Agrégation Interne

La fonction gamma

1

Ce problème est en relation avec les leçons d'oral suivantes :

- 267: La fonction Gamma;
- 223 : Intégrale d'une fonction dépendant d'un paramètre. Propriétés, exemples et applications ;
- -221: Intégrale impropre d'une fonction continue sur un intervalle de \mathbb{R} (l'intégration sur un segment étant supposée connue). Exemples;
- 217 : Fonctions convexes d'une variable réelle. Applications ;
- 212 : Série de Fourier d'une fonction périodique; propriétés. Exemples.

On pourra consulter les ouvrages suivants.

- E. Artin. The Gamma function. Holt, Rinehart and Winston, Inc. New York (1964).
- M. COTTRELL, V. GENON-CATALOT, C. DUHAMEL, T. MEYRE. Exercices de probabilités. Cassini (2011).
- X. GOURDON. Les Maths en tête. Analyse. Ellipses (1994).
- J. P. Ramis, A. Warusfel. *Mathématiques tout en un pour la licence. Niveau L2.* Dunod. (2007).
- A.W. Roberts, D.E. Varberg. Convex functions. Academic Press (1973).
- W. Rudin. Principes d'analyse mathématique. Edisciences (1995).
- J. E. ROMBALDI. Éléments d'analyse réelle. EDP Sciences (2004).

1 Énoncé

Pour tout nombre complexe z, $\Re(z)$ désigne la partie réelle de z.

On rappelle que pour tout nombre complexe z, la fonction puissance $t \mapsto t^z$ est définie par

$$\forall t \in \mathbb{R}^{+,*}, \ t^z = e^{z \ln(t)}$$

On rappelle qu'une fonction continue par morceaux d'un intervalle réel dans \mathbb{C} est intégrable si, et seulement si, l'intégrale impropre de f sur I est absolument convergente.

Rappelons quelques versions pratiques des théorèmes classiques sur :

- la continuité et la dérivation d'une fonction définie comme intégrale dépendant d'un paramètre;
- l'intervertion d'une intégrale et d'une sommation infinie;
- l'intégration d'une fonction de deux variables (théorème de Fubini);
- l'intégration par changement de variables.

Théorème 1 Soient I une partie non vide d'un espace vectoriel normé E (pour nous $E = \mathbb{C}$), J un intervalle réel non réduit à un point, F un espace de Banach (pour nous $F = \mathbb{C}$), $f: I \times J \to F$ une fonction continue et $\varphi: J \to \mathbb{R}^+$ une fonction continue par morceaux et intégrable sur J telle que :

$$\forall (x,t) \in I \times J, \|f(x,t)\| \le \varphi(t)$$

Dans ces condition, pour tout $x \in I$, la fonction $t \mapsto f(x,t)$ est intégrable sur J et la fonction $x \mapsto \int_J f(x,t) dt$ est continue sur I.

^{1.} Le 17/09/2013

Théorème 2 Soient I, J deux intervalles réels non réduits à un point, $f: I \times J \to \mathbb{C}$ une fonction continue admettant une dérivée partielle par rapport à x en tout point (x,t) de $I \times J$ telle que pour tout réel $x \in I$ la fonction $t \mapsto f(x,t)$ est intégrable sur J et la fonction $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur J.

S'il existe une fonction $\varphi: J \to \mathbb{R}^+$ continue par morceaux et intégrable sur J telle que :

$$\forall (x,t) \in I \times J, \ \left| \frac{\partial f}{\partial x}(x,t) \right| \le \varphi(t)$$

alors la fonction $g: x \mapsto \int_J f(x,t) dt$ est dérivable sur I avec :

$$g'(x) = \int_{J} \frac{\partial f}{\partial x}(x, t) dt$$

Si de plus la fonction $\frac{\partial f}{\partial x}$ est continue sur $I \times J$ (ou si pour tout $t \in J$, la fonction $x \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur I), alors la fonction φ est de classe \mathcal{C}^1 sur I.

Théorème 3 (convergence dominée) $Si(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions continues par morceaux, à valeurs complexes et intégrables sur un intervalle I telle que la série de fonctions $\sum f_n$ converge simplement vers une fonction f continue par morceaux sur I, alors la fonction f est intégrable sur I si la série $\sum \int_I |f_n(x)| dx$ est convergente et dans ce cas, on a $\int_I f(x) dx = \sum_{n=0}^{+\infty} \int_I f_n(x) dx$.

Théorème 4 (Fubini) Soient I, J deux intervalles réels non réduits à un point et $f: I \times J \to \mathbb{C}$ une fonction continue telle que :

- pour tout $x \in I$, la fonction $t \mapsto f(x,t)$ est intégrable sur J;
- la fonction $x \mapsto \int_{I} |f(x,t)| dt$ est intégrable sur I.

Dans ces condition, la fonction f est intégrable sur $I \times J$ et :

$$\iint_{I \times J} f(x,t) dt dx = \int_{I} \left(\int_{J} f(x,t) dt \right) dx$$

Dans le théorème de Fubini, on peut permuter les rôles de x et t. D'un point de vue pratique, pour $f:I\times J\to\mathbb{C}$ continue telle que les intégrales $\int_I\left(\int_J|f\left(x,t\right)|\,dt\right)dx$ et $\int_J\left(\int_I|f\left(x,t\right)|\,dx\right)dt$ aient un sens, on a :

$$\iint_{I \times J} f(x,t) dt dx = \iint_{I} \left(\iint_{J} f(x,t) dt \right) dx = \iint_{J} \left(\iint_{I} f(x,t) dx \right) dt$$

Théorème 5 (changement de variables) Soient U, V deux ouverts de \mathbb{R}^n et $\varphi : V \to U$ un \mathcal{C}^1 difféomorphisme. En notant $J_{\varphi} : x \in V \mapsto \det(d\varphi(x))$ le déterminant jacobien de φ , une fonction
continue $f : U \to \mathbb{C}$ est intégrable sur U si, et seulement si, la fonction $(f \circ \varphi) |J_{\varphi}|$ est intégrable sur V et dans ce cas, on a:

$$\int_{U} f(y) dy = \int_{V} f(\varphi(x)) |J_{\varphi}(x)| dx$$

I – Résultats préliminaires

1. Montrer que, pour tout entier $n \ge 1$ et tout réel $t \in [0, n]$, on a :

$$\left(1 - \frac{t}{n}\right)^n \le e^{-t} \le \left(1 + \frac{t}{n}\right)^{-n}$$

2. Montrer que:

$$\forall t \in [-1, 0], \ 0 \le (1+t)e^{-t} \le e^{-\frac{t^2}{2}}$$

- 3. Montrer que la suite $\left(\sum_{k=1}^{n} \frac{1}{k} \ln(n)\right)_{n\geq 1}$ est convergente. Sa limite est la constante d'Euler, notée γ .
- 4. Montrer que :

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$

- II - Généralités sur la fonction gamma

On désigne par \mathcal{H} le demi plan complexe défini par :

$$\mathcal{H} = \{ z \in \mathbb{C} \mid \Re(z) > 0 \}$$

1. Montrer que, pour tout entier naturel n, l'intégrale $\int_0^{+\infty} t^n e^{-t} dt$ est convergente et que l'on a :

$$\int_0^{+\infty} t^n e^{-t} dt = n!$$

- 2. Montrer que, pour tout nombre complexe z, la fonction $t \mapsto t^{z-1}e^{-t}$ est (absolument) intégrable sur $]1, +\infty[$.
- 3. Soit z un nombre complexe. Montrer que la fonction $t \mapsto t^{z-1}e^{-t}$ est intégrable sur]0,1[si, et seulement si, $z \in \mathcal{H}$.

 $\mathbf{D\acute{e}finition}: \mathrm{La} \ \mathrm{fonction} \ \mathrm{gamma} \ \mathrm{d'Euler} \ \mathrm{est} \ \mathrm{la} \ \mathrm{fonction} \ \mathrm{d\acute{e}finie} \ \mathrm{sur} \ \mathcal{H} \ \mathrm{par}:$

$$\forall z \in \mathcal{H}, \ \Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} dt$$

4. Montrer que:

$$\Gamma(1) = 1 \text{ et } \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

5. Montrer que la fonction gamma vérifie l'équation fonctionnelle :

$$\forall z \in \mathcal{H}, \ \Gamma(z+1) = z\Gamma(z) \tag{1}$$

6. Montrer que pour tout entier naturel n, on a :

$$\Gamma(n+1) = n!$$
 et $\Gamma\left(n + \frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$

7.

(a) Soient z et α deux nombres complexes. Montrer que la fonction $t \mapsto \frac{t^z e^{-\alpha t}}{1 - e^{-t}}$ est intégrable sur $]0, +\infty[$ si, et seulement si, $(z, \alpha) \in \mathcal{H}^2$.

(b) Montrer que:

$$\forall (z,\alpha) \in \mathcal{H}^2, \ \int_0^{+\infty} \frac{t^z e^{-\alpha t}}{1 - e^{-t}} dt = \Gamma(z+1) \zeta(z+1,\alpha)$$

où ζ est la fonction dzéta de Hurwitz définie par :

$$\forall (z, \alpha) \in \mathcal{H}^2, \ \zeta(z+1, \alpha) = \sum_{n=0}^{+\infty} \frac{1}{(n+\alpha)^{z+1}}$$

En particulier, pour $\alpha = 1$, on a :

$$\forall z \in \mathcal{H}, \int_{0}^{+\infty} \frac{t^{z}}{e^{t} - 1} dt = \Gamma(z + 1) \zeta(z + 1)$$

où ζ est la fonction dzéta de Riemann.

- III - Formules d'Euler, de Wallis, de Legendre et de Stirling

1. Pour tout entier $n \ge 1$ et tout $z \in \mathcal{H}$, on note :

$$I_n(z) = \frac{n!n^z}{z(z+1)\cdots(z+n)}$$

(a) Montrer que:

$$\forall z \in \mathcal{H}, \ \int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} t^{z-1} dt = I_{n}\left(z\right)$$

(b) En déduire que :

$$\forall z \in \mathcal{H}, \ \Gamma(z) = \lim_{n \to +\infty} \frac{n! n^z}{z(z+1) \cdots (z+n)}$$

(formule d'Euler).

2. Montrer que :

$$\sqrt{\pi} = \lim_{n \to +\infty} \frac{2^{2n}}{\sqrt{n} \binom{2n}{n}}$$

soit:

$$\binom{2n}{n} \underset{n \to +\infty}{\backsim} \frac{1}{\sqrt{\pi}} \frac{2^{2n}}{\sqrt{n}}$$

(formule de Wallis).

3.

(a) Montrer que, pour tout entier $n \geq 1$ et tout $z \in \mathcal{H}$, on a :

$$I_{2n}\left(z\right) = 2^{z-1} \left(1 + \frac{z}{2n+1}\right) \frac{I_n\left(\frac{z}{2}\right) I_n\left(\frac{z+1}{2}\right)}{I_n\left(\frac{1}{2}\right)}$$

(b) Montrer que, pour tout $z \in \mathcal{H}$, on a :

$$\Gamma\left(z\right) = \frac{2^{z-1}}{\sqrt{\pi}} \Gamma\left(\frac{z}{2}\right) \Gamma\left(\frac{z+1}{2}\right)$$

(formule de Legendre).

4. On désigne par f la fonction définie sur $\mathbb{R}^{+,*} \times \mathbb{R}$ par :

$$\forall (x, u) \in \mathbb{R}^{+,*} \times \mathbb{R}, \ f(x, u) = \begin{cases} 0 \text{ si } u \leq -\sqrt{x} \\ \left(1 + \frac{u}{\sqrt{x}}\right)^x e^{-u\sqrt{x}} \text{ si } u > -\sqrt{x} \end{cases}$$

(a) Montrer que pour tout réel x > 0, on a :

$$\Gamma(x+1) = \sqrt{x} \left(\frac{x}{e}\right)^x \int_{-\infty}^{+\infty} f(x, u) du$$

(b) Montrer que, pour tout réel u, on a :

$$\lim_{x \to +\infty} f\left(x, u\right) = e^{-\frac{u^2}{2}}$$

(c) Montrer que pour tout $(x, u) \in [1, +\infty[\times \mathbb{R}, \text{ on a} :$

$$0 \le f(x, u) \le \varphi(u) = \begin{cases} e^{-\frac{u^2}{2}} & \text{si } u \le 0\\ (1+u)e^{-u} & \text{si } u > 0 \end{cases}$$

(d) En déduire la formule de Stirling :

$$\Gamma(x+1) \underset{x \to +\infty}{\backsim} \sqrt{2\pi x} \left(\frac{x}{e}\right)^x$$

Pour x = n entier naturel non nul, on retrouve la formule usuelle :

$$n! \underset{n \to +\infty}{\backsim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

- IV - Continuité et dérivabilité de la fonction gamma

1. Montrer que la fonction gamma est continue sur \mathcal{H} .

- 2. Montrer que $\Gamma(z) \underset{z \in \mathcal{H}, z \to 0}{\sim} \frac{1}{z}$ et en particulier $\lim_{x \to 0^+} \Gamma(x) = +\infty$.
- 3. Montrer que la fonction gamma est indéfiniment dérivable sur $\mathbb{R}^{+,*}$ avec pour tout entier naturel non nul n et tout réel strictement positif x:

$$\Gamma^{(n)}(x) = \int_0^{+\infty} (\ln(t))^n t^{x-1} e^{-t} dt$$

- 4. Montrer que la fonction Γ est strictement convexe sur $\mathbb{R}^{+,*}$.
- 5. Étudier les variations de la fonction Γ sur $\mathbb{R}^{+,*}$.
- 6. Montrer que la fonction Γ est log-convexe sur $\mathbb{R}^{+,*}$.

