

#### Maatriks EL sisaldab endas süsteemi kohta käivat infot.

$$\begin{split} EL &= READPRN("kohutav\_idee.txt") &\quad L_w = 11500 \quad E = 210 \cdot 10^3 \quad E_f = 70 \quad h_c = 150 \\ dim &= max \Big(EL^{\left<2\right>}, EL^{\left<3\right>}\Big) = 24 \\ &\quad h_e = \frac{L}{23} \quad p = 0.01 \cdot 10^3 \quad t_p = 1.2 \quad A_{shear} = h_c \cdot b \\ &\quad E_f = 5 \quad q = 6 \times 10^3 \quad G_f = \frac{E_f}{2 \cdot \left(1 + \nu_f\right)} \end{split}$$

#### Impulsimomendi ja staatilise momendi väärtused

$$I = 2 \cdot \left[ \frac{t_p^3 \cdot b}{12} + 2 \cdot t_p \cdot b \cdot \left( \frac{h_c}{2} + \frac{t_p}{2} \right)^2 + \frac{E_f}{E} \cdot \frac{h_c^3 \cdot b}{12} \right] = 1.657 \times 10^7$$

$$b_t = 600$$
  $S_t = 1.2 \cdot 600 \cdot (75 + 0.6) + 75 \cdot 600 \cdot 37.5 = 1.742 \times 10^6$ 

Järgnevaks on ära defineeritud kujufunktsioonid:  $\phi$ , selle esimene tuletis d $\phi$  ja teine tuletis dd $\phi$ . Lisaks on ka ette antud kaalufunktsioon W.

$$ddd\varphi(x,h_e,i) = \begin{cases} R \leftarrow \frac{12}{h_e^3} & \text{if } i = 1 \\ R \leftarrow -\frac{6}{h_e^2} & \text{if } i = 2 \end{cases}$$

$$R \leftarrow -\frac{12}{h_e^3} & \text{if } i = 3$$

$$R \leftarrow -\frac{6}{h_e^2} & \text{if } i = 4$$

$$\text{return } R$$

 $s_{e} = 0,50...h_{e}$ 

Kaalufunktsioon W on teise astme polünoom.

$$W_{w} = \begin{pmatrix} \frac{-1}{\sqrt{3}} & 1\\ \frac{1}{\sqrt{3}} & 1 \end{pmatrix}$$

Kood, mis arvutab igast elemendist sõltuvalt välja jäikusmaatriksi. Selle väärtuste kuvamiseks on vajalikud eelnevalt defineeritud kujufunktsioon ddφ, kaalufunktsioon W, inertsimoment I ja elastusmoodul E.

$$\begin{split} K_{cl}\!\!\left(E,I,h_{c}\!\right) &= \left[\begin{array}{c} \text{for } i \in 1 ..4 \\ \text{for } j \in 1 ..4 \\ R_{i,j} \leftarrow 0 \\ \text{for inte} \in 1 .. \text{rows}(W) \\ \left[\begin{array}{c} x_{a} \leftarrow 0 \\ x_{b} \leftarrow h_{c} \\ x \leftarrow \frac{1}{2} \cdot \left[x_{a} + x_{b} + W_{inte,1} \cdot \left(x_{b} - x_{a}\right)\right] \\ \text{for } i \in 1 ..4 \\ \text{for } j \in 1 ..4 \\ \\ R_{i,j} \leftarrow R_{i,j} + E \cdot I \cdot W_{inte,2} \cdot dd\varphi(x,h_{c},i) \cdot dd\varphi(x,h_{c},j) \cdot \frac{\left(x_{b} - x_{a}\right)}{2} \\ \text{return } R \\ \end{split}$$
 Elemendi jäikusmaatriksi väärtused: 
$$\left(3.341 \times 10^{5} - 8.353 \times 10^{7} - 3.341 \times 10^{5} - 8.353 \times 10^{7}\right) \end{split}$$

$$K_{el}\!\!\left(E,I,h_{e}\!\right) = \begin{pmatrix} 3.341 \times 10^{5} & -8.353 \times 10^{7} & -3.341 \times 10^{5} & -8.353 \times 10^{7} \\ -8.353 \times 10^{7} & 2.784 \times 10^{10} & 8.353 \times 10^{7} & 1.392 \times 10^{10} \\ -3.341 \times 10^{5} & 8.353 \times 10^{7} & 3.341 \times 10^{5} & 8.353 \times 10^{7} \\ -8.353 \times 10^{7} & 1.392 \times 10^{10} & 8.353 \times 10^{7} & 2.784 \times 10^{10} \end{pmatrix}$$

Kood, mis arvutab igast elemendist sõltuvalt välja jõuvektori. Deformatsioonist tuleneva kuju kirjeldab peamiselt kaalufunktsioon W ja kujufunktsioon φ.

$$\begin{split} F_{el}(h_e) &= \left[ \begin{array}{l} \text{for } i \in 1 ..4 \\ R_i \leftarrow 0 \\ \\ \text{for inte} \in 1 .. \, \text{rows}(W) \\ \\ x_a \leftarrow 0 \\ x_b \leftarrow h_e \\ \\ x \leftarrow \frac{1}{2} \cdot \left[ x_a + x_b + W_{inte, \, 1} \cdot \left( x_b - x_a \right) \right] \\ \text{for } i \in 1 ..4 \\ \\ R_i \leftarrow R_i + W_{inte, \, 2} \cdot \varphi(x, h_e, i) \cdot q \cdot \frac{\left( x_b - x_a \right)}{2} \\ \\ \text{return } R \\ \end{split} \end{split} \right] \end{split}$$

Osa globaalse jäikusmaatriksi  $K_{\rm gl}$  (48 x 48) väärtustest.

|              |   | 1                      | 2                      | 3                      | 4                      | 5                      |
|--------------|---|------------------------|------------------------|------------------------|------------------------|------------------------|
| $K_{gl} = 1$ | 1 | 3.341·10 <sup>5</sup>  | -8.353·10 <sup>7</sup> | -3.341·10 <sup>5</sup> | -8.353·10 <sup>7</sup> | 0                      |
|              | 2 | -8.353·10 <sup>7</sup> | 2.784·10 <sup>10</sup> | 8.353·10 <sup>7</sup>  | 1.392·10 <sup>10</sup> | 0                      |
|              | 3 | -3.341·10 <sup>5</sup> | 8.353·10 <sup>7</sup>  | 6.682·10 <sup>5</sup>  | 0                      | -3.341·10 <sup>5</sup> |
|              | 4 | -8.353·10 <sup>7</sup> | 1.392·10 <sup>10</sup> | 0                      | 5.568·10 <sup>10</sup> | 8.353·10 <sup>7</sup>  |
|              | 5 | 0                      | 0                      | -3.341·10 <sup>5</sup> | 8.353·10 <sup>7</sup>  | 6.682·10 <sup>5</sup>  |
|              | 6 | 0                      | 0                      | -8.353·10 <sup>7</sup> | 1.392·10 <sup>10</sup> | 0                      |
|              | 7 | 0                      | 0                      | 0                      | 0                      | -3.341·10 <sup>5</sup> |
|              | 8 | 0                      | 0                      | 0                      | 0                      | -8.353·10 <sup>7</sup> |
|              | 9 | 0                      | 0                      | 0                      | 0                      |                        |

$$F_{gl} = F1_{gl} + F2_{gl}$$

Globaalse jõuvektori (48 x 1) väärtused eraldi välja toodud.

