IDŐJÁRÁS ELŐREJELZÉS

Hálózati operációs rendszerek és IoT technológia ESP8266

KÉSZÍTETTE: LISÓCZKI MIHÁLY

SZABÓ ANDRÁS

DÁTUM: 2024.10.19.

Tartalomjegyzék

1.	Prog	gram célja	3
	1.1.	Főbb funkciók	3
	1.2.	Technikai jellemzők	3
	1.3.	Felhasználói élmény	3
	1.4.	Potenciális továbbfejlesztési lehetőségek	3
2.	Prog	gram készítői	4
	2.1.	Fejlesztési feladatok megosztása és egyéni hozzájárulás	4
3.	Refe	rencia linkek	5
4.	Fejle	esztői környezet beállítása	6
	4.1.	Arduino IDE kiegészítő board manager URL-ek beállítása	6
	4.2.	Board manager telepítése	7
	4.3.	Szükséges könyvtárak telepítése:	8
5.	Eszk	öz bemutatása	9
	5.1. CC	DM port	10
6.	Elké	szült projekt	11
	6.1. Vi	zuális bemutatás	11
	6.2.	Serial Monitor	14
	6.3.	Kód bemutatása	15

1. Program célja

- Valós idejű időjárás-információk megjelenítése egy kisméretű, hordozható eszközön.
- Aktuális időjárási adatok és 5 napos előrejelzés biztosítása Budapest városára.
- Az adatok rendszeres frissítése és könnyen olvasható formában történő megjelenítése.

1.1. Főbb funkciók

- WiFi kapcsolat létesítése az internetes adatforráshoz való hozzáféréshez.
- Aktuális időjárási adatok lekérése az OpenWeatherMap API-tól.
- > 5 napos előrejelzés lekérése és feldolgozása.
- Az adatok megjelenítése egy OLED kijelzőn, váltakozó képernyőkkel.

1.2. Technikai jellemzők

- > ESP8266 mikrovezérlő használata, amely kis méretű és energiahatékony.
- Integrált OLED kijelző alkalmazása az adatok megjelenítésére, amely jól olvasható és alacsony energiafogyasztású.
- Beépített WiFi modul alkalmazása az internetes időjárási adatok lekérdezéséhez.
- HTTP GET kérések használata az API-val való kommunikációhoz.
- JSON adatok feldolgozása az ArduinoJson könyvtár segítségével.

1.3. Felhasználói élmény

- Automatikusan váltakozó képernyők, amelyek különböző időjárási információkat mutatnak.
- Aktuális időjárás, napi előrejelzések és heti összefoglaló megjelenítése.
- Könnyen értelmezhető adatok megjelenítése, beleértve a hőmérsékletet, páratartalmat és időjárás leírását.

1.4. Potenciális továbbfejlesztési lehetőségek

- További szenzorok hozzáadása (pl. helyi hőmérséklet, páratartalom mérése).
- Több város vagy hely támogatása, esetleg GPS modul integrálásával.
- Riasztások beállítása extrém időjárási körülményekre.
- Energiatakarékos üzemmód implementálása.

2. Program készítői

A projekt készítői Lisóczki Mihály és Szabó Andris, a Nyíregyházi Egyetem Programtervező informatikus szakának harmadéves hallgatói. Az időjárás előrejelzés fejlesztése az IoT (Internet of Things) tantárgy keretében végzett gyakorlati projektmunka eredménye, mely demonstrálja a hallgatók készségeit a beágyazott rendszerek programozása és az internetes adatforrások integrációja terén.

2.1. Fejlesztési feladatok megosztása és egyéni hozzájárulás

Fejlesztő	Feladatok
	WiFi kapcsolat inicializálása és kezelése
	HTTP GET kérések implementálása az OpenWeatherMap API-hoz
	JSON válaszok feldolgozása az ArduinoJson könyvtár segítségével
Lisóczki Mihály	Aktuális időjárási adatok struktúrájának kialakítása és feltöltése
	Kijelző inicializálása és alapvető beállítások
	Időzítések kezelése az adatfrissítéshez és képernyőváltáshoz
	Dokumentáció elkészítése
	Előrejelzési adatok struktúrájának kialakítása és feltöltése
	Különböző képernyők megjelenítésének programozása (current, daily, weekly
Szabó András	forecast)
SZabo Andras	Kijelző frissítési logika implementálása (updateDisplay függvény)
	Serial monitor kimenet formázása és megvalósítása debugging céljábó
	Dokumentáció elkészítése

