MATH 16210 (Honors Calculus II IBL) Notes

Steven Labalme

February 4, 2021

Contents

6	Construction of the Real Numbers		
	6.1	Journal	1
	6.2	Discussion	ć
7	The	e Field Axioms	12
	7.1	Journal	12
	7.2	Discussion	20

Script 6

Construction of the Real Numbers

6.1 Journal

- 1/12: **Definition 6.1.** A subset A of \mathbb{Q} is said to be a **cut** (or **Dedekind cut**) if it satisfies the following:
 - (a) $A \neq \emptyset$ and $A \neq \mathbb{Q}$.
 - (b) If $r \in A$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in A$.
 - (c) A does not have a last point; i.e., if $r \in A$, then there is some $s \in A$ with s > r.

We denote the collection of all cuts by \mathbb{R} .

Lemma 6.2. Let A be a Dedekind cut and $x \in \mathbb{Q}$. Then $x \notin A$ if and only if x is an upper bound for A.

Proof. Suppose first that x is an element of $\mathbb Q$ such that $x \notin A$. To prove that x is an upper bound for A, Definition 5.6 tells us that it will suffice to show that for all $r \in A$, $r \le x$. Let r be an arbitrary element of A. Then since $r \in A$, $x \in \mathbb Q$, and $x \notin A$, the contrapositive of Definition 6.1b asserts that $x \not< r$. Therefore, $r \le x$, as desired.

Now suppose that x is an upper bound for A. By Definition 5.6, this implies that for all $r \in A$, $r \le x$. Therefore, since there is no $r \in A$ with r > x, by the contrapositive of Definition 6.1c, $x \notin A$, as desired. \square

Exercise 6.3.

- (a) Prove that for any $q \in \mathbb{Q}$, $\{x \in \mathbb{Q} \mid x < q\}$ is a Dedekind cut. We then define $\mathbf{0} = \{x \in \mathbb{Q} \mid x < 0\}$.
- (b) Prove that $\{x \in \mathbb{Q} \mid x \leq 0\}$ is not a Dedekind cut.
- (c) Prove that $\{x \in \mathbb{Q} \mid x < 0\} \cup \{x \in \mathbb{Q} \mid x^2 < 2\}$ is a Dedekind cut.

Proof of a. Let q be an arbitrary element of \mathbb{Q} . To prove that $A = \{x \in \mathbb{Q} \mid x < q\}$ is a Dedekind cut, Definition 6.1 tells us that it will suffice to show that $A \neq \emptyset$; $A \neq \mathbb{Q}$; if $f \in A$ and $f \in \mathbb{Q}$ satisfy $f \in A$, then there is some $f \in A$ with $f \in A$ with $f \in A$. We will take this one claim at a time.

To show that $A \neq \emptyset$, Definition 1.8 tells us that it will suffice to find an element of A. By Exercise 3.9d, q is not the first point of \mathbb{Q} . Thus, by Definition 3.3, there exists an object $x \in \mathbb{Q}$ such that x < q. By the definition of A, this implies that $x \in A$, as desired.

To show that $A \neq \mathbb{Q}$, Definition 1.2 tells us that it will suffice to find an element of \mathbb{Q} that is not an element of A. By hypothesis, $q \in \mathbb{Q}$. By Exercise 3.9d, $q \not< q$. Therefore, $q \in \mathbb{Q}$ but $q \notin A$, as desired.

To show that if $r \in A$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in A$, we let $r \in A$ and $s \in \mathbb{Q}$ be arbitrary elements of their respective sets that satisfy s < r and seek to verify that $s \in A$. Since $r \in A$, r < q. This combined with the fact that s < r implies by transitivity that s < q. Therefore, since $s \in \mathbb{Q}$ and s < q, $s \in A$, as desired.

To show that if $r \in A$, then there is some $s \in A$ with s > r, we let $r \in A$ and seek to find such an s. By the definition of A, r < q. Thus, by Additional Exercise 3.1, there exists a point $s \in \mathbb{Q}$ such that r < s < q. Since $s \in \mathbb{Q}$ and s < q, $s \in A$. It follows that s is the desired element of s which satisfies s > r.

Proof of b. To prove that $A = \{x \in \mathbb{Q} \mid x \leq 0\}$ is not a Dedekind cut, Definition 6.1 tells us that it will suffice to show that A does have a last point. To show this, we will demonstrate that 0 is the last point of A. To demonstrate this, Definition 3.1 tells us that it will suffice to confirm that $0 \in A$ and for all $x \in A$, $x \leq 0$. Since $0 \leq 0$ and $0 \in \mathbb{Q}$, $0 \in A$. Additionally, by the definition of A, it is true that for all $x \in A$, $x \leq 0$.

Proof of c. Let $B = \{x \in \mathbb{Q} \mid x < 0\}$ and let $C = \{x \in \mathbb{Q} \mid x^2 < 2\}$. To prove that $A = B \cup C$ is a Dedekind cut, Definition 6.1 tells us that it will suffice to show that $A \neq \emptyset$; $A \neq \mathbb{Q}$; if $A \neq \mathbb{Q}$ satisfy $A \neq \mathbb{Q}$ satisf

To show that $A \neq \emptyset$, Definition 1.8 tells us that it will suffice to find an element of A. Since $-1 \in \mathbb{Q}$ and $-1 < 0, -1 \in B$. Therefore, by Definition 1.5, $-1 \in A$, as desired.

To show that $A \neq \mathbb{Q}$, Definition 1.2 tells us that it will suffice to find an element of \mathbb{Q} that is not an element of A. Since $2 \geq 0$, $2 \notin B$. Additionally, since $2^2 \geq 2$, $2 \notin C$. Therefore, by Definition 1.5, $2 \notin A$, as desired.

To show that if $r \in A$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in A$, we let $r \in A$ and $s \in \mathbb{Q}$ be arbitrary elements of their respective sets that satisfy s < r and seek to verify that $s \in A$. We divide into two cases $(s < 0 \text{ and } s \ge 0)$. Suppose first that s < 0. Then $s \in B$, meaning that $s \in A$. Now suppose that $s \ge 0$. Then by Script 0, we have $0 \le s^2 < r^2 < 2$. Thus, by the definition of C, $s \in C$, implying that $s \in A$.

To show that A does not have a last point, suppose for the sake of contradiction that A has a last point p. We now divide into two cases $(p \le 0 \text{ and } p > 0)$. Suppose first that $p \le 0$. Since p is the last point of A, Definition 3.3 tells us that $x \le p$ for all $x \in A$. But $1 \in A$ (since $1 \in \mathbb{Q}$ and $1^2 = 1 < 2$ implies $1 \in B$, implies $1 \in A$) and $1 > 0 \ge p$, a contradiction. Now suppose that p > 0. Definition 3.3 tells us that $p \in A$, but the condition that p > 0 means $p \notin B$, so we must have $p \in C$. However, by the proof of Exercise 4.24, $\frac{2(p+1)}{p+2}$ will be an element of B (and therefore A) that is greater than p no matter how large p is, a contradiction.

Definition 6.4. If $A, B \in \mathbb{R}$, we say that A < B if A is a proper subset of B.

Exercise 6.5. Show that \mathbb{R} satisfies Axioms 1, 2, and 3.

Proof. By Exercise 6.3a, $\{x \in \mathbb{Q} \mid x < 0\} \in \mathbb{R}$ since $0 \in \mathbb{Q}$. Therefore, Axiom 1 is immediately satisfied.

Axiom 2 asserts that \mathbb{R} must have an ordering <. As such, it will suffice to verify that the ordering given by Definition 6.4 satisfies the stipulations of Definition 3.1. To prove that < satisfies the trichotomy, it will suffice to show that for all $A, B \in \mathbb{R}$, exactly one of the following holds: A < B, B < A, or A = B.

We first show that no more than one of the three statements can simultaneously be true. Let A, B be arbitrary elements of \mathbb{R} . We divide into three cases. First, suppose for the sake of contradiction that A < B and B < A. By Definition 6.4, this implies that $A \subseteq B$ and $B \subseteq A$. Thus, by Definition 1.3, $A \subseteq B$, $B \subseteq A$, and $A \neq B$. But by Theorem 1.7, $A \subseteq B$ and $B \subseteq A$ implies that A = B, a contradiction. Second, suppose for the sake of contradiction that A < B and A = B. By substitution, we have that A < A. But by Definitions 6.4 and 1.3, it follows that $A \neq A$. The proof of the third case (B < A and A = B) is symmetric to that of the second case.

We now show that at least one of the three statements is always true. Let A,B be arbitrary elements of \mathbb{R} , and suppose for the sake of contradiction that $A \not < B$, $B \not < A$, and $A \ne B$. Since $A \not < B$ and $B \not < A$, we have by Definition 6.4 that $A \not \subset B$ and $B \not \subset A$. Thus, by Definition 1.3, $A \not \subset B$ or A = B, and $B \not \subset A$ or A = B. But $A \ne B$ by hypothesis, so it must be that $A \not \subset B$ and $B \not \subset A$. It follows from the first statement by Definition 1.3 that there exists an object $x \in A$ such that $x \notin B$, and there exists an object $y \in B$ such that $y \notin A$. Since $x \notin B$, Lemma 6.2 implies that x is an upper bound of B. Consequently, by Definition 5.6, $p \le x$ for all $p \in B$, including y. Similarly, $p \le y$ for all $p \in A$, including x. Thus, we have $y \le x$ and $x \le y$, implying that x = y. But since $y \in B$, this implies that $x \in B$, a contradiction.

To prove that < is transitive, it will suffice to show that for all $A, B, C \in \mathbb{R}$, if A < B and B < C, then A < C. Let A, B, C be arbitrary elements of \mathbb{R} for which it is true that A < B and B < C. By Definition 6.4, we have $A \subseteq B$ and $B \subseteq C$. Thus, by Script 1, $A \subseteq C$. Therefore, by Definition 6.4, A < C.

Axiom 3 asserts that \mathbb{R} must have no first or last point. We will take this one argument at a time

Suppose for the sake of contradiction that \mathbb{R} has some last point A. Then by Definition 3.3, $X \leq A$ for every $X \in \mathbb{R}$. Now since A is a Dedekind cut, Definition 6.1 tells us that $A \neq \mathbb{Q}$. Thus, by Definition 1.2, there exists some $q \in \mathbb{Q}$ such that $q \notin A$. It follows by Lemma 6.2 that q is an upper bound of A. Consequently, by Definition 5.6, $x \leq q$ for all $x \in A$. Additionally, by Exercise 6.3a, $B = \{x \in \mathbb{Q} \mid x < q + 1\}^{[1]}$ is a Dedekind cut. We now seek to prove that $A \subseteq B$. As before, this means we must show that $A \neq B$ and $A \subset B$. To show that $A \neq B$, Definition 1.2 tells us that it will suffice to find an element of B that is not an element of A. Since $x \leq q$ for all $x \in A$ and q < q + 0.5 < q + 1, $q + 0.5 \notin A$ and $q + 0.5 \in B$ is one such desired object. To show that $A \subset B$, Definition 1.3 tells us that we must confirm that every element of A is an element of A. As an element of A, we know that $A \subseteq A$. Thus, $A \subseteq A$ and $A \subseteq B$ are an arbitrary element of $A \subseteq A$. As an element of $A \subseteq A$ tells us that $A \subseteq A$. But this contradicts the previously demonstrated fact that $A \subseteq A$ for every $A \subseteq A$, including $A \subseteq A$.

