(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 13 January 2005 (13.01.2005)

PCT

(10) International Publication Number WO 2005/002313 A2

(51) International Patent Classification: Not classified

(21) International Application Number:

PCT/US2004/021307

(22) International Filing Date:

1 July 2004 (01.07.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/483,961

1 July 2003 (01.07.2003) US

(71) Applicant (for all designated States except US): CAR-DIOMAG IMAGING, INC. (CMI) [US/US]; 450 Duane Avenue, Schenectady, NY 12304 (US).

(71) Applicants and

- (72) Inventors: STERNICKEL, Karsten [DE/US]; 9 Devonshire Drive, Albany, NY 12205 (US). EMBRECHTS, Mark, J. [US/US]; 15 Orchard Park Drive, Clifton Park, NY 12065 (US). SZYMANSKI, Boleslaw, K. [US/US]; 6 Hollow Road, Newtonville, NY 12128-0301 (US).
- (74) Agent: YABLON, Jay, R.; Law Office of Jay R. Yablon, 910 Northumberland Drive, Schenectady, NY 12309-2814 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA,

[Continued on next page]

(54) Title: USE OF MACHINE LEARNING FOR CLASSIFICATION OF MAGNETO CARDIOGRAMS

(57) Abstract: The use of machine learning for pattern recognition in magnetocardiography (MCG) that measures magnetic fields emitted by the electrophysiological activity of the heart is disclosed herein. Direct kernel methods are used to separate abnormal MCG heart patterns from normal ones. For unsupervised learning, Direct Kernel based Self-Organizing Maps are introduced. For supervised learning Direct Kernel Partial Least Squares and (Direct) Kernel Ridge Regression are used. These results are then compared with classical Support Vector Machines and Kernel Partial Least Squares. The hyper-parameters for these methods are tuned on a validation subset of the training data before testing. Also investigated is the most effective pre-processing, using local, vertical, horizontal and two-dimensional (global) Mahanalobis scaling, wavelet transforms, and variable selection by filtering. The results, similar for all three methods, were encouraging, exceeding the quality of classification achieved by the trained experts. Thus, a device and associated method for classifying cardiography data is disclosed, comprising applying a kernel transform to sensed data acquired from sensors sensing electromagnetic heart activity, resulting in transformed data, prior to classifying the transformed data using machine learning.

WO 2005/002313 A2

SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

 as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.