Worksheet 6: Finite-Size Scaling and the Ising Model

April Cooper, Patrick Kreissl und Sebastian Weber

February 5, 2013 University of Stuttgart

Contents

1	Speeding up the Simulation	2
	Values and Errors 2.1 Frequency distributions	3
3	Finite Size Scaling	4
	3.1 Determinig $T_{\rm C}$	4
	3.2 Estimating $\beta_{\rm m}$	4
	3.3 The Master Curve	5

1 Speeding up the Simulation

The simulation was written in c++ because many loops were needed that slowed down python. The data analysis part was implemented in python, so that plotting was very easy. The c++ part was realized as command line tool. It was included in python by the use of the library *subprocess*. We ducked out of *cython*;-).

2 Values and Errors

Mean energy

Figure 1: Plot of the mean energy and its error (binning was used). The exact result for L=4 is in good conformity with the Monte Carlo simulation.

Mean absolute magnetization

Figure 2: Plot of the mean absolute magnetization and its error (binning was used).

Dependence on L

The higher L is, the steeper the curves are near the critical temperature. The energy and magnetization mutate to step functions for infinite temperature.

2.1 Frequency distributions

Figure 3: With an increase in L the distributions get sharper.

3 Finite Size Scaling

3.1 Determinig $T_{\rm C}$

In this task the Binder parameter $U=1-\frac{1}{3}<\mu^4>/<\mu^2>^2$ was implemented. The resulting plot of the Binder parameter over the Temperature for different L can be seen below:

Figure 4: Plot of the Binder parameter for different lattice sizes L. From the intersection point of the different curves the critical Temperature can be determined as $T_{\rm C}=2.27K$. In order to get a good result a 100000 sweeps and a temperature step size of $\Delta t=0.005$ K were used.

3.2 Estimating $\beta_{\rm m}$

Here we performed different simulations at $T_C = 2.27K$ were performed for $L \in \{8, 16, 32, 64, 128\}$. The resulting plot of the magnetization M over L is as follows:

Figure 5: Plot of the magnetization M over L with double logarithmic scale. From the linear fit through the computet magnetizations $\beta_{\rm m}$ can be determined as -0.1576.

The formula which connects the magnetization M, lattice size L and $\beta_{\rm m}$ is the following (for $T = T_C \Rightarrow t = 0$):

$$M = L^{-\beta_{\rm m}/\nu} \cdot const$$

It was also used in order to get a value for $\beta_{\rm m}$ from the plot.

3.3 The Master Curve

Figure 6: The fit is bes in the core part of the curve at plot 3, so that $\beta_{\rm m} \approx -0.12$