

GRADUAÇÃO EM BANCO DE DADOS

Projeto de Bloco: Ciência de Dados Aplicada [24E3_5]

WANDERSON RAFAEL MENDONÇA BATISTA

TESTE DE PERFORMANCE - TP1

PROF. DIEGO DA SILVA RODRIGUES

1. Identificar o Problema de Negócio:

Defina o problema de negócio que sua aplicação irá resolver. Estabeleça as metas e os indicadores que determinarão o sucesso do projeto. Escreva a qual ODS seu projeto atende e justifique sua resposta. Estabeleça qual o público-alvo de sua aplicação.

O problema de negócio que este projeto visa resolver é a falta de acessibilidade e clareza na visualização e análise de dados de saúde pública provenientes do FTP do SUS, dificultando a elaboração de políticas públicas eficientes e o acesso do cidadão a informações sobre onde buscar atendimento. A meta do projeto é facilitar a tomada de decisões por gestores públicos e melhorar a experiência dos usuários na busca por serviços de saúde, com indicadores de sucesso como o número de acessos à aplicação, o tempo de resposta na extração de dados e a adoção das informações em planejamentos de saúde. O projeto atende ao ODS 3 (Saúde e Bem-Estar), pois busca melhorar a saúde pública ao fornecer dados claros e acessíveis que apoiam políticas e ações voltadas para o acesso equitativo a serviços de saúde de qualidade. O público-alvo da aplicação são gestores públicos de saúde, responsáveis pela criação de políticas, e cidadãos que necessitam localizar unidades de saúde e serviços oferecidos.

2. Organização do Projeto:

Estruture seu projeto utilizando os métodos CRISP-DM (Cross-Industry Standard Process for Data Mining) e TDSP (Team Data Science Process). Compreenda as diferentes fases do ciclo de vida do TDSP e como elas se aplicam ao seu projeto.

	Business Understanding	Data Understanding	Modeling	Deployment	Acceptance
Project Leader	Definir Problema de Negócio				
	Project Charter				
Data Scientist		Data Exploration Data Summary Report	Feature Engenieering Data Cleaning Dataviz		
		Data Summary Report	Feature Engenieering scripts Dashboard		
Project Manage	Definir Metas e KPI				Verificação das
	Project Charter				Metas e KPI
Solution Architect			Design da Solução	Deploy do	
			Solution Architeture Document	Dashboard	

3. Organização de Diretórios e Artefatos Iniciais:

Crie uma organização de diretórios que reflita as diferentes fases do ciclo de vida do TDSP.

Desenvolva os artefatos iniciais do projeto, incluindo:

Project Charter: Documento que descreve o escopo, os objetivos e os stakeholders do projeto (Em anexo).

Data Summary Report: Relacione as fontes de dados que serão utilizadas, indicando o tipo de dados e o objetivo de uso. Este será o primeiro esboço do Data Summary Report.

Parcerias 🔗 chave

Ministério da Saúde

Universidades e Centros de Pesquisa

Empresas de **Tecnologia**

Atividades chave

Desenvolvimento do **Aplicativo**

Atualização e Integração de Dados

Marketing e Divulgação

Suporte e Treinamento

Recursos chave

Tecnologia e Desenvolvimento

Equipe de Suporte e **Treinamento**

Proposta, de valor

Saúde e **Bem Estar**

Facilitar o acompanhamento de indicadores de saúde pública para gestores. permitindo tomadas de decisão mais rápidas e informadas

Relaciona mento

Suporte Técnico

Consultorias Personalizadas

Comunidade de Usuários

Aplicativo Móvel/Web

Redes Sociais e **Marketing Digital**

Website

Segmento de clientes

Gestores Públicos de Saúde

Profissionais de Saúde Pública

Universidades e Instituições de Pesquisa

Estrutura de custos

Desenvolvimento e Manutenção do Aplicativo Parcerias e Licenciamento Marketing e Vendas **Suporte ao Cliente**

Fontes de receita

O Data Summary Report foi incluído no visual do projeto, uma vez que o mesmo já apresenta informações sobre os dados analisados

4. Desenvolvimento de uma Aplicação Demo com Streamlit:

Crie uma aplicação demo utilizando Streamlit, que incluirá:

Um título para o projeto.

Uma descrição do problema de negócio e dos objetivos do projeto.

Links úteis para as iniciativas e fontes de inspiração do projeto.

Uma tabela exibindo amostras dos dados que serão utilizados ao longo do projeto.

Página de introdução com título e links uteis

Para apresentação dos dados foi necessário realizar mudanças no banco de dados e solicitar que o usuário escolha quais dados devem ser visualizados, o Streamlit não suportou acessar e apresentar todos os dados

Crie o ambiente de desenvolvimento (pyenv, virtualenv, conda...) e crie um arquivo com os requisitos necessários para rodar sua aplicação. Esse arquivo deve ficar na raiz do seu projeto.

