

School: School of Electrical and Electronic Engineering

Part I - Highlights

Week 7 - Thermal Oxidation

Thermal Oxidation

Applications:

- Mask for implantation and diffusion,
- Isolation,
- Gate oxide of MOS structures for insulation, and
- Surface passivation.

Thickness of Oxide

Silicon Substrate

- There are two oxidation methods:
 - Dry oxidation, and
 - Wet oxidation.

$$t = \frac{t_{ox}^2}{B} + \frac{t_{ox}}{B/A} - \tau$$
or
$$t_{ox}^2 + At_{ox} = B(t+\tau)$$
 (Equation 7.34)

where
$$A = \frac{2D}{k_s}$$
, $B = \frac{2DN_0}{M}$ and $\tau = \frac{t_{oxi}^2}{B} + \frac{t_{oxi}}{B/A}$

t is time, t_{oxi} is the initial oxide thickness on the wafer before oxidation and τ is the time required to grow the initial oxide.

Thickness of Oxide

$$t_{ox} = \frac{-A + \sqrt{A^2 + 4B(t+\tau)}}{2}$$
 (Equation 7.35)

For **short time** with $t + \tau << A^2/4B$:

$$t_{ox} = \frac{B}{A}(t+\tau)$$
 (Equation 7.36)

For **long time** with $t + \tau >> A^2/4B$, $t > \tau$:

$$t_{ox} = \sqrt{Bt}$$
 (Equation 7.37)

Note:

B/A is called **linear rate** coefficient. (Growth rate is limited by the reaction at the silicon interface; it depends on Si-Si bond strength and not by diffusivity.)

B is called parabolic rate coefficient. (Oxidation rate is diffusion limited.)

Thickness of Oxide (Cont'd.)

Factors affecting Oxidation Rate

- Growth techniques: wet versus dry
- Growth temperature
- Pressure
- Crystal orientation: (100) versus (111)
- Impurity doping

Oxide Thickness Measurement Techniques

- Color Chart
- Ellipsometry
- TEM (Transmission Electron Microscopy)

Week 7 – Part I - Revision 5