	3,6	C
Mean	E	E _.	E 24	E 24		15 2,1 15	·	17 2,95 17	17 3,3 17	12 3,5 12	12 3,6 12	15 C 15

<u> Ionosphärendaten</u>

Messungen der Station Juliusruh/Rügen

Stündliche Werte foE

Dat./MEZ	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
1. 2. 3. 4. 5.	3,6 3,7 3,7 N	3,8 3,6 3,7 N	C U3,7 3,6 N N	C 73,7 3,6 N	0 3,0 3,3 3,3 3,55	3,0 3,0 3,1	2,5 2,9 2,6 2,6 2,25	1,8 1,8 1,75 2,1 2,0	C S S N 1,85	០១១១១	C S N S	C S N S
6. 7. 8. 9. 10.	C + + + + +	C + + +	3,4 + + + +	3,6 + + + +	3,45 + + + +	2, 65 + + + +	2,45 + + + +	2,3	S + + +	S + + + +	S + + +	N + +
11. 12. 13. 14. 15.	+ + C N 3,6	+ + C 3,7 3,8	+ + C N 3,75	+ + C N 3,6	+ + C N	+ c 2,9 2,9	+ c 2,6 2,7	+ 2,0 N 2,2	* \$ 2,0 A	+ S S 1,4	+ 55555	+ 3 S S S
16. 17. 18. 19. 20.	C 3,9 N A 3,9	C 3,7 3,7 A R	C A 3,9 A R	C A A A R	C A 3,5 Å U3,35	C A 3,2 A 3,1	c 2,75 2,6 A 2,7	C 2,25 2,2 2,2 2,35	C A A 1,85	C C A A	C A A A	C A A S
21. 22. 23. 24. 25.	R C B C	R C A C	R C B C	R C 3,5	A C 3,5 C	2,9 3,0 3,2 C 3,3	2,5 2,8 C 2,6	2,2 2,1 2,6 0 2,3	2,0 B C C	A A B C	A A B C	A B C C
26. 27. 28. 29. 30.	U3,5 C C R	U4 O C C C R	R A 3,5 C 3,7	3,6 8 3,7 03,8	3,5 3,5 C C R	C 3,2 C C 3,4	2,7 2,8 C C 3,0	2,2	\$ \$ \$ 2,0	នន្តបន្ទន	s c c s s	8 8 C 8 8
31.	3,6	R	3,5	3,6	С	3,3	2,8	2,2	С	s	S	S
Median Anzahl	C 17	C 17	C 17	C 16	C 15	3,0 16	2,6 18	2,2 21	S 20	S 25	S 26	S 26
Mean Anzahl	C 17	C 17	C 17	C 1 6	C 15	3,5 16	2,8 18	2,3 21	S 20	S 25	S 26	S 26

.28

Ionosphärendaten Messungen der Station Juliusruh/Rügen

Stündliche Werte foEs

Dat./MEZ	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100
1. 2. 3. 4. 5.	C C C N	2,3 1,1 C C	1,5 C C C 3,8	2,0 C C C 3,8	4,0 C C C C	C C C 2,6	3,6 C C C	C C 3,5 C	3,9 3,6 C	4,2 C 3,6 C N	4,4 4,0 C N	4,0 C C C N
6. 7. 8. 9. 10.	C N + +	C N + +	C C + +	C N + +	2,0 N + +	C N + +	C C + + +	C C + +	C + + +	C + + +	C + + +	C + + +
11. 12. 13. 14. 15.	+ c 2,7	+ + C 2,6	+ + C 2,6	+ c 2,3	+ + C 2,1	++000	++000	+ + C 4,0	+ C C C	+ + c 9,5	+ + C 4,6	+ † C 4,3
16. 17. 18. 19. 20.	4 ₆ 3 2,2	c 2,3 3,2	C 3,5 3,6 2,6	° 2,8	C 2,7 2,0 4,2	c c 2,6	C	C	C 5,7 5,2 5,6	0 0 8,2 5,3	C C 5,7 11,6	5,7 7,8 11,6
21. 22. 23. 24. 25.	2,6 3,1 3,7	3,6 4,0	4,1 3,2	3,3 4, 5	4,0	2,7 2,7	3,9	5,4 4,5	4,0 5,8	4,0 5,4	5,4 7,9	5,1
26. 27. 28. 29.	3,4 2,4	2,7	1,2 3,6 2,3	1,4	3 , 6	4,0	2,8 4,1 5,4	4,0 5,4 5,9	3,9 5,0 3,8	7,6 5,2 9,7	5,1	6,5 U5,9
30. 31.		2,7		2,5		3 , 6	3,9	5,4	4,0	4,2	4,2	4,1
Median						2,6	3,1	3,4	3,7	3,9	4,7	4,3
Anzahl	8	10	11	8	8	7	7	9	4,0 12	5,3 12	4,9 12	10
Mean Anzahl	- 8	- 10	11	8	- 8	7	7	9	4,2 12	5,9 12	5,8 12	10

Ionosphärendaten Messungen der Station Juliusruh/Rügen

Stündliche Werte foEs

Dat./MEZ	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
1. 2. 3. 4.	C C C N N	C 5,9 C N N	C C C N N	C C 4,0 N N	00000	3,7 0 3,6 0	3,1 C 3,0 C	C C C C 2,6	CCCNC	2,0 C C N C	C C N C	C N N C
6. 7. 8. 9.	C + + +	4,0 + + + +	C + + +	C + + +	C + + +	C + + +	C + + +	C + + +	C + + +	C + + +	C + + +	C + + +
11. 12. 13. 14. 15.	+ C C C	+ 000	+ c N 5,7	+ C N C	+ C N C	+ C C 5,2	+ C C C	+ 3,7 C 3,7	+ 2,3 C 4,1	C	+0000	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
16. 17. 18. 19. 20.	c 5,7 6,6	0 4,2 7,0	0 5,2 4,6 5,9	5,2 9,7 8,4	C 4,3 7,4	0 3,7 9,0 5,4	c 11,7	c 5,1 7,9	C 3,3 4,8 4,1	6,9	0 3,3 7,0 2,7	2,5
21. 22. 23. 24.	6,5	6,2 4,8	5,8	3,8 8,6			8,9 4,2 3,6			3,5 3,7	3,8 3,3	3,2 3,9
25. 26. 27. 28. 29.	6,9 U4,1	7,0	3,7	3,9	5,4 3,9		3,8	6,8 8,3 2,9	3,1 9,5			2,6
31.	5,4	3,8 5,9		4,1	1	5,4						
Median Anzahl	- 6	- 9	- 8	- 9	- 6	- 9	- 11	3,9 12	9	- 9	- 5	6
Mean Anzahl	- 6	- 9	- 8	- 9	- 6	- 9	11	4,7 12	9	9	- 5	6

Ionosphärendaten Messungen der Station Juliusruh/Rügen

Stündliche Werte foF1

Dat./MEZ	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100
1. 2. 3. 4. 5.					C C C	0000	00000	00000	00000	5,3 C L C N	5,4 C C C C	5,2 C C C
6. 7. 8. 9. 10.	+ + +	+ + +	+ + +	+ + +	C N + +	C N + +	4,4 C + +	C U4,5 + +	C + + + + +	C + + + + +	C + + +	C + + +
11. 12. 13. 14. 15.	+ +	+ +	+ +	+	+ + C C C	+ C C C	+ + 4,4 C C	+ + R R C	+ + 5,3 4,2 C	+ + 5,2 R C	+ + N R 5,9	+ 5,7 5,3 6,6
16. 17. 18. 19. 20.				٠	0000	4,5 C C	C 4,8 C C 4,6	C R C C R	C R C 5,2 R	C C C A 5,3	C C 5,9 A R	C 6,1 Å R R
21. 22. 23. 24. 25.					C	4,3 C C	R 4,1 C C	4,8 C 5,3 5,0 C	5,4 5,7 U5,5L	R C 5,7 5,4	5,7 A C C	5,9 6,0 C
26. 27. 28. 29. 30.				L L	L U3,8L C C 2,8	U3,8L 4,0 C A	R A A C 4,1	U5,7L Å A C A	5,3 5,5 6,0 5,0	5,6 U5,7 A C 5,3	A 5,6 5,6 C 5,2	5,6 5,7 C C 5,5
31.				L	C	L	4,9	4,9	5,1	5,3	5,5	5,5
Median						·			· 4100	****		- 454
Anzahl					2	4	7	6	11	9	8	11
Mean					•	Spirite	دت .	منت	· 25		5.3	. 4.3
Anzahl			~~		2	4	7	6	11	9	8	11

Ionosphärendaten

Messungen der Station Juliusruh/Rügen

Stündliche Werte foF1

Dat./MEZ	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
1. 2. 3. 4. 5.	U5,6 C C N C	5,3 L 5,7 N C	C C N C	R C C N C	00000	0000	CCCCC	00000				
6. 7. 8. 9.	C + + +	C + + +	C + + +	5,9 + + +	4,4 + + +	U4,0 + + + +	U4,2 + + +	G + + +	+ + +	+ + +	+ + +	+ + +
11. 12. 13. 14. 15.	+ C N 6,1	+ + c 5,7	+ c N 5,9	+ + C N 6,1	+ + C N N	+ + C C R	+ C C R	+ C N L	+ + L	+	+	+
16. 17. 18. 19. 20.	c 5,9 N R R	C 5,7 6,1 R R	C R 5,7 R R	C 5,1 5,7 R R	C R 5,6 R 5,3	5,3 N N R 5,7	5,7 4,3 4,2 R	C C L C	L			
21. 22. 23. 24. 25.	R C 5,9 C	R C 5,9 C	R C 5,1 C	R C 5,3 C 5,3	R C 5,6 C	5,4 4,8 C 5,3	R C 4,5 C L	C L C U3,9	L L			
26. 27. 28. 29. 30.	U5,7 C C 5,6	C	6,0 C	U5,21 5,6 5,9 C	L 5,6 5,7 C C 5,2	5,3 U5,2 C C C L	L A C C L	A A C U3,5 U3,8	L A A L	L L L L		
31.	5,5	5,7	5,7	5,5	С	5,0	L	L		L		
Median Anzahl	- 7	- 9	- 8	11	- 7	9	- 5	- 3				
Mean Anzahl	- 7	- 9	- 8	11	- 7	- 9	- 5	- 3			The section of the se	ang garde designation of the Park

:32

Ionosphärendaten

Messungen der Station Juliusruh/Rügen

Stündliche Werte foF2

Dat./MEZ	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100
1. 2. 3. 4. 5.	6,6F 6,6 U6,7 R N	6,1 6,9 7,2 6,0	5,8E 6,7 6,5 6,1	7 5, 2E C R 6, 2 5, 5	7 5,21 C R 6,2 4,75	R 5.6	5,4 C 8,6 R R	5,9 C 8,8 R R	6,5 C 9,1 R R	6,6 C 9,8 7,9 N	7,3 C 10,5 N 8,2	7,2 C 10,3 N
6. 7. 8. 9. 10.	8,0 N + +	7,6 N + +	6,6 U7,1 + +	6,4 N + +	R N + +	U7,2 N + +	6,6 R + +	C 8,9 + +	C + + +	C + + +	C + + +	C + + +
11. 12. 13. 14. 15.	+ 7,2 6,5 7,6	+ + N 6,2 U7,1	+ 6,6 6,1 6,3	+ C 6,0 6,7	+ C 6,0	# # 06,7 6,4	+ 7,6 6,9	+ + 7,9 R C	+ 7,9 7,1	+ 8,2 7,4	+ 7,9 7,3 9,7	7,9 6,9 R
16. 17. 18. 19. 20.	7,9J c c 7,5 5,9	C 7,5J C 7,2 6,0	7,4 6,9 5,6	7,1 C C C	C 7,0 7,2 5,4	C 7,4 C 8,0 6,4	0 7,9 6,3 6,6	C 8,2 C 7,9 6,0	0 9,2 0,3 6,8	0 0 0 7,3 6,9	C C 8,2 A 6,8	C 9,3 R R 6,7
21. 22. 23. 24. 25.	6,6 7,1 7,5 C	C 6,3 7,3 F	R 6,4 7,3 C	C 6,2 7,0 C C	C 6,5 7,4 C C	6,4 7,1 C	6,7 7,5 C C	7,0 8,2 6,9	7,1 8,3 7,1	7,3 8,4 7,2	7.8 8.7 Č	8,4 6 9,2 C
26. 27. 28. 29. 30.	5,9 8,0 C 7,6	C F 8,0 Č 7,2	6,0 7,8 C 7,1	6,1 C C C 7,0	6,0 6,3 C C 7,3	6,7 6,3 8,1 C 8,3	7,1 6,2 8,3 C 8,3	7,5 6,8 8,2 C 7,8	8,1 7,5 8,2 0 7,9	7,7 7,7 8,4 0 7,8	7,4 8,5 8,9 0 7,6	6,9 8,5 C 7,6
31.	6,5	6,2	5,6	5,4	С	6,0	6,3	6,8	6,9	7,0	6,7	6,6
Median Anzahl	7,1 17	7,0 16	6,5 18	6,2 12	6,2 12	6,7 15	7,1 15	7,8 15	7,5 15	7,7 15	7 , 9	7,8 12
Mean Anzahl		6,8 16	6,6 18	6,2 12	6,3 12	6,8 15	7,2 15	7,5 15	7,7 15	7,7 15	8 ,1	8,0 12

Ionosphärendaten

Messungen der Station Juliusruh/Rügen

Stündliche Werte foF2

Dat./MEZ	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
1. 2. 3. 4. 5.	7,7 10,9 10,6 N	7,6 9,2 10,3 N	8,0 R 9,9 N	8,1 9,0 10,0 N	8,0 9,5 9,6F 9,6	8,0 8,6 9,1 9,7	8,1 8,7 9,5 9,7	8,5 9,1 R 9,5 9,6	8,0 8,7 8,8 N 9,0	U7,0 8,1 8,0 8,1 9,0	6,9 R C N R	R R N N
6. 7. 8. 9. 10.	C + + +	8,6 + + + +	8,7 + + +	8,6 + + + +	8,6 + + +	8,8 + + +	8,7 + + +	8,3 + + +	8,6 + + +	R + + +	R + + +	R + + +
11. 12. 13. 14. 15.	+ + C N 9,6	+ † 7,3 9,3	+ C N 9,2	+ + C N 9,3	+ C N N	† † 7,2 9,2	† ; 7,2 U9,0	7,2 N 9,2	+ 6,9 7,4 9,1	7,6	* 8,4 R 7,7 9,0	+ R U6,5 7,7 8,8
16. 17. 18. 19. 20.	C 8,5 N R 6,5	0 8,3 8,0 6,9 6,4	C 8,5 8,0 6,9 R	C 8,6 R R R	0 8,6 7,9 6,8 6,7	C 8,7 8,1 R U7,6	\mathbf{R}	8,0 R	7,7 6,5	6,30	8,4 R I 6,8 6,5	C 7,8 6,3 6,7
21. 22. 23. 24. 25.	8,6 0 9,3 C	8,3 C 8,9 C	8,4 8,4 C	8,6 8,3 7,9	7 , 9	8,3 7,0 7,7 0	Č	8,3	7,4 7,4 8,0 0	7,2	7,2 7,2 8,1 C	7,2 7, 2 07, 7 0 0
26. 27. 28. 29. 30.	7,3 U8,3 C C 7,8	C	e c	8,6 8,2 C	G	6,9 8,3 C 7,8	5 8,4 C C	+ 8,6 C 9,0	8,8 Č	8,6 8,7 9,7	7,0 C U8,1 U7,3	c 7 ,8 J J 7 , 1
31.	6,8	6,7	6,9	6,8	C	7,3	7,5	7,8	C C	8,0	U7 , 9	
Median Anzahl	8,4 12				8,2 15				8,0	-	7,5 14	
Mean Anzahl	8 , 5					8,1 18						

Ionosphärendaten Messungen der Station Juliusruh/Rügen

Stündliche Werte (M3000)F2

Dat./MEZ	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100
1. 2. 3. 4. 5.	2,40 2,85 C R N	2,70 2,9 3,05 2,2 2,4	2,75 2,55 2,6 2,45	3,00 C R 2,65 2,55	3,15 C R 3,0 2,6	3,3 3,0 3,3 N	3,15 3,15 R R	C		2,6 C 3,0 2,8 N	2,75 C 2,85 N 3,1	2,8 C 2,8 N
6. 7. 8. 9. 10.	2,8 N + +	2,75 N + +	2,45 2,3 + +	N N + +	R N + +	2,35 N + +	3,45 R + +	C 3,05 + +	C + + +	C + + +	C + + +	C + + +
11. 12. 13. 14. 15.	+ + C C C	+ C C C	+ C C C	++000	++000	+ + C C C	++000	++000	+ C C C	+ + C C C	++000	+ c c c 2,35
16. 17. 18. 19. 20.	2,45 C C 2,3	C 2,35 0 2,45	C 2,4 C 2,35	C 2.3 C C F	C 2,35 C 2,451 2,35	C 2,4 C 02,8 2,35	C 2,45 C 2,45 2,45	0 2,6 0 2,65 2,75	C C C 2,35 2,35	C C C 2,3 2,4	C C C A 2,550	C C C A 12,65
21. 22. 23. 24. 25.	2,3 2,3 C	C 2,45 2,3 F C	F 2,25 2,35 C C	C 2,4 2,4 C C	C 2,45 2,3 C	2,45 2,4 2,5 C	2,35 2,6 2,55 C	2,4 C 2,5 2,45 C	2,4 2,45 2,45 2,45	2,35 C 2,4 2,45 C	2,55 C 2,4 C	2,4 C 2,35 C
26. 27. 28. 29. 30.	C 2,3 2,4 C 2,6	0 2,2 2,55 0 2,55	2,25 2,55 2,5	0	2,4 2,5 C C 2,55	2,7 2,55 2,65 C	2,65 2,55 2,65 2,8	2,5 2,55 2,45 C 2,65	2,5 2,25 2,45 C 2,75	2,4 2,4 2,5 C 2,6	2,5	2,2 2,5 C C 2,45
31.	2,4	2,6	2,4	2,4	C	2,45	2,5	2,45	2,4	2,55	2,35	2,2
	2,4 12	2,5 14	2,45 1 4	9	- 11	2,55 15	2,6 14	-	-	2,45 13	_ 11	- 10
	2,45 12	2,55 14	2,45 1 4	- 9	11		2,7 14			2,5 13		10

Ionosphärendaten Messungen der Station Juliusruh/Rügen

Stündliche Werte (M3000)F2

Dat./MEZ	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
1. 2. 3. 4. 5.	2,6 2,65 2,75 N	2,75 2,85 2,9 N	2,75 R 2,95 N	3,1 2,7 2,9 N		3,15 3,25 3,05 2,45 C	3,1 3,15 2,95 2,45 3,0	3,05 2,95 R 2,55	3,15 3,1 3,05 N 2,8		2,75 R N N R	R R N N R
6. 7. 8. 9. 10.	C + + +	2,55 + + +	2,65 + + + +	2,8 + + +	3,05 + + + +	N + + +	3,05 + + + +	3,25 + + +	3,25 + + + +	R + + +	R + + +	R + + +
11. 12. 13. 14. 15.	+ C C C 2,45	+ C C C 2,5	+ C C C 2,5	+ † C C 2,5	+ + C C N	+ C C 2,65	+ C C 2,6	+ C C 2,6	+ N C C 2,75		n C C 2,6	† N C C 2,55
16. 17. 18. 19. 20.	C N A R	0 0 2,35 A R	C C 2,4 A R	C C R A R	C C 2,45 A 2,5	C 2,4 2,5 A 2,55	2,5 2,6 A 2,85	C 2,6 2,65 A 2,85	2,55	2,6	2,35	2,3
21。 22. 23. 24. 25.	2,35 2,4 C	2,35 2,45 C	C	2,35 0 2,5 0 0	2,35 2,55 C	2,55 2,45 2,45 2,65	•	2,7 2,6 5 2,6 C 2,45	2,65 2,7 2,65 C	2,6	2,2 2,5 2,4 C	2,3 2,45 2,3 0
26. 27. 28. 29. 30.	2,2 2,4 C C 2,2	Ö	2,15 2,45 2,6 0 2,5	2,5 2,6	2,55 5 C C	2,6 C	2,6 C C	2,75	2,7 C 5 2,8	2,65 0 2,7	2,7	2,3 2,5 0 2,5 2,5 2,35
31.	-	R 2,2	R C	C	C	.C	2,6	2,65				5 2,45
Median Anzahl	10	•		•	13		18	18	17	17	12	5 2,35 12
Mean Anzahl	10	2,5 12		11	-	5 2,6 15			,			5 2 , 35 12

Mögel-Dellinger-Effekte (S.I.D.) Sonneneruptionseffekte (S.E.A.)

Messungen der Station Neustrelitz

<u>Mitteilungen über S.E.A.</u>

Messungen des Met.Obs.Kühlungsborn

Mai 1957

S.I.D. Neustrelitz 2614 kHz 20,2 kHz 1.			- 4 - 1 / /	•		
1.	Tag	Neustrelitz	Neustrelitz	Kühl		1 40 bHg
5.	1.					TO RIIZ
1.						
7. ab 10.30	り•	~	07.56 1 36	07.54 0 30	07.54	
7. ab 10.30 hohe Dampfg.		14•37 1 30		-	14.35	14.35
10. 07.03		ab 10.30 hohe Dämpfg.		10.25 1 30		10.25
10. 07.03	8.	-	-	-		
1 15		•••				
11.	10.				07.01 1 20	
12. 07.41 07.36 2 30 12.34 1 30 7.38 0 20 1 30 07.38 0 20 0 20 0 20 12.02 2 44 1 32 12.02 2 40 12.0		===				
12. 07.41 1 50	11.	-	_	12.34	12.34	
12.02 2 44 - 12.52 1 32 10.02 1 40 12.02 1 40 12.02 1 40 1 5 1 6 1 6 1 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	12.		07 •3 6 1 48	07.38	07.38	07.38
1 32 06.04 0 15 08.22 1 40 - 10.30 0 12 - + 11.30 0 xx - 12.33 3 xx - 8 + 13.10 13.10						12.02
08.22 1 40		-				Ī
1 40 - 10.30 0 12 - + 11.30 0 xx - 12.33 3 xx - 8 + 13.10 13.10	13.	-	06.04 0 15			
- + 11.30 + 0 xx - 12.35 12.35 1 15 2 15 S + 13.10 13.10		08.22 1 40	-	+	08 . 25 0 15	+
- 12.33 + 12.35 12.35 1 15 2 15 13.10		. •••				•
- 12.33 + 12.35 12.35 2 15 S + 13.10 13.10		•	-	+		+
S + 13.10 13.10		~	12.33 3 xx	+	1	12.35
		-	i	+	13.10	13.10

Sanitized Copy Approved for Release 2010/03/11 : CIA-RDP80T00246A037100400001-5

i	s.I.D.	s. I	E. A.		
Tag	Neustrelitz	Neustrelitz	Kühlu	ngsborn	
	2614 kHz	20,2 kHz	14 kHz	27 kHz	40 kHz
13.	-	15.03 2 7			
	-	-	15.16 0 35	15.16 1 35	15.16 0 35
14.	S	08 . 42 1 3 0	+	08.42 0 10	08.42 0 10
	S	10.45 1 15	-	10.46 0 15	10.46 0 15
	S	14.18 1 xx	-	14.20 0 5	14.20 0 5
	S	14.33 2 27	14.34 0 20	14.34 0 20	14.34 1 20
	S	18•39 1 xx			
15.	ช 07.50 1 20	-	·		
	12.41 2 xx	12.35 1 34	+	+	+
	-	14.06 2 24	+	+	+
	-	15.32 1 46			
16.	hohe Dämpfg.	12.44 3 34	_	12.46 1 40	12.46 2 40
18.	08.10 2 xx	08 . 09 2 21	08.11 0 20	08 . 11 2 2 0	08 . 11 3 20
	U 13.51 1 40	-			
20.	12.38 1 40	-			
	13.49 2 60	C	-	-	+
21.	09 .3 0 0 15	09.33		12 16	
	-	12.15 x xx	~	12.16 1 30	
24.	-	13.46 x xx			
	16.08 2 30	16.09 1 xx	16.09 0 30	16.09 1 30	16.09
25.	14.42 2 25	14.42 1 27	14.41	14.41	14.41 2 40
	15.45 2 40	-	15.45 0 25	15.45 0 25	15.45 1 25

	S.I.D.	S.	E. A.		
Tag	Neustrelitz	Neustrelitz	Kühl.	ungsborn	
-	2614 kHz	20,2 kHz	14 kHz	27 kHz	40 kHz
27.	63	C	12.30	.12.45 B	teiler nstieg
	13.22 2 xx				1
28.	08 ,3 0 0 1 5	ህ 08 . 33 0 15			
29.	-	Ð	06.59 0 10	06,59 0 10	06.59 0 10
	E	10.19 0 8		·	
	12.39 1 20	.			·
	13.28 1 40	-			
	~	บ*14.08 0 13			·
30.	وت	ా	12.50 0 15	12.50 0 15	12.50 0 15
	14.00 1 xx	14.00 1 19	14.0 1 0 20	14.01 0 20	14.01 1 20
	16.18 1 20	16.19 1 11	16.22 0 1 0	16,22 0 10	16.22 0 10
	17. 06 2 20	17.05 0 7	17.10 0 10	17.10 0 10	17.10 0 10
31.	e e	08 .3 5 1 22			
	09.10 2 xxx	09 .11 3 xx	09.12 0 20	09.12 1 20	09 . 12 1 20
	tu	13.03 1 xx	13.06 0 20	13.06 1 20	13.06 1 20
		15•15 1 33			
	16.00 2 60	15.57 2 xx	15.56 1 40	15.56 0 40	15.56 2 40
	ب	~	19.45 0 20	19.45	19.45 0 20

Erdmagnetische Aktivitätszahlen und Kennziffern Messungen des Adolf-Schmidt-Observatoriums für Erdmagnetismus Niemegk

Mai 1957

Tag	n	F	A _K	Σ^{κ_1}	К1
1. 2. 3. 4. 5.	0 0 1 0	0,5 0,5 0,5 0,5	12 9 11 8 9	19 18 19 15 16	3432 2311 2222 3223 2212 2334 1111 3332 3111 3313
6. 7. 8. 9.	1 0 1 0	0,5 0,5 0,5 0,5	15 10 11 16 12	23 19 18 24 20	3234 4223 3322 2331 1112 3334 3343 3332 2222 3234
11. 12. 13. 14. 15.	1 0 0 0	0,5 0,5 0,5 0,5	10 6 10 5 5	18 14 19 12 10	3221 2224 2212 2212 3212 2333 1211 2221 1001 2123
16. 17. 18. 19. 20.	0 0 0 0	0,5 0,5 0,5 0,5	3 6 7 14 16	5 12 15 21 24	0000 1031 1111 1322 2112 2232 2122 4433 3333 3432
21. 22. 23. 24. 25.	1 0 0 0	0,5 0,5 0,5 0	14 7 8 4 12	23 14 15 9 21	3324 3332 1322 2310 2121 3231 1112 2110 2223 3324
26. 27. 28. 29. 30.	1 0 0 1	0,55 5,55 0,00 0,00	22 8 6 4 20	29 17 14 10 25	4344 3434 2223 3212 2112 2312 1111 1311 2135 4433
31.	0	0,5	8	15	3312 1122

Zweite endmagnetische Kennziffern K Messungen des Adolf-Schmidt-Observatoriums fur Erdmagnetismus Niemegk

Mai 1957

Tag	0-3	3-5	6⇒9	9-12	12-15	15-18	18-21	21=0
1. 2. 3. 4. 5.	1012 1001 1001 1001 1011	1002 1001 1001 1001 1001	1001 1001 1001 1001 1001	1001 1001 1001 1001 1001	1001 1001 1001 1002 1001	1001 1001 1002 1001 1001	1001 1001 1002 1001 1001	1001 2001 2211 1001 1001
6. 7. 8. 9. 10.	1002 1001 1001 1001 1001	1001 1002 1001 2002 1001	1001 1001 1001 1002 1001	1002 1001 2001 2002 1001	1002 1001 2001 2002 1001	1001 2012 1002 1001 1001	1001 1001 1001 1001	1001 1001 2211 1001 1211
11. 12. 13. 14. 15.	1001 1001 1001 1001 1001	1001 1001 1001 1001 1000	1001 1001 1001 1001 1000	1001 1001 1001 1001 1001	1001 1001 1001 1001	1001 1001 1101 1001	1001 1001 1001 1001 1001	1101 1001 1001 1001 1001
16. 17. 18. 19. 20.	1000 1001 1001 1001 1001	1000 1001 1001 1001 1002	1000 1001 1001 1001 1001	1000 1001 1001 1001 1012	1001 1001 1002 1002	1000 1101 1001 1012 1012	1001 1001 1001 2012 2111	1001 1001 1001 1002 1001
21. 22. 23. 24. 25.	2001 1001 1001 1001 1001	1002 1001 1001 1001 1001	1001 1001 1001 1001 1001	2012 1001 1001 1001 1001	1002 1001 1001 1001 1002	1001 1001 2001 1001 1002	1001 1001 1001 1001 1001	1001 1000 1001 1000 2101
26. 27. 28. 29. 30.	2101 1001 1001 1001 2001	1002 1001 1001 1001 1001	1002 1001 1001 1001 2012	2012 1001 1001 1001 2012	1002 1001 1001 1001 1012	1012 1001 1001 1001 2012	1002 1001 1001 1001 1012	1002 1001 2001 1001 1002
31.	1001	1002	1001	1001	1001	1001	1001	1001

Plötzliche Sturmausbrüche (S.S.C.) Messungen des Adolf-Schmidt-Observatoriums Niemegk

30.5.1957 08.24 GMT

141

Feldstärkemessungen (uV/m) der Sender WWV Messungen der Station Neustrelitz

Mai 1957

Dat	MHz	00	02	04	06	80	10	12	14	16	18	20	22	Ē	Σĸ	R
2.	2,5 10 15 20 25	5,0 28 48 <	* 10 24 32	12 27 9,2	9,0	7,0 x	11111	7,5	- < -		- 1,2 <u><</u>	- x -	- V8 18 V -	2,3 7,9 10,6	18	121
3.	2,5 10 15 20 25	30 70 100 <	19 40 90	20 33 17	24	12 1,6	111 /11	111771	- - - x 4,8	- - x 5,5	5,6 6,5	2,6	5,0 10 <	5,8 15 23 1,6	19	123
4.	2,5 10 15 20 25	8,8 26 12	40 48 7,6	8,3 19 x	4,7 =	4,8 -	5,4 -	1,8 -	1	- < < =	5,0 2,8	5,8 2,0	3,8 11 ~	0,6	15	106
6.	2,5 10 15 20 25	16 24 11 <	x 19 39 13	3,5 16 6,0	14	- < < -		1,5		4,3	2,8	4,4	20	3,2 7,8 4,5 0,7	23	142
7•	2,5 10 15 20 25	14 47 28	x 48 55 34	7,0 48 20	- x	- < x	 	2,6 7,5	3,6 8,5	5,2 8,3	3,2 7,0	2,6	3,4 <	10 6	19	136
9•	2,5 5 10 15 20 25	15 21 32 <	21 50 26	8,0 28 x	4,9 x	- <	5,6	- x	- x <	- x <		- - x 21	7,0	16 2,3		162
10.	_	9,5 24 x	25 47 36	7,0 36 11	- <	- < -	-			- - - 1,8	1,8	3,0	26	3,5 8,9 7,3 1,6	20	195

Dat	MHz	00	02	04	06	08	10	12	14	16	18	20	22	Ē	Σĸ	R
11.	10 15 20 25	92	43 95 x	10 75 52	48 x	0,8		1 1 7	4,3	6,0 5,0	5,2 3,3	7,4	4	5,8 20 13 1,4	18	211
13.	2,5 10 15 20 25	14 26 38 <	33 50 44	8,3 33 34	16 x <	1,3	X	7,5	- < -	x 14	5,3	3,8	9,2	· ^ ~	19	202
14.	2,5 10 15 20 25	16 41 28	38 48 60	7,5 85 56	14	**************************************	X		-	9,0	4,0	X	15 15	x 5,1 16 16 1,1	12	214
15.	2,5 10 15 20 25	28 50 60 13	43 85 76 8,0	83 42 <	33 x	- < < -	1 1 1 7 1 1	1,5	- < < -	5,4	6,4 1,3	3,0	4,1 12 1,5	5,9 21 19 2,1	10	210
16.	2,5 10 15 20 25	43 36 6,3	48 65 14 x	5,8 90 11 <	11 -	3,4 5	5,4		1,8	### #### #############################	1,8	6,0	5,0 12 7,5	5,4 18 8,0 1,6	5	185
17.	2,550 11225 2,550 15025 2,550 15025 2,550 15025 2,550 15025	22 48 44 8,3	35 80 66 10	8,3 50 32	18 6,6 2	2,4	- x <-	X an	X	x <	5,3	x 8,5	5,0 9,6 7,5	x 5,4 17 27 3,4	12	179
18.	2,5 10 15 20 25	4,5 38 28 7,8	25 90 18	9,5	35 x	*** *** *** ***	- x < -	X	1,3 2	2,0	3,5	X	2,8 32 5,0	3,3 17 12 1,6	15	186
20.	2,5 10 15 20 25	8,0 65 x	12 65 x	x 43 8	3,5	**		X	x < _	X X	X	X	7,4	1,8 15 1,9	24	179

