

Flat manifolds, harmonic spinors, and eta invariants

M. Sadowski, A. Szczepański *

February 1, 2008

Abstract

The aim of this paper is to calculate the eta invariants and the dimensions of the spaces of harmonic spinors of an infinite family of closed flat manifolds \mathcal{F}_{CHD} . It consists of some flat manifolds M with cyclic holonomy groups. If $M \in \mathcal{F}_{CHD}$, then we give explicit formulas for $\eta(M)$ and $\mathfrak{h}(M)$. They are expressed in terms of solutions of appropriate congruences in $\{-1, 1\}^{\left[\frac{n-1}{2}\right]}$. As an application we investigate the integrability of some η invariants of \mathcal{F}_{CHD} -manifolds.

Key words and phrases: *Spin structure, harmonic spinor, eta invariant, flat manifold.*

2000 Mathematics Subject Classification: 58J28, 53C27, 20H25

1 Introduction

In this paper we consider Dirac operators on an infinite family \mathcal{F}_{CHD} of closed flat manifolds. It consists of flat manifolds M with cyclic holonomy groups of odd order equal to the dimension of M . The family \mathcal{F}_{CHD} is particularly simple and the investigation of different properties of multidimensional flat manifolds should start with the investigation of them in this particular case. Some \mathcal{F}_{CHD} manifolds arises in the classification of flat manifolds whose holonomy groups have prime order (cf. [4]). We describe the eta invariants

*Supported by University of Gdańsk grant number BW - 5100-5-0319-3

of the Dirac operators arising from different spin structures and we give necessary and sufficient conditions of the existence of nontrivial harmonic spinors. The methods used here extends that used in [12]. We apply them to much wider class of manifolds and we consider related general questions.

To formulate the main results we need some definitions. Let $n = 2k+1$ be an odd number, and let a_1, \dots, a_n be a basis of \mathbb{R}^n . Consider the linear map $A : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $A(a_j) = a_{j+1}$ for $j < n-1$, $A(a_{n-1}) = -a_1 - \dots - a_{n-1}$, and $A(a_n) = a_n$. Let $a = \frac{1}{n}a_n$ and let $g(x) = A(x) + a$. An n -dimensional flat manifold $M \in \mathcal{F}_{CHD}$ can be written as \mathbb{R}^n/Γ , where $\Gamma = \langle a_1, \dots, a_{n-1}, g \rangle$. The linear part A of g has two lifts $\alpha_+, \alpha_- \in \text{Spin}(n)$ such that $\alpha_+^n = id$ and $\alpha_-^n = -id$ (see Section 2). This defines two spin structures on M .

To formulate the result describing $\eta_{M^n}(0)$ for $M^n \in \mathcal{F}_{CHD}$ we need some combinatorial invariants. It is known that $\eta_{M^n}(0) = 0$ if k is even (cf. [1, p. 61]) so we consider the case when k is odd. Let

$$c(k) = \begin{cases} 0 & \text{if } \frac{k(k+1)}{2} \text{ is even} \\ \frac{1}{2} & \text{if } \frac{k(k+1)}{2} \text{ is odd} \end{cases}.$$

For every $\epsilon = (\epsilon_1, \dots, \epsilon_k) \in \{-1, 1\}^k$ consider

$$\mu_\epsilon = \sum_{j=1}^k \epsilon_j j \quad \text{and} \quad \nu(\epsilon) = \epsilon_1 \cdots \epsilon_k.$$

Let $\mathcal{D}_+ = \{\epsilon \in \{-1, 1\}^k : \nu(\epsilon) = \epsilon_1 \epsilon_2 \cdots \epsilon_k = 1\}$, let $r \in \{0, \dots, n-1\}$, let

$$A_r^+ = 2\#\{\epsilon \in \mathcal{D}_+ : \frac{\mu_\epsilon}{2} + c(k)n \equiv r \pmod{n}\}$$

in the case of α_+ , and let

$$A_r^- = 2\#\{\epsilon \in \mathcal{D}_+ : \frac{\mu_\epsilon}{2} + c(k)n + k \equiv r \pmod{n}\}$$

in the case of α_- . The numbers A_r^\pm are well defined (cf. Remark 1).

Theorem 1. *Let k be an odd positive integer and let $n = 2k+1$. If $M^n \in \mathcal{F}_{CHD}$, then*

$$(1) \quad \eta_{M^n, \alpha_+}(0) = \sum_{r=1}^{n-1} A_r^+ \left(1 - \frac{2r}{n} \right),$$

$$(2) \quad \eta_{M^n, \alpha_-}(0) = \sum_{r=0}^{n-1} A_r^- \left(1 - \frac{2r+1}{n} \right).$$

Applying Theorem 1 we prove that some η -invariants of \mathcal{F}_{CHD} -manifolds are integral (Corollary 1) and that $\eta_{M, \alpha_+} - \eta_{M, \alpha_-} \in 2\mathbb{Z}$ (Corollary 2). Let $\mathfrak{h}(V)$ be the dimension of the vector space of harmonic spinors.

Now we state another result of the paper.

Proposition 1. *Let k be a positive integer and let $n = 2k + 1$. If $M \in \mathcal{F}_{CHD}$, then*

- a) $\mathfrak{h}(M, \alpha_+) > 0$ if and only if $n \geq 5$.
- b) $\mathfrak{h}(M, \alpha_-) = 0$.

