Statistics in Sports: What Makes a Good Sports Statistic?

ZACHARY BINNEY, PHD MPH

OXFORD COLLEGE OF EMORY UNIVERSITY

FALL 2023

Roadmap

- What Makes a Good (Sports) Statistic?
 - Does it match your question?
 - Does it measure success in the sport? (Validity)
 - Is it noisy or repeatable/stable? (Reliability)
 - Is it useful?
 - Is it better than an alternative?

What Makes a Good (Sports) Statistic?

- A statistic starts with a QUESTION
- It should be designed to answer that QUESTION
- A statistic may be good for one QUESTION but not another
 - Be transparent and explicit about what your QUESTION is and what the statistic is designed to do – and, critically, <u>not</u> do!

Three Types of Questions

1. Descriptive

Describing the world as it is

• 2. Predictive

Describing the world as it will be

3. Causal (Counterfactual Prediction)

Describing the world as it could be

Player-level stat or team-level stat?

• Differences?

 In which do you want to isolate the contributions of an individual player?

How good is this running back? – RYOE

How accurate is this quarterback? – CPOE

How good is this quarterback? – EPA per play QB is involved in

• How valuable is this quarterback? – Total EPA, WAR

 Teams: How much should I pay this player? – WAR, and make sure it has predictive not just descriptive value

Fantasy value of wide receiver? – Target share

Who's the GOAT? – Need era-adjusted statistic

• Some stats aren't, because they're meant for another

question!!

Does It Measure Success in the Sport?

 Does the statistic correlate with some gold standard measure of "success?"

Step back: what is the goal/purpose of a sports team?
 What defines its "success?"

Does It Measure Success in the Sport?

- "Success" depends on your question, but common options:
 - Wins for holistic stats
 - Points/goals/runs for offensive stats
 - Points/goals/runs against for defensive stats

Is The Stat Repeatable/Stable?

- Is it measuring **signal** or **noise**? "True talent" or luck?
- Look at year-to-year (or split half season) correlations

Figure 10: Year-to-year relationship between ground covered over expected (GCOE) and itself. Minimum 200 run-defense snaps in a box position.

Is The Stat Repeatable/Stable?

- Voros McCracken article: batting average on balls in play not repeatable and depend on defense → not a characteristic of a pitcher. Noise.
- Remove it to get better idea of "true" pitcher skill focus only on what they control (walks, strikeouts, home runs, hit batters)

Is It Useful?

Can you use it to predict or intervene on something?

 Predict: Will it help me better predict player performance over the duration of a contract?

- Intervene: Does it give me new knowledge about the game I can use to change strategies, player development, etc.?
- Not necessary for stat to be good (?), but increases value a lot

Is It Better Than an Alternative?

 Does it correlate more with "success in the sport" than the stat you propose it replace?

- How does that balance against "complexity" cost?
 - Cost to gather/analyze data
 - Cost of complexity/explanation/adoption

Thanks!

• Questions? <u>zbinney@emory.edu</u>, @binney_z on Twitter

Appendix — Baseball Stats and Quality Metrics

- DISCLAIMERS: In no way even a comprehensive list of baseball batting player valuation stats
 - Not using Statcast data (e.g. out-of-zone swing %s)

- Many different "flavors" of some stats with different formulas
 - we use Fangraphs

- Runs (R) and Runs Batted In (RBIs)
 - Problems/Limitations? (For this and all subsequent slides, don't look forward until I say so.)

R and RBI

• Batting Average (BA) =
$$\frac{Hits(H)}{At-Bats(AB)}$$

- Rate stat vs. counting stat solves denominator problem
- Also improves dependence on other players
- Problems/limitations?

R and RBI

BA

- On-Base Percentage (OBP) = $\frac{H + Walks(BB) + Hit by Pitch(HBP)}{AB + BB + HBP + Sacrifice Flies(SF)}$
 - Solves undervaluing of walks, HBP

≈ Plate Appearances (PA)

• Problems/limitations?

R and RBI

BA

OBP

• Slugging Percentage (SLG) =
$$\frac{Total\ Bases\ (TB)}{AB}$$

- Accounts for power, XBH and homers
- Problems/limitations?

• On Base Plus Slugging (OPS) = OBP + SLG

- Closer to all-encompassing stat for batting skill
- Problems/limitations?

OPS

Weights vary slightly by season based on season OBP

• Weighted On Base Average (wOBA) = 0.69**uBB* + 0.72**HBP* +0.89**Singles* (1*B*)+1.28*2*B*+1.64*3*B*+2.14**HR*

 $AB+BB-Intentional\ Walks\ (iBB)+SF+HBP$

- More accurate weights than SLG based on run expectancy
- Scaled to OBP, interpreted similarly
- Problems/limitations?

