

Engineering Explorations

10T Workshop Using Arduino UNO

Prof. CVSN Dr. Vidya M J

Topics Covered

- Blinking an on board LED
- Connecting external LED and blinking it.
- Blinking an LED using Breadboard
- LED FADEIN/FADEOUT
- Controlling LED using PUSH button
- Traffic Light Controller
- Ultrasonic Sensor
- Controlling LED using ultrasonic sensor
- Buzzer program
- Program with ultrasonic sensor, led and buzzer (intrusion detection)
- Controlling multiple LED's with ultrasonic sensor
- Controlling Buzzer using push button
- PIR sensor

Blinking an On-Board LED

```
RY UNIVERSITY

Go, change the world

an initiative of RV EDUCATIONAL INSTITUTIONS
```

```
void setup (){
 // initialize digital pin LED_BUILTIN as an output.
 pinMode (LED_BUILTIN, OUTPUT);
// the loop function runs over and over again forever
void loop () {
digitalWrite (LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
delay (1000);
                                        // wait for a second
digitalWrite (LED_BUILTIN, LOW);
                                       // turn the LED off by making the voltage LOW
delay (1000);
                                       // wait for a second
```

Connecting External LED and Blink

```
RV
UNIVERSITY

Go, change the world

an initiative of RV EDUCATIONAL INSTITUTIONS
```

```
int led1=13;
void setup() {
 // initialize digital pin LED_BUILTIN as an output.
                                                               Note: Increase and
                                                               decrease delay to see
 pinMode(13, OUTPUT);
                                                               the variation in
                                                               blinking.
// the loop function runs over and over again forever
void loop() {
 digitalWrite(led1, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000);
                           // wait for a second
 digitalWrite(led1, LOW); // turn the LED off by making the voltage LOW
 delay(1000);
                           // wait for a second
```

Blink an LED Connected to Breadboard

fritzing

```
void setup() {
 // initialize digital pin 11 as an output.
   pinMode(11, OUTPUT);
// the loop function runs over and over again forever
void loop() {
   digitalWrite(11, HIGH); // turn the LED on (HIGH is the voltage level)
   delay(1000);
                       // wait for a second
  digitalWrite(11, LOW); // turn the LED off by making the voltage LOW
  delay(1000);
```

LED Fade-In Fade-Out

- The PWM (Pulse Width Modulation)
 - Method of controlling the average voltage.
 - It is a stream of voltage pulses that reduces the electric power supplied by the electrical signal.
 - The effective voltage is controlled by the width of individual pulses in a stream of voltage pulses of a PWM signal.
 - The common use of PWM pins includes controlling LEDs and DC Motors.

LED Fade-In Fade-Out

```
#define LED_PIN 11
void setup()
 pinMode(LED_PIN, OUTPUT);
void loop()
 for (int i = 0; i \le 255; i++) {
  analogWrite(LED_PIN, i);
  delay(10);
```

```
for (int i = 255; i >= 0; i--)
{
    analogWrite(LED_PIN, i);
    delay(10);
}
```


Controlling LED using PUSH button


```
int led = 13;
int PinButton = 4;
void setup()
  pinMode(PinButton, INPUT);
  pinMode(led, OUTPUT);
void loop()
  int stateButton = digitalRead(PinButton);
  if (stateButton == 1)
```

```
digitalWrite(led, HIGH); // Turn on led
else
  digitalWrite(led, LOW); //Turn off led
delay(20);
```

Traffic Light Controller

```
#define LED_PIN_1 11
#define LED_PIN_2 10
#define LED_PIN_3 9
void setup()
 pinMode(LED_PIN_1, OUTPUT);
 pinMode(LED_PIN_2, OUTPUT);
 pinMode(LED_PIN_3, OUTPUT);
void loop()
```

```
UNIVERSITY
digitalWrite(LED_PIN_1, HIGH);
digitalWrite(LED_PIN_2, LOW);
digitalWrite(LED_PIN_3, LOW);
delay(1000);
digitalWrite(LED_PIN_1, LOW);
digitalWrite(LED_PIN_2, HIGH);
digitalWrite(LED_PIN_3, LOW);
delay(1000);
digitalWrite(LED_PIN_1, LOW);
digitalWrite(LED_PIN_2, LOW);
digitalWrite(LED_PIN_3, HIGH); delay(1000); }
```

Traffic Light Controller

Arduino Ultrasonic Distance Sensor HC-SR04

- Frequency of 40KHZ
- The waves travels through the air and strikes the object on its path and bounce back to reach the module.

