CMPT 413 Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Context-free Grammars

- Set of rules by which valid sentences can be constructed.
- Example:

```
Sentence → Noun Verb Object
```

```
Noun → trees | parsers
```

```
Verb → are | grow
```

Object → on Noun | Adjective

Adjective → *slowly* | *interesting*

- What strings can Sentence derive?
- Syntax only no semantic checking

Derivations of a CFG

- parsers grow on trees
- parsers grow on Noun
- parsers grow Object
- parsers Verb Object
- Noun Verb Object
- Sentence

Derivations and parse trees

Arithmetic Expressions

•
$$E \rightarrow E + E$$

- $E \rightarrow E * E$
- $E \rightarrow (E)$
- E → E
- $E \rightarrow id$

Leftmost derivations for id + id * id

$$E \rightarrow E + E$$
• $E \Rightarrow E + E$ $E \rightarrow E * E$ $\Rightarrow id + E$ $E \rightarrow (E)$ $\Rightarrow id + E * E$ $E \rightarrow -E$ $\Rightarrow id + id * E$ $E \rightarrow id$ $\Rightarrow id + id * id$

Leftmost derivations for id + id * id

$$E \rightarrow E + E$$
 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow -E$
 $E \rightarrow id$

•
$$E \Rightarrow E * E$$

 $\Rightarrow E + E * E$
 $\Rightarrow id + E * E$
 $\Rightarrow id + id * E$
 $\Rightarrow id + id * id$

Rightmost derivation for id + id * id

$$E \rightarrow E + E$$
 $E \Rightarrow E + E$ $E \rightarrow E * E$ $E + E * E$ $E \rightarrow (E)$ $E + E * id$ $E \rightarrow -E$ $E + id * id$ $E \rightarrow id$ $\Rightarrow id + id * id$

Rightmost derivation for id + id * id

$$E \rightarrow E + E \qquad E$$

$$E \rightarrow E * E \qquad E$$

$$E \rightarrow (E) \qquad \Rightarrow E + E * id \qquad E \qquad * E$$

$$E \rightarrow -E \qquad \Rightarrow E + id * id \qquad E \qquad + E \qquad id$$

$$E \rightarrow id \qquad \Rightarrow id + id * id \qquad id \qquad id$$

Parsing - Roadmap

- Parser is a decision procedure: builds a parse tree
- Top-down vs. bottom-up
- Recursive-descent with backtracking
- Bottom-up parsing (CKY)
- Shift-reduce parsing
- Combining top-down and bottom-up: Earley parsing

Top-Down vs. Bottom Up

Grammar: $S \rightarrow A B$ Input String: ccbca

 $A \rightarrow c \mid \epsilon$

 $B \rightarrow cbB \mid ca$

Top-Down/leftmost		Bottom-Up/rightmost		
$S \Rightarrow AB$	S→AB	ccbca ← Acbca	A→c	
⇒cB	A→c	← AcbB	B→ca	
⇒ ccbB	B→cbB	\Leftarrow AB	B→cbB	
⇒ ccbca	B→ca	\Leftarrow S	S→AB	

Top-Down: Backtracking

Transition Diagram

$$S \rightarrow cAa$$
 S: $C \rightarrow A \rightarrow a$
 $A \rightarrow cB \mid B$ A: $C \rightarrow B \rightarrow bcB \mid \epsilon$ B: $C \rightarrow B \rightarrow bcB \mid \epsilon$ B:

Bottom-up parsing overview

- Start from terminal symbols, search for a path to the start symbol
- Apply shift and reduce actions: postpone decisions
- LR parsing:
 - L: left to right parsing
 - R: rightmost derivation (in reverse or bottom-up)
- Useful for deterministic parsing (e.g. in compilers for programming languages)

Rightmost derivation for id + id * id

$$E \rightarrow E + E$$
 $E \Rightarrow E * E$
 $E \rightarrow E * E$ $\Rightarrow E * id$
 $E \rightarrow (E)$ $\Rightarrow E + E * id$
 $E \rightarrow -E$ $\Rightarrow E + id * id$ reduce with $E \rightarrow id$
 $E \rightarrow id$ $\Rightarrow id + id * id$ shift

Ambiguity

- Grammar is ambiguous if more than one parse tree is possible for some sentences
- Examples in English:
 - Two sisters reunited after 18 years in checkout counter
- It is undecidable to check using an algorithm whether a grammar is ambiguous

