Documentation du package UPSTI_SI

Package pour les Sciences de l'Ingénieur

UPSTI - R.Allais - E.Pinault-Bigeard Version v1.0 e.pinault-bigeard@upsti.fr 2017/11/23

Table des matières

1	Présentation	3	11 SLCI	12
2	Utilisation du package	3	11.1 Transformée de Laplace 11.2 Notations	12 13
_	omounding ad paokage	Ū	11.3 Signaux	13
3	Changelog	3	11.4 Formes canoniques	14
4	Théorie des mécanismes	3	12 Électricité, électronique	14
	4.1 Liaisons	3	•	
	4.2 Hyperstatisme	3	13 Notations diverses	15
5	Cinématique	4	14 Torseurs et tenseurs	15
	5.1 Mouvements et trajectoires	4	14.1 Écriture des torseurs	15
	5.2 Vitesses - accélérations	4	14.2 Écriture des tenseurs	15
	5.3 Torseur cinématique	4	14.3 Éléments de réduction	16
	5.4 Degrés de liberté	5	14.4 Opérateurs	16
	5.5 Coordonnées variables dans le			
	temps	5	15 Notations mathématiques de base	16
			15.1 Fonctions	16
6	Actions mécaniques	6	15.2 Ensembles	17
	6.1 Force / couple	6	15.3 Géométrie	17
	6.2 Torseur des actions mécaniques	6	15.4 Complexes	17
_		_	15.5 Bases	17
7	Cinétique	7	15.6 Référentiels	18
	7.1 Torseur cinétique	7	15.7 Repères	18
	7.2 Opérateur d'inertie	8	15.8 Opérateurs	18
•	Demonstruct	^	15.9 Vecteurs	18
8	Dynamique	9	15.10Vecteurs pré-fabriqués	19
9	Énergétique	9	15.1 Divers	19
9	9.1 Notations	9	16 Formules et théorèmes	19
	9.2 Énergie cinétique	9	16.1 Cinématique	19
	9.3 Puissance	10	16.2 Statique	20
	7.5 Fulssance	10	-	20
10	Rdm	10	16.3 Cinétique, dynamique, énergé-	21
	10.1 Contraintes	10	tique	22
	10.2 Moments quadratiques	10	16.4 Trains épicycloïdaux	22
	10.3 Torseur de cohésion	11	17 Tikz	23
	10.4 Torseur des petits déplacements	11	17.1 Grille	
	10.5 Torseur des petites déformations	12	17.2 Styles divers	
	- 1.1 1010001 and position described		=, := 55,155 01. 525	

18 Bases, repères et figures planes	24	19 Graphe des liaisons	27
18.1 Bases et repères	24	19.1 Principe	
18.2 Bases et repères (3D)	25	2,12 =1011ptc	
18.3 Figures planes	25	20 Diagrammes des efforts intérieurs 20.1 Principe	
18.4 Figures planes multiples	26	20.2 Exemples	

1 Présentation

Ce package regroupe un certain nombre de commandes utiles à l'édition de documents relatifs aux Sciences de l'Ingénieur. S'il manque des choses (et il en manque!) ou si vous souhaitez modifier quelques notations, il est préférable d'utiliser renewcommand dans le fichier UPSTI_SI_Custom.sty afin de faciliter les futures mises à jour.

Ce package a été initialement développé par Raphaël Allais (http://enseignement.allais.eu/page-latex). Merci pour son travail et pour sa volonté de partager!

2 Utilisation du package

Le package est appelé en début de document par la commande : \usepackage{UPSTI_SI}

3 Changelog

Version 1.0 - 23/11/2017

• Mise en ligne de la première version

4 Théorie des mécanismes

4.1 Liaisons

Commandes	Rendus	Commentaires
\symboleLiaison	\mathscr{L}	Symbole utilisé pour les liaisons
\liaison{1}{2}	$\mathscr{L}_{1/2}$	Liaison entre 1 et 2.
\liaison[A]{1}{2}	$\mathscr{L}_{1/2}^{A}$	Liaison entre 1 et 2, avec précision
		du point (A) .
\liaisonEq	\mathscr{L}_{eq}	Liaison équivalente
\liaisonEq[1]	\mathscr{L}_{eq1}	Liaison équivalente avec indice
\liaisonEq[][A]	\mathscr{L}_{eq}^{A}	Liaison équivalente avec précision
		du point
\liaisonEq[1][A]	\mathscr{L}_{eq1}^{A}	Liaison équivalente avec indice et
	-	précision du point

4.2 Hyperstatisme

Commandes	Rendus	Commentaires
\inconnuesStatiques	N_s	Nombre d'inconnues statiques
\inconnuesStatiques[i]	n_{s_i}	Nombre d'inconnues statiques pour
		la liaison i
\inconnuesCinematiques	N_c	Nombre d'inconnues cinématiques
\inconnuesCinematiques[i]	n_{c_i}	Nombre d'inconnues cinématiques
		pour la liaison i
\nCyclomatique	γ	Nombre cyclomatique

5 Cinématique

5.1 Mouvements et trajectoires

Commandes	Rendus	Commentaires
\trajectoire{A}{1}{2}	$T_{A \in 1/2}$	Trajectoire
\mouvement{1}{2}	$Mvt_{1/2}$	Mouvement
\CIR{1}{2}	$I_{1/2}$	CIR

5.2 Vitesses - accélérations

Commandes	Rendus	Commentaires
\vVitesse{A}{1}{2}	$\overrightarrow{V_{A\in 1/2}}$	Vecteur vitesse
\vVitesse{A}{}{1}	$\overrightarrow{V_{A/1}}$	Vecteur vitesse (1 seul indice)
\vRotation{1}{2}	$\overrightarrow{\Omega_{1/2}}$	Vecteur vitesse de rotation
\vRotation{1}{}	$\overrightarrow{\Omega_1}$	Vecteur vitesse de rotation (1 seul indice)
\vRotation[p]{1}{2}	$\overrightarrow{\Omega^p_{1/2}}$	Vecteur vitesse de rotation (avec exposant)
\accelerationSymbole	Γ	Symbole de l'accélération
\vAcceleration{A}{1}{2}	$\Gamma_{A \in 1/2}$	Vecteur accélération

5.3 Torseur cinématique

5.3.1 Généralités

Commandes	Rendus	Commentaires
\tCinematiqueSymbole	\mathcal{V}	Symbole du torseur cinématique
\tCinematique{1}{2}	$\left\{ \mathcal{V}_{1/2} ight\}$	Torseur cinématique
\tCinematique{1}{2}[A]	$ig \left\{\mathcal{V}_{1/2} ight\}_A$	Torseur cinématique (avec point)
\tV{1}{2}	$\left\{ \mathcal{V}_{1/2} ight\}$	Torseur cinématique (Raccourci)
\resultanteCinematique{1}{2}	$\overline{\Omega_{1/2}}$	Résultante du torseur cinématique
\momentCinematique{A}{1}{2}	$\overrightarrow{V_{A\in 1/2}}$	Moment du torseur cinématique
\tCinematiqueLigne{1}{2}{A}	$\left \begin{array}{c} \overrightarrow{\Omega_{1/2}} \\ A \end{array} \right \left\{ \begin{array}{c} \overrightarrow{\Omega_{1/2}} \\ \overrightarrow{V_{A \in 1/2}} \end{array} \right\}$	Torseur cinématique (ligne)

5.3.2 Forme canonique

Commandes	Rendus	Commentaires
\resultanteCinematiqueCan{x}{1}{2	$\omega_{1/2}^{x}$	Composante de la résultante de la
	-/-	forme canonique du torseur ciné-
		matique
\momentCinematiqueCan{x}{A}{1}{2}	$V_{A,1/2}^x$	Composante du moment de la
	,-,-	forme canonique du torseur ciné-
		matique

Expression de la forme canonique tu torseur cinématique :

\tCinematiqueCan{A}{1}{2}{1}{0}{1}{0}
$$\Rightarrow \left\{ egin{array}{ll} \omega_{1/2}^x & 0 \\ 0 & V_{A,1/2}^y \\ \omega_{1/2}^z & 0 \end{array} \right\}$$

Variante:

Triante:
$$\label{eq:canAlt} $$ \tCinematiqueCanAlt{A}{1}{2}{1}{0}{1}{0} \Rightarrow \left\{ \begin{array}{ll} p_{12} & 0 \\ 0 & v_{12} \\ r_{12} & 0 \end{array} \right\} $$$$

Si on souhaite préciser 2 indices, on utilise l'expression suivante :

$$\label{eq:constraint} $$ \tCan{i}{\tCinematiqueCan{A}{1}{2}{1}{1}{1}{1}{1}{1}} \Rightarrow \left\{ \begin{array}{ll} \omega_{1/2}^x & V_{A,1/2}^x \\ \omega_{1/2}^y & V_{A,1/2}^y \\ \omega_{1/2}^z & V_{A,1/2}^z \\ \end{array} \right\}_b $$$$

Dans ces 2 cas, il suffit de mettre des 1 ou des 0 pour afficher ou non les composantes du torseur.