The spectra of the Dirac operators on flat tori were described in [6]. The spectra of the Dirac operators on closed 3-dimensional flat manifolds and their eta invariants were calculated in [12]. We should also mention about ([11]) where the authors consider spin structure and the Dirac operators on flat manifolds with \mathbb{Z}_p , (p -prime number), and non-cyclic holonomy.

Throughout this paper the following notation will be used. If G is a group and $g_1, \dots, g_l \in G$, then $\langle g_1, \dots, g_l \rangle$ is the subgroup of G generated by g_1, \dots, g_l . The symbol X^G stands for the set of the fixed points of an action of G on X . For every $g \in G$, $X^g = \{x \in X : gx = x\}$. By Γ (or Γ_n) we denote the deck group of a closed flat manifold M , by h the holonomy homomorphism of M , and by \hat{h} its lift to $Spin(n)$. The standard epimorphism from $Spin(n)$ to $SO(n)$ will be denoted by λ (cf. Section 2). The letter Γ_0 stands for the maximal abelian subgroup of Γ consisting of all translations belonging to Γ , (cf. [4] and [15]). By a_1, \dots, a_n we usually denote a basis of Γ_0 . The subspace of a vector space spanned by vectors v_1, \dots, v_l will be denoted by $\text{Span}[v_1, \dots, v_l]$. The symbols α_+ , α_- , $\mathfrak{h}(M)$, $c(k)$, μ_ϵ , $\nu(\epsilon)$, and A_r were defined above. The cyclic group $\langle A \rangle$ will be denoted by G .

We would like to thank Andrzej Weber for helpful conversations. We are grateful to Roberto Miatello for correcting a mistake in an earlier version of the paper and to Bernd Ammann for pointing out a typographic error.

2 Spin structures on \mathcal{F}_{CHD} -manifolds and Dirac operators

Let $k \in \mathbb{N} \cup \{0\}$ and let $n = 2k + 1$. Let Γ be as in the introduction, and let \langle , \rangle^* be an A -invariant scalar product in \mathbb{R}^n . From definition (cf. [4] and [15]) $M = \mathbb{R}^n/\Gamma$ is a closed, orientable, flat manifold. Moreover the eigenvalues of the generator A of the holonomy group of M are equal to $e^{\frac{2\pi i j}{n}}$, $j = 1, \dots, n$. In fact, for every $j = 2, \dots, n - 1$, consider the $(j \times j)$ -matrix

$$M_j = \begin{bmatrix} 0 & 0 & \dots & 0 & -1 \\ 1 & 0 & \dots & 0 & -1 \\ 0 & 1 & \dots & 0 & -1 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -1 \end{bmatrix}.$$

Let $M_j(z) = M_j - zI$. Then

$$\det(A - zI) = (1 - z) \det M_{n-1}(z).$$

Applying the Laplace expansion with respect to the first row we have

$$\det M_j(z) = -z \det M_{j-1}(z) + (-1)^j.$$

Using this it is easy to check that $\det M_j(z) = (-1)^j \sum_{l=0}^j z^l$. Hence

$$\det(A - zI) = (1 - z) \det M_{n-1}(z) = -z^n + 1.$$

Let e_1, \dots, e_n be an orthonormal basis in $(\mathbb{R}^n, \langle , \rangle^*)$. Throughout the rest of the paper we shall always assume (cf. [1, page 61] and [10, Proposition 1.3]) that:

- (i) $e_1, \dots, e_{n-1} \in \text{Span}[a_1, \dots, a_{n-1}]$ and $e_n = a_n$,
- (ii) for every $j \leq n - 1$: $A(e_{2j-1}) = \cos(2\pi j/n)e_{2j-1} + \sin(2\pi j/n)e_{2j}$, and $A(e_{2j}) = -\sin(2\pi j/n)e_{2j-1} + \cos(2\pi j/n)e_{2j}$.

Let $\text{Cliff}(n)$ be the Clifford algebra in \mathbb{R}^n and let $\text{Cliff}_{\mathbb{C}}(n)$ be its complexification. The group $\text{Spin}(n)$ is the set of products $x_1 \cdots x_{2r}$, where $r \in \mathbb{N}$, and where x_1, \dots, x_{2r} are the elements of the unit sphere in \mathbb{R}^n . The standard covering map $\lambda : \text{Spin}(n) \rightarrow SO(n)$ carries $y \in \text{Spin}(n)$ onto $\mathbb{R}^n \ni x \mapsto yxy^*$,

where $(e_{j_1} \cdots e_{j_s})^* = e_{j_s} \cdots e_{j_1}$. A spin structure on an orientable flat manifold $M = \mathbb{R}^n/\Gamma$ is determined by the lift $\widehat{h} : \Gamma \rightarrow \text{Spin}(n)$ of the holonomy homomorphism $h : \Gamma \rightarrow SO(n)$. Recall that h carries $\gamma \in \Gamma$ onto its linear part $h(\gamma)$, (cf. [15, Chapter III]). For $M \in \mathcal{F}_{CHD}$ we have $h(\Gamma) = \langle A \rangle \cong \mathbb{Z}_n$ and any lift \widehat{A} of A to $\text{Spin}(n)$ defines the lift \widehat{h} of h , given by the formulas $\widehat{h}(a_j) = 1$ for $j \leq n - 1$, $\widehat{h}(g) = \widehat{A}$. In order to construct \widehat{A} consider $\beta = \frac{\pi}{n}$,

$$r_j = \cos(j\beta) + e_{2j-1}e_{2j} \sin(j\beta),$$

and $\alpha = \prod_{j=1}^k r_j$. Clearly $r_i r_j = r_j r_i$ for $i, j \in \{1, \dots, k\}$. A direct calculation yields

$$\lambda(r_j)(e_l) = \begin{cases} \cos(2j\beta)e_{2j-1} + \sin(2j\beta)e_{2j} & \text{for } l = 2j - 1 \\ -\sin(2j\beta)e_{2j-1} + \cos(2j\beta)e_{2j} & \text{for } l = 2j \\ e_l & \text{for } l \notin \{2j-1, 2j\} \end{cases}.$$

