

Telkonet, Inc. Date: 02/15/2012

Zigbee Temperature Sensor Lab: B

Model: PST6000 Tested By: David Tran

Low Channel

X-Axis - High Power Mode - Internal Antenna

					Peak /	Ant.	Table	
Freq.	Level	Pol			QP /	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2405					3.5 1.0. - 0.			N/A
2405								DONE VIA CONDUCTED
		1					35	
4810	60.45	V	74	-13.55	Peak	1.25	135	
4810	40.45	V	54	-13.55	Avg	1.25	135	
7215	66.75	V	74	-7.25	Peak	1.25	155	
7215	46.75	V	54	-7.25	Avg	1.25	155	
							30	
9620							j	No Emission
9620								Detected
12025								No Emission
12025								Detected
		,						
14430								No Emission
14430								Detected
16835				2				No Emission
16835								Detected
19240				2				No Emission
19240							8.	Detected
21645								No Emission
21645								Detected
24050								No Emission
24050							3.	Detected

Telkonet, Inc. Date: 02/15/2012

Zigbee Temperature Sensor Lab: B

Model: PST6000 Tested By: David Tran

Low Channel

X-Axis - High Power Mode - Internal Antenna

	r 1		г		Peak /	Ant.	Table	
Freq.	Level	Pol			QP/	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2405	(ubuv)	(7/11)	Lilling	margin	Avg	(111)	(ucg)	
	2	0					-	N/A
2405								DONE VIA CONDUCTED
1010	00.00		7.4	40.04	D 1	4.4	200	
4810	63.39	H	74	-10.61	Peak	1.1	320	
4810	43.39	Н	54	-10.61	Avg	1.1	320	
7045	00.05		7.4	7.05		4.4	222	
7215	66.65	Н	74	-7.35	Peak	1.1	330	
7215	46.65	Н	54	-7.35	Avg	1.1	330	
9620	65.89	Н	74	-8.11	Peak	2	180	
9620	45.89	Н	54	-8.11	Avg	2	180	
12025	2							No Emission
12025								Detected
14430								No Emission
14430								Detected
16835								No Emission
16835		6.						Detected
19240	8							No Emission
19240								Detected
21645								No Emission
21645								Detected
								13-100-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
24050								No Emission
24050								Detected

Telkonet, Inc. Date: 02/15/2012

Zigbee Temperature Sensor Lab: B

Model: PST6000 Tested By: David Tran

Low Channel

Y-Axis - High Power Mode - Internal Antenna

				r 1	Peak /	Ant.	Table	
Freq.	Level	Pol			QP/	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2405				2				N/A
2405							9	DONE VIA CONDUCTED
4810	64.21	V	74	-9.79	Peak	1.2	210	
4810	44.21	V	54	-9.79	Avg	1.2	210	
8								
7215	67.29	V	74	-6.71	Peak	2	0	
7215	47.29	V	54	-6.71	Avg	2	0	
9620	63.98	V	74	-10.02	Peak	2	180	
9620	43.98	V	54	-10.02	Avg	2	180	
40005	04.7	\ /	7.4	40.0	D I	_	400	
12025	61.7	V	74	-12.3	Peak	2	180	
12025	41.7	V	54	-12.3	Avg	2	180	
14430								No Emission
14430								Detected
14430			-					Detected
16835							- 4	No Emission
16835	1-			8			7	Detected
10000								20100104
19240							3	No Emission
19240				3		9	79	Detected
21645								No Emission
21645								Detected
	2							
24050				5 0				No Emission
24050								Detected

