

Fortran Library Reference

Sun WorkShop 6 Fortran 95 Fortran 77

Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303 U.S.A. 650-960-1300

Part No. 806-3590-10 May 2000, Revision A Copyright © 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 USA. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape TM , Netscape Navigator TM , and the Netscape Communications Corporation $logo^{TM}$, the following notice applies: Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, and Forte are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license agreements.

Sun f90/f95 is derived from Cray CF90 TM , a product of Silicon Graphics, Inc.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à Netscape™, Netscape Navigator™, et the Netscape Communications Corporation logo™: Copyright 1995 Netscape Communications Corporation. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, et Forte sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

Sun f90/f95 est derivé de CRAY CF90™, un produit de Silicon Graphics, Inc.

CETTE PUBLICATION EST FOURNIE "EN L'ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S'APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Important Note on New Product Names

As part of Sun's new developer product strategy, we have changed the names of our development tools from Sun WorkShopTM to ForteTM Developer products. The products, as you can see, are the same high-quality products you have come to expect from Sun; the only thing that has changed is the name.

We believe that the ForteTM name blends the traditional quality and focus of Sun's core programming tools with the multi-platform, business application deployment focus of the Forte tools, such as Forte FusionTM and ForteTM for JavaTM. The new Forte organization delivers a complete array of tools for end-to-end application development and deployment.

For users of the Sun WorkShop tools, the following is a simple mapping of the old product names in WorkShop 5.0 to the new names in Forte Developer 6.

Old Product Name	New Product Name
Sun Visual WorkShop™ C++	Forte TM C++ Enterprise Edition 6
Sun Visual WorkShop TM C++ Personal Edition	Forte™ C++ Personal Edition 6
Sun Performance WorkShop $^{\text{TM}}$ Fortran	Forte TM for High Performance Computing 6
Sun Performance WorkShop $^{\text{TM}}$ Fortran Personal Edition	Forte™ Fortran Desktop Edition 6
Sun WorkShop Professional $^{\text{TM}}$ C	Forte TM C 6
Sun WorkShop $^{\text{TM}}$ University Edition	Forte TM Developer University Edition 6

In addition to the name changes, there have been major changes to two of the products.

- Forte for High Performance Computing contains all the tools formerly found in Sun Performance WorkShop Fortran and now includes the C++ compiler, so High Performance Computing users need to purchase only one product for all their development needs.
- Forte Fortran Desktop Edition is identical to the former Sun Performance WorkShop Personal Edition, except that the Fortran compilers in that product no longer support the creation of automatically parallelized or explicit, directive-based parallel code. This capability is still supported in the Fortran compilers in Forte for High Performance Computing.

We appreciate your continued use of our development products and hope that we can continue to fulfill your needs into the future.

Contents

Preface 1

1.

Fortran Library Routines 9
Data Type Considerations 9
64-Bit Environments 10
Fortran Math Functions 11
abort: Terminate and Write Core File 20
access: Check File Permissions or Existence 20
alarm: Call Subroutine After a Specified Time 21
bit: Bit Functions: and, or,, bit, setbit, 22
chdir: Change Default Directory 26
chmod: Change the Mode of a File 27
date: Get Current Date as a Character String 27
date_and_time: Get Date and Time 28
dtime, etime: Elapsed Execution Time 31
exit: Terminate a Process and Set the Status 33
${\tt fdate: Return\ Date\ and\ Time\ in\ an\ ASCII\ String} \qquad 34$
flush: Flush Output to a Logical Unit 35
fork: Create a Copy of the Current Process 36
free: Deallocate Memory Allocated by Malloc 37

```
37
fseek, ftell: Determine Position and Reposition a File
                                                                     40
fseeko64, ftello64: Determine Position and Reposition a Large File
getarg, iargc: Get Command-Line Arguments 41
getc, fgetc: Get Next Character 43
                                                45
getcwd: Get Path of Current Working Directory
getenv: Get Value of Environment Variables
getfd: Get File Descriptor for External Unit Number
                                                     47
getlog: Get User's Login Name 49
getpid: Get Process ID 50
getuid, getgid: Get User or Group ID of Process 50
hostnm: Get Name of Current Host
                                    52
index, rindex, lnblnk: Index or Length of Substring 60
inmax: Return Maximum Positive Integer
ioinit: Initialize I/O Properties 63
itime: Current Time 68
kill: Send a Signal to a Process
                                 69
link, symlnk: Make a Link to an Existing File 69
loc: Return the Address of an Object 71
                                         72
long, short: Integer Object Conversion
longjmp, isetjmp: Return to Location Set by isetjmp
malloc, malloc64: Allocate Memory and Get Address 76
mybits: Move a Bit Field 77
perror, gerror, ierrno: Get System Error Messages 78
putc, fputc: Write a Character to a Logical Unit 80
qsort, qsort64: Sort the Elements of a One-Dimensional Array
                                                               83
ran: Generate a Random Number Between 0 and 1 84
rand, drand, irand: Return Random Values 86
rename: Rename a File 87
```

secnds: Get System Time in Seconds, Minus Argument 88 sh: Fast Execution of an sh Command 89 signal: Change the Action for a Signal sleep: Suspend Execution for an Interval stat64, 1stat64, fstat64: Get File Status 95 system: Execute a System Command 95 time, ctime, ltime, gmtime: Get System Time 96 topen, tclose, tread,..., tstate: Tape I/O 101 ttynam, isatty: Get Name of a Terminal Port 111 unlink: Remove a File 112 wait: Wait for a Process to Terminate 113

Index 115

Tables

TABLE 1-1	Library Routines for 64-bit Environments 11	
TABLE 1-2	Single-Precision Math Functions 13	
TABLE 1-3	Double Precision Math Functions 16	
TABLE 1-4	Quadruple-Precision libm Functions 19	
TABLE 1-5	IEEE Arithmetic Support Routines 55	
TABLE 1-6	ieee_flags(action,mode,in,out) Parameters and Actions	56
TABLE 1-7	ieee_handler(action,in,out) Parameters 57	

Preface

The Fortran Library Reference describes the routines in the Sun WorkShopTM Fortran libraries. This reference manual is intended for programmers with a working knowledge of the Fortran language and the SolarisTM operating environment.

Multiplatform Release

This Sun WorkShop Fortran release supports versions 2.6, 7, and 8 of the SolarisTM *SPARC*TM *Platform Edition* Operating Environment.

See the fortran_77 and fortran_95 README files in the Sun WorkShop READMEs directory for release information regarding availability of the Fortran compilers and libraries on specific platforms.

Access to Sun WorkShop Development Tools

Because Sun WorkShop product components and man pages do not install into the standard /usr/bin/ and /usr/share/man directories, you must change your PATH and MANPATH environment variables to enable access to Sun WorkShop compilers and tools.

To determine if you need to set your PATH environment variable:

1. Display the current value of the PATH variable by typing:

% echo \$PATH

2. Review the output for a string of paths containing /opt/SUNWspro/bin/.

If you find the paths, your PATH variable is already set to access Sun WorkShop development tools. If you do not find the paths, set your PATH environment variable by following the instructions in this section.

To determine if you need to set your MANPATH environment variable:

1. Request the workshop man page by typing:

% man workshop

2. Review the output, if any.

If the workshop(1) man page cannot be found or if the man page displayed is not for the current version of the software installed, follow the instructions in this section for setting your MANPATH environment variable.

Note – The information in this section assumes that your Sun WorkShop 6 products were installed in the /opt directory. Contact your system administrator if your Sun WorkShop software is not installed in /opt.

The PATH and MANPATH variables should be set in your home .cshrc file if you are using the C shell or in your home .profile file if you are using the Bourne or Korn shells:

■ To use Sun WorkShop commands, add the following to your PATH variable:

/opt/SUNWspro/bin

■ To access Sun WorkShop man pages with the man command, add the following to your MANPATH variable:

/opt/SUNWspro/man

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1) man pages. For more information about the MANPATH variable, see the man(1) man page. For more information about setting your PATH and MANPATH variables to access this release, see the *Sun WorkShop 6 Installation Guide* or your system administrator.

Typographic Conventions

TABLE P-1 shows the typographic conventions that are used in Sun WorkShop documentation.

TABLE P-1 Typographic Conventions

Typeface	Meaning	Examples
AaBbCc123	The names of commands, files, and directories; on-screen computer output	Edit your .login file. Use ls -a to list all files. % You have mail.
AaBbCc123	What you type, when contrasted with on-screen computer output	% su Password:
AaBbCc123	Book titles, new words or terms, words to be emphasized	Read Chapter 6 in the <i>User's Guide</i> . These are called <i>class</i> options. You <i>must</i> be superuser to do this.
AaBbCc123	Command-line placeholder text; replace with a real name or value	To delete a file, type rm filename.

- FORTRAN 77 examples appear in tab format, while Fortran 95 examples appear in free format. Examples common to both FORTRAN 77 and Fortran 95 use tab format except where indicated.
- Uppercase characters are generally used to show Fortran keywords and intrinsics (PRINT), and lowercase or mixed case is used for variables (TbarX).
- The Sun FORTRAN compilers are referred to by their command names, either £77 or £95. "£77/£95" indicates information that is common to both the FORTRAN 77 and Fortran 95 compilers.
- References to online man pages appear with the topic name and section number. For example, a reference to GETENV will appear as getenv(3F), implying that the man command to access this page would be: man -s 3F getenv
- The FORTRAN 77 standard uses an older convention of spelling the name "FORTRAN" capitalized. Sun documentation uses both FORTRAN and Fortran. The current convention is to use lower case: "Fortran 95".

Shell Prompts

TABLE P-2 shows the default system prompt and superuser prompt for the C shell, Bourne shell, and Korn shell.

TABLE P-2 Shell Prompts

Shell	Prompt	
C shell	%	
Bourne shell and Korn shell	\$	
C shell, Bourne shell, and Korn shell superuser	#	

Related Documentation

You can access documentation related to the subject matter of this book in the following ways:

■ Through the Internet at the docs.sun.comsm Web site. You can search for a specific book title or you can browse by subject, document collection, or product at the following Web site:

http://docs.sun.com

- Through the installed Sun WorkShop products on your local system or network. Sun WorkShop 6 HTML documents (manuals, online help, man pages, component readme files, and release notes) are available with your installed Sun WorkShop 6 products. To access the HTML documentation, do one of the following:
 - In any Sun WorkShop or Sun WorkShop™ TeamWare window, choose Help ➤ About Documentation.
 - In your Netscape[™] Communicator 4.0 or compatible version browser, open the following file:

/opt/SUNWspro/docs/index.html

(Contact your system administrator if your Sun WorkShop software is not installed in the <code>/opt</code> directory.) Your browser displays an index of Sun WorkShop 6 HTML documents. To open a document in the index, click the document's title.

TABLE P-3 lists related Sun WorkShop 6 manuals by document collection.

Related Sun WorkShop 6 Documentation by Document Collection TABLE P-3

Document Collection	Document Title	Description
Forte™ Developer 6 / Sun WorkShop 6 Release Documents	About Sun WorkShop 6 Documentation	Describes the documentation available with this Sun WorkShop release and how to access it.
	What's New in Sun WorkShop 6	Provides information about the new features in the current and previous release of Sun WorkShop.
	Sun WorkShop 6 Release Notes	Contains installation details and other information that was not available until immediately before the final release of Sun WorkShop 6. This document complements the information that is available in the component readme files.
Forte Developer 6 / Sun WorkShop 6	Analyzing Program Performance With Sun WorkShop 6	Explains how to use the new Sampling Collector and Sampling Analyzer (with examples and a discussion of advanced profiling topics) and includes information about the command-line analysis tool er_print, the LoopTool and LoopReport utilities, and UNIX profiling tools prof, gprof, and tcov.
	Debugging a Program With dbx	Provides information on using dbx commands to debug a program with references to how the same debugging operations can be performed using the Sun WorkShop Debugging window.
	Introduction to Sun WorkShop	Acquaints you with the basic program development features of the Sun WorkShop integrated programming environment.

 TABLE P-3
 Related Sun WorkShop 6 Documentation by Document Collection (Continued)

Document Collection	Document Title	Description
Forte™ C 6 / Sun WorkShop 6 Compilers C	C User's Guide	Describes the C compiler options, Sun-specific capabilities such as pragmas, the lint tool, parallelization, migration to a 64-bit operating system, and ANSI/ISO-compliant C.
Forte TM C++ 6 / Sun WorkShop 6 Compilers C++	C++ Library Reference	Describes the C++ libraries, including C++ Standard Library, Tools.h++ class library, Sun WorkShop Memory Monitor, Iostream, and Complex.
	C++ Migration Guide	Provides guidance on migrating code to this version of the Sun WorkShop C++ compiler.
	C++ Programming Guide	Explains how to use the new features to write more efficient programs and covers templates, exception handling, runtime type identification, cast operations, performance, and multithreaded programs.
	C++ User's Guide	Provides information on command-line options and how to use the compiler.
	Sun WorkShop Memory Monitor User's Manual	Describes how the Sun WorkShop Memory Monitor solves the problems of memory management in C and C++. This manual is only available through your installed product (see /opt/SUNWspro/docs/index.html) and not at the docs.sun.com Web site.
Forte™ for High Performance Computing 6 / Sun WorkShop 6 Compilers Fortran 77/95	Fortran Library Reference	Provides details about the library routines supplied with the Fortran compiler.

 TABLE P-3
 Related Sun WorkShop 6 Documentation by Document Collection (Continued)

Document Collection	Document Title	Description
	Fortran Programming Guide	Discusses issues relating to input/output, libraries, program analysis, debugging, and performance.
	Fortran User's Guide	Provides information on command-line options and how to use the compilers.
	FORTRAN 77 Language Reference	Provides a complete language reference.
	Interval Arithmetic Programming Reference	Describes the intrinsic INTERVAL data type supported by the Fortran 95 compiler.
Forte™ TeamWare 6 / Sun WorkShop TeamWare 6	Sun WorkShop TeamWare 6 User's Guide	Describes how to use the Sun WorkShop TeamWare code management tools.
Forte Developer 6/ Sun WorkShop Visual 6	Sun WorkShop Visual User's Guide	Describes how to use Visual to create C++ and Java TM graphical user interfaces.
Forte™ / Sun Performance Library 6	Sun Performance Library Reference	Discusses the optimized library of subroutines and functions used to perform computational linear algebra and fast Fourier transforms.
	Sun Performance Library User's Guide	Describes how to use the Sunspecific features of the Sun Performance Library, which is a collection of subroutines and functions used to solve linear algebra problems.
Numerical Computation Guide	Numerical Computation Guide	Describes issues regarding the numerical accuracy of floating-point computations.
Standard Library 2	Standard C++ Class Library Reference	Provides details on the Standard C++ Library.
	Standard C++ Library User's Guide	Describes how to use the Standard C++ Library.
Tools.h++ 7	Tools.h++ Class Library Reference	Provides details on the Tools.h++ class library.
	Tools.h++ User's Guide	Discusses use of the C++ classes for enhancing the efficiency of your programs.

TABLE P-4 describes related Solaris documentation available through the ${\tt docs.sun.com}$ Web site.

 TABLE P-4
 Related Solaris Documentation

Document Collection	Document Title	Description
Solaris Software Developer	Linker and Libraries Guide	Describes the operations of the Solaris link-editor and runtime linker and the objects on which they operate.
	Programming Utilities Guide	Provides information for developers about the special built-in programming tools that are available in the Solaris operating environment.

Fortran Library Routines

This chapter describes the Fortran library routines alphabetically. See the *FORTRAN 77 Language Reference* for details on Fortran 77 and VMS intrinsic functions. All the routines described in this chapter have corresponding man pages in section 3F of the man library. For example, **man -s 3F access** will display the man page entry for the library routine access.

See also the *Numerical Computation Guide* for additional math routines that are callable from Fortran and C. These include the standard math library routines in libm and libsunmath (see Intro(3M)), optimized versions of these libraries, the SPARC vector math library, libmvec, and others.

Data Type Considerations

Unless otherwise indicated, the function routines listed here are not intrinsics. That means that the type of data a function returns may conflict with the implicit typing of the function name, and require explicit type declaration by the user. For example, getpid() returns INTEGER*4 and would require an INTEGER*4 getpid declaration to ensure proper handling of the result. (Without explicit typing, a REAL result would be assumed by default because the function name starts with g.) As a reminder, explicit type statements appear in the function summaries for these routines.

Be aware that IMPLICIT statements and the -r8, -i2, -dbl and -xtypemap compiler options also alter the data typing of arguments and the treatment of return values. A mismatch between the expected and actual data types in calls to these library routines could cause unexpected behavior. Options -r8 and -dbl promote the data type of INTEGER functions to INTEGER*8, REAL functions to REAL*8, and

DOUBLE functions to REAL*16. To protect against these problems, function names and variables appearing in library calls should be explicitly typed with their expected sizes, as in:

```
integer*4 seed, getuid
real*4 ran
...
seed = 70198
val = getuid() + ran(seed)
...
```

Explicit typing in the example protects the library calls from any data type promotion when the -r8 and -dbl compiler options are used. Without explicit typing, these options could produce unexpected results. See the *Fortran User's Guide* and the £77(1) and £95(1) man pages for details on these options.

The more flexible -xtypemap compiler option is recommended over the obsolete -i2, -r8, and -dbl options and should be used instead.

You can catch many issues related to type mismatches over library calls by using the Fortran compilers' global program checking option, -Xlist. Global program checking by the f77 and f95 compilers is described in the *Fortran User's Guide*, the *Fortran Programming Guide*, and the f77(1) and f95(1) man pages.

64-Bit Environments

Compiling a program to run in a 64-bit operating environment (that is, compiling with -xarch=v9 or v9a and running the executable on a SPARC platform running the 64-bit enabled Solaris operating environment) changes the return values of certain functions. These are usually functions that interface standard system-level routines, such as malloc(3F) (see page 76), and may take or return 32-bit or 64-bit values depending on the environment. To provide portability of code between 32-bit

and 64-bit environments, 64-bit versions of these routines have been provided that always take and/or return 64-bit values. The following table identifies library routine provided for use in 64-bit environments:

TABLE 1-1 Library Routines for 64-bit Environments

Library Routines		
malloc64	Allocate memory and return a pointer	page 76
fseeko64	Reposition a large file	page 40
ftello64	Determine position of a large file	page 40
stat64, fstat64, lstat64	Determine status of a file	page 95
time64, ctime64, gmtime64, ltime64	Get system time, convert to character or dissected	page 96
qsort64	Sort the elements of an array	page 83

Fortran Math Functions

The following functions and subroutines are part of the Fortran math libraries. They are available to all programs compiled with £77 and £95. Some routines are intrinsics and return the same data type (single precision, double precision, or quad precision) as their argument. The rest are non-intrinsics that take a specific data type as an argument and return the same. These non-intrinsics do have to be declared in the routine referencing them.

Many of these routines are "wrappers", Fortran interfaces to routines in the C language library, and as such are non-standard Fortran. They include IEEE recommended support functions, and specialized random number generators. See the *Numerical Computation Guide* and the man pages libm_single(3F), libm_double(3F), libm_quadruple(3F), for more information about these libraries.

Intrinsic Math Functions

Here is a list of *intrinsic* math functions. You need not put them in a type statement. These functions take single, double, or quad precision data as arguments and return the same.

sqrt(x)	asin(x)	cosd(x)
log(x)	acos(x)	asind(x)
log10(x)	atan(x)	acosd(x)
exp(x)	atan2(x,y)	atand(x)
x**y	sinh(x)	atan2d(x,y)
sin(x)	cosh(x)	aint(x)
cos(x)	tanh(x)	anint(x)
tan(x)	sind(x)	nint(x)

The functions sind(x), cosd(x), asind(x), acosd(x), atand(x), atan2d(x,y) are not part of the Fortran standard.

