硕士学位论文

基于广义线性法的结构动响应数值算法设计

DESIGN OF NUMERICAL ALGORITHMS FOR STRUCTURAL DYNAMCIS BASED ON THE GENERAL LINEAR METHOD

李金泽

哈尔滨工业大学 2017年11月20日

工学硕士学位论文

基于广义线性法的结构动响应数值算法设计

硕士研究生:李金泽

导 师:于开平教授

申请学位:工学硕士

学 科:一般力学与力学基础

所 在 单 位: 航天学院 航天工程与力学系

答辩日期: 2017年11月20日

授予学位单位:哈尔滨工业大学

Classified Index: O332

U.D.C: 62-1

Dissertation for the Master's Degree in Engineering

DESIGN OF NUMERICAL ALGORITHMS FOR STRUCTURAL DYNAMCIS BASED ON THE GENERAL LINEAR METHOD

Candidate: Li Jinze

Supervisor: Professor Yu Kaiping

Academic Degree Applied for: Master of Engineering

Specialty: General Mechanics

Affiliation: School of Astronautics

Date of Defence: June 2018

Degree-Conferring-Institution: Harbin Institute of Technology

摘 要

摘要的字数(以汉字计),硕士学位论文一般为500~1000字,博士学位论文为1000~2000字,均以能将规定内容阐述清楚为原则,文字要精练,段落衔接要流畅。摘要页不需写出论文题目。英文摘要与中文摘要的内容应完全一致,在语法、用词上应准确无误,语言简练通顺。留学生的英文版博士学位论文中应有不少于3000字的"详细中文摘要"。

关键词是为了文献标引工作、用以表示全文主要内容信息的单词或术语。关键词不超过5个,每个关键词中间用分号分隔。(模板作者注:关键词分隔符不用考虑,模板会自动处理。英文关键词同理。)

关键词: TEX; LATEX; CJK; 嗨!; thesis

哈尔滨工业大学工学硕士学位论文

Abstract

An abstract of a dissertation is a summary and extraction of research work and

contributions. Included in an abstract should be description of research topic and research

objective, brief introduction to methodology and research process, and summarization

of conclusion and contributions of the research. An abstract should be characterized by

independence and clarity and carry identical information with the dissertation. It should

be such that the general idea and major contributions of the dissertation are conveyed

without reading the dissertation.

An abstract should be concise and to the point. It is a misunderstanding to make an

abstract an outline of the dissertation and words "the first chapter", "the second chapter"

and the like should be avoided in the abstract.

Key words are terms used in a dissertation for indexing, reflecting core information

of the dissertation. An abstract may contain a maximum of 5 key words, with semi-colons

used in between to separate one another.

Keywords: T_FX, L^AT_FX, CJK, template, thesis

- II -

物理量名称及符号表

表 1 国际单位制中具有专门名称的导出单位

量的名称	单位名称	单位符号	其它表示实例
频率	赫 [兹]	Hz	s-1

目 录

摘 要I
AbstractII
物理量名称及符号表III
第1章 绪论1
1.1 课题来源1
1.2 课题研究背景、目的和意义1
1.2.1 结构动响应问题的工程背景1
1.2.2 结构动响应数值算法的数学力学背景2
1.2.3 课题研究的意义
1.3 国内外研究现状
1.4 本文主要研究内容4
第 2 章 广义线性法 6
2.1 引言6
2.2 IRK 方法
2.3 本章小结
第3章 结构动响应数值算法研究现状7
3.1 传统直接积分法7
3.2 结构依赖型直接积分法7
3.3 复合型子步隐式算法7
3.3.1 TR-BDF2 算法
3.3.2 BDF 型积分算法 9
3.3.3 TTBDF 算法
3.3.4 BDF2-BDF3 算法12
3.3.5 BDF3BDF2-Newmark 算法
3.3.6 CTFEA 算法14
3.4 末音小炷

哈尔滨工业大学工学硕士学位论文

第 4 章 基于广义线性法的结构动响应数值算法设计	16
4.1 本章小结	16
第 5 章 数值算例	17
5.1 本章小结	17
结 论	18
参考文献	19
附录 A 带章节的附录	22
A.1 附录节的内容	22
附录 B 这个星球上最好的免费 Linux 软件列表	23
攻读硕士学位期间发表的论文及其他成果	24
索引	25
哈尔滨工业大学学位论文原创性声明和使用权限	28
致 谢	
个人简历	

第1章 绪论

1.1 课题来源

根据导师在研一期间的指导及个人兴趣、基础知识的储备出发,通过查阅相关资料并在导师的指导下共同商定此论文题目。

在大四毕业后的暑假期间根据导师推荐的几篇文章^{□1},我开始了学习结构动力学运动方程数值求解算法。同时,在研一上学期由刘伟老师讲解的《高等结构动力学》课程中,我再一次接触到了结构动力学方程的数值求解。同时在该课程实验中,我也第一次发现了满足一些看似可行的直接积分法,求解出的响应有时却并不可靠,例如 Wilson-θ 法。它的这种特性由于其本身的数值耗散和弥散特性造成的。这次学习让我对求解结构动力学方程的数值算法产生了兴趣。同时,我也知道力学对数学,尤其是计算数学的要求是很高的。于是在研究生期间,又选了很多数学专业的核心课程(非线性数值分析、现代常微分方程理论、小波分析)进行学习,为自己后面进一步的探究数值算法铺平道路。这些数学课程的学习中,我愈发的觉得结构动力学方程的直接积分法的研究还有很多工作可做。特别值得一提就是,似乎在力学中我们更多的是借鉴了线性多步法来发展直接积分法,而使用 Runge-Kutta 法的思想发展结构动力学求解算法少之甚少。特别就是由 Butcher J. C. 在 1966 年提出的更具一般性的算法框架去求解常微分方程^[2]。在该框架下,线性多步法和 Runge-Kutta 法都是其特例。这类算法应用到求解结构动力学运动方程还鲜有文献。这也是进行本文研究的一个主要目标。

1.2 课题研究背景、目的和意义

1.2.1 结构动响应问题的工程背景

动力学问题在国民经济和科学技术的发展中有着广泛的应用领域。最常见遇到的是结构动力学问题,它有两类研究对象。一类是在动力状态下工作的机械或结构,例如高速旋转的电机,汽轮机,离心压缩机,冲压机床,以及高速运行的车辆,飞行器等,它们承受本身惯性及与周围介质或结构相互作用的动力载荷。如何保证它们运行的平稳性及结构的安全性,是极为重要的课题。另一类是承受动力载荷作用的工程结构,例如建于地面的高层建筑,反应塔和管道,核电站的安全壳和热交换器。近海工程的海洋石油平台等,他们可能承受强风,水流,地震以及

波浪等各种动力载荷的作用。这些结构的破裂、倾覆和垮塌等事故的发生,将给人民的生命财产造成巨大的损失。正确分析和设计这类结构,在理论上和实际上都是具有重要意义的课题。动力学研究的另一重要领域是波在介质中的传播问题。它是研究短暂作用于介质边界或内部的载荷所引起的位移和速度的变化,如何在介质中向周围传播,以及在界面上如何反射,折射等规律。它的研究在结构的抗震设计,人工地震勘测,无损探伤等领域都有广泛的应用背景,因此也是近二十都年一直受到工程和科技界密切关注的课题。

