Skills, Tasks and Technologies: Implications for Employment and Earnings

Daron Acemoglu, David Autor Handbook of Labor Economics (2011)

Motivation

Canonical skill-biased technical change model

two skill groups produce two goods, technology is factor-augmenting

Explains the long-run comovement of the college wage premium and relative college labor supply

Silent or

- 1. Falling real wages for low-skill men
- Non-monotone wage-growth across quantiles
- 3. Job polarisation: rising employment shares at the top and bottom
- 4. Rapid diffusion of ICT that directly substitutes capital for routine tasks
- 5. Offshoring of routine tasks to low-wage countries

Re-allocation of tasks within occupations & to machines and foreign labor

task: a unit of work activity that produces output

skill: a worker's endowment of capabilities for performing various tasks

Motivation

Canonical skill-biased technical change model

two skill groups produce two goods, technology is factor-augmenting

Explains the long-run comovement of the college wage premium and relative college labor supply

Silent on

- 1. Falling real wages for low-skill men
- 2. Non-monotone wage-growth across quantiles
- 3. Job polarisation: rising employment shares at the top and bottom
- 4. Rapid diffusion of ICT that directly substitutes capital for routine tasks
- 5. Offshoring of routine tasks to low-wage countries

Re-allocation of tasks within occupations & to machines and foreign labor

task: a unit of work activity that produces output

skill: a worker's endowment of capabilities for performing various tasks

Motivation

Canonical skill-biased technical change model

two skill groups produce two goods, technology is factor-augmenting

Explains the long-run comovement of the college wage premium and relative college labor supply

Silent on

- 1. Falling real wages for low-skill men
- 2. Non-monotone wage-growth across quantiles
- 3. Job polarisation: rising employment shares at the top and bottom
- 4. Rapid diffusion of ICT that directly substitutes capital for routine tasks
- 5. Offshoring of routine tasks to low-wage countries

Re-allocation of tasks within occupations & to machines and foreign labor

task: a unit of work activity that produces output

skill: a worker's endowment of capabilities for performing various tasks

This Paper

From "What does technology do to skills?" to "What does technology do to tasks?"

Q: How does technology affect the mapping from skills to work and the distribution of earning?

A Ricardian task model of endogenous skill-task assignment

Allows **heterogeneity** in skills within education groups

Relates to the literature or

- Technology-driven demand for skills (Goldin and Katz (2008), Autor, Levy, Murnane (2003))
- Occupational polarization (Goos et al. (2010), Autor, Katz, Kearney (2006)

This Paper

From "What does technology do to skills?" to "What does technology do to tasks?"

Q: How does technology affect the mapping from skills to work and the distribution of earning?

A Ricardian task model of endogenous skill-task assignment

Allows heterogeneity in skills within education groups

Relates to the literature on

- Technology-driven demand for skills (Goldin and Katz (2008), Autor, Levy, Murnane (2003))
- Occupational polarization (Goos et al. (2010), Autor, Katz, Kearney (2006)

This Paper

From "What does technology do to skills?" to "What does technology do to tasks?"

Q: How does technology affect the mapping from skills to work and the distribution of earning?

A Ricardian task model of endogenous skill-task assignment

Allows heterogeneity in skills within education groups

Relates to the literature on

- Technology-driven demand for skills (Goldin and Katz (2008), Autor, Levy, Murnane (2003))
- Occupational polarization (Goos et al. (2010), Autor, Katz, Kearney (2006))

Roadmap

Labor market trends

Canonical model

New model

without machines
with machines
offshoring
endogenous technical change

Empirical analysis

empirical facts

Race between supply and demand

Figure 1: College/high-school wage premium, 1963-2008. Source: the March Current Population Survey.

Race between supply and demand

Figure 2: Relative supply of college labor. Source: the March Current Population Survey.

Wage growth polarization

Figure 3: Real wages at 10th, 50th, 90th percentiles, males. Source: the March Current Population Survey.

