Statistical Intervals		9/10 times
Confidence intervals: interval estimate for a population of (Not necessary that CI contains true mean!)	13 sample	my internal
Tolerance interval: interval that bounds tralue within some proportion	2^{not} 3^{rot} 1 1	
Prediction interval: bounds future observations	10	
Precision of estimate Narrower the internal (=> Better the precision reduce 1. confidence > 1	J 24	true mean

increase sample size

Fg. Speeds of rehicles: 64.1, 64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.3Construct a 95% CI por the mean. Tolerance interval: 64.46 - 1.96.1 = M = 64.46+1.96.1 Fig What should be the sample size to keep error within a limit of I kmyh with 95% confidence $N = \left(\frac{2\kappa_{12}.\sigma}{E_{23}}\right) = \left(\frac{1.96.1}{\sigma-5}\right) \sim 16 \text{ samples}$

Large Sample CI (n & large E) CCT is applicable) X1, X2, XN - random sample not necessarily from Normal diel: with a sample meen X, variance S ²
From CIT: $\frac{x-y}{s\sqrt{n}}$ $$
CI of mean, RV NN (-,-), varian a 718 unknown, or sample size is small or sample size is small with (n-1) d. of Student's t-dist Student's t-dist Student's t-dist And of The dist Student of the dist And of the dist Student of the dist And of the dist Student of the dist And of the dist Student of the dist And of the dist Student of the dist Student of the dist And of the dist Student of the dist

CI for the mean when rariance is ank nown / Smell' sample / X's NN (-,-)

$$\overline{X} - t_{\alpha/2} \cdot n_{-1} \cdot \overline{S} \subset \mathcal{M} \leq \overline{X} + t_{\alpha/2} \cdot n_{-1} \cdot \overline{S}$$
 $|S = S_{-1} \cdot n_{-1} \cdot S_{-1} \cdot \overline{S} = S_{-1} \cdot \overline{$

CI on the variable of a normally dist. RV $X_1, X_2, \dots X_N \cap N(\mathcal{H}, \sigma^2)$ & let 5° be The sample variance, then statistics has a 52 dist with (n-1) dos (n-1) 82 K-9.0.t. E[x] = k, v[x] = 2kCI on variance

$$\frac{\Gamma}{(n-1)} \frac{\delta n}{\delta^2} \leq \frac{\Gamma^2}{(n-1)} \frac{\delta^2}{\delta^2}$$

$$\frac{S^2}{(n-1)} \frac{\delta^2}{\delta^2} \leq \frac{(n-1)}{\delta^2} \frac{\delta^2}{(n-1)} \frac{\delta^2}{\delta^2}$$

$$\frac{S^2}{(n-1)} \frac{\delta^2}{\delta^2} \leq \frac{(n-1)}{\delta^2} \frac{\delta^2}{(n-1)} \frac{\delta^2}{\delta^2}$$

$$\frac{S^2}{(n-1)} \frac{\delta^2}{\delta^2} \leq \frac{(n-1)}{\delta^2} \frac{\delta^2}{(n-1)} \frac{\delta^2}{\delta^2}$$

$$\frac{S^2}{(n-1)} \frac{\delta^2}{\delta^2} \leq \frac{(n-1)}{\delta^2} \frac{\delta^2}{\delta^2}$$

$$\frac{S^2}{(n-1)} \frac{\delta^2}{\delta^2} \leq \frac{(n-1)}{\delta^2} \frac{\delta^2}{\delta^2}$$

$$\frac{S^2}{(n-1)} \frac{\delta^2}{\delta^2} \leq \frac{(n-1)}{\delta^2} \frac{\delta^2}{\delta^2}$$

$$\frac{S^2}{(n-1)} \frac{\delta^2}{\delta^2} = \frac{(n-1)}{\delta^2} \frac{\delta^2}{\delta^2} = \frac{(n-1)}{\delta^2} \frac{\delta^2}{\delta^2}$$

Large sample CI for a population proportion Let X obs. out of N trals be 'True' / Yer' $\widehat{P} = \frac{X}{N}$ Use CLT! Sampling dist. of \widehat{P} is approx. Normal from of \widehat{P}' $E[] = P & V[] = P(1-P) \in CU$ is a point est. CI on $\hat{p} - Z_{\kappa/2}\sqrt{\hat{p}(1-\hat{p})} \leq P \leq \hat{p} + Z_{\kappa/2}\sqrt{\hat{p}(1-\hat{p})}$ - we can ux above. thambale: MP & M(1-P) > 5 $\hat{p} = \frac{10}{85} = 0.12$ N = 85, engine crankshaft beauty 10 beauty do not met specification for roughness. Compute 95-1. CI for P 0.12 + 1.96 0.12(1-0.12) (8-8) E.g. 51. EP = 18.97.