Hashing

Hash function:

mathematical function

takes any string as input

fixed-size output (we'll use 256 bits)

efficiently computable (say, O(n))

One-Way Hash Functions

$$\mathbf{H} \longrightarrow \mathbf{H}(\mathbf{M}) = h$$

Example

- M = "Elvis"
- $H(M) = ("E" + "L" + "V" + "I" + "S") \mod 26$
- $H(M) = (5 + 12 + 22 + 9 + 19) \mod 26$
- $H(M) = 67 \mod 26$
- H(M) = 15

Collision

Example

- x = "Viva"
- Y = "Vegas"
- H(x) = H(y) = 2

avalanche effect

- Collision resistance implies 2nd pre-image resistance
- Collision resistance does not imply pre-image resistance

Authentication Basics

• Authentication is the process of validating the **identity** of a user (Authenticity) or the **integrity** of a piece of data (Integrity).

- Technologies that provide authentication
 - Message Digests (MD)
 - Message Authentication Codes (MAC)
 - Digital Signatures
 - Others....

Authentication

Message Digests (MD)

- A message digest is a fingerprint for a document.
- Purpose of the message digest is to provide proof that data has not altered Integrity.

 Process of generating a message digest from data is called **hashing**

Authentication

Message Authentication Codes (MAC)

- A message digest created with a key
- Creates security by requiring a secret key to be possesses by both parties in order to retrieve the message
- A MAC is a short string used to verify the message integrity and authentication

COMMONLY USED HASH FUNCTIONS

- MD (Message Digest)
 - MD5
 - Max message < 2⁶⁴
 - Output: 128-bit
- SHA (Secure Hash Algorithm)
 - SHA-1
 - Max message < 2⁶⁴
 - Output: 160-bit
 - SHA-2
 - Max message < 2¹²⁸
 - Max output: 512-bit
 - SHA-3
 - Max message: Unlimited
 - Max output: 512-bit

HASH VS. ENCRYPTION

- Hashing is a one-way
 - No unhashing
- Publicly known and there is no key used
- Efficient
- Deterministic (compared)
 - H(m) == H(m')
 - Of course, hashes with salts are not!
 - H(m || s1) and
 H(m || s2)

- Encryption is not one-way
 - Decryption renders the original message
- Publicly known algorithms but the key is kept secret
- Slower
- May or may not be deterministic (compared)
 - Randomised encryption
 - Enc(k, t1 || m) and
 Enc(k, t2 || m)

Cryptographic Hash Functions: Applications

Integrity

Attack Against Cryptographic Function

The hash value must be protected.

Confidentiality & Integrity & Authenticity

Integrity & Authenticity & Accountability

Confidentiality & Integrity & Authenticity & Accountability

Authentication Message Digests (MD)

Standards:

MD5: 128 bit hashing algorithm by Ron Rivest of RSA

- Broken since 2004 by Xiaoyun Wang
- Collisions can be constructed in seconds on a laptop

SHA & SHA-1: 160 bit hashing algorithm developed by NIST

- Considered insecure
- Practically broken since 2005 by Xiaoyun Wang

Do not use them in your security products!

Authentication Message Digests (MD)

- SHA-2 family: 224, 256, 384 or 512 bits
- SHA-3 family output can be arbitrary size
 - NIST started a competition for SHA-3 in 2007.
 - NIST's original concern was that SHA-2 would soon be broken, although in fact SHA-2 is still fine.
- SHA-3 (Secure Hash Algorithm 3) is the latest member of the Secure Hash Algorithm family of standards, released by NIST on August 5, 2015.

MD5: Message Digest Version 5

- Author: R. Rivest, 1992
- 128-bit hash
 - based on earlier, weaker MD4 (1990)
- Collision resistance (B-day attack resistance)
 - only 64-bit
- Output size not long enough today (due to various attacks)

MD5 Overview

Similar for MD4/MD5/SHA-1

MD5: Padding

- Given original message M, add padding bits "100..." such that resulting length is 64 bits less than a multiple of 512 bits.
- · Append original length in bits to the padded message
- Final message chopped into 512-bit blocks

MD5: Blocks

 As many stages as the number of 512-bit blocks in the final padded message

Secure Hash Algorithm (SHA)

- SHA originally designed by NIST & NSA in 1993
- was revised in 1995 as SHA-1
- US standard for use with DSA signature scheme
 - standard is FIPS 180-1 1995, also Internet RFC3174
- based on design of MD4 with key differences
- produces 160-bit hash values
- 2005 results on security of SHA-1 raised concerns on its use in future applications

Revised Secure Hash Standard

- NIST issued revision FIPS 180-2 in 2002
- adds 4 additional versions of SHA
 - SHA-224, SHA-256, SHA-384, SHA-512
- designed for compatibility with increased security provided by the AES cipher
- structure & detail is similar to SHA-1
- hence analysis should be similar
- but security levels are rather higher

SHA-512 Overview

^{+ =} word-by-word addition mod 2⁶⁴

SHA-512 Compression Function

- heart of the algorithm
- processing message in 1024-bit blocks
- consists of 80 rounds
 - updating a 512-bit buffer
 - using a 64-bit value w_t derived from the current message block
 - and a round constant based on cube root of first 80 prime numbers

SHA-512 Compression Function

SHA

	Output size (bits)	Internal state size (bits)	Block size (bits)	Max message size (bits)	Word size (bits)	Rounds	Operations	Collisions found
SHA-0	160	160	512	$2^{64} - 1$	32	80	+, and, or, xor, rot	Yes
SHA-1	160	160	512	$2^{64} - 1$	32	80	+, and, or, xor, rot	None (2 ⁵² attack)
SHA-2	256/224	256	512	$2^{64}-1$	32	64	+, and, or, xor, shr, rot	None
	512/384	512	1024	$2^{128}-1$	64	80	+, and, or, xor, shr, rot	None