Analisi Matematica T-2

Urbinati Cristian

22/10/2018

Il seguente documento apporta solo alcune correzioni e rivede alcune parti di un precedente

lavoro di Giorgio Renzi: https://github.com/gioggio/uni-notes/tree/master/Analisi Matematica T-2

e-mail: cristian.urbinati@studio.unibo.it

Altro: https://github.com/urbinaticri/Unibo computerEngineeringNotes

Materiale distribuito con licenza Creative Commons

Attribuzione - Non commerciale - Condividi allo stesso modo 2.0 Italia (CC BY-NC-SA 2.0 IT)

1 Spazi metrici e normati

Definizione (metrica in \mathbb{R}^n) Un'applicazione $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ è una **metrica** se soddisfa: x

- 1. $\forall \underline{x}, y \in \mathbb{R}^n \ d(\underline{x}, y) \ge 0 \ e \ d(\underline{x}, y) = 0 \iff \underline{x} = y$
- 2. $\forall \underline{x}, y \in \mathbb{R}^n \ d(\underline{x}, y) = d(\underline{x}, y)$
- 3. $\forall \underline{x}, y, \underline{z} \in \mathbb{R}^n \ d(\underline{x}, y) \leq d(\underline{x}, \underline{z}) + d(y, \underline{z})$ (Disuguaglianza triangolare)

Definizione (spazio metrico) Sia X un insieme e d una metrica per X. Allora (X, d) si dice spazio metrico.

Definizione (norma di un vettore) Sia $\underline{x} = (x_1, \dots, x_n)$. Si definisce norma di \underline{x} una funzione $||\cdot|| : \mathbb{R}^n \to \mathbb{R}$ che soddisfa le seguenti proprietà:

- 1. $||\underline{x}|| \ge 0 \forall \underline{x} \in \mathbb{R}^n \text{ e } ||\underline{x}|| = 0 \iff \underline{x} = \underline{0} = (0, \dots, 0)$
- 2. $\forall \underline{x}, y \in \mathbb{R}^n ||\underline{x} + y|| \le ||\underline{x}|| + ||y||$
- 3. $\forall \lambda \in \mathbb{R}, \ \forall \underline{x} \in \mathbb{R}^n \ ||\lambda \underline{x}|| = |\lambda| \cdot ||\underline{x}||$

1.1 Insiemistica

Definizione (palla aperta di centro $\underline{x}^{(0)}$ e raggio $\delta > 0$ in \mathbb{R}^n) $B_{\delta}(\underline{x}^{(0)}) = \{\underline{x} \in \mathbb{R}^n \mid d(\underline{x},\underline{x}^{(0)}) < \delta\}$ Osservazione In \mathbb{R}^2 è detto disco aperto.

Definizione (insieme aperto) $A \subseteq \mathbb{R}^n$ è un **insieme aperto** se $\forall \underline{x}^{(0)} \in A \ \exists \delta > 0 : B_{\delta}(\underline{x}^{(0)}) \subseteq A$ **Proprietà:**

- 1. \emptyset e \mathbb{R}^n sono insiemi aperti.
- 2. L'unione di un numero arbitrario di insiemi aperti è ancora un insieme aperto.
- 3. L'intersezione di un numero finito di insiemi aperti è ancora un insieme aperto.

Definizione (palla chiusa di centro $\underline{x}^{(0)}$ e raggio $\delta > 0$ in \mathbb{R}^n) $B_{\delta}(\underline{x}^{(0)}) = \{\underline{x} \in \mathbb{R}^n \mid d(\underline{x}, \underline{x}^{(0)}) \leq \delta\}$ Osservazione In \mathbb{R}^2 è detto disco chiuso.

Definizione (insieme chiuso) $A \subseteq \mathbb{R}^n$ è un **insieme chiuso** se $\mathbb{R}^n \setminus A$ è un insieme aperto.

Proprietà:

- 1. \emptyset e \mathbb{R}^n sono insiemi chiusi.
- 2. L'unione di un numero finito di insiemi chiusi è ancora un insieme chiuso.
- 3. L'intersezione di un numero arbitrario di insiemi chiusi è ancora un insieme chiuso.

Osservazione Insiemi chiusi in dimensioni inferiori rimangono chiusi in dimensioni superiori.

Definizione (punto interno di un insieme) Sia $A \subseteq \mathbb{R}^n$ e $\underline{x}^{(0)} \in A$. Chiamiamo $\underline{x}^{(0)}$ punto interno di A se $\exists \delta > 0$: $B_{\delta}(\underline{x}^{(0)}) \subseteq A$.

Definizione (interno di un insieme) Sia $A \subseteq \mathbb{R}^n$. Chiamiamo **interno** di A l'insieme dei punti interni di A, denotato con $\overset{\circ}{A}$.

Osservazione $\overset{\circ}{A}$ è il più grande sottoinsieme di A aperto.

Definizione (punto aderente di un insieme) Sia $A \subseteq \mathbb{R}^n$. Il punto $\underline{x}^{(0)} \in \mathbb{R}^n$ si dice **punto aderente** di A se $\forall \delta > 0$ $A \cap B_{\delta}(x^{(0)}) \neq \emptyset$

Osservazione Se $x^{(0)}$ appartiene all'insieme, allora è un punto aderente dell'insieme.

Definizione (chiusura di un insieme) Sia $A \subseteq \mathbb{R}^n$. Chiamiamo **chiusura** di A l'insieme dei punti aderenti di A, denotato con \overline{A} .

Osservazione \overline{A} è il più piccolo sottoinsieme di \mathbb{R}^n chiuso contenente A.

Proprietà:

- 1. Se A è aperto, allora $A = \overset{\circ}{A}$
- 2. Se A è chiuso, allora $A = \overline{A}$
- 3. $\overset{\circ}{A} \leq A \leq \overline{A}$

Definizione (punto di frontiera) Siano $A \subseteq \mathbb{R}^n$, $\underline{x}^{(0)} \in \mathbb{R}^n$. $\underline{x}^{(0)}$ si dice **punto di frontiera** di A se $\underline{x}^{(0)}$ è aderente sia ad A che a $\mathbb{R}^n \setminus A$. Cioè $\exists \delta > 0$: $A \cap B_{\delta}(\underline{x}^{(0)}) \neq \emptyset$ e $(\mathbb{R}^n \setminus A) \cap B_{\delta}(\underline{x}^{(0)}) \neq \emptyset$

Definizione (frontiera di un insieme) Sia $A \subseteq \mathbb{R}^n$. Chiamiamo **frontiera** di A l'insieme dei punti di frontiera di A, denotato con ∂A .

Proprietà:

1.
$$\overline{A} = A \cup \partial A = \overset{\circ}{A} \cup \partial A$$

Definizione (punto di accumulazione) Siano $A \subseteq \mathbb{R}^n$ e $\underline{x}^{(0)} \in \mathbb{R}^n$. $\underline{x}^{(0)}$ si dice **punto di accumulazione** per A se $\forall \delta > 0$ $(B_{\delta}(\underline{x}^{(0)}) \setminus \{\underline{x}^{(0)}\}) \cap A \neq \emptyset$

Osservazione Se $\underline{x}^{(0)}$ è punto di accumulazione per A, allora $\underline{x}^{(0)}$ è punto di aderenza di A.

Osservazione L'insieme dei punti di accumulazione è contenuto in \overline{A} e contiene $\overset{\circ}{A}$.

Proposizione Se $A \subseteq \mathbb{R}^n$ è chiuso allora contiene i suoi punti di accumulazione.

Definizione (insieme limitato) $A \subseteq \mathbb{R}^n$ è **limitato** se $\exists M > 0$ tale che $A \subseteq B_M(\underline{0})$.

Teorema (di Bolzano-Weierstrass) Un insieme infinito e limitato in \mathbb{R}^n possiede almeno un punto di accumulazione.

Definizione (insieme compatto) $A \subseteq \mathbb{R}^n$ è **compatto** se A è limitato e chiuso.

Definizione (inseieme connesso) $B \subseteq \mathbb{R}^n$ è **connesso** se <u>non</u> esistono due insiemi aperti $A_1, A_2 \subseteq \mathbb{R}^n$ t.c.

- $A_1 \cap B \neq \emptyset$ $A_2 \cap B \neq \emptyset$
- $(A_1 \cap B) \cup (A_2 \cap B) = B$

2 Funzioni

Definizione (funzione a valori scalari) Sia $A \subseteq \mathbb{R}^n$. $f: A \to \mathbb{R}$ è una funzione scalare se $\forall x \in A$ si ha che $f(x) \in \mathbb{R}$.

Definizione (funzione a valori vettoriali) Sia $A \subseteq \mathbb{R}^n$. $f: A \to \mathbb{R}^p$ è una **funzione vettoriale** se $\forall \underline{x} \in A$ si ha che $f(\underline{x}) = (f_1(\underline{x}), \dots, f_p(\underline{x})) \iff f_1, \dots, f_p: A \to \mathbb{R}$.

Definizione (campo vettoriale) Sia $A \subseteq \mathbb{R}^n$. $f: A \to \mathbb{R}^n$ è un **campo vettoriale** se $\forall \underline{x} \in A$ si ha che $f(\underline{x}) = (f_1(\underline{x}), \dots, f_n(\underline{x}))$.

Definizione (funzione limitata) Sia $A \subseteq \mathbb{R}^n$. $f: A \to \mathbb{R}^m$ è una **funzione limitata** se $f(A) = \{\underline{y} \subseteq \mathbb{R}^m: \exists \underline{x} \in A, \ f(\underline{x}) = \underline{y}\} \subseteq \mathbb{R}^m$ è un insieme limitato.

3 Limiti

Definizione (limite per funzioni a valori scalari) Sia $A \subseteq \mathbb{R}^n$, $f :: A \to \mathbb{R}$, $\underline{x}^{(0)} \in \mathbb{R}^n$ punto di accumulazione per A, $l \in \mathbb{R}$. Diciamo che $\lim_{\underline{x} \to \underline{x}^{(0)}} f(\underline{x}) = l$

se
$$\forall \epsilon > 0 \ \exists \delta > 0 \ : \ \forall \underline{x} \in A, \underline{x} \neq \underline{x}^{(0)}, \ d(\underline{x},\underline{x}^{(0)}) < \delta, \ |f(\underline{x}) - l| < \epsilon$$

Definizione (limite per funzioni a valori vettoriali) Siano $A \subseteq \mathbb{R}^n$, $f :: A \to \mathbb{R}^p$, $\underline{x}^{(0)} \in \mathbb{R}^n$ punto di accumulazione per $A, \underline{l} \in \mathbb{R}^p$. Diciamo che

$$\lim_{\underline{x} \to \underline{x}^{(0)}} f(\underline{x}) = l \iff \begin{cases} \lim_{\underline{x} \to \underline{x}^{(0)}} f_1(\underline{x}) = l_1 \\ \vdots \\ \lim_{\underline{x} \to \underline{x}^{(0)}} f_p(\underline{x}) = l_p \end{cases}$$

3.1 Proprietà del limite

- 1. Unicità del limite: il limite, se esiste, è unico
- 2. Località del limite: invece di considerare f in tutto il dominio, posso considerare f definita in $A \cap B_r(x^{(0)})$.
- 3. Locale limitatezza di f: se $\lim_{x \to x^{(0)}} f(\underline{x}) = l \in \mathbb{R}$ allora $\exists R > 0: \ f : A \cap B_R(\underline{x}^{(0)}) \to \mathbb{R}$ è limitatezza di f: se $\lim_{x \to x} f(\underline{x}^{(0)}) = \lim_{x \to x} f(\underline{x}^{(0)}) =$

Teorema (proprietà algebriche dei limiti per valori scalari) Siano $A \subseteq \mathbb{R}^n, f, g: A \to \mathbb{R}, \underline{x}^{(0)}$ punto di accumulazione per A. Siano $l, m \in \mathbb{R}$ e $\lim_{\underline{x} \to \underline{x}^{(0)}} f(\underline{x}) = l$ e $\lim_{\underline{x} \to \underline{x}^{(0)}} g(\underline{x}) = m$. Allora:

- 1. $\lim_{x \to x^{(0)}} [f(\underline{x}) \pm g(\underline{x})] = l \pm m$
- $2. \ \lim_{\underline{x} \to \underline{x}^{(0)}} [f(\underline{x}) \cdot g(\underline{x})] = l \cdot m$
- 3. Se $m \neq 0$ allora $\lim_{\underline{x} \to \underline{x}^{(0)}} \frac{1}{g(\underline{x})} = \frac{1}{m}$
- 4. Se $m \neq 0$ allora $\lim_{\underline{x} \to \underline{x}^{(0)}} \frac{f(\underline{x})}{g(\underline{x})} = \frac{l}{m}$

Teorema (proprietà algebriche dei limiti per valori vettoriali) Siano $A \subseteq \mathbb{R}^n, \ f,g:A \to \mathbb{R}^p, \ \underline{x}^{(0)}$ punto di accumulazione per A. Siano $\underline{l},\underline{m} \in \mathbb{R}$ e $\lim_{\underline{x} \to \underline{x}^{(0)}} f(\underline{x}) = \underline{l}$ e $\lim_{\underline{x} \to \underline{x}^{(0)}} g(\underline{x}) = \underline{m}$. Allora:

- 1. $\lim_{\underline{x} \to \underline{x}^{(0)}} [f(\underline{x}) \pm g(\underline{x})] = \underline{l} \pm \underline{m}$
- $2. \ \lim_{\underline{x} \to \underline{x}^{(0)}} [f(\underline{x}) \cdot g(\underline{x})] = <\underline{l}, \underline{m}>$

3.2 Continuità

Definizione (funzione continua in un punto per valori scalari) Siano $A \subseteq \mathbb{R}^n$, $\underline{x}^{(0)} \in A$, $f: A \to \mathbb{R}$. Diciamo che f è continua in $\underline{x}^{(0)}$ se $\forall \epsilon > 0 \; \exists \delta > 0 : \; \left| f(\underline{x}) - f(\underline{x}^{(0)}) \right| < \epsilon \; \forall \underline{x} \in A : \; d_n(\underline{x},\underline{x}^{(0)}) < \delta$.