1/14: Lemma 6.6. A nonempty subset of \mathbb{R} that is bounded above has a supremum.

Proof. Let X be an arbitrary nonempty subset of $\mathbb R$ that is bounded above. To prove that $\sup X$ exists, we will show that $\sup X = U = \bigcup \{Y \mid Y \in X\}$. To show this, Definition 5.7 tells us that it will suffice to demonstrate that $U \in \mathbb R$, U is an upper bound of X, and if U' is an upper bound of X, then $U \leq U'$. Let's begin.

To demonstrate that $U \in \mathbb{R}$, Definition 6.1 tells us that it will suffice to confirm that $U \neq \emptyset$; $U \neq \mathbb{Q}$; if $r \in U$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in U$; and if $r \in U$, then there is some $s \in U$ with s > r.

As the union of a nonempty set of nonempty sets, Script 1 implies that $U \neq \emptyset$.

To demonstrate that $U \neq \mathbb{Q}$, Definition 1.2 tells us that it will suffice to find a point $p \in \mathbb{Q}$ such that $p \notin U$. Since X is bounded above, we have by Definition 5.6 that there exists a Dedekind cut $V \in \mathbb{R}$ such that $A \leq V$ for all $A \in X$. It follows by Definition 6.4 that $A \subset V$ for all $A \in X$. Thus, by Script 1, $U \subset V$. Now since V is a Dedekind cut, we know by Definition 6.1 that $V \subset \mathbb{Q}$ and $V \neq \mathbb{Q}$, meaning that there exists a point $p \in \mathbb{Q}$ such that $p \notin V$. Consequently, since $U \subset V$, $p \notin U$, as desired.

To demonstrate that if $r \in U$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in U$, we let $r \in U$ and $s \in \mathbb{Q}$ be arbitrary elements of their respective sets that satisfy s < r and seek to verify that $s \in U$. Since $r \in U$, Definition 1.13 tells us that $r \in A$ for some $A \in X$. Thus, since A is a Dedekind cut, $s \in \mathbb{Q}$ and s < r implies that $s \in A$. Therefore, $s \in U$.

To demonstrate that if $r \in U$, then there is some $s \in U$ with s > r, we let $r \in U$ and seek to find such an s. Since $r \in U$, Definition 1.13 tells us that $r \in A$ for some $A \in X$. Thus, since A is a Dedekind cut, there exists a point $s \in A$ with s > r. Therefore, $s \in U$.

To demonstrate that U is an upper bound of X, Definition 5.6 tells us that it will suffice to confirm that $A \leq U$ for all $A \in X$. To confirm this, Definition 6.4 tells us that it will suffice to verify that $A \subset U$ for all $A \in X$. But by an extension of Theorem 1.7b, this is true.

Now suppose for the sake of contradiction that there exists an upper bound U' of X such that U' < U. It follows by Definitions 6.4 and 1.3 that there exists a point $p \in U$ such that $p \notin U'$. Thus, by the former statement and Definition 1.13, $p \in A$ for some $A \in X$. Additionally, since U' is an upper bound of X, we have by Definitions 5.6 and 6.4 that $A \subset U'$ for all $A \in X$. But this implies by Definition 1.3 that $p \in U'$, a contradiction.

¹Note that we add 1 to q to treat the case that $q = \sup A$, a case in which we would have B = A if B were defined as $\{x \in \mathbb{Q} \mid x < q\}$.

1/19: **Exercise 6.7.** Show that \mathbb{R} satisfies Axiom 4.

Proof. Suppose for the sake of contradiction that \mathbb{R} does not satisfy Axiom 4. It follows that \mathbb{R} is not connected, implying by Definition 4.22 that $\mathbb{R} = A \cup B$ where A, B are disjoint, nonempty, open sets. Since A, B are disjoint and nonempty, we know that there exist distinct objects $a \in A$ and $b \in B$. WLOG, let a < b.

We now seek to prove that the set $A \cap \underline{ab}$ is nonempty and bounded above. To prove that $A \cap \underline{ab}$ is nonempty, Definition 1.8 tells us that it will suffice to find an element of $A \cap \underline{ab}$. Since $a \in A$ and A is open, we have by Theorem 4.10 that there exists a region \underline{cd} such that $a \in \underline{cd}$ and $\underline{cd} \subset A$. It follows by Definitions 3.10 and 3.6 that a < d, implying by Lemma $6.10^{[2]}$ that there exists some point $x \in \mathbb{R}$ such that c < a < x < d < b (note that d < b since if b < d, then $b \in \underline{cd}$ would contradict the fact that $\underline{cd} \subset A$). Consequently, $x \in \underline{cd}$, meaning that $x \in A$, and $x \in \underline{ab}$. Therefore, $x \in A \cap \underline{ab}$, as desired. To prove that $A \cap \underline{ab}$ is bounded above, Definition 5.6 tells us that it will suffice to show that b is an upper bound of $A \cap \underline{ab}$. To show this, Definition 5.6 tells us that it will suffice to confirm that $y \leq b$ for all $y \in A \cap \underline{ab}$. Let y be an arbitrary element of $A \cap \underline{ab}$. Then by Definition 1.6, $y \in A$ and $y \in \underline{ab}$. It follows from the latter statement by Definitions 3.10 and 3.6 that y < b, i.e., $y \leq b$, as desired.

Having established that $A \cap \underline{ab} \subset \mathbb{R}$ is nonempty and bounded above, we can invoke Lemma 6.6 to learn that $A \cap \underline{ab}$ has a supremum $\sup(A \cap \underline{ab})$. We now divide into two cases $(\sup(A \cap \underline{ab}) \in A)$ and $\sup(A \cap \underline{ab}) \in B$; it follows from the definitions of A and B that exactly one of these cases is true). Suppose first that $\sup(A \cap \underline{ab}) \in A$. Then since A is open, we have by Theorem 4.10 that there exists a region \underline{ef} such that $\sup(A \cap \underline{ab}) \in \underline{ef}$ and $\underline{ef} \subset A$. It follows from the former condition that $\sup(A \cap \underline{ab}) < f$. Thus, by Lemma 6.10, there exists an object $z \in \mathbb{R}$ such that $e < \sup(A \cap \underline{ab}) < z < f < b$ (note that f < b for the same reason that d < b). Consequently, $z \in \underline{ef}$, implying that $z \in A$, and $z \in \underline{ab}$. Thus, we have found an element of $A \cap \underline{ab}$ that is greater than $\sup(A \cap \underline{ab})$, contradicting Definitions 5.7 and 5.6. The proof is symmetric in the other case (except that we find an element of B less than $\sup(A \cap \underline{ab})$).

1/14: **Definition 6.8.** Let C be a continuum satisfying Axioms 1-4. Consider a subset $X \subset C$. We say that X is **dense** in C if every $p \in C$ is a limit point of X.

Lemma 6.9. A subset $X \subset C$ is dense in C if and only if $\overline{X} = C$.

Proof. Suppose first that $X \subset C$ is dense in C. To prove that $\overline{X} = C$, Definition 1.2 tells us that it will suffice to show that every point $p \in \overline{X}$ is an element of C and vice versa. Clearly, every element of \overline{X} is an element of C. On the other hand, let p be an arbitrary element of C. Since X is dense in C, Definition 6.8 tells us that $p \in LP(X)$. Therefore, by Definitions 1.5 and 4.4, $p \in \overline{X}$.

Now suppose that $\overline{X} = C$. To prove that X is dense in C, Definition 6.8 tells us that it will suffice to show that every $p \in C$ is a limit point of X. Let p be an arbitrary element of C. By Corollary 5.4, this implies that $p \in LP(C)$. It follows that $p \in LP(\overline{X})$. Thus, by Definition 4.4, $p \in LP(X \cup LP(X))$. Consequently, by Theorem 3.20, $p \in LP(X)$ or $p \in LP(LP(X))$. We now divide into two cases. If $p \in LP(X)$, then we are done. On the other hand, if $p \in LP(LP(X))$, the lemma from Theorem 4.6 asserts that $p \in LP(X)$, and we are done again.

Our next goal is to prove that \mathbb{Q} is dense in \mathbb{R} . Just to make sense of that statement, we need to decide how to think of \mathbb{Q} as a subset of \mathbb{R} . For every rational number $q \in \mathbb{Q}$, define the corresponding real number as the Dedekind cut

$$i(q) = \{ x \in \mathbb{Q} \mid x < q \}$$

For example, $\mathbf{0} = i(0)$. It can be verified that this gives a well-defined injective function $i : \mathbb{Q} \to \mathbb{R}$. We identify \mathbb{Q} with its image $i(\mathbb{Q}) \subset \mathbb{R}$ so that the rational numbers \mathbb{Q} are a subset of the real numbers \mathbb{R} . (Similarly, \mathbb{N} and \mathbb{Z} can be understood as subsets of \mathbb{R} .)

²We may use this lemma since it does not depend on this result, Definition 6.8, or Lemma 6.9.

Lemma 6.10. Given $A, B \in \mathbb{R}$ with A < B, there exists $p \in \mathbb{Q}$ such that A < i(p) < B.

Proof. Since A < B, Definition 6.4 tells us that $A \subsetneq B$. Thus, by Definition 1.3, there exists a point q such that $q \in B$ and $q \notin A$. Since $q \in B$ where B is a Dedekind cut, we have by Definition 6.1 that there exists a point $p \in B$ with p > q. Additionally, since $q \notin A$ implies that q is an upper bound of A by Lemma 6.2, we know by Definition 5.6 that $x \leq q$ for all $x \in A$. It follows since q < p that $x \leq p$ for all $x \in A$, meaning by Definition 5.6 and Lemma 6.2 that $p \notin A$. Having established that $p, q \in B$, $p, q \notin A$, and q < p, we are now ready to prove that A < i(p) < B. Definition 6.4 tells us that we may do so by showing that $A \subsetneq i(p)$ and $i(p) \subsetneq B$. We will take this one argument at a time.

To show that $A \subsetneq i(p)$, Definition 1.3 tells us that it will suffice to verify that every element of A is an element of i(p) and that there exists an element of i(p) that is not an element of A. We treat the former statement first. As previously mentioned, $x \leq p$ for all $x \in A$. This combined with the fact that $p \notin A$ implies that x < p for all $x \in A$. Thus, by the definition of i(p), $x \in i(p)$ for all $x \in A$, as desired. As to the latter statement, since q < p, we have by the definition of i(p) that $q \in i(p)$. However, we also know that $q \notin A$, as desired.

To show that $i(p) \subseteq B$, we must verify symmetric arguments to before. For the former statement, let r be an arbitrary element of i(p). Then by the definition of i(p), r < p. Since $p \in B$ and $r \in \mathbb{Q}$ satisfy r < p, we have by Definition 6.1 that $r \in B$, as desired. As to the latter statement, p is clearly an element of B that is not an element of i(p), as desired.