1.2.2 结构动响应数值算法的数学力学背景

一般情况下,大多数工程问题的数学建模后得到的微分方程往往是不可能求出解析解的;或者说,花费很大的努力求得的解析解是不经济的。这也导致了在实际应用中,应用数值算法求解得到的微分方程是一种必要手段。在结构动力学运动方程的求解过程中更是这种情况。

结构动力学数值计算主要有两大类传统方法^[3]。一是在空间域使用有限元离散后,基于大多数工程结构动态响应主要以低频为主的假设,使用模态分解和叠加的步骤,给出模态截断后的动响应,可归类于近似解析法。这类方法适合于比例阻尼假设情况,适合于长时间、持续动载荷作用问题,以及大多数以低频响应为主的工程问题。但对中高频激励问题(基于有限元模型,航天工程更关注的中高频多数指 200-2000HZ 范围)的计算尚没有很好解决。主要原因是:2000HZ 以内可能有很多阶模态,高阶模态对参数变化更为敏感,同时要求更细密的有限元网格^[3]。此外,高阶模态阻尼比的确定也还没有合理的模型,存在精度和计算量两方面的问题。另外一种方法是在时间域使用有限差分,或者使用时间有限元离散,得到时间逐步递推的计算步骤,还有一类是时空域同时离散的时空有限元方法。这类方法属于数值方法,不仅适用于比例阻尼也适用于于非比例阻尼、非线性情况。这类方法也将是本文分析和研究的重点。

目前在大型结构的瞬态动力学、非线性动力学响应数值计算问题上,比较有效的方法仍然是时域内的直接积分方法,又称逐步积分法。该类方法,有合适的精度、合适的计算量以及适合于大多数实际工程问题。也就是说算法数值计算的整体性能好、适用范围广,因此一直受到计算力学、计算数学工作者和工程界的重视。

1.2.3 课题研究的意义

目前,用线性多步法的理论去发展直接积分法的理论比较完善。特别是经过 Dahlquist 的发展推广^[4],得到了如下结论^[5]:

- (1) 一个显式的、A-稳定的线性多步法是不存在的。
- (2) 一个三阶及其以上精度的 A-稳定的线性多步法是不存在的。
- (3) 带有最小误差常数的二阶精度的 A-稳定的线性多步法是梯形积分规则。

于是,想要利用线性多步法的理论去发展具有 A-稳定的算法已经是不可能的。然而,在数学分支一常微分方程数值解的理论中,我们也得知通过适当的构造,广义线性法可以突破上述线性多步法的障碍,理论上可以实现任意阶精度下,其数值方法仍能保持一定好的数值特性,例如 A-稳定性,甚至 L-稳定性。特别地,作为广义线性法的一个特例一Runge-Kutta 法,也可以实现上述特性。故本文的研究意义在于,将广义线性法应用到结构动力学运动方程求解中,进而推导出新的求解格式。这些新的算法格式在数学分析框架下具有良好的性质,但应用到力学问题上,可能还需要进行一定的改进和完善。同时,这些新的数值格式也将在力学背景下进行算法的优劣分析,比如,其数值高频耗散、相对周期误差等。特别地,本文也将尝试利用广义线性法中对于非线性常微分方程、刚度问题的分析借鉴到力学中的非线性动力学、刚度硬化问题的分析上。这样可以对现有直接积分法在理论分析非线性问题时,提供一个理论判断依据。

1.3 国内外研究现状

目前,国内外在广义线性法和结构动力学数值算法的发展中,几乎都是相对独立的。鲜有研究者将者二者结合起来。但过去的几十年也有一些研究学者将 Runge-Kutta 法应用到结构动力学数值求解中,进而构造了一些新的数值算法。

周树荃和高科华^[6] 在论文中利用 3 级 3 阶半隐式 Runge-Kutta 法求解结构动力学问题,并利用多项式预处理共轭梯度法求解有关代数方程组,提出了半隐式 RK 型并行直接积分法(RK33P). 与相应的串行算法 RK33S 算法进行比较,发现当求解系统的阶数为 103-104,其加速度比可达 24-27。

Christoph L. 和 Simeon B.^[7,8] 利用 Runge-Kutta-Nyström 方法求解动力学中的 刚性力学系统,该方法一般化了著名的 Störmer 规则,并且使得求解的稳定域最大 化。结果表明,文章提出的 RKN 方法具有一定的可比性和高效性。

Dopico D. 和 Lugris U.^[9] 等分析了在实时多体结构系统中具有遗传 Runge-

Kutta 稳定性的广义线性方法(IRK)的两个应用。文章问答了 IRK 方法是否适合 求解实时结构响应以及该类方法是否比传统的 Newmark 家族方法更优。

吴志桥等人^[10] 将几种具有不同稳定性的 Runge-Kutta 方法应用到结构动力学的数值求解中,并且使用了减小计算量的两种方法:使用单对角隐式 Runge-Kutta 方法和应用转化矩阵,算例表明在精确解上较小的物理阻尼能有效抑制高频分量,但对各种直接积分方法的影响较小,较高精度的 L-稳定 Runge-Kutta 方法能有效抑制高频分量的同时高精度的求解低频振动。而且在他的博士论文^[11] 中,通过研究 Runge-Kutta 方法对结构动力学运动方程的求解格式,得到 A-稳定与直接积分法中的无条件稳定是等价的,而 L-稳定格式包含数值阻尼。

Yin S. H.^[12] 通过在结构动力学数值求解格式中构造位移和速度显式更新公式,推导出带四个参数的放大矩阵,同时利用 Runge-Kutta 方法求解对应的结构动力学运动微分方程得到其状态向量的迭代格式,进而得到其迭代矩阵,最后通过让放大矩阵和迭代矩阵对应风量相等,得到其位移速度更新公式中的四个参数,结果表明其参数是结构依赖的。

郭静和邢誉峰^[13] 在 2014 年利用 2 级 4 阶隐式 Guass-Lengendre 辛 Runge-Kutta 方法(GLSRK)求解有阻尼和外荷载情况下的线性动力学运动方程。并首次给出了 Guass-Lengendre 辛 RK 方法和经典 RK 方法的谱半径和单步相位误差的显式表达式。通过算例表明,辛 RK 方法比经典 RK 方法优越,尤其是在运动学特性和长时间数值模拟方面尤为显著;但是该算法与传统的 Newmark- β 法相比,计算量和储存量过于庞大,这也在一定程度上限制了该方法的应用。

针对上述问题,黄策、富明慧^[14] 等人将郭静等人提出的四阶隐式 Guass-Lengendre 辛 RK 法进行优化,先通过消元,降低问题的规模,再利用消元后得到的方程系数矩阵正定对称的特点,采用预处理共轭梯度法求解。与原算法相比,改进后的算法大幅度降低了储存量和计算量;同时与 Newmark- β 法相比,在未明显增加计算量的前提下,大幅度提高了计算精度。

可以看出,国内外利用 Runge-Kutta 方法去求解结构动力学方程的研究也是较为零散的,还有大量的工作可做。

1.4 本文主要研究内容

本文将从数学常微分方程数值方法—广义线性法和力学中结构动力学运动方程的结构依赖型直接积分法两个角度出发,针对动力学运动方程的数值解法进行

探究。本论文的主要研究内容有:

