Answer THREE questions.

The numbers in square brackets in the right-hand margin indicate the provisional allocation of maximum marks per sub-section of a question.

The following formulae may be used if required:

$$e^x = \sum_{j=0}^{\infty} \frac{x^j}{j!}$$
 $\sin(x) = \sum_{j=0}^{\infty} (-1)^j \frac{x^{2j+1}}{(2j+1)!}$ $\cos(x) = \sum_{j=0}^{\infty} (-1)^j \frac{x^{2j}}{(2j)!}$

Schrödinger's Equation

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H |\psi(t)\rangle$$

Pauli operators

$$\sigma_z |\uparrow\rangle = |\uparrow\rangle$$
 $\sigma_z |\downarrow\rangle = -|\downarrow\rangle$ $\sigma_x |\uparrow\rangle = |\downarrow\rangle$ $\sigma_x |\downarrow\rangle = |\uparrow\rangle$ $\sigma_y |\uparrow\rangle = i |\downarrow\rangle$ $\sigma_y |\downarrow\rangle = -i |\uparrow\rangle$ where $|\uparrow\rangle$, $|\downarrow\rangle$ are orthonormal basis states for the two-dimensional spin-half state space.

Matrix Representation of the Pauli operators

$$\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

WKB Connection formulae

Right-hand barrier - with classical turning point at x = a:

$$\frac{2}{\sqrt{p(x)}}\cos\left(\int_{x}^{a}p(x')dx'/\hbar - \frac{\pi}{4}\right) \leftarrow \frac{1}{\sqrt{q(x)}}\exp\left[-\int_{a}^{x}q(x')dx'/\hbar\right] - \frac{1}{\sqrt{p(x)}}\sin\left(\int_{x}^{a}p(x')dx'/\hbar - \frac{\pi}{4}\right) \rightarrow \frac{1}{\sqrt{q(x)}}\exp\left[+\int_{a}^{x}q(x')dx'/\hbar\right]$$

Left-hand barrier - with classical turning point at x = a:

$$\frac{1}{\sqrt{q(x)}} \exp\left[-\int_{x}^{a} q(x')dx'/\hbar\right] \longrightarrow \frac{2}{\sqrt{p(x)}} \cos\left(\int_{a}^{x} p(x')dx'/\hbar - \frac{\pi}{4}\right)$$

$$\frac{1}{\sqrt{q(x)}} \exp\left[+\int_{x}^{a} q(x')dx'/\hbar\right] \longleftarrow -\frac{1}{\sqrt{p(x)}} \sin\left(\int_{a}^{x} p(x')dx'/\hbar - \frac{\pi}{4}\right)$$

- 1. (a) Give an example of a physical scenario where it would be convenient to work in the density matrix formalism.
 - (b) What is the density operator for a pure state with state vector representation $|\psi\rangle$?
 - (c) In the density matrix representation, the expectation value of an operator A with respect to state ρ is given by the following expression:

$$\langle A \rangle = \text{Tr}[A\rho]$$
.

Show that, for a pure state with state vector $|\psi\rangle$, this expression reduces to $\langle A\rangle = \langle \psi | A | \psi \rangle$.

(d) To be a valid physical density operator, ρ must be Hermitian, have trace equal to 1, and have solely non-negative eigenvalues. A general 2 × 2 complex valued matrix can be written,

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} , \tag{1}$$

where a, b, c and d are complex numbers. What conditions must a, b, c and d satisfy to ensure that i) M is Hermitian and ii) M has trace equal to 1.

(e) A super-operator $S[\rho]$ is written in Kraus form

$$S[\rho] = \sum_{j} K_{j} \rho K_{j}^{\dagger},$$

where the Kraus operators K_i must satisfy $\sum_j K_j^{\dagger} K_j = 1$.

Given that ρ is a physical density operator, show that i) $\rho' = S[\rho]$ is Hermitian and that ii) $\text{Tr}[\rho'] = 1$.

(f) A spin-half particle is held in a trap. The particle's initial state is ρ_0 . The trap is known to undergo fluctuations in its magnetic field, which cause the particle's state to evolve under a super-operator with the following Kraus operators:

$$K_1 = \frac{1}{2} \mathbb{1}$$
 $K_2 = \frac{1}{2} \sigma_x$ $K_3 = \frac{1}{2} \sigma_y$ $K_4 = \lambda \sigma_z$, (2)

where λ is a real number.

i. What value must λ take for these to be valid Kraus operators?

ii. Show that regardless of the input state ρ_0 , the particle will evolve under the action of this super-operator to the state

$$\rho_1 = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

[5]

[2]

[1]

[3]

[4]

[4]

- 2. (a) Describe two applications of the WKB approximation and outline the conditions which must be satisfied for it to be a good approximation.
- [3]

[1]

[2]

(b) In the WKB approximation, a wave-function in the classically allowed region, V(x) < E, has the form

$$\psi(x) = \frac{A}{\sqrt{p(x)}} \exp\left[i \int_{-\infty}^{x} p(x')dx'/\hbar\right] + \frac{B}{\sqrt{p(x)}} \exp\left[-i \int_{-\infty}^{x} p(x')dx'/\hbar\right], \quad (3)$$

where $p(x) = \sqrt{2m(E - V(x))}$.