1/19: **Theorem 6.11.** $i(\mathbb{Q})$ is dense in \mathbb{R} .

Proof. To prove that $i(\mathbb{Q})$ is dense in \mathbb{R} , Definition 6.8 tells us that it will suffice to show the every point $X \in \mathbb{R}$ is a limit point of $i(\mathbb{Q})$. Let X be an arbitrary element of \mathbb{R} . To show that $X \in LP(i(\mathbb{Q}))$, Definition 3.13 tells us that it will suffice to verify that for every region \underline{AB} with $X \in \underline{AB}$, we have $\underline{AB} \cap (i(\mathbb{Q}) \setminus \{X\}) \neq \emptyset$. Let \underline{AB} be an arbitrary region with $X \in \underline{AB}$. It follows by Definitions 3.10 and 3.6 that A < X < B. Thus, by Lemma 6.10, there exists $p \in \mathbb{Q}$ such that A < i(p) < X < B. By Definitions 3.6 and 3.10, $i(p) \in \underline{AB}$. By Definition 1.18, $i(p) \in i(\mathbb{Q})$. By Exercise 6.5, i(p) < X implies that $i(p) \neq X$. Combining the last three results with Definitions 1.11 and 1.6, we have that $i(p) \in \underline{AB} \cap (i(\mathbb{Q}) \setminus \{X\})$, as desired.

Corollary 6.12 (The Archimedean Property). Let $A \in \mathbb{R}$ be a positive real number. Then there exist nonzero natural numbers $n, m \in \mathbb{N}$ such that $i(\frac{1}{n}) < A < i(m)$.

Proof. We will first prove that there exists a nonzero natural number n such that $i(\frac{1}{n}) < A$. We will then prove that there exists a nonzero natural number m such that A < i(m). Let's begin.

Since $A \in \mathbb{R}$ is positive, we know that 0 < A. Thus, by Lemma 6.10, there exists $\frac{p}{n} \in \mathbb{Q}$ such that $0 < i(\frac{p}{n}) < A$. As permitted by Exercise 3.9b, we choose $\frac{p}{n} \in \left[\frac{p}{n}\right]$ to be an object such that 0 < n (this also means that $n \in \mathbb{N}$). Consequently, by Scripts 2 and 3, we know that $0 < \frac{1}{n} \le \frac{p}{n}$. It follows that $i(\frac{1}{n}) \le i(\frac{p}{n})$ since $x \in i(\frac{1}{n})$ implies $x < \frac{1}{n} \le \frac{p}{n}$ implies $x \in i(\frac{p}{n})$, implies $i(\frac{1}{n}) \subset i(\frac{p}{n})$. Therefore, $i(\frac{1}{n}) \le i(\frac{p}{n}) < A$, as desired.

By Exercise 6.5, Axiom 3, and Definition 3.3, there exists a point $B \in \mathbb{R}$ such that A < B. It follows by Lemma 6.10 that there exists $\frac{m}{q} \in \mathbb{Q}$ such that $A < i(\frac{m}{q}) < B$. As before, let $\frac{m}{q}$ be an object such that 0 < q. Consequently, by Scripts 2 and 3, we know that $0 < \frac{m}{q} \le m$. Once again, for the same reasons as before, $i(\frac{m}{q}) \le i(m)$. Therefore, $A < i(\frac{m}{q}) \le i(m)$, as desired.

Corollary 6.13. $i(\mathbb{N})$ is an unbounded subset of \mathbb{R} .

Proof. Suppose for the sake of contradiction that $i(\mathbb{N})$ is bounded above. Then by Definition 5.6, there exists a point $A \in \mathbb{R}$ such that $i(n) \leq A$ for all $n \in \mathbb{N}$. Note that A is a positive real number since $i(0) < i(0) \leq A$. But by Corollary 6.12, A < i(n) for some $n \in \mathbb{N}$, a contradiction.

1/21: Corollary 6.14. If $A \in \mathbb{R}$ is a real number, then there is an integer n such that $i(n-1) \leq A < i(n)$.

Proof. Let X be be the set of all integers z such that $i(z) \leq A$. Symbolically,

$$X = \{ z \mid z \in \mathbb{Z} \text{ and } i(z) \le A \}$$

Since $A \neq \emptyset$ by Definition 6.1, there exists a point $\frac{p}{q} \in \mathbb{Q}$ such that $\frac{p}{q} \in A$. As in Corollary 6.12, we let q > 0. It follows by Scripts 2 and 3 that if $p \geq 0$, then $0 \leq \frac{p}{q}$, i.e., $i(p) \leq A$ and if p < 0, then $p \leq \frac{p}{q}$, i.e., $i(p) \leq A$. Thus, in either case, X is nonempty.

Now there exists a nonzero natural number m such that A < i(m) (if $A \le i(0)$, then A < i(1); if A > 0, then apply Corollary 6.12). Let $f: X \to \mathbb{N}$ be defined by the rule

$$f(x) = m - x$$

By Script 1, f is an injective function, $f(X) \subset \mathbb{N}$, and f(X) is nonempty (since X is nonempty). Thus, by the well-ordering principle (Additional Exercise 0.1), there is a least element, which we shall call y, in f(X). Since f is injective, there exists exactly one object $n-1 \in X$ such that f(n-1) = y.

By the definition of X, $i(n-1) \leq A$. To prove that A < i(n), suppose for the sake of contradiction that $i(n) \leq A$. This coupled with the fact that $n \in \mathbb{Z}$ implies that $n \in X$. Thus, $f(n) \in f(X)$. But f(n) = m - n < m - n + 1 = m - (n - 1) = f(n - 1), contradicting the fact that f(n - 1) is the least element of f(X).

1/26: **Axiom 1.** The continuum contains a countable dense subset.

Definition 6.15. Let X and Y be sets with orderings $<_X$ an $<_Y$, respectively. A function $f: X \to Y$ is **order-preserving** if for all $r, s \in X$,

$$r <_X s \Longrightarrow f(r) <_Y f(s)$$

Note that the function $i: \mathbb{Q} \to \mathbb{R}$ discussed above is order-preserving.

Exercise 6.16. Let C satisfy Axioms 1-5. Let $K \subset C$ be a countable dense subset of C. Construct an order-preserving bijection $f: \mathbb{Q} \to K$.

Lemma.

- a) K satisfies Axiom 3.
- b) (Density Lemma) For all $x, y \in K$, if x < y, then there exists a point $z \in K$ such that z is between x and y.

Proof of a. To prove that K satisfies Axiom 3, we must verify that K has neither a first nor a last point. We will address the first point question first. Suppose for the sake of contradiction that K has a first point x. Then by Definition 3.3, $x \le y$ for all $y \in K$. However, since C satisfies Axiom 3, there exists an object $a \in C$ such that a < x. Now consider the region \underline{ax} . We have by Corollary 5.3 that there exists a point $p \in \underline{ax}$. Additionally, we have by Script 3 that $\underline{ax} \cap K = \emptyset$. Thus, $\underline{ax} \cap (K \setminus \{p\}) = \emptyset$, implying by Definition 3.13 that $p \notin LP(K)$. But since $p \in C$ and $p \notin LP(K)$, we have by Definition 6.8 that K is not dense in C, a contradiction.

The proof is symmetric for last points.

Proof of b. Suppose for the sake of contradiction that that there exist $x, y \in K$ with x < y such that no point $z \in K$ is between x and y. By Theorem 5.2, there exists $p \in C$ such that p is between x and y. Consequently, by Definition 3.10, $p \in \underline{xy}$. Additionally, we have by Script 3 that $\underline{xy} \cap K = \emptyset$. It follows that $\underline{xy} \cap (K \setminus \{p\}) = \emptyset$, implying by Definition 3.13 that $p \notin LP(K)$. But since $p \in \overline{C}$ and $p \notin LP(K)$, we have by Definition 6.8 that K is not dense in C, a contradiction.

³For the same reasons as in Corollary 6.12.

Proof of Exercise 6.16. By Theorem 2.11, \mathbb{Q} is countable, implying by Definition 1.35 that there exists a bijection $g: \mathbb{N} \to \mathbb{Q}$. The existence of this bijection means that we can refer to an arbitrary element q of \mathbb{Q} by the number n for which g(n) = q; in another notation, we can refer to q as q_n . Thus, since every element of \mathbb{Q} can be written as q_n for some $n \in \mathbb{N}$, we can write $\mathbb{Q} = \{q_1, q_2, \ldots\}$. Similarly, we can express K as $K = \{k_1, k_2, \ldots\}$. We will use this method of referring to the elements of \mathbb{Q} to construct f.

We define f recursively with strong induction. For the base case q_1 , we define $f(q_1) = k_1$. Now suppose inductively that we have defined $f(q_1), f(q_2), \ldots, f(q_n)$; we now seek to define $f(q_{n+1})$. By Theorem 3.5, the symbols a_1, \ldots, a_{n+1} can be assigned to q_1, \ldots, q_{n+1} so that $a_1 <_{\mathbb{Q}} a_2 <_{\mathbb{Q}} \cdots <_{\mathbb{Q}} a_{n+1}$. We divide into three cases $(q_{n+1} = a_1, q_{n+1} = a_{n+1}, \text{ and } q_{n+1} = a_i \text{ where } 1 < i < n+1)$. First, suppose that $q_{n+1} = a_1$. By the inductive hypothesis, $f(a_2), f(a_3), \ldots, f(a_{n+1})$ are defined elements of K. At this point, define the set $X = \{k \in K \mid k <_K f(a_2)\}$. It follows by Lemma (a) that this set is nonempty. Thus, by the well-ordering principle, there exists a $k_i \in X$ such that $i \leq j$ for all $k_j \in X$. We let $f(q_{n+1}) = k_i$. The second case is symmetric to the first. Third, suppose that $q_{n+1} = a_i$ where 1 < i < n+1. By the inductive hypothesis, $f(a_1), \ldots, f(a_{i-1}), f(a_{i+1}), \ldots, f(a_{n+1})$ are defined elements of K. At this point, define the set $X = \{k \in K \mid f(a_{i-1}) <_K k <_K f(a_{i+1})\}$. It follows by Lemma (b) that this set is nonempty. Thus, by the well-ordering principle, there exists a $k_i \in X$ such that $i \leq j$ for all $k_j \in X$. We let $f(q_{n+1}) = k_i$.

To prove that f is a function, Definition 1.16 tells us that it will suffice to show that for all $q \in \mathbb{Q}$, there exists a unique $k \in K$ such that f(q) = k. First, we will prove that for all $q \in \mathbb{Q}$, there exists some $k \in K$ such that f(q) = k. Let q_i be an arbitrary element of \mathbb{Q} . Then $i \in \mathbb{N}$, and by the principle of strong mathematical induction (Additional Exercise 0.2b), $f(q_i)$ is assigned to an element of k. As to proving the uniqueness of the k to which q_i is defined, each q is assigned once, in one of three mutually exclusive cases, to an unambiguously defined (as guaranteed by the well-ordering principle) element of K.

To prove that f is order-preserving, we will first verify the following claim (which we will refer to as Lemma (c) for future reference): Consider the set $\{q_1,\ldots,q_n\}\subset\mathbb{Q}$; if the symbols a_1,\ldots,a_n are assigned to q_1,\ldots,q_n such that $a_1<_{\mathbb{Q}} a_2<_{\mathbb{Q}}\cdots<_{\mathbb{Q}} a_n$, then $f(a_1)<_K f(a_2)<_K\cdots<_K f(a_n)$. We will then use this result to prove that f is order-preserving for any two arbitrary elements $q_i,q_i\in\mathbb{Q}$. Let's begin.

To verify the above claim, we induct on n. The base case n=1 is vacuously true. Now suppose inductively that we have proven the claim for n; we now seek to prove it for n+1. By Theorem 3.5, the symbols a_1, \ldots, a_{n+1} can be assigned to q_1, \ldots, q_{n+1} so that $a_1 <_{\mathbb{Q}} a_2 <_{\mathbb{Q}} \cdots <_{\mathbb{Q}} a_{n+1}$. We divide into three cases $(q_{n+1} = a_1, q_{n+1} = a_{n+1}, \text{ and } q_{n+1} = a_i \text{ where } 1 < i < n+1)$. First, suppose that $q_{n+1} = a_1$. By the definition of f, $f(q_{n+1}) \in \{k \in K \mid k <_K f(a_2)\}$, meaning that $f(q_{n+1}) = f(a_1) <_K f(a_2)$. Additionally, by the inductive hypothesis, we know that $f(a_2) <_K f(a_3) <_K \cdots <_K f(a_{n+1})$ (since a_2, \ldots, a_{n+1} correspond to q_1, \ldots, q_n). Together, these two results imply that $f(a_1) <_K f(a_2) <_K \cdots <_K f(a_{n+1})$. The proof of the second case is symmetric to that of the first. Third, suppose that $q_{n+1} = a_i$ where 1 < i < n+1. By the definition of f, $f(q_{n+1}) \in \{k \in K \mid f(a_{i-1}) <_K k <_K f(a_{i+1})\}$, meaning that $f(a_{i-1}) <_K f(a_{n+1}) = f(a_i) <_K f(a_{i+1})$. Additionally, by the inductive hypothesis, we know that $f(a_1) <_K \cdots <_K f(a_{i-1}) <_K f(a_{i+1}) <_K \cdots <_K f(a_{n+1})$ (for an analogous reason to before). These two results imply that $f(a_1) <_K f(a_2) <_K \cdots <_K f(a_{n+1})$.

We are now ready to actually prove that f is order-preserving. To do so, Definition 6.15 tells us that it will suffice to show that for all $q_i, q_j \in \mathbb{Q}$, $q_i <_{\mathbb{Q}} q_j$ implies $f(q_i) <_K f(q_j)$. Let q_i, q_j be arbitrary elements of \mathbb{Q} such that $q_i <_{\mathbb{Q}} q_j$. Since $q_i <_{\mathbb{Q}} q_j$, $q_i \neq q_j$, implying that $i \neq j$. We divide into two cases (i < j and i > j). Suppose first that i < j. By Theorem 3.5, the symbols a_1, \ldots, a_j can be assigned to q_1, \ldots, q_j so that $a_1 <_{\mathbb{Q}} a_2 <_{\mathbb{Q}} \cdots <_{\mathbb{Q}} a_j$. Let $q_j = a_l$. Since $q_i <_{\mathbb{Q}} q_j$, we know that $q_i = a_m$ where m < l. Additionally, by Lemma (c), we know that $f(a_1) <_K f(a_2) <_K \cdots <_K f(a_j)$. It follows that $f(a_m) <_K f(a_l)$, implying that $f(q_i) <_K f(q_j)$, as desired. The proof is symmetric in the other case.

To prove that f is bijective, Definition 1.20 tells us that it will suffice to show that f is injective and surjective.

To show that f is injective, Definition 1.20 tells us that it will suffice to demonstrate that $q_i \neq q_j$ implies $f(q_i) \neq f(q_j)$. WLOG let $q_i <_{\mathbb{Q}} q_j$. Then since f is order-preserving, Definition 6.15 implies that $f(q_i) <_K f(q_j)$. It follows that $f(q_i) \neq f(q_j)$, as desired.

We are now ready to actually show that f is surjective. To do so, Definition 1.20 tells us that it will suffice to demonstrate that for all $k_n \in K$, there exists a $q_i \in \mathbb{Q}$ such that $f(q_i) = k_n$. To do this, we induct on n. For the base case n = 1, it follows from the definition of f that $f(q_1) = k_1$. Now suppose inductively that for each k_1, \ldots, k_n , there exists a $q_i \in \mathbb{Q}$ such that $f(q_i) = k_n$; we now seek to prove the claim for n + 1.

By Theorem 3.5, the symbols b_1, \ldots, b_{n+1} can be assigned to k_1, \ldots, k_{n+1} so that $b_1 <_K b_2 <_K \cdots <_K b_{n+1}$. We divide into three cases $(k_{n+1} = b_1, k_{n+1} = b_{n+1}, \text{ and } k_{n+1} = b_i \text{ where } 1 < i < n+1)$. First, suppose that $k_{n+1} = b_1$. By the inductive hypothesis, $b_2 = f(q_i) <_K b_3 = f(q_j) <_K \cdots <_K b_{n+1} = f(q_l)$. It follows by Definition 6.15 that $q_i <_\mathbb{Q} q_j <_\mathbb{Q} \cdots <_\mathbb{Q} q_l$. At this point, define the set $X = \{q \in \mathbb{Q} \mid q <_\mathbb{Q} q_i\}$. It follows from Exercise 3.9d that this set is nonempty. Thus, by the well-ordering principle, there exists a $q_m \in X$ such that $m \leq m'$ for all $q_{m'} \in X$. By the definition of f, $f(q_m) = k_{n+1}$. The proof of the second case is symmetric to that of the first. Third, suppose that $k_{n+1} = b_i$ where 1 < i < n+1. By the inductive hypothesis, $b_2 = f(q_j) <_K \cdots <_K b_{i-1} = f(q_{j'}) <_K b_{i+1} = f(q_l) <_K \cdots <_K b_{n+1} = f(q_{l'})$. It follows by Definition 6.15 that $q_j <_\mathbb{Q} \cdots <_\mathbb{Q} q_{j'} <_\mathbb{Q} q_l <_\mathbb{Q} \cdots <_\mathbb{Q} q_{l'}$. At this point, define the set $X = \{q \in \mathbb{Q} \mid q_{j'} <_\mathbb{Q} q <_\mathbb{Q} q_l\}$. It follows from Additional Exercise 3.1 that this set is nonempty. Thus, by the well-ordering principle, there exists a $q_m \in X$ such that $m \leq m'$ for all $q_{m'} \in X$. By the definition of f, $f(q_m) = k_{n+1}$.

Exercise 6.17. Let $f: \mathbb{Q} \to K$ be an order-preserving bijection, as found in Exercise 6.16. Let $A \in \mathbb{R}$. Then $A \subset \mathbb{Q}$ and so $f(A) \subset K \subset C$. Define $F: \mathbb{R} \to C$ by

$$F(A) = \sup f(A)$$

- 1. Show $\sup f(A)$ exists, so F is well-defined.
- 2. Show F is injective and order-preserving.

Proof of 1. To prove that $\sup f(A)$ exists, Theorem 5.17 tells us that it will suffice to show that f(A) is nonempty and bounded above. To show that f(A) is nonempty, Definition 1.8 tells us that it will suffice to find an element of f(A). By Definition 6.1, $A \neq \emptyset$. Thus, by Definition 1.8, there exists an object $x \in A$. It follows by Definition 1.18 that $f(x) \in f(A)$, as desired. To show that f(A) is bounded above, Definition 5.6 tells us that it will suffice to find an element of K such that $f(x) \geq_C f(a)$ for all $f(a) \in f(A)$. By Definition 6.1, $A \neq \mathbb{Q}$ and $A \subset \mathbb{Q}$. Thus, by Definition 1.2, there exists an object $x \in \mathbb{Q}$ such that $x \notin A$. It follows from the latter condition by Lemma 6.2 that x is an upper bound for A. Thus, by Definition 5.6, $x \geq a$ for all $a \in A$. Consequently, by Definition 6.15, f(x) is an element of K such that $f(x) \geq_C f(a)$ for all $f(a) \in f(A)$, as desired.

Proof of 2. To prove that F is order-preserving, Definition 6.15 tells us that it will suffice to show that for all $A, B \in \mathbb{R}$, $A <_{\mathbb{R}} B$ implies $F(A) <_C F(B)$. Let A, B be two arbitrary elements of \mathbb{R} satisfying $A <_{\mathbb{R}} B$. Then by Definitions 6.4 and 1.3, there exists a point $x \in B$ such that $x \notin A$. It follows from the latter condition by Lemma 6.2 and Definition 5.6 that $x \geq a$ for all $a \in A$. Thus, by Definition 6.15, $f(x) \geq_C f(a)$ for all $f(a) \in f(A)$. Consequently, by Definition 5.7, $\sup f(A) \leq_C f(x)$. Additionally, by Definition 6.1, there exists a point $y \in B$ such that y > x. Thus, by Definition 6.15, we have that $f(y) >_C f(x)$. It follows by Definitions 5.6 and 5.7 that $f(y) \leq_C \sup f(B)$. Combining two results, we therefore have that $\sup f(A) \leq_C f(x) <_C f(y) \leq_C \sup f(B)$, meaning that $F(A) = \sup f(A) <_C \sup f(B) = F(B)$, as desired.

To prove that F is injective, Definition 1.20 tells us that it will suffice to show that if $A \neq B$, then $F(A) \neq F(B)$. Let A, B be two distinct real numbers. Then by Exercise 6.5, A < B or B < A. We now divide into two cases. Suppose first that A < B. Then F(A) < F(B) by Definition 6.15 (which we have just proven applies to F). This implies by Definition 3.1 that $F(A) \neq F(B)$, as desired. The proof is symmetric in the other case.

Theorem 6.18. Suppose that C is a continuum satisfying Axioms 1-5. Then C is isomorphic to the real numbers \mathbb{R} ; i.e., there is an order-preserving bijection $F: \mathbb{R} \to C$.

Lemma. Let K be a dense subset of C. For all $x, y \in C$, if x < y, then there exists a point $z \in K$ such that z is between x and y.

Proof. Suppose for the sake of contradiction that there exist two points $x, y \in C$ with x < y such that no point $z \in K$ is between x and y. By Corollary 5.3, the region \underline{xy} is infinite. Thus, we can pick a point $p \in \underline{xy}$. Additionally, by Definition 1.6, we have that $\underline{xy} \cap K = \overline{\emptyset}$. Thus, $\underline{xy} \cap (K \setminus \{p\}) = \emptyset$, implying by Definition 3.13 that $p \notin LP(K)$. But since $p \in C$ and $p \notin LP(K)$, we have by Definition 6.8 that K is not dense in C, a contradiction.

Proof of Theorem 6.18. By Axiom 1, C contains a countable dense subset K. By Exercise 6.16, there exists an order-preserving bijection $f: \mathbb{Q} \to K$. By Exercise 6.17, there exists an order-preserving injection $F: \mathbb{R} \to C$. To prove that there is an order-preserving bijection $F: \mathbb{R} \to C$, all that is left to do is to demonstrate that F (as defined in Exercise 6.17) is surjective.

To do this, Definition 1.20 tells us that it will suffice to show that for all $X \in C$, there exists an object $A \in \mathbb{R}$ such that F(A) = X. Put more simply, we must find a Dedekind cut A such that $\sup f(A) = X$ for every $X \in C$. To do this, we will begin by constructing the set $S = \{k \in K \mid k < X\}$. We will then verify that the preimage $f^{-1}(S)$ is a Dedekind cut. Lastly, we will verify that $\sup f(f^{-1}(S)) = X$. Let's begin.

Let X be an arbitrary element of C. Define S as above. To verify that $f^{-1}(S)$ is a Dedekind cut, Definition 6.1 tells us that it will suffice to confirm that $f^{-1}(S) \neq \emptyset$; $f^{-1}(S) \neq \mathbb{Q}$; if $r \in f^{-1}(S)$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in f^{-1}(S)$; and if $r \in f^{-1}(S)$, then there is some $s \in f^{-1}(S)$ with s > r. We will take this one claim at a time.

To confirm that $f^{-1}(S) \neq \emptyset$, Definition 1.8 tells us that it will suffice to find an element of $f^{-1}(S)$. By Axiom 3 and Definition 3.3, there exists some point $Y \in C$ such that Y < X. Consequently, by the lemma and Definition 3.6, there exists a point $f(p) \in K^{[4]}$ such that Y < f(p) < X. It follows by the definition of S that $f(p) \in S$. Therefore, by Definition 1.18, $p \in f^{-1}(S)$, as desired.

To confirm that $f^{-1}(S) \neq \mathbb{Q}$, Definition 1.2 tells us that it will suffice to find an element of \mathbb{Q} that is not an element of $f^{-1}(S)$. By Axiom 3 and Definition 3.3, there exists some point $Y \in C$ such that X < Y. Consequently, by the lemma and Definition 3.6, there exists a point $f(p) \in K$ such that X < f(p) < Y. It follows by the definition of S that $f(p) \notin S$. Therefore, by Definition 6.18, $p \in \mathbb{Q}$ but $p \notin f^{-1}(S)$, as desired.

To confirm that if $r \in f^{-1}(S)$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in f^{-1}(S)$, we let $r \in f^{-1}(S)$ and $s \in \mathbb{Q}$ be arbitrary elements of their respective sets that satisfy s < r and seek to verify that $s \in f^{-1}(S)$. By Definition 1.18, the fact that $r \in f^{-1}(S)$ implies that $f(r) \in S$. Thus, by the definition of S, f(r) < X. Additionally, by the definition of f and Definition 6.15, $f(s) \in K$ and f(s) < f(r), respectively. Since f(s) < f(r) and f(r) < X, transitivity implies that f(s) < X. This combined with the previously established fact that $f(s) \in K$ implies that $f(s) \in S$. Therefore, by Definition 1.18, $s \in f^{-1}(S)$, as desired.

To confirm that if $r \in f^{-1}(S)$, then there is some $s \in f^{-1}(S)$ with s > r, we let $r \in f^{-1}(S)$ and seek to find such an s. As before, $r \in f^{-1}(S)$ implies that $f(r) \in S$. Thus, by the definition of S, f(r) < X. It follows by the lemma and Definition 3.6 that there exists a point $f(s) \in K$ such that f(r) < f(s) < X. Consequently, by the definition of S, we have that $f(s) \in S$. Therefore, by Definitions 1.18 and 6.15, $s \in f^{-1}(S)$ and r < s, respectively, as desired.

Since f is bijective, Script 1 asserts that $f(f^{-1}(S)) = S$. Thus, $\sup f(f^{-1}(S)) = \sup S$. To verify that $\sup S = X$, Definition 5.7 tells us that it will suffice to confirm that X is an upper bound of S and if U is an upper bound of S, $X \leq U$. To confirm the former statement, Definition 5.6 tells us that it will suffice to show that $k \leq X$ for all $k \in S$. But by the definition of S, this is true. To confirm the latter statement, suppose for the sake of contradiction that there exists an upper bound U of S such that U < X. Since U < X, the lemma and Definition 3.6 imply that there exists a point $Z \in K$ such that U < Z < X. It follows by the definition of S that $Z \in S$. Since there exists an element of S greater than U, Definition 5.6 asserts that U is not an upper bound of S, a contradiction.

6.2 Discussion

1/14:

- 1/12: Upper limit at signing up for 4-5 across the script.
 - Lemma 6.2 is probably more straightforward using a contradiction argument.
 - Briefly restate the algebra of Exercise 4.24 in Exercise 6.3c.
 - Turning in Script 5 journals is optional it will boost your grade a bit if you do.
 - Your journal grade will be whichever is higher: the average of all your journal grades with and without Script 5.

⁴Note that we know that the element of K (the existence of which is implied by the lemma) can be written in the form f(p) because f is bijective.

- Script 5 will probably be due Wednesday, 1/20.
- In Lemma 6.6, do we need to prove that the union of arbitrarily many Dedekind cuts is, itself, a Dedekind cut? Yes.
- 1/18: Is there a way to prove something else besides A is not open in Exercise 6.7?
 - This is probably it as far as proving that continuua are connected.
 - It may not be possible to prove that any of the statements are wrong, but he's not sure.
 - Is Lemma 6.9 used in the proofs of any subsequent results, or is it just a less important result (hence the lemma designation)?
 - We can think of it as an alternate definition for density we could prove Definition 6.8 from it.
 - Is my handwavey use of Scripts 2 and 3 ok in Corollary 6.12?
 - I'm fine.
 - Is there a simpler way to prove Corollaries 6.12 and 6.14?
 - hi
 - Is the math REU still running this summer?
 - He's not sure; UChicago's may not be NSF approved, hence why its not on the website rn.
 - What other summer opportunities would you recommend for a student at my level?
 - He did an REU at UWisconsin when he was an undergrad.
 - Sounds like its pretty much just REUs for undergrads.
 - I could ask around to see if anyone is a Knot Theorist/willing to sponsor me.
- 1/19: Easier Corollary 6.12:
 - Let B > A. Then $A < i(\frac{m}{a}) < B$. Then A < i(m).
 - Several proofs were given for Corollary 6.14. One other correct one constructed the nonempty, bounded above set of all i(n) less than or equal to A and considered its supremum.
- 1/21: Now graded a bit more critically on presentations.
 - Write big, talk loudly, don't talk to the blackboard.
 - My original proof of Corollary 6.14 is incorrect because I can't split into cases the way I did (longer expo).
 - Instead, use Seb's approach.
- 1/26: Stray thoughts on Exercise 6.16:
 - Any property we can prove for \mathbb{Q} (e.g., betweenness, Axioms 1-3, etc.) we should be able to prove for K.
 - * Many of these follow from Q's density! This is how we can make use of this condition.
 - We think of 0 as being somehow the "midpoint" of Q. But since Q diverges in both directions, it doesn't really have a midpoint; we just assert this rather arbitrary structure on a more foundational algebraic construct.
 - * The same would hold for K. Thus, we can choose an arbitrary point $x \in K$ and let it be the "midpoint," i.e., let f(0) = x.
 - Can we induct on the elements of \mathbb{Q} ? Since there exists a bijection $\mathbb{Q} \to \mathbb{N}$.

– We can construct an order preserving bijection between any finite subsets of \mathbb{Q} and K with equal cardinality.

- $-f: \mathbb{Q} \to K, g: \mathbb{N} \to \mathbb{Q}, h: \mathbb{N} \to K.$ If g(n) < g(n'), then h(n) < h(n').
- Let h(n) < h(n'). WLOG let n < n', too. Now consider $N = \{n \in \mathbb{N} \mid n \le n'\}$. This is a finite set. Now create a new set g(N). There will be an order-preserving bijection $\tilde{f}: h(N) \to g(N)$.
- Let $g: \mathbb{N} \to \mathbb{Q}$ be a bijection (we know one exists by countability). We presently seek to define $h: \mathbb{N} \to K$ recursively. Let x_1 be an arbitrary element of K (Axiom 1). We define $h(1) = x_1$. Now suppose inductively that we have defined h(n). We now seek to define h(n+1). Consider the set $A = \{g(m) \mid m \le n+1\}$. By Theorem 3.5, we can assign the symbols a_1, \ldots, a_{n+1} to each point of A so that $a_1 < a_2 < \cdots < a_{n+1}$. We know that $g(n+1) = a_i$ for some $i \in [n+1]$. We divide into three cases $(g(n+1) = b_1, g(n+1) = b_{n+1}, \text{ and } g(n+1) = b_i$ where 1 < i < n+1). First, suppose that $g(n+1) = b_1$. By the inductive hypothesis, $h(g^{-1}(b_2)) \in K$. By Axiom 3, $h(g^{-1}(b_2))$ is not the first point of K. Thus, there exists an $x \in K$ such that $x < h(g^{-1}(b_2))$. Consequently, let h(n+1) = x. The proof of the second case is symmetric to that of the first. Third, suppose that $g(n+1) = b_i$ where 1 < i < n+1. By the inductive hypothesis, $h(g^{-1}(b_{i-1})), h(g^{-1}(b_{i+1})) \in K$. Thus, there exists an $x \in K$ such that $h(b_{i-1}) < x < h(b_{i+1})$. Consequently, let h(n+1) = x.
- We define $f: \mathbb{Q} \to K$ by $f(p) = h(g^{-1}(p))$.
- Function diagram: The characteristic of an order preserving bijection is no intersections between lines connecting elements of different sets.
- Do we need to have subscripts on our orderings? Yes.
- The canonical way of doing Exercise 6.16 is with the back and forth method.
 - Because both are countable, $\mathbb{Q} = \{q_1, q_2, \dots\}$. Likewise, $K = \{k_1, k_2, \dots\}$.
 - To create the bijection, we have two repeating steps.
 - 1. Let i be the smallest index such that q_i has not been paired. Let j be an index such that k_j hasn't been paired, and assigning $f(q_i) = k_j$ preserves ordering (we have to prove that such a j exists). To prove this, we know that we can order the elements of $\mathbb Q$ that have already been paired. We can also order the elements of K that have already been paired. Case 1: q_i is between some preexisting q's. Then there exists some k_j between. Case 2: $q_i < \cdots < q_n$ implies there exists some k_j less than all other k so far. Case 3: q_i is a last element; symmetric to Case 2.
 - 2. Smallest j, smallest i such that order is preserved. Then we let $f(q_i) = k_j$.
 - 3. Repeat.
 - Injectivity: Suppose $f(q_i) = f(q_j)$. Each q_k is assigned to a unique k_k , so if they're equal, they must have been assigned at the same time. Therefore, $q_i = q_j$.
 - Surjectivity: Let $k_j \in K$. By jth step at most, k_j will be paired.
- Do summer research things every happen with graduate students, or is it just with professors? It pretty much only happens with professors, but DRP could be a good way to get your foot in the door.

