챕터1 정리

Ch1: INTRODUCTION NUMBER SYSTEMS AND CONVERSION

- 1.1 Digital Systems and Switching Circuits
 - · Digital system ←대응 관계→ Analog system

- Analog system: 현실에서 접하는 모든 물리량을 말함. 연속적임. Ex) 압력, 온도, 속도 등 공학적 관점, 전자기기적 관점에서 Analog system은 처리하기 힘들다.
 - → 따라서 Digital system으로 conversion하여 처리한다.
- Digital system: Binary Digit으로 구성됨; 0 또는 1의 이진 체계. Discrete한 특징(이산적)

전자공학적으로 구현 및 프로세싱이 편리함. 고밀도로 집적되면 다양한 자료 표현 가능함. 컴퓨터 문제, 데이터 프로세싱, 컨트롤, 커뮤니케이션, 측정 모두 디지털 기반.

- → 신뢰성 및 정확성(Reliable)
- · Binary Digit
- Binary: 0과 1, bit 단위.

스위치의 관점에서는 1은 on, 0은 off 상태. Voltage의 관점에선 1은 high, 0은 low.

- · Design
- System Design: 컴퓨터 같이 여러 가지 모듈로 구성되어 있음. 인간으로 치면 사람의 단위 예) 컴퓨터
- Logic design: 사람으로 치면 피부, 위, 소장, 대장 같은 각종 장기들의 단위 예) 레지스터, 메모리, 연산처리장치 등
- Circuit Design: 사람으로 치면 각각의 장기를 구성하는 세포의 단위

예) Flip-Flops, 기초 소자 등

- · Switching Circuit
- Switching Circuit: 논리 회로를 Switching Circuit이라고도 한다.

스위치의 on off 기반이기 때문. 크게 두 개의 카테고리로 구분함

Combinational Circuit과 Sequential Circuit(중간 이후 - 메모리 요소를 포함함)

- Combinational Circuit: 출력이 현재 입력의 조합으로만 표현됨. 과거 입력과는 무관함

- Sequential Circuit: 출력이 현재의 입력뿐 아니라 과거의 입력까지 포함되어 표현됨 메모리 요소를 포함함. 메모리 요소로서는 Flip-Flops이 대표적임

1.2 Number Systems and Conversion

- · Number Systems
- Number Systems: 다양한 수 체계가 존재함. 10진법, 12진법, 60진법, 2진법 등

Binary number: Base 2(혹은 radix 2) - 0, 1

Octal numbers: Base 8(radix 8) - 0, 1, 2, 3, 4, 5, 6, 7

Hexadecimal Numbers: Base 16(radix 16) - (0, 1, 2, ..., 9, A, B, C, D, E, F)

- Conversion
- Conversion

Decimal:
$$953.78_{10} = 9 \times 10^2 + 5 \times 10^1 + 3 \times 10^9 + 7 \times 10^{-1} + 8 \times 10^{-2}$$
 Binary:
$$1011.11_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$$

$$= 8 + 0 + 2 + 1 + \frac{1}{2} + \frac{1}{4} = 11\frac{3}{4} = 11.75_{10}$$
 Radix(Base):
$$N = (a_4 a_3 a_2 a_1 a_0. a_{-1} a_{-2} a_{-3})_R$$

$$= a_4 \times R^4 + a_3 \times R^3 + a_2 \times R^2 + a_1 \times R^1 + a_0 \times R^0$$

$$+ a_{-1} \times R^{-1} + a_{-2} \times R^{-2} + a_{-3} \times R^{-3}$$
 Example:
$$147.3_8 = 1 \times 8^2 + 4 \times 8^1 + 7 \times 8^0 + 3 \times 8^{-1} = 64 + 32 + 7 + \frac{3}{8}$$

$$= 103.375_{10}$$
 Hexa-Decimal:
$$A2F_{16} = 10 \times 16^2 + 2 \times 16^1 + 15 \times 16^0 = 2560 + 32 + 15 = 2607_{10}$$

- 10진수를 임의의 R진법 체계의 표현식으로 바꿀 때

Successive Division Radix Conversion 테크닉: 소수점을 제외한 부분

Step 1) Base R로 계속 나눔

Step 2) 나머지를 계속 모음

$$N = (a_n a_{n-1} \cdots a_2 a_1 a_0) = a_n R^n + a_{n-1} R^{n-1} + \dots + a_2 R^2 + a_1 R^1 + a_0$$

$$\frac{N}{R} = a_n R^{n-1} + a_{n-1} R^{n-2} + \dots + a_2 R^1 + a_1 = Q_1, \text{ remainder } a_0$$

$$\frac{Q_1}{R} = a_n R^{n-2} + a_{n-1} R^{n-3} + \dots + a_3 R^1 + a_2 = Q_2, \text{ remainder } a_1$$

$$\frac{Q_2}{R} = a_n R^{n-3} + a_{n-1} R^{n-4} + \dots + a_3 = Q_3, \text{ remainder } a_2$$

