AULA 12 – RADIAÇÃO TÉRMICA

- IMPORTÂNCIA E CARACTERÍSTICAS
- EMISSORES DIFUSOS
- IRRADIAÇÃO
- RADIOSIDADE
- CORPO NEGRO
- LEI E DISTRIBUIÇÃO DE PLANCK
- A LEI DE STEFAN-BOLTZMANN

IMPORTÂNCIA E PRINCIPAIS CARACTERÍSTICAS DA RADIAÇÃO TÉRMICA

ernando Neto 04/01/2023

IMPORTÂNCIA DA RADIAÇÃO

- A transferência de calor por radiação é extremamente importante
 - Contrariamente ao que sucede na convecção e na condução, a transferência de calor é proporcional a T⁴ (muito importante em processos que envolvam temperaturas elevadas)
 - Calor é transferido por radiação em inúmeros processos (fornalhas, câmaras de combustão, aquecimento de fluidos em caldeiras, arrefecimento noturno de edifícios, aproveitamento da energia solar, etc.)
 - Ocorre sem que haja necessidade de intervenção de um sólido ou de um fluído de transporte

5

CARATERÍSTICAS DA RADIAÇÃO TÉRMICA: GENERALIDADES

- a emissão de energia térmica...
 - resulta da oscilação/transição dos eletrões que compõem os átomos que constituem a matéria.
 - Transporte de radiação por fotões (teoria de Planck)
 - Transporte de radiação por ondas eletromagnéticas (teoria de Maxwell)
 - é sustentada pela energia interna de um corpo, a qual é função da temperatura do corpo
 - é um fenómeno volumétrico contudo em sólidos e líquidos uma parte significativa das emissões é absorvida pelas moléculas circundantes; do ponto de vista prático, a emissão de radiação térmica é vista como um fenómeno associado a uma superfície
- as ondas eletromagnéticas são caracterizadas por uma dada frequência, v, e por um dado comprimento de onda, λ , dado por $\lambda = c/v$, onde c é a velocidade da luz no seio onde a radiação se propaga (no vácuo, $c_0 = 2,998 \times 10^8$ m/s)

Fernando Neto 04/01/2023

PODER EMISSIVO

- O poder emissivo de um corpo, E (W/m2), traduz a capacidade de uma superfície emitir radiação térmica
- O poder emissivo de uma superfície real depende, entre outros, dos seguintes fatores:
 - Comprimento de onda λ (μm) em que a radiação é emitida;
 - Temperatura T (K) a que a superfície se encontra;
 - Direção em que a radiação é emitida;
 - Estado de acabamento da superíficie;
 - etc.

CARATERÍSTICAS DA RADIAÇÃO TÉRMICA: ESPETRO DE RADIAÇÃO

 A intensidade da radiação térmica emitida por uma superfície distribui-se ao longo de vários comprimentos de onda e não é uniforme – espetro de radiação

CARATERÍSTICAS DA RADIAÇÃO TÉRMICA: DIREÇÃO DA RADIAÇÃO EMITIDA

 Uma superfície pode emitir radiação preferencialmente ao longo de determinadas direções

EMISSÃO ESPECTRAL DE RADIAÇÃO

rnando Neto 04/01/2023

CARACTERÍSTICAS DA RADIAÇÃO TÉRMICA: EMISSÃO EM VÁRIOS COMPRIMENTOS DE ONDA

A radiação eletromagnética é emitida em vários comprimentos de onda

DIREÇÃO DA RADIAÇÃO

nando Neto 04/01/2023

DIREÇÃO DA RADIAÇÃO EMITIDA POR UMA SUPERFÍCIE

 A radiação pode ser emitida em várias direções. A radiação emitida a partir de um elemento de área dA₁ é definida direccionalmente em termos dos ângulos θ (ângulo zenital) e φ (ângulo azimutal)

EMISSOR DIFUSO

rnando Neto 04/01/2023

EMISSOR DIFUSO

• Um **emissor difuso** não possui direções preferenciais de emissão de radiação

IRRADIAÇÃO

ernando Neto 04/01/2023

IRRADIAÇÃO: RADIAÇÃO INCIDENTE SOBRE UMA SUPERFÍCIE

Irradiação, G (W/m2): taxa à qual a radiação incide sobre uma superfície

ABSORTIVIDADE, REFLETIVIDADE E TRANSMISSIVIDADE

nando Neto 04/01/2023

ABSORÇÃO, REFLEXÃO E TRANSMISSÃO DE UMA SUPERFÍCIE

 Regra geral, a irradiação recebida por uma superfície pode ser refletida, absorvida ou transmitida

ABSORTIVIDADE DE UMA SUPERFÍCIE

- A absortividade, α , de uma superfície define a fração de irradiação que é absorvida por uma superfície, $\alpha = G_{ABS}/G$;
- A absortividade depende do comprimento de onda da irradiação incidente, da direção da irradiação e da natureza da superfície, $\alpha = \alpha(\lambda, \theta, \phi)$; a sua dependência relativamente à temperatura é, contudo, reduzida

REFLETIVIDADE DE UMA SUPERFÍCIE

- A refletividade, ρ, de uma superfície define a fração de irradiação que é refletida por uma superfície, ρ=G_{REF}/G;
- A refletividade depende do comprimento de onda da irradiação incidente, da sua direção, da natureza da superfície e ainda da direção tomada pela irradiação refletida

TRANSMISSIVIDADE DE UMA SUPERFÍCIE

• A transmissividade, τ , de uma superfície define a fração de irradiação que é transmitida por uma superfície, $\tau = G_{TRA}/G$;

RELAÇÕES ENTRE ABSORPTIVIDADE, REFLETIVIDADE E TRANSMISSIVIDADE

dividindo todos os termos por G, obtêm-se:

$$I = G_{ABS}/G + G_{REF}/G + G_{TRA}/G$$

ou seja,

$$\alpha + \rho + \tau = 1$$

Para corpos opacos (não **transmitem** a radiação incidente) vem:

$$\alpha + \rho = 1$$

ABSORTIVIDADE/REFLETIVIDADE NORMAL ESPETRAL DE SUPERFÍCIES OPACAS ($\alpha+\rho=1$)

TRANSMISSIVIDADE DE SUPERFÍCIES SEMI-TRANSPARENTES

RADIOSIDADE

Fernando Neto 04/01/2023 24

RADIAÇÃO TOTAL QUE ABANDONA UMA SUPERFÍCIE

A radiosidade J (W/m2) representa radiação total que abandona uma superfície e inclui:

- A radiação emitida por essa superfície;
- A irradiação refletida por essa superfície.

CORPO NEGRO

nando Neto 04/01/2023

CORPO NEGRO

Um corpo negro é uma superfície ideal, com as seguintes caraterísticas:

- Um corpo negro absorve toda a radiação incidente, independentemente do seu comprimento de onda e da sua direção
- Para uma dada temperatura T e para um dado comprimento de onda λ, nenhuma superfície emite mais radiação do que um corpo negro
- A radiação emitida por um corpo negro depende do comprimento de onda e da temperatura, mas não da direção; o corpo negro é um emissor difuso

EXISTEM CORPOS QUE SE COMPORTAM COMO UM CORPO NEGRO?

Nenhuma superfície real se comporta como um corpo negro, mas para uma cavidade cujas paredes interiores se mantêm a uma temperatura constante:

A radiação que entra por uma pequena abertura é refletida e absorvida várias vezes antes de emergir (ou seja, é absorvida pela cavidade quase na sua totalidade)

A radiação que abandona a cavidade não tem caraterísticas direcionais

Logo, uma cavidade possui as caraterísticas de um corpo negro

A LEI E A DISTRIBUIÇÃO DE PLANCK

Fernando Neto 04/01/2023 29

LEI E DISTRIBUIÇÃO DE PLANCK

A emissão de radiação por um corpo negro em função do comprimento de onda λ e da temperatura T é governada pela distribuição de Planck:

$$E_{\lambda,b}(\lambda,T) = \frac{c_1}{\lambda^5 \left[\exp\left(\frac{c_2}{\lambda.T}\right) - 1 \right]}$$

