Ex 1 Soit $F: \mathbb{Z} \times \mathbb{N}^* \to \mathbb{R}$. F est elle injective, surjective? $(p,q) \mapsto \frac{p}{q}$

Quels sont les antécédents de 0 et de 1? Que vaut $F(\mathbb{Z} \times \mathbb{N}^*)$?

- **Ex 2** Discuter de l'injectivité et de la surjectivité de l'application $\exp:\mathbb{C}\to\mathbb{C}^*$
- **Ex 3** Soit $\varphi: \mathbb{R}^2 \to \mathbb{R}$. Représenter graphiquement les ensembles $\varphi^{-1}(\{0\})$ et $\varphi^{-1}(\mathbb{R}_+)$ $(x,y) \mapsto x^2-y^2$
- **Ex 4** On considère les applications f et g de $\mathbb N$ dans $\mathbb N$ définies par

$$\forall n \in \mathbb{N}, \ f\left(n\right) = 2n \quad \text{et} \quad \left\{ \begin{array}{l} g\left(n\right) = \frac{n}{2} \text{ si } n \text{ est pair} \\ g\left(n\right) = \frac{n-1}{2} \text{ si } n \text{ est impair} \end{array} \right.$$

Etudier l'injectivité et la surjectivité de f et g, puis déterminer $f \circ g$ et $g \circ f$.

- **Ex 5** Montrer que l'application f de $\mathbb N$ dans $\mathbb Z$ définie par $\begin{cases} f(n) = \frac{n}{2} \text{ si } n \text{ est pair} \\ f(n) = -\frac{n+1}{2} \text{ si } n \text{ est impair} \end{cases}$ est bijective.
- **Ex 6** a) Montrer que $f: \mathbb{R}^2 \to \mathbb{R}^3$ est injective $(x,y) \mapsto (x+y,x-y,2x+y)$

Quelle est l'image $f\langle D\rangle$ de la droite D d'équation x+y=1?

b) Montrer que $g: \mathbb{R}^3 \to \mathbb{R}^2$ est surjective. $(x,y,z) \mapsto (2x+y-z,3x+2y+5z)$

Quelle est l'image $f \langle P \rangle$ du plan P d'équation x + y + 6z = 1?

- c) Montrer que $h: \mathbb{R}^2 \to \mathbb{R}^2$ est bijective et déterminer h^{-1} . $(x,y) \mapsto (x+2y,2x+3y)$
- **Ex 7** On note $U=]0,+\infty[^2$, et $f:U\to U$. Montrer que f est bijective et calculer f^{-1} . $(x,y)\mapsto (xy,\frac{y}{x})$
- **Ex 8** Soit $f: \mathbb{R} \to \mathbb{C}$ définie par $\forall x \in \mathbb{R}, \ f(x) = \frac{1+ix}{1-ix}$.
 - a) f est-elle injective? surjective?
 - b) Déterminer $f^{-1}(\mathbb{R})$ et $f(\mathbb{R})$.
- **Ex 9** Soit $f: \mathbb{C}^* \to \mathbb{C}$ l'application définie par $\forall z \in \mathbb{C}^*, \ f(z) = z + \frac{1}{z}$
 - a) Montrer que f est surjective, non injective.
 - b) Déterminer l'image de \mathbb{U} , ensemble des nombres complexes de module 1, par f.
 - c) Déterminer l'image réciproque (= pré-image) par f de l'ensemble $\mathbb{J}=i\mathbb{R}$ des imaginaires purs.
- **Ex 10** Soit f l'application définie sur $\mathcal{D} = \mathbb{C} \setminus \{2i\}$ par $f(z) = \frac{z^2}{z 2i}$.
 - a) Soit $h \in \mathbb{C}$. Discuter suivant les valeurs de h le nombre d'antécédents de h par f.
 - b) $f: \mathcal{D} \to \mathbb{C}$ est-elle surjective? est-elle surjective?
- **Ex 11** Soient $f: E \to F$ et $g: F \to G$ deux applications..
 - a) Montrer que si $g \circ f$ est injective et f surjective , alors g est injective.
 - b) Montrer que si $g \circ f$ est surjective et g injective, alors f est surjective.
- **Ex 12** Soit $f: E \to E$ vérifiant $f \circ f \circ f = f$. Montrer que f injective $\Leftrightarrow f$ surjective.
- **Ex 13** Soit E un ensemble, et $f: E \to E$ une application vérifiant $f \circ f = f$ (*)
 - a) Montrer que si f est injective, alors $f = id_E$.
 - b) Montrer que si f est surjective, alors $f = id_E$.
 - c) Montrer que $f: E \to E$ vérifie (*) si, et seulement si $\forall x \in f(E), f(x) = x$.

PCSI 1 Thiers 2019/2020

Ex 14 Soit $f: E \to F$ une application.

- a) Soit $A \subset E$. Comparer A et $f^{-1}(f(A))$, puis montrer que si f est injective, alors $A = f^{-1}(f(A))$.
- b) Inversement, montrer que si $\forall A \in \mathcal{P}(E)$, $A = f^{-1}(f(A))$, alors f est injective.
- c) Soit $B \subset F$. Comparer B et $f(f^{-1}(B))$, puis montrer que si f est surjective, alors $B = f(f^{-1}(B))$.
- d) Inversement, montrer que si $\forall B \in \mathcal{P}(F)$, $B = f(f^{-1}(B))$., alors f est surjective.
- e) Si $B \subset F$, montrer que $f(f^{-1}(B)) = B \cap f(E)$ et redémontrer le résultat précédent (c) et d))

Ex 15 Soit $f: E \to F$ une application.

Montrer que f est injective si et seulement si $\forall (A, A') \in \mathcal{P}(E)^2$, $f(A \cap A') = f(A) \cap f(A')$.

Ex 16 Soit E un ensemble et A un sous ensemble de E.

On considère les applications f et g de $\mathcal{P}\left(E\right)$ dans lui-même définies par :

- a) Montrer que f injective \iff f surjective \iff A = E.
- b) Montrer que g injective \iff g surjective \iff $A = \emptyset$.

Ex 17 Soit f une application de \mathbb{N} dans \mathbb{N} .

- a) On suppose que f est injective et que $\forall n \in \mathbb{N}, \ f(n) \leqslant n$. Montrer que $f = \mathrm{id}_{\mathbb{N}}$
- b) On suppose que f est surjective et que $\forall n \in \mathbb{N}, \ f(n) \geqslant n$. Montrer que $f = \mathrm{id}_{\mathbb{N}}$

Ex 18 Soit f une application de F dans G.

a) Soit E un ensemble.

Montrer que f injective si et seulement si $\forall (g,h) \in (F^E)^2$, $f \circ g = f \circ h \Rightarrow g = h$.

b) Soit H un ensemble contenant au moins deux points.

Montrer que f surjective si et seulement si $\forall (g,h) \in (H^G)^2$, $g \circ f = h \circ f \Rightarrow g = h$.