INT-RUP Analysis of AE Schemes

Avik Chakraborti, Nilanjan Datta and Mridul Nandi

Indian Statistical Institute, Kolkata

Sep 29, DIAC-2015, Singapore

Outline of the talk

- Introduction.
- 2 Main Result with Proof Sketch.
- Future Works.

Authenticated Encryption

Main Goal

- Confidentiality of Plaintext
- Integrity of Plaintext and Associated Data.

Releasing Unverified Plaintext Scenario

Why release unverified plaintext??

- Limited buffer can't hold entire plaintext.
- Problem: Adversary gets addition information.

RUP Setting (Andreeva et.al.)

- PA: Extractor capable of mimicking the decryption oracle.
- INT-RUP: Integrity Security of AE when adversary is given both encryption and decryption oracle.

Main Result

Result 1.

rate-1 Affine mode Authenticated Encryption mode is INT-RUP insecure.

Significance of the Result

Guideline: To achieve INT-RUP security, one has to compromise efficiency.

Main Result

Result 2.

CPFB (rate $\frac{3}{4}$) is INT-RUP insecure.

Questions

- How much efficiency we have to loose to get INT-RUP security?
- Can we have an INT-RUP secure scheme with rate $\frac{3}{4}$?

Main Result

Result 3.

m-CPFB (rate $\frac{3}{4}$) is INT-RUP insecure.

Significance

- INT-RUP comes with small degrade in efficiency.
- "rate-1" a borderline criteria for INT-RUP security.

Affine Mode AE

Figure: Structure of Affine Mode AE Schemes

Affine Mode AE

Matrix Representation

$$E. \begin{pmatrix} L \\ M \\ Y^* = \begin{pmatrix} Y \\ Y_{tag} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} X^* = \begin{pmatrix} X \\ X_{tag} \end{pmatrix} \\ Z = \begin{pmatrix} C \\ T \end{pmatrix} \end{pmatrix}$$

Structure of Decryption Matrix

$$\begin{pmatrix} D_{11} & D_{12} & D_{13} & D_{14} \\ D_{21} & D_{22} & D_{23} & D_{24} \\ D_{31} & D_{32} & D_{33} & D_{34} \\ D_{41} & D_{42} & D_{43} & D_{44} \end{pmatrix} \cdot \begin{pmatrix} L \\ C \\ V \\ V_{tag} \end{pmatrix} = \begin{pmatrix} U \\ U_{tag} \\ M \\ T \end{pmatrix}$$

Properties of *D*-matrix

- Integrity of AE $\Rightarrow D_{12}$ has high rank.
- Privacy of AE $\Rightarrow D_{33}$ has high rank.

INT-RUP Attack

Queries of INT-RUP Adversary

- Encryption Query: $(N, AD, M^0 = (M_1^0, M_2^0, ..., M_I^0))$. Let, $C^0 = (C_1^0, C_2^0, ..., C_I^0, T^0)$ be the tagged ciphertext.
- Unverified Plaintext Query: $(N, AD, C^1 = (C_1^1, C_2^1, \dots, C_l^1))$. Let $M^1 = (M_1^1, M_2^1, \dots, M_l^1)$ be the corresponding plaintext.
- Forged Query: $(N, AD, C^f = (C_1^f, C_2^f, \dots, C_l^f), T^f)$, which realizes a $\delta = (\delta_1, \dots, \delta_l)$ sequence.

C^f realizes a $\delta = (\delta_1, \dots, \delta_I)$ -sequence

$$\forall i \leq I, \ U_i^f = U_i^{\delta_i} \text{ and } \forall i > I, \ U_i^f = U_i^0.$$

$$\begin{pmatrix} D_{12} & D_{13} \\ D_{32} & D_{33} \end{pmatrix} \cdot \begin{pmatrix} \Delta C^{01} \\ \Delta V^{01} \end{pmatrix} = \begin{pmatrix} \Delta U^{01} \\ \Delta M^{01} \end{pmatrix}$$

Step I: Find ΔV^{01}

$$\Delta V^{01} = D_{33}^{-1} (\Delta M^{01} + D_{32} \Delta C^{01})$$

Note: D_{33} needs to be invertible.

$$\begin{pmatrix} D_{12} & D_{13} \\ D_{32} & D_{33} \end{pmatrix} \cdot \begin{pmatrix} \Delta C^{0f} \\ \Delta V^{0f} \end{pmatrix} = \begin{pmatrix} \Delta U^{0f} \\ \Delta M^{0f} \end{pmatrix}$$

Step II: Find ΔC^{0f} in terms of δ

$$\Delta C^{0f} = D_{12}^{-1} \cdot (\Delta U^{0f} + D_{32} \Delta V^{0f})
= D_{12}^{-1} (\delta \cdot \Delta U^{01} + D_{32} \delta \cdot \Delta V^{01})
= D^* \cdot \delta$$

Note: D_{12} needs to be invertible.

$$\left(\begin{array}{ccc} D_{22} & D_{23} & D_{24} \\ D_{42} & D_{43} & D_{44} \end{array}\right) \cdot \left(\begin{array}{c} \Delta C^{0f} \\ \Delta V^{0f} \\ \Delta V^{0f}_{tag} \end{array}\right) = \left(\begin{array}{c} \Delta U^{0f}_{tag} \\ \Delta T^{0f} \end{array}\right)$$

Step III: Find δ that makes $\Delta U_{tag}^{0f}=0$

Solve the following set of equations to find a δ :

$$D_{22}\Delta C^{0f} + D_{23}\Delta V^{0f} = 0$$

This equation has at least one solution as long as l > (c-1).n

$$\begin{pmatrix} D_{22} & D_{23} & D_{24} \\ D_{42} & D_{43} & D_{44} \end{pmatrix} \cdot \begin{pmatrix} \Delta C^{0f} \\ \Delta V^{0f} \\ \Delta V^{0f}_{tag} \end{pmatrix} = \begin{pmatrix} \Delta U^{0f}_{tag} \\ \Delta T^{0f} \end{pmatrix}$$

Step IV: Find ΔC^{0f} and ΔT^{0f}

Put $\delta = \delta^*$ in the following equations:

$$\begin{array}{lcl} \Delta C^{0f} & = & D_{12}^{-1}.D^*.\delta \\ \Delta T^{0f} & = & D_{42}\Delta C_{0f} + D_{43}\Delta V_{0f} \end{array}$$

Case When $rank(D_{12})$ or $rank(D_{33})$ is not full

Properties of Decryption Matrix

 $rank(D_{12})$ and $rank(D_{33})$ should be high.

Extend the INT-RUP attack

Set I appropriately to a high value with a $(n \times n)$ submatrix which has full rank for both D_{12} as well as D_{33} .

Extensions of the result

- Any "rate-1" block-cipher based AE scheme is not integrity secure against Nonce-repeating adversaries.
- This attack is applicable for IACBC and IAPM (construction with logl-many masking keys.
- In general, the attack is applicable to any "rate-1" affine mode AE for which D_{12} and D_{33} are invertible, even if the number of masking keys it use depends on the message length.

Revisit CPFB

Figure : Encryption and Tag Genration Phase of CPFB. Here $\kappa_i = E_K(N||i||I_N)$, $\kappa[i] = \kappa_j$ where $j = \lceil \frac{i}{2^{32}} \rceil$, $X^A := U_a$ where $U_i = U_{i-1} + E_{\kappa_0}(A_i||i)$ and $L = E_{\kappa_0}(a||I||0)$.

INT-RUP Attack on CPFB

INT-RUP Attack on CPFB

- **1** Encryption query: (N, A, M^0) , $|M^0| = I = 129$. Let C^0 be the ciphertext
- **2** Unverified Plaintext decryption query: (N, A, C^1) of length I. Let, M^1 be the corresponding plaintext.
- **3** Compute Y values: Y_1^0, \dots, Y_l^0 and Y_1^1, \dots, Y_l^1 from the two queries (by $M^0 + C^0$ and $M^1 + C^1$).
- **4** Find the δ-sequence: $δ = (δ_1, ..., δ_I)$, with $δ_1 = 0$ such that, $\sum_{i=2}^I Y_i^{δ_i} = \sum_{i=2}^I Y_i^0.$

Expect 2^{32} -many such δ -sequences.

