HW 9

Problem 1

Is the open unit ball in \mathbb{R}^3 compact? Prove your answer.

The open unit ball in \mathbb{R}^3 is not compact, as the following is an open cover with no finite subcover.

$$B_1(0,0,0) = \bigcup_{n \in \mathbb{Z}^+} B_{1-\frac{1}{n}}(0,0,0)$$

For any finite n, we get that the set on the right side is lacking some component of $B_1(0,0,0)$.

Problem 2

Every discrete topological space is compact.

Consider the topological space of \mathbb{R} under the discrete metric. Then, $\mathbb{R}_d = \bigcup_{x \in \mathbb{R}} \{x\}$. Since every set in \mathbb{R} is open, this is an open cover of \mathbb{R} . However, any finite subset of the quantity on the right hand side does not cover \mathbb{R}_d . Therefore, \mathbb{R}_d is not compact.

No discrete topological space is compact.

Let X be a finite discrete topological space. Then, $X = \bigcup_{x \in X} \{x\}$, is an open cover, which is also finite, so X is compact.

Problem 3

Prove that the union of two compact subsets of a topological space is compact.

Let A and B be compact subsets of X. Then, for some open cover of $A = \bigcup_{i \in I} C_i$, C_i , $\exists F \subseteq I$ such that $A = \bigcup_{i \in F} C_i$. Similarly, for $B = \bigcup_{j \in J} D_j$, $D_j \subseteq B$, $\exists G \subseteq J$ such that $B = \bigcup_{j \in G} D_j$. Then, $A \cup B = \bigcup_{C_i \in X, D_j \in Y} C_i \cup D_j$. Let $E_{ij} = C_i \cup D_j$. Then, since A and B are compact, we have $A \cup B = \bigcup_{i \in F, j \in G} E_{ij}$, which is a finite number of E_{ij} as F and G are finite. Therefore, $A \cup B$ is finite.

Problem 4

Prove that the union of infinitely many compact subsets of a topological space need not be compact.

Consider the following union of compact subsets in \mathbb{R} .

$$[0,\infty) = \bigcup_{n \in \mathbb{Z}^+} [n,n+1]$$

The set $[0,\infty)$ is not compact, yet each of the subsets [n,n+1] is compact.

Problem 5

Prove that the continuous image of a compact set is compact.

Let $f: X \to Y$ be a continuous function. Let $A \subseteq X$ be compact. Let $f(A) = \bigcup_{i \in I} C_i$ be an open cover of f(A). Then, $f^{-1}(f(A)) = A = f^{-1}\left(\bigcup_{i \in I} C_i\right) = \bigcup_{i \in I} f^{-1}(C_i)$ by a previous result. Since f is continuous, $f^{-1}(C_i)$ is open, meaning that $A = \bigcup_{i \in I} f^{-1}(C_i)$ is an open cover of A, and since A is compact, there is a finite subcover $F \in I$, so f(A) has a finite subcover as A has a finite subcover. Therefore, f(A) is compact.

Problem 6

Prove that the following two definitions of a compact space are correct:

- A set A is compact if for every collection F of sets open in X with $A \subseteq \bigcup_{W \in F} W$, there is a finite $F' \subseteq F$ with $A \subseteq \bigcup_{W \in F'} W$.
- A is compact if A with the subspace topology is a compact topological space.

Suppose A is compact with the first definition. Then, $A = A \cap (\bigcup_{W \in F} W) = \bigcup_{V \in F} V$ for $V = W \cap A$. Since F' is finite and a subset of F, this means $A = A \cap (\bigcup_{W \in F'} W) = \bigcup_{V \in F'} V$. So A is a compact topological space, as $V \subseteq A$. Since all these steps are reversible, we get that the two definitions are equal.

HW 10

Problem 1

Prove that every compact subset of a nonempty metric space is bounded.

Let $A \subseteq X$ be a compact set and $x \in X$. Since $X = \bigcup_{k \in \mathbb{N}} B_k(x)$, we can find $A = A \cap \left(\bigcup_{k \in \mathbb{N}} B_k(x)\right) = \bigcup_{k \in \mathbb{N}} (A \cap B_k(x))$. Since this is an open cover of A as $B_k(x) \subseteq X$ and $A \cap B_k(x) \subseteq A$ by the subspace topology, this open cover has a finite subcover as

A is compact. This means there is a maximum k' such that $A = \bigcup_{1}^{k'} (A \cap B_k(x))$. So, $A \subset B_{k'+1}(x)$, so A is bounded.

