数字逻辑

第四章 时序逻辑电路分析与设计

北京理工大学 计算机学院 黄永刚

□ 时序电路

- 输出,不仅取决于当前输入,且与当前状态有关
- > 构成
 - ◆ 存储单元: 实现状态存储的电路
 - ◆ 组合逻辑: 转换函数

□ 存储单元

> 锁存器/触发器: 基于电路延时

□组合电路

- > 下一状态函数
 - Next State = f(Inputs, State)
- > 输出函数
 - Outputs = g(Inputs, State) (Mealy)
 - Outputs = h(State) (Moore)

□ 时序电路类型

- ▶ 同步:全局时钟,存储单元状态改变只发生 在全局时钟到来时
- 异步: 任何时刻可以改变存储单元状态

□另一视角

- > 将时钟看作一个输入,则所有电路异步
- > 但,同步电路更易分析和设计

一. 存储单元

- □ 1. 状态存储
- □ 2. 锁存器
- □ 3. 触发器
- □ 4. 标准符号

- □ 如何让电路能够存储状态?
 - > 利用电路延时
- □门延时模型
 - ➤ 设门延时为 0.2 ns, 0.4 ns, 0.5 ns
 - > 可表示为

- □ 2-1 多路复用器
- □ 电路函数
 - \triangleright Y = A for S = 0
 - \triangleright Y = B for S = 1

- □ S变为1: A1.1ns 消失, B 0.9 ns到达
- □ S变为0: A1.1ns 到达, B 0.9 ns消失
- □ 毛刺: 反相器延迟导致两个与门都关闭(或打开)

- □ A直连Y
- □电路函数
 - \triangleright Y = B for S = 1
 - Y(t) = Y(t 0.9) for S = 0
- □此时电路变成时序电路
 - 因为输出是输入信号时序函数

- □ 输入信号每100ns改变一次
 - ➤ 100ns vs 0.5ns
 - > 门延时可忽略
- □Y不仅是输出,更是状态

\mathbf{T}						
	1	ľ	T	٦.	c	1
1	1	1	Д,	1	Ų	Į

. [В	S	Y	Comment
	1	0	0	Y "remembers" 0
	1	1	1	Y = B when $S = 1$
	1	0	1	Now Y "remembers" B = 1 for S = 0
	0	0	1	No change in Y when B changes
	0	1	0	Y = B when $S = 1$
	0	0	0	Y "remembers" B = 0 for S = 0
	1	0	0	No change in Y when B changes

- □ 加入1个反相器
- □ S=0时
 - > 振荡器
 - > 可作为原始时钟

В	S	Y	Comment		
0	1	0	Y = B when $S = 1$		
1	1	1			
1	0	1	Now Y "remembers" A		
1	0	0	Y, 1.1 ns later		
1	0	1	Y, 1.1 ns later		
1	0 .	0	Y, 1.1 ns later		

- □ S-R锁存器
- S-R锁存器
- □ 时钟S-R锁存器
- □ D锁存器

- □ S-R锁存器
 - > 交叉耦合的两个与非门
 - ▶一半为0,一半为1
- □ 名称: Set / Reset
 - ▶ 取反: 0有效
- □ S=1, R=1 保持
- □ S=0, R=1 置位
- □ S=1, R=0 复位
- □ S=0, R=0 禁止
 - ▶ 两输出为1,不合逻辑
 - ➤ 回到S=1, R=1, S, R不完全同步, 结果不可预测

Time	R	S	Q	Q	Comment
	1	1	?	?	Stored state unknown
	1	0	1	0	"Set" Q to 1
	1	1	1	0	Now Q "remembers" 1
	0	1	0	1	"Reset" Q to 0
	1	1	0	1	Now Q "remembers" 0
↓ ′	0	0	1	1	Both go high
•	1	1	?	?	Unstable!

- □ S-R锁存器
 - > 交叉耦合的两个或非门
 - ▶一半为0,一半为1
- □ 名称: Set / Reset
 - ▶ 取反: 1有效
- □ S=0, R=0 保持
- □ S=1, R=0 置位
- □ S=0, R=1 复位
- □ S=1, R=1 禁止
 - ▶ 两输出为0,不合逻辑
 - ➤ 回到S=0, R=0, S, R不完全同步, 结果不可预测

Time	R	S	Q	$\overline{\mathbf{Q}}$	Comment
	0	0	?	?	Stored state unknown
	0	1	1	0	"Set" Q to 1
	0	0	1	0	Now Q "remembers" 1
	1	0	0	1	"Reset" Q to 0
	0	0	0	1	Now Q "remembers" 0
. ↓	1	1	0	0	Both go low
,	0	0	?	?	Unstable!

□ 时钟S-R锁存器

- ➤ 向S-R锁存器添加时钟使能
- ➤ 当C=1时, S和R才有效
- > C: Control, Clock

- □ C=1 时
 - ➤ S-R锁存器
- □ C=0 时
 - > 保持状态
- □时序行为
 - ▶ 基于 t 时
 - S, R
 - **Q**(t)
 - ▶ t+1: 下个时钟
 - Q(t+1)

$\mathbf{Q}(\mathbf{t})$	S	R	Q(t+1)	Comment
0	0	0	0	No change
0	0	1	0	Clear Q
0	1	0	1	Set Q
0	1	1	???	Indeterminate
1	0	0	1	No change
1	0	1	0	Clear Q
1	1	0	1	Set Q
1	1	1	???	Indeterminate
			1	

- □ D锁存器
 - ➤ 时钟S-R锁存器加反相器
- □ 名称意义
 - > Data
- □ C=1时
 - \triangleright D=1: S=1, R=0
 - \triangleright D=0: S=0, R=1
- □ C=0 时
 - > S=0, R=0
- □时序行为

Q	\mathbf{D}	Q(t+1)	Comment
0	0	0	No change
0	1	1	Set Q
1	0	0	Clear Q
1	1	1	No Change

- □ 锁存器缺陷
- □主从触发器
- □边沿触发器
- □直接输入

□锁存器缺陷

□ 初始Y=0,则

□问题: C=1时, Y持续改变, 最终状态不确定

□正确: 1次时钟, Y改变1次

□ 原因: Y到Y回路的延迟

- □ 一般情况,存在通过组合电路的回路
 - ▶ 1个锁存器到另外1个锁存器
 - ▶ 1个锁存器到自身
- □ C=1时,输入改变,引起锁存器输出持续改变

□ 怎么办?

