Parte: 1

Teoría Deep Learning

Profesores: Javier López

Daniel Cano

Introducción

Motivación Biológica

- · Se pretendía **modelar** las neuronas reales
- · (hoy) Se sabe que las neuronas artificiales son aproximaciones extremadamente simples

Feed-Forward Neural Networks

- · Conjunto de **unidades** (**Neuronas**)
- · Conjunto de **conexiones dirigidas** (**Sinapsis**)

Historia

Hitos

- · 1958 Perceptron supervised learning model
- · 1986 Backpropagation & autoencoders
- · 1989 Convolutional neural network
- · 1997 Long Short-Term Memory
- · 2006 Deep Neural Networks
- · 2014 GANs

Neurona

Representación

Representación

Ecuación

$$Y=f(\sum_{i=1}^n w_i x_i)$$

$$Y = X_n * W_n + ... + X_1 * W_1 + W_0$$

Separar conjuntos

Regresión Lineal

Limitaciones

Limitaciones

Inicialización

- · Random init (mejor en general) (dist. normal)
- \cdot 0 init (W en bias = 0)
- · He init
- · Xavier init

$$\sqrt{\frac{2}{size^{[l-1]}}}$$

$$W^{[l]} = np.random.randn(size_l, size_l-1) * np.sqrt(2/size_l-1)$$

$$\sqrt{\frac{1}{size^{[l-1]}}}$$

 $W^{[l]} = np.random.randn(size \ l, size \ l-1) * np.sqrt(1/size \ l-1)$

Funciones de Activación

Identidad:

$$f(x) = x$$

Logística:

$$f(x) = \frac{1}{1 - e^{-x}}$$

Rectifier Linear (ReLu):

$$f(x) = max(0, x)$$

Tangente Hiperbólica:

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Softmax:

$$f(x_i) = \frac{e^{x_i}}{\sum_{j} e^{z_j}}$$

*Muchas otras

Funciones de Coste

- · Necesitamos evaluar el modelo
- · Tiene que contar con ciertas propiedades
- · Seleccionar adecuadamente para cada problema

Noción de error

Manos a la obra

Notebooks

- · Funciones de Activación
- · Funciones de Coste

