```
In [1]: import pandas as pd
import numpy as np

import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score
from sklearn.metrics import accuracy_score
```

In [2]: data = pd.read_csv(r"malware_MultiClass.csv")
data

Out[2]:

	hash	millisecond	classification	os	state	usage_counter	
0	42fb5e2ec009a05ff5143227297074f1e9c6c3ebb9c914	0	malware	CentOS	0	0	30
1	42fb5e2ec009a05ff5143227297074f1e9c6c3ebb9c914	1	malware	Windows	0	0	30
2	42fb5e2ec009a05ff5143227297074f1e9c6c3ebb9c914	2	malware	Mac	0	0	30
3	42fb5e2ec009a05ff5143227297074f1e9c6c3ebb9c914	3	malware	Ubuntu	0	0	30
4	42fb5e2ec009a05ff5143227297074f1e9c6c3ebb9c914	4	malware	Mac	0	0	30
99995	025c63d266e05d9e3bd57dd9ebd0abe904616f569fe4e2	995	unknown	CentOS	4096	0	30
99996	025c63d266e05d9e3bd57dd9ebd0abe904616f569fe4e2	996	unknown	Windows	4096	0	30
99997	025c63d266e05d9e3bd57dd9ebd0abe904616f569fe4e2	997	unknown	CentOS	4096	0	30
99998	025c63d266e05d9e3bd57dd9ebd0abe904616f569fe4e2	998	unknown	Ubuntu	4096	0	30
99999	025c63d266e05d9e3bd57dd9ebd0abe904616f569fe4e2	999	unknown	Mac	4096	0	30

100000 rows × 36 columns

 \blacktriangleleft

In [3]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 36 columns):

#	Column	Non-Null Count	Dtype				
0	hash	100000 non-null	object				
1	millisecond	100000 non-null	int64				
2	classification	100000 non-null	object				
3	os	100000 non-null	object				
4	state	100000 non-null	int64				
5	usage_counter	100000 non-null	int64				
6	prio	100000 non-null	int64				
7	static_prio	100000 non-null	int64				
8	normal_prio	100000 non-null	int64				
9	policy	100000 non-null	int64				
10	vm_pgoff	100000 non-null	int64				
11	vm_truncate_count	100000 non-null	int64				
12	task_size	100000 non-null	int64				
13	cached_hole_size	100000 non-null	int64				
14	free_area_cache	100000 non-null	int64				
15	mm_users	100000 non-null	int64				
16	map_count	100000 non-null	int64				
17	hiwater_rss	100000 non-null	int64				
18	total_vm	100000 non-null	int64				
19	shared_vm	100000 non-null	int64				
20	exec_vm	100000 non-null	int64				
21	reserved_vm	100000 non-null	int64				
22	nr_ptes	100000 non-null	int64				
23	end_data	100000 non-null	int64				
24	last_interval	100000 non-null	int64				
25	nvcsw	100000 non-null	int64				
26	nivcsw	100000 non-null	int64				
27	min_flt	100000 non-null	int64				
28	maj_flt	100000 non-null	int64				
29	fs_excl_counter	100000 non-null	int64				
30	lock	100000 non-null	int64				
31	utime	100000 non-null	int64				
32	stime	100000 non-null	int64				
33	gtime	100000 non-null	int64				
34	cgtime	100000 non-null	int64				
35	signal_nvcsw	100000 non-null	int64				
$\frac{1}{2}$							

