

RECEIVED: May 17, 2012 REVISED: July 13, 2012 ACCEPTED: July 23, 2012 PUBLISHED: August 22, 2012

Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at

$$\sqrt{s}=7\,{
m TeV}$$

The CMS collaboration

ABSTRACT: A search for new physics is performed using isolated same-sign dileptons with at least two b-quark jets in the final state. Results are based on a 4.98 fb⁻¹ sample of proton-proton collisions at a centre-of-mass energy of 7 TeV collected by the CMS detector. No excess above the standard model background is observed. Upper limits at 95% confidence level are set on the number of events from non-standard-model sources. These limits are used to set constraints on a number of new physics models. Information on acceptance and efficiencies are also provided so that the results can be used to confront additional models in an approximate way.

KEYWORDS: Hadron-Hadron Scattering

Co	ontents	
1	Introduction	1
2	CMS detector	2
3	Event selection	3
4	Background estimation	4
5	Search results	Ę
6	Efficiencies and associated uncertainties	6
7	Information for model testing	8
8	 Models of new physics 8.1 Models of pp → tt 8.2 Models with four top quarks and two LSPs from gluino pair production and decay via real or virtual top squarks 8.3 Models with multiple top quarks and W-bosons from decays of bottom squarks 	10 10 11 12
9	Conclusions	15
Tł	he CMS collaboration	19

1 Introduction

We present a search for anomalous production of events with two like-sign isolated leptons (e or μ) and b-quark jets. In proton-proton collisions at the Large Hadron Collider (LHC) such events from standard model (SM) processes are rare; their anomalous production would be an indication of new physics. While in general the hadronic jets in new physics processes can originate from gluons or light flavour quarks, there is a range of well-established models predicting the presence of two to four b-quark jets in such events. These appear in signatures of supersymmetry (SUSY) where bottom- and top-quark superpartners are lighter than other squarks [1–5], enhancing the fraction of strongly produced SUSY particles resulting in top and bottom quarks in the final states. Here, the signatures with two like-sign leptons, b-quark jets and missing transverse energy correspond to strongly produced SUSY processes with multiple W bosons appearing in the decay chains, either from top quarks or charginos. In addition to SUSY processes, the existence of a Z'-boson with flavour-violating u–t quark coupling [6, 7] would lead to like-sign top pair production, uu \rightarrow tt via Z' exchange, at the LHC. Such a boson has been proposed to explain the

top-quark pair forward-backward production asymmetry observed at the Tevatron [8–10]. A similar topology is expected in models of maximal flavour violation (MxFV) [11–13].

Experimentally, events with two isolated like-sign leptons and jets, selected without b-quark jet identification (b-tagging), are dominated by $t\bar{t}$ production [14, 15], with one lepton from W decay and the other lepton from the semileptonic decay of a b quark. In a same-sign dilepton selection the requirement of at least two b-tagged jets strongly suppresses the $t\bar{t}$ background, since the two b quarks in $t\bar{t}$ are very unlikely to produce three distinct objects, i.e., two b-tagged jets and one isolated high transverse momentum (p_T) lepton.

The search is performed on a data set corresponding to an integrated luminosity of $4.98\,\mathrm{fb^{-1}}$ collected by the Compact Muon Solenoid (CMS) [16] detector in proton-proton collisions at $\sqrt{s}=7\,\mathrm{TeV}$ delivered by the LHC in 2011. This work relies heavily on the event selections and background estimation methods of the previous CMS inclusive same-sign dilepton searches not requiring b-tagged jets in the final state [14, 15, 17]. Compared with the most recent analysis [15], a more stringent isolation requirement is applied to further suppress backgrounds with misidentified leptons. In addition, the lepton transverse momenta are required to be above 20 GeV, as is typical for leptons from W decays that are expected to be present in the signals of interest. The rest of the data analysis is unchanged.

The search described in this paper is based on the comparison of the number of observed events with expectations from SM processes. A loose baseline selection is defined first. Selections with tighter requirements on the missing transverse energy ($E_{\rm T}^{\rm miss}$) and on the scalar sum of jet $p_{\rm T}$ ($H_{\rm T}$) are then used to provide better sensitivity to potential signal models.

Since we find no excess of events over the SM background prediction, we provide a recipe to set limits on any model with same-sign dileptons, missing transverse energy, and b-quark jets. The recipe relies on efficiency functions to be used to emulate the selection efficiencies for leptons, jets, and $E_{\rm T}^{\rm miss}$. These functions can then be applied to a signal simulated at the matrix-element level.

As a reference, we also provide constraints on several models representative of this topology. The signal topologies with two b-quark jets in the final states are: like-sign top quark production in the Z' model [6] and in the MxFV model [13]; production of two bottom squarks each decaying as $b_1 \to t \widetilde{\chi}_1^-$. In the latter case $\widetilde{\chi}_1^- \to W^- \widetilde{\chi}_1^0$, where $\widetilde{\chi}_1^0$ is the lightest supersymmetric particle (LSP). The topologies with more than two b-quark jets are: $\widetilde{g}\widetilde{g}$ or $\widetilde{g}\widetilde{b}$, with $\widetilde{g} \to \widetilde{b}_1\overline{b}$ and $\widetilde{b}_1 \to t \widetilde{\chi}_1^-$, as above; $\widetilde{g}\widetilde{g}$ with both gluinos giving a $t\overline{t}\widetilde{\chi}_1^0$ final state with an intermediate virtual or on-shell top squark.

2 CMS detector

The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing a field of 3.8 T. CMS uses a right-handed coordinate system, with the origin defined to be the nominal interaction point, the x axis pointing to the center of the LHC ring, the y axis pointing up (perpendicular to the LHC plane), and the z axis pointing in the anticlockwise beam direction. The polar angle θ is measured from the positive z axis

and the azimuthal angle ϕ is measured in the x-y (transverse) plane. The pseudorapidity η is defined as $\eta = -\ln(\tan\theta/2)$. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter (ECAL) and the brass/scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel return yoke. Full coverage is provided by the tracker, calorimeters, and the muon detectors within $|\eta| < 2.4$. In addition to the barrel and endcap detectors up to $|\eta| = 3$, CMS has extensive forward calorimetry reaching $|\eta| \lesssim 5$. A more detailed description can be found in ref. [16].

3 Event selection

Dilepton events used in the analysis are selected by the CMS trigger system if there are at least two leptons (electrons or muons) reconstructed online. The trigger selects pairs of leptons above adjustable thresholds on $p_{\rm T}$ for muons and $E_{\rm T}$ for electrons, where $E_{\rm T}$ is defined as the energy measured in the ECAL projected on the transverse plane. For dielectrons and electron-muon events the thresholds are 17 GeV on the first lepton and 8 GeV on the second lepton. For dimuon events the requirements on $p_{\rm T}$ for the higher (lower) threshold changed as the luminosity increased during data taking from 7 (7) GeV, to 13 (8) GeV, and finally reaching 17 (8) GeV.

Electron candidates are reconstructed using measurements provided by the tracker and the ECAL [18]. Muon candidates are reconstructed using a combination of measurements in the silicon tracker and the muon detectors [19]. Two leptons of the same sign, $p_T > 20 \,\text{GeV}$, and $|\eta|$ < 2.4, are required in each event. Electron candidates in the transition region between the barrel and endcap calorimeters (1.442 $< |\eta| < 1.566$) are not considered in the analysis. The two leptons must be consistent with originating from the same collision vertex. Additional identification requirements are applied to suppress backgrounds in the same way as in the inclusive same-sign dilepton analysis [15]. The isolation requirement is applied on a scalar sum of the track $p_{\rm T}$ and calorimeter $E_{\rm T}$ measurements, computed in a cone of $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.3$ relative to the lepton candidate momentum. This sum must be less than $0.1p_{\rm T}$ of the candidate itself. The two lepton candidates are required to have an invariant mass $m(\ell\ell)$ above 8 GeV to suppress backgrounds from b-hadron decays. Events with any third lepton with $p_T > 10 \,\mathrm{GeV}$ and isolation sum below $0.2p_{\rm T}$ are rejected if this lepton forms an opposite-sign same-flavour pair having $76 \,\text{GeV} < m(\ell\ell) < 106 \,\text{GeV}$ with either of the selected leptons. This requirement suppresses the diboson WZ background.

Jets and missing transverse energy are reconstructed by the particle-flow algorithm [20–22]. Jets are clustered using the anti- $k_{\rm T}$ algorithm [23] with a distance parameter R=0.5. Jet energies are corrected by subtracting the average contribution from particles from other proton-proton collisions in the same beam crossing (pileup) and by correcting the jet momentum to better reflect the true total momentum of the particles in the jet [21]. At least two jets with $p_{\rm T}>40\,{\rm GeV}$ and $|\eta|<2.5$ are required in each event. The baseline selection places no requirement on the magnitude of the $E_{\rm T}^{\rm miss}$ vector, computed as the negative of the vector sum of all particle-flow candidate momenta in the transverse plane.

At least two of the selected jets with $|\eta| < 2.4$ are required to be b-tagged using the simple secondary vertex tagger at a medium operating point (SSVHEM) [24, 25]. This b-tagging algorithm requires the reconstruction of a secondary vertex, with at least two associated tracks, displaced from the primary collision vertex. The algorithm has an efficiency between 40–65% for b-quark jets with $p_{\rm T} > 40\,{\rm GeV}$ and a misidentification rate for light-quark jets of a few percent, increasing with the transverse momentum.

Events passing the selections described above constitute the baseline same-sign dilepton sample. There are 10 such events observed in data: 3 ee, 2 $\mu\mu$, and 5 e μ .

