UNIT-2

# Context-free languages

### Context-free grammar

- This is an a different model for describing languages
- The language is specified by productions (substitution rules) that tell how strings can be obtained, e.g.

$$A \rightarrow 0A1$$
 A, B are variables  $A \rightarrow B$  0, 1, # are terminals  $A \rightarrow B$  A is the start variable

Using these rules, we can derive strings like this:

```
A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111
```

### Some natural examples

Context-free grammars were first used for natural languages



### Natural languages

 We can describe (some fragments) of the English language by a context-free grammar:

SENTENCE → NOUN-PHRASE VERB-PHRASE

NOUN-PHRASE  $\rightarrow$  CMPLX-NOUN

NOUN-PHRASE → CMPLX-NOUN PREP-PHRASE

VERB-PHRASE → CMPLX-VERB

VERB-PHRASE → CMPLX-VERB PREP-PHRASE

PREP-PHRASE → PREP CMPLX-NOUN

CMPLX-NOUN → ARTICLE NOUN

CMPLX-VERB → VERB NOUN-PHRASE

 $CMPLX-VERB \rightarrow VERB$ 

 $ARTICLE \rightarrow a$ 

 $ARTICLE \rightarrow the$ 

 $NOUN \rightarrow boy$ 

 $NOUN \rightarrow girl$ 

 $NOUN \rightarrow flower$ 

 $VERB \rightarrow likes$ 

 $VERB \rightarrow touches$ 

 $\overline{\text{VERB}} \rightarrow \overline{\text{sees}}$ 

 $PREP \rightarrow with$ 

variables: SENTENCE, NOUN-PHRASE, ...

terminals: a, the, boy, girl, flower, likes, touches, sees, with

start variable: SENTENCE

### Programming languages

- Context-free grammars are also used to describe (parts of) programming languages
- For instance, expressions like (2 + 3) \* 5 or 3 + 8 + 2 \* 7 can be described by the CFG

```
\langle \exp r \rangle \rightarrow \langle \exp r \rangle + \langle \exp r \rangle Variables: \langle \exp r \rangle

\langle \exp r \rangle \rightarrow \langle \exp r \rangle Terminals: +, *, (, ), 0, 1, ..., 9

\langle \exp r \rangle \rightarrow (\langle \exp r \rangle)

\langle \exp r \rangle \rightarrow 0

\langle \exp r \rangle \rightarrow 1

...

\langle \exp r \rangle \rightarrow 9
```

# Motivation for studying CFGs

 Context-free grammars are essential for understanding the meaning of computer programs

$$code: (2 + 3) * 5$$

meaning: "add 2 and 3, and then multiply by 5"

They are used in compilers

## Definition of context-free grammar

- A context-free grammar (CFG) is a 4-tuple (V, T, P, S) where
  - -V is a finite set of variables or non-terminals
  - -T is a finite set of terminals ( $V \cap T = \emptyset$ )
  - $\overline{-P}$  is a set of productions or substitution rules of the form

$$A \rightarrow \alpha$$

where A is a symbol in V and  $\alpha$  is a string over  $V \cup T$ 

- S is a variable in V called the start variable

## Shorthand notation for productions

 When we have multiple productions with the same variable on the left like

$$E \rightarrow E + E$$
  $N \rightarrow 0N$   
 $E \rightarrow E * E$   $N \rightarrow 1N$   
 $E \rightarrow (E)$   $N \rightarrow 0$   
 $E \rightarrow N$   $N \rightarrow 1$ 

Variables: E, N

Terminals: +, \*, (, ), 0, 1

Start variable: E

we can write this in shorthand as

$$E \to E + E \mid E * E \mid (E) \mid 0 \mid 1$$
  
 $N \to 0N \mid 1N \mid 0 \mid 1$ 

#### **Derivation**

A derivation is a sequential application of productions:

$$E \Rightarrow E * E$$

$$\Rightarrow (E) * E$$

$$\Rightarrow (E) * N$$

$$\Rightarrow (E + E) * N$$

$$\Rightarrow (E + E) * 1$$

$$\Rightarrow (E + E$$

derivation

$$\alpha \Rightarrow \beta$$

means  $\beta$  can be obtained from  $\alpha$  with one production

$$\alpha \stackrel{*}{\Rightarrow} \beta$$

means  $\beta$  can be obtained from  $\alpha$  after zero or more productions

## Language of a CFG

• The language of a CFG (V, T, P, S) is the set of all strings containing only terminals that can be derived from the start variable S

$$L = \{ \omega \mid \omega \in T^* \text{ and } S \stackrel{*}{\Rightarrow} \omega \}$$

• This is a language over the alphabet T

• A language L is context-free if it is the language of some CFG

# Example I

$$A \rightarrow 0A1 \mid B$$
  
  $B \rightarrow \#$ 

variables: A, B

terminals: 0, 1, #

start variable: A

- Is the string 00#11 in L?
- How about 00#111, 00#0#1#11?

What is the language of this CFG?

$$L = \{0^n \# 1^n : n \ge 0\}$$

## Example 2

$$S \rightarrow SS \mid (S) \mid \epsilon$$

convention: variables in uppercase, terminals in lowercase, start variable first

• Give derivations of (), (()())

$$S \Rightarrow (S)$$
 (rule 2)  $S \Rightarrow (S)$  (rule 2)  
 $\Rightarrow ()$  (rule 3)  $\Rightarrow (SS)$  (rule 1)  
 $\Rightarrow ((S)S)$  (rule 2)  
 $\Rightarrow ((S)(S))$  (rule 2)  
 $\Rightarrow ((S)(S))$  (rule 3)  
 $\Rightarrow ((S)(S))$  (rule 3)

How about ())?

