Logistic Regression Classifier

Liang Liang

Logistic Regression

is for Classification

NOT Regression!

A Linear Function

$$z = w^T x + b$$

x refers to a data point/feature vector

z is a scalar function of x

$$z = z(x) = w^T x + b$$

w is a parameter vector of the function b is a scalar parameter of the function

For example:
$$z = [0.1, 2.0] \begin{bmatrix} x_{(1)} \\ x_{(2)} \end{bmatrix} + 1.2$$

The sigmoid function

$$s(z) = \frac{1}{1 + e^{-z}}$$

$$s(z = 0) = 0.5$$

$$s(z=\infty)=1$$

$$s(z=-\infty)=0$$

Binary Classifier: Linear + Sigmoid

a data point x $\hat{y} = s(w^T x + b)$ $\hat{y} > 0.5, \text{ it is a cat}$ $\hat{y} < 0.5, \text{ it is not a cat}$ $\hat{y} < 0.5, \text{ it is not a cat}$ $\hat{y} = s(w^T x + b)$ $\hat{y} < 0.5, \text{ it is not a cat}$ $\hat{y} = s(w^T x + b)$ $\hat{$

Linear function
$$z = w^T x + b$$

Sigmoid function $\hat{y} = s(z) = \frac{1}{1 + e^{-z}}$

Binary Classifier: Linear + Sigmoid

Parameters: w and b

- We have a set of <u>training</u> data points $\{x_1, x_2, x_3, ..., x_N\}$ and $x_n \in \mathcal{R}^M$
- We have a set of 'ground-truth' labels $\{y_1, y_2, y_3, ..., y_N\}$ and $y_n \in \{0, 1\}$
- The data points are from two classes: 0 vs 1 (e.g., not-cat vs cat)
- y_n is the true class label of x_n , and it is 0 or 1
- One data point belongs to only one class
- The predicted soft labels from the classifier are $\{\hat{y}_1, \hat{y}_2, \hat{y}_3, ..., \hat{y}_N\}$
- The classifier may make mistakes.

'ground-truth' labels

 x_1

predicted soft labels

$$y_1 = 1$$

$$\hat{y}_1 > 0.5$$

 $y_2 = 1$

Classifier

$$\hat{y}_2 < 0.5$$

$$y_3 = 0$$

 $\hat{y}_3 > 0.5$

Train the Classifier: find the optimal parameters

Parameters: w and b

- Train the classifier on the training dataset: find the optimal parameters (w and b) such that the discrepancy between the 'ground-truth' labels $\{y_1, y_2, y_3, ..., y_N\}$ and the predicted labels $\{\hat{y}_1, \hat{y}_2, \hat{y}_3, ..., \hat{y}_N\}$ are minimized
- Need a loss function to measure the discrepancy/difference

Train the Classifier - the loss function

Parameters: w and b

• Define a loss function to measure the discrepancy/difference

$$L(w,b) = \frac{1}{N} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$$

which is called mean squared error (MSE) loss

loss functions for training the classifier

mean squared error (MSE) loss

$$L = \frac{1}{N} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$$

mean absolute error (MAE) loss or L1 loss

$$L = \frac{1}{N} \sum_{n=1}^{N} |\hat{y}_n - y_n|$$

• binary cross entropy (BCE) loss

$$L = -\frac{1}{N} \sum_{n=1}^{N} (y_n \log(\hat{y}_n) + (1 - y_n) \log(1 - \hat{y}_n))$$

negative log-likelihood (NLL) loss = BCE loss

Logistic Regression = Linear + Sigmoid + BCE loss

- We have a set of <u>training</u> data points $\{x_1, x_2, x_3, ..., x_N\}$ and $x_n \in \mathcal{R}^M$
- We have a set of 'ground-truth' labels $\{y_1, y_2, y_3, ..., y_N\}$ and $y_n \in \{0, 1\}$
- q(y|x) is the 'probability' of x belonging to class-y
- $\hat{y} = q(y = 1|x)$, the output is the 'probability' of x belonging to class-1
- $1 \hat{y}$ is the the 'probability' of x belonging to class-0 (two classes)

Logistic Regression = Linear + Sigmoid + BCE loss

- We have a set of <u>training</u> data points $\{x_1, x_2, x_3, ..., x_N\}$ and $x_n \in \mathcal{R}^M$
- We have a set of 'ground-truth' labels $\{y_1, y_2, y_3, ..., y_N\}$ and $y_n \in \{0, 1\}$
- The predicted labels from the classifier are $\{\hat{y}_1, \hat{y}_2, \hat{y}_3, ..., \hat{y}_N\}$
- $\hat{y}_n = q(y = 1|x_n)$ is the (estimated) 'probability' of x_n belonging to class-1
- $1 \hat{y}_n$ is the (estimated) 'probability' of x_n belonging to class-0
- Define the likelihood function:

$$L(w,b) = \prod_{n=1}^{N} (\hat{y}_n)^{y_n} (1 - \hat{y}_n)^{1-y_n}$$

• Logistic regression: maximize the likelihood function

$$L(w,b) = \prod_{n=1}^{N} (\hat{y}_n)^{y_n} (1 - \hat{y}_n)^{1-y_n}$$

where \hat{y}_n is the (estimated) 'probability' of x_n belonging to class-1

 $1 - \hat{y}_n$ is the (estimated) 'probability' of x_n belonging to class-0

Example:
$$\{x_1, x_2, x_3\}$$
 and $\{y_1 = 1, y_2 = 0, y_3 = 0\}$

Then:
$$L(w, b) = \hat{y}_1(1 - \hat{y}_2)(1 - \hat{y}_3)$$

the 'probability' of x_1 belonging to class-1

the 'probability' of x_3 belonging to class-0

the 'probability' of x_2 belonging to class-0

L(w, b) is the 'probability' of observing the sequence $\{x_1, x_2, x_3\}$, assuming i.i.d.

Logistic Regression = Linear + Sigmoid + BCE loss

- $\hat{y}_n = q(y = 1|x_n)$ is the (estimated) 'probability' of x_n belonging to class-1
- $1 \hat{y}_n$ is the (estimated) 'probability' of x_n belonging to class-0
- The likelihood function:

$$L(w,b) = \prod_{n=1}^{N} (\hat{y}_n)^{y_n} (1 - \hat{y}_n)^{1-y_n}$$

• negative log-likelihood (NLL) loss function:

$$loss = -\frac{1}{N}logL(w,b)$$

$$= -\frac{1}{N}\sum_{n=1}^{N} (y_n log(\hat{y}_n) + (1 - y_n)log(1 - \hat{y}_n))$$

$$= \frac{1}{N}\sum_{n=1}^{N} cross_entropy(y_n, \hat{y}_n)$$

BCE loss = NLL loss

Binary classification, so it is called binary cross entropy loss

$$cross_entropy(y_n, \hat{y}_n) = -(y_n log(\hat{y}_n) + (1 - y_n) log(1 - \hat{y}_n))$$

Ground truth label

Predicted "soft" label, the (estimated) 'probability' of x_n belonging to class-1

n: the index of data point x_n

Entropy of a discrete random variable

- a discrete random variable Ythe value of Y could be $a_1, a_2,, a_K$
- it has a probability mass function (PMF): $p(y = a_k) = p_k$
- the entropy is defined to be

$$H(Y) = -\sum_{k=1}^{K} p_k log(p_k) \ge 0$$

$$H(Y) \equiv H(p)$$

• Example: P(Y = 1) = b and P(Y = 0) = 1 - bH(Y) = -blog(b) - (1 - b)log(1 - b)

Relative Entropy of two PMFs

- We have two PMFs p(y) and q(y) where y takes values in the same set
- The difference between the two probability mass functions can be quantified by the so-called relative-entropy:

$$D(p||q) = \sum_{y} p(y) log\left(\frac{p(y)}{q(y)}\right)$$

- It is also called Kullback-Leibler (KL) distance/divergence
- $D(p||q) \ge 0$
- D(p||q) = 0 if and only if the two distributions are the same
- For this classification application,
 p(y) is the true PMF of the random variable Y
 q(y) is an estimation/approximation of the true PMF

Cross Entropy of two PMFs

•
$$D(p||q) = \sum_{y} p(y)log\left(\frac{p(y)}{q(y)}\right)$$

$$= \sum_{y} p(y)log(p(y)) - \sum_{y} p(y)log(q(y))$$

$$= -H(p) - \sum_{y} p(y)log(q(y))$$

- Define cross entropy $H(p,q) = -\sum_{y} p(y)log(q(y))$
- cross entropy is a distance measure if H(p) is a constant
- Example: binary classification, $\{x_1, x_2\}$ and $\{y_1 = 1, y_2 = 0\}$
 - p(y|x) is the true PMF of the data labels:

$$p(y_1 = 1|x_1) = 1$$
 and $p(y_1 = 0|x_1) = 0$, thus $H_{X_1}(p)$ is a constant $p(y_2 = 0|x_2) = 1$ and $p(y_2 = 1|x_2) = 0$, thus $H_{X_2}(p)$ is a constant

• q(y|x) is the output of the classifier, the estimated PMF of the labels

Training the classifier: Linear + Sigmoid + Loss

Parameters: w and b

- select a loss function *L*
- obtain the optimal w: $\frac{\partial L}{\partial w} = 0$, then we get w, but, there is no closed-form solution

Training the Classifier by simple gradient descent

- Step-1: initialize parameters w and b using random numbers
- Step-2: compute $\frac{\partial L}{\partial w}$ and $\frac{\partial L}{\partial b}$
 - $\frac{\partial L}{\partial w}$ is a vector/direction: if w moves along this direction, then the loss function L will increase (this is the meaning of derivative)
 - We want to minimize *L*.
 - So, w should go in the opposite direction $-\frac{\partial L}{\partial w}$
- Step-3: update w and b

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{\partial L}{\partial \mathbf{w}}$$
, and $b \leftarrow b - \eta \frac{\partial L}{\partial b}$

where the scalar η is called learning rate, $\eta > 0$

• Repeat step-2 and step-3 until the algorithm converges

other gradient based optimization methods

- Limited-memory BFGS
- SAG: ~ Stochastic Average Gradient
- newton-cg: Newton-conjugate gradient

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

solver: str, {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, default: 'liblinear'.

Algorithm to use in the optimization problem.

- For small datasets, 'liblinear' is a good choice, whereas 'sag' and 'saga' are faster for large ones.
- For multiclass problems, only 'newton-cg', 'sag', 'saga' and 'lbfgs' handle multinomial loss;
 'liblinear' is limited to one-versus-rest schemes.
- 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty, whereas 'liblinear' and 'saga' handle L1
 penalty.

see demo LR_Classifier_1D_2D.ipynb

Generate 2D data points using two Gaussian PDFs

a LR Classifier

The decision boundary is a straight line/ hyperplane Why?

LR_Classifier_1D_2D.ipynb

$$w^T x + b = 0$$

A logistic regression classifier is a linear classifier: decision boundary is a straight line/ hyperplane

$$z = w^T x + b$$

$$\hat{y} = \frac{1}{1 + e^{-z}}$$

Which loss function is the best?

mean squared error (MSE) loss

$$L = \frac{1}{N} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$$

mean absolute error (MAE) loss or L1 loss

$$L = \frac{1}{N} \sum_{n=1}^{N} |\hat{y}_n - y_n|$$

binary cross entropy (BCE) loss (used by logistic regression)

$$L = -\frac{1}{N} \sum_{n=1}^{N} \left(y_n log(\hat{y}_n) + (1 - y_n) log(1 - \hat{y}_n) \right)$$

• negative log-likelihood (NLL) loss = BCE loss

Convex Sets

• Definition: a set A is convex if

$$\forall x, y \in A$$
, then $\lambda x + (1 - \lambda)y \in A$
 λ is any scalar in $0 \le \lambda \le 1$

which means the line segment between any two points is also in the set.

• Examples:

Convex Set examples

• an Euclidean ball:

$$A = \{y \mid ||y - c||_2 \le r\}$$

• an ellipsoid:

$$A = \{ y \mid (y - \mu)^T \Sigma^{-1} (y - \mu) \le 1 \}$$

The eigenvector and eigenvalues of Σ determine the direction and shape

Convex Set examples

• some polyhedron

$$A = \{ y \mid a_i^T y \le b_i, i = 1, 2, ... \}$$

it is an intersection of a finite set of hyperplanes i.e., a finite set of linear equalities and inequalities

Convex Function (Domain is a convex set)

• Definition: a function $f: \mathcal{R}^N \to \mathcal{R}$ is convex if: $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$ λ is any scalar in $0 \le \lambda \le 1$, any x and y in domain of f

• Geometric meaning:

Concave Function

• Definition: a function $f: \mathcal{R}^N \to \mathcal{R}$ is concave if: $f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$ λ is any scalar in $0 \le \lambda \le 1$, any x and y in domain of f

• Geometric meaning:

Convex Function

- a function $f: \mathcal{R}^N \to \mathcal{R}$ is convex iif: $f(y) \ge f(x) + (\nabla f(x))^T (y - x)$ any x and y in domain of f
- Geometric meaning:

Convex Function

• a function $f: \mathbb{R}^N \to \mathbb{R}$ is convex **iif**: the Hessian matrix $\nabla^2 f(x)$ is positive semi-definite, for any x in domain of f positive semi-definite: all eigenvalues are non negative $\nabla^2 f(x)$ is call Hessian matrix, it is symmetric an example:

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_1 \partial x_3} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \frac{\partial^2 f}{\partial x_2 \partial x_3} \\ \frac{\partial^2 f}{\partial x_3 \partial x_1} & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \frac{\partial^2 f}{\partial x_3^2} \end{bmatrix}, \text{ where } x = [x_1, x_2, x_3]^T$$

• the function/curve has positive (upward) curvature at every point.

Convex Optimization

• Definition: an optimization problem is specified by

minimize
$$f(x)$$

subject to $g_i(x) \le 0$, i=1,2,...,m
 $h_i(x) = 0$, j=1,2,..., p

- A convex optimization problem has the following requirements:
 - the objective f(x) is convex
 - every inequality constraint function $g_i(x)$ is convex
 - every equality constraint function $h_j(x)$ is affine: $h_j(x) = a_j^T x + b_j$
- Theorem: for convex optimization problem, any local optimum is also a global optimum, which means the global optimum can be found by gradient-based optimization algorithms.

Convex Function Examples

- Exponential functions: $f(x) = e^{ax}$ for every $a \in \mathcal{R}$
- Power functions: $f(x) = x^a$ when $a \ge 1$ or $a \le 0$
- Power of absolute value: $f(x) = |x|^p$ for $p \ge 1$
- Negative log: $f(x) = -\log(x)$ for x > 0
- Negative entropy : xlog(x) is convex
- Vector Norms
- Log-sum-exp: $f(x) = -\log(e^{x_1} + e^{x_2} + \cdots)$
- Max: $f(x) = \max\{x_1, ..., x_N\}$
- log-determinant: $f(X) = \log(detX)$ for all positive definite matrices
- Summation of convex functions is convex
- Composition of two functions:
 - f(x) = h(g(x)) is convex if (1) or (2) is true:
 - (1) g(x) is convex, and h(x) is convex and non-decreasing
 - (2) g(x) is concave, and h(x) is convex and non-increasing

binary cross entropy loss function is Convex in w and b

• BCE loss:

$$L(w,b) = -\frac{1}{N} \sum_{n=1}^{N} (y_n \log(\hat{y}_n) + (1 - y_n) \log(1 - \hat{y}_n))$$

where
$$\hat{y}_n = \frac{1}{1+e^{-z_n}}$$
 and $z_n = w^T x_n + b$, $y_n = 0$ or 1

BCE loss is a convex function of w and b

The convexity is not dependent on the training dataset

- $-log(\hat{y}_n)$ is convex in w for any n
- $-log(1-\hat{y}_n)$ is convex in w for any n

(proof: take the second order derivative and show it is nonnegative)

Multiclass Classification

- We have a set of <u>training</u> data points $\{x_1, x_2, x_3, ..., x_N\}$ and $x_n \in \mathcal{R}^M$
- We have a set of 'ground-truth' labels $\{y_1, y_2, y_3, ..., y_N\}$ where $y_n \in \{1, 2, 3, ..., K\}$
- The <u>predicted labels</u> from the classifier are $\{\hat{y}_1, \hat{y}_2, \hat{y}_3, ..., \hat{y}_N\}$ \hat{y}_n from the classifier is a soft label vector

label/fruit

1:apple

2:mandarin

3:orange

4:lemon

Multiclass Classification

• We have a set of 'ground-truth' labels $\{y_1, y_2, y_3, ..., y_N\}$ where $y_n \in \{1, 2, 3, ..., K\}$

