基礎コンピュータ工学 第2章 情報の表現 (パート4:2の補数の和差)

https://github.com/tctsigemura/TecTextBook

本スライドの入手:

基礎コンピュータ工学第2章 情報の表現 (バー

2進数の和差の計算(復習)

2進数の場合は以下のようになる.

- 1より大きくなる時に桁上げが発生する. 010 001 011 011 010 + 001 + 011 + 001 + 001 + 011 011 010 101 100 110
- 桁借りでは2借りてくる. 010 011 101 100 110 001 001 011 001 011 010 001 010 011 011

基礎コンピュータ工学第2章 情報の表現 (パー

2 進数の和差の計算(復習)

10進数の計算と2進数の計算をしなさい.

基礎コンピュータ工学第2章 情報の表現(バー

負数の表現(復習)

2の補数による負数の表現
 2の補数(2ⁿ − x) を負数の表現に使用する.

-4 ビット 2 進数の 2 の補数($2^4 - x = y$)・

もとの数 (x)	補数へ変換		補数 (y)
0	1 0000 2 - 0000 2	=	1 0000 2
1	1 0000 2 - 0001 2	=	1111_{2}
2	1 0000 2 - 0010 2	=	1110_{2}
3	1 0000 2 - 0011 2	=	1101_{2}
4	1 0000 2 0100 2	=	1100_{2}
5	1 0000 2 - 0101 2	=	1011_{2}
6	1 0000 2 - 0110 2	=	1010_{2}
7	1 0000 2 - 0111 2	=	1001_{2}
8	$10000_{2} - 1000_{2}$	=	1000_{2}

基礎コンピュータ工学第2章 情報の表現(パー

4/9

負数の表現(復習)

- 2の補数の求め方
 - ビット反転+1

 $x = +3_{10} = 0011_2$ (もとの数)

 $y = -3_{10} = 1100_2 + 1 = 1101_2$ (2の補数)

元に戻すのもビット反転+1

 $y = -3_{10} = 1101_2$ (2の補数)

 $y = +3_{10} = 0010_2 + 1 = 0011_2$ (もとの数)

• 表現できる数値の範囲

4 $\[\forall y \] \] \cdot (-2^3 \sim + (2^3 - 1))$ n $\[\forall y \] \] \cdot (-2^{n-1} \sim + (2^{n-1} - 1))$

正負の判定

最上位ビットが

0:正の値を表現している。1:負の値を表現している。

基礎コンピュータ工学第2章 情報の表現(バー

負の数を含む計算

2の補数表現の負数は符号無し2進数と同じ手順で計算できる!!

• 最上位ビットからの桁上げは無視する.

- 仕組み
 - 正の数と負の数の和(-bを2の補数(2ⁿ b)と表現する)
 正の値aと負の値-bの和を計算し2ⁿ(最上位の桁上げ)を無視する
 - a+(-b) = a+(2ⁿ − b) = 2ⁿ + a − b = a − b • 負の数と負の数の和 (-a, -b を 2 の補数で表現する) 2ⁿ (最上位からの桁上げ) を一つ無視すると

(-a) + (-b) = (2ⁿ - a) + (2ⁿ - b) = 2ⁿ - (a + b)

基礎コンピュータ工学第2章 情報の表現(バー

6/

負の数を含む計算

2の補数表現の負数は符号無し2進数と同じ手順で計算できる!!

• 最上位ビットの桁借りは制限なしとする.

- 仕組み
 - 正の数と負の数の差 (-b を 2 の補数 $(2^n b)$ と表現する) 正の値 a と負の値-b の差を計算し -2^n (最上位の桁借り) を許す $a - (-b) - a - (2^n - b) - -2^n + a + b - a + b$
 - a $-(-b) = a (2^n b) = -2^n + a + b = a + b$ 負の数と負の数の差 $(-a, -b) = 2^n + a + b = a + b$ 2n (最上位からの桁上げ) を一つ無視すると $(-a) (-b) = (2^n a) (2^n b) = (-a) + b$

基礎コンピュータ工学第2章 情報の表現(パー

7 / 0