Telkonet, Inc. Date: 02/15/2012

Zigbee Temperature Sensor Lab: B

Model: PST6000 Tested By: David Tran

Low Channel

Y-Axis - High Power Mode - Internal Antenna

		V 3.			Peak /	Ant.	Table	3
Freq.	Level	Pol			QP/	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2405	(4241)	(1711)		mar g	7119	(,	(acg)	N/A
2405		5						DONE VIA CONDUCTED
2403	-	<u>-</u>					-	BONE VIA CONDUCTED
4810	57.86	Н	74	-16.14	Peak	1.3	150	7
4810	37.86	Н	54	-16.14	Avg	1.3	150	*
4010	07.00	- 11	01	10.17	7.179	1.0	100	
7215	72.8	Н	74	-1.2	Peak	1.1	160	4
7215	52.8	H	54	-1.2	Avg	1.1	160	*
1210	02.0	- 11		1.2	7.19	1.1	100	3
9620	66.03	Н	74	-7.97	Peak	1.8	160	
9620	46.03	Н	54	-7.97	Avg	1.8	160	3
	10.00				7.19	1.0	100	
12025					1			No Emission
12025		5				7		Detected
		2						
14430								No Emission
14430		*						Detected
16835								No Emission
16835								Detected
19240								No Emission
19240								Detected
21645								No Emission
21645								Detected
24050								No Emission
24050								Detected

Telkonet, Inc.

Zigbee Temperature Sensor

Model: PST6000

Date: 02/15/2012

Lab: B

Tested By: David Tran

Middle Channel

X-Axis - High Power Mode - Internal Antenna

					Peak /	Ant.	Table	
Freq.	Level	Pol			QP /	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2445	(ubuv)	(7/11)	Lilling	wargin	Avg	(111)	(deg)	N/A
	4			-	-	-	-	DONE VIA CONDUCTED
2445	2						-	DONE VIA CONDUCTED
4000	57.04	\ /	7.4	40.00	I	4.0	050	
4890	57.91	V	74	-16.09	Peak	1.2	350	
4890	37.91	V	54	-16.09	Avg	1.2	350	
7005	22.22		7.4					
7335	68.23	V	74	-5.77	Peak	1.5	50	
7335	48.23	V	54	-5.77	Avg	1.5	50	
9780	62.23	V	74	-11.77	Peak	1.5	180	
9780	42.23	V	54	-11.77	Avg	1.5	180	
12225						2		No Emission
12225	2				S 9			Detected
14670								No Emission
14670	2							Detected
								' '
17115								No Emission
17115						,		Detected
19560								No Emission
19560								Detected
22005								No Emission
22005								Detected
24450								No Emission
24450								Detected

Telkonet, Inc. Date: 02/15/2012

Zigbee Temperature Sensor Lab: B

Model: PST6000 Tested By: David Tran

Middle Channel

X-Axis - High Power Mode - Internal Antenna

	10. 12.				Peak /	Ant.	Table	
Freq.	Level	Pol	10.10		QP /	Height	Angle	NOTES AND DAMES OF STREET
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2445								N/A
2445								DONE VIA CONDUCTED
4890	59.38	Н	74	-14.62	Peak	1.3	350	
4890	39.38	Н	54	-14.62	Avg	1.3	350	
7335	68.32	Н	74	-5.68	Peak	1.3	50	
7335	48.32	Н	54	-5.68	Avg	1.3	50	
9780	60.11	Н	74	-13.89	Peak	1.2	210	
9780	40.11	Н	54	-13.89	Avg	1.2	210	
12225								No Emission
12225								Detected
14670								No Emission
14670								Detected
17115								No Emission
17115								Detected
19560								No Emission
19560								Detected
22005					33			No Emission
22005								Detected
24450	4				33			No Emission
24450								Detected

Telkonet, Inc. Date: 02/15/2012

Zigbee Temperature Sensor Lab: B

Model: PST6000 Tested By: David Tran

Middle Channel

Y-Axis - High Power Mode - Internal Antenna

					Peak /	Ant.	Table	1
Freq.	Level	Pol			QP /	Height	Angle	
and the same of th		9977.00	1 ::4	Manain	1000		The state of the s	Commonto
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2445								N/A
2445								DONE VIA CONDUCTED
4890	62.77	V	74	-11.23	Peak	1.2	230	
4890	42.77	V	54	-11.23	Avg	1.2	230	
7335	69.08	V	74	-4.92	Peak	1.5	190	
7335	49.08	V	54	-4.92	Avg	1.5	190	ĵ
				4,1	111			
9780	61.29	V	74	-12.71	Peak	1.3	240	
9780	41.29	V	54	-12.71	Avg	1.3	240	
12225								No Emission
12225								Detected
7					-			
14670								No Emission
14670		8				3		Detected
						7		
17115		2						No Emission
17115		8				8		Detected
11110			-			-		20100101
19560		3						No Emission
19560					-	3		Detected
10000		9				-		Beteeteu
22005		3						No Emission
22005		7						Detected
22000					-	-		Botootou
24450								No Emission
24450								Detected
		3			3			
•			•					