Single-Precision Functions

These subprograms are single-precision math functions and subroutines.

In general, the functions below provide access to single-precision math functions that do *not* correspond to standard Fortran generic intrinsic functions—data types are determined by the usual data typing rules.

These functions need not be explicitly typed with a REAL statement as long as default typing holds. (Variables beginning with "r" are REAL, with "i" are INTEGER.)

For details on these routines, see the C math library man pages (3M). For example, for $r_{acos(x)}$ see the acos(3M) man page.

 TABLE 1-2
 Single-Precision Math Functions

r_acos(x) REAL renction arc cosine r_acosh(x) REAL renction arc cosh r_acosh(x) REAL renction arc cosh r_acospi(x) REAL renction arc cosh r_acospi(x) REAL renction arc tangent r_acospi(x) REAL renction arc tangent r_acospi(x) REAL renction arc tangent r_atan(x) REAL renction arc tanh r_atanh(x) REAL renction arc tanh r_atanpi(x) REAL renction arc sine r_asin(x) REAL renction arc sine r_asin(x) REAL renction arc sinh r_asinpi(x) REAL renction arc sinh r_asinpi(x) REAL renction arc tangent r_atan2((y,x) REAL renction arc tangent r_atan2pi(y,x) REAL renction arc tangent r_atan2pi(y,x) REAL renction arc tangent r_cost(x) REAL renction arc tangent r_cos(x) REAL renction arc tangent r_cos(x) REAL renction arc tangent				
<pre>r_acosh(x)</pre>	r_acos(x)	REAL	Function	arc cosine
<pre>r_acosp(x)</pre>	r_acosd(x)	REAL	Function	
<pre>r_acospi(x)</pre>	r_acosh(x)	REAL	Function	arc cosh
r_atan(x) REAL Function arc tangent r_atand(x) REAL Function r_atanh(x) REAL Function r_atanp(x) REAL Function arc tanh r_atanp(x) REAL Function r_atanpi(x) REAL Function r_asin(x) REAL Function r_asin(x) REAL Function arc sine r_asinh(x) REAL Function r_asinh(x) REAL Function r_asinpi(x) REAL Function r_asinpi(x) REAL Function r_atan2((y, x) REAL Function r_atan2pi(y, x) REAL Function r_atan2pi(y, x) REAL Function r_cotr(x) REAL Function cube root r_ceil(x) REAL Function ceiling r_copysign(x, y) REAL Function r_cos(x) REAL Function REAL Fu	r_acosp(x)	REAL	Function	
<pre>r_atand(x)</pre>	r_acospi(x)	REAL	Function	
<pre>r_atand(x)</pre>	ratan(v)	PFAT.	Function	ard tangent
<pre>r_atanh(x)</pre>				•
r_atanp(x) REAL Function r_atanpi(x) REAL Function r_atanpi(x) REAL Function r_asin(x) REAL Function arc sine r_asind(x) REAL Function r_asinh(x) REAL Function arc sinh r_asinp(x) REAL Function r_asinpi(x) REAL Function r_asinpi(x) REAL Function r_atan2((y, x) REAL Function arc tangent r_atan2d(y, x) REAL Function r_atan2pi(y, x) REAL Function r_cbrt(x) REAL Function cube root r_ceil(x) REAL Function ceiling r_copysign(x, y) REAL Function r_cos(x) REAL Function r_cosp(x) REAL Function				
r_atanpi(x) REAL Function r_asin(x) REAL Function arc sine r_asind(x) REAL Function r_asinh(x) REAL Function r_asinh(x) REAL Function arc sinh r_asinp(x) REAL Function r_asinpi(x) REAL Function r_atan2((y, x)) REAL Function arc tangent r_atan2d(y, x) REAL Function r_atan2pi(y, x) REAL Function cube root r_cobrt(x) REAL Function ceiling r_copysign(x, y) REAL Function r_cos(x) REAL Function cosine r_cos(x) REAL Function REAL Function r_cos(x) REAL Function RE				
r_asin(x) REAL REAL Function r_asind(x) REAL Function r_asinh(x) REAL Function REAL Function r_asinp(x) REAL Function r_asinpi(x) REAL Function r_asinpi(x) REAL Function r_atan2((y, x) REAL Function r_atan2pi(y, x) REAL Function r_cbrt(x) REAL Function Function r_ceil(x) REAL Function Cube root ceiling r_copysign(x, y) REAL Function r_cos(x) REAL Function r_cosh(x) REAL Function r_cosp(x) REAL Function r_cospi(x) REAL Function REAL Function r_cospi(x) REAL Function				
r_asind(x) REAL Function r_asinh(x) REAL Function arc sinh r_asinp(x) REAL Function r_asinpi(x) REAL Function r_asinpi(x) REAL Function r_atan2((y, x) REAL Function arc tangent r_atan2d(y, x) REAL Function r_atan2pi(y, x) REAL Function r_cbrt(x) REAL Function cube root r_ceil(x) REAL Function ceiling r_copysign(x, y) REAL Function r_cos(x) REAL Function r_cos(x) REAL Function r_cosh(x) REAL Function r_cosh(x) REAL Function r_cosp(x) REAL Function r_cospi(x) REAL Function	r_atampr(x)	REAL	Function	
r_asinh(x) REAL Function arc sinh r_asinp(x) REAL Function r_asinpi(x) REAL Function r_asinpi(x) REAL Function r_atan2((y, x) REAL Function arc tangent r_atan2d(y, x) REAL Function r_atan2pi(y, x) REAL Function cube root r_cbrt(x) REAL Function ceiling r_ccpysign(x, y) REAL Function r_cos(x) REAL Function cosine r_cosd(x) REAL Function r_cosh(x) REAL Function r_cosh(x) REAL Function r_cosp(x) REAL Function r_cospi(x) REAL Function	r_asin(x)	REAL	Function	arc sine
r_asinp(x) r_asinpi(x) REAL Function r_asinpi(x) REAL Function r_atan2((y, x) REAL Function r_atan2pi(y, x) REAL Function r_cbrt(x) REAL Function r_ceil(x) REAL Function r_copysign(x, y) REAL Function r_cos(x) REAL Function r_cosh(x) REAL Function r_cosh(x) REAL Function r_cosp(x) REAL Function r_cosp(x) REAL Function r_cosp(x) REAL Function r_cospi(x) REAL	r_asind(x)	REAL	Function	
<pre>r_asinpi(x) REAL Function r_atan2((y, x) REAL Function arc tangent r_atan2d(y, x) REAL Function r_atan2pi(y, x) REAL Function r_cbrt(x) REAL Function cube root r_ceil(x) REAL Function ceiling r_copysign(x, y) REAL Function r_cos(x) REAL Function cosine r_cos(x) REAL Function r_cosh(x) REAL Function r_cosp(x) REAL F</pre>	r_asinh(x)	REAL	Function	arc sinh
r_atan2((y, x) REAL Function arc tangent r_atan2d(y, x) REAL Function r_atan2pi(y, x) REAL Function r_cbrt(x) REAL Function cube root r_ceil(x) REAL Function ceiling r_copysign(x, y) REAL Function r_cos(x) REAL Function cosine r_cosd(x) REAL Function r_cosh(x) REAL Function hyperb cos r_cosp(x) REAL Function r_cospi(x) REAL Function	r_asinp(x)	REAL	Function	
<pre>r_atan2d(y, x)</pre>	r_asinpi(x)	REAL	Function	
<pre>r_atan2d(y, x)</pre>	r atan2// v v)	DEAT	Eunation	ara tangont
<pre>r_atan2pi(y, x) REAL Function r_cbrt(x) REAL Function cube root r_ceil(x) REAL Function ceiling r_copysign(x, y) REAL Function r_cos(x) REAL Function cosine r_cosd(x) REAL Function r_cosh(x) REAL Function hyperb cos r_cosp(x) REAL Function r_cosp(x) REAL Function r_cosp(x) REAL Function r_cospi(x) REAL Function r_cospi(x) REAL Function r_cospi(x) REAL Function err function</pre>	=			•
r_cbrt(x) REAL Function cube root r_ceil(x) REAL Function ceiling r_copysign(x, y) REAL Function r_cos(x) REAL Function cosine r_cosd(x) REAL Function r_cosh(x) REAL Function hyperb cos r_cosp(x) REAL Function r_cosp(x) REAL Function r_cosp(x) REAL Function r_cospi(x) REAL Function r_cospi(x) REAL Function r_cerf(x) REAL Function err function	_			
r_ceil(x) REAL runction ceiling ceiling r_copysign(x, y) REAL Function r_cos(x) REAL Function cosine r_cosd(x) REAL Function r_cosh(x) REAL Function hyperb cos r_cosp(x) REAL Function r_cospi(x) REAL Function r_erf(x) REAL Function err function	r_atanzpr(y, x)	REAL	Function	
r_copysign(x, y) REAL Function r_cos(x) REAL Function cosine r_cosd(x) REAL Function r_cosh(x) REAL Function hyperb cos r_cosp(x) REAL Function r_cospi(x) REAL Function r_cospi(x) REAL Function err function	r_cbrt(x)	REAL	Function	cube root
r_cos(x) REAL Function cosine r_cosd(x) REAL Function r_cosh(x) REAL Function hyperb cos r_cosp(x) REAL Function r_cospi(x) REAL Function r_erf(x) REAL Function err function	r_ceil(x)	REAL	Function	ceiling
r_cosd(x) REAL Function r_cosh(x) REAL Function hyperb cos r_cosp(x) REAL Function r_cospi(x) REAL Function r_erf(x) REAL Function err function	r_copysign(x, y)	REAL	Function	
r_cosd(x) REAL Function r_cosh(x) REAL Function hyperb cos r_cosp(x) REAL Function r_cospi(x) REAL Function r_erf(x) REAL Function err function	r cos(x)	REAL	Function	cosine
r_cosh(x)REALFunctionhyperb cosr_cosp(x)REALFunctionr_cospi(x)REALFunctionr_erf(x)REALFunctionerr function	_ : :	REAL	Function	
r_cosp(x)REALFunctionr_cospi(x)REALFunctionr_erf(x)REALFunctionerr function	_ : :	REAL	Function	hyperb cos
r_cospi(x) REAL Function r_erf(x) REAL Function err function		REAL		
r_erf(x) REAL Function err function		REAL		
r orfo(r) PENI Function	_ : :			err function
I_EIIC(X) REAL FUNCTION	r_erfc(x)	REAL	Function	
r_expm1(x) REAL Function (e**x)-1	r_expm1(x)	REAL	Function	(e**x)-1
r_floor(x) REAL Function floor	_	REAL	Function	floor
r_hypot(x, y) REAL Function hypotenuse		REAL	Function	hypotenuse
r_infinity() REAL Function		REAL	Function	
	~ i0(v)	DEAT	Function	Poggol
r in(v) PFAI Function Paggal	_			
r_j0(x) REAL Function Bessel				
r_j1(x) REAL Function	r_jn(x)	REAL	runction	

 TABLE 1-2
 Single-Precision Math Functions (Continued)

<pre>ir_finite(x)</pre>				
<pre>ir_ilogb(x)</pre>	ir_finite(x)	INTEGER	Function	
<pre>ir_irint(x)</pre>	ir_fp_class(x)	INTEGER	Function	
<pre>ir_isinf(x)</pre>	ir_ilogb(x)	INTEGER	Function	
<pre>ir_isnan(x)</pre>	<pre>ir_irint(x)</pre>	INTEGER	Function	
<pre>ir_isnormal(x)</pre>	ir_isinf(x)	INTEGER	Function	
<pre>ir_issubnormal(x)</pre>	ir_isnan(x)	INTEGER	Function	
<pre>ir_iszero(x)</pre>	ir_isnormal(x)	INTEGER	Function	
ir_signbit(x) INTEGER Function r_addran() REAL Function random raddrans(x, p, 1, u) n/a Subroutine number r_loran() REAL Function generators r_lorans(x, p, 1, u) n/a Subroutine r_shufrans(x, p, 1, u) n/a Subroutine r_shufrans(x, p, 1, u) n/a Subroutine r_shufrans(x, p, 1, u) n/a Subroutine r_logb(x) REAL Function log gamma r_logb(x) REAL Function r_log1p(x) REAL Function r_log2(x) REAL Function r_max_normal() REAL Function r_max_subnormal() REAL Function r_min_normal() REAL Function r_min_subnormal() REAL Function r_min_subnormal() REAL Function r_quiet_nan(n) REAL Function r_remainder(x, y) REAL Function r_remainder(x, y) REAL Function r_scalb(x, y) REAL Function r_signaling_nan(n) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function hyperb sin r_sinp(x) REAL Function	ir_issubnormal(x)	INTEGER	Function	
r_addran() r_addrans(x,p,l,u) n/a Subroutine number r_lcran() r_lcran() r_lcran() r_lcrans(x,p,l,u) n/a Subroutine r_lcrans(x,p,l,u) n/a Subroutine r_shufrans(x,p,l,u) n/a Subroutine r_shufrans(x,p,l,u) n/a Subroutine r_lagmma(x) r_lagmma(x) r_logb(x) REAL Function r_loglp(x) REAL Function r_loglp(x) REAL Function r_log2(x) REAL Function r_max_normal() REAL Function r_max_subnormal() REAL Function r_min_subnormal() REAL Function r_nextafter(x,y) REAL Function r_remainder(x,y) REAL Function r_rremainder(x,y) REAL Function r_rscalb(x,y) REAL Function r_scalb(x,y) REAL Function r_scalb(x,n) REAL Function r_signaling_nan(n) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sinh(x) R	ir_iszero(x)	INTEGER	Function	
<pre>r_addrans(x, p, l, u)</pre>	ir_signbit(x)	INTEGER	Function	
r_lcran() REAL Function generators r_lcrans(x, p, l, u) n/a Subroutine r_shufrans(x, p, l, u) n/a Subroutine r_lgamma(x) REAL Function log gamma r_logb(x) REAL Function r_loglp(x) REAL Function r_log2(x) REAL Function r_max_normal() REAL Function r_min_normal() REAL Function r_min_subnormal() REAL Function r_min_subnormal() REAL Function r_nextafter(x, y) REAL Function r_quiet_nan(n) REAL Function r_remainder(x, y) REAL Function r_rremainder(x, y) REAL Function r_scalb(x, y) REAL Function r_signaling_nan(n) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sinh(x) REAL Function r_sinh(x) REAL Function r_sinh(x) REAL Function r_sinh(x) REAL Function sine r_sinh(x) REAL Function hyperb sin r_sinp(x) REAL Function hyperb sin r_sinp(x) REAL Function	r_addran()	REAL	Function	random
r_lcran()	r_addrans(x,p,l,u)	n/a	Subroutine	number
r_shufrans(x, p, 1, u) n/a Subroutine r_lgamma(x) REAL Function log gamma r_logb(x) REAL Function r_log1p(x) REAL Function r_log2(x) REAL Function r_max_normal() REAL Function r_max_subnormal() REAL Function r_min_normal() REAL Function r_min_subnormal() REAL Function r_min_subnormal() REAL Function r_nextafter(x, y) REAL Function r_quiet_nan(n) REAL Function r_remainder(x, y) REAL Function r_rint(x) REAL Function r_scalb(x, y) REAL Function r_scalbn(x, n) REAL Function r_signaling_nan(n) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sin(x) REAL Function hyperb sin r_sinp(x) REAL Function	_	REAL	Function	generators
<pre>r_lgamma(x) REAL Function log gamma r_logb(x) REAL Function r_log1p(x) REAL Function r_log2(x) REAL Function r_log2(x) REAL Function r_max_normal() REAL Function r_max_subnormal() REAL Function r_min_normal() REAL Function r_min_subnormal() REAL Function r_min_subnormal() REAL Function r_nextafter(x, y) REAL Function r_quiet_nan(n) REAL Function r_remainder(x, y) REAL Function r_rint(x) REAL Function r_scalb(x, y) REAL Function r_scalbn(x, n) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sin(x) REAL Function hyperb sin r_sinp(x) REAL Function hyperb sin r_sinp(x) REAL Function</pre>	r_lcrans(x, p, l, u)	n/a	Subroutine	
r_logb(x) REAL Function r_log1p(x) REAL Function r_log2(x) REAL Function r_log2(x) REAL Function r_max_normal() REAL Function r_max_subnormal() REAL Function r_min_normal() REAL Function r_min_subnormal() REAL Function r_nextafter(x, y) REAL Function r_quiet_nan(n) REAL Function r_remainder(x, y) REAL Function r_remainder(x, y) REAL Function r_scalb(x, y) REAL Function r_scalb(x, y) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sin(x) REAL Function hyperb sin r_sinp(x) REAL Function	r_shufrans(x, p, l, u)	n/a	Subroutine	
r_logb(x) REAL Function r_log1p(x) REAL Function r_log2(x) REAL Function r_log2(x) REAL Function r_max_normal() REAL Function r_max_subnormal() REAL Function r_min_normal() REAL Function r_min_subnormal() REAL Function r_nextafter(x, y) REAL Function r_quiet_nan(n) REAL Function r_remainder(x, y) REAL Function r_remainder(x, y) REAL Function r_scalb(x, y) REAL Function r_scalb(x, y) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sin(x) REAL Function hyperb sin r_sinp(x) REAL Function	r lgamma(x)	REAL	Function	log gamma
<pre>r_log1p(x)</pre>	_			
<pre>r_log2(x) REAL Function r_max_normal() REAL Function r_max_subnormal() REAL Function r_min_normal() REAL Function r_min_subnormal() REAL Function r_nextafter(x, y) REAL Function r_quiet_nan(n) REAL Function r_remainder(x, y) REAL Function r_rint(x) REAL Function r_scalb(x, y) REAL Function r_scalbn(x, n) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sind(x) REAL Function r_sind(x) REAL Function r_sind(x) REAL Function r_sinh(x) REAL Function r_sinh(x) REAL Function hyperb sin r_sinp(x) REAL Function</pre>				
<pre>r_max_normal() r_max_subnormal() r_min_normal() r_min_normal() r_min_subnormal() r_min_subnormal() r_mextafter(x,y) REAL runction r_quiet_nan(n) r_remainder(x,y) REAL runction r_rint(x) r_scalb(x,y) REAL runction r_scalb(x,n) r_scalbn(x,n) r_signaling_nan(n) r_significand(x) REAL runction r_sind(x) REAL runction r_sinh(x) REAL runction r_sinp(x) r_sinp(x) r_sinp(x) r_</pre>		REAL	Function	
r_max_subnormal() REAL Function r_min_normal() REAL Function r_min_subnormal() REAL Function r_nextafter(x,y) REAL Function r_quiet_nan(n) REAL Function r_remainder(x,y) REAL Function r_rint(x) REAL Function r_scalb(x,y) REAL Function r_scalbn(x,n) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sind(x) REAL Function r_sinh(x) REAL Function r_sinh(x) REAL Function hyperb sin r_sinp(x) REAL Function		DEAT	Eunation	
r_min_normal() REAL Function r_min_subnormal() REAL Function r_nextafter(x,y) REAL Function r_quiet_nan(n) REAL Function r_remainder(x,y) REAL Function r_rint(x) REAL Function r_scalb(x,y) REAL Function r_scalbn(x,n) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sind(x) REAL Function r_sinh(x) REAL Function r_sinp(x) REAL Function	= = ::			
r_min_subnormal() REAL Function r_nextafter(x,y) REAL Function r_quiet_nan(n) REAL Function r_remainder(x,y) REAL Function r_rint(x) REAL Function r_scalb(x,y) REAL Function r_scalbn(x,n) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sin(x) REAL Function r_sinh(x) REAL Function hyperb sin r_sinp(x) REAL Function	''			
r_nextafter(x, y) REAL Function r_quiet_nan(n) REAL Function r_remainder(x, y) REAL Function r_rint(x) REAL Function r_scalb(x, y) REAL Function r_scalbn(x, n) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sin(x) REAL Function r_sin(x) REAL Function r_sind(x) REAL Function r_sind(x) REAL Function r_sinh(x) REAL Function r_sinh(x) REAL Function r_sinp(x) REAL Function				
r_quiet_nan(n) REAL Function r_remainder(x,y) REAL Function r_rint(x) REAL Function r_scalb(x,y) REAL Function r_scalbn(x,n) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sin(x) REAL Function r_sinh(x) REAL Function r_sinp(x) REAL Function	= = ''			
r_remainder(x, y) REAL Function r_rint(x) REAL Function r_scalb(x, y) REAL Function r_scalbn(x, n) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sin(x) REAL Function r_sin(x) REAL Function	-			
r_rint(x) REAL Function r_scalb(x, y) REAL Function r_scalbn(x, n) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sin(x) REAL Function r_sind(x) REAL Function r_sinh(x) REAL Function r_sinh(x) REAL Function r_sinh(x) REAL Function r_sinp(x) REAL Function				
<pre>r_scalb(x, y)</pre>				
r_scalbn(x, n) REAL Function r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sin(x) REAL Function r_sin(x) REAL Function r_sinh(x) REAL Function r_sinh(x) REAL Function hyperb sin r_sinp(x) REAL Function				
<pre>r_signaling_nan(n) REAL Function r_significand(x) REAL Function r_sin(x) REAL Function sine r_sind(x) REAL Function r_sinh(x) REAL Function hyperb sin r_sinp(x) REAL Function</pre>				
r_significand(x)REALFunctionr_sin(x)REALFunctionsiner_sind(x)REALFunctionr_sinh(x)REALFunctionhyperb sinr_sinp(x)REALFunction				
r_sin(x)REALFunctionsiner_sind(x)REALFunctionr_sinh(x)REALFunctionhyperb sinr_sinp(x)REALFunction				
r_sind(x) REAL Function r_sinh(x) REAL Function hyperb sin r_sinp(x) REAL Function				
r_sinh(x) REAL Function hyperb sin r_sinp(x) REAL Function	= ' '			sine
r_sinp(x) REAL Function				
				hyperb sin
r_sinpi(x) REAL Function				
	r_sinpi(x)	REAL	Function	

