Kodutöö nr. 5

8. variant
Joosep Näks

1. Uurige järgmiste ridade koonduvust.

$$\mathbf{a}) \sum_{k=1}^{\infty} \frac{((-1)^k + 1)k}{k^2 - k + 1};$$

b)
$$\sum_{k=0}^{\infty} \left(\frac{k^2 + 1}{(k+1)^2} \right)^{k^2}$$
.

Lahendus:

a) Vaatlen kõigepealt jada $u_k = \frac{k}{k^2 - k + 1}$ summat 2st ∞ ni, kuna u_1 on reaalarv, siis summa u_k koondub 2st ∞ ni parajasti siis, kui to koondub 1st ∞ ni. Leian selle koonduvuse integraaltunnusega:

$$\int_{2}^{\infty} \frac{k}{k^2 - k + 1} = \frac{1}{2} \int_{2}^{\infty} \frac{2k}{k^2 - k + 1} dk$$

On teada, et integraal $\int_{1}^{\infty} \frac{1}{k^2} dk = 1$ seega

$$\int_{2}^{\infty} \frac{1}{(k-1)^{2}} dk = 1$$

$$\int_{2}^{\infty} \frac{1}{k^{2} - 2k + 1} dk = 1$$

Kuna k on alati positiivne, siis kui muuta nimetaja k^2-2k+1 nimetajaks k^2-k+1 , muutub see suuremaks ehk integreeritav funktsioon muutub väiksemaks ehk kui see on alati positiivne, on see integraal ikka koonduv. Et kontrollida, kas see on positiivne, leian selle nullkohad: $k_0 = \frac{1 \pm \sqrt{1-4}}{2} = \frac{1 \pm \sqrt{-3}}{2}$ ehk nullkohti ei leidu. Vaatlen selle väärtust sisendil $k=0:0^2-0+1=1$ ehk kuna nimetajal ei leidu nullkohti ega katkevuskohti ning ta on mingis punktis positiivne, on ta kõikjal positiivne. Seega on integraal $\int_2^\infty \frac{1}{k^2-k+1} dk$ koonduv ning ma saan ta juurde liita algsele vaadeldavale funktsioonile ilma selle koonduvust muutmata:

$$\frac{1}{2} \int_{2}^{\infty} \frac{2k}{k^2 - k + 1} + \frac{1}{k^2 - k + 1} dk = \frac{1}{2} \int_{2}^{\infty} \frac{2k + 1}{k^2 - k + 1} dk$$

Kuna murru lugeja on nimetaja tuletis, on funktsiooni määramata integraal nimetaja naturaallogaritm:

1

$$\frac{1}{2} \int_{2}^{\infty} \frac{2k+1}{k^2-k+1} dk = \ln(k^2-k+1) \Big|_{2}^{\infty} = \lim_{c \to \infty} \ln(c^2-2+1) - \ln(2^2-2+1) = \infty$$

Seega kuna integraal ei koondu, ei koondu ka arvrida $\sum_{k=1}^{\infty} \frac{k}{k^2-k+1}.$

Vaatlen nüüd $\sum_{k=1}^{\infty} \frac{(-1)^k k}{k^2 - k + 1} = \sum_{k=1}^{\infty} (-1)^k u_k$ koonduvust Leibnizi tunnuse põhjal.

Selleks peab kehtima $\lim_{k\to\infty} \frac{k}{k^2-k+1} = 0$, mis ka kehtib, ning jada (u_k) peab olema kahanev. Selleks vaatlen suvalise liikme ja talle järgneva liikme vahet:

$$\begin{split} \frac{k+1}{(k+1)^2-(k+1)+1} - \frac{k}{k^2-k+1} &= \frac{k+1}{k^2+k+1} - \frac{k}{k^2-k+1} \\ &= \frac{k^3-k^2+k+k^2-k+1-k^3-k^2-k}{(k^2+k+1)(k^2-k+1)} \\ &= \frac{1-k^2-k}{(k^2+k+1)(k^2-k+1)} \end{split}$$

Lugeja on $k \geq 1$ korral negatiivne ning nimetajas $k^2 + k + 1$ on positiivsete k korral alati positiivne ning $k^2 - k + 1$ kohta näitasin lahenduse esimeses pooles, et see on alati positiivne, seega on saadud murd kõigi $k \in \mathbb{N}$ korral negatiivne ehk (u_k) on kahanev. Seega on Leibnizi eeldused täidetud ning $\sum_{k=1}^{\infty} \frac{(-1)^k k}{k^2 - k + 1}$

koondub.

