21.1

INFLUENCE OF NONUNIFORM EXTERNAL MAGNETIC FIELDS AND ANODE-CATHODE SHAPING ON MAGNETIC INSULATION IN COAXIAL TRANSMISSION LINES

MICHAEL A. MOSTROM

Intense Particle Beam Theory Group Los Alamos Scientific Laboratory Los Alamos, New Mexico 87545

Abstract

Coaxial transmission lines, used to transfer the high voltage pulse into the diode region of a relativistic electron beam generator, have been studied using the two-dimensional time-dependent fully relativistic and electromagnetic particle simulation code CCUBE. A simple theory of magnetic insulation that agrees well with simulation results for a straight cylindrical coax in a uniform external magnetic field is used to interpret the effects of anode-cathode shaping and nonuniform external magnetic fields. Loss of magnetic insulation appears to be minimized by satisfying two conditions: (1) the cathode surface should follow a flux surface of the external magnetic field; (2) the anode should then be shaped to insure that the magnetic insulation impedance, including transients, is always greater than the effective load impedance wherever there is an electron flow in the anode-cathode gap.

Introduction

Elsewhere in these proceedings, Mike Jones has described both theory and simulation of foilless diodes. The achievement of high voltage (> 5 MeV), high current (> 500 ka/cm²), laminar electron beams by such diodes appears at present to require external magnetic fields on the order of 100 kg. The fringing fields from the external magnetic field coils will flare out to low values back in the coaxial transmission line feeding the diode. Also, in this same fringe field region the transmission line anode and cathode radii may taper dramatically in order to provide the proper transition in impedance and size between the diode and the insulator stack. However, previous theory 1-4 and simulation 5 of transmission lines has dealt only with straight coaxial transmission lines and no external magnetic field or with parallel plate transmission lines with a uniform external magnetic field. We are, therefore, in the process of addressing the following three questions: (1) What is the impedance of a straight coaxial transmission line with a uniform external magnetic field; (2) in a tapered coaxial transmission line with a nonuniform external magnetic field, what is the proper cathode shape relative to the external magnetic field lines; (3) What constraints on the impedance profile along the transmission line minimize the loss of magnetic insulation? These questions are being studied using the two-dimensional time-dependent fully relativistic and electromagnetic particle simulation code CCUBE and simple theories. Preliminary results are given below.

Straight Coaxial Transmission Line, Uniform B_0

An analytic theory of magnetic insulation in a straight coaxial transmission line with a uniform external axial magnetic field $\underline{B}_0=B_0\hat{z}$ appears to require some further simplifying assumption or approximation (e.g., ignoring the axial self-magnetic field or imposing some relation between radius and one or more velocity components). The choice of such a simplifying approximation can perhaps be guided by simulations, but at the time of writing this paper, only the simplest possible theory has been completed and compared with simulations.

This theory first involves generalizing the critical current calculation by Creedon 4 to include the uniform external field \underline{B}_0 . The result is

Report Documentation Page				Form Approved OMB No. 0704-0188		
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.						
1. REPORT DATE		2. REPORT TYPE		3. DATES COVE	RED	
JUN 1979		N/A		-		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Influence Of Nonuniform External Magnetic Fields And Anode-Cathode Shaping On Magnetic Insulation In Coaxial Transmission Lines				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6 AUTHOR(C)				5d. PROJECT NUMBER		
6. AUTHOR(S)						
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Intense Particle Beam Theory Group Los Alamos Scientific Laboratory Los Alamos, New Mexico 87545				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
13. SUPPLEMENTARY NOTES See also ADM002371. 2013 IEEE Pulsed Power Conference, Digest of Technical Papers 1976-2013, and Abstracts of the 2013 IEEE International Conference on Plasma Science. Held in San Francisco, CA on 16-21 June 2013. U.S. Government or Federal Purpose Rights License						
Coaxial transmission lines, used to transfer the high voltage pulse into the diode region of a relativistic electron beam generator, have been studied using the two-dimensional time-dependent fully relativistic and electromagnetic particle simulation code CCUBE. A simple theory of magnetic insulation that agrees well with simulation results for a straight cylindrical coax in a uniform external magnetic field is used to interpret the effects of anode-cathode shaping and nonuniform external magnetic fields. Loss of magnetic insulation appears to be minimized by satisfying two conditions: (1) the cathode surface should follow a flux surface of the external magnetic field; (2) the anode should then be shaped to insure that the magnetic insulation impedance, including transients, is always greater than the effective load impedance wherever there is an electron flow in the anode-cathode gap.						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT				18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT	b. ABSTRACT	c. THIS PAGE	SAR	4	TEST OF STEEL I ENGOTY	

