2011 学年第一学期 《高等数学 (2-1)》期末模拟试卷

专业班级 _	
姓 名	
学 号	
开课系室	高等数学
考试日期	2010年1月11日

页号	 1 1	11]	四	五.	六	总分
得 分						
阅卷人						

注 意事 项

- 1. 请在试卷正面答题,反面及附页可作草稿纸;
- 2. 答题时请注意书写清楚,保持卷面清洁;
- 3. 本试卷共五道大题,满分100分;试卷本请勿撕开,否则作废.

本页满分 36 分
本
页
分
$\lim_{x \to 0} (e^x - x)^{\frac{1}{x^2}} = \underline{\hspace{1cm}}.$
$\int_{-1}^{1} x (1 + x^{2005}) (e^x - e^{-x}) dx = \underline{\hspace{1cm}}$
3. 设函数 $y = y(x)$ 由方程 $\int_{1}^{x+y} e^{-t^2} dt = x$ 确定,则 $\frac{dy}{dx}\Big _{x=0} =$
4. 设 $f(x)$ 可导,且 $\int_{1}^{x} tf(t)dt = f(x)$, $f(0) = 1$,则 $f(x) = $
5. 微分方程 $y'' + 4y' + 4y = 0$ 的通解为
二.选择题(共4小题,每小题4分,共计16分)
$f(x) = \ln x - \frac{x}{e} + k$ 1. 设常数 $k > 0$,则函数 在 $(0, +\infty)$ 内零点的个数为 () . (A) 3 个; (B) 2 个; (C) 1 个; (D) 0 个.
2. 微分方程 $y'' + 4y = 3\cos 2x$ 的特解形式为 ().
(A) $y^* = A\cos 2x$; (B) $y^* = Ax\cos 2x$;
(C) $y^* = Ax\cos 2x + Bx\sin 2x$; (D) $y^* = A\sin 2x$. 3. 下列结论不一定成立的是 (D) $(D$
(A) 若 $[c,d] \subseteq [a,b]$, 则必有 $\int_{c}^{d} f(x)dx \le \int_{a}^{b} f(x)dx$;
(B) 若 $f(x) \ge 0$ 在 $[a,b]$ 上可积,则 $\int_a^b f(x)dx \ge 0$;
(C) 若 $f(x)$ 是周期为 T 的连续函数,则对任意常数 a 都有 $\int_a^{a+T} f(x) dx = \int_0^T f(x) dx$
(D) * $\int_0^x tf(t)dt$

(D) 若可积函数 / (A) 为奇函数,则 Jo * \ / 也为奇函数.

$$f(x) = \frac{1 + e^{\frac{1}{x}}}{2 + 2^{\frac{1}{x}}}$$

 $f(x) = \frac{1 + e^{\frac{1}{x}}}{2 + 3e^{\frac{1}{x}}}$ 4. 设 $2 + 3e^{\frac{1}{x}}$, 则 x = 0是 f(x) 的 () . (A) 连续点; (B) 可去间断点;

(C) 跳跃间断点;

(D) 无穷间断点.

三. 计算题 (共5小题,每小题6分,共计30分)

本页满分 12 分	
本	
页	
得	
分	1. 计算定积分 1 0

$$\frac{x \sin x}{\cos^5 x} dx$$

本列	订满分	12分
本		
页		
得		
分		

$$\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t), \text{ } t = \frac{\pi}{2} \end{cases}$$
 处的切线的方程.

4. 设
$$F(x) = \int_0^x \cos(x^2 - t) dt$$
, 求 $F'(x)$.

本页满分 15 分		
本		
页		
得		
分		

5. 设
$$x_n = \frac{\sqrt[n]{(n+1)(n+2)(n+3)\Lambda(2n)}}{n}$$
, $x_n = \frac{\sqrt[n]{(n+1)(n+2)(n+3)\Lambda(2n)}}{n}$, $x_n = \frac{\lim_{n \to \infty} x_n}{n}$.

四.应用题(共3小题,每小题9分,共计27分)

1. 求由曲线 $y = \sqrt{x-2}$ 与该曲线过坐标原点的切线及 x 轴所围图形的面积.

本页满分18分		
本		
页		
得		
分		

2. 设平面图形 $D ext{ 由 } x^2 + y^2 \le 2x ext{ 与 } y \ge x$ 所确定,试求 D 绕直线 x = 2 旋转一周所生成的旋转体的体积.

3. 设a>1, $f(t)=a^t-at$ 在 $(-\infty,+\infty)$ 内的驻点为 t(a). 问a 为何值时 t(a) 最小? 并求最小值.

本页满分7分		
本		
页		
得		
分		

五.证明题(7分)

设函数 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导且

$$f(0)f = (1) = (0),$$

试证明至少存在一点 $\xi \in (0,1)$, 使得 $f'(\xi)=1$.