Telkonet, Inc. Date: 02/15/2012

Zigbee Temperature Sensor Lab: B

Model: PST6000 Tested By: David Tran

Middle Channel

Y-Axis - High Power Mode - Internal Antenna

				T .	Peak /	Ant.	Table	
Freq.	Level	Pol			QP /	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
•	(ubuv)	(V/II)	Lilling	Margin	Avg	(111)	(ueg)	
2445								N/A
2445								DONE VIA CONDUCTED
		200		2002 120	220		- Jan 1980 - 1	
4890	59.2	Н	74	-14.8	Peak	1.4	175	
4890	39.2	Н	54	-14.8	Avg	1.4	175	
1,11,111,11		111	111	P 11 101	101	17. 1	181	
7335	72.21	Н	74	-1.79	Peak	1.5	170	
7335	52.21	Н	54	-1.79	Avg	1.5	170	
18.7	1.0	111	111	* **	100		10/11/0	
9780	64.32	Н	74	-9.68	Peak	1.3	185	
9780	44.32	Н	54	-9.68	Avg	1.3	185	
10.1111.000								
12225	3			31				No Emission
12225								Detected
14670	3			3.			2	No Emission
14670				*				Detected
17115				3	5			No Emission
17115				*				Detected
11110	8			3				20.00.00
19560				8				No Emission
19560	-							Detected
10000		4		26 ==	5			Detected
22005			3	3			2	No Emission
22005	-							Detected
22003	·			-				Detected
24450				S) S		:	3	No Emission
24450				3				Detected
				3				20.00.00
				8.				

Telkonet, Inc. Date: 11/20/2012

Zigbee Temperature Sensor Lab: B

Model: PST6000 Tested By: Kyle Fujimoto

High Channel

X-Axis - High Power Mode - Internal Antenna

					Peak /	Ant.	Table	
Freq.	Level	Pol			QP/	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2480	(4241)	(****)		mar g	7.1.9	()	(aog)	N/A
2480	¥	.				÷ 3		DONE VIA CONDUCTED
2400	× ×	3			N.	2		BONE VIA CONDUCTED
4960	67.54	V	74	-6.46	Peak	1.25	155	
4960	47.54	V	54	-6.46	Avg	1.25	155	
4500	47.54	V	04	0.40	7.179	1.20	100	
7440	52.16	V	74	-21.84	Peak	1.55	135	-
7440	32.16	V	54	-21.84	Avg	1.55	135	
1110	02.10	•		21.01	7.19	1.00	100	· ·
9920	· · · · · · ·	SEX E				1	,	No Emission
9920			-					Detected
		3			V	S		
12400		8						No Emission
12400								Detected
			,		1			
14880		Str. E			78			No Emission
14880					7			Detected
17360								No Emission
17360								Detected
19840	Š	587 				35		No Emission
19840							,	Detected
22320								No Emission
22320								Detected
24800								No Emission
24800	4							Detected

Telkonet, Inc. Date: 11/20/2012

Zigbee Temperature Sensor Lab: B

Model: PST6000 Tested By: Kyle Fujimoto

High Channel

X-Axis - High Power Mode - Internal Antenna

					Peak /	Ant.	Table	
Freq.	Level	Pol			QP/	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2480	, ,	` '				, ,	ν ο,	N/A
2480								DONE VIA CONDUCTED
4960	71.25	Н	74	-2.75	Peak	1.25	155	
4960	51.25	Н	54	-2.75	Avg	1.25	155	
7440	66.27	Н	74	-7.73	Peak	1.25	165	
7440	44.27	Н	54	-9.73	Avg	1.25	165	
9920	3					31		No Emission
9920								Detected
12400								No Emission
12400								Detected
14880								No Emission
14880								Detected
17360								No Emission
17360								Detected
						3		100-2-10-0
19840								No Emission
19840			-		-			Detected
00000	7							
22320				,				No Emission
22320						ė –		Detected
24800	2		2 8	3			i.	No Emission
24800	-							No Emission Detected
24000							0	Detected
				S				2