|             |    | 1                      |
|-------------|----|------------------------|
|             | 1  | 1.5·10 <sup>6</sup>    |
|             | 2  | -1.25·10 <sup>8</sup>  |
|             | 3  | 3·10 <sup>6</sup>      |
|             | 4  | 7.451·10 <sup>-8</sup> |
|             | 5  | 3·106                  |
|             | 6  | 7.451·10 <sup>-8</sup> |
|             | 7  | 3·106                  |
|             | 8  | 7.451·10 <sup>-8</sup> |
| $F1_{gl} =$ | 9  | 3·106                  |
|             | 10 | 7.451·10 <sup>-8</sup> |
|             | 11 | 3·106                  |
|             | 12 | 7.451·10 <sup>-8</sup> |
|             | 13 | 3·106                  |
|             | 14 | 7.451·10 <sup>-8</sup> |
|             | 15 | 3·106                  |
|             | 16 | 7.451·10 <sup>-8</sup> |
|             | 17 | 3·106                  |
|             | 18 |                        |

|            |    | -                      |
|------------|----|------------------------|
|            | 1  | 1.5·10 <sup>6</sup>    |
|            | 2  | -1.25·10 <sup>8</sup>  |
|            | 3  | 3·106                  |
|            | 4  | 7.451·10 <sup>-8</sup> |
|            | 5  | 3·106                  |
|            | 6  | 7.451·10 <sup>-8</sup> |
|            | 7  | 3·106                  |
|            | 8  | 7.451·10 <sup>-8</sup> |
| $F_{gl} =$ | 9  | 3·106                  |
|            | 10 | 7.451·10 <sup>-8</sup> |
|            | 11 | 3·106                  |
|            | 12 | 7.451·10 <sup>-8</sup> |
|            | 13 | 3·106                  |
|            | 14 | 7.451·10 <sup>-8</sup> |
|            | 15 | 3·106                  |
|            | 16 | -5·10 <sup>3</sup>     |
|            | 17 | 3·106                  |
|            | 18 |                        |
|            |    |                        |

Kood siirete vektori koostamise jaoks.

$$u = \mathbf{U}^T \cdot \left( \mathbf{U} \cdot \mathbf{K}_{gl} \cdot \mathbf{U}^T \right)^{-1} \cdot \mathbf{U} \cdot \mathbf{F}_{gl}$$

Tala läbipaine w tuleneb järgnevast analüütilisest lahendist, mis võtab arvesse koormuse q, tala pikkuse L, ristlõike  $A_{sheer}$ , nihkeelastusmooduli  $G_f$  ning sõlmede kaugused x.

$$w_f(x) = \frac{q \cdot L^2}{G_f \cdot A_{shear} \cdot 2} \cdot \left(\frac{x^2}{L^2} - \frac{x}{L}\right)$$

Graafiku koostamiseks kantakse y-teljele talas toimuvad siirded ning x-teljele tala sõlmede kaugused, kus siirded täpselt toimuvad.

Kood U<sub>MC</sub> võtab siirete maatriksist u välja paaritud komponendid, ehk need väärtused mis kirjeldavad igas sõlmes toimuvad siiret.

Kood X kirjutab välja iga sõlme kauguse, kui nullpunkt asub tala vasakus otsas.

$$\begin{array}{lll} U_{MC} = & N\_solm \leftarrow max \Big( EL^{\left< 2 \right>}, EL^{\left< 3 \right>} \Big) & X = & N\_solm \leftarrow max \Big( EL^{\left< 2 \right>}, EL^{\left< 3 \right>} \Big) \\ & \text{for } i \in 1..N\_solm & \text{for } i \in 1..N\_solm \\ & R_i \leftarrow u_{2 \cdot i - 1} & R_i \leftarrow h_e \cdot (i - 1) \\ & \text{return } R & \text{return } R \end{array}$$



Kood, mis liigub mööda tala ning arvutab välja selles esinevad sisepinged.

$$\begin{split} \mathbf{S\_MC} = & \left| \begin{array}{l} \mathbf{h} \leftarrow 150 \\ \mathbf{N\_el} \leftarrow \max \Big( \mathbf{EL}^{\left< 1 \right>} \Big) \\ \text{for } i\_el \in 1...N\_el \\ \\ \left| \begin{array}{l} \text{for } i \in 1...4 \\ \text{ue}_i \leftarrow u_{(i\_el-1)\cdot 2+i} \\ \text{for } i \in 1...6 \\ \\ \\ \left| \begin{array}{l} R_{(i\_el-1)\cdot 6+i,\,1} \leftarrow (i\_el-1) \cdot \mathbf{h}_e + \frac{(i-1)}{5} \cdot \mathbf{h}_e \\ \\ \text{SUM} \leftarrow 0 \\ \text{for } j \in 1...4 \\ \\ \left| \begin{array}{l} \mathbf{x} \leftarrow \frac{(i-1)}{5} \cdot \mathbf{h}_e \\ \\ \text{SUM} \leftarrow \text{SUM} + \text{ue}_j \cdot \text{dd} \varphi \big( \mathbf{x}, \mathbf{h}_e, j \big) \\ \\ R_{(i\_el-1)\cdot 6+i,\,2} \leftarrow -\mathbf{E} \cdot \frac{\mathbf{SUM}}{I} \cdot \frac{\mathbf{h}}{2} \\ \\ \end{aligned} \end{split}$$
 return R

### PINGEID POLE VAJA



Kood, mis liigub mööda tala ning arvutab välja selles esinevad väändepinged.

$$\begin{split} T\_MC = & \left| \begin{array}{l} N\_el \leftarrow max \Big( EL^{\left< 1 \right>} \Big) \\ \text{for } i\_el \in 1..N\_el \\ \\ \left| \begin{array}{l} \text{for } i \in 1..4 \\ \text{ue}_i \leftarrow u_{(i\_el-1) \cdot 2 + i} \\ \text{for } i \in 1..6 \\ \\ \left| \begin{array}{l} R_{(i\_el-1) \cdot 6 + i,\, 1} \leftarrow (i\_el-1) \cdot h_e + \frac{(i-1)}{5} \cdot h_e \\ \text{SUM} \leftarrow 0 \\ \text{for } j \in 1..4 \\ \\ \left| \begin{array}{l} x \leftarrow \frac{(i-1)}{5} \cdot h_e \\ \text{SUM} \leftarrow \text{SUM} + \text{ue}_j \cdot \text{ddd} \varphi \big( x, h_e, j \big) \\ \\ R_{(i\_el-1) \cdot 6 + i,\, 2} \leftarrow -E \cdot \frac{\text{SUM}}{I} \cdot \frac{S_t}{b_t} \\ \\ \text{return } R \end{array} \right. \end{split}$$



Andmed:

$$\begin{split} E &= 2.1 \times 10^5 & A_{red} = \ h_c \cdot b = 9 \times 10^4 \\ I &= 1.657 \times 10^7 & E_v = 70 \\ L &= 1.15 \times 10^4 & \nu_v = 0.01 \\ q &= 6 \times 10^3 & G_v = \frac{E_v}{2 \cdot \left(1 + \nu_v\right)} \end{split}$$

Mis muudab Timošenko tala erinevaks Euleri omast on see, et Timošenko võtab arvesse lisaks eelnevatele tasakaaluvõrranditele veel kinemaatilised seosed, mis seovad sisejõud deformatsiooni kirjeldatavate suurustega. Selleks on oluline tuua sisse funktsioon  $\psi$ , mis kirjeldab tala ristlõike pinna pöördumist y-telje suhtes ning on tingitud ainult paindedeformatsioonist. Samas pole aga mainitud deformatsioon endam võrdeline läbipainde teise tuletisega.

$$\psi(i, h_e, x) = \left[ R \leftarrow \left( \frac{2 \cdot x^2}{h_e^2} - \frac{3 \cdot x}{h_e} + 1 \right) \text{ if } i = 1 \right]$$

$$R \leftarrow \left( \frac{4 \cdot x}{h_e} - \frac{4 \cdot x^2}{h_e^2} \right) \text{ if } i = 2$$

$$R \leftarrow -\left( \frac{x}{h_e} - \frac{2 \cdot x^2}{h_e^2} \right) \text{ if } i = 3$$

$$\text{return } R$$

$$\begin{split} d\psi(i,h_e,x) = & \left[ R \leftarrow \left( \frac{4 \cdot x}{h_e^2} - \frac{3}{h_e} \right) \text{ if } i = 1 \\ R \leftarrow \left( \frac{4}{h_e} - \frac{8 \cdot x}{h_e^2} \right) \text{ if } i = 2 \\ R \leftarrow -\left( \frac{1}{h_e} - \frac{4 \cdot x}{h_e^2} \right) \text{ if } i = 3 \\ R \leftarrow -\left( \frac{1}{h_e} - \frac{4 \cdot x}{h_e^2} \right) \text{ if } i = 3 \\ \text{return } R \end{split}$$

Elementide jäiksumaatriksi väärtused:

$$K_{\text{tim}_{el}}\!\!\left(E,G_{v},I,A_{\text{red}},h_{e}\right) = \begin{pmatrix} 6.238\times10^{3} & -1.559\times10^{6} & -6.238\times10^{3} & -1.559\times10^{6} \\ -1.559\times10^{6} & 7.35\times10^{9} & 1.559\times10^{6} & -6.571\times10^{9} \\ -6.238\times10^{3} & 1.559\times10^{6} & 6.238\times10^{3} & 1.559\times10^{6} \\ -1.559\times10^{6} & -6.571\times10^{9} & 1.559\times10^{6} & 7.35\times10^{9} \end{pmatrix}$$

Tala globaalne jäikusmaatriks ja jõuvektor kuvatakse praktiliselt samamoodi nagu Euleri tala puhulgi. Ainuksed erinevused seisnevad selles, et elementide jäikusmaatriks ja jõuvektor on arvutatud Timošenko tala valemitega.

$$\begin{aligned} \text{tala valemitega.} \\ K\_\text{tim}_{gl} = & & \dim \leftarrow 2 \cdot \text{max} \Big( \text{EL}^{\left< 2 \right>}, \text{EL}^{\left< 3 \right>} \Big) \\ \text{for } i \in 1 .. \dim \\ & \text{R}_{i,j} \leftarrow 0 \\ \text{for } \text{el} \in 1 .. \text{rows}(\text{EL}) \\ & & \text{Kel} \leftarrow K\_\text{tim}_{el} \big( \text{E}, \text{G}_{v}, \text{I}, \text{A}_{\text{red}}, \text{h}_{e} \big) \\ \text{for } i \in 1 .. 2 \\ & \text{for } j \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j v \in 1 .. 2 \\ & & \text{for } j$$

Elementide kood on enamjaolt sarnane Euleri omaga, kuid nüüd on sisse toodud funktsioon  $\psi$  ning väärtused kuvatakse R1, R2, R3 ja R4 väärtuste omapäraste kombinatsioonide kujul.

$$F\_tim_{el}(h_e) = \begin{cases} \text{for } i \in 1..3 \\ R_i \leftarrow 0 \\ \text{for inte} \in 1.. \text{rows}(W) \end{cases}$$

$$\begin{cases} x_a \leftarrow 0 \\ x_b \leftarrow h_e \\ x \leftarrow \frac{1}{2} \cdot \left[ x_a + x_b + W_{inte, 1} \cdot (x_b - x_a) \right] \\ \text{for } i \in 1..3 \end{cases}$$

$$R_i \leftarrow R_i + W_{inte, 2} \cdot \psi(i, h_e, x) \cdot q \cdot \frac{(x_b - x_a)}{2}$$

$$\begin{cases} R_1 + \frac{1}{2} \cdot R_2 \\ -\frac{1}{8} \cdot R_2 \cdot h_e \\ R_3 + \frac{1}{2} \cdot R_2 \\ \frac{1}{8} \cdot R_2 \cdot h_e \end{cases}$$

$$Elementide jõuvektori väärtused:$$

$$F\_tim_{el}(h_e) = \begin{cases} 1.5 \times 10^6 \\ -1.25 \times 10^8 \\ 1.5 \times 10^6 \\ 1.25 \times 10^8 \end{cases}$$

