ZHUONAN HAO

M.Sc. in Mechanical Engineering

CONTACT Email: z4hao@eng.ucsd.edu

Phone: +1 (858) 214-0049 Website: https://zhuonan-hao.github.io/Homepage/

EDUCATION University of California, San Diego

Master of Science, Mechanical and Aerospace Engineering Sep. 2019 - Now Advisor: Nicholas Gravish GPA: 3.97/4.00

University of Wollongong

Australia Exchange, Mechatronics and Materials Engineering Jul. 2018 - Jul. 2019 Thesis: A novel semi-active vehicle suspension with a stiffness variable self-powered MR damper

Advisor: Weihua Li GPA: 3.25/4.00

Beijing Institute of Technology

Bachelor of Science, Vehicle Engineering Sep. 2015 - Jul. 2019 GPA: 3.71/4.00

Undergraduate Research Honors

TEACHING Teaching Assistant, UC San Diego

> Course: Bio-inspired mobile robotics Dec. 2020 - Now

> Duty: Instructing graduate students, mentoring laboratory experimental preparation Sep. - Dec. 2020 Course: Computer-Aided Design

> Duty: Mentoring the upper level undergraduate, leading live tutorials about CAD and FEA software, holding office hours, making assignments and exams, and grading

Tutor, Beijing Institute of Technology

Sep. 2018 - Jun. 2019

Course: Linear and Nonlinear Dynamics

RESEARCH Gravish Lab, UC San Diego Mar.2020 - Now

Dec. 2019 - Jul. 2020

United States

China

Research Assistant, supervised by Prof. Nicholas Gravish

Emergence of gait compatibility of undulatory swimming robot (ongoing)

- Use a specifically designed underwater robot to capture the essential factors (like hydrodynamic force and body contact) that lead to the group synchronization.

Collective behaviors in swarm robotics system

- Designed the group of snake-like robot system that move through lateral body undulation with n links and n-1 controllable joints.
- Introduced the theory of collective gait compatibility taking inspiration from the physics of granular materials and swarm robotics.
- Demonstrated compatible configuration arise passively through intermittent collision events and proposed principles for robot design to achieve compatibility in proximity.

Synchronization of phase oscillator under weak coupling condition

- Proposed a methodology for phase oscillator design under weak coupling condition to achieve phase convergence through self-feedback signal.
- Employed adaptive Hopf oscillator with central pattern generator for robot joint control to realize specific locomotion pattern.
- Explored the applications on swarm robotics system, including the group behavior of snake-like robot for undulatory locomotion and the simple 2-leg robot for tug of war.

Dynamics and Vibration Control Lab, UOW

Research Assistant, supervised by Prof. Weihua Li

Application of Magnetorheological Fluid on vehicle suspension

- Modelled a semi-active suspension with a stiffness variable self-powered MR damper.
- Estimated parametric Bouc-Wen model for suspension dynamic and developed the stiffness controller through Short Time Fourier Transform (STFT).
- Compared with passive system, the MR damper can reduce the acceleration and displacement of the sprung mass by 16.8% and 21.44% respectively.

- PUBLICATIONS 4. W. Zhou, Z.N. Hao, N. Gravish, et al. Spatial reconfiguration through contact Published & in review enables gait compatibility in collective undulatory locomotion[J]. Applied Physics Letters. 2020. In revision.
 - 3. X.J. Zhu, D.H. Ning, Z.N. Hao, W.H. Li, et al. Modelling and experimental evaluation of a variable stiffness MR suspension with self-powering capability [J]. Journal of Intelligent Material Systems and Structures. 2020.
 - 2. L.L. Ren, Z.N. Hao. A Simple Fix for Convolutional Neural Network via Coordinate Embedding[J]. arXiv, pp.arXiv-2003. 2020.
 - 1. W. Su, **Z.N. Hao**, H.M. Zhou. Design and Practice of the Regulation in Speed with Flywheel. 12th International Conference on Modern Industrial Training. 2018.

MANUSCRIPT In prep

1. **Z.N. Hao**, W.Zhou, N. Gravish. Adaptive gait synchronization in undulatory swarms. 2021. In prep.

PROJECTS

Perturbation Resilient Central Pattern Generator (PR-CPG) on a Hybrid Bipedal-Wheeled Robot

Bio-inspired Mobile Robotics, instructed by Prof. Nicholas Gravish Jan. - Mar. 2020 - Developed a trajectory control algorithm on legged robot to resolve various road profiles and empower a coupling movement for two legs against external perturbation.

- Compared with PID control, the method generated more flexible and robust locomotion and reacted smoothly for different terrains.

Coordinate-embedded CNN applied on traffic sign detection problem

Statistical Learning, instructed by Prof. Nuno Vasconcelos Jan. - Mar. 2020

- Proposed a simple approach to incorporate the coordinate information to the pretrained Convolutional Neural Networks models without any changes on architecture.
- Reached an overall 2.47% mAP performance boost on object detection problem.

Design and Practice of the Regulation in Speed with Flywheel

Key National Project, leaded by Prof. Wei Su

May 2017 - May 2018

- Designed and manufactured the experimental system for industrialization to explore the speed fluctuation regulation effect through different types of flywheel.

HONORS & AWARDS

Outstanding Undergraduate

2019

Awarded for the exemplary student, Beijing Institute of Technology

China Scholarship Council Scholarships (AUD \$20,000)

2018-2019

National scholarship for studying abroad, China Scholarship Council

Honorable Mention of Mathematical Contest in Modeling Top 25% team, COMAP

2018

National Scholarship (CNY ¥8,000)

2017

Top 1 student in School of Mechanical Engineering, Ministry of Education of P.R. China

National College Students' innovation and entrepreneurship training program (CNY ¥10,000)

Undergraduate research funds, Ministry of Industry and Information Technology

Annual Merit Undergraduate

2016, 2017

Best undergraduate student, Beijing Institute of Technology

First Prize of the People's Scholarship (CNY \(\frac{1}{2}\)1,100) 2016, 2017, 2018 Top 5% in School of Mechanical Engineering, Beijing Institute of Technology

Grand Prize of Capital College Students' Summer Holiday Social Practices Collections (Selected as an editors suggestion)

Coauthor to the best student paper, Beijing Municipal Education Commission

SKILLS

Languages: Matlab, Python, C/C++, HTML

Software: LaTeX, SolidWorks, CAD, ANSYS, COMSOL

Packages: ROS, Simulink, Pybullet, Pychrono, Tensorflow, Keras