

Multiple Regression model working with k variables

x ₁	X ₂	х3		x _k
32	0.550798	283		2
22	0.708148	483	-	3
45	0.290905	514	-	4
78	0.510828	681	-	3
54	0.892947	357	-	2
39	0.896293	569	-	4
42	0.125585	259	-	2
51	0.207243	512	-	2
21	0.051467	266	-	5
19	0.44081	491	-	3

У				
Balance				
(thousand dollar)				
5.651202				
7.321263				
5.167304				
5.609367				
9.406379				
9.379439				
2.734997				
4.876649				
3.584138				
5.437239				

Multiple Regression model working with k variables

Linear Function:-

$$f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + ... + \beta_k x_k$$
For given Training Set $T = \{(x_{11}, x_{12}, ..., x_{1k}, y_1), (x_{21}, x_{22}, ..., x_2), y_2), ..., (x_{n1}, x_{n2}, ..., x_{nk}, y_n)\}, \text{ we solve}$

Min
$$J(\beta_k, ..., \beta_4, \beta_3, \beta_2, \beta_1, \beta_0) = \sum_{i=1}^n (yi - (\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + ... + \beta_k x_k))^2$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ y_n \end{bmatrix}$$

The Least Square problem reduces to

$$Min_{(u)}$$
 $J(u) = (Y - Au)^T (Y - Au)$

$$\mathbf{u} = \begin{bmatrix} \beta_k \\ \beta_2 \\ \beta_1 \\ \beta_0 \end{bmatrix} = (A^T A)^{-1} A^T \mathbf{Y}$$

Change of Notation

• We are working with n number of variables. So each independent variable X is in \mathbb{R}^n

• Our training set $T = \{(x_i, y_i) : x_i \in R^n \text{ and } y_i \in R, i = 1, 2, \dots l\}.$

• The linear function in Rⁿ is given by

$$f(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b = \mathbf{w}_0^T x + b.$$

Linear Regression model

$$f(x) = w_1x_1 + w_2x_2 + ... + wnxn + b = wTx + b.$$

• For simple Least Square Regression model we need to minimize

$$\min_{(w \in Rn, b \in R)} \sum_{i=1}^{l} (yi - (w^T x_i + b))$$

$$U = \begin{bmatrix} w_n \\ w_2 \\ w_1 \\ b \end{bmatrix} \qquad A = \begin{bmatrix} x_{11} & x_{21} & -- & x_{1k-1} \\ x_{21} & x_{22} & -- & x_{2k} & 1 \\ x_{21} & x_{22} & -- & x_{2k} & 1 \\ x_{21} & x_{22} & -- & x_{2k} & 1 \end{bmatrix}$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

$$y_n = \begin{bmatrix} y_1 \\ y_n \end{bmatrix}$$

The Least Square problem reduces to

$$Min_{(u)}$$
 $Ju) = (Y - Au)^T (Y - Au)$

$$\mathbf{u} = \begin{bmatrix} \mathbf{w}_n \\ \mathbf{w}_2 \\ \mathbf{w}_1 \\ \mathbf{b} \end{bmatrix} = (A^T A)^{-1} A^T \mathbf{Y}$$

Regularized Linear Regression model

$$f(x) = w_1x_1 + w_2x_2 + ... + wnxn + b = wTx + b.$$

• For simple Least Square Regression model we need to minimize

$$\min_{(w \in Rn, b \in R)} \frac{\lambda}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \sum_{i=1}^{l} (yi - (w^{\mathsf{T}} \mathbf{x}_i + b))$$

$$U = \begin{bmatrix} w_n \\ w_2 \\ w_1 \\ b \end{bmatrix} \qquad A = \begin{bmatrix} x_{11} & x_{21} & -- & x_{1k} & 1 \\ x_{21} & x_{22} & -- & x_{2k} & 1 \\ x_{21} & x_{22} & -- & x_{2k} & 1 \\ x_{21} & x_{22} & -- & x_{2k} & 1 \end{bmatrix}$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

$$y_n = \begin{bmatrix} y_1 \\ y_n \end{bmatrix}$$

The Least Square problem reduces to

$$Min_{(u)}$$
 $J u) = (Y - Au)^T (Y - Au) + \frac{\lambda}{2} u^T u$

$$\mathbf{u} = \begin{bmatrix} \mathbf{w}_n \\ \mathbf{w}_2 \\ \mathbf{w}_1 \\ \mathbf{b} \end{bmatrix} = (A^T A + \lambda I)^{-1} A^T \mathbf{Y}$$

