INTEGRAIS TRIPLOS

Integral triplo sobre um paralelepípedo

 Seja f(x,y,z) uma função real a três variáveis, contínua numa região paralelepipédica (fechada), Π, do espaço, dada por:

$$\Pi = \left\{ (x,y,z) \in \mathbb{R}^3 \ : \ a \le x \le b \ , \ c \le y \le d \ , \ r \le z \le s \right\} = [a,b] \times [c,d] \times [r,s]$$

Pretende-se definir o *integral triplo* de f(x, y, z) sobre Π :

$$\iiint_{\Pi} f(x, y, z) dx dy dz \tag{1}$$

Considere-se uma partição para [a,b]

$$P_1 = \{x_0, x_1, ..., x_m\}$$
, tal que $a = x_0 < x_1 < ... < x_m = b$

uma partição para [c,d]

$$P_2 = \{y_0, y_1, ..., y_n\}$$
, tal que $c = y_0 < y_1 < ... < y_n = d$

e uma partição para [r,s]:

$$P_3 = \{z_0, z_1, ..., z_p\}$$
, tal que $r = z_0 < z_1 < ... < z_p = s$

O conjunto resultante do produto cartesiano de P_1 , P_2 e P_3

$$P = P_1 \times P_2 \times P_3 = \left\{ (x_i, y_j, z_k) \in \mathbb{R}^3 : x_i \in P_1, y_j \in P_2, z_k \in P_3 \right\}$$

chama-se partição P para a região Π .

A partição P permite definir, sobre a região Π , $m \times n \times p$ paralelepípedos elementares (que não se sobrepõem), com faces paralelas aos planos coordenados:

$$\Pi_{ijk} = \left\{ (x, y, z) \in \mathbb{R}^3 : x_{i-1} \le x \le x_i, y_{j-1} \le y \le y_j, z_{k-1} \le z \le z_k \right\} =$$

$$= [x_{i-1}, x_i] \times [y_{j-1}, y_j] \times [z_{k-1}, z_k], (i = 1, ..., m; j = 1, ..., n; k = 1, ..., p)$$

- Designa-se por diâmetro da partição P para a região Π o comprimento, δ_P , da maior diagonal de entre todos os paralelepípedos elementares Π_{ijk} , para i=1,...,m, j=1,...,n e k=1,...,p.
- Seja ΔV_{ijk} o volume de cada paralelepípedo elementar Π_{ijk} , para $i=1,...,m,\ j=1,...,n$ e k=1,...,p, e escolha-se, em cada um destes paralelepípedos, um ponto arbitrário $P_{ijk}=(x_{ijk},y_{ijk},z_{ijk})$.

Considerando o valor da função f(x,y,z) em cada ponto P_{ijk} , $f(x_{ijk},y_{ijk},z_{ijk})$, formem-se as somas triplas de Riemann relativas à partição P:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{p} f(x_{ijk}, y_{ijk}, z_{ijk}) \Delta V_{ijk}$$
 (2)

Assim, se para toda a partição P para a região Π o limite das somas (2) existir e for finito, sendo independente da escolha de $P_{ijk} = (x_{ijk}, y_{ijk}, z_{ijk})$, esse limite é designado por *integral triplo de* f(x, y, z) sobre a região Π e escreve-se:

$$\iiint_{\Pi} f(x, y, z) dx dy dz \text{ ou } \iiint_{\Pi} f(x, y, z) dV.$$

Nestas condições, verifica-se

$$\iiint_{\Pi} f(x, y, z) dx dy dz = \lim_{\delta_P \to 0} \left(\sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^p f(x_{ijk}, y_{ijk}, z_{ijk}) \Delta V_{ijk} \right)$$
(3)

e f(x, y, z) diz-se uma função integrável em Π .

Sendo δ_P o diâmetro de uma partição P para a região Π , quando se considera em (3) o limite, quando δ_P tende para zero, está-se a admitir que a partição P é formada por um número crescente de paralelepípedos elementares, Π_{ijk} , cada um deles de volume cada vez menor, ou seja:

quando
$$\delta_P
ightarrow 0$$
 , $\Delta V_{ijk}
ightarrow 0$.

• Considerando em (3) f(x, y, z) = 1 para todo o $(x, y, z) \in \Pi$, então

$$\iiint_{\Pi} dxdydz = \lim_{\delta_P \to 0} \left(\sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^p \Delta V_{ijk} \right) = V(\Pi)$$

sendo $V(\Pi)$ o volume da região paralelepipédica Π .

