Лабораторная работа № 8

Элементы криптографии. Шифрование (кодирование) различных исходных текстов одним ключом

Миленин Иван Витальевич

Цель работы

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Теоретическое описание

Простейшей и в то же время наиболее надёжной из всех схем шифрования является так называемая схема однократного использования, изобретение, которое чаще всего связывают с именем Г.С. Вернама.

Гаммирование — это наложение (снятие) на открытые (зашифрованные) данные криптографической гаммы, т.е. последовательности элементов данных, вырабатываемых с помощью некоторого криптографического алгоритма, для получения зашифрованных (открытых) данных. С точки зрения теории криптоанализа, метод шифрования случайной

Ход работы

1. В первую очередь оговоримся, что использовать будем среду Jupyter Notebook и язык программирования Питон. Для выполнения задания нам необходимо будет подключить библиотеки random и string. Пишем блок необходимых функций, которые и реализуют всю логику программы: функция generate new key принимает на вход длину требуемого ключа и возвращает случайную строку символов, что и будет являться ключом; функция hexadecimal form возвращает шестнадцатиричный вид подаваемой на вход строки; функция gamming будет выполнять основную роль - она выполняет непосредственно однократное гаммирование подаваемой строки с помощью ключа, передаваемого вторым аргументом (иллюстр. [-@fig:001]).

```
import random
import string

def generate_new_key(size=6, chars = string.ascii_letters + string.digits):
    return ''.join(random.choice(chars) for _ in range(size))

def hexadecimal_form(s):
    return ' '.join("{:02x}".format(ord(c)) for c in s)

def gamming(fst_text, sec_text):
    fst_text_ascii = [ord(i) for i in fst_text]
    sec_text_ascii = [ord(i) for i in sec_text]
    return ''.join(chr(s ^ k) for s, k in zip(fst_text_ascii, sec_text_ascii))
```

Блок функций для дальнейшего криптоанализа

2. Теперь пишем блок обработки данных. Тут вводим переменные P1 и P2 для исходных текстов, переменную key для используемого ключа, C1 и C2 для шифротекстов P1 и P2 соответственно, переменную crypto_sum для результата гаммирования двух шифротекстов между собой (иллюстр. [-@fig:002]).

```
Р1 = "НаВашисходящийот1204"
   Р2 = "ВСеверныйфилиалБанка"
   print("Исходные тексты:\n", "P1: ", P1, "\nP2: ", P2, sep='')
   key = generate new key(len(P1))
   print("Ключ для кодирования обоих текстов:")
 5 print(key)
   print("В шестнадцатиричном виде:")
 8 print(hexadecimal form(key))
10 C1 = gamming(P1, key)
11 C2 = gamming(P2, kev)
12
13 print("\nШифротекст С1 для открытого текста Р1 и ключа key")
14 print(C1, "--- C1")
15 print("Шифротекст С2 для открытого текста Р2 и ключа key")
16 print(C2, "--- C2")
17
   crypto sum = gamming(C1, C2)
20 print("\nПолучим первый текст путем гаммирования двух шифровок и второго текста:")
21 print("Вычисленный Р1:", gamming(crypto sum, P2))
22 print("Получим второй текст путем гаммирования двух шифровок и первого текста:")
23 print("Вычисленный Р2:", gamming(crypto sum, P1))
```

Блок обработки данных и вывода требуемых значений

3. После запуска программы видим два исходных текста и ключ в символьной и шестнадцатиричной формах. После нам выводится оба шифротекста, получаемых гаммированием исходных текстов Р1 и Р2 одним известным ключом key. Далее видим вычисляемые тексты Р1 и Р2 (иллюстр. [-@fig:003]). Вычисляются они с помощью суммы по модулю 2 обеих шифровок и одного из исходных текстов в соответствии с формулой: $C_1 \oplus C_2 \oplus P_1 =$ $P_1 \oplus P_2 \oplus P_1 = P_2$. Таким образом, зная шифротексты и хотя бы часть одного из исходных текстов, можно расшифровать оба исходных текста.

Исходные тексты:

P1: НаВашисходящийот1204 P2: ВСеверныйфилиалБанка

Ключ для кодирования обоих текстов:

PUr989yaBY3TasPykjM6

В шестнадцатиричном виде:

50 55 72 39 38 39 79 61 42 59 33 54 61 73 50 79 6b 6a 4d 36

Шифротекст С1 для открытого текста Р1 и ключа key эжШЉѰЁиФѼѭѼНљъѮлZX}҈ --- С1 Шифротекст С2 для открытого текста Р2 и ключа key

шифротекст С2 для открытого текста Р2 и ключа н тVчЋЍѡфЪфНЋѮЉужѨћїѶІ --- С2

Получим первый текст путем гаммирования двух шифровок и второго текста:

Вычисленный Р1: НаВашисходящийот1204

Получим второй текст путем гаммирования двух шифровок и первого текста:

Вычисленный Р2: ВСеверныйфилиалБанка

Вывод значений и результат работы

Выводы

В ходе работы мы успешно на практике освоили применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Ответы на контрольные вопросы

- 1. Как, зная один из текстов (Р1 или Р2), определить другой, не зная при этом ключа?
- Для этого необходимо прогаммировать один шифротекст вторым, а после прогаммировать результат одним из исходных текстов. Таким образом мы получим другой исходный текст.
- 2. Что будет при повторном использовании ключа при шифровании текста?
- Если речь о разных текстах, то мы создадим пару взаимосвязанных текстов, которые будут подвержены

Список литературы

- 1. Шнайер, Б. Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си / Б. Шнайер. М. : Триумф, 2002. 816 с.
- 2. Харин, Ю.С. Математические и компьютерные основы криптологии : учебное пособие / Ю.С. Харин, В.И. Берник, Г.В. Матвеев, С.В. Агиевич. Мн. : Новое знание, 2003. 382 с.
- 3. Д. С. Кулябов, А. В. Королькова, М. Н. Геворкян. Информационная безопасность компьютерных сетей: лабораторные работы. // Факультет физико-