Lösungen zu Zettel 11

Jendrik Stelzner

17. Juli 2016

Wir erinnern zunächst an das folgende Lemma, das im Tutorium schon einmal gezeigt wurde:

Lemma 1. Es seien $u,v \in V$ zwei linear unabhängige Vektoren, die jeweils lichtartig oder zeitartig sind (d.h. es ist $\beta(u,u) \leq 0$ und $\beta(v,v) \leq 0$). Dann enthält die Ebene $\mathcal{L}(u,v)$ einen raumartigen Vektor.

Beweis. Es sei $\mathcal{B}=(e_1,e_2,e_3)$ eine Sylvesterbasis von V mit

$$\mathbf{M}_{\mathcal{B}}(\beta) = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -1 \end{pmatrix},$$

und es seien $u=u_1e_1+u_2e_2+u_3e_3$ und $v=v_1e_1+v_2e_2+v_3e_3$ mit $u_1,u_2,u_3,v_1,v_2,v_3\in\mathbb{R}$. Da $v\neq 0$ gibt es ein $i\in\{1,2,3\}$ mit $v_i\neq 0$; da

$$v_1^2 + v_2^2 - v_3^2 = \beta(v, v) \le 0$$

muss deswegen $v_3 \neq 0$. Es sei

$$w \coloneqq u - \frac{u_3}{v_3} v \in \mathcal{L}(u, v).$$

Es ist $w=w_1e_1+w_2e_2+w_3e_3$ mit $w_i=u_i-(u_3/v_3)\cdot v_i$ für alle i=1,2,3; insbesondere ist $w_3=0$. Da u und v linear unabhängig sind, ist aber auch $w\neq 0$, und somit $w_1\neq 0$ oder $w_2\neq 0$. Damit haben wir

$$\beta(w, w) = w_1^2 + w_2^2 - w_3^2 = w_1^2 + w_2^2 > 0,$$

weshalb w raumartig ist.

Aufgabe 3

i)

Wir bemerken zunächst, dass die Bedingung, dass $\beta|_{X\times X}$ nichtentartet ist, unnötig ist:

Lemma 2. Es sei $X \subseteq V$ ein zweidimensionaler Untervektorraum, so dass $\beta|_{X\times X}$ vom Typ (1,1) ist. Dann ist $\beta|_{X\times X}$ nichtentartet.

Beweis. Da $\beta|_{X\times X}$ vom Typ (1,1) ist, und $1+1=2=\dim X$, gibt es eine Sylvesterbasis $\mathcal{B}=(b_1,b_2)$ von X, so dass

$$M_{\mathcal{B}}(\beta|_{X\times X}) = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}.$$

Da diese Matrix keine Nullen auf der Diagonalen hat, ist $\beta|_{X\times X}$ nichtentartet.

Wir zeigen im Folgenden, dass für einen zweidimensionalen Untervektorraum $X\subseteq V$ genau dann $\mathfrak{H}\cap X\neq\emptyset$, wenn $\beta|_{X\times X}$ den Typ (1,1) hat.

Wenn $\beta|_{X\times X}$ den Typ (1,1) hat, dann gibt es eine Sylvesterbasis (b_1,b_2) von X mit $\beta(b_1,b_1)=1$ und $\beta(b_2,b_2)=-1$ (sowie $\beta(b_1,b_2)=0$). Insbesondere gilt $b_2\in\mathfrak{H}$ und somit entweder $b_2\in\mathfrak{H}$ oder $-b_2\in\mathfrak{H}$, also $b_2\in\mathfrak{H}\cap X$ oder $-b_2\in\mathfrak{H}\cap X$. Auf jeden Fall gilt $\mathfrak{H}\cap X\neq\emptyset$.

Angenommen, es ist $\mathfrak{H} \cap X \neq \emptyset$. Dann gibt es ein $b \in \mathfrak{H} \cap X$, und da $b \in \mathfrak{H}_{\pm 1}$ ist $\beta(b,b) = -1$. Für den Typen von $\beta|_{X\times X}$ gibt es wegen der Zweidimensionalität von X a priori sechs Möglichkeiten: (0,0), (1,0), (0,1), (2,0), (1,1) oder (0,2).

Die Fälle (0,0), (1,0) und (2,0) können wir ausschließen, denn sonst wäre $\beta|_{X\times X}$ positiv semidefinit, was $\beta(b,b)=-1$ widerspricht.