Arduino Ultrasonic Distance Sensor HC-SR04

- VCC pin to 5V
- GND pin to GND
- TRIG pin to pin 6
- ECHO pin to pin 5

Arduino Ultrasonic Distance Sensor

An object is 40cm away from the Ultrasonic sensor. The speed of sound in air is 340m/s. We need to calculate the time (in Microseconds).

```
v = 340 \text{m/s} = 0.034 \text{cm/us}
time = distance/speed
= 40/0.034
= 1176 microseconds
```

The speed of sound from the echo pin will double because the wave travels forward and backward (bounces).

So, to calculate the distance, we need to divide it by 2

```
distance = time x speed of sound/2
= time x 0.034/2
```

Arduino Ultrasonic Distance Sensor


```
// define variables
long duration; // variable for the duration of sound wave
travel
int distance; // variable for the distance measurement
void setup() {
 pinMode(trigPin, OUTPUT); // Sets the trigPin as an
OUTPUT
 pinMode(echoPin, INPUT); // Sets the echoPin as an
INPUT
 Serial.begin(9600); // // Serial Communication is starting
with 9600 of baudrate speed
 Serial.println("Ultrasonic Sensor HC-SR04 Test");
// print some text in Serial Monitor
 Serial.println("with Arduino UNO R3");
```

```
void loop() {
 // Clears the trigPin condition
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
 // Sets the trigPin HIGH (ACTIVE) for 10 microseconds
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);
```

Arduino Ultrasonic Distance Sensor


```
// Reads the echoPin, returns the sound wave travel time in
microseconds
 duration = pulseIn(echoPin, HIGH);
 // Calculating the distance
 distance = duration * 0.034 / 2; // Speed of sound wave divided
by 2 (go and back)
 // Displays the distance on the Serial Monitor
 Serial.print("Distance: ");
 Serial.print(distance);
 Serial.println(" cm");
```

Controlling LED using Ultrasonic Sensor


```
#define echoPin 2 // attach pin D2 Arduino to pin Echo of HC-
                                                                 void loop() {
SR04
                                                                  // Clears the trigPin condition
#define trigPin 3 //attach pin D3 Arduino to pin Trig of HC-
                                                                  digitalWrite(trigPin, LOW);
SR04
                                                                  delayMicroseconds(2);
// defines variables
                                                                  // Sets the trigPin HIGH (ACTIVE) for 10 microseconds
long duration; // variable for the duration of sound wave travel
                                                                  digitalWrite(trigPin, HIGH);
int distance; // variable for the distance measurement
                                                                  delayMicroseconds(10);
void setup() {
                                                                  digitalWrite(trigPin, LOW);
 pinMode(trigPin, OUTPUT); // Sets the trigPin as an
                                                                  // Reads the echoPin, returns the sound wave travel time in
OUTPUT
                                                                 microseconds
 pinMode(echoPin, INPUT); // Sets the echoPin as an INPUT
                                                                  duration = pulseIn(echoPin, HIGH);
 Serial.begin(9600); // // Serial Communication is starting with
                                                                  // Calculating the distance
9600 of baudrate speed
                                                                  distance = duration * 0.034 / 2; // Speed of sound wave divided
 Serial.println("Ultrasonic Sensor HC-SR04 Test"); // print
                                                                 by 2 (go and back)
some text in Serial Monitor
                                                                  if (distance < 10)
 Serial.println("with Arduino UNO R3");
                                                                   digitalWrite(8,HIGH);}
```

Arduino with Buzzer


```
const int buzzer = 9; //buzzer to pin 9
void setup(){
pinMode(buzzer, OUTPUT);
// Set buzzer - pin 9 as an output
void loop() {
tone(buzzer, 1000);// Send 1KHz sound signal...
 delay(1000); // ...for 1 sec
 noTone(buzzer); // Stop sound...
             // ...for 1sec
 delay(1000);
```

Ultrasonic sensor, led and buzzer (Intrusion Detection)

an initiative of RV EDUCATIONAL INSTITUTI

Controlling Multiple LED's with Ultrasonic Sensor

rduinoGetStarted.com ArduinoGetSta ANALOG IN

Controlling Buzzer Using Push Button

ArduinoGetStarted.com DIGITAL (PWM~) ANALOG IN

PIR Sensor

क्षा: भेषाराः किं o, change the world

To sense motion.

They are small, inexpensive, low-power, easy to use and don't wear out Appliances and gadgets used in homes or businesses.

Sensitivity Potentiometer **Time** Potentiometer.

THANK YOU