Question 1

February 10, 2020

1 COL744: Machine Learning (Assignment 1)

1.1 Question 1

1.1.1 Part (a): Implementing Batch Gradient Descent

- In this part I have implemented batch SGD for the loss function $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (y^{(i)} h_{\theta}(x^{(i)}))^2$ on the given dataset.
- I have taken $\eta = 0.01$.
- As stopping criteria I am checking **difference of** $J(\theta)$ between two iterations and if it is less than **1e-15** then stopped the iterations. I have also taken an extra parameter $\mathbf{max_iter} = 10^6$ describing maximum iterations allowed to bound the number of iterations.
- on given dataset we get $(\theta_0, \theta_1) = (0.996620, 0.001340)$

```
import numpy as np
import numpy as np
import matplotlib as mp
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation
import mpl_toolkits.mplot3d.axes3d as p3
import matplotlib.animation as animation

from tqdm import tqdm

from sklearn.metrics import mean_squared_error
from sklearn.datasets import load_boston
from sklearn.preprocessing import StandardScaler
```

• Loading the data

```
[2]: X_unnormalized=np.genfromtxt('./ass1_data/data/q1/linearX.csv') #loading data
Y_train=np.genfromtxt('./ass1_data/data/q1/linearY.csv')
```

• Normalizing dataset and adding x_0

• Implementing batch gradient descent

```
[4]: def grad(theta, X, Y):
         '''Function to compute partial differentiation wrt theta'''
         err = (X.dot(theta)) - Y #100x1
         loss_val = ((err**2).sum())/(2*X.shape[0])
         grad_val = (1/X.shape[0])*((X.T).dot(err))
         return (grad_val, loss_val)
     def LinearRegressionGD(X,Y, r=0.1, max_iter=10**6):
         theta = np.zeros(X.shape[1])
         loss_lst = []
         theta_list=[]
         for i in (range(max_iter)):
             if np.isnan(theta).any():#Checking for divergence
                 print('Diverged to infinity')
                 return ([],[])
             (grad_val, loss_val) = grad(theta, X, Y)
             theta_next= theta - r * np.array(grad_val)
             theta_list.append(theta)
             loss_lst.append(loss_val)
             if(i>2 and abs(loss_lst[-1]-loss_lst[-2])<1e-15):</pre>
                 print('converged in %d iterations'%(i))
             theta=theta_next
         return (theta_list, loss_lst)
```

```
[5]: (theta_lst, loss_lst) = LinearRegressionGD(X_train, Y_train, r=0.01, u → max_iter=10**6)
```

converged in 1490 iterations

```
[6]: theta = theta_lst[-1]
print('theta found by my implementation :(theta0, theta1) = (%f, 

→%f)'%(theta[0], theta[1]))
```

theta found by my implementation :(theta0, theta1) = (0.996620, 0.001340)

1.1.2 Part (b) Plotting the decision surface

```
fig, ax = plt.subplots()
ax.scatter(X_train[:,1:], Y_train, c='r', label='Data-points')
axes = plt.gca()
x_vals = np.array(axes.get_xlim())
y_vals = theta[0] + theta[1] * x_vals
```

```
plt.plot(x_vals, y_vals, label = 'Decision surface')
plt.title('Decision Boundary over datapoints')
plt.xlabel('$x_1$')
plt.ylabel('$x_2$')
plt.legend()
plt.show()
```

