Modelo de Processos

UNIP - Araraquara

Curso: Ciência da Computação

Disciplina: Engenharia de Software

Profo: João Paulo Moreira dos Santos

- → Processo de Software
- Modelos de Processo
- Cømparação: cascata, evolucionário e RUP
- Ferramentas Case

3 Processo de Software

Um conjunto estruturado de atividades, procedimentos, artefatos e ferramentas necessários para o desenvolvimento de um sistema de software

Não existe um processo ideal

Processo de Software

5

04/08/20

Processo de Software

Ę

Processo de Software - Objetivos

- Visa a assegurar o desenvolvimento de software:
 - com prazos e necessidade de recursos definidos;
 - com elevada produtividade (de forma econômica);
 - com qualidade assegurada;

Permite:

- organizar
- **■** instrumentar
- planejar
- acompanhar projetos
- treinar equipes

- Apresenta a descrição de um processo de uma perspectiva particular, normalmente focando apenas em algumas atividades
- utilizados para explicar diferentes abordagens do desenvolvimento de software
- Torna-se essencial para a definição de processos eficientes, capazes de serem replicados

Modelos de Processo de software

- Modelos Genéricos
 - Modelo em Cascata
 - Modelo Evolucionário
 - Engenharia de Software Baseada em Componentes

- Processo Iterativo
 - Incremental
 - Espiral

Modelo Cascata

- Primeiro modelo a organizar as atividades de desenvolvimento.
- Fases
 - Definição e análise de requisitos
 - Projeto do sistema e do software
 - Implementação e testes de unidade
 - Integração e testes do sistema
 - Operação e manutenção
- Uma fase tem de estar completa antes de passar para a próxima.
 - Saídas das fases são acordadas contratualmente

Modelo Cascata

Modelo Cascata

Problemas:

- O resultado de cada fase envolve um ou mais documentos que são aprovados
 - Gera muita documentação, nem sempre utilizada posteriormente
- A fase seguinte não deve iniciar ate que a fase precedente tenha sido concluída
- Particionamento inflexível do projeto em estágios
 - Dificulta a resposta aos requisitos de mudança do cliente.
- Apropriado somente quando os requisitos são bem compreendidos e quando as mudanças são raras
 - Poucos sistemas de negócio têm requisitos estáveis.

Modelo Evolucionário

 Implementação inicial, exposição do resultado aos comentários do usuário e refinamento desse resultado em versões

- As fases de Especificação, desenvolvimento e validação são **intercalas**
 - Um rápido feedback por meio dessas atividades

Modelo Evolucionário

Modelo Evolucionário

■ Vantagens:

- Especificação desenvolvida de forma incremental
- Produz sistemas que atendam as necessidades imediatas dos clientes

Problemas:

- Processo não é visível
- Sistemas podem ser mal estruturados devido à mudança contínua
- Incorporar modificações torna-se cada vez mais difícil e oneroso

- Desenvolvimento rápido de um sistema
- O objetivo é entender os requisitos do usuário e, assim, obter uma melhor definição dos requisitos do sistema;
- Possibilita que o desenvolvedor crie um modelo (protótipo) do software que deve ser construído;

- Vantagens:
 - ► Melhoria na facilidade de uso do sistema;
 - Maior aproximação do sistema com as necessidades dos usuários;
 - Melhoria da qualidade do projeto;
 - Melhoria na facilidade de manutenção;
 - Redução no esforço de desenvolvimento

- Problemas:
 - O protótipo pode não ser necessariamente usado da mesma forma que o sistema final;
 - O testador do protótipo pode não ser um usuário típico do sistema;

Processos Iterativos

- Necessidade de utilizar diferentes abordagens para diferentes partes, de maneira que um modelo hibrido tem de ser utilizado;
- Necessidade de iteração, em que partes do processo são repetidas, a medida que os requisitos do software evoluem;
- Pode ser aplicado a qualquer um dos modelos genéricos de processo;
- Dois modelos:
 - **■** Incremental
 - Espiral

