Courbes polynomiales : Bézier / B-splines

Nicolas SZAFRAN

2012-2013

Bézier - base de Bernstein

Base de Bernstein de degré 5

Bézier - quelques propriétés géométriques

Subdivision d'un polygone de contrôle suivant $t \in [0,1]$

 P_0

 P_1

 P_2

 P_{n-1}

 $P_{\rm n}$

$$P_0 : P_{0,0}$$

$$P_1 : P_{0,1}$$

$$P_2 : P_{0,2}$$

$$P_{n-1}: P_{0,n-1}$$

$$P_{\rm n} : P_{0,{\rm n}}$$

$$P_0: P_{0,0} \longrightarrow P_{1,0}$$
 $P_1: P_{0,1} \longrightarrow P_{1,0}$
 $P_2: P_{0,2} \longrightarrow P_{n-1}: P_{0,n-1}$

$$P_{\rm n}:P_{0,\rm n}$$

$$P_{0}: P_{0,0}$$
 $P_{1}: P_{0,1}$
 $P_{1}: P_{0,1}$
 $P_{1,0}$
 $P_{1,0}$
 $P_{1,1}$
 $P_{1,1}$
 $P_{1,1}$
 $P_{1,1}$
 $P_{1,1}$
 $P_{1,1}$
 $P_{1,1}$
 $P_{1,1}$
 $P_{1,1}$
 $P_{1,1}$

$$P_{0}: P_{0,0}$$
 $P_{1,0}$
 $P_{1}: P_{0,1}$
 $P_{1,0}$
 $P_{1,1}$
 $P_{2}: P_{0,2}$
 $P_{1,1}$
 $P_{1,1}$
 $P_{1,1}$
 $P_{1,1}$
 $P_{1,1}$
 $P_{1,1}$
 $P_{1,1}$

$$\begin{array}{c} P_{0} : P_{0,0} & & & \\ P_{1} : P_{0,1} & & & \\ P_{1,0} & & & \\ P_{2,0} & & & \\ P_{2} : P_{0,2} & & & \\ P_{1,1} & & & \\ P_{n-1} : P_{0,n-1} & & & \\ P_{n-1} : P_{0,n-1} & & & \\ P_{1,n-1} & & & \\ P_{2,n-2} & & \\ P_{n} : P_{0,n} & & & \\ \end{array}$$

$$\begin{array}{c} P_{0} : P_{0,0} & & \\ P_{1} : P_{0,1} & & \\ P_{1,0} & & \\ P_{2,0} & & \\ P_{2} : P_{0,2} & & \\ P_{1,1} & & \\ P_{2,0} & & \\ P_{n-1,0} & & \\ P_{n-1,0} & & \\ P_{n-1,1} & &$$

$$\begin{array}{c} P_{0} : P_{0,0} & & & \\ P_{1} : P_{0,1} & & & \\ P_{1,0} & & & \\ P_{2} : P_{0,2} & & \\ P_{1,1} & & & \\ P_{1,1} & & & \\ P_{2,0} & & \\ P_{n-1,0} & & \\ P_{n-1,0} & & \\ P_{n-1,1} & & \\ P_{n,0} & &$$

Polygone initial et courbe

Bézier - élévation de degré

$$\overline{P}_i = \frac{i}{n+1} P_{i-1} + \frac{n+1-i}{n+1} P_i \text{ pour } 0 \le i \le n+1$$
Courbe $[P_0, P_1, \dots, P_n] = \text{Courbe } [\overline{P}_0, \overline{P}_1, \dots, \overline{P}_{n+1}]$

Instabilité des polynômes de degré élevé

Courbe de Bézier de degré 10 interpolant un tracé de 11 points

Instabilité des polynômes de degré élevé

Tracé de la fonction $t \mapsto x(t)$

Instabilité des polynômes de degré élevé

Tracé de la fonction $t \mapsto y(t)$

Difficulté de modéliser des formes complexes

Instabilité des polynômes de degré élevé

Courbe de Bézier de degré 10 interpolant un tracé de 11 points

Instabilité des polynômes de degré élevé

Tracé de la fonction $t \mapsto x(t)$

Instabilité des polynômes de degré élevé

Tracé de la fonction $t \mapsto y(t)$

ightarrow utilisation de courbes composites (courbes polynomiales par morceaux)

ightarrow utilisation de courbes composites (courbes polynomiales par morceaux)

Courbe composée de plusieurs courbes de Bézier de degré 3

Exemple des polices de caractères PostScript

Utilisation de primitives géométriques

► Segment de droite

Exemple des polices de caractères PostScript

- Segment de droite
- ► Arc de cercle

Exemple des polices de caractères PostScript

- Segment de droite
- Arc de cercle
- Bézier cubique

Exemple des polices de caractères PostScript

- Segment de droite
- ► Arc de cercle
- Bézier cubique

Exemple des polices de caractères PostScript

Exemple des polices de caractères PostScript

Décomposition d'une forme complexe en une suite de courbes simples délimitées par des données de type Hermite.

