4. Convex hull property

The curve segment P(t), $t \in [0,1]$, lies entirely inside the convex hull of all control points

Proof:

This property follows from

$$\sum_{i=0}^{n} B_{i,n}(t) \equiv 1,$$

$$B_{i,n}(t) \triangleq 0, = \sum_{i=0}^{n} B_{i,n}(t) = 1$$

5. Variation diminishing property

The number of intersections between an arbitrary' straight line L and the Bézier curve P(t), $t \in [0,1]$, is NO greater than the number of intersections between the line L and the control polygon of P(t).

6. Invariant form under affine transformations

For any affine transformation \mathbf{M} : X' = AX + b, there is

$$\mathbf{M}(P(t)) = \sum_{i=0}^{n} B_{i,n}(t)\mathbf{M}(P_i).$$

Proof:

$$\mathbf{M}(P(t)) = AP(t) + b$$

$$= \sum_{i=0}^{n} B_{i,n}(t) AP_i + \sum_{i=0}^{n} B_{i,n}(t) b$$

$$= \sum_{i=0}^{n} B_{i,n}(t) (AP_i + b)$$

$$= \sum_{i=0}^{n} B_{i,n}(t) M(P_i)$$

6 Invariant form under affine transformations

Thanks to this property, when a Bézier curve is transformed affinely, we can

- a) transform many sampled points on the curve directly, or
- b) transform the control points only and use the transformed control points to generate a new Bézier curve

These two ways yield the same transformed curve, but the latter can be more efficient when there are many points to be evaluated on the curve.

Composite Bézier Curves

By placing the end control points of two Bézier curve collinear, we can obtain a smooth curve comprising two Bézier curves.

Bézier Matrix

$$\mathbf{p}(u) = \mathbf{b}(u)^T \mathbf{p} = \mathbf{u}^T \mathbf{M}_B \mathbf{p}$$
blending functions

For cubic Bézier curves

$$\mathbf{M}_B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{pmatrix}$$

Bézier Patches

Using same data array $\mathbf{P} = [\mathbf{p}_{ij}]$ as with interpolating form

$$\mathbf{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) \mathbf{p}_{ij} = \mathbf{u}^T \mathbf{M}_B \mathbf{P} \mathbf{M}_B^T \mathbf{v}$$

Bézier Bicubic Surface Patches

A 2 x 1 bicubic surface patches

