## POLITECHNIKA WROCŁAWSKA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA

KIERUNEK: INFORMATYKA

## **PROJEKT**

Teoria i inżynieria ruchu teleinformatycznego

Analiza sieci routerów przy użyciu algorytmów grafowych

**AUTORZY:** 

Bartosz Cieśla, Bartosz Janusz, Bartosz Kardas

# Spis treści

| Alg    | orytmy                            |                                                                                                                                                                              |
|--------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1.   | Centralność w grafach             | 4                                                                                                                                                                            |
| 1.2.   | Betweenness Centrality            | 4                                                                                                                                                                            |
|        | 1.2.1. Algorytm wyznaczania       | 4                                                                                                                                                                            |
| 1.3.   | Closeness Centrality              | (                                                                                                                                                                            |
| 1.4.   | Eigenvector Centrality - Pagerank | -                                                                                                                                                                            |
| terati | ra                                | (                                                                                                                                                                            |
|        | 1.1.<br>1.2.<br>1.3.<br>1.4.      | Algorytmy  1.1. Centralność w grafach  1.2. Betweenness Centrality  1.2.1. Algorytm wyznaczania  1.3. Closeness Centrality  1.4. Eigenvector Centrality - Pagerank  teratura |

# Spis rysunków

| 1.1. | Działanie Betweenness Centrality na przykładowym grafie | 6 |
|------|---------------------------------------------------------|---|
| 1.2. | Działanie Closeness Centrality na przykładowym grafie   | 7 |
| 1.3. | Działanie Eigenvector Centrality na przykładowym grafie | 8 |

# Spis tabel

## Rozdział 1

## Algorytmy

### 1.1. Centralność w grafach

W teorii grafów wskaźniki centralności informują o najbardziej znaczących wierzchołkach grafu. Ich przykładowymi zastosowaniami mogą być: znalezienie lidera, przywódcy spośród danej grupy osób, ustalenie kluczowego elementu infrastruktury sieciowej lub miejskiej bądź znalezienie osobnika o największym potencjale do roznoszenia choroby. Istnieje wiele odmiennych wskaźników centralności. Zrealizowany projekt implementuje trzy z nich: Closeness Centrality, Betweenness Centrality oraz Pagerank ( jedna z odmian Eigenvector Centrality)

### 1.2. Betweenness Centrality

Określa kluczowość wierzchołka w zakresie komunikacji - przechodność, pośredniczenie. Czyli w jakim stopniu dany wierzchołek jest spoiwem dla danej sieci. Jest to miara o bardzo wielkiej wartości, gdyż dzięki niej można znaleźć punkty krytycznej sieci bądź grafu.

#### 1.2.1. Algorytm wyznaczania

- 1. Wyznaczyć ilość najkrótszych ścieżek między wierzchołkami u i v (  $d_{uv}$  )
- 2. Wyznaczyć ilość najkrótszych ścieżek między wierzchołkami u i v, które przechodzą przez wierzchołek w (  $d_{uv}(w)$  )
- 3. Suma stosunków oznacza stopień centralności wierzchołka w

$$c_b(w) = \sum_{u \neq v \neq w} \frac{d_{uv}(w)}{d_{uv}}$$

Przykład



Rys. 1.1: Działanie Betweenness Centrality na przykładowym grafie

### 1.3. Closeness Centrality

Jest to stopień bliskości. Określa jak blisko (daleko) wierzchołek ma do pozostałych w grafie. Wysoki stopień biskości świadczy o dobrej własności propagacji informacji w grafie - element ten szybko rozprowadzi daną wiadomość (wirusa itp) po całej sieci.

#### Algorytm wyznaczania

- 1. Wyznaczyć odległości pomiędzy wierzchołkiem u a pozostałymi wierzchołkami w grafie v (  $d_{uv}$  )
- 2. W zależności od rodzaju grafu zsumować otrzymane odległości:
  - 1. Dla grafów rzadkich

$$c_c(u) = \frac{1}{\sum d_{uv}}$$

2. Dla grafów silnie połączonych

$$c_c(u) = \sum_{u \neq v} \frac{1}{d_{uv}}$$

#### Przykład



Rys. 1.2: Działanie Closeness Centrality na przykładowym grafie

### 1.4. Eigenvector Centrality - Pagerank

Określa wpływ, oddziaływanie wierzchołka na pozostałe w grafie. Wykorzystuje nie tylko ilość połączeń danego wierzchołka z innymi, a przede wszystkim ich jakość. Wartości przypisane do każdego z wierzchołków bazują na koncepcji w której wysoko ocenione wierzchołki bardziej wpływają na ostateczną ocenę połączonego wierzchołka, niż te, których ocena jest niska. Jedną z odmian Eigenvector Centrality jest algorytm PageRank. Poniżej przedstawiono uproszczony algorytm jego działania.

#### Algorytm wyznaczania

- 1. Wyznaczyć ilość wierzchołków w grafie (N)
- 2. Wyznaczyć stopień każdego z wierzchołków (l(u))
- 3. Zainicjować wartości początkowe dla każdego wierzchołka wartością początkową  $(c_e(u)=1)$
- 4. Określić współczynnik tłumienia, zwykle wynosi on około 0.85 ( d=0.85 )
- 5. Obliczyć nową wartość PageRank każdego wierzchołka

$$c_e(u) = \frac{1-d}{N} + d\sum_{v \in B_u} \frac{c_e(v)}{l(v)}$$

 $B_u$  oznacza zbiór wszystkich wierzchołków, które odnoszą się do wierzchołka u

#### **Przykład**



Rys. 1.3: Działanie Eigenvector Centrality na przykładowym grafie

# Literatura