Definizione (funzione continua in un punto per valori vettoriali) Siano $A \subseteq \mathbb{R}^n$, $\underline{x}^{(0)} \in A$, $f: A \to \mathbb{R}^p$. Diciamo che f è continua in $\underline{x}^{(0)}$ se $\forall \epsilon > 0 \; \exists \delta > 0 : \; d_p(f(\underline{x}), f(\underline{x}^{(0)})) < \epsilon \; \forall \underline{x} \in A : \; d_n(\underline{x}, \underline{x}^{(0)}) < \delta$.

Osservazioni:

- Se $\underline{x}^{(0)} \in A$ è un punto isolato allora f è banalmente continua in $\underline{x}^{(0)}$
- Se $\underline{x}^{(0)} \in A$ è un punto di accumulazione per A allora f continua in $\underline{x}^{(0)} \Longleftrightarrow \lim_{x \to x^{(0)}} f(\underline{x}) = f(\underline{x}^{(0)})$

Teorema (proprietà algebriche delle funzioni continue a valori scalari) Siano $A \subseteq \mathbb{R}^n$, $\underline{x}^{(0)} \in A$, $f, g : A \to \mathbb{R}$ continue in $x^{(0)}$. Allora:

- 1. $f \pm g$ e $f \cdot g$ sono continue in $\underline{x}^{(0)}$
- 2. Se $g(\underline{x}) \neq 0$ allora $\frac{1}{q}$ e $\frac{f}{q}$ sono continue in $\underline{x}^{(0)}$

Teorema (proprietà algebriche delle funzioni continue a valori vettoriali) Siano $A \subseteq \mathbb{R}^n$, $\underline{x}^{(0)} \in A$, $f, g: A \to \mathbb{R}^p$ funzioni continue in $\underline{x}^{(0)}$. Allora:

- 1. $f \pm g$ è continua in $x^{(0)}$
- 2. $||f(\underline{x})||$ è continua in $\underline{x}^{(0)}$
- 3. $\langle f(x), g(x) \rangle$ è continua in $x^{(0)}$

Definizione (composizione di funzioni a valori vettoriali) Siano $A \subseteq \mathbb{R}^n$, $B \subseteq \mathbb{R}^p$, $f: A \to B$, $g: B \to \mathbb{R}^k$ allora $g \circ f(\underline{x}) = (g_1(f_1(\underline{x}), \dots, f_p(\underline{x})), \dots, g_k(f_1(\underline{x}), \dots, f_p(\underline{x}))) \quad \forall \underline{x} \in A$.

Teorema (continuità della funzione composta) Siano $A \subseteq \mathbb{R}^n$, $B \subseteq \mathbb{R}^p$, $f: A \to B$ continua in $\underline{x}^{(0)} \in A$, $g: B \to \mathbb{R}^k$ continua in $y_0 \in B$, allora $g \circ f: A \to \mathbb{R}^k$ è continua in $\underline{x}^{(0)} \in A$.

Teorema (permanenza del segno) Siano $A \subseteq \mathbb{R}^n$, $\underline{x}^{(0)} \in A$, $f: A \to \mathbb{R}$ continua in $\underline{x}^{(0)}$. Se $f(\underline{x}^{(0)}) > 0$ allora $\exists \delta > 0$ tale che $f(\underline{x}) > 0$ $\forall \underline{x} \in B_{\delta}(\underline{x}^{(0)}) \cap A$.

Osservazione Questo teorema ha senso se f è a valori scalari.

Definizione (massimo di una funzione) Siano $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$. Diciamo che f ha massimo in A se $\exists \underline{x}^{(0)} \in A: f(\underline{x}) \leq f(\underline{x}^{(0)}) \quad \forall \underline{x} \in A$

Definizione (minimo di una funzione) Siano $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$. Diciamo che f ha minimo in A se $\exists \underline{x}^{(0)} \in A: f(\underline{x}) \geq f(\underline{x}^{(0)}) \quad \forall \underline{x} \in A$

Teorema (di Weierstrass a valori scalari) Siano $A \subseteq \mathbb{R}^n$ compatto e $f: A \to \mathbb{R}$ continua in A. Allora $\exists \min_A f \in \exists \max_A f$.

Teorema (di Weierstrass a valori vettoriali) Siano $A \subseteq \mathbb{R}^n$ compatto e $f: A \to \mathbb{R}^p$ continua in A. Allora f(A) è un insieme compatto in \mathbb{R}^p .

Teorema (di Bolzano) Siano $A \subseteq \mathbb{R}^n$ connesso e $f: A \to \mathbb{R}^p$ continua in A. Allora $f(A) \subseteq \mathbb{R}^p$ è connesso.

4 Calcolo differenziale per funzioni a valori scalari

Definizione (derivata parziale) Siano $A \subseteq \mathbb{R}^n$ aperto, $f: A \to \mathbb{R}$ e $\underline{x}^{(0)} \in A$. Diciamo che f è derivabile parzialmente rispetto a x_i nel punto $\underline{x}^{(0)} = (x_1, \dots, x_n)$ se esiste finito il limite

$$\lim_{h \to 0} \frac{f(x_1, ..., x_i + h, ..., x_n) - f(x_1, ..., x_n)}{h} = \frac{\partial f}{\partial x_i} (\underline{x}^{(0)})$$

Definizione (gradiente) Siano $A \subseteq \mathbb{R}^n$ aperto, $f: A \to \mathbb{R}$ derivabile in $\underline{x}^{(0)} \in A$. Si dice **gradiente** di f in $\underline{x}^{(0)}$ il vettore

$$Df(\underline{x}^{(0)}) = \nabla f(\underline{x}^{(0)}) = (\frac{\partial f}{\partial x_1}(\underline{x}^{(0)}), ..., \frac{\partial f}{\partial x_n}(\underline{x}^{(0)}))$$

Teorema (derivate parziali e continuità di f) Sia $A \subseteq \mathbb{R}^n$ aperto, $f: A \to \mathbb{R}, \underline{x}^{(0)} \in A$ e $\frac{\partial f}{\partial x_1}(\underline{x}^{(0)}), ..., \frac{\partial f}{\partial x_n}(\underline{x}^{(0)})$ continue in $\underline{x}^{(0)}$, allora f è continua in $\underline{x}^{(0)}$.

Teorema (piano tangente al grafico di una funzione) Siano $A \subseteq \mathbb{R}^n$ aperto, $f: A \to \mathbb{R}, \underline{x}^{(0)} \in A$ e $\frac{\partial f}{\partial x_1}(\underline{x}^{(0)}), ..., \frac{\partial f}{\partial x_n}(\underline{x}^{(0)})$ continue in $\underline{x}^{(0)}$, allora:

$$y = f(\underline{x}^{(0)}) + \langle \nabla f(\underline{x}^{(0)}), \underline{x} - \underline{x}^{(0)} \rangle$$

Teorema (formula di Taylor al primo ordine) Siano $A \subseteq \mathbb{R}^n$ aperto, $f: A \to \mathbb{R}, \underline{x}^{(0)} \in A$ e $s \frac{\partial f}{\partial x_1}(\underline{x}^{(0)}), ..., \frac{\partial f}{\partial x_n}(\underline{x}^{(0)})$ continue in $\underline{x}^{(0)}$, allora:

$$f(\underline{x}) = f(\underline{x}^{(0)}) + \langle \nabla f(\underline{x}^{(0)}), \underline{x} - \underline{x}^{(0)} \rangle + o(||\underline{x} - \underline{x}^{(0)}||) \qquad ||\underline{x} - \underline{x}^{(0)}|| \to 0$$

Definizione (derivata direzionale) Siano $A \subseteq \mathbb{R}^n$ aperto, $f: A \to \mathbb{R}, \hat{\underline{\lambda}} = (\lambda_1, ..., \lambda_n), \underline{x}^{(0)} \in A$ con $||\hat{\underline{\lambda}}|| = 1$.

Chiameremo derivata direzionale di f nella direzione di $\hat{\underline{\lambda}}$ il limite, se esiste finito, seguente:

$$\frac{\partial f}{\partial \hat{\underline{\lambda}}}(\underline{x}^{(0)}) = \lim_{h \to 0} \frac{f(\underline{x}^{(0)} + h\underline{\hat{\lambda}}) - f(\underline{x}^{(0)})}{h}$$

Teorema Siano $A \subseteq \mathbb{R}^n$ aperto, $f: A \to \mathbb{R}, \underline{x}^{(0)} \in A$. Se $\nabla f(\underline{x})$ è continua in $\underline{x}^{(0)}$ allora $\forall \underline{\hat{\lambda}} \in \mathbb{R}^n$ con $||\underline{\hat{\lambda}}|| = 1$ si ha:

$$\left| \frac{\partial f}{\partial \hat{\lambda}}(\underline{x}^{(0)}) \right| \le \left\| \nabla f(\underline{x}^{(0)}) \right\|$$

ed in particolare la variazione è massima, cioè pari a $\nabla f(\underline{x}^{(0)})$, se $\hat{\underline{\lambda}} = \pm \frac{\nabla f(\underline{x}^{(0)})}{\|\nabla f(\underline{x}^{(0)})\|}$ ovvero ha la stessa direzione del gradiente ma norma unitaria essendo un versore.

Definizione (derivate parziali di ordine superiore) Siano $A \subseteq \mathbb{R}^n$ aperto, $f: A \to \mathbb{R}$, $\underline{x}^{(0)} \in A$. Se $\frac{\partial f}{\partial x_i}$ è derivabile in A, chiamiamo derivata parziale seconda di f rispetto a $x_i x_j$ il limite, se esiste finito, seguente:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} (\underline{x}^{(0)}) \right) = \lim_{h \to 0} \frac{\frac{\partial f}{\partial x_j} (\underline{x}^{(0)} + h \underline{\hat{e}}_i) - \frac{\partial f}{\partial x_j} (\underline{x}^{(0)})}{h}$$

Definizione (matrice hessiana) Supponiamo che $f:A\to\mathbb{R},\,A\subseteq\mathbb{R}^n$ aperto, possegga tutte le derivate parziali al secondo ordine. Allora chiamiamo **matrice hessiana** di f in $\underline{x}^{(0)}$ la matrice:

$$H_f(\underline{x}^{(0)}) = \begin{bmatrix} \nabla \frac{\partial f}{\partial x_1}(\underline{x}^{(0)}) \\ \vdots \\ \nabla \frac{\partial f}{\partial x_n}(\underline{x}^{(0)}) \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(\underline{x}^{(0)}) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\underline{x}^{(0)}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\underline{x}^{(0)}) & \dots & \frac{\partial^2 f}{\partial x_n^2}(\underline{x}^{(0)}) \end{bmatrix}$$

Teorema (lemma di Schwarz) Siano $A \subseteq \mathbb{R}^n$ aperto e $f: A \to \mathbb{R}$. Se esistono continue le derivate parziali seconde $\frac{\partial^2 f}{\partial x_i \partial x_j}$ e $\frac{\partial^2 f}{\partial x_j \partial x_i}$ in $\underline{x}^{(0)} \in A$. Allora

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\underline{x}^{(0)}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\underline{x}^{(0)})$$

cio
è $H_f(\underline{x}^{(0)})$ è simmetrica e quindi il numero massimo di elementi diversi è
 $\frac{n(n+1)}{2}.$

Teorema (formula di Taylor al secondo ordine) Siano $A \subseteq \mathbb{R}^n$ aperto, $f: A \to \mathbb{R}$ con derivate parziali seconde continue in $\underline{x}^{(0)} \in A$. Allora:

$$\forall \underline{h} \in \mathbb{R}^n \qquad f(\underline{x}^{(0)} + \underline{h}) = f(\underline{x}^{(0)}) + \langle \nabla f(\underline{x}^{(0)}), \underline{h} \rangle + \frac{1}{2} \langle \underline{h}, H_f(\underline{x}^{(0)})\underline{h} \rangle + o(||\underline{h}||^2) \qquad ||\underline{h}|| \to 0$$

cioè:

$$\forall \underline{h} \in \mathbb{R}^n \qquad f(\underline{x}^{(0)} + \underline{h}) = f(\underline{x}^{(0)}) + \left(\sum_{i=1}^n \frac{\partial f}{\partial x_i}(\underline{x}^{(0)})h_i\right) + \frac{1}{2} \left(\sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(\underline{x}^{(0)})h_i h_j\right) + o(||\underline{h}||^2) \qquad ||h|| \to 0$$

dove $\sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(\underline{x}^{(0)}) h_i h_j$ è la forma quadratica associata alla matrice hessiana.

Definizione (forme quadratiche) Sia A una matrice $n \times n$. Una forma quadratica è un'applicazione $q_A : \mathbb{R}^n \to \mathbb{R}$

$$q_A(\underline{h}) = \langle \underline{h}, A\underline{h} \rangle = \underline{h}^{\top} A\underline{h} = \sum_{i,j=1}^{n} a_{ij} h_i h_j$$

- definita positiva se $q_A(\underline{h}) > 0 \quad \forall \underline{h} \in \mathbb{R}^n \setminus \{\underline{0}\}$
- definita negativa se $q_A(\underline{h}) < 0 \quad \forall \underline{h} \in \mathbb{R}^n \setminus \{\underline{0}\}$
- semidefinita positiva se $q_A(\underline{h}) \geq 0 \quad \forall \underline{h} \in \mathbb{R}^n$
- semidefinita negativa se $q_A(\underline{h}) \leq 0 \quad \forall \underline{h} \in \mathbb{R}^n$
- indefinita se $\exists \underline{h}, \underline{k} \in \mathbb{R}^n$ tali che $q_A(\underline{h}) < 0 < q_A(\underline{k})$

Osservazione $\forall A \in M_{n \times n} \quad \exists ! q_A$

Osservazione Presa una forma quadratica q_A possiamo associarle infinite matrici, ma una sola è simmetrica.

