

DEPARTAMENTO

Departamento de Ciencias

CURSO

Ecuaciones Diferenciales

MALLA

2021

MODALIDAD

Blended

CREDITOS

3

REGLAS INTEGRIDAD ACADÉMICA

Todo estudiante matriculado en una asignatura de la Universidad de Ingeniería y Tecnología tiene la obligación de conocer y cumplir las reglas de integridad académica, cuya lista a continuación es de carácter enunciativo y no limitativo, ya que el/la docente podrá dar mayores indicaciones:

- 1. La copia y el plagio son dos infracciones de magnitud muy grave en la Universidad de Ingeniería y Tecnología (UTEC) conforme a lo establecido en el Reglamento de Disciplina de los Estudiantes. Tienen una sanción desde 2 semestres de suspensión hasta la expulsión.
- 2. Si se identifica la copia o plagio en evaluaciones individuales, el/la docente puede proceder a anular la evaluación.
- Si la evaluación es personal o grupal-individual, la interacción entre equipos o compañeros se considera copia o plagio, según corresponda. Si la evaluación calificada no indica que es grupal, se presume que es individual.
- 4. La copia, plagio, el engaño y cualquier forma de colaboración no autorizada no serán tolerados y serán tratados de acuerdo con las políticas y reglamentos de la UTEC, implicando consecuencias académicas y sanciones disciplinarias.
- 5. Aunque se alienta a los estudiantes a discutir las tareas y trabajar juntos para desarrollar una comprensión más profunda de los temas presentados en este curso, no se permite la presentación del trabajo o las ideas de otros como propios. No se permite el plagio de archivos informáticos, códigos, documentos o dibujos.
- 6. Si el trabajo de dos o más estudiantes es sospechosamente similar, se puede aplicar una sanción académica a todos los estudiantes, sin importar si es el estudiante que proveyó la información o es quien recibió la ayuda indebida. En ese sentido, se recomienda no proveer el desarrollo de sus evaluaciones a otros compañeros ni por motivos de orientación, dado que ello será considerado participación en copia.
- 7. El uso de teléfonos celulares, aplicaciones que permitan la comunicación o cualquier otro tipo de medios de interacción entre estudiantes está prohibido durante las evaluaciones o exámenes, salvo que el/la docente indique lo contrario de manera expresa. Es irrelevante la razón del uso del dispositivo.
- 8. En caso exista algún problema de internet durante la evaluación, comunicarse con el/la docente utilizando el protocolo establecido. No comunicarse con los compañeros dado que eso generará una presunción de copia.
- 9. Se prohíbe tomar prestadas calculadoras o cualquier tipo de material de otro estudiante durante una evaluación, salvo que el/la docente indique lo contrario.
- 10. Si el/la docente encuentra indicios de obtención indebida de información, lo que también implica no cumplir con las reglas de la evaluación, tiene la potestad de anular la prueba, advertir al estudiante y citarlo con su Director de Carrera. Si el estudiante no asiste a la citación, podrá ser reportado para proceder con el respectivo procedimiento disciplinario. Una segunda advertencia será reportada para el inicio del procedimiento disciplinario correspondiente.
- 11. Se recomienda al estudiante estar atento/a a los datos de su evaluación. La consignación de datos que no correspondan a su evaluación será considerado indicio concluyente de copia.

UNIVERSIDAD DE INGENIERÍA Y TECNOLOGÍA

SÍLABO DEL CURSO

1. ASIGNATURA

CC2101 - Ecuaciones Diferenciales

2. DATOS GENERALES

2.1 Ciclo: NIVEL 3 2.2 Créditos: 3

2.3 Condición: Obligatorio para todas las carreras de ingeniería y computación.

2.4 Idioma de dictado: Español

2.5 Requisitos: CC1104 - Cálculo Vectorial

3. INTRODUCCIÓN AL CURSO

El curso está enfocado en desarrollar capacidades en comprensión de problemas, entendimiento y aplicación de modelos matemáticos. Con este fin se desarrolla una metodología activa y participativa con uso racional de la tecnología y espacios de trabajo colaborativo. Las sesiones son teóricas asociadas a situaciones contextualizadas que motivan al estudiante a involucrarse en su entendimiento y solución.

