Sistemas de Numeração

Um numeral é um símbolo ou grupo de símbolos que representa um número em um determinado instante da evolução do homem. Tem-se que, numa determinada escrita ou época, os numerais diferenciaram-se dos números do mesmo modo que as palavras se diferenciaram das coisas a que se referem. Os símbolos "11", "onze" e "XI" (onze em latim) são numerais diferentes, representativos do mesmo número, apenas escrito em idiomas e épocas diferentes.

Um sistema de numeração, (ou sistema numeral) é um sistema em que um conjunto de números são representados por numerais de uma forma consistente. Pode ser visto como o contexto que permite ao numeral "11" ser interpretado como o numeral romano para dois, o numeral binário para três ou o numeral decimal para onze.

Sistema Decimal

- O sistema decimal é um sistema de numeração de posição que utiliza a <u>base</u> <u>dez</u>.
- Símbolos da base Decimal: 0 1 2 3 4 5 6 7 8 9

Baseia-se em uma numeração de posição, onde os dez algarismos indo-arábicos: 0 1 2 3 4 5 6 7 8 9 servem a contar unidades, dezenas, centenas, etc. da direita para a esquerda. Contrariamente à numeração romana, o algarismo árabe tem um valor diferente segundo sua posição no número: assim, em 111, o primeiro algarismo significa 100, o segundo algarismo 10 e o terceiro 1, enquanto que em VIII (oito em numeração romana) os três I significam todos 1.

Assim:

$$347 = 3 \cdot 100 + 4 \cdot 10 + 7 \cdot 1 = 3 \cdot 10^2 + 4 \cdot 10^1 + 7 \cdot 10^0$$

No sistema decimal o símbolo 0 (zero) posicionado à esquerda do número escrito não altera seu valor representativo. Assim: 1; 01; 001 ou 0001 representam a mesma grandeza, neste caso a unidade. O símbolo zero posto à direita implica multiplicar a grandeza pela base, ou seja, por 10 (dez).

Sistema Binário

- O sistema binário ou <u>base 2</u>, é um sistema de numeração posicional em que todas as quantidades se representam com base em dois números.
- Símbolos da base Binária: 0 1

Os computadores digitais trabalham internamente com dois níveis de tensão, pelo que o seu sistema de numeração natural é o sistema binário (aceso, apagado). Com efeito, num sistema simples como este é possível simplificar o cálculo, com o auxílio da lógica booleana. Em computação, chama-se um dígito binário (0 ou 1) de bit, que vem do inglês Binary Digit. Um agrupamento de 8 bits corresponde a um byte (Binary Term).

O sistema binário é base para a Álgebra booleana (de George Boole - matemático inglês), que permite fazer operações lógicas e aritméticas usando-se apenas dois dígitos ou dois estados (sim e não, falso e verdadeiro, tudo ou nada, 1 ou 0, ligado e desligado). Toda a eletrônica digital e computação está baseada nesse sistema binário e na lógica de Boole, que permite representar por circuitos eletrônicos digitais (portas lógicas) os números, caracteres, realizar operações lógicas e aritméticas. Os programas de computadores são codificados sob forma binária e armazenados nas mídias (memórias, discos, etc) sob esse formato.

Operações com Binários

Conversão de Decimal para Binário:

Divide-se sucessivamente por 2. Depois o número binário é formado pelo quociente da última divisão seguido dos restos de todas as divisões na seqüência em que foram realizadas.

```
Exemplo: 8_D = ?_B

8/2=4 \text{ resto} = 0

4/2=2 \text{ resto} = 0

2/2=1 \text{ resto} = 0

8_D = 1000_B
```

Conversão de Binário para Decimal:

Deve-se escrever cada número que o compõe (bit), multiplicado pela base do sistema (base=2), elevado à posição que ocupa. A soma de cada multiplicação de cada dígito binário pelo valor das potências resulta no número real representado.