Using this it is easy to check that

$$\alpha^n = (-1)^{\frac{k(k+1)}{2}}$$

and $\lambda(\alpha) = A$. Now we can define

$$\alpha_+ = (-1)^{\frac{k(k+1)}{2}} \alpha, \quad \alpha_- = -(-1)^{\frac{k(k+1)}{2}} \alpha.$$

Since n is odd,

$$\alpha_+^n = 1 \quad \text{and} \quad \alpha_-^n = -1.$$

We have.

Lemma 1. $H_1(M, \mathbb{Z}) \cong \mathbb{Z} \oplus H$, where H is a finite abelian group of odd order and $H^1(M, \mathbb{Z}_2) \cong \mathbb{Z}_2$.

Proof: The group $\Gamma_0 = \langle a_1, \dots, a_n \rangle$ is the maximal abelian subgroup of Γ and the following sequence

$$0 \rightarrow \Gamma_0 \rightarrow \Gamma \rightarrow \langle A \rangle \rightarrow 1$$

is exact (cf. [4, Proposition 4.1], [15, Theorem 3.2.9]). From [8, Corollary 1.3] we have $\dim_{\mathbb{Q}}(\mathbb{Q} \otimes H_1(\Gamma, \mathbb{Z})) = \dim_{\mathbb{Q}}(\mathbb{Q} \otimes \Gamma_0^A) = 1$. Hence $H_1(M, \mathbb{Z}) \cong \mathbb{Z} \oplus H$, where H is a finite group. According to [3, Chapter 3], there are homomorphisms $res : H_*(M, \mathbb{Z}) \cong H_*(\Gamma, \mathbb{Z}) \rightarrow H_*(\Gamma_0, \mathbb{Z})$ and $cor : H_*(\Gamma_0, \mathbb{Z}) \rightarrow$

$H_*(M, \mathbb{Z})$ such that $cor \circ res$ is the multiplication by n . Since the group $H_*(\Gamma_0, \mathbb{Z}) \cong H_*(T^n, \mathbb{Z})$ is torsion free we have $nH = 0$. In particular, the order of H is odd. For the proof of the last statement we have $H^1(M, \mathbb{Z}_2) \cong \text{Hom}(H_1(M, \mathbb{Z}), \mathbb{Z}_2) \cong \text{Hom}(\mathbb{Z}, \mathbb{Z}_2) \cong \mathbb{Z}_2$. \square

Since α_+ , α_- are different lifts of the holonomy homomorphism h to $Spin(n)$, the spin structures determined by them are different. It is known that spin structures on M correspond to the elements of $H^1(M, \mathbb{Z}_2)$ ([7, p. 40]).

By [7, Section 1.3], the irreducible complex $\text{Cliff}_{\mathbb{C}}(n)$ -module Σ_{2k} can be described as follows. Consider

$$g_1 = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \quad g_2 = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}, \quad T = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}.$$

Let $\Sigma_{2k} = \underbrace{\mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2}_{k \text{ times}}$ and let $\alpha(j) = \begin{cases} 1 & \text{if } j \text{ is odd} \\ 2 & \text{if } j \text{ is even} \end{cases}$. Take an element $u = u_1 \otimes \dots \otimes u_k$ of Σ_{2k} and the orthonormal basis e_1, \dots, e_n considered above. Then

$$e_j u = (I \otimes \dots \otimes I \otimes g_{\alpha(j)} \otimes \underbrace{T \otimes \dots \otimes T}_{[\frac{j-1}{2}] \text{ times}})(u),$$

for $j \leq n-1$, and

$$e_n u = i(T \otimes \dots \otimes T)u.$$

A spin structure on M determines a complex spinor bundle $P\Sigma_{2k}$ with fiber Σ_{2k} . This bundle is the orbit space of $\mathbf{R}^n \times \Sigma_{2k}$ by the action of Γ given by

$$\gamma(x, v) = (\gamma x, \widehat{h}(\gamma)v), \tag{1}$$

where $\gamma \in \Gamma$, $x \in \mathbf{R}^n$ and $v \in \Sigma_{2k}$. Clearly

$$\widehat{h}(a_j) = 1 \text{ for } j \leq n-1$$

and

$$\widehat{h}(g) = \alpha_{\pm}.$$

Since $\text{Span}[e_1, \dots, e_{n-1}] = \text{Span}[a_1, \dots, a_{n-1}]$ and $a_n = e_n$ we conclude that

$$\widehat{h}(e_j) = 1 \text{ for } j \leq n-1.$$

Consider the covering $T^n = \mathbb{R}^n/\Gamma_0 \rightarrow M$. We have $\hat{h}(a_n) = \pm 1$. The lift $P_T\Sigma_{2k}$ of $P\Sigma_{2k}$ to T^n is the orbit space $(\mathbb{R}^n \times \Sigma_{2k})/\Gamma_0$, where the action of Γ_0 on $\mathbb{R}^n \times \Sigma_{2k}$ is given by the formula (1).