Problem 2

Prove every compact subset of a metric space is closed.

Let A be a compact subset of a metric space X. Suppose towards contradiction that A is not closed. Then, $\exists x \in X$ such that x is a limit point of A but $x \notin A$. Then, consider the set $K = \bigcup_{n \in \mathbb{R}} \overline{\operatorname{cl}\left(B_{1/n}(x)\right)}$. This is a union of open sets as it is a union of complements of closed sets, and since K = X, $A \subseteq K$. However, since x is a limit point, $\forall r > 0$, $B_r(x) \cap A - \{x\} \neq \emptyset$. Therefore, K is an open cover of A but does not have a finite subcover, so A is not compact. Therefore, we have reached a contradiction, so A is closed.

Problem 3

Let I = [0, 1]. Show every continuous map $f: I \to \mathbb{R}$ is bounded.

Since I = [0, 1], I is closed and bounded, so I is compact. Since f is continuous, this means that f(I) must also be compact. So, by the Heine-Borel theorem, f(I) must be closed and bounded. So f is bounded.

Give an example of an unbounded continuous function $f:(0,1)\to\mathbb{R}$

$$f(x) = \tan\left(\frac{\pi}{2}x - \frac{\pi}{2}\right)$$

Problem 4

Suppose X is a discrete topological space with at least two points. Show X is disconnected.

Let $a,b\in X$ be nonequal points in X. Then, $\{a\}\subseteq X$ and $\{b\}\subseteq X$, but $\{a\}\cap \{b\}=\emptyset$. Therefore, X is disconnected.

Problem 5

Show that if X has the discrete topology, then X is totally disconnected.

We want to show the following:

- If $a \in X$, $\{a\} \subseteq X$ and $\{a\}$ is connected: Since X has the discrete topology, $\{a\}$ is open, and every element of $\{a\}$ is just a, which is equal to itself, so by vacuous truth, $\{a\}$ is connected.
- Any subset $A \subseteq X$ where $|A| \ge 2$ is disconnected: by the previous problem, we have that any two non-equal elements of A are themselves disconnected sets, so A is disconnected.

The converse does hold.

Problem 6

Prove that the Cantor set as a subset of \mathbb{R} is totally disconnected.

For any $a,b \in C$ where a < b, then $a = \frac{k}{3^n}$ and $b = \frac{l}{3^n}$, but the set [a,b] is missing its middle third, so $c = \frac{a+b}{2} \notin C$. Since for any non-singleton set $[a,b] \in C$, the set is disconnected. So, C is totally disconnected.

HW 11

Problem 1

Let X,Y be sets with $A,C\subseteq X,\,B,D\subseteq Y.$ Show $(A\times B)\cap (C\times D)=E\times F$ for some $E\subseteq X,\,F\subseteq Y$

Let $(a,b) \in (A \times B) \cap (C \times D)$. Then, $a \in A \cap C$ and $b \in B \cap D$. Let $E = A \cap C$ and $F = B \cap D$. Then, $(a,b) \in E \times F \subseteq X$. So $(A \times B) \cap (C \times D) \subseteq E \times F$. Similarly, if $(a,b) \in E \times F$, we have that $a \in A \cap C$, $b \in B \cap D$, so $(a,b) \in (A \times B) \cap (C \times D)$, so $E \times F = (A \times B) \cap (C \times D)$.

Show this means the product topology is close under finite intersections.

Let $X \times Y$ be a topological space under the product topology. Then, any open set can be expressed as $M = \bigcup_{i \in I, j \in J} A_i \times B_j$ for $A_i \subseteq X$, $B_i \subseteq Y$. Similarly, another open set in $X \times Y$ can be expressed as $N = \bigcup_{k \in K, l \in L} C_k \times D_l$ where $C_k \subseteq X$, $D_l \subseteq Y$. Then, $M \cap N = \bigcup_{o \in O, p \in P} E_o \times P_p$ by the previous result. Since the finite intersection of open sets is open, $M \cap N$ is open as it is the union of open sets $E_o \subseteq X$ and $P_p \subseteq Y$.

Problem 2

Prove every open rectangle is a union of open balls.

Let $(a,b) \times (c,d)$ be an open rectangle in \mathbb{R}^2 . Then, for some point $(x,y) \in (a,b) \times (c,d)$, we can find a radius $r = \min\{d(x,a),d(x,b),d(y,c),d(y,d)\}$. Then, $B_r(x,y) \subseteq (a,b) \times (c,d)$, so $A = (a,b) \times (c,d) = \bigcup_{(x,y) \in A} B_r(x,y)$.

