

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM  
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE  
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) Internationale Patentklassifikation <sup>6</sup> :<br><b>C07D 201/08, B01J 21/06</b>                                                                                                                                                                                                                                                                                                                                                                       |  | A1                                                                                                                                                                                                                                                                                                                 | (11) Internationale Veröffentlichungsnummer: <b>WO 99/11615</b><br><br>(43) Internationales Veröffentlichungsdatum: <b>11. März 1999 (11.03.99)</b> |
| <br>(21) Internationales Aktenzeichen: <b>PCT/EP98/05356</b><br><br>(22) Internationales Anmeldedatum: <b>24. August 1998 (24.08.98)</b><br><br>(30) Prioritätsdaten:<br><b>197 38 462.5                    3. September 1997 (03.09.97)            DE</b>                                                                                                                                                                                                      |  | <br>(81) Bestimmungsstaaten: <b>AL, AU, BG, BR, BY, CA, CN, CZ, GE, HU, ID, IL, JP, KR, KZ, LT, LV, MK, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</b> |                                                                                                                                                     |
| <br>(71) Anmelder ( <i>für alle Bestimmungsstaaten ausser US</i> ): <b>BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).</b><br><br>(72) Erfinder; und<br>(75) Erfinder/Anmelder ( <i>nur für US</i> ): <b>FUCHS, Eberhard [DE/DE]; Bensheimer Ring 5c, D-67227 Frankenthal (DE). FLICK, Clemens [DE/DE]; Am Bildstöckel 16, D-76863 Herxheim (DE).</b><br><br>(74) Gemeinsamer Vertreter: <b>BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).</b> |  | <br><b>Veröffentlicht</b><br><i>Mit internationalem Recherchenbericht.<br/>Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>                                                                                                       |                                                                                                                                                     |

(54) Title: MOULDABLE MATERIALS WHICH CAN BE USED AS A CATALYST

(54) Bezeichnung: ALS KATALYSATOR GEEIGNETE FORMMASSEN

(57) Abstract

The present invention relates to mouldable materials which can be used as a catalyst for producing cyclic lactames by reacting aminocarboxylic acid nitriles with water in a liquid phase in a fixed bed reactor. The mouldable materials contain no reaction-soluble constituent and contain pyrogenic titanium dioxide as their main component. The mouldable materials can be obtained by moulding the pyrogenic titanium dioxide into moulded articles, and by processing the pyrogenic titanium dioxide before or after moulding with an acid in which it dissolves with difficulty, wherein said acid is taken in amount of between 0.1 and 30 wt % relative to said pyrogenic titanium dioxide.

(57) Zusammenfassung

Zur Herstellung cyclischer Lactame durch Umsetzung von Aminocarbonsäurenitrilen mit Wasser in flüssiger Phase in einem Festbettreaktor als Katalysator geeignete Formmassen, welche unter den Reaktionsbedingungen keine löslichen Bestandteile aufweisen, enthaltend als wesentlichen Bestandteil pyrogenes Titandioxid, wobei die Formmassen erhältlich sind durch Formen des pyrogenen Titandioxids zu Formkörpern und Behandeln des pyrogenen Titandioxids vor oder nach dem Formen mit 0,1 bis 30 Gew.-% bezogen auf das pyogene Titandioxid einer Säure, in der das pyogene Titandioxid schwerlöslich ist.

