17.6 Gráficas de control de cusum

La desventaja de las gráficas de control similares a las de Shewhart, que se explicaron y ejemplificaron en las secciones anteriores, radica en su incapacidad para detectar pequeños cambios en la media. Un mecanismo de control de calidad que ha recibido mucha atención en la literatura estadística y que se ha utilizado extensamente en la industria es la **gráfica de suma acumulada (cusum)**. El método de la gráfica de suma acumulada es sencillo y, por lo tanto, atractivo. Para el lector debe ser evidente por qué es más sensible a pequeños cambios en la media. Considere una gráfica de control para la media con un nivel de referencia establecido en el valor W. Considere las observaciones particulares X_1, X_2, \dots, X_r . Las primeras cusum r son

$$S_{1} = X_{1} - W$$

$$S_{2} = S_{1} + (X_{2} - W)$$

$$S_{3} = S_{2} + (X_{3} - W)$$

$$\vdots$$

$$S_{r} = S_{r-1} + (X_{r} - W).$$

Es evidente que la cusum es simplemente la acumulación de las diferencias del nivel de referencia. Es decir,

$$S_k = \sum_{i=1}^k (X_i - W), \qquad k = 1, 2, \dots$$

La gráfica cusum es, entonces, una gráfica de S_{ν} contra el tiempo.

Suponga que consideramos que el nivel de referencia W es un valor aceptable de la media μ . Salta a la vista que, si no hay cambio en μ , la gráfica cusum debería ser aproximadamente horizontal, con algunas fluctuaciones menores balanceadas alrededor de cero. Ahora, si sólo hay un cambio moderado en la media, debe resultar un cambio más o menos grande en la *pendiente* de la gráfica cusum, dado que cada nueva observación tiene la probabilidad de contribuir a un cambio y la medida que se grafica acumula esos cambios. Desde luego, la señal de que la media ha cambiado reside en la naturaleza de la pendiente de la gráfica cusum. El objetivo de la gráfica es detectar cambios que se alejan del nivel de referencia. Una pendiente diferente de cero (en cualquier dirección) representa un cambio a partir del nivel de referencia. Una pendiente positiva indica un aumento en la media por arriba del nivel de referencia, en tanto que una pendiente negativa señala una disminución.

Las gráficas cusum a menudo se diseñan con un *nivel de calidad aceptable* definido (NCA) y un *nivel de calidad rechazable* (NCR) preestablecido por el usuario. Ambos representan valores de la media. Se podría considerar que éstos desempeñan papeles similares a los de las medias nula y alternativa en la prueba de hipótesis. Considere una situación en la que el analista desea detectar un aumento en el valor de la media del proceso. Usaremos la notación μ_0 para NCA y μ_1 para NCR, y $\mu_1 > \mu_0$. El nivel de referencia se fija ahora en

$$W = \frac{\mu_0 + \mu_1}{2}.$$

Los valores de S_r (r=1,2,...) tendrán una pendiente negativa si la media del proceso está en μ_0 y una pendiente positiva si la media del proceso está en μ_1 .

Regla de decisión para las gráficas cusum

Como antes se expuso, la pendiente de la gráfica cusum proporciona la señal de acción para el analista de control de calidad. La regla de decisión exige tomar medidas si, en el *r*-ésimo periodo de muestreo,

$$d_r > h$$
,

donde h es un valor preestablecido que se denomina longitud del intervalo de decisión y

$$d_r = S_r - \min_{1 \le i \le r-1} S_i.$$

En otras palabras, se toman medidas si los datos revelan que el valor de la cusum real excede en una cantidad específica al valor previo de la cusum más pequeño.

Una modificación en la mecánica que se describió antes facilita el uso del método. Describimos un procedimiento que grafica las cusum y calcula las diferencias. Una modificación simple implica graficar las diferencias de manera directa y permitir la verificación contra el intervalo de decisión. La expresión general para d_r es muy sencilla. Para el procedimiento de cusum, con el que se detectan aumentos en la media,

$$d_r = \max[0, d_{r-1} + (X_r - W)].$$

La elección del valor de h es, por supuesto, muy importante. En este libro no se proporcionan los detalles que aparecen en la literatura que trata de esta elección. Para una exposición más completa se remite al lector a Ewan y Kemp, 1960, y a Montgomery, 2000b (véase la bibliografía). Una consideración importante es la **longitud esperada de la corrida**. De manera ideal, la longitud esperada de la corrida es bastante grande bajo $\mu = \mu_0$ y muy pequeña cuando $\mu = \mu_1$.

Ejercicios de repaso

- 17.1 Considere X_1 , X_2 ,..., X_n , como variables aleatorias de Poisson independientes con parámetros μ_1 , μ_2 ,..., μ_n . Utilice las propiedades de las funciones generadoras de momento para demostrar que la variable aleatoria $\sum_{i=1}^{n} X_i$ es una variable aleatoria de Poisson con media $\sum_{i=1}^{n} \mu_i$ y varianza $\sum_{i=1}^{n} \mu_i$.
- 17.2 Considere los siguientes datos tomados en subgrupos de tamaño 5. Los datos contienen 20 promedios y rangos del diámetro (en milímetros) de una parte importante de un motor. Elabore gráficas \bar{X} y R. ¿Parecería que el proceso está bajo control?

Muestra	$ar{X}$	\boldsymbol{R}
1	2.3972	0.0052
2	2.4191	0.0117
3	2.4215	0.0062
4	2.3917	0.0089
5	2.4151	0.0095
6	2.4027	0.0101
7	2.3921	0.0091
8	2.4171	0.0059

Muestra	$ar{X}$	\boldsymbol{R}
9	2.3951	0.0068
10	2.4215	0.0048
11	2.3887	0.0082
12	2.4107	0.0032
13	2.4009	0.0077
14	2.3992	0.0107
15	2.3889	0.0025
16	2.4107	0.0138
17	2.4109	0.0037
18	2.3944	0.0052
19	2.3951	0.0038
20	2.4015	0.0017

- 17.3 En el ejercicio de repaso 17.2 suponga que el comprador fija especificaciones para la parte. Las especificaciones exigen que el diámetro caiga en el rango cubierto por 2.40000 ± 0.0100 mm. ¿Qué proporción de unidades producidas por este proceso no cumplirán con las especificaciones?
- **17.4** Para la situación del ejercicio de repaso 17.2 proporcione estimados numéricos de la media y de la desviación estándar del diámetro para la parte que se fabrica en el proceso.

Ejercicios de repaso 707

17.5 Considere los datos de la tabla 17.1. Suponga que se toman muestras adicionales de tamaño 5 y que se registra la resistencia a la tensión. El muestreo produce los siguientes resultados (en libras por pulgada cuadrada).

Muestra	$ar{X}$	R
1	1511	22
2	1508	14
3	1522	11
4	1488	18
5	1519	6
6	1524	11
7	1519	8
8	1504	7
9	1500	8
10	1519	14

- a) Grafique los datos, utilice las gráficas \bar{X} y R para los datos preliminares de la tabla 17.1.
- ¿Parecería que el proceso está bajo control? Si no es así, explique por qué.
- **17.6** Considere un proceso bajo control con media $\mu = 25$ y $\sigma = 1.0$. Suponga que se usan subgrupos de tamaño 5 con límites de control $\mu \pm 3\sigma/\sqrt{n}$ y línea central en μ . Suponga que ocurre un cambio en la media, y que la nueva media es $\mu = 26.5$.
- a) ¿Cuál es el número promedio de muestras requeridas (después del cambio) para detectar la situación fuera de control?
- ¿Cuál es la desviación estándar del número de corridas requeridas?
- 17.7 Considere la situación del ejemplo 17.2. Se toman los siguientes datos de muestras adicionales de tamaño 5. Grafique los valores \bar{X} y S sobre las gráficas \bar{X} y S que se dibujaron con los datos en la muestra preliminar. ¿Parecería que el proceso está bajo control? Explique su respuesta.

Muestra	$ar{X}$	S_i
1	62.280	0.062
2	62.319	0.049
3	62.297	0.077
4	62.318	0.042
5	62.315	0.038
6	62.389	0.052
7	62.401	0.059
8	62.315	0.042
9	62.298	0.036
10	62.337	0.068

17.8 Cada hora se toman muestras de tamaño 50 de un proceso que produce cierto tipo de artículo que se considera que está defectuoso o que no tiene defecto. Se toman 20 muestras.

- a) Construya una gráfica de control para controlar la proporción de artículos defectuosos.
- b) ¿Parecería que el proceso está bajo control? Explique su respuesta.

Muestra	Número de artículos defectuosos	Muestra	Número de artículos defectuosos
1	4	11	2
2	3	12	4
3	5	13	1
4	3	14	2
5	2	15	3
6	2	16	1
7	2	17	1
8	1	18	2
9	4	19	3
10	3	20	1

17.9 Para la situación del ejercicio de repaso 17.8 suponga que se reúnen los siguientes datos adicionales:

Muestra	Número de artículos defectuosos
1	3
2	4
3	2
4	2
5	3
6	1
7	3
8	5
9	7
10	7

¿Parecería que el proceso está bajo control? Explique su respuesta.

17.10 Se aplica un programa de control de calidad para un proceso, donde se fabrican grandes placas de acero, con un interés especial por los defectos superficiales. El objetivo es establecer una gráfica de control de calidad para el número de defectos por placa. Los datos se presentan a continuación. Elabore la gráfica de control apropiada utilizando esta información. ¿Parecería que el proceso está bajo control?

Muestra	Número de defectos	Muestra	Número de defectos
1	4	11	1
2	2	12	2
3	1	13	2
4	3	14	3
5	0	15	1
6	4	16	4
7	5	17	3
8	3	18	2
9	2	19	1
10	2	20	3

Capítulo 18

Estadística bayesiana

18.1 Conceptos bayesianos

Los métodos clásicos de estimación que hemos estudiado hasta ahora se basan sólo en la información que brinda la muestra aleatoria. Estos métodos en esencia interpretan probabilidades como frecuencias relativas. Por ejemplo, para obtener un intervalo de confianza de 95% para μ , interpretamos la aseveración

$$P(-1.96 < Z < 1.96) = 0.95$$

para afirmar que, en experimentos repetidos, Z caerá 95% de las veces entre -1.96 y 1.96. Dado que

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

para una muestra normal con varianza conocida, el enunciado de probabilidad aquí significa que 95% de los intervalos aleatorios $(\bar{X}-1.96\sigma/\sqrt{n},\bar{X}+1.96\sigma/\sqrt{n})$ contienen la media μ verdadera. Otro enfoque de los métodos estadísticos de estimación se denomina **metodología bayesiana**. La idea principal del método proviene de la regla de Bayes, que examinamos en la sección 2.7. La diferencia fundamental entre el enfoque bayesiano y el clásico o frecuente es que en los conceptos bayesianos los parámetros se consideran variables aleatorias.

Probabilidad subjetiva

La probabilidad subjetiva es el fundamento de los conceptos bayesianos. En el capítulo 2 analizamos dos acercamientos posibles a la probabilidad, es decir, el método de la frecuencia relativa y el método de la indiferencia. El primero determina una probabilidad como una consecuencia de experimentos repetidos. Por ejemplo, para decidir el porcentaje de tiros libres de un jugador de basquetbol, podemos registrar el número de tiros que hace y el número total de intentos que tal jugador ha hecho hasta el momento. La probabilidad de que este jugador acierte un tiro libre se puede calcular como el cociente de estos dos números. Por otro lado, si no sabemos acerca de cualquier sesgo en un dado, la probabilidad de que aparezca un 3 en el siguiente lanzamiento será de 1/6. Dicho enfoque en la interpretación de la probabilidad se basa en la regla de la indiferencia.

Sin embargo, en muchas situaciones no es posible aplicar las interpretaciones de probabilidad anteriores. Por ejemplo, considere las siguientes preguntas: "¿Qué probabilidad hay de que llueva mañana?" "¿Qué tan probable es que el precio de estas acciones aumente a fin de mes?" y "¿Cuál es la probabilidad de que dos empresas se fusionen?". Estas preguntas difícilmente se podrían interpretar mediante los enfoques anteriores, y las respuestas podrían ser diferentes para distintas personas. No obstante, este tipo de preguntas se plantean constantemente en la vida diaria y el enfoque utilizado para explicar esas probabilidades se llama *probabilidad subjetiva*, ya que refleja opiniones subjetivas.

Perspectiva condicional

Recuerde que en los capítulos 9 a 17 todas las inferencias estadísticas se basaban en el hecho de que los parámetros se desconocen pero son cantidades fijas, excepto los revisados en la sección 9.14, en donde los parámetros se trataron como variables y los estimados de máxima verosimilitud (EMV) se calcularon con base en la muestra de datos observados. En la estadística bayesiana los parámetros no sólo se manejan como variables, como en los cálculos de EMV, sino que también se manejan como aleatorios.

Puesto que los datos observados son los únicos resultados experimentales para el profesionista, la inferencia estadística se basa en los datos reales observados a partir de un experimento dado. A esta visión se le llama *perspectiva condicional*. Más aún, en los conceptos bayesianos, dado que los parámetros se manejan como aleatorios, es factible especificar una distribución de probabilidad, por lo general utilizando la *probabilidad subjetiva* para el parámetro. Este tipo de distribución se denomina *distribución previa* y comúnmente refleja la creencia previa del experimentador acerca del parámetro. En la perspectiva bayesiana, una vez que se realiza un experimento y se observan los datos, todo el conocimiento acerca de un parámetro está contenido en los datos reales observados, así como en la información previa.

Aplicaciones bayesianas

Aunque la regla de Bayes se atribuye a Thomas Bayes, las aplicaciones bayesianas fueron utilizadas por primera vez por el científico francés Pierre Simon Laplace, quien publicó un artículo sobre el uso de la inferencia bayesiana en las proporciones binomiales desconocidas (para revisar la distribución binomial véase la sección 5.2).

