Copenhagen, task 1

Representation learning approach

<u>Casper Hansen</u>, Christian Hansen, Jakob Grue Simonsen, and Christina Lioma

UNIVERSITY OF COPENHAGEN

Check-worthiness objective

We consider the following requirements

- The sentence should be factually interesting,
- 2. and it should be possible to check
- (1): semantics and (2): semantics + structure
 - Semantics: word embedding
 - Structure: Simpler sentences through POS-tagging and through syntax dependency parsing

Speaker	Sentence
CLINTON	: I think my husband did a pretty good job in the 1990s.
CLINTON	: I think a lot about what worked and how we can make it work again
TRUMP:	Well, he approved NAFTA (check-worthy)

Related work

- Existing approaches most often use engineered features such as
 - bag-of-words (e.g. of tokens and POS tags)
 - Sentiment
 - Lexicon based features
 - Named entities
 - Length
 - Sentence position in debate segment
 - Speaker meta data
 - Topic modelling
 - Etc...

Sentence level and contextual models

Representation learning approach

- Why not learn the features?
- Tokenization and lowercasing
- Word representations:
 - Fixed word embedding (word2vec, google news)
 - Syntax dependency parsing
 - POS tag

Experiments

- Comparison against two state-of-the-art systems: ClaimBuster [2] and contextual model by Gencheva et al. [1]
- We evaluate our sentence-level model with and without combining it with the contextual baseline model
- Experiment 1: debatewise comparison
- Experiment 2: speakerwise comparison

^[1] Gencheva, P., Nakov, P., Màrquez, L., Barrón-Cedeño, A., & Koychev, I. (2017). **A context-aware approach for detecting worth-checking claims in political debates**. In *Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017* (pp. 267-276).

^[2] Hassan, N., Arslan, F., Li, C., & Tremayne, M. (2017). **Toward automated fact-checking: Detecting check-worthy factual claims by ClaimBuster**. In *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* (pp. 1803-1812). ACM.

Debatewise comparison

We compare models via MAP

Model	1st-president	2nd-president	vice-president	Average
ClaimBuster [2]	0.159	0.109	0.043	0.104
Gencheva et al. [1]	0.193	0.114	0.039	0.115
Our	0.109	0.206	0.105	0.140
$\overline{\text{Our} + \text{Gencheva et al. [1]}}$	0.225	0.207	0.043	0.158

- Our approach performed better than baselines
- Combined approach outperformed all

Speakerwise comparison

Model	Trump	Clinton	Pence	Kaine	Average
ClaimBuster [2]	0.128	0.139	0.074	0.041	0.095
Gencheva et al. [1]	0.143	0.201	0.057	0.039	0.110
Our	0.225	0.077	0.169	0.086	0.139
Our + Gencheva et al. [1]	0.245	0.149	0.054	0.050	0.125

- Combined approach worse than our approach alone, but still better than baselines
- Small training set

Competition results

- Primary: combined approach
- Contrastive: our approach alone
- Contrastive: Best scores on all measures in competition (e.g. +30% better MAP)

	MAP	MRR	MR-P	MP@1	MP@3	MP@5	MP@10	MP@20	MP@50
Prise de Fer [25]									
primary	$.1332_{(1)}$	$\bf .4965_{(1)}$	$.1352_{(1)}$	$.4286_{(1)}$	$.2857_{(1)}$	$.2000_{(2)}$	$.1429_{(3)}$	$.1571_{(1)}$	$.1200_{(2)}$
cont. 1	.1366	.5246	.1475	.4286	.2857	.2286	.1571	.1714	.1229
cont. 2	.1317	.4139	.1523	.2857	.1905	.1714	.1571	.1571	.1429
Copenhagen [11]									
primary	$.1152_{(2)}$	$.3159_{(5)}$	$.1100_{(5)}$	$.1429_{(3)}$	$.1429_{(4)}$	$.1143_{(3)}$	$.1286_{(4)}$	$.1286_{(2)}$	$.1257_{(1)}$
cont. 1						.3143	.2571	.2357	.1514
UPV-INAOE-Autoritas [9]									
primary	$.1130_{(3)}$	$.4615_{(2)}$	$.1315_{(2)}$	$.2857_{(2)}$	$.2381_{(2)}$	$.3143_{(1)}$	$.2286_{(1)}$	$.1214_{(3)}$	$.0886_{(4)}$
cont. 1	.1232	.3451	.1022	.1429	.2857	.2286	.1429	.1143	.0771
cont. 2	.1253	.5535	.0849	.4286	.4286	.2571	.1429	.1286	.0771

Conclusions

- Neural networks are able to learn a sentence representation at a similar or better level than engineered features, depending on the evaluation data.
- Differences between debates and speeches naturally influence model performance
- It could be interesting to expand the model with context by incorporating neighboring sentences.

Thanks!

Questions?