Homework 2

1. Suppose the following assumptions hold:

Assumption 1.1: $\{Y_t, X'_t\}'$ is an i.i.d. random sample with

$$Y_t = X'_t \beta^0 + \varepsilon_t,$$

for some unknown parameter β^0 and unobservable random disturbance ε_t .

Assumption 1.2: $E(\varepsilon_t | X_t) = 0$ a.s.

Assumption 1.3:

(i) $W_t = W(X_t)$ is a positive function of X_t ;

(ii) The $K \times K$ matrix $E\left(X_{t}WX'_{t}\right) = Q_{w}$ is finite and nonsingular. (iii) $E\left(W_{t}^{8}\right) \leq C < \infty$, $E\left(X_{jt}^{8}\right) \leq C < \infty$ for all $0 \leq j \leq k$, and $E\left(\varepsilon_{t}^{4}\right) \leq C$;

Assumption 1.4: $V_w = E\left(X_t W_t^2 X_t' \varepsilon_t^2\right)$ is finite and nonsingular.

We consider the so-called weighted least squares (WLS) estimator for β^0 :

$$\hat{\beta}_w = \left(n^{-1} \sum_{t=1}^n X_t W X'_t\right)^{-1} n^{-1} \sum_{t=1}^n X_t W Y_t.$$

(a) Show that $\hat{\beta}_w$ is the solution to the following problem

$$\min_{\beta} \sum_{t=1}^{n} W_t (Y_t - X'_t \beta)^2.$$

(b) Show that $\hat{\beta}_w$ is consistent for β^0 ;

(c) Show that $\sqrt{n}\left(\hat{\beta}_w - \beta^0\right) \stackrel{d}{\to} N\left(0, \Omega_w\right)$ for some $K \times K$ finite and positive definite matrix Ω_w . Obtain the expression of Ω_w under (i) conditional homoskedasticity $E\left(\varepsilon_t^2 | X_t\right) = \sigma^2$ a.s. and (ii) conditional heteroskedasticity $E\left(\varepsilon_t^2 | X_t\right) \neq \sigma^2$.

(d) Propose an estimator $\hat{\Omega}_w$ for Ω_w , and show that $\hat{\Omega}_w$ is consistent for Ω_w under conditional homoskedasticity and conditional heteroskedasticity respectively.

(e) Construct a test statistic for H_0 : $R\beta^0 = r$, where r is a $J \times K$ matrix and r is a $J \times 1$ vector under conditional homoskedasticity and under conditional heteroskedasticity respectively. Derive the asymptotic distribution of the test statistic under H_0 in each case.

(f) Suppose $E\left(\varepsilon_{t}^{2} | X_{t}\right) = \sigma^{2}\left(X_{t}\right)$ is known, and we set $W_{t} = \sigma^{-1}\left(X_{t}\right)$. Construct a test statistic for H_0 : $R\beta^0 = r$, where r is a $J \times K$ matrix and r is a $J \times 1$ vector. Derive the asymptotic distribution of the test statistic under H_0 .

2. Consider the problem of testing conditional homosked asticity (H_0 : $E\left(\varepsilon_t^2 | X_t\right) = \sigma^2$) for a linear regression model

$$Y_t = X'_t \beta^0 + \varepsilon_t,$$

where X_t is a $K \times 1$ vector consisting of an intercept and explanatory variables. To test conditional homoskedasticity, we consider the auxiliary regression

$$\varepsilon_t = vech(X_t X'_t)'\gamma + v_t$$
$$= U'_t \gamma + v_t$$

Suppose Assumptions 4.1, 4.2, 4.3, 4.4, 4.7 hold, and $E\left(\varepsilon_{t}^{4}\left|X_{t}\right.\right)\neq\mu_{4}$. That is , $E\left(\varepsilon_{t}^{4}\left|X_{t}\right.\right)$ is a function of X_{t} .

- (a) Show var $(v_t | X_t) \neq \sigma_v^2$ under H_0 . That is, the disturbance v_t in the auxiliary regression model displays conditional heteroskedasticity.
- (b) Suppose ε_t is directly observable. Construct an asymptotically valid test for the null hypothesis H_0 of conditional homoskedasticity. Justify your reasoning and test statistic.