9. Analyze
$$(B \Rightarrow \overline{A})$$
 $B \Rightarrow \overline{A}$ is equivalent to $\overline{B} + \overline{A}$ being true.

So, $\overline{B} + \overline{A} = T$

Now, Simplify the expression:

 $(A+\overline{B})(\overline{A}+\overline{AB}) + \overline{AB}(A+B)$

Term 1:

 $(A+\overline{B})(\overline{A}+\overline{AB}) = A \cdot \overline{A} + A \cdot A\overline{B} + \overline{B} \cdot \overline{A} + \overline{B} \cdot A\overline{B}$
 $A \cdot \overline{A} = F$ (: A and \overline{A} cannot be true)

 $A \cdot A\overline{B} = A\overline{B}$
 $\overline{B} \cdot A = \overline{AB}$
 $\overline{B} \cdot A = \overline{AB}$
 $\overline{B} \cdot A\overline{B} = \overline{B}$ ($A+\overline{A}$) = $\overline{B} \cdot 1 = \overline{B}$

Term 2:

 $\overline{AB}(A+B) = \overline{ABA} + \overline{ABB}$
 $\overline{AB}(A+B) = \overline{ABB} + \overline{ABB}$
 $\overline{AB}(A+B) = \overline{$