Dat.	MHz	00	02	04	06	08	10	12	14	16	18	20	22	Ē	Σĸ	R
21.	2,5 10 150 25	5,0 22 34	14 46 28	7,0 35 50	10	4,7 2,8	X	8 B 1 3 V 8	2,0 2,0	4,5	x <	5,8	30 4,5	2,2 9,8 21 1,4	23	195
22.	2,55 10 150 25	7,5 x x 3,8	21 33 x	5,0 30 x	16	~ × ×	X		- - - -	3,6 <	***	3,8	x x 3,0	2,8 7,9 0,6 0,9	14	155
23.	2,5 10 150 25	9,8 26 13 12	19 49 60 11	4,0 44 5,4	16 6,0	- - - -	2,8	3 1 8 V 8	3,0	4,0 4,0	4,0	10 11	12 2,0	2,7 11 10 3,9	15	184
24.	2,5 10 150 25	7,0 48 50 10	50 85 32 V	6,3 55 48	15 24 <	6,0		- - x 3,3	-	### ##################################	3,4 1,5	15 11	20 7,5	5,3 18 18 2,8	OV.	1975
25.	2,5 5,5 10 15 25 25	25 22 22	19 47 44 16	2,3 13		~ < < < < < < < < < < < < < < < < < < <	4,3		4,6	 		5,6 <	13	1,9 6,2 8,5 2,1	21	150
27.	2,5 10 15 20 25	5,0 19 13	18 33 46	1,1 45 20	7,5		- V		2,0	2,3	7,0 2	2,0 2,0	20 1,5	2,0 8,7 11 1,2	17	140
28.	2,5 10 15 20 25	1,1 2,5 18 5,8	30. X 70 38	1,1 34 44 14	5,5 x	· · · · · · · · · · · · · · · · · · ·		3 1 1 < < 1	1 V	3,8	5,3	1,5	8,2 <	2,7 3,8 14 5,7	14	147
29•	2,5 10 15 20 25	1,8 14 8,8 7,0	13 36 17 25	13 28 5,5	15 5,4		(23) (23) (23) (23)	x	6,0 <	3,6	:		15 x	1,3 6,5 8,4 3,8	10	154

Dat	MHz	00	02	04	06	08	10	12	14	16	18	20	22	Ē	Σĸ	R
31.	2,5 10 15	4,3 16 12	15 33 19	8,0 9,0			1	3 9 1 <	- -	ت دعه دعه	- - - - -	- -	- - - - - - - - - - - -	1,8 4,8 4,2	.15	180
	20 25	V 8	<	<		نبه دنه	e:>		-	S	< 	4,3	3,5	0,7		

Sanitized Copy Approved for Release 2010/03/11: CIA-RDP80T00246A037100400001-5

Beobachtungsergebnisse

Ionosphäre
Solare Radiostrahlung
UKW-Ausbreitung

Heinrich-Hertz-Institut für Schwingungsforschung der

Deutschen Akademie der Wissenschaften zu Berlin

Undassified

Beobachtungsergebnisse April 1957

Inhalt:	Seite
Inhaltsverzeichnis	75
Erläuterungen zu den Beobachtungsergebnissen des Heinrich- Hertz-Institutes - Ergänzungen und Anderungen	76-77
Monatsübersicht April 1957	78
Graphische Monatsübersicht März/April 1957	79
Radiofrequenzstrahlung der Sonne Messungen in Berlin-Adlershof Tägliche Daten 1500 MHz Tägliche Daten 9400 MHz Strahlungsausbrüche 1500 MHz Strahlungsausbrüche 2900 MHz Strahlungsausbrüche 9400 MHz Registrierkurve eines Strahlungsausbruches	80 81 82 83 84 85
Ionosphärendaten - Messungen in Juliusruh/Rügen Median-Werte Graphische Darstellung der Median-Werte Stündliche Werte foß Stündliche Werte foßs Stündliche Werte foß1 Stündliche Werte foß2 Stündliche Werte (M3000) F2 Mittags-Absorption auf 3,86 MHz	86 87 88-89 90-91 92-93 94-95 96-97 98
Mögel-Dellinger-Effekte (S.I.D.) auf Kurzwelle und Sonneneruptionseffekte (S.E.A.) auf Längstwelle - Messungen in Neustrelitz, Vergleichswerte des Meteo- rologischen Observatoriums Kühlungsborn	99~101
Erdmagnetismus - Mitteilungen des Adolf-Schmidt- Observatoriums Niemegk Erdmagnetische Aktivitätszahlen und Kennziffern Zweite erdmagnetische Kennziffern	102 103
UKW-Ausbreitung - Messungen in Neustrelitz Feldstärkemessungen der Sender WWV, Meßwerte Hörbarkeit der Sender WWV, graphische Darstellung	104 – 107 108
UKW-Überreichweiten Feldstärkemessungen in Neustrelitz	109-111

Erläuterungen zu den Beobachtungsergebnissen des Heinrich-Hertz-Institutes der Deutschen Akademie der Wissenschaften zu Berlin (s. Januar-Heft 1957)

Ergänzungen und Änderungen

1. Radiofrequenzstrahlung der Sonne

1.3 Messungen bei 10 cm Wellenlänge

Für diese Messungen wird ein 4 m-Parabolspiegel und eine Empfangsanlage nach dem Modulationsverfahren benutzt. Die Halbwertbreite der Antenne beträgt ca. 1,8°. Die Eichung erfolgt mit einem Diodengenerator.

Registrierung und Auswertung erfolgen wie bei der 20 cm-Anlage.

5. Kurzwellen Feldstärkemessungen

Die graphische Darstellung der Feldstärkemessungen der WWV-Standardsender erfährt in Anbetracht der tabellarischen Wiedergabe dieser Werte zu Gunsten der Aufnahme anderer ionosphärischer Daten eine Einschränkung. Es werden ab April 1957 nur noch die Hörbarkeit der WWV- und WWVH-Sender, die von WWV selbst ausgestrahlte Beurteilung der Ausbreitungsverhältnisse und die erdmagnetischen Kennziffern des Adolf Schmidt Observatoriums, Niemegk, nach der Bartelsskala dargestellt.

8. Grenzfrequenzen bei Senkrechtlotung

Die Messungen der Grenzfrequenzen erfolgen auf der Station Juliusruh/Rügen mit einer Echolotungsanlage eigener Bauart bei senkrechter Inzidenz.

Die Kenndaten der Anlage sind:

Frequenzbereich: 0,5...20 MHz
Durchdrehzeit: 20 s
Sendeleistung: 10 kW
Impulsdauer: 75 µs
Impulsfolge: 50 s-1

Mitgeteilt werden die stündlichen Werte foE, foEs, foF1, foF2, (M3000)F2 und die Monats-Medianwerte dieser Größen.

9. Graphische Monatsübersicht

Die Darstellung der Tagesmittelwerte der WWV-Standardsender auf vier Frequenzen wird durch die Angabe P(WWV) ersetzt. Diese Kennziffer gibt an, wie oft die Sender WWV auf sechs verschiedenen Frequenzen bei stündlicher Beobachtung gehört worden sind.

Als Index für den Störungszustand der Ionosphäre werden die Abweichungen der Mittagsmittelwerte fMF2 (11.00...13.00 MEZ) und der Nachttiefstwerte fNF2 der F2-Grenzfrequenz vom jeweiligen Monatsmittelwerte dargestellt, der am Rand angegeben wird.

10. Symbole und ihre Bedeutung

Erläuternde Symbole (stehen e i n z e l n oder h i n t e r einem numerischen Wert)

- A Ausfall oder Beeinflussung wegen einer niedrigeren dünnen Schicht (z.B. Es)
- B Ausfall oder Beeinflussung wegen Absorption in der Nähe von f-min
- C Ausfall oder Beeinflussung aus einem beliebigen, nicht ionosphärischem Grunde
- D Ausfall oder Beeinflussung, weil Grenzfrequenz den Senderbereich übersteigt
- E Ausfall oder Beeinflussung, weil Grenzfrequenz unterhalb des Senderbereiches liegt
- F Ausfall oder Beeinflussung durch Streuecho
- G Ausfall oder Beeinflussung durch zu geringe Ionisationsdichte der Schicht
- H Ausfall oder Beeinflussung wegen Schichtung innerhalb der Schicht
- J Ordentliche Komponente von der außerordentlichen Komponente abgeleitet
- L Ausfall oder Beeinflussung, weil die Meßspur zwischen den Schichten keine eindeutige Spitze aufweist
- N Messung kann nicht genau interpretiert werden (z.B. infolge Schrägechos)
- O Messung beruht auf der ordentlichen Komponente
- R Ausfall oder Beeinflussung durch Absorption in der Nähe der Grenzfrequenz
- S Ausfall oder Beeinflussung durch atmosphärische oder fremde Störungen
- T Wert aus einer Folge von Beobachtungen bestimmt, da Einzelbeobachtung zweifelhaft
- V Beeinflussung durch Aufspaltung in der Nähe der Grenzfrequenz
- W Scheinbare Höhe übersteigt den Bereich des Senders
- X Messung beruht auf der außerordentlichen Komponente
- Y Intermittierende Meßspur
- Z Dritte Komponente sichtbar
- + keine Messung

Charakterisierende Symbole (stehen vor einem mumerischen Wert)

- D größer als ...
- E kleiner als ...
- I Fehlender Wert wurde durch einen interpolierten Wert ersetzt
- U Unsicherer oder zweifelhafter numerischer Wert

Folgen in den Tabellen in einer Zeile ein numerischer Wert mit einem erläuternden Symbol und ein numerischer Wert mit einem charakterisierenden Symbol aufeinander, so wird aus drucktechnischen Gründen das erläuternde Symbol weggelassen.

Monatsübersicht April 1957

Der Verlauf der Radiofrequenzstrahlung der Sonne liegt bei 20 cm Wellenlänge höher als im Vormonat. Er hat genau wie die Sonnenfleckenrelativzahlen ein ausgeprägtes Maximum in den Tagen vom 20. bis 28. April. Die 3 cm-Strahlung ist dagegen von gleicher Intensität wie im Vormonat und zeigt auch keine wesentlichen Variationen.

Die jahreszeitlich bedingte Erhöhung der Dämpfung und Erniedrigung der Tagesfrequenzen der F2-Schicht machen sich im April in einer deutlichen Verringerung der transatlantischen Übertragungs-Frequenzbereiche bemerkbar. Die KW-Ausbreitung war besonders stark gestört am 10. und 17. bis 19. April, jeweils verbunden mit erd-magnetischen Störungen. Die Mittagsfrequenzen der F2-Schicht schwankten während des ganzen Monats erheblich. Die Absorptionsmessungen auf 3,86 MHz waren vor allem in der zweiten Monatshälfte durch die sporadische E-Schicht behindert, sowie durch die Annäherung der Grenzfrequenz der normalen E-Schicht an die Meßfrequenz beeinflußt.

Die UKW-Ausbreitungsbedingungen waren im April ungünstig. Nur an einzelnen Tagen, am 4.bis 6., 10. und 16. und z. T. am Ende des Monats wurden etwas höhere Feldstärkewerte beobachtet, sonst wurden bei den größeren Entfernungen oft nur die Empfindlichkeitsgrenzen der Apparaturen erreicht.

Radiofrequenzstrahlung der Sonne Messungen der Station Berlin-Adlershof Tägliche Daten Monat April 1957 Frequenz: 1500 MHz

Tag	·		and Statement	(Stral	nlun	g <u> </u>	2	• 10	- 22			Tages- mittel	Bemerkung.
and believes	GMT	? 8	8 9	9 10	10 11		12 13	13 14	14 15		16 17	17 18		
123.45.		111 109 108	111 110 109	113 112 108	113 109	113 108 110	114 112 113	115 109 108	110 111 108 108	110	ت د د	دے	108 112 110 109 110	
6. 7. 8. 9.		112 108	112 108	104 112 108	104 110 108	100 110 108	102 105 112	99 102 111	101 114 108	111	112		108 102 107 110 112	
11. 12. 13. 14. 15.		108	100 108	100 108	108 104 108 124	104 108	104	107	101 108 101 124	- ت	⇔	යා . වෙ සප යා	104 105 108 102 124	
16. 17. 18. 19. 20.		117 117	119 118	119 120	116 120 118 124	122. 115	117 118	117	-	118	ىن ھى		116 119 118 125	
21° 22° 23° 24° 25°		130	129 129 129	129 129	129 129	128 129 127	130 129 130	130 127 133	130 128 133	128 130 130	131	130	129 129 131	
26. 27. 28. 29.	,	129 123 112	129 121 113	129 123 114	132 119 117	131 120 116	129 115	118		113	113	نت نت هته	140 130 122 114 108	
		Mone	tsmi	lttel	Ls								115	

Radiofrequenzstrahlung der Sonne Messungen der Station Berlin-Adlershof Tägliche Daten Monat April 1957 Frequenz: 9400 MHz

Tag			\$	Stral	hlung	3 Hz	<u>m</u> 2	10	-22			Tages- mittel	Bemerkungen
GMT	7 8	8 9	9 10	10 11	11 12	12 13	13 14	14 15			17 18		
1. 2. 3. 4. 5.	260 278	255 278	280	278 278	278 263 273 265	285 263 265	280 260 270	255 273	275 250 273	245 265	-	290 278 258 273 265	
6. 7. 8. 9.	283 285	285 283	268 278 280	270 278 280	263 265 283 283 273	250 290 290	288	-	283	280 283	278	260 260 283 283 273	
11. 12. 13. 14. 15.	270 - -	270	265 263	263 260	253 265 260 263 273	270 270	270 273	267 258	263 258	26 <u>3</u>	260	260 265 260 265 277	
16. 17. 18. 19. 20.	288 293	273 285 283 270	288 283 -	285	288 275	293	298	290	280	278 275 290 -	278 - - -	275 287 285 - 280	
21. 22. 23. 24. 25.	285	288	288	285	273 283 273	270	273	280	288	283			
26. 27. 28. 29. 30.	268 270	278 265 273	288 265 270	295 270 275	283 288 270 250	283 273	- 273	268	263	- 263	_	280 285 268 270 257	
	Mone	atsmi	Ltte]	L:								273	

Radiofrequenzstrahlung der Sonne Messungen der Station Berlin-Adlershof Strahlungsausbrüche Monat April 1957 Frequenz: 1500 MHz

Tag	Beginn GMT	Dauer		Type	₩ Hz m ² •10 ⁻²²	Größe bezo- gen auf den Bemerk. Stundenmit- telwert
2.	10.35,5 12.23	2 - 40	10.36 12.23	SD SD	129 120	1,13 1,05
3.	8,29	38 <i>-</i>	8.44	CD	383	3 , 51
5.	14.10	10 -	14.11	CD	126	1,15
15.	13.53	18 -	13.55	CD	162	1,31
16.	10.40	60 🛶	10.47	CD	770	6,53
18.	13.05	25 -	13.06	CD	451	3 , 84
20.	9°53 10°30	2 - 10 -	9.54 10.31,5 10.36	CD	129 180 142	1,03 1,40 1,14
	11.13	27 –	11.19,7	CD	157	1,24
24.	8.34	4 -	8.35	SD	147	1,14
25.	13.13	3 -	13.14	SD	144	1,09
29.	10。23	1 -	10,24	CD	194	1,67

Radiofrequenzstrahlung der Sonne Messungen der Station Berlin-Adlershof Strahlungsausbrüche Monat April 1957 Frequenz: 2900 MHz

Tag	Beginn GMT	Dauer	Zeit des Maximums GMT	Туре	W Hz m ²	•10 ⁻²² Größe b eso- gen auf den Bemerk. Stundenmit- telwert
2.	12.23	- 40	12.23	SD	-	1,05
3.	8.27	71 -	8.43	CD	_	5,22
15.	13.51	20 -	13.54	CD	_	1,63
16.	10.39	109 -	10.46	CD	_	>5,0
17.	10.06 10.13 10.51 14.56	4 - 1 20 1 - 1 40	10.07 10.13,5 10.51,5 14.57	CD SD SD SD		1,06 1,03 1,04 1,07
18.	9.06 13.05	6 40 25 -	9.07 13.06	CD CD	•••	1,64 >2,40
20.	9.03 9.38 10.21	2 <u>-</u> 19 - 79 -	9.04,5 9.54 11.21	SD CD CD	-	1,06 1,09 1,24
24.	8.34	2 20	8.35	SD	_	1,29
25.	8.28 13.13	1 40 2 -	8.29 13.14	SD SD	(89.3 1884	1,07 1,03
26.	11.12,	5 2	11.13	SD	-	1,05

Radiofrequenzstrahlung der Sonne Messungen der Station Berlin-Adlershof Strahlungsausbrüche Monat April 1957 Frequenz: 9400 MHz

