Duplikačná lema: Nech $a, b, c, d \in \mathbb{N}^+$, pre ktoré platí a + b = c + d aj $a^2 + b^2 = c^2 + d^2$. Potom c = a alebo c = b.

Dôkaz: Z prvej rovnice vyjadríme d = a + b - c a dosadíme do druhej. Po úprave dostaneme vzťah $c^2 - ac - bc + ab = 0$, ktorý sa dá prepísať na tvar (c - a)(c - b) = 0. Z toho vyplýva c = a alebo c = b.

Mocninová lema: Nech $n \in \mathbb{N}$. Nech $a_1, ..., a_n, b$ sú navzájom rôzne kladné celé čísla. Potom nasledovná sústava nemá riešenie:

$$\sum_{k=1}^{n} a_k = b$$
$$\sum_{k=1}^{n} a_k^2 = b^2$$

 $\mathbf{D\hat{o}kaz}$: Rozoberieme tri situácie na základe n.

Ak n = 0, tak by platilo b = 0, čo je spor s tým, že b je kladné.

Ak n=1, tak by platilo $a_1=b$, čo je spor s tým, že sú navzájom rôzne.

Ak $n \geq 2$, tak dosadením b do druhej rovnice dostaneme nutný vzťah $\sum_{k=1}^n a_k^2 = (\sum_{k=1}^n a_k)^2$, čo sa dá upraviť na tvar $\sum_{i\neq j} a_i a_j = 0$. To je spor, keď že každé a_i aj a_j je kladné, a teda ich súčet nemôže byť nulový.

Definícia 1: Nech G je súvislý jednoduchý netriviálny graf. Ak existuje vrcholové ohodnotenie grafu G také, že platí:

- 1. vrcholom sú priradené navzájom rôzne kladné celé čísla
- 2. súčet susedov každého vrcholu je rovnaký
- 3. súčet druhých mocnín susedov každého vrcholu je rovnaký tak G nazveme **vrcholovo bimagickým grafom**.

Veta 1.1: Nech G je vrcholovo bimagický graf. Ak G obsahuje dvojicu vrcholov stupňa 1, potom majú spoločného suseda.

Dôkaz: Sporom. Nech G obsahuje dva vrcholy u, v stupňa 1, ktoré nemajú spoločného suseda. Nech x je hodnota vrcholu u. Nech y je hodnota vrcholu v.

Nech sú vrcholy u, v susedné. Podľa u má graf magický súčet y a podľa v má graf magický súčet x. Z toho vyplýva x=y, čo je spor s tým, že vrcholom sú priradené navzájom rôzne čísla.

Nech majú vrcholy u, v rôznych susedov w_1, w_2 . Označme hodnoty týchto vrcholov z_1, z_2 . Podľa u má graf magický súčet z_1 a podľa v má graf magický súčet z_2 . Z toho vyplýva $z_1 = z_2$, čo je opäť spor.

Veta 1.2: Nech G je vrcholovo bimagický graf. Potom majú všetky vrcholy stupňa 2 rovnakú množinu susedov.

 $\mathbf{D}\mathbf{\hat{o}kaz}$: Sporom. Nech G obsahuje dva vrcholy u,v stupňa 2, ktoré nemajú rovnakú množinu susedov. Nech x je hodnota vrcholu u. Nech y je hodnota vrcholu v.

Nech sú vrcholy u,v susedné. Nech w_1 je druhý sused u a z_1 je jeho hodnota. Nech w_2 je druhý sused v a z_2 je jeho hodnota. Podľa u má graf magický súčet $y+z_1$ a podľa v má graf magický súčet $x+z_2$. Podľa u má graf bimagický súčet $y^2+z_1^2$ a podľa v má graf bimagický súčet $x^2+z_2^2$. To znamená, že $x+z_2=y+z_1$ a zároveň $x^2+z_2^2=y^2+z_1^2$. Z duplikačnej lemy potom vyplýva, že y=x alebo $y=z_2$, čo je spor s tým, že vrcholom sú priradené navzájom rôzne čísla.

Nech majú vrcholy u,v práve jedného spoločného suseda w, jeho hodnotu označíme z. Nech w_1 je druhý sused u a z_1 je jeho hodnota. Nech w_2 je druhý sused v a z_2 je jeho hodnota. Podľa v má graf magický súčet $z+z_1$ a podľa v má graf magický súčet $z+z_2$. Z toho vyplýva $z_1=z_2$, čo je spor.

Nech majú vrcholy u,v odlišných susedov. Nech w_1,w_2 sú susedia u, pričom ich hodnoty sú z_1,z_2 . Nech w_3,w_4 sú susedia v, pričom ich hodnoty sú z_3,z_4 . Podľa u má graf magický súčet z_1+z_2 a podľa v má graf magický súčet z_3+z_4 . Podľa u má graf bimagický súčet $z_1^2+z_2^2$ a podľa v má graf bimagický súčet $z_3^2+z_4^2$. To znamená, že $z_1+z_2=z_3+z_4$ a zároveň $z_1^2+z_2^2=z_3^2+z_4^2$. Z duplikačnej lemy potom vyplýva, že $z_3=z_1$ alebo $z_3=z_2$, čo je opäť rovnaký spor.

Veta 1.3: Nech G je vrcholovo bimagický graf. Potom má každá dvojica vrcholov stupňa 3 buď rovnakú množinu susedov, alebo nemá spoločného suseda.

Dôkaz: Veľmi podobný ako v predchádzajúcich dvoch vetách.

Veta 1.4: Nech G je vrcholovo bimagický graf a u, v sú nejaké jeho dva vrcholy. Nech x je počet susedov vrcholu u, ktoré nie sú susedmi vrcholu v. Nech y je počet susedov vrcholu v, ktoré nie sú susedmi vrcholu u. Potom platí:

(i)
$$x = 0 \iff y = 0$$

(ii)
$$x, y \neq 1$$

(iii)
$$(x,y) \neq (2,2)$$

Dôkaz: Ak pre vrcholy u,v zrátame magický alebo bimagický súčet, ich spoloční susedia budú zarátaní na oboch stranách. Stačí sa preto venovať magickému a bimagickému súčtu vrcholov, ktoré nie sú zároveň susedmi u aj v (tých je x, resp. y). Sporom budeme predpokladať, že G je vrcholovo bimagický a neplatí (i), (ii) alebo (iii). To znamená, že nasledovná sústava má riešenie:

$$\sum_{k=1}^x a_k = \sum_{k=1}^y b_k$$

$$\sum_{k=1}^x a_k^2 = \sum_{k=1}^y b_k^2$$
 ak $a_1,...,a_x,b_1,...,b_y$ sú navzájom rôzne kladné celé čísla.

Ak neplatí (i), tak BUNV nech x > 0 a y = 0. Druhá rovnica by potom mala tvar $\sum_{k=1}^{x} a_k^2 = 0$. Jediné riešenie tejto rovnice je zjavne nulové, čo je spor s tým, že vo vrcholovo bimagickom grafe sú vrcholom priradené kladné čísla.

Ak neplatí (ii), tak BUNV nech y = 1. Potom dostaneme sústavu z mocninovej lemy, o ktorej vieme, že nemá riešenie (čo je spor).

Ak neplatí (iii), tak musí platiť $a_1 + a_2 = b_1 + b_2$ aj $a_1^2 + a_2^2 = b_1^2 + b_2^2$. Z duplikačnej lemy potom vyplýva $b_1 = a_1$ alebo $b_1 = a_2$, čo je spor s tým, že vo vrcholovo bimagickom grafe sú vrcholom priradené navzájom rôzne čísla.

Veta 1.5: Nech $m, n \in \mathbb{N}^+$, pričom $m, n \geq 2$ a $(m, n) \neq (2, 2)$. Nech $A, B \subset \mathbb{N}^+$, pričom |A| = m - 1, |B| = n - 1. Nech $S_A = \sum_{k=1}^{m-1} A_k$, $S_B = \sum_{k=1}^{n-1} B_k$, $T_A = \sum_{k=1}^{m-1} A_k^2$, $T_B = \sum_{k=1}^{n-1} B_k^2$ a platí:

- 1. $A \cap B = \emptyset$
- $2. S_A < S_B$

$$3. (S_A - S_B)^2 < T_B - T_A$$

3.
$$(S_A - S_B)^2 < T_B - T_A$$

4. $\frac{T_B - T_A}{S_B - S_A} \pm (S_B - S_A) \notin A \cup B$

Nech $C = \{A'_1, ..., A'_m, B'_1, ..., B'_n\}$ je množina čísel definovaná takto:

$$A'_k = A_k(S_B - S_A) \text{ pre } k \in \{1, ..., m-1\}$$

 $A'_m = \frac{T_B - T_A + (S_A - S_B)^2}{2}$
 $B'_k = B_k(S_B - S_A) \text{ pre } k \in \{1, ..., m-1\}$

$$B'_k = B_k(S_B - S_A) \text{ pre } k \in \{1, ..., n-1\}$$

 $B'_n = \frac{T_B - T_A - (S_A - S_B)^2}{2}$

Potom C obsahuje navzájom rôzne kladné celé čísla a platí

(i)
$$\sum_{k=1}^{m} A'_k = \sum_{k=1}^{n} B'_k$$

(ii) $\sum_{k=1}^{m} (A'_k)^2 = \sum_{k=1}^{n} (B'_k)^2$

Dôkaz: Výpočtom.

Dôsledok 1.5: Nech $m, n \in \mathbb{N}^+$, pričom $m, n \geq 2$ a $(m, n) \neq (2, 2)$. Nech vieme zostrojiť množinu C z vety 1.5. Potom $K_{m,n}$ je vrcholovo bimagický.

