Consider again the representation of the model in an n-dimensional space. Here, the vortables $(J, \times_1, ..., \times_P)$ are n-dimensional vectors, with coordinates the observations on the n units.

The coroniales $(\underline{x}_1,...,\underline{x}_p)$ identify a subspace of dimension p, C(X). This subspace is defined by all linear combinations $\beta_1\underline{x}_1+...+\beta_p\underline{x}_p=\underline{X}_p^p$. The mean of \underline{Y} is $\underline{\mu}=\underline{X}_p^p=\underline{X}_p^p$ when mean of \underline{Y} belongs to C(X). The vector \underline{Y} in general will not belong to C(X): indeed we have seen that $\underline{\mu}=\hat{y}$ is the onthogonal projection of \underline{Y} onto C(X).

What happens when we compose NESTED models? exemple with 2 voulables \$1,\$2

Full model: $Y = \beta_1 \times_1 + \beta_2 \times_2 + \mathcal{E}$ $X = [\times_1 \times_2]$ C(x) is the subset of all einem combinations $\beta_1 \times_1 + \beta_2 \times_2$ (dim = 2) $\hat{Y} = \hat{\beta}_1 \times_1 + \hat{\beta}_2 \times_2$ is the arthopanel projection of Y onto C(x)

Assume we want to Dest $\begin{cases} H_0: \beta_2 = 0 \\ H_1: \beta_1 \neq 0 \end{cases}$

Under the, the reduced model is $Y = \beta_1 \times 1 + \xi$ Here $X^{(a)} = [\times 1]$ $C(X^{(a)})$ is the subset of einem combinations $\beta_1 \times 1$ (dim = 1) $C(X^{(a)})$ is defined by a straight line (and not the entire plane) fitted values $\tilde{Y} = \tilde{\beta}_1 \times 1$; \tilde{Y} belongs to $C(X^{(a)})$ \rightarrow This is a constrained estimate

example with 2 covariates x_1 and x_2 and 1 text $\beta_2 = 0$

 $\frac{\hat{y}}{\hat{y}}$: projection on C(x)

The vector \underline{d} is equal to $\hat{y} - \hat{y}$ and also to $\underline{\tilde{c}} - \underline{c}$ Horeover $\underline{d} \perp \underline{c}$ \Rightarrow Pythapona's thm. $\underline{c}^{\dagger}\underline{c} + \underline{d}^{\dagger}\underline{d} = \underline{\tilde{c}}^{\dagger}\underline{\tilde{c}}$ \Rightarrow $\underline{d}^{\dagger}\underline{d} = \underline{\tilde{c}}^{\dagger}\underline{\tilde{c}} - \underline{c}^{\dagger}\underline{c}$

With the test about nested module, we are looking at the difference between the unconstrained estimate \hat{y} and the constrained are \hat{y} , or, equivalently, between the errors we commit under the unconstrained model (\hat{z}) and the restricted model (\hat{z}).