Alternative algebras with hyperbolic unit loops*

Juriaans, S. O., Polcino Milies, C., Souza Filho, A.C.

Abstract

Let \mathbb{K} be a quadratic extensions of the field of rational numbers. We investigate the structure of an alternative finite dimensional \mathbb{K} -algebra \mathfrak{A} subject to the condition that for some \mathbb{Z} -order $\Gamma \subset \mathfrak{A}$, the loop of units of $\mathcal{U}(\Gamma)$ does not contain a free abelian subgroup of rank two. As a result, we give a complete classification of the finite and infinite RA-loops L for which $\mathbb{K}L$ has this property. In particular if $\mathbb{K} = \mathbb{Q}(\sqrt{-d})$, we show that L is the Cayley loop and $d \equiv 7 \pmod{8}$ is positive and square free. The complete classification for group rings is still an open problem.

2000 Mathematics Subject Classification. Primary 20N05, 17D05. Secondary 16S34

1 Introduction

Group rings $\mathbb{Z}G$ whose unit groups $\mathcal{U}(\mathbb{Z}G)$ are hyperbolic were characterized in [8] in case G is polycyclic-by-finite. A similar question was considered for RG, R being the ring of algebraic integers of $\mathbb{K}=\mathbb{Q}(\sqrt{-d})$ and G a finite group (see [9]). In [6,7], these results were extended to associative algebras \mathcal{A} of finite dimension over the rational numbers containing a \mathbb{Z} -order $\Gamma\subset\mathcal{A}$ whose unit group $\mathcal{U}(\Gamma)$ is hyperbolic. An algebra \mathcal{A} with this property is said to have the hyperbolic property. Using these general results, the finite semigroups S and the field $\mathbb{K}=\mathbb{Q}(\sqrt{-d})$ such that $\mathbb{K}S$ has the hyperbolic property were classified.

In this paper we study the same problem in the context of non-associative algebras, in special those which are loop algebras. A loop L is a nonempty set with a closed binary operation \cdot relative to which there is a two-sided identity element and such that the right and left translation maps $R_x(g) := g \cdot x$ and $L_x(g) := x \cdot g$ are bijections. L is said to be hyperbolic if it does not contain a free abelian subgroup of rank two. This definition is an extension of the notion of hyperbolic group defined by Gromov [5] via the Flat Plane Theorem [2, Corollary $III.\Gamma.3.10.(2)$].

Here we characterize the RA-loops L and the rings of integers $\mathfrak{o}_{\mathbb{K}}$ of $\mathbb{K} = \mathbb{Q}(\sqrt{-d})$ such that $\mathcal{U}(\mathfrak{o}_{\mathbb{K}}L)$ has the hyperbolic property.

In section 2, we fix notation and give definitions. For fields $\mathbb{K} \subset \mathbb{Q}(\sqrt{-d})$, we focus on the alternative algebras of finite dimension over \mathbb{K} with the hyperbolic property and prove that the Cayley-Dickson algebra over \mathbb{K} , where $d \equiv 7 \pmod{8}$ is a positive integer, has the hyperbolic property. In section 3, we prove a structure theorem for finite dimensional alternative algebras with the hyperbolic property. As a consequence we obtain that, for these algebras, the radical associates with the whole algebra. In the last section we present the main result, giving a full classification of

^{*}The first author is supported by CNPq and FAPESP-Brazil, the second author is supported by CNPq-Brazil and the last author by FAPESP-Brazil.

those RA-loops L whose unit loop $\mathcal{U}(\mathbb{Z}L)$ is hyperbolic and extend this also to $\mathfrak{o}_{\mathbb{K}}L$. It is important to notice that this problem is not yet completely settled for groups.

2 The Hyperbolic Property

 $\mathcal{D} = \{d \in \mathbb{Z} \setminus \{-1,0\} : c^2 \nmid d, c \in \mathbb{Z}, c^2 \neq 1\} \text{ denotes the set of square free integers. For a field } \mathbb{K} \text{ let } \mathbf{H}(\mathbb{K}) = (\frac{\alpha,\beta}{\mathbb{K}}), \ \alpha,\beta \in \mathbb{K} \text{ be the generalized quaternion algebra over } \mathbb{K}, \text{ i.e., } \mathbf{H}(\mathbb{K}) = \mathbb{K}[i,j:i^2 = -\alpha,j^2 = -\beta,ij = -ji =: k]. \text{ The set } \{1,i,j,k\} \text{ is a } \mathbb{K}\text{-basis of } \mathbf{H}(\mathbb{K}). \text{ Such an algebra is a totally definite quaternion algebra, which we will denote } \mathbb{K}(-\alpha,-\beta), \text{ if } \mathbb{K} \text{ is totally real and } \alpha,\beta \text{ are totally positive. The map } \eta:\mathbf{H}(\mathbb{K}) \longrightarrow \mathbb{K}, \ \eta(x=x_1+x_ii+x_jj+x_kk) = x_1^2-\alpha x_i^2-\beta x_j^2+\alpha\beta x_k^2 \text{ is called norm map.}$

Denoting by $[x, y, z] \doteq (xy)z - x(yz)$, recall that a ring A is alternative if [x, x, y] = [y, x, x] = 0, for every $x, y \in A$. Let $\mathfrak A$ be a finite dimension alternative $\mathbb Q$ -algebra. By [10, Theorem 3.18], $\mathfrak A \cong \mathfrak G \oplus \mathfrak R$, where $\mathfrak G$ is a subalgebra of $\mathfrak A$ and $\mathfrak G \cong \mathfrak A/\mathfrak R$ is semi-simple.

Definition 2.1. Let \mathbb{K} be a field, of characteristic zero, and let \mathfrak{A} be an alternative finite dimension \mathbb{K} -algebra. We say \mathfrak{A} has the *hyperbolic property* if there exists a \mathbb{Z} -order $\Gamma \subset \mathfrak{A}$ whose unit loop $\mathcal{U}(\Gamma)$ is a hyperbolic loop.

