Ve203 Discrete Mathematics

Runze Cai

University of Michigan - Shanghai Jiao Tong University Joint Institute

Spring 2023

Part III

Selected Topics in Graph Theory

Table of Contents

- 1. Partial Order
- 2. Basic Graph Theory
- 3. Connectivity
- 4. Bipartite Graph
- 5. Matching
- 6. Trees
- 7. Spanning Trees
- 8. Kruskal's Algorithm
- 9. Dijkstra's Algorithm

Definition

An *ordered set* (or *partially ordered set* or *poset*) is an ordered pair (P, \leq) of a set P and a binary relation $\leq \subset P \times P$, called the *order* (or the *partial order*) on P such that \leq is

- ▶ reflexive: $(\forall x \in P)(x \le x)$.
- ▶ antisymmetric: $(\forall x, y \in P)(x \le y \land y \le x \rightarrow x = y)$.
- ▶ transitive: $(\forall x, y, z \in P)(x \le y \land y \le z \rightarrow x \le z)$.

We write x < y if $x \le y$ and $x \ne y$. (Other notation: \le and \prec)

Definition

If (P, \leq) is a poset, and for all $x, y \in P$, either $x \leq y$ or $y \leq x$, then it is a **total order** or **linear order**.

Example of linear/total order

Representation of Finite Poset

Let $P=(X,\leq_P)$ be a nonempty finite poset, with the ground set $X=\{x_1,x_2,\ldots,x_n\}$. A total order $L=(X,\leq_L)$ is a *linear extension* of P if $x_i\leq_P x_j$ implies $x_i\leq_L x_j$ for all $x_i,x_j\in X$.

Matrix Representation

Suppose $x_1 \leq_L x_2 \leq_L \cdots \leq_L x_n$, then the matrix representation of the poset P given by $M_P = (m_{ij})$ is upper-triangular.

Example

Consider $X = \mathcal{P}([2]) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$, ordered by inclusion \subset . Thus

$$M_X = egin{array}{ccccc} \varnothing & & \{1\} & & \{2\} & & \{1,2\} \ & 1 & & 1 & & 1 & 1 \ 0 & & 1 & & 0 & 1 \ 0 & & 0 & & 1 & & 1 \ 1,2\} & 0 & & 0 & & 0 & & 1 \ \end{array}$$

Pre-order/Quasi-order ightharpoonup reflexive: $(\forall x \in P)(x \le x)$ ▶ transitive: $(\forall x, y, z \in P)(x \le y \land y \le z \rightarrow x \le z)$ Partial Order ▶ antisymmetric: $(\forall x, y \in P)(x \le y \land y \le x \rightarrow x = y)$ Total/Linear Order ▶ total: $(\forall x, y \in P)(x \le y \lor y \le x)$

Covers in a Poset

Definition

Let P be an ordered set. Then $y \in P$ is called a cover of $x \in P$ if x < y and for all $z \in P$, $x \le z \le y$ implies $z \in \{x,y\}$. We also say that y covers x, or x is covered by y. Such x and y are called *adjacent*.

Examples

- ▶ In $(\mathcal{P}([6]), \subset)$, $\{1,3\}$ is covered by $\{1,3,5\}$, but not covered by $\{1,2,3,4\}$.
- ▶ In \mathbb{Z} , each $k \in \mathbb{Z}$ is covered by k + 1, and covers k 1.
- ▶ In $(\mathbb{N}, |)$, 15 is covered by 105, 14 is not covered by 84.
- ▶ In \mathbb{R} and \mathbb{Q} , no two elements are covers of each other.

Hasse Diagram (Bottom-up)

Hasse/Order Diagram (Idea: keep the most essential component.)

- ▶ Edges are the cover pairs (x, y) with x covered by y;
- Edges are drawn such that x is below y;
- Edges are monotone vertically.

Example

What relation does the Hasse diagram on the left corresponds to?

$$\leq = \{(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, e), (a, f), (b, d), (b, e), (b, f), (b, c), (d, e), (d, f), (a, c), (e, f)\}$$

Hasse Diagram (Top-down)

To construct a Hasse or order diagram for a poset (P, \leq)

- ▶ construct a digraph of the poset (P, \leq) so that all arcs point up (except the loops).
- ► Eliminate all loops.
- Eliminate all arcs that are redundant because of transitivity.
- Eliminate the arrows on the arcs

Hasse Diagrams of Three Different Posets

Example c d c d f c d f d f d f

Note that all three are the same as graphs, but not as posets.

Examples

▶ Power set/Boolean lattice $(2^{[n]}, \subseteq)$. $[n] = \{1, ..., n\}$, subsets of [n] ordered by inclusion.

Examples

▶ Divisors of $n \in \mathbb{N}$. (\mathbb{N} , |). Ordered by divisibility. n = 60.

Examples

▶ Partition of $[n] = \{1, ..., n\}$, ordered by refinement.

Examples

► All posets on a set with 4 elements (up to relabeling of the points).

Examples

► Any directed acyclic graph (DAG), e.g., Bayesian network.

Examples

▶ Vertices in a rooted tree (e.g., computer directory structure, family tree).

Examples

► Strongly connected components in a directed graph. (cf., preorder)

Examples

sub-trees/graphs/groups/vector spaces of a trees/graphs/groups/vector spaces.

Non-example

▶ $(\mathbb{Z}, |)$. -1|1 and 1|-1, but $1 \neq -1$.

More Definitions

Definition

Let (P, \leq) be a poset, and $a, x, y, z \in P$.

- ▶ If $a \in P$ but $\nexists x \in P$ such that x < a, then a is a *minimal element*.
- ▶ If $a \le x$ for all $x \in P$, then a is the *minimum element*.
- ▶ If $z \in P$ but $\nexists x \in P$ such that z < x, then z is a *maximal element*.
- ▶ If x < z for all $x \in P$, then z is the *maximum element*.
- If either x < y in P or y < x in P, then x and y are comparable in P, otherwise x and y are incomparable.</p>

Definition

Given a poset (P, \leq_P) and $Q \subset P$, then the (binary) relation $\leq_Q = \leq_P|_{Q \times Q}$ is a partial order on Q. The induced poset (Q, \leq_Q) is called **subposet** of (P, \leq_P) .

Comparability and Incomparability Graphs

With a poset (P, \leq) , we associate a *comparability graph* $G_1 = (P, E_1)$ and an *incomparability graph* $G_2 = (P, E_2)$, where $E_1 = \{\{x,y\} \in \binom{P}{2} \mid x,y \text{ comparable}\}$ and $E_2 = \{\{x,y\} \in \binom{P}{2} \mid x,y \text{ incomparable}\}.$

Example

Note that a comparability graph and an incomparability graph are complement graph of each other. The *complement* of graph G = (V, E) is $\overline{G} = (V, \binom{V}{2} - E)$.

An Example

Let $P = \{1, 2, 3, 4, 5, 6\}$, and $\leq = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (6, 1), (6, 4), (1, 4), (6, 5), (3, 4), (6, 2)\}$. Then

- ▶ 6 and 3 are minimal elements.
- ▶ 2, 4, and 5 are maximal elements.
- 4 is comparable to 6.
- ▶ 2 is incomparable to 3.
- ▶ 1 covers 6, and 3 is covered by 4.
- ightharpoonup 4 > 6 but 4 does not cover 6.

Another Example

- c and f are maximal elements.
- ▶ a, b, g, and h are minimal elements.
- a is comparable to f.
- c is incomparable to h.
- e covers a, and h is covered by d.
- ightharpoonup e > h but e does not cover h.

Definition

Given (P, \leq) poset,

- A *chain* in a poset is a subset $C \subset P$ such that any two elements are comparable.
- ▶ An *antichain* in a poset is a subset $A \subset P$ of incomparable elements.

Definition

A graph G=(V,E) is called a *clique* or *complete graph* if $E=\binom{V}{2}$. Conversely, the complement graph of $G=(V,\binom{V}{2})$, given by $\overline{G}=(V,\varnothing)$, is called an *independent graph* or *independent set*.

Remark

- ▶ The comparability graph of a chain is a complete graph.
- ▶ The comparability graph of an antichain is an independent graph.

Complete Graphs and Independent Graphs

Complete Graphs K_n

Independent Graphs I_n

Lemma

Given a chain C and an antichain A of a poset, $|A \cap C| \leq 1$.

Proof.

If $|A\cap C|\geq 2$, then we can find two elements that are both comparable and incomparable. Contradiction.

Definition

A chain C in P is

- **maximal** if there exists no chain C' such that $C \subsetneq C'$.
- **maximum** if for all chain C', $|C| \not< |C'|$.

The **height** (not length) of a poset P, denoted by h(P), is the maximum size of a chain in P.

Definition

An antichain A in P is

- **maximal** if there exists no antichain A' such that $A \subseteq A'$.
- **maximum** if for all chain A', $|A| \not< |A'|$.

The *width* of a poset P, denoted by w(P), is the maximum size of an antichain in P.

Remark

A maximal chain or maximal antichain CANNOT be prolonged by adding a new element.

Observation

By pigeonhole principle,

- \blacktriangleright If P can be partitioned into t antichains, then the height of P is at most t.
- \triangleright If P can be partitioned into s chains, then the width of P is at most s.

Observation

The set of maximal (or minimal) elements is an antichain.

Theorem (Mirsky's Theorem, 1971)

A poset of height h can be partitioned into h antichains.

Proof.

Recursively remove the set of maximal (or minimal) elements.

Mirsky's Theorem (dual Dilworth)

Proof. (a little more detail).

Denote the set of minimal elements of (P, \leq) by $\operatorname{Min}(P)$. Similarly for $\operatorname{Max}(P)$. Thus we have a partition of P into antichains $A_1, \ldots, A_k, \ k \in \mathbb{N}$. Since $|A_i \cap C| \leq 1$ for any chain $C \subset P$, then (recall observation)

$$k \ge \max\{|C| : C \text{ is a chain in } P\}$$

= $h(P)$

```
Input: A partial order (P, \leq)
Output: An antichain partition
of (P, \leq)

1 i \leftarrow 1
2 while P \neq \emptyset do
3 | A_i \leftarrow \text{Min}(P)
4 | P \leftarrow P - A_i
5 | i \leftarrow i + 1
6 end
7 return \{A_1, \dots, A_{i-1}\}
```

Claim: a chain of length k can be traced back from A_k . Indeed, choose $x_k \in A_k$, then $\exists x_{k-1} \in A_{k-1}$ such that $x_{k-1} < x_k$, and so on. Eventually, we have $x_1 < x_2 < \cdots < x_{k-1} < x_k$. Therefore h(P) = k.

Theorem (Dilworth's Theorem, 1950)

A poset of width w can be partitioned into w chains.

Remark

Dilworth theorem holds if the size of the poset is infinite, however, the width w needs to be finite, i.e., $w \in \mathbb{N}$.

Proof. (Perles, 1963).

We use induction on the size of the poset P.

- ▶ True when |P| = 1.
- Assume the theorem is true when $|P| \le k$, then consider a poset P with |P| = k + 1, then for each maximal antichain A, define the downset of A

$$D(A) := \{x \mid x < a \text{ for some } a \in A\}$$

and the upset of A

$$U(A) := \{x \mid x > a \text{ for some } a \in A\}$$

Proof (Cont.)

Case I. Assume there exists a maximum antichain A with $D(A) \neq \emptyset$ and $U(A) \neq \emptyset$.

Claim: $\{A, D(A), U(A)\}\$ form a partition of P.

It suffices to show that $D(A) \cap U(A) = \emptyset$. Indeed, otherwise let $x \in D(A) \cap U(A)$, then $\exists y \in A$ with x < y, and $\exists z \in A$ with z < x, resulting $y, z \in A$ comparable, contradiction.

Let $A = \{a_1, \ldots, a_w\}$, note that $|A \cup D(A)| \le k$ and $|A \cup U(A)| \le k$, thus by induction hypothesis, we obtain a chain partition $\{D_1, \ldots, D_w\}$ of $A \cup D(A)$ with maximal elements a_1, \ldots, a_w .

Similarly we can obtain a chain partition $\{U_1, \ldots, U_w\}$ of $A \cup U(A)$ with minimal elements a_1, \ldots, a_w .

Glue the chains resepctively, we have a chain partition $\{D_1 \cup U_1, \dots, D_w \cup U_w\}$ of P.

Proof (Cont.)

Case II. Otherwise for every maximum antichain A, either D(A) or U(A) is empty. (Or equivalently, either $D(A) \cup A = P$ or $U(A) \cup A = P$ for every maximum antichain A). Hence each maximum antichain is either the set of minimal or maximal elements of P.

Choose $x \in Min(P)$ and $y \in Max(P)$ with $x \le y$ (Possibly x = y), then $\{x, y\}$ is a chain.

Now $|P-\{x,y\}| \le k$ and $P-\{x,y\}$ is of width w-1 (since each antichain of size k contains x or y), hence by induction hypothesis, $P-\{x,y\}$ can be partitioned into w-1 chains. Add chain $\{x,y\}$ to obtained the w-chain partition of P.

An Application of Dilworth's Theorem

Theorem (Erdős-Szekeres, 1935)

Let $A = (a_1, ..., a_n)$ be a sequence of n different real numbers. If $n \ge sr + 1$ then either A has an increasing subsequence of s + 1 terms or a decreasing subsequence of r + 1 terms (or both).

Proof by Dilworth's Theorem.

Define the partial order \leq on A by $a_i \leq a_j$ iff $a_i \leq a_j$ and $i \leq j$. (Check it!) Then we can observe that an increasing subsequence of A corresponds to a chain in (A, \leq) , and an decreasing subsequence in A corresponds to an antichain in (A, \leq) .

