

CLAIMS

- 1 1. A circuit board comprising an insulating ceramic substrate and conductive layers
2 bonded to both surfaces of the insulating ceramic substrate, wherein the conductive
3 layers comprise at least 99.98% by mass of aluminum, and display an average crystal
4 grain diameter within a range from 0.5 mm to 5 mm and a standard deviation σ of the
5 crystal grain diameter of no more than 2 mm.

- 1 2. A circuit board according to claim 1, wherein the conductive layers comprise
2 rolled materials comprising 20 ppm or more of each of Cu, Fe and Si.

- 1 3. A circuit board according to claim 2, wherein the conductive layers are rolled
2 with a draft of at least 15%.

- 1 4. A circuit board according to claim 1, wherein a surface area of a crystal with
2 maximum crystal grain diameter within the conductive layers accounts for no more than
3 15% of a surface area of the insulating ceramic substrate.

- 1 5. A circuit board according to claim 1, wherein the insulating ceramic substrate is
2 formed from at least one of Al_2O_3 , AlN and Si_3N_4 .

- 1 6. A circuit board according to claim 1, wherein the conductive layers are bonded to
2 a surface of the insulating ceramic substrate using a brazing material, and the brazing
3 material is one or more materials selected from a group consisting of Al-Si based
4 materials, Al-Ge based materials, Al-Mn based materials, Al-Cu based materials, Al-Mg

5 based materials, Al-Si-Mg based materials, Al-Cu-Mn based materials, and Al-Cu-Mg-
6 Mn based materials.

1 7. A circuit board according to claim 2, wherein a surface area of a crystal with
2 maximum crystal grain diameter within the conductive layers accounts for no more than
3 15% of a surface area of the insulating ceramic substrate, the insulating ceramic substrate
4 is formed from at least one of Al_2O_3 , AlN and Si_3N_4 , the conductive layers are bonded to
5 a surface of the insulating ceramic substrate using a brazing material, and the brazing
6 material is one or more materials selected from a group consisting of Al-Si based
7 materials, Al-Ge based materials, Al-Mn based materials, Al-Cu based materials, Al-Mg
8 based materials, Al-Si-Mg based materials, Al-Cu-Mn based materials, and Al-Cu-Mg-
9 Mn based materials.

1 8. A method of producing a circuit board, comprising the steps of:
2 positioning a conductive layer comprising at least 99.98% by mass of aluminum
3 on top of an insulating ceramic substrate with a brazing material disposed therebetween,
4 bonding the conductive layer and the insulating ceramic substrate together via the
5 brazing material by compressing the conductive layer and the insulating ceramic
6 substrate at a pressure within a range from 50 kPa to 300 kPa while heating to a
7 temperature of at least 600°C in either a vacuum or an inert gas atmosphere, and
8 making an average crystal grain diameter of the conductive layer within a range
9 from 0.5 mm to 5 mm, and making a standard deviation σ of the crystal grain diameter
10 no more than 2 mm.

1 9. A method of producing a circuit board according to claim 8, further comprising a
2 step for producing the conductive layer by heat treating a plate material comprising at
3 least 99.98% by mass of aluminum and at least 20 ppm of each of Cu, Fe and Si, and
4 then conducting rolling with a draft of at least 15%.

1 10. A power module comprising a circuit board according to claim 1, and a heat
2 radiating plate for supporting the circuit board.

1 11. A power module according to claim 10, wherein at least a portion of the
2 conductive layer of the circuit board is bonded to the heat radiating plate using a brazing
3 material with a lower melting point than the brazing material.