

(15) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number : 0 476 983 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number : 91308489.3

(51) Int. Cl.⁵ : C07K 15/06, C07K 3/28,
C12N 15/19, C12P 21/00,
A61K 37/42

(22) Date of filing : 18.09.91

(30) Priority : 21.09.90 US 586638
21.09.90 US 586640

(43) Date of publication of application :
25.03.92 Bulletin 92/13

(34) Designated Contracting States :
CH DE FR GB IT LI NL

(71) Applicant : MERCK & CO. INC.
126, East Lincoln Avenue P.O. Box 2000
Rahway New Jersey 07065-0900 (US)

(72) Inventor : Bayne, Marvin L.
131 Tudor Oval
Westfield, NJ 07090 (US)
Inventor : Conn, Gregory L.
1751 Essex Street
Rahway, NJ 07065 (US)
Inventor : Thomas, Kenneth A., Jr.
245 Washington Avenue
Chatham Burrough, NJ 07928 (US)

(74) Representative : Thompson, John Dr. et al
Merck & Co., Inc. European Patent
Department Terlings Park Eastwick Road
Harlow, Essex CM20 2QR (GB)

(54) Vascular endothelial cell growth factor II.

(57) Vascular endothelial cell growth factor II is purified from the culture media used to maintain mammalian glioma cells. The protein is a heterodimer, stimulates mitogenesis of mammalian vascular endothelial cells and is useful for the promotion of vascular development and repair. This unique growth factor is also useful in the promotion of tissue repair.

FIG. 1

Poly(aspartic acid) WCK

BRIEF DESCRIPTION OF THE DRAWING

Figure 1. VEGF II activity present in fractions eluting from a polyaspartic acid WCX HPLC cation exchange column, bar denotes pooled active fractions.

5 Figure 2. VEGF II activity present in fractions eluting from a metal chelate column.

Figure 3. VEGF II activity present in fractions eluting from a RP-HPLC C₁₈ column.

Figure 4. Full length amino acid residue protein translation product and its cDNA coding sequence for VEGF I A subunit plus polypeptide cleavage products used to determine the amino acid sequence.

10 Figure 5. Full length amino acid residue protein translation product and its cDNA coding sequence for VEGF II A subunit plus polypeptide cleavage products used to determine the amino acid sequence.

Figure 6. Full length amino acid residue protein translation product and its cDNA coding sequence for the 135 amino acid form of VEGF II B subunit plus polypeptide cleavage products used to determine the amino acid sequence.

15 Figure 7. Full length amino acid residue protein translation product and its cDNA coding sequence for the 115 amino acid form of VEGF II B subunit.

BACKGROUND OF THE INVENTION

A new class of cell-derived dimeric mitogens with apparently restricted specificity for vascular endothelial cells has recently been identified and generally designated vascular endothelial growth factor (VEGF). The 20 mitogen has been purified from: conditioned growth media of rat glioma cells, [Conn et al., Proc. Natl. Acad. Sci. USA 87: 2628-2632 (1990)]; conditioned growth media of bovine pituitary folliculo stellate cells [Ferrara and Henzel, Biochem. Biophys. Res. Comm. 161: 851-858 (1989) and Gospodarowicz et al., Proc. Natl. Acad. Sci. USA 86: 7311-7315 (1989)]. Vascular endothelial growth factor I (VEGF I) is a homodimer with an apparent 25 molecular mass of 45 kDa, with each subunit having an apparent molecular mass of 23 kDa. VEGF I has distinct structural similarities to platelet-derived growth factor (PDGF), a mitogen for connective tissue cells but not vascular endothelial cells from large vessels.

OBJECTS OF THE INVENTION

30 It is, accordingly, an object of the present invention to provide a novel vascular endothelial growth factor II (VEGF II) free of other proteins. Another object is to provide a procedure for the purification of the substantially pure VEGF II. A further object is to provide VEGF II to stimulate endothelial cells for induction of blood vessel growth, vascular repair and the production of artificial blood vessels. Another object is to provide VEGF II to stimulate tissue repair.

SUMMARY OF THE INVENTION

40 Vascular endothelial cell growth factor II is purified from the culture media used to maintain mammalian glioma cells. The protein is a heterodimer and stimulates mitogenesis of mammalian vascular endothelial cells and is useful for the promotion of vascular development and repair. This unique growth factor is also useful in the promotion of tissue repair.

DETAILED DESCRIPTION

45 The present invention relates to a unique vascular endothelial cell growth factor (designated VEGF II), isolated and purified from glioma cell conditioned medium, which exhibits mitogenic stimulation of vascular endothelial cells. Glioma is defined herein as any neoplasm derived from one of the various types of cells that form the interstitial tissue of the central nervous system including brain, spinal cord, posterior pituitary gland and retina. Consequently, the scope of the present invention is intended to include the unique growth factor isolated and purified from any mammalian glioma tissue or other cells including cell lines. Cell lines include, but are not limited to, glioma-derived cell lines such as C6, HS 683 and GS-9L, glioblastomas such as A-172 and T28G; neuroblastomas such as IMR-32 and SK-N-MC; neurogliomas such as H4; tetromas such as XB-2; astrocytomas such as U-87 MG and U-373 MG, embryonal carcinomas and non-transformed glial or astrocyte cell lines, and the human medulloblastoma line TE 671, with GS-9L and TE 671 being preferred. VEGF II is present and can be isolated from rat tissue including ovary, heart and kidney. Anterior pituitary tumor cell lines such as GH3 and H4-139 may also be used. Although the VEGF of this invention is described as being isolated from glioma cell conditioned medium, it is also contemplated by the inventors that the growth factor may be isolated from other sources including cell lines, tissue cultures, and by the methods of fractionation and purifi-

Reading numbers 1's.

Vascular endothelial growth factor may exist in various microheterogeneous forms which are isolated from one or more of the various cells or tissues described above. Microheterogeneous forms as used herein refer to a single gene product that is a peptide produced from a single gene unit of DNA, which is structurally modified at the mRNA level, or following translation. Peptide and protein are used interchangeably herein. The microheterogeneous forms will all have equivalent mitogenic activities. Biological activity and biologically active are used interchangeably and are herein defined as the ability of VEGF₁₆₅ to stimulate DNA synthesis in target cells, including vascular endothelial cells as described below which results in cell proliferation. The modifications may take place either *in vivo* or during the isolation and purification process. *In vivo* modification results from, but is not limited to, proteolysis, glycosylation, phosphorylation, deamidation or acetylation at the N-terminus. Proteolysis may include exoproteolysis wherein one or more terminal amino acids are sequentially enzymatically cleaved to produce microheterogeneous forms which have fewer amino acids than the original gene product. Proteolysis may also include endoproteolytic modification that results from the action of endoproteases which cleave the peptide at specific locations within the amino acid sequence. Similar modifications can occur during the purification process which also results in production of microheterogeneous forms. The most common modification occurring during purification is proteolysis which is generally held to a minimum by the use of protease inhibitors. Under most conditions one or more microheterogeneous forms are present following purification of native VEGF₁₆₅. Native VEGF₁₆₅ refers to VEGF₁₆₅ isolated and purified from cells that produce VEGF₁₆₅. Vascular endothelial growth factor II may also exist in various alternatively spliced forms which is defined herein as the production of related mRNAs by different alternative processing of exons. Exons are defined as those parts of the DNA sequence of a eukaryotic gene that code for the final protein product.

Glioma cells such as the rat cell line GS-82 are grown to confluence in tissue culture flasks, about 175 cm², in a cell culture medium such as Dulbecco's Modified Eagle's Medium (DMEM) supplemented with about 10% newborn calf serum (NCS). When the cells reach confluence the culture medium is removed, the cell layers are washed with Dant-Mg²⁺-free phosphate buffered saline (PBS), and are removed from the flasks by treatment with a solution of trypsin, about 0.1%, and EDTA, about 0.04%. The cells, about 1 x 10⁶, are pelleted by centrifugation, resuspended in about 1500 ml of DMEM containing about 5% NCS and plated into a ten-well cell factory (NU-NCI) 6,000 cm² surface area. The cells are incubated for about 48 to about 96 hours, with 72 hours preferred, at about 37°C in an atmosphere of about 5% CO₂. Following incubation the medium is removed and the cell factories are washed about 3 times with PBS. About 1500 ml of fresh culture media is added containing about a 1/2 mixture of Ham's-F12/DMEM containing about 15 mM Hepes, about 5 µg/ml heparin, about 10 µg/ml transferrin and with or without about 1.0 mg/ml bovine serum albumin. This media is replaced with fresh media after about 24 hr and collected every 48 hr thereafter. The collected conditioned media is filtered through Whatman #1 paper to remove cell debris and stored at about -20°C.

The GS-SI-conditioned medium is thawed and brought to pH 6.0 with 1 M HCl. The usual purification steps consist of cation exchange chromatography using a variety of cation exchangers or a variety of matrices such as CM Sephadex C-50, Pharmacia Mono S, Biogel™ SP and Polyacrylic Acid A-50K Neutral Group, with CM Sephadex C-50, Pharmacia being preferred. The VEGF-containing culture media is mixed with CM Sephadex C-50 at about 2 g/mg over about 20 L of the conditioned media and stirred at low speed for about 24 hr at 4° C. The reaction is allowed to settle and the excess media is removed. The resin column is packed into a column and the remaining culture media is removed. A bound protein is washed from the column with 1.0M sodium phosphate, about pH 6.0, containing 0.1M NaCl. The VEGF is eluted with about 1.0M sodium phosphate about pH 6.0, containing about 0.6M NaCl.

The active fractions collected from the DM-Biotrrex C-8 column are further fractionated by electrophoresis chromatography for additional purification of VEGF α . The breakdown of myo- and VEGF α would indicate that the total active protein which does not bind to monochloroperbenzoate is concentrated in A and that the VEGF α is present in B. Electrophoresis and subsequent dialysis can be used as a check for purity. After dialysis against phosphate buffered saline containing 0.1% Triton X-100, the solution is loaded onto a VEGF α -affinity column with approximately 1 mg/ml of VEGF α bound to the matrix. After elution with phosphate buffered saline containing 0.1% Triton X-100, the solution is loaded onto a VEGF α -affinity column with approximately 1 mg/ml of VEGF α bound to the matrix. After elution with phosphate buffered saline containing 0.1% Triton X-100, the solution is loaded onto a VEGF α -affinity column with approximately 1 mg/ml of VEGF α bound to the matrix. After elution with phosphate buffered saline containing 0.1% Triton X-100, the solution is loaded onto a VEGF α -affinity column with approximately 1 mg/ml of VEGF α bound to the matrix.

The following is a list of the CDTA stations and their corresponding POCs and contact information for each station.

and 28.5 ml see Fig. 1.

The active fractions eluted from the polyaspartic WCX column that contain VEGF II are pooled, adjusted to about pH 7.0 and loaded onto a 1×10 cm column of Pharmacia Chelating Sepharose 6B charged with an excess of copper chloride and equilibrated in about 0.05 M sodium phosphate, about pH 7.0, containing about 2 M NaCl and about 0.5 mM imidazole (A buffer). VEGF II is eluted from the column with a gradient from 0-20% B over 10 minutes, 20-35% B over 45 minutes and 35-100% B over 5 minutes at a flow rate of 0.3 ml/min, where B buffer is 0.05 M sodium phosphate, pH 7.0, containing about 2 M NaCl and 100 mM imidazole. The active fractions containing VEGF II activity eluted between about 12.6 and 22.8 ml of the gradient effluent volume, see Fig. 2.

The pooled fractions containing VEGF II activity eluted from the metal chelate column are loaded onto a 4.6 mm x 5 cm Vydac C₄ reverse phase HPLC column (5 μm particle size) previously equilibrated in solvent A [0.1% trifluoroacetic acid (TFA)]. The column is eluted with a linear gradient of about 0 to 30% solvent B over 15 minutes, 30% B for an additional 15 minutes, then 30–45% B over 22.5 minutes and finally 45–100% B over 5.5 minutes. Solvent B consists of solvent A containing 67% acetonitrile (v/v). The flow rate is maintained at about 0.75 ml/min and fractions are collected every minute. The homogeneous VEGF II elutes from the C₄ column under these conditions at between about 32 and about 38 ml of the gradient effluent volume, see Fig. 3.

