80417 פתרון מטלה -10 אנליזה פונקציונלית,

2025 ביוני

שאלה 1

נגדיר עם מחזור עם ומחזוריות בקטע בקטע רימן רימן אינטגרביליות אינטגרביליות אינטגרביליות אינטגרביליות אינטגרביליות ל $f,g:\mathbb{R}\to\mathbb{R}$

$$(f*g)(x) = \int_{-\pi}^{\pi} f(x-u)g(u)du$$

'סעיף א

 $f*g\in C[-\pi,\pi]$ אזי $g\in ilde{C}[-\pi,\pi]$ נוכיח שאם

הוזורית רימן ונתון כי f אינטגרבילית רימן ומחזורית מהיותה ביפה חיא מחזורית מחזורית פי $g\in ilde{C}[-\pi,\pi]$ ולכן $g\in ilde{C}[-\pi,\pi]$ אינטגרבילית רימן ומחזורית אינטגרבילית רימן ולכן $g\in ilde{C}[-\pi,\pi]$ אר־לאו דווקא רציפה.

. ראשית, f * g מוגדרת היטב: מכפלה של פונקציה אינטגרבילית בפונקציה רציפה היא פונקציה אינטגרבילית (כמסקנה ממשפט לבג).

אם היא מסדר שני (אם לפונקציה קדומה יש נקודת אי־רציפות של f*g בהכרח היא מסדר שני $x_0\in\mathbb{R}$ גנקודת אי־רציפות אי־רציפות של f*g אם לא פונקציה רציפה, ניקח את f*g בקודת אי־רציפות של f*g יש נקודת אי־רציפות של f*g יש נקודת איב הפונקציה הקדומה שלה רציפה, ולכן זו נקודת אי־רציפות שני, ולכן בהגדרה היא לא יכולה להיות אינטגרבילית. על־כן, f*g פונקציה רציפה.

'סעיף ב

(f*g)'(x)=(f*g')(x) מתקיים $x\in[-\pi,\pi]$ ושלכל ושלכל $f*g\in C^1[-\pi,\pi]$ אז $g\in\widetilde{C}^1[-\pi,\pi]$ אונסגרבילית, נסמן ב־f את הפונקציה הקדומה של f נעשה אינטגרציה בחלקים (שניתן לעשות מכך ש־f את הפונקציה הקדומה של f אינטגרציה בחלקים (שניתן לעשות מכך ש־f את הפונקציה הקדומה של f אינטגרציה בחלקים (שניתן לעשות מכך ש־f את הפונקציה הקדומה של f אינטגרציה בחלקים (שניתן לעשות מכך ש־f את הפונקציה הקדומה של f אינטגרציה בחלקים (שניתן לעשות מכך ש־f את הפונקציה הקדומה של f אינטגרציה בחלקים (שניתן לעשות מכך ש־f את הפונקציה הקדומה של f אינטגרציה בחלקים (שניתן לעשות מכך ש־f את הפונקציה הקדומה של f אונטגרציה בחלקים (שניתן לעשות מכך ש־f את הפונקציה הקדומה של f אונטגרציה בחלקים (שניתן לעשות מכך ש־f את הפונקציה הקדומה של f אונטגרציה בחלקים (שניתן לעשות מכך ש־f את הפונקציה הקדומה של f אינטגרציה בחלקים (שניתן לעשות מכך ש־f אונטגרציה בחלקים (שניתן לעשות מכך ש־f את הפונקציה הקדומה של f אונטגרציה בחלקים (שניתן לעשות מכך ש־f את הפונקציה הקדומה של f אונטגרציה בחלקים (שניתן לעשות מכך ש־f את הפונקציה הקדומה של f אונטגרציה בחלקים (שניתן לעשות מכך ש־f את הפונקציה הקדומה של f אונטגרציה בחלקים (שנית) בחלקים (

$$(\star)(f*g)(x) = \int_{-\pi}^{\pi} f(x-u)g(u)du = [-F(x-u)g(x)]_{-\pi}^{\pi} + \int_{-\pi}^{\pi} g'(x)F(x-u)du$$

$$= 0 + \int_{-\pi}^{\pi} g'(x)F(x-u)du = (F*g')(x) = (g'*F)(x)$$

. ביפוח, עלינו שהיא גם גזירה (וגם שהנגזרת רציפות, של פונקציות פונקציות כמכפלה להראות שהיא גם גזירה (וגם שהנגזרת רציפה). נעבוד לפי הגדרת הנגזרת. מתקיים

