觅食算法

May 15, 2018

目录

1. 分解定理

分解定理

多说站在食物链顶端的动物们,例如狮子、老虎等主要靠视觉来搜寻猎物,和靠气味觅食(大白鲨)不同,视觉不存在所谓的梯度差,看不见就是看不见,没有动物具有透视眼。所以觅食策略对于狮子老虎这样的陆地动物是很重要的。在不知道猎物位置的情况下,<mark>布朗运动或</mark>许是最自然的方法了。布朗运动是一个随机过程,它的步长服从正态分布。

离散版的布朗运动叫做<mark>随机游走</mark>(Random walk),它的步长和方向都是离散的。尽管布朗运动和随机游走是两个概念,也各自发展出了一套不同的理论,但两者的数学本质是一样的。

布朗运动轨迹

Figure 1: 布朗运动轨迹图

现在提供一个布朗运动的轨迹图。

在物理学家眼里,布朗运动可以用<mark>郎之万方程</mark>(Langevin Equation。提出人保罗·郎之万是法国物理学家,居里夫人丈夫皮埃尔·居里的博士生,并且后来给皮埃尔·居里戴了绿帽子)来描述:

$$m\frac{d^{2}x}{dt^{2}} = f(t) + F'(t).$$
 (1)

其中 f(t) 分成两部分,一部分为阻力 $-\alpha v$; 一部分为随机作用力 F(t)。 粘滞阻力仍来自介质分子对颗粒的碰撞,将颗粒看作半径为 a 的小球, 在粘滞系数为 η 的流体中运动,则有 $\alpha = 6\pi \eta a$ 。

$$m\ddot{x} = -\mu \dot{x}(t) + \eta(t). \tag{2}$$

其中 $\eta(t)$ 是均值为 0,方差为常数的随机过程。更确切地讲,是白噪声过程。

因此郎之万方程本质上就是考虑了<mark>随机误差</mark>的牛顿第二定律,这样的方程又叫做<mark>随机微分方程</mark>(Stochastic Differential Equation)。尽管郎之万是第一个提出随机过程的人,但作为物理学家,他更关心这些方程是否符合实际物理现象,而不关心数学上的严谨性。因此这种模型并没有立即受到数据家的重视。

到了二十世纪中叶,日本数学家伊藤清和苏联数学家 Stratonovich 先后使用概率论的方法,把随机微分方程发展成严谨的数学概念。尽管如此,但两人对随机微分方程定义各有不同,这也显示了<mark>随机性和确定性</mark>的本质差异。此外,随机微分方程多用于对一些多样化现象进行建模,比如不停变动的股票价格、部分物理现象如热扰动等。

如果捕食者像无头苍蝇一样漫无目的的做布朗运动,真的能很有效的地寻到到猎物吗?在数学上可以证明,布朗运动和分子自由扩散一样,单位速度的分子在时间 t 内平均只有 \sqrt{t} 的位移量。捕食者若采用此种策略,可能需要踏遍千山万水才能成功了。

那么有没有比布朗运动更高效的搜索方法呢?一组巴西物理学家于 1999 年提出了一个设想,认为"莱维飞行"比布朗运动有更高的搜索效率,因此自然会偏向与采用"莱维飞行"捕食的生物。

莱维分布

莱维分布(Levy Distribution)是由 P.Levy 在 19 世纪 30 年代提出的一类分布,这种分布有两个参数: α 和 γ 。参数 γ > 0,参数 α 用于控制分布的形状,且满足 0 < α ≤ 2。事实上当 γ = 1 时,莱维分布就转换为柯西分布,而当 γ = 2 时,莱维分布则为正态分布。莱维分布的概率密度函数为

$$L_{\alpha,\gamma} = \frac{1}{\pi} \int_0^\infty e^{-\gamma q^{\alpha}} \cos(qy) dq, y \in \mathcal{R}.$$
 (3)