INT-RUP Attack on CPFB

INT-RUP Attack on CPFB

Perform the following for all such δ -sequence:

- Set $C_1^f = C_1^0$. For all 1 < i < I, set $C_i^f = C_i^{\delta_i}$ if $\delta_{i-1} = \delta_i$ and $C_i^{\delta_i} + Y_i^0 + Y_i^1$, otherwise.
- ② Set $C_I^f = C_I^0$ if $\delta_I = 0$. Else, set $C_I^f = C_I^0 + Y_I^0 + Y_I^1$.
- **3** Return $(C_1^f, C_2^f, \dots, C_I^f, T^0)$ as forged Ciphertext.

Building an INT-RUP Secure rate- $\frac{3}{4}$ Construction

Potential Weakness of CPFB

- ullet Y_i values can be observed. Only Z_i-values are unknown.
- 2 Z_i has only 32-bit entropy on the Tag.

Requirement of the New Construction

- Ensure 128-bit entropy of *Z*-values on the tag.
- Ensure at-least 4 different Z-values for 2 messages of same length.

mCPFB: modified CPFB

Introduce ECC Code

Expand $M = (M_1, ..., M_l)$ by a Distance 4 Error Correcting Code ECCode:

$$\mathsf{ECCode}(M) = (M_1, \dots, M_I, M_{I+1}, M_{I+2}, M_{I+3}) (M_{I+1}, M_{I+2}, M_{I+3}) = V_{\beta}^{(3,I)} \cdot M$$

Produce 128-bit entropy of Z-values during Tag Generation:

Update Z^M as follows:

$$Z_M = V_{\alpha}^{(4,l+3)} \cdot (Z_2, Z_3, \cdots, Z_{l+3}, Z_{l+4}) \oplus (0^{32} || (Y_2 \oplus \cdots \oplus Y_{l+3}))$$

mCPFB: modified CPFB

Changes in the keys

- κ_0 is used as the masking key only.
- κ_1 is used as block-cipher key for AD processing.
- $\kappa_1, \ldots, \kappa_{-2}$ is used as block-cipher keys for message processing.
- κ_{-1} is used as block-cipher key for tag and producing *L*-values.

INT-RUP Security of mCPFB

Claim 1

Consider the function f that takes N, I and i as input and outputs O such that $O = E_{\kappa[i]}(I||(i \mod 2^{32}) + \kappa_0)$ where $\kappa[i] = E_K(N||j||I)$, $j = \lceil \frac{i}{2^{32}} \rceil$. f is assumed to have (q,ϵ) -PRF security where ϵ is believed to achieve beyond birthday security.

INT-RUP advantage

 $f: (q_e + q_r, \epsilon)$ -PRF. Any adversary $\mathcal A$ with q_e many encryption query and q_r many unverified plaintext queries, one forgery attempts, has the advantage:

$$Adv_{mCPFB}^{int_rup}(\mathcal{A}) \leq rac{5}{2^{128}} + \epsilon$$

Proof Sketch

Argument for Different Cases

- (Case A) $\forall i, N^* \neq N_i$: Through randomness of κ_{-1} .
- (Case B) \exists unique $i \ni N^* = N_i, T^* \neq T_i$: Through randomness of κ_{-1} .
- (Case C) \exists unique $i \ni N^* = N_i$, $T^* = T_i$, $|C_i| = |C^*|$: Through randomness of Z_i 's.
- (Case D) \exists unique $i \ni N^* = N_i$, $T^* = T_i$, $|C_i| \neq |C^*|$: Through randomness of κ_{-1} .

Future Works

- INT-RUP analysis for B/C based constructions with rate < 1.
- INT-RUP Security Analysis of ELmD, CLOC and SILC.

Thank you