Set $L(x) = \frac{1}{2}x^2$ and $g(q) = \mathbf{1}_{0 \le q \le 1}$. Fix $\bar{\epsilon} > 0$, and $I \in C[0,1]$, where I > 0 on [0,1]. Action functions are maps from received messages to actions: $\tilde{m} \mapsto a(\tilde{m})$. Message functions are maps from states to sent messages: $q \mapsto m(q)$. Sent messages may be no smaller than \underline{m} and no larger than \overline{m} , where $\overline{m} - \underline{m} > 2\bar{\epsilon}$. Sent and received messages are related by the identity $\tilde{m} = m(q) + e$, where e is uniformly distributed on $[-\bar{\epsilon}, \bar{\epsilon}]$. q is known to the sender, but not the receiver; e is known to neither the sender, nor the receiver.

Definition 1. A map $a: [\underline{m} - \overline{\epsilon}, \overline{m} + \overline{\epsilon}] \to \mathbb{R}$ is an action function if it is weakly increasing.

Message functions are similarly defined, but with the additional requirement that they satisfy certain boundary conditions.

Definition 2. A map $m:[0,1] \to [\underline{m},\overline{m}]$ is a message function if it is weakly increasing, and if $m(0) = \underline{m}$ and $m(1) = \overline{m}$.

The boundary conditions $m(0) = \underline{m}$ and $m(1) = \overline{m}$ are made to quarantee the uniqueness of an equilibrium. Note that the receiver's action has domain $[\underline{m} - \overline{\epsilon}, \overline{m} + \overline{\epsilon}]$. The sender's message has codomain $[\underline{m}, \overline{m}]$, but it is corrupted by noise. Although a *sent* message may be no smaller than \underline{m} , and no larger than \overline{m} , a *received* message may be as small as $\underline{m} - \overline{\epsilon}$, or as large as $\overline{m} + \overline{\epsilon}$. The receiver must choose an action in \mathbb{R} for messages less than \underline{m} or greater than \overline{m} . Since e is uniformly distributed on $[-\overline{\epsilon}, \overline{\epsilon}]$, \tilde{m} has density

$$f(\tilde{m}) = \frac{1}{2\bar{\epsilon}} \mathbf{1}_{m(q) - \bar{\epsilon} \le \tilde{m} \le m(q) + \bar{\epsilon}}.$$
 (1)

The sender's and receiver's payoffs are

$$S(a, m; q) = \int_{m(q) - \bar{\epsilon}}^{m(q) + \bar{\epsilon}} I(q) L(a(\tilde{m}) - q) f(\tilde{m}) d\tilde{m}, \text{ and}$$
 (2)

$$R(a, m; \tilde{m}) = \int_0^1 I(q)L(a(\tilde{m}) - q)g(q|\tilde{m})dq$$
(3)

respectively.

Proposition 1 (Continuous and Strictly Increasing Message Functions). There does not exist an equilibrium in which the message function is continuous and strictly increasing, and the receiver believes it to be so.

Proof. By way of contradiction, let m be an equilibrium message function, and suppose that it is continuous and strictly increasing. Put $\ell = m^{-1}$. Since m is continuous and strictly increasing, so too is ℓ . Moreover, $\ell(\underline{m}) = 0$ and $\ell(\overline{m}) = 1$. Define

$$\overline{q}(\tilde{m}) = \ell(\min{\{\tilde{m} + \bar{\epsilon}, \overline{m}\}}), \text{ and}$$
 (4)

$$\underline{q}(\tilde{m}) = \ell(\max\{\tilde{m} - \bar{\epsilon}, \underline{m}\}). \tag{5}$$

Given a received message \tilde{m} , $\overline{q}(\tilde{m})$ is the *largest* possible state that could have resulted in \tilde{m} , while $q(\tilde{m})$ is the *smallest* possible state that could have resulted in \tilde{m} . For $\tilde{m} \in (\underline{m} - \bar{\epsilon}, \overline{m} + \bar{\epsilon})$,