Telkonet, Inc. Date: 11/20/2012

Zigbee Temperature Sensor Lab: B

Model: PST6000 Tested By: Kyle Fujimoto

High Channel

Y-Axis - High Power Mode - Internal Antenna

				_	Peak /	Ant.	Table	
Freq.	Level	Pol			QP /	Height		
10 CA 41 C 2 C 1 T 5 C			1 ::4	Manusin	18 P. C.		Angle	6
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2480								N/A
2480								DONE VIA CONDUCTED
			8			8		
4960	62.81	V	74	-11.19	Peak	1.25	135	
4960	42.81	V	54	-11.19	Avg	1.25	135	
7440	67.97	V	74	-6.03	Peak	1.25	145	
7440	47.97	V	54	-6.03	Avg	1.25	145	
9920								No Emission
9920								Detected
12400								No Emission
12400								Detected
		-				-		20.00.00
14880						2	5)	No Emission
14880								Detected
14000			÷					Detected
17360			2			8		No Emission
17360		-						Detected
17300	-	-	-					Detected
19840					-		2	No Emission
1 1000000000000000000000000000000000000								No Emission
19840		-	-					Detected
00000		13					57	
22320								No Emission
22320								Detected
						8	9	
24800								No Emission
24800								Detected

Telkonet, Inc. Date: 11/20/2012

Zigbee Temperature Sensor Lab: B

Model: PST6000 Tested By: Kyle Fujimoto

High Channel

Y-Axis - High Power Mode - Internal Antenna

				r -	Peak /	Ant.	Table	
Freq.	Level	Pol			QP /	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2480								N/A
2480								DONE VIA CONDUCTED
4960	70.59	Н	74	-3.41	Peak	1.25	155	
4960	50.59	Н	54	-3.41	Avg	1.25	155	
7440	71.23	Н	74	-2.77	Peak	1.25	135	
7440	51.23	Н	54	-2.77	Avg	1.25	135	
9920	-	-					-	No Emission
9920	2		-	2 2		<u> </u>		Detected
12400	: ::			=				No Emission
12400	-							
12400	2			2		3)	Detected
14880			,					No Emission
14880	-						- 2	Detected
11000				3		-	3	Detected
17360							-	No Emission
17360								Detected
								32-CONT (1970) - CONT
19840								No Emission
19840								Detected
111								
22320								No Emission
22320								Detected
						,		
24800								No Emission
24800					2		4	Detected

Dates: 02/15/2012 and 11/20/2012

Lab: B & D

Tested By: David Tran and Kyle Fujimoto

FCC 15.247

Telkonet, Inc.

Zigbee Temperature Sensor

Model: PST6000

Radiated Emissions 10 kHz to 25 GHz High Power Mode - Internal Antenna

Avia of	From	Level		i '		Peak / QP /	Table	
Axis of	Freq.		D - 1 /- //- /			200000000000000000000000000000000000000	Angle	
EUT	(MHz)	(aBuv)	Pol (v/h)	Limit	Margin	Avg	(deg)	Comments
				<u> </u>				No Emissions Detected
				<u> </u>				from 10 kHz to 25 GHz
	<u> </u>			I'	[!		for the Non-Harmonic
				['	[Emissions from the
				ſ <u></u> '				EUT for both the Vertical and
								Horizontal Polarizations.
				<u> </u>				
				<u> </u>				Tested on 02/15/2012 for
								Low Channel and Middle Channe
								Tested on 11/20/2012 for
								High Channel
		<u> </u>	<u> </u>	<u> </u>	<u> </u>			
	<u> </u>		<u> </u>					
	<u> </u>			Ĺ'	<u> </u>			
					<u> </u>			
	<u> </u>			 '				
				<u> </u>				
				Ĺ'		!		
				['	<u> </u>			
				[]				
				ſ <u></u> '	<u> </u>			
				[
		1	+ -		_	_		

Telkonet, Inc. Date: 11/28/2012

Zigbee Temperature Sensor Lab: B

Model: PST6000 Tested By: Kyle Fujimoto

Repeater Mode

High Power Mode - Internal Antenna

			r		Peak /	Ant.	Table	
Freq.	Level	Pol			QP/	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
(111112)	(abav)	(*/11)	Limit	margin	Avg	(,	(dog)	Commones
	2 3							Note: The Emissions
								do not change amplitude
								when the EUT is put into
	÷							Repeater Mode.
								repeater moder
- //								
	*							
	-							
	0 8		2		S			
					5			
	*	*			5			
,	-	-						
			5					
6	<i>y</i>							
-	÷	-						
			1					
					-			
			2					
		3						
· · · · · · · · · · · · · · · · · · ·	·	-						
	5							
	0 0		5					