Wage growth polarization

Figure 4: U-shaped growth of male hourly wages in 1988-2008. Source: Current Population Survey May and Outgoing Rotation Group samples.

Figure 5: Change in employment by occupational skill percentile (1979-2007). Source: Census.

Figure 6: Decadal employment growth in 10 major US occupations. Source: Current Population Survey May and Outgoing Rotation Group samples.

Category	Manag. / Profes.	Sales / Admin.	Production	Services
Task Type	Non-routine Cognitive	Routine Cognitive	Routine Manual	Non-routine Manual
Employm. Trend	↑	$=\downarrow$	$=\downarrow$	↑

Table 1: Specialization and employment dynamics in four broad occupational categories.

Similar trend in EU (10 countries) from 1992 through 2008

Testing for changes in **industry structure**

$$\Delta E_{jt} = \sum \Delta E_{kt} \lambda_{jk} + \sum \Delta \lambda_{jkt} E_k \equiv \Delta E_t^B + \Delta E_t^W$$

1979-2007: employment trends are mainly within-industry

Category	Manag. / Profes.	Sales / Admin.	Production	Services
Task Type	Non-routine Cognitive	Routine Cognitive	Routine Manual	Non-routine Manual
Employm. Trend	↑	$=\downarrow$	$=\downarrow$	↑

Table 1: Specialization and employment dynamics in four broad occupational categories.

Similar trend in EU (10 countries) from 1992 through 2008

Testing for changes in **industry structure**

$$\Delta E_{jt} = \sum \Delta E_{kt} \lambda_{jk} + \sum \Delta \lambda_{jkt} E_k \equiv \Delta E_t^B + \Delta E_t^W$$

1979-2007: employment trends are mainly within-industry

Category	Manag. / Profes.	Sales / Admin.	Production	Services
Task Type	Non-routine Cognitive	Routine Cognitive	Routine Manual	Non-routine Manual
Employm. Trend	↑	$=\downarrow$	$=\downarrow$	↑

Table 1: Specialization and employment dynamics in four broad occupational categories.

Similar trend in EU (10 countries) from 1992 through 2008

Testing for changes in **industry structure**:

$$\Delta E_{jt} = \sum \Delta E_{kt} \lambda_{jk} + \sum \Delta \lambda_{jkt} E_k \equiv \Delta E_t^B + \Delta E_t^W$$

1979-2007: employment trends are mainly within-industry

The rising role of occupations/tasks in determining earnings

Figure 7: Partial R^2 of education vs occupation vs industry in wage regressions, 1959-2007: males

Figure 8: females

The rising role of occupations/tasks in determining earnings

Figure 9: Partial R^2 of direct task measures (O*NET) vs occupation/education: males

Figure 10: females

old model

Tinbergen's (1974, 1975) "race":

2 skill types: H and L, skills = education

Imperfect substitutes in production

Heterogeneity within skill type: I_i for $i \in \mathcal{L}$, h_i for $i \in \mathcal{H}$

Aggregation: $L = \int_{i \in \mathcal{L}} I_i \, di$ and $H = \int_{i \in \mathcal{H}} h_i \, di$.

Production: $Y = \left[(A_L L)^{\frac{\sigma-1}{\sigma}} + (A_H H)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}$, technology is **factor-augmenting**

Log skill premium:

$$\ln \omega = \ln \left(\frac{w_H}{w_L}\right) = \frac{\sigma - 1}{\sigma} \underbrace{\ln \left(\frac{A_H}{A_L}\right)}_{\text{technology skill bias}} - \frac{1}{\sigma} \underbrace{\ln \left(\frac{H}{L}\right)}_{\text{skills supply}}$$

$$\begin{array}{c} \frac{H}{L}\uparrow\longrightarrow \ \omega\downarrow \\ \text{for } \sigma>1\ \frac{A_H}{A_L}\uparrow\longrightarrow \ \omega\uparrow \end{array}$$

