

Università Ca' Foscari di Venezia Federica Giummolè

Possibilità

Probabilità e Statistica A.A. 2014/2015

Contare le possibilità

Principio fondamentale del conteggio: se una scelta può essere fatta in m_1 modi diversi e un'altra scelta può essere fatta in m_2 modi diversi, allora esistono in totale $m_1 \times m_2$ possibilità di scelta.

• Esempio: 10 cavalieri e 12 dame partecipano a un ballo. Ci sono $10 \times 12 = 120$ possibili coppie danzanti.

Principio fondamentale del conteggio generalizzato: se ciascuna di r scelte successive può essere fatta in m_i modi rispettivamente, allora esistono in totale

$$\prod_{i=1}^r m_i = m_1 \times \ldots \times m_r$$

possibilità di scelta.

• Esempio: una commissione parlamentare deve essere composta da un membro del partito A, che conta 10 rappresentanti, da un membro del partito B, che conta 15 rappresentanti, e da un membro del partito C, che conta 2 rappresentanti. Ci sono in totale $10 \times 15 \times 2 = 300$ possibili commissioni parlamentari.

Disposizioni

Consideriamo un insieme di n elementi. Una disposizione di r di essi è una scelta ordinata di r elementi tra quegli n. Si distinguono le disposizioni con ripetizione da quelle semplici (senza ripetizione), a seconda o meno che uno stesso elemento possa essere scelto più di una volta.

Le disposizioni con ripetizione di n elementi presi r alla volta sono in numero di

$$\prod_{i=1}^{r} n = n^r,$$

per il principio fondamentale del conteggio generalizzato.

- Esempio: le parole lunghe due lettere che si possono comporre con le lettere I, L, A sono $3^2 = 9$: II, IL, IA, LI, LL, LA, AI, AL, AA.
- Esempio: un bit può assumere i valori 0 o 1. Un byte è una fila di otto bit. Quanti byte ci sono?

Disposizioni semplici

Le disposizioni semplici di n elementi presi r alla volta sono in numero di

$$n \times (n-1) \ldots \times (n-r+1),$$

per il principio fondamentale del conteggio generalizzato.

- Esempio: le parole di due lettere diverse che si possono comporre con le lettere I, L, A sono $3 \times 2 = 6$: IL, IA, LI, LA, AI, AL.
- Esempio: di 10 concorrenti in una gara ciclistica vengono classificati solo i primi 3 arrivati. Quante possibili classifiche ci sono?

Campionamento da un'urna

Il campionamento casuale da un'urna è una estrazione di palle da un'urna. Può essere fatto con o senza reintroduzione.

Per casuale si intende dire che prima di ogni estrazione l'urna viene 'mescolata' appropriatamente per essere riportata a una condizione di irriconoscibilità e di dislocazione casuale delle palle. Un'operazione del genere viene fatta per le estrazioni del lotto.

La reintroduzione fa invece riferimento al fatto di riimmettere nell'urna ciascuna palla subito dopo averla estratta e averne registrate le caratteristiche di interesse, per esempio il suo numero o il suo colore.

Dunque:

- ullet se un'urna contiene n palle distinguibili (per esempio numerate da 1 a n) e r palle vengono estratte con reintroduzione, le estrazioni possibili sono in numero di n^r .
- ullet se un'urna contiene n palle distinguibili e r palle vengono estratte senza reintroduzione, le estrazioni possibili sono in numero di

$$n \times (n-1) \ldots \times (n-r+1)$$

4

Permutazioni

Le disposizioni semplici di n elementi presi n alla volta si chiamano anche permutazioni perché rappresentano tutti i modi in cui n elementi possono essere messi in fila. Esse sono in numero di

$$n \times (n-1) \dots \times 2 \times 1$$

una quantità per cui esiste il simbolo speciale n! che si legge n fattoriale.

• Esempio: le permutazioni delle lettere I, L, A sono $3 \times 2 \times 1 = 3! = 6$:

- Esempio: le possibili file che si possono fare con 10 bambini dell'asilo sono 10! = ?
- Esempio (più difficile): supponiamo di fare due file, maschietti a destra e femminucce a sinistra. Ci sono 6! possibili file di maschietti e 4! file di femminucce possibili. In tutto ci sono quindi $6! \times 4! = 17280$ possibili file, per un'altra applicazione del principio del conteggio.