Purity of the protein is determined by sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis (PAGE) in 12.5% crosslinked gels using the technique of Laemmli, *Nature* 227: 680-684 (1970). The silver stained gels show VEGF II to consist of one band under non-reducing conditions with an approximate apparent molecular mass of about 58,000 daltons. When a sample containing the microheterogeneous forms of VEGF II is separated under reducing conditions it migrates as two about 23 kilodalton (kDa) subunits. The purification process results in VEGF II that is essentially free of other mammalian cell products, such as proteins. Recombinantly derived VEGF II will also be free of mammalian cell products.

Biological activity is determined by mitogenic assay using mammalian vascular endothelial cells. Human umbilical vein endothelial (HUVE) cells are plated on gelatin-coated dishes at a density of about 5000 cells per well in about 500 μ l of Medium 199 (M199) containing about 20% heat-inactivated fetal calf serum (FCS). Samples to be assayed are added at the time of plating. The tissue culture plates are incubated at about 37° C for about 12 hours and about 2 microcuries of tritiated thymidine (NEN, 20 Ci/mmol) is added per ml of assay medium (1.0 μ Ci/well). The plates are incubated for a further 60 hr, the assay medium is removed and the plates are washed with Hanks balanced salt solution containing about 20 mM Hepes, about pH 7.5, and about 0.5 mg/ml bovine serum albumin. The cells are lysed and the labelled DNA solubilized with about 200 μ l of a solution containing about 2 gm of sodium carbonate and about 400 mg sodium hydroxide in about 100 ml water. The incorporated radioactivity was determined by liquid scintillation counting. The concentration of VEGF which elicited a half-maximal mitogenic response in HUVE cells was approximately 2 \pm 1 ng/ml. The glycosaminoglycan heparin, which is required in these assays at a level of 10-100 μ g/ml to promote a response to a positive control, acidic fibroblast growth factor, does not enhance mitogenic stimulation of these cells by VEGF II.

A purified about 1-2 µg sample of VEGF II is reduced in about 0.1 M Tris, about pH 9.5, with about 0.1% EDTA, about 6 M guanidinium chloride and about 20 mM dithiothreitol for about 2 hr at about 50° C. The reduced protein is carboxymethylated for about 1 hour in a solution containing about 9.2 µM of unlabelled and 2.8 µM of ¹⁴C-liodacetic acid in about 0.7 M Tris, about pH 7.8, and about 0.1% EDTA and about 6 M guanidinium chloride. The protein is carboxymethylated for about 1 hr at room temperature. The protein is isolated after reduction and carboxymethylation by reverse phase HPLC chromatography on a Vydac C₄ column, about 4.6 mm x 5 cm. The protein is loaded onto a column pre-equilibrated with about 0.1% TFA and eluted by a 45 ml linear gradient from about 0.1% TFA to 0.1% TFA/67% acetonitrile at a flow rate of about 0.75 ml/min. The reduced and carboxymethylated protein eluted as two peaks at approximately 25 and 28 ml with the proportion being approximately equal as determined by monitoring absorbance at 210 nm.

Samples of the reduced and carboxymethylated monomers are applied to polybrene-coated glass fiber filters and their N-terminal sequences are determined by Edman degradation in an ABI gas phase microsequencer in conjunction with an ABI 120A on line phenylthiohydantoin analyzer following the manufacturers instructions. The protein showing the peak of absorbance eluting at approximately 28 ml (A subunit monomer) shows an amino terminal sequence of:

Ala Pro Thr Thr Gly Gly Glu Gln Lys Ala Ileu Gly Val Val
which is identical to the monomers of VEGF 1, Cons. et al., Proc. Natl. Acad. Sci. USA **92**, 2628-2632 (1995).
The peak of absorption occurring at approximately 25 nm (150 nm) is attributed to the terminal hydroxyl group. The terminal sequence is

Another set of amino acids (Met-Glu-Val-Val) was also found in nearly equal amount of a truncated form of the same sequence missing the first three amino acid residues. The amino acid sequence of the truncated peptide was determined by Edman degradation of the isolated peptide. The results are shown in Table III.

Arg-Ast occurs in a class III Arg-Xaa-Ser/Thr-NH₂-glycosylation sequence. It is presumed to be glycosylated. The A subunit and the total of both B subunits are recovered in nearly equal amounts supporting the interpretation that the two peptides combine to form an AB heterodimer in VEGFR II.

A sample of the A monomer was treated with either the protease trypsin which cleaves polypeptides on the C-terminal side of lysine and arginine residues or Lys C which cleaves polypeptides on the C-terminal side of lysine by procedures well known in the art. The peptides are isolated by reversed phase HPLC RP-HPLC. The amino acid sequences of the isolated peptides are determined using the Edman degradation in the ABI gas phase sequencer in conjunction with the ABI 120 A on-line phenylthiohydantoin analyzer following many deprotection/edc activations. The amino acid sequences are shown in Figure 4.

Reduced and carboxymethylated A macromer is dried and solubilized in about 0.7 M Tris, about 0.7 M about 6 M guanidinium chloride containing about 0.1% EDTA, V8 protease cleaved in 0.1 M ammonium bicarbonate buffer, about pH 8.0, and the mixture is incubated for about 48 hr at about 37°C. The protease cleaves predominantly on the carboxy-terminal side of glutamic acid residues dues. The resulting polypeptides were resolved by 0.1% SDS-PAGE as above.

The reduced and carboxymethylated A subunit protein solution is adjusted to a pH of about 9.0 with 6 N HCl and dithiothreitol is added to a final concentration of 2 M for reduction of any methionine sulfoxide to methionine residues. After about 20 hr of reduction at about 38°C the protein is reanalyzed by C₄-HPLC. The product is dried and cleaved on the carboxy-terminal side of methionine residues by 200 μ l of 40 mM cyanogen bromide in about 70% acetic formic acid under an argon atmosphere at about 20°C for about 24 hr in the dark. The cleavage products are resolved by C₁₈-RP-HPLC. The amino acid sequence is shown in Figure 4; see Cohen et al., Proc. Natl. Acad. Sci. USA 87: 2838-2842 (1990).

The full-length 170 amino acid residue protein translation product of the λ -EGF 14 monomer, which is known to be identical with the λ -EGF 14 monomer, and its cDNA coding sequence are shown in Fig. 4 and Fig. 5. The mature amino terminus begins at residue 27, immediately following a 16-carbon hydrophobic secretion signal sequence. A single potential N-glycosylation site exists at Asn¹⁰⁶. Most 143 amino acid residues of the 174 residues of the reduced and carboxymethylated mature subunit, including the amino terminus and N-terminus,

ersed phase-purified products of tryptic, T₁, Lys-C (L), Staphylococcus aureus V8 protease (V8) and cyanogen bromide (CB) cleavages, were determined by direct microsequencing (Applied Biosystems 470A). Using a total of 5 µg of protein, all residues identified by amino acid sequencing are denoted by arrows pointing to the right either directly beneath the mature processed sequence following the bracket at res 27 for the amino terminal determination of the whole subunit or for residues identified from the double-headed arrows above the double-headed arrows spanning the length of the particular polypeptide. One listed pair of polypeptides, V13A and V13B, was sequenced as a mixture and, therefore, are only confirmatory of the cDNA- deduced amino acid sequence, see Figure 4.

Samples of the reduced and carbamoylmethylated core VEGF^{IV} A and B monomers were each digested with the Lys-C endopeptidase which cleaves polypeptides on the C-terminal side of glycine or aspartic acid residues. The peptides were isolated by reverse phase HPLC and their amino acid sequences were determined as described above. The locations of the peptides in the full VEGF^{IV} A and B sequences are shown in Fig. 5 and Fig. 6, respectively.

The full length cDNA of the A monomer is determined from three sets of overlapping cDNAs cloned by degenerate oligonucleotide primers based on the amino acid sequence Phe-Met-Asp-Val-Tyr-Gln from peptide 142-residue 424-471 and Cys-Ser-Lys-Asp-Tyr-Ala from peptide 759-residue 164-183 (see Fig. 4 a, d-f). Were used to PCR amplify the central region of the cDNA for rEGF-A chain following the procedure of Tsai et al. [Science 237:1350-1354 (1985)]. A single band of grafting at 422 bp was gel purified, passed with SphI, digested with PBEVME94+, and sequenced. The nucleotide sequence obtained (c4238) was used as 5' and 3' sense and antisense PCR primers to amplify the 5' and 3' ends of the cDNA according to the procedure outlined by Freudenthal et al. [Proc. Natl. Acad. Sci. USA 85:8896-8902 (1988)]. These 5' and 3' clones are 142-residues-15 and 243-residues, respectively. Regions of complete cDNA sequences, excluding the primers, determined by sequencing of clones are indicated by double-headed arrows above the nucleotide sequence. In addition to rEGF-A having the 164 amino acid secreted form, identified by circle, rEGF-A having two alternative cDNA species containing 161 amino acids and about 168 amino acids from the 5' end and 3' end.

The first attempt to prepare a soluble B-lymphocyte membrane fraction from the cells of spleen and cGMP-stimulated fibroblasts obtained from the same animal was made by the method of D'Amato et al.¹ The B-lymphocyte membrane fraction obtained from the spleen of a 15-day-old mouse contained 10% cGMP and 10% soluble proteins. The cGMP content of the membrane fraction obtained from the fibroblasts was 10% and the soluble protein content was 10%. The membrane fraction obtained from the spleen of a 15-day-old mouse contained 10% cGMP and 10% soluble proteins. The cGMP content of the membrane fraction obtained from the fibroblasts was 10% and the soluble protein content was 10%.

Item 33: 81-cc-1A1 RNA. Regions of complete DNA sequences, excluding the primers, determined for each set of clones are indicated by double-headed arrows above the nucleotide sequence. The entire base sequence for the 135 amino acid macroheterogeneous B subunit and the 115 amino acid macroheterogeneous B subunit are shown in Fig. 6 and Fig. 7.

It is intended that vascular endothelial growth factor II exists as a heterodimer consisting of an A subunit and a B subunit. It is further intended that VEGF homodimers exist as either two A subunits or two B subunits. The B subunit may be either the 135 amino acid form or the 115 amino acid form. The A subunit of the may be either the 135 amino acid form, the 164 amino acid form or the 160 amino acid form. The heterodimers or homodimer species can be depicted as: A₁₃₅ + B₁₃₅, A₁₆₄ + B₁₃₅, A₁₆₄ + B₁₁₅, A₁₃₅ + B₁₁₅, A₁₃₅ + B₁₃₅, B₁₃₅ + B₁₃₅, A₁₃₅ + A₁₆₄, A₁₆₄ + A₁₆₄ and A₁₆₄ + A₁₃₅. The homodimers can be depicted as: B₁₃₅ + B₁₃₅, B₁₁₅ + B₁₁₅, A₁₃₅ + A₁₃₅ and A₁₆₄ + A₁₆₄. It is also intended that the invention include all of the individual subunit forms of both the A subunit and the B subunit of VEGF II.

It is further intended that the nucleotide sequence for vascular endothelial growth factor II be interpreted to include all codons that code for the appropriate amino acids in the sequence for each of the vascular endothelial growth factor II subunits, as indicated by the degeneracy of the genetic code. It is further intended that the nucleotide sequence and the amino acid sequence for VEGF II subunits include truncated genes or proteins which result in a protein which exhibits biological activity similar to vascular endothelial growth factor II. The scope of the invention is intended to include all naturally occurring mutations and allelic variants and any randomly generated artificial mutants which may change the sequences but do not alter biological activity as determined by the ability to stimulate the division of vascular endothelial cells.

