Introduction to Quantum Information and Computing - Lecture 4

Arnav Negi, Kriti Gupta, Manav Shah, Mohammed Shamil, Shiven Sinha , Shrikara A, Swayam Agrawal, Vineeth Bhat, Yash Adivarekar

January 13, 2023

1 Observables

- Each observable can be represented by Hermitian operators.
- Expectation value of an observable \hat{O} for a quantum state ρ is $\text{Tr}[\hat{O}\rho]$
- If ρ is pure state $\{|\psi\rangle\langle\psi|\}$, then:

$$\mathrm{Tr}[\hat{O}\rho] = \mathrm{Tr}[\hat{O}|\psi\rangle\langle\psi|] = \mathrm{Tr}[\langle\psi|\hat{O}|\psi\rangle] = \langle\psi|\hat{O}|\psi\rangle$$

• If ρ is not a pure state, i.e., $\rho = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}|$, then:

$$\text{Tr}[\hat{O}\rho] = \text{Tr}[\hat{O}\sum_{i}p_{i}|\psi_{i}\rangle\langle\psi_{i}|] = \sum_{i}p_{i}\text{Tr}[\hat{O}|\psi_{i}\rangle\langle\psi_{i}|] = \sum_{i}p_{i}\langle\psi|\hat{O}|\psi_{i}\rangle$$

2 Mixed State

Mixed state is said to be the mixture of the different pure states. Mixed states can be written as: $\sigma = \sum_i p_i \rho_i$, where $\sum_i p_i = 1$

Here σ : is the mixed state , ρ_i :pure state and p_i : probability of state ρ_i to be present in the mixed state.

• A state is pure if $\rho^2 = \rho$

Example1:- Let us consider a system which has 5 qubits of $|0\rangle$ and 5 qubits of $|1\rangle$ where $\{|0\rangle, |1\rangle\}$ are orthonormal basis. Find the mixed state of the system. Answer1:- $\sigma = \frac{1}{2}\{|0\rangle\langle 0| + |1\rangle\langle 1|\}$

Example2:- Let us consider a system which has 5 qubits of $|+\rangle$ and 5 qubits of $|-\rangle$ where $\{|+\rangle, |-\rangle\}$ are orthonormal basis. Find the mixed state of the system.

Answer2:- $\sigma = \frac{1}{2}\{|+\rangle\langle+|+|-\rangle\langle-|\}$

Note:- Both σ obtained in the above two examples are one and the same.

$$\sigma = \frac{1}{2}\{|0\rangle\langle 0| + |1\rangle\langle 1|\} = \frac{1}{2}\{|+\rangle\langle +| + |-\rangle\langle -|\}$$

$$\sigma {=} \frac{1}{2} (\sum_i |i\rangle\langle i|) {=} \frac{1}{2} (\sum_i |i\rangle\langle i|)$$

$$\sigma = \tfrac{1}{2}\mathbb{1} = \tfrac{1}{2}\mathbb{1}$$

3 Superposition

The linear combination of states is called superposition.

A superpositioned state can be represented as:

$$|\psi\rangle = \sum_{i} c_i |\psi_i\rangle,$$

$$\begin{aligned} |\psi\rangle &= \sum_{i} c_{i} |\psi_{i}\rangle, \\ \text{where } \sum_{i} c_{i}^{2} = 1. \end{aligned}$$