- ➤ 切断Y到Y的路径
- > 即采用触发器取代锁存器

- □ 主从S-R触发器
 - ➤ 包含两个时钟S-R锁存器
 - ▶ 左边, 主; 右边, 从
 - > 第二个锁存器的时钟反相
- □回路被时钟的不同值切断
 - ▶ 只有1个锁存器有效

□ 主从S-R触发器

- □又叫脉冲触发器
 - > 有脉冲时, 主锁存器状态改变
 - > 无脉冲时,从锁存器状态改变

- □脉冲触发器问题
- □易受干扰信号影响
- □例子
- □ 初始状态为0
- □无干扰时
 - ➤ 有脉冲时: S=0, R=0
 - ➤ 无脉冲时: Q=0
- □有干扰时
 - ➤ 有脉冲时: S=0, R=0; S=1 (尖峰干扰); S=0
 - ➤ 无脉冲时: Q=1

- □ 怎么办?
- □ 采用边沿触发代替脉冲触发

□边沿D触发器

- > 将主从S-R的主锁存换成D锁存
- ▶ 输出改变由负边沿触发
- ➤ 称为负边沿D触发器

- □ 主从S-R触发器 vs 边沿D触发器
 - ➤ 主从S-R触发器: 状态由脉冲有效的时间段决定
 - ▶ 边沿D触发器:状态由边沿的一瞬间决定

□ 正边沿D触发器

- > 给时钟加反相器
- ▶ Q 在正边沿改变
- > 标准触发器

□ 直接输入

- > 当启动或Reset,时序电路全部或部分需初始化
- > 独立于时钟, 异步输入
- ▶ 1表示依赖关系
- > 具备直接置位和复位功能的正边沿D触发器

S	R	C	D	$Q \overline{Q}$
1	0	X X X	X	1 0 0 1 Undefined
	1 1		0 1	0 1 1 0

标准图形符号

简化的符号

4. 标准符号

□主从

□边沿触发

二. 时序电路分析

- □ 1. 方程
- □ 2. 状态表
- □ 3. 状态图
- □ 4. 等价状态
- □ 5. 输出类型

□一般模型

- > 状态: 存储单元
- > 下一状态函数
 - Next State = f(Inputs, State)
- > 输出函数
 - Outputs = g(Inputs, State) (Mealy)
 - Outputs = h(State) (Moore)

1. 方程

- □ 输入: X
- □ 输出: Y
- □ 状态: (D_A, D_B)
- □ 下一状态函数?
- □ 输出函数?

1. 方程

状态函数: $D_A = AX + BX$ $D_B = \overline{A}X$

输出函数: $Y = (A + B)\overline{X}$

2. 状态表

□ 四个部分

- > 当前状态: 状态变量合法值
- > 输入: 合法输入组合
- 下一状态: 基于当前状态和输入的下一状态
- > 输出: 基于当前状态和输入(可选)的输出

□ 可以视为真值表

- ▶ 輸入: 当前状态+输入
- ▶ 输出: 下一状态+输出

2. 状态表

□一维状态表

> 可由方程推导

$$D_A = AX + BX$$

$$D_B = \overline{A}X$$

$$Y = (A + B)\overline{X}$$

Present State		Input	Next Sta	te Output
Α	В	Х	А В	Υ
0	0	0	0 0	0
0	0	1	0 1	0
0	1	0	0 0	1
0	1	1	1 1	0
1	0	0	0 0	1
1	0	1	1 0	0
1	1	0	0 0	1
1	1	1	1 0	0

2. 状态表

□ 二维状态表

▶ 输入从左到右列表第一行

$$D_A = AX + BX$$

$$D_B = \overline{A}X$$

$$Y = (A + B)\overline{X}$$

Present State			Next State				Ou	itput	
		X = 0		X = 1			X = 0	X = 1	
Α	В	A	В	Α	В		Υ	Υ	
0	0	0	0	0	1		0	0	
0	1	0	0	1	1		1	0	
1	0	0	0	1	0		1	0	
1	1	0	0	1	0		1	0	

Novt Ctoto

交换后两行,状态和输入符合格雷码序,与卡诺图匹配

3. 状态图

- □用图的形式表达时序电路函数
- □ 状态: 用圆圈表示
- □ 下一状态函数: Next State = f(Inputs, State)
 - > 当前状态到下一状态弧线
 - > 弧线上标注输入,即转移条件

1/0

0/1

0/1

1/0

0/1

01

1/0

- □ 输出函数: Outputs = h(State) (Moore)
 - > 状态上标注输出: 状态/输出
- □ 输出函数: Outputs = g(Inputs, State) (Mealy)
 - ▶ 借用下一状态函数弧线:輸入/輸出

Present			Next State			Ou	tput
	tate	X =	- 0	X =	= 1	X = 0	X = 1
Α	В	A	В	Α	В	Y	Υ
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

4. 等价状态

□ 等价状态

- > 两个状态,对每一个输入
 - 相同的输出
 - 相同的下一状态
- > 则这两个状态等价

□ 对于S2和S3

- > 输入0
 - 输出1, 下一状态S0
- > 输入1
 - 输出0, 下一状态S2

4. 等价状态

- □ 等价状态可以合并为1个
 - ➤ S2和S3合并为S2
- □ 新状态图上, S1和S2
 - > 输入0
 - 输出1, 下一状态S0
 - ▶ 输入1
 - 输出0, 下一状态S2
 - ➤ S1和S2等价
 - ➤ S1和S2合并为S1

□ 两种输出类型

- ➤ Moore型
 - Outputs = h(State)
 - 状态上标注
 - 状态/输出
- ➤ Mealy型
 - Outputs = g(Inputs, State)
 - 转移弧上标注
 - 输入/输出

□改造状态表

- ➤ Moore 型
 - 不包含输出条件
- > Mealy 型
 - 包含输出条件

Present	Next	State	Output
State	x=0	x=1	
0	0	1	0
1	0	2	0
2	0	2	1

Present	Next	State	Out	put
State	x=0 $x=1$		x=0	x=1
0	0	1	0	0
1	0	1	0	1

□ 两种类型混合

- >实际设计中,有些输出Moore型,有些Mealy
- ➤ 00上输出: Moore

➤ 01, 10, 和11上输出: Mealy

- □ Moore和Mealy 转换
- □ 基本思想: Moore 输出比Mealy慢一拍
 - ➤ Moore: 先转移到次态, 在次态(行)输出(状态表)
 - ➤ Mealy: 转移同时输出,在本态(行)输出(状态表)
- □ Moore 到Mealy
 - > 当前状态输出改为输入弧上输出

