

Formulário de Estatística

Fórmula de Sturges	$K = 1 + 3.322 \times \log_{10}(n) = 1 + \log_2(n)$, $K = n^{\circ}$ classes, $n = n^{\circ}$ observações
Quantis de ordem <i>p</i>	$q_p = \begin{cases} x_{(w)}, & w \text{ inteiro} \\ x_{(i)} + (w - i)(x_{(i+1)} - x_{(i)}), & w, \text{ não inteiro} : i < w < i + 1 \end{cases}$ $w = p(n+1). \text{ Se p=1/4, 2/4,3/4 temos os quartis; 1/10,, 9/10 temos os decis.}$
Mediana (dados agrupados em classes)	$Med = \widetilde{X} = L_i + \frac{\frac{n}{2} - F_i}{f_i} (U_i - L_i)$ $n = n^o \text{ observações}$ $[L_i, U_i[\text{ \'e a classe mediana (a que cont\'em a observação n/2)}$ $f_i, F_i = \text{freq. da classe } i \text{ e freq. acumulada at\'e à classe } i - 1$
Moda (dados agrupados em classes)	$Moda = L_i + \frac{f_i - f_{i-1}}{(f_i - f_{i-1}) + (f_i - f_{i+1})} (U_i - L_i)$ classe modal = $[L_i, U_i]$ $f_i = \text{frequência da classe } i$
Variância amostral	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - n.\overline{X}^{2} \right]$
(dados agrupados em classes)	$S^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{K} f_{i} X_{i}^{2} - n. \overline{X}^{2} \right] - \frac{\Delta x^{2}}{12}; \text{onde} \overline{X} = \sum_{i=1}^{K} f_{i} X_{i}^{2}$
Coeficiente de correlação	$r = \frac{\left[\sum_{i=1}^{n} x_i y_i - \frac{\left(\sum x_i\right)\left(\sum y_i\right)}{n}\right]}{\sqrt{\left[\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum x_i\right)^2}{n}\right]\left[\sum_{i=1}^{n} y_i^2 - \frac{\left(\sum y_i\right)^2}{n}\right]}}$
Distribuição Binomial $B(n,p)$	$P(X = k) = C_k^n p^k (1 - p)^{n - k}, k = 0, 1, 2,, n$ E(X) = np, Var(X) = np(1 - p).
Distribuição Binomial Negativa $BN(r,p)$ $BN(r=1,p) \Leftrightarrow G(p)$	$P(X = k) = C_{r-1}^{k-1} p^r (1-p)^{k-r}, k = r, r+1, r+2,$ $E(X) = \frac{r}{p}, Var(X) = \frac{r(1-p)}{p^2}.$
Distribuição Hiper-Geométrica $H(N, D, n)$	$P(X = k) = \frac{C_k^D C_{n-k}^{N-D}}{C_n^N}, k = m \acute{a}x(0, n - N + D),, \min(n, D)$ $E(X) = np, \ Var(X) = np(1-p)\frac{N-n}{N-1}, \ \text{com} \ p = \frac{D}{N}.$
Distribuição de Poisson $P(\lambda)$	$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}, k = 0,1,2,; \lambda > 0$ $E(X) = Var(X) = \lambda.$

Distribuição Uniforme	$f(x) = \begin{cases} \frac{1}{b-a} &, a \le x \le b \\ 0 &, \end{cases} $ $E(X) = \frac{a+b}{2}, Var(X) = \frac{(b-a)^2}{12}.$
U(a,b)	$\begin{bmatrix} 0 & , \end{bmatrix}$
	1 ((,,)2)
Distribuição Normal	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2}\left(\frac{X-\mu}{\sigma}\right)^2\right\}, -\infty < x, \mu < +\infty, \sigma > 0$
$N(\mu ; \sigma^2)$	
	$E(X) = \mu, Var(X) = \sigma^{2}.$
Distribuição Exponencial $E(\lambda)$	$f(x) = \begin{cases} \lambda e^{-\lambda x} &, x > 0 \\ 0 &, \underline{\qquad} \end{cases}$ $E(X) = \frac{1}{\lambda}, \operatorname{Var}(X) = \frac{1}{\lambda^2}.$
IC para a Média (σ^2 conhecida) (população normal)	$\left(\overline{x} - z_{(1-\alpha/2)} \cdot \frac{\sigma}{\sqrt{n}}; \overline{x} + z_{(1-\alpha/2)} \cdot \frac{\sigma}{\sqrt{n}}\right); \qquad Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$
IC Média (σ^2 desconhecida)	(
(população normal)	$\left(\overline{x} - t_{(1-\alpha/2)} \cdot \frac{s}{\sqrt{n}} ; \overline{x} + t_{(1-\alpha/2)} \cdot \frac{s}{\sqrt{n}}\right) ; T = \frac{\overline{X} - \mu}{s/\sqrt{n}} \sim t_{n-1}$
IC para a Diferença de Médias com	$\sigma_1^2 = \sigma_2^2$ $(\bar{\mathbf{y}} = \bar{\mathbf{y}})$
variâncias conhecidas. (populações normais)	$(\bar{x}_1 - \bar{x}_2) \pm z_{(1-\alpha/2)} \sqrt{\frac{\sigma_1^2 + \frac{\sigma_2^2}{n_1}}{n_1} + \frac{\sigma_2^2}{n_2}} \qquad ; \qquad Z_D = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$
IC para a Diferença de Médias com	$(\bar{x}_1 - \bar{x}_2) \pm t_{(1-\alpha/2)} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \text{ com } \sigma_1^2 = \sigma_2^2; T_D^* = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_p^2 + S_p^2}{n_1^2 + \frac{1}{n_2}}}} \sim t_{n_1 + n_2 - 2}$
variâncias desconhecidas.	$(x_1 - x_2) = t_{(1-\alpha/2)} \cdot s_p \sqrt{n_1} + \frac{t_{n_2}}{n_2}, \text{ com } s_1 - s_2, T_D = \frac{t_1 - t_2 + t_1 + t_2}{ S_p^2 - S_p^2 } \sim t_{n_1 + n_2 - 2}$
(populações normais)	$\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
	$(\bar{x}_1 - \bar{x}_2) \pm t'_{(1-\alpha/2)} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \text{ com } \sigma_1^2 \neq \sigma_2^2; t'_{(1-\alpha/2)} = \frac{w_1 t_1 + w_2 t_2}{w_1 + w_2};$
	$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} \qquad w_1 = S_1^2 / n_1; w_2 = S_2^2 / n_2; t_1 = t_{(1 - \alpha/2, n_1 - 1)}; t_2 = t_{(1 - \alpha/2, n_2 - 1)}$
IC para AMOSTRAS GRANDES e	Nos cinco intervalos acima usa-se sempre a tabela da normal, e não da
populações que não se sabe se são normais:	t-student, para encontrar a constante; o resto mantém-se.
I.C. (aproximado) para a proporção	$\left(\hat{p} - z_{(1-\alpha/2)} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}; \hat{p} + z_{(1-\alpha/2)} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right) ; Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$
I.C. (aproximado) para a	$(\hat{p}_1, \hat{p}_2) + z$ $\hat{p}_1(1-\hat{p}_1) + \hat{p}_2(1-\hat{p}_2) + z = (\hat{p}_1-\hat{p}_2) - (p_1-p_2)$ $y(0,1)$
diferença de proporções	$ (\hat{p}_1 - \hat{p}_2) \pm z_{(1-\frac{9}{2})} \cdot \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}; Z_D = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}} \sim N(0,1) $
	NOTA:Em testes, na raiz, usar $\hat{p}=(n_1\hat{p}_1+n_2\hat{p}_2)/(n_1+n_2)$ em vez de \hat{p}_1,\hat{p}_2
IC para a Variância	_
(população normal)	$ \left((n-1)S^2 \cdot (n-1)S^2 \right) \qquad X^2 = \frac{(n-1)S}{\sigma^2} \sim \chi^2_{(n-1)} $
(F. F. Lagar Louise)	$\left(\frac{(n-1)S^{2}}{b}; \frac{(n-1)S^{2}}{a}\right) ; X^{2} = \frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi^{2}_{(n-1)}$ $= \chi^{2}_{(\alpha/2;n-1)}; b = \chi^{2}_{(1-\alpha/2;n-1)}$
IC para a Razão de Variâncias σ_1^2	
$\frac{1}{\sigma_2^2}$	$\left[\frac{S_1^2}{b \cdot S_2^2}; \frac{S_1^2}{a \cdot S_2^2} \right]; \qquad F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} = \frac{\sigma_2^2}{\sigma_1^2} \frac{S_1^2}{S_2^2} \sim F_{(n_1 - 1, n_2 - 1)}$
(populações normais)	$b = F_{\alpha, \alpha} / \qquad $
	$b = F_{(1-\frac{\alpha}{2};n_1-1,n_2-1)}, a = F_{(\frac{\alpha}{2};n_1-1,n_2-1)} = 1/F_{(1-\frac{\alpha}{2};n_2-1,n_1-1)}$