Prove every open ball is a union of open rectangles.

Let $B_r(x,y)$ be an open ball in \mathbb{R}^2 . Then, for any $(a,b) \in B_r(x,y)$, we can find k such that $B_{k\sqrt{2}}(a,b) \subseteq (x,y)$. Then, the set $(a-k,a+k)\times (b-k,b+k)$ is an open rectangle which is a subset of the open ball $B_{k\sqrt{2}}(a,b)$, which is a subset of $B_r(x,y)$, so $(a-k,a+k)\times (b-k,b+k)$ is an open rectangle subset of $B_r(x,y)$. So, $B=B_r(x,y)=\bigcup_{(a,b)\in B}(a-k,a+k)\times (b-k,b+k)$.

Problem 3

Let $\mathcal{T}_1 = \mathbb{R}^2$ under the Euclidean metric and \mathcal{T}_2 be the product topology on $\mathbb{R} \times \mathbb{R}$. Show these two topologies are equivalent.

First, we will show that every element of \mathcal{T}_2 is a union of open rectangles. Let $A, B \subseteq \mathbb{R}$. Then, $A = \bigcup_{a,b \in E}(a,b)$ and $B = \bigcup_{c,d \in F}(c,d)$ by the definition of open sets in \mathbb{R} . So, $A \times B$, which is open in \mathcal{T}_2 , is equal to $\bigcup_{a,b \in E}(a,b) \times \bigcup_{c,d \in F}(c,d)$. Using a rule we can take for granted, we have that $A \times B = \bigcup_{a,b \in E, c,d \in F}(a,b) \times (c,d)$, which is a union of open rectangles.

Let $A \in \mathcal{T}_1$. Then, A is an open set in \mathbb{R}^2 , so by a previous result, A is a union of open balls. So, A is a union of open rectangles in \mathbb{R}^2 , so $A \in \mathcal{T}_1$. Similarly, if $B \in \mathcal{T}_2$, then B is a union of open rectangles in \mathbb{R}^2 , so B is in \mathcal{T}_1 , so $\mathcal{T}_1 = \mathcal{T}_2$.

Problem 4

Let V, W, X, Y be topological spaces, $V \simeq X, W \simeq Y$. Show $V \times W \simeq X \times Y$.

Let $f: V \to X$, $g: W \to Y$ be homeomorphisms. Then, f and g are continuous bijections with continuous inverses. Let $h: (V \times W) \to (X \times Y)$ be defined as h(v, w) = (f(v), g(w)). We want to show that h is a homeomorphism.

- Since f and g are bijections and are the "constituent functions" of h, we know that h is a bijection.
- Let $A \subseteq X \times Y$. Then, $A = \bigcup_{i \in I} A_i \times B_i$ for $A_i \subseteq X$, $B_i \subseteq Y$. So, $h^{-1}(A) = h^{-1} \left(\bigcup_{i \in I} A_i \times B_i\right) = \bigcup_{i \in I} h^{-1}(A_i \times B_i) = \bigcup_{i \in I} f^{-1}(A) \times g^{-1}(B)$ by rules of discrete math. So, since f^{-1} and g^{-1} are homeomorphisms, $f^{-1}(A_i) \subseteq V$ and $g^{-1}(B_i) \subseteq W$, so h is continuous by the product topology.
- Similarly, if $C \subseteq V \times W$, then $h(C) \subseteq X \times Y$, so h^{-1} is continuous.
- Therefore, since h is a continuous bijection with a continuous inverse, h is a homeomorphism, so $V \times W \simeq X \times Y$.

HW 12

Problem 1

Prove that the projection map $\pi_i: X_1 \times X_2 \to X_i$, defined as $\pi_1(x_1, x_2) = x_1$ and similarly for π_2 , is continuous.

Let $A_1 \subseteq X_1$ and $A_2 \subseteq X_2$. Then, $\pi_1^{-1}(A_1) = A_1 \times X_2$, and $\pi_2^{-1}(A_2) = X_1 \times A_2$. By the product topology, we know that $A_1 \times X_2 \subseteq X_1 \times X_2$ because $A_1 \subseteq X_1$ and $X_2 \subseteq X_2$, and similarly $X_1 \times A_2 \subseteq X_1 \times X_2$, so π_1 and π_2 are continuous.

