Special Triangle Relationships (pages 93, 135-136, 290, 295, 300)

Isosceles Triangle

At least 2 sides are congruent. Angles opposite congruent sides are congruent.

By the Pythagorean Theorem, in $\triangle ABC$ $c^2 = a^2 + b^2$.

Since
$$\angle C$$
 is a right angle,
 $m \angle A + m \angle B = 90$.

45°-45°-90° Triangle

$$a = b$$

$$c = \sqrt{2} a$$

$$= \sqrt{2} b$$

Legs are congruent. Hypotenuse = $\sqrt{2} \cdot \log$

Equilateral Triangle

All sides are congruent.
All angles are congruent.

30°-60°-90° Triangle

$$c = 2a$$

$$b = \sqrt{3} \ a$$

Hypotenuse = $2 \cdot \text{shorter leg}$ Longer leg = $\sqrt{3} \cdot \text{shorter leg}$

Perimeter, Area, and Volume Formulas (pages 424, 429, 447, 469, 476, 518)

Rectangle

Perimeter = 2l + 2wArea = lw

Triangle

Perimeter = a + b + cArea = $\frac{1}{2}$ (base × height) = $\frac{1}{2}ah$