Exercise

- Leverage the Human Activity Recognition Using Smartphones <u>Data Set</u>:
 - o activity (eg: walking, laying etc) records for a group of 30 people
 - o raw embedded accelerometer and gyroscope signals
 - transformations of these signals (aka engineered features)
 - splitted into a training and a test sets (group splitting)
- To train models that predict the 6 different possible activities:
 - o a non deep learning model using any data available
 - a deep learning model using the raw signals
- Produce a report containing the models results and 1 visualisation

3-group features

isolate a set of base features and create thematic groups of features

features

4- select features

using an L1 penalised logistic regression, determine best features among each group

2-preprocess min-max scaling, caveat - it's likely that it has been done on the union training/test sets (eg: all features which don't reach 1/-1 in the training set do reach the 1-engineer boundary in the test set) features inputs various signal inputs' raw inertial processing signals techniques total acceleration р x, y, z body acceleration x, y, z 2(x-m)/(M-m)-1body angular velocity x, y, z

6- predict evaluate each row against all the decision trees fitted at training time on re-sampled version of the dataset

outputs

transform into a

distribution over

the output space

walking

laying

p: initial number of features (561)

q: number of features kept per group (max_extra_feat) **u**: best number of trees (*n* estimators) determined by cross validation

Project structure

- Makefile orchestrates all the recurring tasks of the project:
 - improves reproducibility
 - make targets are good candidates to jobs in a CI pipeline (eg: <u>GitHub Actions</u>)
 - typically make test!
- TOML configuration files contain model parameters:
 - should be version controlled
 - files differences are easier to review
 - allows dictionaries (helpful to define cross validation grid)
 - o needs some validation (eg: perhaps with an additional logic layer using <u>pydantic</u>)
- All models steps are encapsulated into a serialisable self-sufficient model:
 - mitigates the risk of training-serving skew
 - Tensorflow SavedModel format for the deep learning model
 - Joblib format for the non deep learning model

Results

- Given the labels are relatively balanced it is safe to use accuracy to compare models
- Deep learning model performs better (without feature engineering, less data & no data leakage)
- Models struggle between the sitting and standing positions

deep learning model							non deep learning model						
Model accuracy 93.62%							Model accuracy 91.45%						
	1 WALKING	2 WALKING_UPSTAIRS	3 WALKING_DOWNSTAIRS	4 SITTING	5 STANDING	6 LAYING		1 WALKING	2 WALKING_UPSTAIRS	3 WALKING_DOWNSTAIRS	4 SITTING	5 STANDING	6 LAYING
1 WALKING	457	15	0	24	0	0	1 WALKING	485	3	8	0	0	0
2 WALKING_UPSTAIRS	2	443	2	24	0	0	2 WALKING_UPSTAIRS	65	398	8	0	0	0
3 WALKING_DOWNSTAIRS	0	3	411	6	0	0	3 WALKING_DOWNSTAIRS	25	58	337	0	0	0
4 SITTING	0	3	0	431	57	0	4 SITTING	0	0	0	426	65	0
5 STANDING	0	1	0	49	482	0	5 STANDING	0	0	0	20	512	0
6 LAYING	0	0	0	0	2	535	6 LAYING	0	0	0	0	0	537

