

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

* 4 103 / 111 (7) 77	77 1							
ФАКУЛЬТЕТ	Информатика и системы управл	<u>ления</u>						
КАФЕДРА С	ФЕДРА Системы обработки информации и управления							
Отчёт по рубежному контролю №1								
По дисциплине:								
«Технологии машинного обучения»								
Выполнил:								
Студент группы ИУ5ц-	-82Б	Акимкин М.Г.						
	(Подпись, дата)	(Фамилия И.О.)						
Проверил:								
проверни.		Гапанюк Ю. Е						
	(Подпись, дата)	(Фамилия И.О.)						

Задание

Для заданного набора данных постройте основные графики, входящие в этап разведочного анализа данных. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Какие графики Вы построили и почему?

Какие выводы о наборе данных Вы можете сделать на основании построенных графиков?

Для студентов групп ИУ5-62Б, ИУ5Ц-82Б - для произвольной колонки данных построить гистограмму.

Набор данных:

https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris

Акимкин М.Г., РК№1, ИУ5ц-82Б, вариант №26

Задание: для заданного набора данных постройте основные графики, входящие в этап разведочного анализа данных. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Какие графики Вы построили и почему? Какие выводы о наборе данных Вы можете сделать на основании построенных графиков?

Датасет: https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris

Импорт библиотек

```
In [1]:
    import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from pandas.plotting import scatter_matrix
    import warnings
    from sklearn import datasets
    from sklearn.datasets import load_iris
    from sklearn import linear_model
    from sklearn.cluster import KMeans
    from sklearn import metrics
    from pandas import DataFrame
%pylab inline
```

Populating the interactive namespace from numpy and matplotlib

```
In [2]: boston = load_iris()
data = pd.DataFrame(boston.data, columns=boston.feature_names)
data['TARGET'] = boston.target
```

In [3]: # Первые пять строк датасета data.head()

Out[3]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	TARGET
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

In [4]: # Описание датасета data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
sepal length (cm) 150 non-null float64
sepal width (cm) 150 non-null float64
petal length (cm) 150 non-null float64
petal width (cm) 150 non-null float64
TARGET 150 non-null int32
dtypes: float64(4), int32(1)
memory usage: 5.4 KB
```

In [5]: # Статистические данные

data.describe()

Out[5]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	TARGET
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

```
In [6]: # Гистограммы для всех признаков data.hist(bins=30, figsize = (15,7))
```


Out[7]: <seaborn.axisgrid.PairGrid at 0x292814d82e8>

<Figure size 864x432 with 0 Axes>


```
In [8]: # Убеличенные диаграммы рассеяния для признаков, которые имеют зависимость sns.jointplot(x = "sepal length (cm)", y = "sepal width (cm)", kind="scatter", data = data)

C:\Users\MSI GL72 7RD\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for mult idimensional indexing is deprecated; use 'arr[tuple(seq)]' instead of 'arr[seq]'. In the future this will be interpreted as an array index, 'arr[np.array(seq)]', which will result either in an error or a different result. return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[8]: 
C:\Users\MSI GL72 7RD\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for mult idimensional indexing is deprecated, use 'arr[tuple(seq)]' instead of 'arr[seq]'. In the future this will be interpreted as an array index, 'arr[np.array(seq)]', which will result either in an error or a different result.

Out[8]: 
C:\Users\MSI GL72 7RD\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for mult idimensional indexing: Using a non-tuple sequence for mult idimensional ididimensional idimensional idimensional idimensional idimensional i
```

In [9]: from sklearn.preprocessing import StandardScaler, MinMaxScaler, StandardScaler, Normalizer

7.5 8.0

```
In [10]: sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['petal width (cm)']])
```


2.0

4.5 5.0

6.0

6.5 7.0

5.5

```
In [12]: #Скрипичная диаграмма sns.violinplot(x=data['sepal length (cm)'])
```

C:\Users\MSI GL72 7RD\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for mult idimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result. return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x29287c49be0>

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x29289356160>