5.4 Degrés de liberté

Commandes	Rendus	Commentaires
\Rx	R_x	Rotation suivant x
\Ry	R_y	Rotation suivant y
\Rz	R_z	Rotation suivant z
\Tx	T_x	Translation suivant x
\Ty	T_y	Translation suivant y
\Tz	T_z	Translation suivant z

5.5 Coordonnées variables dans le temps

Commandes	Rendus
\xt, \xtp, \xtpp, \xp, \xpp	$x(t), \dot{x}(t), \ddot{x}(t), \dot{x}, \ddot{x}$
\yt, \ytp, \ytpp, \yp, \ypp	$y(t), \dot{y}(t), \ddot{y}(t), \dot{y}, \ddot{y}$
\zt, \ztp, \ztpp, \zp, \zpp	$z(t), \dot{z}(t), \ddot{z}(t), \dot{z}, \ddot{z}$
\thetat, \thetatp, \thetatpp, \thetapp	$\theta(t), \dot{\theta}(t), \ddot{\theta}(t), \dot{\theta}, \ddot{\theta}$
\alphat, \alphatp, \alphatpp, \alphapp	$\alpha(t), \dot{\alpha}(t), \ddot{\alpha}(t), \dot{\alpha}, \ddot{\alpha}$
\betat, \betatp, \betatpp, \betapp	$\beta(t), \dot{\beta}(t), \ddot{\beta}(t), \dot{\beta}, \ddot{\beta}$
\gammat, \gammatp, \gammap, \gammapp	$\gamma(t), \dot{\gamma}(t), \ddot{\gamma}(t), \dot{\gamma}, \ddot{\gamma}$
\varphit, \varphitp, \varphitpp, \varphip, \varphipp	$\varphi(t), \dot{\varphi}(t), \ddot{\varphi}(t), \dot{\varphi}, \ddot{\varphi}$
\psit, \psitp, \psitp, \psip	$\psi(t), \dot{\psi}(t), \ddot{\psi}(t), \dot{\psi}, \ddot{\psi}$
\lambdat, \lambdatp, \lambdatpp, \lambdap, \lambdapp	$\lambda(t), \dot{\lambda}(t), \ddot{\lambda}(t), \dot{\lambda}, \ddot{\lambda}$
\mut, \mutp, \mupp, \mupp	$\mu(t), \dot{\mu}(t), \ddot{\mu}(t), \dot{\mu}, \ddot{\mu}$

6 Actions mécaniques

6.1 Force / couple

Commandes	Rendus	Commentaires
\vForce{1}{2}	$\overrightarrow{F_{1\rightarrow2}}$	Vecteur force
\vForce[A]{1}{2}	$\overrightarrow{A_{1\rightarrow 2}}$	Idem avec changement de lettre
\vMoment{A}{1}{2}	$\overrightarrow{M_{A,1\rightarrow2}}$	Vecteur moment
\vMoment{A}{}{\vForce{1}{2}}	$\overrightarrow{M_{A,F_{1\rightarrow2}}}$	Moment d'une force
\vMoment[dM]{A}{1}{2}	$\overrightarrow{dM}_{A,1\to 2}$	Vecteur moment (personnalisé)
∖vF	\overrightarrow{F}	Force \overrightarrow{F}
\vF[1]	$\overrightarrow{F_1}$	Force \overrightarrow{F} avec indice
\Cm	C_{m}	Couple moteur
\Cr	C_{r}	Couple résistant
\Cf	C_{f}	Couple de frottements
\Fr	$F_{\mathbf{r}}$	Force F _r
\vg	\overrightarrow{g}	Gravité

6.2 Torseur des actions mécaniques

6.2.1 Généralités

Commandes	Rendus	Commentaires
\tActionMecaniqueSymbole	\mathcal{T}	Symbole du torseur des AM
\tActionMecanique{1}{2}	$\{\mathcal{T}_{1 o 2}\}$	Torseur des AM
\tActionMecanique[A]{1}{2}[B]	$\left\{\mathcal{T}_{1 o2}^A ight\}_B$	Torseur des AM (avec point et exposant facultatifs)
\tAM{1}{2}	$\{\mathcal{T}_{1 o 2}\}$	Torseur des AM (Raccourci)
\resultanteAM{1}{2}	$\overrightarrow{F_{1\rightarrow2}}$	Résultante du torseur des AM
\momentAM{A}{1}{2}	$\overrightarrow{M_{A,1\rightarrow 2}}$	Moment du torseur des AM

6.2.2 Forme canonique

Commandes	Rendus	Commentaires
\composantetAM{X}{1}{2}	X_{12}	Composante du torseur des AM
\composantetAM[1]{X}{1}{2}	$X_{1\rightarrow 2}$	Idem, mais en ajoutant l'argument optionnel [1], on rajoute une
		flèche.

Expression de la forme canonique du torseur des actions mécaniques :

Si on souhaite préciser 2 indices, on utilise l'expression suivante :

$$\label{eq:continuous} $$ \tCan{i}_{1}^{2}_{1}_{1}_{-1}_{-1}_{1}_{b} \Rightarrow \left\{ \begin{array}{c} X_{12} & / \\ Y_{12} & / \\ / & N_{12} \end{array} \right\}_{b} $$ $$$$

Dans ces 2 cas, il suffit de mettre des 1 ou des 0 pour afficher ou non les composantes du torseur. On peut aussi **utiliser -1** pour les composantes qui s'annulent dans un **problème plan**.

6

7 Cinétique

7.1 Torseur cinétique

Commandes	Rendus	Commentaires
\tCinetiqueSymbole	C	Symbole du torseur ciné-
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		tique Symbole du moment ciné-
\momCinetiqueSymbole	σ	tique
\tCinetique{1}{2}	$\left\{\mathcal{C}_{1/2}\right\}$	Torseur cinétique
\tCinetique{1}{2}[A]	$ \left\{ \begin{array}{c} \left\{ \mathcal{C}_{1/2} \right\} \\ \left\{ \mathcal{C}_{1/2} \right\}_A \end{array} \right. $	Torseur cinétique (avec point)
\tC{1}{2}	$\left\{\mathcal{C}_{1/2} ight\}$	Torseur cinétique (Rac- courci)
\resultanteCinetique{1}{2}	$ \begin{array}{c c} \overrightarrow{mV_{G\in 1/2}} \\ \overrightarrow{m_sV_{G\in 1/2}} \end{array} $	Résultante cinétique
\resultanteCinetique[m_s]{1}{2}	$m_s \overrightarrow{V_{G \in 1/2}}$	Résultante cinétique (avec masse personnalisée)
\resultanteCinetiqueDef{S_1}{S_2}	$\int_{S_1} \overrightarrow{V_{M \in S_1/S_2}} dm$	Définition de la résultante ci- nétique
\momentCinetique{A}{S_1}{S_2}	$\overrightarrow{\sigma_{A \in S_1/S_2}}$	Moment cinétique
\momentCinetiqueDef{A}{S_1}{S_2}	$\int_{S_1} \overrightarrow{AM}$ \wedge	Définition du moment ciné-
	$V_{M \in S_1/S_2} dm$	tique
\tCinetiqueLigne{1}{2}{A}	$ \left\{ \begin{array}{c} m\overrightarrow{V_{G\in 1/2}} \\ \sigma_{A\in 1/2} \end{array}\right\} $ $ \left\{ \begin{array}{c} m_s\overrightarrow{V_{G\in 1/2}} \\ \sigma_{A\in 1/2} \end{array}\right\}_b $	Torseur cinétique (ligne)
\tCinetiqueLigne[m_s]{1}{2}{A}[b]		Torseur cinétique (ligne), avec une masse spécifiée (et/ou une base d'expres- sion)
\tCinetiqueLigneDef{S_1}{S_2}{A}	$ \begin{cases} \int_{S_1} \overline{V_{M \in S_1/S_2}} \\ \int_{S_1} \overrightarrow{AM} \wedge \overline{V_{M \in S_1/S_2}} \\ \int_{S_1} \overline{V_{M \in S_1/S_2}} \\ \int_{S_1} \overrightarrow{AM} \wedge \overline{V_{M \in S_1/S_2}} \end{cases} $	$ \begin{array}{c} \stackrel{\longrightarrow}{\longrightarrow} dm \\ \stackrel{\longrightarrow}{\longrightarrow} dm \end{array} $
\tCinetiqueLigneDef{S_1}{S_2}{A}[b	$ \left\{ \int_{S_1} \overline{V_{M \in S_1/S_2}} \right. $ $ \left\{ \int_{S_1} \overline{AM} \wedge \overline{V_{M \in S_1/S_2}} \right. $	$\left. \begin{array}{c} \overrightarrow{Q} dm \\ \overrightarrow{Q}_1/S_2 dm \end{array} \right\}_b$

