MATH 355: NOTES

ALEXANDER LEE

THE REAL NUMBERS

Some Preliminaries.

Theorem. Two real numbers a and b are equal if and only if for every real number $\epsilon > 0$ it follows that $|a - b| < \epsilon$.

The Axiom of Completeness.

Axiom (Axiom of Completeness). Every nonempty set of real numbers that is bounded above has a least upper bound.

Definition. A set $A \subseteq \mathbf{R}$ is *bounded above* if there exists a number $b \in \mathbf{R}$ such that $a \leq b$ for all $a \in A$. The number b is called an *upper bound* for A.

Similarly, the set A is bounded below if there exists a lower bound $l \in \mathbf{R}$ satisfying $l \leq a$ for every $a \in A$.

Definition. A real number s is the *least upper bound* for a set $A \subseteq \mathbf{R}$ if it meets the following two criteria:

- (i) s is an upper bound for A;
- (ii) if b is any upper bound for A, then $s \leq b$.

The least upper bound is also frequently called the *supremum* of the set A. We write $s = \sup A$ for the least upper bound.

The greatest lower bound or infimum for A is defined in a similar way and is denoted by inf A.

Theorem. Let $A \subseteq \mathbf{R}$ be bounded above and below. Then, the sup A and inf A are unique.

Definition. A real number a_0 is a *maximum* of the set A if a_0 is an element of A and $a_0 \ge a$ for all $a \in A$. Similarly, a number a_1 is a *minimum* of A if $a_1 \in A$ and $a_1 \le a$ for every $a \in A$.

Theorem. Let $A \subseteq \mathbf{R}$ be nonempty and bounded above.

(i) Let $c \in \mathbf{R}$ and define the set c + A by

$$c + A = \{c + a : a \in A\}.$$

Then $\sup(c+A) = c + \sup A$.

(ii) Let $c \in \mathbf{R}$ with c > 0 and define the set cA by

$$cA = \{ca : a \in A\}.$$

Then $\sup(cA) = c \sup A$.

Lemma. Assume $s \in \mathbf{R}$ is an upper bound for a set $A \subseteq R$. Then, $s = \sup A$ if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $s - \epsilon < a$.

1

Consequences of Completeness.

Theorem (Nested Interval Property). For each $n \in \mathbb{N}$, assume we are given a closed interval $I_n = [a_n, b_n] = \{x \in \mathbf{R} : a_n \leq x \leq b_n\}$. Assume also that each I_n contains I_{n+1} . Then, the resulting nested sequence of closed intervals

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq I_4 \supseteq \cdots$$

has a nonempty intersection; that is, $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Theorem (Archimedean Property). (i) Given any number $x \in \mathbf{R}$, there exists an $n \in \mathbf{N}$ satisfying n > x.

(ii) Given any real number y > 0, there exists an $n \in \mathbb{N}$ satisfying 1/n < y.

Definition. A set X is dense in **R** if for any $a, b \in \mathbf{R}$ with a < b, $\exists x \in X$ with a < x < b.

Theorem (Density of Q in R). For every two real numbers a and b with a < b, there exists a rational number r satisfying a < r < b.