

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

chaos in the taxonomy and morphology of this group, and the imperative need of a more stable system of nomenclature. A study of the life history of the Ascomycete to which they assign the name *Pezizella lythri* reveals the following facts. The life cycle includes three stages. The conidial stage has received at least seven generic and ten specific names; the pycnidial stage has been referred to at least four genera, and has had at least twelve specific names; while the ascogenous stage has been described but once so far as known. In one or another of its stages, this fungus has been found on about fifty different host plants, widely distributed throughout North America and Europe, and it also occurs in South America. With such a range of forms and hosts and geographical occurrence, it is not surprising that names multiplied, but intensive studies of life histories will bring some order out of such confusion.—J.M.C.

Rhus poisoning.—The nature of the poisonous principle in *Rhus* and the method of its transmission from plant to person has excited much controversy. There have been two main theories: (1) that the poison is volatile, and therefore infection can take place without contact with the plant, and (2) that the poison is non-volatile, contact with the plant being necessary for infection. McNair²⁷ reports the results of experiments which lead him to conclude that the poisonous principle is non-volatile. Poisoning without contact with the plant can occur only by contact with something, such as clothing, shoes, etc., which has the poison on it, or from the smoke of the burning plants, the soot of which seems to carry the poison. He finds that the poisonous principle is confined exclusively to the resinous sap of the resin canals. The literature of the subject is well summarized, the work of Pfaff, who concludes that the poison is a non-volatile skin irritant, being especially emphasized. Pfaff applies the name toxicondendrol oil to the poison.—S. V. Eaton.

Inhibition by metabolic products.—Chambers²⁸ finds that the hydrogen ion concentration of the culture medium is very important in cultures of *Bacillus coli*. There is a slight checking of growth at P_H 5.5, and an increasing intensity to lethal concentration between P_H 5.1 and 4.9. Inhibition begins on the alkaline end from P_H 7.0 and 7.6, depending upon age of culture and other factors. P_H 7.6 is comparable in inhibitory action with P_H 5.1. In an asparagin-CaCO₃ bouillon P_H 9.5 is not fatal. In cultures with the hydrogen ion concentration controlled, the maximum count was 3,750,000,000 bacteria to the cubic centimeter, contrasting with 281,000,000 in dextrose bouillon with the hydrogen ion uncontrolled. "The inhibitory action of the metabolic products of dextrose other than the hydrogen ions is only evident near the critical acid concentration."—WM. CROCKER.

²⁷ McNair, James B., The transmission of *Rhus* poison from plant to person. Amer. Jour. Bot. 8:238-250. 1921.

²⁸ Chambers, W. H., Studies in the physiology of the fungi. XI. Bacterial inhibition by metabolic products. Ann. Mo. Bot. Gard. 7: 249-289. 1920.