4 Background estimation

There are three distinct background contributions to this search: events with one or two "fake" leptons, rare SM processes that yield events with two isolated same-sign leptons, and events with opposite-sign lepton pairs with a lepton charge misreconstructed ("charge-flips"). Here we define the term "fake lepton" to refer to a lepton from heavy flavour decay, an electron from unidentified photon conversion, a muon from meson decays in flight, or a hadron misidentified as a lepton. The backgrounds, which are further discussed below, are estimated using the same techniques as in the inclusive analysis [14, 15]: the fake and charge-flip backgrounds are estimated from control data samples, while the rare SM backgrounds are determined from simulation.

The background from fakes is estimated from events where one or both leptons fail the tight isolation and identification selection, but still pass a looser selection. Counts of events in this control sample are weighted by the expected ratio ("tight-to-loose", or TL ratio) of the rate of fake leptons passing the selection to that of those failing it. This TL ratio is measured as a function of lepton type, $p_{\rm T}$, and η , in a data sample of events with a single lepton candidate and a well separated jet ("away-jet"). After vetoing Z candidates and suppressing leptons from W decays by requiring small $E_{\rm T}^{\rm miss}$ and transverse mass, the leptons in this sample are predominantly fakes. The systematic effects on the method to estimate events with fake leptons arise from differences in kinematics and sample composition between the sample where the TL ratio is measured and the sample where it is applied. The systematic uncertainty on the method is taken to be 50%. This uncertainty is based on tests of the ability of this method to predict the same-sign dilepton background in simulated $t\bar{t}$ events; it is also based on the observed variations of the TL ratio as a function of the $p_{\rm T}$ threshold of the away jet and the addition of a b-tag requirement on that jet.

The baseline sample is estimated to have 1.5 ± 1.1 , 0.8 ± 0.5 , and 2.4 ± 1.4 events with fake leptons in the ee, $\mu\mu$, and e μ final states, respectively. These uncertainties include a statistical uncertainties based on the number of events passing the loose lepton selection, as well as the 50% systematic uncertainty.

As mentioned above, we estimate, from simulation, the contribution to the event count from rare SM processes yielding isolated high- $p_{\rm T}$ same-sign dileptons and jets. Events are generated with the Madgraph [26] event generator and then passed on to Pythia [27] for parton shower and hadronization. The generated events are processed by the CMS event simulation and the same chain of reconstruction programs as is used for collision

data. As determined from simulation, we find that background events from $t\bar{t}\,W$ and $t\bar{t}\,Z$ production represent more than 90% of all the genuine same-sign dilepton backgrounds. Other processes considered include production of diboson (WZ, ZZ, same-sign WW) and triboson (combinations of W and Z) final states. Compared to the inclusive analysis [15], these backgrounds are strongly suppressed by the b-tagging requirement. Backgrounds like $(W/Z)\gamma$ and $t\bar{t}\gamma$ are considered as well to simulate events with a photon converting in the tracker material and misidentified as an electron. Their contribution is negligibly small. A conservative systematic uncertainty of 50% is assigned to the total number of background events from simulation, since these are rare SM processes which have yet to be observed. The production cross sections used to normalize the dominant $t\bar{t}\,W$ and $t\bar{t}\,Z$ contributions are 0.16 pb [28] and 0.14 pb [29, 30], respectively. In the baseline sample the simulated rare SM backgrounds are determined to contribute 0.9 ± 0.5 , 1.1 ± 0.6 , and 2.0 ± 1.0 events in the ee, $\mu\mu$, and e μ final states, respectively.

Events with opposite-sign lepton pairs where one of the leptons has an incorrectly measured charge (charge-flip) contribute to the same-sign dilepton sample. The charge-flip probability for muons is of order 10^{-4} – 10^{-5} and can be neglected. In contrast, this probability for electrons from W or Z decay is estimated in simulation to be about 10^{-3} . The number of same-sign events due to charge-flips is given by the number of opposite-sign events passing the same selections with a weight applied to each electron corresponding to its charge misidentification probability. We determine this probability in simulation as a function of electron p_T and η . The method is tested in data by using the $Z \to e^+e^-$ sample and the probability mentioned above to predict the number of $e^{\pm}e^{\pm}$ events with invariant mass consistent with the Z mass. This prediction is found to be in good agreement with the number of events of this type in data. A systematic uncertainty of 20% is estimated for this method based on variation in the average charge misidentification rate between typical lepton momenta in Z and $t\bar{t}$ events. In the baseline sample the charge-flip contribution is estimated to be 0.8 ± 0.2 and 0.6 ± 0.1 events in the ee and $e\mu$ final states, respectively.

5 Search results

After the basic selection described in section 3, we define several "signal regions" (SR) with increasing requirements on $H_{\rm T}$ and $E_{\rm T}^{\rm miss}$ with respect to the baseline selection. These requirements improve the sensitivity to new physics models with high mass scales and/or high $E_{\rm T}^{\rm miss}$ from, e.g., high $p_{\rm T}$ non interacting particles, such as LSPs in SUSY models. We also define a SR with minimal requirements on $H_{\rm T}$ and $E_{\rm T}^{\rm miss}$ but allowing only for positive leptons. This region is designed to be sensitive to pp \rightarrow tt production (in most models pp \rightarrow tt is suppressed with respect to pp \rightarrow tt since at the parton level these processes originate from $\overline{\rm u}\overline{\rm u}$ and uu initial states, respectively). Additionally, we define a SR with moderate $H_{\rm T}$ and $E_{\rm T}^{\rm miss}$ requirements and three or more b-tagged jets. This region can improve the sensitivity to models of new physics with several (\geq 3) b quarks in the final state. However, for the models considered here (section 8) we find that inclusion of this region does not improve the sensitivity. This is because the increase in efficiency due to the looser $H_{\rm T}$ and $E_{\rm T}^{\rm miss}$ requirements does not compensate for the efficiency loss associated

	SR0	SR1	SR2	SR3	SR4	SR5	SR6	SR7	SR8
No. of jets	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 3	≥ 2
No. of b-tags	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 3	≥ 2
Lepton charges	++/	++/	++	++/	++/	++/	++/	++/	++/
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 0 GeV	> 30 GeV	> 30 GeV	> 120 GeV	> 50 GeV	> 50 GeV	$> 120~{ m GeV}$	> 50 GeV	> 0 GeV
$H_{ m T}$	> 80 GeV	> 80 GeV	> 80 GeV	> 200 GeV	> 200 GeV	$> 320~{ m GeV}$	$> 320~{ m GeV}$	$> 200~{ m GeV}$	$> 320~{ m GeV}$
Charge-flip BG	1.4 ± 0.3	1.1 ± 0.2	0.5 ± 0.1	0.05 ± 0.01	0.3 ± 0.1	0.12 ± 0.03	0.03 ± 0.01	0.008 ± 0.004	0.20 ± 0.05
Fake BG	4.7 ± 2.6	3.4 ± 2.0	1.8 ± 1.2	0.3 ± 0.5	1.5 ± 1.1	0.8 ± 0.8	0.15 ± 0.45	0.15 ± 0.45	1.6 ± 1.1
Rare SM BG	4.0 ± 2.0	3.4 ± 1.7	2.2 ± 1.1	0.6 ± 0.3	2.1 ± 1.0	1.1 ± 0.5	0.4 ± 0.2	0.12 ± 0.06	1.5 ± 0.8
Total BG	10.2 ± 3.3	7.9 ± 2.6	4.5 ± 1.7	1.0 ± 0.6	3.9 ± 1.5	2.0 ± 1.0	0.6 ± 0.5	0.3 ± 0.5	3.3 ± 1.4
Event yield	10	7	5	2	5	2	0	0	3
N_{UL} (12% unc.)	9.1	7.2	6.8	5.1	7.2	4.7	2.8	2.8	5.2
N_{UL} (20% unc.)	9.5	7.6	7.2	5.3	7.5	4.8	2.8	2.8	5.4
N_{UL} (30% unc.)	10.1	7.9	7.5	5.7	8.0	5.1	2.8	2.8	5.7

Table 1. A summary of the results of this search. For each signal region (SR), we show its most distinguishing kinematic requirements, the prediction for the three background (BG) components as well as the total, the event yield, and the observed 95% confidence level upper limit on the number of non-SM events (N_{UL}) calculated under three different assumptions for the event efficiency uncertainty (see text for details). Note that the count of the number of jets on the first line of the table includes both tagged and untagged jets.

with the requirement of a third b-tag. Finally, we define a SR with a high $H_{\rm T}$ requirement and no $E_{\rm T}^{\rm miss}$ requirement. This region is designed to enhance sensitivity to models with R-parity violating SUSY [31] with [32] or without [33, 34] leptonically decaying W bosons (the latter type of events have no intrinsic $E_{\rm T}^{\rm miss}$ from undetected particles).

The definitions of the signal regions, the data event yields, and the expected backgrounds calculated for each SR, are summarized in table 1. Distributions of $H_{\rm T}$ and $E_{\rm T}^{\rm miss}$ are also displayed in figure 1 for the baseline selection. Note that SR0 corresponds to the baseline event selection of section 3. The event yields are consistent with the background predictions. In table 1 we also show the 95% confidence level observed upper limit (N_{UL}) on the number of non-SM events calculated using the ${\rm CL}_s$ method [35, 36] under three different assumptions for the signal efficiency uncertainty. This uncertainty is discussed in section 6.

6 Efficiencies and associated uncertainties

Events in this analysis are collected with dilepton triggers. The efficiency of the trigger is measured to be $99 \pm 1\%$ ($96 \pm 3\%$) per electron (muon) in the range $|\eta| < 2.4$. The efficiency of the lepton identification and isolation requirements, as determined using a sample of simulated events from a typical SUSY scenario (the LM6 point of ref. [37]), is displayed in figure 2. Studies of large data samples of $Z \to ee$ and $Z \to \mu\mu$ events indicate that the simulation reproduces the efficiencies of the identification requirements to better than 2% [18, 19]. The efficiency of the isolation requirement on leptons in Z events is also well reproduced by the simulation. However, this efficiency depends on the hadronic activity in the event, and is typically 10% lower in SUSY events with hadronic cascades than in Z events. To account for this variation, we take a 5% systematic uncertainty per lepton in the acceptance of signal events.

