Zusammenfassung Analysis 1

esthi

26 Mai 2022

Lizenz

Dieses Dokument ist unter CC BY-SA 4.0 lizenziert. Es darf verbreitet oder verändert werden, solange der Urheber und die Lizenz erhalten bleibt.

Der LATEX-Quelltext ist verfügbar auf Zusammenfassung.

1 Folgen

1.1 Konvergenz

Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen L

 $\iff \lim_{n\to\infty} a_n = L$

$$\iff \forall \epsilon > 0 \ \exists N_e \ \forall n \ge N_\epsilon : \ |a_n - L| < e$$

Wir dürfen (o.B.d.A.) annehmen, dass ϵ durch eine Konstante $C \in \mathbb{R}$ beschränkt ist. Es gilt ausserdem:

- konvergent \implies beschränkt, aber nicht umgekehrt
- (a_n) konvergent \iff (a_n) beschränkt **und** $\lim \inf a_n = \lim \sup a_n$

Limes superior & inferior

$$\lim_{n\to\infty}\inf x_n = \lim_{n\to\infty}\left(\inf_{m\geq n}x_m\right)$$
$$\lim_{n\to\infty}\sup x_n = \lim_{n\to\infty}\left(\sup_{m>n}x_m\right)$$

Einschliessungskriterium (Sandwich-Theorem)

Wenn $\lim_{n\to\infty} a_n = \alpha$, $\lim_{n\to\infty} b_n = \alpha$ und $a_n \le c_n \le b_n, \forall n \ge k$, dann $\lim_{n\to\infty} c_n = \alpha$.

Weierstrass

Wenn a_n monoton wachsend und nach oben beschränkt ist, dann konvergiert a_n mit Grenzwert $\lim_{n\to\infty} a_n = \sup\{a_n : n \geq 1\}.$

Wenn a_n monoton fallend und nach unten beschränkt ist, dann konvergiert a_n mit Grenzwert $\lim_{n\to\infty} a_n = \inf\{a_n : n \geq 1\}.$

Cauchy-Kriterium

Die Folge a_n ist genau dann konvergent, falls $\forall e > 0 \ \exists N \geq 1 \ \text{so dass} \ |a_n - a_m| < \epsilon \quad \forall n, m \geq N.$

1.1.1 Teilfolge

Eine Teilfolge von a_n ist eine Folge b_n wobei $b_n = a_{l(n)}$ und l eine Funktion mit $l(n) < l(n+1) \quad \forall n \geq 1$ (z.B. l = 2n für jedes gerade Folgenglied).

1.1.2 Bolzano-Weierstrass

 ${\it Jede}$ beschränkte Folge besitzt eine konvergente Teilfolge.

1.2 Strategie - Konvergenz von Folgen

- 1. Bei Brüchen: Grösste Potenz von n kürzen. Alle Brüche der Form $\frac{a}{n^a}$ streichen, da diese nach 0 gehen.
- 2. Bei Wurzeln in Summe im Nenner: Multiplizieren des Nenners und Zählers mit der Differenz der Summe im Nenner. (z.B. (a+b) mit (a-b) multiplizieren)
- 3. Bei rekursiven Folgen: Anwendung von Weierstrass zur monotonen Konvergenz
- 4. Einschliessungskriterium (Sandwich-Theorem) anwenden.

- 5. Mit bekannter Folge vergleichen.
- 6. Grenzwert durch einfaches Umformen ermitteln.
- 7. Limit per Definition der Konvergenz zeigen.
- 8. Anwendung des Cauchy-Kriteriums.
- 9. Suchen eines konvergenten Majorant.
- 10. Weinen und die Aufgabe überspringen.

1.3 Strategie - Divergenz von Folgen

- 1. Suchen einer divergenten Vergleichsfolge.
- 2. Alternierende Folgen: Zeige, dass Teilfolgen nicht gleich werden, also $\lim_{n\to\infty} a_{p_1(n)} \neq \lim_{n\to\infty} a_{p_2(n)}$ (mit z.B. gerade/ungerade als Teilfolgen).

1.4 Tricks für Grenzwerte

1.4.1 Binome

$$\lim_{x \to \infty} (\sqrt{x+4} - \sqrt{x-2}) = \lim_{x \to \infty} \frac{(x+4) - (x-2)}{\sqrt{x+4} + \sqrt{x-2}}$$

1.4.2 Substitution

$$\lim_{x \to \infty} x^2 (1 - \cos(\frac{1}{x}))$$

Substituiere nun $u = \frac{1}{x}$:

$$\lim_{u \to 0} \frac{1 - \cos(u)}{u^2} = \lim_{u \to 0} \frac{\sin(u)}{2u} = \lim_{u \to 0} \frac{\cos(u)}{2} = \frac{1}{2}$$

1.4.3 Induktive Folgen (Induktionstrick)

- 1. Zeige monoton wachsend / fallend
- 2. Zeige beschränkt
- 3. Nutze Satz von Weierstrass, d.h. Folge muss gegen Grenzwert konvergieren
- 4. Verwende Induktionstrick:

Wenn die Folge konvergiert, hat jede Teilfolge den gleichen Grenzwert. Betrachte die Teilfolge l(n) = n + 1 für $d_{n+1} = \sqrt{3d_n - 2}$:

$$d = \lim_{n \to \infty} d_n = \lim_{n \to \infty} d_{n+1} = \sqrt{\lim_{n \to \infty} 3d_n - 2} = \sqrt{3d - 2}$$

Forme um zu $d^2=3d-2\to d\in 1,2.$ Nun können wir d=2 nehmen und die Beschränktheit mit d=2 per Induktion zeigen.

