人工神经网络

王晓丽

计算机科学与技术学院 副教授

课程目录

- □ 1. 上次课程回顾
- □ 2. 监督学习和BP算法
- □ 3. BP算法的局限性
- □ 4. BP算法的改进
- □ 5. 训练与测试

人工神经网络

□ 信号累积:

$$y = f(\sum_{i=1}^{n} w_i x_i - \theta)$$

 $> \theta$ 为阈值, f(X) 是激活函数

单层感知器

□ "与"感知器

单层感知器

□ "异或"感知器

单层感知器

- 口 局限性: 单层感知器无法解决"异或"问题。
 - 由感知器的几何意义可知,其确定的分类判别方程式 是线性方程,因而只能解决线性可分问题,而不能解 决线性不可分问题。
 - 这里"线性可分"是指两类样本可以用直线、平面或者超平面分开,否则称为线性不可分。

多层感知器网络

- ✓ 包括输入层、隐藏层和输出层
- ✓ 可以有多个隐层
- ✓ 信息只能从左一 层单元传递到相 应的右一层单元。

人工神经网络的类型

- 口 神经元之间如何连接? 拓扑结构
 - 人工神经网络可以看成是以人工神经元为结点,用有向加权弧连接起来的有向图
- □ 如何确定权重? 学习方法
 - ◆ 监督学习: 输入向量的期望输出已知
 - ◆ 非监督学习: 输入向量的期望输出未知

课程目录

- □ 1. 上次课程回顾
- 口 2. 监督学习和BP算法
- □ 3. BP算法的局限性
- □ 4. BP算法的改进
- □ 5. 训练与测试

2. 监督学习

- ✓ 监督学习需要一个训练集
- ✓ 训练集由输入向量和与每一个输入向量相关联的目标向量组成

给定一组输入Z和输出 O的样本,学习从Z到 O的未知函数μ

2. 监督学习

□ 神经网络的监督学习

- ✓ 将神经网络学习问题转 化为输出误差最小化的 优化问题
- ✓ 调整权值,使误差函数最小化:

$$\varepsilon = \frac{1}{2} \sum_{p=1}^{N} \left(t_p - o_p \right)^2$$

其中, t_p 和 o_p 分别是第p个样本的目标输出和真实输出;N是训练集中的样本总数。

□ 梯度下降优化算法

- ✓ 目标:找到使误差函数 ε 最小的权值w
- ✓ 计算 ϵ 的梯度,沿着负梯度方向搜索
- ✓ 权值更新公式为:

$$\mathbf{w}(t) = w(t-1) + \Delta w(t)$$

其中:
$$\Delta w(t) = \eta \left(-\frac{\partial \varepsilon}{\partial w} \right)$$

步长 η 称为学习率

□ 梯度下降优化算法

- ✓ 反向传播(BP)算法分为两个阶段
 - □ 前向传播:对每一个训练样本,从输入层经隐藏 层逐层正向计算各结点的输出;
 - □ 反向传播:由输出误差逐层反向计算隐藏层各结 点的误差,并用此误差修正前层的权值。
- ✓ 反向传播算法采用梯度下降法修正权值,因此要求 激活函数可微。采用Sigmoid函数作为激活函数。

□ 求导习题

1.
$$y = e^{x}$$

2. $y = \frac{1}{x}$
3. $y = \frac{1}{2}(x - a)^{2}$
4. $y = \frac{1}{1 + e^{-x}}$

口求导习题

1.
$$y = e^{x}$$

2. $y = \frac{1}{x}$
3. $y = \frac{1}{2}(x - a)^{2}$
4. $y = \frac{1}{1+e^{-x}}$
5. $y = \frac{1}{1+e^{-(ax1+bx2-\theta)}}$

口 求导习题

1.
$$y = e^{x}$$

2. $y = \frac{1}{x}$
3. $y = \frac{1}{2}(x - a)^{2}$
4. $y = \frac{1}{1+e^{-x}}$
5. $y = \frac{1}{1+e^{-(ax1+bx2-\theta)}}$
6. $x1 = \frac{1}{1+e^{-(cx3+dx4-\theta2)}}$

□ BP算法的学习过程如下:

步骤1:初始化网络权重

每两个神经元之间的网络连接权重 w_{ij} 被初始化为一个很小的随机数(例如-1.0~1.0或者-0.5~0.5),同时,每个神经元有一个阈值,也被初始化为一个随机数。