- i. Write down the form of a WKB wave-function in a classically forbidden region.
- ii. Explain why wave-functions of this form cannot be good approximations to physical states at classical turning points.
- (c) For a quantum well with smooth sides show that the WKB approximation leads to the following quantisation condition:

$$\int_{t_1}^{t_2} p(x')dx'/\hbar = \left(n + \frac{1}{2}\right)\pi\,,$$

where t_1 and t_2 are the positions of classical turning points and n = 0, 1, 2, ... is a non-negative integer.

You will find WKB connection formulae in the rubric at the beginning of this paper.

[7]

(d) Consider a quantum well described by the potential $V(x) = V_0 \sqrt{|x|/L}$ for |x| < L and $V(x) = V_0$ for $|x| \ge L$. Given $mV_0L^2/(\pi^2\hbar^2) = 2$, and that $V_0 = 1 \text{keV}$, calculate the number of bound states and the ground state energy.

You may use the integral

$$\int (1 - \kappa \sqrt{x})^{1/2} dx = \frac{-4}{15\kappa^2} (1 - \kappa \sqrt{x})^{3/2} (2 + 3\kappa \sqrt{x}) + c,$$

without proof. [7]

- 3. (a) A projector is an operator P which satisfies the property $P^2 = P$. Show that if P is a projector, the operator $\mathbb{1} P$ is also a projector.
 - (b) Let state vectors $|\phi_j\rangle$, where j is an integer from 1 to d, form an orthonormal basis. The following expression for the identity operator $\mathbbm{1}$ is known as the closure relation, $\mathbbm{1} = \sum_j |\phi_j\rangle \langle \phi_j|$. Verify this expression by showing that the operator on its right hand side leaves a general state vector in this space invariant.

[2]

[3]

[2]

[6]

[3]

[4]

(c) Using the closure relation or otherwise show that every linear operator O acting on the vector space may be expressed:

$$O = \sum_{j=1}^{d} \sum_{k=1}^{d} O_{j,k} |\phi_j\rangle \langle \phi_k| ,$$

where $O_{j,k} = \langle \phi_j | O | \phi_k \rangle$.

(d) Every Hermitian operator H can be written in a spectral decomposition, $H = \sum_j \lambda_j P_j$ where λ_j are real scalars and P_j are projectors. We shall consider a three-dimensional system. Its state space has orthonormal basis $|\phi_1\rangle$, $|\phi_2\rangle$ and $|\phi_3\rangle$. Consider the following Hermitian operator:

$$M_1 = |\psi_1\rangle \langle \psi_1| - |\psi_2\rangle \langle \psi_2| - |\psi_3\rangle \langle \psi_3|,$$

where $|\psi_1\rangle = (1/\sqrt{3})(|\phi_1\rangle + |\phi_2\rangle + |\phi_3\rangle)$, $|\psi_2\rangle = (1/\sqrt{6})(2|\phi_1\rangle - |\phi_2\rangle - |\phi_3\rangle)$ and $|\psi_3\rangle = (1/\sqrt{2})(|\phi_2\rangle - |\phi_3\rangle)$ are orthonormal eigenvectors of M_1 .

Determine the eigenvalues of M_1 and the degeneracy of each eigenvalue. Hence, write down the scalars λ_j and the projectors P_j which make up the spectral decomposition of M_1 (expressed in a matrix representation in terms of basis states $|\phi_1\rangle$, $|\phi_2\rangle$, $|\phi_3\rangle$).

- (e) A system is prepared in state $|\chi\rangle = (1/\sqrt{2})(|\phi_1\rangle + |\phi_2\rangle)$ and a measurement, represented by operator M_1 (defined above) is made. If the outcome of this measurement is -1, what is the (normalised) state of the system after the measurement?
- (f) The system is prepared in $|\chi\rangle$ again and a new experiment is performed where two measurements are made sequentially, M_1 , defined above, and M_2 , defined below, $(M_1$ is made first).

$$M_2 = |\psi_1\rangle \langle \psi_1| + |\psi_2\rangle \langle \psi_2| - |\psi_3\rangle \langle \psi_3|,$$

If we write the measurement outcomes of the two measurements as pairs e.g. (+1,-1), which of the following sequences of measurements will never be observed and why? (+1,+1), (+1,-1), (-1,+1), (-1,-1). Explain why this fact is true for any initial state.

4. (a) The interaction picture is often employed to describe the dynamics of a system whose Hamiltonian has the form $H = H_0 + \lambda V$, where H_0 is solved, i.e. its eigenstates $|\phi_j\rangle$ and eigenenergies E_j are known.

