Lignumvitae Key Aquatic Preserve SEACAR Habitat Analyses

Last compiled on 14 March, 2024

Contents

Threshold Filtering	2
Value Qualifiers	3
Water Column	5
Seasonal Kendall-Tau Analysis	5
Water Quality - Discrete	5
Dissolved Oxygen - Discrete Water Quality	6
pH - Discrete Water Quality	8
Salinity - Discrete Water Quality	10
Water Temperature - Discrete Water Quality	12
Water Quality - Continuous	15
Coral Reef	17

Threshold Filtering

Threshold filters, following the guidance of Florida Department of Environmental Protection's (FDEP) Division of Environmental Assessment and Restoration (DEAR) are used to exclude specific results values from the SEACAR Analysis. Based on the threshold filters, Quality Assurance / Quality Control (QAQC) Flags are inserted into the $SEACAR_QAQCFlagCode$ and $SEACAR_QAQC_Description$ columns of the export data. The Include column indicates whether the QAQC Flag will also indicate that data are excluded from analysis. No data are excluded from the data export, but the analysis scripts can use the Include column to exclude data (1 to include, 0 to exclude).

Table 1: Continuous Water Quality threshold values

Parameter Name	Units	Low Threshold	High Threshold	Sensor Type
Dissolved Oxygen	mg/L	0	50	YSI EXOs
Dissolved Oxygen	m mg/L	0	50	Analysis Only - 2022-04-04
Dissolved Oxygen	mg/L	0	50	6600 Series
Salinity	ppt	0	70	6600 Series
Salinity	ppt	0	70	YSI EXOs
Salinity	ppt	0	70	Analysis Only - 2022-04-04
Water Temperature	Degrees C	-5	45	YSI EXOs
Water Temperature	Degrees C	-5	45	Analysis Only - 2022-04-04
Water Temperature	Degrees C	-5	45	6600 Series
pН	pH	2	14	Analysis Only - 2022-04-04
рН	pН	2	14	6600 Series
pН	$_{ m pH}$	2	14	YSI EXOs
Dissolved Oxygen Saturation	%	0	500	YSI EXOs
Dissolved Oxygen Saturation	%	0	500	6600 Series
Dissolved Oxygen Saturation	%	0	500	Analysis Only - 2022-04-04
Specific Conductivity	mS/cm	0	100	6600 Series
Specific Conductivity	mS/cm	0	200	YSI EXOs
Turbidity	NTU	0	4000	YSI EXOs
Turbidity	NTU	0	1000	6600 Series
Turbidity	NTU	0	4000	Analysis Only - 2022-04-04

Table 2: Discrete Water Quality threshold values

Parameter Name	Units	$Low\ Threshold$	High Threshold
Dissolved Oxygen	mg/L	0.000001	22
Salinity	ppt	0	70
Water Temperature	Degrees C	3	40
pН		2	13
Dissolved Oxygen Saturation	%	0.000001	310
Specific Conductivity	mS/cm	0.005000001	100
Turbidity	NTU	0	-
Total Suspended Solids (TSS)	mg/L	0	-
Chlorophyll a uncorrected for pheophytin	ug/L	0	-
Chlorophyll a corrected for pheophytin	ug/L	0	-
Secchi Depth	m	0.000001	50
Light Extinction Coefficient	m^1	0	-
Colored dissolved organic matter, CDOM	PCU	0	-
Fluorescent dissolved organic matter, FDOM	QSE	0	-
Total Nitrogen	mg/L	0	-
Total Kjeldahl Nitrogen TKN	mg/L	0	-
NO2+3 Filtered	mg/L	0	-
NH4 Filtered	mg/L	0	-
Total Phosphorus	mg/L	0	-

Parameter Name	Units	Low Threshold	High Threshold
PO4 Filtered	mg/L	0	_
Ammonia- Un-ionized (NH3)	mg/L	0	-
Nitrate (N)	mg/L	0	-
Nitrite (N)	mg/L	0	-
Nitrogen, organic	mg/L	0	-

Table 3: Quality Assurance Flags inserted based on threshold checks listed in Table 1 & 2

SEACAR QAQC Description	Include	$SEACAR\ QAQCF lagCode$
Exceeds Maximum threshold. Not verified in raw data	No	2Q
Exceeds Maximum threshold. Verified in raw data	No	3Q
Below Minimum threshold. Not verified in raw data	No	4Q
Below Minimum threshold. Verified in raw data	No	5Q
Within threshold tolerance	Yes	6Q
No defined thresholds for this parameter	Yes	7Q

Value Qualifiers

Value qualifier codes included within the data are used to exclude certain results from the analysis. The data are retained in the data export files, but the analysis uses the *Include* column to filter the results.