步骤2: 前向传播

根据训练样本的输入,计算各层神经元节点的输出。每个神经元的计算方法相同,都是由其输入的线性组合得到,公式如下:

$$O_{j} = \frac{1}{1 + e^{-s_{j}}} = \frac{1}{1 + e^{-(\sum_{i} w_{ij} O_{i} - \theta_{j})}}$$

□ BP算法的学习过程如下:

步骤3: 计算误差

计算网络的实际输出和期望输出的误差 $\varepsilon = \frac{1}{2}(O-T)^2$

步骤4: 反向传播

从输出层反向计算到第一个隐层,并沿着使误差减小方向调整网络中各神经元的连接权值及阈值。公式如下:

$$\mathbf{w}(t) = \mathbf{w}(t-1) + \Delta \mathbf{w}(t) \qquad \Delta \mathbf{w}(t) = \eta \left(-\frac{\partial \varepsilon}{\partial \mathbf{w}} \right)$$
$$\theta(t) = \theta(t-1) + \Delta \theta(t) \qquad \Delta \theta(t) = \eta \left(-\frac{\partial \varepsilon}{\partial \theta} \right)$$

□ BP算法的学习过程如下:

步骤5: 判断结束

对于每个样本,如果最终的输出误差小于可接受的范围或迭代次数t达到了一定的阈值,则选取下一个样本,转到步骤2重新继续执行,否则,迭代次数t加1,然后转向步骤2继续使用当前样本进行训练。

□ BP算法举例

已知一个前馈神经网络如下图所示,设学习率 η =0.9,当前训练样本为 x = (1,0,1),期望输出结果为1。求该网络在当前训练样本下的训练过程。

□ BP算法的学习过程如下:

步骤1:初始化网络权重

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ_4	θ_{5}	θ_{6}
0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	0.4	-0.2	-0.1

□ BP算法的学习过程如下:

步骤1:初始化网络权重

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ_4	θ_5	θ_{6}
0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	0.4	-0.2	-0.1

步骤2: 前向传播 x = (1,0,1), 写出前向传播的公式

神经元 j	总输入S _j	输出 O j
4		
5		
6		

□ BP算法的学习过程如下:

步骤1:初始化网络权重

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ_4	θ_5	θ_{6}	
0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	0.4	-0.2	-0.1	

步骤2: 前向传播

神经元j	总输入S _j	输出O _j
4	1*0.2+0*0.4+1*(-0.5)-0.4=-0.7	0.332
5		
6		

□ BP算法的学习过程如下:

步骤1:初始化网络权重

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ_{4}	θ_5	θ_{6}
0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	0.4	-0.2	-0.1

步骤2: 前向传播

神经元 j	总输入S _j	输出O _j
4	1*0.2+0*0.4+1*(-0.5)-0.4=-0.7	0.332
5	1*(-0.3)+0*(0.1)+1*0.2+0.2=0.1	0.525
6		

□ BP算法的学习过程如下:

步骤1:初始化网络权重

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ_4	θ_5	θ_{6}
0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	0.4	-0.2	-0.1

步骤2: 前向传播

神经元j	总输入S _j	输出O _j
4	1*0.2+0*0.4+1*(-0.5)-0.4=-0.7	0.332
5	1*(-0.3)+0*(0.1)+1*0.2+0.2=0.1	0.525
6	(-0.3)*0.332+(-0.2)*0.525+0.1=-0.105	0.474

□ BP算法的学习过程如下:

步骤3: 计算误差

$$\varepsilon = \frac{1}{2}(O-T)^2 = \frac{1}{2}(0.474-1)^2 = 0.138$$

□ BP算法的学习过程如下:

步骤4: 反向传播

$$w_{46}' = w_{46} + \Delta w_{46} \qquad \Delta w_{46} = \eta \left(-\frac{\partial \varepsilon}{\partial w_{46}} \right)$$

□ BP算法的学习过程如下:

步骤4: 反向传播

: 更新最后一层的权重和阈值
$$w_{46}' = w_{46} + \Delta w_{46} \qquad \Delta w_{46} = \eta \left(-\frac{\partial \varepsilon}{\partial w_{46}} \right)$$

$$\frac{\partial \mathcal{E}}{\partial w_{46}} = \frac{\partial \mathcal{E}}{\partial o_6} \bullet \frac{\partial o_6}{\partial s_6} \bullet \frac{\partial s_6}{\partial w_{46}} = (O_6 - T)O_6(1 - O_6)O_4$$

$$w'_{46} = w_{46} + \Delta w_{46} = w_{46} + \eta \left(-\frac{\partial \varepsilon}{\partial w_{46}} \right) = w_{46} + \eta (T - O_6) O_6 (1 - O_6) O_4$$

