Basic Elements of Quantum Computing

Hung-Wei Tseng

Recap: Basic Boolean Algebra Concepts

- {0, 1}: The only two possible values in inputs/outputs
- Basic operators
 - AND (•) a b
 - returns 1 only if both a and b are 1s
 - otherwise returns 0
 - OR (+) a + b
 - returns 1 if a or b is 1
 - returns 0 if none of them are 1s
 - NOT (') a'
 - returns 0 if a is 1
 - returns 1 if a is 0

Recap: Truth tables

 A table sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables

AND

Input		Output	
Α	В	Output	
Ο	Ο	0	
0	1	0	
1	0	0	
1	1	1	

OR

Input		Output	
Α	В	Output	
Ο	Ο	0	
0	1	1	
1	0	1	
1	1	1	

NOT

Input	Output	
A	Output	
0	1	
0	1	
1	Ο	
1	0	

Recap: Boolean operators their circuit "gate" symbols

Recap: Binary

$$\cdot 3 + 2 = 5$$

$$\begin{array}{r} 1 \\ 0011 \\ + 0010 \\ \hline 0101 \\ \end{array}$$

•
$$3 + (-2) = 1$$

$$0011$$

$$+1010$$

$$1101 = -5 \text{ (Not 1)}$$

Doesn't work well and you need a separate procedure to deal with negative numbers!

Recap: Half adder

Input		Output	
Α	В	Out	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Outline

- What is a qubit?
- The logical gates/operations in quantum computing
- Designing our first quantum circuit
- Qiskit

Qubit — the basic unit of quantum computing

Thinking about an analog signal first

Qubit

- Similar to an analog signal, can use quantum mechanical phenomena of superposition to represent a 0, a 1, or any proportion of 0 and 1 in superposition of both states
- · The amplitude in quantum mechanics has both magnitude and direction
 - Each possible outcome has a probability amplitude for a qubit, the possible outcome is either 0 or 1
 - Each amplitude have a magnitude the magnitude of that outcome's amplitude tells us how likely that outcome is to occur
- We use the complex number system to represent both magnitude and direction in qubit states
- Since the probability of all states should be 1, the magnitudes of all amplitudes must sum up to 1

Bloch sphere

$$|\psi\rangle = cos(\frac{\theta}{2})|0\rangle + e^{i\varphi}sin(\frac{\theta}{2})|1\rangle$$

Mathematical representation of a qubit

- $\cdot |\psi\rangle = a|0\rangle + b|1\rangle$
 - $|a|^2 + |b|^2 = 1$
 - $|a|^2$ is the probability that the qubit will be observed as state 0
 - $|b|^2$ is the probability that the qubit will be observed as state 1
- We can also use a tensor form to express the qubit

$$|\psi\rangle = a|0\rangle + b|1\rangle = a\begin{bmatrix}1\\0\end{bmatrix} + b\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}a\\0\end{bmatrix} + \begin{bmatrix}0\\b\end{bmatrix} = \begin{bmatrix}a\\b\end{bmatrix}$$

computational basis

Amplitude and probability

Which of the following is a valid amplitude but invalid probability?

A.
$$-1$$
B. $\frac{1}{3}$

C. 1.01

D.
$$\sqrt{-2}$$

Multi-qubit system

• If we have an n-qubit system, we can have 2^n potential outcomes —

$$|\psi\rangle = \sum_{i=0}^{2^{n-1}} c_i |x_i\rangle$$

$$\sum_{i=0}^{2^{n-1}} |c_i|^2 = 1$$

- We can also express the states with a vector with 2^n elements
- For a 2-qubit system $|\psi\rangle = c_0|00\rangle + c_1|01\rangle + c_2|10\rangle + c_3|11\rangle$

$$= c_0 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + c_1 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

Amplitude of a 2-qubit system

Given the state vector —

$$\begin{bmatrix} \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} \\ 0 \\ 0 \end{bmatrix}$$

what is the amplitude of the outcome of 01?

A. 1

B. $\sqrt{\frac{1}{2}}$ C. $\frac{1}{2}$

Probability of a 2-qubit system

Given the state vector —

$$\begin{bmatrix} \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} \\ 0 \\ 0 \end{bmatrix}$$

how likely are we going to measure the outcome as 00?

A. 1

B.
$$\sqrt{\frac{1}{2}}$$
C. $\frac{1}{2}$

Valid state

Which of the following is a valid quantum state?

A.
$$\sqrt{\frac{1}{3}} \begin{bmatrix} 1\\ -1\\ 1\\ 0 \end{bmatrix}$$

B.
$$\sqrt{\frac{1}{2}} \begin{vmatrix} 1 \\ -1 \\ -1 \\ 1 \end{vmatrix}$$

c.
$$\frac{1}{2}\begin{bmatrix}1\\1\end{bmatrix}$$

D.
$$\sqrt{\frac{1}{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

Superposition

- If the state has more than one possible outcome
- For the state

$$|x\rangle = \begin{bmatrix} \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} \\ 0 \\ 0 \end{bmatrix} = \sqrt{\frac{1}{2}}(|00\rangle + |01\rangle)$$
 We call $|x\rangle$ the superposition of $|00\rangle$ and

We call $|x\rangle$ the superposition of $|00\rangle$ and $|01\rangle$

We can also use other basis

Another popular basis

$$\cdot \mid + \rangle = \sqrt{\frac{1}{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\cdot \mid - \rangle = \sqrt{\frac{1}{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Try other basis!

• Find the values of α , β such that the following equation is true

$$\cdot \alpha |+\rangle + \beta |-\rangle = |0\rangle$$

$$\alpha \sqrt{\frac{1}{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \beta \sqrt{\frac{1}{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\sqrt{\frac{1}{2}}\alpha + \sqrt{\frac{1}{2}}\beta = 1$$

$$\sqrt{\frac{1}{2}}\alpha - \sqrt{\frac{1}{2}}\beta = 0$$

$$2\sqrt{\frac{1}{2}}\alpha = \sqrt{2}\alpha = 1$$

$$\alpha = \frac{1}{\sqrt{2}} \quad \beta = \frac{1}{\sqrt{2}}$$

Try other basis!!

• Find the values of γ , δ such that the following equation is true

$$\cdot \gamma | + \rangle + \delta | - \rangle = | 1 \rangle$$

$$\gamma \sqrt{\frac{1}{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \delta \sqrt{\frac{1}{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\sqrt{\frac{1}{2}}\gamma + \sqrt{\frac{1}{2}}\delta = 0$$

$$\sqrt{\frac{1}{2}}\gamma - \sqrt{\frac{1}{2}}\delta = 1$$

$$2\sqrt{\frac{1}{2}}\gamma = \sqrt{2}\gamma = 1$$

$$\gamma = \frac{1}{\sqrt{2}} \qquad \delta = -\frac{1}{\sqrt{2}}$$

High-level view of quantum circuits

Quantum circuits

Measurements Ancilla

Quantum Logical Gates

Quantum Logical Gates

- Transition the amplitudes of the original n-qubit inputs to another set of amplitudes
- $2^n \rightarrow 2^n$ transitions
- Can be expressed as an $2^n \times 2^n$ matrix

$$\begin{bmatrix} a_{00} \\ a_{01} \\ a_{10} \\ a_{11} \end{bmatrix} \rightarrow \begin{bmatrix} b_{00} \\ b_{01} \\ b_{10} \\ b_{11} \end{bmatrix}$$