STORET and WIN value qualifier codes

Value qualifier codes from *STORET* and *WIN* data are examined with the database and used to populate the *Include* column in data exports.

Table 4: Value Qualifier codes excluded from analysis

Qualifier Source	Value Qualifier	Include	MDL	Description
STORET-WIN	Н	No	0	Value based on field kit determination; results may not be accurate
STORET-WIN	J	No	0	Estimated value
STORET-WIN	V	No	0	Analyte was detected at or above method detection limit
STORET-WIN	Y	No	0	Lab analysis from an improperly preserved sample; data may be inaccurate

Discrete Water Quality Value Qualifiers

The following value qualifiers are highlighted in the Discrete Water Quality section of this report. An exception is made for **Program 476** - Charlotte Harbor Estuaries Volunteer Water Quality Monitoring Network and data flagged with Value Qualifier **H** are included for this program only.

- **H** Value based on field kit determiniation; results may not be accurate. This code shall be used if a field screening test (e.g., field gas chromatograph data, immunoassay, or vendor-supplied field kit) was used to generate the value and the field kit or method has not been recognized by the Department as equivalent to laboratory methods.
- I The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.
- **Q** Sample held beyond the accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.
- S Secchi disk visible to bottom of waterbody. The value reported is the depth of the waterbody at the location of the Secchi disk measurement.

 ${f U}$ - Indicates that the compound was analyzed for but not detected. This symbol shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit. Unless requested by the client, less than the method detection limit values shall not be reported

Systemwide Monitoring Program (SWMP) value qualifier codes

Value qualifier codes from the SWMP continuous program are examined with the database and used to populate the Include column in data exports. SWMP Qualifier Codes are indicated by QualifierSource=SWMP.

Table 5: SWMP Value Qualifier codes

Qualifier Source	Value Qualifier	Include	Description
SWMP	-1	Yes	Optional parameter not collected
SWMP	-2	No	Missing data
SWMP	-3	No	Data rejected due to QA/QC
SWMP	-4	No	Outside low sensor range
SWMP	-5	No	Outside high sensor range
SWMP	0	Yes	Passed initial QA/QC checks
SWMP	1	No	Suspect data
SWMP	2	Yes	Reserved for future use
SWMP	3	Yes	Calculated data: non-vented depth/level sensor
O W WII	9	168	correction for changes in barometric pressure
SWMP	4	Yes	Historical: Pre-auto QA/QC
SWMP	5	Yes	Corrected data

Water Column

The water column habitat extends from the surface of all water bodies to the bottom sediments and encompasses the different features found in the water at different depths (National Oceanographic Center, 2016). The water column habitat must be viewed in relation to its interconnectedness with other habitats. A healthy water column is an integral component in ensuring a healthy marine and coastal ecosystem. Having a flourishing marine and coastal ecosystem in Florida is necessary to support a strong economy. The health of the water column is dependent upon factors as diverse as land use (e.g., agriculture, mining, forestry practices); human population growth; emissions, (e.g., power plants, automobiles, wastewater); climate (e.g., rainfall, temperature, winds and currents); and decadal trends (e.g., El Niño/La Niña, Atlantic Multidecadal Oscillation, climate change).

The water column is composed of various physical, chemical and biological features, and only a small number of them are adequately monitored. Features of the water column that are monitored are used as indicators of the water column health and help assess the status of other habitats. These indicators include nutrient concentrations (nitrogen and phosphorus); water quality (dissolved oxygen, temperature, salinity and pH); water clarity (Secchi depth, turbidity, chlorophyll-a and colored dissolved organic matter); and nekton (fish, macroinvertebrates and megafauna).

