5. Applications

Exercice 1. (m) Les applications suivantes sont-elles injectives, surjectives, bijectives?

1)
$$f: \left\{ \begin{array}{ll} \mathbb{N} \to \mathbb{N} \\ n \mapsto n+1 \end{array} \right.$$
 2) $g: \left\{ \begin{array}{ll} \mathbb{Z} \to \mathbb{Z} \\ n \mapsto n+1 \end{array} \right.$ 3) $s: \left\{ \begin{array}{ll} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (y,x) \end{array} \right.$ 4) $h: \left\{ \begin{array}{ll} \mathbb{R}^2 \to \mathbb{R}^3 \\ (x,y) \mapsto (y,x-y,1+x^2) \end{array} \right.$ 5) $c: \left\{ \begin{array}{ll} \mathbb{C} \to \mathbb{C} \\ z \mapsto z^5 \end{array} \right.$ 6) $d: \left\{ \begin{array}{ll} \mathbb{Z} \to \mathbb{Z} \\ n \mapsto n+1 \text{ si } n \text{ est pair } \\ n \mapsto n-1 \text{ si } n \text{ est impair } \end{array} \right.$

Exercice 2. (c) Soit $f : \mathbb{R} \to \mathbb{R}$.

- 1) Montrer que si f est strictement monotone, alors f est injective.
- 2) La réciproque est-elle vraie?

Exercice 3. (m) Soit $f: \mathbb{Z} \to \mathbb{N}$ telle que $\begin{cases} f(n) = -2n & \text{si } n \leq 0 \\ f(n) = 2n - 1 & \text{si } n \geq 1 \end{cases}$. Montrer que f est bijective.

Exercice 4. (i) Soit $f: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ x & \mapsto & x^2 \end{array} \right.$

- 1) f est-elle injective? Surjective?
- 2) Existe-t-il $g: \mathbb{N} \to \mathbb{N}$ telle que $f \circ g = Id_{\mathbb{N}}$? Existe-t-il $h: \mathbb{N} \to \mathbb{N}$ telle que $h \circ f = Id_{\mathbb{N}}$? Si oui, les construire.

Exercice 5. © Soit $f: \mathbb{R} \to \mathbb{R}$ telle que $\forall (x,y) \in \mathbb{R}^2$, $|f(x) - f(y)| \ge |x - y|$. Montrer que f est injective.

Exercice 6. (i) Soient $f,g:\mathbb{R}\to\mathbb{R}$. On pose $h:\{x\mapsto \mathbb{R}^2\ x\mapsto (f(x),g(x))\}$. Étudier les équivalences suivantes (on montrera les implications vraies et on donnera des contre exemples aux implications fausses en choisissant convenablement f et g):

- 1) h est injective \Leftrightarrow (f est injective ou g est injective).
- 2) h est surjective \Leftrightarrow (f est surjective et g est surjective).

Exercice 7. (m) Soit $f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (xy,x+y) \end{array} \right.$

- 1) f est-elle injective? Surjective?
- 2) Reprendre l'exercice en remplaçant \mathbb{R}^2 par \mathbb{C}^2 au départ et à l'arrivée.

Exercice 8. (m) Soit $f: \left\{ \begin{array}{ccc} \mathbb{Q} & \to & [-1,1] \\ x & \mapsto & \sin(x) \end{array} \right.$ f est-elle injective? Surjective? On rappelle que $\pi \notin \mathbb{Q}$.

1

Exercice 9. (m) Soit $f: \left\{ \begin{array}{ccc} \mathbb{Z} \times (\mathbb{N} \setminus \{0,1\}) & \to & \mathbb{Q} \\ (a,b) & \mapsto & a+\frac{1}{b} \end{array} \right.$ f est-elle injective? Surjective?

Exercice 10. $\boxed{\mathbf{m}}$ Soit $f: \left\{ \begin{array}{ccc} \mathbb{C} & \to & \mathbb{C}^* \\ z & \mapsto & e^z \end{array} \right.$ Justifier que f est bien définie et qu'elle est surjective. Est-elle injective?

Exercice 11. © Soit $\theta : \left\{ \begin{array}{ccc} \mathcal{F}(\mathbb{R},\mathbb{R}) & \to & \mathbb{R} \\ f & \mapsto & f(0) \end{array} \right.$ θ est-elle injective? Surjective?

Exercice 12. © Soit E l'ensemble des fonctions continues de [0,1] dans \mathbb{R} et φ : $\begin{cases} E & \to & \mathbb{R} \\ f & \mapsto & \int_0^1 f(t)dt \end{cases}$ Est-elle injective? Surjective?

Exercice 13. (i) Soient $a,b,c \in \mathbb{Z}$ avec $a \neq 0$. Soit $f: \left\{ \begin{array}{ccc} \mathbb{Z} & \to & \mathbb{Z} \\ x & \mapsto & ax^2 + bx + c \end{array} \right.$ Déterminer une condition nécessaire et suffisante sur a,b,c pour que f soit injective.

Exercice 14. (m) Soient E, F, G, H des ensembles et soient $f \in \mathcal{F}(E, F), g \in \mathcal{F}(F, G)$ et $h \in \mathcal{F}(G, H)$.

- 1) Montrer que si $g \circ f$ est surjective et g est injective, alors f est surjective.
- 2) Montrer que si $g \circ f$ est injective et f est surjective, alors g est injective.
- 3) Montrer que si $g \circ f$ et $h \circ g$ sont bijectives, il en est de même de f, g, h.

Exercice 15. (m) Soit $f: E \to E$.

- 1) On suppose que $f \circ f = f$. Montrer que f est injective ssi f est bijective.
- 2) On suppose que $f \circ f \circ f = f$. Montrer que f est injective ssi f est surjective.

Exercice 16. (m) Démontrer que $f: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & x + \ln(x) \end{array} \right.$ et $g: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x + \sin(x) \end{array} \right.$ sont bijectives.

Exercice 17. (m) Étudier les fonctions suivantes pour étudier leur injectivité/surjectivité :

$$f_1: \left\{ \begin{array}{ccc} \mathbb{R}\setminus\{1\} & \to & \mathbb{R} \\ x & \mapsto & \frac{x+1}{x-1} \end{array} \right., \quad f_2: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{x} - \frac{1}{x^2} \end{array} \right. \text{ et } f_3: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & e^x \sin(x) \end{array} \right..$$

Exercice 18. (m) Soit $f(x) = \frac{x}{1+|x|}$ pour $x \in \mathbb{R}$. Démontrer que f est bijective de \mathbb{R} dans I où I est un intervalle à préciser, puis déterminer f^{-1} .

Exercice 19. (m) On pose $f: x \mapsto x^3 + x - 8$.

- 1) Montrer que f est une bijection de \mathbb{R} dans \mathbb{R} .
- 2) Vérifier que l'équation f(x) = x a une unique solution $x_0 \in \mathbb{R}$. Justifier alors que f^{-1} est dérivable sur \mathbb{R} et déterminer $(f^{-1})'(x_0)$.

Exercice 20. (i) Soit $f: \mathbb{R} \to \mathbb{R}$. Pour $n \in \mathbb{N}^*$, on note $f^n = f \circ f \circ \ldots \circ f$ (n fois). On suppose que $\forall x \in \mathbb{R}, \exists n_x \in \mathbb{N}^* / f^{n_x}(x) = x$. Montrer que f est une bijection.

Exercice 21. (*) Soit f une bijection de \mathbb{N} dans \mathbb{N} . Montrer qu'il existe $a, b, c \in \mathbb{N}$ tels que a < b < c et $\frac{f(a) + f(c)}{2} = f(b)$.