Assuming
$$\ln\left(\frac{A_{H,t}}{A_{L,t}}\right) = \gamma_0 + \gamma_1 t$$

$$\ln \omega = \frac{\sigma - 1}{\sigma} \gamma_0 + \frac{\sigma - 1}{\sigma} \gamma_1 t - \frac{1}{\sigma} \ln \left(\frac{H_t}{L_t} \right)$$

Race between technolog. development and college expansion

Katz and Murphy (1992), relative college/high school wages and supply 1963-1987:

$$\ln \omega_t = \text{constant } + \underbrace{0.027 \cdot t - 0.612 \cdot \ln \left(\frac{H_t}{L_t} \right)}_{(0.128)}.$$

 \Rightarrow the elast. of subst. b/w college/non-college 1.6

an annual increase of 2.7% in the relative demand for college labor

Figure 11: Out-of-sample performance of the Katz–Murphy canonical model. Source: the March Current Population Survey.

Shortcomings:

doesn't generate time-varying within-group inequality doesn't generate real wage decreases skill biased technical change is not a steady process doesn't allow for skill replacing technologies exog. technology

new model

A generalization of Acemoglu and Zilibotti (2001).

Environment:

Tasks \sim [0,1]

Final good production function: $Y = \exp \left[\int_0^1 \ln y(i) di \right]$

All markets are perfectly competitive

3 factors of production: H, M, L-skilled workers in fixed inelastic supply

Task production function

$$y(i) = A_L \alpha_L(i) I(i) + A_M \alpha_M(i) m(i) + A_H \alpha_H(i) h(i)$$

where A_j is a skill j biased technology, $\alpha_j(i)$ is a skill type j productivity for task i, l, m, h are the number of workers of each type

A generalization of Acemoglu and Zilibotti (2001).

Environment:

Tasks \sim [0,1]

Final good production function: $Y = \exp \left[\int_0^1 \ln y(i) di \right]$

All markets are perfectly competitive

3 factors of production: H, M, L-skilled workers in fixed inelastic supply

Task production function:

$$y(i) = A_L \alpha_L(i) I(i) + A_M \alpha_M(i) m(i) + A_H \alpha_H(i) h(i)$$

where A_j is a skill j biased technology,

 $\alpha_j(i)$ is a skill type j productivity for task i,

I, m, h are the number of workers of each type

Equilibrium:

Assump.: $\alpha_L(i)/\alpha_M(i)$ and $\alpha_M(i)/\alpha_H(i)$ are continuously differentiable and strictly decreasing

Any eqm is separating: $\exists I_L, I_H$, $0 < I_L < I_H < 1$, s.t. $\forall i < I_L$ are performed by L-skilled workers, $I_L < i < I_H$ by M-skilled workers, $i > I_H$ by H-skilled workers.

The law of one price for skills:

$$\begin{aligned} w_L &= p(i) A_L \alpha_L(i) \quad \forall i < I_L \\ w_M &= p(i) A_M \alpha_M(i) \quad \forall I_L < i < I_H \\ w_H &= p(i) A_H \alpha_H(i) \quad \forall i > I_H \end{aligned} \qquad \begin{aligned} p(i) \alpha_L(i) &= p(i') \alpha_L(i') \equiv P_L \\ p(i) \alpha_M(i) &= p(i') \alpha_M(i') \equiv P_M \\ p(i) \alpha_H(i) &= p(i') \alpha_H(i') \equiv P_H \end{aligned}$$

From final good cost minim.:
$$p(i)y(i) = p(i')y(i') \ \forall i, i'$$

For $i, i' \in [0, I_L)$, $p(i) \cancel{M_L} \alpha_L(i) I(i) = p(i') \cancel{M_L} \alpha_L(i') I(i') \ \forall i, i' \Rightarrow I(i) = I(i') = \frac{L}{I_L}$
for $i \in (I_L, I_H)$, $I(i) = \frac{M}{I_H - I_L}$; for $i \in (I_H, 1]$, $I(i) = \frac{H}{1 - I_H}$