For an associative finite dimensional \mathbb{Q} -algebra this property was coined the *hyperbolic property* (see [6]). We will use this name also in the non-associative setting.

Proposition 2.2. Let $\mathfrak A$ be an alternative finite dimension $\mathbb Q$ -algebra such that $\mathfrak A \cong \mathfrak S \oplus \mathfrak R$, with $\mathfrak R$ being the radical of $\mathfrak A$. If $\mathfrak A$ has the hyperbolic property, then $\mathfrak R$ is 2-nilpotent. Furthermore, there exists $j_0 \in \mathfrak R$ such that $j_0^2 = 0$ and $\mathfrak R \cong \langle j_0 \rangle_{\mathbb Q}$ is the $\mathbb Q$ -linear span of j_0 over $\mathbb Q$.

Proof. Let $x, y \in \mathfrak{A}$, by Artin's Theorem the subalgebra generated by x, y is an associative algebra. Thus the result follows from [6, Lemma 3.2 and Corollary 3.3]

Definition 2.3. Let \mathcal{A} be an algebra over a field \mathbb{K} . An involution is a \mathbb{K} -linear map $\star : \mathcal{A} \to \mathcal{A}$ $a^{\star} := \overline{a}$ satisfying $(a \cdot b)^{\star} = b^{\star} \cdot a^{\star}$ and $(a^{\star})^{\star} = a$. The map $n : \mathcal{A} \to \mathbb{K}$, $n(a) := a \cdot \overline{a}$, is called a norm on \mathcal{A} .

We recall the Cayley-Dickson duplication process: Let \mathcal{A} be a given \mathbb{K} -algebra, with $char(\mathbb{K}) \neq 2$, $\alpha \in \mathbb{K}$ and x an indeterminate over \mathcal{A} , such that $x^2 = \alpha$. The composition algebra $\mathfrak{A} = (\mathcal{A}, \alpha)$, is the algebra whose elements are of the form a + bx, where $a, b \in \mathcal{A}$, with operations defined as follows:

- (+) $(a_1 + b_1x) + (a_2 + b_2x) := (a_1 + a_2) + (b_1 + b_2)x;$
- $(\cdot) (a_1 + b_1 x) \cdot (a_2 + b_2 x) := (a_1 a_2 + \alpha \overline{b_2} b_1) + (b_2 a_1 + b_1 \overline{a_2}) x$

On \mathfrak{A} , we have a natural involution defined by $\overline{a+bx} := \overline{a} - bx$.

The algebra $\mathfrak{A}:=(\mathbb{K},\alpha,\beta,\gamma)$ is the decomposition algebra (\mathcal{A},γ) , where $\mathcal{A}=(\mathbb{K},\alpha,\beta)$ is the generalized quaternion algebra $H(\mathbb{K}):=(\frac{\alpha,\beta}{K})$, with $\alpha,\beta\in\mathbb{K}$. Writing $\mathfrak{A}=\{u+vz:u,v\in\mathcal{A}\}$ we have that $\mathcal{B}=\{1,x,y,xy\}\cup\{z,xz,yz,(xy)z\}$ is a \mathbb{K} -basis of \mathfrak{A} with $x^2=\alpha,y^2=\beta,z^2=\gamma$. Moreover $n(a_1+a_xx+a_yy+a_{xy}xy+a_zz+a_{xz}zz+a_{yz}yz+a_{(xyz)}(xy)z)=a_1^2-a_x^2\alpha-a_y^2\beta+a_{xy}^2\alpha\beta-a_z^2\gamma+a_{xz}^2\alpha\gamma+a_{yz}^2\beta\gamma-a_{(xyz)}^2\alpha\beta\gamma$ is a norm.

Lemma 2.4. Let \mathcal{A} be the Cayley-Dickson algebra $(\mathbb{K}, -1, -1, -1)$, $\mathbb{K} = \mathbb{Q}(\sqrt{-d})$, $d \in \mathcal{D}$ be a quadratic rational extension and $\mathfrak{o}_{\mathbb{K}}$ the ring of algebraic integers of \mathbb{K} . The algebra \mathcal{A} has the hyperbolic property if, and only if, d is positive and $d \equiv 7 \pmod{8}$.

Proof.

Since the quaternion algebra $\mathbf{H}(\mathbb{K}) \cong (\mathbb{K}, -1, -1)$ over \mathbb{K} is a subalgebra of \mathcal{A} , if \mathcal{A} has the hyperbolic property, then for all \mathbb{Z} -order $\Gamma \subset \mathbf{H}(\mathbb{K})$, the group $\mathcal{U}(\Gamma)$ does not contain a free abelian subgroup of rank two, in particular $\mathbb{Z}^2 \not\hookrightarrow \mathcal{U}(H(\mathfrak{o}_{\mathbb{K}}))$. Therefore, by [9, Theorem 4.7], $d \equiv 7 \pmod 8$ and d > 1.