Tag	Beginn GMT	Dauer	Zeit des Maximums GMT	Type	W Hz m ² •10 ⁻²²	Größe bezo- gen auf den Bemerk. Stundenmit- telwert
2.	12.23	- 30	12.23	SD	285	1,01
3.	8.28	257 -	8.34	CD	632	2,48
4.	9,25 14,18	1 30 5 -	9.25,5 14.21	CD	310 332	1,11 1,22
5•	14.05	12 -	14.11	SĎ	298	1,09
15.	13.51	30 -	13.55 13.58 14.01 14.04	CD	406 432 453 415	1,48 1,58 1,65 1,52
16.	10,38	128 -	10.51	CD	1262	4,59
17.	9.43 10.00 14.54	2 - 75 - 12 -	9.44 10.07 10.13 10.51 14.57	SD CD CD	303 348 337 330 320	1,05 1,21 1,17 1,15 1,10
18.	13.05 15.49	19 -	13.06 15.49,5	CD SD	642 3 05	2,27 1,06
20.	9.05 9.51 10.30 11.00	4 - 6 - 17 - 60 -	9.05 9.54 10.45 11.12 11.13	SD SD CD	293 303 305 330 345 337	1,05 1,09 1,07 1,16 1,21 1,18

Sanitized Copy Approved for Release 2010/03/11: CIA-RDP80T00246A037100400001-5

Median-Werte

MEZ	foE	foEs	foF1	foF2	(M3000)F2
00				5,8	2,5
01					
02					
03					
04					
0 5					
0 6	2,2			5 , 5	3 , 0
07	2,7			6,6	2,9
80	3,1			7,4	2,85
09	3,4			9,4	2,8
10	3 , 5			10,05	2,75
11	3,65			10,9	2,7
12	3,6			10,85	2,65
13	3 , 6			10,8	2,65
14	3 , 5			10,75	2,7
15	3,4			10,45	2,75
16	3,2			10,3	2,75
17	2,7			10,35	2,75
18	2,2			9,7	2,85
19				9,5	2,9
20				8,2	
21				7,4	
22					
23					

Jonasphärendaten Messungen der Station Juliusruh/Rügen Median - Werte April 1957

Ionosphärendaten Messungen der Station Juliusruh/Rügen

Stündliche Werte foE

Dat./MEZ	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100
1. 2. 3. 4. 5.	ខាលប្រាប	+ + + +	+ + + +	+ + + +	+ + + +	+++++	1,6 1,8 1,7 1,8	B 2,5 2,6 R U2,7	2,9 03,0 3,1 t 3,0 B	3,4 13,2 3,2	U3,5 U3.5	B U3,3 U3,6 B U3,6
6. 7. 8. 9. 10.	ន្ទាស់	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	C B 1,9	2,6 2,6 B 2,7 U2,4	3,0 1 R B 2,9 2,8	U3,3 B B 3,4 3,3	3,5 3,3 B B 3,3	B U3,5 B 3,7 3,5
11. 12. 13. 14. 15.	ឧធធធធ	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	B B B 1,9	B U2,7 U2,6 R 2,4	3,1 R R B 3,2	3,3 B 3,3 3,4 B	3,5 B R B B	B 3,6 3,5 B 3,6
16. 17. 18. 19. 20.	+ S S C E	+ + E E	+ + E E	+ + E E	+ + E E	+ + + 1,9 S	+ 2,3 2,4 2,2	1,3 3,0 3,0 3,0 2,6	2,8 3,1 2,6 3,1	2,1 3,5 3,4 3,4 R	B 4,0 3,6 3,6 3,9	3,9 4,0 3,0 C 4,0
21. 22. 23. 24. 25.	e e e e	e e e e	E E E E	e e e e	E E E C	1,6 1,8 S S	2,3 2,3 2,5 2,4	2,0 2,8 2,5 3,1	R 3,3 3,4 3,0	R C 3,5 R C	3,5 3,7 3,8 3,6	3,9 3,7 3,8 R U3,4
26. 27. 28. 29. 30.	E C E E	ecee	E E E E	EC EE	E C 1,1 1,3 1,2	1,6 1,5 1,7 1,7	2,6 2,2 2,6 2,3	2,7 0 2,9 2,7 2,7	C C 3,2 3,1 R	3,5 0 3,5 C R	3,9 c 3,7 c 3,4	4,0 C U3,8 R 3,5
31。												
Median Anzahl	S 29	E 12	E 12	E 12	E 9	7	2,2 19	2 , 7	3,1 20	3,4 20	3,5 19	3,65 20
Mean Anzahl	S 29	E 12	E 12	E 12	E 9	7	2,1 19	2,6 23	3 , 1	3 , 1 20	3,6 19	3,6 20

Stündliche Werte foE

Dat./ME	Z 1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
1. 2. 3. 4. 5.	U3,5 U3,6 3,8 C	B B U3,4 U3,4 3,3	B 3,4 U3,4 U U3,2 U	B 3,4 J3,2 J3,0 3,4	3,1 U3,0 3,2 B R	U2,5 2,7 2,7 2,5 2,9	2,0 2,0 2,1 U1,9 U2,0	ន្ធ េ នន្ធន	ន្ឋនានាន	ង	ន្ធន្ធន្ធន	នធនធនធ
6. 7. 8. 9. 10.	3,6 U3,6 3,5 B 3,6	B B 3,4 U3,7 B	3,5 U3,5 3,5 U3,7 3,5	3,2 3,3 3,4 3,4	2,9 3,0 03,1 3,1	2,4 2,6 2,6 2,6 2,7	2,4 1,9 1,9 2,1 U2,2	S 1,7 11,6 1,5	នធបន្ទ	នឧបនន	នន្ធបន្ទន	ធាធបធធធ
11. 12. 13. 14. 15.	3,7 3,7 U3,6 B	3,6 3,7 B B 3,5	3,5 B B C	3,4 1 B B C	03,0 1 B 3,1 B	C U2,8 2,8 2,4 3,0	C 2,1 U2,1 1,9 2,4	ន្ធ ន្ធ ន្ធ ន្ធ	ន្ទន្ទន	នធនធន	ធ្នាធ ្លាធ	ឆ្ល
16. 17. 18. 19. 20.	B B R C 3,8	C B 3,8 R	C B R T 3,7	3,3 3,8 13,0 3,5 3,5	R R R 3,2	2,9 2,6 72,7 2,9	R 1,2 2,2 2,3 2,4	RSSSS	ន ន ន C	១១១១១១	ននននន	ធ្នាល់ ខ្លួន
21. 22. 23. 24. 25.	R R 3,6 3,9 3,8	3,6 R 3,7 4,1 3,6	C 3,6 3,9 C	3,5 3,6 3,4 R 3,6	3,4 3,5 3,3 3,3	2,9 2,9 2,9 3,0	2,2 2,4 2,3 2,6	s s s s 1,8	S C S S S	ននននន	ននននន	នទននន
26. 27. 28. 29. 30.	3,9 C R C	3,7 C 3,7 R	3,6 C 3,6 N	3,6 3,6 3,6	3,3 3,3 3,4 3,3	2,9 2,7 2,9 2,7	2,8 2,5 2,6 2,4	1,8 1,7 1,7	A · S C S S	ននននធ	Cssss	C ន្ធន ន ន
31.												- Mairie
Median Anzahl	3,6 17	3,6 15	3,5 15	3,4 22	3,2 19	2,7 26	2,2 27	S 23	S 30	\$ 30	S 30	S 30
Mean Anzahl	3,7 17	3,6 15	3,5 15	3,4 22	3,2 19	2,7 26	2,2 27	S 23	S 30	S 30	S 30	\$ 30

Stündliche Werte foEs

Dat./MEZ	0000	0100	0200	0300	0400	0500	0 600	0700	0800	0900	1000	1100
1。 2。		+	+	+	+	++	3,0				3,2	4,0
2。 3。 4。 5。		+ + +	+ + +	+ + + .	+ + +	+ + +	1,9			3,8	4,0 4,0	
6. 7.		+ +	+ +	+	+	+ + +	+			3,5		
7. 8. 9. 10.		+ + +	+ + +	+ + +	+ + +	+ +	T		3,0	3,6	3,7 3,6	3,7
11。 12。 13。 14。 15。		+ + + +	+ + + +	+ + + +	+ + + +	+ + + +				3,5 3,6	3,6	
16。 17。 18。 19。 20。	+ C	+ + +	+ + +	+ + +	+ + +	+++++	++	4,5	3,9 4,2			С
21。 22。 23。 24。			1,4 2,4	1,1 2,4 1,2	1,1 2,5					С		
25°.			1,1	1,1	C	C		C	3,6	C	С	
26。 27。 28。 2 9。	2,5 Č	2,6 C	1,2	0,9	1,1 C	С	3,5 Č 3,3	3,7 C 3,4	C 3,6 4,0	C	C	C 8,0
36°.			1,4	C								
31。				and the state of t								
Median	ب	دين			سن	-	æ	cares		e.co ma	cue.	
Anzahl	2	1	5	5	3	0	4	3	6	5	6	3
Mean	ن	_		tmo	e	జు		صنبه	-	<u>۔</u> ج	-	<i>ب</i>
Anzahl	2	1	5	5	3	0	4	3	6	5	6	3

Stündliche Werte foEs

Dat./MEZ	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
1. 2. 3. 4. 5.	3,7 3,9	7 6	3,5 3,6	3,4	3,4		2,1	С				
6. 7. 8. 9.	3,8	3,6	3,8 3,8 3,7	3,9	3,1 3,2		2,2 2,3 2,1 2,4 2,5	1,8 2,1	C	С	С	С
11. 12. 13. 14. 15.	3, 8			с С	c U5,6	С	C					C
16. 17. 18. 19. 20.	С	C C	C									С
21. 22. 23. 24. 25.			7,2 C		3,7 3,8	c 3,7	3,7	2,3	С			
26. 27. 28. 29. 30.	C C 5,6	C C 4,7 4,0	C C 4,5	C	c 3,7	3,6 Č	3,6 C 3,4	C 4,3	3,4 C 2,2		С	C
31.				* 1. 1 . 1					rdinistan de dilitera e	The State of the section of the sec	Mar - Spile generic M 200 paper \$6.4%	man meda i 1990a. es li ligito estab
Median Anzahl	5	3	8	3	7	2	9	4	2	0	0	0
Mean Anzahl	- 5	- 3	- 8	- 3	- 7	- 2	- 9	- 4	2	- 0	- 0	_ 0

Stündliche Werte foF1

Dat./MEZ	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100
1. 2. 3. 4. 5.		+ + + +	+ + + +	+ + + +	+ + + +	+ + + + +	2,6 U2,5 L U3,2	B 4,0 U3,5 U3,8	\mathbf{R}	C U4,4 R R C	B B R R U4,9	B R R B
6。 7。 8。 9。 10。		+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + + +	+ + + +	+ + + +	C C + R R	C R B C R	4,0 R B C R	R R B R	R R B R	B R B R
11. 12. 13. 14. 15.		+ + + +	+ + + +	+ + + +	+ + + +	+ + + + +	U3,0 R B	B C R	C R R	R R R	U4,2 B R	B R C
16. 17. 18. 19. 20.	+ C	+ + +	+ + +	+ + +	+ + +	++++	+	4,3		14,4 4,0 U4,9 R	R 5,4 R	R C I6,0
21。 22。 23。 24。 25。					C	C		C	U3,6 5,1 5,2	C L C	L R	R 5,3 R
26. 27. 28. 29. 30.	С	С	С	C	C	С	С	С	C L	C R I5,4	0 5,6 5,3	C C R 6,0
31.	On white public conflicts the second	alli ale alkayes/fire (1) bas	anthografic and the same share shallow	and the second of the second o	apita ya sagi sandin saminin	1	adha. 1884 tir too ya ka andan adh	to casille a chiquenethe on The William	No. of the contract of the con	to design the same of	B. i (Ber alland B ine 2) / /	promising of
Median Anzahl							4	4	5	5	5	3
Mean Arzabl	, a rett rett. gener tilby antillen.					ere i ili i maj vidi	4	4	5	5	5	3

Ionosphärendaten

Messungen der Station Juliusruh/Rügen

Stündliche Werte foF1

Dat./ME	Z 1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
1. 2. 3. 4. 5.	B R C C	B B L R	B R R R	R R R R	R L U4,0 B R	R U3,9 U3,8 L L	R L L C	С				
6. 7. 8. 9. 10.	R R B R	B R R B	R R U5,0 R R	R R R R 4,0	R B C R 3,8	L C R U3,3	C B R C R	R S C A	C	С	С	С
11. 12. 13. 14. 15.	R R C	R R B	R A B	C R B	C R C	C	C C R	s				•
15.			C	C								C
16. 17. 18.		С	C	5,0	R							С
19.	c 8,5	C R	R 6,0	L L	Ľ	L			С			
21.	U5,4 R	U5,5	5,7	L	L				0			
21. 22. 23. 24. 25.	R	R L	R	R T.	L	C			C			
25.	U5,8	15,8	C	R L 6,1	R	L						
26. 27. 28. 29. 30.	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	C C L 5,3	C C U7,0 5,8	L C R C 5,0	C	C	С	C	С		C	C
31.												
Median	413					411	laya tala Maria ayaka sarahiyin da kasara aya		Mr. is the stage continue gar a	Mit mille addition . Mar of bases	dependentalistics (Franc	North Annual Control
Anzahl	4	3	5	4	2	3	tere the religion of the state and	handigae erikus 1989 . sudiga a i			and the second second	and the same of th
Mean	4	=	-	•		-						
Anzahl	4	3	5	4	2	3						

Ionosphärendaten Messungen der Station Juliusruh/Rügen

Stündliche Werte foF2

Dat./MEZ	0000	0 100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100
1. 2. 3. 4. 5.	5,1 5,8 5,6 5,6	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	U5,5 5,5 5,4 U5,1	6,2 06,8 6,5 6,0 6,7	7,2 8,0 7,4 7,3 R	0 9,5 8,6 9,3 J10,5	9,8 10,1 R 10,5 11,5	10,5 10,9 10,0 11,3 12,2
6. 7. 8. 9. 10.	5,9 5,5 5,3 5,3	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	5,0 6,0 + 5,3 3,5	5,8 7,3 7,8 5,8 03,7	5,8 7,9 8,2 6,8 4,0	U5,6 9,1 10,1 U8,3 R	7,9 10,0 11,0 9,7 U5,2	U7,8 10,8 11,5 10,9 U7,3
11. 12. 13. 14. 15.	F 7,3 7,4 6,3 7,5	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	6,6 7,5 5,4 7,3 7,9	R 19,2 05,5 R 8,5	010,0 10,1 06,0 8,8 10,2	11,0 11,0 R 9,7 10,7	11,4 11,7 8,0 10,3 11,5	11,5 12,0 8,4 11,3 11,6
16. 17. 18. 19. 20.	+ S S C R	+ + R R	+ + + 03,9 R	+ + R 4,0	+ + T2,5 3,9	+ + 4,0 4,2	# U5,2 R 4,8	5,3 8,1 R 6,0 5,5	6,7 R 8,5 15,7 6,0	R 7,9 11,0 R R	R R 11,9 6,8 8,0	R R 11,7 C R
21. 22. 23. 24. 25.	6,6 5,8 S S 6,6	R 5,7 8,2 R 6,0	U6,3 5,5 6,7 5,3 6,2	5,8 5,2 4,8 6,0	5,7 5,8 4,8	6,2 5,7 5,6	6,5 U6,6 R 6,7	7,0 7,1 7,0 18,1	7,1 R 17,5 9,2 7,8	R C 8,0 10,3 7,9	U7,9 10,9 8,4 10,7	U8,0 10,9 8,9 10,7 7,7
26, 27, 28, 29, 30,	U5,8 5,4 5,8	5,9 5,7 5,3 6,7	5,5 6,7 5,5 6,0	5,2 5,7 C	5,3 5,6 5,5	6,2 5,9 4,9 5,7	7,7 6,0 5,1 5,8	8,9 R 5,4 I6,0	R 7.2	10,8 R U8,5 7,0	10,4 8,2 7,8	11,0 C 10,9
31.												
Median Anzahl	5,8 19	7	- 10	- 7	- 9	- 10	5,5 23	6,6 24	7 , 4	9 , 4 20	10,1 24	10 , 9
Mean Anzahl	6,0 19	- 7	- 10	- 7	<u>-</u> 9	10	5,9 23	6,7 24	7,6 25	9,2 20	9,6 24	10,3 23