• Se a função real a três variáveis f(x,y,z) é integrável numa região paralelepipédica

$$\Pi = [a,b] \times [c,d] \times [r,s]$$

então a aplicação do *método dos integrais iterados* ao intergral triplo (1) conduz a:

$$\iiint_{\Pi} f(x, y, z) dx dy dz = \int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) dx dy dz =$$

$$= \int_{r}^{s} \int_{a}^{b} \int_{c}^{d} f(x, y, z) dy dx dz = \int_{a}^{b} \int_{r}^{s} \int_{c}^{d} f(x, y, z) dy dz dx =$$

$$= \int_{a}^{b} \int_{c}^{d} \int_{r}^{s} f(x, y, z) dz dy dx = \int_{c}^{d} \int_{a}^{b} \int_{r}^{s} f(x, y, z) dz dx dy =$$

$$= \int_{c}^{d} \int_{r}^{s} \int_{a}^{b} f(x, y, z) dx dz dy$$

Integral triplo sobre uma região limitada do espaço

O cálculo do integral triplo

$$\iiint_{\Pi} f(x, y, z) dx dy dz \tag{4}$$

onde Π é uma qualquer região limitada do espaço, é feito usando um método similar ao utilizado no caso do integral duplo.

Considere-se uma região paralelepipédica Π* que contém a região Π
 e uma função real a três variáveis f*(x, y, z) definida por

$$f^*(x,y,z) = \begin{cases} f(x,y,z) \text{, se } (x,y,z) \in \Pi \\ 0 \text{, se } (x,y,z) \in \Pi^* \setminus \Pi \end{cases}$$

que resulta da extensão de f(x, y, z) à região Π^* .

A função $f^*(x,y,z)$ é limitada na região Π^* e é contínua em todos os pontos de Π^* , excepto, possivelmente, em pontos que pertencem à fronteira de Π .

Verifica-se, então, que

$$\iiint_{\Pi} f(x, y, z) dx dy dz = \iiint_{\Pi^*} f^*(x, y, z) dx dy dz$$

e diz-se que f(x, y, z) é integrável em Π se $f^*(x, y, z)$ for integrável na região paralelepipédica Π^* .

• Considerando f(x, y, z) = 1 em (4), conclui-se que o integral triplo

$$V(\Pi) = \iiint_{\Pi} dx dy dz$$

exprime o volume do sólido, $V(\Pi)$, descrito pela região Π .

Cálculo do integral triplo (região limitada do espaço)

 O cálculo do integral triplo sobre uma região fechada e limitada, Π, do espaço pode ser reduzido ao cálculo do integral sobre uma de três tipos de regiões básicas.

• Uma região do espaço, Π , diz-se do *Tipo 1*, se existir uma região Ω_{xy} do plano xOy, tal que

$$\Pi = \left\{ (x, y, z) \in \mathbb{R}^3 : (x, y) \in \Omega_{xy}, \phi_1(x, y) \le z \le \phi_2(x, y) \right\}$$

em que $\phi_1(x,y)$ e $\phi_2(x,y)$ são funções contínuas em Ω_{xy} .

A região Π define um sólido cuja projecção sobre o plano xOy é a região Ω_{xy} , sendo limitado superiormente pela superfície, S_2 , de equação $z = \phi_2(x,y)$ e inferiormente pela superfície, S_1 , de equação $z = \phi_1(x,y)$.

Neste caso, tem-se:

$$\iiint_{\Pi} f(x, y, z) dx dy dz = \iint_{\Omega_{xy}} \left(\int_{\phi_1(x, y)}^{\phi_2(x, y)} f(x, y, z) dz \right) dx dy \tag{5}$$

Em primeiro lugar calcula-se

$$A(x,y) = \int_{\phi_1(x,y)}^{\phi_2(x,y)} f(x,y,z) dz$$
 (6)

integrando a função f(x,y,z) em relação à variável z entre $z = \phi_1(x,y)$ e $z = \phi_2(x,y)$. O resultado de (6) é uma função nas variáveis x e y, A(x,y), que deverá ser integrada em Ω_{xy} .

• Uma região do espaço, Π , diz-se do *Tipo 2*, se existir uma região Ω_{yz} do plano yOz, tal que

$$\Pi = \left\{ (x, y, z) \in \mathbb{R}^3 : (y, z) \in \Omega_{yz} , \psi_1(y, z) \le x \le \psi_2(y, z) \right\}$$

em que $\psi_1(y,z)$ e $\psi_2(y,z)$ são funções contínuas em Ω_{yz} .

A região Π define um sólido cuja projecção sobre o plano yOz é a região Ω_{yz} , sendo limitado superiormente pela superfície, S_2 , de equação $x = \psi_2(y,z)$ e inferiormente pela superfície, S_1 , de equação $x = \psi_1(y,z)$.

