

UNIOESTE - Universidade Estadual do Oeste do Paraná

Campus de Cascavel PR - Rua Universitária, 1619 (45) 3220-3000

Bacharelado em Ciência da Computação - CCET

Colegiado de Ciência da Computação (45) 3220-3191

Disciplina: Linguagens de Programação
Juliano Felipe da Silva
Maycon de Queiroz Oliveira

Descrição da linguagem de programação NOME

1 OBJETIVO

2 OPERADORES

2.1 OPERADORES LÓGICOS SUPORTADOS

Símbolo Utilizado	Operação Realizada	Exemplo de chamada
&	E bit a bit	C = A & B
	OU bit a bit	$C = A \mid B$
!	Negação	C = !A
٨	OU exclusivo bit a bit	$C = A \wedge B$
<<	Shift lógico a esquerda onde o elemento a esquerda sofre a quantidade apresentada à direita do operador	C = A << B
>>	Shift lógico a direita onde o elemento a esquerda sofre a quantidade apresentada à direita do operador	C = A >> B

2.2 OPERADORES ARITMÉTICOS SUPORTADOS

Símbolo Utilizado	Operação Realizada	Exemplo de chamada
+	Soma	C = A + B
-	Subtração	C = A - B
*	Multiplicação	C = A * B
/	Divisão	C = A / B
%	Resto da divisão do elemento da direita pelo elemento da esquerda	C = A % B

2.3 OPERADORES RELACIONAIS SUPORTADOS

Símbolo Utilizado	Operação Realizada	Exemplo de chamada
==	Verdadeiro se elementos a direita e a esquerda são iguais	A == B
!=	Verdadeiro se elementos a direita e a esquerda são diferentes	A != B
<=	Verdadeiro se elemento a esquerda é menor ou igual ao elemento a direita	A <= B
>=	Verdadeiro se elemento a esquerda é maior ou igual ao elemento a direita	A >= B
<	Verdadeiro se elemento a esquerda é menor que o elemento a direita	A < B
>	Verdadeiro se elemento a esquerda é maior que o elemento a direita	A > B

3 TIPOS DE DADOS

A declaração de variáveis é explicita, com o tipo informado logo à frente da variável a ser declarada. Os possíveis tipos e suas declarações são listados abaixo.

3.1 CHR

Tamanho	1 byte
Operações Permitidas	+, -, *, /, %, &, , !, ^, <<, >>
	%c – Imprime caractere de acordo com
Chamada em impressão	tabela ASCII
	%u – Imprime valor numérico do byte
Doggrigão	Valor que pode ser tanto caractere como
Descrição	inteiro

3.2 INT

Tamanho	4 bytes
Operações Permitidas	+, -, *, /, %, &, , !, ^, <<, >>
Chamada em impressão	%d – Imprime valor numérico
Descrição	Valor inteiro

3.3 FLT

Tamanho	4 bytes
Operações Permitidas	+, -, *, /, %, &, , !, ^
Chamada em impressão	%f – Imprime valor numérico
Descrição	Valor ponto flutuante

3.4 BLN

Tamanho	1 byte (usado apenas bit menos significativo)
Operações Permitidas	&, , !, ^, <<, >>
Chamada em impressão	%b – Imprime valor numérico (1 ou 0)

3.5 EBNF

4 ESTRUTURAS DE DESVIOS

4.1 DESVIOS INCONDICIONAIS

4.1.1 GTO

Salta para uma linha do código denominada por uma label. Chamada sem parâmetros é inválida. Exemplo: gto label1

4.1.2 BRK

Para a execução do laço de repetição. Chamada com parâmetros ou sem laço é inválida. Exemplo: brk

4.2 DESVIOS CONDICIONAIS

4.2.1 IFF

Executa o código dentro do bloco posterior se a expressão neste for verdadeira. Expressões vazias são inválidas. Um bloco posterior deve ser definido usando chaves. Exemplo:

```
iff (A < B){
}
```

4.2.2 ELS

Executa o código dentro do bloco posterior se a expressão 'iff' acima for falsa. Expressões são inválidas. Um bloco posterior deve ser definido usando chaves. Exemplo:

```
iff(A < B){
} els {
}</pre>
```

4.2.3 EIF

Executa o código dentro do bloco posterior se a expressão 'iff' acima for falsa, mas a expressão neste for verdadeira. Expressões vazias são inválidas. Um bloco posterior deve ser definido usando chaves. Exemplo:

```
iff (A < B){
} eif (A == B){
}</pre>
```

4.3 EBNF

```
 < \hspace{-0.2cm} < \hspace{-0.2cm} cond\_stmt> \rightarrow \hspace{0.2cm} iff'('<\hspace{-0.2cm} exp>')''\{'<\hspace{-0.2cm} stmt>'\}''['eif'('<\hspace{-0.2cm} exp>')''\{'<\hspace{-0.2cm} stmt>'\}'']''['else + ('<\hspace{-0.2cm} exp>')'']'' | gto <\hspace{-0.2cm} else + ('<\hspace{-0.2cm} exp>')'''['else + ('<\hspace{-0.2cm} exp>')'']'' | gto <\hspace{-0.2cm} else + ('<\hspace{-0.2cm} exp>')'''['else + ('<\hspace{-0.2cm} exp>')''']'' | gto <\hspace{-0.2cm} else + ('<\hspace{-0.2cm} exp>')'''['else + ('<\hspace{-0.2cm} exp>')''']''['else + ('<\hspace{-0.2cm} exp>')'''['else + ('<\hspace{-0.2cm} exp>')''']'']''
```

5 ESTRUTURAS DE REPETIÇÃO

5.1 FOR

Executa o código dentro do bloco posterior de acordo com as condições iniciais, final e de alteração. Um bloco posterior deve ser definido usando chaves. Exemplo:

```
for(A = 0; A < 10; A = A + 1){
}
```

5.2 WHL

Executa o código no bloco posterior enquanto a expressão for válida. Expressões vazias são inválidas. Um bloco posterior deve ser definido usando chaves. Exemplo:

```
whl(A == 0){
}
```

5.3 EBNF

```
<rept_stmt>\rightarrow for'('<atrb>; <lexp>; <atrb>')"{'<stmt>'}' | whl'('<lexp>')"{'<stmt>'}'
```

6 Definições

6.1 PALAVRAS RESERVADAS

Todos os comandos são palavras reservadas. As palavras A00 a A99 (de 00 a 99 sucedendo a letra A maiúscula) são palavras reservadas.

6.2 Nomes de variáveis

Os nomes de variáveis podem ter até 255 caracteres e devem iniciar com uma letra. Os nomes de variáveis são sensíveis a alteração de letras maiúsculas e minúsculas.

6.2.1 EBNF

7 EBNF

7.1 EXPRESSÕES LÓGICAS

```
<|exp> \rightarrow (<id>| <int>| <chr> | <flt>| <bln>) (== | != | > | < | <= | >=) (<id>| <int> | <chr> | <flt> | <bln>) NÃO TERMINADO!
```

Expressões aritméticas, Operadores sobrecarregados, Conversões de tipos, Expressões relacionais e booleanas e Avaliação em curto-circuito. (Os slides do Cap07 está junto na pasta das aulas de LP no Dropbox)