 $c_1 = 3,742x10^8 \text{ W.}\mu\text{m}^4\text{.m}^{-2}$ $c_2 = 1,439x10^4 \mu\text{m.}K$

REPRESENTAÇÃO GRÁFICA DA DISTRIBUIÇÃO DE PLANCK

$$E_{\lambda,b}(\lambda,T) = \frac{c_1}{\lambda^5 \left[\exp\left(\frac{c_2}{\lambda.T}\right) - 1 \right]}$$

- A radiação emitida varia continuamente com o comprimento de onda;
- Para qualquer comprimento de onda, a radiação emitida aumenta com a temperatura
- À medida que a temperatura aumenta, a radiação emitida concentra-se em menores comprimentos de onda;
- A maior parte da radiação emitida abaixo dos 800 K não é detetável pelo olho humano
- O comprimento de onda no qual é emitido o valor máximo da radiação varia com T de acordo com a lei de Wien: λ_{MAX}.T=2897,8 μm.K

04/01/2023

A LEI DE STEFAN-BOLTZMANN

Fernando Neto 04/01/2023 3

LEI DE STEFAN-BOLTZMANN

O poder emissivo total de um corpo negro é obtido por integração, para todos os possíveis valores de λ, da distribuição de Planck.

$$E_b(T) = \int_0^\infty E_{\lambda,b}(\lambda, T) d\lambda$$

Como resultado obtêm-se a lei de Stefan-Boltzmann que traduz a radiação emitida por um corpo negro:

$$E_b = \sigma T^4$$

σ – constante de Stefan-Boltzmann (5,670x10⁻⁸ W.m⁻².K⁻⁴)

53

CÁLCULO DA EMISSIVIDADE

rnando Neto 04/01/2023

EMISSIVIDADE DE UMA SUPERFÍCIE REAL

- A emissividade de uma superfície real, ε, é definida como a relação entre a radiação emitida por uma superfície e a radiação emitida por um corpo negro à mesma temperatura.
- A emissividade de uma superfície real possui propriedades direcionais (varia com a direção considerada) e espetrais (varia com o comprimento de onda):

CARATERÍSTICAS PRINCIPAIS DA EMISSIVIDADE DE UMA SUPERFÍCIE REAL

- A radiação espectral de uma superfície real...
 - ...tem um valor inferior à radiação emitida por um corpo negro à mesma temperatura
 - ... não se rege pela distribuição de Planck
 - ...não tem um carácter difuso

FIGURE 12.15 Comparison of blackbody and real surface emission. (a) Spectral distribution. (b) Directional distribution.

EMISSIVIDADE ESPECTRAL DE UMA SUPERFÍCIE REAL

 A emissividade direcional espetral de uma superfície à temperatura T é a razão entre a intensidade de radiação emitida no comprimento de onda λ e nas direções θ e φ e a intensidade da radiação de um corpo negro à mesma temperatura T emitida no mesmo comprimento de onda

$$\varepsilon_{\lambda,\theta}\left(\lambda,\theta,\phi,T\right) \equiv \frac{I_{\lambda,e}\left(\lambda,\theta,\phi,T\right)}{I_{\lambda,b}\left(\lambda,T\right)}$$

EXEMPLOS DE VARIAÇÃO DA EMISSIVIDADE DIRECIONAL DE UMA SUPERFÍCIE REAL

Com a direção...

EXEMPLOS DE VARIAÇÃO DA EMISSIVIDADE ESPECTRAL DE UMA SUPERFÍCIE REAL

 Com o comprimento de onda, vários tipos de materiais...

FIGURE 12.17 Spectral dependence of the spectral, normal emissivity $\varepsilon_{\lambda,n}$ of selected materials.

