743- Regression and Time Series

Mamikon S. Ginovyan

The Prediction Problem (Statistical Solution)

2. The Least Squares Method (LSM)

The Least Squares Method (LSM) is a general method of estimation of unknown parameters, which is of great importance in many areas of statistics such as

- the analysis of variance (ANOVA) and
- regression theory.

General Regression Model

Suppose that we have observations $Y_1, Y_2, ..., Y_n$, and suppose that we can write these observations in the form

(1)
$$Y_{i} = f_{i}(\mathbf{q}_{1}, \dots, \mathbf{q}_{p}) + \mathbf{e}_{i}$$
$$= \text{"Deterministic"} + \text{"Random"}, \quad i = \overline{1, n},$$

where f_i , $i = \overline{1, n}$, are **known functions**, and the real numbers q_1, \dots, q_p are **unknown parameters** of interest that we want **to estimate**.

We assume that $q = (q_1, \dots, q_p) \in \Theta \subset \mathbb{R}^p$.

General Regression Model

Suppose also that the RV's e_i satisfy the following conditions:

(2)
$$E(e_i) = 0$$
, $i = \overline{1, n}$.

(3)
$$Var(e_i) = s^2$$
, $0 < s^2 < \infty$, $i = \overline{1, n}$ (s^2 is known).

(4)
$$Cov(e_i, e_j) = 0$$
, $i, j = \overline{1, n}$, $i \neq j$.

$$Cov(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}) = \boldsymbol{d}_{ij}\boldsymbol{S}_{j}^{2} = \begin{cases} \boldsymbol{S}_{j}^{2}, & \text{if } i = j \\ 0, & \text{if } i \neq j, \end{cases} \quad i, j = \overline{1, n}.$$

General Regression Model

• Remark 1.

Conditions (2) - (4) hold when e_i , $i = \overline{1, n}$ are *i.i.d.* RV's with mean m = 0 and variance s^2 : $0 < s^2 < \infty$.

Most models in which the LSM is applied are of this type.

An important special case occurs when the RV's e_i , i = 1, n, form a sample (*i.i.d.*) from a $N(0, s^2)$ population.

• The idea behind LSM is the following.

Consider the random vector $\underline{Y} = (Y_1, \dots, Y_n)$ as a random point in \mathbb{R}^n .

Since
$$E(e_i) = 0$$
, $i = \overline{1, n}$,

the "expected value" of Y is the vector

(5)
$$f(q) = (f_1(q), \dots, f_n(q)),$$

that is,
$$E[\underline{Y}] = f(q) \Leftrightarrow E[Y_i] = f_i(q), i = \overline{1, n},$$

where
$$q = (q_1, \dots, q_p)$$
.

The LSM merely says that as an estimate of q we should to take that point $\hat{q} = (\hat{q}_1, \dots, \hat{q}_p)$

which makes the expected value vector f(q) as close as possible to the observed point Y.

That is, if we observe

$$Y_1 = y_1, \dots, Y_n = y_n,$$

 $\hat{q} = (\hat{q}_1, \dots, \hat{q}_p)$ should **minimize** the sum of the squares of the distances from the data points (y_i) to the expected value points $(f_i(q))$,

that is, the function L defined by

(6)
$$L = \sum_{i=1}^{n} (y_i - f_i(q))^2, \quad q = (q_1, \dots, q_p) \in \Theta.$$

The estimate $\hat{q} = (\hat{q_1}, \dots, \hat{q_p})$ is then called a **Least Squares Estimate (LSE)**.

Thus, the **LSE** $\hat{q} = (\hat{q}_1, \dots, \hat{q}_p)$ is defined by

(7)
$$\sum_{i=1}^{n} (y - f_i(\hat{q}))^2 = \min_{q \in \Theta} \sum_{i=1}^{n} (y - f_i(q))^2.$$

•Remark 2 (Invariance Principle of LSE).

If g(q) is some function of q, then the **LSE** of h = g(q) is $\hat{h} = g(\hat{q})$.

How to find the LSE \hat{q} ?

That is, how to solve the **minimization problem (7)**? We use **calculus** methods.

The procedure of finding LSE's

•First, if the functions f_i , $i = \overline{1, n}$, are differentiable and the range of (f_1, \dots, f_n) is closed in R^n , then the LSE \hat{q} is always defined.

