Relativno tveganje in razmerje obetov

Janez Stare

Medicinska fakulteta, Ljubljana

Ljubljana, november 2015

Ena možnost za primerjavo deležev med dvema vzorcema je njuna **razlika**

$$RD = \pi_1 - \pi_2$$

Ena možnost za primerjavo deležev med dvema vzorcema je njuna **razlika**

$$RD = \pi_1 - \pi_2$$

V praksi jo redko vidimo. Morda zato, ker so populacijske verjetnosti pojavljanja bolezni praviloma zelo majhne in zato razlike manj dramatične.

Ena možnost za primerjavo deležev med dvema vzorcema je njuna **razlika**

$$RD = \pi_1 - \pi_2$$

V praksi jo redko vidimo. Morda zato, ker so populacijske verjetnosti pojavljanja bolezni praviloma zelo majhne in zato razlike manj dramatične.

Veliko bolj pogosto se uporablja relativno tveganje

$$RR = \frac{\pi_1}{\pi_2}$$

Ena možnost za primerjavo deležev med dvema vzorcema je njuna **razlika**

$$RD = \pi_1 - \pi_2$$

V praksi jo redko vidimo. Morda zato, ker so populacijske verjetnosti pojavljanja bolezni praviloma zelo majhne in zato razlike manj dramatične.

Veliko bolj pogosto se uporablja relativno tveganje

$$RR = \frac{\pi_1}{\pi_2}$$

Primer: naj bo tveganje za pljučnega raka med nekadilci 0,001, med kadilci pa 0,009. Razlika tveganj je 0,008 (enako kot med 0,419 in 0,411), relativno tveganje pa 9!

Primer: Smrt po spolu na Titaniku

Primer: Smrt po spolu na Titaniku

Spol	Umrlo	Preživelo	Tveganje
moški	1364	367	1364/1731 = 0.79
ženske	126	344	126/470 = 0.27

Primer: Smrt po spolu na Titaniku

Spol	Umrlo	Preživelo	Tveganje
moški	1364	367	1364/1731 = 0.79
ženske	126	344	126/470 = 0.27

Relativno tveganje moških glede ne ženske je torej

$$RR = \frac{0.79}{0.27} = 2.93$$

Obeti

Obeti so razmerje med verjetnostjo, da se nek dogodek zgodi in verjetnostjo, da se ne zgodi. Torej

$$\mathrm{obeti} = \frac{\pi}{\mathbf{1} - \pi}$$

Obeti

Obeti so razmerje med verjetnostjo, da se nek dogodek zgodi in verjetnostjo, da se ne zgodi. Torej

$$\mathsf{obeti} = \frac{\pi}{\mathbf{1} - \pi}$$

Primer: če je dogodek smrt in njena verjetnost 0,75, so obeti enaki 3, ker je verjetnost smrti trikrat večja od verjetnosti preživetja.

Obeti

Obeti so razmerje med verjetnostjo, da se nek dogodek zgodi in verjetnostjo, da se ne zgodi. Torej

$$\mathsf{obeti} = \frac{\pi}{\mathbf{1} - \pi}$$

Primer: če je dogodek smrt in njena verjetnost 0,75, so obeti enaki 3, ker je verjetnost smrti trikrat večja od verjetnosti preživetja.

Primer: Titanic

Spol	π	$1-\pi$	Obeti
moški	0,79	0,21	3,76
ženske	0,27	0,73	0,37

Razmerje obetov

V prejšnjem primeru smo izračunali obete posebej pri moških in posebej pri ženskah. Če bi bilo tveganje v obeh skupinah enako, bi bili enaki tudi obeti. Primerjava (kvocient) bi torej utegnila imeti smisel.

$$OR = \frac{\frac{\pi_1}{1 - \pi_1}}{\frac{\pi_2}{1 - \pi_2}}$$

Razmerje obetov

V prejšnjem primeru smo izračunali obete posebej pri moških in posebej pri ženskah. Če bi bilo tveganje v obeh skupinah enako, bi bili enaki tudi obeti. Primerjava (kvocient) bi torej utegnila imeti smisel.

$$OR = rac{rac{\pi_1}{1-\pi_1}}{rac{\pi_2}{1-\pi_2}}$$

Razmetje obetov pri Titaniku je torej

$$OR = \frac{3,76}{0,37} = 10,16$$

Razmerje obetov

V prejšnjem primeru smo izračunali obete posebej pri moških in posebej pri ženskah. Če bi bilo tveganje v obeh skupinah enako, bi bili enaki tudi obeti. Primerjava (kvocient) bi torej utegnila imeti smisel.

$$OR = rac{rac{\pi_1}{1-\pi_1}}{rac{\pi_2}{1-\pi_2}}$$

Razmetje obetov pri Titaniku je torej

$$OR = \frac{3,76}{0,37} = 10,16$$

Vendar, če že imamo relativno tveganje, zakaj bi človek računal še razmerje obetov?