7.2 Opérateur d'inertie

Commandes	Rendus	Commentaires
\operateurInertie{A}{1}	$ar{ar{I}}_{(A,1)}$	Tenseur d'inertie
\Jeq	$J_{ m eq}$	Inertie équivalente
\Meq	$M_{ m eq}$	Masse équivalente
\matriceInertie	$ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $	Matrice d'inertie (nulle)
\matriceInertie[b][A][B][C]	$\begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_b$	Matrice d'inertie (diagonale)
\matriceInertie[b][A][B][C][-D][-E][-		Matrice d'inertie complète. (Les 6 arguments sont optionnels)
\matriceInertieStd	$ \left(\begin{array}{ccc} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{array}\right)_{b} $	Matrice d'inertie standard
\matriceInertieStd[1]	$\begin{pmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{pmatrix}_{b}$ $\begin{pmatrix} A_{1} & -F_{1} & -E_{1} \\ -F_{1} & B_{1} & -D_{1} \\ -E_{1} & -D_{1} & C_{1} \end{pmatrix}_{b_{1}}$	Matrice d'inertie standard (avec indice)
\baseDuSolide	$(\overrightarrow{x_s}, \overrightarrow{y_s}, \overrightarrow{z_s})$	Base liée au solide
\momInertieA	$\int_{S} (y^2 + z^2) dm$	Moment d'inertie A
\momInertieB	$\int_{S} (x^2 + z^2) dm$	Moment d'inertie B
\momInertieC	$\int_{S} (x^2 + y^2) dm$	Moment d'inertie C
\prodInertieD	$\int_S yz dm$	Produit d'inertie D
\prodInertieE	$\int_S xz dm$	Produit d'inertie E
\prodInertieF	$\int_S xy dm$	Produit d'inertie F

8 Dynamique

Commandes	Rendus	Commentaires
\tDynamiqueSymbole	\mathcal{D}	Symbole du torseur dyna- mique
\momDynamiqueSymbole	δ	Symbole du moment dyna- mique
$\tDynamique{1}{2}$	$\left\{\mathcal{D}_{1/2} ight\}$	Torseur dynamique
\tDynamique{1}{2}[A]	$\left\{ \mathcal{D}_{1/2} \right\} \\ \left\{ \mathcal{D}_{1/2} \right\}_A$	Torseur dynamique (avec point)
\tD{1}{2}	$\left\{\mathcal{D}_{1/2} ight\}$	Torseur dynamique (Rac-courci)
\resultanteDynamique{1}{2}	$\begin{array}{c} m\overrightarrow{\Gamma_{G\in 1/2}} \\ m_s\overrightarrow{\Gamma_{G\in 1/2}} \end{array}$	Résultante dynamique
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:		Résultante dynamique (avec masse personnalisée)
$\label{lem:condition} $$\operatorname{S_1}_{S_2}$$$	$\int_{S_1} \overrightarrow{\Gamma_{M \in S_1/S_2}} dm$	Définition de la résultante dynamique
$\label{local_moment_property} $$\operatorname{\mathtt{MomentDynamique}}(A)_{S_1}(S_2)$$$	$\overrightarrow{\delta_{A \in S_1/S_2}}$	Moment dynamique
$\label{local_moment_power_local} $$\operatorname{A}_{S_1}_{S_2}$$$	$ \begin{array}{c c} \overline{\delta_{A \in S_1/S_2}} \\ \hline \int_{S_1} \overrightarrow{AM} & \wedge \\ \hline \Gamma_{M \in S_1/S_2} & dm \end{array} $	Définition du moment dyna- mique
\tDynamiqueLigne{1}{2}{A}	$ \left\{\begin{array}{c} m \overrightarrow{\Gamma_{G \in 1/2}} \\ \delta_{A \in 1/2} \end{array}\right\} $ $ \left\{\begin{array}{c} m_s \overrightarrow{\Gamma_{G \in 1/2}} \\ \delta_{A \in 1/2} \end{array}\right\}_b $	Torseur dynamique (ligne)
$\label{light-problem} $$ \tDynamiqueLigne[m_s]_{1}_{2}_{A}[b] $$$		Torseur dynamique (ligne), avec une masse spécifiée (et/ou une base d'expres- sion)
$\label{toynamiqueLigneDefS_1} $$ \tDynamiqueLigneDef\{S_1\}_{A}$$	$ \begin{cases} \int_{S_1} \overline{\Gamma}_{M \in S_1/S_2} \\ \int_{S_1} \overrightarrow{AM} \wedge \overline{\Gamma}_{M \in S_1/S_2} \\ \int_{S_1} \overline{\Gamma}_{M \in S_1/S_2} \\ \int_{S_1} \overrightarrow{AM} \wedge \overline{\Gamma}_{M \in S_1/S_2} \end{cases} $	$ \begin{array}{c} \overrightarrow{S_1/S_2} dm \\ \overrightarrow{S_1/S_2} dm \end{array} $
$\label{toynamiqueLigneDefS_1} $$ \tDynamiqueLigneDef\{S_1\}_{S_2}_{A} [b] $$$	$\left\{ \int_{S_1} \overline{\Gamma_{M \in S_1/S_2}} \right\}$ $\left\{ \int_{S_1} \overline{AM} \wedge \overline{\Gamma_{M \in S_1/S_2}} \right\}$	$ \begin{array}{c} \overrightarrow{S_1/S_2} dm \\ \overrightarrow{S_1/S_2} dm \end{array} $

9 Énergétique

9.1 Notations

Commandes	Rendus	Commentaires
\travailSymbole	W	Symbole pour le travail
\energieSymbole	E	Symbole pour l'énergie
\puissanceSymbole	P	Symbole pour la puissance

9.2 Énergie cinétique

Commandes	Rendus	Commentaires
\energieCinetique{1}{2}	$E_{c(1/2)}$	Énergie cinétique
\energieCinetiqueAlt{1}{2}	$T_{(1/2)}$	Énergie cinétique (alternative)

9.3 Puissance

Commandes	Rendus	Commentaires
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array}$	$P_{1\rightarrow 2/R}$	Puissance
\puissanceInter{1}{2}	$P_{1\leftrightarrow 2}$	Puissance des inter-efforts
\puissanceExt	P_{ext}	Puissance extérieure
\puissanceExt[1]	P_{ext}^{1}	Puissance extérieure (+ repère)
\puissanceInt	P_{int}	Puissance intérieure
\puissanceInt[1]	P_{int}^{1}	Puissance intérieure (+ repère)
\puissanceMot	P_{mot}	Puissance moteur

10 Rdm

10.1 Contraintes

Commandes	Rendus	Commentaires
\vContrainte{A}{}	$\overrightarrow{T}(A,\overrightarrow{n})$	Vecteur contrainte
{}	$\overrightarrow{T}(\overrightarrow{n})$	Idem sans le point
\vContrainte[\sigma]{A}{}	$\overrightarrow{\sigma}(A,\overrightarrow{n})$	Idem avec changement de nota-
		tion
\tenseurContraintes{A}	$ar{ar{\sigma}}_A$	Tenseur des contraintes
\tenseurContraintesStd	$ \left(\begin{array}{cccc} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{array}\right) $	Tenseur des contraintes stan- dard

10.2 Moments quadratiques

Commandes	Rendus	Commentaires
\momentQuadratique{x}	I_{G_x}	Moment quadratique $/x$
\momentQuadratique{x}[S]	$I_{G_x}(S)$	Moment quadratique de la surface
		S/x
\momentQuadratique{x}[][A]	I_{A_x}	Moment quadratique $/(A, \overrightarrow{x})$
\momentQuadratique{x}[S][A]	$I_{A_x}(S)$	Moment quadratique de la surface
		$S/(A,\overrightarrow{x})$
\momentQuadratiquePolaire	I_G	Moment quadratique polaire
\momentQuadratiquePolaire[1]	$I_G(1)$	Moment quadratique polaire
\momentQuadratiquePolaire[S_1][G_1]	$I_{G_1}(S_1)$	Moment quadratique polaire

10.3 Torseur de cohésion

10.3.1 Généralités

Commandes	Rendus	Commentaires
\tCohesion	$\{\mathcal{T}_{coh}\}$	Torseur de cohésion
\tCohesion[A]	$\{\mathcal{T}_{coh}\}_A$	Idem avec point spécifié
\tCoh	$\{\mathcal{T}_{co ulpha}\}$	Torseur de cohésion (Raccourci)
\resultanteCohesionDet	$\int_S \overrightarrow{T}(M,\overrightarrow{x}).dS$	Définition de la résultante du torseur de cohésion
\momentCohesionDef	$\int_S \overrightarrow{GM} \wedge \overrightarrow{T}(M, \overrightarrow{x}).dS$	Définition du moment du torseur
		de cohésion
\tCohesionDef	$\left\{ \int_{S} \overrightarrow{T}(M, \overrightarrow{x}).dS \\ \int_{S} \overrightarrow{GM} \wedge \overrightarrow{T}(M, \overrightarrow{x}).dS \right\}$	Définition du torseur de cohésion
\tCohesionDef[A]	$\left\{ \int_{S} \overrightarrow{T}(M, \overrightarrow{x}).dS \\ \int_{S} \overrightarrow{GM} \wedge \overrightarrow{T}(M, \overrightarrow{x}).dS \right\}$	Idem en un autre point
\Mfy	Mf_y	Moment fléchissant
\Mfz	Mf_z	Moment fléchissant

10.3.2 Forme canonique

Expression de la forme canonique du torseur de cohésion :

$$\ \ \, \ \, \ \, \ \, \ \, \ \, \left\{ \begin{array}{ll} N & Mt \\ T_y & Mf_y \\ T_z & Mf_z \end{array} \right\}$$

On peut éventuellement préciser un point et une base...:

$$\label{eq:cohesionCan} $$ \t CohesionCan[A]_{1}_{0}_{1}_{0}_{0} = \left\{ \begin{array}{ll} N & 0 \\ 0 & Mf_{y} \\ T_{z} & 0 \end{array} \right\}_{b} $$$$

Dans ces 2 cas, il suffit de mettre des 1 ou des 0 pour afficher ou non les composantes du torseur.