Utilização do ambiente projeto webSUS

```
O carregamento de perfis pessoais e do sistema levou 1444ms.

PS C:\Users\wande\OneDrive\INFNET\7. 6° Semestre\Projeto de Bloco> .\projeto_webSUS\Scripts\Activate
(projeto_webSUS) PS C:\Users\wande\OneDrive\INFNET\7. 6° Semestre\Projeto de Bloco> code .
(projeto_webSUS) PS C:\Users\wande\OneDrive\INFNET\7. 6° Semestre\Projeto de Bloco> |
```

Árvore do projeto

Arquivo requirements.txt


```
Script do código
```

```
import streamlit as st
from pymongo import MongoClient
import pandas as pd
# Função para conectar ao MongoDB e buscar os dados de análise
@st.cache data(show spinner=False)
def fetch all data():
  client = MongoClient("mongodb://localhost:27017/")
  db analise = client["ANALISE"]
  collection sia analise = db analise["SIA ANALISE"]
  # Obter todos os documentos da collection SIA ANALISE
  data = list(collection sia analise.find({}, {" id": 0}))
  client.close()
  return data
# Função para converter os dados em um DataFrame do pandas
def convert to dataframe(data):
  if data:
    return pd.DataFrame(data)
  else:
    return pd.DataFrame() # Retorna DataFrame vazio se não houver dados
# Página Data Summary Report
def data summary report page():
  # Introdução
  st.title("Data Summary Report")
  st.write("""
  Este relatório resume os dados utilizados no projeto de visualização de dados de saúde
baseado no FTP do SUS. O projeto visa
```

auxiliar gestores públicos na elaboração de políticas de saúde e ajudar os usuários a identificar onde buscar atendimento.

Os dados são oriundos do FTP do SUS, sendo visualizados e analisados por meio de uma aplicação desenvolvida em Streamlit.

