Tensors

"ML generalization of vectors and matrices to any number of dimensions"

scalar	X	Dimensions	Mathematical Name	Description	
vector	$\begin{bmatrix} \chi_1 & \chi_2 & \chi_3 \end{bmatrix}$	0	scalar	magnitude only	
	$[\chi, \chi_2]$	1	vector	array	
matrix	$\chi_{1,1}$ $\chi_{1,2}$ $\chi_{2,1}$ $\chi_{2,2}$	2	matrix	flat table, e.g., square	
		3	3-tensor	3D table, e.g., cube	
3-tensor		n	<i>n</i> -tensor	higher dimensional	K

JonKrohn.com

Scalars

- No dimensions
- Single number
- Denoted in lowercase, italics, e.g.: x
- Should be typed, like all other tensors: e.g., int, float32

1

Vectors

- One-dimensional array of numbers
- Denoted in lowercase, italics, bold, e.g.: x
- Arranged in an order, so element can be accessed by its index
 - Elements are scalars so *not* bold, e.g., second element of x is x_2
- Representing a point in space:
 - Vector of length two represents location in 2D matrix (shown)
 - Length of three represents location in 3D cube
 - Length of n represents location in n-dimensional tensor

JonKrohn.com

Vector Transposition

$$\begin{bmatrix} \chi_1 & \chi_2 & \chi_3 \end{bmatrix}^T = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix}$$
row vector

Shape is $(1,3)$

$$(3,1)$$

Norms

Vectors represent a magnitude and direction from origin:

Norms are functions that quantify vector magnitude.

L² Norm

Described by:

$$\|\chi\|_2 = \sqrt{\sum_i \chi_i^2}$$

- Measures simple (Euclidean) distance from origin
- Most common norm in machine learning
 - Instead of $||x||_2$, it can be denoted as ||x||

.

Unit Vectors

- Special case of vector where its length is equal to one
- Technically, x is a unit vector with "unit norm", i.e.: ||x|| = 1

L¹ Norm

Described by:

$$\|\chi\|_1 = \sum_i |\chi_i|$$

- Another common norm in ML
- Varies linearly at all locations whether near or far from origin
- Used whenever difference between zero and non-zero is key

Squared L² Norm

Described by:
$$\|\chi\|_2^2 = \sum_i \chi_i^2$$

- Computationally cheaper to use than L^2 norm because:
 - Squared L^2 norm equals simply $\mathbf{x}^T \mathbf{x}$
 - Derivative (used to train many ML algorithms) of element x requires that element alone, whereas L^2 norm requires **x** vector
- Downside is it grows slowly near origin so can't be used if distinguishing between zero and near-zero is important

Max Norm (or L[∞] Norm)

Described by:

$$\|\chi\|_{\infty} = \max_{i} |\chi_{i}|$$

- Final norm we'll discuss; also occurs frequently in ML
- Returns the absolute value of the largest-magnitude element

Generalized L^p Norm

Described by:

$$\|\mathbf{x}\|_{p} = \left(\sum_{i} |\mathbf{x}_{i}|^{p}\right)^{\frac{1}{p}}$$

- *p* must be:
 - A real number
 - Greater than or equal to one
- Can derive L^1 , L^2 , and L^∞ norm formulae by substituting for p
- Norms, particularly L^1 and L^2 , used to regularize objective functions