A quadratic function in Rⁿ

n! 2! h11)(n+2)

$$W_{m} = \frac{1}{2n-1}$$

$$W_{m-1} = \frac{1}{2n-1}$$

$$\frac{f(x) = \omega' \varphi(x) + b}{w} \qquad \varphi(x) = \varphi_{m-1}(x)$$

$$\psi_{1}(x) \qquad \varphi_{1}(x)$$

$$\psi_{1}(x) \qquad \psi_{2}(x)$$

$$\psi_{2}(x) \qquad \psi_{3}(x)$$

$$\psi_{4}(x) \qquad \psi_{5}(x)$$

$$\psi_{5}(x) \qquad \psi_{6}(x)$$

$$\psi_{7}(x) \qquad \psi_{7}(x)$$

$$f(x) = \omega^{T} \varphi(x)$$

$$W = \begin{bmatrix} \omega m \\ \omega m_{1} \end{bmatrix} \qquad \varphi(x) = \begin{bmatrix} \varphi_{m}(x) \\ \varphi_{m_{1}}(x) \end{bmatrix}$$

$$\varphi_{1}(x)$$

$$\varphi_{1}(x)$$

$$\varphi_{1}(x)$$

$$\varphi_{2}(x) + \varphi_{3}(x)$$

$$\varphi_{3}(x) + \varphi_{4}(x)$$

$$\varphi_{4}(x) + \varphi_{5}(x)$$

$$W_{3} \chi_{3}^{2} + W_{8} \chi_{2}^{2} + W_{7} \chi_{1}^{2} + W_{8} \chi_{3} \chi_{1}^{2} + W_{5} \chi_{3} \chi_{2}^{2} + W_{5} \chi_{3} \chi_{3}^{2} + W_{5} \chi_{3}^{2} + W_{5$$

Polynomial Regression in Rⁿ

$$f(\mathbf{x}) = wM\phi_{M(\mathbf{x})} + wM_{-1}\phi_{M-1(\mathbf{x})} + \dots + w_{1}\phi_{1(\mathbf{x})} + b = wT\phi(\mathbf{x}) + b.$$

$$\phi(\mathbf{x}) = \begin{bmatrix} \phi_{M(\mathbf{x})} \\ \phi_{M(\mathbf{x})} \\ \phi_{1(\mathbf{x})} \end{bmatrix}$$

For regularized Least Square Regression model we need to minimize

$$\min_{(w \in Rn, b \in R)} \frac{\lambda}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \sum_{i=1}^{l} (yi - (w^{\mathsf{T}} \phi(x) + b))^{\mathbf{2}}$$

$$Min_{(u)} \ J(u) = (Y - Au)^T (Y - Au) + \frac{\lambda}{2} u^T u$$

$$\mathbf{u} = \begin{bmatrix} \mathbf{w}_{M} \\ \mathbf{w}_{2} \\ \mathbf{w}_{1} \\ \mathbf{b} \end{bmatrix} = (A^{T}A + \lambda I)^{-1} A^{T}Y$$

 $\frac{A}{1} \Phi_{m-1}(x_1) - \cdots$ φ, (×), 1 9, (XU,)

2n 2n-2

Basis Functions

 The challenge is to find problem specific basis functions which are able to effectively model the true relationship between data

• If we include too few basis functions or unsuitable basis functions, we might not be able to model the true dependency.

• If we include too many basis functions, we need many data points to fit all the unknown parameters

Radial Basis Functions

 Another class are radial basis functions (RBF). Typical representatives are Gaussian basis functions

$$\phi_{j}(x) = \exp\left(-\frac{1}{2sj^{2}} ||x - cj||2\right)$$

Radial Basis Functions

• Another class are radial basis functions (RBF). Typical representatives are Gaussian basis functions $\phi_j(x) = \exp\left(-\frac{1}{2sj^2}||x-cj||2\right)$

$$R_{1}(x) = e^{-\frac{|1|x - |1|^{2}}{\sigma^{2}}} \times e^{x}$$

$$R_{1}(x) = e^{-\frac{|1|x - |1|^{2}}{\sigma^{2}}} \times e^{x}$$

$$R_{1}(x) = e^{-\frac{|1|x - |1|^{2}}{\sigma^{2}}}$$

$$R_{2}(x) = e^{-\frac{|1|x - |1|^{2}}{\sigma^{2}}}$$

$$R_{3}(x) = e^{-\frac{|1|x - |1|^{2}}{\sigma^{2}}} \times e^{x}$$

$$R_{4}(x) = e^{-\frac{|1|x - |1|^{2}}{\sigma^{2}}} \times e^{x}$$

$$R_{5}(x) = e^{-\frac{|1|x - |1|^{2}}{\sigma^{2}}} \times e^{x}$$

$$R_{6}(x) = e^{-\frac{|1|x - |1|^{2}}{\sigma^{2}}} \times e^{x}$$

$$R_{7}(x) = e^{-\frac{|1|x - |1|^{2}}{\sigma^{2}}} \times e^{x}$$

$$R_{7}(x) = e^{-\frac{|1|x - |1|^{2}}{\sigma^{2}}} \times e^{x}$$

$$R_{7}(x) = e^{-\frac{|1|x - |1|^{2}}{\sigma^{2}}} \times e^{x}$$

$$\sigma(x) = \frac{1}{1+e^{-(\omega_x + b)}}$$

$$I + e^{-(\omega_x + b)} = \frac{1}{1+e^{-(\omega_x + b)}} = \frac{1}{1+e^{-(\omega_x + b)}}$$

$$\sigma(x) = \sigma((x_x, x_1)) = \frac{1}{1+e^{-(\omega_x + b)}} = \frac{1}{1+e^{-(\omega_x + b)}}$$

$$I + e^{-(\omega_x + b)} = \frac{1}{1+e^{-(\omega_x + b)}}$$

$$I + e^{-(\omega_x + b)} = \frac{1}{1+e^{-(\omega_x + b)}}$$

$$\sigma(x, c_1, b_1) = \frac{1}{1+e^{-(c_1^T x + b_1)}} \frac{\varphi_1(x)}{f}$$

$$\sigma(x, c_2, b_2) = \frac{1}{1+e^{-(c_2^T x + b_2)}} \frac{\varphi_2(x)}{1+e^{-(c_2^T x + b_2)}}$$

$$\sigma(x, c_m, b_m) = \frac{1}{1+e^{-(c_m^T x + b_1)}} \frac{\varphi_m(x)}{\varphi_m(x)}$$

$$\sigma(x, c_m, b_m) = \frac{1}{1+e^{-(c_m^T x + b_1)}} \frac{\varphi_m(x)}{\varphi_m(x)}$$

$$\sigma(x, c_m, b_m) = \frac{1}{1+e^{-(c_m^T x + b_1)}} \frac{\varphi_m(x)}{\varphi_m(x)}$$

$$\sigma(x, c_m, b_m) = \frac{1}{1+e^{-(c_m^T x + b_1)}} \frac{\varphi_m(x)}{\varphi_m(x)}$$

$$\sigma(x, c_m, b_m) = \frac{1}{1+e^{-(c_m^T x + b_1)}} \frac{\varphi_m(x)}{\varphi_m(x)}$$

$$\sigma(x, c_m, b_m) = \frac{1}{1+e^{-(c_m^T x + b_1)}} \frac{\varphi_m(x)}{\varphi_m(x)}$$

$$\sigma(x, c_m, b_m) = \frac{1}{1+e^{-(c_m^T x + b_1)}} \frac{\varphi_m(x)}{\varphi_m(x)}$$

$$\sigma(x, c_m, b_m) = \frac{1}{1+e^{-(c_m^T x + b_1)}} \frac{\varphi_m(x)}{\varphi_m(x)}$$

$$\sigma(x, c_m, b_m) = \frac{1}{1+e^{-(c_m^T x + b_1)}} \frac{\varphi_m(x)}{\varphi_m(x)}$$

$$\sigma(x, c_m, b_m) = \frac{1}{1+e^{-(c_m^T x + b_1)}} \frac{\varphi_m(x)}{\varphi_m(x)}$$

$$\sigma(x, c_m, b_m) = \frac{1}{1+e^{-(c_m^T x + b_1)}} \frac{\varphi_m(x)}{\varphi_m(x)}$$

$$\sigma(x, c_m, b_m) = \frac{1}{1+e^{-(c_m^T x + b_1)}} \frac{\varphi_m(x)}{\varphi_m(x)}$$

$$\sigma(x, c_m, b_m) = \frac{1}{1+e^{-(c_m^T x + b_1)}} \frac{\varphi_m(x)}{\varphi_m(x)}$$

$$\sigma(x, c_m, b_m) = \frac{1}{1+e^{-(c_m^T x + b_1)}} \frac{\varphi_m(x)}{\varphi_m(x)}$$

IT582 Foundation of Machine Learning