To deal with the spectrum of the Dirac operator D it is convenient to describe it in terms of the spectrum of D^2 . We state without proofs some related results of [12] that will be used later. Identify the parallel section $\mathbb{R}^n \ni x \rightarrow (x, v) \in \mathbb{R}^n \times \Sigma_{2k}$ with v . Every section (spinor) of the trivial bundle $\mathbb{R}^n \times \Sigma_{2k}$ (covering our bundle $P\Sigma_{2k}$) can be written as a linear combination of fv , where $f \in C^\infty(\mathbb{R}^n, \mathbb{C})$ and v is a parallel section. Take the coordinate system x_1, \dots, x_n determined by e_1, \dots, e_n . Since v is parallel,

$$D(fv) = \sum_j e_j \nabla_{e_j}(fv) = \sum_j e_j \left(\frac{\partial}{\partial x_j}(f)v + f \nabla_{e_j} v \right) = \sum_j e_j \frac{\partial f}{\partial x_j} v. \quad (2)$$

Let Γ_0^* be the dual lattice of Γ_0 . Let \mathcal{B} be Γ_0^* in the case of α_+ and $\Gamma_0^* + \frac{1}{2}e_n$ in the case of α_- . The action of g on the set of sections of $\mathbb{R}^n \times \Sigma_{2k}$, induced by the action of g on \mathbb{R}^n , is given by the formula

$$g(\phi)(x) = \hat{h}(g)\phi(g^{-1}x), \quad (3)$$

where ϕ is a spinor on \mathbb{R}^n .

Consider $f_b(x) = e^{2\pi i \langle b, x \rangle}$. By immediate calculation or following ([12]) we have

$$D^2(f_b v) = 4\pi^2 \|b\|^2 f_b v. \quad (4)$$

Hence the sections $f_b v, b \in \mathcal{B}, v \in \Sigma_{2k}$, correspond to eigenvectors of D on T^n , and the elements of $\{f_b v : v \in \Sigma_{2k}, b \in \mathcal{B}\}^g$ correspond to eigenvectors of D on M .

For $b \in \mathcal{B}$, let us denote the corresponding D^2 -eigenspace by $E_b(D^2) = \text{Span}\{f_b v : v \in \Sigma_{2k}\}$. We have the decomposition $E_b(D^2) = E_{b+}(D) \oplus E_{b-}(D)$, where

$$E_{b\pm}(D) = \{p \in E_b(D^2) : Dp = \pm 2\pi \|b\| p\}.$$

Since

$$(f_b \circ g^{-1})(x) = e^{-2\pi i \langle A(b), a \rangle} f_{A(b)}(x) \quad (5)$$

we have $A E_b \subseteq E_{A(b)}$, (cf. [12, Lemma 4.1]). Denote $\langle A \rangle$ by G .

Let $\mathcal{B}_{Sym} = \{b \in \mathcal{B} : \#G(b) = \#G\}$, $\mathcal{B}_{Pas} = \{b \in \mathcal{B} : \#G(b) < \#G\}$ and

$$D_S = D|_{[\bigoplus_{b \in \mathcal{B}_{Sym}} E_b(D^2)]^g}, \quad D_{Pas} = D|_{[\bigoplus_{b \in \mathcal{B}_{Pas}} E_b(D^2)]^g}. \quad (6)$$

Clearly \mathcal{B} is the disjoint union of \mathcal{B}_{Sym} and \mathcal{B}_{Pas} and the Dirac operator D on M can be identified with $D_S \oplus D_{Pas}$. If $b \in \mathcal{B}_{Sym}$ and

$$V_b^\pm = \bigoplus_{h \in G} E_{h(b^\pm)}(D^2)$$

then $\dim(V_b^\pm)^g = \dim E_b^\pm(D) = 2^{k-1}$ (cf. [12, Theorem 4.2, Corollary 4.3]).

3 Eta invariants of \mathcal{F}_{CHD} -manifolds

The aim of this section is to prove Theorem 1. Recall that the η -invariant of the Dirac operator on a closed spin manifold M is defined as follows. As D is elliptic formally self adjoint, it has discrete real spectrum and the series $\sum_{\lambda \neq 0} \operatorname{sgn} \lambda |\lambda|^{-z}$ converges for $z \in \mathbb{C}$ with $\operatorname{Re}(z)$ sufficiently large ([1, Theorem 3.10]). Here summation is taken over all nonzero eigenvalues λ of D , each eigenvalue being repeated according to its multiplicity. The function $z \rightarrow \sum_{\lambda \neq 0} \operatorname{sgn} \lambda |\lambda|^{-z}$ can be extended to a meromorphic function η_M in the whole complex plane such that 0 is a regular point of η_M ([1, Theorem 3.10]). The *eta-invariant* of M is $\eta_M(0)$.

Define an endomorphism ρ_1 of \mathbb{C}^2 by the formula

$$\rho_1(u) = \cos \beta u + \sin \beta g_1 g_2 u.$$

The matrix of ρ_1 is equal to

$$\cos \beta I + \sin \beta \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}$$

so that the matrix of ρ_1^j is equal to

$$\cos(\beta j) I + \sin(\beta j) \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

The following lemma is crucial.