Problem 2

Let Y, X_1, X_2 be topological spaces. For each i = 1, 2, let $f_i : Y \to X_i$ be a map. Prove $f : Y \to X_1 \times X_2$ defined as $f(y) = (f_1(y), f_2(y))$ is continuous iff f_1 and f_2 are continuous.

Let f be continuous. Then, for any set open in the product topology $X_1 \times X_2$, the inverse image of that set is open in Y. So, if $A = \bigcup_{i \in I} A_i \times B_i$ where $A_i \subseteq X_1$ and $B_i \subseteq X_2$, $f^{-1}(A) = f^{-1} \left(\bigcup_{i \in I} A_i \times B_i\right) = \bigcup_{i \in I} f^{-1} \left(A_i \times B_i\right)$. Since f is continuous and $A_i \times B_j \subseteq X_1 \times X_2$ by the definition of product topology, we have that $f^{-1}(A_i \times B_i) \subseteq Y$. Therefore, $f^{-1}(A_i \times B_i) = f_1^{-1}(A_i) \cap f_2^{-1}(B) \subseteq Y$. Since the intersection of two open sets is open, we have that $f_1^{-1}(A_i)$ and $f_2^{-1}(B_i)$ are open in Y, so f_1 and f_2 are continuous.

Let f_1 and f_2 be continuous. Then, for all $A_i \subseteq X_1$, $f_1^{-1} \subseteq Y$, and for all $B_i \subseteq X_2$, $f_2^{-1}(B_i) \subseteq Y$. So, for any $A \subseteq X_1 \times X_2$, we have $A = \bigcup_{i \in I} A_i \times B_i$ for $A_i \subseteq X_1$, $B_i \subseteq X_2$. Then, $f^{-1}(A) = \bigcup_{i \in I} f^{-1}(A_i \times B_i)$. Similarly to the previous result, we have $f^{-1}(A_i \times B_i) = f_1^{-1}(A_i) \cap f_2^{-1}(B_i)$. Since $f_1^{-1}(A_i) \subseteq Y$ and $f_2^{-1}(B_i) \subseteq Y$, we have that $f^{-1}(A_i \times B_i) \subseteq Y$, so $f^{-1}(A)$ is a union of open sets, which is open. So, f is continuous.

Problem 3

For nonempty topological spaces X, Y, show that $\forall x \in X, \{x\} \times Y \simeq Y$ under subspace topology.

Let $f: \{x\} \times Y \to Y$ be defined as f(x,y) = y. Since x is non-changing, we know that $\forall y \in Y, \exists (x,b) \in \{x\} \times Y$ such that f(x,b) = y, namely setting y to be the second coordinate, meaning f is surjective. Similarly, if f(x,a) = f(x,b), then we have that a = b, (x,a) = (x,b), meaning f is injective. Therefore, f is a bijection.

To prove continuity, we must show that $A \subseteq Y \to f^{-1}(A) \subseteq \{x\} \times Y$. For any $A \subseteq Y$, we have that $f^{-1}(A) = \{x\} \times A$. Since $\{x\} \subseteq \{x\}$ by subspace topology and $A \subseteq Y$, we have that $\{x\} \times A \subseteq \{x\} \times Y$ by the product topology, so f is continuous. Similarly, let $\{x\} \times A \subseteq \{x\} \times Y$. Then, $f(\{x\}, A) = A$, and since $\{x\} \subseteq \{x\}$, we have that $A \subseteq Y$ by the product topology, so f^{-1} is continuous.

Problem 4

Consider S^1 as a subprace of \mathbb{R}^2 . For each of the following, determine whether $f: X \to S^1$ is a homeomorphism for $f(x) = (\cos(2\pi x), \sin(2\pi x))$, and justify reasoning.

- $X_1 = [0,1] \subset \mathbb{R}$
- $X_2 = [0,1) \subset \mathbb{R}$

 $f: X_1 \to S^1$ is **not** a homeomorphism, as the point at (0,1) can be mapped to both $\{0\}$ and $\{1\}$. Meanwhile, $f: X_2 \to S^1$ is a homeomorphism, because every open interval that passes through the point at (0,1) can be split into two intervals that are open in [0,1).

Problem 5

Find an equivalence relation \sim on I^2 such that I^2/\sim is homeomorphic to $S^1\times I$, and find a homeomorphism and prove it is well-defined.

