Lesson Plan: Clustering and Its Types

Total Time: 60 minutes

© Objective:

By the end of the lesson, students will be able to:

- Define clustering and its purpose
- Understand the key types of clustering
- Differentiate between K-means, Hierarchical, and DBSCAN clustering
- Apply K-means clustering using a simple dataset

Lesson Breakdown

0:00 - 0:10 (10 mins) — Introduction to Clustering

Objectives:

- Define clustering
- Understand its role in unsupervised learning

Activities:

- Begin with a real-world analogy: e.g., grouping news articles or customer segmentation
- Define clustering:
 - o "Clustering is the task of grouping a set of objects such that objects in the same group (cluster) are more similar to each other than to those in other groups."
- Show example applications (marketing, image compression, etc.)

Materials:

- Slides with visuals
- Whiteboard or virtual board for brainstorming ideas

0:10 – 0:20 (10 mins) — Types of Clustering Algorithms

Objectives:

• Introduce the main categories of clustering

Types to Cover:

- 1. **Partitioning Methods** (e.g., K-means)
- 2. Hierarchical Clustering

- 3. **Density-Based Clustering** (e.g., DBSCAN)
- 4. (Optional mention: Grid-based, Model-based for awareness)

Activities:

- Quick summary of each with diagrams
- Discuss when each method is useful

Visuals:

• Cluster shapes and behavior for each type

0:20 - 0:35 (15 mins) — Deep Dive: K-Means Clustering

Objectives:

- Understand how K-means works
- Learn the algorithm's steps

Topics:

- Initialization (random centroids)
- Assignment step
- Update step
- Convergence

Activities:

- Step-by-step animation or visual walkthrough
- Discuss pros and cons

0:35 – 0:50 (15 mins) — Practical Demonstration (K-Means)

Objectives:

- Apply K-means on a dataset
- Visualize clusters

Tools:

- Python (Jupyter Notebook or Google Colab)
- Libraries: sklearn, matplotlib, pandas

Example Dataset:

• Iris dataset or a 2D synthetic dataset

Code Snippet (Optional):

```
python
```

CopyEdit

from sklearn.datasets import make_blobs

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.6, random_state=0)

kmeans = KMeans(n_clusters=4)

kmeans.fit(X)

y_kmeans = kmeans.predict(X)

plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, cmap='viridis')

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300, c='red')

plt.title('K-Means Clustering')

plt.show()

0:50 – 0:55 (5 mins) — Overview of Other Methods

Quick Comparisons:

- Hierarchical:
 - Agglomerative vs Divisive
 - o Produces dendrograms
- DBSCAN:
 - o Density-based
 - o Finds arbitrarily shaped clusters
 - Can detect noise/outliers

When to Use What:

Method	Best For	Drawback
K-means	Spherical clusters	Requires k
Hierarchical	Small datasets	Memory intensive
DBSCAN	Irregular shapes, noise	Sensitive to parameters

0:55 - 1:00 (5 mins) — Q&A + Recap

Activities:

- Recap main points
- Ask: "What type of clustering would you use for [scenario]?"
- Quick quiz (3 questions) or interactive poll