Combinazioni

Quanti sono i sottoinsiemi di 3 lettere dell'insieme di 5 lettere $\{A,B,C,D,E\}$? Finora sappiamo che ci sono $5\times4\times3=60$ parole di tre lettere diverse. Ma, per esempio, le parole ABC e BCA rappresentano lo stesso sottoinsieme, perché nella definizione di sottoinsieme l'ordine non conta. Ci sono 3!=6 parole equivalenti per ogni scelta, e ci sono quindi 60/6=10 sottoinsiemi cercati. Essi sono ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE.

In generale, un sottoinsieme di ampiezza r da n elementi si chiama combinazione di n elementi r alla volta. Il numero di combinazioni di n elementi r alla volta è

$$\frac{n \times (n-1) \dots (n-r+1)}{r!} =: \binom{n}{r}$$

e si chiama anche coefficiente binomiale n su r.

 \bullet Esempio: la professoressa Tremendi interroga ogni Lunedí 10 studenti da una classe di 25. Esistono $\binom{25}{10}$ possibilità.

Binomio di Newton

Il nome coefficiente binomiale deriva dalla seguente espressione:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k,$$

detta formula del binomio di Newton.

• Esempio:

$$(a+b)^{2} = {2 \choose 0}a^{2}b^{0} + {2 \choose 1}ab + {2 \choose 2}a^{0}b^{2}$$
$$= a^{2} + 2ab + b^{2}.$$

Fenomeni aleatori

La logica del certo è la logica della teoria degli insiemi e del calcolo su proposizioni (o eventi) che possono assumere il valore di vero o falso.

Il calcolo delle probabilità è invece la logica dell'incerto.

La probabilità si usa per ragionare sui possibili risultati di un *fenomeno* (o esperimento) aleatorio, del quale cioè non si può prevedere con certezza l'esito.

Aleatorio = opposto di deterministico.

Esempi di fenomeni aleatori

- 1. Il lancio di un dado.
- 2. Il lancio di una stessa moneta 4 volte.
- 3. La classificazione di 10 pezzi prodotti sequenzialmente da una macchina in conformi o non conformi, secondo che siano o non siano entro le specifiche di progetto.
- 4. L'estrazione di una mano di poker, cioè un insieme di cinque carte, da un mazzo di 52.
- 5. L'osservazione del tempo di guasto [min] di un circuito elettrico formato da tre resistenze in serie.
- 6. La registrazione giornaliera dei livelli massimi di polveri totali [mcg/mc] nell'aria alla centralina del Parco di San Giuliano nel Gennaio 2013.

Spazio campionario, risultati, eventi

 $\Omega=$ spazio campionario = insieme dei possibili risultati di un fenomeno aleatorio. Un generico risultato si può indicare con $\omega\in\Omega$.

Di un evento, si può dire se sia vero o falso una volta che il fenomeno aleatorio di interesse è stato osservato.

Formalmente, evento = sottoinsieme $A \subset \Omega$.

I possibili risultati $\{\omega\}$, visti come singoletti, cioè insiemi contenenti un solo elemento, sono anch'essi eventi, detti *eventi elementari*.

 Ω viene anche chiamato l'*evento certo*, perché sicuramente si verificherà.

Esempi di spazi campionari

1.
$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

- 2. $\Omega =$ le sedici possibili sequenze di quattro dei simboli T e C, dove T indica 'testa' e C indica 'croce' (un possibile risultato è per esempio $\omega = TCCC$, cioè una testa seguita da tre croci).
- 3. $\Omega = \text{le } 2^{10}$ possibili sequenze di dieci dei simboli C e N, dove C indica 'conforme' e N indica 'non conforme' (un possibile risultato è per esempio $\omega = CCCNCCCNCC$).
- 4. $\Omega = i \binom{52}{5}$ possibili sottoinsiemi delle 52 carte (uno dei quali è per esempio il poker d'assi più il tre di picche).
- 5. $\Omega = \mathcal{R}^+ := [0, \infty)$, cioè i numeri non negativi, visto che il tempo di guasto è un numero non negativo.
- 6. Ω = tutte le possibili sequenze di 31 numeri non negativi (la maggior parte contenuti tra 10 e 350).