**LEDIGLICH ZUR INFORMATION**

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

|    |                              |    |                                   |    |                                                 |    |                                |
|----|------------------------------|----|-----------------------------------|----|-------------------------------------------------|----|--------------------------------|
| AL | Albanien                     | ES | Spanien                           | LS | Lesotho                                         | SI | Slowenien                      |
| AM | Armenien                     | FI | Finnland                          | LT | Litauen                                         | SK | Slowakei                       |
| AT | Österreich                   | FR | Frankreich                        | LU | Luxemburg                                       | SN | Senegal                        |
| AU | Australien                   | GA | Gabun                             | LV | Lettland                                        | SZ | Swasiland                      |
| AZ | Aserbaidschan                | GB | Vereinigtes Königreich            | MC | Monaco                                          | TD | Tschad                         |
| BA | Bosnien-Herzegowina          | GE | Georgien                          | MD | Republik Moldau                                 | TG | Togo                           |
| BB | Barbados                     | GH | Ghana                             | MG | Madagaskar                                      | TJ | Tadschikistan                  |
| BE | Belgien                      | GN | Guinea                            | MK | Die ehemalige jugoslawische Republik Mazedonien | TM | Turkmenistan                   |
| BF | Burkina Faso                 | GR | Griechenland                      | ML | Mali                                            | TR | Türkei                         |
| BG | Bulgarien                    | HU | Ungarn                            | MN | Mongolei                                        | TT | Trinidad und Tobago            |
| BJ | Benin                        | IE | Irland                            | MR | Mauretanien                                     | UA | Ukraine                        |
| BR | Brasilien                    | IL | Israel                            | MW | Malawi                                          | UG | Uganda                         |
| BY | Belarus                      | IS | Island                            | MX | Mexiko                                          | US | Vereinigte Staaten von Amerika |
| CA | Kanada                       | IT | Italien                           | NE | Niger                                           | UZ | Usbekistan                     |
| CF | Zentralafrikanische Republik | JP | Japan                             | NL | Niederlande                                     | VN | Vietnam                        |
| CG | Kongo                        | KE | Kenia                             | NO | Norwegen                                        | YU | Jugoslawien                    |
| CH | Schweiz                      | KG | Kirgisistan                       | NZ | Neuseeland                                      | ZW | Zimbabwe                       |
| CI | Côte d'Ivoire                | KP | Demokratische Volksrepublik Korea | PL | Polen                                           |    |                                |
| CM | Kamerun                      | KR | Republik Korea                    | PT | Portugal                                        |    |                                |
| CN | China                        | KZ | Kasachstan                        | RO | Rumänien                                        |    |                                |
| CU | Kuba                         | LC | St. Lucia                         | RU | Russische Föderation                            |    |                                |
| CZ | Tschechische Republik        | LI | Liechtenstein                     | SD | Sudan                                           |    |                                |
| DE | Deutschland                  | LK | Sri Lanka                         | SE | Schweden                                        |    |                                |
| DK | Dänemark                     | LR | Liberia                           | SG | Singapur                                        |    |                                |
| EE | Estland                      |    |                                   |    |                                                 |    |                                |

Als Katalysator geeignete Formmassen

Beschreibung

5

Die vorliegende Erfindung betrifft Formmassen, die als Katalysator zur Herstellung von cyclischen Lactamen durch Umsetzung von Aminocarbonsäurenitrilen mit Wasser geeignet sind, enthaltend im wesentlichen Titandioxid.

10

Aus der DE-B 25 54 198 sind Formkörper aus Titandioxid bekannt, die durch Formen von Titandioxid und Calcinieren der Formkörper bei 300 bis 800°C erhalten werden, wobei das Titandioxid durch Hydrolyse eines Titansalzes hergestellt wird und vor oder nach 15 dem Formen mit 0,01 bis 50 Gew.-% bezogen auf Titandioxid mit einer Mineralsäure oder einer organischen Säure behandelt wird.

Derartige Formkörper weisen aber den Nachteil auf, daß das durch Hydrolyse hergestellte Titandioxid nur eine für katalytische Zwecke unbefriedigende Reinheit aufweist. Dies führt bei Reaktionen, bei denen solche Formkörper als Katalysator eingesetzt werden, zu Einbußen in der Ausbeute und der Selektivität.

Aus der DE-C 32 17 751 sind als Katalysator geeignete Preßlinge bekannt, die bis zu 99 Gew.-% aus pyrogen hergestelltem Titandioxid bestehen mit einem SiO<sub>2</sub>-Gehalt von 0 bis 1 Gew.-% und einem zugänglichen Porenvolumen von 45-55 % des Preßlingvolumens und einer Bruchfestigkeit von mindestens 1,630 N. Derartige Preßlinge weisen den Nachteil auf, daß zu ihrer Herstellung die Verwendung 30 eines Preßhilfsmittels, Sieben des Gemenges und Überführen des gesiebten Gemisches in ein fließfähiges Pulver angewandt werden müssen, um Tabletten mit Hilfe einer Tablettenpresse herzustellen.

