Дискретная математика и математическая логика 3 семестр

Данил Заблоцкий

15 сентября 2023 г.

Оглавление

1 Основные понятия

4

Введение

В прошлом году изучались:

- 1. Основы
 - Булевы функции
 - Формулы логики высказываний
 - Эквивалентные преобразования
 - Нормальные формы
 - ДНФ/КНФ
 - СДНФ/СКНФ
 - Полином Жегалкина
 - Минимальная ДНФ
- 2. Теория булевых функций
 - Основной объект булевы функции
 - Суперпозиция и подстановка переменных
 - Замкнутые классы булевых функций
 - Замыкание
 - Полные системы булевых функций и базисы
 - Теорема Поста о полноте системы булевых функций
 - Классы Поста
 - Леммы о немонотонных, несамодвойственных, нелинейных функциях
 - Теорема
 - Теорема о максимально замкнутых классах
- 3. Логика высказываний
 - Основной объект формулы
 - Основы теории доказательств
 - Логическое следование

- Вывод в форматных системах
- Исчисление высказываний
- Теорема Геделя о полноте исчисления высказываний
- Исчисление высказываний Генцена
- Метод резолции для логики высказываний

В этом году будет изучаться язык логики предикатов.

В этом году оудет изучаться **язык логики предикатов**.

Пример Аристотеля:
$$\begin{cases} \text{Все люди - смертные} \\ \text{Сократ - человек} \end{cases} \implies \text{Сократ - смертный}$$
 x : Все люди - смертные

у: Сократ - человек

z: Сократ - смертный

$$x, y \nvDash z$$

Вывод: ЛВ обладает слабой выразительной силой по сравнению с естественным языком.

Глава 1

Основные понятия

Определение 1.0.1. n-местный предикант на множестве A - это отображение вида:

$$P: A^n \to \{0,1\},$$

при этом n-местность - P.

Формально, предикант - это высказывание, зависящее от параметров.

Пример 1. 1. $A = \mathbb{Z}$.

 $P(x) = 1 \iff x$ - простое число.

$$Q(x,y) = 1 \iff x + y = 1$$

$$R(x, y) = 1 \iff x < y$$

$$T(x, y, z) = 1 \iff z = \text{HOД}(x, y)$$

 $2. \ A$ - множество людей.

Примеры предикатов на A:

$$P(x) = 1 \iff x$$
 - женщина

$$Q(x,y) = 1 \iff x$$
 - родитель y

$$R(x,y)=1\iff x$$
 и y - братья

Определение 1.0.2. n-местная операция на множестве A - это отображение вида $f: A^n \to A$.

Пример 2. $A = \mathbb{Z}$.

1.
$$f_1(x) = x + 1$$
;

2.
$$f_2(x) = 2x$$
;

3.
$$f_3(x) = 0$$
;

4.
$$f_4(x) = x^2$$
;

5.
$$g_1(x,y) = \begin{cases} x^y, & y > 0; \\ 0, & y \leq \text{ иначе} \end{cases}$$
;

- 6. $g_2(x,y) = x + y;$
- 7. $g_3(x,y) =$ сумма последних цифр чисел x и y.

$$\forall x (P(x) \& Q(x) \rightarrow R(f(x)))$$

Замечание. Чтобы писать формулы, достаточно иметь только обозначение предикатов и операций и знать их местность.

Определение 1.0.3. Сигнатура - набор трех непересакающихся множеств: $\mathfrak{R} \cup \mathfrak{F} \cup \mathfrak{C}$, где элементы множества \mathfrak{R} назовем предикатные символы, элементы \mathfrak{F} - функциональные символы, элементы \mathfrak{C} - константные символы. Так же должна быть определена функция $\mathfrak{M}: \mathfrak{R} \cup \mathfrak{F} \to \mathbb{N}$ - местность символов.

Сигнатура - это набор предикатных, функциональных и константных символов с указанием их местности.

Пример 3. $\Sigma = \{P^{(1)}, Q^{(2)}, f^{(1)}, g^{(2)}, c\}$, где $P^{(1)}, Q^{(2)}$ - предикат, $f^{(1)}, g^{(2)}$ - функциональные символы, а c - константный.

Символы P,Q,R,\ldots считаем предикатными, символы f,g,h,\ldots - функциональными, a,b,c,\ldots - константами.

Сигнатуры Σ и Γ - равны, если есть содержание и одинаковые количества символов каждого сорта, и местности символов попарно равны.

$$\Sigma = \{ P^{(1)}, \ Q^{(2)}, \ f^{(1)}, \ g^{(2)}, \ a, \ b \} =$$

$$\Gamma = \{ P_1^{(1)}, \ P_2^{(2)}, \ f_1^{(1)}, \ f_2^{(2)}, \ c_1, \ c_2 \}$$

Иногда элементы сигнатуры представляются общепринятыми символами $(+,\;\cdot,\;\ldots)$.

Пример 4. Имеем формулу: $\forall x \ (P(x) \to Q(f(x)))$. Эта формула истинна или ложна?

Для ответа не хватает:

- множества, из которого берутся значения переменных;
- расшифровки того, что обозначают символы P, Q, f.

Определение 1.0.4. Интепретация сигнатуры Σ на множестве A - это отображение I, которое:

- каждый предикатный символ $P^{(n)} \in \Sigma$ отображает в n-местный предикат на множестве A;
- каждый функциональный символ $f^{(n)} \subset \Sigma$ отображает в n-местную операцию на A;
- ullet каждый константный символ отображает в элемент множество A.

Определение 1.0.5. Алгебраическая система - это набор, состаящий из множества A, сигнатуры Σ и интепретации сигнатуры Σ на множестве