

$f_{1-}^{#2} +^{\alpha}$	$f_{1^{-}}^{#1} \dagger^{\alpha}$	$\omega_{1^{-2}}^{#2} \dagger^{\alpha}$	$\omega_{1^{-}}^{\sharp 1} \dagger^{lpha}$	$f_{1+}^{#1} + \alpha \beta$	$u_{1}^{#2} + \alpha \beta$	$ u_{1}^{#1} + \alpha \beta $	
0	0	0	0	$\frac{ikt_1}{\sqrt{2}}$	$-\frac{t_1}{\sqrt{2}}$	$k^2 r_5 - \frac{t_1}{2}$	$\omega_{1}^{\#1}{}_{lphaeta}$
0	0	0	0	0	0	$-\frac{t_1}{\sqrt{2}}$	$\omega_{1}^{\#2}{}_{lphaeta}$
0	0	0	0	0	0	$-\frac{ikt_1}{\sqrt{2}}$	$f_{1}^{\#1}_{lpha eta}$
$-rac{1}{3}ar{l}kt_1$	0	$\frac{t_1}{3\sqrt{2}}$	$k^2 r_5 + \frac{t_1}{6}$	0	0	0	$\omega_{1^-}^{\#1}{}_{lpha}$
$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	<u>t₁</u> 3	$\frac{t_1}{3\sqrt{2}}$	0	0	0	$\omega_{1^-}^{\#2}{}_{lpha}$
0	0	0	0	0	0	0	$f_{1^{-}\alpha}^{\#1}$
$\frac{2k^2t_1}{3}$	0	$\frac{1}{3} i \sqrt{2} k t_1$	<u> </u>	0	0	0	$f_{1^-\alpha}^{\#2}$

Total #:	$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 \bar{l} k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\tau_{1}^{\#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2 \bar{l} k \sigma_{1}^{\#2\alpha} == 0$	$\sigma_{0+}^{\#1} == 0$	$r_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
17	5	3	3	ω	1	1	1	#	
$O_{0^{-1}}$	ر+ 0+	τ ₀ ++	σ#1 +0+1						

$\sigma_{0^{-}}^{*1} + $	$\tau_{0^{+}}^{\#2} +$	$\tau_{0^{+}}^{\#1} +$	$\sigma_{0^{+}}^{*1}$ †	
0	0	0	0	$\sigma_{0^+}^{\#1}$
0	0	0	0	$\tau_0^{\#1}$
0	0	0	0	$t_0^{\#2}$
$\frac{1}{k^2 r_2 - t_1}$	0	0	0	$\sigma_{0^{ ext{-}}}^{\#1}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lpha eta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_2^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$							
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0				
$f_{2}^{#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0				
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2				

	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^{+}}^{\#1}$ †	0	0	0	0
$f_{0+}^{#1}$ †	0	0	0	0
$f_{0+}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$k^2 r_2 - t_1$

Unitarity conditions $r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0$