Test #2: VII / Written Portion

f a We know that f is differentiable. For all values of χ and f'(-1) = f'(1) = 0. Hence x = -1 and x = 1 are critical Points of f. Since f'(x) > 0 for all x in $(-\infty, -1)$ and f'(x)<0 For all x in (-1,1), by the First Derivative Test we can conclude that f has a local maximum at X=-1. Similarly, Since F'(x) < 0 on (-1,1) and F'(x) > 0 on $(1, \infty)$, by the First Derivative Test we can conclude that I has a local minimum at X=1.

b A possible graph for f on (-3,3) is: $\frac{|acal max.}{4 \times 2-1}$ for $\frac{|acal max.}{2}$

C Since f is differentiable for all values of X, it's also continuous for all values of X. In particular, f is continuous on [6,11] and differentiable on (6,11). Hence, by the Mean Value Theorem, there exists a number C in (6,11) such that $f'(c) = \frac{f(11) - f(6)}{11 - 6} = \frac{f(11) - 4}{5}$. We know f'(x) ? a for all x ? 5, and so since c is in (6,11) we have $f'(c) \ge a$. Hence, $\frac{f(1)-4}{5} \ge a = f(1)-4 \ge 10 = f(1) \ge 14$. Therefore,

the <u>Smallest</u> f(11) could be is 14.

Test #2: V33/ Wr:tten Portion/

f a We know that f is differentiable for all values of Xand f'(-1) = f'(1) = 0. Hence x = -1 and x = 1 are critical Points of f. Since f'(x) > 0 For all x in (-1,1) and F'(x)<0 For all X in (1,00), by the First Derivative Test we can conclude that I has a local maximum at X=1. Similarly, Since F'(x) < 0 on $(-1, \infty)$ and F(x) > 0 on (-1, 1), by the First Derivative Test we can conclude that I has a local minimum at X= - |.

C Since f is differentiable for all values of X, it's also continuous for all values of X. In particular, f is continuous on [7,11] and differentiable on (7,11). Hence, by the Mean Value Theorem, there exists a number C in (7,11) such that $f'(c) = \frac{f(11) - f(7)}{11 - 7} = \frac{-10 - f(7)}{4}$

We know $f'(x) \le -2$ for all $X \ge 5$, and so since C is in (7,11) we have $f'(c) \le -2$. Hence, $\frac{-10-f(7)}{4} \le -2 \ge -10-f(7) \le -8 \ge f(7) \ge -2$.

Therefore, the Smallest f(7) could be is -a.

Test #2: V55/ Wr:tten Portion/

f a We know that f is differentiable for all values of Xand f'(-a) = f'(1) = 0. Hence x = -a and x = -a are critical Points of f. Since f'(x) > O For all x in (-00,-a) and f'(x)<0 For all x in (-a,1), by the First Derivative Test we can conclude that I has a local maximum at X=-a. Similarly, Since F'(x) < 0 on (-2,1) and F'(x) > 0 on $(1,\infty)$, by the First Derivative Test we can conclude that I has a local minimum at X= |.

b A possible graph for f on (-3,3) is: local max.

at x=-2local min.

at x=1

Since f is differentiable for all values of X, it's also continuous for all values of X. In particular, f is continuous on [7,11] and differentiable on (7,11). Hence, by the Mean Value Theorem, there exists a number c in (7,11) such that $f'(c) = \frac{f(11) - f(7)}{11 - 7} = \frac{20 - f(7)}{4}$

We know $f'(x) \ge 3$ for all $x \ge 5$, and so since C is in (7,11) we have $f'(c) \ge 3$. Hence, $\frac{20 - f(7)}{4} \ge 3 \implies 20 - f(7) \ge 12 \implies f(7) \le 8$.

Therefore, the largest f(7) could be is 8.

Test #2: V77/ Written Portion/

f a We know that f is differentiable. For all values of Xand $f'(-1) = f'(\lambda) = 0$. Hence x = -1 and $x = \lambda$ are critical Points of f. Since f'(x)>0 For all x in (-1,2) and F'(x)<0 For all X in (a,00), by the First Derivative Test we can conclude that I has a local maximum at X=2. Similarly, Since F'(x) < 0 on $(-\infty, -1)$ and F'(x) > 0 on (-1, a), by the First Derivative Test we can conclude that I has a local minimum at X= - |.

C) Since
$$f$$
 is differentiable for all values of X , it's also continuous for all values of X . In particular, f is continuous on [6,11] and differentiable on (6,11). Hence, by the Mean Value Theorem, there exists a number C in (6,11) such that $f'(c) = \frac{f(11) - f(6)}{11 - 6} = \frac{f(11) - (-2)}{5}$.

We know f'(x)≤-3 for all x≥5, and so since c is in (6,11) we

have $f'(c) \le -3$. Hence, $\frac{f(11)-(-2)}{5} \le -3 \Rightarrow f(11)+2 \le -15 \Rightarrow f(11) \le -17$.

Therefore, the largest f(11) could be is -17.