1.4 Almost complex manifolds

Let M be a complex manifold of real dimension 2n. Consider $TM_{\mathbb{R}}$ (the real tangent bundle).

Let (U,φ) be a holomorphic chart and define $J:T_pM_{\mathbb{R}}\longrightarrow T_pM_{\mathbb{R}},\ p\in U$ via

$$J(v) = (d\varphi)^{-1} \circ j_n \circ d\varphi(v),$$

where j_n is the standard linear complex structure on \mathbb{R}^{2n}

$$j_n(x_1,\ldots,x_n,y_1,\ldots,y_n) = (-y_1,\ldots,-y_n,x_1,\ldots,x_n).$$

If (V, ψ) is another holomorphic chart around p, then

$$(d\psi)^{-1} \circ j_n \circ d\psi(v) = (d\psi)^{-1} \circ j_n \circ d\underbrace{(\psi \circ \varphi^{-1})}_{\text{holomorphic}} \circ d\varphi(v)$$

$$= (d\psi)^{-1} \circ d(\psi \circ \varphi^{-1}) \circ j_n \circ d\varphi(v) = (d\varphi)^{-1} \circ j_n \circ d\varphi(v),$$

so the definition does not depend on the chart. We obtain an endomorphism of the tangent bundle (i.e. a (1,1)-tensor)

$$J:TM_{\mathbb{R}}\longrightarrow TM_{\mathbb{R}}$$

satisfying $J^2 = -\mathrm{Id}$.

Definition 1.4.1. A (1,1)-tensor J on a smooth manifold M satisfying $J^2 = -\text{Id}$ is called an almost complex structure. The pair (M,J) is then called an almost complex manifold.

A complex manifold is therefore canonically an almost complex manifold. We want to investigate the converse. Let (M, J) be an almost complex manifold. Complexify the tangent bundle $T^{\mathbb{C}}M$ (so complexify the vector space T_pM at every point) and consider the subbundles of vectors of type (1,0) and (0,1):

$$T^{1,0}M = \{X-iJX \mid X \in TM\} - \text{the } +i\text{-eigenbundle},$$

$$T^{0,1}M = \{X+iJX \mid X \in TM\} - \text{the } -i\text{-eigenbundle}.$$

Suppose that J arises from complex coordinates $\{z_1, \ldots, z_n\}$ (i.e. (M, J) really is a complex manifold). Then the vectors

$$\frac{\partial}{\partial z_1}, \dots, \frac{\partial}{\partial z_n}, \text{ where } \frac{\partial}{\partial z_i} = \frac{1}{2} \left(\frac{\partial}{\partial x_i} - i \frac{\partial}{\partial y_i} \right)$$

are of type (1,0) and

$$\frac{\partial}{\partial \overline{z}_1}, \dots, \frac{\partial}{\partial \overline{z}_n}, \text{ where } \frac{\partial}{\partial z_i} = \frac{1}{2} \left(\frac{\partial}{\partial x_i} + i \frac{\partial}{\partial y_i} \right)$$

of type (0,1). They form bases of $T_p^{1,0}M$ and $T_p^{0,1}M$, respectively. If Z,W are two local sections of $T^{1,0}M$, i.e.

$$Z = \sum_{i=1}^{n} Z_i \frac{\partial}{\partial z_i}, \quad W = \sum_{j=1}^{n} W_i \frac{\partial}{\partial z_j},$$

then

$$[Z, W] = \sum_{i,j=1}^{n} \left(Z_i \frac{\partial W_j}{\partial z_i} - W_i \frac{\partial Z_j}{\partial z_i} \right) \frac{\partial}{\partial z_j}$$

is again a local section of $T^{1,0}M$. Similarly if Z,W are local sections of $T^{0,1}M$, then so is [Z,W]. Thus the condition² $[T^{0,1}M,T^{0,1}M] \subset T^{0,1}M$ is a necessary condition for the existence of complex coordinates inducing J. (Formally, this is similar to the *involutivity* required in the Frobenius theorem.)

It turns out that this necessary condition is also sufficient:

Theorem 1.4.2 (Newlander-Nirenberg). Let (M, J) be an almost complex manifold. The almost complex structure J arises from a holomorphic structure iff

$$[T^{0,1}M, T^{0,1}M] \subset T^{0,1}M.$$

One says then that J is **integrable** and refers to J simply as complex structure.

