

высшая школа экономики

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

Эконометрика

Лекция 9 Гетероскедастичность

Вакуленко Е.С.

д.э.н., доцент департамента прикладной экономики

evakulenko@hse.ru

План

- Гетероскедастичность:
 - Признаки;
 - Тесты;
 - Коррекция.

Предположения о случайном члене (условия Гаусса-Маркова)

Для всех наблюдений $i=1,\dots,n$

- 1. $E(\varepsilon_i) = 0$ несистематичная ошибка
- 2. $Var(\varepsilon_i) = \sigma^2$ гомоскедастичность
- 3. $Cov(\varepsilon_i, \varepsilon_i) = 0$, для всех $i \neq j$
- 4. Случайный член должен быть распределен независимо от объясняющих переменных

Предположения о случайном члене (условия Гаусса-Маркова)

Для всех наблюдений $i=1,\dots,n$

- 1. $E(\varepsilon_i) = 0$ несистематичная ошибка
- 2. $Var(\varepsilon_i) = \sigma^2$ гомоскедастичность
- 3. $Cov(\varepsilon_i, \varepsilon_i) = 0$, для всех $i \neq j$
- 4. Случайный член должен быть распределен независимо от объясняющих переменных

Что произойдет, если будет нарушена 2-ая предпосылка?

Гетероскедастичность

Гетероскедастичность – явление, характерное для перекрестных выборок и заключающееся в различии дисперсий ошибок регрессии, т.е. для регрессии

$$Y_i = \alpha + \beta_1 X_{1i} + \ldots + \beta_k X_{ki} + \varepsilon_i, i = 1, \ldots, n$$

не выполнено одно из условий теоремы Гаусса-Маркова:

$$\sigma_{arepsilon_i}^2 = \sigma^2 \; orall i = 1, \ldots, n$$

Оно часто возникает, если анализируемые объекты неоднородны.

Графическое определение гетероскедастичности

Y – зависимая переменная, X – регрессор. На графике видно, что с ростом значений X разброс наблюдений по Y возрастает. Это свидетельствует о наличии гетероскедастичности.

Причины гетероскедастичности

Значительное различие переменных для разных наблюдений.

Неоднородность данных.

Последствия гетероскедастичности

Оценки стандартных ошибок коэффициентов регрессии смещены;

Оценки МНК коэффициентов регрессии **неэффективны**; t-статистики коэффициентов регрессии **неадекватны**.

Неправильно делаем вывод о значимости коэффициентов

Обнаружение гетероскедастичности

Графически, изучение графика остатков

Обнаружение гетероскедастичности

Графически, изучение графика остатков

Тесты

 $H_0: \sigma_i^2 = \sigma^2 \ orall i$ (гомоскедастичность) $H_1: \exists i,j: \sigma_i^2
eq \sigma_j^2$ (гетероскедастичность)

Тест Уайта Тест Глейзера Тест Голдфельда – Квандта Тест Бройша - Пагана И другие

График «остатки-прогнозы»

График «остатки-прогнозы» позволяет выявить и гетероскедастичность, и ошибку функциональной формы. Для построения графика нужно выполнить следующие шаги.

- 1. Оценить проверяемую регрессионную модель $Y_i = \alpha + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \varepsilon_i$ методом наименьших квадратов.
- 2. Рассчитать прогнозные значения объясняемой переменной для всех наблюдений.

$$\hat{Y}_i = \alpha + \hat{\beta}_1 x_{i1} + \ldots + \hat{\beta}_k x_{ik}$$

- 3. Рассчитать остатки $e_i = Y_i \hat{Y}_i$ для всех наблюдений.
- 4. Построить график рассеяния в осях e и \hat{Y} . Обычно значения остатков откладываются по вертикальной оси, а прогнозы по горизонтальной.

График «остатки-прогнозы»

• При отсутствии гетероскедастичности и верной функциональной форме не проявляется какая-либо зависимость остатков от прогнозов, он выглядит как бессистемное облако точек.