Fernando Neto

VARIAÇÃO DA EMISSIVIDADE DE UMA SUPERFÍCIE REAL COM A TEMPERATURA

 Com a temperatura, vários tipos de materiais...

FIGURE 12.18 Temperature dependence of the total, normal emissivity ε_n of selected materials.

Fernando Neto 04/01/2023

EMISSIVIDADE DE SUPERFÍCIES REAIS

FIGURE 12.19 Representative values of the total, normal emissivity ε_n .

04/01/2023

Fernando Neto

DETERMINAÇÃO DA EMISSIVIDADE DE UMA SUPERFÍCIE REAL

 Em termos práticos, o valor relevante da emissividade é um valor médio direcional, pelo que a propriedade relevante é a emissividade hemisférica espectral definida como

$$\varepsilon_{\lambda}\left(\lambda,T\right) \equiv \frac{E_{\lambda}\left(\lambda,T\right)}{E_{\lambda,b}\left(\lambda,T\right)} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,e}\left(\lambda,\theta,\phi,T\right) \cos\theta \sin\theta d\theta d\phi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,b}\left(\lambda,T\right) \cos\theta \sin\theta d\theta d\phi}$$

Se considerarmos uma média em todos os comprimentos de onda, então obteremos a emissividade hemisférica total, definida como:

$$\varepsilon(T) = \frac{E(T)}{E_b(T)} = \frac{\int_0^\infty \varepsilon_\lambda(\lambda, T) E_{\lambda, b}(\lambda, T) d, \lambda}{E_b(T)}$$

Metallic Solids and Their Oxides ^a										
		Emissivity, $\varepsilon_{\mathfrak{a}}$ or $\varepsilon_{\mathfrak{b}}$, at Va					ε _h , at Vario	ious Temperatures (K)		
Description/Composition		100	200	300	400	600	800	1000	1200	
Aluminum										
Highly polished, film	(h)	0.02	0.03	0.04	0.05	0.06				
Foil, bright	(h)	0.06	0.06	0.07						
Anodized	(h)			0.82	0.76					
Chromium										
Polished or plated	(n)	0.05	0.07	0.10	0.12	0.14				
Copper										
Highly polished	(h)			0.03	0.03	0.04	0.04	0.04		
Stably oxidized	(h)					0.50	0.58	0.80		
Gold	. /									
Highly polished or film	(h)	0.01	0.02	0.03	0.03	0.04	0.05	0.06		
Foil, bright	(h)	0.06	0.07	0.07						

EMISSÃO DE RADIAÇÃO EM BANDAS DE COMPRIMENTO DE ONDA

Fernando Neto 04/01/2023 43

EMISSÃO NUMA BANDA DE COMPRIMENTO DE ONDA

- Importa amiúde quantificar a fração da emissão total de um corpo negro num dado intervalo de comprimentos de onda.
- Conhecendo-se a dependência do poder emissivo espectral relativamente ao comprimento de onda, é possível determinar a fração de radiação que é emitida entre os comprimentos de onda 0 e λ.
- Graficamente essa fração é representada pela razão entre a área sombreada e a área total compreendida debaixo da curva.
- De forma analítica, através da equação à direita.

FIGURE 12.13 Radiation emission from a blackbody in the spectral band 0 to λ .

$$F_{(0-\lambda)} = \frac{\int_0^{\lambda} E_{\lambda,b} d\lambda}{\sigma T^4} = f(\lambda T)$$

EMISSÃO NUMA BANDA DE COMPRIMENTO DE ONDA

- Esta fração também pode ser calculada a partir do conhecimento do produto λ.Τ com recurso à tabela ao lado.
- Caso se pretenda quantificar a emissão de um corpo negro num dado intervalo de comprimentos de onda, basta atender a que

$$F_{(\lambda_1 - \lambda_2)} = F_{(0 - \lambda_2)} - F_{(0 - \lambda_1)} = \frac{\int_0^{\lambda_2} E_{\lambda,b} d\lambda - \int_o^{\lambda_1} E_{\lambda,b} d\lambda}{\sigma T^4}$$

