

VX+BS for Higgs boson mass measurement

F. Errico, on behalf of BBBF group

04/09/2021

Introduction

Within the Higgs boson mass measurement in the 4 lepton decay channel, it has been shown* that lepton pT resolution (and therefore m4l resolution) is impacted by using beam spot constraint information in muon reconstruction.

VX+BS approach has shown bigger improvement in resolution. For this reason the idea will be to use this method for Full Runll results.

As a remark, in the VX+BS approach, the system of 4 (2) tracks is constrained to the BS, profits from KalmanVertexFitter (already implemented in CMSSW) and is available at miniAOD level.

This method received green light from Muon POG this week [**].

In the following slides, first (very) preliminary results on VX+BS will be shown.

In parallel, also results using UL will be shown.

^{*}Jake's slides

^{**} Filippo's slides

Dilepton mass distribution

3

0.5

Baseline

2016 pre-VPF

2017

Dilepton mass distribution

4

Baseline + VX+BS

2016 pre-VPF

2017

2016

post-VPF

WF Moving to Higgs boson..

$$\Delta\mu$$
=+22 MeV $\Delta\sigma$ =-7%

$$\Delta\mu$$
=+7 MeV $\Delta\sigma$ =-8%

4mu

~8% improvement in sigma ~10 MeV shift in peak position

2e2mu and 2mu2e in backup

WF FLO Moving to Higgs boson..

$$\Delta\mu$$
=+22 MeV $\Delta\sigma$ =-7%

$$\Delta\mu$$
=+7 MeV $\Delta\sigma$ =-8%

Legacy ggH samples 4mu final state

Legacy samples	Mean shift [MeV]	σ improvement [in ggH->4μ]
2016	15	4,6%
2017	6	5,1%
2018	22	6,7%

UF FLORIDA Higgs mass strategy

We have checked that VX+BS improves mass resolution.

As a remark, the VX+BS is applied after Rochester correction and before any other treatment developed inside Higgs mass measurement.

In particular, the Z1 constraint has been applied to the muons with VX+BS.

Next results have been produced using Legacy samples.

WF FLOR Higgs mass plots: signal

Signal_MassDistributon_125_ggH_4mu

Signal MassDistributon 125 WH 4mu

Signal MassDistributon 125 VBF 4mu

Signal MassDistributon 125 ZH 4mu

WFILOR Higgs mass plots: signal

Signal_MassDistributon_125_ggH_2e2mu

Signal_MassDistributon_125_ttH_2e2mu

ttH 2e2mu

Signal MassDistributon 125 VBF 2mu2e

√BF 2mu2e

WF FLORID Higgs mass plots: bkg

ggZZ MassDistributon 4mu

qqZZ MassDistributon 4mu

ggZZ MassDistributon 2e2mu

qqZZ MassDistributon 2mu2e

Results

Very preliminary expected statistical results on 1D method for 2016.

Full 2016 (Stat only)	4mu	4e	2e2mu	2mu2e	comb
BASELINE					
1D	-0.362/0.366	1.102/1.116	-0.738/0.756	-0.674/0.693	-0.282/0.285
2D (m + D_kin)	-0.335/0.34	-1.002/1.018	-0.687/0.708	-0.58/0.606	-0.257/0.259
REFIT					
1D	-0.331/0.335	-0.96/0.995	-0.585/0.597	-0.644/0.662	-0.254/0.256
2D (m + D_kin)	-0.307/0.311	-0.888/0.917	-0.53/0.544	-0.579/0.595	-0.23/0.232
VXBS					
1D	-0.344/0.349	-1.101/1.115	-0.734/0.751	-0.661/0.68	-0.273/0.276
2D (m + D_kin)	-0.319/0.323	-1.002/1.019	-0.682/0.702	-0.565/0.589	-0.248/0.25
REFIT+VXBS					
1D	0.318/0.322	-0.986/1.0	-0.584/0.595	-0.629/0.648	-0.246/0.249
2D (m + D_kin)	-0.295/0.298	-0.911/0.925	-0.531/0.546	-0.548/0.571	-0.224/0.226

Production mode considered: ggF, VBF, WH, ZH, ttH

Background considered: ggZZ, qqZZ

Results

Very preliminary expected statistical results on 1D method for 2016.