Descrição dos Dados

```
st.header("2. Descrição dos Dados")
  st.write("""
                  **Fonte
                               dos
                                       Dados**:
                                                      FTP
                                                               do
                                                                       SUS
[ftp://ftp.datasus.gov.br/dissemin/publicos/SIASUS/200801 /Dados/](ftp://ftp.datasus.g
ov.br/dissemin/publicos/SIASUS/200801_/Dados/)
    - **Coleta de Dados**: A coleta dos dados foi feita a partir dos arquivos
disponibilizados no FTP do SUS e incluídos em um banco de dados MongoDB,
   contendo informações de procedimentos e serviços de saúde prestados.
  - **Objetivo dos Dados**: O conjunto de dados contém informações sobre a produção
de serviços de saúde, tais como:
   - Unidade de Saúde (campo 'FANTASIA')
   - Período de Movimentação (campo 'PA MVMR', no formato 'AAAAMM')
   - Procedimentos realizados (campo 'PA PROC ID')
              Quantidade
                                 produção
                                             apresentada
                            de
                                                              aprovada
                                                                          (campos
'PROD APRESENTADA' e 'PROD APROVADA')
  # Carregar os dados do MongoDB
  data = fetch all data()
  df = convert to dataframe(data)
  if not df.empty:
    # Características dos Dados
    st.header("3. Características dos Dados")
    # Tamanho do conjunto de dados
    st.subheader("Tamanho do Conjunto de Dados")
    st.write(f"Número de registros: {len(df)}")
    st.write(f"Número de colunas: {len(df.columns)}")
    # Variáveis principais e tipos
    st.subheader("Variáveis Principais e Tipos")
    st.write("""
    - **FANTASIA**: Nome da unidade de saúde, utilizado como filtro principal. (Tipo:
     - **PA MVMR**: Período de movimentação dos dados no formato 'AAAAMM',
utilizado para busca por ano. (Tipo: Numérico)
     - **PA PROC ID**: Identificação dos procedimentos realizados na unidade de
saúde. (Tipo: Texto ou Numérico)
       - **PROD APRESENTADA**: Quantidade de produção apresentada por
procedimento. (Tipo: Numérico)
     - **PROD APROVADA**: Quantidade de produção aprovada por procedimento.
(Tipo: Numérico)
    """)
    # Estatísticas descritivas
    st.header("Estatísticas Descritivas")
    st.write("Aqui estão as principais estatísticas dos dados numéricos:")
    st.write(df.describe())
```

```
# Visualizar os dados de produção apresentada e aprovada
       if "PROD APRESENTADA" in df.columns and "PROD APROVADA" in
df.columns:
       st.header("Produção Apresentada e Aprovada")
       st.write("Distribuição da produção apresentada e aprovada:")
       st.line chart(df]["PROD APRESENTADA", "PROD APROVADA"]])
    # Verificar valores nulos
    st.header("Verificação de Valores Faltantes")
    missing values = df.isnull().sum()
    st.write(missing values[missing values > 0])
  else:
    st.warning("Nenhum dado disponível no banco de dados para gerar o resumo.")
# Página de visualização de dados
def data visualization page():
  # Função para carregar opções de filtro (Unidade de Saúde e Ano)
  @st.cache data(show spinner=False)
  def fetch filter options():
    client = MongoClient("mongodb://localhost:27017/")
    db analise = client["ANALISE"]
    collection sia analise = db analise["SIA ANALISE"]
    # Obter valores únicos para o campo FANTASIA (Unidade de Saúde)
    fantasia options = collection sia analise.distinct("FANTASIA")
    client.close()
    return fantasia options
  # Função para conectar ao MongoDB e buscar dados filtrados
  def fetch filtered data from mongo(fantasia=None, ano=None):
    client = MongoClient("mongodb://localhost:27017/")
    db analise = client["ANALISE"]
    collection sia analise = db analise["SIA ANALISE"]
    # Criar filtro dinâmico
    query filter = {}
    if fantasia:
       query filter["FANTASIA"] = fantasia
    if ano:
       query filter["PA MVMR"] = {"regex": regex": regex"}
    # Obter os documentos da collection SIA ANALISE aplicando o filtro
    data = list(collection sia analise.find(query filter, {" id": 0}))
    client.close()
    return data
```

```
# Obter opções de filtro da base de dados
  fantasia options = fetch filter options()
  # Sidebar para filtros
  st.sidebar.header("Filtros de Dados")
  # Permitir a busca pelo nome FANTASIA (Unidade de Saúde) com autocomplete
          selected fantasia
                                     st.sidebar.selectbox("Unidade
                              =
                                                                       de
                                                                              Saúde",
options=fantasia options, index=0)
  # Campo para selecionar apenas o ano
  selected ano = st.sidebar.text input("Ano", value="2024")
  # Botão para carregar os dados
  if st.button('Carregar Dados Filtrados'):
    # Carregar os dados filtrados do MongoDB
    data = fetch filtered data from mongo(
       fantasia=selected fantasia,
       ano=selected ano
    )
    df = convert to dataframe(data)
    # Verificar se os dados foram carregados corretamente
    if not df.empty:
       st.success("Dados filtrados carregados com sucesso!")
       st.write(f"Número de registros mostrados: {len(df)}")
       # Exibir os dados em formato de tabela
       st.table(df)
       # Exibir um resumo estatístico dos dados
       st.write("Resumo Estatístico:")
       st.write(df.describe())
    else:
       st.warning("Nenhum dado encontrado com os filtros aplicados.")
# Página de introdução
def introduction page():
  # Carregar a imagem do SUS
  st.image("docs/img/sus.webp", use column width=True)
  # Texto introdutório
  st.title("Bem-vindo ao Projeto de Visualização de Dados do SUS")
  st.write("""
  Este projeto utiliza dados oriundos do FTP do SUS e tem como objetivo auxiliar os
```

Este projeto utiliza dados oriundos do FIP do SUS e tem como objetivo auxiliar os gestores públicos na elaboração

de políticas públicas de saúde, bem como ajudar os usuários a identificar onde buscar atendimento.

```
Através dessa plataforma, é possível visualizar e analisar dados de saúde de forma
acessível e interativa.
  ("""
  # Seção de links úteis
  st.header("Links Úteis")
  st.markdown("""
                                             [FTP
                                                                do
                                                                                 SUS
(Dados)](ftp://ftp.datasus.gov.br/dissemin/publicos/SIASUS/200801 /Dados/):
                                                                                Local
para busca dos dados.
                                             [FTP
                                                                                 SUS
                                                                do
(Manual)](ftp://ftp.datasus.gov.br/dissemin/publicos/SIASUS/200801 /Doc/):
                                                                                Local
com informações técnicas dos arquivos utilizados.
   - [DATASUS](https://datasus.saude.gov.br/transferencia-de-arquivos/): Local para
pesquisa dos dados sem necessidade de utilização do FTP.
# Função principal para o controle de páginas
def main():
  st.sidebar.title("Navegação")
  pages = {
     "Introdução": introduction page,
    "Data Summary Report": data_summary_report_page,
     "Visualização de Dados": data visualization page
  choice = st.sidebar.radio("Escolha a página", list(pages.keys()))
  pages[choice]()
# Executar a aplicação
if name == ' main ':
  main()
```

ANEXO PROJECT CHARTER

Project Charter: Dashboard de Visualização de Dados do DataSUS com Streamlit

1. Título do Projeto

Desenvolvimento de Dashboard de Visualização de Dados do DataSUS utilizando Streamlit

2. Objetivo do Projeto

Desenvolver um dashboard interativo com Streamlit que simplifique a visualização e análise dos dados do DataSUS para gestores públicos de saúde. O dashboard será projetado para ser intuitivo, facilitando a compreensão e a tomada de decisões baseadas em dados, substituindo a complexidade das ferramentas atuais como Tabwin e Tabnet.