Conversely, since $d \equiv 7 \pmod 8$ and d is positive we claim that \mathcal{A} is a division algebra. In fact, suppose \mathcal{A} splits. By [3, Theorem I.3.4], \mathcal{A} splits if, and only if, the equation $x^2 + y^2 = -z^2$ has non trivial solution in \mathbb{K} and this yields also that $(\mathbb{K}, -1, -1)$ splits, but $(\mathbb{K}, -1, -1) \cong \mathbf{H}(\mathbb{K})$, and the quaternion algebra $\mathbf{H}(\mathbb{K})$ over \mathbb{K} is a division ring if, and only if, d is positive and $d \equiv 7 \pmod 8$, contradicting the fact that $(\mathbb{K}, -1, -1)$ splits. Suppose there exists a \mathbb{Z} -order $\Gamma \subset \mathcal{A}$ with $\mathbb{Z}^2 \hookrightarrow \Gamma$. Hence there exists $u, v \in \mathcal{U}(\Gamma)$ such that $\langle u, v \rangle \cong \mathbb{Z}^2$. Let $\mathbb{L} := \mathbb{K}[u, v]$ be the ring generated by $\{u, v\}$ over \mathbb{K} , since $[\mathcal{A} : \mathbb{Q}] = 16$ and \mathcal{A} is diassociative $\mathbb{L} = \mathbb{K}(u, v)$ is a field and there exists $\beta \in \mathcal{A}$ such that $\mathbb{L} = \mathbb{K}(\beta)$. Obviously β is not central in \mathcal{A} , because $\mathbb{K} \subsetneq \mathbb{L}$, hence there exist $\gamma \in \mathcal{A}, \gamma\beta \neq \beta\gamma$, therefore the algebra $H := \mathbb{L}(\gamma) = K(\beta, \gamma)$ is a division ring. We claim that $H \cong \mathbf{H}(\mathbb{K})$ the quaternion algebra over \mathbb{K} ; in fact the algebra $F = \mathbb{Q}(\beta, \gamma)$ is a division ring. Computing the degree $[H : \mathbb{Q}] = [H : \mathbb{K}][\mathbb{K} : \mathbb{Q}] = [H : \mathbb{K}] \cdot 2$, but $\mathcal{A} \supsetneq H$ because H is associative, hence $[H : \mathbb{Q}]$ is at most 8. Since F is a division ring $[F : \mathbb{Q}] \geq 4$. Since $u, v \notin \mathbb{K}$ thus $\beta \notin \mathbb{K}$, also \mathbb{K} is the center of H hence $\gamma \notin \mathbb{K}$; clearly $[H : \mathbb{K}] = [F : \mathbb{Q}]$ thus $[F : \mathbb{Q}] = 4$ and F is a quaternion algebra over \mathbb{Q} therefore $H \cong \mathbf{H}(\mathbb{K})$. This last condition shows that there exists $\Gamma' \subset H$ and $\mathbb{Z}^2 \hookrightarrow \mathcal{U}(\Gamma')$, but by [9, Theorem 4.7] H has the hyperbolic property, a contradiction.

Definition 2.5 (Alternative Totally Definite Octonion Algebra). An alternative division algebra \mathfrak{A} whose center is a field \mathbb{K} is called an *alternative totally definite octonion algebra* if \mathbb{K} is totally real and $\mathcal{B} = \{1, x, y, xy\} \cup \{z, xz, yz, (xy)z\}$ is a \mathbb{K} -basis of \mathfrak{A} , with $x^2 = -\alpha$, $y^2 = -\beta$, $z^2 = -\gamma$ and $\alpha, \beta, \gamma \in \mathbb{K}$ all totally positive elements. In this case we write $\mathfrak{A} := \mathbb{K}(-\alpha, -\beta, -\gamma)$.

One should compare our definition with those in [3] and [11, Chapter 3, Section 21]. An example of such an algebra is $(\mathbb{Q}, -1, -1, -1)$, which is non-split.

The alternative totally definite octonion algebra $\mathfrak{A} := \mathbb{K}(-\alpha, -\beta, -\gamma)$ is non-split: since α, β, γ are totally positive and \mathbb{K} is totally real, the equation $x^2 + \alpha y^2 + \beta z^2 + \alpha \beta w^2 + \gamma t^2 = 0$, $x, y, z \in \mathbb{K}$, has only the trivial solution. Thus, by [3, Theorem 3.4], \mathfrak{A} is non-split.

Next we give a characterization of the alternative totally definite octonion algebras which is a naturally extension of [11, Lemma 21.3].

Theorem 2.6. Let $\mathfrak A$ be a non commutative alternative division algebra, finite dimensional over its center $\mathbb K$. Suppose that $\mathbb K$ is a number field, $\mathfrak o_{\mathbb K}$ its ring of algebraic integers and $\mathfrak O$ a maximal order in $\mathfrak A$. Then the following are equivalent.

- 1. $SL_1(\mathfrak{O})$, the loop of units in \mathfrak{O} having reduced norm 1, is finite;
- 2. $|\mathcal{U}(\mathfrak{O}):\mathcal{U}(\mathfrak{o}_{\mathbb{K}})|<\infty$;
- 3. A is an alternative totally definite octonion algebra.

- Proof. (1) \Rightarrow (2): The reduced norm η_1 induces a map: $\varphi : \mathcal{U}(\mathfrak{O})/\mathcal{U}(\mathfrak{o}_{\mathbb{K}}) \longrightarrow \mathcal{U}(\mathfrak{o}_{\mathbb{K}})/(\mathcal{U}(\mathfrak{o}_{\mathbb{K}}))^2$. If $x\mathcal{U}(\mathfrak{o}_{\mathbb{K}}) \in \ker(\varphi)$, then $\varphi(x\mathcal{U}(\mathfrak{o}_{\mathbb{K}})) = \eta_1(x)(\mathcal{U}(\mathfrak{o}_{\mathbb{K}}))^2 \in (\mathcal{U}(\mathfrak{o}_{\mathbb{K}}))^2$ and $\eta_1(x) := \lambda^2 \in (\mathcal{U}(\mathfrak{o}_{\mathbb{K}}))^2 \cap \mathbb{K}$. Define $z := \lambda^{-1}x \in \mathcal{U}(\mathfrak{O})$, clearly $\eta_1(z) = 1$ thus $\lambda^{-1}x \in SL_1(\mathfrak{O})$ and the kernel of φ is $SL_1(\mathfrak{O})\mathcal{U}(\mathfrak{o}_{\mathbb{K}})/\mathcal{U}(\mathfrak{o}_{\mathbb{K}})$. Since we are dealing with finitely generated abelian groups we have that $|\mathcal{U}(\mathfrak{O}) : \mathcal{U}(\mathfrak{o}_{\mathbb{K}})| < \infty$.
- (2) \Rightarrow (3): Let D be a division ring which is maximal in \mathfrak{A} . Since $|\mathcal{U}(\mathfrak{O}):\mathcal{U}(\mathfrak{o}_{\mathbb{K}})|<\infty$, if $\Gamma\subset D$ is a \mathbb{Z} -order, then $|\mathcal{U}(\Gamma):\mathcal{U}(\mathfrak{o}_{\mathbb{K}})|<\infty$. By [11, Lemma 21.3], D is a totally definite quaternion algebra and \mathbb{K} is totally real. Let $x\in\mathfrak{A}$ and B=(K,x). If D is a maximal subalgebra of \mathfrak{A} with $B\subset D$, then B must be a quadratic field. Let $D_0<\mathfrak{A}$ be a maximal subalgebra and $x_0\in\mathfrak{A}\setminus D_0$. Then $\mathfrak{A}=(D_0,x_0)$ and we may suppose that $x_0^2\in\mathbb{K}$. Since D_0 is a totally definite quaternion algebra, then $D_0=(\frac{a_0,b_0}{\mathbb{K}})$. Thus $E:=(\mathbb{K},-a_0,-x_0)$, with $x_0,a_0\in\mathbb{K}$, is a totally definite octonion algebra.
 - $(3) \Rightarrow (1)$ is a consequence of [11, Lemma 21.3].

