# MAT 369 Introduction to Graph Theory

# Peter Schaefer

# Fall 2023

# Contents

| 1        | Introduction                      | 3   |  |  |  |  |
|----------|-----------------------------------|-----|--|--|--|--|
|          | 1.1 Graphs and Graph Models       |     |  |  |  |  |
|          | 1.2 Connected Graphs              | . 3 |  |  |  |  |
|          | 1.3 Common Classes of Graphs      |     |  |  |  |  |
|          | 1.4 Multigraphs and Digraphs      | 8   |  |  |  |  |
| <b>2</b> | Degrees                           | 9   |  |  |  |  |
| _        | 2.1 Degree of a Vertex            |     |  |  |  |  |
|          | 2.2 Regular Graphs                |     |  |  |  |  |
|          | 2.3 Degree Sequences              |     |  |  |  |  |
|          | 2.4 Graph and Matrices            | 10  |  |  |  |  |
| 3        | Isomorphic Graphs                 | 11  |  |  |  |  |
| J        | 3.1 The Definition of Isomorphism |     |  |  |  |  |
|          | 3.2 Isomorphism as a Relation     |     |  |  |  |  |
|          | 5.2 Isomorphism as a rectation    | 1.1 |  |  |  |  |
| 4        | Trees                             | 12  |  |  |  |  |
|          | 4.1 Cut Edges                     |     |  |  |  |  |
|          | 4.2 Trees                         |     |  |  |  |  |
|          | 4.3 Minimum Spanning Tree         |     |  |  |  |  |
|          | 4.4 Counting Labeled Trees        | 13  |  |  |  |  |
| 5        | Connectivity                      | 15  |  |  |  |  |
|          | 5.1 Cut Vertices                  |     |  |  |  |  |
|          | 5.2 Blocks                        | 15  |  |  |  |  |
|          | 5.3 Connectivity                  | 16  |  |  |  |  |
| 6        | Traversability                    | 18  |  |  |  |  |
|          | 6.1 Eulerian Graphs               | 18  |  |  |  |  |
|          | 6.2 Hamiltonian Graphs            | 18  |  |  |  |  |
| 7        | Digraphs                          | 19  |  |  |  |  |
| 8        | Matchings and Factorization       | 20  |  |  |  |  |
| 9        | Planarity                         | 21  |  |  |  |  |
|          | 10 Coloring Graphs                |     |  |  |  |  |
|          |                                   |     |  |  |  |  |
|          | Ramsey Numbers                    | 23  |  |  |  |  |
| 12       | Distance                          | 24  |  |  |  |  |

| CONTENTS | CONTENTS |
|----------|----------|
|          |          |

13 Domination 25

# 1 Introduction

## 1.1 Graphs and Graph Models

## **Graph Definition**

A (simple) **graph** is an ordered pair (V, E) where

- $\bullet$  V is a nonempty set of objects called "vertices"
- E is a set containing some two-subsets of V called "edges". E may be empty.

Graphs are often represented pictorially. For example consider

$$G = (V, E)$$
 where  $V = \{1, 2, 3, 4, 5\}$  and  $E = \{\{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}$ 

G

5



- Vertices 1 and 4 are **adjacent** because they are joined by an edge.
- Vertex 2 and edge 2-3 are **indicent**.
- Edges 2-3 and 3-4 are **adjacent**.

#### **Order Definition**

The **order** of a graph G is |V(G)|, or the number of vertices.

## Size Definition

The **size** of a graph G is |E(G)|, or the number of edges. The graph G from above has order 5 and size 4.

# 1.2 Connected Graphs

## **Subgraph Definition**

Let G and H be graphs. H is a subgraph of G, notated as  $H \subseteq G$ , if

$$V(H) \subseteq V(G)$$
 and  $E(H) \subseteq E(G)$ .

#### **Proper Subgraph Definition**

H is a **proper subgraph** of G if  $H \subseteq G$  and either

$$V(H) \subseteq V(G)$$
 or  $E(H) \subseteq E(G)$ .

## Spanning Subgraph Definition

Graph H is a spanning subgraph if  $H \subseteq G$  and V(H) = V(G).

