APPENDIX: Physiological Modeling

[This appendix aims at explaining the physiological muscle modeling with parameter setting in detail. Due to space limitations, this part is not included in our submitted manuscript.]

The strain energy function for a complete muscle is given by:

$$U = U_I + U_J + U_f \tag{1}$$

where U_I , U_J , and U_f are the strain energy densities for muscle matrix, related volume change and muscle fiber respectively. U_I and U_J are described in our paper, they have the following term $U_I(\overline{I_1},\overline{I_2})=c_1(\overline{I_1}-3)+c_2(\overline{I_2}-3)$, $U_J=1/2\,K(\ln J)^2$. In this appendix, we would give a detailed description on U_I .

1. strain energy densities for muscle fiber

As mentioned in our paper, a basic Hill three-element model (Fig.1) is constituted of a contractile element (CE), a serial elastic element (SEE) and a parallel elastic element (PE).

Figure 1: Hill three-element model.

For hyperelastic material, the strain energy function $\it U$ per unit un-deformed volume can be established as the work done by the stress from the initial to the current position. Thus $\it U_f$ can be defined as

$$U_{f}(\lambda_{f}) = \int_{1}^{\lambda_{f}} [\sigma_{PE}(\overline{\lambda}_{f}) + \sigma_{SEE}(\lambda_{s})] d\overline{\lambda}_{f}$$
 (2)

where λ_{f} is the fiber stretch ratio, λ_{s} is the stretch ratio in the SEE, σ_{PE} is the stress produced in the PE, σ_{SEE} is the stress produced in SEE. λ_{s} is the function of fiber stretch ration λ_{f} , which is explained below.

The stress $^{\iota_{+\Delta t}}\sigma_{_{SEE}}$ in SEE can be defined as the function of its stretch $^{\iota_{+\Delta t}}\lambda_{_s}$ at time $t+\Delta t$:

$$\sigma_{SFF} = \beta [e^{\alpha^{(t+\Delta t)} \lambda_{S} - 1}]$$
 (3)

where α and β are constants in relation to the stiffness of the SEE.

The stress $^{t+\Delta t}\sigma_{\scriptscriptstyle PE}$ in the PE at time $t+\Delta t$ is given by:

$$\sigma_{PE} = \sigma_0^{t+\Delta t} f_{PE}(\lambda_f) \tag{4}$$

where $\sigma_{_{\!0}}$ is the maximum isometric stress, and $^{_{\!t+\Delta t}}f_{_{\!P\!E}}(\lambda_{_{\!f}})$ is given by

$$f_{PE}(\lambda_f) = \begin{cases} 4^{t+\Delta t} \lambda_f - 1)^2 & \text{if } t+\Delta t \lambda_f > 1 \\ 0 & \text{else} \end{cases}$$

Since having equation 3 and equation 4, as long as λ_s is calculated in function of λ_f , we can calculate the strain energy function stored in the fiber U_f . Here, we begin to explain how we get the value of λ_s .

2. Calculation of λ_s

As Hill model shows, the stress produced in the CE are time $t + \Delta t$ is given by:

$$\sigma_{CE} = \sigma_0 \cdot {}^{t+\Delta t} a \cdot f_{\lambda}(\lambda_f) \cdot f_{\nu}(\lambda_C) \tag{5}$$

where $\sigma_{\scriptscriptstyle 0}$ is the maximum isometric stress, ${}^{\scriptscriptstyle t+\Delta t}a$ is the muscle activation value at time $t+\Delta t$, $f_{\scriptscriptstyle \lambda}(\lambda_{\scriptscriptstyle f})$ represent the muscle stress-stretch relationship as shown in equation 6, and $f_{\scriptscriptstyle v}(\lambda_{\scriptscriptstyle c})$ represent the muscle stress-velocity relationship as shown in equation 7.

$$f_{\lambda}(\lambda_{f}) = \begin{cases} 9('\lambda_{f}/\lambda_{opt} - 0.4)^{2} & \text{if } 0.4 \leq '\lambda_{f}/\lambda_{opt} < 0.6\\ 1 - 4(1 - '\lambda_{f}/\lambda_{opt})^{2} & \text{if } 0.6 \leq '\lambda_{f}/\lambda_{opt} < 1.4\\ 9('\lambda_{f}/\lambda_{opt} - 1.6)^{2} & \text{if } 1.4 \leq '\lambda_{f}/\lambda_{opt} < 1.6\\ 0 & \text{else} \end{cases}$$
(6)

where λ_{opt} is the optimal fiber stretch at which the muscle fiber would get the maximum isometric force.