Teorema Sia q_A una forma quadratica in \mathbb{R}^n , allora:

- q_A è definita positiva $\iff \exists m > 0 : q_A(\underline{h}) \geq m \|\underline{h}^2\| \quad \forall h \in \mathbb{R}^n$
- q_A è definita negativa $\iff \exists m < 0 : q_A(\underline{h}) \leq m \|\underline{h}^2\| \quad \forall h \in \mathbb{R}^n$

Teorema Sia $A \in M_{n \times n}$ simmetrica, $\mu_1 \leq \cdots \leq \mu_n \in \mathbb{R}$ i suoi autovalori e q_A la forma quadratica associata ad A. Allora $\forall \underline{h} \in \mathbb{R}^n$:

$$\mu_1 \|\underline{h}^2\| \le q_A \le \mu_n \|\underline{h}^2\|$$

Teorema (forme quadratiche e autovalori) Sia $A \in M_{n \times n}$ simmetrica, $\lambda_1, ..., \lambda_n \in \mathbb{R}$ i suoi autovalori e q_A la forma quadratica associata ad A. Allora q_A è:

- definita positiva $\iff \lambda_1, ..., \lambda_n > 0$
- definita negativa $\iff \lambda_1, ..., \lambda_n < 0$
- semidefinita positiva in senso proprio $\iff \lambda_1,...,\lambda_n \geq 0$ e $\exists \lambda_i,\lambda_j$ tali che $\lambda_i=0$ e $\lambda_j>0$
- semidefinita negativa in senso proprio $\iff \lambda_1,...,\lambda_n \leq 0$ e $\exists \lambda_i,\lambda_j$ tali che $\lambda_i=0$ e $\lambda_j<0$
- indefinita $\iff \exists \lambda, \mu \in \mathbb{R}$ autovalori tali che $\lambda < 0 < \mu$

Teorema (criterio di Sylvester per la matrici 2x2) Sia $A \in M_{2\times 2}$ simmetrica e $q_A(\underline{h})$ la forma quadratica associata ad A. Allora:

- $q_A(\underline{h})$ è definita \iff $\det(A) > 0$
- $q_A(\underline{h})$ è definita positiva \iff $\det(A) > 0$ e $a_{11} > 0$
- $q_A(\underline{h})$ è definita negativa \iff $\det(A) < 0$ e $a_{11} < 0$
- $q_A(\underline{h})$ è indefinita $\iff \det(A) < 0$
- $q_A(\underline{h})$ è semidefinita \iff $\det(A) = 0$
- $q_A(\underline{h})$ è semidefinita positiva \iff $\det(A) = 0$ e $a_{11}, a_{22} \ge 0$
- $q_A(\underline{h})$ è semidefinita negativa \iff $\det(A) = 0$ e $a_{11}, a_{22} \leq 0$

Definizione (minore principale) Sia $A \in M_{n \times n}$. Per ogni $k \in \{1, \dots, n\}$ diremo minori principali di A, e li indicheremo con A_k , le matrici ottenute da A eliminando le ultime n - k righe e n - k colonne. Ad esempio:

$$A = \begin{pmatrix} 4 & 1 & 2 \\ 3 & -2 & 0 \\ -1 & 3 & 5 \end{pmatrix} \Longrightarrow A_1 = (4), \ A_2 = \begin{pmatrix} 4 & 1 \\ 3 & -2 \end{pmatrix}, \ A_3 = \begin{pmatrix} 4 & 1 & 2 \\ 3 & -2 & 0 \\ -1 & 3 & 5 \end{pmatrix}$$

Teorema (criterio di Sylvester per le matrici $n \times n$) Sia $A \in M_{n \times n}$ simmetrica e $q_A(\underline{h})$ la forma quadratica associata ad A. Allora:

- $q_A(h)$ è definita positiva \iff $\det(A_k) > 0 \ \forall k = 1,...,n$
- $q_A(\underline{h})$ è definita negativa \iff $(-1)^k \det(A_k) > 0 \ \forall k = 1, ..., n$
- Se $\det(A_k) \neq 0 \ \forall k = 1, ..., n$ e non sono rispettate le regole di segno precedenti, allora $q_A(\underline{h})$ è indefinita.

4.1 Punti critici

Definizione (massimo e minimo locale) Siano $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$. Diciamo che $\underline{x}^{(0)} \in A$ è un punto di **massimo** locale (risp. di **minimo locale**) se:

$$\exists \delta > 0 : f(\underline{x}^{(0)}) \ge f(\underline{x}) \text{ (risp. } f(\underline{x}^{(0)}) \le f(\underline{x})) \ \forall \underline{x} \in A \cap B_{\delta}(\underline{x}^{(0)})$$

Definizione (punto di sella) Siano $A \subseteq \mathbb{R}^n$ aperto, $f: A \to \mathbb{R}$, $\underline{x}^{(0)} \in A$ punto critico per f. Chiamiamo $\underline{x}^{(0)}$ punto di sella se:

$$\exists \delta > 0 \ \exists \underline{x}, y \in A \cap B_{\delta}(\underline{x}^{(0)}) : f(\underline{x}) \le f(\underline{x}^{(0)}) \le f(y)$$

Teorema (di Fermat) Siano $A \subseteq \mathbb{R}^n$ aperto, $f: A \to \mathbb{R}, \underline{x}^{(0)} \in A$ punto di massimo o minimo locale per f. Se $\exists \nabla f(\underline{x}^{(0)})$ allora $\nabla f(\underline{x}^{(0)}) = \underline{0}$.

Osservazione E' una condizione necessaria ma non sufficiente.

Definizione (Punto critico) Siano $A \subseteq \mathbb{R}^n$ aperto, $f: A \to \mathbb{R}$, $\underline{x}^{(0)} \in A$. Se $\exists \nabla f(\underline{x}^{(0)})$ t.c. $\nabla f(\underline{x}^{(0)}) = \underline{0}$ allora $\underline{x}^{(0)}$ è un **punto critico o stazionario** per f.

Teorema Sia $A \subseteq \mathbb{R}^n$ aperto, $f \in \mathcal{C}^{(2)}(A,\mathbb{R})$ e $\underline{x}^{(0)} \in A$. Allora:

- 1. se $\underline{x}^{(0)}$ è un punto di minimo locale $\Longrightarrow \nabla f(\underline{x}^{(0)}) = \underline{0}$ e $H_f(\underline{x}^{(0)})$ è semidefinita positiva
- 2. se $\underline{x}^{(0)}$ è un punto di massimo locale $\Longrightarrow \nabla f(\underline{x}^{(0)}) = \underline{0}$ e $H_f(\underline{x}^{(0)})$ è semidefinita negativa
- 3. se $\nabla f(\underline{x}^{(0)}) = \underline{0}$ e $H_f(\underline{x}^{(0)})$ è definita positiva $\Longrightarrow \underline{x}^{(0)}$ è un punto di minimo locale
- 4. se $\nabla f(\underline{x}^{(0)}) = \underline{0}$ e $H_f(\underline{x}^{(0)})$ è definita negativa $\Longrightarrow \underline{x}^{(0)}$ è un punto di massimo locale
- 5. se $\nabla f(x^{(0)}) = 0$ e $H_f(x^{(0)})$ è indefinita $\Longrightarrow x^{(0)}$ è un punto di sella

Osservazione Se $\nabla f(\underline{x}^{(0)}) = 0$ e $H_f(\underline{x}^{(0)})$ è semidefinita positiva in senso proprio sicuramente $\underline{x}^{(0)}$ non potrà essere di massimo locale. Sarà quindi un punto di minimo locale o sella. Viceversa se $\nabla f(\underline{x}^{(0)}) = 0$ e $H_f(\underline{x}^{(0)})$ è semidefinita negativa in senso proprio sicuramente $\underline{x}^{(0)}$ non potrà essere di minimo locale ma sarà un un punto di massimo locale o sella.

5 Calcolo differenziale per funzioni a valori vettoriali

Definizione (derivata parziale) Sia $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}^p$, $\underline{x}^{(0)} \in A$. Se ogni componente f_i , $i \in [1, ..., p]$ è derivabile parzialmente rispetto a x_j , $j \in [1, ..., n]$ in $\underline{x}^{(0)}$ allora:

$$\frac{\partial f}{\partial x_j}(\underline{x}^{(0)}) = \left(\frac{\partial f_1}{\partial x_j}(\underline{x}^{(0)}), \cdots, \frac{\partial f_p}{\partial x_j}(\underline{x}^{(0)})\right)$$

Definizione (matrice jacobiana) Sia $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}^p$, $\underline{x}^{(0)} \in A$. Si definisce **matrice jacobiana** di f in $\underline{x}^{(0)}$ la matrice $p \times n$ i cui elementi della i-esima riga con $i \in [1, \dots, p]$ sono le componenti del gradiente di f_i .

$$J_{f}(\underline{x}^{(0)}) = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{p}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \end{bmatrix} = \begin{bmatrix} \nabla f_{1}(\underline{x}^{(0)}) \\ \vdots \\ \nabla f_{p}(\underline{x}^{(0)}) \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x_{1}}(\underline{x}^{(0)}) & \cdots & \frac{\partial f}{\partial x_{n}}(\underline{x}^{(0)}) \end{bmatrix}$$

Osservazione Se p = 1, $J_f(x^{(0)}) = \nabla f(x^{(0)})$.

Osservazione Se $f \in \mathcal{C}^{(1)}(A, \mathbb{R}^p)$, usando la formula di Taylor per le componenti f_i , i = 1, ..., p, abbiamo per ogni $\underline{x}^{(0)} \in A$ fissato

$$\begin{bmatrix} f_1(\underline{x}^{(0)} + \underline{h}) \\ \vdots \\ f_p(\underline{x}^{(0)} + \underline{h}) \end{bmatrix} = \begin{bmatrix} f_1(\underline{x}^{(0)}) + \langle \nabla f_1(\underline{x}^{(0)}), \underline{h} \rangle + o(||\underline{h}||) \\ \vdots \\ f_p(\underline{x}^{(0)}) + \langle \nabla f_p(\underline{x}^{(0)}), \underline{h} \rangle + o(||\underline{h}||) \end{bmatrix}$$

cioè

$$f(\underline{x}^{(0)} + \underline{h}) = f(\underline{x}^{(0)}) + \langle J_f(\underline{x}^{(0)}), \underline{h} \rangle + o(||\underline{h}||) \qquad ||\underline{h}|| \to 0$$

5.1 Composizione di funzioni

Teorema (composizione di funzioni e derivata parziale) Siano $A \subseteq \mathbb{R}^n$ aperto, $B \subseteq \mathbb{R}^p$ aperto, $f \in \mathcal{C}^{(1)}(A, B)$, $g \in \mathcal{C}^{(1)}(B, \mathbb{R})$. Allora $g \circ f \in \mathcal{C}^{(1)}(A, \mathbb{R})$ e

$$\frac{\partial (g \circ f)}{\partial x_j}(\underline{x}) = \left\langle \nabla g(f(\underline{x})), \frac{\partial f}{\partial x_j}(\underline{x}) \right\rangle \qquad j \in [1, \dots, n], \forall \underline{x} \in A$$

Teorema (matrice jacobiana della funzione composta) Siano $A \subseteq \mathbb{R}^n$ aperto, $B \subseteq \mathbb{R}^p$ aperto, $f \in \mathcal{C}^{(1)}(A, B)$, $g \in \mathcal{C}^{(1)}(B, \mathbb{R}^k)$. Allora $g \circ f \in \mathcal{C}^{(1)}(A, \mathbb{R}^k)$ e

$$J_{g \circ f}(\underline{x}) = J_g(f(\underline{x})) \cdot J_f(\underline{x}) \qquad \forall \underline{x} \in A$$

5.2 Funzione inversa

Definizione (Diffeomormismo) Siano $A, B \subseteq \mathbb{R}^n$ aperti, $f \in \mathcal{C}^{(1)}(A, B)$ è un **diffeomorfismo** se $f : A \xrightarrow{1-1} B$ e $f^{-1} \in \mathcal{C}^{(1)}(B, A)$.

Teorema (matrice jacobiana della funzione inversa) Sia $f \in \mathcal{C}^{(1)}(A, B)$ diffeomorfismo fra insiemi $A, B \subseteq \mathbb{R}^n$ aperti, allora:

$$J_{f^{-1}}(\underline{y}) = J_f^{-1}(f^{-1}(\underline{y}))$$

6 Varietà ed estremanti condizionati

Definizione (Varietà regolare in \mathbb{R}^n) Siano $A \subseteq \mathbb{R}^n$ aperto e $g \in \mathcal{C}^{(1)}(A, \mathbb{R}^k)$. Diremo che l'insieme

$$\Gamma = \{ \underline{x} \in A : g_1(\underline{x}) = 0, \dots, g_k(\underline{x}) = 0 \} \subseteq A$$

è una varietà regolare (n-k)-dimensionale se $\forall \underline{x} \in \Gamma$ si ha che $J_g(\underline{x}) = \begin{pmatrix} \nabla g_1(\underline{x}) \\ \vdots \\ \nabla g_k(\underline{x}) \end{pmatrix}$ ha rango massimo.

