Pullback-Mediated Context Alignment: A Minimal Structural Device with Identity-Illusion Projection

Abstract

We formalize cross-context alignment as a minimal, auditable structure. Two windowed subcategories embed into a minimal bridging theory \mathcal{A}_{\min} carrying four decidable predicates Pre, Post, Err, Win. Structural alignment is the iso-comma 2-pullback $\mathcal{P} = \mathcal{C}_W \times_{\mathcal{A}_{\min}} \mathcal{D}_W$. Semantically, a gate-based observation pipeline

$$\Phi_{\kappa} = q_{\kappa} \circ \rho \circ \mathrm{Obs}_{\star}$$

projects behaviors to an *identity-illusion* space I_{κ} , generating a difference triad from the kernel flow $\mathcal{V} = \ker d\Phi_{\kappa}$, the automorphism groupoid $\operatorname{Aut}_{\Phi_{\kappa}}$, and the discriminant $\operatorname{Disc}(\Phi_{\kappa})$. Alignment requires a static witness in \mathcal{P} and semantic compatibility under ρ and Φ_{κ} on a regular neighborhood. We prove preservation under displacements and masquerades, a short exact sequence $0 \to \mathcal{V} \to TX \xrightarrow{d\Phi_{\kappa}} \Phi_{\kappa}^*(TI_{\kappa}) \to 0$, and a dynamic normal form on the regular region. We extend to an event-visible layer for concurrency and a profunctor-based relation layer for soft alignment.

1 Introduction

Large models often produce fluent cross-domain prose while drifting across context boundaries. We replace rhetorical alignment by a *structural* and *semantic* device: (i) a category-theoretic core that makes alignment a 2-pullback, and (ii) a semantics governed by an observation-to-projection pipeline that detects invariance, type stability, and boundary transitions.

Contributions.

- A minimal bridging theory A_{\min} with public predicates Pre/Post/Err/Win and windowed embeddings F, G from context categories.
- A precise alignment space as an iso-comma 2-pullback and a static alignment criterion.
- A semantics via $\Phi_{\kappa} = q_{\kappa} \circ \rho \circ \text{Obs}_{\star}$ with a difference triad $(\mathcal{V}, \text{Aut}_{\Phi_{\kappa}}, \text{Disc}(\Phi_{\kappa}))$, yielding preservation laws, a short exact sequence, and a dynamic normal form.
- Extensions to event-visible alignment under concurrency and to a relation layer (profunctor halo) enabling soft alignment.

Structure of the Paper. Section 2 fixes notation and the bridging theory. Section 3 develops the 2-pullback core. Section 4 introduces the projection pipeline and proves the main semantic theorems. Section 5 upgrades to event-visible semantics and states concurrency rules. Section 6 gives the relation layer and soft alignment. Section 7 sketches comparisons. Appendices collect auxiliary proofs and a minimal audit ledger.

2 Notation and Conventions

We work in locally small categories. Isomorphisms are written $\stackrel{\sim}{\to}$. For a smooth map Ψ between manifolds, $d\Psi$ denotes the differential; regular points form the complement of the singular set.

Definition 2.1 (Windows and Bridging). Let C, D be context categories. Windows $C_W \subseteq C$ and $D_W \subseteq D$ retain public, checkable, composable behaviors. The minimal bridging theory A_{\min} has objects called manifest functions, morphisms given by serial composition, and four decidable predicates Pre, Post, Err, Win. Faithful functors

$$F: \mathcal{C}_W \to \mathcal{A}_{\min}, \qquad G: \mathcal{D}_W \to \mathcal{A}_{\min}$$

preserve identities, composition, and these predicates.

Definition 2.2 (Observation-to-Projection Pipeline). Fix a readable gate $U_{\star} \subseteq X$ and an observation $\operatorname{Obs}_{\star}: U_{\star} \to \delta_{\star}$ with public tests T_{\star} . Let $\rho: \delta_{\star} \to \mathcal{R}$ be the least-form selector generated by invariance under the kernel flow and $\operatorname{Aut}_{\Phi_{\kappa}}$, and by preservation under regular lifts. Let $q_{\kappa}: \mathcal{R} \to I_{\kappa}$ be a type projection. Define

$$\Phi_{\kappa} := q_{\kappa} \circ \rho \circ \mathrm{Obs}_{\star}.$$

Write I_{κ}^{reg} for the regular region, with type map $\nu: I_{\kappa}^{\text{reg}} \to \mathcal{R}$. Set the discriminant $\operatorname{Disc}(\Phi_{\kappa}) = \operatorname{Crit}(\Phi_{\kappa}) \cup \Phi_{\kappa}^{-1}(\Sigma) \cup J(\rho \circ \operatorname{Obs}_{\star})$.

3 Pullback Core

Definition 3.1 (Alignment Space). The iso-comma 2-pullback

$$\mathcal{P} := \mathcal{C}_W \times_{\mathcal{A}_{\min}} \mathcal{D}_W$$

has objects (X, A, θ) with $X \in \mathrm{Ob}(\mathcal{C}_W)$, $A \in \mathrm{Ob}(\mathcal{D}_W)$, and an isomorphism $\theta : F(X) \xrightarrow{\sim} G(A)$ in \mathcal{A}_{\min} . A morphism $(f, g) : (X, A, \theta) \to (X', A', \theta')$ satisfies $G(g) \circ \theta = \theta' \circ F(f)$.

