Probabilistic Inference via Weighted Model Counting

Algorithms, Encodings, and Random Instances

Paulius Dilkas

15th June 2021

The Problem of Computing Probability

ProbLog

```
0.001
     :: burglary.
0.002 :: earthquake.
0.95 · · alarm
                :- burglary, earthquake,
0 94
    :: alarm :- burglary, \+ earthquake.
0.29 :: alarm :- \+ burglary, earthquake.
0.001 :: alarm
              :- \+ burglary , \+ earthquake .
0.9
      :: iohnCalls :- alarm.
0.05
     :: johnCalls :- \+ alarm.
0.7
     :: maryCalls :- alarm.
0.01
     :: marvCalls :- \+ alarm.
```

Bayesian Network

BLOG

```
random Boolean Burglary ~ BooleanDistrib (0.001); random Boolean Earthquake ~ BooleanDistrib (0.002); random Boolean Alarm ~ if Burglary then if Earthquake then BooleanDistrib (0.95) else BooleanDistrib (0.94) else if Earthquake then BooleanDistrib (0.29) else BooleanDistrib (0.001); random Boolean JohnCalls ~ if Alarm then BooleanDistrib (0.9) else BooleanDistrib (0.05); random Boolean MaryCalls ~ if Alarm then BooleanDistrib (0.7) else BooleanDistrib (0.01):
```

Markov Random Field

The Problem of Computing Probability

ProbLog

```
0.001
     :: burglary.
0.002 :: earthquake.
0.95 :: alarm
                  :- burglary . earthquake .
    :: alarm :- burglary, \+ earthquake.
0 94
0.29 :: alarm :- \+ burklary, earthquake.
0.001 :: alarm
              :- \+ burglary , \+ eart \uake.
0.9
      :: iohnCalls :- alarm.
0.05
     :: johnCalls :- \+ alarm.
0.7
     :: maryCalls :- alarm.
0.01
     :: marvCalls :- \+ alarm.
                                     WMC
```

BLOG

```
random Boolean Burglary ~ BooleanDistrib (0.002);
random Boolean Earthquake ~ BoleanDistrib (0.002);
random Boolean Alarm ~
if Burglary then
if Earthquake then BooleanDistrib (0.95)
else BooleanDistrib (0.94)
else
if Earthquake then BooleanDistrib (0.29)
else BooleanDistrib (0.001);
random Boolean JohnCalls ~
if Alarm then BooleanDistrib (0.9)
else BooleanDistrib (0.05);
random Boolean MaryCalls ~
if Alarm then BooleanDistrib (0.7)
else BooleanDistrib (0.7)
```

Bayesian Network

Markov Random Field

Weighted Model Counting (WMC)

- Generalises propositional model counting (#SAT)
- Applications:
 - graphical models
 - probabilistic programming
 - neural-symbolic artificial intelligence
- Main types of algorithms:
 - using knowledge compilation
 - using a SAT solver
 - manipulating pseudo-Boolean functions

Example

$$w(x) = 0.3, w(\neg x) = 0.7,$$

 $w(y) = 0.2, w(\neg y) = 0.8$

$$WMC(x \lor y) = w(x)w(y) + w(x)w(\neg y) + w(\neg x)w(y) = 0.44$$

- 1 The UAI Paper: Weighted Model Counting with Conditional Weights for Bayesian Networks
- 2 The SAT Paper: Weighted Model Counting Without Parameter Variables
- 3 The Next Paper: Parameterized Complexity of Weighted Model Counting in Theory and Practice
- 4 Concluding Thoughts

- 1 The UAI Paper: Weighted Model Counting with Conditional Weights for Bayesian Networks
- 2 The SAT Paper: Weighted Model Counting Without Parameter Variables
- 3 The Next Paper: Parameterized Complexity of Weighted Model Counting in Theory and Practice
- 4 Concluding Thoughts

An Alternative Way to Think About WMC

- Let V be the set of variables.
- Then 2^{2^V} is the Boolean algebra of propositional formulas.

Definition

A measure is a function $\mu: 2^{2^V} \to \mathbb{R}_{>0}$ such that:

- $\mu(\perp) = 0;$
- $\mu(x \lor y) = \mu(x) + \mu(y)$ whenever $x \land y = \bot$.

Observation

WMC corresponds to the process of calculating the value of $\mu(x)$ for some $x \in 2^{2^V}$.

The Limitations and Capabilities of WMC

Observation

Classical WMC is only able to evaluate factorable measures (c.f., a collection of mutually independent random variables).

Theorem (Informal Version)

It is always possible to add more variables to turn a non-factorable measure into a factorable measure.

However, that is not necessarily a good idea!