# Examples: Designing CFGs

- Write a CFG for the following languages
  - Linear equations over x, y, z, like:

$$x + 5y - z = 9$$
$$11x - y = 2$$

- Numbers without leading zeros, e.g., 109, 0 but not 019
- The language  $L = \{a^n b^n c^m d^m \mid n \ge 0, m \ge 0\}$
- The language  $L = \{a^n b^m c^m d^n \mid n \ge 0, m \ge 0\}$

### Context-free versus regular

• Write a CFG for the language (0 + 1)\*111

$$S \rightarrow A111$$
  
 $A \rightarrow \varepsilon \mid 0A \mid 1A$ 

Can you do so for every regular language?

Every regular language is context-free

Proof:



### From regular to context-free

regular expression



**CFG** 

 $\emptyset$ 

grammar with no rules

3

 $S \rightarrow \varepsilon$ 

a (alphabet symbol)

 $S \longrightarrow a$ 

 $E_{1} + E_{2}$ 

 $S \rightarrow S_1 \mid S_2$ 

 $E_1E_2$ 

 $S \rightarrow S_1 S_2$ 

 $E_1*$ 

 $S \rightarrow SS_1 \mid \epsilon$ 

In all cases, S becomes the new start symbol

### Context-free versus regular

- Is every context-free language regular?
- No! We already saw some examples:

$$A \to 0A1 \mid B$$
  
 $B \to \#$   $L = \{0^n \# 1^n : n \ge 0\}$ 

This language is context-free but not regular

#### Parse tree

Derivations can also be represented using parse trees

$$E \rightarrow E + E \mid E - E \mid (E) \mid V$$
  
 $V \rightarrow x \mid y \mid z$ 

$$E \Rightarrow E + E$$

$$\Rightarrow V + E$$

$$\Rightarrow x + E$$

$$\Rightarrow x + (E)$$

$$\Rightarrow x + (E - E)$$

$$\Rightarrow x + (V - E)$$

$$\Rightarrow x + (y - E)$$

$$\Rightarrow x + (y - V)$$

$$\Rightarrow x + (y - z)$$



### Definition of parse tree

- A parse tree for a CFG G is an ordered tree with labels on the nodes such that
  - Every internal node is labeled by a variable
  - Every leaf is labeled by a terminal or  $\varepsilon$
  - Leaves labeled by  $\varepsilon$  have no siblings
  - If a node is labeled A and has children  $A_1, ..., A_k$  from left to right, then the rule

$$A \rightarrow A_1 \dots A_k$$

is a production in G.

#### Left derivation

Always derive the leftmost variable first:

$$E \Rightarrow E + E$$

$$\Rightarrow V + E$$

$$\Rightarrow x + E$$

$$\Rightarrow x + (E)$$

$$\Rightarrow x + (E - E)$$

$$\Rightarrow x + (V - E)$$

$$\Rightarrow x + (y - E)$$

$$\Rightarrow x + (y - V)$$

$$\Rightarrow x + (y - z)$$



Corresponds to a left-to-right traversal of parse tree

# Ambiguity

- A grammar is ambiguous if some strings have more than one parse tree
- Example:

$$E \rightarrow E + E \mid E - E \mid (E) \mid V$$
  
 $V \rightarrow x \mid y \mid z$ 



## Why ambiguity matters

The parse tree represents the intended meaning:



"first add y and z, and then add this to x"

"first add x and y, and then add z to this"

# Why ambiguity matters

Suppose we also had multiplication:

$$E \rightarrow E + E \mid E - E \mid E \times E \mid (E) \mid V$$
  
 $V \rightarrow x \mid y \mid z$ 



"first 
$$y + z$$
, then  $x \times$ "

$$\begin{array}{c|c}
E \\
E + E \\
\hline
E \times E V \\
V & V z \\
x & y
\end{array}$$

"first  $x \times y$ , then +z"

### Disambiguation

 Sometimes we can rewrite the grammar to remove the ambiguity

$$E \rightarrow E + E \mid E - E \mid E \times E \mid (E) \mid V$$
  
 $V \rightarrow x \mid y \mid z$ 

• Rewrite grammar so  $\times$  cannot be broken by +:

$$E \rightarrow T \mid E + T \mid E - T$$

$$T \rightarrow F \mid T \times F$$

$$F \rightarrow (E) \mid V$$

$$V \rightarrow x \mid y \mid z$$

T stands for term: 
$$x * (y + z)$$
  
F stands for factor:  $x$ ,  $(y + z)$ 

A term always splits into factors

A factor is either a variable or a parenthesized expression

# Disambiguation

#### Example

$$E \rightarrow T \mid E + T \mid E - T$$
 $T \rightarrow F \mid T \times F$ 
 $F \rightarrow (E) \mid V$ 
 $V \rightarrow x \mid y \mid z$ 



#### Disambiguation

Can we always disambiguate a grammar?

- No, for two reasons
  - There exists an inherently ambiguous context-free L: Every CFG for this language is ambiguous
  - There is no general procedure that can tell if a grammar is ambiguous

 However, grammars used in programming languages can typically be disambiguated

## Another Example

$$S \rightarrow aB \mid bA$$
  
 $A \rightarrow a \mid aS \mid bAA$   
 $B \rightarrow b \mid bS \mid aBB$ 

- Is ab, baba, abbbaa in L?
- How about a, bba?

- What is the language of this CFG?
- Is the CFG ambiguous?