Review for Midterm 2

Contents

1 Preliminaries (3 lee.) F-P numbers

Conditioning (problem)

Stability (algorithm)

- ② Square Linear Systems (5 leet.) [. A x = b where A ∈ R^{nxn}

 o polynomial interpolation. (vandermondes)

 ③ Overdetermined Linear Systems

 Gaussian Elim. → LU factorization

 (5 leet.) (With partial piroting) (P)

 Ax "="b where A∈ R^{mxn} m>n

 o polynom. approx. (LLS) Normal egn $(A^TA_X^2 = A^T\overline{b}) \longrightarrow QF$

Preliminaries

Two Types of Errors

- absolute error
- relative error

Floating-Point Numbers

binary scientific notation:

$$\pm \left(1 + \frac{b_1}{2} + \frac{b_2}{2^2} + \dots + \frac{b_d}{2^d}\right) 2^E,$$

where b_i is 0 or 1 and E is an integer.

- d determines the resolution
- the range of *E* determines the *scope* or *extent*
- IEEE Standard (double-precision; 64 bits)
 - d = 52 and $-1022 \le E \le 1023$
 - $eps = 2^{-52} \approx 2 \times 10^{-16}$
 - realmin, realmax

Floating-Point Numbers (cont')

- Key features
 - On any interval of the form $[2^E,2^{E+1})$, there are 2^d evenly-spaced f-p numbers.
 - The spacing between two adjacent f-p numbers in $[2^E,2^{E+1})$ is $2^{E-d}=2^E$ eps .
 - The gap between 1 and the next f-p number is eps, the machine epsilon.
 - Representation error (in relative sense) is bounded by $\frac{1}{2}$ eps.

Conditioning (of a problem)

- The condition number measures the ratio of error in the result (or output) to error in the data (or input).
- Recall the definition of condition number $\kappa_f(x)$
- A large condition number implies that the error in a result may be much greater than the round-off error used to compute it.
- Catastrophic cancellation is one of the most common sources of loss of precision.

Stability (of an algorithm)

• When an algorithm produces much more error than can be explained by the condition number, the algorithm is unstable.

Square Linear Systems

Polynomial Interpolation

 Polynomial interpolation leads to a square linear system of equations with a Vandermonde matrix.

Gaussian Elimination and (P)LU Factorization

- A triangular linear system is solved by backward substitution or forward elimination.
- A general linear system is solved by Gaussian elimination.
- Gaussian elimination (with partial pivoting) is equivalent to (P)LU factorization.
- Solving a triangular linear system of size $n \times n$ takes $\sim n^2$ flops.
- PLU factorization takes $\sim \frac{2}{3}n^{\mathbb{X}}$ flops.

Norms

A norm generalizes the notion of length for vectors and matrices.

Vector p-norm

$$\|\mathbf{v}\|_{p} = \left(\sum_{i=1}^{n} |b_{i}|^{p}\right)^{1/p}, \quad p \in [1, \infty)$$

and

 $\|\mathbf{v}\|_{\infty} = \max_{i} |v_i|$

Matrix
$$p$$
-norm (induced)
$$\|A\|_p = \max_{\|\mathbf{x}\|_p = 1} \|A\mathbf{x}\|_p \,, \quad p \in [1, \infty]$$

Frobenius norm (non-induced)

$$||A||_F = \left(\sum_i \sum_j |a_{i,j}|^2\right)^{1/2}$$

MATLAB: norm can calculate both vector and matrix norms

Row and Column Operations

Various row and column operations can be emulated by matrix multiplications. ("Left-multiplication for row actions, right-multiplication for column actions")

- row/column extraction (unit vector)
- row/column swap (elementary permutation matrix)
- row/column rearrangement (permutation matrix)
- row replacement $R_i \rightarrow R_i + cR_j$ (Gaussian transformation matrix)

Conditioning/Stability

- Partial pivoting is needed for numerical stability.
- The matrix condition number is equal to the condition number of solving a linear system of equations.

Programming Notes

- **Built-in functionalities**
 - backslash (\)

 $A\overrightarrow{x} = \overrightarrow{b}$ is solved via $X = A \setminus b$.