Let us work out what this condition means. Compute

$$[X + iJX, Y + iJY] = [X, Y] - [JX, JY] + i([JX, Y] + [X, JY]).$$

This should again be of the form Z + iJZ, which means that

$$[JX, Y] + [X, JY] = J([X, Y] - [JX, JY]).$$

Equivalently, the tensor³

$$N(X,Y) = [JX, JY] - [X,Y] - J[JX,Y] - J[X,JY]$$

vanishes identically. N is called the $Nijenhuis\ tensor$ (or the torsion of an almost complex manifold). Therefore an almost complex structure J arises from complex coordinates (i.e. (M,J)) is a complex manifold) iff the Nijenhuis tensor $N=N_J$ vanishes. The proof of the Newlander-Nirenberg theorem in full generality is much too long to present it here; next week I'll present a proof under the additional assumption that (M,J) is real-analytic. In the meantime, let us look at spheres.

Theorem 1.4.3 (Kirchhoff). If S^n admits an almost complex structure, then S^{n+1} has trivial tangent bundle.

Proof. Let J be an almost complex structure on S^n . View S^n as the equator in S^{n+1} , which in turn is the unit sphere in \mathbb{R}^{n+2} . Set $e=(0,\ldots,0,1)\in\mathbb{R}^{n+2}$, so that every vector $x\in S^{n+1}$ can be written uniquely as $x=ae+by,\ b\geq 0,\ y\in S^n$. Consider

$$T_y S^n = \{ z \in \mathbb{R}^{n+1} \mid z \perp y \},$$

and define $\sigma_x: \mathbb{R}^{n+1} \longrightarrow T_x S^{n+1}$ by

 $^{2[}T^{0,1}M, T^{0,1}M]$ is a shorthand for $[\Gamma(T^{0,1}M), \Gamma(T^{0,1}M)] \subset \Gamma(T^{0,1}M)$.

³In Homework 2 you are asked to show that this *is* a tensor.

$$\sigma_x(y) = ay - be$$

 $\sigma_x(z) = az + bJ_y(z), \text{ for } z \in y^{\perp} = T_y S^n.$

Let us check that this is in T_xS^{n+1} , i.e. that the right-hand side is orthogonal to x=ae+by. Obviously $\langle ay-be,ae+by\rangle=0$. On the other hand $\sigma_x(z)\perp y$ by definition and, since $\sigma_x(z)\in\mathbb{R}^n$, $\sigma_x(z)\perp e$. Hence $\sigma_x(z)\perp x$. Thus we have a global map $S^n\times\mathbb{R}^{n+1}\longrightarrow TS^{n+1}$, $(x,v)\mapsto \sigma_x(v)$, linear for each x, and we only need to check that it is a bijection for each x. We show that $\mathrm{Ker}(\sigma_x)=0$. Clearly $\sigma_x(y)\neq 0$. Suppose that $z\neq 0$ and $\sigma_x(z)=0$. This means that $bJ_y(z)=-az$, and if $b\neq 0$, then z is an eigenvector of J_y with real eigenvalue, which is impossible. On the other hand, if b=0, then a=0, so $x=0\notin S^{n+1}$.

Adams showed that TS^{n+1} is trivial iff n+1=1,3,7. Hence only S^2 and S^6 can admit an almost complex structure. For S^2 we already know this, since S^2 is diffeomorphic to \mathbb{CP}^1 . Here is another description using quaternions, i.e. the algebra \mathbb{H} consisting of pairs of complex numbers with coordinate-wise addition and multiplication given by

$$(z_1, z_2)(z'_1, z'_2) = (z_1 z'_1 - z_2 \overline{z'}_2, z_1 z'_2 + z_2 \overline{z'}_1).$$

This can be also interpreted by writing an element of \mathbb{H} as $z_1 + z_2 j$, where $j^2 = -1$ and ij = -ji. The multiplication is then determined by these identities (plus the associativity and the distributivity). This multiplication is associative, but not commutative.

