河海大学 2008-2009 学年第一学期

《概率论与数理统计》试卷(A卷)

(供 2007 级工科类各专业使用) 2008 年 12 月

专业_	姓名			学号		成绩			
题号	~	=	Ę	뗃	五	六	t	成绩	
得分									
一、(每空 2 分,本题满分 18 分) 填空题 1. 设某人射击的命中率为 0.5,则他射击 10 次至少命中 2 次的概率为; 2. 设 X 为一随机变量,其分布律为 $\frac{X}{P}$ $\frac{-1}{0.36}$ $\frac{0.36}{1-2q}$ $\frac{1}{q^2}$,则 $q=$;									
X的分布函数	数为								
3. 已知 P(B) =			事件 满人	足条件。	P(AB) = A	$P(\overline{A}\overline{B})$,	$\coprod P(A$	(1) = 0.3,	则
4. 设随机	L变量 X 月		为1的泊	松(Poisso	m)分布,	$\text{In } P\{X =$	$E^2(X)$ }:	=	°
5. 设总体	$X \sim N(\mu$	(ι,σ^2) ,	X_1, X_2, Λ	$,X_n$ 是取	(自X的-	一个简单图	随机样本	$\overline{X} = S$	² 分
别为样本均	值与样本	方差,核	验假设在	$H_0: \mu = \mu$	$_0$, H_1 : μ	$u > \mu_0$,	其中 μ0 为	自己知常数	汝,
则检验统计	量为		,在显著	皆性检验フ	火平为α β	时的拒绝	域为		- °
6. 设 <i>X</i> ₁ ,	Λ,X ₁₀ 是	来自正态	≅总体 N(_l	$\mu, \sigma^2)$ 的	一个简单	.随机样本	云,且		

第 1 页 共 6页 2008 工科《概率论与数理统计》A 卷

$$Y_1 = \frac{1}{6}(X_1 + X_2 + \Lambda + X_6)$$
, $Y_2 = \frac{1}{4}(X_7 + X_8 + X_9 + X_{10})$, $S^2 = \frac{1}{3}\sum_{i=7}^{10}(X_i - Y_2)^2$ 令 $Z = k\frac{Y_1 - Y_2}{S}$, 则当 $k =$ ______ 时, Z 服从 t 分布, 自由度为 ______。

- 二、(本题满分 12 分)某种仪器由三个部件组装而成,假设各部件质量互不影响且它们的优质品率分别为 0.8, 0.7 和 0.9。已知:如果三个部件都是优质品,则组装后的仪器一定合格;如果有一个部件不是优质品,则组装后的仪器不合格率为 0.2;如果有两个部件不是优质品,则仪器的不合格率为 0.6;如果三件都不是优质品,则仪器的不合格率为 0.9。
- (1) 求仪器的不合格率;
- (2) 如果已发现一台仪器不合格,问它有几个部件不是优质品的概率最大。

三、(本题满分 12 分)已知随机变量X的密度函数为

$$f(x) = \begin{cases} c(4x^2 - 4x + 1), & 0 < x < 1 \\ 0, & \text{ } \sharp \succeq \end{cases}$$

求(1)常数c;(2)X的分布函数F(x);(3) $P\{X \le 0.2 \mid 0.1 < X \le 0.5\}$ 。

四、(本题满分 10 分) 设E(X)=2, E(Y)=4, D(X)=4, D(Y)=9, $\rho_{XY}=0.5$, 求

- (1) $U = 3X^2 2XY + Y^2 3$ 的数学期望;
- (2) V = 3X Y + 5的方差。

五、(本题满分 18 分)设二维连续型随机变量(X,Y)的联合概率密度函数为:

$$f(x, y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 2(1 - x) \\ 0, & \text{ } \sharp \dot{\Xi} \end{cases}$$

求:

- (1) 关于X和Y的边缘密度函数 $f_X(x)$ 和 $f_Y(y)$;
- (2) E(X)和D(X);
- (3) 条件概率密度函数 $f_{X|Y}(x|y)$;
- (4) Z=X+Y的概率密度函数 $f_Z(z)$ 。

六、(本题满分 16 分) 设总体 X 的概率密度函数为

$$f(x) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1 \\ 0, & \text{ } \sharp \text{ } \dot{\Xi} \end{cases}$$

其中 $\theta > -1$ 为未知参数, X_1, X_2, Λ, X_n 为来自该总体的一个简单随机样本。

- (1) 求 θ 的矩估计量 $\hat{\theta}_{M}$;
- (2) 求 θ 的极大似然估计量 $\hat{\theta}_{ME}$;
- (3) 若给出来自该总体的一个样本 e^{-1} , e^{-2} , e^{-2} , e^{-1} , e^{-3} , e^{-3} , e^{-2} , e^{-2} , 求概率 $P\{X < 0.2\}$ 的极大似然估计值。

七、(本题满分 14 分) 水泥/用自动包装机包装水泥,每袋额定重量为 50 公斤,某日 开工后随机抽查了 9 袋,称得重量如下(单位:公斤):

49.6 49.3 50.1 50.0 49.2 49.9 49.8 51.0 50.2 设每袋重量服从正态分布 $N(\mu\,,\sigma^2)$ 。

- (1) 试问该包装机工作是否正常?($\alpha = 0.05$)
- (2) 若已知该天包装机包装的水泥重量的方差为 $\sigma^2=0.3$,求水泥平均重量 μ 的置信 度为 95%的置信区间。

(日知: $\overline{x} = 49.9$, s = 0.5362; $z_{0.1} = 1.283$, $z_{0.05} = 1.645$, $z_{0.025} = 1.960$; $t_{0.1}(8) = 1.3968$, $t_{0.1}(9) = 1.3830$, $t_{0.1}(10) = 1.3722$, $t_{0.05}(8) = 1.8695$, $t_{0.05}(9) = 1.8331$, $t_{0.05}(10) = 1.8125$, $t_{0.025}(8) = 2.3060$, $t_{0.025}(9) = 2.2622$, $t_{0.05}(10) = 2.2280$)