- 1) Solve and graph the inequality. Write the solution set using interval notation.
- 1) _____

- $-\frac{3}{4} x \le -\frac{6}{7}$
- 2) Solve and graph the inequality. Write the solution set using interval notation.
- 2) _____

$$7x + 1 > 36$$

3) Solve and write your answer in interval notation.

$$4x + 7(3x - 3) \le 9 - 5x$$

4) Find the domain of the function

$$f(x) = \sqrt{7 - x}$$

5) A salesperson has two job offers. Company A offers a weekly salary of \$450 plus commission of 10% of sales. Company B offers a weekly salary of \$900 plus commission of 5% of sales. What is the amount of sales above which Company A's offer is the better of the two?

 $6) \, Solve \, the \, inequality. \, Write \, your \, answer \, in \, interval \, notation.$

$$11 \le 9x - 7$$
 and $2x + 1 < 13$

7) Solve the inequality and graph the solution set.

$$-34 \le 4x - 10$$
 and $7x - 5 < -19$

8) Solve the inequality. Write your answer in interval notation.

$$12x - 8 < 4x \text{ or } -2x \le -6$$

9) Solve the inequality and graph the solution set.

$$12x - 8 < 4x \text{ or } -4x \le -12$$

10) Given the function f(x) = 8x + 10, find all value(s) such that $-22 < f(x) \le 10$

11) Graph. 4x + y < -2

12) Graph. $2x + 4y \ge -8$

13) Graph the system of linear inequalities.

$$2x + y \le 4$$
$$y - 1 < 0$$

14) Graph the system of inequalities. Find the coordinates of the vertices.

$$3y - x \le 9,$$

$$y + 2x \le 10,$$

$$y \ge 0$$

15) Find P(-4) when
$$P(x) = -3x^2 + 5x + 12$$

16) Total profit is defined as total revenue minus total cost. R(x) and C(x) are the revenue and cost from the sale of x televisions. If $R(x) = 280x - 0.9x^2$ and $C(x) = 4000 + 0.7x^2$, find the profit from the sale of 90 televisions.

17) Simplify:
$$(9x^3 + 2x^2) - (8x^2 - 9x - 1) - (5x^3 + x - 7)$$

18) Multiply:
$$-6ab(-2a^2b - 3ab^2)$$

19) Multiply: (3x + 2)(x + 8)

19) _____

20) Simplify: $(9m + 1)^2$

20) _____

21) Let f(x) = 5x - 3. Find $[f(x)]^2$

21) _____

22) Let f(x) = 5x - 4 and g(x) = 5x + 4. Find $(f \cdot g)(x)$

22) _____

23) Factor: $24m^9 - 54m^4 + 60m^2$

23) _____

24) Factor: $-2x^2 + 8x - 56$

24) _____

25) Factor: $30x^2 - 12x - 25x + 10$

25) _____

26) Factor: $12y^2 + 54y - 30$

26) _____

27) Factor: $5x^3 + 5x^2 - 60x$

27) _____

28) Factor: $x^3 - x^2 - 56$

28) _____

29) Factor: $36x^2 - 96x + 64$

29) _____

30) Factor: $16x^2 - 9$

30) _____

31) Factor: $2x^3 + 6x^2 - 32x - 96$

32) Solve for x: $49x^2 - 16 = 0$

32) _____

33) Solve for x: $6x^2 - 17x - 3 = 0$

33) _____

34) Solve for x: $10x^2 - 12x = 0$

34) _____

35) Let $g(x) = x^2 + 6x$. For what value(s) of x is g(x) = -8.

35) _____

36) The length of a rectangular frame is 5 cm more than the width. The area inside the frame is 50 square cm. Find the width of the frame.

36) _____

37) A triangular garden has an area of 120 square feet. The height is 8 feet more than the base. Find the base of the garden.

37) _____

38) If an object is thrown upward from the ground with an initial velocity of 112 ft/sec, its height after t sec is given by $h = 112t - 16t^2$. Find the number of seconds before the object hits the ground.

38) _____

39) A rock falls from a tower that is 400 feet high. As it is falling, its height is given by the formula $h = 400 - 16t^2$. How many seconds will it take for the rock to hit the ground (h=0)? Round to the nearest tenth of a second.

39) _____

40) For $f(x) = \sqrt{4x - 14}$, find f(-9).

40) _____

41) For $f(x) = -\sqrt{(x+1)^2}$, find f(-3).

41) _____

42) Simplify. Assume that variables can represent any value.: $\sqrt{4x^2 + 12x + 9}$

42) _____

43) For $f(x) = \sqrt[3]{2x - 1}$, find f(-13).

