一,选择题:

1 .
$$f(n) = 3n^2 + 4n + 5$$
, $g(n) = 4n$, 则()

$$A f(n) = O(g(n))$$

B
$$f(n) = \Omega(g(n))$$

$$C g(n) = \Theta(f(n))$$

D
$$f(n) = \Theta(g(n))$$

一,选择题:

1 .
$$f(n) = 3n^2 + 4n + 5$$
, $g(n) = 4n$, 则(**B**)

$$A f(n) = O(g(n))$$

B
$$f(n) = \Omega(g(n))$$

$$C g(n) = \Theta(f(n))$$

D
$$f(n) = \Theta(g(n))$$

分析: 存在一个正常数c = 1和 $n_0 = 1$,使得 $0 \le c$, $g(n) \le f(n)$ 在 $n \ge n_0$ 的情况下总是成立,因此可得 $f(n) = \Omega(g(n))$.

2 .
$$f(n) = 14n^2 + 13$$
, $g(n) = n^2 \log(n)$, 则 ()

A
$$f(n) = O(g(n))$$

B
$$g(n) = \Theta(f(n))$$

C
$$f(n) = \Omega(g(n))$$

D
$$f(n) = \Theta(g(n))$$

2 .
$$f(n) = 14n^2 + 13$$
, $g(n) = n^2log(n)$, 则 (A) A $f(n) = O(g(n))$ B $g(n) = \Theta(f(n))$ C $f(n) = \Omega(g(n))$

分析:
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{14n^2 + 13}{n^2 \log(n)} = \lim_{n\to\infty} \frac{28n}{2n \log(n) + n} = \lim_{n\to\infty} \frac{28}{2\log(n) + 1} = 0.$$

D $f(n) = \Theta(g(n))$

3. 如果
$$f(n) = 3n^5 + 4n$$
, $g(n) = 4n^5$, 则 $f(n) = \Theta(g(n))$ 为()

- A 假
- B 真
- C 无法确定
- D 都不是

3. 如果
$$f(n) = 3n^5 + 4n$$
, $g(n) = 4n^5$, 则 $f(n) = \Theta(g(n))$ 为(**B**)

- A 假
- B 真
- C 无法确定
- D 都不是

分析:
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{3n^5 + 4n}{4n^5} = \lim_{n\to\infty} (\frac{3}{4} + \frac{1}{n^4}) = \frac{3}{4}$$

二、给定一个长度为12的整数数列 [26 27 4 25 9 10 7 33 2 11 28 21], 请使用归并排序算法对该数列按照从小到大进行排序,并展示排序过程。

二、给定一个长度为12的整数数列 [26 27 4 25 9 10 7 33 2 11 28 21], 请使用归并排序算法对该数列按照从小到大进行排序, 并展示排序过程。

分析:

```
归并排序算法伪代码如下:
MERGE\ SORT(A,p,r) //对A[p..r]进行归并排序
if p < r then q \leftarrow l(p+r)/2l //将A[p..r]分成两个子序列进行递归归并排序
MERGE\ SORT\ (A,p,q)
MERGE\ SORT\ (A,q+1,r)
MERGE\ (A,p,q,r) //将已排序的两个子序列进行合并
```

二、给定一个长度为12的整数数列 [26 27 4 25 9 10 7 33 2 11 28 21], 请使用归并排序算法对该数列按照从小到大进行排序, 并展示排序过程。

排序过程:

三、下图是一个无向连通带权图,请采用Kruskal算 法求得该图的最小生成树。

三、下图是一个无向连通带权图,请采用Kruskal算法求得该图的最小生成树。

分析:

```
Kruskal算法伪代码:
```

输入:包含n个顶点的含权连通无向图 $G=\{V,E\}$

输出:由G生成的最小耗费生成树T组成的边的集合

1. 将E中的边按权重非降序排序

- 2. $T = \{ \}$
- 3. while |T| < n-1
- 4. e ←E中第一条边 if e不会造成回路 then T←T+{e}, E←E-{e}
- 6. end if
- 7. if E ={} then 算法结束
- 8. end if
- 9. end while

三、下图是一个无向连通带权图,请采用Kruskal算

法求得该图的最小生成树。

求解过程:

- 1. 选取边<A,G>
- 2. 选取边<C,D>
- 3. 选取边<C,E>
- 4. 边<D,E>构成环路,舍弃
- 5. 选取边<E,G>
- 6. 边<C,G>构成环路,舍弃
- 7. 选取边<F,G>
- 8. 边<E,F>构成环路, 舍弃
- 9. 选取边<B,G>,算法结束。

四、给定如下线性规划问题:

$$\max z = 4 x_1 + 6x_2$$

$$s. t. 4x_1 + 3x_2 \le 144$$

$$x_1 + 3x_2 \le 108$$

$$x_1 \ge 0, x_2 \ge 0$$

- (1) 将上述线性规划问题转换为标准形式;
- (2) 采用单纯形法求解该线性规划问题。

四、给定如下线性规划问题:

$$\max z = 4 x_1 + 6x_2$$

$$s. t. 4x_1 + 3x_2 \le 144$$

$$x_1 + 3x_2 \le 108$$

$$x_1 \ge 0, x_2 \ge 0$$

- (1) 将上述线性规划问题转换为标准形式;
- (2) 采用单纯形法求解该线性规划问题。

分析:

转换为标准形式:

$$\max z = 4 x_1 + 6x_2$$

$$s. t. 4x_1 + 3x_2 + x_3 = 144$$

$$x_1 + 3x_2 + x_4 = 108$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$$

四、给定如下线性规划问题:

$$\max z = 4 x_1 + 6x_2$$

$$s. t. 4x_1 + 3x_2 \le 144$$

$$x_1 + 3x_2 \le 108$$

$$x_1 \ge 0, x_2 \ge 0$$

- (1) 将上述线性规划问题转换为标准形式;
- (2) 采用单纯形法求解该线性规划问题。

С	X1	X2	Х3	X4	b
0	4	3	1	0	144
0	1	3	0	1	108
	4	6	0	0	

С	X1	X2	Х3	X4	b
0	3	0	1	-1	36
6	1/3	1	0	1/3	36
	2	0	0	-2	

С	X1	X2	Х3	X4	b
4	1	0	1/3	-1/3	12
6	0	1	-1/9	4/9	32
	0	0	-2/3	-4/3	

当x1=12, x2=32时, z取得最大值为240。