Lecture 1. Course Overview, Motivation, Fundamental Concepts

CpSc 8400: Algorithms and Data Structures
Brian C. Dean

School of Computing Clemson University Spring, 2021

1

Introductions

- Instructor: Dr. Brian C. Dean
 - Ph.D. from MIT in 2005.
 - Email: bcdean@clemson.edu
 - Office: McAdams 221 (but not in-person this semester)
 - Office Hours: Tuesday after class.
 - Research Interests: <u>Algorithms</u> (optimization, data mining and analytics, randomization, data structures, heuristics, matching, geometry) and their <u>applications</u> (medical informatics, networking, scheduling).
 - Educational Interests in algorithmic CS education and problem-solving at the high-school level; director of USA Computing Olympiad (usaco.org).

Course Overview

- This course provides a fun, fast-paced, modern theory-oriented study of algorithms.
- · We will learn:
 - Algorithm design techniques
 Divide and conquer, greedy algorithms, dynamic programming, iterative refinement, randomized incremental construction, ...
 - Common algorithms for common algorithmic problems
 Sorting and selection, graph problems, FFTs, optimization, ...
 - Mathematical tools for algorithm analysis
 Probability theory, amortized analysis, recurrences, ...
 - Interesting algorithmic subfields in which you may want to pursue further research/study.
 - Computational geometry, cryptography, approximation and randomized algorithms, data structures, bioinformatics, ...

3

3

Why Learn Algorithms?...

- Algorithms are the heart and soul of computing!
- Algorithmic computing now plays a key role in nearly everything – proficiency opens many doors.

- Algorithmic proficiency differentiates a true "computer scientist" from a run-of-the-mill "programmer", and provides the foundation for a long-term career in computing that can thrive as technology changes.
- Theory meets practice. Algorithms have motivated the development of some truly elegant theoretical results in mathematics, for those who appreciate mathematics.
- Algorithms are fun!

Programming ≠ Algorithmic Problem Solving

- "Computer Science is no more about computers than astronomy is about telescopes" – fokelore, sometimes attributed to E. Dijkstra.
- Programming and software engineering are certainly an important part of most computing projects and careers.
- Problem-solving skills and programming skills are different, but re-inforce each-other.
- Both are crucial for success as a computing expert.

5

5

Course Details

Prerequisites

- A reasonable amount of mathematical maturity.
- Enthusiasm, willingness to challenge yourself and ask questions, and a good work ethic!

Course Materials

- Algorithms Explained, currently being written by the instructor – portions may be made available electronically on Canvas (don't redistribute!)
- Lecture slides and videos to appear on Canvas.
- I can suggest supplemental reading, if interested.
- I may also post prominent research papers relevant to the course content.

3

Assignments and Grades

Homework (35%)

- Typically focused on mathematical analysis of algorithms, not implementation.
- Solutions must be <u>typeset</u> and submitted as a PDF file using handin.cs.clemson.edu by email *before the start of* class on the day they are due.

2 Quizzes (2 x 20%) and a Final (25%)

- All quizzes/exams are cumulative.
- Appropriate letter grade cutoffs set by instructor at end of semester.

7

7

Course Conduct

Academic Integrity:

- Do not cheat.
- Do not plagiarize (pass off the work of others as your own without appropriate attribution).

Collaboration:

- Highly encouraged, but each student should write up final solutions independently. Please list your collaborators.
- Do not consult homework solutions from previous semesters, and do not use the web for anything but general reference.

Feedback:

Please feel welcome to ask for feedback at any time.
 The instructor always appreciates constructive feedback.

A Good Algorithm (or Data Structure)...

- Always terminates and produces <u>correct</u> output.
 - A "close enough" answer is sometimes fine.
 - Some types of randomized algorithms can fail, but only with miniscule probability.
- Makes <u>efficient</u> use of computational resources.
 - Minimizes running time, memory usage, processors, bandwidth, power consumed, heat produced.
- Is <u>simple</u> to describe, understand, analyze, implement, and debug. Elegance matters!

9

9

Example: Searching an Array

• **Linear** search: runs in N "steps" in the worst case.

```
for i = 0..N-1:
   if target = A[i], found it!
```

• **Binary** search: ≤ log₂N "steps" in worst case. (requires our array to be sorted).

```
if target = middle element, found it!
else recursively search first or second half
array, as appropriate.
```


- Choose inputs carefully, since often some inputs are much easier than others.
- Do you want to measure "average case" or "worst-case" performance...?

11

Asymptotic Analysis

- Linear search: O(N) time.
- Binary search: O(log N) time.
- O(f(N)) means "upper-bounded by a constant times f(N) as N grows large".
- Provides an asymptotic upper bound on running time, where constant factors and lower-order terms don't matter.
- Captures what usually matters most about algorithm performance: how worst-case running time scales with input size.
- However, this can lose important information... (e.g., sequential vs. non-sequential linear search)

Asymptotic Notation

- O() provides an asymptotic upper bound.
- $\Omega()$ provides an asymptotic lower bound.
- Θ() means both a lower and upper bound.
 (think of these as "≤", "≥", and "=")

Usage examples:

- "The running time of our algorithm is O(n2)."
- "The worst-case running time of our algorithm is $\Theta(n^2)$."
- "This algorithm uses $\Omega(n^2)$ memory".
- "17n² 5n + 200 = Θ (n²)"
- "Consider the polynomial $5x^{10} 3x^9 + o(x^9)$."
- Can you solve the problem in o(n^2) time?

13

13

Running Times

- We almost always focus on worst case running times. Why?
- Common running times:
 - Constant: O(1)
 - Logarithmic: O(log n)
 - Linear: O(n)
 - Polynomial: O(n log n), $O(n^2)$, $O(n^3)$, $O(n^{100})$, ...
 - Exponential: $O(2^n)$, $O(3^n)$, ...
 - Worse than exponential: O(n!), O(nⁿ).
- Logs: base doesn't matter in O(), as long as not in an exponent. By log n we usually mean log₂ n.

A Few More Symbols...

- O() provides an asymptotic upper bound.
- Ω () provides an asymptotic lower bound.
- Θ() means both a lower and upper bound.
 (think of these as "≤", "≥", and "=")
- New additions:

o() and ω () are like "<" and ">"

15

15

Asymptotic Analysis Practice

· Consider this code:

```
For i = 1 to n
For j = 1 to n
Increment counter
```

 Which of these expressions describe the running time correctly?

O(n)	$\Omega(n)$	Θ(n)	o(n)	<mark>ω(n)</mark>
O(n ²)	$\Omega(n^2)$	$\Theta(n^2)$	o(n²)	$\omega(n^2)$
O(n ³)	$\Omega(n^3)$	Θ(n ³)	o(n³)	ω(n³)