Inhaltsverzeichnes

Aufga	aben	 	• • •	• • •	 	• •	 	 •	 	 •	 	 • •	1						
1.1	S. 214	 			 		 	 	 	 		 	 		 		 	 	1
1.1.1	Nr. 1	 			 		 	 	 	 	 	 				 		 	1
	A2																		
	A4																		
	A6																		
1.1.5	A13	 			 		 		 		 	 	2						

Aufgaben

1.1 S. 214

1.1.1 Nr. 1

Bestimmen Sie die Koordinaten des Lotfusspunktes F des Lots durch A(3|-1|7), B(6|8|19)

und
$$C(-3|-3|-4)$$
 auf der Ebene $E: \vec{x} = r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 4 \\ -3 \end{pmatrix}$

$$\vec{n} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 4 \\ -3 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix}$$

Den Normalenverktor können wir jetzt in die Gleichung mit einsetzten. Hier setzen wir die Ebenen mit unserer Gerade (Punkt + t * Normalenverktor) gleich, um den Schnittpunkt zu berechnen.

$$r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 4 \\ -3 \end{pmatrix} = \vec{p} + t \cdot \vec{n}$$

Nun müssen nurnoch die Ortsvektoren der Punkte in die gleichung eingegeben. Mit dem Wert für t können wir den Ortsvektor des Punktes auf der Ebene berechnen, welcher unserem Ausgangspunkt am nächsten liegt.

$$f = \vec{p} + t \cdot \vec{n}$$
Punkt Distanz
A 5
B 25
C 5

1.1.2 A2

$$E: \vec{\mathbf{x}} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + s \cdot \begin{pmatrix} 5 \\ 2 \\ 0 \end{pmatrix}$$

$$E: \vec{y} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

Punkt	Distanz zu $E:ec{x}$	Distanz zu $E:ec{y}$
A(0 2 1)	2	≈ 0.41
B(1 3 5)	≈ 5.13	≈ 0.8085
C(-3 1 -1)	≈ 4.64079	≈ 2.45

1.1.3 A4

$$E: \vec{x} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$$
$$P(3|5|7)$$

Distanz = 4.2

1.1.4 A6

Koordinatenebene	Entfernung des Punktes $P(1 -2 -3)$
x1x2	3
x1x3	2
x2x3	1

Die drei Werte des Punktes x_1 , x_2 und x_3 geben so gesehen die Entfernung zu der jeweiliegen Koordinatenebene ein. Der Punkt P(x|y|10) ist immer 10 entfernt von der x_1x_2 -Koordinatenebenen.

1.1.5 A13

Idee: Von beliebigen Punkt aus in die Richtung des Normalenverktors und dort Ebene Spannen. Punkt haben wir und auch die Spannung mit der Koordinatengleichung der gegebenen.

$$E: 4x_1 - 7x_2 + 4x_3 = 6$$

Dies trifft zu für $x_1 = 2.5$, $x_2 = 1$, $x_3 = 1$. Damit können wir anfangen, die Normalenform der Gleichung bestimmen:

$$E: \begin{pmatrix} 4 \\ -7 \\ 4 \end{pmatrix} \cdot (\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - \begin{pmatrix} 2.5 \\ 1 \\ 1 \end{pmatrix})$$

Damit können wir eine Ebene Aufspannen, welche den selben Normalenverktor hat und so also parrallel verläuft. Um einen Abstand von d zu erhalten müssen wir nun nur noch eine Gleichung aufstellen.

Mit dem C.A.S.:

$$solve(nrom(\begin{pmatrix} 2.5\\1\\1\end{pmatrix} - (\begin{pmatrix} 2.5\\1\\1\end{pmatrix} + t \cdot \begin{pmatrix} 4\\-7\\4\end{pmatrix})) = d,t)$$

Damit ergibt sich $t \approx \pm 0.44$. Und dies können wir in die Parametergleichung mit eingeben.