LaTeX command declarations here.

EECS 445: Machine Learning

Hands On 05: Linear Regression II

Instructor: Zhao Fu, Valli, Jacob Abernethy and Jia Deng

• Date: September 26, 2016

Review: Maximum Likelihood

Suppose we have a set of observed data D and we want to evaluate a parameter setting w:

$$p(w|D) = rac{p(D|w)p(w)}{p(D)}$$

$$p(D) = \sum_w p(D|w)p(w)$$

We call p(D|w) as the likelihood function. Then we have $p(w|D) \propto p(D|w)p(w)$. Suppose p(w) is the same for all w, we can only choose w to maximize likelihood p(D|w), which is to maximize the log-likelihood $\log p(D|w)$.

Review Problem: Maximum Likelihood Estimation

We have observed data x_1, \dots, x_n drawn from Bernoulli distribution:

$$p(x) = \left\{ egin{array}{ll} heta & ext{if } x = 1 \ 1 - heta & ext{if } x = 0 \end{array}
ight.$$

- (a) What is the likelihood function based on θ ?
- (b) What is the log-likelihood function?
- (c) Compute estimated θ to maximize the log-likelihood function.

Review: Maximum Likelihood

Suppose we have a set of observed data D and we want to evaluate a parameter setting w:

$$p(w|D) = rac{p(D|w)p(w)}{p(D)}$$

$$p(D) = \sum_w p(D|w)p(w)$$

We call p(D|w) as the likelihood function. Then we have $p(w|D) \propto p(D|w)p(w)$. Suppose p(w) is the same for all w, we can only choose w to maximize likelihood p(D|w), which is to maximize the log-likelihood $\log p(D|w)$.

Solution 1: Maximum Likelihood Estimation

(a)

$$egin{array}{ll} L(heta) &= p(D| heta) = p(x_1,\ldots,x_n| heta) \ &= \prod_i p(x_i) = heta^{\sum 1(x_i=1)} (1- heta)^{\sum 1(x_i=0)} \ &= heta^k (1- heta)^{n-k} \end{array}$$

where k is the number of 1s from the observed data.

(b)

$$\log L(\theta) = k \log(\theta) + (n-k) \log(1-\theta)$$

Solution 1: Maximum Likelihood Estimation

(c) Set the derivative of log(L(heta)) to zero we have

$$egin{aligned} rac{\mathrm{d} log(L(heta))}{\mathrm{d} heta} &= rac{k}{ heta} - rac{n-k}{1- heta} = 0 \ &rac{k}{ heta} &= rac{n-k}{1- heta} \ & heta &= rac{k}{n} \end{aligned}$$

.

Problem 2: Maximum Likelihood Estimation for Gaussian Distribution

We have observed data x_1, \cdots, x_n drawn from Normal distribution:

$$\mathcal{N}(x|\mu,\sigma^2) = rac{1}{(2\pi\sigma^2)^{rac{1}{2}}} \mathrm{exp}\left(-rac{1}{2\sigma^2}(x-\mu)^2
ight)$$

- (a) What is the likelihood function based on μ and σ^2 ?
- (b) What is the log-likelihood function?
- (c) Compute estimated parameters μ and σ^2 to maximize the log-likelihood function.

Solution 2

We have observed data x_1, \cdots, x_n drawn from Normal distribution:

$$\mathcal{N}(x|\mu,\sigma^2) = rac{1}{(2\pi\sigma^2)^{rac{1}{2}}} \mathrm{exp}\left(-rac{1}{2\sigma^2}(x-\mu)^2
ight)$$

(a) What is the log-likelihood function?

Answer:
$$-(n/2)\log\sigma-\sum_{i=1}^nrac{1}{2\sigma^2}(x_i-\mu)^2$$

(b) Compute estimated parameters μ and σ^2 to maximize the log-likelihood function.

