

StyleMeUp: Towards Style-agnostic Sketch Based Image Retrieval

¹ SketchX Lab, CVSSP, University of Surrey, UK

² iFlyTek-Surrey Joint Research Centre on Artificial Intelligence

http://sketchx.ai

Existing approaches

- ★ No cross-modal interaction
- ★ Not useful for disentanglement
- * Therefore, no option of modelling style diversity.

Our Framework

Quantitative Analysis

Datasets:

Fine-Grained SBIR: QMUL ShoeV2 and ChairV2 [1]

Table 1. Comparative results of our model against other methods on FG-SBIR (D \rightarrow disentanglement baselines).

Methods	Chair-V2		Shoe-V2	
Methods	acc.@1	acc.@10	acc.@1	acc.@10
Triplet-SN[1]	47.65	84.24	28.71	71.56
	53.41	87.56	31.74	75.78
∑ Triplet-Attn [2] ∑ Triplet-RL[3]	56.54	89.61	34.10	78.82
CC-Gen [4]	54.21	88.23	33.80	77.86
D-TVAE [5]	49.37	81.63	27.62	70.32
D-DVML[6]	52.78	85.24	32.07	76.23
B-Basic-SN	49.58	85.41	29.45	72.83
€ B-SN-Group	50.35	88.28	30.14	75.62
∄ B-Cross-Modal [7]	52.24	86.58	31.18	73.51
B-Meta-SN	53.57	87.69	32.74	76.92
Proposed	62.86	91.14	36.47	81.83

Categorical SBIR: Sketchy (ext.)[8], TUBerlin (ext.)[8]

Table 2. Comparative results of our model against other methods on SBIR (D \rightarrow disentanglement baselines).

	Methods	Sketchy (ext)		TU Berlin (ext)	
	Memous -		P@200	mAP	P@200
SOTA	DSH (64 bit) [8]	0.711	0.858	0.521	0.655
	GDH (64 bit) [9]	0.810	0.894	0.690	0.728
Q	D-TVAE [5]	0.695	0.839	0.507	0.643
	D-DVML [6]	0.785	0.891	0.648	0.693
Others	B-Basic-SN	0.715	0.861	0.531	0.659
	B-SN-Group	0.738	0.872	0.572	0.661
	B-Cross-Modal [7]	0.763	0.884	0.622	0.688
	B-Meta-SN	0.824	0.897	0.674	0.715
	Proposed	0.905	0.927	0.778	0.795

^[1] Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M Hospedales, and Chen-Change Loy. Sketch me that shoe. In CVPR, 2016.

^[2] Jifei Song, Qian Yu, Yi-Zhe Song, Tao Xiang, and Timothy M Hospedales. Deep spatial-semantic attention for fine-grained sketch-based image retrieval. In ICCV, 2017

^[3] Ayan Kumar Bhunia, Yongxin Yang, Timothy M Hospedales, Tao Xiang, and Yi-Zhe Song. Sketch less for more: On-the-fly fine-grained sketch-based image retrieval. In CVPR, 2020.

^[4] Kaiyue Pang, Ke Li, Yongxin Yang, Honggang Zhang, Timothy M Hospedales, Tao Xiang, and Yi-Zhe Song. Generalizing fine-grained sketch-based image retrieval. In CVPR, 2019.

^[5] Haque Ishfaq, Assaf Hoogi, and Daniel Rubin. Tvae: Triplet based variational autoencoder using metric learning. 2018

^[6] Xudong Lin, Yueqi Duan, Qiyuan Dong, Jiwen Lu, and Jie Zhou. Deep variational metric learning. In ECCV, 2018

^[7] Adrian Spurr, Jie Song, Seonwook Park, and Otmar Hilliges. Cross-modal deep variational hand pose estimation. In CVPR, 2018.

^[8] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain generalization. In ICCV, 2017

^[9] Jingyi Zhang, Fumin Shen, Li Liu, Fan Zhu, Mengyang Yu, Ling Shao, Heng Tao Shen, and Luc Van Gool. Generative domain-migration hashing for sketch-to-image retrieval. In ECCV, 2018.

Ablation Studies

Ablative Study							
Methods	Sho	e-V2	Sketchy (ext)				
	acc.@1	acc.@10	mAP	P@200			
w/o Diversity	27.12	69.01	_	_			
w/o MFT	33.28	75.34	0.852	0.916			
w/o RegD	32.57	73.84	0.837	0.891			
Fixed-FT	34.18	79.06	0.878	0.912			
Proposed	36.47	81.83	0.905	0.927			

High consistency in retrieval accuracy!

General

Qualitative

Results on

Sketchy

dataset

General Qualitative Results on QMUL ChairV2 dataset

Baseline

Proposed

General Qualitative Results on QMUL ShoeV2 dataset

Baseline

Proposed

http://sketchx.ai

https://aneeshan95.github.io