 On rappelle qu'une fonction f définie sur un intervalle I et à valeurs strictement positives est dite logarithmiquement convexe (ou plus simplement log-convexe) si la fonction $\ln(f)$ est convexe sur I.

7.

(a) Montrer que:

$$\forall x > 0, \ \Gamma'(x) = \lim_{n \to +\infty} \int_0^n \ln(t) \left(1 - \frac{t}{n}\right)^n t^{x-1} dt$$

(b) Montrer que, pour tout entier n > 1, on a :

$$\int_{0}^{n} \ln(t) \left(1 - \frac{t}{n} \right)^{n} dt = \frac{n}{n+1} \left(\ln(n) + \int_{0}^{1} \frac{(1-x)^{n+1} - 1}{x} dx \right)$$

- (c) En déduire que $\Gamma'(1) = -\gamma$, où $\gamma = \lim_{n \to +\infty} \left(\sum_{k=0}^{n} \frac{1}{k+1} \ln(n) \right)$ est la constante d'Euler (question **I.3**).
- (d) Montrer que pour tout réel x > 0, on a :

$$\frac{\Gamma'(x+1)}{\Gamma(x+1)} = \frac{\Gamma'(x)}{\Gamma(x)} + \frac{1}{x}$$

(e) En déduire que, pour tout entier $n \geq 1$, on a :

$$\Gamma'(n+1) = n! \left(\sum_{k=1}^{n} \frac{1}{k} - \gamma \right)$$

$$-\mathbf{V} - \mathbf{L}$$
'équation fonctionnelle $f(x+1) = xf(x)$ sur $\mathbb{R}^{+,*}$

On s'intéresse ici aux fonctions $f: \mathbb{R}^{+,*} \to \mathbb{R}^{+,*}$ qui vérifient les conditions suivantes :

- (i) $\forall x \in \mathbb{R}^{+,*}, f(x+1) = xf(x);$
- (*ii*) f(1) = 1
- (iii) f est logarithmiquement convexe.

Dans ce qui suit, on se donne une telle fonction f et on note $g = \ln(f)$.

La fonction g étant convexe sur $\mathbb{R}^{+,*}$, elle est continue et il en est de même de la fonction $f = e^g$.

1. Montrer que si $f: \mathbb{R}^{+,*} \to \mathbb{R}^{+,*}$ vérifie les conditions (i) et (ii), on a alors pour tout réel $x \in \mathbb{R}^{+,*}$ et tout entier $n \in \mathbb{N}$:

$$f(n+1) = n!$$
 et $g(n+1+x) - g(n+1) = \ln\left(\frac{f(x)}{n!}\prod_{k=0}^{n}(x+k)\right)$

2. Montrer que si $f: \mathbb{R}^{+,*} \to \mathbb{R}^{+,*}$ vérifie la condition (iii), on a alors pour tout réel $x \in]0,1]$ et tout entier $n \in \mathbb{N}^*$:

$$\ln\left(n\right) \le \frac{g\left(n+1+x\right) - g\left(n+1\right)}{r} \le \ln\left(n+1\right)$$

3. Montrer que si $f: \mathbb{R}^{+,*} \to \mathbb{R}^{+,*}$ vérifie les conditions (i), (ii) et (iii), on a alors pour tout réel $x \in]0,1]$ et tout entier $n \in \mathbb{N}^*$:

$$n^{x} \le \frac{f(x)}{n!} \prod_{k=0}^{n} (x+k) \le (n+1)^{x}$$

4. Montrer que la fonction $\Gamma: \mathbb{R}^{+,*} \to \mathbb{R}^{+,*}$ est l'unique fonction qui vérifie les conditions (i), (ii) et (iii) (théorème de Bohr-Mollerup).

- VI - Prolongement de la fonction gamma

- 1. En utilisant l'équation fonctionnelle (1), montrer que la fonction Γ peut être prolongée en une fonction continue sur $\mathbb{C} \setminus \mathbb{Z}^-$ et que ce prolongement vérifie la même équation fonctionnelle. Pour tout $z \in \mathbb{C} \setminus \mathbb{Z}^-$, on notera encore $\Gamma(z)$ ce prolongement.
- 2. Montrer que, pour tout entier naturel n, on a :

$$\Gamma(z) \underset{z \to -n}{\backsim} \frac{(-1)^n}{n!} \frac{1}{z+n}$$

3. Montrer que:

$$\forall z \in \mathcal{H}, \ \Gamma(z) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \frac{1}{z+n} + \int_1^{+\infty} t^{z-1} e^{-t} dt$$

et retrouver ainsi le fait que Γ se prolonge en une fonction continue sur $\mathbb{C} \setminus \mathbb{Z}^-$ telle que $\Gamma(z) \underset{z \to -n}{\backsim} \frac{(-1)^n}{n!} \frac{1}{z+n}$.

4. Montrer que :

$$\forall z \in \mathbb{C} \setminus \mathbb{Z}^-, \ \Gamma(z) = \lim_{n \to +\infty} \frac{n! n^z}{z(z+1)\cdots(z+n)}$$

- VII - La formule des compléments

On désigne par φ la fonction définie sur \mathcal{H} par :

$$\forall z \in \mathcal{H}, \ \varphi(z) = \int_0^1 \frac{t^{z-1}}{1+t} dt$$

et par \mathcal{D} la bande ouverte du plan complexe définie par :

$$\mathcal{D} = \{ z \in \mathbb{C} \mid 0 < \Re(z) < 1 \}$$

1. Montrer que, pour tout $z \in \mathcal{D}$, on a :

$$\int_{0}^{+\infty} \frac{t^{z-1}}{1+t} dt = \varphi(z) + \varphi(1-z)$$

2. Montrer que, pour tout $z \in \mathcal{D}$, on a :

$$\Gamma(z)\Gamma(1-z) = \varphi(z) + \varphi(1-z)$$

3. Montrer que, pour tout $z \in \mathcal{H}$, on a :

$$\varphi(z) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+z}$$

4. Montrer que, pour tout $z \in \mathcal{D}$, on a :

$$\Gamma(z)\Gamma(1-z) = \frac{1}{z} - 2z\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2}$$

7

5. Montrer que, pour tout nombre complexe $z \in \mathbb{C} \setminus \mathbb{Z}$ et tout réel $t \in [0, \pi]$, on a :

$$\cos(zt) = \frac{\sin(\pi z)}{\pi} \left(\frac{1}{z} - 2z \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2} \cos(nt) \right)$$

6. Montrer que, pour tout $z \in \mathcal{D}$, on a :

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$

7. Montrer que, pour tout $z \in \mathbb{C} \setminus \mathbb{Z}$, on a :

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$

8.

(a) Montrer que, pour tout $z \in \mathbb{C} \setminus \mathbb{Z}$, on a :

$$\Gamma(z)\Gamma(-z) = -\frac{\pi}{z\sin(\pi z)}$$

(b) En déduire que, pour tout $z \in \mathbb{C}$, on a :

$$\sin(\pi z) = \pi z \prod_{n=1}^{+\infty} \left(1 - \frac{z^2}{n^2}\right)$$

- VIII - Fonction Béta

1. Soient u, v deux nombres complexes. Montrer que la fonction $t \mapsto t^{u-1} (1-t)^{v-1}$ est intégrable sur]0, 1[si, et seulement si, $(u, v) \in \mathcal{H}^2$.

Définition : la fonction béta (ou fonction de Bessel de seconde espèce) est la fonction définie sur \mathcal{H}^2 par :

$$\forall (u, v) \in \mathcal{H}^2, \ B(u, v) = \int_0^1 t^{u-1} (1-t)^{v-1} dt$$

2. Montrer que, pour tous nombres complexes u, v dans \mathcal{H} , on a :

$$B(u, v) = B(v, u)$$
 et $B(u + 1, v) = \frac{u}{u + v} B(u, v)$

3. Montrer que, pour tous nombres complexes u, v dans \mathcal{H} , on a:

$$\lim_{n \to +\infty} n^u B\left(u, v + n + 1\right) = \Gamma\left(u\right)$$

- 4. Montrer que, pour tous nombres complexes u, v dans \mathcal{H} , on a $B(u, v) = \frac{\Gamma(u) \Gamma(v)}{\Gamma(u + v)}$.
- 5. Calculer B(n+1, m+1), pour n, m entiers naturels.

- VIII - Calcul de certaines intégrales à l'aide de Γ

1. Calculer:

$$\int_0^1 \left(\ln \left(\frac{1}{x} \right) \right)^{z-1} dx$$

pour tout $z \in \mathcal{H}$.

2. Calculer:

$$\int_0^{+\infty} e^{-x^{\frac{1}{z}}} dx \text{ et } \int_0^{+\infty} e^{-x^z} dx$$

pour tout réel z > 0.

3. Calculer:

$$\int_0^{+\infty} \frac{x^{u-1}}{(1+x)^{u+v}} dx$$

pour tout $(u, v) \in \mathcal{H}^2$.

4. Calculer:

$$\int_{0}^{+\infty} \frac{x^{z-1}}{1+x} dx \text{ et } \int_{0}^{+\infty} \tan^{2z-1}(t) dt$$

pour $z \in \mathbb{C}$ tel que $0 < \Re(z) < 1$.

5. Donner une expression des intégrales de Wallis :

$$W(a,b) = \int_0^{\frac{\pi}{2}} \cos^a(\theta) \sin^b(\theta) dt$$

où $(a,b)\in\mathbb{C}^2$ sont tels que $\Re\left(a\right)>-1$ et $\Re\left(b\right)>-1$. Préciser le cas où a=0 et $b=n\in\mathbb{N}$.

2 Solution

- I - Résultats préliminaires

1. Pour t=0 ou t=n, les inégalités sont trivialement vérifiées. Comme la fonction $g:x\mapsto \ln{(1+x)}$ est concave sur $]-1,+\infty[$, son graphe est sous sa tangente en 0, soit :

$$\forall x \in]-1, +\infty[\,, \ln(1+x) \le x$$

ce qui nous donne :

$$\forall t \in]0, n[, \ln\left(1 + \frac{t}{n}\right) \le \frac{t}{n} \text{ et } \ln\left(1 - \frac{t}{n}\right) \le -\frac{t}{n}$$

soit:

$$\forall t \in]0, n[, \ln\left(1 + \frac{t}{n}\right)^n \le t \text{ et } \ln\left(1 - \frac{t}{n}\right)^n \le -t$$

ou encore:

$$\forall t \in]0, n[, \left(1 + \frac{t}{n}\right)^n \le e^t \text{ et } \left(1 - \frac{t}{n}\right)^n \le e^{-t}$$

soit:

$$\forall t \in]0, n[, \left(1 - \frac{t}{n}\right)^n \le e^{-t} \le \left(1 + \frac{t}{n}\right)^{-n} \tag{2}$$

2. La fonction $f: t \mapsto (1+t) e^{\frac{t^2}{2}-t}$ est de classe \mathcal{C}^{∞} sur \mathbb{R} avec $f'(t) = e^{\frac{t^2}{2}-t} (1+(1+t)(t-1)) = t^2 e^{\frac{t^2}{2}-t} \geq 0$, donc f est croissante et $f(t) \leq f(0) = 1$ pour tout $t \leq 0$, soit $(1+t) e^{-t} \leq e^{-\frac{t^2}{2}}$ et $0 \leq (1+t) e^{-t} \leq e^{-\frac{t^2}{2}}$ pour tout $t \in [-1,0]$.

3. En notant $u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$ pour tout entier $n \ge 1$, on a :

$$u_{n+1} - u_n = \frac{1}{n+1} - (\ln(n+1) - \ln(n)) = \int_n^{n+1} \left(\frac{1}{n+1} - \frac{1}{t}\right) dt < 0$$

donc la suite $(u_n)_{n\geq 1}$ est strictement décroissante.