$$\begin{split} (\star \star)(f * g)'(x) &= \lim_{h \to 0} \frac{1}{h} ((f * g)(x + h)) - (f * g)(x) \\ &= \lim_{h \to 0} \frac{1}{h} \int_{-\pi}^{\pi} f(x - u)g(u) - f(x - u - h)g(u + h)du \\ &= \lim_{h \to 0} \frac{1}{h} \int_{-\pi}^{\pi} f(x - u)g(u) - f(x - u - h)g(u) + f(x - u - h)(g(u) - g(u + h))du \\ &= \lim_{h \to 0} \frac{1}{h} \int_{-\pi}^{\pi} (f(x - u) - f(x - u - h))g(u) + f(x - u - h)(g(u) - g(u + h))du \\ &= \lim_{h \to 0} \frac{1}{h} ((f(x - u) - f(x - u - h)) * g(u)) + \int_{-\pi}^{\pi} f(x - u)g'(u)du \\ &= \lim_{h \to 0} \frac{1}{h} ((F(x - u) - F(x - u - h)) * g'(u)) + (f * g')(x) \\ &= (f * g')(x) \end{split}$$

(f) של הקדומה הקדומה הפונקציה הקדומה של מהמחזוריות, רציפות וגם גזירות של

עם (*) ו־(*)(*) נובעת הטענה והמסקנה.

שאלה 2

'סעיף א

 $A\in\mathbb{R}$ מתכנסת לגבול שלכל $y_m=rac{1}{m}\sum_{n=1}^m x_n$ הסדרה הסדרה ובנוסף מתקיים ובנול מתקיים $\left|x_{n+1}-x_n
ight|\leq rac{C}{n}$ מתכנסת שלכל מתכנסת לאותו הגבול.

ולכן האשר הגבלת הגבלת הכלליות האסc>0יהי היה האסינה לc>0יהי היה הכלליות המסינה לא נניח בלי הגבלת הכלליות האסינה האסי

$$|x_m - x_n| \leq |x_m - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + \left|x_{n+1} - x_n\right| \leq \frac{1}{m-1} + \frac{1}{m-2} + \dots + \frac{1}{n} \leq \log\left(\frac{m}{n}\right)$$

מתקיים m>Mכך שלכל קיים קיים אלכל שלכל נובע נובע גובע מתכנסות y_m

$$|y_m - 0| < \delta \Longleftrightarrow \left| \frac{1}{m} \sum_{n=1}^m x_n \right| < \delta \Longleftrightarrow \left| \sum_{n=1}^m x_n \right| < m \delta$$

מהתקיים כך שמתקיים כל האינדקסים כל האינדקסים כל את את וב־ $|x_n| \geq \varepsilon$ שמתקיים כל האינדקסים כל את את את מהכנסת ל-0, נסמן ב- N_1 את קבוצת כל האינדקסים כך שמתקיים וב- $|x_n| < \varepsilon$

עבור כל $n\in N_1$ מתקיים

$$\begin{split} \sum_{n \in N_1} x_n &\geq \sum_{n \in N_1} (0 + \varepsilon) = |N_1| \varepsilon \\ \sum_{n \in N_2} x_n &< \sum_{n \in N_2} (0 + \varepsilon) = |N_2| \varepsilon \end{split}$$

ואז

$$\sum_{n=1}^m x_n = \sum_{n \in N_*} x_n + \sum_{n \in N_*} x_n \Longrightarrow \sum_{n=1}^m x_n \ge |N_1|\varepsilon - |N_2|\varepsilon$$

ובפרט התכנסות חוסר מהגדרת ש־כש ש־ש מתקיים אבל אבל אבל אבל מתקיים אחסר מתקיים אבל אבל א

$$\frac{1}{m} \sum_{n=1}^{m} x_n \ge \frac{|N_1|\varepsilon}{m}$$

אבל צד שמאל מתכנס וצד ימין לא וזאת סתירה.