Globaalne jõuvektor samamoodi nagu Euleri talaga:

$$\begin{aligned} \text{F1\_tim}_{gl} = & & \dim \leftarrow 2 \cdot \text{max} \Big( \text{EL}^{\left< 2 \right>}, \text{EL}^{\left< 3 \right>} \Big) \\ \text{for } & i \in 1 ... \text{dim} \\ & R_i \leftarrow 0 \\ \text{for } & el \in 1 ... \text{rows} (\text{EL}) \\ & & \text{Fel} \leftarrow F\_\text{tim}_{el} \Big( h_e \Big) \\ \text{for } & i \in 1 ... 2 \\ & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & & \text{for } & i = 1 ... 2 \\ & &$$

Ka Timošenko tala puhul arvutatakse siire ja läbipaine samade valemitega.

|                                                                                                                                                                                                                         |     | 1                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------|
| T = (                                                                                                                                                                                                                   | 1   | 0                     |
| $\mathbf{u}_{tim} = \mathbf{U}^{T} \cdot \left(\mathbf{U} \cdot \mathbf{K}_{tim_{gl}} \cdot \mathbf{U}^{T}\right)^{-1} \cdot \mathbf{U} \cdot \mathbf{F}_{tim_{gl}}$                                                    | 2   | -1.766                |
|                                                                                                                                                                                                                         | 3   | 1.788·10 <sup>3</sup> |
|                                                                                                                                                                                                                         | 4   | -1.532                |
| $\begin{array}{ll} U\_tim_{MC} = & N\_solm \leftarrow max\Big(EL^{\left<2\right>}, EL^{\left<3\right>}\Big) \\ & \text{for } i \in 1N\_solm \\ & R_i \leftarrow u\_tim_{2 \cdot i-1} \\ & \text{return } R \end{array}$ | 5   | 2.896·10 <sup>3</sup> |
| for $i \in 1N_solm$                                                                                                                                                                                                     | 6   | -0.975                |
| $R_i \leftarrow u\_tim_{2:i-1}$                                                                                                                                                                                         | 7   | 3.219·10 <sup>3</sup> |
| return R u_tim                                                                                                                                                                                                          | _ 8 | -0.309                |
|                                                                                                                                                                                                                         | 9   | 2.754·10 <sup>3</sup> |
| $X = \begin{cases} N_{-}solm \leftarrow max \left( EL^{\langle 2 \rangle}, EL^{\langle 3 \rangle} \right) \\ for \ i \in 1N_{-}solm \\ R_{i} \leftarrow h_{e} \cdot (i-1) \end{cases}$ $return \ R$                     | 10  | 0.25                  |
| for $i \in 1N$ solm                                                                                                                                                                                                     | 11  | 1.609·10 <sup>3</sup> |
| $R \leftarrow h \cdot (i-1)$                                                                                                                                                                                            | 12  | 0.486                 |
| i he (1 1)                                                                                                                                                                                                              | 13  | 0                     |
| return R                                                                                                                                                                                                                | 14  | 0.184                 |
|                                                                                                                                                                                                                         | 15  | 96.144                |
| $a \cdot L^2 = \begin{pmatrix} x^2 & x \end{pmatrix}$                                                                                                                                                                   |     | -0.434                |
| $w_{q}(x) = \frac{q \cdot L^{2}}{G_{v} \cdot A_{red} \cdot 2} \cdot \left(\frac{x^{2}}{L^{2}} - \frac{x}{L}\right)$                                                                                                     | 17  |                       |



Timošenko tala jaoks arvutatud sisepinged. Nagu väärtustest ja graafikust näha on siis mingil põhjusel tulevad Timošenko tala väärtused kõvasti suuremad Euleri omadest.

$$\begin{split} S\_MC_{tim} = & \left| \begin{array}{l} h \leftarrow 150 \\ N\_el \leftarrow max \Big(EL^{\left<1\right>}\Big) \\ \text{for } i\_el \in 1..N\_el \\ & \left| \begin{array}{l} \text{for } i \in 1..4 \\ \text{ue}_i \leftarrow u\_tim_{(i\_el-1)\cdot 2+i} \\ \text{for } i \in 1..6 \\ \end{array} \right| \\ R_{(i\_el-1)\cdot 6+i,1} \leftarrow (i\_el-1) \cdot h_e + \frac{(i-1)}{5} \cdot h_e \\ \text{SUM} \leftarrow 0 \\ \text{for } j \in 1..4 \\ & \left| \begin{array}{l} x \leftarrow \frac{(i-1)}{5} \cdot h_e \\ \text{SUM} \leftarrow SUM + ue. \cdot d\psi(j,h_e,x) \\ \end{array} \right| \\ R_{(i\_el-1)\cdot 6+i,2} \leftarrow -E \cdot SUM \cdot \frac{h}{2} \end{split}$$

|                |    | 1                   | 2                      |
|----------------|----|---------------------|------------------------|
|                | 1  | 0                   | 5.653·10 <sup>7</sup>  |
|                | 2  | 100                 | 1.14·10 <sup>7</sup>   |
|                | 3  | 200                 | -3.374·10 <sup>7</sup> |
|                | 4  | 300                 | -7.888·10 <sup>7</sup> |
|                | 5  | 400                 | -1.24·10 <sup>8</sup>  |
|                | 6  | 500                 | -1.692·10 <sup>8</sup> |
|                | 7  | 500                 | 2.604·10 <sup>8</sup>  |
| $S_MC_{tim} =$ | 8  | 600                 | 1.422·10 <sup>8</sup>  |
|                | 9  | 700                 | 2.413·10 <sup>7</sup>  |
|                | 10 | 800                 | -9.399·10 <sup>7</sup> |
|                | 11 | 900                 | -2.121·10 <sup>8</sup> |
|                | 12 | 1·10 <sup>3</sup>   | -3.302·10 <sup>8</sup> |
|                | 13 | 1·10 <sup>3</sup>   | 3.752·10 <sup>8</sup>  |
|                | 14 | 1.1·10 <sup>3</sup> | 2.211·10 <sup>8</sup>  |
|                | 15 | 1.2·10 <sup>3</sup> | 6.693·10 <sup>7</sup>  |
|                | 16 | 1.3·10 <sup>3</sup> |                        |
|                |    |                     |                        |

### Timošenko tala sise- ja väändepingete graafikud:





Jagasin tala 23-ks osaks

$$3 + 4.5 + 3 + 1 = 11.5$$

$$\frac{11.5}{23} = 0.5$$

$$0.5 \cdot 23 = 11.5$$

Tala elementide maatriksi EL väärtused. Esimene tulp näitab tala numbrit, teine ja kolmas sõlmede numbreid ning viimane tulp iga elemendi pikkust.