The active described heterodimers, homodimers, subunits and monomers of vascular endothelial growth factor II are characterized by being the product of chemical synthesis produced or of prokaryotic or eukaryotic expression of the DNA sequences as described herein. A monomer is defined as a subunit that cannot form oligomeric unit. Expression of the recombinant VEGF II genes, recombinant DNA, is accomplished by a number of different host cells which contain at least one of a number of expression vectors. Expression vectors is defined herein as DNA sequences that are required for the transcription of cloned copies of recombinant DNA sequences or genes and the translation of their mRNAs in an appropriate host. Such vectors can be used to express genes in a variety of hosts such as bacterial, blue-green algae, yeast cells, insect cells, plant cells and animal cells, with mammalian cell's being preferred. The genes may also be expressed in a number of virus systems. Specifically designated vectors allow the shuttling of DNA between bacteria-yeast, bacteria-plant or bacteria-animal cells. An appropriate vector constructed expression vector should contain an origin of replication for autonomous replication in host cells, selective markers, a limited number of useful restriction enzyme sites, an appropriate number and strong promoters. A promoter is defined as a DNA sequence that directs RNA polymerase to bind to DNA and initiate RNA synthesis. A strong promoter is one which causes mRNA to be initiated with high frequency. Expression vectors may include, but are not limited to, cloning vectors, modified cloning vectors specifically designed plasmids or viruses and cosmids. The expression of mammalian genes in cultured mammalian cells is well known in the art. Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989, and Current Protocols in Molecular Biology, Ausubel et al., Eds., Greene Publishing Associates and Wiley-Interscience, 1987 and supplements disclose various mammalian expression vectors and vector systems along with methods for the introduction of recombinant vectors into mammalian cells. The cDNA for the mitochondrial forms of the A and B subunit can be expressed in a system such as that described by Linneweber et al., European Patent Application, Publication No. 059 353. The cDNA incorporated into a commercially available plasmid such as pMT2204-3, Pharmacia as modified as by Linneweber et al. and expressed in E. coli. Other expression systems and host cells are well known in the art.

In addition, co-expression of the A and B subunits along with the structure of the homodimeric and heterodimeric species that expression of biological active protein is obtained in animal cells. Expression may be carried out in Chinese hamster ovary (CHO) cells with the cloned VEGF II cDNA cotransfected with the gene encoding the transferrin receptor, transferrin receptor cDNA (see Sambrook et al.). Transformants expressing transferrin are selected on media lacking nucleosides and are exposed to increasing concentrations of methotrexate. The A₁₃₅ and VEGF II genes are thus coexpressed leading to a stable cell line capable of expressing both A₁₃₅ and VEGF II. The plasmid is designed to include either an A subunit and a B subunit or two A or B subunits. Thus, the cDNAs are operably linked in vitro in stable constructs with the VEGF II gene(s) in an appropriate orientation for expression. Transfection of the transferrin receptor cDNA into CHO cells is performed to generate such that the desired construct will be introduced by cotransfecting the animal cells with the transferrin receptor gene and the VEGF II gene(s). The resulting heterodimeric forms of the VEGF II genes are expressed such that the desired constructs will be introduced by cotransfecting the animal cells with the transferrin receptor gene and the VEGF II gene(s).

It is further intended that the invention include all of the vascular endothelial growth factor II subunits and heterodimers which exhibit biological activity as determined by the ability to stimulate the division of vascular endothelial cells.

a B subunit. Expression vectors capable of expressing homodimeric forms of VEGF will contain either one or two DNA sequences which encode either two A or two B subunits.

The ability of the various species of VEGF II to stimulate the division of vascular endothelial cells makes this protein in all microheterogeneous forms and alternative splicing forms useful as a pharmaceutical agent. The protein as used herein is intended to include all microheterogeneous forms as previously described. The protein can be used to treat wounds of mammals including humans by the administration of the novel protein to patients in need of such treatment.

The novel method for the stimulation of vascular endothelial cells comprises treating a sample of the desired vascular endothelial cells in a nutrient medium with mammalian VEGF II, preferably human or rat, at a concentration of about 1-10 ng/ml. If the vascular endothelial cell growth is conducted *in vitro*, the process requires the presence of a nutrient medium such as DMEM or a modification thereof and a low concentration of calf or bovine serum such as about 0 to 2% by volume. Preservatives such as antibiotics may also be included; these are well known in the art.

The novel growth factors of this invention are useful for the coverage of artificial blood vessels with vascular endothelial cells. Vascular endothelial cells from the patient would be obtained by removal of a small segment of peripheral blood vessel or capillary containing tissue and the desired cells would be grown in culture in the presence of VEGF II and any other supplemental components that might be required for growth. After growth of adequate numbers of endothelial cells in culture to cover a synthetic polymeric blood vessel the cells would be plated on the inside surface of the vessel, such as fixed umbilical vein, which is then implanted in the patient. Alternatively, tubular supports are coated *in vitro* with VEGF II prior to implantation into a patient. Following implantation endothelial cells migrate into and grow on the artificial surface. Prior coating of the artificial vessel either covalently or noncovalently, with proteins such as fibrin, collagen, fibronectin or laminin would be performed to enhance attachment of the cells to the artificial surface. The cell-lined artificial vessel would then be surgically implanted into the patient and, being lined with the patient's own cells, would be immunologically compatible. The non-thrombogenic endothelial cell lining should decrease the incidence of clot formation on the surface of the artificial vessel and thereby decrease the tendency of vessel blockage or embolism elsewhere.

The novel proteins are also useful for the production of artificial vessels. Vascular endothelial cells and smooth muscle cells from the patient would be obtained and grown separately in culture. The endothelial cells would be grown in the presence of VEGF II as outlined above. The smooth muscle would be grown in culture by procedures well known in the art. A tubular mesh matrix of a biocompatible polymer (either a synthetic polymer, with or without a coating of proteins, or a non-immunogenic biopolymeric material such as surgical suture thread) would be used to support the culture growth of the smooth muscle cells on the exterior side and vascular endothelial cells on the interior surface. Once the endothelial cells form a confluent monolayer on the inside surface and multiple layers of smooth muscle cells cover the outside, the vessel is implanted into the patient.

The novel peptides can also be used for the induction of tissue repair or growth. The pure VEGF II would be used to induce and promote growth of tissue by inducing vascular growth and/or repair. The peptide can be used either topically for tissue repair or intravascularly for vascular repair. For applications involving neovascularization and healing of surface wounds the formulation would be applied directly at a rate of about 10 ng to about 1 mg/cm²/day. For vascular repair VEGF II is given intravenously at a rate of about 1 µg to about 100 µg/kg/day of body weight. For internal vascular growth, the formulation would be released directly into the region to be neovascularized either from implanted slow release polymeric material or from slow release pumps or repeated injections. The release rate in either case is about 100 ng to about 100 µg/day/cm².

For non-topical application the VEGF is administered in combination with pharmaceutically acceptable carriers or diluents such as, phosphate buffer, saline, phosphate buffered saline, Ringer's solution, and the like, in a pharmaceutical composition, according to standard pharmaceutical practice. For topical application, various pharmaceutical formulations are useful for the administration of the active compound of this invention. Such formulations include, but are not limited to, the following: ointments such as hydrophilic petrolatum; or polyethylene glycol ointments; pastes which may contain gums such as xanthan gum; solutions such as alcoholic or aqueous solutions; gels such as aluminum hydroxide or sodium alginate gels; albumins such as human or animal albumins; collagens such as human or animal collagens; celluloses such as alkyl celluloses, hydroxyalkyl celluloses and alkyl/hydroxyalkyl celluloses, for example methylcellulose, hydroxyethyl cellulose, carboxymethyl cellulose, hydroxypropyl methylcellulose, and hydroxypropyl cellulose; polyoxamers such as Pevlon® Polys, exemplified by Pluronic® F-127; tetracols such as tetronic 1508; and alginates such as sodium alginate.

The following examples illustrate the present invention without, however, limiting the same thereto.

EXAMPLE 1Preparation of Medium Conditioned by GS-9L Cells

GS-9L cells were grown to confluence in 175 cm² tissue culture flasks in Dulbecco's Modified Eagle's Medium/10% newborn calf serum (DMEM/CS). At confluence the medium was decanted from the flasks, the flasks were washed with calcium and magnesium free phosphate buffered saline (PBS) and the cells were removed by treatment with a 1% solution of trypsin/EDTA. The cells (1×10^8) were pelleted by centrifugation, resuspended in 1500 ml of DMEM/5% NCS and plated into a ten level (6000 cm² surface area) cell factory (NUVNC). After 72 hours incubation at 37° C in a 5% CO₂ atmosphere the medium was decanted and the cell factories were washed 3 times with PBS. The cells were refed with 1500 ml of a 1:2 mixture of Ham's F-12/DMEM containing 26 mM Hepes, 5 µg/ml insulin, 10 µg/ml transferrin and 1.0 mg/ml bovine serum albumin. This medium was changed with fresh F-12/DMEM after 24 hours and collected every 48 hours after that. The conditioned medium was filtered through a Whatman #1 paper to remove cell debris and stored frozen at -20° C.

EXAMPLE 2Carboxymethyl-Sephadex Chromatography

GS-9L conditioned medium, from Example 1, was thawed and brought to pH 6.0 with 1 M HCl. Two grams CM Sephadex C-50 cation exchange (Pharmacia) resin pre-equilibrated in PBS adjusted to pH 6.0 with 1 N NaOH was added to 20 liters of conditioned medium. The mixture was stirred at low speed for 24 hours at 4° C. The resin was then allowed to settle and the medium is siphoned off. The remaining resin slurry was packed into a 0.9 cm diameter column and any remaining medium is allowed to drain off. Unbound protein was washed off the column with 0.05 M sodium phosphate, pH 6.0, containing 0.15 M NaCl. Vascular endothelial growth factor activity was eluted from the column with a subsequent wash of 0.05 M sodium phosphate, pH 6.0, containing 0.6 M NaCl.

EXAMPLE 3Concanavalin A (Con A) Lectin Affinity Chromatography

A 0.9 cm diameter column containing about 5 ml of packed Con A agarose (Vector Laboratories) was equilibrated with 0.05 M sodium acetate, pH 6.0, containing 1 mM Ca²⁺, 1 mM Mn²⁺ and 0.6 M NaCl. The active eluate from the CM Sephadex C-50 column, Example 2, was applied to the Con A agarose and unbound protein was washed from the column with elution buffer. The column was then rinsed with three column volumes of 0.05 M sodium acetate, pH 6.0, containing 1 mM Ca²⁺, 1 mM Mn²⁺ and 0.1 M NaCl. Bound protein was subsequently eluted from the column by application of this buffer supplemented with 0.30 M α -methyl mannoside and 0.18 M α -methyl glucoside.

EXAMPLE 4aspartic Acid (NDA) HPLC Cation Exchange Chromatography

The active eluate from the Con A column, Example 3, was applied to a 25 cm x 4.6 mm poly-aspartic acid NDA cation exchange HPLC column (Nest Group) pre-equilibrated in 0.05 M sodium phosphate buffer, pH 6.0. The column was eluted with a linear gradient of 0 to 0.75 M NaCl in this buffer over 60 minutes at a flow rate of 1.0 ml/min collecting 0.75 ml fractions. VEGF II activity present in fractions eluting between approximately 11.7 and 12.5 ml were pooled as shown by the horizontal bar in Fig. 1.

RESULTSNDA-Lectin Chromatography

The active fraction isolated from the poly-aspartic acid NDA column, Example 4, that contains VEGF II were re-equilibrated in pH 7.0 and loaded onto a 1 x 10 cm column of Pharmacia Cheating Sephadex G-50 charged with 1 mM Ca²⁺ and 1 mM Mn²⁺ and eluted with 0.15 M sodium phosphate, pH 7.0, containing 2 M NaCl and 0.1 M α -methyl glutamate buffer. VEGF II was eluted from the column with a gradient from 0.01M S_B over 10

minutes, 20-35% B over 45 minutes and 35-100% B over 5 minutes at a flow rate of 0.3 ml/min, where B buffer was 0.05 M sodium phosphate, pH 7.0, containing 2 M NaCl and 100 mM imidazole. The active fractions containing VEGF II activity eluting between 12.6 and 22.8 ml of the gradient effluent volume were pooled as shown by the solid horizontal bar in Fig. 2.