El curso tiene como finalidad abordar los siguientes temas principales el cual se monitorea todas las semanas, estos temas son los siguientes: Ecuaciones diferenciales ordinarias de primer orden y segundo orden, transformada de Laplace y Sistema lineales.

4. OBJETIVOS

- Sesión 1: Entender la definición de ecuaciones diferenciales, reconocer los tipos y clasificarlos, así como la verificación de las soluciones en diferentes ecuaciones diferenciales.
- Sesión 2: Resolver las ecuaciones diferenciales usando el método de variables separables, además de las ecuaciones diferenciales de primer orden.
- Sesión 3: Resolver ecuaciones diferenciales exactas y no exactas y modelizar el modelo de mezclas.
- Sesión 4: Resolver el modelo de mezclas de dos soluciones, circuito en series, modelar situaciones reales con las ecuaciones diferenciales no lineales.
- Sesión 5: Resolver las ecuaciones diferenciales lineales de orden superior, homogéneas y no homogéneas con valores en la frontera y con coeficientes constantes.
- Sesión 6: Usar el método de superposición y anulador para resolver las ecuaciones diferenciales de orden superior homogéneas y no homogéneas.

- Sesión 7: Resolver ecuaciones diferencial no homogéneas por el método de Variación de parámetros y usando el método de Cauchy para ecuaciones diferenciales con coeficiente variables.
- Sesión 8: Resolver ecuaciones diferenciales usando el método de Cauchy-Euler y resolver sistemas de ecuaciones diferenciales por eliminación
- Sesión 9: Resolver el modelo masa-resorte libre no amortiguado y amortiguado.
- Sesión 10: Resolver sistemas masa-resorte con dos resortes. Evaluar el Examen parcial (EP).
- Sesión 11: Resolver sistemas masa-resorte forzados y sus análogos con circuitos eléctricos.
- Sesión 12: Entender la definición de la transformada de Laplace, transformadas inversas, transformada de derivadas y traslación en el eje S.
- Sesión 13: Entender la función escalón unitario. Evaluar las exposiciones en aula.
- Sesión 14: Entender la traslación en T y sus aplicaciones
- Sesión 15: Resolver las ecuaciones diferenciales usando las derivadas de una transformada y transformada de integrales (Convolución) y la ecuación integral de volterra.
- Sesión 16: Evaluar el Examen Final.

5. COMPETENCIAS Y CRITERIOS DE DESEMPEÑO

Competencias Especificas ABET - COMPUTACION

 Analizar un problema computacional complejo y aplicar principios de computación y otras disciplinas relevantes para identificar soluciones.

Competencias Generales ABET - COMPUTACION

- Comunicarse eficazmente en una variedad de contextos profesionales.
- Funcionar efectivamente como miembro o líder de un equipo comprometido en actividades apropiadas a la disciplina del programa.

Competencias Especificas ABET - INGENIERIA

- La capacidad de identificar, formular y resolver problemas complejos de ingeniería mediante la aplicación de principios de ingeniería, ciencias y matemáticas.
- La capacidad de aplicar el diseño de ingeniería para crear soluciones que satisfagan necesidades específicas teniendo en cuenta la salud pública, la seguridad y el bienestar, así como los factores globales, culturales, sociales, ambientales y económicos.

Competencias Generales ABET - INGENIERIA

- La capacidad de comunicarse efectivamente con diversos tipos de audiencias.
- La capacidad de funcionar de manera efectiva en un equipo cuyos miembros conjuntamente brindan liderazgo, crean un entorno colaborativo e inclusivo, establecen metas, planifican tareas y cumplen objetivos.

