Generowanie cyfr pisanych odręcznie na bazie sieci neuronowej o architekturze autoencodera Analiza i implementacja różnych modeli generatywnych

Jakub Barylak, Michał Jagoda, Piotr Marcol

Politechnika Śląska

Maj 2025

Plan prezentacji

- Modele
- Porównanie modeli
- Wyzwania implementacyjne
- Przykłady zastosowań

Opis projektu

Cel projektu

Zastosowanie sieci neuronowej o architekturze autoencodera do generowania niskorozdzielczych obrazów cyfr pisanych odręcznie.

- Trenowanie różnych wariantów autoencoder'a
- Generowanie nowych cyfr poprzez podawanie losowych wartości na wejście dekodera
- Badanie wpływu struktury sieci (liczba warstw, liczba neuronów) oraz parametrów uczenia
- Wykorzystanie zbioru danych MNIST

Rozważane warianty

Klasyczny autoencoder, wariacyjny autoencoder (VAE), GAN, Diffusion, VQ-VAE, Conditional VAE

Zbiór danych MNIST

Charakterystyka zbioru MNIST:

- Standardowy zbiór danych do rozpoznawania odręcznie pisanych cyfr
- 60 000 obrazów treningowych
- 10 000 obrazów testowych
- ullet Obrazy czarno-białe o wymiarach 28 imes 28 pikseli
- 10 klas (cyfry od 0 do 9)
- Każdy piksel reprezentowany jako wartość od 0 (biały) do 255 (czarny)

Rysunek: Przykładowe cyfry ze zbioru MNIST

Dlaczego MNIST?

Zalety zbioru MNIST:

- Idealny do demonstracji modeli generatywnych ze względu na prostotę
- Pozwala na szybkie eksperymenty (mała rozdzielczość obrazów)
- Łatwa interpretacja wyników (ludzie bez trudu rozpoznają cyfry)
- Umożliwia bezpośrednie porównanie z wynikami z literatury

Balans między:

- Złożonością modelu
- Czasem treningu
- Jakością wyników

Autoencoder

Autoencoder to rodzaj sieci neuronowej, która uczy się kompresować dane wejściowe do reprezentacji o niższym wymiarze (kod), a następnie rekonstruować oryginalne dane z tej reprezentacji.

Zastosowania:

- Redukcja wymiarowości
- Denoising (odszumianie)
- Generowanie nowych danych

Zalety: prostota, szybki trening, interpretowalność

Wady: ograniczona zdolność generatywna, brak kontroli nad rozkładem latentnym

Bibliografia: [2]

Autoencoder - Funkcja straty (1/2)

Struktura Autoencodera:

Autoencoder składa się z enkodera,

który kompresuje dane wejściowe do reprezentacji latentnej, oraz dekodera, który rekonstruuje dane z tej reprezentacji.

Kluczowe elementy to dane wejściowe x, reprezentacja latentna z, oraz rekonstrukcja \hat{x} .

Autoencoder - Funkcja straty (2/2)

$$\mathcal{L}_{AE} = \|x - \hat{x}\|^2 = \|x - g(f(x))\|^2$$

Objaśnienie funkcji straty: gdzie:

- x dane wejściowe (obraz)
- ullet f(x) funkcja enkodera
- z = f(x) reprezentacja latentna
- ullet g(z) funkcja dekodera
- \bullet $\hat{x} = g(f(x))$ rekonstrukcja

Funkcja straty to typowo błąd średniokwadratowy (MSE) lub binary cross-entropy dla obrazów.

Wariacyjny Autoencoder (VAE)

VAE to probabilistyczne rozszerzenie autoencodera, które modeluje rozkład latentny danych.

Kluczowe cechy:

- Modelowanie rozkładu latentnego (μ , σ)
- Regularyzacja poprzez KL-dywergencję
- Generowanie nowych próbek przez próbkowanie

Zalety: generatywność, ciągła przestrzeń latentna, możliwość interpolacji

Wady: rozmyte próbki, trudność w

trenowaniu

Bibliografia: [4]

Wariacyjny Autoencoder (VAE) - Funkcja straty (1/2)

Struktura Conditional VAE:

Conditional VAE uwzględnia etykietę

y (np. klasę cyfry) podczas kodowania i dekodowania, co pozwala na kontrolowanie generowanych danych.