Ionosphärendaten

Messungen der Station Juliusruh/Rügen

Stündliche Werte foF2

Dat./MEZ	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
1. 2. 3. 4. 5.	11,5 11,7 10,3 11,8	11,4 11,5 10,6 11,7	11,0 11,2 10,8 11,5 12,2	10,9 10,4 10,5 11,3 12,7	10,7 10,4 10,4 10,9 11,8	10,3 10,3 9,9 10,4 11,4	U9,50 10,5 9,8 10,6 R	110,3 U9,5 11,1	U8,3 U8,6 U8,0 U7,8 9,0	6,9 U7,0 6,8 7,4 8,3	U6,2 U6,4 U5,3 U6,1	6,5 5,4
6. 7. 8. 9. 10.	R 10,8 11,5 11,5 8,5	8,2 10,7 11,9 11,3 8,6	11,5	8,0 10,5 10,9 10,7 9,5	7,7 10,5 10,3 10,4 9,4	11,0	8,6 10,6 9,3 11,2 U9,7	S	U8,0 U8,5 C 9,8 8,0	6,8 S C U8,0 6,8	5,9 G 6,3 4,3	S C 5,5
11. 12. 13. 14. 15.	R 7,8 Ř	10,5 11,7 8,5 11,4 11,5	11,6 7,9	C 11,3 7,8 11,2 C	8,5	11,1 8,5	C R U8,7 10,4 11,2	10,8	07.5 S S S	ន ន	ប ₆ , 8 8 , ន ន ន ន	ញ7ុំ 3 ន ន C
16. 17. 18. 19. 20.	R R 11,7 C 10,7	C R 11,7 C 10,7	C R 10,8 8,0 10,7	R 7,7 10,5 7,7 10,5	9,4 8,5 10,5 8,2 10,0	R R 10,6 8,6 [10,7	9,2 10,3 8,3	S S 1 10,3 S S	S J10,5 8,5 S C	S S S 15,8 7,0	U6,3 5,4 \$ \$	5,4 5,5 5,6 7,9
21. 22. 23. 24. 25.	7,7 10,9 R 10,5 U7,0		10,4	R	0 10,1 8,5 10,0 8,3	C R C 19,8 8,3	8,6 9,8 S 9,5 8,6	8,3 9,4 9,1 8,5	S C S S U7,0	16,0 \$ 8,5	\$ 8,4 8,4 6,8	\$ \$ \$ \$ U6,0
26. 27. 28. 29. 30.	C 8,5	10,7 C 10,9 8,4	C	C R 10,7	8 , 8	8,7 c 10,6	10,7 8,7 C 10,5 8,6	8,5 č	8,2 C S U8,2	s s 7,9	ဝထက်ထယ	C S I6,3 S 6,9
31.												ners a della compania della sida d
Median Anzahl	10,9 20	10,8 24	10,8 24	10,5 24	10,3 27	10,4 22		9,5 19			S 16	\$ 16
Mean Anzahl	10,3 20	10,5 24	10,3 24	9,9 24	9 , 9 27	10,0 22	9 , 7 25	9,7 19	8,4 15	7,5 15	S 16	S 16

<u>Ionosphärendaten</u>

Messungen der Station Juliusruh/Rügen

Stündliche Werte (M3000)F2

Dat./MEZ	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100
1. 2. 3. 4. 5.	C 2,35 2,3 F 2,5	+ + + +	+ + + +	+ + + +	+++++	+ + +	02,9 2,9 2,9 2,7 02,75	2,4 J2,95 2,6 3,0 2,85	2,7	C 2,75 2,8 3,0 J2,8	2,3 2,85 R 2,75 2,8	2,5 2,55 2,6 2,65 2,8
6. 7. 8. 9. 10.	2,7 2,35 02,45 2,65 2,25	+ + + +	+ + + +	+ + + +	+ + + +	+ + + + + +	3,0 2,9 + 3,0 E3,45	3,0 2,9 J2,75 2,75 R	2,950 2,9 2,55 2,950 2,950	13,050 2,95 2,7 13,0 R	12,3 t 2,95 2,75 2,8 R t	12,3 2,95 2,5 2,85 12,35
11. 12. 13. 14. 15.	F 2,75 2,25 2,5	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	3,05 3,05 2,6 t 3,05 2,95	R T 3,05 J2,35 R 2,9	73,1 2,95 72,15 3,0 2,75	2,8 2,8 R 2,95 2,75	2,7 2,75 2,35 2,9 2,7	c 2,85 2,4 2,7 2,85
16. 17. 18. 19. 20.	CSSCS	+ + R R	+ + + C R	+ + R C	+++00	+ + C C	+ + R R R 3,25	2,75 2,75 R J2,65 3,25	2,45 R 2,7 R 3,3	R 2,55 2,65 R R	R R 2,55 C 3,25	R R 2,75 C R
21. 22. 23. 24. 25.	2,8 2,55 S S 2,6	R 2,6 2,8 R 2,5	2,45 2,6 2,8 2,4 2,45	2,55 2,5 2,4 2,55	2,65 2,8 2,6 2,55	3,2 2,95 3,05 2,85	3,4 3,25 R 3,15	3,05 2,85 3,0 R	2,8 R R 2,95	R C 2,7 2,8	R 2,95 2,6 2,65	R 2,95 2,5 2,7 R
26. 27. 28. 29. 30.	2,75 2,6 2,4	2,5 C 2,65 2,6 2,45	2,7 C 2,7 2,4 2,6	2,9 2,6 2,45	3,0 2,8 2,55 2,65	3,05 2,95 2,7 2,8	3,1 3,15 2,7 2,95	3,1 R 3,1 R	2,85 R 2,8 T J2,6	2,95 C R J3,05 2,65	2,75 2,7 2,4	2,65 C 2,75 R
31.												
Median Anzahl	2,5 17	- 7	9	7	- 8	- 8	3,0 22	2,9 20		2,8 19		2,7
Mean Anzahl	2,5 17	7	<u>-</u> 9	7	- 8	- 8	3,0 21	3,0 20	2,8 21	2,85 19	2,7 21	2,65 20

Ionosphärendaten

Messungen der Station Juliusruh/Rügen

Stündliche Werte (M3000)F2

Dat./MEZ	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
1. 2. 3. 4. 5.	2,65 2,75 2,45 C 3,0	2,7 2,7 2,55 2,65 2,65	2,7 2,8 2,6 2,6 2,85	2,65 2,75 2,75 2,75 2,85	2,65 2,9 2,7 2,75 2,9	2,7 2,8 2,6 2,85 2,85	2,9 t 2,85 2,85t 2,85 R	12,7 0 12,85 12,85 2,9	U2,8 U2,55 U2,25 2,55 2,65	2,2 t 12,7 t 2,2 t 2,35t 2,55	12.65	J2,35 2,3 2,5 2,3
6. 7. 8. 9. 10.	R 2,95 2,55 2,8 2,7	2,5 2,7 2,55 2,85 2,75	2,6 2,85 2,6 2,65 2,85	2,65 2,8 2,6 2,7 2,5	2,35 2,85 2,7 2,6 2,75	2,55 2,8 2,7 2,65 2,75	2,85 2,85 2,9 t 2,85 3,0	2,9 5 12,95 3,1 2,75	U3,15 U2,4 C 2,85 2,4	C	2,55 S C 2,45 2,8	s s s s s f
11. 12. 13. 14. 15.	2,65 R 2,45 R 2,65	2,65 2,65	2,55 2,65 2,55 2,8	C 2,75 2,55 2,8	C 2,7 2,65 2,8 2,7	C 2,7 2,7 2,9 2,75	C R 2,75 2,85 2,75	2,95 2,8 2,95 2,85	s s	S 1 2,651 S S 2,8	J2,65 J2,4 T S S S	ຫ2,6 ຫ2,3 ຮ້ ຮ C
16. 17. 18. 19. 20.	R R 2,65 C 2,8	C R 2,65 C 2,75	C R 2,8 2,55 2,9	R 2,6 2,7 2,6 2,95	2,75 2,75 2,75 2,7 3,15	R R 2,75 3,0 R	2,9 2,75 2,75 2,9 2,8	s s 2,75 s	S 2,85 2,8 S C	\$ \$ \$ \$ 3,3	2,5 2,45 S	2,7 2,25 2,5 2,9
21. 22. 23. 24. 25.	2,45 2,95 R 2,65 2,45	2,55 2,9 R 2,65 2,65	2,8 2,9 2,8 2,65	2,75 3,05 R 2,75 2,95	3,0 2,85 C 2,8 2,75	2,75 R C R 2,9	3,05 3,05 S 2,95 3,0	3,1 S 3,1 3,05	S C S S	\$ \$ 2,95	\$ 2,85 \$ 2,85	ននននន
26. 27. 28. 29. 30.	2,65 C R 2,7	2,65 C 2,75 2,6	2,7 C 2,65 2,5	2,7 R 2,7 2,75	2,6 2,85 2,8 2,65	R 2,9 2,85 R	S 2,9 2,95 2,7	\$ 2,9 2,95 2,85	3,05 C S U2,7	\$ \$ \$ 2.9	C S S S S	C S S S 2,35
31.			inida Manda A	-				-	paratigus estaphilitae a successive de	nd official discovering a second of the second		
Median Anzahl	2,65 19	2,65 24	•	-	-	-	2,85 24	2,9 18	S 16	S 17	s 17	s 19
Mean Anzahl			2,7			····	2,85 24		S 16	S 17	s 17	S 19

Ionosphärendaten
Messungen der Station Juliusruh/Rügen

Ionosphärische Mittagsabsorption auf 3,86 MHz

Tag	L (db)	Tag	L (db)
1.	В	16.	В
2.	A	17。	В
3。	A	18.	В
4.	19	19。	37 A
5.	18 X	20.	A
6。	18 X	21.	A
7。	19	22.	В
8。	D 18	23.	A
9。	D 16	24.	A
10.	15 A	25.	A
11.	18 A	26.	A
12。	18 A	27。	A
13。	22 A	28.	A
14.	20 A	29.	A
15。	20 A	30。	A

Mögel-Dellinger-Effekte (S.I.D.) Sonneneruptionseffekte (S.E.A.)

Messungen der Station Neustrelitz

Mitteilungen über S.E.A.

Messungen des Met. Obs. Kühlungsborn

Tag	S.I.D. Neustrelitz	S Neustrelitz	. E. A. Kühlı	ıngsborn	
	2614 kHz	20,2 kHz	14 kHz	27 kHz	40 kHz
1.	06 . 27 1 1 5	06•25 3 56	06.24 1 25	06•24 1 25	-
	07.30 2 50	07 +29 3 3 5	07.27 0 20	07.27 0 20	07.27 0 20
3.	x	08.30 2 57	08.30 0 10	08.30 0 10	08.30 1 10
	x	09•43 1 25			
4.	09•21 2 60	09 . 24 2 27	09.24 0 35	09.24 0 35	09.24 1 35
5•	14.05 a.D.	14.09 3 42	-	14.08 2 40	14.08 2 40
7•	15.04 3 30	x	15.00 2 40	15.00 3 40	15.00 2 40
8.	06,21 2 65	06.17 3 48	06.19 1 xx	06.19 2 xx	06.19 0 xx
	09 . 25 1 30	~			
9•	11.05 0 20				
	-	11.57 2 1 4		! 	
	14.24 1 30	x	_	14.18 0 20	14•18 0 20
11.	-	17.30 3 84			
12.	13.25 1 60		_	13.22 0 10	-
14.	11.20 1 50	•••			
	13.54 2 60				
	~	17•12 2 30	_	17.11 0 20	_

	S.I.D.				
Tag	Neustrelitz	Neustrelitz		ngsborn	
(400 0000000000000000000000000000000000	2614 kHz	20,2 kHz	14 kHz	27 kHz	40 kHz
15.	07.17 3 xx	tu			
	13.54 2 90	13•52 3 50	13.52 0 35	13.52 2 35	13.52 3 35
16.	11.00 a.D.	10.40 3 50	=	10.42 1 xx	10.42 2 xx
17.	07.33 1 60	- vari			
	10.02 1 xxx	10.03 2 57	10.03 0 20	10.03 0 20	10.03 1 20
	14.58 3 40	14.57 2 72	_	ت	14.59 1 20
18.	09.09 2 30	09 . 07 2 23	. =	09.07 1 15	09.07 1 15
	10.29 2 40	10.30 1 30			
:	12.00 a.D.	12.29 1 23	<u></u>	x	12.26 0 15
	.	13.05 3 37	_	13.05 2 25	13.05 2 25
19.	5	10.25 2 35			
:	12.30 a.D.				
20.	X	11.06 3 54	11.08 1 50	11.08 2 50	11.08 2 50
21.	12.10 1 40	eu			
22.	10.00 a.D.	(5			
	13.43 2 30	13.42 1 13	13.41	13.41	13.41
	14.27 2 40	14.24 1 27	co	14.26	14.26 1 15
0.7	ف م	17.26 1 22	SE-	17.26 0 15	17.26 0 15
23。	08.45 2 60	08 . 45 0 1 5			
25。	08.27 1 40	47 47		47 45	A7 A"
	13 . 12 2 40	13.13 2 44	CES	13.15	13.15 1 30

]	S.I.D.		S. E. A.						
Tag	Neustrelitz	Neustrelitz	Kühlungsborn						
	2614 kHz	20,2 kHz	14 kHz	27 kHz	40 kHz				
26.		10.32 1 20							
	•••	11.12 0 15	11.13 0 10	11.13 0 10	11.13 0 10				
	-	12.46 2 54							
29.	09•45 1 30	-							
30.	14•35 1 20	-							

102

Erdmagnetische Aktivitätszahlen und Kennziffern Messungen des Adolf-Schmidt-Observatoriums für Erdmagnetismus Niemegk

Tag	n	¥	A _K	$\sum K_1$	K ₁
1.	7777	0.5	14	23	3332 3333
2.		0.5	14	22	4222 2244
3.		0.5	14	22	3222 2344
4.		0.5	12	20	3312 3233
5.		0.5	27	30	4334 4525
6. 7. 8. 9. 10.	10111	0.5 0 0.5 0.5 1	15 2 12 16 29	20 20 23 31	5433 2210 0011 0101 2122 3334 2232 4244 5543 3542
11. 12. 13. 14. 15.	1 0 0	0.5 0.5 0.5 0.5	12 14 8 2 14	19 21 16 5 19	3113 4223 2231 3442 3222 2212 0000 0212 1113 3235
16.	11110	1	21	27	4325 3334
17.		1.5	42	34	3334 5457
18.		1	30	31	6333 3544
19.		0.5	36	35	5553 4445
20.		0.5	9	18	3322 2222
21.	10010	0.5	16	24	3322 3443
22.		0.5	4	8	1000 1231
23.		0.5	11	19	3222 3124
24.		0.5	19	26	4223 4434
25.		0.5	8	17	3212 2322
26.	1101	0.5	16	24	2233 3443
27.		0.5	12	21	4323 3222
28.		0.5	16	23	2222 3444
29.		0.5	12	20	4323 2321
30.		0.5	12	21	2322 3333

Zweite erdmagnetische Kennziffer K₂
Messungen des Adolf-Schmidt-Observatoriums
für Erdmagnetismus Niemegk

Tag	0-3	36	6-9	9-12	12-15	15-18	18-21	21-0
1.	1111	1002	1002	1001	1002	1012	1012	1012
2.	1111	1001	1001	1001	1001	1001	2101	1101
3.	1001	1001	1001	1001	1001	1002	1211	2211
4.	1111	1002	1001	2001	1012	1011	2111	1002
5.	1111	1001	2002	1211	2312	1012	1001	2222
6.	1311	1012	2002	2002	1001	1001	1001	2000
7.	1000	1000	1001	1001	1000	1001	1000	1001
8.	1001	1001	1001	1001	1002	1002	1002	2111
9.	1001	1001	2001	1001	1022	1011	2112	2222
10.	2222	2013	2022	2012	1022	2222	1012	1001
11.	1001	1001	1001	2001	2012	1001	1001	2101
12.	1001	1001	2002	1001	1002	2211	1012	2001
13.	1001	1001	1001	1001	1001	1001	1001	1001
14.	1000	1000	1000	1000	1000	1001	1001	1001
15.	1001	1001	1001	1001	1111	1001	2002	3222
16.	1012	2002	1001	1211	1002	1101	1002	2002
17.	1001	1001	1002	2012	2012	3002	3012	3023
18.	3023	2002	2001	2012	1002	2022	2212	1012
19.	2222	2222	2002	1002	1012	1012	2112	2112
20.	1012	1001	1001	1001	1001	1002	1001	1001
21.	1002	1002	1001	1001	1012	1012	2101	2002
22.	1001	1000	1000	1000	1001	1002	1001	1001
23.	1002	1001	1001	1001	1002	1001	1001	1111
24.	1002	1001	1001	1002	2002	2012	1002	2012
25.	1001	1001	1001	1001	1001	1001	1001	1001
26.	1001	1001	1002	2012	2012	1012	1012	1012
27.	3211	2012	1001	1001	1002	1001	1001	1001
28.	1001	1001	1001	1001	1012	2012	2012	3212
29.	1002	1012	2001	1012	1011	1002	1001	1001
30.	1001	1002	1011	1 00 1	1001	1012	1002	1002

