Stanford University

Online haplotype inference and Compression of personal genomes (progress report)

2017/02/27

Yosuke Tanigawa (<u>ytanigaw@stanford.edu</u>)
M. Rivas Lab (rotation student) | Biomedical Informatics Ph.D. Program

Background

- Most of the variants are shared in the population
- Long-read sequencing technologies
 - Oxford Nanopore MinION sequencer (N50: 12.5 kb)
- Biobank projects -> Haplotype reference panel data
 - UK BioBank (152,729 imputed haplotype)
- Compressed representation of haplotype in a population
 - PLINK2

Research questions

- 1. Can we infer haplotypes of personal genomes on the fly with portable sequencers?
- 2. What would be the **compact** & **efficient** representation of personal genomes?
- 3. How people can **share personal genomes** with researchers while maintaining their **privacy**?

[Method] Compressed representation of personal genomes

How can we compress personal human genome?

Personal genome = Indices for haplotype + rare variants

[Method]

$$p(\text{haplotype} \mid \text{read}) \propto p(\text{read} \mid \text{haplotype}; \epsilon) p(\text{haplotype})$$

- Prior p(haplotype)
 - Maximum likelihood estimate on population
- Likelihood $p(\text{read} \mid \text{haplotype}; \epsilon)$
 - Binomial model $p(\text{read} \mid \text{haplotype}; \epsilon) = \epsilon^x (1 \epsilon)^{n-x}$
 - n: # polymorphic sites
 - x: # mismatches
 - ϵ : error rate

- We can estimate error rate ϵ
 - $\widehat{\epsilon}$ mismatch rate on non-polymorphic site

[Preliminary results] read: NA12878; population: 1000 Genome (phase 3)

- Example read: chr20; 30kb long; 15 SNPs
- prior = 0.0263 \rightarrow posterior = 0.7596
- Only one read is sufficient to find the right haplotype

How long does it take to infer haplotype?

Nanopore consortium rel.3 has ~60x coverage

