

PAI – Programa de Aprendizagem Interdisciplinar

Projeto Lógico

Modelo de Dados Relacional

Prof. Msc. Gustavo Bianchi Maia gbmaia@gmail.com

Objetivo

 Estudar os conceitos envolvidos no modelo Relacional e aprender a derivar o esquema lógico de um banco de dados relacional a partir do modelo conceitual (DER).

Principais tópicos

- Introdução ao Modelo Relacional
- Notação Relacional
- Atributos-chaves de uma Relação
- Esquema de um BD Relacional
- Restrições de integridade
 - Restrição de Integridade Referencial
- Mapeamento do DER / MDR
- Questões

- O Modelo Relacional (MR) é um modelo de dados lógico utilizado para desenvolver projetos lógicos de bancos de dados.
- Os SGBDs que utilizam o MR são denominados SGBD Relacionais.
- O MR representa os dados do BD como relações.
 - A palavra relação é utilizada no sentido de lista ou rol de informações e não no sentido de associação ou relacionamento.

- Cada relação pode ser entendida como uma tabela ou um simples arquivo de registros.
- Uma relação DEPENDENTE, com seus atributos e valores de atributos.

		Atributo				
	CódigoCliente	Nome	TipoRelação	Sexo	DataNasc	
	0001	Maria	Esposa	F	01/01/1970	
	0001	Vítor	Filho	М	02/02/2002	
	0001	Ana	Filha	F	03/03/2003	
	1000	João	Filho	М	02/02/2002	
Tupla	1000	Vítor	Filho	M	02/02/2002	
•	1000	Vítor	Marido	М	02/02/1971	
	9876	Sônia	Esposa	F	01/01/1970	
	Valor					

- Os valores de atributos são indivisíveis, ou seja, atômicos.
- O conjunto de atributos de uma relação é chamado de relação esquema.
- Cada atributo possui um domínio.
- O grau de uma relação é o número de atributos da relação.

- **DEPENDENTE** (CódigoCliente, Nome, TipoRelação, Sexo, DataNasc)
 - É a relação esquema.
 - DEPEDENTE é o nome da relação.
 - O Grau da Relação é 5.
 - Os **Domínios** dos Atributos são:
 - dom(CódigoCliente) = 4 dígitos que representam o Código do Cliente.
 - dom(Nome) = Caracteres que representam nomes dos dependentes.
 - dom(TipoRelação) = Tipo da Relação (filho, esposa, pai, mãe e outras) do dependente em relação do seu cliente .
 - dom(Sexo) = Caractere: (M: Masculino, F: Feminino) do dependente.
 - dom(DataNasc) = Datas de Nascimento do dependente.

- A relação esquema R de grau n:
 - $R(A_1, A_2, ..., A_n).$
- A tupla t em uma relação r(R) :
 - $t = \langle v_1, v_2, ..., v_n \rangle,$

v_i é o valor do atributos A_i.

- t[A_i] indica o valor v_i em t para o atributo A_i.
- t[A_u, A_w, ..., A_z] indica o conjunto de valores
 <v_u, v_w, ..., v_z> de t correspondentes aos atributos A_u, A_w, ..., A_z de R.

		Atributo				
	CódigoCliente	Nome	TipoRelação	Sexo	DataNasc	
	0001	Maria	Esposa	F	01/01/1970	
	0001	Vítor	Filho	М	02/02/2002	
	0001	Ana	Filha	F	03/03/2003	
	1000	João	Filho	М	02/02/2002	
Tupla	1000	Vítor	Filho	М	02/02/2002	
•	1000	Vítor	Marido	М	02/02/1971	
	9876	Sônia	Esposa	F	01/01/1970	

A figura apresenta a Relação DEPENDENTE:

- -t = <0001, Ana, Filha, F, 03/03/2003> é uma tupla
- t[CódigoCliente] = 0001
- $t[Nome, Sexo] = \langle Ana, F \rangle$

- Superchave:
 - Subconjunto de atributos de uma relação cujos valores são distintos:
 - t1[SC] \neq t2[SC]
- Chave:
 - É uma Superchave mínima
- Chave-Candidata:
 - Chaves de uma relação
- Chave-Primária:
 - Uma das Chaves escolhidas entre as Chaves-Candidatas de uma relação.