• Second, if the parameter set Θ is open in R^p , it follows from vector calculus that the LSE \hat{q} must satisfy the equations:

(8)
$$\begin{cases} \frac{\partial}{\partial q_{j}} \sum_{i=1}^{n} [y - f_{i}(q)]^{2} = 0\\ j = \overline{1.p.} \end{cases} \qquad q = (q_{1}, \dots, q_{p}) \in \Theta \subset \mathbb{R}^{p}.$$

The equations (8) are called <u>normal equations</u>. It is clear that (8) is equivalent to

(9)
$$\begin{cases} \sum_{i=1}^{n} [y - f_i(q)] \frac{\partial}{\partial q_i} f_i(q) = 0 \\ j = \overline{1, p} \end{cases} \quad q = (q_1, \dots, q_p) \in \Theta \subset \mathbb{R}^p.$$

Remark 3.

The system (9) is a system of **non-linear** equations, which is **difficult to solve**.

In the special case where the functions $f_i(q_1, \dots, q_p)$ are linear in the parameters q_1, \dots, q_p the normal equations become a system of linear equations and may be solved explicitly.

This model with $e_i \sim IIDN(0, s^2)$, which is called <u>linear</u> model, we will considers in detail later.

Examples

1. The Measurement model.

Consider the ease where p = 1, and $f_1(q_1) = q_1$.

That is, the model is given by

$$Y_i = q_1 + e_i, i = \overline{1, n},$$

which is called **measurement model**.

Since
$$\frac{\partial f_1(q_1)}{\partial q_1} = 1$$
,

the system (9) becomes

$$\sum_{i=1}^{n} (Y_i - q_1) = 0 \iff \sum_{i=1}^{n} Y_i - nq_1 = 0 \iff \hat{q}_1 = \frac{1}{n} \sum_{i=1}^{n} Y_i = \overline{Y}.$$

Thus, in this case, the **LSE** \hat{q}_1 is the sample mean \overline{Y} .

• Statistical solution of MSE Linear prediction problem.

Consider now the case where p = 2,

(10)
$$f_i(q_1,q_2) = q_1 + q_2 x_i, i = \overline{1,n},$$

so, our model is the linear regression model

(11)
$$Y_i = q_1 + q_2 x_i + e_i, i = \overline{1, n},$$

where e_i , $i = \overline{1, n}$, are independent,

$$E(e_i) = 0$$
, $Var(e_i) = s^2$, $0 < s^2 < \infty$.

The problem is:

Find LSE's of unknown q_1 and q_2 .

The following notations are in common used.

$$S_{xx} = S_{x}^{2} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{n=1}^{n} x_{i})^{2},$$

$$(12) \qquad S_{yy} = S_{y}^{2} = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \sum_{i=1}^{n} y_{i}^{2} - \frac{1}{n} (\sum_{n=1}^{n} y_{i})^{2},$$

$$S_{xy} = \sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y}) = \sum_{i=1}^{n} x_{i} y_{i} - \frac{1}{n} (\sum_{n=1}^{n} x_{i})(\sum_{n=1}^{n} y_{i}).$$

Solution: By (10) we have

$$\frac{\partial}{\partial q_1} f_i(q_1, q_2) = \frac{\partial}{\partial q_1} [q_1 + q_2 x_i] = 1$$

$$\frac{\partial}{\partial q_2} f_i(q_1, q_2) = \frac{\partial}{\partial q_2} [q_1 + q_2 x_i] = x_i.$$

So, in this case the **normal equations** are

$$\begin{cases} \sum_{i=1}^{n} [y_i - f_i(q)] \frac{\partial}{\partial q_j} f_i(q) = 0 \\ j = 1, 2 \end{cases} \Leftrightarrow \begin{cases} \sum_{i=1}^{n} [y_i - q_1 - q_2 x_i] = 0 \\ \sum_{i=1}^{n} x_i [y_i - q_1 - q_2 x_i] = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \sum_{i=1}^{n} y_{i} = n \cdot q_{1} + q_{2} \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} y_{i} = q_{1} \sum_{i=1}^{n} x_{i} + q_{2} \sum_{i=1}^{n} x_{i}^{2} \end{cases}$$
(13)