□ Mealy 到Moore

- > 输入弧上输出改为当前状态输出
 - 当前状态输入弧上输出一致,直接修改
 - 当前状态输入弧上输出不一致,增加状态
 - 一个状态对应一个输出
 - 不同状态:不同输入弧,相同输出弧

三. 时序电路设计

- □ 1. 规范化
- □ 2. 形式化
- □ 3. 状态分配
- □ 4. 优化
- □ 5. 工艺映射
- □ 6. 验证
- □ 7. 例子

□ 组合电路 vs. 时序电路

组合电路

- 规范化
- 形式化
- 优化
- 工艺映射
- 验证

时序电路

- 规范化
- 形式化
- 状态分配
- 优化
- 工艺映射
- 验证

- ① 规范化: 规格说明
- ② 形式化: 状态表或状态图
- ③ 状态分配: 给状态编码
- 4 优化
 - 确定输入方程:下一状态函数
 - 确定输出方程:输出函数
 - 优化:对方程优化
- ⑤ 工艺映射:将方程映射到触发器和门工艺
- 6 验证:验证设计正确性

1. 规范化

- □描述电路的时序行为
- □形式:
 - > 文字描述
 - > 数学描述
 - > 硬件描述语言
 - > 表格描述
 - > 方程描述
 - > 图表述
- □ 序列识别器
 - ▶ 文字描述: 一个时序电路, 其能在输入序列中 识别目标序列1101的出现

□序列识别器

- ➤ Verilog描述
 - 存储单元
 - 状态函数
 - 输出函数
 - ■自动完成

```
// Sequence Recognizer: Verilog Process Description
// (See Figure 20(d) for state diagram)
module seq_rec_v(CLK, RESET, X, Z);
  input CLK, RESET, X;
  output Z;
  reg [1:0] state, next_state;
  parameter A = 2'b00, B = 2'b01, C = 2'b10, D = 2'b11;
  reg Z;
// state register: implements positive-edge-triggered
// state storage with asynchronous reset.
always @(posedge CLK or posedge RESET)
begin
  if (RESET == 1)
     state <= A;
  else
     state <= next_state;
end
// next state function: implements next state as function
// of X and state
always @(X or state)
begin
  case (state)
        if (X == 1)
            next_state <= B;
          else
            next state <= A;
          if(X) next_state <= C;else next_state <= A;</pre>
          if(X) next_state <= C;else next_state <= D;</pre>
          if(X) next_state <= B;else next_state <= A;</pre>
  endcase
end
// output function: implements output as function
// of X and state
always @(X or state)
begin
  case (state)
     A: Z \le 0;
     B: Z \le 0;
    C: Z \le 0;
     D: Z \le X ? 1 : 0;
   endcase
end
endmodule
```

- □状态图或状态表
- □ 状态: 加载到电路历史输入的抽象
- □ 序列识别器
 - ▶ 文字描述: 一个时序电路, 其能在输入序列中 识别目标序列1101的出现
 - ▶ 重叠情况: 1101101中子序列重叠,均需识别
 - 1101101 或 1101101
 - 识别出最后1个1即识别出第1个1

- □状态图或状态表
- □ 状态: 加载到电路历史输入的抽象
- □ 序列识别器
 - ▶ 文字描述: 一个时序电路, 其能在输入序列中 识别目标序列1101的出现
- □ 分析
 - 初始状态,没有任何符号识别
 - > 增加一个状态识别第一个符号
 - > 当有后续符号输入,增加新状态来识别
 - > 最终状态表示输入序列被完整识别

- □ 序列识别器: 1101
- □ 状态图(Mealy型)
 - ➤ 初始状态A
 - A意义: 无子序列被识别
 - ➤ 识别出第1个1,增加状态B,输出0
 - B意义:识别出子序列1
 - 0: 没有完整识别出目标序列

- □ 序列识别器: 1101
- □ 状态图(Mealy型)
 - ➤ 识别出第2个1,增加状态C,输出0
 - · C意义:识别出子序列11

- □ 序列识别器: 1101
- □ 状态图(Mealy型)
 - ➤ 识别出0,增加状态D,输出0
 - D意义: 识别出子序列110

- □ 序列识别器: 1101
- □ 状态图(Mealy型)
 - ➤ 识别出1,增加状态E,输出1
 - E意义: 完整识别出目标序列
 - 1: 完整识别出目标序列

- □ 序列识别器: 1101
- □ 状态图(Mealy型)
 - ➤ 识别出1,复用状态B,输出1
 - B意义:识别出子序列1/完整识别出目标序列
 - E与B是等价状态
 - 识别出最后1个1即识别出第1个1
 - 1: 完整识别出目标序列

- □ 序列识别器: 1101
- □增加未正常识别的转移弧

□状态表

▶ 输入: 序列

▶ 状态: A, B, C, D

▶ 输出: 结果

Present	Next State	Output
State	x=0 x=1	x=0 x=1
A	A B	0 0
В	A C	0 0
С	D C	0 0
D	A B	0 1

□ Mealy 到Moore

- > 输入弧上输出改为当前状态输出
 - 当前状态输入弧上输出一致,直接修改
 - 当前状态输入弧上输出不一致,增加状态
 - 一个状态对应一个输出
 - 不同状态:不同输入弧,相同输出弧

- Mealy到Moore
- □ 增加状态E
 - ➤ E意义: 完整识别出目标序列
- □ Moore型具有更多状态
 - ➤ Moore is more

□形式化最终成果

Present	Next State	Output
State	x=0 $x=1$	y
A	A B	0
В	A C	0
C	D C	0
D	A E	0
E	A C	1

Present	Next State	Output	
State	x=0 x=1	x=0 x=1	
A	A B	0 0	
В	A C	0 0 .	
С	D C	0 0	
D	A B	0 1	

- □ 给状态分配唯一二进制编码
 - m个状态至少需要n位二进制: n ≥ log₂m
 - ➤ 至多存在2n m个未使用状态
- □分配方式
 - ➤ 计数赋值: A(00)、B(01)、C(10)、D(11)
 - ▶ 格雷码赋值: A(00)、B(01)、C(11)、D(10)
 - > 单热点赋值:
 - A(0001), B(0010), C(0100), D(1000)
 - 每个状态一个触发器
 - ·需要m位长
 - 只有1位为1