Let $\sim = \{(0, a) \sim (1, a)\}$. Then, we can find $f: I^2/\sim S^1 \times I$ by doing $f(x, y) = (\cos(2\pi x), \sin(2\pi x), y)$. Since $\cos, \sin, and y$ are all well-defined functions, we have that f is a well-defined function for any $x, y \in [0, 1]$.

Find an equivalence relation such that I^2/\sim is homeomorphic to a torus.

Let $\sim := \{(0, a) \sim (1, a), (b, 0) \sim (b, 1)\}$. Then, I^2 / \sim is a torus.

HW 13

Problem 1

Let $Q = \mathbb{R}/\{x \sim (x+1)\}$. What familiar topological space is Q homeomorphic to?

 $Q \simeq S^1$, as for any element $x \in [0,1)$, $x+n \in Q$ for all $n \in \mathbb{Z}$. Therefore, Q can be represented as the real line wrapping around itself an infinite number of times, making it homeomorphic to a circle. For the homeomorphism, let $f: Q \to S^1$ be defined as $f(p) = (\cos(2\pi p), \sin(2\pi p))$ where $[p] \in Q$ and $p \in [0,1)$.

Problem 2

Let $Q = \mathbb{R}^2 / \{(x,y) \sim (x+1,y) \sim (x,y+1)\}$. Which familiar topological space is Q homeomorphic to?

Since the equivalence relation on \mathbb{R}^2 is the two dimensional analog to S^1 in the previous example, we have that $Q \simeq S^1 \times S^1$, which is also homeomorphic to $[0,1) \times [0,1)$. We can find a homeomorphism $f:Q \to [0,1) \times [0,1)$ defined as f([a],[b)=(a,b) where $a,b \in [0,1)$.

Problem 3

Let $P = S^1/\{(x,y) \sim (-x,-y)\}$. Show that P is homeomorphic to S^1 , and find a homeomorphism without proof.

When looking at S^1 with polar coordinates, we have that θ ranges from $[0,\pi)$, and that when $\theta=\pi$, $\theta=0$ as well, which means P is a semicircle, with $f:P\to S^1$ defined as $f(r,\theta)=(r,2\theta)$ for $\theta\in[0,\pi)$.

Problem 4

Do problem 5.6 on page 37 in Intuitive Topology.

HW 14

Problem 1

State which of the following spaces are homeomorphic to each other.

Answer is omitted due to inability to draw.

Problem 2

Which of the following letters considered as subspaces of \mathbb{R}^2 are manifolds?

ABCDEFGHIJKLMNOPQRSTUVWXYZ

The letters that in sans serif are manifolds are ones which do not contain a tripoint or quadripoint, meaning that the following are manifolds:

CDIJLMNOSUVWZ

Problem 3

How many connected non-homeomorphic 1-manifolds are there?

- [0, 1]
- [0,1)
- (0,1)
- S¹

Problem 4

Is an open ball in \mathbb{R}^n minus its center a manifold? More precisely, let $x \in \mathbb{R}^n$. Is $B_r(x) - \{x\}$ a manifold? Prove your answer.

Since for every $y \in B_r(x) - \{x\}$, we can find an open ball by letting $s = \min(d(y, x), r - d(y, x))$ under the Euclidean metric, and letting $B_s(y)$ be our point. Since for every point we can find an open ball, we have that every point is locally homeomorphic to \mathbb{R}^n , so $B_r(x) - \{x\}$ is a manifold.

Problem 5

```
Is S^1/\{(1,0) \sim (-1,0)\} a manifold?
```

Since $S^1/\{(1,0) \sim (-1,0)\}$ can be expressed as a lemniscate, which is not locally homeomorphic at the quadripoint center, the set is **not** a manifold.

Is
$$S^{1}/\{(x,y) \sim (-x,-y)\}$$
 a manifold?

Since $S^1/\{(x,y) \sim (-x,-y)\}$ is homeomorphic to S^1 , and since S^1 is a manifold, so is $S^1/\{(x,y) \sim (-x,-y)\}$.

HW 15

Problem 1

For each of the following manifolds, state without proof (i) its dimension; (ii) its boundary (if it has any); (iii) whether it is compact; (iv) whether or not it's closed.

Answer is omitted.

Problem 2

State, without proof, whether or not each of the following topological spaces is a manifold (with or without boundary)

Answer is omitted.

