ITCS 531: L5 homework solutions

Rob Egrot

L1 Q1(a)

Let ϕ be a formula where x occurs free. Write down a proof tree that shows $\forall x \phi \vdash \neg \exists x \neg \phi$.

$$\frac{[\exists x \neg \phi]_1}{\frac{[\neg \phi[x'/x]]_2}{\neg \exists x \neg \phi}} \frac{\frac{\forall x \phi}{\phi[x'/x]}}{(\neg E)} (\forall E)$$

L1 Q1(b)

Let ϕ be a formula where x occurs free. Write down a proof tree that shows $\exists x \phi \vdash \neg \forall x \neg \phi$.

L1 Q3

Prove that if Γ is an \mathscr{L} -theory then there is an \mathscr{L} -theory Γ' with $\Gamma \subseteq \Gamma'$ such that Γ' is *complete* (i.e. if ϕ is an \mathscr{L} -sentence, then either $\phi \in \Gamma'$ or $\neg \phi \in \Gamma'$).

- ▶ An \mathscr{L} -theory is a satisfiable set of \mathscr{L} -sentences.
- Since Γ is satisfiable, it must have a model.
- ightharpoonup Let A be a model for Γ , and let

$$\Gamma' = \{\phi : \phi \text{ is an } \mathscr{L}\text{-sentence and } A \models \phi\}.$$

- ▶ Then $\Gamma \subseteq \Gamma'$, because $A \models \Gamma$.
- $ightharpoonup \Gamma'$ is complete because every \mathscr{L} -sentence is either true or false in A.

L1 Q4

Let Γ be an \mathscr{L} -theory, and let ϕ be an \mathscr{L} -sentence. Prove that if $\Gamma \models \phi$ then $\Delta \models \phi$ for some finite $\Delta \subseteq \Gamma$.

- ► Suppose $\Gamma \models \phi$.
- ▶ By completeness we have $\Gamma \vdash \phi$.
- ▶ So there is a deduction tree using Γ that proves ϕ .
- As deduction trees are finite, this tree involves only a finite number of sentences from Γ.
- ▶ Define Δ to be the set of sentences from Γ used in the proof of ϕ .
- ▶ Then $\Delta \vdash \phi$, and so $\Delta \models \phi$ by soundness.

L1 Q5

Let Γ be a set of $\mathscr L$ -sentences. Prove that Γ has a model if and only if every finite subset of Γ has a model.

- If Γ has a model then every subset of Γ has a model.
- ightharpoonup Conversely, suppose Γ does *not* have a model.
- ▶ Then $\Gamma \models \bot$.
- ▶ So by exercise 4 there is finite $\Delta \subseteq \Gamma$ with $\Delta \models \bot$.
- ightharpoonup I.e. Δ does not have a model.