Esempi di eventi

- 1. Il dado dà un punteggio superiore a quattro: $A = \{5, 6\}$.
- 2. Otteniamo almeno tre teste sui quattro lanci:

$$A = \{TTTC, TTCT, TCTT, CTTT, TTTT\}.$$

- 3. Tutti i pezzi sono conformi:
- $A = \{CCCCCCCCCC\}$ (questo è anche un singoletto).
- 4. Si ottiene un poker: l'evento di interesse è dato da tutte le possibili mani contenenti un poker, che sono in numero di 13x48 perché 13 sono i possibili poker e 48 sono, per ogni dato poker, i modi di scegliere la quinta carta.
- 5. Il circuito ha una durata di meno di 50 ore : A = [0,50).
- 6. In nessun giorno si è superato il limite di 300 [mcg/mc]:

$$A = \{(x_1, \dots, x_{31}) : 0 \le x_i \le 300, i = 1, \dots, 31\}.$$

Operazioni logiche sugli eventi

La negazione o complemento di un evento A, indicata con \bar{A} , è l'evento che è vero quando A è falso ed è falso quando A è vero.

La negazione dell'evento certo è l'evento impossibile: $\bar{\Omega} = \emptyset$ (evento impossibile = insieme vuoto).

L'*intersezione* di due eventi $A \in B$, indicata con $A \cap B$, è l'evento che è vero quando sia A che B sono veri e altrimenti è falso.

L'unione di due eventi A e B, indicata con $A \cup B$, è l'evento che è vero quando o A oppure B oppure entrambi sono veri, altrimenti falso.

L'evento A implica l'evento B, in simboli $A \subset B$, se il verificarsi di A implica il verificarsi di B.

Partizioni

Due eventi A e B si dicono *incompatibili*, o *disgiunti*, se non è possibile che siano entrambi veri, cioè se $A \cap B = \emptyset$.

Una famiglia di eventi si dice una partizione dell'evento certo se ogni coppia di insiemi della famiglia ha intersezione vuota e l'unione di tutti i componenti della famiglia è Ω .

Partizione numerabile C_1, C_2, \ldots :

$$C_i \cap C_j = \emptyset \quad \forall i, j$$

$$\bigcup_{i=1}^{\infty} C_i = \Omega,$$

Una partizione finita C_1, \ldots, C_n , si può pensare come a una 'piastrellatura' di Ω come illustrato in figura.

Un qualsiasi evento A si può scrivere come unione delle sue intersezioni con gli elementi di una partizione:

$$A = \bigcup_{i=1}^{\infty} (A \cap C_i)$$

Diagrammi di Venn

Esempio

Fenomeno aleatorio: lancio di un dado.

Eventi:

$$A = \{5,6\} = il risultato del lancio è superiore a 4 $B = \{2,4,6\} = il risultato del lancio è pari.$$$

Allora

$$A \cap B = \{6\} =$$
 il risultato del lancio è pari e superiore a 4 $A \cup B = \{2,4,5,6\} =$ il risultato del lancio è pari oppure superiore a 4

Partizione dei numeri divisibili per 3 e non:

$$C_1 = \{3, 6\}$$

 $C_2 = \{1, 2, 4, 5\}$

Abbiamo quindi

$$A = (A \cap C_1) \cup (A \cap C_2) = \{6\} \cup \{5\}$$

Università Ca' Foscari di Venezia Federica Giummolè

Probabilità

Probabilità e Statistica A.A. 2014/2015

Probabilità

La probabilità è una funzione degli eventi di uno spazio campionario, a valori nell'intervallo [0,1], definita tramite i seguenti assiomi:

1.
$$0 \le P(A) \le 1$$

2.
$$P(\Omega) = 1$$

3. Se A_1, A_2, \ldots sono una sequenza di eventi incompatibili, cioè se $A_i \cap A_j = \emptyset \quad \forall i \neq j$, allora

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$$

Commenti

La probabilità dell'evento A, P(A), è un numero tra 0 e 1 che indica il grado di fiducia del ricercatore nell'avverarsi dell'evento A. Più P(A) è vicina a 1, più ci aspettiamo che l'evento si avveri. Una volta osservato il fenomeno aleatorio, sappiamo se A si è verificato o meno, e la sua probabilità non serve più.