 TABLE 1-2
 Single-Precision Math Functions (Continued)

<pre>r_sincos(x, s, c) r_sincosd(x, s, c) r_sincosp(x, s, c) r_sincospi(x, s, c)</pre>	n/a n/a n/a n/a	Subroutine Subroutine Subroutine Subroutine	sine & cosine
r_tan(x) r_tand(x) r_tanh(x) r_tanp(x) r_tanpi(x)	REAL REAL REAL REAL REAL	Function Function Function Function Function	tangent hyperb tan
r_y0(x) r_y1(x) r_yn(n, x)	REAL REAL REAL	Function Function Function	bessel

- Variables c, 1, p, s, u, x, and y are of type REAL.
- Type these functions as explicitly REAL if an IMPLICIT statement is in effect that types names starting with "r" to some other date type.
- sind(x), asind(x), ... take *degrees* rather than *radians*.

See also: intro(3M) and the *Numerical Computation Guide*.

Double-Precision Functions

The following subprograms are double-precision math functions and subroutines.

In general, these functions do *not* correspond to standard Fortran generic intrinsic functions—data types are determined by the usual data typing rules.

These DOUBLE PRECISION functions need to appear in a DOUBLE PRECISION statement.

Refer to the C library man pages for details: the man page for $\texttt{d_acos}(\texttt{x})$ is acos(3M)

 TABLE 1-3
 Double Precision Math Functions

d_acos(x)	DOUBLE PRECISION	Function	arc cosine
d_acosd(x)	DOUBLE PRECISION	Function	
d_acosh(x)	DOUBLE PRECISION	Function	arc cosh
d_acosp(x)	DOUBLE PRECISION	Function	
d_acospi(x)	DOUBLE PRECISION	Function	
d_atan(x)	DOUBLE PRECISION		arc tangent
d_atand(x)	DOUBLE PRECISION		
d_atanh(x)	DOUBLE PRECISION		arc tanh
d_atanp(x)	DOUBLE PRECISION		
d_atanpi(x)	DOUBLE PRECISION	Function	
d_asin(x)	DOUBLE PRECISION	Function	arc sine
d_asind(x)	DOUBLE PRECISION	Function	
d_asinh(x)	DOUBLE PRECISION	Function	arc sinh
d_asinp(x)	DOUBLE PRECISION	Function	
d_asinpi(x)	DOUBLE PRECISION	Function	
d_atan2((y, x)	DOUBLE PRECISION	Function	arc tangent
d_atan2d(y, x)	DOUBLE PRECISION		
d_atan2pi(y, x)	DOUBLE PRECISION		
	DOUBLE FRECISION		
d_cbrt(x)	DOUBLE PRECISION		cube root
d_ceil(x)	DOUBLE PRECISION	Function	ceiling
d_copysign(x, x)	DOUBLE PRECISION	Function	
d_cos(x)	DOUBLE PRECISION	Function	cosine
d_cosd(x)	DOUBLE PRECISION	Function	
d_cosh(x)	DOUBLE PRECISION	Function	hyperb cos
d_cosp(x)	DOUBLE PRECISION	Function	
d_cospi(x)	DOUBLE PRECISION	Function	
d erf(x)	DOUBLE PRECISION	Function	error func
d_erfc(x)	DOUBLE PRECISION		
			(-++) 1
d_expm1(x)	DOUBLE PRECISION		(e**x)-1
d_floor(x)	DOUBLE PRECISION		floor
d_hypot(x, y)	DOUBLE PRECISION		hypotenuse
d_infinity()	DOUBLE PRECISION	Function	
d_j0(x)	DOUBLE PRECISION	Function	Bessel
d_j1(x)	DOUBLE PRECISION	Function	
d_jn(x)	DOUBLE PRECISION	Function	

 TABLE 1-3
 Double Precision Math Functions (Continued)

id_finite(x)	INTEGER	Function	
id_fp_class(x)	INTEGER	Function	
id_ilogb(x)	INTEGER	Function	
<pre>id_irint(x)</pre>	INTEGER	Function	
id_isinf(x)	INTEGER	Function	
id_isnan(x)	INTEGER	Function	
id_isnormal(x)	INTEGER	Function	
<pre>id_issubnormal(x)</pre>	INTEGER	Function	
id_iszero(x)	INTEGER	Function	
id_signbit(x)	INTEGER	Function	
d_addran()	DOUBLE PRECISION	Function	random
d_addrans(x, p, 1, u)	n/a	Subroutine	number
d_lcran()	DOUBLE PRECISION	Function	generators
d_lcrans(x, p, 1, u)	n/a	Subroutine	3
d_shufrans(x, p, l,u)	n/a	Subroutine	
	DOIDI E DDEGICION	E	1
d_lgamma(x)	DOUBLE PRECISION	Function Function	log gamma
d_logb(x)	DOUBLE PRECISION	Function	
d_log1p(x)	DOUBLE PRECISION DOUBLE PRECISION	Function	
d_log2(x)	DOUBLE PRECISION	Function	
d_max_normal()	DOUBLE PRECISION	Function	
d_max_subnormal()	DOUBLE PRECISION	Function	
d_min_normal()	DOUBLE PRECISION	Function	
d_min_subnormal()	DOUBLE PRECISION	Function	
<pre>d_nextafter(x, y)</pre>	DOUBLE PRECISION	Function	
d_quiet_nan(n)	DOUBLE PRECISION	Function	
<pre>d_remainder(x, y)</pre>	DOUBLE PRECISION	Function	
d_rint(x)	DOUBLE PRECISION	Function	
d_scalb(x, y)	DOUBLE PRECISION	Function	
d_scalbn(x, n)	DOUBLE PRECISION	Function	
d_signaling_nan(n)	DOUBLE PRECISION	Function	
d_significand(x)	DOUBLE PRECISION	Function	
d_sin(x)	DOUBLE PRECISION	Function	sine
d_sind(x)	DOUBLE PRECISION	Function	
d_sinh(x)	DOUBLE PRECISION	Function	hyper sine
d_sinp(x)	DOUBLE PRECISION	Function	
d_sinpi(x)	DOUBLE PRECISION	Function	

TABLE 1-3 Double Precision Math Functions (Continued)

<pre>d_sincos(x, s, c) d_sincosd(x, s, c) d_sincosp(x, s, c) d_sincospi(x, s, c)</pre>	n/a n/a n/a n/a	Subroutine Subroutine Subroutine Subroutine	sine & cosine
d_tan(x)	DOUBLE PRECISION	Function	tangent
d_tand(x)	DOUBLE PRECISION	Function	
d_tanh(x)	DOUBLE PRECISION	Function	hyperb tan
d_tanp(x)	DOUBLE PRECISION	Function	
d_tanpi(x)	DOUBLE PRECISION	Function	
d_y0(x)	DOUBLE PRECISION	Function	bessel
d_y1(x)	DOUBLE PRECISION	Function	
d_yn(n, x)	DOUBLE PRECISION	Function	

- Variables c, 1, p, s, u, x, and y are of type DOUBLE PRECISION.
- Explicitly type these functions on a DOUBLE PRECISION statement or with an appropriate IMPLICIT statement).
- \blacksquare sind(x), asind(x), ... take *degrees* rather than *radians*.

See also: intro(3M) and the *Numerical Computation Guide*.

Quad-Precision Functions

These subprograms are quadruple-precision (REAL*16) math functions and subroutines (SPARC only).

In general, these do *not* correspond to standard generic intrinsic functions; data types are determined by the usual data typing rules.

The quadruple precision functions must appear in a REAL*16 statement

 TABLE 1-4
 Quadruple-Precision libm Functions

q_copysign(x, y)	REAL*16	Function
q_fabs(x)	REAL*16	Function
q_fmod(x)	REAL*16	Function
q_infinity()	REAL*16	Function
iq_finite(x)	INTEGER	Function
iq_fp_class(x)	INTEGER	Function
iq_ilogb(x)	INTEGER	Function
iq_isinf(x)	INTEGER	Function
iq_isnan(x)	INTEGER	Function
iq_isnormal(x)	INTEGER	Function
iq_issubnormal(x)	INTEGER	Function
iq_iszero(x)	INTEGER	Function
iq_signbit(x)	INTEGER	Function
q_max_normal()	REAL*16	Function
q_max_subnormal()	REAL*16	Function
q_min_normal()	REAL*16	Function
q_min_subnormal()	REAL*16	Function
<pre>q_nextafter(x, y)</pre>	REAL*16	Function
q_quiet_nan(n)	REAL*16	Function
<pre>q_remainder(x, y)</pre>	REAL*16	Function
q_scalbn(x,n)	REAL*16	Function
q_signaling_nan(n)	REAL*16	Function

- The variables c, 1, p, s, u, x, and y are of type quadruple precision.
- Explicitly type these functions with a REAL*16 statement or with an appropriate IMPLICIT statement.
- sind(x), asind(x), ... take *degrees* rather than *radians*.

If you need to use any other quadruple-precision libm function, you can call it using $PRAGMA\ C(fcn)$ before the call. For details, see the chapter on the C-Fortran interface in the *Fortran Programming Guide*.

abort: Terminate and Write Core File

The subroutine is called by:

```
call abort
```

abort flushes the I/O buffers and then aborts the process, possibly producing a core file memory dump in the current directory. See limit(1) about limiting or suppressing core dumps.

access: Check File Permissions or Existence

The function is called by:

INTEGER*4 access status = access (name, mode)				
name	character	Input	File name	
mode	character	Input	Permissions	
Return value	INTEGER*4	Output	status=0: OK status>0: Error code	

access determines if you can access the file *name* with the permissions specified by *mode*. access returns zero if the access specified by *mode* would be successful. See also gerror(3F) to interpret error codes.

Set *mode* to one or more of r, w, x, in any order or combination, or blank, where r, w, x have the following meanings:

'r'	Test for read permission
'w'	Test for write permission
'x'	Test for execute permission
	Test for existence of the file

Example 1: Test for read/write permission:

```
INTEGER*4 access, status
status = access ( 'taccess.data', 'rw' )
if ( status .eq. 0 ) write(*,*) "ok"
if ( status .ne. 0 ) write(*,*) 'cannot read/write', status
```

Example 2: Test for existence:

```
INTEGER*4 access, status
status = access ( 'taccess.data', ' ' ) ! blank mode
if ( status .eq. 0 ) write(*,*) "file exists"
if ( status .ne. 0 ) write(*,*) 'no such file', status
```

alarm: Call Subroutine After a Specified Time

The function is called by:

INTEGER*4 alarm n = alarm (time, sbrtn)			
time	INTEGER*4	Input	Number of seconds to wait (0=do not call)
sbrtn	Routine name	Input	Subprogram to execute must be listed in an external statement.
Return value	INTEGER*4	Output	Time remaining on the last alarm

Example: alarm—wait 9 seconds then call sbrtn:

```
integer*4 alarm, time / 1 /
common / alarmcom / i
external sbrtn
i = 9
write(*,*) i
nseconds = alarm ( time, sbrtn )
do n = 1,100000
                       ! Wait until alarm activates sbrtn.
   r = n
                  ! (any calculations that take enough time)
  x=sqrt(r)
end do
write(*,*) i
end
subroutine sbrtn
common / alarmcom / i
i = 3
                         ! Do no I/O in this routine.
return
end
```

See also: alarm(3C), sleep(3F), and signal(3F). Note the following restrictions:

- A subroutine cannot pass its own name to alarm.
- The alarm routine generates signals that could interfere with any I/O. The called subroutine, *sbrtn*, must not do any I/O itself.
- Calling alarm() from a parallelized or multi-threaded Fortran program may have unpredictable results.

bit: Bit Functions: and, or, ..., bit, setbit, ...

The definitions are:

```
and( word1, word2 )

Computes bitwise and of its arguments.

or( word1, word2 )

Computes bitwise inclusive or of its arguments.

xor( word1, word2 )

Computes bitwise exclusive or of its arguments.

not( word )

Returns bitwise complement of its argument.

lshift( word, nbits )

Logical left shift with no end around carry.

rshift( word, nbits )

Arithmetic right shift with sign extension.
```

```
call bis( bitnum, word )

Call bic( bitnum, word )

Clears bit bitnum in word to 1.

Clears bit bitnum in word to 0.

Dit( bitnum, word )

Tests bit bitnum in word and returns.true.if the bit is 1, .false.if it is 0.

Call setbit(bitnum, word, state)

Sets bit bitnum in word to 1 if state is nonzero, and clears it otherwise.
```

The alternate external versions for MIL-STD-1753 are:

iand(m,n)	Computes the bitwise and of its arguments.
ior(<i>m</i> , <i>n</i>)	Computes the bitwise <i>inclusive or</i> of its arguments.
ieor(m,n)	Computes the bitwise <i>exclusive or</i> of its arguments.
ishft(m , k)	Is a logical shift with no end around carry (left if $k>0$, right if $k<0$).
ishftc(m , k , ic)	Circular shift: right-most ic bits of m are left-shifted circularly k places.
ibits(m, i, len)	Extracts bits: from m , starting at bit i , extracts len bits.
ibset(m , i)	Sets bit: return value is equal to word m with bit number i set to 1.
ibclr(m, i)	Clears bit: return value is equal to word m with bit number i set to 0 .
btest(m, i)	Tests bit i in m ; returns .true. if the bit is 1, and .false. if it is 0 .

See also "mvbits: Move a Bit Field" on page 77, and the chapter on Intrinsic Functions in the *FORTRAN 77 Reference Manual*.

Usage: and, or, xor, not, rshift, lshift

For the intrinsic functions:

```
x = \text{and}(word1, word2)

x = \text{or}(word1, word2)

x = \text{xor}(word1, word2)
```

```
x = not( word )

x = rshift( word, nbits )

x = lshift( word, nbits )
```

word, word1, word2, nbits are integer input arguments. These are intrinsic functions expanded inline by the compiler. The data type returned is that of the first argument.

No test is made for a reasonable value of *nbits*.

Example: and, or, xor, not:

Example: lshift, rshift:

```
integer*4 lshift, rshift
  print 1, lshift(7,1), rshift(4,1)
1   format(1x 'lshift(7,1)', 1x 'rshift(4,1)'/2o12.11)
  end
demo% f77 -silent tlrshift.f
demo% a.out
  lshift(7,1) rshift(4,1)
  00000000016 00000000002
demo%
```

Usage: bic, bis, bit, setbit

```
call bic( bitnum, word )
call bis( bitnum, word )
call setbit( bitnum, word, state )
LOGICAL bit
x = bit( bitnum, word )
```

bitnum, state, and word are INTEGER*4 input arguments. Function bit() returns a logical value.

Bits are numbered so that bit 0 is the least significant bit, and bit 31 is the most significant.

bic, bis, and setbit are external subroutines. bit is an external function.

Example 3: bic, bis, setbit, bit:

```
integer*4 bitnum/2/, state/0/, word/7/
    logical bit
   print 1, word
      format(13x 'word', o12.11)
    call bic( bitnum, word )
   print 2, word
      format('after bic(2,word)', o12.11)
    call bis( bitnum, word )
   print 3, word
      format('after bis(2,word)', o12.11)
    call setbit( bitnum, word, state )
   print 4, word
      format('after setbit(2,word,0)', o12.11)
    print 5, bit(bitnum, word)
      format('bit(2,word)', L )
    end
<output>
             word 0000000007
after bic(2,word) 00000000003
after bis(2,word) 0000000007
after setbit(2,word,0) 00000000003
bit(2,word) F
```

chdir: Change Default Directory

The function is called by:

<pre>INTEGER*4 chdir n = chdir(dirname)</pre>				
dirname	character	Input	Directory name	
Return value	INTEGER*4	Output	<i>n</i> =0: OK, <i>n</i> >0: Error code	

Example: chdir—change cwd to MyDir:

```
INTEGER*4 chdir, n
n = chdir ( 'MyDir' )
if ( n .ne. 0 ) stop 'chdir: error'
end
```

See also: chdir(2), cd(1), and gerror(3F) to interpret error codes.

Path names can be no longer than MAXPATHLEN as defined in <sys/param.h>. They can be relative or absolute paths.

Use of this function can cause inquire by unit to fail.

Certain Fortran file operations reopen files by name. Using chdir while doing I/O can cause the runtime system to lose track of files created with relative path names. including the files that are created by open statements without file names.

chmod: Change the Mode of a File

The function is called by:

INTEGER*4 chmod n = chmod(name, mode)			
name	character	Input	Path name
mode	character	Input	Anything recognized by <i>chmod</i> (1), such as o-w, 444, etc.
Return value	INTEGER*4	Output	n = 0: OK; $n > 0$: System error number

Example: chmod—add write permissions to MyFile:

```
character*18 name, mode
INTEGER*4 chmod, n
name = 'MyFile'
mode = '+w'
n = chmod( name, mode )
if ( n .ne. 0 ) stop 'chmod: error'
end
```

See also: chmod(1), and gerror(3F) to interpret error codes.

Path names cannot be longer than MAXPATHLEN as defined in <sys/param.h>. They can be relative or absolute paths.

date: Get Current Date as a Character String

Note – This routine is not "Year 2000 Safe" because it returns only a two-digit value for the year. Programs that compute differences between dates using the output of this routine may not work properly after 31 December, 1999. Programs using this date() routine will see a runtime warning message the first time the routine is called to alert the user. See date_and_time() as a possible alternate routine.

The subroutine is called by:

cai	call date(c)					
С	CHARACTER*9	Output	Variable, array, array element, or character substring			

The form of the returned string c is dd-mmm-yy, where dd is the day of the month as a 2-digit number, mmm is the month as a 3-letter abbreviation, and yy is the year as a 2-digit number (and is not year 2000 safe!).

