Universidade da Beira Interior

Departamento de Informática

Inteligência Artificial: Projeto Prático

Elaborado por:

41358 — Beatriz Tavares da Costa

41381 — Igor Cordeiro Bordalo Nunes

Docente:

Professor Doutor Luís Filipe Barbosa de Almeida Alexandre

7 de Janeiro de 2021

Resumo

Conteúdo

Co	onteú	0	ii
Li	sta de	Figuras	iv
Li	sta de	Tabelas	V
Li	sta de	Excertos de Código	vi
1	Intr	odução	1
	1.1	Constituição do grupo	1
	1.2	Objetivos	1
	1.3	Organização do Documento	2
2	Tecr	ologias e Ferramentas Utilizadas	3
	2.1	Introdução	3
	2.2	Ferramentas Utilizadas	3
	2.3	Conclusões	3
3	Dese	nvolvimento e Implementação	4
	3.1	Introdução	4
	3.2	Escolhas de Implementação	4
	3.3	Detalhes de Implementação	5
		3.3.1 Pergunta 1	5
		3.3.2 Pergunta 2	6
		3.3.3 Pergunta 3	6
		3.3.4 Pergunta 4	6
		3.3.5 Pergunta 5	6
		3.3.6 Pergunta 6	6
		3.3.7 Pergunta 7	6
		3.3.8 Pergunta 8	6
	3.4	Conclusões	6

CONTEÚDO	CONTEÚDO

4	Refl	lexão Crítica e Problemas Encontrados	7
	4.1	Introdução	7
	4.2	Objetivos Propostos vs. Alcançados	7
	4.3	Divisão de Trabalho pelos Elementos do Grupo	7
	4.4	Problemas Encontrados	9
	4.5	Reflexão Crítica	9
		4.5.1 Pontos Fortes	9
		4.5.2 Pontos Fracos	9
		4.5.3 Ameaças	10
			10
	4.6	Conclusões	10
5	Con	iclusões e Trabalho Futuro	11
	5.1	Conclusões Principais	11
	5.2		11
Bi	bliog	rafia 1	12

Lista de Figuras

3.1	 																	5
3.2	 																	5

Lista de Tabelas

1.1	Constituição do grupo de trabalho	1
	Objetivos propostos vs. alcançados	
4.2	Distribuição de tarefas	8
4.3	Problemas encontrados e respetivas soluções	9

Lista de Excertos de Código

Acrónimos

IA Inteligência Artificial

UC Unidade Curricular

SWOT Strength, Weakness, Opportunity and Threat

Introdução

O presente Capítulo descreve os objetivos delineados para a implementação deste projeto, bem como a organização do documento.

O projeto doravante apresentado foi desenvolvido no âmbito da Unidade Curricular (UC) de Inteligência Artificial (IA) como um projeto introdutório a esta área.

1.1 Constituição do grupo

O presente projeto foi realizado pelos elementos listados na Tabela 1.1.

Nº	Nome
41358	Beatriz Tavares da Costa
41381	Igor Cordeiro Bordalo Nunes

Tabela 1.1: Constituição do grupo de trabalho.

1.2 Objetivos

Este projeto prático tem como principal objetivo criar a inteligência de um *robot* que tem como seu mundo virtual o piso de um hospital. Este dispositivo percorre o mapa sob o controlo de certos *inputs* do teclado. A fim de explorar a programação da inteligência do *robot*, deve também ser possível fazer perguntas ao mesmo, e este terá de ser capaz de responder às mesmas em qualquer momento da simulação, pelo que é necessário implementar funções que sejam capazes de obedecer a tais requisitos.

1.3 Organização do Documento

De modo a refletir o trabalho que foi feito, este documento encontra-se estruturado da seguinte forma:

- No primeiro capítulo Introdução é apresentado o projeto, o enquadramento do mesmo, a constituição do grupo de trabalho, a enumeração dos objetivos delineados para a conclusão do mesmo e a respetiva organização do documento.
- No segundo capítulo Tecnologias Utilizadas são descritas as ferramentas e bibliotecas utilizadas no desenvolvimento da inteligência do *robot* no mundo virtual disponibilizado.
- No terceiro capítulo Desenvolvimento e Implementação são apresentadas e descritas as escolhas, os algoritmos pensados e métodos utilizados na implementação dos mesmos.
- 4. No quarto capítulo **Reflexão Crítica e Problemas Encontrados** denota-se a divisão de tarefas pelos elementos do grupo e expõe uma análise *Strength*, *Weakness*, *Opportunity and Threat* (SWOT) onde se expõem os pontos fortes, fracos, oportunidades e ameaças ao trabalho desenvolvido.
- 5. No quinto capítulo **Conclusões e Trabalho Futuro** —, apresenta-se uma reflexão do trabalho e conhecimentos adquiridos ao longo do desenvolvimento do projeto prático e um contrabalanço com a possibilidade de existirem objetivos não alcançados e que se podem explorar no futuro.

Tecnologias e Ferramentas Utilizadas

2.1 Introdução

Este capítulo enumera as tecnologias e ferramentas utilizadas para o desenvolvimento da parte de inteligência de um *robot* num mundo virtual, projeto descrito neste documento.

2.2 Ferramentas Utilizadas

São descritas em seguida, primariamente, as ferramentas e tecnologias utilizadas, acrescentando também a razão pelas quais as mesmas foram escolhidas.

- 1. Biblioteca *NetworkX* [1] biblioteca do *Python* [2] utilizada para criar e manipular as estruturas de dados utilizadas (grafos);
- Git sistema de controlo de versões no qual foi gerido o repositório do código-fonte do projeto;
- 3. *Python* [2] linguagem de programação utilizada para o desenvolvimento do projeto.

2.3 Conclusões

Neste capítulo foram descritas as tecnologias e ferramentas utilizadas na realização e desenvolvimento do projeto referido neste documento. As mesmas são referidas nos próximos capítulos para efeitos de explicação de como as mesmas foram aplicadas.

Desenvolvimento e Implementação

3.1 Introdução

Este capítulo explora o percurso realizado aquando do desenvolvimento do projeto descrito neste documento, em particular as escolhas e detalhes de implementação.

3.2 Escolhas de Implementação

Antes da implementação dos algoritmos para satisfazer as respostas às perguntas colocadas, foi necessário definir a estrutura de dados utilizada para a manipulação do mundo virtual e dos objetos nele contidos.

Desta forma, além da escolha do uso de listas para guardar os objetos que o dispositivo robótico encontra no seu mundo virtual, foi utilizada numa primeira abordagem uma matriz 800×600 para efeitos de aplicação de um algoritmo de *path-finding* (necessário para as respostas aos enunciados descritos nas subseccções ??, ?? e ??). Esta abordagem revelou alguns problemas de eficiência, conforme é refletido na secção 4.4). A solução passou então pela substituição da matriz por uma estrutura de dados que permite representar de forma bastante eficiente os dados recolhidos sobre o mundo virtual: grafos. Para este fim, foi utilizada a biblioteca *NetworkX* [1] para a criação e gestão dos mesmos. Dois grafos foram utilizados neste âmbito:

- 1. Grafo *floor* (Figura 3.1) armazena informações sobre as salas visitadas, a sua ligação e os objetos nelas contidos;
- 2. Grafo *map* (Figura 3.2) realiza o mapeamento do mundo, ao registar em detalhe todos os caminhos possíveis entre salas e as portas que as conectam, para efeitos de execução do algoritmo de *path-finding* A*.

Figura 3.1:

Por análise do grafo da Figura 3.1, podemos constatar que se trata de um grafo não dirigido, composto por nodos e arestas, sendo que os nodos guardam informações acerca das divisões e como seus atributos constam os objetos contidos nessas mesmas divisões. Os atributos estão definidos como um dicionário, onde a chave do mesmo é a categoria de objeto e o valor é a lista de nomes dos objetos dessa categoria encontrados pelo *robot*.