The quaternionic conjugate of $q=(z_1,z_2)$ is $\overline{q}=(\overline{z}_1,-z_2)$. We have $q\overline{q}=(z_1\overline{z}_1+z_2\overline{z}_2,0)$ and we define $|q|^2=z_1\overline{z}_1+z_2\overline{z}_2$. A quaternion is called real (resp. purely imaginary) if $q=\overline{q}$ (resp. $q=-\overline{q}$). q is purely imaginary iff $z_1=-\overline{z}_1$, so these form a 3-dimensional subspace Im \mathbb{H} . The scalar product on Im $\mathbb{H}\simeq\mathbb{R}^3$ is given by $\langle q,q'\rangle=\mathrm{Re}(qq')$ and the vector product by $q\times q'=\mathrm{Im}(qq')$. Now:

$$S^2 = \{q \in \operatorname{Im} \mathbb{H} \mid |q| = 1\} \quad \text{and} \quad T_q S^2 = \{q' \in \operatorname{Im} \mathbb{H} \mid \langle q, q' \rangle = 0\}.$$

We define $J_q:T_qS^2\to T_qS^2$ by

$$J_q(q') = q \times q'.$$

Then $J_q^2(q') \in T_q S^2$, since $q \times q' \perp q$. Moreover

$$J_q^2(q') = q \times (q \times q') = q \times (qq' - \operatorname{Re} qq') = q \times (qq') = \operatorname{Im} q(qq') = \operatorname{Im} q^2q' = -q',$$

since any quaternion in S^2 satisfies $q^2 = -1$. Therefore J is an almost complex structure on S^2 .

For S^6 we repeat the procedure. The algebra $\mathbb O$ of Cayley numbers (or octonions) is the set of pairs of quaternions with multiplication

$$(q_1, q_2)(q'_1, q'_2) = (q_1q'_1 - \overline{q'_2}q_2, q'_2q_2 + q_2\overline{q'_1}).$$

This multiplication is not even associative. It does, however, satisfy the so-called *alternative law*:

$$x(xx') = (xx)x'$$
, $(x'x)x = x'(xx)$,

i.e. associativity if two neighbouring factors are the same.

Again we have a conjugation:

$$\overline{(q_1,q_2)} = (\overline{q}_1, -q_2)$$
 with $x\overline{x} = (q_1\overline{q}_1 + \overline{q}_2q_2, 0),$

and therefore a norm $|x|^2 = q_1 \overline{q}_1 + q_2 \overline{q}_2$. Again we can define real and purely imaginary Cayley numbers. The vector space of purely imaginary Cayley numbers is 7-dimensional, and it is equipped with a scalar product $\langle x, x' \rangle = -\operatorname{Re}(xx')$ and a vector product $x \times x' = \operatorname{Im}(xx')$. We have $x \times x' = -x' \times x$ and $\langle x \times x', x'' \rangle = \langle x, x' \times x'' \rangle$. Consider

$$S^6 = \{x \in \operatorname{Im} \mathbb{O} \mid |x| = 1\} \quad \text{and} \quad T_x S^6 = \{y \in \operatorname{Im} \mathbb{O} \mid \langle x, y \rangle = 0\}.$$

Define $J_x(y)=x\times y$. Again $J_x:T_xS^6\to T_xS^6$ and again $J_x^2=-\mathrm{Id}$ (observe that in the above calculation of J_q^2 for quaternions one needs exactly the alternative law). This almost complex structure on S^6 has $N\neq 0$, i.e. it is non-integrable. It is unknown whether S^6 admits a complex structure, i.e. whether S^6 is a complex manifold.

We have the following application:

Example 1.4.4. Let M be an oriented hypersurface in \mathbb{R}^7 . For $m \in M$, consider the unit normal vector ν_m corresponding to the orientation. Then $T_m M \simeq \nu_m^{\perp} \simeq T_{\nu_m} S^6$. Therefore the almost complex structure on S^6 induces an almost complex structure on M. Thus every oriented hypersurface in \mathbb{R}^7 is an almost complex manifold.

1.5 Decomposition of the complexified exterior bundle

Let (M, J) be an almost complex manifold. We have seen that a complex structure on a vector space V induces a complex structure on V^* . Therefore we obtain a complex structure on each T_m^*M and consequently a decomposition of the complexified cotangent bundle

$$(T^*M)^{\mathbb{C}} = T^*M \otimes \mathbb{C}$$

into the (1,0)- and (0,1)-parts. For convenience, we shall write $\Lambda^1_{\mathbb{C}}=(T^*M)^{\mathbb{C}}$, $\Lambda^{1,0}M=\left((T^*M)^{\mathbb{C}}\right)^{(1,0)}$, and $\Lambda^{0,1}M=\left((T^*M)^{\mathbb{C}}\right)^{(0,1)}$. We have (see §1.2):

$$\Lambda^{1,0}M = \{ \varphi - i\varphi \circ J \mid \varphi \in T^*M \}$$

$$\Lambda^{0,1}M = \{ \varphi + i\varphi \circ J \mid \varphi \in T^*M \}.$$

Example 1.5.1. On \mathbb{C}^n we have $(Jdx_i)(\frac{\partial}{\partial y_i}) = dx_i(J\frac{\partial}{\partial y_i}) = dx_i(-\frac{\partial}{\partial x_i}) = -1$, so $\Lambda^{1,0} = \{dx_i + idy_i\}$ and $Jdx_i = -dy_i$.

Lemma 1.5.2. We have

$$\Lambda^{1,0}M = \{\omega \in \Lambda^1_{\mathbb{C}}M \mid \omega(Z) = 0 \ \forall \ Z \in T^{0,1}M \}$$

$$\Lambda^{0,1}M = \{\omega \in \Lambda^1_{\mathbb{C}}M \mid \omega(Z) = 0 \ \forall \ Z \in T^{1,0}M \}$$

Proof. $\omega \in \Lambda^{1,0}M \iff \omega \circ J = i\omega \iff (\omega \circ J)(V) = i\omega(V) \ \forall \ V \in T^{\mathbb{C}}M$. If we decompose $V = V^{1,0} + V^{0,1}$, then

$$(\omega \circ J)(V) = \omega(JV) = \omega(iV^{1,0} - iV^{0,1}) = i\omega(V^{1,0}) - i\omega(V^{0,1})$$

This is equal to $i\omega(V)$ iff $\omega(V^{0,1})=0$. Analogously for $\Lambda^{0,1}M$.

We now decompose the k-th exterior power $\Lambda^k_{\mathbb{C}}M$ of $T^*M\otimes\mathbb{C}$:

$$\Lambda^k_{\mathbb{C}}M = \Lambda^k(\Lambda^{1,0}M \oplus \Lambda^{0,1}M) = \bigoplus_{p+q=k} \Lambda^p(\Lambda^{1,0}M) \otimes \Lambda^q(\Lambda^{0,1}M).$$

We shall write $\Lambda^{p,q}M=\Lambda^p(\Lambda^{1,0}M)\otimes \Lambda^q(\Lambda^{0,1}M)$. If $\varphi_1,\ldots,\varphi_n$ is a basis of $\Lambda^{1,0}_mM$, then $\overline{\varphi}_1,\ldots,\overline{\varphi}_n$ is a basis of $\Lambda^{0,1}_mM$, and the set of alternating forms

$$\varphi_{i_1} \wedge \cdots \wedge \varphi_{i_p} \wedge \overline{\varphi}_{j_1} \wedge \cdots \wedge \overline{\varphi}_{j_q}$$
, with $i_1 < \cdots < i_p \le n, \ j_1 < \cdots < j_q \le n$,

is a basis of $\Lambda_m^{p,q}M$. Therefore the rank of $\Lambda^{p,q}M$ is $\binom{n}{p}\binom{n}{q}$.

Sections of $\Lambda^k_{\mathbb{C}}M$ are \mathbb{C} -valued differential forms; sections of $\Lambda^{p,q}M$ are called differential forms of type (or degree) (p,q) and their space is denoted by $\Omega^{p,q}(M)$.

Proposition 1.5.3.

$$d\Omega^{p,q} \subset \Omega^{p+2,q-1} \oplus \Omega^{p+1,q} \oplus \Omega^{p,q+1} \oplus \Omega^{p-1,q+2}$$
.