R and RBI BA OBP SLG

OPS

wOBA

Run Expectancy

- Run Expectancy (RE): every PA moves you from one state to another
- Ex.: leadoff single goes from 0.481 to 0.859 → worth 0.378 expected runs
- Average over all singles → RE for singles, which is (part of) the singles weight for wOBA

All Run Expectancy Matrix 2010-2015			
Runners	0 outs	1 outs	2 outs
	0.481	0.254	0.098
1B	0.859	0.509	0.224
2B	1.100	0.664	0.319
1B 2B	1.437	0.884	0.429
3B	1.350	0.950	0.353
1B_3B	1.784	1.130	0.478
2B 3B	1.964	1.376	0.580
1B 2B 3B	2.292	1.541	0.752
			SOURCE: Tom Tango

• Weighted Runs Above Avg (wRAA) = $\frac{wOBA - League \ avg. \ wOBA}{wOBA \ Scale} * PA$

Undoes scaling so wOBA represents actual expected runs

- Translates wOBA to actual runs above average player
- Problems/limitations?

- (Batting) Wins Above Replacement (WAR) = <u>Complicated</u>
 - Adjusts for park, league, position; compares to replacement player
 - Then translates runs to wins (<u>1 win ≈ 9-10 runs</u>)
 - Ultimate value. How much \$ is a win worth x (total) WAR = contract value

Pitching

Wins (or Win-Loss Record, W-L)

Indians

In pitching, the only thing that really matters is wins: Paul Hoynes' Rant of the Week

Updated Jan 12, 2019; Posted Sep 12, 2010

• Problems/limitations?

W-L

Pitching

- Earned Run Average (ERA) = $\frac{Runs \ Not \ the \ Result \ of \ an \ Error}{Innings \ Pitched \ (IP)} * 9$
 - Accounts for errors by defense, eliminates offensive performance
 - Problems/limitations?

W-L

ERA

Breaking Down Pitching Performance

Fundamental problem:

 $Pitching\ Performance = Pitcher\ Skill + Defense\ Skill + Luck$

- How do we isolate just pitcher skill?
- Enter Defense-Independent
 Pitching Statistics (DIPS) despite
 name, try to deal with defensive
 skill and luck

Breaking Down Pitching Performance

• $Pitching\ Performance = Pitcher\ Skill + Defense\ Skill + Luck$

• In any plate appearance, the ball can end up in-play (must be fielded) or not-in-play (strikeout (K), BB, HBP, HR)

- Voros McCracken's key insights:
 - 1) We should split outcomes into these categories
 - 2) Pitchers have complete control over **not-in-play** outcomes, but are at the mercy of the defense for **in-play** balls

Batting Average on Balls in Play (BABIP)

- $Pitching\ Performance = Pitcher\ Skill + Defense\ Skill + Luck$
- Strong year-to-year correlations among pitchers for strikeouts and walks (≈ 0.7 -0.8 or higher), pretty strong for HRs (≈ 0.4 -0.5)
- Much weaker for BABIP (≈0.15-0.25)

Pitching

To make FIP read like ERA

- Fielding Independent Pitching (FIP) = $\frac{13*HR+3*(BB+HBP)-2*K}{IP} + Constant$
 - Only measures things a pitcher has or appears to have control over ("defense-independent statistics" that are consistent year-to-year); excludes all BIP
 - Problems/limitations?

W-L

ERA

DIPS (FIP)

Ground and Fly Balls

- Of course it's not really that simple
- Pitchers don't control overall BABIP, but do control:
 - % ground balls (GB)
 - % fly balls (FB)
 - Ratio GB/FB
 - Etc.
- Stats like tRA, QERA, SIERA take this batted ball data into account
- In-season vs. next season projections

Pitching

- (Pitching) WAR = <u>Complicated</u>, again
 - Adds infield flies to FIP, translates to runs, adjusts for park and league, then translates to wins (but here every pitcher has a different runs per win metric), compares to replacement level
 - Remember this is Fangraphs WAR; other sources may use something other than FIP as basis
 - Ultimate value. How much \$ is a win worth x (total) WAR = contract value

Predicting Future Value

- Different from **cross-sectional** stats describing what an athlete *is*, we need to know what an athlete *will be*
- Two challenges: 1) Try to identify a player's true talent, and then 2) project that forward
- Repeatability: look for stats that are either stable year-to-year, or at least predictive of future performance
 - Not luck-based
 - Adjust for things you know will happen (e.g. aging curves)

The Scientific Process

- Is there a better alternative to measure what you're trying to measure?
 - Science is built on accumulating small answers that lead to big insights – "get a little less wrong each day"
 - No single analysis answers everything understand and accept that
 - BUT sometimes an analysis is worse than no analysis at all; judgement call