A (Very) Short Introduction to R on Smell Testing Data for Wet Lab Scientists

Alice Zhu

Review of Lecture 1

Pre-processing data: import and inspect data

Plot your data: Stripplot, Scatter plot, Density plot, Box plot, Violin plot

Identify outlier sample via heatmap, pairwise correlation plot

Credits

Review of Lecture 1

Recapitulation of Rstudio features: layout and utility

Figure 1:UI of Rstudio

Create a new project

- ▶ Demo of steps
- ► Console utility
- ▶ Save your work (scripts & R objects) for reproducibility

Pre-processing data: import and inspect data

Pre-processing your Data: Importing data

- The raw data usually consists of the numeric data and a description for the experimental design pertaining to the numeric data.
- ▶ Please download the data and description files from:
 - Data: TODO(insert link)
 - Description of data: TODO(insert link)
- Let's import the data by typing the command below into the console, and press enter:

```
# set your working directory before retrieving the files
setwd("/Users/jingyunzhu/Documents/R_workshop")
```

Error in setwd("/Users/jingyunzhu/Documents/R_workshop"): cannot change work

```
# import the numeric data
data <- read.table("data/GSE7191-data.txt", header=TRUE, row.names=1)
# import the design info
design <- read.table("data/gse7191-design.txt", header=TRUE, row.names=1)</pre>
```

Pre-processing your Data: Inspect data

- read.table() renders the imported data in a data.frame
- ► To view the data.frame instances, you can click on the data and design icon inside the Environment panel on your RHS.

```
View(data)
View(design)
```

▶ What's their dimension size?

[1] 50 4

```
dim(data) # try ncol(), or nrow()

## [1] 12422 50

dim(design)
```

Take a look at the structure of data

str(data)

Take a look at the structure of design

str(design)

```
## 'data.frame': 50 obs. of 4 variables:
```

How are the samples assigned based on the experimental design?

Based on each of the categorical factors in the design:

summary(design)

```
##
       DateRun
                     Genotype
                                    BrainRegion
                                                   Sex
##
   08/14/03:8
                S1P2_KO :20
                               hippocampus:25 female:26
##
   08/21/03:8
                S1P3_KO :10
                               neocortex :25 male :24
##
   01/16/04:7
                Wild_type:20
##
   09/11/03:7
##
   10/23/03:7
##
   12/18/03:5
##
    (Other) :8
```

Sample distribution based on >1 categorical factors

```
with(design, table(Genotype, BrainRegion, Sex))
```

```
## . . Sex = female
##
##
             BrainRegion
## Genotype
             hippocampus neocortex
##
    S1P2 KO
                         5
##
    S1P3 KO
                                  3
##
    Wild_type
##
## . . Sex = male
##
##
             BrainRegion
             hippocampus neocortex
## Genotype
##
    S1P2 KO
                         5
    S1P3 KO
##
##
    Wild_type
```

Alternatively, you could try table()

How about the distribution of the expression level in each sample?

summary() can integrate the results that are outputted from min(), max(), range(), fivenum(), mean(), median(), quantile()

summary(data)

```
GSM172927
                         GSM172928
##
                                            GSM172929
##
    "Min.
          : 2.434
                     " "Min.
                               : 2.474
                                        " "Min.
                                                   : 2.378
##
    "1st Qu.: 4.508
                     " "1st Qu.: 4.445
                                        " "1st Qu.: 4.546
##
    "Median: 5.995
                     " "Median : 5.931
                                        " "Median : 5.961
##
    "Mean
          : 6.020
                     " "Mean : 5.970
                                        " "Mean
                                                   : 5.986
##
    "3rd Qu.: 7.372
                     " "3rd Qu.: 7.309
                                        " "3rd Qu.: 7.284
    "Max.
          :12.710
                               :12.710
                                         " "Max.
##
                     " "Max.
                                                   :12.670
##
     GSM172930
                         GSM172931
##
    "Min.
          : 2.345
                     " "Min.
                               : 2.372
    "1st Qu.: 4.538
                     " "1st Qu.: 4.525
##
##
    "Median: 5.976
                     " "Median : 6.013
                     " "Mean
                               : 6.020
##
    "Mean
          : 5.990
##
    "3rd Qu.: 7.297
                     " "3rd Qu.: 7.356
##
    "Max. :12.740
                     " "Max.
                               :12.650
```

Is there any NA value?

