<u>Для всех задач:</u>

 Имя входного файла:
 input.txt

 Имя выходного файла:
 output.txt

 Ограничение по памяти:
 64 Мб

 Максимальная оценка за задачу:
 10 баллов

Задача 1. Границы массива

Ограничение по времени:

1 секунда на тест

При работе с массивами многие языки (такие как Java или C) требуют от пользователя описывать размер массива, задающий количество элементов в нем. Если массив описан размерности k, то он может содержать не более k элементов. Обычно нумерация индексов элементов изменяется от нуля до (k-1). Так, если массив описан размерности 10, то допустимыми индексами являются числа от 0 до 9.

Ваша задача — написать программу, которая определяет, является ли допустимым индекс для заданного размера массива.

Входные данные

Во входном файле записано через пробел два целых числа k и x ($1 \le k \le 10^6$, $|x| \le 10^6$). Первое целое k представляет описанный размер массива. Второе целое задает индекс в этом массиве.

Выходные данные

В выходной файл необходимо вывести одну из двух строк. Если заданный индекс x является допустимым для данного массива, то нужно вывести строку **legal**. В противном случае необходимо фразу **out of bounds**.

Примеры

input.txt	output.txt
10 9	legal
10 10	out of bounds

Задача 2. Решето Эратосфена

Ограничение по времени:

1 секунда на тест

Задано натуральное число N. Необходимо найти все простые числа, не превосходящие заданного N и вывести их в порядке возрастания.

Использовать алгоритм «Решето Эратосфена».

Входные данные

Во входном файле записано одно натуральное число $N(2 \le N \le 10^6)$.

Выходные данные

В выходной файл необходимо вывести в порядке возрастания через пробел все простые числа, не превосходящие N.

Пример

input.txt	output.txt
23	2 3 5 7 11 13 17 19 23

Алгоритм «Решето Эратосфена»

- <u>Шаг 0</u>. Образовать из целых чисел от 2 до N множество M. Для моделирования множества использовать массив. Выбрать в нем минимальный по значению элемент K (это 2).
- <u>Шаг 1</u>. Удалить из множества все числа, большие K, которые делятся на K без остатка. Это все числа, отстоящие друг от друга на K, начиная с числа 2*K.
- <u>Шаг 2</u>. Переменной K присвоить значение следующего минимального элемента из множества M (это будет следующее простое число). Если $K \le \sqrt{N}$ то перейти на <u>Шаг 1</u>.
- <u>Шаг 3</u>. Выдать значения всех элементов множества M в возрастающем порядке.

Задача 3. Даты

Ограничение по времени:

1 секунда на тест

По двум заданным датам нужно посчитать количество дней, прошедших между ними.

Входные данные

Входной файл состоит из двух строк. Каждая строка содержит описание одной даты. Это три целых числа, записанных через пробел — день, месяц, год, соответственно. Годы могут принимать значения от 1 до 2012, месяцы от 1 до 12, а дни — от 1 до максимального номера дня текущего месяца. Даты могут задаваться в любом порядке. Следует помнить, что встречаются високосные годы. Год является високосным, если он делится нацело на 4 и не делится на 100, либо делится на 400. Например, 2000 год — високосный, а 1900 — нет.

Выходные данные

Если обе даты заданы корректно, то в выходной файл необходимо вывести неотрицательное целое число — количество дней, прошедших между датами. В противном случае необходимо вывести слово **ERROR**.

Примеры

input.txt	output.txt
1 1 2012	1
2 1 2012	
29 2 2012	ERROR
29 2 2011	

Задача 4. Бинарный поиск

Ограничение по времени:

1 секунда на тест

В упорядоченном массиве методом бинарного поиска найти заданное число и вывести его номер.

Входные данные

В первой строке входного файла записаны через пробел два целых числа N и X — размер массива и число, которое нужно найти в этом массиве($1 \le N \le 10^6$, $|X| \le 10^6$). Во второй строке через пробел записаны N целых чисел в порядке неубывания — элементы массива. Все числа по модулю не превосходят 10^6 .

Выходные данные

В выходной файл необходимо вывести номер элемента массива, содержащего заданное число X. Если такого числа нет, то вывести число -1.

Пример

input.txt	output.txt
5 9	3
2 4 7 9 12	

Задача 5. Подпоследовательности

Ограничение по времени:

1 секунда на тест

Задана последовательность целых чисел a_1 , a_2 , ... a_n и некоторое целое число S. Написать программу, находящую количество подпоследовательностей (подряд идущих элементов), сумма элементов которых равна S.

Входные данные

В первой строке входного файла записано через пробел два числа n и S ($1 \le n \le 10000$, $|S| < 10^6$). Во второй строке через пробел записаны целые числа $a_1, a_2, \dots a_n$, каждое из которых по модулю не превосходит 10^3 .

Выходные данные

В выходной файл необходимо вывести целое число – количество подпоследовательностей с заданным свойством.

Пример

input.txt	output.txt
10 5	6
1 2 3 5 4 1 2 2 1 4	