Parte 1 Infraestrutura

```
appnope==0.1.4
asttokens==2.4.1
comm == 0.2.2
contourpy==1.3.1
cycler==0.12.1
debugpy==1.8.8
decorator==5.1.1
exceptiongroup==1.2.2
executing==2.1.0
fonttools==4.55.0
ipykernel==6.29.5
ipython==8.29.0
jedi==0.19.2
joblib==1.4.2
jupyter_client==8.6.3
jupyter_core==5.7.2
kiwisolver==1.4.7
matplotlib==3.9.2
matplotlib-inline==0.1.7
nest-asyncio==1.6.0
numpy==2.1.3
packaging==24.2
pandas==2.2.3
parso==0.8.4
pexpect==4.9.0
pillow==11.0.0
platformdirs==4.3.6
prompt_toolkit==3.0.48
psutil==6.1.0
ptyprocess==0.7.0
pure_eval==0.2.3
Pygments==2.18.0
pyparsing==3.2.0
python-dateutil==2.9.0.post0
pytz==2024.2
pyzmq = 26.2.0
scikit-learn==1.5.2
scikit-learn-extra==0.3.0
scipy==1.14.1
seaborn==0.13.2
six == 1.16.0
stack-data==0.6.3
threadpoolctl==3.5.0
tornado==6.4.1
traitlets==5.14.3
typing_extensions==4.12.2
tzdata==2024.2
wcwidth==0.2.13
```

Jupyter notebook rodando

```
bakudas in -/code/pos-infnet-clusterizacao on main \( \) source pos-pd-clusterizacao/bin/activate
(pos-pd-clusterizacao) bakudas in -/code/pos-infnet-clusterizacao on main \( \) jupyter lab
[[ 2024-11-20 21:32:49.705 ServerApp] Package jupyterlab took 0.0000s to import
[[ 2024-11-20 21:32:49.705 ServerApp] A \( \) jupyter_server_extension-points \( \) function was not found in jupyter_lsp. Instead, a \( \) jupyter server_extension, paths \( \) function was found and will be used for now. This function name will be deprecated in future rele ases of Jupyter Server.
[[ 2024-11-20 21:32:49.711 ServerApp] Package jupyter_server_extension.paths \( \) function name will be deprecated in future rele ases of Jupyter Server.
[[ 2024-11-20 21:32:49.712 ServerApp] Package jupyter_server_terminals took 0.0060s to import
[[ 2024-11-20 21:32:49.712 ServerApp] A \( \) jupyter_server_extension.points \( \) function was not found in notebook_shim. Instead, a \( \) jupyter_server_extension_paths \( \) function was found and will be used for now. This function name will be deprecated in future re leases of Jupyter Server.
[[ 2024-11-20 21:32:49.712 ServerApp] jupyter_server_extension was successfully linked.
[[ 2024-11-20 21:32:49.712 ServerApp] jupyter_server_terminals | extension was successfully linked.
[[ 2024-11-20 21:32:50.608 ServerApp] interpretable extension was successfully linked.
[[ 2024-11-20 21:32:50.6112 ServerApp] intebook_shim | extension was successfully loaded.
[[ 2024-11-20 21:32:50.112 ServerApp] jupyter_lsp | extension was successfully loaded.
[[ 2024-11-20 21:32:50.113 ServerApp] jupyter_lsp | extension was successfully loaded.
[[ 2024-11-20 21:32:50.114 ServerApp] jupyter_server_terminals | extension was successfully loaded.
[[ 2024-11-20 21:32:50.115 LabApp] Jupyter_server_terminals | extension was successfully loaded.
[[ 2024-11-20 21:32:50.118 ServerApp] jupyter_server_terminals | extension was successfully loaded.
[[ 2024-11-20 21:32:50.118 ServerApp] Jupyter_server_terminals | extension was successfull
```

Parte 2 Escolha de base de dadosos.

Objetivo da Análise Exploratória de Dados (EDA)

Propósitos

- Compreender a estrutura e características dos dados;
- Identificar padrões, tendências e anomalias;
- Preparar os dados para modelagem de clusterização.

Importação das Bibliotecas

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
import numpy as np
```

2.1 Baixe os dados disponibilizados na plataforma Kaggle sobre dados sócio-econômicos e de saúde que determinam o índice de desenvolvimento de um país.