3. Justificativa do Projeto

Os gestores públicos de saúde enfrentam desafios significativos ao usar ferramentas complexas como Tabwin e Tabnet para analisar os dados do DataSUS. Este projeto visa desenvolver um dashboard com Streamlit, que simplifica o processo de análise, permitindo aos gestores tomarem decisões mais rápidas e informadas, contribuindo para uma gestão mais eficiente da saúde pública.

4. Escopo do Projeto

Inclusões:

- Coleta, tratamento e análise dos dados do DataSUS (incluindo armazenamento em base de dados própria).
- Desenvolvimento de um dashboard interativo utilizando Streamlit.
- Criação de visualizações personalizadas e relatórios automáticos.
- Interface amigável para gestores de saúde, com funcionalidades de filtragem e exploração de dados.
- Treinamento para uso do dashboard e documentação técnica.

Exclusões:

- Desenvolvimento de infraestrutura física.
- Expansão para dados fora do escopo do DataSUS.

5. Entregáveis Principais

- Pipeline de coleta e tratamento de dados do DataSUS.
- Versão beta do dashboard em Streamlit para feedback dos usuários.

- Versão final do dashboard pronta para uso.
- Documentação detalhada do código e manuais de uso.
- Sessões de treinamento para usuários finais.

6. Cronograma de Alto Nível

• Fase de Planejamento: 1 semana

• Coleta e Tratamento de Dados: 2 semanas

• **Desenvolvimento do Dashboard:** 3 semanas

• Testes e Feedback com Usuários: 1 semana

Treinamento e Implementação: 1 semana

• Lançamento Oficial: 1 semana

• Suporte e Manutenção: Contínuo após o lançamento

8. Stakeholders Principais

- Patrocinador do Projeto: Ministério da Saúde / Secretarias Estaduais e Municipais de Saúde
- Gerente do Projeto: Wanderson Rafael Mendonça Batista
- **Equipe de Ciência de Dados:** Cientistas de dados, engenheiros de dados e desenvolvedores especializados em Python e Streamlit.
- **Usuários Finais:** Gestores Públicos de Saúde, Epidemiologistas, Profissionais de Saúde Pública.
- **Parceiros:** Universidades e Centros de Pesquisa, Fornecedores de Infraestrutura Tecnológica.

9. Riscos Principais

- Risco de Qualidade dos Dados: Problemas com a qualidade e consistência dos dados do DataSUS.
- Risco de Integração: Desafios técnicos na integração dos dados do DataSUS no dashboard
- Risco de Adoção pelo Usuário: Baixa adesão dos gestores ao novo dashboard.
- Risco de Escopo: Mudanças no escopo do projeto durante o desenvolvimento, impactando prazos e custos.

10. Arquitetura do Aplicativo

A arquitetura do aplicativo será projetada para maximizar a eficiência e a usabilidade, garantindo que o dashboard possa lidar com grandes volumes de dados e fornecer visualizações em tempo real ou quase em tempo real. A seguir estão os principais componentes da arquitetura:

• Frontend (Interface de Usuário):

- o Desenvolvido em Streamlit para criar uma interface web interativa e responsiva.
- Integração com bibliotecas de visualização de dados, como Plotly, Matplotlib e Altair, para gráficos e visualizações dinâmicas.
- Funcionalidades de filtragem, pesquisa e exportação de relatórios em formatos como PDF e Excel.

Backend (Lógica de Negócio):

- Python como linguagem principal para processamento de dados e lógica de negócios.
- Integração com APIs do DataSUS para extração e atualização contínua dos dados.
- Processamento de dados utilizando Pandas e Numpy para manipulação de grandes datasets.

Banco de Dados:

- Utilização de bancos de dados relacionais (ex. PostgreSQL) ou NoSQL (ex. MongoDB) para armazenar e gerenciar dados históricos e processados.
- Mecanismos de caching (ex. Redis) para melhorar a velocidade de acesso a dados frequentemente utilizados.

11. Critérios de Sucesso

- Entrega do dashboard no prazo e dentro do orçamento.
- Alta taxa de adoção e satisfação dos usuários.
- Melhoria na eficiência e precisão das análises de dados pelos gestores públicos.
- Documentação completa e treinamentos eficazes para os usuários finais.