□ BP算法的学习过程如下:

步骤4: 反向传播

$$x_1$$
 ω_{15} ω_{15} ω_{24} ω_{25} ω_{56} ω_{5

$$\begin{aligned} w_{46}' &= w_{46} + \Delta w_{46} = w_{46} + \eta \left(-\frac{\partial \varepsilon}{\partial w_{46}} \right) = w_{46} + \eta (T - O_6) O_6 (1 - O_6) O_4 \\ w_{56}' &= w_{56} + \Delta w_{56} = w_{56} + \eta \left(-\frac{\partial \varepsilon}{\partial w_{56}} \right) = w_{56} + \eta (T - O_6) O_6 (1 - O_6) O_5 \end{aligned}$$

权重	更新后的值
w_{46}	-0.3+0.9*(1-0.474)*0.474*(1-0.474)*0.332=-0.261
w ₅₆	-0.2+0.9*(1-0.474)*0.474*(1-0.474)*0.525=-0.138

□ BP算法的学习过程如下:

步骤4: 反向传播

$$\theta_6' = \theta_6 + \Delta \theta_6$$

$$\Delta\theta_6 = \eta \left(-\frac{\partial \varepsilon}{\partial \theta_6} \right)$$

□ BP算法的学习过程如下:

步骤4: 反向传播

$$\theta_6' = \theta_6 + \Delta \theta_6 \qquad \Delta \theta_6 = \eta \left(-\frac{\partial \varepsilon}{\partial \theta_6} \right)$$

$$\frac{\partial \mathcal{E}}{\partial \theta_6} = \frac{\partial \mathcal{E}}{\partial o_6} \bullet \frac{\partial o_6}{\partial s_6} \bullet \frac{\partial s_6}{\partial \theta_6} = (O_6 - T)O_6(1 - O_6)(-1)$$

$$\theta_6' = \theta_6 + \Delta \theta_6 = \theta_6 + \eta \left(-\frac{\partial \varepsilon}{\partial \theta_6} \right) = \theta_6 + \eta (T - O_6) O_6 (1 - O_6) (-1)$$

□ BP算法的学习过程如下:

步骤4: 反向传播

$$\theta_6' = \theta_6 + \Delta \theta_6 = \theta_6 + \eta \left(-\frac{\partial \varepsilon}{\partial \theta_6} \right) = \theta_6 + \eta (T - O_6) O_6 (1 - O_6) (-1)$$

权重	更新后的值
$\theta_{\!\scriptscriptstyle 6}$	-0.1+0.9*(1-0.474)*0.474*(1-0.474)*(-1)=-0.218

□ BP算法的学习过程如下:

步骤4: 反向传播

步骤4.2: 更新倒数第二层的权重和阈值

$$w'_{14} = w_{14} + \Delta w_{14} \qquad \Delta w_{14} = \eta \left(-\frac{\partial \varepsilon}{\partial w_{14}} \right)$$

□ BP算法的学习过程如下:

步骤4: 反向传播

步骤4.2: 更新倒数第二层的权重和阈值

$$w'_{14} = w_{14} + \Delta w_{14} \qquad \Delta w_{14} = \eta \left(-\frac{\partial \varepsilon}{\partial w_{14}} \right)$$

$$\frac{\partial \mathcal{E}}{\partial w_{14}} = \frac{\partial \mathcal{E}}{\partial o_6} \bullet \frac{\partial o_6}{\partial s_6} \bullet \frac{\partial s_6}{\partial o_4} \bullet \frac{\partial s_6}{\partial s_4} \bullet \frac{\partial s_4}{\partial s_4} \bullet \frac{\partial s_4}{\partial w_{14}} = (O_6 - T)O_6(1 - O_6)w_{46}O_4(1 - O_4)x_1$$

$$w'_{14} = w_{14} + \Delta w_{14} = w_{14} + \eta \left(-\frac{\partial \varepsilon}{\partial w_{14}} \right) = w_{14} + \eta (T - O_6) O_6 (1 - O_6) w_{46} O_4 (1 - O_4) x_1$$

□ BP算法的学习过程如下:

