```
In [63]: #import packages
          import pandas as pd
          import statsmodels.api as sm
          import plotly.express as plt
          import geopandas as gpd
          import plotly.graph_objects as go
          import matplotlib.pyplot as mp
          from shapely.geometry import Point
          import numpy as np
In [237]: #read in data
          cities = pd.read_csv('pset3_cities.csv')
          stations = pd.read_csv('pset3_stations.csv')
          lines = pd.read_csv('pset3_lines.csv')
          1.a
In [238]: #merge lines and stations
          stations2 = stations.merge(lines, how = 'left')
          stations = stations.merge(lines, how = 'left')
          stations['year_opening'] = stations['year_opening'].replace([2017, 201
          stations = stations.dropna()
          stations['year_opening'].describe()
Out[238]: count
                    339.000000
                   2012.846608
          mean
                       2.179805
          std
                   2008.000000
          min
          25%
                   2011.000000
          50%
                   2013.000000
          75%
                   2015.000000
                   2016.000000
          max
          Name: year_opening, dtype: float64
In [239]: #get iteration tools
          stationsdum = pd.get_dummies(stations['cityid'])
          statdum = pd.get_dummies(stations2['cityid'])
```

```
In [240]: #create gik, Si, qik
          #initiating variables
          stationsdum.head()
          cities['numstat'] = cities['cityid']
          cities['numlinks'] = cities['cityid']
          cities['avgspd'] = cities['cityid']
          for i in [1, 2, 3, 4, 5, 6, 7, 8, 9, 18]:
              cities['x_' + str(i)] = cities['cityid'].astype(str) +'_'+ str(i)
          a = []
          #looping over cities
          for i in cities['citvid']:
              if i in stationsdum.columns:
                  #filling values
                  cities['numstat'] = cities['numstat'].replace(i, stationsdum[i
                  cities['numlinks'] = cities['numlinks'].replace(i, stations[st
                  cities['avgspd'] = cities['avgspd'].replace(i, stations[station])
                  citiestr = cities[cities['cityid'] == i]
                  for h in [1, 2, 3, 4, 5, 6, 7, 8, 9, 18]:
                      cities['x_' + str(h)] = cities['x_' + str(h)].replace(str(
              elif i in statdum.columns:
                  #filling values
                  cities['numstat'] = cities['numstat'].replace(i, 0)
                  cities['numlinks'] = cities['numlinks'].replace(i, 0)
                  cities['avgspd'] = cities['avgspd'].replace(i, None)
                  for h in [1, 2, 3, 4, 5, 6, 7, 8, 9, 18]:
                      cities['x_' + str(h)] = cities['x_' + str(h)].replace(str(
              else:
                  #filling empties
                  cities['numstat'] = cities['numstat'].replace(i, 0)
                  cities['numlinks'] = cities['numlinks'].replace(i, 0)
                  cities['avgspd'] = cities['avgspd'].replace(i, None)
                  for h in [1, 2, 3, 4, 5, 6, 7, 8, 9, 18]:
                      cities['x_' + str(h)] = cities['x_' + str(h)].replace(str(
```



```
340,000000
count
mean
           0.997059
std
           1.143143
           0.000000
min
25%
           0.000000
50%
           1.000000
75%
           1.250000
           7.000000
max
Name: numstat, dtype: float64
```

```
In [232]: #getting region dummies
    regions = pd.get_dummies(cities['province_en'])
    cities = pd.concat([cities, regions], axis = 1)
```

```
In [233]: # B with fixed effects

citiesempt = cities.dropna(subset = ['empgrowth'])

treat = ['numstat']
  dummies = list(set(list(cities['province_en'])))
  vals = sm.OLS(citiesempt['empgrowth'], citiesempt[treat + dummies])
  out = vals.fit(cov_type = 'HCO')
  print(out.summary())
```

