Quiz-1

This is a closed book test. No "book" materials are permitted during the test. Ask me if you have any questions.

Show all steps of your solutions for full/partial credits.

Try to have one empty seat between two students. No connected devices such as cellphone during this test.

Regarding Quiz-1

- 30 points, 30 minutes; class after quiz
- Includes Lectures 2-7
 - Important Topics from lectures
 - √ Major steps to execute an instruction
 - ➤ Important Topics from Introduction to Computers (Ch. 1 from zyBooks)
 - ✓ Ch. 1 >> 1.1-1.9
- Questions: Short questions (HW), Math-related, True/False, ...
- Any not-allowed activities → Zero, etc. (applies to all tests)

If you do not return your papers right after the STOP time, I will not accept/grade your papers.

Quiz-1

This is a closed book test. No "book" materials are permitted during the test. Ask me if you have any questions.

Show all steps of your solutions for full/partial credits.

Try to have one empty seat between two students.

No connected devices such as cellphone during this test.

Corrections: ?

STOP writing @ 10:10

We will have lecture after quiz.

Dr. Zaman; WSU-5261

Lecture 8 Presented by Md "Raihan" Uddin

Reading: See Reading Assignments on Blackboard

Tests: Quiz-1 (Week 4), Exam-1 (Week 5), HW-3 (Week 7), HW-4 (Week 8), ...

- **■** Computer Milestones;
- Intro to Structured Computer Organization (Handout 2b)
 - > 1.2: Milestones in Computer Architecture
 - > 1.3: The Computer Zoo
 - > 1.4: Example Computer Families

- Zeroth Generation Mechanical Computers (1642 – 1945)
- First Generation Vacuum Tubes (1945 1955)
- Second Generation Transistors (1955 1965)
- Third Generation Integrated Circuits (1965 – 1980)
- Fourth Generation Very Large-Scale Integration (1980 – ?)
- More Generations? (we'll see)

- **Zeroth Generation: Mechanical Computers (1642 1945)**
 - > First calculating machine by Pascal (1623-1662) in 1642
 - ➤ Babbage (1792-1871), "different engine", speedometer
 - ➤ "Analytical engine" storage (memory) 1000 words of 50 decimal digits, mill (computation unit add, subtract, multiply, divide), input section (punched card reader), and output section (punched and printed output)

- **■** First Generation: Vacuum Tubes (1945 1955)
 - Enigma (Thomas Jefferson, former U.S. president)
 - ➤ Vacuum tubes ENIAC (electronic numerical integrator and computer), 18,000 VTs and 1,500 relays, 30 tons, 140 KW power
 - > The original von Neumann machine CPU, memory (unified), I/O
 - ➤ The Harvard machine CPU, memory (split into Instruction and Data), I/O

- Second Generation: Transistors (1955 1965)
 - > Transistor tiny electronic switch
 - > Size, power, cost
 - Programmed Data Processor (PDP)
 - > MIT, TX-0
 - > IBM 7094
 - > PDP-1, MIT
 - Concept of supercomputers (Cray)

- **■** Third Generation: Integrated Circuits (1965 1980)
 - > Integrated circuit (IC) dozens of transistors in a chip
 - > IBM System/360, multiprogramming

- **■** Fourth Generation: Very Large-Scale Integration (1980 ?)
 - > VLSI millions of transistors in a chip
 - > IBM Personal Computer (PC), Intel CPU
 - Graphical User Interface (GUI)
 - > FPGA (field programmable gate array)

- Zeroth Generation Mechanical Computers (1642 – 1945)
- First Generation Vacuum Tubes (1945 1955)
- Second Generation Transistors (1955 1965)
- Third Generation Integrated Circuits (1965 – 1980)
- Fourth Generation Very Large-Scale Integration (1980 – ?)
- More Generations?