10.4 Torseur des petits déplacements

10.4.1 Généralités

Commandes	Rendus	Commentaires
\tDeplacementSymbole	Dep	Symbole du torseur des déplace-
		ments
\tDeplacement{1}{2}	$\left\{Dep_{1/2} ight\}$	Torseur des déplacements
\tDeplacement{1}{2}[A]	$\Big \Big\{ Dep_{1/2} \Big\}_A$	Idem avec un point spécifié
\tPetitDeplacementSymbole	\mathcal{U}	Symbole du torseur des petits dé-
		placements
\tPetitDeplacement{1}{2}	$ig \left\{\mathcal{U}_{1/2} ight\}$	Torseur des petits déplacements
\tPetitDeplacement{1}{2}[A]	$\left\{ \mathcal{U}_{1/2} ight\}_A$	Idem avec un point spécifié
\tDep{1}{2}	$\left\{ \mathcal{U}_{1/2} ight\}$	Torseur des petits déplacements
	, ,	(Raccourci)
\resultantePetitDeplacement	$\overrightarrow{\theta}$	Résultante des petits déplacements
\momentPetitDeplacement	$\mid \overrightarrow{U} \mid$	Moment des petits déplacements

10.4.2 Forme canonique

Expression de la forme canonique du torseur des petits déplacements :

$$\label{eq:total_loss} $$ \tPetitDeplacementCan{1}{1}{1}{1}{1}{1}$ $\Rightarrow \qquad \left\{ \begin{array}{ll} \theta_x & u_x \\ \theta_y & u_y \\ \theta_z & u_z \end{array} \right. $$$$$

On peut éventuellement préciser un point et une base...:

\tPetitDeplacementCan[A]{1}{0}{1}{0}[b]
$$\Rightarrow \left\{ egin{array}{ll} \theta_x & 0 \\ 0 & u_y \\ \theta_z & 0 \end{array} \right\}_b$$

Dans ces 2 cas, il suffit de mettre des 1 ou des 0 pour afficher ou non les composantes du torseur.

10.5 Torseur des petites déformations

Commandes	Rendus	Commentaires
\tPetitesDeformationsSymbole	\mathcal{E}	Symbole du torseur des petites dé-
		formations
\tPetitesDeformations	$\{\mathcal{E}(x)\}$	Torseur des petites déformations
\tPetitesDeformations[s]	$\{\mathcal{E}(s)\}$	Torseur des petites déformations
\tPetitesDeformations[x][A]	$\{\mathcal{E}(x)\}_A$	Torseur des petites déformations
\resultantePetitesDeformations	$\overrightarrow{\gamma}$	Résultante
\momentPetitesDeformations	$\overrightarrow{\varepsilon}$	Moment
\momentPetitesDeformations[A]	$\overrightarrow{arepsilon_A}$	Moment

11 SLCI

11.1 Transformée de Laplace

Commandes	Rendus	Commentaires
\laplace{x(t)}	$\mathcal{L}[x(t)]$	Transformée de Laplace
\laplaceInv{X(p)}	$\mathcal{L}^{-1}[X(p)]$	Transformée de Laplace
		inverse
\laplaceFleche	$\xrightarrow{\mathcal{L}}$	Symbole sur flèche
\laplaceInvFleche	$\xrightarrow{\mathcal{L}^{-1}}$	Idem, mais inverse

11.2 Notations

Commandes	Rendus	Commentaires
\jw	$j\omega$	
\jw[\omega_3]	$j\omega_3$	
\jo	$(j\omega)$	
\jo[\omega_3]	$(j\omega_3)$	
\Gw	$G(\omega)$	Gain
\Gw[\omega_1]	$G(\omega_1)$	Gain
\Gdbw	$G_{db}(\omega)$	Gain en dB
\Gdbw[\omega_1]	$G_{db}(\omega_1)$	Gain en dB
\phase	$\varphi(\omega)$	Phase
\phase[\omega_1]	$\varphi(\omega_1)$	Phase
\wCoupure	ω_c	Pulsation de coupure
\wCoupure[2]	ω_{c2}	
\wResonance	ω_r	Pulsation de résonance
\wResonance[3]	ω_{r3}	
\eStatique	$arepsilon_S$	Erreur statique
\eTrainage	$arepsilon_V$	Erreur de trainage
\trep	$t_{5\%}$	Temps de réponse à 5%
\dnp	$D_{1\%}$	$n^{i m e} m^{e}$ dépassement
\MG	MG	Marge de gain
\MP	${\sf M}_{arphi}$	Marge de phase
∖BP	BP	Bande passante
\FTB0	FTBO	FT boucle ouverte
\FTBF	FTBF	FT boucle fermée
\FTCD	FTCD	FT chaîne directe
\FTCR	FTCR	FT chaîne retour
\Hbo	$H_{BO}(p)$	FT boucle ouverte
\Hbo[]	H_{BO}	idem sans la variable
\Hbf	$H_{BF}(p)$	FT boucle fermée
\Hbf[]	H_{BF}	idem sans la variable

11.3 Signaux

Commandes	Rendus	Commentaires
\dirac	$\delta(t)$	Dirac
\dirac[t-\tau]	$\delta(t- au)$	
\echelon	u(t)	Échelon
\echelon[t-\tau]	u(t- au)	
\rampe	r(t)	Rampe
\rampe[t-\tau]	r(t- au)	

11.4 Formes canoniques

Commandes	Rendus	Commentaires
\amortissement	ξ	Coefficient d'amortissement
\canonique1	$\frac{K}{1+\tau p}$	Forme canonique du 1er ordre
\canonique1[1.2]	$\frac{1.2}{1+\tau p}$	Forme canonique du 1 ^{er} ordre avec gain paramétré
\canonique1[1.2][5]	$\frac{1.2}{1+5p}$	Forme canonique du 1 ^{er} ordre avec gain et constante de temps paramétrés
\canonique2	$\frac{K}{1 + \frac{2\xi}{\omega_0}p + \frac{1}{\omega_0^2}p^2}$	Forme canonique du 2º ordre
\canonique2[1.2]	$\frac{1.2}{1 + \frac{2\xi}{\omega_0}p + \frac{1}{\omega_0^2}p^2}$	Forme canonique du 2 ^e ordre avec gain paramétré
\canonique2[1.2][10]	$\frac{1.2}{1 + \frac{2\xi}{10}p + \frac{1}{10^2}p^2}$	Forme canonique du 2 ^e ordre avec gain et pulsation propre paramétrés
\canonique2[1.2][10][\pi]	$\frac{1.2}{1 + \frac{2\pi}{10}p + \frac{1}{10^2}p^2}$	Forme canonique du 2 ^e ordre avec gain, pulsation propre et amortissement paramétrés
\canoniqueInv1	$1+\tau p$	Forme canonique du 1 ^{er} ordre, au numérateur
\canoniqueInv2	$1 + \frac{2\xi}{\omega_0}p + \frac{1}{\omega_0^2}p^2$	Forme canonique du 2º ordre, au numérateur

12 Électricité, électronique

Rajouter la commande \importPackagesElec en préambule du document permet d'importer le package circuitikz https://www.ctan.org/pkg/circuitikz et de définir quelques styles de flèches pour les schémas électriques.

