Vanishing cycles, cyclotomic polynomials, and monodromy

Daniel Miller

August 7, 2016

1 Motivation

This is inspired by the discussion at the beginning of [Mil68, §9]. Let f be a regular function on \mathbb{C}^{n+1} . Let V = V(f); this is an n-dimensional complex variety. Fix an isolated critical point $x \in V$. For $\varepsilon > 0$, let S_{ε} be a (real) sphere of radius ε centered at x, and put $K_{\varepsilon} = V \cap S_{\varepsilon}$. Define $\phi_{\varepsilon} : S_{\varepsilon} \setminus K_{\varepsilon} \to S^{1}$ by

$$\phi_{\varepsilon}(x) = \frac{f(x)}{|f(x)|}.$$

The "fibration theorem" tells us that ϕ_{ε} is a fibration; we put $F_s = \phi_{\varepsilon}^{-1}(s) \subset S_{\varepsilon} \setminus K_{\varepsilon}$ for $s \in S^1$. It is known that F_s is a smooth 2n-dimensional real manifold. Let h be the canonical generator of $\pi_1(S^1)$. There is an endomorphism h_* of $H_n(F_s, \mathbf{Z})$. Let Δ be its characteristic polynomial. Milnor claims that Grothendieck has proved Δ is a product of cyclotomic polynomials.

2 Reinterpretation

Let f, V, ...be as above. Instead of considering the homology of individual fibers F_s of the map ϕ_{ε} , we consider the pushforward $\mathsf{R}^n\phi_{\varepsilon,*}\mathbf{Z}$ as a sheaf on S^1 . This is a local system, so we can consider it as a representation of the group $\pi_1(S^1)$. Hopefully, there is a theorem that $\mathsf{R}^n\phi_{\varepsilon,*}\mathbf{Z}$ is quasi-unipotent.

Consider [GRR72] and [DK73]

References

- [DK73] Pierre Deligne and Nicholas Katz, editors. *Groupes de monodromie en géométrie algébrique. II*, volume 340 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1973. Séminaire de Géométrie Algébriqe du Bois-Marie 1967–1969 (SGA 7 II).
- [GRR72] Alexandre Grothendieck, M. Raynaud, and D.S. Rim, editors. *Groupes de monodromie en géométrie algébrique. I*, volume 288 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1972. Séminaire de Géométrie Algébriqe du Bois-Marie 1967–1969 (SGA 7 I).
- [Mil68] John Milnor. Singular points of complex hypersurfaces, volume 61 of Annals of Mathematics Studies. Princeton University Press, 1968.