Problem 3

```
Show for all x \in S^1, S^1 - \{x\} \simeq (0,1) \subset \mathbb{R}.
```

We can express $x \in S^1$ as $(1,\theta)$ for some $\theta \in [0,2\pi)$. So, $S^1 - \{x\} = [0,\theta) \cup (\theta,2\pi)$. We can transform x so $\theta = 0$ by taking $f: S^1 - \{x\} \to S^1 - \{(1,0)\}$ by taking $f(1,\theta) = \theta - \theta'$ for $x = (1,\theta')$. Then, we can find $g: S^1 - \{(1,0)\}$ by taking $g(1,\theta) = \frac{\theta}{2\pi}$.

Problem 4

```
Let X = \operatorname{cl}(B_1(0,0)) - B_{0.5}(0,0), Y = S^1 \times [0,1]. Find a homeomorphism without proof f: X \to Y
```

By letting $f: X \to Y$ by taking $f(r, \theta) = (\cos(\theta), \sin(\theta), 2r)$ for $\theta \in [0, 2\pi)$ and $r \in [0.5, 1]$ in polar coordinates, and $(\sin \theta, \cos \theta, 2r)$ in cartesian coordinates.

Problem 5

Prove that every closed subset of a compact topological space is compact.

Let X be a compact topological space and let $A \subseteq X$. Let C be an open cover of A. Then, $C := \{V_{\alpha} \mid \alpha \in I\}$, where $V_{\alpha} \subseteq A$. So, $V_{\alpha} = U_{\alpha} \cap A$, where $U_{\alpha} \subseteq X$. Then, $A = \bigcup_{\alpha \in I} V_{\alpha} \subseteq \bigcup U_{\alpha}$. So, since $X = A \cup \overline{A}$, we have $X = \bigcup U_{\alpha} \cup \overline{A}$. Since A is closed, $F := \{U_{\alpha} \mid \alpha \in I\} \cup \overline{A}$ is an open cover of X. This means $\exists F' \subseteq F$ as X is compact. So, $X = \bigcup_{\alpha \in I'} U_{\alpha} \cup \overline{A}$ where I' is finite. So, since $A \subseteq X$, we have $A \subseteq \bigcup_{i \in I'} U_{\alpha} \cup \overline{A}$. Since $A \subseteq \overline{A}$ by definition of complement, we have $A \subseteq \bigcup_{i \in I'} U_{\alpha}$. So, $A = \bigcup_{\alpha \in I} U_{\alpha} \cap A$, so $A = \bigcup_{\alpha \in I'} V_{\alpha}$. So, C has a finite subcover $C \subseteq A$, so $C \subseteq A$ is compact.

HW 16

Problem 1

Let $A \subseteq M$. Prove that $\operatorname{int}(A)$ is the union of all subsets $B \subseteq A$ such that $B \subseteq M$.

For the forward direction, let $x \in \text{int}(A)$. Then, $\exists B \subseteq M$ such that $x \in B$, by the topological definition of interior. So, for all $x \in A$, we have that $x \in \bigcup_{i \in I} B_i$ for some index set I, $B_i \subseteq A$, and $B_i \subseteq M$. So $\text{int}(A) \subseteq \bigcup_{i \in I} B_i$.

In the reverse direction, let $x \in \bigcup_{i \in I} B_i$ where $B_i \subseteq A$ and $B_i \subseteq M$. Then, $\exists B_k$ such that $x \in B_k$, and since $B_k \subseteq A$ and $B_k \subseteq M$, we have that $x \in A$ and $\exists B_k \subseteq M$ such that $x \in B_k$, so $x \in \text{int}(A)$. So $\bigcup_{i \in I} B_i \subseteq \text{int}(A)$

So, by the definition of set equality, $int(A) = \bigcup_{i \in I} B_i$.

Prove that $cl(A) = \bigcap_{i \in I} B_i$ where $A \subseteq B_i$ and $B_i \subseteq M$.

Forward direction: Let $x \in \operatorname{cl}(A)$. Then, if $x \in A$, we know that $x \in \operatorname{cl}(B_i)$ by assumption. Otherwise, if $x \in \operatorname{bd}(A)$, we have that $\exists C \subseteq M$ such that $x \in C \to y \in A$ where $y \neq x$, and since $y \in A$, $y \in \operatorname{cl}(B_i)$, So, $x \in \operatorname{cl}(B_i)$ by the definition of closure. Since B_i is a closed set, we know that $\operatorname{cl}(B_i) = B_i$, so $x \in B_i$, meaning that $A \subseteq \bigcap_{i \in I} B_i$.