2 Reihen

Cauchy-Kriterium für Reihen

Die Reihe $\sum_{k=1}^{\infty} a_k$ ist genau dann konvergent, falls $\forall \epsilon > 0 \ \exists N \geq 1 \ \text{mit} \ |\sum_{k=n}^{m} a_k| < \epsilon, \ \forall m \geq n \geq N.$

Nullfolgenkriterium

Wenn für eine Folge $\lim_{n\to\infty} |a_n| \neq 0$ ist, dann divergiert $\sum_{n=0}^{\infty} a_n$.

2.0.1 Reihenarithmetik

Wenn $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ konvergent sind, dann gilt:

- $\sum_{k=1}^{\infty} (a_k + b_k)$ konvergent und $\sum_{k=1}^{\infty} (a_k + b_k) = (\sum_{k=1}^{\infty} a_k) + (\sum_{k=1}^{\infty} b_k)$
- $\sum_{k=1}^{\infty} \alpha a_k$ konvergent und $\sum_{k=1}^{\infty} \alpha a_k = \alpha \sum_{k=1}^{\infty} a_k$

Vergleichssatz

Wenn $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ Reihen mit $0 \le a_k \le b_k, \forall k \ge K \ge 1$ sind, so gilt:

$$\sum_{k=1}^{\infty} b_k \text{ konvergent } \Longrightarrow \sum_{k=1}^{\infty} a_k \text{ konvergent}$$

$$\sum_{k=1}^{\infty} a_k \text{ divergent } \Longrightarrow \sum_{k=1}^{\infty} b_k \text{ divergent}$$

Als Vergleichsreihe (Majorant / Minorant) eignet sich oft eine Reihe der folgenden Kategorien:

2.0.2 Geometrische Reihe

 $\sum_{k=0}^{\infty}q^k$ divergiert für $|q|\geq 1$ und konvergiert zu $\frac{1}{1-q}$ für |q|<1

2.0.3 Zeta-Funktion

 $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ divergiert für $s \leq 1$ und konvergiert für s > 1.

2.1 Absolute Konvergenz

 $\sum_{k=1}^{\infty} a_k$ heisst **absolut konvergent**, wenn $\sum_{k=1}^{\infty} |a_k|$ konvergiert. Eine absolut konvergente Reihe ist immer auch konvergent, es gilt $|\sum_{k=1}^{\infty} a_k| \leq \sum_{k=1}^{\infty} |a_k|$.

Falls eine Reihe absolut konvergiert, dann konvergiert jede Umordnung der Reihe mit dem selben Grenzwert.

Falls die Reihe hingegen nur konvergiert, so gibt es immer eine Anordnung, so dass $\sum_{k=1}^{\infty} a_{\phi(k)} = x, \ \forall x \in \mathbb{R}$.

Leibnizkriterium

Wenn $a_n \geq 0$, $\forall n \geq 1$ monoton fallend ist und $\lim_{n\to\infty} a_n = 0$ gilt, dann konvergiert $S = \sum_{k=1}^{\infty} (-1)^{k+1} a_k$ und $a_1 - a_2 \leq S \leq a_1$.

Quotientenkriterium

Sei (a_n) eine Folge mit $a_n \neq 0, \forall n \geq 1$.

Falls $\lim_{n\to\infty} \sup \frac{|a_{n+1}|}{|a_n|} < 1 \implies \sum_{n=1}^{\infty} a_n$ konvergiert absolut.

Falls $\lim_{n\to\infty}\inf\frac{|a_{n+1}|}{|a_n|}>1\implies\sum_{n=1}^\infty a_n$ divergiert.

Wurzelkriterium

Sei (a_n) eine Folge mit $a_n \neq 0, \forall n \geq 1$. Sei $q = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$.

- $q < 1 \implies \sum_{n=1}^{\infty} a_n$ konvergiert absolut.
- $q = 1 \implies$ keine Aussage.
- $q > 1 \implies \sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} |a_n|$ divergieren.

2.2 Wichtige Reihen

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$\sum_{i=1}^{n} i^3 = \frac{1}{4}n^2(n+1)^2$$

$$\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}$$

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

2.3 Cauchy-Produkt

Definition Cauchy-Produkt

Das Cauchy-Produkt von zwei Reihen $\sum_{i=0}^{\infty} a_i$ und $\sum_{i=0}^{\infty} b_i$ ist definiert als

$$\sum_{n=0}^{\infty} \sum_{j=0}^{n} (a_{n-j} \cdot b_j) = a_0 b_0 + (a_0 b_1 + a_1 b_0) + \dots$$

Es konvergiert, falls beide Reihen konvergieren.

2.4 Strategie - Konvergenz von Reihen

- 1. Ist Reihe ein bekannter Typ? (Teleskopieren, Geometrische/Harmonische Reihe, Zetafunktion, ...)
- 2. Ist $\lim_{n\to\infty} a_n = 0$? Wenn nein, divergent.
- 3. Quotientenkriterium & Wurzelkriterium anwenden
- 4. Vergleichssatz anwenden, Vergleichsreihen suchen
- 5. Leibnizkriterium anwenden
- 6. Integral-Test anwenden (Reihe zu Integral)

3 Funktionen

3.1 Stetigkeit

Sei $f: D \to \mathbb{R}^d, x \to f(x)$ eine Funktion in $D \subseteq \mathbb{R}^d$.