Answer:

$$egin{aligned} ullet & \mu_{ ext{MLE}} = rac{1}{n} \sum_{i=1}^n x_i \ ullet & \sigma_{ ext{MLE}}^2 = rac{1}{n} \sum_{i=1}^n (x_i - \mu_{ ext{MLE}})^2 \end{aligned}$$

Regularized Linear Regression

Regularized Least Squares: Objective Function

· Recall the objective function we minimizes in last lecture is

$$E(\mathbf{w}) = rac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^T \phi(\mathbf{x}_n) - t_n
ight)^2$$

• To penalize the large coefficients, we will add one penalization/regularization term to it and minimize them altogether.

$$E(\mathbf{w}) = \underbrace{rac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^T \phi(\mathbf{x}_n) - t_n
ight)^2}_{E_D(\mathbf{w})} + \underbrace{\left[rac{\lambda}{2} \|\mathbf{w}\|^2
ight]}_{E_W(\mathbf{w})}$$

of which $E_D(\mathbf{w})$ represents the term of sum of squared errors and $E_W(\mathbf{w})$ is the regularization term.

- λ is the regularization coefficient.
- If λ is large, $E_{\mathbf{W}}(\mathbf{w})$ will dominate the objective function. As a result we will focus more on minimizing $E_W(\mathbf{w})$ and the resulting solution \mathbf{w} tends to have smaller norm and the $E_D(\mathbf{w})$ term will be larger.

Regularized Least Squares: Derivation

Based on what we have derived in last lecture, we could write the objective function as

$$E(\mathbf{w}) = rac{1}{2} \sum_{n=1}^N \left(\mathbf{w}^T \phi(\mathbf{x}_n) - t_n
ight)^2 + rac{\lambda}{2} \| \mathbf{w} \|^2$$

Exercise: Derive the gradient in element-wise to verify the above result, i.e. using $\phi(\mathbf{x}_n)_d$ and w_d to represent $E(w_1, w_2, \ldots, w_D)$ and derive $\frac{\partial E}{\partial w_d}$. Suppose $\phi(\mathbf{x}_n) \in \mathbb{R}^D$.

Regularized Least Squares: Solution

Based on what we have derived in last lecture, we could write the objective function as

$$egin{aligned} E(\mathbf{w}) &= rac{1}{2} \sum_{n=1}^{N} (\sum_{d=1}^{D} w_d \phi_d(\mathbf{x}_n) - t_n)^2 + rac{\lambda}{2} \sum_{d=1}^{D} w_d^2 \ rac{\partial E}{\partial w_d} &= \sum_{n=1}^{N} \phi_d(\mathbf{x}_n) (\sum_{d=1}^{D} w_d \phi_d(\mathbf{x}_n) - t_n) + \lambda w_d \ rac{\partial E}{\partial w_d} &= \sum_{n=1}^{N} \phi_d(\mathbf{x}_n) (\mathbf{w}^T \phi(\mathbf{x}_n) - t_n) + \lambda w_d \end{aligned}$$

· The gradient is

$$egin{aligned}
abla_{\mathbf{w}} E(\mathbf{w}) &= \Phi^T \Phi \mathbf{w} - \Phi^T \mathbf{t} + \lambda \mathbf{w} \ &= (\Phi^T \Phi + \lambda I) \mathbf{w} - \Phi^T \mathbf{t} \end{aligned}$$

· Setting the gradient to 0, we will get the solution

$$oxed{\hat{\mathbf{w}} = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{t}}$$

Regularized Least Squares: Closed Form

In the solution to ordinary least squares which is $\hat{\mathbf{w}} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{t}$, we cannot guarantee $\Phi^T \Phi$ is invertible. But in regularized least squares, if $\lambda > 0$, $\Phi^T \Phi + \lambda I$ is always invertible.

Exercise: To be invertible, a matrix needs to be full rank. Argue that $\Phi^T \Phi + \lambda I$ is full rank by characterizing its p eigenvalues in terms of the singular values of Φ and λ .

Solution:

Suppose $\Phi = U^T \Lambda V$ which is SVD of Φ , we have $\Phi^T \Phi = V^T \Lambda^2 V$.

Then we have $(\Phi^T \Phi + \lambda I) V^T = V^T (\Lambda^2 + \lambda I)$.

The i^{th} eigenvalue of $(\Phi^T\Phi+\lambda I)$ is $\lambda_i^2+\lambda>0$ where λ_i is the singular value for Φ .

Then $\det\left(\Phi^T\Phi+\lambda I\right)=\prod\left(\lambda_i^2+\lambda\right)>0$, which means $\Phi^T\Phi+\lambda I$ is invertable.