'סעיף ב

כך $x_0\in[-\pi,\pi]$ ויש $|a_n|,|b_n|\leq \frac{C}{n}$ מקיימים f מקדמי פוריה שלכל C>0 כך קיים $[-\pi,\pi]$ ויש f שאם f אינטגרבילית רימן בקטע קיים $[-\pi,\pi]$ קיים $[-\pi,\pi]$ אז גם $[-\pi,\pi]$ אז גם $[-\pi,\pi]$ כאשר $[-\pi,\pi]$ גרעין פייר וי $[-\pi,\pi]$ אז גם $[-\pi,\pi]$ אז גם $[-\pi,\pi]$ כאשר $[-\pi,\pi]$ אז גרעין פייר וי

הוכחה: 00000000000000000000000000000

שאלה 3

'סעיף א

 $\operatorname{dist}(U,v)=\|u-v\|$ כך שי $u\in U$ אז קיים ע $v\in V$ סגורה ו־ $U\subseteq V$ סגורה סוף-מימדי מרחב עוכיח שאם ע

הוכחה: ראשית, ניזכר

$$\mathrm{dist}(U,v) = \inf_{u \in U} \lVert v - u \rVert$$

 $.\|u_{\varepsilon}-v\| < d+\varepsilon$ ש־כך כך קיים $\varepsilon>0$ לכל לכל $d=\mathrm{dist}(U,v)$ ניקח ניקח ניקח

 $\|u_n-v\| \underset{n\to\infty}{\to} d$ נגדיר אם כך סדרה $\|u_n-v\| < d+\frac{1}{n}$ מתקיים $n\in\mathbb{N}$ מתקיים $u_n\}_{n=1}^\infty\subseteq U$, ובפרט $u_n\}_{n=1}^\infty\subseteq U$, נגדיר אם כך סדרה לעאנו-ויירשטראס). $\{u_n\}_{k=1}^\infty$ סדרה חסומה וניקח $\{u_n\}_{k=1}^\infty$, תת־סדרה מתכנסת שלה (משפט בולצאנו-ויירשטראס). אבל $U\subseteq U$ סגורה, ולכן $u_n \underset{n\to\infty}{\to} u \in U$, אבל זה בידיוק אומר שמתקיים

$$\lim_{k\to\infty} \left\|u_{n_k}-v\right\| = d = \|u-v\|$$

 $(\mathbb{R}^2,\|\cdot\|_{\infty})$ במרחב נתבונן

'סעיף ב

 $\|u-v\|_\infty=\mathrm{dist}(U,v)$ המקיימים $u\in U$ קנסוף אינסוף כך ער פרימים וקמורה ו- $v\in\mathbb{R}^2$ סגורה הקמורה ער דוגמה לקבוצה

v = (-1,1) וניקח וויקח $U = \{(x,y) \in \mathbb{R}^2 \mid x \geq 0, y \geq 0\}$ וניקח הוכחה:

מתקיים מהגדרה $u \in U$ ועבור

$$||u-v||_{\infty} = \max(|u_1-v_1|, |u_2-v_2|)$$

עם עם החיובי החיובי אליה ברביע אז הנקודה עם בציר ה־x שלילית שהנקודה עם (0,1) בגלל שהנקודה עם $u\in U$. $\|u-v\|_{\infty}=\max(|u_1+1|,|u_2-1|)=1$ כך שיתקיים ע $u=(u_1,u_2)\in U$ אז נקבל שוחנו חלכן ולכן אנחנו $\|u-v\|_{\infty}=\max(1,0)=1$ אז נקבל נחלק למקרים

 $|u_1 + 1| = 1, |u_2 - 1| \le 1$.1

 $u_1=0$ ולכן ולכן אבל $u_1\geq 0$ אבל או ולכן או נקבל נקבל או מהאילוץ הראשון או

 $u_2 \in [0,2]$ אז $0 \le u_2 \le 2$ נקבל $|u_2-1| \le 1$ אז $|u_1-1| \le 1$ עבור

 $.u_2=0$ או ע $u_2=2$ נקבל הראשון הראשון מהאילוץ |
 $|u_2-1|=1, |u_1+1| \leq 1$. 2 $u_1=0$ ולכן ולכן אבל $-2 \leq u_1 \leq 0$ ולכן השני מהאילוץ מהאילוץ

סך־הכל משני המקרים נקבל שהנקודות האפשריות הן

$$\{(0,0),(2,0)\} \cup \{(0,u_2) \mid u_2 \in [0,2]\}$$

וזה מקיים את תנאי השאלה.