Definizione (Spazio tangente a Γ in $\underline{x}^{(0)} \in \Gamma$) Siano $A \subseteq \mathbb{R}^n$ aperto e $g \in \mathcal{C}^{(1)}(A, \mathbb{R}^k)$. Sia inoltre

$$\Gamma = \{ \underline{x} \in A : g_1(\underline{x}) = 0, \dots, g_k(\underline{x}) = 0 \} \subseteq A$$

varietà regolare (n-k)-dimensionale e $\underline{x}^{(0)} \in \Gamma$. Allora lo spazio tangente a Γ in $\underline{x}^{(0)}$ è (n-k)-dimensionale e:

$$T_{\underline{x}^{(0)}}\Gamma = \left\{\underline{h} \in \mathbb{R}^n : \left\langle \nabla g_1(\underline{x}^{(0)}), \underline{h} \right\rangle = 0, \dots, \left\langle \nabla g_k(\underline{x}^{(0)}), \underline{h} \right\rangle = 0 \right\}$$

Definizione (Spazio normale a Γ in $\underline{x}^{(0)} \in \Gamma$) Siano $A \subseteq \mathbb{R}^n$ aperto e $g \in \mathcal{C}^{(1)}(A, \mathbb{R}^k)$. Sia inoltre

$$\Gamma = \{x \in A : g_1(x) = 0, \dots, g_k(x) = 0\} \subseteq A$$

varietà regolare (n-k)-dimensionale e $\underline{x}^{(0)} \in \Gamma$. Allora lo spazio normale a Γ in $\underline{x}^{(0)}$ è k-dimensionale e:

$$N_{\underline{x}^{(0)}}\Gamma = \left\{ \underline{h} \in \mathbb{R}^n : \exists c_1, \dots c_k \in \mathbb{R} \quad \underline{h} = c_1 \nabla g_1(\underline{x}^{(0)}) + \dots + c_k \nabla g_k(\underline{x}^{(0)}) \right\}$$

Definizione (Estremante condizionato) Sia $A \subseteq \mathbb{R}^n$, $\Gamma = \{\underline{x} \in A : g_1(\underline{x}) = 0, \dots, g_k(\underline{x}) = 0\} \subseteq A$ varietà regolare, $f : \Gamma \to \mathbb{R}, x^{(0)} \in \Gamma$ allora:

- $\underline{x}^{(0)}$ è un punto di massimo locale condizionato a Γ per f se $\exists \delta > 0$: $f(\underline{x}) \leq f(\underline{x}^{(0)}) \ \forall x \in \Gamma \cap B_{\delta}(\underline{x}^{(0)})$
- $x^{(0)}$ è un punto di minimo locale condizionato a Γ per f se $\exists \delta > 0$: $f(x) > f(x^{(0)}) \ \forall x \in \Gamma \cap B_{\delta}(x^{(0)})$

Osservazione La condizione di maggioranza (risp. di minoranza) su $\Gamma \cap B_{\delta}(\underline{x}^{(0)})$ è più debole rispetto a tutto $B(\underline{x}^{(0)})$

Teorema (di Fermat per estremanti condizionati) Sia $A \subseteq \mathbb{R}^n$ aperto, $f, g_1, \dots, g_k \in \mathcal{C}^{(1)}(A, \mathbb{R})$.

Sia $\Gamma = \{\underline{x} \in A : g_1(\underline{x}) = 0, \dots, g_k(\underline{x}) = 0\} \subseteq A$. Se $\underline{x}^{(0)} \in \Gamma$ è un punto di massimo (risp. di minimo) locale condizionato a Γ per f allora $\frac{\partial f}{\partial \hat{\nu}}(\underline{x}^{(0)}) = 0 \ \forall \hat{\nu} \in T_{\underline{x}^{(0)}}\Gamma$.

Definizione (Punto critico o stazionario condizionato) Sia $A \subseteq \mathbb{R}^n$ aperto, $f \in \mathcal{C}^{(1)}(A,\mathbb{R}), g_1, \dots, g_k \in \mathcal{C}^{(1)}(A,\mathbb{R})$. Sia $\Gamma = \{\underline{x} \in A : g_1(\underline{x}) = 0, \dots, g_k(\underline{x}) = 0\} \subseteq A$ e $\underline{x}^{(0)} \in \Gamma$ allora chiameremo $\underline{x}^{(0)}$ **punto critico o stazionario condizionato** a Γ per f se $\frac{\partial f}{\partial \hat{\nu}}(\underline{x}^{(0)}) = 0 \ \forall \hat{\nu} \in T_{\underline{x}^{(0)}}\Gamma$.

Osservazione $\frac{\partial f}{\partial \hat{\nu}}(\underline{x}^{(0)}) = \langle \nabla f(\underline{x}^{(0)}), \hat{\nu} \rangle = 0 \ \forall \hat{\nu} \in T_{\underline{x}^{(0)}}\Gamma \iff \nabla f(\underline{x}^{(0)}) \in N_{\underline{x}^{(0)}}\Gamma \iff \exists ! \lambda_1, \dots, \lambda_k \in \mathbb{R} : \nabla f(\underline{x}^{(0)}) = \lambda_1 \nabla g_1(\underline{x}^{(0)}) + \dots + \lambda_k \nabla g_k(\underline{x}^{(0)})$

Teorema Sia $A \subseteq \mathbb{R}^n$ aperto, $f \in \mathcal{C}^{(1)}(A,\mathbb{R})$ e $\Gamma = \{\underline{x} \in A : g_1(\underline{x}) = 0, \dots, g_k(\underline{x}) = 0\} \subseteq A$ varietà regolare (n-k)-dimensionale. Se $\underline{x}^{(0)} \in \Gamma$ è di massimo (risp. di minimo) locale condizionato a Γ per f allora $\nabla f(\underline{x}^{(0)}) \in N_{\underline{x}^{(0)}}\Gamma$.

Teorema (moltiplicatori di Lagrange) Sia $A \subseteq \mathbb{R}^n$ aperto, $f, g_1, \dots, g_k \in \mathcal{C}^{(1)}(A, \mathbb{R})$.

Sia $\Gamma = \{\underline{x} \in A : g_1(\underline{x}) = 0, \dots, g_k(\underline{x}) = 0\} \subseteq A$ varietà regolare (n-k)-dimensionale.

Sia $F: A \times \mathbb{R}^k \to \mathbb{R}$ la funzione lagrangiana:

$$F(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_k)=f(x_1,\ldots,x_n)-\sum_{i=1}^k\lambda_ig_i(x_1,\ldots,x_n)$$

Se $\underline{x}^{(0)} \in \Gamma$ è un estrem. condizionato a Γ per f allora $\exists \overline{\lambda_1}, \dots, \overline{\lambda_k} \in \mathbb{R} : (x_1^{(0)}, \dots x_n^{(0)}, \overline{\lambda_1}, \dots, \overline{\lambda_k})$ è un pt. critico di F. Cioè:

$$\begin{cases} \frac{\partial F}{\partial x_1}(x_1^{(0)}, \dots x_n^{(0)}, \overline{\lambda_1}, \dots, \overline{\lambda_k}) = \frac{\partial f}{\partial x_1}(\underline{x}^{(0)}) - \sum_{i=1}^k \overline{\lambda_i} \frac{\partial g_i}{\partial x_1}(\underline{x}^{(0)}) = 0 \\ \vdots \\ \frac{\partial F}{\partial x_n}(x_1^{(0)}, \dots x_n^{(0)}, \overline{\lambda_1}, \dots, \overline{\lambda_k}) = \frac{\partial f}{\partial x_n}(\underline{x}^{(0)}) - \sum_{i=1}^k \overline{\lambda_i} \frac{\partial g_i}{\partial x_n}(\underline{x}^{(0)}) = 0 \\ \frac{\partial F}{\partial \overline{\lambda_1}}(x_1^{(0)}, \dots x_n^{(0)}, \overline{\lambda_1}, \dots, \overline{\lambda_k}) = -g_1(\underline{x}^{(0)}) = 0 \\ \vdots \\ \frac{\partial F}{\partial \overline{\lambda_k}}(x_1^{(0)}, \dots x_n^{(0)}, \overline{\lambda_1}, \dots, \overline{\lambda_k}) = -g_k(\underline{x}^{(0)}) = 0 \end{cases}$$

Teorema (di Dini - 1 equazione in 2 variabili)

Siano $A \subseteq \mathbb{R}^2$ aperto, $g \subseteq \mathcal{C}^{(1)}(A,\mathbb{R}), \ \Gamma = \left\{(x,y) \in \mathbb{R}^2 : g(x,y) = 0\right\}$ varietà regolare rispetto a $(x_0,y_0) \in \Gamma$.

Se $\frac{\partial g}{\partial y}(x_0, y_0) \neq 0$ allora, vicino a (x_0, y_0) , Γ è il grafico di una funzione $f \in \mathcal{C}^{(1)}(]x_0 - \delta_1, x_0 + \delta_2[\,,]y_0 - \varepsilon_1, y_0 + \varepsilon_2[)$ tale che:

$$g(x,y) = 0 \iff y = f(x) \quad e \quad f'(x) = -\frac{\frac{\partial g}{\partial x}(x,f(x))}{\frac{\partial g}{\partial y}(x,f(x))} \, \forall x \in]x_0 - \delta_1, x_0 + \delta_2[$$

7 Integrazione

7.1 Integrazione (o misura) di Peano-Jordan

Definizione (Intervallo superiormente semiaperto) E' detto intervallo superiormente semiaperto (s.s.) un intervallo del tipo $[a_1, b_1[\times [a_2, b_2[= I.$

Definizione (Misura o area) Sia I un intervallo superiormente semiaperto. Chiamiamo **misura** (o area) di I il valore $\mu_n(I) = \prod_{i=1}^n (b_i - a_i)$.

Definizione (Plurintervallo) Chiamiamo plurintervallo un'unione finita di intervalli (chiusi, aperti, semiaperti).

Definizione (*I*-partizione) Sia P un plurintervallo superiormente semiaperto, è detta I-partizione di P una qualunque famiglia finita di intervalli I_1, \ldots, I_m superiormente semiaperti t.c. :

- $\bullet \bigcup_{k=1}^{m} I_k = P$
- $I_i \cap I_i = \emptyset$ se $i \neq j$

Se $\{I_k\}_{k=1,...,m}$ sono una *I*-partizione di *P* definiamo la misura di *P* il valore $\mu_n(P) = \sum_{k=1}^m \mu_n(I_k)$.

Definizione (Misura di un plurintervallo) Definiamo **misura di un plurintervallo** qualunque Q come $\mu_n(Q) = \mu_n(P)$ con P plurintervallo s.s. t.c. $\overline{Q} = \overline{P}$ (medesima chiusura).

Proprietà

- Se P e Q sono due pluintervalli s.s. allora $P \cup Q$, $P \cap Q$, $P \setminus Q$ sono plurintervalli s.s.
- Se P_1, \ldots, P_m sono plurintervalli s.s. a due a due disgiunti allora $\mu_n(P_1 \cup \cdots \cup P_m) = \sum_{k=1}^m \mu_n(P_k)$ ossia μ_n è finitamente additiva.
- ullet Se P e Q sono due plurintervalli s.s. allora:

$$-\mu_n(P \cup Q) = \mu_n(P) + \mu_n(Q) - \mu_n(P \cap Q)$$
$$-\mu_n(P \setminus Q) = \mu_n(P) - \mu_n(P \cap Q)$$

Definizione (Misura nulla) Sia $X \subseteq \mathbb{R}^n$ limitato. Diremo che X ha **misura nulla** se $\forall \varepsilon > 0$ esiste un plurintervallo P t.c. $X \subseteq P$ e $\mu_n(P) \le \varepsilon$.

Proposizione Sia $X \subseteq \mathbb{R}^n$ limitato, consideriamo due classi di numeri positivi $\{\mu_n(P_1)\}_{P_1 \subseteq X}$ e $\{\mu_n(P_2)\}_{X \subseteq P_2}$.

Tali classi di numeri sono separate, ossia $\forall P_1, P_2 \ P_1 \subseteq X \subseteq P_2$ si ha che $\mu_n(P_1) \leq \mu_n(P_2)$, quindi:

$$0 \le \sup_{P_1 \subset X} \mu_n(P_1) \le \inf_{X \subseteq P_2} \mu_n(P_2) < +\infty$$

Definizione (misura interna) Sia $X \subseteq \mathbb{R}^n$ limitato, consideriamo $\{\mu_n(P_1)\}_{P_1 \subseteq X}$.

Definiamo **misura interna** $\mu_n^i(X) = \sup_{P_1 \subseteq X} \mu_n(P_1).$

Definizione (misura esterna) Sia $X \subseteq \mathbb{R}^n$ limitato, consideriamo $\{\mu_n(P_2)\}_{X \subseteq P_2}$.

Definiamo **misura esterna** $\mu_n^e(X) = \inf_{X \subset P_2} \mu_n(P_2).$

7.1.1 Insiemi limitati

Definizione (Insieme limitato misurabile secondo Peano-Jordan) Sia $X \subseteq \mathbb{R}^n$ limitato, se $\mu_n^i(X) = \mu_n^e(X)$ diremo che X è misurabile secondo Peano-Jordan.

Proprietà Sia $X \subseteq \mathbb{R}^n$ limitato, allora

- X è misurabile secondo Peano-Jordan $\iff \forall \varepsilon > 0 \,\exists P_1, P_2 : P_1 \leq X \leq P_2 \,\mathrm{e}\,\mu_n(P_2 \setminus P_1) \leq \varepsilon \,\mathrm{con}\,P_1, P_2 \,\mathrm{plurintervalli}$ superiormente semiaperti.
- X è misurabile secondo Peano-Jordan $\iff \forall \varepsilon > 0 \,\exists X_1, \, X_2$ limitati e misurabili secondo Peano-Jordan con $X_1 \subseteq X \subseteq X_2$ e $\mu_n(X_2 \setminus X_1) \le \varepsilon$.