Proof. Let $\omega \in \Omega^{p,q}(M)$. We can write it locally as

$$\omega = f\varphi_{i_1} \wedge \cdots \wedge \varphi_{i_p} \wedge \overline{\varphi}_{i_1} \wedge \cdots \wedge \overline{\varphi}_{i_q},$$

where $\varphi_1, \ldots, \varphi_n$ is a local frame of (1,0)-forms. We know that $df \in \Omega^1(M) = \Omega^{1,0}(M) \oplus \Omega^{0,1}(M)$ and $d\varphi_s \in \Omega^2(M) = \Omega^{2,0}(M) \oplus \Omega^{1,1}(M) \oplus \Omega^{0,2}(M)$ and similarly for $\overline{\varphi}_s$. Applying d to ω decomposed as above proves the claim.

For integrable almost complex structures this becomes much simpler, since we can choose a frame of the form $\varphi_i = dz_i$, where the z_i are local complex coordinates. Then $d(dz_i) = d(d\bar{z}_i) = 0$, and so

$$d(fdz_{i_1} \wedge \cdots \wedge dz_{i_p} \wedge d\overline{z}_{j_1} \wedge \cdots \wedge d\overline{z}_{j_q})$$

= $df \wedge dz_{i_1} \wedge \cdots \wedge dz_{i_p} \wedge d\overline{z}_{j_1} \wedge \cdots \wedge d\overline{z}_{j_q} \in \Omega^{p+1,q} \oplus \Omega^{p,q+1},$

and also $df \in \Omega^{1,0} \oplus \Omega^{0,1}$. In fact we have:

Proposition 1.5.4. For an almost complex manifold M, the following conditions are equivalent:

- a) If Z and W are complex vector fields of type (1,0), then so is [Z,W].
- b) If Z and W are complex vector fields of type (0,1), then so is [Z,W].
- c) $d\Omega^{1,0} \subset \Omega^{2,0} \oplus \Omega^{1,1}$ and $d\Omega^{0,1} \subset \Omega^{1,1} \oplus \Omega^{0,2}$.
- $d) \ d\Omega^{p,q} \subset \Omega^{p+1,q} \oplus \Omega^{p,q+1} \ \forall p,q.$
- e) the almost complex structure is integrable (i.e. N = 0).

Proof. Owing to the Newlander-Nirenberg theorem, we already know that a) \iff b) \iff e). Clearly d) \implies c) and the argument in the proof of Proposition 1.5.3 implies that c) \implies d). It remains to show that c) is equivalent to a) and b). Let ω be a 1-form of type (0,1) and Z,W vector fields of type (1,0). A well-known formula for the exterior derivative gives then

$$d\omega(Z,W) = Z(\underbrace{\omega(W)}_{=0}) - W(\underbrace{\omega(Z)}_{=0}) - \omega([Z,W]) = -\omega([Z,W]). \tag{1.5.1}$$

Observe that the 2nd formula in c) (denote it by c2)) is equivalent to $d\omega(Z, W) = 0$ for all $\omega \in \Omega^{0,1}$ and (1,0) vector fields Z, W. Formula (1.5.1) implies that this is equivalent to [Z, W] being of type (1,0). Thus c2) \iff a). Similarly c1) \iff b).

Given two manifolds M and M' and a smooth map $f: M \longrightarrow M'$, we can extend the differential f_* to a \mathbb{C} -linear mapping of $T^{\mathbb{C}}M$ to $T^{\mathbb{C}}M'$, which we still denote by f_* . Similarly f^* maps complex differential forms on M' to complex differential forms on M.

Definition 1.5.5. A smooth map $f:(M,J)\longrightarrow (M',J')$ between almost complex manifolds is called almost complex if $f_*\circ J=J'\circ f_*$.

Note that for complex manifolds "almost complex map" is the same as "holomorphic map".

Proposition 1.5.6. For a smooth map $f:(M,J) \longrightarrow (M',J')$ between almost complex manifolds the following conditions are equivalent:

- a) If Z is a complex tangent vector of type (1,0) on M, then so is $f_*(Z)$ on M'.
- b) If Z is a complex tangent vector of type (0,1) on M, then so is $f_*(Z)$ on M'.
- c) If ω is a complex differential form of type (p,q) on M', then $f^*\omega$ is a differential form of type (p,q) on M, for all p,q.
- d) f is almost complex.

Proof. Homework.
$$\Box$$

⁴Recall that the *pullback* $f^*\omega$ of a differential *k*-form is defined by $f^*\omega(X_1,\ldots,X_k)=\omega(f_*X_1,\ldots,f_*X_k)$.

Definition 1.5.7. An infinitesimal automorphism of an almost complex structure J on M is a vector field X such that $L_XJ=0$. (In other words, the local flow of X consists of (local) almost complex transformations.)

Proposition 1.5.8. A vector field X is an infinitesimal automorphism of an almost complex structure J iff

$$[X, JY] = J([X, Y]) \quad \forall Y \in \Gamma(TM).$$

Proof.

$$[X, JY] = L_X(JY) = (L_X J)Y + JL_X Y = (L_X J)Y + J([X, Y]).$$

Remark 1.5.9. If X is an infinitesimal automorphism of J, JX need not to be. In fact, the last proposition implies that if X is an infinitesimal automorphism, then, for all vector fields Y,

$$N(X,Y) = [JX, JY] - J[JX, Y] - [X, Y] - J[X, JY] = [JX, JY] - J[JX, Y],$$

and so JX is also an infinitesimal automorphism iff $N(X,Y)=0 \ \forall \ Y$. Conversely, it follows that if $N\equiv 0$, i.e. the almost complex structure J is integrable, then the Lie algebra $\mathfrak a$ of infinitesimal automorphisms of J is stable under J, and $[X,JY]=J[X,Y]\ \forall X,Y\in \mathfrak a$. Hence $\mathfrak a$ is a complex Lie algebra (possibly infinite-dimensional).

Proposition 1.5.10. On a complex manifold M, the Lie algebra of infinitesimal automorphisms of the complex structure J is isomorphic to the Lie algebra of holomorphic vector fields, the isomorphism being given by

$$X \mapsto Z = \frac{1}{2}(X - iJX).$$

Proof. Suppose that X - iJX is holomorphic and $Y \in \Gamma(TM)$ is arbitrary. If f is a local holomorphic function, then

$$(X + iJX)(f) = 0 \implies (X - iJX)(f) = (2X - (X + iJX))(f) = 2X(f).$$

Hence X(f) is holomorphic, which means that (Y+iJY)(X(f))=0 and of course (Y+iJY)(f)=0. Therefore

$$[Y + iJY, X](f) = (Y + iJY)(X(f)) - X((Y + iJY)(f)) = 0.$$

On the other hand:

$$[Y + iJY, X](f) = 0 \iff [Y + iJY, X] \text{ is of type } (0,1)$$
$$\iff \operatorname{Im}([Y + iJY, X]) = J\operatorname{Re}([Y + iJY, X])$$
$$\iff [JY, X] = J[Y, X] \iff X \in \mathfrak{a}.$$

Conversely, suppose that X is an infinitesimal automorphism of J. Due to Proposition 1.5.8, we know that [JY, X] = J[Y, X], i.e. [Y + iJY, X] is of type (0,1) for any vector field Y. Then (reversing the argument above) [Y + iJY, X](f) for any local holomorphic function f, so (Y + iJY)(X(f)) = 0, which means that X(f) is holomorphic, and hence X - iJX is holomorphic.

Thus the map $\theta: X \mapsto \frac{1}{2}(X - iJX)$ is a linear isomorphism between infinitesimal automorphism of J and holomorphic vector fields on M. We need to check that this map is a Lie algebra homomorphism:

$$[\theta(X), \theta(Y)] = \frac{1}{4}[X - iJX, Y - iJY] = \frac{1}{2}([X, Y] - [JX, JY] - i[JX, Y] - i[X, JY])$$

$$= \frac{1}{4}([X, Y] + [X, Y] - iJ[X, Y] - iJ[X, Y]) = \frac{1}{2}([X, Y] - iJ[X, Y]) = \theta([X, Y])$$

Definition 1.5.11. A real vector field X on a complex manifold is called real-holomorphic if X - iJX is a holomorphic vector field.