一. 填空题 (每小题 4 分, 5 题共 20 分):

$$\lim_{x\to 0} (e^x - x)^{\frac{1}{x^2}} = e^{\frac{1}{2}}.$$

2.
$$\int_{-1}^{1} x (1 + x^{2005}) (e^x - e^{-x}) dx = \frac{4}{e}.$$

3. 设函数
$$y = y(x)$$
 由方程 $\int_{1}^{x+y} e^{-t^2} dt = x$ 确定,则 $\frac{dy}{dx}\Big|_{x=0} = e-1$.

4. 设
$$f(x)$$
可导,且 $\int_{1}^{x} tf(t)dt = f(x)$, $f(0) = 1$,则 $f(x) = e^{\frac{1}{2}x^{2}}$.

5. 微分方程
$$y'' + 4y' + 4y = 0$$
 的通解为 $y = (C_1 + C_2 x)e^{-2x}$.

二. 选择题 (每小题 4分, 4题共 16分):

1. 设常数
$$k > 0$$
 ,则函数 $f(x) = \ln x - \frac{x}{e} + k$ 在 $(0, +\infty)$ 内零点的个数为(B). (A) 3 个; (B) 2 个; (C) 1 个; (D) 0 个.

2. 微分方程
$$y'' + 4y = 3\cos 2x$$
 的特解形式为 (C)

$$(A) \quad y^* = A\cos 2x;$$

(B)
$$y^* = Ax\cos 2x$$
;

(C)
$$y^* = Ax\cos 2x + Bx\sin 2x$$
; (D) $y^* = A\sin 2x$

(D)
$$y^* = A\sin 2x$$

(A) (A)
$$[c,d] \subseteq [a,b]$$
 ,则必有 $\int_{c}^{d} f(x) dx \le \int_{a}^{b} f(x) dx$

(B) (B) 岩
$$f(x) \ge 0$$
在 $[a,b]$ 上可积,则 $\int_a^b f(x)dx \ge 0$

(C) (C)
$$E f(x)$$
 是周期为 T 的连续函数,则对任意常数 a 都有
$$\int_a^{a+T} f(x) dx = \int_0^T f(x) dx$$

(D) (D) 若可积函数
$$f(x)$$
 为奇函数, 则 $\int_0^x tf(t)dt$ 也为奇函数.

$$f(x) = \frac{1 + e^{\frac{1}{x}}}{\frac{1}{x}}$$

 $f(x) = \frac{1 + e^{\frac{1}{x}}}{1}$ 4. 设 $2 + 3e^{\frac{1}{x}}$, 则 x = 0 是 f(x) 的 (C) . (A) 连续点;

(C) 跳跃间断点:

(D) 无穷间断点.

三. 计算题 (每小题 6 分, 5 题共 30 分):

1. 计算定积分
$$\int_0^{\sqrt{2}} x^3 e^{-x^2} dx$$

2. 计算不定积分 $\int \frac{x \sin x}{\cos^5 x} dx$

$$\Re : \int \frac{x \sin x}{\cos^5 x} dx = \frac{1}{4} \int x d(\frac{1}{\cos^4 x}) = \frac{1}{4} \left[\frac{x}{\cos^4 x} - \int \frac{dx}{\cos^4 x} \right] \\
= \frac{x}{4 \cos^4 x} - \frac{1}{4} \int (\tan^2 x + 1) d \tan x \\
= \frac{x}{4 \cos^4 x} - \frac{1}{12} \tan^3 x - \frac{1}{4} \tan x + C \\
\begin{cases} x = a(t - \sin t), \\ t = \frac{\pi}{4} \end{cases}$$

 $\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t), \text{在} \end{cases} t = \frac{\pi}{2}$ 处的切线的方程.

解: 切点为
$$(a(\frac{\pi}{2}-1), a)$$
 -----2
$$k = \frac{dy}{dx}\Big|_{t=\frac{\pi}{2}} = \frac{a \operatorname{sim}}{a(1-\operatorname{cos})}\Big|_{t=\frac{\pi}{2}} = 1 \quad -----2$$
 切线方程为 $y-a=x-a(\frac{\pi}{2}-1)$ 即 $y=x+(2-\frac{\pi}{2})a$. ------2

4.
$$\forall F(x) = \int_0^x \cos(x^2 - t) dt$$
, $\forall F'(x) = 2x \cos x^2 - (2x - 1)\cos(x^2 - x)$.