Lemma 2. *Let $w_{+1} = (1, -i)$, let $w_{-1} = (1, i)$, let $\epsilon = (\epsilon_1, \dots, \epsilon_k) \in \{-1, 1\}^k$, and let $v_\epsilon = w_{\epsilon_1} \otimes \dots \otimes w_{\epsilon_k}$. Let $\beta = \frac{\pi}{n}$ and let μ_ϵ be as in Theorem 1. Take $u = u_1 \otimes \dots \otimes u_k \in \Sigma_{2k}$. Then*

a) $\alpha u = \rho_1 u_1 \otimes \dots \otimes \rho_1^k u_k$,

- b) $\alpha e_n u = e_n \alpha u$,
- c) $\rho_1(w_{\pm 1}) = e^{\pm i\beta} w_{\pm 1}$,
- d) $\alpha v_\epsilon = e^{i\beta \mu_\epsilon} v_\epsilon$ and $\{v_\epsilon : \epsilon \in \{-1, 1\}^k\}$ is a basis of Σ_{2k} ,
- e) $e_n v_\epsilon = -i\nu(\epsilon) v_\epsilon$.

Proof. a) Since $T^2 = id$,

$$e_{2j-1} e_{2j}(u_1 \otimes \dots \otimes u_j \otimes \dots \otimes u_k) = u_1 \otimes \dots \otimes g_1 g_2(u_j) \otimes \dots \otimes u_k$$

and consequently

$$r_j(u_1 \otimes \dots \otimes u_j \otimes \dots \otimes u_k) = u_1 \otimes \dots \otimes \rho_1^j(u_j) \otimes \dots \otimes u_k.$$

Hence

$$\alpha(u_1 \otimes \dots \otimes u_k) = (r_1 \cdots r_k)(u_1 \otimes \dots \otimes u_k) = \rho_1(u_1) \otimes \dots \otimes \rho_1^k(u_k).$$

- b) For $j \leq k$ we have $e_{2j-1} e_{2j} e_n = e_n e_{2j-1} e_{2j}$ so that $r_j e_n = e_n r_j$.
- c) is obvious.
- d) By c), $r_1(w_{\epsilon_j}) = e^{i\beta \epsilon_j} w_{\epsilon_j}$. Hence

$$\alpha(v_\epsilon) = r_1(w_{\epsilon_1}) \otimes \dots \otimes r_1^k(w_{\epsilon_k}) = e^{i\beta \mu_\epsilon} v_\epsilon.$$

Since $\#\{v_\epsilon : \epsilon \in \{-1, 1\}^k\} = 2^k = \dim \Sigma_{2k}$ and the vectors v_ϵ are linearly independent, they form a basis of Σ_{2k} .

- e) We have $T(w_1) = -w_1$ and $T(w_{-1}) = w_{-1}$. It follows that

$$e_n v_\epsilon = iT w_{\epsilon_1} \otimes \dots \otimes T w_{\epsilon_k} = i(-1)^{\#\{j \in \{1, \dots, k\} : \epsilon_j = 1\}} v_\epsilon = -i\nu(\epsilon) v_\epsilon.$$

This finishes the proof of Lemma 2. \square

Let $\mathcal{E}(\lambda, D_{Pas})$ be the eigenspace of λ for D_{Pas} on M . From the definition and (4), (5) it is easy to see that $\lambda = 2\pi l$ in the case of α_+ and $\lambda = 2\pi(l + \frac{1}{2})$ in the case of α_- , where $l \in \mathbb{Z}$. In the case α_+ , $\mathcal{B}_{Pas} = \{le_n : l \in \mathbb{Z}\}$ and we have

$$D(f_{le_n} v_\epsilon) = -\frac{\partial}{\partial x_n}(e^{2\pi i \langle le_n, x \rangle}) i\nu(\epsilon) v_\epsilon = \nu(\epsilon) 2\pi l f_{le_n} v_\epsilon. \quad (7)$$

Hence $\mathcal{E}(2\pi l, D_{Pas}) = \text{Span}[f_{\nu(\epsilon)le_n} v_\epsilon : \epsilon \in \{-1, 1\}^k]^g$. Similar formulas are also true for α_- , where $\mathcal{B}_{Pas} = \{(l + \frac{1}{2})e_n : l \in \mathbb{Z}\}$.

Now we are able to describe the spectrum of D_{Pas} .

Proposition 2. Let $n, k, M, \mu_\epsilon, \nu(\epsilon)$, and $c(k)$ be as in Theorem 1. Let $b^+ = le_n$ and $b^- = (l + \frac{1}{2})e_n$, where $l \in \mathbb{Z}$.

a) If the spin structure is given by α_+ , then

$$\mathcal{E}(2\pi l, D_{Pas}) = \text{Span}[f_{\nu(\epsilon)b^+}v_\epsilon : \frac{\mu_\epsilon}{2} + c(k)n \equiv \nu(\epsilon)l \pmod{n}].$$

b) If the spin structure is given by α_- , then

$$\mathcal{E}(2\pi(l + \frac{1}{2}), D_{Pas}) = \text{Span}[f_{\nu(\epsilon)b^-}v_\epsilon : \frac{\mu_\epsilon}{2} + c(k)n + \frac{n-1}{2} \equiv \nu(\epsilon)l \pmod{n}].$$

Remark 1. Since $\epsilon_j - 1$ are even, the difference $\mu_\epsilon - k(k+1)/2 = \sum_{j=1}^k \epsilon_j j - \sum_{j=1}^k j$ is divisible by 2. Using this and the definition of $c(k)$ it is easy to see that $\mu_\epsilon/2 + c(k)n$ is an integer.