## **Induced Subgraph Definition**

Graph H is a **induced subgraph** if  $H \subseteq G$  and if

$$u, v \in V(H)$$
 and  $u, v \in E(G) \implies u, v \in E(H)$ .

Essentially, H contains all valid edges it can take from G. Notation for **induced subgraph** is

G[S], where S is a set of vertices from G.

## **Edge-induced Subgraph Definition**

G[X] is an **edge-induced subgraph** of G if G[X] has edge set  $X \subseteq E(G)$  and a vertex set of all vertices incident with at least one edge of X. Interesting fact: G[E(G)] removes any isolated vertices.

## More on Spanning and Induced Subgraphs

Let G be a graph with vertex v and edge e. Then,

- G e is the spanning subgraph of G whose edge set is  $E(G) \{e\}$ . This definition can be expanded to G - X for  $X \subseteq E(G)$ .
- G v is the *induced subgraph* of G whose vertex set is  $V(G) \{v\}$  and edge set includes all edges of G except those incident with v.

This definition can be expanded to G - U for  $U \subseteq V(G)$ .

Let G be a graph,  $u, v \in V(G)$  and  $e = uv \notin E(G)$ . Then G + e is the graph with vertex set V(G) and edge set  $E(G) \cup \{e\}$ . G is a spanning subgraph of G + e

#### Walk, Trail, Path, Circuit, and Cycle Definitions

Let  $u, v \in V(G)$ . A u - v walk in G is a sequence of vertices

$$(u = v_0, v_1, \dots, v_k = v)$$

beginning with u, ending with v, and consecutive vertices are adjacent.

A **trail** is a walk in which *no edges* are repeated. A **path** is a walk in which *no vertices* are repeated. Every *path* is a *trail* is a *walk*.

A **circuit** is a closed trail of length  $\geq 3$ . A **cycle** is a circuit with no repeated vertices, except for the first and the last, which are the same. A k-**cycle** is a cycle of length k. Every cycle is a circuit is a walk.

#### Closed and Open Walks

A u-v walk with u=v is called a **closed** walk. A u-v walk with  $u\neq v$  is called a **open** walk.

#### Walk and Path Theorem

If G contains a u-v walk of length  $\ell$ , then G contains a u-v path of length  $\leq \ell$ .

*Proof.* Let  $P = (u = u_0, u_1, \dots, u_k = v)$  be a u - v walk of smallest length  $k \leq \ell$ .

Claim. P is a u-v path.

If **not**, then  $u_i = u_j$ , for some  $i \neq j$ . Then  $(u = u_0, u_1, \dots, u_i = u_j, \dots, u_k = v)$  will be a smaller u - v than P. This contradicts our assertion that P was the *smallest* walk.

Hence, P is a u-v path of length  $k \leq \ell$ .

## Connectivity Definition

A graph G is said to be **connected** if  $\forall u, v \in V(G)$ , G contains a u - v path. If this is not true, i.e.  $\exists u, v \in V(G)$  where there is no u - v path, then G is said to be **disconnected**.

## Component Definition

A connected subgraph of G that is not a proper subgraph of any other connected subgraph of G is a **component** of G. The number of components of a graph G is denoted by k(G). A graph G is connected if and only if k(G) = 1. Additionally, a graph is the union of its components.

## Components and Equivalence Relations Theorem

Define a relation R on the V(G) so that uRv if G contains a u-v walk. Then R is an equivalence relation.

*Proof.* An equivalence relation must be reflexive, symmetric, and transitive.

- 1. Reflexive:  $\forall u \in V(G)$ , (u) is a u-u walk, so uRu.
- 2. Symmetric: Suppose uRv. There is a u-v walk  $(u=u_0,u_1,\ldots,u_n=v)$ . Then reversing the walk gives the v-u walk  $(v=u_n,\ldots,u_1,u_0=u)$ . So vRu.
- 3. Transitive: Suppose uRv and vRw. There is a u-v walk  $(u=u_0,u_1,\ldots,u_n=v)$ , and v-w walk  $(v=v_0,v_1,\ldots,v_m=w)$ . Then there is a u-w walk  $(u=u_0,u_1,\ldots,u_n=v=v_0,\ldots,v_m=w)$ . So uRw.

