Московский государственный технический университет имени Н. Э. Баумана

Факультет «Радиоэлектроника и лазерная техника» Кафедра «Технологии приборостроения»

ДОКЛАД на тему

МОДЕЛИРОВАНИЕ ДЕГРАДАЦИИ В ГЕТЕРОСТРУКТУРАХ

Содержание

В	ведени	e		3
1	Теоретическая часть			4
	1.1 Деградация			4
	1.2 Гетероструктура			5
		1.2.1	Зонная диаграмма гетероперехода	5
	1.3 Диффузия		фузия	7
		1.3.1	Законы Фика	7
		1.3.2	Механизмы диффузии	7
		1.3.3	Коэффициент диффузии	8
		1.3.4	Коэффициент диффузии Al, Si в $GaAs$	8
	1.4 Метод конечных разностей. Решение одномерного нестационарного уравнения диффузии			
			ции (координаты)	9
		1.4.2	Коэффициент диффузии зависит от концентрации	
			(координаты)	11
	2	Рассчетная часть		
2.1 Моделирование диффузионного размытия в «закрытой си				
		стеме	$e \gg i - GaAs/i - Al_{45}Ga_{55}As$	12
2.2				
		стеме	e» $i-GaAs/i-Al_{45}Ga_{55}As$	15
2.3 Моделирование диффузионного размытия $n^+ - GaAs/i -$				
		$s/i-Al_{45}Ga_{55}As/n^+-GaAs$	17	

Введение

Цель работы:

а) Изучение процессов деградации гетероструктур.

Задача работы:

а) Получить модель описывающую процессы деградации в гетероструктурах.

1 Теоретическая часть

1.1 Деградация

Деградация — процесс ухудшения характеристик какого-либо объекта с течением времени.

Изучая деградацию гетероструктур (ГС) рассматривают следующие параметры:

- Вольт-амперная характеристика (ВАХ);
- Высота потенциального барьера (ПБ);
- Ширина потенциального барьера;
- Ширина потенциальной ямы (ПЯ);
- Т.д...

ГС используют для построения резонансно-туннельный диод (РТД), квантовых точек (КТ), транзисторов с высокой подвижностью электронов (НЕМТ) и так далее.

Химический состав Γ С определяет ее зонную структуру, из чего вытекают особенности работы тех или иных устройств на Γ С.

Одна из причин деградации ВАХ ГС — диффузионное размытие профиля дна зоны проводимости (E_c) . Некоторые факторы, от которых зависит диффузионное размытие:

- Химический состав;
- Температура;
- Время.

Диффузионное размытие описывается с помощью законов Фика.

1.2 Гетероструктура

Гетероструктура — полупроводниковая структура с несколькими гетеропереходами ($\Gamma\Pi$).

ГС получили широкое распространение из-за возможности, изменяя на границах ГС ширину запрещённой зоны, управлять движением носителей заряда.

Гетеропереход — контакт двух различных по химическому составу монокристаллических или аморфных полупроводников.

ГП может образоваться между полупроводниками с абсолютно одинаковыми постоянными решетки, образующими монолитный, однородный в контакте, кристалл.

- a) GaAs-AlAs;
- б) GaN-AlN;
- в) GaSb–AlSb–InAs;
- Γ) GaAs–Ge.

1.2.1 Зонная диаграмма гетероперехода

Для построения зонной диаграммы необходимо знать ширину запрещенной зоны (E_g) и положение уровня Ферми (E_F) для контактируемых полупроводников.

Рисунок 1.1 — Зонная диаграмма перехода между полупроводниками с различными E_g

Одна из самых распространенных ΓC — это ΓC на основе твердого раствора $Al_xGa_{1-x}As$, где x — это доля замещения. Основные характеристики $Al_xGa_{1-x}As$:

Таблица 1.1 — Основные параметры $Al_xGa_{1-x}As$

Параметр	$Al_xGa_{1-x}As$
Кристаллическая структура	Типа цинковой обманки
Постоянная решетки $a[nm]$	0.56533 + 0.00078x
$E_g^{\Gamma}[eV], x < 0.45$	1.424 + 1.247x
$E_g^{\Gamma}[eV], x > 0.45$	$1.656 + 0.215x + 0.143x^2$
m_e^Γ	0.067 + 0.083x
m_{lh}	0.082 + 0.071x
$N_{atoms}[1/sm^{-3}]$	$(4.42 - 0.17x)10^{22}$