EXAMPLE 6

Reverse Phase Chromatography

The fractions containing VEGF II activity pooled from the metal chelate column, Example 5 were loaded onto a 4.6 mm x 5 cm Vydac C4 reverse phase HPLC column (5 μ m particle size) equilibrated in solvent A (0.1% trifluoroacetic acid (TFA)). The column was eluted with a gradient of 0-30% solvent B over 15 minutes, 30% B for an additional 15 minutes, then 30-45% B over 22.5 minutes and finally 45-100% B over 5.5 minutes where solvent B = A containing 67% acetonitrile. The flow rate was maintained at 0.75 ml/min. The active VEGF II fractions eluting between approximately 32.2 and 37.5 ml of the gradient effluent volume were pooled as shown by the solid horizontal bar in Fig. 3.

EXAMPLE 7

Mitogenic Assays

Human umbilical vein endothelial cells (HUVE) were plated on gelatin-coated 48 well tissue culture dishes at a density of 5000 cells/well in 500 μ l of Medium 199 containing 20% heat inactivated fetal calf serum (FCS). Samples to be assayed were added at the time of plating. The tissue culture plates are incubated at 37° C for 12 hours and 2 microcuries of tritiated thymidine (NEN, 20 Ci/mmol) was added per ml of assay medium (1.0 μ Ci/well). The plates were incubated for a further 60 hr, the assay medium was removed and the plates were washed with Hanks balanced salt solution containing 20 mM Hepes, pH 7.5, and 0.5 mg/ml bovine serum albumin. The cells were lysed and the labelled DNA solubilized with 200 μ l of a solution containing 2 gm of sodium carbonate and 400 mg sodium hydroxide in 100 ml water. The incorporated radioactivity was determined by liquid scintillation counting.

The concentration of VEGF II which elicited a half-maximal mitogenic response in HUVE cells was approximately 2 ± 1 ng/ml. The glycosaminoglycan heparin, which is required in these assays at a level of 10-100 μ g/ml to promote a response to a positive control, acidic fibroblast growth factor, does not enhance mitogenic stimulation of these cells by VEGF II.

EXAMPLE 8

Purity And Protein Structure Characterization of VEGF II

Purity of the protein under non-reducing conditions was determined by SDS-PAGE in 12.5% crosslinked gels according to the method of Laemmli, Nature 227: 680-685 (1970). The silver-stained gel contained a single band with an apparent mass of approximately 58 kDa. VEGF II migrated in SDS-PAGE under reducing conditions in 15% crosslinked gels as a broad silver-stained band with apparent molecular mass of approximately 23 kDa.

VEGF II was stored at 4°C in the aqueous trifluoroacetic acid (TFA)/acetonitrile mixture used to elute the homogeneous protein in reversed phase C₄ HPLC chromatography at the final stage of the purification protocol previously described. Aliquots of the purified protein (1.2 μ g) were vacuum evaporated to dryness in acid-washed 10 x 75 mm glass tubes and reduced for 2 hours at 50°C in 100 μ l of 0.1 M Tris buffer, pH 9.5, and 6 M guanidinium chloride containing 0.1% EDTA and 20 mM dithiothreitol (Calbiochem, Ultrol grade) under an argon atmosphere. The reduced protein was subsequently carboxymethylated for 1 hour at 23°C by the addition of 100 μ l of 0.7 M Tris, pH 7.8, containing 0.1% EDTA, 6 M guanidinium chloride, 9.2 μ M unlabeled iodoacetic acid and 50 μ Ci of iodo[2-¹⁴C]acetic acid (17.0 mCi/mmol, Amersham). After completion of the carboxymethylation, the mixture was loaded directly onto a 4.0 mm x 5.0 cm Vydac C4 column which had been pre-equilibrated in 0.1% TFA. The reduced and carboxymethylated protein was repurified by elution with a 45 minute linear gradient of 0 to 67% (v/v) acetonitrile in 0.1% TFA at a flow rate of 0.75 ml/min and stored in this elution solution at 4°C. The reduced and carboxymethylated protein eluted as two bands at approximately 25 and 28 ml that were of approximately equal area as determined by monitoring absorbance at 210 nm.

S-10
polybrene-coated glass fiber filters and their N-terminal sequences were determined by Edman degradation in an ABI gas phase microsequencer in conjunction with an ABI 120A on-line phenylthiohydantoin analyzer following manufacturers instructions. The peak of absorbance eluting at approximately 28 ml (A subunit) yielded an amino terminal sequence AP^TTEGEGKKA-EVV identical to VEGF II. The peak of absorbance eluting at approximately 26 ml (B subunit) yielded the N-terminal sequence ALSAGNKK STEMEMVPNEV plus a nearly equal amount of a truncated form of the same sequence missing the first three residues. The missing X residue corresponds to an Asn in the cloned sequence. Since this missing Asn occurs in a classical Asn-X-Ser/Thr N-glycosylation sequence it is presumed to be glycosylated. The A and B subunit of the B chain peptides were recovered in nearly equal amounts supporting the interpretation that the two peptides combine to form an AB heterodimer in VEGF II.

Reduced and carboxymethylated A and B subunits (650 ng each) were each dried by vacuum evaporation in acid-washed 10 x 75 mm glass tubes. Lys C protease (50 ng, Boehringer Mannheim), an enzyme that cleaves on the carboxyl terminal side of lysine residues, was added to each tube in 100 μ l of 25 mM Tris, pH 8.5, 0.1% EDTA. The substrate protein subunits were separately digested at 37°C for 8 hours and the resulting polypeptides resolved by reversed phase HPLC chromatography on a 4.6 mm x 25 cm Vydac C₁₈ column equilibrated in 0.1% TFA. Polypeptides were fractionated by elution with a 2 hour linear gradient of 0-67% acetonitrile in 0.1% TFA at a flow rate of 0.75 ml/min at 20°C. Individual peaks were manually collected and stored in this elution solution at 4°C.

The amino acid sequences of the isolated peptides were then determined using Edman degradation in an AB₃-gas phase sequencer in conjunction with the ABI 120 A on-line phenylthiohydantoin analyzer (Applied Biosystems Inc.). The peptide sequences are shown in the following Figs. 5 and 6. The amino acid sequence of Lys C fragment L20 (Fig. 5) demonstrates that the form of VEGF II A subunit in the heterodimer is the 164 amino acid form. The amino acid sequence of Lys C'fragment L26 (Fig. 6) demonstrates that the form of VEGF II B subunit in the heterodimer is the 135 amino acid form.

Example 6

Cloning and Sequencing of the VEGF II-A Monomer

PCR Amplification, Cloning and Sequencing of P4238

Two degenerate oligonucleotides were synthesized in order to amplify the cDNA encoding the peptide sequences of VEGF A subunit between LysC fragment L-42 and tryptic fragment T-38. These oligonucleotides were:

42.25 — GTGAGACATGGATCAGTNTATCGDA 3' TGGGIB
5' CAGAGAA — CGTGGACAGAGTCAGTGAGTTTCGTTAGIDAA 3'

where $N = 2 \times 10^7$

Poly(A) RNA was isolated from B9-EL cells using the Fast Track RNA Isolation kit from Invitrogen and the protocol provided. First strand cDNA synthesis was performed as follows:

1 μg of BS-3L RNA was annealed to 1 μg of acceptor primer TATA₅'GAACTCGAG-TGACAT-3' (5'-TATTCATTTT-3') by incubating in a volume of 10 μl at 70°C for 5 min followed by cooling to room temperature. To this reaction was added

卷之三

Figure 1. The effect of the number of iterations on the quality of the reconstructed spectra.

卷之三

1980-1981

Digitized by srujanika@gmail.com

On the 1st of January, 1863, the following resolutions were adopted:

For more information about the study, please contact Dr. Michael J. Klag at (301) 495-3000 or via e-mail at klag@mail.nih.gov.

11

THEORY OF THE STATE

ANSWER TO THE CHIEF QUESTIONS

1990-1991: The first year of the new program, which included a new curriculum, teaching methods, and assessment system.

¹² See, e.g., the introduction to the 1998 edition of *The Cambridge History of the American Republic*.

REFERENCES AND NOTES

— 5 —

2 L 50 pMoles T383' S
 0.5 L 2.5 units Amplitaq DNA polymerase
 67.5 μ l water
 Reaction conditions: 40 cycles of 94°C, 1'; 55°C, 2'; 72°C, 2'

Prep Scale secondary reaction:
 100 μ l 10X buffer
 160 μ l 1.25 mM each stock of dATP, dCTP, dGTP, and dTTP
 10 μ l primary PCR reaction
 20 μ l 500 pMoles L42.2
 20 μ l 500 pMoles T383' S
 5 μ l 2.5 units Amplitaq DNA polymerase
 685 μ l water

Reaction conditions 94°C, 1'; 55°C, 2'; 72°C, 2'; 30 cycles.

The PCR product was concentrated by Centriprep 30 spin columns, purified on a 1% agarose gel, and digested with restriction endonuclease SalI. The SalI fragment was then ligated into SalI cut pGEM3Z(+). The ligation mix was used to transform *E. coli* XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method.

PCR Amplification, Cloning and Sequencing of pM-3

Based on the sequence obtained from the p423B clones, two specific PCR primers were synthesized: oligo 307 5'-TTTGTCGACTCGAGAGCGGGAGAAAGC 3' and oligo 289 5'-TTTGTCGACGAAATCACTGTGAGC 3'. These primers were used in combination with oligo A17 5'-GACTCGAGTCGACATCG 3' to amplify the cDNA encoding the COOH terminus of VEGF A subunit using the 3' RACE technique described by Froehman et al., PNAS 86: 8398-8402 (1989).

PCR reactions:

Primary reaction 100 μ l
 10 μ l 10X buffer from Perkin Elmer Cetus
 GeneAmp kit

18 μ l 1.25 mM each stock of dATP, dCTP, dGTP, and dTTP
 0.05 μ l first strand GS-3L cDNA
 1 μ l 50 pMoles oligo 289

0.5 μ l 2.5 units Amplitaq DNA polymerase
 67.5 μ l water

Reaction conditions 94°C, 1'; 55°C, 2'; 72°C, 2'; 10 cycles then add 50 pMoles A17, then 1 cycle of 94°C, 1'; 55°C, 2'; 72°C, 40' followed by 40 cycles 94°C, 1'; 55°C, 2'; 72°C, 2'.

Prep Scale secondary reaction:

60 μ l 10X buffer
 160 μ l 1.25 mM each stock of dATP, dCTP, dGTP, and dTTP

24 μ l primary PCR reaction

12 μ l 300 pMoles oligo 307

12 μ l 300 pMoles oligo A17

0.5 μ l 1.5 units Amplitaq DNA polymerase
 381 μ l water

Reaction conditions 94°C, 1'; 55°C, 2'; 72°C, 2'; 30 cycles

The PCR product was purified on a 1% agarose gel and digested with restriction endonuclease SalI. The SalI fragment was then ligated into SalI cut pGEM3Z(+). The ligation mix was used to transform *E. coli* XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method.

PCR Amplification, Cloning and Sequencing of p6-15

Based on the sequence of p423B clones, two specific PCR primers were synthesized: oligo 113 5'-TTTGTCGACAGACGAGCGGGTTGAAGC 3' and oligo 145 5'-TTTGTCGAGATACTGGAAAGATGTCG 3'. These primers were used in combination with oligo A17 5'-GACTCGAGTCGACATCG 3' to amplify the cDNA encoding the COOH terminus of VEGF A subunit using the 3' RACE technique described by Froehman et al., PNAS 86: 8398-8402 (1989). The PCR product was purified on a 1% agarose gel and digested with restriction endonuclease SalI. The SalI fragment was then ligated into SalI cut pGEM3Z(+). The ligation mix was used to transform *E. coli* XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method.

RNA was isolated from GS-9L cells using the Fast Track RNA isolation kit from Invitrogen using the protocol provided. First strand cDNA synthesis was performed as follows:

One μ g of GS9L RNA was annealed to 1 μ g of oligo 151 by incubating in a volume of 6 μ l at 70°C for 5' followed by cooling to room temperature. To this reaction was added:

- 5 1.5 μ l 10X buffer (500mM Tris-HCl, pH 8.3,
- 750 mM KCl, 100 mM MgCl₂, 5 mM spermidine)
- 2.5 μ l 10 mM DTT
- 2.5 μ l 10 mM each dATP, dGTP, dCTP, dTTP
- 0.6 μ l 25 units RNasin
- 10 2.5 μ l 40 mM Na pyrophosphate
- 9.5 μ l 20 units diluted reverse transcriptase

The reaction was incubated at 42°C for 1 hour. Excess oligo 151 was removed by Centricon 100 spin columns and the 5' end of the cDNA was tailed by the addition of dATP and terminal transferase. The tailed cDNA was diluted to a final volume of 150 μ l in 10 mM Tris-HCl, 1 mM EDTA, pH 7.5.

15 PCR Reactions:

Primary reaction (50 μ l)

- 5 5 μ l 10X buffer from Perkin Elmer Cetus GeneAmp Kit
- 8 μ l 1.25 mM each stock of dATP,dCTP,dGTP, and dTTP
- 5 μ l first strand GS-9L cDNA prime with oligo 151 and tailed
- 20 1 μ l 25 pMoles oligo 113
- 1 μ l 25 pMoles oligo A17
- 1 μ l 10 pMoles oligo TA17
- 0.25 μ l 1.25 units AmpliTaq DNA polymerase
- 25.75 μ l water

25 Reaction conditions: 1 cycle 94°C 1'; 50°C 2'; 72°C 40' then 40 cycles of 94°C 1'; 50°C 1'30"; 72°C 2'

Prep scale secondary reaction:

- 5 60 μ l 10X buffer
- 96 μ l 1.25 mM each stock of dATP, dCTP, dGTP, and dTTP
- 6 μ l primary PCR reaction
- 20 12 μ l 300 pMoles oligo 74
- 12 μ l 300 pMoles oligo A17
- 3 μ l 15 units AmpliTaq DNA polymerase
- 411 μ l water

Reaction conditions 94°C, 1'; 55°C, 2'; 72°C, 2'30 cycles.

35 The PCR product was concentrated by Centricon 100 spin columns, and digested with restriction endonuclease Sall. The Sall fragment was then ligated into Sall cut pGEM3Zf(+). The ligation mix was used to transform E. coli XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method. The base sequence is shown in Fig. 5.

40 Cloning and sequencing of alternative forms of VEGF A cDNA

Based on the sequence obtained from the p5-15 and pW-3 clones, two specific PCR primers were synthesized; oligo 5'C 5' TTTGTCGACAAACCATGAACCTTCTGC 3' and oligo 181 5' TTTGTCGACGGTGA-GAGGTCTAGTTTC 3'. These primers were used together to amplify multiple cDNAs encoding alternative forms of the VEGF A subunit.

45 Preparative PCR Reaction:

- 5 50 μ l 10X buffer
- 60 μ l 1.25mM each stock of dATP, dCTP, dGTP, and dTTP
- 10 μ l first strand GS-9L cDNA
- 50 10 μ l 300pMoles oligo 5'C
- 10 μ l 300pMoles oligo 181
- 2.5 μ l 15 units AmpliTaq DNA polymerase
- 337.5 μ l water

Reaction conditions 94°C, 1'; 58°C, 2'; 72°C, 3'; 40 cycles.

55 The PCR product was extracted with phenol/chloroform, concentrated by Centricon 30 spin columns, precipitated by ethanol, and digested with restriction endonuclease Sal I, and ligated into SalI cut pGEM3Zf(+). The ligation mix was used to transform E. coli XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method. Three sets of clones were identified. Clone #12

encoded the 164 amino acid secreted form of VEGF A subunit identical to that shown in Fig. 4. The 164 amino acid form of VEGF A subunit is that amino acid sequence running continuously from Ala²⁷ to Arg¹⁹⁰. Clone #14 has a 125 base pair deletion between the second base of the Asn¹⁴⁹ codon and the third base of the Arg¹⁹⁴ codon. This clone thus encodes a 120aa secreted form of the VEGF A subunit with the conversion of Asn¹⁴⁹ to Lys¹⁴⁹. The 120 amino acid form of VEGF A subunit runs from Ala²⁷ to Asn¹⁴⁹, which becomes Lys¹⁴⁹ and does not begin until Cys¹⁵⁵, this form also finishes at Arg¹⁹⁰. Clone #16 has a 72 base pair insertion between the second and third base of the Asn¹⁴⁹ codon. This clone thus encodes a 188 amino acid secreted form of the VEGF A subunit with the conversion of Asn¹⁴⁹ to Lys¹⁴⁹. The nucleotide sequence and the deduced amino acid sequence of this insertion is:

Lys Lys Ser Val Arg Gly Lys Gly Lys Gln Lys
A AAA TCA GTC CGA GGA AAG GGA AAG GGT CGA AAA

Arg Lys Arg Lys Lys Ser Arg Phe Lys Ser Trp Ser
CGA AAG CGG AAG AAA TCC CGG TTT AAA TCC TGG AGC

Val

GT

EXAMPLE 10

Cloning and Sequencing of the VEGF II B Subunit

PCR Amplification, Cloning and Sequencing of pYVG

Two degenerate oligonucleotides were synthesized in order to amplify the cDNA encoding the peptide sequences of VEGF II B or Lys C fragment L50. These oligonucleotides were:

YI 5' TTTGTCGACATA[TC]AT[TC]GC[N]GA[TC]GA[AG]C 3'
GC 5' TTTGTCGACTC[AG]TC[AG]TT[AG]CA[AG]CA[N]CC 3'

where N=ACGT

RNA was isolated from GS-8L cells using the Fast Track RNA isolation kit from Invitrogen and the protocol provided. First strand cDNA synthesis was performed as follows:

1 µg of GS-8L poly A+RNA was annealed to 1 µg of adapter primer TA17, 5'GACTCGAGTOGACATCGATT 3' (SEQ ID NO: 3), by incubating in a volume of 10 µl at 70°C for 5 min, followed by cooling to room temperature. To this reaction was added:

3.0 µl water
0.5 µl 10X buffer, 500 mM Tris-HCl, pH 8.3, 750 mM KCl, 100 mM MgCl₂, 5mM spermidine,

2.5 µl 100 mM DTT

2.5 µl 10 mM each dATP, dGTP, dCTP, dTTP

0.6 µl 15 units RNase H

0.5 µl 40 mM Na pyrophosphate

1.5 µl 15 units reverse transcriptase

and the reaction was incubated at 42°C for 1 hour, then diluted to 1 ml in 10 mM Tris-HCl, 1 mM EDTA, pH 7.5.

PCR Reactions

Primary reaction: 50µl

5 µl 10X buffer from Perkin Elmer GeneAmp PCR

2 µl 25 mM each stock of dATP, dGTP, dCTP, and dTTP

1 µl 5mM dGDP, dGTP

1 µl 50 nmoles of pYVG

0.25 µl 1U unit of AmpliQaq DNA polymerase

33.75 μ l water

Reaction conditions. 40 cycles of 94°C, 1'; 50°C, 2'; 72°C, 2'.

Prep scale reaction

60 μ l 10X buffer

5 96 μ l 1.25mM each stock of dATP, dCTP, dGTP, and dTTP

12 μ l first strand 659L cDNA

12 μ l 500pMoles oligo Y1

12 μ l 500pMoles oligo GC

3 μ l 15 units AmpliTaq DNA polymerase

10 405 μ l water

Reaction conditions 94°C, 1'; 50°C, 2'; 72°C, 2'40 cycles.

The PCR product was concentrated by Centricon 30 spin columns and digested with restriction endonuclease Sall. The Sall fragment was then ligated into Sall cut pGEM3Zf(+). The ligation mix was used to transform *E. coli* XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method.

PCR Amplification, Cloning and Sequencing of p3V2

Based on the sequence obtained from the pYG clones, a specific PCR primer was synthesized; oligo HP 20 5' TTTGTCGACACACCCCTAACATGAAGTGTC 3'. This primer was used in combination with oligo A17 5' GACTCGAGTCGACATCG 3' to amplify the cDNA encoding the COOH terminus of the VEGF II B subunit using the 3' RACE technique described by Frohman et al., PNAS 85: 8998-9002 (1988).

Preparative PCR reaction:

60 μ l 10X buffer from Perkin Elmer Cetus Gene Amp Kit

25 12 μ l first strand 659L cDNA

96 μ l 1.25 mM each of dATP, dCTP, dGTP, dTTP

12 μ l 300 pMoles oligo A17

12 μ l 300 pMoles oligo HP

3 μ l 15units AmpliTaq DNA polymerase

30 405 μ l water

Reaction conditions 1 cycle of 94°C, 1'; 58°C, 2'; 72°C, 2'; followed by 40 cycles 94°C, 1', 58°C, 2' and 72°C, 2'.

The PCR product was concentrated by Centricon 30 spin columns, precipitated with ethanol and digested with restriction endonuclease Sall. The Sall fragment was then ligated into Sall cut pGEM3Zf(+). The ligation mix was used to transform *E. coli* XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method.

PCR Amplification, Cloning and Sequencing of p5V2

40 Based on the sequence of pYG clones, two specific PCR primers were synthesized; oligoVL' 5' TTTGTCGACACAGCGACTCAGAAAGG 3' and oligoVS' 5' TTTGTCGACACTGAATATATGAGACAC 3'. These primers were used in combination with oligo A17 5' GACTCGAGTCGACATCG 3' to amplify the cDNA encoding the amino terminus of the VEGF II B subunit using the 5' RACE technique described by Frohman et al., supra. Oligo 151 was synthesized in order to prime cDNA from GS-9L RNA. Oligo 151 is 5' CTTCAT-CATTGCAGCAGC 3'.

45 Poly A+RNA was isolated from GS9L cells using the Fast Track RNA isolation kit from Invitrogen using the protocol provided. First strand cDNA synthesis was performed as follows:

One μ g of GS9L RNA was annealed to 1 μ g of oligo 151 by incubating in a volume of 6 μ l at 70°C for 5' followed by cooling to room temperature. To this reaction was added:

50 1.5 μ l 10X buffer (500 mM Tris-HCl, pH 8.3,

750 mM KCl, 100 mM MgCl₂, 5mM spermidine)

2.5 μ l 10 mM DTT

2.5 μ l 10 mM each dATP, dCTP, dGTP, dTTP

0.6 μ l 25 units RNasin

2.5 μ l 40 mM Na pyrophosphate

9.5 μ l 20 units diluted reverse transcriptase

The reaction was incubated at 42°C for 1 hour.

Excess oligo 151 was removed by Centricon 100 spin columns and the 5' end of the cDNA was tailed by

the addition of dATP and terminal transferase. The tailed cDNA was diluted to a final volume of 150 μ l in 10 mM Tris-HCl, 1 mM EDTA, pH 7.5.

PCR Reactions:

Primary reaction (50 μ l)

- 5 5 μ l 10X buffer from Perkin Elmer Cetus GeneAmp Kit
- 8 μ l 1.25 mM each stock of dATP, dCTP, dGTP, and dTTP
- 5 μ l first strand GS9L cDNA primed with oligo 151 and tailed
- 1 μ l 25 pMoles oligo VL'
- 1 μ l 25 pMoles oligo A17
- 10 1 μ l 10 pMoles oligo TA17
- 0.25 μ l 1.25 units AmpliTaq DNA polymerase
- 28.75 μ l water

Reaction conditions: 1 cycle 94°C, 1'; 58°C, 2'; 72°C, 40' then 40 cycles of 94°C, 1'; 58°C, 2'; 72°C, 2'.

