Part 1

Ayush Kumar

20/10/2020

##Loading Libraries

```
library(data.table)
library(ggplot2)
library(knitr)
opts_chunk$set(echo = TRUE, results = 'hold')
##Assigning Values
set.seed(120)
expnum <- 40
lambda <- 0.2
simnum <- 1000
expsimu <- replicate(simnum, rexp(expnum, lambda))</pre>
expmean <- apply(expsimu, 2, mean)</pre>
\#\#\mathrm{Q1} Show the sample mean and compare it to the theoretical mean of the distribution.
analytic_mean<-mean(expmean)</pre>
analytic_mean
## [1] 5.03946
theoretical_mean<-1/lambda
theoretical_mean
## [1] 5
analytic_mean-theoretical_mean
## [1] 0.03945984
hist(expmean, xlab = "mean", main = "Exponential Function Simulations")
abline(v = analytic_mean, col = "green")
```

abline(v = theoretical_mean, col = "yellow")

Exponential Function Simulations

The analytics mean is 4.993867 wheras the theoretical mean is 5 showing that average centre of distribution is very close to theoretical centre of distribution.

Q2 Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution.

```
theoreticl_variance<-(theoretical_mean)^2/expnum
theoreticl_variance</pre>
```

[1] 0.625

```
sqrt_expnum<-sqrt(expnum)
theoretical_sd<-theoretical_mean/sqrt_expnum
theoretical_sd</pre>
```

[1] 0.7905694

```
sampleVariance<- var(analytic_mean)
sampleVariance</pre>
```

[1] NA

```
standard_deviation <-sd(expmean) standard_deviation
```

[1] 0.7865754

```
variance_distribution<-standard_deviation^2
variance_distribution</pre>
```

[1] 0.6187008

We could see that variance_distribution is same as sample_variance.

Theoretical Standard Deviation is 0.7905694. Standard Deviation is 0.7865754.

 $\#\#\mathrm{Q3}$ Show that the distribution is approximately normal.

```
hist(expmean, xlab="Mean for each trial", ylab = "Density", main="Sample Means Distribution", breaks=e.
lines(density(expmean))
abline(v = 1/lambda, col = "blue")
```

Sample Means Distribution


```
qqnorm(expmean)
qqline(expmean, col = 2)
```

Normal Q-Q Plot

The above graph show a curve like structure (bell curve) and hence we could say that the distribution of 40 averages exponential is close to normal distribution.