- **9.1** If L(x) and U(x) satisfy $P_{\theta}(L(X) \leq \theta) = 1 \alpha_1$ and $P_{\theta}(U(X) \geq \theta) = 1 \alpha_2$, and $L(x) \leq U(x)$ for all x, show that $P_{\theta}(L(X) \leq \theta \leq U(X)) = 1 - \alpha_1 - \alpha_2$.
- 9.3 The independent random variables X_1, \ldots, X_n have the common distribution

$$P(X_i \le x) = \begin{cases} 0 & \text{if } x \le 0 \\ (x/\beta)^{\alpha} & \text{if } 0 < x < \beta \\ 1 & \text{if } x \ge \beta. \end{cases}$$

- (a) In Exercise 7.10 the MLEs of α and β were found. If α is a known constant, α_0 , find an upper confidence limit for β with confidence coefficient .95.
- (b) Use the data of Exercise 7.10 to construct an interval estimate for β . Assume that α is known and equal to its MLE.
- 9.5 In Example 9.2.5 a lower confidence bound was put on p, the success probability from a sequence of Bernoulli trials. This exercise will derive an upper confidence bound. That is, observing X_1, \ldots, X_n , where $X_i \sim \text{Bernoulli}(p)$, we want an interval of the form $[0, U(x_1, ..., x_n))$, where $P_p(p \in [0, U(X_1, ..., X_n))) \ge 1 - \alpha$.
 - (a) Show that inversion of the acceptance region of the test

$$H_0: p = p_0$$
 versus $H_1: p < p_0$

will give a confidence interval of the desired confidence level and form.

- (b) Find equations, similar to those given in (9.2.8), that can be used to construct the confidence interval.
- 9.7 (a) Find the $1-\alpha$ confidence set for a that is obtained by inverting the LRT of $H_0: a = a_0 \text{ versus } H_1: a \neq a_0 \text{ based on a sample } X_1, \ldots, X_n \text{ from a } n(\theta, a\theta)$ family, where θ is unknown.
 - (b) A similar question can be asked about the related family, the $n(\theta, a\theta^2)$ family. If X_1, \ldots, X_n are iid $n(\theta, a\theta^2)$, where θ is unknown, find the $1-\alpha$ confidence set based on inverting the LRT of H_0 : $a = a_0$ versus H_1 : $a \neq a_0$.
- **9.11** If T is a continuous random variable with cdf $F_T(t|\theta)$ and $\alpha_1 + \alpha_2 = \alpha$, show that an α level acceptance region of the hypothesis $H_0: \theta = \theta_0$ is $\{t: \alpha_1 \leq F_T(t|\theta_0) \leq 1 - \alpha_2\}$, with associated confidence $1 - \alpha$ set $\{\theta : \alpha_1 \leq F_T(t|\theta) \leq 1 - \alpha_2\}$.
- **9.17** Find a $1-\alpha$ confidence interval for θ , given X_1,\ldots,X_n iid with pdf
 - (a) $f(x|\theta) = 1$, $\theta \frac{1}{2} < x < \theta + \frac{1}{2}$. (b) $f(x|\theta) = 2x/\theta^2$, $0 < x < \theta$, $\theta > 0$.

- 9.23 (a) Let X_1, \ldots, X_n be a random sample from a Poisson population with parameter λ and define $Y = \sum X_i$. In Example 9.2.15 a confidence interval for λ was found using the method of Section 9.2.3. Construct another interval for λ by inverting an LRT, and compare the intervals.
 - (b) The following data, the number of aphids per row in nine rows of a potato field, can be assumed to follow a Poisson distribution:

Use these data to construct a 90% LRT confidence interval for the mean number of aphids per row. Also, construct an interval using the method of Example 9.2.15.

9.25 If X_1, \ldots, X_n are iid with pdf $f(x|\mu) = e^{-(x-\mu)}I_{[\mu,\infty)}(x)$, then $Y = \min\{X_1, \ldots, X_n\}$ is sufficient for μ with pdf

$$f_Y(y|\mu) = ne^{-n(y-\mu)}I_{[\mu,\infty)}(y).$$

In Example 9.2.13 a $1-\alpha$ confidence interval for μ was found using the method of Section 9.2.3. Compare that interval to $1-\alpha$ intervals obtained by likelihood and pivotal methods.

- **9.29** Let X_1, \ldots, X_n are a sequence of n Bernoulli(p) trials.
 - (a) Calculate a $1-\alpha$ credible set for p using the conjugate beta(a,b) prior.
 - (b) Using the relationship between the beta and F distributions, write the credible set in a form that is comparable to the form of the intervals in Exercise 9.21. Compare the intervals.
- **9.35** Let X_1, \ldots, X_n be a random sample from a $n(\mu, \sigma^2)$ population. Compare expected lengths of 1α confidence intervals for μ that are computed assuming
 - (a) σ^2 is known.
 - (b) σ^2 is unknown.