What are the equivalence classes?

 $[u] = \{v \in V(G) \mid uRv\}$   $= \{v \in V(G) \mid \text{there is a } u - v \text{ walk in } G\}$  = the connected component containing u

#### Subtractive Connectivity Theorem (weak)

Let G be a graph of order  $\geq 3$ . If  $\exists u, v \in V(G)$  such that G - u and G - v are connected, then G is connected.

*Proof.* Suppose G has order at least 3 and  $\exists u, v \in V(G)$  such that G - u and G - v are connected. Let  $x, y \in V(G)$ .

Case 1:  $\{x,y\} \neq \{u,v\}$ , meaning at least one is different. Say (WLOG)  $u \notin \{x,y\}$ . Then  $x,y \in V(G-u)$ , which is connected, contains an x-y walk.

Case 2:  $\{x,y\} = \{u,v\}$ . Say (WLOG) x = u and y = v. Consider  $z \in V(G-u)$  and  $z \in V(G-v)$ . Then  $x,z \in V(G-v)$  contains a x-z walk  $(x=x_0,\ldots,x_n=z)$ , since it is connected. Then  $z,y \in V(G-u)$  contains a z-y walk  $(z=z_0,\ldots,z_m=y)$ , since it is connected. Now consider  $(x=x_0,\ldots,x_n=z=z_0,\ldots,z_m=y)$ . This is an x-y walk in G.

## Distance, Geodesic, Diameter, and Girth Definitions

The **distance** between vertices u and v, denoted as d(u,v) or  $d_G(u,v)$  is the smallest length of any u-v path in G. If u and v are in different components, then d(u,v) is undefined.

A u-v path of shortest length d(u,v) is called a **geodesic**. The **diameter** of a connected graph G, denoted as diam(G), is the largest *geodesic* between any two vertices of G. The **girth** of a connected graph G is the length of the shortest cycle in G.

## Subtractive Connectivity Theorem (strong)

Let G be a graph of order  $\geq 3$ . Then G is connected if and only if  $\exists u, v \in V(G)$  such that G - u and G - v are connected.

 $Proof \implies$ . This direction is already proven by the weak version of this theorem.

 $Proof \iff$  Suppose G is connected. Then  $\exists u, v \in V(G)$  such that  $d(u, v) = \operatorname{diam}(G)$ .

Suppose to the contrary, WLOG, that G - v is disconnected. Then exists  $x, y \in V(G - v)$  such that there is no x - y walk in G - v. But G is connected, so there exist x - u and u - y paths in G.

Let P' be an x-u geodesic in G and P'' be a u-y geodesic in G.

v cannot be on P' or P'' because if it was, then d(x,u) > d(u,v) or d(y,u) > d(u,v), violating our assertion that  $d(u,v) = \operatorname{diam}(G)$ .

Then P'P'' x - u - y is an x - y walk in G - v.

This contradicts our selection that x and y do not have a walk in G-v. Hence G-v and G-u are connected.

## 1.3 Common Classes of Graphs

| Name               | Symbol    | Order     | Size           |
|--------------------|-----------|-----------|----------------|
| Path               | $P_n$     | n         | n-1            |
| Cycle              | $C_n$     | $n \ge 3$ | n              |
| Complete           | $K_n$     | n         | $\binom{n}{2}$ |
| Complete Bipartite | $K_{s,t}$ | s+t       | $s \cdot t$    |

## **Bipartite Graph Definition**

G is bipartite if V(G) can be partitioned into partite sets U and W so that every edge joins a vertex of U and a vertex of W.

## Odd Cycle and Bipartite-ness Theorem

G is bipartite if and only if G contains no odd cycles.

 $Proof \Longrightarrow$ . Via contradiction, suppose G contains an odd cycle C and G is bipartite with partite sets U and V.

$$C = (u_1, u_2, \dots, u_{2n}, u_{2n+1}, u_1)$$

Without loss of generality, assume  $u_1 \in U$ . Then  $u_1, u_3, u_5, \ldots, u_{2n+1} \in U$ . But  $u_{2n+1}$  and  $u_1$  are adjacent and both are in U.