Parsing CFGs

- Consider the problem of parsing with arbitrary CFGs
- For any input string, the parser has to produce a parse tree
- The simpler problem: print **yes** if the input string is generated by the grammar, print **no** otherwise
- This problem is called *recognition*

CKY Recognition Algorithm

- The Cocke-Kasami-Younger algorithm
- As we shall see it runs in time that is polynomial in the size of the input
- It takes space polynomial in the size of the input
- Remarkable fact: it can find all possible parse trees (exponentially many) in polynomial time

Chomsky Normal Form

- Before we can see how CKY works, we need to convert the input CFG into Chomsky Normal Form
- CNF is one of many grammar transformations that *preserve* the language
- CNF means that the input CFG G is converted to a new CFG G' in which all rules are of the form:

$$A \rightarrow B C$$

$$A \rightarrow a$$

Epsilon Removal

• First step, remove epsilon rules

$$A \rightarrow B C$$

 $C \rightarrow \varepsilon \mid C D \mid a$
 $D \rightarrow b \quad B \rightarrow b$

• After ε-removal:

$$A \rightarrow B \mid B \mid C \mid D \mid B \mid a$$

 $C \rightarrow D \mid C \mid D \mid a \mid D \mid a$
 $D \rightarrow b \mid B \rightarrow b$

Removal of Chain Rules

• Second step, remove chain rules

$$A \rightarrow B C \mid C D C$$

 $C \rightarrow D \mid a$
 $D \rightarrow d \quad B \rightarrow b$

• After removal of chain rules:

$$A \rightarrow B a \mid B D \mid a D a \mid a D D \mid D D a \mid D D$$

 $D \rightarrow d \quad B \rightarrow b$

Eliminate terminals from RHS

• Third step, remove terminals from the rhs of rules

$$A \rightarrow B a C d$$

• After removal of terminals from the rhs:

$$A \rightarrow B N_1 C N_2$$
 $N_1 \rightarrow a$
 $N_2 \rightarrow d$

Binarize RHS with Nonterminals

• Fourth step, convert the rhs of each rule to have two non-terminals

$$A \rightarrow B N_1 C N_2$$

 $N_1 \rightarrow a$
 $N_2 \rightarrow d$

• After converting to binary form:

$$A \rightarrow B N_3$$
 $N_1 \rightarrow a$
 $N_3 \rightarrow N_1 N_4$ $N_2 \rightarrow d$
 $N_4 \rightarrow C N_2$

CKY algorithm

- We will consider the working of the algorithm on an example CFG and input string
- Example CFG:

$$S \rightarrow A X \mid Y B$$

 $X \rightarrow A B \mid B A \qquad Y \rightarrow B A$
 $A \rightarrow a \quad B \rightarrow a$

• Example input string: aaa

CKY Algorithm

	O	1	2	3
0		A, B $A \rightarrow a$ $B \rightarrow a$	X, Y $X \rightarrow A B \mid B A$ $Y \rightarrow B A$	$S \to A_{(0,1)} X_{(1,3)}$ $S \to Y_{(0,2)} B_{(2,3)}$
1			A, B $A \rightarrow a$ $B \rightarrow a$	X, Y $X \rightarrow A B \mid B A$ $Y \rightarrow B A$
2				A, B $A \rightarrow a$ $B \rightarrow a$
		a	a	a

Parse trees

CKY Algorithm

```
Input string input of size n
Create a 2D table chart of size n^2
for i=0 to n-1
    chart[i][i+1] = A if there is a rule A \rightarrow a and input[i]=a
for j=2 to N
    for i=j-2 downto 0
       for k=i+1 to j-1
          chart[i][j] = A if there is a rule A \rightarrow B C and
            chart[i][k] = B and chart[k][j] = C
return yes if chart[0][n] has the start symbol
else return no
```

CKY algorithm summary

- Parsing arbitrary CFGs
- For the CKY algorithm, the time complexity is $O(|G|^2 n^3)$
- The space requirement is $O(n^2)$
- The CKY algorithm handles arbitrary ambiguous CFGs
- All ambiguous choices are stored in the chart
- For compilers we consider parsing algorithms for CFGs that do not handle ambiguous grammars

Parsing - Summary

- Parsing arbitrary CFGs: $O(n^3)$ time complexity
- Top-down vs. bottom-up
 - Recursive-descent parsing
 - Shift-reduce parsing
- Earley parsing
- Ambiguous grammars result in parser output with multiple parse trees for a single input string