-6 dB BANDWIDTH

DATA SHEETS

Bandwidth 6 dB – Low Channel

Report Number: **B21204D1 FCC Part 15 Subpart B** and **FCC Section 15.247** Test Report *Zigbee Temperature Sensor*

Model: PST6000

Bandwidth 6 dB - Middle Channel

gbee Temperature Sensor Model: PST6000

Bandwidth 6 dB – High Channel

PEAK POWER OUTPUT

DATA SHEETS

Peak Power Output – Low Channel

Zigbee Temperature Sensor Model: PST6000

Peak Power Output - Middle Channel

Peak Power Output - High Channel

SPECTRAL DENSITY OUTPUT

DATA SHEETS

Power Spectral Density - Low Channel - January 22, 2013

Power Spectral Density - Middle Channel - January 22, 2013

Power Spectral Density - High Channel - January 22, 2013

BAND EDGES

DATA SHEETS

Model: PST6000

Telkonet, Inc. Dates: 02/16/2012 and 01/29/2013

Lab: B

Tested By: David Tran & Kyle Fujimoto

Band Edges - Vertical Polarization High Power Mode - External Antenna

Zigbee Temperature Sensor

Axis Of	Freq.	Level	Pol		*:	Peak / QP /	Ant. Height	l able Angle	
EUT	(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
Y-AXIS	2405	110.04	V			Peak	3.5	125	Fundamental of
									Low Channel @ 3 Meters
Y-AXIS	2350.41	57.31	V	74	-16.69	Peak	3.5	125	Band Edge of
Y-AXIS	2350.4	37.31	٧	54	-16.69	Avg	3.5	125	Low Channel @ 3 Meters
Y-AXIS	2480	106.37	V	- 12		Peak	1.25	155	Fundamental of
									High Channel @ 3 Meters
Y-AXIS	2480	76.33	V	74	2.33	Peak	1.25	155	Band Edge of
									High Channel @ 3 Meters
Y-AXIS	2480	72.16	V	74	-1.84	Peak	1.25	155	Marker Delta Method
Y-AXIS	2480	52.16	٧	54	-1.84	Avg	1.25	155	Per Section 6.9.3
8	2		5	2		1.0	<u> </u>		
S.						- 0			
8	Š.	- 3	t.				8. 33	is v	
3									
8							· · · · · · · · · · · · · · · · · · ·		
3	2						2 3		
							2		
	5		8						
							+		

Report Number: B21204D1 FCC Part 15 Subpart B and FCC Section 15.247 Test Report Zigbee Temperature Sensor

Model: PST6000

FCC 15.247

Dates: 02/16/2012 and 01/29/2013 Telkonet, Inc. Zigbee Temperature Sensor

Lab: B

Model: PST6000 Tested By: David Tran & Kyle Fujimoto

Band Edges - Horizontal Polarization High Power Mode - External Antenna

Axis Of EUT	Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Angle (deg)	Comments
X-AXIS	2405	111.33	Н			Peak	1.25	135	Fundamental of
									Low Channel @ 3 Meters
X-AXIS	2340.9	62.48	Н	74	-11.52	Peak	1.25	135	Band Edge of
X-AXIS	2340.9	42.48	Н	54	-11.52	Peak	1.25	135	Low Channel @ 3 Meters
X-AXIS	2480	104.04	Н			Peak	1.25	155	Fundamental of
									High Channel @ 3 Meters
Y-AXIS	2483.5	74.18	Н	74	0.18	Peak	1.25	155	Band Edge of
					114				High Channel @ 3 Meters
Y-AXIS	2483.5	69.92	Н	74	-4.08	Peak	1.25	155	Marker Delta Method
Y-AXIS	2483.5	49.92	Н	54	-4.08	Avg	1.25	155	Per Section 6.9.3
								= 1	
								2	
							:	- 1	
								-	
								=	
	3					5			
							÷		