Experimental Results

Algorithm & Encoding

- Ace + cd05
- -- Ace + cd06
- Ace + d02
- ADDMC + bklm16
- ADDMC + cw
- ADDMC + d02
- ADDMC + sbk05
- c2d + bklm16
- -- Cachet + sbk05

- 1 The UAI Paper: Weighted Model Counting with Conditional Weights for Bayesian Networks
- 2 The SAT Paper: Weighted Model Counting Without Parameter Variables
- 3 The Next Paper: Parameterized Complexity of Weighted Mode Counting in Theory and Practice
- 4 Concluding Thoughts

Formalising the Intuition from Before

For any propositional formula ϕ over a set of variables X and $p,q\in\mathbb{R}$, let $[\phi]_q^p\colon 2^X\to\mathbb{R}$ be the pseudo-Boolean function defined as

$$[\phi]_q^p(Y) \coloneqq egin{cases} p & ext{if } Y \models \phi \ q & ext{otherwise} \end{cases}$$

for any $Y \subseteq X$.

Definition (Pseudo-Boolean Projection (PBP))

A PBP instance is a tuple (F, X, ω) , where X is the set of variables, F is a set of two-valued pseudo-Boolean functions $2^X \to \mathbb{R}$, and $\omega \in \mathbb{R}$ is the scaling factor.

The WMC instance has x as the only indicator variable and p, q as parameter variables with weights w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$.

WMC Clause

```
\neg x \Rightarrow pp \Rightarrow \neg x
```

$$x \Rightarrow q$$

$$q \Rightarrow x$$

$$\neg x$$

The WMC instance has x as the only indicator variable and p, q as parameter variables with weights w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$.

WMC Clause	In CNF
$\neg x \Rightarrow p$	$x \lor p$
$p \Rightarrow \neg x$	$\neg x \lor \neg p$
$x \Rightarrow q$	$\neg x \lor q$
$q \Rightarrow x$	$x \vee \neg q$
$\neg x$	$\neg \chi$

The WMC instance has x as the only indicator variable and p, q as parameter variables with weights w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$.

WMC Clause	In CNF	Pseudo-Boolean Function
$\neg x \Rightarrow p$	$x \lor p$	$[\neg x]_1^{0.2}$
$p \Rightarrow \neg x$	$\neg x \lor \neg p$	
$x \Rightarrow q$	$\neg x \lor q$	$[x]_1^{0.8}$
$q \Rightarrow x$	$x \vee \neg q$	
$\neg x$	$\neg \chi$	$[\neg x]_0^1$

The WMC instance has x as the only indicator variable and p, q as parameter variables with weights w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$.

WMC Clause	In CNF	Pseudo-Boolean Function	
$\neg x \Rightarrow p$	$x \lor p$	$[\neg x]_1^{0.2}$	
$p \Rightarrow \neg x$	$\neg x \lor \neg p$		$[x]_{0.2}^{0.8}$
$x \Rightarrow q$	$\neg x \lor q$	$[x]_1^{0.8}$	
$q \Rightarrow x$	$x \vee \neg q$		
¬x	$\neg \chi$	$[\neg x]_0^1$	$[\neg x]_0^1$

Experimental Results

- 1 The UAI Paper: Weighted Model Counting with Conditional Weights for Bayesian Networks
- 2 The SAT Paper: Weighted Model Counting Without Parameter Variables
- 3 The Next Paper: Parameterized Complexity of Weighted Model Counting in Theory and Practice
- 4 Concluding Thoughts

Plan for the Next Paper

Parameterized Complexity

Cachet: $2^{\mathcal{O}(w_b)} n^{\mathcal{O}(1)}$ (*n* is the number of variables, and w_b is the branch width).

c2d: $\mathcal{O}(mw2^w)$ (*m* is the number of clauses, and *w* is the primal treewidth).

DPMC: $\mathcal{O}(4^w nm)$ (my result, and the 4^w part is tight).

Empirical Study on Random Instances

- New random model for 3-CNF formulas (done)
- Running experiments (almost done)
- Plots and writing (some disorganised notes)

- 1 The UAI Paper: Weighted Model Counting with Conditional Weights for Bayesian Networks
- 2 The SAT Paper: Weighted Model Counting Without Parameter Variables
- 3 The Next Paper: Parameterized Complexity of Weighted Model Counting in Theory and Practice
- 4 Concluding Thoughts

How Everything Fits Together

- My thesis is centered around two ideas:
 - Manipulating more expressive representations can lead to more efficient algorithms (c.f., cutting planes vs. resolution in SAT).
 - Random problem instances can help reveal fundamental differences in how algorithms behave in practice.
- UAI'21 and SAT'21 papers address the first idea.
 - There is no reason for weights to only be defined on literals (and there is no reason for a clause to be a just clause).
- CP'20 and the next paper undertake the second idea.
 - Random probabilistic logic programs and random formulas in CNF.
- Future work: perhaps tackle the first-order setting.