SPLA: Portable Generic Sparse Linear Algebra Library for Multi-GPU Computations

1st Egor Orachev

Faculty of Mathematics and Mechanics
St. Petersburg State University,
Programming Languages and Tools Lab
JetBrains Research
St. Petersburg, Russia
egor.orachev@gmail.com
0000-0002-0424-4059

2nd Gleb Marin School of Physics, Mathematics, and Computer Science HSE University St. Petersburg, Russia glebmar2001@gmail.com 0000-0002-0873-1647

3rd Semyon Grigorev
Faculty of Mathematics and Mechanics
St. Petersburg State University,
Programming Languages and Tools Lab
JetBrains Research
St. Petersburg, Russia
s.v.grigoriev@spbu.ru
semyon.grigorev@jetbrains.com
0000-0002-7966-0698

Abstract—Scalable high-performance graph analysis is an actual nontrivial challenge and usage of sparse linear algebra operations as building blocks for graph analysis algorithms, which is a core idea of GraphBLAS standard, is a promising way to attack it. While it is known that sparse linear algebra operations can be efficiently implemented on GPGPU, full GraphBLAS implementation on GPGPU is a nontrivial task that is almost solved by GraphBLAST project. Though it is shown by GraphBLAST that utilization of GPGPUs for GraphBLAS implementation significantly improves performance, portability and scalability problems are not solved yet: GraphBLAST uses Nvidia stack and utilizes only one GPGPU. In this work we propose an SPLA library that aimed to solve these problems: it uses OpenCL to be portable and designed to utilize multiple GPGPUs. Preliminary evaluation shows that !!!!

Index Terms—graphs, algorithms, graph analysis, sparse linear algebra, GraphBLAS, GPGPU, OpenCL

I. INTRODUCTION

Scalable high-performance graph analysis is an actual challenge. There is a big number of ways to attack this challenge [1] and the first promising idea is to utilize general-purpose graphic processing units (GPGPU-s). Such existing solutions, as CuSha [2] and Gunrock [3] show that utilization of GPUs can improve the performance of graph analysis, moreover it is shown that solutions may be scaled to multi-GPU systems. But low flexibility and high complexity of API are problems of these solutions.

The second promising thing which provides a user-friendly APY for high-performance graph analysis algorithms creation is a GraphBLAS API [4] which provides linear algebra based building blocks to create graph analysis algorithms. The idea of GraphBLAS is based on is a well-known fact that linear algebra operations can be efficiently implemented on parallel hardware. Along with this, a graph can be natively represented using matrices: adjacency matrix, incidence matrix, etc. While reference CPU-based implementation of GraphBLAS, SuiteSparse:GraphBLAS [5], demonstrates good performance in real-world tasks, GPU-based implementation is challenging.

Identify applicable funding agency here. If none, delete this.

One of the challenges in this way is that real data are often sparse, thus underlying matrices and vectors are also sparse, and, as a result, classical dense data structures and respective algorithms are inefficient. So, it is necessary to use advanced data structures and procedures to implement sparse linear algebra, but the efficient implementation of them on GPU is hard due to the irregularity of workload and data access patterns. Though such well-known libraries as cuSparse show that sparse linear algebra operations can be efficiently implemented for GPGPU-s, it is not so trivial to implement GraphBLAS on GPGPU. First of all, it requires generic sparse linear algebra, thus it is impossible just to reuse existing libraries which are almost all specified for operations over floats. The second problem is specific optimizations, such as maskings fusion, which can not be natively implemented on top of existing kernels. Nevertheless, there is a number of implementations of GraphBLAS on GPGPU, such as Graph-BLAST: [6], GBTL [7], which show that GPGPUs utilization can improve the performance of GraphBLAS-based graph analysis solutions. But these solutions are not portable because they are based on Nvidia Cuda stack. Moreover, the scalability problem is not solved: all these solutions support only single-GPU, not multi-GPU computations.

To provide portable multi-GPU implementation of Graph-BLAS API we developed a *SPLA* library (sources are published on GitHub: https://github.com/JetBrains-Research/spla). This library utilizes OpenCL for GPGPU computing to be portable across devices of different vendors. Moreover, it is initially designed to utilize multiple GPGPUs to be scalable. To sum up, the contribution of this work is the following.