□ 计数赋值

 \rightarrow A(00), B(01), C(10), D(11)

Present State	Next State $x = 0$ $x = 1$		Out $x = 0$	
0 0	0 0	0 1	0	0
0 1	0 0	10	0	0
1 0	11	10	0	0
1 1	0 0	0 1	0	1

□ 格雷码赋值

 \rightarrow A(00), B(01), C(11), D(10)

Present State	Next State $x = 0$ $x = 1$		Out $x = 0$	
0 0	0 0	0 1	0	0
0 1	0 0	11	0	0
1 1	10	11	0	0
1 0	0 0	0 1	0	1

□单热点赋值

 \rightarrow A(0001), B(0010), C(0100), D(1000)

Present State	Next State		Output	
	x = 0 $x =$: 1	x = 0 $x = 1$	
0001	0001	0010	0	0
0010	0001	0100	0	0
0100	1000	0100	0	0
1000	0001	0010	0	1

□ 确定输入方程: 下一状态函数

□ 确定输出方程:输出函数

□ 优化:对方程优化

□ 工具:卡诺图

□ 计数赋值

- ➤ 两个D触发器
 - 状态: D₁, D₂
 - 输出: Y₁, Y₂
- > 输出Z
- > 交换状态表后两行

\mathbf{D}_1		X	
	0	0	
	0	1	V
v	0	0	Y_2
\mathbf{Y}_1	1	1	

D_2		X	
	0	1	
	0	0	V
V	0	1	Y_2
\mathbf{Y}_1	1	0	

Present State	Next State $x = 0$ $x = 1$		Out x = 0	-
0 0	0 0	0 1	0	0
0 1	0 0	1 0	0	0
1 0	1 1	1 0	0	0
1 1	0 0	0 1	0	1

Z		X	
	0	0	
	0	0	V
V	0	1	Y_2
\mathbf{Y}_1	0	0	

$$\begin{aligned} \mathbf{D}_1 &= \mathbf{Y}_1 \overline{\mathbf{Y}}_2 + \mathbf{X} \overline{\mathbf{Y}}_1 \mathbf{Y}_2 \\ \mathbf{D}_2 &= \overline{\mathbf{X}} \mathbf{Y}_1 \overline{\mathbf{Y}}_2 + \mathbf{X} \overline{\mathbf{Y}}_1 \overline{\mathbf{Y}}_2 + \mathbf{X} \mathbf{Y}_1 \mathbf{Y}_2 \\ \mathbf{Z} &= \mathbf{X} \mathbf{Y}_1 \mathbf{Y}_2 \end{aligned}$$
 门输入成本G=22

□ 格雷码赋值

➤ 两个D触发器

• 状态: D₁, D₂

• 输出: Y₁, Y₂

➤ 输出Z

Present State	Next $x = 0 x$	State = 1	Output $x = 0 x = 1$		
0 0	0 0	0 1	0	0	
0 1	0 0	1 1	0	0	
1 1	1 0	1 1	0	0	
1 0	0 0	0 1	0	1	

> 不用交换状态表后两行

D_1		X		D_2		X		Z		X	
	0	0			0	1			0	0	
	0	1	v		0	1	17		0	0	V
V	1	1	Y 2	1 7	0	1	Y ₂	V	0	0	Y_2
\mathbf{Y}_1	0	0		\mathbf{Y}_1	0	1		\mathbf{Y}_1	0	1	

D_1		X	_	D_2		X	_	Z		X	
	0	0			0	1			0	0	
	0	1	V		0	1	17		0	0	V
V	1	1	\mathbf{Y}_2	V	0	1	Y_2	V	0	0	Y ₂
\mathbf{Y}_1	0	0		\mathbf{Y}_1	0	1		1 1	0	1	

□单热点赋值

- ➤ 四个D触发器
 - 状态: D₃~D₀
 - 输出: Y₃~Y₀
 - 序号和之前相反
- ➤ 输出Z
- > 直接观察方程
 - 最小项之和
- ▶ 仅有1位是1
 - 简化最小项
 - Y_0 等价 $\overline{Y}_3\overline{Y}_2\overline{Y}_1Y_0$
 - 全0或两个及以上1是无关项

Present State	Next $x = 0$ $x = 0$			Output 0 x = 1
0001	0001	0010	0	0
0010	0001	0100	0	0
0100	1000	0100	0	0
1000	0001	0010	0	1

$$\mathbf{D}_0 = \overline{\mathbf{X}}(\mathbf{Y}_0 + \mathbf{Y}_1 + \mathbf{Y}_3) \text{ or } \overline{\mathbf{X}} \overline{\mathbf{Y}}_2$$

$$\mathbf{D}_1 = \mathbf{X}(\mathbf{Y}_0 + \mathbf{Y}_3)$$

$$\mathbf{D}_2 = \mathbf{X}(\mathbf{Y}_1 + \mathbf{Y}_2) \text{ or } \mathbf{X}(\overline{\mathbf{Y}_0 + \mathbf{Y}_3})$$

$$D_3 = \overline{X} Y_2$$

$$Z = XY_3$$

4. 优化

□单热点赋值

➤ 四个D触发器

• 状态: D₃~D₀

• 输出: Y₃~Y₀

• 序号和之前相反

- ➤ 输出Z
- > 可简化设计
 - 简单组合逻辑
 - 更多的触发器
- > 综合门成本不低

Present State	Next $x = 0$ x			Output 0 x = 1
0001	0001	0010	0	0
0010	0001	0100	0	0
0100	1000	0100	0	0
1000	0001	0010	0	1

$$\mathbf{D}_0 = \overline{\mathbf{X}}(\mathbf{Y}_0 + \mathbf{Y}_1 + \mathbf{Y}_3) \text{ or } \overline{\mathbf{X}} \overline{\mathbf{Y}}_2$$

$$\mathbf{D}_1 = \mathbf{X}(\mathbf{Y}_0 + \mathbf{Y}_3)$$

$$D_2 = X(Y_1 + Y_2) \text{ or } X(\overline{Y_0 + Y_3})$$

$$\mathbf{D}_3 = \overline{\mathbf{X}} \ \mathbf{Y}_2$$

$$Z = XY_3$$

5. 工艺映射

- □ 格雷码赋值优化结果
- □考虑系统启动时初始化
 - ➤ 带有Reset的D触发器

$$D_1 = Y_1Y_2 + XY_2$$

$$D_2 = X$$

$$Z = XY_1\overline{Y}_2$$

□优化结果

5. 工艺映射

□库中包含

- ➤ 带有Reset的D触发器
- > 反相器和n-输入与非门, n = 2, 3, 4

- □ 可通过呈现原始状态图或状态表进行验证
 - ▶ 手工验证:对于小电路,可加载各种状态与输入组合,验证输出和下一状态是否正确。
- □ 4状态x2输入=8组合
 - 复位: 状态(0,0)
 - (0,0): 输入0, 输出0,
 下一状态(0,0)
 - (0,0): 输入1, 输出0, 下一状态(0,1)
 - •

