

MATHEMATICAL MODELING OF CELL-FREE PROTEIN SYNTHESIS

Presented By: M.A.A. Aqeel

Supervised By: Dr. S.P. Rajapaksha

University of Sri Jayewardenepura

INTRODUCTION

INTRODUCTION TO CELL-FREE PROTEIN SYNTHESIS

Genetic Engineering

- Most therapeutic proteins are difficult to manufacture with available synthetic capabilities
- Microbial cultures can be utilized through genetic engineering to produce such complex molecules
- However, the product yield will be changed according to the nutritional and environmental conditions confronted by cells/culture

Bacterial Cell

INTRODUCTION TO CELL-FREE PROTEIN SYNTHESIS

Cell-free protein synthesis (CFPS)

- Extracting and assembling the necessary molecular components of protein synthesis into a vessel can avoid confounding results associated with cell-based systems
- Executing DNA programs in a cell-free format can open new avenues for biomanufacturing and metabolic engineering

INTRODUCTION TO CELL-FREE PROTEIN SYNTHESIS

Applications of CFPS

- Monoclonal antibody production
- Vaccines
- Analyzing metabolic and genetic disorders
- Synthesis of non-canonical proteins
- Synthesis of niche drugs
- Membrane proteins
- Prototyping metabolic circuits
- Antimicrobial peptides

Limitations of CFPS

- Cost of synthesizing desired DNA template
- Resource exhaustion
- Inherent ribonuclease and protease activity
- Short active duration
- Small batch size

OBJECTIVES

General Objective

 To develop a minimalistic mathematical model that grasps the basic mechanics of protein synthesis in CFPS systems

Specific Objectives

- To understand the CFPS system towards DNA template loading capacity
- To understand the model behavior towards the consumption of biological nutrients
- To check the influence of inherent factors of the extract on active duration
- To provide better designs for CFPS Design-Build-Test-Learn (CFPS-DBTL) workflow

STEP 1

Received: 13 January 2017

Literature survey on cell-free protein synthesis

Accepted: 6 September 2017 Published online: 15 September 2017

OPEN High-yield production of "difficult-to-express" proteins in a continuous exchange cell-free system based on CHO cell lysates

> Lena Thoring^{1,2}, Srujan K. Dondapati¹, Marlitt Stech¹, Doreen A. Wüstenhagen¹ & Stefan Kubick1

Quantitative modeling of transcription and translation of an all-E. coli cell-free system

Ryan Marshall & Vincent Noireaux

STEP 2
Identify the minimal molecular components required for protein synthesis

STEP 3

Construct the chemical reaction network based on literature findings

G₀ – plasmid

P_o - RNA polymerase (RNAP)

GP - RNAP-plasmid complex

 $M_0 - mRNA$

 R_0 – ribosome

MR - mRNA-ribosome complex

NTP - nucleotide reservoir

AA - amino acids reservoir

Z_o - reporter protein

k1 – RNAP-promoter association

k2 – RNAP-promoter dissociation

k3 - mRNA production

k4 – mRNA-ribosome association

k5 – mRNA-ribosome dissociation

k6 – protein production

k7 - mRNA degradation

STEP 4

Develop mass action-based equations for each molecular component

Differential Equations

$$[\dot{G}_0] = -k_1[G_0][P_0] + k_2[GP] + k_3[NTP][GP]$$

$$[\dot{P}_0] = -k_1[G_0][P_0] + k_2[GP] + k_3[NTP][GP]$$

$$[GP] = k_1[G_0][P_0] - k_2[GP] - k_3[NTP][GP]$$

$$[\dot{M}_0] = k_3[NTP][GP] - k_m[M_0] - k_4[M_0][R_0] + k_5[MR] + k_6[AA][MR]$$

$$[R_0] = -k_4[M_0][R_0] + k_5[MR] + k_6[AA][MR]$$

$$[MR] = k_4[M_0][R_0] - k_5[MR] - k_6[AA][MR]$$

$$[NTP] = -k_3[NTP][GP]$$

$$[A\dot{A}] = -k_6[AA][MR]$$
 $[\dot{Z}_0] = k_6[AA][MR]$

STEP 5

Carry out simulation for a collection of time points using a computational software (*R* and the package *deSolve*)

Initial Concentrations		Rate constants		Other parameters
G ₀ – 1 nmol l ⁻¹	P ₀ – 1 nmol l ⁻¹	k1 – 6 x 10 ⁹ mol ⁻¹ l min ⁻¹	k2 – 600 min ⁻¹	Simulation time - 30 min
R ₀ - 1 nmol l ⁻¹	NTP - 1 nmol l ⁻¹	k3 – 1 x 10 ⁹ mol ⁻¹ l min ⁻¹	k5 - 135 min ⁻¹	Numerical integrator - BDF
AA – 1 nmol l ⁻¹	GP - 0 M _o - 0	k4 – 6 x 10 ⁹ mol ⁻¹ l min ⁻¹	k7 – 1 8 min ⁻¹	Time step - 0.001 min ⁻¹
$MR - o Z_o - o$		k6 – 1 x 10 ¹⁰ mol ⁻¹ l min ⁻¹		Test gene – β galactosidase

Code Availability

https://github.com/zachari ah-ibrahim/cell-freeprotein-expression

Parameter availability

Kierzek, A. M., Zaim, J., & Zielenkiewicz, P. (2001). The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. The Journal of Biological Chemistry, 276(11), 8165–8172. doi:10.1074/jbc.M006264200

- a) The consumption of NTP is do not correlate with mRNA production
- b) In contrast, the amino acids consumption correlate with protein production

 The mRNA concentration goes through a maxima and decays exponentially

- a) For the reaction time of 30 min, the maximum concentration of reporter protein that can be obtained is 21 pM
- b) Increasing the biochemical resources available to CFPS system can increase the protein yield from 21 pM to 0.4 nM

- c) Suppressing the ribonuclease activity can improve the target protein yield significantly
- d) The DNA loading indicates that the yield increases linearly and plateaus after a critical DNA concentration of 2.0 nM

CONCLUSION

- The CFPS system require constant supply of resources to perpetuate
- Inheriting detrimental components during extract preparation affects the performance of CFPS systems
- In the absence of detrimental activities, protein yield increases proportionally with the resources supplied
- The simulation studies will be useful for the communities that are involved in gene circuit engineering and biomanufacturing

REFERENCES

- 1. R Core Team. R: A Language and Environment for Statistical Computing; 2021.
- 2. Soetaert, K.; Petzoldt, T.; Setzer, R. W. Solving Differential Equations in R: Package deSolve. Journal of Statistical Software 2010, 33 (9), 1 25.
- 3. Ingalls, B. P.; ProQuest. Mathematical modeling in systems biology: an introduction; MIT Press, 2013.
- 4. Tinafar, A.; Jaenes, K.; Pardee, K. Synthetic Biology Goes Cell-Free. BMC Biol. 2019, 17 (1), 64.
- 5. Brown, T. A.; ProQuest. Gene cloning and DNA analysis: an introduction; Wiley Blackwell, 2016.

THANK YOU