Commandes	Rendus	Commentaires
\Req	R_{eq}	Résistance équivalente
\RTh	R_{Th}	Résistance de Thévenin
\RN	R_N	Résistance de Norton
\ETh	E_{Th}	Tension de Thévenin
\IN	I_N	Courant de Norton
\vmoy{U}	< $U>$	Valeur moyenne
\veff{U}	$U_{ m eff}$	Valeur efficace
\vmax{U}	\hat{U}	Valeur de crête

13 Notations diverses

Commandes	Rendus	Commentaires
\numPiece{1}	1	Numéro de pièce
\np{1}	1	Numéro de pièce (Raccourci)
\npm{S_1}	S_1	Numéro de pièce (en mode
		math)
\solide{1}	1	Numéro de solide
\ensMat{1}	(1)	Ensemble matériel
\ensSolides{1,2,3}	$\{1, 2, 3\}$	Ensemble de solides
\cste	cste	Constante
\AN	AN:	Application numérique
\ext	ext	Extérieur
\inter	int	Intérieur
\mot	mot	Moteur
\atm	atm	Atmosphérique
\pes	pes	Pesanteur
\maxi	max	Maximum
\mini	min	Minimum
\moy	moy	Moyenne
\d1, \dS, \dV, \dtau, \dm	$d\ell$, dS , dV , $d\tau$, dm	Petits éléments

14 Torseurs et tenseurs

14.1 Écriture des torseurs

Commandes	Rendus	Commentaires
\torseur{X}	$\{X\}$	Torseur
\torseurLigne{A}{X}{Y}	$\left \left\{ egin{array}{c} X \\ Y \end{array} \right\} \right $	Torseur en ligne
\tLigne{A}{X}{Y}	$\left\{ egin{array}{c} X_A \\ Y \end{array} ight\}$	Torseur en ligne (Raccourci)
\tLigne[1]{A}{X}{Y}	$\left egin{array}{c} X_A \ Y \end{array} ight. ight.$	idem (alignement à gauche)
\torseurColonne{A}{X\\Y\\Z}{L\\M\\N}{b}	$\left\{\begin{array}{cc} X & L \\ Y & M \\ Z & N \end{array}\right\}_{b}$	Torseur en colonne
\tColonne{A}{X\\Y\\Z}{L\\M\\N}{b}	$\left\{egin{array}{ccc} X_A & L \ Y_A & M \ Z & N \end{array} ight\}$	Torseur en colonne (Rac-
\tColonne[1]{A}{X\\Y\\Z}{L\\M\\N}{b}	$ \left\{ \begin{array}{cc} X_A & L \\ Y_A & M \\ Z & N \end{array} \right\} $	idem (alignement à gauche)
\tNul	{0}	Torseur nul

14.2 Écriture des tenseurs

Commandes	Rendus	Commentaires
\tenseur{I}	$ar{ar{I}}$	Tenseur

14.3 Éléments de réduction

Commandes	Rendus	Commentaires
\ResSymbole	R	Symbole de la résultante
\MomSymbole	M	Symbole du moment
\resultante{\torseur{T}}	$\overrightarrow{R\{T\}}$	Résultante d'un torseur
\Res{\torseur{T}}	$\overrightarrow{R\{T\}}$	Résultante d'un torseur (Raccourci)
<pre>\moment{A}{\torseur{T}}</pre>	$\overrightarrow{M_A\{T\}}$	Moment d'un torseur
\Mom{A}{\torseur{T}}	$\overrightarrow{M_A\{T\}}$	Moment d'un torseur (Raccourci)
\elementsReduction{\torseur{T}}{A}{R}{M}	$\left\{\begin{array}{l} \overrightarrow{R\{T\}} = R \\ \overrightarrow{M_A\{T\}} = M \end{array}\right.$	Éléments de réduction

14.4 Opérateurs

Commandes	Rendus	Commentaires
\automoment{\torseur{T}}	$a\{T\}$	Automoment
\axeCentral{\torseur{T}}	$(\Delta \{T\})$	Axe central
$\label{torseur} $$ \operatorname{T_1}}{\operatorname{T_2}} $$	$\{T_1\}\otimes\{T_2\}$	Comoment
$\label{lem:comment} $$ \ \end{A}_{\torseur}_T_1}_{\torseur}_T_1.$	\longrightarrow	Comoment développé
	$M_A\{T_1\} \cdot R\{T_2\}$	

15 Notations mathématiques de base

15.1 Fonctions

Commandes	Rendus	Commentaires
\fonction{f}{t}	f(t)	Fonction
\atan{x}	$\tan^{-1}\mathbf{x}$	Arctan
\deriv{f}	$\frac{df}{dt}$	Dérivée
\derivn{f}	$\frac{d}{dt}(f)$	Dérivée (variante)
\deriv{f}[x]	$\frac{df}{dx}$	Dérivée (on spécifie la variable)
\deriv[2]{f}	$\frac{dx}{d^2f}$ $\frac{d^2f}{dt^2}$ d^2f	Dérivée (avec ordre)
\deriv[2]{f}[x]	$\frac{d^2f}{dx^2}$	Avec tous les arguments

Pour toutes les variantes suivantes, on peut aussi utiliser un premier argument facultatif pour l'ordre de la dérivée, et un dernier pour spécifier la variable... ex : \derivV[2] \\vF}{R}[x]

Commandes	Rendus	Commentaires
\derivP{f}	$\frac{\partial}{\partial t}(f)$	Dérivée partielle
\derivPn{f}	$\frac{\partial}{\partial t}(f)$	Idem, mais avec affichage réduit
\derivV{\vF}{R}	$\left[\left[rac{d\overrightarrow{F}}{dt} ight]_{R}$	Dérivée vectorielle
\derivVn{\vF}{R}	$\left[\frac{d\overrightarrow{F}}{dt}\right]_R$	Idem, mais avec affichage réduit
\derivVl{\vF}{R}	$\left[\frac{d}{dt}\overrightarrow{F}\right]_{R}$	Variante de la dérivée vectorielle
\derivVln{\vF}{R}	$\left[\frac{d}{dt}\overrightarrow{F}\right]_{R}$	Idem, mais avec affichage réduit

15.2 Ensembles

Commandes	Rendus	Commentaires
\R	\mathbb{R}	Nombre réel
\couple{A}{B}	(A,B)	Couple
\triplet{A}{B}{C}	(A, B, C)	Triplet
ruplet{A}{B}{C}{D}	(A, B, C, D)	Quadruplet

15.3 Géométrie

Commandes	Rendus	Commentaires
\segment{AB}	[AB]	Segment
\droite{AB}	(AB)	Droite
\arc{AB}	\widehat{AB}	Arc
\angle{ABC}	\widehat{ABC}	Angle
\axe{A}{}	(A, \overrightarrow{x})	Axe
\plan{1}	π_1	Plan

15.4 Complexes

Commandes	Rendus	Commentaires
\complexe{a}	<u>a</u>	Grandeur complexe
\zmod{a}	$ \underline{a} $	Module
\zmod{a}[(\jw)]	$ \underline{a}(j\omega) $	Module (avec texte supp.)
\zarg{a}	$arg(\underline{a})$	Argument
\zarg{a}[(\jw)]	$arg(\underline{a}(j\omega))$	Argument (avec texte supp.)
\zargn{a}	arg(a)	Argument (variante)

15.5 Bases

Commandes	Rendus	Commentaires
	b	Base vectorielle (notation)
\bB{1}	b_1	Base vectorielle (avec indice)
\base{\vx1}{\vy1}{\vz1}	$(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$	Base vectorielle
\bxyz	$(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$	Base préfabriquée
\buvw	$(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$	Base préfabriquée

15.6 Référentiels

Commandes	Rendus	Commentaires
	\mathcal{R}	Référentiel (notation)
\referentiel{1}	\mathcal{R}_1	Référentiel

15.7 Repères

Commandes	Rendus	Commentaires
	R	Repère (notation)
\rR{1}	R_1	Repère (avec indice)
\repere{0}{\vx1}{\vy1}{\vz1}	$(O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$	Repère
\repere[\rR{1}]{0}{\vx1}{\vy1}{\vz1}	$R_1(O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$	Idem avec nom
\r0uvw	$(O, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$	Repère préfabriqué
\rR0xyz	$R(O, \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$	Repère préfabriqué
\r0uvw	$(O, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$	Repère préfabriqué

15.8 Opérateurs

Commandes	Rendus	Commentaires
\scalaire		Produit scalaire
\scal	•	Produit scalaire (Raccourci)
\vectoriel	Λ	Produit vectoriel
\vect	Λ	Produit vectoriel (Raccourci)
\abs{x}	x	Valeur absolue
\norme{\vF}	$\ \overrightarrow{F}\ $	Norme
\prodMixte{X}{Y}{Z}	$(X \wedge Y) \cdot Z$	Produit mixte
\doubleProdVect{X}{Y}{Z}	$X \wedge (Y \wedge Z)$	Double produit vectoriel

