Mass Reweighting

$May\ 12,\ 2022$

We show the pion mass as a function of $(m^2g)^{1/3}$. In order to extrapolate the pion mass we fitted a function of the form $m_{\pi} = \sqrt{a + b \, x^c}$, with $x = (m^2g)^{1/3}$ and a, b, c fitting parameters. We only fit the region x > 0.076.

Figure 1: Pion mass as a function of the degenerate $(m^2g)^{1/3}$ for different flavors. $L=4,\,L_t=32.$

Figure 2: Pion mass as a function of the degenerate $(m^2g)^{1/3}$ for different flavors. $L=6, L_t=32$.

Figure 3: Pion mass as a function of the degenerate $(m^2g)^{1/3}$ for different flavors. $L=8, L_t=32$.

Figure 4: Pion mass as a function of the degenerate $(m^2g)^{1/3}$ for different flavors. $L=10, L_t=32$.

Figure 5: Pion mass as a function of the degenerate $(m^2g)^{1/3}$ for different flavors. $L=12,\,L_t=32.$

1 Pion decay constant in the delta-regime

We show the residual pion mass m_{π}^{R} as a function of the spatial size L and fit a function proportional to 1/L to obtain F_{π} .

Residual pion mass for $N_f = 2$, j1

Residual pion mass for $N_f = 2$, j3

Figure 6: $N_f = 2$; $1/\sqrt{2\pi} = 0.39894...$

Residual pion mass for $N_f = 3$, j1

Residual pion mass for $N_f = 3$, j3

Figure 7: $N_f = 3$

Figure 8: $N_f = 4$

Residual pion mass for $N_f = 5$, j1

Residual pion mass for $N_f = 5$, j3

Figure 9: $N_f = 5$

Residual pion mass for $N_f = 6$, j1

Residual pion mass for $N_f = 6$, j3

Figure 10: $N_f = 6$

2 Chiral condensate at finite temperature

We show the chiral condensate for several lattices together with some predictions, valid in different regimes, for N_f flavors that are written in eqs. (13), (15) and (16) of ref. [1].

Figure 11: Chiral condensate as a function of the degenerate fermion mass for different flavors. L = 20, $L_t = 20$

Figure 12: Chiral condensate as a function of the degenerate fermion mass for different flavors. L = 24, $L_t = 24$

2.1 Numerical stability check

Figure 13: $L = 20, L_t = 20$

Figure 14: L = 24, $L_t = 24$

3 Pion decay constant at finite temperature

Figure 15: F_{π} for different flavors assuming the GMOR relation.

$\overline{N_f}$	F_{π} Leut. form. j_1	F_{π} Leut. form. j_3	F_{π} magic form. j_1	F_{π} magic form. j_3	F_{π} finite T
2	0.3986(3)	0.3989(2)	0.3986(3)	0.3989(2)	0.4004(361)
3	0.5081(45)	0.5081(53)	0.4148	0.4148	0.4877(856)
4	0.5762(44)	0.5755(53)	0.4074	0.4069	0.5099(483)
5	0.6292(12)	0.6292(13)	0.3979	0.3979	0.4819(447)
6	0.6899(23)	0.6913(29)	0.3983	0.3991	0.4845(471)

Table 1: F_{π} measured with different methods and for different flavors. Leutwyler's formula stands for $m_{\pi}^R = (N_f - 1)/2F_{\pi}^2 L$, while magic formula refers to $m_{\pi}^R = (N_f - 1)/N_f F_{\pi}^2 L$. The finite temperature results correspond to the value of F_{π} at m = 0.001 in figure 15, for the 24 × 24 lattice.

References

[1] J. E. Hetrick, Y. Hosotani, and S. Iso. Interplay between mass, volume, vacuum angle and chiral condensate in N avor QED in two-dimensions. *Phys. Rev. D*, **53**, 1996. arXiv:hep-th/9510090.