上述积分很难积,因此现有的莱维分布基本上使用数值方法计算。设x,y是两个独立同分布的随机变量,且均为标准正态分布,令随机变量v满足:

$$v = \frac{x}{\sqrt{y}} \tag{4}$$

则随机变量 $\{z_n\}_{n=1}^{+\infty}$ 为

$$z_n = \frac{1}{\alpha \sqrt{n}} \sum_{j=1}^n v_j \tag{5}$$

收敛于莱维分布。

莱维分布

现在提供一个 matlab 例子。轨迹如下:

Figure 2: Levy 分布轨迹图

莱维过程 $\{X(t), t \geq 0\}$ 是一种随机过程,它满足的条件比布朗运动宽松:

- 1.X(0) 几乎处处为 0;
- 2. 独立增量性;
- 3. 稳定增量性;
- 4. 样本轨道右连续。

连续的布朗运动和离散的泊松过程都是莱维过程的特例。因此可以大胆猜测,莱维过程就是带"跳跃"的布朗运动。正是这些不连续性的"跳跃"给予莱维过程"重尾"的特性。

独立增量:

设 X(t) 是一个连续时间上的随机过程。也就是说,对于任何固定的 $t \geq 0$,X(t) 是一个随机变量。过程的增量为差值 X(s) - X(t)。独立增量意味着对于任意时间 s > t > u > v, X(s) - X(t) 与 X(u) - X(v) 相互独立。

稳定增量:

如果增量 X(s) - X(t) 的分布只依赖于时间间隔 s - t,则称增量是稳定的。例如对于维纳过程,增量 X(s) - X(t) 服从均值为 0,方差为 s - t 的正态分布。对于泊松过程,增量 X(s) - X(t) 服从指数为 s - t 的泊松分布。

定理 1(莱维 -辛钦公式): 莱维过程 $\{X(t), t \ge 0\}$ 的特征函数 (傅里叶变换) 表达如下:

$$\phi_{X}(\theta)(t) := E[e^{i\theta X(t)}] = \exp(t(ai\theta - \frac{1}{2}\sigma^{2}\theta^{2} + \int_{\mathcal{R}\setminus\{0\}} (e^{i\theta x} - 1 - i\theta x I_{|x|<1}) \prod(dx))).$$

$$\tag{6}$$

这个定理的证明比较复杂,依赖于测度论中的一系列结果。

定理 2(莱维 -伊藤分解): 每个莱维过程 $\{X(t), t \geq 0\}$ 都可以分解为 $\{S(t), t \geq 0\}, \{Y(t), t \geq 0\}$ 和 $\{Z(t), t \geq 0\}$ 三个子过程,其中:

- 1.S(t) 是维纳过程(就是布朗运动,莱维过程的连续部分);
- 2.Y(t) 是复合泊松过程(刻画了较极端的"跳跃"现象);
- 3.Z(t) 是平方可积的离散鞅(刻画了较小的"跳跃"现象)。

Basic Definition

随机变量 $(r.v.)X \sim \mu$ 的特征函数是映射 $\Phi : \mathbb{R}^d \to \mathbb{C}$,定义如下

$$\Phi(u) = \mathbb{E}(e^{iu \cdot X}) = \int_{R^d} e^{iu \cdot y} \mu(dy). \tag{7}$$

随机变量 X 是无限可分的,除非它的该率分布 p_x 是无限可分的,例如, $X = Y_1^{(n)} + ... + Y_n^{(n)}$,其中 $Y_1^{(n)}, ..., Y_n^{(n)}$ 是独立同分布。那么 X 的特征函数可以写成 $\Phi_X(u) = (\Phi_{Y_n^{(n)}}(u))^n$.