Definition Stetigkeit

f ist in $x_0 \in D$ stetig, falls $\lim_{x \to x_0} f(x) = f(x_0)$. f ist stetig, falls sie in jedem $x_0 \in D$ stetig ist.

Polynomiale Funktionen sind auf \mathbb{R} stetig.

Falls f und g den gleichen Definitions-/Bildbereich haben und in x_0 stetig sind, dann sind auch

$$f + g, \lambda \cdot f, f \cdot g, \frac{f}{g}, |f|, \max(f, g), \min(f, g)$$

stetig in x_0 .

Zwischenwertsatz

Wenn $I \subseteq \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ und $a,b \in I$ ist, dann gibt es für jedes c zwischen f(a) und f(b) ein $a \leq z \leq b$ mit f(z) = c.

zwischenwertsatz.png

Wird häufig verwendet um zu zeigen, das eine Funktion einen gewissen Wert (z.B. Nullstelle) annimmt.

Daraus folgt, dass ein Polynom mit ungeradem Grad mindestens eine Nullstelle in $\mathbb R$ besitzt.

3.1.1 Kompaktes Intervall

Ein Intervall $I \in \mathbb{R}$ ist kompakt, falls es von der Form I = [a, b] mit $a \leq b$ ist.

Min-Max-Satz

Sei $f:I=[a,b]\to\mathbb{R}$ stetig auf einem kompakten Intervall I. Dann gibt es $u,v\in I$ mit $f(u)\leq f(x)\leq f(v), \forall x\in I$. Insbesondere ist f beschränkt.

Stetigkeit der Verknüpfung

Sei $f: D_1 \to D_2, g: D_2 \to \mathbb{R}$ und $x_0 \in D_1$. Falls f in x_0 und g in $f(x_0)$ stetig ist, dann ist $g \cap f: D_1 \to \mathbb{R}$ in x_0 stetig.

Satz über die Umkehrabbildung

Sei $f:I\to\mathbb{R}$ stetig und streng monoton und sei $J=f(I)\subseteq\mathbb{R}$. Dann ist $f^{-1}:J\to I$ stetig und streng monoton.

Die reelle Exponentialfunktion

 $\exp: \mathbb{R} \to]0, +\infty[$ ist streng monoton wachsend, stetig und surjektiv. Auch die Umkehrfunktion ln: $]0, +\infty[\to \mathbb{R}]$ hat diese Eigenschaften.

3.2 Konvergenz

Punktweise Konvergenz

Die Funktionenfolge (f_n) konvergiert punktweise gegen eine Funktion $f:D\to\mathbb{R}$ falls für alle $x\in D$ gilt, dass $\lim_{n\to\infty} f_n(x)=f(x)$.

Gleichmässige Konvergenz

Die Folge (f_n) konvergiert gleichmässig in D gegen f falls gilt $\forall \epsilon > 0 \ \exists N \geq 1$, so dass $\forall n \geq N, \ \forall x \in D : |f_n(x) - f(x)| \leq \epsilon$.

Die Funktionenfolge (g_n) ist gleichmässig konvergent, falls für alle $x \in D$ der Grenzwert $\lim_{n\to\infty} g_n(x) = g(x)$ existiert und die Folge (g_n) gleichmässig gegen g konvergiert.

Die Reihe $\sum_{k=1}^{\infty} f_k(x)$ konvergiert gleichmässig, falls die durch $S_n(x) = \sum_{k=0}^n f_k(x)$ definierte Funktionenfolge gleichmässig konvergiert.

Sei f_n eine Folge stetiger Funktionen. Ausserdem ist $|f_n(x)| \leq c_n \quad \forall x \in D \text{ und } \sum_{n=0}^{\infty} c_n \text{ konvergiert.}$ Dann konvergiert die Reihe $\sum_{n=0}^{\infty} f_n(x)$ gleichmässig und deren Grenzwert ist eine in D stetige Funktion.

3.3 Potenzreihen

Definition Potenzreihe

Potenzreihen sind Reihen der Form $\sum_{n=0}^{\infty} a_n x^n$. Eine Potenzreihe mit Entwicklungspunkt x_0 wird als $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ definiert.

Konvergenzradius

Der Konvergenzradius einer Potenzreihe um einen Entwicklungspunkt x_0 ist die grösste Zahl r, so dass die Potenzreihe für alle x mit $|x-x_0| < r$ konvergiert. Falls die Reihe für alle x konvergiert, ist der Konvergenzradius r unendlich. Sonst:

$$r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{\lim_{n \to \infty} \sup \sqrt[n]{|a_n|}}$$

Die Potenzreihe $\sum_{k=0}^{\infty} a_n x^n$ konvergiert absolut für alle |x| < r und divergiert für alle |x| > r. Der Fall |x| = r ist unklar und muss geprüft werden.