```
In [7]: # importa e lê a base de dados
    df = pd.read_csv("data/Country-data.csv")
In [8]: # Análise inicial para conhecer os atributos e volume dos dados
    df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 167 entries, 0 to 166 Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	country	167 non-null	object
1	child_mort	167 non-null	float64
2	exports	167 non-null	float64
3	health	167 non-null	float64
4	imports	167 non-null	float64
5	income	167 non-null	int64
6	inflation	167 non-null	float64
7	life_expec	167 non-null	float64
8	total_fer	167 non-null	float64
9	gdpp	167 non-null	int64
dtvp	es: float64(7), $int64(2)$, of	oiect(1)

memory usage: 13.2+ KB

In [9]: # Renomear os atributos para facilitar a análise atributos = ["pais", "mortalidade_infantil", "exportacoes", "saude", "importacoes", "renda_per_capita", "inflacao", "expectativa_vida", "fertilidade_total", "pib_per_capita"] # Aplica os novos nomes para os atributos da relação df.columns = atributos

In [10]: # Estatísticas básicas da base de dados df.describe()

Out[10]: mortalidade_infantil exportacoes saude importacoes renda_per_capit 167.000000 167.000000 167.000000 167.000000 167.00000 count 38.270060 41.108976 6.815689 46.890215 17144.68862 mean std 40.328931 27.412010 2.746837 24.209589 19278.06769 min 2.600000 0.109000 1.810000 0.065900 609.00000 25% 8.250000 23.800000 4.920000 30.200000 3355.00000 50% 19.300000 35.000000 6.320000 43.300000 9960.00000 75% 62.100000 51.350000 8.600000 58.750000 22800.00000 208.000000 200.000000 17.900000 174.000000 125000.00000

In [11]: # Contagem de valores faltantes df.isnull().sum()

max

```
Out[11]: pais
                                  0
         mortalidade_infantil
                                  0
         exportacoes
                                  0
         saude
                                  0
                                  0
          importacoes
          renda_per_capita
                                  0
          inflacao
                                  0
         expectativa_vida
                                  0
          fertilidade total
          pib_per_capita
                                  0
          dtype: int64
```

Análise de Outliers

2.2. Quantos Países existem no dataset?

```
In [266... num_paises = df['pais'].nunique()
    print(f"Número de países: {num_paises}")
```

Número de países: 167

2.3. Mostre através de gráficos a faixa dinâmica das variáveis que serão usadas nas tarefas de clusterização. Analise os resultados mostrados. O que deve ser feito com os dados antes da etapa de clusterização?

```
In [12]: # Histogramas
    df.hist(figsize=(16,9))
    plt.tight_layout()

# Boxplots para identificar outliers
    plt.figure(figsize=(16,9))
    df.boxplot()
```

Out[12]: <Axes: >

In [265... # Observar um sample da instância
 df.head()

Out[265		pais	mortalidade_infantil	exportacoes	saude	importacoes	renda_per_c
	0	Afghanistan	90.2	10.0	7.58	44.9	
	1	Albania	16.6	28.0	6.55	48.6	
	2	Algeria	27.3	38.4	4.17	31.4	,
	3	Angola	119.0	62.3	2.85	42.9	
	4	Antigua and Barbuda	10.3	45.5	6.03	58.9	

```
In [264... # Segmenta a relação apenas com dados numéricos
df_numerical = df.drop(columns=['pais'])
```

Análise de Correlação

Baseado na análise de correlações é possível perceber que alguns atributos da relação podem ser cruzados para fornecer insights prévios de possíveis agrupamentos.

Correlações encontradas:

- Correlação entre gastos em saúde e expectativa de vida
- Impacto da renda per capita na expectativa de vida
- Correlação entre importações e exportações

```
In [262... # Matriz de correlação
                  corr_matrix = df_numerical.corr()
                  plt.figure(figsize=(16,9))
                  sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
                  plt.title('Matriz de Correlação')
                  plt.show()
                                                                            Matriz de Correlação
               mortalidade_infantil
                                               -0.32
                                                            -0.2
                                                                                                                                                        0.75
                                   -0.32
                                                            -0.11
                                                                                                -0.11
                                                                                                                        -0.32
                                                                                    0.52
                                                                                                            0.32
                                                                                                                                    0.42
                     exportacoes -
                                                                                                                                                       0.50
                         saude
                                    -0.2
                                               -0.11
                                                                       0.096
                                                                                    0.13
                                                                                                -0.26
                                                                                                            0.21
                                                                                                                        -0.2
                                                                                                                                    0.35
                                   -0.13
                                                           0.096
                                                                                    0.12
                                                                                                -0.25
                                                                                                            0.054
                                                                                                                        -0.16
                                                                                                                                    0.12
                                                                                                                                                       0.25
                                                                                                -0.15
                 renda_per_capita
                                                                                                                                                       0.00
                                   0.29
                                               -0.11
                                                                                    -0.15
                                                                                                            -0.24
                                                                                                                        0.32
                                                                                                                                    -0.22
                                                            -0.26
                                                                        -0.25
                        inflacao
                                                                                                                                                       -0.25
                                                                                                -0.24
                 expectativa_vida
                                               0.32
                                                            0.21
                                                                       0.054
                                                                                                                                                       -0.50
                  fertilidade_total
                                               -0.32
                                                            -0.2
                                                                        -0.16
                                                                                                0.32
                                                                                                                                                        -0.75
                   pib_per_capita
                                                0.42
                                    mortalidade infantil
                                                             saude
                                                                                                             expectativa_vida
                                                                                     enda_per_capita
                                                                                                                         fertilidade_total
```

Normalização dos dados

Houve um mapeamento de outliers e será necessário realizar uma normalização nos dados utilizando MinMaxScaler para que a diferença nas escalas das variáveis não conduzam para resultados enviesados contribuindo de forma equilibrada para a análise.

Em seguida vamos realizar também uma redução de dimensionalidade para seguir com a clusterização.

```
In [230... from sklearn.preprocessing import MinMaxScaler

# Normalização (escala 0-1)
minmax_scaler = MinMaxScaler()
df_normalized = pd.DataFrame(minmax_scaler.fit_transform(df_numerical), c
```

Parte 3 Clusterização

Realizar o agrupamento dos países em 3 grupos distintos. Para tal, use:

- K-Médias
- Clusterização Hierárquica

Para os resultados, do K-Médias:

- Interprete cada um dos clusters obtidos citando:
 - Qual a distribuição das dimensões em cada grupo
 - O país, de acordo com o algoritmo, melhor representa o seu agrupamento.
 Justifique

Para os resultados da Clusterização Hierárquica, apresente o dendograma e interprete os resultados

Compare os dois resultados, aponte as semelhanças e diferenças e interprete.

Redução de dimensionalidade

Utilização da técnica PCA

```
In [233... from sklearn.decomposition import PCA

pca = PCA(n_components=2)
    df_pca = pca.fit_transform(df_normalized)

plt.figure(figsize=(16, 9))
    plt.scatter(df_pca[:, 0], df_pca[:, 1])
    plt.xlabel('PCA 1')
    plt.ylabel('PCA 2')
    plt.title('Dados após redução de dimensionalidade com PCA')
    plt.show()
```


K-Means utilizando 3 Clusters

```
In [234... # Clusterizando com K-Means com 3 clusters
kmeans = KMeans(n_clusters=3, n_init=10, random_state=42)
kmeans.fit_predict(df_pca)
df['cluster_kmeans'] = kmeans.labels_
In [235... from sklearn.metrics import pairwise_distances_argmin_min
```

from sklearn.metrics import pairwise_distances_argmin_min

closest, _ = pairwise_distances_argmin_min(kmeans.cluster_centers_, df_pc
representative_countries = df.iloc[closest][["pais", "cluster_kmeans"]]
print("Países mais representativos de cada cluster:")
representative_countries

Países mais representativos de cada cluster:

Out [235... pais cluster_kmeans

144	Sweden	0
56	Gambia	1
9	Azerbaijan	2

```
In [242... # labels e centroides
labels = kmeans.labels_
centroids = kmeans.cluster_centers_

# Plotando os clusters e os centróides
plt.figure(figsize=(16, 8))
plt.scatter(df_pca[:, 0], df_pca[:, 1], c=labels, cmap='viridis', alpha=0
plt.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='o')
plt.xlabel('Componente Principal 1')
plt.ylabel('Componente Principal 2')
plt.title('Clusters e seus Centróides')
plt.show()
```