OLS Regression Results

=======					
Dep. Variable:		empgrowth	R-squared:		
0.480 Model:		0LS	Adj. R-squ	ared:	
0.416		OLS	Adji N 3qu	arca.	
Method:	Lea	st Squares	F—statisti	c:	
nan Date:	Sa+ 1	9 Nov 2023	Prob (F-st	atictic):	
nan	Jac, I	6 NOV 2023	FIOD (I-SC	aciscic).	
Time:		19:49:45	Log-Likeli	hood:	
74.782 No. Observations:		275	AIC:		
-87.56		273	AIC.		
Df Residuals:		244	BIC:		
24.55		30			
Df Model: Covariance Type:		HC0			
=======================================		========	========	=======	=======
=========	coef	std err	Z	D~ -	[0.02
5 0.975]	COET	stu en	2	F ~ Z	[0.02
numstat	0.0496	0.014	3.576	0.000	0.02
2 0.077 qinghai	0.1558	0 007	22.480	0.000	0.14
2 0. 169	011550	01007	221400	01000	0114
qinghai	0.1558	0.007	22.480	0.000	0.14
2 0.169 shandong	0.1245	0.019	6.452	0.000	0.08
7 0.162	011213	0.013	01.132	01000	0.00
shandong	0.1245	0.019	6.452	0.000	0.08
7 0.162 guangdong	0.1518	0.024	6.442	0.000	0.10
6 0.198	0.1310	0.02	012	01000	0.10
guangdong	0.1518	0.024	6.442	0.000	0.10
6 0.198 liaoning	0.0140	0.021	0.678	0.498	-0.02
6 0.054	0.02.0	0.021	01070	01.50	0.02
liaoning	0.0140	0.021	0.678	0.498	-0.02
6 0.054 guangxi	0.0905	0.021	4.390	0.000	0.05
0 0.131	0.000	0.021		0.000	0103
guangxi	0.0905	0.021	4.390	0.000	0.05

0	0.131					
yunnan		0.1064	0.022	4.918	0.000	0.06
4	0.149	0 1064	0 022	4 010	0 000	0.06
yunnan 4	0.149	0.1064	0.022	4.918	0.000	0.06
xinjian	ng	0.1418	0.058	2.440	0.015	0.02
8 xinjian	0.256	0.1418	0.058	2.440	0.015	0.02
8	0.256	0.1410	0.030	2.440	0.013	0.02
anhui	0.404	0.1407	0.027	5.150	0.000	0.08
7 anhui	0.194	0.1407	0.027	5.150	0.000	0.08
7	0.194	011107	01027	3.130	0.000	0.00
beijing		0.1432	0.021	6.887	0.000	0.10
2 beijing	0.184 I	0.1432	0.021	6.887	0.000	0.10
2	0.184					
fujian 5	0.164	0.0993	0.033	3.003	0.003	0.03
fujian	0.104	0.0993	0.033	3.003	0.003	0.03
5	0.164	0.4350	0 027	2 625		
zhejian 3	ng 0.209	0.1359	0.037	3.635	0.000	0.06
zhejian	ng	0.1359	0.037	3.635	0.000	0.06
3	0.209	0.0420	0.028	1.526	0.127	-0.01
hunan 2	0.096	0.0420	0.020	1.520	0.127	-0.01
hunan		0.0420	0.028	1.526	0.127	-0.01
2 hebei	0.096	0.0644	0.022	2.878	0.004	0.02
1	0.108	010044	01022	21070	01004	0102
hebei	0 100	0.0644	0.022	2.878	0.004	0.02
1 hubei	0.108	0.2431	0.044	5.578	0.000	0.15
8	0.329					
hubei 8	0.329	0.2431	0.044	5.578	0.000	0.15
heilong		-0.1482	0.031	-4.836	0.000	-0.20
8	-0.088	0 1402	0 021	4 000	0.000	0.20
heilong 8	-0.088	-0.1482	0.031	-4.836	0.000	-0.20
chongqi	ng	0.1757	0.028	6.339	0.000	0.12
1 chongqi	0.230	0.1757	0.028	6.339	0.000	0.12
1	0.230	0.1757	0.020	0.559	0.000	0.12
tibet	0 205	0.2052	5.65e-16	3.63e+14	0.000	0.20
5 tibet	0.205	0.2052	5.65e-16	3.63e+14	0.000	0.20
5	0.205					
jiangsu 9	ı 0.284	0.2217	0.032	6.972	0.000	0.15
jiangsu		0.2217	0.032	6.972	0.000	0.15
9	0.284	0.4300	0.000	4 500	0.000	0.00
guizhou 9	ı 0.173	0.1209	0.026	4.563	0.000	0.06
guizhou		0.1209	0.026	4.563	0.000	0.06