A partir de la introducción del paquete para el cálculo de la cadena Markov de Monte Carlo (MCMC) para el análisis bayesiano a principios de la década de 1990, los métodos bayesianos se han vuelto cada vez más populares para los modelos estadísticos y el análisis de datos. Al mismo tiempo, la metodología que utiliza conceptos bayesianos ha avanzado mucho y se aplica en campos como la bioinformática, la biología, los negocios, la ingeniería, las ciencias ambientales y la ecología, así como en la ciencia de la vida y la salud, entre otros.

18.2 Inferencias bayesianas

Considere el problema de calcular un estimado puntual del parámetro θ para la población con distribución $f(x|\theta)$, dado θ . Denote con $\pi(\theta)$ la distribución previa de q. Suponga que se observa una muestra aleatoria de tamaño n denotada con $\mathbf{x} = (x_1, x_2, ..., x_n)$.

Definición 18.1: La distribución de θ , dado x, que se denomina distribución posterior, es dada por

$$\pi(\theta \mid \mathbf{x}) = \frac{f(\mathbf{x} \mid \theta)\pi(\theta)}{g(\mathbf{x})},$$

donde $g(\mathbf{x})$ es la distribución marginal de \mathbf{x} .

La distribución marginal de \mathbf{x} en la definición anterior se puede calcular usando la siguiente fórmula:

$$g(\mathbf{x}) = \begin{cases} \sum_{\theta} f(\mathbf{x}|\theta)\pi(\theta), & \theta \text{ es discreta,} \\ \int_{-\infty}^{\infty} f(\mathbf{x}|\theta)\pi(\theta) d\theta, & \theta \text{ es continua.} \end{cases}$$

Ejemplo 18.1: Suponga que la distribución previa para la proporción de artículos defectuosos que produce una máquina es

$$\begin{array}{c|cccc} p & 0.1 & 0.2 \\ \hline \pi(p) & 0.6 & 0.4 \end{array}$$

Denote con x el número de artículos defectuosos en una muestra aleatoria de tamaño 2. Calcule la distribución de probabilidad posterior de p, dado que se observa x.

Solución: La variable aleatoria X sigue una distribución binomial

$$f(x|p) = b(x; 2, p) = {2 \choose x} p^x q^{2-x}, \quad x = 0, 1, 2.$$

La distribución marginal de x se puede calcular como

$$g(x) = f(x|0.1)\pi(0.1) + f(x|0.2)\pi(0.2)$$

= $\binom{2}{x}$ [(0.1)^x(0.9)^{2-x}(0.6) + (0.2)^x(0.8)^{2-x}(0.4)].

Por lo tanto, para x = 0, 1, 2 obtenemos las siguientes probabilidades marginales

$$\begin{array}{c|cccc} x & 0 & 1 & 2 \\ \hline g(x) & 0.742 & 0.236 & 0.022 \end{array}$$

La probabilidad posterior de p = 0.1, dado x, es

$$\pi(0.1|x) = \frac{f(x|0.1)\pi(0.1)}{g(x)} = \frac{(0.1)^x(0.9)^{2-x}(0.6)}{(0.1)^x(0.9)^{2-x}(0.6) + (0.2)^x(0.8)^{2-x}(0.4)},$$

$$y \pi(0.2|x) = 1 - \pi(0.1|x).$$

Suponga que se observa x = 0.

$$\pi(0.1|0) = \frac{f(0 \mid 0.1)\pi(0.1)}{g(0)} = \frac{(0.1)^0(0.9)^{2-0}(0.6)}{0.742} = 0.6550,$$

y $\pi(0.2|0) = 0.3450$. Si se observa x = 1, $\pi(0.1|1) = 0.4576$ y $\pi(0.2|1) = 0.5424$. Por último, $\pi(0.1|2) = 0.2727$ y $\pi(0.2|2) = 0.7273$.

La distribución previa del ejemplo 18.1 es discreta, aunque el rango natural de p va de 0 a 1. Considere el siguiente ejemplo, en el cual tenemos una distribución previa que abarca el espacio completo de p.

Ejemplo 18.2: Suponga que la distribución previa de p es uniforme, es decir, $\pi(p) = 1$, para 0 . Use la misma variable aleatoria <math>X que en el ejemplo 18.1 para calcular la distribución posterior de p.

Solución: Como en el ejemplo 18.1, tenemos

$$f(x|p) = b(x; 2, p) = {2 \choose x} p^x q^{2-x}, \quad x = 0, 1, 2.$$

La distribución marginal de x se puede calcular como

$$g(x) = \int_0^1 f(x|p)\pi(p) \ dp = \binom{2}{x} \int_0^1 p^x (1-p)^{2-x} dp.$$

La integral anterior se puede evaluar en cada x directamente como g(0) = 1/3, g(1) = 1/3 y g(2) = 1/3. Por lo tanto, la distribución posterior de p, dado x, es

$$\pi(p|x) = \frac{\binom{2}{x}p^x(1-p)^{2-x}}{1/3} = 3\binom{2}{x}p^x(1-p)^{2-x}, \quad 0$$

La distribución posterior anterior es en realidad una distribución beta (véase la sección 6.8) con parámetros $\alpha = x+1$ y $\beta = 3-x$. Por lo tanto, si se observa x=0, la distribución posterior de p es una distribución beta con parámetros (1, 3). La media posterior es $\mu = \frac{1}{1+3} = \frac{1}{4}$ y la varianza posterior es $\sigma^2 = \frac{(1)(3)}{(1+3)^2 (1+3+1)} = \frac{3}{80}$. Si utilizamos la distribución posterior, podemos estimar directamente el (los)

Si utilizamos la distribución posterior, podemos estimar directamente el (los) parámetro(s) en una población. Al calcular las distribuciones posteriores es muy útil estar familiarizado con las distribuciones que se estudiaron en los capítulos 5 y 6. Observe que en la definición 18.1 la *variable* en la distribución posterior es θ , en tanto se proporcione **x**. Por consiguiente, podemos tratar a $g(\mathbf{x})$ como una constante cuando calculamos la distribución posterior de θ . Entonces, la distribución posterior se puede expresar como

$$\pi(\theta|\mathbf{x}) \propto f(\mathbf{x}|\theta)\pi(\theta),$$

donde el símbolo " \propto " significa *proporcional a*. En el cálculo que se hizo de la distribución posterior podríamos dejar los factores que no dependen de θ fuera de la constante de normalización, esto es, la densidad marginal $g(\mathbf{x})$.

Ejemplo 18.3 Suponga que las variables aleatorias $X_1, ..., X_n$ son independientes y provienen de una distribución de Poisson con media λ . Suponga que la distribución previa de λ es exponencial con media 1. Calcule la distribución posterior de λ cuando $\bar{x} = 3$ con n = 10.

Solución: La función de densidad de $X = (X_1, ..., X_n)$ es

$$f(\mathbf{x}|\lambda) = \prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_i}}{x_i!} = e^{-n\lambda} \frac{\lambda^{\sum_{i=1}^{n} x_i}}{\prod\limits_{i=1}^{n} x_i!},$$

y la distribución previa es

$$\pi(\theta) = e^{-\lambda}$$
, para $\lambda > 0$.

En consecuencia, utilizando la definición 18.1 se obtiene la siguiente distribución posterior de λ

$$\pi(\lambda|\mathbf{x}) \propto f(\mathbf{x}|\lambda)\pi(\lambda) = e^{-n\lambda} \frac{\lambda_{i=1}^{\sum x_i} x_i}{\prod\limits_{i=1}^{n} x_i!} e^{-\lambda} \propto e^{-(n+1)\lambda} \lambda_{i=1}^{\sum x_i} x_i.$$

Si nos remitimos a la distribución gamma en la sección 6.6, concluimos que la distribución posterior de λ sigue una distribución gamma con parámetros $1+\sum\limits_{i=1}^n x_i$ y $\frac{1}{n+1}$. Por lo tanto, tenemos la media y la varianza posterior de λ como $\frac{\sum_{i=1}^n x_i+1}{n+1}$ y $\frac{\sum_{i=1}^n x_i+1}{(n+1)^2}$. Así, cuando $\bar{x}=3$ con n=10, tenemos $\sum_{i=1}^{10} x_i=30$. Por lo tanto, la distribución posterior de λ es una distribución gamma con parámetros 31 y 1/11.

A partir del ejemplo 18.3 observamos que en ocasiones es muy conveniente usar la técnica "proporcional a" para calcular la distribución posterior, especialmente cuando el resultado se puede formar para una distribución de uso común como las que se describen en los capítulos 5 y 6.

Estimación puntual mediante la distribución posterior

Una vez que hemos derivado la distribución posterior, fácilmente podemos usar el resumen de la distribución posterior para hacer inferencias sobre los parámetros de la población. Por ejemplo, la media, la mediana y la moda posteriores son útiles para estimar el parámetro.

Ejemplo 18.4: Suponga que en el ejemplo 18.2 se observa x = 1. Determine la media y la moda posteriores.

Solución: Cuando x = 1, la distribución posterior de p se puede expresar como

$$\pi(p|1) = 6p(1-p)$$
, para $0 .$

Para calcular la media de esta distribución necesitamos encontrar

$$\int_0^1 6p^2 (1-p) \ dp = 6\left(\frac{1}{3} - \frac{1}{4}\right) = \frac{1}{2}.$$

Para determinar la moda posterior se requiere obtener un valor p tal que se maximice la distribución posterior. Si tomamos la derivada de $\pi(p)$ respecto a p, obtenemos 6-12p. Al despejar p en 6-12p=0, obtenemos $p=\frac{1}{2}$. La segunda derivada es -12, la cual implica que la moda posterior se logra en $p=\frac{1}{2}$.

Los métodos bayesianos de estimación respecto a la media μ de una población normal se basan en el siguiente ejemplo.

Ejemplo 18.5: Si \bar{x} es la media de una muestra aleatoria de tamaño n tomada de una población normal con varianza conocida σ^2 , y la distribución previa de la media poblacional es una distribución normal con media conocida μ_0 y varianza conocida σ_0^2 , demuestre que la distribución

posterior de la media poblacional es también una distribución normal con media μ^* y desviación estándar σ^* , donde

$$\mu^* = \frac{\sigma_0^2}{\sigma_0^2 + \sigma^2/n} \bar{x} + \frac{\sigma^2/n}{\sigma_0^2 + \sigma^2/n} \mu_0 \quad \text{y} \quad \sigma^* = \sqrt{\frac{\sigma_0^2 \sigma^2}{n\sigma_0^2 + \sigma^2}}.$$

Solución: La función de densidad de la muestra es

$$f(x_1, x_2, ..., x_n \mid \mu) = \frac{1}{(2\pi)^{n/2} \sigma^n} \exp \left[-\frac{1}{2} \sum_{i=1}^n \left(\frac{x_i - \mu}{\sigma} \right)^2 \right],$$

para $-\infty < x_i < \infty$ e i = 1, 2,...,n, y la previa es

$$\pi(\mu) = \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{1}{2}\left(\frac{\mu - \mu_0}{\sigma_0}\right)^2\right], \quad -\infty < \mu < \infty.$$

Entonces la distribución posterior de μ es

$$\pi(\mu|\mathbf{x}) \propto \exp\left\{-\frac{1}{2}\left[\sum_{i=1}^{n} \left(\frac{x_i - \mu}{\sigma}\right)^2 + \left(\frac{\mu - \mu_0}{\sigma_0}\right)^2\right]\right\}$$
$$\propto \exp\left\{-\frac{1}{2}\left[\frac{n(\bar{x} - \mu)^2}{\sigma^2} + \frac{(\mu - \mu_0)^2}{\sigma_0^2}\right]\right\},$$

debido a

$$\sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \mu)^2$$

de la sección 8.5. Al completar los cuadrados para μ se obtiene la distribución posterior

$$\pi(\mu|\mathbf{x}) \propto \exp\left[-\frac{1}{2}\left(\frac{\mu-\mu^*}{\sigma^*}\right)^2\right],$$

donde

$$\mu^* = \frac{n\bar{x}\sigma_0^2 + \mu_0\sigma^2}{n\sigma_0^2 + \sigma^2}, \qquad \sigma^* = \sqrt{\frac{\sigma_0^2\sigma^2}{n\sigma_0^2 + \sigma^2}}.$$

Ésta es una distribución normal con media μ^* y desviación estándar σ^* .

El teorema del límite central nos permite utilizar el ejemplo 18.5 también cuando seleccionamos muestras aleatorias suficientemente grandes ($n \ge 30$ para muchos casos de experimentación en ingeniería), a partir de poblaciones no normales (la distribución no dista mucho de ser simétrica), y cuando la distribución previa de la media es aproximadamente normal.

Resulta pertinente hacer algunos comentarios acerca del ejemplo 18.5. La media posterior μ^* también se puede escribir como

$$\mu^* = \frac{\sigma_0^2}{\sigma_0^2 + \sigma^2/n} \bar{x} + \frac{\sigma^2/n}{\sigma_0^2 + \sigma^2/n} \mu_0,$$

que es el promedio ponderado de la media muestral \bar{x} y la media previa μ_0 . Como ambos coeficientes están entre 0 y 1 y se suman a 1, la media posterior μ^* siempre se encuentra

entre \bar{x} y μ_0 . Esto significa que tanto \bar{x} como μ_0 influyen en la estimación posterior de μ . Además, la ponderación de \bar{x} depende de la varianza previa, así como de la varianza de la media muestral. Para un problema con una muestra grande $(n \to \infty)$, la media posterior $\mu^* \to \bar{x}$. Esto significa que la media previa no desempeña ningún papel en la estimación de la media poblacional μ utilizando la distribución posterior. Esto es muy razonable, puesto que indica que cuando una cantidad de datos es sustancial, la información a partir de los datos dominará la información de μ proporcionada por la previa. Por otro lado, cuando la varianza previa es grande $(\sigma_0^2 \to \infty)$, la media posterior μ^* también va hacia \bar{x} . Observe que para una distribución normal, cuanto mayor es la varianza, más plana será la función de densidad. El carácter plano de la distribución normal en este caso significa que casi no hay información previa subjetiva disponible del parámetro μ antes de reunir los datos. Por lo tanto, es razonable que la estimación posterior μ^* sólo dependa del valor de los datos de \bar{x} .