Proposition 3.1 (Static Alignment). Objects X and A are structurally aligned iff $(X, A, \theta) \in Ob(\mathcal{P})$ for some isomorphism θ in \mathcal{A}_{min} .

Definition 3.2 (Static Boundary). $\partial_{\text{stat}} := (\operatorname{Ob} \mathcal{C}_W \times \operatorname{Ob} \mathcal{D}_W) \setminus \operatorname{Ob} \mathcal{P}$.

4 Semantic Compatibility and Dynamic Invariances

Definition 4.1 (Semantic Compatibility). Fix a semantics functor $S: \mathcal{A}_{\min} \to \delta_{\star}$. For $(X, A, \theta) \in \mathcal{P}$, semantic compatibility holds when

$$\rho(S \circ F(X)) = \rho(S \circ G(A)), \qquad \Phi_{\kappa}(S \circ F(X)) = \Phi_{\kappa}(S \circ G(A))$$

on a regular neighborhood in I_{κ}^{reg} .

Definition 4.2 (Difference Triad). Let $\mathcal{V} := \ker d\Phi_{\kappa} \subset TX$. Displacements are flows of vector fields in $\Gamma(\mathcal{V})$. Masquerades are paths in the groupoid $\operatorname{Aut}_{\Phi_{\kappa}} = \{g : X \to X \mid \Phi_{\kappa} \circ g = \Phi_{\kappa}\}$. Bifurcations are transverse crossings of $\operatorname{Disc}(\Phi_{\kappa})$ that change the type map ν .

Theorem 4.1 (Static + Semantic Alignment). Let $(X, A, \theta) \in \mathcal{P}$. Full alignment holds iff semantic compatibility holds. Moreover, on I_{κ}^{reg} alignment is preserved under displacements and masquerades.

Theorem 4.2 (Kernel Exactness and Lie Correspondence). On the identity component, $\operatorname{Lie}(\operatorname{Aut}_{\Phi_{\kappa}}^{0}) \cong \Gamma(\mathcal{V})$. At regular points there is a short exact sequence of vector bundles

$$0 \longrightarrow \mathcal{V} \longrightarrow TX \xrightarrow{d\Phi_{\kappa}} \Phi_{\kappa}^*(TI_{\kappa}) \longrightarrow 0,$$

and
$$\mathcal{V}_x = T_x (\Phi_{\kappa}^{-1}(\Phi_{\kappa}(x))).$$

Theorem 4.3 (Dynamic Normal Form). Any local alignment-preserving evolution on I_{κ}^{reg} factors as

 $displacement\ flow\ \circ\ masquerade\ \circ\ displacement\ flow.$

Near the singular set, bifurcations must be admitted.

Corollary 4.1 (Semantic Boundary). If a curve transverse to $\operatorname{Disc}(\Phi_{\kappa})$ changes ν from r_i to r_j , the pair falls into the semantic boundary ∂_{sem} .

5 Event-Visible Alignment and Concurrency

Definition 5.1 (Event Layer). Endow \mathcal{A}_{\min} with a time object T and replayable traces, obtaining \mathcal{A}_{evt} and a functor $J: \mathcal{A}_{\min} \to \mathcal{A}_{\text{evt}}$. Set

$$\mathcal{P}_{\mathrm{evt}} := \mathcal{C}_W \times_{\mathcal{A}_{\mathrm{evt}}} \mathcal{D}_W.$$

A switching law is admissible when layer switches commute with workflow composition.

Proposition 5.1 (Concurrency Discipline). Non-isolated interleavings that change Φ_{κ} or ν across executions break alignment. Isolation or compensation must be declared to restore it.

6 Relation Layer: Profunctor Halo and Soft Alignment

Definition 6.1 (Profunctor Halo). Define a profunctor

$$\mathsf{P}_{F,G}(X,A) := \mathrm{Hom}_{\mathcal{A}_{\min}}(FX,GA)$$

to register alignable but non-equal pairs. Reflections or kernel pairs carve out the exactalignment core as a subdevice, while a type-compatible halo keeps pairs with ρ -coincident forms.

7 Comparisons

Decorated or structured cospans can be compared via a manifest-contract functor and the pullback universality. Lenses and optics match bidirectional maintenance with units and idempotents in \mathcal{A}_{\min} . Institutions model cross-logic bridges; embeddings and separation boundaries are recorded in \mathcal{P} or ∂_{stat} .

Appendix A: Minimal Audit Ledger

Windows C_W , \mathcal{D}_W and exceptions; predicates $\operatorname{Pre/Post/Err/Win}$; semantics functor S and projection Φ_{κ} ; structural witness $(X, A, \theta) \in \mathcal{P}$; semantic witness (equalities under ρ and Φ_{κ} on a regular neighborhood); boundary register (discriminant crossings and concurrency breaks).