Proof of Proposition 2. a) From the definitions of α_+ and $c(k)$ it follows that $\alpha_+ = (-1)^{2c(k)}\alpha$. We have

$$\begin{aligned} g(f_{le_n}(x)v_\epsilon) &= f_{le_n}(g^{-1}x)\alpha_+v_\epsilon = e^{-\frac{2\pi i l}{n}}f_{le_n}(x)(-1)^{2c(k)}\alpha v_\epsilon \\ &= e^{-\frac{2\pi i}{n}(l-\frac{\mu_\epsilon}{2}-c(k)n)}f_{le_n}(x)v_\epsilon. \end{aligned}$$

By the above one gets the required conditions.

b) In the case of α_- the eigenvectors of D_{Pas} on T^n can be written as $f_{(l+\frac{1}{2})e_n}v$ for $l \in \mathbb{Z}, v \in \Sigma_{2k}$. We have

$$gf_{(l+\frac{1}{2})e_n}(x)v_\epsilon = e^{-\frac{2\pi i}{n}(l-c(k)n-\frac{n-1}{2}-\frac{\mu_\epsilon}{2})}f_{(l+\frac{1}{2})e_n}(x)v_\epsilon.$$

Hence $f_{(b^-)}v_\epsilon$ is g -equivariant if and only if $l \in n\mathbb{Z} + c(k)n + \frac{n-1}{2} + \frac{\mu_\epsilon}{2}$. The rest of the argument is the same as in a). This finishes the proof of Proposition 2. \square

Lemma 3. Let $M \in \mathcal{F}_{CHD}$ be an n -dimensional with $k = [\frac{n-1}{2}]$ odd and with a fixed spin structure. Let m be a natural number such that $m \equiv r \pmod{n}$. Assume that $f_b v_\epsilon \in \mathcal{E}(\lambda, D_{Pas})$. Then

- a) $f_{-b}v_{-\epsilon} \in \mathcal{E}(\lambda, D_{Pas})$,
- b) $\dim \mathcal{E}(2\pi(m), D_{Pas}) = A_r^+$ and $\dim \mathcal{E}(2\pi(m + \frac{1}{2}), D_{Pas}) = A_r^-$.

Proof. a) If the spin structure on M is α_+ , then $b = le_n$ for some $l \in \mathbb{Z}$, and, from the equivariance of $f_b v_\epsilon$, it follows that

$$l \equiv \frac{\mu_\epsilon}{2} + c(k)n \pmod{n}.$$

Hence

$$-l \equiv \frac{\mu_{-\epsilon}}{2} + c(k)n \pmod{n}$$

and $f_{-b} v_{-\epsilon}$ is g -equivariant. By the assumption that k is odd, $\nu(-\epsilon) = -\nu(\epsilon)$. According to Lemma , $f_{-b} v_{-\epsilon} \in \mathcal{E}(\lambda, D_{Pas})$.

If the spin structure is α_- , then we use the congruence

$$l \equiv \frac{\mu_\epsilon}{2} + c(k)n + k \pmod{n}.$$

Since $\mu_{-\epsilon} = -\mu_\epsilon$, $c(k)n \equiv -c(k) \pmod{n}$, and $-k - 1 \equiv k \pmod{n}$ we have

$$-l - 1 \equiv \frac{\mu_{-\epsilon}}{2} + c(k)n + k \pmod{n}$$

and consequently $f_{-b} v_{-\epsilon}$ is g -equivariant.

b) If the spin structure is α_+ , then using Proposition 2 and a), we get

$$\dim \mathcal{E}(2\pi(m), D_{Pas}) = \dim \mathcal{E}(2\pi(r), D_{Pas})$$

$$= 2\#\{\epsilon \in \mathcal{D}_+ : \frac{\mu_\epsilon}{2} + c(k)n \equiv r \pmod{n}\} = A_r^+.$$

In the case of α_- we get

$$\dim \mathcal{E}(2\pi(m + \frac{1}{2}), D_{Pas}) = \dim \mathcal{E}(2\pi(r + \frac{1}{2}), D_{Pas})$$

$$= 2\#\{\epsilon \in \mathcal{D}_+ : \frac{\mu_\epsilon}{2} + c(k)n + k \equiv r \pmod{n}\} = A_r^-.$$

□

Proof of Theorem 1. We shall modify of a proof of Lemma 5.5 from [12].

a) Let $m \in \mathbb{Z}$, and let $\mathcal{S}_r = \{2\pi(m) : m \equiv r \pmod{n}\}$. It is clear that \mathcal{S}_r are disjoint and $\mathcal{S}_{Pas} \subseteq \bigcup_{r=0}^{n-1} \mathcal{S}_r$. Since D_S has symmetric spectrum,

$$\eta_M(z) = \sum_{\lambda \in \mathcal{S}_{Pas}} \frac{\text{sgn}(\lambda)}{|\lambda|^z} \dim \mathcal{E}(\lambda, D_{Pas})$$

for $\operatorname{Re}(z)$ sufficiently large. By Lemma 3 b), $\dim \mathcal{E}(\lambda, D_{Pas}) = A_r^+$ for $\lambda \in \mathcal{S}_r$. If $A_0^+ \neq 0$, then the eigenvalue $\lambda \in \mathcal{S}_0$ occur together with $-\lambda$ with the same multiplicity A_0^+ so that $\sum_{\lambda \in \mathcal{S}_0 - \{0\}} \frac{A_0^+ \operatorname{sgn}(\lambda)}{|\lambda|^z} = 0$ and, for $\operatorname{Re}(z)$ sufficiently big,

