Assignment 4 - Solutions

- 1. For each of the following sets of reactions, describe reactor system and conditions to maximize the selectivity to D. The rates are in mol/(dm³.s) and concentrations are in mol/dm³. [6 Marks total]
 - (a) (1) A + B \rightarrow D $-r_{1A} = 10 \exp(-8000 \,^{\circ}\text{K/T}) C_A C_B$
 - (2) A + B \rightarrow U $-r_{2A} = 100 \exp(-1000 \,^{\circ}\text{K/T}) \, [C_A]^{1/2} \, [C_B]^{3/2}$

$$\mathsf{S}_{\mathsf{D}/\mathsf{U}} = \frac{r_{D}}{r_{U}} = \frac{10e^{-\frac{8000}{T}}C_{A}C_{B}}{100e^{-\frac{1000}{T}}C_{A}^{1/2}C_{B}^{3/2}} = \frac{0.1e^{-\frac{7000}{T}}C_{A}^{1/2}}{C_{B}^{1/2}}$$

[1 Mark] Reactor: Series of small CSTR with A flowing to the first CSTR and B added to each CSTR

PFR with A entering at the inlet, B as side streams Semibatch reactor with A taken whole and B added slowly.

[1 Mark] Temperature: operate at high temperature

- (b) (1) A + B \rightarrow D $-r_{1A} = 100 \exp(-1000 \, ^{\circ}\text{K/T}) C_A C_B$
 - (2) A + B \rightarrow U $-r_{2A} = 10^6 \exp(-8000 \, ^{\circ}\text{K/T}) \, C_A C_B$

$$S_{D/U} = \frac{r_D}{r_U} = \frac{100e^{-\frac{1000}{T}}C_A C_B}{10^6 e^{-\frac{8000}{T}}C_A C_R} = 10^{-4}e^{\frac{7000}{T}}$$

- [1 Mark] Reactor: Any reactor type will do.
- [1 Mark] Temperature: operate at low temperature
- (c) (1) A + B \rightarrow D $-r_{1A} = 10 \exp(-1000 \,^{\circ}\text{K/T})C_{A}C_{B}$
 - (2) B + D \rightarrow U $-r_{2A} = 10^9 \exp(-10000 \,^{\circ}\text{K/T}) \, C_B C_D$

$$S_{D/U} = \frac{r_D}{r_U} = \frac{10e^{-\frac{1000}{T}}C_A C_B}{10^9 e^{-\frac{10000}{T}}C_B C_D} = 10^{-4} e^{\frac{7000}{T}} \frac{C_A}{C_D}$$

[1 Mark] Reactor: PFR with high concentration of A (high pressure, no inert) Remove D if possible; B can be introduced in any fashion.

Batch reactor with high concentration of A Remove D if possible; B can be introduced in any fashion.

[1 Mark]Temperature: Operate at low temperature

2. Under certain conditions, A decomposes as follows

$$A \xrightarrow{k_1 = 0.1 \text{ min}^{-1}} R \xrightarrow{k_2 = 0.1 \text{ min}^{-1}} S$$

R is to be produced from 1000 liter/hr of feed in which $C_{A0} = 1$ mol/liter, $C_{R0} = C_{S0} = 0$.

(a) What size of plug flow reactor will maximize the concentration of R, and what is that concentration in the effluent stream from this reactor? [4 Marks total]

$$\begin{split} \tau_{max} &= \frac{ln(k_2/k_1)}{k_2-k_1} \\ \text{For } k_2 &= k_1, \tau_{max} = \frac{1}{k_1} = 10 \ min. \ \text{[2 Marks]} \\ &\frac{C_{R,max}}{C_{A0}} = \left(\frac{k_1}{k_2}\right)^{k_2/(k_2-k_1)} \\ \text{For } k_2 &= k_1, C_{R,max} = \frac{1}{e} = 0.368 C_{A0} = 0.368 \ \text{mol/liter.} \ \text{[2 Marks]} \end{split}$$