Exemplo: $1011_B = ?_D$

$$1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 8 + 0 + 2 + 1 = 11$$

 $1011_B = 11_D$

Decimal	Binário
0	0
1	1
2	10
3	11
4	100
5	101
6	110

Decimal	Binário
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101

Soma de Binários:

0+0=0

0+1=1

1+0=1

1+1= 10

1+1+1= 11

Para somar dois números binários, o procedimento é o seguinte:

Explicando: Na soma de 0 com 1 o total é 1. Quando se soma 1 com 1, o resultado é 2, mas como 2 em binário é 10, o resultado é 0 (zero) e passa-se o outro 1 para a "frente", ou seja, para ser somado com o próximo elemento, conforme assinalado pelo asterisco, como no exemplo acima.

Explicando: Nesse caso acima, na quarta coluna da direita para a esquerda, nos deparamos com uma soma de 1 com 1 mais a soma do 1 (*) que veio da soma anterior. Quando temos esse caso (1 + 1 + 1), o resultado é 1 e passa-se o outro 1 para frente.

Subtração de Binários:

0-1=1 e vai 1* para ser subtraído no dígito seguinte

1-1=0

1-0=1

0-0=0

Para subtrair dois números binários, o procedimento é o seguinte:

* *** 1101110 - 10111 -----1010111

Explicando: Quando temos 0 menos 1, precisamos "pedir emprestado" do elemento vizinho. Esse empréstimo vem valendo 2 (dois), pelo fato de ser um número binário. Então, no caso da coluna 0 - 1 = 1, porque na verdade a operação feita foi 2 - 1 = 1. Esse processo se repete e o elemento que cedeu o "empréstimo" e valia 1 passa a valer 0. Os asteriscos marcam os elementos que "emprestaram" para seus vizinhos. Perceba, que, logicamente, quando o valor for zero, ele não pode "emprestar" para ninguém, então o "pedido" passa para o próximo elemento e esse zero recebe o valor de 1.

Código ASCII

O "American Standard Code for Information Interchange" comumente referido como ASCII – também chamado ASCII completo, ou ASCII estendido –, é uma forma especial de código binário que é largamente utilizado em microprocessadores e equipamentos de comunicação de dados. Com 7 bits pode-se representar um total de $2^7 = 128$ caracteres diferentes. Estes caracteres compreendem números decimais de 0 até 9, letras maiúsculas e minúsculas do alfabeto, mais alguns outros caracteres especiais usados para pontuação e controle de dados.

Binário	Decimal	Glifo
0010 0000	32	
0010 0001	33	ļ
0010 0010	34	II .
0010 0011	35	#
0010 0100	36	\$
0010 0101	37	%
0010 0110	38	&
0010 0111	39	ı

Binário	Decimal	Glifo
0101 0000	80	Р
0101 0001	81	Q
0101 0010	82	R
0101 0011	83	S
0101 0100	84	T
0101 0101	85	U
0101 0110	86	V
0101 0111	87	W

0010 1000	40	(
0010 1001	41)
0010 1010	42	*
0010 1011	43	+
0010 1100	44	,
0010 1101	45	-
0010 1110	46	
0010 1111	47	/
0011 0000	48	0
0011 0001	49	1
0011 0010	50	2
0011 0011	51	3
0011 0100	52	4
0011 0101	53	5
0011 0110	54	6
0011 0111	55	7
0011 1000	56	8
0011 1001	57	9
0011 1010	58	:
0011 1011	59	;
0011 1100	60	<
0011 1101	61	=
0011 1110	62	>
0011 1111	63	?
0100 0000	64	@
0100 0001	65	Α
0100 0010	66	В
0100 0011	67	С
0100 0100	68	D
0100 0101	69	E
0100 0110	70	F
0100 0111	71	G
0100 1000	72	Н
0100 1001	73	I
0100 1010	74	J
0100 1011	75	K
0100 1100	76	L
0100 1101	77	М
0100 1110	78	N
0100 1111	79	0
-		

0101 1000	88	Χ
0101 1001	89	Υ
0101 1010	90	Z
0101 1011	91	[
0101 1100	92	\
0101 1101	93]
0101 1110	94	۸
0101 1111	95	
0110 0000	96	`
0110 0001	97	a
0110 0010	98	b
0110 0011	99	С
0110 0100	100	d
0110 0101	101	е
0110 0110	102	f
0110 0111	103	g
0110 1000	104	h
0110 1001	105	i
0110 1010	106	j
0110 1011	107	k
0110 1100	108	I
0110 1101	109	m
0110 1110	110	n
0110 1111	111	0
0111 0000	112	р
0111 0001	113	q
0111 0010	114	r
0111 0011	115	S
0111 0100	116	t
0111 0101	117	u
0111 0110	118	V
0111 0111	119	W
0111 1000	120	Х
0111 1001	121	у
0111 1010	122	
0111 1011	123	Z {
0111 1100	124	
0111 1101	125	}
0111 1110	126	~