6. RESULTADOS DE APRENDIZAJE

- Plantear ecuaciones diferenciales relacionadas al campo de la ingeniería y computación, y predecir su comportamiento.
- Describir de forma eficiente el proceso de desarrollo del problema propuesto.
- Trabajar de manera colaborativa y eficiente para lograr el desarrollo del problema planteado
- Plantear ecuaciones diferenciales relacionadas al campo de la ingeniería y computación, y predecir su comportamiento.
- Describir de forma eficiente el proceso de desarrollo del problema propuesto.
- Trabajar de manera colaborativa y eficiente para lograr el desarrollo del problema planteado

7. TEMAS

1. Introducción a las ecuaciones diferenciales

- 1.1 Clasificación y definición de ED
- 1.2 Comprobación de resultados

2. ED de primer orden

- 2.1 Método de Variables separables
- 2.2 ED exactas
- 2.3 ED no exactas

3. Modelamiento con ED de 1er orden

- 3.1 Modelos lineales y no lineales.
- 3.2 Modelado con sistemas de ED de 1er orden
- 3.3 Mezclas de dos soluciones, circuitos

4. Ecuaciones diferenciales de orden superior

- 4.1 Ecuaciones lineales: Problemas de valores iniciales y con valores de frontera, ecuaciones homogéneas, ecuaciones no homogéneas.
- 4.2 Reducción de orden.
- 4.3 Ecuaciones Lineales Homogéneas con coeficientes constantes
- 4.4 Coeficientes Indeterminados: Método de Superposición. Método del Anuladores.
- 4.5 Variación de parámetros. Ecuación de Cauchy-Euler.

5. Modelado con ecuaciones diferenciales de orden superior

- 5.1 Modelos lineales de valores iniciales: Sistemas resorte-masa: movimiento libre no amortiguado.
- 5.2 Modelos lineales de valores iniciales: Sistemas resorte-masa: movimiento libre no amortiguado; amortiguado; forzado, análogo de circuito en serie.
- 5.3 Modelos lineales: problemas de valores en la frontera

6. La transformada de Laplace

- 6.1 Definición de la Transformada de Laplace
- 6.2 Transformada de Laplace, transformada inversa, de derivadas y traslación en "s".
- 6.3 Función escalón unitario y traslación en "t".

8. PLAN DE TRABAJO

8.1 Metodología

El curso está enfocado en desarrollar capacidades de resolución de problemas, razonamiento y comunicación de los estudiantes. Con este fin se desarrolla una metodología activa y participativa con uso racional de la tecnología y espacios de trabajo colaborativo. Las actividades diseñadas para cada sesión van desde una aproximación intuitiva hacia altos niveles de demanda cognitiva.

Las sesiones son de dos tipos: Una sesión de conceptos, desarrollada en un ambiente plenario, y una sesión de afianzamiento de conceptos desarrollada en aula. El alumno contará adicionalmente con espacios para el acompañamiento académico.

8.2 Sesiones de teoría

Las sesiones teóricas serán desarrolladas mediante la metodología de Aprendizaje basado en problemas y Aprendizaje basado en proyectos. En este sentido, el estudiante tiene prácticas semanales que buscan afianzar y evaluar el desempeño y aprendizaje de los estudiantes durante todo el curso.

Asimismo, los estudiantes presentarán un proyecto grupal, el cual se basa en explicar un problema de aplicación.

9. SISTEMA DE EVALUACIÓN

El curso consta de los siguientes espacios de evaluación:

	Teoría
Evaluación	TEORÍA 100%
	1 Examen Parcial (20%) EP
	1 Examen Final (30%) EF
	1 Proyecto (20%) P

2 Promedios de evaluación continua (30%)C
100%

10. REFERENCIAS BIBLIOGRÁFICAS

Básica:

Zill, D.G. (2018) Ecuaciones diferenciales con problemas de valores en la frontera.

Complementaria:

Cengel, Y.A. (2014) Ecuaciones diferenciales para ingenierías y ciencias.