- 系统学习和探究广义线性法的体系框架。总结广义线性法至今为止的研究成果和应用领域。同时,以广义线性法的知识框架去进一步学习和研究线性多步法。
- 对现阶段新兴的的结构依赖型算法进一步系统研究。挖掘新的具有实用价值的算法。同时对利用其它构造思想去发展结构动力学数值解法的文献进行总结和归纳。
- 将广义线性法的几类主要分支算法进行研究,并尝试将其应用到结构动力 学数值求解中,以期望获得很好的数值算法。目前根据现有文献研究表明,这种 思路是可行的,但可能需要做进一步的细致工作研究。
- 将广义线性法对非线性系统的刻画应用到直接积分法求解结构动力学非线性系统的分析。
 - 将上述发展算法进行 C++ 或 MATLAB 代码实现,得到其相应的工具包。

第2章 广义线性法

- 2.1 引言
- 2.2 IRK 方法
- 2.3 本章小结

第3章 结构动响应数值算法研究现状

对于结构动力学运动方程 (3-1)

$$M\ddot{U}(t) + C\dot{U}(t) + KU(t) = F(t)$$
(3-1)

带有合适的初值条件的求解。最常用的就是直接积分法,该方法的要求运动方程 (3-1) 在离散的时刻精确满足。同时假定位移和速度的更新方程,利用离散时刻的 平衡方程求得对应时刻的加速度,进而求得速度和位移。特别地,自从 Newmark- β 算法 [15]、Wilson- θ 法 [16] 和 Houbolt 法 [17] 等直接积分法提出以来,许多的研究学者 在此之后基于各种原理提出了许多性能优良的积分算法。

3.1 传统直接积分法

3.2 结构依赖型直接积分法

3.3 复合型子步隐式算法

Tarnow 和 Simo 在 1994 年提出了一个子步复合方法^[18],将一般的二阶直接积分法的精度提高到四阶。在该方法中,一个时间步长内需要三次的子步计算。同时原来的二阶方法的稳定、守恒性质仍保持不变。需要注意的是,当该方法运用到二阶的 Newmark-β 方法^[15] 时,导出的高阶算法是没有数值耗散的。为了引入高频耗散特性,需要对求得的响应进行一定的技术处理,如后处理的滤波技术^[19]。后来,又有许多研究学者进行进一步的探索,发展了许多可靠优质的直接积分算法。

3.3.1 TR-BDF2 算法

麻省理工的 K.J. Bathe 教授在 2005 年提出了一个两子步算法 [20–22]。假设在 t 时刻的状态量,即 U, \dot{U}, \ddot{U} ,都是已知的。为了求在时刻 $t+\Delta t$ 的未知量 $t+\Delta t \dot{U}, t+\Delta t \dot{U}, t+\Delta t \dot{U}$, 该方法将一个时间步长 Δt 划分为两个子时间步长 $\gamma \Delta t, (1-\gamma)\Delta t$ 。

在第一个时间子步 $\gamma \Delta t$ 内,采用 Trapezoidal 规则^[5] 进行计算, 即

$${}^{t+\gamma\Delta t}\dot{U} = {}^t\dot{U} + \frac{{}^t\ddot{U} + {}^{t+\gamma\Delta t}\ddot{U}}{2}\gamma\Delta t \tag{3-2}$$

$${}^{t+\gamma\Delta t}U = {}^tU + \frac{{}^t\dot{U} + {}^{t+\gamma\Delta t}\dot{U}}{2}\gamma\Delta t \tag{3-3}$$

为了求得在 $\gamma + \Delta t$ 时刻的加速度,需要引入在该时刻的离散形式的平衡方程

$$M^{t+\gamma\Delta t}\ddot{U} + C^{t+\gamma\Delta t}\dot{U} + K^{t+\gamma\Delta t}U = {}^{t+\gamma\Delta t}F$$
(3-4)

利用方程 (3-2)-(3-4) 就可以求得在中间时刻 $t + \gamma \Delta t$ 处的位移 $t + \gamma \Delta t U$ 、速度 $t + \gamma \Delta t U$ 加速度 $t + \gamma \Delta t U$ 。然后对于第二子步内的更新则是利用了三点向后微分公式 [20]

$$t^{t+\Delta t}\dot{f} = c_1^t f + c_2^{t+\gamma \Delta t} f + c_3^{t+\Delta t} f \tag{3-5}$$

其中, 系数 c_1, c_2 和 c_3 分别为

$$c_1 = \frac{1 - \gamma}{\Delta t \gamma} \tag{3-6}$$

$$c_2 = \frac{-1}{(1 - \gamma)\gamma \Delta t} \tag{3-7}$$

$$c_3 = \frac{2 - \gamma}{(1 - \gamma)\Delta t} \tag{3-8}$$

于是, 当 f 分别表示位移和速度时,则有:

$${}^{t+\Delta t}\dot{U} = c_1{}^t U + c_2{}^{t+\gamma \Delta t} U + c_3{}^{t+\Delta t} U$$
 (3-9)

$${}^{t+\Delta t}\ddot{U} = c_1{}^t\dot{U} + c_2{}^{t+\gamma\Delta t}\dot{U} + c_3{}^{t+\Delta t}\dot{U}$$
 (3-10)

同时, 利用 $t + \Delta t$ 时刻的平衡方程

$$M^{t+\Delta t} \ddot{U} + C^{t+\Delta t} \dot{U} + K^{t+\Delta t} U = {}^{t+\Delta t} F$$
(3-11)

需要说明的是,章杰等人^[23] 已经证明了,若在第一子步内使用 Newmark 算法^[5],则 K.J.Bethe 所提出的复合型子步算法在众多算法中具有最优性。同时,K.J. Bathe 在文章 [20] 中使用了 $\gamma = 0.5$ 来求解非线性问题较 Trapezoidal 规则取得了一定的优势。另外一个值得推荐的 γ 取值是 $2 - \sqrt{2}$ 。 $\gamma = 2 - \sqrt{2}$ 的使用具有以下几方面的意义:

- 在求解非线性问题时,可以使得在两个子步内的有效刚度矩阵是一致的,进 而降低计算量^[21,22,24]。如求解线性问题,该值可以给出问题的最优数值响应值^[21,22]。
 - 该值给出了最小的截断误差常数[23,24] 和最大的线性化稳定域[24]。

当然,上述的复合子步技巧也可以用于多个子步,亦即在一个时间步长 Δt 内,将其分为 n 份,每份不一定要求相等,而在每一个子步内使用不同的积分方法进

行求解,进而复合成新的直接积分法。利用该技巧,许多学者又提出了新的复合型子步算法。

3.3.2 BDF 型积分算法

对 K.J. Bathe 提出的复合型子步算法进行扩展的策略是利用下列基于向后微分公式的广义四步线性多步法^[25]:

$$\alpha_1^{t+\Delta t}y + \alpha_2^{t}y + (\frac{7}{2} - 6\alpha_1 - 3\alpha_2)^{t-\Delta t}y + (8\alpha_1 + 3\alpha_2 - 6)^{t-2\Delta t}y + (\frac{5}{2} - 3\alpha_1 - \alpha_2)^{t-3\Delta t}y = {}^{t+\Delta t}\dot{y}\Delta t$$
(3-12)