Figure 1. Top plot: distribution of $E_{\rm T}^{\rm miss}$ vs. $H_{\rm T}$ for the 10 events in the baseline region (SR0). Note that the ≥ 2 jets requirement in SR0 implies $H_{\rm T} > 80\,{\rm GeV}$. Bottom left plot: projection of the scatter plot on the $H_{\rm T}$ axis. Bottom right plot: projection of the scatter plot on the $E_{\rm T}^{\rm miss}$ axis. For the one-dimensional distributions, the number of events in each bin is scaled appropriately to reflect units of events per 10 GeV and is compared with the background (BG) predictions, with their uncertainties.

The b-tagging efficiency on simulated data is also shown in figure 2 for b quarks of $|\eta| < 2.4$ and $p_{\rm T} > 40$ GeV. Study of a variety of control samples indicate that for collision data this efficiency needs to be reduced by a factor of 0.96, independent of $p_{\rm T}$. This factor is applied to the simulation of possible new physics signals, e.g., all the models of section 8. The systematic uncertainty on the b-tagging efficiency is 4% (15%) for jets of $p_{\rm T} < 240$ GeV ($p_{\rm T} > 240$ GeV).

The energies of jets in this analysis are known to 7.5% (not all the corrections described in ref. [21] were applied, since they have little impact on the sensitivity of this search). The uncertainty on the jet energy scale has an effect on the efficiencies of the jet multiplicity,

Figure 2. Lepton selection efficiency as a function of $p_{\rm T}$ (left); b-jet tagging efficiency as a function of the b quark $p_{\rm T}$ (right).

 $H_{\rm T}$, and $E_{\rm T}^{\rm miss}$ requirements. The importance of these effects depends on the signal region and the model of new physics. For example, for the Z' model of section 8.1, the uncertainty on the acceptance of the SR2 requirements due to the imperfect knowledge of the jet energy scale is 8%. In general, models with high hadronic activity and high $E_{\rm T}^{\rm miss}$ are less affected by this uncertainty.

The total uncertainty on the acceptance is in the 12–30% range. Finally, there is a 2.2% uncertainty on the yield of events from any new physics model due to the uncertainty in the luminosity normalization [38].

7 Information for model testing

We have described a signature based search that finds no evidence for physics beyond the SM. In section 8 we will use our results to put bounds on the parameters of a number of models of new physics. Here we present additional information that can be used to confront other models of new physics in an approximate way by generator-level studies that compare the expected number of events with the upper limits from table 1.

The values of N_{UL} for the different signal regions are given in table 1 under different assumptions for the efficiency uncertainty. This is because, as discussed in section 6, this uncertainty depends on the model under test. The dependence of N_{UL} on the acceptance uncertainty is not very strong. Thus, for the purpose of generator-level model testing, the lack of precise knowledge of the uncertainty does not constitute a significant limitation.

The kinematic requirements on jets and leptons given in section 3 are the first ingredients of the acceptance calculation for a new model. Leptons at the hard-scatter level passing the kinematic selection can be counted, and this count can be corrected for the finite lepton efficiencies shown in figure 2, as well as the trigger efficiencies given in section 6. Similarly, the number of jets in the event can be approximated by counting the number of colored final-state partons of $p_T > 40 \,\text{GeV}$ and $|\eta| < 2.5$ at the hard scatter level. A generator-level H_T variable, gen- H_T , can be calculated by summing the p_T of all the colored partons from the previous step; isolated photons and additional leptons of $p_T > 40 \,\text{GeV}$ and $|\eta| < 2.5$ should also be included in the gen- H_T calculation. Similarly, a generator-level E_T^{miss} variable, gen- E_T^{miss} , can be defined from the vector sum of transverse momenta

Figure 3. Efficiency for an event to pass a given reconstructed $E_{\rm T}^{\rm miss}$ or $H_{\rm T}$ threshold as a function of gen- $E_{\rm T}^{\rm miss}$ or gen- $H_{\rm T}$. The efficiencies are shown for the thresholds used in defining the signal regions.

Parameter	Н	TT	$E_{ m T}^{ m miss}$			
	>200 GeV	$> 320\mathrm{GeV}$	$>30\mathrm{GeV}$	$> 50\mathrm{GeV}$	>120 GeV	
$x_{1/2}$	$188\mathrm{GeV}$	$308\mathrm{GeV}$	$13\mathrm{GeV}$	$43\mathrm{GeV}$	$123\mathrm{GeV}$	
σ	$88\mathrm{GeV}$	$102\mathrm{GeV}$	$44\mathrm{GeV}$	$39\mathrm{GeV}$	$37\mathrm{GeV}$	

Table 2. Parameters used in describing the turn-on curves for $H_{\rm T}$ and $E_{\rm T}^{\rm miss}$ as a function of their generator-level values. See text for details.

of all non-interacting particles. Finally, the number of reconstructed b-quark jets can be obtained by counting the number of b quarks and applying the efficiency parametrization of figure 2, including the requirements $p_{\rm T} > 40\,{\rm GeV}$ and $|\eta| < 2.4$. The efficiencies of the $H_{\rm T}$ and $E_{\rm T}^{\rm miss}$ requirement after hadronization and detector simulation as a function of gen- $H_{\rm T}$ and gen- $E_{\rm T}^{\rm miss}$ for a typical SUSY scenario are shown in figure 3.

The lepton efficiency curves of figure 2 are parametrized as

$$\epsilon = \epsilon_{\infty} \operatorname{erf}\left(\frac{p_{\mathrm{T}} - 20 \,\mathrm{GeV}}{\sigma}\right) + \epsilon_{20}\left(1. - \operatorname{erf}\left(\frac{p_{\mathrm{T}} - 20 \,\mathrm{GeV}}{\sigma}\right)\right),$$
(7.1)

with $\epsilon_{\infty} = 0.66$ (0.67), $\epsilon_{20} = 0.32$ (0.44), $\sigma = 32 \,\text{GeV}$ (23 GeV) for electrons (muons).

The parametrization of the simulated b-tagging efficiency, also shown in figure 2, is $\epsilon = 0.62$ for $90 < p_{\rm T} < 170\,{\rm GeV}$; at higher (lower) $p_{\rm T}$ it decreases linearly with a slope of $0.0012~(0.0051)\,{\rm GeV^{-1}}$.

The $H_{\rm T}$ and $E_{\rm T}^{\rm miss}$ turn-on curves as a function of the respective generator version shown in figure 3 are parametrized as $0.5\{{\rm erf}[(x-x_{1/2})/\sigma]+1\}$. The parameters of the function are summarized in table 2.

For a few of the models of new physics described in section 8, we have compared the acceptance from the full simulation with the result of the simple acceptance model described above. For scenarios with at least two b quarks in the final state, the two calculations typically agree at the $\approx 15\%$ level or better. However, in scenarios where b quarks are rare or where the lepton isolation is significantly different than in a typical SUSY event, the two calculations may vary by $\approx 30\%$ or more.

8 Models of new physics

We use the search results to constrain several specific models of new physics. Signal samples are generated using PYTHIA with the detector simulation performed using the CMS fast simulation package [39, 40]. For each model considered, we use the simulated signal yields and the background estimations corresponding to the signal region that is expected to give the most stringent limit on the cross section at a given point in model parameter space. Cross section limits are computed using the CL_s method [35, 36] including systematic uncertainties on lepton efficiency (5% per lepton), luminosity (2.2%), jet energy scale, and b-tagging efficiency. These last two uncertainties are evaluated at each point in parameter space, as they depend on the underlying kinematics of the events. In addition, the simulated event yields are corrected for "signal contamination", i.e., the oversubtraction of the fake background that would occur in the presence of a real signal. This oversubtraction is caused by same-sign dilepton events with one lepton passing the loose selection but failing the final identification or isolation requirements. The cross section limits are then used to exclude regions of model parameter space.

8.1 Models of $pp \rightarrow tt$

We consider two models that result in same-sign top-quark pairs without significant additional hadronic activity or missing transverse energy. Limits are set based on the results from SR2. The kinematic requirements in this region are modest, and are comparable to those used in the CMS measurements of the pp \rightarrow t \bar{t} cross section in the opposite-sign dilepton channel [41, 42]. We require only positively charged dileptons, since in the two models considered tt production dominates over $\bar{t}t$.

The first model is the Z' model of ref. [6], which is proposed as a possible explanation of the anomalous forward-backward asymmetry observed at the Tevatron [8–10]. This model introduces a new neutral boson with chiral couplings to u and t quarks. The relevant term in the Lagrangian is $\mathcal{L} = \frac{1}{2}g_W f_R \bar{u} \gamma^{\mu} (1+\gamma^5)tZ'_{\mu} + \text{h.c.}$, and the model parameters are f_R and the mass of the Z', m(Z'). In this model same-sign top pairs are produced predominantly through t-channel Z' exchange in uu \to tt.

The efficiency for pp \rightarrow tt events in the Z' model is calculated from simulated events, first generated with MADGRAPH and then processed by PYTHIA. We find an efficiency, including branching fractions, of $0.23 \pm 0.04\%$, largely independent of m(Z'). The resulting cross section upper limit is 0.61 pb at the 95% confidence level. This improves the previous CMS limit [17] by a factor of 27. This improvement is due to the factor 140 increase in the integrated luminosity between the two analyses. The limit scales faster than the inverse of the square root of the luminosity since the addition of the b-tag requirement has reduced the background level by a large factor. Our limit is a factor of 2.8 more stringent than that reported by the ATLAS collaboration [43].

In order to compare with other experiments, we also interpret our result in terms of an effective four-fermion Lagrangian for $uu \to tt$ [44]:

$$\mathcal{L} = \frac{1}{2} \frac{C_{RR}}{\Lambda^2} [\overline{\mathbf{u}}_R \gamma^{\mu} \mathbf{t}_R] [\overline{\mathbf{u}}_R \gamma_{\mu} \mathbf{t}_R] + \frac{1}{2} \frac{C_{LL}}{\Lambda^2} [\overline{\mathbf{u}}_L \gamma^{\mu} \mathbf{t}_L] [\overline{\mathbf{u}}_L \gamma_{\mu} \mathbf{t}_L]
- \frac{1}{2} \frac{C_{LR}}{\Lambda^2} [\overline{\mathbf{u}}_L \gamma^{\mu} \mathbf{t}_L] [\overline{\mathbf{u}}_R \gamma_{\mu} \mathbf{t}_R] - \frac{1}{2} \frac{C'_{LR}}{\Lambda^2} [\overline{\mathbf{u}}_{La} \gamma^{\mu} \mathbf{t}_{Lb}] [\overline{\mathbf{u}}_{Rb} \gamma_{\mu} \mathbf{t}_{Ra}] + \text{h.c.},$$
(8.1)

Figure 4. Excluded regions in the parameter spaces of the Z' (left) and MxFV models (right). In the case of the Z' model we also show the m(Z') vs. f_R region consistent with the Tevatron $t\bar{t}$ forward-backward asymmetry measurements [6].

where a and b are color indices. Note that at large m(Z') the Lagrangian for the Z' model corresponds to the first term in the effective Lagrangian with $\frac{g_W^2 f_R^2}{m(Z')^2} = \frac{C_{RR}}{\Lambda^2}$. In this framework our limit on $\sigma(tt)$ results in limits $\frac{C_{RR}}{\Lambda^2}$ or $\frac{C_{LL}}{\Lambda^2} < 0.20 \,\text{TeV}^{-2}$ and $\frac{C_{LR}}{\Lambda^2}$ or $\frac{C'_{LR}}{\Lambda^2} < 0.56 \,\text{TeV}^{-2}$, all at the 95% CL. These bounds are more stringent than those of CDF [45] and ATLAS [43].

The second model [11–13] has a new scalar SU(2) doublet $\Phi = (\eta^0, \eta^+)$ that couples the first and third generation quarks (q_1, q_3) via a Lagrangian term $\mathcal{L} = \xi \Phi q_1 q_3$. Remarkably, this model is largely consistent with constraints from flavour physics. The parameters of this "Maximally Flavour Violating" (MxFV) model are the mass of the η^0 boson and the value of the coupling ξ . In the MxFV model, same-sign top pairs are produced dominantly in $uu \to tt$ through t-channel η^0 exchange. At small values of ξ and η^0 mass $ug \to \eta^0 \to ttu$ becomes important. The third production mechanism, $uu \to \eta^0 \eta^0$, is also considered in our analysis. Signal events in the MxFV model are generated using MADGRAPH followed by PYTHIA for showering and hadronization. The decay widths are computed using the BRIDGE program [46].

The limits on the parameter spaces of the Z' and MxFV models are shown in figure 4. These limits are based on the lowest order cross section calculation. Our bounds disfavor the Z' model as an explanation of the Tevatron $t\bar{t}$ forward-backward asymmetry; the MxFV limits are significantly more stringent than those of the CDF experiment [13].

8.2 Models with four top quarks and two LSPs from gluino pair production and decay via real or virtual top squarks

In this section we consider two SUSY models of gluino pair production (pp $\to \widetilde{g}\widetilde{g}$) with top squarks playing a dominant role in the decay of the gluino. The gluino decays under consideration are (see figure 5):

- Model A1, three-body gluino decay mediated by virtual stop: $\widetilde{g} \to t \overline{t} \widetilde{\chi}_1^0$ [47–49];
- Model A2, two-body gluino decay to a top-stop pair: $\tilde{g} \to \tilde{t}_1 \bar{t}$, $\tilde{t}_1 \to t \tilde{\chi}_1^0$ [4, 50].

Figure 5. Diagrams for models A1 (left) and A2 (right).

The assumption of model A1 is that the gluino is lighter than all the squarks, and that the stop is the lightest squark. The dominant gluino decay channel would then be $\tilde{g} \to t\bar{t}\tilde{\chi}_1^0$, mediated by virtual top squarks. Model A2 is the same as model A1 but with top squarks light enough to be on-shell. Both models result in $tt\bar{t}t\tilde{\chi}_1^0\tilde{\chi}_1^0$ final states, i.e., final states with as many as four isolated high- p_T leptons, four b quarks, several light-quark jets, and significant missing transverse energy from the neutrinos in W decay and the LSPs. For Model A1, the parameters are the gluino mass, $m(\tilde{g})$, and the LSP mass, $m(\tilde{\chi}_1^0)$. Model A2 has the stop mass, $m(\tilde{\chi}_1^0)$, as an additional parameter.

These models are particularly interesting because naturalness arguments suggest that the top squark should be relatively light. A possible SUSY scenario consistent with the initial data from the LHC consists of a light stop, with all other squarks having evaded detection due to their very high mass. Furthermore, in order to preserve naturalness, the gluino cannot be too heavy either. Thus, the possibility of a relatively light gluino decaying predominantly into real or virtual top squarks is very attractive; see ref. [4] for a recent discussion.

Signal events for models A1 and A2 are generated with PYTHIA. We find that for a large range of parameter space the most sensitive signal region is SR6. This is because these new physics scenarios result in many jets and significant $E_{\rm T}^{\rm miss}$. Near the kinematic boundaries, where the $\tilde{\chi}_1^0$ has low momentum, SR4 and SR5 tend to be the most sensitive.

The limits on the parameter space of the A1 and A2 models are displayed in figure 6. These limits are based on the next-to-leading-order (NLO) and next-to-leading-log (NLL) calculations of the gluino pair production cross section [51–53].

8.3 Models with multiple top quarks and W-bosons from decays of bottom squarks

Here we study possible SUSY signals with pairs of bottom squarks decaying as $\widetilde{b}_1 \to t \widetilde{\chi}_1^-$ and $\widetilde{\chi}_1^- \to W^- \widetilde{\chi}_1^0$. The production mechanisms are (see figure 7):

- Model B1, sbottom pair production: $pp \to \tilde{b}_1 \tilde{b}_1^*$;
- Model B2, sbottom from gluino decay: $pp \to \widetilde{g}\widetilde{g}$ or or $pp \to \widetilde{g}\widetilde{b}_1$, followed by $\widetilde{g} \to \widetilde{b}_1\overline{b}$.

Figure 6. Left plot: exclusion (95 % CL) in the $m(\widetilde{\chi}_1^0) - m(\widetilde{g})$ plane for model A1 (gluino decay via virtual top squarks). Right plot: exclusion (95% CL) in the $m(\widetilde{t}_1) - m(\widetilde{g})$ plane for model A2 (gluino decay to on-shell top squarks). The lines represent the kinematic boundaries of the models. The regions to the left of the bands, and within the kinematic boundaries, are excluded; the thicknesses of the bands represent the theoretical uncertainties on the gluino pair production cross section from scale and parton distribution functions (pdf) variations. In the case of model A2 we show results for $m(\widetilde{\chi}_1^0) = 50 \text{ GeV}$ (red, with dashed lines for the kinematic boundaries) and $m(\widetilde{\chi}_1^0) = 150 \text{ GeV}$ (blue, with solid line for the kinematic boundary).

Figure 7. Diagrams for models B1 (left) and B2 (right).

In scenarios where the sbottom is the lightest squark, the gluino decay mode of model B2 would have the highest branching fraction.

The final states are then $t\bar{t}W^+W^-\tilde{\chi}_1^0\tilde{\chi}_1^0$ for model B1 and, for model B2, a mixture of ttW^-W^- , $t\bar{t}W^-W^+$, and $\bar{t}tW^+W^+$, all with two $\tilde{\chi}_1^0$ and two b quarks. For simplicity we consider only mass parameters where the chargino and the W from chargino decay are on shell, except for model B1, where the W is allowed to be off-shell.

These final states yield up to four isolated high $p_{\rm T}$ leptons, and between two and four bottom quarks. For model B1 the parameters are the mass of the sbottom, $m(\widetilde{\bf b}_1)$, the mass of the chargino, $m(\widetilde{\chi}_1^{\pm})$, and the mass of the LSP, $m(\widetilde{\chi}_1^0)$. Model B2 has $m(\widetilde{\bf g})$ as an additional parameter.

Signal events for models B1 and B2 were also generated with PYTHIA. The most sensitive signal regions are SR1 and SR4 for model B1, and SR5 and SR6 for model B2. The exclusion regions in parameter space are shown in figure 8 and are based on the NLO+NLL calculations of the production cross sections.

Figure 8. Left plot: exclusion (95% CL) in the $m(\tilde{\chi}_1^{\pm}) - m(\tilde{b}_1)$ plane for model B1 (sbottom pair production); Right plot: exclusion (95% CL) in the $m(\tilde{b}_1) - m(\tilde{g})$ plane for model B2 (sbottom production from gluino decay). The lines represent the kinematic boundaries of the models. The regions to the left of the bands, and within the kinematic boundaries, are excluded; the thicknesses of the bands represent the theoretical uncertainties on the gluino and sbottom pair production cross section from scale and parton distribution functions (pdf) variations. In the case of model B2 we show results for $m(\tilde{\chi}_1^{\pm}) = 150$ GeV (red, with dashed line for the kinematic boundary) and $m(\tilde{\chi}_1^{\pm}) = 300$ GeV (blue, with solid line for the kinematic boundary).