Dôkaz: Vrcholom v jednej partícii priradím hodnoty A_1' až A_m' a druhej B_1' až B_n' . Magické súčty sú iba $\sum_{k=1}^m A_k'$ a $\sum_{k=1}^n B_k'$, podľa vety 1.5 sú rovnaké. Bimagické súčty sú iba $\sum_{k=1}^m (A_k')^2$ a $\sum_{k=1}^n (B_k')^2$, podľa vety 1.5 sú tiež rovnaké. Podmienky z vety zároveň zaručia, že vrcholom budú priradené navzájom rôzne kladné celé čísla.

Poznámka 1.5: Jedno z riešení je $K_{2,3}$, pričom $A'_1=4$, $A'_2=5$, $B'_1=2$, $B_2'=6,\ B_3'=1.$ Toto riešenie vzniklo algoritmickým použitím vety 1.5 na množiny $A = \{2\}$ a $B = \{1,3\}$. Je veľký predpoklad, že takéto množiny sa dajú zostrojiť pre všetky prípustné m, n, ale zatiaľ sa mi to nepodarilo dokázať.

Hypotéza 1: Existuje graf, ktorý je vrcholovo bimagický a nie je kompletný bipartitný?

Definícia 2: Nech G je súvislý jednoduchý netriviálny graf. Ak existuje hranové ohodnotenie grafu G také, že platí:

- 1. hranám sú priradené navzájom rôzne kladné celé čísla
- 2. súčet incidentných hrán každého vrcholu je rovnaký
- 3. súčet druhých mocnín incidentných hrán každého vrcholu je rovnaký tak G nazveme **hranovo bimagickým grafom**.

Jeden z hranovo bimagických grafov je cesta na dvoch vrcholoch (s ľubovoľným kladným ohodnotením). Zaujímavá skupina potenciálne hranovo bimagických grafov je $K_{n,n}$: sú ekvivalentné semibimagickým štvorcom veľkosti $n \times n$. A keďže už poznáme semibimagické štvorce veľkosti 4×4 a väčšie, tak $K_{n,n}$ je hranovo bimagický pre $n \geq 4$.

Veta 2.1: Nech G je hranovo bimagický graf, ktorý má aspoň tri vrcholy. Potom G neobsahuje vrchol stupňa 1.

Dôkaz: Sporom. Nech u je vrchol stupňa 1, v je jeho jediný sused a x je hodnota hrany medzi vrcholmi u,v. Potom podľa u musí platiť, že magický súčet je x. Lenže ak je G súvislý a má aspoň tri vrcholy, tak vrchol v musí mať ešte ďalší susedný vrchol w. Nech y je hodnota hrany medzi vrcholmi v,w. Potom však podľa v musí platiť, že magický súčet je aspoň x+y>x, čo je spor.

 \mathbf{Veta} 2.2: Nech G je hranovo bimagický graf. Potom G neobsahuje vrchol stupňa 2.

Dôkaz: Sporom. Nech u je vrchol stupňa 2. Označme jeho susedov v, w. Nech b, c sú ohodnotenia hrán medzi u, v, resp. u, w. Nech $a_1, a_2, ..., a_n$ sú ohodnotenia hrán, ktoré sú incidentné sw okrem hrany uw. Podľa u musí platiť, že magický súčet je b + c a bimagický súčet je $b^2 + c^2$. Podľa w musí platiť, že magický súčet je $c + \sum_{k=1}^{n} a_k$ a bimagický súčet je $c^2 + \sum_{k=1}^{n} a_k^2$. Z toho vyplýva, že by sústava z mocninovej lemy mala riešenie, čo je spor.

Dôsledok 2.2: Ak má bimagický graf aspoň tri vrcholy, tak všetky jeho vrcholy majú stupeň aspoň 3.

Veta 2.3: Nech G je hranovo bimagický graf, ktorý má aspoň tri vrcholy. Nech u, v sú ľubovoľné dva susedné vrcholy. Potom $max\{d(u), d(v)\} \ge 4$.

Dôkaz: Sporom. Predpokladajme, že existuje dvojica susedných vrcholov u,v takých, že $\max\{d(u),d(v)\}<4$. Z dôsledku 2.2 potom vyplýva, že nutne d(u)=d(v)=3. Označme x hodnotenie hrany medzi u,v. Označme y_1,y_2 zvyšné hodnotenia hrán z u a z_1,z_2 zvyšné hodnotenia hrán z v. Podľa u musí platiť, že magický súčet je $x+y_1+y_2$ a bimagický súčet je $x^2+y_1^2+y_2^2$. Podľa v musí platiť, že magický súčet je $x+z_1+z_2$ a bimagický súčet je $x^2+z_1^2+z_2^2$. Teda musí platiť $y_1+y_2=z_1+z_2$ aj $y_1^2+y_2^2=z_1^2+z_2^2$. Z duplikačnej lemy potom vyplýva, že $z_1=y_1$ alebo $z_1=y_2$, čo je spor s tým, že hranám budú priradené navzájom rôzne čísla.

Hypotéza 2: Existuje graf, ktorý je hranovo bimagický a nie je kompletný bipartitný?