Следует также принимать во внимание, что полупроводники могут иметь минимумы зоны проводимости в разных точках зоны Брюллиена. К примеру, минимум зоны проводимости GaAs находится в точке Γ , в то время как наименьший минимум в AlAs близок к точке X. Таким образом, природа низшего минимума зоны проводимости меняется при изменении доли Al в твердом растворе $Al_xGa_{1-x}As$. Низший минимум в $Al_xGa_{1-x}As$ изменяется от прямого расположения (минимум в Γ) зон до непрямой зонной структуры (минимум в) при содержании $Al \approx 45\%$. Обычно твердый раствор $Al_xGa_{1-x}As$ получают с долей Al, меньше 0.45, чтобы получить прямое расположение зон.

Рассматривая ГП $i-GaAs/i-Al_xGa_{1-x}As$, при x<0.45, получим высоту потенциальной ступеньки в зоне проводимости $(E_{c2}-E_{c1})\ U\approx 1.247*x\ eV$.

1.3 Диффузия

Диффузия — это обусловленный хаотическим тепловым движением перенос атомов, он может стать направленным под действием градиента концентрации или температуры.

Диффундировать могут как собственные атомы решетки, так и атомы растворенных в полупроводнике элементов, а также точечные дефекты структуры кристалла — междоузельные атомы и вакансии.

1.3.1 Законы Фика

Первый закон Фика говорит, что плотность потока вещества пропорциональна коэффициенту диффузии (D) и градиенту концентрации (C). Является стационарным уравнением.

$$\overline{J} = -D\nabla C; \tag{1.1}$$

$$\overline{J}_x = -\overline{e}_x D_x \frac{\delta}{\delta x} C_x. \tag{1.2}$$

(1.3)

Второй закон Фика связывает пространственное и временное изменения концентрации.

$$\frac{\delta}{\delta t}C = -\nabla(D\nabla C); \tag{1.4}$$

$$\frac{\delta}{\delta t}C_x = -\frac{\delta}{\delta x}D_x \frac{\delta}{\delta x}C_x. \tag{1.5}$$

1.3.2 Механизмы диффузии

Вакансионный механизм диффузии— заключается в миграции атомов по кристаллической решётке при помощи вакансий.

Межузельный механизм диффузии— заключается в переносе вещества межузельными атомами.

Прямой обмен атомов местами — заключается в том, что два соседних атома одним прыжком обмениваются местами в решетке кристалла.

1.3.3 Коэффициент диффузии

Коэффициент диффузии (D) — макроскопическая величина, которая определяется экспериментально. Коэффициент диффузии зависит от температуры(T) по закону Аррениуса:

$$D = D_0 \exp\left[-\frac{E_a}{k_B T}\right],\tag{1.6}$$

где D_0 — предэкспоненциальный множитель.

Коэффициент (D_0) и энергия активации (E_a) не зависят от температуры.

1.3.4 Коэффициент диффузии Al, Si в GaAs

Основным механизмом диффузии Al и Si в GaAs является диффузия по вакансиям галлия (V_{Ga}) . Это связано с тем, что атомы Al и Si имеют сходные массы и размеры.

С учетом эффекта уровня Ферми коэффициент диффузии Al и Si в GaAs получен в работах \cite{C} , \cite{C} , \cite{C} , \cite{C} .

$$D_{Al,Si} = D_{i-GaAs} \left(\frac{N_D}{n_i}\right)^3 = D_0 \exp\left[-\frac{3.5}{k_B T}\right] \left(\frac{n}{n_i}\right)^3, \tag{1.7}$$

где n — концентрация донорной примеси (Si);

 n_i — концентрация собственных носителей заряда.