- Design of portable multi-GPU GraphBLAS implementation proposed. Additionally, proposed design is aimed to simplify library tuning and wrappers for different highlevel platforms and languages creation.
- Subset of GraphBLAS API, including such operations as masking, matrix-matrix multiplication, matrix-matrix ewise addition, is implemented. Current implementation is limited by COO matrix representation format and

uses basic algorithms for some operations, but work in progress and more data formats will be supported and abvanced algorithms will be implemented in the future.

 Preliminary evaluation on such algorithms as breadth-first search (BFS) and single source shortest path (SSSP) and real-world graphs shows that !!!

II. SOLUTION DESCRIPTION

A. Design Principles

SPLA library is designed in the way to maximize potential library performance, to simplify its implementation and extensions, and to provided to the end-user verbose, but effective interface allowing customization and precise control over operations execution. This ideas are captured in the following principles.

- *DAG-based expressions*. User constructs a computational expression from basic nodes and uses oriented edges to describe data dependencies between these nodes.
- Automated hybrid-storage format. Library uses internally specialized preprocessing to format data and automate its sharing between computational nodes.
- Automated multi-GPU scheduling. Computational work is automatically scheduled between available devices for execution. Scheduling order, dependencies and granularity are defined from DAG expression, submitted by user.
- Customization of primitive types and operations. Underlying primitives types and functions, which operates on them, can be customized by user. Customization process does not requires library re-compilation.
- Exportable interface. Library has C++ interface with an automated reference-counting and with no-templates usage. It can be wrapped by C99 compatible API and exported to other languages, for example, in a form of a Python-package.

B. Architecture Overview

Library general execution architecture is depicted in Fig. 1. As an input library accepts expression composed in the form of a DAG. Nodes represent fundamental operations, such as matrix-matrix multiplication. Links describe dependencies between nodes. Expression execution is *asynchronous*. User can block and wait until its completion, or without blocking probe the expression until it is either *completed* or *aborted*.

Expression is transformed into a task graph. Task graph is submitted for execution to the task manager. Each task is processed by specialised *NodeProcessor*, capable of processing particular node type. Each task, when executed, is split dynamically into a set of parallel sub-tasks. Each sub-task is processed by specialized *Algorithm*, which is capable of processing input blocks of matrices or vectors in particular storage formats with concrete set of options. *NodePorcessor* and *Algorithm* are selected at runtime from a registry of available set based on properties and arguments of the expression. Thus, it allows precise processing and optimization of edgecases.

Fig. 1. Library expression processing architecture.

Granularity level of sub-tasks is defined by the structure of underlying processed primitives. Target device for execution is automatically assigned for the sub-task based on expression and node parameters. Currently, the uniform distribution for assignment is used, what should work good on large scale of computationally similar sub-tasks.

C. Matrices and Vectors

Library provides general *M-by-N Matrix* and *N Vector* primitives. Underlying primitives types is specified by *Type* object. Internally primitives are stored in a hybrid storage in a form of two- or one- dimensional blocks' grid respectively. Each block is empty (not stored) or store some data in any format. Blocks are immutable, they can be safely shared across computational devices.

Currently only COO blocks are supported. Format choice is motivated by its simplicity and easy of implementation. Other formats, such as CSR, CSC, DCSR, Dense, etc. can be added to the library by either implementation of formats convertation or by the specialization of *Algorithm* for concrete format.

D. Algebraic Operations

Library supports all commonly used linear algebra operations, such as *mxm*, *vxm*, *eadd*, *reduce*, *transpose*. More operations coming later, since library still in development. Interface of operations is designed in similar fashion as GraphBLAS ones. It supports *masking*, *accum* of the result, *add* and/or *mult* user-functions specification, and *descriptor* object for additional operation tweaking.

E. Implementation Details

Library uses OpenCL 1.2 API as underlying compute API. Boost Compute [8] is utilized as a high-level library on top of the OpenCL functionality. It provides thread-safe kernel caching, meta-kernel programming, and a set of basic parallel primitives such as *device vector*, *sort*, *reduce*, *scan*, etc. which was extended further to meet this project requirements. Taskflow [9] is used as tasking library. It supports task-dependencies and dynamic tasking, utilized in order to create and execute sub-tasks.

User-defined *Types* are represented as POD-structures, and handled by the library as a fixed-size sequences of bytes. User-defined *Functions* are effectively textual strings with OpenCL code, injected into generalized meta-kernels. Library has a number of predefined types, such as *signed/unsigned integers*,

floating point types, and a set of common operations, such as arithmetic, logic, first/second, etc.

