Hierarchical Clustering

Example of centroid method

K. Gibert⁽¹⁾

(1)Department of Statistics and Operation Research

Knowledge Engineering and Machine Learning group Universitat Politècnica de Catalunya, Barcelona

0) Data matrix

1) Compute distances between persons (Gibert's mixed distance)

	A	В	C	F	J	M	P	R	S	Т
A	0	1.2488811	1.2438452	0.8309088	1.1683081	1.2438452	0.8309088	0.63954794	1.4049911	0.90644586
В	1.2488811	0	0.8309088	1.2438452	0.90644586	1.4352059	0.63954794	0.8309088	0.8309088	1.1683081
C	1.2438452	0.8309088	0	1.3999553	1.1330574	1.0474486	1.6920323	1.0474486	1.8229634	0.7201209
F	0.8309088	1.2438452	1.3999553	0	0.7201209	1.2388093	1.5006716	1.2388093	1.2488811	1.1330574
J	1.1683081	0.90644586	1.1330574	0.7201209	0	0.97191143	1.1632721	1.5762087	1.2942033	1.2488811
M	1.2438452	1.4352059	1.0474486	1.2388093	0.97191143	0	1.2488811	1.2085946	2.2661147	1.1632721
P	0.8309088	0.63954794	1.6920323	1.5006716	1.1632721	1.2488811	0	1.2488811	0.63451207	0.97191143
R	0.63954794	0.8309088	1.0474486	1.2388093	1.5762087	1.2085946	1.2488811	0	2.2661147	1.7675694
\mathbf{S}	1.4049911	0.8309088	1.8229634	1.2488811	1.2942033	2.2661147	0.63451207	2.2661147	0	0.7201209
\mathbf{T}	0.90644586	1.1683081	0.7201209	1.1330574	1.2488811	1.1632721	0.97191143	1.7675694	0.7201209	0

	Age	Weight	cigarrettes	Hard attacks	
	years	Kg	Pack/wee k	#	
Α	30	Low	High	1	
В	40	High	Moderate	1	
С	30	Medium	Moderate	2	
F	40	Low	Low	2	
J	30	High	Low	2	
М	30	Medium	Low	0	
Р	40	High	High	0	
R	30	Low	Moderate	0	
S	50	High	High	2	
Т	40	Medium	High	2	

- 2) Select the more similar pair of objects (S and P)
- 3) Build a new class C1
- 4) Calculate the centroid of C1

C1: (45, High, High, 1)

- 5) Eliminate P and S
- 6) Start Dendrogramm
- 7) Compute distances between C1 and rest (aggregation criterion)

$$d(ci,cj) = d(gi,gj)$$

8) Repeat till all elements clustered

	Age Weight		cigarrettes	Hard attacks
	years	Kg	Pack/wee k	#
А	30	Low	High	1
В	40	High	Moderate	1
С	30	Medium	Moderate	2
F	40	Low	Low	2
J	30	High	Low	2
M	30	Medium	Low	0
Р	40	High	High	0
R	30	Low	Moderate	0
S	50	High	High	2
Т	40	Medium	High	2

9) Analize final dendrogram to decide number of clusters. alternative (optimize some criteria, ex Calinski-Harabaz, Dunn, etc)

Best cut is in 2 clusters

10) Calculate 2-class partition

(intensional: P2={C7, C3}

(extensional:

- 11) Interpret clusters(not evident as conceptual cluster)
- 12) Structural validation

	Age	Weight	cigarrettes	Hard attacks
	years	Кд	Pack/week	#
Α	30	Low	High	1
В	40	High	Moderate	1
С	30	Medium	Moderate	2
F	40	Low	Low	2
J	30	High	Low	2
М	30	Medium	Low	0
Р	40	High	High	0
R	30	Low	Moderate	0
S	50	High	High	2
Т	40	Medium	High	2

