```
Data models:
* relational: related tables 3 structured
* NOSQL: not only SQL 3 serie-structured data
* text documents 3 unabsuctured
    schema on read vs. schema on write
    database design
Steps for building and using a relational delabase
1) Design the schema
2 Create with DDL (Data Definition Language)
   CREATE DATABASE University
    CREATE TABLE Student (
        Name Char (30)
        SED INT NOT NULL
        GPA float
        Class INT
```

3 Load the database with insteal values

INSERT INTO Student VALUES

4 query & updates -

DML Data Manipulation Language

DML } SQL declarative (not procedural)

SELECT name, GPA
FROM Student
WHERE GPA > 3.4

Name	GPA
Mary	3· 5
Sam	3.8
Colus.	3.6

* Result of a jury is a table - closed

SQL is based on

- set theory - relational algebra

- relational calculus

Database Example

- The University Database
 - Common example used in many texts and tutorials
- Purpose of the DB:
 - Maintain information regarding students, courses and grades
- Database Structure:
 - Organized as 5 files (or collections) of data records
 - ■STUDENT Student data
 - ■COURSE Course data
 - ■SECTION Data about each section of a course
 - ■GRADE_REPORT Grades that students receive in a course
 - PREREQUISITE
 Prerequisites for courses

Tables

STUDENT

STUDENT - Table Name

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

- Each student record is assigned:
 - Name (string alphabetical characters)
 - Student_number (integer)
 - ■Class (integer) Freshman (1), Sophmore (2)
 - Major (string)

columns

COURSE

COURSE

Course_name	Course	number	Credit_hours	Department
Intro to Computer Science	CS1	<mark>3</mark> 10	4	CS
Data Structures	CS3	320	4	CS
Discrete Mathematics	MATI	<mark>-1</mark> 2410	3	MATH
Database	CS3	3 <mark>8</mark> 0	3	CS

SECTION who teaches deta structures?

SECTION

Section_identifier	Course	number	Semester	Year	Instructor
85	MAT	12410	Fall	07	King
92	CS1	310	Fall	07	Anderson
102	CS3	320	Spring	08	Knuth
112	MATH	12410	Fall	08	Chang
119	CS1	310	Fall	08	Anderson
135	CS3	80	Fall	08	Stone

GRADE_REPORT

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	А
8	92	А
8	102	В
8	135	А

PREREQUISITE

PREREQUISITE

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

Describing the DB:

 DBMS Catalog contains a complete definition of the DB structure and constraints (meta-data)

RELATIONS

Relation_name	No_of_columns
STUDENT	4
COURSE	4
SECTION	5
GRADE_REPORT	3
PREREQUISITE	2

COLUMNS

Column_name	Data_type	Belongs_to_relation
Name	Character (30)	STUDENT
Student_number	Character (4)	STUDENT
Class	Integer (1)	STUDENT
Major	Major_type	STUDENT
Course_name	Character (10)	COURSE
Course_number	XXXXNNNN	COURSE
	••••	
Prerequisite_number	XXXXNNNN	PREREQUISITE

Note: Major_type is defined as an enumerated type with all known majors. XXXXNNNN is used to define a type with four alpha characters followed by four digits.

- Viewing the DB:
 - Through the DBMS, a view of the database can be created.
 - Subset of the data or combined data from multiple files
 - Different views for different types of users

TRANSCRIPT

Student_name	Student_transcript				
Student_name	Course_number	Grade	Semester	Year	Section_id
Smith	CS1310	С	Fall	08	119
Silliti	MATH2410	В	Fall	08	112
Brown	MATH2410	А	Fall	07	85
	CS1310	А	Fall	07	92
	CS3320	В	Spring	08	102
	CS3380	Α	Fall	08	135

People

- * detabase users
- * application programmers
- * database administrators
- * database design

Chapter 51 new edition
3-1 old edition

Relational model

- * Ted Codd, IBM 1970
- * started a several believe dollar industry
- * unit = table/relation (interconnected)
- * theoretical bases: relational algebra & calculus

Student - Table Name

Name	SSN	Address	GPA -	> Attribute Name
Jun	1234	Durham	3.2	Name
Mary	567-8	Loe	3.8	rows/tuples
Jack	9876	Modbury	NULL	
:	:		•	
	Attribute	s / Columns		

* Database consists of a <u>set</u> of tables

* <u>Schema</u>: structured description of the tables

* <u>Instance</u>: contents of tables

* no tuple (now) ordering * column ordering matters

* each tuple (now) is distinct.

Ly key: minimal set of attributes whose value is unique in each tuple.

e.g. SSN - key SSN + addres X

Lname + mi + frame - key

John A Smith

John B Smith

- table may have multiple keys

candidate keys

- one of the candidate keys is selected as a primary key.