La fonction $t \to \frac{1}{t}$ étant décroissante sur \mathbb{R}^{+*} , on a :

$$\forall k \ge 1, \ \int_{k}^{k+1} \frac{dt}{t} \le \int_{k}^{k+1} \frac{dt}{k} = \frac{1}{k}$$

ce qui nous donne pour tout $n \geq 2$:

$$\sum_{k=1}^{n} \frac{1}{k} \ge \sum_{k=1}^{n} \int_{k}^{k+1} \frac{dt}{t} = \int_{1}^{n+1} \frac{dt}{t} = \ln(n+1) > \ln(n)$$

soit $u_n > 0$.

En définitive, la suite $(u_n)_{n\geq 1}$ est décroissante minorée, donc convergente.

4. La fonction $t \mapsto e^{-t^2}$ est continue sur \mathbb{R} et $e^{-t^2} = \underset{t \to +\infty}{o} (e^{-t})$, donc elle est intégrable sur \mathbb{R}^+ .

La fonction $f:(x,y)\in\mathbb{R}^2\mapsto e^{-\left(x^2+y^2\right)}$ est continue telle que :

- pour tout $x \in \mathbb{R}^+$, la fonction $y \mapsto e^{-\left(x^2+y^2\right)} = e^{-x^2}e^{-y^2}$ est intégrable sur \mathbb{R}^+ ;
- la fonction $x \mapsto \int_{\mathbb{R}^+} |f(x,y)| dy = e^{-x^2} \int_{\mathbb{R}^+} e^{-y^2} dy$ est intégrable sur \mathbb{R}^+ .

Le théorème de Fubini nous dit alors que f est intégrable sur $(\mathbb{R}^+)^2$ avec :

$$\iint_{(\mathbb{R}^+)^2} e^{-(x^2+y^2)} dx dy = \int_0^{+\infty} \left(\int_0^{+\infty} e^{-x^2} e^{-y^2} dx \right) dy = \int_0^{+\infty} e^{-y^2} dy \int_0^{+\infty} e^{-x^2} dx
= \left(\int_0^{+\infty} e^{-t^2} dt \right)^2$$

L'application:

$$\varphi: \mathbb{R}^{+,*} \times \left] 0, \frac{\pi}{2} \right[\to (\mathbb{R}^{+,*})^2 \\ (r,\theta) \mapsto (r\cos(\theta), r\sin(\theta))$$

étant bijective et de classe C^1 avec :

$$J_{\varphi}(r,\theta) = \begin{vmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{vmatrix} = r > 0$$

elle réalise un \mathcal{C}^1 -difféomorphisme de $\mathbb{R}^{+,*} \times \left] 0, \frac{\pi}{2} \left[\text{ sur } (\mathbb{R}^{+,*})^2 \right]$ (passage en coordonnées polaires) et le théorème de changement de variables nous permet d'écrire que :

$$\iint_{(\mathbb{R}^+)^2} e^{-\left(x^2+y^2\right)} dx dy = \iint_{(\mathbb{R}^+,*)^2} e^{-\left(x^2+y^2\right)} dx dy = \iint_{\mathbb{R}^+,*\times\left]0,\frac{\pi}{2}\right[} e^{-r^2} r dr d\theta$$

En utilisant le théorème de Fubini, on a :

$$\iint_{\mathbb{R}^{+,*}\times \left]0,\frac{\pi}{2}\right[} e^{-r^2} r dr d\theta = \int_{0}^{+\infty} e^{-r^2} r dr \int_{0}^{\frac{\pi}{2}} d\theta = \frac{\pi}{4}$$

donc:

$$\iint_{(\mathbb{R}^+)^2} e^{-(x^2+y^2)} dx dy = \frac{\pi}{4} \text{ et } \int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$

On peut aussi procéder comme suit.

On considère les fonctions F et G définies sur \mathbb{R}^+ par :

$$F(x) = \left(\int_0^x e^{-t^2} dt\right)^2, \ G(x) = \int_0^1 \frac{e^{-x^2(t^2+1)}}{t^2+1} dt$$

Ces fonctions sont de classe \mathcal{C}^{∞} sur \mathbb{R}^+ avec :

$$F'(x) = 2e^{-x^2} \int_0^x e^{-t^2} dt$$
 et $G'(x) = -2xe^{-x^2} \int_0^1 e^{-x^2t^2} dt$

(la fonction $(x,t) \mapsto \frac{e^{-x^2(t^2+1)}}{t^2+1}$ est de classe \mathcal{C}^{∞} sur \mathbb{R}^2 et on intègre sur un segment). Le changement de variable y=xt, pour x>0, dans G'(x) donne :

$$G'(x) = -2e^{-x^2} \int_0^x e^{-y^2} dy = -F'(x)$$

ce résultat étant encore valable pour x = 0. On a donc :

$$\forall x \in \mathbb{R}^+, \ F'(x) + G'(x) = 0$$

ce qui entraîne:

$$\forall x \in \mathbb{R}^+, \ F(x) + G(x) = F(0) + G(0) = \int_0^1 \frac{dt}{t^2 + 1} = \frac{\pi}{4}$$

Puis avec:

$$0 \le G(x) \le e^{-x^2} \int_0^1 \frac{dt}{t^2 + 1} = \frac{\pi}{4} e^{-x^2} \underset{x \to +\infty}{\longrightarrow} 0$$

on déduit que $\lim_{x\to+\infty} F(x) = \frac{\pi}{4} - \lim_{x\to+\infty} G(x) = \frac{\pi}{4}$, soit :

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$

On peut aussi utiliser les intégrales de Wallis.

De (2) on déduit que, pour tout $n \ge 1$, on a :

$$\forall t \in \left] 0, \sqrt{n} \right[, \left(1 - \frac{t^2}{n} \right)^n \le e^{-t^2} \le \left(1 + \frac{t^2}{n} \right)^{-n}$$

et en conséquence :

$$\int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n dt \le \int_0^{\sqrt{n}} e^{-t^2} dt \le \int_0^{\sqrt{n}} \left(1 + \frac{t^2}{n}\right)^{-n} dt \le \int_0^{+\infty} \left(1 + \frac{t^2}{n}\right)^{-n} dt$$

Les changements de variables $t = \sqrt{n} \sin(\theta)$ dans la première intégrale et $t = \sqrt{n} \tan(\theta)$ dans la quatrième nous donne :

$$\sqrt{n} \int_{0}^{\frac{\pi}{2}} \cos^{2n+1}\left(\theta\right) d\theta \le \int_{0}^{\sqrt{n}} e^{-t^{2}} dt \le \sqrt{n} \int_{0}^{\frac{\pi}{2}} \left(1 + \tan^{2}\left(\theta\right)\right)^{-(n-1)} d\theta = \sqrt{n} \int_{0}^{\frac{\pi}{2}} \cos^{2(n-1)}\left(\theta\right) d\theta$$

Connaissant les intégrales de Wallis, on a :

$$\int_{0}^{\frac{\pi}{2}} \cos^{n}(x) dx \underset{n \to +\infty}{\backsim} \sqrt{\frac{\pi}{2n}}$$

donc:

$$\int_0^{\frac{\pi}{2}} \cos^{2n+1}(\theta) d\theta \underset{n \to +\infty}{\backsim} \sqrt{\frac{\pi}{4n+2}} \underset{n \to +\infty}{\backsim} \frac{1}{\sqrt{n}} \frac{\sqrt{\pi}}{2}$$

et:

$$\int_{0}^{\frac{\pi}{2}} \cos^{2(n-1)}\left(\theta\right) d\theta \underset{n \to +\infty}{\backsim} \sqrt{\frac{\pi}{4\left(n-1\right)}} \underset{n \to +\infty}{\backsim} \frac{1}{\sqrt{n}} \frac{\sqrt{\pi}}{2}$$

ce qui nous donne :

$$\int_{0}^{+\infty} e^{-t^{2}} dt = \lim_{n \to +\infty} \int_{0}^{\sqrt{n}} e^{-t^{2}} dt = \frac{\sqrt{\pi}}{2}$$

- II - Généralités sur la fonction gamma

- 1. La convergence résulte de $0 < t^n e^{-t} = \underset{t \to \infty}{o} \left(e^{-\frac{t}{2}} \right)$ et le calcul se fait par récurrence sur $n \ge 0$.
- 2. Pour tout nombre complexe z, la fonction $t\mapsto t^{z-1}e^{-t}$ est continue sur $]0,+\infty[$. Avec $|t^{z-1}e^{-t}|=t^{\Re(z)-1}e^{-t}=\mathop{o}\limits_{t\to+\infty}\left(e^{-\frac{t}{2}}\right)$, on déduit que l'intégrale $\int_1^{+\infty}t^{z-1}e^{-t}dt$ converge absolument pour tout nombre complexe z.
- 3. Avec $|t^{z-1}e^{-t}| = t^{\Re(z)-1}e^{-t} \sim_{t\to 0^+} t^{\Re(z)-1}$, on déduit que l'intégrale $\int_0^1 t^{z-1}e^{-t}dt$ converge absolument si, et seulement si, $\Re(z) > 0$.
- 4. On a:

$$\Gamma(1) = \int_0^{+\infty} e^{-t} dt = 1$$

En effectuant le changement de variable $t=x^2$, le calcul de $\Gamma\left(\frac{1}{2}\right)$ se ramène au calcul de l'intégrale de Gauss :

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt = 2 \int_0^{+\infty} e^{-x^2} dx = \sqrt{\pi}$$

5. Une intégration par parties donne pour $z \in \mathcal{H}$ et $0 < \varepsilon < R$:

$$\int_{\varepsilon}^{R} t^{z} e^{-t} dt = \left[-t^{z} e^{-t} \right]_{\varepsilon}^{R} + z \int_{\varepsilon}^{R} t^{z-1} e^{-t} dt$$

et le passage à la limite quand (ε, R) tend vers $(0, +\infty)$ donne le résultat.

6. De l'équation fonctionnelle (1) , on déduit facilement par récurrence que, pour tout $n \in \mathbb{N}$, on a :

$$\Gamma(n+1) = n!\Gamma(1) = n!$$

et:

$$\Gamma\left(n+\frac{1}{2}\right) = \left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)\cdots\frac{1}{2}\Gamma\left(\frac{1}{2}\right)$$
$$= \frac{(2n)!}{2^{2n}n!}\Gamma\left(\frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$$

7.

- (a) Pour tous nombres complexes z et α , la fonction $t\mapsto \frac{t^ze^{-\alpha t}}{1-e^{-t}}$ est continue sur $]0,+\infty[$. Avec $\left|\frac{t^ze^{-\alpha t}}{1-e^{-t}}\right|=\frac{t^{\Re(z)}e^{-\Re(\alpha)t}}{1-e^{-t}} \sim \frac{1}{t^{1-\Re(z)}}$, on déduit que l'intégrale $\int_0^1 \frac{t^ze^{-\alpha t}}{1-e^{-t}}dt$ converge absolument si, et seulement si, $\Re(z)>0$. Pour $\Re(z)>0$, on a $\left|\frac{t^ze^{-\alpha t}}{1-e^{-t}}\right|=\frac{t^{\Re(z)}e^{-\Re(\alpha)t}}{1-e^{-t}} \sim t^{\Re(z)}e^{-\Re(\alpha)t}$, donc l'intégrale $\int_1^{+\infty} \frac{t^ze^{-\alpha t}}{1-e^{-t}}dt$ converge absolument si, et seulement si, $\Re(\alpha)>0$ (pour $\Re(\alpha)>0$, on a $t^{\Re(z)}e^{-\Re(\alpha)t}=t^{\Re(z)}e^{-\Re(\alpha)t}>0$ pour $t^{\Re(z)}e^{-\Re(\alpha)t}>0$ pou
- (b) Pour tout $(z, \alpha) \in \mathcal{H}^2$, et tout réel t > 0, on a $0 < e^{-t} < 1$ et :

$$\frac{t^z e^{-\alpha t}}{1 - e^{-t}} = \sum_{n=0}^{+\infty} t^z e^{-(n+\alpha)t}$$

Les fonctions $t \mapsto \frac{t^z e^{-\alpha t}}{1 - e^{-t}}$ et $t \mapsto t^z e^{-(n+\alpha)t}$, pour $n \ge 0$, sont continues et intégrables sur $\mathbb{R}^{+,*}$ avec :

$$\begin{split} \int_{0}^{+\infty} \left| t^{z} e^{-(n+\alpha)t} \right| dt &= \int_{0}^{+\infty} t^{\Re(z)} e^{-(n+\Re(\alpha))t} dt = \int_{0}^{+\infty} \frac{x^{\Re(z)}}{(n+\Re(\alpha))^{\Re(z)}} e^{-x} \frac{dx}{n+\Re(\alpha)} \\ &= \frac{1}{(n+\Re(\alpha))^{\Re(z)+1}} \Gamma\left(\Re\left(z\right)+1\right) \end{split}$$

et on a:

1.

$$\sum_{n=0}^{+\infty}\int_{0}^{+\infty}\left|t^{z}e^{-nt}\right|dt=\Gamma\left(\Re\left(z\right)+1\right)\sum_{n=0}^{+\infty}\frac{1}{\left(n+\Re\left(\alpha\right)\right)^{\Re\left(z\right)+1}}<+\infty$$

On déduit alors du théorème de convergence dominée que :

$$\int_{0}^{+\infty} \frac{t^{z} e^{-\alpha t}}{1 - e^{-t}} dt = \sum_{n=0}^{+\infty} \int_{0}^{+\infty} t^{z} e^{-(n+\alpha)t} dt = \sum_{n=0}^{+\infty} \Gamma(z+1) \frac{1}{(n+\alpha)^{z+1}}$$
$$= \Gamma(z+1) \zeta(z+1,\alpha)$$

Pour $\alpha = 1$ et z = 1, on obtient :

$$\int_{0}^{+\infty} \frac{t}{e^{t} - 1} dt = \Gamma\left(2\right) \zeta\left(2\right) = \sum_{n=1}^{+\infty} \frac{1}{n^{2}} = \frac{\pi^{2}}{6}$$

- III - Formules d'Euler, de Wallis, de Legendre et de Stirling

(a) Pour $n \ge 1$ et $z \in \mathcal{H}$, le changement de variable t = nx nous donne :

$$\int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} t^{z-1} dt = \int_{0}^{1} (1 - x)^{n} x^{z-1} n^{z} dx = n^{z} J_{n}(z)$$

Une intégration par parties nous donne :

$$J_{n+1}(z) = \int_0^1 (1-x)^{n+1} x^{z-1} dx = \frac{n+1}{z} \int_0^1 (1-x)^n x^z dx = \frac{n+1}{z} J_n(z+1)$$

et par récurrence, on déduit que :

$$J_{n}(z) = \frac{n!}{z(z+1)\cdots(z+n-1)} J_{0}(z+n)$$

$$= \frac{n!}{z(z+1)\cdots(z+n-1)} \int_{0}^{1} t^{z+n-1} dt$$

$$= \frac{n!}{z(z+1)\cdots(z+n-1)(z+n)}$$

On peut aussi écrire que :

$$\int_0^n \left(1 - \frac{t}{n}\right)^n t^{z-1} dt = \int_0^n \sum_{k=0}^n \binom{n}{k} (-1)^k \frac{t^{k+z-1}}{n^k} dt = n^z \sum_{k=0}^n \frac{\binom{n}{k} (-1)^k}{k+z}$$

et constater que la décomposition en éléments simples de la fraction rationnelle $P_n(z) = \frac{1}{z(z+1)\cdots(z+n)}$ s'écrit $P_n(z) = \sum_{k=0}^n \frac{\alpha_k}{k+z}$, les coefficients α_k étant donnés par :

$$\alpha_k = ((z+k) P_n(z))_{|z=-k} = \frac{(-1)^k}{k! (n-k)!} = \frac{(-1)^k \binom{n}{k}}{n!}$$

(b) On désigne par $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définies sur $\mathbb{R}^{+,*}$ par :

$$f_n(t) = \begin{cases} \left(1 - \frac{t}{n}\right)^n t^{z-1} & \text{si } t \in]0, n[\\ 0 & \text{si } t \ge n \end{cases}$$

Chaque fonction f_n est continue et intégrable sur $]0, +\infty[$ avec :

$$\forall t \in]0, +\infty[, \begin{cases} \lim_{n \to +\infty} f_n(t) = e^{-t}t^{z-1} \\ \forall n \ge 1, |f_n(t)| \le e^{-t}t^{\Re(z)-1} = f(t) \end{cases}$$

(question I.1), la fonction f étant continue et intégrable sur $]0, +\infty[$. On déduit alors du théorème de convergence dominée que :

$$\lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{z-1} dt = \int_0^{+\infty} e^{-t} t^{z-1} dt = \Gamma(z)$$

soit:

$$\Gamma(z) = \lim_{n \to +\infty} I_n(z) = \lim_{n \to +\infty} \frac{n! n^z}{z(z+1)\cdots(z+n)}$$

2. Pour $z = \frac{1}{2}$, on a pour tout entier $n \ge 1$:

$$I_n\left(\frac{1}{2}\right) = \frac{n!\sqrt{n}}{\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)\cdots\left(\frac{2n+1}{2}\right)} = \frac{2^{2n+1}\left(n!\right)^2\sqrt{n}}{(2n+1)!} = \frac{2^{2n+1}\sqrt{n}}{(2n+1)\binom{2n}{n}}$$

et de la formule d'Euler, on déduit la formule de Wallis :

$$\sqrt{\pi} = \Gamma\left(\frac{1}{2}\right) = \lim_{n \to +\infty} I_n\left(\frac{1}{2}\right) = \lim_{n \to +\infty} \frac{2^{2n+1}\sqrt{n}}{(2n+1)\binom{2n}{n}}$$

Comme:

$$\frac{2^{2n+1}}{2n+1} \underset{n \to +\infty}{\backsim} \frac{2^{2n+1}}{2n} = \frac{2^{2n}}{n}$$

on a aussi:

$$\sqrt{\pi} = \lim_{n \to +\infty} \frac{2^{2n}}{\sqrt{n} \binom{2n}{n}}$$

soit:

$$\binom{2n}{n} \underset{n \to +\infty}{\backsim} \frac{1}{\sqrt{\pi}} \frac{2^{2n}}{\sqrt{n}}$$

3.

(a) On a:

$$I_{2n}(z) = \frac{(2n)!2^{z}n^{z}}{z(z+1)\cdots(z+n)(z+n+1)\cdots(z+2n)}$$

$$= \frac{(2n)!2^{z}n^{z}}{z(z+2)\cdots(z+2n)(z+1)\cdots(z+1+2(n-1))}$$

$$= \frac{(2n)!2^{z}n^{z}(z+1)\cdots(z+1+2(n-1))}{2^{2n+1}\frac{z}{2}(\frac{z}{2}+1)\cdots(\frac{z}{2}+n)(\frac{z+1}{2})\cdots(\frac{z+1}{2}+(n-1))(\frac{z+1}{2}+n)}$$

avec:

$$\frac{z}{2}\left(\frac{z}{2}+1\right)\cdots\left(\frac{z}{2}+n\right) = \frac{n!n^{\frac{z}{2}}}{I_n\left(\frac{z}{2}\right)}$$

et:

$$\left(\frac{z+1}{2}\right)\cdots\left(\frac{z+1}{2}+n\right) = \frac{n!n^{\frac{z+1}{2}}}{I_n\left(\frac{z+1}{2}\right)}$$

ce qui nous donne :

$$I_{2n}(z) = \frac{(2n)! 2^{z} n^{z} \left(\frac{z+1}{2} + n\right)}{2^{2n+1} (n!)^{2} n^{\frac{2z+1}{2}}} I_{n}\left(\frac{z}{2}\right) I_{n}\left(\frac{z+1}{2}\right)$$
$$= \frac{(2n)!}{(n!)^{2}} \frac{2^{z}}{2^{2n+1}} \frac{1}{\sqrt{n}} \left(\frac{z+1}{2} + n\right) I_{n}\left(\frac{z}{2}\right) I_{n}\left(\frac{z+1}{2}\right)$$

et tenant compte de :

$$I_n\left(\frac{1}{2}\right) = \frac{2^{2n+1} (n!)^2 \sqrt{n}}{(2n+1)!}$$

on déduit que :

$$I_{2n}(z) = \frac{1}{I_n(\frac{1}{2})} \frac{2^z}{2n+1} \left(\frac{z+1}{2} + n\right) I_n(\frac{z}{2}) I_n(\frac{z+1}{2})$$
$$= 2^{z-1} \left(1 + \frac{z}{2n+1}\right) \frac{I_n(\frac{z}{2}) I_n(\frac{z+1}{2})}{I_n(\frac{1}{2})}$$

(b) En faisant tendre n vers l'infini dans ce qui précède, on obtient :

$$\Gamma\left(z\right) = 2^{z-1} \frac{\Gamma\left(\frac{z}{2}\right) \Gamma\left(\frac{z+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)} = \frac{2^{z-1}}{\sqrt{\pi}} \Gamma\left(\frac{z}{2}\right) \Gamma\left(\frac{z+1}{2}\right)$$

4.

(a) Pour x > 0 fixé, le changement de variable $t = x + u\sqrt{x}$ nous donne :

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt = \int_{-\sqrt{x}}^{+\infty} \left(x + u\sqrt{x} \right)^x e^{-\left(x + u\sqrt{x} \right)} \sqrt{x} du$$
$$= \sqrt{x} \left(\frac{x}{e} \right)^x \int_{-\sqrt{x}}^{+\infty} \left(1 + \frac{u}{\sqrt{x}} \right)^x e^{-u\sqrt{x}} du$$
$$= \sqrt{x} \left(\frac{x}{e} \right)^x \int_{-\infty}^{+\infty} f(x, u) du$$

(b) Pour u = 0 et x > 0, on a $u > -\sqrt{x}$ et :

$$f(x,u) = \left(1 + \frac{u}{\sqrt{x}}\right)^x e^{-u\sqrt{x}} = 1 \underset{x \to +\infty}{\to} 1 = e^{-\frac{u^2}{2}}$$

On se fixe un réel $u \neq 0$ et on désigne par x_u un réel strictement positif tel que $\sqrt{x_u} > -u$. Pour tout réel $x > x_u$, on a $u > -\sqrt{x_u} > -\sqrt{x}$ et :

$$f(x,u) = \left(1 + \frac{u}{\sqrt{x}}\right)^x e^{-u\sqrt{x}}$$

de sorte que :

$$\ln (f(x, u)) = x \left(\ln \left(1 + \frac{u}{\sqrt{x}} \right) - \frac{u}{\sqrt{x}} \right)$$
$$= x \left(-\frac{u^2}{2x} + o\left(\frac{1}{x}\right) \right)$$
$$= -\frac{u^2}{2} + o(1) \underset{x \to +\infty}{\to} -\frac{u^2}{2}$$

et:

$$\lim_{x \to +\infty} f(x, u) = e^{-\frac{u^2}{2}}$$

(c) On se fixe $x \geq 1$.

Pour $u \le -\sqrt{x}$, on a $f(x, u) = 0 \le e^{-\frac{u^2}{2}}$. Pour $u > -\sqrt{x}$, on a :

$$f(x,u) = \left(1 + \frac{u}{\sqrt{x}}\right)^x e^{-u\sqrt{x}} = \left(\left(1 + \frac{u}{\sqrt{x}}\right)e^{-\frac{u}{\sqrt{x}}}\right)^x$$

Pour $-\sqrt{x} < u \le 0$, on a $\frac{u}{\sqrt{x}} \in]-1,0]$ et de **I.2** on déduit que :

$$0 < f(x, u) < e^{-\frac{u^2}{2}}$$

(la fonction $t \mapsto t^x$ est croissante sur $\mathbb{R}^{+,*}$ pour $x \ge 1$).