步骤4: 反向传播

步骤4.2: 更新倒数第二层的权重和阈值

$$\begin{aligned} w_{14}' &= w_{14} + \eta(T - O_6)O_6(1 - O_6)w_{46}O_4(1 - O_4)x_1 \\ w_{15}' &= w_{15} + \eta(T - O_6)O_6(1 - O_6)w_{56}O_5(1 - O_5)x_1 \\ w_{24}' &= w_{24} + \eta(T - O_6)O_6(1 - O_6)w_{46}O_4(1 - O_4)x_2 \\ w_{25}' &= w_{25} + \eta(T - O_6)O_6(1 - O_6)w_{56}O_5(1 - O_5)x_2 \\ w_{34}' &= w_{34} + \eta(T - O_6)O_6(1 - O_6)w_{46}O_4(1 - O_4)x_3 \\ w_{35}' &= w_{35} + \eta(T - O_6)O_6(1 - O_6)w_{56}O_5(1 - O_5)x_3 \end{aligned}$$

□ BP算法的学习过程如下:

步骤4: 反向传播

步骤4.2: 更新最后一层的权重和阈值

$$w'_{14} = w_{14} + \eta (T - O_6)O_6(1 - O_6)w_{46}O_4(1 - O_4)x_1$$

权重	更新后的值
w_{14}	0.2+0.9*(1-0.474)*0.474*(1-0.474)*(-0.3)*0.332* (1- 0.332)*1=0.192
<i>w</i> ₁₅	-0.306
w_{24}	0.4
w_{25}	0.1
w_{34}	-0.508
w_{35}	0.194

36

□ BP算法的学习过程如下:

步骤4: 反向传播

步骤4.2: 更新倒数第二层的权重和阈值

$$\theta_4' = \theta_4 + \Delta \theta_4$$
 $\Delta \theta_4 = \eta \left(-\frac{\partial}{\partial \theta_4} \right)$

□ BP算法的学习过程如下:

步骤4: 反向传播

步骤4.2: 更新倒数第二层的权重和阈值

$$\theta_4' = \theta_4 + \Delta \theta_4 = \theta_4 + \eta \left(-\frac{\partial \varepsilon}{\partial \theta_4} \right) = \theta_4 + \eta (T - O_6) O_6 (1 - O_6) w_{46} O_4 (1 - O_4) (-1)$$

$$\theta_5' = \theta_5 + \Delta \theta_5 = \theta_5 + \eta \left(-\frac{\partial \varepsilon}{\partial \theta_5} \right) = \theta_5 + \eta (T - O_6) O_6 (1 - O_6) w_{56} O_5 (1 - O_5) (-1)$$

权重	更新后的值
$ heta_{\!4}$	0.4+0.9*(1-0.474)*0.474*(1-0.474)*(-0.3)*0.332*(1-0.332)*(-1)=0.408
$ heta_{\!\scriptscriptstyle 5}$	-0.2+0.9*(1-0.474)*0.474*(1-0.474)*(-0.2)*0.525* (1-0.525)*(-1)=-0.194

□ BP算法的学习过程如下:

步骤5: 判断结束

对于每个样本,如果最终的输出误差小于可接受的范围或迭代次数 t 到了设置的上限,则选取下一个样本,转到步骤2重新继续执行,否则,迭代次数 t 加1,然后转向步骤2继续使用当前样本进行训练。

- □ 已知两类蠓虫的部分数据如下:
 - 要求对数据进行建模,对触角和翼长分别为(1.24,1.80),(1.28,1.84)与(1.40,2.04)的3个标本,其类别应该是什么?

*	翼长	触角长	目标值	*	翼长	触角长	目标值
*	1.78	1.14	0.9	*	1.64	1.38	0.1
*	1.96	1.18	0.9	*	1.82	1.38	0.1
*	1.86	1.20	0.9	*	1.90	1.38	0.1
*	1.72	1.24	0.1	*	1.70	1.40	0.1
*	2.00	1.26	0.9	*	1.82	1.48	0.1
*	2.00	1.28	0.9	*	1.82	1.54	0.1
*	1.96	1.30	0.9	*	2.08	1.56	0.1
*	1.74	1.36	0.1	pot-Assista	23		

- □ 已知两类蠓虫的部分数据如下:
 - 要求对数据进行建模,对触角和翼长分别为(1.24,1.80), (1.28,1.84)与(1.40,2.04)的3个标本,其类别应该是什么?

*	翼长	触角长	目标值
*	1.78	1.14	0.9
*	1.96	1.18	0.9
*	1.86	1.20	0.9
*	1.72	1.24	0.1
*	2.00	1.26	0.9
*	2.00	1.28	0.9
*	1.96	1.30	0.9
*	1.74	1.36	0.1

□训练结果

$$s_1 = -5.5921x_1 + 7.5976x_2 - 0.5765$$

$$s_2 = -0.5787x_1 - 0.2875x_2 + 0.2764$$

$$s_3 = -8.4075o_1 + 0.4838o_2 - 3.9829$$

口 更新问题

- BP算法采用的是样本更新,即每处理一个样本就更新一次权重和阈值。样本更新的缺陷: 样本的顺序对训练结果有较大影响。它会更"偏爱"较后出现的样本。为样本安排一个最优的顺序是非常困难的。
- 解决的办法就是采用周期更新,即处理一遍所有的样本才更新一次权重和阈值。周期更新的好处:可以消除样本顺序对结果的影响。

课程目录

- □ 1. 上次课程回顾
- □ 2. 监督学习和BP算法
- □ 3. BP算法的局限性
- □ 4. BP算法的改进
- □ 5. 训练与测试

- ▶ 误差函数的可调整参数的个数n等于各层权值数加上 阈值数。
- 决差E是n+1维空间中一个形状极为复杂的曲面,该曲面上的每个点的"高度"对应于一个误差值,每个点的坐标向量对应着n个权值,因此称这样的空间为误差的权空间。

- □曲面的分布特点------算法的局限性
- (1)存在平坦区域------误差下降缓慢,影响收敛速度
- (2)存在多个极小点-----易陷入局部最小点

- □平坦一一误差的梯度变化小
- □造成平坦区的原因: 各节点的净输入过大

$$\left| \sum_{j=0}^{m} w_{jk} y_{j} \right| > 3$$

- □BP算法
 - ■以误差梯度下降为权值调整原则
- □导致的结果:
 - 训练经常陷入某个局部极小点而不能自拔, 从而使训练无法收敛于给定误差。

4. BP算法的改进

> BP算法的缺陷总结:

- (1) 易形成局部极小而得不到全局最优;
- (2) 训练次数多使得学习效率低,收敛速度慢;
- (3) 隐藏层结点的选取缺乏理论指导;
- (4) 训练时学习新样本有遗忘旧样本的趋势。
- ▶ 针对上述问题,国内外已提出不少有效的改进 算法,下面仅介绍其中3种较常用的方法。

4. BP算法的改进

- □改进1:增加动量项
- □改进2: 自适应调节学习率
- □改进3: 引入陡度因子

4. BP算法的改进: 增加动量项

- 标准BP算法在修正权值*w(k)*时,只是按k时刻的负 梯度方向进行修正,没有考虑积累的经验,即以前 的梯度方向,从而使学习过程振荡,收敛缓慢。
- 附加动量法使神经网络在修正权值时不仅考虑误差 在梯度上的作用,而且考虑误差变化趋势的影响。

$$W(k+1) = W(k) + \eta[(1-\alpha)\Delta(k) + \alpha\Delta(k-1)]$$

η为学习率, $\eta > 0$, α 为动量项因子, $0 \le \alpha < 1$ $\Delta(k)$ 为k时刻的负梯度, $\Delta(k-1)$ 为k-1时刻的负梯度。

■ 所加入动量项减小了学习过程的振荡,改善了收敛性。

4. BP算法的改进

- □改进1:增加动量项
- □改进2: 自适应调节学习率
- □改进3: 引入陡度因子

4. BP算法的改进: 自适应学习率

- □提出的原因:
 - ■标准BP算法中,学习率 η 也称为步长,很难确定一个从始至终都合适的最佳学习率。
 - 平坦区域内, η 太小会使训练次数增加;
 - 在误差变化剧烈的区域,η太大会因调整量过 大而使训练出现振荡,反而使迭代次数增加。

4. BP算法的改进: 自适应学习率

□基本思想:

■ 自适应改变学习率,根据误差变化增大或减小 η

□基本方法:

- 设一初始学习率,若经过一批次权值调整后使总误 $\not{\equiv}$ 差↑,则本次调整无效,令 $\eta = \beta \eta (\beta < 1)$;
- 若经过一批次权值调整后使总误差↓,则本次调整有效,令 $\eta = \theta \eta (\theta > 1)$ 。