Full 2016 (Stat only)	4mu	4e	2e2mu	2mu2e	comb
BASELINE					
1D	-0.362/0.366	1.102/1.116	-0.738/0.756	-0.674/0.693	-0.282/0.285
2D (m + D_kin)	-0.335/0.34	-1.002/1.018	-0.687/0.708	-0.58/0.606	-0.257/0.259

Ongoing debug on relative mass error (third variable used in the past for the fit: now will be used for categorisations)

IU	-U.U44/U.U43	-1.101/1.110	-0.704/0.70 1	-0.001/0.00	-0.210/0.210	
2D (m + D_kin)	-0.319/0.323	-1.002/1.019	-0.682/0.702	-0.565/0.589	-0.248/0.25	
REFIT+VXBS						
1D	0.318/0.322	-0.986/1.0	-0.584/0.595	-0.629/0.648	-0.246/0.249	
2D (m + D_kin)	-0.295/0.298	-0.911/0.925	-0.531/0.546	-0.548/0.571	-0.224/0.226	

Production mode considered: ggF, VBF, WH, ZH, ttH

Background considered: ggZZ, qqZZ

Conclusion

Very first preliminary results on VX+BS method on 2016 Legacy samples.

VX+BS approach **improves mass resolution**: **from 5% to 8%** depending on the year.

Approach already **blessed** by MuonPOG.

Looking only at 1D-2D methods, there is an improvement of a few percent (depending on the final states) in the expected statistical results.

First look also at **2018 UL ggH** samples: **nothing suspicious** has been found.

Pending works (for Legacy result):

- Z+X contributions (also for VX+BS)
- muon scale and resolution
- on-shell width
- categorisations

Conclusion

Very first preliminary results on VX+BS method on 2016 **Legacy** samples.

VX+BS approach **improves mass resolution**: **from 5% to 8%** depending on the year.

Approach already **blessed** by MuonPOG.

Looking only at 1D-2D methods, there is an improvement of a few percent (depending on the final states) in the expected statistical results.

First look also at **2018 UL ggH** samples: **nothing suspicious** has been found.

Pending works (for UL result):

- samples [already pointed out]
- synchronisation among different groups

Step 1: create the tracks collection.

```
#include "RecoVertex/KalmanVertexFit/interface/KalmanVertexFitter.h"
#include "RecoVertex/VertexTools/interface/InvariantMassFromVertex.h"
#include "TrackingTools/TransientTrack/interface/TransientTrackBuilder.h"
#include "TrackingTools/Records/interface/TransientTrackRecord.h"
#include "TrackingTools/TransientTrack/interface/TransientTrack.h"
edm::ESHandle<TransientTrackBuilder> ttkb;
iSetup.get<TransientTrackRecord>().get("TransientTrackBuilder", ttkb);

std::vector<reco::TransientTrack> ttv;
ttv.push_back(ttkb->build("track of the Leptons")
[muonBestTrack for muons]
```

Step 2: add Beam Spot (BS) information

```
KalmanVertexFitter KVfitter(true);
TransientVertex KVertex_BS = KVfitter.vertex(ttv, BS);
```


Step 3: extract updated information

```
if(KVertex_BS.hasRefittedTracks())

TLorentzVector tmp;
std::vector <reco::TransientTrack> ttrks_BS =
KVertex_BS.refittedTracks();

reco::Track track_vtx_BS = ttrks_BS.at(0).track() [take the new tracks one by one]

tmp.SetPxPyPzE(track_vtx_BS.px(), track_vtx_BS.py(),
...) [using the new info from track, create the TLorentzVector]
```



```
Step 4: applied Rochester correction
float scaleFactor = ApplyRoccoR(year, isMC, charge(),
vtxLep_BS.at(0).Pt(), vtxLep_BS.at(0).Eta(),
vtxLep_BS.at(0).Phi(), gen_pt, n_layers);
updated_pt = vtxLep_BS.at(0).Pt() * scaleFactor;
```

Rochester correction is usually applied to the slimmed muons. For VX+BS, BestTrackMuon info are taken and these are not automatically corrected when applying Rochester correction.

Step 5: update the TLorentzVector with the new pT

```
vtxLep_BS.at(0).SetPtEtaPhiM(updated_pt, vtxLep_BS.at(0).Eta(),
vtxLep_BS.at(0).Phi(), vtxLep_BS.at(0).M());
```

[If needed] Step 6: pT error and d0 info

```
vtxLep_BS_ptError.push_back(track_vtx_BS.ptError());
vtxLep_BS_d0.push_back(track_vtx_BS.dxy(BS.position()));
```

Backup

muon pT resolution

2016

post-VPF

2016 pre-VPF

2018

20

muon pT scale

2016 pre-VPF

2018

10 20 30 40 50 60 70 80 90 100 p_T [GeV]

THE THE TWO INTERSITY OF THE PROPERTY OF THE P

2016

post-VPF

2016 pre-VPF

2017

2018

WF FLO Moving to Higgs boson.

Mass distribution: Roch

Mass distribution: Roch + VX+BS

Mass distribution: Roch + VX+BS

WF FLOR Higgs mass plots: signal

Signal MassDistributon 125 ggH 4e

ggZZ MassDistributon 4e

Signal MassDistributon 125 VBF 4e

ggZZ MassDistributon 4e