Script 7

The Field Axioms

7.1 Journal

1/28: **Definition 7.1.** A binary operation on a set X is a function

$$f: X \times X \to X$$

We say that f is **associative** if

$$f(f(x,y),z) = f(x,f(y,z))$$
 for all $x,y,z \in X$

We say that f is **commutative** if

$$f(x,y) = f(y,x)$$
 for all $x, y \in X$

An **identity element** of a binary operation f is an element $e \in X$ such that

$$f(x,e) = f(e,x) = x$$
 for all $x \in X$

Remark 7.2. Frequently, we denote a binary operation differently. If $*: X \times X \to X$ is the binary operation, we often write a * b in place of *(a,b). We sometimes indicate this same operation by writing $(a,b) \mapsto a * b$.

Exercise 7.3. Rewrite Definition 7.1 using the notation of Remark 7.2.

Answer. A binary operation on a set X is a function

$$*: X \times X \to X$$

We say that * is **associative** if

$$(x*y)*z = x*(y*z)$$
 for all $x, y, z \in X$

We say that * is **commutative** if

$$x * y = y * x$$
 for all $x, y \in X$

An **identity element** of a binary operation * is an element $e \in X$ such that

$$x * e = e * x = x$$
 for all $x \in X$

Examples 7.4.

1. The function $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ which sends a pair of integers (m,n) to +(m,n) = m+n is a binary operation on the integers, called addition. Addition is associative, commutative, and has identity element 0.

Labalme 12

2. The maximum of m and n, denoted $\max(m,n)$, is an associative and commutative binary operation on \mathbb{Z} . Is there an identity element for \max ?

Proof. Suppose for the sake of contradiction that there exists an identity element e for max. But $\max(e-1,e)=e\neq e-1$, a contradiction. Therefore, no identity element exists for max.

3. Let $\wp(Y)$ be the power set of a set Y. Recall that the power set consists of all subsets of Y. Then the intersection of sets, $(A,B) \mapsto A \cap B$, defines an associative and commutative binary operation on $\wp(Y)$. Is there an identity element for \cap ?

Proof. Clearly, $Y \in \wp(Y)$. By Script 1, $Y \cap A = A \cap Y = A$ where $A \subset Y$. Therefore, Y is an identity element for \cap .

Exercise 7.5. Find a binary operation on a set that is not commutative. Find a binary operation on a set that is not associative.

Proof. We will prove that the subtraction operation on the integers $(-: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z})$ is not commutative or associative. To prove that it's not commutative, Definition 7.1 tells us that it will suffice to show that $x-y\neq y-x$ for some $x,y\in\mathbb{Z}$. Since 2-1=1 but 1-2=-1, we can see that $1,2\in\mathbb{Z}$ clearly meet this requirement. To prove that it's not associative, Definition 7.1 tells us that it will suffice to show that $(x-y)-z\neq x-(y-z)$ for some $x,y,z\in\mathbb{Z}$. Since (3-2)-1=0 but 3-(2-1)=2, we can see that $1,2,3\in\mathbb{Z}$ clearly meet this requirement.

Exercise 7.6. Let X be a finite set, and let $Y = \{f : X \to X \mid f \text{ is bijective}\}$. Consider the binary operation of composition of functions, denoted $\circ : Y \times Y \to Y$ and defined by $(f \circ g)(x) = f(g(x))$ as seen in Definition 1.25. Decide whether or not composition is commutative and/or associative and whether or not it has an identity.

Proof. To prove that composition is not commutative, Definition 7.1 tells us that it will suffice to find a finite set X paired with two bijections in Y that do not commute. Let $X = \{1, 2, 3\}$ and consider the bijections $f: X \to X$ (defined by f(1) = 2, f(2) = 3, f(3) = 1) and $g: X \to X$ (defined by g(1) = 1, g(2) = 3, g(3) = 2). In this case, $f \circ g$ would be defined by f(g(1)) = 2, f(g(2)) = 1, and f(g(3)) = 3, but $g \circ f$ would be defined by g(f(1)) = 3, g(f(2)) = 2, and g(f(3)) = 1.

To prove that composition is associative, Definition 7.1 tells us that it will suffice to show that $((f \circ g) \circ h)(x) = (f \circ (g \circ h))(x)$. We may do this with the following algebra.

$$((f \circ g) \circ h)(x) = (f \circ g)(h(x))$$

$$= f(g(h(x)))$$

$$= f((g \circ h)(x))$$

$$= (f \circ (g \circ h))(x)$$

With respect to any finite set X, there will always be a bijection $i: X \to X$ defined by i(x) = x. To prove that i is an identity element, Definition 7.1 tells us that it will suffice to show that for all $f \in Y$, $f \circ i = i \circ f = f$. We may do this with the following algebra.

$$(f \circ i)(x) = f(i(x))$$

$$= f(x)$$

$$= i(f(x))$$

$$= (i \circ f)(x)$$

Theorem 7.7. Identity elements are unique. That is, suppose that f is a binary operation on a set X that has two identity elements e and e'. Then e = e'.

Labalme 13

Proof. Let $f: X \times X \to X$ be a binary operation on a set X with two identity elements e, e'. By Definition 7.1, we know that f(e, e') = e and f(e, e') = e'. Since f is a well-defined function by definition, it must be that e = f(e, e') = e'.

Definition 7.8. A field is a set F with two binary operations on F called addition, denoted +, and multiplication, denoted \cdot , satisfying the following field axioms:

- FA1 (Commutativity of Addition) For all $x, y \in F$, x + y = y + x.
- FA2 (Associativity of Addition) For all $x, y, z \in F$, (x + y) + z = x + (y + z).
- FA3 (Additive Identity) There exists an element $0 \in F$ such that x + 0 = 0 + x = x for all $x \in F$.
- FA4 (Additive Inverses) For any $x \in F$, there exists $y \in F$ such that x + y = y + x = 0, called an additive inverse of x.
- FA5 (Commutativity of Multiplication) For all $x, y \in F$, $x \cdot y = y \cdot x$.
- FA6 (Associativity of Multiplication) For all $x, y, z \in F$, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- FA7 (Multiplicative Identity) There exists an element $1 \in F$ such that $x \cdot 1 = 1 \cdot x = x$ for all $x \in F$.
- FA8 (Multiplicative Inverses) For any $x \in F$ such that $x \neq 0$, there exists $y \in F$ such that $x \cdot y = y \cdot x = 1$, called a multiplicative inverse of x.
- FA9 (Distributivity of Multiplication over Addition) For all $x, y, z \in F$, $x \cdot (y + z) = x \cdot y + x \cdot z$.
- FA10 (Distinct Additive and Multiplicative Identities) $1 \neq 0$.

Exercise 7.9. Consider the set $\mathbb{F}_2 = \{0,1\}$, and define binary operations + and \cdot on \mathbb{F}_2 by

$$0+0=0$$
 $0+1=1$ $1+0=1$ $1+1=0$ $0\cdot 0=0$ $0\cdot 1=0$ $1\cdot 1=1$

Show that \mathbb{F}_2 is a field.

Proof. To prove that \mathbb{F}_2 obeys FA1 from Definition 7.8, it will suffice to show that 0+0=0+0, 0+1=1+0, and 1+1=1+1. The first and third of these are evidently true. For the second, we have 0+1=1=1+0, so it is good, too.

To prove that \mathbb{F}_2 obeys FA2 from Definition 7.8, the following casework will suffice.

$$(0+0)+0=0=0+(0+0) \qquad \qquad (0+0)+1=1=0+(0+1) \\ (0+1)+0=1=0+(1+0) \qquad \qquad (1+0)+0=1=1+(0+0) \\ (0+1)+1=0=0+(1+1) \qquad \qquad (1+1)+0=0=1+(1+0) \\ (1+0)+1=0=1+(0+1) \qquad \qquad (1+1)+1=1=1+(1+1)$$

To prove that \mathbb{F}_2 obeys FA3 from Definition 7.8, it will suffice to find an element $0 \in \mathbb{F}_2$ such that x + 0 = 0 + x = x. Since 0 + 0 = 0, 1 + 0 = 0, and with commutativity, it is clear that 0 is an additive identity in \mathbb{F}_2 .

To prove that \mathbb{F}_2 obeys FA4 from Definition 7.8, it will suffice to show that for all $x \in \mathbb{F}_2$, there exists a $y \in \mathbb{F}_2$ such that x + y = y + x = 0. For 0, this object is 0 (since 0 + 0 = 0 + 0 = 0), and for 1, this object is 1 (since 1 + 1 = 1 + 1 = 0).

To prove that \mathbb{F}_2 obeys FA5 from Definition 7.8, it will suffice to show that $0 \cdot 0 = 0 \cdot 0$, $0 \cdot 1 = 1 \cdot 0$, and $1 \cdot 1 = 1 \cdot 1$. The first and third of these are evidently true. For the second, we have $0 \cdot 1 = 0 = 1 \cdot 0$, so it is good, too.

To prove that \mathbb{F}_2 obeys FA6 from Definition 7.8, the following casework will suffice.

$(0 \cdot 0) \cdot 0 = 0 = 0 \cdot (0 \cdot 0)$	$(0\cdot 0)\cdot 1=0=0\cdot (0\cdot 1)$
$(0\cdot 1)\cdot 0=0=0\cdot (1\cdot 0)$	$(1\cdot 0)\cdot 0 = 0 = 1\cdot (0\cdot 0)$
$(0\cdot 1)\cdot 1=0=0\cdot (1\cdot 1)$	$(1\cdot 1)\cdot 0=0=1\cdot (1\cdot 0)$
$(1\cdot 0)\cdot 1 = 0 = 1\cdot (0\cdot 1)$	$(1 \cdot 1) \cdot 1 = 1 = 1 \cdot (1 \cdot 1)$

To prove that \mathbb{F}_2 obeys FA7 from Definition 7.8, it will suffice to find an element $1 \in \mathbb{F}_2$ such that $x \cdot 1 = 1 \cdot x = x$. Since $0 \cdot 1 = 0$, $1 \cdot 1 = 1$, and with commutativity, it is clear that 1 is a multiplicative identity in \mathbb{F}_2 .

To prove that \mathbb{F}_2 obeys FA8 from Definition 7.8, it will suffice to show that for all $x \in \mathbb{F}_2$ such that $x \neq 0$, there exists a $y \in \mathbb{F}_2$ such that $x \cdot y = y \cdot x = 1$. For 1, this object is 1 (since $1 \cdot 1 = 1 \cdot 1 = 1$).

To prove that \mathbb{F}_2 obeys FA9 from Definition 7.8, the following casework will suffice.

$$0 \cdot (0+0) = 0 = 0 \cdot 0 + 0 \cdot 0$$

$$0 \cdot (0+1) = 0 = 0 \cdot 0 + 0 \cdot 1$$

$$0 \cdot (1+0) = 0 = 0 \cdot 1 + 0 \cdot 0$$

$$1 \cdot (0+0) = 0 = 1 \cdot 0 + 1 \cdot 0$$

$$1 \cdot (1+0) = 1 = 1 \cdot 1 + 1 \cdot 0$$

$$1 \cdot (1+1) = 0 = 1 \cdot 1 + 1 \cdot 1$$

To prove that \mathbb{F}_2 obeys FA10 from Definition 7.8, it will suffice to show that $0 \neq 1$. Clearly this is true. \square

Theorem 7.10. Suppose that F is a field. Then additive inverses are unique. This means: Let $x \in F$. If $y, y' \in F$ satisfy x + y = 0 and x + y' = 0, then y = y'.