3.3.1 Definitionen per Potenzreihen

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \qquad r = \infty$$

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad r = \infty$$

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
 $r = \infty$

$$\ln(x+1) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k} \qquad r = 1$$

3.4 Grenzwerte von Funktionen

Häufungspunkt

 $x_0 \in \mathbb{R}$ ist ein Häufungspunkt der Menge D falls $\forall \delta > 0 : (]x_0 - \delta, x_0 + \delta[\setminus \{x_0\}) \cap D \neq \emptyset.$

Grenzwert - Funktionen

Wenn $f: D \to \mathbb{R}, x_0 \in \mathbb{R}$ ein Häufungspunkt von D ist, dann ist $A \in \mathbb{R}$ der Grenzwert von f(x) für $x \to x_0$ ($\lim_{x \to x_0} f(x) = A$), falls $\forall \epsilon > 0 \ \exists \delta > 0$, so dass $\forall x \in D \cap (]x_0 - \delta, x_0 + \delta[\setminus \{x_0\}) : |f(x) - A| < \epsilon$.

Satz von L'Hôpital

Seien f, g stetig und differenzierbar auf]a, b[. Wenn $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0$ oder $\pm\infty$ und $g'(x) \neq 0 \ \forall x \in I \setminus \{c\}$, dann gilt

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Grenzwerte der Form ∞^0 und 1^∞ können meist mit $f(x)^{g(x)} = e^{g(x)\cdot \ln(f(x))}$ und dann Bernoulli (nur Exponenten betrachten da e stetig) anwenden oder vereinfachen berechnet werden.

4 Ableitungen

4.1 Differenzierbarkeit

Differenzierbar

f ist in x_0 differenzierbar, falls der Grenzwert $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ existiert. Wenn dies der Fall ist, wird der Grenzwert mit $f'(x_0)$ bezeichnet. f ist differenzierbar, falls f für jedes $x_0 \in D$ differenzierbar ist.

Differenzierbarkeit nach Weierstrass

f ist in x_0 differenzierbar \iff Es gibt $c \in \mathbb{R}$ und $r : D \to \mathbb{R}$ mit $f(x) = f(x_0) + c(x - x_0) + r(x)(x - x_0)$ und $r(x_0) = 0$, r stetig in x_0 .

Falls f differenzierbar ist, dann ist $c = f'(x_0)$ eindeutig bestimmt.

Variation: Sei $\phi(x) = f'(x_0) + r(x)$. Dann gilt f in x_0 differenzierbar, falls $f(x) = f(x_0) + \phi(x)(x - x_0)$, $\forall x \in D$ und ϕ in x_0 stetig ist. Dann gilt $\phi(x_0) = f'(x_0)$.

Höhere Ableitungen

- 1. Für $n \geq 2$ ist f n-mal differenzierbar in D falls $f^{(n-1)}$ in D differenzierbar ist. Dann ist $f^{(n)} = (f^{(n-1)})'$ die n-te Ableitung von f.
- 2. f ist n-mal stetig differenzierbar in D, falls sie n-mal differnzierbar und $f^{(n)}$ in D stetig ist.
- 3. f ist in D glatt, falls sie $\forall n \geq 1$ n-mal differenzierbar ist ("unendlich differenzierbar").

Glatte Funktionen: exp, sin, cos, sinh, cosh, tanh, ln, arcsin, arccos, arccot, arctan und alle Polynome. tan ist auf $\mathbb{R}\setminus\{\pi/2+k\pi\}$, cot auf $\mathbb{R}\setminus\{k\pi\}$ glatt.

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = c$$

4.2 Ableitungsregeln

• Linearität der Ableitung

$$(\alpha \cdot f(x) + g(x))' = \alpha \cdot f'(x) + g'(x)$$

Produktregel

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

• Quotientenregel

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$$

Kettenregel

$$(f(g(x)))' = g'(x) \cdot f'(g(x))$$

• Potenzregel

$$(c \cdot x^a)' = c \cdot a \cdot x^{a-1}$$

1.3 Implikationen der Ableitung

- 1. f besitzt ein lokales Minimum in x_0 , wenn $f'(x_0) = 0$ und $f''(x_0) > 0$ oder falls das Vorzeichen von f' um x_0 von -zu + wechselt.
- 2. f besitzt ein lokales Maximum in x_0 , wenn $f'(x_0) = 0$ und $f''(x_0) < 0$ oder falls das Vorzeichen von f' um x_0 von + zu wechselt.
- 3. f besitzt ein lokales Extremum in x_0 , wenn $f'(x_0) = 0$ und $f''(x_0) \neq 0$.
- 4. f besitzt einen Sattelpunkt in x_0 , wenn $f'(x_0) = 0$ und $f''(x_0) = 0$.
- 5. f besitzt einen Wendepunkt in x_0 , wenn $f''(x_0) = 0$.
- 6. f ist in x_0 konvex, wenn $f''(x_0) \ge 0$.
- 7. f ist in x_0 konkav, wenn $f''(x_0) \leq 0$.

4.4 Sätze zur Ableitung

Satz von Rolle

Sei $f:[a,b]\to\mathbb{R}$ stetig und in]a,b[differenzierbar. Wenn f(a)=f(b), dann gibt es ein $\xi\in]a,b[$ mit $f'(\xi)=0.$

Mittelwertsatz (Lagrange)

Sei $f:[a,b]\to\mathbb{R}$ stetig und in]a,b[differenzierbar. Dann gibt es $\xi\in]a,b[$ mit $f(b)-f(a)=f'(\xi)(b-a).$

mittelwertsatz.png

4.5 Taylorreihen

Taylorreihen sind ein Weg, glatte Funktionen als Potenzreihen anzunähern.

