《近世代数》 作业#1 提交日期: 周四 9/12

- **1**. 设 ρ 为集合 S 到集合 T 的映射。证明: ρ 是一满射的充要条件是下列两条件中任一条成立:
 - (a) 存在 T 到 S 的映射 τ, 使得设 $ρτ = 1_T$;
 - (b) 不存在 T 到到某集合 U 的两个不同映射 τ_1 , τ_2 使得 $\tau_1 \rho = \tau_2 \rho$
- 2. ρ 为集合 S 到集合 T 的映射, A, B 是 S 的子集。证明:

$$\rho(A \cup B) = \rho(A) \cup \rho(B),$$

$$\rho(A \cap B) \subset \rho(A) \cap \rho(B)$$
,

举例说明 $\rho(A \cap B)$ 不一定 等于 $\rho(A) \cap \rho(B)$,

3. 设 ω_1 , $\omega_2 \in \mathbb{C}$ (复数集),且 $\omega_1/\omega_2 \notin \mathbb{R}$. 在 \mathbb{C} 内定义如下关系~:

$$\alpha \sim \beta \iff \beta = \alpha + a\omega_1 + b\omega_2.$$
 (a, b $\in \mathbf{Z}$)

证明: (1)关系~在 C 上是一等价关系。

(2). 试求 C 对上述等价关系的商集 $C/_{\sim}$.

《近世代数》HW 2 提交时间 9/19, 周四

- 1. 设G是一个半群,则G是一个群当且仅当以下条件成立
 - (i) 存在一个元素 e, 使得对所有 $a \in G$, ea = a 成立
 - (ii) 对任意 $a \in G$,存在一个元素 a^{-1} ,使得 $a^{-1}a = e$.

(注: e 称为左单位元, 称 a^{-1} 为 a 的左逆元)

2. 证明: 若 G 是一个半群,则 G 是一个群当且仅当对任意 $a,b \in G$,方程:

ax = b 和 ya = b 在 G 中有解.

(提示: 利用 1 题的结论)

- 3. 证明: 群 G 是一个 Abel 群当且仅当对任意 $a,b \in G$,有 $(ab)^2 = a^2b^2$.
- 4. 证明: 若有限群 G 的阶是偶数,则 G 中存在一个元 a,使得 $a^2 = e$.
- 5. 列出正方形上的全体对称所得到的群的群表. (这个群在课上讲过,参考笔记)

《近世代数》HW 3 提交时间 9/26, 周四

1. 证明: G 是一个交换群 \iff 映射:

$$f: G \longrightarrow G$$

 $g \mapsto g^{-1}$

是一个群同构。

2. 设 Q_8 是由矩阵 $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ 按矩阵乘法所生成的群。(其中 $i^2 = -1$) 证明: Q_8 是阶为 8 的非交换群。

(提示: 先验证 $BA=A^3B$, 从而 Q_8 中的元可写成 A^iB^j 的形式,再注意到 $A^4=B^4=I$, 即可得证。)

- 3. 设 $f: G \longrightarrow H$ 是一个群同态, A < G, B < H. 证明:
 - (a). Ker f 和 $f^{-1}(B)$ 都是 G 的子群。
 - (b). f(A) 是 H 的子群。
- 4. 设 S 是群 G 的一个子集,在 G 上定义一个关系 \sim :

$$a \sim b \iff ab^{-1} \in S$$

证明: $S \neq G$ 的子群 \iff 关系 $\sim \neq G$ 上的等价关系。

5. 设 G 为一个群,则 $C(G) = \{g \in G | ga = ag, 对任意<math>a \in G$ 成立 $\}$ 是 G 的交换子群。 (注: C(G) 称为 G 的中心)

《近世代数》HW 4 提交时间: 10/17, 周四

- 1. 若一个群仅有有限个子群,则该群一定是有限群。
- 2. 设 H 和 K 为群 G 的有限子群,证明: $|HK| = \frac{|H||K|}{|H \cap K|}$.
- 3. 设 G 为一个群,则:

$$C(G) = \{a \in G | \forall g \in G, ag = ga\}$$

是 G 的正规子群. (注: C(G) 称为 G 的中心)

- 4. 设 H 为 G 的一个子群,即 H < G,则 aHa^{-1} 是 G 的子群,并且 $H \subseteq aHa^{-1}$.
- 5. 设群 G 是有限群,H 是 G 的一个阶为 n 的子群. 证明:若 H 是唯一的 G 的 n 阶子 群,则 H 为 G 的正规子群.
- 6. 如果 $f:G\longrightarrow H$ 是群同态,H 是 Abel 群,N< G 并且 $N\subset Kerf$. 证明: $N\lhd G$
- 7. 设 H 为 G 的一个子群, 证明: $N(H) = \{g \in G | gH = Hg\}$ 是 G 的子群并且 $H \triangleleft N(H)$ (注: N(H) 称为 H 的正规化子)
- 8. 设 H 为群 G 的指标为 2 的子群, 则 H 是 G 的正规子群.