|      |    | 1  | 2  | 3  | 4   |
|------|----|----|----|----|-----|
|      | 1  | 1  | 1  | 2  | 0.5 |
|      | 2  | 2  | 2  | 3  | 0.5 |
|      | 3  | 3  | 3  | 4  | 0.5 |
|      | 4  | 4  | 4  | 5  | 0.5 |
|      | 5  | 5  | 5  | 6  | 0.5 |
|      | 6  | 6  | 6  | 7  | 0.5 |
|      | 7  | 7  | 7  | 8  | 0.5 |
|      | 8  | 8  | 8  | 9  | 0.5 |
|      | 9  | 9  | 9  | 10 | 0.5 |
|      | 10 | 10 | 10 | 11 | 0.5 |
| EL = | 11 | 11 | 11 | 12 | 0.5 |
| LL - | 12 | 12 | 12 | 13 | 0.5 |
|      | 13 | 13 | 13 | 14 | 0.5 |
|      | 14 | 14 | 14 | 15 | 0.5 |
|      | 15 | 15 | 15 | 16 | 0.5 |
|      | 16 | 16 | 16 | 17 | 0.5 |
|      | 17 | 17 | 17 | 18 | 0.5 |
|      | 18 | 18 | 18 | 19 | 0.5 |
|      | 19 | 19 | 19 | 20 | 0.5 |
|      | 20 | 20 | 20 | 21 | 0.5 |
|      | 21 | 21 | 21 | 22 | 0.5 |
|      | 22 | 22 | 22 | 23 | 0.5 |
|      | 23 | 23 | 23 | 24 | 0.5 |
|      |    |    |    |    |     |

BOUND(n) on kood, mis arvutab ääretingimuste maatriksi.

$$\begin{split} \text{BOUND}(n) &= & \dim \leftarrow 2 \cdot \max \Big( \text{EL}^{\left< 2 \right>}, \text{EL}^{\left< 3 \right>} \Big) \\ \dim_{-} \text{red} &\leftarrow \text{rows}(n) \\ \text{for } j \in 1 ... \dim \\ \text{for } i \in 1 ... \dim_{-} \text{dim\_red} \\ &R_{i,j} \leftarrow 0 \\ \text{ind} \leftarrow 1 \\ &s \leftarrow 0 \\ \text{for } k \in 1 ... \dim \\ & \left| \begin{array}{c} 1 \\ R_{k-s,k} \leftarrow 1 \\ \text{if } k = n_{ind} \\ \text{ind} \leftarrow \text{ind} + 1 \end{array} \right. \text{if } \text{ind} \neq \text{rows}(n) \\ &s \leftarrow s + 1 \\ &S_k \leftarrow s \\ \end{split}$$

Vaadades joonist ja võttes arvesse asjaolu, et siiret kirjeldavad paaritud komponendid, moodustub meil järgmine n maatriks:

|                                                                                           |                                                             | 1   ( | ) 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------|-----|---|---|---|---|---|---|---|---|
|                                                                                           |                                                             | 2 (   | 0   | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|                                                                                           |                                                             | 3 (   | 0   | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|                                                                                           |                                                             | 4 (   | 0   | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
|                                                                                           | !                                                           | 5 (   | 0   | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| (1)                                                                                       |                                                             | 6 (   | 0   | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 13                                                                                        |                                                             | 7 (   | 0   | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| $n = \begin{bmatrix} 10 \\ 21 \end{bmatrix}$ $U = \begin{bmatrix} 10 \\ 21 \end{bmatrix}$ | $= BOUND(n) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ | 8 (   | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| $\begin{pmatrix} 21 \\ 43 \end{pmatrix}$                                                  | •                                                           | 9 (   | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| (43)                                                                                      | 1                                                           | 10 (  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|                                                                                           | 1                                                           | 11 (  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|                                                                                           | 1                                                           | 12 (  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|                                                                                           | 1                                                           | 13 (  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|                                                                                           | 1                                                           | 14 (  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|                                                                                           | 1                                                           | 15 (  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|                                                                                           | 1                                                           | 16 (  | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |

Kood, mis arvutab globaalse jäikusmaatriksi. Antud globaalse maatriksiga luuakse süsteem, kust lõppude lõpuks saab deformatsioone lugeda välja sellisel kujul, kus paaritud komponendid kirjeldavad siiret ja paariskomponendid pööret.

$$\begin{aligned} &\mathsf{K}_{gl} = & \left| \begin{array}{l} \dim \leftarrow 2 \cdot \max \Bigl( \mathsf{EL}^{\left< 2 \right>}, \mathsf{EL}^{\left< 3 \right>} \Bigr) \right. \\ & \text{for } i \in 1 .. \dim \\ & \text{for } j \in 1 .. \dim \\ & R_{i,j} \leftarrow 0 \\ & \text{for } \mathsf{el} \in 1 .. \mathsf{rows}(\mathsf{EL}) \\ & \left| \begin{array}{l} \mathsf{Kel} \leftarrow \mathsf{K}_{el} \bigl( \mathsf{E}, \mathsf{I}, \mathsf{h}_{e} \bigr) \\ & \text{for } i \in 1 .. 2 \\ & \text{for } j \in 1 .. 2 \\ & \text{for } j = 1 .. 2 \\ & \left| \begin{array}{l} \mathsf{for } i\_v \in 1 .. 2 \\ & \left| \begin{array}{l} \mathsf{E} \leftarrow \left( \mathsf{EL}_{el, i+1} - 1 \right) \\ & \mathsf{Y} \leftarrow \left( \mathsf{EL}_{el, j+1} - 1 \right) \\ & \mathsf{R}_{\Xi 2 + i\_v}, \gamma \cdot 2 + j\_v \end{array} \right. \\ & \mathsf{R}_{\Xi 2 + i\_v}, \gamma \cdot 2 + j\_v + \mathsf{Kel}_{(i-1) \cdot 2 + i\_v, (j-1) \cdot 2 + j\_v} \end{aligned} \end{aligned}$$
 return R

Kood, mis arvutab globaalse jõuvektori esimese osa, ehk see kood arvutab välja lauskoormuse p. Lauskoormus definitsiooni poolest koosneb kahest osast: äärtesse mõjuvatest lõikejõududest ja paindemomentidest.

$$\begin{aligned} \text{F1}_{gl} = & & \text{dim} \leftarrow 2 \cdot \text{max} \big( \text{EL}^{\left< 2 \right>}, \text{EL}^{\left< 3 \right>} \big) \\ \text{for } i \in 1 ... \text{dim} \\ & R_i \leftarrow 0 \\ \text{for } el \in 1 ... \text{rows} (\text{EL}) \\ & & \text{Fel} \leftarrow F_{el} \big( h_e \big) \\ \text{for } i \in 1 ... 2 \\ & & & \text{I} \\ \text{for } i\_v \in 1 ... 2 \\ & & & & \text{EL}_{el,\, i+1} - 1 \\ & & & & \text{R}_{\Xi 2 + i\_v} \leftarrow R_{\Xi 2 + i\_v} + \text{Fel}_{(i-1) \cdot 2 + i\_v} \end{aligned}$$
 return R

Kood, mis arvutab globaalse jõuvektori teise osa ehk lisab sõlme rakendatud jõu.

$$F2_{gl} = \begin{cases} \dim \leftarrow 2 \cdot \max(EL^{\langle 2 \rangle}, EL^{\langle 3 \rangle}) \\ \text{for } i \in 1..\dim \\ R_i \leftarrow 0 \\ \\ R_{16} \leftarrow -5 \cdot 10^3 \\ \text{return } R \end{cases}$$

## Siirete vektori väärtused:

# Tala läbipaine w väärtused:

| i   |        |                       |
|-----|--------|-----------------------|
|     |        | 1                     |
|     | 1      | 0                     |
|     | 2      | -1.647                |
|     | 3      | 778.11                |
|     | 4      | -1.384                |
|     | 5      | 1.32·10 <sup>3</sup>  |
|     | 5<br>6 | -0.739                |
|     | 7      | 1.489·10 <sup>3</sup> |
|     | 8      | 0.073                 |
|     | 9      | 1.255·10 <sup>3</sup> |
|     | 10     | 0.836                 |
|     | 11     | 696.827               |
| u = | 12     | 1.335                 |
|     | 13     | 0                     |
|     | 14     | 1.354                 |
|     | 15     | -593.403              |
|     | 16     | 0.989                 |
|     | 17     | -941.204              |
|     | 18     | 0.336                 |
|     | 19     | -845.341              |
|     | 20     | -0.821                |
|     | 21     | 0                     |
|     | 22     | -2.698                |
|     | 23     | 1.817·10 <sup>3</sup> |
|     | 24     |                       |
|     |        |                       |

|                     |     | 1                      |
|---------------------|-----|------------------------|
|                     | 1   | 0                      |
|                     | 2   | -5.29·10 <sup>3</sup>  |
|                     | 3 4 | -1.01·10 <sup>4</sup>  |
|                     | 4   | -1.443·10 <sup>4</sup> |
|                     | 5   | -1.828·10 <sup>4</sup> |
|                     | 6   | -2.164·10 <sup>4</sup> |
|                     | 7   | -2.453·10 <sup>4</sup> |
|                     | 8   | -2.693·10 <sup>4</sup> |
|                     | 9   | -2.886·10 <sup>4</sup> |
|                     | 10  | -3.03·10 <sup>4</sup>  |
|                     | 11  | -3.126·10 <sup>4</sup> |
| $\mathrm{w_f}(X) =$ | 12  | -3.174·10 <sup>4</sup> |
|                     | 13  | -3.174·10 <sup>4</sup> |
|                     | 14  | -3.126·10 <sup>4</sup> |
|                     | 15  | -3.03·10 <sup>4</sup>  |
|                     | 16  | -2.886·10 <sup>4</sup> |
|                     | 17  | -2.693·10 <sup>4</sup> |
|                     | 18  | -2.453·10 <sup>4</sup> |
|                     | 19  | -2.164·10 <sup>4</sup> |
|                     | 20  | -1.828·10 <sup>4</sup> |
|                     | 21  | -1.443·10 <sup>4</sup> |
|                     | 22  | -1.01·10 <sup>4</sup>  |
|                     | 23  | -5.29·10 <sup>3</sup>  |
|                     | 24  | 0                      |
|                     |     |                        |

|     |    | 1                   | 2                       |
|-----|----|---------------------|-------------------------|
|     | 1  | 0                   | 3.413·10 <sup>-5</sup>  |
|     | 2  | 100                 | 2.204·10-4              |
|     | 3  | 200                 | 4.066·10 <sup>-4</sup>  |
|     | 4  | 300                 | 5.929·10 <sup>-4</sup>  |
|     | 5  | 400                 | 7.792·10 <sup>-4</sup>  |
|     | 6  | 500                 | 9.654·10 <sup>-4</sup>  |
|     | 7  | 500                 | 9.654·10 <sup>-4</sup>  |
|     | 8  | 600                 | 1.07·10 <sup>-3</sup>   |
|     | 9  | 700                 | 1.174·10 <sup>-3</sup>  |
|     | 10 | 800                 | 1.278·10 <sup>-3</sup>  |
|     | 11 | 900                 | 1.383·10 <sup>-3</sup>  |
|     | 12 | 1·10 <sup>3</sup>   | 1.487·10 <sup>-3</sup>  |
|     | 13 | 1·10 <sup>3</sup>   | 1.487·10 <sup>-3</sup>  |
|     | 14 | 1.1.103             | 1.51·10 <sup>-3</sup>   |
|     | 15 | 1.2·10 <sup>3</sup> | 1.532·10 <sup>-3</sup>  |
|     | 16 | 1.3·10 <sup>3</sup> | 1.554·10 <sup>-3</sup>  |
| C = | 17 | 1.4·10 <sup>3</sup> | 1.577·10 <sup>-3</sup>  |
|     | 18 | 1.5·10 <sup>3</sup> | 1.599·10 <sup>-3</sup>  |
|     | 19 | 1.5·10 <sup>3</sup> | 1.599·10 <sup>-3</sup>  |
|     | 20 | 1.6·10 <sup>3</sup> | 1.54·10 <sup>-3</sup>   |
|     | 21 | 1.7·10 <sup>3</sup> | 1.48·10 <sup>-3</sup>   |
|     | 22 | 1.8·10 <sup>3</sup> | 1.421·10 <sup>-3</sup>  |
|     | 23 | 1.9·10 <sup>3</sup> | 1.361·10 <sup>-3</sup>  |
|     | 24 | 2.103               | 1.302·10 <sup>-3</sup>  |
|     | 25 | 2·10 <sup>3</sup>   | 1.302·10 <sup>-3</sup>  |
|     | 26 | 2.1·10 <sup>3</sup> | 1.16·10 <sup>-3</sup>   |
|     | 27 | 2.2·10 <sup>3</sup> | 1.019·10 <sup>-3</sup>  |
|     | 28 | 2.3·10 <sup>3</sup> | 8.775·10 <sup>-4</sup>  |
|     | 29 | 2.4·10 <sup>3</sup> | 7.361·10 <sup>-4</sup>  |
|     | 30 | 2.5·10 <sup>3</sup> | 5.946·10 <sup>-4</sup>  |
|     | 31 | 2.5·10 <sup>3</sup> | 5.946·10 <sup>-4</sup>  |
|     | 32 | 2.6·10 <sup>3</sup> | 3.713·10-4              |
|     | 33 | 2.7·10 <sup>3</sup> | 1.48·10-4               |
|     | 34 | 2.8·10 <sup>3</sup> | -7.537·10 <sup>-5</sup> |
|     | 35 | 2.9·10 <sup>3</sup> |                         |
|     |    |                     |                         |

