

State of Transfer Learning in NLP

Sudalai Rajkumar

13 - 16 November 2019

Bengaluru

12 JULY 2018 / NATURAL LANGUAGE PROCESSING

NLP's ImageNet moment has arrived

Count / TFIDF

Word	T	F	IDF	TF*IDF		
vvoid	А	В	IDI	Α	В	
The	1/7	1/7	log(2/2) = 0	0	0	
Car	1/7	0	log(2/1) = 0.3	0.043	0	
Truck	0	1/7	log(2/1) = 0.3	0	0.043	
ls	1/7	1/7	log(2/2) = 0	0	0	
Driven	1/7	1/7	log(2/2) = 0	0	0	
On	1/7	1/7	log(2/2) = 0	0	0	
The	1/7	1/7	log(2/2) = 0	0	0	
Road	1/7	0	log(2/1) = 0.3	0.043	0	
Highway	0	1/7	log(2/1) = 0.3	0	0.043	

Word Embeddings

Pretrained Language Models

Pretrained Language Models

- BERT
- GPT2
- XLNet
- XLM
- RoBERTa
- DistilBERT
- ULMFit
- ELMc

Transformer Architecture

http://jalammar.github.io/illustrated-transformer/

Bidirectional Encoder Representations for Transformers

BERT Pre-training tasks

- Masked Language Modeling
 - 15% of the tokens are chosen for masking
 - Replaced with [MASK] 80% of the times
 - Replaced with random token 10% of the times
 - Left unchanged 10% of the times
- Next sentence prediction
 - O Given a pair of sentences, the task is to predict whether the second sentence is the actual next sentence of the first sentence
 - Binary classification task

BERT Tokenization

Tokenization - Wordpiece

- Attention Mask (optional) a sequence of 1s and 0s, with 1s for all input tokens and 0s for all padding tokens.
- Segment Mask (optional) a sequence of 1s and 0s used to identify whether the input is one sentence or two sentences long.

Downstream NLP Tasks

- Sequence classification
 - Sentiment analysis
 - Document classification
- Sentence Pair classification
 - Textual similarity
- Question Answering
- Single Sentence Tagging
 - Named Entity Recognition
- Natural Language Generation

Performance Comparison

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task single models on dev										
$BERT_{LARGE}$	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
$XLNet_{LARGE}$	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	_	_
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-

From RoBERTa paper

Performance Comparison

	BERT	RoBERTa	DistilBERT	XLNet
Size (millions)	Base: 110 Large: 340	Base: 110 Large: 340	Base: 66	Base: ~110 Large: ~340
Training Time	Base: 8 x V100 x 12 days* Large: 64 TPU Chips x 4 days (or 280 x V100 x 1 days*)	Large: 1024 x V100 x 1 day; 4-5 times more than BERT.	Base: 8 x V100 x 3.5 days; 4 times less than BERT.	Large: 512 TPU Chips x 2.5 days; 5 times more than BERT.
Performance	Outperforms state-of- the-art in Oct 2018	2-20% improvement over BERT	3% degradation from BERT	2-15% improvement over BERT
Data	16 GB BERT data (Books Corpus + Wikipedia). 3.3 Billion words.	160 GB (16 GB BERT data + 144 GB additional)	16 GB BERT data. 3.3 Billion words.	Base: 16 GB BERT data Large: 113 GB (16 GB BERT data + 97 GB additional). 33 Billion words.

Hack Session

build passing license Apache-2.0

website online

Model Performance on Fashion Reviews

Model Name	001010101010AUC 1010 1010	Training Time	Prediction Time
BERT (Base uncased)	0.9644	300	40
BERT (Base cased)	0.9608	300	0111110001100
XLNet (Base cased)	0.9632	404	11000000105500111000000
RoBERTa	0.9635 00 0	1 0 00 324 00 00000	110000001036 0111000000
DistilBERT	0.9572	181	24 1000111111

References

- https://ruder.io/nlp-imagenet/
- http://jalammar.github.io/illustrated-transformer/
- https://yashuseth.blog/2019/06/12/bert-explained-faqs-understand-bert-working/
- https://towardsdatascience.com/bert-roberta-distilbert-xlnet-which-one-to-use-3d5ab82b a5f8

Thank you!