35 Aufgabe der vorliegenden Erfindung war es daher, als Katalysator geeignete Formmassen enthaltend als wesentlichen Bestandteil Titandioxid bereitzustellen, die die genannten Nachteile nicht aufweisen und auf technisch einfache und wirtschaftliche Weise hergestellt werden können.

40

Demgemäß wurden als Katalysator geeignete Formmassen, welche unter den Reaktionsbedingungen keine löslichen Bestandteile aufweisen, enthaltend als wesentlichen Bestandteil pyrogenes Titandioxid, wobei die Formmassen erhältlich sind durch Formen des 45 pyrogenen Titandioxids zu Formkörpern und Behandeln des pyrogenen Titandioxids vor oder nach dem Formen mit 0,1 bis 30 Gew.-%

2

bezogen auf das pyrogene Titandioxid einer Säure, in der das pyrogene Titandioxid schwerlöslich ist, gefunden.

Das pyrogene Titandioxid, kann in verschiedenen Modifikationen wie amorph, als Anatas oder als Rutil oder deren Phasenmischungen vorliegen.

Das vorstehend genannte Titandioxid kann mit Verbindungen der 1. bis 7., insbesondere 2., 3. oder 4. Hauptgruppe des Periodensystems vorzugsweise Aluminiumoxid, wie alpha- oder gamma-Aluminiumoxid, oder Zinnoxid, der 1. bis 7. Nebengruppe des Periodensystems, der Elemente der Eisengruppe oder der Lanthaniden, vorzugsweise Cerioxid, oder Aktiniden sowie Gemischen solcher Verbindungen dotiert sein bzw. diese enthalten.

Gegebenenfalls können diese Katalysatoren bis zu jeweils 50 Gew.-% an Kupfer, Zinn, Zink, Mangan, Eisen, Kobalt, Nickel, Ruthenium, Palladium, Platin, Silber oder Rhodium enthalten.

Diese katalytisch aktiven Oxide können in sich bekannter Weise, beispielsweise durch Hydrolyse der entsprechenden Organyle, Alkoholate, Salze mit organischen oder anorganischen Säuren und anschließendem Temperiern oder Calcinieren sowie pyrogen hergestellt werden und sind allgemein kommerziell verfügbar.

Die Oxide werden erfindungsgemäß vor oder nach dem Formen mit einer Säure behandelt. Als Säure kommen organische Säuren wie Oxalsäure, Propionsäure, Buttersäure, Maleinsäure oder anorganische Säuren wie Isopolysäuren, Heteropolysäuren, Schwefelsäure oder Salzsäure. Besonders geeignete Katalysatoren sind erhältlich durch eine Behandlung mit Essigsäure, Ameisensäure, Salpetersäure, insbesondere Phosphorsäure.

Es können auch Gemische von Säuren eingesetzt werden.

Die Behandlung kann in einer oder in mehreren Stufen kontinierlich oder diskontinuierlich erfolgen, wobei in den einzelnen Stufen die gleiche Säure, verschiedene Säuren oder gleiche oder verschiedene Gemische von Säuren eingesetzt werden können.

Ebenso können die Oxide vor und nach dem Formen in der genannten Art mit einer Säure behandelt werden.

Vorzugsweise werden die Oxide vor dem Formen mit einer Säure behandelt.

3

Erfnungsgemäß setzt man 0,1 bis 30, vorzugsweise 0,1 bis 10, insbesondere 0,1 bis 5 Gew.-% Säure, berechnet als reine Säure, bezogen auf das pyogene Titandioxid, ein. Man kann die Säure mit einem flüssigen Verdünnungsmittel, wie Wasser, mischen.

5

Zur Herstellung der Katalysatoren können die Oxide ohne Zusatzstoffe verwendet werden. Es ist ebenso möglich, Zusatzstoffe, wie Bindemittel, beispielsweise Titandioxid-Sole, Salze der verwendeten Oxide, lösliche Titan-Salz-Verbindungen, hydrolysierbare

10 Titanverbindungen wie Titan-Alkoholate oder Aluminium-Salze, wie Porenbildner, beispielsweise Methylcellulose, Kohlebstofffasern, Fasern organischer Polymere, Melamin, Stärkepulver vorzugsweise vor dem Formen zuzugeben.

