

Cambridge

International

A Level

Cambridge International Examinations

Cambridge International Advanced Level

rapers Fule i	viautemaucs o (F3)	•	r 45 minutes
Paner 3 Pure I	Mathematics 3 (P3)	February	//March 2018
MATHEMATIC	S		9709/32
CENTRE NUMBER		CANDIDATE NUMBER	
NAME	tuzdi		

Candidates answer on the Question Paper.

Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

1	Use the t	trapezium	rule with	three	intervals	to	estimate	the	value	of

$$\int_0^{\frac{1}{4}\pi} \sqrt{(1-\tan x)} \, \mathrm{d}x,$$

giving your answer correct to 3 decimal places.			
X			
············			

2

(1-4x) 4				
(1-4x) ^{\frac{1}{4}}	c) + (+)(-3/4)	(-42)2	(-4)(-3)(-구)(-t2) ⁸
-	2:	ĸ J	3×2	
1-fa	- <u>3</u> χ²	$\frac{7}{2}$ ³		
	••••••	••••••	•••••	
			••••••	

	$\frac{1}{2}(\cos 4x + \cos 2x) \equiv \cos 3x \cos x.$	
12	GD 31 GD X - Sim 325 m X + GD 3 X GD	2 + Sin3~
1/2	26232622) = 603761	

© UCLES 2018 9709/32/F/M/18

(ii)	Hence show that $\int_{-\frac{1}{6}\pi}^{\frac{1}{6}\pi} \cos 3x$	$\cos x \mathrm{d}x = \frac{3}{8} v$	/3.			[3]
	$\int_{0}^{2\pi} \frac{1}{2} (6x) 4x$	rla la)	<u>k</u>			
	- <u>1</u> 2					
	2) 64	42 + 63	2x dx			
	1 1 Si	14x + 1	Sin 22)		
	1 1 5 () = 1 8	sin farj	Sin 22			
	4 (Lx) - (/r	3) + \(\sqrt{\sqrt{1}}	<u>3</u>) -	<u>B</u>	<u> [3</u>]	3/3
	$ \frac{f(1\pi)}{8} = \frac{f(2\pi)}{8} $	4\3	2/	16	8	(6
	f(-!) = 16 F	و ل ا بـ (د	_[3]=	- √3	J3	<u>-353</u>
	f(-1) = g(-1)	2) (+	2)	16	8	(6
		3.	13/-	3 (3)		
		1	6	[c]		
			33	313.	લે ક	3/3
			[b	[₆	[s	8

4	The variables x and y satisfy the equation $y^n = Ax^3$, where n and A are constants.	It is given that
	y = 2.58 when $x = 1.20$, and $y = 9.49$ when $x = 2.51$.	

(1) Explain why the graph of $\ln y$ against $\ln x$ is a straight line.
$lny^n = lnAx^s$
$Nln_{\mathcal{Y}} = In \; A \simeq A^3$
$lng = \frac{lnAx^g}{n}$
lny = (n A + 3 lnx
N N
$\frac{1 h y}{h} = \frac{3 \ln x}{h} + \frac{\ln h}{h}$
company with
Sur = Sh x +
straight line with gradient 3
h
(ii) Find the values of n and A , giving your answers correct to 2 decimal places. [4]
n(2.58) = 3 n .2 + n
$\frac{14(2 - 20)^{2}}{\sqrt{2}}$
1y(2.58)n = 3 n .2 + In A
h = 31n1.2 +1nA
(m/2·30)

 $n = \frac{3\ln 2.51 + \ln A}{\ln a - 49}$

31/251 + 1nt 3 1n1-2 + 1nA	
In(9.79) In 2.58	
2.7608+1hA = 0-57 86+InA	
$\frac{2 \cdot 2502}{2 \cdot 2502} \rightarrow m \qquad 0 \cdot 94779 - n$	
n(2.7608+lnA) = n(0.57186+ln)	4)
2-7608 n + h/n 4 - 0-97/8 m +m/n	4
C (6 V V) A N N N N N N N N N N N N N N N N N N	•
$I_{N}A(m-n) = I \cdot 32999$	
InA = 1.021170	
A = 2.77 6 46= 2.7	8
n= 3/n2.51+1/2.7/696 - 1.68	
In 9-49	