3. Referencia linkek

A projekt fejlesztése során számos online forrást használtunk inspirációként, hibakereséshez, valamint specifikus parancsok és dokumentációk felkutatásához. Az alábbiakban összegyűjtöttük azokat a kulcsfontosságú referencia linkeket, amelyek jelentősen hozzájárultak a munkafolyamat gördülékenységéhez és a végeredmény minőségéhez:

ESP8266 és időjárás előrejelzés:

https://randomnerdtutorials.com/esp8266-weather-forecaster/

U8g2 könyvtár dokumentáció:

https://github.com/olikraus/u8g2/wiki/u8g2reference/

https://github.com/olikraus/u8g2/wiki/

OpenWeatherMap API dokumentáció:

https://openweathermap.org/api/

Oktatóvideók és további tutorialok:

https://www.youtube.com/watch?v=GkbOr RIUCg

https://randomnerdtutorials.com/esp8266-0-96-inch-oled-display-with-arduino-ide/

Segédeszközök:

https://www.unitconverters.net/time/milliseconds-to-seconds.htm

ArduinoJSON könyvtár dokumentáció:

https://arduinojson.org/v7/api/json/deserializejson/

4. Fejlesztői környezet beállítása

4.1. Arduino IDE kiegészítő board manager URL-ek beállítása

Ez a kép az Arduino IDE kiegészítő board manager URL-ek beállítását mutatja. Ezek az URL-ek különböző fejlesztőkártyák és eszközök támogatását teszik lehetővé az Arduino fejlesztői környezetben.

Beállításához kövesd ezt az útvonalat: File → Preferences → Additional boards manager URLs:

Következő célokat szolgálják:

- ESP8266 támogatás hozzáadása az Arduino IDE-hez. Ez lehetővé teszi az ESP8266 alapú eszközök programozását az Arduino környezetben.
- ESP32 támogatása.
- SpacehuhnTech által fejlesztett eszközök támogatása.
- M5Stack eszközök támogatásának hozzáadása.

Ezek az URL-ek JSON fájlokra mutatnak, amelyek tartalmazzák az adott eszközökhöz szükséges konfigurációs információkat, könyvtárakat és eszközmeghatározásokat. Az Arduino IDE ezeket használja fel, hogy megfelelően tudja kezelni és programozni az adott eszközöket.

4.2. Board manager telepítése

Tools → Board → Board Manager fülön lehetőségünk van különböző csomagok telepítésére

A Board Manager telepítése az ESP8266-hoz rendkívül fontos lépés az Arduino IDE-vel történő programozásához. Íme, miért szükséges:

- Eszköz támogatás
- Kompatibilitás
- ➤ Könyvtárak és függőségek
- Programozási interfész
- Soros port kezelés
- > Frissítések és hibajavítások

Az általunk használt mikrovezérlő ESP8266-os:

4.3. Szükséges könyvtárak telepítése:

Tools → Manager Libraries fülön lehetőségünk van további könyvtárak telepítésére.

A projektmunkánkhoz az alábbi könyvtárakat telepítettük:

ESP8266 könyvtár

esp8266 by ESP8266 Community

Funkció: WiFi és HTTP kliens funkcionalitást biztosít az ESP8266 chiphez

ArduinoJson

ArduinoJson

> Funkció: JSON adatok hatékony kezelése és feldolgozása

U8g2

U8g2

Funkció: Grafikus megjelenítés OLED és más monokróm kijelzőkön

Wire könyvtár

Alapértelmezetten része az Arduino IDE-nek, nem kell külön telepíteni

Funkció: I2C kommunikáció kezelése

Adafruit_GFX

Adafruit GFX Library by Adafruit

Funkció: Általános grafikus funkciókat biztosít különböző kijelzőkhöz, beleértve a primitív rajzolási műveleteket (vonalak, körök, szöveg stb.)

