

### TFM

Cultivos y climatología.

Situación Mundial.

Sara Belén Ramos González

Máster en Ciencia de Datos – UOC
Área 5 - Aula 1

Tutor: Rafael Luque Ocaña
PRA: Albert Solé



# Descripción y Justificación

### **TFM** Investigación



ámbitos de nuestra sociedad



Agricultura y clima



**NEGATIVOS DEVASTADORES** 



**RECUPERACIÓN** 

**Personalmente** 



Cuerpo Mente Naturaleza



**BIOTECNOLOGÍA** 



### Estado del Arte

Búsqueda pormenorizada de información

- Extensa bibliografía
- Conclusiones contrastadas

- Fuentes de datos
- Variables
- Técnicas



- La agricultura es culpable de la mayor parte de las emisiones.
- Afecciones en los patrones climáticos: temperaturas y precipitaciones.



### Fuentes de datos

- Contrastadas
- Fiables
- Robustas

BERKELEY EARTH...

- Berkeley Earth
- Grupo Banco Mundial (The World Bank)
- Climate Change Knowledge Portal
- Eurostat
- Dryad
- Organización para la Cooperación y el Desarrollo Económico (OECD)





OECD







# La CCEG y los ODS

# OBJETIVE'S DE DESARROLLO SOSTENIBLE





































- Escasez de recursos
- Riesgos de contaminación
- Vulnerabilidad
- Condiciones de vida
- Modelo de producción y consumo
- Uso de tecnologías limpias y eficientes



## Datos y Variables en estudio

Años datos existentes: [1990 – 2023]



Años datos de predicción: [2024-250]



ODS

Pacto verde europeo



#### Variables:

- Emisiones de gases (mil toneladas métricas de equivalente de CO2): Óxido Nitroso (N2O) y Metano (CH4).
- Uso de fertilizantes (miles de toneladas de nutrientes): potásicos (K2O), nitrogenados (N) y fosfatados (P2O5).
- Anomalía de Temperatura de la Tierra (ºC).
- Población (cantidad de personas).
- Extensión de tierra cultivada (sq. Km).
- Precipitaciones (mm).



## Preprocesamiento de datos

- Exploración datos obtenidos
  - ✓ Descarga información
  - ✓ Entendimiento de la información
- Data wrangling y data cleansing
  - ✓ Conversión a data frames
  - ✓ Conversión tipo de datos y formatos
  - ✓ Estandarización y homogeneización de nombres de variables.
  - ✓ Missing data → imptuación/eliminación
  - ✓ Outliers
  - ✓ Union / Match
- Exportación de datos







# Análisis de datos y visualización

- Cálculos estadísticos
- Representaciones gráficas
- Aspectos estudiados sobre las variables:
  - ✓ Descripción
  - ✓ Distribución
  - ✓ Correlación
  - ✓ Tendencias de comportamiento
- Informe de visualización
  - ✓ Dinámico
  - ✓ Orden y disposición
  - ✓ Tamaños
  - ✓ Colores







## Predicción de variables

Algoritmos



Predicción de variables (valores futuros)



Estudio parámetros

### Modelos predictivos:

- Regresión lineal
- Random Forest
- ARIMA





# Predicción: Regresión lineal simple



Regresión lineal



Random Forest



- Ecuación  $\rightarrow Y = \beta_0 + \beta_1 X$ 
  - ✓ Y: variable dependiente (cada una de las variables a predecir)
  - ✓ X: variable independiente (años transcurridos)
  - $\checkmark \beta_0$ : ordenada al origen (intercepto).
  - $\checkmark$   $\beta_1$ : pendiente de la línea de regresión.
- Bondad de ajuste
  - ✓ Coeficiente de determinación (R2)
  - ✓ p-valor

Modelo Aceptado



| Variable                          | R^2       | p-valor  | ~ |
|-----------------------------------|-----------|----------|---|
| Uso Fertilizantes potásicos (K2O) | 0,7917    | 4.81e-11 |   |
| Temperatura                       | 0,8032    | 2.16e-11 |   |
| Uso Fertilizantes fosfatados (P2O | 5) 0,8079 | 1.54e-11 |   |
| Uso Fertilizantes nitrogenados (N | 0,9461    | 2.2e-16  |   |
| Emisiones Metano (CH4)            | 0,9629    | 2.2e-16  |   |
| Emisiones Óxido Nitroso (N2O)     | 0,9834    | 2.2e-16  |   |
| Poblacion                         | 0,9999    | 2.2e-16  |   |





# Predicción: Regresión lineal múltiple



Regresión lineal



Random Forest



- Ecuación  $\rightarrow Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n$ 
  - ✓ Y: variable dependiente (anomalía de temperatura a predecir)
  - $\checkmark X_1 ... X_n$ : variables independientes (resto de variables)
  - $\checkmark \beta_0 \dots \beta_n$ : coeficientes para ajustar el modelo.
- Bondad de ajuste
  - ✓ Coeficiente de determinación (R2) alto
  - ✓ p-valores altos
  - ✓ Factor de inflación de la varianza → multicolinealidad

```
Call:
lm(formula = Anom_Anual ~ anio + poblacion + emisiones_n2o +
emisiones_metano + N + P2O5 + K2O, data = datos_temp_pobl_emis_fert)
```

