Programación Avanzada y Estructuras de Datos 8. Grafos

Víctor M. Sánchez Cartagena

Grado en Ingeniería en Inteligencia Artificial Dep. Lenguajes y Sistemas Informáticos Universidad de Alicante

11 de diciembre de 2024

Índice

- El tipo grafo
- Representación de grafos
- Recorrido en profundidad
- Recorrido en anchura
- Grafos acíclicos dirigidos

Ejemplo introductorio

¿Qué estructura de datos emplearías para representar los siguientes problemas?

- Obtener la combinación de vuelos más barata para ir de un aeropuerto a otro
- Obtener la ruta por carretera más corta entre dos ciudades
- Crear redes de comunicaciones con mínimo coste para que todas las ciudades deseadas estén conectadas

Ejemplo introductorio

¿Qué estructura de datos emplearías para representar los siguientes problemas?

- Obtener la combinación de vuelos más barata para ir de un aeropuerto a otro
- Obtener la ruta por carretera más corta entre dos ciudades
- Crear redes de comunicaciones con mínimo coste para que todas las ciudades deseadas estén conectadas

Un **grafo**

Definición

Definición de grafo

Un grafo G está formado por dos conjuntos V y A: G = (V, A)

- V es un conjunto finito no vacío de vértices
- A es un conjunto de **aristas** o **arcos**, tal que cada arista a_i es un par de vértices $a_i = (v_i, v_k)$

Tipos de grafo

Dependiendo de las restricciones sobre $a_i = (v_j, v_k)$:

 Multigrafo: sin restricciones, existen arcos reflexivos y múltiples ocurrencias del mismo arco

Digrafo: no hay múltiples ocurrencias del mismo arco

 Grafo no dirigido: las aristas indican que los vértices están conectados en ambos sentidos. No hay aristas reflexivas

Tipos de grafos

Pregunta

¿Cuál es el máximo número de aristas en un grafo no dirigido?¿Cuál es el máximo número de arcos en un digrafo con *n* vértices?

Tipos de grafos

Pregunta

¿Cuál es el máximo número de aristas en un grafo no dirigido?¿Cuál es el máximo número de arcos en un digrafo con *n* vértices?

No dirigido: $\frac{n \cdot (n-1)}{2}$ aristas

Tipos de grafos

Pregunta

¿Cuál es el máximo número de aristas en un grafo no dirigido?¿Cuál es el máximo número de arcos en un digrafo con *n* vértices?

No dirigido: $\frac{n \cdot (n-1)}{2}$ aristas

Dirigido: n² arcos

- (Grafos no dirigidos) Los vértices v₁ y v₂ son adyacentes si (v₁, v₂) ∈ A ∨ (v₂, v₁) ∈ A. La arista (v₁, v₂) (o (v₂, v₁)) es incidente a ambos vértices
- (Grafos dirigidos) El vértice v₁ es adyacente hacia v₂ y el vértice v₂ es adyacente desde v₁ si (v₁, v₂) ∈ A. El arco (v₁, v₂) es incidente a v₁ y v₂
- (Grafos no dirigidos) Adyacencia de un vértice: conjunto de vértices tal que hay una arista que los relaciona:

$$Ay(x) = \{v_i : v_i \in V \land (x, v_i) \in A\}$$

(Grafos dirigidos) Adyacencia de entrada:

$$Ay_{E}(x) = \{v_{i} : v_{i} \in V \land (v_{i}, x) \in A\}$$

(Grafos dirigidos) Adyacencia de salida:

$$\mathrm{Ay}_{\mathrm{S}}(x) = \{v_i : v_i \in V \land (x, v_i) \in A\}$$

- (Grafos dirigidos) Grado de entrada: |Ay_E(x)|
- (Grafos dirigidos) Grado de salida: |Ays(x)|
- (Grafos dirigidos) Grado: $|Ay_E(x)| + |Ay_S(x)|$
- (Grafos no dirigidos) Grado: |Ay(x)|

- Un camino desde v_p hasta v_q es una secuencia de vértices $(v_p, v_1, v_2, ..., v_n, v_q)$, tal que (v_p, v_1) , (v_1, v_2) , ..., (v_n, v_q) son arcos/aristas en A
- La longitud de un camino es el número de arcos/aristas que contiene
- Un camino simple no tiene vértices repetidos (excepto el primer y último)
- Un ciclo es un camino simple en el que el primer y último vértice coinciden

Pregunta

- ¿(3,2,4,3) es un ciclo? ¿De qué longitud?
- ¿(3,2,4,1,4,3) es un ciclo? ¿De qué longitud?

