Machine Learning

Week 3: Simple Classifiers (Cont'd)

Mahesan Niranjan

School of Electronics and Computer Science University of Southampton

Autumn Semester 2016/17

Mahesan Niranjan (UoS)

COMP3206/COMP6229

Autumn Semester 2016/17

1/6

Outline

- Posterior probabilities for simple Gaussian cases
- Fisher Linear Discriminant
- Nearest Neighbour Classifier
- Classifier performance

Posterior probabilities for simple Gaussian cases

Two class problem

Bayes classifier:

$$P[\omega_1|\mathbf{x}] = \frac{p(\mathbf{x}|\omega_1)P[\omega_1]}{p(\mathbf{x}|\omega_1)P[\omega_1] + p(\mathbf{x}|\omega_2)P[\omega_2]}$$

- Restrictive assumptions:
 - Gaussian $p(\boldsymbol{x}|\omega_j) = \mathcal{N}(\boldsymbol{m}_j, \boldsymbol{C}_j)$
 - Equal covariance matrices: $\mathbf{C}_1 = \mathbf{C}_2 = C$
- Substitute, divide through by numerator term and cancel common terms to get

$$P\left[\omega_1|\boldsymbol{x}\right] = \frac{1}{1 + \exp\left\{-\left(\boldsymbol{w}^t\boldsymbol{x} + w_0\right)\right\}}$$

• The functional form $1/(1 + \exp(-\alpha))$ is known as sigmoid / logistic (See lab class for W3)

Mahesan Niranjan (UoS)

COMP3206/COMP6229

Autumn Semester 2016/17

3/6

Fisher Linear Discriminant

- Classification problem (say two classes)
- Disirable properties of a direction to project
 - Means of projected data should be far apart
 - Variance of projections of each class should be small

Fisher Linear Discriminant

- In the p- dimensional (\mathbb{R}^p) input space, find a direction on which projected data is maximally separable:
 - Projected means should be far apart
 - Projected scatter of each class should be small
- Projection of \mathbf{x}_n onto direction \mathbf{w} is $\mathbf{w}^t \mathbf{x}_n$;
 - Projected mean for class j will be at w^tm_i
 - Variance of projections is $\mathbf{w}^t \mathbf{C}_j \mathbf{w}$, where \mathbf{C}_j is the covariance matrix of data in class j.
- Fisher Ratio:

$$J_F = \frac{(\boldsymbol{w}^t \boldsymbol{m}_1 - \boldsymbol{w}^t \boldsymbol{m}_2)^2}{\boldsymbol{w}^t \boldsymbol{C}_1 \boldsymbol{w} + \boldsymbol{w}^t \boldsymbol{C}_2 \boldsymbol{w}}$$

- We can write the numerator as $\mathbf{w}^t \mathbf{C}_B \mathbf{w}$, where $\mathbf{C}_B = (\mathbf{m}_1 \mathbf{m}_2)(\mathbf{m}_1 \mathbf{m}_2)^t$, the between-class scatter matrix.
- $C_W = C_1 + C_2$, the within class scatter matrix.

Mahesan Niranjan (UoS)

COMP3206/COMP6229

Autumn Semester 2016/17

5/6

Fisher Linear Discriminant (cont'd)

Fisher criterion to maximize

$$J(\mathbf{w}) = \frac{\mathbf{w}^t \, \mathbf{C}_B \, \mathbf{w}}{\mathbf{w}^t \, \mathbf{C}_W \, \mathbf{w}}$$

Set gradient to zero

$$\nabla_{\mathbf{w}} = \frac{2\mathbf{C}_{B}\mathbf{w} \times (\mathbf{w}^{t} \mathbf{C}_{W} \mathbf{w}) - 2\mathbf{C}_{W}\mathbf{w} \times (\mathbf{w}^{t} \mathbf{C}_{B} \mathbf{w})}{(\mathbf{w}^{t} \mathbf{C}_{W} \mathbf{w})^{2}}$$

- Equate this to zero and observe
 - $\mathbf{w}^t \mathbf{C}_W \mathbf{w}$ and $\mathbf{w}^t \mathbf{C}_B \mathbf{w}$ are scalars
 - $C_B w$ points in the same direction as $m_1 m_2$
 - ullet We are only interested in the direction of $oldsymbol{w}$

$$\mathbf{w}_F = \alpha \mathbf{C}_w^{-1} (\mathbf{m}_1 - \mathbf{m}_2)$$