James K. Pringle 550.621 Probability Dr. Jim Fill Assignment 3 March 26, 2013

Assignment 3

Problem 6.3.7 in Chung

6.3.7 Show: If $F_n \xrightarrow{v} F$ and $G_n \xrightarrow{v} G$, then $F_n * G_n \xrightarrow{v} F * G$.

Proof. Let F_n, G_n, F , and G be d.f.'s with ch.f.'s f_n, g_n, f , and g, respectively. By the properties of convolutions, $F_n * G_n$ and F * G are d.f.'s, so let their respective p.m.'s be μ_n and μ . Let $F_n \stackrel{v}{\to} F$ and $G_n \stackrel{v}{\to} G$. Thus by theorem 6.3.1, $f_n \to f$ and $g_n \to g$ uniformly on every finite interval. In particular, that convergence holds on $[t - \epsilon, t + \epsilon]$ for all $t \in \mathbb{R}$ and for all finite $\epsilon > 0$. This implies

$$f_n \to f$$
 and $g_n \to g$ (1)

pointwise on \mathbb{R} . By theorems 6.1.4 and 3.3.4, it follows that $F_n * G_n$ has ch.f. $f_n g_n$ and F * G has ch.f. fg. By properties of a limit and (1), $f_n g_n \to fg$ pointwise in \mathbb{R} . By the properties of characteristic functions, fg is continuous at 0. Hence by theorem 6.3.2, $\mu_n \stackrel{v}{\to} \mu$, and it follows that $F_n * G_n \stackrel{v}{\to} F * G$.