Neste caso, tem-se:

$$\iiint_{\Pi} f(x, y, z) dx dy dz = \iint_{\Omega_{yz}} \left(\int_{\psi_1(y, z)}^{\psi_2(y, z)} f(x, y, z) dx \right) dy dz$$
 (7)

Em primeiro lugar calcula-se

$$B(y,z) = \int_{\psi_1(y,z)}^{\psi_2(y,z)} f(x,y,z) dx$$
 (8)

integrando a função f(x,y,z) em relação à variável x entre $x = \psi_1(y,z)$ e $x = \psi_2(y,z)$. O resultado de (8) é uma função nas variáveis y e z, B(y,z), que deverá ser integrada em Ω_{yz} .

• Uma região do espaço, Π , diz-se do *Tipo 3*, se existir uma região Ω_{xz} do plano xOz, tal que

$$\Pi = \left\{ (x, y, z) \in \mathbb{R}^3 : (x, z) \in \Omega_{xz} , \lambda_1(x, z) \le y \le \lambda_2(x, z) \right\}$$

em que $\lambda_1(x,z)$ e $\lambda_2(x,z)$ são funções contínuas em Ω_{xz} .

A região Π define um sólido cuja projecção sobre o plano xOz é a região Ω_{xz} , sendo limitado superiormente pela superfície, S_2 , de equação $y = \lambda_2(x,z)$ e inferiormente pela superfície, S_1 , de equação $y = \lambda_1(x,z)$.

Neste caso, tem-se:

$$\iiint_{\Pi} f(x, y, z) dx dy dz = \iint_{\Omega_{xz}} \left(\int_{\lambda_{1}(x, z)}^{\lambda_{2}(x, z)} f(x, y, z) dy \right) dx dz$$
 (9)

Em primeiro lugar calcula-se

$$C(x,z) = \int_{\lambda_1(x,z)}^{\lambda_2(x,z)} f(x,y,z) dy$$
 (10)

integrando a função f(x,y,z) em relação à variável y entre $y = \lambda_1(x,z)$ e $y = \lambda_2(x,z)$. O resultado de (10) é uma função nas variáveis x e z, C(x,z), que deverá ser integrada em Ω_{xz} .

 Os integrais apresentados em (6), (8) e (10) são designados por integrais iterados para o integral triplo.

Propriedades do integral triplo

• Sejam f(x,y,z) e g(x,y,z) funções integráveis numa região limitada do espaço, Π , e $\alpha,\beta\in\mathbb{R}$. Verifica-se:

i)
$$\iiint_{\Pi} [\alpha f(x,y,z) + \beta g(x,y,z)] dxdydz =$$

$$= \alpha \iiint_{\Pi} f(x,y,z) dxdydz + \beta \iiint_{\Pi} g(x,y,z)] dxdydz$$

ii) Se $f(x,y,z) \ge g(x,y,z)$ para todo o $(x,y,z) \in \Pi$, então:

$$\iiint_{\Pi} f(x, y, z) dx dy dz \ge \iiint_{\Pi} g(x, y, z) dx dy dz$$

iii) Se $\Pi = \Pi_1 \cup \Pi_2$, em que Π_1 e Π_2 são regiões do espaço que não se intersectam, excepto, possivelmente, nas suas fronteiras comuns, então:

$$\iiint_{\Pi} f(x, y, z) dxdydz = \iiint_{\Pi_1} f(x, y, z) dxdydz + \iiint_{\Pi_2} f(x, y, z) dxdydz$$

iv)
$$\left| \iiint_{\Pi} f(x, y, z) dx dy dz \right| \le \iiint_{\Pi} \left| f(x, y, z) \right| dx dy dz$$

 O teorema seguinte é conhecido por teorema do valor médio para o integral triplo.

Teorema 1: Sejam f(x,y,z) e g(x,y,z) funções contínuas numa região limitada do espaço, Π . Se $g(x,y,z) \ge 0$ para todo o $(x,y,z) \in \Pi$, então existe um ponto $(x_0,y_0,z_0) \in \Pi$ tal que:

$$\iiint_{\Pi} f(x, y, z) g(x, y, z) dxdydz = f(x_0, y_0, z_0) \iiint_{\Pi} g(x, y, z) dxdydz$$

O valor $f(x_0, y_0, z_0)$ chama-se média ponderada da função f(x, y, z) em Π através da função (de peso) g(x, y, z).

Exemplo 1: Calcule o integral triplo $\iint_T xyz \ dxdydz$, onde T é o sólido situado no primeiro octante, limitado pela superfície $z=4-x^2$ (cilindro parabólico) e pelos planos z=0, y=x e y=0. Considere T como uma região do Tipo 1.

Solução:

Na figura seguinte apresenta-se um esboço do sólido *T*.