To solve this system of equations for q_1 and q_2 , we multiply the first equation by $\sum x_i$ and the second by n to obtain

$$\Leftrightarrow \begin{cases} \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i} = n \mathbf{q}_{1} \sum_{i=1}^{n} x_{i} + \mathbf{q}_{2} (\sum_{i=1}^{n} x_{i})^{2} \\ n \cdot \sum_{i=1}^{n} x_{i} y_{i} = n \mathbf{q}_{1} \sum_{i=1}^{n} x_{i} + \mathbf{q}_{2} n \sum_{i=1}^{n} x_{i}^{2} \end{cases}$$
(15)

Now, subtracting (15) from (16) we get

$$n\sum_{i=1}^{n} x_{i}y_{i} - \sum_{i=1}^{n} x_{i}\sum_{i=1}^{n} y_{i} = \mathbf{q}_{2}\left[n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}\right]$$
(17)

Using notation (12) we can write (17) as follows

$$n \cdot S_{xy} = q_2 \cdot nS_{xx} \iff q_2 = \frac{S_{xy}}{S_{xx}}.$$

Thus, the LSE \hat{q}_2 is given by

$$\hat{\boldsymbol{q}}_2 = \frac{\boldsymbol{S}_{xy}}{\boldsymbol{S}_{xx}}.\tag{18}$$

Now, substituting (18) into (13) we find \hat{q}_1 :

$$\hat{q}_1 = \frac{1}{n} \sum_{i=1}^n y_i - \hat{q}_2 \cdot \frac{1}{n} \sum_{i=1}^n x_i = \overline{y} - \frac{S_{xy}}{S_{xx}} \cdot \overline{x}.$$

Thus, the LSE \hat{q}_1 is given by

$$\hat{q}_1 = \overline{y} - \frac{S_{xy}}{S_{xx}} \cdot \overline{x} \tag{19}$$

Definition. The line

$$\hat{y} = \hat{q}_1 + \hat{q}_2 x \tag{20}$$

with $\hat{q_1}$ and $\hat{q_2}$ as in (19) and (18) is called <u>sample (or</u> <u>estimated) regression line</u> or <u>line of best fit</u> of

$$\underline{y} = (y_1, \mathbf{K}, y_n)$$
 on $\underline{x} = (x_1, \mathbf{K}, x_n)$.

Sample Regression Line

Geometric Interpretation

Given n points $(x_1, y_1), (x_2, y_2), \mathbf{K}, (x_n, y_n)$ and a line y = a + bx.

If we measure the distance between a point (x_i, y_i) and a line y = a + bx:

$$d_i = |y_i - (a + b x_i)|,$$

then what is the line that is "closest" to the given point?

or, what is the line that best fit given points?

The answer is:

Sample Regression Line. Geometric Interpretation

The <u>answer is</u> the sample regression line defined by (20) with slope \hat{q}_2 and intercept \hat{q}_1 given by (18) and (19).

Sample Regression Line

• Statistical Interpretation: Statistical solution of prediction problem.

Theorem (SLS).

Let (X_1, Y_1) , \mathbf{K} , (X_n, Y_n) be \mathbf{n} independent observations from the distribution of a random vector (\mathbf{X}, \mathbf{Y}) . Then the **best linear predictor** \hat{Y} of \mathbf{Y} based on \mathbf{X} is given by

$$\hat{Y} = \hat{a}_0 + \hat{b}_0 X, \qquad (21)$$

where

$$\hat{a}_0 = \overline{Y} - \frac{S_{XY}}{S_{XX}} \cdot \overline{X}, \qquad (22)$$

$$\hat{\boldsymbol{b}}_0 = \frac{\boldsymbol{S}_{XY}}{\boldsymbol{S}_{XX}}.\tag{23}$$

Probabilistic Solution vs. Statistical Solution

Comparison of Probabilistic and Statistical Solutions of the Best Linear MSE Prediction Problem

• Probabilistic Solution.

The unique <u>best MSE-linear predictor</u> of Y given X is given by $\hat{Y} = a_0 + b_0 X$

with

$$a_0 = E(Y) - b_0 E(X), \quad b_0 = \frac{Cov(X, Y)}{s^2(X)}.$$

Probabilistic Solution vs. Statistical Solution

• Statistical Solution.