Definition: Taylor-Polynom

Das n-te Talyor-Polynom $T_n f(x; a)$ an einer Entwicklungsstelle a ist definiert als:

$$T_n f(x; a) := \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} \cdot (x - a)^k$$

$$= f(a) + f'(a) \cdot (x - a) + \frac{f''(a)}{2} \cdot (x - a)^{2} + \dots$$

Taylorreihe

Die unendliche Reihe

$$Tf(x;a) := T_{\infty} = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} \cdot (x-a)^n$$

wird Taylorreihe von f an Stelle a genannt.

Beispiele Taylorreihen (a = 0):

•
$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!}$$

•
$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!}$$

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

•
$$e^{-x} = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^n}{n!}$$

•
$$\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

•
$$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

4.6 Länge einer Kurve

Für eine Kurve p(t) = (x(t), y(t)) in der xy-Ebene gilt

$$L = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} \, \mathrm{d}t$$

5 Integrale

5.1 Riemann-Integral

Definition: Partition

Eine Partition von I ist eine endliche Teilmenge $P \subsetneq [a,b]$, wobei $\{a,b\} \subseteq P$. ("Aufteilung")

Definition: Riemann-Summe

$$S(f, P, \xi) := \sum_{i=1}^{n} f(\xi_i) \cdot (x_i - x_{i-1})$$

Ober- und Untersumme

Obersumme:
$$\overline{S}(f, P) := \sup_{\xi \in I_i} f(\xi) \cdot (x_i - x_{i-1})$$

Untersumme: $S(f, P) := \inf_{\xi \in I_i} f(\xi) \cdot (x_i - x_{i-1})$

Riemann-integrierbar

 $f:[a,b] \to \mathbb{R}$ ist Riemann-integrierbar, falls $\sup_{p_1} \underline{S}(f,P_1) = \inf_{p_2} \overline{S}(f,P_2)$, also falls Obersumme gleich Untersumme wird, wenn die Partition feiner wird. Dann ist $A:=\int_a^b f(x) \ \mathrm{d}x$.

5.2 Integrierbarkeit zeigen

- f stetig in $[a, b] \implies f$ integrierbar über [a, b]
- f monoton in $[a, b] \implies f$ integrierbar über [a, b]
- \bullet Wenn f, g beschränkt und integrierbar sind, dann sind

$$f + g, \lambda \cdot f, f \cdot g, |f|, \max(f, g), \min(f, g), \frac{f}{g}$$

integrier bar

• Jedes Polynom ist integrierbar, auch $\frac{P(x)}{Q(x)}$ falls Q(x) in [a,b] keine Nullstellen besitzt

5.3 Sätze & Ungleichungen

•
$$f(x) \le g(x), \forall x \in [a, b] \to \int_a^b f(x) \, dx \le \int_a^b g(x) \, dx$$

- $\left| \int_a^b f(x) \, dx \right| \le \int_a^b |f(x)| \, dx$
- $\left| \int_a^b f(x)g(x) \, dx \right| \le \sqrt{\int_a^b f^2(x) \, dx} \sqrt{\int_a^b g^2(x) \, dx}$

Mittelwertsatz

Wenn $f:[a,b]\to\mathbb{R}$ stetig ist, dann gibt es $\xi\in[a,b]$ mit $\int_a^b f(x)\ \mathrm{d}x=f(\xi)(b-a).$

Daraus folgt auch, dass wenn $f, g : [a, b] \to \mathbb{R}$ wobei f stetig, g beschränkt und integrierbar mit $g(x) \ge 0, \forall x \in [a, b]$ ist, dann gibt es $\xi \in [a, b]$ mit $\int_a^b f(x)g(x) dx = f(\xi) \int_a^b g(x) dx$.

5.4 Stammfunktionen

Definition: Stammfunktion

Eine Funktion $F:[a,b]\to\mathbb{R}$ heisst Stammfunktion von f, falls F (stetig) differenzierbar in [a,b] ist und F'=f in [a,b] gilt.

"f integrierbar" impliziert nicht, dass eine Stammfunktion existiert. Beispiel:

$$f(x) = \begin{cases} 0, & \text{für } x \le 0 \\ 1, & \text{für } x > 0 \end{cases}$$

Hauptsatz Differential-/Integral rechnung

Sei a < b und $f: [a, b] \to \mathbb{R}$ stetig. Die Funktion

$$F(x) = \int_{a}^{x} f(t) dt, \ a \le x \le b$$

ist in [a,b] stetig differenzierbar und $F'(x) = f(x) \ \forall x \in [a,b].$

5.5 Integrationsregeln

Linearität

$$\int u \cdot f(x) + v \cdot g(x) \, dx = u \int f(x) \, dx + v \int g(x) \, dx$$

Gebietsadditivität

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx, \ c \in [a, b]$$

Partielle Integration

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

- Grundsätzlich gilt: Polynome ableiten (g(x)), wo das Integral periodisch ist $(\sin, \cos, e^x,...)$ integrieren (f'(x))
- Teils ist es nötig, mit 1 zu multiplizieren, um partielle Integration anwenden zu können (z.B. im Fall von $\int \log(x) dx$)
- Muss eventuell mehrmals angewendet werden

Substitution

Um $\int_a^b f(g(x)) dx$ zu berechnen: Ersetze g(x) durch u und integriere $\int_{g(a)}^{g(b)} f(u) \frac{du}{g'(x)}$.

- g'(x) muss sich irgendwie herauskürzen, sonst nutzlos.
- Grenzen substituieren nicht vergessen.
- Alternativ kann auch das unbestimmte Integral berechnet werden und dann u wieder durch x substituiert werden.

