Computer Vision & Food Recognition

Simon Bedford September, 2016

Food is an increasingly important content category

50m visitors in Dec 2015 30,000 professional recipes 150,00 user-submitted recipes

epicurióus

Cooking website: 7-8M monthly visitors

168M+ posts #food 76M+ posts #foodporn

Food-related videos viewed 23bn times in 2015

Opportunities for Machine-learning + food images

Problem and approach

The aim is to try and create a food classification algorithm that can take images of prepared food dishes as input and output a prediction for the type of dish

The dataset

- Food-101 Data Set from the ETH Zurich Computer Vision Laboratory
- * 101 Categories
- * 1,000 images per category
- * Most common shape (512, 512)

Focus on 12 categories

- Pork Chop
- Lasagne
- French Toast

- * Guacamole
- Apple Pie
- * Cheesecake

- * Hamburger
- Fried Rice
- Carrot Cake

- Chocolate Cake *
 - Steak
- Pizza

Food 101 Dataset

101 Categories

Google

Top Recipe Searches USA, 2015

Mixed data quality

Differences in RGB histograms between image categories

Approach 1: Machine-learning models + features

Models:

- k-Nearest Neighbours
- Support Vector Machines
- Decision Trees
- Random Forests
- * ADA Boost Classifier
- Naive Bayes Classifiers
- Linear & QuadraticDiscriminant Analysis

Features:

- RGB Histograms
- Individual Pixel Values
- Number of Edges
- Number of Corners
- Unsupervised methods

 (e.g, Principal
 Component Analysis, k Means Clustering)

"Supervised" learning algorithms

Manually chosen features

Comparison of classifiers

Best machine learning procedure

Image divided into 32 x 32 grid (256 cells in total)

For each cell calculate:

- Average red pixel value
- Average green pixel value
- Average blue pixel value
- Number of edges
- Number of corners

Chain all features together into one vector (..1,280 features..)

+
Grid Search for
Hyperparameter
Optimization

Random Forest

Confusion Matrix

Approach 2: Feature extraction from a Convolutional Neural Network

Per-class results

Approach 3: Fine Tuning a Convolutional Neural Network

Training Curve

Per-class results

Precision-Recall

Good results:

- Guacamole
- Pizza
- Fried Rice

Confusion Matrix

Fail Cases Examples

Steak Predicted as Pork Chop

Pork Chop Predicted as Steak

Future Work for Optimisation

- * Fine-tuning hyper-paremeters e.g., dropout rate
- Increase training batch size (currently 150)
- More data augmentation
- * Fine tune more recent models e.g., VGGNet, GoogleNet
- * Ensemble of fine-tuned models

Machine Learning vs CNNs for Image Classification

	Machine learning	CNNs
Classification Accuracy		
Training Speed		
Testing Speed		
Ease of getting started		$oldsymbol{Q}$
Resources required		
Feature Selection	₽	
Overall		
 Able to test 40+ models quite Makes you think more about their content Ultimately, not accurate enough 	res underlying images & Bu	arder to get going and needed to use extersources at once started, training models was easier crease in accuracy makes up for everything

Note: Personal opinions based upon experience with this project

Recommendations

- 1.Expand the model to include all 100 food categories from the existing dataset.
- 2. Seek to increase the number of images by looking for other sources of data.
- 3. Invest more time in optimising the model
- 4. Consider a pilot based on using a smaller set of 10-15 consolidated food categories.