More examples of mapping reductions:

- Consider the following set, HET = $\{\langle M \rangle \mid TM \ M \ halts \ on \ empty \ tape\}$. HET stands for Halts on Empty Tape. The input for HET is ϵ (the empty string).
- **Theorem 5.1:** HET is not decidable.

Proof:

It suffices to show that U ≤_m HET.

Given $\langle M, x \rangle$ to U, we want to construct $\langle M' \rangle$ to HET, such that M accepts x iff M' halts on empty tape.

If M accepts x, then M' should halt on empty tape.

If M does not accept x, then M' should not halt on empty tape.

f on input $\langle M, x \rangle$ does the following:

- 1. Define M'. M' on input y does the following:
 - a. Runs M on x.
 - b. If M accepts, then M' accepts y.
 - c. Else, loop.
- 2. Returns (M')

If M accepts x, then M' accepts $\sum_{i=1}^{\infty}$ (everything).

In particular, M' accepts ε.

This means that M' halts on empty tape.

This means that $\langle M' \rangle \in HET$.

If M does not accept x, then M' always loops.

M' could loop at 2 places:

- 1. Line 1a. "Runs M on x". If M does not accept x because it loops, then M' loops here.
- 2. Line 1c. "Else, loop" If M does not accept x because it rejects it, then M' loops here.

In particular, M' does not halt on empty tape.

Therefore, $\langle M' \rangle \notin HET$.

Note: HET is recognizable.

Theorem 5.2: Let ODD = $\{\langle M \rangle \mid L(M) \text{ is finite and } |L(M)| \text{ is odd}\}$. ODD is not recognizable.

Proof:

Suffices to prove that $\neg U \leq_m ODD$.

Given $\langle M, x \rangle$ to $\neg U$, we want to construct $\langle M' \rangle$ to ODD, such that M does not accept x iff L(M') is finite and |L(M)| is odd.

If M does not accept x, then L(M') is finite and |L(M)| is odd.

If M accepts x, then L(M') is infinite or |L(M)| is even.

f on input $\langle M, x \rangle$ does the following:

- 1. Define M'. M' on input y does the following:
 - a. If y = 010, then accept.
 - b. Run M on x.
 - c. If M accepts x, then M' accepts anything. (M' accepts an infinite number of strings.)
 - d. Else, M' rejects y.
- 2. Return (M')

If M does not accept x, then M' will either accept $\{010\}$ (line 1a.) or it will reject everything. Hence, the only string L(M') can be is $\{010\}$. Therefore, $\langle M' \rangle \in ODD$.

If M accepts x, $L(M') = \sum_{i=1}^{x}$, which is infinite. Therefore, $\langle M' \rangle \notin ODD$.

Theorem 5.3: Let FIN = $\{\langle M \rangle \mid L(M) \text{ is finite}\}\$ and let INF = \neg FIN.

I.e. INF is the complement of FIN.

I.e. INF = $\{\langle M \rangle \mid L(M) \text{ is infinite}\}$

Both FIN and INF are not recognizable.

Proof:

It suffices to show that

- a. U≤_m FIN
- b. $U \leq_m INF$

Note: This is the reason why we can use U instead of ¬U:

Recall from theorem 4.5 that "If $P \leq_m Q$, then $\neg P \leq_m \neg Q$, where $\neg P$ is the complement of P and $\neg Q$ is the complement of Q."

Since we can show that $\neg U \leq_m INF$, we can show that $\neg (\neg U) \leq_m \neg INF$ or $U \leq_m FIN$. Similarly, since we can show that $\neg U \leq_m FIN$, we can show that $\neg (\neg U) \leq_m \neg FIN$ or $U \leq_m INF$.

Proof for INF:

Given $\langle M, x \rangle$ to U, we want to construct $\langle M' \rangle$ to INF such that if M accepts x, then M' accepts an infinite language and if M doesn't accept x, then M' accepts a finite language.

f on input $\langle M, x \rangle$ does the following:

- 1. Define M'. M' on input y does the following:
 - a. If $y = \emptyset$, then accept.
 - b. Run M on x.
 - c. If M accepts x, then M' accepts anything. (M' accepts an infinite number of strings.)
 - d. Else, M' rejects y.
- 2. Return (M')

If M accepts x, then $L(M') = \sum^{*}$. Therefore, $\langle M' \rangle \in INF$.

If M does not accept x, then M' will either accept \emptyset (line 1a.) or it will reject everything. Therefore, $\langle M' \rangle \notin INF$.

Proof for FIN:

Given $\langle M, x \rangle$ to U, we want to construct $\langle M' \rangle$ to FIN such that if M accepts x, then M' accepts a finite language and if M doesn't accept x, then M' accepts an infinite language.

Note: There's a problem here. Normally, if M doesn't accept x, M' accepts a subset of what it would accept if M accepts x. (See below). However, in this case, if M doesn't accept x, M' accepts an infinite language while if M accepts x, M' accepts only a finite language.

f on input $\langle M, x \rangle$ does the following:

- 1. Define M'. M' on input y does the following:
 - a. Run M on x for |y| steps.
 - b. If M accepts x, in at most |y| steps, then M' reject.
 - c. Else, M' accept.
- 2. Return (M')

Note: Because of line 1a., we don't have the problem that M runs on x forever.

If M accepts x, there exists a k, such that M accepts x after k steps. This means that M' accepts y if |y| < k and rejects y if $|y| \ge k$. Hence, $L(M') = \{y \mid |y| < k\} \leftarrow$ finite. Therefore, $\langle M' \rangle \in FIN$.

