UNIVERSIDAD DEL VALLE DE GUATEMALA

MM2034 - 1 SEMESTRE - 2021

LICENCIATURA EN MATEMÁTICA APLICADA

ANÁLISIS DE VARIABLE REAL 1

Catedrático: Dorval Carías

Estudiante: Rudik Roberto Rompich Cotzojay

Carné: 19857

Correo: rom19857@uvg.edu.gt

19 de junio de 2021

Índice

1	Pro	piedades de $\mathbb R$	1
	1.1	Supremo e Ínfimo	4
	1.2	Espacios métricos	7

1. Propiedades de \mathbb{R}

 $(\mathbb{R}, +, \cdot)$ es un campo.

Definición 1. Un conjunto no vacío P de elementos de un campo \mathbb{F} es una clase positiva si cumple:

- 1. $Si\ a, b \in P \implies a + b \in P$.
- 2. $Si\ a, b \in P \implies a \cdot b \in P$.
- 3. Si $a \in \mathbb{F}$, entonces:
 - a) $a \in P$ o a = 0 o $-a \in P$. (Ley de tricotomía)

NOTA. Sea $N = \{-a : a \in P\}$ la clase negativa relativa a $P : \Longrightarrow \mathbb{F} = P \cup \{0\} \cup \mathbb{N}$.

Ejemplo 1. 1. $(\mathbb{Q}, +, \cdot)$ es un campo. Sea $P\{a/b \in \mathbb{Q} \ni a, b \in \mathbb{Z}^+\} \implies P$ es una clase positiva de \mathbb{Q} .

2. Sea $\mathbb{Z}_2 = \{0, 1\}$, en las operaciones:

- $\implies (\mathbb{Z}_2, +, \cdot)$ es un campo.
- a) Sea $P = \{0\}$. Cumple las propiedades: 1, 2. No cumple 3. $\Longrightarrow P$ no es una clase positiva de \mathbb{Z}_2 .
- b) Sea $P' = \{1\}$. No cumple el 1. $\implies P'$ no es clase positiva de \mathbb{Z}_2 .

Definición 2. Sea P la clase positiva del campo \mathbb{F} , entonces se dice que \mathbb{F} está ordenada por P (o que \mathbb{F} es un campo ordenado).

- 1. Si $a \in P$, se dice que a es positivo. Notación a > 0.
- 2. Si $a \in P$ o a = 0, se dice que a es no negativo. Notación $a \ge 0$.
- 3. Si $a, b \in \mathbb{F}$ y $a b \in P$, se escribe a > b.
- 4. Si $a, b \in \mathbb{F}$ y $a b \in P$ o a b = 0, se escribe $a \ge b$.

Proposición 1. Otras propiedades:

- 1. $Si \ a > b \ y \ b > c \implies a > c$.
- 2. Si $a, b \in \mathbb{F}$, entonces
 - a) a > b o a = b o b > a.
- 3. $Si \ a \ge b \ y \ b \ge a \implies a = b$.

Proposición 2. Sea \mathbb{F} un campo ordenado:

- 1. Si $a \neq 0 \implies a^2 > 0$.
- *2.* 1>0.
- 3. Si $n \in \mathbb{Z}^+ \implies n > 0$.

Teorema 1. Sean $a, b, c \in \mathbb{F}$.

1.
$$Si \ a > b \implies a + c > b + c$$
.

2.
$$Si \ a > b \ y \ c > d \implies a + c > b + d$$
.

3.
$$Si \ a > b \ y \ c > 0 \implies ac > bc$$
.

4.
$$Si \ a > b \ y \ c < 0 \implies ac < bc$$
.

5.
$$Si \ a > 0 \implies a^{-1} > 0$$
.

6. Si
$$a < 0 \implies a^{-1} < 0$$
.

Corolario 1.1. $Si \ a > b \implies a > \frac{a+b}{2} > b.$

NOTA. Hagamos b = 0. Entonces, si $a > 0 \implies a > \frac{a}{2} > 0$. Entonces, en un campo ordenado no existe un número positivo menor.

Teorema 2. Si ab > 0, entonces, a > 0 y b > 0 o a < 0 y b < 0.

Definición 3. Sea \mathbb{F} un campo una clase positiva P. Se define la función valor absoluto:

$$|\cdot|: \mathbb{F} \to P \cup \{0\} \ni$$

$$|a| = \begin{cases} a, & a \ge 0. \\ -a, & a < 0. \end{cases}$$

Teorema 3. 1. $|a| = 0 \iff a = 0$.

- 2. |-a| = |a|.
- 3. $|ab| = |a| \cdot |b|$.

4. Si
$$c \ge 0 \implies |a| \le c \iff -c \le a \le c$$
.

NOTA. Como $|a| \ge 0 \implies |a| \le |a| \implies -|a| \le a \le |a|, \forall a$.

Teorema 4 (Designaldad triangular). Sean a y b elementos de un campo ordenado \mathbb{F} . Entonces,

$$|a+b| \le |a| + |b|.$$

NOTA (Designaldad triangular). Si a, b son elementos del campo ordenado \mathbb{F} , entonces:

$$||a| - |b|| \le |a \pm b| \le |a| + |b|.$$

Definición 4. Un campo ordenado \mathbb{F} es arquimediano si $\forall x \in \mathbb{F} \ \exists n \in \mathbb{Z}^+ \ni x < n$.

NOTA. La clase positiva P de \mathbb{F} es arquimediana si $\forall x \in \mathbb{F} \exists n \in \mathbb{Z}^+ \ni n - x \in P$.

Teorema 5. Si \mathbb{F} es un campo arquimediano, entonces:

- 1. $Si \ y > 0 \ y \ z > 0 \implies \exists n \in \mathbb{Z}^+ \ni ny > z$.
- 2. Si $z > 0 \implies \exists n \in \mathbb{Z}^+ \ni 0 < 1/n < z$.
- 3. $Si \ y > 0 \implies \exists n \in \mathbb{Z}^+ \ni n-1 \le y < n$.

1.1. Supremo e Ínfimo

NOTA (Cota superior más pequeño). Sea $B \subseteq \mathbb{Q}$, $B \neq \mathbb{Q}$. Entonces, B es acotado superiormente si $k \in \mathbb{Q} \ni k \geq b$, $\forall b \in B$. En este caso k es cota superior de B.

Ejemplo 2. Considérese

- 1. Sea $\{a \in \mathbb{Q} \ni a < 4\}$. Este conjunto está acotado superiormente por 4 (pero también 5, 6,... son cotas superiores). Por otro lado, $\mathbb{N} \subseteq \mathbb{Q}$ no es acotado.
- 2. Si $B \subseteq \mathbb{Q}$, $B \neq \mathbb{Q}$ y B es acotado superiormente, entonces la cota superior más pequeña de B es un número $k \in \mathbb{B}$ es un número $k \in \mathbb{Q}$ \ni
 - a) K es cota superior.
 - b) Si c es cota superior de B, entonces $c \geq k$.
- 3. Si existe la cota superior más pequeña de B, esta es única. Suponga que k₁ y k₂ son cotas superiores más pequeñas. Entonces:
 - a) Como k_1 es cota superior más pequeña y k_2 es cota superior $\implies k_2 \ge k_1$.
 - b) Como k_2 es cota superior más pequeña y k_1 es cota superior. \Longrightarrow $k_1 \ge k_2 \implies k_1 = k_2$.
- 4. Considérese el conjunto

$$C = \{ a \in \mathbb{Q} : a \ge 0 \ y \ a^2 < 2 \}.$$

Nótese que C está acotado superiormente. En efecto, si $a \in C \implies a^2 < 4 \implies a < 2 \implies 2$ es cota superior de C.

Ejemplo 3. Ejemplos

a) ¿Es 2 la menor cota superior de C? No, considere $a^2 < 9/4 \implies a < 3/2 = 1,5$.

- b) Los números racionales: 2, 1.5, 1.42, 1.415, 1.4143, 1.41422, 1.41214,... son cotas superiores de C.
- c) C no tiene en $\mathbb Q$ una cota superior más pequeña. Nótese que $\sqrt{2} \notin \mathbb Q$, debería ser la cota superior más pequeña de C.

Definición 5. El conjunto de números reales \mathbb{R} es un campo ordenado que satisface:

$$P1 \ \forall x > 0 \ en \ \mathbb{R} \ \exists n \in \mathbb{Z}^+ \ni x < n > y.$$

P2 Cada subconjunto no vacío de $\mathbb R$ que es acotado superiormente tiene una cota superior más pequeña en $\mathbb R$.

NOTA. Cada subconjunto no vacío de \mathbb{R} que es acotado inferiormente tiene una cota inferior más grande (**ínfimo**). En efecto si A es un subconjunto no vacío de \mathbb{R} acotado inferiormente, considere -A y aplique el axioma del supremo.

- 1. $Supremo de A: \sup A$.
- 2. Ínfimo de A: ínf A.

Ejemplo 4.

Considere $(\frac{1}{n})$.

$$\implies \inf\left(\frac{1}{n}\right) = 0.$$

Ejemplo 5.

$$\sup[a, b] = b; \inf[a, b] = a.$$

$$\sup(a, b) = b; \inf(a, b) = a.$$

NOTA. 1. Si el sup $A \in A \implies \sup A$ es el máximo de A.

2. Si el ínf $A \in A \implies$ ínf A es el mínimo de A.

Convenciones:

1. Si A no está acotada superiormente, entonces escribimos

$$\sup A = \infty$$

2. Si ${\cal A}$ no está acotado inferiormente, entonces escribimos

$$\inf A = -\infty$$

3. Si $A = \emptyset$ (Recordemos que cada número real es cota superior e inferior de \emptyset), se escribe:

$$\sup\emptyset = -\infty \text{ e inf }\emptyset = \infty$$

NOTA. En todo caso, se dice que el sup A e ínf A existen si son un úmero finito.

1.2. Espacios métricos

Definición 6. Sea X un conjunto y

$$d: X \times X \to \mathbb{R} \ni$$

 $\forall a, b, c \in X \text{ satisface:}$

- 1. Positividad. $d(a,b) \ge 0$; $d(a,b) = 0 \iff a = b$.
- 2. Simetría. d(a,b) = d(b,a).
- 3. Designaldad triiangular. $d(a,b) \leq d(a,c) + d(c,d)$, entonces (X,d) es un espacio métrico y d es una métrica sobre X o una distancia sobre X.

Proposición 3 (Reordonamiento de la desigualdad triangular). Si(X, d) es un espacio métrico y si $a, b, c \in X$, entonces:

$$|d(a,b) - d(b,c)| \le d(a,c).$$

Ejemplo 6. 1. Sea $X = \mathbb{R}$ y $d_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \ni d_1(a,b) = |a-b|$. \Longrightarrow (\mathbb{R}, d_1) es un espacio métrico. En efecto, sean $a, b, c \in \mathbb{R}$. Entonces:

- a) Pior definición, $d_1(a,b) = |a-b| \ge 0$.
 - 1) Si $d(a,b) = |a-b| = 0 \implies a-b = 0 \implies a = b$.
 - 2) Si $a = b \implies d(a, b) = |a a| = |0| = 0.$
- b) d(a,b) = |a-b| = |-(a-b)| = |b-a| = d(b,a).
- $\mathrm{c}) \ d(a,b) = |a-b| = |(a-c) + (c-d)| \leq |a-c| + |c-b| = d(a,c) + d(c,b).$

2. Cada conjunto admite una métrica. Sea $X \neq \emptyset$, entonces se define la métrica discreta así: $d: X \times X \to \mathbb{R} \ni$

$$d(a,b) = \begin{cases} 1, & a \neq b \\ 0, & a = b \end{cases}$$

 $\implies (X, d)$ es espacio métrico.

Ejemplo 7 (Métrica Euclidiana en \mathbb{R}^n). Sea $X = \mathbb{R}^n$ y sean: $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$. Definamos: $d_2 : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \ni$

$$d_2(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}.$$

 $\implies (\mathbb{R}^n, d_2)$ es métrica.

Lema 6. Sean $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$, números reales cualquiera. Entonces, se cumplen:

1. Desigualdad de Cauchy-Schwarz

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$
$$(\overline{a} \cdot \overline{b}) \le \|\overline{a}\| \cdot \|\overline{b}\|$$

2. Desigualdad de Minkowski

$$\left[\sum_{i=1}^{n} (a_i + b_i)^2\right]^{1/2} \le \left[\sum_{i=1}^{n} a_i^2\right] + \left[\sum_{i=1}^{n} b_i^2\right]^{1/2}$$

Ejemplo 8. Considere $d_{\infty}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \ni$

$$d_{\infty}(x,y) = \max\{|x_i - y_i| : i = 1, \dots, n\}.$$

 $\implies d_{\infty}$ es una métrica en \mathbb{R}^n .

Ejemplo 9. x = (2, 3, 4) y y = (-1, 2, 0).

$$\implies d_{\infty}(x,y) = \max\{|2 - (-1)|, |3 - 2|, |4 - 0|\} = \max\{3, 1, 4\} = 4.$$

Ejemplo 10. Sea B([a,b]) el conjunto de funciones acotadas definidas en [a,b] y de valores reales. También se denota:

$$l^{\infty}([a,b]) = \{f : [a,b] \to \mathbb{R} \ni |f(x)| \le M, M > 0\}$$

 $\implies Dadas \ f, g \in l^{\infty}[a, b].$

 $\implies d_{\infty}(f,g) = \sup\{|f(x) - g(x)|\}, \ la \ cual \ es \ una \ métrica \ en \ l^{\infty}[a,b] \ y \ se \ llama$ métrica o distancia del supremo.

Ejemplo 11. Sea C[a,b] el conjunto de funciones continuas sobre [a,b] con valores reales. Entonces, si $f,g \in C[a,b]$, se tiene la métrica:

$$d(f,g) = \int_{a}^{b} |f(x) - g(x)| dx$$

sobre C[a,b].

Definición 7. Suponga que V es un espacio vectorail sobre el campo \mathbb{F} (\mathbb{R} o \mathbb{C}) y que:

$$\|\cdot\|:V\to\mathbb{R}\ni$$

 $\forall x, y \in V \ y \ \alpha \in \mathbb{F} \ se \ cumplen:$

1.
$$||x|| \ge 0, ||x|| = 0 \iff x = 0.$$

2.
$$\|\alpha x\| = |\alpha| \cdot \|x\|$$
.

$$3. ||x + y|| \le ||x|| + ||y||.$$

Entonces, $\|\cdot\|$ es una norma sobre V y decimos que $(V, \|\cdot\|)$ es un espacio normado.

NOTA. Sea V un espacio vectorial normado. Entonces, considere:

$$d: V \times V \to \mathbb{R} \ni$$

$$d(x,y) = ||x - y||.$$

Nótese que:

1.
$$d(x,y) = ||x - y|| \ge 0$$
;

a)
$$Si \ x = y \implies d(x, y) = ||x - y|| = 0.$$

b)
$$Si \ d(x,y) = ||x - y|| = 0 \implies x - y = 0 \implies x = y$$
.

2.
$$d(x,y) = ||x-y|| = ||-(y-x)|| = |-1| \cdot ||y-x|| = ||y-x|| = d(y,x)$$
.

3.
$$d(x,y) = \|x-y\| = \|(x-z)+(z-y)\| \le \|x-z\| + \|z-y\| = d(x,z)+d(z,y)$$
. $\implies d(x,y) = \|x-y\|$ es una métrica sobre V . Esta es la métrica inducida por la norma.