Quiz 1 Practice Problems: Cyclic Groups

Math 332, Spring 2010

These are not to be handed in. The quiz will be on Tuesday.

- 1. Find all generators of Z_6 , Z_8 , and Z_{20} .
- **2.** List all elements of the subgroup $\langle 30 \rangle$ in Z_{80} .
- **3.** If |a| = 60, what is the order of a^{24} ?
- 4. How many subgroups does Z_{20} have? List the possible generators for each subgroup.
- **5.** Suppose that |a| = 24. Find a generator for $\langle a^{21} \rangle \cap \langle a^{10} \rangle$. In general, what is a generator for the subgroup $\langle a^m \rangle \cap \langle a^n \rangle$?
- **6.** In Z_{60} , list all generators for the subgroup of order 12.
- 7. Let G be a group and let a be an element of G.
 - a. If $a^{12} = e$, what can we say about the order of a?
 - b. If $a^m = e$, what can we say about the order of a?
- 8. List all elements of order 8 in $Z_{8000000}$. How do you know your list is complete?
- **9.** Determine the subgroup lattice for Z_{p^2q} , where p and q are distinct primes.
- 10. Determine the subgroup lattice for Z_{p^n} , where p is a prime and n is some positive integer.
- **11.** If |x| = 40, list all elements of $\langle x \rangle$ that have order 10.
- 12. Determine the orders of the elements of D_{33} and how many there are of each.
- 13. If $|a^5| = 12$, what are the possibilities for |a|? What if $|a^5| = 15$?

Answers

1. For Z_6 , generators are 1 and 5; for Z_8 , generators are 1, 3, 5, and 7; for Z_{20} , generators are 1, 3, 7, 9, 11, 13, 17, and 19.

2. 0, 10, 20, 30, 40, 50, 60, 70

3. Since $\langle a^{24} \rangle = \langle a^{12} \rangle$ is a subgroup of order 5, the element a^{24} must have order 5 as well.

4. Six subgroups: Z_{20} (generated by 1, 3, 7, 9, 11, 13, 17, or 19), the subgroup of even numbers (generated by 2, 6, 14, or 18), the subgroup of multiples of 4 (generated by 4, 8, 12, or 16), the subgroup of multiples of 5 (generated by 5 or 15), the subgroup of multiples of 10 (generated by 10), and the trivial subgroup (generated by 0).

5. $\langle a^{21} \rangle \cap \langle a^{10} \rangle = \langle a^6 \rangle$. In the general case $\langle a^m \rangle \cap \langle a^n \rangle = \langle a^k \rangle$, where $k = \text{lcm}(m, n) \mod 24$.

6. 5, 25, 35, and 55. **7.** a. |a| divides 12. b. |a| divides m.

8. 1000000, 3000000, 5000000, 7000000. By Theorem 4.3, $\langle 1000000 \rangle$ is the unique subgroup of order 8, and only those on the list are generators

9.

10.

$$\begin{array}{ccccc} \langle 1 \rangle & \text{ or } & Z_{p^n} \\ | & | & | \\ \langle p \rangle & & Z_{p^{n-1}} \\ | & | & | \\ \langle p^2 \rangle & & Z_{p^{n-2}} \\ | & | & | \\ \vdots & & \vdots & \vdots \\ | & & | \\ \langle p^{n-1} \rangle & & Z_p \\ | & & | \\ \langle 0 \rangle & & \text{trivial} \end{array}$$

11. x^4 , x^{12} , x^{28} , x^{36} .

12. 33 of order 2, 20 of order 33, 10 of order 11, 2 of order 3, one of order 1.

13. |a| = 12 or |a| = 60; |a| = 75.