

The Fourier Transform

CS 355: Introduction to Graphics and Image Processing

First, a bit about sines and cosines...

Sinusoids

- Useful to think of sinusoids in terms of three properties:
 - their *frequency* (how often they repeat)
 - their amplitude
 (height of the peaks)
 - their *phase* (shifting left or right)
- A sine wave is just a cosine wave with phase $\pi/2$

And a bit about transforms...

Functions as Vectors

- Inner (dot) product between two vectors is the summation of the point-wise product
- Can't we do the same thing with functions?
- For continuous functions, the summation just becomes an integral
- Functions satisfy all of the mathematical requirements for "vectors"
- Can we transform functions?

$$\mathbf{u} \cdot \mathbf{v} = \sum_{j} \mathbf{u}[j] \ \mathbf{v}[j]$$

$$f(t) \cdot g(t) = \int_{-\infty}^{\infty} f(t) \ g(t) \ dt$$

Sinusoidal Basis Functions

- One set of orthonormal basis functions is the set of sines and cosines of different frequencies
- Let's use these as the basis functions for a transform

$$c(u) = \int_{-\infty}^{\infty} f(t) \cos(2\pi ut) dt$$

$$s(u) = \int_{-\infty}^{\infty} f(t) \sin(2\pi ut) dt$$

A brief detour...

Complex Numbers

 A complex number is the sum of a real number and an imaginary number:

$$a + bi$$

• Think of as a point on the complex plane

Complex Numbers

- Often useful to think about complex numbers in polar coordinates
- The magnitude is

$$||a + bi|| = \sqrt{a^2 + b^2}$$

And the phase (angle) is

$$\phi(a+bi) = \tan^{-1}\left(\frac{b}{a}\right)$$

So why do we care about complex numbers?

Adding Sinusoids

- When you add some amount of a cosine to another amount of a sine of the same frequency, you get a sinusoid of the same frequency
- If you encode the amount of cosine and the amount of sine as a complex number...
 - The amplitude of the sinusoid is the magnitude of the complex number
 - The phase of the sinusoid is the phase of the complex number

$$a\cos(2\pi ut) + b\sin(2\pi ut)$$

$$z = a + bi$$

$$||z|| \cos(2\pi ut + \phi(z))$$

Two Ways to Make Sinusoids

- We thus have two ways to make the same sinusoid:
 - Mix a cosine and a sine with specific weights
 - Start with a cosine and
 - Stretch it by the square root of the sum of the squares of the sine and cosine weights
 - Shift it by the arctangent of the ratio of the sine weight to the cosine weight

Sinusoidal Weights as Complex Numbers

 Useful to encode the coefficients from projecting onto sinusoidal basis functions as a single complex number

$$c(u) = \int_{-\infty}^{\infty} f(t) \cos(2\pi ut) dt$$

$$s(u) = \int_{-\infty}^{\infty} f(t) \sin(2\pi ut) dt$$

$$F(u) = c(u) - i \ s(u)$$

^{*} Note the minus sign here when combining the two, this comes from doing linear algebra with complex quantities

The Fourier Transform

- An encode as a function f(t) as a weighted sum of sines and cosines where the weights are given by a complex-valued function F(u)
- Can think of as an operator
- Written as

$$F(u) = \mathcal{F}(f(t))$$

$$c(u) = \int_{-\infty}^{\infty} f(t) \cos(2\pi ut) dt$$

$$s(u) = \int_{-\infty}^{\infty} f(t) \sin(2\pi ut) dt$$

$$F(u) = c(u) - i \ s(u)$$

The Inverse Fourier Transform

- Can invert the transformation to get f(t) from F(u) by simply adding the sines and cosines back up with the respective weights
- Can also think of as an operator
- Written as

$$f(t) = \mathcal{F}^{-1}(F(u))$$

$$F(u) = a(u) + i b(u)$$

$$f(t) = \int_{-\infty}^{\infty} a(u) \cos(2\pi ut) du$$

$$+ \int_{-\infty}^{\infty} b(u) \sin(2\pi ut) du$$

The Discrete Fourier Transform

- What about a finite-length, sampled signal?
- The Fourier Transform assumes an infinite-length signal (impossible to work with on computers)
- What should we assume about the signal before and after we record it?
- Since we're decomposing it into a sum of periodic functions, let's assume it's one period of an infinite periodic function

