This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PAT-NO: FR002690996A1

DOCUMENT-IDENTIFIER: FR 2690996 A1

TITLE: Optical alignment device for aligning opto-electronic

component with

optical component - has metallic holder of optical fibre

which is adjusted in

three dimensions until optimal optical coupling is ac

PUBN = DATE: November 12, 1993

INVENTOR-INFORMATION:

NAME COUNTRY

GEROME, AVELANGE N/A
GERARD, VOLLUET N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY

THOMSON HYBRIDES FR

APPL-NO: FR09205635

APPL-DATE: May 7, 1992

PRIORITY-DATA: FR09205635A (May 7, 1992)

INT-CL (IPC): G02B006/42

EUR-CL (EPC): G02B006/42

US-CL-CURRENT: 385/15

ABSTRACT:

The optical fibre (1) must be aligned on a laser (2) held by a post (3). The

common reference plane of this optical system is a rigid substrate (5). The

extremity of the optical fibre is held by a metallic holder. The holder has a

tube (9) with control orifice (10) with a diameter just sufficient to insert

the optical fibre and a metallic rod or film to immobilise

02/23/2003, EAST Version: 1.03.0002

the fibre. The dimension of the tube has an axis in common with the laser. The tube is relatively long to hold the optical fibre. A lens can be used by glass, quartz, sapphire etc. and is of several micrometers in diameter. The tube has at least two wings or legs (11,12) which are directed onto the common substrate and attach to the tube. The monolithic holder (8) has soldered parts (13,14) on a first extremity. The wings constitute a single surface and curve inwards towards the holder. The surface (17) is metallic and by adjustment of the points (18) on this surface it is possible to adjust the fibre for optical reception of the laser. USE - Optical alignment of optical fibre with laser.

RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(11) N° de publication :

(à n'utiliser que pour les commandes de reproduction)

2 690 996

(21) N° d'enregistrement national :

92 05635

(51) Int CI⁵ : G 02 B 6/42

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 07.05.92.

(30) Priorité :

(71) Demandeur(s) : Société dite: THOMSON HYBRIDES

72) Inventeur(s) : Avelange Gérôme et Volluet Gérard.

43 Date de la mise à disposition du public de la demande : 12.11.93 Bulletin 93/45.

(56) Liste des documents cités dans le rapport de recherche : Se reporter à la fin du présent fascicule.

60 Références à d'autres documents nationaux apparentés :

(73) Titulaire(s) :

(74) Mandataire : Taboureau James.

(S4) Dispositif d'alignement optique entre un composant optoélectronique et un composant optique, et procédé d'alignement.

(57) Cavalier métallique pour aligner un composant optique (1), tel qu'une fibre ou une lentille, sur l'axe optique d'un composant semiconducteur (2) tel qu'un laser.

Ce cavalier comporte un tube (9) dans lequel est fixé le composant optique (1). Deux ailes (11, 12) sont fixées sur le tube (9) selon deux génératrices (13, 14) et sont en métal déformable et légèrement pliées vers l'extérieur. Les deux axes optiques sont alignés par déformation des ailes (11, 12) qui sont alors immobilisées par brasures (18) au laser.

Applications aux têtes optiques laser-fibre optique.

Applications aux têtes optiques laser-fibre optique.

1

DISPOSITIF D'ALIGNEMENT OPTIQUE ENTRE UN COMPOSANT OPTOELECTRONIQUE ET UN COMPOSANT OPTIQUE, ET PROCEDE D'ALIGNEMENT

La présente invention concerne un dispositif de positionnement et de fixation d'un composant optique devant un composant optoélectronique. Le composant optique peut-être une fibre optique, une lentille de focalisation, un filtre ou un miroir. Le composant optoélectronique est un semiconducteur émetteur ou récepteur de lumière, tel qu'une diode saser ou une diode électroluminescente DEL.

On sait que le problème du couplage entre un laser et une fibre optique, par exemple, est de la plus haute importance dans l'opto-électronique moderne parce que l'alignement des axes optiques doit se faire avec une précision de l'ordre de 0,1 micromètre, en raison des dimensions du ruban émetteur du laser et du coeur de la fibre. Mais dans une tête optique, ou dans un coupleur, le postionnement d'une lentille ou d'un miroir ne s'en fait pas moins au micromètre près.