- Un subgrafo de un grafo G = (V, A) es un grafo G' = (V', A') tal que $V' \subseteq V$ y $A' \subseteq A$
- Un árbol extendido de un grafo G = (V, A) es un subgrafo T = (V', A') de G tal que T es un árbol y V' = V

- Un grafo es conexo si $\forall v_i, v_j \in V$, existe un camino de v_i a v_j
- Las componentes fuertemente conexas de un grafo son el conjunto maximal de subgrafos conexos
 - Un grafo conexo tiene una única componente fuertemente conexa
- Un grafo acíclico es aquel que no tiene ciclos

Índice

- El tipo grafo
- Representación de grafos
- Recorrido en profundidad
- Recorrido en anchura
- Grafos acíclicos dirigidos

- Dado un grafo G = (V, A) con n = |V| (n vértices), la **matriz de adyacencia** es una matriz M cuadrada $n \times n$ tal que:
 - M[i][j] = 1 si (v_i, v_j) ∈ A
 M[i][j] = 0 si (v_i, v_j) ∉ A
- Para grafos no dirigidos, la matriz es simétrica respecto a la diagonal principal, que tiene todos los valores a 0.

Γ0	1	0	0]
0 0 1 0	0	1	0 0 1 0
1	0	0	1
0	0	0	0

 Lista de adyacencia: Lista enlazada con la adyacencia de salida para cada vértice

Pregunta

¿Cuál es la complejidad temporal en el peor caso, para un digrafo con n vértices, de las siguientes operaciones en cada representación?

- Búsqueda (comprobar si hay un arco de v₁ a v₂)
- Inserción de un arco
- Cálculo de la adyacencia de salida de un vértice
- Cálculo de la adyacencia de entrada de un vértice

Operación	Matriz	Lista
Búsqueda		
Inserción		
$Ay_{E}(x)$		
$Ay_S(x)$		

Pregunta

¿Cuál es la complejidad temporal en el peor caso, para un digrafo con n vértices, de las siguientes operaciones en cada representación?

- Búsqueda (comprobar si hay un arco de v₁ a v₂)
- Inserción de un arco
- Cálculo de la adyacencia de salida de un vértice
- Cálculo de la adyacencia de entrada de un vértice

Operación	Matriz	Lista
Búsqueda	<i>O</i> (1)	<i>O</i> (<i>n</i>)
Inserción	<i>O</i> (1)	O(n)
$Ay_{E}(x)$	<i>O</i> (<i>n</i>)	$O(n^2)$
$Ay_S(x)$	O(n)	O(n)

Pregunta

¿Hay algún motivo para emplear lista de adyacencia en vez de matriz de adyacencia?

Pregunta

¿Hay algún motivo para emplear lista de adyacencia en vez de matriz de adyacencia?

Sí, la complejidad espacial. En la matriz siempre es $\Theta(n^2)$, y en la lista es proporcional al número de arcos. Preferiremos la representación en lista para grafos dispersos.

Índice

- El tipo grafo
- Representación de grafos
- Recorrido en profundidad
- Recorrido en anchura
- Grafos acíclicos dirigidos

- Recorrer un grafo consiste en listar todos sus vértices, una vez cada uno
- El recorrido en profundidad es una generalización del preorden aplicado a grafos

```
visitados \leftarrow {}

function DFS(v,G)

visitados \leftarrow visitados \cup {v}

visitar(v)

for w \in Ay_S(v) do

if w \notin visitados then

DFS(w, G)
```

- Los arcos (v, w) permiten construir un árbol extendido en profundidad
- Una vez construido el árbol, se pueden clasificar los arcos del grafo:
 - De árbol: los que forman parte del árbol extendido en profundidad
 - De retroceso: van de un vértice a un ascendente en el árbol
 - De avance: van de un vértice a un descendiente en el árbol
 - De cruce: ninguno de los anteriores
- Bosque extendido en profundidad: al terminar DFS(v), se vuelve a iniciar el algoritmo si todavía no se han visitado todos los vértices
- El grafo es acíclico
 ⇔ el bosque extendido en profundidad no tiene arcos de retroceso
- El árbol extendido en profundidad no contiene todos los vértices
 - \rightarrow el grafo no es conexo

Ejercicio

Calcula el recorrido en profundidad (DFS) del siguiente grafo, partiendo de los vértices 1,2,3,4 y 5. Recorre el conjunto ${\rm Ay}_S$ en orden de menor a mayor.

Ejercicio

Calcula el bosque extendido en profundidad del siguiente grafo partiendo del vértice 5. Recorre el conjunto ${\rm Ay}_S$ en orden de mayor a menor. Clasifica los arcos.

Ejercicio

Calcula el bosque extendido en profundidad del siguiente grafo partiendo del vértice 1. Recorre el conjunto Ay_S en orden de menor a mayor. Clasifica los arcos. ¿Este grafo tiene ciclos? ¿Es conexo?