Концентрация собственных носителей заряда [?]:

$$n_i = \sqrt{N_c N_v} \exp\left[-\frac{E_g}{2k_B T}\right]; \tag{1.8}$$

$$N_c = 2 \left[\frac{2\pi m_e^* k_B T}{h^2} \right]^{\frac{3}{2}}; \tag{1.9}$$

$$N_v = 2 \left[\frac{2\pi m_h^* k_B T}{h^2} \right]^{\frac{3}{2}},\tag{1.10}$$

где E_g — ширина запрещенной зоны (33) п/п.

1.4 Метод конечных разностей. Решение одномерного нестационарного уравнения диффузии

Суть метода конечных разностей заключается в аппроксимации дифференциальных операторов отношением конечных разностей.

1.4.1 Коэффициент диффузии не зависит от концентрации (координаты)

Одномерное нестационарное уравнение диффузии, соответствующее второму закону Фика имеет вид:

$$\frac{\delta}{\delta t}C = D\frac{\delta^2}{\delta x^2}C; \tag{1.11}$$

Аппроксимация первой производной по времени в момент времени t_i концентрации $C_j(t_i) = C_j^i$ в точке j:

$$\frac{\delta}{\delta t}C_j^i = \frac{C_j^{i+1} - C_j^i}{\Delta t};\tag{1.12}$$

Аппроксимация первой производной по координате в момент времени t_i концентрации $C_j(t_i)=C_j^i$ в точке j:

$$J_{j}^{i} = \frac{\delta}{\delta x} C_{j}^{i} = \frac{C_{j+1}^{i} - C_{j}^{i}}{\Delta x}; \tag{1.13}$$

Аппроксимация второй производной по координате в момент времени t_i концентрации $C_j(t_i) = C_j^i$ в точке j:

$$\frac{\delta^2}{\delta x^2} C_j^i = \frac{\delta}{\delta x} \left[\frac{C_{j+1}^i - C_j^i}{\Delta x} \right] = \frac{\frac{C_{j+1}^i - C_j^i}{\Delta x} - \frac{C_j^i - C_{j-1}^i}{\Delta x}}{\Delta x} = \frac{C_{j+1}^i - 2C_j^i + C_{j-1}^i}{\Delta x^2};$$
(1.14)

Подставляя в (1.11) аппроксимацию производных (1.12), (1.14), получим связь C_j^{i+1} с C_j^i , т.е. изменение концентрации через Δt :

$$C_i^{i+1} = \lambda C_{i-1}^i + (1 - 2\lambda)C_i^i + \lambda C_{i+1}^i, \tag{1.15}$$

где $\lambda = \frac{D\Delta t}{\Delta x^2}$ — связь коэффициента диффузии и шагов по сетке времени и координаты.

Уравнение (1.15) справедливо для всех не крайних точек конечно разностной схемы, при коэффициенте диффузии не зависящем от концентрации (координаты).

Выделим два граничных приближения для концентрации:

- а) «Закрытая система» концентрация на границе не изменяется $(J_0^i=0,\,J_{N+1}^i=0);$
- б) «Открытая система» поток частиц подходящий к границе равен потоку уходящих частиц $(J_0^i=J_1^i,\,J_N^i=J_{N+1}^i).$

Для «закрытой системы» должно выполняться условие $J^i_0=0,$ $J^i_{N+1}=0.$ Рассмотрим (1.13), (1.15) для точки j=1:

$$J_0^i = \frac{C_1^i - C_0^i}{\Delta x} = 0 \Rightarrow C_0^i = C_1^i;$$

$$C_1^{i+1} = \lambda C_0^i + (1 - 2\lambda)C_1^i + \lambda C_2^i = \lambda C_1^i + (1 - 2\lambda)C_1^i + \lambda C_2^i =$$

$$= (1 - \lambda)C_1^i + \lambda C_2^i = C_1^{i+1};$$

Рассматривая точки $N-1,\,N,\,N+1$ аналогичным образом получим:

$$\begin{cases} C_1^{i+1} = (1-\lambda)C_1^i + \lambda C_2^i; \\ C_j^{i+1} = \lambda C_{j-1}^i + (1-2\lambda)C_j^i + \lambda C_{j+1}^i, j \in [2, \dots, N-1]; \\ C_N^{i+1} = (1-\lambda)C_N^i + \lambda C_{N-1}^i; \\ \lambda = D\frac{\Delta t}{\Delta x^2}. \end{cases}$$
(1.16)