Present State	Next $x = 0 x$	State = 1	Out x = 0	-
0 0	0 0 0 1		0	0
0 1	0 0	1 1	0	0
1 1	1 0	1 1	0	0
1 0	0 0	0 1	0	1

- □ 可通过呈现原始状态图或状态表进行验证
 - ▶模拟验证:输入能够检验所有状态和输入组合的序列(越短越优)、时钟信号,在时钟上升沿后验证输出和下一个状态是否正确。

Clock Edge: 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Input R: X 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Input X: X 0 0 1 1 1 0 1 0 1 1 0 0

State (A, B): X, X 0, 0* 0, 0 0, 0 0, 1 1, 1 1, 1 1, 0 0, 1 0, 0 0, 1 1, 1 1, 0 0, 0

(b)

- □可通过呈现原始状态图或状态表进行验证
 - ▶模拟验证:输入能够检验所有状态和输入组合的序列(越短越优)、时钟信号,在时钟上升沿后验证输出和下一个状态是否正确。

- Verilog
 - > Testbench
 - 时钟
 - 初始化
 - 调用

```
// Testbench for Verilog sequence recognizer
module seq_req_v_testbench();
   wire Z;
   reg clock, X, reset;
   reg [0:10] test_sequence = 11'b011_1010_1100;
   integer i;
   parameter PERIOD = 100;
   seq_rec_v DUT(clock, reset, X, Z);
// This initial block initializes the clock, applies reset,
// and then applies the test sequence to input X.
   initial
   begin
     reset = 1'b1;
     X = 1'b0;
     // Ensure that inputs are applied
     // away from the active clock edge
     #(5*PERIOD/4);
     reset = 1'b0;
     for (i = 0; i < 11; i = i+1)
     begin
        X = test_sequence[i];
        #PERIOD;
     end
     // Stop the simulation after all the inputs
     // in the sequence have been applied
        $stop;
     end
// This always block provides the clock pulses
    always
    begin
      clock = 1'b1;
      #(PERIOD/2);
      clock = 1'b0;
       #(PERIOD/2);
    end
endmodule
```

- □规范化
- □ 设计1个2位数时序模3累加器
 - ➤模n加法器:加法器的结果为和的余数
 - 2 + 2 模 3 = 余数 of 4/3 = 1
 - > 累加器: 初始0, 将输入不断和存储值累加
- □ 状态: 结果(Y₁,Y₀)
- □ 输入: (X₁,X₀) [可取00, 01, 10]
- □ 输出: 结果(Z₁,Z₀)

- □形式化
 - > 状态图和状态表
- □状态分配

Present	Next State				Output
State	$X_1X_0=00$	$X_1 X_0 = 01$	$X_1X_0=1$	$1 X_1 X_0 = 10$	_
A (00)	00		\mathbf{X}		00
B (01)			X		01
- (11)	X	X	X	X	11
C (10)			X		10

□优化

- □工艺映射
- □ 验证

四. 状态机图及应用

- □ 1. 状态图的问题
- □ 2. 状态机图模型
- □ 3. 约束检查
- □ 4. 状态机图设计

- □ 数学基础:有限状态机
 - ▶3个集合
 - I:輸入组合集合
 - 0: 输出组合集合
 - S:状态集合
 - ▶ 2个函数
 - f(I, S): 下一个状态函数
 - h(S) [Moore 型]: 输出函数
 - g(I, S) [[Mealy 型]: 输出函数
- □状态图和状态机是表达有限状态机两种方式

□ 状态图和状态表需要:

▶问题1:表达下一状态函数,需枚举所有输入组合

1输入: 2

• 2输入: 4

• n输入: 2ⁿ

Present	Next State	Output
State	x=0 x=1	x=0 x=1
A	A B	0 0
В	A C	0 0
С	D C	0 0
D	A B	0 1

□ 状态图和状态表需要:

- > 表达输出函数时:
 - 问题2: Mealy 型: 每个状态枚举所有输入组合
 - 问题3: Mealy 型: 每个(状态-输入)对写出所有输出
 - 输出为UVWXYZ, U=1, 100000
 - 问题3: Moore型: 写出所有输出
 - Moore比Mealy表达高效:不用枚举所有输入组合

Present	Next State	Output
State	x=0 x=1	y
A	A B	0
В	A C	0
C	D C	0
D	A E	0
E	A C	1

Present	Next State	Output
State	x=0 x=1	x=0 x=1
A	A B	0 0
В	A C	0 0 .
C	D C	0 0
D	A B	0 1

- □ 状态图和状态表需要:
 - > Mealy输出
 - 问题4: 只能表示在转移弧上
 - 不能表达在状态上

Present	Next State	Output		
State	x=0 x=1	x=0 x=1		
A	A B	0 0		
В	A C	0 0 .		
С	D C	0 0		
D	A B	0 1		

- □ 怎么办?
- □一个现象
 - ▶ 输入为X, Y, Z
 - ➤ 输入为100,101,110,111, 状态A从转移到B
 - ➤ 即输入为X时,状态从A转移到B
- □ 可解决问题1,问题2
- □问题3:默认值,不是默认值才显示表达
- □问题4:划分转移条件和输出条件

状态图

状态机图

□ 条件

- > 输入条件
 - 输入变量的布尔表达式或方程,值为0或1
- ➤ 转移条件(Transition condition, TC)
 - 转移弧上表达状态转移的输入条件,为1则转移
- ➤ 输出条件(Output condition, OC)
 - 表达输出的输入条件,为1则发生输出行为
- ➤ 1个输入条件可同时为TC和OC

□状态转移

- > 无条件转移
 - 弧上无转移条件或转移条件含常量1
- > 条件转移
 - 转移弧上有一或多个转移条件,任何一个 转移条件为1,则转移发生

- □ 输出行为
 - > Moore输出
 - 只依赖于状态,用一条线和相应状态连接
 - ➤ 非转移条件依赖(Transition condition-independent, TCI)
 - 输出行为由输出条件驱动,和相应状态连接