Osservazione Se X, Y sono limitati e misurabili secondo Peano-Jordan allora anche $X \cup Y$, $X \cap Y$, $X \setminus Y$ sono misurabili secondo Peano-Jordan.

Definizione (Misura di Peano-Jordan di un insieme limitato) Indichiamo con $J_b(\mathbb{R}^n)$ la famiglia degli insiemi limitati misurabili secondo Peano-Jordan, allora è definita **misura di Peano-Jordan di un insieme limitato** la funzione $\mu_n: J_b(\mathbb{R}^n) \to [0, +\infty[$ e valgono le proprietà:

- μ_n è finitamente additiva, ossia se $X_k \in J_b(\mathbb{R}^n)$ k = 1, ..., m e a due a due disgiunti allora $\mu_n(X_1 \cup \cdots \cup X_m) = \sum_{k=1}^m \mu_n(X_k)$
- $\mu_n(X \cup Y) = \mu_n(X) + \mu_n(Y) \mu_n(X \cap Y) \quad \forall X, Y \in J_b(\mathbb{R}^n)$
- $\mu_n(X \setminus Y) = \mu_n(X) \mu_n(X \cap Y) \quad \forall X, Y \in J_b(\mathbb{R}^n)$

Teorema Sia $X \subseteq \mathbb{R}^n$ limitato, allora $X \in J_b(\mathbb{R}^n) \iff \mu_n(\partial X) = 0$ dove con " ∂ " indichiamo la frontiera.

7.1.2 Insiemi non limitati

Definizione (Insieme non limitato misurabile secondo Peano-Jordan) Sia $X \subseteq \mathbb{R}^n$ non limitato, se $\forall Y \in J_b(\mathbb{R}^n)$ si ha che $X \cap Y \in J_b(\mathbb{R}^n)$ diremo che X è **misurabile secondo Peano-Jordan**.

Definizione (Misura di Peano-Jordan di un insieme non limitato) Indichiamo con $J(\mathbb{R}^n)$ la famiglia degli insiemi non limitati misurabili secondo Peano-Jordan, allora è definita **misura di Peano-Jordan di un insieme non limitato** il valore $\mu_n = \sup_{Y \in J_b(\mathbb{R}^n)} \mu_n(X \cap Y) \in [0, +\infty]$ con $X \in J(\mathbb{R}^n)$.

7.2 Integrale secondo Riemann

Definizione (Grafico di una funzione) Sia $f: A \to \mathbb{R}$, $A \subseteq \mathbb{R}^n$, definiamo il **grafico** di tale funzione

$$\Gamma(f) = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : (x_1, \dots, x_n) \in A, x_{n+1} = f(x_1, \dots, x_n)\}.$$

Definizione (Sottografico di una funzione) Sia $f: A \to \mathbb{R}$ non negativa, $A \subseteq \mathbb{R}^n$, definiamo il **sottografico** di tale funzione $\mathsf{R}(f) = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1}: (x_1, \dots, x_n) \in A, 0 \le x_{n+1} \le f(x_1, \dots, x_n)\}$

Definizione (Funzione non negativa integrabile secondo Riemann) Sia $f: A \to \mathbb{R}$ non negativa, $A \in J(\mathbb{R}^n)$, $\underline{x} \in A$, se $R(f) \in J(\mathbb{R}^{n+1})$ diremo che f è **integrabile secondo Riemann** e poniamo:

$$\int_{A} f(\underline{x}) d\underline{x} = \mu_{n+1}(\mathsf{R}(f)) \in [0, +\infty]$$

Se inoltre $\mu_{n+1}(R(f))$ è finito $(<+\infty)$ diremo che f è sommabile secondo Riemann.

Definizione (Funzione integrabile secondo Riemann) Sia $f:A\to\mathbb{R}$ di segno qualunque, $A\in J(\mathbb{R}^n), \ \underline{x}\in A$, consideriamo le due funzioni:

parte positiva
$$f^+ = \max\{f(\underline{x}), 0\}$$
 e parte negativa $f^- = \max\{-f(\underline{x}), 0\}$

Si ha che:

- $f(\underline{x}) = f^+(\underline{x}) f^-(\underline{x})$
- $|f(\underline{x})| = f^+(\underline{x}) + f^-(\underline{x})$

Se $R(f^+)$, $R(f^-) \in J(\mathbb{R}^{n+1})$ e non entrambi $+\infty$ diremo che f è **integrabile secondo Riemann** e poniamo:

$$\int_{A} f(\underline{x}) d\underline{x} = \int_{A} f^{+}(\underline{x}) d\underline{x} - \int_{A} f^{-}(\underline{x}) d\underline{x}$$

Teorema Sia $A \in J(\mathbb{R}^n)$, $\underline{x} \in A$, $f: A \to \mathbb{R}$ integrabile secondo Riemann, allora:

- ullet L'esistenza e il valore dell'integrale di f non dipendono dai valori che f assume su un insieme di misura nulla.
- f è Riemann integrabile \iff |f|è Riemann integrabile e $\left|\int_A f(\underline{x}) d\underline{x}\right| \leq \int_A |f(\underline{x})| d\underline{x}$ (Disuguaglianza triangolare)
- $\inf_{A} f \leq \frac{1}{\mu_n(A)} \int_{A} f(\underline{x}) d\underline{x} \leq \sup_{A} f \operatorname{con} \mu_n(A) \in]0, +\infty[$

Proprietà Sia $A \in J(\mathbb{R}^n)$, $\underline{x} \in A$, $f, g : A \to \mathbb{R}$ sommabili secondo Riemann, allora:

- $\int\limits_A (c_1 f(\underline{x}) + c_2 g(\underline{x})) d\underline{x} = c_1 \int\limits_A f(\underline{x}) d\underline{x} + c_2 \int\limits_A g(\underline{x}) d\underline{x}$ (Linearità)
- $f(\underline{x}) \geq g(\underline{x}) \quad \forall \underline{x} \in A \Longrightarrow \int_A f(\underline{x}) d\underline{x} \geq \int_A g(\underline{x}) d\underline{x} \ (\mathbf{Monotonia})$ Presi $A_1, A_2 \in J(\mathbb{R}^n) : A_1 \cup A_2 = A, \ A_1 \cap A_2 = \emptyset \ \text{o} \ \mu_n(A_1 \cap A_2) = 0$
- allora $\int_A f(\underline{x}) d\underline{x} = \int_{A_1} f(\underline{x}) d\underline{x} + \int_{A_2} f(\underline{x}) d\underline{x}$ (Additività)

7.3 Teoremi di riduzione degli integrali multipli

Definizione (Insieme normale) Siano $A \in J(\mathbb{R}^n)$, $f, g: A \to \mathbb{R}$ e $g(\underline{x}) \leq f(\underline{x}) \, \forall \underline{x} \in A$. Il sottoinsieme di \mathbb{R}^{n+1} $B = \{(\underline{x}, y) \in \mathbb{R}^{n+1} : \underline{x} \in A, \ g(\underline{x}) \leq y \leq f(\underline{x})\}$ è detto **normale** rispetto a y.

Osservazione Se f, g sono sommabili allora $B \in J(\mathbb{R}^{n+1})$ e la sua misura $\mu_{n+1}(B) = \int_A f(\underline{x}) - g(\underline{x}) d\underline{x} < +\infty$.

Definizione $(A \subset \mathbb{R}^2 \text{ dominio normale})$ Siano $A \in J(\mathbb{R}), f, g : A \to \mathbb{R} \text{ e } g(x) \leq f(x) \forall x \in A.$ Il sottoinsieme $B = \{(x,y) \in \mathbb{R}^2 : x \in A, g(x) \leq y \leq f(x)\}$ è detto **normale** rispetto a y.

Teorema (di riduzione degli integrali doppi)

• caso rettangoli

Sia $I = [a, b] \times [c, d], f : I \to \mathbb{R}$ continua, allora $G : [c, d] \to \mathbb{R}, G(y) = \int_a^b f(x, y) dx$ è continua e sommabile in [c, d] e:

$$\int\int\limits_I f(x,y) dx dy = \int_c^d G(y) dy = \int_c^d \left(\int_a^b f(x,y) dx \right) dy$$

Analogamente, la funzione $H:[a,b]\to\mathbb{R},\ H(x)=\int_c^d f(x,y)dy$ è continua e sommabile in [a,b] e:

$$\iint_{T} f(x,y)dxdy = \int_{a}^{b} H(x)dx = \int_{a}^{b} \left(\int_{c}^{d} f(x,y)dy \right) dx$$

Osservazione Se f(x,y) = g(x)h(y) con $g[a,b] \to \mathbb{R}$ e $h: [c,d] \to \mathbb{R}$ continua, allora:

$$\iint_{I} f(x,y)dxdy = \int_{a}^{b} g(x)dx \int_{c}^{d} h(y)dy$$

• caso insiemi piani normali

Siano $\varphi_1, \varphi_2 : [c,d] \to \mathbb{R}$ continue e supponiamo che $\varphi_1(y) \le \varphi_2(y) \ \forall y \in [c,d]$, l'insieme $K = \{(x,y) \in \mathbb{R}^2 : c \le y \le d, \ \varphi_1(y) \le x \le \varphi_2(y)\}$ normale rispetto a x.

Siano inoltre $f: K \to \mathbb{R}$ continua e $G(y) = \int_{\varphi_1(y)}^{\varphi_2(y)} f(x,y) dx$ continua, allora:

$$\iint_{K} f(x,y)dxdy = \int_{c}^{d} \left(\int_{\varphi_{1}(y)}^{\varphi_{2}(y)} f(x,y)dx \right) dy$$

Analogamente se $\psi_1, \psi_2 : [a, b] \to \mathbb{R}$ continue e supponiamo che $\psi_1(x) \le \psi_2(x) \ \forall x \in [a, b]$, l'insieme

 $K = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, \ \psi_1(x) \le y \le \psi_2(x)\}$ normale rispetto a y.

Siano inoltre $f: K \to \mathbb{R}$ continua e $H(x) = \int_{\psi_1(x)}^{\psi_2(x)} f(x,y) dy$ continua, allora:

$$\iint_K f(x,y)dxdy = \int_a^b \left(\int_{\psi_1(x)}^{\psi_2(x)} f(x,y)dy \right) dx$$

Definizione (solido di Cavalieri) Un sottoinsieme $V \in \mathbb{R}^3$ è detto **solido di Cavalieri** se $V \in J_b(\mathbb{R}^3)$ ed esiste una retta λ tale che per ogni piano perpendicolare a λ , l'intersezione di questo piano con l'insieme V (che indicheremo con $sez_{\lambda}(V)$) è un misurabile secondo P.J. nel piano (ossia $sez_{\lambda}(V) \in J_b(\mathbb{R}^2)$).

Teorema (di Cavalieri) Siano V_1 e V_2 due solidi di Cavalieri di asse λ , se $\mu_2\left(sez_{\lambda}\left(V_1\right)\right) \leq \mu_2\left(sez_{\lambda}\left(V_2\right)\right)$ per ogni piano perpendicolare all'asse λ , allora:

$$\mu_3\left(V_1\right) \le \mu_3\left(V_2\right)$$

Osservazione Segue che se $\mu_2\left(sez_{\lambda}\left(V_1\right)\right) = \mu_2\left(sez_{\lambda}\left(V_2\right)\right)$ allora $\mu_3\left(V_1\right) = \mu_3\left(V_2\right)$.

Teorema (di riduzione per strati o di Cavalieri) Sia V un solido di Cavalieri di asse z e supponiamo che la funzione $f: z \to \mu_2 \left(sez_z \left(V \right) \right)$ sia sommabile e nulla al di fuori di un certo intervallo $[\alpha, \beta]$, allora:

$$\mu_{3}\left(V\right) = \int_{\alpha}^{\beta} \mu_{2}\left(sez_{z}\left(V\right)\right)dz < +\infty \quad \text{e} \quad \int \int \int \int f\left(x,y,z\right)dxdydz = \int_{\alpha}^{\beta} \left(\int \int \int f\left(x,y,z\right)dxdy\right)dz$$

Definizione (solido di rotazione) Nel piano xz consideriamo il grafico di f; $[a,b] \to \mathbb{R}_z$. Facendo ruotare di 2π il sottografico di f attorno all'asse x otteniamo un solido V di Cavalieri rispetto a x e $\mu_3(V) = \int_a^b \pi f^2(x) dx$.

Definizione $(A \subset \mathbb{R}^3 \text{ dominio normale})$ Siano $A \in J(\mathbb{R}^2), f, g : A \to \mathbb{R} \text{ e } g(x,y) \leq f(x,y) \, \forall \, (x,y) \in A.$ Il sottoinsieme $B = \{(x,y,z) \in \mathbb{R}^3 : (x,y) \in A, \, g(x,y) \leq z \leq f(x,y)\}$ è detto **normale** rispetto a z.

Teorema (di riduzione di un integrale triplo per fili) Siano $\alpha, \beta: A \to \mathbb{R}$ con $A \in J_b(\mathbb{R}^2)$ con α, β continue e $\alpha(x,y) \leq \beta(x,y) \ \forall (x,y) \in A$. Sia $K = \{(x,y,z) \in \mathbb{R}^3: (x,y) \in A; \alpha(x,y) \leq z \leq \beta(x,y)\}$, K è detto normale rispetto all'asse z. Se $f: K \to \mathbb{R}$ è continua, allora:

$$\int \int \int f dx dy dz = \int \int \left(\int_{\alpha(x,y)}^{\beta(x,y)} f(x,y,z) dz \right) dx dy$$

Se inoltre A è normale rispetto a y, $A = \{(x, z) \in \mathbb{R}^2 : a \le x \le b; \psi_1(x) \le y \le \psi_2(x)\}$, con ψ_1, ψ_2 continue, allora $\iint_K \int f dx dy dz = \int_a^b \left(\int_{\psi_1(x)}^{\psi_2(x)} \left(\int_{\alpha(x,y)}^{\beta(x,y)} f(x,y,z) dz \right) dy \right) dx.$

7.4 Teorema del cambiamento di variabile nell'integrale multiplo

Proposizione Sia $\phi: \mathbb{R}^2_{(u,v)} \to \mathbb{R}^2_{(x,y)}$ una trasformazione lineare non singolare e sia L la sua matrice associata nelle basi canoniche di partenza e di arrivo. Sia dato l'insieme di partenza $V = [0, a] \times [0, b]$, allora la sua immagine attraverso ϕ è un parallelogrammo e la sua area è $\mu_2(\phi(V)) = |\det(L)| \mu_2(V)$.

