I2-TD3 (VECTOR SPACE)

1. For any $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in \mathbb{R}^3$ and $\alpha \in \mathbb{R}$, we define an addition in \mathbb{R}^3 and scalar multiplication with element in \mathbb{R} by

$$x + y = (x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$$

 $\alpha.x = \alpha(x_1, x_2, x_3) = (\alpha x_1, \alpha x_2, \alpha x_3).$

Show that $(\mathbb{R}^3, +, .)$ is a vector space over \mathbb{R} .

2. For any $x=(x_1,x_2),y=(y_1,y_2)\in\mathbb{R}^2$ and $\alpha\in\mathbb{R}$, we define two operations by

$$x \oplus y = (x_1, x_2) \oplus (y_1, y_2) = (x_1 + y_1, 2x_2 + y_2)$$
 and $\alpha * x = \alpha * (x_1, x_2) = (\alpha x_1, \alpha x_2)$.

Is $(\mathbb{R}^2, \oplus, *)$ a vector space over \mathbb{R} ? Justify your answer.

3. For any $x=(x_1,x_2),y=(y_1,y_2)\in\mathbb{R}^2$ and $\alpha\in\mathbb{R}$, we define two operations by

$$x \oplus y = (x_1, x_2) \oplus (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$
 and $\alpha * x = \alpha * (x_1, x_2) = (2x_1, \alpha x_2)$.

Is $(\mathbb{R}^2, \oplus, *)$ a vector space over \mathbb{R} ? Justify your answer.

4. Let $V = \{(x,1) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$. For any $u = (x,1), v = (y,1) \in V$ and $\alpha \in \mathbb{R}$, we define

$$u \oplus v = (x+y,1)$$

$$\alpha * u = (\alpha x, 1)$$

Show that $(V, \oplus, *)$ is a vector space over \mathbb{R} .

5. Show that $(\mathbb{R}_+, \oplus, *, \mathbb{R})$ is a vector space where

$$x \oplus y = xy$$
 and $\alpha * x = x^{\alpha}$

for $x, y \in \mathbb{R}_+$ and $\alpha \in \mathbb{R}$.

6. For any $x=(x_1,x_2,x_3), y=(y_1,y_2,y_3)\in\mathbb{R}^3$ and $\alpha\in\mathbb{R}$, let us define

$$x \oplus y = (x_1 + y_1 + 1, x_2 + y_2 + 1, x_3 + y_3 + 1)$$

$$\alpha * x = (\alpha x_1 + \alpha - 1, \alpha x_2 + \alpha - 1, \alpha x_3 + \alpha - 1)$$

Show that $(\mathbb{R}^3, \oplus, *)$ is a vector space over \mathbb{R} .

- 7. Determine if the following sets are subspaces of \mathbb{R}^3 under the usual operations.
 - (a) $W_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$
 - (b) $W_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = 2x_2 \text{ and } x_3 = -x_2\}$
 - (c) $W_3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = x_3^2\}$
- 8. Determine if the following sets are subspaces of $\mathcal{F}_{\mathbb{R}}^{\mathbb{R}} = \{f : f : \mathbb{R} \to \mathbb{R}\}$ under the usual operations.

- (a) $\mathcal{F}_1 = \{ f \in \mathcal{C}^1 : f'(1) + f(2) = 0 \}$
- (c) $\mathcal{F}_3 = \{ f : f(0) = 3 \}.$
- (b) $\mathcal{F}_2 = \{ f : f(0) + f(1) = 3 \}.$
- (d) $\mathcal{F}_4 = \{ f : f(1) = 2f'(1) \}.$
- 9. Determine if the following sets are subspaces of $\mathbb{R}^{n\times n}$ under the usual operations.
 - (a) The set of all upper triangular matrices.
 - (b) The set of all symmetric matrices.
 - (c) The set of all orthogonal matrices.
 - (d) The set of all matrices A such that $A^2 = 0$.
- 10. Let G and H be two subspaces of V. Show that $G \cap H$ is also a subspace of V.
- 11. Let G and H be two subspaces of V. Show that

$$(G \cup H \text{ subspace of } V) \iff (G \subset F \text{ or } F \subset G)$$

- 12. Let G and H be two subspaces of V. Show that G + H is also a subspace of V.
- 13. Let G and H be subspaces of V. Show that

$$G + H = G \cap H \iff G = H.$$

14. Let F, G and H be three subspaces of V satisfy

$$F \cap G = F \cap H$$
, $F + G = F + H$ and $G \subset H$

Show that G = H.