Let \mathcal{P} be a a theoretical group property. Recall that a group G is virtually \mathcal{P} if it has a subgroup of finite index with the property \mathcal{P} . Also, if G and H are commensurable groups, then there exists subgroups $K \leq G$ and $L \leq H$, both of finite index, which are isomorphic.

Lemma 2.7. Let $\mathfrak{A} = \mathbb{K}(-\alpha, -\beta, -\gamma)$ be an alternative totally definite octonion algebra over a number field \mathbb{K} , and $\mathfrak{O} \subset \mathfrak{A}$ a maximal \mathbb{Z} -order of \mathfrak{A} . The unit loop $\mathcal{U}(\mathfrak{O})$ is a hyperbolic loop if and only if $\mathbb{K} \in \{\mathbb{Q}, \mathbb{Q}(\sqrt{-d}) : -d > 1 \text{ a square free integer}\}.$

Proof. If $\mathcal{U}(\mathfrak{O})$ is a hyperbolic loop, then $\mathbb{Z}^2 \not\hookrightarrow \mathcal{U}(\mathfrak{O})$. Suppose $\mathcal{U}(\mathfrak{O})$ is finite. Let $O \subset \mathbb{K}$ be an order of \mathbb{K} , $\mathcal{U}(O) \subset \mathcal{U}(\mathfrak{O})$ is a finite subgroup. Since \mathbb{K} is totally real, by Dirichlet's Unit Theorem, $\mathbb{K} = \mathbb{Q}$. Suppose $\mathcal{U}(\mathfrak{O})$ is infinite. For $a, b \in \{\alpha, \beta, \gamma\}, a \neq b$ we have, since \mathbb{K} is totally real, that the algebra $\mathcal{A} = \mathbb{K}(-a, -b)$ is a totally definite quaternion algebra. Let $\mathfrak{o}_{\mathcal{A}} \subset \mathcal{A}$ be a \mathbb{Z} -order, then either $|\mathcal{U}(\mathfrak{o}_{\mathcal{A}})| = \infty$ or $\mathbb{K} = \mathbb{Q}$. In either case, since $\mathcal{U}(\mathfrak{o}_{\mathcal{A}})$ and $\mathcal{U}(\mathfrak{O})$ are commensurable, $\mathbb{Z}^2 \not\hookrightarrow \mathcal{U}(\mathfrak{o}_{\mathcal{A}})$. By [11, item (b) of Lemma 21.3], $|\mathcal{U}(\mathfrak{o}_{\mathcal{A}}) : \mathcal{U}(O)|$ is finite, therefore $\mathcal{U}(O)$ is virtually cyclic, thus $\mathbb{K} = \mathbb{Q}(\sqrt{-d})$ where the integer -d > 1.

Conversely, if $\mathbb{K} = \mathbb{Q}$, then $\mathcal{U}(\mathfrak{o}_{\mathbb{K}})$ is finite and, by the item (2) of the last theorem, $\mathcal{U}(\mathfrak{O})$ is finite. If $\mathbb{K} = \mathbb{Q}(\sqrt{-d}), -d > 1$, then, by Dirichlet Unit Theorem, $\mathcal{U}(\mathfrak{o}_{\mathbb{K}}) \cong \mathbb{Z}$ and item (2) of last theorem yields that $\mathbb{Z}^2 \not\hookrightarrow \mathcal{U}(\mathfrak{O})$. Hence $\mathcal{U}(\mathfrak{O})$ is a hyperbolic loop.

3 A Structure Theorem

In this section we prove a structure theorem for alternative algebra with the hyperbolic property. This is not only a crucial step in the classification of the RA-loops whose integral loop algebra has the hyperbolic property but it should be also of independent interest.

Theorem 3.1. Let \mathfrak{A} be an alternative algebra of finite dimension over \mathbb{Q} , \mathcal{A}_i a simple epimorphic image of \mathfrak{A} , and $\Gamma_i \subset \mathcal{A}_i$ a \mathbb{Z} -order. Then

1. The algebra A has the hyperbolic property, is semi-simple and without non-zero nilpotent elements if, and only if,

$$\mathfrak{A} = \oplus \mathcal{A}_i$$
,

and for at most one index i_0 the loop $\mathcal{U}(\Gamma_{i_0})$ is infinite and hyperbolic.

2. The algebra A has the hyperbolic property, is semi-simple with non-zero nilpotent element if, and only if.

$$\mathcal{A} = (\oplus \mathcal{A}_i) \oplus M_2(\mathbb{Q})$$

and for all i the loop $\mathcal{U}(\Gamma_i)$ is finite.

3. The algebra \mathfrak{A} has the hyperbolic property and is non-semi-simple with central radical J if, and only if,

$$\mathfrak{A} = (\oplus \mathcal{A}_i) \oplus J, dim_{\mathbb{O}}(J) = 1$$

and for all i the loop $\mathcal{U}(\Gamma_i)$ is finite.