Figure 9. Left plot: limits on the sbottom pair production cross section compared with its expected value (NLO+NLL) as a function of sbottom mass in model B1. The cross section limit is insensitive to the choice of LSP mass within the allowed kinematic range. Right plot: limits on the gluino pair production cross section, for models A1, A2, and B2, compared with its expected value (NLO+NLL), as a function of gluino mass.

In figure 9 (left) we show the limits on the sbottom pair-production cross section from model B1 together with expectations for this quantity. The error band on the cross section curve reflects the uncertainty in the choice of scale as well as the associated pdf uncertainties. Within the allowed kinematic range, we exclude $m(\tilde{b}_1)$ below 370 GeV for model B1. The limits on $\sigma(pp \to \tilde{g}\tilde{g})$ for a few choices of the parameters of A1, A2, and B2 are displayed in figure 9 (right). When compared with the expected gluino pair production coss-section, we find that the gluino mass limit is fairly insensitive to the details of the decay chain, since the limit is driven by the gluino cross section. Models A1, A2, and B2 were also addressed in searches by the ATLAS collaboration [54, 55].

9 Conclusions

We have presented results of a search for same-sign dileptons with b jets using the CMS detector at the LHC based on a $4.98\,\mathrm{fb}^{-1}$ data sample of pp collisions at $\sqrt{s}=7\,\mathrm{TeV}$. No significant deviations from the SM expectations are observed.

The data are used to set 95% CL upper limits on the number of new physics events for a number of plausible signal regions defined in terms of requirements in $E_{\rm T}^{\rm miss}$ and $H_{\rm T}$, the number of b-tagged jets (2 or 3), and also the sign of the leptons (only positive dileptons or both positive and negative dileptons).

We use these results to set a limit $\sigma(pp \to tt) < 0.61 \,\mathrm{pb}$ at 95% CL, and to put bounds on the parameter space of two models of same-sign top pair production. We also set limits on two models of gluino decay into on-shell or off-shell top squarks, a model of sbottom pair production, and a model of sbottom production from gluino decay. In addition, we provide information to interpret our limits in other models of new physics.

Acknowledgments

We thank Johan Alwall, Ed Berger, Qing-Hong Cao, Chuan-Ren Chen, Chong-Sheng Li, Hao Zhang, and Felix Yu for discussions and help in implementing the Z' and MxFV models in MadGraph. We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIEN-CIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

- [1] A.G. Cohen, D. Kaplan and A. Nelson, *The more minimal supersymmetric standard model*, *Phys. Lett.* **B 388** (1996) 588 [hep-ph/9607394] [INSPIRE].
- [2] S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].

- [3] R. Barbieri, G. Dvali and L.J. Hall, Predictions from a U(2) flavor symmetry in supersymmetric theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388] [INSPIRE].
- [4] M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, arXiv:1110.6926 [INSPIRE].
- [5] C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, arXiv:1201.1293 [INSPIRE].
- [6] E.L. Berger, Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Top quark forward-backward asymmetry and same-sign top quark pairs, Phys. Rev. Lett. 106 (2011) 201801 [arXiv:1101.5625] [INSPIRE].
- [7] M.R. Buckley, D. Hooper, J. Kopp and E. Neil, Light Z' bosons at the Tevatron, Phys. Rev. D 83 (2011) 115013 [arXiv:1103.6035] [INSPIRE].
- [8] D0 collaboration, V. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [INSPIRE].
- [9] CDF collaboration, T. Aaltonen et al., Forward-backward asymmetry in top quark production in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. **101** (2008) 202001 [arXiv:0806.2472] [INSPIRE].
- [10] CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. **D** 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].
- [11] S. Bar-Shalom and A. Rajaraman, Models and phenomenology of maximal flavor violation, Phys. Rev. D 77 (2008) 095011 [arXiv:0711.3193] [INSPIRE].
- [12] S. Bar-Shalom, A. Rajaraman, D. Whiteson and F. Yu, Collider signals of maximal flavor violation: same-sign leptons from same-sign tops at the Tevatron, Phys. Rev. **D** 78 (2008) 033003 [arXiv:0803.3795] [INSPIRE].
- [13] CDF collaboration, T. Aaltonen et al., Search for maximal flavor violating scalars in same-charge lepton pairs in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. 102 (2009) 041801 [arXiv:0809.4903] [INSPIRE].
- [14] CMS collaboration, S. Chatrchyan et al., Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC, JHEP **06** (2011) 077 [arXiv:1104.3168] [INSPIRE].
- [15] CMS collaboration, S. Chatrchyan et al., Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy, arXiv:1205.6615 [INSPIRE].
- [16] CMS collaboration, S. Chatrchyan et al., The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [INSPIRE].
- [17] CMS collaboration, S. Chatrchyan et al., Search for same-sign top-quark pair production at $\sqrt{s} = 7 \text{ TeV}$ and limits on flavour changing neutral currents in the top sector, JHEP **08** (2011) 005 [arXiv:1106.2142] [INSPIRE].
- [18] CMS collaboration, Electron reconstruction and identification at $\sqrt{s} = 7$ TeV, PAS-EGM-10-004 (2010).
- [19] CMS collaboration, Performance of muon identification in pp collisions at $\sqrt{s} = 7$ TeV, PAS-MUO-10-002 (2010).

- [20] CMS collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus and MET, PAS-PFT-09-001 (2009).
- [21] CMS collaboration, S. Chatrchyan et al., Determination of jet energy calibration and transverse momentum resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE].
- [22] CMS collaboration, S. Chatrchyan et al., Missing transverse energy performance of the CMS detector, 2011 JINST 6 P09001 [arXiv:1106.5048] [INSPIRE].
- [23] M. Cacciari, G.P. Salam and G. Soyez, The anti- k_t jet clustering algorithm, JHEP **04** (2008) 063 [arXiv:0802.1189] [INSPIRE].
- [24] CMS collaboration, Status of b-tagging and vertexing tools for 2011 data analysis, PAS-BTV-11-002 (2011).
- [25] CMS collaboration, Measurement of btagging efficiency using ttbar events, PAS-BTV-11-003 (2011).
- [26] J. Alwall et al., $MadGraph/MadEvent\ v4$: the new web generation, JHEP **09** (2007) 028 [arXiv:0706.2334] [INSPIRE].
- [27] T. Sjöstrand, S. Mrenna and P.Z. Skands, *PYTHIA 6.4 physics and manual*, *JHEP* **05** (2006) 026 [hep-ph/0603175] [INSPIRE].
- [28] J.M. Campbell and R.K. Ellis, $t\bar{t}W^{\pm}$ production and decay at NLO, JHEP **07** (2012) 052 [arXiv:1204.5678] [INSPIRE].
- [29] A. Kardos, Z. Trócsányi and C. Papadopoulos, Top quark pair production in association with a Z-boson at NLO accuracy, Phys. Rev. D 85 (2012) 054015 [arXiv:1111.0610] [INSPIRE].
- [30] M. Garzelli, A. Kardos, C. Papadopoulos and Z. Trócsányi, Z⁰-boson production in association with a top anti-top pair at NLO accuracy with parton shower effects, Phys. Rev. D 85 (2012) 074022 [arXiv:1111.1444] [INSPIRE].
- [31] G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE].
- [32] P. Fileviez Perez and S. Spinner, The minimal theory for R-parity violation at the LHC, JHEP 04 (2012) 118 [arXiv:1201.5923] [INSPIRE].
- [33] C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].
- [34] H. Dreiner and T. Stefaniak, Bounds on R-parity violation from resonant slepton production at the LHC, arXiv:1201.5014 [INSPIRE].
- [35] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].
- [36] ATLAS collaboration, Procedure for the LHC Higgs boson search combination in summer 2011, PHYS-PUB-2011-011 (2011).
- [37] CMS collaboration, G. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [INSPIRE].
- [38] CMS collaboration, Absolute calibration of the luminosity measurement at CMS: winter 2012 update, PAS-SMP-12-008 (2010).

- [39] CMS collaboration, S. Abdullin et al., Fast simulation of the CMS detector at LHC, J. Phys. Conf. Ser. 331 (2011) 032049.
- [40] CMS collaboration, Comparison of the fast simulation of CMS with the first LHC data, CMS-DP-2010-039 (2010).
- [41] CMS collaboration, S. Chatrchyan et al., Measurement of the $t\bar{t}$ production cross section and the top quark mass in the dilepton channel in pp collisions at $\sqrt{s} = 7$ TeV, JHEP **07** (2011) 049 [arXiv:1105.5661] [INSPIRE].
- [42] CMS collaboration, V. Khachatryan et al., First measurement of the cross section for top-quark pair production in proton-proton collisions at $\sqrt{s} = 7$ TeV, Phys. Lett. B 695 (2011) 424 [arXiv:1010.5994] [INSPIRE].
- [43] ATLAS collaboration, G. Aad et al., Search for same-sign top-quark production and fourth-generation down-type quarks in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, JHEP 04 (2012) 069 [arXiv:1202.5520] [INSPIRE].
- [44] J. Aguilar-Saavedra, Effective four-fermion operators in top physics: a roadmap, Nucl. Phys.
 B 843 (2011) 638 [Erratum ibid. B 851 (2011) 443-444] [arXiv:1008.3562] [INSPIRE].
- [45] CDF collaboration, Search for like-sign top quark pair production at CDF with 6.1 fb⁻¹, CDF-PHYS-EXO-PUBLIC-10466 (2011).
- [46] P. Meade and M. Reece, BRIDGE: Branching Ratio Inquiry/Decay Generated Events, hep-ph/0703031 [INSPIRE].
- [47] B.S. Acharya et al., *Identifying multi-top events from gluino decay at the LHC*, arXiv:0901.3367 [INSPIRE].
- [48] G.L. Kane, E. Kuflik, R. Lu and L.-T. Wang, Top channel for early SUSY discovery at the LHC, Phys. Rev. D 84 (2011) 095004 [arXiv:1101.1963] [INSPIRE].
- [49] D. Alves et al., Simplified models for LHC new physics searches, arXiv:1105.2838 [INSPIRE].
- [50] R. Essig, E. Izaguirre, J. Kaplan and J.G. Wacker, Heavy flavor simplified models at the LHC, JHEP 01 (2012) 074 [arXiv:1110.6443] [INSPIRE].
- [51] M. Krämer et al., Supersymmetry production cross sections in pp collisions at $\sqrt{s} = 7 \text{ TeV}$, arXiv:1206.2892 [INSPIRE].
- [52] A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].
- [53] W. Beenakker et al., Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [arXiv:1006.4771] [INSPIRE].
- [54] ATLAS collaboration, Search for gluinos in events with two same-sign leptons, jets, and missing transverse momentum with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV, Phys. Rev. Lett. 108 (2012) 241802.
- [55] ATLAS collaboration, Search for supersymmetry in pp collisions at sqrts = 7 TeV in final states with missing transverse momentum and v-jets with the ATLAS detector, Phys. Rev. D 85 (2012) 112006.