Les très nombreux documents qui traitent de ce sujet peuvent se regrouper en deux grandes catégories de procédés, qui seront exposées en s'appuyant sur l'exemple d'un laser et d'une fibre.

20

25

30

15

10

La première catégorie de procédés connus est illustrée en figure 1, qui est très schématisée. Une fibre optique 1 doit être alignée dans l'axe du faisceau d'un laser semiconducteur 2, fixé sur un socle 3. Un autre socle 4, isolant ou non, amène la fibre 1 sensiblement à la hauteur du laser 2, et les deux socles 3 et 4 sont solidaires d'un substrat 5, rigide. Une goutte 6 d'un produit liquide est déposée sur le socle 4 et noie partiellement la fibre 1 : les produits liquides les plus connus sont une brasure fondue ou une colle polymérisable par un éclair ultra-violet. Le laser étant en fonctionnement, la fibre est déplacée selon 3 axes au moyen d'un micromanipulateur et, lorsque le couplage

dynamique optimum est obtenu, la goutte 6 est solidifée, soit par refroidissement de la brasure, soit par polymérisation de la colle.

Dans certaines formes de réalisation, la fibre 1 est solidaire d'une pièce intermédiaire qui elle-même se déplace dans un liquide, mais le principe reste le même: utiliser la possibilité de déplacements selon 3 axes à l'intérieur d'un volume liquide ou tout au moins visqueux.

5

10

15

20

25

30

35

Dans la seconde catégorie de procédés connus, illustrée en figure 2, la fibre optique 1 est solidaire de son socle 4, et c'est celui-ci qui est déplacé selon 3 axes orthogonaux jusqu'à obtenir le couplage optimum. Sur cette figure, l'extrémité de la fibre 1 est représentée en pointillés pour laisser voir la bride 7. Les différentes formes de brides connues sont rigides. Soit elles sont de plus grand diamètre interne que la fibre, qui peut s'y déplacer, ce qui ramène au cas précédent. Soit elles sont ajustées sur la fibre 1 et fixées sur le socle 4, et celui-ci est positionné par glissement sur des plans fixes, qui sont souvent le substrat et la face du socle 3 en regard du socle 4.

La bride 7 peut avoir différentes formes, mais dans un cas particulier ici représenté elle a une section en oméga et est en brasure : lorsque la fibre 1 est optimisée en z, c'est à dire en distance selon l'axe optique, la brasure est fondue, puis le socle 4 est optimisé en x et en y, transversalement.

Le dispositif selon l'invention correspond à une autre approche du problème de positionnement réciproque. Il est basé sur une pièce métallique ou cavalier, dont une première partie, tubulaire, est ajustée sur la fibre optique ou la lentille, et dont une deuxième partie, en forme d'ailes ou de pattes de fixation, est déformable et permet le déplacement de la fibre optique selon trois directions, jusqu'à optimisation du couplage optique : lorsque cet état est obtenu, les pattes de fixation sont brasées ou soudées, par un tir laser par exemple, sur le substrat.

De façon plus précise, l'invention concerne un dispositif d'alignement optique entre un composant

optoélectronique et un composant optique, tous deux fixés et référencés en positions, sur un axe optique commun, par rapport à un même substrat rigide, ce dispositif étant caractérisé en ce qu'il est constitué par un cavalier formé par un tube métallique, dans lequel est fixé le composant optique, et par au moins deux ailes ou pattes de fixation, métalliques et déformables, dont une première extrémité est fixée, sur le tube et dont une deuxième extrêmité est fixée sur une plage métallisée du substrat.

10

L'invention sera mieux comprise par la description suivante d'un exemple d'application, en conjonction avec les figures jointes en annexe qui représentent :

- figures 1 et 2 : précédemment exposées, elles schématisent les deux grandes tendances connues dans l'alignement de deux composants optoélectroniques
- figure 3 : vue de trois-quart dans l'espace d'une tête optique comportant un dispositif d'alignement selon l'invention.
- figure 4 : vue en élévation du cavalier selon l'invention, avant et après déformation.

20

15

L'invention sera exposée en s'appuyant sur l'exemple d'une fibre optique alignée sur un laser semi-conducteur, ce qui ne constitue nullement une limitation à la portée de l'invention, mais facilite la comparaison avec l'art antérieur des figures 1 et

25

Ainsi, la figure 3 reprend le cas d'une tête optique dans laquelle une fibre optique 1 doit être alignée sur un laser 2 porté par un socle 3, le plan de référence commun à cette tête optique étant un substrat rigide 5. Comme sur la figure 2, l'extrêmité de la fibre optique est seulement esquissée pour ne pas cacher l'objet de l'invention.

