USE THE CODE MLJSIRLIVE TO GET 10 % Off

- **1.** If 1, α_1 , α_2 ,..... α_{n-1} are the n roots of unity, then $(1 \alpha_1)(1 \alpha_2)$ $(1 \alpha_{n-1})$ is equal to -
 - (a) n 1
- (b) n
- (c) -1
- (d) 1
- ans b
- 2. If z is a nonreal root of $\sqrt[7]{-1}$ then $z^{86} + z^{175} + z^{289}$ is equal to-
 - (a) 0
- (b) -1
- (c) 3
- (d) 1
- ans b

3. If α , β , γ are the roots of equation x^3 - $3x^2$ + 3x + 7 = 0 and ω is cube roots of unity then the value of $\beta - 1$

$$\begin{array}{c} \frac{\beta-1}{\gamma-1} + \frac{\gamma-1}{\alpha-1} \\ \text{is-} \end{array}$$

- (a) ω^2 (b) $2\omega^2$ (c) $3\omega^2$ (d) $-3\omega^2$ ans c

4. If $\alpha = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$ and $p = \alpha + \alpha^2 + \alpha^4$, $q = \alpha^3 + \alpha^5 + \alpha^6$ then the equation whose roots are p and q -

- (a) $x^2 + x + 4 = 0$
- (b) $x^2 + x + 2 = 0$
- (c) $x^2 + x 2 = 0$
- (d) $x^2 + x 4 = 0$
- ans b

5. If $x = \omega - \omega^2 - 2$, then the value of $x^4 + 3x^3 + 2x^2 - 11x - 6$ is

- (a) 1
- (b) -1
- (c) 2
 - (d) None of these
- ans a

6. If 3^{49} (x + iy) = $\left(\frac{3}{2} + \frac{\sqrt{3}}{2}i\right)^{100}$ and x = ky, then k is -

- (a) $-\frac{1}{3}$ (b) $\sqrt{3}$ (c) $-\sqrt{3}$ (d) $-\frac{1}{\sqrt{3}}$
- ans d

7. The value of $\left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^6 + \left(\frac{1-i\sqrt{3}}{1+i\sqrt{3}}\right)^6$ i.

- (a) 2
- (b) -2
- (c) 1
- (d) 0
- ans a

8. If ω is a cuberoot of unity then $(1 + \omega - \omega^2)^7$ is equal to

- (b) 128 ω (c) 128 ω^2
- (d) 128 ω^2

ans d

9. If ω is a complex cube root of unity, then the value of

$$\frac{a+b\omega+c\omega^2}{c+a\omega+b\omega^2} + \frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2}$$
 is

- (b) 0
- (c) 2
- (d) 1
- ans d

10. If $z + z^{-1} = 1$, then $z^{50} + z^{-50}$ is equal to -

ans b

- (a) 1
- (b) 1
- (c) 0
- (d) 2

USE THE CODE MLJSIRLIVE TO GET 10 % Off

11. If ω is a cube root of unity, then

ans c

 $(3 + 5\omega + 3\omega^2)^2 + (3 + 3\omega + 5\omega^2)^2$ is equal to -

- (a) 4
- (b) 0
- (c) 4
- (d) None of these

12. The common roots of the equation

ans c

 $z^3 + 2z^2 + 2z + 1 = 0$ and $z^{1985} + z^{100} + 1 = 0$ are -

- (a) 1,ω

- (b) 1, ω^2 (c) ω , ω^2 (d) ω , ω^2

13. If ω is a cube root of unity, then the value of $(1 + \omega - \omega^2)$. Ans d

$$(1 - \omega + \omega^2)$$
 is

- (a) 1
- (b) 0
- (c) 2
- (d) 4

14. If the cube roots of unity are 1, ω , ω^2 , then the roots of the equation $(x - 1)^3 + 8 = 0$ are

- (a) 1, 1 + 2ω , 1 + $2\omega^2$
- (b) -1, 1 2ω , 1 $2\omega^2$
- ANS b

- (c) -1, -1, -1
- (d) None of these

15. If $^{(1)}$ is a complex cube root of unity, then value of expression

ans b

- (a) -1
- (b) 0

16. If α is a complex number such that $\alpha^2 + \alpha + 1 = 0$, then α^{31} is equal to

- (a) α
- (b) α^2
- (c) 0
- (d) 1

ans a

$$\sum_{k=1}^{6} \left(\sin \frac{2\pi k}{7} - i \cos \frac{2\pi k}{7} \right)$$
 is -

ans c

- (a) 0
- (b) 1
- (c) I
- (d) i