ESERCIZI DI ANALISI REALE - FOGLIO 4

CORSO DI LAUREA TRIENNALE IN MATEMATICA

A.A. 2017-18

ANDREA DAVINI

SOMMARIO. Eventuali commenti, suggerimenti e segnalazioni di errori sono graditi. Gli esercizi contrassegnati con un asterisco sono più difficili

Esercizio 1. Sia $f: \mathbb{R}^d \to \mathbb{R}^d$ una funzione continua. Rispondere alle seguenti domande, dando una dimostrazione o esibendo un controesempio.

- \circ Se E è Lebesgue misurabile, è vero che f(E) è Lebesgue misurabile?
- \circ Se E ha misura nulla, è vero che f(E) ha misura nulla?

Ricordiamo che una funzione f tra due spazi metrici (X, d_X) e (Y, d_Y) si dice Lipschitziana se esiste una costante κ tale che $d_Y(f(x), f(y)) \leq \kappa d_X(x, y)$.

Esercizio 2. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione Lipschitziana.

- o Mostrare che se E ha misura nulla, allora anche f(E) ha misura nulla.
- o Dedurre che f(E) è Lebesgue misurabile se E è Lebesgue misurabile. [Suggerimento: usare la regolarità interna della misura di Lebesgue.]

Questi risultati si estendono al caso di $f: \mathbb{R}^d \to \mathbb{R}^d$ Lipschitziana per $d \geqslant 2$?

Esercizio 3. Sia (X, \mathcal{M}) uno spazio misurabile e siano $f, g: X \to \mathbb{R}$ due funzioni misurabili. Dimostrare che

- o le funzioni $x \mapsto f(x) + g(x)$ e $x \mapsto f(x)g(x)$ da X in \mathbb{R} sono misurabili;
- o la funzione $x \mapsto 1/f(x)$ da X in \mathbb{R} è misurabile (dove conveniamo che 1/0 sia $+\infty$).

Esercizio 4. Sia $f : \mathbb{R} \to \mathbb{R}$ una funzione continua. Dimostrare che la controimmagine di insiemi Boreliani sono Boreliani. È vero il viceversa?

Esercizio 5. Dimostrare che una funzione monotona $f: \mathbb{R} \to \mathbb{R}$ è Boreliana.

Esercizio 6. Sia (X, \mathcal{M}) uno spazio misurabile e $f: X \to \mathbb{R}$ una funzione misurabile. Verificare che l'insieme $\{x \in X : f(x) = \alpha\}$ è un insieme misurabile per ogni $\alpha \in \mathbb{R}$. Si provi con un esempio che il viceversa non è vero.

Esercizio 7. Sia (X, \mathcal{M}, μ) uno spazio di misura tale che $\mu(X) = +\infty$, e $f: X \to [-\infty, +\infty]$ una funzione misurabile e finita quasi ovunque. Dimostrare che per ogni $k \in \mathbb{N}$ esiste un insieme $E \in \mathcal{M}$ con $\mu(E) > k$ tale che f è limitata su E.

Date: 25 ottobre 2017.

Sia X uno spazio topologico e $f: X \to \overline{\mathbb{R}}$. Diremo che f è semicontinua inferiormente (s.c.i.) se $\{f \leq a\}$ è chiuso per ogni $a \in \mathbb{R}$. Diremo che f è semicontinua superiormente (s.c.s.) se $\{f \geq a\}$ è chiuso per ogni $a \in \mathbb{R}$.

Esercizio 8. Sia X uno spazio topologico. Mostrare che:

- \circ se $f: X \to \overline{\mathbb{R}}$ è s.c.i. (rispettivamente, s.c.s), allora è Borel-misurabile;
- o se $\{f_i: i \in I\}$ è una famiglia qualsiasi di funzioni continue da X in \mathbb{R} , allora le funzioni $\sup_{i \in \mathcal{I}} f_i(x)$ e $\inf_{i \in \mathcal{I}} f_i(x)$ da X in $\overline{\mathbb{R}}$ sono, rispettivamente, semicontinua inferiormente e semicontinua superiorermente.

Esercizio 9. Sia X uno spazio metrico ed $f: X \to \overline{\mathbb{R}}$. Mostrare che:

- o f è s.c.i. se e solo se, per ogni $x_0 \in X$ e per ogni successione $(x_n)_n$ che converge a x_0 , si ha $\liminf_n f(x_n) \ge f(x_0)$;
- o f è s.c.s. se e solo se, per ogni $x_0 \in X$ e per ogni successione $(x_n)_n$ che converge a x_0 , si ha $\limsup_n f(x_n) \leq f(x_0)$.

Esercizio 10. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua e definiamo

$$F(x) := \limsup_{y \to x} \frac{f(y) - f(x)}{y - x}, \qquad G(x) := \liminf_{y \to x} \frac{f(y) - f(x)}{y - x} \qquad \text{per ogni } x \in \mathbb{R}.$$

- o Mostrare che le funzioni $F, G : \mathbb{R} \to \overline{\mathbb{R}}$ sono Borel-misurabili; [Suggerimento: osservare che F e G possono essere scritte come limiti di funzioni semicontinue]
- o Sia g(x) = f'(x) se f è derivabile in x e g(x) = 0 altrimenti. Dimostrare che g è Boreliana.

L'esercizio precedente implica, in particolare, che se f è derivabile in \mathbb{R} , allora $f': \mathbb{R} \to \mathbb{R}$ è Boreliana.

Esercizio 11. Sia (X, \mathcal{M}) uno spazio misurabile e $f_n : X \to [-\infty, +\infty]$ funzioni misurabili. Dimostrare che l'insieme dei punti di convergenza delle f_n , i.e. $E := \{x \in X : f_n(x) \text{ converge }\}$, è misurabile.