30 ·

Celui-ci est un cavalier métallique 8 qui remplit la triple fonction de :

- maintenir la fibre optique 1,
- la positionner dans l'axe du laser 2
- 35
- remplacer le socle 4 de l'art connu.

Pour maintenir la fibre optique 1, le cavalier 8 comprend un tube 9 dont l'orifice central 10 a un diamètre juste suffisant pour permettre d'y passer la fibre optique 1 seule ou sertie dans une férule métallique et de l'immobiliser par un film de brasure ou collage ou par soudure YAG par exemple si la fibre est dans une férule, mais le jeu disponible entre tube et fibre n'est pas suffisant pour permettre un réglage latéral, en x ou y, de la fibre.

5

10

15

20

25

30

La dimension du tube 9, selon l'axe optique commun avec le laser 2, varie selon l'utilisation qui en est faite. Pour une fibre optique, il est avantageux de disposer d'un tube 9 relativement long pour contenir une fibre de verre sans la casser. Par contre, s'il s'agit de positionner une lentille, qui est le plus fréquemment une bille sphérique de verre, quartz, saphir..., car on ne taille pas une lentille de quelques micromètres de diamètre, alors le tube peut avoir une longueur qui est sensiblement égale à son diamètre.

Ce tube 9 est muni d'au moins deux ailes ou pattes de fixation 11 et 12, qui sont dirigées vers le substrat commun 5, et qui sont solidaires du tube 9, selon deux génératrices du tube.

Le cavalier 8, monolithique, peut être obtenu par moulage, ou brasure de deux plaquettes métalliques 11 et 12 sur le tube 9 au moyen de deux cordons de soudure en 13 et 14 sur une première extrêmité des plaquettes ou encore en enroulant à demi un tube 9 dans un feuillard dont les extrêmités constituent les ailes 11 et 12, avec brasure aux mêmes points 13 et 14, ou ailleurs : en bout de tube, on a travers le feuillard, par laser.

Les ailes 11 et 12 peuvent être, tel que représenté en figure 3, constituées d'une seule surface, continue, mais elles peuvent également être découpées de sorte que le cavalier 8 comporte 2,3,4 ou davantage de pattes de fixation : un pointillé sur l'aile 12 évoque la possibilité de deux pattes de fixation 12a et 12b.

Le cavalier selon l'invention peut se présenter sous d'autres formes de réalisation sans pour autant sortir du domaine de l'invention, à partir du moment où il associe un organe de maintien, tel que tube ou collier, et au moins deux ailes ou pattes de fixation déformables.

REVENDICATIONS

- 1 Dispositif d'alignement optique entre un composant optoélectronique (2) et un composant optique (1), tous deux fixés et référencés en position, sur un axe optique commun, par rapport à un même substrat (5) rigide, ce dispositif étant caractérisé en ce qu'il est constitué par un cavalier (8) formé par un tube métallique (9), dans lequel est fixé le composant optique (1), et par au moins deux ailes (11,12) ou pattes de fixation, métalliques et déformables dont une première extrêmité est fixée (13,14) sur le tube (9) et dont une deuxième extrêmité (15,16) est fixée (18) sur une plage métallisée (17) du substrat (5)
- 2 Dispositif selon la revendication 1, caractérisé en ce que les ailes (11,12) du cavalier (8) sont fixées (13,14) sur le tube (9) selon deux génératrices dudit tube.
- 3 Dispositif selon la revendication 2, caractérisé en ce que les ailes (11,12) du cavalier (8) sont deux plaquettes métalliques brasées sur le tube (9).
- 4 Dispositif selon la revendication 2, caractérisé en ce que les ailes (11,12) du cavalier (8) sont formées par un feuillard métallique à demi enroulé sur le tube (9).
- 5 Dispositif selon la revendication 1, caractérisé en ce que les ailes (11,12) du cavalier (8) sont en un métal souple et permettant leur déformation afin d'aligner les axes optiques des composants optique (1) et optoélectronique (2).
- 6 Dispositif selon la revendication 1 caractérisé en ce que les deux ailes (11,12) sont incurvées vers l'extérieur du cavalier (8), les deuxièmes extrêmités (15,16) des ailes étant plus écartées entre elles que les premières extrêmités fixées (13,14) sur le tube (9).