15 Die Formkörper können in verschiedenen Formen vorliegen, beispielsweise als Kugel, Tablette, Zylinder, Hohlzylinder, Pellet, Granulat oder Strang. Derartige Formkörper können in an sich bekannter Weise unter Verwendung zweckentsprechender Formmaschinen wie Tablettiermacshinen, Extrudierformmaschinen, Drehgranulatoren, Pelletisatoren oder Kombinationen solcher Maschinen hergestellt werden.

Das geformte Material wird, gegebenenfalls nach einer Säurebehandlung, vorteilhaft getrocknet, insbesondere bei Temperaturen 25 von 20 bis 120°C, vorzugsweise in einer Inertgasatmosphäre oder an Luft und anschließend calciniert, insbesondere bei 400 - 750°C, vorzugsweise in einer Inertgasatmosphäre oder an Luft

30 Die Formmassen können vorteilhaft als Katalysator zur Herstellung cyclischer Lactame durch Umsetzung von Aminocarbonsäurenitrilen mit Wasser in flüssiger Phase in einem Festbettreaktor eingesetzt werden.

Dazu kann man die heterogenen Katalysatoren in einem Festbett anordnen. Die Umsetzung kann in an sich bekannter Weise beispielsweise in Riesel- oder vorzugsweise in Sumpffahrweise insbesondere kontinuierlich erfolgen, indem das Reaktionsgemisch mit dem Katalysatorbett in Kontakt gebracht wird.

40 Als Ausgangsstoffe im genannten Verfahren werden Aminocarbon-säurenitrile, vorzugsweise solche der allgemeinen Formel I

45



4

eingesetzt, wobei n und m jeweils die Werte 0, 1, 2, 3, 4, 5, 6, 7, 8 und 9 haben können und die Summe aus n + m mindestens 3, vorzugsweise mindestens 4 beträgt.

5 R<sup>1</sup> und R<sup>2</sup> können prinzipiell Substituenten jeglicher Art sein, wobei lediglich sichergestellt sein sollte, daß die gewünschte Cyclisierungsreaktion durch die Substituenten nicht beeinflußt wird. Vorzugsweise sind R<sup>1</sup> und R<sup>2</sup> unabhängig voneinander C<sub>1</sub>-C<sub>6</sub>-Alkyl- oder C<sub>5</sub>-C<sub>7</sub>-Cycloalkylgruppen oder C<sub>6</sub>-C<sub>12</sub>-Arylgruppen.

10 Besonders bevorzugte Ausgangsverbindungen sind Aminocarbonsäure-nitrile der allgemeinen Formel



15

wobei m einen Wert von 3, 4, 5 oder 6, insbesondere 5 aufweist. Für m = 5 ergibt sich als Ausgangsverbindung 6-Aminocapronsäure-nitril.

20 Nach dem genannten Verfahren können die vorstehend beschriebenen Aminocarbonsäurenitrile mit Wasser in flüssiger Phase unter Verwendung heterogener Katalysatoren zu cyclischen Lactamen umgesetzt werden. Bei Verwendung von Aminocarbonsäurenitrilen der Formel I erhält man die entsprechenden cyclischen Lactame

25 der Formel II

30



35 wobei n, m, R<sup>1</sup> und R<sup>2</sup> die vorstehend genannte Bedeutung haben. Besonders bevorzugte Lactame sind solche, in denen n = 0 ist und m einen Wert von 4,5 oder 6 hat, insbesondere 5 (im letzteren Fall erhält man Caprolactam).

40 Die Umsetzung kann in flüssiger Phase bei Temperaturen von im allgemeinen 140 bis 320°C, vorzugsweise 160 bis 280°C, durchgeführt werden; der Druck sollte im allgemeinen im Bereich von 1 bis 250 bar, vorzugsweise von 5 bis 150 bar liegen, wobei darauf zu achten ist, daß das Reaktionsgemisch unter den angewandten  
45 Bedingungen zum überwiegenden Teil flüssig ist. Die Verweilzeiten liegen im allgemeinen im Bereich von 1 bis 120, vorzugsweise 1 bis 90 und insbesondere 1 bis 60 min. In einigen Fällen haben

sich Verweilzeiten von 1 bis 10 min als völlig ausreichend erwiesen.