Ahora considere la desviación estándar posterior σ^* . Este valor también se escribe como

$$\sigma^* = \sqrt{\frac{\sigma_0^2 \sigma^2/n}{\sigma_0^2 + \sigma^2/n}}.$$

Es evidente que el valor σ^* es menor que σ_0 y que σ/\sqrt{n} , la desviación estándar previa y la desviación estándar de \bar{x} , respectivamente. Esto sugiere que la estimación posterior es más precisa que la previa y que los datos muestrales. En consecuencia, la incorporación tanto de los datos como de la información previa produce una mejor información posterior que si se utiliza cualquiera de los datos o la información previa por sí solos. Esto es un fenómeno común en la inferencia bayesiana. Además, para calcular μ^* y σ^* mediante las fórmulas del ejemplo 18.5 suponemos que se conoce σ^2 . Como por lo general éste no es el caso, deberemos reemplazar σ^2 por la varianza de la muestra s^2 siempre que $n \geq 30$.

Estimación del intervalo bayesiano

De manera similar al intervalo de confianza clásico, en el análisis bayesiano podemos calcular un intervalo bayesiano del $100(1 - \alpha)\%$ empleando la distribución posterior.

Definición 18.2: El intervalo $a < \theta < b$ se denomina intervalo de Bayes del $100(1 - \alpha)\%$ para θ si

$$\int_{-\infty}^{a} \pi(\theta|x) \ d\theta = \int_{b}^{\infty} \pi(\theta|x) \ d\theta = \frac{\alpha}{2}.$$

Recuerde que, de acuerdo con el enfoque frecuentista, la probabilidad de un intervalo de confianza, digamos de 95%, se interpreta como una probabilidad de cobertura, esto significa que, si un experimento se repite una y otra vez (con considerables datos no observados), la probabilidad de que los intervalos calculados, de acuerdo con la regla, cubran el parámetro verdadero es de 95%. Sin embargo, en la interpretación del intervalo bayesiano, digamos para un intervalo de 95%, podemos decir que la probabilidad de que el parámetro desconocido caiga dentro del intervalo calculado (que sólo depende de los datos observados) es de 95%.

Ejemplo 18.6: Suponga que $X \sim b(x; n, p)$ con n = 2 conocida, y la distribución previa de p es uniforme $\pi(p) = 1$ para 0 . Calcule el intervalo de Bayes de 95% para <math>p.

Solución: Como en el ejemplo 18.2, cuando x = 0 la distribución posterior es una distribución beta con parámetros 1 y 3, es decir, $\pi(p|0) = 3(1-p)^2$, para 0 . Por consiguiente, necesitamos despejar <math>a y b utilizando la definición 18.2, lo que produce lo siguiente:

$$0.025 = \int_0^a 3(1-p)^2 dp = 1 - (1-a)^3$$

У

$$0.025 = \int_{b}^{1} 3(1-p)^{2} dp = (1-b)^{3}.$$

Las soluciones a las ecuaciones anteriores dan como resultado a = 0.0084 y b = 0.7076. Por lo tanto, la probabilidad de que p caiga dentro de (0.0084, 0.7076) es de 95%.

Para la población normal y el caso previo normal descrito en el ejemplo 18.5, la media posterior μ^* es el estimado de Bayes de la media poblacional μ , y se puede construir un **intervalo bayesiano** para μ de $100(1-\alpha)\%$ calculando el intervalo

$$\mu^* - z_{\alpha/2}\sigma^* < \mu < \mu^* + z_{\alpha/2}\sigma^*,$$

que se centra en la media posterior y contiene $100(1 - \alpha)\%$ de la probabilidad posterior.

Ejemplo 18.7: Una empresa de equipo eléctrico fabrica bombillas con una duración distribuida de forma aproximadamente normal y una desviación estándar de 100 horas. La experiencia previa nos conduce a creer que μ es un valor de una variable aleatoria normal con una media $\mu_0 = 800$ horas y una desviación estándar $\sigma_0 = 10$ horas. Si una muestra aleatoria de 25 bombillas tiene una duración promedio de 780 horas, calcule un intervalo bayesiano de 95% para μ .

Solución: De acuerdo con el ejemplo 18.5, la distribución posterior de la media también es una distribución normal con media

$$\mu^* = \frac{(25)(780)(10)^2 + (800)(100)^2}{(25)(10)^2 + (100)^2} = 796$$

y desviación estándar

$$\sigma^* = \sqrt{\frac{(10)^2 (100)^2}{(25)(10)^2 + (100)^2}} = \sqrt{80}.$$

El intervalo bayesiano de 95% para μ es dado entonces por

$$796 - 1.96\sqrt{80} < \mu < 796 + 1.96\sqrt{80}$$

0

$$778.5 < \mu < 813.5$$
.

En consecuencia, estamos 95% seguros de que μ estará entre 778.5 y 813.5.

Por otro lado, si desconocemos la información previa acerca de μ , procedemos como en la sección 9.4 para construir el intervalo de confianza clásico de 95%.

$$780 - (1.96) \left(\frac{100}{\sqrt{25}}\right) < \mu < 780 + (1.96) \left(\frac{100}{\sqrt{25}}\right),$$

o 740.8 < μ < 819.2, el cual se ve que es más amplio que el intervalo bayesiano correspondiente.

18.3 Estimados bayesianos mediante la teoría de decisión

Con la metodología bayesiana se puede obtener la distribución posterior del parámetro. Los estimados bayesianos también se pueden derivar usando la distribución posterior y una función de pérdida cuando se incurre en una pérdida. Una función de pérdida es aquella que describe el costo de una decisión asociada con un suceso de interés. Aquí sólo se citan unas cuantas funciones de pérdida de uso común y sus estimados de Bayes asociados.

Pérdida del cuadrado del error

Definición 18.3: La función de pérdida del cuadrado del error es

$$L(\theta, a) = (\theta - a)^2,$$

donde θ es el parámetro (o estado natural) y a una acción (o estimado).

Un estimado de Bayes minimiza la pérdida posterior esperada dada en los datos muestrales observados.

Teorema 18.1: La media de la distribución posterior $\pi(\theta|x)$, denotada con θ^* , es el **estimado de Bayes de** θ bajo la función de pérdida del cuadrado del error.

Ejemplo 18.8: Calcule el estimado de Bayes de *p* para todos los valores de *x* en el ejemplo 18.1 cuando se utiliza la función de pérdida del cuadrado del error.

Solución: Cuando x = 0, $p^* = (0.1)(0.6550) + (0.2)(0.3450) = 0.1345$.

Cuando x = 1, $p^* = (0.1)(0.4576) + (0.2)(0.5424) = 0.1542$.

Cuando x = 2, $p^* = (0.1)(0.2727) + (0.2)(0.7273) = 0.1727$.

Observe que el estimado clásico de p es $\hat{p} = x/n = 0$, ½ y 1, respectivamente, para los valores de x en 0, 1 y 2. Estos estimados clásicos son muy diferentes de los estimados de Bayes correspondientes.

Ejemplo 18.9: Repita el ejemplo 18.8 en la situación del ejemplo 18.2.

Solución: Puesto que la distribución posterior de p es una distribución B(x + 1, 3 - x) (véase la sección 6.8 en la página 201), el estimado de Bayes de p es

$$p^* = E^{\pi(p|x)}(p) = 3\binom{2}{x} \int_0^1 p^{x+1} (1-p)^{2-x} dp,$$

que produce $p^* = \frac{1}{4}$ para x = 0, $p^* = \frac{1}{2}$ para x = 1, y $p^* = \frac{3}{4}$ para x = 2, respectivamente. Advierta que cuando se observa x = 1, el estimado de Bayes y el estimado clásico de \hat{p} son equivalentes.

Para la situación normal que se describe en el ejemplo 18.5 el estimado de Bayes de μ bajo la pérdida del cuadrado del error será la media posterior μ^* .

Ejemplo 18.10: Suponga que la distribución muestral de una variable aleatoria X es de Poisson con parámetro λ . Suponga que la distribución previa de λ sigue una distribución gamma con

parámetros (α, β) . Calcule el estimado de Bayes de λ bajo la función de pérdida del cuadrado del error.

Solución: Si utilizamos el ejemplo 18.3, concluimos que la distribución posterior de λ sigue una distribución gamma con parámetros $(x + \alpha, (1 + 1/\beta)^{-1})$. Por medio del teorema 6.4 obtenemos la media posterior

$$\hat{\lambda} = \frac{x + \alpha}{1 + 1/\beta}.$$

Como la media posterior es el estimado de Bayes bajo la pérdida del cuadrado del error, $\hat{\lambda}$ es nuestro estimado de Bayes.

Pérdida del error absoluto

La pérdida del cuadrado del error descrita antes es similar al concepto de los mínimos cuadrados que se analizó en relación con la regresión en los capítulos 11 y 12. En esta sección presentamos otra función de pérdida como sigue.

Definición 18.4: La función de pérdida del error absoluto se define como

$$L(\theta, a) = |\theta - a|,$$

donde θ es el parámetro y a una acción.

Teorema 18.2: La mediana de la distribución posterior $\pi(\theta|x)$, denotada con θ^* , es el **estimado de Bayes de** θ bajo la función de pérdida del error absoluto.

Ejemplo 18.11: Bajo la pérdida del error absoluto calcule el estimador de Bayes para el ejemplo 18.9 cuando se observa x = 1.

Solución: Nuevamente, la distribución posterior de p es B(x+1, 3-x). Cuando x=1 se trata de una distribución beta con densidad $\pi(p \mid x=1) = 6x(1-x)$ para 0 < x < 1 y 0 en otro caso. La mediana de esta distribución es un valor de p^* tal que

$$\frac{1}{2} = \int_0^{p^*} 6p(1-p) \ dp = 3p^{*2} - 2p^{*3},$$

que produce la respuesta $p^* = \frac{1}{2}$. Por lo tanto, el estimado de Bayes en este caso es 0.5.

Ejercicios

18.1 Estime la proporción de artículos defectuosos que produce la máquina del ejemplo 18.1 si la muestra aleatoria de tamaño 2 produce dos artículos defectuosos.

18.2 Supongamos que la distribución previa para la proporción p de bebidas de una máquina despachadora que se derraman al servirse es

$$\begin{array}{c|cccc} p & 0.05 & 0.10 & 0.15 \\ \hline \pi(p) & 0.3 & 0.5 & 0.2 \\ \end{array}$$

Si dos de las siguientes 9 bebidas de esta máquina se derraman, calcule

- a) la distribución posterior para la proporción p;
- b) el estimado de Bayes de p.

Ejercicios 719

18.3 Repita el ejercicio 18.2 cuando una de las siguientes 4 bebidas se derrama y la distribución uniforme previa es

$$\pi(p) = 10, \quad 0.05$$

- 18.4 Las llamadas de servicio llegan a un centro de mantenimiento de acuerdo con un proceso de Poisson con λ llamadas por minuto. Un conjunto de datos de 20 periodos de un minuto producen un promedio de 1.8 llamadas. Si la distribución previa de λ sigue una distribución exponencial con media 2, determine la distribución posterior de λ .
- **18.5** Un estudio previo indica que el porcentaje de fumadores empedernidos, p, que tienen cáncer de pulmón sigue una distribución beta (véase la sección 6.8) con media de 70% y desviación estándar de 10%. Suponga que un nuevo conjunto de datos recolectado indica que 81 de 120 fumadores empedernidos tiene cáncer de pulmón.
- a) Determine la distribución posterior del porcentaje de fumadores empedernidos que tienen cáncer de pulmón combinando los nuevos datos y la información previa.
- b) ¿Cuál es la probabilidad posterior de que p sea mayor que 50%?
- 18.6 El constructor de un nuevo complejo de condominios afirma que 3 de 5 compradores preferirá un departamento de dos recámaras, mientras que su banquero afirma que sería más correcto decir que 7 de 10 compradores preferirán uno de dos recámaras. En las predicciones previas de este tipo el banquero ha sido dos veces más confiable que el constructor. Si 12 de los siguientes 15 condominios que se venden en este complejo son de dos recámaras, calcule
- a) las probabilidades posteriores que se asocian con las afirmaciones del constructor y del banquero;
- b) un estimado puntual de la proporción de compradores que prefieren un condominio de dos recámaras.
- 18.7 El tiempo en que se consume la primera etapa de un cohete es una variable aleatoria normal con una desviación estándar de 0.8 minutos. Suponga una distribución previa normal para μ con una media de ocho minutos y una desviación estándar de 0.2 minutos. Si se lanzan 10 de estos cohetes y la primera etapa tiene un tiempo de consumo promedio de 9 minutos, calcule un intervalo bayesiano de 95% para μ .
- 18.8 La utilidad diaria de una máquina despachadora de jugos, ubicada en un edificio de oficinas, es un valor de una variable aleatoria normal, con media μ y varianza σ^2 desconocidas. Desde luego, la media variará un poco de un edificio a otro, y el distribuidor considera que estas utilidades promedio diarias se pueden describir mejor usando una distribución normal con media

 $\mu_0 = \$30.00$ y desviación estándar $\sigma_0 = \$1.75$. Si una de estas máquinas despachadoras de jugo, ubicada en cierto edificio, muestra una utilidad promedio diaria de $\bar{x} = \$24.90$, durante los primeros 30 días con una desviación estándar de s = \$2.10, calcule

- a) un estimado de Bayes de la utilidad promedio diaria verdadera para este edificio;
- b) un intervalo bayesiano de 95% de μ para este edificio:
- c) la probabilidad de que la utilidad promedio diaria de la máquina en este edificio sea de entre \$24.00 y \$26.00.
- **18.9** El departamento de matemáticas de una universidad grande diseña un examen de colocación para aplicarlo a los grupos de nuevo ingreso a primer año. Los miembros del departamento consideran que la calificación promedio para este examen variará de un grupo de primer año a otro. Esta variación de la calificación promedio del grupo se expresa de manera subjetiva mediante una distribución normal, con una media $\mu_0 = 72$ y una varianza $\sigma_0^2 = 5.76$.
- a) ¿Qué probabilidad previa existe de que la calificación promedio real, que asigna el departamento para los alumnos de nuevo ingreso del siguiente año, caiga entre 71.8 y 73.4?
- b) Construya un intervalo bayesiano de 95% para μ en el caso de que el examen se aplicara a una muestra aleatoria de 100 estudiantes de primer grado del siguiente grupo de nuevo ingreso y tuviera como resultado una calificación promedio de 70 con una varianza de 64.
- c) ¿Qué probabilidad posterior debería asignar el departamento al evento del inciso a?
- **18.10** Suponga que en el ejemplo 18.7 la empresa de equipo eléctrico no tiene suficiente información previa respecto a la duración media poblacional que le permita suponer una distribución normal para μ . La empresa cree, sin embargo, que μ seguramente estará entre 770 y 830 horas, y considera que una aproximación bayesiana más realista sería suponer una distribución previa

$$\pi(\mu) = \frac{1}{60}$$
, 770 < μ < 830.

Si una muestra aleatoria de 25 bombillas tiene una vida promedio de 780 horas, siga los pasos de la demostración del ejemplo 18.5 para encontrar la distribución posterior.

$$\pi(\mu \mid x_1, x_2, \ldots, x_{25}).$$

18.11 Suponga que el tiempo T antes de que falle cierta bisagra es una variable aleatoria exponencial con densidad de probabilidad

$$f(t) = \theta e^{-\theta t}, \quad t > 0.$$

Por experiencia, nos inclinamos a pensar que θ es un valor de una variable aleatoria exponencial con densidad de probabilidad

$$\pi(\theta) = 2e^{-2\theta}, \quad \theta > 0.$$

Si tenemos una muestra de n observaciones de T, demuestre que la distribución posterior de Θ es una distribución gamma

$$\alpha = n + 1$$
 y $\beta = \left(\sum_{i=1}^{n} t_i + 2\right)^{-1}$.

- **18.12** Suponga que una muestra consta de 5, 6, 6, 7, 5, 6, 4, 9 y 3, y 6 proviene de una población de Poisson con media λ . Suponga que el parámetro λ sigue una distribución gamma con parámetros (3, 2). Bajo la función de pérdida del cuadrado del error, calcule el estimado de Bayes de λ .
- **18.13** Una variable aleatoria X sigue una distribución binomial negativa con parámetros k = 5 y p, es decir, $b^*(x; 5, p)$. Además, se sabe que p sigue una distribución uniforme en el intervalo (0, 1). Calcule el es-

timado de Bayes de p bajo la función de pérdida del cuadrado del error.

- **18.14** Una variable aleatoria X sigue una distribución exponencial con media $1/\beta$. Suponga que la distribución previa de β es otra distribución exponencial con media 2.5. Determine el estimado de Bayes de β bajo la función de pérdida del error absoluto.
- **18.15** Una muestra aleatoria $X_1, ..., X_n$ proviene de una población con distribución uniforme (véase la sección 6.1) con θ desconocida. Los datos se presentan a continuación:

Suponga que la distribución previa de θ tiene la densidad

$$\pi(\theta) = \begin{cases} \frac{1}{\theta^2}, & \theta > 1, \\ 0, & \theta \le 1. \end{cases}$$

Determine el estimador de Bayes bajo la función de pérdida del error absoluto.

- 1 Bartlett, M. S. y Kendall, D. G. (1946). "The Statistical Analysis of Variance Heterogeneity and Logarithmic Transformation", *Journal of the Royal Statistical Society*, Ser. B. **8**, 128-138.
- 2 Bowker, A. H. y Lieberman, G. J. (1972). *Engineering Statistics*, 2.a, ed. Upper Saddle River, N.J.: Prentice Hall.
- 3 Box, G. E. P. (1988). "Signal to Noise Ratios, Performance Criteria and Transformations (with discussion)", *Technometrics*, **30**, 1-17.
- 4 Box, G. E. P. y Fung, C. A. (1986). "Studies in Quality Improvement: Minimizing Transmitted Variation by Parameter Design", Informe 8. University of Wisconsin-Madison, Center for Quality and Productivity Improvement.
- 5 Box, G. E. P., Hunter, W. G. y Hunter, J. S. (1978). *Statistics for Experimenters*. Nueva York: John Wiley & Sons.
- 6 Brownlee, K. A. (1984). *Statistical Theory and Methodology: In Science and Engineering*, 2.a, ed., Nueva York: John Wiley & Sons.
- 7 Carroll, R. J. y Ruppert, D. (1988). *Transformation and Weighting in Regression*. Nueva York: Chapman y Hall.
- 8 Chatterjee, S., Hadi, A. S. y Price, B. (1999). *Regression Analysis by Example*, 3.a, ed., Nueva York: John Wiley & Sons.
- 9 Cook, R. D. y Weisberg, S. (1982). Residuals and Influence in Regression. Nueva York: Chapman y Hall.
- 10 Daniel, C. y Wood, F. S. (1999). Fitting Equations to Data: Computer Analysis of Multifactor Data, 2.a, ed., Nueva York: John Wiley & Sons.
- 11 Daniel, W. W. (1989). *Applied Nonparametric Statistics*, 2.a, ed. Belmont, Calif.: Wadsworth Publishing Company.
- 12 Devore, J. L. (2003). *Probability and Statistics for Engineering and the Sciences*, 6.a, ed., Belmont, Calif: Duxbury Press.
- 13 Dixon, W. J. (1983). Introduction to Statistical Analysis, 4.a, ed., Nueva York: McGraw-Hill.
- 14 Draper, N. R. y Smith, H. (1998). *Applied Regression Analysis*, 3.a, ed., Nueva York: John Wiley & Sons.

- 15 Duncan, A. (1986). Quality Control and Industrial Statistics, 5.a, ed., Homewood, Ill.: Irwin.
- 16 Dyer, D. D., y Keating, J. P. (1980). "On the Determination of Critical Values for Bartlett's Test", Journal of the American Statistical Association, 75, 313-319.
- 17 Ewan, W. D. y Kemp, K. W. (1960). "Sampling Inspection of Continuous Processes with No Autocorrelation between Successive Results", *Biometrika*, **47**, 363-380.
- 18 Geary, R. C. (1947). "Testing for Normality", Biometrika, 34, 209-242.
- 19 Gunst, R. F. y Mason, R. L. (1980). Regression Analysis and Its Application: A Data-Oriented Approach. Nueva York: Marcel Dekker.
- 20 Guttman, I., Wilks, S. S. y Hunter, J. S. (1971). *Introductory Engineering Statistics*. Nueva York: John Wiley & Sons.
- 21 Harville, D. A. (1977). "Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems", *Journal of the American Statistical Association*, **72**, 320-338.
- 22 Hicks, C. R. y Turner, K. V. (1999). Fundamental Concepts in the Design of Experiments, 5.a, ed., Oxford: Oxford University Press.
- 23 Hoaglin, D. C., Mosteller, F. y Tukey, J. W. (1991). *Fundamentals of Exploratory Analysis of Variance*. Nueva York: John Wiley & Sons.
- 24 Hocking, R. R. (1976). "The Analysis and Selection of Variables in Linear Regression", *Biometrics*, **32**, 1-49.
- 25 Hodges, J. L. y Lehmann, E. L. (2005). *Basic Concepts of Probability and Statistics*, 2.a, ed. Filadelfia: Society for Industrial and Applied Mathematics.
- 26 Hoerl, A. E. y Wennard, R. W. (1970). "Ridge Regression: Applications to Nonorthogonal Problems", *Technometrics*, **12**, 55-67.
- 27 Hogg, R. V. y Ledolter, J. (1992). *Applied Statistics for Engineers and Physical Scientists*, 2.a, ed., Upper Saddle River, N.J.: Prentice Hall.
- 28 Hogg, R. V., McKean, J. W. y Craig, A. (2005). *Introduction to Mathematical Statistics*, 6.a, ed., Upper Saddle River, N.J.: Prentice Hall.
- 29 Hollander, M. y Wolfe, D. (1999). Nonparametric Statistical Methods. Nueva York: John Wiley & Sons.
- 30 Johnson, N. L. y Leone, F. C. (1977). *Statistics and Experimental Design: In Engineering and the Physical Sciences*, 2.a, ed., Vols. I y II, Nueva York: John Wiley & Sons.
- 31 Kackar, R. (1985). "Off-Line Quality Control, Parameter Design, and the Taguchi Methods", *Journal of Quality Technology*, **17**, 176-188.
- 32 Koopmans, L. H. (1987). An Introduction to Contemporary Statistics, 2.a, ed., Boston: Duxbury Press.
- 33 Kutner, M. H., Nachtsheim, C. J., Neter, J. y Li, W. (2004). *Applied Linear Regression Models*, 5.a, ed., Nueva York: McGraw-Hill/Irwin.

34 Larsen, R. J. y Morris, M. L. (2000). *An Introduction to Mathematical Statistics and Its Applications*, 3.a, ed., Upper Saddle River, N.J.: Prentice Hall.

- 35 Lehmann, E. L. y D'Abrera, H. J. M. (1998). *Nonparametrics: Statistical Methods Based on Ranks*, ed. rev., Upper Saddle River, N.J.: Prentice Hall.
- 36 Lentner, M. y Bishop, T. (1986). *Design and Analysis of Experiments*, 2.a, ed., Blacksburg, Va.: Valley Book Co.
- 37 Mallows, C. L. (1973). "Some Comments on *Cp*", *Technometrics*, **15**, 661-675.
- 38 McClave, J. T., Dietrich, F. H. y Sincich, T. (1997). *Statistics*, 7.a, ed. Upper Saddle River, N.J.: Prentice Hall.
- 39 Montgomery, D. C. (2008a). *Design and Analysis of Experiments*, 7.a, ed., Nueva York: John Wiley & Sons.
- 40 Montgomery, D. C. (2008b). *Introduction to Statistical Quality Control*, 6.a, ed., Nueva York: John Wiley & Sons.
- 41 Mosteller, F. y Tukey, J. (1977). *Data Analysis and Regression*. Reading, Mass.: Addison-Wesley Publishing Co.
- 42 Myers, R. H. (1990). Classical and Modern Regression with Applications, 2.a, ed., Boston: Duxbury Press.
- 43 Myers, R. H., Khuri, A. I. y Vining, G. G. (1992). "Response Surface Alternatives to the Taguchi Robust Parameter Design Approach", *The American Statistician*, **46**, 131-139.
- 44 Myers, R. H., Montgomery, D. C. y Anderson-Cook, C. M. (2009). *Response Surface Methodology: Process and Product Optimization Using Designed Experiments*, 3.a, ed., Nueva York: John Wiley & Sons.
- 45 Myers, R. H., Montgomery, D. C., Vining, G. G. y Robinson, T. J. (2008). *Generalized Linear Models with Applications in Engineering and the Sciences*, 2.a, ed., Nueva York: John Wiley & Sons.
- 46 Noether, G. E. (1976). *Introduction to Statistics: A Nonparametric Approach*, 2.a, ed., Boston: Houghton Mifflin Company.
- 47 Olkin, I., Gleser, L. J. y Derman, C. (1994). *Probability Models and Applications*, 2.a, ed., Nueva York: Prentice Hall.
- 48 Ott, R. L. y Longnecker, M. T. (2000). *An Introduction to Statistical Methods and Data Analysis*, 5.a, ed., Boston: Duxbury Press.
- 49 Pacansky, J., England, C. D. y Wattman, R. (1986). "Infrared Spectroscopic Studies of Poly (perfluoropropyleneoxide) on Gold Substrate: A Classical Dispersion Analysis for the Refractive Index". Applied Spectroscopy, 40, 8-16.
- 50 Plackett, R. L. y Burman, J. P. (1946). "The Design of Multifactor Experiments", Biometrika, 33, 305-325.
- 51 Ross, S. M. (2002). Introduction to Probability Models, 9.a, ed., Nueva York: Academic Press, Inc.

52 Satterthwaite, F. E. (1946). "An Approximate Distribution of Estimates of Variance Components", *Biometrics*, **2**, 110-114.

- 53 Schilling, E. G. y Nelson, P. R. (1976). "The Effect of Nonnormality on the Control Limits of *X* Charts", *Journal of Quality Technology*, **8**, 347-373.
- 54 Schmidt, S. R. y Launsby, R. G. (1991). *Understanding Industrial Designed Experiments*. Colorado Springs, Col. Air Academy Press.
- 55 Shoemaker, A. C., Tsui, K.-L. y Wu, C. F. J. (1991). "Economical Experimentation Methods for Robust Parameter Design", *Technometrics*, **33**, 415-428.
- 56 Snedecor, G. W. y Cochran, W. G. (1989). *Statistical Methods*, 8a ed., Allies, Iowa: The Iowa State University Press.
- 57 Steel, R. G. D., Torrie, J. H. y Dickey, D. A. (1996). *Principles and Procedures of Statistics: A Biometrical Approach*, 3.a, ed., Nueva York: McGraw-Hill.
- 58 Taguchi, G. (1991). *Introduction to Quality Engineering*. White Plains, N.Y.: Unipub/Kraus International.
- 59 Taguchi, G. y Wu, Y. (1985). *Introduction to Off-Line Quality Control*. Nagoya, Japan: Central Japan Quality Control Association.
- 60 Thompson, W. O. y Cady, F. B. (1973). *Proceedings of the University of Kentucky Conference on Regression with a Large Number of Predictor Variables*. Lexington, Ken.: University of Kentucky Press.
- 61 Tukey, J. W. (1977). Exploratory Data Analysis. Reading, Mass.: Addison-Wesley Publishing Co.
- 62 Vining, G. G. y Myers, R. H. (1990). "Combining Taguchi and Response Surface Philosophies: A Dual Response Approach", *Journal of Quality Technology*, **22**, 38-45.
- 63 Welch, W. J., Yu, T. K., Kang, S. M. y Sacks, J. (1990). "Computer Experiments for Quality Control by Parameter Design", *Journal of Quality Technology*, **22**, 15-22.
- 64 Winer, B. J. (1991). Statistical Principles in Experimental Design, 3.a, ed., Nueva York: McGraw-Hill.