Moore's law and processor design

- Gordon Earle Moore: Co-founder and Chairman Emeritus of Intel Corp.
- Moore's Law predicts a 60-percent annual increase in the number of transistors that can be put on a chip. (transistors doubles every two years)

Moore's law and processor design (+)

Moore's Law predicts a 60-percent annual increase in the number of transistors that can be put on a chip. Different chips/processors.

Computer Generations (cont'd, +)

- Zeroth Generation Mechanical Computers (1642 – 1945)
- First Generation Vacuum Tubes (1945 1955)
- Second Generation Transistors (1955 1965)
- Third Generation Integrated Circuits (1965 1980)
- Fourth Generation Very Large-Scale Integration (1980 – ?)
- Fifth Generation
 - (a) Low-Power and Invisible Computers (1980 ?)
 - (b) Multicore Computers (2000 ?)

- Fifth Generation: Low-Power and Invisible Computers (1980 ?)
 - > Embedded systems
 - ➤ Internet of Things (IoT), Artificial Intelligence,
 - GridPad (first Tablet from Grid Systems, 1989)
 - > PDA (personal digital assistant), Smartphone (Simon)
 - <u>Ubiquitous/pervasive/everyware</u> computing is a post-desktop model of human-computer interaction in which information processing has been thoroughly integrated into everyday objects and activities. Example: refrigerators "aware" of their suitably tagged contents, able to both plan a variety of menus from the food actually on hand, and warn users of stale or spoiled food.

- **Fifth Generation: Multicore Computers (2000 ?)**
 - > VLSI millions of transistors in a chip
 - > 2001, POWER4, first dual-core chip microprocessor, IBM
 - ➤ Advanced VLSI billions of transistors in a chip (2008+)
 - > System-on-a-chip (SoC)
 - Network-on-a-chip (NoC)
 - Multicore/many-core systems

The Computer Zoo The Types/Classes of Computers

■ Current spectrum (i.e., categorization) of computers

Туре	Price (\$)	Example application
Disposable computer	0.5	Greeting cards
Microcontroller	5	Watches, cars, appliances
Game computer	50	Home video games
Personal computer	500	Desktop or notebook computer
Server	5K	Network server
Collection of Workstations	50-500K	Departmental minisupercomputer
Mainframe	5M	Batch data processing in a bank

■ How about Supercomputers?

12:33 PM

Dr. Zaman; WSU-5261

Lecture 8 Presented by Md "Raihan" Uddin

Reading: See Reading Assignments on Blackboard

Tests: Quiz-1 (Week 4), Exam-1 (Week 5), HW-3 (Week 7), HW-4 (Week 8), ...

- Computer Milestones;
- Intro to Structured Computer Organization (Handout 2b)
 - > 1.2: Milestones in Computer Architecture
 - > 1.3: The Computer Zoo
 - > 1.4: Example Computer Families

Example Computer Families

Tanenbaum and Austin book Ed. 5 (2005)

- (Intel) Pentium 4: (PC, Laptop)
- (Sun Microsystems) SPARC (Scalable Processor ARChitecture): Workstation, Server
- (Intel) Embedded CPU 8051: (Embedded systems)

Tanenbaum and Austin book Ed. 6 (2012)

- (Intel) x86 (PC, Server, HPC)
- (ARM) ARM (Mobile, Tablet, Smartphone)
- (AVR) AVR (Embedded systems)

Example Computer Families (+)

Tanenbaum and Austin book Ed. 6 (2012)

- x86 (PC, Server, more)
 - > PC, Server, more
- ARM (Mobile, Tablet, Smartphone)
 - Mobile, Tablet, Smartphone
- AVR (embedded systems, microcontroller)
 - Embedded systems, Microcontroller, Low-Power and Invisible Computers

Before x86 Architecture

- 1968, Intel Corporation
- 1969, Busicom to Intel, 12 custom chips for calculator
- 1970, first single-chip CPU 4004, 2300 transistors

x86 Architecture (+)