 $Proof \iff$  . Suppose G has no odd cycles. Assume G is connected, or a connected component of a larger graph. Let  $u \in V(G)$ .

Define

$$U = \{v \in V(G) \mid d(u, v) \text{ is even.}\}$$

$$W = \{v \in V(G) \mid d(u, v) \text{ is odd.}\}$$

This is a partition of V(G) and  $u \in U$  as d(u, u) = 0, which is even.

Prove every edge join a vertex in U and a vertex in W.

Subproof. Suppose, to the contrary, there are  $v, w \in W$  with  $vw \in E(G)$ . Note that d(u, v) and d(u, w) are odd. Let

$$d(u,v) = 2s + 1$$
  
 
$$d(u,w) = 2t + 1$$
 for  $s, t \in \mathbb{Z}^+$ 

Consider

$$P' = (u = v_0, v_1, \dots, v_{2s+1} = v)$$
  
 $P'' = (u = w_0, w_1, \dots, w_{2t+1} = w)$ 

P' and P'' have u in common, and maybe other vertices as well. Let x be the last vertex in common. So  $x = v_i$  for some  $0 \le i \le 2s + 1$  and  $d(u, v_i) = i$ .

So  $x = w_i$  for some  $0 \le i \le 2t + 1$  and  $d(u, w_i) = i$ .

$$P' = (u = v_0, v_1, \dots, v_i, \dots, v_{2s+1} = v)$$
  
$$P'' = (u = w_0, w_1, \dots, w_i, \dots, w_{2t+1} = w)$$

Since  $vw \in E(G)$ , we have a cycle  $C = (v_i, v_{i+1}, \dots, v_{2s+1}, w_{2t+1}, w_{2t}, \dots, w_i = v_i)$  of length

$$\underbrace{2s+1-i+1}_{\text{top row}} + \underbrace{2t+1-i}_{\text{bottom row}} = 2s+2t-2i+1 = 2(s+t-i)+1$$

So C is an odd cycle, which contradicts our assertion that G has  $\underline{no}$  odd cycles.

#### K-partite Definition

G is a k-partite graph if V(G) can be partitioned into partite sets  $U_1, \ldots, U_k$  so that every edge joins a vertex from  $U_i$  and a vertex of  $U_j$  where  $i \neq j$ .

## Constructing New Graphs from Old Graphs

#### **Disjoint Union**

For two graphs G and H,  $G \cup H$  is defined as...

$$V(G \cup H) = V(G) \cup V(H)$$
  
$$E(G \cup H) = E(G) \cup E(H)$$

#### Complement

For one graph G,  $\overline{G}$  is defined as...

$$\begin{split} V(\overline{G}) &= V(G) \\ E(\overline{G}) &= \{uv|u,v \in V(G), u \neq v, uv \not\in E(G)\} \end{split}$$

## Join

For two graph, G and H, G+H is defined as...

Start with  $G \cup H$  and draw all edges join a vertex of G and a vertex of H

#### Cartesian Product

For two graphs, G and H,  $G \times H$  is defined as...

$$V(G\times H)=\{(u,v)|u\in V(G) \text{ and } v\in V(H)\}$$
 
$$(u,v)-(x,y) \text{ if } u=x \text{ and } vy\in E(H)\vee v=y \text{ and } ux\in E(G)$$

A cartesian product between two graphs has the practical effect of duplicating one graph, and connecting the duplicates in the way of the other graph.

## Complement Connectivity Theorem

If G is disconnected, then  $\overline{G}$  is connected.

*Proof.* Let  $u, v \in V(\overline{G})$ .

Case 1: If u, v are in different components of G, then  $u, v \in E(\overline{G})$ , so (u, v) is a walk in  $\overline{G}$ .

Case 2: If u, v are in the same component of G, then  $\exists w \in V(G)$  in a different component. So  $uw, wv \in E(\overline{G})$ .

Hence (u, w, v) is a u - v walk.