Primer: Rak na prostati in plešavost

	primer	kontrola	skupaj
plešast	72	82	154
lasat	55	57	112
skupaj	129	139	268

Ali je prav, da rečemo, da je

$$RR = \frac{\frac{72}{154}}{\frac{55}{112}} = 0.95$$

?

	lz		
Dejavnik	Primer	Kontrola	Skupaj
da	n ₁₁	n ₁₂	$n_{11} + n_{12}$
ne	n ₂₁	n ₂₂	$n_{21} + n_{22}$
Skupaj	$n_{11} + n_{21}$	$n_{12} + n_{22}$	n

	lz		
Dejavnik	Primer	Kontrola	Skupaj
da	n ₁₁	n ₁₂	$n_{11} + n_{12}$
ne	n ₂₁	n ₂₂	$n_{21} + n_{22}$
Skupaj	$n_{11} + n_{21}$	$n_{12} + n_{22}$	n

S temi oznakami je

$$RR = \frac{\frac{n_{11}}{n_{11} + n_{12}}}{\frac{n_{21}}{n_{21} + n_{22}}} = \frac{n_{11}}{n_{21}} \cdot \frac{n_{21} + n_{22}}{n_{11} + n_{12}}$$

	lz		
Dejavnik	Primer	Kontrola	Skupaj
da	n ₁₁	n ₁₂	$n_{11} + n_{12}$
ne	n ₂₁	n ₂₂	$n_{21} + n_{22}$
Skupaj	$n_{11} + n_{21}$	$n_{12} + n_{22}$	n

S temi oznakami je

$$RR = \frac{\frac{n_{11}}{n_{11} + n_{12}}}{\frac{n_{21}}{n_{21} + n_{22}}} = \frac{n_{11}}{n_{21}} \cdot \frac{n_{21} + n_{22}}{n_{11} + n_{12}}$$

in

$$OR = \frac{\frac{\pi_1}{1 - \pi_1}}{\frac{\pi_2}{1 - \pi_2}} = \frac{\frac{n_{11}/n_{1+}}{n_{12}/n_{1+}}}{\frac{n_{21}/n_{2+}}{n_{22}/n_{2+}}} = \frac{n_{11}n_{22}}{n_{12}n_{21}}$$

	li	zid	
Dejavnik	Primer	Kontrola	Skupaj
da	kn ₁₁	n ₁₂	$kn_{11} + n_{12}$
ne	kn ₂₁	n ₂₂	$kn_{21} + n_{22}$
Skupaj	n ₊₁	n ₊₂	n

	la	zid	
Dejavnik	Primer	Kontrola	Skupaj
da	kn ₁₁	n ₁₂	$kn_{11} + n_{12}$
ne	kn ₂₁	n ₂₂	$kn_{21} + n_{22}$
Skupaj	n ₊₁	n_{+2}	n

Sedaj je

$$RR = \frac{kn_{11}}{kn_{21}} \cdot \frac{kn_{21} + n_{22}}{kn_{11} + n_{12}} = \frac{n_{11}}{n_{21}} \cdot \frac{kn_{21} + n_{22}}{kn_{11} + n_{12}}$$

	la	zid	
Dejavnik	Primer	Kontrola	Skupaj
da	kn ₁₁	n ₁₂	$kn_{11} + n_{12}$
ne	kn ₂₁	n ₂₂	$kn_{21} + n_{22}$
Skupaj	n_{+1}	n_{+2}	n

Sedaj je

$$RR = \frac{kn_{11}}{kn_{21}} \cdot \frac{kn_{21} + n_{22}}{kn_{11} + n_{12}} = \frac{n_{11}}{n_{21}} \cdot \frac{kn_{21} + n_{22}}{kn_{11} + n_{12}}$$

in

$$OR == \frac{kn_{11}n_{22}}{n_{12}kn_{21}} = \frac{n_{11}n_{22}}{n_{12}n_{21}}$$

• relativno tveganje lahko izračunamo le, če lahko ocenimo verjetnosti pojava v obeh skupinah.

- relativno tveganje lahko izračunamo le, če lahko ocenimo verjetnosti pojava v obeh skupinah.
- tega ne moremo storiti v študijah primerov in kontrol.

- relativno tveganje lahko izračunamo le, če lahko ocenimo verjetnosti pojava v obeh skupinah.
- tega ne moremo storiti v študijah primerov in kontrol.
- razmerje obetov lahko izračunamo tudi kadar ne poznamo verjetnosti v posameznih skupinah.

- relativno tveganje lahko izračunamo le, če lahko ocenimo verjetnosti pojava v obeh skupinah.
- tega ne moremo storiti v študijah primerov in kontrol.
- razmerje obetov lahko izračunamo tudi kadar ne poznamo verjetnosti v posameznih skupinah.
- lepo bi bilo, če bi bilo razmerje obetov blizu relativnemu tveganju.

$$OR = \frac{\frac{\pi_1}{1 - \pi_1}}{\frac{\pi_2}{1 - \pi_2}} = \frac{\pi_1}{\pi_2} \cdot \frac{1 - \pi_2}{1 - \pi_1} = RR \cdot \frac{1 - \pi_2}{1 - \pi_1}$$

$$OR = \frac{\frac{\pi_1}{1 - \pi_1}}{\frac{\pi_2}{1 - \pi_2}} = \frac{\pi_1}{\pi_2} \cdot \frac{1 - \pi_2}{1 - \pi_1} = RR \cdot \frac{1 - \pi_2}{1 - \pi_1}$$

Iz zgornje povezave vidimo, da je OR vedno bolj daleč stran od 1 kot RR.

$$OR = \frac{\frac{\pi_1}{1 - \pi_1}}{\frac{\pi_2}{1 - \pi_2}} = \frac{\pi_1}{\pi_2} \cdot \frac{1 - \pi_2}{1 - \pi_1} = RR \cdot \frac{1 - \pi_2}{1 - \pi_1}$$

Iz zgornje povezave vidimo, da je OR vedno bolj daleč stran od 1 kot RR.

Še kaj?

$$OR = \frac{\frac{\pi_1}{1 - \pi_1}}{\frac{\pi_2}{1 - \pi_2}} = \frac{\pi_1}{\pi_2} \cdot \frac{1 - \pi_2}{1 - \pi_1} = RR \cdot \frac{1 - \pi_2}{1 - \pi_1}$$

Iz zgornje povezave vidimo, da je OR vedno bolj daleč stran od 1 kot RR.

Še kaj?

Strnimo: razmerje obetov je dober približek za relativno tveganje, če sta verjetnosti pojava v primerjanih skupinah majhni.