Natural Language Processing and Large Language Models

Corso di Laurea Magistrale in Ingegneria Informatica

Lesson 15

Encoder-Decoder Transformers

Nicola Capuano and Antonio Greco

DIEM – University of Salerno

Outline

- Encoder-decoder transformer
- T₅
- Practice on translation

and summarization

Encoder-decoder transformer

Encoder-decoder transformer

Encoder-Decoder
 Transformers are a class of neural networks designed for sequence-to-sequence (seq2seq) tasks.

T₅

T5

- **T5** (Text-to-Text Transfer Transformer) is a language model based on an encoder-decoder transformer developed by Google Research.
- T5 comes in multiple sizes to suit different resource constraints:

T5 Version	Encoder Blocks	Attention Heads	Decoder Blocks	Embedding Dimensionality
T5-Small	6	8	6	512
T5-Base	12	12	12	768
T5-Large	24	16	24	1024
T5-XL	24	32	24	2048
T5-XXL	24	64	24	4096

T₅ input encoding

- T5 uses a SentencePiece tokenizer with a custom vocabulary for its input encoding.
- **Subword Units**: T5 employs a subword-based tokenizer using the SentencePiece library. Subword tokenization ensures a balance between character-level and word-level tokenization, effectively handling rare words and unseen combinations.
- **Unigram Language Model**: The SentencePiece tokenizer in T5 is trained using a unigram language model, which selects subwords to maximize the likelihood of the training data.

T₅ input encoding

- T5 uses a fixed vocabulary of 32,000 tokens. The vocabulary includes subwords, whole words, and special tokens. This compact vocabulary size strikes a balance between computational efficiency and representation capacity.
- T5 introduces several special tokens in the vocabulary to guide the model for various tasks:
 - <pad>: Padding token for aligning sequences in a batch.
 - <unk>: Unknown token for handling out-of-vocabulary (OOV) cases.
 - <eos>: End-of-sequence token, marking the conclusion of an input or output sequence.
 - <sep> and task-specific prefixes: Used to define input task types (e.g., "translate English to German:" or "summarize:").

- For pre-training, T₅ uses a denoising autoencoder objective called **span-corruption**.
- This objective involves masking spans of text (not just individual tokens) in the input sequence and training the model to predict those spans.
- **Input Corruption**: Random spans of text in the input are replaced with a special <extra_id_X> token (e.g., <extra_id_o>, <extra_id_1>).
 - Original Input: "The quick brown fox jumps over the lazy dog."
 - Corrupted Input: "The quick <extra_id_o> jumps <extra_id_1> dog."
- Target Output: The model is trained to predict the original masked spans in sequential order.
 - Target Output: <extra_id_o> brown fox <extra_id_1> over the lazy.
- This formulation forces the model to generate coherent text while learning contextual relationships between tokens.

- Predicting spans, rather than individual tokens, encourages the model to learn:
- **Global Context**: How spans relate to the larger sentence or paragraph structure.
- Fluency and Cohesion: Span prediction ensures generated outputs are natural and coherent.
- Task Versatility: The model is better prepared for downstream tasks like summarization, translation, and question answering.

• T5 pre-training uses the **C4** dataset (Colossal Clean Crawled Corpus), a massive dataset derived from Common Crawl.

- Size: Approximately 750 GB of cleaned text.
- Cleaning: Aggressive data cleaning is applied to remove spam, duplicate text, and low-quality content.
- Versatility: The dataset contains diverse text, helping the model generalize across domains.

- Loss Function: Cross-entropy loss is used for predicting masked spans.
- **Optimizer**: T₅ employs the Adafactor optimizer, which is memory-efficient and designed for large-scale training.
- Learning Rate Scheduling: The learning rate is adjusted using a warm-up phase followed by an inverse square root decay.

T₅ fine tuning

- **Input and Output as Text**: Fine-tuning continues the paradigm where the input and output are always text strings, regardless of the task.
- Example Tasks:
 - Summarization:
 - Input: summarize: <document> → Output: <summary>
 - Translation:
 - Input: translate English to French: <text> → Output: <translated_text>
 - Question Answering:
 - Input: question: <question> context: <context> → Output: <answer>

Popular T₅ variants – mT₅

- mT₅ (Multilingual T₅) was developed to extend T₅'s capabilities to multiple languages.
- It was pre-trained on the multilingual Common Crawl dataset covering 101 languages.
- Key Features:
 - Maintains the text-to-text framework across different languages.
 - No language-specific tokenization, since it uses SentencePiece with a shared vocabulary across languages.
 - Demonstrates strong multilingual performance, including on crosslingual tasks.
- Applications:
 - Translation, multilingual summarization, and cross-lingual question answering.
- Limitations:
 - Larger model size due to the need to represent multiple languages in the vocabulary.
 - Performance can vary significantly across languages, favoring those with more representation in the training data.

Popular T₅ variants – Flan-T₅

• Flan-T₅ is a fine-tuned version of T₅ with instruction-tuning on a diverse set of tasks.

Key Features:

- Designed to improve generalization by training on datasets formatted as instruction-response pairs.
- Better zero-shot and few-shot learning capabilities compared to the original T₅.

Applications:

 Performs well in scenarios requiring generalization to unseen tasks, such as creative writing or complex reasoning.

Limitations:

 Requires careful task formulation to fully utilize its instructionfollowing capabilities.

Popular T₅ variants – ByT₅

 ByT5 (Byte-Level T5) processes text at the byte level rather than using subword tokenization.

Key Features:

- Avoids the need for tokenization, enabling better handling of noisy, misspelled, or rare words.
- Works well for languages with complex scripts or low-resource scenarios.

Applications:

 Robust for tasks with noisy or unstructured text, such as OCR or usergenerated content.

Limitations:

 Significantly slower and more resource-intensive due to longer input sequences (byte-level representation increases sequence length).

Popular T₅ variants – T₅-3B and T₅-11B

• T5-3B and T5-11B are larger versions of the original T5 with 3 billion and 11 billion parameters, respectively.

Key Features:

- Improved performance on complex tasks due to increased model capacity.
- Suitable for tasks requiring deep contextual understanding and largescale reasoning.

• Applications:

 Used in academic research and high-performance NLP applications where resources are not a constraint.

Limitations:

- Computationally expensive for fine-tuning and inference.
- Memory requirements limit their usability on standard hardware.

Popular T₅ variants – UL₂

• UL2 (Unified Language Learning) is a general-purpose language model inspired by T₅ but supports a wider range of pretraining objectives.

• Key Features:

- Combines diverse learning paradigms: unidirectional, bidirectional, and sequence-to-sequence objectives.
- Offers state-of-the-art performance across a variety of benchmarks.

Applications:

General-purpose NLP tasks, including generation and comprehension.

Limitations:

Increased complexity due to multiple pretraining objectives.

Popular T₅ variants – Multimodal T₅

• T₅-Large Multimodal Variants combine T₅ with vision capabilities by integrating additional modules for visual data.

Key Features:

- Processes both text and image inputs, enabling tasks like image captioning, visual question answering, and multimodal translation.
- Often uses adapters or encodes visual features separately.

Applications:

Multimodal tasks combining vision and language.

Limitations:

 Computationally expensive due to the need to process multiple modalities.

Popular T₅ variants – Efficient T₅

• Efficient T₅ Variants are optimized for efficiency in resource-constrained environments.

• Examples:

- T5-Small/Tiny: Reduced parameter versions of T5 for lower memory and compute needs.
- **DistilT5**: A distilled version of T5, reducing the model size while retaining performance.

• Applications:

 Real-time applications on edge devices or scenarios with limited computational resources.

Limitations:

Sacrifices some performance compared to larger T₅ models.

T₅ variants

Variant	Purpose	Key Strengths	Limitations
mT5	Multilingual NLP	Supports 101 languages	Uneven performance across languages
Flan-T5	Instruction-following	Strong generalization	Needs task-specific prompts
ВуТ5	No tokenization	Handles noisy/unstructured text	Slower due to byte-level inputs
T5-3B/11B	High-capacity NLP	Exceptional performance	High resource requirements
UL2	Unified objectives	Versatility across tasks	Increased training complexity
Multimodal T5	Vision-language tasks	Combines text and image inputs	Higher computational cost
Efficient T5	Resource-constrained NLP	Lightweight, faster inference	Reduced task performance

Practice on translation and summarization

Practice

 Looking at the Hugging Face guides on translation <u>https://huggingface.co/learn/nlp-course/chapter7/4?fw=pt</u>
 and summarization <u>https://huggingface.co/learn/nlp-course/chapter7/5?fw=pt</u> , use various models to perform these tasks.

 By following the guides, if you have time and computational resources you can also fine tune one of the encoder-decoder models

Natural Language Processing and Large Language Models

Corso di Laurea Magistrale in Ingegneria Informatica

Lesson 15

Encoder-Decoder Transformers

Nicola Capuano and Antonio Greco

DIEM – University of Salerno

