Homework 1

Steve Gillet

February 2, 2025

"Due: Monday, February 3, 2025 at 11:59 pm on Canvas. Please assemble a single PDF file for submission that includes your Matlab/Simulink code/diagrams, plots, and explanations of your work and the results. Label sections to correspond with those in the assignment. Don't make it difficult to locate the text/code/plots for each section."

1.

"[10pts] Find the parameters R_M , L_M , K_τ , J_M , and K_B from the motor specification sheet, noting units. Also, find the total gear ratio N from the motor shaft to the load shaft, and estimate the load shaft moment of inertia J_L . Use these to quantify the parameters in the transfer function relating V_P to Θ_L . Also, estimate the potentiometer scale factor K_S from the data file posted on Canvas."

Stock program Standard program Special program (on request)	Part Numbers										
with terminals										110190	
with cables	353078	353079	353080	353081	329757	353082	332818	353083	353084	353085	353086
Motor Data											
Values at nominal voltage											
1 Nominal voltage V	4.5	6	9	12	15	18	24	30	36	42	48
2 No load speed rpm	7320	8670	6160	6780	6720	6690	5670	6090	6780	6570	6050
3 No load current mA	78.9	77.7	30.2	26.3	20.7	17.1	9.97	8.9	8.76	7.15	5.5
4 Nominal speed rpm	6900	8130	5000	5340	5060	5010	3940	4370	5060	4820	4280
5 Nominal torque (max. continuous torque) mNm	4.46	5.02	11.3	13.7	15.8	15.6	15.3	15.3	15.2	15	15
6 Nominal current (max. continuous current) A	0.84	0.84	0.84	0.84	0.766	0.627	0.391	0.336	0.31	0.254	0.204
7 Stall torque mNm	67.3	73.5	58.8	63.5	63.6	62.1	50.3	54.2	60.2	56.4	51.4
8 Stall current A	11.5	11.2	4.25	3.78	3.01	2.43	1.25	1.16	1.2	0.93	0.683
9 Max. efficiency %	84	84	84	84	84	84	83	84	84	84	83
Characteristics											
10 Terminal resistance Ω	0.39	0.536	2.12	3.17	4.99	7.41	19.2	25.8	30.1	45.1	70.2
11 Terminal inductance mH	0.04	0.051	0.227	0.333	0.529	0.77	1.9	2.58	2.99	4.34	6.68
12 Torque constant mNm/A	5.84	6.57	13.9	16.8	21.2	25.5	40.1	46.7	50.3	60.6	75.2
13 Speed constant rpm/V	1640	1450	689	569	451	374	238	205	190	158	127
14 Speed/torque gradient rpm/mNm	109	119	105	108	106	108	114	113	114	117	119
15 Mechanical time constant ms	16.5	16	15	14.9	14.8	14.8	14.9	14.9	14.9	15	15
16 Rotor inertia gcm ²	14.4	12.9	13.6	13.2	13.3	13.1	12.5	12.6	12.5	12.2	12.1

I took the parameters from the motor specification table above using part number 110187.

$$R_M = 19.2 \Omega$$

 $L_M = 1.9 \mathrm{mH} = 0.0019 \ \mathrm{H}$
 $K_\tau = 40.1 \mathrm{mNm/A} = 0.0401 \ \mathrm{Nm/A}$
 $J_M = 12.5 \mathrm{gcm}^2 = 0.00000125 \ \mathrm{kgm}^2$
 $K_B = 238 \mathrm{rpm/V} = 0.04 \ \mathrm{Vs/rad}$
 $N = 3.3$
 $J_L = 0.018522 \ \mathrm{kgm}^2$
 $K_S = 0.8$

I estimated J_L , using standard inertia formulas for a rod rotating about one end and a satellite (for the weight) and added them together.

Equation for rod: $J_{\text{arm}} = \frac{1}{3} m_{\text{arm}} L^2$ Equation for weight: $J_{\text{weight}} = m_{\text{weight}} L^2$ I got the mass of the arm and weight using their measurements and the average density for aluminum and brass.

- Arm Dimensions: L = 30 cm, h = 0.7 cm, w = 1.1 cm
- Volume:

$$V_{\text{arm}} = L \times h \times w = 30 \times 0.7 \times 1.1 = 23.1 \text{ cm}^3$$
 (1)

- Density of aluminum: $\rho_{\rm Al} \approx 2.7 \ {\rm g/cm^3}$
- Mass of the arm:

$$m_{\rm arm} = V_{\rm arm} \times \rho_{\rm Al} = 23.1 \times 2.7 = 62.37 \text{ g} = 0.0624 \text{ kg}$$
 (2)

- Weight Dimensions: $3.2 \times 2.0 \times 3.4$ cm
- Volume:

$$V_{\text{brass}} = 3.2 \times 2.0 \times 3.4 = 21.76 \text{ cm}^3$$
 (3)

- Density of brass: $\rho_{\rm brass} \approx 8.5 \ {\rm g/cm^3}$
- Mass of the brass weight:

$$m_{\text{brass}} = V_{\text{brass}} \times \rho_{\text{brass}} = 21.76 \times 8.5 = 184.96 \text{ g} = 0.185 \text{ kg}$$
 (4)

Then I used those numbers (including length of arm for L) to calculate the moments of inertia and combine them.

$$J_{\rm arm} = \frac{1}{3} m_{\rm arm} L^2 \tag{5}$$

$$J_{\text{arm}} = \frac{1}{3}(0.0624)(0.30)^2 = 0.001872 \text{ kgm}^2$$
 (6)

$$J_{\text{weight}} = m_{\text{weight}} L^2 \tag{7}$$

$$J_{\text{weight}} = (0.185)(0.30)^2 = 0.01665 \text{ kgm}^2$$
 (8)

$$J_L = J_{\rm arm} + J_{\rm brass} \tag{9}$$

$$J_L = 0.00187 + 0.01645 = 0.018522 \text{ kgm}^2$$
(10)