Seasonal Kendall-Tau Analysis

Indicators must have a minimum of five to ten years, depending on the habitat, of data within the geographic range of the analysis to be included in the analysis. Ten years of data are required for discrete parameters, and five years of data are required for continuous parameters. If there are insufficient years of data, the number of years of data available will be noted and labeled as "insufficient data to conduct analysis". Further, for the preferred Seasonal Kendall-Tau test, there must be data from at least two months in common across at least two consecutive years within the RCP managed area being analyzed. Values that pass both of these tests will be included in the analysis and be labeled as $Use_In_Analysis = TRUE$. Any that fail either test will be excluded from the analyses and labeled as $Use_In_Analysis = FALSE$.

Water Quality - Discrete

The following files were used in the discrete analysis:

- Combined WQ WC NUT Chlorophyll a corrected for pheophytin-2024-Feb-22.txt
- Combined WQ WC NUT Chlorophyll a uncorrected for pheophytin-2024-Feb-22.txt
- Combined WQ WC NUT Colored dissolved organic matter CDOM-2024-Feb-22.txt
- $\bullet \ \ Combined_WQ_WC_NUT_Dissolved_Oxygen-2024\text{-}Feb\text{-}22.txt$
- $\bullet \ \ Combined_WQ_WC_NUT_Dissolved_Oxygen_Saturation \hbox{--} 2024-Feb-22.txt$
- $\bullet \quad Combined_WQ_WC_NUT_pH\text{--}2024\text{--}Feb\text{--}22.txt$
- Combined_WQ_WC_NUT_Salinity-2024-Feb-22.txt
- \bullet Combined_WQ_WC_NUT_Secchi_Depth-2024-Feb-22.txt
- $\bullet \ \ Combined_WQ_WC_NUT_Total_Nitrogen-2024\text{-}Feb\text{-}22.txt$
- $\bullet \ \ Combined_WQ_WC_NUT_Total_Phosphorus 2024 Feb 22.txt$
- $\bullet \ \ Combined_WQ_WC_NUT_Total_Suspended_Solids_TSS-2024\text{-}Feb\text{-}22.txt$
- Combined_WQ_WC_NUT_Turbidity-2024-Feb-22.txt
- Combined_WQ_WC_NUT_Water_Temperature-2024-Feb-22.txt

Dissolved Oxygen - Discrete Water Quality

Dissolved Oxygen (DO) is a key indicator of water quality. Oxygen enters surface waters by air-sea gas exchange, by wind action, or as a byproduct of aquatic plant photosynthesis. The actual quantity of DO in aquatic environments is dependent on the above processes as well as water temperature and salinity.

Seasonal Kendall-Tau Trend Analysis

p < 0.00005 appear as 0 due to rounding.

Table 6: Programs contributing data for Dissolved Oxygen

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	167	2016	2022
69	28	1997	2000
3000	9	2016	2017
103	8	2021	2021
115	4	2001	2001
118	1	2001	2001

Program names:

5002 - Florida STORET / WIN

69 - Fisheries-Independent Monitoring (FIM) Program

3000- Florida Keys Water Watch

- 103 EPA STOrage and RETrieval Data Warehouse (STORET)
- 115 Environmental Monitoring Assessment Program
- 118 National Aquatic Resource Surveys, National Coastal Condition Assessment

There are no qualifying Value Qualifiers for Dissolved Oxygen in Lignumvitae Key Aquatic Preserve

pH - Discrete Water Quality

The **pH** of water is the measure of how acidic or basic the water body is on a scale of 0-14, with lower readings indicating acidic and higher readings indicating basic, and a pH of 7 being neutral. Florida's natural waters fall between 6.5 and 8.5 on this scale. A water body's pH can change due to precipitation, geology, vegetation, water pollution and air pollution.

Seasonal Kendall-Tau Trend Analysis

p < 0.00005 appear as 0 due to rounding.

