ISyE 6669 HW 2

Fall 2020

1. Expand the following summations:

(For example, the answer to part (a) is $x_1 + x_2 + x_3$.)

(a)
$$\sum_{i=1}^{3} x_i$$

$$\begin{array}{llll} \text{(a)} & \sum_{i=1}^{3} x_{i} & \text{(d)} & \sum_{i=1}^{2} \sum_{j=2}^{4} (x_{ij} - y_{i}) \\ \text{(b)} & \sum_{t=1}^{3} \frac{x^{2t}}{t!} & \text{(e)} & \sum_{k=-1}^{1} (2k+1)x_{k-1}^{2} \\ \text{(c)} & \sum_{i=1}^{3} \sum_{j=1}^{i} x^{i+j} & \text{(f)} & \sum_{n=2}^{4} \sum_{m=n}^{n+2} x_{n} y_{m} \end{array}$$

(b)
$$\sum_{t=1}^{3} \frac{x^{2t}}{t!}$$

(e)
$$\sum_{k=-1}^{1} (2k+1)x_{k-1}^2$$

(c)
$$\sum_{i=1}^{3} \sum_{j=1}^{i} x^{i+j}$$

(f)
$$\sum_{n=2}^{4} \sum_{m=n}^{n+2} x_n y_m$$

Note that by definition $t! = 1 \cdot 2 \cdots (t-1) \cdot t$ for integer $t \ge 1$.

Solution:

(a)
$$x_1 + x_2 + x_3$$

(b)
$$x^2 + \frac{x^4}{2} + \frac{x^6}{6}$$

(c)
$$x^2 + x^3 + x^4 + x^4 + x^5 + x^6$$

(d)
$$(x_{12}-y_1)+(x_{13}-y_1)+(x_{14}-y_1)+(x_{22}-y_2)+(x_{23}-y_2)+(x_{24}-y_2)$$

(e)
$$-x_{-2}^2 + x_{-1}^2 + 3x_0^2$$

(f)
$$x_2y_2 + x_2y_3 + x_2y_4 + x_3y_3 + x_3y_4 + x_3y_5 + x_4y_4 + x_4y_5 + x_4y_6$$

2. Consider the following two vectors:
$$\boldsymbol{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\boldsymbol{y} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, and a matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & -1 \\ 3 & -1 & 2 \end{bmatrix}.$$

- (a) Let n be the dimension of x and y. What is the value of n?
- (b) Compute 2x y.
- (c) Compute the inner product $x^{\top}y$.
- (d) Compute the Euclidean norm $\|\boldsymbol{x} \boldsymbol{y}\|_2 = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$. Also called the ℓ_2 -norm.
- (e) Compute the ℓ_1 -norm $\|\boldsymbol{x} \boldsymbol{y}\|_1 = \sum_{i=1}^n |x_i y_i|$
- (f) Compute the ℓ_{∞} -norm $\|\boldsymbol{x} \boldsymbol{y}\|_{\infty} = \max_{1 \leq i \leq n} |x_i y_i|$.
- (g) Compute $x^{\top}Ay$.

Solution:

- (a) The dimension of x and of y are 3. Thus, n is 3.
- (b) $2x y = (-1, 2, 5)^{\top}$
- (c) $\boldsymbol{x}^{\top} \boldsymbol{y} = 10$
- (d) $\|\boldsymbol{x} \boldsymbol{y}\| = \sqrt{-2^2 + 0^2 + 2^2} = \sqrt{8} = 2\sqrt{2}$
- (e) $\|\boldsymbol{x} \boldsymbol{y}\|_1 = |-2| + |0| + |2| = 4$
- (f) $\|\boldsymbol{x} \boldsymbol{y}\|_{\infty} = \max\{2, 0, 2\} = 2$
- (g) $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y} = 27$
- 3. State whether each of the following sets is convex or not. Explain your reasoning.
 - (a) $X = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \ge 1\}.$
 - (b) $X = \{x \in \mathbb{R} \mid x^2 = 2\}.$
 - (c) $X = \{(x_1, x_2) \mid \frac{x_2}{(x_1 1)} \le 1, x_1 \ge 1\}.$

Solution:

- (a) X is not convex. Consider $X_1 = (0,1), X_2 = (0,-1) \ X_1, X_2 \in X$ but the convex combination $X_3 = (\frac{1}{2} \cdot (0) + \frac{1}{2} \cdot (0), \frac{1}{2} \cdot (1) + \frac{1}{2} \cdot (-1)) = (0,0) \not \in X$.
- (b) $X=\{-\sqrt{2},\sqrt{2}\}$ and thus is not convex because $0=\frac{1}{2}\cdot(-\sqrt{2})+\frac{1}{2}\cdot(\sqrt{2})\not\in X$
- (c) Method 1: Plot of the set X is below:

Figure 2: Set X

We can see that set X is convex.

Method 2: Notice that points for which $x_1=1$ do not belong to the set, because first inequality is not defined for those points. Then from $x_1>1$ we have $x_1-1>0$ and hence for points $(x_1,x_2)\in X$ we have $\frac{x_2}{x_1-1}\leq 1\Leftrightarrow x_2\leq x_1-1$ With that in mind we can rewrite set as:

$$X = \{(x_1, x_2) : x_2 \le x_1 - 1, x_1 > 1\}$$

We will show that this set is convex using the definition. Let $a = (a_1, a_2), b = (b_1, b_2) \in X$. That means:

$$a_1, b_1 > 1$$
 $a_2 \le a_1 - 1$
 $b_2 \le b_1 - 1$

We need to show that $c = (c_1, c_2) = \lambda a + (1 - \lambda)b \in X$ i.e that

$$c_1 > 1$$

$$c_2 \le c_1 - 1$$

We have

$$c = (c_1, c_2) = \lambda a + (1 - \lambda)b = (\lambda a_1 + (1 - \lambda)b_1, \lambda a_2 + (1 - \lambda)b_2)$$

From $a_1, b_1 > 1$ we have:

$$c_1 = \lambda a_1 + (1 - \lambda)b_1 > \lambda + (1 - \lambda) = 1$$

From $a_2 \leq a_1 - 1$ and $b_2 \leq b_1 - 1$ we have:

$$c_2 = \lambda a_2 + (1 - \lambda)b_2 < \lambda(a_1 - 1) + (1 - \lambda)(b_1 - 1) = \lambda a_1 + (1 - \lambda)b_1 - 1$$

Hence $c \in X$, and thus set X is convex.

- 4. State whether the following problems are convex programs or not. Explain your reasoning.
 - (a) $\min\{x_1^2 + 2x_2^2 : x_1 \le 0, x_2 \le 0\}.$
 - (b) $\min\{x_1 \cdot x_2 : x_1^2 + x_2^2 \le 1\}.$
 - (c) $\min\{\sum_{i=1}^n \frac{x_i^i}{i!} : \sum_{i=1}^n x_i \ge 5\}.$

Solution:

- (a) This is a convex program. The feasible region \mathbb{R}^2_- is a convex set. The objective $f(x_1, x_2) = x_1^2 + 2x_2^2$ is a convex function over \mathbb{R}^2_- because $\nabla^2 f = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} \succ 0$.
- (b) This is not a convex program. The feasible region $f(x_1, x_2) : x_1^2 + x_2^2 \le 1$ is a ball, and thus a convex set. The objective function $x_1\dot{x}_2$ is non-linear and $\nabla^2 f = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and not $\succ 0$.
- (c) This is a not a convex program. The feasible region $\{(x_1,....,x_n):\sum_{i=1}^n x_i \geq 5\}$. is a half space and thus a convex set. The objective function $f(x_1,....,x_n)=\sum_{i=1}^n \frac{x_i^i}{i!}$ is a not a convex function because it not always a positive sum of convex functions. For example, when n=3 the objective function has $\nabla^2 f=\begin{bmatrix}0&0&0\\0&1&0\\0&0&x_3\end{bmatrix}$. This matrix does not always have non-negative eigenvalues subject to the $x_1+x_2+x_3\geq 5$ constraint.
- 5. A quantity y is known to depend upon another quantity x. A set of n data pairs $\{y_i, x_i\}_{i=1}^n$ has been collected.
 - (a) Formulate an optimization model for fitting the "best" straight line y = a + bx to the data set, where best is with respect to the sum of absolute deviations. What kind of an optimization model is it?
 - (b) Re-formulate the optimization model in part (a) where best is with respect to the maximum absolute deviation. What kind of an optimization model is it?
 - (c) Formulate an optimization model for fitting the "best" quadratic curve $y=a+bx+cx^2$ to the data set, where best is with respect to the maximum absolute deviations. What kind of an optimization model is it?

Solution:

(a) The optimization problem can be directly formulated as

$$\min_{\forall a,b \in \mathbb{R}} \quad \sum_{i=1}^{n} | y_i - a - bx_i |$$

which is an unconstrained convex nonlinear program. An equivalent formulation of the optimization problem is to introduce auxiliary variables

4

 $t_i, i = 1,, n$ and then

min
$$\sum_{i=1}^{n} t_i$$
s.t. $t_i \ge y_i - a - bx_i$, $\forall i = 1, \dots, n$,
$$t_i \ge -(y_i - a - bx_i)$$
, $\forall i = 1, \dots, n$,

which is a constrained linear program.

(b) The optimization problem can be directly formulated as

$$\min_{\forall a,b \in \mathbb{R}} \max_{i=1,\dots,n} | y_i - a - bx_i |$$

which is an unconstrained convex nonlinear program. An equivalent formulation of the optimization problem is to introduce auxiliary variables $t \in \mathbb{R}_+$ and then

min
$$t$$

s.t. $t \ge y_i - a - bx_i$, $\forall i = 1, ..., n$,
 $t \ge -(y_i - a - bx_i)$, $\forall i = 1, ..., n$,

which is a constrained linear program.

(c) The optimization problem can be directly formulated as

$$\min_{\forall a,b,c \in \mathbb{R}} \quad \max_{i=1,\dots,n} \mid y_i - a - bx_i - cx_i^2 \mid$$

which is an unconstrained convex nonlinear program. An equivalent formulation of the optimization problem is to introduce auxiliary variables $t \in \mathbb{R}_+$ and then

min
$$t$$

s.t. $t \ge y_i - a - bx_i - cx_i^2$, $\forall i = 1, ..., n$,
 $t \ge -(y_i - a - bx_i - cx_i^2)$, $\forall i = 1, ..., n$,

which is a constrained linear program.