Ejercicio

Calcula el bosque extendido en profundidad del siguiente grafo partiendo del vértice 1. Recorre el conjunto $\mathrm{Ay}_{\mathcal{S}}$ en el mismo orden que aparece en las listas de adyacencia. Clasifica los arcos. ¿Este grafo tiene ciclos? ¿Es conexo?

Índice

- El tipo grafo
- Representación de grafos
- Recorrido en profundidad
- Recorrido en anchura
- Grafos acíclicos dirigidos

Recorrido en anchura

```
function BFS(v,G)
    visitados \leftarrow \{\}
    cola \leftarrow ()
    visitados \leftarrow visitados \cup \{v\}
    enqueue(cola, v)
    visitar(v)
    while cola \neq () do
         w_1 \leftarrow \text{front}(cola)
         dequeue(cola)
         for w_2 \in Ay_S(w_1) do
              if w_2 \notin \text{visitados then}
                  visitar(w_2)
                  enqueue(cola, w_2)
                  visitados \leftarrow visitados \cup {W_2}
```

Recorrido en anchura

- Los arcos (w₁, w₂) permiten construir un árbol extendido en anchura
- Los arcos se pueden clasificar del mismo modo que en el recorrido en profundidad
- Las propiedades sobre ciclos y grafos conexos también se mantienen
- El bosque extendido en anchura contiene los caminos más cortos desde el vértice inicial a cada vértice

Recorrido en anchura

Ejercicio

Calcula el recorrido en anchura (BFS) del siguiente grafo, partiendo de los vértices a, b y d. Recorre el conjunto ${\rm Ay}_{\mathcal S}$ en orden alfabético. Dibuja los correspondientes árboles extendidos en anchura.

Recorridos en grafos no dirigidos

- Se aplican los mismos algoritmos DFS y BFS presentados anteriormente
- Sólo hay dos tipos de aristas:
 - De árbol
 - De retroceso: forman ciclos
- El grafo es conexo
 ⇔ el árbol extendido en profundidad contiene todos los vértices

Recorridos en grafos no dirigidos

Ejercicio

Calcula el bosque extendido en profundidad y el bosque extendido en anchura a partir del vértice 1. Clasifica los arcos. Recorre el conjunto Ay de menor a mayor. El grafo es **no dirigido** y la lista de adyacencia sólo contiene las aristas en uno de los dos sentidos.

$$\begin{array}{c} 1 \to 3 \to 4 \to 6 \to 8 \to 9 \\ 2 \to 4 \to 5 \to 7 \to 10 \\ 3 \to 5 \to 6 \\ 4 \to 6 \to 8 \\ 5 \to 7 \to 8 \to 10 \\ 6 \to 7 \to 8 \to 9 \\ 7 \to 8 \to 9 \\ 8 \to 9 \to 10 \\ 9 \to 10 \\ 10 \end{array}$$

Ejercicio adicional

Ejercicio

Calcula el bosque extendido en profundidad a partir del vértice 1 del siguiente grafo **dirigido**. Clasifica los arcos. Recorre el conjunto Ay_S de menor a mayor. Identifica al menos 4 ciclos en el grafo.

$$\begin{array}{c} 1 \rightarrow 3 \rightarrow 8 \\ 2 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 9 \rightarrow 10 \\ 3 \rightarrow 5 \rightarrow 6 \rightarrow 10 \\ 4 \rightarrow 2 \rightarrow 6 \rightarrow 8 \\ 5 \rightarrow 7 \\ 6 \rightarrow 7 \rightarrow 8 \rightarrow 10 \\ 7 \\ 8 \rightarrow 1 \rightarrow 10 \\ 9 \rightarrow 4 \\ 10 \rightarrow 3 \rightarrow 5 \\ 11 \rightarrow 10 \rightarrow 12 \rightarrow 13 \\ 12 \rightarrow 2 \rightarrow 3 \rightarrow 11 \end{array}$$

Índice

- El tipo grafo
- Representación de grafos
- Recorrido en profundidad
- Recorrido en anchura
- Grafos acíclicos dirigidos

Grafos acíclicos dirigidos

- La detección de ciclos (arcos de retroceso) permite comprobar si un grafo es acíclico
- Los grafos acíclicos tienen múltiples aplicaciones:
 - Planificación de tareas: los vértices representan tareas y los arcos, requisitos: es necesario completar la tarea A antes de comenzar la tarea B
 - Dependencias entre asignaturas en un plan de estudios
 - Herencia entre clases de un programa en C++
 - etc.
- Ordenamiento topológico: ordenar los vértices de tal manera que para todo arco (v_i, v_j), v_i aparece antes que v_j en el ordenamiento
 - Para la planificación de tareas, implica ordenar las tareas de manera que todos los requisitos se cumplen