其零稳定性要求参数 α_1 和 α_2 需要满足下列条件

$$\alpha_2 \le -2\alpha_1 + \frac{3}{2} \qquad \alpha_2 > -\frac{18}{5}\alpha_1 + \frac{5}{2}$$
 (3-13)

当参数 α_2 满足 $\alpha_2 = \frac{5}{2} - 3\alpha_1$ 时,四步向后微分公式 (3-12) 将退化为三步形式,即

$$\alpha_1^{t+\Delta t} y + (\frac{5}{2} - 3\alpha_1)^t y + (3\alpha_1 - 4)^{t-\Delta t} y + (\frac{3}{2} - \alpha_1)^{t-2\Delta t} y = {}^{t+\Delta t} \dot{y} \Delta t$$
 (3-14)

此时的零稳定要求 $\alpha_1 \ge 1$ 。需要注意到是

- 当 $\alpha_1 = \frac{3}{2}$,公式 (3-14) 退化为二阶的三点向后微分公式 (BDF2)。
- 当 $\alpha_1 = \frac{11}{6}$,公式 (3-14) 退化为三阶的四点向后微分公式 (BDF3)。

Dong 在文 [25] 中令 $\alpha_1 = \frac{11}{6} - \frac{\theta}{3}$,于是得到与公式 (3-14) 等价形式

$$A(\theta)^{t+\Delta t}y + B(\theta)^t y + C(\theta)^{t-\Delta t}y + D(\theta)^{t-2\Delta t}y = {}^{t+\Delta t}\dot{y}\Delta t$$
 (3-15)

其中

$$A(\theta) = \frac{11}{6} - \frac{\theta}{3} \qquad B(\theta) = \theta - 3 \tag{3-16}$$

$$C(\theta) = \frac{3}{2} - \theta$$
 $D(\theta) = -\frac{1}{3} + \frac{\theta}{3}$ (3-17)

此时的零稳定性对参数 θ 要求 $\theta \leq \frac{5}{2}$ 。

基于公式 (3-15), 第一个积分算法可构造如下:

$${}^{t+\Delta t}\dot{U} = \frac{A(\theta_1)}{\Delta t}{}^{t+\Delta t}U + \frac{B(\theta_1)}{\Delta t}{}^tU + \frac{C(\theta_1)}{\Delta t}{}^{t-\Delta t}U + \frac{D(\theta_1)}{\Delta t}{}^{t-2\Delta t}U$$
(3-18)

$${}^{t+\Delta t}\ddot{U} = \frac{A(\theta_2)}{\Delta t}{}^{t+\Delta t}\dot{U} + \frac{B(\theta_2)}{\Delta t}{}^t\dot{U} + \frac{C(\theta_2)}{\Delta t}{}^{t-\Delta t}\dot{U} + \frac{D(\theta_2)}{\Delta t}{}^{t-2\Delta t}\dot{U}$$
(3-19)

有意思的是,算法参数 θ_1 和 θ_2 可以取不同的值。当然根据前面的陈述,它们都应该满足零稳定性要求,即 $\theta_1, \theta_2 \leq \frac{5}{2}$ 。Dong 通过考虑一个单自由度振子分析了该算

法获得无条件稳定性时的参数 θ_1 , θ_2 的取值范围。

考虑更加一般性的四点向后微分公式 (3-12), 令下列的参数变换

$$\alpha_1 = -\frac{1}{3}\theta_1\theta_2 - \frac{1}{4}\theta_2 + \frac{25}{12} \qquad \alpha_2 = \theta_1\theta_2 + \theta_2 - 4 \tag{3-20}$$

则, 等式 (3-12) 可化为

$$A_{1}(\theta_{1}, \theta_{2})^{t+\Delta t}y + A_{2}(\theta_{1}, \theta_{2})^{t}y + A_{3}(\theta_{1}, \theta_{2})^{t-\Delta t}y + A_{4}(\theta_{1}, \theta_{2})^{t-2\Delta t}y + A_{5}(\theta_{1}, \theta_{2})^{t-3\Delta t}y = {}^{t+\Delta t}\dot{y}\Delta t$$
(3-21)

其中,

$$\begin{cases} A_{1}(\theta_{1}, \theta_{2}) = -\frac{1}{3}\theta_{1}\theta_{2} - \frac{1}{4}\theta_{2} + \frac{25}{12} \\ A_{2}(\theta_{1}, \theta_{2}) = \theta_{1}\theta_{2} + \theta_{2} - 4 \\ A_{3}(\theta_{1}, \theta_{2}) = -\theta_{1}\theta_{2} - \frac{3}{2}\theta_{2} + 3 \\ A_{4}(\theta_{1}, \theta_{2}) = \frac{1}{3}\theta_{1}\theta_{2} + \theta_{2} - \frac{4}{3} \\ A_{5}(\theta_{1}, \theta_{2}) = \frac{1}{4} - \frac{1}{4}\theta_{2} \end{cases}$$
(3-22)

同理, 其零稳定性要求

$$\begin{cases} (\theta_1 + \frac{3}{2})\theta_2 \le 4\\ (\theta_1 - \frac{1}{2})\theta_2 < 5 \end{cases}$$
 (3-23)

于是,基于等式(3-21)可得第二个积分算法如下:

$${}^{t+\Delta t}\dot{U} = \frac{A_{1}(\theta_{1},\theta_{2})}{\Delta t}{}^{t+\Delta t}U + \frac{A_{2}(\theta_{1},\theta_{2})}{\Delta t}{}^{t}U + \frac{A_{3}(\theta_{1},\theta_{2})}{\Delta t}{}^{t-\Delta t}U + \frac{A_{5}(\theta_{1},\theta_{2})}{\Delta t}{}^{t-\Delta t}U + \frac{A_{5}(\theta_{1},\theta_{2})}{\Delta t}{}^{t-3\Delta t}U$$
 (3-24)
$${}^{t+\Delta t}\ddot{U} = \frac{A_{1}(\theta_{1},\theta_{2})}{\Delta t}{}^{t+\Delta t}\dot{U} + \frac{A_{2}(\theta_{1},\theta_{2})}{\Delta t}{}^{t}\dot{U} + \frac{A_{3}(\theta_{1},\theta_{2})}{\Delta t}{}^{t-\Delta t}\dot{U} + \frac{A_{5}(\theta_{1},\theta_{2})}{\Delta t}{}^{t-3\Delta t}\dot{U}$$
 (3-25)

可以通过计算一个单自由度振子来获得该算法的无条件稳定域。Dong 在文 [25] 指出当参数 $(\theta_1, \theta_2) = (1/2, 4/5)$ 是无条件稳定的,且具有最小的耗散特性。

最后, Dong 通过利用 K.J. Bathe 的复合子步技巧,利用前面发展的三步、四步向后微分公式结合 Trapezoidal 规则提出了新的复合型子步算法^[25]。即将一个时

间步长分为两个相等的子步长,在前一个子步长内利用 Trapezoidal 规则,即公式 (3-2)-(3-4) 带有 $\gamma = 1/2$,在第二个子步雇用前面发展的向后微分公式进行计算,即

$$t^{t+\Delta t}\dot{U} = \frac{A_1(\theta_1, \theta_2)}{\Delta t/2} t^{t+\Delta t} U + \frac{A_2(\theta_1, \theta_2)}{\Delta t/2} t^{t+\frac{1}{2}\Delta t} U + \frac{A_3(\theta_1, \theta_2)}{\Delta t/2} t^t U + \frac{A_4(\theta_1, \theta_2)}{\Delta t/2} t^{t-\frac{1}{2}\Delta t} U + \frac{A_5(\theta_1, \theta_2)}{\Delta t/2} t^{t-\Delta t} U$$

$$(3-26)$$

$$t^{t+\Delta t} \ddot{U} = \frac{A_1(\theta_1, \theta_2)_{t+\Delta t} \dot{U}}{\Delta t/2} + \frac{A_2(\theta_1, \theta_2)_{t+\frac{1}{2}\Delta t} \dot{U}}{\Delta t/2} + \frac{A_3(\theta_1, \theta_2)}{\Delta t/2} t \dot{U} + \frac{A_3(\theta_1, \theta_2)_{t-\frac{1}{2}\Delta t} \dot{U}}{\Delta t/2} + \frac{A_5(\theta_1, \theta_2)_{t-\Delta t} \dot{U}}{\Delta t/2}$$

$$(3-27)$$

通过零稳定性分析, 可以得到其参数的约束条件为

$$(\theta_1 + \frac{3}{2})\theta_2 < \frac{19}{4}, \qquad \theta_2 \ge -2$$
 (3-28)

或者

$$(\theta_1 + \frac{3}{2})\theta_2 > \frac{19}{4}, \qquad \theta_2 \le -2$$
 (3-29)

若在第一个时间子步内,使用 Newmark- $(\beta, \gamma = 1/2)$ 算法^[5] 进行计算,即

$$\theta_2(t^{t+\frac{1}{2}\Delta t}U - tU) = \theta_2\left(\frac{\Delta t}{2}\right)^t\dot{U} + \left(\frac{\Delta t}{2}\right)^2t^{t+\frac{1}{2}\Delta t}\ddot{U} + \left(\frac{\theta_2}{2} - 1\right)\left(\frac{\Delta t}{2}\right)^2t\ddot{U}$$
(3-30)

$$t + \frac{1}{2}\Delta t\dot{U} - t\dot{U} = \frac{\Delta t}{4} (t + \frac{1}{2}\Delta t\ddot{U} - t\ddot{U})$$
 (3-31)

参数 θ_2 实质上是扮演着 $1/\beta$ 的角色。当 θ_2 = 4 将退化为 Trapezoidal 规则。为了实现在第一个子步内地无条件稳定性,参数 θ_2 应当满足^[5]

$$0 < \theta_2 \le 4 \tag{3-32}$$

在第二个子步内,Dong 使用了如下的格式计算 $t + \Delta t$ 时刻的位移和速度,即

$$(3 - \frac{3}{2}\theta_1)^{t+\Delta t}U - 6(1 - \theta_1)^{t+\frac{1}{2}\Delta t}U + \left(3 - \frac{9}{2}\theta_1\right)^t U$$

$$= 2\frac{\Delta t}{2}^{t+\frac{1}{2}\Delta t}\dot{U} + (3\theta_1 - 2)\frac{\Delta t}{2}^t\dot{U} + \left(\frac{\Delta t}{2}\right)^2{}^{t+\Delta t}\ddot{U} \qquad (3-33)$$

$$\frac{\Delta t}{2}^{t+\Delta t}\dot{U} = \frac{3}{2}^{t+\Delta t}U - 2^{t+\frac{1}{2}\Delta t}U + \frac{1}{2}^t U \qquad (3-34)$$

通过 Taylor 级数展开可以证明该格式对于任意的 θ_1 取值都是二阶精度的 θ_2 。当参数 $\theta_1 = 1/2$ 时,上式退化为二阶的向后微分公式 (BDF2)。于是,当参数 $(\theta_1, \theta_2) = (1/2, 4)$ 时,对于该复合型子步算法退化为前述提及的 K.J. Bathe 复合型子步算

法[20-22]。

3.3.3 TTBDF 算法

Chandra 和 Zhou 等人基于 Dong 提出的 BDF 型算法[25] 提出了一个三子步方法[26]。亦即将时间步长 Δt 分为三等份。在第一个子步内使用 Trapezoidal 规则,即

$${}^{t+\frac{1}{3}\Delta t}U = {}^{t}U + \frac{\Delta t}{6} ({}^{t}\dot{U} + {}^{t+\frac{1}{3}\Delta t}\dot{U})$$
 (3-35)

$$t^{t+\frac{1}{3}\Delta t}\dot{U} = {}^{t}\dot{U} + \frac{\Delta t}{6} ({}^{t}\ddot{U} + {}^{t+\frac{1}{3}\Delta t}\ddot{U})$$
 (3-36)

且在 $t + \frac{1}{3}\Delta t$ 时刻处满足平衡方程 (3-1)。

在第二个子步内仍然雇用 Trapezoidal 规则进行计算,则有

$$t^{t+\frac{2}{3}\Delta t}U = t^{t+\frac{1}{3}\Delta t}U + \frac{\Delta t}{6} \left(t^{t+\frac{1}{3}\Delta t}\dot{U} + t^{t+\frac{2}{3}\Delta t}\dot{U}\right)$$
(3-37)

$$t^{t+\frac{2}{3}\Delta t}\dot{U} = t^{t+\frac{1}{3}\Delta t}\dot{U} + \frac{\Delta t}{6}(t^{t+\frac{1}{3}\Delta t}\ddot{U} + t^{t+\frac{2}{3}\Delta t}\ddot{U})$$
(3-38)

且在 $t + \frac{2}{3}\Delta t$ 时刻处满足平衡方程 (3-1)。

在最后一个子步,也就是第三个子步内利用 Dong 提出的四点向后微分公式 (3-15),

$${}^{t+\Delta t}\dot{U} = \frac{A(\theta_1)}{\Delta t/3}{}^{t+\Delta t}U + \frac{B(\theta_1)}{\Delta t/3}{}^{t+\frac{2}{3}\Delta t}U + \frac{C(\theta_1)}{\Delta t/3}{}^{t+\frac{1}{3}\Delta t}U + \frac{D(\theta_1)}{\Delta t/3}{}^{t}U$$
(3-39)

$${}^{t+\Delta t}\ddot{U} = \frac{A(\theta_2)}{\Delta t/3}{}^{t+\Delta t}\dot{U} + \frac{B(\theta_2)}{\Delta t/3}{}^{t+\frac{2}{3}\Delta t}\dot{U} + \frac{C(\theta_2)}{\Delta t/3}{}^{t+\frac{1}{3}\Delta t}\dot{U} + \frac{D(\theta_2)}{\Delta t/3}{}^{t}\dot{U}$$
(3-40)

其中,A, B, C, D 取值来自于等式 (3-16)-(3-17)。当参数 $(\theta_1, \theta_2) = (0.75, 0.75)$ 时,在众多的无条件稳定算法中,具有最小的耗散特性[26]。

3.3.4 BDF2-BDF3 算法

根据文 [27],可以知道二阶的向后微分公式 (BDF2) 可以表达为

$$t^{t+\Delta t}\dot{U} = \frac{3}{2\Delta t}t^{t+\Delta t}U - \frac{2}{\Delta t}tU + \frac{1}{2\Delta t}t^{t-\Delta t}U$$
 (3-41)