104

Feldstärkemessungen (µV/m) der Sender WWV Messungen der Station Neustrelitz

1. 2,5
20 < < < < 6,0 5,0 - < 0,9
4. 2,5 x x x 9,8 78 12 23 4,8
5. 2,5
6. 2,5
8. 2,5

Dat.	MHz	00	02	04	06	08	10	12	14	16	18	20	22	Ē	Σĸ	R
9•	2,50 150 5	35 40 9,0	12 20 14	16 21 x	x x	\ X	2,2	8 1 1 V V 8	1,8	7,8	5,4 4,8	5,8 5,3	4,8 16 1	5,7 7,2 6,6 1,6	26	163
10.	2.50505 2.50505	11 13 5,8	21 1,8 <-	16 x <	0,5					: ::::::::::::::::::::::::::::::::::::	· · · · · · · · · · · · · · · · · · ·	8,6 x	3,2 5,2	4,0 1,6 1,6 X	33	150
11.	2,550 150 25 25	7,8 2,1 2,0	23 3,6 <	11 1,4	2,9 x	T T	620 620 620 620 620 620	3	1 6 < < 1	X	x <	13	13 43	3,8 0,8 3,5 3,6	22	121
12.	2,5 10 15 20 25	20 36 7,5	18 30 22	15 20 14	< 16 x	4,2	1 V V 3	3,8	4,8 8,8 X	5,6 7,5	8,5 x	3,8	0,9 x 5,8	2,8 7,6 10 3,8	21	114
13.	2,5 5 10 15 20 25	4,35 15 V	15 19 5,4	7,8 21 8,6	0,5 25 x	3,9 x	1,4	2,8	3,4 4,0	6,3	5, X 6,0	x 19	= < X = =	2,3 6,5 6,1 3,1	16	143
15.	2,5 10 15 20 25	38 25 44 3,5	43 24 17 30	19 38 48 35	7,5	1	# * * * * * * * * * * * * * * * * * * *	6,8		5,8	5,6 8,3 x	x 6,8	3,4 <	8,3 7,9 13 8,0	21	162
16.	2,5 10 15 25 25	23 11 11	50 12 3,6	21 13 2,2	16 -	- - X	14	450 450 550 550 550 550 550 550 550 550	2,4	3,5	6,3	17	6,0 5,8	0,9	28	181
17.	2,5 10 15 20 25	9,0 12 8,2	24 15 7,0	19 24 11	X	1 1 4 4 7 1	1 0 3 V 1 2	1 9 3 V 1 3	3,0	2,5	x 12 x	x 11	6,0	4,3 4,6 4,0 2,4	34	202

Dat	• MHz	00	02	04	06	80	10	12	14	16	18	20	22	Ē	Σĸ	R
18.	2,550505	19 < V ₀ 1	23 4,5 <	23 < <	x < <	 		3 1 1 V V 1	4,8 3,3	- X <-	 Х <	9,4	5,8	5,4 0,7 0,3	33	205
20.	2,5 5,5 10 15,0 25	20 43 4,4	16 11 <	33 23 <	14	8 V 3 8	2 9 V 2 2	3 0 V 0			1 1 1 7 7 1	9,5	10 9,0 7,5	5,8 8,4 1,2 1,4	22	208
23.	2.50505 2.50505	7,5 11 30 8,0	11 34 34 8,8	6,3 48 26 6,8	14 6,2	16	======================================	3,8 <	6,8	X	X	1 2 X	17 9,8	2,9 2,9 3,4 3,4	19	226
24.	2,5 10 15 25 25	9,5 24 32	14 27 3,0	21 29 S	17	< < < < < < < < < < < < < < < < < < <	- - -) 3 1 V V 1	_ X <	1,5	x <		3,7 8,1 4,4 0,1	28	248
25.	2,5 10 15 20 25	10 10 8,8	25 36	31 7,0	x 22	~ X	X	- x 9,3	1,8	3,3 x	6,8 5,0	7,3 x	32 5,5	1,357 2,X	19	251
26.	15 20 25	4,5 41 14 V	24 50 7,2	17 49 8,2	9,5 x	4,2 x	5,0	3,4	6,3		9,3	7,2 1,5	6,0 30 V 1	3,8 13,8 8,3 1,4	28	223
27.	2,5 5 10 15 20 25	20 45 6,4	33 48 4,8	13 21 3,6	3,0 9,0	X		7,6			E X	z Z X	V	*85 V 1	27	213
29。	2,5 10 15 20 25	19 20 7,6	24 45 V	x 25 48 < 3	30 -	3,7	\ X	X	4,8	6,2	6,8 6,5	3,4 2,0	4,0 4,4 V	3,5 6,7 7,7	21	177

•	107	

Dat	MHz	00	02	04	06	0 8	10	12	14	16	18	20	22	E	ZK	R
30.	2,550 150 150 25	15 33 5,0 ~	17 40 5,6		4,9 x	2,9 x	- 17 4,3	3,8 2,5 -	3,5	- x 6,5	- - 4,5	8,8 7,5	- 32 4,8	4,32 4,32 8,4 2,8	23	155

Sanitized Copy Approved for Release 2010/03/11: CIA-RDP80T00246A037100400001-5

Beobachtungsergebnisse

Januar 1957

Inhalt:

	Seite
Inhaltsverzeichnis	1
Vorwort	2
Erläuterungen zu den Beobachtungsergebnissen des Heinrich-Hertz-Institutes	- 3 - 6
Erläuterungen zu den erdmagnetischen Aktivitäts- zahlen und Kennziffern des Observatoriums Niemegk	7
Monatsübersicht Januar 1957	8
Graphische Monatsübersicht Dezember 1956 / Januar 1957	9
Messung der Radiostrahlung der Sonne in Berlin- Adlershof	-
Tägliche Daten 1500 MHz Tägliche Daten 9400 MHz Strahlungsausbrüche 1500 MHz Strahlungsausbrüche 9400 MHz Markante Strahlungsausbrüche	10 11 12 13–14 15
Messung der ionosphärischen Absorption in Juliusruh/Rügen	16
Mögel-Dellinger-Effekte und Sonneneruptionseffekte auf Längstwellen in Neustrelitz unter Verwendung von Vergleichswerten des Meteorolog. Observatoriums Kühlungsborn	17–18
Erdmagnetismus - Mitteilungen des Adolf-Schmidt- Observatoriums Niemegk Erdmagnetische Aktivitätszahlen und Kennziffern Zweite erdmagnetische Kennziffern	19 20
Plötzliche Sturmausbrüche	20
Beobachtung der Sender WWV in Neustrelitz Graphische Darstellung	21-23
Feldstärkemessungen der Sender WWV in Neustrelitz Meßwerte	24-26
UKW-Überreichweiten Feldstärkemessungen in Neustrelitz	27-29

Mulassified

Die Reihe "Beobachtungsergebnisse" des Heinrich-Hertz-Instituts hatte ursprünglich das Ziel, einem sehr engen Kreis von interessierten Instituten die laufenden Messungen zur Wellenausbreitung schnell zur Kenntnis zu bringen. Diese Meßreihen wurden in den vergangenen Jahren nach und nach ergänzt durch Messungen der ionosphärischen Absorption, Messungen der Radiofrequenzstrahlung der Sonne und durch Tabellen der beobachteten Mögel-Dellinger-Effekte (S.I.D.) im Kurzwellenbereich und der plötzlichen Anstiege des atmosphärischen Störpegels (S.E.A.) im Längstwellenbereich. Aus Anlaß des Internationalen Geophysikalischen Jahres erfährt nun das Meßprogramm des Instituts eine abermalige Erweiterung durch die Inbetriebnahme der Ionosphärenstation in Juliusruh/Rügen mit zwei Impulsecholotungs-Anlagen auf fester Frequenz und einer Echolotungs-Anlage mit variabler Frequenz. Auch die Messungen der Radiofrequenzstrahlung der Sonne werden durch neue Anlagen bei 10 cm und 15 cm Wellenlänge vervollständigt werden.

Das vergrößerte Meßprogramm zwingt uns, auch die "Beobachtungsergebnisse" noch einmal zu erweitern und den Erfordernissen des AGI besser anzupassen. Inhaltlich wurden die Feldstärkemessungen der Normalsender WWV ebenso wie die Feldstärkemessungen an ausgewähleten UKW-Sendern gedrängter dargestellt. Demgegenüber erfahren die Messungen der Sonnenstrahlung im dm-Wellengebiet und die Messungen an der Ionosphäre durch die Aufnahme der Ergebnisse der Echolotungen eine wesentliche Erweiterung, die mit dem 1. April beginnen werden.

Eine weitere Bereicherung erfährt das Heft durch die Aufnahme der erdmagnetischen Messungen des Adolf-Schmidt-Observatoriums für Erdmagnetismus in Potsdam-Niemegk. – Es ist mir eine angenehme Pflicht, Herrn Prof. Fanselau zu danken, daß er sich entschlossen hat, die geomagnetischen Meßreihen des Observatoriums in Zusammenhang mit unseren "Beobachtungsergebnissen" zu veröffentlichen.

Es soll mun mit Beginn des Jahres 1957 eine Reihe geschaffen werden, die es ermöglicht, das im Rahmen des AGI durchgeführte Meßprogramm möglichst schnell einem großen Kreis von Instituten zur Verfügung zu stellen. Die Darstellung der Meßreihen in Tabellen und Kurvenform wird sich eng den Vorschlägen der verschiedenen AGI-Kommissionen (siehe U.R.S.I. Information Bulletin No. 99, Sept./Okt. 1956) anpassen. Das jetzt verwendete Druckverfahren soll dazu beitragen, die Übersichtlichkeit der Tabellen und Kurven zu verbessern. Möge die neue Reihe einen kleinen Beitrag zum Gelingen der großen Vorhaben im Internationalen Geophysikalischen Jahr liefern.

Prof. Dr. O. Hachenberg
Direktor des Heinrich-Hertz-Instituts

1. Anlagen und Meßmethoden zur Messung der Radiofrequenzstrahlung der Sonne

Die Messungen erfolgen in Berlin-Adlershof.

1.1 Messungen bei 20 cm Wellenlänge

Die Registrierung der Radiofrequenzstrahlung bei 20 cm erfolgt mit einem Parabolspiegel von 8 m Durchmesser, der parallaktisch montiert ist und durch einen uhrgesteuerten Antrieb kontinuierlich mit der Sonne mitbewegt wird. Ein parallel zur Spiegelachse montierter Sucher gestattet eine Kontrolle der Nachführung. Der Einstellfehler Spiegelachse – Sonnenzentrum bleibt so innerhalb eines Tages mit Sicherheit unter 5 Bogenminuten bei Zenitabständen > 80°. Die Halbwertsbreite des Richtdiagramms ist ca. 2°, der Gewinn der Antenne (bezogen auf den isotropen Kugelstrahler) beträgt 8000. Im Brennpunkt des Spiegels ist ein Halbwellendipol mit Reflektorscheibe angebracht, der die aufgenommene Strahlungsenergie dem Empfänger zuleitet.

Der Empfänger arbeitet mit einem rotierenden HF-Umschalter im Eingang (lock-in-Prinzip). Die Aufzeichnung der Strahlungsenergie erfolgt kontinuierlich durch Tintenschreiber. Die Eichung geschieht in 10-Minuten-Abständen mit einer im Eingang vorhandenen Rauschdiode, die ihrerseits monatlich mit einem geheizten Widerstand verglichen wird. Gemessen wird die einfallende Energie in W/Hz m². Eine Reduktion auf mittlere Sonnenentfernung wird nicht vorgenommen.

Zur Auswertung werden stündliche Mittelwerte gebildet. Die relative Genauigkeit der Messungen liegt bei ± 1,5 %. In der Berechnung der Gesamtenergie steckt die Annahme, daß im Mittel jede Polarisationsrichtung gleich wahrscheinlich ist.

Die Auswertung der Strahlungsausbrüche erfolgt nach den bei den URSIGRAMMEN benutzten Methoden. Als Beginn eines Strahlungsausbruches wird der Zeitpunkt bezeichnet, an dem sich die Strahlung um 3 % über den Stundenmittelwert erhebt. Als Maximum wird im allgemeinen die Zeit der größten Intensität bezeichnet. Bei großen Strahlungsausbrüchen mit mehreren Spitzen werden die markantesten in zeitlicher Reihenfolge aufgeführt.

Typen der Strahlungsausbrüche (nach URSI):

Einfacher Intensitätsanstieg und Abfall	S
Einfacher Intensitätsanstieg und Abfall während einer unruhigen Periode	SA
Einfacher Intensitätsanstieg und Abfall während einer ruhigen Perlode	SD

3

Д

Mehrfache Schwankungen der Intensität

Mehrfache Schwankungen der Intensität

während einer unruhigen Periode

CA

Mehrfache Schwankungen der Intensität

während einer ruhigen Periode

CD

Gruppe von einfachen kurzen Ausbrüchen

1.2 Messungen bei 3,2 cm Wellenlänge

Die Registrierung wird hier mit einem 2,5 m-Parabolspiegel durchgeführt. Die Halbwertsbreite des Richtdiagramms beträgt ca. 1,3°. Der Empfänger ist ähnlich der von DICKE beschriebenen Anlage aufgebaut (R.H. DICKE, Rev. Sci. Instrum. 17 (1946), 268-270). Seine Eichung erfolgt durch Vergleich mit dem Rauschen einer Gasentladungsröhre, ein Teil der in der Röhre erzeugten Rauschenergie wird zusätzlich auf den Empfängereingang gegeben und erzeugt dort eine Eichmarke.

Bezüglich Durchführung und Auswertung der Messungen gilt das unter 1.1 Gesagte.

2. Messungen der ionosphärischen Absorption

Ionosphärische Absorptionsmessungen werden vom Heinrich-Hertz-Institut auf seiner Meßstation in Juliusruh/Rügen durchgeführt. Hierzu wird eine Impuls-Bende- und Empfangsanlage bei senkrechter Inzidenz (Impulsleistung etwa 10 kW, Impulsfolgefrequenz 50 s., Impulsdauer etwa 100 us) benutzt. Die Meßfrequenz ist gegenwärtig 3,86 MHz und soll später durch weitere Frequenzen ergänzt werden. Die Bestimmung der Absorption erfolgt aus dem Verhältnis der Amplituden (Medianwerte) der Echos 1. und 2. Ordnung. Die Dauer einer Meßreihe (zugleich Mittelungsintervall) beträgt zwischen 15 und 30 Minuten. Die angegebenen Werte der ionosphärischen Absorption L in Dezibel für den Mittag beruhen auf mehreren Meßreihen in der Zeit von 11.00 bis 13.00 Uhr MEZ. Die dabei benutzten Symbole buchstaben entsprechen der Übereinkunft für der Internationale Geophysikalische Jahr (siehe I.G.Y. Instruction Manuel No. V, Vol. II, Seite 47 f. und URSI Information Bulletin No. 99, Brussels, Sept./Octl. 1956, Seite 46-48).

3. Mögel-Dellinger-Effekte

Zur Feststellung von Mögel-Dellinger-Effekten wird auf der Außenstelle Neustrelitz die Feldstärke des Senders Norddeich auf 2614 kHz mit einem kommerziellen Allwellenempfänger registriert. Mitgeteilt werden Beginn, Intensität und Dauer der Effekte in der unter 4. angegebenen Gruppierung.

4. Längstwellen-Messungen

Die atmosphärischen Störungen auf Längstwelle werden in der Außenstelle Neustrelitz mit einem kommerziellen, batteriebetriebenen Längstwellenempfänger älterer Bauart registriert. Als Antenne wird eine vertikale Langdrahtantenne verwendet. Die effektive Feldstärke der atmosphärischen Störungen wird durch einen Tintenschreiber

mit einer Zeitkonstanten von etwa 60 Sekunden aufgezeichnet. Wegen der relativ großen Bandbreite des Empfängers erfolgt die Registrierung auf der Frequenz 20,2 kHz. Mitgeteilt werden Beginn, Intensität und Dauer von S.E.A. (Sudden Enhancement of Atmospherics).

Zum Vergleich und zur Ergänzung werden die Messungen der S.E.A. des Observatoriums Kühlungsborn mitgeteilt.

Die Wertangaben sind folgendermaßen gruppiert:

hh.hh i ddd

hh.hh = Beginn des Effektes (GMT)

- i = Intensität nach folgender Skala
 - kein Effekt
 - O schwacher Effekt
 - 1 mäßiger Effekt
 - 2 starker Effekt
 - 3 sehr starker Effekt
 - x keine Beobachtung oder Störung durch Fremdeinflüsse

ddd = Dauer des Effektes in Minuten

5. Kurzwellen-Feldstärkemessungen

Die Feldstärkemessungen der WWV-Standardsender werden auf der Außenstelle Neustrelitz des Heinrich-Hertz-Institutes durchgeführt.