Partialbruchzerlegung

Seien p(x), q(x) zwei Polynome. $\int \frac{p(x)}{q(x)}$ wird wie folgend berechnet:

- 1. Falls $\deg(p) \ge \deg(q)$, führe eine Polynomdivision durch. Dies führt zum Integral $\int a(x) + \frac{r(x)}{q(x)}$.
- 2. Berechne die Nullstellen von q(x).
- 3. Pro Nullstelle: Einen Partialbruch erstellen.
 - Einfach, reell: $x_1 \to \frac{A}{x-x_1}$
 - *n*-fach, reell: $x_1 \to \frac{A_1}{x-x_1} + \ldots + \frac{A_r}{(x-x_1)^r}$
 - Einfach, komplex: $x^2 + px + q \rightarrow \frac{Ax+B}{x^2+px+q}$
 - *n*-fach, komplex: $x^2 + px + q \rightarrow \frac{A_1x + b_1}{x^2 + px + q} + \dots$
- 4. Parameter A_1, \ldots, A_n (bzw. B_1, \ldots, B_n) bestimmen. (x jeweils gleich Nullstelle setzen, umformen und lösen).

5.6 Euler-McLaurin-Formel

Die Formel hilft Summen wie $1^l + 2^l + 3^l + ... + n^l$ abzuschätzen. Für die Formel brauchen wir die Bernoulli-Polynome $B_n(x)$, sowie die Bernoulli-Zahlen $B_n(0)$. Wir brauchen dafür Polynome, welche durch die folgenden Eigenschaften bestimmt sind:

- 1. $P'_k = P_{k-1}, k > 1$
- 2. $\int_0^1 P_k(x) \, dx = 0, \forall k \ge 1$

Für das k-te Bernoulli-Polynom gilt: $B_k(x) = k! P_k(x)$. Wir definieren weiter $B_0 = 1$ und alle anderen Bernoulli-Zahlen rekursiv: $B_{k-1} = \sum_{i=0}^{k-1} \binom{k}{i} B_i = 0$.

Somit erhalten wir für das Bernoulli-Polynom folgende Definition:

$$B_k(x) = \sum_{i=0}^k \binom{k}{i} B_i x^{k-i}$$

Hier ein paar Bernoulli-Polynome: $B_0(x) = 1, B_1(x) =$

 $x-\frac{1}{2}$, $B_2(x)=x^2-x+\frac{1}{6}$. Nun definieren wir noch:

$$\tilde{B}_k(x) = \begin{cases} B_k(x) & \forall x : 0 \le x < 1 \\ B_k(x-n) & \forall x : n \le x < n+1 \end{cases}$$

Euler-McLaurin-Summationsformel

Sei $f:[0,n]\to\mathbb{R}$ k-mal stetig differenzierbar. Dann gilt:

Für k=1:

$$\sum_{i=1}^{n} f(i) = \int_{0}^{n} f(x) dx + \frac{1}{2} (f(n) - f(0)) + \int_{0}^{n} \tilde{B}_{1}(x) f'(x) dx$$

Für k > 1:

$$\sum_{i=1}^{n} f(i) = \int_{0}^{n} f(x) dx + \frac{1}{2} (f(n) - f(0)) + \sum_{i=2}^{k} \frac{(-1)^{j} B_{j}}{j!} (f^{(j-1)}(n) + f^{(j-1)}(0)) + \tilde{R}_{k}$$

wobei

$$\tilde{R}_k = \frac{(-1)^{k-1}}{k!} \int_0^n \tilde{B}_k(x) f^{(k)}(x) dx$$

Beispiel für Euler-McLaurin

$$1^l + 2^l + 3^l + \dots + n^l$$
 wobei $l \ge 1, l \in \mathbb{N}$

Angewandt auf $f(x) = x^l$ und k = l + 1 folgt für alle $l \ge 1$:

$$1^{l} + 2^{l} + 3^{l} + \dots + n^{l} = \frac{1}{l+1} \sum_{j=0}^{l} (-1)^{j} B_{j} {l+1 \choose j} n^{l+1-j}$$

5.7 Gamma-Funktion

Die Gamma-Funktion wird gebraucht, um die Funktion $n\mapsto (n-1)!$ zu interpolieren. Für s>0 definieren wir:

$$\Gamma(s) := \int_0^\infty e^{-x} x^{s-1} dx = (s-1)!$$

Die Gamma-Funktion konvergiert für alle s>0 und hat folgende weiter Eingeschaften:

- 1. $\Gamma(1) = 1$
- 2. $\Gamma(s+1) = s\Gamma(s)$
- 3. Γ ist logarithmisch konvex, d.h.:

$$\Gamma(\lambda x + (2 - \lambda)y) \le \Gamma(x)^{\lambda} \Gamma(y)^{1-\lambda}$$

für alle x, y > 0 und $0 \le \lambda \le 1$

Die Gamma-Funktion ist die einzige Funktion $]0, \infty[\to]0, \infty[$, die (1), (2) und (3) erfüllt. Zudem gilt:

$$\Gamma(x) = \lim_{n \to \infty} \frac{n! n^x}{x(x+1)...(x+n)} \quad \forall x > 0$$

5.8 Stirling'sche Formel

Die Stirling'sche Formel ist eine Abschätzung der Fakultät. Mit der Euler-McLaurin-Formel kombiniert folgt

$$n! = \frac{\sqrt{2\pi n} \cdot n^n}{e^n} \cdot \exp(\frac{1}{12n} + R_3(n))$$

wobei $|R_3(n)| \le \frac{\sqrt{3}}{216} \cdot \frac{1}{n^2} \ \forall n \ge 1$

5.9 Uneigentliche Integrale

Definition: Uneigentliches Integral

Sei $f(x): [a,\infty[\to \mathbb{R} \text{ beschränkt und integrierbar auf } [a,b] \text{ mit } \forall b>a$. Falls $\lim_{b\to\infty}\int_a^b f(x) \;\mathrm{d}x$ existiert, ist $\int_a^\infty f(x) \;\mathrm{d}x$ der Grenzwert und f ist auf $[a,\infty[$ integrierbar.