Pro mol Aminocarbonsäurenitril werden im allgemeinen mindestens 5 0,01 mol, vorzugsweise 0,1 bis 20 und insbesondere 1 bis 5 mol Wasser eingesetzt.

Vorteilhaft kann das Aminocarbonsäurenitril in Form einer 1 bis 10 50 gew.-%igen, insbesondere 5 bis 50 gew.-%igen, besonders vor- zugsweise 5 bis 30 gew.-%igen Lösung in Wasser (wobei dann das Lösungsmittel gleichzeitig Reaktionspartner ist) oder in Wasser/ Lösungsmittel-Gemischen eingesetzt werden. Als Lösungsmittel seien beispielhaft Alkanole wie Methanol, Ethanol, n- und i- Propanol, n-, i- und t-Butanol und Polyole wie Diethyleglykol 15 und Tetraethylenglykol, Kohlenwasserstoffe wie Petrolether, Benzol, Toluol, Xylol, Lactame wie Pyrrolidon oder Caprolactam oder alkylsubstituierte Lactame wie N-Methylpyrrolidon, N-Methyl-caprolactam oder N-Ethylcaprolactam sowie Carbonsäureester, vor- zugsweise von Carbonsäuren mit 1 bis 8 C-Atomen genannt. Auch 20 Ammoniak kann bei der Reaktion anwesend sein. Selbstverständlich können auch Mischungen organischer Lösungsmittel Anwendung finden. Mischungen aus Wasser und Alkanolen im Gewichtsverhält- nis Wasser/Alkanol 1-75/25-99, vorzugsweise 1-50/50-99 haben sich in einigen Fällen als besonders vorteilhaft herausgestellt.

25 Es ist prinzipiell genauso möglich, die Aminocarbonsäurenitrile als Reaktand und gleichzeitig Lösungsmittel anzuwenden.

Der Vorteil des genannten Verfahrens liegt in der Möglichkeit, 30 die Cyclisierung auf einfache Weise kontinuierlich zu betreiben bei hohen Ausbeuten und Selektivitäten und kurzen Verweilzeiten mit sehr hohen Durchsätzen. Da die verwendeten Katalysatoren nach bisherigen Beobachtungen eine hohe Lebensdauer aufweisen, ergibt sich ein extrem geringer Katalysator-Verbrauch.

35 Beispiel

Beispiel 1: Herstellung von Strängen aus pyrogenem Titandioxid

40 8350 g pyrogenes Titandioxid-Pulver mit einem Rutil/Anatas-Ver- hältnis von 80/20 wurden mit 47 g 85 %iger Ameisensäure und 3750 g Wasser 3 Stunden geknetet und danach in der Strangpresse mit einem Pressdruck von 70 bar zu 4 mm Stangen verformt. Die Stränge wurden für 16 Stunden bei 120°C getrocknet und anschlie- 45 ßend für 3 Stunden bei 500°C calziniert.

**Analytik der Stränge:**

|                |                      |
|----------------|----------------------|
| Litergewicht   | 989 g/l              |
| Wasseraufnahme | 0,31 ml/g            |
| 5 Schneidhärte | 25 N                 |
| Oberfläche     | 37 m <sup>2</sup> /g |

Beispiel 2 bis 7: Umsetzung von 6-Aminocapronitril zu Caprolactam

- 10 In einen beheizten Rohrreaktor von 25 ml Inhalt (Durchmesser 6 mm; Länge 800 mm), der mit einem aus der Tabelle aufgeführten Katalysatoren 1 2 als Splitt gefüllt war, wurde bei 80 bar eine Lösung von 6-Aminocapronsäurenitril (ACN) in Wasser und Ethanol in den in der Tabelle angegebenen Gewichtsverhältnissen geleitet.
- 15 Der den Reaktor verlassende Produktstrom wurde gaschromatographisch analysiert. Die Ergebnisse sind in der Tabelle als Beispiele aufgeführt.

Neben Caprolactam enthält der Produktstrom im wesentlichen  
20 ε-Aminocapronsäureethylester und ε-Aminocapronsäureamid. Beide lassen sich ebenfalls zu Caprolactam cyclisieren. Zusätzlich findet man 5 bis 8 % Caprolactamoligomere, welche zu Caprolactam gespalten werden können.