Given n independent observations (X_1, Y_1) , \mathbf{K} , (X_n, Y_n) , the unique <u>best MSE-linear predictor</u> of Y given X is given by

$$\hat{Y}_n = \hat{a}_0 + \hat{b}_0 X$$

with

$$\hat{a}_0 = \overline{Y} - \frac{S_{XY}}{S_{XX}} \cdot \overline{X}, \quad \hat{b}_0 = \frac{S_{XY}}{S_{XX}}.$$

Probabilistic Solution vs. Statistical Solution

Since \overline{X} , \overline{Y} , S_{XX} and S_{XY} are statistical estimators for E(X), E(Y), $s^2(X)$ and Cov(X,Y), the <u>sample regression coefficients</u> \hat{a}_0 and \hat{b}_0 are statistical estimators for "theoretical" regression coefficients a_0 and b_0 , respectively.

- A manufacturer of air conditioning units is having assembly problems due to the failure of a connecting rod to meet finished-weight specifications. Too many rods are being completely tooled, then rejected as overweight.
- To reduce that cost, the company's quality control department wants to quantify the relationship between the weight of the finished rod (y), and that of the rough casting (x).
- Casting likely to produce rods that are too heavy can then be discarded before undergoing the final (and costly) tooling process.

- As the first step in examining xy -relationship, n=25 (x_i, y_i) -pairs are measured. The data are given in the following table.
- Use the **LSM** to find the **best straight line** approximating the *xy* -relationship and state your conclusion.
- The scatter plot suggests that y is linearly related to the x.

Data Table 1.

Rod Number	Rough Weight,	Finished	Rod Number	Rough Weight,	Finished
	x	Weight, y		x	Weight, y
1	2.745	2.080	14	2.635	1.990
2	2.700	2.045	15	2.630	1.990
3	2.690	2.050	16	2.625	1.995
4	2.680	2.005	17	2.625	1.985
5	2.675	2.035	18	2.620	1.970
6	2.670	2.035	19	2.615	1.985
7	2.665	2.020	20	2.615	1.990
8	2.660	2.005	21	2.615	1.995
9	2.655	2.010	22	2.610	1.990
10	2.655	2.000	23	2.590	1.975
11	2.650	2.000	24	2.590	1.995
12	2.650	2.005	25	2.565	1.995
13	2.645	2.015			

Solution.

From Data Table 1 we find $\sum_{i=1}^{25} x_i = 66.1$, $\sum_{i=1}^{25} x_i^2 = 174.7$, $\sum_{i=1}^{25} y_i = 50.1$, $\sum_{i=1}^{25} y_i^2 = 100.5$, $\sum_{i=1}^{25} x_i y_i = 132.5$.

Therefore

$$\hat{b}_{0} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{n=1}^{n} x_{i}\right) \left(\sum_{n=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{n=1}^{n} x_{i}\right)^{2}}$$

$$= \frac{25(132.5) - (66.1)(50.1)}{25(174.7) - (66.1)^{2}} = .64$$

and

$$\hat{a}_0 = \overline{Y} - \frac{S_{XY}}{S_{XX}} \cdot \overline{X} = \overline{Y} - \hat{b}_0 \cdot \overline{X} = \frac{50.1 - .642(66.1)}{25} = .31.$$

Thus, the LSM - best straight line approximating

xy-relationship is:

$$y = .31 + .64x$$
.

The manufacturer is now in a position to make some informed policy decisions.

If the weight of a rough casting is, say, x = 2.71 oz., the least-squares line predicts that its finished weight \hat{y} will be $\hat{y} = 2.05$ oz.:

Estimated weight = $\hat{y} = \hat{a}_0 + \hat{b}_0(2.71) = .308 + .642(2.71) = 2.05$.

•In the event that finished weights of **2.05 oz.** are considered to be too heavy, rough casting weighing **2.71 oz**. (or more) should be discarded.

Residuals

Let \hat{a}_0 and \hat{b}_0 be the <u>least-squares coefficients</u> associated with the sample $(x_1, y_1), (x_2, y_2), \mathbf{L}, (x_n, y_n)$.

