a.) Use the fact that

Yii = Sum of admittances directly connected to node i

Y: j = - (Sum of almittances connected between rodes i and j)

to write down the nodal equations in matrix form.

- b.) Find Va, Vb, Vc using symmetrical components.
- C.) Now find Ia, Ib, and Ic.

#3)

The diagram below represents the Thevenin equivalent of a single-phase distribution system. A fault occurs between point X and ground. R_F represents the fault resistance. The current I_F is 3,600 A when R_F is 0 Ω . If R_F is changed to 1.0 Ω , the current I_F (amperes) is most nearly:

- (A) 2,000
- (B) 2,400
- (C) 3,200
- (D) 4,600

#4.)

Consider the 60-kV transmission system below. Transmission line impedances are:

$$Z_1 = 16.75 \angle 71^{\circ} \Omega$$

 $Z_2 = 13.4 \angle 71^{\circ} \Omega$

With a system impedance of 13.25 \angle 81° Ω , the 3-phase fault current (amperes) at Station C is most nearly:

- (A) 2,590
- (B) 1,495
- (C) 1,285
- (D). 800