TABLE 12.1	Blackbody 1	Radiation	Functions
-------------------	-------------	-----------	-----------

λT		$I_{\lambda,b}(\lambda,T)/\sigma T^5$	$I_{\lambda,b}(\lambda,T)$	
(μm·K)	$F_{(0 o \lambda)}$	$(\mu \mathbf{m} \cdot \mathbf{K} \cdot \mathbf{sr})^{-1}$	$I_{\lambda,b}(\lambda_{\max},T)$	
200	0.000000	0.375034×10^{-27}	0.000000	
400	0.000000	0.490335×10^{-13}	0.000000	
600	0.000000	0.104046×10^{-8}	0.000014	
800	0.000016	0.991126×10^{-7}	0.001372	
1,000	0.000321	0.118505×10^{-5}	0.016406	
1,200	0.002134	0.523927×10^{-5}	0.072534	
1,400	0.007790	0.134411×10^{-4}	0.186082	
1,600	0.019718	0.249130	0.344904	
1,800	0.039341	0.375568	0.519949	
2,000	0.066728	0.493432	0.683123	
2,200	0.100888	0.589649×10^{-4}	0.816329	
2,400	0.140256	0.658866	0.912155	
2,600	0.183120	0.701292	0.970891	
2,800	0.227897	0.720239	0.997123	
2,898	0.250108	0.722318×10^{-4}	1.000000	
3,000	0.273232	0.720254×10^{-4}	0.997143	
3,200	0.318102	0.705974	0.977373	
3,400	0.361735	0.681544	0.943551	
3,600	0.403607	0.650396	0.900429	
3,800	0.443382	0.615225×10^{-4}	0.851737	
4,000	0.480877	0.578064	0.800291	

Fernando Neto

A LEI DE KIRCHOFF

ernando Neto 04/01/2023

A LEI DE KIRCHOFF

- Considere-se uma cavidade cujas paredes se encontram a uma temperatura uniforme T_S . Considere-se um conjunto de corpos no seu interior. A irradiação G recebida por qualquer um desses corpos será dada por $G=E_B$. Em regime estacionário todos os corpos deverão estar em equilíbrio térmico pelo que $T_1=T_2=\ldots=T_S$.
- Um balanço energético efetuado em torno do corpo I, com uma área A_I , em regime estacionário revelará que α_I .G. A_I - E_I . A_I =0. Como G= E_B , então E_I/α_I = E_B .
- Realizando um balanço energético para cada um dos corpos que se encontram na cavidade, é possível mostrar que $E_1/\alpha_1 = E_2/\alpha_2 = ... = E_B$

A LEI DE KIRCHOFF

A relação
$$\dfrac{E_1}{lpha_1} = \dfrac{E_2}{lpha_2} = ... = E_B$$

é designada por Lei de Kirchoff

CONSEQUÊNCIAS DA LEI DE KIRCHOFF

$$\frac{E_1}{\alpha_1} = \frac{E_2}{\alpha_2} = \dots = E_B$$

Uma vez que α <1, então E<E_B; nenhuma superfície real pode ter um poder emissivo idêntico ou superior ao de um corpo negro à mesma temperatura

Atendendo a que $E_1 = \epsilon . E_B$, substituindo acima os valores de E_1 , E_2 , etc. e dividindo por E_B , obtém-se uma definição alternativa para a Lei de Kirchoff:

$$\frac{\mathcal{E}_1}{\alpha_1} = \frac{\mathcal{E}_2}{\alpha_2} = \dots = 1$$

ou, o que é equivalente, $\varepsilon = \alpha$

A expressão ε=α traduz o facto de que, para qualquer superfície no interior da cavidade, a emissividade hemisférica total da superfície é igual à sua absortividade hemisférica total. Esta igualdade, desde que aplicável, simplifica em muito o cálculo da troca de calor por radiação entre diferentes superfícies.