Processos Iterativos

Entrega 1

Entrega 2

Entrega 3

Incremental

Espiral

- O sistema é entregue ao cliente em incrementos
 - Cada incremento fornece parte da funcionalidade
- Os requisitos são priorizados
 - Requisitos de prioridade mais alta são incluídos nos incrementos iniciais.
- Uma vez que o desenvolvimento de um incremento é iniciado, os requisitos são congelados
 - Os requisitos para os incrementos posteriores podem continuar evoluindo (e incluir requisitos já implementados!)
- Uma vez que um incremento é concluído e entregue, os usuários podem colocá-lo em operação

Processos Iterativos – Incremental

Processos Iterativos – Incremental

Vantagens:

- Incrementos podem ser entregues regularmente ao cliente e, desse modo, a funcionalidade de sistema é disponibilizada mais cedo;
- Os incrementos iniciais agem como protótipos para elicitar os requisitos para incrementos posteriores do sistemas;
- Riscos menores de falha geral do projeto;
- Os serviços de sistema de mais alta prioridade tendem a receber mais testes

Processos Iterativos – Incremental

■ Problemas:

- Os incrementos devem ser relativamente pequenos, e cada incremento deve produzir alguma funcionalidade para o software;
- Dificuldade de identificar os recursos comuns exigidos por todos os incrementos

Processos Iterativos – Espiral

- Representa o processo de software como uma espiral
- Cada loop na espiral representa uma fase do processo de software
 - Ex: o loop mais interno pode estar relacionado a viabilidade do software
- Sem fases definidas, tais como especificação ou projeto – os loops na espiral são escolhidos dependendo do que é requisitado.
- Os riscos são explicitamente avaliados e resolvidos ao longo do processo

Processos Iterativos – Espiral

- Possui 4 setores:
- Definição dos objetivos
- 2. Avaliação e redução de riscos
- 3. Desenvolvimento e validação
 - 4. Planejamento

- Objetivos específicos para a fase são identificados
- Riscos são avaliados e atividades são realizadas para reduzir os riscos-chave
- Um modelo de desenvolvimento para o sistema, que pode ser qualquer um dos modelos genéricos, é escolhido
- O projeto é revisado e a próxima fase da espiral é planejada

Processos Iterativos – Espiral

28 Cascata x Evolucionário

CRITÉRIOS	CASCATA	EVOLUCIONÁRIO
Resistente à Mudanças	X	
Planejamento pré-determinado	X	X
Foco na documentação	X	Χ
Comunicação com o cliente	X	X
Prioridade das necessidades de acordo com o cliente		X
Testes unitários	Х	Χ
Software testado apenas no final	X	

Ferramentas Case (Computer – Aided SoftwareEngineering)

- → Ferramentas automatizadas;
- Auxiliam o desenvolvedor de sistemas em uma ou várias etapas do ciclo de desenvolvimento de software;
- Padronizam as modelagens desenvolvidas;
- Verificam a consistência, integridade e metodologia de diagramas;
- Reduzem ou eliminam inúmeros problemas durante ciclo de desenvolvimento.

Ferramentas Case (Computer – Aided Software Engineering)

FUNCIONALIDADES	FERRAMENTAS	
Controle de Versão	GitHub, Subversion	
Gerência de Projetos	MSProject	
Modelagem	Star UML, Astah	
/ Prototipagem	NetBeans, Pencil	
Programação	Eclipse, NetBeans	
Teste	xUnit	
Documentação	Office, OpenOffice	

Ferramentas Case (Computer – Aided Software Engineering)

■ Vantagens:

- Qualidade no produto final
- Produtividade
- Agilizar o tempo para tomada de decisão
- Menor quantidade de códigos de programação
- Melhoria e redução de custos na manutenção
- Agilidade no retrabalho do software
- Maior facilidade para desenvolvimento

Ferramentas Case (Computer – Aided SoftwareEngineering)

Desvantagens:

- Incompatibilidade de ferramentas
- Conhecimento para utilização