Telkonet, Inc. Dates: 02/16/2012 and 1/29/2013

Zigbee Temperature Sensor Lab: B

Model: PST6000 Tested By: David Tran & Kyle Fujimoto

Band Edges - Vertical Polarization High Power Mode - Internal Antenna

Axis Of EUT	Freq.	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Angle (deg)	Comments
Y-AXIS	2405	114.33	V			Peak	3.5	125	Fundamental of
17/10	2100	114.00				1 Cun	0.0	120	Low Channel @ 3 Meters
			8						
Y-AXIS	2351.28	62.46	٧	74	-11.54	Peak	3.5	125	Band Edge of
Y-AXIS	2351.28	42.46	٧	54	-11.54	Avg	3.5	125	Low Channel @ 3 Meters
Y-AXIS	2480	113.52	٧	122	223	Peak	1.25	155	Fundamental of
									High Channel @ 3 Meters
Y-AXIS	2480	77.22	V	74	3.22	Peak	1.25	155	Band Edge of
								1,777	High Channel @ 3 Meters
Y-AXIS	2480	70.00	V	74	-4.00	Peak	1.25	155	Marker Delta Method
Y-AXIS	2480	50.00	V	54	-4.00	Avg	1.25	155	Per Section 6.9.3
						11 184 10 10			
		3	E		2	3.			8
3									
	0		= 55						
-									
						2			
			s 8						_
		3	8			2	- 4		
		2							

Telkonet, Inc. Dates: 02/16/2012 and 1/29/2013

Zigbee Temperature Sensor Lab: B

Model: PST6000 Tested By: David Tran & Kyle Fujimoto

Band Edges - Horizontal Polarization High Power Mode - Internal Antenna

Axis Of EUT	Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
X-AXIS	2405	114.29	Н	: ##	+0	Peak	1.25	135	Fundamental of
									Low Channel @ 3 Meters
X-AXIS	2351.3	65.88	Н	74	-8.12	Peak	1.25	135	Band Edge of
X-AXIS	2351.3	45.88	Н	54	-8.12	Peak	1.25	135	Low Channel @ 3 Meters
X-AXIS	2480	112.34	Н			Peak	1.25	155	Fundamental of
									High Channel @ 3 Meters
X-AXIS	2483.5	75.86	Н	74	1.86	Peak	1.25	155	Band Edge of
1111			1111						High Channel @ 3 Meters
X-AXIS	2483.5	69.60	Н	74	-4.40	Peak	1.25	155	Marker Delta Method
X-AXIS	2483.5	49.60	Н	54	-4.40	Avg	1.25	155	Per Section 6.9.3
9							7		
					· ·			- 42	
								5.	
					4			- 4	
								3	

Band Edge for Low Channel - Vertical Polarization - Internal Antenna - Y-Axis (Worst Case)

Band Edge for Low Channel - Horizontal Polarization - Internal Antenna (Worst Case)

Date: 29.JAN.2013 18:04:24

Band Edge for High Channel – Vertical Polarization – Internal Antenna – Y-Axis (Worst Case) Reference Level = 113.52 dBuV/m Peak

Zigbee Temperature Sensor Model: PST6000

Date: 29.JAN.2013 18:05:53

Band Edge for High Channel – Vertical Polarization – Internal Antenna – Y-Axis (Worst Case) Marker Delta Method

Delta [Step b) of section 6.9.3 of ANSI C63.10: 2009] = 108.21-64.61 = 43.60 dBuV/m Peak Marker Delta Method [Step c) of section 6.9.3 of ANSI C63.10: 2009] = 113.52 - 43.60 = 70.00 dBuV/m Peak The Average reading is shown on the data sheet.

Band Edge for High Channel – Horizontal Polarization – Internal Antenna – X-Axis (Worst Case)
Reference Level = 112.34 dBuV/m Peak

Date: 29.JAN.2013 19:11:05

Band Edge for High Channel – Horizontal Polarization – Internal Antenna – X-Axis (Worst Case) Marker Delta Method

Delta [Step b) of section 6.9.3 of ANSI C63.10: 2009] = 107.12-64.38 = 42.74 dBuV/m Peak Marker Delta Method [Step c) of section 6.9.3 of ANSI C63.10: 2009] = 112.34 - 42.74 = 69.60 dBuV/m Peak The Average reading is shown on the data sheet.