而三阶向后微分公式 (BDF3) 则为

$$^{t+\Delta t}\dot{U} = \frac{11}{6\Delta t}^{t+\Delta t}U - \frac{3}{\Delta t}^{t}U + \frac{3}{2\Delta t}^{t-\Delta t}U - \frac{1}{3\Delta t}^{t-2\Delta t}U$$
 (3-42)

于是, Dong 将 BDF2 和 BDF3 公式组合,可以得到如下的组合模式[28]

$$t^{t+\Delta t}\dot{U} = (1-\theta_1) \left(\frac{11}{6\Delta t} t^{t+\Delta t} U - \frac{3}{\Delta t} U + \frac{3}{2\Delta t} t^{t-\Delta t} U - \frac{1}{3\Delta t} t^{t-2\Delta t} U \right)$$

$$+ \theta_1 \left(\frac{3}{2\Delta t}^{t+\Delta t} U - \frac{2}{\Delta t}^t U + \frac{1}{2\Delta t}^{t-\Delta t} U \right)$$

$$^{t+\Delta t} \ddot{U} = (1 - \theta_2) \left(\frac{11}{6\Delta t}^{t+\Delta t} \dot{U} - \frac{3}{\Delta t}^t \dot{U} + \frac{3}{2\Delta t}^{t-\Delta t} \dot{U} - \frac{1}{3\Delta t}^{t-2\Delta t} \dot{U} \right)$$

$$+ \theta_2 \left(\frac{3}{2\Delta t}^{t+\Delta t} \dot{U} - \frac{2}{\Delta t}^t \dot{U} + \frac{1}{2\Delta t}^{t-\Delta t} \dot{U} \right)$$

$$(3-44)$$

当参数 (θ_1, θ_2) 取不同的值时,上述组合算法 BDF2-BDF3 将退化为不同的积分公式,如

- 当 $(\theta_1, \theta_2) = (0, 0)$ 时,BDF2-BDF3 退化为 BDF3。
- 当 $(\theta_1, \theta_2) = (1, 1)$ 时,BDF2-BDF3 退化为 BDF2。
- 当 (θ_1, θ_2) = (1/2, 1/2) 时,BDF2-BDF3 退化为著名的 Park 积分算法^[29]。

当参数 (θ_1,θ_2) 在集合 $I=\{(\theta_1,\theta_2)|\theta_1+\theta_2\geq 1,0\leq \theta_1,\theta_2\leq 1\}$ 时,BDF2-BDF3 实现无条件稳定[28]。

3.3.5 BDF3BDF2-Newmark 算法

Dong 利用前述提及的的 BDF2-BDF3 组合算法和 Trapezoidal 规则进行组合,进而提出了一个新的复合型子步算法,BDF3BDF2-Newmark 算法[28]。该算法将时间步长 Δt 分为两个相等的子步长 $\Delta t/2$,在第一个子步长内使用 Trapezoidal 规则,即

$${}^{t+\frac{1}{2}\Delta t}U = {}^{t}U + \frac{\Delta t}{4} ({}^{t}\dot{U} + {}^{t+\frac{1}{2}\Delta t}\dot{U})$$
 (3-45)

$$t^{t+\frac{1}{2}\Delta t}\dot{U} = {}^t\dot{U} + \frac{\Delta t}{4} ({}^t\ddot{U} + {}^{t+\frac{1}{2}\Delta t}\ddot{U})$$
 (3-46)

对于第二个子步长,则使用 BDF2-BDF3 组合算法,即

$${}^{t+\Delta t}\dot{U} = \frac{A(\theta_1)}{\Delta t/3}{}^{t+\Delta t}U + \frac{B(\theta_1)}{\Delta t/3}{}^{t+\frac{1}{2}\Delta t}U + \frac{C(\theta_1)}{\Delta t/3}{}^{t}U + \frac{D(\theta_1)}{\Delta t/3}{}^{t-\frac{1}{2}\Delta t}U$$
(3-47)

$${}^{t+\Delta t}\ddot{U} = \frac{A(\theta_2)}{\Delta t/3} {}^{t+\Delta t}\dot{U} + \frac{B(\theta_2)}{\Delta t/3} {}^{t+\frac{1}{2}\Delta t}\dot{U} + \frac{C(\theta_2)}{\Delta t/3} {}^{t}\dot{U} + \frac{D(\theta_2)}{\Delta t/3} {}^{t-\frac{1}{2}\Delta t}\dot{U}$$
(3-48)

其中,

$$\begin{cases} A(\theta) = \frac{11}{6}(1-\theta) + \frac{3}{2}\theta \\ B(\theta) = 3(\theta-1) - 2\theta \\ C(\theta) = \frac{3}{2}(1-\theta) + \frac{1}{2}\theta \\ D(\theta) = \frac{1}{3}(\theta-1) \end{cases}$$
(3-49)

显然,该算法不是自启动的。在第一个时间步长内,需要额外的启动机制,如连续使用两次 Trapezoidal 规则。当参数 $(\theta_1, \theta_2) = (1, 1)$ 时,BDF3BDF2-Newmark 算法将退化为 K.J. Bathe 提出的 TR-BDF2 算法。

3.3.6 CTFEA 算法

Kim 和 Reddy 利用时间有限元配点方法导出了一个复合型子步算法 (CT-FEA)^[30], 在第一个子步 (t_s , t_s + $\gamma \Delta t$) 内,使用线性插值形函数如下

$$\psi_s^L = \frac{\gamma \Delta t - t + t_s}{\gamma \Delta t} \qquad \psi_{s + \gamma \Delta t}^L = \frac{t - t_s}{\gamma \Delta t}$$
 (3-50)

其上标 L 表示使用了线性插值函数。于是使用上述形函数,在第一个子步内的状态变量值可以近似表达为

$$\begin{cases} U(t) \approx {}^{t}U = \psi_{s}^{L}(t)^{s}U + \psi_{s+\gamma\Delta t}^{L}(t)^{s+\gamma\Delta t}U \\ \dot{U}(t) \approx {}^{t}\dot{U} = \psi_{s}^{L}(t)^{s}\dot{U} + \psi_{s+\gamma\Delta t}^{L}(t)^{s+\gamma\Delta t}\dot{U} \\ \ddot{U}(t) \approx {}^{t}\ddot{U} = \psi_{s}^{L}(t)^{s}\ddot{U} + \psi_{s+\gamma\Delta t}^{L}(t)^{s+\gamma\Delta t}\ddot{U} \end{cases}$$
(3-51)

上述关系式只是近似成立,亦即其残差一般情况下不为 0。故其速度和加速度的残差可以表达为

$$\begin{cases} r_1(t) &= \dot{U}(t) - {}^t\dot{U} \\ r_2(t) &= \ddot{U}(t) - {}^t\ddot{U} \end{cases}$$
 (3-52)

在区间 $t_s \le t \le t_{s+\gamma\Delta t}$ 通过利用配点法可以得到如下表达式

$$\begin{cases} 0 &= \int_{t_s}^{t_{s+\gamma\Delta t}} \delta(t - \theta_1 \gamma \Delta t) r_1(t) dt \\ 0 &= \int_{t_s}^{t_{s+\gamma\Delta t}} \delta(t - \theta_1 \gamma \Delta t) r_2(t) dt \end{cases}$$
(3-53)