Apéndice A Tablas y demostraciones estadísticas

Tabla A.1 Sumas de probabilidad binomial $\sum_{x=0}^{r} b(x; n, p)$

						р					
n	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
1	0	0.9000	0.8000	0.7500	0.7000	0.6000	0.5000	0.4000	0.3000	0.2000	0.1000
	1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	0	0.8100	0.6400	0.5625	0.4900	0.3600	0.2500	0.1600	0.0900	0.0400	0.0100
	1	0.9900	0.9600	0.9375	0.9100	0.8400	0.7500	0.6400	0.5100	0.3600	0.1900
	2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	0	0.7290	0.5120	0.4219	0.3430	0.2160	0.1250	0.0640	0.0270	0.0080	0.0010
	1	0.9720	0.8960	0.8438	0.7840	0.6480	0.5000	0.3520	0.2160	0.1040	0.0280
	2	0.9990	0.9920	0.9844	0.9730	0.9360	0.8750	0.7840	0.6570	0.4880	0.2710
	3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	0	0.6561	0.4096	0.3164	0.2401	0.1296	0.0625	0.0256	0.0081	0.0016	0.0001
	1	0.9477	0.8192	0.7383	0.6517	0.4752	0.3125	0.1792	0.0837	0.0272	0.0037
	2	0.9963	0.9728	0.9492	0.9163	0.8208	0.6875	0.5248	0.3483	0.1808	0.0523
	3	0.9999	0.9984	0.9961	0.9919	0.9744	0.9375	0.8704	0.7599	0.5904	0.3439
	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	0	0.5905	0.3277	0.2373	0.1681	0.0778	0.0313	0.0102	0.0024	0.0003	0.0000
	1	0.9185	0.7373	0.6328	0.5282	0.3370	0.1875	0.0870	0.0308	0.0067	0.0005
	2	0.9914	0.9421	0.8965	0.8369	0.6826	0.5000	0.3174	0.1631	0.0579	0.0086
	3	0.9995	0.9933	0.9844	0.9692	0.9130	0.8125	0.6630	0.4718	0.2627	0.0815
	4	1.0000	0.9997	0.9990	0.9976	0.9898	0.9688	0.9222	0.8319	0.6723	0.4095
	5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	0	0.5314	0.2621	0.1780	0.1176	0.0467	0.0156	0.0041	0.0007	0.0001	0.0000
	1	0.8857	0.6554	0.5339	0.4202	0.2333	0.1094	0.0410	0.0109	0.0016	0.0001
	2	0.9842	0.9011	0.8306	0.7443	0.5443	0.3438	0.1792	0.0705	0.0170	0.0013
	3	0.9987	0.9830	0.9624	0.9295	0.8208	0.6563	0.4557	0.2557	0.0989	0.0159
	4	0.9999	0.9984	0.9954	0.9891	0.9590	0.8906	0.7667	0.5798	0.3446	0.1143
	5	1.0000	0.9999	0.9998	0.9993	0.9959	0.9844	0.9533	0.8824	0.7379	0.4686
	6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	0	0.4783	0.2097	0.1335	0.0824	0.0280	0.0078	0.0016	0.0002	0.0000	
	1	0.8503	0.5767	0.4449	0.3294	0.1586	0.0625	0.0188	0.0038	0.0004	0.0000
	2	0.9743	0.8520	0.7564	0.6471	0.4199	0.2266	0.0963	0.0288	0.0047	0.0002
	3	0.9973	0.9667	0.9294	0.8740	0.7102	0.5000	0.2898	0.1260	0.0333	0.0027
	4	0.9998	0.9953	0.9871	0.9712	0.9037	0.7734	0.5801	0.3529	0.1480	0.0257
	5	1.0000	0.9996	0.9987	0.9962	0.9812	0.9375	0.8414	0.6706	0.4233	0.1497
	6		1.0000	0.9999	0.9998	0.9984	0.9922	0.9720	0.9176	0.7903	0.5217
	7			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla A.1 (*continuación*) Sumas de probabilidad binomial $\sum_{x=0}^{r} b(x; n, p)$

						р					
n	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
8	0	0.4305	0.1678	0.1001	0.0576	0.0168	0.0039	0.0007	0.0001	0.0000	
	1	0.8131	0.5033	0.3671	0.2553	0.1064	0.0352	0.0085	0.0013	0.0001	
	2	0.9619	0.7969	0.6785	0.5518	0.3154	0.1445	0.0498	0.0113	0.0012	0.0000
	3	0.9950	0.9437	0.8862	0.8059	0.5941	0.3633	0.1737	0.0580	0.0104	0.0004
	4	0.9996	0.9896	0.9727	0.9420	0.8263	0.6367	0.4059	0.1941	0.0563	0.0050
	5	1.0000	0.9988	0.9958	0.9887	0.9502	0.8555	0.6846	0.4482	0.2031	0.0381
	6		0.9999	0.9996	0.9987	0.9915	0.9648	0.8936	0.7447	0.4967	0.1869
	7		1.0000	1.0000	0.9999	0.9993	0.9961	0.9832	0.9424	0.8322	0.5695
	8				1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	0	0.3874	0.1342	0.0751	0.0404	0.0101	0.0020	0.0003	0.0000		
	1	0.7748	0.4362	0.3003	0.1960	0.0705	0.0195	0.0038	0.0004	0.0000	
	2	0.9470	0.7382	0.6007	0.4628	0.2318	0.0898	0.0250	0.0043	0.0003	0.0000
	3	0.9917	0.9144	0.8343	0.7297	0.4826	0.2539	0.0994	0.0253	0.0031	0.0001
	4	0.9991	0.9804	0.9511	0.9012	0.7334	0.5000	0.2666	0.0988	0.0196	0.0009
	5	0.9999	0.9969	0.9900	0.9747	0.9006	0.7461	0.5174	0.2703	0.0856	0.0083
	6	1.0000	0.9997	0.9987	0.9957	0.9750	0.9102	0.7682	0.5372	0.2618	0.0530
	7		1.0000	0.9999	0.9996	0.9962	0.9805	0.9295	0.8040	0.5638	0.2252
	8			1.0000	1.0000	0.9997	0.9980	0.9899	0.9596	0.8658	0.6126
	9					1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	0	0.3487	0.1074	0.0563	0.0282	0.0060	0.0010	0.0001	0.0000		
	1	0.7361	0.3758	0.2440	0.1493	0.0464	0.0107	0.0017	0.0001	0.0000	
	2	0.9298	0.6778	0.5256	0.3828	0.1673	0.0547	0.0123	0.0016	0.0001	
	3	0.9872	0.8791	0.7759	0.6496	0.3823	0.1719	0.0548	0.0106	0.0009	0.0000
	4	0.9984	0.9672	0.9219	0.8497	0.6331	0.3770	0.1662	0.0473	0.0064	0.0001
	5	0.9999	0.9936	0.9803	0.9527	0.8338	0.6230	0.3669	0.1503	0.0328	0.0016
	6	1.0000	0.9991	0.9965	0.9894	0.9452	0.8281	0.6177	0.3504	0.1209	0.0128
	7		0.9999	0.9996	0.9984	0.9877	0.9453	0.8327	0.6172	0.3222	0.0702
	8		1.0000	1.0000	0.9999	0.9983	0.9893	0.9536	0.8507	0.6242	0.2639
	9				1.0000	0.9999	0.9990	0.9940	0.9718	0.8926	0.6513
	10					1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
11	0	0.3138	0.0859	0.0422	0.0198	0.0036	0.0005	0.0000			
	1	0.6974	0.3221	0.1971	0.1130	0.0302	0.0059	0.0007	0.0000		
	2	0.9104	0.6174	0.4552	0.3127	0.1189	0.0327	0.0059	0.0006	0.0000	
	3	0.9815	0.8389	0.7133	0.5696	0.2963	0.1133	0.0293	0.0043	0.0002	
	4	0.9972	0.9496	0.8854	0.7897	0.5328	0.2744	0.0994	0.0216		0.0000
	5	0.9997	0.9883	0.9657	0.9218	0.7535	0.5000	0.2465	0.0782	0.0117	0.0003
	6	1.0000	0.9980	0.9924	0.9784	0.9006	0.7256	0.4672	0.2103	0.0504	0.0028
	7		0.9998	0.9988	0.9957	0.9707	0.8867	0.7037	0.4304	0.1611	0.0185
	8		1.0000	0.9999	0.9994	0.9941	0.9673	0.8811	0.6873	0.3826	0.0896
	9			1.0000	1.0000	0.9993	0.9941	0.9698	0.8870	0.6779	0.3026
	10					1.0000	0.9995	0.9964	0.9802	0.9141	0.6862
	11						1.0000	1.0000	1.0000	1.0000	1.0000

Tabla A.1 (*continuación*) Sumas de probabilidad binomial $\sum_{x=0}^{r} b(x; n, p)$

						р					
n	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
12	0	0.2824	0.0687	0.0317	0.0138	0.0022	0.0002	0.0000			
	1	0.6590	0.2749	0.1584	0.0850	0.0196	0.0032	0.0003	0.0000		
	2	0.8891	0.5583	0.3907	0.2528	0.0834	0.0193	0.0028	0.0002	0.0000	
	3	0.9744	0.7946	0.6488	0.4925	0.2253	0.0730	0.0153	0.0017	0.0001	
	4	0.9957	0.9274	0.8424	0.7237	0.4382	0.1938	0.0573	0.0095	0.0006	0.0000
	5	0.9995	0.9806	0.9456	0.8822	0.6652	0.3872	0.1582	0.0386	0.0039	0.0001
	6	0.9999	0.9961	0.9857	0.9614	0.8418	0.6128	0.3348	0.1178	0.0194	0.0005
	7	1.0000	0.9994	0.9972	0.9905	0.9427	0.8062	0.5618	0.2763	0.0726	0.0043
	8		0.9999	0.9996	0.9983	0.9847	0.9270	0.7747	0.5075	0.2054	0.0256
	9		1.0000	1.0000	0.9998	0.9972	0.9807	0.9166	0.7472	0.4417	0.1109
	10				1.0000	0.9997	0.9968	0.9804	0.9150	0.7251	0.3410
	11					1.0000	0.9998	0.9978	0.9862	0.9313	0.7176
	12						1.0000	1.0000	1.0000	1.0000	1.0000
13	0	0.2542	0.0550	0.0238	0.0097	0.0013	0.0001	0.0000			
	1	0.6213	0.2336	0.1267	0.0637	0.0126	0.0017	0.0001	0.0000		
	2	0.8661	0.5017	0.3326	0.2025	0.0579	0.0112	0.0013	0.0001		
	3	0.9658	0.7473	0.5843	0.4206	0.1686	0.0461	0.0078	0.0007	0.0000	
	4	0.9935	0.9009	0.7940	0.6543	0.3530	0.1334	0.0321	0.0040	0.0002	
	5	0.9991	0.9700	0.9198	0.8346	0.5744	0.2905	0.0977	0.0182	0.0012	0.0000
	6	0.9999	0.9930	0.9757	0.9376	0.7712	0.5000	0.2288	0.0624	0.0070	0.0001
	7	1.0000	0.9988	0.9944	0.9818	0.9023	0.7095	0.4256	0.1654	0.0300	0.0009
	8		0.9998	0.9990	0.9960	0.9679	0.8666	0.6470	0.3457	0.0991	0.0065
	9		1.0000	0.9999	0.9993	0.9922	0.9539	0.8314	0.5794	0.2527	0.0342
	10			1.0000	0.9999	0.9987	0.9888	0.9421	0.7975	0.4983	0.1339
	11				1.0000	0.9999	0.9983	0.9874	0.9363	0.7664	0.3787
	12					1.0000	0.9999	0.9987	0.9903	0.9450	0.7458
	13						1.0000	1.0000	1.0000	1.0000	1.0000
14	0	0.2288	0.0440	0.0178	0.0068	0.0008	0.0001	0.0000			
	1	0.5846	0.1979	0.1010	0.0475	0.0081	0.0009	0.0001			
	2	0.8416	0.4481	0.2811	0.1608	0.0398	0.0065	0.0006	0.0000		
	3	0.9559	0.6982	0.5213	0.3552	0.1243	0.0287	0.0039	0.0002		
	4	0.9908	0.8702	0.7415	0.5842	0.2793	0.0898	0.0175	0.0017	0.0000	
	5	0.9985	0.9561	0.8883	0.7805	0.4859	0.2120	0.0583	0.0083	0.0004	
	6	0.9998	0.9884	0.9617	0.9067	0.6925	0.3953	0.1501	0.0315	0.0024	0.0000
	7	1.0000	0.9976	0.9897	0.9685	0.8499	0.6047	0.3075	0.0933	0.0116	0.0002
	8		0.9996	0.9978	0.9917	0.9417	0.7880	0.5141	0.2195	0.0439	0.0015
	9		1.0000	0.9997	0.9983	0.9825	0.9102	0.7207	0.4158	0.1298	0.0092
	10			1.0000	0.9998	0.9961	0.9713	0.8757	0.6448	0.3018	0.0441
	11				1.0000	0.9994	0.9935	0.9602	0.8392	0.5519	0.1584
	12					0.9999	0.9991	0.9919	0.9525	0.8021	0.4154
	13					1.0000	0.9999	0.9992	0.9932	0.9560	0.7712
	14						1.0000	1.0000	1.0000	1.0000	1.0000

Tabla A.1 (*continuación*) Sumas de probabilidad binomial $\sum_{x=0}^{r} b(x; n, p)$

						p					
n	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
15	0	0.2059	0.0352	0.0134	0.0047	0.0005	0.0000				
	1	0.5490	0.1671	0.0802	0.0353	0.0052	0.0005	0.0000			
	2	0.8159	0.3980	0.2361	0.1268	0.0271	0.0037	0.0003	0.0000		
	3	0.9444	0.6482	0.4613	0.2969	0.0905	0.0176	0.0019	0.0001		
	4	0.9873	0.8358	0.6865	0.5155	0.2173	0.0592	0.0093	0.0007	0.0000	
	5	0.9978	0.9389	0.8516	0.7216	0.4032	0.1509	0.0338	0.0037	0.0001	
	6	0.9997	0.9819	0.9434	0.8689	0.6098	0.3036	0.0950	0.0152	0.0008	
	7	1.0000	0.9958	0.9827	0.9500	0.7869	0.5000	0.2131	0.0500	0.0042	0.0000
	8		0.9992	0.9958	0.9848	0.9050	0.6964	0.3902	0.1311	0.0181	0.0003
	9		0.9999	0.9992	0.9963	0.9662	0.8491	0.5968	0.2784	0.0611	0.0022
	10		1.0000	0.9999	0.9993	0.9907	0.9408	0.7827	0.4845	0.1642	0.0127
	11			1.0000	0.9999	0.9981	0.9824	0.9095	0.7031	0.3518	0.0556
	12				1.0000	0.9997	0.9963	0.9729	0.8732	0.6020	0.1841
	13					1.0000	0.9995	0.9948	0.9647	0.8329	0.4510
	14						1.0000	0.9995	0.9953	0.9648	0.7941
	15							1.0000	1.0000	1.0000	1.0000
16	0	0.1853	0.0281	0.0100	0.0033	0.0003	0.0000				
	1	0.5147	0.1407	0.0635	0.0261	0.0033	0.0003	0.0000			
	2	0.7892	0.3518	0.1971	0.0994	0.0183	0.0021	0.0001			
	3	0.9316	0.5981	0.4050	0.2459	0.0651	0.0106	0.0009	0.0000		
	4	0.9830	0.7982	0.6302	0.4499	0.1666	0.0384	0.0049	0.0003		
	5	0.9967	0.9183	0.8103	0.6598	0.3288	0.1051	0.0191	0.0016	0.0000	
	6	0.9995	0.9733	0.9204	0.8247	0.5272	0.2272	0.0583	0.0071	0.0002	
	7	0.9999	0.9930	0.9729	0.9256	0.7161	0.4018	0.1423	0.0257	0.0015	0.0000
	8	1.0000	0.9985	0.9925	0.9743	0.8577	0.5982	0.2839	0.0744	0.0070	0.0001
	9		0.9998	0.9984	0.9929	0.9417	0.7728	0.4728	0.1753	0.0267	0.0005
	10		1.0000	0.9997	0.9984	0.9809	0.8949	0.6712	0.3402	0.0817	0.0033
	11			1.0000	0.9997	0.9951	0.9616	0.8334	0.5501	0.2018	0.0170
	12				1.0000	0.9991	0.9894	0.9349	0.7541	0.4019	0.0684
	13					0.9999	0.9979	0.9817	0.9006	0.6482	0.2108
	14					1.0000	0.9997	0.9967	0.9739	0.8593	0.4853
	15						1.0000	0.9997	0.9967	0.9719	0.8147
	16							1.0000	1.0000	1.0000	1.0000

Tabla A.1 (*continuación*) Sumas de probabilidad binomial $\sum_{x=0}^{r} b(x; n, p)$

						р					
n	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
17	0	0.1668	0.0225	0.0075	0.0023	0.0002	0.0000				
	1	0.4818	0.1182	0.0501	0.0193	0.0021	0.0001	0.0000			
	2	0.7618	0.3096	0.1637	0.0774	0.0123	0.0012	0.0001			
	3	0.9174	0.5489	0.3530	0.2019	0.0464	0.0064	0.0005	0.0000		
	4	0.9779	0.7582	0.5739	0.3887	0.1260	0.0245	0.0025	0.0001		
	5	0.9953	0.8943	0.7653	0.5968	0.2639	0.0717	0.0106	0.0007	0.0000	
	6	0.9992	0.9623	0.8929	0.7752	0.4478	0.1662	0.0348	0.0032	0.0001	
	7	0.9999	0.9891	0.9598	0.8954	0.6405	0.3145	0.0919	0.0127	0.0005	
	8	1.0000	0.9974	0.9876	0.9597	0.8011	0.5000	0.1989	0.0403	0.0026	0.0000
	9		0.9995	0.9969	0.9873	0.9081	0.6855	0.3595	0.1046	0.0109	0.0001
	10		0.9999	0.9994	0.9968	0.9652	0.8338	0.5522	0.2248	0.0377	0.0008
	11		1.0000	0.9999	0.9993	0.9894	0.9283	0.7361	0.4032	0.1057	0.0047
	12			1.0000	0.9999	0.9975	0.9755	0.8740	0.6113	0.2418	0.0221
	13				1.0000	0.9995	0.9936	0.9536	0.7981	0.4511	0.0826
	14					0.9999	0.9988	0.9877	0.9226	0.6904	0.2382
	15					1.0000	0.9999	0.9979	0.9807	0.8818	0.5182
	16						1.0000	0.9998	0.9977	0.9775	0.8332
	17							1.0000	1.0000	1.0000	1.0000
18	0	0.1501	0.0180	0.0056	0.0016	0.0001	0.0000				
	1	0.4503	0.0991	0.0395	0.0142	0.0013	0.0001				
	2	0.7338	0.2713	0.1353	0.0600	0.0082	0.0007	0.0000			
	3	0.9018	0.5010	0.3057	0.1646	0.0328	0.0038	0.0002			
	4	0.9718	0.7164	0.5187	0.3327	0.0942	0.0154	0.0013	0.0000		
	5	0.9936	0.8671	0.7175	0.5344	0.2088	0.0481	0.0058	0.0003		
	6	0.9988	0.9487	0.8610	0.7217	0.3743	0.1189	0.0203	0.0014	0.0000	
	7	0.9998	0.9837	0.9431	0.8593	0.5634	0.2403	0.0576	0.0061	0.0002	
	8	1.0000	0.9957	0.9807	0.9404	0.7368	0.4073	0.1347	0.0210	0.0009	
	9		0.9991	0.9946	0.9790	0.8653	0.5927	0.2632	0.0596	0.0043	0.0000
	10		0.9998	0.9988	0.9939	0.9424	0.7597	0.4366	0.1407	0.0163	0.0002
	11		1.0000	0.9998	0.9986	0.9797	0.8811	0.6257	0.2783	0.0513	0.0012
	12			1.0000	0.9997	0.9942	0.9519	0.7912	0.4656	0.1329	0.0064
	13				1.0000	0.9987	0.9846	0.9058	0.6673	0.2836	0.0282
	14					0.9998	0.9962	0.9672	0.8354	0.4990	0.0982
	15					1.0000	0.9993	0.9918	0.9400	0.7287	0.2662
	16						0.9999	0.9987	0.9858	0.9009	0.5497
	17						1.0000	0.9999	0.9984	0.9820	0.8499
	18							1.0000	1.0000	1.0000	1.0000

Tabla A.1 (*continuación*) Sumas de probabilidad binomial $\sum_{x=0}^{r} b(x; n, p)$

						p					
n	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
19	0	0.1351	0.0144	0.0042	0.0011	0.0001					
	1	0.4203	0.0829	0.0310	0.0104	0.0008	0.0000				
	2	0.7054	0.2369	0.1113	0.0462	0.0055	0.0004	0.0000			
	3	0.8850	0.4551	0.2631	0.1332	0.0230	0.0022	0.0001			
	4	0.9648	0.6733	0.4654	0.2822	0.0696	0.0096	0.0006	0.0000		
	5	0.9914	0.8369	0.6678	0.4739	0.1629	0.0318	0.0031	0.0001		
	6	0.9983	0.9324	0.8251	0.6655	0.3081	0.0835	0.0116	0.0006		
	7	0.9997	0.9767	0.9225	0.8180	0.4878	0.1796	0.0352	0.0028	0.0000	
	8	1.0000	0.9933	0.9713	0.9161	0.6675	0.3238	0.0885	0.0105	0.0003	
	9		0.9984	0.9911	0.9674	0.8139	0.5000	0.1861	0.0326	0.0016	
	10		0.9997	0.9977	0.9895	0.9115	0.6762	0.3325	0.0839	0.0067	0.0000
	11		1.0000	0.9995	0.9972	0.9648	0.8204	0.5122	0.1820	0.0233	0.0003
	12			0.9999	0.9994	0.9884	0.9165	0.6919	0.3345	0.0676	0.0017
	13			1.0000	0.9999	0.9969	0.9682	0.8371	0.5261	0.1631	0.0086
	14				1.0000	0.9994	0.9904	0.9304	0.7178	0.3267	0.0352
	15					0.9999	0.9978	0.9770	0.8668	0.5449	0.1150
	16					1.0000	0.9996	0.9945	0.9538	0.7631	0.2946
	17						1.0000	0.9992	0.9896	0.9171	0.5797
	18							0.9999	0.9989	0.9856	0.8649
	19							1.0000	1.0000	1.0000	1.0000
20	0	0.1216	0.0115	0.0032	0.0008	0.0000					
	1	0.3917	0.0692	0.0243	0.0076	0.0005	0.0000				
	2	0.6769	0.2061	0.0913	0.0355	0.0036	0.0002				
	3	0.8670	0.4114	0.2252	0.1071	0.0160	0.0013	0.0000			
	4	0.9568	0.6296	0.4148	0.2375	0.0510	0.0059	0.0003			
	5	0.9887	0.8042	0.6172	0.4164	0.1256	0.0207	0.0016	0.0000		
	6	0.9976	0.9133	0.7858	0.6080	0.2500	0.0577	0.0065	0.0003		
	7	0.9996	0.9679	0.8982	0.7723	0.4159	0.1316	0.0210	0.0013	0.0000	
	8	0.9999	0.9900	0.9591	0.8867	0.5956	0.2517	0.0565	0.0051	0.0001	
	9	1.0000	0.9974	0.9861	0.9520	0.7553	0.4119	0.1275	0.0171	0.0006	
	10		0.9994	0.9961	0.9829	0.8725	0.5881	0.2447	0.0480	0.0026	0.0000
	11		0.9999	0.9991	0.9949	0.9435	0.7483	0.4044	0.1133	0.0100	0.0001
	12		1.0000	0.9998	0.9987	0.9790	0.8684	0.5841	0.2277	0.0321	0.0004
	13			1.0000	0.9997	0.9935	0.9423	0.7500	0.3920	0.0867	0.0024
	14				1.0000	0.9984	0.9793	0.8744	0.5836	0.1958	0.0113
	15					0.9997	0.9941	0.9490	0.7625	0.3704	0.0432
	16					1.0000	0.9987	0.9840	0.8929	0.5886	0.1330
	17						0.9998	0.9964	0.9645	0.7939	0.3231
	18						1.0000	0.9995	0.9924	0.9308	0.6083
	19							1.0000	0.9992	0.9885	0.8784
	20								1.0000	1.0000	1.0000

Tabla A.2 Sumas de probabilidad de Poisson $\sum_{x=0}^{r} p(x; \mu)$

	μ												
r	0.1	0.2	0.30	0.4	0.5	0.6	0.7	0.8	0.9				
0	0.9048	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493	0.4066				
1	0.9953	0.9825	0.9631	0.9384	0.9098	0.8781	0.8442	0.8088	0.7725				
2	0.9998	0.9989	0.9964	0.9921	0.9856	0.9769	0.9659	0.9526	0.9371				
3	1.0000	0.9999	0.9997	0.9992	0.9982	0.9966	0.9942	0.9909	0.9865				
4		1.0000	1.0000	0.9999	0.9998	0.9996	0.9992	0.9986	0.9977				
5				1.0000	1.0000	1.0000	0.9999	0.9998	0.9997				
6							1.0000	1.0000	1.0000				

					μ				
r	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
0	0.3679	0.2231	0.1353	0.0821	0.0498	0.0302	0.0183	0.0111	0.0067
1	0.7358	0.5578	0.4060	0.2873	0.1991	0.1359	0.0916	0.0611	0.0404
2	0.9197	0.8088	0.6767	0.5438	0.4232	0.3208	0.2381	0.1736	0.1247
3	0.9810	0.9344	0.8571	0.7576	0.6472	0.5366	0.4335	0.3423	0.2650
4	0.9963	0.9814	0.9473	0.8912	0.8153	0.7254	0.6288	0.5321	0.4405
5	0.9994	0.9955	0.9834	0.9580	0.9161	0.8576	0.7851	0.7029	0.6160
6	0.9999	0.9991	0.9955	0.9858	0.9665	0.9347	0.8893	0.8311	0.7622
7	1.0000	0.9998	0.9989	0.9958	0.9881	0.9733	0.9489	0.9134	0.8666
8		1.0000	0.9998	0.9989	0.9962	0.9901	0.9786	0.9597	0.9319
9			1.0000	0.9997	0.9989	0.9967	0.9919	0.9829	0.9682
10				0.9999	0.9997	0.9990	0.9972	0.9933	0.9863
11				1.0000	0.9999	0.9997	0.9991	0.9976	0.9945
12					1.0000	0.9999	0.9997	0.9992	0.9980
13						1.0000	0.9999	0.9997	0.9993
14							1.0000	0.9999	0.9998
15								1.0000	0.9999
16									1.0000

Tabla A.2 (*continuación*) Sumas de probabilidad de Poisson $\sum_{x=0}^{r} p(x; \mu)$

