

Brief intro to YOLO Models

Sang Yup Lee

1

[참고] 향후 일정

- Week15 (12/11, 자율학습기간)
 - 수업 진행
- Week16 (12/18, 기말시험기간)
 - 수업 없음
- 기말 프로젝트
 - 제출: 12/19(화) 자정
 - 평가: 12/20, 21

- SSD
 - Single stage detector
 - Backbone: VGG-Net
 - 6개의 feature map 사용
 - Multi-scale detection
 - Anchor box 사용
 - 각 셀마다 4개 또는 6개
 - 각 AB에 대해 4개의 좌표값과 21개의 클래스 확률값 출력 (백그라운드 클래스 포함)
 - Hard negative sampling
 - Pos boxes : Neg boxes = 1:3
 - 비용함수
 - 교차 엔트로피 + Smooth L1 loss
 - Non-maximum suppression

- R-CNN models
 - Two stage detectors
- R-CNN
 - Region proposal: selective search
 - 2000 개
 - Feature extraction: AlexNet
 - Object detection
 - Classification: SVMs
 - Regression: Linear regression models

R-CNN

■ 전체적 구조

- Fast R-CNN
 - Feature extraction을 한 번만 수행
 - 이미지에 대해 selective search 를 적용하여 RoIs 추출하고 이를 feature map 에 매핑
 - RoI pooling 을 사용하여 고정된 크기의 특성 벡터 추출
 - Fully connected layer를 사용하여 classification과 localization 수행

Fast R-CNN

- Faster R-CNN
 - 모형의 구조
 - RPN (Region proposal networks) + Fast R-CNN
 - 주요 단계
 - 단계1: Region proposal network ⇒ ROIs 추출
 - 단계2: 각 ROI에 대해서 Fast R-CNN을 이용해서 classification 과 localization 작업 수행

■ RPN의 구조

- 각 셀마다 9 개의 anchor box 존재
- 각 AB에 대해서 4개의 좌표 (정확하게는 두 개의 중심 좌표와 너비, 높이)와 2 개의 objectness scores 출력 (즉, 물체가 있을 확률과 없을 확률)

YOLO

YOLO (You Only Look Once) models

Timeline

<source: Terven, J., & Cordova-Esparza, D. A comprehensive review of YOLO: From YOLOv1 and beyond. arXiv 2023. arXiv preprint arXiv:2304.00501.>

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 779-788).

■ 주요 특성

- InceptionNet을 이용해서 7x7x1024 형태의 feature map 생성 (7x7 셀 존재)
- 하나의 셀이 하나의 객체 탐지
- 하나의 셀이 두 개의 후보 bounding box를 예측
 - 이는 anchor box는 아님
 - 각 bounding box에 대해 좌표와 confidence score를 계산
 - 이 중 confidence score가 높은 상자를 책임 상자로 간주
- 하나의 셀에 대해서 물체가 각 클래스에 속할 확률 계산

- 학습
 - PASCAL VOC 데이터셋 사용
- 비용함수

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(x_i - \hat{x}_i \right)^2 + \left(y_i - \hat{y}_i \right)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} \left(p_i(c) - \hat{p}_i(c) \right)^2 \end{split}$$

■성능

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

■ 모형의 구조

- 주요 특성
 - Anchor box 사용
 - 각 셀마다 5개 AB 사용
 - AB 형태를 결정하기 위해 군집화 방법 (K-Means) 사용
 - PassThrough module 사용
 - Skip connection 과 유사
 - 작은 물체를 더 잘 찾기 위해서
 - Feature extractor
 - Darknet-19 사용
 - Multi-Scale Training
 - 학습시 10 회 배치 마다 입력 이미지 크기를 320 부터 608 까지 동적으로 변경 (32 의 배수로 설정)

Anchor box 별 예측: AB 당 25개의 값 예측

$$egin{aligned} b_x &= \sigma(t_x) + c_x \ b_y &= \sigma(t_y) + c_y \ b_w &= p_w e^{t_w} \ b_h &= p_h e^{t_h} \end{aligned}$$

(pw,ph): anchor box size
(tx,ty,tw,th): 모델 예측값
(bx,by), (bw,bh): 예 측 BB
의 중심좌표와 너비 & 높이

■ 성능

Detection Frameworks	Train	mAP	FPS
Fast R-CNN [5]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[15]	2007+2012	73.2	7
Faster R-CNN ResNet[6]	2007+2012	76.4	5
YOLO [14]	2007+2012	63.4	45
SSD300 [11]	2007+2012	74.3	46
SSD500 [11]	2007+2012	76.8	19
YOLOv2 288 × 288	2007+2012	69.0	91
YOLOv2 352×352	2007+2012	73.7	81
YOLOv2 416×416	2007+2012	76.8	67
$YOLOv2 480 \times 480$	2007+2012	77.8	59
YOLOv2 544×544	2007+2012	78.6	40

■ 모형의 구조

- 주요 특징
 - 3개의 feature map을 이용해서 detection 수행
 - Feature pyramid network 구조를 적용
 - 13x13, 26x26, 52x52 각 feature map에 대한 object detection 작업, 즉, loss 함수를 계산함
 - Darknet-53을 backbone으로 사용
 - ResNet을 개선한 방법

Feature pyramid network

Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 2117-2125).

성능

Summary

항목	V1	V2	V3
원본 이미지 크기	446 X 446	416 X 416	416 X 416
Feature Extractor	Inception 변형	Darknet 19	Darknet 53
Grid당 Anchor Box 수	2개(anchor box는 아님)	5개	Output Feature Map당 3개 서로 다른 크기와 스케일로 총 9개
Anchor box 결정 방법		K-Means Clustering	K-Means Clustering
Output Feature Map 크기 (Depth 제외)	7 x 7	13 x 13	13 x13, 26 X 26, 52X52 3개의 Feature Map 사용
Feature Map Scaling 기법			FPN(Feature Pyramid Network)

Q & A