Assume that there is no decreasing subsequence of length r+1, then by Dilworth's Theorem, the poset (A, \preceq) can be **partitioned** into k chains C_1, \ldots, C_k , with $k \le r$. Therefore $|C_1| + \cdots + |C_k| = n \ge sr + 1$. By pigeonhole principle, there exsits a chain C_j with $|C_j| \ge s + 1$, which corresponds to an increasing subsequence of length at least s+1.

Divisibility Revisited

Consider the set $[32] = \{1, 2, \dots, 31, 32\}$, ordered by divisibility.

Several Equivalent Major Theorems in Combinatorics

- Kőnig's Theorem
- ► Menger's Theorem (1929)
- ► Max-Flow Min-Cut theorem
- ► König-Egerváry theorem (1931)
- ▶ Birkhoff-Von Neumann Theorem (1946)
- ► Hall's Theorem
- ► Dilworth's Theorem

and duality in linear programming.

Table of Contents

- 1. Partial Order
- 2. Basic Graph Theory
- 3. Connectivity
- 4. Bipartite Graph
- 5. Matching
- 6. Trees
- 7. Spanning Trees
- 8. Kruskal's Algorithm
- 9. Dijkstra's Algorithm

Graphs

Definition

A *graph* G consists of a set of *vertices*, denoted by V(G), a set of edges, denoted by E(G), and a relation called *incidence* so that each edge is incident with either one or two vertices, called *ends* (or *endpoints*). For convenience, we sometimes write G = (V, E) to indicate that G is a graph with *vertex set* V and *edge set* E.

Definition

Two distinct vertices u, v in a graph G are **adjacent** if there is an edge with ends u, v. We also call u, v neighbors in G.

Remark

- Vertices are also called nodes, points, locations, stations, etc.
- Edges are also called arcs, lines, links, pipes, connectors, etc.

Loops, Parallel Edges, and Simple Graphs

Definition

An edge with just one end is called a *loop*. Two distinct edges with the same ends are are *parallel* (called "parallel edges" or "multiple edges"). A graph without loops or parallel edges is called *simple*.

Remark

We specify a simple graph (V, E) by its *vertex set* V, and *edge set* E, where $E \subset \binom{V}{2}$. We write e = uv or e = vu for an edge $e \in E$ with ends $u, v \in V$. (That is, $e = \{u, v\}$.)

Isomorphism

Definition

An *isomorphism* from a simple graph G to a simple graph H is a bijection $f: V(G) \to V(H)$ such that $uv \in E(G)$ iff $f(u)f(v) \in E(H)$. We say "G is *isomorphic* to H", denoted $G \cong H$, if there is an isomorphism from G to H.

Remark

The *relation isomorphism*, consisting of the set of ordered pairs (G, H) such that G is isomorphic to H is an equivalence relation on the class of simple graphs.

Representing Graph

Example

- By specifying the vertex and edge sets of the graph.
- By using database structure.
- ▶ By showing a "drawing" of the graph.

Adjacency Tables

An adjacency table lists all the vertices of the graph and the vertices adjacent to them. Consider G = (V, E) with $V = \{a, b, c, d, e\}$ and $E = \{\{a, b\}, \{a, c\}, \{a, e\}, \{c, d\}, \{c, e\}, \{d, e\}\}.$

Verte	x Adjacent Vertices
а	b, c, e
b	a
С	a, d, e
d	c, e
е	a, c, d

Using Graphs as Models

Example

Acquaintance relations.

Definition

The *complement* \overline{G} of a simple graph G is the simple graph with vertex set V(G) defined by $uv \in E(\overline{G})$ iff $uv \notin E(G)$. Note that given graph G = (V, E), we have $\overline{G} = (V, \binom{V}{2}) - E$).

Using Graphs as Models

Example

▶ Job assignments.

Definition

A graph (not necessarily simple) is **bipartite** if V(G) is the union of two disjoint (possibly empty) independent sets (i.e., a set of pairwise nonadjacent vertices), called **partite sets** of G.

	Α	В	C
1	1	0	0
2	1	1	0
1 2 3	1	0	0
4 5	0	1	0
5	0	0	1

Using Graphs as Models

Example

- ► Maps and coloring.
- ► Routes in road networks.
- ▶ ...

Standard Graphs

Definition

The *null graph* is the graph whose vertex set and edge set are empty.

Definition

A graph G is *complete* if it is simple and all pairs of distinct vertices are adjacent. A complete graph on n vertices is denoted by K_n .

Definition

A *clique* in a graph is a set of pairwise adjacent vertices.

Standard Graphs

Definition

A graph G is called a **path** if the vertices can be ordered as v_1, \ldots, v_n , and edges can be ordered as e_1, \ldots, e_{n-1} such that $e_i = v_i v_{i+1}$, $i = 1, \ldots, n$. A path on n vertices is denoted by P_n .

Standard Graphs

Definition

A graph G is a *cycle* if V(G) can be ordered as v_1, \ldots, v_n , and E(V) can be ordered as e_1, \ldots, e_n , where

$$e_i = \begin{cases} v_i v_{i+1}, & 1 \le i \le n-1 \\ v_n v_1, & i = n \end{cases}$$

A cycle on n vertices is denoted by C_n .

Subgraphs

Definition

If G, H have $V(H) \subset V(G)$, and $E(H) \subset E(G)$ with incidence in H the same as G, then H is a **subgraph** of G, denoted by $H \subset G$.

Obviously, given $H_1, H_2 \subset G$, then

▶ $H_1 \cap H_2 \subset G$, with

$$V(H_1 \cap H_2) = V(H_1) \cap V(H_2)$$

 $E(H_1 \cap H_2) = E(H_1) \cap E(H_2)$

 $ightharpoonup H_1 \cup H_2 \subset G$, with

$$V(H_1 \cup H_2) = V(H_1) \cup V(H_2)$$

 $E(H_1 \cup H_2) = E(H_1) \cup E(H_2)$

Subgraphs

Remark

When we name a graph without naming its vertices, we often mean its isomorphsim class. Technically, "H is a subgraph of G" means that some subgraph of G is isomorphic to H (we say "G contains a **copy** of H"). That is, $H \subset G$ if $\exists G'$ such that $H \cong H' \subset G$.

Example

- $ightharpoonup C_3$ is a subgragh of K_5 .
- $ightharpoonup P_1$ is a subgragh of K_5 .
- $ightharpoonup K_5$ is a subgragh of K_6 .

Degree of Vertices

Definition

The *degree* of a vertex v in a graph G, denoted deg(v) is the number of incident edges (loops counted twice). We write $deg_G(v)$ in case G is not clear (e.g., when G is a subgraph of some other graph).

Theorem

For all finite graph G = (V, E),

$$\sum_{v \in V} \deg(v) = 2|E|$$

Corollary (Handshaking lemma/degree sum formula)

Every graph has an even number of odd degree vertices.

Degree of Vertices

Proof.

By double counting.

$$\begin{aligned} 2|E| &= \sum_{e \in E} (\text{number of vertices } v \text{ incident to } e) \\ &= \sum_{e \in E} \sum_{v \in V} \begin{cases} 1, & \text{if } e \text{ is incident to } v \\ 0, & \text{o/w} \end{cases} \\ &= \sum_{v \in V} \sum_{e \in E} \begin{cases} 1, & \text{if } e \text{ is incident to } v \\ 0, & \text{o/w} \end{cases} \\ &= \sum_{v \in V} \deg(v) \end{aligned}$$

Table of Contents

- 1. Partial Order
- 2. Basic Graph Theory
- 3. Connectivity
- 4. Bipartite Graph
- 5. Matching
- 6. Trees
- 7. Spanning Trees
- 8. Kruskal's Algorithm
- 9. Dijkstra's Algorithm

Walks

Definition

A **walk** W in a graph G is a sequence $v_0, e_1, v_1, \ldots, e_n, v_n$ such that every e_i has ends v_{i-1} and v_i . If $v_0 = v_n$, we say that W is closed.

Definition

The **length** of a walk, path, or cycle is its number of edges.

Remark

- A walk is **NOT** a graph in general.
- A path is a graph.
- If v_0, \ldots, v_n in a walk are distinct, we also call this walk a path.
- ► A walk with only 1 vertex has length 0.

Walks

Example

- W = 3, c, 4, d, 5, h, 3, b, 2, g, 6, f, 1, i, 1. W is NOT a closed walk (b/c 3 is not the same vertex as 1). The length of W is 7.
- ▶ W' = 3, b, 2, g, 6, e, 5, h, 3. W' is a closed walk, with with length 4. Note that $W' \cong C_4$.

Definition

A graph G is **connected** if for all $u, v \in V(G)$, there is a walk from u to v (also called a u, v-walk). Otherwise, G is **disconnected**.

Theorem

If there is a walk from u to v, then there is a path from u to v.

Proof.

Claim: The path from u to v is the shortest walk from u to v (i.e., the walk of minimum length.)

Indeed. Let W be a walk of minimum length from u to v, say

 $v_0e_1v_1e_2v_2\cdots e_nv_n$, with $u=v_0$ and $v=v_n$.

Suppose this is **NOT** a path, then there exists $v_i = v_j$ such that

 $0 \le i < j \le n$. Therefore $v_0 e_1 v_1 \cdots v_i e_{j+1} v_{j+1} \cdots e_n v_n$ is a shorter walk from u to v, which is a contradiction.

Theorem

G is disconnected iff there is a partition $\{X,Y\}$ of V(G) such that no edge has an end in X and an end in Y.

Proof.

 (\Leftarrow) True by definition of connectivity.

 (\Rightarrow) Choose $x, y \in V(G)$ such that no walk from x to y exists, define

$$X := \{z \mid \exists \text{ a walk from } x \text{ to } z\}$$

 $Y := V(G) \setminus X$

Claim: no edge has an end in X and an end in Y, which is obvious.

Theorem

Given $H_1, H_2 \subset G$, H_1 , H_2 connected graphs, and $V(H_1) \cap V(H_2) \neq \emptyset$, then $H_1 \cup H_2$ is connected.

Proof.

Let $u, v \in V(H_1 \cup H_2)$. Choose $w \in V(H_1 \cap H_2)$ $(\neq \varnothing)$, note that u, v is either in H_1 or H_2 , w.l.o.g., let $u \in V(H_1)$, $v \in V(H_2)$. For i = 1, 2, H_i is connected, so there is a u, w-walk W_i . Now concatenate W_1 and W_2 , we have a u, v-walk. Since u, v are arbitrary, therefore $H_1 \cup H_2$ is connected. \square

A Result From Analysis (iii) \Rightarrow (ii) \Rightarrow (ii) \Rightarrow (iii)

Let U be an open subset of a normed space over \mathbb{R} , TFAE,

- (i) *U* is connected.
- (ii) Any two points of U can be joined by a path in U (path connected).
- (iii) Any two points of U can be joined by a polygonal path in U.

Definition

A maximal connected subgraph of G is a subgraph that is connected and is **not** contained in any other connected subgraph of G.

Remark

A path/subgraph in G is maximal if it cannot be enlarged.

Definition

A **component** of a graph G is a maximal non-empty connected subgraph of G. The number of components of G is denoted comp(G).

Example

$$comp(G) = 5$$

Theorem

Every vertex is in a unique component.

Proof.

Let $v \in V(G)$. Note that v is in a connected subgraph $(\{v\}, \varnothing)$, which consists of only v and no other vertices or edges. If H_1 and H_2 are connected subgraphs containing v, then $H_1 \cap H_2 \neq \varnothing$, thus $H_1 \cup H_2$ is connected. Therefore v is in a unique component.

Remark

- Components are pairwise disjoint;
- ► No two components share a vertex;
- Adding an edge with endpoints in distinct components combine the two components into one.
- ► Adding/Deleting an edge decreases/increases the number of components by at most 1.

Deleting Edges

Given graph G, $S \subset E(G)$, then G - S is the graph obtained from G by deleting S.

Deleting Vertices

Given graph G, $X \subset V(G)$, then G - X is the graph obtained from G by deleting every vertex in X and every edge incident to a vertex in X.

Notation

If $e \in E(G)$ or $v \in V(G)$, we define

▶
$$G - e := G - \{e\}$$
;

▶
$$G - v := G - \{v\}$$
.

For example,

$$G - v - w = G - \{v, w\}.$$

Definition

An edge $e \in E(G)$ is called a *cut-edge* or *bridge* if no cycle contains e.

Theorem

Given graph G and $e \in E(G)$, then

- either e is a cut-edge and comp(G e) = comp(G) + 1;
- ightharpoonup or e is NOT a cut-edge and comp(G e) = comp(G).

Proof.

Let u, v be the ends of e (u = v if e is a loop). Note that G has a cycle containing e, iff G - e contains a path from u to v, iff u, v are in the same component of G - e. Now

- ▶ If u, v are in the same component H of G e, then H + e is a component of G, so comp(G e) = comp(G).
- ▶ If u, v are in distinct components, say H_1 , H_2 of G e, then $H_1 \cup H_2 + e$ is a component of G, so comp(G e) = comp(G) + 1.

Definition

A vertex $v \in V(G)$ is called a *cut-vertex* whose deletion increases the number of components.

Table of Contents

- 1. Partial Order
- 2. Basic Graph Theory
- Connectivity
- 4. Bipartite Graph
- 5. Matching
- 6. Trees
- 7. Spanning Trees
- 8. Kruskal's Algorithm
- 9. Dijkstra's Algorithn

Definition

A **bipartition** of a graph G is a pair (A,B) where $A,B\subset V(G)$ with $A\cap B=\varnothing$, $A\cup B=V(G)$ such that every edge has an end in A and an end in B. G is **bipartite** if it admits a bipartition.

Definition

A *complete bipartite graph* or *biclique*, denoted $K_{m,n}$, is a simple bipartite graph with bipartition (A, B) with |A| = m and |B| = n such that every vertex in A is adjacent to every vertex in B.

Theorem

For every graph G, TFAE

- (i) G is bipartite.
- (ii) G has no cycle of odd length.
- (iii) G has no closed walk of odd length.

Proof.

(i) \Rightarrow (ii): Assume that $G = (A \cup B, E)$ is bipartite and let $C \subset G$ be a cycle. Then every other vertex of C is in A and every other vertex is in B, hence C must have even length. (It takes even number of steps in a bipartite graph to return to the starting point.)

Proof (Cont.)

(ii) \Rightarrow (iii): We show the contrapositive, i.e., \neg (iii) $\Rightarrow \neg$ (ii). Let G have a closed walk of odd length, and choose such a walk $v_0, e_1, v_1, \ldots, v_n$ of minimum length. Claim: this walk is a cycle (of odd length). If not, suppose there exist $1 \le i < j \le n$ with $v_i = v_j$, then

- \triangleright either j-i is odd and v_i, e_i, \ldots, v_j is a shorter closed walk of odd length,
- ightharpoonup or j-i is even and $v_0,e_1\ldots v_i,e_{j+1},v_{j+1},\ldots,v_n$ is a shorter closed walk of odd length.

It follows that v_1, \ldots, v_n must be distinct $(v_0 = v_n)$, hence $(\{v_1, \ldots, v_n\}, \{e_1, \ldots, e_n\})$ is an odd cycle.

Proof (Cont.)

(iii) \Rightarrow (i): Let G be a graph with no closed walk of odd length, w.l.o.g., we may assume that G is connected. Choose a "base point" $u \in V(G)$, observe that for every vertex $v \in V(G)$,

- either all u, v-walks have even length,
- or all all u, v-walks have odd length.

(Note that otherwise can concatenate and odd and an even walk to form a closed walk of odd length.) Now define

$$A := \{ v \in V(G) \mid \exists u, v\text{-walk of even length} \}$$

 $B := \{ v \in V(G) \mid \exists u, v\text{-walk of odd length} \}$

It follows that $A \cap B = \emptyset$. Since G is connected, we have $A \cup B = V(G)$. It follows that (A, B) is a bipartition of G, hence (i) is satisfied.

Induced Subgraph

Definition

A subgraph $H \subset G$ is **induced** if every edge of G with both ends in V(H) is in E(H). Equivalently, H is induced if $H = G - (V(G) \setminus V(H))$.

Remark

- ▶ An *induced path* is sometimes called a *snake*.
- ▶ An *induced cycle* is sometimes called a *chordless cycle* or a *hole*.

Induced Subgraph

NOT induced subgraph

Theorem

For every graph G, TFAE

- (i) G is bipartite.
- (ii) G has no cycle of odd length.
- (iii) G has no closed walk of odd length.
- (iiii) G has no induced cycle of odd length.

Proof.

(ii)⇒(iiii). Immediate.

(iiii) \Rightarrow (ii). We show the contrapositive, i.e., \neg (ii) \Rightarrow \neg (iiii). Suppose G has a cycle of odd length, choose a shortest cycle $C \subset G$. Note that C is induced, otherwise $\exists e \in E(G) \setminus E(C)$, with ends x, y. But now either C_1 or C_2 is is an odd cycle of shorter length, contradiction.

Remark

The *girth* of a graph with a cycle is the length of its shortest cycle. A graph with no cycle has infinite girth.

Table of Contents

- 1. Partial Order
- 2. Basic Graph Theory
- 3. Connectivity
- 4. Bipartite Graph
- 5. Matching
- 6. Trees
- 7. Spanning Trees
- 8. Kruskal's Algorithm
- 9. Dijkstra's Algorithn

Matching

Definition

A **matching** in a graph G = (V, E) is a subset of edges M such that M does not contain a loop and no two edges in M are incident with a common vertex. (i.e., the graph (V, M) has all vertices of degree < 2)

Definition

- ▶ A matching M is maximal if there is no matching M' such that $M \subseteq M'$.
- A matching M is maximum if there is no matching M' such that |M| < |M'|.
- ▶ A *perfect matching* is a matching *M* such that every vertex of *G* is incident with an edge in *M*.

Example

- ▶ $K_{n,n}$ has n! perfect matchings.
 ▶ K_{2n+1} has 0 perfect matchings.
- K_{2n} has $(2n-1)(2n-3)\cdots(3)(1)=(2n-1)!!$ perfect matchings.

Matching

Matching

Remark

A necessary but not sufficent condition for a graph G to have a perfect matching is that |V(G)| is even.

Definition

If $X \subset V(G)$, the **neighbors** of X is

$$N(X) := \{ v \in V(G) \setminus X \mid v \text{ is adjacent to a vertex in } X \}$$

For simplicity, we write $N(x) := N(\{x\})$.

Definition

The edges $S \subset E(G)$ *covers* $X \subset V(G)$ if every $x \in X$ is incident to some $e \in S$.

Definition

The vertices $X \subset V(G)$ *covers* $S \subset E(G)$ if every $e \in S$ is incident to some $v \in X$.

Theorem (Hall)

Let G be a finite bipartite graph with bipartition (A, B). There exists a matching covering A iff there does not exist $X \subset A$ with |N(X)| < |X|.

Remark

The condition

$$\nexists X \subseteq A \text{ with } |N(X)| < |X|$$

is equivalent to

$$|N(X)| \ge |X| \ \forall X \subseteq A$$

This is called the *Hall's condition*.

TONCAS

It is straightforward that Hall's conditions is necessary, Hall's theorem states that it turns out to be sufficient as well. The phenomenon is in fact prevalent, and is called *TONCAS* (*The Obvious Necessary Condition is Also Sufficient*) in combinatorics.

The matching covering A induces an injection $f:A\to B$. The Cantor-Bernstein Theorem can be reformulated as

Theorem

If A and B are subsets of the two respective sides of a bipartite graph, and if there exist two matchings covering A and B respectively, then there is a matching covering $A \cup B$.

Note that the trivial generalization of Hall's therem to infinite graph is not true.

Proof via Dilworth's Theorem.

Necessity. Immediate by pigeonhole principle.

Sufficiency. Let $G = (A \cup B, E)$ be a bipartite graph satisfying Hall's condition that $|N(X)| \ge |X|$ for all $X \subset A$. Define a poset (P, \le) by letting $P = A \cup B$, and x < y if $x \in A$, $y \in B$, and $xy \in E$. Suppose that the largest antichain is $S = \{x_1, \ldots, x_h, y_1, \ldots, y_k\}$, then

$$N(\lbrace x_1,\ldots,x_h\rbrace)\subset B\setminus\lbrace y_1,\ldots,y_k\rbrace$$

(for otherwise S would not be an antichain if $y \in \{y_1, \ldots, y_k\}$ were the neighbor of some $x \in \{x_1, \ldots, x_h\}$.) Thus Hall's condition implies $|B| - k \ge h$, i.e., $|B| \ge k + h$.

Proof (Cont.)

By Dilworth's theorem, P can be partitioned into k+h chains, denote the matching by M, then

$$|M| + (|A| - |M|) + (|B| - |M|) = k + h \le |B|$$

that is,

$$|A| + |B| - |M| \le |B|$$

thus

$$|M| \ge |A|$$

i.e., there is a matching M covering A.

Theorem (Hall, balanced version, see Lovász)

Let G be a finite bipartite graph with bipartition (A, B), then G has a perfect matching iff |A| = |B| and $|N(X)| \ge |X|$ for all $X \subset A$.

Proof. (sufficiency).

First we show that Hall's condition is symmetric, i.e., $|N(Y)| \ge |Y|$ for all $Y \subset B$. Indeed, take $Y \subset B$. Note that $N(A - N(Y)) \subset B - Y$, thus $|N(A - N(Y))| \le |B - Y|$. By Hall's condition, $|A - N(Y)| \le |N(A - N(Y))| \le |B - Y|$, thus $|A| - |N(Y)| \le |B| - |Y|$, and it follows that N(Y) > |Y|.

Proof. (sufficiency, cont.)

We proceed by induction on |A|.

Base case: |A| = |B| = 1. Trivial.

Inductive case: Assume the IH that a perfect matching exists for

|A| = |B| < n. Let |A| = |B| = n, take $a \in A$ and $b \in B$ that are connected by

an edge. If $G - \{a, b\}$ satisfies Hall's condition, we are done.

Proof (Cont.)

Otherwise, we can find a subset $X \subset A - a$ such that |N(X) - b| < |X|, and thus |N(X)| = |X|. Let H and H' be the subgraphs induced by $X \cup N(X)$ and $(A - X) \cup (B - N(X))$, respectively. Note that both H and H' are balanced bipartite graphs (of smaller size). Now H satisfies Hall's condition by restriction, and H' satisfies Hall's condition by argument prior to the induction. That is, $N(B - N(X)) \subset A - X$ and satisfies Hall's condition. This completes the proof.

Definition

A **vertex cover** of a graph G is a set $X \subset V(G)$ if every $e \in E(G)$ is incident with a vertex in X. The vertices in X **cover** E(G).

Remark

The size of the smallest vertex cover is denoted $\beta(G)$, and the size of the largest matching is denoted $\alpha'(G)$.

Theorem (Kőnig-Egerváry)

Given a finite bipartite graph G, $\alpha'(G) = \beta(G)$.

Proof.

First of all, it is clear that $\alpha'(G) \leq \beta(G)$.

For the other direction. Let (A,B) be a bipartition of G, and X a vertex cover of minimum size, and Y=V(G)-X. Let H_1 and H_2 be the subgraphs induced by $(A\cap X)\cup (B\cap Y)$ and $(A\cap Y)\cup (B\cap X)$ respectively. Note that H_1 and H_2 have bipartitions $(A\cap X,B\cap Y)$ and $(A\cap Y,B\cap X)$ respectively, and there is no edge between $A\cap Y$ and $B\cap Y$. Note that there is no edge between $A\cap Y$ and $B\cap Y$ (otherwise that edge is not covered). Now we claim that

- ▶ H_1 has a matching covering $A \cap X$, and
- ▶ H_2 has a matching covering $B \cap X$.

Proof (Cont.)

Indeed, consider H_1 , suppose there is no such matching, i.e., |N(Z)| < |Z| for some $Z \subset A \cap X$, then we can switch Z and N(Z) for a smaller vertex cover $X' = ((A \cap X) - Z) \cup N(Z)$, a contradiction. It remains to show that X' is indeed a vertex cover. The part for H_2 is similar.

Theorem (Fulkerson, 1956)

Kőnig-Egerváry theorem implies Dilworth theorem (and vice versa).

Proof.

Given a finite poset $P=(X,\leq)$, define a bipartite graph $B_P=(X^-\cup X^+,E)$ with bipartition (X^-,X^+) , where X^- and X^+ are copies of X, and $x^-y^+\in E$ iff x< y in P.

Proof (Cont.)

For every matching M of B_P (not necessarily maximum or maximal), we can associate with it a chain partition \mathcal{C}_M of P, then $|\mathcal{C}_M| = |X| - |M|$.

Take a minimum vertex cover R of B_P , let

$$A_R := \{x \in X \mid \{x^-, x^+\} \cap R = \emptyset\}$$

then

- \triangleright A_R is an antichain.
- $\blacktriangleright \{x^-, x^+\} \not\subset R \text{ for all } x \in X.$

As a consequence, $|A_R| = |X| - |R|$. Take M and R of the same size (in B_P), we get C_M and A_R of the same size (in P). This is Dilworth theorem.

A_R is an antichain

Take any $x, y \in A_R$, we need to show that x and y are incomparable. Indeed, we know that

$$\{x^-, x^+, y^-, y^+\} \not\subset R$$
 (by definition of A_R)
 $\Rightarrow \{x^-y^+, y^-x^+\} \not\subset E$ (no edge necessary to cover)
 $\Rightarrow x$ and y are incomparable (by definition of B_P)

$$\{x^-, x^+\} \not\subset R$$
 for all $x \in X$

That is, at most one of x^- or x^+ is in the minimum vertex cover R. Indeed, consider $x \in P$, note that the subgraph of B_P with vertices $D(x)^- \cup U(x)^+$ is **complete bipartite**, thus either its downset $D(x)^-$ xor its upset $U(x)^+$ is in R. Since R is minimum, we can skip x^- or x^+ . Now for each $x \in X$, we have two classes,

- ▶ either none of $\{x^-, x^+\}$ is in R, i.e., $x \in A_R$.
- ightharpoonup or one of $\{x^-, x^+\}$ is in R.

hence $|A_R| = |X| - |R|$.

Definition

Given graphs G and H, a homomorphism from G to H is a map from V(G) to V(H) which takes edges to edges. That is, a graph homomorphism $f:G\to H$ is a pair of functions $f=(f_V,f_E)$ such that

- $ightharpoonup f_V:V(G)\to V(H),\ u\mapsto f_V(u)$

Remark

The homomorphsm $f: G \to H$ could map a nonedge to a single vertex, a nonedge, or an edge.

f is a homomorphism

$$f_V: V(G) \rightarrow V(H)$$
 $a \mapsto 2$
 $b \mapsto 1$
 $c \mapsto 4$

$$f_E: E(G) \rightarrow E(H)$$
 $ab \mapsto 12$
 $bc \mapsto 14$

f is a homomorphism

$$f_V: V(G) \rightarrow V(H)$$
 $a \mapsto 2$
 $b \mapsto 3$
 $c \mapsto 2$

$$f_E: E(G) \rightarrow E(H)$$
 $ab \mapsto 23$
 $bc \mapsto 23$

f is NOT a homomorphism

$$f_V: V(G) \rightarrow V(H)$$

 $a \mapsto 3$
 $b \mapsto 4$
 $c \mapsto 1$

$$f_E: E(G) \to E(H)$$

 $ab \mapsto 34 \notin E(H)$

f is a NOT homomorphism

$$f_V: V(G) \rightarrow V(H)$$
 $a \mapsto 2$
 $b \mapsto 2$
 $c \mapsto 1$

$$f_E: E(G) \to E(H)$$
 $ab \mapsto 22 \notin E(H)$

Theorem

A graph G bipartite iff there exists a graph homomorphism $f: G \to K_2$.

Proof.

(\Leftarrow) Suppose $f: G \to K_2$ is a graph homomorphism, say we have

$$f_V: V(G) \to V(K_2) = \{0,1\}$$

Let $A = f_V^{-1}(0)$ and $B = f_V^{-1}(1)$, then we claim V(G) = (A, B) is the desired partition. (First of all, it is indeed a partition, i.e., the partition of the domain induced by f_V .) Suppose $\exists uw \in E(G)$ and $u, w \in A$, then

$$f_E(uw) = f_V(u)f_V(w) = 00 \notin E(K_2)$$

Proof. (Cont).

 (\Rightarrow) . Let G be a bipartite graph with bipartition (A, B). We define

$$f_V: V(G) \rightarrow V(K_2) = \{0, 1\}$$

$$f_V(u) = \begin{cases} 0, & \text{if } u \in A \\ 1, & \text{if } u \in B \end{cases}$$

Now if $u \in A$, $w \in B$, then

$$f_E(uw) = f_V(u)f_V(w) = 01 \in E(K_2) = \{01, 10\}$$

Therefore $f = (f_V, f_E)$ is the desired homomorphism.

Remark

A graph G is bipartite if $E(G) = \emptyset$, where f_E is the empty function.

Graph Isomorphism

Definition

Graphs G and H are *isomorphic* if there exists $f:G\to H$ and $g:H\to G$ such that $g\circ f=\mathrm{id}_G$ and $f\circ g=\mathrm{id}_H$, where the identity and composition are given by

- ▶ Identity: $id_G := (id_{V(G)}, id_{E(G)}) : G \to G$
- ▶ Composition: $f \circ g := (f_V \circ g_V, f_E \circ g_E)$

Theorem

The two definitions of graph homomorphisms are equivalent.

Proof.

Check definitions.

Table of Contents

- 1. Partial Order
- 2. Basic Graph Theory
- 3. Connectivity
- 4. Bipartite Graph
- 5. Matching
- 6. Trees
- 7. Spanning Tree
- 8. Kruskal's Algorithm
- 9. Dijkstra's Algorithn

Definition

A forest is a graph with no cycles. A tree is a connected forest.

Theorem

If G is is a forest, then comp(G) = |V(G)| - |E(G)|. In particular, if T is a tree, then |V(T)| = |E(T)| + 1.

Proof.

Induction on |E(G)|.

Base case. If |E(G)| = 0, G has no edge, thus comp(G) = |V(G)|. Inductive case. |E(G)| > 0. Choose $e \in E(G)$, since G has no cycle, then e is a cut-edge, thus

$$\mathsf{comp}(G) = \mathsf{comp}(G - e) - 1$$

$$= |V(G - e)| - |E(G - e)| - 1 \qquad \text{(by IH)}$$

$$= |V(G)| - |E(G)|$$

Definition

A **leaf** is a vertex of degree 1.

Theorem

Let T be a tree with $|V(T)| \ge 2$, then T has at least 2 leaves, and if there are only 2 leaves, then T is a path.

Proof.

Note that $2 = 2|V(T)| - 2|E(T)| = \sum_{v \in V(T)} (2 - \deg(v))$. Since T is connected, and $|V(T)| \ge 2$, all vertices have degree > 0. This means there are at least 2 leaves.

Further if there are exactly 2 leaves, then all other vertices have degree 2, therefore T is a path. (Take any maximal path in T, note that any extra edge would increase the degree of interior vertices to 3, or increases the degree of leaves to 2)

Lemma

If T is a tree and v is a leaf, then T - v is a tree.

Proof.

Observe that T - v has no cycle and is connected.

Theorem

If T is a tree, and $u, v \in V(T)$, then there is a unique u, v-path.

Proof.

Induction on |V(T)|.

Base case. |V(T)| = 1. We have u = v.

Inductive case.

- If there is a leaf $w \neq u, v$, apply induction to T w;
- \triangleright Otherwise T is a path with ends u, v, which is unique by IH.

Theorem

Let T be a graph with n vertices. TFAE

- (i) T is a tree;
- (ii) T contains no cycles, and has n-1 edges;
- (iii) T is connected, and has n-1 edges;
- (iv) T is connected, and each edge is a bridge;
- (v) any two vertices of T are connected by exactly one path;
- (vi) T contains no cycles, but the addition of any new edge creates exactly one cycle.

Table of Contents

- 1. Partial Order
- 2. Basic Graph Theory
- 3. Connectivity
- 4. Bipartite Graph
- 5. Matching
- 6. Trees
- 7. Spanning Trees
- 8. Kruskal's Algorithn
- 9. Dijkstra's Algorithn

Spanning Trees

Definition

If T is a subgraph of a graph G, and T is a tree with V(T) = V(G), then we call T a **spanning tree** of G.

Notation

If G is a graph, $H \subset G$ and $e \in E(G)$, then we define H + e to be the subgraph of G obtained from H by adding e and its ends.

Remark

- ▶ Removing edges leads to spanning subgraphs.
- Removing vertices leads to induced subgraphs.

Spanning Trees

Theorem

Let G be a finite connected graph with $|V(G)| \ge 2$. If $H \subseteq G$ such that

- (i) either H is minimal such that V(H) = V(G) and H is connected,
- (ii) or H is maximal such that H has no cycles,

then H is a spanning tree of G.

Proof.

- (i) It suffices to show that H is a tree. Suppose that H has a cycle C, choose $e \in E(C)$. Now H e is connected (b/c e is not a cut-edge), but this contradicts that H is minimal.
- (ii) Note that V(H) = V(G) by maximality of H. It remains to show that H is connected. Suppose not, choose a partition $\{X,Y\}$ of V(H) = V(G) such that no edge of H has one end in X and the other in Y. Choose $e \in E(G)$ such that e has one end in X and the other in Y (b/c G connected), but now H + e contradicts that H is maximal.

Spanning Trees

Theorem

If
$$|V(G)| = |E(G)| + 1$$
, and

- (i) either G has no cycles,
- (ii) or G is connected,

then G is a tree.

Proof.

- (i) Since G is a forest, then 1 = |V(G)| |E(G)| = comp(G).
- (ii) Choose a spanning tree T of G (possible b/c G connected), then

$$|E(G)| = |V(G)| - 1 = |V(T)| - 1 = |E(T)|$$

thus G = T, so G is a tree.

Remark

Note that (i) and (ii) together implies that G is a tree.

Spanning Trees

Definition

Let G be a graph, and $T \subset G$ a spanning tree of G, $f \in E(G) \setminus E(T)$. If C is a cycle of G such that $C - f \subset T$, we call C a **fundamental cycle** of f w.r.t. T.

Observation

For every edge $f \in E(G) \setminus E(T)$, there is a **unique** fundamental cycle of f w.r.t. T.

Spanning Trees

Theorem

Let G be a graph, and $T \subset G$ a spanning tree of G, $f \in E(G) \setminus E(T)$, $e \in E(T)$.

- (i) If e is in the fundamental cycle of f w.r.t. T, then T e + f is a spanning tree.
- (ii) If f has one end in each component of T e, then T e + f is a spanning tree.

Spanning Trees

Proof.

- (i) Note that T + f is connected and e is not a cut-edge of T + f, so T + f e is a connected graph with n vertices and n 1 edges, so it is a tree, and in particular, a spanning tree of G.
- (ii) If f has one end in each component of T-e, then T-e+f is a forest (why?) with n vertices and n-1 edges, so it is a tree, and in particular, a spanning tree of G.

Table of Contents

- 1. Partial Order
- 2. Basic Graph Theory
- 3. Connectivity
- 4. Bipartite Graph
- 5. Matching
- 6. Trees
- 7. Spanning Trees
- 8. Kruskal's Algorithm
- 9. Dijkstra's Algorithm

Weighted Graph

Definition

A weighted graph is a graph G with a weight function $w: E(G) \to \mathbb{R}$. A minimum-cost tree (or minimum-weight spanning tree) of G is a spanning tree T for which

$$\sum_{e \in E(T)} w(e)$$

is minimum.

Kruskal's Algorithm

Kruskal's Algorithm

- ▶ Input: A connected weighted graph G = (V, E).
- Output: A minimum-cost tree T.
- Procedure: Choose a sequence of edges e_1, e_2, \ldots, e_m according to the rule that e_i is an edge of minimum weight in $E(G) \setminus \{e_1, \ldots, e_{i-1}\}$ so that $\{e_1, \ldots, e_{i-1}\}$ does not contain the edge set of a cycle. When no such edge exists, stop and return the subgraph $T = (V, \{e_1, \ldots, e_m\})$.

Kruskal's Algorithm

Kruskal's Algorithm

Spanning Trees v. Vector Space Bases

Finite dimensional vector spaces

A basis for a finite dimensional vector space is any of the following

- ► A minimal spanning/generating set.
- ► A maximal linearly independent set.
- Every element of the vector space is uniquely represented by as a linear combination of the basis vectors.

Finite connected graphs

A spanning tree is any of the following

- ▶ A minimal subgraph maintaining the same vertex set and connectedness.
- ► A maximal subgraph without cycles.
- ▶ For any two vertices, there is a unique path between them in the tree.

Table of Contents

- 1. Partial Order
- 2. Basic Graph Theory
- 3. Connectivity
- 4. Bipartite Graph
- 5. Matching
- 6. Trees
- 7. Spanning Trees
- 8. Kruskal's Algorithm
- 9. Dijkstra's Algorithm

Distance Function

Definition

Given graph G, and $u, v \in V(G)$, the distance from u to v, denoted dist(u, v), is the shortest length of a walk from u to v in G.

Remark

For $u, v, w \in V(G)$, the triangle inequality holds,

$$\operatorname{dist}(u,v) + \operatorname{dist}(v,w) \geq \operatorname{dist}(u,w).$$

Adjacency Matrix

Definition

Let G be a undirected graph with vertices ordered as v_1, \ldots, v_n . Define a matrix $A = (a_{ij}) \in M_n(\mathbb{N})$ by setting a_{ij} to be the number of edges between v_i and v_j . In particular, if the graph is simple,

$$(A)_{ij} = \begin{cases} 1, & \text{if } v_i \text{ is adjacent to } v_j \\ 0, & \text{otherwise} \end{cases}$$

The matrix A is called an adjacency matrix for the graph G.

$$A_G = \begin{bmatrix} 0 & 1 & 2 & 0 \\ 1 & 0 & 1 & 1 \\ 2 & 1 & 0 & 2 \\ 0 & 1 & 2 & 0 \end{bmatrix}$$

Adjacency Matrix

Theorem

Let A be an adjacency matrix for a graph G with vertices ordered as v_1, \ldots, v_n , and $K \geq 0$. The for every $v_i, v_j \in V(G)$, the number of walks of length K from v_i to v_j is $(A^K)_{ij}$

Proof. (sketch).

Induction on K. It is clear for K=0. Suppose the result holds for $K\geq 0$, then

$$(A^{K+1})_{ij} = (A^K A)_{ij} = \sum_{\ell=1}^n (A^K)_{i\ell} A_{\ell j}$$

The rest follows by noting that

- ▶ $(A^K)_{i\ell}A_{\ell j}$ is the number of walks from length K+1 from v_i to v_j that passes v_ℓ right before v_i .
- $(A^K)_{i\ell}$ is the number of walks from v_i to v_j of length K by IH.
- ▶ $A_{\ell i}$ is the number of edges from v_{ℓ} to v_{i} .

Adjacency Matrix

Example

Given a graph G with adjacency matrix $A_G \in M_n(\mathbb{N})$, the number of **closed** walks of length K is given by $\operatorname{Tr} A_G^K$. If the eigenvalues of A_G are given by $\lambda_1, \ldots, \lambda_n$, then

$$\operatorname{Tr}(A_G)^K = \sum_{j=1}^n (A_G^K)_{jj} = \sum_{j=1}^n \lambda_j^K$$

Note that the formula also works when A_G is nondiagonalizable.

Weighted Distance

Definition

Given a simple connected graph with weight function $w: E(G) \to \mathbb{R}_{\geq 0}$, the length of a walk $v_1e_1v_2e_2\cdots e_kv_{k+1}$ is given by

$$w(e_1) + w(e_2) + \cdots + w(e_k).$$

Then the distance from u to v is the length of the shortest walk from u to v.

Definition

Given graph G, and $r \in V(G)$, a tree $T \subset G$ with $r \in V(T)$ is a **shortest path** tree or **shortest path spanning tree** for r if

$$\mathsf{dist}_{G}(r,v) = \mathsf{dist}_{T}(r,v)$$

for every $v \in V(T)$.

Dijkstra's Algorithm

Dijkstra's Algorithm

- ▶ Input: A simple connected graph G = (V, E) with root vertex r and nonnegative weight function $w : E(G) \to \mathbb{R}_{>0}$.
- Output: A shortest path spanning tree for r.
- Procedure:
 - 1. i = 1. Set T_1 to be the tree consisting of only the root vertex r.
 - 2. $i \geq 2$. Choose an edge uv such that $u \in V(T_{i-1})$, $v \in V(G) \setminus V(T_{i-1})$, and $\operatorname{dist}_T(r, u) + w(uv)$ is minimum. Let $T_i := T_{i-1} + uv$. If no such choice is possible, return the present tree.

Dijkstra's Algorithm

Dijkstra's Algorithm