• Convert every y_n to the format of one-hot encoding

label/fruit
1:apple
2:mandarin
3:orange
4:lemon $y_n = 4$ $y_n = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

note: in sk-learn, labels are 0, 1, 2, 3 $y_n \in \{0, 1, 2, ..., K - 1\}$

Multiclass Classification: the Softmax function

• The Softmax function of scalars $z_1, ..., z_K$

$$s(z_1, \dots, z_K) = \begin{bmatrix} \frac{e^{z_1}}{\sum_{k=1}^K e^{z_k}} \\ \frac{e^{z_2}}{\sum_{k=1}^K e^{z_k}} \\ \vdots \\ \frac{e^{z_K}}{\sum_{k=1}^K e^{z_k}} \end{bmatrix}$$
lued function

$$\exp(z) \equiv e^z$$

Sum of the elements is 1

It is a vector-valued function

Multiclass Classification: the Softmax function

• The Softmax function of scalars z_1, z_2 when K = 2

$$s(z_1, z_2) = \begin{bmatrix} \frac{e^{z_1}}{e^{z_1} + e^{z_2}} \\ e^{z_2} \\ \frac{e^{z_2}}{e^{z_1} + e^{z_2}} \end{bmatrix} \exp(z) \equiv e^{z_2}$$

It is a vector-valued function

The Multi-output Classifier

 $0 \le \hat{y}(k) \le 1$ is the 'probability' of x belonging to class-k, $\sum_{k=1}^{K} \hat{y}(k) = 1$

Training a Multiclass Logistic Regression Classifier

• cross-entropy (CE) loss function

$$L = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} y_{(n,k)} log(\hat{y}_{(n,k)})$$

 $y_{(n,k)}$ is the k-th element of the vector y_n (ground-truth)

 $\hat{y}_{(n,k)}$ is the k-th element of the vector \hat{y}_n (prediction)

training: gradient descent

$$w_k \leftarrow w_k - \eta \frac{\partial L}{\partial w_k}$$
, and $b_k \leftarrow b_k - \eta \frac{\partial L}{\partial b_k}$

Softmax-based Logistic Regression Classifier = Sigmoid-based Logistic Regression Classifier When the number of classes is 2

$$S(z_{1}, z_{2}) = \begin{bmatrix} \frac{e^{z_{1}}}{e^{z_{1}} + e^{z_{2}}} \\ e^{z_{2}} \\ \frac{e^{z_{2}}}{e^{z_{1}} + e^{z_{2}}} \end{bmatrix} = \begin{bmatrix} \frac{e^{z_{1}} \times e^{-z_{1}}}{(e^{z_{1}} + e^{z_{2}}) \times e^{-z_{1}}} \\ \frac{e^{z_{2}} \times e^{-z_{2}}}{(e^{z_{1}} + e^{z_{2}}) \times e^{-z_{2}}} \end{bmatrix} = \begin{bmatrix} \frac{1}{1 + e^{z_{2}} - z_{1}} \\ \frac{1}{1 + e^{z_{1}} - z_{2}} \end{bmatrix}$$

$$\frac{1}{1 + e^{z_1 - z_2}} + \frac{1}{1 + e^{z_2 - z_1}} = 1$$

Then define $z = z_2 - z_1$

(multinominal) Multiclass logistic regression in sklearn

sklearn.linear_model.LogisticRegression

class sklearn.linear_model. LogisticRegression (penalty='12', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='warn', max_iter=100, multi_class='warn', verbose=0, warm_start=False, n_jobs=None) [source]

Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross- entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag' and 'newton-cg' solvers.)

Try it on the Fruit Dataset

A bucket of fruits

The fruit dataset was created by Dr. Iain Murray at the University of Edinburgh. He bought a few dozen oranges, lemons and apples, and recorded their features in a table.

The fruit dataset (a large table) {1:apple, 2:mandarin, 3:orange, 4:lemon}, Each row contains the information of a fruit sample/instance

	fruit label	fruit_name	subtype	mass (g)	width (cm)	height (cm)	color_score
	1	apple	granny_smith	192	8.4	7.3	0.55
1	4	lemon	spanish_belsan	194	7.2	10.3	0.70

The flowchart of a classification study

 Classification is a subcategory of supervised learning where the goal is to predict the class labels of new samples.

see demo in MLR_Classifier.ipynb