Prep scale secondary reaction:

- 15 100 μ l 10X buffer
- 160 μ l 1.25 mM each stock of dATP, dCTP, dGTP, and dTTP
- 10 μ l primary PCR reaction
- 20 μ l 500 pMoles oligo VS'
- 20 μ l 300 pMoles oligo A17
- 20 5 μ l 25 units AmpliTaq DNA polymerase
- 685 μ l water

Reaction conditions 94°C, 1'; 58°C, 2'; 72°C, 2'30 cycles.

The PCR product was extracted with phenol/chloroform, concentrated by Centricon 30 spin columns, precipitated by ethanol, and digested with restriction endonuclease Sall. The Sall fragment was purified on 4% Nu-Sieve Agarose gel then ligated into Sall cut pGEM3Zf(+). The ligation mix was used to transform *E. coli* XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method.

PCR Amplification, Cloning and Sequencing of pCV2 and pCV2.1

Based on the sequences of the p3V2 and p5CV2 clones, two specific PCR primers were synthesized; oligo 5'CV2, 1' 5' TTTGTCGAC[N][N]GCAGGTCTAGCTG 3' and oligo 3'CV2 5' TTTGTCGAC[N][N]CTAATAAA-TAGAGGG 3'. These primers were used together to amplify the cDNA encoding the VEGF B subunit.

Preparative PCR Reaction:

- 35 40 μ l 10X buffer
- 64 μ l 1.25 mM each dATP, dTTP, dGTP, dCTP
- 8 μ l first strand GS-9L cDNA
- 8 μ l 200 pMoles 5'CV2.1
- 8 μ l 200 pMoles 3'CV2
- 40 2 μ l 10units AmpliTaq DNA polymerase
- 270 μ l water

Reaction conditions: 94°C, 1'; 58°C, 2'; 72°C, 2'; 40 cycles.

The PCR product was extracted with phenol/chloroform, concentrated by Centricon 30 spin columns, precipitated by ethanol, and digested with restriction endonuclease Sal I, and ligated into Sal I cut pGEM3Zf(+). The ligation mix was used to transform *E. coli* XL-1 blue. Plasmid DNA was isolated form white transfromants and sequenced by the dideoxy chain termination method. Two sets of clones were identified, one encoded a 135 amino acid sequence and the other encoded a 115 amino acid sequence, see Figures 6 and 7 respectively.

cDNA Cloning of VEGF B Subunit

52 The DNA and protein sequences for the amino terminus of the signal peptide of VEGF B was determined from a cDNA clone isolated from a cDNA library constructed from GS-9L polyA+ RNA.

First Strand Synthesis

- 53 Anneal 15.6 μ l (5ug) GS-9L polyA+ RNA and 2.5 μ l (2.5ug) oligo dT-XbaI primer by heating to 70°C 5' slow cool to room temperature. Add the following:
 - 5.5 μ l 10X buffer (500 mM Tris-HCl, pH 8.3 (42°C),
 - 750 mM KCl, 100 mM MgCl₂, 5mM spermidine
 - 5.5 μ l 100mM DTT

5.5 μ l 10 mM each dATP, dTTP, dCTP, dGTP
 1.4 μ l (55units) RNasin
 5.5 μ l 40mM NaPPi
 13.5 μ l 55units AMV reverse transcriptase
 5 Incubate at 42° C 60'.
 Second Strand Synthesis:
 Assemble reaction mix
 50 μ l first strand reaction
 10 25 μ l 10X buffer (500 mM Tris-HCl, pH7.2, 850 mM KCL, 30 mM MgCl₂, 1mg/ml BSA, 100 mM (NH₄)₂SO₄
 7.5 μ l 100 mM DTT
 25 μ l 1mM NAD
 15 6.5 μ l (65units) E. coli DNA Polymerasel
 2.5 μ l (2.5units) E. coli DNA Ligase
 2.5 μ l (2 units) E. coli RNase H
 135 μ l water
 Incubate at 14° C for 2h and then incubate 70° C for 10'. Add 1ul (10 u.units) T4 DNA Polymerase, incubate
 at 37° C for 10', add 25 μ l 0.2M EDTA an extract with phenol/chloroform, then precipitate by the addition of 0.5
 volume of 7.5 M ammonium acetate and 3 volumes of ethanol, collect precipitate and resuspend in 20 μ l of 10
 mM Tris-HCl, pH 7.5, 1mM EDTA.
 20 cDNA Library Construction
 The above cDNA was ligated into EcoR1/ XbaI digested LambdaGEM-4 (Promega Biochemicals) after the
 addition of EcoR1 linkers and digestion with EcoR1 and XbaI. A cDNA library was amplified from ~50, 000
 independent clones.
 Isolation of Rat VEGF B cDNA Clone
 25 The above cDNA library was screen by plaque hybridization using pCV2 as a probe. Hybridization con-
 ditions were as follows:
 5XSSC (1XSSC is 0.15M sodium chloride, 0.015M sodium citrate,
 50% Formamide
 30 5X Denhardt's Solution (1% Ficoll, 1% polyvinylpyrrolidone, 1% bovine serum albumin)
 0.15 mg/ml salmon sperm DNA hybridize overnight at 42° C.
 Filters were washed 3 times in 2XSSC, 0.1% SDS at room temerature for 5', then 1 time in 1XSSC, 0.1%
 SDS at 50C for 30'. Positive clones were identified by autoradiography.
 The DNA from phage #202 was digested with restriction endonuclease SpeI and the 1.1kb band ligated
 35 into XbaI digested pGEM3Zf(+). The ligation mix was used to transform E.coli XL-1 blue. Plasmid DNA was
 isolated from white transformants and sequenced by the dideoxy chain termination method. The cDNA sequ-
 ence and predicted amino acid sequence of the signal peptide are shown in Fig.6 and Fig.7.
 The entire nucleotide and amino acid sequence of the 115 amino acid form is shown in Fig. 7. The secreted
 protein starts at Ala²⁴ and continues to Arg¹²⁸. The entire nucleotide and amino acid sequence of the 135 amino
 acid form is shown in Fig. 7. The secreted protein starts at Ala²⁴ and continues to Leu¹³⁵.

40

Claims

1. Mammalian vascular endothelial growth factor II comprising a heterodimer with an apparent non-reduced molecular mass of about 58,000 daltons, with said heterodimer made up of an A subunit having an apparent reduced molecular mass of about 23,000 daltons and a B subunit having an apparent reduced molecular mass of about 23,000 daltons with said vascular endothelial growth factor substantially free of impurities and mitogenic for mammalian vascular endothelial cells.
2. The vascular endothelial growth factor II of claim 1 wherein the growth factor is isolated and purified from human cells, cell culture media or tissues.
3. The vascular endothelial growth factor II of claim 1 wherein the factor is mitogenic for mammalian vascular endothelial cells.
4. Mammalian vascular endothelial growth factor II comprising a heterodimer with an apparent non-reduced molecular mass of about 58,000 daltons, with said heterodimer made up of two A subunits having an apparent reduced molecular mass of about 23,000 daltons each with said vascular endothelial growth factor

- substantially free of impurities and mitogenic for mammalian vascular endothelial cells.
5. Mammalian vascular endothelial growth factor comprising a homodimer comprising two B subunits with said endothelial growth factor substantially free of impurities and mitogenic for mammalian vascular endothelial cells.
 10. A protein comprising an amino acid sequence substantially corresponding to all or a portion of the amino acid sequence of rat vascular endothelial growth factor II with said vascular endothelial growth factor having a B subunit selected from the group consisting of the 135 amino acid form and the 115 amino acid form and having an A subunit selected from the group consisting of the 188 amino acid form, the 164 amino acid form and the 120 amino acid form and other microheterogeneous forms thereof with said growth factor being free of other proteins.
 15. Vascular endothelial growth factor comprising an A subunit of at least the amino acid sequence as shown in Figure 4 and a B subunit of at least the amino acid sequence as shown in Figure 5 and any microheterogeneous or truncated forms thereof which are biologically active and are substantially free of impurities.
 20. Vascular endothelial growth factor comprising an A subunit of at least the nucleotide sequence as shown in Figure 4 and an B subunit of at least the nucleotide sequence as shown in Figure 6 and any microheterogeneous or truncated forms thereof which are biologically active and are substantially free of impurities.
 25. Vascular endothelial growth factor comprising two B subunits of at least the nucleotide sequence as shown in figure 6 or figure 7 and any microheterogeneous or truncated forms thereof which are biologically active and are substantially free of impurities.
 30. A process for the isolation of vascular endothelial growth factor II in substantially pure form which comprises the sequence of steps of:
 - a. isolation of conditioned growth media;
 - b. cation exchange chromatography;
 - c. lectin affinity chromatography;
 - d. cation exchange high performance liquid chromatography;
 - e. metal-chelate affinity chromatography;
 - f. reverse-phase high performance liquid chromatography; and
 35. g. collecting the substantially pure vascular endothelial growth factor II.
 40. The process of claim 10 wherein:
 - a. isolation of conditioned growth media by filtration;
 - b. cation exchange chromatography with adsorption on carboxymethyl Sephadex C-50 cation exchange resin at pH 6.0 followed by a rinse with 0.05 M sodium phosphate, pH 6.0, 0.15 M NaCl and elution with 0.05 sodium phosphate, pH 6.0, containing 0.6 M NaCl;
 - c. lectin affinity chromatography with adsorption on concanavalin A agarose resin at pH 6.0 followed by elution with 0.05 M sodium acetate, pH 6.0, containing 1 mM CaCl₂, 1 mM MnCl₂, 0.1 M NaCl and 0.02 M alpha-methyl mannoside and 0.05 M alpha-methyl glucoside;
 - d. cation exchange high performance liquid chromatography with adsorption on Polyaspartic Acid WGX, equilibrated in 0.05 M sodium phosphate, pH 6.0 followed by elution with about 0 to about 0.75 M NaCl linear gradient;
 - e. metal-chelate chromatography with adsorption on Pharmacia Chelating Sepharose 6B charged with excess Cu²⁺ followed by elution with a gradient of 0.5 mM to 100 mM imidazole in buffer containing about 0.05 M sodium phosphate, about pH 7.0, about 2 M NaCl;
 - f. reverse phase high performance liquid chromatography with adsorption on a C₄ column equilibrated in 0.1% trifluoroacetic acid followed by elution with a gradient of 0 to 87% v/v of acetonitrile in 0.1% trifluoroacetic acid;
 45. g. collecting the substantially pure vascular endothelial growth factor II.
 50. The process of Claim 10 for the isolation of vascular endothelial growth factor II from CG-924 cell culture fluid.
 55. The process of Claim 10 for the isolation of vascular endothelial growth factor II from CG-924 cell culture fluid.
 60. The process of Claim 10 for the isolation of vascular endothelial growth factor II from CG-924 cell culture fluid.
 65. The process of Claim 10 for the isolation of vascular endothelial growth factor II from CG-924 cell culture fluid.
 70. The process of Claim 10 for the isolation of vascular endothelial growth factor II from CG-924 cell culture fluid.
 75. The process of Claim 10 for the isolation of vascular endothelial growth factor II from CG-924 cell culture fluid.
 80. The process of Claim 10 for the isolation of vascular endothelial growth factor II from CG-924 cell culture fluid.
 85. The process of Claim 10 for the isolation of vascular endothelial growth factor II from CG-924 cell culture fluid.
 90. The process of Claim 10 for the isolation of vascular endothelial growth factor II from CG-924 cell culture fluid.
 95. The process of Claim 10 for the isolation of vascular endothelial growth factor II from CG-924 cell culture fluid.