## 1.4 Multigraphs and Digraphs

## **Multigraph Definition**

A multigraph is a graph where a pair of vertices may be joined by any finite number of edges.

• Multiple edges: OK

• Loops: NOT OK

## Pseudograph Definition

A **pseudograph** is a *multigraph* where loops are allowed

• Multiple edges: OK

• Loops: OK

## Digraph Definition

A directed graph is a graph where E(G) is a set of ordered pairs (rather than sets) of distinct vertices called directed edges, or arcs.

## **Oriented Graph Definition**

An **oriented graph** is a digraph in  $\forall u, v \in V(G)$ , (u, v) and (v, u) are not both edges.

# 2 Degrees

# 2.1 Degree of a Vertex

## Vertex Degree Definition

The **degree** of a vertex v, denoted as  $\deg v$  or  $\deg_G v$ , is the number of edges incident with v. If the  $\deg v = 0$ , then v is an **isolated vertex**. If  $\deg v = 1$ , then v is a **leaf**.

- $\delta(G) = \min\{\deg v \mid v \in V(G)\}$ , the minimum degree of G
- $\Delta(G) = \max\{\deg v \mid v \in V(G)\}$ , the maximum degree of G

For any graph G and  $v \in V(G)$ ,

$$0 \le \delta(G) \le \deg v \le \Delta(G) \le n - 1.$$

## Neighborhood of a Vertex Definition

The **neighborhood** of a vertex v, denoted as N(v), is the set of all vertices adjacent to v. So  $|N(v)| = \deg v$ .

## Handshaking Theorem

For a graph G of size m, the total degree of  $G \sum_{v \in V(G)} = 2m$ .

## Handshaking Corollary

Every graph has an even number of odd degree vertices.

Proof. By handshaking,

$$2m = \sum_{v \in V(G)} \deg(v) = \sum_{v \in V_1(G)} \deg(v) + \sum_{v \in V_2(G)} \deg(v), \text{ where}$$

 $V_1(G) = \text{ set of all odd degree vertices}$ 

 $V_2(G) = \text{ set of all even degree vertices}$ 

$$2m - \sum_{v \in V_2(G)} \deg(v) = \sum_{v \in V_1(G)} \deg(v)$$
, so  $|V_1(G)|$  must be even.

#### Sum Degree and Connectivity Theorem

Consider graph G of order n. If deg  $u + \deg v \ge n - 1$  for all non-adjacent  $(u, v) \in V(G)$ , then G is connected. Proof. Let  $x, y \in V(G)$ .

Case 1: If x, y are adjacent, then (x, y) is a walk in G.

Case 2: If x, y are <u>not</u> adjacent, then  $\deg u + \deg v \ge n - 1$ , by assumption. Since there are only n - 2 vertices in G besides x and y, x and y must have a common neighbor  $w \in V(G)$ . Then (x, w, y) is a walk in G.

2.2 Regular Graphs 2 DEGREES

## Sum Degree and Connectivity Corollary

If G has order n and  $\delta(G) \geq \frac{n-1}{2}$ , then G is connected.

*Proof.* If  $u, v \in V(G)$  are not adjacent, then

$$\deg u + \deg v \ge \delta(G) + \delta(G) = \frac{n-1}{2} + \frac{n-1}{2} = n - 1.$$

Hence, by the previous theorem, G is connected.

## 2.2 Regular Graphs

## Regular Graph Definition

Graph G is **regular** if every vertex has the same degree. Graph G is r-regular if every vertex has degree r.

## Regular Graph Existence Theorem

Let  $r, n \in \mathbb{Z}$  such that  $0 \le r \le n-1$ . Then there exists an r-regular graph of order n if and only if at least one of r and n is even.

## Harary Graph

An Harary Graph, denoted as  $H_{r,n}$ , is an r-regular graph of order n.

## **Induced Regular Subgraph Theorem**

For every graph G, and every integer  $r \geq \Delta(G)$ , there exists on r-regular graph H, containing G as an induced subgraph.

## 2.3 Degree Sequences

## Degree Sequence Definition

A degree sequence is a sequence of the degree of the vertices of a graph, typically, written in largest to smallest order.

