DISCRETE MATHEMATICS (MAT 2138) ASSIGNMENT 2

Answer at least two questions.

1. Let *M* be the non-deterministic finite automaton shown below.

- (a) Give an example of a string that is **not** accepted by M.
- (b) Convert *M* to a deterministic finite automaton.
- (c) Convert *M* to a regular expression.
- 2. Let *G* be a graph of order n > 1. Prove the following:
 - (a) If $\delta(G) \ge \frac{n-1}{2}$, then *G* is connected and diam $G \le 2$.
 - (b) If *G* and \overline{G} are both *k*-regular, for some positive integer *k*, then n = 4t + 1, for some integer $t \ge 0$.
 - (c) If G and \overline{G} are both k-regular, for some positive integer k, then diam G = 2.
- 3. Let *G* be a graph with vertex set $\{v_1, v_2, ..., v_n\}$, and A = A(G). Let $c_4(G)$ denote the total number of cycles of length 4 in *G*, and $c_4(v_i)$ the number of cycles of length 4 containing the vertex v_i . Prove that the ith diagonal entry of A^4 is

$$(A^4)_{ii} = 2c_4(v_i) + \sum_{j: v_j \sim v_i} \deg v_j + 2 \binom{\deg v_i}{2}$$

and hence prove that

$$c_4(G) = \frac{1}{8} \operatorname{tr} A^4 - \frac{1}{4} \sum_{i=1}^n (\deg v_i)^2 + \frac{|E(G)|}{4}$$

- 4. Let G and H be two graphs on the same vertex set $\{v_1, \ldots, v_n\}$, and let A and B be their adjacency matrices, respectively. Show that AB is the adjacency matrix of some graph if and only if the following conditions are satisfied:
 - (a) *G* and *H* have no common edges.
 - (b) For any two vertices v_i and v_i , there exists at most one vertex v_k such that $v_i \sim_G v_k \sim_H v_i$.
 - (c) If $v_i \sim_G v_k \sim_H v_j$, then $v_i \sim_H v_l \sim_G v_j$ for some l.