Equilibrium (cont.):

Cost-minim. for *H* and *M* skills:

$$p(i)A_{M}\alpha_{M}(i)m(i) = p(i')A_{H}\alpha_{H}(i')h(i') \Rightarrow \frac{P_{M}A_{M}M}{I_{H} - I_{L}} = \frac{P_{H}A_{H}H}{1 - I_{H}}$$

Cutoff indiff. condit:

b/w
$$L$$
 and M : $A_L\alpha_L(I_L)I(I_L) = A_M\alpha_M(I_L)m(I_L) \Rightarrow \frac{A_L\alpha_L(I_L)L}{I_L} = \frac{A_M\alpha_M(I_L)M}{I_H - I_L}$
b/w M and H : $\frac{A_M\alpha_M(I_H)M}{I_H - I_L} = \frac{A_H\alpha_H(I_H)H}{1 - I_H}$
 $\Rightarrow I_L, I_H$

Eqm. wages:

$$\frac{w_H}{w_M} = \frac{P_H A_H}{P_M A_M} = \frac{M}{H} \frac{1 - I_H}{I_H - I_L} \qquad \qquad \frac{w_M}{w_L} = \frac{L}{M} \frac{I_H - I_L}{I_L}$$

Figure 12: Equilibrium threshold tasks.

Comparative statics

The response of task allocation to technology and skill supplies:

$$A_H \uparrow \rightarrow I_L, I_H \downarrow$$

 $H \uparrow \rightarrow I_L, I_H \downarrow$

indirect effect on *L*-skilled workers the substitution of skills across tasks

The response of relative wages to skill supplies

The response of relative wages to technology

$$A_H \uparrow \rightarrow \frac{w_H}{w_L} \uparrow, \frac{w_H}{w_M} \uparrow, \frac{w_M}{w_L} \downarrow$$
, sim. for A_L , $A_M \uparrow \rightarrow \frac{w_H}{w_M} \downarrow, \frac{w_M}{w_L} \uparrow, \frac{w_H}{w_L} \uparrow \downarrow$ (dep. on com. adv.)

Comparative statics

The response of task allocation to technology and skill supplies:

$$A_H \uparrow \rightarrow I_L, I_H \downarrow$$

 $H \uparrow \rightarrow I_L, I_H \downarrow$

indirect effect on *L*-skilled workers the substitution of skills across tasks

The response of relative wages to skill supplies:

$$H\uparrow
ightarrow \; rac{w_H}{w_L}\downarrow, \; rac{w_H}{w_M}\downarrow, \;\;\;\; ext{sim. for } L, \;\;\;\;\; M\uparrow
ightarrow \; rac{w_H}{w_L}\uparrow\downarrow \; ext{(depends on comp. advant.)}$$

The response of relative wages to technology

$$A_H \uparrow \rightarrow \frac{w_H}{w_L} \uparrow$$
, $\frac{w_H}{w_M} \uparrow$, $\frac{w_M}{w_L} \downarrow$, sim. for A_L , $A_M \uparrow \rightarrow \frac{w_H}{w_M} \downarrow$, $\frac{w_M}{w_L} \uparrow$, $\frac{w_H}{w_L} \uparrow \downarrow$ (dep. on com. adv.)

Comparative statics

The response of task allocation to technology and skill supplies:

$$A_H \uparrow \rightarrow I_L, I_H \downarrow$$

 $H \uparrow \rightarrow I_L, I_H \downarrow$

indirect effect on *L*-skilled workers
the substitution of skills across tasks

The response of relative wages to skill supplies:

$$H\uparrow
ightarrow rac{w_H}{w_L}\downarrow, \; rac{w_H}{w_M}\downarrow, \;\;\; ext{sim. for } L, \;\;\;\; M\uparrow
ightarrow rac{w_H}{w_L}\uparrow\downarrow \; ext{(depends on comp. advant.)}$$

The response of relative wages to technology:

$$A_H \uparrow \rightarrow \frac{w_H}{w_L} \uparrow$$
, $\frac{w_H}{w_M} \uparrow$, $\frac{w_M}{w_L} \downarrow$, sim. for A_L , $A_M \uparrow \rightarrow \frac{w_H}{w_M} \downarrow$, $\frac{w_M}{w_L} \uparrow$, $\frac{w_H}{w_L} \uparrow$ (dep. on com. adv.)

empirical analysis

Evolution of (mean log) wages w of demographic groups (gender s, education e, age j, region k) during decade τ :

$$egin{aligned} \Delta \textit{w}_{\textit{sejk} au} &= \sum_{t} eta_{t}^{\textit{A}} \cdot \gamma_{\textit{sejk}}^{\textit{A}} \cdot 1[au = t] + \sum_{t} eta_{t}^{\textit{S}} \cdot \gamma_{\textit{sejk}}^{\textit{S}} \cdot 1[au = t] \\ &+ \delta_{ au} + \phi_{e} + \lambda_{\textit{j}} + \pi_{\textit{k}} + e_{\textit{sejk} au} \end{aligned}$$

where $\delta,~\phi,~\lambda.~\pi$ are vectors of time, education, age and region dummies, $\gamma_{sejk}^A,~\gamma_{sejk}^R,~\gamma_{sejk}^S$ are employment shares of a demographic group in abstract, routine and service occupations in 1959.

 eta_A and eta_S are the decade specific slopes on the initial occupation shares (= **comparative advantage**)

Model predict.: if $p(i) \downarrow$ for $i \in \text{comp.}$ adv., the relative wage of that skill group \downarrow

H0: wages of workers with comp. adv. in A or $S \uparrow$ over time, in $R \downarrow \equiv \beta_A, \beta_S \uparrow, \delta_\tau \downarrow$

Results: consistent with H0 starting from the 1980s

Evolution of (mean log) wages w of demographic groups (gender s, education e, age j, region k) during decade τ :

$$egin{aligned} \Delta \textit{w}_{\textit{sejk} au} &= \sum_{t} eta_{t}^{\textit{A}} \cdot \gamma_{\textit{sejk}}^{\textit{A}} \cdot 1[au = t] + \sum_{t} eta_{t}^{\textit{S}} \cdot \gamma_{\textit{sejk}}^{\textit{S}} \cdot 1[au = t] \\ &+ \delta_{ au} + \phi_{e} + \lambda_{\textit{j}} + \pi_{\textit{k}} + e_{\textit{sejk} au} \end{aligned}$$

where $\delta,~\phi,~\lambda.~\pi$ are vectors of time, education, age and region dummies, $\gamma_{sejk}^A,~\gamma_{sejk}^R,~\gamma_{sejk}^S$ are employment shares of a demographic group in abstract, routine and service occupations in 1959.

 β_A and β_S are the decade specific slopes on the initial occupation shares (= comparative advantage)

Model predict.: if $p(i) \downarrow$ for $i \in \text{comp.}$ adv., the relative wage of that skill group \downarrow

H0: wages of workers with comp. adv. in A or $S \uparrow$ over time, in $R \downarrow \equiv \beta_A, \beta_S \uparrow, \delta_\tau \downarrow$

Results: consistent with H0 starting from the 1980s.

Evolution of (mean log) wages w of demographic groups (gender s, education e, age j, region k) during decade τ :

$$egin{aligned} \Delta \textit{w}_{\textit{sejk} au} &= \sum_{t} eta_{t}^{\textit{A}} \cdot \gamma_{\textit{sejk}}^{\textit{A}} \cdot 1[au = t] + \sum_{t} eta_{t}^{\textit{S}} \cdot \gamma_{\textit{sejk}}^{\textit{S}} \cdot 1[au = t] \\ &+ \delta_{ au} + \phi_{e} + \lambda_{\textit{j}} + \pi_{\textit{k}} + e_{\textit{sejk} au} \end{aligned}$$

where $\delta,~\phi,~\lambda.~\pi$ are vectors of time, education, age and region dummies, $\gamma_{sejk}^A,~\gamma_{sejk}^R,~\gamma_{sejk}^S$ are employment shares of a demographic group in abstract, routine and service occupations in 1959.