15.9 Vecteurs

Commandes	Rendus	Commentaires
\vecteur{u}	\overrightarrow{u}	Vecteur
\vecteur{u}[1]	$\overrightarrow{u_1}$	Vecteur avec indice
\bipoint{A}{B}	$\overrightarrow{[AB]}$	Bipoint
\vLie{A}{}	(A, \overrightarrow{u})	Vecteur lié
\vColonne{X \\ Y \\ Z}	$\left \left(\begin{array}{c} X \\ Y \\ Z \end{array} \right) \right $	Vecteur en colonne
\vColonne{X+X' \\ Y \\ Z}[]	$\begin{pmatrix} X+X'\\Y\\Z \end{pmatrix}_b$	Idem, avec base spécifiée
\vColonne[1]{X+X' \\ Y \\ Z}	$\left(\begin{array}{c} X+X'\\Y\\Z\end{array}\right)$	Idem, mais le 1^{er} paramètre gère l'alignement horizontal $(l, r \text{ ou } c, c \text{ par défaut})$

15.10 Vecteurs pré-fabriqués

Commandes	Rendus	Commentaires
\vNul	$\overrightarrow{0}$	Vecteur nul
	\overrightarrow{e}	
\vex, \vey, \vez	$\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z}$	
\ve{1} ou \ve1	$\overrightarrow{e_1}$	
\ver	$\overrightarrow{e_r}$	
\vetheta	$\overrightarrow{e_{ heta}}$	
, ,	$\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z}$	
\vx{1} ou \vx1	$\overrightarrow{x_1}$	
\vy{1} ou \vy1	$\overrightarrow{y_1}$	
\vz{1} ou \vz1	$ \overrightarrow{z_1} $	
, ,	$\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$	
\vu{1} ou \vu1	$\overrightarrow{u_1}$	
\vv{1} ou \vv1	$\overrightarrow{v_1}$	
\vw{1} ou \vw1	$\overrightarrow{w_1}$	
	\overrightarrow{n}	
\vn{1} ou \vn1	$\overrightarrow{n_1}$	
\vOM, \vOG, \vOP, \vAB, \vBA, \vOA, \vOB,	$ \begin{vmatrix} \overrightarrow{OM}, & \overrightarrow{OG}, \\ \overrightarrow{OP}, \overrightarrow{AB}, \overrightarrow{BA}, \\ \overrightarrow{OA}, \overrightarrow{OB} \end{vmatrix} $	Vecteurs préfabriqués

15.11 Divers

Commandes	Rendus	Commentaires
\indiceGauche{i}{R}	$_{i}R$	Indice gauche
\exposantGauche{i}{R}	iR	Exposant gauche
\transposee{M}	tM	Transposée
\ofrac{A}{B}	A/B	Fraction (barre oblique)
\parallele	//	Parallèle
\pdix{2}	$\times 10^2$	Puissance de 10
\condition{X(p)}{A=0}	$X(p) _{A=0}$	Condition

16 Formules et théorèmes

16.1 Cinématique

• Formule de Bour (dérivation vectorielle) : $\Bour{\vu{}}{R_1}{R_2}$

$$\left[\frac{d\overrightarrow{u}}{dt}\right]_{R_2} = \left[\frac{d\overrightarrow{u}}{dt}\right]_{R_1} + \overrightarrow{\Omega_{R_1/R_2}} \wedge \overrightarrow{u}$$

• Formule de Bour (avec underbrace) : $\Bour{\vu{}}{R_1}{R_2}[\vu{}]$

$$\left[\frac{d\overrightarrow{u}}{dt}\right]_{R_2} = \underbrace{\left[\frac{d\overrightarrow{u}}{dt}\right]_{R_1}}_{\overrightarrow{\Omega}} + \overrightarrow{\Omega}_{R_1/R_2} \wedge \overrightarrow{u}$$

• Transport du moment cinématique : \changePtMomCinematique{1}{2}{B}{A}

$$\overrightarrow{V_{A\in 1/2}} + \overrightarrow{BA} \wedge \overrightarrow{\Omega_{1/2}}$$

• Transport du moment cinématique (avec underbrace) : \changePtMomCinematique{1}{2}{B}{A}[\vN

$$\underbrace{\overrightarrow{V_{A\in 1/2}}}_{\overrightarrow{0}} + \overrightarrow{BA} \wedge \overrightarrow{\Omega_{1/2}}$$

• Formule de transport du moment cinématique (Varignon) : \Varignon{1}{2}{B}{A} ou \babarCinematique{1}{2}{B}{A}

$$\overrightarrow{V_{B\in 1/2}} = \overrightarrow{V_{A\in 1/2}} + \overrightarrow{BA} \wedge \overrightarrow{\Omega_{1/2}}$$

• Formule de transport du moment cinématique (avec underbrace) : \Varignon{1}{2}{B}{A}[\vNul] ou \babarCinematique{1}{2}{B}{A}[\vNul]

$$\overrightarrow{V_{B\in 1/2}} = \underbrace{\overrightarrow{V_{A\in 1/2}}}_{\overrightarrow{O}} + \overrightarrow{BA} \wedge \overrightarrow{\Omega_{1/2}}$$

• Formule du champ des accélérations : \champAccelerations{1}{2}{B}{A}

$$\overrightarrow{\Gamma_{B\in 1/2}} = \overrightarrow{\Gamma_{A\in 1/2}} + \overrightarrow{BA} \wedge \left[\frac{d\overrightarrow{\Omega_{1/2}}}{dt} \right]_{B_2} + \overrightarrow{\Omega_{1/2}} \wedge \left(\overrightarrow{BA} \wedge \overrightarrow{\Omega_{1/2}} \right)$$

16.2 Statique

• Principe fondamental de la statique (eq. torsorielle) : \PFS{1} ou \PFS{1}[A] (en spécifiant le point)

$$\sum \{\mathcal{T}_{\mathsf{ext} \to 1}\} = \{0\} \qquad \text{ou} \qquad \sum \{\mathcal{T}_{\mathsf{ext} \to 1}\}_A = \{0\}$$

• Théorème de la résultante statique : \thResStatique{1}

$$\sum \overrightarrow{F_{\mathsf{ext} \to 1}} = \overrightarrow{0}$$

• Théorème du moment statique : \thMomStatique{1}{A}

$$\sum \overrightarrow{M_{A,\text{ext}\to 1}} = \overrightarrow{0}$$

• Transport du moment : \changePtMomAM{1}{2}{B}{A}

$$\overrightarrow{M_{A,1\to 2}} + \overrightarrow{BA} \wedge \overrightarrow{F_{1\to 2}}$$

• Transport du moment (avec underbrace) : \changePtMomAM{1}{2}{B}{A}[\vNul]

$$\underbrace{\overrightarrow{M_{A,1\to2}}}_{\overrightarrow{0}} + \overrightarrow{BA} \wedge \overrightarrow{F_{1\to2}}$$

• Formule de transport de moment (BABAR) : \babarAM{1}{2}{B}{A}

$$\overrightarrow{M_{B,1\to 2}} = \overrightarrow{M_{A,1\to 2}} + \overrightarrow{BA} \wedge \overrightarrow{F_{1\to 2}}$$

• Formule de transport de moment (avec underbrace) : \babarAM{1}{2}{B}{A}[\vNul]

$$\overrightarrow{M_{B,1\to 2}} = \underbrace{\overrightarrow{M_{A,1\to 2}}}_{\overrightarrow{0}} + \overrightarrow{BA} \wedge \overrightarrow{F_{1\to 2}}$$

16.3 Cinétique, dynamique, énergétique

• Principe fondamental de la dynamique (eq. torsorielle) : \PFD{1}{\rR{g}} ou \PFD{1}{\rR{g}} [A] (en spécifiant le point)

$$\{\mathcal{T}_{\mathsf{ext} o 1}\} = \left\{\mathcal{D}_{1/R_g}\right\} \qquad \text{ou} \qquad \left\{\mathcal{T}_{\mathsf{ext} o 1}\right\}_A = \left\{\mathcal{D}_{1/R_g}\right\}_A$$

• Théorème de la résultante dynamique : \thResDynamique{1}{\rR{g}}. On peut aussi préciser la masse : \thResDynamique{1}{\rR{g}}[m_1]

$$\sum \overrightarrow{F_{\text{ext} \to 1}} = m \, \overrightarrow{\Gamma_{G \in 1/R_g}} \qquad \text{ou} \qquad \sum \overrightarrow{F_{\text{ext} \to 1}} = m_1 \, \overrightarrow{\Gamma_{G \in 1/R_g}}$$

• Théorème du moment dynamique : \thMomDynamique{1}{\rR{g}}{A}

$$\sum \overrightarrow{M_{A,\text{ext}\to 1}} = \overrightarrow{\delta_{A\in 1/R_q}}$$

- Transport du moment cinétique :
 - \changePtMomCinetique{1}{2}{B}{A}: \overrightarrow{\sigma_{A\in 1/2}} + \overrightarrow{BA} \wedge m \overrightarrow{V_{G\in 1/2}}
 - Masse: \changePtMomCinetique{1}{2}{B}{A}[m_1]: $\overrightarrow{\sigma_{A\in 1/2}} + \overrightarrow{BA} \wedge m_1 \overrightarrow{V_{G\in 1/2}}$
 - Point: \changePtMomCinetique{1}{2}{B}{A}[m_1][G_1]: \overrightarrow{\sigma_{A\in 1/2}} + \overrightarrow{BA} \land m_1 \overrightarrow{V_{G_1\in 1/2}}
 - Underbrace: \changePtMomCinetique{1}{2}{B}{A}[m_1][G_1][\vNul]: $\underbrace{\overrightarrow{\sigma_{A\in 1/2}}}_{\overrightarrow{0}} + \overrightarrow{BA} \land$

$$m_1 \xrightarrow{V_{G_1 \in 1/2}}$$

- Formule de transport de moment cinétique :
 - \babarCinetique{1}{2}{B}{A}: \overrightarrow{\sigma_{B\in 1/2}} = \overrightarrow{\sigma_{A\in 1/2}} + \overrightarrow{BA} \wedge m \overrightarrow{V_{G\in 1/2}}
 - Masse : \babarCinetique{1}{2}{B}{A}[m_1]: \overrightarrow{\sigma_{B\in 1/2}} = \overrightarrow{\sigma_{A\in 1/2}} + \overrightarrow{BA} \wedge m_1 \overrightarrow{V_{G\in 1/2}}
 - Point: \babarCinetique{1}{2}{B}{A}[m_1][G_1]: \overrightarrow{\sigma_{B\in 1/2}} = \overrightarrow{\sigma_{A\in 1/2}} + \overrightarrow{BA} \wedge m_1 \overrightarrow{V_{G_1\in 1/2}}
 - Underbrace: \babarCinetique{1}{2}{B}{A} [m_1] [G_1] [\vNul]: $\overrightarrow{\sigma_{B\in 1/2}} = \overrightarrow{\overrightarrow{\sigma_{A\in 1/2}}} + \overrightarrow{BA} \land \overrightarrow{V_{G,G1/2}}$
- Transport de moment dynamique :
 - \changePtMomDynamique{1}{2}{B}{A}: \overrightarrow{\delta_{A\in 1/2}} + \overrightarrow{BA} \wedge m \overrightarrow{\Gamma_{G\in 1/2}}
 - Masse : \changePtMomDynamique{1}{2}{B}{A}[m_1]: \overrightarrow{\delta_{A\in 1/2}} + \overrightarrow{BA} \wedge m_1 \overrightarrow{\Gamma_{G\in 1/2}}
 - Point:\changePtMomDynamique{1}{2}{B}{A}[m_1][G_1]: \overrightarrow{\delta_{A\in 1/2}} + \overrightarrow{BA} \wedge m_1 \overrightarrow{\Gamma_{G_1\in 1/2}}
 - Underbrace: \changePtMomDynamique{1}{2}{B}{A}[m_1][G_1][\vNul]: $\overbrace{\overrightarrow{\partial_{A\in 1/2}}}^{A} + \overrightarrow{BA} \land m_1 \overrightarrow{\Gamma_{G_1\in 1/2}}$

- \babarDynamique{1}{2}{B}{A}: \overrightarrow{\delta_{B\in 1/2}} = \overrightarrow{\delta_{A\in 1/2}} + \overrightarrow{BA} \wedge m \overrightarrow{\Gamma_{G\in 1/2}}
- Masse : \babarDynamique{1}{2}{B}{A}[m_1]: \overrightarrow{\delta_{B\in 1/2}} = \overrightarrow{\delta_{A\in 1/2}} + \overrightarrow{BA} \wedge m_1 \overrightarrow{\Gamma_{G\in 1/2}}

- Underbrace: \babarDynamique{1}{2}{B}{A}[m_1][G_1][\vNu1]:
$$\overrightarrow{\delta_{B\in 1/2}} = \underbrace{\overrightarrow{\delta_{A\in 1/2}}}_{\overrightarrow{0}} + \overrightarrow{BA} \land \underbrace{m_1 \overrightarrow{\Gamma_{G_1\in 1/2}}}_{\overrightarrow{0}}$$

• Théorème de Huygens : \thHuygens

$$\bar{\bar{I}}_{(O,S)} = \bar{\bar{I}}_{(G,S)} + m \begin{pmatrix} b^2 + c^2 & -ab & -ac \\ -ab & a^2 + c^2 & -bc \\ -ac & -bc & a^2 + b^2 \end{pmatrix}$$

• Théorème de Huygens (cas particulier) : \thHuygens [A] [S] [m_s] [] [b] [c]

$$\bar{\bar{I}}_{(A,S)} = \bar{\bar{I}}_{(G,S)} + m_s \begin{pmatrix} b^2 + c^2 & 0 & 0\\ 0 & c^2 & -bc\\ 0 & -bc & b^2 \end{pmatrix}$$

• Théorème de l'énergie cinétique : \thEnergieCinetique{S_1}{\rR{g}}

$$\frac{dE_{c(S_1/R_g)}}{dt} = P_{\bar{S}_1 \to S_1/R_g}$$

• Théorème de l'énergie cinétique (simplifié) : \thEnergieCinetiqueSimple

$$\frac{dE_c}{dt} = P_{\text{int}} + P_{\text{ext}}$$

16.4 Trains épicycloïdaux

• Terme « de gauche » de la formule de Willis : \WillisTGauche

$$\frac{\omega_{p_A/ba} - \omega_{ps/ba}}{\omega_{p_B/ba} - \omega_{ps/ba}}$$

• Idem, en précisant les indices : \WillisTGauche[1][2][3][0]

$$\frac{\omega_{1/0} - \omega_{3/0}}{\omega_{2/0} - \omega_{3/0}}$$

• Formule de Willis: \Willis

$$\frac{\omega_{p_A/ba} - \omega_{ps/ba}}{\omega_{p_B/ba} - \omega_{ps/ba}} = \lambda = (-1)^p \frac{\prod Z_{menantes}}{\prod Z_{menees}}$$

• Idem, en précisant les indices : \Willis[1][2][3][0][\lambda_1]

$$\frac{\omega_{1/0} - \omega_{3/0}}{\omega_{2/0} - \omega_{3/0}} = \lambda_1 = (-1)^p \frac{\prod Z_{menantes}}{\prod Z_{menees}}$$

• Formule de Willis linéarisée (Ravignaux) : \Ravignaux

$$\omega_{p_A/ba} - \lambda \, \omega_{p_B/ba} + (\lambda - 1) \, \omega_{ps/ba} = 0$$

• Idem, en précisant les indices : \Ravignaux[1][2][3][0][\lambda_1]

$$\omega_{1/0} - \lambda_1 \, \omega_{2/0} + (\lambda_1 - 1) \, \omega_{3/0} = 0$$

17 Tikz

17.1 Grille

Pour créer des dessins Tikz, on peut utiliser une grille prédéfinie pour aider au positionnement des différents éléments. Il suffit d'utiliser la commande \tikzGrid qui donne :

Si on fixe le deuxième paramètre facultatif à 1, alors \tikzGrid trace une quadrillage plus fin.

17.2 Styles divers

Trait mixte : \traitMixte
 \begin{tikzpicture}
 \defTraitMixte
 \draw[traitMixte] (0,0) -- (3,0);
 \end{tikzpicture}

18 Bases, repères et figures planes

18.1 Bases et repères

Commandes	Rendus	Commentaires
\dessinRepere	$ \begin{array}{c} \overrightarrow{z} & \xrightarrow{\overrightarrow{y}} \\ \xrightarrow{\overrightarrow{z}} & \xrightarrow{\overrightarrow{x}} \end{array} $	Base standard
\dessinRepere[][][]	$\overrightarrow{w} \overset{\overrightarrow{v}}{\bullet} \xrightarrow{\overrightarrow{u}}$	Idem, avec changement d'axes
\dessinRepere[][][][0]	$\overrightarrow{w} \overset{\overrightarrow{v}}{\overset{\overrightarrow{v}}{O}} \longrightarrow_{\overrightarrow{u}}$	Idem, mais avec un centre de repère
\dessinRepere[][][][][1]	$ \downarrow^{\overrightarrow{w}}_{\overrightarrow{v}} $	Idem, mais indirecte (on donne un 5e argument non nul)

18.2 Bases et repères (3D)

Commandes	Rendus	Commentaires
\dessinRepereTri	$\overrightarrow{\overline{x}}$ \overrightarrow{z}	Repère en 3D
\dessinRepereTri[\vy0][\vz0][\vx0][0]	$ \begin{array}{c} \overrightarrow{y_0} \\ \overrightarrow{z_0} \end{array} $	Idem, en spécifiant les axes
\dessinRepereIso	\overrightarrow{z} \overrightarrow{x}	Repère en 3D isomé- trique
\dessinRepereIso[\vy0][\vz0][\vx0][0]	$\overrightarrow{z_0}$ $\overrightarrow{v_0}$ $\overrightarrow{v_0}$	Idem, en spécifiant les axes

On peut aussi utiliser les commandes \dessinRepereTriFig et \dessinRepereIsoFig (avec les mêmes paramètres) pour insérer ces figures dans un dessin Tikz.