5	The	parametric	equations	of a	curve a	re
\sim	1110	parametric	cquations	OI u	cui ve ui	

$$x = 2t + \sin 2t, \quad y = 1 - 2\cos 2t,$$

for $-\frac{1}{2}\pi < t < \frac{1}{2}\pi$.

Show that $\frac{dy}{dx} = 2 \tan \theta$	n <i>t</i> .	
	2 (264)°)(-:	2 Sin 2+)
	- 4 5m2t	
Ax	2 + 2612	4
d		
	24 SG 26	> (0 4 in + 1 on +)
	(8(1+ log 2+)	$\frac{2(2 \sin t \cdot \log t)}{42 \cos^2 x}$
	(/ (() () () () ()	7.7-32 27-7
		= 2 4 sint bet = 2 tant
		(xlose a
•••••	• • • • • • • • • • • • • • • • • • • •	•••••

(ii)	Hence find the <i>x</i> -coordinate of the point on the curve at which the gradient of the normal is 2 Give your answer correct to 3 significant figures.
	if m of 1 = 2 : m ort pin = -1
	: m at ping = -1
	2
	$\frac{1}{2} \cdot \frac{2 \cdot \tan t}{2} = -\frac{1}{2}$
	$tam t = -\frac{1}{4}$
	<u>+ =-0⋅24</u>
	W + X \
	(in) & 10)

6 The variables x and θ satisfy the differential equation

$$x\cos^2\theta \frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\tan\theta + 1,$$

for $0 \le \theta < \frac{1}{2}\pi$ and x > 0. It is given that x = 1 when $\theta = \frac{1}{4}\pi$.

52 + C2 = |

(i) Show that $\frac{d}{d\theta}(\tan^2\theta) = \frac{2\tan\theta}{\cos^2\theta}$. $\frac{d}{\sin^2\theta} = \frac{2\sin\theta}{\cos^2\theta} = \frac{2$

= 26230 sin 0 + 26020 sin 30

 $= \frac{2610 \sin (62^2 + \sin 4)}{2(262^2 + 1)}$

(ii) Solve the differential equation and calculate the value of x when $\theta = \frac{1}{3}\pi$, giving your answer correct to 3 significant figures.

 $\int x dx = \left(2 + \tan \alpha + 1\right) dx$

 $\frac{1}{2} = Jan(3) = Jon(2) + C$

2 c = 0-5-2 = -3

r	X 2	<u> </u>	2	ton	(R =	175	an)	T C	-3
< r					•				2
	χ ²	٠,	6	<u> </u>	$2\sqrt{2}$	<u> </u>	3		•••••
	X			2.	94				
			•••••	•••••			•••••	•••••	
		•••••							
			•••••			•••••			
			•••••	•••••	••••••	•••••			•••••
		••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
			•••••		•••••	•••••			
	••••••	••••••	•••••		••••••	•••••			
			•••••	•••••	••••••	•••••	•••••	•••••	•••••
	••••••	••••••	•••••	••••••	••••••	•••••	••••••	•••••	•••••
			•••••	••••••	••••••	•••••	•••••	•••••	•••••
	••••••	•••••	•••••	•••••	••••••	•••••	••••••		•••••
			•••••						

7 (i) By sketching suitable graphs, show that the equation $e^{2x} = 6 + e^{-x}$ has exactly one real root.

(ii) Verify by calculation that this root lies between 0.5 and 1.