解:
$$\ln x_n = \frac{1}{n} \sum_{i=1}^n \ln(1 + \frac{i}{n})$$

$$\lim_{n \to \infty} \ln x_n = \lim_{n \to \infty} \sum_{i=1}^n \ln(1 + \frac{i}{n}) \frac{1}{n} = \int_0^1 \ln(1 + x) dx$$

$$= x \ln(1 + x) \Big|_0^1 - \int_0^1 x \frac{1}{1 + x} dx = 2 \ln 2 - 1$$

$$\lim_{n \to \infty} x_n = e^{2 \ln 2 - 1} = \frac{4}{e}$$

$$\lim_{n \to \infty} x_n = e^{2 \ln 2 - 1} = \frac{4}{e}$$

四.应用题(每小题9分,3题共27分)

1. 求由曲线 $y = \sqrt{x-2}$ 与该曲线过坐标原点的切线及 x 轴所围图形的面积.

解:

设切点为 (x_0, y_0) , 则过原点的切线方程为 $y = \frac{1}{2\sqrt{x_0 - 2}}x$,

由于点 (x_0, y_0) 在切线上,带入切线方程,解得切点为 $x_0 = 4, y_0 = \sqrt{2}$.----3

过原点和点 $(4,\sqrt{2})$ 的切线方程为 $y = \frac{x}{2\sqrt{2}}$ 3

$$s = \int_0^2 \frac{1}{2\sqrt{2}} x dx + \int_2^4 (\frac{1}{2\sqrt{2}} x - \sqrt{x - 2}) dx = \frac{2\sqrt{2}}{3}$$

2. 设平面图形 D由 $x^2 + y^2 \le 2x$ 与 $y \ge x$ 所确定,试求 D 绕直线 x = 2 旋转一周所生成的 旋转体的体积.

解: 法一:
$$V = V_1 - V_2$$

$$= \int_0^1 \pi \left[2 - (1 - \sqrt{1 - y^2}) \right]^2 dy - \int_0^1 \pi (2 - y)^2 dy$$

$$= 2\pi \int_0^1 \left[\sqrt{1 - y^2} - (y - 1)^2 \right] dy$$

$$= 2\pi \left[\frac{\pi}{4} - \frac{1}{3} (y - 1)^{3} \Big|_{0}^{1} \right] = 2\pi (\frac{\pi}{4} - \frac{1}{3})$$

$$= 2\pi \int_{0}^{1} (2 - x) (\sqrt{2x - x^{2}} - x) dx$$

$$= 2\pi \int_{0}^{1} (2 - x) \sqrt{2x - x^{2}} dx - 2\pi \int_{0}^{1} (2x - x^{2}) dx$$

$$= \pi \int_{0}^{1} \left[(2 - 2x) \sqrt{2x - x^{2}} + 2\sqrt{2x - x^{2}} \right] dx - \frac{4}{3}\pi$$

$$= \pi \left[\frac{2}{3} (2x - x^{2})^{\frac{3}{2}} \Big|_{0}^{1} + 2 \times \frac{1}{4}\pi \times 1 \right] - \frac{4}{3}\pi$$

$$= \frac{2}{3}\pi + \frac{1}{3}\pi^{2} - \frac{4}{3}\pi = \frac{1}{2}\pi^{2} - \frac{2}{3}\pi$$

3. 设a > 1, $f(t) = a^t - at$ 在 $(-\infty, +\infty)$ 内的驻点为 t(a). 问a 为何值时t(a) 最小? 并求最小值.

当 $a > e^e$ 时,t'(a) > 0;当 $a < e^e$ 时,t'(a) < 0,于是 $a = e^e$ 为t(a)的极小值点____2

$$a = e^e$$
为 $t(a)$ 的最小值点,最小值为 $t(e^e) = 1 - \frac{\ln e}{e} = 1 - \frac{1}{e}$.

五.证明题(7分)

设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导且 $f(0)=f(1)=0, f(\frac{1}{2})=1$,

试证明至少存在一点 $\xi \in (0,1)$, 使得 $f'(\xi)=1$.

证明: 设
$$F(x) = f(x) - x$$
, $F(x)$ 在[0,1]上连续在(0,1)可导, 因 $f(0) = f(1) = 0$, 有 $F(0) = f(0) - 0 = 0$, $F(1) = f(1) - 1 = -1$,......2

又由
$$f(\frac{1}{2})=1$$
, 知 $F(\frac{1}{2})=f(\frac{1}{2})-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}$,在 $[\frac{1}{2},1]$ 上 $F(x)$ 用零点定理,

根据
$$F(1)F(\frac{1}{2})=-\frac{1}{2}<0$$
 ,2

可知在 $(\frac{1}{2},1)$ 内至少存在一点 η ,使得 $F(\eta)=0$, $\eta \in (\frac{1}{2},1) \subset (0,1)$, $F(0)=F(\eta)=0$ 由 ROLLE 中值定理得 至少存在一点 $\xi \in (0,\eta) \subset (0,1)$ 使得 $F'(\xi)=0$ 即 $f'(\xi)-1=0$,证毕 -------3