 $\overline{q}(\tilde{m}) > \underline{q}(\tilde{m})$. Moreover, $\overline{q}(\underline{m} - \overline{\epsilon}) = \underline{q}(\underline{m} - \overline{\epsilon})$, and $\overline{q}(\underline{m} + \overline{\epsilon}) = \underline{q}(\underline{m} + \overline{\epsilon})$. As they will appear often, define

$$\underline{\mathcal{I}} := (\underline{m} - \bar{\epsilon}, \underline{m} + \bar{\epsilon}), \tag{6}$$

$$\mathcal{I} := (\underline{m} + \bar{\epsilon}, \overline{m} - \bar{\epsilon}), \text{ and}$$
 (7)

$$\overline{\mathcal{I}} := (\overline{m} - \overline{\epsilon}, \overline{m} + \overline{\epsilon}). \tag{8}$$

On $\underline{\mathcal{I}}$, $\underline{q}' = 0$ and $\overline{q}' > 0$; on \mathcal{I} , $\underline{q}' > 0$ and $\overline{q}' > 0$; on $\overline{\mathcal{I}}$, $\underline{q}' > 0$ and $\overline{q}' = 0$. If $\tilde{m} \in (\underline{m} - \overline{\epsilon}, \overline{m} + \overline{\epsilon})$, then the receiver has beliefs,

$$g(q|\tilde{m}) = \frac{f(\tilde{m}|q)g(q)}{f(\tilde{m})} = \frac{\frac{1}{2\bar{\epsilon}} \mathbf{1}_{m(q) - \bar{\epsilon} \le \tilde{m} \le m(q) + \bar{\epsilon}} \cdot \mathbf{1}_{0 \le q \le 1}}{\int_{-\infty}^{\infty} \frac{1}{2\bar{\epsilon}} \mathbf{1}_{m(t) - \bar{\epsilon} \le \tilde{m} \le m(t) + \bar{\epsilon}} \cdot \mathbf{1}_{0 \le t \le 1} dt} = \frac{\mathbf{1}_{\underline{q}(\tilde{m}) \le q \le \overline{q}(\tilde{m})}}{\overline{q}(\tilde{m}) - \underline{q}(\tilde{m})}.$$
 (9)

If she receives the message $\underline{m} - \bar{\epsilon}$, then she believes that the state is 0 almost surely, while if she receives the message $\overline{m} + \bar{\epsilon}$, then she believes that the state is 1 almost surely. Formally, $g(q|\underline{m} - \bar{\epsilon}) = \delta(q - (\underline{m} - \bar{\epsilon}))$ and $g(q|\overline{m} + \bar{\epsilon}) = \delta(q - (\overline{m} + \bar{\epsilon}))$, where $\delta(\bullet)$ is the Dirac delta function. Next, we compute the receiver's best response action function. If $\tilde{m} \in (\underline{m} - \bar{\epsilon}, \overline{m} + \bar{\epsilon})$, then R is strictly convex in its first argument:

$$R_{aa}(a,m;\tilde{m}) = \int_{q(\tilde{m})}^{\overline{q}(\tilde{m})} \frac{I(q)L''(a(\tilde{m}) - q)dq}{\overline{q}(\tilde{m}) - \underline{q}(\tilde{m})} = \int_{q(\tilde{m})}^{\overline{q}(\tilde{m})} \frac{I(q)dq}{\overline{q}(\tilde{m}) - \underline{q}(\tilde{m})} > 0.$$
 (10)

The solution of the first-order condition is the unique minimizer:

$$0 = R_a(\tilde{m}, a, m) = \int_{q(\tilde{m})}^{\overline{q}(\tilde{m})} \frac{I(q)L'(a(\tilde{m}) - q)dq}{\overline{q}(\tilde{m}) - \underline{q}(\tilde{m})} = \int_{q(\tilde{m})}^{\overline{q}(\tilde{m})} \frac{I(q)(a(\tilde{m}) - q)dq}{\overline{q}(\tilde{m}) - \underline{q}(\tilde{m})}, \tag{11}$$

which implies that the receiver plays

$$a(\tilde{m}) = \left[\int_{\underline{q}(\tilde{m})}^{\overline{q}(\tilde{m})} I(r) dr \right]^{-1} \left[\int_{\underline{q}(\tilde{m})}^{\overline{q}(\tilde{m})} r I(r) dr \right]. \tag{12}$$

If she receives the message $\tilde{m} - \bar{\epsilon}$, then she believes that the state is 0 almost surely, in which case she plays $a(\tilde{m} - \bar{\epsilon}) = 0$. If she receives the message $\tilde{m} + \bar{\epsilon}$, then she beliefs that the state is 1 almost surely, in which case she plays $a(\tilde{m} + \bar{\epsilon}) = 1$. Since \underline{q} and \overline{q} are continuous, so too is a. On $\underline{\mathcal{I}} \cup \mathcal{I} \cup \overline{\mathcal{I}}$,

$$a' = \left[\int_{\underline{q}}^{\overline{q}} I(r) dr \right]^{-2} \left[(\overline{q}' \overline{q} I(\overline{q}) - \underline{q}' \underline{q} I(\underline{q})) \int_{\underline{q}}^{\overline{q}} I(r) dr - (\overline{q}' I(\overline{q}) - \underline{q}' I(\underline{q})) \int_{\underline{q}}^{\overline{q}} r I(r) dr \right]$$
(13)

$$= \left[\int_{\underline{q}}^{\overline{q}} I(r) dr \right]^{-2} \left[\overline{q}' I(\overline{q}) \int_{\underline{q}}^{\overline{q}} (\overline{q} - r) dr + \underline{q}' I(\underline{q}) \int_{\underline{q}}^{\overline{q}} (r - \underline{q}) dr \right] > 0.$$
 (14)

a is strictly increasing on $\underline{\mathcal{I}} \cup \mathcal{I} \cup \overline{\mathcal{I}}$, and since it is continuous on $[\underline{m} - \overline{\epsilon}, \overline{m} + \overline{\epsilon}]$, it is strictly increasing on $[\underline{m} - \overline{\epsilon}, \overline{m} + \overline{\epsilon}]$. Finally, we show that the sender has a profitable deviation. Define $\bar{a}(m) := \frac{1}{2}(a(m + \overline{\epsilon}) + a(m - \overline{\epsilon}))$. Fix $q \in [0, \bar{a}(\underline{m}))$ and define

$$r_1(m) := a(m + \bar{\epsilon}) - a(m - \bar{\epsilon}), \text{ and}$$
 (15)

$$r_2(m) := \bar{a}(m) - q.$$
 (16)

Note that $r_2(\underline{m}) > 0$. Since a is strictly increasing, r_1 is strictly positive, and r_2 is strictly increasing. Observe that

$$S_{m(q)}(a, m; q) = L(a(m + \bar{\epsilon}) - q) - L(a(m - \bar{\epsilon}) - q)$$

$$\tag{17}$$

$$= \frac{1}{2}(a(m+\bar{\epsilon})-q)^2 - \frac{1}{2}(a(m-\bar{\epsilon})-q)^2$$
 (18)

$$= \frac{1}{2}(a(m+\bar{\epsilon}) - a(m-\bar{\epsilon}))(a(m+\bar{\epsilon}) + a(m-\bar{\epsilon}) - 2q)$$
 (19)

$$= (a(m+\bar{\epsilon}) - a(m-\bar{\epsilon}))(\frac{1}{2}(a(m+\bar{\epsilon}) + a(m-\bar{\epsilon})) - q)$$
 (20)

$$=r_1(m)r_2(m). (21)$$

Since $r_2(\underline{m}) > 0$ and r_2 is strictly increasing, $r_2 > 0$ on $[\underline{m}, \overline{m}]$, and hence $S_{m(q)} > 0$ on $[\underline{m}, \overline{m}]$. The sender finds $m^*(q) = \underline{m}$ optimal. The message function obtained cannot be the equilibrium message function, since m is strictly increasing, and m^* is not. Therefore, m^* is a profitable deviation for the sender, contradicting the assumption that m is an equilibrium message function.

The above proof suggests that a continuous and strictly increasing message function could be rectified by taking $\overline{m} \to \infty$ and $\underline{m} \to -\infty$. This is not the case. One obtains $\ell(q) = \frac{1}{2}$ for $q \in (0,1)$, which is also constant.