日本国特許庁 JAPAN PATENT OFFICE

REC'D **2 1 NOV 2003**WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 3月 4日

出 願 番 号 Application Number:

特願2003-056995

[ST. 10/C]:

[JP2003-056995]

出 願 人
Applicant(s):

三菱化学株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年10月20日

【書類名】

特許願

【整理番号】

J10049

【提出日】

平成15年 3月 4日

【あて先】

特許庁長官殿

【国際特許分類】

CO1F 7/50

H01G 9/035

【発明の名称】

有機オニウムのテトラフルオロアルミン酸塩の製造方法

、電解コンデンサ用電解液及びそれを用いた電解コンデ

ンサ

【請求項の数】

12

【発明者】

【住所又は居所】 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式

会社内

【氏名】

宮内 博夫

【発明者】

【住所又は居所】 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式

会社内

【氏名】

武田 政幸

【特許出願人】

【識別番号】 000005968

【氏名又は名称】 三菱化学株式会社

【代理人】

【識別番号】

100103997

【弁理士】

【氏名又は名称】 長谷川 曉司

【先の出願に基づく優先権主張】

【出願番号】.

特願2002-322707

【出願日】

平成14年11月 6日

【手数料の表示】

【予納台帳番号】 035035

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 9702254

【プルーフの要否】 要

【発明の名称】 有機オニウムのテトラフルオロアルミン酸塩の製造方法、電解コンデンサ用電解液及びそれを用いた電解コンデンサ

【特許請求の範囲】

【請求項1】 (i)フッ化水素及び/又はケイフッ化水素酸、(ii)有機オニウム塩、並びに(iii)アルミニウム化合物(但し、三フッ化アルミニウムを除く)及び/又は金属アルミニウムを反応させることを特徴とする有機オニウムのテトラフルオロアルミン酸塩の製造方法。

【請求項2】 有機オニウム塩が一般式QOH、QROCO2又はQX(式中、Qは有機オニウムを表し、Rは水素原子又は炭素数10以下のアルキル基 を表し、Xはハロゲン原子を表す)で表されるものであることを特徴とする請求 項1に記載の製造方法。

【請求項3】 有機オニウム塩が有機オニウムの水酸化物塩、メチル炭酸塩、炭酸水素塩及びフッ化物塩から選ばれるものであることを特徴とする請求項1又は2に記載の製造方法。

【請求項4】 有機オニウムが下記(I)式で表されるものであることを 特徴とする、請求項1~3のいずれか1項に記載の製造方法。

【化1】

$$R^{1}$$

|
 $R^{4}-A^{+}-R^{2}$

|
 R^{3}

(式中、 $R^{1}\sim R^{4}$ はそれぞれ独立して水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよいアラルキル基を表すが、 $R^{1}\sim R^{4}$ の2以上が同時に水素原子を表すことはない。また $R^{1}\sim R^{4}$ は、一部または全てが互いに結合して、環を形成してもよく、かかる環を形成する場合は構成する環上に窒素原子を有していてもよい。Aは窒素原子またはリン原子を表す。)

【請求項5】 有機オニウムが、四級化アンモニウム、四級化ホスホニウム、四級化イミダゾリウム、四級化環状アミジニウム及びアンモニウムから選ばれるものであることを特徴とする、請求項1~4のいずれか1項に記載の製造方法。

【請求項6】 有機オニウムの総炭素数が $4\sim12$ であることを特徴とする、請求項 $1\sim5$ のいずれか1項に記載の製造方法。

【請求項7】 有機オニウムが1-xチルー2, 3-ジメチルイミダゾリニウム及び1, 2, 3, 4-テトラメチルイミダゾリニウムから選ばれるものであることを特徴とする請求項 $1\sim6$ のいずれか1項に記載の製造方法。

【請求項8】 アルミニウム化合物及び/又は金属アルミニウムが水酸化アルミニウム、酸化アルミニウム、金属アルミニウム及び塩化アルミニウムから選ばれるものであることを特徴とする、請求項1~7のいずれか1項に記載の製造方法。

【請求項9】フッ化水素の使用量が、アルミニウム化合物及び/又は金属 アルミニウムのアルミニウムに対して、3~5モル倍量であることを特徴とする 、請求項1~8のいずれか1項に記載の製造方法。

【請求項10】ケイフッ化水素酸の使用量が、アルミニウム化合物及び/ 又は金属アルミニウムのアルミニウムに対して、 $0.5 \sim 0.83$ モル倍量であることを特徴とする、請求項 $1 \sim 9$ のいずれか1 項に記載の製造方法。

【請求項11】請求項1~10のいずれか1項に記載の製造方法で製造した有機オニウムのテトラフルオロアルミン酸塩を用いた電解コンデンサ用電解液。

【請求項12】 請求項11に記載の電解コンデンサ用電解液を用いた電解コンデンサ。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】

本発明は、有機オニウムのテトラフルオロアルミン酸塩の製造方法に関する。有機オニウムのテトラフルオロアルミン酸塩は、界面活性剤;相関移動触媒;柔

[0002]

【従来の技術】

有機オニウムのテトラフルオロアルミン酸塩の製造法としては、有機アルミニウム化合物とピリジンーフッ化水素錯体を反応させる方法(例えば、非特許文献 1参照)、有機オニウムのテトラフルオロアルミン酸塩とアミン化合物とを反応させる方法(例えば、非特許文献 1参照)、有機オニウムの炭酸塩又は炭酸水素塩とアンモニウムテトラフルオロアルミネートを反応させる方法(例えば、特許文献 1参照)、有機オニウムの水酸化物塩とアンモニウムテトラフルオロアルミネートを反応させる方法(例えば、特許文献 2参照)、テトラメチルアンモニウムフルオライド、フッ化アルミニウム、フッ化水素及び水を反応させる方法(例えば、非特許文献 2参照)が知られている。

[0003]

さらに有機オニウムのポリフルオロメタレート塩の合成法としては、ポリフルオロメタレートの水素酸と有機オニウムのハロゲン塩(例えば、非特許文献3参照)や有機オニウムの水酸化物塩(例えば、非特許文献4参照)や有機オニウムのアルキル炭酸塩(例えば、特許文献3参照)を反応させる方法、四級アンモニウム塩とフッ化水素から四級アンモニウムフルオライドのフッ化水素塩を合成し、次いで三フッ化ホウ素を反応させる方法(例えば、特許文献4参照)が知られている。

[0004]

【特許文献1】

特開平11-322760号公報

【特許文献2】

特開平11-322759号公報

【特許文献3】

【特許文献4】

特開平11-310555号公報

【非特許文献1】

Journal of the American Chemical Society, 1993年, 115巻, 3028ページ

【非特許文献2】

Monatshefte fur Chemie, 1975年, 106巻, 483ページ

【非特許文献3】

Journal of Organic Chemistry, 1971年, 36巻, 2371ページ

【非特許文献4】

Journal of the Chemical Society, Perkin Transactions 2, 1978年, 3巻, 254ページ

[0005]

【発明が解決しようとする課題】

しかしながら、有機アルミニウムを使用する方法では、自然発火性物質を取り扱わなければならず、テトラフルオロアルミネートのピリジニウム塩を経由することから工程も多くなる。また、アンモニウムテトラフルオロアルミネートを反応させる方法では、アンモニウムテトラフルオロアルミネートの溶解性が低く実質的に反応に適さない。さらに、テトラフルオロアルミネートの水素酸(テトラフルオロアルミン酸)はその存在が示唆されているものの完全に実証されておらず、ましてや工業的に入手することはほとんど不可能である。

[0006]

一方、ホウ素とアルミニウムは同属の元素であるが、三フッ化ホウ素と同様の 有機オニウムフルオライドのフッ化水素塩と三フッ化アルミニウムの反応は、ア ルミニウムの場合はフッ化水素が大過剰に存在するとテトラフルオロアルミネー

トの他に6配位のヘキサフルオロアルミネートが生成するため適用できない。 従って、有機オニウムのテトラフルオロアルミン酸塩の工業的生産に適した製

法の開発が強く望まれていた。

[0007]

これらの課題を解決するために本発明者等は先に、フッ化水素、有機オニウム 及び三フッ化アルミニウムを反応させることを特徴とする有機オニウムのテトラ フルオロアルミン酸塩の製造方法を発明した(特願2002-129141)。

そして、更に工業的に有利な有機オニウムのテトラフルオロアルミン酸塩を製 造する方法の改良を検討した結果、この製造方法における三フッ化アルミニウム は、フッ素源としてのフッ化水素又はケイフッ化水素酸と、アルミニウム源とし てのアルミニウム化合物(但し、フッ化アルミニウムを除く)又は金属アルミニ ウムに置き換えうること、そしてそれによって、より安価に、有機オニウム塩を 製造出来ることを見出して本発明を完成した。

[0008]

【課題を解決するための手段】

即ち、本発明は、(i)フッ化水素及び/又はケイフッ化水素酸、(ii)有機オニ ウム塩、並びに(iii)アルミニウム化合物(但し、三フッ化アルミニウムを除く) 及び/又は金属アルミニウムを反応させることを特徴とする有機オニウムのテ トラフルオロアルミン酸塩の製造方法に存する。

[0009]

【発明の実施の形態】

以下、本発明につき詳細に説明する。

本発明の製法における原料の一つは有機オニウム塩であり、好ましくはQOH 、QROCO2又はQX(式中、Qは有機オニウムを表し、Rは水素原子又は炭 素数10以下のアルキル基を表し、Xはハロゲン原子を表す)で表される有機オ ニウム塩である。Rで定義される炭素数10以下のアルキル基としては、メチル 基、エチル基、nープロピル基、iープロピル基、nーブチル基、nーペンチル 基、n-ヘキシル基、n-オクチル基、n-デシル基等が挙げられる。Xで定義 されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる

。本発明においては、かかる有機オニウム塩の中でも、水酸化物塩、メチル炭酸塩、炭酸水素塩、フッ化物塩を用いることが好ましく、水酸化物塩、メチル炭酸塩、炭酸水素塩を用いるのがより好ましい。また、前記したQXのようなハロゲン化物の場合には、ハロゲンを導入するための反応を伴うが、本発明の製造方法においては、フッ化水素及び/又はケイフッ化水素酸と反応させるので、わざわざハロゲンを導入するための反応工程がない方が工業的に有利である。この点で、ハロゲン原子を含まない有機オニウム塩を用いる方が望ましい。

[0010]

本発明における有機オニウムとは、孤立電子対を有する元素(窒素、リンなど)を含む化合物において、これらの孤立電子対にプロトンや他の陽イオンが配位結合して生ずる化合物の総称であり、特に制限はされないが、下記(I)式で表されるものが好ましく使用される。

[0011]

【化2】

$$R^{1}$$
 $R^{4}-A^{+}-R^{2}$
 R^{3}

(I)

[0012]

(式中、 $R^{1}\sim R^{4}$ はそれぞれ独立して水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよいアラルキル基を表すが、 $R^{1}\sim R^{4}$ の2以上が同時に水素原子を表すことはない。また $R^{1}\sim R^{4}$ は、一部または全てが互いに結合して、環を形成してもよく、かかる環を形成する場合は構成する環上に窒素原子を有していてもよい。Aは窒素原子またはリン原子を表す。)

[0013]

 $R^{1} \sim R^{4}$ で定義されるアルキル基としては、メチル基、エチル基、n-プロピ

[0014]

これらのアルキル基、シクロアルキル基、アリール基、アラルキル基は置換基 を有していてもよく、かかる置換基としては、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、カルボキシル基、ホルミル基等が挙げられる。

前記(I)式で表される有機オニウムの代表例としては、四級化アンモニウム、四級化ホスホニウム、四級化イミダゾリウム、四級化環状アミジニウム、アンモニウム等を挙げることができる。また有機オニウム塩としては、有機オニウム塩に水やメタノール等の配位性化合物が配位したものも包含する。

[0015]

四級化アンモニウムの具体例としては、例えばテトラメチルアンモニウム、エチルトリメチルアンモニウム、ジエチルジメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム、トリメチルー n ープロピルアンモニウム、トリメチルイソプロピルアンモニウム、トリメチルー n ーブチルアンモニウム、トリメチルイソブチルアンモニウム、トリメチルー t ーブチルアンモニウム、トリメチルー n ーペキシルアンモニウム、シメチルジー n ープロピルアンモニウム、ジメチルジイソプロピルアンモニウム、ジメチル・n ープロピルイソプロピルアンモニウム、メチルトリー n ープロピルアンモニウム、メチルトリイソプロピルアンモニウム、メチルシー n ープロピルイソプロピルアンモニウム、メチルー n ープロピルアンモニウム、トリエチルー n ープロピルアンモニウム、トリエチルー n ーブチルアンモニウム、トリエチルイソプロピルアンモニウム、トリエチルー t ーブチルアンモニウム、トリエチルイソプチルアンモニウム、トリエチルー t ーブチルア