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

1.1.3 Part (c) : Plotting movement of θ in 3D

3D Plot

```
[8]: def plot3d(theta_lst, loss_lst, X_train, Y_train):
    fig = plt.figure(figsize=(8,6))

# plt.size()
ax = fig.gca(projection='3d')
```

```
theta1 = np.arange(-1, 1, 10e-3) \#X
   theta0 = np.arange(0, 2, 10e-3) #Y
   X, Y = np.meshgrid(theta1, theta0)
   loss = [[(0.5/X_train.shape[0])*np.linalg.norm((X_train[:,1]*t1 + X_train[:
→,0]*t0 - Y_train), ord=2)**2 for t1 in theta1] for t0 in theta0]
   Z = np.array(loss).T
   # Plot the surface.
   surf = ax.plot_surface(X, Y, Z, cmap='Reds',
                           linewidth=0, antialiased=False,alpha=0.5)#,__
→ label='loss surface')
   ax.set xlabel('$\\theta 1$', color='r')
   ax.set_ylabel('$\\theta_0$', color='r')
   ax.set_zlabel('J($\\theta$)', color='r')
  graph, = plt.plot([], [], 'x',markersize=1, c='black', label = '$<\\theta_1,__</pre>
\rightarrow\\theta_0, J(\\theta)>$')
   def animate(i):
       graph.set_data(data[:i+1,1], data[:i+1,0])
       graph.set_3d_properties(loss_data[:i+1])
       return graph
   data = np.array(theta lst)
   loss_data = np.array(loss_lst)
   anim = FuncAnimation(fig, animate, interval=200)
   plt.legend(loc=4)
   plt.title('3Dplot representing movement of theta ')
   plt.show()
   return anim
```

```
[11]: anim = plot3d(theta_lst, loss_lst, X_train, Y_train)
```

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

1.1.4 Part (d): Plotting contour plot representing movement of θ

Contour Plot

```
[12]: def plot_contour(theta_lst, X_train, Y_train, learning_rate):
    plt.rcParams.update({'font.size': 7})
    theta1 = np.arange(-1, 1, 10e-2) #X
    theta0 = np.arange(-0.5, 1.5, 10e-2) #Y
    X, Y = np.meshgrid(theta1, theta0)
```



```
loss = [[np.linalg.norm((X_train[:,1]*t1 + np.ones(X_train.shape[0])*t0 -__
→Y_train), ord=2)**2 for t1 in theta1] for t0 in theta0]
   Z = np.array(loss)
   fig, ax = plt.subplots()
   CS = ax.contour(X, Y, Z)
   ax.clabel(CS, inline=1, fontsize=5)
   ax.set_title('countour plot representing movement of theta in each_
→iterations for $\\eta$ = %s'%(learning_rate))
   ax.set_xlabel('$\\theta_1$', color='r')
   ax.set_ylabel('$\\theta_0$', color='r')
   graph, = plt.plot([], [], 'x',markersize=1, label = '$<\\theta_1,__</pre>
\rightarrow\\theta_0>$')
   def animate(i):
       graph.set_data(data[:i+1, 1:2], data[:i+1, 0:1])
       return graph
   data = np.array(theta_lst)
   anim = FuncAnimation(fig, animate, interval=100)
   plt.legend()
```

```
plt.show()
return anim
```

[11]: anim = plot_contour(theta_lst, X_train, Y_train, 0.01)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[11]: <matplotlib.animation.FuncAnimation at 0x1dde8018988>

1.1.5 Part (e): Comparing various learning rate and plotting Contour Plot for them

• For $\eta = 0.001$

converged in 13806 iterations

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[12]: <matplotlib.animation.FuncAnimation at 0x1dde80dde88>

• For $\eta = 0.025$

converged in 610 iterations

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[13]: <matplotlib.animation.FuncAnimation at 0x1dde8a298c8>

• For $\eta = 0.1$

[14]: <matplotlib.animation.FuncAnimation at 0x1dde7d4b388>

1.1.6 Observations

• Here I have mentioned number of iterations per eta in the table below

$\overline{\eta}$	Number of Iterations
0.01	1490
0.001	13806
0.025	610
0.1	154

Number of Iterations

Here in this table we can see that number of iterations decreases as be increase eta as the difference would be higher.

• Also in contour plot we can notice that for large η like 0.1 we see big jumps in starting and as θ converges to θ^* we can see smaller jumps, whereas in smaller θ like 0.001 we can see that from the beginning it is taking very small jumps and relatively it also takes more time for θ to reach to optimal value as number of iterations was very large in comparision.

