(draft) FIFO queues Model

Mattia Milani*

*Dept. of Information Engineering and Computer Science, University of Trento, Italy mattia.milani@studenti.unitn.it

I. MAIN IDEA

Take an already proven model that defines hard-state protocols and implement on it FIFO queues on the edges.

This document uses models and demonstration from [1].

This document assumes the knowledge of semirings as $(S, \oplus, \mathcal{F}, \overline{0}, \overline{\infty})$ to model routing problems.

II. GOALS

The goal of this document is to amplify what demonstrated in [1] introducing a FIFO queue on the edges.

The second goal of this work is to introduce an asynchoronus formalization of this fourth model.

III. NETWORK

A network is represented by a directed graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ where \mathcal{V} is a set of n nodes $\mathcal{V} = \{0, 1, ..., n-1\}$ and \mathcal{E} is a set of arcs. A configuration of \mathcal{G} with respect to a routing algebra $(\mathcal{S}, \oplus, \mathcal{F}, \overline{0}, \overline{\infty})$ is a mapping from \mathcal{E} to F.

Such mappings will be represented by an $n \times n$ adjacency matrix \mathcal{A} where $\mathcal{A}_{ij} \in F$.

I assume the constant function $f_{\overline{\infty}} \in F$ exists that always returns the invalid weight, function used to represent missing edges.

For example we can have the following graph:

That has as A the one in Eq. (1)

$$\mathcal{A} = \begin{bmatrix}
f_{\overline{\infty}} & f_1 & f_2 & f_{\overline{\infty}} & f_{\overline{\infty}} \\
f_{\overline{\infty}} & f_{\overline{\infty}} & f_3 & f_{\overline{\infty}} & f_{\overline{\infty}} \\
f_{\overline{\infty}} & f_{\overline{\infty}} & f_{\overline{\infty}} & f_{\overline{\infty}} & f_4 \\
f_{\overline{\infty}} & f_{\overline{\infty}} & f_{\overline{\infty}} & f_{\overline{\infty}} & f_{\overline{\infty}} \\
f_{\overline{\infty}} & f_{\overline{\infty}} & f_{\overline{\infty}} & f_{\overline{6}} & f_{\overline{\infty}}
\end{bmatrix}$$
(1)

IV. BACKGROUND

Brief recap of the models in [1].

In that document are formalized three new models that amplify what represent the basic high level model that is compleatly abstracted from network concepts. This model is represented by Γ_0 . In this model the solution to the routing path problem is given by a matrix \mathcal{X} where each element \mathcal{X}_{ij} represent the best path from i to j. The solution is computed by iteratively appling the adjacent matrix \mathcal{A} to the actual routing state \mathcal{Y} (Every router synchrounously chose the best path extension from it's neighbourhood in state \mathcal{Y}).

$$\Gamma_0(\mathcal{Y}) = \mathcal{A}(\mathcal{Y}) \oplus \mathcal{I} \tag{2}$$

$$\mathcal{X} = \mathcal{A}(\mathcal{X}) \oplus \mathcal{I} \tag{3}$$

Equation (3) represent the solution to the routing problem using the high level model, one single round of the model is defined by Equation (2).

The

REFERENCES

 p. M. van der Stoe, "An Agda Formalisation of a Hard-state Vectoring Routing Protocol," 2019.