Ex. 1: Moore Outputs

Ex. 2: TCI Outputs

- □ 输出行为
 - ▶转移条件依赖(Transition condition-dependent, TCD)
 - 输出行为由转移条件驱动
 - ▶转移和输出条件依赖(Transition and output condition-dependent, TOCD)
 - 输出行为由输出条件驱动,和转移条件连接

Ex. 3: TCD Outputs

Ex. 4: TCOD Outputs

□ 输出行为

- ▶ 单变量Z的出现,表示Z=1
- ➤ 向量变量Z=向量值,指定了Z的值
- > 否则Z为默认值
- > 默认值语句可指定Z默认值为0或1

□ 状态机图

□状态机表

State	State Code	Transition Condition	Next State	Next State Code	Output Actions (and OCs)
State Name 1	State Code 1	Unused	Unconditional Next State 1	Next State Code 1	Moore or TCI Output (and OC)
		Transition Cond. 11	Next State 11	Next State Code 11	TCD or TOCD Output (and OC)
		Additional Tr Name 1	ansition Conditi	ons and Entr	ries for State
State Name i	Entries	for State Name	es i, i = 2,n		

State		Transition Condition		Next	Output Actions
	Code	Condition	State	State	(OCs)
				Code	
S0	00				Y,Z
		A·B	S1	01	
		$\overline{\mathbf{A}} + \overline{\mathbf{B}}$	S2	10	
S1	01				A/Y, B/Z
		$\overline{\mathbf{A}} \cdot \overline{\mathbf{C}}$	S2	10	
		A + C	S3	11	

State			Next State	State	Output Actions (OCs)
				Code	
S2	10				
		B ·C	S3	11	Y*
		B + C	S0	00	Z*
S3	11				
		A	S0	00	B·C/Y*
		Ā	S1	01	B ⋅C/Z*

□ TC 约束

▶ 约束 1: 对状态 S_i, 从S_i出发所有TC 对 (T_{ii}, T_{ik}):

$$T_{ij} \times T_{ik} = 0$$

 $T_{ij} \times T_{ik} = 0$ > 约束 2: 对状态 S_i ,对所有TC, T_{ij} :

$$\Sigma T_{ij} = 1$$

- \square 例 A: $X \times Y \neq 0$ 且 $X + Y \neq 1$, 两个约束都讳反
- \square 例 B: $X \times X'Y = 0$, 但 $X + X'Y \neq 1$, 讳反约束2

□OC 约束

▶ 约束 1: 对状态S_i, 在其上或者其状态转移上有一致输出变量但不同值的输出行为, 相应的输出条件对(O_{ii}, O_{ik}) 互斥:

$$O_{ij} \times O_{ik} = 0$$

▶ 约束2: 对每个输出变量,在状态 S_i上或者在 S_i状态转移上的输出条件必须覆盖所有可能的 输入变量组合:

$$\Sigma O_{ij} = 1$$

- 回例 C: 对 Z = 1 和 Z = 0, $X \times Y \neq 0$, 因此违反约束1
- □ X + Y + Y' = 1, 在Y'上输出 默认值Z', 因此约束2满足

Defaults: Y = 0, Z = 0

□转移约束

• S0:
$$A \cdot B \cdot (\overline{A} + \overline{B}) = 0$$
;
 $A \cdot B + (\overline{A} + \overline{B}) = 1$

• S1:
$$\overline{A} \cdot \overline{C} \cdot (A + C) = 0$$
;
 $\overline{A} \cdot \overline{C} + (A + C) = 1$

• S2:
$$\overline{B} \cdot C \cdot (B + \overline{C}) = 0$$
;
 $\overline{B} \cdot C + (B + \overline{C}) = 1$

• S3:
$$A \cdot \overline{A} = 0$$
;
 $A + \overline{A} = 1$

Defaults: Y = 0, Z = 0

□输出约束

▶ S0: 没有具有不同输出值的相同输出 变量,输出约束满足

>S1:

- 对于输出条件A, Y=1; 对于输出 条件A', Y默认为0
- 对于B, Z=1; 对于B', Z默认0
- > S2:
 - 对于B+C', Z=1; B'C, Z默认0
 - 对于B'C, Y=1; B+C', Y默认0
- > S3:
 - 对于ABC, Y=1; 其他, Y=0
 - 对于A'B'C, Z=1; 其他, Z=0

□ 通过状态机表进行约束检测更直观

State	State Code	Trans Condi	Next State	Next State Code	ı	utput (Cs)	Actions
S0	00				Υ,	Z	
		A·B	S1	01			
		$\overline{\mathbf{A}} + \overline{\mathbf{B}}$	S2	10			
S1	01				A /	Y B/Z	
		Ā·C	S2	10			
		A + C	S3	11			

State		Trans Cond	Next State		Output Actions (OCs)
S2	10				
		B∙C	S3	11	Y*
		B + C	S0	00	Z*
S3	11				
		A	S0	00	B·C/Y*
		Ā	S1	01	B ⋅C /Z*

4. 状态机图设计

- ① 定义输入输出变量,并定义每个变量0和1意义
- ② 画出电路状态机图或者写出状态机表
- ③ 若使用状态机图,将其转换成状态机表
- 4 从状态机表,推导出电路下一状态和输出方程

4. 状态机图设计

- □ 例子: 控制滑动门
 - > 单向滑动门
 - > 有人接近、门框内时自动打开
 - > 手动按钮可以打开
 - > 没人接近、没人在门框内时自动关闭
 - 关门时有人接近、门框内、门里时自动打开
 - > 键控锁,用电控门闩锁门
 - ▶ 两个限位开关,确定门完全打开/关闭

□ 输入输出

Input Symbol	Name	Meaning for Value 1	Meaning for Value 0
LK DR PA PP MO CL OL	锁 门阻力传感器 接近传感器 存在传感器 手动打开按钮 关限位 开限位	Locked Door resistance ≥ 15 lb Person/object approach Person/object in door Manual open Door fully closed Door fully open	Unlocked Door resistance < 15 lb No person/object approach No person/object in door No manual open Door not fully closed Door not fully open
Output Symbol	Name	Meaning for Value 1	Meaning for Value 0
BT CD OD	门闩 关闭门 打开门	Bolt closed Close door Close door	Bolt open Null action Null action

