南开大学 2017 级"一元函数积分(信)"结课统考试卷(A卷)2018年1月8日

草稿区

(说明:答案务必写在装订线右侧,写在装订线左侧无效。影响成绩后果自负。)

题号	 =	111	四	五	六	七	成绩	核分签名	复核签名
得分									

一、选择题(每小题 4 分)

│一 题 │得分

(1) 设 $f(x) = \sin |x|, x \in (-\infty, +\infty)$,则 f(x) 的原函数为 F(x) = (

C, x > 0

(A)
$$\cos x + C$$
; (B) $-\cos x + C$; (C)
$$\begin{cases} -\cos x + C_1, x > 0 \\ \cos x + C_2, x \le 0 \end{cases}$$
; (D)
$$\begin{cases} 1 - \cos x + C, x > 0 \\ \cos x - 1 + C, x \le 0 \end{cases}$$

(2) 设
$$f(x)$$
 在 $[a,b]$ 上连续, $a < b$,且 $\int_{a}^{b} f(x)dx = 0$,则有(

- (A) 在(a,b) 内不一定有x 使 f(x) = 0; (B) 在[a,b] 上的所有x,有f(x) = 0;
- (C) 在(a,b)内至少有一点x,使f(x) = 0; (D) 在[a,b]上某个小区间上有f(x) = 0

(3) 设
$$a_n = \frac{3}{2} \int_{0}^{\frac{n}{n+1}} x^{n-1} \sqrt{1+x^n} dx$$
,则极限 $\lim_{n \to \infty} na_n = ($

(A)
$$(1+e)^{3/2}+1$$
; (B) $(1+e^{-1})^{3/2}-1$; (C) $(1+e^{-1})^{3/2}+1$; (D) $(1+e)^{3/2}-1$

(4) 设函数
$$f(x) = \int_{0}^{\sin x} \sin t dt, g(x) = \int_{0}^{2x} \ln(1+2t) dt$$
,则 $\lim_{x \to 0} \frac{f(x)}{g(x)} = ($):

(A) 1/4: B) 1: C) 1/2: (D) 0

(5) 设平面
$$\pi_1: x+y-2z+7=0$$
,平面 $\pi_2: 4x-2y+z-3=0$,则它们的位置关系为 (),

(A)
$$\pi_1$$
 平行于 π_2 ; (B) π_1, π_2 重合; (C) $\pi_1 \perp \pi_2$; (D) π_1, π_2 斜交。

二、填空题 (每小题 4 分):

(1)
$$\lim_{x \to 0, y \to 0} \left[\frac{x^2 \tan y}{x^2 + y^2} \right] = \underline{\hspace{1cm}}$$

二题 得分

(2) 设
$$z = \ln(x^2 + xy + y^2), (x, y) \neq (0,0)$$
,则 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} =$

- (3) 原点到平面 2x-2y-z+9=0 的距离为______
- (4) $\forall y = y(x)$ 连续可导,满足 $\int_{1}^{e^{x}} \frac{\ln t}{t} dt + \int_{1}^{y} (3 + \cos t) dt = 2$, 则 $\frac{dy}{dx} =$ ______
- (5) 曲线 $y = x^2, x = y^2$ 所围的图形绕 y 轴旋转所得旋转体的体积= _______

三、求下列不定积分: (每小题 6 分)

(1)
$$\int \frac{x^2}{(x-1)^6} dx$$
;

(2)
$$\int \frac{x^3}{(1+x^2)^5} dx$$
;

三题得分

$$(3) \int \frac{\cos^3 x}{\sin^4 x} dx;$$

草稿

Ė

四、求下列定积分(每小题7分):

$$(1) \int_0^{\pi/4} \frac{x}{\cos^2 x} dx;$$

四题 得分

学号

专业

任课教师

(2)
$$\int_{1}^{3} |x^{2} - 3x + 2| dx;$$

(3)
$$\int_{-2}^{0} \frac{(x+2)}{x^2 + 2x + 2} dx$$

五、(7分) 设 $f(x) = \int_{x^3}^x e^{-y^2} dy$, 计算 $\int_0^1 x^2 f(x) dx$.

试讨论 f(x,y) 在(0,0) 点是否连续、是否可微?

五题 得分

七、(6分) 设
$$f''(x) \le 0, x \in [0,1]$$
, 证明:
$$\int_0^1 f(x^2) dx \le f(\frac{1}{3})$$

七题 得分