hw1

1

Prove each of the following. You may use the results from previous parts of the problem in further proofs. For each proof, I have indicated where you should start. For the purposes of these proofs here, assume that X, Y, and Z are continuous random variables. Assume that a, b and c are constants.

a

$$\begin{split} E[aX+bY+c] &= \int \int (ax+by+c)p(x,y)dxdy \\ &= \int \int axp(x,y)dxdy + \int \int byp(x,y)dxdy + \int \int cp(x,y)dxdy \\ &= a\int x \bigg[\int p(x,y)dy\bigg]dx + b\int y \bigg[\int p(x,y)dx\bigg]dy + c\int \int p(x,y)dxdy \\ &= a\int xp(x)dx + b\int yp(y)dy + c\cdot 1 \\ &= aE[X] + bE[Y] + c \end{split}$$

b

$$\begin{split} cov(X,Y) &= E\Big[(X-E[X])(Y-E[Y])\Big] \\ &= E\Big[XY-XE[Y]-YE[X]+E[Y]E[X]\Big] \\ &= E[XY]-E[XE[Y]]-E[YE[X]]+E[E[Y]E[X]] \\ &= E[XY]-E[Y]E[X]-E[X]E[Y]+E[Y]E[X]E[1] \qquad \text{since E[X] and E[Y] are just constants} \\ &= E[XY]-E[X]E[Y] \end{split}$$

C

$$\begin{split} E[Y|X=x] &= \int y p(y|X=x) dy \\ &= \int y \frac{p(y,x)}{p(x)} dy \\ &= \int \int y \frac{p(y,x,z)}{p(x)} dz dy \qquad \text{reverse marginalization} \\ &= \int \int y \frac{p(y|x,z)p(x,z)}{p(x)} dz dy \qquad \text{bayes rule} \\ &= \int \frac{p(x,z)}{p(x)} \bigg[\int y p(y|x,z) dy \bigg] dz \qquad \text{separating terms} \\ &= \int p(z|x) E[Y|X=x,Z=z] dz \\ &= E \Big[E[Y|X,Z] \ \Big| \ X=x \Big] \end{split}$$

The transition between the second to last and the last step relies on the fact that since we are conditioning on X = x, E[Y|X,Z] is just a function of Z, meaning that the outer expectation is over p(z|x).

d

$$\begin{split} E[h(X,Y)] &= \int \int h(x,y) p(x,y) dx dy \\ &= \int \int h(x,y) p(y|x) p(x) dx dy \quad \text{ bayes rule} \\ &= \int p(x) \bigg[\int h(x,y) p(y|x) dy \bigg] dx \quad \text{ rearranging terms} \\ &= \int p(x) E[h(x,y)|X=x] \quad \text{ since we condition on x, E[h(x,y)|x] is over p(y|x)} \\ &= E\bigg[E[h(X,Y)|X=x] \bigg] \quad \text{ this outer expectation is just over p(x)} \end{split}$$

 \mathbf{e}

$$\begin{split} Var(Y) &= E[Y^2] - E[Y]^2 \\ &= E\Big[E[Y^2|X]\Big] - E[Y]^2 \\ &= E\Big[Var(Y|X) + E[Y|X]^2\Big] - E\Big[E[Y|X]\Big]^2 \\ &= E[Var(Y|X)] + E\Big[E[Y|X]^2\Big] - E\Big[E[Y|X]\Big]^2 \\ &= E[Var(Y|X)] + Var(E[Y|X]) \qquad \text{defintion of variance} \end{split}$$

2

Prove each of the following statements. In each, let $X_{(n)}$ and $Y_{(n)}$ be sequences of random variables, and let c and d be constants.

a

If $X_{(n)} \to c$ and $Y_n \to d$ both in probability then

\$\$

\$\$

3

4

We know that $\sqrt{n}(\hat{\theta}-\theta)\stackrel{d}{\to} N(0,\sigma^2)$ and $\hat{\sigma}\stackrel{p}{\to}\sigma$ and we can write

$$\frac{\sqrt{n}(\hat{\theta} - \theta)}{\hat{\sigma}} = \frac{\sigma}{\hat{\sigma}} \frac{\sqrt{n}(\hat{\theta} - \theta)}{\sigma}$$

Next we apply the continuous mapping theorem we can say that

$$\frac{\sigma}{\hat{\sigma}} \xrightarrow{p} \frac{\sigma}{\sigma} \qquad \text{and} \qquad \frac{\sqrt{n}(\hat{\theta} - \theta)}{\sigma} \xrightarrow{d} N(0, 1)$$

Next Slutsky's theorem tells us that

$$\frac{\sqrt{n}(\hat{\theta} - \theta)}{\hat{\sigma}} = \frac{\sigma}{\hat{\sigma}} \frac{\sqrt{n}(\hat{\theta} - \theta)}{\sigma} \xrightarrow{d} 1 \cdot N(0, 1)$$

And by definition of convergence in distribution we get that

$$\lim_{n\to\infty} P\bigg(-z_{1-\alpha/2} \leq \frac{\sqrt{n}(\hat{\theta}-\theta)}{\hat{\sigma}} \leq z_{1-\alpha/2}\bigg) = 1-\alpha$$

We can then do some rearranging within the parentheses

$$\begin{split} -z_{1-\alpha/2} & \leq \frac{\sqrt{n}(\hat{\theta}-\theta)}{\hat{\sigma}} \leq z_{1-\alpha/2} = -z_{1-\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} \leq \hat{\theta} - \theta \leq z_{1-\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} \\ & = \hat{\theta} - z_{1-\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} \leq -\theta \leq \hat{\theta} + z_{1-\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} \\ & = \hat{\theta} - z_{1-\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} \leq \theta \leq \hat{\theta} + z_{1-\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} \end{split} \quad \text{symmetry of normal dist}$$

so we have that

$$\lim_{n\to\infty} P\bigg(\hat{\theta} - z_{1-\alpha/2}\frac{\hat{\sigma}}{\sqrt{n}} \leq \theta \leq \hat{\theta} + z_{1-\alpha/2}\frac{\hat{\sigma}}{\sqrt{n}}\bigg) = 1-\alpha$$

as desired.