The CMS collaboration

Yerevan Physics Institute, Yerevan, Armenia

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan¹, M. Friedl, R. Frühwirth¹, V.M. Ghete, J. Hammer, N. Hörmann, J. Hrubec, M. Jeitler¹, W. Kiesenhofer, V. Knünz, M. Krammer¹, D. Liko, I. Mikulec, M. Pernicka[†], B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz¹

National Centre for Particle and High Energy Physics, Minsk, Belarus

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, S. Luyckx, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, Z. Staykova, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium

F. Blekman, S. Blyweert, J. D'Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium

O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, T. Reis, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium

- V. Adler, K. Beernaert, A. Cimmino, S. Costantini, G. Garcia, M. Grunewald, B. Klein,
- J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, N. Strobbe,
- F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

- S. Basegmez, G. Bruno, R. Castello, L. Ceard, C. Delaere, T. du Pree, D. Favart,
- L. Forthomme, A. Giammanco², J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens,
- D. Pagano, A. Pin, K. Piotrzkowski, N. Schul, J.M. Vizan Garcia

Université de Mons, Mons, Belgium

N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

G.A. Alves, M. Correa Martins Junior, D. De Jesus Damiao, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

W.L. Aldá Júnior, W. Carvalho, A. Custódio, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, L. Soares Jorge, A. Sznajder

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

C.A. Bernardes³, F.A. Dias⁴, T.R. Fernandez Perez Tomei, E. M. Gregores³, C. Lagana, F. Marinho, P.G. Mercadante³, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

V. Genchev⁵, P. Iaydjiev⁵, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova

University of Sofia, Sofia, Bulgaria

A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China

C. Asawatangtrakuldee, Y. Ban, S. Guo, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, S. Wang, B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia

C. Avila, J.P. Gomez, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia

N. Godinovic, D. Lelas, R. Plestina⁶, D. Polic, I. Puljak⁵

University of Split, Split, Croatia

Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia

V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus

A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic

M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

Y. Assran⁷, S. Elgammal⁸, A. Ellithi Kamel⁹, S. Khalil⁸, M.A. Mahmoud¹⁰, A. Radi^{11,12}

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

M. Kadastik, M. Müntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland

V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

- J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén,
- K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen,
- J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland

K. Banzuzi, A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

- M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri,
- S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci,
- J. Malcles, L. Millischer, A. Nayak, J. Rander, A. Rosowsky, I. Shreyber, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

- S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj¹³, C. Broutin, P. Busson,
- C. Charlot, N. Daci, T. Dahms, L. Dobrzynski, R. Granier de Cassagnac, M. Haguenauer,
- P. Miné, C. Mironov, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois,
- C. Veelken, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

J.-L. Agram¹⁴, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte¹⁴, F. Drouhin¹⁴, C. Ferro, J.-C. Fontaine¹⁴, D. Gelé, U. Goerlach, P. Juillot, M. Karim¹⁴, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France

F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

- S. Beauceron, N. Beaupere, O. Bondu, G. Boudoul, H. Brun, J. Chasserat, R. Chierici⁵,
- D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille,
- T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, S. Tosi, Y. Tschudi, P. Verdier,
- S. Viret

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

Z. Tsamalaidze¹⁵

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

- G. Anagnostou, S. Beranek, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen,
- K. Klein, J. Merz, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael,
- D. Sprenger, H. Weber, B. Wittmer, V. Zhukov¹⁶

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

- M. Ata, J. Caudron, E. Dietz-Laursonn, M. Erdmann, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, P. Kreuzer, J. Lingemann, C. Magass, M. Merschmeyer, A. Meyer, M. Olschewski, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein,
- J. Steggemann, D. Teyssier, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

M. Bontenackels, V. Cherepanov, M. Davids, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Linn, A. Nowack, L. Perchalla, O. Pooth, J. Rennefeld, P. Sauerland, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany

- M. Aldaya Martin, J. Behr, W. Behrenhoff, U. Behrens, M. Bergholz¹⁷, A. Bethani,
- K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, E. Castro, F. Costanza,
- D. Dammann, G. Eckerlin, D. Eckstein, D. Fischer, G. Flucke, A. Geiser, I. Glushkov,
- S. Habib, J. Hauk, H. Jung⁵, M. Kasemann, P. Katsas, C. Kleinwort, H. Kluge,
- A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, W. Lohmann¹⁷,
- B. Lutz, R. Mankel, I. Marfin, M. Marienfeld, I.-A. Melzer-Pellmann, A.B. Meyer,
- J. Mnich, A. Mussgiller, S. Naumann-Emme, J. Olzem, H. Perrey, A. Petrukhin, D. Pitzl,
- A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, M. Rosin, J. Salfeld-Nebgen, R. Schmidt¹⁷,
- T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany

- C. Autermann, V. Blobel, S. Bobrovskyi, J. Draeger, H. Enderle, J. Erfle, U. Gebbert,
- M. Görner, T. Hermanns, R.S. Höing, K. Kaschube, G. Kaussen, H. Kirschenmann,
- R. Klanner, J. Lange, B. Mura, F. Nowak, T. Peiffer, N. Pietsch, C. Sander, H. Schettler,
- P. Schleper, E. Schlieckau, A. Schmidt, M. Schröder, T. Schum, H. Stadie, G. Steinbrück,
- J. Thomsen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

- C. Barth, J. Berger, T. Chwalek, W. De Boer, A. Dierlamm, M. Feindt, M. Guthoff⁵,
- C. Hackstein, F. Hartmann, M. Heinrich, H. Held, K.H. Hoffmann, S. Honc, I. Katkov¹⁶,
- J.R. Komaragiri, D. Martschei, S. Mueller, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst,
- A. Oehler, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, S. Röcker,
- A. Scheurer, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, R. Ulrich,
- J. Wagner-Kuhr, T. Weiler, M. Zeise

Institute of Nuclear Physics "Demokritos", Aghia Paraskevi, Greece

- G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou,
- C. Markou, C. Mavrommatis, E. Ntomari

University of Athens, Athens, Greece

L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou

University of Ioánnina, Ioánnina, Greece

I. Evangelou, C. Foudas⁵, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

G. Bencze, C. Hajdu⁵, P. Hidas, D. Horvath¹⁸, K. Krajczar¹⁹, B. Radics, F. Sikler⁵, V. Veszpremi, G. Vesztergombi¹⁹

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary

J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India

S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Jindal, M. Kaur, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, J. Singh

University of Delhi, Delhi, India

S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India

S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India

A. Abdulsalam, R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, P. Mehta, A.K. Mohanty⁵, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India

T. Aziz, S. Ganguly, M. Guchait²⁰, M. Maity²¹, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India

S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

H. Arfaei, H. Bakhshiansohi²², S.M. Etesami²³, A. Fahim²², M. Hashemi, H. Hesari, A. Jafari²², M. Khakzad, A. Mohammadi²⁴, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh²⁵, M. Zeinali²³

INFN Sezione di Bari ^a, Università di Bari ^b, Politecnico di Bari ^c, Bari, Italy

- M. Abbrescia^{a,b}, L. Barbone^{a,b}, C. Calabria^{a,b,5}, S.S. Chhibra^{a,b}, A. Colaleo^a,
- D. Creanza a,c , N. De Filippis a,c,5 , M. De Palma a,b , L. Fiore a , G. Iaselli a,c , L. Lusito a,b ,
- G. $\text{Maggi}^{a,c}$, M. Maggi^{a} , B. $\text{Marangelli}^{a,b}$, S. $\text{My}^{a,c}$, S. $\text{Nuzzo}^{a,b}$, N. $\text{Pacifico}^{a,b}$,
- A. Pompili^{a,b}, G. Pugliese^{a,c}, G. Selvaggi^{a,b}, L. Silvestris^a, G. Singh^{a,b}, G. Zito^a