ンモニウム、ジメチルジーnープチルアンモニウム、ジメチルジイソプチルアン モニウム、ジメチルジー t ープチルアンモニウム、ジメチルーnープチルエチル アンモニウム、ジメチルイソブチルエチルアンモニウム、ジメチルー t ーブチル エチルアンモニウム、ジメチルーnープチルイソプチルアンモニウム、ジメチル ーnーブチルーtーブチルアンモニウム、ジメチルイソブチルーtーブチルアン モニウム、ジエチルジーnープロピルアンモニウム、ジエチルジイソプロピルア ンモニウム、ジエチルーnープロピルイソプロピルアンモニウム、エチルトリー nープロピルアンモニウム、エチルトリイソプロピルアンモニウム、エチルジー n-プロピルイソプロピルアンモニウム、エチル-n-プロピルジイソプロピル アンモニウム、ジエチルメチルー n ープロピルアンモニウム、エチルジメチルー n-プロピルアンモニウム、エチルメチルジ-n-プロピルアンモニウム、ジエ チルメチルイソプロピルアンモニウム、エチルジメチルイソプロピルアンモニウ ム、エチルメチルジイソプロピルアンモニウム、エチルメチルー n ープロピルイ ソプロピルアンモニウム、テトラーnープロピルアンモニウム、テトライソプロ ピルアンモニウム、nープロピルトリイソプロピルアンモニウム、ジーnープロ ピルジイソプロピルアンモニウム、トリーn-プロピルイソプロピルアンモニウ ム、トリメチルブチルアンモニウム、トリメチルペンチルアンモニウム、トリメ チルヘキシルアンモニウム、トリメチルヘプチルアンモニウム、トリメチルオク チルアンモニウム、トリメチルノニルアンモニウム、トリメチルデシルアンモニ ウム、トリメチルウンデシルアンモニウム、トリメチルドデシルアンモニウム等 のテトラアルキルアンモニウム;トリメチルフェニルアンモニウム、テトラフェ ニルアンモニウム等の芳香族置換アンモニウム;N、N-ジメチルピロリジニウ ム、N-エチル-N-メチルピロリジニウム、N, N-ジエチルピロリジニウム 、N,N-テトラメチレンピロリジニウム等ピロリジニウム化合物;N,N-ジ メチルピペリジニウム、N-エチル-N-メチルピペリジニウム、N,N-ジエ チルピペリジニウム、N, Nーテトラメチレンピペリジニウム、N, Nーペンタ メチレンピペリジニウム等のピペリジニウム化合物、N, Nージメチルモルホリ ニウム、N-エチルーN-メチルモルホリニウム、N, N-ジエチルモルホリニ ウム等のモルホリニウム化合物等の脂肪族環状アンモニウム;Nーメチルピリジ

[0016]

四級化ホスホニウムの具体例としては、テトラメチルホスホニウム、トリエチルメチルホスホニウム、テトラエチルホスホニウム等を挙げることができる。

四級化イミダゾリウムの具体例としては、1,3-ジメチルイミダゾリウム、 1. 2. 3ートリメチルイミダゾリウム、1ーエチルー3ーメチルイミダゾリウ ム、1ーエチルー2, 3ージメチルイミダゾリウム、1, 3ージエチルイミダゾ リウム、1.2ージエチルー3ーメチルイミダゾリウム、1.3ージエチルー2 ーメチルイミダゾリウム、1,2-ジメチルー3-n-プロビルイミダゾリウム 、1-n-ブチル-3-メチルイミダゾリウム、1-メチル-3-n-プロピル ウム、1, 2, 3, 4, 5 - - x - x - x - x + x - x + x - x + x - x + ージメチルイミダゾリウム、1.3ージメチルー2ーnープロピルイミダゾリウ ム、1.3-ジメチルー2-n-ペンチルイミダゾリウム、1.3-ジメチルー 2-n-ヘプチルイミダゾリウム、1, 3, 4-トリメチルイミダゾリウム、2ーエチルー1、3、4ートリメチルイミダゾリウム、1,3ージメチルベンゾイ ミダゾリウム、1-フェニルー3-メチルイミダゾリウム、1-ベンジルー3-メチルイミダゾリウム、1-フェニルー2,3-ジメチルイミダゾリウム、1-ベンジルー2、3ージメチルイミダゾリウム、2ーフェニルー1,3ージメチル イミダゾリウム、2ーベンジルー1,3ージメチルイミダゾリウム、1,3ージ メチルー2-nーウンデシルイミダゾリウム、1,3ージメチルー2-n-ヘプ タデシルイミダゾリウム等、さらには2-(2'-2) ーヒドロキシ)エチルー1,3-ジメチルイミダゾリウム、<math>1-(2'-ヒドロキシ) エチルー2, 3-ジメチルイミダゾリウム、2-エトキシメチル-1、3-ジメチルイミダゾリウム、1 ーエトキシメチルー2、3ージメチルイミダゾリウム等のヒドロキシル基やエー テル結合を有する基等を挙げることができる。

[0017]

四級化環状アミジニウムの具体例としては、1,3ージメチルイミダゾリニウ ム、1、2、3ートリメチルイミダゾリニウム、1-エチルー3ーメチルイミダ ゾリニウム、1-エチルー2,3-ジメチルイミダゾリニウム、1,3-ジエチ ルイミダゾリニウム、1,2-ジエチルー3-メチルイミダゾリニウム、1,3 ージエチルー2ーメチルイミダゾリニウム、1,2ージメチルー3ーnープロピ ルイミダゾリニウム、1-n-ブチル-3-メチルイミダゾリニウム、1-メチ $\nu - 3 - n -$ プロピルー2. 4 -ジメチルイミダゾリニウム、1, 2, 3, 4 -テトラメチルイミダゾリニウム、2-エチルー1,3-ジメチルイミダゾリニウ ム、1,3-ジメチル-2-n-プロピルイミダゾリニウム、1,3-ジメチル -2-n-ペンチルイミダゾリニウム、1, 3-ジメチルー2-n-ヘプチルイ ミダゾリニウム、1,3,4-トリメチルイミダゾリニウム、2-エチルー1, 3, 4-トリメチルイミダゾリニウム、1-フェニルー3-メチルイミダゾリニ ウム、1ーベンジルー3ーメチルイミダゾリニウム、1ーフェニルー2, 3ージ メチルイミダゾリニウム、1ーベンジルー2,3ージメチルイミダゾリニウム、 2-フェニルー1, 3-ジメチルイミダゾリニウム、2-ベンジルー1, 3-ジ メチルイミダゾリニウム等のイミダゾリニウム化合物;1,3-ジメチルテトラ ヒドロピリミジニウム、1,3-ジエチルテトラヒドロピリミジニウム、1-エ チルー3-メチルテトラヒドロピリミジニウム、1,2,3-トリメチルテトラ ヒドロピリミジニウム、1,2,3-トリエチルテトラヒドロピリミジニウム、 1-エチルー2, 3-ジメチルテトラヒドロピリミジニウム、2-エチルー1, 3-ジメチルテトラヒドロピリミジニウム、1,2-ジエチルー3-メチルテト ラヒドロピリミジニウム、1,3ージエチルー2ーメチルテトラヒドロピリミジ ニウム等のテトラヒドロピリミジニウム化合物;5-メチルー1,5-ジアザビ シクロ[4.3.0] ノネンー5、8ーメチルー1,8ージアザビシクロ[5. 4.0] ウンデセンー7、1,3ージメチルー2ーnーウンデシルイミダゾリニ ウム、1、3-ジメチル-2-n-ヘプタデシルイミダゾリニウム、さらには2 - (2′ーヒドロキシ)エチルー1、3ージメチルイミダゾリニウム、1ー(2 ′ーヒドロキシ) エチルー2, 3ージメチルイミダゾリニウム、2ーエトキシメ チルー1. 3ージメチルイミダゾリニウム、1ーエトキシメチルー2, 3ージメ

