Cálculo Numérico CAN0001

CCT - UDESC

Prof. Fernando Deeke Sasse

Prática com Python

Resolva os seguintes problemas usando os módulos Numpy e/ou Scipy do Python:

- 1. Plote a curva $y = x^4 4x^3 x^2 + 5x 1$ para mostrar as principais características do gráfico. Em particular, certifique-se que todas as intersecções e pontos de retorno apareçam no figura. A equação $x^4 4x^3 x^2 + 5x 1 = 0$ possui alguma solução inteira? Explique.
- 2. (a) Plote o gráfico de $y = \sqrt{x} \sin(60 x)$ no intervalo de x = 0 a $x = 3\pi$
- (b) Plote as curvas $y = \sqrt{x} \sin(60 x)$, $y = \sqrt{x}$ e $y = -\sqrt{x}$ simultaneamente para mostrar como a curva $y = \sqrt{x} \sin(60 x)$ está "presa" entre as curvas $y = \sqrt{x}$ e $y = -\sqrt{x}$.
- 3. Plote as funções $y = x^2 5x + 6$ e $y = \frac{1}{(x-2)^2}$ juntas. Experimente diferentes intervalos para y de modo que ambos gráficos sejam mostrados de forma satisfatória.
- 4. Estime graficamente onde as funções definidas por f(x) = 20 x e $h(x) = 1.012^x$ se interceptam.
- 5. Faça o gráfico simultâneo das superfícies definidas por $\sin(xy) + \cos(z) + 2 = 0$ e x + 2y x = 3.
- 6. Faça o gráfico das seguintes funções parametrizadas:

(a)
$$r(t) = \left(\frac{t^2 - 1}{t^2 + 1}, \frac{2t}{t^2 + 1}\right)$$
, para todo t .

(b)
$$r(t) = \left(\frac{4t^3}{9} - \frac{14t^2}{9} + \frac{t}{9} + 1, -\frac{4t^3}{9} - \frac{t^2}{9} + \frac{14t}{9}\right)$$
, para t pertencendo a $(0,1)$

Determine as raízes reais das equações abaixo e ilustre graficamente:

7.
$$\sin(x) + \sin(2x) - x + \frac{1}{2} = 0$$
,

8.
$$|x|^3 - e^x = 0$$
,

- 9. $\sin(x) x + 2 = 0$ (determine a menor raiz positiva e a maior raiz negativa, se existirem).
- 10. Determine as duas primeiras raízes positivas e os dois primeiros pontos positivos de mínimo da função

$$f(x) = \cos(x) + 4\sin(x) + 2 = 0.$$