INFN Sezione di Bologna ^a, Università di Bologna ^b, Bologna, Italy

- G. Abbiendi^a, A.C. Benvenuti^a, D. Bonacorsi^{a,b}, S. Braibant-Giacomelli^{a,b}, L. Brigliadori^{a,b}, P. Capiluppi^{a,b}, A. Castro^{a,b}, F.R. Cavallo^a, M. Cuffiani^{a,b}, C.M. Dallavella^a, E. Fakhri^a, A. Fanfani^{a,b}, D. Facanalla^{a,b,5}, R. Giacomelli^a
- G.M. Dallavalle^a, F. Fabbri^a, A. Fanfani^{a,b}, D. Fasanella^{a,b,5}, P. Giacomelli^a,
- C. Grandi^a, L. Guiducci, S. Marcellini^a, G. Masetti^a, M. Meneghelli^{a,b,5}, A. Montanari^a, F.L. Navarria^{a,b}, F. Odorici^a, A. Perrotta^a, F. Primavera^{a,b}, A.M. Rossi^{a,b}, T. Rovelli^{a,b},
- G. Siroli^{a,b}, R. Travaglini^{a,b}

INFN Sezione di Catania ^a, Università di Catania ^b, Catania, Italy

S. Albergo^{a,b}, G. Cappello^{a,b}, M. Chiorboli^{a,b}, S. Costa^{a,b}, R. Potenza^{a,b}, A. Tricomi^{a,b}, C. Tuve^{a,b}

INFN Sezione di Firenze ^a, Università di Firenze ^b, Firenze, Italy

G. Barbagli^a, V. Ciulli^{a,b}, C. Civinini^a, R. D'Alessandro^{a,b}, E. Focardi^{a,b}, S. Frosali^{a,b}, E. Gallo^a, S. Gonzi^{a,b}, M. Meschini^a, S. Paoletti^a, G. Sguazzoni^a, A. Tropiano^{a,5}

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, S. Colafranceschi²⁶, F. Fabbri, D. Piccolo

INFN Sezione di Genova, Genova, Italy

P. Fabbricatore, R. Musenich

INFN Sezione di Milano-Bicocca ^a, Università di Milano-Bicocca ^b, Milano, Italy

A. Benaglia^{a,b,5}, F. De Guio^{a,b}, L. Di Matteo^{a,b,5}, S. Fiorendi^{a,b}, S. Gennai^{a,5}, A. Ghezzi^{a,b}, S. Malvezzi^a, R.A. Manzoni^{a,b}, A. Martelli^{a,b}, A. Massironi^{a,b,5}, D. Menasce^a, L. Moroni^a, M. Paganoni^{a,b}, D. Pedrini^a, S. Ragazzi^{a,b}, N. Redaelli^a, S. Sala^a, T. Tabarelli de Fatis^{a,b}

INFN Sezione di Napoli ^a, Università di Napoli "Federico II" ^b, Napoli, Italy S. Buontempo^a, C.A. Carrillo Montoya^{a,5}, N. Cavallo^{a,27}, A. De Cosa^{a,b,5}, O. Dogangun^{a,b}, F. Fabozzi^{a,27}, A.O.M. Iorio^a, L. Lista^a, S. Meola^{a,28}, M. Merola^{a,b}, P. Paolucci^{a,5}

INFN Sezione di Padova ^a, Università di Padova ^b, Università di Trento (Trento) ^c, Padova, Italy

P. Azzi^a, N. Bacchetta^{a,5}, M. Biasotto^{a,29}, D. Bisello^{a,b}, A. Branca^{a,5}, R. Carlin^{a,b}, P. Checchia^a, T. Dorigo^a, F. Gasparini^{a,b}, A. Gozzelino^a, K. Kanishchev^{a,c}, S. Lacaprara^a, I. Lazzizzera^{a,c}, M. Margoni^{a,b}, A.T. Meneguzzo^{a,b}, J. Pazzini, L. Perrozzi^a, N. Pozzobon^{a,b}, P. Ronchese^{a,b}, F. Simonetto^{a,b}, E. Torassa^a, M. Tosi^{a,b,5}, S. Vanini^{a,b}, A. Zucchetta^a, G. Zumerle^{a,b}

INFN Sezione di Pavia ^a, Università di Pavia ^b, Pavia, Italy

M. Gabusi a,b , S.P. Ratti a,b , C. Riccardi a,b , P. Torre a,b , P. Vitulo a,b

INFN Sezione di Perugia ^a, Università di Perugia ^b, Perugia, Italy

M. Biasini^{a,b}, G.M. Bilei^a, L. Fanò^{a,b}, P. Lariccia^{a,b}, A. Lucaroni^{a,b,5}, G. Mantovani^{a,b}, M. Menichelli^a, A. Nappi^{a,b}, F. Romeo^{a,b}, A. Saha, A. Santocchia^{a,b}, S. Taroni^{a,b,5}

INFN Sezione di Pisa ^a, Università di Pisa ^b, Scuola Normale Superiore di Pisa ^c, Pisa, Italy

P. Azzurri^{a,c}, G. Bagliesi^a, T. Boccali^a, G. Broccolo^{a,c}, R. Castaldi^a, R.T. D'Agnolo^{a,c}, R. Dell'Orso^a, F. Fiori^{a,b,5}, L. Foà^{a,c}, A. Giassi^a, A. Kraan^a, F. Ligabue^{a,c}, T. Lomtadze^a, L. Martini^{a,30}, A. Messineo^{a,b}, F. Palla^a, A. Rizzi^{a,b}, A.T. Serban^{a,31}, P. Spagnolo^a, P. Squillacioti^{a,5}, R. Tenchini^a, G. Tonelli^{a,b,5}, A. Venturi^{a,5}, P.G. Verdini^a

INFN Sezione di Roma ^a, Università di Roma "La Sapienza" ^b, Roma, Italy

L. Barone^{a,b}, F. Cavallari^a, D. Del Re^{a,b,5}, M. Diemoz^a, M. Grassi^{a,b,5}, E. Longo^{a,b}, P. Meridiani^{a,5}, F. Micheli^{a,b}, S. Nourbakhsh^{a,b}, G. Organtini^{a,b}, R. Paramatti^a, S. Rahatlou^{a,b}, M. Sigamani^a, L. Soffi^{a,b}

INFN Sezione di Torino ^a, Università di Torino ^b, Università del Piemonte Orientale (Novara) ^c, Torino, Italy

- N. Amapane a,b , R. Arcidiacono a,c , S. Argiro a,b , M. Arneodo a,c , C. Biino a , C. Botta a,b ,
- N. Cartiglia^a, M. Costa^{a,b}, N. Demaria^a, A. Graziano^{a,b}, C. Mariotti^{a,5}, S. Maselli^a,
- E. Migliore^{a,b}, V. Monaco^{a,b}, M. Musich^{a,5}, M.M. Obertino^{a,c}, N. Pastrone^a,
- M. Pelliccioni^a, A. Potenza^{a,b}, A. Romero^{a,b}, M. Ruspa^{a,c}, R. Sacchi^{a,b}, V. Sola^{a,b},
- A. Solano^{a,b}, A. Staiano^a, A. Vilela Pereira^a

INFN Sezione di Trieste ^a, Università di Trieste ^b, Trieste, Italy

S. Belforte^a, V. Candelise^{a,b}, F. Cossutti^a, G. Della Ricca^{a,b}, B. Gobbo^a, M. Marone^{a,b,5}, D. Montanino^{a,b,5}, A. Penzo^a, A. Schizzi^{a,b}

Kangwon National University, Chunchon, Korea

S.G. Heo, T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea

S. Chang, J. Chung, D.H. Kim, G.N. Kim, D.J. Kong, H. Park, S.R. Ro, D.C. Son, T. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

J.Y. Kim, Zero J. Kim, S. Song

Konkuk University, Seoul, Korea

H.Y. Jo

Korea University, Seoul, Korea

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park

University of Seoul, Seoul, Korea

M. Choi, S. Kang, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania

M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

- H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez,
- R. Magaña Villalba, J. Martínez-Ortega, A. Sánchez-Hernández, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand

D. Krofcheck

University of Canterbury, Christchurch, New Zealand

A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

M. Ahmad, M.I. Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Soltan Institute for Nuclear Studies, Warsaw, Poland

H. Bialkowska, B. Boimska, T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia

I. Belotelov, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, A. Malakhov, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov,

V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia

S. Evstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov⁵, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia

A. Belyaev, E. Boos, V. Bunichev, M. Dubinin⁴, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, A. Popov, L. Sarycheva[†], V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin⁵, V. Kachanov, D. Konstantinov, A. Korablev, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

P. Adzic³², M. Djordjevic, M. Ekmedzic, D. Krpic³², J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, C. Diez Pardos, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez 33

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini³⁴, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jorda, P. Lobelle Pardo, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, C. Bernet⁶, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, D. D'Enterria, A. Dabrowski, A. De Roeck, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Giunta, F. Glege, R. Gomez-Reino Garrido, P. Govoni, S. Gowdy, R. Guida, M. Hansen, P. Harris, C. Hartl, J. Harvey, B. Hegner, A. Hinzmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, K. Kousouris, P. Lecoq, Y.-J. Lee, P. Lenzi, C. Lourenço, T. Mäki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, P. Musella, E. Nesvold, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes,

G. Rolandi³⁵, T. Rommerskirchen, C. Rovelli³⁶, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas³⁷, D. Spiga, M. Spiropulu⁴, M. Stoye, A. Tsirou, G.I. Veres¹⁹, J.R. Vlimant, H.K. Wöhri, S.D. Worm³⁸, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille³⁹

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

- L. Bäni, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori,
- M. Dittmar, M. Dünser, J. Eugster, K. Freudenreich, C. Grab, D. Hits, P. Lecomte,
- W. Lustermann, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nägeli⁴⁰, P. Nef,
- F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini,
- L. Sala, A.K. Sanchez, A. Starodumov⁴¹, B. Stieger, M. Takahashi, L. Tauscher[†], A. Thea,
- K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber, L. Wehrli

