





#### Introduction



Problem:

Showing the links between 1) Average price, and 2) Engine size, Horsepower and 0-60 time among car makes.

Data Used:

2021-2022 Sports Car Prices Dataset

https://www.kaggle.com/datasets/rkiattisak/sports-car-prices-dataset

### The Plan Technique Utilized



- 1) Import the necessary data and packages
- 2 ) Clean the Data and keep the important / useful information
- 3) Use the psych package to describe and view basic statistical observations
- 4) Identify car makes with the most and least expensive average price
- 5) Plot Engine size, horsepower, 0-60, and price against each car make
- 6) Compare graphs / plot to show whether the car attributions correlate to higher pricing.



#### **Step 1: Importing Data and Packages**

```
#Importing necessary Packages:
library(ggplot2)
library(dplyr)
library(psych)

# Import the Data set:
cars_data <- read.csv("SpCarPrice.csv")</pre>
```

- "cars\_data" is the main data frame I will be doing my work with, taken from the Sports Car Prices dataset. It includes various car attribution data about each car make.
- Dplyr library will be used in order to manipulate the data easier
- Psych library will be used to describe and view basic statistical observations

#### **Step 1: Importing Data and Packages**

We want to convert character columns to numeric

Sneak peak inside "SpCarPrice.csv", this is the data set I will be using



| ^  | Make          | Model                  | Year <sup>‡</sup> | EngineSize <sup>‡</sup> | Horsepower | Torque <sup>‡</sup> | ZeroSixty <sup>‡</sup> | Price <sup>‡</sup> |
|----|---------------|------------------------|-------------------|-------------------------|------------|---------------------|------------------------|--------------------|
| 1  | Porsche       | 911                    | 2022              | 3                       | 379        | 331                 | 4                      | 101,200            |
| 2  | Lamborghini   | Huracan                | 2021              | 5.2                     | 630        | 443                 | 2.8                    | 274,390            |
| 3  | Ferrari       | 488 GTB                | 2022              | 3.9                     | 661        | 561                 | 3                      | 333,750            |
| 4  | Audi          | R8                     | 2022              | 5.2                     | 562        | 406                 | 3.2                    | 142,700            |
| 5  | McLaren       | 720S                   | 2021              | 4                       | 710        | 568                 | 2.7                    | 298,000            |
| 6  | BMW           | M8                     | 2022              | 4.4                     | 617        | 553                 | 3.1                    | 130,000            |
| 7  | Mercedes-Benz | AMG GT                 | 2021              | 4                       | 523        | 494                 | 3.8                    | 118,500            |
| 8  | Chevrolet     | Corvette               | 2021              | 6.2                     | 490        | 465                 | 2.8                    | 59,900             |
| 9  | Ford          | Mustang Shelby GT500   | 2022              | 5.2                     | 760        | 625                 | 3.5                    | 81,000             |
| 10 | Nissan        | GT-R Nismo             | 2021              | 3.8                     | 600        | 481                 | 2.5                    | 212,000            |
| 11 | Aston Martin  | DB11                   | 2021              | 5.2                     | 630        | 516                 | 3.5                    | 201,495            |
| 12 | Bugatti       | Chiron                 | 2021              | 8                       | 1500       | 1180                | 2.4                    | 3,000,000          |
| 13 | Dodge         | Challenger SRT Hellcat | 2022              | 6.2                     | 717        | 656                 | 3.5                    | 61,000             |

### **Step 2: Cleaning Data**

```
# Fill missing values with appropriate defaults
cars_data[is.na(cars_data)] <- 0</pre>
# Define the character columns to be converted to numeric
char_cols_to_numeric <- c("Price", "ZeroSixty", "Year", "EngineSize", "Horsepower", "Torque")</pre>
# Loop through the character columns and apply conversion
for (col in char_cols_to_numeric) {
  # Check if the column exists in the data frame
  if (col %in% names(cars_data)) {
    # Apply condition to handle missing values
    cars_data[[col]][is.na(cars_data[[col]])] <- 0</pre>
    # Convert the column to numeric
    cars_data[[col]] <- as.numeric(gsub(",", "", as.character(cars_data[[col]])))</pre>
 } else {
    warning(paste("Column", col, "not found in the data frame. Skipping conversion."))
```

- Fill missing values in a dataset with zeros
- Go through a list of columns, replaces missing values with zeros, and converts each column from text to numbers in a dataset. (for loop)

#### Step 2 Cont: Finding Averages

```
# Function For Finding The Average Horsepower
average_horsepower_function <- function(data) {</pre>
 average_horsepower <- data %>%
   #Groups the data by the "Make" column
   group_by(Make) %>%
   # Calculates the mean(average) of the Horsepower column within each group
   # Also creates "Average_Horsepower" to store these values.
   summarise(Average_Horsepower = mean(Horsepower, na.rm = TRUE))
 return(average_horsepower)
#Function for Finding the Average 0-60 Time
average_0_60_function <- function(data) {</pre>
  average_0_60 <- data %>%
    group_by(Make) %>%
    summarise(Average_0_60 = mean(ZeroSixty, na.rm = TRUE))
  return(average_0_60)
# Function for Finding the Average Torque
average_torque_function <- function(data) {</pre>
  average_torque <- data %>%
    group_by(Make) %>%
    summarise(Average_Torque = mean(Torque, na.rm = TRUE))
  return(average_torque)
```

