	Utech
Name:	
Roll No.:	A About (V Executing 2nd Explored
Invigilator's Signature :	

CS/B.Tech(New)/EE,EEE,ICE/SEM-3/EE-302/2011-12 2011

FIELD THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- i) The intrinsic impedance of free space is given by
 - a) 333Ω

b) 377Ω

- c) $4\pi \Omega d$
- $2\pi \Omega$.

ii) Minimum value of VSWR is

a) – ∝

b) -2

c) 0

d) 1.

iii) \Box_0 for vacuum is given by

- a) $10^{-9} / (36 \pi)$
- b) $10^{-19} / (36 \pi)$

c) 0

d) 1.

3206-(N) [Turn over

CS/B.Tech(New)/EE,EEE,ICE/SEM-3/EE-302/2011

- iv) Which one is true for charge free region?
 - a) $\Box^2 \phi = 1$
- b) $\Box^2 \phi = 0$
- c) $\Box^2 \phi = -\frac{\Box}{\rho}$
- d) none of these.
- v) Which one is conservation of charge equation for the steady currents ?
 - a) $\Box \cdot J = 1$
- b) $\Box \cdot J = 0$
- c) $\Box \cdot J = 4\pi$
- d) $\Box \cdot J = \rho$
- vi) Lorentz force for a point charge in motion in external electric and magnetic field is given by
 - a) $F = Q (E + u \otimes B)$
 - b) $F = Q (B + u \infty H)$
 - c) F = Q (H + uB)
 - d) F = Q (E + uB).
- vii) Which of the following can be the unit of *emf*?
 - a) Wb/s

b) Wb/v

c) v/s

d) s/v.

- viii) In a co-axial cable the mode of wave propagation is
 - a) TEM b)

quasi TEM

c) TE

- d) TM.
- For a lossless transmission line the characteristic ix) impedance is given by

- b) $\sqrt{\frac{L}{C}}$ d) $2\pi \sqrt{\frac{L}{C}}$.
- X) For a lossless transmission line terminated with a short circuit, the i/p impedance is given by (for line characteristic impedance z $_0$)
 - a) $jz_0 \tan \beta l$
- b) $-jz_0 \tan \beta l$
- c) $jz_0 \cot \beta l$
- d) $-jz_0 \cot \beta l$.
- Wave number is given by xi)
 - a) $k = \omega \sqrt{\mu}$
- b) $k = 2\pi \sqrt{\mu \square}$
- c) $k = \sqrt{\mu \square}$
- d) $k = \omega^2 \mu \square$.

CS/B.Tech(New)/EE,EEE,ICE/SEM-3/EE-302/201

xii) Skin depth is given by

a)
$$\delta = \sqrt{2/(\omega \mu \sigma)}$$

b)
$$\delta = \sqrt{\pi/(\omega\mu\sigma)}$$

c)
$$\delta = 2/\sqrt{(\omega\mu\sigma)}$$

d)
$$\delta = \pi / \sqrt{(\omega \mu \sigma)}$$
.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. State and explain the following:
 - a) Stoke's theorem
 - b) Helmholtz theorem.
- 3. Using Cartesian coordinates show that

$$[\cdot(\] \infty A) \int 0 \text{ and } [] \infty (\ [\cdot] \phi) \int 0.$$

Show that a lossless x/8 length line terminated as open 4. circuit, behaves like a capacitor.

- 5. a) Derive an expression for the wave equation in terms of electric field intensity in a perfect dielectric of permittivity \square , permeability μ for the medium with no absorption.
 - b) For a lossy dielectric μ_r = 1, Π_r = 48, σ = 20 S/m, calculate the attenuation constant and phase constant at frequency of 16 GHz.
- 6. Deduce boundary conditions on electric vector $\stackrel{\frown}{E}$ and $\stackrel{\frown}{D}$ for Dielectric-Dielectric interface.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) What is polarization? How will you generate right handed circular polarize waves using linearly polarized wave sources? Define axial ratio. 2+2+2
 - b) State and prove Poynting Theorem.

a) Draw the equivalent circuit of a transmission line What

8. a) Draw the equivalent circuit of a transmission line. What is distortionless line? How to achieve distortionless condition on the line? Derive necessary conditions.

2 + 2 + 5

9

CS/B.Tech(New)/EE,EEE,ICE/SEM-3/EE-302/2011-13

$$R = 84 \text{ ohm/km}, G = 10^{-6} \text{ mho/} m, L = 0.01 \text{H/km},$$

$$C = 0.061 \,\mu\text{F/km}, \text{ frequency} = 1000 \,\text{Hz}.$$

- 9. a) State and explain Gauss's law in differential form and explain what do you mean by div. D. 7
 - b) A circular disc of radius 'a' is situated in the xy plane at Z=0, with its centre at the origin charge density on disc is $\rho_s={\rm constant}\;{\rm c/m}^2$. Calculate the field at any point (0,0,h) in cylindrical co-ordinate system.
- 10. Fine the Gradient of a function G at the point (4, 5, 6) and Divergence of F at (3, 2, 1), given that

$$G = x^2 + y^2 + z^2$$
 and $\overline{F} = 2xya_x + za_y + yz^2 a_z$.

Given point P (1, 2, 3). Express P in cylindrical and spherical co-ordinates. 9+6

3206-(N)

CS/B.Tech(New)/EE,EEE,ICE/SEM-3/EE-302

- 11. Write short notes on any three of the following:
 - a) Magnetic material
 - b) Poisson's and Laplace's equation
 - c) Maxwell's equations
 - d) Propagation constants
 - e) Biot-Savart law.

3206-(N) 7 [Turn over