Si può pensare alla probabilità come a una massa unitaria (in virtú della condizione di normalizzazione 2) da spargere sullo spazio campionario.

La massa che va a finire su eventi disgiunti è la somma delle masse sui singoli eventi.

Proprietà della probabilità

Probabilità del complemento: dato un evento A,

$$P(\bar{A}) = 1 - P(A).$$

Probabilità dell'evento impossibile:

$$P(\emptyset) = P(\bar{\Omega}) = 1 - P(\Omega) = 0.$$

Probabilità dell'unione: dati due eventi A e B,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Probabilità di una partizione: se C_1, C_2, \ldots sono una partizione, allora

$$P(\bigcup_{i=1}^{\infty} C_i) = P(\Omega) = 1.$$

Spazi campionari finiti

Se lo spazio campionario costituisce un insieme finito, $\Omega = \{\omega_1, \dots, \omega_n\}$, allora un'assegnazione di probabilità è data da n valori p_1, \dots, p_n tali che:

1.
$$p_i \in [0,1], \forall i = 1,\ldots,n;$$

2.
$$\sum_{i=1}^{n} p_i = 1$$
;

3.
$$p_i = P(\{\omega_i\}), \forall i = 1, ..., n.$$

Dato che ogni evento $A\subset\Omega$ si può scrivere come unione (finita) degli eventi elementari (disgiunti) che lo costituiscono,

$$A = \{\omega_{i_1}, \dots, \omega_{i_r}\} = \bigcup_{k=1}^r \{\omega_{i_k}\},$$

si ha che

$$P(A) = \sum_{k=1}^{r} P(\{\omega_{i_k}\}) = \sum_{k=1}^{r} p_{i_k}.$$

Eventi elementari equiprobabili

In particolare, se possiamo supporre (per ragioni di simmetria) che tutti gli eventi elementari abbiano la stessa probabilità, allora

$$p_i = P(\lbrace \omega_i \rbrace) = \frac{1}{n}, \quad \forall i = 1, \dots, n.$$

Per ogni evento $A=\{\omega_{i_1},\ldots,\omega_{i_r}\}$ si può dunque scrivere

$$P(A) = \frac{r}{n} = \frac{\#A}{\#\Omega} = \frac{\text{numero casi favorevoli}}{\text{numero casi possibili}}.$$

Attenzione! Questa formula vale solo se gli eventi elementari sono *equiprobabili*.

• Esempio: Qual è la probabilità che il risultato del lancio di un dado equilibrato sia un numero divisibile per 3? Dato che il dado non è truccato, si può assumere che ognuno dei 6 possibili risultati abbia la stessa probabilità pari a 1/6. I casi favorevoli al nostro evento sono 2 ($\{3\}$ e $\{6\}$) mentre quelli possibili sono 6. Il risultato è dunque 2/6 = 1/3. Se il dado fosse truccato questo procedimento di calcolo non sarebbe corretto.

Esempio

Si consideri un'urna composta da quattro palle bianche numerate da 1 a 4 e tre palle nere numerate da 1 a 3. Si campioni casualmente una palla dall'urna.

È ragionevole assumere che ciascuna palla abbia probabilità 1/7 di essere estratta.

Consideriamo gli eventi

```
B= "viene estratta una palla bianca"; N= "viene estratta una palla nera" (nota: N=\bar{B}); C_i= "viene estratto il numero i", i=1,2,3,4; D= "viene estratto un numero dispari".
```

Probabilità nell'esempio

$$P(B) = 4/7$$
 $P(N) = 1 - P(B) = 3/7$
 $P(C_i) = 2/7, i = 1, 2, 3$
 $P(C_4) = 1/7,$
 $P(D) = 4/7$
 $P(B \cap D) = 2/7$
 $P(B \cup D) = P(B) + P(D) - P(B \cap D) = 6/7$
 $P(B \cap C_4) = P(C_4) = 1/7 (C_4 \text{ implica } B)$
 $P(B \cap C_2) = 1/7 (C_2 \text{ non implica } B)$

Popolazioni e sottopopolazioni

Consideriamo una popolazione con N elementi suddivisi, a seconda che possiedano o meno una certa caratteristica, in due sottopopolazioni rispettivamente di K e N-K elementi.