9 inner mo	0.173 ongolia	0.0549	0.038	1.455	0.146	-0.01
9	0.129					
inner mo	ongo lia 0.129	0.0549	0.038	1.455	0.146	-0.01
shanxi 4	0.092	0.0483	0.023	2.144	0.032	0.00
shanxi 4	0.092	0.0483	0.023	2.144	0.032	0.00
ningxia 0	0.081	0.0508	0.016	3.268	0.001	0.02
ningxia 0	0.081	0.0508	0.016	3.268	0.001	0.02
shanghai 9		0.2799	0.021	13.465	0.000	0.23
shanghai 9		0.2799	0.021	13.465	0.000	0.23
jilin 1		0.0599	0.025	2.406	0.016	0.01
jilin	0.109	0.0599	0.025	2.406	0.016	0.01
1 jiangxi		0.1870	0.027	6.980	0.000	0.13
5 jiangxi	0.240	0.1870	0.027	6.980	0.000	0.13
5 gansu	0.240	0.1251	0.019	6.479	0.000	0.08
7 gansu	0.163	0.1251	0.019	6.479	0.000	0.08
7 sichuan	0.163	0.1018	0.034	3.003	0.003	0.03
5 sichuan	0.168	0.1018	0.034	3.003	0.003	0.03
5 shaanxi	0.168	0.1320	0.026	5.081	0.000	0.08
1 shaanxi	0.183	0.1320	0.026	5.081	0.000	0.08
1 henan	0.183	0.1713	0.019	8.843	0.000	0.13
3 henan	0.209	0.1713	0.019	8.843	0.000	0.13
3 tianjin	0.209	0.0804	0.028	2.900	0.004	0.02
6 tianjin	0.135	0.0804	0.028	2.900	0.004	0.02
6	0.135 	========	=======	========	========	=====
 Omnibus:			12.517	Durbin-Watso	n:	
2.157 Prob(Omr			0.002	Jarque-Bera		
19.555 Skew:	- , -		0.291	·	· · · ·	
5.67e-05			4.170			
2.74e+16			7.1/V	CONG. NO.		

=======

Notes:

- [1] Standard Errors are heteroscedasticity robust (HC0)
- [2] The smallest eigenvalue is 9.79e-31. This might indicate that the re are

strong multicollinearity problems or that the design matrix is singul

```
In [234]: #B no FE

citiesempt = cities.dropna(subset = ['empgrowth'])

treat = ['numstat']

vals = sm.OLS(citiesempt['empgrowth'], sm.add_constant(citiesempt[trea out = vals.fit(cov_type = 'HCO')
    print(out.summary())
```

OLS Regression Results ======= Dep. Variable: empgrowth R-squared: 0.123 Model: 0LS Adj. R-squared: 0.120 Method: Least Squares F-statistic: 35.15 Date: Sat, 18 Nov 2023 Prob (F-statistic): 9.19e-09 19:49:45 Time: Log-Likelihood: 2.9709 No. Observations: 275 AIC: -1.942Df Residuals: 273 BIC: 5.292 Df Model: 1 HC0 Covariance Type: coef std err z P>|z| [0.025 0.975] 0.021 8.529 0.1812 0.000 0.140 const 0.223 0.0765 0.013 5.929 0.000 numstat 0.051 0.102 Omnibus: 7.984 Durbin-Watson: 1.452 Prob(Omnibus): 0.018 Jarque-Bera (JB): 13.741 Skew: -0.053 Prob(JB): 0.00104 4.090 Kurtosis: Cond. No. 2.71

Notes:

[1] Standard Errors are heteroscedasticity robust (HC0)

1.d

```
In [274]: #C/D

citiesempt = cities.dropna(subset = ['empgrowth'])

treat = ['numstat']
controls = ['x_1', 'x_2', 'x_3', 'x_4', 'x_5', 'x_6', 'x_7', 'x_8', 'x_vals = sm.OLS(citiesempt['empgrowth'], sm.add_constant(citiesempt[treat out = vals.fit(cov_type = 'HCO')
print(out.summary())

cities['pred'] = out.predict(sm.add_constant(cities[treat + controls])
cities['resid'] = cities['pred'] - cities['empgrowth']
```

OLS Regression Results

Dep. Variable: empgrowth R-squared:

0.202 Model: 0LS Adj. R-squared: 0.169 Method: Least Squares F-statistic: 7.683 Date: Sun, 19 Nov 2023 Prob (F-statistic): 1.69e-11 Time: 16:03:51 Log-Likelihood: 15.905 No. Observations: 275 AIC: -7.810Df Residuals: BIC: 263 35.59 Df Model: 11