- 15. If $S = \{v_1, v_2, \dots, v_n\}$ is a subset of vector space V. Show that Span(S) is the smallest subspace of V containing set S.
- 16. Determine the values of x and y so that the vector (2, 3, x, y) is an element of the subspace of \mathbb{R}^4 spanned by (2, -1, 3, 5) and (1, 3, 7, 2).
- 17. Which of the following are spanning sets for \mathbb{R}^4 ? Justify your answers.
 - (a) $\{(1,1,1,2), (1,0,1,0), (2,1,-2,3)\}$
 - (b) $\{(1,1,2,1), (2,3,1,2), (2,1,2,1), (1,2,1,2)\}$
 - (c) $\{(0,2,1,0), (1,-1,0,1), (0,0,-2,1), (1,1,-1,2)\}$
 - (d) $\{(2,1,2,1), (2,3,1,2), (3,1,2,-1), (1,-2,1,-3), (1,0,0,-2)\}$
 - (e) $\{(1,1,-1,1), (2,3,-1,2), (3,1,2,1), (1,-2,1,3), (1,-1,1,-2)\}$
- 18. Determine whether the following vectors are linearly independent.
 - (a) (1,1,0), (2,1,0), (2,3,4)
 - (b) (1, 1, -1, 2), (1, 2, 1, 1), (2, 1, 2, 3)
 - (c) $\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$, $\begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$
 - (d) e^t , e^{2t} , e^{3t}

- (e) $\cos^2 t$, $\sin^2 t$, $\cos 2t$
- 19. Let $f(x) = \ln(1+x), x \in \mathbb{R}_+$. Let $f_1 = f$; $f_2 = f \circ f$ and $f_3 = f \circ f \circ f$. Show that the set $\{f_1, f_2, f_3\}$ is linearly independent.
- 20. Let $\{x_1, x_2, \dots, x_n\}$ be a linearly independent set of V and $\alpha_1, \dots, \alpha_n \in \mathbb{R}$. Suppose that

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$$
 and $\forall 1 \le i \le n, y_i = x_i + u$

What condition on α_i , for the set $\{y_1, y_2, \dots, y_n\}$ is linearly independent.

- 21. Let $\{x_1, x_2, \ldots, x_n\}$ be a linearly independent set of V. For $k = 1, 2, \ldots, n$, we let $y_k = x_k + x_{k+1}$ and $y_n = x_n + x_1$. Study the linearly independent of $\{y_1, y_2, \ldots, y_n\}$.
- 22. Determine which of the following sets are bases for \mathbb{R}^3 if the vectors in \mathbb{R}^3 , or for \mathbb{R}^4 if the vectors in \mathbb{R}^4 , or for $P_2(\mathbb{R})$ if the vectors in $P_2(\mathbb{R})$.
 - (a) (1,-1,2), (2,1,0), (2,3,4)
 - (b) (2,-1,2), (2,-1,1), (0,1,1), (5,2,7)
 - (c) (1, 1, -1, 1), (2, 3, -1, 2), (3, 1, -2, 1), (1, 2, -1, 3)
 - (d) (1, 1, -1, 1), (2, 2, -1, 2), (1, 1, -2, 1)
 - (e) $1 + 2x + x^2$, $3 + x^2$, $x + x^2$
 - (f) $1 2x 2x^2$, $-2 + 3x x^2$, $1 x 6x^2$
- 23. Let F be a subspace of \mathbb{R}^4 defined by

$$F = \{(w, x, y, z) \in \mathbb{R}^4 \mid w = 2x - y \text{ and } z = w + x + y\}$$

Find a basis and dimension of F.