We know that for any value of x, the quantity

$$\hat{y} = \hat{a}_0 + \hat{b}_0 x$$

is the **predicted (linear) value** of y.

Residuals

Definition 1.

For each $i(i = \overline{1, n})$, the difference between an **observed** y_i and **predicted** \hat{y}_i values, that is,

$$e_i = y_i - \hat{y}_i = y_i - (\hat{a}_0 + \hat{b}_0 x_i)$$

is called the *i*-th residual.

The magnitude of the <u>i-th residual</u> e_i reflects the failure of the least-squares line to "model" that particular point.

Definition 2. A <u>residual plot</u> is graph of the <u>i-th residual</u> e_i versus x_i , for all $i = \overline{1, n}$.

Interpreting Residual Plots

Applied statisticians find **residual plot** to be very helpful in assessing the appropriateness of **fitting a straight line** through a set of n points.

ØFor <u>nonlinear relationships</u>, though, <u>residual plots</u> often take on dramatically <u>nonrandom</u> appearances that can very effectively, highlight and illuminate the underlying association between x and y.

Example 2.

- Construct the residual plot for the date in the Manufacturer-Example.
- What does its appearance imply about the suitability of fitting those points with a straight line?

Example 2.

• Solution.

We begin by calculating the residuals for each of the twentyfive date points. The first observation recorded, for example,

was
$$(x_1, y_1) = (2.745, 2.080)$$
.

The corresponding predicted value is $\hat{y}_1 = 2.070$:

$$\hat{y}_1 = .308 - .642(2.745) = 2.070.$$

The first residual, then, is

$$e_1 = y_1 - \hat{y}_1 = 2.080 - 2.070 = .01.$$

The complete set of residuals appears in the last column of the following table.

Table 2.

X_{i}	${\cal Y}_i$	\hat{y}_{i}	$y_i - \hat{y}_i$
2.745	2.080	2.070	0.010
2.700	2.045	2.041	0.004
2.690	2.050	2.035	0.015
2.680	2.005	2.029	-0.024
2.675	2.035	2.025	0.010
2.670	2.035	2.022	0.013
2.665	2.020	2.019	0.001
2.660	2.005	2.016	-0.011
2.655	2.010	2.013	-0.003
2.655	2.000	2.013	-0.013
2.650	2.000	2.009	-0.009
2.650	2.005	2.009	-0.004
2.645	2.015	2.006	0.009
2.635	1.990	2.000	-0.010

Table 2

x_{i}	y_i	$\hat{\mathcal{Y}}_{i}$	$y_i - \hat{y}_i$
2.630	1.990	1.996	-0.006
2.625	1.995	1.993	0.002
2.625	1.985	1.993	-0.008
2.620	1.970	1.990	-0.020
2.615	1.985	1.987	-0.002
2.615	1.990	1.987	0.003
2.615	1.995	1.987	0.008
2.610	1.990	1.984	0.006
2.590	1.975	11.971	0.004
2.590	1.995	1.971	0.024
2.565	1.955	1.955	0.000

Fig.2

Figure 2 shows the residual plot generated by fitting the least squares straight line y = .308 + .642x, to the twenty-five points (x_i, y_i) .

To an applied statistician, there is nothing here that would raise serious doubts about using a straight line to describe the xy –relationship:

the points (in Fig.2) appear to be <u>randomly scattered</u> and exhibit no obvious anomalies or patterns.

Table 3 below lists Social Security costs for selected years from 1965 through 1992.

During that period, payouts rose from \$17.1 billion to \$285.1 billion.

- •Is it reasonable to predict the Social Security costs in the year **2010** by using the **linear predictor**?
- Why or why not?

Table 3.

Year	Year after 1960	Social Security Cost (\$ Billion)
	\boldsymbol{x}	y
1965	5	\$17.1
1970	10	29.6
1975	15	63.6
1980	20	117.1
1985	25	186.4
1990	30	346.5
1992	32	285.1

Solution. As in the Manufacturer-Example, we find

$$\hat{b}_0 = \frac{S_{XY}}{S_{XX}} = 10.3$$
 and $\hat{a}_0 = \overline{Y} - \hat{b}_0 \overline{X} = -66.2$.