44) Find the domain of the radical function, $f(x) = \sqrt{x-9}$

44) _____

45) Simplify: $16^{5/4}$

45) _____

46) Re-write with positive exponents: $\frac{2x}{5}$

46) _____

47) Simplify: $\frac{y^2/3}{y^{1/6}}$

47) _____

48) Simplify: $(x^{1/5})^{4/7}$

48) _____

49) Simplify: $z^{-2/7} \cdot z^{3/7}$

49) _____

50) Simplify: $\sqrt[12]{x^8}$

50) _____

51) Simplify: $\sqrt[7]{x^{14}}$

51) _____

52) Simplify: $\sqrt[4]{5}\sqrt[5]{x}$

52) _____

53) Simplify by factoring: $\sqrt{54}$

53) _____

54) Multiply and Simplify: $\sqrt{15}\sqrt{48}$

55) Rational the denominator: $\sqrt[3]{\frac{4}{5}}$

$$\sqrt[3]{\frac{4}{5}}$$

55) _____

56) Rational the denominator: $\sqrt{\frac{81}{20}}$

$$\sqrt{\frac{81}{20}}$$

56) _____

57) Solve: $2x^2 = 26$

57) _____

58) Solve. $x^2 + 10x - 23 = 0$ Round results to the nearest thousandth.

58) _____

59) Let $f(x) = (x - 6)^2$. Find x so that f(x) = 23.

59) _____

60) Let $f(x) = x^2 + 14x + 49$. Find x so that f(x) = 81.

60) _____

61) Let $f(x) = x^2 + 4x$. Find x so that f(x) = 3

62) Find the x-intercepts: $f(x) = x^2 + 4x - 3$

62) _____

63) Solve: $4x^2 = -6x - 1$

63) _____

64) Let $f(x) = 5x^2 - 9x + 3$. For what values of x is f(x) = 0. Round to the nearest thousandth.

Answer Key

Testname: TEST #2 EXTRA PRACTICE (MATH 11000, SUMMER2023)

- 3) $(-\infty, 1]$
- 4) $\{x \mid x \le 7\}$
- 5) \$9000
- 6) [2, 6)

- 8) $(-\infty, 1) \cup [3, \infty)$
- 9)

10) (-4, 0]

11)

- 15) -56
- 16) \$8240
- 17) $4x^3 6x^2 + 8x + 8$
- 18) $12a^3b^2 + 18a^2b^3$
- 19) $3x^2 + 26x + 16$
- 20) $81m^2 + 18m + 1$
- 21) $25x^2 30x + 9$
- 22) $25 x^2 16$ 23) $6m^2(4m^7 9m^2 + 10)$

Answer Key

Testname: TEST #2 EXTRA PRACTICE (MATH 11000, SUMMER2023)

- 24) $-2(x^2 4x + 28)$
- 25) (6x 5)(5x 2)
- 26) 6(2y 1)(y + 5)
- 27) 5x(x-3)(x+4)
- 28) Prime
- 29) $4(3x 4)^2$
- 30) (4x + 3)(4x 3)
- 31) 2(x + 4)(x 4)(x + 3)
- 32) $\frac{4}{7}$, $-\frac{4}{7}$
- 33) $-\frac{1}{6}$, 3
- 34) $\frac{6}{5}$, 0
- 35) {-2, -4}
- 36) 5 cm
- 37) 12 feet
- 38) 7 sec
- 39) 5 sec
- 40) Does not exist
- 41) -2
- 42) |2x + 3|
- 43) -3
- 44) [9, ∞)
- 45) 32
- 46) $\frac{2x}{y^{1/5}}$
- $47) y^{1/2}$
- $48) x^{4/35}$
- 49) $z^{1/7}$
- $50)\sqrt[3]{x^2}$
- 51) x^2
- 52) $\sqrt[20]{x}$
- $53) 3\sqrt{6}$
- 54) 12**√**5
- $55) \frac{\sqrt[3]{100}}{5}$
- 56) $\frac{9\sqrt{5}}{10}$
- 57) $\pm \sqrt{13}$
- 58) 1.928, -11.928

Answer Key

Testname: TEST #2 EXTRA PRACTICE (MATH 11000, SUMMER2023)

59) 6 +
$$\sqrt{23}$$
, 6 - $\sqrt{23}$

61)
$$-2 \pm \sqrt{7}$$

59)
$$6 + \sqrt{23}$$
, $6 - \sqrt{23}$
60) -16, 2
61) -2 $\pm \sqrt{7}$
62) $(-2 + \sqrt{7}, 0)$, $(-2 - \sqrt{7}, 0)$

$$63) \frac{-3 \pm \sqrt{5}}{4}$$