	\sim	1
//	Ζ	414
•	_	_/

لمل	f(x) =	b+e-x -e27
÷	(0.5) = (1) =	-1.02

change at line

1	'iii`	Show	that if a	sequence	of values	given	hy the	iterative	formul	9
١		, Show	mat m a	sequence	or varues	given	by the	ittiative	TOTTIGE	u

$x_{n+1} = \frac{1}{3} \ln(1 + 6e^{x_n})$	
converges, then it converges to the root of the equation in part (i).	[2]
$3x = \ln(1+6e^{x})$	
e3x = 1+6ex	

 e ^{3x} -6e ^x =1	
 $e^{2(e^{2x}-6)}=1$	
e2x-6= e-x	
0	

(iv) Use this iterative formula to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]

$$44 x_1 = 0-6$$

$$x_2 = 5 \ln (1+6(0.6)) = 0-50869$$

2(3=	0.4664	1,2	0.91908
IGI	0-94482		
I3 =	0-43324	•	0.419
Is:	0.42697	.	
210	0.42343		
x8 ;	0-12143		
 Ls :	0.42697	3 ·0···	

8	Let $f(x) =$	$5x^2 + x + 27$
0	Let $I(x)$ –	$(2x+1)(x^2+9)$

(i) Express $f(x)$ in partial fractions.	[5]
A + BI+C	
$(2x+1)$ $\chi^{2}+9$	
5x2+x+27= Ax2+9A+(B	x+()(2x+1)
= A x 2 + 9 A +	2 Bx2+Bx+2Cx
S = A+2B	
1 = Bx 2 C	
27 = 9A+ C	
: A=3, B=1,	L=0

(ii) Hence find $\int_0^4 f(x) dx$, giving your answer in the form $\ln c$, where c is an integer. [5]
4
$\int_{\delta} \frac{3}{(2\pi 41)} + \frac{\chi}{\chi^2 + \eta} dx$
$\frac{3}{2}\int_{21+1}^{2}\frac{1}{2}\int_{2}^{2}\frac{1}{2}dx$
$f(4) = \frac{2}{2} \ln q + \frac{1}{2} \ln 2S = \ln 27 + \ln 5 = 1$
$f(0) = \frac{3}{2} _{1} _{1} + \frac{1}{2} _{1} _{0} = _{1} _{0}$
1n135-ln3 = ln45

- The complex number 1 + 2i is denoted by u.
 - (i) It is given that u is a root of the equation $2x^3 x^2 + 4x + k = 0$, where k is a constant.
 - (a) Showing all working and without using a calculator, find the value of k.

[3]

(b) Showing all working and without using a calculator, find the other two roots of this equation.

[4]

equa	an Argand diagram sketch the locus of points representing complex numbers z satisfying the ation $ z - u = 1$. Determine the least value of arg z for points on this locus. Give your answer adians correct to 2 decimal places.
	2-(1+2i) 13/1 1n = 1-10715 radiana
	$\chi = \sqrt{5 - (1)^2} = 2$ $0^2 + b^2 = C^2$ $b = \sqrt{C^2 - \alpha^2}$
	<u>→</u>
	es ten (1):0-46?
•••••	
	-: 1·10715 −0.963b= 8·64
•••••	

) Find the position vector of the point of intersection of l and p .	
	•••••
	••••••
	•••••
) Find the courte angle between land n	
) Find the acute angle between l and p .	
) Find the acute angle between l and p .	
) Find the acute angle between l and p .	

© UCLES 2018 9709/32/F/M/18

+ j − k . 11110	d the equation o	or q , giving yo	ur answer in	the form $ax +$	by + cz = a.	
	•••••				•••••	
	•••••					
••••••	•••••	•••••		•••••••••••	••••••	••••••
	••••					
••••••				••••••••••	•••••	••••••
	•••••		•••••			
••••••	•••••	•••••••••••••••••••••••••••••••••••••••		••••••••••••	••••••	
			•••••			
•••••	•••••				•••••	
••••••	•••••	•••••••••••		•••••••••••••••••••••••••••••••••••••••	•••••	••••••
						•••••
••••••				••••••	•••••	••••••
	•••••					
•••••	•••••	••••••			•••••	••••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.