G3 de Álgebra Linear I – 2013.2

29 de novembro de 2013.

Nome:	Matrícula:
Assinatura:	Turma:

Preencha CORRETA e COMPLETAMENTE todos os campos (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota <u>ZERO</u>. Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Duração: 1 hora 50 minutos

Ques.	1.a	1.b	1.c	1.d	1.e	2.a	2.b	2.c	2.d	soma
Valor	1.0	1.5	1.5	1.0	1.0	1.0	1.0	1.0	1.0	10.0
Nota										

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- O desenvolvimento de cada questão deve estar a seguir **Resposta**. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) <u>não serão corrigidos!!</u>.
- Escreva de forma clara e legível. Justifique de forma <u>ordenada</u> e <u>cuidadosa</u> suas respostas. Respostas sem justificativa não serão consideradas.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento. cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado. fonte: mini-Aurélio

1) Considere a transformação linear $T\colon \mathbb{R}^3 \to \mathbb{R}^3$ cuja matriz na base canônica é

$$[T]_{\varepsilon} = \left(\begin{array}{ccc} -8 & 5 & 4\\ 5 & 3 & 1\\ 4 & 1 & 0 \end{array}\right).$$

Sabendo que **todos** os vetores da forma

$$(t, -4t, 7t), t \in \mathbb{R}, t \neq 0$$

são autovetores de T e que $\lambda = 6$ é um autovalor de T:

- (a) Determine todos os autovalores de T. Determine um autovalor de T^3 .
- (b) Determine, se possível, uma base ortonormal β de \mathbb{R}^3 formada por autovetores de T.

Escreva o vetor (6, 8, 3) (que está escrito na base canônica) na base β .

(c) Determine, se possível, uma matriz B tal que

$$B^t[T]_{\varepsilon}B$$

seja uma matriz diagonal.

Determine explicitamente a matriz B^{-1} inversa de B.

(d) Determine se existem bases γ e η de \mathbb{R}^3 onde as matrizes de T nessas bases sejam, respectivamente,

$$[T]_{\gamma} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -11 \end{pmatrix} \qquad e \qquad [T]_{\eta} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -12 \end{pmatrix}.$$

(e) Determine se existe uma base α de \mathbb{R}^3 onde a matriz de T nessa base seja

$$[T]_{\alpha} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 6 & 1 \\ 0 & 0 & -11 \end{array}\right).$$

Em caso afirmativo, determine dois vetores da base α .

Resposta:

2) Seja $P: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear cuja matriz na base canônica é:

$$[P]_{arepsilon} = \left(egin{array}{cccc} a & b & c \\ d & rac{1}{3} & e \\ f & rac{1}{3} & rac{1}{3} \end{array}
ight), \quad ext{onde} \quad a,b,c,d,e,f \in \mathbb{R}.$$

- (a) Sabendo que P é uma uma projeção ortogonal em uma reta r, determine $a,\,b,\,c,\,d,\,e$ e f.
- (b) Determine uma equação paramétrica da reta r do item anterior.
- (c) Determine explicitamente todas as formas diagonais da transformação linear P.
- (d) Determine explicitamente as matrizes:

$$[P]^{1000} + [P]^{1002}$$
 e $[P]^{1005} - [P]^{1001}$.

Resposta: