西安交通大学考试题

成绩

系 别 ______ 考试日期 2017年1月10日

专业班号 _____

- 一、填空(每空3分,共51分)
- 1. 近似数 $x^* = 0.231$ 关于真值 x = 0.229 有______ 位有效数字。
- 3. 设 $l_0(x), l_1(x), l_2(x), l_3(x)$ 是以 x_0, x_1, x_2, x_3 为互异节点的三次 Lagrange 插值基函数,则

$$\sum_{j=0}^{3} l_{j}(x)(x_{j}+1)^{3} = \underline{\hspace{1cm}}$$

4. 为求函数 $y=\arctan x$ 在区间 [0,1] 上的最优一致逼近一次式 $p_1(x)=a+bx$, 可取 $0,\alpha,1$ 作为三个偏差点,则用于确定 a,b,α 和带符号的偏差 μ 的方程组为:

5. 设向量 $\vec{x} = (-1, 2, 3, -5)^T$,则 $\|\vec{x}\|_{\infty} =$; 已知 $A = \begin{pmatrix} 3 & 2 \\ -2 & 1 \end{pmatrix}$,则 $\|A\|_2 =$ ______

 $Cond_1(A) = \underline{\hspace{1cm}}$.

9. 设向量
$$\vec{x} = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}$$
,则存在 Givens 矩阵 $P =$ ______,使得 $P\vec{x} = ||\vec{x}||_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

则
$$a = _____, b = _____.$$

11. 设函数
$$\varphi(x) = x + a(x^2 - 5)$$
,若使迭代法 $x_{k+1} = \varphi(x_k)$ 产生的迭代序列 $\{x_k\}$ 收敛到 $x^* = \sqrt{5}$,则 实数 a 的取值范围为_____

$$\begin{pmatrix} 3 & 2 \\ 4 & 5 \end{pmatrix}$$
 按模最大的特征值和特征向量时,令 $z_0 = (1,1)^T$,则迭代一次后,特征向量近似值 $z_1 =$ _______

- 二. 简答题(每小题 7 分, 共计 49 分; 需写出计算过程)
- 1 已知线性方程组 Ax = b, 其中

$$A = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

- (1)将矩阵 A 进行三角分解: A = LU, 其中 L 为单位下三角阵, U 为上三角阵.
- (2)利用 LU 分解法求解上述线性方程组

2 利用牛顿插值法构造一个三次插值多项式 $H_3(x)$,使其满足如下插值条件,并给出<mark>截断误差表示式.:</mark>

X_i	1	2	3
$f(x_i)$	2	4	12
$f'(x_i)$		3	

$$3 给定线性方程组 \begin{cases} x_1 + 2x_2 - 2x_3 = 1 \\ x_1 + x_2 + x_3 = 2 \\ 2x_1 + 2x_2 + x_3 = 3 \end{cases},$$

- (1)写出求解上述方程组的雅可比迭代格式和高斯—赛德尔迭代格式.
- (2)讨论雅可比迭代格式和高斯—赛德尔迭代格式的收敛性.

5. 设一次多项式 ax + b 为函数 $f(x) = x^2$ 在区间 [0,1] <mark>最优平方逼近</mark>,求 a,b 的值.

6. 设 $f(x) \in C^2[a,b]$, 已知关于权函数 $\omega(x) = x^2$ 正交的二次正交多项式为 $P_2(x) = x^2 - \frac{3}{5}$ 。记
$I[f] = \int_{-1}^{1} x^2 f(x) dx$, $Q[f] = A_0 f(x_0) + A_1 f(x_1)$,
求参数 A_0,A_1,x_0,x_1 ,使求积公式 $I[f]\approx Q[f]$ 具有尽可能高的代数精度,并导出截断误差公式。

7、给定常微分方程初值问题 $\begin{cases} y''(x) - y'(x) + y(x) = \sin x, & 0 \le x \le 1 \\ y(0) = 0, y'(0) = -0.2 \end{cases}$,取步长为 h . 分别利用			
Euler 法和标准的四阶四级龙格-库塔法写出求解该问题的数值格式			