定义 1:

莱维可测是满足如下条件的 $\mathbb{R}^d\setminus\{0\}$ 上的测度 ν , 使得

$$\int (|y|^2 \wedge 1) \nu(dy) < \infty. \tag{8}$$

其中
$$|y|^2 \wedge 1 = \begin{cases} 1, & |x| > 1 \\ y^2, & |x| \le 1 \end{cases}$$

定义函数 $X: \mathbb{R}^+ \to \mathbb{R}$ 是 Cadlag 过程,即 X 是右连续左极限存在。令 $\Delta X(t) = X(t) - X(t-)$ (由于左极限的存在) 且定义如下泊松随机测度

$$N(t,A) = \sharp \{\Delta X(s) \in A : s \in [0,t]\}. \tag{9}$$

那么有如下结论:

- $(1)N(1,B_{\varepsilon}^{c}(0))<\infty.$
- (2)N(1, R\{0}) 是可数的。

令 A 是有下界的,i.e., $0 \notin \overline{A}$. 那么 $N(t,A), t \ge 0$ 是泊松过程且强度为 $\mu(A) = \mathbf{E}[N(1,A)]$. 很明显有结论 $\mu(A) < \infty$ 不管 A 是否有下界。所以测度 μ 是 σ — 有限的。

推论 1: (1) 对任意的 $t > 0, \omega \in \Omega, N(t, \cdot)(\omega)$ 在 $\mathcal{B}(\mathbf{R}^d \setminus \{0\})$ 上是 计数可测的。

- (2) 对于任意的有下界的 $A,N(t,A),t\geq 0$ 是泊松过程且具有如下强度 $\mu(A)=\mathbf{E}[N(1,A)].$
- (3) 补 $\tilde{N}(t,A) = N(t,A) t\mu(A)$ 是值鞅可测的。对于有下界的 A, $\tilde{N}(t,A)$ 是一个鞅。

令 $f: \mathbb{R}^d \to \mathbb{R}$ 是波莱尔可测函数,A 有下界,那么对任意 t>0, $\omega \in \Omega$,我们定义如下关于 f 泊松积分通过一个随机有限和。

$$\int_{A} f(x)N(t,dx)(\omega) = \sum_{x \in A} f(x)N(t,\{x\})(\omega).$$
 (10)

定理 2: 令 *A* 有下界,则

(1) 对任意的 $\int_A f(x)N(t,dx), t \ge 0$ 是复合泊松过程,带有如下特征函数:

$$\mathbf{E}[\exp\{iu\cdot\int_{A}f(x)N(t,dx)\}] = \exp\{t\int_{A}(e^{iu\cdot x}-1)\mu_{f}(dx)\}. \tag{11}$$

其中 $u \in \mathbf{R}^d$, $\mu_f = \mu \circ f^{-1}$.

(2) 如果有 $f \in L^1(A, \mu_A)$,那么有

$$\mathbf{E}[\int_{A} f(x)N(t,dx)] = t \int_{A} f(x)\mu(dx). \tag{12}$$

(3) 如果有 $f \in L^2(A, \mu_A)$,那么有

$$Var[|\int_{A} f(x)N(t,dx)|] = t \int_{A} |f(x)|^{2} \mu(dx).$$
 (13)

从定理 2 可以看出,如果 $f \in L^1(A, \mu_A)$,一个泊松积分也许不一定全都有有限期望。对于此,我们定义如下补泊松积分:

$$\int_{A} f(x)\tilde{N}(t,dx) = \int_{A} f(x)N(t,dx) - t \int_{A} f(x)\mu(dx).$$
 (14)

则有如下结论:

- (1) $\int_A f(x) \tilde{N}(t, dx), t \geq 0$ 是一个鞅。
- (2) 特征函数:

$$\mathbf{E}[\exp\{iu\cdot\int_{A}f(x)\tilde{N}(t,dx)\}] = \exp\{t\int_{A}(e^{iu\cdot x}-1-iu\cdot x)\mu_{f}(dx)\}. \quad (15)$$

其中 $u \in \mathbf{R}^d$, $\mu_f = \mu \circ f^{-1}$.