Figura 3.2:

Em termos de organização do código-fonte do trabalho prático, optou-se por se utilizar classes, as quais se enumeram seguidamente:

- Log útil para efeitos de debugging de forma a identificar mais facilmente possíveis bugs;
- 2. *LinearFunction* permite criar instâncias de funções lineares necessárias para a resposta às perguntas 5 e 6 (subsecções 3.3.5 e 3.3.6, respetivamente);
- 3. *Things* armazena listas de objetos e pessoas, tratando diretamente da resposta à pergunta 1 (subsecção 3.3.1) e auxiliando as restantes classes a gerir os seus dados;
- 4. *Robot* realiza a gestão dos dados inerentes ao *robot*, em particular a velocidade e a bateria, bem como a sua relação com o tempo;
- 5. *Hospital* principal classe do programa na qual a informação relativa ao piso do hospital é atualizada conforme as informações dadas pelo *robot*;
- 6. *Utils* coleta um conjunto de funções auxiliares, como por exemplo o cálculo de distâncias, a troca de variáveis e a descrição textual de caminhos.

3.3 Detalhes de Implementação

Nesta secção são descritos os detalhes de implementação para cada pergunta proposta no enunciado do projeto prático, através da explicação dos respetivos algoritmos.

3.3.1 Pergunta 1

Esta pergunta tem como seu enunciado "Qual foi a penúltima pessoa que viste?".

3.3.2 Pergunta 2

Esta pergunta tem como seu enunciado "Em que tipo de sala estás agora?".

3.3.3 Pergunta **3**

Esta pergunta tem como seu enunciado "Qual o caminho até à sala de enfermeiros mais próxima?".

3.3.4 Pergunta 4

Esta pergunta tem como seu enunciado "Qual é a distância até ao médico mais próximo?".

3.3.5 Pergunta **5**

Esta pergunta tem como seu enunciado "Quanto tempo achas que demoras a ir de onde estás até às escadas".

3.3.6 Pergunta 6

Esta pergunta tem como seu enunciado "Quanto tempo achas que falta até ficares sem bateria".

3.3.7 Pergunta 7

Esta pergunta tem como seu enunciado "Qual a probabilidade de encontrar um livro numa divisão se já encontraste uma cadeira?".

3.3.8 Pergunta 8

Esta pergunta tem como seu enunciado "Se encontrares um enfermeiro numa divisão, qual é a probabilidade de estar lá um doente?".

3.4 Conclusões

No presente capítulo foram apresentados os passos e os métodos necessários ao desenvolvimento do projeto prático e do funcionamento do mesmo.

Desta forma, através do conteúdo exposto neste capítulo, encontra-se a apresentação do projeto desenvolvido e o funcionamento do mesmo, mas também a contextualização das ferramentas utilizadas conforme listadas no Capítulo 2.

Reflexão Crítica e Problemas Encontrados

4.1 Introdução

Neste Capítulo são explorados os seguintes tópicos:

- Objetivos propostos vs. alcançados (Secção 4.2): compara os objetivos inicialmente propostos com aqueles que foram concluídos no projeto prático;
- Divisão de trabalho pelos elementos do grupo (Secção 4.3): lista as tarefas divididas por cada elemento constituinte.
- Problemas encontrados (Secção 4.4): na sequência da Secção 4.2, explora os problemas encontrados durante a implementação dos algoritmos;
- Reflexão crítica (Secção 4.5): é feita uma SWOT em retrospetiva pelo grupo acerca do projeto.

4.2 Objetivos Propostos vs. Alcançados

A Tabela 4.1 expõe os objetivos propostos inicialmente para o projeto e identifica quais foram alcançados totalmente ou parcialmente, e quais não foram bem sucedidos.

4.3 Divisão de Trabalho pelos Elementos do Grupo

Para a gestão e divisão das tarefas que delimitam o projeto, foi realizada uma reunião inicial onde o foco incidiu na definição das metas por cada parte constituinte

4.3 Divisão de Trabalho pelos Elementos das Genípica e Problemas Encontrados

Objetivo proposto	Alcançado?
Pergunta 1	•
Pergunta 2	•
Pergunta 3	•
Pergunta 4	•
Pergunta 5	•
Pergunta 6	•
Pergunta 7	•
Pergunta 8	•
Documentação do código	•

Tabela 4.1: Objetivos propostos e respetiva indicação de sucesso. *Legenda.* ● Totalmente alcançado; ○ Parcialmente alcançado. − Não alcançado.

do grupo de forma balanceada pelos 2 elementos do grupo. A referida gestão, apresenta-se na tabela 4.2. A escolha baseia-se no equilíbrio da dificuldade e temas das questões. Apesar da divisão de tarefas, houve uma essencial cooperação entre ambas as partes, para definição e programação das estruturas dos dados que se iriam utilizar e de todas as classes necessárias para consolidação do projeto e também eventualmente para esclarecimento de dúvidas. Isto foi conseguido através de reuniões semanais, com *deadlines* bem definidas para cada tarefa, tendo igualmente sido realizadas algumas reuniões extraordinárias em momentos críticos do desenvolvimento.

