Introduction to Database Systems 2021/2022

SÜLEYMAN GÖLBOL [ERASMUS STUDENT]

Homework 3

Task 1 (45 %) - Transaction conflicts

Given are the following schedules:

Schedule 1 (S1)

Time stamp (TS)	0	1	2	3	4	5	6
T1	R(A)	R(B)	W(B)				
T2				R(B)	R(A)	W(B)	W(A)

Schedule 2 (S2)

Time stamp (TS)	0	1	2	3	4	5	6	7	8
T1	R(B)					R(A)		R(B)	W(B)
T2		R(A)	W(B)	W(A)					
Т3					R(B)		W(A)		

a) (10 %) For EACH given schedule (S1 and S2) determine all conflict pairs.

A pair of actions with Write-Write conflict between (Tx and Ty) over object Z would

 $W_1(B), W_2(B)$ $(R_1(A), W_2(A)) (W_1(B), R_2(B)) (R_1(B), W_2(B))$ $\frac{52}{(R_1(B), W_2(B))} (W_2(B), R_3(B)) (W_2(A), R_1(A)) (W_2(A), W_3(A)) (W_2(B), R_1(B))$ (W2(B), W1(B)) (R1(A), W1(A)) (R3(B), W1(B)) b) (5 %) Do we have any blind writes in the second schedule (S2)? If yes, at what time

stamp(s)?

2 + W(B) column number 2 T3 + W2(A) column number 6

- c) (30 %) For EACH schedule (S1 and S2) demonstrate how would you avoid conflicts with the use of Strict Two-Phase Locking (Strict 2PL).
 - Apply share/exclusive locks reasonably, assume we foresee what operations we are going to execute.
 - Include wait-for graphs for deadlock detection
 - In the case of a deadlock situation apply Wound-Wait policy. Priorities are determined according to the time stamps (ex. TS1 < TS2 < TS3 < ... < TSX); where transaction with TS1 has the highest priority, meanwhile transaction with TSX is the least prioritized).

Note down all observations.

Task 2 (15 %) – Database consistency

Objects A and B have an initial value of 150. Database consistency is preserved when the summation of objects is the same before and after both transactions are committed.

Transaction 1 (T1)	Transaction 2 (T2)
R(A)	R(B)
"A = A – 50"	"B = B + 50"
R(B)	R(A)
W(A)	W(B)

Find a schedule with concurrent execution of transactions that will preserve database consistency.

Avoid transaction conflicts.

Summation of objects $\overrightarrow{A}+\overrightarrow{B}=300$ 1×150 will become 100 150 150 100 100 150 100

No transaction conflict no concurrency control techniques consistency preserved.

Task 3 (40 %) – Serial schedule

Figure out whether any of the schedules (S1, S2, S3) is conflict serializable.

Provide a proof with including precedence graphs. (Garliet graph) (Seciolization graph) it's conflict serializable. Schedule.

In the graph that we draw, if no cycle then it means

a) (10 %) Schedule 1 (S1)

T1		R(A))	W(A)	7	X	W(B)
T2		/			W	(B) ~			,	
T3	R(A) —	\								
T4			R(A)				R(B)		

b) (10 %) Schedule 2 (S2)

T1					ήì	R(A)	R(B)
T2	٦) W(A)	((1
Т3	R(A)	/	\	W(B) /	R(C)		
T4			₹W(A)				

c) (10 %) Schedule 3 (S3)

T1	W	(A) >	\langle				W(C	2)		/	7	
T2					W(B) -					C	R(A)	
Т3					7	R(A)				ر(A)W	1	•
T4	,	Ĺ	R(A)	W(A)-				9	R(B)			

d) (10 %) For EACH conflict serializable schedule write down ALL corresponding serial schedules. a and b are conflict serializables.

to the one who comes most arrow