Atributos-chaves de uma Relação

Exemplos de Superchaves da relação Empregado

EMPREGADO(Nome, Uf, Rg, Código, Cpf, Endereço, Salário)

- SCa = { Nome, Uf, Rg, Código, Cpf, Endereço, Salário } (superchave trivial)
- SCb = { Nome, Uf, Rg, Código, Cpf, Endereço }
- SCc = { Nome, Uf, Rg, Código, Cpf }
- SCd = { Nome, Uf, Rg, Código }
- SCe = { Nome, Uf, Rg }
- SCf = { Uf, Rg } (superchave mínima)

- SCf = { Uf, Rg } é uma superchave mínima:
 - Pois não é possível retirar de SCf nenhum de seus atributos e o subconjunto resultante continuar com a propriedade de ser superchave.
- Assim, SCf, além de ser superchave, é uma <u>chave</u> da relação esquema DEPENDENTE.

- Uma relação esquema pode possuir mais de uma chave.
- Nestes casos, tais chaves são chamadas de chaves-candidatas.
- O esquema da relação EMPREGADO possui três chavescandidatas:

EMPREGADO(Nome, Uf, Rg, Código, Cpf, Endereço, Salário)

```
    CC1 = { Uf, Rg } (Superchave mínima, Chave e Chave-Candidata)
    CC2 = { Código } (Superchave mínima, Chave e Chave-Candidata)
    CC3 = { Cpf } (Superchave mínima, Chave e Chave-Candidata)
```


- As chaves-candidatas são candidatas à <u>chave-primária</u>.
- A chave-primária é a escolhida, dentre as chaves-candidatas, para identificar de forma única, tuplas de uma relação.
- A chave-primária é indicada na relação esquema sublinhando-se os seus atributos.

EMPREGADO(Nome, Código, Rg, Cpf, Endereço, Salário)

- O esquema de um BD relacional é o conjunto de todos os esquemas de relações.
- Esquema do BD relacional do Sistema Companhia:

- Restrição de Integridade são regras que restringem os valores que podem ser armazenados nas relações.
- Um SGBD relacional deve garantir:
 - Restrição de Chave: os valores das chaves-candidatas devem ser únicos em todas as tuplas de uma relação.
 - Restrição de Entidade: chaves-primárias não podem ter valores nulos.
 - Restrição de Integridade Referencial: Usada para manter a consistência entre tuplas. Estabelece que um valor de atributo, que faz referência a uma outra tupla, deve-se referir a uma tupla existente.

Restrição de Integridade Referencial

Valores da
Chave-Estrangeira

- É comum, em projetos lógicos de BD, realizar a modelagem dos dados através de um modelo de dados de alto-nível
- O produto desse processo é o esquema do BD
- O modelo de dados de alto-nível normalmente adotado é o MER e o esquema do BD é especificado em MR

O DER do Sistema Companhia

• Passo 1:

- Para cada tipo de entidade normal E no DER, crie uma relação R que inclua todos os atributos simples de E.
- Inclua também os atributos simples dos atributos compostos.
- Escolha um dos atributos-chave de E como a chave-primária de R.
- Se a chave escolhida é composta, então o conjunto de atributos simples que o compõem formarão a chave-primária de R.

EMPREGADO

PNOME | MNOME | SNOME | NSS | DATANASC | ENDEREÇO | SEX | SALARIO

DEPARTAMENTO

DNOME DNÚMERO NUMERODEEMPREGADOS

PROJETO

PNOME | PNÚMERO | PLOCALIZAÇÃO

Passo 2:

- Para cada tipo de entidade fraca W do DER com o tipo de relacionamento de identificação E, crie uma relação R e inclua todos os atributos simples (ou os atributos simples de atributos compostos) de W como atributos de R.
- Além disso, inclua como a chave-estrangeira de R a chaveprimária da relação que corresponde ao tipo de entidade proprietário da identificação.
- A chave-primária de R é a combinação da chave-primária do tipo de entidade proprietário da identificação e a chave-parcial do tipo de entidade fraca W.

EMPREGADO

PNOME | MNOME | SNOME | NSS | DATANASC | ENDEREÇO | SEX | SALARIO

DEPARTAMENTO

DNOME DNÚMERO NUMERODEEMPREGADOS

PROJETO

PNOME | PNÚMERO | PLOCALIZAÇÃO

DEPENDENTE

NSSEMP | NOMEDEPENDENTE | SEXO | DATANIV | RELAÇÃO

ce

Passo 3:

- Para cada tipo de relacionamento binário 1:1, R, do DER, identifique as relações S e T que correspondem aos tipos de entidade que participam de R.
- Escolha uma das relações, por exemplo S, e inclua como chave-estrangeira de S a chave-primária de T.
 - É melhor escolher o tipo de entidade com participação total em R como sendo a relação S.
- Inclua todos os atributos simples (ou os atributos simples de atributos compostos) do tipo de relacionamento 1:1, R, como atributos de S.