- ▶ NA values can impede your downstream data analysis
- ▶ NA value can also result in analysis errors without triggering warnings message.

```
length(which(is.na(data)==TRUE))
```

[1] 0

Plot your data: Stripplot, Scatter plot, Density plot, Box plot, Violin plot

Plotting your Data: introduction to ggplot2

Let's install it

```
#install.packages('ggplot2')
library(ggplot2)
```

- ▶ Why use ggplot2?
 - Elaborated rendering of color (gradient), and automatic legends, matching publishing standard even with default setting
 - ► Capable of integrating complexed/diverse dimensions of data onto one single plot
 - Each plot is stored as an object, convenient for further modification, improving code reusability
 - Linear syntax, more intuitive for the graph logics
 - For more details, read here

Plotting your Data: How to decode the ggplot2 syntex?

- ▶ gg = Grammar of Graphics
- The complexed graph is composed by layers that superimpose one by one, with each layer corresponding to data, coordinates, statistical representation, and etc.
 - Example: (p <- ggplot(nDat, aes(crabHammer, geneExp, color = probeset)) +
 geom_point() + stat_smooth(se = F, aes(group = 1)))</pre>
- ► The data (entries) can be mapped to Aesthetics elements, such as by their position on user-defined x- and y- axis, or to color, and linetypes.
- ▶ **Geometries** elements are used to plot the graphs

Figures plotted via ggplot2

Figure 2:Examples

Recall that:

- ▶ There are 50 samples with each containing 12422 probe expression in data
- ▶ There are 50 samples with each containing 4 categorical description in design
- 1. Let's shrink the data by picking only three probes,
- ▶ i.e. "104099_at", "99071_at", "94067_at"

```
sProbes <- c("104099_at", "99071_at", "94067_at")
sData <- data[sProbes, ]
str(sData, max.level=0)</pre>
```

```
## 'data.frame': 3 obs. of 50 variables:
```

Merge the design and sData into one tall data.frame, so the expression data of the 3 probes could be appended after each row in design,

```
t.sData <- data.frame(t(sData))

# Before merging, make sure the sample order matches
identical(rownames(t.sData), rownames(design))

## [1] TRUE
annotatedDat <- data.frame(design, t.sData)
str(annotatedDat)</pre>
```

Notice the "X" added in front of all the probe names.

\$ X94067 at : num 6.17 6.15 6.14 6.33 6.19 ...

##

- Reshape annotatedDat into a taller data.frame:
- Only 1 probe expression is appended after each row
- Introduce a new categorical descriptor, probeset, to label what probe this expression is for

```
str(tall.annoDat)
```

```
## 'data frame': 150 obs. of 6 variables:
##
   $ DateRun
                : Factor w/ 8 levels "01/16/04", "03/11/04", ...: 5 5 5 5 6 4 4 6
                : Factor w/ 3 levels "S1P2_KO", "S1P3_KO", ...: 3 3 3 3 3 3 3 3 3
   $ Genotype
##
##
   $ BrainRegion: Factor w/ 2 levels "hippocampus",..: 2 2 2 2 2 2 2 2 2 ...
##
   $ Sex
                : Factor w/ 2 levels "female", "male": 2 2 2 2 2 1 1 1 1 1 ...
##
   $ probeset : Factor w/ 3 levels "X104099_at","X94067_at",..: 1 1 1 1 1 1
##
    $ geneExp : num 6.29 6.2 6.46 6.55 6.31 ...
```

Stripplot: gene expression over 1 dimension, e.g. Probeset

```
(p <- ggplot(tall.annoDat, aes(geneExp, probeset)) +
   geom_point())</pre>
```


Stripplot: gene expression over 2 dimension, e.g. Probeset + Genotype

```
(p <- ggplot(tall.annoDat, aes(Genotype, geneExp)) +
  geom_point()+aes(color = probeset))</pre>
```


What do we mean by ggplot2 has pretty picture?

