Introduction to ANOVA Using python.

Iván Andrés Trujillo Abella

Facultad de Ingenieria Pontificia Universidad Javeriana

trujilloiv@javeriana.edu.co

Preamble

For this lesson you need remember some concepts as **Probability Distribution Function(PDF)**, **joint distribution function**, **expectation**and **variance** of random variables please check the following material:

- Introduction to probability
- Introduction to hypothesis testing

This note we are constructed with several references that are listed in references.

IDEA

We can study the variance among:

Importance of school

Assume that in your locality there are k schools with n_k the score of the j-th student in i-th school is y_{ij} students and \bar{y} is global mean.

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2 \tag{1}$$

Important identities

$$y_i = \sum_{j=1}^{n_i} y_{ij} \tag{2}$$

$$\bar{y}_i = \frac{y_i}{n_i} \tag{3}$$

$$y = \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}$$
 (4)

$$\bar{y} = \frac{y}{\sum_{i=1}^{k} n_i} = \frac{y}{N} \tag{5}$$

Take in mind that y_i is the score mean in i - th school.

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i + \bar{y}_i - \bar{y})^2$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{n_i} ((y_{ij} - \bar{y}_i)^2 + 2(y_{ij} - \bar{y}_i)(\bar{y}_i - \bar{y}) + (\bar{y}_i - \bar{y})^2)$$
(6)

let $\sum_{j=1}^{n_i}$ and studying $\sum_{j=1}^{n_i} 2(y_{ij} - \bar{y}_i)(\bar{y}_i - \bar{y}) = 0$.

$$\sum_{j=1}^{n_i} 2(y_{ij} - \bar{y}_i)(\bar{y}_i - \bar{y}) = 2\sum_{j=1}^{n_i} (y_{ij}\bar{y}_i - y_{ij}\bar{y} - \bar{y}_i\bar{y}_i + \bar{y}_i\bar{y})$$

$$= n_i\bar{y}_i\bar{y}_i - n_i\bar{y}_i\bar{y} - n_i\bar{y}_i\bar{y}_i + n_i\bar{y}_i\bar{y} = 0$$
(7)

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{y}_i - \bar{y})^2$$
(8)

...

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{y}_i - \bar{y})^2$$
(9)

The variability is decomposed in inter and intra variability, therefore the school importance is:

. . .

$$\rho = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{y}_i - \bar{y})^2}{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2}$$
(10)

ρ is R^2

. . .

$$y_i = \beta_0 + \beta_1 school_j \tag{11}$$

You can get the same result getting the coefficient of determination in the before model.

Table

Take in mind that $\tau_i = y_i - \bar{y}$ and $u_{ij} = y_{ij} - \bar{y}_i$.

Treatment	Уіј	\bar{y}_i	$ au_i$	u _{ij}	$\bar{y} + \tau_i + u_{ij}$
А	15	15	5,875	0	15
Α	17	15	5,875	2	17
Α	13	15	5,875	-2	13
В	9,3	8	-1,125	1,3	9,3
В	7,7	8	-1,125	-0,3	7,7
В	7	8	-1,125	-1	7
С	2,5	2	-7,125	0,5	2,5
C	1,5	2	-7,125	-0,5	1,5
\bar{y}	9,125				

The model

Especification

$$y_{ij} = \mu + \tau_i + u_{ij} \tag{12}$$

Where μ is the global mean, τ_i is deviation of the mean of factor i regarding with the global mean and finally u_{ij} is devation from each observation to its factor or treatment i.

Assumptions

••

- $u_{ij} \sim N(0, \sigma^2)$
- σ^2 is constant

Is important check the hypothesis given this allow us to get relaibles results.

MLE estimation

. . .

- The unknown parameters are $\mu_1, \mu_2, ... \mu_k$ for k treatments and σ^2 .
- We are going uses the observed data and Maximun Likelihood Estimation (MLE).

MLE

The parameters of the model are considered fixed (μ and τ_i).

$$u_{ij} \sim N(0, \sigma^2) \implies y_{ij} \sim N(\mu_i, \sigma^2)$$
 (13)

Maximun likelihood function

...

$$\mathcal{L}(\mu_1, ..., \mu_k, \sigma^2) = \prod_{i}^{k} \prod_{j}^{n_i} f(y_{ij})$$
 (14)

Now $f(y_{ii})$ is the PMF.