Kokkuvõttes $\sum_{k=1}^{\infty} \frac{((-1)^k+1)k}{k^2-k+1}$ hajub kuna see on hajuva rea ja koonduva rea summa.

b) Kasutan Cauchy koonduvustunnust. Olgu $u_k = \left(\frac{k^2+1}{(k+1)^2}\right)^{k^2}$. Selleks, et u_k summa koonduks, peab leiduma $c := \lim_{k \to \infty} \sqrt[k]{|u_k|}$ ning peab kehtima c < 1.

$$c = \lim_{k \to \infty} \sqrt[k]{\left(\frac{k^2 + 1}{(k+1)^2}\right)^{k^2}}$$

$$= \lim_{k \to \infty} \left(\frac{k^2 + 1}{(k+1)^2}\right)^k$$

$$= \lim_{k \to \infty} \left(\frac{k^2 + 1 + 2k - 2k}{k^2 + 2k + 1}\right)^k$$

$$= \lim_{k \to \infty} \left(1 - \frac{2k}{(k+1)^2}\right)^k$$

Teen muutujavahetuse u = k + 1:

$$\begin{split} &=\lim_{k\to\infty}\left(1-\frac{2(u-1)}{u^2}\right)^{u-1}\\ &=\lim_{k\to\infty}\left(1-\frac{2}{u}+\frac{2}{u^2}\right)^{u-1} \end{split}$$

Teen muutujavahetuse $v = -\frac{u}{2}$:

$$= \lim_{k \to \infty} \left(1 + \frac{1}{v} + \frac{1}{2v^2} \right)^{-2v-1}$$
$$= e^{-2}$$

Kuna see piirväärtus leidub, on Cauchy koonduvustunnuse põhjal \boldsymbol{u}_k koonduv.

 ${\bf 2.}\,$ Leidke määramata integraal astmereana ja arvutage see järel määratud integraal

$$\int_0^1 \cos x^2 dx \text{ täpsusega } 10^{-4}.$$

Lahendus:

Loon Taylori rea punkti a=0 ümber. Taylori rea üldliiget saab esitada kujul $P_n(x)=\frac{(\cos a)^{(n)}x}{n!}$. Märkan, et paarituarvuliste n korral on $(\cos a)^{(n)}=\pm\sin 0=0$. Seega saab neid liikmeid ignoreerida. paarisarvuliste n korral on $(\cos a)^{(n)}$ vaheldumisi ± 1 . Seega saab üldliikme ümber kirjutada kui

$$P_n(x) = \begin{cases} \frac{(-1)^{\frac{n}{2}}x}{n!}, & kui \ n = 2k, \ k \in \mathbb{N} \\ 0, & kui \ n = 2k+1, \ k \in \mathbb{N} \end{cases}$$

Seega kui iga teine n vahele jätta, saame summa $\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ ehk integreeritavat funktsiooni saab esitada kui $\cos(x^2) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{(2n)!}$. Kontrollin funktsionaaljada $f_n(x) = (-1)^n \frac{x^{4n}}{(2n)!}$ ühtlast koonduvust hulgas [0,1]. Selleks kasutan Weierstrassi koonduvustunnust, loon arvrea $u_k = (-1)^n \frac{1}{(2n)!}$, mis on iga x ja n korral suurem või võrdne $f_n(x)$ ga, kuna $f_n(x)$ sõltub xst võrdeliselt. Leibnizi tunnnuse põhjal $\sum_{n=0}^{\infty} u_n$ koondub, kuna $\frac{1}{(2n)!}$ piirväätrus läheneb lõpmatuse juures 0le. Kuna $\sum_{n=0}^{\infty} u_n$ koondub siis Weierstrassi koonduvustunnuse põhjal funktsionaaljada $f_n(x)$ koondub ühtlaselt. Kuna $f_n(x)$ koondub ühtlaselt, saan loengukonspekti teoreemi 6.34 põhjal vahetada integraali ja summa funktsionaaljada ees ära:

$$\int_0^1 \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{(2n)!} dx = \sum_{n=0}^{\infty} \int_0^1 (-1)^n \frac{x^{4n}}{(2n)!} dx = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+1}}{(4n+1)(2n)!} \Big|_0^1 = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(4n+1)(2n)!} dx$$

Kuna tegu on Taylori reaga, esitub summa jääkllige kujul $R_n(x^2) = \frac{(\cos c^2)^{(n+1)}}{(n+1)!} x^{2(n+1)}$, $c \in [0,1]$. Kuna selle funktsiooni pöördfunktsiooni on raske leida, proovin n väärtuseid läbi. Kuna paarituarvuliste n korral on rea liikmed 0d, saab n väärtuseid üle ühe proovida kasutan paarituarvulisi n väärtuseid et lihtsustada arvutamist. Kuna jääkliige sõltub võrdeliselt xst, kasutan x = 1. Kuna koosinuse paarisarvulised tuletised on koosinused ning koosinuse suurim väärtus on 1, kasutan seda hindamiseks. Eesmärk on saavutada täpsus 10^{-4} ehk et jääkliige