Example: date:

```
demo% cat dat1.f
* dat1.f -- Get the date as a character string.
    character c*9
    call date ( c )
    write(*,"(' The date today is: ', A9 )" ) c
    end

demo% f77 -silent dat1.f
    "dat.f", line 2: Warning: Subroutine "date" is not safe after
        year 2000; use "date_and_time" instead

demo% a.out

Computing time differences using the 2 digit year from subroutine
        date is not safe after year 2000.

The date today is: 9-Jul-98

demo%
```

See also idate() and date and time().

date and time: Get Date and Time

This is a FORTRAN 77 version of the Fortran 95 intrinsic routine, and is Year 2000 safe.

The date_and_time subroutine returns data from the real-time clock and the date. Local time is returned, as well as the difference between local time and Universal Coordinated Time (UTC) (also known as Greenwich Mean Time, GMT).

The date_and_time() subroutine is called by:

call da	<pre>call date_and_time(date, time, zone, values)</pre>			
date	CHARACTER*8	Output	Date, in form CCYYMMDD, where CCYY is the four-digit year, MM the two-digit month, and DD the two-digit day of the month. For example: 19980709	
time	CHARACTER*10	Output	The current time, in the form hhmmss.sss, where hh is the hour, mm minutes, and ss.sss seconds and milliseconds.	
zone	CHARACTER*5	Output	The time difference with respect to UTC, expressed in hours and minutes, in the form hhmm	
values	INTEGER*4 VALUES(8)	Output	An integer array of 8 elements described below.	

The eight values returned in the INTEGER*4 values array are

VALUES(1)	The year, as a 4-digit integer. For example, 1998.
VALUES(2)	The month, as an integer from 1 to 12.
VALUES(3)	The day of the month, as an integer from 1 to 31.
VALUES(4)	The time difference, in minutes, with respect to UTC.
VALUES(5)	The hour of the day, as an integer from 1 to 23.
VALUES(6)	The minutes of the hour, as an integer from 1 to 59.
VALUES(7)	The seconds of the minute, as an integer from 0 to 60.
VALUES(8)	The milliseconds of the second, in range 0 to 999.

An example using date_and_time:

```
demo% cat dtm.f
       integer date_time(8)
       character*10 b(3)
       call date_and_time(b(1), b(2), b(3), date_time)
       print *,'date_time array values:'
      print *,'year=',date_time(1)
       print *,'month_of_year=',date_time(2)
      print *,'day_of_month=',date_time(3)
      print *,'time difference in minutes=',date_time(4)
       print *,'hour of day=',date_time(5)
      print *,'minutes of hour=',date_time(6)
       print *,'seconds of minute=',date_time(7)
      print *,'milliseconds of second=',date_time(8)
       print *, 'DATE=',b(1)
      print *, 'TIME=',b(2)
       print *, 'ZONE=',b(3)
       end
```

When run on a computer in California, USA on February 16, 2000, it generated the following output:

```
date_time array values:
year= 2000
month_of_year= 2
day_of_month= 16
time difference in minutes= -420
hour of day= 11
minutes of hour= 49
seconds of minute= 29
milliseconds of second= 236
DATE=20000216
TIME=114929.236
ZONE=-0700
```

dtime, etime: Elapsed Execution Time

Both functions have return values of elapsed time (or -1.0 as error indicator). The time returned is in seconds.

The versions of dtime and etime used by Fortran 77 return times produced by the runtime system's high resolution clock. The actual resolution depends on the system platform. The resolutions of the clocks on current platforms range between one nanosecond and one microsecond.

Versions of dtime and etime used by Fortran 95 use the system's low resolution clock by default. The resolution is one hundreth of a second. However, if the program is run under the Sun OSTM operating system utility ptime(1), (/usr/proc/bin/ptime), the high resolution clock is used.

dtime: Elapsed Time Since the Last dtime Call

For dtime, the elapsed time is:

- First call: elapsed time since start of execution
- Subsequent calls: elapsed time since the last call to dtime
- Single processor: time used by the CPU
- Multiple Processor: the sum of times for all the CPUs, which is not useful data; use etime instead.

Note — Calling dtime from within a parallelized loop gives non-deterministic results, since the elapsed time counter is global to all threads participating in the loop

The function is called by:

e = dtime(tarray)				
tarray	real(2)	Output	$e=-1.0$: Error: $tarray$ values are undefined $e \neq -1.0$: User time in $tarray(1)$ if no error. System time in $tarray(2)$ if no error	
Return value	real	Output	$e=-1.0$: Error $e\neq -1.0$: The sum of $tarray(1)$ and $tarray(2)$	

Example: dtime(), single processor:

```
real e, dtime, t(2)
  print *, 'elapsed:', e, ', user:', t(1), ', sys:', t(2)
  do i = 1, 10000
        k=k+1
  end do
    e = dtime( t )
  print *, 'elapsed:', e, ', user:', t(1), ', sys:', t(2)
  end
  demo% f77 -silent tdtime.f
  demo% a.out
  elapsed: 0., user: 0., sys: 0.
  elapsed: 0.180000, user: 6.00000E-02, sys: 0.120000
  demo%
```

etime: Elapsed Time Since Start of Execution

For etime, the elapsed time is:

- Single Processor—CPU time for the calling process
- Multiple Processors—wallclock time while processing your program

Here is how Fortran decides single processor or multiple processor:

For a parallelized Fortran program linked with libF77_mt, if the environment variable PARALLEL is:

- Undefined, the current run is single processor.
- Defined and in the range 1, 2, 3, ..., the current run is multiple processor.
- Defined, but some value other than 1, 2, 3, ..., the results are unpredictable.

The function is called by:

e = etime(e = etime(tarray)				
tarray	real(2)	Output	e=-1.0: Error: $tarray$ values are undefined. $e\neq -1.0$: Single Processor: User time in tarray(1). System time in $tarray(2)Multiple Processor: Wall clock time intarray(1)$, 0.0 in $tarray(2)$		
Return value	real	Output	$e=-1.0$: Error $e\neq -1.0$: The sum of $tarray(1)$ and $tarray(2)$		

Take note that the initial call to etime will be inaccurate. It merely enables the system clock. Do not use the value returned by the initial call to etime.

Example: etime(), single processor:

See also times(2), f77(1), and the Fortran Programming Guide.

exit: Terminate a Process and Set the Status

The subroutine is called by:

```
call exit( status )

status INTEGER*4 Input
```

Example: exit():

```
if(dx .lt. 0.) call exit( 0 )
...
end
```

exit flushes and closes all the files in the process, and notifies the parent process if it is executing a wait.

The low-order 8 bits of *status* are available to the parent process. These 8 bits are shifted left 8 bits, and all other bits are zero. (Therefore, *status* should be in the range of 256 - 65280). This call will never return.

The C function exit can cause cleanup actions before the final system 'exit'.

Calling exit without an argument causes a compile-time warning message, and a zero will be automatically provided as an argument. See also: exit(2), fork(2), fork(3F), wait(2), wait(3F).

fdate: Return Date and Time in an ASCII String

The subroutine or function is called by:

```
    call fdate( string )

    string
    character*24
    Output
```

or:

			If used as a function, the calling routine must define the type and size
Return value character*24 Output		of fdate.	

Example 1: fdate as a subroutine:

```
character*24 string
call fdate( string )
write(*,*) string
end
```

Output:

```
Wed Aug 3 15:30:23 1994
```

Example 2: fdate as a function, same output:

```
character*24 fdate
write(*,*) fdate()
end
```

See also: ctime(3), time(3F), and idate(3F).

flush: Flush Output to a Logical Unit

The function is called by:

<pre>INTEGER*4 flush n = flush(lunit)</pre>			
lunit	INTEGER*4	Input	Logical unit
Return value	INTEGER*4	Output	n = 0 no error n > 0 error number

The flush function flushes the contents of the buffer for the logical unit, lunit, to the associated file. This is most useful for logical units 0 and 6 when they are both associated with the console terminal. The function returns a positive error number if an error was encountered; zero otherwise.

See also fclose(3S).

fork: Create a Copy of the Current Process

The function is called by:

```
INTEGER*4 fork

n = fork()

Return value INTEGER*4 Output n>0: n=Process ID of copy

n<0, n=System error code
```

The fork function creates a copy of the calling process. The only distinction between the two processes is that the value returned to one of them, referred to as the *parent* process, will be the process ID of the copy. The copy is usually referred to as the *child* process. The value returned to the child process will be zero.

All logical units open for writing are flushed before the fork to avoid duplication of the contents of I/O buffers in the external files.

Example: fork():

```
INTEGER*4 fork, pid
pid = fork()
if(pid.lt.0) stop 'fork error'
if(pid.gt.0) then
    print *, 'I am the parent'
else
    print *, 'I am the child'
endif
```

A corresponding exec routine has not been provided because there is no satisfactory way to retain open logical units across the exec routine. However, the usual function of fork/exec can be performed using system(3F). See also: fork(2), wait(3F), kill(3F), system(3F), and perror(3F).

free: Deallocate Memory Allocated by Malloc

The subroutine is called by:

free deallocates a region of memory previously allocated by malloc. The region of memory is returned to the memory manager; it is no longer available to the user's program.

Example: free():

```
real x
pointer ( ptr, x )
ptr = malloc ( 10000 )
call free ( ptr )
end
```

See "malloc, malloc64: Allocate Memory and Get Address" on page 76 for details.

fseek, ftell: Determine Position and Reposition a File

fseek and ftell are routines that permit repositioning of a file. ftell returns a file's current position as an offset of so many bytes from the beginning of the file. At some later point in the program, fseek can use this saved offset value to reposition the file to that same place for reading.

fseek: Reposition a File on a Logical Unit

The function is called by:

<pre>INTEGER*4 fseek n = fseek(lunit, offset, from)</pre>				
lunit	INTEGER*4	Input	Open logical unit	
offset	INTEGER*4 or INTEGER*8	Input	Offset in bytes relative to position specified by <i>from</i>	
	An INTEGER*8 offset value is required when compiled for a 64-bit environment, such as Solaris 7, with -xarch=v9. If a literal constant is supplied, it must be a 64-bit constant, for example: 100_8			
from	INTEGER*4	Input	0=Beginning of file 1=Current position 2=End of file	
Return value	INTEGER*4	Output	n=0: OK; n>0: System error code	

Note – On sequential files, following a call to fseek by an output operation (for example, WRITE) causes all data records following the fseek position to be deleted and replaced by the new data record (and an end-of-file mark). Rewriting a record in place can only be done with direct access files.

Example: fseek()—Reposition MyFile to two bytes from the beginning:

```
INTEGER*4 fseek, lunit/1/, offset/2/, from/0/, n
open( UNIT=lunit, FILE='MyFile' )
n = fseek( lunit, offset, from )
if ( n .gt. 0 ) stop 'fseek error'
end
```

Example: Same example in a 64-bit environment and compiled with -xarch=v9:

```
INTEGER*4 fseek, lunit/1/, from/0/, n
INTEGER*8 offset/2/
open( UNIT=lunit, FILE='MyFile' )
n = fseek( lunit, offset, from )
if ( n .gt. 0 ) stop 'fseek error'
end
```

ftell: Return Current Position of File

The function is called by:

```
INTEGER*4 ftell
n = ftell(lunit)
lunit
                 INTEGER*4
                                  Input
                                             Open logical unit
Return value
                                  Output
                                             n>=0: n=Offset in bytes from start of file
                 INTEGER*4
                                             n<0: n=System error code
                 or
                 INTEGER*8
                 An INTEGER*8 offset value is returned when compiling for a 64-bit
                 environment, such as Solaris 7, with -xarch=v9. ftell and variables
                 receiving this return value should be declared INTEGER*8.
```

Example: ftell():

```
INTEGER*4 ftell, lunit/1/, n
open( UNIT=lunit, FILE='MyFile' )
...
n = ftell( lunit )
if ( n .lt. 0 ) stop 'ftell error'
...
```

Example: Same example in a 64-bit environment and compiled with -xarch=v9:

```
INTEGER*4 lunit/1/
INTEGER*8 ftell, n
open( UNIT=lunit, FILE='MyFile' )
...
n = ftell( lunit )
if ( n .lt. 0 ) stop 'ftell error'
...
```

See also fseek(3S) and perror(3F); also fseeko64(3F) ftello64(3F).

fseeko64, ftello64: Determine Position and Reposition a Large File

fseeko64 and ftello64 are "large file" versions of fseek and ftell. They take and return INTEGER*8 file position offsets on Solaris 2.6 and Solaris 7. (A "large file" is larger than 2 Gigabytes and therefore a byte-position must be represented by a 64-bit integer.) Use these versions to determine and/or reposition large files.

fseeko64: Reposition a File on a Logical Unit

The function is called by:

INTEGER fseeko64 n = fseeko64(lunit, offset64, from)			
lunit	INTEGER*4	Input	Open logical unit
offset64	INTEGER*8	Input	64-bit offset in bytes relative to position specified by <i>from</i>
from	INTEGER*4	Input	0=Beginning of file 1=Current position 2=End of file
Return value	INTEGER*4	Output	<i>n</i> =0: OK; <i>n</i> >0: System error code

Note – On sequential files, following a call to fseeko64 by an output operation (for example, WRITE) causes all data records following the fseek position to be deleted and replaced by the new data record (and an end-of-file mark). Rewriting a record in place can only be done with direct access files.

Example: fseeko64()—Reposition MyFile to two bytes from the beginning:

```
INTEGER fseeko64, lunit/1/, from/0/, n
INTEGER*8 offset/200/
open( UNIT=lunit, FILE='MyFile' )
n = fseeko64( lunit, offset, from )
if ( n .gt. 0 ) stop 'fseek error'
end
```

ftello64: Return Current Position of File

The function is called by:

INTEGER*8 ftello64 n = ftello64(lunit)			
lunit	INTEGER*4	Input	Open logical unit
Return value	INTEGER*8	Output	<i>n</i> ≥0: <i>n</i> =Offset in bytes from start of file <i>n</i> <0: <i>n</i> =System error code

Example: ftello64():

```
INTEGER*8 ftello64, lunit/1/, n
open( UNIT=lunit, FILE='MyFile' )
...
n = ftello64( lunit )
if ( n .lt. 0 ) stop 'ftell error'
...
```

getarg, iargc: Get Command-Line Arguments

getarg and iargc access arguments on the command line (after expansion by the command-line preprocessor.

getarg: Get a Command-Line Argument

The subroutine is called by:

call getarg(k, arg)				
k	INTEGER*4	Input	Index of argument (0=first=command name)	
arg	character*n	Output	kth argument	
п	INTEGER*4	Size of arg	Large enough to hold longest argument	

iargc: Get the Number of Command-Line Arguments

The function is called by:

<pre>m = iargc()</pre>			
Return value	INTEGER*4	Output	Number of arguments on the command line

Example: iargc and getarg, get argument count and each argument:

```
demo% cat yarg.f
    character argv*10
    INTEGER*4 i, iargc, n
    n = iargc()
    do 1 i = 1, n
        call getarg( i, argv )
1    write( *, '( i2, 1x, a )' ) i, argv
    end
demo% f77 -silent yarg.f
demo% a.out *.f
1 first.f
2 yarg.f
```

See also execve(2) and getenv(3F).

getc, fgetc: Get Next Character

getc and fgetc get the next character from the input stream.Do not mix calls to these routines with normal Fortran I/O on the same logical unit.

getc: Get Next Character from stdin

The function is called by:

INTEGER*4 getc status = getc(char)				
char	character	Output	Next character	
Return value	INTEGER*4	Output	status=0: OK status=-1: End of file status>0: System error code or £77 I/O error code	

Example: getc gets each character from the keyboard; note the Control-D (^D):

```
character char
INTEGER*4 getc, status
status = 0
do while ( status .eq. 0 )
    status = getc( char )
    write(*, '(i3, o4.3)') status, char
end do
end
```

After compiling, a sample run of the above source is:

```
demo% a.out
ab Program reads letters typed in

^D terminated by a CONTROL-D.

0 141 Program outputs status and octal value of the characters entered
0 142 141 represents 'a', 142 is 'b'
0 012 012 represents the RETURN key
-1 012 Next attempt to read returns CONTROL-D

demo%
```

For any logical unit, do not mix normal Fortran input with getc().

fgetc: Get Next Character from Specified Logical Unit

The function is called by:

<pre>INTEGER*4 fgetc status = fgetc(lunit, char)</pre>				
lunit	INTEGER*4	Input	Logical unit	
char	character	Output	Next character	
Return value	INTEGER*4	Output	status=-1: End of File status>0: System error code or £77 I/O error code	

Example: fgetc gets each character from tfgetc.data; note the linefeeds (Octal 012):

```
character char
INTEGER*4 fgetc, status
open( unit=1, file='tfgetc.data' )
status = 0
do while ( status .eq. 0 )
    status = fgetc( 1, char )
    write(*, '(i3, o4.3)') status, char
end do
end
```

After compiling, a sample run of the above source is:

```
demo% cat tfgetc.data
ab
уz
demo% a.out
            'a' read
0 141
            'b' read
0 142
0 012
          linefeed read
0 171
            'y' read
            'z' read
0 172
            linefeed read
0 012
-1 012
            CONTROL-D read
demo%
```

For any logical unit, do not mix normal Fortran input with fgetc().

See also: getc(3S), intro(2), and perror(3F).

getcwd: Get Path of Current Working Directory

The function is called by:

<pre>INTEGER*4 getcwd status = getcwd(dirname)</pre>					
dirname	character*n	Output The path of the current directory is returned	Path name of the current working directory. <i>n</i> must be large enough for longest path name		
Return value	INTEGER*4	Output	status=0: OK status>0: Error code		

Example: getcwd:

```
INTEGER*4 getcwd, status
  character*64 dirname
  status = getcwd( dirname )
  if ( status .ne. 0 ) stop 'getcwd: error'
  write(*,*) dirname
  end
```

See also: chdir(3F), perror(3F), and getwd(3).

Note: the path names cannot be longer than MAXPATHLEN as defined in <sys/param.h>.

getenv: Get Value of Environment Variables

The subroutine is called by:

call getenv(ename, evalue)				
ename character*n Input			Name of the environment variable sought	
evalue	character*n	Output	Value of the environment variable found; blanks if not successful	

The size of *ename* and *evalue* must be large enough to hold their respective character strings.

The getenv subroutine searches the environment list for a string of the form *ename=evalue* and returns the value in *evalue* if such a string is present; otherwise, it fills *evalue* with blanks.

Example: Use getenv() to print the value of \$SHELL:

```
character*18 evalue
call getenv( 'SHELL', evalue )
write(*,*) "'", evalue, "'"
end
```

getfd: Get File Descriptor for External Unit Number

The function is called by:

INTEGER*4 getfd fildes = getfd(unitn)				
unitn	INTEGER*4	Input	External unit number	
Return value	INTEGER*4 -or- INTEGER*8	Output	File descriptor if file is connected; -1 if file is not connected An INTEGER*8 result is returned when compiling for 64-bit environments	

Example: getfd():

```
INTEGER*4 fildes, getfd, unitn/1/
open( unitn, file='tgetfd.data' )
fildes = getfd( unitn )
if ( fildes .eq. -1 ) stop 'getfd: file not connected'
write(*,*) 'file descriptor = ', fildes
end
```

See also open(2).

getfilep: Get File Pointer for External Unit Number

The function is:

<pre>irtn = c_read(getfilep(unitn), inbyte, 1)</pre>			
c_read	C function	Input	User's own C function. See example.
unitn	INTEGER*4	Input	External unit number.
getfilep	INTEGER*4 -or- INTEGER*8	Return value	File pointer if the file is connected; -1 if the file is not connected. An INTEGER*8 value is returned when compiling for 64-bit environments

This function is used for mixing standard Fortran I/O with C I/O. Such a mix is nonportable, and is not guaranteed for subsequent releases of the operating system or Fortran. Use of this function is not recommended, and no direct interface is provided. You must create your own C routine to use the value returned by getfilep. A sample C routine is shown below.