So, the LSM best straight line approximating xy-relationship, that is, the best linear predictor of y using x, is

$$\hat{y} = \hat{a}_0 + \hat{b}_0 x = -66.2 + 10.3x.$$

Thus. if we will use linear prediction, we should to predict that Social Security costs in the year **2010** (that is, when x = 50) will be \$448.8 billion:

$$\hat{y}(50) = -66.2 + 10.3(50) = 448.8.$$

- <u>Is it reasonable?</u>
- At the first glance, the least-squares line <u>does appear to fit</u> the data quite well (see Fig. 3).

• A closer look, however, suggests that the underlying xy -relationship may be <u>curvilinear</u> rather than <u>linear</u>. The <u>residual plot</u> (see Fig.4) confirms that suspicion – there we see a distinctly <u>nonrandom pattern</u>.

Fig. 4

45

Conclusion.

- Using linear prediction procedure to predict the Social Security costs in the year **2010** to be **\$448.8** billion **is not reasonable decision.**
- Based on the information in Table 3 the \$448.8 billion prediction is likely to <u>underestimate</u> substantially the cost of Social Security at the end of this decade.

Some Nonlinear Models

- Obviously, not all *xy* -relationship can be adequately described by <u>linear models</u>, that is, by straight lines.
- <u>Curvilinear</u> relationships of all sorts can be found in every field of endeavor.
- Many of these nonlinear models, however, can still be <u>fit</u> <u>using SLS-Theorem</u>, provided that the data have been initially <u>"linearized"</u> by a suitable transformation.

1. Exponential Regression

Suppose the relationship between x and y is best described by an **exponential function** of the form (See scatter plots in Fig.1).

Fig. 1 (Scatter Plots)

1. Exponential Regression

• To these <u>nonlinear</u> relationships between x and y, however, we can associate a <u>linear model</u> if we observe that

$$y = a \cdot e^{bx} \iff \ln y = \ln a + bx.$$

Denoting by $y_1 = \ln y$ and $a_1 = \ln a$ we get the <u>linear model</u> (associated with (1))

$$y_1 = a_1 + bx \tag{2}$$

Therefore, we can apply SLS-Theorem to the model (2), and obtain the **best slope** and y -intercept of nonlinear model (1).

1. Exponential Regression

Specifically,

$$\hat{b} = \frac{n\sum_{i=1}^{n} x_i \ln y_i - (\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} \ln y_i)}{n\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$

and

$$\hat{a}_1 = \ln \hat{a} = \frac{1}{n} \left[\sum_{i=1}^n \ln y_i - \hat{b} \sum_{i=1}^n x_i \right].$$

•Remark.

The exponential regression models are particularly useful in Computer Science.

2. Logarithmic Regression

Suppose that the relationship between **x** and **y** is best described by a **power function**

$$y = a \cdot x^b, \ x > 0, \ a > 0, \ b \in R.$$
 (3)

This model can be easily **linearized** if we take log of both side of equation (3).

Thus,
$$y = a \cdot x^b \iff \log y = \log a + b \cdot \log x$$
.

2. Logarithmic Regression

Denoting by $y_1 = \log y$, $a_1 = \log a$, and $x_1 = \log x$ we get the <u>linear model</u>

$$y_1 = a_1 + bx_1 (4).$$

Therefore, we can apply **SLS-Theorem** to obtain

$$\hat{b} = \frac{n\sum_{i=1}^{n} (\log x_i)(\log y_i) - (\sum_{i=1}^{n} \log x_i)(\sum_{i=1}^{n} \log y_i)}{n\sum_{i=1}^{n} (\log x_i)^2 - (\sum_{i=1}^{n} \log x_i)^2}$$

and

$$\hat{a}_1 = \log \hat{a} = \frac{1}{n} \left[\sum_{i=1}^n \log y_i - \hat{b} \sum_{i=1}^n \log x_i \right].$$

2. Logarithmic Regression

Remark.

The model (3), called <u>logarithmic regression model</u>, has <u>slower growth rates</u> than <u>exponential models</u>, and are particular useful in describing <u>biological and engineering</u> phenomena.

- **Growth** is a fundamental characteristic of living organisms, institution and ideas.
- Many growth models in **biology** (the change in size of a Drosophila population); in **economics** (proliferation of global market); in **political science** (the gradual acceptance of tax reform) can be described by the **logistic equation**

$$y = \frac{L}{1 + e^{a + bx}}, x \in R, \tag{1}$$

where, a, b and L are constants.

