1.
$$\frac{a-b*c^{(d-e*x)^2}}{f} = g$$

- 2. $a b * c^{(d-e*x)^2} = fg \rightarrow$ Multiplying both sides by f is allowed and elimates the fraction
- 3. $-b * c^{(d-e*x)^2} = fg a \rightarrow \text{Subtract a from both sides}$
- 4. $c^{(d-e*x)^2} = \frac{a-fg}{b}$ Divide both sides by -b to isolate c
- 5. $\log_c c^{(d-e*x)^2} = \log_c \frac{a-fg}{b}$ Take log base c of both sides
- 6. $(d e * x)^2 = \log_c(a fg) \log_c b \Rightarrow \frac{a fg}{b} == (a fg) * b^{-1}$. Rules of logs say you can bring the -1 out front of the log and multiplication in the argument of a log is equivalent to the addition of two logs with the factors of the original argument
- 7. $d-e^*x = \sqrt{\log_c(a fg) \log_c b}$, $e^*x-d = \sqrt{\log_c(a fg) \log_c b} \rightarrow$ taking the square root of both sides eliminates the exponent, but means we have two roots one positive, one negative
- 8. $x = \frac{d \sqrt{\log_c(a fg) \log_c b}}{e}$, $x = \frac{d + \sqrt{\log_c(a fg) \log_c b}}{e}$ add or subtract d from both sides, divide by e and -e