Qual è la probabilità che su n elementi estratti casualmente esattamente k abbiano quella caratteristica (e i rimanenti n-k no)?

 $\Omega = \{(x_1, \ldots, x_n), x_i \in \text{ popolazione } \forall i\},$

dove ogni n-upla ha la stessa probabilità di essere estratta (estrazioni casuali).

La cardinalità di Ω cambia a seconda che le estrazioni avvengano con o senza reinserimento.

 $A_k = \text{``}k$ elementi su n hanno la caratteristica richiesta''.

Anche la cardinalità di ${\cal A}_k$ dipende dalla modalità di campionamento.

...continua

• Con reinserimento

$$\#\Omega = N^n$$

$$\#A_k = \binom{n}{k} K^k (N - K)^{n-k}$$

$$\Rightarrow P(A_k) = \binom{n}{k} \left(\frac{K}{N}\right)^k \left(\frac{N - K}{N}\right)^{n-k}$$

• Senza reinserimento (n < N)

$$\#\Omega = N(N-1)(N-2)\dots(N-n+1)$$

$$\#A_k = \binom{n}{k}K(K-1)\dots(K-k+1)$$

$$(N-K)\dots(N-K-(n-k)+1)$$

$$\Rightarrow P(A_k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$$

Università Ca' Foscari di Venezia Federica Giummolè

Probabilità condizionata

Probabilità e Statistica A.A. 2014/2015

Definizione

Sia B un evento di probabilità positiva.

La probabilità condizionata dell'evento A dato l'evento B è

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0.$$

Altre espressioni equivalenti: P(A|B) è la probabilità subordinata (a volte anche condizionale) di A subordinatamente a B. Da notare l'uso della sbarra verticale |.

P(A|B) rappresenta la probabilità di A valutata in presenza dell'informazione aggiuntiva che B si verifichi.

Intuitivamente, si restringe il campo delle possibilità non alla totalità dei possibili risultati Ω ma ad un suo sottoinsieme proprio $B \subset \Omega$.

Esempio (urna)

Si consideri l'urna dell'esempio al lucido 22.

Si valutino le probabilità condizionate di estrarre 1 dato che la palla è bianca, di estrarre 1 dato che la palla è nera e di estrarre una palla nera dato che si estrae 1.

Formalmente:

$$P(C_1|B) = \frac{P(C_1 \cap B)}{P(B)} = 1/4$$

$$P(C_1|N) = \frac{P(C_1 \cap N)}{P(N)} = 1/3$$

$$P(N|C_1) = \frac{P(N \cap C_1)}{P(C_1)} = 1/2.$$

Nota: $P(N|C_1)$ e $P(C_1|N)$ significano cose molto diverse e non sono in relazione diretta. Invece, per esempio, $P(N|C_1) = 1 - P(B|C_1) = 1/2$, perché le probabilità condizionate allo stesso evento obbediscono alle leggi della probabilità (fare per esercizio!).

La formula delle probabilità composte

La definizione di probabilità condizionata si può anche usare come formula pratica per la fattorizzazione della probabilità di un'intersezione:

$$P(A \cap B) = P(A|B) P(B),$$

sempre che P(A|B) sia ben definita.

Questa formula si generalizza ad un qualsiasi numero di eventi A_1, \ldots, A_n e viene anche chiamata la formula delle probabilità composte:

$$P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_n | A_1 \cap \dots \cap A_{n-1}) \dots$$

... $P(A_3 | A_1 \cap A_2) P(A_2 | A_1) P(A_1).$

Esempio (urna)

Si consideri ora l'esperimento che consiste nell'estrazione di 3 palline senza reinserimento dalla solita urna. Qual è la probabilità che le prime due siano bianche e la terza nera?

Siano

 $B_i =$ "pallina bianca all'i-esima estrazione"

 N_i = "pallina nera all'i-esima estrazione"

Si ha che (probabilità composte)

$$P(B_1 \cap B_2 \cap N_3) = P(N_3|B_1 \cap B_2) P(B_2|B_1) P(B_1)$$
$$= \frac{3}{5} \frac{3}{6} \frac{4}{7} = \frac{6}{35}.$$

Qual è la probabilità che siano tutte tre nere?