Etykieta jest konkatenowana zarówno z danymi wejściowymi, jak i z próbkowaną reprezentacją latentną z.

Conditional VAE - Funkcja straty (2/2)

$$\mathcal{L}_{CVAE} = \underbrace{ \left\| x - \hat{x} \right\|^2}_{\text{Rekonstrukcja}} + \underbrace{ \beta \cdot D_{KL}(q(z|x,y) \| p(z|y))}_{\text{Regularyzacja KL}}$$

Objaśnienie funkcji straty: gdzie:

- $q(z|x,y) = \mathcal{N}(z; \mu(x,y), \sigma^2(x,y))$
- $ullet \ p(z|y)$ warunkowy rozkład a priori
- ullet y etykieta klasy (np. cyfra 0-9)

Podczas generowania:

- Wybierz etykietę y (np. "3")
- Próbkuj $z \sim \mathcal{N}(0, I)$
- Wygeneruj $\hat{x} = g(z, y)$

VQ-VAE

VQ-VAE to autoencoder, w którym przestrzeń latentna jest kwantyzowana do skończonego zbioru wektorów (słownik kodów).

Kluczowe cechy:

- Dyskretna przestrzeń latentna
- Kwantyzacja wektorowa
- Słownik kodowy

Zalety: dyskretna reprezentacja, dobre wyniki w generowaniu sekwencji

Wady: trudność w trenowaniu, konieczność

doboru rozmiaru słownika

Bibliografia: [5]

VQ-VAE - Funkcja straty (1/2)

Struktura VQ-VAE: VQ-VAE

kwantyzuje wyjście enkodera z_e do najbliższego wektora z_q ze słownika kodów, co prowadzi do dyskretnej reprezentacji latentnej.

Słownik kodów jest kluczowym elementem, który pozwala na wybór odpowiedniego wektora podczas procesu kwantyzacji.

VQ-VAE - Funkcja straty (2/2)

$$\mathcal{L}_{VQ-VAE} = \underbrace{\|x - \hat{x}\|^2}_{\text{Rekonstrukcja}} + \underbrace{\|sg[z_e] - e\|^2}_{\text{Uaktualnienie słownika}} + \underbrace{\beta\|z_e - sg[e]\|^2}_{\text{Commitment loss}}$$

Objaśnienie funkcji straty: gdzie:

- ullet $z_e = f(x)$ wyjście enkodera
- ullet e wybrany wektor ze słownika
- \bullet z_q kwantyzowany wektor
- sg[] operacja "stop gradient"
- $oldsymbol{\circ}$ eta współczynnik commitment loss

Słownik kodów jest aktualizowany poprzez:

$$e_j = \mathsf{MA}(z_e), \; \mathsf{dla} \; j = \arg\min_k \|z_e - e_k\|$$

gdzie MA to średnia krocząca.

Generative Adversarial Network (GAN)

GAN to model generatywny składający się z dwóch sieci: generatora (tworzy próbki) i dyskryminatora (odróżnia próbki prawdziwe od fałszywych).

Kluczowe cechy:

- Układ rywalizujący (gra dwuosobowa)
- Generator tworzy coraz lepsze próbki
- Dyskryminator staje się coraz trudniejszy do oszukania

Zalety: realistyczne próbki, duża elastyczność

Wady: trudność w trenowaniu, niestabilność, mode collapse

Bibliografia: [1]

GAN - Funkcja straty (1/2)

Struktura GAN:

Składa się z dwóch sieci neuronowych rywalizujących ze sobą:

- Generator tworzy obrazy z losowego szumu (przestrzeń ukryta), starając się oszukać dyskryminator
- Dyskryminator ocenia, czy obraz jest prawdziwy (z zbioru danych) czy wygenerowany

Podczas treningu:

- Generator maksymalizuje błąd dyskryminatora
- Dyskryminator minimalizuje własny błąd

Ta rywalizacja stopniowo poprawia jakość generowanych obrazów.

GAN - Funkcja straty (2/2)

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 - D(G(z)))]$$

Objaśnienie funkcji straty:

Trening dyskryminatora *D*:

$$\max_{D} \mathbb{E}_{x}[\log D(x)] + \mathbb{E}_{z}[\log(1 - D(G(z)))]$$

Trening generatora G:

$$\min_{G} \mathbb{E}_{z}[\log(1 - D(G(z)))]$$

Proces treningu:

- Naprzemienne aktualizacje D i G
- Balansowanie jakości i różnorodności

Diffusion Model

Model dyfuzji to nowoczesny model generatywny, który uczy się odszumiania danych przez odwracanie procesu stopniowego dodawania szumu.

Kluczowe cechy:

- Proces forward (dodawanie szumu)
- Proces reverse (przewidywanie i usuwanie szumu)
- Iteracyjne próbkowanie

Zalety: wysoka jakość generowanych próbek, stabilność treningu

Wady: długi czas generowania, złożoność

obliczeniowa

Bibliografia: [3]

Diffusion Model - Funkcje straty (1/2)

Struktura modelu dyfuzji: Model

dyfuzji opiera się na procesie forward, który stopniowo dodaje szum do danych, oraz na modelu ϵ_{θ} , który przewiduje szum w procesie reverse.

Proces obejmuje wiele kroków, od czystego obrazu x_0 do czystego szumu x_T .

Diffusion Model - Funkcje straty (2/2)

Proces forward (dodawanie szumu):

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I})$$

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t) \mathbf{I})$$

Parametryzacja:

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$$

gdzie $\epsilon \sim \mathcal{N}(0, \mathbf{I})$

Funkcja straty:

$$\mathcal{L}_{simple} = \mathbb{E}_{t,x_0,\epsilon} \left[\|\epsilon - \epsilon_{\theta}(x_t,t)\|^2 \right]$$

Parametry:

- ullet eta_t harmonogram szumu
- $\bar{\alpha}_t = \prod_{s=1}^t (1 \beta_s)$
- ullet $\epsilon_{ heta}$ model predykcji szumu

Diffusion Model - Próbkowanie

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

$$\mathbf{1} x_T \sim \mathcal{N}(0, \mathbf{I})$$

$$-1,\ldots,1$$
:

• Oblicz
$$\mu_{\theta}(x_t, t)$$

$$\iota_{ heta}(x_t,t)$$

 $0,\mathbf{I})$ jes

•
$$z \sim \mathcal{N}(0, \mathbf{I})$$
 jeśli $t > 1$, inaczej $z = 0$

•
$$z \sim \mathcal{N}(0, \mathbf{I})$$
 jeśl inaczej $z = 0$

•
$$z \sim \mathcal{N}(0, \mathbf{I})$$
 jes inaczej $z = 0$

 \bigcirc Zwróć x_0

② dla
$$t = T, T - 1, ..., 1$$
:

$$(x_t,t)$$

, $\mathbf{I})$ jeśli $t>1$,

$$(\mathbf{I})$$
 jesli $t > 1$, $= 0$

inaczej
$$z = 0$$
• $x_{t-1} = \mu_{\theta}(x_t, t) + \sigma_t z$

gdzie $\alpha_t = 1 - \beta_t$

Kluczowe równanie:
$$\mu_{\theta}(x_t,t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t,t) \right)$$

 $p_{\theta}(x_{T-1}|x_T)$

 $p_{\theta}(x_0|x_1)$

 x_0 (obraz)

Algorytm próbkowania:
$$p_{\theta}(x_{T-2}|x_{T-1})$$

$$x_T \sim \mathcal{N}(0, \mathbf{I})$$

Porównanie modeli generatywnych - tabela

Model	Zalety	Wady
Autoencoder	Prostota implementa-	Słaba generatywność,
(2006)	cji, szybki trening	rozmyte obrazy
VAE (2013)	Solidne podstawy teo-	Rozmyte obrazy, trud-
	retyczne, ciągła prze-	ność balansowania re-
	strzeń latentna	konstrukcji i KL diver-
		gencji
GAN (2014)	Ostre, realistyczne	Niestabilność tre-
	próbki	ningu, mode collapse
Conditional	Kontrola nad proce-	Większa złożoność
VAE (2015)	sem generacji, warun-	implementacji, wy-
	kowanie na klasach	maga etykiet
VQ-VAE	Ostrzejsze obrazy, do-	Trudniejszy do tre-
(2017)	bra kompresja	nowania, problemy z
		kwantyzacją
Diffusion	Najlepsza jakość obra-	Powolne próbkowanie,
(2020)	zów, stabilny trening	wysoka złożoność ob-
		liczeniowa

Wyzwania implementacyjne

- Dobór architektury: Liczba warstw, liczba neuronów, funkcje aktywacji
- Dobór wymiarowości przestrzeni latentnej: Zbyt mała utrata informacji, zbyt duża - brak generalizacji
- Balansowanie funkcji straty: Np. w VAE balans między rekonstrukcją a regularyzacją KL

$$\mathcal{L}_{VAE}(\beta) = \|x - \hat{x}\|^2 + \beta \cdot D_{KL}$$

Stabilność treningu: Szczególnie w przypadku GAN-ów

$$\mathcal{L}_D = -\mathbb{E}_x[\log D(x)] - \mathbb{E}_z[\log(1 - D(G(z)))]$$

$$\mathcal{L}_G = -\mathbb{E}_z[\log D(G(z))]$$

- **Efektywność obliczeniowa:** Modele dyfuzji wymagają wielu kroków podczas generowania
- Ocena jakości wygenerowanych próbek: Metody ilościowe vs jakościowe

Kompromisy w modelowaniu

Rekonstrukcja vs różnorodność:

W VAE: β-VAE

$$\mathcal{L}_{\beta\text{-VAE}} = \|x - \hat{x}\|^2 + \beta \cdot D_{KL}$$

- $\beta < 1$: lepsza rekonstrukcja
- $\beta > 1$: większa regularyzacja, lepsze generowanie

Rate-distortion trade-off:

$$\mathcal{L} = \mathsf{Rate} + \beta \cdot \mathsf{Distortion}$$

Wymiar przestrzeni latentnej:

- Mały wymiar → silna kompresja, ale utrata szczegółów
- Duży wymiar → lepsza rekonstrukcja, ale słabsza generalizacja

Harmonogram szumu w Diffusion:

$$\beta_1, \beta_2, \ldots, \beta_T$$

- Liniowy vs nieliniowy
- Wpływ na jakość generowania

Przykłady zastosowań

Generowanie danych syntetycznych:

 Augmentacja danych w uczeniu maszynowym

$$\mathcal{D}_{aug} = \mathcal{D} \cup \{G(z_i)|z_i \sim p(z)\}_{i=1}^N$$

- Syntetyczne dane dla trenowania innych modeli
- Generowanie przykładów do zastosowań edukacyjnych

Matematycznie:

$$p_{model}(x) \approx p_{data}(x)$$

Zastosowania praktyczne:

Transfer stylu pisma

$$\hat{x} = g(f(x_{style}), y_{content})$$

 Uzupełnianie brakujących fragmentów

$$\hat{x}_{full} = \arg\max_{x} p(x|x_{observed})$$

- Korekta i poprawa pisma odręcznego
- Konwersja cyfr między różnymi stylami

$$x_{target} = g(f(x_{source}), y_{target})$$

Bibliografia I

- [1] Ian Goodfellow i in. "Generative adversarial nets". W: Advances in neural information processing systems. 2014, s. 2672–2680.
- [2] Geoffrey E Hinton i Ruslan R Salakhutdinov. "Reducing the dimensionality of data with neural networks". W: *Science* 313.5786 (2006), s. 504–507.
- [3] Jonathan Ho, Ajay Jain i Pieter Abbeel. "Denoising diffusion probabilistic models". W: *Advances in neural information processing systems*. T. 33. 2020, s. 6840–6851.
- [4] Diederik P Kingma i Max Welling. "Auto-encoding variational bayes".W: arXiv preprint arXiv:1312.6114 (2013).
- [5] Aaron van den Oord, Oriol Vinyals i Koray Kavukcuoglu. "Neural discrete representation learning". W: Advances in neural information processing systems. 2017, s. 6306–6315.