Unstructured gids

There are two different approaches for finite-volume discretization on unstructured grids: cell-centered and node-centered. The main difference between these two is the construction of control volumes (\mathcal{V}) .

In the cell-centered grid metric, the control volumes are identical with primary grid cells.

In the node-centered grid metric, the control volume is given by the so-called $dual\ grid$.

Dual grid is usually obtained by connecting midpoint of each edge surrounding a node to center of mass of the cells.

Some comparison data for cell-centered and node-centered discretization

	Triangles	Tetrahedra	Prisms	Hexahedra
No. of nodes	N	N	N	N
No. of cells	3N	5.5N	3N	N
No. of edges	~4.5N	~6.5N	~5.5N	3N
No. of faces		~11N	~7.5N	3N

Memory requirements (assuming tetrahedra only)

• Node-centered : $C \times N$ arrays

 \bullet Cell-centered: $C\times 5.5N$ arrays

Computational requirements (assuming tetrahedra only)

• Node-centered : $C \times 6.5N$ flops (\sim No. edges)

• Cell-centered: $C \times 5.5N$ flops \sim No. faces)

Here, C is number of variables/equations.

Computation of dual cell volume

$$\Delta \mathcal{V} = \frac{1}{2n_{dim}} \bar{S}_{ck} \cdot (\bar{X}_k - \bar{X}_c)$$

where n_{dim} is the space dimension (2 or 3).

$$\mathcal{V}_c = \frac{1}{2n_{dim}} \sum_{k=1}^{m_c} \bar{S}_{ck} \cdot (\bar{X}_k - \bar{X}_c).$$

 m_c is number of neighbouring nodes to

 v_c .

Discretization of first derivative

Consider the scalar equation

$$\frac{\partial U}{\partial t} + a \frac{\partial U}{\partial x} = 0.$$

Write in integral form

$$\int_{\Omega} \frac{\partial U}{\partial t} d\Omega + a \int_{\Omega} \frac{\partial U}{\partial x} d\Omega = 0$$

$$\Rightarrow \int_{\Omega} \frac{\partial U}{\partial t} d\Omega + a \oint_{\partial \Omega} U dy = 0$$

Take the integral over the dual cell

$$\mathcal{V}_c \frac{\partial}{\partial t} (U_c) + a \sum_{k=1}^{m_c} \underbrace{\frac{U_c + U_k}{2}}_{\text{velocity averaged along } S_{ck}} \Delta y_k = 0$$

On a rectangular grid with smooth mapping to Cartesian grid, this first-derivative approximation is second-order accurate. It can be shown that on an arbitrary triangular grid it is at least first-order accurate (see Svärd et al., Applied Numerical Mathematics 58 (2008)).

Discretization of second derivative

Consider the equation

$$\frac{\partial U}{\partial t} = \nabla^2 U$$

Written in the integral form

$$\int_{\Omega} \frac{\partial U}{\partial t} d\Omega = \int_{\Omega} \frac{\partial}{\partial x_j} \left(\frac{\partial U}{\partial x_j} \right) d\Omega$$

$$= \oint_{\partial \Omega} \frac{\partial U}{\partial x_j} n_j ds$$

$$= \oint_{\partial \Omega} \frac{\partial U}{\partial n} ds$$

Straight-forward approximation:

$$\mathcal{V}_c \left(\frac{\partial}{\partial t} U \right)_c = \sum_{k=1}^{m_c} \left(\frac{\partial U}{\partial n} \right)_{ck} S_{ck}$$

Approximate $\frac{\partial U}{\partial n}$ on boundary of the dual cell by a central difference :

$$\mathcal{V}_c \left(\frac{\partial}{\partial t} U \right)_c = \sum_{k=1}^{m_c} \frac{U_k - U_c}{r_{ck}} S_{ck}$$
, where $r_{ck} = \left| \bar{X}_k - \bar{X}_c \right|$

Taylor expansion shows this has second-order accuracy on a cartesian grid. But, on a an arbitrary unstructured mesh is *inconsistent* (see Svärd et al., Applied Numerical Mathematics 58 (2008) and HW6).

An Example of inconsistency

Use Taylor expansion to compute the approximation of second derivative based on scheme above for the grid shown here.

Taylor expansion in 2D reads

$$f(x_{0} + \Delta x, y_{0} + \Delta y) =$$

$$f(x_{0}, y_{0}) + \Delta x f_{x}(x_{0}, y_{0}) + \Delta y f_{y}(x_{0}, y_{0})$$

$$+ \frac{\Delta x^{2}}{2} f_{xx}(x_{0}, y_{0}) + \Delta x \Delta y f_{xy}(x_{0}, y_{0})$$

$$+ \frac{\Delta y^{2}}{2} f_{yy}(x_{0}, y_{0}) + \mathcal{O}(\Delta^{3})$$

Let us compute the contribution along S_{c1}

$$\frac{U_1 - U_c}{\sqrt{2}h} = \left[U_c + h \left(\frac{\partial U}{\partial x} \right)_c - h \left(\frac{\partial U}{\partial y} \right)_c + \frac{h^2}{2} \left(\frac{\partial^2 U}{\partial x^2} \right)_c - h^2 \left(\frac{\partial^2 U}{\partial x \partial y} \right)_c + \frac{h^2}{2} \left(\frac{\partial^2 u}{\partial y^2} \right)_c + \mathcal{O}(h^3) - U_c \right] \frac{1}{\sqrt{2}h}$$

Repeating the same along other edges of dual cell and inserting in the approximation for the second derivative yield

$$\left(\frac{\partial U}{\partial t}\right)_c = \frac{1+\sqrt{5}}{3}\nabla^2 U_c + \frac{2}{3}\left(\frac{\partial^2 U}{\partial x \partial y}\right)_c + \mathcal{O}(h).$$

So, the above discretization of second derivative is inconsistent on an arbitrary grid.