30

25

10

15

20

- 7 Dispositif selon la revendication 1, caractérisé en ce que la hauteur (h) des ailes (11,12) est au moins égale à la hauteur (h') du socle (3) sur lequel est fixé le composant optoélectronique (2), référencé par rapport au substrat (5).
- 8 Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le composant optoélectronique (2) est un composant semiconducteur émetteur ou récepteur de lumière tel que laser ou diode électroluminescente.
- 9 Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le composant optique (1) est choisi parmi : fibre optique, lentille de focalisation, filtre ou miroir .

10

15

20

25

30

- 10 Procédé d'alignement optique d'un composant optique (1) sur l'axe d'un composant optoélectronique (2) au moyen d'un cavalier métallique (8) selon l'une quelconque des revendications 1 à 7, ce procédé étant caractérisé en ce qu'il comporte les opérations suivantes :
- a) fixer le composant optique (1) dans le tube (9) du cavalier(8), par collage ou brasure,
- b) placer l'ensemble devant le composant optoélectronique (2) en fonctionnement, et, par micromanipulation, déplacer le cavalier pour obtenir un couplage optimum en distance selon l'axe optique (0z),
- c) déformer les ailes (11,12) du cavalier (8), par micromanipulation, dans un plan (xOy) orthogonal à l'axe optique (0z) pour obtenir l'alignement des axes optiques des deux composants (1,2),
- d) figer les positions relatives des deux composants (1,2) en fixant les ailes (11,12) par leur deuxième extrêmité (15,16) sur le substrat (5), localement métallisé (17), la fixation se faisant préférentiellement par points de brasure (18) au laser de puissance.

REPUBLIQUE FRANÇAISE

2690996

INSTITUT NATIONAL

de la

PROPRIETE INDUSTRIELLE

RAPPORT DE RECHERCHE

établi sur la base des dernières revendications déposées avant le commencement de la recherche FR 9205635 473922

DOC	JMENTS CONSIDERES COMME PERTINENTS	- concernées	
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	de la demande examinée	
X	WO-A-9 106 022 (BT&D TECHNOLOGIES) * page 4, ligne 4 - ligne 35 * * page 5, ligne 1 - ligne 35 * * page 6, ligne 1 - ligne 35 * * figures 1,1A,2,3A-C *	1,10	
Α.	* idem *	5,7-9	
A .	EP-A-0 388 679 (SIEMENS AG)	1,2,6,8, 9	
99.1	* le document en entier *		
A	EP-A-O 481 877 (THOMSON HYBRIDES) * le document en entier *	1,5,8-10	
Α .	EP-A-0 481 876 (THOMSON HYBRIDES)	1,3,5,6, 8-10	
	 colonne 2, ligne 40 - ligne 58 * colonne 3, ligne 1 - ligne 58 * colonne 4, ligne 1 - ligne 7 * revendications; figures * 		
A	DE-A-2 823 787 (LICENTIA PATENT-VERWALTUNGS GMBH) * figure 1 *	4	DOMAINES TECHNIQUES RECHERCHES (Int. Cl.5) G02B
X	GB-A-2 229 856 (STC PLC) * page 4, ligne 31 - ligne 37 * * page 5, ligne 1 - ligne 37 * * page 6, ligne 1 - ligne 19 * * page 7, ligne 36 - ligne 37 * * page 8, ligne 1 - ligne 14; figures 2,4	1,10	
۸	* idem *	5,7-9	٠.
			
	•		
ľ			
<u>.</u>	Date d'achivenent de la recherche		Examinates
	25 JANVIER 1993		MATHYSSEK K.

CATEGORIE DES DOCUMENTS CITES

X: particulièrement pertinent à lui seul
Y: particulièrement pertinent en combinaison avec un
autre document de la même catégorie
A: pertinent à l'encontre d'au moins une revendication
ou arrière plan technologique général
O: divolgation non-écrite
P: document intercalaire

T: théorie on principe à la base de l'invention E: document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publiè qu'à cette date de dépôt ou qu'à une date postérieure. D: cité dans la demande L: cité pour d'autres raisons

& : membre de la même famille, document correspondant

2

EPO FORM LEGI GLAIZ (PONL)