Report Number: **B21204D1 FCC Part 15 Subpart B** and **FCC Section 15.247** Test Report

Zigbee Temperature Sensor Model: PST6000

Date: 16.FEB.2012 11:24:11

Band Edge for Low Channel - Vertical Polarization - External Antenna - Y-Axis (Worst Case)

Report Number: B21204D1
FCC Part 15 Subpart B and FCC Section 15.247 Test Report
Zigbee Temperature Sensor

Model: PST6000

Date: 16.FEB.2012 14:11:20

Band Edge for Low Channel - Horizontal Polarization - External Antenna - X-Axis (Worst Case)

Date: 29.JAN.2013 19:31:33

Band Edge for High Channel – Vertical Polarization – External Antenna – Y-Axis (Worst Case) Reference Level = 106.37 dBuV/m Peak

RBW 300 kHz RF Att 30 dB Marker 2 [T2] Ref Lvl 66.25 dB**y**V VBW 1 MHz 112 dB**y**V 2.48350000 GHz SWT 7.5 ms Unit db**y**v 112 100 90 IN1 80 2MA ²D1 74 dB**y**v-P0 60 TDS 50 40 30 20 F1 Start 2.47 GHz 3 MHz/ Stop 2.5 GHz

Date: 29.JAN.2013 19:39:16

Band Edge for High Channel – Vertical Polarization – External Antenna – Y-Axis (Worst Case) Marker Delta Method

Delta [Step b) of section 6.9.3 of ANSI C63.10: 2009] = 100.55-66.34 = 34.21 dBuV/m Peak Marker Delta Method [Step c) of section 6.9.3 of ANSI C63.10: 2009] = 106.37 - 34.21 = 72.16 dBuV/m Peak The Average reading is shown on the data sheet.

Date: 29.JAN.2013 20:18:11

> Band Edge for High Channel - Horizontal Polarization - Gzternal Antenna - X-Axis (Worst Case) Reference Level = 106.26 dBuV/m Peak

Date: 29.JAN.2013 20:22:09

> Band Edge for High Channel - Horizontal Polarization - Gzternal Antenna - X-Axis (Worst Case) Marker Delta Method

Delta [Step b) of section 6.9.3 of ANSI C63.10: 2009] = 98.73-64.3; = 34.14 dBuV/m Peak Marker Delta Method [Step c) of section 6.9.3 of ANSI C63.10: 2009] = 106.26-34.14 = 69.; 4 dBuV/m Peak The Average reading is shown on the data sheet.

RF ANTENNA CONDUCTED

DATA SHEETS

Report Number: **B21204D1 FCC Part 15 Subpart B** and **FCC Section 15.247** Test Report *Zigbee Temperature Sensor*

goee 1emperature Sensor Model: PST6000

RF Antenna Conducted Test - Low Channel - Reference Level

RF Antenna Conducted Test – Low Channel – 10 kHz to 2.4 GHz

RF Antenna Conducted Test - Low Channel - 2.4835 GHz to 10 GHz

pee 1emperature Sensor Model: PST6000

RF Antenna Conducted Test – Low Channel – 10 GHz to 25 GHz

Date: 7.FEB.2012 14:27:38

RF Antenna Conducted Test - Middle Channel - Reference Level

Report Number: **B21204D1 FCC Part 15 Subpart B** and **FCC Section 15.247** Test Report *Zigbee Temperature Sensor*

RF Antenna Conducted Test – Low Channel – 10 kHz to 2.4 GHz

7.FEB.2012 14:28:48

RF Antenna Conducted Test – Middle Channel – 2.4835 GHz to 10 GHz

RF Antenna Conducted Test - Middle Channel - 10 GHz to 25 GHz

Ref Lvl

Marker 1 [T2] RBW 100 kHz RF Att 40 dB 10.89 dBm VBW 300 kHz 26.3 dBm 2.47970541 GHz 5 ms dBm SWT Unit

Date: 20.NOV.2012 13:48:43

RF Antenna Conducted Test - High Channel - Reference Level

RF Antenna Conducted Test – High Channel – 10 kHz to 2.4 GHz

RF Antenna Conducted Test – High Channel – 2.4835 GHz to 10 GHz

RF Antenna Conducted Test – High Channel – 10 GHz to 25 GHz