(b) What size of mixed flow reactor will maximize the concentration of R, and what is $C_{R,max}$ in the effluent stream from this reactor? [4 Marks total]

$$[2 \text{ Marks}]_{\tau_{max}} = \frac{1}{\sqrt{k_1 k_2}} = 10 \ min$$

$$[2 \text{ Marks}] \quad C_{R,max} = \frac{k_1 C_{A0}}{2\sqrt{k_1 k_2} + k_1 + k_2} = 0.25 \ \text{mol/lt}$$

3. The following liquid-phase reactions were carried out in a CSTR at 325 K: [26 Marks total]

3A
$$\rightarrow$$
 B + C $-r_{1A} = k_{1A}C_A$ $k_{1A} = 7 \text{ min}^{-1}$
2C + A \rightarrow 3D $r_{2D} = k_{2D} C_A C_C^2$ $k_{2D} = 3 \text{ dm}^6 \text{mol}^{-2} \text{min}^{-1}$
4D + 3C \rightarrow 3E $r_{3E} = k_{3E} C_D C_C$ $k_{3E} = 2 \text{ dm}^3 \text{mol}^{-1} \text{min}^{-1}$

The concentrations measured inside the reactor were $C_A = 0.1$, $C_B = 0.93$, $C_C = 0.51$, and $C_D = 0.049$ all in mol/dm³.

(a) What are the values of r_{1A} , r_{2A} , and r_{3A} ? $r_{1A} = -k_{1A}C_A = -7*0.1 = -0.7 \text{ mol/(dm}^3.min)} [1 \text{ Mark}]$ $r_{2A} = -r_{2D} / 3 = -k_{2D}C_A C_C^2 = -3*0.1*(0.51)^2 / 3 = -0.026 \text{ mol/(dm}^3.min)} [1 \text{ Mark}]$ $r_{2A} = 0[1 \text{ Mark}]$

(b) What are the values of r_{1B} , r_{2B} , and r_{3B} ? $r_{1B} = -r_{1A}/3 = 0.233 \text{ mol/(dm}^3.min) [1 \text{ Mark}]$ $r_{2B} = 0[1 \text{ Mark}]$ $r_{3B} = 0[1 \text{ Mark}]$

(c) What are the values of r_{1C} , r_{2C} , and r_{3C} ?

```
r_{1C} = -r_{1A}/3 = 0.233 \text{ mol/(dm}^3.min) [1 \text{ Mark}]

r_{2C} = -2/3r_{2D} = -0.052 \text{ mol/(dm}^3.min) [1 \text{ Mark}]

r_{3C} = -r_{3E} = k_{3E} C_D C_C = -2*0.049*0.51 = -0.05 \text{ mol/(dm}^3.min) [1 \text{ Mark}]
```

(d) What are the values of r_{1D} , r_{2D} , and r_{3D} ?

```
r_{1D} = 0[1 Mark]

r_{2D} = 0.078 mol/(dm<sup>3</sup>.min) [1 Mark]

r_{3D} = -4/3 r_{3E} = -4/3*2*0.049*0.51 = -0.0667 mol/(dm<sup>3</sup>.min) [1 Mark]
```

(e) What are the values of r_{1E} , r_{2E} , and r_{3E} ?

```
r_{1E} = 0[1 \text{ Mark}]

r_{2E} = 0[1 \text{ Mark}]

r_{3E} = 0.05 \text{ mol/(dm}^3.min) [1 \text{ Mark}]
```

(f) What are the net rates of formation of species A, B, C, D and E?

```
r_A = -0.726 mol/(dm<sup>3</sup>.min) [1 Mark]

r_B = 0.233 mol/(dm<sup>3</sup>.min) [1 Mark]

r_C = 0.131 mol/(dm<sup>3</sup>.min) [1 Mark]

r_D = 0.0113 mol/(dm<sup>3</sup>.min) [1 Mark]

r_E = 0.05 mol/(dm<sup>3</sup>.min) [1 Mark]
```

(g) The entering volumetric flow rate is 100 dm³/min and the entering concentration of A is 3 mol/liter. What is the CSTR reactor volume?

$$\frac{V}{v_0} = \frac{C_{A0} - C_A}{-r_A}$$
; $V = 400 \text{ dm}^3$. [1 Mark]

(h) What are the exit molar flow rates from the CSTR of volume obtained in (q)?

```
\begin{aligned} &\mathsf{F}_{\mathsf{A}} = v_0 C_{\mathsf{A}} = \mathsf{10} \; \mathsf{mol/min[1 \, Mark]} \\ &\mathsf{F}_{\mathsf{B}} = v_0 C_{\mathsf{B}} = \mathsf{93} \; \mathsf{mol/min[1 \, Mark]} \\ &\mathsf{F}_{\mathsf{C}} = v_0 C_{\mathsf{C}} = \mathsf{51} \; \mathsf{mol/min[1 \, Mark]} \\ &\mathsf{F}_{\mathsf{D}} = v_0 C_{\mathsf{D}} = \mathsf{4.9} \; \mathsf{mol/min[1 \, Mark]} \\ &C_{\mathsf{E}} \; \mathsf{is} \; \mathsf{not} \; \mathsf{known.} \; \mathsf{But} \; \mathsf{we} \; \mathsf{know} \; \mathsf{that} \; \frac{v}{v_0} = \frac{c_{\mathsf{E}0} - c_{\mathsf{E}}}{-r_{\mathsf{E}}} = \mathsf{4} \\ &\mathsf{Solving} \; \mathsf{for} \; C_{\mathsf{E}}, \; C_{\mathsf{E}} = \mathsf{0.2} \; \mathsf{mol/dm^3} \\ &\mathsf{F}_{\mathsf{E}} = v_0 C_{\mathsf{E}} = \mathsf{20} \; \mathsf{mol/min.} \; [\mathsf{1 \, Mark}] \end{aligned}
```

4. The complex reactions involved in the oxidation of formaldehyde to formic acid over a Vanadium titanium oxide catalyst are shown below. Each reaction follows an elementary rate law:

HCHO +
$$\frac{k_1}{2}$$
 O₂ $\xrightarrow{k_1}$ HCOOH $\xrightarrow{k_3}$ CO + H₂O

2HCHO $\xrightarrow{k_2}$ HCOOCH₃

HCOOCH₃ + $\frac{k_4}{2}$ CH₃OH + HCOOH. [H₂O was missed in the problem sheet!]

Let A = HCHO, B = O_2 , C = HCOOH, D = HCOOCH₃, E = CO, W = H_2O and G = CH_3OH . The entering flow rates are F_{A0} = 10 mol/s and F_{B0} = 5 mol/s, and v_0 = 100 dm³/s. At a total entering concentration C_{T0} = 0.147 mol/dm³, the suggested reactor volume is 1000 dm³.

Data available:

At 300 K,

 $k_1 = 0.014 \, (dm^3/mol)^{1/2} \, s^{-1}$.

 $k_2 = 0.007 \text{ dm}^3/(\text{mol.s})$

 $k_3 = 0.014 \text{ s}^{-1}$

 $k_4 = 0.45 \text{ dm}^3/(\text{mol.s})$

- (a) Plot the molar flow rates of each species along the volume (length) of the reactor on the same figure.
- (b) Plot and analyze \tilde{Y}_C , $\tilde{S}_{A/E}$, $\tilde{S}_{C/D}$ and $\tilde{S}_{D/G}$ along the length of the reactor. Find volume at which maximum occur, if any.

Solution: [10 marks]

$$A + \frac{1}{2}B \xrightarrow{k_1} C \xrightarrow{k_3} E + W$$

$$2A \xrightarrow{k_2} D$$

$$D + W \xrightarrow{k_4} G + C$$

$$r_A = -k_1C_AC_B^{1/2} - k_2C_A^2$$

$$r_B = -\frac{1}{2}k_1C_AC_B^{1/2}$$

$$r_C = k_1C_AC_B^{1/2} - k_3C_C + k_4C_DC_W$$

$$r_D = \frac{1}{2}k_2C_A^2 - k_4C_DC_W$$

$$r_E = k_3C_C$$

$$r_G = k_4C_DC_W$$

$$r_W = k_3C_C - k_4C_DC_W$$

$$\frac{dF_i}{dV} = r_i \text{ and } C_i = C_{T0} \frac{F_i}{F_T} \text{ where } F_T = \sum F_i$$

Solve the ODEs numerically in Matlab.