Welcome ladies to today's workshop

Data preprocessing

Brakta khadidja

- 1CS student at ESI Algiers
- Full stack web developer
- Al enthusiast

Plan and goals:

- What is data preprocessing
- Preprocessing steps
- Data preprocessing importance
- Data cleaning
- Data transformation
- Data Integration
- Data reduction

Data Collecting

We have many resources for data:

Kaggle

Data preprocessing

Data preprocessing is the process of transforming raw data into a clean and usable format.

Data preprocessing steps:

- Data cleaning
- Data transformation
- Data integration
- Data Reduction

ID	City	Degree	Age	Salary	Married ?
1	Lisbon	NaN	25	45,000	0
2	Berlin	Bachelor	25	NaN	1
3	Lisbon	NaN	30	NaN	1
4	Lisbon	Bachelor	-3	NaN	1
5	Berlin	Bachelor	18	NaN	0
6	Lisbon	Bachelor	NaN	NaN	0
7	Berlin	Masters	30	NaN	1
8	Berlin	No Degree	NaN	NaN	0
9	Berlin	Masters	25	NaN	1
10	Madrid	Masters	25	NaN	1

Data preprocessing importance:

- Improves data quality
- Enhances model performance
- Reduces training time
- Minimizes overfitting

Data cleaning:

Removing or correcting errors, handling missing values, and filtering out irrelevant or redundant data.

and we have two methods:

- Removing rows/columns
- Imputation

1.Removing rows:

ID	City	Degree	Age	Married ?
1	Lisbon	NaN	25	0
2	Berlin	Bachelor	25	1
3	Lisbon	NaN	30	1
4	Lisbon	Bachelor	30	1
5	Berlin	Bachelor	18	0
6	Lisbon	Bachelor	NaN	0
7	Berlin	Masters	30	1
8	Berlin	No Degree	NaN	0
9	Berlin	Masters	25	1
10	Madrid	Masters	25	1

ID	City	Degree	Age	Married ?
2	Berlin	Bachelor	25	1
4	Lisbon	Bachelor	30	1
5	Berlin	Bachelor	18	0
7	Berlin	Masters	30	1
9	Berlin	Masters	25	1
10	Madrid	Masters	25	1

2. Removing columns:

ID	City	Salary	Married ?
1	Lisbon	45,000	0
2	Berlin	NaN	1
3	Lisbon	NaN	1
4	Lisbon	NaN	1
5	Berlin	NaN	0
6	Lisbon	NaN	0
7	Berlin	NaN	1
8	Berlin	NaN	0
9	Berlin	NaN	1
10	Madrid	NaN	1

2.Imputation:

Replacing null valued cells using one of these strategy:

- Mean
- Median
- Mode
- Random values

Mean
$$\bar{x} = \frac{\sum xi}{N}$$
 Variance = $\frac{\sum (xi - \bar{x})^2}{N}$

Median =
$$\begin{cases} \frac{(N+1)^{th}}{2} \text{ term; when N is even} \\ \frac{N^{th}}{2} \text{ term} + (\frac{N}{2} + 1) \text{term} \\ \frac{N}{2} \text{ when N is even} \end{cases}$$

Mode = The value in the data set that occurs most frequently

Average_Age = 26.0

ID	City	Age	Married ?
1	Lisbon	25	0
2	Berlin	25	1
3	Lisbon	30	1
4	Lisbon	30	1
5	Berlin	18	0
6	Lisbon	NaN	0
7	Berlin	30	1
8	Berlin	NaN	0
9	Berlin	25	1
10	Madrid	25	1

ID	City	Age	Married ?
1	Lisbon	25	0
2	Berlin	25	1
3	Lisbon	30	1
4	Lisbon	30	1
5	Berlin	18	0
6	Lisbon	26	0
7	Berlin	30	1
8	Berlin	26	0
9	Berlin	25	1
10	Madrid	25	1

Data transformation:

- Feature scaling
- encoding categorical variables

Feature scaling

Encoding categorical data

Encoding categorical data is an important preprocessing step in machine learning, as many algorithms require numerical input. Here are the common techniques for encoding categorical data:

- 1. Label Encoding
- 2. One-Hot Encoding

1. Label Encoding

Original Data

Team	Points
A	25
A	12
B	15
В	14
В	19
В	23
C	25
c	29

Label Encoded Data

Team	Points
0	25
0	12
1	15
1	14
1	19
1	23
2	25
2	29

2. One-Hot Encoding

Original Data

Team	Points
Δ	25
Δ,	12
В	15
В	14
В	19
В	23
C	25
C	29

One-Hot Encoded Data

Team_A	Team_B	Team_C	Points
1	0	Ů	25
1	0	Ü	12
Ω	1	0	15
۵	1	0	14
۵	1	0	19
0	1	0	23
0	0	1	25
0	0	1	29

Data Integration

Combining data from different sources into a coherent dataset

Data reduction:

Reducing the volume of data by selecting relevant features, aggregating data, or using dimensionality reduction techniques.

Let's code!!

Thank You!