《近世代数》 HW 5 提交时间: 10/24, 周四

- 1. 设 <6>, <30> 为 \mathbb{Z} 的子群, 则 <6>/ $<30> <math>\cong \mathbb{Z}_5$.
- 2. 设 $C(G) = \{a \in G | \forall g \in G, ag = ga\}$,是群 G 的中心. 证明: 如果 G/C(G) 是循环群,则 G 是 Abel 群.
- 3. 计算 \mathbb{Z}_6 到 \mathbb{Z}_6 的所有同构. (注: 群 G 到自己的同构的全体,称为自同构,记为 Aut(G))
- 4. 以 V 表示全体 n 维实向量的集合,GL(n,R) 在 V 上作用为左乘,即对于 $A \in GL(n,R)$ 及 $\alpha \in V$

$$GL(n,R) \times V \longrightarrow V$$

 $(A,\alpha) \longmapsto A\alpha$

试求所有轨道. (注: GL(n,R) =全体 $n \times n$ 实可逆矩阵)

5. 设 S 表示所有 $n \times n$ 实对称矩阵的集合,定义 GL(n,R) 在 S 上的作用如下: 对于 $A \in GL(n,R)$ 及 $\in S$

$$GL(n,R) \times S \longrightarrow S$$

 $(A,B) \longmapsto ABA^T$

其中 A^T 表示矩阵 A 的转置, 试求轨道的个数.

《近世代数》HW 6 提交时间: 11/7, 周四

1. 设 H 为 G 的子群,集合 $S = \{H$ 在 G 中的全体左陪集 $\}$,定义 G 在 S 上的作用如下:

$$G \times S \longrightarrow S$$

 $(g, aH) \longmapsto gaH$

则此作用诱导出一个群同态: $\phi: G \longrightarrow A(S)$ 并且核 $Ker\phi$ 包含于 H 中. 即 $Ker\phi \subset H$. (注: 这里 A(S) 表示集合 S 上的全体双射)

2. 设 G 为有限群,H 为 G 的指标为 p 的子群,p 为 |G| 的最小素数因子. 证明: $H \triangleleft G$ (提示: 首先考虑定义一个如上题 G 在集合 $S = \{H$ 在 G 中的全体左陪集} 的一个作用,然后利用上题的结论和 Lagrange 定理,证明 $Ker\phi = H$.)

《近世代数》中期试卷提交时间 11/18, 周一

1A. 设 $X = \{aba^{-1}b^{-1} \mid a,b \in G\}$ 为群 G 的一子集,定义 G 的**换位子群** [G,G] 如下: $[G,G] = < X > \quad (即 X 生成的子群).$

证明: $[G,G] \triangleleft G$ 并且商群 G/[G,G] 是 Abel 群.

1B. 设 $X = \{aba^{-1}b^{-1} \mid a,b \in G\}$ 为群 G 的一子集,定义 G 的换位子群 [G,G] 如下: $[G,G] = < X > \quad (即 X 生成的子群).$

设 H < G, 且 $[G, G] \subset H$. 证明: $H \triangleleft G$, 并且 G/H 是 Abel 群.

1C. 设 G 为 Abel 群, 集合

$$H = \{a \in G \mid$$
存在某个整数 n 使得 $a^n = e\}$

即 G 中全体阶有限的元素组成的集合.

证明:

- (a) $H \in G$ 的子群. (群 H 也称为**挠群**或周期群)
- (b) 若 $(\mathbb{Q},+)$ 是有理数加法群, $(\mathbb{Z},+)$ 是 \mathbb{Q} 的整数加法子群,则 \mathbb{Q}/\mathbb{Z} 是挠群.
- 2A. 设群 $G = \{\tau_a | a \in \mathbb{R}\}$,群 G 的乘法如下:

$$\tau_a * \tau_b = \tau_{a+b}$$

定义 G 在平面 \mathbb{R}^2 上的一个关系如下:

$$G \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(\tau_a, (x, y)) \longmapsto (x + a, \quad y + 2ax + a^2)$

证明:

- (a) 以上关系是群 G 在平面 \mathbb{R}^2 上的一个作用.
- (b) 任意一个轨道是平面 ℝ² 上的一条抛物线.
- 2B. 设群 $G = \{\tau_a | a \neq 0 a \in \mathbb{R} \}$, 群 G 的乘法如下:

$$\tau_a * \tau_b = \tau_{ab}$$

定义 G 在平面 \mathbb{R}^2 上的一个关系如下:

$$G \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(\tau_a, (x, y)) \longmapsto (ax, \quad a^{-1}y)$$

证明:

- (a) 以上关系是群 G 在平面 \mathbb{R}^2 上的一个作用.
- (b) 平面 \mathbb{R}^2 中任意不在坐标轴上点的轨道是一条双曲线.

2C. 设群 $G = \{ \tau_{\theta} \mid | 0 \le \theta < 360^{\circ} \}$,群 G 的乘法如下:

$$\tau_{\theta_1} * \tau_{\theta_2} = \tau_{[\theta_1 + \theta_2]}$$

其中 $[\theta_1+\theta_2]$ 是 $\theta_1+\theta_2$ 对模 360° 的主余数. 现把平面 \mathbb{R}^2 与复数 \mathbb{C} 等同,即点 $(x,y)=z\in\mathbb{C},\,|z|=\sqrt{x^2+y^2}.$ 定义 G 在平面 $\mathbb{R}^2=\mathbb{C}$ 上的一个关系如下:

$$G \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(\tau_{\theta}, z) \longmapsto ze^{i\theta}$

证明:

- (a) 以上关系是群 G 在平面 \mathbb{R}^2 上的一个作用.
- (b) 平面 ℝ² 上除坐标原点外, 任意一点的轨道是一个圆.

《近世代数》HW 7 提交时间: 11/14, 周四

- 1. 设 G 为有限群,P 为 G 的 Sylow p-子群, $N \triangleleft G$, 证明: PN/N 是 G/N 的 Sylow p-子群.
- 2. 设 G 为有限群,P 为 G 的 Sylow p-子群. 证明:
 - (a) $P \in N_G(P)$ 中的共轭子集只有一个.
 - (b) $N_G(P) = N_G(N_G(P)).$
- 3. 设G的阶为 100, 证明G中必有阶为 25 的正规子群.
- 4. 设 G 的阶为 168, G 中有多少个阶为 7 元素.
- 5. 找出 S₄ 的所有 Sylow 2-子群及 Sylow 3-子群.

《近世代数》 HW 8 提交时间: 11/21, 周四

1. 设 R 为一非交换环, $a,b \in R$. 如果 a,b,ab-1 都可逆,试证明: $a-b^{-1} \text{ 和 } (a-b^{-1})^{-1}-a^{-1} \text{ 也可逆,并且}$

$$[(a - b^{-1})^{-1} - a^{-1}]^{-1} = aba - a$$

- 2. 证明: $\mathbb{Z}(i) = \{a + bi \mid a, b \in \mathbb{Z}\}$ 关于整数的加法、乘法组成一个整环. (注: $\mathbb{Z}(i)$ 称为**高斯整数环**)
- 3. 环 R 称为一个 Boolean 环,如果 $\forall a \in R$,都有 $a^2 = a$. 证明:任何一个 Boolean 环都是交换环,并且 $\forall a \in R$,有 a + a = 0.
- 4. 设 R 是一个非零环,并且对任意 $a \in R, a \neq 0$,都存在唯一的元 $b \in R$ 使 得 aba = a. 证明:
 - (a). R 没有零因子.
 - (b). bab = b
 - (c). R 有单位元 1_R.
 - (d). R 是除环.

《近世代数》 HW 9 提交时间: 11/28, 周四

1. 证明集合:

$$\mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}.$$

关于实数的加法、乘法组成一个域,在此域中,试求出 $-2+\sqrt[3]{2}+3\sqrt[3]{4}$ 的 逆元.

2. 设 I 为交换环 R 的一个理想,定义集合:

$$Rad(I) = \{r \in R |$$
存在整数 n 使得 $r^n \in I\}$

证明: Rad(I) 是 R 的理想. (注: Rad(I) 称为 R 的根理想)

3. 证明: \mathbb{Z}_m 是主理想环. 特别当 m 为素数时, \mathbb{Z}_m 是域.

《近世代数》 HW 10 提交时间: 12/5 周四

- 1. 求环 \mathbb{Z}_{28} 的所有素理想和极大理想.
- 2. 证明:设 I 是整数环 $\mathbb Z$ 的非零理想,则以下条件等价:

I 是素理想 \iff I 是极大理想 \iff I=(p),p是素数

3. 证明环同态第三定理: 设 I,J 为环 R 的理想, 若 $I\subset J$, 则 J/I 是商环 R/I 的理想, 并且有: $(R/I)/(J/I)\cong R/J$

《近世代数》 HW 11 提交时间: 12/12, 周四

- 1. 证明: 在 $\mathbb{Z}_2[x]$ 中多项式 $x^3 + x^2 + 1$ 是不可约的,并利用这一结论构造一个有 8 个元的有限域.
- 2. 证明: $\sqrt{3} + \sqrt{5}$ 是 \mathbb{Q} 上的代数元, 并且求 $\sqrt{3} + \sqrt{5}$ 在 \mathbb{Q} 上的极小多项式.
- 3. 设 $x^3 3x 1 \in \mathbb{Q}[x]$, 证明:
 - (a). $x^3 3x 1$ 是 Q 上的不可约多项式;
 - (b). 若 α 为 $x^3 3x 1$ 的一个根,则 $\mathbb Q$ 的代数单扩张 $\mathbb Q(\alpha)$ 是域 $\mathbb Q$ 上的三维向量空间,并且可以取 $\{1,\alpha,\alpha^2\}$ 作为 $\mathbb Q(\alpha)$ 的基;
 - (c). 在域 $\mathbb{Q}(\alpha)$ 中求元 $\alpha^4 + 2\alpha^3 + 3$ 的逆元. (提示: 由于 $\alpha^4 + 2\alpha^3 + 3 \in \mathbb{Q}(\alpha)$ 由 (b),首先在基 $\{1,\alpha,\alpha^2\}$ 下,把元 $\alpha^4 + 2\alpha^3 + 3$ 线性表示出来,然 后再找其逆元.)

《近世代数》 习题答案 (仅供参考)

HW #1

1. 假设 ρ 是满射,则对 $\forall t \in T$ 取 $s_t \in \rho^{-1}(t)$,定义 $\tau : T \longrightarrow S$ 如下: $\tau(t) = s_t$,易见 $\rho \tau = 1_T$. 现在若存在 τ_1, τ_2 使得, $\tau_1 \rho = \tau_2 \rho$,则 $\tau_1 \rho \tau = \tau_2 \rho \tau \Longrightarrow \tau_1 1_T = \tau_2 1_T \Longrightarrow \tau_1 = \tau_2$,矛盾. 从而,不存在不同的 τ_1, τ_2 使得 $\tau_1 \rho = \tau_2 \rho$. 反之,若 ρ 有右逆,即 $\rho \tau = 1_T$. 则对任意 $t \in T$,取 $s = T(t) \in S$,显然, $\rho(s) = \rho(T(t)) = t$,从而 ρ 为满射.

2 略.

- 3(1) 只需证明以下三个条件成立,则 \sim 是复数 \mathbb{C} 上的等价关系。
 - (a) (自反性) $\alpha \sim \alpha$, since $\alpha = \alpha + 0\omega_1 + 0\omega_2$.
 - (b) (对称性) $\alpha \sim \beta \implies \beta = \alpha + a\omega_1 + b\omega_2$, for some intergers a, b. Obviously, we have that $\alpha = \beta - a\omega_1 - b\omega_2$, i.e. $\beta \sim \alpha$.
 - (c) (传递性) 若 $\alpha \sim \beta, \beta \sim \gamma$, 则 $\beta = \alpha + a\omega_1 + b\omega_2$, and $\gamma = \beta + c\omega_1 + d\omega_2$, where $a, b, c, d \in \mathbb{Z}$. Hence, $\gamma = \alpha + (a + c)\omega_1 + (b + d)\omega_2$, so $\alpha \sim \gamma$.
 - (2). 不失一般性,可以取 $\omega_1 = i, \omega_2 = 1$. 则设 $\alpha = x + iy$,可知,在该等价关系下 α 作为代表元所在的类

$$[\alpha]=\{x+a+(y+b)i|a,b\in\mathbb{Z}\}=\{(x+a,y+b)|a,b\in\mathbb{Z}\}$$

即平面上的点格,从而得到的商集 \mathbb{C}/\sim 等同于把正方形两组对边等同起来,所以我们得到一个环面.

HW#2

1. 证明:" ⇒ "显然. 现证:" ← "由假设,若 $a \in G$, 由 (ii), $(aa^{-1})(aa^{-1}) = a(a^{-1}a)a^{-1} = a(ea^{-1}) = aa^{-1}$, 故 $aa^{-1} = e$, 所以 a^{-1} 是 a 的逆. 注意 到 $ae = a(a^{-1}a) = (aa^{-1})a = ea = a$ 对任意 $a \in G$ 成立,故 e 是单位元.故, G 是群.

- 2. 证明: " \Longrightarrow " 显然. 现证: " \Longleftrightarrow " 由假设,对于方程 ya=a 在 G 中有解,记这个解为 y=e,即 ea=a,现在需证明, $\forall b\in G$,都有 eb=b,则 e 为 G 的左单位元. 实际上,由假设 ax=b 在 G 中有解,记这个解为 x=c,即 b=ac,注意到 eb=e(ac)=(ea)c=ac=b,所以 e 为 G 的左单位元. 用同样的技巧可以证明: $\forall a\in G$,存在 $d\in G$ 使得 da=e,即 a 的左逆元. 最后由(1)题的结论,推出 G 是群.
- 3. 证明: " \Longrightarrow " 显然. 现证: " \Longleftrightarrow " 由假设, $(ab)^2 = a^2b^2$,因为 G 为群,所以消去律成立,

$$(ab)^2 = a^2b^2 \iff abab = a^2b^2 \iff abab = aabb \iff ba = ab$$

- 4. 证明:由于有限群 G 的阶是偶数,群中除单位元 e 外,其余元都成对出现,从而必有一元 $a \in G$ 使得 $a^2 = e$.
- 5. 参考笔记.

HW#3

- 1. 证明:(\iff): $\forall g_1, g_2 \in G, g_1g_2 = f((g_1g_2)^{-1}) = f(g_2^{-1}g_1^{-1}) = f(g_2^{-1})f(g_1^{-1}) = g_2g_1$ 从而,G 是 Abel 群. (\implies) 显然.
- 2. 证明: 若令 $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ 由简单的矩阵乘法,我们可得: 由集合 X 生成的群 < X > 由以下元素组成.

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, A^3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, A^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E,$$

$$B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, AB = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, A^2B = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}, A^3B = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix},$$

并且注意到

$$BA = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}, B^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, B^3 = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}, B^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

由此易见: $A^3B = BA$. 故 Q_8 的任何一个元素都是 A^iB^j 的形式,所以 Q_8 有 8 个元的非交换群.

- 3. 参考笔记.
- 4. 证明: (⇒), 设 $S \neq G$ 的子群, 欲证 $\sim E$ 等价关系, 我们要验证以下性质: (1) 自反性: $\forall a \in G, a \sim a \iff aa^{-1} = e \in S$, (2) 对称性: 若 $a \sim b \iff ab^{-1} \in S$, 则由于 $S \neq B$, 故 $ab^{-1} \in S \implies ba^{-1} \in S \iff b \sim a$. (3) 传递性: 若 $a \sim b, b \sim c$ 则, $ab^{-1} \in S$ 从而, $ac^{-1} = ab^{-1}bc^{-1} \in S \iff a \sim c$.

(全) 假设 \sim 是 G 上的一个等价关系, $\forall a,b \in S$,则由等价关系的定义, 易见 $a \sim e$ 并且 $e \sim b$,从而对于任意 $a,b \in S$,我们都有 $a \sim b$ $\Longrightarrow ab^{-1} \in S$,从而 S 是子群.

5. 显然.

HW#4

- 1. 证明:任取一个非单位元 $a \in G$,得到 G 的一个循环子群:< a >,而且其阶是有限的. 否则 $< a > \cong \mathbb{Z}$,然而 \mathbb{Z} 有无限多子群,这与假设矛盾. 由同样的方法,可得到 G 的所有循环子群,但是这样的子群,只有有限个,从而 G 是有限群.
- 2. 证明:设 $C = H \cap K$ 是 K 的一个指标为 $n = \frac{|K|}{|H \cap K|}$ 的子群.则 K 是 C 的右陪集的不交并: $Ck_1 \cup Ck_2 \cdots \cup Ck_n$, $k_i \in k$.因 HC = H,故 HK 是 $Hk_1 \cup Hk_2 \cdots \cup Hk_n$, $k_i \in k$ 不交并,因此 $|HK| = |H| \cdot n = |H| |K| / |H \cap K|$.
- 3. G 的中心为:

$$C(G) = \{ a \in G | \forall g \in G, ag = ga \}$$

则,对 $\forall g \in G$, 需证明 $\forall c \in C(G), gcg^{-1} \in C(G)$. Obviously, $gcg^{-1} = cgg^{-1} = c \in C(G)$, so $C(G) \triangleleft G$.

4. 证明: 任取 $g_1, g_2 \in aHa^{-1}$, 则 $g_1 = ah_1a^{-1}, g_2 = ah_2a^{-1}$, 那么,

$$g_1g_2^{-1} = ah_1a^{-1}(ah_2a^{-1})^{-1} = ah_1h_2^{-1}a^{-1} \in aHa^{-1}.$$

从而, $aHa^{-1} < G$. 易见,

$$\phi: H \longrightarrow aHa^{-1}$$
, given by $h \longmapsto aha^{-1}$

是群同构, 故 $aHa^{-1} \cong H$.

- 5. 证明:由上题结论, $aHa^{-1} \cong H$ 和 H, aHa^{-1} 都是 G 的阶为 n 的子群,由假设知: $aHa^{-1} = H$,即 $H \triangleleft G$.
- 6. 证明:由群同态第一定理: $G/kerf \cong \operatorname{Im} f$, 而 $\operatorname{Im} f < H$, H 是 Abel 群,所以 Imf 是 Abel 群,故 G/kerf 是 Abel 群,然而 Abel 群的任意子群都是正规子群,所以子群 N/kerf 是 G/kerf 的正规子群.由同构群之间的正规子群的一一对应关系,可得到: N 是 G 的正规子群,即 $N \triangleleft G$.
- 7. 直接由正规子群的定义验证.
- 8. 由于 H 在 G 中的指标是 2, 即 H 在 G 中的作陪集的个数是 2, 同时有陪集的个数也是 2. 故可设 $G = H \cup aH = H \cup Ha$, 从而 aH = Ha, 即 $H \triangleleft G$.

HW# 5

1. 证明: 定义映射:

$$\phi: <6> \longrightarrow \mathbb{Z}_5$$
$$6m \longmapsto [m]_5$$

易验证 ϕ 是满同态. 则由群同态基本定理: $<6>/ker\phi\cong\mathbb{Z}_5$. 而 $Ker\phi=\{6m|\ 6m=5n\}=<30>$,故 $<6>/<30>\cong\mathbb{Z}_5$.

2. 证明: G/C(G) 是循环群,则存在 $g \in G$

$$G/C(G) = < gC(G) > = \{g^mC(G)| m \in \mathbb{Z}\}$$

任取 $g_1, g_2 \in G$, 考虑 $g_1C(G), g_2C(G) \in G/C(G)$, 则, $g_1C(G) = g^mC(G)$, $g_2C(G) = g^nC(G)$ 并且:

$$\exists h_1, h_2 \in C(G), s.t : g_1 = g^m h_1, g_2 = g^n h_2$$

所以,

$$g_1g_2 = g^m h_1 g^n h_2 = g^{m+n} h_1 h_2$$

 $g_2g_1 = g^n h_2 g^m h_1 = g^{m+n} h_2 h_1$

因 $h_1, h_2 \in C(G)$, 故 $g_2g_1 = g_1g_2$, 从而 G 是 Abel 群.

- 3. 证明:注意到任何群同构把生成元映射到生成元,而 \mathbb{Z}_6 的生成元为: [1],[5] . 所以对 $\forall \phi \in Aut(\mathbb{Z}_6), \phi$ 唯一的由生成元的像确定. 从而, $Aut(\mathbb{Z}_6) \cong \mathbb{Z}_2$.
- 4. 证明: 由定义 $A \in GL(n,R)$ 及 $\alpha \in V$

$$GL(n,R) \times V \longrightarrow V$$

 $(A,\alpha) \longmapsto A\alpha$

对向量空间 V 来说,任意非零 $\alpha, \beta \in V$,都存在 $A \in GL(n, R)$ 使得 $A\alpha = \beta$, therefore,

$$orb(\alpha) = \begin{cases} 0 & for \quad \alpha = 0 \\ V - \{0\}, & for \quad \alpha \neq 0 \end{cases}$$

5. 证明: 我们知道: 任意的对称阵都合同于一个对角阵. 即 $\forall B \in S, \exists A \in GL(n,R)$ 使得: $ABA^T = D$,其中 D 为如下对角阵:

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$
 (1)

这里 $d_i \in \{0, -1, 1\}$,考虑矩阵 B 的秩,设 r(B) = m,则 $0 \le m \le n$,并且对应的对角阵 D 有 m+1 个彼此不合同的类型,从而,orb(B) 有 m+1 个不同的可能,所以总共轨道的个数为: $1+2+3+\cdots+n+(n+1)=(n+1)(n+2)/2$.

HW# 6

- 1. 证明: $Ker\phi = \{g \in G | \phi(g) = \mathrm{Id}_S \}$, 故 $\forall g \in ker\phi, g(H) = gH = H$, 从而 $g \in H$ 由此可得 $Ker\phi \subset H$
- 2. 证明:首先考虑定义一个如上题 G 在集合 $S = \{H$ 在 G 中的全体左陪集} 上的一个作用 ϕ ,由假设知 |S| = p,并且诱导出 $\phi: G \longrightarrow A(S)$ 的 群同态,其中 A(S) 是集合 S 上的全体排列,由群同态基本定理, $G/Ker\phi \cong \phi(G)$. 从而 $|G/Ker\phi|$ 整除 p! . 同时由上题的结论: $Ker\phi \subset H$,现证明: $H \subset Ker\phi$,那么就有 $H = Ker\phi$ 但 $ker\phi \triangleleft G$, 从而 $H \triangleleft G$. 实际上,由 Lagrange 定理,我们有:

$$|G/Ker\phi| = [G:ker\phi] = [G:H][H:ker\phi] = p[H:ker\phi]$$

从而 $|G/Ker\phi|=1$,或 p 由假设, p 为 |G| 的最小素数因子, 故 $[H:ker\phi]=1$, 从而有 $H=Ker\phi$, 即为证.

HW# 7

1. 证明: 设 $|G| = p^n m$, (p, m) = 1, $|N| = p^{\lambda} q$, (p, q) = 1. 则群 G 的 Sylow p- 群的阶 $|P| = p^n$, 群 N 的 Sylow p- 群的阶为 p^{λ} . 故:

$$|G/N| = |G|/|N| = p^n m/p^{\lambda} q = p^{n-\lambda} m/q, \quad (p, m/q) = 1$$

从而 G/N 的 Sylow p-群的阶为 $p^{n-\lambda}$. 由第二群同态定理: $PN/N \cong P/P \cap N$ 和 $|PN| = |P||N|/|P \cap N|$,并且注意到 $P \cap N$ 为 N 的 Sylow p-群,所以 $|P \cap N| = p^{\lambda}$. 由此可得:

$$|PN/N| = |P||N|/|P \cap N||N| = |P|/|P \cap N| = p^n/p^{\lambda} = p^{n-\lambda}$$

因此, G/N 的 p-子群 PN/N 的阶为 $p^{n-\lambda}$, 从而 PN/N 是 G/N 的 Sylow p-群.

2. (a) 注意到 $P \triangleleft N(P)$, 所以 P 在 N(P) 中的共轭子集只有一个. (b) $x \in N(N(P)) \Longrightarrow xN(P)x^{-1} = N(P) \Longrightarrow xPx^{-1} < N(P) \Longrightarrow xPx^{-1} = P \Longrightarrow x \in N(P) \Longrightarrow N(N(P)) < N(P)$. 从而 N(N(P)) = N(P).

3. 证明: $100 = 2^2 \cdot 5^2$, 由 Sylow 第一定理知 G 有阶为 25 的子群. 设 n_5 表示阶为 25 的 Sylow 5-子群的个数,则由 Sylow 第三定理:

 $n_5|4$, $n_5 \equiv 1 \pmod{5} \Longrightarrow n_5 = 1 \Longrightarrow$ 阶为 25 的 Sylow 5-子群是正规子群.

4. 证明: $168 = 2^3 \cdot 3 \cdot 7$, 由 Sylow 第一定理知 G 有阶为 7 的子群. 设 n_7 表示阶为 7 的 Sylow 7-子群的个数,则由 Sylow 第三定理:

$$n_7|24, \quad n_7 \equiv 1 \pmod{7} \Longrightarrow n_7 = 1 \stackrel{?}{\boxtimes} n_7 = 8$$

下一步需确定 n_7 是 1 还是 8. 一般方法是,考虑所有可能的 n_2, n_3 (即 Sylow-2 和 Sylow 3-子群的个数),然后考虑所有可能的组合,如 $n_3=1,4,7,28$. $n_2=1,3,7,21$. $n_7=1,8$. (但这比较复杂! 有兴趣的同学可以尝试.)

5. S₃ 的所有 Sylow 2-子群及 Sylow 3-子群,

解: $S_3 = \{(1), (12), (13), (23), (123), (132)\}, |S_3| = 2 \cdot 3$, 故 S_3 有 Sylow 2-子群及 Sylow 3-子群, 并且由 Sylow 定理可知: $n_2 = 3, n_3 = 1$. S_3 的所有 Sylow 2-子群:

$$\langle (12) \rangle = \{(1), (12)\}$$

 $\langle (23) \rangle = \{(1), (23)\}$
 $\langle (13) \rangle = \{(1), (13)\}$

S₃ 的所有 Sylow 3-子群:

$$< 123 >= \{(1), (123), (132)\}$$

故可以得到 $< 123 >= \{(1), (123), (132)\}$ 为 S_3 唯一的非平凡的正规子群. $(S_4$ 的所有 Sylow p-子群: 可以类似的去做, 同学们自己试试看!)

HW# 8

1. 证明:由假设,a,b,ab-1都可逆,并且: $(a-b^{-1})b(ab-1)^{-1}=(ab-1)(ab-1)^{-1}=1\Longrightarrow (a-b^{-1})^{-1}=b(ab-1)^{-1},即(a-b^{-1})$ 可逆.同时可验证 $(a-b^{-1})^{-1}-a^{-1}$ 可逆:

$$\begin{split} &[(a-b^{-1})^{-1}-a^{-1}](aba-a)=(a-b^{-1})^{-1}(aba-a)-a^{-1}(aba-a)\\ &=(a-b^{-1})^{-1}(ab-1)a-(ba-1)\\ &=b(ab-1)^{-1}(ab-1)a-(ba-1)=ba-(ba-1)=1 \end{split}$$
 \(\frac{\frac{1}{2}}{2}\)

- 2. 直接按环的定义验证,并且易见 $\mathbb{Z}[i]$ 对乘法可交换,没有零因子,故是整环.
- 3. 证明: 由假设 $\forall a \in R$ 都有 $a^2 = a$. 所以, $\forall a, b$,

$$a+b=(a+b)^2=a^2+ab+ba+b^2=a+ab+ba+b\Longrightarrow ab=-ba$$
同时注意到,

$$(a+a)^2 = a^2 + a^2 + a^2 + a^2 = a + a + a + a = a + a \Longrightarrow a + a = 0$$

综上所述, $a = -a$, 所以, $ab = ba$. 即 Boolean 环是交换环.

- 4. (a). 设 R 中有零因子,即在 R 中 $\exists a \neq 0, c \neq 0$ 使得,ca = 0,现在考察: $a(b-c)a = aba aca = a aca = a \Longrightarrow a(b-c)a = a$,但由假设对于任意 $a \neq 0$ \exists 唯一元 b 使得:aba = a,从而有 $b-c = b \Longrightarrow c = 0$. 矛盾! 故没有零因子.
 - (b). a(bab-b)=abab-ab=(aba)b-ab=ab-ab=0, 但 R 没有零因子,所以: $bab-b=0 \Longleftrightarrow bab=a$
 - (c). 对任意 $a \neq 0$,则存在唯一的 $b \in R$,使得:aba = a, bab = b,现在证明: ba 就是单位元 1_R . 实际上, $\forall c \in R$,假设 $cba = \lambda$,则 $(cba)b = \lambda b \iff cb = c \implies c = \lambda$ (因为没有零因子),从而 $\forall c \in R$,假设 $cba = \lambda = c \implies ba = 1_R$.
 - (d). 由于 R 中没有零因子,故左右消去律成立,从而由假设,对任意 $a \neq 0$,则存在唯一的 $b \in R$,使得: $aba = a \Longrightarrow ab = 1_R$, $bab = b \Longrightarrow ba = 1_R$,所以,任何非零元都有逆,即 R 是除环.