График «остатки-прогнозы». Пример

Residuals – остатки, Fitted values – прогноз по модели. График «остатки-прогнозы» в случае гомоскедастичности и верной функциональной формы.

График «остатки-прогнозы»

• При **гетероскедастичности** разброс остатков зависит от прогнозных значений. При этом средний уровень остатков во всех частях графика примерно равен нулю.

График «остатки-прогнозы». Пример

Residuals – остатки, Fitted values – прогноз по модели. График «остатки-прогнозы» в случае гетероскедастичности и верной функциональной формы.

График «остатки-прогнозы»

• В случае неверно выбранной функциональной формы средний уровень остатков зависит от прогнозных значений. При этом разброс остатков также может зависеть от прогнозов, хотя это не обязательно.

График «остатки-прогнозы». Пример

Residuals – остатки, Fitted values – прогноз по модели. График «остатки-прогнозы» в случае ошибочно выбранной функциональной формы.

Тесты на гетероскедастичность

Тест Уайта

- Оцениваем коэффициенты основной регрессии $Y = \alpha + \beta_1 X_1 + ... + \beta_k X_k + \varepsilon$.
- Сохраняем остатки регрессии e_i , i=1,...,n.
- Оцениваем регрессию квадратов остатков на все регрессоры, их квадраты, попарные произведения и константу: $\underline{}\underline{}\underline{}\underline{}\underline{}\underline{}\underline{}\underline{}\underline{}\underline{}\underline{}$

и константу:
$$e^2 = \alpha_1 + \sum_{l=2}^k \alpha_l X_l + \sum_{l=2}^k \beta_{l2} X_l^2 + \sum_{l,j=2}^k \gamma_{lj} X_l X_j + u$$

- В последней оцененной регрессии $hax^{l < j}$ дим коэффициент множественной детерминации R^2
- Вычисляем тестовую статистику по формуле $\mathbf{nR^2}$. При выполнении нулевой гипотезы тестовая статистика имеет распределение χ^2_{m-1} , где m число оцениваемых в последней регрессии коэффициентов.

Тест Уайта

- Сравниваем полученное значение тестовой статистики с критическим χ^2_{m-1} при заданном уровне значимости α . Если значение тестовой статистики превышает критическое, то нулевая гипотеза о гомоскедастичности отвергается.
- Если гетероскедастичность выявлена, то тест Уайта не дает указания на функциональную форму гетероскедастичности.

Тест Глейзера

Тесты Глейзера выявляют значимость вспомогательных регрессионных зависимостей модуля остатков от функциональных форм каждого регрессора

$$|e| = \alpha + \beta X_j + u, |e| = \alpha + \beta \sqrt{X_j} + u, |e| = \alpha + \beta / X_j + u$$

 $j \in \{1, \dots, k\}$

Если коэффициент β значим хотя бы в одной из трех регрессий (значимость коэффициента проверяется как обычно с помощью t – статистики), то имеет место гетероскедастичность.

Тест Бройша-Пагана

- Тест Бройша Пагана применяется в тех случаях, когда априорно предполагается, что дисперсии остатков зависят от некоторых дополнительных переменных и состоит из следующих шагов:
- Оцениваем коэффициенты основной регрессии

$$Y = \alpha + \beta_1 X_1 + \ldots + \beta_k X_k + \varepsilon$$

- Сохраняем остатки регрессии e_i , i=1,...,n.
- Строим оценку для дальнейшей нормировки квадратов остатков регрессии: n

$$\hat{\sigma}^2 = rac{\sum\limits_{i=1}^n e_i^2}{n}$$

Тест Бройша-Пагана

• Оцениваем параметры регрессии

$$\frac{e^2}{\hat{\sigma}^2} = \gamma_0 + \gamma_1 Z_1 + \ldots + \gamma_p Z_p + u$$

и вычисляем для нее **ESS**.

- При выполнении нулевой гипотезы тестовая статистика ESS/2 имеет распределение χ_p^2 .
- Сравниваем полученное значение тестовой статистики с критическим χ_p^2 при заданном уровне значимости α . Если значение тестовой статистики превышает критическое, то нулевая гипотеза о гомоскедастичности отвергается.

Пример. Затраты пользователей в мобильном приложении

Данные содержат информацию о 150 пользователях некоторого мобильного приложения:

Expend — затраты пользователя на покупки в мобильном приложении;

Time — среднее время, которое пользователь проводил в приложении, минуты;

Age1 — 1 для пользователей от 18 до 21 года, 0 иначе;

Age2 — 1 для пользователей от 22 до 25 лет, 0 иначе;

Age3 — 1 для пользователей от 26 до 29 лет, 0 иначе;

Age4 — 1 для пользователей от 30 до 34 лет, 0 иначе;

Age5 — 1 для пользователей от 35 лет и старше, 0 иначе;

MPrice — рыночная стоимость используемой модели смартфона.

Источник: Борзых, Вакуленко, Фурманов (2021)

Пример. Затраты пользователей в мобильном приложении

Изучается зависимость затрат в мобильном приложении от прочих характеристик.

• Оцените уравнение:

Expend_i =
$$\alpha + \beta_1 \text{Time}_i + \beta_2 \text{MPrice}_i + \beta_3 Age1_i + \beta_4 Age2_i + \beta_5 Age3_i + \beta_6 Age4_i + \varepsilon_i$$

• Протестируйте наличие гетероскедастичности.

Оценка регрессии в Gretl

```
\widehat{\text{Expend}}_{i} = 3.36 + 0.50 \cdot \text{Time}_{i} + 0.005 \cdot \text{MPrice}_{i} + \\ +1.27 \cdot Age1_{i} + 5.86 \cdot Age2_{i} + \\ +5.38 \cdot Age3_{i} + 0.27 \cdot Age4_{i}
```

	К, использован ременная: Ехре		ения	1-149			
	Коэффициент	Ст. ошибка		t-статистика	Р-зі	начение	
const	3,36816	1,84825		1,822	0,0	705	*
Time	0,502159	0,04514	24	11,12	4,61	le-021	***
MPrice	0,00454373	0,00299	223	1,519	0,13	311	
Age1	1,26542	1,46240		0,8653	0,38	383	
Age2	5,86393	0,79010	7	7,422	9,71	le-012	***
Age3	5,37991	0,79798	2	6,742	3,64	4e-010	***
Age4	0,273717	0,63252	6	0,4327	0,6	559	
Среднее зав.	перемен 13	3,22081	CT.	откл. зав. пер	ремен	4,81160	03
Сумма кв. ос	татков 12	266,340	CT.	ошибка модели		2,98628	83
R-квадрат	0,	630420	Испр	. R-квадрат		0,61480	04
F(6, 142)	40	,36993	Р-зв	начение (F)		2,15e-2	28
Лог. правдоподобие —37		0,8473	73 Крит. Акаике			755,6947	
·	. 77	16 7223	Ком	. Хеннана-Куин	тна	764 231	7.8

Графики остатков

Есть гетероскедастичность!

График «остатки-прогнозы». Пример

Residuals – остатки, Fitted values – прогноз по модели.

Вывод: есть гетероскедастичность, т.к. растет разброс с ростом прогнозных значений. Средний уровень примерно равен нулю.

Пример. Тест Уайта

p-value=0, следовательно, H_0 отвергается, есть проблема гетероскедастичности

Пример. Тест Бройша-Пагана

p-value=0, следовательно, H_0 отвергается, есть проблема гетероскедастичности

Гетероскедастичность. Способы устранения

Способы устранения гетероскедастичности

Если бы дисперсии всех ошибок были заранее известны, то для устранения гетероскедастичности достаточно было бы оценить исходное уравнение, поделенное почленно на стандартные отклонения ошибок

$$\frac{Y_i}{\sigma_i} = \alpha \frac{1}{\sigma_i} + \beta_1 \frac{X_{1i}}{\sigma_i} + \ldots + \beta_k \frac{X_{ki}}{\sigma_i} + \frac{\varepsilon_i}{\sigma_i}, \quad i = 1, \ldots, n$$

В таком уравнении все ошибки имели бы одну и ту же дисперсию, равную единице, поэтому оценки МНК коэффициентов были бы несмещенными и эффективными.

Взвешенный МНК

В реальных условиях дисперсии ошибок заранее неизвестны, и их надо оценивать. Тогда для устранения гетероскедастичности надо делить исходное уравнение на оценки стандартных отклонений

$$\frac{Y_i}{\hat{\sigma}_i} = \alpha \frac{1}{\hat{\sigma}_i} + \beta_1 \frac{X_{1i}}{\hat{\sigma}_i} + \ldots + \beta_k \frac{X_{ki}}{\hat{\sigma}_i} + \frac{\varepsilon_i}{\hat{\sigma}_i}, \quad i = 1, \ldots, n$$

В этом и заключается суть взвешенного метода наименьших квадратов.

Где взять эти оценки стандартных отклонений?

Эти оценки можно получить, например, из тестов Глейзера. Если, скажем, оказалась значима зависимость $|e|=\alpha+\beta X_j+u$, то можно все исходное уравнение поделить на $\hat{\sigma}=\hat{\alpha}+\hat{\beta}X_i$.

Взвешенный метод наименьших квадратов

Обозначим преобразованные переменные звездочками:

$$Y_i^* = Y_i / \hat{\sigma}_i$$
, $X_{ii}^* = X_{ii} / \hat{\sigma}_i$, где $j = 1,...,k, i = 1,...,n$.

Тогда МНК-оценки коэффициентов регрессии с преобразованными данными имеют вид:

$$\hat{\boldsymbol{\beta}}^* = \left(\boldsymbol{X}^{*\prime}\boldsymbol{X}^*\right)^{-1} \left(\boldsymbol{X}^{*\prime}\boldsymbol{Y}^*\right)$$

 $\hat{eta}^* = \left(X^{*'} X^* \right)^{\!-1} \left(X^{*'} Y^* \right)$ Эту оценку можно выразить через исходные данные:

$$\hat{\beta}^* = \left(X'\Sigma^{-1}X\right)^{-1}\left(X'\Sigma^{-1}Y\right)$$

где
$$\Sigma = \begin{pmatrix} \hat{\sigma}_1^2 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \hat{\sigma}_n^2 \end{pmatrix}$$
. Это и есть оценки взвешенного метода наименьших квадратов.

Взвешенный метод наименьших квадратов -2

Ковариационная матрица оценок коэффициентов в таком случае имеет вид:

$$V(\hat{\beta}^*) = (X'\Sigma^{-1}X)^{-1}$$

В силу теоремы Гаусса-Маркова соответствующие оценки дисперсий оценок коэффициентов являются эффективными.

Обобщенный метод наименьших квадратов

В случае, когда ковариационная матрица Σ может быть недиагональной (при автокорреляции), но про нее известно, что это положительно определенная матрица (назовем ее матрицей Ω), то оценка коэффициентов линейной регрессионной модели обобщенным методом наименьших квадратов (ОМНК, GLS) будет выглядеть так:

$$\hat{\beta}_{\text{OMHK}} = (X' \Omega^{-1} X)^{-1} (X' \Omega^{-1} Y).$$

Таким образом, взвешенный метод наименьших квадратов – частный случай обобщенного метода наименьших квадратов. Только в случае взвешенного метода матрица $\Omega = \Sigma$ является диагональной.