24. Let F and G be two subset of \mathbb{R}^4 defined by

$$F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - 2y = 0 \text{ and } y - 2z = 0\}$$

$$G = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + z = 0 \text{ and } y + t = 0\}$$

- (a) Show that F and G are subspaces of \mathbb{R}^4 .
- (b) Find a basis for F, a basis for G and a basis for F + G.
- (c) Deduce that $\mathbb{R}^4 = F + G$.
- 25. Let V be the vector space of n-square matrices over a field \mathbb{R} . Show that $V = U \oplus W$, where U and W are the subspaces of symmetric and antisymmetric matrices, respectively.
- 26. Prove that if W_1 and W_2 are finite-dimensional subspaces of a vector space V, then the subspace $W_1 + W_2$ is finite-dimensional and

$$\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2).$$

If $V = W_1 + W_2$, then deduce that

$$V = W_1 \oplus W_2 \iff \dim V = \dim W_1 + \dim W_2.$$

27. Let S_1, S_2, \ldots, S_p be subspaces of V. Suppose that

$$V = \sum_{1 \le i \le p} S_i$$
 and $\sum_{1 \le i \le p} \dim(S_i) = \dim(V)$.

Show that

$$V = S_1 \oplus S_2 \oplus \cdots \oplus S_p$$

28. In the vector space \mathbb{R}^4 , consider the vectors

$$a = (1, 2, -1, 3), b = (2, 4, 1, -2), c = (3, 6, 3, -7), d = (1, 2, -4, 11), e = (2, 4, -5, 14)$$

Let F be a subspace of \mathbb{R}^4 spanned by $\{a, b, c\}$ and G be a subspace of \mathbb{R}^4 spanned by $\{d, e\}$.

- (a) Determine the bases for F and G, then deduce the dimension of F and G.
- (b) Show that F = G.
- 29. In the vector space \mathbb{R}^4 , consider the vectors

$$a = (1, 3, 0, 3), b = (2, 1, 3, -2), c = (0, 1, 0, 0), d = (1, 0, -1, -1)$$

Let F be a subspace of \mathbb{R}^4 spanned by $\{a,b\}$ and G be a subspace of \mathbb{R}^4 spanned by $\{c,d\}$.

- (a) Determine the bases for F and G, then deduce the dimension of F and G.
- (b) Determine $F \cap G$.
- (c) Deduce F + G. What can we conclude?
- 30. For $n \geq 2$, we define $\mathbb{R}_n[X]$, the set of polynomial of degree less than or equal n with coefficients in \mathbb{R} . Let

$$\mathcal{F} = \{ P \in \mathbb{R}_n[X] \mid P(1) = P'(1) = 0 \}.$$

- (a) Show that \mathcal{F} is a subspace of $\mathbb{R}_n[X]$.
- (b) Show that P belongs to \mathcal{F} if and only if $(X-1)^2$ divides P.
- (c) Determine the basis and dimension of \mathcal{F} .
- 31. Let $\mathbb{R}_n[X]$ be the set of all real polynomials of degree at most n and let

$$P_k(x) = (x+1)^{k+1} - x^{k+1}, \quad k = 0, 1, \dots, n$$

Show that $\{P_0, P_1, \dots, P_n\}$ is a basis for $\mathbb{R}_n[X]$.

- 32. Let S_1, S_2, S_3, S_4 be four subspaces of \mathbb{R}^4 and $v_1 = (1, 1, 1, 2)$, $v_2 = (2, 1, 2, 1)$, $v_3 = (1, 0, 1, -1)$, $v_4 = (3, -1, -1, 4)$, $v_5 = (1, 3, 1, 2)$, $v_6 = (1, -2, -1, 1)$, $v_7 = (2, 1, 1, 4)$, $v_8 = (-1, 3, -1, 2)$. Let S_1 be spanned by v_1, v_2, v_3, S_2 be spanned by v_4, v_5, v_6, S_3 be spanned by v_7, S_4 be spanned by v_8 .
 - (a) Find a basis and the dimension of each of the subspaces S_1 , S_2 , S_3 , S_4 , $S_1 + S_2$, $S_1 + S_2 + S_3$, $S_2 + S_3 + S_4$, and $S_1 + S_3 + S_4$.
 - (b) Show that $\mathbb{R}^4 = S_1 \oplus S_2$, $\mathbb{R}^4 = S_1 \oplus S_3 \oplus S_4$, and $\mathbb{R}^4 = S_2 \oplus S_3 \oplus S_4$.
 - (c) Show that \mathbb{R}^4 is the sum of S_1, S_2, S_3, S_4 . Show that \mathbb{R}^4 is not the direct sum of the four subspaces S_1, S_2, S_3, S_4 .