$$\begin{aligned} \eta_M(z) &= \sum_{r=1}^{n-1} \sum_{m=-\infty}^{\infty} \frac{A_r^+ \operatorname{sgn}(2\pi(mn+r))}{|2\pi(mn+r)|^z} = \sum_{r=1}^{n-1} \sum_{m=-\infty}^{\infty} \frac{A_r^+ \operatorname{sgn}(2\pi n(m + \frac{r}{n}))}{|2\pi n(m + \frac{r}{n})|^z} \\ &= \sum_{r=1}^{n-1} \frac{A_r^+}{|2\pi n|^z} \left(\sum_{m=0}^{\infty} \frac{1}{(m + \frac{r}{n})^z} - \sum_{m=0}^{\infty} \frac{1}{(m + 1 - \frac{r}{n})^z} \right). \end{aligned}$$

The last two series are known as generalized zeta functions (cf. [14]). They have meromorphic extensions on \mathbb{C} without poles in $z = 0$. Let $\zeta(z, a)$ denote the function defined by $\sum_{m=0}^{\infty} \frac{1}{(m + \frac{r}{n})^z}$ for $\operatorname{Re}(z)$ sufficiently big. One gets for the extension: $\zeta(0, a) = \frac{1}{2} - \frac{r}{n}$. Hence

$$\eta_M(0) = \sum_{r=1}^{n-1} A_r^+ \left(1 - \frac{2r}{n} \right).$$

b) We use similar arguments as those given in the proof of a). Now the component \mathcal{S}_0 is not symmetric so that we do not remove $r = 0$ from the formula describing $\eta_M(z)$. The equality

$$2\pi \left(mn + r + \frac{1}{2} \right) = 2\pi n \left(m + \frac{2r+1}{2n} \right)$$

and the above considerations implies that

$$\eta_M(0) = \sum_{r=0}^{n-1} A_r^- \left(1 - \frac{2r+1}{n} \right).$$

This finishes the proof of Theorem 1. \square

We have.

Corollary 1 *Let n be a prime number greater than 3 such that $n+1$ is divisible by 4 and let $M^n \in \mathcal{F}_{CHD}$ be a flat manifold with a fixed spin structure. Then $\eta_{M^n} \in \mathbb{Z}$.*

Proof: Let $l = \frac{n+1}{4}$. It is known (cf. [13, chapter 9] that 2^s copies of M^n is a boundary of a spin manifold W^{n+1} for some $s \in \mathbb{N}$. By [1, Theorem 4.2]

$$\int_{W^{n+1}} \hat{A}_l(p) - \frac{2^s \eta_{M^n}}{2} \in \mathbb{Z},$$

where \hat{A}_l is the l -th \hat{A} -polynomial on Pontriagin classes. By [9] $\int_{W^{n+1}} \hat{A}_l(p)$ can be written as $\frac{C_{W^{n+1}}}{q_1 \dots q_r}$, where $C_{W^{n+1}} \in \mathbb{Z}$ and where $q_1, \dots, q_r \in \{2, 3, \dots, n-1\}$ are prime numbers. From Theorem 1 $\eta_{M^n} = \frac{C_{M^n}}{n}$, for some $C_{M^n} \in \mathbb{Z}$. Since $\frac{C_{W^{n+1}}}{q_1 \dots q_r} - 2^{s-1} \eta_{M^n} \in \mathbb{Z}$ we have $\frac{2^{s-1} q_1 \dots q_r C_{M^n}}{n} \in \mathbb{Z}$. Hence $\eta_{M^n} \in \mathbb{Z}$. \square

Corollary 2 *Let n be an odd number. If $M^n \in \mathcal{F}_{CHD}$, then $d = \eta_{M^n, \alpha^+} - \eta_{M^n, \alpha^-} \in 2\mathbb{Z}$.*

Proof: By [5, Theorem 1.1], $d \in \frac{1}{2}\mathbb{Z}$. From the definition (cf. page 2) all A_r^\pm belongs to $2\mathbb{Z}$. Hence $d = \frac{2C}{n}$ for some $C \in \mathbb{Z}$. Summing up $\frac{dn}{2} \in \mathbb{Z}$ and $d \in 2\mathbb{Z}$. \square

Example 1. We calculate η_{M^7, α^+} , where $M^7 \in \mathcal{F}_{CHD}$. Since $\frac{k(k+1)}{2} = 6$ is even our equation is

$$r \equiv \frac{\mu_\epsilon}{2} \pmod{7}.$$

The values of $\frac{\mu_\epsilon}{2}$ and r for $\epsilon \in \mathcal{D}_+$ are given in the following table.

ϵ	$\frac{\mu_\epsilon}{2}$	r
(1, 1, 1)	3	3
(1, -1, -1)	-2	5
(-1, 1, -1)	-1	6
(-1, -1, 1)	0	0

It follows that $A_j^+ = 2$, for $j = 0, 3, 5, 6$ and $A_j^+ = 0$ for other values of j . By Theorem 1,

$$\eta_M^7(0) = 2 \left[\left(1 - \frac{6}{7}\right) + \left(1 - \frac{10}{7}\right) + \left(1 - \frac{12}{7}\right) \right] = -2.$$

4 Harmonic spinors on \mathcal{F}_{CHD} -manifolds

A harmonic spinor on a closed spin manifold M is an element of the kernel of the Dirac operator on M .