Successive Multiplication 테크닉: 소수점 부분

Step 1) Base R로 계속 곱함

Step 2) 정수 부분을 계속 취함

- Conversion of Binary to Octal, Hexa-decimal

1개의 bit은 0, 1 두가지를 표현함. 2개면 4가지, 3개면 8가지가 표현이 가능함이 말은 즉, bit 단위를 3개를 고려한다면 8진수로, 4개는 16진수로 표현이 가능함

$$1001101.010111_2 = \underbrace{0100}_{4} \quad \underbrace{1101}_{D} \ . \ \underbrace{0101}_{5} \quad \underbrace{1100}_{C} = 4D.5C_{16}$$

1.3 Binary Arithmetic

- · 사칙연산(Arithmetic)
- Addition

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

1 + 1 = 0, and carry 1 to the next column

$$1111 \longleftarrow \text{ carries}$$

$$13_{10} = 1101$$

$$11_{10} = \underline{1011}$$

$$11000 = 24_{10}$$

- Subtraction

$$0 - 0 = 0$$

0 - 1 = 1, and borrow 1 from the next column

$$1 - 0 = 1$$

$$1 - 1 = 0$$

- Multiplication

$$0 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

- Division

쓰고 빼주기 계속 반복. 10진수 나눗셈과 다를 바 없다.

$$\begin{array}{c|c}
 & 1101 \\
\hline
 & 1011 \\
\hline
 & 1011 \\
\hline
 & 1110 \\
\hline
 & 1011 \\
\hline
 & 1101 \\
\hline
 & 1011 \\
\hline
 & 1011 \\
\hline
 & 1011 \\
\hline
 & 1011 \\
\hline
 & 101 \\
\hline
 &$$

1.4 Representation of Negative Numbers

- · Unsigned & Signed number
- 음수의 필요성

사칙연산에서 덧셈과 뺄셈이 가장 중요한데, if 뺄셈을 덧셈으로 표현이 가능하다면?

- → 모든 사칙연산이 덧셈으로 표현 가능하므로 컴퓨터 내부에서 계산이 편하고 빨라짐 적분 같은 것을 고려했을 때 극한으로 구간을 나눈 다음에 면적의 합을 구함.
- 이 때 각 구간은 밑변 * 높이인데 이것 마저도 덧셈이 됨.
- → 그런 의미에서 음수를 어떻게 표현할 것인가? 잘 표현해야 함.
- Unsigned & Signed number

Unsigned number: 부호 없이 magnitude만 표현

제일 상위 bit인 MSB(Most Significant Bit)과

제일 하위 bit인 LSB(Least Significant Bit)

Signed number: 부호까지 고려.

제일 상위 bit이 양수/음수를 결정. Sign bit → 0이 양수, 1이 음수 MSB는 그 다음 bit

- · 곱셈을 활용해서 뺄셈을 수행하기 위한 특수한 음수 표현 체계
- 도입의 이유

기본적으로 두 보수 체계를 도입한 이유는 뺄셈을 덧셈을 활용해서 수행하기 위함임

			Negative integers			
+N	Positive integers (all systems)	-N	Sign and magnitude	2's complement N*	1's complement $\frac{1}{N}$	
+0	0000	-0	1000	-	1111	
+1	0001	-1	1001	1111	1110	
+2	0010	-2	1010	1110	1101	
+3	0011	-3	1011	1101	1100	
+4	0100	-4	1100	1100	1011	
+5	0101	-5	1101	1011	1010	
+6	0110	-6	1110	1010	1001	
+7	0111	-7	1111	1001	1000	
		-8	-	1000	-	

- 2's complement representation for Negative Numbers(2의 보수 표현법)

$$N^* = 2^n - N$$

- 1's complement representation for Negative Numbers(1의 보수 표현법)

$$\overline{N} = (2^n - 1) - N$$

$$2^{n} - 1 = 1111111$$

$$N = 010101$$

$$\overline{N} = 101010$$

- 두 식 사이의 관계

$$N^* = ^*2^n - N = (2^n - 1 - N) + 1 = \overline{N} + 1$$

→ 2's complement: 1's complement + '1'

$$N=2^n-N*$$
 and $N=(2^n-1)-\overline{N}$ to obtain the magnitude of the negative integer by 2's or 1's complements

→ 2의 보수나 1의 보수로 표현된 식의 magnitude만을 알고 싶다면...

- · 실제로 덧셈을 활용한 뺄셈이 되는가?
- 2의 보수 체계

양수 + 양수 해서 음수가 나오는 overflow 현상이 발생. 충분한 자릿수를 쓰지 않았기 때문임. Bit의 크기를 충분히 크게 하면 해결됨.