Eventi indipendenti

Nel caso particolare in cui

$$P(A|B) = P(A)$$

si dice che A e B sono *indipendenti*.

Si ha allora

$$P(A \cap B) = P(A) P(B)$$

che può anche essere presa come definizione di eventi indipendenti.

La definizione si estende così: gli eventi A_1, \ldots, A_n si dicono indipendenti se, comunque si prendono k>1 di essi, si ha

$$P(A_{i_1} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) \dots P(A_{i_k}).$$

• Esempio (urna): se le estrazioni dell'esempio al lucido precedente si effettuano con reinserimento, allora i tre eventi B_1 , B_2 e N_3 sono indipendenti e si ha:

$$P(B_1 \cap B_2 \cap N_3) = P(B_1) P(B_2) P(N_3) = \frac{4}{7} \frac{4}{7} \frac{3}{7}.$$

Nota: eventi indipendenti e eventi disgiunti sono cose molto diverse. Due eventi sono disgiunti o meno a prescindere dalle loro probabilità.

Esempio

Si consideri l'esperimento di lanciare un dado equo due volte.

Si definiscano i seguenti eventi:

A = "la somma dei dadi è 6"

B= "la somma dei dadi è 7"

C = "il primo dado dà 4"

Si ha

$$P(A) = \frac{5}{36}$$
, $P(B) = \frac{1}{6}$, $P(C) = \frac{1}{6}$.

Poiché

$$P(A \cap C) = P((4,2)) = \frac{1}{36}$$

allora A e C non sono indipendenti.

 $B \in C$ sono invece indipendenti, ma non disgiunti. Infatti,

$$P(B \cap C) = \frac{1}{36} = P(B) P(C).$$

Infine, A e B sono disgiunti ma non indipendenti:

$$P(A \cap B) = P(\emptyset) = 0.$$

Popolazioni e sottopopolazioni (bis)

Alla luce di quanto detto, possiamo reinterpretare i risultati al lucido 25.

Indichiamo con

 $B_i=$ "l'i-esimo elemento estratto ha la proprietà richiesta"

• Con reinserimento: i risultati delle estrazioni successive sono indipendenti

$$\Rightarrow P(B_i) = \frac{K}{N} \quad P(\bar{B}_i) = \frac{N - K}{N} \quad \forall i.$$

$$P(A_k) = \binom{n}{k} P(B_1 \cap \dots \cap B_k \cap \bar{B}_{k+1} \cap \dots \cap \bar{B}_n)$$

$$= \binom{n}{k} P(B_1) \dots P(B_k) P(\bar{B}_{k+1}) \dots P(\bar{B}_n)$$

$$= \binom{n}{k} \left(\frac{K}{N}\right)^k \left(\frac{N - K}{N}\right)^{n - k}$$

...continua

Senza reinserimento: i risultati delle estrazioni successive NON sono indipendenti

$$P(A_k) = \binom{n}{k} P(B_1 \cap \dots \cap B_k \cap \overline{B}_{k+1} \cap \dots \cap \overline{B}_n)$$

$$= \binom{n}{k} P(B_1) \dots P(B_k | B_1 \cap \dots \cap B_{k-1})$$

$$P(\overline{B}_{k+1} | B_1 \cap \dots \cap B_k) \dots P(\overline{B}_n | B_1 \cap \dots \cap \overline{B}_{n-1})$$

$$= \binom{n}{k} \frac{K}{N} \frac{K-1}{N-1} \dots \frac{K-(k-1)}{N-(k-1)}$$

$$\frac{N-K}{N-k} \dots \frac{N-K-(n-k-1)}{N-(n-1)}$$

Test diagnostici

La frazione dei soggetti affetti da una certa malattia (per esempio, la sieropositività HIV oppure la tubercolosi) in una popolazione si chiama *prevalenza*.

Si consideri un test diagnostico per la malattia.

La *sensitività* di un test è la probabilità che il test, somministrato a un malato, sia positivo.

La *specificità* di un test è la probabilità che il test, somministrato a un non malato, sia negativo.

