

Real-Time Medical Image Analysis System

EURON

[DATE]
[COMPANY NAME]
[Company address]

Real-Time Medical Image Analysis System (Computer Vision) - AI-Driven Healthcare System

Use Case: AI-Powered Medical Image Analysis for Automated Diagnosis

Objective:

To develop a **real-time AI-based medical image analysis system** that processes X-rays, CT scans, and MRIs using deep learning models to assist radiologists in detecting anomalies (e.g., tumors, fractures, infections).

★ 1. Functional Architecture Flow (Business Perspective)

Core Functional Modules & Workflows

Module	Functionality
Image Acquisition & Preprocessing	Captures medical images from imaging devices (X-ray, MRI, CT). Standardizes resolution, removes noise, enhances clarity.
Real-Time AI Model Execution	Uses deep learning to detect diseases (e.g., tumors, fractures, infections). Generates probability scores for anomalies.
Medical Annotation System	Allows radiologists to validate AI predictions and provide manual annotations for AI model improvement.
Automated Diagnosis Reports	Generates structured medical reports with AI-driven insights, probability scores, and visual heatmaps.
PACS (Picture Archiving & Communication System) Integration	Seamlessly integrates with hospital PACS systems for secure image retrieval and storage.
Clinical Decision Support	AI suggests possible conditions based on detected anomalies and historical patient data.
Real-Time Alerts & Notifications	Sends alerts to doctors if critical conditions (e.g., stroke detection in brain scans) are found.
Continuous Learning & Model Improvement	Uses active learning to improve AI models based on doctor feedback.

Step-by-Step Functional Flow

1. Image Capture & Upload

- o Radiology imaging devices (MRI, CT, X-ray) send images to the system.
- o Images are uploaded from PACS or external medical imaging repositories.

2. Preprocessing & Standardization

- o AI enhances contrast, removes noise, and normalizes image quality.
- o Images are converted to a unified format for AI analysis.

3. AI-Based Image Analysis

- Deep learning models process the image.
- o Anomalies (tumors, fractures, infections) are detected.
- o Heatmaps/localization overlays highlight detected regions.

4. AI-Generated Medical Report

- o AI creates a **preliminary** diagnostic report with confidence scores.
- o The system suggests possible conditions based on historical data.

5. Doctor Review & Final Diagnosis

- o Radiologists review AI predictions.
- o Doctors confirm/reject AI findings and add notes.
- o Feedback is used to retrain AI models (active learning).

6. Real-Time Alerts for Critical Cases

o If a **high-risk condition** (e.g., stroke, tumor) is detected, the system triggers real-time alerts.

7. Secure Storage & PACS Integration

- o AI-analyzed images and reports are securely stored.
- o Integration with PACS ensures hospital-wide access.

★ 2. Technical Architecture Flow (Deep Dive into Components)

This architecture ensures real-time processing, AI-driven analysis, and seamless integration with healthcare systems.

Data Ingestion Layer

- Sources:
 - o **Medical Imaging Devices:** X-ray, MRI, CT Scan, Ultrasound
 - **Output** Output Output
 - o **External Medical Databases** (e.g., NIH, RSNA datasets)

• Technologies:

- DICOM Standard for Imaging (Digital Imaging and Communications in Medicine)
- o **FHIR API for EHR Integration** (Fast Healthcare Interoperability Resources)
- o **Kafka / RabbitMQ** (Real-time event streaming for image ingestion)

2 Data Storage & Processing Layer

- Data Storage:
 - o **DICOM Image Storage**: Amazon S3 / Google Cloud Storage
 - o **Database for Structured Data**: PostgreSQL / MySQL (Patient records)
 - o **NoSQL for Logs & Unstructured Data**: MongoDB / Cassandra
- Processing & Preprocessing:
 - Image Preprocessing Pipelines:
 - OpenCV / ITK / SimpleITK (Contrast enhancement, noise reduction)
 - NVIDIA Clara / MONAI (Medical imaging AI toolkit)
 - Data Pipeline Orchestration:
 - Apache Airflow / Prefect (ETL workflows)

3 AI & Deep Learning Layer

- Deep Learning Models for Image Analysis:
 - o CNN-based Models (ResNet, EfficientNet, VGG)
 - o Transformer-Based Models (Swin Transformer, Vision Transformers)
 - o GANs for Image Augmentation & Super-Resolution (StyleGAN, CycleGAN)
- Model Training & Feature Extraction:
 - o **TensorFlow, PyTorch, Keras** (Deep Learning Frameworks)
 - o **AutoML / Hyperparameter Tuning:** Optuna, RayTune
- Active Learning Pipeline:
 - Human-in-the-loop Learning: Doctors validate AI results, which improve future models.

4 AI Model Deployment & Serving Layer

- Model Serving Infrastructure:
 - o **TensorFlow Serving / TorchServe** (Deploying AI models)
 - o FastAPI / Flask / gRPC for API Endpoints
 - o Triton Inference Server for Multi-Model Serving
- Event-Driven AI Decisioning:
 - o Apache Flink / Kafka Streams (For real-time anomaly detection)
 - o Serverless AI Execution (AWS Lambda, Google Cloud Functions)
- Edge AI for On-Premises Analysis:
 - o **NVIDIA Jetson / Intel OpenVINO** (Deploying AI models at hospitals)

5 Decision & Action Layer

- Medical Report Generation
 - o NLP-based report summarization (using **BERT**, **GPT**)
 - o Automatic translation of findings into structured clinical notes
- Alert & Notification System
 - o Critical cases trigger real-time SMS, email, or app notifications
 - o FHIR Integration ensures data is pushed to hospital EHR systems
- Doctor Dashboard & Visualization
 - o AI-generated heatmaps & confidence scores are displayed
 - o Doctors can manually annotate and override AI predictions

6 Monitoring, Logging & AI Governance

- Model Monitoring & Drift Detection
 - o MLflow / Prometheus / Grafana (For tracking model performance)
- Explainability & Bias Detection
 - o SHAP / LIME for AI Explainability
- Observability & Logs
 - o ELK Stack (Elasticsearch, Logstash, Kibana)
- Security & Compliance
 - o HIPAA, GDPR, HL7 Compliance
 - End-to-End Encryption for Medical Data

★ 3. Full Technical Stack

Layer Technologies

Data Ingestion Kafka, Airflow, DICOM, FHIR

Storage S3, BigQuery, PostgreSQL, MongoDB Processing & AI TensorFlow, PyTorch, OpenCV, MONAI

Model Serving & Decisioning FastAPI, TensorFlow Serving, Flink
Monitoring & Logging
MLflow, Prometheus, Grafana, ELK
Deployment & Cloud
Kubernetes, Docker, NVIDIA Clara

★ 4. AI-Driven Functional Workflow

- 1. Image Captured \rightarrow Preprocessing \rightarrow AI Model Analysis
- 2. AI Generates Report & Heatmaps

- 3. Doctor Reviews & Validates AI Prediction
- 4. Alerts Sent for Critical Cases
- 5. AI Model Improves via Active Learning

★ 5. Business Benefits

- \mathscr{C} Faster Diagnosis \rightarrow AI reduces analysis time for doctors.
- **V** Improved Accuracy → AI enhances radiology decision-making.
- \mathscr{O} Real-Time Critical Alerts \rightarrow Immediate action on urgent cases.
- **Scalability & Automation** → Continuous learning improves performance.