K-Means com 5 clusters

```
In [243... # Clusterizando com K-Means com 5 clusters
kmeans = KMeans(n_clusters=5, n_init=10, random_state=42)
kmeans.fit_predict(df_pca)
df['cluster_kmeans'] = kmeans.labels_

In [244... from sklearn.metrics import pairwise_distances_argmin_min

closest, _ = pairwise_distances_argmin_min(kmeans.cluster_centers_, df_pc
representative_countries = df.iloc[closest][["pais", "cluster_kmeans"]]
print("Países mais representativos de cada cluster:")
representative_countries
```

Países mais representativos de cada cluster:

```
Out [244...
```

paiscluster_kmeans57Georgia063Guinea1137South Africa2123Qatar3135Slovenia4

```
In [245... # labels e centroides
labels = kmeans.labels_
    centroids = kmeans.cluster_centers_

# Plotando os clusters e os centróides
plt.figure(figsize=(16, 8))
plt.scatter(df_pca[:, 0], df_pca[:, 1], c=labels, cmap='viridis', alpha=0
plt.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='o')
plt.xlabel('Componente Principal 1')
plt.ylabel('Componente Principal 2')
plt.title('Clusters e seus Centróides')
plt.show()
```


Clusterização Hierarquica

```
from sklearn.cluster import AgglomerativeClustering
from scipy.cluster.hierarchy import dendrogram, linkage
def plot_dendrogram(model, **kwargs):
    # Create linkage matrix and then plot the dendrogram
    # create the counts of samples under each node
    counts = np.zeros(model.children_.shape[0])
    n samples = len(model.labels )
    for i, merge in enumerate(model.children_):
        current count = 0
        for child_idx in merge:
            if child_idx < n_samples:</pre>
                current_count += 1 # leaf node
            else:
                current_count += counts[child_idx - n_samples]
        counts[i] = current_count
    linkage_matrix = np.column_stack([model.children_, model.distances_,
                                       counts]).astype(float)
    # Plot the corresponding dendrogram
    dendrogram(linkage_matrix, **kwargs)
```

```
In [285... # Clusterização Hierárquica utilizando AgglomerativaClustering
    model = AgglomerativeClustering(distance_threshold=0, n_clusters=None)
    model = model.fit(data)

# Plot Dendrogram
    plt.figure(figsize=(16, 9))
    plt.title('Hierarchical Clustering Dendrogram')
# plot the top three levels of the dendrogram
    plot_dendrogram(model, truncate_mode='level', p=3)
    plt.xlabel("Number of points in node (or index of point if no parenthesis plt.show()
```



```
In [290... # Gerar a Matriz de Ligação
Z = linkage(df_pca, method='complete')

# Plotar o Dendograma para Análise Visual
plt.figure(figsize=(12, 8))
dendrogram(Z, truncate_mode='level', p=3, leaf_rotation=90., leaf_font_si
plt.title('Dendograma - Clusterização Hierárquica')
plt.xlabel('Índice do Ponto de Dados')
plt.ylabel('Distância')
plt.show()

# Aplicando a clusterização hierarquica com 5 clusters
clusters_hierarchical = fcluster(Z, 5, criterion='maxclust')

# Cria atributo na relação com os dados da clusterização hierarquica
df['cluster_hierarchical'] = clusters_hierarchical
```


In [292... plt.figure(figsize=(16, 8))

K-Means
plt.subplot(1, 2, 1)
plt.scatter(df_pca[:, 0], df_pca[:, 1], c=labels, cmap='viridis', alpha=0
plt.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='o')
plt.title('Clusters K-Médias')

Clusterização Hierárquica
plt.subplot(1, 2, 2)
plt.scatter(df_pca[:, 0], df_pca[:, 1], c=df['cluster_hierarchical'], cma
plt.title('Clusters Hierárquicos')

plt.tight_layout()
plt.show()


```
In [256... # Agrupamento de países pelo atributo cluster_kmeans
df_grouped = df.groupby('cluster_kmeans')['pais'].apply(list)

# Exibir o agrupamento de países por cluster k-means
for cluster, countries in df_grouped.items():
    print(f"Cluster {cluster}:")
    for country in countries:
        print(f" - {country}")
    print()
```

Cluster 0:

- Albania
- Algeria
- Antigua and Barbuda
- Argentina
- Armenia
- Azerbaijan
- Barbados
- Belarus
- Belize
- Bhutan
- Bosnia and Herzegovina
- Brazil
- Bulgaria
- Cape Verde
- Chile
- China
- Colombia
- Costa Rica
- Croatia
- Dominican Republic
- Ecuador
- El Salvador
- Georgia
- Grenada
- Iran
- Jamaica
- Kazakhstan
- Latvia
- Lebanon
- Libya
- Macedonia, FYR
- Maldives
- Mauritius
- Moldova
- Montenegro
- Morocco
- Panama
- Paraguay
- Peru
- Poland
- Romania
- Russia
- Saudi Arabia
- Serbia
- Sri Lanka
- St. Vincent and the Grenadines
- Suriname
- Thailand
- Tunisia
- Turkey
- Ukraine
- Uruguay
- VenezuelaVietnam
- V IC CHaii

Cluster 1:

- Afghanistan
- Angola
- Benin

- Burkina Faso
- Burundi
- Cameroon
- Central African Republic
- Chad
- Comoros
- Congo, Dem. Rep.
- Congo, Rep.
- Cote d'Ivoire
- Equatorial Guinea
- Gambia
- Guinea
- Guinea-Bissau
- Haiti
- Lesotho
- Liberia
- Madagascar
- Malawi
- Mali
- Mauritania
- Mozambique
- Niger
- Nigeria
- Senegal
- Sierra Leone
- Tanzania
- Timor-Leste
- Togo
- Uganda
- Zambia

Cluster 2:

- Bangladesh
- Bolivia
- Botswana
- Cambodia
- Egypt
- Eritrea
- Fiji
- Gabon
- Ghana
- Guatemala
- Guyana
- India
- Indonesia
- Iraq
- Jordan
- Kenya
- Kiribati
- Kyrgyz Republic
- Lao
- Micronesia, Fed. Sts.
- Mongolia
- Myanmar
- Namibia
- Nepal
- Pakistan
- Philippines
- Rwanda
- Samoa

- Solomon Islands
- South Africa
- Sudan
- Tajikistan
- Tonga
- Turkmenistan
- Uzbekistan
- Vanuatu
- Yemen

Cluster 3:

- Ireland
- Luxembourg
- Malta
- Norway
- Qatar
- Singapore
- Switzerland

Cluster 4:

- Australia
- Austria
- Bahamas
- Bahrain
- Belgium
- Brunei
- Canada
- Cyprus
- Czech Republic
- Denmark
- Estonia
- Finland
- France
- Germany
- Greece
- Hungary
- IcelandIsrael
- 13140
- Italy
- Japan
- Kuwait
- Lithuania
- Malaysia
- NetherlandsNew Zealand
- Oman
- Portugal
- Seychelles
- Slovak Republic
- Slovenia
- South Korea
- Spain
- Sweden
- United Arab Emirates
- United Kingdom
- United States

In [258... # Agrupamento de países pelo atributo cluster_hierarchical
df_grouped = df.groupby('cluster_hierarchical')['pais'].apply(list)

```
# Exibir o agrupamento de países por cluster hierarquico
for cluster, countries in df_grouped.items():
    print(f"Cluster {cluster}:")
    for country in countries:
        print(f" - {country}")
    print()
```

Cluster 1:

- Afghanistan
- Angola
- Benin
- Burkina Faso
- Burundi
- Cameroon
- Central African Republic
- Chad
- Congo, Dem. Rep.
- Congo, Rep.
- Cote d'Ivoire
- Equatorial Guinea
- Gambia
- Guinea
- Guinea-Bissau
- Haiti
- Lesotho
- Liberia
- Malawi
- Mali
- Mauritania
- Mozambique
- Niger
- Nigeria
- Sierra Leone
- Tanzania
- Togo
- Uganda
- Zambia

Cluster 2:

- Bolivia
- Botswana
- Cambodia
- Comoros
- Eritrea
- Fiji
- Gabon
- Ghana
- Guatemala
- Guyana
- Iraq
- Jordan
- Kenya
- Kiribati
- Kyrgyz Republic
- Lao
- Madagascar
- Micronesia, Fed. Sts.
- Mongolia
- Namibia
- Pakistan
- Philippines
- Rwanda
- Samoa
- Senegal
- Solomon Islands
- South Africa
- Sudan

- Tajikistan
- Timor-Leste
- Tonga
- Turkmenistan
- Vanuatu
- Yemen

Cluster 3:

