

Genetic Architecture of Chronotype

Shu Cao, Xiangyi Li and Jinhui Wang

Background

Chronotype (early morning vs. evening) describes an person natural tendency to fall asleep and wake up at earlier or later time.

Chronotype has been associated with a range of health and performance outcomes, including sleep disorders, cognitive and physical performance deficits. > Nat Commun. 2019 Jan 29;10(1):343. doi: 10.1038/s41467-018-08259-7.

Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms

```
Samuel E Jones <sup>1</sup>, Jacqueline M Lane <sup>2</sup> <sup>3</sup> <sup>4</sup>, Andrew R Wood <sup>1</sup>, Vincent T van Hees <sup>5</sup>, Jessica Tyrrell <sup>1</sup>, Robin N Beaumont <sup>1</sup>, Aaron R Jeffries <sup>1</sup>, Hassan S Dashti <sup>2</sup> <sup>4</sup>, Melvyn Hillsdon <sup>6</sup>, Katherine S Ruth <sup>1</sup>, Marcus A Tuke <sup>1</sup>, Hanieh Yaghootkar <sup>1</sup>, Seth A Sharp <sup>1</sup>, Yingjie Jie <sup>1</sup>, William D Thompson <sup>1</sup>, Jamie W Harrison <sup>1</sup>, Amy Dawes <sup>1</sup>, Enda M Byrne <sup>7</sup>, Henning Tiemeier <sup>8</sup> <sup>9</sup>, Karla V Allebrandt <sup>10</sup>, Jack Bowden <sup>11</sup> <sup>12</sup>, David W Ray <sup>13</sup> <sup>14</sup>, Rachel M Freathy <sup>1</sup>, Anna Murray <sup>1</sup>, Diego R Mazzotti <sup>15</sup>, Philip R Gehrman <sup>16</sup>, Debbie A Lawlor <sup>11</sup> <sup>12</sup>, Timothy M Frayling <sup>1</sup>, Martin K Rutter <sup>13</sup> <sup>14</sup> <sup>17</sup>, David A Hinds <sup>18</sup>, Richa Saxena <sup>2</sup> <sup>3</sup> <sup>19</sup>, Michael N Weedon <sup>20</sup>
```

Affiliations + expand

PMID: 30696823 PMCID: PMC6351539 DOI: 10.1038/s41467-018-08259-7

Abstract

Being a morning person is a behavioural indicator of a person's underlying circadian rhythm. Using genome-wide data from 697,828 UK Biobank and 23andMe participants we increase the number of genetic loci associated with being a morning person from 24 to 351. Using data from 85,760 individuals with activity-monitor derived measures of sleep timing we find that the chronotype loci associate with sleep timing: the mean sleep timing of the 5% of individuals carrying the most morningness alleles is 25 min earlier than the 5% carrying the fewest. The loci are enriched for genes involved in circadian regulation, cAMP, glutamate and insulin signalling pathways, and those expressed in the retina, hindbrain, hypothalamus, and pituitary. Using Mendelian Randomisation, we show that being a morning person is causally associated with better mental health but does not affect BMI or risk of Type 2 diabetes. This study offers insights into circadian biology and its links to disease in humans.

PubMed Disclaimer

https://pubmed.ncbi.nlm.nih.gov/30696823/

Methods

- 1. GWAS
- 2. LD Score Regression
- 3. Enrichment Plot
- 4. Genetic Correlation
- 5. TWAS
- 5. Mendelian Randomization

GWAS and LDSC:

Several peaks were found with very significant SNPs

LDSC: $h^2 = 0.114$, p = 0.004

Enrichment analysis: Strongest in brain tissues, especially the **caudate basal ganglia** and **frontal cortex**. It will be our TWAS direction **afterward!**

LocusZoom

LocusZoom showed the nearest genes to the top SNPs.

rsID	NearestGene	-log10P	
rs509476	RGS16	46.244	
rs2653349	HCRTR2	31.284	
rs5743596 6	TRAF3IP1	29.585	
rs7313852	AC087897.1	26.569	
rs7547493	AK5	26.409	
rs1337775 4	RNU6-472P	26.161	
rs2845890 9	EXD3	25.585	
rs4729854	AC105052.5	24.481	
rs6177339 0	PER3, Z98884.1	22.921	

1. RGS16

RGS16 has been shown to be a key factor in the centre for circadian rhythm control in humans.

