Model selection and confidence intervals

Homework week 7

The Solution

```
pacman::p_load(s20x, tidyverse, gvlma, AICcmodavg, gridExtra, xtable)
```

Data preparation

Identification

```
data(attitude)
str(attitude)

## 'data.frame': 30 obs. of 7 variables:
## $ rating : num 43 63 71 61 81 43 58 71 72 67 ...
## $ complaints: num 51 64 70 63 78 55 67 75 82 61 ...
## $ privileges: num 30 51 68 45 56 49 42 50 72 45 ...
## $ learning : num 39 54 69 47 66 44 56 55 67 47 ...
## $ raises : num 61 63 76 54 71 54 66 70 71 62 ...
## $ critical : num 92 73 86 84 83 49 68 66 83 80 ...
## $ advance : num 45 47 48 35 47 34 35 41 31 41 ...
```

Assumptions

```
rat.dist.gg <-
  attitude %>%
    ggplot(aes(x=rating)) + theme_bw(16) +
      geom_density(alpha=.2, fill="#FF6666") +
      geom_histogram(aes(y=..density..),
                 binwidth=5,
                 colour="black",
                 fill="lightgreen") +
      labs(x="rating") +
      geom_line(data=data.frame(
                        X=seq(25, 100, 1),
                        Y=dnorm(x=seq(25, 100, 1),
                                mean=mean(attitude$rating),
                                sd=sd(attitude$rating))),
                aes(x=X, y=Y),
                    colour="blue", size=1.1)
rat.QQ.gg <-
  attitude %>%
    ggplot(aes(sample=rating)) + theme_bw(16) +
            stat_qq(size=4, bg="#43a2ca",
                    col="black", pch=21) +
            stat_qq_line(size=1.5, color="blue")
grid.arrange(rat.dist.gg, rat.QQ.gg, nrow = 1)
```


Figure 1: Distribution and Q-Q plot for response variable rating.

The data are sufficiently symetrical around the mean that a normal (Gaussian) distribution fits them well.

	Value	p-value	Decision
Global Stat	1.68	0.80	Assumptions acceptable.
Skewness	0.00	0.97	Assumptions acceptable.
Kurtosis	1.64	0.20	Assumptions acceptable.
Link Function	0.00	0.99	Assumptions acceptable.
Heteroscedasticity	0.03	0.85	Assumptions acceptable.

Table 1: The full potential model meets assumptions of the linear model.

Model fitting and selection

complaints	privileges	learning
1.81	1.54	1.65

Table 2: Low Variable Inflation Factors for each potential predictor variables.

Define model set

```
null <- lm(rating ~ 1, attitude)
C <- lm(rating ~ complaints, attitude)
P <- lm(rating ~ privileges, attitude)
L <- lm(rating ~ learning, attitude)
CP <- lm(rating ~ complaints + privileges, attitude)
CL <- lm(rating ~ complaints + learning, attitude)
PL <- lm(rating ~ privileges + learning, attitude)
CPL <- lm(rating ~ complaints + privileges + learning, attitude)
CPL <- lm(rating ~ complaints + privileges + learning, attitude)</pre>
cand.mod.names <- c("null", "C", "P", "L", "CP", "CL", "PL", "CPL")
```

Model selection

```
cand.mods <- list( )
for(i in 1:length(cand.mod.names)) {
   cand.mods[[i]] <- get(cand.mod.names[i]) }
library(AICcmodavg)
aictab(cand.set = cand.mods,
        modnames = cand.mod.names) %>%
   xtable(caption="Model rankings based on $AIC_{c}$ information criterion.
        Models identified by first letter of predictor variable names.\\label{MS}") %>%
   print(comment=FALSE, include.rownames=FALSE)
```

Model	K	AICc	Delta AICc	AICc weight	log-Likelihood
С	3.00	206.69	0.00	0.39	-99.88
CL	4.00	206.74	0.05	0.38	-98.57
CPL	5.00	208.91	2.22	0.13	-98.21
CP	4.00	209.20	2.51	0.11	-99.80
${ m L}$	3.00	226.21	19.53	0.00	-109.65
PL	4.00	227.97	21.28	0.00	-109.18
P	3.00	234.98	28.30	0.00	-114.03
null	2.00	238.51	31.83	0.00	-117.04

Table 3: Model rankings based on AIC_c information criterion. Models identified by first letter of predictor variable names.

All models that include complaints can be considered competitive in AIC_c -based model selection (Table 3).

Model averaging

```
terms <- c("(Intercept)", "complaints", "learning", "privileges")
    av.params <- as.data.frame(array(NA,c(length(terms),4)))
    colnames(av.params)<-c("term","estimate","ciL","ciU")</pre>
```

term	estimate	ciL	ciU
(Intercept)	12.39	-1.90	26.68
complaints	0.71	0.46	0.95
learning	0.22	-0.05	0.48
privileges	-0.08	-0.34	0.18

Table 4: Averaged regression coefficients on top-ranked models from AIC_c -based model selection (Table 3).

As the slope term of the regression equation denotes the strength of the modelled relationship, the estimated coefficient for each slope term in a regression model can be interpreted as a measure of that term's relative importance to the response variable, or *effect size*.

Plot confidence intervals

Conclusions

 AIC_c -based model selection indicated that three variables, privileges, learning, and complaints were associated with employee ratings of job satisfaction (Table 3). In comparing model-averaged regression coefficients (Fig. 2), only complaints had a non-zero relationship with rating, which was positive. 95% Cls for learning and privileges overlapped zero; these terms had positive and negative trends with rating, respectively. Thus, employee ratings appear to be most strongly determined by how well eomployees felt the company handled employee complaints.

Figure 2: Model-averaged 95% confidence intervals with regression coefficient estimates for terms in top-ranked models (Table 3).