Examenul de bacalaureat național 2014 Proba E. c) -2 iulie 2014 Matematică M_{st} -nat

Varianta 1

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați partea reală a numărului complex z = 3 + 2(1 i).
- **5p** 2. Arătați că $x_1 + x_2 + 2x_1x_2 = 23$ știind că x_1 și x_2 sunt soluțiile ecuației $x^2 3x + 10 = 0$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 + x + 1} = 1$.
- **5p 4.** Determinați câte numere naturale impare de trei cifre distincte se pot forma cu elementele mulțimii {1, 2, 3}.
- **5p 5.** Determinați numărul real a pentru care dreptele de ecuații y = (a-1)x+1 și y = 2x-3 sunt paralele.
- **5p** | **6.** Determinați raza cercului circumscris triunghiului ABC în care AB = 3, AC = 4 și BC = 5.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} x & 1 \\ 1 & x \end{pmatrix}$, unde x este număr real.
- **5p** a) Calculați $\det(A(2))$.
- **5p b**) Determinați numărul real x pentru care $A(x) \cdot A(-x) = I_2$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** c) Arătați că $\det(A(1) + A(2) + \dots + A(n)) = \frac{n^2(n-1)(n+3)}{4}$ pentru orice număr natural nenul n.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = 4(x + y 3) xy.
- **5p a**) Calculați 2*4.
- **5p** | **b**) Arătați că x * y = 4 (x 4)(y 4) pentru orice numere reale x și y.
- **5p** | **c**) Rezolvați în mulțimea numerelor reale ecuația x * x * x = x.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=x\ln x-x+1$.
- **5p a)** Arătați că $\lim_{x \to a} f(x) = 1$.
- **5p b**) Arătați că $f'(x) = \ln x$, $x \in (0, +\infty)$.
- **5p** c) Arătați că $f(x) \ge 0$ pentru orice $x \in (0, +\infty)$.
 - 2. Se consideră funcția $f:(-3,+\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x^2 + 8x + 15}$.
- **5p** a) Arătați că $\int_{0}^{2014} (x+3)(x+5) f(x) dx = 2014$.
- **5p b)** Arătați că $\int_{1}^{1} f(x) \cdot f'(x) dx = -\frac{1}{144}$.
- **5p** c) Determinați numărul real a, a > 0 știind că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = a, are aria egală cu $\frac{1}{2} \ln \frac{10}{9}$.