Universidade Federal de Sergipe

CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Profs.: Jânio Canuto e Jugurta Montalvão

Aluno:	Data:
--------	-------

Avaliação de Aprendizagem de Máquina

1) Sejam as probabilidades a priori de duas clases, $P(c_1)$ e $P(c_2)$, idênticas. Sabe-se que as duas classes possuem distribuições Gaussianas multivariadas, com médias e covariâncias dadas por:

$$\mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\mu_2 = \begin{bmatrix} 0.5 \\ 1.0 \end{bmatrix}$, $\Sigma_1 = \Sigma_2 = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.2 \end{bmatrix}$

- a) Projete um classificador que minimize a probabilidae de erro.
- b) Projete um classificador que minimize o risco médio quando a matriz de perda é

$$\Lambda = \begin{bmatrix} 0 & 0.5 \\ 1.0 & 0 \end{bmatrix}$$

2) Dadas as funções de distribuição de probabilidade para padrões de duas classes abaixo:

$$p(x|\omega_1) = \begin{cases} 1/9 & 1 \leq x_1 \leq 4 \ e \ 1 \leq x_2 \leq 4 \\ 0 & caso\ contr\'ario \end{cases} \qquad p(x|\omega_2) = \begin{cases} 1 & 2 \leq x_1 \leq 3 \ e \ 2 \leq x_2 \leq 3 \\ 0 & caso\ contr\'ario \end{cases}$$
 onde $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Assuma que $P(\omega_1) = P(\omega_2) = 0.5$.

- a) Esboce o gráfico das regiões de decisão.
- b) Proponha uma estratégia de classificação.
- 3) Um classificador linear, cuja fronteira é dada pela equação f(x)=0, com $f(x)=\omega^T x+\omega_0$, foi usada para classificar $x_1=\begin{bmatrix} 1.0\\-1.0\\0.5\end{bmatrix}$ e $x_2=\begin{bmatrix} 0.5\\-1.5\\0.5\end{bmatrix}$, com $\omega=\begin{bmatrix} 0.5\\-0.5\\0.5\end{bmatrix}$ e $\omega_0=-1/4$. O sinal de f(x) determina a classe atribuída a x (i.e., classe +1 ou classe -1).
 - a) Mostre que x_1 e x_2 estão do mesmo lado do plano da fronteira.
 - b) Qual a distância (euclidiana) mínima de x_1 (ou x_2) à fronteira de decisão?
- **4)** Sejam as probabilidades *a priori* de duas classes, $P(C_1) = 0.6$ e $P(C_2) = 0.4$. Numa pequena região do espaço amostral, onde as densidades de probabilidade condicionais $p(x|C_1)$ e $p(x|C_2)$ são aproximadamente constantes, sabe-se que $p(x|C_1) = 3p(x|C_2)$. Dentro dessa pequena região, foram encontrados K padrões. Qual a probabilidade da maioria dos padrões encontrados serem realmente da classe mais provável dentro da região analisada se:

a)
$$K = 1$$

b)
$$K = 3$$

c)
$$K = 5$$

5) O gráfico abaixo representa 100 amostras coletadas da classe 1 (pontos) e 100 amostras da classe 2 (cruzes).

a) Use o método K-NN, com K=2, e estime as densidades condicionais $p(x|classe\ 1)$ e $p(x|classe\ 2)$, no ponto x=(0.5,-1), indicado na figura.

Obs: Use réqua ou estime visualmente as distâncias, indicando claramente os valores usados na sua solução.

b) Assumindo que as duas classes são Gaussianas, ambas com médias em (0,0), e covariâncias $\Sigma_1 = \begin{bmatrix} 0.5 & 0.25 \\ 0.25 & 0.5 \end{bmatrix}$ e $\Sigma_2 = \begin{bmatrix} 1.0 & -0.5 \\ -0.5 & 1.0 \end{bmatrix}$, recalcule as densidades condicionais $p(x|classe\ 1)$ e $p(x|classe\ 2)$, no ponto x=(0.5,-1), indicado na figura.

c) Dado que as probabilidades a priori são iguais, i.e. $P(classe\ 1) = P(classe\ 2)$, como um classificador Bayesiano classificaria o ponto x = (0.5, -1)? Qual das densidades você prefere usar nessa decisão: aquela estimada no item (a), ou aquela obtida no item (b)? Explique.

6) Na retropropagação do erro, em uma rede neural artificial, o 'custo' associado à propagação do erro através de um neurônio com função de ativação do tipo tangente hiperbólica é $(1-y^2)$, onde y representa a própria saída neurônio. Determine, também em função de y, qual seria esse 'custo' se a função de ativação fosse

a)
$$y(x) = \frac{1}{1 + e^{-\beta x}}, \beta > 0$$
 b) $y(x) = \frac{1}{\sqrt{x^2 + \beta}}, \beta > 0$

7) Uma MLP pode ser usada para aprender probabilidades $P(C_i|x)$, onde C_i , representa a i-ésima classe, e x é uma observação que se deseja classificar. Num problema onde x é um escalar (1-D) que pode ter sido gerado por uma das 3 classes: C_1 , C_2 e C_3 , deseja-se treinar uma rede neural com 1 entrada e 3 saídas, de forma que cada observação, x, seja associada a um vetor de saída desejada,

$$t = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \text{ ou } \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \text{ conforme a classe de origem da observação é } C_1, C_2 \text{ ou } C_3, \text{ respectivamente.}$$

Além disso, a função de ativação dos neurônios da camada de saída deve ser exponencial $y(x)=e^x$,

e todo vetor de saída
$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$
 deve ser 'corrigido' para um vetor de probabilidades $p = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix}$, tal que $p_i = \frac{y_i}{y_1 + y_2 + y_3}$.

