

Описание протокола NMEA и команд управления GPS приёмниками GlobalSat

Производитель: GLOBALSAT TECHNOLOGY CORPORATION

Headquarters (Far East Century Park)

16F., No.186, Jian-Yi Rd., Chung-Ho City, Taipei Hsien 235, Taiwan

Tel: 886-2-82263799 / Fax: 886-2-82263899

Be6-сайт: <u>www.globalsat.com.tw</u> E-mail: <u>service@globalsat.com.tw</u>

КОМАНДЫ ВЗАИМОДЕЙСТВИЯ ПО GPS приёмника

1. Команды вывода данных NMEA

GGA - Global Positioning System Fixed Data

Пример сообщения GGA:

\$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M,,,,0000*18

Таблица 2.1. Формат данных GGA.

Название	Пример	Единицы	Описание
Message ID	\$GPGGA		Заголовок сообщения GGA
UTC Time	161229.487		hhmmss.sss – время UTC
Latitude	3723.2475		ddmm.mmmm - широта
N/S Indicator	N		N = северная или S = южная широта
Longitude	12158.3416		dddmm.mmmm - долгота
E/W Indicator	W		E = восточная или W = западная долгота
Position Fix Indicator	1		См. таблицу 2.2
Satellites Used	07		Значение от 0 до 12
HDOP	1.0		Horizontal Dilution of Precision
MSL Altitude ¹	9.0	метры	
Units	М	метры	
Geoid Separation ¹		метры	
Units	М	метры	
Age of Diff. Corr.		second	Пусто, если DGPS не используется
Diff. Ref. Station ID	0000		
Checksum*	*18		Контрольная сумма
<cr><lf></lf></cr>			Конец сообщения

^{1.} SiRF Technology Inc. не поддерживает коррекцию геоида. Значение по-умолчанию - WGS84.

Таблица 2.2. Флаг фиксации позиции (Position Fix Indicator)

Название	Описание
0	Позиция не определена
1	Режим GPS SPS, позиция определена
2	Режим DGPS, SPS, позиция определена
3	Режим GPS PPS, позиция определена

^{*}Контрольная сумма: 8-битовая сумма (XOR) ASCII кодов всех символов (включая «,») в выражении между символами «\$» и «*» (исключая их). Результат сложения записывается в явном виде после «*». Более подробную информацию с примерами Вы можете найти по адресу: http://www.visualgps.net/papers/NMEAParser/

^{**&}lt;CR><LF> в шестнадцатеричном виде имеют значения «OD» и «OA».

GLL - Geographic Position-Latitude/Longitude

Пример сообщения GLL:

\$GPGLL,3723.2475,N,12158.3416,W,161229.487,A*2C

Таблица 2.3. Формат данных GLL.

Название	Пример	Единицы	Описание
Message ID	\$GPGLL		Заголовок сообщения GLL
Latitude	3723.2475		ddmm.mmmm - широта
N/S Indicator	N		N = северная или S = южная широта
Longitude	12158.3416		dddmm.mmmm - долгота
E/W Indicator	W		E = восточная или W = западная долгота
UTC Position	161229.487		hhmmss.sss – время UTC
Status	А		A = данные валидны или V = данные не валидны
Checksum	*2C		Контрольная сумма
<cr><lf></lf></cr>			Конец сообщения

GSA - GNSS DOP and Active Satellites

Пример сообщения GSA:

\$GPGSA,A,3,07,02,26,27,09,04,15,,,,,1.8,1.0,1.5*33

Таблица 2.4. Формат данных GSA.

Название	Пример	Единицы	Описание	
Message ID	\$GPGSA		Заголовок сообщения GSA	
Mode1	A		Режим 1, см. таблицу 2.5	
Mode2	3		Режим 2, см. таблицу 2.6	
Satellite Used ¹	07		Канал № 1	
Satellite Used ¹	02		Канал № 2	
Satellite Used ¹			Канал № 12	
PDOP	1.8		Position dilution of Precision	
HDOP	1.0		Horizontal dilution of Precision	
VDOP	1.5		Vertical dilution of Precision	
Checksum	*33		Контрольная сумма	
<cr><lf></lf></cr>			Конец сообщения	

^{1.} Спутник, использованный в расчёте позиции.