Proof. Let $x, y, y' \in F$ be such that x + y = 0 and x + y' = 0. From Definition 7.8, we have

$$y' + (x + y) = (y' + x) + y$$

$$y' + 0 = 0 + y$$

$$y' = y$$
FA2
FA3

We usually write -x for the additive inverse of x.

Corollary 7.11. If $x \in F$, then -(-x) = x.

Proof. Let $x \in F$. Then by consecutive applications of FA4 from Definition 7.8, -x + (-(-x)) = 0 and -x + x = 0. Therefore, by Theorem 7.10, we have that -(-x) = x.

Theorem 7.12. Let F be a field, and let $a, b, c \in F$. If a + b = a + c, then b = c.

Proof. Let $a, b, c \in F$ be such that a + b = a + c. By FA4 from Definition 7.8, there exists $-a \in F$ such that -a + a = a + (-a) = 0. Having established that -a exists, we can prove from Definition 7.8 that

$$-a + (a + b) = -a + (a + c)$$

 $(-a + a) + b = (-a + a) + c$
 $0 + b = 0 + c$
 $b = c$
FA3

Theorem 7.13. Let F be a field. If $a \in F$, then $a \cdot 0 = 0$.

Proof. Let $a \in F$. From Definition 7.8, we have

$$a = a \cdot 1$$
 FA7
 $= a \cdot (1+0)$ FA3
 $= a \cdot 1 + a \cdot 0$ FA9
 $= a + a \cdot 0$ FA7
 $0 = a \cdot 0$ Theorem 7.12

2/2: **Theorem 7.14.** Suppose that F is a field. Then multiplicative inverses are unique. This means: Let $x \in F$. If $y, y' \in F$ satisfy $x \cdot y = 1$ and $x \cdot y' = 1$, then y = y'.

Proof. Let $x, y, y' \in F$ be such that $x \cdot y = 1$ and $x \cdot y' = 1$. From Definition 7.8, we have

$$(y \cdot x) \cdot y' = y \cdot (x \cdot y')$$
 FA6
 $1 \cdot y' = y \cdot 1$ FA8
 $y' = y$ FA7

We usually write x^{-1} or $\frac{1}{x}$ for the multiplicative inverse of x.

Corollary 7.15. *If* $x \in F$ *and* $x \neq 0$ *, then* $(x^{-1})^{-1} = x$.

Proof. Let $x \in F \setminus \{0\}$. Then by FA8 from Definition 7.8, there exists $x^{-1} \in F$ such that $x \cdot x^{-1} = x^{-1} \cdot x = 1$. It follows from Theorem 7.13 that $x^{-1} \neq 0$ (if $x^{-1} = 0$, then Theorem 7.13 would imply that $x \cdot x^{-1} = 0$, a contradiction). Thus, by FA8 from Definition 7.8 again, there exists $(x^{-1})^{-1} \in F$ such that $x^{-1} \cdot (x^{-1})^{-1} = (x^{-1})^{-1} \cdot x^{-1} = 1$. Having established that $(x^{-1})^{-1}$ exists, $x^{-1} \cdot (x^{-1})^{-1} = 1$, and $x^{-1} \cdot x = 1$, we have by Theorem 7.14 that $(x^{-1})^{-1} = x$.

Theorem 7.16. Let F be a field, and let $a,b,c \in F$. If $a \cdot b = a \cdot c$ and $a \neq 0$, then b = c.

Proof. Let $a,b,c \in F$ be such that $a \cdot b = a \cdot c$ and $a \neq 0$. By FA8 from Definition 7.8, there exists $a^{-1} \in F$ such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$. Having established that a^{-1} exists, we can prove from Definition 7.8 that

$$a^{-1} \cdot (a \cdot b) = a^{-1} \cdot (a \cdot c)$$

$$(a^{-1} \cdot a) \cdot b = (a^{-1} \cdot a) \cdot c$$

$$1 \cdot b = 1 \cdot c$$

$$b = c$$
FA6
FA8

Theorem 7.17. Let F be a field, and let $a, b \in F$. If $a \cdot b = 0$, then a = 0 or b = 0.

Proof. Let $a, b \in F$ be such that $a \cdot b = 0$, and suppose for the sake of contradiction that $a \neq 0$ and $b \neq 0$. It follows from the supposition by consecutive applications of FA8 from Definition 7.8 that a^{-1} and b^{-1} exist. Thus, from Definition 7.8, we have

$$1 = 1 \cdot 1$$

$$= (a \cdot a^{-1}) \cdot (b \cdot b^{-1})$$

$$= (a \cdot b) \cdot (a^{-1} \cdot b^{-1})$$

$$= 0 \cdot (a^{-1} \cdot b^{-1})$$

$$= 0$$
FA6 and FA7
Substitution
$$= 0$$
Theorem 7.13

But this contradicts FA10 from Definition 7.8.

Lemma 7.18. Let F be a field. If $a \in F$, then -a = (-1)a.

Proof. Let $a \in F$. From Definition 7.8, we have

$$0 = 0 \cdot a$$
 Theorem 7.13
 $a + (-a) = (1 + (-1)) \cdot a$ FA4
 $a + (-a) = 1 \cdot a + (-1) \cdot a$ FA9
 $a + (-a) = a + (-1)a$ FA7
 $-a = (-1)a$ Theorem 7.12

Lemma 7.19. Let F be a field. If $a, b \in F$, then $a \cdot (-b) = -(a \cdot b) = (-a) \cdot b$.

Proof. Let $a, b \in F$. From Definition 7.8, we have

$$a \cdot (-b) = a \cdot ((-1) \cdot b)$$
 Lemma 7.18

$$= a \cdot (b \cdot (-1))$$
 FA5

$$= (a \cdot b) \cdot (-1)$$
 FA6

$$= (-1) \cdot (a \cdot b)$$
 Lemma 7.18

$$= (-1) \cdot (a \cdot b)$$
 Lemma 7.18

$$= ((-1) \cdot a) \cdot b$$
 FA6

$$= (-a) \cdot b$$
 Lemma 7.18

Lemma 7.20. Let F be a field. If $a, b \in F$, then $a \cdot b = (-a) \cdot (-b)$.

Proof. Let $a, b \in F$. Thus, we have

$$(-a) \cdot (-b) = -(-a) \cdot b$$
 Lemma 7.19
= $a \cdot b$ Corollary 7.11

Definition 7.21. An **ordered field** is a field F equipped with an ordering < (satisfying Definition 3.1) such that also:

- (a) Addition respects the ordering: if x < y, then x + z < y + z for all $z \in F$.
- (b) Multiplication respects the ordering: if 0 < x and 0 < y, then $0 < x \cdot y$.

Definition 7.22. Suppose F is an ordered field and $x \in F$. If 0 < x, we say that x is **positive**. If x < 0, we say that x is **negative**.

Lemma 7.23. Let F be an ordered field, and let $x \in F$. If 0 < x, then -x < 0. Similarly, if x < 0, then 0 < -x.

Proof. Let $x \in F$ be such that 0 < x. Then by Definition 7.21a, 0 + (-x) < x + (-x). Consequently, from Definition 7.8, we have

$$-x < x + (-x)$$
 FA3
$$-x < 0$$
 FA4

The proof is symmetric if x < 0.

Lemma 7.24. Let F be an ordered field, and let $x, y, z \in F$.

- (a) If x > 0 and y < z, then $x \cdot y < x \cdot z$.
- (b) If x < 0 and y < z, then $x \cdot z < x \cdot y$.

Proof of a. Let $x, y, z \in F$ be such that x > 0 and y < z. It follows from the latter condition by Definition 7.21a that y + (-y) < z + (-y). Thus, by FA4 from Definition 7.8, we have 0 < z + (-y). This combined

with the fact that 0 < x implies by Definition 7.21b that $0 < x \cdot (z + (-y))$. Consequently, from Definition 7.8, we have

Proof of b. Let $x, y, z \in F$ be such that x < 0 and y < z. It follows from the former condition by Lemma 7.23 that 0 < -x. Thus, by Lemma 7.24a, $(-x) \cdot y < (-x) \cdot z$. Consequently, from Definition 7.8, we have

$$-(x \cdot y) < -(x \cdot z)$$
 Lemma 7.19
$$-(x \cdot y) + (x \cdot y + x \cdot z) < -(x \cdot z) + (x \cdot y + x \cdot z)$$
 Definition 7.21a
$$-(x \cdot y) + (x \cdot y + x \cdot z) < -(x \cdot z) + (x \cdot z + x \cdot y)$$
 FA1
$$(-(x \cdot y) + x \cdot y) + x \cdot z < (-(x \cdot z) + x \cdot z) + x \cdot y$$
 FA4
$$x \cdot z < x \cdot y$$
 FA3

Remark 7.25. An immediate consequence of this lemma is the fact that if x and y are both positive or both negative, their product is positive.

Lemma 7.26. Let F be an ordered field, and let $x \in F$. Then $0 \le x^2$. Moreover, if $x \ne 0$, then $0 < x^2$.

Proof. We divide into two cases $(x=0 \text{ and } x \neq 0)$. Suppose first that x=0. Then by Theorem 7.13, $0 \leq 0 = 0 \cdot 0 = 0^2 = x^2$, as desired. Now suppose that $x \neq 0$. We divide into two cases again (x>0 and x < 0). If x>0, then by Lemma 7.24a, x>0 and 0 < x imply that $x \cdot 0 < x \cdot x$, from which it follows by Theorem 7.13 that $0 < x^2$, as desired. On the other hand, if x < 0, then by Lemma 7.24b, x < 0 and x < 0 imply that $x \cdot 0 < x \cdot x$, from which it follows for the same reason as before that $0 < x^2$, as desired. Both cases together prove the first statement, while the second case alone proves the second statement.

Corollary 7.27. Let F be an ordered field. Then 0 < 1.

Proof. By FA10 from Definition 7.8, $1 \neq 0$. Thus, by Lemma 7.26, $0 < 1^2 = 1$, as desired.

Theorem 7.28. If F is an ordered field, then F has no first or last point.

Proof. Suppose for the sake of contradiction that F has a first point a. By Corollary 7.27, we have that 0 < 1, which implies by Lemma 7.23 that -1 < 0. It follows by Definition 7.21a that -1 + a < 0 + a. Thus, by FA3 from Definition 7.8, -1 + a < a. Since there exists an object in F (namely -1 + a) that is less than a, Definition 3.3 tells us that a is not the first point of F, a contradiction.

The proof is symmetric in the other case. \Box

Theorem 7.29. The rational numbers \mathbb{Q} form an ordered field.

Proof. To prove that \mathbb{Q} forms an ordered field, Definition 7.21 tells us that it will suffice to show that \mathbb{Q} forms a field; has an ordering <; satisfies x + z < y + z if x < y for all $z \in \mathbb{Q}$; and satisfies $0 < x \cdot y$ if 0 < x and 0 < y. We will take this one constraint at a time.

To show that \mathbb{Q} forms a field, Definition 7.8 tells us that it will suffice to verify that \mathbb{Q} has two binary operations (+ and ·), and satisfies field axioms 1-10. Define + and · as in Definition 2.7. Under these definitions, parts a-i of Theorem 2.10 guarantee that \mathbb{Q} satisfies FA1-FA9, respectively. As to FA10, to verify that $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, Exercise 2.6 tells us that it will suffice to confirm that $(1,1) \approx (1,0)$. But since $1 \cdot 0 = 0 \neq 1 = 1 \cdot 1$, Exercise 2.2e confirms that $(1,1) \approx (1,0)$, as desired.

Q has an ordering by Exercise 3.9d, as desired.

To show that x+z < y+z if x < y for all $z \in \mathbb{Q}$, let $\left[\frac{a}{b}\right]$, $\left[\frac{c}{d}\right]$, $\left[\frac{x}{z}\right]$ be arbitrary elements of \mathbb{Q} with positive denominators (we can choose these WLOG by Exercise 3.9b) and the first two satisfying $\left[\frac{a}{b}\right] < \left[\frac{c}{d}\right]$; we seek to verify that $\left[\frac{a}{b}\right] + \left[\frac{x}{z}\right] < \left[\frac{c}{d}\right] + \left[\frac{x}{z}\right]$. Since $\left[\frac{a}{b}\right] < \left[\frac{c}{d}\right]$, we have by Exercise 3.9c that ad < bc. It follows by Script 0 that

$$ad < bc$$

$$adzz < bczz$$

$$adzz + bdxz < bczz + bdxz$$

$$azdz + bxdz < bzcz + bzdx$$

$$(az + bx)(dz) < (bz)(cz + dx)$$

Thus, by Exercise 3.9c, $\left[\frac{az+bx}{bz}\right] < \left[\frac{cz+dx}{dz}\right]$. Therefore, by Definition 2.7, $\left[\frac{a}{b}\right] + \left[\frac{x}{z}\right] < \left[\frac{c}{d}\right] + \left[\frac{x}{z}\right]$, as desired. To show that $0 < x \cdot y$ if 0 < x and 0 < y, let $\left[\frac{a}{b}\right]$, $\left[\frac{c}{d}\right]$ be arbitrary elements of $\mathbb Q$ with positive denominators (which we can choose for the same reason as before) such that $\left[\frac{0}{1}\right] < \left[\frac{a}{b}\right]$ and $\left[\frac{0}{1}\right] < \left[\frac{c}{d}\right]$; we seek to verify that $\left[\frac{0}{1}\right] < \left[\frac{a}{b}\right] \cdot \left[\frac{c}{d}\right]$. Since $\left[\frac{0}{1}\right] < \left[\frac{a}{b}\right]$ and $\left[\frac{0}{1}\right] < \left[\frac{c}{d}\right]$, we have by Exercise 3.9c that $0 \cdot b < 1 \cdot a$ and $0 \cdot d < 1 \cdot c$. It follows by Script 0 that $0 \cdot bd < 1 \cdot ac$. Thus, by Exercise 3.9c, $\left[\frac{0}{1}\right] < \left[\frac{ac}{bd}\right]$. Therefore, by Definition 2.7, $\left[\frac{0}{1}\right] < \left[\frac{a}{b}\right] \cdot \left[\frac{c}{d}\right]$, as desired.

2/4: **Definition 7.31.** We define \oplus on \mathbb{R} as follows. Let $A, B \in \mathbb{R}$ be Dedekind cuts. Define

$$A \oplus B = \{a + b \mid a \in A \text{ and } b \in B\}$$

Exercise 7.32.

- (a) Prove that $A \oplus B$ is a Dedekind cut.
- (b) Prove that \oplus is commutative and associative.
- (c) Prove that if $A \in \mathbb{R}$, then $A = \mathbf{0} \oplus A$.

Proof of a. To prove that $A \oplus B$ is a Dedekind cut, Definition 6.1 tells us that it will suffice to show that $A \oplus B \neq \emptyset$; $A \oplus B \neq \mathbb{Q}$; if $r \in A \oplus B$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in A \oplus B$; and if $r \in A \oplus B$, then there is some $s \in A \oplus B$ with s > r. We will take this one claim at a time.

To show that $A \oplus B \neq \emptyset$, Definition 1.8 tells us that it will suffice to find an element of $A \oplus B$. Since A, B are Dedekind cuts, Definition 6.1 asserts that they are nonempty. Thus, there exist rational numbers $x \in A$ and $y \in B$. Therefore, by the definition of $A \oplus B$, the sum $x + y \in A \oplus B$, as desired.

To show that $A \oplus B \neq \mathbb{Q}$, Definition 1.2 tells us that it will suffice to find an element of \mathbb{Q} that is not an element of $A \oplus B$. For an analogous reason to before, we can choose $x, y \in \mathbb{Q}$ such that $x \notin A$ and $y \notin B$. It follows by Lemma 6.2 and Definition 5.6 that $x \geq a$ for all $a \in A$ and $y \geq b$ for all $b \in B$. Additionally, since $x \notin A$, we have that $x \neq a$ for any $a \in A$; thus, x > a for all $a \in A$. Similarly, y > b for all $b \in B$. Consequently, by Script 2, x + y > a + b for all $a + b \in A \oplus B$. Therefore, $x + y \notin A \oplus B$, as desired.

To show that if $r \in A \oplus B$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in A \oplus B$, we let $r \in A \oplus B$ and $s \in \mathbb{Q}$ be arbitrary elements of their respective sets that satisfy s < r and seek to verify that $s \in A \oplus B$. Since $r \in A \oplus B$, r = x + y for some $x \in A$ and $y \in B$. Additionally, it follows from the fact that s < r that

s = r - q = x + y - q for some $q \in \mathbb{Q}^+$. Since $y \in B$ and $y - q \in \mathbb{Q}$ satisfy y - q < y, we have by Definition 6.1b that $y - q \in B$. Therefore, s = (x) + (y - q) is an element of $A \oplus B$, as desired.

To show that if $r \in A \oplus B$, then there is some $s \in A \oplus B$ with s > r, we let $r \in A \oplus B$ and seek to find such an s. Since $r \in A \oplus B$, r = x + y for some $x \in A$ and $y \in B$. It follows from the fact that $x \in A$ by Definition 6.1c that there exists a $z \in A$ with z > x. Consequently, by Script 0, z + y > x + y is the desired element of $A \oplus B$.

Proof of b. To prove that \oplus is commutative, Definition 7.1 tells us that it will suffice to show that for all $A, B \in \mathbb{R}$, we have $A \oplus B = B \oplus A$. Let A, B be arbitrary elements of \mathbb{R} . Then by Definition 7.31, we clearly have

$$A \oplus B = \{a + b \mid a \in A \text{ and } b \in B\}$$
$$= \{b + a \mid b \in B \text{ and } a \in A\}$$
$$= B \oplus A$$

To prove that \oplus is associative, Definition 7.1 tells us that it will suffice to show that for all $A, B, C \in \mathbb{R}$, we have $(A \oplus B) \oplus C = A \oplus (B \oplus C)$. Let A, B, C be arbitrary elements of \mathbb{R} . Then by Definition 7.31, we clearly have

```
(A \oplus B) \oplus C = \{a+b \mid a \in A \text{ and } b \in B\} \oplus C
= \{d+c \mid d \in \{a+b \mid a \in A \text{ and } b \in B\} \text{ and } c \in C\}
= \{d+c \mid d = a+b \text{ for some } a \in A \text{ and } b \in B, \text{ and } c \in C\}
= \{a+b+c \mid a \in A \text{ and } b \in B \text{ and } c \in C\}
= \{a+e \mid a \in A, \text{ and } e = b+c \text{ for some } b \in B \text{ and } c \in C\}
= \{a+e \mid c \in C \text{ and } e \in \{b+c \mid b \in B \text{ and } c \in C\}\}
= A \oplus \{b+c \mid b \in B \text{ and } c \in C\}
= A \oplus \{b+c \mid b \in B \text{ and } c \in C\}
```

Note that we also make use of Exercise 7.32a to guarantee $A \oplus B \in \mathbb{R}$, so that we can apply \oplus to $A \oplus B$ and C. We similarly invoke Exercise 7.32a to take the sum of A and $B \oplus C$.

Proof of c. To prove that for all $A \in \mathbb{R}$, $A = \mathbf{0} \oplus A$, we will show for an arbitrary $A \in \mathbb{R}$ that every element of A is an element of $\mathbf{0} \oplus A$ and vice versa. Let A be an arbitrary element of \mathbb{R} . Suppose first that $x \in A$. Then by Definition 6.1c, there exists $y \in A$ such that y > x. Let z = x - y. Clearly, $z \in \mathbb{Q}$ and z < 0, so we know that $z \in \mathbf{0}$. Additionally, since x - z = y, we know that $x - z \in A$. Therefore, since x = (z) + (x - z), we have by Definition 7.31 that $x \in \mathbf{0} \oplus A$. Now suppose that $z \in \mathbf{0} \oplus A$. Then by Definition 7.31, z = x + y for some $x \in \mathbf{0}$ and $y \in A$. Since $x \in \mathbf{0}$, we know that x < 0, which means that y > z. This combined with the fact that $y \in A$ and $z \in \mathbb{Q}$ implies by Definition 6.1b that $z \in A$.

7.2 Discussion

- 1/28: Script 6 journals due Wednesday.
 - We'll also have to prove a density lemma:
 - Let X be a dense subset of a continuum C. Show that for all $x, y \in X$, if x < y, then there exists a $z \in X$ such that x < z < y.
 - Mark in Exercise 6.16 as "Density Lemma."
 - Explicitly cite Field Axioms as you go.
- 2/2: For Theorem ?? in class, he wants a simple explanation of what the injective map looks like and why, but not a full-on rigorous proof.

- Nothing in the journal for Theorem ??, though.
- He also wants to see Theorems ?? and ?? in the journal.
- For Corollary 7.15, we can write that $x^{-1} \cdot x = 1$ and $x^{-1} \cdot (x^{-1})^{-1} = 1$, and know by the uniqueness of multiplicative inverses (Theorem 7.14) that $x = (x^{-1})^{-1}$. For Corollary 7.11, we have an analogous proof.
- Alternate Theorem 7.17:

$$1 = 1 \cdot 1$$

$$= (a \cdot a^{-1})(b \cdot b^{-1})$$

$$= (ab)(a^{-1}b^{-1})$$

$$= 0$$

- Alternate Lemma 7.18: a + (-a) = 0. $a + (-1)a = a(1 + (-1)) = a \cdot 0 = 0$. Thus, by Theorem 7.10, -a = (-1)a.
- Alternate Lemma 7.19: We can use the uniqueness of additive inverses (Theorem 7.10).
- We can also cite Remark 7.25 in Lemma 7.26.