Case 3
$$+5$$
 0101 -6 1010 1111 (correct answer) \rightarrow 옳게 됨

Case 4 -5 1011 0110

Carry가 발생하지만 Sign bit를 무시하면 옳은 결과. Overflow가 아님

Overflow가 아님

Overflow 발생. 충분한 자릿수를 쓰지 않았기 때문에 발생. 5비트 이상을 사용하면 해결

- 1의 보수 체계

1의 보수 체계에서 발생한 carry를 첫째 자리로 옮겨서 더해주는 것을 end-around carry 라고 함

충분한 자릿수를 사용하지 않았기 때문임. 5bit 이상을 이용하면 문제 해결

Case 4:
$$-A+B$$
 (where $B > A$)
$$\overline{A}+B = (2^{n}-1-A)+B = 2^{n}+(B-A)-1+1$$
Case 5: $-A-B$ $(A+B<2^{n-1})$

$$\overline{A}+\overline{B} = (2^{n}-1-A)+(2^{n}-1-B)=2^{n}+[2^{n}-1-(A+B)]-1$$

→ end-around carry가 수학적으로 맞음을 증명

- 두 보수 체계의 차이점

2의 보수는 발생되는 carry를 무시하면 해결되고 1의 보수는 end-around carry를 사용하면 해결된다. 즉 덧셈으로 뺄셈이 가능해진다

1.5 Binary Codes

- · Binary Codes
- Binary code: 문자들의 정보를 주고받기 위한 규약.

Bit 하나로는 2개, 두개로는 4개, ..., n개로는 2ⁿ가지가 표현 가능함. n가지를 표현하려면 log₂n을 올림 한 정수의 개수만큼 필요함

- · Weighted Binary codes
- 8421 BCD(Binary Coded Decimal): 10진수를 2진수로 표현
- 6-3-1-1 Code

$$N = w_3 a_3 + w_2 a_2 + w_1 a_1 + w_0 a_0$$

→ 경우의 수 존재

Weighted Binary codes • 8421 BCD - each decimal uses BCD conversion - each decimal digit to be transmitted is encoded separately 6-3-1-1 Code: $N = w_3 a_3 + w_2 a_2 + w_1 a_1 + w_0 a_0$

 $N = 6 \cdot 1 + 3 \cdot 0 + 1 \cdot 1 + 1 \cdot 1 = 8$

8421	6311
NBCD	
0000	0000
0001	0001
0010	0011
0011	0100
0100	0101
0101	0111
0110	1000
0111	1001
1000	1011
1001	1100
	two possibilities 0110
	30/34
	NBCD 0000 0001 0010 0011 0100 0111 1000

- · Error Detection Codes
- Gray Code: 인접한 숫자 사이에 오로지 one bit change만 일어나게 함 예) 8421에서는 3과 4를 볼 때 3개가 바뀐다, 이렇게 되지 않게끔

dec	gray	even parity		
		message	P	
0	0000	0000	0	
1	0001	0001	1	
2	0011	0010	1	
3	0010	0011	0	
4	0110	0100	1	
5	0111	0101	0	
6	0101	0110	0	
7	0100	0111	1	
8	1100	1000	1	
9	1101	1001	0	
10	1111	1010	O	
11	1110	1011	1	
12	1010	1100	0	
13	1011	1101	1	

etc

- Parity Bit: 정보를 전송할 때 묶음 단위("packet")로 보내는데, 메시지와 parity 코드를 보냄.
 - 이 때 메시지까지 포함하여 1의 개수가 짝수가 되도록 항상 조절함.
 - 이 다음에 수신자 측에서 전송 상에서 오류가 있었는지를 확인할 수 있음.
- Ex-3 Code: self-complementing code; 8421 code + 3(0011)

자릿수마다 1과 0의 자리가 다름. (0과 9 비교, 2과 8 비교, ...)

Decimal Digit	8-4-2-1 Code (BCD)	6-3-1-1 Code	Excess-3 Code	2-out-of-5 Code	Gray Code
0	0000	0000	0011	00011	0000
1	0001	0001	0100	00101	0001
2	0010	0011	0101	00110	0011
3	0011	0100	0110	01001	0010
4	0100	0101	0111	01010	0110
5	0101	0111	1000	01100	1110
6	0110	1000	1001	10001	1010
7	0111	1001	1010	10010	1011
8	1000	1011	1011	10100	1001
9	1001	1100	1100	11000	1000

→ 937.25의 코딩

- · Alphanumeric Code
- Alphanumeric Code: 문자를 규정하기 위함
- ASCII Code: American Standard Code for International Interchange (7 bits (128))
- EBCDIC: Extended Binary Coded Decimal Interchange Code (8 bits (256))

1010011 1110100 1100001 1110010 1110100 S t a r t