Statistical Learning and Machine Learning Lecture 19 - Introduction to Mathematical Optimization and Lagrangian

November 5, 2021

What will be presented today?

- Mathematical Optimization Problem
- Convex Optimization Problem
- Lagrange Multipliers and Dual Functions
- KKT Conditions
- Example: Robust classification

Mathematical Optimization Problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i=1,...,m$,
 $h_i(x) = 0$, $j=1,...,p$

 $x = (x_1, \ldots, x_n)$ is optimization variable

 $f_0: \mathbb{R}^n \to \mathbb{R}$ is objective function

 $f_i: \mathbb{R}^n \to \mathbb{R}$ are inequality constraint functions

 $h_j: \mathbb{R}^n o \mathbb{R}$ are equality constraint functions

 x^* is the solution of the above problem, if it has the smallest objective value among all possible x that satisfy the constraints.

Examples/Applications

- Data fitting (e.g., Least squares)
 - variables: model parameters
 - 2 constraints: prior information, parameter limits
 - objective: prediction error
- Device sizing in electronic circuits
 - 1 variables: device width and length
 - 2 constraints: manufacturing limits, timing requirements, maximum area
 - objective: power consumption of the device
- Density Estimation (e.g. Maximum Likelihood)
- Supervised classification (e.g., SVM)

Solving Optimization Problem

In general, optimization problem are

- hard to solve
- methods involve some compromise, e.g., very long computation time, or lack of guarantees in terms of reaching right solution

exceptions: classes of problems that can be solved accurately and efficiently

- least-squares problems
- linear programming problems
- convex optimization problems

Convex Optimization Problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i=1,...,m$

objective and constraint functions are convex

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if
$$\alpha + \beta = 1$$
 and $\alpha \ge 0$, $\beta \ge 0$

- least-squares problems and linear programs are special cases
- Properties:
 - every local minimum is a global minimum
 - 2 the optimal set is convex
 - of for strictly convex objective functions, at most one optimal point

Illustration of Convex Problem with Constraint

maximize
$$1 - x_1^2 - x_2^2$$

subject to $x_1 + x_2 - 1 = 0$

Lagrangian

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i=1,...,m$,
 $h_i(x) = 0$, $i=1,...,p$

variable $x \in \mathbb{R}^n$, optimal value p^*

Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

- L: weighted sum of objective and constraint functions
- λ_i : Lagrange multipliers associated with f_i
- ν_i : Lagrange multipliers associated with h_i

Lagrange Dual Function

Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu)$$

$$= \inf_{x \in D} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is a concave function.

Lower bound property: if $\{\lambda_i \geq 0\}$ for all i, then $g(\lambda, \nu) \leq p^*$.

The Dual Problem

maximize
$$g(\lambda, \nu)$$

subject to $\lambda_i \geq 0$, $i=1,...,m$

- finds best lower bound on p, obtained from Lagrange dual function
- ullet it is a convex optimization problem with optimal value d^*
- λ , ν are dual feasible if $\lambda \geq 0$, $(\lambda, \nu) \in \operatorname{dom} g$
- weak duality: $d^* \le p^*$ (always holds)
- strong duality: $d^* = p^*$ (usually holds for convex problems only)

Example

Original Problem:

maximize
$$1 - x_1^2 - x_2^2$$

subject to $x_1 + x_2 - 1 = 0$

Dual Problem:

maximize
$$\lambda^2 - 2\lambda + 2$$

subject to $\lambda > 0$

Karush-Kuhn-Tucker (KKT) conditions I

The KKT conditions (assuming differentiable f_i , h_i):

- primal constraints: $f_i(x) \le 0, i = 1, ..., m$ and $h_i(x) = 0, i = 1, ..., p$
- dual constraints: $\lambda_i \geq 0, \forall i$
- complementary slackness: $\lambda_i f_i(x) = 0$, $\forall i$
- gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

Necessary Condition: If strong duality holds $(d^* = p^*)$ and x, λ , ν are optimal, then they must satisfy the KKT conditions.

KKT conditions for convex problems: if \hat{x} , $\hat{\lambda}$, $\hat{\nu}$ satisfy KKT for a convex problem, then they are optimal.

Karush-Kuhn-Tucker (KKT) conditions II

Example 1:

maximize
$$1 - x_1^2 - x_2^2$$

subject to $x_1 + x_2 - 1 = 0$

Example 2:

minimize
$$-\sum_{i=1}^{n} \log(x_i + \alpha_i)$$

subject to $x \succeq 0$, $\mathbf{1}^T x = 1$

x is optimal iff $x \succeq 0$, $\mathbf{1}^T x = 1$, and there exist $\lambda \in \mathbf{R}^n$, $\nu \in \mathbf{R}$ such that

$$\lambda \succeq 0, \qquad \lambda_i x_i = 0, \qquad \frac{1}{x_i + \alpha_i} + \lambda_i = \nu$$

• if $\nu < 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/\nu - \alpha_i$

Source: Convex Optimization, Boyd and Vandenberghe, 2004

- if $\nu > 1/\alpha_i$: $\lambda_i = \nu 1/\alpha_i$ and $x_i = 0$
- determine ν from $\mathbf{1}^T x = \sum_{i=1}^n \max\{0, 1/\nu \alpha_i\} = 1$

Robust Linear Classification and SVM I

Separating 2 sets of points, denoted by $\{x_1, \dots, x_N\}$ and $\{y_1, \dots, y_M\}$ via a hyperplane:

$$\label{eq:continuous_state} \textbf{a}^T \textbf{x}_i + \textbf{b} \geq 1, \quad i = 1, \dots, N, \qquad \textbf{a}^T \textbf{y}_i + \textbf{b} \leq -1, \quad i = 1, \dots, M,$$

Euclidean distance between the hyperplanes $\{z|a^Tz+b=1\}$ and $\{z|a^Tz+b=-1\}$: $2/\|a\|_2$

Robust Linear Classification and SVM II

Robust linear classification

minimize
$$a, b$$
 $(1/2)||a||_2$ subject to $a^T x_i + b \ge 1$, $i = 1, ..., N$, $a^T x_i + b \le -1$, $j = 1, ..., M$