18.3 Figures planes

18.3.1 Principe

On utilise la commande \parametrageAngulaire avec les paramètres suivants :

- {1} : Nom de l'angle,
- [2]: (Opt) Valeur de l'angle,
- {3}, {4}, {5} : axes de la première base,
- {6}, {7}, [8] : axes de la base 2 (le 3^e est optionnel),
- [9]: (Opt) Orientation de l'axe normal au plan (=1 si vers le plan).

La couleur par défaut est noire, mais on peut spécifier les couleurs des 2 bases en utilisant la commande suivante (juste avant \parametrageAngulaire) : \setCouleursParametrage{couleur1}{couleur2} Si on veut afficher un paramétrage angulaire au sein d'une figure tikz, il faudra plutôt utiliser la commande \parametrageAngulaireFig.

18.3.2 Exemples

Exemple de base : \parametrageAngulaire{\alpha}{\vx{}}{\vy{}}{\vz{}}{\vx1}{\vy1}

• Exemple complet: \parametrageAngulaire{\alpha}[35]{\vx{}}{\vz{}}{\vx1}{\vz1}[\vy1][1]

Avec gestion des couleurs:
 \setCouleursParametrage{blue}{red}
 \parametrageAngulaire{\alpha}{\vx{}}{\vx{}}{\vx1}{\vy1}

18.4 Figures planes multiples

18.4.1 Principe

On utilise en premier lieu la commande \setFigurePlaneMultipleBase 3 ou 4 fois (si on veut afficher 3 ou 4 bases sur la même figure) avec les paramètres suivants :

- [1] : (Opt) Couleur de la base,
- {2} : Nom de l'angle,
- [3] : (Opt) Base de référence pour l'angle,
- {4}, {5}, [6] : axes de la base.

Ensuite, on utilise la commande \figurePlaneMultiple pour afficher la figure, avec les paramètres suivants :

- [1]: (Opt) Nombre de bases à afficher (3 ou 4, 3 par défaut);
- [2] : (Opt) Mettre cette valeur à 1 pour afficher l'égalité entre tous les vecteurs $\vec{z_i}$.

Si on veut afficher un paramétrage angulaire au sein d'une figure tikz, il faudra plutôt utiliser la commande \figurePlaneMultipleFig.

18.4.2 Exemples

• Exemple par défaut : \figurePlaneMultiple

• Exemple complet:

 $\label{thm:continuous} $$\left[\sup_{\alpha \in \mathbb{N}_{vy0}_{$

• Variante:

 $\label{thm:conditional contents of the content of$

19 Graphe des liaisons

19.1 Principe

L'idée est de définir un environnement personnalisé simplifiant la création de graphes des liaisons. Il faut commencer par repérer la position des différentes pièces, puis utiliser les commandes suivantes :

```
• \glconfig[1][2] : Configuration pour l'affichage du graphe des liaisons
```

- [1] : style des liaisons
- [2] : style des pièces
- \glPiece{1}{2}{3}[4] : Pièce, avec comme paramètres :
 - {1} : coordonnées de la pièce (ex : {0,0})
 - {2} : nom du nœud (node)
 - {3} : numéro de la pièce
 - [4] : style Tikz (optionnel)
- \glBati[1]{2}{3}{4}[5][6]:Bâti:
 - [1] : orientation en degrés
 - {2} : coordonnées de la pièce (ex : {0,0})
 - {3} : nom du nœud (node)
 - {4} : numéro de la pièce
 - [5] : scale
 - [6] : style Tikz (optionnel)
- \glLiaison[1][2]{3}[4][5][6]: Liaison, avec comme paramètres:
 - [1]: Courbure du trait de liaison (habituellement: bend left ou bend right) (optionnel)
 - [2] : Style du trait de liaison (couleur, pointillés...) (optionnel)
 - {3}: nom du nœud 1
 - {4} : nom du nœud 2
 - [5]: Texte (optionnel)
 - [5]: Style et position du texte (right, below, above left ...) (optionnel)

19.2 Exemple

```
begin{grapheLiaisons}[scale=0.55]
    \glBati{0,1}{P0}{0}[1.5]
    \glPiece{-5,5}{P1}{1}
    \glPiece{0,9}{P2}{2}
    \glPiece{5,5}{P3}{3}
    \glLiaison[bend left]{P0}{P1}[Gliss.\\ axe \axe{A}{\vz{}}][left=1em, align=center]
    \glLiaison[bend right]{P0}{P3}[Pct][right]
    \glLiaison[bend left]{P1}{P2}{Piv.\\axe \axe{K}{\vx{}}][left=1em, align=center]
    \glLiaison[bend left=10]{P1}{P3}[Rot.\\ centre $C'$][above, align=center]
    \glLiaison[bend right=10]{P1}{P3}[LA \axe{C}{\vy{}}][below]
    \glLiaison[bend left]{P2}{P3}[Pct][right]
    \end{grapheLiaisons}
```


20 Diagrammes des efforts intérieurs

20.1 Principe

Pour tracer les diagrammes d'efforts intérieurs, on pourra utiliser les commandes suivantes :

- \PoutreEncastrement{1}{2}[3][4]: Liaison encastrement
 - $\{1\}$: Position x
 - {2} : Position y
 - [3]: (Opt) Orientation (en degrés)
 - [4]: (Opt) Scale
- \PoutreAppuiSimple{1}{2}[3][4]: Appui simple
 - {1} : Position x
 - $\{2\}$: Position y
 - [3]: (Opt) Orientation (en degrés)
 - [4]: (Opt) Scale
- \PoutreRotule{1}{2}[3][4]: Rotule
 - {1} : Position x
 - $\{2\}$: Position y
 - [3] : (Opt) Orientation (en degrés)
 - [4]: (Opt) Scale
- \PoutreBaseLocale{1}{2}[3][4]: Axes de la base locale
 - $\{1\}$: Position x
 - $\{2\}$: Position y
 - [3] : (Opt) Étiquette des abcisses (défaut : x)
 - [4] : (Opt) Étiquette des ordonnées (défaut : *y*)
- \PoutreCharge{1}{2}{3}[4][5][6][7][8]: Glisseur
 - **–** {1} : Position *x*
 - {2} : Position y

- {3}: Nom
- [4]: (Opt) Orientation (en degrés)
- [5] : (Opt) Inversion (1 si inversé)
- [6]: (Opt) Couleur
- [7] : (Opt) Longueur
- [8]: (Opt) Style du node
- \PoutreChargeRepartie{1}{2}{3}{4}[5][6][7]: Charge répartie
 - $\{1\}$: Position x
 - $\{2\}$: Position y
 - **-** {3} : Longueur
 - {4} : Nom
 - [5]: (Opt) Orientation (en degrés)
 - [6]: (Opt) Couleur
 - [7]: (Opt) Scale
- \PoutreDiagAxes{1}{2}{3}{4}[5] : Axes pour les diagrammes
 - {1}: Nom du diagramme
 - {2} : Position x de la poutre
 - $\{3\} : y_{min}$
 - $\{4\}: y_{max}$
 - [5]: (Opt) Nom de l'axe des abscisses
- \PoutreDiagCfg[2]: Configuration des diagrammes
 - [1] : (Opt) Couleur
 - [2]: (Opt) Options tikz supplémentaires

20.2 Exemples

20.2.1 Poutre encastrée, charge simple

```
begin{tikzpicture}
   \PoutreEncastrement{0}{0}
   \PoutreBaseLocale{6.2}{0.7}
   \draw[line width=2.5pt] (0,0) -- (6,0) node[below right] {$A$};
   \PoutreCharge{6}{0}{$Q$}
   \node at (0,0)[left=0.2] {$0$};
   \draw (0,-0.6) -- (0,-1.1);
   \draw (6,-0.1) -- (6,-1.1);
   \draw[<->,>=latex] (0,-0.9) -- (6,-0.9) node [midway, above] {$L$};
   \end{tikzpicture}
```


20.2.2 Exemple avec tracé des diagrammes

```
\begin{tikzpicture}
 % Tracé de la poutre
 draw (0,-0.1) -- (0,-1);
 \PoutreAppuiSimple{0}{0}
 \PoutreAppuiSimple{4}{0}
 \PoutreBaseLocale{6.2}{0.6}
 \PoutreChargeRepartie{0}{0}{6}{$p_0$}
 \node at (4.3,0)[below right] {$A$};
 \node at (6,0)[above right] {$B$};
 \draw[line width=2.5pt] (0,0) -- (6,0);
 \node at (0,0) [above, left=0.2] {$0$};
 draw (4,-0.1) -- (4,-0.7);
 draw (0,-0.4) -- (0,-1.3);
 draw (6,-0.1) -- (6,-1.3);
 \draw[<->,>=latex] (0,-0.5) -- (4,-0.5) node [midway, above] {$a$};
 \draw[<->,>=latex] (0,-1.1) -- (6,-1.1) node [midway, above] {$L$};
 % Diagrammes des efforts intérieurs
 Voir code source
\end{tikzpicture}
```