Più in generale, se $\phi : \mathbb{R}^n \to \mathbb{R}^n$ è una trasformazione lineare non singolare e L la matrice rappresentativa, per ogni insieme limitato e misurabile $V \subset \mathbb{R}^n$, si ha $\mu_n(\phi(V)) = |\det(L)| \mu_n(V)$.

Teorema (cambiamento di variabile nell'integrale multiplo)

Siano $\phi \in \mathcal{C}^{(1)}(\Omega, \mathbb{R}^n_{\underline{x}})$ con $\Omega \subseteq \mathbb{R}^n_{\underline{v}}$ insieme aperto, $K \subset \Omega$ un insieme compatto misurabile, $f \in \mathcal{C}^{(1)}(\phi(K), \mathbb{R})$. Supponiamo che $\phi(K) \in J_b(\mathbb{R}^n)$. Se inoltre:

- $\phi(\underline{v})$ iniettiva $\forall \underline{v} \in K$
- $\det(J_{\phi}(\underline{v})) \neq 0 \ \forall \underline{v} \in K$

allora:

$$\int_{\phi(K)} f(\underline{x}) d\underline{x} = \int_{K} f(\phi(\underline{v})) \left| \det \left(J_{\phi}(\underline{v}) \right) \right| d\underline{v}$$

Osservazione Se $f \equiv 1$ allora $\mu_n\left(\phi\left(K\right)\right) = \int\limits_K \left|\det\left(J_\phi\left(\underline{v}\right)\right)\right| d\underline{v}$. Da qui si può notare come il determinante coincida con la misura di un rettangolo, nel caso in cui si stia lavorando sul piano, o più in generale di un iperparallelepipedo di dimensioni infinitesimamente piccole. Esempio in figura:

Teorema (passaggio a coordinate polari in \mathbb{R}^2)

Sia $\phi: \mathbb{R}^2_{(\rho,\theta)} \to \mathbb{R}^2_{(x,y)}$ tale che $\phi(\rho,\theta) = (x,y) = (\rho\cos\theta,\rho\sin\theta), \ \rho\in[0,+\infty], \ \theta\in[\alpha,\alpha+2\pi].$ Allora:

• $\phi_{|[0,+\infty]\times[\alpha,\alpha+2\pi]}$ è iniettiva (tranne sul semiasse $\rho=0$ dove ha però misura nulla)

•
$$J_{\phi}(\rho, \theta) = \begin{bmatrix} \cos \theta & -\rho \sin \theta \\ \sin \theta & \rho \cos \theta \end{bmatrix} e \left| \det \left(J_{\phi}(\rho, \theta)_{|[0, +\infty] \times [\alpha, \alpha + 2\pi]} \right) \right| = \rho$$

$$\int_{\phi(\rho, \theta)} \int f(x, y) \, dx dy = \int_{\rho \in [0, +\infty]} \int f(\rho \cos \theta, \rho \sin \theta) \, \rho \, d\rho d\theta$$

$$\theta \in [\alpha, \alpha + 2\pi]$$

Teorema (passaggio a coordinate cilindriche in \mathbb{R}^3)

 $\mathrm{Sia}\ \phi: \mathbb{R}^3_{(\rho,\theta,t)} \to \mathbb{R}^3_{(x,y,z)} \ \mathrm{tale\ che}\ \phi\left(\rho,\theta,t\right) = (x,y,z) = (\rho\cos\theta,\rho\sin\theta,t),\ \rho\in[0,+\infty],\ \theta\in[\alpha,\alpha+2\pi],\ t\in\mathbb{R}.\ \mathrm{Allora:}$

• $\phi_{|[0,+\infty]\times[\alpha,\alpha+2\pi]\times\mathbb{R}}$ è iniettiva (tranne sul piano $\rho=0$ dove ha però misura nulla)

•
$$J_{\phi}\left(\rho,\theta,t\right) = \begin{bmatrix} \cos\theta & -\rho\sin\theta & 0\\ \sin\theta & \rho\cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} e \left| \det\left(J_{\phi}\left(\rho,\theta,t\right)_{\mid [0,+\infty]\times[\alpha,\alpha+2\pi]\times\mathbb{R}}\right) \right| = \rho$$

Teorema (passaggio a coordinate sferiche in \mathbb{R}^3)

Sia $\phi: \mathbb{R}^3_{(\rho,\theta,\varphi)} \to \mathbb{R}^3_{(x,y,z)}$ tale che $\phi(\rho,\theta,\varphi) = (x,y,z) = (\rho\sin\theta\cos\varphi,\rho\sin\theta\sin\varphi,\rho\cos\theta), \ \rho\in[0,+\infty], \ \theta\in[0,\pi], \ \varphi\in[\alpha,\alpha+2\pi].$ Allora:

• $\phi_{|[0,+\infty]\times[0,\pi]\times[\alpha,\alpha+2\pi]}$ è iniettiva (tranne sui piani $\theta=0,\pi$ e $\rho=0$ dove ha però misura nulla)

$$\bullet \ J_{\phi}\left(\rho,\theta,\varphi\right) = \begin{bmatrix} \sin\theta\cos\varphi & \rho\cos\theta\cos\varphi & -\rho\sin\theta\sin\varphi \\ \sin\theta\sin\varphi & \rho\cos\theta\sin\varphi & \rho\sin\theta\cos\varphi \\ \cos\theta & -\rho\sin\theta & 0 \end{bmatrix} e \left| \det\left(J_{\phi}\left(\rho,\theta,\varphi\right)_{|(0,+\infty)\times(0,\pi)\times(\alpha,\alpha+2\pi)}\right) \right| = \rho^{2}\sin\theta$$

8 Successioni numeriche

Definizione (Successione) È detta **successione** una applicazione $f: \mathbb{N} \to \mathbb{R}$ (o \mathbb{C}). I valori di questa successione $x_n = f(n)$ sono detti elementi della successione e scriveremo $\{x_n\}_{n\in\mathbb{N}}$ sia i valori della successione che la successione stessa.

Definizione (Successione regolare o convergente) Sia $\{x_n\}_{n\in\mathbb{N}}$ una successione a valori reali, $l\in\mathbb{R}$. Diremo che $\{x_n\}_{n\in\mathbb{N}}$ converge a l e scriveremo $x_n\underset{n\to+\infty}{\to} l$ o $\lim_{n\to+\infty}x_n=l$ se

$$\forall \varepsilon > 0 \ \exists \nu(\varepsilon) \in \mathbb{N} : |x_n - l| \le \varepsilon \ \forall n \ge \nu(\epsilon)$$

In questo caso diremo che la successione è regolare o convergente.

Osservazione La definizione precedente vale anche nel caso in cui $\{z_n\}_{n\in\mathbb{N}}$ sia una successione a valori complessi.

Definizione (Successione divergente) Sia $\{x_n\}_{n\in\mathbb{N}}$ una successione a valori reali. Diremo che $\{x_n\}_{n\in\mathbb{N}}$ diverge positivamente (risp. negativamente) se

$$\forall k > 0 \ \exists \nu(k) \in \mathbb{N} : x \ge k \text{ (risp. } x_n \le -k) \ \forall n \ge \nu(k)$$

Osservazione La definizione precedente vale anche nel caso in cui $\{z_n\}_{n\in\mathbb{N}}$ sia una successione a valori complessi se

$$\forall k > 0 \; \exists \nu(k) \in \mathbb{N} : |z_n| \ge k \; \forall n \ge \nu(k)$$

Definizione (Successione oscillante) Se una successione reale non è né convergente né divergente la diremo oscillante.

Definizione (Successione limitata) Una successione $\{x_n\}_{n\in\mathbb{N}}$ in \mathbb{R} o \mathbb{C} è detta **limitata** se $\exists M>0: |x_n|\leq M \ \forall n\in\mathbb{N}$.

Teorema Siano $\{x_n\}_{n\in\mathbb{N}}$ e $\{y_n\}_{n\in\mathbb{N}}$ successioni regolari in \mathbb{R} con $x_n\to l$ e $y_n\to m, l,m\in\mathbb{R}$. Allora:

- 1. $x_n + y_n \rightarrow l + m$
- $2. \ x_n \cdot y_n \to l \cdot m$
- 3. se $m \neq 0$ e $y_n \neq 0 \ \forall n \in \mathbb{N}$, allora $\frac{x_n}{y_n} \to \frac{l}{m}$
- 4. se $x_n \leq y_n \ \forall n \in \mathbb{N}$ (è sufficiente definitivamente, ossia da un certo indice in poi), allora $l \leq m$
- 5. se l < m, allora $x_n < y_m$ definitivamente

Teorema (del confronto) Siano $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}$, $\{z_n\}_{n\in\mathbb{N}}$ successioni reali e supponiamo che $x_n, y_n \to l \in \mathbb{R} \cup \{+\infty\}$. Allora se $x_n \leq z_n \leq y_n \ \forall n \in \mathbb{N}$, si ha $z_n \to l$.

Teorema Siano $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}$ successioni reali e supponiamo $\{x_n\}_{n\in\mathbb{N}}$ infinitesima, cioè $x_n\to 0$. Allora:

- 1. se $\{x_n\}_{n\in\mathbb{N}}$ è limitata, allora $x_n\cdot y_n\to 0$
- 2. se $\{x_n\}_{n\in\mathbb{N}} > 0$ (risp. $\{x_n\}_{n\in\mathbb{N}} < 0$) $\forall n\in\mathbb{N}$, allora $\frac{1}{x_n} \to +\infty$ (risp. $x_n \to -\infty$)

Teorema (successioni divergenti) Siano $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}$ successioni reali. Allora

- se $x_n \to +\infty$
 - 1. se $\exists M \in \mathbb{R}$ tale che $y_n \geq M \ \forall n \in \mathbb{N}, x_n + y_n \to +\infty$
 - 2. se $\exists M > 0$ tale che $y_n > M \ \forall n \in \mathbb{N}, x_n \cdot y_n \to +\infty$
 - 3. se $\exists M < 0$ tale che $y_n < M \ \forall n \in \mathbb{N}, x_n \cdot y_n \to -\infty$
 - 4. $\frac{1}{x_n} \to 0$ (è infinitesima, si suppone $x_n \neq 0 \ \forall n$)
- $x_n \to -\infty$
 - 1. se $\exists M \in \mathbb{R}$ tale che $y_n \leq M \ \forall n \in \mathbb{N}, x_n + y_n \to -\infty$
 - 2. se $\exists M > 0$ tale che $y_n > M \ \forall n \in \mathbb{N}, x_n \cdot y_n \to -\infty$
 - 3. se $\exists M < 0$ tale che $y_n < M \ \forall n \in \mathbb{N}, x_n \cdot y_n \to +\infty$
 - 4. $\frac{1}{x_n} \to 0$ (è infinitesima, si suppone $x_n \neq 0 \ \forall n$)

Teorema (criterio di Cauchy) Sia $\{x_n\}_{n\in\mathbb{N}}$ una successione reale (o a valori complessi). Allora è regolare se e solo se

$$\forall \varepsilon > 0 \ \exists \nu(\varepsilon) \in \mathbb{N} : |x_n - x_m| \le \varepsilon \ \forall n, m \ge \nu(\varepsilon)$$

Osservazione Nel caso complesso si ha che $\sqrt{(\Re x_n - \Re x_m)^2 + (\Im x_n - \Im x_m)^2} \le \varepsilon$.

Osservazione È una condizione necessaria e sufficiente per la convergenza.

Definizione (successioni monotone) Sia $\{x_n\}_{n\in\mathbb{N}}$ una successione reale. Diremo che $\{x_n\}_{n\in\mathbb{N}}$ è **monotona** crescente (risp. decrescente) se

$$n < m \implies x_n \le x_m \text{ (risp. } x_n \ge x_m)$$

La successione $\{x_n\}_{n\in\mathbb{N}}$ è strettamente crescente (risp. strettamente decrescente) se

$$n < m \implies x_n < x_m \text{(risp. } x_n > x_m)$$

Definizione (successione estratta) Siano $\{x_n\}_{n\in\mathbb{N}}$ una successione in \mathbb{R} o in \mathbb{C} e $h \to \sigma(h)$ con $\sigma : \mathbb{N} \to \mathbb{N}$ strettamente crescente, allora la successione $\{x_{\sigma(h)}\}_{n\in\mathbb{N}}$ si dice **successione estratta** da $\{x_n\}_{n\in\mathbb{N}}$.

Proposizione Ogni successione $\{x_n\}_{n\in\mathbb{N}}$ monotona ha limite finito o infinito.

- 1. Nel caso di successioni crescenti si ha $\lim_{n\to+\infty} x_n = \sup_n x_n$. In particolare tale limite è finito se la successione è limitata, altrimenti la successione diverge positivamente.
- 2. Nel caso di successioni decrescenti si ha $\lim_{n\to+\infty} x_n = \inf_n x_n$. In particolare tale limite è finito se la successione è limitata, altrimenti la successione diverge negativamente.