Regularized Least Squares: Different Norms

• The ℓ^p norm of a vector \mathbf{x} is defined as

$$\left\|\mathbf{x}
ight\|_p = (\sum_{j=1}^M |x_j|^p)^{rac{1}{p}}$$

• For the regularized least squares above, we used ℓ^2 norm. We could also use other ℓ^p norms for different regularizers and the objective function becomes

$$E(\mathbf{w}) = rac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^T \phi(\mathbf{x}_n) - t_n
ight)^2 + rac{\lambda}{2} \| \mathbf{w} \|_p^p$$

Exercise: Derive the element-wise gradient for the above ℓ^p norm regularized energy function.

Regularized Least Squares: Summary

- Simple modification of linear regression
- ℓ^2 Regularization controls the tradeoff between *fitting error* and *complexity*.
 - ullet Small ℓ^2 regularization results in complex models, but with risk of overfitting
 - Large ℓ^2 regularization results in simple models, but with risk of underfitting
- It is important to find an optimal regularization that balances between the two

Probablistic Interpretation of Least Squares Regression

We have showed derived the solution to least squares regression by minimizing objective function.
 Now we will provide a probablistic perspective. Specifically, we will show the solution to regular least squares is just the maximum likelihood estimate of w and the solution to regularized least squares is the Maximum a Posteriori estimate.

Some Background

· Gaussian Distribution

$$\mathcal{N}(x,\mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp}igg[rac{(x-\mu)^2}{2\sigma^2}igg]$$

- Maximum Likelihood Estimation and Maximum a Posteriori Estimation (MAP)
 - For distribution $t \sim p(t|\theta)$. θ is some unknown parameter (like mean or variance) to be estimated.
 - Given observation $\mathbf{t} = (t_1, t_2, \dots, t_N)$,
 - The Maximum Likelihood Estimator is

$$heta_{ML} = rg \max \prod_{n=1}^N p(t_n| heta)$$

• If we have some prior knowledge about θ , the MAP estimator is

$$heta_{MAP} = rg \max \prod_{n=1}^N p(heta|t_n) \quad ext{(Posteriori Probability of $ heta)}$$

Maximum Likelihood Estimator \mathbf{w}_{ML}

• We assume the **signal+noise** model of single data (\mathbf{x},t) is

$$t = \mathbf{w}^T \phi(\mathbf{x}) + \epsilon \ \epsilon \sim \mathcal{N}(0, eta^{-1})$$

of which $\mathbf{w}^T \phi(\mathbf{x})$ is the true model, ϵ is the perturbation/randomness.

- Since $\mathbf{w}^T \phi(\mathbf{x})$ is deterministic/non-random, we have

$$t \sim \mathcal{N}(\mathbf{w}^T \phi(\mathbf{x}), eta^{-1})$$

Exercise:

- Derive the likelihood function for a single data $p(t_n|\mathbf{x}_n, \mathbf{w}, \beta)$.
- Derive the complete log likelihood function for the whole dataset $\ln p(\mathbf{t}|\mathcal{X}, \mathbf{w}, \beta)$.
- Using maximum likelihood to estimate parameter w.

Maximum Likelihood Estimator \mathbf{w}_{ML}

• The likelihood function of t is just probability density function (PDF) of t

$$p(t|\mathbf{x},\mathbf{w},eta) = \mathcal{N}(t|\mathbf{w}^T\phi(\mathbf{x}),eta^{-1})$$

• For inputs $\mathcal{X}=(\mathbf{x}_1,\ldots,\mathbf{x}_n)$ and target values $\mathbf{t}=(t_1,\ldots,t_n)$, the data likelihood is

$$p(\mathbf{t}|\mathcal{X}, \mathbf{w}, eta) = \prod_{n=1}^N p(t_n|\mathbf{x}_n, \mathbf{w}, eta) = \prod_{n=1}^N \mathcal{N}(t_n|\mathbf{w}^T\phi(\mathbf{x}_n), eta^{-1})$$

- Notation Clarification
 - $p(t|x, w, \beta)$ it the PDF of t whose distribution is parameterized by x, \mathbf{w}, β .
 - $\mathcal{N}(\mathbf{w}^T \phi(\mathbf{x}), \beta^{-1})$ is Gaussian distribution with **mean** $\mathbf{w}^T \phi(\mathbf{x})$ and **variance** β^{-1} .
 - $\mathcal{N}(t|\mathbf{w}^T\phi(\mathbf{x}), \beta^{-1})$ is the PDF of \mathbf{t} which has Gaussian distribution $\mathcal{N}(\mathbf{w}^T\phi(\mathbf{x}), \beta^{-1})$