In den Fällen (0,1) und (0,2) wäre $\beta|_{X\times X}$ negativ semidefinit; eine beliebige Basis $\mathcal B$ von X würde dann aus licht- oder zeitartigen Vektoren bestehen, weshalb X nach Lemma 1 einen raumartigen Vektor enthälten müsste. Dies stünde dann aber im Widerspruch zur negativen Semidefinitheit von $\beta|_{X\times X}$.

Es bleibt also nur noch die Möglichkeit (1, 1) übrig.

ii)

Die entscheidende Beobachtung ist, dass x und y linear unabhängig sind:

Lemma 3. Je zwei verschiedene Elemente $u, v \in \mathfrak{H}$ sind linear unabhängig.

Beweis. Nach Aufgabe 2 ist $\beta(u, v) < -1$, we shalb

$$\beta(u, v)^2 > (-1)^2 = (-1)(-1) = \beta(u, u)\beta(v, v).$$

Da u und v beide zeitartig sind, folgt damit die lineare Unabhängigkeit aus Aufgabe 1. \square

Ist $\mathfrak{g} \subseteq \mathfrak{H}$ eine Gerade, die x und y enthält, so gibt es einen zweidimensionalen Untervektorraum $X \subseteq V$ mit $\mathfrak{g} = \mathfrak{H} \cap X$. Da die zweidimensionale Ebene X die beiden linear unabhängigen Vektoren x und y enthält, muss bereits $X = \mathcal{L}(x,y)$. Somit ist $\mathfrak{g} = \mathfrak{H} \cap \mathcal{L}(x,y)$ die eindeutige Gerade in \mathfrak{H} , die x und y enthält.

Aufgabe 4

i)

Wegen der Bilinearität von β ist $\beta(x,-)\colon V\to\mathbb{R}, v\mapsto\beta(x,v)$ eine lineare Abbildung. Es gilt $\beta(x,-)\neq 0$, da $\beta(x,-)(x)=\beta(x,x)=-1$. Folglich ist im $\beta(x,-)$ ein Untervektorraum von \mathbb{R} , der nicht der Nullvektorraum ist; es muss im $\beta(x,-)=\mathbb{R}$ gelten. Damit ergibt sich, dass $T_x=\ker\beta(x,-)$ ein Untervektorraum von V ist, für den nach der Dimensionsformel

$$\dim T_x = \dim \ker \beta(x, -) = \dim V - \dim \operatorname{im} \beta(x, -) = 3 - 1 = 2.$$

Um zu zeigen, dass $\beta|_{T_x \times T_x}$ ein Skalarprodukt ist, zeigen wir für $v \in T_x$ mit $v \neq 0$, dass $\beta(v, v) > 0$. Hierfür nehmen wir an, dass $\beta(v, v) \leq 0$, dass v also licht- oder zeitartig ist.

Wir bemerken, dass x und v linear unabhängig sind; ansonsten wäre nämlich $v=\lambda x$ für ein $\lambda\in\mathbb{R}$ mit $\lambda\neq 0$, weshalb $\beta(v,x)=\beta(\lambda x,x)=\lambda\beta(x,x)=-\lambda\neq 0$ wäre. (Hier haben wir die Bedingung $v\neq 0$ gebraucht.)

Nach Aufgabe 1 ist nun

$$0 = \beta(x, v)^2 > \beta(x, x)\beta(v, v) = -\beta(v, v).$$

Dabei haben wir in der ersten Gleichung genutzt, dass $v \in T_x$ und somit $\beta(x,v)=0$, und für die Striktheit der Ungleichung nutzen wir, dass x und v linear unabhängig sind. Nach der obigen Gleichskette ist nun $\beta(v,v)>0$, im Widerspruch zur Annahme $\beta(v,v)\leq 0$. Also muss bereits $\beta(v,v)>0$ gelten.

Bemerkung 4. Eine weiter Möglichkeit besteht darin, die Gerade $U \coloneqq \mathcal{L}(x)$ zu betrachten. Dies ist ein 1-dimensionaler Untervektorraum von V, und da $\beta(x,x) = -1$ ist die Einschränkung $\beta|_{U\times U}$ negativ definit und insbesondere nicht-entartet. Da $\beta|_{U\times U}$ nicht-entartet ist (!) gilt $V = U \oplus U^{\perp}$, wobei $U^{\perp} = x^{\perp} = T_x$.