$$f_{v}(\lambda_{c}) = \begin{cases} \frac{1 + \dot{\lambda}_{c} / \dot{\lambda}_{c}^{\min}}{1 - k_{c} \dot{\lambda}_{c} / \dot{\lambda}_{c}^{\min}} & \text{if } \dot{\lambda}_{c} \leq 0\\ d - (d - 1) \frac{1 - \dot{\lambda}_{c} / \dot{\lambda}_{c}^{\min}}{1 + k_{c} k_{c} \dot{\lambda}_{c} / \dot{\lambda}_{c}^{\min}} & \text{if } \dot{\lambda}_{c} > 0 \end{cases}$$

$$(7)$$

where k_c , k_e are the shape parameters of the hyperbolic tension force-velocity curve of the CE, d is the parameter quantifying the force offset with respect to the isometric case due to

the eccentric movement, $\dot{\lambda}_c$ is the stretch rate of CE which is given by $\dot{\lambda}_c = \Delta \lambda_c / \Delta t$, and $\dot{\lambda}_c^{\min}$ is the minimum stretch rate that corresponds to the maximum isometric force.

In addition, the stress produce in CE is equal to the stress produced in SEE, which is expressed as

$$\sigma_{CE} = \sigma_{CE} = \sigma_{SEE} \tag{8}$$

And it was assumed that k_i is the ratio of the length of SEE to that of CE, thus their geometry relation can be obtained from Fig.1 and expressed as

$$\Delta \lambda_{c} = \alpha - k_{t} \Delta \lambda_{s} \tag{9}$$

where $\alpha = (1 + k_I)^{I+\Delta t} \lambda_f - {}^I \lambda_c - k_I {}^I \lambda_s$, and $\Delta \lambda_c$, $\Delta \lambda_s$ and $\Delta \lambda_f$ are the stretch increments of CE, SEE and muscle fiber respectively.

Therefore, we have got 4 functions (equation 3, equation 5, equation 8 and equation 9) as well as 5 unknown parameters ($^{t+\Delta t}\sigma_{cE}$, $^{t+\Delta t}\sigma_{SEE}$, $\Delta\lambda_c$, $\Delta\lambda_s$ and $\Delta\lambda_f$), thus $\Delta\lambda_s$ can be expressed in function of $\Delta\lambda_f$, in other words, $^{t+\Delta t}\lambda_s$ (= $^t\lambda_s + \Delta\lambda_s$) can be expressed in function of $^{t+\Delta t}\lambda_f$ (= $^t\lambda_f + \Delta\lambda_f$). And finally, we can see that U_f is a function of only λ_f . The fiber stretch λ_f in the direction N of the un-deformed fiber is given by

$$\lambda_{\epsilon} = \sqrt{\mathbf{N}^T \overline{\mathbf{C}} \mathbf{N}} = \sqrt{\overline{\mathbf{C}} : (\mathbf{N}^T \otimes \mathbf{N})}$$
 (10)

where \overline{C} is explained in our paper. The current muscle direction \mathbf{n} after deformation \mathbf{F} occurred is expressed as

$$\mathbf{n} = J^{-1/3} \frac{\mathbf{FN}}{\lambda_f} \tag{11}$$

 ${f N}$ is a constant, while ${f n}$ is always changing with the change of ${f F}$. Thus we can see that $\lambda_{_f}$ is a function of only ${f F}$.

3. Cauchy stress and constitutive elasticity tensor

Next, by deriving the energy function $\it U$ for a complete muscle, the Cauchy stress $\it \sigma$ can be expressed as

$$\mathbf{\sigma} = \frac{2}{J} [(c_1 + c_2 \overline{I}_1^c) \overline{\mathbf{B}} - c_2 \overline{\mathbf{B}}^2 - \frac{1}{3} (c_1 \overline{I}_1^c + 2c_2 \overline{I}_2^c) \mathbf{I}]$$

$$+ K(J - 1) \mathbf{I}$$

$$+ \frac{1}{J} U_f [\lambda_f (\mathbf{n} \otimes \mathbf{n}) - \frac{1}{3} \lambda_f \mathbf{I}]$$
(12)

where \mathbf{I} is the second-order unit tensor, $U_f = \sigma_0 \cdot f_{PEE}(\lambda_f) + \beta \left\{ \exp[\alpha(\lambda_s - 1)] - 1 \right\}$, and $\mathbf{\bar{B}}$ is the left Cauchy stress with the volume change eliminated and is expressed as $\mathbf{\bar{B}} = J^{-2/3} \mathbf{F} \mathbf{F}^T$.