□状态机图

Input Symbol	Name
LK	锁
DR	门阻力传感器
PA	接近传感器
PP	存在传感器
MO	手动打开按钮
CL	关限位
OL	开限位
Output Symbol	Name
ВТ	门闩
CD	关闭门

□步骤

- > 先定义状态
 - Closed Open Opened Close
- > 主转移路径
 - Closed→Open
 - Open → Opened
 - Opend→Close
 - Close→Closed
 - Close → Open
- > 约束检查添加其他转移
- >添加输出

□ 状态机图

Input Symbol	Name
LK	锁
DR	门阻力传感器
PA	接近传感器
PP	存在传感器
MO	手动打开按钮
CL	关限位
OL	开限位

Output Symbol	Name
BT	门闩
CD	关闭门
OD	打开门

□ 状态机表

State Code	Input Condition	Next State		Non-Zero Outputs (Including TCD and TOCD Output Actions and Output Conditions*)
_	LK PA·PP·MO	Closed Closed	00 00	BT* LK·CL/CD*
		Open	01	OD OD
)1	$\overline{\mathrm{OL}}$	Open	01	
)1	OL	Opened	11	
.1	PA + PP + MO	Opened	11	$\overline{\mathrm{OL}}/\mathrm{OD}^*$
.1	$\overline{PA} \cdot \overline{PP} \cdot \overline{MO}$	Close	10	
.0				CD
.0	$\overline{\text{CL}}\cdot\overline{\text{PA}}\cdot\overline{\text{PP}}\cdot\overline{\text{MO}}\cdot\overline{\text{DR}}$	Close	10	
.0	$CL \cdot \overline{PA} \cdot \overline{PP} \cdot \overline{MO} \cdot \overline{DR}$	Closed	00	
.0	PA + PP + MO + DR	Open	01	
()()()	Code 0 0 0 1 1 1 1 0 0 0	Code Input Condition $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Code Input ConditionState0 LK 0 $\overline{PA} \cdot \overline{PP} \cdot \overline{MO}$ Closed Closed Closed0 $\overline{LK} \cdot (PA + PP + MO)$ Open1 \overline{OL} Open1 OL Opened1 $\overline{PA} + PP + MO$ Opened1 $\overline{PA} \cdot \overline{PP} \cdot \overline{MO}$ Close0 $\overline{CL} \cdot \overline{PA} \cdot \overline{PP} \cdot \overline{MO} \cdot \overline{DR}$ Close0 $\overline{CL} \cdot \overline{PA} \cdot \overline{PP} \cdot \overline{MO} \cdot \overline{DR}$ Closed	CodeInput ConditionStateCode0 LK 0 $\overline{PA} \cdot \overline{PP} \cdot \overline{MO}$ Closed Closed 00 Closed 00 Open00 Open1 \overline{OL} 1Open Opened

□方程

		Next State	State Code	(Including TCD and TOCD Output Actions and Output Conditions*)
00	<u>LK</u>	Closed	00	<u>BT*</u>
				LK·CL/CD*
	$\overline{\text{LK}} \cdot (\text{PA} + \text{PP} + \text{MO})$	Open	01	
				OD
01	$\overline{\mathrm{OL}}$	Open	01	
01	OL	Opened	11	
11	$\overrightarrow{PA} + \overrightarrow{PP} + \overrightarrow{MO}$	Opened	11	$\overline{\mathrm{OL}}/\mathrm{OD}^*$
11	$\overline{PA} \cdot \overline{PP} \cdot \overline{MO}$	Close	10	
10				CD
10	$\overline{\text{CL}}\cdot\overline{\text{PA}}\cdot\overline{\text{PP}}\cdot\overline{\text{MO}}\cdot\overline{\text{DR}}$	Close	10	
10	$CL \cdot \overline{PA} \cdot \overline{PP} \cdot \overline{MO} \cdot \overline{DR}$	Closed	00	
10	PA + PP + MO + DR	Open	01	
	00 00 00 01 01 01 11 11 10 10	$\begin{array}{ccc} 00 & \underline{LK} \\ 00 & \overline{PA} \cdot \overline{PP} \cdot \overline{MO} \\ 00 & \overline{LK} \cdot (PA + PP + MO) \\ 01 & \overline{OL} \\ 01 & \overline{OL} \\ 01 & OL \\ 11 & \underline{PA} + \underline{PP} + MO \\ 11 & \overline{PA} \cdot \overline{PP} \cdot \overline{MO} \\ 10 & \overline{CL} \cdot \overline{PA} \cdot \overline{PP} \cdot \overline{MO} \cdot \overline{DR} \\ 10 & \underline{CL} \cdot \overline{PA} \cdot \overline{PP} \cdot \overline{MO} \cdot \overline{DR} \\ 10 & \underline{CL} \cdot \overline{PA} \cdot \overline{PP} \cdot \overline{MO} \cdot \overline{DR} \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

$$X = PA + PP + MO$$

$$Y_1(t+1) = \overline{Y}_1 \cdot Y_2 \cdot OL + Y_1 \cdot Y_2 + Y_1 \cdot \overline{Y}_2 \cdot \overline{CL} \cdot \overline{X} \cdot \overline{DR}$$

$$Y_2(t+1) = \overline{Y}_1 \cdot \overline{Y}_2 \cdot \overline{LK} \cdot X + \overline{Y}_1 \cdot Y_2 + Y_1 \cdot Y_2 \cdot X + Y_1 \cdot \overline{Y}_2 \cdot (X + DR)$$

□方程

State	State Code		Next State	State Code	Non-Zero Outputs (Including TCD and TOCD Output Actions and Output Conditions*)
Closed	00 00	$\frac{LK}{PA} \cdot \overline{PP} \cdot \overline{MO}$	Closed Closed	00 00	$\frac{BT^*}{LK \cdot CL}/CD^*$
Open	00 01	$\overline{\text{LK}} \cdot (\text{PA} + \text{PP} + \text{MO})$	Open	01	OD
	01	$\overline{\mathrm{OL}}$	Open	01	
01	01	OL	Opened	11	*
Opened	11	$\frac{PA}{PA} + \frac{PP}{PB} + MO$	Opened	11	$\overline{\mathrm{OL}}/\mathrm{OD}^*$
Close	11 10	PA·PP·MO	Close	10	CD
	10	$\overline{\text{CL}}\cdot\overline{\text{PA}}\cdot\overline{\text{PP}}\cdot\overline{\text{MO}}\cdot\overline{\text{DR}}$	Close	10	
	10	$CL \cdot \overline{PA} \cdot \overline{PP} \cdot \overline{MO} \cdot \overline{DR}$	Closed	00	
	10	PA + PP + MO + DR	Open	01	