$$\begin{bmatrix} a_{00} \\ a_{01} \\ a_{10} \\ a_{11} \end{bmatrix} \rightarrow \begin{bmatrix} b_{00} \\ b_{01} \\ b_{10} \\ b_{11} \end{bmatrix} \begin{bmatrix} a_{00} \rightarrow b_{00} & a_{01} \rightarrow b_{00} & a_{10} \rightarrow b_{00} & a_{11} \rightarrow b_{00} \\ a_{00} \rightarrow b_{01} & a_{01} \rightarrow b_{01} & a_{10} \rightarrow b_{01} & a_{11} \rightarrow b_{01} \\ a_{00} \rightarrow b_{10} & a_{01} \rightarrow b_{10} & a_{10} \rightarrow b_{10} & a_{11} \rightarrow b_{10} \\ a_{00} \rightarrow b_{11} & a_{01} \rightarrow b_{11} & a_{10} \rightarrow b_{11} & a_{11} \rightarrow b_{11} \end{bmatrix}$$

Pauli gates

Rotate the qubit around the x, y, or z axis

Pauli-X / NOT / Bit-flip	1-bit	$- X - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli Y	1-bit	-
Pauli Z / Phase flip	1-bit	$- \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = \begin{bmatrix} i \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

Controlled gates — CNOT

Other controlled gates

Controlled Z	2-bit	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
Toffoli	3-bit	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

Hadamard gate

Hadamard

1-bit

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Important quantum logical gates

Pauli-X / NOT / Bit- flip	1-bit	-X	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli Y	1-bit	\overline{Y}	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli Z / Phase flip	1-bit	- Z $-$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard	1-bit	$-\!$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
Controlled NOT	2-bit		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z	2-bit		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
Toffoli	3-bit		$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

Conversion between classical and quantum gates

XOR

Input		Output	
Α	В	Output	
0	0	0	
0	1	1	
1	O	1	
1	1	0	

$$|00\rangle \rightarrow |00\rangle$$

$$|01\rangle \rightarrow |01\rangle$$

$$|10\rangle \rightarrow |11\rangle$$

$$|11\rangle \rightarrow |10\rangle$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

AND

Input		Output
Α	В	Output
0	Ο	0
0	1	0
1	Ο	0
1	1	1

$$|00\rangle \rightarrow |00\rangle$$

$$|01\rangle \rightarrow |00\rangle$$

$$|10\rangle \rightarrow |10\rangle$$

$$|11\rangle \rightarrow |11\rangle$$

AND

Inp	out		Output
Α	В		Output
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	1

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{pmatrix}$$

000 →	000
 001 → 	001
$ 010 \rightarrow $	010
$011 \rightarrow 0$	Ω11
	UII
$ 100 \rightarrow $	100
$101 \rightarrow$	101
	101
$ 110 \rightarrow $	111
1111	110

Design the first quantum circuit

A	В	carry	result
0	Ο	0	Ο
Ο	1	O	1
1	Ο	O	1
1	1	1	O

Which gate do you have in mind?

Result is the same as b if a is 0

Result is the flipped of b if a is 1

A	В	carry	result
Ο	Ο	O	Ο
Ο	1	Ο	1
1	0	O	1
1	1	1	O

Which gate do you have in mind?

Result is the same as b if a is 0

Result is the flipped of b if a is 1

Using Qiskit

Qiskit & quantum gates

Gate	Input/Output bits	Symbol	Transition Matrix	Qiskit Method
Pauli-X / NOT / Bit-flip	1-bit	X	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	QuantumCircuit.x
Pauli Y	1-bit	$-\!\!\!\!-\!$	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	QuantumCircuit.y
Pauli Z / Phase flip	1-bit	$-\!\!-\!$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	QuantumCircuit.z
Hadamard	1-bit	-H	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	QuantumCircuit.h
Controlled NOT	2-bit		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	QuantumCircuit.cx
Controlled Z	2-bit		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$	<u>QuantumCircuit.cz</u>
Toffoli	3-bit		$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$	QuantumCircuit.ccx

Using qiskit on datahub

- Go to datahub.escalab.org
- Login with your UCR gmail
- Select EE214 container to start
- Open a terminal from the user interface and git clone git@github.com:CS203UCR/ee214_25wi.git