Reverse direction: By definition of closure, we know that $A \subseteq \operatorname{cl}(A)$, and $\operatorname{cl}(A)$ is closed. So, if $x \in \bigcap_{i \in I} B_i$, then $x \in \operatorname{cl}(A)$ because, if x is in every closed superset of A, and $A \subseteq \operatorname{cl}(A)$, then $x \in \operatorname{cl}(A)$. So, $\bigcap_{i \in I} B_i \subseteq \operatorname{cl}(A)$.

So, by the definition of set equality, $cl(A) = \bigcap_{i \in I} B_i$.

Problem 2

Find an example of nested, nonempty, closed subsets $B_1 \supseteq B_2 \supseteq \cdots$ of \mathbb{R} such that $\bigcap B_i = \emptyset$.

Let $B_i = [i, \infty)$. Each of these sets is closed as their complement is $(-\infty, i)$, but their intersection is \emptyset .

Let $B_1 \supseteq B_2 \supseteq B_3 \supseteq \cdots$ be nonempty closed subsets of a compact topological space X. Prove that their intersection $\bigcap B_i$ is nonempty.

Suppose that $\bigcap B_i = \emptyset$. Then, $X = \overline{\bigcap B_i} = \bigcup \overline{B_i}$. Since $\overline{B_i} \subseteq X$ by the definition of a closed set, $X = \bigcup \overline{B_i}$ is a union of open sets, meaning that $F := \{\overline{B_i} \mid i \in I\}$ is an open cover of X. Since X is compact, we have $F' \subseteq F$, meaning $F = \{B_1, \dots, B_n\}$. So, $\bigcap_{i \in F'} B_i = \emptyset$ as $\bigcup_{i \in F'} B_i = X$. Since B_i are nested and $\bigcap_{i \in F'} B_i = \emptyset = B_n$ where n is the largest element of F'. So, $B_n = \emptyset$, which yields a contradiction. Therefore, $\bigcap B_i \neq \emptyset$.

Let $B_1 \supseteq B_2 \supseteq \cdots$ be nested, nonempty, closed, and compact subsets of \mathbb{R} . Is $\bigcap B_i$ necessarily nonempty?

Since B_1 is compact in \mathbb{R} , we have that B_1 is closed and bounded, and since each $B_i \subseteq \mathbb{R}$, we have $\overline{B_i} \subseteq \mathbb{R}$, so $\overline{B_i} \cap B_1 \subseteq B_1$, so $B_i \subseteq B_1$. Applying 2(b), we let $X = B_1$, meaning that $\bigcap_{i \geq 2} B_i$ is nonempty. Since B_1 is a nonempty superset of $\bigcap_{i \geq 2} B_i \cap B_i = B_1$. Applying 2(b), we let $X = B_1$, meaning that $\bigcap_{i \geq 2} B_i \cap B_i = B_1$ is nonempty.

Problem 3

Using the Invariance of Domain Theorem, show that every compact 3-manifold embedded in \mathbb{R}^3 has boundary in both senses of the term.

Suppose M is a compact 3-manifold embedded in \mathbb{R}^3 that does not have boundary. So, $\forall x \in M$, x has a neighborhood that is homeomorphic to \mathbb{R}^3 . So, $\exists U \subseteq M$ such that $x \in U$ and $U \simeq \mathbb{R}^3$, which means $\exists h : U \to \mathbb{R}^3$ where h is a homeomorphism.

Since h is a homeomorphism, then $h^{-1}: \mathbb{R}^3 \to U \subseteq M \subseteq \mathbb{R}^3$ is a homeomorphism. By the invariance of domain theorem, we have that $h^{-1}\left(\mathbb{R}^3\right) \subseteq \mathbb{R}^3$. Let $W = h^{-1}\left(\mathbb{R}^3\right)$. Then, $W \subseteq \mathbb{R}^3$. For all $x \in W_x$ where W_x denotes the open set that contains open

x, we have that $x \in M$, meaning $M = \bigcup W_x$, so M is open as it is the union of open sets. Meanwhile, M is also closed as it is compact, and every compact set is closed and bounded in \mathbb{R}^n by the Heine-Borel theorem. So, since M is clopen, we get that \mathbb{R}^3 is not connected by a previous result, which is a contradiction. Therefore, M has boundary.

Let $x \in \partial M$. Since M is closed, we have that $\operatorname{cl}(M) = M$, and $x \notin \operatorname{int}(M)$ since there would exist a neighborhood around x homeomorphic to \mathbb{R}^3 , which violates the assumption that $x \in \partial M$. So, $x \in \operatorname{bd}(M)$.

HW 17

Problem 1

Which of the surfaces are homeomorphic? Which are isotopic?

Answer is omitted.

Problem 2

Each of the surfaces (a) and (b) is a closed disk with two flat "strips" glued as "handles." (The one in (b) can also be described as a closed disk minus two open disks.) Give an argument to prove that (a) and (b) are not homeomorphic. Then, draw a series of pictures to show that a torus minus an open disk is homeomorphic to the surface given in (a).

Answer is omitted.

Problem 3

Use the fact that \mathbb{R} is connected to show that S^1 is connected.

Since \mathbb{R} is connected, and the map $f: \mathbb{R} \to S^1$, $f(x) = (\cos(2\pi x), \sin(2\pi x))$ is continuous, we have that S^1 must be connected.

Problem 4

Show S^1 cannot be embedded in \mathbb{R} .

Let $f: S^1 \to \mathbb{R}$ be a continuous injective function, where $f(S^1) \subset \mathbb{R}$ is an embedding. So, $f(S^1)$ is connected because S^1 is connected and f is continuous. Let $x,y,z \in S^1, x \neq y \neq z$. Because f is injective, $f(x),f(y),f(z) \in f(S^1) \subseteq \mathbb{R}$. WLOG, let f(x) < f(y) < f(z). Since $S^1 - \{y\} \simeq (0,1)$ which is connected, we should have $f(S^1 - \{y\})$ also be connected. Let $A = f(S^1 - \{y\}) = f(S^1) - f(y)$. So, $A = (A \cap (-\infty, f(y))) \cup (A \cap (f(y), \infty))$. The intervals are disjoint, non-empty $(f(x) \in (-\infty, f(y)))$ and $f(z) \in (f(y), \infty)$, and open in \mathbb{R} meaning $A \cap \{$ the intervals $\} \subseteq A$, so this is disconnected. So, we have

reached a contradiction, so $f(S^1)$ cannot be an embedding.

HW 18

Problem 1

Let $A = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le x, y, z \le 1$, and at least two of x, y, z are in the set $\{0, 1\}$ Let $F = \mathrm{bd}(\mathrm{cl}(N_{0.1}(A)))$. Draw a picture of F, and find n such that $F \simeq nT^2$.

Picture is omitted. $F \simeq T^2$ as one can expand the size of the bottom square and push the top end down, creating a square within a square that is connected with diagonal lines. Each of these holes can be rounded, creating a 5 holed torus. Therefore, $F \simeq 5T^2$.

Problem 2

Let (X, d) be a metric space. Prove or disprove: $\forall \epsilon > 0, N_{\epsilon}(A) = \bigcup_{a \in A} B_{\epsilon}(A)$.

Let $x \in N_{\epsilon}(A)$. Then, $d(x,a) < \epsilon$ for some $a \in A$. So, $x \in B_{\epsilon}(a)$, so $x \in \bigcup_{a \in A} B_{\epsilon}(a)$, so $N_{\epsilon}(A) \subseteq \bigcup_{a \in A} B_{\epsilon}(a)$. Similarly, let $x \in \bigcup_{a \in A} B_{\epsilon}(a)$. Then, $\exists a$ such that $d(x,a) < \epsilon$, so $x \in N_{\epsilon}(A)$, so $\bigcup_{a \in A} B_{\epsilon}(a) \subseteq N_{\epsilon}(A)$, so they are equal.

Problem 3

Problem 4

Let $f: X \to Y$ be a homeomorphism between topological spaces. Prove that A separates X iff f(A) separates Y.

Suppose A separates X. Then, X-A is disconnected. So, f(X-A) is disconnected, as connectedness is an invariant. So, f(X)-f(A) is disconnected since $X-A=X\cap\overline{A}$ and $f(X\cap\overline{A})=f(X)\cap\overline{f(A)}=f(X)-f(A)$. Since f(X)=Y as f is a homeomorphism, we have Y-f(A) is disconnected. So f(A) separates Y.

Suppose f(A) separates Y. Then, Y - f(A) is disconnected. So, $f^{-1}(Y - f(A))$ is disconnected, as connectedness is an invariant. So, $f^{-1}(Y) - f^{-1}(f(A))$ is disconnected, meaning X - A is disconnected, so A separates X.