Exemple des polices de caractères PostScript

Décomposition d'une forme complexe en une suite de courbes simples délimitées par des données de type Hermite.

Exemple des polices de caractères PostScript

Décomposition d'une forme complexe en une suite de courbes simples délimitées par des données de type Hermite.

Exemple des polices de caractères PostScript

Segment de droite

Exemple des polices de caractères PostScript

Segment de droite : configuration unique

Exemple des polices de caractères PostScript

Segment de droite : modèlisation par une Bézier cubique

Exemple des polices de caractères PostScript

Arc de cercle

Exemple des polices de caractères PostScript

Arc de cercle : configuration unique

Exemple des polices de caractères PostScript

Arc de cercle : modèlisation par une Bézier cubique (rationnelle)

Exemple des polices de caractères PostScript

Bézier cubique

Exemple des polices de caractères PostScript

Bézier cubique : configurations multiples

Exemple des polices de caractères PostScript

Bézier cubique : configurations multiples

Une autre approche

Imposer un raccord spécifique entre les différentes courbes

Raccord géométrique de courbes de Bézier (cas C^2)

Exemple de 3 courbes de Bézier cubiques définies sur [a, b] et [b, c]

Raccord géométrique de courbes de Bézier

Exemple de 3 courbes de Bézier cubiques définies sur [0,1], [1,2] et [2,3] et avec un raccordement C^2 entre elles

Structure Bézier composite

Raccord géométrique de courbes de Bézier

Exemple de 3 courbes de Bézier cubiques définies sur [0,1], [1,2] et [2,3] et avec un raccordement C^2 entre elles

Structure Bézier composite

Raccord géométrique de courbes de Bézier

Exemple de 3 courbes de Bézier cubiques définies sur [0,1], [1,2] et [2,3] et avec un raccordement C^2 entre elles

Structure de De Boor (B-spline)

Ordre k = 1 - Degré d = 0 - Continuité C^{-1}

Ordre k=2 - Degré d=1 - Continuité C^0

Ordre k = 3 - Degré d = 2 - Continuité C^1

Ordre k = 4 - Degré d = 3 - Continuité C^2

Ordre k = 5 - Degré d = 4 - Continuité C^3

Ordre k = 1 - Degré d = 0 - Continuité C^{-1}

Ordre k=2 - Degré d=1 - Continuité C^0

Ordre k = 3 - Degré d = 2 - Continuité C^1

Ordre k = 4 - Degré d = 3 - Continuité C^2

Ordre k = 5 - Degré d = 4 - Continuité C^3

Ordre k = 1 - Degré d = 0 - Continuité C^{-1}

Ordre k=2 - Degré d=1 - Continuité C^0

Ordre k = 3 - Degré d = 2 - Continuité C^1

Ordre k = 4 - Degré d = 3 - Continuité C^2

Ordre k = 5 - Degré d = 4 - Continuité C^3

Ordre k = 1 - Degré d = 0 - Continuité C^{-1}

Ordre k=2 - Degré d=1 - Continuité C^0

Ordre k = 3 - Degré d = 2 - Continuité C^1

Ordre k = 4 - Degré d = 3 - Continuité C^2

Ordre k = 5 - Degré d = 4 - Continuité C^3

Points $A_{1,j}$, $1 \le j \le 4$

Points $A_{2,j}$, $1 \le j \le 3$

Points $A_{3,j}$, $1 \le j \le 2$

Point final A_{4.1}

Polygone et noeuds initiaux et courbe correspondante

Polygone et noeuds après 1 subdivision

Polygone et noeuds après 2 subdivisions

Polygone et noeuds après 3 subdivisions

Polygone et noeuds après 4 subdivisions

Polygone et noeuds après 5 subdivisions

Noeud τ_i de multiplicité 1 $\cdots < \tau_{i-1} < \tau_i < \tau_{i+1} < \cdots$

Noeud τ_i de multiplicité 2 $\cdots < \tau_{i-1} < \tau_i = \tau_{i+1} < \tau_{i+2} < \cdots$

Noeud τ_i de multiplicité 3 $\cdots < \tau_{i-1} < \tau_i = \tau_{i+1} = \tau_{i+2} < \tau_{i+3} < \cdots$

Noeud τ_i de multiplicité 4 $\cdots < \tau_{i-1} < \tau_i = \tau_{i+1} = \tau_{i+2} = \tau_{i+3} < \tau_{i+4} < \cdots$

Concaténation de B-splines

Courbe C_1

Concaténation de B-splines

Courbe C_2

Concaténation de B-splines

Courbe $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2$