PROJETO PNOME | PNÚMERO | PLOCALIZAÇÃO

Passo 4:

- Para cada tipo de relacionamento binário regular 1:N (não fraca), R, identificar a relação S que representa o tipo de entidade que participa do lado N de R.
- Inclua como chave-estrangeira de S a chave-primária de T que representa o outro tipo de entidade que participa em R; isto porque cada entidade do lado 1 está relacionada a mais de uma entidade no lado N.
- Inclua também quaisquer atributos simples (ou atributos simples de atributos compostos) do tipo de relacionamento 1:N, como atributos de S.

PROJETO		ce	CONTROLA	
PNOME	<u>PNÚMERO</u>	PLOCALIZAÇÃO	DNUM	

DEPENDENTE

| NSSEMP | NOMEDEPENDENTE | SEXO | DATANIV | RELAÇÃO | CO

Passo 5:

- Para cada tipo de relacionamento binário M:N, R, crie uma nova relação S para representar R.
- Inclua como chave-estrangeira de S as chaves-primárias das relações que representam os tipos de entidade participantes; sua combinação irá formar a chave-primária de S.
- Inclua também qualquer atributo simples do tipo de relacionamento M:N
 (ou atributos simples dos atributos compostos) como atributos de S.
 - Note que não se pode representar um tipo de relacionamento M:N como uma simples chave-estrangeira em uma das relações participantes - como foi feito para os tipos de relacionamentos 1:1 e 1:N. Isso ocorre porque o MR não permite a representação de atributos multivalorados.

Passo 6:

- Para cada atributo A multivalorado, crie uma nova relação R que inclua o atributo A e a chave-primária, K, da relação que representa o tipo de entidade ou o tipo de relacionamento que tem A como atributo.
- A chave-primária de R é a combinação de A e K.
- Se o atributo multivalorado é composto inclua os atributos simples que o compõem.

Passo 7:

- Para cada tipo de relacionamento n-ário, R, n>2, crie uma nova relação S para representar R.
- Inclua como chave-estrangeira em S as chaves-primárias das relações que representam os tipos de entidades participantes.
- Inclua também qualquer atributo simples do tipo de relacionamento n-ário (ou atributos simples dos atributos compostos) como atributo de S.
- A chave-primária de S é normalmente a combinação de todas as chavesestrangeiras que referenciam as relações que representam os tipos de entidades participantes.
 - Porém, se a restrição estrutural (min, max) de um dos tipos de entidades E que participa em R, tiver max=1, então a chave-primária de, S, pode ser a chave-estrangeira que referencia a relação E; isto porque cada entidade e em E irá participar em apenas uma instância em R e, portanto, pode identificar univocamente esta instância de relacionamento.

DER / MDR – Passo 7-Resultado

Referências Bibliográficas

- 1. Batini, C.; Ceri, S.; Navathe, S. Conceptual Database Design: An Entity-Relationship Approach. Benjamin/Cummings, Redwood City, Calif., 1992.
- 2. Date, C.J., Introdução a Sistemas de Banco de Dados, tradução da 8 edição americana, Campus, 2004.
- 3. Elmasri, R.; Navathe, S.B. Fundamentals of Database Systems, 4th ed. Addison-Wesley, Reading, Mass., 2003.
- 4. Ferreira, J.E.; Finger, M., Controle de concorrência e distribuição de dados: a teoria clássica, suas limitações e extensões modernas, Coleção de textos especialmente preparada para a Escola de Computação, 12a, São Paulo, 2000.

Referências Bibliográficas

- Heuser, C.A., Projeto de Banco de Dados., Sagra Luzzatto, 1 edição, 1998.
- 6. Korth, H.; Silberschatz, A. Sistemas de Bancos de Dados. 3a. Edição, Makron Books, 1998.
- 7. Ramakrishnan, R.; Gehrke, J., Database Management Systems, 2 nd ed., McGraw-Hill, 2000.
- 8. Teorey, T.; Lightstone, S.; Nadeau, T. Projeto e modelagem de bancos de dados. Editora Campus, 2007.

Referências Web

 Takai, O.K; Italiano, I.C.; Ferreira, J.E. Introdução a Banco de Dados. Apostila disponível no site: http://www.ime.usp.br/~jef/apostila.pdf. (07/07/2005).

Obrigado!

Aula Gravada por:

Prof. Msc. Gustavo Bianchi Maia

gbmaia@gmail.com

Material criado e oferecido por : Prof. Msc. Oswaldo Kotaro Takai

otakai@gmail.com

