Soham Chatterjee

Email: sohamc@email.com Course: Complex Analysis

Assignment - 3

Roll: ABCXYZ123 Date: March 8, 2023

Problem 1 Ahlfors Page 96: Problem 1

Map the common part of the disks |z| < 1 and |z - 1| < 1 on the inside of the unit circle. Choose the mapping so that the two symmetries are preserved.

Solution: Let $C_1:|z|=1$ and $C_2:|z-1|=1$. Let the common region between them is Ω

The circles intersect when

$$|z| = |z - 1| \iff z\overline{z} = (z - 1)(\overline{z} - 1) \iff 1 = z + \overline{z}$$

Hence $\Re(z) = \frac{1}{2}$. Therefore $\Im(z) = \pm \frac{\sqrt{3}}{2}$ since |z| = 1. Therefore C_1 and C_2 intersects at $-\omega$ and $-\omega^2$. Now we send $-\omega^2 \to \infty$ and $-\omega \to 0$ by the conformal map $f_1(z) = \frac{z+\omega}{z+\omega^2}$. Then

$$f_1(1) = \frac{1+\omega}{1+\omega^2} = \frac{-\omega^2}{-\omega} = \omega$$
 $f_1(0) = \frac{\omega}{\omega^2} = \frac{1}{\omega} = \bar{\omega} = \omega^2$

Hence $f_1(C_1) = \text{line joining } 0$ and ω and $f_1(C_2) = \text{line joining } 0$ and ω^2

Now we rotate the region Ω by $\frac{2\pi}{3}$ clockwise by the conformal map $f_2(z) = e^{-i\frac{2\pi}{3}}z = \omega z$

Now we map the common region Ω to the upper half of the plane by the conformal map $f_3(z)=z^{\frac{3}{2}}$

Now we want to map the upper half plane to inside of the unit circle. We do it with the conformal map $f_4(z) = \frac{z-\omega}{z-\omega^2}$

Hence the final conformal map which maps the region Ω to the inside of unit disk is

$$f_4 \circ f_3 \circ f_2 \circ f_1(z) = f_4 \circ f_3 \circ f_2 \left(\frac{z+\omega}{z+\omega^2}\right) = f_4 \circ f_3 \left(\omega \frac{z+\omega}{z+\omega^2}\right) = f_4 \circ f_3 \left(\frac{\omega^2 z + 1}{\omega z + 1}\right)$$

$$= f_4 \left(\left[\frac{\omega^2 z + 1}{\omega z + 1}\right]^{\frac{3}{2}}\right) = \frac{\left[\frac{\omega^2 z + 1}{\omega z + 1}\right]^{\frac{3}{2}} - \omega}{\left[\frac{\omega^2 z + 1}{\omega z + 1}\right]^{\frac{3}{2}} - \omega^2}$$

Problem 2

Solution: