POLS/CS&SS 503: Advanced Quantitative Political Methodology

BINARY DEPENDENT VARIABLES

May 26, 2015

Jeffrey B. Arnold

Overview

Linear Probability Model

Logit Models

LPM vs. Logit

Linear Probability Model

Logit Models

LPM vs. Logit

Example of Linear Probability Model

Residuals in LPM

Residuals Squared in LPM

Example of Linear Probability Model

Residuals in LPM

Residuals Squared in LPM

Linear Probability Model

OLS with a binary dependent variable. When $Y_i \in \{0,1\}$:

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

The expected value is a probability

$$E(Y_i|X_i) = \Pr(Y_i = 1|X_i) = \alpha + \beta X_i$$

Problems with the LPM

· Errors are not normally distributed

$$\epsilon_i = 1 - E(Y_i|X_i) = 1 - (\alpha - \beta X_i) = 1 - \pi_i$$

 $\epsilon_i = 0 - E(Y_i|X_i) = 0 - (\alpha - \beta X_i) = -\pi_i$

Errors have non-constant variance (heteroskedasticity)

$$V(\epsilon_i) = \pi(1 - \pi_i)$$

- $E(Y_i|X_i) = \alpha + \beta X_i$ can extend beyond (0, 1)
- Improper specification leads to bias; heteroskedasticity and errors leads to incorrect standard errors.

Linear Probability Mode

Logit Models

LPM vs. Logit

Logit and Logistic Function

Logit and Logistic Function

Logit Function

Function
$$(0,1) \to (\infty, -\infty)$$

$$\operatorname{logit}(p) = \log\left(\frac{p}{1-p}\right) = \log(p) - \log(1-p)$$

Interpreted as the log of the odds ratio (p/(1-p)).

Logistic or Inverse Logit Function

Function
$$(\infty, -\infty) \to (0, 1)$$

$$\log i^{-1}(x) = \frac{1}{1 + \exp(-x)} = \frac{\exp(x)}{\exp(x) + 1}$$

Logistic and logit functions are inverses of each other

$$\log it^{-1}(\log it(x)) = x$$

Logit Function

$$\operatorname{logit}(p) = \log\left(\frac{p}{1-p}\right)$$

Inverse Logit (Logistic) Function

$$\mathsf{logit}^{-1}(x) = \tfrac{1}{1+e^{-x}} = \tfrac{e^x}{e^x+1}$$

Logit Objective Function

OLS minimizes squared errors

$$\hat{\beta} = \operatorname*{arg\,min}_b \sum_i \left(y_i - X_i b\right)^2$$

Logit minimizes a different function

$$\begin{split} \hat{\beta} &= \arg\min_b \sum_i \left(y_i \log P_i + (1-y_i) \log (1-P_i)\right) \\ P_i &= \operatorname{logit}^{-1}(X_i b) = \frac{1}{1 + \exp(-X_i b)} \end{split}$$

Logit needs to be estimated by an interative maximization method

Logit Model

In logit, $\Pr(Y_i=1)$ not Y_i is directly a function of $X_i \beta$

• Probabilty of $Y_i = 1$:

$$\begin{aligned} \Pr(Y_i = 1) &= f(X_i \beta) \\ &= \frac{1}{1 + \exp(-(X_i \beta))} \\ &= \log \mathrm{it}^{-1}(X_i \beta) \end{aligned}$$

• Alternative interpretation, log odds ratio ($\log(p/(1-p))$):

$$\Pr(Y_i = 1) = \pi_i$$

$$\operatorname{logit}(\pi_i) = \alpha + X_i \beta$$

```
summary(glm(voterep ~ income, data = nes sample,
           family = binomial(link = "logit")))
##
## Call:
## glm(formula = voterep ~ income, family = binomial(link = "logit").
      data = nes sample)
##
##
## Deviance Residuals:
      Min
              10 Median 30
##
                                        Max
## -1.0738 -1.0066 -0.8793 1.3584 1.5838
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.25311   0.27045   -4.633   3.6e-06 ***
## income
              0 16741
                         0 06276 2 668 0 00764 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1311.4 on 999 degrees of freedom
## Residual deviance: 1304.1 on 998 degrees of freedom
## ATC: 1308.1
## Number of Fisher Scoring iterations: 4
```

Example of Linear Probability Model


```
summary(glm(vote yes ~ statusquo, data = Chile,
           family = binomial(link = "logit")))
##
## Call:
## glm(formula = vote yes ~ statusquo, family = binomial(link = "logit"),
##
      data = Chile)
##
## Deviance Residuals:
      Min 10 Median 30
                                        Max
## -2.4942 -0.4747 -0.2290 0.5747 2.8140
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.21597 0.06955 -17.48 <2e-16 ***
## statusquo 2.08971 0.07805 26.78 <2e-16 ***
## ---
## Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 3242.0 on 2518 degrees of freedom
## Residual deviance: 1874.9 on 2517 degrees of freedom
## (181 observations deleted due to missingness)
## ATC: 1878 9
##
## Number of Fisher Scoring iterations: 5
```

Example of Linear Probability Model

Logit Coefficients are Less Transparent

Linear Regression Coeficients

$$\frac{\partial Y}{\partial X_j} = \frac{\partial}{\partial X_j} (\alpha + \beta_1 X_1 + \dots \beta_k X_k) = \beta_j$$

Coefficient equals the marginal effect of \boldsymbol{x}

Logistic Regression Coeficients

$$\frac{\partial \operatorname{logit}(Y)}{\partial X_j} = \frac{\partial}{\partial X_j} \left(\frac{1}{1 + \exp(\alpha + \beta X_i)} \right) = \Pr(Y = 1 | X_i) \Pr(Y = 0 | X_i) \beta_j$$

or

$$\frac{\partial \operatorname{logit}(Y)}{\partial X_j} = \frac{\partial}{\partial X_j} X_i \beta_j = \beta_j$$

Coefficient does not equal the marginal effect of \boldsymbol{x}_j

Linear Probability Mode

Logit Models

LPM vs. Logit

The LPM Strikes Back

- LPM has renewed popular among econometricians, causal inference folks -
- See the debate here
- OLS is still Min MSE linear approx of Conditional Expectation Function
- If the functional form is wrong; but so it logit / probit. And the functional form is always wrong;
- $\, \cdot \,$ OLS coefficients are a good estimate of the average marginal effects even if not good for the marginal effects at a given x.
- OLS coefficients are directly interpretable
- Angrist and Pischke recommend LPM with heteroskedasticity consistent errors

Average Marginal Effects

• The average marginal effect summarizes the marginal effect $\frac{\partial y}{\partial x_j}$ averaging over the sample of x.

Avg. Marginal Effect of
$$x_j = \frac{1}{n} \sum_i \left. \frac{\partial Y}{\partial x_j} \right|_{X_i}$$

• In OLS, the marginal effect of x_j (assuming no interactions, polynomials, etc.) is simply the coefficient

$$\left. \frac{\partial y}{\partial x_j} \right|_{x_i} = \frac{1}{n} \sum_{i} \hat{\beta}_j = \hat{\beta}_j$$

In Logit, the average

$$\left. \frac{\partial y}{\partial x_j} \right|_{x_i} = \frac{1}{n} \sum_i \Pr(y_i = 1 | \hat{\beta}, x_i) \Pr(y_i = 0 | \hat{\beta}, x_i) \hat{\beta}_j$$

Comparing Average Marginal Effects of Logit and LPM

1992 U.S. Election Example

```
mod <- qlm(voterep ~ income, data = nes sample,
           family = binomial(link = "logit"))
mod aug <- augment(mod, type.predict = "response")</pre>
mean(mod aug$.fitted * (1 - mod aug$.fitted) * coef(mod)[2])
## [1] 0.03847867
lm(voterep ~ income, data = nes sample)
##
## Call:
## lm(formula = voterep ~ income, data = nes sample)
##
## Coefficients:
## (Intercept) income
      0.20679 0.03811
##
```

Comparing Average Marginal Effects of Logit and LPM

Chile Plebiscite Example

```
mod <- qlm(vote yes ~ statusquo, data = Chile,
           family = binomial(link = "logit"))
mod aug <- augment(mod, type.predict = "response")</pre>
mean(mod aug$.fitted * (1 - mod aug$.fitted) * coef(mod)[2])
## [1] 0.2436621
lm(vote yes ~ statusquo, data = Chile)
##
## Call:
## lm(formula = vote yes ~ statusquo, data = Chile)
##
## Coefficients:
## (Intercept) statusquo
## 0.3447
                    0.3215
```

Linear Probability Mode

Logit Models

LPM vs. Logit

- Fox, Ch. 14
- Gelman and Hill, Ch 5. This should have most material you need.
- Chile Plebicite example: Fox, Ch. 14. Data from arm package dataset Chile.
- Bush vote in 1992 example: Gelman and Hill, Ch 5. Data from http://www.stat.columbia.edu/~gelman/arm/examples/ARM_ Data.zip as ARM_Data/nes/nes5200_processed_voters_realideo.dta.