Maximum Likelihood Estimator \mathbf{w}_{ML} : Derivation

· Single data likelihood is

$$p(t_n|\mathbf{x}_n,\mathbf{w},eta) = \mathcal{N}(t_n|\mathbf{w}^T\phi(\mathbf{x}_n),eta^{-1}) = rac{1}{\sqrt{2\pieta^{-1}}}\mathrm{exp}igg\{-rac{1}{2eta^{-1}}(t_n-\mathbf{w}^T\phi(x_n))^2igg\}$$

Single data log-likelihood is

$$\ln p(t_n|\mathbf{x}_n,\mathbf{w},eta) = -rac{1}{2} \ln 2\pieta^{-1} - rac{eta}{2} (\mathbf{w}^T\phi(x_n) - t_n)^2$$

We use logarithm because maximizer of f(x) is the same as maximizer of $\log f(x)$. Logarithm can convert product to summation which makes life easier.

· Complete data log-likelohood is

$$egin{aligned} & \ln p(\mathbf{t}|\mathcal{X},\mathbf{w},eta) = \ln \Bigg[\prod_{n=1}^N p(t_n|\mathbf{x}_n,\mathbf{w},eta)\Bigg] = \sum_{n=1}^N \ln p(t_n|\mathbf{x}_n,\mathbf{w},eta) \ & = \sum_{n=1}^N \left[-rac{1}{2} \ln 2\pieta^{-1} - rac{eta}{2} (\mathbf{w}^T\phi(x_n) - t_n)^2
ight] \end{aligned}$$

• Maximum likelihood estimate \mathbf{w}_{ML} is

$$egin{aligned} \mathbf{w}_{ML} &= rg \max_{\mathbf{w}} \ln p(\mathbf{t}|\mathcal{X}, \mathbf{w}, eta) \ &= rg \max_{\mathbf{w}} \sum_{n=1}^{N} \left[-rac{1}{2} \ln 2\pi eta^{-1} - rac{eta}{2} (\mathbf{w}^{T} \phi(x_n) - t_n)^2
ight] \ &= rg \max_{\mathbf{w}} \sum_{n=1}^{N} \left[-rac{eta}{2} (\mathbf{w}^{T} \phi(x_n) - t_n)^2
ight] \ &= rg \min_{\mathbf{w}} \sum_{n=1}^{N} \left[(\mathbf{w}^{T} \phi(x_n) - t_n)^2
ight] \end{aligned}$$

• Familiar? Recall the objective function we minimized in least squares is $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^T \phi(\mathbf{x}_n) - t_n \right)^2$, so we could conclude that

$$\mathbf{w}_{ML} = \hat{\mathbf{w}}_{LS} = \Phi^\dagger \mathbf{t}$$

MAP Estimator \mathbf{w}_{MAP}

• The MAP estimator is obtained by

$$\begin{aligned} \mathbf{w}_{MAP} &= \arg\max p(\mathbf{w}|\mathbf{t}, \mathcal{X}, \beta) & \text{(Posteriori Probability)} \\ &= \arg\max \frac{p(\mathbf{w}, \mathbf{t}, \mathcal{X}, \beta)}{p(\mathcal{X}, t, \beta)} \\ &= \arg\max \frac{p(\mathbf{t}|\mathbf{w}, \mathcal{X}, \beta)p(\mathbf{w}, \mathcal{X}, \beta)}{p(\mathcal{X}, t, \beta)} \\ &= \arg\max p(\mathbf{t}|\mathbf{w}, \mathcal{X}, \beta)p(\mathbf{w}, \mathcal{X}, \beta) & \text{(}p(X, t, \beta) \text{ is irrelevant to } \mathbf{w}) \\ &= \arg\max p(\mathbf{t}|\mathbf{w}, \mathcal{X}, \beta)p(\mathbf{w})p(\mathcal{X})p(\beta) & \text{(Independence)} \\ &= \arg\max p(\mathbf{t}|\mathbf{w}, \mathcal{X}, \beta)p(\mathbf{w}) & \text{(Likelihood} \times \text{Prior)} \end{aligned}$$

We are just using **Bayes Theorem** for the above steps.

