Overview of Enhanced VPN Framework (VPN+)

draft-ietf-teas-enhanced-vpn-02

Adrian Farrel

adrian@olddog.co.uk

Purpose of This Draft

• Describes an architecture and the potential enhancements to VPN services to support emerging new requirements, particularly network slicing in a 5G scenario.

 Guides the integration of the existing, enhanced, and new technologies to build a solution for enhanced VPN services

Enhanced VPN Why?

- New applications
 - Particularly applications associated with 5G services
 - "Enhanced overlay services"
- New requirements
 - Isolation from other services
 - Changes in network load or events in other services have no effect on the throughput or latency of this service
 - Drives some form of "partitioning" of the network Network Slicing
 - Performance guarantees
 - Bandwidth, latency limits, jitter bounds
 - Some level of client control of underlay resources
- Existing technologies
 - VPNs have served the industry well
 - Provides groups of users with logically isolated access to a common network
 - Re-using existing tools, techniques, and experience is very effective
 - Look for an approach based on existing VPN technologies
 - Add features that specific services require over and above traditional VPNs Enhanced VPN (VPN+)

Architecture of Enhanced VPN

Centralized control & management

Customized Virtual Networks

(overlay & underlay integration)

Enhanced data plane

(resource reservation, scheduling)

Slicing Explained

Scope of This Document

- Enhanced data plane
 - Different levels of isolation (from soft isolation to hard isolation)
 - Determinism of packet loss and delay
 - Identification of network slice and the associated network resources
- Control protocols
 - Both centralized and distributed
 - Information distribution, collection and computation to build the required virtual networks
 - Scalability considerations: the amount of state introduced
- Management plane
 - Life-cycle management: planning, creation, modification and deletion
- OAM, protection, inter-domain/inter-layer considerations

Candidate Technologies

Layer 2 Underlay Data Plane	 Flexible Ethernet (FlexE) Dedicated queues Time Sensitive Networking (TSN)
Layer 3 Underlay Data Plane	MPLS-TESR-MPLS/SRv6Detnet
Control Plane	 Distributed: RSVP-TE, IGP, BGP Centralized: PCEP, BGP-LS
Management Plane	 ACTN architecture and data models Service models: L3SM, L2SM, etc.

Enhanced Data Plane

- The foundation of service performance assurance
- Many new work in progress to solve the requirement of low/bounded latency, jitter and packet loss, scalability, etc.
- Need to figure out which and how to integrate into VPN+ architecture
- See further discussion about soft and hard isolation

Next Steps

- This document has been adopted by the TEAS working group
- Incremental updates have been made according to received comments
- Plan to update the draft to reflect the new requirements and technologies introduced recently