Diese Definition gilt auch für $f(x):]-\infty, b] \to \mathbb{R}$, wobei $\int_{-\infty}^{b} f(x) dx$ dann $\lim_{a\to-\infty} \int_{a}^{b} f(x) dx$ ist.

McLaurin-Satz

Sei $f: [1,\infty[\to [0,\infty[$ monoton fallend. Dann konvergiert $\sum_{n=1}^{\infty} f(n)$ genau, wenn $\int_{1}^{\infty} f(x) \, \mathrm{d}x$ konvergiert.

5.10 Unbestimmte Integrale

Sei $f:I\to\mathbb{R}$ auf dem Intervall $I\subseteq\mathbb{R}$ definiert. Wenn f stetig ist, gibt es eine Stammfunktion F. Wir schreiben dann

$$\int f(x) \, \mathrm{d}x = F(x) + C$$

Das unbestimmte Integral ist die Umkehroperation der Ableitung.

6 Trigonometrie

6.1 Regeln

6.1.1 Periodizität

- $\sin(\alpha + 2\pi) = \sin(\alpha)$ $\cos(\alpha + 2\pi) = \cos(\alpha)$
- $tan(\alpha + \pi) = tan(\alpha)$ $cot(\alpha + \pi) = cot(\alpha)$

6.1.2 Parität

- $\sin(-\alpha) = -\sin(\alpha)$ $\cos(-\alpha) = \cos(\alpha)$
- $tan(-\alpha) = -tan(\alpha)$ $cot(-\alpha) = -cot(\alpha)$

6.1.3 Ergänzung

- $\sin(\pi \alpha) = \sin(\alpha)$ $\cos(\pi \alpha) = -\cos(\alpha)$
- $\tan(\pi \alpha) = -\tan(\alpha)$ $\cot(\pi \alpha) = -\cot(\alpha)$

6.1.4 Komplemente

- $\sin(\pi/2 \alpha) = \cos(\alpha)$ $\cos(\pi/2 \alpha) = \sin(\alpha)$
- $\tan(\pi/2 \alpha) = -\tan(\alpha)$ $\cot(\pi/2 \alpha) = -\cot(\alpha)$

6.1.5 Doppelwinkel

- $\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$
- $\cos(2\alpha) = \cos^2(\alpha) \sin^2(\alpha) = 1 2\sin^2(\alpha)$
- $\tan(2\alpha) = \frac{2\tan(\alpha)}{1-\tan^2(\alpha)}$

6.1.6 Addition

- $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$
- $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) \sin(\alpha)\sin(\beta)$
- $\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 \tan(\alpha)\tan(\beta)}$

6.1.7 Subtraktion

- $\sin(\alpha \beta) = \sin(\alpha)\cos(\beta) \cos(\alpha)\sin(\beta)$
- $\cos(\alpha \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$
- $\tan(\alpha \beta) = \frac{\tan(\alpha) \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$

6.1.8 Multiplikation

- $\sin(\alpha)\sin(\beta) = -\frac{\cos(\alpha+\beta)-\cos(\alpha-\beta)}{2}$
- $\cos(\alpha)\cos(\beta) = \frac{\cos(\alpha+\beta)+\cos(\alpha-\beta)}{2}$
- $\sin(\alpha)\cos(\beta) = \frac{\sin(\alpha+\beta) + \sin(\alpha-\beta)}{2}$

6.1.9 Potenzen

- $\sin^2(\alpha) = \frac{1}{2}(1 \cos(2\alpha))$
- $\cos^2(\alpha) = \frac{1}{2}(1 + \cos(2\alpha))$
- $\tan^2(\alpha) = \frac{1-\cos(2\alpha)}{1+\cos(2\alpha)}$

6.1.10 Diverse

- $\sin^2(\alpha) + \cos^2(\alpha) = 1$
- $\cosh^2(\alpha) \sinh^2(\alpha) = 1$
- $\sin(z) = \frac{e^{iz} e^{-iz}}{2}$ und $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$

