Question Number	Answer		Mark
2(a)	 Identifies upthrust = weight (of displaced fluid) See W = m × g and m = V × ρ See V = A × d and A = πr² A conversion to SI units (e.g. g to kg) 	(1) (1) (1) (1)	
2(b)	• Calculates gradient using large triangle • Use of their gradient = $1/\pi r^2$ • Diameter = 6.9 to 7.1 cm Accept use of a correct pair of values from the graph and the equation stated for 1 mark only. $\frac{\text{Example of calculation}}{\text{gradient} = (6.8 \text{ cm} - 1.6 \text{ cm}) / 200 \text{ g} = 0.026 \text{ cm g}^{-1}}$ $r = \sqrt{\frac{1}{0.026 \pi}} = 3.5 \text{ cm}$ $\text{diameter} = 2 \times r = 7.0 \text{ cm}$	(1) (1) (1)	3
2(c)	 Mass/weight of the beaker (not included) Add the mass of the beaker to the mass of the load (and plot total) Or subtracting the depth when mass added is 0 	(1) (1)	2

Total for question 2