KREPE Control Board

Matt Ruffner

March 2020

Contents

1	Introduction	3				
	1.1 Primary Activation	3				
	1.2 Secondary Activation	5				
2	Subsystems	6				
	2.1 Status and Error Indicators	6				
	2.2 Serial Interface Signals	6				
	2.3 RFM69 Radio	6				
	2.4 Iriduim Radio	6				
	2.4.1 Radio Power Control	7				
	2.5 Thermocouple Measurement Interface					
	2.5.1 Thermocouple Connections	7				
	2.6 Motion Sensor Connections	7				
	2.7 Charging and Power	7				
	2.7.1 Battery Status Interface	8				
	2.7.2 Battery Protection	8				
3	Testing Software	9				
A	Schematics	10				
В	3 Teensy 3.5 Reference 15					
\mathbf{C}	C Partslist 17					
D	O Arduino Pin Mapping 18					

List of Figures

1	Activation and battery protection schematic overview	3
2	Rendering of the top of the KREPE control board, V1.1	4
3	Rendering of the bottom of the KREPE control board, V1.1	5
4	RF specifications of the AL3A-RS Iridium modem	7
5	Battery protection circuitry. Cell+ and Cell- attach to the battery pack and Pack+/Pack-	
	face system power. This protection circuitry is upstream of the primary activation switch	8
6	Rendering of the top of the battery protection PCB	8
7	Rendering of the bottom of the battery protection PCB	9
8	Page one of schematics.	10
9		11
10	Page three of schematics.	12
11		13
12	Teensy 3.5 Front	15
13	Teensy 3.5 Back	16
т• ,	C (T) 1.1	
List	of Tables	
1	Debug LED Connections.	6
_		
2	Pins used with SPI, I ² C, and UART interfaces	6
3	Radio module interface signals	6
4	Pin controlling power to the iridium satellite radio	7
5	Analog mux selection pins.	7
6	Pins connecting to the ADXL377 and ICM-20948	7
7	Pins to monitor battery voltage and charging status	8

1 Introduction

This document has pin names and connections, along with implementation notes and design choice explanations. Schematic designs for this board were adapted from previous designs of KRUPS projects here at the University of Kentucky. Battery charging, improved activation circuitry, a newer IMU, and wireless debug capability are the main additions to previous designs. Newer thermocouple conversion ICs were also added to replace the EOL product that was in previous designs. Activation subsystems and criteria are also outlined.

The following sections outline the electrical connections for control of the board w.r.t. the Teensy 3.5 microcontroller, as well as several relevant subsystem specifications and links to datasheets. Charging and switch wiring for activation are also explained. Schematics are in Appendix A, along with Teensy 3.5 reference card images.

1.1 Primary Activation

Primary activation is triggered by a pin pull out the KREPE enclosure performed by astronauts. Once the pin is pulled, the flight computer is powered on and in standy mode, consuming a minimal amount of power. No radios are powered on in standy mode to ensure no interference with ISS activities.

The POWER_SW header must closed for protected battery or USB voltage to be applied to the Teensy's VIN pin, powering on the system. The location of these connection points can be seen in Fig. 2 labelled on the silk screen in the left middle of the PCB. A rendering of the bottom of the board is shown in Fig. 3.

An end-to-end schematic showing battery protection and device activation is shown in Fig. 1.

Primary activation switch Pack + Pack Battery protection | Cell + | 2x 18650 batteries tabbed in parallel

KREPE Battery Protection and Wiring

Figure 1: Activation and battery protection schematic overview.

Cell

Figure 2: Rendering of the top of the KREPE control board, V1.1.

Figure 3: Rendering of the bottom of the KREPE control board, V1.1.

The ISM_SW header is meant to enable and disable the RFM69 debug radio. The center 3.3V pin of this header is connected to the normally closed labeled pin, a GPIO pin is pulled high (see Fig. 3). When the normally closed pin is connected to the center pin, the RFM69 is enabled. This way, debug communication can be used while testing in a way that also ensures it will be off when on a live mission. This radio is only used for ground testing communication purposes, and once handed over for final integration, will never be enabled or able to receive power. These¹ are the switches used for the pin pull activation.

1.2 Secondary Activation

Once primary activation is complete and the flight computer is in standby mode, sensors are polled to check for conditions necessary for secondary activation. Secondary activation is software based and only engaged once the KREPE probe has separated from its protective metal enclosure. No radio transmissions are attempted before secondary activation.

Thermocouples and a capacitive sensing subsystem are polled to check for conditions sufficient for secondary activation. A heating of the metal KREPE enclosure is necessary to melt the plastic bolts that hold it together. This ambient temperature increase of the probe is the primary criteria for secondary activation. The presence of this metal enclosure is also detected by capacitive sensors on the KREPE probe. Once the thermal and capacitive sensing subsystems have detected the separation of the metal enclosure, the Iridium radio is powered on and packet transmission begins.

¹ https://www.digikey.com/product-detail/en/omron-electronics-inc-emc-div/D2SW-3L1H/Z12268-ND/1811989

2 Subsystems

2.1 Status and Error Indicators

Teensy Pin	Net Name	Teensy Configuration
3	LED1 - IRIDIUM ON	OUTPUT
4	LED2 - IRIDIUM SIGNAL OK	OUTPUT
5	LED3 - IRIDIUM RADIO TRANSMITTING	OUTPUT
6	LED4 - ISM RADIO TRANSMITTING	OUTPUT
7	LED5 - GENERAL ACTIVITY	OUTPUT

Table 1: Debug LED Connections.

2.2 Serial Interface Signals

Teensy Pin	Net Name	Description
13	SCLK	SPI Clock
12	MISO	Master In Subject Out
11	MOSI	Master Out Subject In
20	CS@TC1	U10 (MAX31855) chip select, active low
21	CS@TC2	U11 (MAX31855) chip select, active low
9	CS_ISM	RFM69 chip select, active low
32	TIRI	Iridium TX UART
31	RIRI	Iridium RX UART
19	SCL	I ² C bus clock
18	SDA	I^2C bus data

Table 2: Pins used with SPI, I²C, and UART interfaces.

2.3 RFM69 Radio

Note that this radio is not supplied with power unless the NO to C connection is made on the ISM_SW header (see Fig. 2). Maximum output power according to the radio datasheet (https://cdn.sparkfun.com/datasheets/Wireless/General/RFM69HCW-V1.1.pdf) is 100mW.

Teensy Pin	Net Name	Description	Teensy Configuration
28	RESET_ISM	Pull low to enable RFM69	OUTPUT
29	INT_ISM	GPIO0 interrupt from RFM69	INPUT
33	RADIO_OFF_SIG	Pulled high when the RFM69 is disabled	INPUT

Table 3: Radio module interface signals.

The datasheet for this antenna can be found at https://cdn.taoglas.com/datasheets/FXP290.07.0100A.pdf.

2.4 Iriduim Radio

We are using the A3LA-RS type modem seen on the NAL Research site (http://www.nalresearch.com/IridiumHardware.html). The RF specifications, taken from the module's datasheet are shown in Fig. 4.

Operating Frequency: 1616 to 1626.5 MHz

Duplexing Method: TDD

Multiplexing Method: TDMA/FDMA Link Margin: 12 dB average

Average Power during a Transmit Slot (Max): 7W Average Power during a Frame (Typical): 0.6W Receiver Sensitivity at 50Ω (Typical): -118 dBm

Figure 4: RF specifications of the AL3A-RS Iridium modem.

2.4.1 Radio Power Control

Teensy Pin	Net Name	Description	Teensy Configuration	
23	ACT	Iridium activation, active high	OUTPUT	

Table 4: Pin controlling power to the iridium satellite radio.

2.5 Thermocouple Measurement Interface

Note: this board features an update thermocouple interface IC than the previous boards. Among other enhancements it allows for broader temperature range reading and improved precision.

Teensy Pin	Net Name	Description	Teensy Configuration
16	MUX0	IC1 and IC2 mux. select pin	OUTPUT
17	MUX1	IC1 and IC2 mux. select pin	OUTPUT

Table 5: Analog mux selection pins.

2.5.1 Thermocouple Connections

See datasheet and connections in the relevant schematics in Fig. 9 in Appendix A. TODO: image of connector placements on board to facilitate wiring of a new connector.

2.6 Motion Sensor Connections

Teensy Pin	Net Name	Description	Teensy Configuration
36 A17	XOUT	Analog out from accel (x axis)	INPUT
37 A18	YOUT	Analog out from accel (y axis)	INPUT
38 A19	ZOUT	Analog out from accel (z axis)	INPUT
35	INT	Interrupt from ICM-20948	INPUT
34	FSYNC	Synchronization signal to ICM-20948	OUTPUT

Table 6: Pins connecting to the ADXL377 and ICM-20948.

2.7 Charging and Power

Charge current is limited to to 450 mA. Charge power can be delivered via Teensy USB or the CHARGE header. Charging input voltage is expected to be 5 volts.

For battery protection, the adafruit batteries we use (https://www.adafruit.com/product/354) have built in protection circuitry. Charge management is handled by an MCP73831 IC (https://www.microchip.

com/wwwproducts/en/MCP73831), with status connections to the Teensy as shown in Table 7. Schematics and electrical connections are shown in Fig. 10 in Appendix A.

2.7.1 Battery Status Interface

Teensy Pin	Net Name	Description	Teensy Configuration
14	BAT_STAT	LiPo charge state	OUTPUT
22 A8	BAT_SENSE	Halved battery voltage for monitoring	INPUT

Table 7: Pins to monitor battery voltage and charging status.

2.7.2 Battery Protection

Protection circuitry is implemented on the flight board to support 2P1S LiPo packs for system power. We are using a TI BQ2970 Voltage and Current Protection IC (http://www.ti.com/lit/ds/symlink/bq2970.pdf). Protection circuitry as implemented on the KREPE flight computer PCB is shown in Fig. 5.

Figure 5: Battery protection circuitry. Cell+ and Cell- attach to the battery pack and Pack+/Pack- face system power. This protection circuitry is upstream of the primary activation switch.

Renderings of the bottom and top of the battery protection PCB can be seen in Figs 6 and 7.

Figure 6: Rendering of the top of the battery protection PCB.

Figure 7: Rendering of the bottom of the battery protection PCB.

3 Testing Software

ICM-20948 testing software is functional. ADXL377 test software is functional. Lipo charge circuitry is functional. Need to test thermocouple hardware still.

TODO: simple sketch that tests a newly assembled board to make sure the IMU, accel, debug radio, iridium radio and thermocouple amplifiers are working as expected.

A Schematics

Figure 8: Page one of schematics.

Figure 9: Page two of schematics.

Figure 10: Page three of schematics.

Figure 11: Page four of schematics.

 \mathbf{B}

Welcome to Teensy® 3.5

32 Bit Arduino-Compatible Microcontroller

To begin using Teensy, please visit the website & click <u>Getting Started</u>.

www.pjrc.com/teensy

Figure 12: Teensy 3.5 Front

Teensy® 3.5 Back Side

Additional pins and features available on the back side

For solutions to the most common issues and technical support, please visit:

www.pjrc.com/help

Teensy 3.5 System Requirements:
PC computer with Windows 7, 8, 10 or later
or Ubuntu Linux 12.04 or later
or Macintosh OS-X 10.7 or later
USB Micro-B Cable

C Partslist

Partlist

Exported from kreme-iss.brd at 6/30/20 4:50 PM

 ${\rm EAGLE\ Version\ 9.6.2\ Copyright\ (c)\ 1988-2020\ Autodesk\,,\ Inc\,.}$

Assembly variant:

Part	Value	Package	Library	Position (mil)	Orientation
ACTIVATION_SV	V	1 X 0 2	pinhead	(200 1400)	R90
ANT	U.FL-R-SMT-1(10)	CONN_R-SMT-1(10)	ufl	(3840 1220)	R90
BATTERY	2 PIN JST	JST_S2B-PH-SM4-TB(LF)(SN)	S2B-PH-SM4-TB_LFSN_	(450 1785)	R270
C1	10 uF	C0603	rcl	(600 1785)	R270
C2	1 uF	C0603	rcl	(450 1500)	R90
C3	0.1 uF	C0603	adafruit	(3135 555)	R90
C4	0.1 uF	C0603	adafruit	(3690 550)	R90
C5	0.1uF	C0603	adafruit	(3360 980)	R0
C6	0.1 uF 10uF	C0603 C0603	adafruit adafruit	(3110 900)	R90 R270
C8 C9	0.01 uF	C0603	adafruit	(2370 1290) (2040 1190)	R90
C10	0.01 uF	C0603	adafruit	(2100 1190)	R90
C11	0.01 uF	C0603	adafruit	(2230 1160)	R0
C14	0.1uF	C0603	adafruit	(450 2150)	R0
C15	0.1 uF	C0603	rcl	(1850 1300)	R180
C16	0.1 uF	C0603	rcl	(2045 1500)	R90
C17	0.1 uF	C0603	rcl	(1715 1660)	R270
C18	0.1 uF	C0603	r c l	(1150 1550)	R270
C19	2.2 uF	C0603	rcl	(1300 1670)	R180
C20 C22	0.01uF 1uF	C0603 C0603	rcl	(1305 1445)	R180 R90
C22 C24	0.01uF	C0603	adafruit	(3815 1570) (3420.79995 130.20005	
C25	0.01 uF 0.01 uF	C0603	adafruit	(3417.19993 403.80007	
C26	0.01 uF	C0603	adafruit	(3421.19993 185)	MR180
C27	0.01 uF	C0603	adafruit	(3421.39998 347.60002	
C28	0.01uF	C0603	adafruit	(2860.79995 138.20005	
C29	0.01 uF	C0603	adafruit	(2860.79995 190.20005	
C30	0.01uF	C0603	adafruit	(2860.79995 392.20005) MR180
C31	0.01 uF	C0603	adafruit	(2860.79995 344.20005	
C32	0.1 uF	C0603	adafruit	(2820 980)	R0
C33	0.1 uF	C0603	adafruit	(3650 810)	R270
CAPSENSE	53048 - 0810	53048 - 0810	con-molex-picoblade	(1880 230)	R0
CHARGE	DEED	1X02	pinhead	(385 1275)	R270
CHG D3	RED MBR120	LED-0603 SOD123FL	SparkFun-LED	(750 1850) (600 1350)	R0 R0
D3 Н1	MOUNT-PAD-ROUND2.8	2.8-PAD	gsynth holes	(3800 200)	R0 R0
H2	MOUNT-PAD-ROUND2.8	2,8-PAD 2,8-PAD	holes	(2300 200)	R0
H3	MOUNT-PAD-ROUND2.8	2,8-PAD	holes	(200 200)	B.0
H4	MOUNT-PAD-ROUND2.8	2,8-PAD	holes	(2300 2200)	R0
Н5	MOUNT-PAD-ROUND2.8	2,8-PAD	holes	(3800 2200)	R0
Н6	MOUNT-PAD-ROUND2.8	2,8-PAD	holes	(200 2200)	R0
IC1	ADG609RU	TSSOP16	analog-devices	(3420 500)	R0
IC3	ADG609RU	TSSOP16	analog-devices	(2870 500)	R0
ISM_SW		1X03-CLEANBIG	adafruit	(3150 2200)	R0
LED1		CHIP-LED0603	adafruit	(540 270)	R270