Key members

	Chip	Date	MHz	Trans.	Memory	Notes
	4004	4/1971	0.108	2300	640	First microprocessor on a chip
	8008	4/1972	0.108	3500	16 KB	First 8-bit microprocessor
	8080	4/1974	2	6000	64 KB	First general-purpose CPU on a chip
	8086	6/1978	5-10	29,000	1 MB	First 16-bit CPU on a chip
	8088	6/1979	5-8	29,000	1 MB	Used in IBM PC
	80286	2/1982	8-12	134,000	16 MB	Memory protection present
	80386	10/1985	16-33	275,000	4 GB	First 32-bit CPU
	80486	4/1989	25-100	1.2M	4 GB	Built-in 8-KB cache memory
	Pentium	3/1993	60-233	3.1M	4 GB	Two pipelines; later models had MMX
	Pentium Pro	3/1995	150-200	5.5M	4 GB	Two levels of cache built in
	Pentium II	5/1997	233-450	7.5M	4 GB	Pentium Pro plus MMX instructions
	Pentium III	2/1999	650-1400	9.5M	4 GB	SSE Instructions for 3D graphics
	Pentium 4	11/2000	1300-3800	42M	4 GB	Hyperthreading; more SSE instructions
	Core Duo	1/2006	1600-3200	152M	2 GB	Dual cores on a single die
	Core	7/2006	1200-3200	410M	64 GB	64-bit quad core architecture
6	Core i7	1/2011	1100-3300	1160M	24 GB	Integrated graphics processor

MMX (MultiMedia

SSE (Streaming SIMD Extensions)

x86 Architecture (+)

- 1978, a genuine 16-bit CPU on a chip, 8086
- After $8086 \rightarrow 8088$, 80286, 80386, 80486
- After 80486, numbers cannot be trademarked, Pentium
- Intel chips are backward compatible as far back as 8086
- PC, Server, more

Moore's law and processor design

Textbook Ed. 6

Moore's Law predicts a 60-percent annual increase in the number of transistors that can be put on a chip.

Moore's law and Intel CPU chips

Moore's Law predicts a 60-percent annual increase in the number of transistors that can be put on a chip. Different chips.

Intel Core i7-3960x die (21x21 mm, 2.27 BT)

Cache?

Computer System

(Remember the diagram on left?)

Figure 2-1. The organization of a simple computer with one CPU and two I/O devices.

Cache

Figure 2-16. The cache is logically between the CPU and main memory. Physically, there are several possible places it could be located.

Computer System with Cache

- CL1 Level-1 Cache or First Level Cache
 - > Private, split into instruction cache (I1) and data cache (D1)
- CL2 Level-2 Cache or Second Level Cache
 - Shared, unified (instructions and data)
- CL3 Level-3 Cache or Third Level Cache (not shown)

Intel Core i7-3960x die (21x21 mm, 2.27 BT) (+)

- 8/6 cores
- Private CL1, CL2
- Shared CL3

ARM Architecture

- ISA Level (remember?)
 - Complex Instruction Set Computer (CISC), Intel
 - Reduced Instruction Set Computer (RISC), Berkeley, SPARC
- 1980s, Acorn Computer (UK), 8-bit CPU 6502, BBC Micro PC
- Acorn RISC Machine (ARM) processor, 6502, RISC, ARM2
- Apple, 1990s, ARM processor
- Advanced RISC Machine (ARM) processor, ARM 610, ARM7
- ARM (Mobile, Tablet, Smartphone)

NVIDIA Tegra-2 SOC

- Samsung Galaxy Tab
- Android based Tablet
- **■** Tegra-2 processor
- Nvidia Tegra-2 SOC
- System-on-a-chip
- 2 ARM Cortex-A9 CPUs

AVR Architecture

- 1996, Norwegian Institute of Technology
- Alf (Egil Bogen) and Vegard (Wollan)'s RISC processor AVR
- Atmel, 1997, AT90S1200 microcontroller (8051-like pinout)
- tinyAVR, megaAVR, AVR XMEGA