## **Graphical Degree Sequence Definition**

A finite sequence of non-negative integers is **graphical** if it is the degree sequence of some graph.

#### Graphical Degree Sequence Theorem

A non-increasing sequence  $S: d_1, d_2, \ldots, d_n$ , where  $n \geq n$ , of non-negative integers is graphical if and only if

$$S_1: d_2-1, d_3-1, \ldots, d_{d_1+1}, d_{d_1+2}, d_n$$

is graphical.

## 2.4 Graph and Matrices

#### **Adjacency Matrix Definition**

The adjacency matrix of G is the  $n \times n$  matrix  $A = [a_{ij}]$ , where

$$a_{ij} = \begin{cases} 1, & \text{if } v_i v_j \in E(G) \\ 0 & \text{otherwise;} \end{cases}$$

The entry  $a_{ij}$  in  $A^n$  is the number of walks of length n from  $v_i$  to  $v_j$ .

# 3 Isomorphic Graphs

# 3.1 The Definition of Isomorphism

## **Graph Equality Definition**

Two graphs are equal, denoted as G = H, if V(G) = V(H) and E(G) = E(H).

## **Graph Isomorphic Definition**

Two (labels) graphs G and H are **isomorphic**, denoted as  $G \cong H$ , if they have the same structure, meaning there is a bijection  $\phi: V(G) \to V(H)$  such that for  $u, v \in V(G), \phi(u)\phi(v) \in E(H)$  if and only if  $uv \in E(G)$ .

## Isomorphic Degree Theorem

If  $G \cong H$ , with isomorphic  $\phi: V(G) \to V(H)$ , then  $\deg_G u = \deg_H \phi(u)$ .

## Isomorphic Degree Corollary

If  $G \cong H$ , their degree sequences are equal.

## **Graph Invariants**

- To prove  $G \cong H$ , find an isomorphism.
- To prove  $G \ncong H$ , find a graph invariant, where G and H differ.

## **Graph Invariants**

- Order and Size
- Degree Sequence
- Cycles
- Diameter
- k (number of components)
- $\bullet$  k-partite-ness
- (Other things)

#### Adjacency and Non-adjacency under Isomorphism Theorem

 $G \cong H$  if and only if  $\overline{G} \cong \overline{H}$ .

## 3.2 Isomorphism as a Relation

#### Equivalence Relations and Isomorphism Theorem

Isomorphism is an equivalence relation.

# 4 Trees

## 4.1 Cut Edges

## Cut-edge and Bridge Definition

An edge e of graph G is a **cut-edge**, or **bridge**, if G - e has more components than G.

## Cut-edges and Cycles Theorem

An edge e of a graph G is a cut-edge if and only if e lies on no cycle in G.

#### 4.2 Trees

#### Tree and Forest Definitions

A **tree** is an acyclic connected graph. A **forest** is an acyclic graph, where each component is a *tree*. A **Rooted tree** is a tree with a specific vertex designated as a root and drawn down.

Every edge of a tree is a cut-edge.

### Unique Path in Trees Theorem

Graph G is a tree if and only if every 2 vertices are connected by a unique path.

#### Leaf Theorem

Every nontrivial tree has at least 2 leaves.

#### Autumn Theorem

If tree T has order  $t \ge 1$ , then T - v, where v is a leaf, is a tree of order t - 1.

#### Tree Size Theorem

Every tree of order n has size n-1.

#### Forest Size Theorem

Every forest of order n with k components has size n - k.

#### Minimum Size of a Connected Graph Theorem

The size of every connected graph of order n is at least n-1. Trees has minimal size among connected graphs of given order.

#### Tree Requirements Graph

Graph G of order n and size m. Then G is a tree if it satisfies any 2 of these properties:

- 1. G is connected
- 2. G acyclic
- 3. m = n 1

## Tree Isomorphic Subgraph Theorem

Let T be a tree of order k. Then for any graph G with  $\delta(G) \geq k-1$ , T is isomorphic to a subgraph of G.

## 4.3 Minimum Spanning Tree

## **Spanning Tree Definition**

Let G be a connected graph. A spanning subgraph of G that is a tree is called a spanning tree.