LED2		CHIP-LED0603	adafruit	(710 270)	R90
LED3		CHIP-LED0603	adafruit	(1010 270)	R90
LED4 LED5		CHIP-LED0603 CHIP-LED0603	adafruit adafruit	$(1200 \ 270)$ $(1400 \ 200)$	R90 R90
P1	53048-0810	53048 - 0810	con-molex-picoblade	(3418.39998 264.80007	
P2	53048-0810	53048-0810	con-molex-picoblade	(2860 265)	R0
R1	1 k	R0603	rcl	(900 1820)	B.90
R2	2.2 k	R0603	rcl	(950 1500)	R180
R3	288	R0603	adafruit	(450 2250)	R180
R4	470	R0603	rcl	(540 350)	R180
R5	100k	R0603	rcl	(800 1350)	R0
R6	100k	R0603	rcl	(790 1235)	R270
R7	100k	R0603	r c l	(705 1235)	R90
R8	470	R0603	rcl	(710 350)	R0
R9	470	R0603	rcl	(1010 340)	R0
R10	470 470	R0603 R0603	r c l	(1200 340) (1400 270)	R0
R11 R13	470 200k	R0603	rcl rcl	(1400 270)	R0 R90
R14	2 . 2 k	R0603	rcl	(2050 1620)	R0
R15	2.2 k	R0603	rcl	(2050 1700)	R0
R18	100k	R0603	rcl	(2510 1200)	R90
U\$1		TEENSY_3.5/3.6_BASIC	Teensy356	(1300 750)	R0
U\$29	AQV252GA	DIP6	TI_radio	(750 2150)	R0
U1	MCP73831/OT	SOT23-5L	adafruit	(850 1650)	R180
U2	LP2985IM5 - 1.8/NOPB	MF05A	g s y n t h	(1300 1550)	R0
U3	COM-13909	MOD_COM-13909	COM-13909	(3380 1495)	R0
U4	ADXL377	LFCSP16_LQ	microbuilder	(2250 1300)	R0
U5	ICM-20948	QFN40P300X300X105-25N	ICM-20948	(1850 1500)	R270
U6	PCA9306DCUR	DCU8	gsynth	(1300 1300)	R180
U7	SN74LVC1T45DRLR	DRL6	gsynth	(1575 1495)	R0
U8	SN74LVC1T45DRLR	DRL6	gsynth	(1575 1650)	R0
U9 U12	DMP3099L MAX31856MUD+	SOT23 SOP65P640X110-14N	gsynth MAX31856	(650 1550) (2900 830)	R180 R180
U12 U13	MAX31856MUD+ MAX31856MUD+	SOP65P640X110-14N SOP65P640X110-14N	MAX31856 MAX31856	(3450 830)	R180
VBAT_PTH		1X02	pinhead	(230 1785)	R90
X3		43650 - 0600	con-molex-micro-fit -3_0		R180
-				/	

D Arduino Pin Mapping

Arduino	Pin	Net
0		CAPSENSE0
1		CAPSENSE1
3		LED1
4		LED2
5		LED3
6		LED4
7		LED5
9		CS_ISM
11		MOSI
12		MISO
13		SCLK
14		BAT_STAT
15		CAPSENSE2
16		MUX0
17		MUX1
18		SDA
19		SCL
20		CS@TC1
21		CS@TC2
A8		BAT_SENSE (A8)
23		ACT (IRIDIUM ON/OFF)
25		TC1_FAULT (ACTIVE LOW)
26		TC2_FAULT (ACTIVE LOW)
28		RESETJSM
28		INT_{ISM}
30		CAPSENSE3
31		RIRI (IRIDIUM OUTPUT)
32		TIRI (IRIDIUM INPUT)
33		RADIO_OFF_SIG
34		FSYNC (IMU)
35		INT (IMU)
36		XOUT (A17)
37		YOUT (A18)
38		ZOUT (A19)
A21		IRIDIUM_TX_ACT
A22		IRIDIUM_STATUS