$$BT = \overline{Y}_1 \cdot \overline{Y}_2 \cdot LK$$

$$CD = Y_1 \cdot \overline{Y}_2 + \overline{Y}_1 \cdot \overline{Y}_2 \cdot \overline{LK} \cdot \overline{CL} \cdot \overline{X}$$

$$= (Y_1 + \overline{LK} \cdot \overline{CL} \cdot \overline{X}) \cdot \overline{Y}_2$$

$$OD = \overline{Y}_1 \cdot Y_2 + Y_1 \cdot Y_2 \cdot \overline{OL} \cdot X$$

$$= (\overline{Y}_1 + \overline{OL} \cdot X) \cdot Y_2$$

- □ 例子: 电梯控制
- □輸入
 - ▶ C1(C2): 到1层的Call (梯内), 1 Call
 - ➤ G1(G2): 到1层的Go, 1 Go
 - ➤ F1(F2): 电梯在1层, 1-电梯在
 - ▶ S1(S2): 电梯在接近1层, 1 电梯在接近
 - ▶ DO: 门开限位, 1-门打开
 - ➤ TO: 等待时间间隔结束, 1 间隔结束
 - ▶ DC: 门关限位, 1-门关闭

- □ 例子: 电梯控制
- □輸出
 - ➤ Up: 控制电梯上行, 1-上行
 - ➤ Down: 控制电梯下行, 1-下行
 - ➤ TS: 计时器开始, 1-启动计时器
 - ➤ SD: 降速, 1-电梯降速
 - ➤ OD: 开门, 1 开门
 - ➤ CD: 关门, 1 关门

□ 例子: 电梯控制

□定义状态

▶ 上升: U

▶ 下降: Dn

➤ 开门: Hd_A

▶ 等人: Hd_B

▶ 关门: Hd_C

- □ 例子: 电梯控制
- □主转移路径
 - ➤ Hd_A (开门) → Hd_B (等人)
 - ➤ Hd_B→Hd_C (关门)
 - \rightarrow Hd_C \rightarrow Dn
 - \rightarrow Hd_C \rightarrow U
 - \rightarrow Dn \rightarrow Hd_A
 - \rightarrow U \rightarrow Hd_A
- □约束检查添加其他转移
- □ 添加输出

- □ 例子: 电梯控制
 - > 状态机图

State	State	Transition	Next	Next	Output
	Code	Condition	State	State	Actions
				Code	(OCs)
					DO /OD
Hd_A	00001	(DO·(F1·(C2 + G2) + F2·(C1 + G1))	Hd_A	00001	
		DO·(F1·(C2 + G2) + F2 ·(C1 + G1)	Hd_B	00010	TS*
Hd_B	00010	TO	Hd_B	00010	
		то	Hd_C	00100	
Hd_C	00100	DC·(F1 + F2)	Hd_C	00100	CD*
		DC·F2	Dn	01000	
mputer Design Fun Blides	damentals, 4e	DC·F1	Up	10000	Chapter 5 - Part 3

State	State Code	Transition Condition	Next State	Next State Code	Output Actions (OCs)
Dn	01000				Down, S1/SD
		<u>F1</u>	Dn	01000	
		F1	Hd_A	00001	
U					Up, S2/SD
		F2	Up	10000	
		F2	Hd_A	00001	

State	State Code	Transition Condition	Next State	Next State	Output Actions
	Code	Condition	State	Code	(OCs)
				Code	(OCs)
					DO/OD
Hd_A	00001	(DO·(F1·(C2 + G2) + F2 ·(C1 + G1))	Hd_A	00001	
		DO·(F1·(C2 + G2) + F2 ·(C1 + G1)	Hd_B	00010	TS*
Hd_B	00010	TO	Hd_B	00010	
		то	Hd_C	00100	
Hd_C	00100	DC·(F1 + F2)	Hd_C	00100	CD*
		DC·F2	Dn	01000	
mputer Design Fun Slides	damentals, 4e	DC·F1	Up	10000	Chapter 5 - Part 3

•
$$X = DO \cdot ((F1 \cdot (C2 + G2) + F2 \cdot (C1 + G1))$$

•
$$Y = DC \cdot (F1 + F2)$$

•
$$D_{Hd_A} = Hd_A \cdot \overline{X} + Dn \cdot F2 + U \cdot F1$$

State	State	Transition	Next	Next	Output
	Code	Condition	State	State	Actions
				Code	(OCs)
					DO /OD
Hd_A	00001	(DO·(F1·(C2 + G2) + F2·(C1 + G1))	Hd_A	00001	
		DO·(F1·(C2 + G2) + F2 ·(C1 + G1)	Hd_B	00010	TS*
Hd_B	00010	TO	Hd_B	00010	
		то	Hd_C	00100	
Hd_C	00100	DC·(F1 + F2)	Hd_C	00100	CD*
		DC·F2	Dn	01000	
nputer Design Fu Blides		DC·F1	Up	10000	Chapter 5 - Part 3

State	State Code	Transition Condition	Next State	Next State Code	Output Actions (OCs)
Dn	01000				Down, S1/SD
		<u>F1</u>	Dn	01000	
		F1	Hd_A	00001	
U					Up, S2/SD
		F2	Up	10000	
		F2	Hd_A	00001	

- $X = DO \cdot ((F1 \cdot (C2 + G2) + F2 \cdot (C1 + G1))$
- $Y = DC \cdot (F1 + F2)$
- $D_{HdA} = Hd_A \cdot \overline{X} + Dn \cdot F2 + U \cdot F1$
- $D_{Hd B} = Hd_A \cdot X + Hd_B \cdot \overline{TO}$
- $D_{Hd\ C} = Hd_B \cdot TO + Hd_C \cdot \overline{Y}$
- $D_{Dn} = Hd_C \cdot DC \cdot F2 + Dn \cdot \overline{F1}$
- $D_U = Hd_C \cdot DC \cdot F1 + U \cdot \overline{F2}$

- Down = Dn
- Up = U
- $SD = Dn \cdot S1 + U \cdot S2$
- $TS = Hd_A \cdot X$
- OD = $Hd_A \cdot \overline{DO}$
- CD = $Hd_C \cdot \overline{Y}$