其中, θ_1 表示在第一个子步内的配点参数。文 [30] 建议其 θ_1 取值应满足 $0.5 \le \theta_1 \le 1$ 来获得无条件稳定性。

于是,经过计算可以得到其速度和加速度的更新方程

$$t^{t+\gamma\Delta t}\dot{U} = c_1^{t+\gamma\Delta t}U + c_2^t U + c_3^t \dot{U}$$
(3-54)

$$t^{t+\gamma\Delta t}\ddot{U} = c_1^{t+\gamma\Delta t}\dot{U} + c_2^t\dot{U} + c_3^t\ddot{U}$$
(3-55)

其中,参数 c_1,c_2 和 c_3 取值为

$$c_1 = \frac{1}{\gamma \theta_1 \Delta t} \quad c_2 = -\frac{1}{\gamma \theta_1 \Delta t} \quad c_3 = \frac{\theta_1 - 1}{\theta_1}$$
 (3-56)

需要说明的是,在第一个子步内的计算实质上等价于广义的 Trapezoidal 规则[5]。

- 当 $\theta_1 = 0.5$ 时,上述算法将退化为 Trapezoidal 规则。
- 当 θ_1 = 1.0 时,上述算法将退化为向后 Euler 公式。

类似地,在第二个子步长内,Kim 等人利用了二次插值函数进行逼近计算,然 后将残差再利用配点进行计算,进而得到如下的计算格式:

$${}^{t+\Delta t}\dot{U} = d_1{}^{t+\Delta t}U + d_2{}^{t+\gamma \Delta t}U + d_3{}^tU + d_4{}^{t+\gamma \Delta t}\dot{U} + d_5{}^t\dot{U}$$
(3-57)

$${}^{t+\Delta t}\ddot{U} = d_1^{t+\Delta t}\dot{U} + d_2^{t+\gamma\Delta t}\dot{U} + d_3^{t}\dot{U} + d_4^{t+\gamma\Delta t}\ddot{U} + d_5^{t}\ddot{U}$$
(3-58)

其中, 系数取值分别为

$$d_1 = \frac{\gamma - 2\theta_2}{\theta_2(\gamma - \theta_2)\Delta t} \qquad d_2 = \frac{2\theta_2 - 1}{\gamma \theta_2(\gamma - \theta_2)\Delta t}$$

$$d_3 = \frac{(\gamma - 1)(\gamma + 1 - 2\theta_2)}{\gamma \theta_2(\gamma - \theta_2)\Delta t}$$
(3-59)
$$(3-60)$$

$$d_3 = \frac{(\gamma - 1)(\gamma + 1 - 2\theta_2)}{\gamma \theta_2 (\gamma - \theta_2) \Delta t} \tag{3-60}$$

$$d_4 = \frac{\theta_2 - 1}{\gamma(\theta_2 - \gamma)} \qquad d_5 = \frac{(\theta_2 - 1)(\gamma - 1)}{\gamma \theta_2}$$
 (3-61)

当 CTFEMA 算法中的参数 $(\theta_1, \theta_2) = (0.5, 1.0)$ 时,该算法将退化为 TR-BDF2 算法[20-22]。

3.4 本章小结

第 4 章 基于广义线性法的结构动响应数值算法设计

4.1 本章小结

第5章 数值算例

5.1 本章小结

结论

学位论文的结论作为论文正文的最后一章单独排写,但不加章标题序号。

结论应是作者在学位论文研究过程中所取得的创新性成果的概要总结,不能与摘要混为一谈。博士学位论文结论应包括论文的主要结果、创新点、展望三部分,在结论中应概括论文的核心观点,明确、客观地指出本研究内容的创新性成果(含新见解、新观点、方法创新、技术创新、理论创新),并指出今后进一步在本研究方向进行研究工作的展望与设想。对所取得的创新性成果应注意从定性和定量两方面给出科学、准确的评价,分(1)、(2)、(3)···条列出,宜用"提出了"、"建立了"等词叙述。

参考文献

- [1] 杨超, 肖守讷, 阳光武, 等. 一类非耗散的显式时间积分方法 [J]. 振动工程学报, 2015, 28(3): 441-448.
- [2] Butcher J C. On the convergence of numerical solutions to ordinary differential equations [J]. Mathematics of Computation, 1966, 20(93): 1-10.
- [3] 于开平, 邹经湘. 结构动力响应数值算法耗散和超调特性设计 [J]. 力学学报, 2005, 37(4): 467-476.
- [4] Dahlquist G. Convergence and stability in numerical integration of ordinary differential equations[J]. Mathematica Scandinavica, 1956, 19(4): 33 53.
- [5] Hughes T J R. Dover Civil and Mechanical Engineering: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis[M]. [S.l.]: Dover Publications, 2000.
- [6] 周树荃, 高科华. 解结构动力问题的半隐式 Runge—Kutta 型并行直接积分法 [J]. 计算物理, 1992, 9(02): 133-138.
- [7] Lunk C, Simeon B. Runge-Kutta-Nyström-Methods with Maximized Stability Domain for Stiff Mechanical Systems[M]. [S.l.]: Springer Berlin Heidelberg, 2004: 139–144.
- [8] Lunk C, Simeon B. Runge-Kutta-Nyström methods with maximized stability domain in structural dynamics[J], 2005: 373 389.
- [9] Dopico D, Lugris U, Gonzalez M, et al. Two implementations of IRK integrators for realtime multibody dynamics[J]. International Journal for Numerical Methods in Engineering, 2010, 65(12): 2091–2111.
- [10] 吴志桥, 高普云, 任钧国. Runge-Kutta 方法求解结构动力学方程 [J]. 系统仿真学报, 2010(9): 2085-2090.
- [11] 吴志桥. L-稳定格式求解结构动力学方程和多体系统动力学方程 [D]. 长沙: 国 防科学技术大学, 2009.
- [12] Yin S-H. A new explicit time integration method for structural dynamics[J/OL]. International Journal of Structural Stability and Dynamics, 2013, 13(3). http://dx.doi.org/10.1142/S021945541250068X.

- [13] 郭静, 邢誉峰. 结构动力学方程的辛 RK 方法 [J]. 应用数学和力学, 2014, 35(01): 12-21.
- [14] 黄策, 富明慧, 郑彬彬. 求解结构动力学方程的一种辛格式及其优化 [J]. 固体力学学报, 2016(s1): 45-49.
- [15] Newmark N M. A method of computation for structural dynamics[J]. Proc Asce, 1959, 85:67.
- [16] Wilson E L. A Computer Program for the Dynamic Stress Analysis of Underground Structure[J]. Dynamic Loads, 1968.
- [17] Chopra A K. Prentice-Hall International Series in Civil Engineering and Engineering Mechanics: Dynamics of Structures: Theory and applications to earthquake engineering[M]. 4th ed. [S.l.]: Prentice Hall, 2011.
- [18] Tarnow N, Simo J. How to render second order accurate time-stepping algorithms fourth order accurate while retaining the stability and conservation properties[J/OL]. Computer Methods in Applied Mechanics and Engineering, 1994, 115(3): 233 – 252.
 - http://www.sciencedirect.com/science/article/pii/0045782594900612.
- [19] Fung T C. Complex-time-step Newmark methods with controllable numerical dissipation[J/OL]. International Journal for Numerical Methods in Engineering, 1998, 41(1): 65 93. http://dx.doi.org/10.1002/(SICI)1097-0207(19980115)41:1<65::AID-NME270>3. 0.CO;2-F.
- [20] Bathe K J, Baig M M I. On a composite implicit time integration procedure for nonlinear dynamics[J]. Computers & Structures, 2005, 83(31-32): 2513-2524.
- [21] Bathe K J. Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme[J]. Computers & Structures, 2007, 85(7-8): 437 445.
- [22] Bathe K-J, Noh G. Insight into an implicit time integration scheme for structural dynamics[J]. Computers & Structures, 2012, 98: 1–6.
- [23] Zhang J, Liu Y, Liu D. Accuracy of a composite implicit time integration scheme for structural dynamics[J/OL]. International Journal for Numerical Methods in Engineering, 2017, 109(3): 368 406. http://dx.doi.org/10.1002/nme.5291.