Definizione (numero di Eulero) Il numero di Eulero è definito come $\lim_{n\to+\infty}(1+\frac{1}{n})^n=e$

Osservazione Si può dimostrare che:

- 1. $x_n = (1 + \frac{1}{n})^n$ è crescente
- 2. x_n è limitata superiormente (in particolare $2 < x_n < 3 \ \forall n \in \mathbb{N}$)

Dimostrazione

$$\left(1 + \frac{1}{n}\right)^n = \sum_{h=0}^n \binom{n}{h} \left(\frac{1}{n}\right)^h \cdot 1^{n-h} =$$

$$= \sum_{h=0}^n \frac{n!}{h!(n-h)!} \cdot \frac{1}{n^h} =$$

$$= \sum_{h=0}^n \frac{1}{h!} \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{h-1}{n}\right) <$$

$$< \sum_{h=0}^n \frac{1}{h!} < 1 + \sum_{h=1}^n \frac{1}{2^{h-1}} = \sum_{h=0}^{n-1} \frac{1}{2^h} = 1 + \frac{2^n - 1}{2^{n-1}}$$

$$= 1 + 2 - \frac{1}{2^{n-1}} < 3$$

8.1 Successioni di funzioni reali

Definizione (Successione di funzioni) Sia $I \subseteq \mathbb{R}$ intervallo, $g_n : I \to \mathbb{R}$ una funzione dipendente dal parametro $n \in \mathbb{N}$. Chiameremo $\{g_n\}_{n \in \mathbb{N}}$ successione di funzioni.

Definizione (limite puntuale) Sia $I \subseteq \mathbb{R}$ intervallo, $g_n, g: I \to \mathbb{R}$, $n \in \mathbb{N}$. Diremo che $\{g_n\}_{n \in \mathbb{N}}$ converge puntualmente a g se $\forall x \in I$ $g_n(x)$ converge a g(x). La funzione g è detta **limite puntuale** della successione $\{g_n\}_{n \in \mathbb{N}}$. Ovvero:

$$\forall \varepsilon > 0 \ \forall x \in I \ \exists \nu(\varepsilon, x) \in \mathbb{N} : |g_n(x) - g(x)| < \varepsilon \ \forall n \ge \nu(\varepsilon, x)$$

Definizione (limite uniforme) Diremo che $\{g_n\}_{n\in\mathbb{N}}$ converge uniformemente a g se detta $\alpha_n=\sup_I |g_n(x)-g(x)|$, si ha che $\lim_{n\to+\infty}\sup_I |g_n(x)-g(x)|=0$. La funzione g è detta **limite uniforme** della successione $\{g_n\}_{n\in\mathbb{N}}$. Ovvero:

$$\forall \varepsilon > 0 \ \forall x \in I \ \exists \nu(\varepsilon) \in \mathbb{N} : |g_n(x) - g(x)| < \varepsilon \ \forall n \ge \nu(\varepsilon)$$

Osservazione Ovviamente se $g_n \stackrel{\text{unif.}}{\to} g$ allora $g_n \stackrel{\text{punt.}}{\to} g$. Il contrario è falso.

8.1.1 Teoremi di passaggio al limite

Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzione $I\to\mathbb{R},\,I\subseteq\mathbb{R}$ intervallo. Valgono questi fatti:

1. Sia $f: I \to \mathbb{R}$ il limite uniforme di $\{f_n\}_{n \in \mathbb{N}}$, se f_n sono continue in $x_0 \in I$ allora anche f è continua in x_0 :

$$\lim_{x \to x_0} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\lim_{x \to x_0} f_n(x) \right)$$

- 2. Sia $f_n \in \mathcal{C}^{(1)}(I,\mathbb{R})$, $\{f_n(x_0)\}_{n\in\mathbb{N}}$ converge per qualche $x_0 \in I$ e $\{f'_n\}_{n\in\mathbb{N}}$ converge uniformemente in I, allora:
 - (a) $\{f_n\}_{n\in\mathbb{N}}$ converge uniformemente in I (e in ogni $[a,b]\subseteq I$)
 - (b) detta f il limite uniforme di $\{f_n\}_{n\in\mathbb{N}}$, essa risulta derivabile e f' è il limite uniforme di $\{f'_n\}_{n\in\mathbb{N}}$ e si scrive

$$D\left[\lim_{n\to+\infty} f_n(x)\right] = \lim_{n\to+\infty} \left[D\left(f_n(x)\right)\right] \ \forall x\in I$$

- 3. Sia $I = [a, b], \{f_n\}_{n \in \mathbb{N}}$ sommabile secondo Riemann e $f: I \to \mathbb{R}$ il limite uniforme di $\{f_n\}_{n \in \mathbb{N}}$, allora
 - (a) f è integrabile secondo Riemann
 - (b) $\int_a^b f(x)dx = \int_a^b \lim_{n \to +\infty} f_n(x)dx = \lim_{n \to +\infty} \int_a^b f_n(x)dx$

9 Serie numeriche

Definizione (Serie numerica) Sia $\{x_n\}_{n\in\mathbb{N}}$ una successione in \mathbb{R} , poniamo $S_n = \sum_{k=0}^n x_k$.

 $\{S_n\}_{n\in\mathbb{N}}$ è detta successione delle somme parziali o **serie** di termine generale x_n e si indica con $\sum_{k=0}^{+\infty} x_k$ o $\lim_{n\to+\infty} S_n$

Definizione (Serie convergente) Se esiste finito il $\lim_{n\to+\infty} S_n$ diremo che la serie $\sum_{k=0}^{+\infty} x_k$ è **convergente** e scriviamo

$$\sum_{k=0}^{+\infty} \lim_{n \to +\infty} S_n = S$$

Definizione (Serie divergente) Se $\lim_{n\to+\infty} S_n = +\infty$ (risp. $-\infty$) diremo che la serie **diverge** positivamente (risp. negativamente).

Definizione (Serie oscillante) Se S_n non ha limite diremo che la serie è oscillante.

Osservazione Data una successione $\{x_n\}_{n\in\mathbb{N}}$ in \mathbb{R} , se in essa si alterano un numero finito di termini il limite non cambia. Ciò non è vero per la serie associata.

Definizione (Serie telescopica) È detta **serie telescopica** una serie $\sum_{k=0}^{+\infty} x_k \operatorname{con} x_k = a_{k+1} - a_k$ per una certa successione $\{a_k\}_{k \in \mathbb{N}}$. In questo caso

$$S_n = x_0 + \dots + x_n = (a_1 - a_0) + \dots + (a_n - a_{n-1}) = a_{n+1} - a_0$$

$$S = \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} (a_{n+1} - a_0)$$

Teorema (criterio di Cauchy) $\sum_{k=0}^{+\infty} x_k$ è la convergenza della successione delle somme parziali $\{S_n\}_{n\in\mathbb{N}}$, quindi

$$\sum_{k=0}^{+\infty} x_k \text{ converge } \iff \forall \varepsilon > 0 \ \exists \nu(\varepsilon) \in \mathbb{N} \text{ tale che } |S_n - S_m| \leq \varepsilon \ \forall n, m \geq \nu(\varepsilon)$$

cioè

$$\left| \sum_{m+1}^{n} x_k \right| \le \varepsilon \quad (n \ge m)$$

Osservazione Se n=m+1 si ha $x_{m+1}\to 0$

Teorema (condizione necessaria di convergenza) Se la serie $\sum_{k=0}^{+\infty} x_k$ è convergente, allora $x_k \to 0$.

Definizione (serie geometrica) Si dice **serie geometrica** di ragione x la serie

$$\sum_{k=0}^{+\infty} x^k, \ x \in \mathbb{R}$$

- $\{x^n\}_{n\in\mathbb{N}}$ è infinitesima $\iff |x|<1$
- se $x \ge 1$ la serie diverge positivamente
- se $x \le -1$ la serie è oscillante
- se |x| < 1 allora

$$S_n = 1 + x + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$$

e quindi

$$S = \lim_{n \to +\infty} S_n = \sum_{n=0}^{+\infty} \frac{1}{1-x}$$

Definizione (serie armonica) $\sum_{n=1}^{+\infty} \frac{1}{n}$ è detta **serie armonica** e diverge positivamente.

Dimostrazione Applichiamo il criterio di Cauchy

$$S_{2n} - S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge \frac{1}{2n} \cdot n = \frac{1}{2}$$

Quindi la serie non converge.

Definizione (convergenza assoluta) Sia $\sum_{k=0}^{+\infty} x_k$ una serie numerica. Diremo che essa **converge assolutamente** se converge la serie dei suoi valori assoluti $\sum_{k=0}^{+\infty} |x_k|$.

Teorema Se $\sum_{k=0}^{+\infty} x_k$ converge assolutamente, allora converge semplicemente.

Dimostrazione Basta osservare che

$$|S_n - S_m| = |x_{n+1} + \dots + x_n| \le |x_{n+1}| + \dots + |x_n| = |T_n - T_m|$$

dove $\{T_n\}_{n\in\mathbb{N}}$ è la successione delle somme parziali di $\sum_{n=0}^{+\infty}|x_n|$. Se $\sum_{n=0}^{+\infty}x_n$ converge, allora $\{T_n\}_{n\in\mathbb{N}}$ soddisfa Cauchy, quindi $|T_n-T-m|\leq \varepsilon$ e quindi $|S_n-S_m|\leq \varepsilon$.

9.0.1 Criteri di convergenza per serie a termini positivi

(**criterio del confronto**) Siano $\{a_n\}_{n\in\mathbb{N}}$ e $\{b_n\}_{n\in\mathbb{N}}$ due successioni a termini non negativi e supponiamo che $a_n \leq b_n$ definitivamente. Allora:

1. se
$$\sum_{n=0}^{+\infty} b_n$$
 converge, allora $\sum_{n=0}^{+\infty} a_n$ converge

2. se
$$\sum_{n=0}^{+\infty} a_n$$
 diverge, allora $\sum_{n=0}^{+\infty} b_n$ diverge

(**criterio del rapporto**) Sia $\sum_{n=0}^{+\infty} a_n$ una serie a termini non negativi $(a_n \neq 0 \text{ definitivamente})$ e $l = \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} \in \mathbb{R} \cup \{+\infty\}$. Allora:

1. se
$$l < 1$$
 allora $\sum_{n=0}^{+\infty} a_n$ converge

2. se
$$l > 1$$
 allora $\sum_{n=0}^{+\infty} a_n$ diverge

3. se l=1 allora non si può concludere nulla

(**criterio della radice**) Sia $\sum_{n=0}^{+\infty} a_n$ una serie a termini non negativi e $l = \lim_{n \to +\infty} \sqrt[n]{a_n}$. Allora:

1. se
$$l < 1$$
 allora $\sum_{n=0}^{+\infty} a_n$ converge

2. se
$$l > 1$$
 allora $\sum_{n=0}^{+\infty} a_n$ diverge

3. se l=1 allora non si può concludere nulla

(**criterio asintotico**) Siano $\sum_{n=0}^{+\infty} a_n$ e $\sum_{n=0}^{+\infty} b_n$ due serie a termini non negativi ($b_n \neq 0$ definitivamente). Se $\lim_{n \to +\infty} \frac{a_n}{b_n} = L$ ($L \neq 0$ finito), allora le due serie hanno lo stesso comportamento.

(criterio integrale) Sia $f:[0,+\infty[\to\mathbb{R}$ positiva decrescente e integrabile su ogni segmento [0,M] $\forall M>0$. Allora:

1.
$$\sum_{n=0}^{+\infty} f(n)$$
 converge $\iff \int_0^{+\infty} f(x)dx < +\infty$

2.
$$\sum_{n=0}^{+\infty} f(n) \text{ diverge } \iff \int_{0}^{+\infty} f(x)dx = +\infty$$

Osservazione

- $\sum_{n=0}^{+\infty} f(n)$ possiamo vederla come l'area della funzione a gradini sopra il grafico di f.
- $\sum_{n=1}^{+\infty} f(n)$ possiamo vederla come l'area della funzione a gradini sotto il grafico di f.

Definizione (Serie armonica generalizzata) $\sum_{n=1}^{+\infty} \frac{1}{n^p}$ è detta serie armonica generalizzata e

- se $p \le 1$ diverge
- se p > 1 converge

9.1 Serie resto

Definizione Sia $\sum_{n=0}^{+\infty} a_n$ una serie a termini positivi convergente. La serie $\sum_{n=k+1}^{+\infty} a_n = a_{k+1} + a_{k+2} + \dots$ è detta serie resto di indice k

Proposizione Sia R_n la somma della serie resto. Se l è la somma della serie originaria e S_n le sue somme parziali, allora $R_n = l - S_n$.

Osservazione Ovviamente $R_n \to 0$. Se riusciamo a stimare R_n possiamo stimare l'errore approssimando l con S_n .

9.2 Altri criteri di convergenza

Teorema (criterio di Leibniz per serie a segno alterno) Sia $\{a_n\}_{n\in\mathbb{N}}$ una successione monotona decrescente e infinitesima. Allora la serie $\sum_{n=0}^{+\infty} (-1)^n a_n$ è convergente e $|R_n| \leq |a_{n+1}|$.

Teorema (criterio di Dirichlet) Sia $\sum_{n=0}^{+\infty} z_n$, $z_n \in \mathbb{C}$, una serie a somme parziali limitate. Se $\{b_n\} \searrow 0$ (decrescente e infinitesima) la serie $\sum_{n=0}^{+\infty} z_n b_n$ converge.

Teorema (criterio di Abel) Sia $\sum_{n=0}^{+\infty} z_n$, $z_n \in \mathbb{C}$ convergente e sia $\{b_n\}_{n\in\mathbb{N}}$ monotona limitata. Allora $\sum_{n=0}^{+\infty} z_n b_n$ è convergente.