Chip	Flash	EEPROM	RAM	Pins	Features
tinyAVR	0.5-16 KB	0-512 B	32-512 B	6–32	Tiny, digital I/O, analog input
megaAVR	8-256 KB	0.5-4 KB	0.25-8 KB	28-100	Many peripherals, analog out
AVR XMEGA	16-256 KB	1-4 KB	2-16 KB	44-100	Crypto acceleration, USB I/O

■ Embedded systems, iviicrocontroller, Low-Power and invisible Computers

Arduino ATMEGA 168/328 (Diagram)

Atmel megaAVR-168

- 3 Hardware Timers
- 6 PWMs (control light)
- 8 ATDs (read voltage)
- Univ. serial rcv/trans
- Sensor interface
- Watchdog timer
- Real-Time clock
- Others

ECE 394

Introduction to Computer Architecture

Tentative Schedule

rentative Schedule				
Week Tue	Note	Important topics/readings, assignments, due dates, and reminders are listed here so that you can organize your time and academic work.		
1 08/20		ECE 394: Intro to Computer Architecture, Syllabus; K-probe; zyBook 1.1 (Intro to Computers); Homework, Quiz, and Exam;		
2 08/27	HW-1	HW-1 Discussion; zyBook 1.2-1.5 (eight ideas, processors); HW-1 (due on Blackboard); zyBook 1.6 (performance);		
3 09/03	HW-2	9/02 (Labor Day) No Class/Lab; HW-2 (Bb); zyBook 1.7-1.9 (uni- and multiprocessors, Core i7);		
4 09/10	Quiz-1	Quiz-1 Discussion; Handout: Multilevel Computers; Quiz-1 (class test, 30-min / 30-pts, closed book);		
5 09/17	Exam-1	Exam-1 Discussion; Handout: Computer Generations; Exam-1 (class test, 65-min / 65-pts, closed book);		
6 09/24	Update	zyBook: 3.1 (The Processor: Introduction); zyBook: 3.2-3.3 (The Processor: Datapath, Pipelining);		
7 10/01	HW-3	zyBook 3.4-3.5 (Data hazards: Forwarding versus stalling); HW-3 (Bb); zyBook 3.6 (Data hazards and Control hazards);		
8 10/08	Mid-Pt HW-4	zyBook 3.7 (Parallelism via instructions); HW-4 (Bb); zyBook 3.8 (Going faster: ILP and matrix multiply);		
9	Fal-Brk	10/12 (Sat) to 10/15 (Tue) (Fall Break) No Class;		
10/15	Quiz-2	Quiz-2 (class test, 30-min / 30-pts, closed book);		
10 10/22	Exam-2	Exam-2 Discussion; zyBook 4.1 (Memory Hierarchy: Introduction); Exam-2 (class test, 65-min / 65-pts, closed book);		
11 10/29	Update	zyBook 4.2-4.3 (Memory Hierarchy: Caches); zyBook 4.4-4.5 (Memory Hierarchy: Virtual memory);		
12 11/05	HW-5	zyBook 5.1 (Parallel Processors: Introduction); HW-5 (Bb); zyBook 5.2 (Difficulty of Parallel Processing);		
13 11/12	HW-6	zyBook 5.3 (SISD, MIMD, SIMD, SPMD, and vector); HW-6 (Bb); zyBook 5.4 (Hardware multithreading);		
14 11/19	Quiz-3	zyBook 5.5-5.6 (Multicore processors, graphics processing units); Quiz-3 (class test, 30-min / 30-pts, closed book);		
15 11/26	Thx-Brk	Future of Computers (selected materials); 11/27 (Wed) to 12/01 (Sun) (Thanksgiving Break) No Class;		
16 12/03	Exam-3	Exam-3 Discussion; Exam-3 (class test, 65-min / 65-pts, closed book);		
Finals		None!		
Note: A	Note: A date in Column 1 indicates the Tuesday of that week. Here, 12/03 is Tueday of Week 16.			