标题示例: AutoML for Clustering

常添 所属单位 email@example.com

2025年1月18日

摘要

摘要内容的示例。

1 引言

引言内容的示例。

2 聚类问题定义与优化目标

以下是本章节所定义的符号与描述:

表 1. 符号与描述 1

衣 1: 付亏与抽处 1		
符号	描述	
\overline{D}	数据集的通用表示,包含特定场景下的数据	
$\mathbf{x}(D)$	数据集 D 的特征向量,包含质量与规模信息	
\mathcal{C}	数据清洗方法的集合	
${\cal H}$	聚类算法的集合	
${\cal P}$	聚类算法的超参数空间	
Ω	聚类策略的初始搜索空间	
ω	聚类策略的策略组合	
$S(D,\omega)$	聚类策略 ω 在数据集 D 上的综合得分	
$T_{\text{original}}(D)$	在初始搜索空间上评估的耗时	
$T_{\text{reduced}}(D)$	在优化后搜索空间上评估的耗时	
$\eta(D)$	损失率,表示优化后综合得分的平均下降比例	
$\mathcal{A}(D)$	综合加速比,表示搜索效率的综合提升程度	

在本文中, 我们将数据集记为 D, 其特征向量为 $\mathbf{x}(D)$ 。给定数据清洗方法集合 \mathcal{C} 、聚类算法集合 \mathcal{H} 以及 超参数空间 \mathcal{P} ,定义**聚类策略**为三元组合:

$$\omega = (c, h, \theta), \quad c \in \mathcal{C}, \ h \in \mathcal{H}, \ \theta \in \mathcal{P}.$$
 (2.1)

所有可行组合构成初始搜索空间:

$$\Omega = \mathcal{C} \times \mathcal{H} \times \mathcal{P}. \tag{2.2}$$

 $\subseteq \Omega$ 规模非常大时,若**无法遍历**整个空间,可以采 取**随机采样**或分层**采样**等方法,从 Ω 中选取若干代表性 策略 ω 用于计算并估计综合得分,以平衡搜索精度与时 间成本。

2.1 数据集特征

在真实世界的聚类任务中,数据集往往同时面临多 种质量问题 (错误值、缺失值、噪声)。为便于对不同数 据集进行横向对比与后续建模,本研究对每个数据集 D 抽取如下特征向量:

(2.3)

其中:

- ErrorRate(D): 错误值占总单元的比例;
- MissingRate(D): 缺失值占总单元的比例;
- NoiseRate(D): 噪声或离群点占总单元的比例;
- m: 特征维度(属性数量);
- n: 记录条数 (样本规模)。

2.2 聚类评价指标

给定数据集 D 与聚类策略 ω ,我们选用以下评价指 标:

Davies-Bouldin (DB) Score 衡量簇内紧凑度与簇 间分离度,值越低越好:

$$DB(D,\omega) = \frac{1}{K} \sum_{i=1}^{K} \max_{j \neq i} \left(\frac{S_i + S_j}{d_{ij}} \right), \qquad (2.4)$$

其中 K 为聚类数, S_i 表示第 i 个簇的平均离散度, d_{ij} 表示簇间中心距离。

Silhouette Score (轮廓系数) 衡量每个样本在所属簇 的凝聚力与最近簇的分离度,值越高越好:

$$Sil(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}},$$
(2.5)

其中 a(x) 为 x 到同簇其他样本的平均距离, b(x) 为 x到最近簇的平均距离。

综合得分 本研究将二者线性组合得到:

$$S(D,\omega) = \alpha \cdot (-DB(D,\omega)) + \beta \cdot \text{Sil}(D,\omega), \qquad (2.6)$$

其中 $\alpha, \beta > 0$ 为加权系数。

2.3 优化目标与衡量指标

当对搜索空间 Ω 做全面或抽样评估后,我们希望找 到:

$$\omega^*(D) = \arg\max_{\omega \in \Omega} S(D, \omega), \tag{2.7}$$

但在 Ω 很大时,穷尽搜索会带来极高的时间成本。因此 $\mathbf{x}(D) = (\text{ErrorRate}(D), \text{MissingRate}(D), \text{NoiseRate}(D), m, n),$ 核心目标是: 在不显著牺牲聚类质量的前提下,尽可能 减少实际运行时间。为此,我们定义了以下两个指标:

2.3.1 损失率

记 $S(D,\omega)$ 为策略 ω 在 D 上的综合得分; 令 $\Omega'(D)$ 表示优选子空间。定义损失率:

$$\eta(D) = 1 - \frac{\frac{1}{|\Omega'(D)|} \sum_{\omega \in \Omega'(D)} S(D, \omega)}{\frac{1}{|\Omega|} \sum_{\omega \in \Omega} S(D, \omega)}.$$
 (2.8)

损失率 $\eta(D) \in [0,1]$, 越接近 0 表示优化后的平均聚类 质量越接近完整搜索。

2.3.2 综合加速比

评估方案 ω 的时间耗时记为 $T(\omega, D)$ 。若在原始空 间 Ω 上做全量搜索,时间为

$$T_{\text{original}}(D) = \sum_{\omega \in \Omega} T(\omega, D).$$
 (2.9)

在优选子空间 $\Omega'(D)$ 上搜索时为

$$T_{\text{reduced}}(D) = \sum_{\omega \in \Omega'(D)} T(\omega, D).$$
 (2.10)

综合加速比定义为:

符号

$$\mathcal{A}(D) = (1 - \eta(D)) \frac{T_{\text{original}}(D)}{T_{\text{reduced}}(D)}$$
 (2.11)

以综合衡量聚类质量损失与评估时间降低的平衡性。

3 先验数据与映射构建

描述

为提升聚类策略搜索的效率,我们可将数据集划分 为先验数据(离线学习)与测试数据(在线应用),并通 过多标签学习构建"数据特征 → 优选子空间"的映射。 以下是本章节所定义的符号与描述:

表 2: 符号与描述 2

ב ניו	油足
D_{train}	先验数据集(训练集),用于离线评估和学习先验
D_{test}	测试数据集,用于实际部署和快速优化
K	Top-K 大小,表示在先验阶段选取的前 K 个最优
$\mathbf{M}^{(i)}$	数据集 $D^{(i)}$ 的 Top-K 策略矩阵
ℓ	标签,表示某一优选方案的标识符
${\cal L}$	标签空间,包含所有优选方案的标签集合
$\mathbf{L}^{(i)}$	数据集 $D^{(i)}$ 对应的多标签集合
$\mathcal M$	训练集,包含所有先验数据的特征与标签集合
${\cal F}$	多标签分类器,用于预测优选方案标签
$q^{(j)}$	标签 $\ell_{\omega^{(j)}}$ 为优选方案的概率
r	预测阶段保留的最高优选标签数
\mathbf{L}'	预测阶段保留的最高优选标签集合。
$\Omega'(D)$	数据集 D 的优选子空间, $\Omega'(D) \subseteq \Omega$ 。
G	映射函数,将数据集特征向量映射到优选子空间
$\hat{\omega}$	最优方案,即在 $\Omega'(D_{\mathrm{test}})$ 中得分最高的组合

3.1 先验数据集与测试数据集

- 先验数据集 D_{train}: 包含若干历史数据集 $\{D^{(1)}, D^{(2)}, \dots\}$, 可在上面对 Ω 进行大范围 或抽样评估,形成"先验知识"。
- 测试数据集 D_{test} : 实际部署场景下的新数据集。目 标是利用先验知识,减少搜索规模并降低评估时间。

在先验数据集 $D^{(i)}$ 上,遍历或采样若干 $\omega \in \Omega$,计 算综合得分 $S(D^{(i)},\omega)$; 选取**评分最高**的 K 个组合构成 Top-K 方案矩阵

$$\mathbf{M}^{(i)} = \begin{pmatrix} c_1 & h_1 & \boldsymbol{\theta}_1 & S_1 \\ \vdots & \vdots & \vdots & \vdots \\ c_K & h_K & \boldsymbol{\theta}_K & S_K \end{pmatrix}, \tag{3.1}$$

其中第j 行的策略可记为 $\omega_j^{(i)} = (c_j, h_j, \boldsymbol{\theta}_j)$,得分为 S_j 。 行从上到下按 S_i 降序排列。

3.2 基于多标签学习的映射策略

当每个先验数据集 $D^{(i)}$ 可对应多个优选方案时,本 研究采用**多标签学习**来构建分类器 F, 并基于该分类器 得到映射函数 G。下文说明标签空间定义、数据构造与 预测流程。

3.2.1 标签空间与多标签分配

将所有出现过的优选策略记为

$$\{\omega^{(1)}, \omega^{(2)}, \dots, \omega^{(m)}\},\$$

为每个优选策略 $\omega^{(j)}$ 分配唯一标签 $\ell_{\omega^{(j)}}$,形成离散标签

$$\mathcal{L} = \{\ell_{\omega^{(1)}}, \ell_{\omega^{(2)}}, \dots, \ell_{\omega^{(m)}}\}. \tag{3.2}$$

若先验数据集 $D^{(i)}$ 的 Top-K 组合为

$$\mathbf{M}^{(i)} = \{\omega_1^{(i)}, \omega_2^{(i)}, \dots, \omega_K^{(i)}\},\$$

则其多标签集合为

$$\mathbf{L}^{(i)} = \{\ell_{\omega_1^{(i)}}, \ell_{\omega_2^{(i)}}, \dots, \ell_{\omega_E^{(i)}}\}. \tag{3.3}$$

可见标签 ℓ_{ω} 与聚类策略 ω 是——对应的,以便后续分 类器的输出可映射回具体策略。

3.2.2 训练数据与多标签分类器

 $^{ ext{dam} ext{H}}$ 训练数据构造 将每个先验数据集 $D^{(i)}$ 视为一条多标签 样本: 优方案

 $(\mathbf{x}(D^{(i)}), \mathbf{L}^{(i)}).$

汇总所有先验数据集,得到训练集

$$\mathcal{M} = \{ (\mathbf{x}(D^{(1)}), \mathbf{L}^{(1)}), \dots, (\mathbf{x}(D^{(N)}), \mathbf{L}^{(N)}) \}.$$
(3.4)

模型训练 记 $\mathcal F$ 为多标签分类器,它输出对于每个标签 $\ell_{\omega^{(j)}}$ 的概率 $q^{(j)}\in[0,1]$ 。可根据具体需求使用 Binary Relevance、ML-kNN、神经网络等多标签算法。

3.2.3 预测与映射函数 G

在测试阶段,给定新数据集 D_{test} 的特征 $\mathbf{x}(D_{\text{test}})$, 可得到:

$$\mathcal{F}(\mathbf{x}(D_{\text{test}})) = \{ (\ell_{\omega^{(1)}}, q^{(1)}), \dots, (\ell_{\omega^{(m)}}, q^{(m)}) \}, \quad (3.5)$$

从中选取概率最高的r个标签:

$$\mathbf{L}' = \{\ell_{\omega^{(j)}} \mid q^{(j)} \text{ 属于前}r \ \text{大}\},$$
 (3.6)

然后再映射回相应的策略,得到优化后的搜索空间:

$$\Omega'(D_{\text{test}}) = \{ \omega^{(j)} \mid \ell_{\omega^{(j)}} \in \mathbf{L}' \}. \tag{3.7}$$

基于上述预测过程,可以将"多标签分类器"的输出转化为"映射函数":

$$G(\mathbf{x}(D)) = \Omega'(D). \tag{3.8}$$

在测试阶段,只需在 $\Omega'(D)$ 内对相对少量的组合做聚类评估,从而显著降低评估成本并提升实际搜索速度。

4 自动化聚类优化流程

4.1 流程概念图(占位)

基于上述思想,本文提出的自动化聚类优化方法主要分为训练阶段和测试阶段,下面是这两个阶段算法的 伪代码实现。

4.2 训练阶段

```
Algorithm 1: 训练阶段: 生成训练数据与训练多标签分类器
```

Input: 先验数据集 $D_{\text{train}} = \{D^{(1)}, \dots, D^{(N)}\};$ 搜索空间 Ω ;

授系至问 M; Top-K 大小 K。

Output: 多标签分类器 F

 $\mathcal{M} \leftarrow \texttt{GenerateTrainingData}(D_{\text{train}}, \Omega, K);$

 $\mathcal{F} \leftarrow \mathtt{TrainClassifier}(\mathcal{M});$

return \mathcal{F}

Function

Function TrainClassifier(\mathcal{M}):

// 可根据具体多标签算法实现 训练多标签分类器 *F*;

 $_{-}$ return ${\cal F}$

4.3 测试阶段

在此基础上,根据损失率 $\eta(D_{\mathrm{test}})$ 与综合加速比 $\mathcal{A}(D_{\mathrm{test}})$ 即可评估优化后的时间效率与聚类质量损失情况。

Algorithm 2: 测试阶段: 寻找最优方案 $\hat{\omega}$

```
Input: 测试数据集 D_{\text{test}};
多标签分类器 F;
搜索空间 \Omega;
保留标签数 r。
Output: 最优方案 \hat{\omega}
计算 \mathbf{x}(D_{\text{test}});
\mathbf{L}' \leftarrow \{\};
foreach \ell \in \mathcal{L} do
     q_{\ell} \leftarrow 置信度(\mathcal{F}, \mathbf{x}(D_{\text{test}}), \ell);
     \mathbf{L}' \leftarrow \mathbf{L}' \cup \{(\ell, q_{\ell})\};
选取置信度最高的 r 个标签 \mathbf{L}'_{ton};
映射回优选子空间 \Omega'(D_{\text{test}});
foreach \omega \in \Omega'(D_{test}) do
 | 计算 S(D_{\text{test}}, \omega);
                                                 // 计算综合得分
\hat{\omega} \leftarrow \arg\max_{\omega \in \Omega'(D_{\text{test}})} S(D_{\text{test}}, \omega);
return \hat{\omega}
```