Adafruit_SSD1306

Adafruit SSD1306

> Funkció: Specifikusan az SSD1306 vezérlővel rendelkező OLED kijelzők kezelésére szolgál

5. Eszköz bemutatása

Mikrovezérlő:

NodeMCU ESP8266 V3 Development Board With 0.96 Inch OLED Display CH340 ESP-12F WiFi Module TYPE-C USB For Arduino/Micropython

Beszerzés helye:

A mikrovezérlő programozásához és a megfelelő kommunikáció biztosításához **elengedhetetlen egy adatátvitelre alkalmas USB Type-C kábel használata**. Nem minden USB Type-C kábel egyforma, egyesek kizárólag töltésre szolgálnak, míg mások képesek adatot is továbbítani. Projektünk szempontjából kritikus fontosságú, hogy olyan kábelt válasszunk, amely támogatja a kétirányú adatátvitelt. Ez azért kulcsfontosságú, mert a fejlesztési folyamat során gyakran kell firmware-t feltölteni és diagnosztikai adatokat olvasni az eszközről.

5.1. COM port

A fejlesztési folyamat első lépéseként elengedhetetlen a mikrovezérlőnk és a fejlesztői környezet közötti kommunikációs csatorna pontos azonosítása. Ehhez meg kell határozni a használt COM (Communication) port számát.

Windows operációs rendszer esetén a COM port azonosítása az eszközkezelőben:

Arduino IDE-ben válasszuk ki a megfelelő COM portot, valamint a megfelelő boardot:

6. Elkészült projekt

6.1. Vizuális bemutatás

Amikor áram alá kerül, várakozik a WiFi kapcsolatra.

Mobil hostspottal valósítottuk meg az internetre való kapcsolódást.

A sikeres WiFi kapcsolódást követően a készülék a kijelzőn megjeleníti az eszköz IP címét. Ezt követően a jelenlegi, majd az időjárás-előrejelzést mutatja be 5 napos ciklusban. A kijelző 5 másodpercenként váltakozva jeleníti meg az egyes napok előrejelzéseit, melyek tartalmazzák a hőmérsékletet, páratartalmat és az időjárás rövid leírását. Ez a ciklikus megjelenítés folyamatosan ismétlődik, biztosítva a felhasználó számára az aktuális és jövőbeli időjárási információk könnyű áttekinthetőségét.

Jelenlegi időjárás megjelenítése:

6.2. Serial Monitor

A fejlesztési és hibaelhárítási folyamat optimalizálása érdekében a program kulcsfontosságú adatokat és állapotinformációkat továbbít a Serial Monitorra. Ez a diagnosztikai kimenet lehetővé teszi, hogy valós időben kövessük nyomon a program működését a 115200-as sebességen.

```
Output Serial Monitor x
Message (Enter to send message to 'NodeMCU 1.0 (ESP-12E Module)' on 'COM4')
WiFi csatlakoztatva
IP cim: 192.168.246.165
--- Aktualis idojaras ---
Homerseklet: 12.51 C
Paratartalom: 59%
Leiras: tiszta égbolt
--- 5 napos elorejelzes ---
1. nap:
 Homerseklet: 13.28 C
 Paratartalom: 50%
 Leiras: kevés felhő
2. nap:
 Homerseklet: 15.61 C
 Paratartalom: 31%
 Leiras: tiszta égbolt
3. nap:
 Homerseklet: 15.98 C
 Paratartalom: 32%
 Leiras: erős felhőzet
4. nap:
 Homerseklet: 16.56 C
 Paratartalom: 31%
 Leiras:
 Homerseklet: 0.00 C
  Paratartalom: 0%
  Leiras:
 --- 3 oras bontasu elorejelzes ---
0. ora:
 Homerseklet: 13.28 C
 Paratartalom: 50%
 Leiras: kevés felhő
3. ora:
 Homerseklet: 14.20 C
 Paratartalom: 42%
 Leiras: kevés felhő
 Homerseklet: 13.02 C
 Paratartalom: 41%
  Leiras: szórványos felhőzet
```

6.3. KOU	bemutatása				
A projekt te repozitóriu		szletes magyaráz	ó kommentekkel	ellátva, elérhető a	következő GitHub
https://gith	ub.com/assassino1	792/IoT_Weathe	rForecast		