1.	Given a corpus A, encoded as $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and corpus B encoded as $\begin{pmatrix} 4 \\ 7 \\ 2 \end{pmatrix}$, What is the euclidean distance between the	1/1 point
	two documents?	
	5.91608	
	O 35	
	O 2.43	
	O None of the above	
	 ✓ Correct Yes, this is correct. 	
2.	/3\	1/1 point
	Given the previous problem, a user now came up with a corpus C defined as $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$ and you want to recommend	1/1 point
	a document that is similar to it. Would you recommend document A or document B?	
	Document A	
	O Document B	
	○ Correct That is correct	
3.	Which of the following is true about euclidean distance?	1/1 point
	When comparing similarity between two corpuses, it does not work well when the documents are of different sizes.	
	⊘ Correct That is correct.	
	It is the norm of the difference between two vectors.	
	⊘ Correct That is correct.	
	☐ It is a method that makes use of the angle between two vectors	
	☐ It is the norm squared of the difference between two vectors.	

4. What is the range of a cosine similarity score, namely s, in the case of information retrieval where the vectors are positive?

- \square $-1 \le s \le 1$
- \square $-\infty \le s \le \infty$
- \bigcirc $0 \le s \le 1$
- ✓ Correct That is correct.
- $-1 \le s \le 0$
- 5. The cosine similarity score of corpus A = $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ and corpus B = $\begin{pmatrix} 2 \\ 8 \\ 1 \end{pmatrix}$ is equal to ?

1/1 point

- 0.08512565307587486
- 0 0
- 0 1.251903
- 0.3418283
- ✓ Correct
 This is correct.
- 6. We will define the following vectors, USA = $\begin{pmatrix} 5 \\ 6 \end{pmatrix}$, Washington = $\begin{pmatrix} 10 \\ 5 \end{pmatrix}$, Turkey = $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$, Ankara = $\begin{pmatrix} 9 \\ 1 \end{pmatrix}$, Russia = $\begin{pmatrix} 5 \\ 5 \end{pmatrix}$, and Japan = $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$. Using only the following vectors, Ankara is the capital of what country? Please consider the cosine similarity score in your calculations.
- 1/1 point

- O Japan
- O Russia
- O Morocco
- Turkey
- Correct

Yes, you should compute (USA - Washington) + Ankara and then compare that vector to the country vectors to decide.

7.	Please select all that apply. PCA is	1/1 point
	used to reduce the dimension of your data;	
	○ Correct This is correct.	
	visualize word vectors;	
	 ✓ Correct This is correct. 	
	make predictions; label data.	
8.	Please select all that apply. Which is correct about PCA?	1/1 point
	You can think of an eigenvector as an uncorrelated feature for your data.	
	 ✓ Correct That is correct. 	
	The eigenvalues tell you the amount of information retained by each feature.	
	 ✓ Correct This is correct. 	
	☐ If working with features in different scales, you do not have to mean normalize.	
	Computing the covariance matrix is critical when performing PCA	
	 ✓ Correct This is correct. 	
9.	In which order do you perform the following operations when computing PCA?	1/1 point
	$lacktriangle$ mean normalize, get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data.	
	$\label{eq:construction} \begin{tabular}{l} \textbf{O} & \textbf{mean normalize, perform SVD, get } \Sigma & \textbf{the covariance matrix, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. \\ \end{tabular}$	
	\bigcirc get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the	

	Computing the covariance matrix is critical when performing PCA	
	 ✓ Correct This is correct. 	
9.	In which order do you perform the following operations when computing PCA?	1/1 poin
	$ \textcircled{ mean normalize, get Σ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. } \\$	
	$\label{eq:construction} \begin{tabular}{ll} \hline O & mean normalize, perform SVD, get Σ the covariance matrix, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. \\ \hline \end{tabular}$	
	$\bigcirc \ \ \text{get} \Sigma \text{ the covariance matrix, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data, mean normalize.}$	
	$ \bigcirc \ \ \text{get} \Sigma the covariance matrix, mean normalize, perform SVD, then dot product the data, namely X, with a subset of the columns of U to get the reconstruction of your data. $	
	○ Correct This is correct.	
10	Vector space models allow us to	1/1 poin
	To represent words and documents as vectors.	
	○ Correct This is correct.	
	build useful applications including and not limited to, information extraction, machine translation, and chatbots.	
	○ Correct This is correct.	
	create representations that capture similar meaning.	
	○ Correct This is correct.	
	☐ build faster training algorithms	