dtypes: int64(33), object(3)
memory usage: 27.5+ MB

```
In [4]: # Drop the 'hash' column as it's not useful for modeling
        data = data.drop(columns=['hash'])
        # Encode categorical columns
        categorical_cols = ['classification', 'os']
        le = LabelEncoder()
        for col in categorical_cols:
            data[col] = le.fit_transform(data[col])
        # Split features and target
        X = data.drop(columns=['classification'])
        y = data['classification']
        # Initialize the decision tree classifier (you can replace it with any other classifier)
        clf = DecisionTreeClassifier()
        # Perform 10-fold cross-validation
        scores = cross_val_score(clf, X, y, cv=10, scoring='accuracy')
        # Print the cross-validation results
        print("Accuracy scores for each fold:", scores)
        print("Mean accuracy:", scores.mean())
        # Optionally, you can fit the model on the entire dataset if needed
        clf.fit(X, y)
        Accuracy scores for each fold: [0.6816 0.8703 0.9899 0.8676 0.8869 0.8391 0.833 0.876 0.9941
        Mean accuracy: 0.86889
Out[4]: DecisionTreeClassifier()
In [5]: # Initialize a list to store accuracy scores for different models
        accuracy_scores = []
        # Initialize a variable to keep track of the best AUC score
        best_accuracy = 0
        best_model = None
In [6]: | # Try different parameters for the Decision Tree model
        for max_depth in [None, 10, 20, 30]:
            for min_samples_split in [2, 5, 10]:
                for min_samples_leaf in [1, 2, 4]:
                    # Create the Decision Tree model with the current parameters
                    clf = DecisionTreeClassifier(
                        max_depth=max_depth,
                        min_samples_split=min_samples_split,
                        min_samples_leaf=min_samples_leaf,
                        random_state=42 # Set a random state for reproducibility
                    # Perform 10-fold cross-validation and calculate the accuracy score
                    accuracy_scores_cv = cross_val_score(clf, X, y, cv=10, scoring='accuracy')
                    mean_accuracy = np.mean(accuracy_scores_cv)
                    # Store the accuracy score and model if it's the best so far
                    accuracy_scores.append(mean_accuracy)
                    if mean_accuracy > best_accuracy:
                        best_accuracy = mean_accuracy
                        best_model = clf
```

```
In [7]: # Print the accuracy scores for different models
         for i, accuracy_score in enumerate(accuracy_scores):
             print(f"Model {i+1}: Accuracy = {accuracy_score:.4f}")
         Model 1: Accuracy = 0.8636
         Model 2: Accuracy = 0.8690
         Model 3: Accuracy = 0.8450
         Model 4: Accuracy = 0.8599
         Model 5: Accuracy = 0.8598
         Model 6: Accuracy = 0.8450
         Model 7: Accuracy = 0.8599
         Model 8: Accuracy = 0.8598
         Model 9: Accuracy = 0.8488
         Model 10: Accuracy = 0.8669
         Model 11: Accuracy = 0.8665
         Model 12: Accuracy = 0.8602
         Model 13: Accuracy = 0.8573
         Model 14: Accuracy = 0.8573
         Model 15: Accuracy = 0.8602
         Model 16: Accuracy = 0.8573
         Model 17: Accuracy = 0.8573
         Model 18: Accuracy = 0.8602
         Model 19: Accuracy = 0.8636
         Model 20: Accuracy = 0.8690
         Model 21: Accuracy = 0.8450
         Model 22: Accuracy = 0.8599
         Model 23: Accuracy = 0.8598
         Model 24: Accuracy = 0.8450
         Model 25: Accuracy = 0.8599
         Model 26: Accuracy = 0.8598
         Model 27: Accuracy = 0.8488
         Model 28: Accuracy = 0.8636
         Model 29: Accuracy = 0.8690
         Model 30: Accuracy = 0.8450
         Model 31: Accuracy = 0.8599
         Model 32: Accuracy = 0.8598
         Model 33: Accuracy = 0.8450
         Model 34: Accuracy = 0.8599
         Model 35: Accuracy = 0.8598
         Model 36: Accuracy = 0.8488
In [8]: # Print the best model's parameters and accuracy score
         print("\nBest Model Parameters:")
         print(best_model.get_params())
         print(f"Best Model Accuracy: {best_accuracy:.4f}")
         Best Model Parameters:
         {'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': None, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_
         split': 2, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}
```

Best Model Accuracy: 0.8690

```
In [9]: # Convert class labels to strings
    class_names = data['classification'].unique().astype(str)

# Fit the best model on the entire dataset
    best_model.fit(X, y)

# Visualize the best decision tree model
    plt.figure(figsize=(20, 16))
    plot_tree(best_model, filled=True, feature_names=X.columns, class_names=class_names)
    plt.title("Best Decision Tree Model")
    plt.show()
```


In []: