Invertible Matrices

Definition If A is a square matrix, and if a matrix B of the same size can be found such that AB=BA=I (I is the identity matrix of the same size), then A is said to be invertible and B is called an inverse of A. If no such matrix B can be found, then A is said to be singular.

Examples

- 1) $B = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$ is an inverse of $A = \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix}$ because $AB = BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (verify!).
- 2) The matrix $A = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 0 \end{pmatrix}$ is singular because for any 3×3 matrix B, we have $BA = \begin{pmatrix} * & * & 0 \\ * & * & 0 \\ * & * & 0 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, where
 - * denotes an entry of which the actual value is not important.

Theorem 1 If B and C are both inverses of the matrix A, then B=C.

Proof:
$$C = IC = (BA)C = B(AC) = BI = B$$
.

As a consequence of this theorem, we can speak of "the" inverse of A. This inverse, if exists, will be denoted by \underline{A}^{-1} .

Theorem 2 Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

- (i) A is invertible iff $ad bc \neq 0$. (ii) If $ad bc \neq 0$, then $A^{-1} = \frac{1}{ad bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Examples

1)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{-1} = \frac{1}{1 \cdot 1 - 0 \cdot 0} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

2)
$$\begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix}^{-1} = \frac{1}{3 \cdot 5 - 2 \cdot 7} \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix}$$
.

3)
$$\begin{pmatrix} 3 & 2 \\ 6 & 4 \end{pmatrix}$$
 has no inverse $\because 3 \cdot 4 - 2 \cdot 6 = 0$.

4) Let $S = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{Z} \right\}$. Determine all those matrices A of S that are invertible and that A^{-1} is also in S.

Solution The problem is the same as to determine the following set:

$$T = \{A \in S \mid A \text{ is invertible and } A^{-1} \in S\}.$$

Let
$$A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in T$$
. Then, by Theorem 2, $ac \neq 0$ and $A^{-1} = \begin{pmatrix} \frac{1}{a} & -\frac{b}{ac} \\ 0 & \frac{1}{c} \end{pmatrix}$.

Since $A^{-1} \in S$, $\frac{1}{a}$ and $\frac{1}{c}$ must be integers. This implies that $a, c \in \{-1, 1\}$, or equivalently $a^2 = c^2 = 1$.

$$A^{-1} = \begin{pmatrix} a & -abc \\ 0 & c \end{pmatrix},$$

where b could be any integer.

Therefore,
$$T = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a^2 = c^2 = 1 \text{ and } b \in \mathbb{Z} \right\}$$
.

Theorem 3 If A and B are invertible matrices of the same size, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Remark Let M_n denote the set of all invertible $n \times n$ matrices, and let • denote matrix multiplication. It follows from this theorem that, for each $n \in \mathbb{Z}^+$, • is closed on M_n .

Exercises

- 1. Let $A = \begin{pmatrix} 2 & -3 \\ 4 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 0 \\ 6 & 0 \end{pmatrix}$, $c = \begin{pmatrix} -7 & 8 \\ 0 & 0 \end{pmatrix}$. Evaluate the following:
 - (a) A B

(b) *CA*

- (c) A^2H
- 2. Let $A = \begin{pmatrix} 2 & 1 \\ -4 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 0 \\ 6 & 3 \end{pmatrix}$, $c = \begin{pmatrix} -7 & 8 \\ 0 & 0 \end{pmatrix}$.
 - (a) If possible, find A^{-1} , B^{-1} , C^{-1} , and $(AB)^{-1}$.
 - (b) Verify that $(AB)^{-1} = B^{-1}A^{-1}$.
- 3. Let $S = \left\{ \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix} \middle| a, b \in \mathbb{Z} \right\}$. Determine all those matrices A of S that are invertible and that A^{-1} is also in S.