Covariance Type: HC0

0.975]	coef	std err	Z	P> z	[0.025
const 0.210	0.1625	0.024	6.665	0.000	0.115
numstat 0.064	0.0210	0.022	0.951	0.342	-0.022
x_1 0.044	-0.0006	0.023	-0.028	0.978	-0.045
x_2 0.065	0.0077	0.029	0.263	0.792	-0.050
x_3 0.086	0.0286	0.029	0.985	0.324	-0.028
x_4 0.077	0.0105	0.034	0.312	0.755	-0.056
x_5	0.0520	0.041	1.278	0.201	-0.028
0.132 x_6	0.1089	0.029	3.712	0.000	0.051
0.166 x_7	0.2145	0.046	4.697	0.000	0.125

0.304					
x_8	0.1418	0.072	1.977	0.048	0.001
0.282					
x_9	0.0611	0.043	1.414	0.157	-0.024
0.146					
x_18	0.0865	0.046	1.875	0.061	-0.004
0.177					
===========	=======	=======	=======	=======	=======
Omnibus:		9.348	Durbin-W	atson:	
1.534					
<pre>Prob(Omnibus):</pre>		0.009	Jarque-B	era (JB):	
17.638					
Skew:		-0.054	Prob(JB)	:	
0.000148					
Kurtosis:		4.236	Cond. No	•	
11.2					
=======================================	========	=======	========	=======	=======

======

Notes:

[1] Standard Errors are heteroscedasticity robust (HC0)

1.e

```
In [288]: #predict opening on line speed
  vals = sm.WLS(lines['open']/lines['open'].std(), sm.add_constant(lines
  out = vals.fit(cov_type = 'HC0')
  print(out.summary())
```

WLS Regression Results ======= Dep. Variable: open R-squared: 0.001 Model: WLS Adj. R-squared: -0.006Least Squares F-statistic: Method: 0.1067 Sun, 19 Nov 2023 Prob (F-statistic): Date: 0.744 Time: 16:48:07 Log-Likelihood: -227.19No. Observations: 149 AIC: 458.4 Df Residuals: 147 BIC: 464.4 Df Model: 1 Covariance Type: HC0 ______ coef std err Z P>|z| [0.025 0.975] const 1.0884 0.474 2.294 0.022 0.159 2.018 0.002 0.0006 0.327 0.744 -0.003speed 0.004 Omnibus: 109.788 Durbin-Watson: 0.628 Prob(Omnibus): 0.000 Jarque-Bera (JB): 12.851 Skew: -0.307Prob(JB): 0.00162 Kurtosis: 1.699 Cond. No. 1.45e+03

Notes:

- [1] Standard Errors are heteroscedasticity robust (HC0)
- [2] The condition number is large, 1.45e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [289]: #predict number of open stations on distance to beijing
vals = sm.OLS(cities['numstat']/cities['numstat'].std(), sm.add_consta
out = vals.fit(cov_type = 'HC0')
print(out.summary())
```

	OLS Regression Results					
		=========	======	=========	======	
Dep. Variable:		numstat	R-squa	red:		
Model: 0.003		0LS	Adj. R	-squared:		
Method: 2.374	L	east Squares.	F-stat	istic:		
Date: 0.124	Sun,	19 Nov 2023	Prob (F-statistic):		
Time: -481.00		16:48:09	Log-Li	kelihood:		
No. Observations	: :	340	AIC:			
Df Residuals: 973.7		338	BIC:			
Df Model: Covariance Type:		1 HC0				
=======================================	=======		======		=======	
<pre>====================================</pre>	coef	std err	Z	P> z	[0.025	
 const 1.228	1.0136	0.109	9.273	0.000	0.799	
dist_beijing 3.06e-05	-0.0001	7.31e-05	-1.541	0.123	-0.000	
============	=======	=========	======	=========	=======	
======= Omnibus:		113.436	Durbin	-Watson:		
1.451 Prob(Omnibus): 308.031		0.000	Jarque	-Bera (JB):		
Skew: 1.29e-67		1.577	Prob(J	B):		
1.29e-07 Kurtosis: 3.05e+03		6.435	Cond.	No.		
=======================================	=======	=========	======	========	=======	

Notes:

- [1] Standard Errors are heteroscedasticity robust (HC0)
- [2] The condition number is large, 3.05e+03. This might indicate that there are strong multicollinearity or other numerical problems.

1.f