S\_MC =

|   |    | 1                   | 2                       |
|---|----|---------------------|-------------------------|
|   | 1  | 0                   | 7.21·10 <sup>-5</sup>   |
|   | 2  | 100                 | 7.21·10 <sup>-5</sup>   |
|   | 3  | 200                 | 7.21·10 <sup>-5</sup>   |
|   | 4  | 300                 | 7.21·10 <sup>-5</sup>   |
|   | 5  | 400                 | 7.21·10 <sup>-5</sup>   |
|   | 6  | 500                 | 7.21·10 <sup>-5</sup>   |
|   | 7  | 500                 | 4.039·10 <sup>-5</sup>  |
|   | 8  | 600                 | 4.039·10 <sup>-5</sup>  |
|   | 9  | 700                 | 4.039·10 <sup>-5</sup>  |
|   | 10 | 800                 | 4.039·10 <sup>-5</sup>  |
|   | 11 | 900                 | 4.039·10-5              |
|   | 12 | 1.103               | 4.039·10-5              |
|   | 13 | 1.103               | 8.679·10 <sup>-6</sup>  |
|   | 14 | 1.1·10 <sup>3</sup> | 8.679·10 <sup>-6</sup>  |
|   | 15 | 1.2·10 <sup>3</sup> | 8.679·10 <sup>-6</sup>  |
|   | 16 | 1.3·10 <sup>3</sup> | 8.679·10 <sup>-6</sup>  |
|   | 17 | 1.4·10 <sup>3</sup> | 8.679·10 <sup>-6</sup>  |
| = | 18 | 1.5·10 <sup>3</sup> | 8.679·10 <sup>-6</sup>  |
|   | 19 | 1.5·10 <sup>3</sup> | -2.303·10 <sup>-5</sup> |
|   | 20 | 1.6·10 <sup>3</sup> | -2.303·10 <sup>-5</sup> |
|   | 21 | 1.7·10 <sup>3</sup> | -2.303·10 <sup>-5</sup> |
|   | 22 | 1.8·10 <sup>3</sup> | -2.303·10 <sup>-5</sup> |
|   | 23 | 1.9·10 <sup>3</sup> | -2.303·10 <sup>-5</sup> |
|   | 24 | 2·10 <sup>3</sup>   | -2.303·10 <sup>-5</sup> |
|   | 25 | 2·10 <sup>3</sup>   | -5.474·10 <sup>-5</sup> |
|   | 26 | 2.1·10 <sup>3</sup> | -5.474·10 <sup>-5</sup> |
|   | 27 | 2.2·10 <sup>3</sup> | -5.474·10 <sup>-5</sup> |
|   | 28 | 2.3·10 <sup>3</sup> | -5.474·10 <sup>-5</sup> |
|   | 29 | 2.4·10 <sup>3</sup> | -5.474·10 <sup>-5</sup> |
|   | 30 | 2.5·10 <sup>3</sup> | -5.474·10 <sup>-5</sup> |
|   | 31 | 2.5·10 <sup>3</sup> | -8.645·10 <sup>-5</sup> |
|   | 32 | 2.6·10 <sup>3</sup> | -8.645·10 <sup>-5</sup> |
|   | 33 | 2.7·10 <sup>3</sup> | -8.645·10 <sup>-5</sup> |
|   | 34 | 2.8·10 <sup>3</sup> | -8.645·10 <sup>-5</sup> |
|   | 35 | 2.9·10 <sup>3</sup> | -8.645·10 <sup>-5</sup> |
|   | 36 | 3·10 <sup>3</sup>   |                         |
|   |    |                     |                         |

T\_MC :

EL maatriks jääb selliseks nagu ennegi.

|      |    | 1  | 2  | 3  | 4   |
|------|----|----|----|----|-----|
|      | 1  | 1  | 1  | 2  | 0.5 |
|      | 2  | 2  | 2  | 3  | 0.5 |
|      | 3  | 3  | 3  | 4  | 0.5 |
|      | 4  | 4  | 4  | 5  | 0.5 |
|      | 5  | 5  | 5  | 6  | 0.5 |
|      | 6  | 6  | 6  | 7  | 0.5 |
|      | 7  | 7  | 7  | 8  | 0.5 |
|      | 8  | 8  | 8  | 9  | 0.5 |
|      | 9  | 9  | 9  | 10 | 0.5 |
|      | 10 | 10 | 10 | 11 | 0.5 |
| EL = | 11 | 11 | 11 | 12 | 0.5 |
| LL   | 12 | 12 | 12 | 13 | 0.5 |
|      | 13 | 13 | 13 | 14 | 0.5 |
|      | 14 | 14 | 14 | 15 | 0.5 |
|      | 15 | 15 | 15 | 16 | 0.5 |
|      | 16 | 16 | 16 | 17 | 0.5 |
|      | 17 | 17 | 17 | 18 | 0.5 |
|      | 18 | 18 | 18 | 19 | 0.5 |
|      | 19 | 19 | 19 | 20 | 0.5 |
|      | 20 | 20 | 20 | 21 | 0.5 |
|      | 21 | 21 | 21 | 22 | 0.5 |
|      | 22 | 22 | 22 | 23 | 0.5 |
|      | 23 | 23 | 23 | 24 | 0.5 |

Timošenko tala elementide jäkusmaatriksis on lisaks omapärastele valemitele veel juurde lisatud nihkeelastsusmaatriks  $G_v$  ja ristlõike pindala  $A_{red}$ .