- Albania
- Algeria
- Antigua and Barbuda
- Argentina
- Armenia
- Azerbaijan
- Bahamas
- Bahrain
- Bangladesh
- Barbados
- Belarus
- Belize
- Bhutan
- Bosnia and Herzegovina
- Brazil
- Bulgaria
- Cape Verde
- Chile
- China
- Colombia
- Costa Rica
- Croatia
- Czech Republic
- Dominican Republic
- Ecuador
- Egypt
- El Salvador
- Estonia
- Georgia
- Grenada
- Hungary
- India
- Indonesia
- Iran
- Israel
- Jamaica
- Kazakhstan
- Latvia
- Lebanon
- Libya
- Lithuania
- Macedonia, FYR
- Malaysia
- Maldives
- Mauritius
- Moldova
- Montenegro
- Morocco
- Myanmar
- Nepal
- Oman
- Panama

- Paraguay
- Peru
- Poland
- Romania
- Russia
- Saudi Arabia
- Serbia
- Seychelles
- Slovak Republic
- Sri Lanka
- St. Vincent and the Grenadines
- Suriname
- Thailand
- Tunisia
- Turkey
- Ukraine
- Uruguay
- Uzbekistan
- Venezuela
- Vietnam

Cluster 4:

- Luxembourg
- Singapore

Cluster 5:

- Australia
- Austria
- Belgium
- Brunei
- Canada
- Cyprus
- Denmark
- Finland
- France
- Germany
- Greece
- IcelandIreland
- Italy
- Japan
- Kuwait
- Malta
- Netherlands
- New Zealand
- Norway
- Portugal
- Qatar
- Slovenia
- South Korea
- Spain
- Sweden
- Switzerland
- United Arab Emirates
- United Kingdom
- United States

Análise pessoal

Na minha análise, o K-MEANS se mostrou melhor e mais versátil que o Cluster Hierárquico. Mas com o auxílio do dendrogram a forma hierárquica ganha bastante força com a possibilidade de uma análise visual do corte dos clusters.

Achei ideal a quantidade de 5 (CINCO) clusters para representar os agrupamentos de países com caracteriscticas similares. Com 3 (TRÊS) clusters ainda percebia uma grande distância entre os países que figuravam os grupos.

Porém resolvi fazer análises e clusterização com base na análise de correlações e segmentando-a a definição dos clusters por pares de correlações fortes. Segue:

```
In [157... print(df[["pais", "saude", "expectativa_vida"]].sort_values("saude", asce

# Scatter plot entre investimento em saúde e expectativa de vida
plt.figure(figsize=(16, 9))
sns.scatterplot(data=df, x='saude', y='expectativa_vida', hue='cluster_km
plt.title('Relação entre Investimento em Saúde e Expectativa de Vida')
plt.xlabel('Investimento em Saúde (% do PIB)')
plt.ylabel('Expectativa de Vida (anos)')
plt.grid(True)
plt.show()
```

	pais	saude	expectativa_vida
159	United States	17.90	78.7
101	Micronesia, Fed. Sts.	14.20	65.4
132	Sierra Leone	13.10	55.0
110	Netherlands	11.90	80.7
54	France	11.90	81.4
154	Turkmenistan	2.50	67.9
38	Congo, Rep.	2.46	60.4
116	Pakistan	2.20	65.3
107	Myanmar	1.97	66.8
123	Qatar	1.81	79.5

[167 rows x 3 columns]

In [148... print(df_scaled[["saude", "mortalidade_infantil"]].sort_values("saude", a
 # Scatter plot entre investimento em saúde e mortalidade infantil
 plt.figure(figsize=(16, 9))
 sns.scatterplot(data=df, x='saude', y='mortalidade_infantil', hue='cluste
 plt.title('Relação entre Investimento em Saúde e Mortalidade Infantil')
 plt.xlabel('Investimento em Saúde (% do PIB)')
 plt.ylabel('Mortalidade Infantil (mortes por 1000 nascimentos)')
 plt.grid(True)
 plt.show()

```
saude mortalidade infantil
159 4.047436
                          -0.770246
101 2.696381
                           0.043025
132
    2.294716
                           3.027505
110 1.856536
                          -0.839884
54
    1.856536
                          -0.847345
154 -1.575873
                           0.590179
38 -1.590479
                           0.637434
116 -1.685418
                           1.338787
107 -1.769403
                           0.649869
123 -1.827827
                          -0.727966
```

[167 rows x 2 columns]