Таблица 2.5. Режим 1 (Mode1)

Название	Описание
M	Manual-forced to operate in 2D or 3D mode
Α	2D automatic-allowed to automatically switch 2D/3D

Таблица 2.6. Режим 2 (Mode2)

Название	Описание		
1	Позиция не определена		
2	2D – позиция определена, высоте не определена		
3	3D – позиция и высота определена		

GSV - GNSS Satellites in View

Пример сообщения GSV:

\$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71 \$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42*41

Таблица 2.7. Формат данных GSV

Название	Пример	Единицы	Описание
Message ID	\$GPGSV		Заголовок сообщения GSV
Number of Messages ¹	2		Количество частей (от 1 до 3)
Message Number ¹	1		Номер части (от 1 до 3)
Satellites in View	07		
Satellite ID	07		Channel 1 (от 1 до 32)
Elevation	79	градусы	Channel 1 (от 0 до 90)
Azimuth	048	градусы	Channel 1 (True, от 0 до 359)
			Сила сигнала (от 0 до 99). Если
SNR(C/No)	42	dBHz	спутник не обсчитывается, то
			«пусто»
Satellite ID	27		Channel 4 (от 1 до 32)
Elevation	27	градусы	Channel 4 (от 0 до 90)
Azimuth	138	градусы	Channel 4 (True, от 0 до 359)
			Сила сигнала (от 0 до 99). Если
SNR(C/No)	42	dBHz	спутник не обсчитывается, то
			«пусто»
Checksum	*71		Контрольная сумма
<cr><lf></lf></cr>			Конец сообщения

¹. В зависимости от количества «видимых» спутников, GSV может разбиваться на несколько частей. В данном случае их 2.

RMC - Recommended Minimum Specific GNSS Data

Пример сообщения RMC:

\$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598,,*10

Таблица 2.7. Формат данных RMC

Название	Пример	Единицы	Описание
Message ID	\$GPRMC		Заголовок сообщения RMC
UTC Time	161229.487		hhmmss.sss – время UTC
Status	A		A = данные валидны или V = данные
Status	Λ		не валидны
Latitude	3723.2475		ddmm.mmmm - широта
N/S Indicator	N		N = северная или S = южная широта
Longitude	12158.3416		dddmm.mmmm - долгота
E/W Indicator	W		E = восточная или W = западная
L/W Indicator	VV		долгота
Speed Over Ground	0.13	узлы ²	Измеренная горизонтальная скорость
			Измеренное направление движения
Course Over Ground	309.62	градусы	(курс), относительно истинного
			направления на Север
Date	120598		ddmmyy - дата
Magnetic Variation ³		градусы	E = восточная или W = западная
Checksum	*10		Контрольная сумма
<cr><lf></lf></cr>			Конец сообщения

 $^{^{2}}$. 1 узел = 1.852 км/ч = 0.5144 м/сек = 30.86667 м/мин.

³. SiRF Technology Inc. не поддерживает коррекцию геоида. «Course Over Ground» рассчитывается по WGS84.

VTG - Course Over Ground and Ground Speed

Пример сообщения VTG: \$GPVTG,309.62,T,,M,0.13,N,0.2,K*6E

Таблица 2.8. Формат данных VTG

Название	Пример	Единицы	Описание
Message ID	\$GPVTG		Заголовок сообщения VTG
Course	309.62	градусы	Измеренное направление движения (курс)
Reference	Т		Магнитное склонение – на истинный север
Course		градусы	Измеренное направление движения (курс)
Reference	М		Магнитное склонение – на магнитный север
Speed	0.13	узлы ⁴	Измеренная горизонтальная скорость
Units	N		Узлы
Speed	0.2	км/ч	Измеренная горизонтальная скорость
Units	K		Километры в час
Checksum	*6E		Контрольная сумма
<cr><lf></lf></cr>			Конец сообщения

 $^{^{4}}$. 1 узел = 1.852 км/ч = 0.5144 м/сек = 30.86667 м/мин.

2 Команды управления работой приёмника

А) Настройка порта передачи данных

ID:100 Параметры и протокол порта A (TXA/RXA)

Эта команда используется для установки рабочего протокола (Двоичный SiRF или NMEA 0183) и/или настройки параметров передачи данных (скорость порта, биты данных, стоповые биты, чётность).

При получении корректной команды, параметры сохраняются в SRAM и происходит рестарт модуля с новыми параметрами.

Формат команды:

\$PSRF100, <protocol>, <baud>, <DataBits>, <StopBits>, <Parity>*CKSUM<CR><LF>

<pre><pre><pre>otocol></pre></pre></pre>	(протокол)	O = Двоичный SiRF, 1 = NMEA 0183
<baud></baud>	(скорость порта, бит/с)	1200, 2400, 4800, 9600, 19200, 38400
<databits></databits>	(биты данных)	8, 7. (Двоичный SiRF требует установки 8)
<stopbits></stopbits>	(стоповые биты)	0, 1
<parity></parity>	(чётность)	0 = Нет, 1 = Нечётные, 2 = Чётные

Пример: Переключение в Двоичный SiRF с параметрами 9600,8,N,1 \$PSRF100,0,9600,8,1,0*OC<CR><LF>

Контрольная сумма: 8-битовая сумма (XOR) ASCII кодов всех символов (включая «,») в выражении между символами «\$» и «» (исключая их). Результат сложения записывается в явном виде после «*». Более подробную информацию с примерами Вы можете найти по адресу: http://www.visualgps.net/papers/NMEAParser/

^{**&}lt;CR><LF> в шестнадцатеричном виде имеют значения «OD» и «OA».

Б) Инициализация навигации

D: 101 Параметры, необходимые для старта

Эта необязательная команда используется для инициализации GPS приёмника для обеспечения «тёплого старта» с помощью известных координат текущей позиции (X, Y, Z), даты и времени. Результатом данной инициализации является быстрый старт GPS приёмника (8 сек.). При получении корректной команды, происходит рестарт модуля с использованием указанных

При получении корректной команды, происходит рестарт модуля с использованием указанных данных в качестве базисных для поиска спутников и определения точной позиции.

Формат команды:

\$PSRF101,<X>,<Y>,<Z>,<ClkOffset>,<TimeOfWeek>,<WeekNo>,<chnlCount>,<ResetCfg>
*CKSUM<CR><LF>

<x></x>	X координата позиции	INT32
<y></y>	Y координата позиции	INT32
<z></z>	Z координата позиции	INT32
<clkoffset></clkoffset>	Смещение часов приёмника в Гц. Если возможно, используйте С)
	(последнее сохранённое значение). Иначе, для GSP1 значение	
	по-умолчанию 75000, для GSP1/LX – 95000	INT32
<timeof week=""></timeof>	Время GPS недели	UINT32
<weekno></weekno>	Номер GPS недели	UINT16
	(Номер и время GPS недели рассчитывается по UTC времени)	
<chnlcount></chnlcount>	Количество используемых каналов (1 - 12). Если производител	ьность ЦП
	модуля недостаточна, можно уменьшить количество используем	ых каналов
	(по-умолчанию = 12)	UBYTE
<resetcfg></resetcfg>	Битовая маска	UBYTE
	$O \times O1 = Данные валидны, тёплый/горячий старт = 1$	
	$0 \times 02 = 0$ чистить эфимерис, тёплый старт = 1	
	$0 \times 04 = 0$ чистить память, холодный старт = 1	

Пример: Старт с использованием известных координат и времени.

\$PSRF101,-2686700,-4304200,3851624,96000,497260,921,12,3*7F

В) **Настройка порта** DGPS¹

ID:102 Параметры и протокол порта В DGPS (RXB)

Эта команда используется для настройки последовательного порта В, используемого для приёма дифференциальных поправок RTCM. Дифференциальные приёмники могут выдавать поправки с различными коммуникационными параметрами. Настройки порта В по-умолчанию: скорость 9600 бит/с, бит данных - 8, стоповый бит — 0, чётность — нет. Если используемый вами приёмник дифференциальных поправок имеет другие настройки коммуникационного порта, используйте эту команду.

При получении корректной команды, параметры сохраняются в SRAM и происходит рестарт модуля с новыми параметрами.

Формат команды:

\$PSRF102,<Baud>,<DataBits>,<StopBits>,<Parity>*CKSUM<CR><LF>

<baud> (скорость порта, бит/с) 1200, 2400, 4800, 9600, 19200, 38400

<DataBits> (биты данных) 8

<StopBits> (стоповые биты) 0, 1

<Parity> (чётность) О = Нет, 1 = Нечётные, 2 = Чётные

Пример: Настройка порта DGPS на 9600,8,N,1

\$PSRF102,9600,8,1,0*12

¹ Функция доступна не во всех GPS приёмниках GlobalSat

Г) Управление выдаваемыми сообщениями NMEA и периодом выдачи ID:103 Запрос сообщения NMEA и/или установка периода выдачи

Эта команда позволяет управлять выводом NMEA сообщений GGA, GLL, GSA, GSV, RMC и VTG. Используя эту команду, можно получить одно сообщение по запросу или задать период выдачи сообщений. Также можно включить/отключить вывод контрольной суммы в сообщениях, в зависимости от потребностей используемого программного обеспечения. Настройки вывода сообщений NMEA каждый раз сохраняются в памяти, поддерживаемой резервной батареей питания.

Формат команды:

\$PSRF103,<msg>,<mode>,<rate>,<cksumEnable>*CKSUM<CR><LF>

<msg> (сообщения) $O = GGA, \ 1 = GLL, \ 2 = GSA, \ 3 = GSV, \ 4 = RMC, \ 5 = VTG$ <mode> (режим) O =периодично, O =инериодично, O =инериодично, O =инериодично, O =инериод

Пример 1: Одноразовый запрос сообщения GGA с контрольной суммой \$PSRF103,00,01,00,01*25

Пример 2: Задать период выдачи сообщения VTG с частотой 1 Гц с контрольной суммой \$PSRF103,05,00,01,01*20

Пример 3: Отключить сообщение VTG \$ PSRF103,05,00,00,01*21

Д) Инициализация навигации LLA

ID:104 Параметры, необходимые для старта (Lat/Lon/Alt)

Эта необязательная команда используется для инициализации GPS приёмника для обеспечения «тёплого старта» с помощью известных координат текущей позиции (широта, долгота, высота), даты и времени. Результатом данной инициализации является быстрый старт GPS приёмника (8 сек.).

При получении корректной команды, происходит рестарт модуля с использованием указанных данных в качестве базисных для поиска спутников и определения точной позиции.

Формат команды:

\$PSRF104, <Lat>, <Lon>, <Alt>, <ClkOffset>, <TimeOfWeek>, <WeekNo>, <chnlCount>, <ResetCfg>*CKSUM<CR><LF>

<lat></lat>	Широта позиции (может иметь знак)	FLOAT
<lon></lon>	Долгота позиции (может иметь знак)	FLOAT
<alt></alt>	Высота позиции (может иметь знак)	FLOAT
<clkoffset></clkoffset>	Смещение часов приёмника в Гц. Если возможно, используйте С)
	(последнее сохранённое значение). Иначе, для GSP1 значение	
	по-умолчанию 75000, для GSP1/LX – 95000	INT32
<timeof week=""></timeof>	Время GPS недели	UINT32
<weekno></weekno>	Homep GPS недели	UINT16
	(Номер и время GPS недели рассчитывается по UTC времени)	
<chnlcount></chnlcount>	Количество используемых каналов (1 - 12). Если производител	ьность ЦП
	модуля недостаточна, можно уменьшить количество используем	іых каналов
	(по-умолчанию = 12)	UBYTE
<resetcfg></resetcfg>	Битовая маска	UBYTE
	$0 \times 01 = Данные валидны, тёплый/горячий старт = 1$	
	$0 \times 02 = 0$ чистить эфимерис, тёплый старт = 1	

 $0 \times 04 = 0$ чистить память, холодный старт = 1

Пример: Старт с использованием известных координат и времени.

\$PSRF104,37.3875111,-121.97232,0,96000,237759,922,12,3*37

Е). Включить/выключить отладочную информацию

ID:105 Switch Development Data Messages On/Off

Включите этой командой вывод отладочной информации, если вы испытываете проблемы с получением ответа на ваши команды. При подаче некорректных команд, будет генерироваться информация, помогающая определить причину отклонения команд модулем. Наиболее распространённая причина отклонения команд — неправильная контрольная сумма или параметры, выходящие за разрешённый диапазон. Настройка не сохраняется при рестарте модуля.

Формат команды:

\$PSRF105, <debug>*CKSUM < CR> < LF>

<debug> 0 = откл., 1 = вкл.

Пример: Включить отладочную информацию

\$PSRF105,1*3E

Пример: Выключить отладочную информацию

\$PSRF105,0*3F

Источники:

- 1. Фирменная документация GlobalSat
- Pocket PC: Migrating a GPS App from the Desktop to eMbedded Visual Basic 3.0 http://msdn.microsoft.com/msdnmag/issues/01/01/GPS/default.aspx