Práctica 4: Medida del Campo Magnético Terrestre con Bobinas de Helmholtz

Antonio Valle Sánchez y Adolfo Enrique Vázquez

Sevilla, a 20 de abril de 2023

Índice

- 1. Introducción y objetivos
- 2. Fundamento teórico
 - 2.1. Campo magnético creado por Bobinas de Helmholtz
 - 2.2. Medida de la componente horizontal del campo magnético terrestre
- 3. Metodología y resultados
 - 3.1. Instrumentación
 - 3.2. Procedimientos y explotación de los datos
- 4. Conclusiones y deducciones finales
- 5. Cuestiones
- 6. Bibliografía

1.- Objetivos

- Corroborar la casi-uniformidad del campo magnético generado por una pareja de bobinas en su interior
- Medir a raíz del factor de calibración el campo magnético terrestre en el laboratorio

2.-Fundamento Teórico

- 1. Cálculo del campo magnético en el eje de dos bobinas coaxiales
- 2. Aproximaciones de dicho valor
 - 2.1. Imposición de hipótesis: elección de órdenes para a y d
 - 2.2. Exactamente en el eje
 - 2.3. En un entorno del eje
 - 2.4. Relaciones entre componentes radial y axial
- 3. Adaptación experimental: bobinado de Helmholtz
- 4. Medida de la componente horizontal del campo magnético terrestre

2.1.- Cálculo del campo magnético en el eje de dos bobinas coaxiales

Considerando el sistema

2.1.- Cálculo del campo magnético en el eje de dos bobinas coaxiales

Considerando el sistema

Y empleando

Ley de Biot-Savart

$$ec{B}(ec{r}) = rac{\mu_0}{4\pi} \cdot \int_{\mathcal{C}} rac{I \cdot dec{I} \wedge (ec{r} - ec{r}')}{|ec{r} - ec{r}'|^3}$$

2.1.- Cálculo del campo magnético en el eje de dos bobinas coaxiales

Parametrizamos

$$\mathcal{C}_{(a,z)} := \{a \cdot \vec{u}_\rho + z' \cdot \vec{u}_z = \big(a \cdot cos(\theta'), a \cdot sin(\theta'), z'\big) \in \mathbb{R}^3 \shortparallel \theta' \in [0,2\pi)\}$$

6/30

2.1.- Cálculo del campo magnético en el eje de dos bobinas coaxiales

Parametrizamos

$$\mathcal{C}_{(\mathsf{a},\mathsf{z})} := \{ \mathsf{a} \cdot \vec{u}_\rho + \mathsf{z}' \cdot \vec{u}_\mathsf{z} = \big(\mathsf{a} \cdot \mathsf{cos}(\theta'), \mathsf{a} \cdot \mathsf{sin}(\theta'), \mathsf{z}' \big) \in \mathbb{R}^3 \sqcup \theta' \in [0,2\pi) \}$$

y aplicando Ppio de Superposición sobre Biot-Savart

$$\vec{B}(\rho = 0, z) = \frac{\mu_0}{4\pi} \cdot \sum_{i \in \{-1, 1\}} \left[\int_{\mathcal{C}_{\left(a, i, \left(\frac{d}{2}\right)\right)}} \frac{I \cdot d\theta' \vec{u}_{\theta} \wedge (-\rho' \cdot \vec{u}_{\rho} + (z - z') \cdot \vec{u}_{z})}{(\rho'^{2} + (z - z')^{2})^{3/2}} \right]$$

$$\Leftrightarrow \left| \vec{B}(\rho = 0, z) = \frac{\mu_0 I a^2}{2} \cdot \left\{ \sum_{i \in \{-1, 1\}} \left[a^2 + (z + i \cdot d/2)^2 \right]^{-3/2} \right\} \cdot \vec{u}_z \right|$$

2.2.1.- Imposición de hipótesis: elección de órdenes para a y d

En los casos extremos:

• $d \ll a$: para $z \in [-d/2, d/2]$ despreciamos $(x + i \cdot d/2)^2$ y

2.2.1.- Imposición de hipótesis: elección de órdenes para a y d

En los casos extremos:

- $d \ll a$: para $z \in [-d/2, d/2]$ despreciamos $(x + i \cdot d/2)^2$ y
 - 1.- $\vec{B}(
 ho=0,z)\sim rac{\mu_0 I}{a}
 eq f(z) \Rightarrow$ peor estimación en [-d/2,d/2]
 - 2.- grandes errores relativos para mediciones de $z \in [-d/2, d/2]$

2.2.1.- Imposición de hipótesis: elección de órdenes para a y d

En los casos extremos:

- $d \ll a$: para $z \in [-d/2, d/2]$ despreciamos $(x + i \cdot d/2)^2$ y
 - 1.- $\vec{B}(\rho = 0, z) \sim \frac{\mu_0 I}{2} \neq f(z) \Rightarrow \text{peor estimación en } [-d/2, d/2]$
 - 2.- grandes errores relativos para mediciones de $z \in [-d/2, d/2]$
- $d \gg a$: para $z \in [-d/2, d/2]$ despreciamos a^2 y

2.2.1.- Imposición de hipótesis: elección de órdenes para a y d

En los casos extremos:

- $d \ll a$: para $z \in [-d/2, d/2]$ despreciamos $(x + i \cdot d/2)^2$ y
 - 1.- $\vec{B}(
 ho=0,z)\sim rac{\mu_0 I}{a}
 eq f(z) \Rightarrow$ peor estimación en [-d/2,d/2]
 - ullet 2.- grandes errores relativos para mediciones de $z\in [-d/2,d/2]$
- $d \gg a$: para $z \in [-d/2, d/2]$ despreciamos a^2 y
 - 1.- $\left| \vec{B}(
 ho=0,z) \right|
 ightarrow \infty$ para $z
 ightarrow \pm d/2$
 - 2.- o radios muy pequeños (mayor err rel) o dists muy grandes

2.2.1.- Imposición de hipótesis: elección de órdenes para a y d

Figura: d crece para a fijo

Figura: a decrece para d fijo

En virtud de lo anterior, es conveniente tomar $d\sim a$ y de hecho partiremos de la premisa d=a

En virtud de lo anterior, es conveniente tomar $d \sim a$ y de hecho partiremos de la premisa d = aEn dichas condiciones,

$$\exists \ U \in \mathcal{T}_e(\mathbb{R}) \sqcup 0 \in U \wedge \left| ec{B}(
ho = 0, z)
ight| \in \mathcal{C}^\infty(U)$$

y podremos aplicar el Teorema de Taylor.

En virtud de lo anterior, es conveniente tomar $d\sim a$ y de hecho partiremos de la premisa d=a En dichas condiciones,

$$\exists \ U \in \mathcal{T}_e(\mathbb{R}) \sqcup 0 \in U \wedge \left| ec{B}(
ho = 0, z)
ight| \in \mathcal{C}^\infty(U)$$

y podremos aplicar el Teorema de Taylor.

Teniendo en consideración que

$$\blacksquare \vec{B}(0,0) = \frac{8\mu_0 I}{5\sqrt{5}a} \vec{u}_z$$

$$\blacksquare \frac{\partial^j \vec{B}}{\partial z^j}(0,0) = \vec{0} \ \forall j \in \{1,2,3\}$$

$$\blacksquare \frac{\partial^4 \vec{B}}{\partial z^4} = -24 \frac{144}{125a^4} \cdot \frac{8\mu_0 I}{5\sqrt{5}a} \vec{u}_z$$

Podemos aproximar el campo en el rango $|z| \in \left[0, \frac{a}{2}\right]$ por

$$\vec{B}(
ho=0,z)pprox rac{8\mu_0I}{5\sqrt{5}a}\cdot\left(1-rac{144}{125}\cdot\left(rac{z}{a}
ight)^4
ight)\vec{u}_z$$

Podemos aproximar el campo en el rango $|z| \in \left[0, \frac{a}{2}\right]$ por

$$\vec{B}(\rho=0,z) pprox rac{8\mu_0 I}{5\sqrt{5}a} \cdot \left(1 - rac{144}{125} \cdot \left(rac{z}{a}
ight)^4
ight) \vec{u}_z$$

, cuasi-constante en dicho intervalo.

2.2.3.- En un entorno del eje

Para $ho \ll a$ (no necesariamente nulo), empleando la relación

$$\frac{\partial B_{\rho}}{\partial \rho}(0,z) = -\frac{1}{2} \cdot \frac{\partial B_{z}}{\partial z}(0,z)$$

2.2.3.- En un entorno del eje

Para $ho \ll a$ (no necesariamente nulo), empleando la relación

$$\frac{\partial B_{\rho}}{\partial \rho}(0,z) = -\frac{1}{2} \cdot \frac{\partial B_{z}}{\partial z}(0,z)$$

y efectuando desarrollo de Taylor hasta orden 2, se obtiene de forma análoga

$$\begin{split} B_{\rho}(\rho,z) &\approx \frac{8\mu_0 I}{5\sqrt{5}a} \cdot \left(\frac{288}{125} \cdot \left(\frac{\rho}{a}\right) \cdot \left(\frac{z}{a}\right)^3\right) \\ B_{z}(\rho,z) &\approx \frac{8\mu_0 I}{5\sqrt{5}a} \cdot \left(1 - \frac{144}{125} \cdot \left(\frac{z}{a}\right)^4 + \frac{864}{125} \cdot \left(\frac{\rho}{a}\right)^2 \cdot \left(\frac{z}{a}\right)^2\right) \end{split}$$