Example: Fortran uses getfilep by passing it to a C function:

```
tgetfilepF.f:
    character*1 inbyte
    integer*4    c_read, getfilep, unitn / 5 /
    external    getfilep
    write(*,'(a,$)') 'What is the digit? '
    irtn = c_read( getfilep( unitn ), inbyte, 1 )
    write(*,9) inbyte
9 format('The digit read by C is ', a )
    end
```

Sample C function actually using getfilep:

```
tgetfilepC.c:

#include <stdio.h>
   int c_read_ ( fd, buf, nbytes, buf_len )
   FILE **fd ;
   char *buf ;
   int *nbytes, buf_len ;
   {
      return fread( buf, 1, *nbytes, *fd ) ;
}
```

A sample compile-build-run is:

```
demo 11% cc -c tgetfilepC.c
demo 12% f77 tgetfilepC.o tgetfilepF.f
tgetfileF.f:
MAIN:
demo 13% a.out
What is the digit? 3
The digit read by C is 3
demo 14%
```

For more information, read the chapter on the C-Fortran interface in the *Fortran Programming Guide*. See also open(2).

getlog: Get User's Login Name

The subroutine is called by:

call getlog(name)					
пате	character*n	Output	User's login name, or all blanks if the process is running detached from a terminal. <i>n</i> should be large enough to hold the longest name.		

Example: getlog:

```
character*18 name
call getlog( name )
write(*,*) "'", name, "'"
end
```

See also getlogin(3).

getpid: Get Process ID

The function is called by:

Example: getpid:

```
INTEGER*4 getpid, pid
pid = getpid()
write(*,*) 'process id = ', pid
end
```

See also getpid(2).

getuid, getgid: Get User or Group ID of Process

getuid and getgid get the user or group ID of the process, respectively.

getuid: Get User ID of the Process

The function is called by:

getgid: Get Group ID of the Process

The function is called by:

```
INTEGER*4 getgid
gid = getgid()

Return value INTEGER*4 Output Group ID of the process
```

Example: getuid() and getpid():

```
INTEGER*4 getuid, getgid, gid, uid
uid = getuid()
gid = getgid()
write(*,*) uid, gid
end
```

See also: getuid(2).

hostnm: Get Name of Current Host

The function is called by:

INTEGER*4 hostnm status = hostnm(name)				
name	character*n	Output	Name of current host system. <i>n</i> must be large enough to hold the host name.	
Return value	INTEGER*4	Output	status=0: OK status>0: Error	

Example: hostnm():

```
INTEGER*4 hostnm, status
  character*8 name
  status = hostnm( name )
  write(*,*) 'host name = "', name, '"'
  end
```

See also gethostname(2).

idate: Return Current Date

idate has two versions:

- Standard—Put the current system date into an integer array: day, month, and year.
- *VMS*—Put the current system date into three integer variables: month, day, and year. This version is not "Year 2000 Safe".

The -1V77 compiler option request the VMS library and links the VMS versions of both time() and idate(); otherwise, the linker accesses the standard versions. (VMS versions of library routines are only available with £77 through the -1V77 library option, and not with £95).

The standard version puts the current system date into one integer array: day, month, and year.

The subroutine is called by:

call idate(iarray)		Sta	ndard Version
iarray	INTEGER*4	Output	Three-element array: day, month, year.

Example: idate (standard version):

```
demo% cat tidate.f
   INTEGER*4 iarray(3)
   call idate( iarray )
   write(*, "(' The date is: ',3i5)" ) iarray
   end
demo% f77 -silent tidate.f
demo% a.out
  The date is: 10 8 1998
demo%
```

The VMS idate() subroutine is called by:

call idate(m , d , y)		, <i>y</i>)	VMS Version
m	INTEGER*4	Output	Month (1 - 12)
d	INTEGER*4	Output	Day (1 - 7)
y	INTEGER*4	Output	Year (1 - 99) Not year 2000 safe!

Using the VMS idate() routine will cause a warning message at link time and the first time the routine is called in execution.

Note – The VMS version of the idate() routine is not "Year 2000 Safe" because it returns only a two-digit value for the year. Programs that compute differences between dates using the output of this routine may not work properly after 31 December, 1999. Programs using this idate() routine will see a runtime warning message the first time the routine is called to alert the user. See date_and_time() as a possible alternate.

Example: idate (VMS version):

```
demo% cat titime.f

INTEGER*4 m, d, y
call idate ( m, d, y )
write (*, "(' The date is: ',3i5)" ) m, d, y
end
demo% f77 -silent tidateV.f -lV77
"titime.f", line 2: Warning: Subroutine "idate" is not safe after
year 2000; use "date_and_time" instead
demo% a.out
Computing time differences using the 2 digit year from subroutine
idate is not safe after year 2000.
The date is: 7 10 98
```

ieee_flags,ieee_handler, sigfpe: IEEE Arithmetic

These subprograms provide modes and status required to fully exploit ANSI/IEEE Standard 754-1985 arithmetic in a Fortran program. They correspond closely to the functions ieee_flags(3M), ieee_handler(3M), and sigfpe(3).

Here is a summary:

 TABLE 1-5
 IEEE Arithmetic Support Routines

ieeer = ieee_flags(action, mode, in, out)					
ieeer = ieee_h	<pre>ieeer = ieee_handler(action, exception, hdl)</pre>				
ieeer = sigfpe	e(code, hdl)				
action	character	Input			
code	sigfpe_code_type	Input			
mode	character	Input			
in character		Input			
exception character		Input			
hdl sigfpe_handler_type		Input			
out character Output					
Return value	INTEGER*4	Output			

See the Sun *Numerical Computation Guide* for details on how these functions can be used strategically.

If you use sigfpe, you must do your own setting of the corresponding trap-enable-mask bits in the floating-point status register. The details are in the SPARC architecture manual. The libm function ieee_handler sets these trap-enable-mask bits for you.

The character keywords accepted for *mode* and *exception* depend on the value of *action*.

 TABLE 1-6
 ieee_flags(action,mode,in,out)
 Parameters and Actions

<pre>action = 'clearall'</pre>	mode, in, out, unused; returns 0					
action = 'clear'	mode = 'direction	mode = 'direction'				
clear <i>mode, in</i> out is unused; returns 0	mode = 'precision	mode = 'precision' (on x86 platforms only)				
	mode =	in =	'inexact'	or		
	'exception'		'division'	or		
			'underflow'	or		
			'overflow'	or		
			'invalid'	or		
			'all'	or		
			'common'			
action = 'set'	mode =	in =	'nearest'	or		
set floating-point mode,in	'direction'		'tozero'	or		
out is unused; returns 0			'positive'	or		
			'negative'			
	mode =	in =	'extended'	or		
	'precision'		'double'	or		
	(on x86 only)		'single'			
	mode =	in =	'inexact'	or		
	'exception'		'division'	or		
	-		'underflow'	or		
			'overflow'	or		
			'invalid'	or		
			'all'	or		
			'common'			

 TABLE 1-6
 ieee_flags(action,mode,in,out)
 Parameters and Actions (Continued)

action = 'get' test mode settings in, out may be blank or one of the settings to test returns the current setting depending on mode, or 'not available' The function returns 0 or the current exception flags if mode = 'exception'	<pre>mode = 'direction'</pre>	<pre>out = 'nearest' 'tozero' 'positive' 'negative'</pre>	or or or
	mode = 'precision' (on x86 only)	<pre>out = 'extended' 'double' 'single'</pre>	or or
	<pre>mode = 'exception'</pre>	<pre>out = 'inexact' 'division' 'underflow' 'overflow' 'invalid' 'all' 'common'</pre>	or or or or or

 TABLE 1-7
 ieee_handler(action,in,out)
 Parameters

action = 'clear'	<pre>in = 'inexact'</pre>	or
clear user exception handing of in; out is unused	'division'	or
	'underflow'	or
	'overflow'	or
	'invalid'	or
	'all'	or
	'common'	
action = 'set'	<pre>in = 'inexact'</pre>	or
set user exception handing of in; out is address	'division'	or
of handler routine, or SIGFPE_DEFAULT, or	'underflow'	or
SIGFPE_ABORT, or SIGFPE_IGNORE defined in	'overflow'	or
f77/f77_floating point.h	'invalid'	or
	'all'	or

Example 1: Set rounding direction to round toward zero, unless the hardware does not support directed rounding modes:

```
INTEGER*4 ieeer
character*1 mode, out, in
ieeer = ieee_flags( 'set', 'direction', 'tozero', out )
```

Example 2: Clear rounding direction to default (round toward nearest):

```
character*1 out, in
ieeer = ieee_flags('clear','direction', in, out )
```

Example 3: Clear all accrued exception-occurred bits:

```
character*18 out
ieeer = ieee_flags( 'clear', 'exception', 'all', out )
```

Example 4: Detect overflow exception as follows:

```
character*18 out
  ieeer = ieee_flags( 'get', 'exception', 'overflow', out )
  if (out .eq. 'overflow' ) stop 'overflow'
```

The above code sets out to overflow and ieeer to 25 (this value is platform dependent). Similar coding detects exceptions, such as invalid or inexact.

Example 5: hand1.f, write and use a signal handler (f77):

```
external hand
  real r / 14.2 /, s / 0.0 /
  i = ieee_handler( 'set', 'division', hand )
  t = r/s
  end
  INTEGER*4 function hand ( sig, sip, uap )
  INTEGER*4 sig, address
  structure /fault/
       INTEGER*4 address
  end structure
  structure /siginfo/
       INTEGER*4 si_signo
       INTEGER*4 si_code
       INTEGER*4 si_errno
       record /fault/ fault
  end structure
  record /siginfo/ sip
  address = sip.fault.address
  write (*,10) address
10
      format('Exception at hex address ', z8 )
  end
```

Change the declarations for address and function hand to INTEGER*8 to enable Example 5 in a 64-bit, SPARC V9 environment (-xarch=v9)

See the *Numerical Computation Guide*. See also: floatingpoint(3), sigfpe(3), f77_floatingpoint(3F), ieee_flags(3M), and ieee_handler(3M).

f77_floatingpoint.h: Fortran IEEE Definitions

The header file f77_floatingpoint.h defines constants and types used to implement standard floating-point according to ANSI/IEEE Std 754-1985.

Include the file in a FORTRAN 77 source program as follows:

```
#include "f77_floatingpoint.h"
```

Use of this include file requires preprocessing prior to Fortran compilation. The source file referencing this include file will automatically be preprocessed if the name has a .F, .F90 or .F95 extension.

Fortran 95 programs should include the file floatingpoint.h instead.

IEEE Rounding Mode:

fp_direction_type	The type of the IEEE rounding direction mode. The order of enumeration varies according to hardware.
-------------------	--

SIGFPE Handling:

sigfpe_code_type	The type of a SIGFPE code.
sigfpe_handler_type	The type of a user-definable SIGFPE exception handler called to handle a particular SIGFPE code.
SIGFPE_DEFAULT	A macro indicating default SIGFPE exception handling: IEEE exceptions to continue with a default result and to abort for other SIGFPE codes.
SIGFPE_IGNORE	A macro indicating an alternate SIGFPE exception handling, namely to ignore and continue execution.
SIGFPE_ABORT	A macro indicating an alternate SIGFPE exception handling, namely to abort with a core dump.

IEEE Exception Handling:

N_IEEE_EXCEPTION	The number of distinct IEEE floating-point exceptions.
fp_exception_type	The type of the N_IEEE_EXCEPTION exceptions. Each exception is given a bit number.
fp_exception_field_type	The type intended to hold at least N_IEEE_EXCEPTION bits corresponding to the IEEE exceptions numbered by fp_exception_type. Thus, fp_inexact corresponds to the least significant bit and fp_invalid to the fifth least significant bit. Some operations can set more than one exception.

IEEE Classification:

fp_class_type	A list of the classes of IEEE floating-point values and
	symbols.

Refer to the *Numerical Computation Guide*. See also ieee_environment(3M) and f77_ieee_environment(3F).

index,rindex,lnblnk: Index or Length of Substring

These functions search through a character string:

index(<i>a</i> 1, <i>a</i> 2)	Index of first occurrence of string a2 in string a1
rindex(a1,a2)	Index of last occurrence of string a2 in string a1
lnblnk(a1)	Index of last nonblank in string a1

index has the following forms:

index: First Occurrence of a Substring in a String

The index is an intrinsic function called by:

n = index(a1, a2)			
a1	character	Input	Main string
a2	character	Input	Substring
Return value	INTEGER	Output	n>0: Index of first occurrence of a2 in a1n=0: a2 does not occur in a1.

If declared INTEGER*8, index() will return an INTEGER*8 value when compiled for a 64-bit environment and character variable *a1* is a very large character string (greater than 2 Gigabytes).

rindex: Last Occurrence of a Substring in a String

The function is called by:

<pre>INTEGER*4 rindex n = rindex(a1, a2)</pre>			
a1	character	Input	Main string
a2	character	Input	Substring
Return value	INTEGER*4 or INTEGER*8	Output	n>0: Index of last occurrence of a2 in a1n=0: a2 does not occur in a1INTEGER*8 returned in 64-bit environments

1nblnk: Last Nonblank in a String

The function is called by:

n = lnblnk(a1)			
a1	character	Input	String
Return value	INTEGER*4 or INTEGER*8	Output	n>0: Index of last nonblank in a1n=0: a1 is all nonblankINTEGER*8 returned in 64-bit environments

Example: index(), rindex(), lnblnk():

Note — Programs compiled to run in a 64-bit environment must declare index, rindex and lnblnk (and their receiving variables) INTEGER*8 to handle very large character strings.

inmax: Return Maximum Positive Integer

The function is called by:

m = inmax()			
Return value	INTEGER*4	Output	The maximum positive integer

Example: inmax:

```
INTEGER*4 inmax, m
  m = inmax()
  write(*,*) m
  end
demo% f77 -silent tinmax.f
demo% a.out
  2147483647
demo%
```

See also libm_single(3F) and libm_double(3F). See also the intrinsic function ephuge() described in the FORTRAN 77 Language Reference Manual.

ioinit: Initialize I/O Properties

The IOINIT routine (FORTRAN 77 only) establishes properties of file I/O for files opened after the call to IOINIT. The file I/O properties that IOINIT controls are as follows:

- Carriage control: Recognize carriage control on any logical unit.
- Blanks/zeroes: Treat blanks in input data fields as blanks or zeroes.
- File position: Open files at beginning or at end-of-file.
- Prefix: Find and open files named *prefixNN*, $0 \le NN \le 19$.

IOINIT does the following:

■ Initializes global parameters specifying £77 file I/O properties

■ Opens logical units 0 through 19 with the specified file I/O properties—attaches externally defined files to logical units at runtime

Persistence of File I/O Properties

The file I/O properties apply as long as the connection exists. If you close the unit, the properties no longer apply. The exception is the preassigned units 5 and 6, to which carriage control and blanks/zeroes apply at any time.

Internal Flags

IOINIT uses labeled common to communicate with the runtime I/O system. It stores internal flags in the equivalent of the following labeled common block:

```
INTEGER*2 IEOF, ICTL, IBZR

COMMON /__IOIFLG/ IEOF, ICTL, IBZR ! Not in user name space
```

In earlier releases (prior to 3.0.1) the labeled common block was named IOIFLG. The name changed subsequently to __IOIFLG to prevent conflicts with any user-defined common blocks.

Source Code

Some user needs are not satisfied with a generic version of IOINIT, so we provide the source code. It is written in Fortran 77. The location is:

```
<install>/SUNWspro/<release>/src/ioinit.f
```

where *<install>* is usually */opt* for a standard installation of the Sun WorkShop software packages, and *<release>* path changes with every release of the compilers.

Usage: ioinit

The ioinit subroutine is called by:

call ioinit (cctl, bzro, apnd, prefix, vrbose)			
cctl	logical	Input	True: Recognize carriage control, all formatted output (except unit 0)
bzro	logical	Input	True: Treat trailing and imbedded blanks as zeroes.
apnd	logical	Input	True: Open files at EoF. Append.
prefix	character*n	Input	Nonblank: For unit <i>NN</i> , seek and open file <i>prefixNN</i>
vrbose	logical	Input	True: Report ioinit activity as it happens

See also getarg(3F) and getenv(3F).

Restrictions

Note the following restrictions:

- *prefix* can be no longer than 30 characters.
- A path name associated with an environment name can be no longer than 255 characters.

Description of Arguments

These are the arguments for ioinit.

cctl (Carriage Control)

By default, carriage control is not recognized on any logical unit. If *cctl* is .TRUE., then carriage control is recognized on formatted output to all logical units, except unit 0, the diagnostic channel. Otherwise, the default is restored.

bzro (Blanks)

By default, trailing and embedded blanks in input data fields are ignored. If *bzro* is .TRUE., then such blanks are treated as zeros. Otherwise, the default is restored.

apnd (Append)

By default, all files opened for sequential access are positioned at their beginning. It is sometimes necessary or convenient to open at the end-of-file, so that a write will append to the existing data. If *apnd* is .TRUE., then files opened subsequently on any logical unit are positioned at their end upon opening. A value of .FALSE. restores the default behavior.

prefix (Automatic File Connection)

If the argument *prefix* is a nonblank string, then names of the form *prefixNN* are sought in the program environment. The value associated with each such name found is used to open the logical unit *NN* for formatted sequential access.

This search and connection is provided only for NN between 0 and 19, inclusive. For NN > 19, nothing is done; see "Source Code" on page 64.

vrbose (IOINIT Activity)

If the argument *vrbose* is .TRUE., then IOINIT reports on its own activity.

Example: The program myprogram has the following ioinit call:

```
call ioinit( .true., .false., .false., 'FORT', .false.)
```

You can assign file name in at least two ways.

In sh:

```
demo$ FORT01=mydata
demo$ FORT12=myresults
demo$ export FORT01 FORT12
demo$ myprogram
```

In csh:

```
demo% setenv FORT01 mydata
demo% setenv FORT12 myresults
demo% myprogram
```

With either shell, the ioinit call in the above example gives these results:

- Open logical unit 1 to the file, mydata.
- Open logical unit 12 to the file, myresults.
- Both files are positioned at their beginning.
- Any formatted output has column 1 removed and interpreted as carriage control.
- Embedded and trailing blanks are to be ignored on input.

Example: ioinit()—list and compile:

```
demo% cat tioinit.f
    character*3    s
    call ioinit( .true., .false., .false., 'FORT', .false.)
    do i = 1, 2
        read( 1, '(a3,i4)')    s, n
        write( 12, 10 )    s, n
    end do

10    format(a3,i4)
    end

demo% cat tioinit.data
abc 123
PDQ 789
demo% f77 -silent tioinit.f
demo%
```

You can set environment variables as follows, using either sh or csh:

ioinit()—sh:

```
demo$ FORT01=tioinit.data
demo$ FORT12=tioinit.au
demo$ export FORT01 FORT12
demo$
```

ioinit()—csh:

```
demo% setenv FORT01 tioinit.data
demo% setenv FORT12 tioinit.au
```

ioinit()—Run and test:

```
demo% a.out
demo% cat tioinit.au
abc 123
PDQ 789
```

itime: Current Time

itime puts the current system time into an integer array: hour, minute, and second. The subroutine is called by:

call itime(iarray)					
iarray	INTEGER*4	Output	3-element array: iarray(1) = hour iarray(2) = minute iarray(3) = second		

Example: itime:

```
demo% cat titime.f
    INTEGER*4 iarray(3)
    call itime( iarray )
    write (*, "(' The time is: ',3i5)" ) iarray
    end
demo% f77 -silent titime.f
demo% a.out
    The time is: 15 42 35
```

See also time(3F), ctime(3F), and fdate(3F).

kill: Send a Signal to a Process

The function is called by:

status = kill(pid, signum)			
pid	INTEGER*4	Input	Process ID of one of the user's processes
signum	INTEGER*4	Input	Valid signal number. See signal(3).
Return value	INTEGER*4	Output	status=0: OK status>0: Error code

Example (fragment): Send a message using kill():

```
INTEGER*4 kill, pid, signum

* ...
status = kill( pid, signum )
if ( status .ne. 0 ) stop 'kill: error'
write(*,*) 'Sent signal ', signum, ' to process ', pid
end
```

The function sends signal *signum*, and integer signal number, to the process *pid*. Valid signal numbers are listed in the C include file /usr/include/sys/signal.h

See also: kill(2), signal(3), signal(3F), fork(3F), and perror(3F).

link, symlnk: Make a Link to an Existing File

link creates a link to an existing file. symlink creates a symbolic link to an existing file.