unclassified

unclassified

unclassified

$$I_{c} = \frac{I_{\alpha}}{2n(b/a)} \left[\gamma_{0}^{2} - 1 - \left(\frac{\omega_{c}}{c} \frac{b^{2} - a^{2}}{2b} \right)^{2} \right]^{\frac{1}{2}}$$
 (1)

where $I_{\alpha} \equiv 2\pi m_{\rm e} c/\mu_{\rm 0} e \cong 8500$ A, $\gamma_{\rm 0} \equiv 1 + {\rm eV}_{\rm 0}/m_{\rm e} c^2$ with $V_{\rm 0}$ the anode-cathode potential, $w_{\rm c} \equiv {\rm eB}_{\rm 0}/m_{\rm e}$, and a and b are respectively the cathode and anode radii. Our simple theory involves assuming a relation between $I_{\rm c}$ and the actual total current $I_{\rm M}$ flowing in the transmission line.

Our motivation for this assumption stems from existing magnetic insulation theory 4 for straight coaxial transmission lines with $B_0 = 0$. In all of these theories a free parameter One possibility is a continuum of magnetic insulation states corresponding to different conditions on the electrons in regions where there is a z-variation along the transmission line. Another possibility is a previously overlooked general principle which would allow the electrons to pick a unique insulation state. We believe that the latter is more likely in a transmission line and that the general principle involved is maximization of the entropy production rate. This translates into maximizing the power flow since in a transmission line the terminating load impedance is equivalent to a resistor.* If the impedance at the input to the transmission line is Z_T and the incoming (or right going) voltage there is V_{τ} , then the voltage V_{τ} across the line is

$$V_{L} = 2 V_{I} Z_{L}/(Z_{I} + Z_{L})$$
 (2)

where $Z_L \equiv V_L/I_L$ is the line impedance and I_L is the total line current. The transmitted power $P \equiv V_L$ $I_L = I_L(2V_I - Z_I$ $I_L)$ has a maximum at $I_L = V_I/Z_I$ and decreases for higher currents. If one includes the effect of insulation loss at an impedance rise, the total or effective Z_I (as viewed from the line) always satisfies $Z_I \geq Z_L$ which implies $I_L \geq V_I/Z_I$.

Thus, maximum power flow requires an electron current distribution that minimizes the total line current $\rm I_L$. Furthermore, the existing theories 4 with $\rm B_0=0$ all have very close to the same value for the minimum $\rm I_L$. Finally, this value agrees well with simulation results 5,7 for the steady-state magnetic insulation current over a wide voltage range (1-20 MeV), and this value is always approximately 1/0.82 larger than the critical current $\rm I_C$ (with $\rm B_0=0$).

Thus, we take the steady-state magnetic insulation current to be $I_M = I_C/\alpha$ even when $B_0 \neq 0$. The corresponding steady state magnetic insulation impedance $Z_M \equiv V_0/I_M$ is then

$$\frac{Z_{M}}{Z_{0}} = \alpha \left(\frac{Y_{0} - 1}{Y_{0} + 1}\right)^{\frac{1}{2}} \left[1 - \frac{1}{Y_{0}^{2} - 1} \left(\frac{w_{c}}{c} \frac{b^{2} - a^{2}}{2b}\right)^{2}\right]^{\frac{1}{2}} (3)$$

where $Z_0 \equiv 60~\Omega~\ln(b/a)$ is the vacuum coaxial transmission line impedance, V_0 is the anodecathode potential, and $\alpha=0.82\pm0.01$ is determined from a fit to simulation results. As B_0 increases, however, $I_c \rightarrow 0$ while we know $Z_M/Z_0 \le 1$. Hence, Eq. (3) can be correct only for sufficiently small B_0 or large Y_0 . This is demonstrated in Fig. 1 where Eq. (2) is used to find $V_0 = V_L$ with $Z_L = Z_M$ obtained from Eq. (3), V_I is fixed at either 1.5 MeV or 6.14 MeV, $Z_I = Z_0 = 37~\Omega$, a=1 cm, and b=1.853 cm. The agreement between simulation and this simple theory, especially at high voltage, is sufficient to help design and interpret the results of the more complex simulations described next.