2.2.4.- Relación entre componentes radial y axial

Puesto que

- $\rho \ll a$
- $|z| \leq \frac{a}{2}$

2.2.4.- Relación entre componentes radial y axial

Puesto que

$$ho\ll a$$

$$|z| \le \frac{a}{2}$$

$$\qquad \quad \blacksquare \quad \frac{288}{125} \cdot \left(\frac{\rho}{a}\right) \cdot \left(\frac{z}{a}\right)^3 \ll 1$$

$$1 \gg \frac{144}{125} \cdot \left(\frac{z}{a}\right)^4, \frac{864}{125} \cdot \left(\frac{\rho}{a}\right)^2 \cdot \left(\frac{z}{a}\right)^2$$

2.2.4.- Relación entre componentes radial y axial

Puesto que

$$\quad \blacksquare \ \, \rho \ll \mathbf{a} \qquad \qquad \Longrightarrow \qquad \qquad \\$$

$$|z| \le \frac{a}{2}$$
 inferimos que $\exists \varepsilon > 0$ ||

$$1 \gg \frac{144}{125} \cdot \left(\frac{z}{a}\right)^4, \frac{864}{125} \cdot \left(\frac{\rho}{a}\right)^2 \cdot \left(\frac{z}{a}\right)^2$$

$$\vec{B}(\rho,z) = \frac{8\mu_0 I}{5\sqrt{5}a} \vec{u}_z$$

es una estimación asumible en el recinto

2.3.- Adaptación experimental: bobinado de Helmholtz

Para I moderadas, $\left| \vec{B} \right| \ll 1T$ en el recinto dado. Se opta por el bobinado de ambas espiras (*Bobinas de Helmholtz*):

$$\vec{B}_H pprox N \cdot rac{8\mu_0 I}{5\sqrt{5}\overline{a}}$$

2.4.- Medida de la componente horizontal del campo magnético terrestre

2.4.- Medida de la componente horizontal del campo magnético terrestre

En virtud del Teorema del seno,

2.4.- Medida de la componente horizontal del campo magnético terrestre

En virtud del Teorema del seno,

$$\frac{|B_H|}{\sin(\alpha)} = \frac{|B_{TH}|}{\sin(\beta - \alpha)} \Leftrightarrow |I_H| = \frac{|B_{TH}|}{K_H} \cdot \frac{\sin(\alpha)}{\sin(\beta - \alpha)}$$

3.- Metodología y Resultados

- 1. Instrumentación
- 2. Procedimientos y explotación de los datos
 - 2.1. Cuasi-constancia del campo a lo largo de los ejes Z e Y
 - 2.2. Calibrado
 - 2.3. Componente horizontal
 - 2.4. Componente vertical

3.1.- Intrumentación

3.2.1- Cuasi-constancia del campo a lo largo de los ejes Z e Y

TABLA P1		
$z \pm 0.1 \text{ (cm)}$	$Bz \pm 0.02 \ (mT)$	
-16.0	1.80	
-14.0	1.97	
-12.0	2.12	
-10.0	2.23	
-8.0	2.34	
-6.0	2.38	
-4.0	2.40	
-2.0	2.41	
0.0	2.41	
2.0	2.40	
4.0	2.39	
6.0	2.38	
8.0	2.34	
10.0	2.28	
12.0	2.17	
14.0	2.03	
16.0	1.86	

TABLA P2		
$y \pm 0.1 \text{ (cm)}$	$Bz \pm 0.02 \ (mT)$	
-16.0	1.86	
-14.0	2.14	
-12.0	2.28	
-10.0	2.37	
-8.0	2.39	
-6.0	2.40	
-4.0	2.40	
-2.0	2.40	
0.0	2.40	
2.0	2.40	
4.0	2.40	
6.0	2.39	
8.0	2.36	
10.0	2.30	
12.0	2.20	
14.0	2.00	
16.0	1.70	

3.2.1- Cuasi-constancia del campo a lo largo de los ejes Z

19/30

3.2.2.- Calibrado

I ± 0.1 (A)	$Bh\pm0.01\;(mT)$
0.2	0.09
0.4	0.24
0.6	0.38
0.8	0.51
1.0	0.65
1.2	0.80
1.4	0.93
1.6	1.08
1.8	1.21
2.0	1.35

3.2.2.- Calibrado

3.2.2.- Calibrado

, de donde se sigue

$$K_H \pm \Delta K_H \equiv \text{pendiente} \pm \Delta \text{pendiente} = \begin{bmatrix} 0.698 \pm 0.003 mT \cdot A^{-1} \end{bmatrix}$$

Escogiendo
$$\beta = \pi/2$$
, se tiene $sin(\alpha - \beta) = cos(\alpha)$ y

Escogiendo
$$\beta=\pi/2$$
, se tiene $sin(\alpha-\beta)=cos(\alpha)$ y
$$|I_H|=\frac{|B_H|}{K_H}\cdot tan(\alpha)$$

