Lab 7 Report

Steady State Error

Palaskar Adarsh Mahesh

B20EE087

October 3, 2022

1 Objective

To verify the effect of input waveform, loop gain, and system type upon steady-state errors. MATLAB, Simulink and the control system toolbox will be used for this experiment.

2 Theory

The closed loop system is given in the diagram below. The steady state error is defined as the difference between the input and output of the system as time tends to infinity.

Figure 1: Closed Loop System

For the given system:

$$C(s) = \frac{G(s)C(s)}{1 + H(s)G(s)}$$

and,

$$H(s) = 1$$

For Steady State error,

$$e(s) = R(s) - C(s)$$

$$e(s) = \lim_{s \to 0} \frac{(1/s)R(s)}{1 + G(s)}$$

3 Answers for Prelab Questions:

Answer 1: For step input, system having type 1 or more than one will produce zero steady state error.

Answer 2: For ramp input, system having type 2 or more than two will produce zero steady state error.

Answer 3: For ramp input, system having type 0 will produce infinite steady state error.

Answer 4: For parabolic input, system having type 3 or more will produce zero steady state error.

Answer 5: For parabolic input, system having type 0 and type 1 will produce infinite steady state error.

Answers for questions 6, 7 and 8 are as follows:

	Page No.
	1) La function
- (+	For input $Su(t)$ (unit step function) G(s) = k(s+6)
4	(s+4)(s+7)(s+7)(s+2)
	FO) = 5 (= 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	H(s) = 1
	For unit step i/p R(s) = 1/s
	Itp = lim G(s)
	= lim h (s+6)
-	5-0 (S+4) (S+7) (S+9) (S+12)
	Kp = 6h
	3024
	Kp = 0.00198 k = k
	504
	ess = 5 (1 + Kp
	(i h.p
	e _{ss} = 5
	1 + <u>k</u> 504

	Page No.
For input 5 t'ult)	
1= (2) H (2) = (2)A	
Ka = lim s+4(s)	
Ka = k (48) 3024	
(3)	
e _s = 5 (Ka	
e _s = 315	
L L	

4 Simulink implementation and Graphs:

4.1 No pole at origin of G(s):

$$G(s) = \frac{k(s+6)}{(s+4)(s+7)(s+9)(s+12)}$$

4.1.1 Step Input:

Figure 2: Simulink Implementation

Figure 3: K = 50

Figure 4: K = 500

Figure 5: K = 1000

4.1.2 Ramp Input:

Figure 6: Simulink Implementation

Figure 7: K = 50

Figure 8: K = 500

Figure 9: K = 1000

4.1.3 Parabolic Input:

Figure 10: Simulink Implementation

Figure 11: K = 50

Figure 12: K = 500

Figure 13: K = 1000

4.2 1 pole at origin of G(s):

$$G(s) = \frac{k(s+6)(s+8)}{s(s+4)(s+7)(s+9)(s+12)}$$

4.2.1 Step Input:

Figure 14: Simulink Implementation

Figure 15: K = 50

Figure 16: K = 500

Figure 17: K = 1000

4.2.2 Ramp Input:

Figure 18: Simulink Implementation

Figure 19: K = 50

Figure 20: K = 500

Figure 21: K = 1000

4.2.3 Parabolic Input:

Figure 22: Simulink Implementation

Figure 23: K = 50

Figure 24: K = 500

Figure 25: K = 1000

4.3 Two poles at origin of G(s):

$$G(s) = \frac{k(s+6)(s+8)(s+1)}{s^2(s+4)(s+7)(s+9)(s+12)}$$

4.3.1 Step Input:

Figure 26: Simulink Implementation

Figure 27: K = 200

Figure 28: K = 400

Figure 29: K = 800

4.3.2 Ramp Input:

Figure 30: Simulink Implementation

Figure 31: K = 200

Figure 32: K = 400

Figure 33: K = 800

4.3.3 Parabolic Input:

Figure 34: Simulink Implementation

Figure 35: K = 200

Figure 36: K = 400

Figure 37: K = 800

5 Conclusion:

We observed and verified the effect of input waveform, loop gain, and system type upon steady state errors.