Die Einschränkung $\beta|_{U\times U}$ ist vom Typ (0,1). Ist $\beta|_{T_x\times T_x}$ vom Typ (n,m), so folgt aus der Orthogonalität der Summe $V=U\oplus T_x$, dass β vom Typ (0,1)+(n,m)=(n,m+1) ist. Da β von Typ (2,1) ist, ergibt sich hieraus, dass (n,m)=(2,1)-(0,1)=(2,0). Also ist $\beta|_{T_x\times T_x}$ vom Typ (2,0).

Aufgabe 5

Man bemerke zunächst, dass A,B und C linear unabhängig sind. Ansonsten gebe es nämlich einen zweidimensionalen Untervektorraum $X\subseteq V$ mit $A,B,C\in X$, weshalb $X\cap\mathfrak{H}$ eine Gerade in \mathfrak{H} wäre, die alle drei Punkte enthält.

Wir zeigen zunächst, dass das angegebene Element

$$\mathfrak{t}\coloneqq\frac{B-\cosh(c)A}{\sinh(c)}$$

die gewünschten Eigenschaften hat. Das zeigt inbesondere die Existenz des gewünschten Tangentialvektors. Anschließend zeigen wir für einen beliebigen entsprechenden Tangentialvektor \mathfrak{t}_{AB} , dass $\mathfrak{t}_{AB}=\mathfrak{t}$.

Es ist klar, dass $\mathfrak{t} \in \mathcal{L}(A, B)$, und dass $1/\sinh(c) > 0$. Man bemerke, dass

$$\cosh(c) = \cosh(\operatorname{arccosh}(-\beta(A, B))) = -\beta(A, B).$$

Deshalb ist

$$\begin{split} \beta(\mathfrak{t},A) &= \beta\left(\frac{B-\cosh(c)A}{\sinh(c)},A\right) = \frac{\beta(B,A)-\cosh(c)\beta(A,A)}{\sinh(c)} \\ &= \frac{\beta(A,B)-\beta(A,B)}{\sinh(c)} = 0, \end{split}$$

also $\mathfrak{t} \in T_A$. Da $\sinh(c)^2 = \cosh(c)^2 - 1$ ist außerdem

$$\begin{split} \beta(\mathfrak{t},\mathfrak{t}) &= \beta \left(\frac{B - \cosh(c)A}{\sinh(c)}, \frac{B - \cosh(c)A}{\sinh(c)} \right) \\ &= \frac{\beta(B,B) - 2\cosh(c)\beta(A,B) + \cosh(c)^2\beta(A,A)}{\cosh(c)^2 - 1} \\ &= \frac{-1 - 2(-\beta(A,B))\beta(A,B) + \beta(A,B)^2(-1)}{\beta(A,B)^2 - 1} = \frac{\beta(A,B)^2 - 1}{\beta(A,B)^2 - 1} = 1. \end{split}$$

Also ist t normiert. Somit erfüllt t alle geforderten Eigenschaften.

Es sei nun \mathfrak{t}_{AB} ein weiterer Vektor, der alle angegebenen Eigenschaften erfüllt. Da A und B linear unabhängig sind, ist der Untervektorraum $\mathcal{L}(A,B)\subseteq V$ zweidimensional.

Der Untervektorraum $U \coloneqq \{t \in \mathcal{L}(A,B) \mid \beta(t,A) = 0\} = \mathcal{L}(A,B) \cap T_A$ ist eindimensional: Da $\mathfrak{t} \in U$ ist $U \neq 0$ und somit $\dim U \geq 1$. Da $A \notin U$ ist $U \subsetneq \mathcal{L}(A,B)$ und somit $\dim U < \dim \mathcal{L}(A,B) = 2$.

Da $\mathfrak t$ und $\mathfrak t_{AB}$ zwei bezüglich $\beta|_{U\times U}$ normierte Vektoren des eindimensionalen Vektorraums U sind, muss $\mathfrak t_{AB}=\pm\mathfrak t$. Wäre $\mathfrak t_{AB}=-\mathfrak t$, so wäre $\mathfrak t_{AB}=(-B+\cosh(c)A)/\sinh(c)$. Wegen der linearen Unabhängigkeit von A und B wäre diese Linearkombination von A und B eindeutig; der Koeffizient $-1/\sinh(c)$ von B ist aber negativ, im Widerspruch zur Definition von $\mathfrak t_{AB}$. Also muss bereits $\mathfrak t_{AB}=\mathfrak t$ gelten.