Tarefas	Beatriz Costa	Igor Nunes
Pergunta 1	•	
Pergunta 2		•
Pergunta 3	•	
Pergunta 4		•
Pergunta 5	•	
Pergunta 6		•
Pergunta 7	•	
Pergunta 8		•
Relatório	•	•
Apresentação	•	•

Tabela 4.2: Distribuição de tarefas pelos elementos do grupo.

4.4 Problemas Encontrados

A implementação dos diferentes algoritmos necessários para responder às diversas perguntas colocadas levou a que fossem encontrados alguns problemas e contratempos, os quais tiveram de ser ultrapassados a fim de terminar o projeto prático. Os problemas mais notáveis são resumidos na Tabela 4.3, incluindo as soluções encontradas para os ultrapassar.

Problema	Solução
Ineficiência do algoritmo A* com recurso a uma matriz 800×600	Implementação de um grafo no lugar da matriz
Perceção da relação entre a bateria, velocidade e tempo	Utilização de funções lineares para a estimação do tempo
Localização imprecisa dos objetos	Determinar a direção do <i>robot</i> de forma a estimar a localização real do objeto

Tabela 4.3: Problemas encontrados durante o desenvolvimento do projeto e respetivas soluções.

4.5 Reflexão Crítica

É proposto expor a reflexão crítica face ao trabalho realizado para o desenvolvimento deste projeto através de uma análise SWOT.

4.5.1 Pontos Fortes

- 1. Forte estruturação dos tipos de dados com recurso a classes;
- 2. Utilização dos grafos para aumento da eficiência;
- 3. Implementação de um método altamente eficiente para estimar a duração da bateria e prever a velocidade;

4.5.2 Pontos Fracos

1. O ficheiro de código-fonte final é denso;

4.5.3 Ameaças

- 1. Em efeitos de expansão do número de *robots* a circular, as classes com métodos estáticos não permitem a criação de instâncias independentes para cada *robot*, ficando assim um piso limitado apenas a um *robot*;
- 2. O uso de grafos não permite obter o caminho exato que o *robot* deve fazer pelo mundo até determinada sala, sendo por conseguinte imprecisa a distância calculada para lá chegar;
- 3. O método de estimação da bateria do *robot* tem imprecisão no retorno de resultados;

4.5.4 Oportunidades

 Reformular a organização do código de forma a permitir a divisão de ficheiros por classes;

4.6 Conclusões

Esta fase de reflexão permitiu analisar o trabalho levado ao longo das semanas de planeamento e implementação dos algoritmos. Com esta análise, o grupo pôde tirar conclusões acerca das estratégias utilizadas, as quais serão expostas no Capítulo seguinte.

Conclusões e Trabalho Futuro

5.1 Conclusões Principais

Este projeto permitiu-nos adquirir um melhor conhecimento acerca da linguagem *Python*, como também nos permitiu evoluir em temas recorrentes na Unidade Curricular de Inteligência Artificial. Além disso, facilitou imenso o estudo da parte teórica desta cadeira, principalmente na parte dos algoritmos de pesquisa de caminhos e nas probabilidades relacionadas com a construção de redes *bayesianas*.

5.2 Trabalho Futuro

Numa perspetiva futura, a nossa abordagem perante o projeto passaria primariamente por separar as classes em vários ficheiros para efeitos de organização do código e tentar eliminar as imprecisões na parte da estimação da bateria do dispositivo. Seria interessante de igual forma criar um estimador de probabilidades para o *robot*. Este projeto pode ter aplicações interessantes na área dos *robots* domésticos de limpeza, que é um tema bastante promissor nos dias de hoje.

Bibliografia

- [1] N. developers, "NetworkX NetworkX documentation," 2020, [Online] https://networkx.org/. Último acesso a 3 de janeiro de 2021.
- [2] P. S. Foundation, "Welcome to Python.org," 2021, [Online] https://www.python.org/. Último acesso a 21 de dezembro de 2020.