4. The algebra A has the hyperbolic property and is non-semi-simple with non-central radical if, and only if,

$$\mathfrak{A}=(\oplus \mathcal{A}_i)\oplus T_2(\mathbb{Q}).$$

For each of the items (1), (2), (3) and (4), at least one index j is such that A_j is an alternative totally definite octonion algebra over \mathbb{Q} . The components A_i are one of the following algebras.

i. \mathbb{Q}

ii. a quadratic imaginary extension of \mathbb{Q}

iii. a totally definite quaternion algebra over Q

iv. an alternative totally definite octonion algebra over \mathbb{Q} whose center, except for the index i_0 of item (1), has finitely many units.

Furthermore, in the decompositions of (1), (2), (3) and (4), every simple epimorphic image of \mathfrak{A} in the direct sum is an ideal of \mathfrak{A} . It follows also that the radical associates with the whole algebra.

Now, we will work toward a proof of this theorem, proving it at the end of this section.

From now on, \mathbb{K} denotes the quadratic extension $\mathbb{Q}\sqrt{-d}$, where $d \in \mathcal{D}$. Let F be a field of characteristic $char(F) \neq 2$. The Cayley-Dickson algebras we refer here are 8-dimensional algebras constructed in the previous section. We shall start to look at the algebra $(\mathbb{K}, -1, -1, -1)$ and to one of its \mathbb{Z} -order $(\mathfrak{o}_{\mathbb{K}}, -1, -1, -1)$.

A Cayley-Dickson algebra \mathcal{A} is a simple non-associative alternative ring which may have zero-divisors. If \mathcal{A} does not split, then it is said to be a division ring.

If R is a ring, then we denote by $\mathfrak{Z}(R)$, the Zorn vector matrix algebra over R. This is a split simple alternative algebra.

Clearly if $\{\theta_1, \theta_2\}$ is a \mathbb{Z} -independent set of commuting nilpotent elements then $\langle 1 + \theta_1, 1 + \theta_2 \rangle \cong \mathbb{Z}^2$. We will use this in our next result.

Proposition 3.2. The Zorn vector matrix algebra over \mathbb{Q} , $\mathfrak{Z}(\mathbb{Q})$, does not have the hyperbolic property.

Proof. $\Lambda = \mathfrak{Z}(\mathbb{Z})$ is a \mathbb{Z} -order of $\mathfrak{Z}(\mathbb{Q})$ and if $e_1 := (1,0,0)$ and $e_2 := (0,1,0)$ then

$$\theta_1 := \left(\begin{array}{cc} 0 & e_1 \\ (0) & 0 \end{array} \right) \quad and \quad \theta_2 := \left(\begin{array}{cc} 0 & e_2 \\ (0) & 0 \end{array} \right).$$

are 2-nilpotent element which are Z-independent. The result now follows.

For a commutative and associative unital ring R, a loop L and a group G, the loop ring RL and the group ring RG have been objects of intensive research (see [3, chap. III], [11, chap. 1], [12]).

We will concentrate on RA-loops, i.e., a loop L whose loop algebra RL over some commutative, associative and unitary ring R of characteristic not equal to 2 is alternative, but not associative (see [3]).

RA-loops are Moufang Loops, i.e., loops satisfying any one of the following Moufang identities:

- 1. ((xy)x)z = x(y(xz)) the left Moufang identity;
- 2. ((xy)z)y = x(y(zy)) the right Moufang identity;
- 3. (xy)(zx) = (x(yz))x the middle Moufang identity;

The following duplication process of a group results in Moufang loops. It turns out that all RA-loops are obtained in this way. Let G be a nonabelian group, $g_0 \in \mathcal{Z}(G)$ be a central element, $\star: G \to G$ be an involution such that $g_0^{\star} = g_0$ and $gg^{\star} \in \mathcal{Z}(G)$, for all $g \in G$, and u be an indeterminate. The set $L = G \dot{\cup} G u =: M(G, \star, g_0)$, with the operations

```
1. (g)(hu) = (hg)u;
2. (qu)h = (qh^*)u;
```

3. $(gu)(hu) = g_0h^*g$

is a Moufang Loop (see [3]).

A Hamiltonian loop is a non-associative loop L whose subloops are all normal. A theorem of Norton gives a complete characterization of these loops ([3, Theorem II.8]). In what follows E stands for an elementary abelian 2-group and Q_8 stands for the quaternion group of order 8.

Proposition 3.3. Let G be a Hamiltonian 2-group and $L = M(G, *, g_0)$. Then L is an RA-loop which is a Hamiltonian 2-loop and $U_1(\mathbb{Z}L) = L$.

Proof. This is well know and [4, Theorem 2.3] is a good reference.

Lemma 3.4. Let L be a finite RA-loop. If the algebra $\mathbb{Q}L$ has nonzero nilpotent elements, then $\mathbb{Q}L$ has a simple epimorphic image which is isomorphic to Zorn's matrix algebra over \mathbb{Q} .

Proof. This is well known and follows from [3, Corollary VI.4.3] and [3, Corollary VI.4.8].

The last fact that we need is that alternative algebras are diassociative (see [9]).

Proof. (of Theorem 3.1): Suppose \mathfrak{A} has the hyperbolic property, is semi-simple without non-trivial nilpotent elements. Let $\Gamma \subset \mathfrak{A}$ be a \mathbb{Z} -order. We may suppose that $\Gamma = \oplus \Gamma_i$, where each $\Gamma_i \subset \mathcal{A}_i$ is a \mathbb{Z} -order, and so $\mathcal{U}(\Gamma) = \prod \mathcal{U}(\Gamma_i)$. If $\mathcal{U}(\Gamma)$ is finite, then is each group $\mathcal{U}(\Gamma_i)$, thus by Theorem 2.6 and [11, Lemma 21.2], the components \mathcal{A}_i are determined. If $\mathcal{U}(\Gamma)$ is infinite, then there exists a unique index i_0 such that $\mathcal{U}(\Gamma_{i_0})$ is infinite, otherwise $\mathcal{U}(\Gamma)$ is not hyperbolic. By the hypothesis we have that $\mathcal{U}(\Gamma_{i_0})$ is a hyperbolic loop. Conversely, let $\Gamma \subset \mathcal{A}$ be a \mathbb{Z} -order and let $\mathfrak{o}_{\mathcal{A}_i}$ be the ring of algebraic integers of \mathcal{A}_i . By hypothesis, $\Gamma_0 = \oplus \mathfrak{o}_{\mathcal{A}_i}$ is such that $\mathcal{U}(\Gamma_0)$ is hyperbolic. Since $\mathcal{U}(\Gamma)$ and $\mathcal{U}(\Gamma_0)$ are commensurable, we have that $\mathcal{U}(\Gamma)$ is a hyperbolic loop.

To prove item (2), we suppose that \mathfrak{A} has the hyperbolic property, is semi-simple with non-trivial nilpotent elements. If \mathcal{A}_i is non-associative, then, by Proposition 3.2 each \mathcal{A}_i is a division algebra. Since the algebra \mathfrak{A} has a non-zero nilpotent element, clearly there exists exactly one component

 $A_j \cong M_2(\mathbb{Q})$. To see this, by Lemma 3.4 and Proposition 3.2, if A_i contains a nilpotent element, then A_i is associative and by [6, Theorem 3.1], this component is $M_2(\mathbb{Q})$. Since $\mathcal{U}(M_2(\mathbb{Q})) \cong GL_2(\mathbb{Z})$ contains a copy of \mathbb{Z} , it follows that each other component $A_i, i \neq j$ is as predicted. Conversely, observe that $GL_2(\mathbb{Z})$ is an infinite hyperbolic group. It now easily follows that A, whose components A_i are prescribed, has the hyperbolic property.

Item (3): Proposition 2.2 assures that the radical J has dimension 1 over \mathbb{Q} , $J = \langle j_0 \rangle_{\mathbb{Q}}$. Since J is central and $\langle 1+j_0 \rangle \cong \mathbb{Z}$ it clearly follows that for each \mathcal{A}_i any \mathbb{Z} -order $\Gamma_i \subset \mathcal{A}_i$. We must have that $\mathcal{U}(\Gamma_i)$ is finite and \mathcal{A}_i is as described. The converse is also obvious.

Item (4): By [10, Theorem 3.18], $\mathfrak{A} \cong \mathfrak{S} \oplus \mathfrak{R}$ whose $\mathfrak{S} \cong \bigoplus_{i=1}^{N} \mathcal{A}_i$. Assume \mathfrak{A} has the hyperbolic property, then $\mathfrak{R} = \mathbb{Q} j_0$, where $j_0^2 = 0$. Let $\{e_i/e_i \in \mathcal{A}_i\}$ be the set of primitive central idempotents of \mathfrak{S} . For each idempotent e_i , $e_i \cdot j_0 \in \mathfrak{R}$ and hence, $e_i \cdot j_0 = \lambda_i j_0$. Since $e_i = e_i^2$ and \mathcal{A}_i is diassociative, we have $e_i \cdot (e_i \cdot j_0) = e_i \cdot j_0 = \lambda_i e_i$, also $e_i \cdot (e_i \cdot j_0) = e_i \cdot (\lambda_i j_0) = \lambda_i^2 e_i$, thus $\lambda_i^2 = \lambda_i$. Since \mathcal{A} is unitary, $1 = e_1 + \cdots + e_N$, we have that $j_0 = j_0(\lambda_1 + \cdots + \lambda_N)$ and hence $\sum \lambda_i = 1$. So, there exists a unique index I such that $e_I \cdot j_0 = j_0$. Similarly, there exists a unique index I, such that $f_0 \cdot e_I = f_0$. Reordering indexes, we have that $f_0 \cdot e_I = f_0$. Let $f_0 = f_0$ be the annihilator of $f_0 = f_0$. It is easily seen that $f_0 = f_0 = f_0$. Similarly in an analysis of $f_0 = f_0 = f_0$. To see this use the fact that, the radical being one dimensional, $f_0 = f_0 = f_0$, for some $f_0 = f_0 = f_0 = f_0$. By $f_0 = f_0 = f_0 = f_0 = f_0$, then $f_0 = f_0 = f_0$

Observe that if $a \in \mathcal{A}_1$ and $a \cdot j_0 = \lambda j_0$ then $a - \lambda e_1 \in M$. It follows that $\mathcal{A}_1 = M \oplus \mathbb{Q} e_1$. From this and the fact that M = 0 if follows that \mathcal{A}_1 is one dimensional. Similarly we prove that \mathcal{A}_N is one dimensional.

If \mathcal{A}_i is non-associative, then, by Lemma 3.4 and Proposition 3.2, \mathcal{A}_i has no nilpotent elements and we can write $\mathfrak{A} \cong \bigoplus_{2 \leq i \leq N-1} \mathcal{A}_i \oplus \mathcal{A}_1 \oplus \mathcal{A}_N \oplus \mathfrak{R}$. By [6, Theorem 3.6, item (iv))] we have $\mathcal{A}_1 \oplus \mathcal{A}_N \oplus \mathfrak{R} \cong T_2(\mathbb{Q})$.

4 RA-Loops with Hyperbolic Unit Loop $\mathcal{U}(RL)$

In this section we classify the RA-loops L and the ring of algebraic integers $\mathfrak{o}_{\mathbb{K}}$ of a field \mathbb{K} , such that the loop of units loop $\mathcal{U}(RL)$ is a hyperbolic loop. We start to look at integral loop rings of finite RA-loops.

Lemma 4.1. Let L be a finite RA-loop. The loop $\mathcal{U}(\mathbb{Z}L)$ is hyperbolic if, and only if, $\mathcal{U}(\mathbb{Z}L)$ is trivial.