Wichtige Werte

degrees_circle.pdf

7 Tabellen

7.1 Grenzwerte

$\lim_{x \to \infty} \frac{1}{x} = 0 \qquad \qquad \lim_x$	$\rightarrow \infty 1 +$	$\frac{1}{r}$	=1
--	--------------------------	---------------	----

$$\lim_{x \to \infty} e^x = \infty \qquad \qquad \lim_{x \to -\infty} e^x = 0$$

$$\lim_{x \to \infty} e^{-x} = 0 \qquad \qquad \lim_{x \to -\infty} e^{-x} = \infty$$

$$\lim_{x \to \infty} \frac{e^x}{x^m} = \infty \qquad \qquad \lim_{x \to -\infty} xe^x = 0$$

$$\lim_{x \to \infty} \ln(x) = \infty \qquad \qquad \lim_{x \to 0} \ln(x) = -\infty$$

$$\lim_{x \to \infty} (1+x)^{\frac{1}{x}} = 1$$
 $\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$

$$\lim_{x \to \infty} (1 + \frac{1}{x})^b = 1 \qquad \lim_{x \to \infty} n^{\frac{1}{n}} = 1$$

$$\lim_{x \to \pm \infty} (1 + \frac{1}{x})^x = e \qquad \lim_{x \to \infty} (1 - \frac{1}{x})^x = \frac{1}{e}$$

$$\lim_{x \to \pm \infty} (1 + \frac{k}{x})^{mx} = e^{km} \quad \lim_{x \to \infty} (\frac{x}{x+k})^x = e^{-k}$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a), \qquad \lim_{x \to \infty} x^a q^x = 0,$$

$$\forall a > 0 \qquad \qquad \forall 0 \le q < 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{\sin kx}{x} = k$$

$$\lim_{x \to 0} \frac{1}{\cos x} = 1 \qquad \qquad \lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

$$\lim_{x \to 0} \frac{\log 1 - x}{x} = -1 \qquad \qquad \lim_{x \to 0} x \log x = 0$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x\to 0} \frac{x}{\arctan x} = 1$$
 $\lim_{x\to \infty} \arctan x = \frac{\pi}{2}$

$$\lim_{x \to 0} \frac{e^{ax} - 1}{x} = a$$
 $\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$

$$\lim_{x \to 1} \frac{\ln(x)}{x-1} = 1 \qquad \qquad \lim_{x \to \infty} \frac{\log(x)}{x^a} = 0$$

$$\lim_{x \to \infty} \sqrt[x]{x} = 1 \qquad \qquad \lim_{x \to \infty} \frac{2x}{2x} = 0$$

7.2 Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	$\mathbf{f'}(\mathbf{x})$
$\frac{x^{-a+1}}{-a+1}$	$\frac{1}{x^a}$	$\frac{a}{x^{a+1}}$
$\frac{x^{a+1}}{a+1}$	$x^a \ (a \neq 1)$	$a \cdot x^{a-1}$
$\frac{1}{k\ln(a)}a^{kx}$	a^{kx}	$ka^{kx}\ln(a)$
$\ln x $	$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{2}{3}x^{3/2}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$\frac{1}{2}(x - \frac{1}{2}\sin(2x))$	$\sin^2(x)$	$2\sin(x)\cos(x)$
$\frac{1}{2}(x + \frac{1}{2}\sin(2x))$	$\cos^2(x)$	$-2\sin(x)\cos(x)$
$-\ln \cos(x) $	$\tan(x)$	$\frac{1}{\cos^2(x)}$ $1 + \tan^2(x)$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$\log(\cosh(x))$	tanh(x)	$\frac{1}{\cosh^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$\frac{1}{c} \cdot e^{cx}$	e^{cx}	$c \cdot e^{cx}$
$x(\ln x -1)$	$\ln x $	$\frac{1}{x}$
$\frac{1}{2}(\ln(x))^2$	$\frac{\ln(x)}{x}$	$\frac{1 - \ln(x)}{x^2}$
$\frac{\frac{x}{\ln(a)}(\ln x -1)}{}$	$\log_a x $	$\frac{1}{\ln(a)x}$

7.3 Weitere Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos(x)$	$\frac{-1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1+x^2}$
$x^x \ (x > 0)$	$x^x \cdot (1 + \ln x)$

7.4 Integrale

$\mathbf{f}(\mathbf{x})$	$\mathbf{F}(\mathbf{x})$
$\int f'(x)f(x) \mathrm{d}x$	$\frac{1}{2}(f(x))^2$
$\int \frac{f'(x)}{f(x)} \mathrm{d}x$	$\ln f(x) $
$\int_{-\infty}^{\infty} e^{-x^2} \mathrm{d}x$	$\sqrt{\pi}$
$\int (ax+b)^n \mathrm{d}x$	$\frac{1}{a(n+1)}(ax+b)^{n+1}$
$\int x(ax+b)^n \mathrm{d}x$	$\frac{(ax+b)^{n+2}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}$
$\int (ax^p + b)^n x^{p-1} \mathrm{d}x$	$\frac{(ax^p+b)^{n+1}}{ap(n+1)}$
$\int (ax^p + b)^{-1} x^{p-1} \mathrm{d}x$	$\frac{1}{ap}\ln ax^p+b $
$\int \frac{ax+b}{cx+d} \mathrm{d}x$	$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln cx + d $
$\int \frac{1}{x^2 + a^2} \mathrm{d}x$	$\frac{1}{a} \arctan \frac{x}{a}$
$\int \frac{1}{x^2 - a^2} \mathrm{d}x$	$\frac{1}{2a} \ln \left \frac{x-a}{x+a} \right $
$\int \sqrt{a^2 + x^2} \mathrm{d}x$	$\frac{x}{2}f(x) + \frac{a^2}{2}\ln(x + f(x))$

8 Quellen

Danke für des vom Cheatsheet von Julian(XVQuadrat) Ruben Schenk (https://rwgs.ch) inspiriert. Ausserdem stammen Teile der Tabellen aus dem Buch "Formeln, Tabellen und Konzepte". Schliesslich sind die Definitionen meistens dem Skript "Analysis 1" von Marc Burger entnommen.