数理统计

Didnelpsun

目录

1	统计量	1
2	三大分布	1
	2.1 χ^2 分布	1
	2.2 t 分布	1
	2.3 F 分布	2
	2.4 函数分布	2
3	参数估计	3
	3.1 矩估计	3
4	置信区间	3
5	假设检验	3
6	两类错误	3

1 统计量

例题: 已知总体 X 的期望为 EX=0,方差 $DX=\sigma^2$ 。从总体抽取容量为 n 的简单随机样本,其均值和方差分别为 \overline{X} , S^2 。记 $S_k^2=\frac{n}{k}\overline{X}^2+\frac{1}{k}S^2$ (k=1,2,3,4),则 ()。

2 三大分布

2.1 χ^2 分布

例题: 设 X_1, X_2, X_3, X_4 是来自正态总体 N(0,4) 的简单随机样本,记 $X = a(X_1 - 2X_2)^2 + b(3X_3 - 4X_4)^2$ 。求 X 服从 χ^2 分布下的参数与自由度。

解: 若 X_1, X_2, X_3, X_4 同一个正态分布,所以 $EX_1 = EX_2 = EX_3 = EX_4 = 0$, $DX_1 = DX_2 = DX_3 = DX_4 = 4$ 。

$$E(X_1 - 2X_2) = EX_1 - 2EX_2 = 0$$
, $D(X_1 - 2X_2) = DX_1 - 4DX_2 = 20$ 。
 $\therefore X_1 - 2X_2 \sim N(0, 20)$, 同理 $3X_3 - 4X_4 \sim N(0, 100)$ 。
对其标准化: $\frac{X_1 - 2X_2 - 0}{\sqrt{20}} \sim N(0, 1)$, $\frac{3X_3 - 4X_4 - 0}{\sqrt{100}} \sim N(0, 1)$ 。
若要让 X 满足 χ^2 分布,则要将 $a(X_1 - 2X_2)^2 + b(3X_3 - 4X_4)^2$ 两项标准化。
 $\therefore \frac{(X_1 - 2X_2)^2}{20} + \frac{(3X_3 - 4X_4)^2}{100} \sim \chi^2(2)$,所以 $a = \frac{1}{20}$, $b = \frac{1}{100}$ 。

2.2 t 分布

例题: 设 X_1, X_2, \cdots, X_8 是来自正态总体 $N(0, 3^2)$ 的简单随机样本,则统计量 $Y = \frac{X_1 + X_2 + X_3 + X_4}{\sqrt{X_5^2 + X_6^2 + X_7^2 + X_8^2}}$ 服从什么分布?解: $\therefore X_1, \cdots, X_8 \sim N(0, 9), \therefore X_1 + X_2 + X_3 + X_4 \sim N(0, 36)$ 。 $\therefore \frac{X_1 + X_2 + X_3 + X_4 - 0}{6} \sim N(0, 1)$ 。 $\frac{X_5^2 + X_6^2 + X_7^2 + X_8^2}{9} = \left(\frac{X_5 - 0}{3}\right)^2 + \left(\frac{X_6 - 0}{3}\right)^2 + \left(\frac{X_7 - 0}{3}\right)^2 + \left(\frac{X_8 - 0}{3}\right)^2 \sim \chi^2(4)$

$$\therefore \frac{\frac{X_1 + X_2 + X_3 + X_4 - 0}{6}}{\sqrt{\frac{X_5^2 + X_6^2 + X_7^2 + X_8^2}{9}/4}} = \frac{X_1 + X_2 + X_3 + X_4}{\sqrt{X_5^2 + X_6^2 + X_7^2 + X_8^2}} \sim t(4).$$

2.3 F 分布

例题: 设 X_1, X_2, \cdots, X_15 是来自正态总体 $N(0, 3^2)$ 的简单随机样本,则统计量 $Y = \frac{X_1^2 + X_2^2 + \cdots + X_{10}^2}{2X_{11}^2 + X_{12}^2 + \cdots + X_{15}^2}$ 服从什么分布?

$$\Re \colon : \frac{X_{i} - 0}{3} \sim N(0, 1), \quad \left(\frac{X_{i} - 0}{3}\right)^{2} = \frac{x_{i}^{2}}{9} \sim \chi^{2}(1).$$

$$\therefore \frac{X_{1}^{2} + X_{2}^{2} + \dots + X_{10}^{2}}{9} \sim \chi^{2}(10), \quad \frac{X_{11}^{2} + X_{12}^{2} + \dots + X_{15}^{2}}{9} \sim \chi^{2}(5).$$

$$\therefore \frac{X_{1}^{2} + X_{2}^{2} + \dots + X_{10}^{2}}{9} / 10}{\frac{X_{11}^{2} + X_{12}^{2} + \dots + X_{10}^{2}}{9}} = \frac{X_{1}^{2} + X_{2}^{2} + \dots + X_{10}^{2}}{2X_{11}^{2} + X_{12}^{2} + \dots + X_{15}^{2}} = Y \sim F(10, 5).$$

例题: 已知 (X,Y) 的概率分布函数为 $f(x,y) = \frac{1}{2\pi}e^{-\frac{1}{2}(x^2+y^2-2y+1)}$, $x,y \in R$,求 $\frac{X^2}{(Y-1)^2}$ 的分布。

解: $f(x,y) = \frac{1}{2\pi}e^{-\frac{1}{2}(x^2+y^2-2y+1)} = \frac{1}{2\pi}e^{-\frac{1}{2}(x^2+(y-1)^2)}$,所以根据二维正态分布的形式,得到 $(X,Y) \sim (0,1;1,1;0)$ 。

即 $X \sim \Phi(x)$, $Y - 1 \sim \Phi(x)$, $\therefore X^2 \sim \chi^2(1)$, $(Y - 1)^2 \sim \chi^2(1)$, $\therefore \frac{X^2}{(Y - 1)^2} \sim F(1, 1)$ 。

2.4 函数分布

例题: 设随机变量 $X \sim t(n)$, $Y \sim F(1,n)$, 常数 C 使得 $P\{X > C\} = 0.6$, 求 $P\{Y > C^2\}$ 。

解:
$$X \sim t(n)$$
,则 $X = \frac{X_1}{\sqrt{Y_1/n}} \sim t(n)$,其中 $X_1 \sim N(0,1)$, $Y_1 \sim \chi^2(n)$ 。
$$\therefore X^2 = \frac{X_1^2}{Y_1/n} = \frac{X_1^2/1}{Y_1/n} \sim \frac{\chi^2(1)/1}{\chi^2(n)/n} = F(1,n)$$
。
$$\mathbb{Z} P\{Y > C^2\} = 1 - P\{Y \leqslant C^2\} \circ P\{X^2 > C^2\} = 1 - P\{X^2 \leqslant C^2\}$$
。
$$\mathbb{Z} P\{X^2 \leqslant C^2\} = P\{-C \leqslant X \leqslant C\}, \text{ 根据偶函数性质} = 0.2$$
。
$$\therefore P\{X^2 > C^2\} = 0.8$$
。

3 参数估计

3.1 矩估计

4 置信区间

例题:一批零件的长度服从正态分布 $N(\mu, \sigma^2)$,其中 μ, σ^2 均未知。现从中随机抽取 16 个零件,测得样本均值 $\overline{x} = 20cm$,样本标准差为 s = 1cm,求 μ 的置信水平为 0.90 的置信区间。

解: σ 未知,所以使用 s 来求置信空间。

置信空间为
$$(\overline{X} - t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}})$$
。
已知 $\overline{x} = 20$, $s = 1$, $n = 16$, $\alpha = 1 - 0.90 = 0.1$ 。
所以置信空间为 $\left(20 - \frac{1}{4}t_{0.05}(15), 20 + \frac{1}{4}t_{0.05}(15)\right)$ 。

5 假设检验

例题: 已知某机器生产出来的零件长度 X (单位:cm) 服从正态分布 $N(\mu, \delta^2)$,现从中随意抽取容量为 16 的一个样本,测得样本均值 $\overline{x}=10$,样本方差 $s^2=0.16$, $t_{0.025}(15)=2.132$ 。

- (1) 求总体均值 μ 置信水平为 0.95 的置信区间。
- (2) 在显著性水平 0.05 下检验假设 $H_0: \mu = 9.7$, $H_1: \mu \neq 9.7$ 。
- (1) 解:根据公式直接解出置信空间 $(10-0.1t_{0.025}(15), 10+0.1t_{0.025}(15)) = (9.7868, 10.2132)$ 。
 - (2) 解:根据假设 H_0 ,得到拒绝域 $(-\infty, 9.4868] \cup [9.9132, +\infty)$ 。

又 $\overline{X} = 10$ 在拒绝域 $[9.9132, +\infty)$ 上,所以假设 H_0 拒绝。

6 两类错误

例题: 假定 X 是连续型随机变量, U 是对 X 的一次观测值,关于其概率密度 f(x) 有如下假设:

$$H_0: f(x) = \begin{cases} \frac{1}{2}, & 0 \le x \le 2 \\ 0, & \text{ 其他} \end{cases}, H_1: f(x) = \begin{cases} \frac{x}{2}, & 0 \le x \le 2 \\ 0, & \text{ 其他} \end{cases}.$$

检验规则: 当事件 $V=\left\{U>\frac{3}{2}\right\}$ 出现时,否定假设 H_0 ,接受 H_1 ,求犯第一类错误概率和第二类错误概率 $\alpha\beta$ 。

一类错误概率和第二类错误概率
$$\alpha\beta$$
。

解: $\alpha = P\left\{U > \frac{3}{2} \middle| H_0\right\} = \int_{\frac{3}{2}}^{2} \frac{1}{2} dx = \frac{1}{4}$ 。
$$\beta = P\left\{U \leqslant \frac{3}{2} \middle| H_1\right\} = \int_{0}^{\frac{3}{2}} \frac{x}{2} dx = \frac{9}{16}$$
。