

Art of Problem Solving 2013 Cono Sur Olympiad

Cono Sur Olympiad 2013

Day 1	
1	Four distinct points are marked in a line. For each point, the sum of the distances from said point to the other three is calculated; getting in total 4 numbers.
	Decide whether these 4 numbers can be, in some order: a) 29, 29, 35, 37 b) 28, 29, 35, 37 c) 28, 34, 34, 37
2	In a triangle ABC , let M be the midpoint of BC and I the incenter of ABC . If $IM = IA$, find the least possible measure of $\angle AIM$.
3	Nocycleland is a country with 500 cities and 2013 two-way roads, each one of them connecting two cities. A city A neighbors B if there is one road that connects them, and a city A quasi-neighbors B if there is a city C such that A neighbors C and C neighbors B . It is known that in Nocycleland, there are no pair of cities connected directly with more than one road, and there are no four cities A , B , C and D such that A neighbors B , B neighbors C , C neighbors D , and D neighbors A . Show that there is at least one city that quasi-neighbors at least 57 other cities.
Day 2	
4	Let M be the set of all integers from 1 to 2013. Each subset of M is given one of k available colors, with the only condition that if the union of two different subsets A and B is M , then A and B are given different colors. What is the least possible value of k ?
5	Let $d(k)$ be the number of positive divisors of integer k . A number n is called balanced if $d(n-1) \leq d(n) \leq d(n+1)$ or $d(n-1) \geq d(n) \geq d(n+1)$. Show that there are infinitely many balanced numbers.
6	Let $ABCD$ be a convex quadrilateral. Let $n \geq 2$ be a whole number. Prove that there are n triangles with the same area that satisfy all of the following properties:

www.artofproblemsolving.com/community/c5483

Contributors: Leicich

Art of Problem Solving 2013 Cono Sur Olympiad

- a) Their interiors are disjoint, that is, the triangles do not overlap.
- b) Each triangle lies either in ABCD or inside of it.
- c) The sum of the areas of all of these triangles is at least $\frac{4n}{4n+1}$ the area of ABCD.

Contributors: Leicich