..

$$f(y_{ij}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(y_{ij} - \mu_i)^2}{2\sigma^2}\right)$$
 (15)

•

•
$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} \lambda x_{ij} = \lambda \sum_{i=1}^{k} \sum_{j=1}^{n_i} \lambda x_{ij}$$

•
$$\prod_{i=1}^k \prod_{j=1}^{n_i} \lambda x_{ij} = \lambda^{\sum_{i=1}^k n_i} \prod_{i=1}^k \prod_{j=1}^{n_i} x_{ij}$$

$$\bullet \prod_{i=1}^k \prod_{j=1}^{n_i} e^{\delta_{ij}} = e^{\sum_{i=1}^k \sum_{j=1}^{n_i} \delta_{ij}}$$

This propertie is intutive given the linearity of all terms:

$$(\lambda x_{11},...,\lambda x_{kn_k}) = \lambda(x_{11},...,x_{kn_k})$$

...

$$\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} \lambda x_{ij} = \sum_{i=1}^{k} (\lambda x_{i1}, \lambda x_{12}, ..., \lambda x_{in_{i}})$$

$$= \sum_{i=1}^{k} \lambda \sum_{j=1}^{n_{i}} x_{ij} = \lambda \left(\sum_{j=1}^{n_{1}} x_{1j} + \sum_{j=1}^{n_{2}} x_{2j} + ..., + \sum_{j=1}^{n_{k}} x_{kj} \right)$$

$$= \lambda \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{ij}.$$
(16)

$$\prod_{i=1}^{k} \prod_{j=1}^{n_{i}} \lambda x_{ij} = \prod_{i=1}^{k} (\lambda x_{i1} \lambda x_{i2}, ..., \lambda x_{in_{i}})$$

$$= \prod_{i=1}^{k} \lambda^{n_{i}} (x_{i1} x_{i2}, ..., x_{in}) = \prod_{i=1}^{k} \lambda^{n_{i}} \prod_{j=1}^{n_{i}} x_{ij}$$

$$= \lambda^{n_{1}} \left(\prod_{j=1}^{n_{1}} x_{1j} \right) \lambda^{n_{2}} \left(\prod_{j=1}^{n_{2}} x_{1j} \right), ..., \lambda^{n_{k}} \left(\prod_{j=1}^{n_{k}} x_{kj} \right)$$

$$= \lambda^{\sum_{i=1}^{k} n_{i}} \prod_{j=1}^{n_{1}} x_{1j} \prod_{j=1}^{n_{2}} x_{2j}, ..., \prod_{j=1}^{n_{k}} x_{kj} = \lambda^{\sum_{i=1}^{k} n_{i}} \prod_{i=1}^{k} \prod_{j=1}^{n_{i}} x_{ij}$$

$$= \lambda^{\sum_{i=1}^{k} n_{i}} \prod_{j=1}^{n_{1}} x_{1j} \prod_{j=1}^{n_{2}} x_{2j}, ..., \prod_{j=1}^{n_{k}} x_{kj} = \lambda^{\sum_{i=1}^{k} n_{i}} \prod_{i=1}^{n_{i}} x_{ij}$$

$$\prod_{i=1}^{k} \prod_{j=1}^{n_{i}} e^{\delta_{ij}} = \prod_{i=1}^{k} e^{\delta_{i1}} e^{\delta_{i2}}, ..., e^{\delta_{in_{i}}}$$

$$= \prod_{i=1}^{k} e^{\sum_{j=1}^{n_{i}} \delta_{ij}} = e^{\sum_{j=1}^{n_{1}} \delta_{1j}} e^{\sum_{j=1}^{n_{2}} \delta_{2j}}, ..., e^{\sum_{j=1}^{n_{k}} \delta_{kj}}$$

$$= e^{\sum_{j=1}^{n_{1}} \delta_{1j} + \sum_{j=1}^{n_{2}} \delta_{2j}, ..., \sum_{j=1}^{n_{k}} \delta_{kj}}$$

$$= e^{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} \delta_{ij}}$$
(18)

Applying the properties

$$\mathcal{L} = \prod_{i=1}^{k} \prod_{j}^{n_i} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(y_{ij} - \mu_i)^2}{2\sigma^2}\right)$$

$$= \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} \exp\left(\frac{-1}{2\sigma^2} \sum_{i=1}^{k} \sum_{j}^{n_i} (y_{ij} - \mu_i)^2\right)$$
(19)

Log likelihood function

...

$$\ln(\mathcal{L}) = \frac{-N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \mu_i)^2$$
 (20)

FCO

$$\frac{\partial \ln(\mathcal{L})}{\partial u_i} = 0, \forall i. \quad \frac{\partial \ln(\mathcal{L})}{\partial \sigma^2} = 0 \tag{21}$$

FCO

Hint: uses the propertie 'derivate of sum is the sum of derivatives' and rule chain.

....

$$\frac{\partial \ln(\mathcal{L})}{\partial \mu_i} = \frac{-1}{\sigma^2} \sum_{i=1}^k \sum_{i=1}^{n_i} (y_{ij} - \mu_i)(-1) = 0$$
 (22)

Now to get the estimator of μ_i

$$\sum_{i=1}^{k} \sum_{i=1}^{n_i} (y_{ij} - \mu_i) = 0$$
 (23)

Solving $\sum_{j}^{n_i}$

$$\sum_{i}^{k} (y_i - n_i \mu_i) = 0 (24)$$

FCO

...