HW#9

1. 证明:直接按照域的概念验证.至于求 $-2 + \sqrt[3]{2} + 3\sqrt[3]{4}$ 的逆元,可以设 $x + y\sqrt[3]{2} + z\sqrt[3]{4}$ 为其逆元,则 $(-2 + \sqrt[3]{2} + 3\sqrt[3]{4})(x + y\sqrt[3]{2} + z\sqrt[3]{4})$

- $z\sqrt[3]{4}$) = 1, 由此得到一个关于 x,y,z 的线性方程组, 可求出 x,y,z , 即就找到了 $-2+\sqrt[3]{2}+3\sqrt[3]{4}$ 的逆元.
- 2. 直接按理想的定义验证.
- 3. 参考课堂笔记.

HW#10

- 1. 由环同态基本定理, \mathbb{Z}_{28} 的理想都是形如: I/(28), 其中 I 是 \mathbb{Z} 的包含理想 (28) 的 \mathbb{Z} 的理想,从而 \mathbb{Z}_{28} 的素理想或极大理想都是 I/(28),其中 I 满足: $(28) \subset I$, I 是 \mathbb{Z} 的素理想或极大理想想。由环同态第三定理: $\mathbb{Z}/28/I/(28) \cong \mathbb{Z}/I$. 从而,I/(28) 是素理想或极大理想 $\iff \mathbb{Z}/I$ 是整环或域。但 \mathbb{Z}/I 是整环或域。 H 是 H 是 H 的素因子: H 是 H 是 H 的理想 H 就满足: H (28) H H 是 H 的素理想或极大理想,综上所述,H (2)/(28), H (7)/(28) 为 H H 图 的素理想同时也是极大理想.
- 2. 参考笔记.
- 3. 参考群同态第三定理的证明

HW# 11

1. 证明:由于多项式 $x^3 + x^2 + 1$ 在 \mathbb{Z}_2 上没有根,故不可约. 所以理想 $(x^3 + x^2 + 1)$ 是 $\mathbb{Z}_2[x]$ 的极大理想,从而 $\mathbb{Z}_2[x]/(x^3 + x^2 + 1)$ 是域.同时注意到:

$$\mathbb{Z}_2[x]/(x^3+x^2+1) = \{au^2 + bu + c | a, b, c \in \mathbb{Z}_2\}$$

这个域是含有8个元的域.

2. 证明:注意到: $(\sqrt{3} + \sqrt{5})^2 = 8 + 2\sqrt{15}$, $(8 + 2\sqrt{15})^2 = 124 + 32\sqrt{15}$, 取多项式 $P(x) = x^4 - 16x^2 + 4 \in \mathbb{Q}[x]$, 易见 $P(\sqrt{3} + \sqrt{5}) = 0$, 故 $\sqrt{3} + \sqrt{5}$ 是 \mathbb{Q} 上的代数元. 因

$$P(x) = x^4 - 16x^2 + 4 = (x^2 - 8)^2 - 60 = (x^2 - 8 - 2\sqrt{15})(x^2 - 8 + 2\sqrt{15})$$

,所以 $P(x)$ 在 \mathbb{Q} 上不可约,从而 $P(x) = x^4 - 16x^2 + 4$ 是 $\sqrt{3} + \sqrt{5}$ 在 \mathbb{Q} 上的极小多项式.

- 3. (a). 易见 $x^3 3x 1$ 在 \mathbb{Q} 上没有根,从而不可约.
 - (b) 若 α 为 $x^3 3x 1$ 的一个根,则 Q 的代数单扩张:

 $\mathbb{Q}(\alpha) \cong \mathbb{Q}(x)/(x^3-3x-1)$ 是域 \mathbb{Q} 上的三维向量空间,并且可以 取 $\{1,\alpha,\alpha^2\}$ 作为 $\mathbb{Q}(\alpha)$ 的基; (c). 由于 $\alpha^4+2\alpha^3+3\in\mathbb{Q}(\alpha)$:

$$\alpha^4 + 2\alpha^3 + 3 = (\alpha^3 - 3\alpha - 1)(\alpha + 2) + 3\alpha^2 + 7\alpha + 5 = 3\alpha^2 + 7\alpha + 5.$$

所以 $(\alpha^4 + 2\alpha^3 + 3)^{-1} = (3\alpha^2 + 7\alpha + 5)^{-1}$. 设 $(3\alpha^2 + 7\alpha + 5)^{-1} = a + b\alpha + c\alpha^2 \in \mathbb{Q}(\alpha)$, 则

$$(3\alpha^2 + 7\alpha + 5)(a + b\alpha + c\alpha^2) = 1$$

再注意到 $\alpha^3=3\alpha+1$, 化简上式得到关于 a,b,c 的线性方程组,解此方程组即可.(上式要首先用关系 $\alpha^3=3\alpha+1$ 化为关于 α 的二次式,然后用待定系数法,得到关于 a,b,c 的线性方程组,同学们自己补出细节!)