$$\begin{split} K\_{tim}_{el}\!\!\left(E,G_{v},I,A_{red},h_{e}\right) = & \begin{vmatrix} \lambda_{e} \leftarrow \frac{E \cdot I}{G_{v} \cdot A_{red} \cdot h_{e}^{\,2}} \\ \mu_{0} \leftarrow 12 \cdot \lambda_{e} \\ R \leftarrow \frac{2 \cdot E \cdot I}{\mu_{0} \cdot h_{e}^{\,3}} \cdot \begin{bmatrix} 6 & -3 \cdot h_{e} & -6 & -3 \cdot h_{e} \\ -3 \cdot h_{e} & h_{e}^{\,2} \cdot \left(1.5 + 6 \cdot \lambda_{e}\right) & 3 \cdot h_{e} & h_{e}^{\,2} \cdot \left(1.5 - 6 \cdot \lambda_{e}\right) \\ -6 & 3 \cdot h_{e} & 6 & 3 \cdot h_{e} \\ -3 \cdot h_{e} & h_{e}^{\,2} \cdot \left(1.5 - 6 \cdot \lambda_{e}\right) & 3 \cdot h_{e} & h_{e}^{\,2} \cdot \left(1.5 + 6 \cdot \lambda_{e}\right) \end{bmatrix} \end{split}$$
 return R

$$F_{tim_{gl}} = F1_{tim_{gl}} + F2_{tim_{gl}}$$

Globaalse jäikusmaatriksi (48 x 48) ja jõuvektori (48 x 1) arvulised väärtused:

|  |    | 1                      | 2                      | 3                      | 4                      | 5                      |
|--|----|------------------------|------------------------|------------------------|------------------------|------------------------|
|  | 1  | 6.238·10 <sup>3</sup>  | -1.559·10 <sup>6</sup> | -6.238·10 <sup>3</sup> | -1.559·10 <sup>6</sup> | 0                      |
|  | 2  | -1.559·10 <sup>6</sup> | 7.35·10 <sup>9</sup>   | 1.559·10 <sup>6</sup>  | -6.571·10 <sup>9</sup> | 0                      |
|  | 3  | -6.238·10 <sup>3</sup> | 1.559·10 <sup>6</sup>  | 1.248·10 <sup>4</sup>  | 0                      | -6.238·10 <sup>3</sup> |
|  | 4  | -1.559·10 <sup>6</sup> | -6.571·10 <sup>9</sup> | 0                      | 1.47·10 <sup>10</sup>  | 1.559·10 <sup>6</sup>  |
|  | 5  | 0                      | 0                      | -6.238·10 <sup>3</sup> | 1.559·10 <sup>6</sup>  | 1.248·10 <sup>4</sup>  |
|  | 6  | 0                      | 0                      | -1.559·10 <sup>6</sup> | -6.571·10 <sup>9</sup> | 0                      |
|  | 7  | 0                      | 0                      | 0                      | 0                      | -6.238·10 <sup>3</sup> |
|  | 8  | 0                      | 0                      | 0                      | 0                      | -1.559·10 <sup>6</sup> |
|  | 9  | 0                      | 0                      | 0                      | 0                      | 0                      |
|  | 10 | 0                      | 0                      | 0                      | 0                      | 0                      |
|  | 11 | 0                      | 0                      | 0                      | 0                      | 0                      |
|  | 12 | 0                      | 0                      | 0                      | 0                      | 0                      |
|  | 13 | 0                      | 0                      | 0                      | 0                      | 0                      |
|  | 14 | 0                      | 0                      | 0                      | 0                      | 0                      |
|  | 15 | 0                      | 0                      | 0                      | 0                      | 0                      |
|  | 16 | 0                      | 0                      | 0                      | 0                      |                        |

|                  |    | 1                     |
|------------------|----|-----------------------|
|                  | 1  | 1.5·10 <sup>6</sup>   |
|                  | 2  | -1.25·10 <sup>8</sup> |
|                  | 3  | 3·106                 |
|                  | 4  | 0                     |
|                  | 5  | 3.106                 |
|                  | 6  | 0                     |
|                  | 7  | 3·106                 |
| $F_{tim_{gl}} =$ | 8  | 0                     |
|                  | 9  | 3·106                 |
|                  | 10 | 0                     |
|                  | 11 | 3·106                 |
|                  | 12 | 0                     |
|                  | 13 | 3·106                 |
|                  | 14 | 0                     |
|                  | 15 | 3·106                 |
|                  | 16 |                       |

Sarnane probleem tekib ka väändepingete arvutamisel.

$$\begin{split} T\_MC_{tim} = & \begin{array}{l} N\_el \leftarrow \text{max}\Big(EL^{\left\langle 1 \right\rangle}\Big) \\ \text{for } i\_el \in 1..N\_el \\ \\ & \begin{array}{l} \text{for } i \in 1..4 \\ \text{ue}_i \leftarrow \text{u\_tim}_{(i\_el-1) \cdot 2+i} \\ \text{for } i \in 1..6 \\ \\ \\ R_{(i\_el-1) \cdot 6+i,\,1} \leftarrow (i\_el-1) \cdot h_e + \frac{(i-1)}{5} \cdot h_e \\ \\ \text{SUM} \leftarrow 0 \\ \text{for } j \in 1..4 \\ \\ \\ x \leftarrow \frac{(i-1)}{5} \cdot h_e \\ \\ \text{SUM} \leftarrow \text{SUM} + \text{ue}_j \cdot \text{dd}\psi\big(j,h_e,x\big) \\ \\ R_{(i\_el-1) \cdot 6+i,\,2} \leftarrow -E \cdot \text{SUM} \cdot \frac{S_t}{b_t} \\ \\ \text{return } R \\ \end{split}$$

|                |    | 1                   | 2                      |
|----------------|----|---------------------|------------------------|
|                | 1  | 0                   | -1.747·10 <sup>7</sup> |
|                | 2  | 100                 | -1.747·10 <sup>7</sup> |
|                | 3  | 200                 | -1.747·10 <sup>7</sup> |
|                | 4  | 300                 | -1.747·10 <sup>7</sup> |
|                | 5  | 400                 | -1.747·10 <sup>7</sup> |
|                | 6  | 500                 | -1.747·10 <sup>7</sup> |
|                | 7  | 500                 | -4.572·10 <sup>7</sup> |
| $T_MC_{tim} =$ | 8  | 600                 | -4.572·10 <sup>7</sup> |
|                | 9  | 700                 | -4.572·10 <sup>7</sup> |
|                | 10 | 800                 | -4.572·10 <sup>7</sup> |
|                | 11 | 900                 | -4.572·10 <sup>7</sup> |
|                | 12 | 1·10 <sup>3</sup>   | -4.572·10 <sup>7</sup> |
|                | 13 | 1·10 <sup>3</sup>   | -5.967·10 <sup>7</sup> |
|                | 14 | 1.1·10 <sup>3</sup> | -5.967·10 <sup>7</sup> |
|                | 15 | 1.2·10 <sup>3</sup> | -5.967·10 <sup>7</sup> |
|                | 16 | 1.3·10 <sup>3</sup> |                        |
|                |    |                     |                        |