- lu
- norm
- cond, condest, linsolve

Cond (A, p) Computes

- Demonstration/Instructional codes
 - backsub and forelim
 - GEnp and GEpp
 - mylu and myplu

Overdetermined Linear Systems

Polynomial Approximation

- The most common solution to overdetermined systems is obtained by least squares, which minimizes the 2-norm of the residual vector.
- Least squares is used to find fitting functions that depend linearly on the unknown parameters.
- Equivalence of the LLS problem and the normal equation
 - linear algebra proof
 - calculus proof

QR Factorization

- Orthogonal sets of vectors are preferred to nonorthogonal ones in computing. (no catastrophic cancellation)
- Matrices with orthonormal columns and orthogonal matrices enjoy many nice analytical properties.
- QR factorization plays a role in LLS similar to that of LU factorization in square linear systems.

Two Types of QR Factorization

For $A \in \mathbb{R}^{m \times n}$, $m \ge n$:

orthonormal columns

• Thick QR factorization: A = QR

- $Q \in \mathbb{R}^{m \times m}$ orthogonal (Square matrix, $Q^TQ = I$)
- $R \in \mathbb{R}^{m \times n}$ upper triangular
- obtained by using successive Householder transformation matrices for triangularization
- Thin: $A = \hat{Q}\hat{R}$
 - $\hat{Q} \in \mathbb{R}^{m \times n}$ orthonormal columns $\left(\begin{array}{c} \hat{\mathbb{Q}}^{\top} \hat{\mathbb{Q}} = \mathbb{I} \end{array} \right)$

 - $\hat{R} \in \mathbb{R}^{n \times n}$ upper triangular
 - obtained by Gram-Schmidt orthonormalization procedure

Q is a matrix w/
ONC, but is not an
Onthogonal matrix!

Householder Transformation Matrices

- A Householder transformation matrix H (associated with a vector \mathbf{z}) is a reflection matrix which is
 - symmetric,
 - orthogonal, and
 - transforms \mathbf{z} to $\pm \|\mathbf{z}\|_2 \mathbf{e}_1$. i.e., $\mathbf{H} \mathbf{z} = \mathbf{u} \mathbf{z} \mathbf{n}_2 \mathbf{e}_1$

$$= (|\vec{z}|| \vec{e} \cdot \vec{z} - \vec{z} \cdot \vec{z}) = (|\vec{z}|| \vec{e} \cdot \vec{z} - |\vec{z}||^2)$$

$$= (||\vec{z}|| \vec{e}^{T} - \vec{z}^{T}) \vec{z}$$

$$= (||\vec{z}|| \vec{e}^{T} - \vec{z}^{T}) \vec{z}$$

orth. proj. onto (7)

Programming Notes

- Built-in functionalities
 - backslash (\)
 - qr
- Demonstration/Instructional codes
 - lsqrfact: solving least squares using QR
 - gs: Gram-Schmidt (for homework)

Fitting a circle Given data $\int (A_R, y_R) = k = 1, \dots, m$.

Geod Find C_1 , C_2 , and C_3 as C_4 . $(A - C_1)^2 + (y - C_2)^2 = C_4^2$ $x = x^2 - 2x C_1 + C_1^2 + y^2 - 2y C_2 + C_2^2 = C_4^2$ $x = x^2 + 2x C_1 + C_1^2 + y^2 - 2y C_2 + C_2^2 = C_4^2$ $\chi^{2} + \chi^{2} = 2\chi C_{1} + 2\chi C_{2} + \chi^{2} - C_{1}^{2} - C_{2}^{2}$ $= \sqrt{C_{3} + C_{1}^{2} + C_{2}^{2}}$ $= \sqrt{C_{3} + C_{1}^{2} + C_{2}^{2}}$

$$\begin{bmatrix} 2x_{1} & 2y_{1} & 1 \\ 2x_{2} & 2y_{2} & 1 \\ \vdots & \vdots & \vdots \\ 2x_{m} & 2y_{m} & 1 \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} x_{1}^{2} + y_{1}^{2} \\ x_{2}^{2} + y_{2}^{2} \\ \vdots \\ x_{m}^{2} + y_{m}^{2} \end{bmatrix}$$

for $\theta \in [0, 2\pi]$