Field Line Orientation

The next simplest configuration one might try is a straight coaxial transmission line with a nonuniform external magnetic field ${\rm B_0}$. The results are indicated in Fig. 2. Here ${\rm B_0}$ increases from 0.5 kg to 100 kg in a length of 60 cm with a = 1 cm, b = 1.853 cm, and ${\rm V_I}$ = 6.14 MeV. The magnetic insulation initially proceeds about the same as with ${\rm B_0}$ = 0 until the position is reached where ${\rm B_0}\approx 20$ kg.

Note that this power flow argument cannot in general be applied to the operating characteristics of a diode because a highly ordered electron beam is not equivalent to a resistor.

Electrons emitted in the weaker field region cannot pass this position but rather go to the anode. Electrons emitted in the higher B_0 region acquire a negative z-velocity and also go to the anode (for a total current loss of 40%) thereby reducing the actual operating impedance by an additional factor of 1/2 over Eq. (3) with $B_0 = 0$. The negative \mathbf{v}_z of the electrons in the high B_0 region is due to the strong $\mathbf{v}_\theta \times \mathbf{B}_r$ force overtaking the $-\mathbf{v}_r \times \mathbf{B}_\theta$ force as the B_0 field lines converge toward the axis. Clearly, one should avoid having a component $B_1 \gtrsim B_\theta \mathbf{v}_1/\mathbf{v}_\theta$ of B_0 perpendicular to the cathode.

Thus, the next configurations tried have cathodes that follow a flux surface of B_0 . In Fig. 3, the cathode is shaped in this fashion until the straight section is reached where B_{Ω} continues to increase from 18 kg to 80 kg. Also, the anode radius drops linearly from 12.85 cm to 1.85 cm while the cathode drops linearly from 4.4 cm to 1 cm, and $V_T = 8.35 \text{ MeV}$. There is very little loss of insulation in the tapered section, but approximately 30% of the total current is lost to the anode in the straight section. In Fig. 4, the cathode is shaped to follow B_0 over the entire length of 33 cm where B_{Ω} goes from 2 kg to 80 kg. The anode tapers roughly linearly from 23.6 cm to 2 cm while the cathode tapers as shown from 8.4 cm to 1.2 cm, and $V_T = 8.35$ MeV. again the electrons emitted in the low B_0 region cannot pass a critical B_0 position (here when $B_0 \approx 3.5 \text{ kg}$). However, the current loss to the anode is only about 7%, and it is spread over about 1.5 cm (along z) for a current density of less than 0.1 kA/cm² at the anode surface. In the next section we offer a possible explanation for this loss.

Impedance Revisited

In the shaped transmission lines described above (Figs. 3 and 4), the vacuum impedance $Z_0(z)$ monotonically decreased by about a factor of two with increasing axial position z. In simulations with $B_0=0$, this impedance drop

insured that only a slight transient insulation loss occurred. The discrepancy between this case and the $B_0\neq 0$ case (Figs. 3 and 4) might be interpreted by saying that complete magnetic insulation requires $Z_M(z) \geqq Z_T$ wherever $Z_M(z) < Z_0(z)$ due to the electron flow, where Z_T is the terminating or load impedance. Otherwise, there will be some steady loss of insulation in the region around the absolute minimum of the impedance.