Verwendet wird ein kommerzieller Kurzwellenempfänger mit 30 m-Vertikalantenne, dessen Eingangsspannungen mit einem Meßsender gemessen werden.

Es werden die von der Sendergruppe WWV (Washington) benutzten Frequenzen 2,5 - 5 - 10 - 15 - 20 und 25 MHz überwacht. Die Messungen finden zu den geradzahligen Stunden Greenwicher (Welt-) Zeit statt. Dabei wird auf den Frequenzen 5 - 10 und 15 MHz gleichzeitig auch der Sender WWVH (Hawaii) beobachtet.

In der graphischen Darstellung zeigt die erste Rubrik die Hörbarkeit der WWV-Sender in Abhängigkeit von der Zeit. Das Diagramm soll ein Bild des jeweils übertragenen Frequenzbereichs geben. In gleicher Weise zeigt die nächste Rubrik die Hörbarkeit der WWVH-Sender. Die dritte Rubrik gibt die von WWV selbst ausgestrahlte Beurteilung der Ausbreitungsverhältnisse wieder.

Dabei	bedeutet	8
-------	----------	---

normale V	erhältnisse
unstabile	Verhältniss e
Ionosphär	enstörung

Die folgenden sechs Rubriken geben die Feldstärke der einzelnen WWV-Sender in logarithmischer Skala, wobei ____ bedeutet, daß der betreffende Sender zwar gehört und eindeutig identifiziert wurde, aber wegen fremder Störer nicht gemessen werden konnte. In der letzten Rubrik sind die erdmagnetischen Kennziffern des Observatoriums Wingst nach der Bartelsskala dargestellt.

Anschließend an die graphische Darstellung werden die gemessenen Feldstärkewerte der WWV-Sender in µV/m tabellarisch wiedergegeben. Die in den Tabellen benutzten Zeichen haben folgende Bedeutung:

- x = Sender gehört, wegen fremden Störers keine Messung möglich.
- < = Sender gehört, die Feldstärke liegt unter dem Meßbereich der Apparatur.
- = Sender nicht gehört.
- = Mittel der Feldstärken über den ganzen Tag.
- ZK = Summe der erdmagnetischen Kennziffern.
- R = Sonnenfleckenrelativzahlen.

6. UKW-Feldstärkemessungen

Die Feldstärkeregistrierung im UKW-Bereich über große Entfernungen wird mit kommerziellen UKW-Überwachungsempfängern vom Typ 11 E 121 (RFT Gerätewerk Zwönitz) durchgeführt, die zur Erhöhung ihrer Empfindlichkeit eine rauscharme Cascode-Vorstufe erhielten (Eingangsempfindlichkeit 0,5 µV).

Als Antennen werden Dipolfelder in etwa 10 m Höhe über dem Erdboden mit einem Gewinn von 4 benutzt. Die Aufzeichnung erfolgt über einen Registrierverstärker mit einem Tintenschreiber (Vorschub ca. 20 mm/h). Bei der Auswertung werden Stundenmittel der 50 % und der 10 % Werte aus den Registrierkurven gebildet. Die dargestellten Diagramme geben aus Gründen der Übersichtlichkeit nur die Stundenmittel der geradzahligen Stunden an.

Die Registrierung erfolgt in der Außenstelle Neustrelitz des Heinrich-Hertz-Institutes. Als Sender wurden folgende UKW-FM-Rundfunksender gewählt:

	Standort	Frequenz	Strahlungs- leistung	Entfernung
2.	Hamburg	88,5 MHz	77 kW	190 km
	Ochsenkopf	88,2 MHz	60 kW	380 km
	Feldberg (Taunus)	92,1 MHz	60 kW	450 km

7. Koordinaten der Meßstationen

	geograph:	ische	geoma@	gnet.
	Breite	Länge	Breite	Länge
Berlin-Adlershof Juliusruh/Rügen Kühlungsborn Neustrelitz-Strelitz Niemegk	52°26' N 54°38' N 54°07' N 53°17' N 52°04' N		52,4° 54,5° 54,4° 53,4° 52,2°	98,7° 96,9° 97,5°

Erläuterungen zu den erdmagnetischen Aktivitätszahlen und Kennziffern des Adolf-Schmidt-Observatoriums, Niemegk, der Deutschen Akademie der Wissenschaften zu Berlin

Die erdmagnetischen Aktivitätszahlen erfassen den korpuskularen Anteil der geomagnetischen Störungen. n ist die in Niemegk geschätzte Charakterzahl der Skala 0, 1 und 2 und f die Charakterzahl in fünfstufiger Skala 0.0, 0.5, 1.0, 1.5 und 2. K1 sind die in Niemegk geschätzten dreistündigen Kennziffern, wobei die erste Zahl für die Zeit von 0 bis 3 Uhr Weltzeit, die zweite von 3 bis 6 Uhr Weltzeit usw. gilt.

Die ersten Kennziffern haben im einzelnen folgende Werte:

K1	Störungen			K1	S	törun	gen
0	0	bis	5 8°	5 6	71 121	bis	120 ¥ 200 \$
ż	11	11	20 8	7	201	tt	330 8
3	21	tt	40 8	8	330	ŧŧ	500 g
4	41	II	70 X	9		>	- 500 8

 Σ K1 ist die Summe der 8 Kennziffern für jeden Tag; AK ist die mittlere tägliche Störamplitude in Y, ihr ist gegenüber Σ K1 bei statistischen Arbeiten der Vorzug zu geben.

K2 gibt für jedes Dreistundenintervall eine morphologische Beschreibung des Kurvenverlaufs. Dabei charakterisiert die erste Ziffer die Größe der Elementarwellen, die zweite die Bays, die dritte den Z-Störungsgang und die vierte den allgemeinen Störpegel.

Im einzelnen haben die Ziffern folgende Bedeutung:

	K2	=	0	1	2	3
Elementarwellen			< 18	< 58°	< 108	> 10 8
Baystörungen			<20 8	< 50 8	<100	≥100 ¥
Z-Störungsgang			<108	< 30 g	<100	>100 [
Allgemeiner Störpegel			< 58°	< 25 8	<100	>100 r

Monatsübersicht Januar 1957

Die abfallende Tendenz der Sonnenfleckenrelativzahl hielt auch im Januar an. Im Verlauf des Monats wurden zwei auffallende Maxima der Sonnenfleckenrelativzahlen sowie der Radiofrequenzstrahlung der Sonne beobachtet, und zwar am 6. 1. mit einer Sonnenfleckenrelativzahl von 244 und mit Spitzen der Radiofrequenzstrahlung der Sonne von 134 10-22 W / Hz m² bei λ = 20 cm und 366 10-22 W / Hz m² bei λ = 3,2 cm. Diese Werte der Radiofrequenzstrahlung der Sonne sind die höchsten bisher gemessenen Werte. Ähnliche, wenn auch etwas niedrigere Maxima der Sonnenfleckenrelativzahl und der Radiofrequenzstrahlung der Sonne wurden vom 24. bis 27. 1. beobachtet.

Die Messungen der mittäglichen Absorption auf 3,86 MHz ergaben einen niedrigeren Mittelwert als im Dezember 1956. Als Tage mit besonders hoher Dämpfung sind zu bemerken der 6., 12., 30. und besonders der 15. 1.

Mögel-Dellinger-Effekte wurden im Januar relativ wenig beobachtet. Es muß jedoch die Tatsache berücksichtigt werden, daß wegen eines fremden Störers die Registrierungen zeitweise nicht auswertbar waren.

Die WWV-Beobachtungen zeigten keine besonders auffälligen Störungen der Kurzwellenausbreitung, lediglich am 22. und 25. 1. war die Ausbreitung auf der beobachteten Strecke beeinträchtigt.

Am 21. 1. wurde in Deutschland ein stärkeres Nordlicht beobachtet. Die damit verbundene Ionosphärenstörung war zwar nicht sehr stark, aber sie gibt ein Musterbeispiel ab für die Folge der verschiedenen mit einer Störung zusammenhängenden Erscheinungen. Am 20. 1. um 11.04 GMT setzte ein Mögel-Dellinger-Effekt ein, etwa gleichzeitig wurde auf 20 cm-Wellenlänge ein sehr starker Ausbruch der Radiofrequenzstrahlung der Sonne am Radioteleskop in Berlin-Adlershof beobachtet. Am 21. 1. um 13.00 GMT zeigte das Erdmagnetfeld nach Messungen der Horizontalkomponente in Juliustruh/Rügen einen plötzlichen Einsatz (sudden commencement). Acht Stunden danach, gegen 21 Uhr GMT setzten starke Streuechos als Einleitung der Ionosphärenstörung ein, wieder nahezu gleichzeitig mit den ersten Nordlichterscheinungen.

In der UKW-Ausbreitung trat bei mittleren Werten am Anfang des Monats nach einem Anstieg am 8. und 9. 1. zwischen dem 9. und 15. 1. ein starker Abfall ein. Auffallend sind danach die hohen Werte auf allen Strecken am 20. und 21. 1. Gegen Ende des Monats war bei größeren Schwankungen die Ausbreitung, abgesehen vom 27. und 28. 1., mittel bis gut.

Sanitized Copy Approved for Release 2010/03/11: CIA-RDP80T00246A037100400001-5

10

Radiofrequenzstrahlung der Sonne Tägliche Daten Monat Januar 1957 Frequenz: 1500 MHz

Messungen der Station Berlin-Adlershof

Tag	Strahlung W · 10-22 Tages-mittel	
GMT	8 9 10 11 12 13 14 15 9 10 11 12 13 14 15 16	
1. 2. 3. 4. 5.	- 123 126 124 126 123 124 126 124 123 126 128 127 126 123 124 126 125 124 123 124 - 125 124 132 128 127	
6. 7. 8. 9. 10.	127 142 139 129 134 121 117 120 118 120 119 119 114 114 127 121 116 113 118 107 107 108 105 106 108 107 101 103 106 105 106 104 102 - 103	
11. 12. 13. 14. 15.	- 102 103 101 100 98 96 - 100 93 93 93 94 99 94 - 101 101 98 96 99 - 97 97 95 93 93 95 93 94 - 93 91 93 93 - 93	
16. 17. 18. 19. 20.	93 96 91 94 96 93 94 91 90 93 93 90 88 86 - 90 95 95 95 91 96 94 92 - 94 94 97 99 100 103 99 - 101 111 - 120 114 103	
21. 22. 23. 24. 25.	101 104 103 105 104 106 105 - 104 - - 108 112 110 107 104 - 108 112 110 108 114 115 112 110 - 116 119 119 122 121 125 125 - - 122 111 110 112 112 114 114 109 - 112	
26. 27. 28. 29. 30.	115 113 115 118 116 118 115 - 116 - 124 125 131 130 126 127 102 103 104 106 106 107 104 - 105 98 98 99 103 100 96 93 - 98 99 98 101 100 100 98 97 - 99	
31.	101 101 102 100 97 - 100 Monatsmittel: 108	

Unterstreichungen bedeuten Strahlungsausbruch.

Radiofrequenzstrahlung der Sonne Tägliche Daten Monat Januar 1957 Frequenz: 9400 MHz Messungen der Station Berlin-Adlershof

Tag		S	trah:	lung	Hz 1	n ² °	10	22	Tages- mittel	Bemerkungen
	GMT	8 9	9 10	10 11	11 12	12 13	13 14			
1。 2。 3。 5。			332 338 318 313		330 345 315 295	34 7 287	320 340	&= 	329 338 319 299	
6. 7. 8. 9. 10.		317 297 285 267		347 315 305 280 265	392 313 300 258 273	377 308 277 275 271	348 308 260 270 268		366 313 290 275 269	
11. 12. 13. 14. 15.		265	273 267 267 263 253	271	271 267 275 260 253	273 271 273 260 250	271 253 243		272 267 272 259 250	
16. 17. 18. 19. 20.		263 265	260 263 263 273 2 6 5	263 263		270 280 265 273 295	285	273 260	264 269 263 272 3 64	
21. 22. 23. 24. 25.		292 315	300 292	277 305 295 315 305	300 303 313	280 297 303 317 310	280 290 300 327 310	277 283 297 323	277 294 297 317 306	
26. 27. 28. 29. 30.		270	300 275	293 303 277	322 285	320 275	312 307 275	310	305 310 276	
31.		=	=	=	=	-	=	co	=	
		Mone	tsmi	ttel	. :				282	

Unterstreichungen bedeuten Strahlungsausbruch.

12

Radiofrequenzstrahlung der Sonne Strahlungsausbrüche Monat Januar 1957 Frequenz: 1500 MHz

Messungen der Station Berlin-Adlershof

Tag	Beginn GMT	Dauer min.sec.	Zeit des Maximums GMT	Туре	₩ Hz m ² ·10 ⁻²²	Größe be- zogen auf den Tages- mittelwert	Bemerk.
2.	11.54 12.45 13.26	2 20 4 40 1 30	11.54,5 12.45 12.48 13.27	SD CD CD	139 248 148 146	1 ,1 2 1,97 1,17 1,19	
3.	11.00,	5 2 15 1 -	11.02 11.19	CD SD	167 1 36	1,33 1,08	
6.	10.28	2 40 -	13.30 14.00	CD	174 135	1,35 1,05	
7.	13.43	11 20	13.47	SD	151	1,27	
8.	10.04 13.18	79 - 2 20	10.12 13.19	SD SD	146 160	1,23 1,42	
9.	10.21	1 -	10,21,3	SD	122	1,12	
10.	11.07 12.48	21 - 6 30	11.09 12.49	SD SD	208 113	1,98 1,07	
18.	12.18 14.21 14.32	26 40 3 20 - 30	12.20 14.22 14.32	CD CD SD	134 103 104	1,40 1,12 1,13	
19。	10.51	29 -	11.00	CD	108	1,09	
20.	10.06	217 -	10.09) 10.41 11.24	CD	118 122 280	1,06 1,10 2,52	
21.	10.29,	5 2 30	10.30	SD	113	1,09	
22.	10.15 10.20	1 - - 30	10.15,5 10.20	CD SD	118 122	1,09 1,13	
23.	10.49 14.33	9 30 5 4 -	10.52 14.34	CD SD	147 131	1,36 1,19	
24.	12.30	45 -	12.43	CĎ	182	1,46	
25.	8,40 12,23	1 20	8.40,5 12.23,5	SD SD	116 124	1,04 1,09	
26.	11.12 1 4.13	5 - 19 4 0	11.16 14.14	CD CD	123 181	1,04 1,57	

13

Radiofrequenzstrahlung der Sonne Strahlungsausbrüche Monat Januar 1957 Frequenz: 9400 MHz

Messungen der Station Berlin-Adlershof

Tag	Beginn GMT	Dauer min.sec.	Zeit des Maximums GMT	Type	W 10 ⁻²²	Größe b zogen a den Tag mittelw	uf Bemerk. es-
2.	11.54 12.10 12.46	2 20 50 - 3 40	11.54,5 12.12 12.46 12.48	SD SD CD	330 552 340 340	1,02 1,68 1,06 1,06	
	13.25	4	13.27	SD	395	1,25	
3.	10。55 11。57	30 - 1 -	11.02 11.57	SD SD	385 365	1,19 1,06	
4.5	9。37 12。34 13。04	3 = = 30 5 30	9.38 12.34 13.04 13.07	SD SD CD	330 372 340 320	1,04 1,025 1,18 1,11	
6,	10,27 >	·240 =	11.05 11.43 13.29 14.06	CD	405 435 1410 430	1,03 1,11 4,05 1,24	
7。	9.06 12.22 13.42	40 = 29 = 15 =	9.10 12.22 13.46	SD SD CD	343 585 487	1,08 1,90 1,58	
8,	9°55 13°21 >	108 - > 40 -	10.30 13.31	SD GD	315 303	1,03 1,17	Ende nicht beobachtet
			13。45		315	1,21	
9。	9。47	8 30	9.49	CD	330	1,17	
10。	8°56 9°58 11°02	4 = 40 54 =	8.58 9.58 11.03	SD SD SD	283 278 473	1,06 1,04 1,73	
11.	12.15	3 -	12.17	SD	278	1,02	
16.	12.21 13.25	2 40 2 30	12.22 13.26	SD SD	282 317	1,05 1,21	
17.	11014	8	11.17	SD	383	1,49	
18.	12.18 14.21	23 30	32.20 14.22 14.23	CD	425 295 295	1061	

Tag	Beginn GMT	Dauer min.sec.	Zeit des Maximums GMT	Туре	W 10 ⁻²²	Größe be- zogen auf den Tages- mittelwert	Bemerkungen
19.	10.53	74 -	11.05	SD	303	1,11	
20.	10.45	180 -	11.59	SĎ	360	1,22	
21.	10.26 12.37	17 30 8 -	10.30 12.39	SD CD	335 297	1,21 1,06	
22.	9.48	42 30	10.05	CD	330	1,08	
23.	10.50 14.33	65 - 7 -	11.08 14.34	SĎ SD	332 387	1,10 1,30	
24.	12.25	77 -	12.37	CĎ	590	1,86	
25.	8.40 10.58	5 - 23 30	8.41 11.04	SD CD	323 455	1,09 1,48	
26.	11.08 12.15 13.32 14.06	62 - 15 - 1 - 21 -	11.17 12.16 13.32 14.14	CD SD SD CD	357 317 345 390	1,22 1,02 1,11 1,26	
28.	10.43	3 -	10.44	SĎ	340	1,23	