13. A tissue repairing pharmaceutical composition comprising a pharmaceutical carrier and an effective tissue repairing amount of the purified vascular endothelial growth factor II of any one of Claims 1 or 4 to 9.
14. The use of the vascular endothelial growth factor II of any one of Claims 1 or 3 to 9 for the manufacture of a medicament capable of promoting tissue repair.
15. A method for the stimulation of growth of vascular endothelial cell's which comprises treating a sample of the desired endothelial cells in a nutrient medium with vascular endothelial growth factor II at a concentration of about 0.1-100 ng/ml.
16. A method for preparing synthetic vessels comprising treating synthetic polymeric vessels with vascular endothelial growth factor II.
17. The use of a synthetic vessel prepared by the method of Claim 16 for the manufacture of a medicament suitable for use as a vessel implant whereby, after implantation, endothelial cells migrate into and grow on the artificial surface.
18. The use of vascular endothelial growth factor II for the manufacture of a medicament for the stimulation of the growth of vascular endothelial cells in vivo whereby either vascular repair, or neovascularization, or both, is promoted.
19. A purified and isolated DNA sequence encoding the 188 amino acid A subunit of vascular endothelial growth factor II.
20. A purified and isolated DNA sequence encoding the 164 amino acid A subunit of vascular endothelial growth factor II.
21. A purified and isolated DNA sequence encoding the 120 amino acid A subunit of vascular endothelial growth factor II.
22. A purified and isolated DNA sequence encoding the 135 amino acid B subunit of vascular endothelial growth factor II.
23. A purified and isolated DNA sequence encoding the 115 amino acid B subunit of vascular endothelial growth factor II.
24. Vascular endothelial growth factor II DNA comprising an A subunit DNA sequence selected from the group consisting of a DNA sequence encoding an 188 amino acid form, a DNA sequence encoding an 164 amino acid form and a DNA sequence encoding a 120 amino acid form, with said A subunit DNA operably attached to a B subunit DNA sequence selected from the group consisting of a DNA sequence encoding a 135 amino acid form; and a DNA sequence encoding a 115 amino acid form.
25. Heterodimeric vascular endothelial growth factor DNA comprising an A subunit DNA sequence encoding a 164 amino acid form operably attached to a B subunit DNA sequence encoding a 135 amino acid form.
26. Heterodimeric vascular endothelial growth factor DNA comprising an A subunit DNA sequence encoding a 164 amino acid form operably attached to a B subunit DNA sequence encoding a 115 amino acid form.
27. Homodimeric vascular endothelial growth factor DNA comprising a B subunit DNA sequence selected from the group consisting of a B subunit DNA sequence encoding a 135 amino acid form and a B subunit DNA sequence encoding a 115 amino acid form.
28. A vector containing the DNA sequence of any one of claims 24 to 27.
29. A host cell transformed by the vector of claim 28 containing the DNA sequence encoding vascular endothelial growth factor II.
30. A process for the preparation of vascular endothelial growth factor II comprising culturing the transformed

EP 0 476 383 A1

host cell" of claim 29 under conditions suitable for the expression of "vascular endothelial growth factor II" and recovering vascular endothelial growth factor II.

31. Vascular endothelial growth factor II made by the process of claim 30

10

15

20

25

30

35

40

45

50

55

FIG. 1:

Poly(aspartic acid) WCK

FIG. 2

FIG. 3

FIG. 4

► p5-15
0 ACC AAG AAC TII TIG CTC ICI TGG GAG CTC TII TIG CTC CII
1 MET- ASN- PHE- LEU- LEU- SER- IHP- VAL- HIS- IHP- IHP- LEU- LEU- LEU- ILE- HIS- HIS- HIS-
6 CC AAG TGG CCT CGT GCR CCC AGG AGC GAA GGG GAG GAG GCG TCA GAA GAG GTC
21 50 40
0 LYS- IHP- STH- GLN- GLN [GLA-PRO- IHP- IHP- GLU- GLY- GLU- GLN- LYS- GLN- HIS- GLU- GLU- GLU-
10 127
CB26

FIG. 4 (CONT.)

MP 0 476 983 A1

(PAP)
(PAP)
41

AAA TTC AGG GAC GTC TAC CAG CCC AGC IAT TCC CGT CCG ATT CAC ACC CIG GIG GAC AAC
LYS - PHE - MET - ASP - VAL - TYR - GLN - ARG - SER - TYR - CYS - ARG - PRO - ILE - GLU - TYR - LEU - VAL - ASP - ILE -
42 50 60
I41 I42 I65
CB26 ——————
—— CB26 ——————

TTC CAG GAG TAC CCC GAT GAG ATA GAG IAT ATC TTC AGG CCG TCC YGT GIG CCC CIR AGG
61 70 80
PHE - GLN - GLU - TYR - PRO - ASP - GLU - ILE - GLU - ILE - PHE - LYS - PRO - SER - CYS - VAL - PRO - LEU - MET -
I42 I50
—— CB26 ——————
—— CB26 ——————
p5-15 p4230

FIG. 4 (CONT.)

CGG TGT GCG GGC TGC TGC GAT GAT GAA GAC CTC GCG GAG TGC TGC GAT
 81
 GCG - CYS - GLU - GLY - CYS - CYS - ASN ASP - GLU - ASN - CYS ASN PRO THR SER GLU [ASN]
 90
 100

142 U30

EP 0 475 933 A1

二二三

FIG. 4 (CONT.)