Pour u > 0, avec la décroissance sur \mathbb{R}^+ de l'application $t \mapsto (1+t)e^{-t}$, on déduit que :

$$\left(1 + \frac{u}{\sqrt{x}}\right)e^{-\frac{u}{\sqrt{x}}} \le (1+u)e^{-u} \le 1$$

et:

$$0 \le f(x, u) \le ((1 + u) e^{-u})^x \le (1 + u) e^{-u}$$

On a donc pour tout réel $x \ge 1$ et tout réel u:

$$0 \le f(x, u) \le \varphi(u) = \begin{cases} e^{-\frac{u^2}{2}} & \text{si } u \le 0\\ (1 + u) e^{-u} & \text{si } u > 0 \end{cases}$$

(d) Pour tout réel u, on a :

$$\lim_{x \to +\infty} f(x, u) = e^{-\frac{u^2}{2}}$$

les fonctions $u \mapsto f(x, u)$ étant continues et intégrables sur \mathbb{R} pour tout réel $x \geq 1$, avec :

$$0 \le f\left(x, u\right) \le \varphi\left(u\right)$$

pour tout réel $x \geq 1$ et tout réel u, la fonction φ étant continue intégrable sur \mathbb{R} . On déduit alors du théorème de convergence dominée que :

$$\lim_{x \to +\infty} \int_{-\infty}^{+\infty} f(x, u) du = \int_{-\infty}^{+\infty} e^{-\frac{u^2}{2}} du = 2 \int_{0}^{+\infty} e^{-\frac{u^2}{2}} du$$
$$= 2\sqrt{2} \int_{0}^{+\infty} e^{-t^2} dt = \sqrt{2\pi}$$

et:

$$\Gamma(x+1) = \sqrt{x} \left(\frac{x}{e}\right)^x \int_{-\infty}^{+\infty} f(x,u) \, du \underset{x \to +\infty}{\backsim} \sqrt{2\pi x} \left(\frac{x}{e}\right)^x$$

- IV - Continuité et dérivabilité de la fonction gamma

1. La fonction $(z,t) \mapsto t^{z-1}e^{-t}$ est continue sur $\mathcal{H} \times \mathbb{R}^{+,*}$ et pour tous réels 0 < a < b, tout nombre complexe $z \in \mathcal{H}$ tel que $a \leq \Re(z) \leq b$, tout réel t > 0, on a :

$$\left|t^{z-1}e^{-t}\right| = t^{\Re(z)-1}e^{-t} \leq \varphi\left(t\right) = \left\{\begin{array}{l} t^{a-1} \text{ si } 0 < t \leq 1 \\ t^{b-1}e^{-t} \text{ si } t > 1 \end{array}\right.$$

la fonction φ étant continue par morceaux et intégrable sur $\mathbb{R}^{+,*}$ (pour a>0, la fonction t^{a-1} est intégrable sur]0,1[et avec $\lim_{t\to +\infty}t^{b-1}e^{-\frac{t}{2}}=0$, on déduit que $\varphi\left(t\right)\leq e^{-\frac{t}{2}}$ pour t assez grand,

la fonction $e^{-\frac{t}{2}}$ étant intégrable sur $]1, +\infty[)$. Il en résulte que la fonction Γ est continue sur toute bande fermée $\mathcal{H}_{a,b} = \{z \in \mathcal{H} \mid a \leq \Re(z) \leq b\}$, donc sur \mathcal{H} .

On peut aussi procéder comme suit.

Pour tout entier $n \geq 1$, la fonction $(z,t) \mapsto t^{z-1}e^{-t}$ est continue sur $\mathcal{H}_{a,b} \times \left[\frac{1}{n}, n\right]$, donc la fonction $\Gamma_n : z \mapsto \int_{\frac{1}{n}}^n t^{z-1}e^{-t}dt$ est continue sur $\mathcal{H}_{a,b}$ et avec :

$$|\Gamma(z) - \Gamma_n(z)| \le \int_0^{\frac{1}{n}} t^{\Re(z) - 1} e^{-t} dt + \int_n^{+\infty} t^{\Re(z) - 1} e^{-t} dt$$

$$\le \int_0^{\frac{1}{n}} t^{a - 1} e^{-t} dt + \int_n^{+\infty} t^{b - 1} e^{-t} dt$$

$$\le \int_0^{\frac{1}{n}} t^{a - 1} dt + e^{-n} \int_n^{+\infty} t^{b - 1} dt = \frac{1}{a \cdot n^a} + \frac{n^b}{b \cdot e^n}$$

on déduit que la suite de fonctions $(\Gamma_n)_{n\in\mathbb{N}^*}$ converge uniformément vers Γ sur $\mathcal{H}_{a,b}$. Il en résulte que Γ est continue sur $\mathcal{H}_{a,b}$.

2. Pour tout $z \in \mathcal{H}$, on a $\Gamma(z) = \frac{\Gamma(z+1)}{z}$ avec $\lim_{z \to 0} \Gamma(z+1) = \Gamma(1) = 1$ du fait de la continuité de Γ , donc $\Gamma(z) \underset{z \in \mathcal{H}, z \to 0}{\backsim} \frac{1}{z}$.

3. La fonction $f:(x,t)\mapsto t^{x-1}e^{-t}$ est indéfiniment dérivable sur $(\mathbb{R}^{+,*})^2$ avec pour $n\in\mathbb{N}^*$, $[a, b] \subset \mathbb{R}^{+,*}$ (avec a < b) et $x \in [a, b]$:

$$\left| \frac{\partial^{n} f}{\partial x^{k}} (x, t) \right| = \left| \ln (t) \right|^{n} t^{x-1} e^{-t} \le g_{n} (t) = \begin{cases} \left| \ln (t) \right|^{n} t^{a-1} & \text{si } 0 < t \le 1 \\ \left| \ln (t) \right|^{n} t^{b-1} e^{-t} & \text{si } t > 1 \end{cases}$$

la fonction g_n étant continue et intégrable sur $\mathbb{R}^{+,*}$ (on a $\lim_{t\to 0^+} |\ln(t)|^n t^{\frac{a}{2}} = 0$, donc pour t>0 assez petit on a $|g_n(t)| \le t^{\frac{a}{2}-1}$, la fonction $t^{\frac{a}{2}-1}$ étant intégrable sur]0,1[et $\lim_{t\to +\infty} |\ln(t)|^n t^{b-1} e^{-\frac{t}{2}} =$ 0, donc $|g_n(t)| \le e^{-\frac{t}{2}}$ pour t assez grand, la fonction $e^{-\frac{t}{2}}$ étant intégrable sur $]1, +\infty[$). On en déduit alors que la fonction Γ est indéfiniment dérivable sur $\mathbb{R}^{+,*}$ et qu'on peut dériver sous le signe d'intégration.

- 4. Pour tout réel x>0, on a $\Gamma''(x)=\int_{0}^{+\infty}\left(\ln\left(t\right)\right)^{2}t^{x-1}e^{-t}dt>0$, donc la fonction Γ est strictement convexe sur $\mathbb{R}^{+,*}$.
- 5. On a vu que Γ est de classe \mathcal{C}^{∞} de $\mathbb{R}^{+,*}$ dans $\mathbb{R}^{+,*}$ et strictement convexe.

On a également vu que $\Gamma(x) \underset{x \to 0^+}{\backsim} \frac{1}{x}$, donc $\lim_{x \to 0^+} \Gamma(x) = +\infty$. Comme $\Gamma(1) = \Gamma(2) = 1$, le théorème de Rolle nous dit qu'il existe un réel $\alpha \in]0,1[$ tel que $\Gamma'(\alpha) = 0$. Avec la stricte convexité de Γ on déduit que $\Gamma'(x) < 0$ pour $0 < x < \alpha$ et $\Gamma'(x) > 0$ pour $x > \alpha$ (Γ' est strictement croissante), donc Γ décroît strictement de $+\infty$ à $\Gamma(\alpha) \in [0,1[$ sur $]0, \alpha[$ et croit strictement sur $]\alpha, +\infty[$.

Avec $\Gamma(n+1) = n!$ on en déduit que $\lim_{x \to +\infty} \Gamma(x) = +\infty$.

De $\frac{\Gamma(x)}{x} = \frac{x-1}{x}\Gamma(x-1)$ pour x > 1, on déduit que $\lim_{x \to +\infty} \frac{\Gamma(x)}{x} = +\infty$, c'est-à-dire que le graphe de Γ admet une branche parabolique à l'infini dans la direction de l'axe des ordonnées.

6. On a $(\ln(\Gamma))'' = \frac{\Gamma\Gamma'' - (\Gamma')^2}{\Gamma^2}$ et en utilisant l'inégalité de Cauchy-Schwarz, on a pour tout réel x > 0:

$$\begin{split} \left(\Gamma'\left(x\right)\right)^{2} &= \left(\int_{0}^{+\infty} \ln\left(t\right) t^{x-1} e^{-t} dt\right)^{2} = \left(\int_{0}^{+\infty} \left(\ln\left(t\right) t^{\frac{x-1}{2}} e^{-\frac{t}{2}}\right) \left(t^{\frac{x-1}{2}} e^{-\frac{t}{2}}\right) dt\right)^{2} \\ &< \int_{0}^{+\infty} \ln^{2}\left(t\right) t^{x-1} e^{-t} dt \int_{0}^{+\infty} t^{x-1} e^{-t} dt = \Gamma''\left(x\right) \Gamma\left(x\right) \end{split}$$

ce qui donne $(\ln(\Gamma))'' > 0$ et la stricte log-convexité de la fonction Γ .

La log-convexité de la fonction Γ peut aussi se montrer directement en utilisant l'inégalité de Hölder qui nous dit que si p, q sont deux réels strictement positifs tels que $\frac{1}{n} + \frac{1}{q} = 1$ et f, g deux fonctions continues par morceaux de $\mathbb{R}^{+,*}$ dans \mathbb{C} telles que les fonctions $|f|^p$ et $|g|^q$ soient intégrables sur $\mathbb{R}^{+,*}$, alors la fonction $f\overline{q}$ est intégrable sur $\mathbb{R}^{+,*}$ et on a :

$$\left| \int_{0}^{+\infty} f\left(t\right) \overline{g\left(t\right)} dt \right| \leq \left(\int_{0}^{+\infty} \left| f\left(t\right) \right|^{p} dt \right)^{\frac{1}{p}} \left(\int_{0}^{+\infty} \left| g\left(t\right) \right|^{q} dt \right)^{\frac{1}{q}}$$

Dire que Γ est log-convexe sur $\mathbb{R}^{+,*}$ signifie que pour tous réels x,y dans $\mathbb{R}^{+,*}$ et tout réel λ dans [0, 1[, on a:

$$\ln \left(\Gamma \left(\lambda x + (1 - \lambda) y\right)\right) \le \lambda \ln \left(\Gamma \left(x\right)\right) + (1 - \lambda) \ln \left(\Gamma \left(y\right)\right)$$

ce qui revient à dire en posant $\lambda = \frac{1}{n}$ et $1 - \lambda = \frac{1}{q}$ où, p, q sont strictement positifs tels que $\frac{1}{n} + \frac{1}{n} = 1$, que l'on a :

$$\ln\left(\Gamma\left(\frac{1}{p}x + \frac{1}{q}y\right)\right) \le \frac{1}{p}\ln\left(\Gamma\left(x\right)\right) + \frac{1}{q}\ln\left(\Gamma\left(y\right)\right) = \ln\left(\left(\Gamma\left(x\right)\right)^{\frac{1}{p}}\left(\Gamma\left(y\right)\right)^{\frac{1}{y}}\right)$$

soit:

$$\Gamma\left(\frac{1}{p}x + \frac{1}{q}y\right) \le (\Gamma(x))^{\frac{1}{p}}(\Gamma(y))^{\frac{1}{y}}$$

Pour ce faire il nous suffit d'écrire que :

$$\begin{split} \Gamma\left(\frac{1}{p}x + \frac{1}{q}y\right) &= \int_{0}^{+\infty} t^{\frac{1}{p}x + \frac{1}{q}y - 1} e^{-t} dt \\ &= \int_{0}^{+\infty} \left(t^{x - 1} e^{-t}\right)^{\frac{1}{p}} \left(t^{y - 1} e^{-t}\right)^{\frac{1}{q}} dt \\ &\leq \left(\int_{0}^{+\infty} t^{x - 1} e^{-t} dt\right)^{\frac{1}{p}} \left(\int_{0}^{+\infty} t^{y - 1} e^{-t} dt\right)^{\frac{1}{q}} = \left(\Gamma\left(x\right)\right)^{\frac{1}{p}} \left(\Gamma\left(y\right)\right)^{\frac{1}{y}} \end{split}$$

7.

