Math 321 Lecture 27

Yuchong Pan

March 13, 2019

1 HW 9, 3 (b)

HW 9, 3 (b): Find $f \in C^{2\pi}$ such that $\sup_N |s_N f(0)| = \infty$.

Assume 3 (a): Given any $n \ge 1$, there exists $f_n \in C^{2\pi}$ such that $||f_n||_{\infty} = 1$ and $\sup_j |s_j f_n(0)| > n$. **Step 0:** Without loss of generality, we can choose f_n to be a trignometric polynomial, say of degree d_n .

Proof. Fix $n \ge 1$. Given any $f_n \in \mathcal{C}^{2\pi}$, we know $\sigma_N(f_n) = N^{\text{th}}$ Cesàro sum of $f_n \xrightarrow[\text{uniformly}]{N \to \infty} f_n$. Fix $N = N_n$ such that

$$\|\underbrace{\sigma_{N_n} f_n}_{\text{a trignometric polynomial}} -f_n\|_{\infty} < 1$$

Note: $g_n = \sigma_{N_n} f_n$ is a trignometric polynomial.

We have

$$|g_n(x)| \le \underbrace{|g_n(x) - f_n(x)|}_{\le 1} + \underbrace{|f_n(x)|}_{\le 1} \le 2,$$

or

$$g_n(x) = \sigma_{N_n} * f_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f_n(x - y) K_n(y) dy,$$

$$|g_n(x)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} \underbrace{|f_n(x - y)|}_{\le 1} \cdot |K_n(y)| dy \le 1 \qquad \text{because } ||K_n||_1 = 1.$$

Suppose $\underbrace{j}_{=e^{cn}}$ is an index such that $||s\underbrace{j}_{=e^{cn}}f_n(0)|| > n$. Then,

$$|s_n g_n(0)| \ge |s_j f_n(0)| - |s_j (f_n - g_n)(0)| > n - 1,$$

where

$$s_{j}(f_{n} - g_{n})(\underbrace{0}_{=x}) = \sum_{k=-j}^{j} \left[\widehat{f}_{n}(k) - \widehat{g}_{n}(k) \right] \underbrace{e^{ik} \underbrace{x}}_{=1}^{=0},$$
$$|s_{j}(f_{n} - g_{n})(0)| \leq \sum_{k=-j}^{j} \left| \widehat{f}_{n}(k) - \widehat{g}_{n}(k) \right| \leq 2e^{cn} \cdot \frac{1}{2}e^{cn} = 1,$$
$$\left| \widehat{f}_{n}(k) - \widehat{g}_{n}(k) \right| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| (f_{n}(x) - g_{n}(x))e^{-ikx} \right| dx < 1.$$

Math 321 Lecture 27 Yuchong Pan

Step 1: We now have a sequence of trignometric polynomials $\{g_n : n \geq 1\}$, $\deg(g_n) = d_n$, $\|g_n\|_{\infty} \leq 1$, and

$$|s_{k_n}g_n(0)| > n-1, \qquad k_n = e^{cn} \ll d_n.$$

Goal: Define $f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} g_{\lambda_n}(\lambda_n x)$ for a fast-growing sequence of integers $\lambda_n \nearrow \infty$ to be specified.

Choose $\lambda_n \nearrow \infty$ large enough so that $\lambda_2 > d_1\lambda_1, \lambda_3 > d_2\lambda_2, \dots, \lambda_{n+1} > d_n\lambda_n$, so non-zero frequencies of individual summands are disjoint.

Show: $\sup_N |s_N f(0)| = \infty$.

Note that

$$g_n(x) = \sum_{k=-d_n}^{d_n} \widehat{g}_n(k) e^{ikx}$$
 because g_n is a trignometric polynomial,
$$g_n(\lambda_n x) = \sum_{k=-d_n}^{d_n} \widehat{g}_n(k) e^{ikx}$$
 has frequencies $\{k\lambda_n : k = 0, 1, \dots, d_n\}$.

frequencies of g_1 $0 \quad \lambda_1 \quad 2\lambda_1 \quad d_1\lambda_1 \quad \lambda_2 \qquad 2\lambda_2 \qquad d_2\lambda_2$ frequencies of g_2

$$h_1 + h_2 + \ldots + h_n,$$

Frequency k : $\hat{h}_1(k) + \hat{h}_2(k) + \ldots + \hat{h}_n(k).$

Choose $\lambda_N \gg N^3$. Then,

$$s_{\lambda_N^2} f(x) = \underbrace{s_{\lambda_N^2} \sum_{n=1}^{\infty} \frac{1}{n^2} g_{\lambda_n}(\lambda_n x)}_{=a+b},$$

$$|s_{\lambda_N^2} f(0)| \ge \underbrace{\frac{1}{N^2} s_{\lambda_N^2} g_{\lambda_N}(\lambda_n \cdot 0)}_{\text{main}} - \underbrace{\left|\sum_{n < N} \frac{1}{n^2} s_{\lambda_n^2} g_{\lambda_n}(0) + \sum_{n > N} \frac{1}{n^2} s_{\lambda_n^2} g_{\lambda_n}(0)\right|}_{\text{error}} \text{ because } |a+b| \ge |a| - |b|$$

$$\ge \frac{1}{N^2} s_{\lambda_N} g_{\lambda_N}(0) \ge \frac{\lambda_N}{N^2} \nearrow \infty.$$

Note that

$$s_{\lambda_N^2}g_N(\lambda_N x) = s_{\lambda_N}g_{\lambda_N}(x).$$