4. BP算法的改进

- □改进1:增加动量项
- □改进2: 自适应调节学习率
- □改进3: 引入陡度因子

4. BP算法的改进: 增加陡度因子

- □提出的原因:
 - ■误差曲面上存在着平坦区域。
 - 权值调整进入平坦区的原因是进入了转移函数 的饱和区。
- □基本思想:
 - ■如果在进入平坦区后,设法压缩神经元的净输入,使其输出退出转移函数的不饱和区,就可以改变误差函数的形状,从而使调整脱离平坦区。

4. BP算法的改进: 增加陡度因子

- □基本方法:
 - 在原激活函数中引入一个陡度因子λ

$$o = \frac{1}{1 + e^{-net/\lambda}}$$

- 当发现 ΔE 接近零而误差仍较大时,可判断已进入平坦区,此时令 $\lambda > 1$;
- 当退出平坦区后, 再令 *λ=1* 。

4. BP算法的改进: 增加陡度因子

作用分析:

- λ>1: 神经元的激活函数曲线的 敏感区段变长,从而退出饱和 值。
- λ=1: 神经元的激活函数恢复原状,对净输入net较小的情况有较高的灵敏度。
- 应用结果表明该方法对于提高 BP算法的收敛速度十分有效。

课程目录

- □ 1. 上次课程回顾
- □ 2. BP算法介绍
- □ 3. BP算法的局限性
- □ 4. BP算法的改进
- 口 5. 训练与测试

5. 训练与测试

- > 神经网络的性能好坏主要看其是否具有很好的泛化能力。
- 泛化能力是指在向网络输入训练时未曾见过的非样本数据, 网络也能完成由输入空间向输出空间的正确映射。

5. 训练与测试

▶ 在隐节点数一定的情况下,为获得好的泛化能力,存 在着一个最佳训练次数。

- ightarrow 学习率 $\eta=1$, 当前训练样本为 $x_1=1$, $x_2=0$ 。期望输出结果为1。
- ho 阈值均为0,激活函数是: $y = \begin{cases} x & x \geq 1 \\ 1 & x < 1 \end{cases}$
- > 第 k 次学习的权重是: $w_{11}(k)=0$, $w_{12}(k)=2$, $w_{21}(k)=2$, $w_{22}(k)=1$, $w_{13}(k)=1$, $w_{23}(k)=1$.
- \triangleright 求第 k 次学习的输出 $y_3(k)$ 和第 k+1 次学习的输出 $y_3(k+1)$ 。

- > 第 k 次学习的输出 $y_1(k) = 1, \ y_2(k) = 2, \ y_3(k) = 3$ 。
- > 第 k+1 次学习的权重是: $w_{11}(k)=0$, $w_{12}(k)=0$, $w_{21}(k)=2$, $w_{22}(k)=1$, $w_{13}(k)=-1$, $w_{23}(k)=-3$
- > 第 k+1 次学习的输出 $y_1(k)=1, \ y_2(k)=1, \ y_3(k)=1$ 。

神经元 <i>j</i>	总输入 S_j	输出 y _j
1	1*0 + 0*2 = 0	$S_1 < 1, y_1 = 1$
2	1*2 + 0*1 = 2	$S_2 > 1, y_2 = 2$
3	1*1 + 2*1 = 3	$S_3 > 1, y_3 = 3$

$ riangle w_{ij}$	$w_{ij}(k+1)$
$\triangle w_{13} = -(3-1)*1 = -2$	$w_{13}(k+1) = 1-2 = -1$
$\triangle w_{23} = -(3-1)*2 = -4$	$w_{23}(k+1) = 1-4 = -3$
$\triangle w_{11} = -(3-1)*1*0 = 0$	$w_{11}(k+1) = 0 - 0 = 0$
$\triangle w_{21} = -(3-1)*1*0 = 0$	$w_{21}(k+1) = 2-0 = 2$
$\triangle w_{12} = -(3-1)*1*1 = -2$	$w_{12}(k+1) = 2-2 = 0$
$\triangle w_{22} = -(3-1)*1*0 = 0$	$w_{22}(k+1) = 1-0 = 1$

神经元 j	总输入 S_j	输出 y_j
1	1*0 + 0*2 = 0	$S_1 < 1, y_1 = 1$
2	1*0 + 0*1 = 1	$S_2 > =1, y_2 = 1$
3	1*(-1) + 1*(-3) = -4	$S_3 < 1, y_3 = 1$