- [24] Dharmaraja S, Wang Y, Strang G. Optimal stability for trapezoidal backward difference split-steps[J]. Ima Journal of Numerical Analysis, 2009, 30(1): 141–148.
- [25] Dong S. BDF-like methods for nonlinear dynamic analysis[J]. Journal of Computational Physics, 2010, 229(8): 3019 3045.
- [26] Chandra Y, Zhou Y, Stanciulescu I, et al. A robust composite time integration scheme for snap-through problems[J]. Computational Mechanics, 2015, 55(5): 1041 1056.
- [27] Gear C W. Numerical initial value problems in ordinary differential equations[M]. [S.l.]: Prentice Hall, 1971.
- [28] Dong S. Blended Time Integration Algorithms for Nonlinear Dynamics[C] //Structures, Structural Dynamics, and Materials Conference Aiaa/ASME/AHS Adaptive Structures Conference. 2013.
- [29] Park K C. An improved stiffly stable method for direct integration of nonlinear structural dynamic equations[J]. Journal of Applied Mechanics, 1975, 42: 464.
- [30] Kim W, Reddy J N. An Improved Time Integration Algorithm: A Collocation Time Finite Element Approach[J]. International Journal of Structural Stability & Dynamics, 2016, 17(2): 1750024.

附录 A 带章节的附录

完整的附录内容,包含章节,公式,图表等

A.1 附录节的内容

这是附录的节的内容 附录中图的示例:

图 1-1 打高尔夫球的人

附录中公式的示例:

$$a = b \times c \tag{1-1}$$

$$E = mc^2 (1-2)$$

附录 B 这个星球上最好的免费 Linux 软件列表

系统

FVWM 星球最强大的窗口管理器——推荐

其他

goldendict 星球最强大的桌面字典——推荐 mutt 星球最强大的邮件客户端——推荐

攻读硕士学位期间发表的论文及其他成果

(一) 发表的学术论文

- [1] XXX, XXX. Static Oxidation Model of Al-Mg/C Dissipation Thermal Protection Materials[J]. Rare Metal Materials and Engineering, 2010, 39(Suppl. 1): 520-524. (SCI 收录, IDS 号为 669JS, IF=0.16)
- [2] XXX, XXX. 精密超声振动切削单晶铜的计算机仿真研究 [J]. 系统仿真学报, 2007, 19 (4): 738-741, 753. (EI 收录号: 20071310514841)
- [3] XXX, XXX. 局部多孔质气体静压轴向轴承静态特性的数值求解 [J]. 摩擦学学报, 2007(1): 68-72. (EI 收录号: 20071510544816)
- [4] XXX, XXX. 硬脆光学晶体材料超精密切削理论研究综述 [J]. 机械工程学报, 2003, 39 (8): 15-22. (EI 收录号: 2004088028875)
- [5] XXX, XXX. 基于遗传算法的超精密切削加工表面粗糙度预测模型的参数辨识以及切削参数优化 [J]. 机械工程学报, 2005, 41 (11): 158-162. (EI 收录号: 2006039650087)
- [6] XXX, XXX. Discrete Sliding Mode Cintrok with Fuzzy Adaptive Reaching Law on 6-PEES Parallel Robot[C]. Intelligent System Design and Applications, Jinan, 2006: 649-652. (EI 收录号: 20073210746529)
- (二)申请及已获得的专利(无专利时此项不必列出)
- [1] XXX, XXX. 一种温热外敷药制备方案:中国,88105607.3[P].1989-07-26.
- (三)参与的科研项目及获奖情况
- [1] XXX, XXX. XX 气体静压轴承技术研究, XX 省自然科学基金项目. 课题编号: XXXX.
- [2] XXX, XXX. XX 静载下预应力混凝土房屋结构设计统一理论. 黑江省科学技术二等奖, 2007.

索引

D du 段誉 6 Q qi 乔峰 1, 6 \mathbf{W} Wilson- θ Wilson- θ 1 Q Qiao Feng 6 \mathbf{X} Xu Zhu 6

插图索引

图 1-1 打高尔夫球的人	2	2
---------------	---	---

表格索引

表 1	国际单位制中具有专门名称的导出单位	III
-----	-------------------	-----

哈尔滨工业大学学位论文原创性声明和使用权限

学位论文原创性声明

本人郑重声明:此处所提交的学位论文《基于广义线性法的结构动响应数值算法设计》,是本人在导师指导下,在哈尔滨工业大学攻读学位期间独立进行研究工作所取得的成果,且学位论文中除已标注引用文献的部分外不包含他人完成或已发表的研究成果。对本学位论文的研究工作做出重要贡献的个人和集体,均已在文中以明确方式注明。

作者签名:

日期: 年 月 日

学位论文使用权限

学位论文是研究生在哈尔滨工业大学攻读学位期间完成的成果,知识产权归属哈尔滨工业大学。学位论文的使用权限如下:

(1)学校可以采用影印、缩印或其他复制手段保存研究生上交的学位论文,并向国家图书馆报送学位论文;(2)学校可以将学位论文部分或全部内容编入有关数据库进行检索和提供相应阅览服务;(3)研究生毕业后发表与此学位论文研究成果相关的学术论文和其他成果时,应征得导师同意,且第一署名单位为哈尔滨工业大学。

保密论文在保密期内遵守有关保密规定,解密后适用于此使用权限规定。本人知悉学位论文的使用权限,并将遵守有关规定。

作者签名: 日期: 年 月 日

导师签名: 日期: 年 月 日

致 谢

衷心感谢导师 XXX 教授对本人的精心指导。他的言传身教将使我终生受益。……

感谢哈工大 LATEX 论文模板 HITHESIS!

个人简历

XXXX 年 XX 月 XX 日出生于 XXXX。

XXXX年 XX 月考入 XX 大学 XX 院 (系) XX 专业,XXXX年 XX 月本科毕业并获得 XX 学学士学位。

XXXX 年 XX 月——XXXX 年 XX 月在 XX 大学 XX 院(系) XX 学科学习并获得 XX 学硕士学位。

XXXX 年 XX 月——XXXX 年 XX 月在 XX 大学 XX 院(系) XX 学科学习并获得 XX 学博士学位。

获奖情况:如获三好学生、优秀团干部、X 奖学金等(不含科研学术获奖)。 工作经历:

(除全日制硕士生以外,其余学生均应增列此项。个人简历一般应包含教育经历和工作经历。)