For particular blocked *vxm* and *mxm Algorithms* implementations ESC algorithm [10] for COO blocks is employed. Element-wise addition and masking are based on tiled GPU Merge Path [11] algorithm. The code is generalized and is written in a form of meta-kernels, so actual functions for elements reduction or multiplication are injected later. Kernel compilation is done on demand if no previously cached entry present.

III. EVALUATION

What and how.

A. Graph Algorithms

BFS, SSSP, ... implemented

B. Dataset Description

SuiteSparse matrix collection¹ [12]. Table with specific graphs.

C. Evaluation Setup

Hardware description, two GPU, Single GPU Two GPU

D. Evaluation Results

Single GPU

TABLE I TABLE TYPE STYLES

Table	Table Column Head				
Head	Table column subhead	Subhead	Subhead		
copy	More table copy ^a				

^aSample of a Table footnote.

Two GPU

TABLE II TABLE TYPE STYLES

1	Table	Table Column Head			
	Head	Table column subhead	Subhead	Subhead	
	copy	More table copy ^a			

^aSample of a Table footnote.

Analysis and conclusion.

IV. CONCLUSION

Work in progress!
And future work
Advanced algorithms for LA operations
More formats for sparse matrices/vectors
C interface
Python package
Graphalytics
!!!

1https://sparse.tamu.edu/.

V. APPENDIX

Project page https://github.com/JetBrains-Research/spla.

REFERENCES

- [1] M. E. Coimbra, A. P. Francisco, and L. Veiga, "An analysis of the graph processing landscape," *Journal of Big Data*, vol. 8, no. 1, Apr. 2021. [Online]. Available: https://doi.org/10.1186/s40537-021-00443-9
- [2] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, "Cusha: Vertex-centric graph processing on gpus," in *Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing*, ser. HPDC '14. New York, NY, USA: Association for Computing Machinery, 2014, p. 239–252. [Online]. Available: https://doi.org/10.1145/2600212.2600227
- [3] Y. Pan, Y. Wang, Y. Wu, C. Yang, and J. D. Owens, "Multi-gpu graph analytics," in 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2017, pp. 479–490.
- [4] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert, D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan, C. Yang, J. D. Owens, M. Zalewski, T. Mattson, and J. Moreira, "Mathematical foundations of the graphblas," in 2016 IEEE High Performance Extreme Computing Conference (HPEC), 2016, pp. 1–9.
- [5] T. A. Davis, "Algorithm 1000: Suitesparse: graphblas: Graph algorithms in the language of sparse linear algebra," ACM Trans. Math. Softw., vol. 45, no. 4, Dec. 2019. [Online]. Available: https://doi.org/10.1145/3322125
- [6] C. Yang, A. Buluc, and J. D. Owens, "Graphblast: A high-performance linear algebra-based graph framework on the gpu," 2019.
- [7] P. Zhang, M. Zalewski, A. Lumsdaine, S. Misurda, and S. McMillan, "Gbtl-cuda: Graph algorithms and primitives for gpus," in 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2016, pp. 912–920.
- [8] J. Szuppe, "Boost.compute: A parallel computing library for c++ based on opencl," in *Proceedings of the 4th International Workshop* on OpenCL, ser. IWOCL '16. New York, NY, USA: Association for Computing Machinery, 2016. [Online]. Available: https://doi.org/10. 1145/2909437.2909454
- [9] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, "Taskflow: A lightweight parallel and heterogeneous task graph computing system," *IEEE Trans*actions on Parallel and Distributed Systems, vol. 33, pp. 1303–1320, 2022.
- [10] S. Dalton, L. Olson, and N. Bell, "Optimizing sparse matrix—matrix multiplication for the gpu," ACM Trans. Math. Softw., vol. 41, no. 4, oct 2015. [Online]. Available: https://doi.org/10.1145/2699470
- [11] O. Green, R. McColl, and D. A. Bader, "Gpu merge path: A gpu merging algorithm," in *Proceedings of the 26th ACM International Conference on Supercomputing*, ser. ICS '12. New York, NY, USA: Association for Computing Machinery, 2012, p. 331–340. [Online]. Available: https://doi.org/10.1145/2304576.2304621
- [12] T. A. Davis and Y. Hu, "The university of florida sparse matrix collection," ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011. [Online]. Available: https://doi.org/10.1145/2049662.2049663