The only difference from ML estimator is we have an extra term of PDF of w. This is the prior belief of w. Here, we assume,

$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \alpha^{-1}I)$$

Exercise: Derive the MAP Estimator of \mathbf{w} and compare the solution with regularized linear regression. What is λ in this case?

MAP Estimator \mathbf{w}_{MAP} : Derivation

- $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{\alpha}^{-1}I)$ is **multivariate Gaussian** which has PDF

$$p(\mathbf{w}) = rac{1}{\left(\sqrt{2\pilpha^{-1}}
ight)^N} \mathrm{exp}iggl\{ -rac{1}{2lpha^{-1}} \sum_{n=1}^N w_n^2 iggr\}$$

• So the MAP estimator is

$$egin{aligned} \mathbf{w}_{MAP} &= rg\max_{\mathbf{w}} p(\mathbf{t}|\mathbf{w}, \mathcal{X}, eta) p(\mathbf{w}) = rg\max_{\mathbf{w}} \left[\ln p(\mathbf{t}|\mathbf{w}, \mathcal{X}, eta) + \ln p(\mathbf{w})
ight] \ &= rg\min_{\mathbf{w}} \left[\sum_{n=1}^N rac{eta}{2} (\mathbf{w}^T \phi(x_n) - t_n)^2 + rac{lpha}{2} \sum_{n=1}^N w_n^2
ight] \ &= rg\min_{\mathbf{w}} \left[\sum_{n=1}^N rac{1}{2} (\mathbf{w}^T \phi(x_n) - t_n)^2 + rac{1}{2} rac{lpha}{eta} \|\mathbf{w}\|^2
ight] \end{aligned}$$

· Exactly the objective in regularized least squares! So

$$oxed{\mathbf{w}_{MAP} = \hat{\mathbf{w}} = \left(\Phi^T\Phi + rac{lpha}{eta}I
ight)^{-1}\Phi^T\mathbf{t}}$$

- Compared with ℓ^2 norm regularized least square, we have $\lambda = rac{lpha}{eta}.$

Problem 5a: MAP estimation for Linear Regression with unusual Prior

Assume we have n vectors $\mathbf{x}_1, \dots, \mathbf{x}_n$. We also assume that for each \mathbf{x}_i we have observed a *target* value t_i , where

$$t_i = \mathbf{w}^T \mathbf{x_i} + \epsilon$$

 $\epsilon \sim \mathcal{N}(0, \beta^{-1})$

where ϵ is the "noise term".

(a) Quick quiz: what is the likelihood *given* \mathbf{w} ? That is, what's $p(t_i|\mathbf{x}_i,\mathbf{w})$?

Answer:
$$p(t_i|\mathbf{x}_i,\mathbf{w}) = \mathcal{N}(t_i|\mathbf{w}^{ op}\mathbf{x_i},eta^{-1}) = rac{1}{(2\pi\sigma^2)^{rac{1}{2}}}\mathrm{exp}\left(-rac{eta}{2}(t_i-\mathbf{w}^{ op}\mathbf{x_i})^2
ight)$$

Problem 5: MAP estimation for Linear Regression with unusual Prior

Assume we have n vectors $\mathbf{x}_1, \dots, \mathbf{x}_n$. We also assume that for each \mathbf{x}_i we have observed a *target* value t_i , sampled IID. We will also put a *prior* on \mathbf{w} , using PSD matrix Σ .

$$egin{aligned} t_i &= \mathbf{w}^T \mathbf{x_i} + \epsilon \ \epsilon &\sim \mathcal{N}(0, eta^{-1}) \ \mathbf{w} &\sim \mathcal{N}(0, \Sigma) \end{aligned}$$

Note: the difference here is that our prior is a multivariate gaussian with *non-identity* covariance! Also we let $\mathcal{X} = \{\mathbf{x}_1, \cdots, \mathbf{x}_n\}$

(a) Compute the log posterior function, $\log p(\mathbf{w}|\mathbf{t},\mathcal{X},eta)$

Hint: use Bayes' Rule

(b) Compute the MAP estimate of ${\bf w}$ for this model

Hint: the solution is very similar to the MAP estimate for a gaussian prior with identity covariance