Math 110, Spring 2019

Contents

1	Inner Product Spaces	2
	1.1 Inner Product and Norms	2

1 Inner Product Spaces

Motivation

Recall that

Definition 1.1

In \mathbb{R}^n , the dot product of \vec{x} and \vec{y} is defined by

$$\vec{x} \cdot \vec{y} \coloneqq x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

for
$$\vec{x} = (x_1, x_2, \dots, x_n), \vec{y} = (y_1, y_2, \dots, y_n).$$

1.1 Inner Product and Norms

Settings

V is a vector space over \mathbb{F} , we can define the following mapping $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$.

Definition 1.2

 $\langle \cdot, \cdot \rangle$ is called an inner product if it satisfying the following rules:

1.
$$\langle \vec{v} + \vec{u}, \vec{w} \rangle = \langle \vec{v} + \vec{w} \rangle + \langle \vec{u}, \vec{w} \rangle, \ \forall \vec{v}, \vec{u}, \vec{w} \in V$$

2.
$$\langle \lambda \vec{v}, \vec{w} \rangle = \lambda \langle \vec{v} + \vec{w} \rangle, \ \forall \vec{v} \vec{u}, \vec{w} \in V, \lambda \in \mathbb{F}$$

3.
$$\langle \vec{v}, \vec{w} \rangle = \overline{\langle \vec{w}, \vec{v} \rangle}, \ \forall \vec{v}, \vec{w} \in V$$

4.
$$\langle \vec{v}, \vec{v} \rangle \ge 0$$
, $\forall \vec{v} \in V$

5.
$$\langle \vec{v}, \vec{v} \rangle = 0$$
 iff $\vec{v} = \vec{0}$.

Question 1.3

What about linearity in the second slot?

Answer 1.4. We can compute

$$\langle \vec{v}, \vec{u} + \vec{w} \rangle = \overline{\langle \vec{u} + \vec{w}, \vec{v} \rangle} = \overline{\langle \vec{u}, \vec{v} \rangle + \rangle \vec{w}, \vec{v}} = \overline{\langle \vec{u}, \vec{v} \rangle} + \overline{\langle \vec{w}, \vec{v} \rangle} = \langle \vec{v}, \vec{u} \rangle + \langle \vec{v}, \vec{w} \rangle$$
$$\langle \vec{v}, \lambda \vec{u} \rangle = \overline{\langle \lambda u, \vec{v} \rangle} = \overline{\lambda} \overline{\langle \vec{u}, \vec{v} \rangle} = \overline{\lambda} \overline{\langle \vec{u}, \vec{v} \rangle} = \overline{\lambda} \langle \vec{v}, \vec{u} \rangle$$

Not quite. ©

Remark 1.5

If $\vec{v} \in V$ is fixed then the function $\langle \cdot, \vec{v} \rangle : \vec{u} \mapsto \langle \vec{u}, \vec{v} \rangle$ is a function functional.

Example 1.6

On \mathbb{R}^n , we could use any function of the type

$$c_1 x_1 y_1 + c_2 x_2 y_2 + \dots + c_n x_n y_n$$

where all $c_j \in \mathbb{R}^+$.

Remark 1.7 (Generalization to \mathbb{C}^n)

The inner product of this form of the standard product to \mathbb{C}^n can be defined as

$$\langle \vec{x}, \vec{y} \rangle = x_1 \overline{y}_1 + x_2 \overline{y}_2 + \dots + x_n \overline{y}_n$$

Remark 1.8 (Generalization to any function space)

$$\langle f, g \rangle \coloneqq \int_D f(t) \overline{g(t)} dt$$

or generally

$$\langle f, g \rangle \coloneqq \int_D f(t) \overline{g(t)} w(t) dt$$

where w(t) is the positive weight function. e.g. if $V = \mathcal{P}(\mathbb{R})$, or $V = \mathcal{P}(\mathbb{C})$, then

$$\langle f, g \rangle \coloneqq \int_0^\infty f(t) \overline{g(t)} e^{-t} dt$$

Definition 1.9

For $v \in V$, the (Euclidean) Norm is defined as

$$||v|| \coloneqq \sqrt{\langle v, v \rangle}$$

Theorem 1.10

$$||\lambda v|| = |\lambda| \ ||v|| \ \forall v \in V, \forall \lambda \in \mathbb{F}$$

Last updated: April 1, 2019