The functions are called by:

status = link	status = link(name1, name2)			
INTEGER*4 symlnk status = symlnk(name1, name2)				
name1	character*n Input Path name of an existing file			
name2	character*n	Input	Path name to be linked to the file, name1. name2 must not already exist.	
Return value	INTEGER*4	Output	status=0: OK status>0: System error code	

link: Create a Link to an Existing File

Example 1: link: Create a link named data1 to the file, tlink.db.data.1:

```
demo% cat tlink.f
    character*34 name1/'tlink.db.data.1'/, name2/'data1'/
    integer*4 link, status
    status = link( name1, name2 )
    if ( status .ne. 0 ) stop 'link: error'
    end
    demo% f77 -silent tlink.f
    demo% ls -l data1
    data1 not found
    demo% a.out
    demo% ls -l data1
    -rw-rw-r-- 2 generic 2 Aug 11 08:50 data1
    demo%
```

symlnk: Create a Symbolic Link to an Existing File

Example 2: symlnk: Create a symbolic link named data1 to the file, tlink.db.data.1:

```
demo% cat tsymlnk.f
    character*34 name1/'tlink.db.data.1'/, name2/'data1'/
    INTEGER*4 status, symlnk
    status = symlnk( name1, name2 )
    if ( status .ne. 0 ) stop 'symlnk: error'
    end
demo% f77 -silent tsymlnk.f
demo% ls -l data1
data1 not found
demo% a.out
demo% ls -l data1
lrwxrwxrwx 1 generic 15 Aug 11 11:09 data1 -> tlink.db.data.1
demo%
```

See also: link(2), symlink(2), perror(3F), and unlink(3F).

Note: the path names cannot be longer than MAXPATHLEN as defined in <sys/param.h>.

loc: Return the Address of an Object

This intrinsic function is called by:

k = loc(arg)				
arg	Any type	Input	Variable or array	
Return value	INTEGER*4 -or- INTEGER*8	Output	Address of arg	
	Returns an INTEGER*8 pointer when compiled to run in a 64-bit environment with -xarch=v9. See Note below.			

Example: loc:

```
INTEGER*4 k, loc
real arg / 9.0 /
k = loc( arg )
write(*,*) k
end
```

Note – Programs compiled to run in a 64-bit environment should declare INTEGER*8 the variable receiving output from the loc() function.

long, short: Integer Object Conversion

long and short handle integer object conversions between INTEGER*4 and INTEGER*2, and is especially useful in subprogram call lists.

long: Convert a Short Integer to a Long Integer

The function is called by:

call ExpecLong(long(int2))			
int2 INTEGER*2 Input			
Return value INTEGER*4 Output			

short: Convert a Long Integer to a Short Integer

The function is:

<pre>INTEGER*2 short call ExpecShort(short(int4))</pre>			
int4	INTEGER*4	Input	
Return value	INTEGER*2	Output	

Example (fragment): long() and short():

```
integer*4 int4/8/, long
integer*2 int2/8/, short
call ExpecLong( long(int2) )
call ExpecShort( short(int4) )
...
end
```

ExpecLong is some subroutine called by the user program that expects a *long* (INTEGER*4) integer argument. Similarly, *ExpecShort* expects a *short* (INTEGER*2) integer argument.

long is useful if constants are used in calls to library routines and the code is compiled with the -i2 option.

short is useful in similar context when an otherwise long object must be passed as a short integer. Passing an integer to short that is too large in magnitude does not cause an error, but will result in unexpected behavior.

longjmp, isetjmp: Return to Location Set by isetjmp

isetjmp sets a location for longjmp; longjmp returns to that location.

isetjmp: Set the Location for longjmp

This intrinsic function is called by:

ival = isetjmp(env)			
env	INTEGER*4	Output	env is a 12-element integer array. In 64-bit environments it must be declared INTEGER*8
Return value	INTEGER*4	Output	<pre>ival = 0 if isetjmp is called explicitly ival ≠ 0 if isetjmp is called through longjmp</pre>

longjmp: Return to the Location Set by isetjmp

The subroutine is called by:

call :	call longjmp(env, ival)			
env	INTEGER*4	Input	env is the 12-word integer array initialized by isetjmp. In 64-bit environments it must be declared INTEGER*8	
ival	INTEGER*4	Output	<pre>ival = 0 if isetjmp is called explicitly ival ≠ 0 if isetjmp is called through longjmp</pre>	

Description

The isetjmp and longjmp routines are used to deal with errors and interrupts encountered in a low-level routine of a program. They are £77 intrinsics.

These routines should be used only as a last resort. They require discipline, and are not portable. Read the man page, set jmp (3V), for bugs and other details.

iset jmp saves the stack environment in *env*. It also saves the register environment.

longjmp restores the environment saved by the last call to isetjmp, and returns in such a way that execution continues as if the call to isetjmp had just returned the value *ival*.

The integer expression *ival* returned from isetjmp is zero if longjmp is not called, and nonzero if longjmp is called.

Example: Code fragment using isetjmp and longjmp:

```
INTEGER*4 env(12)
common /jmpblk/ env
j = isetjmp( env )
if ( j .eq. 0 ) then
call sbrtnA
else
    call error_processor
end if
end
subroutine sbrtnA
INTEGER*4 env(12)
common /jmpblk/ env
call longjmp( env, ival )
return
end
```

Restrictions

- You must invoke isetjmp before calling longjmp.
- The *env* integer array argument to isetjmp and longjmp must be at least 12 elements long.
- You must pass the *env* variable from the routine that calls isetjmp to the routine that calls longjmp, either by common or as an argument.
- longjmp attempts to clean up the stack. longjmp must be called from a lower call-level than isetjmp.
- Passing isetjmp as an argument that is a procedure name does not work.

See setjmp(3V).

malloc, malloc64: Allocate Memory and Get Address

The malloc() function is called by:

k = malloc(n)				
n	INTEGER*4	Input	Number of bytes of memory	
Return value	INTEGER*4 or INTEGER*8	Output	<i>k</i> >0: <i>k</i> =address of <i>the</i> start of the block of memory allocated <i>k</i> =0: Error	
			alue is returned when compiled for a carch=v9. See Note below.	

Note — Programs compiled to run on 64-bit environments such as Solaris 7 must declare the malloc() function and the variables receiving its output as INTEGER*8. Portability issues can be solved by using malloc64() instead of malloc() in programs that must run in both 32-bit or 64-bit environments.

The function malloc64(3F) is provided to make programs portable between 32-bit and 64-bit environments:

k = malloc64(n)			
n	INTEGER*8	Input	Number of bytes of memory
Return value	INTEGER*8	Output	<i>k</i> >0: <i>k</i> =address of <i>the</i> start of the block of memory allocated <i>k</i> =0: Error

These functions allocate an area of memory and return the address of the start of that area. (In a 64-bit environment, this returned byte address may be outside the INTEGER*4 numerical range—the receiving variables must be declared INTEGER*8 to avoid truncation of the memory address.) The region of memory is not initialized in any way, and it should not be assumed to be preset to anything, especially zero!

Example: Code fragment using malloc():

```
parameter (NX=1000)
pointer ( p1, X )
real*4 X(NX)
...
p1 = malloc( NX*4 )
if ( p1 .eq. 0 ) stop 'malloc: cannot allocate'
do 11 i=1,NX

11     X(i) = 0.
...
end
```

In the above example, we acquire 4,000 bytes of memory, pointed to by p1, and initialize it to zero.

See also "free: Deallocate Memory Allocated by Malloc" on page 37.

mybits: Move a Bit Field

The subroutine is called by:

call mvbits(src, ini1, nbits, des, ini2)			
src	INTEGER*4	Input	Source
ini1	INTEGER*4	Input	Initial bit position in the source
nbits	INTEGER*4	Input	Number of bits to move
des	INTEGER*4	Output	Destination
ini2	INTEGER*4	Input	Initial bit position in the destination

Example: mvbits:

```
demo% cat mvbl.f
* mvbl.f -- From src, initial bit 0, move 3 bits to des, initial
bit 3.
     src
            des
* 543210 543210 ← Bit numbers
* 000111 000001 \leftarrow Values before move
* 000111 111001 \leftarrow Values after move
    INTEGER*4 src, ini1, nbits, des, ini2
    data src, ini1, nbits, des, ini2
               / 7,
                       0,
                            3, 1,
    call mybits ( src, ini1, nbits, des, ini2 )
    write (*,"(503)") src, ini1, nbits, des, ini2
demo% f77 -silent mvb1.f
demo% a.out
  7 0 3 71 3
demo%
```

Note the following:

- Bits are numbered 0 to 31, from least significant to most significant.
- mvbits changes only bits *ini*2 through *ini*2+*nbits*-1 of the *des* location, and no bits of the *src* location.
- The restrictions are:
 - $ini1 + nbits \ge 32$
 - $ini2 + nbits \le 32$

perror, gerror, ierrno: Get System Error Messages

These routines perform the following functions:

perror	Print a message to Fortran logical unit 0, stderr.
gerror	Get a system error message (of the last detected system error)
ierrno	Get the error number of the last detected system error.

perror: Print Message to Logical Unit 0, stderr

The subroutine is called by:

call perror(string)				
string	character*n	Input	The message. It is written preceding the standard error message for the last detected system error.	

Example 1:

```
call perror( "file is for formatted I/O" )
```

gerror: Get Message for Last Detected System Error

The subroutine or function is called by:

call gerror(string)				
string	character*n	Output	Message for the last detected system error	

Example 2: gerror() as a subroutine:

```
character string*30
...
call gerror ( string )
write(*,*) string
```

Example 3: gerror() as a function; *string* not used:

```
character gerror*30, z*30
...
z = gerror()
write(*,*) z
```

ierrno: Get Number for Last Detected System Error

The function is called by:

This number is updated only when an error actually occurs. Most routines and I/O statements that might generate such errors return an error code after the call; that value is a more reliable indicator of what caused the error condition.

Example 4: ierrno():

```
INTEGER*4 ierrno, n
...
n = ierrno()
write(*,*) n
```

See also intro(2) and perror(3).

Note:

- *string* in the call to perror cannot be longer than 127 characters.
- The length of the string returned by gerror is determined by the calling program.
- Runtime I/O error codes for £77 and £95 are listed in the Fortran User's Guide.

putc, fputc: Write a Character to a Logical Unit

putc writes to logical unit 6, normally the control terminal output.

fputc writes to a logical unit.

These functions write a character to the file associated with a Fortran logical unit bypassing normal Fortran I/O.

Do not mix normal Fortran output with output by these functions on the same unit.

putc: Write to Logical Unit 6

The function is called by:

INTEGER*4 putc status = putc(char)			
char	character	Input	The character to write to the unit
Return value	INTEGER*4	Output	status=0: OK status>0: System error code

Example: putc():

fputc: Write to Specified Logical Unit

The function is called by:

INTEGER*4 fputc status = fputc(lunit, char)				
lunit	INTEGER*4	Input	The unit to write to	
char	character	Input	The character to write to the unit	
Return value	INTEGER*4	Output	status=0: OK status>0: System error code	

Example: fputc():

```
character char, s*11 / 'OK by fputc' /
  INTEGER*4 fputc, status
  open( 1, file='tfputc.data')
  do i = 1, 11
        char = s(i:i)
        status = fputc( 1, char )
  end do
    status = fputc( 1, '\n' )
  end
demo% f77 -silent tfputc.f
demo% a.out
demo% cat tfputc.data
OK by fputc
demo%
```

See also putc(3S), intro(2), and perror(3F).

qsort, qsort64: Sort the Elements of a One-Dimensional Array

The subroutine is called by:

call qsort(array, len, isize, compar) call qsort64(array, len8, isize8, compar)			
array	array	Input	Contains the elements to be sorted
len	INTEGER*4	Input	Number of elements in the array.
len8	INTEGER*8	Input	Number of elements in the array
isize	INTEGER*4	Input	Size of an element, typically: 4 for integer or real 8 for double precision or complex 16 for double complex Length of character object for character arrays
isize8	INTEGER*8	Input	Size of an element, typically: 4_8 for integer or real 8_8 for double precision or complex 16_8 for double complex Length of character object for character arrays
compar	function name	Input	Name of a user-supplied INTEGER*2 function. Determines sorting order: compar(arg1,arg2)

Use qsort64 in 64-bit environments with arrays larger than 2 Gbytes. Be sure to specify the array length, *len8*, and the element size, *isize8*, as INTEGER*8 data. Use the Fortran 95 style constants to explicitly specify INTEGER*8 constants.

The compar(arg1, arg2) arguments are elements of array, returning:

Negative	If arg1 is considered to precede arg2
Zero	If arg1 is equivalent to arg2
Positive	If arg1 is considered to follow arg2

For example:

```
demo% cat tqsort.f
    external compar
    integer*2 compar
    INTEGER*4 array(10)/5,1,9,0,8,7,3,4,6,2/, len/10/, isize/4/
    call qsort( array, len, isize, compar )
    write(*,'(10i3)') array
    integer*2 function compar( a, b )
    INTEGER*4 a, b
    if (a .lt. b) compar = -1
    if (a.eq.b) compar = 0
    if (a.gt.b) compar = 1
    return
    end
demo% f77 -silent tqsort.f
demo% a.out
  0 1 2 3 4 5 6 7 8 9
```

ran: Generate a Random Number Between 0 and 1

Repeated calls to ran generate a sequence of random numbers with a uniform distribution.

r = ran(i)				
i	INTEGER*4	Input	Variable or array element	
r	REAL	Output	Variable or array element	

See lcrans(3m).

Example: ran:

```
demo% cat ranl.f
* ran1.f -- Generate random numbers.
    INTEGER*4 i, n
    real r(10)
    i = 760013
    do n = 1, 10
        r(n) = ran ( i )
    end do
    write ( *, "( 5 f11.6 )" ) r
    end
demo% f77 -silent ranl.f
demo% a.out
    0.222058 0.299851 0.390777 0.607055 0.653188
    0.060174 0.149466 0.444353 0.002982 0.976519
demo%
```

Note the following:

- The range includes 0.0 and excludes 1.0.
- The algorithm is a multiplicative, congruential type, general random number generator.
- In general, the value of i is set *once* during execution of the calling program.
- The initial value of i should be a large odd integer.
- Each call to RAN gets the next random number in the sequence.
- To get a different sequence of random numbers each time you run the program, you must set the argument to a different initial value for each run.
- The argument is used by RAN to store a value for the calculation of the next random number according to the following algorithm:

```
SEED = 6909 * SEED + 1 (MOD 2**32)
```

■ SEED contains a 32-bit number, and the high-order 24 bits are converted to floating point, and that value is returned.

rand, drand, irand: Return Random Values

rand returns real values in the range 0.0 through 1.0.

drand returns double precision values in the range 0.0 through 1.0.

irand returns positive integers in the range 0 through 2147483647.

These functions use random(3) to generate sequences of random numbers. The three functions share the same 256 byte state array. The only advantage of these functions is that they are widely available on UNIX systems. For better random number generators, compare lcrans, addrans, and shufrans. See also random(3), and the *Numerical Computation Guide*

<pre>i = irand(k) r = rand(k) d = drand(k)</pre>			
k	INTEGER*4	Input	<i>k</i>=0: Get next random number in the sequence<i>k</i>=1: Restart sequence, return first number<i>k</i>>0: Use as a seed for new sequence, return first number
rand	REAL*4	Output	
drand	REAL*8	Output	
irand	INTEGER*4	Output	

Example: irand():

```
integer*4 v(5), iflag/0/
  do i = 1, 5
     v(i) = irand( iflag )
  end do
  write(*,*) v
  end
demo% f77 -silent trand.f
demo% a.out
  2078917053 143302914 1027100827 1953210302 755253631
demo%
```

rename: Rename a File

The function is called by:

<pre>INTEGER*4 rename status = rename(from, to)</pre>			
from	character*n	Input	Path name of an existing file
to	character*n	Input	New path name for the file
Return value	INTEGER*4	Output	status=0: OK status>0: System error code

If the file specified by *to* exists, then both *from* and *to* must be the same type of file, and must reside on the same file system. If *to* exists, it is removed first.

Example: rename()—Rename file trename.old to trename.new

```
demo% cat trename.f
    INTEGER*4 rename, status
    character*18 from/'trename.old'/, to/'trename.new'/
    status = rename( from, to )
    if ( status .ne. 0 ) stop 'rename: error'
    end
demo% f77 -silent trename.f
demo% ls trename*
trename.f trename.old
demo% a.out
demo% ls trename*
trename.f trename.new
demo%
```

See also rename(2) and perror(3F).

Note: the path names cannot be longer than MAXPATHLEN as defined in <sys/param.h>.

secnds: Get System Time in Seconds, Minus Argument

t = secnds(t0)				
t0	REAL	Input	Constant, variable, or array element	
Return Value	REAL	Output	Number of seconds since midnight, minus t0	

Example: secnds:

```
demo% cat sec1.f
   real elapsed, t0, t1, x, y
   t0 = 0.0
   t1 = secnds(t0)
   y = 0.1
   do i = 1, 10000
       x = asin(y)
   end do
   elapsed = secnds( t1 )
   write ( *, 1 ) elapsed
   format ( ' 10000 arcsines: ', f12.6, ' sec' )
1
   end
demo% f77 -silent sec1.f
demo% a.out
10000 arcsines: 0.009064 sec
demo%
```

Note that:

- The returned value from SECNDS is accurate to 0.01 second.
- The value is the system time, as the number of seconds from midnight, and it correctly spans midnight.
- Some precision may be lost for small time intervals near the end of the day.

sh: Fast Execution of an sh Command

The function is called by:

INTEGER*4 sh status = sh(string)				
string	character*n Input String containing command to do			
Return value	INTEGER*4	Output	Exit status of the shell executed. See <i>wait</i> (2) for an explanation of this value.	

Example: sh():

```
character*18 string / 'ls > MyOwnFile.names' /
INTEGER*4 status, sh
status = sh( string )
if ( status .ne. 0 ) stop 'sh: error'
...
end
```

The function sh passes *string* to the sh shell as input, as if the string had been typed as a command.

The current process waits until the command terminates.

The forked process flushes all open files:

- For output files, the buffer is flushed to the actual file.
- For input files, the position of the pointer is unpredictable.

The $\mathfrak{sh}()$ function is not MT-safe. Do not call it from multithreaded or parallelized programs.

See also: execve(2), wait(2), and system(3).