- 33. Let S_1 be a subspace of \mathbb{R}^5 spanned by (1,1,1,2,1), (2,1,1,3,2), (1,0,0,1,1), (1,2,2,3,3) and S_2 be a subspace of \mathbb{R}^5 spanned by (1,-1,-1,0,-1), (3,1,1,4,3), (2,2,2,3,4).
 - (a) Find a basis B_1 and the dimension of S_1 . Find the coordinates of (2, -1, -1, 1, 0) with respect to B_1 .
 - (b) Find a basis and the dimension of S_2 , $S_1 + S_2$, and $S_1 \cap S_2$.
- 34. Consider the vector space $P_3(x)$ of real polynomials in x of degree ≤ 3 .
 - (a) Show that $B = \{1, 1-t, (1-t)^2, (1-t)^3\}$ is a basis of $P_3(x)$.
 - (b) Find the coordinates of vector $v(t) = 2 + 3t t^2 + t^3$ with respect to basis B.
- 35. Let P_m be the set of all real polynomials of degrees at most m.
 - (a) Show that $B = \{1, t 1, \dots, (t 1)^m\}$ is a basis for P_m .
 - (b) Determine the coordinates of $(t+2)^m$ with respect to the basis B.
- 36. Let $n \in \mathbb{N}$ and $a, b \in \mathbb{R}$ with $a \neq b$. Let $\mathbb{R}_{2n}[X]$ be the set of all real polynomials of degree at most 2n.
 - (a) Show that $B = \{((x-a)^k)_{0 \le k \le 2n}\}$ is a basis for $\mathbb{R}_{2n}[X]$.
 - (b) Determine the coordinates of $(x-a)^n(x-b)^n$ with respect to basis B.
- 37. Let $B_1 = \{(1,1,1), (1,1,0), (1,0,0)\}$ and $B_2 = \{(1,1,-1), (1,-1,0), (2,0,0)\}$ be two ordered bases for \mathbb{R}^3 . Find a transition matrix from ordered basis B_1 to ordered basis B_2 and also a transition matrix from ordered basis B_2 to ordered basis B_1 . Then find the coordinates of v = (1,-1,0) in ordered basis B_2 .
- 38. Determine whether the following vector spaces equipped with real mappings are inner product spaces. If any, define the norm and the distance associated with each of these inner products.
 - (a) \mathbb{R}^4 equipped with $\langle x; y \rangle = 4x_1y_1 + 2x_2y_2 + 3x_3y_3 + 7x_4y_4$.
 - (b) \mathbb{R}^3 equipped with $\langle x; y \rangle = x_1 y_1 + x_2 y_2 2x_3 y_3$.
 - (c) $C^{0}[0;1]$ equipped with $\langle f_{1};f_{2}\rangle = \int_{0}^{1} t f_{1}(t) f_{2}(t) dt$.
 - (d) P_3 equipped with

$$\langle a_0 + a_1 t + a_2 t^2 + a_3 t^3; b_0 + b_1 t + b_2 t^2 + b_3 t^3 \rangle = a_0 b_0 + a_1 b_1 + 2a_2 b_2 + a_3 b_3.$$

39. Let $\varphi: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ defined by

$$\varphi(A,B) = \operatorname{tr}(A^t B)$$

Show that φ is an inner product in $\mathcal{M}_n(\mathbb{R})$.