Proof of Proposition 1. a) We have

$$gv_\epsilon = (-1)^{\frac{k(k+1)}{2}} \alpha v_\epsilon = (-1)^{\frac{k(k+1)}{2}} e^{\frac{2\pi i}{2n} \mu_\epsilon} v_\epsilon.$$

First consider the case when $k(k+1)/2$ is even. Then $gv_\epsilon = v_\epsilon$ if and only if

$$\mu_\epsilon \equiv 0 \pmod{(2n)}$$

and $k = 4k_0 + 3$ or $k = 4k_0$. Let δ_4 denote the sequence $1, -1, -1, 1$. If $k = 4k_0 + 3$ and

$$\epsilon = (-1, -1, 1, \underbrace{\delta_4, \dots, \delta_4}_{k_0 \text{ times}}, \dots),$$

then ϵ belongs to $\{-1, 1\}^k$ and $\mu_\epsilon = 0$. If $k = 4k_0$ and

$$\epsilon = (\underbrace{\delta_4, \dots, \delta_4}_{k_0 \text{ times}}, \dots),$$

then ϵ belongs to $\{-1, 1\}^k$ and $\mu_\epsilon = 0$. In particular, $\mathfrak{h}(M) > 0$.

Now assume that $k > 2$ and $k(k+1)/2$ is odd. Then $gv_\epsilon = v_\epsilon$ if and only if

$$\mu_\epsilon \equiv n \pmod{(2n)}$$

and $k = 4k_0 + 1$ or $k = 4k_0 + 2$. If $k = 4k_0 + 1$ consider

$$\epsilon = (1, -1, 1, \underbrace{\delta_4, \dots, \delta_4}_{k_0-1 \text{ times}}, 1, 1)$$

and if $k = 4k_0 + 2$ consider

$$\epsilon = (-1, 1 - 1, 1, \underbrace{\delta_4, \dots, \delta_4}_{k_0-1 \text{ times}}, 1, 1).$$

In both cases $\epsilon \in \{-1, 1\}^k$ and $\mu_\epsilon = n$. It is easily seen that the equation $\mu_\epsilon \equiv 0 \pmod{(2n)}$ have no solutions for $k = 1$ or 2 .

b) Since $g^n = -id$, the equation $gv = v$ have only one solution $v = 0$. \square

It is easy to see that the equality $\alpha_+ v_\epsilon = v_\epsilon$ implies $\alpha_+ v_{-\epsilon} = v_{-\epsilon}$. Using this and the arguments given in the proof of Proposition 1 we have.

Corollary 3 *If $M \in \mathcal{F}_{CHD}$ and $\dim M = 2k + 1$, then*

$$\mathfrak{h}(M, \alpha_+) = 2\#\{\epsilon \in \mathcal{D}_+ : \frac{\mu_\epsilon}{2} + c(k)n \equiv 0 \pmod{2k+1}\}.$$

References

- [1] ATIYAH, M.F.; PATODI, V.K.; SINGER I.M.; Spectral asymmetry and Riemannian geometry I. *Math. Proc. Cambridge Philos. Soc.* **77** (1975), 43-69;
- [2] BÄR CH.; Dependence of the Dirac spectrum on the spin structure. *Sémin. Congr.* **4** (2000), 17-33;
- [3] BROWN K.S.: *Cohomology of groups*. Springer, Berlin 1982.
- [4] CHARLAP L.S.: *Bieberbach Groups and Flat Manifolds*. Springer-Verlag, 1986.
- [5] DAHL M.; Dependence on the spin structure of the eta and Rokhlin invariants. *Topology Appl.* **118** (2002), 345-355;
- [6] FRIEDRICH T.; Zur Abhängigkeit des Dirac-Operators von der Spin-Struktur. *Colloq. Math.* **47** (1984), 57-62.
- [7] FRIEDRICH T.: *Dirac Operators in Riemannian Geometry*. AMS, Graduate Studies in Math., Vol. 25 Providence, Rhode Island, 2000.
- [8] HILLER H., SAH C.H.; Holonomy of flat manifolds with $b_1 = 0$. *Q. J. Math.* **37** (1986), 177-187;
- [9] HIRZEBRUCH F., *Topological methods in algebraic geometry*, Springer, Berlin 1966
- [10] HITCHIN N.; Harmonic spinors. *Adv. Math.* **14** (1974), 1-55;
- [11] MIATELLO R.J.; PODESTA R.A. The spectrum of twisted Dirac operators on compact flat manifolds - preprint 2003, arXive:math.DG/0312004
- [12] PFAFFLE F.; The Dirac spectrum of Bieberbach manifolds. *J. Geom. Phys.* **35** (4) 2000, 367-385;

- [13] STONG R.E.: *Notes on cobordism theory*, Princeton University Press, Princeton 1968.
- [14] WHITTAKER E.T., WATSON G.N.: *A Course in Modern Analysis* fourth edition, Cambridge University Press, London, 1963
- [15] WOLF J.A.: *Spaces of constant curvature*. McGraw-Hill, 1967.

Institute of Mathematics
University of Gdańsk
ul.Wita Stwosza 57
80 - 952 Gdańsk
Poland
E - mail : msa @ delta.math.univ.gda.pl
E - mail : matas @ paula.univ.gda.pl