väiksem kui $\frac{1}{10000}$

$$R_1(x) = \frac{1}{2!}1^2 = \frac{1}{2} > \frac{1}{10000}$$

$$R_3(x) = \frac{1}{4!}1^4 = \frac{1}{24} > \frac{1}{10000}$$

$$R_5(x) = \frac{1}{6!}1^6 = \frac{1}{720} > \frac{1}{10000}$$

$$R_7(x) = \frac{1}{8!}1^8 = \frac{1}{40320} < \frac{1}{10000}$$

Seega on sobiva täpsusega summa

$$\begin{split} S &= (-1)^0 \frac{1}{(4 \cdot 0 + 1)(2 * 0)!} + (-1)^1 \frac{1}{(4 \cdot 1 + 1)(2 \cdot 1)!} + (-1)^2 \frac{1}{(4 \cdot 2 + 1)(2 \cdot 2)!} + (-1)^3 \frac{1}{(4 \cdot 3 + 1)(2 \cdot 3)!} \\ &= 1 - \frac{1}{10} + \frac{1}{216} - \frac{1}{9360} \\ &= \frac{25399}{28080} \approx 0.9045 \end{split}$$

3. Uurige rea

$$\sum_{k=0}^{\infty} \frac{kx}{1 + k^5 x^2}$$

ühtlast koonduvust piirkonnas $(-\infty, \infty)$.

Koostage arvuti abil joonis, kus on ühes teljestikus näha rea osasummade $S_3(x)$, $S_5(x)$ ja $S_{100}(x)$ graafikud piirkonnas $x \in [-0.2, 0.2]$.

Lahendus: Kasutan Weierstrassi koonduvustunnust. See ütleb, et kui leidub selline arvrida u_k , et $|f_k(x)| \le u_k$ iga $x \in \mathbb{R}$ ja iga $k \in \mathbb{N}$ korral ning $\sum_{k=1}^{\infty} u_k < \infty$,

siis funktsionaalrida $\sum_{k=1}^{\infty} f_k$ koondub hulgas $\mathbb R$ ühtlaselt ja absoluutselt. Sobiva

arvrea leidmiseks leian $f_k(x)=\frac{kx}{1+k^5x^2}$ maksimaalse väärtuse iga $k\in\mathbb{N}$ juures. Selleks võtan $f_k(x)$ tuletise x järgi:

$$\frac{\partial}{\partial x} \left(\frac{kx}{1 + k^5 x^2} \right) = \frac{k(1 - k^5 x^2) - 2k^5 x \cdot kx}{(1 + k^5 x^2)^2} = \frac{k(1 - k^5 x^2)}{(1 + k^5 x^2)^2}$$

Selleks, et tuletis 0 oleks, peab tema lugeja olema null.

$$k(1 - k^5 x_0^2) = 0$$
$$1 = k^5 x_0^2$$
$$x_0 = \pm k^{-\frac{5}{2}}$$

Funktsiooni $f_k(x)$ ainus katkevuskoht saaks olla siis, kui nimetaja oleks null ehk $1+k^5x^2=0$, kuid k on alati positiivne ja x^2 on alati positiivne seega nimetaja ei saa 0 olla. Seega on $f_k(x)$ globaalne maksimum lõpmatuses, miinus lõpmatuses, $k^{\frac{5}{2}}$ juures või $-k^{\frac{5}{2}}$ juures. Proovin need läbi:

$$\lim_{x \to \infty} \frac{kx}{1 + k^5 x^2} = \lim_{x \to \infty} \frac{k}{2k^5 x} = 0$$

$$\lim_{x \to -\infty} \frac{kx}{1 + k^5 x^2} = \lim_{x \to -\infty} \frac{k}{2k^5 x} = 0$$

$$x = k^{-\frac{5}{2}} : \frac{kk^{-\frac{5}{2}}}{1 + k^5 (k^{-\frac{5}{2}})^2} = \frac{k^{-\frac{3}{2}}}{2}$$

$$x = -k^{-\frac{5}{2}} : \frac{k(-k^{-\frac{5}{2}})}{1 + k^5 (-k^{-\frac{5}{2}})^2} = -\frac{k^{-\frac{3}{2}}}{2}$$

Seega on $|f_k(x)|$ maksimaalne väärtus $f_k(x_{max}) = \frac{k^{-\frac{3}{2}}}{2} := u_k$.

Kuna u_k on kahanev ja mitte negatiivne, leian integraaltunnusega, kas u_k koondub:

$$\int_{1}^{\infty} \frac{k^{-\frac{3}{2}}}{2} dk = \frac{k^{-\frac{1}{2}}}{2} \Big|_{1}^{\infty} = \lim_{c \to \infty} \frac{c^{-\frac{1}{2}} - 1^{-\frac{1}{2}}}{2} = \frac{1}{2}$$

Seega kuna u_k summa koondub, koondub ka $f_k(\boldsymbol{x})$ ühtlaselt. Joonis osasummadega:

