

An Efficient Simulation Algorithm for Cache of Random Replacement Policy

Shuchang Zhou

Institute of Computing Technology, Chinese Academy of Sciences

NPC'10 — Sep 13, 2010

Cache Mechanism: Cache Hit (1/3)

Cache

What's at a?

Address	Content
<u>a</u>	Hello
<u>b</u>	World
<u>C</u>	!

Cache Mechanism: Cache Hit (2/3)

Cache

What's at a?

Address	Content	
<u>a</u>	Hello	
<u>b</u>	World	
<u>C</u>	!	

Cache Mechanism: Cache Hit (3/3)

Cache

What's at a?

Address	Content
<u>a</u>	Hello
<u>b</u>	World
<u>C</u>	
CHINESI	E ADEMY OF S

"Hello"

Cache Mechanism: Cache Miss (1/4)

Cache

What's at d?

Address	Content
<u>a</u>	Hello
<u>b</u>	World
<u>C</u>	<u> </u>

Cache Mechanism: Cache Miss (2/4)

Cache

What's at d?

Address	Content
<u>a</u>	Hello
<u>b</u>	World
<u>C</u>	<u>!</u>

Cache Mechanism: Cache Miss (3/4)

Cache

What's at d?

Address	Content
<u>a</u>	Hello
<u>b</u>	World
<u>C</u>	<u>!</u>

Cache Mechanism: Cache Miss (4/4)

Cache Mechanism: Replacement Policy

Option 1: Least Recently Used

- Evict the oldest data in cache
- Found in Intel/AMD processors

Option 2: Random Replacement

- Select randomly among candidates
- Found in ARM/Loongson processors

Cache of Random Replacement Policy (1/4)

Cache of Random Replacement Policy (2/4)

Cache of Random Replacement Policy (3/4)

Cache of Random Replacement Policy (4/4)

Random Replacement: Different Behavior (1/2)

Random Replacement: Different Behavior (2/2)

Random Replacement: State Explosion Problem (1/2)

Random Replacement: State Explosion Problem (2/2)

Solution 1

Many rounds of Monte Carlo

Solution 2

Reformulate the problem in stochastic setting

Background: Indicator Random Variable

Definition

- X = 1, if event happens
- X = 0, otherwise

Property

- The expectation equals the probability of the event
 - E(X) = 1*P(X=1) + 0*P(X=0) = P(X=1)

Stochastic Cache Simulation: Settings

Input

Sequence of cache line index

Cache Parameters

- Fully-associative
 - Extends to set-associative later
- Let M be the associativity
 - Hence there are M candidates for eviction

Stochastic Cache Simulation: Miss Event Indicators

Input

Sequence of cache line index

Miss Events

$$X_0, X_1, X_2, ... X_n$$

Stochastic Cache Simulation: Reuse Window

Definition

From this access to last access to the same address

Stochastic Cache Simulation: Reuse Distance

Definition

- ∞ if the address never occurs before
- sum of X_i in the reuse window
- Dependent on associativity

Stochastic Cache Simulation: Observations

Observations

- A cache line is definitely in cache after the access
- Every cache miss will have 1/M probability of evicting an old cache line present in cache

Random Replacement: Recall

Stochastic Cache Simulation: Formula (1/2)

Observations

- A cache line is definitely in cache after the access
- Every cache miss will have 1/M probability of evicting an old cache line present in cache

Formula

• If there are Z misses in the reuse window, the probability of a cache line still being in cache is

$$(1 - 1/M)^{2}$$

Stochastic Cache Simulation: Formula (2/2)

Formula

- $E(X_i|Z_i) = P(X_i=1) = 1 (1 1/M)^{Z_i}$
- $E(X_i) = 1 E((1 1/M)^{Z_i})$

Problem

 Impossible to solve directly, for the correlation between consecutive miss events

Stochastic Cache Simulation: Approximation

Formula

- $E(X_i|Z_i) = 1 (1 1/M)^{Z_i}$
- $E(X_i) = 1 E((1 1/M)^{Z_i})$

- $E(X_i) \approx 1 (1 1/M)^{E(Z_i)}$
- We can solve the recurrence relation to approximate the probability of each miss event.
- Other approximations of different precision exists.

Stochastic Cache Simulation: Example (1/8)

- $E(X_i) \approx 1 (1 1/M)^{E(Z_i)}$
- $E(Z_i)$ = sum of $E(X_i)$ in the reuse window, or ∞

	а	b	а	С	d	b
EZ _i						
EX						

Stochastic Cache Simulation: Example (2/8)

- $E(X_i) \approx 1 (1 1/M)^{E(Z_i)}$
- $E(Z_i)$ = sum of $E(X_i)$ in the reuse window, or ∞

	а	b	а	С	d	b
EZ	∞					
EX						

Stochastic Cache Simulation: Example (3/8)

- $E(X_i) \approx 1 (1 1/M)^{E(Z_i)}$
- $E(Z_i)$ = sum of $E(X_i)$ in the reuse window, or ∞