For each i we have:

$$y_i = n_i \mu_i \tag{25}$$

And therefore the estimator of μ_i is \bar{y}_i .

FCO

To find $\frac{\partial \mathcal{L}}{\partial \sigma^2} = 0$, remember that $\frac{\partial \ln f(x)}{\partial x} = \frac{f'(X)}{f(x)}$ and $\frac{\partial \frac{1}{x}}{\partial x} = \frac{-1}{x^2}$.

$$\frac{\partial \ln(\mathcal{L})}{\partial \sigma^{2}} = \frac{\partial \left(\frac{-N}{2} \ln(2\pi\sigma^{2})\right)}{\partial \sigma^{2}} - \frac{\partial \left(\frac{1}{2\sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - u_{i})^{2}\right)}{\partial \sigma^{2}}$$

$$0 = \frac{-N}{2\sigma^{2}} + \frac{1}{2(\sigma^{2})^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \mu_{i})^{2}$$

$$0 = -N + \frac{1}{\sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \mu_{i})^{2}$$

$$\hat{\sigma}^{2} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \mu_{i})^{2}}{N}$$

Biased estimator of variance

Proof that is biased

$$E(\hat{\sigma}^2) \neq \sigma^2$$

(26)

Model

specification

$$y_{ij} = \mu + \tau_i + u_{ij} \tag{27}$$

where:

$$\tau_i = (\mu_i - \mu)
u_{ii} = (y_{ii} - \mu_i)$$
(28)

Note:

$$\mu_i = \mu + \tau_i \tag{29}$$

This equation will be important to state the hypothesis in our data.

Model

$$\hat{u}_{ij} = (y_{ij} - \hat{\mu}_i)$$

$$= (y_{ij} - \bar{y}_i)$$

$$= e_{ij}$$
(30)

Residuals

The residuals e_{ij} measure the variability no explained by the model.

Variance of residuals

...

$$\hat{\sigma}^{2} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \hat{\mu}_{i})^{2}}{N} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (e_{ij})^{2}}{N} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (e_{ij} - \bar{e})^{2}}{N}$$
(31)

Proof that $\bar{e} = 0$.

Unbiased estimator

٠.

$$\hat{S}^2 = \frac{\sum_{i=1}^k \sum_{j=1}^{n_i} (e_{ij})}{N - k}$$
 (32)

Residuals are not independent

If you have N residuals and compute k means then there are N-k independent residuals.

Proof $S \sim \chi^2$

IN construction

Quasi-variances

$$\hat{S}^2 = \frac{1}{N-k} \sum_{i=1}^{K} (n_i - 1) \hat{S}_i^2$$
 (33)

٠.,

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2$$
(34)

٠.,

Note that:

$$\hat{S}^2 = \frac{1}{N-k} \sum_{i=1}^k \sum_{i=1}^{n_i} \frac{(y_{ij} - \bar{y}_i)^2}{n-k}$$
 (36)

-

$$E\left(\frac{VNE}{N-k}\right) = \sigma^2 \tag{37}$$

$$E\left(\frac{VE}{k-1}\right) = \sigma^2 + \sum_{i=1}^k n_i \tau_i^2 \tag{38}$$

ANOVA

$$H_0: \tau_1 = \tau_2 = ... \tau_k = 0$$

 $H_a: \tau_i \neq 0$ for any $i = 1, ... K$ (39)

How works?

Total variation = Explained variation + Unexplained variation..

- The total sum of squares (SST)
- Sum of Squared errors (SSE)
- Residual Sum of Squares (RSS)

...

$$SST = SSE + RSS \tag{40}$$

ANOVA table

Source of variation	Sum of Squares	Degrees of Freedom	Mean sum of Squares
Intra-group(Explained)	RSS	k-1	RSS
0 1(1		=	$\frac{\overline{k-1}}{SSE}$
Inter-group (No-explained)	SSE	N-k	N-k
Total	SST	N-1	<u>SST</u> <u>N-1</u>

Levene test

insight

Used to test if variance are not equal

...

$$H_0: \sigma_i^2 = \sigma_j^2 \quad \forall i, j \tag{41}$$

Therefore if **P value** is higher than 0.05 then there are homocedasiticy. The alternative hypotehis is that atleas two differ..

Summary

Anova validation

- independence
- Normal residuals
- homocedasticity

Check normality

- Shapiro test
 - QQ-plot

Homocedasticity

Levene test

Not assumptions

Where assumption are not met then we need uses no parametric test..

Doctorado

Austin TEXAS neurocomputation. Research areas...

https://www.cs.utexas.edu/users/ai-lab/?evolution