Universität Zürich, Zurich, Switzerland

E. Aguilo, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti

National Central University, Chung-Li, Taiwan

Y.H. Chang, K.H. Chen, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic, A.P. Singh, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

- P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz,
- U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder,
- E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, X. Wan, M. Wang

Cukurova University, Adana, Turkey

- A. Adiguzel, M.N. Bakirci⁴², S. Cerci⁴³, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis,
- G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, G. Karapinar, A. Kayis Topaksu,
- G. Onengut, K. Ozdemir, S. Ozturk⁴⁴, A. Polatoz, K. Sogut⁴⁵, D. Sunar Cerci⁴³, B. Tali⁴³,
- H. Topakli⁴², L.N. Vergili, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey

I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey

E. Gülmez, B. Isildak⁴⁶, M. Kaya⁴⁷, O. Kaya⁴⁷, S. Ozkorucuklu⁴⁸, N. Sonmez⁴⁹

Istanbul Technical University, Istanbul, Turkey

K. Cankocak

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

L. Levchuk

University of Bristol, Bristol, United Kingdom

F. Bostock, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold³⁸, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom

L. Basso⁵⁰, K.W. Bell, A. Belyaev⁵⁰, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley

Imperial College, London, United Kingdom

R. Bainbridge, G. Ball, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar,

- P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert,
- A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli,
- L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko⁴¹,
- A. Papageorgiou, J. Pela⁵, M. Pesaresi, K. Petridis, M. Pioppi⁵¹, D.M. Raymond, S. Rogerson, A. Rose, M.J. Ryan, C. Seez, P. Sharp[†], A. Sparrow, A. Tapper, M. Vazquez Acosta,
- T. Virdee, S. Wakefield, N. Wardle, T. Whyntie

Brunel University, Uxbridge, United Kingdom

M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA

K. Hatakeyama, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA

C. Henderson, P. Rumerio

Boston University, Boston, USA

A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, USA

- J. Alimena, S. Bhattacharya, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev,
- E. Laird, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith,
- T. Speer, K.V. Tsang

University of California, Davis, Davis, USA

- R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok,
- J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, M. Gardner, R. Houtz, W. Ko,
- A. Kopecky, R. Lander, O. Mall, T. Miceli, R. Nelson, D. Pellett, B. Rutherford, M. Searle,
- J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra

University of California, Los Angeles, Los Angeles, USA

V. Andreev, D. Cline, R. Cousins, J. Duris, S. Erhan, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, C. Plager, G. Rakness, P. Schlein[†], J. Tucker, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA

J. Babb, R. Clare, M.E. Dinardo, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng⁵², H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA

- W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, F. Golf, A. Holzner,
- R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, B. Mangano, S. Padhi, C. Palmer,
- G. Petrucciani, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu,
- A. Vartak, S. Wasserbaech⁵³, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA

- D. Barge, R. Bellan, C. Campagnari, M. D'Alfonso, T. Danielson, K. Flowers, P. Geffert,
- J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi, V. Krutelyov, S. Lowette,
- N. Mccoll, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To,
- C. West

California Institute of Technology, Pasadena, USA

A. Apresyan, A. Bornheim, Y. Chen, E. Di Marco, J. Duarte, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, V. Timciuc, P. Traczyk, J. Veverka, R. Wilkinson, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA

B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

J.P. Cumalat, B.R. Drell, C.J. Edelmaier, W.T. Ford, A. Gaz, B. Heyburn, E. Luiggi Lopez, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA

J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA

D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

S. Abdullin, M. Albrow, J. Anderson, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, D. Green, O. Gutsche, A. Hahn, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Kilminster, B. Klima, S. Kunori, S. Kwan, C. Leonidopoulos, D. Lincoln, R. Lipton, L. Lueking,

J. Lykken, K. Maeshima, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko⁵⁴, C. Newman-Holmes, V. O'Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, P. Tan, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun

University of Florida, Gainesville, USA

- D. Acosta, P. Avery, D. Bourilkov, M. Chen, S. Das, M. De Gruttola, G.P. Di Giovanni,
- D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, J. Hugon,
- B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev,
- P. Milenovic⁵⁵, G. Mitselmakher, L. Muniz, R. Remington, A. Rinkevicius, P. Sellers,
- N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA

V. Gaultney, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

- T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas,
- S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA

M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA

M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, C. Dragoiu, O. Evdokimov, L. Gauthier, C.E. Gerber, S. Hamdan, D.J. Hofman, S. Khalatyan, F. Lacroix, M. Malek, C. O'Brien, C. Silkworth, D. Strom, N. Varelas

The University of Iowa, Iowa City, USA

U. Akgun, E.A. Albayrak, B. Bilki⁵⁶, W. Clarida, F. Duru, S. Griffiths, J.-P. Merlo, H. Mermerkaya⁵⁷, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, Y. Onel, F. Ozok, S. Sen, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA

B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, USA

P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, R. Stringer, G. Tinti, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA

A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA

J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA

A. Baden, M. Boutemeur, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, A. Peterman, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA

G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, Y. Kim, M. Klute, W. Li, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, B. Wyslouch, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA

S.I. Cooper, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, University, USA

L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Nebraska-Lincoln, Lincoln, USA

E. Avdeeva, K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, P. Jindal, J. Keller, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA

U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowski, K. Smith

Northeastern University, Boston, USA

G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, D. Nash, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA

A. Anastassov, A. Kubik, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA

L. Antonelli, D. Berry, A. Brinkerhoff, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf

The Ohio State University, Columbus, USA

B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer

Princeton University, Princeton, USA

N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, J. Hegeman, A. Hunt,

D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué,

X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA

J.G. Acosta, E. Brownson, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyaniy

Purdue University, West Lafayette, USA

E. Alagoz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA

S. Guragain, N. Parashar

Rice University, Houston, USA

A. Adair, C. Boulahouache, V. Cuplov, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA

B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA

A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, USA

S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, A. Richards, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA

G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA

R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon⁵⁸, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA

N. Akchurin, J. Damgov, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev

Vanderbilt University, Nashville, USA

E. Appelt, D. Engh, C. Florez, S. Greene, A. Gurrola, W. Johns, C. Johnston, P. Kurt, C. Maguire, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA

M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood, R. Yohay

Wayne State University, Detroit, USA

S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA

- M. Anderson, M. Bachtis, D. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu,
- L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers,
- J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, I. Ojalvo,
- F. Palmonari, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson
 - †: Deceased
 - 1: Also at Vienna University of Technology, Vienna, Austria
 - 2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
 - 3: Also at Universidade Federal do ABC, Santo Andre, Brazil
 - 4: Also at California Institute of Technology, Pasadena, USA
 - 5: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
 - 6: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
 - 7: Also at Suez Canal University, Suez, Egypt
 - 8: Also at Zewail City of Science and Technology, Zewail, Egypt
 - 9: Also at Cairo University, Cairo, Egypt
 - 10: Also at Fayoum University, El-Fayoum, Egypt
 - 11: Also at Ain Shams University, Cairo, Egypt
 - 12: Now at British University, Cairo, Egypt
 - 13: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
 - 14: Also at Université de Haute-Alsace, Mulhouse, France
 - 15: Now at Joint Institute for Nuclear Research, Dubna, Russia
 - 16: Also at Moscow State University, Moscow, Russia
 - 17: Also at Brandenburg University of Technology, Cottbus, Germany
 - 18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
 - 19: Also at Eötvös Loránd University, Budapest, Hungary
 - 20: Also at Tata Institute of Fundamental Research HECR, Mumbai, India
 - 21: Also at University of Visva-Bharati, Santiniketan, India
 - 22: Also at Sharif University of Technology, Tehran, Iran
 - 23: Also at Isfahan University of Technology, Isfahan, Iran
 - 24: Also at Shiraz University, Shiraz, Iran
 - 25: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran
 - 26: Also at Facoltà Ingegneria Università di Roma, Roma, Italy
 - 27: Also at Università della Basilicata, Potenza, Italy
 - 28: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
 - 29: Also at Laboratori Nazionali di Legnaro dell' INFN, Legnaro, Italy
 - 30: Also at Università degli studi di Siena, Siena, Italy

- 31: Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania
- 32: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
- 33: Also at University of Florida, Gainesville, USA
- 34: Also at University of California, Los Angeles, Los Angeles, USA
- 35: Also at Scuola Normale e Sezione dell' INFN, Pisa, Italy
- 36: Also at INFN Sezione di Roma; Università di Roma "La Sapienza", Roma, Italy
- 37: Also at University of Athens, Athens, Greece
- 38: Also at Rutherford Appleton Laboratory, Didcot, U.K.
- 39: Also at The University of Kansas, Lawrence, USA
- 40: Also at Paul Scherrer Institut, Villigen, Switzerland
- 41: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
- 42: Also at Gaziosmanpasa University, Tokat, Turkey
- 43: Also at Adiyaman University, Adiyaman, Turkey
- 44: Also at The University of Iowa, Iowa City, USA
- 45: Also at Mersin University, Mersin, Turkey
- 46: Also at Ozyegin University, Istanbul, Turkey
- 47: Also at Kafkas University, Kars, Turkey
- 48: Also at Suleyman Demirel University, Isparta, Turkey
- 49: Also at Ege University, Izmir, Turkey
- 50: Also at School of Physics and Astronomy, University of Southampton, Southampton, U.K.
- 51: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
- 52: Also at University of Sydney, Sydney, Australia
- 53: Also at Utah Valley University, Orem, USA
- 54: Also at Institute for Nuclear Research, Moscow, Russia
- 55: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
- 56: Also at Argonne National Laboratory, Argonne, USA
- 57: Also at Erzincan University, Erzincan, Turkey
- 58: Also at Kyungpook National University, Daegu, Korea