Math 101 HW 13

Jeff Carney

February 22, 2017

9.10

(a)

Q: Show that if $\lim s_n = +\infty$ and k > 0, then $\lim(ks_n) = +\infty$.

Let $\lim s_n = +\infty$ and k, M > 0. Thus, $\exists N \in \mathbb{N}$ s.t. if n > N then $s_n > \frac{M}{k}$. Let n > N. Thus, $ks_n > k\frac{M}{k} = M \Rightarrow ks_n > M$. $\therefore \lim(ks_n) = +\infty$.

(b)

Q: Show $\lim(s_n) = +\infty$ if and only if $\lim(-s_n) = -\infty$.

 (\Rightarrow)

Assume that $\lim(s_n) = +\infty$. Thus, $\forall M > 0 \ \exists N \in \mathbb{N}$ s.t. if n > N then $s_n > M$. Let M > 0 and n > N. Then $s_n > M$. So, $-s_n < -M$. $\therefore \lim(-s_n) = -\infty$.

(c)

Q: Show that if $\lim(s_n) = +\infty$ and k < 0, then $\lim(ks_n) = -\infty$.

Let $\lim s_n = +\infty$ and M > 0 and k < 0. Thus, $\exists N \in \mathbb{N}$ s.t. if n > N then $s_n > \frac{M}{-k}$. Let n > N. Thus, $ks_n < k\frac{M}{-k} = -M \Rightarrow ks_n < -M$. $\therefore \lim (ks_n) = -\infty$.

1

Q: Suppose that $s_n \to \infty$ and $t_n \to a$ with a < 0. Prove that $s_n t_n \to -\infty$

Let M < 0. Then $\frac{2M}{a} > 0$. Since $s_n \to \infty$, $\exists N_1 \in \mathbb{N}$ s.t. if $n > N_1$ $s_n > \frac{2M}{a}$. Let $\varepsilon = \frac{-a}{2}$. Since $t_n \to a$, $\exists N_2 \in \mathbb{N}$ s.t. if $n > N_2$ then $|t_n - a| < \varepsilon$. Thus $a + \frac{a}{2} = a - \varepsilon < t_n < a + \varepsilon < \frac{a}{2} \Rightarrow t_n < \frac{a}{2}$. Let $n > \max\{N_1, N_2\}$. Then $s_n t_n < s_n \frac{a}{2} < \frac{2M}{a} \frac{a}{2} = M \Rightarrow s_n t_n < M$. $\therefore s_n t_n \to -\infty$.

3

Q: Suppose that $s_n \to -\infty$ and k < 0. Prove that $ks_n \to \infty$.

Since $s_n \to -\infty \ \forall M < 0 \ \exists N_1 \in \mathbb{N} \text{ s.t. if } n > N_1 \text{ then } s_n < M.$ Thus, $\forall M > 0$ and $\forall k < 0 \ \exists N \in \mathbb{N} \text{ s.t. if } n > N \text{ then } s_n < \frac{M}{k}.$ Let k < 0 and M > 0. Then $s_n < \frac{M}{k} \Rightarrow ks_n > k\frac{M}{k} = M.$ Hence, $ks_n > M.$ $\therefore ks_n \to \infty$.