Situazione ideale: sensitività = specificità = 1. La situazione ideale è spesso non raggiungibile, e i test reali sono imperfetti, cioè con sensitività < 1 e specificità < 1.

Falsi positivi e falsi negativi

Si immagini di somministrare un test diagnostico non perfetto a una persona estratta a caso dalla popolazione e si considerino gli eventi:

$$M=$$
 la persona estratta è malata $+=$ il test dà risultato positivo $-=$ il test dà risultato negativo $\bar{M}\cap +=$ il test dà un falso positivo $M\cap -=$ il test dà un falso negativo

Si ha allora

$$P(M) =$$
 prevalenza $P(+|M) =$ sensitività $P(-|\bar{M}) =$ specificità

Probabilità di un falso positivo:

$$P(\bar{M} \cap +) = P(\bar{M}) P(+|\bar{M})$$

= $(1 - \text{prevalenza}) \times (1 - \text{specificità}).$

Probabilità di un falso negativo:

$$P(M \cap -) = P(M) P(-|M)$$

= prevalenza × (1 – sensitività).

Esempio

Si studi un nuovo test per l'HIV.

Sia

prevalenza =
$$P(HIV) = 0.001$$

la proporzione di HIV nella popolazione studiata.

Sia inoltre:

$$P(+|HIV) = .95$$
 sensitività

$$P(-|\overline{HIV}) = .98$$
 specificità

La probabilità di falso positivo è

$$P(\overline{HIV} \cap +) = P(\overline{HIV}) P(+|\overline{HIV})$$

= $(1 - 0.001)(1 - 0.98) = 0.01998$.

La probabilità di falso negativo è

$$P(HIV \cap -) = P(HIV) P(-|HIV)$$

= 0.001(1 - 0.95) = 0.00005.

La legge della probabilità totale

Se C_1, C_2, \ldots sono una partizione dell'evento certo, la probabilità di un qualsiasi evento A può essere scritta come

$$P(A) = \sum_{i} P(A \cap C_i) = \sum_{i} P(C_i) P(A|C_i)$$

che si dice *legge della probabilità totale* o formula della partizione.

La prima uguaglianza viene dal fatto che

$$A = \bigcup_{i} (A \cap C_i),$$

che sono eventi a due a due disgiunti. La seconda uguaglianza segue dalla definizione di probabilità condizionata, sempre che $P(C_i) > 0$, $\forall i = 1, 2, ...$

Esempio HIV

Nell'esempio di prima, HIV e \overline{HIV} costituiscono una semplice partizione formata da due 'piastrelle'.

Calcoliamo la probabilità che il test, somministrato ad una persona campionata a caso dalla popolazione, sia positivo:

$$P(+) = P(+|HIV) P(HIV) + P(+|\overline{HIV}) P(\overline{HIV})$$

$$= 0.95 \times 0.001 + (1 - 0.98) \times (1 - 0.001)$$

$$= 0.02093$$

cioè in pratica avremo, a lungo andare, il 2 per cento di positivi, siano essi veri positivi o falsi positivi.

La formula di Bayes (1702-1761)

Sia data la partizione C_1, C_2, \ldots e tutti i suoi elementi abbiano probabilità positiva. Sia A un ulteriore evento, anch'esso con probabilità positiva.

Fissiamo l'attenzione su uno specifico elemento C_m della partizione. Abbiamo allora

$$P(C_m|A) = \frac{P(C_m \cap A)}{P(A)}$$

(definizione di probabilità condizionata)

$$= \frac{\mathsf{P}(A|C_m)\,\mathsf{P}(C_m)}{\sum_i \mathsf{P}(A|C_i)\,\mathsf{P}(C_i)}$$

(legge della probabilità totale).

Esempio del test diagnostico

Perchè dovremmo essere interessati alla probabilità condizionata di un singolo elemento C_m ?

Riconsideriamo l'esempio HIV. È di primario interesse l'evento che una persona risultata positiva sia effettivamente malata.

Usando i numeri di prima:

$$P(HIV|+) =$$

$$= \frac{P(HIV) P(+|HIV)}{P(HIV) P(+|HIV) + P(\overline{HIV}) P(+|\overline{HIV})}$$

$$=?$$

Nel campo della diagnostica, P(malattia|+) viene chiamata a volte valore predittivo positivo.