23 / 30

$\alpha \pm 1$ (degs)	tan(lpha)	$I_H \pm 0.1 \; (\text{mA})$
20	0.363970234	8.3
25	0.466307658	11.2
30	0.577350269	13.7
35	0.700207538	16.8
40	0.839099631	20.1
45	1	24
50	1.191753593	28.5
55	1.428148007	33.7
60	1.732050808	41
65	2.144506921	50
70	2.747477419	66.8

Puesto que se conoce $K_H \pm \Delta K_H$ y

Puesto que se conoce $K_H \pm \Delta K_H$ y

$$|B_H| \pm \textit{Delta}\,|B_H| = \mathcal{K}_H \cdot \mathsf{pendiente} + (\mathsf{pendiente} \cdot \Delta \mathcal{K}_H + \mathcal{K}_H \cdot \Delta \mathsf{pendiente})$$

$$\iff$$
 $|B_H| + \Delta |B_H| = 16.75 \pm 0.25 \mu T$

Finalmente, se han medido dos ángulos que forma el campo con la horizontal

- $\gamma_1 = 74 \pm 1 \text{ (degs)}$
- $\gamma_2 = 58 \pm 1 \text{ (degs)}$

Finalmente, se han medido dos ángulos que forma el campo con la horizontal

- $\gamma_1 = 74 \pm 1 \text{ (degs)}$
- $\gamma_2 = 58 \pm 1 \text{ (degs)}$

Tomando media, $\overline{\gamma} = 66 \pm 2 (degs)$.

Finalmente, se han medido dos ángulos que forma el campo con la horizontal

- $\gamma_1 = 74 \pm 1 \text{ (degs)}$
- $\gamma_2 = 58 \pm 1 \text{ (degs)}$

Tomando media, $\overline{\gamma} = 66 \pm 2(degs)$.

Puesto que $tan(\overline{\gamma}) = \frac{|B_{TV}|}{|B_{TH}|}$, se tiene

Finalmente, se han medido dos ángulos que forma el campo con la horizontal

- $\gamma_1 = 74 \pm 1 \; (\text{degs})$
- $\gamma_2 = 58 \pm 1 \text{ (degs)}$

Tomando media, $\overline{\gamma} = 66 \pm 2 (degs)$.

Puesto que $tan(\overline{\gamma}) = \frac{|B_{TV}|}{|B_{TH}|}$, se tiene

$$\begin{aligned} |B_{TV}| &\pm \Delta |B_{TV}| = \\ &= (|B_{TH}| \cdot \tan(\overline{\gamma})) \pm (\Delta |B_{TH}| \cdot \tan(\overline{\gamma}) + |B_{TH}| \cdot \sec^2(\overline{\gamma}) \cdot \Delta \overline{\gamma}) \\ &\iff \overline{|B_{TV}| \pm \Delta |B_{TV}| = 38 \pm 4\mu T} \end{aligned}$$

4.- Conclusiones

- En efecto, en el interior de los solenoides el campo es casi uniforme en una región extensa
- Comparación con datos de NOAA [3]:

$$|B_{TH,NOAA}| = 27,40 \pm 0,13 \mu T$$

 $|B_{TV,NOAA}| = 33,90 \pm 0,16 \mu T$

5.- Cuestiones

- 1. Utilizando las expresiones en coordenadas cilíndricas de la divergencia y del rotacional del campo magnético creado por las espiras de la figura 1, demuestre las ecuaciones (7) y (9).
- 2. En el subapartado 4.1 se llevan a cabo medidas de la componente axial del campo magnético a lo largo de los ejes y y z de las figuras 3 y 4. Un estudio experimental completo del campo magnético en estos ejes requeriría también medir la componente radial. ¿Por qué no se llevan a cabo estas medidas?
- 3. Haciendo uso directamente del magnetómetro para medir α y del teslámetro para medir $|\mathbf{B}_H|$, podíamos haber utilizado la ecuación (11) para obtener el valor experimental de $|\mathbf{B}_{TH}|$. En cambio, con vistas a la medida de $|\mathbf{B}_{TH}|$, nosotros hemos recurrido a un procedimiento más rebuscado que hace intervenir al factor de calibración K_{H} . i Por qué es esto necesario?

Referencias

- R. R. Boix, A. P. Izquierdo, and F. Medina, *Práctica 4: MEDIDA DEL CAMPO MAGNÉTICO DE BOBINAS DE HELMHOLTZ Y DEL CAMPO MAGNÉTICO TERRESTRE*
- Prácticas de física para geólogos, Universidad de Granada, recuperado el 19/04/2023.
- "Compute earth's magnetic field values," https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml, recuperado el 19/04/2023.