If M does not accept x, then \forall k, M does not accept x in k steps. Therefore, \forall y $\in \sum^*$, M' accepts y (in line 1c.). Therefore, L(M') = $\sum^* \leftarrow$ infinite. Therefore, $\langle M' \rangle \notin FIN$. Here is the general pattern for constructing "M' on input y does the following":

- 1. M' might accept a certain input.
- 2. Run M on x.
- 3. If M accepts x, then maybe accept some more y's.
- 4. Else, reject/loop

Notice that if M does not accept x, then M' only accepts a subset of what it would accept if M accepts x.

- **Theorem 5.4:** Let EQUIV = {(M1, M2) | L(M1) = L(M2)}. EQUIV is not recognizable.

Proof:

The standard approach is to show that $\neg U \leq_m EQUIV$.

Given $\langle M, x \rangle$ as to $\neg U$, we want to construct $\langle M1, M2 \rangle$ to EQUIV, such that if M does not accept x then L(M1) \equiv L(M2) and if M accepts x, then L(M1) \neq L(M2).

We want to fix M1 to take a specific string, which will be 010.

I.e. $L(M1) = \{010\}$

I.e. M1 is a TM that only accepts the string 010 and nothing else.

f on input $\langle M, x \rangle$ does the following:

- 1. Define M1. M1 on input y does the following:
 - a. If y = 010, then accept.
 - b. Else, reject.
- 2. Define M2. M2 on input z does the following:
 - a. If z is 010, then accept.
 - b. Run M on x.
 - c. If M accepts, then M2 accepts.
 - d. Else, M2 rejects.
- 3. Returns (M1, M2)

Alternative Proof:

Here, we will prove that $E \leq_m EQUIV$, where $E = \{\langle M \rangle \mid L(m) = \emptyset\}$.

 $\langle M \rangle \in E \text{ iff } \langle M, M_{\alpha} \rangle \in EQUIV$, where M_{α} is any TM that accepts no string.

This proof would be easier to prove than the first proof.

- **Theorem 5.5:** Let SUBSET = $\{\langle M1, M2 \rangle \mid L(M1) \subseteq L(M2)\}$. SUBSET is not recognizable.

Proof:

 $\langle M \rangle \in E \text{ iff } \langle M, M_{\alpha} \rangle \in SUBSET, \text{ where } M_{\alpha} \text{ is any TM that accepts no string.}$

Rice's Theorem:

- **Theorem 5.6: Rice's theorem** states that if P is a nontrivial property of recognizable languages, then L_P is undecidable.

$$L_P = \{\langle M \rangle \mid L(M) \in P\}$$

L_p is the set of TM codes whose language has property P.

 A trivial property of a language is a property that all languages have or no languages have.

- A **nontrivial property** of a language is a property such that there is at least one language that satisfies the property and at least one language that does not.
- A property P of languages is simply a set of languages.
 - E.g. The set of finite languages is a property.
 - E.g. The set of infinite languages is a property.
 - E.g. The set of finite languages that have an odd number of strings in them is a property.
- Some trivial properties are:
 - The empty set of languages. Denoted as Ø.
 Ø is a language which has no strings. (No language has this property.)
 - The set of all languages. (Every language has this property.)

Note: There is a difference between the following properties:

- 1. Ø This means that the language has no strings. It is a trivial property.
- 2. {Ø} This means that the language contains nothing. It is a nontrivial property.

 \emptyset is a language containing no string. $\{\emptyset\}$ is a language containing exactly one string, the empty string, which has length 0.

- Proof:

Let P be a nontrivial property of recognizable languages.

It suffices to prove that U ≤_m L_p.

Either $\{\emptyset\} \in P$ or $\{\emptyset\} \notin P$.

Case 1: {Ø} ∉ P

Since P is nontrivial, some recognizable language, L, is in P.

I.e. L ∈ P

 $L \neq \emptyset$ because L belongs to P and \emptyset doesn't belong to P.

Let M_i be a TM such that $L(M_i) = L$.

I.e. M₁ recognizes L.

We want a mapping reduction from U to L_D.

Given $\langle M, x \rangle$ to U, we want to construct a machine M' to L_P such that if M accepts x then L(M') has property P and if M does not accept x, then L(M') does not have property P.

We will use L as an example of a language that has property P and we will use the empty language, $L = \emptyset$, as a language that doesn't have property P.

f on input $\langle M, x \rangle$ does the following:

- 1. Define M'. M' on input y does the following:
 - a. Run M on x.
 - b. If M accepts, then
 - c. Run M₁ on y
 - d. If M₁ accepts, then accept.
 - e. Else, reject
 - f. Else, reject
- 2. Return (M')

This is a diagram of the proof:

If M accepts x, then L(M') = L. This means that $\langle M' \rangle \in L_p$. If M does not accept x, then $L(M') = \emptyset$. No string is accepted. This means that $\langle M' \rangle \notin L_p$.

Case 2: $\{\emptyset\} \subseteq P$

Consider ¬P, the complement of property P.

 $\neg P = \{L \mid L \notin P\}$

I.e. ¬P is the set of languages that do not have property P.

Since $\{\emptyset\} \in P$, it follows that $\{\emptyset\} \notin \neg P$.

Now, we can apply case 1 to $\neg P$.

By case 1, $L_{\neg P}$ is undecidable.

By theorem 3.3, which states that "If L is a decidable language, then its complement is also decidable. I.e. The set of decidable languages is closed under complementation.", we know that if language L is undecidable, then its complement, $\neg L$, is also undecidable.

Hence, we know that $\neg L_{\neg P}$ is also undecidable.

 $\neg L_{\neg P}$ is the set of languages that have the property P.

I.e. $\Box L_{\neg P}$ is simply L_{P} .

So L_P is undecidable.