And next, the fourth-order constitutive elasticity tensor **c** can be calculated as

$$\mathbf{c} = K(J-1)(\mathbf{I} \otimes \mathbf{I} - 2\mathbf{I} \underline{\otimes} \mathbf{I}) - \frac{2}{3}(\operatorname{dev} \sigma \otimes \mathbf{I} + \mathbf{I} \otimes \operatorname{dev} \sigma)$$

$$+ \frac{4}{3J}(c_{1}\overline{I}_{1}^{c} + 2c_{2}\overline{I}_{2}^{c})(\mathbf{I} \underline{\otimes} \mathbf{I} - \frac{1}{3}\mathbf{I} \otimes \mathbf{I})$$

$$+ \frac{4c_{2}}{J}(\overline{\mathbf{B}} \otimes \overline{\mathbf{B}} - \overline{\mathbf{B}} \underline{\otimes} \overline{\mathbf{B}}) + \frac{8c_{2}\overline{I}_{2}^{c}}{9J}(\mathbf{I} \otimes \mathbf{I})$$

$$- \frac{4c_{2}}{3J}[(\overline{I}_{1}^{c}\overline{\mathbf{B}} - \overline{\mathbf{B}}^{2}) \otimes \mathbf{I} + \mathbf{I} \otimes (\overline{I}_{1}^{c}\overline{\mathbf{B}} - \overline{\mathbf{B}}^{2})]$$

$$+ \frac{1}{J}[\frac{1}{9}\lambda_{f}(U_{f}^{'} + \lambda_{f}U_{f}^{"}) + J(U_{J}^{'} + JU_{J}^{"})]\mathbf{I} \otimes \mathbf{I}$$

$$+ \frac{\overline{\lambda_{f}^{2}}}{J}(U_{f}^{'} - \lambda_{f}^{-1}U_{f}^{"})(\mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n})$$

$$- \frac{\overline{\lambda_{f}^{2}}}{3J}(U_{f}^{"} + \lambda_{f}^{-1}U_{J}^{'})(\mathbf{n} \otimes \mathbf{n} \otimes \mathbf{I} + \mathbf{I} \otimes \mathbf{n} \otimes \mathbf{n})$$

$$+ \frac{2}{J}(\frac{1}{3}\lambda_{f} - JU_{J}^{'})\mathbf{L}$$
(13)

where \mathbf{L} is the symmetric fourth order unit tensor, and $U_{_{_{I}}}^{"}$, $U_{_{_{J}}}^{"}$ is given by

$$U_f^{"} = U_{PE}^{"} + U_{SEE}^{"}$$

$$U_{PE}^{"}(\lambda_f) = {}^{t}\sigma_0 \begin{cases} 8(\lambda_f - 1) & \text{If } \lambda_f > 1 \\ 0 & \text{else} \end{cases}$$

$$U_{SEE}^{"} = \alpha\beta \frac{1 + k_t}{k_t} \exp[\alpha(\lambda_S - 1)]$$

$$U_f^{"} = K$$

4. Summary

For our proposed muscle biomechanical model, the material parameters $(K, k_l, \alpha, \beta, k_e, k_e, e_v, \sigma_0, \lambda_{opt}, \dot{\lambda}_c^{min})$ are taken from pervious experimental data, the value of these parameters are shown in Tab.1, and activation value a is set according to manual setting or experimental estimation, the initial fiber direction \mathbf{N} is specified by our proposed interactive muscle marking method, which is shown in our paper, the deformation gradient $^{t+\Delta t}\mathbf{F}$ at time $t+\Delta t$ served as the input parameters for this muscle model, and finally the Cauchy stress $^{t+\Delta t}\mathbf{\sigma}$ and constitutive elasticity tensor $^{t+\Delta t}\mathbf{c}$ could be computed.

By knowing $^{\iota+\Delta \iota}\mathbf{\sigma}$ and $^{\iota+\Delta \iota}\mathbf{c}$, the muscle deformation under activation value a can be implemented using a user-defined material subroutine (UMAT) in ABAQUS, or any other Finite-element software package.

Parameter	K	$k_{_{l}}$	α	β	$k_{_{e}}$	k_{c}	$e_{_{\scriptscriptstyle u}}$	$\sigma_{_0}$	$\lambda_{_{opt}}$	$\dot{\mathcal{\lambda}}_{\scriptscriptstyle C}^{\scriptscriptstyle ext{min}}$	$c_{_1}$	c_2
				(N/m^2)			(N/m^2)	(N/m^2)		(s^{-1})		
Value	1×10°	0.3	9.4	1×10 ⁵	5	5	7×10 ⁴	2.2×10 ⁵	1.05	2	10	10
Reference	[2]	[1]	[1]	[1]	[3]	[3]	[1]	[1]	[4]	[1]	[5]	[5]

Table 1. Material parameters.

- [1] Kojic M, Mijailovic S, Zdravkovic N. Modelling of muscle behaviour by the finite element method using Hill's three element model[J]. International journal for numerical methods in engineering, 1998, 43(5): 941-953.
- [2] Simo J C, Taylor R L. Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 85(3): 273-310.
- [3] BolM, Reese S. Micromechanical modelling of skeletal muscles based on the finite element method. Comput Methods Biomech Biomed Eng 2008; 11(5): 489–504.
- [4] Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 1966; 184(1): 170–192.
- [5] Weiss J A, Maker B N, Govindjee S. Finite element implementation of incompressible, transversely isotropic hyperelasticity[J]. Computer methods in applied mechanics and engineering, 1996, 135(1): 107-128.