Анализ временных рядов • Time Series Analysis

Сегодня

- области применения методов анализа временных рядов
- базовые методы
- учет различных компонентов во временных рядах
- библиотеки для анализа временных рядов

Сферы применения

- финансовая область
- мониторинг состояния оборудования
- климатические исследования
- естесственно-научные области

Естесственным образом возникают в областях, где измерения носят интервальный характер.

Две самые типичные задачи: определение природы временного ряда и прогнозирование значение временного ряда

Скользящее среднее

$$\hat{y}_t = rac{1}{k} \sum_{n=1}^k y_{t-n}$$

В качестве следующего значения используем среднее значение последних k наблюдений.

Взвешенное скользящее среднее

$$\hat{y}_t = \sum_{n=1}^k \omega_n y_{t-n}$$

В качестве следующего значения используем средне-взвешенное значение последних k наблюдений с ограничением $\sum_{n=1}^k w_n = 1$

Компоненты временного ряда

• В самом простом варианте выделяет три компоненты, который образуют итоговое наблюдение

$$y(t) = h(t) + g(t) + \epsilon(t)$$

- ullet g(t) Тренд
- ullet s(t) Сезонность
- e(t) Остатки(ошибки)

Компоненты временного ряда

Стационарность временного ряда

Стационарность временного ряда

Для станционарного временного ряда характерно:

- отсутствие изменений матожидания во времени
- отсутствие изменений дисперсии во времени
- отсутствие изменения ковариацонной функции во времени

Стационарность временного ряда

Нестационарный временной ряд неудобен для исследования:

- большинство моделей строят прогноз по статистическим данным, если они нестабильны, то и прогноз будет нестабильным
- бороться с нестационарностью можно
- для проверки на стационарность используется тест Дики-Фуллера [1] [2]
 - Нулевая гипотеза: временной ряд не является стационарным

Приведение ряда к стационарному виду

1. Преобразование Бокса-Кокса

$$x_i' = egin{cases} rac{x_i^{\lambda}-1}{\lambda}, \ \lambda > 0 \ \log(x), \ \lambda = 0 \end{cases}$$

2. Дифференцирование временного ряда

y	y_{t+1}	Δ_{t+1}	y_{t-1}	Δ_{t-1}
2	NaN	NaN	4	-2
4	2	2	6	-2
6	4	2	8	-2
8	6	2	NaN	NaN

Автокорреляция / AutoCorrelationFunction / ACF

Корреляция ряда величин с самим собой: для временного ряда с самим собой со сдвигом по времени

Автокорреляционная функция показывает зависимость показателя корреляции от величины сдвига

Частичная автокорреляция / Partial ACF / PACF

Показывает корреляцию ряда с самим собой с вычетом промежуточных влияний

Модель $(S)ARIMA(p,d,q)(P,D,Q)_s$

- p порядок авторегрессионной модели (AR), выбирается по PACF
 - номер последнего ненулевого элемента на графике PACF
- d порядок интегрирования ряда
 - с каким лагом дифференцировали
- q порядок модели MA (moving average), выбирается по ACF
 - номер последнего ненулевого элемента на графике АСГ

Модель $(S)ARIMA(p,d,q)(P,D,Q)_s$

- P порядок сезонной составляющей
 - смотрим на лаги, кратные размеру сезонности, например: 12, 24, 36...
 (PACF)
- D порядок интегрирования сезонной составляющей
- Q порядок сезонной составляющей
 - смотрим на лаги, кратные размеру сезонности, но на АСГ
- s размерность сезонности (месяц и т.д.)

Итоги

- два самых распространненых подхода:
 - эконометрический (сезонности, тренды и тд)
 - о нем чаще спрашивают на собеседованиях
 - ML-подход: рассматриваем как задачу регрессии (при этом как приготовить признаки из одного временного ряда - отдельный вопрос)
 - В частности можно использовать рекуррентные нейронные сети, но об этом позже
- очень сильно зависит от предметной области
- доминирующие подходы сейчас эконометрический и нейросетевой

Надо пробовать

- statsmodels
- fbprophet
- tsfresh
- autots
- Darts
- Kats
- sktime: docs / Sktime: унифицированная библиотека Python для машинного обучения и работы с временными рядами