 β_A and β_S are the decade specific slopes on the initial occupation shares (= comparative advantage)

Model predict.: if $p(i) \downarrow$ for $i \in \text{comp.}$ adv., the relative wage of that skill group \downarrow

H0: wages of workers with comp. adv. in A or $S \uparrow$ over time, in $R \downarrow \equiv \beta_A, \beta_S \uparrow, \delta_\tau \downarrow$

Results: consistent with H0 starting from the 1980s.

Evolution of (mean log) wages w of demographic groups (gender s, education e, age j, region k) during decade τ :

$$egin{aligned} \Delta \textit{w}_{\textit{sejk} au} &= \sum_{t} eta_{t}^{\textit{A}} \cdot \gamma_{\textit{sejk}}^{\textit{A}} \cdot 1[au = t] + \sum_{t} eta_{t}^{\textit{S}} \cdot \gamma_{\textit{sejk}}^{\textit{S}} \cdot 1[au = t] \\ &+ \delta_{ au} + \phi_{e} + \lambda_{\textit{j}} + \pi_{\textit{k}} + e_{\textit{sejk} au} \end{aligned}$$

where $\delta,~\phi,~\lambda.~\pi$ are vectors of time, education, age and region dummies, $\gamma_{sejk}^A,~\gamma_{sejk}^R,~\gamma_{sejk}^S$ are employment shares of a demographic group in abstract, routine and service occupations in 1959.

 β_A and β_S are the decade specific slopes on the initial occupation shares (= comparative advantage)

Model predict.: if $p(i) \downarrow$ for $i \in \text{comp. adv.}$, the relative wage of that skill group \downarrow

H0: wages of workers with comp. adv. in A or $S \uparrow$ over time, in $R \downarrow \equiv \beta_A, \beta_S \uparrow, \delta_\tau \downarrow$

Results: consistent with H0 starting from the 1980s

Evolution of (mean log) wages w of demographic groups (gender s, education e, age j, region k) during decade τ :

$$egin{aligned} \Delta \textit{w}_{\textit{sejk} au} &= \sum_{t} eta_{t}^{\textit{A}} \cdot \gamma_{\textit{sejk}}^{\textit{A}} \cdot 1[au = t] + \sum_{t} eta_{t}^{\textit{S}} \cdot \gamma_{\textit{sejk}}^{\textit{S}} \cdot 1[au = t] \\ &+ \delta_{ au} + \phi_{e} + \lambda_{\textit{j}} + \pi_{\textit{k}} + e_{\textit{sejk} au} \end{aligned}$$

where $\delta,~\phi,~\lambda.~\pi$ are vectors of time, education, age and region dummies, $\gamma_{sejk}^A,~\gamma_{sejk}^R,~\gamma_{sejk}^S$ are employment shares of a demographic group in abstract, routine and service occupations in 1959.

 β_A and β_S are the decade specific slopes on the initial occupation shares (= comparative advantage)

Model predict.: if $p(i) \downarrow$ for $i \in \text{comp. adv.}$, the relative wage of that skill group \downarrow

H0: wages of workers with comp. adv. in A or $S \uparrow$ over time, in $R \downarrow \equiv \beta_A, \beta_S \uparrow, \delta_\tau \downarrow$

Results: consistent with H0 starting from the 1980s.

conclusion

Summary

1. Task-based framework

Comparative advantage determines which skill group performs which tasks

2. Explains job polarization

Technol. change displaces middle-skill routine jobs

3. Generates wage inequality dynamics