49

SUPERFÍCIES CINZENTAS DIFUSAS

Fernando Neto 04/01/2023

SUPERFÍCIES CINZENTAS DIFUSAS

- A igualdade ε = α obtida como consequência da lei de Kirchoff foi deduzida para condições muito particulares: a irradiação recebida correspondia à radiação emitida por um corpo negro à mesma temperatura da superfície
- É contudo possível estender a igualdade anterior a uma superfície que satisfaça os seguintes requisitos:
 - Que a irradiação recebida tenha um carácter difuso (aplicável na maior parte dos problemas);
 - Que a superfície possa ser classificada como difusa (aproximação razoável para muitas superfícies, particularmente para materiais não condutores)
 - Que a irradiação recebida corresponda à emissão de um corpo negro ou que a superfície seja classificada como cinzenta (α_{λ} e ϵ_{λ} são independentes do valor de λ)
- Uma superfície com estas caraterísticas é designada por superfície cinzenta difusa
- Para esta superfície, é válida a igualdade ε=α

51

Fernando Neto

NOTAS SOBRE RADIAÇÃO SOLAR

Fernando Neto 04/01/2023 5

RADIAÇÃO SOLAR

- A intensidade da radiação solar que incide sobre a camada superior da atmosfera foi determinada experimentalmente como sendo igual a G_S=1353 W.m⁻² que é a chamada constante solar
- No entanto, a radiação que atinge na direção normal uma dada área na atmosfera será $G_0=G_s.cos\theta$

RADIAÇÃO SOLAR

- O que acontece à radiação solar enquanto atravessa a atmosfera:
 - Parte é espalhada (refletida)
 - Parte é absorvida
 - Parte é transmitida
- O ozono absorve a radiação solar em comprimentos de onda compreendidos entre 0,2 e 0,29 μm e entre 0,29 e 0,34 μm
- O oxigénio absorve a radiação solar em comprimentos de onda em torno de 0,76 μm
- O vapor de água absorve radiação nas faixas compreendidas entre 0,7 e 2,2 μm e para comprimentos de onda superiores a 2,2 μm

RADIAÇÃO SOLAR: RADIAÇÃO DIRETA E RADIAÇÃO DIFUSA

- A componente de radiação solar que não é nem espalhada nem absorvida pela atmosfera é designada por radiação direta
- A componente de radiação que é espalhada mas que chega à superfície da Terra é designada por radiação difusa
- Assim, o fluxo total de calor recebido pela superfície é dado por:

$$q_T = q_{DIR}.cos\theta + q_{DIF}$$

RADIAÇÃO SOLAR: BALANÇO

APLICAÇÕES

Fernando Neto 04/01/2023 5

12.114 A contractor must select a roof covering material from the two diffuse, opaque coatings with α_λ(λ) as shown. Which of the two coatings would result in a lower roof temperature? Which is preferred for summer use? For winter use? Sketch the spectral distribution of α_λ that would be ideal for summer use. For winter use.

Fernando Neto 04/01/2023

58

Pressupostos:

- I. Ambas as coberturas são opacas e difusas;
- 2. Efeitos convectivos desprezáveis e face inferior completamente isolada;
- 3. Outros efeitos radiativos que não a radiação solar desprezáveis.

$$\varepsilon \sigma T_s^4 = \alpha_S G_S.$$

$$T_s = \left(\frac{\alpha_S}{\varepsilon} \frac{G_S}{\sigma}\right)^{1/4}.$$

Coating A 0.6 0.4 0.2 0 0 4 8 12 16 λ (μm)

SCHEMATIC:

$$T_s = \left(\frac{\alpha_S}{\varepsilon} \frac{G_S}{\sigma}\right)^{1/4}$$
.

A radiação solar está concentrada em comprimentos de onda inferiores a 4 µm; no entanto, a emissividade da superfície (que está a uma temperatura mais baixa) está distribuída acima de 4 µm (distribuição de Planck).