(3) 如果有 $f \in L^2(A, \mu_A)$,那么有

$$Var[|\int_{A} f(x)\tilde{N}(t,dx)|] = t\int_{A} |f(x)|^{2} \mu(dx).$$
 (16)

对于有下界的 A 和任意的 t>0, $\int_A xN(t,dx)\sum_{0\leq u\leq t}\Delta X(u)1_A(\Delta X(u))$ 是集合 A 中不超过时间 t 的所有跳变值和。由于轨迹 X 是 Cadlag,所以上述是个有限随机和。特别地, $\int_{|x|\geq 1}xN(t,dx)$ is 所有大于 1 的跳变之和。也就是说是一个带有有限次扰动的复合泊松过程。相反地,也可以证明 $X(t)-\int_{|x|\geq 1}xN(t,dx)$ 带有有限次有次序动作的莱维过程。但是也许有无界扰动。所以我们可以定义

$$b = \mathbf{E}[X(1) - \int_{|x| \ge 1} x N(1, dx)]. \tag{17}$$

现在把关注度放在小跳变上来。引入 $M(t,A) = \int_A f(x) \tilde{N}(t,dx)$. 令 $A_m = \{x : \frac{1}{m+1} < |x| \le 1\}$. 可以证明在 L^2 里,当 $m \to \infty$ 时,我们有 $M(t,A_m) \to \int_{|x|<1} x \tilde{N}(t,dx)$ 。所以 $\int_{|x|<1} x \tilde{N}(t,dx)$ 是一个鞅。取极限得

$$\mathbf{E}[\exp\{iu\cdot\int_{A}x\tilde{N}(t,dx)\}] = \exp\{t\int_{A}(e^{iu\cdot x}-1-iu\cdot x)\mu(dx)\}.$$
 (18)

最后考虑如下随机过程

$$W_{A}(t) = X(t) - bt - \int_{|x| < 1} x \tilde{N}(t, dx) - \int_{|x| \ge 1} x N(t, dx).$$
 (19)

那么随机过程 $W_A(t)$ 是带有连续采样路径的中心鞅。利用布朗运动的莱维特征化,我们有 $W_A(t)$ 就是协方差为 A 的布朗运动。

Levy-Ito Decomposition *X* 是莱维过程。那么存在 $b \in \mathbf{R}^d$,协方差为 *A* 的布朗运动 $W_A(t)$, $\mathbf{R}^+ \times \{\mathbf{R}^d \setminus \{0\}\}$ 独立的泊松随机测度 *N* 使得下式成立:

$$X(t) = bt + W_A(t) + \int_{|x| < 1} x \tilde{N}(t, dx) + \int_{|x| \ge 1} x N(t, dx).$$
 (20)

其中平方可积鞅 $(L^2$ -鞅) $\int_{|x|<1}x\tilde{N}(t,dx)$ 是所有小跳变的补和。上述跳变是以 1 为界的,可以推广至任意实数 R>0,我们有

$$X(t) = b_R t + W_A(t) + \int_{|x| < R} x \tilde{N}(t, dx) + \int_{|x| \ge R} x N(t, dx).$$
 (21)

其中 $b_R = \mathbf{E}[X(1) - \int_{|x| \geq R} x N(1, dx)]$. 可以计算如下:

- (1) 如果 $1 < R < \infty$, 有 $b_R = b + \int_{1 \le |x| x < R} x \mu(dx)$.
- (2) 如果 0 < R < 1, 有 $b_R = b \int_{R \le |x| x < 1} x \mu(dx)$.

是否可以去除上届约束 R 呢? 此时我们有

$$X(t) = b_{\infty}t + W_A(t) + \int_{|x| \ge 0} x \tilde{N}(t, dx).$$
 (22)

结论是可以的,如果我们有 $\mathbf{E}[X(1)] < \infty$ 。此时,我们有 $b_{\infty} = \mathbf{E}[X(1)] < \infty$.