This would explain the insulation loss in Fig. 3 because Eq. (3) gives $\mathbf{Z_M}(\mathbf{z}) > \mathbf{Z_T}$ only up to near the straight section where $\mathbf{Z_0} = \mathbf{Z_T}$. Near the start of the straight section (where $\mathbf{B_0}$ is still small) $\mathbf{Z_M} < \mathbf{Z_0} = \mathbf{Z_T}$, and as we move into the high $\mathbf{B_0}$ region the electrons are clamped to the cathode and $\mathbf{Z_M}$ rises up to $\mathbf{Z_0} = \mathbf{Z_T}$.

The explanation of the small insulation loss in Fig. 4 is more subtle because the effective load impedance $\mathbf{Z}_E(z,t)$ differs from \mathbf{Z}_T due to the rise time of the high voltage pulse. Using the telegraphers equations, with the subscript "T" denoting measurement at the terminating position \mathbf{Z}_T , and assuming a small time derivative $\hat{\mathbf{V}}_T$, gives

$$\frac{z_{E}(z,t)}{z_{T}} = 1 + \frac{\dot{v}_{T}}{v_{T}c} \int^{z_{T}} \left[\frac{z_{0}(z)}{z_{T}} - \frac{z_{T}}{z_{0}(z)} \right] dz \quad . \quad (4)$$

For our case where $Z_0(z) \ge Z_T = Z_0(z_T)$ and $\dot{V}_T \ge 0$, $Z_E(z,t) \ge Z_T$. In spite of this, for the case shown in Fig. 4, Eq. (3) gives $Z_{M}(z) \ge Z_{E}(z,t)$ and yet there is still some small loss of insulation. The problem is that in magnetic insulation there are transients where the impedance $Z_{M}(z,t)$ drops (by as much as 30%) below the final steady state value $Z_{M}(z)$ given by Eq. (3). Indeed, in the loss region shown in Fig. 4, measurements indicate $Z_{M}(z,t) \le Z_{F}(z,t)$ by about 7%. Furthermore, once this loss region forms (due to a transient where $Z_{M} < Z_{F}$) and propagates to the high B_{O} region (where Z_M rises to Z_0) it appears to be difficult to get rid of. Thus, complete magnetic insulation seems to require the stricter condition $Z_{M}(z,t) \ge Z_{E}(z,t)$ wherever $Z_{M}(z) < Z_{O}(z)$.

Tentative Conclusions

Minimization of magnetic insulation loss appears to require two conditions: (1) the cathode surface should coincide with a flux surface of the external magnetic field \underline{B}_0 at least until $B_0 << B_\theta \ v_r/v_\theta;$ (2) the vacuum impedance $Z_0(z)$ should drop sufficiently and the rise time V_T/\dot{V}_T sould be sufficiently long that $Z_M(z,t) \geq Z_E(z,t),$ including all transients, wherever $Z_M(z) < Z_0(z)$.

References

- R. V. Lovelace and E. Ott, Phys. Fluids <u>17</u>, 1263 (1974).
- A. Ron, A. A. Mondelli, and N. Rostoker, IEEE Trans. Plas. Sci. <u>PS-1</u>, 85 (1973).
- V. S. Voronin and A. N. Lebedev, Sov. Phys. Tech. Phys. <u>18</u>, 1627 (1974).
- J. M. Creedon, J. Appl. Phys. 46, 2946 (1975); J. Appl. Phys. 48, 1070 (1977).
- J. W. Poukey and K. D. Bergeron, Appl. Phys. Lett. <u>32</u>, 8 (1978).
- L. E. Thode, B. B. Godfrey, and W. R. Shanahan, Phys. Fluids <u>22</u>, 747 (1979).
- Our own simulation results (unpublished) are in agreement with those of Ref. 5.

This work was supported by the Air Force Office of Scientific Research and the U.S. Department of Energy.

Fig. 1. Impedance of straight coax vs. uniform B_0 . Solid lines are theory, Eq. (3), with α = 0.82. Open and closed circles are from simulations.

Fig. 2. Straight coaxial transmission line, non uniform \underline{B}_0 . Time = 1.72 nsec.

Fig. 3. Shaped coaxial transmission line, non-uniform \underline{B}_0 , Time = 5.88 nsec.

Fig. 4. Shaped coaxial transmission line, non-uniform Bo. Time = 19.5 nsec.