Práctica 1

Problema 1. Reodreandno ltears en plaarbas

El párrafo siguiente es un extracto de un texto desconocido pero de fuente confiable (en inglés):

"Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht order the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe."

En este problema, se le proporcionará una serie de palabras y un texto. Las letras dentro de las palabras del texto estarán desordenadas, pero teniendo en cuenta que la primera y la última letra están en su posición original. Su tarea es ordenar el texto colocando las letras en sus posiciones originales con su versión correcta que se encuentra en el diccionario.

Entrada (reordenando.in)

La primera línea contendrá un entero N indicando el número de casos de prueba (1≤N), seguidamente los N casos de prueba. Cada caso de prueba está compuesto de exactamente dos líneas: la primera línea contendrá la lista de palabras del diccionario en orden lexicográfico ascendentemente, la segunda línea contiene la lista de palabras a ser ordenadas. Las palabras en ambas listas están separadas por espacios en blanco y son palabras del alfabeto inglés en minúsculas. Usted puede asumir que cada lista no será vacía y tendrán a lo más 200 caracteres, y el diccionario no tendrá palabras duplicadas.

Salida (Pantalla)

Para cada caso de prueba, imprimir una línea con el texto ordenado: cada palabra w en el texto de entrada deberá ser reemplazada por una palabra d en el diccionario tal que d pueda ser convertida a w reordenando las letras a excepción de la primera y última letra. Si hay más de una palabra d en el diccionario que podría ser utilizada por w, reemplácela con la primera que se encuentra en el orden lexicográfico; si no hay palabras en el diccionario para w, entonces d=w.

Ejemplo de Entrada

2

make me programming rich will pagmrnmorig will mkae me rcih dreaming drinaemg yeah yaeh right keep drinaemg

Práctica 1

Ejemplo de Salida

programming will make me rich
yeah right keep dreaming

Problema 2: Triangulo de pascal

Se usa para encontrar los coeficientes numéricos en una fórmula de binomios.

Entrada(teclado): Número de filas a generar

Salida(pantalla): Filas generadas

Ejemplo de entrada

7

Ejemplo de salida

1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1