9.3 Serie di funzioni

Definizione (Serie di funzioni)Siano $f_k:I\to\mathbb{R},\ I\subseteq\mathbb{R}$ intervallo, $k\in\mathbb{N}.$ La successione $S_n:I\to\mathbb{R}$ con $S_n(x)=\sum_{k=0}^n f_k(x)$ è detta **serie di funzioni** di termine generale $f_k(x)$ e la indicheremo con il simbolo $\sum_{k=0}^{+\infty} f_k(x)$.

Definizione (Limite puntuale) Se $\forall x \in I \exists \lim_{n \to +\infty} S_n(x) = S(x)$ finito, allora la funzione $S: I \to \mathbb{R}$ la diremo limite puntuale della serie $\sum_{0}^{+\infty} f_k(x)$ e scriveremo $S(x) = \sum_{k=0}^{n} f_k(x) \ \forall x \in I$.

Definizione (Limite uniforme) Se la successione $\{S_n(x)\}_{n\in\mathbb{N}}$ converge uniformemente a S, allora la funzione S è detta limite uniforme. Se $S_n(x) \stackrel{\text{unif.}}{\longrightarrow} S(x) \Longrightarrow S_n(x) \stackrel{\text{punt.}}{\longrightarrow} S(x)$ (viceversa falso).

Teorema (criterio di Weierstrass) Sia $f_k: I \to \mathbb{R}$ una successione di funzioni, $I \subseteq \mathbb{R}$ e supponiamo che

$$\sup_{I} |f_k(x)| = M_k < +\infty \text{ e } \sum_{k=0}^{+\infty} M_k < +\infty \text{ (si dice che } \sum_{k=0}^{+\infty} f_k(x) \text{ converge totalmente)}$$

allora $\sum_{k=0}^{+\infty} f_k(x)$ converge assolutamente e uniformemente.

9.3.1 Teoremi di passaggio al limite

1. Se $f_k: I \to \mathbb{R}$ è una successione di funzioni continue in $x_0 \in I$ e $\sum_{k=0}^{+\infty} f_k(x) \stackrel{\text{unif.}}{\to} S(x)$, allora S(x) è continua in x_0 e si scrive:

$$\lim_{x \to x_0} \sum_{k=0}^{+\infty} f_k(x) = S(x) = \sum_{k=0}^{+\infty} \lim_{x \to x_0} f_k(x)$$

2. Se $f_k : [a, b] \to \mathbb{R}$ è integrabile secondo Riemann e se $\sum_{k=0}^{+\infty} f_k(x) \stackrel{\text{unif.}}{\to} S(x)$ in I, allora S(x) è integrabile su [a, b]. Se f_k sono sommabili allora anche S(x) è sommabile e:

$$\int_{a}^{b} S(x)dx = \int_{a}^{b} \sum_{k=0}^{+\infty} f_{k}(x)dx = \sum_{k=0}^{+\infty} \int_{a}^{b} f_{k}(x)dx$$

3. Se $f_k \in \mathcal{C}^{(1)}(I,\mathbb{R})$, $\sum_{k=0}^{+\infty} f_k(x)$ converge per qualche $x_0 \in I$ e $\sum_{k=0}^{+\infty} f_k'(x)$ converge uniformemente su I, allora $\sum_{k=0}^{+\infty} f_k(x)$ converge uniformemente su I. Posto $\sum_{k=0}^{+\infty} f_k(x) \stackrel{\text{unif.}}{\to} S(x)$, S(x) è derivabile in I e $S'(x) = \sum_{k=0}^{+\infty} f_k'(x)$. Ovvero:

$$\frac{d}{dx}\left(\sum_{k=0}^{+\infty} f_k(x)\right) = \sum_{k=0}^{+\infty} \frac{d}{dx}\left(f_k(x)\right)$$

9.4 Serie di potenze

Definizione (Serie di potenze) È detta serie di potenze di punto iniziale $x_0 \in \mathbb{R}$ la serie di funzioni $\sum_{k=0}^{+\infty} f_k(x)$ con $f_k : \mathbb{R} \to \mathbb{R}$, $f_k(x) = a_k(x - x_0)^k$ e $\{a_k\}$ successione reale.

Osservazione La serie $\sum_{k=0}^{+\infty} a_k (x-x_0)^k$ converge almeno per $x=x_0$ e detta $S:I\subseteq\mathbb{R}\to\mathbb{R}$ si ha che $S(x_0)=a_0$.

Lemma Supponiamo che in $x_1 \neq 0$ la serie $\sum_{k=0}^{+\infty} a_k x_1^k$ converga. Allora la serie $\sum_{k=0}^{+\infty} a_k x^k$ converge assolutamente $\forall |x| < |x_1|$.

Dimostrazione Poiché $\sum_{k=0}^{+\infty} a_k x_1^k$ converge si ha $\lim_{n\to+\infty} a_k x_1^k = 0$, quindi $\exists M > 0$ tale che $\left|a_k x_1^k\right| \leq M \ \forall k \in \mathbb{N}$. Allora

$$\left|a_k x^k\right| = \left|a_k x_1^k \left(\frac{x}{x_1}\right)^k\right| \le M \left|\left(\frac{x}{x_1}\right)^k\right|$$

ma $\frac{x}{x_1} < 1$, perciò $\sum_{k=0}^{+\infty} |a_k x^k|$ è maggiorata da una serie geometrica di ragione < 1 e quindi converge.

Definizione (Raggio di convergenza) È detto **raggio di convergenza** della serie di potenze $\sum_{k=0}^{+\infty} a_k x^k$ il numero:

$$R = \sup\{|x| : \sum_{k=0}^{+\infty} a_k x^k \text{ converge}\} \in [0, +\infty]$$

e l'intervallo] -R,R[è detto intervallo di convergenza.

Proposizione (Convergenza assoluta) Sia $\sum_{k=0}^{+\infty} a_k x^k$ una serie di potenze di raggio di convergenza R > 0.

Allora $\forall |x| < R$ la serie converge assolutamente. Per $x = \pm R$ nessuna conclusione.

Proposizione (Convergenza assoluta e uniforme (\Rightarrow puntuale)) Sia $\sum_{k=0}^{+\infty} a_k x^k$ una serie di potenze avente raggio di convergenza R > 0. Allora converge assolutamente e uniformemente (\Rightarrow puntualmente) su ogni intervallo [-r, r], r < R.

9.4.1 Criteri di determinazione del raggio di convergenza

Proposizione Sia R il raggio di convergenza di $\sum_{k=0}^{+\infty} a_k x^k$, allora:

1. se
$$\lambda = \lim_{n \to +\infty} \sqrt[n]{|a_n|} \implies R = \begin{cases} \frac{1}{\lambda} \text{ se } \lambda > 0 \\ +\infty \text{ se } \lambda = 0 \end{cases}$$

2. se
$$\exists \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lambda \implies R = \begin{cases} \frac{1}{\lambda} \text{ se } \lambda > 0 \\ +\infty \text{ se } \lambda = 0 \end{cases}$$

3. se
$$\exists \lim_{n \to +\infty} \left| \frac{a_n}{a_{n+1}} \right| = \lambda \implies R = \lambda$$

Teorema Sia $f(x) = \sum_{k=0}^{+\infty} a_k x^k$ con |x| < R, R > 0 raggio di convergenza. Allora f è derivabile in]-R, R[e

$$f'(x) = \sum_{k=1}^{+\infty} a_k k x^{k-1}$$

Osservazione Notiamo che la serie $\sum_{k=1}^{+\infty} a_k k x^{k-1} = \sum_{k=0}^{+\infty} (k+1) a_{k+1} x^k$ ha lo stesso raggio di convergenza.

Osservazione Possiamo iterare il teorema e ottenere che $f \in \mathcal{C}^{(\infty)}(]-R,R[,\mathbb{R})$ e:

$$f^{(m)}(x) = \sum_{k=m}^{+\infty} k(k-1)...(k-m+1)a_k x^{k-m} e f^{(m)}(0) = m!a_m$$

9.5 Approssimazione di una funzione data mediante una serie opportuna di funzioni

9.5.1 Sviluppabilità in serie di Taylor

Definizione (serie di Taylor) Siano $f \in \mathcal{C}^{(\infty)}(I,\mathbb{R})$ e R raggio di convergenza di $\sum_{k=0}^{+\infty} \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k$

Se vale

$$f(x) = \sum_{k=0}^{+\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k, \quad x \in]x_0 - R, x_0 + R[$$

allora tale serie si definisce **serie di Taylor** di punto iniziale x_0 sull'intervallo $]x_0 - R, x_0 + R[$ e diremo che f è sviluppabile in serie di Taylor su tale intervallo. Inoltre si ha che, indicato con $T_n(x)$ il polinomio di Taylor di f(x) di punto iniziale x_0 , posto

$$R_n(x) = f(x) - T_n(x)$$

si ha

$$\lim_{n \to +\infty} R_n(x) = 0 \iff \left[f(x) = \sum_{k=0}^{+\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \right]$$

Teorema Sia $f \in \mathcal{C}^{(\infty)}(]x_0 - \delta, x_0 + \delta[\,,\mathbb{R})$. Se $\exists M > 0$ tale che $|f^{(n)}(x_0)| < M^n \ \forall x \in]x_0 - \delta, x_0 + \delta[$, allora f è sviluppabile in serie di Taylor di punto iniziale x_0 in tutto l'intervallo.

9.5.2 Serie di Fourier

Definizione Sia $f: \mathbb{R} \to \mathbb{R}$, diremo che f è periodica di periodo T > 0 se $f(x+T) = f(x) \ \forall x \in \mathbb{R}$.

Osservazione Se f è periodica di periodo T, allora è periodica di periodo nT $\forall n \in \mathbb{N}$. Se S > 0 è un altro periodo di f, allora S + T è ancora un periodo di f. Se l'insieme dei periodi è discreto (non ha punti di accumulazione), su $[0, +\infty[$, è detto periodo fondamentale di f il min $\{S > 0 : S$ è periodo di $f\}$.

Osservazione Le funzioni costanti sono periodiche di periodo $S \ge 0$ qualunque sia S.

Osservazione Le funzioni $\cos(\frac{2\pi}{T}kx)$ e $\sin(\frac{2\pi}{T}kx)$ sono periodiche di periodo $\frac{T}{k}$ e $T_f = T$.

Osservazione Posto $\omega = \frac{2\pi}{T}$ (frequenza) si ha

$$\int_0^T \cos(n\omega x)\sin(m\omega x)dx = 0 \ \forall n.m \in \mathbb{N}$$

$$\int_0^T \cos(n\omega x)\cos(m\omega x)dx = \frac{T}{2}\delta(n-m) \ \forall n,m \in \mathbb{N}$$

$$\int_0^T \sin(n\omega x)\sin(m\omega x)dx = \frac{T}{2}\delta(n-m) \ \forall n, m \in \mathbb{N}$$

$$\operatorname{con} \delta = \begin{cases} 1 & \operatorname{se} x = 0 \\ 0 & \operatorname{se} x = 1 \end{cases}$$

Dimostrazioni Calcolare gli integrali ricordandosi che $\cos(x) = \frac{\exp(ix) + \exp(-ix)}{2}$ e $\sin(x) = \frac{\exp(ix) - \exp(-ix)}{2i}$.

Definizione (serie di Fourier) Sia $f : \mathbb{R} \to \mathbb{R}$ periodica di periodo fondamentale $T = T_f$ e supponiamo che in [0, T] sia continua a tratti (ossia f limitata e con un numero finito di punti di discontinuità di I specie). Definiamo le successioni $\{a_n\}_{n\in\mathbb{N}}$ e $\{b_n\}_{n\in\mathbb{N}}$ dei suoi coefficienti di Fourier in questo modo:

$$a_0 = \frac{2}{T} \int_0^T f(x) dx$$

$$a_n = \frac{2}{T} \int_0^T f(x) \cos(\frac{2\pi}{T} nx) dx$$

$$b_n = \frac{2}{T} \int_0^T f(x) \sin(\frac{2\pi}{T} nx) dx$$

La serie

$$\frac{a_0}{2} + \sum_{n=1}^{+\infty} \left[a_n \cos \left(\frac{2\pi}{T} nx \right) + b_n \sin \left(\frac{2\pi}{T} nx \right) \right]$$

è detta serie di Fourier associata a f.

Definizione Sia $f : \mathbb{R} \to \mathbb{R}$ periodica di periodo fondamentale T > 0. Diremo che $f \in \mathcal{C}^{(1)}$ a tratti in [0, T] se $f \in \mathcal{C}^{(1)}$ derivabile in [0, T] eccetto in un numero finito di punti più un numero finito di punti di discontinuità di I specie e nei punti di non derivabilità la sua derivata prima ammette limite destro e limite sinistro finiti.

Teorema (di Fourier) Sia $f: \mathbb{R} \to \mathbb{R}$ periodica di periodo fondamentale T > 0 e $\mathcal{C}^{(1)}$ a tratti. Allora

- f è sviluppabile in serie di Fourier in tutti i punti di continuità di f.
- se $c \in \mathbb{R}$ è un punto di discontinuità per f allora la sua serie di Fourier converge a $\frac{1}{2}(f(c+)+f(c-))$
- ullet f è sviluppabile in serie di Fourier uniformemente su tutti gli intervalli di $\mathbb R$ che non contengono punti di discontinuità
- la serie di Fourier associata a f è integrabile su ogni intervallo $[a,b] \subseteq \mathbb{R}$ e si ha

$$\int_{a}^{b} f(x)dx = \frac{a_0}{2}(b-a) + \sum_{n=1}^{+\infty} \int_{a}^{b} \left[a_n \cos\left(\frac{2\pi}{T}nx\right) + b_n \sin\left(\frac{2\pi}{T}nx\right) \right]$$