40. Let $\langle ; \rangle_1, \langle ; \rangle_2$ be two mappings from $\mathbb{R}^3 \times \mathbb{R}^3$ to \mathbb{R} defined by

$$\langle x; y \rangle_1 = x_1 y_1 + x_2 y_2 + x_3 y_3$$
 and $\langle x; y \rangle_2 = x_1 y_1 + 2x_2 y_2 + 3x_3 y_3$.

Let $v_1 = (1, 1, 1)$, $v_2 = (1, 1, -2)$, $v_3 = (1, 1, -1)$ three vectors in \mathbb{R}^3 .

- (a) Show that $\langle ; \rangle_1, \langle ; \rangle_2$ are inner products. Find the norm of v_1 for $\langle ; \rangle_1$ and for $\langle ; \rangle_2$. Find the distance between v_1 and v_2 for $\langle ; \rangle_1$ and for $\langle ; \rangle_2$.
- (b) Show that v_1 and v_2 are orthogonal with respect to $\langle ; \rangle_1$ but are not orthogonal with respect to $\langle ; \rangle_2$.
- (c) Show that v_1 and v_3 are orthogonal with respect to $\langle ; \rangle_2$ but are not orthogonal with respect to $\langle ; \rangle_1$.
- 41. Let \mathbb{R}^3 be a vector space equipped with the inner product

$$\langle x ; y \rangle = 4x_1y_1 + 3x_2y_2 + 5x_3y_3.$$

Let $v_1 = (1, 1, 1), v_2 = (1, 2, -2), v_3 = (-5, 5, 1)$ be three vectors in \mathbb{R}^3 .

- (a) Show that $B = \{v_1, v_2, v_3\}$ is an orthogonal basis for \mathbb{R}^3 . Derive an orthonormal basis B_0 for \mathbb{R}^3 from B.
- (b) Let v = (2, 1, 2). Determine the coordinates of v with respect to B then with respect to B_0 .
- (c) Find the scalar and vector projections of v onto v_2 .
- 42. Find an orthogonal basis for the subspace W of \mathbb{R}^4 where

$$W = \{(x, y, z, w) \in \mathbb{R}^4 : x - y - z = 0 \text{ and } x + z = 0\}.$$

43. Let \mathbb{R}^4 be a vector space equipped with the inner product

$$\langle x; y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3 + 2x_4 y_4.$$

Let $v_1 = (1, 2, 1, 2)$, $v_2 = (2, 1, 2, 1)$, $v_3 = (1, 1, 2, 2)$, $v_4 = (2, 2, 1, 1)$, $v_5 = (1, 2, 1, 3)$ be five vectors in \mathbb{R}^4 , S_1 be a subspace of \mathbb{R}^4 spanned by v_1, v_2, v_3, v_4 , and S_2 be a subspace of \mathbb{R}^4 spanned by v_1, v_2, v_3, v_5 .

- (a) Determine a basis and the dimension for S_1 , denoted by B_1 . Use Gram-Schmidt process to transform B_1 to an orthogonal and orthonormal basis for S_1 .
- (b) Show that $B_2 = \{v_1, v_2, v_3, v_5\}$ is a basis for S_2 , then deduce that $S_2 = \mathbb{R}^4$. Use Gram-Schmidt process to transform B_2 to an orthogonal basis for S_2 .
- 44. Find W^{\perp} , the orthogonal complement of W, where

$$W = \{(x, y, z) \in \mathbb{R}^3 : x + 3y - z = 0\}.$$

45. Let $V = \mathcal{C}[-1,1]$. Suppose that S_e and S_o denote the subspaces of V consisting of the even and odd functions, respectively. Prove that $S_e^{\perp} = S_o$, where the inner product on V is defined by

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt.$$

46. Let W_1 and W_2 be subspaces of a finite-dimensional inner product space. Prove that

$$(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$$
 and $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$

- 47. Let W be a subspace of a finite-dimensional vector space V. Show that
 - (a) $(W^{\perp})^{\perp} = W$
 - (b) $V = W \oplus W^{\perp}$