					μ				
r	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5
0	0.0041	0.0025	0.0015	0.0009	0.0006	0.0003	0.0002	0.0001	0.0001
1	0.0266	0.0174	0.0113	0.0073	0.0047	0.0030	0.0019	0.0012	0.0008
2	0.0884	0.0620	0.0430	0.0296	0.0203	0.0138	0.0093	0.0062	0.0042
3	0.2017	0.1512	0.1118	0.0818	0.0591	0.0424	0.0301	0.0212	0.0149
4	0.3575	0.2851	0.2237	0.1730	0.1321	0.0996	0.0744	0.0550	0.0403
5	0.5289	0.4457	0.3690	0.3007	0.2414	0.1912	0.1496	0.1157	0.0885
6	0.6860	0.6063	0.5265	0.4497	0.3782	0.3134	0.2562	0.2068	0.1649
7	0.8095	0.7440	0.6728	0.5987	0.5246	0.4530	0.3856	0.3239	0.2687
8	0.8944	0.8472	0.7916	0.7291	0.6620	0.5925	0.5231	0.4557	0.3918
9	0.9462	0.9161	0.8774	0.8305	0.7764	0.7166	0.6530	0.5874	0.5218
10	0.9747	0.9574	0.9332	0.9015	0.8622	0.8159	0.7634	0.7060	0.6453
11	0.9890	0.9799	0.9661	0.9467	0.9208	0.8881	0.8487	0.8030	0.7520
12	0.9955	0.9912	0.9840	0.9730	0.9573	0.9362	0.9091	0.8758	0.8364
13	0.9983	0.9964	0.9929	0.9872	0.9784	0.9658	0.9486	0.9261	0.8981
14	0.9994	0.9986	0.9970	0.9943	0.9897	0.9827	0.9726	0.9585	0.9400
15	0.9998	0.9995	0.9988	0.9976	0.9954	0.9918	0.9862	0.9780	0.9665
16	0.9999	0.9998	0.9996	0.9990	0.9980	0.9963	0.9934	0.9889	0.9823
17	1.0000	0.9999	0.9998	0.9996	0.9992	0.9984	0.9970	0.9947	0.9911
18		1.0000	0.9999	0.9999	0.9997	0.9993	0.9987	0.9976	0.9957
19			1.0000	1.0000	0.9999	0.9997	0.9995	0.9989	0.9980
20						0.9999	0.9998	0.9996	0.9991
21						1.0000	0.9999	0.9998	0.9996
22							1.0000	0.9999	0.9999
23								1.0000	0.9999
24									1.0000

Tabla A.2 (*continuación*) Sumas de probabilidad de Poisson $\sum_{x=0}^{r} p(x; \mu)$

					μ				
r	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0
0	0.0000	0.0000	0.0000						
1	0.0005	0.0002	0.0001	0.0000	0.0000				
2	0.0028	0.0012	0.0005	0.0002	0.0001	0.0000	0.0000		
3	0.0103	0.0049	0.0023	0.0011	0.0005	0.0002	0.0001	0.0000	0.0000
4	0.0293	0.0151	0.0076	0.0037	0.0018	0.0009	0.0004	0.0002	0.0001
5	0.0671	0.0375	0.0203	0.0107	0.0055	0.0028	0.0014	0.0007	0.0003
6	0.1301	0.0786	0.0458	0.0259	0.0142	0.0076	0.0040	0.0021	0.0010
7	0.2202	0.1432	0.0895	0.0540	0.0316	0.0180	0.0100	0.0054	0.0029
8	0.3328	0.2320	0.1550	0.0998	0.0621	0.0374	0.0220	0.0126	0.0071
9	0.4579	0.3405	0.2424	0.1658	0.1094	0.0699	0.0433	0.0261	0.0154
10	0.5830	0.4599	0.3472	0.2517	0.1757	0.1185	0.0774	0.0491	0.0304
11	0.6968	0.5793	0.4616	0.3532	0.2600	0.1848	0.1270	0.0847	0.0549
12	0.7916	0.6887	0.5760	0.4631	0.3585	0.2676	0.1931	0.1350	0.0917
13	0.8645	0.7813	0.6815	0.5730	0.4644	0.3632	0.2745	0.2009	0.1426
14	0.9165	0.8540	0.7720	0.6751	0.5704	0.4657	0.3675	0.2808	0.2081
15	0.9513	0.9074	0.8444	0.7636	0.6694	0.5681	0.4667	0.3715	0.2867
16	0.9730	0.9441	0.8987	0.8355	0.7559	0.6641	0.5660	0.4677	0.3751
17	0.9857	0.9678	0.9370	0.8905	0.8272	0.7489	0.6593	0.5640	0.4686
18	0.9928	0.9823	0.9626	0.9302	0.8826	0.8195	0.7423	0.6550	0.5622
19	0.9965	0.9907	0.9787	0.9573	0.9235	0.8752	0.8122	0.7363	0.6509
20	0.9984	0.9953	0.9884	0.9750	0.9521	0.9170	0.8682	0.8055	0.7307
21	0.9993	0.9977	0.9939	0.9859	0.9712	0.9469	0.9108	0.8615	0.7991
22	0.9997	0.9990	0.9970	0.9924	0.9833	0.9673	0.9418	0.9047	0.8551
23	0.9999	0.9995	0.9985	0.9960	0.9907	0.9805	0.9633	0.9367	0.8989
24	1.0000	0.9998	0.9993	0.9980	0.9950	0.9888	0.9777	0.9594	0.9317
25		0.9999	0.9997	0.9990	0.9974	0.9938	0.9869	0.9748	0.9554
26		1.0000	0.9999	0.9995	0.9987	0.9967	0.9925	0.9848	0.9718
27			0.9999	0.9998	0.9994	0.9983	0.9959	0.9912	0.9827
28			1.0000	0.9999	0.9997	0.9991	0.9978	0.9950	0.9897
29				1.0000	0.9999	0.9996	0.9989	0.9973	0.9941
30					0.9999	0.9998	0.9994	0.9986	0.9967
31					1.0000	0.9999	0.9997	0.9993	0.9982
32						1.0000	0.9999	0.9996	0.9990
33							0.9999	0.9998	0.9995
34							1.0000	0.9999	0.9998
35								1.0000	0.9999
36									0.9999
37									1.0000

Tabla A.3 Áreas bajo la curva normal

Tabla A	Altas	bajo ia cu	i va iioiiii	11			U			
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Tabla A.3 (continuación) Áreas bajo la curva normal

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Tabla A.4 Valores críticos de la distribución t

				α			
v	0.40	0.30	0.20	0.15	0.10	0.05	0.025
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980
∞	0.253	0.524	0.842	1.036	1.282	1.645	1.960

Tabla A.4 (continuación) Valores críticos de la distribución t

				α			
v	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	15.894	21.205	31.821	42.433	63.656	127.321	636.578
2	4.849	5.643	6.965	8.073	9.925	14.089	31.600
3	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	2.359	2.527	2.764	2.932	3.169	3.581	4.587
11	2.328	2.491	2.718	2.879	3.106	3.497	4.437
12	2.303	2.461	2.681	2.836	3.055	3.428	4.318
13	2.282	2.436	2.650	2.801	3.012	3.372	4.221
14	2.264	2.415	2.624	2.771	2.977	3.326	4.140
15	2.249	2.397	2.602	2.746	2.947	3.286	4.073
16	2.235	2.382	2.583	2.724	2.921	3.252	4.015
17	2.224	2.368	2.567	2.706	2.898	3.222	3.965
18	2.214	2.356	2.552	2.689	2.878	3.197	3.922
19	2.205	2.346	2.539	2.674	2.861	3.174	3.883
20	2.197	2.336	2.528	2.661	2.845	3.153	3.850
21	2.189	2.328	2.518	2.649	2.831	3.135	3.819
22	2.183	2.320	2.508	2.639	2.819	3.119	3.792
23	2.177	2.313	2.500	2.629	2.807	3.104	3.768
24	2.172	2.307	2.492	2.620	2.797	3.091	3.745
25	2.167	2.301	2.485	2.612	2.787	3.078	3.725
26	2.162	2.296	2.479	2.605	2.779	3.067	3.707
27	2.158	2.291	2.473	2.598	2.771	3.057	3.689
28	2.154	2.286	2.467	2.592	2.763	3.047	3.674
29	2.150	2.282	2.462	2.586	2.756	3.038	3.660
30	2.147	2.278	2.457	2.581	2.750	3.030	3.646
40	2.123	2.250	2.423	2.542	2.704	2.971	3.551
60	2.099	2.223	2.390	2.504	2.660	2.915	3.460
120	2.076	2.196	2.358	2.468	2.617	2.860	3.373
∞	2.054	2.170	2.326	2.432	2.576	2.807	3.290

Tabla A.5 Valores críticos de la distribución chi cuadrada

					α					
v	0.995	0.99	0.98	0.975	0.95	0.90	0.80	0.75	0.70	0.50
1	0.04393	$0.0^{3}157$	$0.0^{3}628$	$0.0^{3}982$	0.00393	0.0158	0.0642	0.102	0.148	0.455
2	0.0100	0.0201	0.0404	0.0506	0.103	0.211	0.446	0.575	0.713	1.386
3	0.0717	0.115	0.185	0.216	0.352	0.584	1.005	1.213	1.424	2.366
4	0.207	0.297	0.429	0.484	0.711	1.064	1.649	1.923	2.195	3.357
5	0.412	0.554	0.752	0.831	1.145	1.610	2.343	2.675	3.000	4.351
6	0.676	0.872	1.134	1.237	1.635	2.204	3.070	3.455	3.828	5.348
7	0.989	1.239	1.564	1.690	2.167	2.833	3.822	4.255	4.671	6.346
8	1.344	1.647	2.032	2.180	2.733	3.490	4.594	5.071	5.527	7.344
9	1.735	2.088	2.532	2.700	3.325	4.168	5.380	5.899	6.393	8.343
10	2.156	2.558	3.059	3.247	3.940	4.865	6.179	6.737	7.267	9.342
11	2.603	3.053	3.609	3.816	4.575	5.578	6.989	7.584	8.148	10.341
12	3.074	3.571	4.178	4.404	5.226	6.304	7.807	8.438	9.034	11.340
13	3.565	4.107	4.765	5.009	5.892	7.041	8.634	9.299	9.926	12.340
14	4.075	4.660	5.368	5.629	6.571	7.790	9.467	10.165	10.821	13.339
15	4.601	5.229	5.985	6.262	7.261	8.547	10.307	11.037	11.721	14.339
16	5.142	5.812	6.614	6.908	7.962	9.312	11.152	11.912	12.624	15.338
17	5.697	6.408	7.255	7.564	8.672	10.085	12.002	12.792	13.531	16.338
18	6.265	7.015	7.906	8.231	9.390	10.865	12.857	13.675	14.440	17.338
19	6.844	7.633	8.567	8.907	10.117	11.651	13.716	14.562	15.352	18.338
20	7.434	8.260	9.237	9.591	10.851	12.443	14.578	15.452	16.266	19.337
21	8.034	8.897	9.915	10.283	11.591	13.240	15.445	16.344	17.182	20.337
22	8.643	9.542	10.600	10.982	12.338	14.041	16.314	17.240	18.101	21.337
23	9.260	10.196	11.293	11.689	13.091	14.848	17.187	18.137	19.021	22.337
24	9.886	10.856	11.992	12.401	13.848	15.659	18.062	19.037	19.943	23.337
25	10.520	11.524	12.697	13.120	14.611	16.473	18.940	19.939	20.867	24.337
26	11.160	12.198	13.409	13.844	15.379	17.292	19.820	20.843	21.792	25.336
27	11.808	12.878	14.125	14.573	16.151	18.114	20.703	21.749	22.719	26.336
28	12.461	13.565	14.847	15.308	16.928	18.939	21.588	22.657	23.647	27.336
29	13.121	14.256	15.574	16.047	17.708	19.768	22.475	23.567	24.577	28.336
30	13.787	14.953	16.306	16.791	18.493	20.599	23.364	24.478	25.508	29.336
40	20.707	22.164	23.838	24.433	26.509	29.051	32.345	33.66	34.872	39.335
50	27.991	29.707	31.664	32.357	34.764	37.689	41.449	42.942	44.313	49.335
60	35.534	37.485	39.699	40.482	43.188	46.459	50.641	52.294	53.809	59.335

Tabla A.5 (continuación) Valores críticos de la distribución chi cuadrada

					α					
v	0.30	0.25	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.001
1	1.074	1.323	1.642	2.706	3.841	5.024	5.412	6.635	7.879	10.827
2	2.408	2.773	3.219	4.605	5.991	7.378	7.824	9.210	10.597	13.815
3	3.665	4.108	4.642	6.251	7.815	9.348	9.837	11.345	12.838	16.266
4	4.878	5.385	5.989	7.779	9.488	11.143	11.668	13.277	14.860	18.466
5	6.064	6.626	7.289	9.236	11.070	12.832	13.388	15.086	16.750	20.515
6	7.231	7.841	8.558	10.645	12.592	14.449	15.033	16.812	18.548	22.457
7	8.383	9.037	9.803	12.017	14.067	16.013	16.622	18.475	20.278	24.321
8	9.524	10.219	11.030	13.362	15.507	17.535	18.168	20.090	21.955	26.124
9	10.656	11.389	12.242	14.684	16.919	19.023	19.679	21.666	23.589	27.877
10	11.781	12.549	13.442	15.987	18.307	20.483	21.161	23.209	25.188	29.588
11	12.899	13.701	14.631	17.275	19.675	21.920	22.618	24.725	26.757	31.264
12	14.011	14.845	15.812	18.549	21.026	23.337	24.054	26.217	28.300	32.909
13	15.119	15.984	16.985	19.812	22.362	24.736	25.471	27.688	29.819	34.527
14	16.222	17.117	18.151	21.064	23.685	26.119	26.873	29.141	31.319	36.124
15	17.322	18.245	19.311	22.307	24.996	27.488	28.259	30.578	32.801	37.698
16	18.418	19.369	20.465	23.542	26.296	28.845	29.633	32.000	34.267	39.252
17	19.511	20.489	21.615	24.769	27.587	30.191	30.995	33.409	35.718	40.791
18	20.601	21.605	22.760	25.989	28.869	31.526	32.346	34.805	37.156	42.312
19	21.689	22.718	23.900	27.204	30.144	32.852	33.687	36.191	38.582	43.819
20	22.775	23.828	25.038	28.412	31.410	34.170	35.020	37.566	39.997	45.314
21	23.858	24.935	26.171	29.615	32.671	35.479	36.343	38.932	41.401	46.796
22	24.939	26.039	27.301	30.813	33.924	36.781	37.659	40.289	42.796	48.268
23	26.018	27.141	28.429	32.007	35.172	38.076	38.968	41.638	44.181	49.728
24	27.096	28.241	29.553	33.196	36.415	39.364	40.270	42.980	45.558	51.179
25	28.172	29.339	30.675	34.382	37.652	40.646	41.566	44.314	46.928	52.619
26	29.246	30.435	31.795	35.563	38.885	41.923	42.856	45.642	48.290	54.051
27	30.319	31.528	32.912	36.741	40.113	43.195	44.140	46.963	49.645	55.475
28	31.391	32.620	34.027	37.916	41.337	44.461	45.419	48.278	50.994	56.892
29	32.461	33.711	35.139	39.087	42.557	45.722	46.693	49.588	52.335	58.301
30	33.530	34.800	36.250	40.256	43.773	46.979	47.962	50.892	53.672	59.702
40	44.165	45.616	47.269	51.805	55.758	59.342	60.436	63.691	66.766	73.403
50	54.723	56.334	58.164	63.167	67.505	71.420	72.613	76.154	79.490	86.660
60	65.226	66.981	68.972	74.397	79.082	83.298	84.58	88.379	91.952	99.608

Tabla A.6 Valores críticos de la distribución F

	1240 (4101		ac ia aistiio	GC1011 1			'α		
				f_{0}	$_{05}(v_1, v_2)$				
					v_1				
v_2	1	2	3	4	5	6	7	8	9
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88

Reproducida de la tabla 18 de *Biometrika Tables for Statisticians*, Vol. I, con autorización de E.S. Pearson y Biometrika Trustees.

Tabla A.6 (continuación) Valores críticos de la distribución F

					$f_{0.05}(v_1)$, v ₂)				
					v_1					
v_2	10	12	15	20	24	30	40	60	120	∞
1	241.88	243.91	245.95	248.01	249.05	250.10	251.14	252.20	253.25	254.31
2	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
∞	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

Tabla A.6 (continuación) Valores críticos de la distribución F

				f_{0}	v_1, v_2				
					v_1				
v_2	1	2	3	4	5	6	7	8	9
1	4052.18	4999.50	5403.35	5624.58	5763.65	5858.99	5928.36	5981.07	6022.47
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56
∞	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41

Tabla A.6 (continuación) Valores críticos de la distribución F

					$f_{0.01}(v)$	1, v ₂)				
					ν	1				
v_2	10	12	15	20	24	30	40	60	120	∞
1	6055.85	6106.32	6157.28	6208.73	6234.63	6260.65	6286.78	6313.03	6339.39	6365.86
2	99.40	99.42	99.43	99.45	99.46	99.47	99.47	99.48	99.49	99.50
3	27.23	27.05	26.87	26.69	26.60	26.50	26.41	26.32	26.22	26.13
4	14.55	14.37	14.20	14.02	13.93	13.84	13.75	13.65	13.56	13.46
5	10.05	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02
6	7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	6.88
7	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65
8	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86
9	5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	4.31
10	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91
11	4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.60
12	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36
13	4.10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17
14	3.94	3.80	3.66	3.51	3.43	3.35	3.27	3.18	3.09	3.00
15	3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87
16	3.69	3.55	3.41	3.26	3.18	3.10	3.02	2.93	2.84	2.75
17	3.59	3.46	3.31	3.16	3.08	3.00	2.92	2.83	2.75	2.65
18	3.51	3.37	3.23	3.08	3.00	2.92	2.84	2.75	2.66	2.57
19	3.43	3.30	3.15	3.00	2.92	2.84	2.76	2.67	2.58	2.49
20	3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	2.52	2.42
21	3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2.46	2.36
22	3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31
23	3.21	3.07	2.93	2.78	2.70	2.62	2.54	2.45	2.35	2.26
24	3.17	3.03	2.89	2.74	2.66	2.58	2.49	2.40	2.31	2.21
25	3.13	2.99	2.85	2.70	2.62	2.54	2.45	2.36	2.27	2.17
26	3.09	2.96	2.81	2.66	2.58	2.50	2.42	2.33	2.23	2.13
27	3.06	2.93	2.78	2.63	2.55	2.47	2.38	2.29	2.20	2.10
28	3.03	2.90	2.75	2.60	2.52	2.44	2.35	2.26	2.17	2.06
29	3.00	2.87	2.73	2.57	2.49	2.41	2.33	2.23	2.14	2.03
30	2.98	2.84	2.70	2.55	2.47	2.39	2.30	2.21	2.11	2.01
40	2.80	2.66	2.52	2.37	2.29	2.20	2.11	2.02	1.92	1.80
60	2.63	2.50	2.35	2.20	2.12	2.03	1.94	1.84	1.73	1.60
120	2.47	2.34	2.19	2.03	1.95	1.86	1.76	1.66	1.53	1.38
∞	2.32	2.18	2.04	1.88	1.79	1.70	1.59	1.47	1.32	1.00

Tabla A.7 Factores de tolerancia para distribuciones normales

			Intervalo	Intervalos bilaterales	Si				ntervalos	Intervalos unilaterales	S	
		$\gamma = 0.05$			$\gamma = 0.01$			$\gamma = 0.05$			$\gamma = 0.01$	
		$1-\alpha$			$1-\alpha$			$1-\alpha$			$1-\alpha$	
u	0.00	0.95	0.99	0.00	0.95	0.99	06.0	0.95	0.09	0.90	0.95	0.09
7	32.019		48.430	160.193	188.491	242.300	20.581	26.260	37.094	103.029	131.426	185.617
e	8.380	9.916	12.861	18.930	22.401	29.055	6.156	7.656	10.553	13.995	17.170	23.896
4	5.369		8.299	9.398	11.150	14.527	4.162	5.144	7.042	7.380	9.083	12.387
w	4.275	5.079	6.634	6.612	7.855	10.260	3.407	4.203	5.741	5.362	6.578	8.939
9	3.712	4.414	5.775	5.337	6.345	8.301	3.006	3.708	5.062	4.411	5.406	7.335
7	3.369	4.007	5.248	4.613	5.488	7.187	2.756	3.400	4.642	3.859	4.728	6.412
∞	3.136	3.732	4.891	4.147	4.936	6.468	2.582	3.187	4.354	3.497	4.285	5.812
6	2.967	3.532	4.631	3.822	4.550	5.966	2.454	3.031	4.143	3.241	3.972	5.389
10	2.839	3.379	4.433	3.582	4.265	5.594	2.355	2.911	3.981	3.048	3.738	5.074
11	2.737	3.259	4.277	3.397	4.045	5.308	2.275	2.815	3.852	2.898	3.556	4.829
12	2.655	3.162	4.150	3.250	3.870	5.079	2.210	2.736	3.747	2.777	3.410	4.633
13	2.587	3.081	4.044	3.130	3.727	4.893	2.155	2.671	3.659	2.677	3.290	4.472
14	2.529	3.012	3.955	3.029	3.608	4.737	2.109	2.615	3.585	2.593	1.189	4.337
15	2.480		3.878	2.945	3.507	4.605	2.068	2.566	3.520	2.522	3.102	4.222
16	2.437		3.812	2.872	3.421	4.492	2.033	2.524	3.464	2.460	3.028	4.123
17	2.400		3.754	2.808	3.345	4.393	2.002	2.486	3.414	2.405	2.963	4.037
18	2.366		3.702	2.753	3.279	4.307	1.974	2.453	3.370	2.357	2.905	3.960
19	2.337		3.656	2.703	3.221	4.230	1.949	2.423	3.331	2.314	2.854	3.892
70	2.310		3.615	2.659	3.168	4.161	1.926	2.396	3.295	2.276	2.808	1.832
25	2.208	2.631	3.457	2.494	2.972	3.904	1.838	2.292	3.158	2.129	2.633	3.001
30	2.140	2.549	3.350	2.385	2.841	3.733	1.777	2.220	3.064	2.030	2.516	3.447
35	2.090	2.490	3.272	2.306	2.748	3.611	1.732	2.167	2.995	1.957	2.430	3.334
40	2.052	2.445	3.213	2.247	2.677	3.518	1.697	2.126	2.941	1.902	2.364	3.249
45	2.021	2.408	3.165	2.200	2.621	3.444	1.669	2.092	2.898	1.857	2.312	3.180
20	1.996	2.379	3.126	2.162	2.576	3.385	1.646	2.065	2.863	1.821	2.269	3.125
99	1.958	2.333	3.066	2.103	2.506	3.293	1.609	2.022	2.807	1.764	2.202	3.038
70	1.929	2.299	3.021	2.060	2.454	3.225	1.581	1.990	2.765	1.722	2.153	2.974
80	1.907	2.272	2.986	2.026	2.414	3.173	1.559	1.965	2.733	1.688	2.114	2.924
8	1.889	2.251	2.958	1.999	2.382	3.130	1.542	1.944	2.706	1.661	2.082	2.883
100	1.874		2.934	1.977	2.355	3.096	1.527	1.927	2.684	1.639	2.056	2.850
150	1.825		2.859	1.905	2.270	2.983	1.478	1.870	2.611	1.566	1.971	2.741
200	1.798	2.143	2.816	1.865	2.222	2.921	1.450	1.837	2.570	1.524	1.923	2.679
250	1.780		2.788	1.839	2.191	2.880	1.431	1.815	2.542	1.496	1.891	2.638
300	1.767		2.767	1.820	2.169	2.850	1.417	1.800	2.522	1.476	1.868	2.608
8	1.645	1.960	2.576	1.645	1.960	2.576	1.282	1.645	2.326	1.282	1.645	2.326
Adometodo	o do C Eigenb	III IV MILL	TLoctor	II. A III.	11: T. L.	, J J		Lucia comite	7 V C -1.	T 11:11 T	7.00	NI.

Adaptada de C. Eisenhart, M. W. Hastay y W. A. Wallis, Techniques of Statistical Analysis, capítulo 2, McGraw-Hill Book Company, Nueva York, 1947. Se utiliza con autorización de McGraw-Hill Book Company.

Tabla A.8 Tamaño muestral para la prueba t de la media

						N	ivel	de la	pru	eba <i>t</i>	:									
Prueba unilateral		α =	= 0.0	05			α	= 0.0	1			α =	= 0.0	25			α	= 0.0)5	
Prueba bilateral		α =	= 0.0	1			α =	= 0.0	2			α	= 0.0	5			α	= 0.	1	
$\beta = 0.1$.01	.05	.1	.2	.5	.01	.05	.1	.2	.5	.01	.05	.1	.2	.5	.01	.05	.1	.2	.5
$\begin{array}{c} 0.05\\ 0.10\\ 0.15\\ 0.20\\ 0.25\\ 0.30\\ 0.35\\ 0.40\\ 0.45\\ 0.50\\ 0.55\\ 0.60\\ 0.65\\ 0.70\\ 0.75\\ 0.80\\ 0.85\\ 0.90\\ \Delta = \delta /\sigma\\ 0.95\\ 1.00\\ 1.1\\ 1.2\\ 1.3\\ 1.4\\ 1.5\\ 1.6\\ 1.7\\ 1.8\\ 1.9\\ 2.0\\ 2.1\\ 2.2\\ 2.3\\ 2.4\\ 2.5\\ 3.0\\ 3.5\\ 4.0\\ \end{array}$	1000 833 711 611 533 447 411 337 334 311 228 242 211 1100 100 9 9 8 8 7 6 6	115 92 75 63 53 46 40 36 32 29 26 24 22 19 16 15 13 12 11 10 9 8 8 8 7 7 7 7	125 97 77 63 53 45 39 34 30 27 24 22 20 19 16 14 13 12 11 10 9 8 8 7 7 7 6 6 6 6 6 6 6 7 7 7 7 6 6 6 6	134 99 77 62 51 42 36 31 28 25 22 20 18 17 16 14 12 11 10 9 8 8 8 7 7 7 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7	110 78 58 45 37 30 26 22 20 17 16 14 13 12 11 10 9 8 8 7 7 6 6 6 6 6 6 5 5	110 90 75 63 55 47 42 37 33 29 27 25 21 18 16 14 13 12 11 10 9 9 8 8 8 7 7 6 6 5 7	101 81 66 55 47 41 35 31 28 25 23 21 19 16 14 13 11 10 9 8 8 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6	109 85 68 55 46 39 34 30 27 24 21 19 18 16 14 12 11 10 9 8 7 7 7 7 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7	115 85 66 53 43 36 31 27 24 21 19 17 16 14 13 12 10 9 8 7 7 7 6 6 6 5 5	139 90 63 47 37 30 25 21 18 16 14 1 10 9 9 8 7 6 6 6 5	1117 93 76 63 53 46 40 35 31 28 25 23 21 18 15 13 12 11 10 9 8 8 7 7 7 6 6 6 6 6 6 6 7 7 7 7 7 7 6 6 6 6 6 6 6 6 7	109 84 67 54 45 38 33 29 26 22 21 19 17 16 13 12 10 9 8 8 7 7 6 6 6 6 6 6 6 6 6 7 7 7 6 6 6 6	1119 88 68 54 44 21 19 17 16 14 13 11 10 9 8 7 7 6 6 6 6 5 5	128 90 67 51 41 34 28 24 21 19 16 15 13 12 11 10 9 8 7 7 6 6 5	99 64 45 34 26 21 18 15 13 12 10 9 8 7 7 7 6 6 5	101 80 65 54 46 39 34 30 27 24 21 19 18 15 13 11 10 9 8 8 7 7 7 6 6 6 5 5	122 90 70 55 45 38 32 28 24 21 19 17 15 14 13 11 10 8 8 7 6 6 6 5 5	139 97 72 55 44 36 30 26 22 19 17 15 14 13 11 11 9 8 7 7 6 6 5 5	101 71 52 40 33 27 22 19 17 15 13 12 11 10 9 8 7 6 6 5 5	122 70 45 32 24 19 15 13 11 9 8 8 7 6 6 5 5 5

Reproducida con autorización de O. L. Davies, ed., *Design and Analysis of Industrial Experiments*, Oliver & Boyd, Edimburgo, 1956.