Глубинное обучение

Лекция 2 Свёрточные сети

Александр Шабалин

Полносвязные сети для изображений

Изображения 28 x 28

• 60.000 объектов в обучающей выборке

• Что может выучить полносвязная сеть?

• Каждый нейрон может детектировать цвет конкретного набора пикселей

• Если немного сдвинуть цифру, то нейрон уже не будет на неё реагировать

Число параметров

- Вход: 28 * 28 = 784 пикселя
- Скрытый слой: 1000 нейронов
- Выход: 10 нейронов (по одному на каждый класс)
- Весов между входным и скрытым слоем:

$$(784 + 1) * 1000 = 785.000$$

• Весов между скрытым слоем и выходом:

$$(1000 + 1) * 10 = 10.010$$

• Всего параметров: 795.010

Число параметров

- Качество полносвязных сетей часто низкое
- Но можно добиться хорошего качества увеличивая число параметров (с аугментацией)

Table 1: Error rates on MNIST test set.

ID	architecture	test error for	best test	simulation	weights	
	(number of neurons in each layer)	best validation [%]	error [%]	time [h]	[milions]	
1	1000, 500, 10	0.49	0.44	23.4	1.34	
2	1500, 1000, 500, 10	0.46	0.40	44.2	3.26	
3	2000, 1500, 1000, 500, 10	0.41	0.39	66.7	6.69	
4	2500, 2000, 1500, 1000, 500, 10	0.35	0.32	114.5	12.11	
5	9 × 1000, 10	0.44	0.43	107.7	8.86	

Полносвязные сети для изображений

- Очень много параметров
- Легко переобучаются
- Не учитывают специфику изображений (сдвиги, небольшие изменения формы и т.д.)

Сверточные слои a.k.a. Свёртки

Свёрточный слой

Свёрточный слой

*

1 1 0 1	*	1 0		=	2					
1 1 1 1	*	1 0) 1	=	2	3 0 3	*	1 0 0 1	=	6
1 2 3 0	*	1 0) 1	=	1	5 0 0 5	*	1 0 0 1	=	10

- Операция свёртки выявляет наличие на изображении паттерна, который задаётся фильтром
- Чем сильнее на участке изображения представлен паттерн, тем больше будет значение свёртки

• Результат свёртки изображения с фильтром — новое изображение

Максимум свёртки инвариантен к сдвигам

Свёртки в компьютерном зрении

Свёртки в компьютерном зрении

Свёртки в компьютерном зрении

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Формальная запись свёртки

$$Im^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} (K(i,j) Im^{in}(x+i,y+j) + b)$$

Формальная запись свёртки

$$Im^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} (K(i,j) Im^{in}(x+i,y+j) + b)$$

- Пиксель в результирующем изображении зависит только от небольшого участка исходного изображения (local connectivity)
- Веса одни и те же для всех пикселей результирующего изображения (shared weights)

Формальная запись свёртки

- Обычно исходное изображение цветное!
- Это означает, что в нём несколько каналов (R, G, B)
- Учтём в формуле:

$$\operatorname{Im}^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} (K(i,j,c) \operatorname{Im}^{in}(x+i,y+j,c) + b)$$

- Одна свёртка выделяет конкретный паттерн на изображении
- Нам интересно искать много паттернов
- Сделаем результат трёхмерным:

$$\operatorname{Im}^{out}(x, y, t) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} \left(K_t(i, j, c) \operatorname{Im}^{in}(x+i, y+j, c) + b_t \right)$$

Число параметров

$$\operatorname{Im}^{out}(x, y, t) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} \left(K_{t}(i, j, c) \operatorname{Im}^{in}(x + i, y + j, c) + b_{t} \right)$$

- Обучается только фильтр
- $((2d+1)^2 * C + 1) * T$ параметров
- Как из этого сделать модель обсудим позже

Receptive field a.k.a Поле восприятия

- Возьмём пиксель в итоговом изображении (после свёрточных слоёв)
- От какой части входного изображения зависит значение в этом пикселе?

Поле восприятия: 3 х 3

Поле восприятия: 5 х 5

Поле восприятия для свёртки 3 х 3:

- После 1 свёрточного слоя: 3 х 3
- После 2 свёрточных слоев: 5 х 5
- После 3 свёрточных слоёв: 7 х 7

Поле восприятия: 9 х 9

Поле восприятия для свёртки 5 х 5:

- После 1 свёрточного слоя: 5 х 5
- После 2 свёрточных слоев: 9 х 9
- После 3 свёрточных слоёв: 13 х 13

Нужно очень много слоёв, если изображение размера 512 х 512

Свёртки с пропусками (strides)

Свёртки с пропусками (strides)

Поле восприятия: 9 х 9

Свёртки

Подробности про подсчёт размера поля с интерактивными визуализациями

https://distill.pub/2019/computing-receptive-fields/

Dilated convolutions («раздутые» свёртки)

Dilated convolutions («раздутые» свёртки)

Dilated convolutions («раздутые» свёртки)

Pooling

Max-pooling с фильтром 2x2

Pooling

- Разбивает изображение на участки $n \times m$ и считает некоторую статистику в каждом участке (обычно максимум)
- Существенно сокращает размер изображения (значит, увеличивает поле восприятия следующих слоёв)
- Не имеет параметров

Зачем это всё?

• Важно следить за тем, чтобы последние свёрточные слои имели размер поля восприятия, сравнимый со всей картинкой

Padding

Свёртки

• Если применять свёртку по формуле, то выходное изображение будет меньше входного

Свёртки

Valid mode

• При честном подсчёте свёрток пиксели на краях не оказывают большого влияния на результат

Zero padding

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

Zero padding

- Добавляем по границам нули так, чтобы посчитанная после этого свёртка в valid mode давала изображение такого же размера, как исходное
- Есть риск, что модель научится понимать, где на изображении края можем потерять инвариантность

Reflection padding

Отзеркалим ближайшие к границе пиксели

3	6	6	7	8				
8	7	1	2	3				
2	1	1	2	3	4	5	6	
7	6	6	7	8	9	8	7	
2	1	1	2	3				

Reflection padding

- Не получится легко находить края изображения
- Но теперь модель может начать находить зеркальные отражения и подбирать фильтры под них

Replication padding

Продублируем ближайшие к границе пиксели

1	1	1	2	3				
1	1	1	2	3				
1	1	1	2	3	4	5	6	
6	6	6	7	8	9	8	7	
1	1	1	2	3				

Replication padding

• Пиксель на границе равен ближайшему пикселю из изображения

• Модель всё ещё может настроиться под паттерны, которые возникают из-за такого паддинга

Резюме

- Паддинг позволяет контролировать размер выходных изображений
- Паддинг позволяет учитывать даже объекты на краях
- Разные типа паддингов допускают разные способы переобучения под края

Структура свёрточных сетей

Типичная архитектура

Типичная архитектура

• Последовательное применение комбинаций вида «свёрточный слой -> нелинейность -> pooling» или «свёрточный слой -> нелинейность»

• Выпрямление (flattening) выхода очередного слоя

• Серия полносвязных слоёв

LeNet

AlexNet

ImageNet

Large Scale Visual Recognition Challenge (ILSVRC)

- 14М+ картинок 256х256
- 1000 классов

- Важное наблюдение: выходы полносвязных слоёв являются хорошими признаковыми описаниями изображений
- Полезны во многих задачах
- Например, поиск похожих изображений

- Не интерпретируется (в отличие от классического компьютерного зрения)
- По смыслу «индикаторы» наличия каких-то паттернов

Layer 1