Для «открытой» системы должно выполняться условие $J_0^i=J_1^i,$ $J_N^i=J_{N+1}^i.$ Рассмотрим (1.13), (1.14), (1.15) для точки j=1:

$$J_0^i = J_1^i$$

$$\frac{C_1^{i+1} - C_1^i}{\Delta t} = \frac{J_1^i - J_0^i}{\Delta x} = \frac{0}{\Delta x} = 0 \Rightarrow$$

$$\Rightarrow C_1^{i+1} = C_1^i;$$

Рассматривая точки N-1, N, N+1 аналогичным образом получим:

$$\begin{cases}
C_1^{i+1} = C_1^i; \\
C_j^{i+1} = \lambda C_{j-1}^i + (1-2\lambda)C_j^i + \lambda C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = C_N^i; \\
\lambda = D\frac{\Delta t}{\Delta x^2}.
\end{cases}$$
(1.17)

1.4.2 Коэффициент диффузии зависит от концентрации (координаты)

Если коэффициенте диффузии (D) зависит от концентрации (координаты), тогда уравнение диффузии принимает вид:

$$\frac{\delta}{\delta t}C = \frac{\delta}{\delta x}D\frac{\delta}{\delta x}C; \tag{1.18}$$

Тогда уравнение конечно-разностной схемы будет [?]:

$$\frac{C_j^{i+1} - C_j^i}{\Delta t} = \frac{D_{j+1/2}^i \frac{C_{j+1}^i - C_j^i}{\Delta x} - D_{j-1/2}^i \frac{C_j^i - C_{j-1}^i}{\Delta x}}{\Delta x};$$
(1.19)

$$D_{j\pm 1/2}^{i} = \frac{D_{j}^{i} + D_{j\pm 1}^{i}}{2} = D_{j\pm}^{i}.$$
 (1.20)

Проводя рассуждения аналогичные предыдущему параграфу получит конечно-разностную схему для открытой схемы:

$$\begin{cases}
C_1^{i+1} = C_1^i; \\
C_j^{i+1} = \lambda_-^i C_{j-1}^i + (1 - \lambda_+^i - \lambda_-^i) C_j^i + \lambda_+^i C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = C_N^i; \\
\lambda_+^i = D_{j+\frac{\Delta t}{\Delta x^2}}^i; \\
\lambda_-^i = D_{j-\frac{\Delta t}{\Delta x^2}}^i.
\end{cases}$$
(1.21)

2 Рассчетная часть

2.1 Моделирование диффузионного размытия в «закрытой системе» $i-GaAs/i-Al_{45}Ga_{55}As$

Рисунок 2.1 — Структура

Рисунок 2.2- Профиль дна зоны проводимости

Рисунок 2.3 — Диффузионное размытие

Рисунок 2.4 — Деградация ВАХ

Рисунок 2.5 — Диффузионное размытие с учетом примеси, $Nd = 5*10^{15} sm^{-3}$

Рисунок 2.6 — Деградация ВАХ с учетом примеси, $Nd = 5*10^{15} sm^{-3}$

2.2 Моделирование диффузионного размытия в «открытой системе» $i-GaAs/i-Al_{45}Ga_{55}As$

Рисунок 2.7 — Диффузионное размытие

Рисунок 2.8 — Деградация BAX

Рисунок 2.9 — Диффузионное размытие с учетом примеси, $Nd = 5*10^{15} sm^{-3}$

Рисунок 2.10 — Деградация ВАХ с учетом примеси, $Nd = 5*10^{15} sm^{-3}$

2.3 Моделирование диффузионного размытия n^+ –GaAs/i– GaAs/i– $Al_{45}Ga_{55}As/n^+$ –GaAs

Рисунок 2.11 — Диффузионное размытие

Рисунок 2.12 — Деградация ВАХ

Рисунок 2.13 - Диффузионное размытие при повышении температуры

Рисунок 2.14 — Деградация ВАХ при повышении температуры