In [293... print(df[["pais", "saude", "expectativa_vida"]].sort_values("saude", asce

Scatter plot entre investimento em saúde e expectativa de vida
plt.figure(figsize=(16, 9))
sns.scatterplot(data=df, x='saude', y='expectativa_vida', hue='cluster_km
plt.title('Relação entre Investimento em Saúde e Expectativa de Vida')
plt.xlabel('Investimento em Saúde (% do PIB)')
plt.ylabel('Expectativa de Vida (anos)')
plt.grid(True)
plt.show()

	pais	saude	expectativa_vida
159	United States	17.90	78.7
101	Micronesia, Fed. Sts.	14.20	65.4
132	Sierra Leone	13.10	55.0
110	Netherlands	11.90	80.7
54	France	11.90	81.4
154	Turkmenistan	2.50	67.9
154 38	Turkmenistan Congo, Rep.	2.50 2.46	67.9 60.4
38	Congo, Rep.	2.46	60.4
38 116	Congo, Rep. Pakistan	2.46 2.20	60.4 65.3

[167 rows x 3 columns]


```
In [294... # Clusterizando com K-Means com 5 clusters
kmeans = KMeans(n_clusters=5, n_init=10, random_state=42)
kmeans.fit_predict(df_normalized[["saude", "expectativa_vida"]])
df['cluster_kmeans_corr1'] = kmeans.labels_
```

In [295... from sklearn.metrics import pairwise_distances_argmin_min

closest, _ = pairwise_distances_argmin_min(kmeans.cluster_centers_, df_no
 representative_countries = df.iloc[closest][["pais", "cluster_kmeans"]]
 print("Países mais representativos de cada cluster:")
 representative_countries

Países mais representativos de cada cluster:

Out [295... pais cluster_kmeans

		-	_	
	67	Hungary		4
	15	Belgium		4
	113	Nigeria		1
	155	Uganda		1
	6	Armenia		0

```
In [297... # labels e centroides
labels = kmeans.labels_
    centroids = kmeans.cluster_centers_

# Plotando os clusters e os centróides
plt.figure(figsize=(16, 8))
plt.scatter(df_normalized["saude"], df_normalized["expectativa_vida"], c=
    plt.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='o')
    plt.xlabel('Investimento em Saúde (% do PIB)')
    plt.ylabel('Expectativa de Vida (anos)')
    plt.title('Clusters e seus Centróides')
    plt.show()
```



```
In [298... # Agrupamento de países pelo atributo cluster_kmeans
df_grouped = df.groupby('cluster_kmeans_corr1')['pais'].apply(list)

# Exibir o agrupamento de países por cluster k-means
for cluster, countries in df_grouped.items():
    print(f"Cluster {cluster}:")
    for country in countries:
        print(f" - {country}")
    print()
```

Cluster 0:

- Albania
- Antigua and Barbuda
- Argentina
- Bahamas
- Barbados
- Brazil
- Bulgaria
- Chile
- Colombia
- Croatia
- Cyprus
- Czech Republic
- Dominican Republic
- Ecuador
- El Salvador
- Estonia
- Guatemala
- Hungary
- Iraq
- Israel
- Jordan
- Latvia
- Lebanon
- Lithuania
- Luxembourg
- Macedonia, FYR
- Maldives
- Mauritius
- Panama
- Paraguay
- Poland
- Samoa
- Slovak Republic
- South Korea
- Suriname
- Timor-Leste
- Tunisia
- Turkey
- Ukraine
- Uruguay
- Vietnam

Cluster 1:

- Australia
- Austria
- Belgium
- Bosnia and Herzegovina
- Canada
- Costa Rica
- Denmark
- Finland
- France
- Georgia
- Germany
- Greece
- Iceland
- Ireland
- ItalyJapan

file:///Users/bakudas/code/pos-infnet-clusterizacao/pd_clusterizacao_wilson_melo.html

- Malta
- Moldova
- Montenegro
- Netherlands
- New Zealand
- Norway
- Portugal
- Serbia
- Slovenia
- Spain
- Sweden
- Switzerland
- United Kingdom
- United States

Cluster 2:

- Angola
- Benin
- Burkina Faso
- Cambodia
- Cameroon
- Central African Republic
- Chad
- Comoros
- Congo, Rep.
- Cote d'Ivoire
- Equatorial Guinea
- Eritrea
- Fiji
- Gabon
- Gambia
- Ghana
- Guinea
- Guyana
- India
- Kenya
- Lao
- Madagascar
- Malawi
- Mali
- Mongolia
- Mozambique
- Namibia
- Niger
- Nigeria
- Pakistan
- Senegal
- Sudan
- Tanzania
- Vanuatu
- Zambia

Cluster 3:

- Afghanistan
- Botswana
- Burundi
- Congo, Dem. Rep.
- Guinea-Bissau
- Haiti
- Kiribati

- Lesotho
- Liberia
- Micronesia, Fed. Sts.
- Rwanda
- Sierra Leone
- Solomon Islands
- South Africa
- Togo
- Uganda

Cluster 4:

- Algeria
- Armenia
- Azerbaijan
- Bahrain
- Bangladesh
- Belarus
- Belize
- Bhutan
- Bolivia
- Brunei
- Cape Verde
- China
- Egypt
- Grenada
- Indonesia
- Iran
- Jamaica
- Kazakhstan
- Kuwait
- Kyrgyz Republic
- Libya
- Malaysia
- Mauritania
- Morocco
- Myanmar
- Nepal
- Oman
- Peru
- Philippines
- Qatar
- Romania
- Russia
- Saudi Arabia
- SeychellesSingapore
- Jingapor C
- Sri Lanka
- St. Vincent and the Grenadines
- Tajikistan
- Thailand
- Tonga
- Turkmenistan
- United Arab Emirates
- Uzbekistan
- Venezuela
- Yemen

Parte 4 Escolha de algoritmos

4.1 Escreva em tópicos as etapas do algoritmo de K-médias até sua convergência.

O K-Médias é um algoritmo de aprendizado não supervisionado para particionar um conjunto de dados em clusters separados.

- 1. Inicialização dos Centróides
- Escolhe aleatoriamente pontos do conjunto de dados como centróides iniciais.
- 2. Atribuição dos Clusters
- Para cada ponto do conjunto de dados, utilizando uma métrica de distância, atribua-o ao centróide mais próximo.
- A métrica de distância geralmente utilizada é a distância euclidiana.
- 3. Recalcular os Centróides
- Após todos os pontos serem atribuídos aos clusters, calcule o novo centróide, utilizando média-aritmética, de cada cluster.
- 4. Iteração até Convergência
- Repetir as etapas de atribuição e recalculação dos centróides até que os centróides não mudem mais de forma significativa entre as repetições (ou até atingir um número máximo de iterações).

4.2 O algoritmo de K-médias converge até encontrar os centróides que melhor descrevem os clusters encontrados (até o deslocamento entre as interações dos centróides ser mínimo). Lembrando que o centróide é o baricentro do cluster em questão e não representa, em via de regra, um dado existente na base. Refaça o algoritmo apresentado na questão 1 a fim de garantir que o cluster seja representado pelo dado mais próximo ao seu baricentro em todas as iterações do algoritmo.

Obs: nesse novo algoritmo, o dado escolhido será chamado medóide.

Etapas do Algoritmo K-Medóides:

- 1. Inicialização dos Medóides:
- Escolher aleatoriamente pontos da instância de dados como os medóides iniciais.

- 2. Atribuição aos Medóides:
- Para cada ponto do conjunto de dados, atribua-o ao medóide mais próximo.
- 3. Atualizar os Medóides:
- Em cada cluster, vamos substituir o medóide atual por um ponto do cluster que minimize a soma das distâncias entre ele e todos os outros pontos do cluster.
- 4. Convergência:
- Continue o processo de atribuir pontos aos medóides e atualizar os medóides até que os medóides não mudem mais entre as repetições.

4.3 O algoritmo de K-médias é sensível a outliers nos dados. Explique.

Primeiramento porque ele usa a média dos pontos para definir os centróides dos clusters.

E a média é muito afetada por valores com distorções extremas, o que significa que um outlier pode deslocar significativamente o centróide de um cluster.

4.4 Por que o algoritmo de DBScan é mais robusto à presença de outliers?

Porque ele identifica automaticamente os outliers e realiza uma clusterização baseada na densidade dos pontos. Expandindo regiões densamente conectada com uma lógica central a partir do raio de vizinhança dos pontos e da quantidade de pontos necessários para forma uma região. Desconsidera os outliers e rotula como ruído desta maneira não afetam os clusters formados.