```
In [281]: #turn merge into geofile
          cities2['numlinks'] = cities2['numlinks'].replace(0, np.nan)
          cities2 = cities2.dropna(subset = ['numlinks'])
          geometry = [Point(xy) for xy in zip(cities['longitude'], cities['latit
          gdf1 = gpd.GeoDataFrame(cities, crs=crs, geometry=geometry)
          #join shapefile and new geofile
          shapefile2 = gpd.sjoin(gdf1, shapefile, how="right", op='intersects')
          #print base colored by number of open stations
          base = shapefile2.plot(figsize=(15,9), column = 'numstat', edgecolor='
          geometry = [Point(xy) for xy in zip(cities2['longitude'], cities2['lat
          crs = {'init': shapefile1.crs}
          gdf = gpd.GeoDataFrame(cities2, crs=crs, geometry=geometry)
          gdf.plot(ax= base, marker = 'o', markersize = 5, color = 'navy')
          #plotting open lines
          for i in list(set(list(lines['lineid']))):
              trunc = cities2[cities2['lineid']==i]
              mp.plot(trunc.longitude, trunc.latitude, color = 'navy')
          /opt/anaconda3/lib/python3.8/site-packages/pyproj/crs/crs.py:141: Fut
          ureWarning:
          '+init=<authority>:<code>' syntax is deprecated. '<authority>:<code>'
          is the preferred initialization method. When making the change, be mi
          ndful of axis order changes: https://pyproj4.github.io/pyproj/stable/
          gotchas.html#axis-order-changes-in-proj-6 (https://pyproj4.github.io/
          pyproj/stable/gotchas.html#axis-order-changes-in-proj-6)
          /opt/anaconda3/lib/python3.8/site-packages/IPython/core/interactivesh
          ell.py:3357: FutureWarning:
          The `op` parameter is deprecated and will be removed in a future rele
          ase. Please use the `predicate` parameter instead.
          <ipython-input-281-edbb9c49cc6a>:10: UserWarning:
          CRS mismatch between the CRS of left geometries and the CRS of right
          geometries.
```

15 of 18

CRS of the other.

ureWarning:

Right CRS: EPSG:4326

Left CRS: +init=epsg:4326 +type=crs

Use `to crs()` to reproject one of the input geometries to match the

/opt/anaconda3/lib/python3.8/site-packages/pyproj/crs/crs.py:141: Fut

'+init=<authority>:<code>' syntax is deprecated. '<authority>:<code>'

is the preferred initialization method. When making the change, be mindful of axis order changes: https://pyproj4.github.io/pyproj/stable/gotchas.html#axis-order-changes-in-proj-6 (https://pyproj4.github.io/pyproj/stable/gotchas.html#axis-order-changes-in-proj-6)


```
In [282]: #turn merge into geofile
          cities2['numlinks'] = cities2['numlinks'].replace(0, np.nan)
          cities2['resid'].fillna(-5)
          cities2 = cities2.dropna(subset = ['numlinks'])
          geometry = [Point(xy) for xy in zip(cities['longitude'], cities['latit
          gdf1 = gpd.GeoDataFrame(cities, crs=crs, geometry=geometry)
          #join shapefile and new geofile
          shapefile2 = gpd.sjoin(gdf1, shapefile, how="right", op='intersects')
          #print base colored by number of open stations
          base = shapefile2.plot(figsize=(15,9), column = 'resid', edgecolor='st
          geometry = [Point(xy) for xy in zip(cities2['longitude'], cities2['lat
          crs = {'init': shapefile1.crs}
          gdf = gpd.GeoDataFrame(cities2, crs=crs, geometry=geometry)
          gdf.plot(ax= base, marker = 'o', markersize = 5, color = 'navy')
          #plotting open lines
          for i in list(set(list(lines['lineid']))):
              trunc = cities2[cities2['lineid']==i]
              mp.plot(trunc.longitude, trunc.latitude, color = 'navy')
          /opt/anaconda3/lib/python3.8/site-packages/pyproj/crs/crs.py:141: Fut
          ureWarning:
          '+init=<authority>:<code>' syntax is deprecated. '<authority>:<code>'
          is the preferred initialization method. When making the change, be mi
          ndful of axis order changes: https://pyproj4.github.io/pyproj/stable/
          gotchas.html#axis-order-changes-in-proj-6 (https://pyproj4.github.io/
          pyproj/stable/gotchas.html#axis-order-changes-in-proj-6)
          /opt/anaconda3/lib/python3.8/site-packages/IPython/core/interactivesh
          ell.py:3357: FutureWarning:
          The `op` parameter is deprecated and will be removed in a future rele
          ase. Please use the `predicate` parameter instead.
          <ipython-input-282-6dcd3b901323>:12: UserWarning:
          CRS mismatch between the CRS of left geometries and the CRS of right
```

geometries.

In []: