Estadística

Estadística

La estadística es una ciencia con base matemática referente a la recolección, análisis e interpretación de datos, que busca explicar condiciones regulares en fenómenos de tipo aleatorio.

Características

- Hace uso de la matemática
- Trabaja sobre datos adquiridos
- Busca explicar o interpretar situaciones donde hay incertidumbre y variación.

Estadística

- La estadística proporciona métodos para organizar y resumir datos.
 - Ej: utilizando medidas generales como el valor medio, la mediana y la desviación estándar.
- También para sacar conclusiones a partir de la información que contienen.
 - Ej: A partir de las pruebas realizadas en pacientes a los que se les aplicó cierta droga puede estimarse si hubo mejora en su salud o no.

Población

- Los datos utilizados se refieren a la población de interés.
- Ejemplos de población
 - Todos los egresados de la Facultad de Informática durante los últimos 5 años.
 - Todos los autos fabricados por Chevrolet Argentina durante 2007 y 2008.
- Si se dispone de la misma información para todos los objetos de la población, lo que se tiene es un censo.

Población y muestra

POBLACION

MUESTRA

Por cuestiones prácticas se trabaja con una **muestra** (un subconjunto de la población)

Ramas de la Estadística

Estadística Descriptiva

Se dedica a los métodos de recolección, descripción, visualización y resumen de los datos.

Inferencia Estadística

Se dedica a la generación de los modelos, inferencias y predicciones asociadas a los fenómenos en cuestión teniendo en cuenta la aleatoriedad de las observaciones.

Estadística Descriptiva

- Medidas de Resumen Numéricas
 - Media y Mediana
 - Cuartiles
 - Medidas de dispersión
- Representaciones gráficas
 - Diagramas de caja.
 - Histograma.

Media Muestral

La media muestral \overline{x} de un conjunto de observaciones $x_1, x_2, ..., x_n$ está dada por

$$x = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Media Muestral

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Alumno	Nota
Angioni Formia, Bruno Gabriel (bgangioni)	8.75
Aparicio, Ivan Agustin (in5f480)	9.00
Apezteguia, Matias (matiasap)	8.25
Archuby, Federico (archu)	9.00
•••	!
Trujillo, Leticia Vanesa (trulet05p)	9.25
Vallejos, Fernando (yabran)	9.00

Media Muestral

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n} = 8.1571$$

(medida de resumen numérica)

Mediana

- floor Ordenar las muestras de menor a mayor y tomar como valor para la mediana \widetilde{x}
 - El valor del medio de la lista si la cantidad de elementos es impar.
 - El promedio de los valores centrales si la cantidad de elementos de la lista es par.

Mediana

Nota	# Orden
5,5	1
•••	•••
8,25	52
8,25	53
8,25	54
•••	•••
10	105

$$\tilde{x} = 8,25$$

Ordenar las notas de menor a mayor y tomar la nota del que está al medio

Cuartiles

- La mediana divide al conjunto de datos en dos partes iguales.
- Los cuartiles dividen los datos en 4 partes con la misma cantidad de valores

Medidas en Excel

Medidas numéricas	Valor	Función Excel
Media	8,1571	=AVERAGE(B2:B106)
Mediana	8,25	=MEDIAN(B2:B106)
Primer Cuartil	7,25	=QUARTILE(B2:B106; 1)
Segundo Cuartil	8,25	=QUARTILE(B2:B106; 2)
Tercer Cuartil	9	=QUARTILE(B2:B106; 3)

 Estas tres muestras tienen la misma media pero distinta dispersión

La muestra 1 es la que tiene mayor variación y la muestra 3 es la más compacta.

Medidas de Dispersión para datos muestrales

 La más simple es el rango o recorrido que es la diferencia entre los valores extremos

Ej: La muestra 1 tiene rango 70-30=40 mientras que la muestra 3 tiene un recorrido menor

¿ Desventajas ?

- Las principales medidas utilizan las desviaciones a partir de la media.
- Es decir que se consideran las diferencias de cada muestra con la media

$$(x_1 - \overline{x}), (x_2 - \overline{x}), ..., (x_n - \overline{x})$$

Una opción natural parece ser la suma

$$\sum_{i=1}^{n} (x_i - \overline{x})$$

¿ PROBLEMAS?

Suma de las desviaciones

$$\sum_{i=1}^{n} (x_i - \bar{x}) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \bar{x}$$

$$n.\bar{x}$$

Suma de las desviaciones

$$\sum_{i=1}^{n} (x_i - \overline{x}) = \sum_{i=1}^{n} x_i - n \cdot \overline{x} = 0$$

¿Cómo cambiar las desviaciones a x_i antidades no negativa x_i x_i

- ¿Cómo cambiar las desviaciones a cantidades no negativas?
- Opción 1

$$\sum_{i=1}^{n} |x_i - \overline{x}|$$

 \boldsymbol{n}

Opción 2

$$\sum_{i=1}^{n} (x_i - \overline{x})^2$$

n

La función valor absoluto tiene alguna dificultades teóricas entonces usamos esta

- ¿Cómo cambiar las desviaciones a cantidades no negativas?
- Opción 1

$$\frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$$

Opción 2

$$\sum_{i=1}^{n} (x_i - \overline{x})^2$$

n

En realidad, se divide por **n-1**

Varianza Muestral

La varianza muestral se denota por S² y se define como

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

La desviación muestral se denota por S y es la raíz cuadrada positiva de S²

Varianza Muestral

 La varianza muestral también puede expresarse como

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1} = \frac{S_{xx}}{n-1}$$

donde

$$S_{xx} = \sum (x_i - \bar{x})^2 = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}$$

Varianza Muestral

 Volviendo al ejemplo de las calificaciones de la primera autoevaluación

Medida numéricas	Valor	Función Excel
Varianza	1,2094	=VAR(B2:B106)
Desviación	1,0997	=STDEV(B2:B106)

Estadística Descriptiva

Medidas de Resumen Numéricas

- Media y Mediana
- Cuartiles
- Medidas de dispersión

Representaciones gráficas

- Diagramas de caja.
- Histograma.

Veamos estas

Diagramas de Caja

- Características del conj.de datos
 - Centro
 - Dispersión
 - Desviación respecto a la simetría
 - Identificación de valores atípicos (alejadas del grueso de las observaciones.
- Utiliza medidas "resistentes" a los datos atípicos: la mediana y la cuarta dispersión

Diagramas de Caja

- Primero se ordenan las muestras de menor a mayor.
- Luego, la cuarta dispersión f_s está dada por

 f_s = cuarto superior – cuarto inferior

donde el cuarto inferior es la mediana de la primera mitad y el cuarto superior la mediana de la segunda mitad.

Diagramas de Caja

Prof.Laura Lanzarini

Valores atípicos

- □ Cualquier muestra más allá de 1.5 f_s desde el cuarto más cercano es un **valor atípico**.
- Un valor atípico es **extremo** si está a más de 3 f_s del cuarto más cercano.
- □ Entre 1.5 f_s y 3 f_s es se considera un valor atípico **moderado**.

Diagrama de Caja

 Estos son los valores correspondientes a las calificaciones de la primera autoevaluación

Medida	Notas
Cuarto inferior	7,25
Valor mínimo	5,5
Mediana	8,25
Valor máximo	10
Cuarto Superior	9

- Seleccionar la tabla anterior e insertar un gráfico de línea con marcadores
 - >Insert > Line Chart > Line with Markers

 Clickear con el botón derecho del mouse sobre cualquier de los marcadores y seleccionar

>Format Data Serie > line Color > No Line

Invertir filas por columnas: Ir a la solapa Design y elegir Switch Row/Column

- En la solapa Layout elegir
 - > Lines > High-Low Lines

- En la solapa Layout elegir
- >Up/Down Bars > Up/Down Bars

Histograma

- Permite apreciar la frecuencia con que aparecen los distintos valores de una v.a.
- Representación
 - Sobre el eje X se indican los valores de la variable.
 - Sobre el eje Y se representa la frecuencia relativa o la frecuencia con la que cada valor aparece.
- Si la variable es continua es preciso discretizarla.

Histograma

 El histograma de las calificaciones de la primera autoevaluación es

Rango	Frequen	СУ
	0	0
	1	0
	2	0
	3	0
4	4	0
!	5	0
	6	3
•	7	18
;	8	25
9	9	39
10	0	19

Muestras Aleatorias

Muestra

- Considere elegir dos muestras distintas de tamaño n de la misma distribución poblacional
- □ **Ejemplo**: Consumo de combustible de 3 autos

	Muestra 1	Muestra 2	
x_1	30.7	28.8	
X_2	29.4	30.0	
X ₃	31.1	31.1	

Antes de obtener los datos hay incertidumbre acerca del valor de cada x_i, por lo tanto cada observación se ve como una v.a.

Cada muestra se representa mediante $X_1, X_2, ..., X_n$ (en este ejemplo n=3)

Muestra

- Considere elegir dos muestras distintas de tamaño n de la misma distribución poblacional
- Ejemplo: Consumo de combustible de 3 autos

	Muestra 1	Muestra 2	
x_{1}	30.7	28.8	
x_{2}	29.4	30.0	
X ₃	31.1	31.1	
	<u> </u>	<u></u>	

Casi siempre los valores de la 2da.muestra serán un poco distintos a los de la 1ra.

Muestra

	Muestra 1	Muestra 2
x_1	30.7	28.8
X_2	29.4	30.0
X ₃	31.1	31.1
X	30.4	29.97
S	0.89	1.15

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{n-1}}$$

Las variaciones entre muestras hacen que cualquier función de las observaciones muestrales (ej:media muestral X, desviación estándar muestral S, etc) cambie de una muestra a otra.

- El tiempo que tarda un conductor en reaccionar a las luces de freno de un vehículo en desaceleración tiene una distribución normal con valor medio 1.25 segundos y desviación estándar 0.46 segundos.
- Analizar 6 muestras formadas por el tiempo de respuesta de 10 conductores cada una.

 $\mu = 1.25 \text{ seg.}$

 $\sigma = 0.46 \text{ seg.}$

Ejemplo

Nro.	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5	Muestra 6
1	2,1230	1,4750	1,3066	2,2239	1,4109	1,7338
2	0,9071	1,0563	1,5586	1,3302	0,8332	1,5900
3	1,2096	1,3621	1,5233	1,5126	0,7559	1,3493
4	0,9780	2,0770	1,0361	0,7811	1,3896	0,7226
5	1,0719	0,9561	1,6450	0,5599	1,5712	1,0043
6	1,8029	1,2427	1,7326	1,7384	1,2130	1,6203
7	1,2374	1,1200	1,1444	1,0040	0,0208	1,1875
8	0,6790	1,6861	1,5334	1,3784	1,6667	1,0838
9	1,5620	2,2011	1,4218	0,9477	1,1868	1,3452
10	1,4220	2,1642	1,8251	2,0382	1,5130	1,0518
X	1.2993	1.5341	1.4727	1.3515	1.1561	1.2689
S	0.4374	0.4728	0.2502	0.5422	0.4986	0.3183

Note que la media muestral y la desviación estándar muestral difieren de una muestra a otra

Estadístico

- Un estadístico es cualquier cantidad cuyo valor se calcula a partir de los datos de la muestra (ej: media muestral X)
- Antes de obtener los datos hay incertidumbre con respecto al valor que se obtendrá para un estadístico en particular. Por lo tanto, un estadístico es una v.a.
- Cualquier estadístico, que es una v.a., tiene una distribución de probabilidad también llamada distribución de muestreo.

Muestra aleatoria

- Se dice que las v.a. X₁, X₂, ..., X_n forman una muestra aleatoria (simple) de tamaño n si
 - Las X_i son v.a. independientes.
 - Todas las X_i tienen la misma distribución de probabilidad.

Distrib.de muestreo de un estadístico

- Hay dos métodos generales para obtener la distribución de muestreo de un estadístico
 - Haciendo cálculos a partir de las reglas de probabilidad.
 - Puede usarse si se trata de una función muy simple de las X_i y hay pocos valores distintos de X en la población.
 - Realizando un experimento de simulación.

Un taller cobra 40, 45 y 50 u\$s por una afinación de autos de 4, 6 y 8 cilindros, respectivamente. Si 20% de las afinaciones se hacen en autos de 4 cilindros, 30% en autos de 6 cilindros y 50% en los de 8, entonces la distribución de probabilidad del ingreso de una sola afinación elegida al azar está dada por

X	40	45	50
p(x)	0.2	0.3	0.5

$$\mu = 46.5$$
 $\sigma^2 = 15.25$

$$\mu = E(X) = \sum_{x \in R_x} x \cdot p(x) = 40 \cdot 0.2 + 45 \cdot 0.3 + 50 \cdot 0.5 = 46.5$$

Un taller cobra 40, 45 y 50 u\$s por una afinación de autos de 4, 6 y 8 cilindros, respectivamente. Si 20% de las afinaciones se hacen en autos de 4 cilindros, 30% en autos de 6 cilindros y 50% en los de 8, entonces la distribución de probabilidad del ingreso de una sola afinación elegida al azar está dada por

X	40	45	50
p(x)	0.2	0.3	0.5

$$\mu = 46.5$$

$$\sigma^2 = 15.25$$

$$\sigma^2 = V(X) = \sum_{x \in R_x} (x - \mu)^2 \cdot p(x) =$$

$$(40-46.5)^2*0.2+(45-46.5)^2*0.3+(50-46.5)^2*0.5=15.25$$

- Suponga que en un determinado día sólo dos servicios requieren afinación. Sea X₁ el ingreso obtenido de la 1ra. afinación y X₂ el de la 2da.
- Suponga que X₁ y X₂ son independientes, cada una con la distribución de probabilidad anterior.
- □ Es decir que X_1 y X_2 constituyen una muestra aleatoria de la distribución.

X	40	45	50
p(x)	0.2	0.3	0.5

x1	x2	p(x1,x2)	X	S ²
40	40	0.04	40	0
40	45	0.06	42.5	12.50
40	50	0.10	45	50
45	40	0.06	42.5	12.50
45	45	0.09	45	0
45	50	0.15	47.5	12.50
50	40	0.10	45	50
50	45	0.15	47.5	12.50
50	50	0.25	50	0

$$\overline{X} = \frac{X_1 + X_2}{2}$$

X	40	45	50
p(x)	0.2	0.3	0.5

x1	x2	p(x1,x2)	X	s ²
40	40	0.04	40	0
40	45	0.06	42.5	12.50
40	50	0.10	45	50
45	40	0.06	42.5	12.50
45	45	0.09	45	0
45	50	0.15	47.5	12.50
50	40	0.10	45	50
50	45	0.15	47.5	12.50
50	50	0.25	50	0

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{X})^{2}}{n-1} = \frac{\sum_{i=1}^{2} (x_{i} - \overline{X})^{2}}{2-1} = \sum_{i=1}^{2} (x_{i} - \overline{X})^{2}$$

X	40	45	50
p(x)	0.2	0.3	0.5

x1	x2	p(x1,x2)	X	s ²
40	40	0.04	40	0
40	45	0.06	42.5	12.50
40	50	0.10	45	50
45	40	0.06	42.5	12.50
45	45	0.09	45	0
45	50	0.15	47.5	12.50
50	40	0.10	45	50
50	45	0.15	47.5	12.50
50	50	0.25	50	0

Ej:
$$p_{\overline{X}}(45) = P(X = 45) =$$
 ?

Para obtener la distribución de probabilidad de la media muestral hay que calcular la probabilidad de cada valor

x2	p(x1,x2)	X	s ²
40	0.04	40	0
45	0.06	42.5	12.50
50	0.10	45	50
40	0.06	42.5	12.50
45	0.09	45	0
50	0.15	47.5	12.50
40	0.10	45	50
45	0.15	47.5	12.50
50	0.25	50	0
	40 45 50 40 45 50 40 45	400.04450.06500.10400.06450.09500.15400.10450.15	40 0.04 40 45 0.06 42.5 50 0.10 45 40 0.06 42.5 45 0.09 45 50 0.15 47.5 40 0.10 45 45 0.15 47.5

Ej:
$$p_{\overline{X}}(45) = P(X = 45) = 0.10 + 0.09 + 0.10 = 0.29$$

x1	x2	p(x1,x2)	X	s ²
40	40	0.04	40	0
40	45	0.06	42.5	12.50
40	50	0.10	45	50
45	40	0.06	42.5	12.50
45	45	0.09	45	0
45	50	0.15	47.5	12.50
50	40	0.10	45	50
50	45	0.15	47.5	12.50
50	50	0.25	50	0

$\overline{\mathbf{x}}$	40	42.5	45	47.5	50
$p_{\overline{x}}(\overline{x})$	0.04	0.12	0.29	0.30	0.25

X	40	45	50
p(x)	0.2	0.3	0.5

$$\mu = 46.5$$
 $\sigma^2 = 15.25$

Dos afinaciones se realizan el día seleccionado

x	40	42.5	45	47.5	50
$p_{\overline{X}}(x)$	0.04	0.12	0.29	0.30	0.25

$$\mu_{\overline{X}} = 46.5 = \mu$$

$$\sigma_{\overline{X}}^2 = 7.625 = \frac{\sigma^2}{2}$$

$$\sigma_{\overline{X}}^2 = 7.625 = \frac{\sigma^2}{2}$$

Cuatro afinaciones se realizan el día seleccionado

X	40	41.25	42.5	43.75	45	46.25	47.5	48.75	50
$p_{\overline{X}}(\overline{x})$	0.0016	0.0096	0.0376	0.0936	0.1761	0.2340	0.2350	0.1500	0.0625

$$\mu_{\overline{X}} = 46.5 = \mu$$
 ; $\sigma_{\overline{X}}^2 = 3.8125 = \frac{\sigma^2}{4}$

La media se mantiene pero la varianza se reduce

- Una marca de harina se vende al por mayor en bolsas de tres tamaños: 25, 40 y 65 kilos. 20% de los compradores elige la de 25 kg, 50% la de 40 kg y el 30% la de 65 kg. Sean X₁ y X₂ los pesos de las bolsas que eligen dos compradores seleccionados de manera independiente.
 - Determinar la distribución de muestreo de X, calcular E(X) y comparar con μ.
 - Determinar la distribución de muestreo de la varianza S^2 , calcular $E(S^2)$ y comparar con σ^2 .

X	25	40	65
p(x)	0.2	0.5	0.3

$$\mu = 44.5$$
 $\sigma^2 = 212.25$

x1	x2	p(x1,x2)	X	s ²
25	25	0.04	25	0
25	40	0.10	32.5	56.25
25	65	0.06	45	400
40	25	0.10	32.5	56.25
40	40	0.25	40	0
40	65	0.15	52.5	156.25
65	25	0.06	45	400
65	40	0.15	52.5	156.25
65	65	0.09	65	0

$$\overline{x} = \frac{x_1 + x_2}{2}$$

$$S^{2} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2}}{2}$$

X	25	40	65
p(x)	0.2	0.5	0.3

 $\mu = 45.5$ $\sigma^2 = 212.25$

x1	x2	p(x1,x2)	X	s ²
25	25	0.04	25	0
25	40	0.10	32.5	56.25
25	65	0.06	45	400
40	25	0.10	32.5	56.25
40	40	0.25	40	0
40	65	0.15	52.5	156.25
65	25	0.06	45	400
65	40	0.15	52.5	156.25
65	65	0.09	65	0

$\overline{\mathbf{x}}$	25	32.5	40	45	52.5	65
$p_{\overline{x}}(\bar{x})$	0.04	0.2	0.25	0.12	0.30	0.09

X	25	40	65
p(x)	0.2	0.5	0.3

$\mu = 45.5$
$\sigma^2 = 212.25$

•	•	•
H 1040	010	110
Ejer		

x1	x2	p(x1,x2)	X	s ²
25	25	0.04	25	0
25	40	0.10	32.5	56.25
25	65	0.06	45	400
40	25	0.10	32.5	56.25
40	40	0.25	40	0
40	65	0.15	52.5	156.25
65	25	0.06	45	400
65	40	0.15	52.5	156.25
65	65	0.09	65	0

S ²	0	56.25	156.25	400
$p_{S^2}(S^2)$	0.38	0.20	0.30	0.12

Distribución original

x	25	40	65
p(x)	0.2	0.5	0.3

$$\mu = 44.5$$
 $\sigma^2 = 212.25$

Muestras de tamaño 2

×	25	32.5	40	45	52.5	65
$p_{\overline{x}}(x)$	0.04	0.2	0.25	0.12	0.30	0.09

S ²	0	56.25	156.25	400
$p_{S^2}(S^2)$	0.38	0.20	0.30	0.12

$$\mu_{\overline{X}} = 44.5 = \mu$$
 ; $\sigma_{\overline{X}}^2 = 106.1250 = \frac{\sigma^2}{2}$

Experimento de simulación

- El 2do.método para obtener información sobre la distribución de un estadístico es realizar un experimento de simulación. Debe indicarse
 - El estadístico de interés (ej: X)
 - La distribución poblacional (ej: normal con μ =100 y σ =15).
 - El tamaño de la muestra *n* (ej: n=10)
 - El número de réplicas k; es decir la cantidad de muestras a considerar (ej: k=500)

Experimento de Simulación

Estadístico : \overline{X}

Distribución : $N(1.25, 0.46^2)$ k = 500 (nro. de muestras)

Distribución de la media muestral

□ Sea X₁, X₂, ..., X_n una muestra aleatoria de una distribución con media μ y desviación estándar σ , entonces

$$1. E(X) = \mu_{\overline{X}} = \mu$$

$$2.V(\overline{X}) = \sigma_{\overline{X}}^2 = \frac{\sigma^2}{n} \quad y \quad \sigma_{\overline{X}} = \sqrt[6]{n}$$

□ Además, $T_0 = X_1 + X_2 + ... + X_n$

$$E(T_o) = n\mu$$

$$E(T_o) = n\mu$$
 $V(T_o) = n\sigma^2$ y $\sigma_{T_o} = \sqrt{n}\sigma$

Caso de una distribución normal

- Sea X₁, X₂, ..., X_n una v.a. de una distribución normal con media μ y desviación estándar σ, entonces para *cualquier n*,
 - \blacksquare X tiene una distribución normal con media μ y desviación estándar σ/\sqrt{n}
 - \blacksquare $\mathsf{T_o}$ también tiene una distribución normal pero con media n \upmu y desviación estándar $\sqrt{n}\sigma$

Caso de una distribución normal

- □ El tiempo que tarda una rata de cierta especie en encontrar su camino por un laberinto es una v.a. con distrib.normal con μ =1.5 min y σ =0.35 min.
- Se eligen 5 ratas. Sean X₁, X₂, ..., X₅ sus tiempos en el laberinto.
- ¿Cuál es la probabilidad de que el tiempo total T_o=X₁+X₂+ ...+X₅ para las 5 ratas esté entre 6 y 8 minutos?

Si X₁, X₂, ..., X₅ tienen distribución normal entonces T₀ también. Sus parámetros son

$$\mu_{T_o} = n\mu = 5(1.5) = 7.5$$

$$\sigma_{T_o}^2 = n\sigma^2 = 5(0.1225) = 0.6125$$
 : $\sigma_{T_0} = 0.783$

Luego

$$P(6 \le T_o \le 8) = P\left(\frac{6 - 7.5}{0.783} \le Z \le \frac{8 - 7.5}{0.783}\right)$$
$$= P(-1.92 \le Z \le 0.64) = \phi(0.64) - \phi(-1.92) = 0.7115$$

Teorema Central del Límite

- □ Sea X_1 , X_2 , ..., X_n una muestra aleatoria de una distribución con media µ y varianza $σ^2$, entonces si n es suficientemente grande
 - \overline{X} tiene una distribución normal con media μ y varianza σ^2/n
 - \blacksquare T_o también tiene una distribución normal pero con media $n\mu$ y varianza $n\sigma^2$

Regla empírica

Si **n>30** se puede usar el Teorema Central del Límite

Resumen

\overline{X}	$\frac{1}{n}\sum_{i=1}^{n}X_{i}$	$E(\overline{X}) = \mu$ $V(\overline{X}) = \frac{\sigma^2}{n}$
T_o	$\sum_{i=1}^{n} X_{i}$	$E(T_o) = n\mu$ $V(T_o) = n\sigma^2$

- Cuando se prepara un lote de cierto producto, la cantidad de determinada impureza en el lote es una v.a. con valor medio 4 g y una desviación estándar de 1.5 g.
- □ Si 50 lotes se preparan de forma independiente ¿cuál es la probabilidad (aproximada) de que la cantidad promedio muestral de impureza X esté entre 3.5 y 3.8 g?
- Según el TCL, la distribución de \overline{X} se aproxima a una normal con $\mu_{\overline{x}} = 4 \ ; \sigma_{\overline{x}} = 1.5/\sqrt{50} = 0.2121$

□ Si $X \approx N(4,(0.2121)^2)$ la probabilidad (aproximada) de que la cantidad promedio muestral de impureza esté entre 3.5 y 3.8 g es

$$P(3.5 \le \overline{X} \le 3.8) \approx P\left(\frac{3.5 - 4}{0.2121} \le Z \le \frac{3.5 - 4}{0.2121}\right)$$

$$= \phi(-0.94) - \phi(-2.36) = 0.1645$$

- La densidad del sedimento de cierto líquido (g/cm3) tiene una distribución normal con media 2.65 y desviación estándar 0.85.
- Si se dispone de una muestra aleatoria formada por 6 observaciones de dicho líquido
 - ¿Cuál es la probabilidad de que la densidad promedio muestral sea a lo sumo 3?
 - y de que esté entre 2.65 y 3.00?

$$X \approx N(\mu, \sigma^2)$$

$$\mu = 2.65$$
 ; $\sigma = 0.85$

	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5	Muestra 6	Muestra 7	Muestra 8
X ₁	3,3793	3,2365	1,6279	3,8529	2,5997	2,1029	2,3798	3,1412
X ₂	3,7159	3,3433	2,6332	1,9657	1,7910	2,9733	3,5808	2,6843
X ₃	1,2953	3,2551	2,5168	3,0994	3,1723	1,7923	1,0571	3,2255
X ₄	1,4252	3,7467	1,2865	2,8364	3,0816	2,6334	3,0140	3,1336
X ₅	3,1355	3,2183	2,8687	1,8664	4,0886	2,6090	3,4113	2,4327
X ₆	2,3101	3,6622	1,7520	0,8049	3,1526	2,6500	3,2713	2,3292
X	2,5435	3,4104	2,1142	2,4043	2,9809	2,4602	2,7857	2,8244

$$P(\bar{X} < 3) = ?$$

$$\overline{X} \approx N(\mu, \sigma^2/n)$$

$$X \approx N(\mu, \sigma^2)$$

$$X \approx N(\mu, \sigma^2)$$
 $\overline{X} \approx N(\mu, \sigma^2/n)$

$$\mu = 2.65$$
 ; $\sigma = 0.85$

$$P(\overline{X} < 3) = P\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \frac{3 - 2.65}{0.85/\sqrt{6}}\right)$$

$$= P(Z < 1.0086) = 0.8435$$

El 84,35% de las muestras tendrán un valor de densidad del sedimento promedio inferior a 3.

Verifique este porcentaje con las muestras de la transparencia anterior

$$X \approx N(\mu, \sigma^2)$$
 $\overline{X} \approx N(\mu, \sigma^2/n)$

$$\mu = 2.65$$
 ; $\sigma = 0.85$

- Qué tan grande debería ser el tamaño de la muestra para asegurar que la probabilidad de que la densidad promedio muestral sea a lo sumo 3 (la que calculamos antes) sea por lo menos 0.99?
- Es decir, cuánto debe valer n para que

$$P(\overline{X} < 3) \ge 0.99$$

$$X \approx N(\mu, \sigma^2)$$

$$X \approx N(\mu, \sigma^2)$$
 $\overline{X} \approx N(\mu, \sigma^2/n)$

$$\mu = 2.65$$
 ; $\sigma = 0.85$

$$\sigma = 0.85$$

$$P(\overline{X} < 3) = P\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \frac{3 - 2.65}{0.85/\sqrt{n}}\right) = 0.99$$

$$= P \left(Z < \frac{3 - 2.65}{0.85 / \sqrt{n}} \right) = 0.99$$

$$X \approx N(\mu, \sigma^2)$$

$$X \approx N(\mu, \sigma^2)$$
 $\overline{X} \approx N(\mu, \sigma^2/n)$

$$\mu = 2.65$$
 ; $\sigma = 0.85$

$$\sigma = 0.85$$

$$P(\overline{X} < 3) = P\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \frac{3 - 2.65}{0.85/\sqrt{n}}\right) = 0.99$$

$$= P \left(Z < \frac{3 - 2.65}{0.85 / \sqrt{n}} \right) = 0.99$$

$$\frac{(3-2.65)}{0.85/\sqrt{n}} = 2.33$$

Falta despejar n

$$X \approx N(\mu, \sigma^2)$$
 $\overline{X} \approx N(\mu, \sigma^2/n)$

$$\mu = 2.65$$
 ; $\sigma = 0.85$

$$\frac{(3-2.65)}{0.85/\sqrt{n}} = \frac{\sqrt{n} * (3-2.65)}{0.85} = 2.33$$

$$\sqrt{n} = \frac{2.33 * 0.85}{(3 - 2.65)} \longrightarrow \sqrt{n} = 5.6586$$

$$n = 5.6586^2$$
 \implies $n = 32.0198$

El tamaño mínimo de la muestra debería ser **33**

$$\overline{X} \approx N(\mu, \sigma^2/n)$$

$$\mu = 2.65$$
 ; $\sigma = 0.85$

- La densidad del sedimento de cierto líquido (g/cm3) tiene una distribución normal con media 2.65 y desviación estándar 0.85.
- Se realizan 6 observaciones de dicho líquido. Sean X₁, X₂, ..., X₆ sus densidades de sedimento.
- □ ¿Cuál es la probabilidad de que la densidad total T_o=X₁+X₂+ ...+X₆ para las 6 observaciones esté entre 14 y 16 g/cm3?

$$X \approx N(\mu, \sigma^2)$$
 $T_0 \approx N(n\mu, n\sigma^2)$

$$\mu = 2.65$$
 ; $\sigma = 0.85$

Si X₁, X₂, ..., X₆ tienen distribución normal entonces T₀ también. Sus parámetros son

$$\mu_{T_0} = n\mu = 6(2.65) = 15.90$$

$$\sigma_{T_o}^2 = n\sigma^2 = 6(0.85^2) = 4.3350$$
 : $\sigma_{T_0} = 2.0821$

Luego

$$P(14 \le T_o \le 16) = P\left(\frac{14 - 15.9}{2.0821} \le Z \le \frac{16 - 15.9}{2.0821}\right)$$
$$= P(-0.9125 \le Z \le 0.048) = \phi(0.048) - \phi(-0.9125) = 0.3384$$

$$T_0 \approx N(n\mu, n\sigma^2)$$

$$\mu = 2.65$$
 ; $\sigma = 0.85$

Aprox.Normal a la Distrib.Binomial

- El TCL se puede utilizar para aproximar las probabilidades de algunas v.a. discretas cuando es difícil calcularlas exactamente para valores grandes de los parámetros.
- □ Si $X \sim B(n,p)$ hay dos formas de calcular $P(X \le k)$

$$P(X \le k) = \sum_{i=0}^{k} P(X = i)$$

 Usando las tablas de fda; pero no existen para valores grandes de n lo que nos obliga a hacer la suma anterior.

Aprox.Normal a la Distrib.Binomial

 Como una opción podemos considerar a X como suma de v.a. más simples, específicamente, si definimos

$$X_i = \begin{cases} 1 & \text{si en la i-ésima repetición de } \epsilon \text{ ocurre éxito} \\ 0 & \text{en caso contrario} \end{cases}$$

entonces cada $X_i \sim B(1,p)$ y además $X_1, X_2, ..., X_n$ son independientes

Aprox.Normal a la Distrib.Binomial

- □ Si X_1 , X_2 , ..., X_n tienen distribución B(1,p), por el TCL, T_0 tiene distribución normal con media np y varianza np(1-p).
- El tamaño de la muestra necesario para que la aproximación funcione depende de p.
- Note que la distribución de cada X_i es simétrica cuando p es cercana a 0.5 y sesgada cuando está cerca de 0 o 1.
- □ Se recomienda usar la aproximación cuando np ≥ 10 y n(1-p) ≥ 10

Corrección por continuidad

Según el TCL, si X ~ B(n,p) para n
 suficientemente grande puede usarse

$$X \sim N(np, np(1-p))$$

 Dado que la binomial es discreta y la normal continua, deben hacerse algunas correcciones

$$P(X=k) \cong P\left(k - \frac{1}{2} \le X \le k + \frac{1}{2}\right)$$

$$P(X \le k) \cong P\left(X \le k + \frac{1}{2}\right)$$
 $P(X \ge k) \cong P\left(X \ge k - \frac{1}{2}\right)$

B(n,p) aprox. por N(np, np(1-p))

Combinación lineal de v.a.

Dadas n v.a. X_1 , X_2 , ..., X_n y n constantes numéricas a_1 , a_2 , ..., a_n la v.a.

$$Y = a_1 X_1 + ... + a_n X_n = \sum_{i=1}^{n} a_i X_i$$

se llama *combinación lineal* de las X_i

- □ Si $a_1 = ... = a_n = 1$, $Y = T_o$ y si $a_1 = ... = a_n = 1/n$, Y = X.
- Note que las X_i podrían tener distribuciones distintas y por lo tanto, medias y varianzas distintas. Tampoco tienen que ser independientes.

Distrib.de una combinación lineal

- □ Si X_1 , X_2 , ..., X_n tienen valores medios $μ_1$, $μ_2$, ..., $μ_n$ respectivamente y varianzas $σ_1^2$, $σ_2^2$, ..., $σ_n^2$ respectivamente :
- **1.-** Si las X_i son independientes o no

$$E(a_1X_1 + a_2X_2 + \dots + a_nX_n) = a_1E(X_1) + a_2E(X_2) + \dots + a_nE(X_n)$$
$$= a_1\mu_1 + \dots + a_n\mu_n$$

Distrib.de una combinación lineal

- □ Si X_1 , X_2 , ..., X_n tienen valores medios $μ_1$, $μ_2$, ..., $μ_n$ respectivamente y varianzas $σ_1^2$, $σ_2^2$, ..., $σ_n^2$ respectivamente :
- 2.- Si las X_i son independientes

$$V(a_1X_1 + a_2X_2 + \dots + a_nX_n) = a_1^2V(X_1) + a_2^2V(X_2) + \dots + a_n^2V(X_n)$$
$$= a_1^2\sigma_1^2 + \dots + a_n^2\sigma_n^2$$

3.- Para cualquier X₁, X₂, ..., X_n tienen

$$V(a_1X_1 + a_2X_2 + \dots + a_nX_n) = \sum_{i=1}^n \sum_{j=1}^n a_i a_j Cov(X_i, X_j)$$

Ejemplo

- Una estación de servicio vende tres tipos de nafta: común, super y super premium. Estas se venden a 2.4\$, 3.1\$, 3.5\$ por litro.
- Sean X₁, X₂ y X₃ las cantidades de estos tipos de naftas vendidas en un día en particular.
- Suponga que las X_i son independientes con μ_1 =1000, μ_2 =500, μ_3 =300, σ_1 =100, σ_2 =80, σ_3 =50.
- □ El ingreso obtenido por estas ventas es $Y=2.4X_1+3.1X_2+3.5X_3$

Ejemplo

□ Si $Y = 2.4X_1 + 3.1X_2 + 3.5X_3$ entonces

$$E(Y) = 2.4\mu_1 + 3.1\mu_2 + 3.5\mu_3 = 5000$$
\$

$$V(Y) = (2.4)^2 \sigma_1^2 + (3.1)^2 \sigma_2^2 + (3.5)^2 \sigma_3^2 = 31689$$

$$\sigma_{\rm Y} = \sqrt{149729} = 386.95$$
\$

Diferencia entre dos v.a.

Un caso especial de la combinación lineal resulta de tomar n=2, a₁=1 y a₂=-1

$$Y = a_1 X_1 + a_2 X_2 = X_1 - X_2$$

Aplicando lo anterior se obtiene

$$E(X_1 - X_2) = E(X_1) - E(X_2)$$

y si son independientes

$$V(X_1 - X_2) = V(X_1) + V(X_2)$$

Ejemplo

Sean X_1 y X_2 los rendimientos de combustibles para autos de 6 y 4 cilindros, respectivamente, seleccionados de manera independiente y aleatoria; con μ_1 =22, σ_1 =1.2, μ_2 =26 y σ_2 =1.5

$$E(X_1 - X_2) = \mu_1 - \mu_2 = 22 - 26 = -4$$

$$V(X_1 - X_2) = \sigma_1^2 + \sigma_2^2 = (1.2)^2 + (1.5)^2 = 3.69$$

$$\sigma_{X_1 - X_2} = \sqrt{3.69} = 1.92$$

Note que si hubieramos utilizado X_1 para referirnos a los autos de 4 cilindros, $E(X_1-X_2)=4$ pero la varianza hubiera sido la misma.

Resumen

- Muestra aleatoria
- Estadístico
 - Distribución
 - Cálculos
 - Experimento de simulación
- Teorema Central del Límite

- Aprox.Normal
 - Binomial

- Combinación lineal de v.a.
 - Distribución
 - Diferencia