Figure 5:Lattice stripplot

Plotting your Data: Scatterplot, X104099_at vs. X94067_at p <- ggplot(annotatedDat, aes(x = X104099_at, y = X94067_at)) (p <- p + geom_point(alpha = 0.5))

Plotting your Data: Density plot

```
(p <- ggplot(tall.annoDat, aes(geneExp, color = probeset)) +
    stat_density(geom = "line", position = "identity"))</pre>
```


Plotting your Data: Box plot over Genotype

```
(p <- ggplot(tall.annoDat, aes(Genotype, geneExp)) +
   geom_boxplot())</pre>
```


Plotting your Data: Violin plot over Genotype

```
(p <- ggplot(tall.annoDat, aes(Genotype, geneExp)) +
   geom_violin())</pre>
```


Identify outlier sample via heatmap, pairwise correlation plot

Sample correlation

- ▶ Do we expect all the 50 samples to be clustered closely (based on the expression level of the 12422 probes) together? If no, why?
- ▶ Different experimental condition, such as treatment
- ▶ Heterogeneity of the organisms
 - genotype underlying the organisms

levels(design\$Genotype)

```
## [1] "S1P2_KO" "S1P3_KO" "Wild_type"
```

Outlier due to batch effect, technical errors

Heatmap of sample correlation: Calculate correlation matrix

 convert DateRun column into Date format so as to sort the 50 samples by DateRun in the increasing order

```
annotatedDat$DateRun<-as.Date(annotatedDat$DateRun, format="%m/%d/%y") annotatedDat <- annotatedDat[order(annotatedDat$DateRun),]
```

convert gene expression data from data.frame into matrix

```
mData <- as.matrix(data)
```

construct the correlation matrix

```
library(RColorBrewer)
cols<-c(rev(brewer.pal(9,"Y10rRd")), "#FFFFFF")
sampleCorrelation <- cor(mData)</pre>
```

Heatmap of sample correlation: Plot heatmap

library(gplots)

heatmap.2(sampleCorrelation, Rowv=NA, Colv=NA, symm=T,trace="none", dendrogram="none", col=cols, cexCol=0.5,cexRow=0.5)

Inspecting the correlation heatmap: seemingly an outlier?

Does sample GSM172976 deviate from the other samples? Why?

Sample correlation

- ▶ Do we expect all the 50 samples to be clustered closely (based on the expression level of the 12422 probes) together? If no, why?
- ▶ Different experimental condition, such as treatment
- ▶ Heterogeneity of the organisms
 - genotype underlying the organisms

levels(design\$Genotype)

```
## [1] "S1P2_KO" "S1P3_KO" "Wild_type"
```

Outlier due to batch effect, technical errors

Comparison of samples within the same experimental condition

- Let's inspect it more closely with a pairwise correlation plot
 - ▶ i.e. compare the outlier sample vs the samples in the same experimental condition.
- what's the experimental condition of the outlier?

```
design["GSM172976", ]
```

```
## DateRun Genotype BrainRegion Sex
## GSM172976 01/16/04 S1P3_KO hippocampus female
```

Comparison of samples within the same experimental condition

find the remaining sample in this experimental group:

```
(outlierIndex <- which(colnames(data)=="GSM172976"))
## [1] 50
(allIndex <- which(design$Genotype=="S1P3_KO" &
design$BrainRegion == "hippocampus" &
design$Sex == "female"))
## [1] 48 49 50
colnames(data)[allIndex]
## [1] "GSM172974" "GSM172975" "GSM172976"
outlierGroup <- data[,allIndex]</pre>
```

Plot the pairwise correlation of the outlier experimental group

library(lattice)
splom(data.frame(outlierGroup), panel = panel.smoothScatter, raster =TRUE)

Credits

This Workshop Brought to You By...

Course Developers:

- ► Kieran O'Neill
- Eva Yap
- ► Alice Zhu

Starting Material:

Much material was reused from Software Carpentry's Bootcamp workshops and from Andy Teucher's short R course, both under the terms of the Creative Commons Attribution License.

Reference

Much of the code and data were borrowed from the UBC STAT540 course website, which was taught by Dr.Jennifer Bryan, Dr.Gabriela Cohen-Freue and Dr.Paul Pavlidis, and Dr.Sara mostafavi.

Pizza and Logistics:

► GraSPoDS (especially Eva Yap and Jessica Pilsworth)

License:

You are free to download, copy and modify this work in accordance with the Creative