	а	b	а	С	d	b
EZ	∞					
EX _i	1					

Stochastic Cache Simulation: Example (4/8)

- $E(X_i) \approx 1 (1 1/M)^{E(Z_i)}$
- $E(Z_i)$ = sum of $E(X_i)$ in the reuse window, or ∞

	а	b	а	С	d	b
EZ	∞	∞				
EX	1	1				

Stochastic Cache Simulation: Example (5/8)

- $E(X_i) \approx 1 (1 1/M)^{E(Z_i)}$
- $E(Z_i)$ = sum of $E(X_i)$ in the reuse window, or ∞

	а	b	а	С	d	b
EZ	∞	∞	1			
EXi	1	1				

Stochastic Cache Simulation: Example (6/8)

Approximation

- $E(X_i) \approx 1 (1 1/M)^{E(Z_i)}$
- $E(Z_i)$ = sum of $E(X_i)$ in the reuse window, or ∞

Assume M=4

Stochastic Cache Simulation: Example (7/8)

Approximation

- $E(X_i) \approx 1 (1 1/M)^{E(Z_i)}$
- $E(Z_i)$ = sum of $E(X_i)$ in the reuse window, or ∞

	а	b	а	С	d	b
EZ	∞	∞	1	∞	∞	2.25
EXi	1	1	0.25	1	1	0.48

Assume M=4

Stochastic Cache Simulation: Example (8/8)

Approximation

- $E(X_i) \approx 1 (1 1/M)^{E(Z_i)}$
- $E(Z_i)$ = sum of $E(X_i)$ in the reuse window, or ∞

		b			ما	h
	а	b	а	С	a	D
EZ	∞	∞	1	∞	∞	2.25
EX	1	1	0.25	1	1	0.48

Assume M=4

#miss ≈ 4.73

Stochastic Cache Simulation: Implementation

Approximation

- $E(X_i) \approx 1 (1 1/M)^{E(Z_i)}$
- $E(Z_i)$ = sum of $E(X_i)$ in the reuse window, or ∞

Maintenance

- Upon each cache miss, all EZ, need be updated
- However, almost all incremented by the same value
 - except the one corresponding to a_i is set to 0

Hashmap with Offset: Structure (1/2)

Approximation

- $E(X_i) \approx 1 (1 1/M)^{E(Z_i)}$
- $E(Z_i)$ = sum of $E(X_i)$ in the reuse window, or ∞

Hashmap with Offset: Structure (2/2)

- Stores EZ
- Absence from the hashmap indicates ∞
- O(1) Lookup: Hashmap lookup + addition with offset
- O(1) Maintenance: increment the offset and map a to 0

Hashmap with Offset: Space Problem

- Stores EZ
- Absence from the hashmap indicates ∞
- O(1) Lookup: Hashmap lookup + addition with offset
- O(1) Maintenance: increment the offset and map a to 0

Stochastic Cache Simulation: More Approximations

Approximation I

• $E(X_i) \approx 1 - (1 - 1/M)^{E(Z_i)}$

Approximation II

- Tolerate a little absolute error of the hit probability
 1 E(X;)
- Then can set large EZ_i to ∞
 - The same as removing them from the table

Hashmap with Offset: Sliding Windows (1/2)

- Stores EZ
- Absence from the hashmap indicates ∞
- Linear time lookup and maintenance
- Use sliding windows to control space

Hashmap with Offset: Sliding Windows (2/2)

- Stores EZ
- Absence from the hashmap indicates ∞
- Linear time lookup and maintenance
- Use sliding windows to control space

Hashmap with Offset: Set-associative cache

Hashmap with Offset: Summary

- Linear time lookup and maintenance
- Space: log ε/ log (1-1/M) ≈ M log(1/ε)
- Precision: smaller with larger M
- Extends to set-associative cache

Empirical Evaluation: Setup

Setup

- Evaluated against multiple rounds of Monte Carlo simulation
 - Average of 500-rounds as reference
 - Compares the distribution of absolute errors
- Uses realistic traces collected by HMTT (Bao+08) for CPU2000/LINPACK

Empirical Evaluation: Precision (1/8)

Empirical Evaluation: Precision (2/8)

Empirical Evaluation: Precision (3/8)

Empirical Evaluation: Precision (4/8)

Empirical Evaluation: Precision (5/8)

Empirical Evaluation: Precision (6/8)

Empirical Evaluation: Precision (7/8)

M=8, LINPACK

Empirical Evaluation: Precision (8/8)

M=64, LINPACK

Empirical Evaluation: Time

Empirical Evaluation: Space

M=64, LINPACK, $\varepsilon = 0.01$

Conclusion

Contributions

- Stochastic simulation of Cache of Random Replacement policy
- Efficient Data structure with O(1) query and maintenance and almost linear space
- Extends to set-associative cache

Future work

- Application in Execution Time Analysis
- Extends to LRU cache

Thank you!

