AGH, WIET	Laboratorium – elementy	Kierunek : EiT
	elektroniczne	
Nr ćwiczenia:	Temat:	Ocena:
7	TRANZYSTOR UNIPOLARNY MOS	
Data wykonania: 07.06.2022	Imię i nazwisko: Hubert Mąka, Jakub Wojtycza	

Tranzystor N-MOS Charakterystyka przejściowa

Na podstawie wyników zebranych w p. 4.1 wykreśliliśmy w sprawozdaniu charakterystyki przejściowe na jednym wykresie. Wrysowaliśmy krzywą rozdzielającą zakres pracy liniowej od nasycenia i zaznaczyliśmy te obszary na wykresie.

Uwaga:

Zakres nasycenia tranzystora N-MOSFET to obszar znajdujący się ponad wykreśloną krzywą, a obszar linowy to obszar pod nią. Napięcie progowe obliczyliśmy rysując pomocniczą charakterystykę sqrt(Id) w zakresie nasycenia i znajdując jej punkt przecięcia z osią OX.

Ut = 0,9365 V

Tranzystor N-MOS Charakterystyka wyjściowa

Na podstawie wyników zebranych w p. 4.2 wykreśliliśmy w sprawozdaniu charakterystyki wyjściowe na jednym wykresie. Wrysowaliśmy krzywą rozdzielającą zakres pracy liniowej od nasycenia i zaznaczyliśmy te obszary na wykresie.

Obszar linowy w charakterystyce przejścowej znajduje się ponad krzywą Uds = Ugs – Ut, a obszar nasycenia to obszar poniżej tej krzywej.

Wyznaczony prąd nasycenia dla poszczególnych napięć bramka-źródło:

ldss - prąd nasycenia				
Ugs:	ldss [mA]			
1 V	0,404			
2 V	1,626			
3 V	3,28			
4 V	4,805			
5 V	6,021			
6 V	7,133			
7 V	7,133			
8 V	8,005			

Współczynnik $1/\lambda$ został wyznaczony poprzez poprowadzenie stycznych do zakresu nasycenia. Ich punkt przecięcia z osią OX to właśnie szykany współczynnik. Przez niejednoznaczne przecięcie się krzywych z osią OX wyznaczyliśmy współczynnik $1/\lambda$ jako średnią arytmetyczną tych puntków przecięcia.

 $1/\lambda = 150 [V]$

 $\lambda [V] = 0,006667$

Tranzystor P-MOS Charaktetystyka przejściowa

Uwaga:

Zakres nasycenia tranzystora P-MOSFET to obszar znajdujący się poniżej wykreślonej krzwej, a obszar linowy to obszar nad nią. Napięcie progowe obliczyliśmy rysując pomocniczą charakterystykę sqrt(Id) w zakresie nasycenia i znajdując jej punkt przecięcia z osią OX.

Ut = -1,3759 [V]

Tranzystor P-MOS Charakterystyka wyjściowa

Wyznaczony prąd nasycenia dla poszczególnych napięć bramka-źródło:

Ugs: [V]	ldss [mA]
-1	-0,002
-2	-0,082
-3	-0,805
-4	-1,995
-5	-3,513
-6	-5,246
-7	-7,081
-8	-8,851

Współczynnik $1/\lambda$ został wyznaczony poprzez poprowadzenie stycznych do zakresu nasycenia. Ich punkt przecięcia z osią OX to właśnie owy współczynnik. Przez niejednornodne rozłożenie się prostych na osi wyznaczyliśmy współczynnik $1/\lambda$ jako średnią arytmetyczną tych puntków przecięcia.

 $1/\lambda = 17,5$ [V]

 $\lambda [V] = 0.057143$

Badanie inwertera CMOS:

Dane uzyskane podczas pomiarów:

napiecie w programie		napiecie na v	napiecie na woltomierzu		prad na amperomierzu	
0	[V]	4,941	[V]	0,0004	[mA]	
0,2		4,9409		0,0005		
0,4		4,9412		0,0005		
0,6		4,9412		0,0005		
0,8		4,941		0,0005		
1		4,9399		0,0022		
1,2		4,9352		0,0116		
1,4		4,9131		0,0332		
1,6		4,8549		0,0952		
1,8		4,7287		0,2031		
1,9		4,5		0,3405		
2		4,2288		0,4332		
2,1		3,0422		0,5171		
2,2		0,51755		0,5249		
2,3		0,31268		0,4536		
2,4		0,21387		0,3743		
2,5		0,15692		0,308		
2,6		0,11529		0,2474		
2,7		0,08384		0,1932		
2,8		0,05593		0,1382		
2,9		0,03732		0,0972		
3		0,02306		0,0629		
3,1		0,01276		0,0363		
3,2		0,00508		0,0151		
3,3		0,00033		0,001		
3,4		2,3E-05		0		
3,6		1,9E-05		0		
3,8		1,9E-05		0		
4		1,8E-05		0		
4,2		1,8E-05		0		
4,4		1,8E-05		0		
4,6		1,7E-05		0		
4,8		1,7E-05		0		
5		1,6E-05		0		

Osobny wykres inwertera dla napięcia:

Osobny wykres inwerwtra dla prądu:

Wnioski:

Z danych pomiarowych można zauważyć, że inwerter CMOS pobiera prąd tylko wtedy kiedy zmienia się jego stan logiczny. W stanie wysokim oraz niskim nie występuje pobór prądu.