## Spanning Tree Existence Theorem

Every connected graph contains a spanning tree.

## Minimum Spanning Tree Definition

A minimum spanning tree is a spanning tree of minimum weight.

## Algorithms For Constructing Minimum Spanning Trees

## Kruskal's Algorithm

- 1. Pick an edge of minimum weight.
- 2. Repeat, never allowing the chosen edges to produce a cycle.
- 3. Stop once you have a spanning tree.

## Prim's Algorithm

- 1. Choose any vertex  $u \in V(G)$ .
- 2. Let e be an edge of minimum weight incident with u.
- 3. Continue picking edges of minimum weight weight from the set of edges having exactly one of its vertices incident with an already selected edge.
- 4. Stop once you have a spanning tree.

## 4.4 Counting Labeled Trees

#### Cayley's Theorem

There are  $n^{n-2}$  distinct labeled trees on n vertices.

## Prüfer Sequence

Encoding a Tree to a Sequence

- 1. Start with a labeled tree T, and i = 1.
- 2. Let  $b_i = \text{smallest label on a leaf.}$
- 3. Let  $a_i = \text{label of the adjacent vertex of } b_1$ .
- 4. Remove  $b_i$  and record  $a_i$  in the sequence.
- 5. Repeat with  $b_{i+1}$  and  $a_{i+1}$ .
- 6. Stop once only vertices remain.

Decoding a Sequence to a Tree

- 1. Start with  $(a_1, \ldots, a_{n-2})$  and i = 1.
- 2. Let  $b_i = \text{smallest element of } \{1, \dots, n\}$  not in the sequence.

- 3. Draw edge  $a_i b_i$ .
- 4. Remove  $a_i$  from the sequence and  $b_i$  from the set.
- 5. Repeat with  $b_{i+1}$  and  $a_{i+1}$ .
- 6. Stop once the sequence is empty, and draw an edge between the last two elements in the set.

# 5 Connectivity

## 5.1 Cut Vertices

## Cut-edge and Cut-vertex Definition

- Cut-edge: Removing cut-edge e creates a new component.
- Cut-vertex: Removing cut-vertex v creates new components(s).

#### Leaves and Cut-vertices Theorem

Let G be a connected graph with cut-edge e = uv. v is a cut-vertex if and only if deg  $v \ge 2$ , meaning that v is not a leaf.

## Leaves and Cut-vertices Corollary 1

Every vertex of a non-trivial tree is either a leaf of a cut-vertex.

## Leaves and Cut-vertices Corollary 2

Let G be a connected graph and of order at least 3. If G contains a cut-edge, then G contains a cut-vertex.

## Paths and Cut-vertices Theorem

Let G be a connected graph with cut-vertex v. Let u, w be vertices in different components of G - v. Then v lies on every u - w path in G.

# Paths and Cut-vertices Corollary

Let G be connected.  $v \in V(G)$  is a cut-vertex if and only if  $\exists u, w \in V(G) - \{v\}$  such that v lies on every u - w path in G.

#### Non-cut-vertex Theorem

Every nontrivial connected Graph contains at least 2 vertices that are not cut-vertices.

## 5.2 Blocks

### Non-separable Definition

A graph is called **non-separable** if...

- 1. it is nontrivial,
- 2. it is connected,
- 3. it has no cut-vertices, meaning every edge is on a cycle.

Otherwise, it is called **separable**.

#### Common Cycle and Non-separability Theorem

A graph of order at least 3 is non-separable if and only if every 2 vertices (pairwise) lie on a common cycle.

#### **Block Definition**

A **block** of G is a maximal, non-separable subgraph of G.

5.3 Connectivity 5 CONNECTIVITY

## Blocks are Equivalence Relations Theorem

Define a Relation R on E(G) where eRf if e=f or e and f lie on a common cycle of G. R is an equivalence relation, where equivalence classes of R are edge-induced blocks of G.

#### Blocks are Equivalence Relations Corollary

Let  $B_1$  and  $B_2$  be distinct blocks in a nontrivial connected graph G. Then,

- 1.  $E(B_1) \cap E(B_2) = \emptyset$ , meaning  $B_1$  and  $B_2$  are edge disjoint.
- 2.  $B_1$  and  $B_2$  have at most 1 vertex in common.
- 3. The common vertex, if is exists, is a cut-vertex.