[0018]

アンモニウムの具体例としては、トリメチルアンモニウム、エチルジメチルアンモニウム、ジエチルメチルアンモニウム、トリエチルアンモニウム、ピリジニウム、N-メチルイミダゾリニウム、1, 5-ジアザビシクロ [4.3.0]ノネニウム-5、1, 8-ジアザビシクロ [5.4.0]ウンデセニウム-7等を挙げることができる。

[0019]

これらのうち、総炭素数が4~12である有機オニウムが好ましく、なかでも テトラエチルアンモニウム、トリエチルメチルアンモニウム、ジエチルジメチル アンモニウム、エチルトリメチルアンモニウム、テトラメチルアンモニウム、N . Nージメチルピロリジニウム、NーエチルーNーメチルピロリジニウム、1, 3ージメチルイミダゾリウム、1, 2, 3ートリメチルイミダゾリウム、1ーエ チルー3ーメチルイミダゾリウム、1ーエチルー2,3ージメチルイミダゾリウ ム、1,2,3,4ーテトラメチルイミダゾリウム、1,3ージエチルイミダゾ リウム、2-エチルー1,3-ジメチルイミダゾリウム、1,3-ジメチルー2 ーnープロピルイミダゾリウム、1, 3ージメチルー2ーnーペンチルイミダゾ リウム、1、3ージメチルー2ーnーヘプチルイミダゾリウム、1,3,4ート リメチルイミダゾリウム、2-エチル-1,3,4-トリメチルイミダゾリウム 、1,3-ジメチルベンゾイミダゾリウム、1-フェニルー3-メチルイミダゾ リウム、1-ベンジルー3-メチルイミダゾリウム、1-フェニルー2,3-ジ メチルイミダゾリウム、1ーベンジルー2,3ージメチルイミダゾリウム、2ー フェニルー1、3-ジメチルイミダゾリウム、2-ベンジルー1,3-ジメチル イミダゾリウム、1.3-ジメチルイミダゾリニウム、1,2,3-トリメチル イミダゾリニウム、1ーエチルー3ーメチルイミダゾリニウム、1ーエチルー2 、3-ジメチルイミダゾリニウム、1,2,3,4-テトラメチルイミダゾリニ ウム、1,3ージエチルイミダゾリニウム、2ーエチルー1,3ージメチルイミ ダゾリニウム、1.3ージメチルー2ーnープロピルイミダゾリニウム、1,3

[0020]

これらの有機オニウム塩はそのまま使用することも出来るし、反応に不活性な 溶媒に溶解して使用することもできる。また、四級化反応液をそのまま使用する ことも出来る。例えば1-エチルー2-メチルイミダゾールをジメチルカーボネ ートで四級化した反応液をそのまま使用することも出来る。

本発明の製法における原料の他の一つは、アルミニウム源であるアルミニウム 化合物又は金属アルミニウムである。アルミニウム化合物としては、水酸化アルミニウム、酸化アルミニウム、塩化アルミニウム、酢酸アルミニウム、臭化アルミニウム、硝酸アルミニウム、硫酸アルミニウム、リン酸アルミニウム、硫酸カリウムアルミニウム、ケイ酸アルミニウム、アルミナホワイト等の三フッ化アルミニウムを除く任意のものが使用できる。好ましくは水酸化アルミニウム、酸化アルミニウム、金属アルミニウム、塩化アルミニウム、特に好ましくは水酸化アルミニウムを使用する。

[0021]

水酸化アルミニウムとしては、例えばゾル状水酸化アルミニウム、乾燥水酸化アルミニウムゲル、結晶性水酸化アルミニウム(ジアスポアー、ベーマイト、疑似ベーマイト、ギブサイト、バイヤライト、ノルドストランダイト等)、水酸化酸化アルミニウム等が使用できる。これらのうちギブサイトが特に好ましい。

酸化アルミニウムとしては、例えばアルミナ、ゾル状アルミナ、溶融アルミナ 、活性アルミナ、ローソーダアルミナ、超微粒子酸化アルミニウムが使用できる

[0022]

本発明の製法における原料のさらに他の一つは、フッ素源であるフッ化水素又はケイフッ化水素酸である。フッ化水素はそのまま使用することも出来るし、反応に不活性な溶媒に溶解して使用することもできる。好ましくは無水フッ化水素、フッ化水素メタノール溶液、フッ化水素水溶液として使用する。ケイフッ化水素酸は、好ましくは水溶液として使用する。

[0023]

本発明の製法において使用可能な溶媒としては、例えば水;メタノール、エタノール、nープロパノール、イソプロパノール、nーブタノール等のアルコール類;アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン等のケトン類;ジエチルエーテル、エチルーnープロピルエーテル、エチルーイソプロピルエーテル、ジーnープロピルエーテル、ジイソプロピルエーテル、nープロピルイソプロピルエーテル、ジメトキシエタン、メトキシエトキシエタン、ジエトキシエタン、テトラヒドロフラン等のエーテル類;アセトニトリル、プロピオニトリル等のニトリル類;ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン等の炭化水素類;酢酸エチル、酢酸ブチル、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸エチレン、炭酸プロピレン等のエステル類等が挙げられる。この中でも好ましいのは、水、メタノール又はエタノールである。これらの溶媒は、単独でも混合して用いても良い。

[0024]

フッ化水素を使用する場合の使用量は、アルミニウム源のアルミニウムに対して多すぎると、過剰なフッ素がテトラフルオロアルミン酸にさらに結合し、ペンタフルオロアルミン酸やヘキサフルオロアルミン酸等の過度にフッ素化が進行した副生物を生じやすくなり、目的とするテトラフルオロアルミン酸塩の選択性が低くなる。従って工業的には、アルミニウム源のアルミニウムに対して、10モル倍を超えるような割合、中でも8モル倍を超えるような割合とならないようにすることが望ましく、通常3~5モル倍、好ましくは3.5~4.5モル倍、特

[0025]

