Exercises to

Swarm Intelligence

Summer 2022

Sheet 1

Dynamical systems often work "memoryless," i.e., the next state \vec{x}_{t+1} of the system depends only on the current state \vec{x}_t of the system and not additionally on how one got into this state.

In addition, it is often true that one can calculate the new state by multiplying \vec{x}_t by a matrix A, i.e., $\vec{x}_{t+1} = A \cdot \vec{x}_t$. For a concrete example, see Problem 2. Therefore, over the runtime of the system we get $\vec{x}_t = A^t \cdot \vec{x}_0$, where \vec{x}_0 denotes the initial state. It is therefore necessary to quickly calculate powers of A, and this is what we want to do in Problem 1.

Problem 1:

Let the matrix $A = \begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$ be given. Armed only with an inexpensive pocket calculator, our goal is to calculate A^{15} and A^{22} .

- (a) Calculate the two eigenvalues λ_1 and λ_2 , $\lambda_1 \ge \lambda_2$, of A.
- (b) Determine for each eigenvalue λ_i a corresponding eigenvector \vec{v}_i .
- (c) Let P be the matrix whose first column consists of \vec{v}_1 and whose second column consists of \vec{v}_2 . Calculate P^{-1} .
- (d) Show: $A = P \cdot \Lambda \cdot P^{-1}$. Here, Λ is the diagonal matrix $\Lambda = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.
- (e) Calculate the four *entries* of A^k for any $k \in \mathbb{N}$, and from this general expression the matrices A^{15} and A^{22} .

Problem 2:

Let a ring made of metal be given. On this ring, four uniformly distributed points 1,2,3,4 are marked, and the point 1 is heated by a flame to the temperature T. Then the flame is removed, and we consider, how (in a little bit idealized manner) the temperature changes on the ring. To do this, we model the temperature changes as following: Each point transfers between two measurements $\frac{1}{3}$ of its temperature to its two neighbors, the residual third remains at this point. No energy is released to the outside. This process of temperature exchance is called (discrete) diffusion.

Let $\vec{\vartheta}_t$ denote the temperature distribution on the four points. Thus, at the beginning $\vec{\vartheta}_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$.

At the next measurement point in time, we have

$$\vec{\vartheta}_1 = \underbrace{\frac{1}{3} \cdot \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}}_{=::A} \cdot \vec{\vartheta}_0$$

and in general $\vec{\vartheta}_t = A^t \cdot \vec{\vartheta}_0$. (Please explain the meaning/origin of matrix A!) Similar to Problem 1, A can be decomposed:

$$A = \underbrace{\begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & -1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \end{pmatrix}}_{=P} \cdot \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & -\frac{1}{3} \end{pmatrix}}_{=\Lambda} \cdot \underbrace{\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \end{pmatrix}}_{=P^{-1}}$$

- (a) Determine $\lim_{t\to\infty} \vec{\vartheta}_t$.
- (b) Discuss the influence of $\Lambda_{44}=-\frac{1}{3}$ on the temperatures approaching limit.

Problem 3:

The Fibonacci Numbers $(f_i)_{i=0,1,...}$ are a sequence of numbers used in computer science in many regards, and they occur quite often in nature. They are defined recursively as follows:

$$f_0 = 0$$

 $f_1 = 1$
 $f_{i+1} = f_i + f_{i-1}$

Determine a 2×2 matrix A such that

$$\begin{pmatrix} f_{i+1} \\ f_i \end{pmatrix} = A \cdot \begin{pmatrix} f_i \\ f_{i-1} \end{pmatrix}$$

and then proceed analogously to Problem 1 in order to represent f_i as an explicit formula.