Sistema Hexadecimal

- O sistema hexadecimal é um sistema de numeração posicional que representa os números em **base 16**, portanto empregando 16 símbolos.
- Símbolos da base Hexadecimal: 0 1 2 3 4 5 6 7 8 9 A B C D E F

O sistema hexadecimal está vinculado à informática, pois os computadores costumam utilizar o byte como unidade básica da memória. 1 byte = 8 bits e então um byte pode ser representado por 8 algarismos do sistema binário ou por 2 algarismos do sistema hexadecimal. Ex: Bin = 10011100, Hexa= 9C.

Exemplo de equivalência das 3 bases vistas até agora:

Decimal	Binário	Hexadecimal
10	1010	Α
22	10110	16
47	101111	2F

Conversão direta entre Hexadecimal e Binário:

0	0000	4	0100	8	1000	С	1100
1	0001	5	0101	9	1001	D	1101
2	0010	6	0110	A	1010	E	1110
3	0011	7	0111	В	1011	F	1111

Conversão de Binário para Hexadecimal

Separe o número binário em grupos de 4 dígitos da direita para a esquerda e então faça a conversão de cada grupo de acordo com a tabela de conversão direta acima.

Caso a quantidade de dígitos a ser convertida não for um número múltiplo de 4, complete com 0´s a esquerda até torná-lo múltiplo de 4.

Ex: (1010111001010)_B para hexadecimal:

<u>000</u> 1	0101	1100	1010
1	5	С	Α

Note que os 3 primeiros zeros foram preenchidos apenas para formar um grupo.

Desta forma o número correspondente em hexadecimal é 15CA.

Conversão de Hexadecimal para Binário

Execute o processo inverso ao da conversão de binário para hexadecimal, convertendo cada dígito hexadecimal em um grupo de 4 dígitos binários.

Ex: (1F7)_H para binário:

1	F	7
0001	1111	0111

Podemos excluir os zeros à esquerda que sobraram no grupo mais a esquerda, assim o resultado em binário será: **111110111**.

Conversão de Decimal para Hexadecimal

Para esta conversão, dividiremos o número decimal por 16 sucessivas vezes, separando sempre o seu resto e continuando a dividir o seu quociente até que ele seja menor que 16. Por fim, a seqüência inversa dos restos (começando pelo quociente da última divisão) formará o resultado.

Ex: (289)_D para hexadecimal:

Resultado = (121)_H

Conversão de Hexadecimal para Decimal

Para realizarmos essa conversão, primeiro transformamos cada dígito hexadecimal em decimal. Assim o C, por exemplo, será convertido para 12.

Agora multiplicamos cada número decimal convertido por 16ⁿ, onde n é casa decimal onde ele se encontra, sendo que o dígito mais a direita é 0.

No final somamos todas as multiplicações obtidas.

Ex: (7C12)_H para decimal:

$$7 \times 16^3 + 12 \times 16^2 + 1 \times 16^1 + 2 \times 16^0 = (31762)_D$$

Exemplo de operações com hexadecimais

Soma: Subtração:

Exercícios

- 1) Faça a conversão de binário para decimal e para hexadecimal dos seguintes itens:
 - a. 100101
 - b. 1000101101
 - c. 1111010110110
- 2) Faça a conversão de decimal para binário e para hexadecimal:
 - a. 297
 - b. 4021
 - c. 9135
- 3) Faça a conversão de hexadecimal para binário e para decimal:
 - a. 7CD
 - b. 9873
 - c. 2F5AB

Respostas

Exercício	Decimal	Binário	Hexadecimal
1-a	37	100101	25
1-b	557	1000101101	22D
1-c	7862	1111010110110	1EB6
2-a	297	100101001	129
2-b	4021	111110110101	FB5
2-c	9135	10001110101111	23AF
3-a	1997	11111001101	7CD
3-b	39027	1001100001110011	9873
3-c	193963	101111010110101011	2F5AB