EL231-2024I-Trabajo Final (TF): Respuesta de un Sistema a una Entrada Aleatoria

Apellidos	Nombres	Carrera	Sección
Carpio Tello	Camila Abigail	U202121759	Ing. Mecatrónica
Ludeña Macavilca	Christian Alexis	U202120042	Ing. Mecatrónica
Olivera Bohorquez	Enmanuel Marco	U202122437	Ing. Mecatrónica
Salcedo Tapara	Jose Efrain	U202120892	Ing. Mecatrónica
Valdez Olivares	Luis Miguel	U20201F035	Ing. Mecatrónica

Outline

Introducción

- I. Interpretación de la señal de entrada
- II. Representación del sistema
- III. Cálculo del modelo de la señal de salida
- IV. Análisis y argumentación de la aplicación práctica

Conclusiones

- Figura 1 [17]
- Señal Mediterraneo-Cabo de Palos [18]

Introducción

I. Interpretación de la señal de entrada

x

I.2. Funciones de Autocorrelación de las de las Componentes de la Aceleración de EO, NS Y UP respectivamente:

II. 1. Diagrama del Circuito RLC que Representa al Sistema:

La transmisión de las vibraciones a través de la estructura se modela utilizando un circuito eléctrico RLC

- Salida: Vc
- Función de transferencia actual:

$$H(W) = \frac{\frac{1}{L \times C}}{\frac{1}{L \times C} + \frac{R}{C} jw - w^2}$$

• Función de transferencia dada:

$$H(W) = \frac{K}{Wn^2 + 2 \times j \times \varepsilon \times Wn \times w - w^2}$$

Igualando:

$$Wn^2 = \frac{1}{L \times C}$$
$$K = \frac{1}{L \times C}$$

$$2\varepsilon W n = \frac{R}{L}$$

Conclusión:

uF

II.2. Magnitud y fase de la Función de Transferencia del Sistema:

II.3. Retardo de Grupo de la Función de Transferencia del Sistema

II.4. Respuesta Impulsiva del Sistema

III. Cálculo del modelo de la señal de salida

III.1. Componentes del Desplazamiento en el Dominio del Tiempo de EO, NS Y UP respectivamente:

III.2. Funciones de Densidad de Probabilidad de las Componentes del Desplazamiento de EO, NS

Y UP respectivamente:

III.3. Funciones de Autocorrelación de las de las Componentes del Desplazamiento de EO, NS Y UP respectivamente:

III.4. Funciones de Densidad Espectral de las Componentes del Desplazamiento de EO, NS Y UP respectivamente:

IV. Análisis y argumentación de la aplicación

Conclusiones

1. Modelado de la Señal de Aceleración Sísmica

- Proceso estocástico estacionario
- Impacto a largo plazo
- Figura 8: Imágenes de daños producidos por sismos en algunas ciudades del Perú [16]

2. Representación del Sistema con un Circuito RLC

- Transmisión de vibraciones
- Sistemas de alerta temprana
- Problema 2.61c [19]

3. Análisis de Parámetros Estadísticos y Aplicación Práctica

- Ingeniería sísmica y mitigación de riesgos
- Capacidad de respuesta
- SISMATE: la herramienta de alerta sísmica que el MTC pone a prueba en Perú [21]

4. Recomendaciones y Futuras Investigaciones

- Sensores avanzados e inteligencia artificial
- Evaluación de la respuesta estructural
- Inteligencia artificial para detectar y prevenir terremotos
 [22]

Referencias

- [16] H. Tavera, "Evaluación del peligro asociado a los sismos y efectos secundarios en Perú," Instituto Geofísico del Perú, Lima, Perú, 2014
- [17] Laboratorio de Ingeniería Sísmica, Instituto de Investigaciones en Ingeniería (INII), "¿Son los sitios que se encuentran cerca del epicentro los más fuertemente golpeados por el terremoto?" [En línea]. Disponible en: https://www.lis.ucr.ac.cr/32. [Accedido: 29-jun-2024]
- [18] Universidad de Alicante, "Registros de Aceleración", Unidad de Registro Sísmico, Universidad de Alicante. [En línea]. Available: https://web.ua.es/es/urs/sismicidad/registros-de-aceleracion.html. [Accedido: 29 junio 2024]
- [19] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed. Prentice Hall, 1999, p. 164, problema 2.61c.
- [20] Veritasium en español, "Dentro del Simulador de TERREMOTOS de Japón," YouTube, ene. 27, 2024. [En línea]. Disponible en: https://youtu.be/hhlBDZxaj5M. [Accedido: jun. 30, 2024]
- [21] Fuente: Infobae, "SISMATE: la herramienta de alerta sísmica que el MTC pone a prueba en Perú," 2022. [En línea]. Disponible en:
- https://yocomunicadorupao.edu.pe/wp-content/uploads/2022/05/2YGPAEE3WZFDROEIKPVYLQQCKA.png. [Accedido: 30 jun. 2024]
- [22] I. F. Aldariz, "Inteligencia artificial para detectar y prevenir terremotos," Greenteach. [En línea]. Disponible en: https://greenteach.com/inteligencia-artificial-prevenir-terremotos. [Accedido: 30 de junio de 2024]