Projectando T sobre o plano xOy (região Tipo 1), obtém-se

$$T = \left\{ (x, y, z) \in \mathbb{R}^3 : (x, y) \in \Omega_{xy} , 0 \le z \le 4 - x^2 \right\}$$

onde Ω_{xv} é a região do plano xOy tal que:

$$\Omega_{xy} = \left\{ (x,y) \in \mathbb{R}^2 : 0 \le x \le 2, 0 \le y \le x \right\}$$

Então:

$$\iiint_{T} xyz \ dxdydz = \iint_{\Omega_{xy}} \int_{0}^{4-x^{2}} xyz \ dz \ dxdy = \iint_{\Omega_{xy}} \frac{xy}{2} \left[z^{2} \right]_{0}^{4-x^{2}} dxdy =$$

$$= \frac{1}{2} \iint_{\Omega_{xy}} xy \left(4 - x^{2} \right)^{2} dxdy = \frac{1}{2} \int_{0}^{2} \int_{0}^{x} x \left(4 - x^{2} \right)^{2} y \ dydx =$$

$$= \frac{1}{4} \int_{0}^{2} x \left(4 - x^{2} \right)^{2} \left[y^{2} \right]_{0}^{x} dx = \frac{1}{4} \int_{0}^{2} x^{3} \left(4 - x^{2} \right)^{2} dx =$$

$$= \frac{1}{4} \int_{0}^{2} \left(16x^{3} - 8x^{5} + x^{7} \right) dx = \frac{1}{4} \left[4x^{4} - \frac{4}{3}x^{6} + \frac{x^{8}}{8} \right]_{0}^{2} = \frac{8}{3}$$

Exemplo 2: Escreva o integral triplo do exemplo 1, considerando *T*:

- a) Uma região do Tipo 2.
- b) Uma região do Tipo 3.

Solução:

a) Projectando T sobre o plano yOz (região Tipo 2), obtém-se

$$\mathcal{T} = \left\{ (x, y, z) \in \mathbb{R}^3 \ : \ (y, z) \in \Omega_{yz} \ , \ y \le x \le \sqrt{4 - z} \right\}$$

onde Ω_{yz} é a região do plano yOz tal que:

$$\Omega_{yz} = \left\{ (y, z) \in \mathbb{R}^2 : 0 \le y \le 2, 0 \le z \le 4 - y^2 \right\}$$

J.A.T.B.

Então:

$$\iiint_T xyz \ dxdydz = \iint_{\Omega_{yz}} \int_y^{\sqrt{4-z}} xyz \ dx \ dydz = \int_0^2 \int_0^{4-y^2} \int_y^{\sqrt{4-z}} xyz \ dx \ dzdy$$

b) Projectando T sobre o plano xOz (região Tipo 3), obtém-se

$$\mathcal{T} = \left\{ (x, y, z) \in \mathbb{R}^3 \ : \ (x, z) \in \Omega_{xz} \ , \ 0 \le y \le x \right\}$$

onde $\Omega_{\it XZ}$ é a região do plano $\it XOz$ tal que:

$$\Omega_{xz} = \{(x,z) \in \mathbb{R}^2 : 0 \le x \le 2, 0 \le z \le 4 - x^2 \}$$

Então:

$$\iiint_T xyz \ dxdydz = \iint_{\Omega_{xz}} \int_0^x xyz \ dy \ dxdz = \int_0^2 \int_0^{4-x^2} \int_0^x xyz \ dy \ dzdx$$

Exemplo 3: Calcule o volume do tetraedro, *T*, apresentado na figura da página seguinte.

Solução:

Projectando T sobre o plano xOy (região Tipo 1), obtém-se

$$T = \left\{ (x, y, z) \in \mathbb{R}^3 : (x, y) \in \Omega_{xy} , 0 \le z \le 1 - x - y \right\}$$

onde Ω_{xy} é a região do plano xOy tal que:

$$\Omega_{xy} = \left\{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le 1 - x \right\}$$

Então o volume, V(T), do sólido é:

$$V(T) = \iiint_{T} dx dy dz = \iint_{\Omega_{xy}} \int_{0}^{1-x-y} dz \ dx dy =$$

$$= \iint_{\Omega_{xy}} [z]_{0}^{1-x-y} dx dy = \iint_{\Omega_{xy}} (1-x-y) dx dy =$$

$$= \int_{0}^{1} \int_{0}^{1-x} (1-x-y) dy dx = \int_{0}^{1} \left[(1-x)y - \frac{y^{2}}{2} \right]_{0}^{1-x} dx =$$

$$= \int_{0}^{1} \left((1-x)^{2} - \frac{(1-x)^{2}}{2} \right) dx = \frac{1}{2} \int_{0}^{1} (1-2x+x^{2}) dx =$$

$$= \frac{1}{2} \left[x - x^{2} + \frac{x^{3}}{3} \right]_{0}^{1} = \frac{1}{6}$$