Period Functions

- For a periodic signal with period N units, all of the underlying frequencies must also repeat over the period N
- So, each component frequency must be a multiple of the frequency of the periodic signal itself:
- There are no more than N components for a signal with period N samples!

$$\frac{0}{N}, \frac{1}{N}, \frac{2}{N}, \frac{3}{N} \cdots \frac{N-1}{N}$$

The Discrete Fourier Transform

- Same idea as the Fourier Transform
- For a finite with N samples:
 - N discrete frequencies u/N
 - Sum over the N discrete samples
- What would the code look like?
- What is the complexity?

$$c[u] = \frac{1}{N} \sum_{u=0}^{N-1} f[t] \cos(2\pi ut/N)$$

$$s[u] = \frac{1}{N} \sum_{u=0}^{N-1} f[t] \sin(2\pi ut/N)$$

$$F[u] = c[u] - i \ s[u]$$

The Fast Fourier Transform

- The Fast Fourier Transform does exactly the equivalent mathematically
- Divide-and-conquer algorithm provides greater efficiency

DFT $O(N^2)$

FFT $O(N \log N)$

Using the FFT

- Pass in an array of length N
- Returns back an array of length N of type complex
 - The <u>real part</u> of each number is how much of a <u>cosine</u> of that frequency there is
 - The <u>imaginary part</u> of each number is how much of a <u>sine</u> of that frequency there is

Interpreting the Complex Numbers

- Can think of in Cartesian form:
 - The real part of each number is how much of a cosine of that frequency
 - The imaginary part of each number is how much of a sine of that frequency
- Or in polar form:
 - The <u>magnitude</u> of each number is <u>how much</u> of that frequency there signal
 - The phase of each number is the relative shift (from a cosine) of each sinusoid

Negative Frequencies

- Because of their repetitive nature
 - cosines are symmetric
 - sines are antisymmetric
 - discrete ones repeat modulo N

$$\cos(-2\pi u/N) = \cos(2\pi u/N)$$
$$\sin(-2\pi u/N) = -\sin(2\pi u/N)$$
$$N - u \equiv -u \mod N$$

Storage of the DFT Results

Because of symmetry, the last half of the array is a mirrored (negated) copy of the first half

$$\cos(-2\pi u/N) = \cos(2\pi u/N)$$
$$\sin(-2\pi u/N) = -\sin(2\pi u/N)$$

Implications

- Because of symmetry
 - Last half of the real part is a mirrored copy of the first half
 - Last half of the imaginary part is a negated mirrored copy
- There are really only N basis functions, as there should be, not 2N
- Only really computing frequencies up to N/2
 - Twice the number of samples are there are frequencies
 - "Sample at twice the highest frequency in the signal..."
 - This is the same as Shannon's sampling theorem!

Useful Python Functions

- np.fft.fft forward FFT (complex array in, complex array out)
- np.fft.ifft inverse FFT (complex array in, complex array out)
- np.absolute returns the magnitude of a complex number (or the absolute value of a real one)
- Normal mathematical operators (+, -, *, /) work on complex numbers as well as integer, floating point ones
- Tip: a real number is a complex one with imaginary part equal to zero

Why Are We Doing This Again?

- The Fourier Transform of a signal lets you analyze the mix of frequencies in it
- Can manipulate the transformed signal and then transform it back! (that's the topic for the next class)

Coming up...

- Examples and properties
- Filtering in the frequency domain
- The Convolution Theorem (wait, what? convolution?)
- 2-D FFT and image filtering in the frequency domain