#### Residuals:

```
Min 1Q Median 3Q Max
-0.119300 -0.067532 0.008431 0.050296 0.147208
```

#### Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                -5.700e+01 5.101e+02 -0.112
anio
                 2.974e-02 2.648e-01
                                                0.9116
poblacion
                -8.807e-11 3.113e-09
                                       -0.028
                                                0.9777
emisiones_n2o
                 5.589e-07
                            6.229e-07
                                                0.3793
emisiones_metano -4.698e-07 2.120e-07 -2.216
                                                0.0373 *
                 1.502e-06 9.191e-06
                                                0.8716
P205
                 3.413e-06 1.559e-05
                                                0.8287
K20
                 1.616e-05 1.263e-05
                                                0.2140
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.08789 on 22 degrees of freedom Multiple R-squared: 0.8651, Adjusted R-squared: 0.8221 F-statistic: 20.15 on 7 and 22 DF, p-value: 3.378e-08



anio 20406.04279 poblacion 19873.19936 emisiones\_n2o emisiones\_metano 87.03610 55.76511

N 48.60952 P205 28.85133 K20 20.57440



# Predicción: Regresión lineal múltiple



Regresión lineal

Random Forest

```
ARIMA
```

```
Call:
lm(formula = Anom_Anual ~ anio + emisiones_metano, data = datos_temp_pobl_emis_fert)
Residuals:
                1Q Median
     Min
                                            Max
-0.137399 -0.066197 0.007415 0.036358 0.156764
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.084e+01 1.951e+01 -3.119 0.00429 **
                3.128e-02 1.031e-02 3.034 0.00528 **
anio
emisiones metano -1.571e-07 1.579e-07 -0.995 0.32855
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.0941 on 27 degrees of freedom
Multiple R-squared: 0.8102, Adjusted R-squared: 0.7961
F-statistic: 57.62 on 2 and 27 DF, p-value: 1.809e-10
```

**Modelo Descartado** 



# Predicción: Regresión lineal simple



### Predicción: Random Forest

#### Random Forest - Predicciones vs. Datos Reales



lineal

Regresión



Random Forest



- Predicción a largo plazo
- Relación no completamente lineal
- Parámetros
  - ✓ MSE (error cuadrático medio) bajo.
  - ✓ Coeficiente de determinación alto.
  - ✓ No hay indicativo de sobreajuste.
  - ✓ Se han modificado los hiperparámetros.
- Precisión de modelo
  - ✓ Mala

**Modelo Descartado** 





### Predicción: ARIMA (AutoRegressive Integrated Moving Average)



Regresión lineal



Random Forest



- Predicción series temporales
  - ✓ Autorregresivo (AR)
  - ✓ Inegrado (I)
  - ✓ Medias móviles (MA)
- Estudios existentes de evolución de temperaturas
- Tendencia creciente en los valores

- Preprocesado de datos
  - ✓ Datos ordenados
  - ✓ Conversión dataframe a serie temporal

```
```{r}
# Ordenar el conjunto de datos por la columna "Anio" en orden creciente
Temp_Global_Averages_1850_max <- Temp_Global_Averages_1850_max[order(Temp_Global_Averages_1850_max$Anio), ]
```

```
'``{r}
# Convertir el dataframe a una serie temporal con frecuencia anual
serie_temporal <- ts(Temp_Global_Averages_1850_max$Anom_Anual, start = 1850, frequency = 1)</pre>
```



### Predicción: ARIMA



Regresión lineal



Random Forest



#### Bondad modelo

- ✓ Media residuos: cercana a 0
- √ Varianza residuos: bajo
- ✓ Estudio residuos contra los valores ajustados sin patrones (homocedasticidad)
- ✓ Distribución de los residuos

### Equilibrio del modelo

- ✓ Criterio de Información de Akaike (AIC): bajo
- ✓ Criterio de Información Bayesiano (BIC): bajo

### Modelo Aceptado



AIC: -319.509 BIC: -303.7425











## Predicción: ARIMA



Regresión lineal



Random Forest



| Anio<br><int></int> | Prediccion<br><dbl></dbl> |
|---------------------|---------------------------|
| 2024                | 1.052201                  |
| 2025                | 1.042555                  |
| 2026                | 1.047181                  |
| 2027                | 1.055217                  |
| 2028                | 1.063253                  |
| 2029                | 1.071289                  |
| 2030                | 1.079326                  |
| 2031                | 1.087362                  |
| 2032                | 1.095398                  |
| 2033                | 1.103434                  |

| Anio<br><int></int> | Prediccion<br>«dbl» |
|---------------------|---------------------|
| 2034                | 1.111470            |
| 2035                | 1.119506            |
| 2036                | 1.127542            |
| 2037                | 1.135578            |
| 2038                | 1.143615            |
| 2039                | 1.151651            |
| 2040                | 1.159687            |
| 2041                | 1.167723            |
| 2042                | 1.175759            |
| 2043                | 1.183795            |
|                     |                     |

#### Predicciones con Modelo ARIMA



| Anio<br><int></int> | Prediccion<br>«dbl» |
|---------------------|---------------------|
| 2044                | 1.191831            |
| 2045                | 1.199867            |
| 2046                | 1.207903            |
| 2047                | 1.215940            |
| 2048                | 1.223976            |
| 2049                | 1.232012            |
| 2050                | 1.240048            |
| 2051                | 1.248084            |
| 2052                | 1.256120            |
| 2053                | 1.264156            |



### Predicción: ARIMA





Random Forest





### Conclusiones





Cultivos y climatología.
Situación Mundial.

Sara Belén Ramos González

Máster en Ciencia de Datos – UOC

Área 5 - Aula 1

Tutor: Rafael Luque Ocaña

PRA: Albert Solé

Gracias por su atención.