Proof. As we saw before, there exists a non-abelian finite group G such that $L = M(G, *, g_0) = G \dot{\cup} Gu$. Since $\mathcal{U}(\mathbb{Z}L)$ is hyperbolic we have that $\mathbb{Z}^2 \not\hookrightarrow \mathcal{U}(\mathbb{Z}G)$. G being finite and [8, Theorem 3.2] implies that $G \in \{S_3, D_4, C_3 \rtimes C_4, C_4 \rtimes C_4\} \cup \{M : M \text{ is a 2-Hamiltonian group}\}$. By [1, Theorem 3.1], $G' \cong C_2$ and hence $G \notin \{S_3, C_3 \rtimes C_4\}$. We also have that $G \notin \{D_4, C_4 \rtimes C_4\}$, since if this were the case then the algebra $\mathbb{Q}G$ would contain nilpotent elements and thus, by Lemma 3.4, $\mathbb{Q}L$ would contain a copy of Zorn's matrix algebra. Consequently, for some \mathbb{Z} -order $\Gamma \subset \mathbb{Q}L$, we would have that $\mathbb{Z}^2 \hookrightarrow \mathcal{U}(\Gamma)$, a contradiction.

Finally, if G is a Hamiltonian 2-group, then, by Proposition 3.3, $\mathcal{U}(\mathbb{Z}L)$ is trivial.

We can now characterize RA-loops whose integral loop ring has the hyperbolic property.

Theorem 4.2. Let L be an RA-loop. The loop $\mathcal{U}(\mathbb{Z}L)$ is hyperbolic if, and only if, one of the following holds.

- 1. L is a finite loop
- 2. L is a loop whose center is virtually cyclic. T(G), the torsion subloop of G is abelian with its exponent dividing 4 or 6 and T(L) is a Hamiltonian 2-loop (it can be a group) whose subgroups are all normal in L.

In either case we have that $U_1(\mathbb{Z}L) = L$.

Proof. The previous lemma deals with the finite case and so we only have to deal with the case when L is infinite. Obviously we may suppose that L is finitely generated and hence its torsion subloop, T(L), is finite. It is known that the center $\mathcal{Z}(L)$ is a finitely generated abelian group, and so $\mathcal{Z}(L) \cong T(\mathcal{Z}(L)) \times F$, where $T(\mathcal{Z}(L))$ is a finite abelian group and F an abelian torsion free group, (see [1], Lemma 2.1). $\mathcal{U}(\mathbb{Z}L)$ being hyperbolic, gives us that L is hyperbolic and thus F, and hence $\mathcal{Z}(L)$, is virtually cyclic.

Choose an element $z_0 \in \mathcal{Z}(L)$ of infinite order. If $\mathcal{U}(\mathbb{Z}(T(L)))$ is non-trivial then it contains an element y_0 of infinite order and hence $\langle x_0, y_0 \rangle$ is a copy of \mathbb{Z}^2 . Hence we must have that $\mathcal{U}(\mathbb{Z}(T(L)))$ is trivial and, by the previous lemma, T(L) is a hamiltonion 2-loop or 2-group. In particular $\mathbb{Z}T(L)$ does not contain nilpotent elements and hence all subgroups of T(L) are normal in L (this is a standard proof in group rings). So we proved have that L is a finitely generated RA-loop whose torsion subloop T(L) is a Hamiltonian 2-loop and all its subloops are normal in L. Therefore, by $[3, \operatorname{Proposition} XII.1.3]$, $\mathcal{U}(\mathbb{Z}L) = L[\mathcal{U}(\mathbb{Z}(T(L)))] = LT(L) = L$, i.e., $\mathcal{U}(\mathbb{Z}L)$ is trivial. Since $[L:\mathcal{Z}(L)] = 8$ it follows that the unit group is also virtually cyclic.

We now look at the case RL, with $R = \mathfrak{o}_{\mathbb{K}}$ is the ring of algebraic integers of a quadratic extension.

Theorem 4.3. Let L be a finite RA-loop and let $R = \mathfrak{o}_{\mathbb{K}}$ be the ring of algebraic integers of $\mathbb{K} = \mathbb{Q}(\sqrt{-d}), d \in \mathcal{D}$. The loop of units $\mathcal{U}_1(RL)$ is hyperbolic if, and only if, $L = M_{16}(Q_8)$ and $d \in \mathbb{Z}^+$ with $d \equiv 7 \pmod{8}$.

Proof. Clearly $\mathbb{Z}L \subset \mathfrak{o}_{\mathbb{K}}L$ and thus $\mathcal{U}_1(\mathbb{Z}L)$ is also hyperbolic. By the Lemma 4.1, $\mathcal{U}(\mathbb{Z}L)$ is trivial and $L \cong M_{16}(Q_8) \times E \times A$. Since the hyperbolic loop $\mathcal{U}(\mathfrak{o}_{\mathbb{K}}L) \supset \mathcal{U}(\mathfrak{o}_{\mathbb{K}}Q_8)$, we have that $\mathcal{U}(\mathfrak{o}_{\mathbb{K}}Q_8)$ is a hyperbolic group. Therefore $d \equiv 7 \pmod{8}$ and \mathbb{K} is an imaginary extension of \mathbb{Q} (see [9, Theorem 4.7]). It follows that E = A = 1.

Conversely, it is well known that $\mathbb{K}L = \mathbb{K}(M_{16}(Q_8)) \cong 8 \cdot \mathbb{K} \oplus (\mathbb{K}, -1, -1, -1)$ ([3, Corollary VII.2.3]). By Lemma 2.4, $(\mathbb{K}, -1, -1, -1)$ has the hyperbolic property. Since orders in $\mathbb{K}L$ have commensurable unit loops, we have that $\mathcal{U}_1(\mathfrak{o}_{\mathbb{K}}L)$ is hyperbolic.

Theorem 4.4. Let L be an RA-loop and $\mathfrak{o}_{\mathbb{K}}$ be the ring of algebraic integers of $\mathbb{K} = \mathbb{Q}(\sqrt{-d}), d \in \mathcal{D}$. The loop of units $\mathcal{U}_1(\mathfrak{o}_{\mathbb{K}}L)$ is hyperbolic if, and only if, L and d are as follows:

- 1. $L = M_{16}(Q_8)$ and $d \equiv 7 \pmod{8}$, d > 0.
- 2. L is an infinite virtually cyclic loop whose torsion subloop are all normal. Furthermore, T(L) is an abelian group of exponent dividing 2, if d > 0, 4 if d = 1 and 6 if d = 3.