Note: *string* cannot be longer than 1,024 characters.

signal: Change the Action for a Signal

The function is called by:

<pre>INTEGER*4 signal or INTEGER*8 signal n = signal(signum, proc, flag)</pre>				
signum	INTEGER*4	Input	Signal number; see signal(3)	
proc	Routine name	Input	Name of user signal handling routine; must be in an external statement	
flag	INTEGER*4	Input	$flag < 0$: Use $proc$ as the signal handler $flag \ge 0$: Ignore $proc$; pass $flag$ as the action: $flag = 0$: Use the default action $flag = 1$: Ignore this signal	
Return value	INTEGER*4	Output	 n=-1: System error n>0: Definition of previous action n>1: n=Address of routine that would have been called n<-1: If signum is a valid signal number, then: n=address of routine that would have been called. If signum is a not a valid signal number, then: n is an error number. 	
	INTEGER*8		On 64-bit environments, signal and the variables receiving its output must be declared INTEGER*8	

If *proc* is called, it is passed the signal number as an integer argument.

If a process incurs a signal, the default action is usually to clean up and abort. A signal handling routine provides the capability of catching specific exceptions or interrupts for special processing.

The returned value can be used in subsequent calls to signal to restore a previous action definition.

You can get a negative return value even though there is no error. In fact, if you pass a *valid* signal number to signal(), and you get a return value less than -1, then it is OK.

£77 arranges to trap certain signals when a process is started. The only way to restore the default £77 action is to save the returned value from the first call to signal.

f77_floatingpoint.h defines proc values SIGFPE_DEFAULT, SIGFPE_IGNORE, and SIGFPE_ABORT. See page 59. (Use floatingpoint.h with f95).

In 64-bit environments, signal must be declared INTEGER*8, along with the variables receiving its output, to avoid truncation of the address that may be returned.

See also kill(1), signal(3), and kill(3F), and Numerical Computation Guide.

sleep: Suspend Execution for an Interval

The subroutine is called by:

```
call sleep( itime )

itime INTEGER*4 Input Number of seconds to sleep
```

The actual time can be up to 1 second less than *itime* due to granularity in system timekeeping.

Example: sleep():

```
INTEGER*4 time / 5 /
write(*,*) 'Start'
call sleep( time )
write(*,*) 'End'
end
```

See also sleep(3).

stat, 1stat, fstat: Get File Status

These functions return the following information:

- device,
- inode number,
- protection,
- number of hard links,
- user ID,
- group ID,
- device type,
- size,
- access time,
- modify time,
- status change time,
- optimal blocksize,
- blocks allocated

Both stat and 1stat query by file name. fstat queries by logical unit.

stat: Get Status for File, by File Name

The function is called by:

<pre>INTEGER*4 stat ierr = stat (name, statb)</pre>			
name	character*n	Input	Name of the file
statb	INTEGER*4	Output	Status structure for the file, 13-element array
Return value	INTEGER*4	Output	ierr=0: OK ierr>0: Error code

Example 1: stat():

```
character name*18 /'MyFile'/
INTEGER*4 ierr, stat, lunit/1/, statb(13)
open( unit=lunit, file=name )
ierr = stat ( name, statb )
if ( ierr .ne. 0 ) stop 'stat: error'
write(*,*)'UID of owner = ',statb(5),', blocks = ',statb(13)
end
```

fstat: Get Status for File, by Logical Unit

The function

<pre>INTEGER*4 fstat ierr = fstat (lunit, statb)</pre>				
lunit	INTEGER*4	Input	Logical unit number	
statb	INTEGER*4	Output	Status for the file: 13-element array	
Return value	INTEGER*4	Output	ierr=0: OK ierr>0: Error code	

is called by:

Example 2: fstat():

```
character name*18 /'MyFile'/
INTEGER*4 fstat, lunit/1/, statb(13)
open( unit=lunit, file=name )
ierr = fstat ( lunit, statb )
if ( ierr .ne. 0 ) stop 'fstat: error'
write(*,*)'UID of owner = ',statb(5),', blocks = ',statb(13)
end
```

1stat: Get Status for File, by File Name

The function is called by:

ierr = lstat (name, statb)			
name	character*n	Input	File name
statb	INTEGER*4	Output	Status array of file, 13 elements
Return value	INTEGER*4	Output	ierr=0: OK ierr>0: Error code

Example 3: lstat():

```
character name*18 /'MyFile'/
INTEGER*4 lstat, lunit/1/, statb(13)
open( unit=lunit, file=name )
ierr = lstat ( name, statb )
if ( ierr .ne. 0 ) stop 'lstat: error'
write(*,*)'UID of owner = ',statb(5),', blocks = ',statb(13)
end
```

Detail of Status Array for Files

The meaning of the information returned in the INTEGER*4 array *statb* is as described for the structure *stat* under stat(2).

Spare values are not included. The order is shown in the following table:

statb(1)	Device inode resides on
statb(2)	This inode's number
statb(3)	Protection
$\mathtt{statb}(4)$	Number of hard links to the file
statb(5)	User ID of owner
statb(6)	Group ID of owner
statb(7)	Device type, for inode that is device
statb(8)	Total size of file
statb(9)	File last access time
statb(10)	File last modify time
statb(11)	File last status change time
statb(12)	Optimal blocksize for file system I/O ops
statb(13)	Actual number of blocks allocated

See also stat(2), access(3F), perror(3F), and time(3F).

Note: the path names can be no longer than MAXPATHLEN as defined in <sys/param.h>.

stat64, 1stat64, fstat64: Get File Status

64-bit "long file" versions of stat, 1stat, fstat. These routines are identical to the non-64-bit routines, except that the 13-element array *statb* must be declared INTEGER*8.

system: Execute a System Command

The function is called by:

INTEGER*4 system status = system(string)			
string character*n Input String containing command to do			
Return value	INTEGER*4	Output	Exit status of the shell executed. See <i>wait</i> (2) for an explanation of this value.

Example: system():

```
character*8 string / 'ls s*' /
INTEGER*4 status, system
status = system( string )
if ( status .ne. 0 ) stop 'system: error'
end
```

The function system passes *string* to your shell as input, as if the string had been typed as a command. Note: *string* cannot be longer than 1024 characters.

If system can find the environment variable SHELL, then system uses the value of SHELL as the command interpreter (shell); otherwise, it uses sh(1).

The current process waits until the command terminates.

Historically, cc and £77 developed with different assumptions:

- If cc calls system, the shell is always the Bourne shell.
- If f77 calls system, then which shell is called depends on the environment variable SHELL.

The system function flushes all open files:

- For output files, the buffer is flushed to the actual file.
- For input files, the position of the pointer is unpredictable.

See also: execve(2), wait(2), and execve(3).

The system() function is not MT-safe. Do not call it from multithreaded or parallelized programs.

time, ctime, ltime, gmtime: Get System Time

These routines have the following functions:

time	Standard version: Get system time as integer (seconds since 0 GMT 1/1/70) VMS Version: Get the system time as character (hh:mm:ss)
ctime	Convert a system time to an ASCII string.
ltime	Dissect a system time into month, day, and so forth, local time.
gmtime	Dissect a system time into month, day, and so forth, GMT.

time: Get System Time

For time(), there are two versions, a standard version and a VMS version. If you use the f77 command-line option -lv77, then you get the VMS version for time() and for idate(); otherwise, you get the standard versions. (The VMS versions of certain library routines is only available with f77 through the -lv77 library option, and not with f95.)

The standard function is called by:

<pre>INTEGER*4 ti n = time()</pre>	me <i>or</i> INTE	GER*8	Standard Version
Return value	INTEGER*4	Output	Time, in seconds, since 0:0:0, GMT, 1/1/70
	INTEGER*8	Output	In 64-bit environments, time returns an INTEGER*8 value

The function time() returns an integer with the time since 00:00:00 GMT, January 1, 1970, measured in seconds. This is the value of the operating system clock.

Example: time(), version standard with the operating system:

```
INTEGER*4 n, time
  n = time()
  write(*,*) 'Seconds since 0 1/1/70 GMT = ', n
  end
demo% f77 -silent ttime.f
demo% a.out
  Seconds since 0 1/1/70 GMT = 913240205
demo%
```

The VMS version of time is a subroutine that gets the current system time as a character string.

The VMS subroutine is called by:

call time(t)			VMS Version
t	character*8	Output	Time, in the form <i>hh:mm:ss hh, mm,</i> and <i>ss</i> are each two digits: <i>hh</i> is the hour; <i>mm</i> is the minute; <i>ss</i> is the second

Example: time(t), VMS version, ctime—convert the system time to ASCII:

```
character t*8
  call time( t )
  write(*, "(' The current time is ', A8 )") t
  end
demo% f77 -silent ttimeV.f -lv77
demo% a.out
  The current time is 08:14:13
demo%
```

ctime: Convert System Time to Character

The function ctime converts a system time, *stime*, and returns it as a 24-character ASCII string.

The function is called by:

CHARACTER ctime*24 string = ctime(stime)			
stime	INTEGER*4	Input	System time from time() (standard version)
Return value	character*24	Output	System time as character string. Declare ctime and <i>string</i> as character*24.

The format of the ctime returned value is shown in the following example. It is described in the man page ctime(3C).

Example: ctime():

```
character*24 ctime, string
  INTEGER*4 n, time
  n = time()
  string = ctime( n )
  write(*,*) 'ctime: ', string
  end
demo% f77 -silent tctime.f
demo% a.out
  ctime: Wed Dec 9 13:50:05 1998
demo%
```

ltime: Split System Time to Month, Day,... (Local)

This routine dissects a system time into month, day, and so forth, for the local time zone.

The subroutine is called by:

call ltime(stime, tarray)				
	stime	INTEGER*4	Input	System time from time() (standard version)
	tarray	INTEGER*4(9)	Output	System time, local, as day, month, year,

For the meaning of the elements in tarray, see the next section.

Example: ltime():

```
integer*4 stime, tarray(9), time
  stime = time()
  call ltime( stime, tarray )
  write(*,*) 'ltime: ', tarray
  end
demo% f77 -silent tltime.f
demo% a.out
  ltime: 25 49 10 12 7 91 1 223 1
demo%
```

gmtime: Split System Time to Month, Day, ... (GMT)

This routine dissects a system time into month, day, and so on, for GMT.

The subroutine is:

call gmtime(stime, tarray)			
stime	INTEGER*4	Input	System time from time() (standard version)
tarray	INTEGER*4(9)	Output	System time, GMT, as day, month, year,

Example: gmtime:

```
integer*4 stime, tarray(9), time
  stime = time()
  call gmtime( stime, tarray )
  write(*,*) 'gmtime: ', tarray
  end
demo% f77 -silent tgmtime.f
demo% a.out
  gmtime: 12 44 19 18 5 94 6 168 0
demo%
```

Here are the tarray() values for ltime and gmtime: index, units, and range:

```
1 Seconds (0 - 61) 6 Year - 1900
2 Minutes (0 - 59) 7 Day of week (Sunday = 0)
3 Hours (0 - 23) 8 Day of year (0 - 365)
4 Day of month (1 - 31) 9 Daylight Saving Time,
5 Months since January (0 - 11) 1 if DST in effect
```

These values are defined by the C library routine ctime(3C), which explains why the system may return a count of seconds *greater than* 59. See also: idate(3F), and fdate(3F).

ctime64, gmtime64, ltime64: System Time Routines for 64-bit Environments

These are versions of the corresponding routines ctime, gmtime, and ltime, to provide portability on 64-bit environments. They are identical to these routines except that the input variable *stime* must be INTEGER*8.

When used in a 32-bit environment with an INTEGER*8 stime, if the value of stime is beyond the INTEGER*4 range ctime64 returns all asterisks, while gmtime and ltime fill the tarray array with -1.

topen, tclose, tread,..., tstate: Tape I/O

(FORTRAN 77 Only) These routines provide an alternative way to manipulate magnetic tape:

cal unit.
I remove association with tlu.
buffer.
r to tape.
irst data file.
nd reset EOF status.
O channel.

On any one unit, do not mix these functions with standard Fortran I/O.

You must first use topen() to open a tape logical unit, *tlu*, for the specified device. Then you do all other operations on the specified *tlu*. *tlu* has no relationship at all to any normal Fortran logical unit.

Before you use one of these functions, its name must be in an INTEGER*4 type statement.

topen: Associate a Device with a Tape Logical Unit

INTEGER*4 topen n = topen(tlu, devnam, islabeled)			
tlu	INTEGER*4	Input	Tape logical unit, in the range 0 to 7.

<pre>INTEGER*4 topen n = topen(tlu, devnam, islabeled)</pre>				
devnam	CHARACTER	Input	Device name; for example: '/dev/rst0'	
islabeled	LOGICAL	Input	True=the tape is labeled A label is the first file on the tape.	
Return value	INTEGER*4	Output	<i>n</i> =0: OK <i>n</i> <0: Error	

This function does *not* move the tape. See perror(3F) for details.

Example: topen()—open a 1/4-inch tape file:

```
CHARACTER devnam*9 / '/dev/rst0' /
INTEGER*4 n / 0 /, tlu / 1 /, topen
LOGICAL islabeled / .false. /
n = topen( tlu, devnam, islabeled )
IF ( n .LT. 0 ) STOP "topen: cannot open"
WRITE(*,'("topen ok:", 2I3, 1X, A10)') n, tlu, devnam
END
```

The output is:

```
topen ok: 0 1 /dev/rst0
```

tclose: Write EOF, Close Tape Channel, Disconnect *tlu*

<pre>INTEGER*4 tclose n = tclose (tlu)</pre>			
tlu	INTEGER*4	Input	Tape logical unit, in range 0 to 7
п	INTEGER*4	Return value	<i>n</i> =0: OK <i>n</i> <0: Error

Caution – tclose() places an EOF marker immediately after the current location of the unit pointer, and then closes the unit. So if you trewin() a unit before you tclose() it, its contents are discarded.

Example: tclose()—close an opened 1/4-inch tape file:

```
CHARACTER devnam*9 / '/dev/rst0' /
INTEGER*4 n / 0 /, tlu / 1 /, tclose, topen
LOGICAL islabeled / .false. /
n = topen( tlu, devnam, islabeled )
n = tclose( tlu )
IF ( n .LT. 0 ) STOP "tclose: cannot close"
WRITE(*, '("tclose ok:", 2I3, 1X, A10)') n, tlu, devnam
END
```

The output is:

```
tclose ok: 0 1 /dev/rst0
```

twrite: Write Next Physical Record to Tape

The function is called by:

<pre>INTEGER*4 twrite n = twrite(tlu, buffer)</pre>			
tlu	INTEGER*4	Input	Tape logical unit, in range 0 to 7
buffer	character	Input	Must be sized at a multiple of 512
п	INTEGER*4	Return value	<i>n</i>>0: OK, and <i>n</i> = the number of bytes written<i>n</i>=0: End of Tape<i>n</i><0: Error

The physical record length is the size of buffer.

Example: twrite()—write a 2-record file:

```
CHARACTER devnam*9 / '/dev/rst0' /, rec1*512 / "abcd" /,

rec2*512 / "wxyz" /

INTEGER*4 n / 0 /, tlu / 1 /, tclose, topen, twrite

LOGICAL islabeled / .false. /

n = topen( tlu, devnam, islabeled )

IF ( n .LT. 0 ) STOP "topen: cannot open"

n = twrite( tlu, rec1 )

IF ( n .LT. 0 ) STOP "twrite: cannot write 1"

n = twrite( tlu, rec2 )

IF ( n .LT. 0 ) STOP "twrite: cannot write 2"

WRITE(*, '("twrite ok:", 2I4, 1X, A10)') n, tlu, devnam

END
```

The output is:

```
twrite ok: 512 1 /dev/rst0
```

tread: Read Next Physical Record from Tape

The function is called by:

INTEGER*4 tread n = tread(tlu, buffer)				
tlu	INTEGER*4	Input	Tape logical unit, in range 0 to 7.	
buffer	character	Input	Must be sized at a multiple of 512, and must be large enough to hold the largest physical record to be read.	
п	INTEGER*4	Return value	<i>n</i>>0: OK, and <i>n</i> is the number of bytes read.<i>n</i><0: Error<i>n</i>=0: EOF	

If the tape is at EOF or EOT, then tread does a return; it does not read tapes.

Example: tread()—read the first record of the file written above:

```
CHARACTER devnam*9 / '/dev/rst0' /, onerec*512 / " " /
INTEGER*4 n / 0 /, tlu / 1 /, topen, tread
LOGICAL islabeled / .false. /
n = topen( tlu, devnam, islabeled )
IF ( n .LT. 0 ) STOP "topen: cannot open"
n = tread( tlu, onerec )
IF ( n .LT. 0 ) STOP "tread: cannot read"
WRITE(*,'("tread ok:", 2I4, 1X, A10)') n, tlu, devnam
WRITE(*,'( A4)') onerec
END
```

The output is:

```
tread ok: 512 1 /dev/rst0 abcd
```

trewin: Rewind Tape to Beginning of First Data File

The function is called by:

<pre>INTEGER*4 trewin n = trewin (tlu)</pre>			
tlu	INTEGER*4	Input	Tape logical unit, in range 0 to 7
п	INTEGER*4	Return value	<i>n</i> =0: OK <i>n</i> <0: Error

If the tape is labeled, then the label is skipped over after rewinding.

Example 1: trewin()—typical fragment:

```
CHARACTER devnam*9 / '/dev/rst0' /
INTEGER*4 n /0/, tlu /1/, tclose, topen, tread, trewin
...
n = trewin( tlu )
IF ( n .LT. 0 ) STOP "trewin: cannot rewind"
WRITE(*, '("trewin ok:", 2I4, 1X, A10)') n, tlu, devnam
...
END
```

Example 2: trewin()—in a two-record file, try to read three records, rewind, read one record:

```
CHARACTER devnam*9 / '/dev/rst0' /, onerec*512 / " " /
INTEGER*4 n / 0 /, r, tlu / 1 /, topen, tread, trewin
LOGICAL islabeled / .false. /
n = topen( tlu, devnam, islabeled )
IF ( n .LT. 0 ) STOP "topen: cannot open"
DO r = 1, 3
  n = tread( tlu, onerec )
  WRITE(*,'(1X, I2, 1X, A4)') r, onerec
END DO
n = trewin( tlu )
IF ( n .LT. 0 ) STOP "trewin: cannot rewind"
WRITE(*, '("trewin ok: " 214, 1X, A10)') n, tlu, devnam
n = tread( tlu, onerec )
IF ( n .LT. 0 ) STOP "tread: cannot read after rewind"
WRITE(*,'(A4)') onerec
END
```

The output is:

```
1 abcd
2 wxyz
3 wxyz
trewin ok: 0 1 /dev/rst0
abcd
```

tskipf: Skip Files and Records; Reset EoF Status

The function is called by:

<pre>INTEGER*4 tskipf n = tskipf(tlu, nf, nr)</pre>				
tlu	INTEGER*4	Input	Tape logical unit, in range 0 to 7	
nf	INTEGER*4	Input	Number of end-of-file marks to skip over first	
nr	INTEGER*4	Input	Number of physical records to skip over after skipping files	
п	INTEGER*4	Return value	<i>n</i> =0: OK <i>n</i> <0: Error	

This function does *not* skip backward.

First, the function skips forward over *nf* end-of-file marks. Then, it skips forward over *nr* physical records. If the current file is at EOF, this counts as one file to skip. This function also resets the EOF status.

Example: tskipf()—typical fragment: skip four files and then skip one record:

```
INTEGER*4 nfiles / 4 /, nrecords / 1 /, tskipf, tlu / 1 /
...
n = tskipf( tlu, nfiles, nrecords )
IF ( n .LT. 0 ) STOP "tskipf: cannot skip"
...
```

Compare with tstate().

tstate: Get Logical State of Tape I/O Channel

The function is called by:

	<pre>INTEGER*4 tstate n = tstate(tlu, fileno, recno, errf, eoff, eotf, tcsr)</pre>				
tlu	INTEGER*4	Input	Tape logical unit, in range 0 to 7		
fileno	INTEGER*4	Output	Current file number		
recno	INTEGER*4	Output	Current record number		
errf	LOGICAL	Output	True=an error occurred		
eoff	LOGICAL	Output	True=the current file is at EOF		
eotf	LOGICAL	Output	True=tape has reached logical end-of-tape		
tcsr	INTEGER*4	Output	True=hardware errors on the device. It contains the tape drive control status register. If the error is software, then <i>tcsr</i> is returned as zero. The values returned in this status register vary grossly with the brand and size of tape drive.		