ケイフッ化水素酸を使用する場合の使用量も、アルミニウム源のアルミニウムに対して多すぎると、過剰なフッ素がテトラフルオロアルミン酸にさらに結合し、ペンタフルオロアルミン酸やヘキサフルオロアルミン酸等の過度にフッ素化が進行した副生物を生じやすくなり、目的とするテトラフルオロアルミン酸塩の選択性が低くなる。従って工業的には、アルミニウム源のアルミニウムに対して、1.7モル倍を超えるような割合、中でも1.3モル倍を超えるような割合とならないようにすることが望ましく、通常0.5~0.83モル倍、好ましくは0.58~0.75モル倍、特に好ましくは0.63~0.7モル倍である。有機オニウム塩がフッ化物塩である場合は、上記と同じく若干少なくてもよく、通常は0.33~0.67モル倍、好ましくは0.42~0.58モル倍、特に好ましくは0.47~0.53モル倍である。

[0026]

またフッ化水素及びケイフッ化水素酸を任意の割合で併用することもでき、この場合の使用量についても、アルミニウム源のアルミニウムに対して多すぎると、過剰なフッ素がテトラフルオロアルミン酸にさらに結合し、ペンタフルオロアルミン酸やヘキサフルオロアルミン酸等の過度にフッ素化が進行した副生物を生じやすくなり、目的とするテトラフルオロアルミン酸塩の選択性が低くなる。従って工業的には、フッ化水素をェモル、ケイフッ化水素酸をタモルとしたときの使用量は、エ+y×6がアルミニウム源のアルミニウムに対して、10モル倍を超えるような割合、中でも8モル倍を超えるような割合とならないようにすることが望ましく、通常は3~5モル倍、好ましくは3.5~4.5モル倍、特に好ましくは3.8~4.2モル倍となる量である。有機オニウム塩がフッ化物塩である場合は、上記の数値はそれぞれ2~4モル倍、2.5~3.5モル倍、2.8~3.2モル倍となる。

[0027]

なお、本発明においては、所望ならばアルミニウム化合物や金属アルミニウムと共に、三フッ化アルミニウムを併用することもできる。しかし大量の三フッ化アルミニウムを併用することは、三フッ化アルミニウムを他のアルミニウム源とフッ素源で代替するという本発明の趣旨に反する。従って三フッ化アルミニウムを併用するときには、他のアルミニウム源に対してアルミニウムとして50%以下となるように用いるべきである。25%以下、特に10%以下となるように併用するのが好ましい。なお、三フッ化アルミニウムとしては、3水和物を用いるのが好ましい。

[0028]

反応方法は、例えばフッ化水素又はケイフッ化水素酸に有機オニウム塩を添加 し、次いでアルミニウム化合物を添加する方法;有機オニウム塩にフッ化水素又 はケイフッ化水素酸を添加し、次いでアルミニウム化合物を添加する方法;フッ 化水素又はケイフッ化水素酸と有機オニウム塩を同時又は交互に添加し、次いで アルミニウム化合物を添加する方法;フッ化水素又ケイフッ化水素酸にアルミニ ウム化合物を添加し、次いで有機オニウム塩又を添加する方法;アルミニウム化 合物にフッ化水素又はケイフッ化水素酸を添加し、次いで有機オニウム塩を添加 する方法;フッ化水素又はケイフッ化水素酸とアルミニウム化合物を同時又は交 互に添加し、次いで有機オニウム塩を添加する方法;有機オニウム塩にアルミニ ウム化合物を添加し、次いでフッ化水素又ケイフッ化水素酸を添加する方法;ア ルミニウム化合物に有機オニウム塩を添加し、次いでフッ化水素又ケイフッ化水 素酸を添加する方法;有機オニウム塩とアルミニウム化合物を同時又は交互に添 加し、次いでフッ化水素又はケイフッ化水素酸を添加する方法;有機オニウム塩 とフッ化水素又はケイフッ化水素酸とアルミニウム化合物を同時又は交互に添加 する方法;及びそれらの方法の組み合わせが挙げられる。これらのうち、好まし いのはフッ化水素又ケイフッ化水素酸にアルミニウム化合物を添加し、次いで有

[0029]

反応器は、ポリテトラフルオロエチレンライニングを施した耐酸性のものを用いるのがよい。

反応温度は制限がないが、通常 $-20\sim150$ $\mathbb C$ 、好ましくは $-10\sim50$ $\mathbb C$ 、さらに好ましくは $0\sim25$ $\mathbb C$ で反応させる。本発明においては、反応を2 回に分けて行うこともでき、その場合は後の反応温度を最初の反応と同等 \sim やや高めとすることが好ましい。

反応圧力は制限がないが、通常は常圧で実施される。

反応雰囲気は特に制限なく、空気雰囲気下でもよいが、好ましくは窒素、アルゴンなどの不活性ガス雰囲気下で行われる。

[0030]

本発明により得られる有機オニウムのテトラフルオロアルミン酸塩を電解コン デンサに用いる場合には、高純度であることが望まれるため、塩は必要により晶 析や溶媒抽出等により所望の純度にまで精製して使用される。

晶析溶媒としては炭素数4以下のアルコールが挙げられる。炭素数4以下のアルコールとはメタノール、エタノール、nープロパノール、イソプロパノール、nーブタノール、イソプタノール、2ーブタノール、tーブタノール及びこれらの混合物である。これらの溶媒で晶析を行うことにより、不純物含量が少ない有機オニウムのテトラフルオロアルミン酸塩が効率よく得られる。

[0031]

本発明により得られる有機オニウムのテトラフルオロアルミン酸塩は、界面活性剤、電池やコンデンサ等の電気化学素子用の電解質、相関移動触媒、帯電防止

なお、本発明に係る電解液は、上記の方法で得られた有機オニウムのテトラフ ルオロアルミン酸塩を電解質とするものであるあ、テトラフルオロアルミン酸イ オン以外のアニオン成分を含むことができ、これらの具体的な例としては、例え ば含フッ素無機イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イ オン、ヘキサフルオロヒ酸イオン、ヘキサフルオロアンチモン酸イオン、ヘキサ フルオロニオブ酸イオン、ヘキサフルオロタンタル酸イオン等の含フッ素無機イ オン;フタル酸水素イオン、マレイン酸水素イオン、サリチル酸イオン、安息香 酸イオン、アジピン酸イオン等のカルボン酸イオン;ベンゼンスルホン酸イオン 、トルエンスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、トリフルオ ロメタンスルホン酸イオン、パーフルオロブタンスルホン酸等のスルホン酸イオ ン:ホウ酸イオン、リン酸イオン等の無機オキソ酸イオン;ビス(トリフルオロ メタンスルホニル)イミドイオン、ビス(ペンタフルオロエタンスルホニル)イ ミドイオン、トリス(トリフルオロメタンスルホニル)メチドイオン、パーフル オロアルキルフルオロボレートイオン、パーフルオロアルキルフルオロホスフェ ートイオン、ボロジカテコレート、ボロジグリコレート、ボロジサリチレート、 ボロテトラキス (トリフルオロアセテート)、ビス (オキサラト) ボレート等の 四配位ホウ酸イオン等を挙げることができる。例えば、有機オニウムのテトラフ ルオロアルミン酸塩とフタル酸水素塩、マレイン酸水素塩等を併用する場合、テ トラフルオロアルミン酸塩が主体となることが好ましく、塩の総重量に対して、 テトラフルオロアルミン酸塩が50重量%以上であることが好ましく、より好ま しくは60重量%以上、更に好ましくは70重量%以上であり、比率は高い程、 好ましい。