Given that the state $|\psi_I(t)\rangle$ in the interaction picture is related to the state $|\psi_S(t)\rangle$ in the standard Schrödinger picture via $|\psi_I(t)\rangle = U_0(t)^{\dagger} |\psi_S(t)\rangle$, where $U_0(t) = \exp[-i(t/\hbar)H_0]$, show that the $|\psi_I(t)\rangle$ will evolve according to the following equation:

$$i\hbar \frac{\partial}{\partial t} |\psi_I(t)\rangle = U_0(t)^{\dagger} \lambda V U_0(t) |\psi_I(t)\rangle .$$

You may use without proof the operator identity $(\partial/\partial t) \exp[At] = A \exp[At]$.

[5]

[4]

[7]

(b) A system subjected to a time-dependent perturbation is described by a Hamiltonian: $H = H_0 + \lambda V(t)$, where H_0 is solved. By describing the state of the system in the interaction picture as, $|\psi_I(t)\rangle = \sum_j c_j(t) |\phi_j\rangle$, show that the coefficients $c_j(t)$ satisfy the following equations of motion,

$$\dot{c}_j(t) = \frac{\lambda}{i\hbar} \sum_k c_k(t) \exp\left[i\omega_{jk}t\right] V_{jk}(t) ,$$

defining all the symbols in this expression.

(c) In perturbation theory, we expand $c_j(t)$ as a power series in λ , $c_j(t) = \sum_{m=0}^{\infty} \lambda^m c_j^{(m)}$. Show that the *m*th order terms in this expansion satisfy the following expressions:

$$\dot{c}_{j}^{(0)}(t) = 0 \qquad \dot{c}_{j}^{(m)}(t) = \frac{1}{i\hbar} \sum_{k} \exp[i\omega_{jk}t] V_{jk}(t) c_{k}^{(m-1)}(t) ,$$

for
$$m = 1, 2, 3, \dots$$
 [2]

- (d) The states $|\uparrow\rangle$ and $|\downarrow\rangle$ form an orthonormal basis for a spin-half particle. Such a particle is in state $|\uparrow\rangle$ at time t=0. In an experiment, the particle is trapped and exposed to magnetic fields. Initially, the magnetic field has components solely in the z-direction, and the Hamiltonian is $H_0 = \hbar\kappa\sigma_z$. At time t=0 an additional magnetic field is introduced which is rotating in the x-y plane. This adds an extra term to the Hamiltonian $V = \hbar g(\cos(\omega t)\sigma_x + \sin(\omega t)\sigma_y)$ where $g \ll \kappa$.
 - i. The particle's z-component of spin is measured at later time $t = \tau$. Show that (to first order) the probability that the particle's state is observed now to be $|\downarrow\rangle$ is

$$|g|^2 \tau^2 \operatorname{sinc}^2 \frac{(\omega - 2\kappa)\tau}{2}$$
,

ii. In the long time limit, how must ω and κ be related, to ensure there is a non-negligible first order transition probability? [2]

5. (a) Show that, for any time-independent linear operator A, the following identity holds:

$$\frac{\partial}{\partial t} \exp[At] = A \exp[At].$$

[3]

(b) Show that $|\psi(t)\rangle = U(t) |\psi(0)\rangle$ is a solution of the time-dependent Schrödinger equation for any time-independent Hamiltonian H, where $U(t) = \exp[-iHt/\hbar]$.

[2]

(c) We say that two operators A and B anti-commute when AB + BA = 0. Show that the Pauli operators σ_x , σ_y and σ_z each pairwise anti-commute (i.e. σ_x anti-commutes with σ_y , σ_x anti-commutes with σ_z , σ_y anti-commutes with σ_z).

[3]

- (d) In an experiment, at time t=0 a spin-half particle is trapped and prepared in state $|\psi(0)\rangle = |\uparrow\rangle$. It is exposed to a magnetic field such that its Hamiltonian is $H = \hbar g(\sigma_x + \sigma_y + \sigma_z)$.
- [5]
- i. Obtain the evolution operator U(t) for this Hamiltonian, and hence write down the time-evolved state vector for the particle $|\psi(t)\rangle$. You may use without proof the identity, $\exp[iA\alpha] = \cos(\alpha)\mathbb{1} + i\sin(\alpha)A$, which holds for all self-inverse linear operators A and scalars α .

ii. Will the system ever evolve so that its state is orthogonal to the initial state $|\uparrow\rangle$? If so, describe the time at which this happens. If not, show why not.

[3]

- (e) A student tries a different approach to solving this Hamiltonian. Inspired by the Suzuki-Trotter approximation, the student utilises the approximate operator $\tilde{U}_1(t) = \exp[-ig\sigma_x t] \exp[-ig\sigma_y t] \exp[-ig\sigma_z t]$.
- [3]

[1]

PHASG426/2012

END OF PAPER