(a) On désigne par $(g_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définies sur $\mathbb{R}^{+,*}$ par :

$$g_n(t) = \begin{cases} \ln(t) \left(1 - \frac{t}{n}\right)^n t^{x-1} & \text{si } t \in]0, n[\\ 0 & \text{si } t \ge n \end{cases}$$

Chaque fonction g_n est continue et intégrable sur $]0, +\infty[$ (au voisinage de 0, on a $g_n(t) \underset{t\to 0^+}{\backsim} t^{x-1} \ln(t)$ qui est intégrable sur]0, n[car x>0) avec :

$$\forall t \in]0, +\infty[, \begin{cases} \lim_{n \to +\infty} g_n(t) = \ln(t) e^{-t} t^{x-1} \\ \forall n \ge 1, |g_n(t)| \le \ln(t) e^{-t} t^{x-1} \end{cases}$$

(question I.1), la fonction $t \mapsto \ln(t) e^{-t} t^{x-1}$ étant continue et intégrable sur $]0, +\infty[$. On déduit alors du théorème de la convergence dominée que :

$$\lim_{n \to +\infty} \int_0^n \ln\left(t\right) \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \int_0^{+\infty} \ln\left(t\right) e^{-t} t^{x-1} dt = \Gamma'\left(x\right)$$

(b) Pour tout entier $n \ge 1$, le changement de variable t = nx nous donne :

$$\int_0^n \ln(t) \left(1 - \frac{t}{n}\right)^n dt = n \int_0^1 \ln(nx) (1 - x)^n dx$$

$$= n \ln(n) \int_0^1 (1 - x)^n dx + n \int_0^1 \ln(x) (1 - x)^n dx$$

$$= \frac{n \ln(n)}{n+1} + n \int_0^1 \ln(x) (1 - x)^n dx$$

puis une intégration par parties nous donne :

$$\int_0^1 \ln(x) (1-x)^n dx = \left[-\ln(x) \frac{(1-x)^{n+1} - 1}{n+1} \right]_0^1 + \frac{1}{n+1} \int_0^1 \frac{(1-x)^{n+1} - 1}{x} dx$$
$$= \frac{1}{n+1} \int_0^1 \frac{(1-x)^{n+1} - 1}{x} dx$$

 $(\text{on a } (1-x)^{n+1}-1 \underset{x\to 0^+}{\backsim} -(n+1) \, x \text{ avec } \lim_{x\to 0^+} x \ln (x) = 0 \text{ et la fonction } x \mapsto \frac{(1-x)^{n+1}-1}{x}$ se prolonge en fonction continue sur [0,1]), donc :

$$\int_0^n \ln(t) \left(1 - \frac{t}{n} \right)^n dt = \frac{n}{n+1} \left(\ln(n) + \int_0^1 \frac{(1-x)^{n+1} - 1}{x} dx \right)$$

(c) Pour $x \in [0, 1]$, on a:

$$\frac{(1-x)^{n+1}-1}{x} = -\sum_{k=0}^{n} (1-x)^k$$

donc:

$$\int_0^1 \frac{(1-x)^{n+1} - 1}{x} dx = -\sum_{k=0}^n \int_0^1 (1-x)^k dx = \sum_{k=0}^n \frac{1}{k+1}$$

et:

$$\int_{0}^{n} \ln(t) \left(1 - \frac{t}{n} \right)^{n} dt = \frac{n}{n+1} \left(\ln(n) - \sum_{k=0}^{n} \frac{1}{k+1} \right)$$

Avec:

$$\lim_{n \to +\infty} \left(\sum_{k=0}^{n} \frac{1}{k+1} - \ln(n) \right) = \gamma$$

on déduit que :

$$\Gamma'(1) = \lim_{n \to +\infty} \frac{n}{n+1} \left(\ln(n) - \sum_{k=0}^{n} \frac{1}{k+1} \right) = -\gamma$$

(d) De $\Gamma(x+1)=x\Gamma(x)$, on déduit que $\Gamma'(x+1)=x\Gamma'(x)+\Gamma(x)$ et :

$$\frac{\Gamma'\left(x+1\right)}{\Gamma\left(x+1\right)} = \frac{x\Gamma'\left(x\right) + \Gamma\left(x\right)}{x\Gamma\left(x\right)} = \frac{\Gamma'\left(x\right)}{\Gamma\left(x\right)} + \frac{1}{x}$$

(e) Pour n = 1, on a:

$$\Gamma'(2) = \frac{\Gamma'(2)}{\Gamma(2)} = \frac{\Gamma'(1)}{\Gamma(1)} + 1 = 1 - \gamma$$

et supposant le résultat acquis pour $n \ge 1$, on a :

$$\frac{\Gamma'(n+2)}{(n+1)!} = \frac{\Gamma'(n+2)}{\Gamma(n+2)} = \frac{\Gamma'(n+1)}{\Gamma(n+1)} + \frac{1}{n+1} = \frac{\Gamma'(n+1)}{n!} + \frac{1}{n+1}$$

donc:

$$\Gamma'(n+2) = (n+1)\Gamma'(n+1) + n!$$

$$= (n+1)n! \left(\sum_{k=1}^{n} \frac{1}{k} - \gamma\right) + n!$$

$$= (n+1)! \left(\sum_{k=1}^{n+1} \frac{1}{k} - \gamma\right)$$

D'où le résultat annoncé.

$$-\mathbf{V} - \mathbf{L'\acute{e}quation}$$
 fonctionnelle $f(x+1) = xf(x)$ sur $\mathbb{R}^{+,*}$

1. De (i), on déduit par récurrence sur $n \in \mathbb{N}$ que :

$$f(n+1+x) = f(x) \prod_{k=0}^{n} (x+k)$$

 $(x \in \mathbb{R}^{+,*} \text{ étant fixé}).$

En effet, pour n=0, c'est la condition (i) et supposant le résultat acquis pour $n-1\geq 0$, on a :

$$f(n+1+x) = (n+x) f(n+x) = (n+x) f(x) \prod_{k=0}^{n-1} (x+k) = f(x) \prod_{k=0}^{n} (x+k)$$

Prenant x = 1, on obtient f(n + 1) = f(1) n! = n! (condition (ii)). Il en résulte que :

$$g(n+1+x) - g(n+1) = \ln\left(\frac{f(n+1+x)}{f(n+1)}\right) = \ln\left(\frac{f(x)}{n!}\prod_{k=0}^{n}(x+k)\right)$$

2. On note, pour tous réels $x \neq y$ dans $\mathbb{R}^{+,*}$, $p(x,y) = \frac{g(x) - g(y)}{x - y}$.

On remarque que p(x,y) = p(y,x) pour tous réels $x \neq y$ dans $\mathbb{R}^{+,*}$.

Dire que g est convexe sur $\mathbb{R}^{+,*}$ équivaut à dire que, pour tout $y \in \mathbb{R}^{+,*}$, la fonction $x \mapsto p(x,y) = p(y,x)$ est croissante sur $\mathbb{R}^{+,*} - \{y\}$.

Il en résulte que, pour tout réel $x \in [0, 1]$, on a :

$$p(n, n + 1) \le p(n + 1, n + 1 + x) \le p(n + 1, n + 2)$$

soit:

$$\ln\left(\frac{f\left(n+1\right)}{f\left(n\right)}\right) = \ln\left(n\right) \le \frac{g\left(n+1+x\right) - g\left(n+1\right)}{x} \le \ln\left(\frac{f\left(n+2\right)}{f\left(n+1\right)}\right) = \ln\left(n+1\right)$$

3. Des deux questions précédents, on déduit que :

$$\ln(n) \le \frac{1}{x} \ln\left(\frac{f(x)}{n!} \prod_{k=0}^{n} (x+k)\right) \le \ln(n+1)$$

soit:

$$\ln(n^x) \le \ln\left(\frac{f(x)}{n!} \prod_{k=0}^n (x+k)\right) \le \ln(n+1)^x$$

ou encore:

$$n^{x} \le \frac{f(x)}{n!} \prod_{k=0}^{n} (x+k) \le (n+1)^{x}$$

4. Des questions précédents, on déduit que si $f: \mathbb{R}^{+,*} \to \mathbb{R}^{+,*}$ vérifie les conditions (i), (ii) et (iii), on a alors pour tout $x \in]0,1]$ et tout $n \in \mathbb{N}^*$:

$$1 \le f(x) \frac{x(x+1)\cdots(x+n)}{n^x n!} \le \left(1 + \frac{1}{n}\right)^x$$

et faisant tendre n vers l'infini on déduit que :

$$f(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1)\cdots(x+n)} = \Gamma(x)$$

(relation d'Euler).

En utilisant l'équation fonctionnelle (i) vérifiée par les deux fonctions f et Γ , on déduit que $f(x) = \Gamma(x)$ pour tout x > 0.

En fait, on a démontré l'unicité de la fonction f et on a retrouvé la formule d'Euler :

$$\forall x \in [0, 1], \ \Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1)\cdots(x+n)}$$

- VI - Prolongement de la fonction gamma

1. On utilise le découpage :

$$\mathbb{C}\setminus\mathbb{Z}^-=\bigcup_{n=0}^{+\infty}\mathcal{H}_n$$

où on a noté:

$$\mathcal{H}_0 = \mathcal{H}$$

et pour tout entier $n \geq 1$:

$$\mathcal{H}_n = \{ z \in \mathbb{C} \mid -n < \Re(z) \le -(n-1) \} \setminus \{ -(n-1) \}$$

On peut définir, pour tout entier $n \geq 1$, la fonction Γ_n sur \mathcal{H}_n par :

$$\forall z \in \mathcal{H}_n, \ \Gamma_n(z) = \frac{\Gamma(z+n)}{z(z+1)\cdots(z+n-1)} = \frac{1}{z(z+1)\cdots(z+n-1)} \int_0^{+\infty} t^{z+(n-1)} e^{-t} dt$$

 $(\Gamma(z+n))$ est bien défini puisque $\Re(z+n) = \Re(z) + n > 0$ et $z \notin \{-(n-1), \dots, -1, 0\}$ valide la division par $z(z+1) \dots (z+n-1)$.

Comme Γ est continue sur \mathcal{H} , chaque fonction Γ_n est continue sur \mathcal{H}_n , comme quotient de deux fonctions continues.

On peut donc prolonger la fonction Γ en une fonction continue sur $\mathbb{C} \setminus \mathbb{Z}^-$ en posant :

$$\forall z \in \mathbb{C} \setminus \mathbb{Z}^{-}, \ \widetilde{\Gamma}(z) = \left\{ \begin{array}{l} \Gamma(z) \ \text{si } \Re(z) > 0 \\ \Gamma_{n}(z) \ \text{si } -n < \Re(z) \le -(n-1) \ \text{et } z \ne -(n-1) \end{array} \right.$$

Pour tout $z \in \mathbb{C} \setminus \mathbb{Z}^-$ tel que $\Re\left(z\right) > 0$, on a $\Re\left(z+1\right) > 0$ et :

$$\widetilde{\Gamma}(z+1) = \Gamma(z+1) = z\Gamma(z) = z\widetilde{\Gamma}(z)$$

et pour tout $z \in \mathbb{C} \setminus \mathbb{Z}^-$ tel que $-n < \Re\left(z\right) \le -\left(n-1\right)$, on a $-\left(n-1\right) < \Re\left(z+1\right) \le -\left(n-2\right)$ et :

$$\widetilde{\Gamma}(z+1) = \Gamma_{n-1}(z+1) = \frac{\Gamma(z+1+n-1)}{(z+1)(z+2)\cdots(z+1+n-1)} = \frac{\Gamma(z+n)}{(z+1)(z+2)\cdots(z+n)} = z\Gamma_n(z) = z\widetilde{\Gamma}(z)$$

2. Pour $z \in \mathbb{C} \setminus \mathbb{Z}^-$ tel que $-(n+1) < \Re(z) \le -(n-1)$, on a :

$$\Gamma(z) = \Gamma_{n+1}(z) = \frac{\Gamma(z+n+1)}{z(z+1)\cdots(z+n-1)(z+n)}$$

donc:

$$\lim_{z \to -n} (z+n) \Gamma(z) = \lim_{z \to -n} \frac{\Gamma(z+n+1)}{z(z+1)\cdots(z+n-1)}$$
$$= \frac{\Gamma(1)}{(-n)(-n+1)\cdots(-1)} = \frac{(-1)^n}{n!}$$

soit:

$$\Gamma(z) \underset{z \to -n}{\backsim} \frac{(-1)^n}{n!} \frac{1}{z+n}$$

et on retrouve, en particulier :

$$\Gamma(z) \underset{z \to 0}{\backsim} \frac{1}{z}$$

3. En utilisant la relation de Chasles, on peut écrire que :

$$\forall z \in \mathcal{H}, \ \Gamma(z) = \int_0^1 t^{z-1} e^{-t} dt + \int_1^{+\infty} t^{z-1} e^{-t} dt = \varphi_1(z) + \varphi_2(z)$$

On a déjà vu avec la question II.2 que la fonction $\varphi_2: z \mapsto \int_1^{+\infty} t^{z-1} e^{-t} dt$ est définie sur tout \mathbb{C} .

Comme la fonction $(z,t) \mapsto t^{z-1}e^{-t}$ est continue sur $\mathbb{C} \times]1, +\infty[$ et pour tous réels b>0, tout nombre complexe $z\in\mathbb{C}$ tel que $\Re(z)\leq b$, tout réel t>1, on a :

$$\left|t^{z-1}e^{-t}\right|=t^{\Re(z)-1}e^{-t}\leq\varphi\left(t\right)=t^{b-1}e^{-t}$$

la fonction $t\mapsto t^{b-1}e^{-t}$ étant intégrable sur]1, $+\infty$ [, on en déduit que la fonction φ_2 est continue sur toute demi-plan $\{z\in\mathbb{C}\mid\Re\left(z\right)\leq b\}$, donc sur \mathbb{C} .