Assim para a cobertura A: α_S =0,8 e ϵ = α =0,8

Para a cobertura B: α_S =0,6 e ϵ = α =0,2

Logo $\alpha_s/\epsilon=1$ para a cobertura A e $\alpha_s/\epsilon=3$ para a cobertura B.

A temperatura alcançada pela cobertura será maior para a cobertura B do que para a cobertura A.

12.146 Our students perform a laboratory experiment to determine mass transfer from a wet paper towel experiencing forced convection and irradiation from radiant lamps. For the values of T_ω and T_{wb} prescribed on the sketch, the towel temperature was found to be T_s = 310 K. In addition, flat-plate correlations yielded average heat and mass transfer convection coefficients of h
= 28.7 W/m²·K and h
= 0.027 m/s, respectively. The towel has dimensions of 92.5 mm × 92.5 mm and is diffuse and gray with an emissivity of 0.96.

- (a) From the foregoing results, determine the vapor densities, ρ_{Λ,s} and ρ_{Λ,∞}, the evaporation rate, n_Λ (kg/s), and the net rate of radiation transfer to the towel, q_{rad} (W).
- (b) Using results from part (a) and assuming that the irradiation G is uniform over the towel, determine the emissive power E, the irradiation G, and the radiosity J.

Fernando Neto 04/01/2023 6

Pressupostos:

- I. Regime estacionário;
- 2. Perdas de calor negligenciáveis na sup0erfície inferior da toalha;
- 3. Irradiação uniforme;
- 4. A superfície líquida comporta-se como uma superfície cinzenta e difusa

Uma vez que a temperatura ambiente é igual à temperatura de saturação, e que podemos considerar o ar como saturado na superfície da toalha, as massas específicas de vapor de água no escoamento e na superfície são, respetivamente:

T (K)
$$v_g (m^3/kg)$$
 $\rho_k (kg/m^3)$
 $T_w = 290$ 69.7 $\rho_{A,\infty} = 1.435 \times 10^{-2}$
 $T_s = 310$ 22.93 $\rho_{A,s} = 4.361 \times 10^{-2}$

Utilizando o coeficiente de transferência de massa, a taxa de evaporação pode ser calculada como:

$$n_{\rm A} = \overline{h}_{\rm m} A_{\rm s} \left(\rho_{\rm A,s} - \rho_{\rm A,\infty} \right) = 0.027 \, {\rm m/s} (0.0925 \, {\rm m})^2 \left(4.361 - 1.435 \right) \times 10^{-2} \, {\rm kg/m^3} = 6.76 \times 10^{-6} \, {\rm kg/s} \le 10^{-6} \, {\rm kg/s} = 10^{-6}$$

Um balanço energético na superfície, permite deduzir que:

$$q_{rad} = q_{cv} + q_{evap} = \overline{h}_s A_s (T_s - T_{\infty}) + n_A h_{fg}$$

$$q_{rad} = 28.7 \text{ W/m}^2 \cdot \text{K} (0.0925 \text{ m})^2 (310 - 290) \text{K} + 6.76 \times 10^{-6} \text{ kg/s} \times 2414 \times 10^3 \text{ J/kg}$$

$$q_{rad} = (4.91 + 16.32) \text{ W} = 21.2 \text{ W}$$

Fernando Neto 04/01/2023 65

O poder emissivo é:

$$E = \varepsilon E_b (T_s) = \varepsilon \sigma T_s^4 = 0.96 \times 5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4 (310 \text{ K})^4 = 502.7 \text{ W/m}^2$$

A irradiação é:

$$q_{rad} = (\alpha G - E) A_s$$
 $21.2 W = (0.96G - 502.7) W/m^2 \times (0.0925 m)^2 G = 3105 W/m^2$

A radiosidade é (uma vez que para uma superfície cinzenta, a emissividade e a absortividade são idênticas):

$$J = E + \rho G = [502.7 + (1 - 0.96) \times 3105] W/m^2 = 626.9 W/m^2$$

Fernando Neto 04/01/2023