For different values of a and b, equation (1) generates a variety of **S-shaped curves**.

To linearize the model (1) we make the following

transformations:

$$y = \frac{L}{1 + e^{a + bx}}$$

$$\Leftrightarrow \frac{1}{y} = \frac{1 + e^{a + bx}}{L} \quad (the \ reciprocal)$$

$$\Leftrightarrow \frac{L}{y} = 1 + e^{a + bx}$$

$$\Leftrightarrow \frac{L - y}{y} = e^{a + bx}$$

$$\Leftrightarrow \ln(\frac{L - y}{y}) = a + bx.$$

Denoting

$$y_1 = \ln(\frac{L - y}{y}),$$

we get the linear model

$$y_1 = a + bx. (2)$$

Remark 1.

The parameter L is interpreted as the limit to which y is converging as x increases $(x \to \infty)$.

In practice, L is often estimated simply by plotting the data and "eye-balling" the y-asymptote.

Now we can apply **SLS-Theorem** to the model (2) and obtain the **best slope** and y -intercept of model (1).

$$\hat{b} = \frac{n\sum_{i=1}^{n} x_{i} \ln\left(\frac{\hat{L} - y_{i}}{y_{i}}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} \ln\left(\frac{\hat{L} - y_{i}}{y_{i}}\right)\right)}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$\hat{a} = \frac{1}{n} \left[\sum_{i=1}^{n} \ln\left(\frac{\hat{L} - y_{i}}{y_{i}}\right) - \hat{b}\sum_{i=1}^{n} x_{i}\right], \tag{4}$$

where \hat{L} is an **estimate** for L.

Remark 2.

The distribution function (cdf) $F(x) = \frac{1}{1 + e^{-x}}$

corresponding to L = 1, a = 0 and b = -1, is called the standard logistic distribution.

The corresponding pdf is

$$f(x) = \frac{e^{-x}}{(1 + e^{-x})^2}.$$
 (5)

Problem. Show that the function f(x) given by (5) is indeed a *pdf*, that is,

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} \frac{e^{-x}}{(1 + e^{-x})^2} dx = 1.$$

To determine how effective the **SAT scores** are in predicting academic success, the National Collegiate Athletic Association (NCAA) compiled the data in Table 1, showing the relationship between athletes' **SAT scores** (x) and their **graduation rates** (y).

• Quantify the graduation rate/SAT score relationship by choosing an appropriate model of fitting the data.

Table 1.

SAT Score, x	Graduation Rate (%), y	
480	0.3	
690	4.6	
900	15.6	
1100	33.4	
1320	44.4	
1530	45.7	

• Solution. Start with scatter plot.

- The scatter plot for the six data points has a definite S-shaped appearance (see Fig. 1), which makes Equation (1) a good candidate for modeling the xy -relationship.
- The limit to which the graduation rates are converging (as SAT score increase) appears to be about 48. So we can fit the data points using **logistic model** with L = 48: $y = \frac{48}{1 + e^{a+bx}}$
- To find the best **LSE's** for *a* and *b* we use formulas (3), and the following table.

Table 2.

X_{i}	${\mathcal Y}_i$	$\ln(\frac{48 - y_i}{y_i})$	x_i^2	$x_i \cdot \ln(\frac{48 - y_i}{y_i})$
480	0.3	5.06890	230,400	2433.072
690	4.6	2.24440	476,100	1548.636
900	15.6	0.73089	810,000	657.801
1100	33.4	-0.82753	1,210,000	-910.283
1320	44.4	-2.51231	1,742,400	-3316.249
1530	45.7	-2.98919	2,340,900	-4573.461
6020			6,809800	-4160.461

For \hat{a} and \hat{b} we have

$$\hat{b} = \frac{6(-4160.484) - (6020)(1.71516)}{6(6809800) - (6020)^2} = -.0076,$$

$$\hat{a} = \frac{1.71516 - (.0076)(6020)}{6} = 7.91.$$

Thus, the best-fitting logistic curve has the equation

$$y = \frac{48}{1 + e^{7.91 - .0076x}}.$$