In each case we have that $U_1(\mathfrak{o}_{\mathbb{K}}L) = L$.

Proof. The finite case is settled by the previous theorem and so me may suppose that L is infinite and finitely generated. In particular its torsion subloop is finite.

Since $\mathbb{Z}L \subset \mathfrak{o}_{\mathbb{K}}L$, we have that $\mathcal{U}_1(\mathbb{Z}L)$ is hyperbolic and hence, by Theorem 4.2, T(L) is either a Hamiltonian Moufang 2-loop or an abelian group of exponent dividing 4 or 6, L is virtually cyclic and has a central trivial unit z_0 of infinite order.

If T(L) is a loop, then $\mathcal{U}_1(\mathfrak{o}_{\mathbb{K}}T(L))$ is hyperbolic. By Theorem 4.2, $T(L) = M_{16}(Q_8)$ and since $\mathbf{H}(\mathfrak{o}_{\mathbb{K}})$ has non-trivial units of infinite order it follows that there exists $u_0 \in \mathcal{U}(\mathfrak{o}_{\mathbb{K}}T(L))$ of infinite order (see also [9, Theorem 5.4] or [12, Theorem 1.8.6]). Hence $\langle z_0, u_0 \rangle \cong \mathbb{Z}^2$, a contradiction and therefore T(L) is a group.

Theorem 4.2 guarantees that T(L) is an abelian group of exponent dividing 4 or 6. By hypothesis and choice of z_0 we have that $\mathcal{U}_1(\mathfrak{o}_{\mathbb{K}}T(L))$ is trivial. In particular we have that T(L) is an elementary abelian 2-group and d > 0, or T(L) is an abelian group of exponent dividing 4 and d = 1, or T(L) is an abelian group of exponent dividing 6 and d = 3 (see [9, Theorem 3.7]).

Conversely, if T(L) is one of the groups of item (2), then $\mathcal{U}_1(\mathfrak{o}_{\mathbb{K}}T(L))$ is trivial ([9, Theorem 3.7]). As we already observed in Theorem 4.2 we must have that $\mathcal{U}_1(\mathfrak{o}_{\mathbb{K}}L) = L$ and hence it is hyperbolic.

In the proof of the previous theorem, we claimed the existence of a unit $u \in \mathcal{U}_1(\mathfrak{o}_{\mathbb{K}} M_{16}(Q_8))$ of infinite order which is given by [9, Theorem 5.4]. In fact, let $\epsilon := x + y\sqrt{d}$ be the fundamental invertible of $\mathfrak{o}_{\mathbb{K}}$. We provide two explicit examples:

- 1. Taking d = 7 we have that $\epsilon = 8 + 3\sqrt{7}$. Take $u = 24\sqrt{-7} (24\sqrt{-7})i 63j + 64k$; then u is a unit of infinite order and of augmentation 1 (see ([12], Proposition 1.8.2);
- 2. For d=39 we have that $\epsilon=25+4\sqrt{39}$ and $v=2\sqrt{-39}-(2\sqrt{-39})i-12j+13k$ has infinite order

Acknowledgments: This work is part of the third author's Ph.D thesis ([12]) written under the supervision of the first author.

References

- [1] de Barros, L. G. X., Juriaans, S. O. *Units in Alternative Integral Loop Rings*, Result. Math., 31 (1997), 266-281.
- [2] Bridson, M. R., Haefliger, A. Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999.
- [3] Goodaire, E. G., Jespers, E., Polcino Milies, C. Alternative Loop Rings, Elsevier, Oxford, 1996.
- [4] Goodaire, E. G., Polcino Milies, F. C. When is a unit loop f-unitary?, Proceedings of the Edinburgh Mathematical Society (2005) 48, 125-142.
- [5] Gromov, M. Hyperbolic Groups, in Essays in Group Theory, M. S. R. I. publ. 8, Springer, 1987, 75-263.
- [6] Iwaki, E., Juriaans, S. O., Souza Filho, A. C. Hyperbolicity of Semigroup Algebras, Journal of Algebra, 319(12)(2008), 5000 50015.
- [7] Iwaki, E. Jespers, E., Juriaans, S. O., Souza Filho, A. C. Hyperbolicity of Semigroup Algebras II, Journal of Algebra and Its Applications, to appear.

- [8] Juriaans, S. O., Passi, I. B. S., Prasad, D. *Hyperbolic Unit Groups*, Proceedings of the American Mathematical Society, vol 133(2), 2005, pages 415-423.
- [9] Juriaans, S. O., Passi, I. B. S., Souza Filho, A. C. Hyperbolic ℤ-Orders and Quaternion Algebras, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 119, No. 1, February 2009, pp. 1 − 14.
- [10] Schafer, R. D. An Introduction to Nonassociative Algebras, Academic Press Inc., USA, 1966.
- [11] Sehgal, S. K. Units in Integral Group Rings, Longman, Harlon, 1994.
- [12] Souza Filho, A.C. Sobre uma Classificação dos Anéis de Inteiros, dos Semigrupos Finitos e dos RA-Loops com a Propriedade Hiperbólica (On a Classification of the Integral Rings, Finite Semigroups and RA-Loops with the Hyperbolic Property), PhD. Thesis, IME-USP, São Paulo, 2006, 108 pages.

Universidade de São Paulo, Instituto de Matemática e Estatística (IME-USP) Caixa Postal 66281, São Paulo, CEP 05315-970 - Brasil E-mails: ostanley@usp.br and polcino@ime.usp.br –

Universidade de São Paulo, Escola de Artes, Ciências e Humanidades (EACH-USP), Rua Arlindo Béttio, 1000, Ermelindo Matarazzo, São Paulo, CEP 03828-000 - Brasil E-mail: acsouzafilho@ime.usp.br