Histogram of hw10score

4.
$$\overline{\chi}_{i} = \frac{1}{n_{i}} \sum_{i=1}^{k} n_{i} \cdot \overline{\chi}_{i}$$

$$STr = \sum_{i=1}^{k} n_i (\vec{x_i} - \vec{x_{..}})^2 \qquad (+60)$$

Using the above, ANOVA Table is:

	df	22	MS	T	Þ		
Tr	6	7-6134	1.269	0.7782	0.5895		
E	77	125.462	1.6307			(+(0)	
Total	B	133-18					

8.
$$N_7 = 33$$
, $k = 3$, 90.05 , $3.30 = 3.49$, $MSE = 4.96$.

Formula for 95% CI of $\mu_i - \mu_i$ is

$$\overline{\alpha_i} - \overline{\alpha_j} = \pm \sqrt{MSE} \frac{g_{0.05,3,36}}{\sqrt{2}} \sqrt{\frac{1}{n_{\tilde{\epsilon}}} + \frac{1}{n_{\tilde{s}}}}$$

1,3: (-3.4035, 1.2835) >0 = 1,3: not distinguishable.

$$2.3:(-6.7135, -2.0265)$$
 (+4)

$$\frac{\overline{\lambda_2}}{\sqrt{\lambda_2}} \frac{\overline{\lambda_1}}{\sqrt{\lambda_1}} \frac{\overline{\lambda_2}}{\sqrt{\lambda_2}}$$

C)
$$L^2 = \frac{4MSE \ 90.05,3130}{n} \le 4$$
 = n? $MSE \cdot 90.05,3130 = 60.xx$

Importing packages, modules and data

```
In [1]: import pandas as pd
    df1 = pd.read_excel('data/ds11.1.4-keyboard-layout-designs.xls')
    df2 = pd.read_excel('data/ds11.1.7-oneway-layout-3.xls')
    df3 = pd.read_excel('data/ds11.1.9-ecoli-colonies-in-riverwater.xls
    ')

In [2]: import scipy.stats as stat
    from statsmodels.stats.anova import anova_lm
    from statsmodels.formula.api import ols
    from statsmodels.stats.multicomp import pairwise_tukeyhsd
```

ANOVA Table for 16

CI for 16 ¶

```
group1 group2 meandiff p-adj lower upper reject

Layout 1 Layout 2 3.985 0.001 2.8546 5.1154 True

Layout 1 Layout 3 -0.3614 0.6879 -1.4633 0.7406 False

Layout 2 Layout 3 -4.3464 0.001 -5.4998 -3.1929 True
```

ANOVA Table for 20

```
In [5]: | aq = df2
        newag = pd.melt(ag).dropna()
        model = ols('value ~ C(variable)', newaq).fit()
        print(anova lm(model))
                       df
                            sum_sq
                                     mean sq
                                                     F
                                                          PR(>F)
        C(variable)
                      4.0 1102.74
                                     275.685 18.50856 0.000002
        Residual
                     20.0
                            297.90
                                     14.895
                                                   NaN
                                                             NaN
```

CI for 20

```
In [6]: comp = pairwise_tukeyhsd(newaq['value'], newaq['variable'], alpha=0
    .05)
    print(comp)
```

Multiple Comparison of Means - Tukey HSD, FWER=0.05 ______ group1 group2 meandiff p-adj lower upper reject Treatment 1 Treatment 2 6.4 0.1039 -0.9046 13.7046 False Treatment 1 Treatment 3 -13.2 0.001 -20.5046 -5.8954True Treatment 1 Treatment 4 -2.6 0.834 -10.34775.1477 False Treatment 1 Treatment 5 -7.1 0.0455 -14.0937 -0.1063 True Treatment 2 Treatment 3 -19.6 0.001 -26.9046 -12.2954True Treatment 2 Treatment 4 -9.0 0.018 -16.7477 -1.2523True Treatment 2 Treatment 5 -13.5 0.001 -20.4937-6.5063 True 10.6 0.0046 Treatment 3 Treatment 4 2.8523 18.3477 True Treatment 3 Treatment 5 6.1 0.1063 -0.8937 13.0937 False Treatment 4 Treatment 5 -4.5 0.3988 -11.9553 2.9553 False

ANOVA Table for 24

```
In [7]: | aq = df3
        newaq = pd.melt(aq).dropna()
        model = ols('value ~ C(variable)', newaq).fit()
        print(anova lm(model))
                           sum sq mean sq
                       df
                                                     F
                                                          PR(>F)
        C(variable)
                            596.3
                                   149.075
                                                        0.000002
                      4.0
                                             24.438525
        Residual
                     15.0
                            91.5
                                     6.100
                                                   NaN
                                                             NaN
```

CI for 24

Multiple Comparison of Means - Tukey HSD, FWER=0.05

group1	group2		meandiff	p-adj	lower	upper	reject			
Location 1	Location	2	-0.25	0.9	-5.6435	5.1435	False			
Location 1	Location	3	-0.25	0.9	-5.6435	5.1435	False			
Location 1	Location	4	8.0	0.0028	2.6065	13.3935	True			
Location 1	Location	5	13.0	0.001	7.6065	18.3935	True			
Location 2	Location	3	0.0	0.9	-5.3935	5.3935	False			
Location 2	Location	4	8.25	0.0022	2.8565	13.6435	True			
Location 2	Location	5	13.25	0.001	7.8565	18.6435	True			
Location 3	Location	4	8.25	0.0022	2.8565	13.6435	True			
Location 3	Location	5	13.25	0.001	7.8565	18.6435	True			
Location 4	Location	5	5.0	0.0757	-0.3935	10.3935	False			