Econ 301 - Microeconomic Theory 2

Winter 2018

Lecture 2: January 8, 2018

Lecturer: Jean Guillaume Forand

Notes By: Harsh Mistry

2.1 Consumer Choice Continued

2.1.1 Feasible choices for consumers

In-Class Numbering: 1.1.2

• A consumption bundle is a vector $x = (x_1, x_2) \in \mathbb{R}^2$ (i.e $x_1, x_2 \ge 0$)

- Assume two goods for simplicity
- Assumes goods are only consumed in non-negative quantities
- Assumes units are arbitrarily divisible and any small quantity of good can be added to any bundle. Not essential, but allows for use of calculus methods.
- Not all consumptions bundles are feasible for the consumers, as the consumer purchases goods in markets
 - Market Prices for two goods is a vector $p = (p_1, p_2) \in \mathbb{R}^2$
 - Income of consumers is m > 0

Definition 2.1 Given prices p and income m, consumers budget set is

$$\beta = \{(x_1, x_2) \in \mathbb{R}^2 \mid p_1 x_1 + p_2 x_2 \le m\}$$

- Consumers need no find it optimal to exhaust his/her budget (i.e choose a consumption bundle on the budget line)
- \bullet Consumer is a <u>price-taker</u> : Prices the consumer faces are independent of the consumption bundle purchases
- Appropriate assumptions for modelling large markets which no participants have significant market power
- Slope of budget line $\frac{-p_1}{p_2}$ is markets marginal rate of exchange: rate at which market provides goods 2 against units of good 1
- Fix bundle x_1^* , Let m^* be associated expenditure.

Question: If a consumer wants to finance additional units of good 1 without increasing his expenditures, how much of goods 2 must she supply to the market?

- Have $p_1 x_1^* + p_2 x_2^* = m^*$
- Total derivatives of identity with respect to x_1

$$p_1 \frac{dx_1^*}{dx_1^*} + p_2 \frac{dx_2^*}{dx_1^*} = \frac{dm^*}{dx_1^*}$$
$$\frac{dx_2^*}{dx_1^*} = \frac{-p_1}{p_2}$$

• Price taking assumptions: market rate of exchange independent of (x_1, x_2)

Example 2.2 Rationing of good 1 there exists $\bar{x_1}$, such that only bundles with $x_1 \leq \bar{x_1}$ can be purchased

2.1.2 Consumer Preferences

In-Class Numbering: 1.1.3

- The consumer has goals or aspirations represented by a <u>preference relation</u> \succeq over set of consumptions bundles \mathbb{R}^2_*
- if $x, y \in \mathbb{R}^2_*$ are such that $x \succeq y$, we say that "x is weakly preferred to y"
- ullet is our primitive information about consumer which consists of pairwise comparisons of consumption bundles
- \bullet In principle, we can <u>elicit</u> prederence by asking questions like "are you at least as well off with x as with y?"
- Do we prefer questions like :
 - Do you outright prefer x to y?
 - Are you indifferent between x and y?