[0032]

本発明の電解液において有機オニウムのテトラフルオロアルミン酸塩の濃度は、好ましくは5~40重量%であり、更に好ましくは10~35重量%である。これは濃度が低すぎる場合に電気伝導率が低いこと、また濃度が高すぎる場合には電解液の粘性の増加、低温での塩が析出等が起こりやすくなる等の理由による

[0033]

本発明の電解液は、さらに優れた電気伝導率、熱安定性、耐電圧性を有する電解液を得る観点から、溶媒を50重量%以上含有することが好ましい。溶媒としては、炭酸エステル、カルボン酸エステル、リン酸エステル、ニトリル、アミド、スルホン、アルコール及び水からなる群より選択される1種以上が挙げられるが、炭酸エステル、カルボン酸エステル、リン酸エステル、ニトリル、アミド、スルホン及びアルコールから選ばれる溶媒は、電解液に使用した場合に、経時的に安定した特性を示す傾向があるので好ましい。溶媒として、水を用いる場合は、他の溶媒と組合せて、溶媒の一部として用いることが好ましい。

[0034]

溶媒の具体的な例としては、例えば鎖状炭酸エステル(例えば、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、炭酸ジフェニル、炭酸メチルフェニル等の鎖状炭酸エステル)、環状炭酸エステル(例えば、炭酸エチレン、炭酸プロピレン、2,3ージメチル炭酸エチレン、炭酸プチレン、炭酸ビニレン、2ービニル炭酸エチレン等の環状炭酸エステル)等の炭酸エステル;脂肪族カルボン酸エステル(例えば、ギ酸メチル、酢酸メチル、プロピオン酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸アミル等)、芳香族カルボン酸エステル(例えば、安息香酸メチル、安息香酸エチル等の芳香族カルボン酸エステル等)、ラクトン(例えば、γープチロラクトン、γーバレロラクトン、δーバレロラクトン等)等のカルボン酸エステル;リン酸トリメチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリエチル等のリン酸エステル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリル、グルタロニトリル、アジポニトリル、2ーメチルグルタロニトリル等のニトリル;Nーメチルホルムアミド、Nーエチルホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルスルホン、エチルメチルス

ルホン、ジエチルスルホン、スルホラン、3-メチルスルホラン、2, 4-ジメチルスルホラン等のスルホン;エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のアルコール;エチレングリコールジメチルエーテル、エチレングリコールジェチルエーテル、1, 4-ジオキサン、1, 3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、2, 6-ジメチルテトラヒドロフラン、テトラヒドロピラン等のエーテル;ジメチルスルホキシド、メチルエチルスルホキシド、ジエチルスルホキシド等のスルホキシド;1, 3-ジメチル-2-イミダゾリジノン、1, 3-ジメチル-3, 4, 5, 6-テトラヒドロ-2 (1 H) -ピリミジノン、3-メチル-2-オキサゾリジノン等を挙げることができる。

[0035]

なお、導電性により優れる電解液を得る観点からは、溶媒が25以上の比誘電率 (ε、25℃)を有する非水系溶媒を用いることが好ましく、また、安全性の観点からは、溶媒が70℃以上の引火点を有する非水系溶媒であるのが好ましい。

熱安定性により優れる電解液を得る観点からは、溶媒は、沸点 250 C以上、融点 -60 -40 C、及び誘電率(ε 、25 C) 25 以上である溶媒を、溶媒の総重量に対して、25 重量%以上含むのが好ましい。中でも好ましいのは、このような溶媒を 40 重量%以上、特に 50 重量%以上含むものである。このような溶媒の例としては、スルホンを挙げることができ、特にスルホラン、3- メチルスルホランが好ましい。このような溶媒を電解液に組合せて用いることにより、環境温度 110 -150 Cでの動作を 100 時間以上保証する、低インピーダンスで高耐電圧な電解コンデンサが得られる。

[0036]

また、より低インピーダンスの電解コンデンサを得る観点からは、溶媒が、沸点190 ℃以上、250 ℃未満、融点-60 ~40 ℃、及び誘電率(ε 、25 ℃) 25 以上である溶媒を、溶媒の総重量に対して、25 重量%以上含むのが好ましい。中でも好ましいのは、このような溶媒を40 重量%以上、特に50 重量%以上含むものである。このような溶媒の例としては、炭酸エステル、カルボン酸

[0037]

熱安定性の観点から、特に好ましい電解液としては、溶媒がスルホランであり、 $1-x+\nu-2$, 3-iyメチルイミダゾリニウムのテトラフルオロアルミン酸塩又は1, 2, 3, 4-rトラメチルイミダゾリニウムのテトラフルオロアルミン酸塩を、電解液の総重量に対して、 $5\sim4$ 0重量%含有する電解コンデンサ用電解液が挙げられる。また、低インピーダンスの電解コンデンサを得ることができる観点からは、溶媒が $\gamma-i$ チロラクトンであり、 $1-x+\nu-2$, 3-iyメチルイミダゾリニウム塩のテトラフルオロアルミン酸又は1, 2, 3, 4-rトラメチルイミダゾリニウムのテトラフルオロアルミン酸なました。電解液の総重量に対して、 $5\sim4$ 0重量%含有する電解コンデンサ用電解液が挙げられる。また、スルホランと $\gamma-i$ チロラクトンを併用した溶媒も好ましい。

[0038]

本発明の電解液には、上記の塩及び溶媒の他にも種々の添加剤を含有させてもよい。電解液に添加物を加える目的は多岐に渡り、電気伝導率の向上、熱安定性の向上、水和や溶解による電極劣化の抑制、ガス発生の抑制、耐電圧の向上、濡れ性の改善等を挙げることができる。添加物の含有量は特に制限はないが、0.1~20重量%の範囲であることが好ましく、0.5~10重量%の範囲であることがより好ましい。

[0039]

そのような添加物の例としては、pーニトロフェノール、mーニトロアセトフェノン、pーニトロ安息香酸等のニトロ化合物;リン酸ジブチル、リン酸モノブチル、リン酸ジオクチル、オクチルホスホン酸モノオクチル、リン酸等のリン化合物;ホウ酸と多価アルコール(エチレングリコール、グリセリン、マンニトール、ポリビニルアルコール等)との錯化合物等のホウ素化合物;シリカ、アルミノシリケート等の金属酸化物微粒子;ポリエチレングリコールやポリプロピレン

[0040]

本発明の電解液は、これに高分子化合物を添加することにより固体化して、いわゆるゲル化電解液として使用してもよい。このようなゲル化電解液に使用される高分子の例としては、ポリエチレンオキシド、ポリアクリロニトリル、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリメチルメタクリレート等を挙げることができる。

[0041]

本発明の電解液において、電解液の溶媒に非水系溶媒を用いた場合、水分含量を制御することによって、このような電解液を用いたコンデンサのライフ特性がより安定する。一般に、非水系溶媒を用いた電解コンデンサの電解液中に多量の水分が含まれると、長期間使用している間に、陽極や陰極のアルミニウムが水和劣化を受け、同時にガスが発生することが知られている。一方、水分がまったくないと、陽極酸化皮膜を修復する際の化成性が劣る傾向があることも知られている。

[0042]

しかし、従来の電解液及びコンデンサにおいては、これまで定格電圧35V以下の低い電圧領域で使用されていたことから、3重量%程度の水分が存在しても、コンデンサのライフ特性への影響が小さかった。しかし、本発明の電解液を用いたコンデンサは、定格電圧100Vクラスまでの高い電圧領域で使用可能であり、また高耐熱性の要求も満たすものであるため、これまでとは異なり、水分含量の影響が大きい。本発明の電解液は、非水系溶媒を使用した場合、電解液中の水分濃度が、1重量%以下であることが好ましく、上記の化成性をも考慮すれば、好ましくは0.01~1重量%であり、特に好ましくは0.01~0.1重量%である。

[0043]

本発明は、本発明による電解液を使用した電解コンデンサも提供する。電解コンデンサの例としては、アルミニウム電解コンデンサ、タンタル電解コンデンサ

アルミニウム電解コンデンサの場合は、例えば陽極箔と陰極箔とをセパレータ紙を介して巻回して形成した常用の素子を用いる。陽極箔には、常用の純度99.9%のアルミニウム箔を酸性溶液中で化学的あるいは電気化学的なエッチングにより拡面処理した後、アジピン酸アンモニウムやホウ酸、リン酸等の水溶液中で化成処理を行い、その表面に酸化アルミニウム皮膜層を形成したものを用いればよい。陰極箔にも、常用の純度99.9%のアルミニウム箔をエッチングして拡面処理した箔を用いればよい。陰極箔にはエッチングしたアルミニウム箔の表面に窒化チタンの薄膜を形成したもの(例えば特開平9-186054号公報に記載)を用いてもよい。

[0044]

このように構成したコンデンサ素子のセパレータに、本発明による電解液を含浸する。有底筒状のアルミニウムよりなる外装ケースに収納し、外装ケースの開口端部にブチルゴム製の封口体を挿入し、更に外装ケースの端部を絞り加工して電解コンデンサの封口を行うことによりアルミニウム電解コンデンサを得ることができる。封口体の表面をテフロン(R)等の樹脂でコーティングしたり、ベークライト等の板を貼り付けると、溶媒蒸気の透過性が低減するので更に好ましい

[0045]

セパレータには、通常マニラ紙やクラフト紙等の紙が用いられるが、ガラス繊維、ポリプロピレン、ポリエチレン等の不織布を用いることもできる。封口体に用いるブチルゴムには、イソブチレンとイソプレンとの共重合体からなる生ゴムに補強剤(カーボンブラック等)、増量剤(クレイ、タルク、炭酸カルシウム等)、加工助剤(ステアリン酸、酸化亜鉛等)、加硫剤等を添加して混練した後、圧延、成型したゴム弾性体を用いることができる。加硫剤には、アルキルフェノールホルマリン樹脂;過酸化物(ジクミルペルオキシド、1,1ージー(tーブチルペルオキシ)-3,3,5ートリメチルシクロヘキサン、2,5ージメチル-2,5ージー(tーブチルペルオキシ)へキサン等);キノイド(pーキノンジオキシム、p,p′ージベンゾイルキノンジオキシム等);イオウ等を用いる

[0046]

また本発明の電解コンデンサは、ハーメチックシール構造や樹脂ケースに密閉した構造(例えば特開平8-148384号公報に記載)のものであってもよい。ゴム封止構造のアルミニウム電解コンデンサの場合、ある程度ゴムを通して気体が透過するため、高温環境下においてはコンデンサ内部から大気中へ溶媒が揮発し、また高温高湿環境下においては大気中からコンデンサ内部へ水分が混入する。これらの過酷な環境のもとで、コンデンサは静電容量の減少等の好ましくない特性変化を起こす。一方、ハーメチックシール構造や樹脂ケースに密閉した構造のコンデンサにおいては、気体の透過量が極めて小さいため上述の過酷な環境下においても安定した特性を示す。

[0047]

【実施例】

以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、操作等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない

[0048]

実施例1

PFA製丸底フラスコにフッ化水素酸(46.9重量%水溶液)17.06g (0.400モル)を仕込み、反応器を氷浴しながら、水酸化アルミニウム(純度95.2重量%)8.19g(0.100モル)を水23.40gに懸濁した懸濁液を15分かけて滴下した。室温でさらに30分攪拌した後、1-エチルー2,3-ジメチルイミダゾリニウムのメチル炭酸塩のメタノールー炭酸ジメチル溶液(1.78mol/kg)58.99g(0.105モル)を滴下し、さらに60℃で1時間攪拌した。反応液を濾過し、固形分を濾別後、溶媒を留去し、n-ブタノールから晶析して1-エチル-2,3-ジメチルイミダゾリニウムのテトラフルオロアルミン酸塩の白色結晶を得た。収量は22.0g、仕込みからのトータル収率は96%であった。

[0049]

(電解液の調製)

この1-xチルー2, $3-\tilde{y}$ メチルイミダゾリニウムのテトラフルオロアルミン酸塩を γ -ブチロラクトンに溶解し、25%濃度の電解液を調製した。電気伝導率は25℃で24. 3 m S / c m であった。同様に γ -ブチロラクトンに溶解し40%濃度の電解液を調製した。この電解液の25℃における電気伝導率は29.0 m S / c m であった。電解液中に含まれる水分量は1, 600 p p m であった。

[0050]

(アルミニウム電解コンデンサの作製)

この40% $1-x+\nu-2$, $3-iy+\nu-1=jy-1=j-2$ のテトラフルオロアルミン酸塩の $\gamma-i+1=j-2$ トン溶液を用いて、定格電圧100 V、ケースサイズ $10\phi\times20$ LのCE04型アルミニウム電解コンデンサを作製した。コンデンサ素子には、エッチング処理したアルミニウム箔を陽極酸化することにより、表面に酸化アルミニウムからなる誘電体被膜を形成したものを陽極、エッチング処理したアルミニウム箔を陰極、マニラ紙をセパレータとしてこれらを巻回したものを用いた。このコンデンサ素子を125 で乾燥した後に電解液を真空含浸し、さらにこれを円筒状のアルミニウムケースとブチルゴムからなる封口材と共に加締めを行った。最後に使用条件以上の高温、高圧下でエージング処理して陽極酸化被膜の修復を行い、アルミニウム電解コンデンサを作製した。