Table 7: Programs contributing data for pH

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	211	2016	2023
69	28	1997	2000
103	20	2020	2021
3000	9	2016	2017
115	4	2001	2001

Program names:

5002 - Florida STORET / WIN

69 - Fisheries-Independent Monitoring (FIM) Program

103 - EPA STOrage and RETrieval Data Warehouse (STORET)

3000- Florida Keys Water Watch

115 - Environmental Monitoring Assessment Program

There are no qualifying Value Qualifiers for pH in Lignumvitae Key Aquatic Preserve

Salinity - Discrete Water Quality

Salinity is a measure of the amount of salt in the water. In estuarine ecosystems, salinity is influenced by precipitation, evaporation, surface-water inputs, and exchange with coastal waters.

Seasonal Kendall-Tau Trend Analysis

Salinity, Lab and Field Combined, All Depths Lignumvitae Key Aquatic Preserve

p < 0.00005 appear as 0 due to rounding.

Table 8: Programs contributing data for Salinity

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	202	2016	2023
69	28	1997	2000
3000	9	2016	2017
3	7	1998	1998
115	4	2001	2001

Program names:

5002 - Florida STORET / WIN

69 - Fisheries-Independent Monitoring (FIM) Program

3000- Florida Keys Water Watch

 \mathcal{S} - Atlantic Oceanographic and Meteorological Laboratory (AOML) South Florida Program Synoptic Shipboard

Surveys

115 - Environmental Monitoring Assessment Program

There are no qualifying Value Qualifiers for Salinity in Lignumvitae Key Aquatic Preserve

Water Temperature - Discrete Water Quality

Temperature determines the capacity of water to hold oxygen. Cooler water can hold more dissolved oxygen because water molecules are more tightly packed, making it harder for oxygen to escape. Additionally, as water temperature increases, fish and other aquatic organisms become more active and consume oxygen at a faster rate.

Seasonal Kendall-Tau Trend Analysis

Water Temperature, Field, All Depths Lignumvitae Key Aquatic Preserve

p < 0.00005 appear as 0 due to rounding.

Table 9: Programs contributing data for Water Temperature

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	213	2016	2023
69	28	1997	2000
103	20	2020	2021
3000	9	2016	2017
3	7	1998	1998
115	4	2001	2001

Program names:

5002 - Florida STORET / WIN

69 - Fisheries-Independent Monitoring (FIM) Program

103 - EPA STOrage and RETrieval Data Warehouse (STORET)

3000- Florida Keys Water Watch

- ${\mathcal 3}$ Atlantic Oceanographic and Meteorological Laboratory (AOML) South Florida Program Synoptic Shipboard Surveys
- 115- Environmental Monitoring Assessment Program

There are no qualifying Value Qualifiers for Water Temperature in Lignumvitae Key Aquatic Preserve

Water Quality - Continuous

The following files were used in the continuous analysis:

- $\bullet \ \ Combined_WQ_WC_NUT_cont_Dissolved_Oxygen_SE\text{-}2024\text{-}Feb\text{-}22.txt$
- Combined_WQ_WC_NUT_cont_Dissolved_Oxygen_Saturation_SE-2024-Feb-22.txt
- $\bullet \ \ Combined_WQ_WC_NUT_cont_pH_SE\text{-}2024\text{-}Feb\text{-}22.txt$
- $\bullet \ \ Combined_WQ_WC_NUT_cont_Salinity_SE\text{-}2024\text{-}Feb\text{-}22.txt$
- $\bullet \ \ Combined_WQ_WC_NUT_cont_Turbidity_SE\text{-}2024\text{-}Feb\text{-}22.txt$
- $\bullet \ \ Combined_WQ_WC_NUT_cont_Water_Temperature_SE-2024-Feb-22.txt$

Table 10: National Water Information System (7)

ProgramLocationID	Years of Data	Use in Analysis	Parameters
245323080410100	3	FALSE	Sal , TempW

Map showing Continuous Water Quality Monitoring sampling locations within the boundaries of Lignumvitae Key Aquatic Preserve. Sites marked as *Use In Analysis* are featured in this report.

Coral Reef

The data file used is: $All_CORAL_Parameters-2024-Feb-23.txt$

Grazers and Reef-Dependent Species Richness Lignumvitae Key Aquatic Preserve

N_Years	EarliestYear	LatestYear	N_Data	Min	Max	Median	Mean	StDev	Year_MinRichness	Year_MaxRichness
1	2012	2012	1	2	2	2	2	NA	2012	2012