## 5.3 Connectivity

#### Vertex-cut and Minimum Vertex-cut Definition

- A vertex-cut is a set  $U \subseteq V(G)$  such that G U is disconnected.
- A minimum vertex-cut is a *vertex-cut* of minimum cardinality.

## Connectivity Definition

The **connectivity** of graph G is

$$\kappa(G) = \min\{|U| \mid U \subseteq V(G), \text{ such that } G - U \text{ is disconnected or trivial.}\}$$

Note that  $0 \le \kappa(G) \le n - 1$ .

#### k-connectivity Definition

G is called k-connected if  $\kappa(G) > k$ .

## Edge-cut, Minimal, and Minimum Edge-cut Definition

- An edge-cut is a set  $X \subseteq E(G)$  such that G X is disconnected.
- A minimal edge-cut is an edge-cut X where no proper subset of X is also an edge-cut.
- A minimum edge-cut is an edge-cut of minimum cardinality.

## **Edge-connectivity Definition**

The **edge-connectivity** of a nontrivial graph G is

$$\lambda(G) = \min\{|X| \mid X \subseteq E(G), \text{ such that } G - X \text{ is disconnected or trivial.}\}$$

Note that  $0 \le \lambda(G) \le n - 1$ .

#### k-edge-connectivity Definition

G is called k-edge-connected if  $\lambda(G) \geq k$ .

## Edge-connectivity of Complete Graphs Theorem

$$\forall n \in \mathbb{N}, \ \lambda(K_n) = n - 1$$

5.3 Connectivity 5 CONNECTIVITY

## Connectivity and Edge-connectivity Ordering Theorem

For a graph G,

$$\kappa(G) \le \lambda(G) \le \delta(G)$$

**IMPORTANT**: These proofs involve taking minimum-edge or minimum-vertex cuts and comparing their cardinalities.

# Cubic Connectivity Theorem

If graph G is 3-regular, also called cubic, then

$$\kappa(G) = \lambda(G)$$

# Upper Bound for Connectivity Theorem

If G has order n and size  $m \geq n-1$ , then

$$\kappa(G) \leq \lfloor \frac{2m}{n} \rfloor$$

# 6 Traversability

## 6.1 Eulerian Graphs

## Seven Bridges of Königsberg Problem



Can you go for a walk, crossing each bridge exactly once? No

## **Eulerian Circuits and Trails Definition**

- A Eulerian Circuit is a circuit containing every edge of graph G.
- A Eulerian Trail is an open trail containing every edge of graph G.
- A Eulerian Graph is a graph that contains an Eulerian Circuit

#### Even Degree and Eulerian Circuits Theorem

A nontrivial, connected graph is Eulerian if and only if every vertex has even degree.

## Even Degree and Eulerian Trails Corollary

A connected graph G contains an Eulerian Trail, if and only if exactly 2 vertices of G have odd degree.

## 6.2 Hamiltonian Graphs

#### Hamiltonian Cycles and Paths Definition

- A Hamiltonian Cycle is a cycle containing every vertex of graph G.
- A Hamiltonian Path is a path containing every vertex of graph G.
- A Hamiltonian Graph is a graph that contains an Hamiltonian Cycle.

## Degree Sum and Hamiltonian Graphs Theorem

Let G have order  $n \geq 3$ . If  $\deg u + \deg v \geq n$  for all pairs of nonadjacent vertices  $u, v \in V(G)$ , then G is Hamiltonian. Note that this is only a *one way* statement.

## Degree Sum and Hamiltonian Graphs Corollary

Let G have order  $n \geq 3$ . If deg  $v \geq \frac{n}{2}$  for all  $v \in V(G)$ , then G is Hamiltonian. Note that this is only a *one* way statement.

# 7 Digraphs

# 8 Matchings and Factorization

# 9 Planarity

# 10 Coloring Graphs

# 11 Ramsey Numbers

# 12 Distance

# 13 Domination