

Energy function E(y,z) (z) Decoder

$$g = \begin{bmatrix} g_1 & g_2 \end{bmatrix}^\top : \mathbb{R} \to \mathbb{R}^2$$

$$z \mapsto \begin{bmatrix} w_1 \cos(z) & w_2 \sin(z) \end{bmatrix}$$

Training recap

$$R \leftarrow z \rightarrow Decoder$$

Given an observation **y**,

given
$$E(oldsymbol{y},oldsymbol{z})=C(oldsymbol{y}, ilde{oldsymbol{y}})+R(oldsymbol{z})$$
 ,

where $ilde{m{y}} = \mathrm{Dec}(m{z})$

- $extstyle{oldsymbol{arphi}}$ Compute $F_eta(oldsymbol{y}) = \operatorname{softmin}_{oldsymbol{z}}[E(oldsymbol{y},oldsymbol{z})]$
- Minimise $\mathcal{L}[F_eta(\mathcal{Y}), oldsymbol{Y}]$

Zero temp. limit

$$R \longleftarrow Z \longrightarrow Decoder$$

Given an observation y,

given
$$E(oldsymbol{y},oldsymbol{z})=C(oldsymbol{y}, ilde{oldsymbol{y}})+R(oldsymbol{z})$$
 ,

where $ilde{m{y}} = \mathrm{Dec}(m{z})$

 $oldsymbol{\cdot}$ Compute $oldsymbol{\check{z}} = rg\min E(oldsymbol{y}, oldsymbol{z})$

$$F_{\infty}(\boldsymbol{y}) \stackrel{\sim}{=} \min_{\boldsymbol{z}} E(\boldsymbol{y}, \boldsymbol{z}) = E(\boldsymbol{y}, \check{\boldsymbol{z}})$$

ullet Minimise $\mathcal{L}[F_{\infty}(\mathcal{Y}),oldsymbol{Y}]$

K-means

$$R \longleftarrow Z \longrightarrow Decoder \longrightarrow \emptyset$$

 $W = Y[torch.randperm(len(Y))[:K]] # 15 \times 2$

Let $oldsymbol{z} \in \mathbb{I}_{K}$ (one-hot),

$$ilde{oldsymbol{y}} = \mathrm{Dec}(oldsymbol{z}) = oldsymbol{W} oldsymbol{z}$$
 , and

$$E(oldsymbol{y},oldsymbol{z}) = C(oldsymbol{y}, ilde{oldsymbol{y}}) = \| ilde{oldsymbol{y}} - oldsymbol{y}\|^2$$
 , $L = L_{ ext{energy}}$

training:

$$E = torch.cdist(Y, W).pow(2) # 50 \times 15$$

$$F, \check{z} = E.min(dim=-1)$$

for k in range(K):

$$W[k] = Y[\check{z}==k].mean(dim=0)$$

inference:

$$\tilde{Y} = W[\check{z}]$$

 $0.02 \quad 0.04 \quad 0.06 \quad 0.08 \quad 0.10$

Zero temp. limit

$$R \longleftarrow Z \longrightarrow Decoder$$

Given an observation y,

given
$$E(oldsymbol{y},oldsymbol{z})=C(oldsymbol{y}, ilde{oldsymbol{y}})+R(oldsymbol{z})$$
 ,

where $ilde{m{y}} = \mathrm{Dec}(m{z})$

 $oldsymbol{\cdot}$ Compute $oldsymbol{\check{z}} = rg\min E(oldsymbol{y}, oldsymbol{z})$

$$F_{\infty}(\boldsymbol{y}) \stackrel{\sim}{=} \min_{\boldsymbol{z}} E(\boldsymbol{y}, \boldsymbol{z}) = E(\boldsymbol{y}, \check{\boldsymbol{z}})$$

ullet Minimise $\mathcal{L}[F_{\infty}(\mathcal{Y}),oldsymbol{Y}]$

Sparse coding

$$R \leftarrow z \rightarrow Decoder$$

Given an observation y, $z \in \mathbb{R}^d$

given
$$E({m y},{m z}) = C({m y}, ilde{{m y}}) + R({m z})$$
 , $R({m z}) = lpha \|{m z}\|_1$

where
$$ilde{m{y}} = \mathrm{Dec}(m{z}) = m{W}m{z} \ \ C(m{y}, ilde{m{y}}) = \| ilde{m{y}} - m{y}\|_2^2$$

 $oldsymbol{\cdot}$ Compute $\check{oldsymbol{z}} = rg\min E(oldsymbol{y}, oldsymbol{z})$

$$F_{\infty}(\boldsymbol{y}) = \min_{\boldsymbol{z}} E(\boldsymbol{y}, \boldsymbol{z}) = E(\boldsymbol{y}, \check{\boldsymbol{z}})$$

ullet Minimise $\mathcal{L}[F_{\infty}(\mathcal{Y}),oldsymbol{Y}]^{oldsymbol{\dagger}}$

$$\|\boldsymbol{w}_j\|_2 \stackrel{\downarrow}{=} 1$$

Sparse coding

$$R \leftarrow z \rightarrow Decoder$$

Given an observation y, $z \in \mathbb{R}^d$

given
$$m{E}(m{y},m{z}) = C(m{y}, ilde{m{y}}) + R(m{z})$$
 , $R(m{z}) = lpha \|m{z}\|_1$

where
$$ilde{m{y}} = \mathrm{Dec}(m{z}) = m{W}m{z} \ \ m{C}(m{y}, ilde{m{y}}) = \| ilde{m{y}} - m{y}\|_2^2$$

- ullet Compute $\check{oldsymbol{z}} = rg\min E(oldsymbol{y}, oldsymbol{z})$ $oldsymbol{t} = ext{top}2(\check{oldsymbol{z}})$
- $oldsymbol{\check{z}}_2 = rg\min oldsymbol{C}[oldsymbol{y}, \operatorname{Dec}(oldsymbol{t})]$
- ullet choose $L[F_\infty(\mathcal{Y}),oldsymbol{y}]=F_\infty(oldsymbol{y})=E(oldsymbol{y},oldsymbol{\check{z}}_2)$

$$\dot{m{y}} \doteq \left[egin{array}{c} 1 \ m{y} \end{array}
ight]$$