For details, see st(4s).

While *eoff* is true, you cannot read from that *tlu*. You can set this EOF status flag to false by using tskipf() to skip one file and zero records:

```
n = tskipf(tlu, 1, 0).
```

Then you can read any valid record that follows.

End-of-tape (EOT) is indicated by an empty file, often referred to as a double EOF mark. You cannot read past EOT, but you can write past it.

Example: Write three files of two records each:

```
CHARACTER devnam*10 / '/dev/nrst0' /,
                  f0rec1*512 / "eins" /, f0rec2*512 / "zwei" /,
&
                  flrec1*512 / "ichi" /, flrec2*512 / "ni__" /,
&
                  f2rec1*512 / "un___" /, f2rec2*512 / "deux" /
&
   INTEGER*4 n / 0 /, tlu / 1 /, tclose, topen, trewin, twrite
   LOGICAL islabeled / .false. /
   n = topen( tlu, devnam, islabeled )
   n = trewin( tlu )
   n = twrite( tlu, f0rec1 )
   n = twrite( tlu, f0rec2 )
   n = tclose( tlu )
   n = topen( tlu, devnam, islabeled )
   n = twrite( tlu, flrec1 )
   n = twrite( tlu, f1rec2 )
   n = tclose(tlu)
   n = topen( tlu, devnam, islabeled )
   n = twrite( tlu, f2rec1 )
   n = twrite( tlu, f2rec2 )
   n = tclose( tlu )
    END
```

The next example uses tstate() to trap EOF and get at all files.

Example: Use tstate() in a loop that reads all records of the 3 files written in the previous example:

```
CHARACTER devnam*10 / '/dev/nrst0' /, onerec*512 / " " /
   INTEGER*4 f, n / 0 /, tlu / 1 /, tcsr, topen, tread,
         trewin, tskipf, tstate
&
   LOGICAL errf, eoff, eotf, islabeled / .false. /
   n = topen( tlu, devnam, islabeled )
   n = tstate( tlu, fn, rn, errf, eoff, eotf, tcsr )
               'open:', fn, rn, errf, eoff, eotf, tcsr
   WRITE(*,1)
1
    FORMAT(1X, A10, 2I2, 1X, 1L, 1X, 1L, 1X, 1L, 1X, I2)
    FORMAT(1X, A10,1X,A4,1X,2I2,1X,1L,1X,1L,1X,1L,1X,I2)
   n = trewin( tlu )
   n = tstate( tlu, fn, rn, errf, eoff, eotf, tcsr )
   WRITE(*,1) 'rewind:', fn, rn, errf, eoff, eotf, tcsr
   DO f = 1, 3
       eoff = .false.
       DO WHILE ( .NOT. eoff )
          n = tread( tlu, onerec )
          n = tstate( tlu, fn, rn, errf, eoff, eotf, tcsr )
          IF (.NOT. eoff) WRITE(*,2) 'read:', onerec,
             fn, rn, errf, eoff, eotf, tcsr
&
       END DO
      n = tskipf(tlu, 1, 0)
       n = tstate( tlu, fn, rn, errf, eoff, eotf, tcsr )
       WRITE(*,1) 'tskip: ', fn, rn, errf, eoff, eotf, tcsr
   END DO
   END
```

The output is:

```
open: 0 0 F F F 0
rewind: 0 0 F F F 0
read: eins 0 1 F F F 0
read: zwei 0 2 F F F 0
tskip: 1 0 F F F 0
read: ichi 1 1 F F F 0
read: ni___ 1 2 F F F 0
tskip: 2 0 F F F 0
read: un__ 2 1 F F F 0
read: deux 2 2 F F F 0
tskip: 3 0 F F F 0
```

A summary of EOF and EOT follows:

■ If you are at either EOF or EOT, then:

- Any tread() just returns; it does not read the tape.
- A successful tskipf(tlu,1,0) resets the EOF status to false, and returns; it does not advance the tape pointer.
- A successful twrite() resets the EOF and EOT status flags to false.
- A successful tclose() resets all those flags to false.
- tclose() truncates; it places an EOF marker immediately after the current location of the unit pointer, and then closes the unit. So, if you use trewin() to rewind a unit before you use tclose() to close it, its contents are discarded. This behavior of tclose() is inherited from the Berkeley code.

See also: ioct1(2), mtio(4s), perror(3F), read(2), st(4s), and write(2).

ttynam, isatty: Get Name of a Terminal Port

ttynam and isatty handle terminal port names.

ttynam: Get Name of a Terminal Port

The function ttynam returns a blank padded path name of the terminal device associated with logical unit *lunit*.

CHARACTER ttynam*24 name = ttynam(lunit)				
lunit	INTEGER*4	Input	Logical unit	
Return value	character*n	Output	If nonblank returned: <i>name</i> =path name of device on <i>lunit</i> . Size <i>n</i> must be large enough for the longest path name. If empty string (all blanks) returned: <i>lunit</i> is not associated with a terminal device in the directory, /dev	

isatty: Is this Unit a Terminal?

The function

terminal = isatty(lunit)			
lunit	INTEGER*4	Input	Logical unit
Return value	LOGICAL*4	Output	terminal=true: It is a terminal device terminal=false: It is not a terminal device

is called by:

Example: Determine if *lunit* is a tty:

```
character*12 name, ttynam
INTEGER*4 lunit /5/
logical*4 isatty, terminal
terminal = isatty( lunit )
name = ttynam( lunit )
write(*,*) 'terminal = ', terminal, ', name = "', name, '"'
end
```

The output is:

```
terminal = T, name = "/dev/ttyp1 "
```

unlink: Remove a File

<pre>INTEGER*4 unlink n = unlink (patnam)</pre>			
patnam	character*n	Input	File name
Return value	INTEGER*4	Output	<i>n</i> =0: OK <i>n</i> >0: Error

The function unlink removes the file specified by path name *patnam*. If this is the last link to the file, the contents of the file are lost.

Example: unlink()—Remove the tunlink.data file:

```
call unlink( 'tunlink.data' )
  end
demo% f77 -silent tunlink.f
demo% ls tunl*
tunlink.f tunlink.data
demo% a.out
demo% ls tunl*
tunlink.f
demo%
```

See also: unlink(2), link(3F), and perror(3F). Note: the path names cannot be longer than MAXPATHLEN as defined in <sys/param.h>.

wait: Wait for a Process to Terminate

The function is:

INTEGER*4 wait n = wait(status			
status	INTEGER*4	Output	Termination status of the child process
Return value	INTEGER*4	Output	<pre>n>0: Process ID of the child process n<0: n=System error code; see wait(2).</pre>

wait suspends the caller until a signal is received, or one of its child processes terminates. If any child has terminated since the last wait, return is immediate. If there are no children, return is immediate with an error code.

Example: Code fragment using wait():

```
INTEGER*4 n, status, wait
...
n = wait( status )
if ( n .lt. 0 ) stop 'wait: error'
...
end
```

See also: wait(2), signal(3F), kill(3F), and perror(3F).

Index

SYMBOLS	bit
(e**x)-1, 13, 16	functions, 23
(* 19 = 7 = 2)	move bits, mybits, 77
	bit, 23
	bitwise
A	and, 22
abort, 20	complement, 22
access	exclusive or, 22
time, 92	inclusive or, 22
access, 20	blocks allocated, 92
action for signal, change, signal, 90	blocksize, 92
address	,
loc, 71	
alarm, 21	_
and, 22	C
append on open	carriage control
ioinit, 63	initialize, ioinit, 63
arc	ceiling, 13
cosh, 13, 16	change
cosine, 13	action for signal, signal, 90
sine, 13	default directory, chdir, 26
sinh, 13	mode of a file, chmod, 27
tangent, 13	character
tanh, 16	get a character getc, fgetc, 43
arc tangent, 13	put a character, putc, fputc, 80
arguments	chdir, 26
command line, getarg, 41	chmod, 27
	clear
	bit, 23
_	command-line argument, getarg, 42
В	complement, 22
bessel, 15, 16	conversion by long, short, 72
bic, 23	copy
bis, 23	process via fork, 36

core file, 20	d_min_subnormal(), 17
ctime, convert system time to character, 96, 98	<pre>d_nextafter(x,y), 17</pre>
ctime64, 100	d_quiet_nan(n), 17
cube root, 13	<pre>d_remainder(x,y), 17</pre>
current working directory, getcwd, 45	d_rint(x), 17
•	d_scalbn(x,n), 17
	d_shufrans(), 17
_	d_signaling_nan(n), 17
D	<pre>d_significand(x), 17</pre>
d_acos(x), 16	d_sin(x), 17
d_acosd(x), 16	d_sincos(x,s,c), 18
d_acosh(x), 16	d_sincosd(x,s,c), 18
d_acosp(x), 16	d_sincosp(x,s,c), 18
d_acospi(x), 16	d_sincospi(x,s,c), 18
d_addran(), 17	d_sind(x), 17
d_addrans(), 17	d_sinh(x), 17
d_asin(x), 16	d_sinp(x), 17
d_asind(x), 16	d_sinpi(x), 17
d_asinh(x), 16	d_tan(x), 18
d_asinp(x), 16	d_tand(x), 18
d_asinpi(x), 16	d_tanh(x), 18
d_atan(x), 16	d_tanp(x), 18
d_atan2(x), 16	d_tanpi(x), 18
d_atan2d(x), 16	d_y0(x), bessel, 18
d_atan2pi(x), 16	d_y1(x), bessel, 18
d_atand(x), 16	$d_{yn}(n,x), 18$
d_atanh(x), 16	data types, 9
d_atanp(x), 16	date
d_atanpi(x), 16	and time, as characters, fdate, 34
d_cbrt(x), 16	as integer, idate, 53
d_ceil(x), 16	current date, date, 27
d_erf(x), 16	date_and_time, 28
d_erfc(x), 16	date_and_time, 28
d_expml(x), 16	deallocate memory by free, 37
d_floor(x), 16	default
d_hypot(x), 16	directory change, chdir, 26
d_infinity(), 16	delay execution, alarm, 21
d_j0(x), 16	descriptor, get file, getfd, 47
d_j1(x), 16	device name, type, size, 92
d_jn(n,x), 16	directory
d_lcran(), 17	default change, chdir, 26
d_lcrans(), 17	get current working directory, getawd, 45
d_lgamma(x), 17	double-precision
d_log1p(x), 17	functions, 15
d_log2(x), 17	drand, 86
d_logb(x), 17	dtime, 31
d_max_normal(), 17	
d_max_subnormal(), 17	
d_min_normal(), 17	

E	functions
elapsed time, 31	quadruple-precision, libm_quadruple, 18
embedded	single-precision, libm_single, 13
blanks, initialize, ioinit, 63	
environment variables, getenv, 46	
EOF reset status for tapeio, 107	
error	G
function, 13	gerror, 78
messages, perror, gerror, ierrno, 78	get
errors and interrupts, longjmp, 74	character getc, fgetc, 43
etime, 31	current working directory, getcwd, 45
exclusive or, 22	environment variables, getenv, 46
execute an OS command, system, 89, 95	file descriptor, getfd, 47
execution time, 31	file pointer, getfilep, 48
	group id, getgid, 51
existence of file, access, 20	login name, getlog, 50
exit, 33	process id, getpid, 50
	user id, getuid, 51
	getarg, 42
F	getc, 43
f77_floatingpoint IEEE definitions, 59	getcwd, 45
f77_ieee_environment, 55	getenv, 46
	getfd, 47
fdate, 34	getfilep, 48
fgetc, 44	getgid, 51
file	getlog, 50
connection, automatic, ioinit, 64	getpid, 50
descriptor, get, getfd, 47	getuid, 51
get file pointer, getfilep, 48	gmtime, 96
mode, access, 20	
permissions, access, 20	gmtime(), GMT, 100
remove, unlink, 112	gmtime64, 100 Greenwich Mean Time, gmtime, 96
rename, 87	
status, stat, 92	group, 92
status, stat64, 95	group ID, get, getgid, 51
find substring, index, 61	
floating-point	
IEEE definitions, 59	Н
floor, 13	hard links, 92
flush, 35	
fork, 36	host name, get, hostnm, 52 hostnm, 52
fputc, 80	hyperbolic cos, 13
free, 37	hyperbolic tan, 15, 18
free format, 3	hypotenuse, 13
fseek, 37	ny potentise, 15
fseeko64, 40	
fstat, 92	
fstat64, 95	
ftell, 37	
ftello64, 40	

1	irand, 86
iargc, 42	isatty, 111
id, process, get, getpid, 50	isetjmp, 73
id_finite(x), 17	
id_fp_class(x), 17	
id_irint(x), 17	•
id_isinf(x), 17	J
id_isnan(x), 17	jump,longjmp,isetjmp,74
<pre>id_isnormal(x), 17</pre>	
<pre>id_issubnormal(x), 17</pre>	
<pre>id_iszero(x), 17</pre>	K
id_logb(x), 17	
id_signbit(x), 17	keywords, 3
IEEE, 59	kill, send signal, 69
environment, 55	
ieee_flags, 55	
ieee_handler>, 55	L
ierrno, 78	left shift, 1shift, 22
IMPLICIT, 9	libm_double, 15
inclusive or, 22	libm_quadruple, 18
index, 60	libm_single, 12
initialize	link, 69
I/O, ioinit, 63	link to an existing file, link, 69
inmax, 63	lnblnk, 62
inode, 92	local time zone, lmtime(), 99
integer	location of
conversion by long, short, 72	a variable loc, 71
interrupts and errors, longjmp, 74	log gamma, 14
intrinsic math functions, 12	login name, get getlog, 49
ioinit, 63	long, 72
iq_finite(x), 19	longjmp, 73
iq_fp_class(x), 19	lshift, 22
iq_isinf(x), 19	lstat, 92
iq_isnan(x), 19	1stat64, 95
iq_isnormal(x), 19	ltime, 96
iq_issubnormal(x), 19	<pre>ltime(), local time zone, 99</pre>
iq_iszero(x), 19	ltime64, 100
iq_logb(x), 19	
iq_signbit(x), 19	
ir_finite(x), 14	
ir_fp_class(x), 14	M
ir_irint(x), 14	malloc, 76
ir_isinf(x), 14	malloc64, 76
ir_isnan(x), 14	math functions, intrinsics, 12
ir_isnormal(x), 14	maximum
ir_issubnormal(x), 14	positive integer, inmax, 63
ir_iszero(x), 14	memory
ir_logb(x), 14	deallocate by free, 37
ir signbit(x). 14	

mode IEEE, 55 of file, access, 20 modifying	<pre>q_min_normal(), 19 q_min_subnormal(), 19 q_nextafter(x,y), 19 q_quiet_nan(n), 19</pre>
time, 92 mvbits, move bits, 78	<pre>q_remainder(x,y), 19 q_scalbn(x,n), 19 q_signaling_nan(n), 19 qsort, qsort64, 83</pre>
N	quadruple-precision functions, libm_quadruple, 18
name	quick sort, qsort, 83
login, get, getlog, 49	4
terminal port, ttynam, 111	
not, 22	R
	r_acos(x), 13 r_acosd(x), 13
0	r_acosh(x), 13
or, 22	r_acosp(x), 13
OS command, execute, system, 89, 95	r_acospi(x), 13
	r_addran(), 14
	r_addrans(), 14
Р	r_asin(x), 13
permissions	r_asind(x), 13
access function, 20	r_asinh(x), 13
perror, 78	r_asinp(x), 13
pid, process id, getpid, 50	r_asinpi(x), 13
pointer	r_atan(x), 13
get file pointer, getfilep, 48	r_atan2(x), 13 r_atan2d(x), 13
position file by fseek, ftell, 37	r_atan2pi(x), 13
position file by fseeko64, ftello64, 40	r_atand(x), 13
process	r_atanh(x), 13
create copy with fork function, 36	r_atanp(x), 13
id, get, getpid, 50	r_atanpi(x), 13
send signal to, kill, 69 wait for termination, wait, 113	r_cbrt(x), 13
protection, 92	r_ceil(x), 13
put a character, putc, fputc, 80	r_erf(x), 13
putc, 80	r_erfc(x), 13
	r_expml(x), 13 r_floor(x), 13
	r_hypot(x), 13
0	r_infinity(), 13
Q	r_j0(x), 13
q_copysign(x), 19	r_j1(x), 13
<pre>q_fabs(x), 19 q_fmod(x), 19</pre>	r_jn(n,x), 13
q_infinity(), 19	r_lcran(), 14
q_max_normal(), 19	r_lcrans(), 14
q_max_subnormal(), 19	r_lgamma(x), 14

r_log1p(x), 14	S
r_log2(x), 14	secnds, system time, 88
r_logb(x), 14	send signal to process, kill, 69
r_max_normal(), 14	setbit, 23
r_max_subnormal(), 14	setjmp, See isetjmp
r_min_normal(), 14	short, 72
r_min_subnormal(), 14	signal, 90
r_nextafter(x,y), 14	signal a process, kill, 69
r_quiet_nan(n), 14	signals, IEEE, 55
r_remainder(x,y), 14	sine, 14
r_rint(x), 14	single-precision functions, libm_single, 13
r_scalbn(x,n), 14	64-bit environments, 10
r_shufrans(), 14	skip
r_signaling_nan(n), 14	tape I/O files and records, 107
r_significand(x), 14	sleep, 91
r_sin(x), 14	Solaris versions supported, 1
r_sincos(x,s,c), 15	sort quick, qsort, 83
r_sincosd(x,s,c), 15	stat, 92
r_sincosp(x,s,c), 15	stat64, 95
r_sincospi(x,s,c), 15	status
r_sind(x), 14	file, stat, 92
r_sinh(x), 14	file, stat64, 95
r_sinp(x), 14	IEEE, 55
r_sinpi(x), 14	termination, exit, 33
r_tan(x), 15	substring
r_tand(x), 15	find, index, 61
r_tanh(x), 15	suspend execution for an interval, sleep, 91
r_tanp(x), 15	symbolic
r_tanpi(x), 15	link to an existing file, symlink, 69
$r_y0(x)$, bessel, 15	symlnk, 69
r_y1(x), bessel, 15	system, 89,95
$r_yn(n,x)$, bessel, 15	system time
rand, 86	secnds, 88
random	time, 96
number, 14	
values, rand, 86	
read	
character getc, fgetc, 43	T
remove a file, unlink, 112	tab format, 3
reposition file by fseek, ftell, 37	tangent, 15
reposition file by fseeko64, ftello64, 40	tape I/O, 101
reset EOF status for tapeio, 107	close files, 102
right shift, rshift, 22	open files, 101
rindex, 61	read from files, 104
rshift, 22	reset EOF status, 107
	rewind files, 105
	skip files and records, 107
	write to files, 103

```
tarray() values for various time routines, 100
tclose, 101
terminal
  port name, ttynam, 111
terminate
  wait for process to terminate, wait, 113
  with status, exit, 33
  write memory to core file, 20
time, 31
  in numerical form, 53
  secnds, 88
time(t)
  standard version, 97
  VMS version, 98
time, get system time, 96
topen, 101
trailing blanks, initialize, ioinit, 63
tread, 101
trewin, 101
tskipf, 101
tstate, 101
ttynam, 111
twrite, 101
U
unlink, 112
uppercase characters, 3
user, 92
user ID, get, getuid, 51
W
wait, 113
write a character putc, fputc, 80
Χ
xor, 22
Υ
y0(x), y1(x), y(n), bessel, 15
y0(x), y1(x), yn(x), bessel, 18
```