Теорема Айткена

Если

- модель линейна по параметрам и правильно специфицирована y=Xβ+ε,
- матрица X детерминированная матрица, имеющая максимальный ранг k,
- $E(\varepsilon)=0$,
- V(ε)=Ω произвольная положительно определенная и симметричная матрица,

то оценка вектора коэффициентов модели

$$\hat{\beta}_{\text{омнк}} = (X' \Omega^{-1} X)^{-1} (X' \Omega^{-1} Y)$$
 является:

- несмещенной
- и эффективной, то есть имеет наименьшую ковариационную матрицу в классе всех несмещенных и линейных по **у** оценок.

Доступный обобщенный метод наименьших квадратов

Поскольку Ω обычно неизвестна, принято вместо нее использовать оценку $\hat{\Omega}$. В таком случае оценки коэффициентов доступным обобщенным методом наименьших квадратов (feasible GLS) будут такими:

$$\hat{\beta}_{FGLS} = \left(X'\hat{\Omega}^{-1}X\right)^{-1} \left(X'\hat{\Omega}^{-1}Y\right)$$

Другие способы устранения

- Можно использовать оценки стандартных ошибок в форме Уайта, позволяющие учесть гетероскедастичность.
- Другим способом устранения гетероскедастичности может быть изменение функциональной формы регрессионной зависимости, например, логарифмирование.

Робастные стандартные ошибки в форме Уайта

Наиболее распространенным способом коррекции гетероскедастичности в общем виде является использование оценок в форме Уайта для дисперсии коэффициентов:

$$\hat{V}(\hat{\beta}) = \frac{1}{n} \left(\frac{1}{n} X'X\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} e_i^2 x_i x_i'\right) \left(\frac{1}{n} X'X\right)^{-1}$$

где x_i' – i-я строка матрицы X, i =1, ..., n.

Диагональные элементы в матрице $\widehat{V}(\widehat{\beta})$ являются оценками дисперсий оценок коэффициентов $\widehat{\beta_1}, \ldots, \widehat{\beta_k}$.

Оценки Уайта

Оценки Уайта (HC0: heteroskedasticity consistent, состоятельные при гетероскедастичности) являются состоятельными, но на малых выборках даже они не полностью корректируют смещение оценок стандартных ошибок коэффициентов.

Другие поправки

При наличии в выборке выбросов – наблюдений, сильно отличающихся от остальных, используют поправки:

- HC2
- HC3

Исследования показывают, что на конечных выборках HC2 и HC3 дают более точные результаты, чем HC0.

Поправки на гетероскедастичность

Пусть e_i^2 - квадрат остатков регрессии, а оценка ковариационная матрица коэффициентов регрессии $X' \sum X$

Тогда поправки:

HC0:
$$\Sigma = \text{diag}\{e_i^2\}$$
 (White, 1980)

HC2:
$$\Sigma = \text{diag}\left\{\frac{e_i^2}{1-h_i}\right\}$$
, где h_i – это диагональный элемент

матрицы проектор $P_X = X(X'X)^{-1}X'$ (MacKinnon and White, 1985)

HC3:
$$\Sigma = \text{diag} \left\{ \left(\frac{e_i}{1 - h_i} \right)^2 \right\}$$
 (Davidson and MacKinnon, 1993)

Пример. Затраты пользователей в мобильном приложении

Данные содержат информацию о 150 пользователях некоторого мобильного приложения:

Expend — затраты пользователя на покупки в некотором приложении;

Time — среднее время, которое пользователь проводил в приложении, минуты;

Age1 — 1 для пользователей от 18 до 21 года, 0 иначе;

Age2 — 1 для пользователей от 22 до 25 лет, 0 иначе;

Age3 — 1 для пользователей от 26 до 29 лет, 0 иначе;

Age4 — 1 для пользователей от 30 до 34 лет, 0 иначе;

Age5 — 1 для пользователей от 35 лет и старше, 0 иначе;

MPrice — рыночная стоимость используемой модели смартфона.

Пример. Затраты пользователей в мобильном приложении

Изучается зависимость затрат в мобильном приложении от прочих характеристик.

• Оцените уравнение:

$$\begin{aligned} \text{Expend}_i &= \alpha + \beta_1 \text{Time}_i + \beta_2 \text{MPrice}_i + \beta_3 Age1_i + \beta_4 Age2_i + \\ &+ \beta_5 Age3_i + \beta_6 Age4_i + \varepsilon_i \end{aligned}$$

• Примените различные поправки на гетероскедастичность (HC0, HC2, HC3) и сравните результат.

Оценка регрессии в Gretl

Expend_i = $3.36 + 0.50 \cdot \text{Time}_i + 0.005 \cdot \text{MPrice}_i + 1.27 \cdot Age1_i + 5.86 \cdot Age2_i + 5.38 \cdot Age3_i + 0.27 \cdot Age4_i$

Иодель 1: МН	К, использова	ны наблюд	ения 1-1	.49				
	ременная: Ехр -за совершенн		еапности	r: Aces				
iponymena 712	эа оорершени		caphoor	ngco				
	Коэффициент	Ст. оши	бка t-	статисти	ка Р-зн	начение		
const	3,36816	1,84825		1,822	0,07	705	*	
Time	0,502159	0,04514	24	11,12	4,61	le-021	***	
MPrice	0,00454373	0,00299	223	1,519	0,13	311		
Age1	1,26542	1,46240		0,8653	0,38	383		
Age2	5,86393	0,79010	7	7,422	9,71	le-012	***	
Age3	5,37991	0,79798	2	6,742	3,64	e-010	***	
Age4	0,273717	0,63252	6	0,4327	0,66	559		
Среднее зав.	перемен 1	3,22081	CT. OTR	ил. зав.	перемен	4,8116	03	
Сумма кв. ос	татков 1	266,340	Ст. оши	ибка моде	ли	2,98628	83	
R-квадрат	0	,630420	Испр. Б	К-квадрат		0,61480	04	
F(6, 142)	4	0,36993	Р-значе	ние (F)		2,15e-2	28	
Пог. правдоп	одобие -3	70,8473	Крит. А	каике		755,69	47	
Крит. Шварца	. 7	76,7223	Крит. Х	Кеннана-К	уинна	764,23	78	

Но мы помним, что есть проблема гетероскедастичности

Регрессия с поправкой Уайта (НС0)

Стандартные ошибки изменились! На 10% стала значима переменная MPrice

Регрессия с поправкой НС2

Стандартные ошибки изменились! На 10% стала значима переменная MPrice

Регрессия с поправкой НС3

Стандартные ошибки изменились! На 10% стала значима переменная MPrice

Сравнение стандартных ошибок

В таблице по столбцам указаны стандартные ошибки.

	Без			
	поправок	HC0	HC2	HC3
const	1,848	1,863	1,950	2,045
Time	0,045	0,084	0,090	0,096
MPrice	0,003	0,0025	0,0026	0,0027
Age1	1,462	0,768	0,836	0,913
Age2	0,790	0,944	0,985	1,029
Age3	0,798	0,861	0,888	0,916
Age4	0,633	0,470	0,480	0,491

Литература

Доугерти К. (1992). Введение в эконометрику. М. Инфра-М. Глава 7 (7.1-7.4).

Берндт, Э. Р. Практика эконометрики: классика и современность. М.: ЮНИТИ-ДАНА, 2005. - 863 с. Глава 4 (4.5A).

Newbold P. (1995) Statistics for Business and Economics. 4th ed. London: Prentice-Hall. Глава 13, 14 (14.7).

Вербик М. Путеводитель по современной эконометрике. Научная книга, 2008. Глава 4.1-4.5.

Борзых Д. А., Вакуленко Е. С., Фурманов К. К. Эконометрика: работа с данными на компьютере. Практикум: Элементы теории. Практические задания. Ответы и решения. Издательская группа URSS, 2021. Глава 4 и 5.

Вакуленко Е. С., Ратникова Т. А., Фурманов К. К. Эконометрика (продвинутый курс). Применение пакета Stata. М.: Юрайт, 2020. Глава 7 и 8.6.