Discussion

CS 5/7320 Artificial Intelligence

Intelligent Agents AIMA Chapter 2

Slides by Michael Hahsler with figures from the AIMA textbook.

Self-driving Cars

SAE Automation Levels

- Level 1 Driver Assistance ("hands on")
- Level 2 Partial Automation ("hands off")
- Level 3 Conditional Automation
- Level 4 High Automation
- Level 5 Full Automation ("steering wheel optional")

Components

- Sensing
- Maps
- Path planning
- · Controlling the vehicle

Why is this so hard?

A Self-Driving Car as a Rational Agents

Rule: Pick the action that maximize the expected utility

 $a = \operatorname{argmax}_{a \in A} E(U \mid a)$

- If we have two cars and one provides more (expected) utility. Which car is rational?
- Can a rational self-driving car be involved in an accident?
- How would a self-driving car explore and learn?
- What does bounded rationality mean for a self-driving car?

PEAS Description of the Environment of a Self-Driving Car

Environment	Actuators	Sensors
	Environment	Environment Actuators

Percepts and States: Self-Driving Car

Percepts	States

State Representation: Self-Driving Car

States help to keep track of the environment and the agent in the environment.

Design a structured representation for the state of a self-driving car.

- What fluents should it contain?
- What actions can cause transitions?

Environment for a Self-Driving Car

Fully observable: The agent's sensors always show the whole **state**.

VS. Partially observable: The agent only perceives part of the state and needs to remember or infer the test.

Deterministic: Percepts are 100% reliable and changes in the environment is **VS.** completely determined by the current **state** of the environment and the agent's **action**.

Stochastic:

- Percepts are unreliable (noise distribution, sensor failure probability, etc.). This is called a stochastic sensor model.
- The transition function is stochastic leading to transition probabilities and a Markov process.

Known: The agent knows the **transition function**.

VS.

Unknown: The needs to **learn the transition function** by trying actions.

Check what applies and explain what it means for a self-driving car.

What Type of Intelligent Agent is a Self-Driving Car?

Goal-based agents

Model-based reflex agents

Simple reflex agents

Does it collect utility over time? How would the utility for each state be defined?

Does it have a goal state?

Does it store state information. How would they be defined (atomic/factored)?

Does it use simple rules based on the current percepts?

Self-driving Cars

Why is this so hard?

 Self-driving cars operate in a very complicated partially observable, stochastic dynamic environment.

 Can only use bounded rationality because of limits with sensors and computational power.

 Require a set of different agents to cooperate.