このコンデンサは $1\ 2\ 0\ H\ z$ における静電容量が $5\ 5\ \mu$ F、 $1\ 0\ 0\ k$ H z における E S R (等価直列抵抗) は $0\ .\ 0\ 4\ \Omega$ であった。

[0051]

実施例 2

PFA製丸底フラスコにフッ化水素酸(46.9重量%水溶液)12.79g (0.300モル)を仕込み、反応器を氷浴しながら、水酸化アルミニウム(純 度95.2重量%)8.60g(0.105モル)を水24.60gに懸濁した 懸濁液を15分かけて滴下した。室温でさらに30分攪拌した後、1-エチルー 2.3-ジメチルイミダゾリニウムのフッ化物塩のメタノール溶液(4.19m

[0052]

実施例3

PFA製丸底フラスコにフッ化水素酸(46.9重量%水溶液)17.06g (0.400モル)を仕込み、反応器を氷浴しながら、1ーエチルー2,3ージメチルイミダゾリニウムのメチル炭酸塩のメタノールー炭酸ジメチル溶液(1.78mol/kg)56.20g(0.100モル)を15分かけて滴下し、次いで水酸化アルミニウム(純度95.2重量%)8.19g(0.100モル)を水23.40gに懸濁した懸濁液を15分かけて滴下した。室温で30分攪拌した後、さらに60℃で1時間攪拌した。反応液を濾過し、固形分を濾別後、溶媒を留去し、nープタノールから晶析して1ーエチルー2,3ージメチルイミダゾリニウムのテトラフルオロアルミン酸塩の白色結晶を得た。収量は21.5g、仕込みからのトータル収率は93%であった。

[0053]

実施例4

PFA製丸底フラスコにケイフッ化水素酸(24.3重量%水溶液)29.60g(0.05モル)を仕込み、室温で水酸化アルミニウム(純度95.2重量%)8.19g(0.100モル)を水23.40gに懸濁した懸濁液を15分かけて滴下した。反応液を95℃で10分攪拌した後、室温で1ーエチルー2,3ージメチルイミダゾリニウムのフッ化物塩のメタノール溶液(4.19mol/kg)23.80g(0.100モル)を滴下し、さらに60℃で1時間攪拌した。反応液を濾過し、固形分を濾別後、溶媒を留去し、n-ブタノールから晶析して1-エチルー2,3-ジメチルイミダゾリニウムのテトラフルオロアルミン酸塩の白色結晶を得た。収量は18.2g、仕込みからのトータル収率は79%であった。

[0054]

比較例1

ガラス製丸底フラスコに1-エチルー2, 3-ジメチルイミダゾリニウムのメチル炭酸塩のメタノールージメチルカーボネート溶液(1. 77mol/kg)を56. 5g(100mmol)とフッ化アンモニウム <math>3. 70g(100mmol)を仕込み、50で5時間攪拌した。反応液を濾過し、濾液に三フッ化アルミニウム <math>3水和物を13. 80(100mmol)を添加し50で3時間攪拌したところ反応液がゲル化してしまった。

[0055]

比較例 2

PFA製丸底フラスコにフッ化水素30g(1500mmol)を仕込み、1 ーエチルー2,3ージメチルイミダゾリニウムのメチル炭酸塩のメタノールー炭酸ジメチル溶液(1.77mol/kg)を28.3g(50mmol)を滴下した。そのまま30分攪拌し、さらに三フッ化アルミニウム3水和物を6.90(50mmol)を添加し3時間攪拌した。反応液は一旦完溶した後、固体が析出し、反応液及び固体を分析したが、1ーエチルー2,3ージメチルイミダゾリニウムのテトラフルオロアルミン酸塩は存在していなかった。

[0056]

実施例5

PFA製丸底フラスコに酸化アルミニウム(A12O3)5.10g(0.05 モル)を仕込み、フッ化水素酸(46.9重量%水溶液)17.06g(0.4 00モル)を室温で20分かけて滴下した。90℃で60分撹拌した後、反応器を氷浴しながら、1-xチルー2, $3-\tilde{y}$ メチルイミダブリニウムのメチル炭酸塩のメタノールー炭酸ジメチル溶液(1.78mo1/kg)を58.99g(0.105モル)を滴下し、さらに60℃で1時間撹拌した。反応液を濾過し、固形分を濾別後、溶媒を留去し、 $n-\tilde{y}$ タノールから晶析して1-xチルー2, $3-\tilde{y}$ メチルイミダブリニウムのテトラフルオロアルミン酸塩の白色結晶を得た。収量は20.0g、仕込みからのトータル収率は87%であった。

[0057]

実施例6

PFA製丸底フラスコにフッ化水素酸(46.9重量%水溶液)8.53g(0.200モル)と水11.70gを仕込み、反応器を氷浴しながら、金属アルミニウム1.35g(0.05モル)を小片に分割し少しずつ15分かけて投入した。室温でさらに2時間撹拌した後、1-x+v-2,3-iy+v+1=ダゾリニウムのメチル炭酸塩のメタノールー炭酸ジメチル溶液(1.78mol/kg)を29.49g(0.0525モル)を滴下し、さらに60℃で1時間撹拌した。反応液を濾過し、固形分を濾別後、溶媒を留去し、n-iy+1-ルから晶析して1-x+v+1-2,3-iy+1-ジメチルイミダゾリニウムのテトラフルオロアルミン酸塩の白色結晶を得た。収量は10.4g、仕込みからのトータル収率は90%であった。

[0058]

【発明の効果】

本発明によれば、電池、電解コンデンサ等の電気化学的素子に使用される電解質をはじめとする各種化学品として有用な有機オニウムのテトラフルオロアルミン酸塩を収率よく合成することができる。

【書類名】 要約書

【要約】

【課題】 安価に、工業的に有機オニウムのテトラフルオロアルミン酸塩(例えば、1-エチル-2, 3-ジメチルイミダゾリニウムのテトラフルオロアルミン酸塩)を製造する方法の提供。

【解決手段】 (i)フッ化水素及び/又はケイフッ化水素酸、(ii)有機オニウム塩、並びに(iii)アルミニウム化合物(但し、三フッ化アルミニウムを除く)及び/又は金属アルミニウムを反応させる。

特願2003-056995

出願人履歴情報

識別番号

[000005968]

1. 変更年月日

1994年10月20日

[変更理由]

名称変更

住 所

東京都千代田区丸の内二丁目5番2号

氏 名 三菱化学株式会社