Assuma, por simplicidade, que há apenas um neurônio na camada escondida, com função de ativação do tipo tangente hiperbólica, e que o critério de ajuste da rede é o erro quadrático médio entre t e p. Quais as equações de ajuste, pelo gradiente negativo, para cada um dos pesos e polarizações dessa MLP?

Observação importante: A saída dessa rede é p, não y.

- 8) Dados foram coletados aleatoriamente e experimentalmente, resultando na seguinte coleção de medidas: $\{-2, -1, 2.5, -1.8, 3.5, 1.5, 2.1, 3.8\}$. Sabe-se que os dados $\{-2, -1, 2.5, -1.8\}$ vieram de uma dada classe de medidas (Classe 1), enquanto que os dados $\{3.5, 1.5, 2.1, 3.8\}$, da outra classe de medidas (Classe 2). Use esses dados como base de treinamento e, através da minimização do erro quadrático médio (pseudo-inversão), obtenha um classificador automático de dados. Explique claramente como funcionará esse classificador para os novos dados que forem coletados.
- 9) Uma empresa que empresta dinheiro acumuou alguma experiência com clientes antigos, e essa experiência foi sintetizada na tabela abaixo. Agora, a empresa gostaria de treinar um classificador automático de novos clientes com base na experiência acumulada. Assuma que você é o encarregado de criar esse classificador, e que você escolheu usar uma árvore de decisão.
 - a) Com base no critério da variação de entropia, dado um novo cliente, qual parece ser o melhor atributo para prever se esse cliente pagará o empréstimo no prazo? Qual a variação máxima de entropia decorrente da decisão baseada nesse atributo?
 - b) Explique claramente como você sugere que sejam tratados os dados não anotados na tabela (indicados com o símbolo "—").

	Atributos			Classificação
Nível de	Salário	Possui casa	Sexo	Pago o empréstimo
Instrução	aproximado	própria?		no prazo?
Universitário	R\$ 7.000,00	Sim	М	Sim
Segundo grau	_	Sim	M	Sim
Segundo grau	R\$ 2.000,00	Não	F	Sim
Universitário	R\$ 7.000,00	Não	M	Não
Universitário	R\$ 7.000,00	Sim	M	Sim
Universitário	R\$ 2.000,00	Sim	F	Sim
Segundo grau	R\$ 7.000,00	Não	M	Não
Universitário	R\$ 2.000,00	_	F	Sim
Segundo grau	R\$ 2.000,00	Não	М	Não

10) Uma árvore de decisão poderia prover a fronteira de decisão detalhada no gráfico abaixo? Se sim, quantos ramos e folhas possuiria essa árvore? Faça um esboço.

11) Um projetista está ajustando uma GMM, com apenas 2 Gaussianas, através do método EM. O ajuste já foi iniciado e os parâmetros atuais (obtidos no último passo) foram:

$$\mu_1 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \Sigma_1 = \begin{bmatrix} 0.5 & 0.25 \\ 0.25 & 0.5 \end{bmatrix}, \mu_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_2 = \begin{bmatrix} 1.0 & -0.5 \\ -0.5 & 1.0 \end{bmatrix}, \alpha_1 = \alpha_2.$$

onde μ são as médias, Σ as matrizes de covariância e α os pesos da mistura.

Usando os dados fornecidos na tabela abaixo, execute apenas mais um passo do EM e apresente os novos parâmetros após o ajuste.

Atributos		
X_1	X_2	
-0.5	-0.5	
-1.0	-1.0	
1.0	0.0	

Lembrete: para uma matriz não-singular 2×2 , $R = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}$, temos que $R^{-1} = \frac{1}{|R|} \begin{bmatrix} r_{22} & -r_{12} \\ -r_{21} & r_{11} \end{bmatrix}$, onde $|R| = r_{11}r_{22} - r_{12}r_{21}$.

12) Faça o agrupamento dos padrões da tabela abaixo em K=3 *clusters*, usando o K-médio, explicando cada passo.

Atributos		
X_1	X_2	
-0.76	-0.85	
0.67	0.25	
1.47	-1.54	
1.14	-0.68	
0.85	-0.72	
0.45	0.81	

- **13)** Use o resultado da questão anterior para inicializar os parâmetros de uma GMM com 3 gaussianas e
 - a) Explique como foi feita essa inicialização
 - b) Execute, manualmente, um passo de Esperança (E) do EM.
 - c) Execute, manualmente, um passo de Maximização (M) do EM.
 - d) Comente suas soluções para os problemas numéricos e/ou de convergência caso encontre algum neste problema.
- **14)** Mostre que a estimativa de máxima verossimilhança da média aritmética, $\mu = \frac{\sum_{i=1}^{N} x_i}{N}$, pode ser calculada recursivamente como

$$\mu_{i+1} = \mu_i + \frac{1}{i+1}(x_{i+1} - \mu_i)$$

Obs.: Esta fórmula pode ser usada para melhorar a eficiência computacional de algoritmos de ajuste sequencial, pois elimina a necessidade de recalcular o somatório a cada etapa.

- 15) Utilizando a linguagem de programação de sua preferência, forneça uma implementação de:
 - a) Um classificador
 - b) Um agrupador
- **16)** Utilize os métodos desenvolvidos na questão anterior em dois conjuntos de dados de sua escolha. Descreva e comente seus resultados. (*Os métodos funcionaram corretamente? Foi necessário algum ajuste especial? Alguma iéia de como obter resultados melhores?*)

Obs.: Muitos conjuntos de dados podem ser encontrados em http://archive.ics.uci.edu/ml/datasets.html