MA 572: Homework 1

Carlos Salinas

January 25, 2016

PROBLEM 1.1 (HATCHER §2.1, Ex. 11)

Show that if A is a retract of X then the map $H_n(A) \to H_n(X)$ induced by the inclusion $A \subset X$ is injective.

Proof. Suppose that A is a retract of X. Then there exists a continuous map $r: X \to A$ such that r(X) = A and $r \mid A = \mathrm{id}_A$. Let $i: A \hookrightarrow X$ denote the inclusion map and $i_*: H_n(A) \to H_n(X)$ denote the induced homomorphism on the homology groups of A and X; do the same for r, $r_*: H_n(X) \to H_n(X)$. Then $r \circ i = \mathrm{id}_A$ which induces the endomorphism $(r \circ i)_* = r_* \circ i_* = \mathrm{id}_{H_n(A)}$ on $H_n(A)$. Thus, the inclusion map i_* is injective (since it has a left inverse).

MA 572: Homework 1

PROBLEM 1.2 (HATCHER §2.1, Ex. 12)

Show that chain homotopy of chain maps is an equivalence relation.

Proof. Let X and Y be topological spaces and $f, g, h: X \to Y$ be continuous maps. Then $f_{\#}, g_{\#}, h_{\#}: C_n(X) \to C_n(Y)$ denote the induced chain maps. We show that chain homotopy of chain maps is an equivalence relation:

(i) Let P be the 0 homomorphsim. Then, we have

$$\partial 0 + 0 \partial = 0 = f_{\#} - f_{\#}.$$

Thus, $f_{\#}$ is chain homotopic to itself.

(ii) Suppose $f_{\#}$ is chain homotopic to $g_{\#}$. Then there exist a homomorphism $P: C_n(X) \to C_{n+1}(Y)$ such hat $\partial P + P\partial = g_{\#} - f_{\#}$. Put Q := -P. Then, we have

$$\partial(-P) + (-P)\partial = -(\partial P + P\partial) = -(g_{\#} - f_{\#}) = f_{\#} - g_{\#}.$$

Thus, $g_{\#}$ is chain homotopic to $f_{\#}$.

(iii) Suppose that $f_{\#}$ is chain homotopic to $g_{\#}$ and $g_{\#}$ is chain homotopic to $h_{\#}$. Then there exists homomorphism $P: C_n(X) \to C_{n+1}(Y)$ and a homomorphism $Q: C_n(X) \to C_{n+1}(Y)$ such that $\partial P + P \partial = g_{\#} - f_{\#}$ and $\partial Q + Q \partial = h_{\#} - g_{\#}$. Put R:=P+Q. Then, we have

$$\begin{split} \partial(P+Q) + (P+Q)\partial &= \partial P + \partial Q + P\partial + Q\partial \\ &= (\partial Q + Q\partial) + (\partial P + P\partial) \\ &= (h_\# - g_\#) + (g_\# - f_\#) \\ &= h_\# - f_\#. \end{split}$$

Thus, $f_{\#}$ is chain homotopic to $h_{\#}$.

We conclude that 'chain homotopy' is an equivalence relation.