- Functions Designed to find the averages for horsepower, 0-60 time, and torque.
- data %>%: Takes the data object and passes it as the first argument to the next expression.
  - %>% allows us to chain operations together, makes it easier to read the code and expressing sequences from left to right

#### **Step 2: Cleaning Data**



```
# Remove exact duplicates
unique_cars_data <- distinct(cars_data)</pre>
```

- Name of cleaned data frame: "unique\_cars\_data"
- This data frame has averages calculated for car attributes by grouping them based on their make.
- All NA's and Empty fields have been removed / altered

#### Variables:

- Car Make

- Car Model

-Year

- EngineSize

- Horsepower

- Torque

- ZeroSixty

- Price

#### **Step 3: Basic Statistical Observations**

# Basic exploratory analysis
basic\_stats <- describe(unique\_cars\_data)</pre>

| _          | vars <sup>‡</sup> | n <sup>‡</sup> | median <sup>‡</sup> | min <sup>‡</sup> | max <sup>‡</sup> |
|------------|-------------------|----------------|---------------------|------------------|------------------|
| Make*      | 1                 | 714            | 17.0                | 1.0              | 38.0             |
| Model*     | 2                 | 714            | 81.0                | 1.0              | 176.0            |
| Year       | 3                 | 714            | 2021.0              | 1965.0           | 2023.0           |
| EngineSize | 4                 | 664            | 4.0                 | 0.0              | 8.4              |
| Horsepower | 5                 | 710            | 591.0               | 181.0            | 10000.0          |
| Torque     | 6                 | 711            | 505.0               | 0.0              | 7376.0           |
| ZeroSixty  | 7                 | 713            | 3.5                 | 1.8              | 6.5              |
| Price      | 8                 | 714            | 132597.5            | 25000.0          | 5200000.0        |

- This is some basic exploratory analysis using the psych package that shows the median, min, and max for each variable
- For example, we can see that the most expensive car costs \$5,200,000 and the least expensive car is \$25,000

# Step 4: Car make with Highest and Lowest average price

```
# Find the car make with the highest average price
highest_price_make <- average_prices[which.max(average_prices$Average_Price), ]
#Answer: Bugatti

# Find the car make with the lowest average price
lowest_price_make <- average_prices[which.min(average_prices$Average_Price), ]
#Answer: Mazda</pre>
```

- These functions help identify the specific row indices where the maximum and minimum average prices occur in the data frame.
- Bugatti is the car make with the most expensive average price.
- Mazda is the car make with the least expensive average price.

## Step 5: Plot Each Car Make by Average Price & Engine Size

```
<u>...ll</u>
```

- The top block of code will create a plot of Car make and its average price
- The bottom block of code will create a plot of Car make and its average engine



**Bar Chart Showing Average Price per Car Make** 



**Bar Chart Showing Average Price per Car Make** 

### Step 5 Cont: Plot Each Car Make by Average Horsepower & 0-60 Time



```
# Plot Average Horsepower vs. Car Make using a bar chart
ggplot(average_horsepower, aes(x = reorder(Make, Average_Horsepower), y = Average_Horsepower)) +
    geom_bar(stat = "identity", fill = "steelblue", color = "black") +
    theme_minimal() +
    labs(x = "Car Make", y = "Average Horsepower", title = "Average Horsepower by Car Make") +
    theme(axis.text.x = element_text(angle=90, hjust=1))

# Plot Average 0-60 Time by Car Make using a bar chart
ggplot(average_0_60, aes(x = reorder(Make, Average_0_60), y = Average_0_60)) +
    geom_bar(stat = "identity", fill = "steelblue", color = "black") +
    theme_minimal() +
    labs(x = "Car Make", y = "Average 0-60 Time", title = "Average 0-60 Time by Car Make") +
    theme(axis.text.x = element_text(angle = 90, hjust = 1))
```

- The top block of code will create a plot of Car make and its average horsepower
- The bottom block of code will create a plot of Car make and its average 0-60 time



**Bar Chart Showing Average Horsepower per Car Make** 



**Bar Chart Showing Average 0-60 per Car Make** 

### Step 6: Showing Relation between Car Attribution and Price



```
par(mfrow = c(1, 3))
# Plot 1: Average Price vs. Average Engine Size
plot(average_price_engine_size$Average_EngineSize, average_price_engine_size$Average_Price,
     xlab = "Average Engine Size", ylab = "Average Price", main = "Average Price vs. Average Engine Size",
    col = "steelblue", pch = 19)
# Plot 2: Average Price vs. Average Horsepower
plot(average_horsepower$Average_Horsepower, average_price_engine_size$Average_Price,
     xlab = "Average Horsepower", ylab = "Average Price", main = "Average Price vs. Average Horsepower",
    col = "steelblue", pch = 19)
# Plot 3: Average Price vs. Average 0-60 time
plot(average_0_60$Average_0_60, average_price_engine_size$Average_Price.
     xlab = "Average 0-60 Time", ylab = "Average Price", main = "Average Price vs. Average 0-60 Time",
    col = "steelblue", pch = 19)
```

- Shows the plot of Average engine size, horsepower, and 0-60 time with the average price side by side
- Makes it easier to compare data and see correlation



Plots of Average Engine Size, Horsepower and 0-60 time by the Average price

#### Conclusion

- My findings suggest a modest correlation between engine size, horsepower, torque, 0-60 time, and car prices.
- However, it's important to note that this correlation is not consistently significant across all categories, with outliers such as electric cars and high-end sports cars contributing to variations in the relationship.



### Thank You for Your Time!