2. HCRTR2

HCRTR2 shows strong linkage disequilibrium (LD, $r^2>0.8$) with the lead variant, suggesting it may jointly influence circadian clock function.

3. PER3

While mPer3 knockout mice maintained essentially normal locomotor rhythms, their circadian period was significantly shortened by 0.5 hours.

Source: Genome–Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci, Targeted disruption of the mPer3 gene: subtle effects on circadian clock function, GWAS Findings for Human Iris Patterns: Associations with Variants in Genes that Influence Normal Neuronal Pattern Development.

https://my.locuszoom.org/gwas/829813/

TWAS in Brain Tissues

We chose **caudate basel ganglia**, **frontal Cortex** and **hypothalamus** for TWAS.

These are the significantly genes we found by TWAS:

Tissue	Genes
Caudate Basel Ganglia	LINC01470, RHOA, SF3B1, HYAL1, NAPEPLD, MRPS21, ECM1, THOC3, SLC38A3, etc.
Frontal Cortex	TARS2, NMUR2, INPP5E, ARL14EP, HTR6, YWHAZ, THOC3, SLC38A3, MRPS21, etc.
Hypothalamus	ALG10, INPP5E, VAMP3, MADD, YWHAZ, PEX12, MRPS21, etc.

However, these genes have limited reported functional associations with chronotype. Among them, only INPP5E has been linked to chronotype.

Genes with name (FDR < 0.0001), other blue dots(FDR < 0.05)

TWAS in Brain Tissues

These are the significantly genes we found by TWAS:

Tissue	Genes
Caudate Basel Ganglia	LINC01470, RHOA, SF3B1, HYAL1, NAPEPLD, MRPS21, ECM1, THOC3, SLC38A3, etc.
Frontal Cortex	TARS2, NMUR2, INPP5E, ARL14EP, HTR6, YWHAZ, THOC3, SLC38A3, MRPS21, etc.
Hypothalamus	ALG10, INPP5E, VAMP3, MADD, YWHAZ, PEX12, MRPS21, etc.

We also looked for papers:

1. ARL14EP: Links between daytime light exposure and chronotype expression in modern humans have also been suggested on candidate gene ARL14EP

Source: Exploring adaptive introgression in modern human circadian rhythm genes

2. HTR6: The study identified genetic variants associated with chronotype located near this gene.

Source: Genome-Wide Association Analyses in 128,266
Individuals Identifies New Morningness and Sleep Duration
Loci

Genetic correlation

We also did a **correlation anysis** between Chronotype and ADHD, Baldness, EA, napping and SCZ. (Other paper also shows these traits)

It shows eveningness is genetically associated with lower **educational attainment**, lower risk of **schizophrenia** and increased tendency to **nap** during the day.

We found genetic correlation, but it is only correlation.

We want to know causal relationship.

Trait1	Trait2	rg	rg_se	z	р
Chronotype	ADHD	0.0093	0.0248	0.3742	0.7083
Chronotype	EA	-0.1359	0.0164	-8.278	1.2522E-16
Chronotype	Baldness	0.0057	0.0166	0.3464	0.729
Chronotype	SCZ	-0.1065	0.0191	-5.5643	2.6315E-08
Chronotype	Napping	0.121	0.0218	5.5541	2.7902E-08

Mendelian Randomization

Chronotype → EA – IVW Result

Number of SNPs: 129

Estimate: -0.04822787

Std. Error: 0.02437295

P-value: 0.04784461

Heterogeneity Q: 1150.596

Heterogeneity p: 5.990395e-164

F-statistic: 47.15542

Chronotype → SCZ – IVW Result

Number of SNPs: 129

Estimate: -0.1903335

Std. Error: 0.0890843

P-value: 0.03263422

Heterogeneity Q: 483.0183

Heterogeneity p: 1.180114e-42

F-statistic: 47.15542

Chronotype → Baldness – IVW Result

Number of SNPs: 126

Estimate: -0.04634002

Std. Error: 0.02180374

P-value: 0.03355955

Heterogeneity Q: 270.2007

Heterogeneity p: 1.047867e-12

F-statistic: 47.26016

Team Members: SHU CAO, XIANGYI LI, JINHUI WANG

Future Work: Our findings regarding the genetic correlation estimates of chronotype exhibit discrepancies when compared with the results reported in the study <u>Genome-wide association</u> <u>analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank</u>. Further investigation is required to identify the underlying causes of these inconsistencies.

Thank you

Q & A