En utilisant le développement en série entière la fonction exp, on a pour tout nombre complexe $z \in \mathcal{H}$ fixé et tout réel $t \in]0,1[$:

$$t^{z-1}e^{-t} = \sum_{n=0}^{+\infty} (-1)^n \frac{t^{z+n-1}}{n!}$$

cette série de fonctions continues sur]0,1[étant absolument convergente vers une fonction continue avec :

$$\sum_{n=0}^{+\infty} \int_0^1 \left| (-1)^n \frac{t^{z+n-1}}{n!} \right| dt = \sum_{n=0}^{+\infty} \frac{1}{n!} \int_0^1 t^{\Re(z)+n-1} dt$$
$$= \sum_{n=0}^{+\infty} \frac{1}{n!} \frac{1}{\Re(z)+n} \le \frac{e}{\Re(z)} < +\infty$$

On peut donc écrire que :

$$\varphi_1(z) = \int_0^1 t^{z-1} e^{-t} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \int_0^1 t^{z+n-1} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \frac{1}{z+n}$$

Pour tout réel $\delta \in \left]0, \frac{1}{2}\right[$ et tout $z \in \mathbb{C} \setminus \mathbb{Z}^-$ tel que $|z+n| \geq \delta$ pour tout entier $n \geq 0$, on a $\left|\frac{(-1)^n}{n!} \frac{1}{z+n}\right| \leq \frac{1}{\delta} \frac{1}{n!}$ avec $\sum_{n=0}^{+\infty} \frac{1}{n!} < +\infty$, donc la série de fonction continues sur $\mathbb{C} \setminus \mathbb{Z}^-$, $\sum \frac{(-1)^n}{n!} \frac{1}{z+n}$, converge normalement sur $\mathbb{C} \setminus \bigcup_{n=0}^{+\infty} D\left(-n,\delta\right)$, où on a noté $D\left(-n,\delta\right) = \{z \in \mathbb{C} \mid |z+n| < \delta\}$. Il en résulte qu'elle définit une fonction continue sur $\mathbb{C} \setminus \mathbb{Z}^-$. On prolonge donc la fonction Γ en une fonction continue sur $\mathbb{C} \setminus \mathbb{Z}^-$ en posant :

$$\forall z \in \mathbb{C} \setminus \mathbb{Z}^-, \ \Gamma(z) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \frac{1}{z+n} + \int_1^{+\infty} t^{z-1} e^{-t} dt$$

On a alors, pour tout $z \in \mathbb{C} \setminus \mathbb{Z}^-$:

$$\Gamma(z) = \frac{(-1)^n}{n!} \frac{1}{z+n} + \sum_{\substack{k=0\\k\neq n}}^{+\infty} \frac{(-1)^k}{k!} \frac{1}{z+k} + \int_1^{+\infty} t^{z-1} e^{-t} dt$$
$$= \frac{(-1)^n}{n!} \frac{1}{z+n} + \Psi(z)$$

la fonction Ψ étant continue en -n, ce qui nous permet de retrouver le fait que :

$$\lim_{z \to -n} (z+n) \Gamma(z) = \frac{(-1)^n}{n!}$$

On peut aussi vérifier que l'équation fonctionnelle (1) est bien vérifiée sur $\mathbb{C} \setminus \mathbb{Z}^-$.

4. On a déjà vu que le résultat est valable sur \mathcal{H} (question **II.1b**). Si $z \in \mathbb{C} \setminus \mathbb{Z}^-$ est tel que $-p < \Re(z) \le -(p-1)$ et $z \ne -(p-1)$, où $p \in \mathbb{N}^*$, on a alors :

$$\Gamma(z) = \frac{\Gamma(z+p)}{z(z+1)\cdots(z+p-1)}$$

avec:

$$\Gamma(z+p) = \lim_{n \to +\infty} \frac{n! n^{z+p}}{(z+p)(z+p+1)\cdots(z+p+n)}$$
$$= z(z+1)\cdots(z+p-1) \lim_{n \to +\infty} \frac{n! n^{z+p}}{z(z+1)\cdots(z+p+n)}$$

donc:

$$\Gamma(z) = \lim_{n \to +\infty} \frac{n! n^{z+p}}{z(z+1)\cdots(z+p+n)}$$

$$= \lim_{n \to +\infty} \frac{n^p}{(z+n+1)\cdots(z+n+p)} \frac{n! n^z}{z(z+1)\cdots(z+n)}$$

$$= \lim_{n \to +\infty} \frac{n! n^z}{z(z+1)\cdots(z+n)}$$

puisque:

$$\lim_{n \to +\infty} \frac{n^p}{(z+n+1)\cdots(z+n+p)} = 1$$

- VII - La formule des compléments

1. La condition $0 < \Re(z) < 1$ nous assure la convergence absolue de l'intégrale considérée. Le changement de variable $t = \frac{1}{\theta}$, nous donne :

$$\int_{1}^{+\infty} \frac{t^{z-1}}{1+t} dt = \int_{0}^{1} \frac{\theta^{-z}}{1+\theta} d\theta = \varphi (1-z)$$

et le résultat annoncé.

2. En utilisant le théorème de Fubini, on a pour tout $z \in \mathcal{D}$:

$$\Gamma(z)\Gamma(1-z) = \int_0^{+\infty} u^{z-1} e^{-u} du \int_0^{+\infty} v^{-z} e^{-v} dv$$
$$= \int_0^{+\infty} \left(\int_0^{+\infty} u^{z-1} e^{-u} v^{-z} e^{-v} du \right) dv$$

et en faisant, pour tout v > 0 fixé, le changement de variable u = vw, du = vdw, on obtient, en utilisant encore le théorème de Fubini :

$$\Gamma(z)\Gamma(1-z) = \int_0^{+\infty} e^{-v} \left(\int_0^{+\infty} w^{z-1} e^{-vw} dw \right) dv$$

$$= \int_0^{+\infty} \left(\int_0^{+\infty} e^{-v} e^{-vw} dv \right) w^{z-1} dw$$

$$= \int_0^{+\infty} \left(\int_0^{+\infty} e^{-(w+1)v} dv \right) w^{z-1} dw$$

$$= \int_0^{+\infty} \frac{w^{z-1}}{1+w} dw = \varphi(z) + \varphi(1-z)$$

3. Pour tout entier $n \geq 1$, tout $z \in \mathcal{H}$ et tout réel $t \in]0,1[$, on a :

$$\sum_{k=0}^{n-1} (-1)^k t^{z+k-1} = t^{z-1} \sum_{k=0}^{n-1} (-t)^k = t^{z-1} \frac{1 - (-t)^n}{1+t}$$

$$\frac{t^{z-1}}{1+t} = t^{z-1} \frac{(1-(-t)^n)}{1+t} + \frac{(-1)^n t^{z+n-1}}{1+t} = t^{z-1} \sum_{k=0}^{n-1} (-t)^k + \frac{(-1)^n t^{z+n-1}}{1+t}$$
$$= \sum_{k=0}^{n-1} (-1)^k t^{z+k-1} + \frac{(-1)^n t^{z+n-1}}{1+t}$$

et:

$$\varphi(z) = \sum_{k=0}^{n-1} (-1)^k \int_0^1 t^{z+k-1} dt + (-1)^n \int_0^1 \frac{t^{z+n-1}}{1+t} dt$$
$$= \sum_{k=0}^{n-1} \frac{(-1)^k}{k+z} + (-1)^n \int_0^1 \frac{t^{z+n-1}}{1+t} dt$$

avec:

$$0 \leqslant \left| \int_0^1 \frac{t^{z+n-1}}{1+t} dt \right| \leqslant \int_0^1 t^{\operatorname{Re}(z)+n-1} dt = \frac{1}{\operatorname{Re}(z)+n} \underset{n \to +\infty}{\to} 0$$

Ce qui nous donne:

$$\forall z \in \mathcal{H}, \ \varphi(z) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+z}$$

4. Pour tout $z \in \mathcal{D}$, on a $1 - z \in \mathcal{D}$ et en utilisant la question précédente, on obtient :

$$\begin{split} \Gamma\left(z\right)\Gamma\left(1-z\right) &= \varphi\left(z\right) + \varphi\left(1-z\right) \\ &= \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+z} + \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1-z} \\ &= \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+z} - \sum_{n=1}^{+\infty} \frac{(-1)^n}{n-z} \\ &= \frac{1}{z} + \sum_{n=1}^{+\infty} (-1)^n \left(\frac{1}{n+z} - \frac{1}{n-z}\right) \\ &= \frac{1}{z} - 2z \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2} \end{split}$$

5. Pour $z \in \mathbb{C} \setminus \mathbb{Z}$ fixé, on désigne par f la fonction définie sur \mathbb{R} , qui est 2π -périodique et telle que :

$$\forall t \in [-\pi, \pi], \ f(t) = \cos(zt)$$

Cette fonction est continue et de classe C^1 par morceaux sur \mathbb{R} , elle est donc développable en série de Fourier, soit :

$$\forall t \in \mathbb{R}, \ f(t) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(nt) + \sum_{n=1}^{+\infty} b_n \sin(nt)$$

Comme f est paire, on a $b_n = 0$ pour tout $n \ge 1$ et pour tout $n \ge 0$:

$$a_n = \frac{2}{\pi} \int_0^{\pi} \cos(zt) \cos(nt) dt$$

$$= \frac{1}{\pi} \int_0^{\pi} (\cos((z+n)t) + \cos((n-z)t)) dt$$

$$= \frac{(-1)^n \sin(z\pi)}{\pi} \left(\frac{1}{z+n} - \frac{1}{n-z}\right)$$

$$= -2\frac{(-1)^n z \sin(z\pi)}{\pi} \frac{1}{n^2 - z^2}$$

On a donc:

$$\forall t \in [0, \pi], \cos(zt) = \frac{\sin(\pi z)}{\pi} \left(\frac{1}{z} - 2z \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2} \cos(nt)\right)$$

6. Prenant t=0 dans le développement en série de Fourier précédent, on a pour tout $z\in\mathcal{D}$:

$$1 = \frac{\sin(\pi z)}{\pi} \left(\frac{1}{z} - 2z \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2} \right)$$

et:

$$\Gamma(z) \Gamma(1-z) = \frac{1}{z} - 2z \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2} = \frac{\pi}{\sin(\pi z)}$$

7. En désignant par θ la fonction définie sur $\mathbb{C} \setminus \mathbb{Z}$ par :

$$\forall z \in \mathbb{C} \setminus \mathbb{Z}, \ \theta(z) = \Gamma(z) \Gamma(1-z) \sin(\pi z)$$

le résultat précédent nous dit que cette fonction est constante égale à π sur \mathcal{D} . Comme, pour tout $z \in \mathbb{C} \setminus \mathbb{Z}$, on a $z+1 \in \mathbb{C} \setminus \mathbb{Z}$ et :

$$\theta(z+1) = \Gamma(z+1)\Gamma(-z)\sin(-\pi z)$$
$$= z\Gamma(z)\frac{\Gamma(1-z)}{-z}(-\sin(\pi z)) = \theta(z)$$

on déduit que θ est constante égale à π sur $\bigcup_{n=-\infty}^{+\infty} \mathcal{D}_n$, en notant, pour tout $n \in \mathbb{Z}$:

$$\mathcal{D}_{n} = \left\{ z \in \mathbb{C} \mid n < \Re\left(z\right) < n + 1 \right\}$$

puis, par continuité, que θ est constante égale à π sur $\mathbb{C} \setminus \mathbb{Z}$.

On en déduit en particulier que $\Gamma(z) \neq 0$ pour tout $z \in \mathbb{C} \setminus \mathbb{Z}^-$ (pour $z \in \mathbb{N}$, on a $\Gamma(n) = n! \neq 0$).

Prenant
$$z = \frac{1}{2}$$
, on retrouve les égalités $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ et $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

8.

(a) En écrivant que $\Gamma\left(1-z\right)=-z\Gamma\left(-z\right),$ la formule des compléments s'écrit aussi :

$$\forall z \in \mathbb{C} \setminus \mathbb{Z}, \ \Gamma(z) \Gamma(-z) = -\frac{\pi}{z \sin(\pi z)}$$

(b) Avec:

$$\Gamma(z) = \lim_{n \to +\infty} \frac{n! n^z}{z(z+1)\cdots(z+n)} = \frac{1}{z} \lim_{n \to +\infty} \frac{n^z}{(1+z)\cdots(1+\frac{z}{n})}$$

et:

$$\Gamma(-z) = -\frac{1}{z} \lim_{n \to +\infty} \frac{n^{-z}}{(1-z)\cdots\left(1-\frac{z}{n}\right)}$$

on déduit que :

$$-\frac{\pi}{z\sin(\pi z)} = \Gamma(z)\Gamma(-z) = -\frac{1}{z^2} \lim_{n \to +\infty} \frac{1}{(1-z^2)\cdots\left(1-\frac{z^2}{n^2}\right)}$$

et:

$$\sin(\pi z) = \pi z \lim_{n \to +\infty} \left(1 - z^2 \right) \cdots \left(1 - \frac{z^2}{n^2} \right)$$
$$= \pi z \prod_{n=1}^{+\infty} \left(1 - \frac{z^2}{n^2} \right)$$

cette formule étant valable pour tout $z \in \mathbb{C}$ (pour $z \in \mathbb{Z}$, tout est nul).

- VIII - Fonction Béta

- 1. On a $|t^{u-1}(1-t)^{v-1}| \underset{t\to 0^+}{\backsim} t^{\Re(u)-1}$ et $\int_0^1 t^{\Re(u)-1} dt < +\infty$ si, et seulement si, $\Re(u) > 0$. De manière analogue, on a $|t^{u-1}(1-t)^{v-1}| \underset{t\to 1^-}{\backsim} (1-t)^{\Re(v)-1}$ et $\int_0^1 (1-t)^{\Re(v)-1} dt < +\infty$ si, et seulement si, $\Re(v) > 0$.
- 2. Le changement de variable t = 1 x nous donne :

$$B(u,v) = \int_0^1 (1-x)^{u-1} x^{v-1} dx = B(v,u)$$

La deuxième identité est équivalente à :

$$vB(u+1,v) = u(B(u,v) - B(u+1,v))$$

soit à:

$$v \int_0^1 t^u (1-t)^{v-1} dt = u \int_0^1 t^{u-1} (1-t)^v dt$$

Une intégration par parties nous donne, pour $[a,b] \subset]0,1[$:

$$v \int_{a}^{b} t^{u} (1-t)^{v-1} dt = \left[-t^{u} (1-t)^{v}\right]_{a}^{b} + u \int_{a}^{b} t^{u-1} (1-t)^{v} dt$$

et faisant tendre (a, b) vers (0, 1), on obtient le résultat annoncé.

3. Pour tout entier $n \ge 1$, le changement de variable $t = \frac{x}{n}$ nous donne :

$$B(u, v + n + 1) = \int_0^1 t^{u-1} (1 - t)^{v+n} dt = \frac{1}{n^u} \int_0^n x^{u-1} \left(1 - \frac{x}{n}\right)^{v+n} dx$$

On désigne par $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définies sur $\mathbb{R}^{+,*}$ par :

$$f_n(t) = \begin{cases} x^{u-1} \left(1 - \frac{x}{n}\right)^{v+n} & \text{si } x \in]0, n[\\ 0 & \text{si } x \ge n \end{cases}$$

Chaque fonction f_n est continue et intégrable sur $]0, +\infty[$ avec :

$$\forall x \in]0, +\infty[, \begin{cases} \lim_{n \to +\infty} f_n(x) = e^{-x} x^{u-1} \\ \forall n \ge 1, |f_n(x)| \le e^{-x} x^{\Re(u)-1} = f(x) \end{cases}$$

(on a $\lim_{n\to +\infty} \left(1-\frac{x}{n}\right)^v = 1$ et, pour $x\in]0,n[\,,\, \left|\left(1-\frac{x}{n}\right)^v\right| = \left(1-\frac{x}{n}\right)^{\Re(v)} \le 1)$ la fonction f étant continue et intégrable sur $]0,+\infty[\,.$ On déduit alors du théorème de convergence dominée que :

$$\lim_{n \to +\infty} n^{u} B\left(u, v + n + 1\right) = \lim_{n \to +\infty} \int_{0}^{n} x^{u-1} \left(1 - \frac{x}{n}\right)^{v+n} dx = \int_{0}^{+\infty} e^{-x} x^{u-1} dx = \Gamma\left(u\right)$$

4. Pour u, v dans \mathcal{H} , en effectuant les changements de variables $t = x^2$ dans $\Gamma(u)$ et $t = y^2$ dans $\Gamma(v)$, puis en utilisant le théorème de Fubini, on obtient :

$$\Gamma(u)\Gamma(v) = 4 \int_0^{+\infty} e^{-x^2} x^{2u-1} dx \int_0^{+\infty} e^{-y^2} y^{2v-1} dy$$
$$= 4 \int_0^{+\infty} \int_0^{+\infty} e^{-(x^2+y^2)} x^{2u-1} y^{2v-1} dx dy$$

Le passage en coordonnées polaires nous donne :

$$\Gamma(u) \Gamma(v) = 4 \int_0^{+\infty} \int_0^{\frac{\pi}{2}} e^{-r^2} r^{2(u+v)-1} \cos^{2u-1}(\theta) \sin^{2v-1}(\theta) dr d\theta$$
$$= 2\Gamma(u+v) \int_0^{\frac{\pi}{2}} \cos^{2u-1}(\theta) \sin^{2v-1}(\theta) d\theta$$

puis en effectuant le changement de variable $t = \cos^2(\theta)$, on obtient :

$$\Gamma(u)\Gamma(v) = \Gamma(u+v) \int_0^1 t^{u-1} (1-t)^{v-1} dt = \Gamma(u+v) B(u,v)$$

La formule des compléments (question VII.7) nous assure que $\Gamma(z) \neq 0$ pour tout $z \in \mathbb{C} \setminus \mathbb{Z}$, ce qui nous donne :

$$B(u, v) = \frac{\Gamma(u) \Gamma(v)}{\Gamma(u + v)}$$

On retrouve:

$$B\left(u+1,v\right) = \frac{\Gamma\left(u+1\right)\Gamma\left(v\right)}{\Gamma\left(u+v+1\right)} = \frac{u\Gamma\left(u\right)\Gamma\left(v\right)}{\left(u+v\right)\Gamma\left(u+v\right)} = \frac{u}{u+v}B\left(u,v\right)$$

et:

$$B(u, v + n + 1) = \frac{\Gamma(u)\Gamma(v + n + 1)}{\Gamma(u + v + n + 1)}$$
$$= \Gamma(u)\frac{(v + n)(v + n - 1)\cdots v\Gamma(v)}{(u + v + n)(u + v + n - 1)\cdots(u + v)\Gamma(u + v)}$$

avec:

$$(v+n)(v+n-1)\cdots v\Gamma(v) \underset{n\to+\infty}{\sim} n^v n!$$

et:

$$(u+v+n)(u+v+n-1)\cdots(u+v)\Gamma(u+v) \sim n^{u+v} n!$$

ce qui nous donne :

$$\lim_{n \to +\infty} n^{u} \frac{(v+n)(v+n-1)\cdots v\Gamma(v)}{(u+v+n)(u+v+n-1)\cdots (u+v)\Gamma(u+v)} = 1$$

et $\lim_{n \to +\infty} n^{u} B(u, v + n + 1) = \Gamma(u)$.

On peut aussi montrer l'égalité $B(u,v) = \frac{\Gamma(u)\Gamma(v)}{\Gamma(u+v)}$ à partir de $\lim_{n\to+\infty} n^u B(u,v+n+1) = \Gamma(u)$.

Pour ce faire, on écrit que :

$$B(u,v) = \frac{(u+v+n)(u+v+n-1)\cdots(u+v)}{(v+n)(v+n-1)\cdots v}B(u,v+n+1)$$

avec:

$$\frac{(u+v+n)\left(u+v+n-1\right)\cdots\left(u+v\right)}{(v+n)\left(v+n-1\right)\cdots v} \underset{n\to+\infty}{\sim} \frac{n^{u+v}n!}{\Gamma\left(u+v\right)} \frac{\Gamma\left(v\right)}{n^{v}n!} = \frac{n^{u}\Gamma\left(v\right)}{\Gamma\left(u+v\right)}$$

et faisant tendre n vers l'infini, on a le résultat attendu.

5. Pour n, m entiers naturels, on a :

$$B(n+1, m+1) = \int_0^1 t^n (1-t)^m dt = \frac{\Gamma(n+1)\Gamma(m+1)}{\Gamma(n+m+2)} = \frac{n!m!}{(n+m+1)!}$$
$$= \frac{1}{n+m+1} \frac{1}{\binom{n+m}{n}}$$

- VIII - Calcul de certaines intégrales à l'aide de Γ

1. Le changement de variable $x = e^{-t}$, nous donne pour tout $z \in \mathcal{H}$:

$$\int_0^1 \left(\ln \left(\frac{1}{x} \right) \right)^{z-1} dx = \int_0^{+\infty} t^{z-1} e^{-t} dt = \Gamma(z)$$

2. Le changement de variable $x = t^z$, nous donne pour tout réel z > 0:

$$\int_{0}^{+\infty} e^{-x^{\frac{1}{z}}} dx = z\Gamma(z) = \Gamma(z+1)$$

et remplaçant z par $\frac{1}{z}$, on obtient :

$$\int_0^{+\infty} e^{-x^z} dx = \Gamma\left(1 + \frac{1}{z}\right)$$

Prenant z = 2, on retrouve :

$$\int_0^{+\infty} e^{-x^2} dx = \Gamma\left(\frac{3}{2}\right) = \frac{\sqrt{\pi}}{2}$$

3. Pour tout $(u,v) \in \mathcal{H}^2$, le changement de variable $t = \frac{x}{1+x}$ nous donne :

$$\frac{\Gamma(u)\Gamma(v)}{\Gamma(u+v)} = B(u,v) = \int_0^1 t^{u-1} (1-t)^{v-1} dt = \int_0^{+\infty} \frac{x^{u-1}}{(1+x)^{u+v}} dx$$

4. Pour $z \in \mathbb{C}$ tel que $0 < \Re(z) < 1$, la formule des compléments nous donne :

$$\int_{0}^{1} t^{z-1} (1-t)^{-z} dt = B(z, 1-z) = \Gamma(z) \Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$

et le changement de variable $t = \frac{x}{1+x}$ nous donne :

$$\int_0^{+\infty} \frac{x^{z-1}}{1+x} dx = \frac{\pi}{\sin(\pi z)}$$

Faisant $x = \tan^2(t)$, on obtient:

$$\int_0^{+\infty} \tan^{2z-1}(t) dt = \frac{\pi}{2\sin(\pi z)}$$

5. En notant $a=2u-1,\,b=2v-1,$ on a $(u,v)\in\mathcal{H}^2$ et :

$$W(a,b) = \int_0^{\frac{\pi}{2}} \cos^{2u-1}(\theta) \sin^{2v-1}(\theta) d\theta$$

$$= \int_0^{\frac{\pi}{2}} (\cos^2(\theta))^{u-1} (\sin^2(\theta))^{v-1} \cos(\theta) \sin(\theta) d\theta$$

$$= \int_0^{\frac{\pi}{2}} (\cos^2(\theta))^{u-1} (1 - \cos^2(\theta))^{v-1} \cos(\theta) \sin(\theta) d\theta$$

$$= \frac{1}{2} \int_0^1 t^{u-1} (1 - t)^{v-1} dt = \frac{1}{2} B(u, v) = \frac{1}{2} \frac{\Gamma(u) \Gamma(v)}{\Gamma(u + v)}$$

Pour a=0 et $b=n\in\mathbb{N}$, on retrouve les intégrales de Wallis usuelles :

$$W_n = W(0, n) = \int_0^{\frac{\pi}{2}} \sin^n(\theta) dt = \frac{1}{2} \frac{\Gamma(\frac{1}{2}) \Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2} + 1)}$$
$$= \frac{\Gamma(\frac{1}{2}) \Gamma(\frac{n+1}{2})}{n\Gamma(\frac{n}{2})} = \sqrt{\pi} \frac{\Gamma(\frac{n+1}{2})}{n\Gamma(\frac{n}{2})}$$

Pour n = 2p, où n est un entier naturel non nul, on obtient :

$$W_{2p} = \sqrt{\pi} \frac{\Gamma\left(p + \frac{1}{2}\right)}{2p\Gamma\left(p\right)} = \sqrt{\pi} \frac{\frac{(2p)!}{2^{2p}p!}\sqrt{\pi}}{2p!} = \frac{\pi}{2} \frac{\binom{2p}{p}}{2^{2p}}$$

et pour n = 2p + 1, on obtient :

$$W_{2p+1} = \sqrt{\pi} \frac{\Gamma(p+1)}{(2p+1)\Gamma(p+\frac{1}{2})} = \sqrt{\pi} \frac{p!}{(2p+1)\frac{(2p)!}{2^{2p}p!}\sqrt{\pi}}$$
$$= \frac{2^{2p}}{(2p+1)\binom{2p}{p}}$$