25

30

35

40

45

Tabelle

| Bsp. | Katalysator | ACN<br>[Gew.-%] | Wasser<br>(Gew.-%) | Molverh.<br>ACN/H <sub>2</sub> O<br>[%] | Ethanol<br>[Gew.-%] | Temp.<br>[°C] | Verweil-<br>zeit<br>[min] | Ums. ACN<br>[%] | Sel. Capro<br>[%] |
|------|-------------|-----------------|--------------------|-----------------------------------------|---------------------|---------------|---------------------------|-----------------|-------------------|
| 2    | 1           | 10              | 3,2                | 2                                       | 86,8                | 230           | 22                        | 99              | 88                |
| 3    | 1           | 10              | 3,2                | 2                                       | 86,8                | 230           | 9                         | 99              | 92                |
| 4    | 1           | 10              | 3,2                | 2                                       | 86,8                | 230           | 5                         | 96              | 90                |
| 5    | 2           | 10              | 3,2                | 2                                       | 86,8                | 230           | 20                        | 100             | 91                |
| 6    | 2           | 10              | 3,2                | 2                                       | 86,8                | 230           | 8                         | 96              | 92                |
| 7    | 2           | 10              | 3,2                | 2                                       | 86,8                | 230           | 5                         | 87              | 90                |

Die Katalysatoren 1 und 2 sind entsprechend dem Katalysator-  
beispiel 1 hergestellt worden:

5 Katalysator 1: Pyrogenes Titandioxid mit 3 % Phosphorsäure zu  
4 mm Strängen verstrangt und dann zu 1,6 - 2,0 mm  
Splitt vermahlen

Katalysator 2: Pyrogenes Titandioxid mit 0,5 % Ameisensäure zu  
10 4 mm Strängen verstrangt und dann zu 1,6 - 2,0 mm  
Splitt vermahlen

15

20

25

30

35

40

45

## Patentansprüche

1. Zur Herstellung cyclischer Lactame durch Umsetzung von Amino-  
5 carbonsäurenitrilen mit Wasser in flüssiger Phase in einem  
Festbettreaktor als Katalysator geeignete Formmassen, welche  
unter den Reaktionsbedingungen keine löslichen Bestandteile  
aufweisen, enthaltend als wesentlichen Bestandteil pyrogenes  
10 Titandioxid, wobei die Formmassen erhältlich sind durch For-  
men des pyrogenen Titandioxids zu Formkörpern und Behandeln  
des pyrogenen Titandioxids vor oder nach dem Formen mit 01,  
bis 30 Gew.-% bezogen auf das pyrogene Titandioxid einer  
Säure, in der das pyrogene Titandioxid schwerlöslich ist.
- 15 2. Formmassen nach Anspruch 1, dadurch gekennzeichnet, daß die  
Formmassen zusätzlich Aluminiumoxid, Zinnoxid, Ceroxid oder  
deren Gemische enthält.
3. Formmassen nach Anspruch 1 oder 2, dadurch gekennzeichnet,  
20 daß man als Säure Phosphorsäure einsetzt.
4. Formmassen nach einem der Ansprüche 1 bis 3, dadurch gekenn-  
zeichnet, daß man als Säure Salpetersäure, Essigsäure oder  
Ameisensäure einsetzt.

25

30

35

40

45

# INTERNATIONAL SEARCH REPORT

International Application No  
PCT/EP 98/05356

**A. CLASSIFICATION OF SUBJECT MATTER**  
IPC 6 C07D201/08 B01J21/06

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)  
IPC 6 C07D B01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                        | Relevant to claim No. |
|------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A          | DE 32 17 751 A (DEGUSSA AG)<br>17 November 1983<br>cited in the application<br>see the whole document                     | 1                     |
| Y          | DE 43 39 648 A (BASF AG) 24 May 1995<br>see the whole document                                                            | 1                     |
| Y          | DE 25 54 198 A (MITSUBISHI CHEMICAL INDUSTRIES LTD.) 12 August 1976<br>cited in the application<br>see the whole document | 1                     |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

\* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

|                                                           |                                                    |
|-----------------------------------------------------------|----------------------------------------------------|
| Date of the actual completion of the international search | Date of mailing of the international search report |
| 2 February 1999                                           | 09/02/1999                                         |

|                                                                                                                                                 |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Name and mailing address of the ISA                                                                                                             | Authorized officer |
| European Patent Office, P.B. 5818 Patentlaan 2<br>NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.<br>Fax: (+31-70) 340-3016 | Kyriakakou, G      |

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International Application No

PCT/EP 98/05356

| Patent document cited in search report | Publication date | Patent family member(s) |    |              | Publication date |
|----------------------------------------|------------------|-------------------------|----|--------------|------------------|
| <b>DE 3217751</b>                      | <b>A</b>         | <b>17-11-1983</b>       |    |              | <b>NONE</b>      |
| <b>DE 4339648</b>                      | <b>A</b>         | <b>24-05-1995</b>       | AU | 1065095 A    | 13-06-1995       |
|                                        |                  |                         | AU | 678643 B     | 05-06-1997       |
|                                        |                  |                         | AU | 8143594 A    | 13-06-1995       |
|                                        |                  |                         | BR | 9408099 A    | 05-08-1997       |
|                                        |                  |                         | BR | 9408100 A    | 05-08-1997       |
|                                        |                  |                         | CA | 2176741 A    | 01-06-1995       |
|                                        |                  |                         | CA | 2176836 A    | 01-06-1995       |
|                                        |                  |                         | CN | 1139920 A    | 08-01-1997       |
|                                        |                  |                         | CN | 1141626 A    | 29-01-1997       |
|                                        |                  |                         | CZ | 9601445 A    | 14-08-1996       |
|                                        |                  |                         | CZ | 9601446 A    | 14-08-1996       |
|                                        |                  |                         | WO | 9514664 A    | 01-06-1995       |
|                                        |                  |                         | WO | 9514665 A    | 01-06-1995       |
|                                        |                  |                         | EP | 0729453 A    | 04-09-1996       |
|                                        |                  |                         | EP | 0729454 A    | 04-09-1996       |
|                                        |                  |                         | FI | 962069 A     | 15-05-1996       |
|                                        |                  |                         | HU | 74976 A      | 28-03-1997       |
|                                        |                  |                         | JP | 9505570 T    | 03-06-1997       |
|                                        |                  |                         | JP | 9505571 T    | 03-06-1997       |
|                                        |                  |                         | NO | 962021 A     | 15-05-1996       |
|                                        |                  |                         | NZ | 276096 A     | 26-05-1997       |
|                                        |                  |                         | PL | 314526 A     | 16-09-1996       |
|                                        |                  |                         | PL | 314527 A     | 16-09-1996       |
|                                        |                  |                         | SG | 47102 A      | 20-03-1998       |
|                                        |                  |                         | US | 5646277 A    | 08-07-1997       |
|                                        |                  |                         | US | 5739324 A    | 14-04-1998       |
| <b>DE 2554198</b>                      | <b>A</b>         | <b>12-08-1976</b>       | JP | 52010308 A   | 26-01-1977       |
|                                        |                  |                         | JP | 56033351 B   | 03-08-1981       |
|                                        |                  |                         | JP | 1088780 C    | 23-03-1982       |
|                                        |                  |                         | JP | 52016508 A   | 07-02-1977       |
|                                        |                  |                         | JP | 56033352 B   | 03-08-1981       |
|                                        |                  |                         | JP | 940517 C     | 30-01-1979       |
|                                        |                  |                         | JP | 51064498 A   | 03-06-1976       |
|                                        |                  |                         | JP | 53014249 B   | 16-05-1978       |
|                                        |                  |                         | JP | 940520 C     | 30-01-1979       |
|                                        |                  |                         | JP | 51067294 A   | 10-06-1976       |
|                                        |                  |                         | JP | 53014250 B   | 16-05-1978       |
|                                        |                  |                         | JP | 51067295 A   | 10-06-1976       |
|                                        |                  |                         | BE | 836165 A     | 01-06-1976       |
|                                        |                  |                         | FR | 2301299 A    | 17-09-1976       |
|                                        |                  |                         | GB | 1488767 A    | 12-10-1977       |
|                                        |                  |                         | NL | 7514002 A,B, | 04-06-1976       |
|                                        |                  |                         | US | 4061596 A    | 06-12-1977       |

# INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen  
PCT/EP 98/05356

**A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES**  
IPK 6 C07D201/08 B01J21/06

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

**B. RECHERCHIERTE GEBIETE**

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)  
IPK 6 C07D B01J

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

**C. ALS WESENTLICH ANGESEHENE UNTERLAGEN**

| Kategorie* | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                  | Betr. Anspruch Nr. |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| A          | DE 32 17 751 A (DEGUSSA AG)<br>17. November 1983<br>in der Anmeldung erwähnt<br>siehe das ganze Dokument<br>---                     | 1                  |
| Y          | DE 43 39 648 A (BASF AG) 24. Mai 1995<br>siehe das ganze Dokument<br>---                                                            | 1                  |
| Y          | DE 25 54 198 A (MITSUBISHI CHEMICAL INDUSTRIES LTD.) 12. August 1976<br>in der Anmeldung erwähnt<br>siehe das ganze Dokument<br>--- | 1                  |

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

\* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonderer bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzipiell oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des Internationalen Rechercheberichts

2. Februar 1999

09/02/1999

Name und Postanschrift der Internationalen Recherchenbehörde  
Europäisches Patentamt, P.B. 5818 Patentaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Kyrilakakou, G

**INTERNATIONALER RECHERCHENBERICHT**

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Int. nationales Aktenzeichen

PCT/EP 98/05356

| Im Recherchenbericht angeführtes Patentdokument | Datum der Veröffentlichung | Mitglied(er) der Patentfamilie                                                                                                                                                                                                                                                                                                                                                                                     | Datum der Veröffentlichung                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DE 3217751 A                                    | 17-11-1983                 | KEINE                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                          |
| DE 4339648 A                                    | 24-05-1995                 | AU 1065095 A<br>AU 678643 B<br>AU 8143594 A<br>BR 9408099 A<br>BR 9408100 A<br>CA 2176741 A<br>CA 2176836 A<br>CN 1139920 A<br>CN 1141626 A<br>CZ 9601445 A<br>CZ 9601446 A<br>WO 9514664 A<br>WO 9514665 A<br>EP 0729453 A<br>EP 0729454 A<br>FI 962069 A<br>HU 74976 A<br>JP 9505570 T<br>JP 9505571 T<br>NO 962021 A<br>NZ 276096 A<br>PL 314526 A<br>PL 314527 A<br>SG 47102 A<br>US 5646277 A<br>US 5739324 A | 13-06-1995<br>05-06-1997<br>13-06-1995<br>05-08-1997<br>05-08-1997<br>01-06-1995<br>01-06-1995<br>08-01-1997<br>29-01-1997<br>14-08-1996<br>14-08-1996<br>01-06-1995<br>01-06-1995<br>04-09-1996<br>04-09-1996<br>15-05-1996<br>28-03-1997<br>03-06-1997<br>03-06-1997<br>15-05-1996<br>26-05-1997<br>16-09-1996<br>16-09-1996<br>20-03-1998<br>08-07-1997<br>14-04-1998 |
| DE 2554198 A                                    | 12-08-1976                 | JP 52010308 A<br>JP 56033351 B<br>JP 1088780 C<br>JP 52016508 A<br>JP 56033352 B<br>JP 940517 C<br>JP 51064498 A<br>JP 53014249 B<br>JP 940520 C<br>JP 51067294 A<br>JP 53014250 B<br>JP 51067295 A<br>BE 836165 A<br>FR 2301299 A<br>GB 1488767 A<br>NL 7514002 A,B,<br>US 4061596 A                                                                                                                              | 26-01-1977<br>03-08-1981<br>23-03-1982<br>07-02-1977<br>03-08-1981<br>30-01-1979<br>03-06-1976<br>16-05-1978<br>30-01-1979<br>10-06-1976<br>16-05-1978<br>10-06-1976<br>10-06-1976<br>01-06-1976<br>17-09-1976<br>12-10-1977<br>04-06-1976<br>06-12-1977                                                                                                                 |