p4230

110 ————— 115 ————— 122 —————

142
116
U100

EP 0 476 983 A1

۱۴۲۳

HIS - CYS - GLU - PRO - CYS - SER - GLU - ALA - ALA - LYS - HIS - LEU - PHE - VAL - GLN - ASP - PRO - β .N - ILE - CYS -
 141
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260
 270
 280
 290
 300
 310
 320
 330
 340
 350
 360
 370
 380
 390
 400
 410
 420
 430
 440
 450
 460
 470
 480
 490
 500
 510
 520
 530
 540
 550
 560
 570
 580
 590
 600
 610
 620
 630
 640
 650
 660
 670
 680
 690
 700
 710
 720
 730
 740
 750
 760
 770
 780
 790
 800
 810
 820
 830
 840
 850
 860
 870
 880
 890
 900
 910
 920
 930
 940
 950
 960
 970
 980
 990
 1000
 1010
 1020
 1030
 1040
 1050
 1060
 1070
 1080
 1090
 1100
 1110
 1120
 1130
 1140
 1150
 1160
 1170
 1180
 1190
 1200
 1210
 1220
 1230
 1240
 1250
 1260
 1270
 1280
 1290
 1300
 1310
 1320
 1330
 1340
 1350
 1360
 1370
 1380
 1390
 1400
 1410
 1420
 1430
 1440
 1450
 1460
 1470
 1480
 1490
 1500
 1510
 1520
 1530
 1540
 1550
 1560
 1570
 1580
 1590
 1600
 1610
 1620
 1630
 1640
 1650
 1660
 1670
 1680
 1690
 1700
 1710
 1720
 1730
 1740
 1750
 1760
 1770
 1780
 1790
 1800
 1810
 1820
 1830
 1840
 1850
 1860
 1870
 1880
 1890
 1900
 1910
 1920
 1930
 1940
 1950
 1960
 1970
 1980
 1990
 2000
 2010
 2020
 2030
 2040
 2050
 2060
 2070
 2080
 2090
 2100
 2110
 2120
 2130
 2140
 2150
 2160
 2170
 2180
 2190
 2200
 2210
 2220
 2230
 2240
 2250
 2260
 2270
 2280
 2290
 2300
 2310
 2320
 2330
 2340
 2350
 2360
 2370
 2380
 2390
 2400
 2410
 2420
 2430
 2440
 2450
 2460
 2470
 2480
 2490
 2500
 2510
 2520
 2530
 2540
 2550
 2560
 2570
 2580
 2590
 2600
 2610
 2620
 2630
 2640
 2650
 2660
 2670
 2680
 2690
 2700
 2710
 2720
 2730
 2740
 2750
 2760
 2770
 2780
 2790
 2800
 2810
 2820
 2830
 2840
 2850
 2860
 2870
 2880
 2890
 2900
 2910
 2920
 2930
 2940
 2950
 2960
 2970
 2980
 2990
 3000
 3010
 3020
 3030
 3040
 3050
 3060
 3070
 3080
 3090
 3100
 3110
 3120
 3130
 3140
 3150
 3160
 3170
 3180
 3190
 3200
 3210
 3220
 3230
 3240
 3250
 3260
 3270
 3280
 3290
 3300
 3310
 3320
 3330
 3340
 3350
 3360
 3370
 3380
 3390
 3400
 3410
 3420
 3430
 3440
 3450
 3460
 3470
 3480
 3490
 3500
 3510
 3520
 3530
 3540
 3550
 3560
 3570
 3580
 3590
 3600
 3610
 3620
 3630
 3640
 3650
 3660
 3670
 3680
 3690
 3700
 3710
 3720
 3730
 3740
 3750
 3760
 3770
 3780
 3790
 3800
 3810
 3820
 3830
 3840
 3850
 3860
 3870
 3880
 3890
 3900
 3910
 3920
 3930
 3940
 3950
 3960
 3970
 3980
 3990
 4000
 4010
 4020
 4030
 4040
 4050
 4060
 4070
 4080
 4090
 4100
 4110
 4120
 4130
 4140
 4150
 4160
 4170
 4180
 4190
 4200
 4210
 4220
 4230
 4240
 4250
 4260
 4270
 4280
 4290
 4300
 4310
 4320
 4330
 4340
 4350
 4360
 4370
 4380
 4390
 4400
 4410
 4420
 4430
 4440
 4450
 4460
 4470
 4480
 4490
 4500
 4510
 4520
 4530
 4540
 4550
 4560
 4570
 4580
 4590
 4600
 4610
 4620
 4630
 4640
 4650
 4660
 4670
 4680
 4690
 4700
 4710
 4720
 4730
 4740
 4750
 4760
 4770
 4780
 4790
 4800
 4810
 4820
 4830
 4840
 4850
 4860
 4870
 4880
 4890
 4900
 4910
 4920
 4930
 4940
 4950
 4960
 4970
 4980
 4990
 5000
 5010
 5020
 5030
 5040
 5050
 5060
 5070
 5080
 5090
 5100
 5110
 5120
 5130
 5140
 5150
 5160
 5170
 5180
 5190
 5200
 5210
 5220
 5230
 5240
 5250
 5260
 5270
 5280
 5290
 5300
 5310
 5320
 5330
 5340
 5350
 5360
 5370
 5380
 5390
 5400
 5410
 5420
 5430
 5440
 5450
 5460
 5470
 5480
 5490
 5500
 5510
 5520
 5530
 5540
 5550
 5560
 5570
 5580
 5590
 5600
 5610
 5620
 5630
 5640
 5650
 5660
 5670
 5680
 5690
 5700
 5710
 5720
 5730
 5740
 5750
 5760
 5770
 5780
 5790
 5800
 5810
 5820
 5830
 5840
 5850
 5860
 5870
 5880
 5890
 5900
 5910
 5920
 5930
 5940
 5950
 5960
 5970
 5980
 5990
 6000
 6010
 6020
 6030
 6040
 6050
 6060
 6070
 6080
 6090
 6100
 6110
 6120
 6130
 6140
 6150
 6160
 6170
 6180
 6190
 6200
 6210
 6220
 6230
 6240
 6250
 6260
 6270
 6280
 6290
 6300
 6310
 6320
 6330
 6340
 6350
 6360
 6370
 6380
 6390
 6400
 6410
 6420
 6430
 6440
 6450
 6460
 6470
 6480
 6490
 6500
 6510
 6520
 6530
 6540
 6550
 6560
 6570
 6580
 6590
 6600
 6610
 6620
 6630
 6640
 6650
 6660
 6670
 6680
 6690
 6700
 6710
 6720
 6730
 6740
 6750
 6760
 6770
 6780
 6790
 6800
 6810
 6820
 6830
 6840
 6850
 6860
 6870
 6880
 6890
 6900
 6910
 6920
 6930
 6940
 6950
 6960
 6970
 6980
 6990
 7000
 7010
 7020
 7030
 7040
 7050
 7060
 7070
 7080
 7090
 7100
 7110
 7120
 7130
 7140
 7150
 7160
 7170
 7180
 7190
 7200
 7210
 7220
 7230
 7240
 7250
 7260
 7270
 7280
 7290
 7300
 7310
 7320
 7330
 7340
 7350
 7360
 7370
 7380
 7390
 7400
 7410
 7420
 7430
 7440
 7450
 7460
 7470
 7480
 7490
 7500
 7510
 7520
 7530
 7540
 7550
 7560
 7570
 7580
 7590
 7600
 7610
 7620
 7630
 7640
 7650
 7660
 7670
 7680
 7690
 7700
 7710
 7720
 7730
 7740
 7750
 7760
 7770
 7780
 7790
 7800
 7810
 7820
 7830
 7840
 7850
 7860
 7870
 7880
 7890
 7900
 7910
 7920
 7930
 7940
 7950
 7960
 7970
 7980
 7990
 8000
 8010
 8020
 8030
 8040
 8050
 8060
 8070
 8080
 8090
 8100
 8110
 8120
 8130
 8140
 8150
 8160
 8170
 8180
 8190
 8200
 8210
 8220
 8230
 8240
 8250
 8260
 8270
 8280
 8290
 8300
 8310
 8320
 8330
 8340
 8350
 8360
 8370
 8380
 8390
 8400
 8410
 8420
 8430
 8440
 8450
 8460
 8470
 8480
 8490
 8500
 8510
 8520
 8530
 8540
 8550
 8560
 8570
 8580
 8590
 8600
 8610
 8620
 8630
 8640
 8650
 8660
 8670
 8680
 8690
 8700
 8710
 8720
 8730
 8740
 8750
 8760
 8770
 8780
 8790
 8800
 8810
 8820
 8830
 8840
 8850
 8860
 8870
 8880
 8890
 8900
 8910
 8920
 8930
 8940
 8950
 8960
 8970
 8980
 8990
 9000
 9010
 9020
 9030
 9040
 9050
 9060
 9070
 9080
 9090
 9100
 9110
 9120
 9130
 9140
 9150
 9160
 9170
 9180
 9190
 9200
 9210
 9220
 9230
 9240
 9250
 9260
 9270
 9280
 9290
 9300
 9310
 9320
 9330
 9340
 9350
 9360
 9370
 9380
 9390
 9400
 9410
 9420
 9430
 9440
 9450
 9460
 9470
 9480
 9490
 9500
 9510
 9520
 9530
 9540
 9550
 9560
 9570
 9580
 9590
 9600
 9610
 9620
 9630
 9640
 9650
 9660
 9670
 9680
 9690
 9700
 9710
 9720
 9730
 9740
 9750
 9760
 9770
 9780
 9790
 9800
 9810
 9820
 9830
 9840
 9850
 9860
 9870
 9880
 9890
 9900
 9910
 9920
 9930
 9940
 9950
 9960
 9970
 9980
 9990
 10000
 10010
 10020
 10030
 10040
 10050
 10060
 10070
 10080
 10090
 100100
 100200
 100300
 100400
 100500
 100600
 100700
 100800
 100900
 1001000
 1002000
 1003000
 1004000
 1005000
 1006000
 1007000
 1008000
 1009000
 10010000
 10020000
 10030000
 10040000
 10050000
 10060000
 10070000
 10080000
 10090000
 100100000
 100200000
 100300000
 100400000
 100500000
 100600000
 100700000
 100800000
 100900000
 1001000000
 1002000000
 1003000000
 1004000000
 1005000000
 1006000000
 1007000000
 1008000000
 1009000000
 10010000000
 10020000000
 10030000000
 10040000000
 10050000000
 10060000000
 10070000000
 10080000000
 10090000000
 100100000000
 100200000000
 100300000000
 100400000000
 100500000000
 100600000000
 100700000000
 100800000000
 100900000000
 1001000000000
 1002000000000
 1003000000000
 1004000000000
 1005000000000
 1006000000000
 1007000000000
 1008000000000
 1009000000000
 10010000000000
 10020000000000
 10030000000000
 10040000000000
 10050000000000
 10060000000000
 10070000000000
 10080000000000
 10090000000000
 100100000000000
 100200000000000
 100300000000000
 100400000000000
 100500000000000
 100600000000000
 100700000000000
 100800000000000
 100900000000000
 1001000000000000
 1002000000000000
 1003000000000000
 1004000000000000
 1005000000000000
 1006000000000000
 1007000000000000
 1008000000000000
 1009000000000000
 10010000000000000
 10020000000000000
 10030000000000000
 10040000000000000
 10050000000000000
 10060000000000000
 10070000000000000
 10080000000000000
 10090000000000000
 100100000000000000
 100200000000000000
 100300000000000000
 100400000000000000
 100500000000000000
 100600000000000000
 100700000000000000
 100800000000000000
 100900000000000000
 1001000000000000000
 1002000000000000000
 1003000000000000000
 1004000000000000000
 1005000000000000000
 1006000000000000000
 1007000000000000000
 1008000000000000000
 1009000000000000000
 10010000000000000000
 10020000000000000000
 10030000000000000000
 10040000000000000000
 10050000000000000000
 10060000000000000000
 10070000000000000000
 10080000000000000000
 10090000000000000000
 100100000000000000000
 100200000000000000000
 100300000000000000000
 100400000000000000000
 100500000000000000000
 100600000000000000000
 100700000000000000000
 100800000000000000000
 100900000000000000000
 1001000000000000000000
 1002000000000000000000
 1003000000000000000000
 1004000000000000000000
 1005000000000000000000
 1006000000000000000000
 1007000000000000000000
 1008000000000000000000
 1009000000000000000000
 10010000000000000000000
 10020000000000000000000
 10030000000000000000000
 10040000000000000000000
 10050000000000000000000
 10060000000000000000000
 10070000000000000000000
 10080000000000000000000
 10090000000000000000000
 100100000000000000000000
 100200000000000000000000
 100300000000000000000000
 100400000000000000000000
 100500000000000000000000
 100600000000000000000000
 100700000000000000000000
 100800000000000000000000
 100900000000000000000000
 1001000000000000000000000
 1002000000000000000000000
 1003000000000000000000000
 1004000000000000000000000
 1005000000000000000000000
 1006000000000000000000000
 1007000000000000000000000
 1008000000000000000000000
 1009000000000000000000000
 10010000000000000000000000
 10020000000000000000000000
 10030000000000000000000000
 10040000000000000000000000
 10050000000000000000000000
 10060000000000000000000000
 10070000000000000000000000
 10080000000000000000000000
 10090000000000000000000000
 100100000000000000000000000
 100200000000000000000000000
 100300000000000000000000000
 100400000000000000000000000
 100500000000000000000000000
 100600000000000000000000000
 100700000000000000000000000
 100800000000000000000000000
 100900000000000000000000000
 1001000000000000000000000000
 1002000000000000000000000000
 1003000000000000000000000000
 1004000000000000000000000000
 1005000000000000000000000000
 1006000000000000000000000000
 1007000000000000000000000000
 1008000000000000000000000000
 1009000000000000000000000000
 10010000000000000000000000000
 1002000000000000000

卷之三

FIG. 4 (CONT.)

EP 2 475 333 A1

FIG. 5

1 p5-15
MEL-ASN-PHE-LEU-LEU-¹⁰ SER-TAP-VAL-HIS-TAP-THR-LEU-²⁰ ALA-LEU-LEU-LYS-TYR-LEU-GLU-HIS-GLU-³⁰

FIG. 5 (CONT.)

EP 0 476 983 A1

TCC CTC GAG TAC CCC GAT GAG AAG TAG TAA ATC TCC AAC AGG CCG TCC TGT GTC CTA GTC
 61 PHE - GLN - GLU - IVA - PRO - ASP - GLU - ILE - GLU - IVA - ILE - PHE - IYS - PRO - SER - CYS - VAL - PROD - ILE - MET
 70
 80

— 146 —

GFG 1973

4230

GTC PCT ATG CAG ATG ATG CGG AAC GTC AAC CCT CAC GAA GCA GGG ATG ATC
104
 VAL-THR-MET-GIN-ILE-MET-ARG-ILE-LYS-PRO-HIS-GIN-SER-GLN-HIS-ILE-GLY-Glu-MET-Ser-
110
120

14

FIG. 5 (CONT.)

EP 0 476 983 A1

FIG. 5 (CONT.)

CGI ACT TGC AGA TGT GAC RAG CCA RGG CGG CTC 160
161 RGC - THR - CYS - ARG - CYS - ASP - LYS - PRO - ARG - ARG *

11(1)

FIG. 6 (CONT.)

EP 0 476 383 A1

FIG. 6 (CONT.)

ACA TTC ITC CAG GAT GIA CTC TGC GAA TGC AGG CCT ATT CTC GAG AGG GCA TAA GGT GAA

141

pCII

[26]

150
LNU

1

476 983 A1

11(3)

FIG. 7 (CONT.)

EP 0 476 983 A1

pCU2.1

CCE IGT AGT GGC TGG IGI GGT GAG CCA GGT CIG CTC IGI GTC GCG CAA RAG RGA GCC AAC
80
RAG-CYS-SER-GLY-CYS-CYS-GLY-RSP-GLU-GLY-LEU-HIS-CYS-DML-ALA-LEU-LYS-THR-ALA [DSD]

pCU2.1

ATC ACT ATG CAG ATC TTA ATG ATT CCC CCC ATT CGG GAT CCA CTT TCC TAC TGT TGT TGT ATT
100
ILE-THR-MET-GLN-ILE-LEU-LYS-ILE-PRO-PHE-ASN-ARG-RSP-PHE-HIS-SER-TYR-DML-ALA-MYL-

pCU2.1

ATC ATC ATG CAG ATG ATT CCT TCC ATT AGG CCT ATT CTC ATT ATT ATT ATT ATT ATT ATT ATT ATT
120
THR-PHE-SER-GLN-RSP-DAL-LEU-CYS-GLU-CYS-ARG-PRO-ILE-LEU-GLU-THR-THR-LYS-ALA-GLU-
130
RAG •

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

DOCUMENTS CONSIDERED TO BE RELEVANT			EP 0 476 988 A1
Category	Character of document and indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE SPECIFICATION (Int. Cl.)
P, X	<u>EP - A - 0 399 816</u> (MERCK) * Totality * --	1-31	C 07 K 15/06 C 07 K 3/23 C 12 N 15/19 C 12 P 21/00
A	WORLD PATENTS INDEX (Online), DERWENT PUBLICATIONS LTD., London Accession No. 80-181 064 & JP-A-2-117 698 --	1,4,5	A 61 K 37/42
A	WORLD PATENTS INDEX (Online), DERWENT PUBLICATIONS LTD., London Accession No. 89-088 700 & JP-A-1-38 100 --	1,4,5	
A	<u>EP - A - 0 186 084</u> (MERCK) * Claims * -----	1,4,5 10	

TECHNICAL FIELDS
SEARCHED (Int. Cl.)

C 07 K
C 12 N
C 12 P
A 61 K

The present search report has been drawn up for the clarity

DATE	SEARCHED BY	MAP/CHART
VIENNA	10-12-1991	
CATEGORY OF cited documents		
1. Publications referred to later on	I	Indicates publication containing the invention
2. Publications mentioned in connection with the application	E	Earlier patent application, also published or not, prior to the filing date
3. Publications mentioned in connection with the priority	G	Publication cited in the application
4. Publications containing drawings	H	Publication cited in the priority
5. Publications containing tables	J	Publication in the same field as the application, but not necessarily related to it
6. Publications containing formulas	K	
7. Publications containing tables and formulas	L	