Ionosphärische Mittags-Absorption auf 3,86 MHz Messungen der Station Juliusruh/Rügen

Mittlere Dämpfung zwischen 11.00 und 13.00 MEZ

Januar 1957

Tag	L (db)	Tag	L (db)
_		4.0	47
1.	15	16.	13
2.	11	17.	9
3.	7	18.	13
4.	9	19.	14
5.	10	20.	9
6.	17	21.	8
7.	11	22.	11
8.	8	23.	14
9.	C	24.	9
10.	13	25.	11
11.	10	26.	13
12.	12	27.	14
13.	17	28.	11
14.	12	29.	10
15.	20	30 .	17
		31.	13

Mögel-Dellinger-Effekte (S.I.D.) und Sonneneruptionseffekte (S.E.A.) - Messungen der Station Neustrelitz

<u>Mitteilungen über S.E.A.</u> - Messungen des Meteorologischen Observatoriums Kühlungsborn

Januar 1957

Tag	S.I.D. Neustrelitz	Neustrelitz	S. E. A.	ihlungs bo r	•70
+α6	2614 kHz	20,2 kHz	14 kHz	27 kHz	40 kHz
1.	13.40 0 20	13.42 2 24	-	13.36 2 55	13.36 2 30
2.	12.10 0 50	12.10 3 40	25-	12.13 2 35	12.13 3 50
4.	~ ,	&	15.20 1 20	15.20 1 20	8
6.	13.35 2 30	13.31 3 38	-	13.31 2 30	13.30 2 35
	.	17.05 3 45	-	5 23	5
7•	12.28 0 30	12 .2 6 3 40	12.29 1 15	12.24 1 30	12.25 2 35
	13.47 2 70	13.44 3 76	13.43 1 30	13.43 2 45	13.43 2 45
8.	x	13.21 3 69	_	13.30 2 50	13.30 2 60
10.	10.51 2 xx	10.48 3 18	cos	10.47 1 xx	10.48 0 xx
	11.14 2 50	11.12	-	11.11 1 30	11.11 0 25
12.	x	12.08 3 22	-	-	~
14.	-	08.08 2 47	65	-	=
17.	11.21 0 30	5	-	11.20 0 15	11.18 0 25
		15•10 3 29	-	_	
18.	x	12.23 3 31	-	12.23 0 20	12.24 1 35
	x	14•21 3 48	-	14.22 1 35	69
٠					

	S.I.D.		S. E. A.		
Tag	Neustrelitz 2614 kHz	Neustrelitz 20,2 kHz	14 kHz	ihlungsbor 27 kHz	40 kHz
19.	11.03 1 30	10.59 3 36	&	11.00 1 60	11.00 1 60
	e tan	14.42 3 18	حت		es.
20.	sehr hoh e Dämpfung	=		ois 13.30 s Mittagsm	
21.	**	14.13 2 18	ew	14.10 0 30	
	Cas	15.18 3 38	825	15.17 1 25	-
23.	10.55 2 40	10.53 3 46	10.58 1 35	10.54 2 50	10.55 2 60
	x	14.30 3 44	0	14.37 0 15	Specia.
24.	65	12.33 3 34	5	12 .30 2 65	12.31 2 65
	4 25	14.06 3 36	==>	14 . 12 0 30	
	15•10 1 30	15 . 21 3 24	15.25 1 20	15.28 1 20	
	tura	16.37 x xx	16.39 1 xx	16.40 0 xx	
25.	E3-	5	-	11.01 0 30	10.59 0 25
	x	13 .1 8 3 59	13.25 tes Ma		ausgepräg-
	25	14 .3 8 2 51	6	14.37 0 30	مدنة
26.	uia-	08 . 40 2 17	_	6 23	-
	14.16 1 20	14.14 3 28	14.14 0 25	14.17 1 25	14.18 0 25
27.	07•43 2 xx	07•42 2 xxx	-	07.42 2 xxx	æ
	x	12.16 3 41			æ
	x	13.06 1 24		-	-
28.	-	-	11.50 Anstie	bis 12.08 g	st ei ler

19

Erdmagnetische Aktivitätszahlen und Kennziffern Messungen des Adolf-Schmidt-Observatoriums Niemegk Januar 1957

Tag	n .	. f	AK	∑ K1	К 1
1。 2。 3。 5。	01000	0.5 0.5 0.5 0.5 0.5	7 27 18 2 5	13 27 16 6 11	1113 3220 2225 3265 3223 2112 1012 1001 1112 1131
6。 7。 8。 9. 10.	0 0 1 1 1	0.5 0.5 0.5 1	6 8 17 15 29	12 15 25 23 31	0213 2022 2223 3111 3324 3343 2212 4444 3343 3555
11。 12。 13。 14。 15。	0 0 0 0	0.5 0.5 0 0 0	12 5 4 3 9	19 10 10 6 15	4133 3122 2311 1002 2012 1112 0021 1110 1111 3233
16. 17. 18. 19. 20.	0 0 0 0	0.5 0.5 0 0.5 0	8 7 1 7	16 14 2 13 9	3222 2221 2112 1232 0001 1000 0012 2332 2101 1211
21。 22。 -23。 24。 25。	2 2 1 1 1	2 2 0.5 0.5 1	78 55 18 30 18	35 35 26 30 24	2233 5569 8554 4432 3334 3343 4423 4265 5333 2134
26. 27. 28. 29. 30.	0 0 1 1	0.5 0.5 0.5 1	11 12 8 23 24	20 20 15 26 29	2233 2323 2224 3322 1211 2233 2123 5544 5443 3343
31.	0	0.5	11	20	22 23 2333

Zweite erdmagnetische Kennziffern K₂

Messungen des Adolf-Schmidt-Observatoriums Niemegk

Januar 1957

Tag	0-3	3-6	6-9	9-12	12-15	15-18	18-21	21-0
1.	1001	1001	1001	1002	1001	1001	1001	1000
2.	1001	1001	1001	2012	1001	1001	2013	2012
3.	2002	1001	2001	3002	3001	1001	1001	1001
4.	1001	1000	1001	1001	1001	1000	1000	1001
5.	1001	1001	1001	1001	1001	1001	1001	1001
6.	1000	1001	1001	2002	1001	1000	2001	1001
7.	1001	1001	1001	1001	1001	1001	1001	1001
8.	2002	1001	1001	2002	1002	1012	2012	2111
9.	1001	1001	1001	1001	2002	2211	2211	2012
10.	1002	2012	2211	1002	1012	2211	2012	2211
11.	1002	1001	1001	1001	2002	1001	1001	2001
12.	1001	1101	1001	1001	1001	1000	1000	2001
13.	1001	1000	1001	1001	1001	1001	1001	1001
14.	1000	1000	1001	1001	1001	1001	1001	1000
15.	1001	1001	1001	1001	1001	1001	1001	1101
16.	1001	1001	1001	1001	1001	1001	1001	1001
17.	1001	1001	1001	1001	1001	1001	1001	1001
18.	1000	1000	1000	1001	1001	1000	1000	1000
19.	1000	1000	1001	1001	1001	1001	1002	1001
20.	1001	1001	1000	1001	1001	1001	1001	1001
21.	1001	1001	1001	2002	3012	2023	3033	3033
22.	3033	3033	3022	3012	3002	3012	2001	2001
23.	2002	3002	3012	2002	1001	1002	2211	1002
24.	2111	2012	1001	2002	2002	2001	3321	2002
25.	2012	2001	2002	2002	2001	2001	2001	2211
26.	1001	1001	1001	2001	1001	1002	1001	1002
27.	1001	1001	1001	1002	1001	1002	1001	1001
28.	1001	1001	2001	1001	1001	1001	1101	1001
29.	1001	1001	1001	1001	2022	2022	2012	2012
30.	2221	1012	1012	1002	1011	1002	1111	1002
31.	1001	1001	1001	1002	1001	1002	1002	1111

Plötzliche Sturmausbrüche (S.C.C.) Messungen des Adolf-Schmidt-Observatoriums Niemegk

Januar 1957

Tag	Zeit
2.	09.09
21.	12,56
29。	13.12

Feldstärkemessungen (µV/m) der Sender WWV Messungen der Station Neustrelitz - Januar 1957

Dat	MHz	00	02	04	0 6	08	10	12	14	16	18	20	22	Ē	Σĸ	R
2。 1。 57	2.5 10 15 20 25					7.5 14 x	6.0 X	16 6.5 x	16 11 x	9.5 x	16 9.0	6.2 6.2	23 V 14 V		28	180
3.	2.5 10 15 25 25	17 7.0 48 -	- - - - -	25 3.2 90 7.5	15 9.0 28 15	7.0 8.5 13	11 64 8.3	X 11 X	12 9.5 x	8.2 10 x	6.4 6.3	5.5	19 11 8.8 V	5.0 5.0 5.6 5.6	19	203
4.	2.5 5.5 10 15 25 25	40 32 13 3.5	43 36 39	33 48	50 25 11	6.8 8.5 2.4	10 10	3.0 33 x	5.4 7.3 x	9.6 9.8 x	18 11 x	4.5 8.8 5.5	7.5 9.0 3.6 <	15 13 14 5.8	9	195
5•	2.5 5 10 15 20 25	12 48 6.2 2.0	30 26 17 3.5	19 40 16 2.5	70 19 4.2	18 46 16	1.7 6.5 5.5	4.5 19 7.0 x	12 10 x	17 7.5 x	24 7.6	8.0 16 3.5	12 11 13 2.3	14 17 14 3.8	9	217
7•	2.5 5 10 15 20 25	7.5 35 50 5.0	10 42 20 V	35 27 76	40 10 2.8	10 49 24 <	3.5 5.0 x 2.5	17 9.3	8.2 8.3 x	16 5.5 x	16 7.8 x	12 70 11	9.5 10 64	9.6 16 33 4.1	14	215
8.	2.5 5 10 15 20 25	7.5 4.5 3.6	22 9.0 10 <	26 12 38	36 16 x	12 60 28 6.8	14 x < 2	7.3 x	8.3 x	9.4 7.5 x	24 9.0	x 28 <	11 13 32 5.0	9.5 12 22 3.7 x	27	196
9•	2.5 5 10 15 20 25	12 25 44 11	25 16 38 4.5	40 28 48 V	13 7.0 5.6	11 44 9.0	4.3 10 8.0	7.0 13 8.3 x	18 7.0 x	11 4.5 x	7.0 x	8.0 6.0 <	7.8 15 5.4	9.4 13 19 3.5 x	24	156
10.	2.5 5 10 15 20 25	21 21 11	25 19 17	20 26 30	12 15 24	2.1 12 12	3.4 17	11 3.5	5.5 x	9.3 x	10	15 15	7.5 11 7.8	7.3 9.0 15 1.5	34	135
11.	2,5 10 15 20 25	15 10 x	13 14 38 <	19 15 40 V	20 13 8.0	16 <	8 0 V V 1 1	5.3	3.8 x	4.4 6.5	18 2.5 x	2.3 30 2.5	17 40	86.7 7.3 18 1.7	20	145

Sanitized Copy Approved for Release 2010/03/11: CIA-RDP80T00246A037100400001-5

Dat	MHz	00	02	04	06	08	10	12	14	16	18	20	22	Ē	\sum k	R
12. 1. 57	2.5 10 15 20 25	24 11 10 V	23 18 38	11 9.0 X	35 19 X	16 29 X	8.5 X	- < x 10 x	7.0 10	12 7•3	14 14	17	15 11 9•2	10 9.6 16 3.4	11	148
14.	2.5 5 10 15 20 25	35 27 2.4	70 23 4.0	120 19 1	83 31 <	5.5 21 x	3.2 9.6	6.0 7.3	9.0 7.0	9.2 9.0 X	19 5.0	15 4.0 <-	8.0 2.6 <	27 12 6.3 2.4	10	141
15.	2.5 50 150 25	#0 5.0 -	50 < x	80 < 8	16 3.3 <	4.0 34	2.5	- - - 7•5	5.8 x	9.6 5.5	14 8.5 x	6.6	13 13 4.2	150 2.0 7.8 2.3 X	16	90
16.	2.5 10 15 25 25	38 6.0 <	2.3 <	58 25 V	50 -	10 47 x	10 X	- < x 6,3	3.8 6.8 x	5.8 7.8	8.6 9.5 x	1.2 6.4 5.3	12 0.6 <	21 7.7 2.7 3.0	15	90
17.	2.5 10 15 20 25	55 0•9 <-	80 3.9 2.8	65 1.0 8.4	5.4 2.4	9.0 35 9.4	8.5 12	7 12 12 x	6.2 7.5 X	3.6 5.0	13 7.8 X	11 5.0	8.3	26 5.3 6.6 2.7	15	100
18.	15 20 25	43 4.6 2.0	70 8.5 3.4	88 11 x	58 7.0	10 30	10 X	- - - - - - - - - - - - - - - - - - -	10 8.8	5.5 x	30 5•3 x	5.5 20 <	25 16 11	25 7•7 9•3 X	4	126
19。	2.5 5 10 15 20 25	22 10 1.4	33 19 <	21 33 <	22 13	16 43 V		10 4.4	6.8 12	5.6 12	8.4 17	12 8.0	4	11 14 4.1 3.8		150
21.	2.5 10 15 20 25	30 12 1.8	33 12 <	13 5•5 <	7.5 7.0 2.6	7.0 11 12	14 32 8•3	3.6 13 12 x	9.2 8.0	- - - -	4.6 <	2.7	=	96.784 96.62	35	155
22.	2.5 10 15 20 25	7.3 2.3 <	7.8	14	9.0	3.9 2.4 x	2.8 X	5.2 3.5	13 X	9.8 4.3	9.4	5.0 10 <	4.0 3.3 3.9	3.8.3.0.5.X	36	183

Dat	MHz	00	0 2	04	06	08	10	12	14	16	18	20	22	È	$\sum K$	R
23. 1. 57	2.5 10 15 20 25		8.0 4.7 4.0	5.0 6.0 2.0	4.5 V	X X	2.6 5.8		- x <-	- x <	6.2	7.6	4.3 2.9 8.4	1.9	29	171
24.	2.5 5 10 15 20 25	8.8 21 7.6	7.0 17 3.6	6.0 12 2.0	4.5 17 24	6,0 X	4.2 \ \ \ \ \	- < < 8 3.8	5.4 6.5	3.8 7.3	8.2 7.0	1 1 4 4 1 1	x << -	6.4	31	201
25.	2.5 10 15 20 25	9.0	9.8 3.1 <	5.8 4.2 <	6.8 2.6 V	5.5 5.4	3.5 x	7.4 2.3	5.2 6.8 x	9•5 x	8.8 8.8 8.8	5.4 7	3.0 3.1 3.8 <	2.8 3.6	28	170
26.	2.5 5 10 15 20 25	5.3 2.9 6.6 3.3	19 8.5 6.6	16 10 x	8.8 24 10	2.1 30 12	12 11 <	9.5 X	- <22 4.3	9.0 3.8	9.0 12 x	9.6 <	2.5 20 x	4.5 9.0 11 2.3	22	146
28.	2.5 5 10 15 20 25	3.8 38	33 20 <	9.0 37 x	4.8 49 22	0.6 27 15 <	14 X	4.02	5.2 7.3 x	- x 8.8	10 7•5	10 2.0	3.0 10 5.6	17	16	125
29.	2.5 5 10 15 20 25	5.8 2.8	5+3 11 4+2	9.5 7.5 8.8	7.3 3.7 x	4.0 33 13	11 6.0	7.8 7.8	7.2 3.5 x	3.0 x		1 1 4 4 4 1 1	4.3 18 <-	7.3	29	117
30.	2.5 5 10 15 20 25	8.0 29 1.6	7•5 9•5 V	8.3 8.0	10 24	10 8.8	< X	1.8 1.8	- x x	3.8 x	5.0 2.8	9.0 4.2 <	3.5 16 x	3.1 8.8 2.5 0.8	29	88
31.	2.5 10 15 20 25	7.0 13 3.2	53 21 <	18 11 -	24 14 13	1.8 19 17	* * * * * * * * * * * * * * * * * * *	4.5 X	6.2 7.0	2.5 x	3.4 2.8	3.3 12 2.0	5.3 5.0 <	9.1 7.2 5.0 1.6	23	92

Sanitized Copy Approved for Release 2010/03/11 : CIA-RDP80T00246A037100400001-5