Some Notes on Set Theory, Pt 1

Daniel Rogozin

1 Cardinals

An ordinal number α is a *cardinal number* if no $\beta < \alpha$ such that $|\alpha| = |\beta|$. Further, we shall use κ, λ, μ to denote cardinal numbers.

Let W be a well-ordered set, then there exists an ordinal α such that $|W| = |\alpha|$, so we let:

$$|W|$$
 = the least ordinal α such that $|W| = |\alpha|$

An aleph is an infinite cardinal number.

Let α be an ordinal, then α^+ is the least cardinal bigger than α .

Lemma 1.1.

- 1. For every α there is a cardinal number κ such that $\kappa > \alpha$.
- 2. Let X be a set of cardinal, then $\sup X$ is a cardinal.

Proof.

1. Let X be a set, let

$$h(X)$$
 = the least α such that no injection from α into X

Consider $X \times X$, so $2^{X \times X}$ is the set of relations on X and there are well-orderings of subsets of X amongst all relations in $2^{X \times X}$, so consider the set

$$Y = \{ R \subseteq Y \times Y \mid Y \subseteq X \& Y \text{ is a well-ordering } \}$$

So there is a set of ordinals:

$$Ord(Y) = \{ \alpha \in Ord \mid \exists R \in Y \mid \alpha \text{ is the order type of } Y \}$$

Note that Ord(Y) is a set and take the least element ordinal β does not belong to Ord(Y). So $h(X) = \beta$. To be more precise, we have:

$$\beta = \sup Ord(Y)$$

Then $|\alpha| < h(\alpha)$ for each ordinal α .

2. Let $\alpha = \sup X$. Let f be a one-to-one function from α onto some $\beta < \alpha$. Let κ be a cardinal such that $\beta < \kappa \le \alpha$, then $|\kappa| = |\{f(\xi) \mid \xi < \kappa\}| \le \beta$, so contradiction and α is a cardinal.

The enumeration of all alephs is defined by transfinite induction:

- $\aleph_0 = \omega$
- $\aleph_{\alpha+1} = \aleph_{\alpha}^+ = \omega_{\alpha+1}$
- If β is a limit ordinal, then $\aleph_{\beta} = \omega_{\beta} = \sup \{ \omega_{\alpha} \mid \alpha < \beta \}.$

A cardinal of the form $\aleph_{\alpha+1}$ is a *successor* cardinal, a cardinal \aleph_{β} for limit β is a *limit cardinal*.

1.1 The ordering of $\alpha \times \alpha$

Define a well-ordering of the class $Ord \times Ord$ the following way:

$$(\alpha, \beta) < (\gamma, \delta)$$
 iff either $\max(\alpha, \beta) < \max(\gamma, \delta)$ or $\max(\alpha, \beta) = \max(\gamma, \delta)$ and $\alpha < \gamma$ or $\max(\alpha, \beta) = \max(\gamma, \delta)$ and $\alpha = \gamma$ and $\beta < \delta$.

Then < is a well-ordering and linear relation on Ord. Moreover, $\alpha \times \alpha$ is the initial segment of (Ord \times Ord, <) given by $(0, \alpha)$.

We let:

$$\Gamma(\alpha, \beta)$$
 = the order type of $\{(\xi, \eta) \mid (\xi, \eta) < (\alpha, \beta)\}$

 Γ is also one-to-one:

$$(\alpha, \beta) < (\gamma, \delta)$$
 iff $\Gamma(\alpha, \beta) < \Gamma(\gamma, \delta)$

 Γ is increasing and continuous and $\Gamma(\alpha \times \alpha) = \alpha$ for arbitrarily large α .

Theorem 1.1. $\aleph_{\alpha} \cdot \aleph_{\alpha} = \aleph_{\alpha}$

Proof. Let us show that $\Gamma(\omega_{\alpha} \times \omega_{\alpha}) = \omega_{\alpha}$.

- 1. If $\alpha = 0$, then $\Gamma(\omega \times \omega) = \omega$.
- 2. Let α be the least ordinal such that $\Gamma(\omega_{\alpha} \times \omega_{\alpha}) \neq \omega_{\alpha}$. Let β, γ be ordinals such that $\Gamma(\beta, \gamma) = \omega_{\alpha}$. Take $\delta < \omega_{\alpha}$ such that $\delta > \beta, \gamma$. $\delta \times \delta$ is the initial segment of Ord^2 and it contains (β, γ) . So $\Gamma(\delta \times \delta) \supset \omega_{\alpha} = \Gamma(\beta, \gamma)$. Thus $|\delta \times \delta| \geq \aleph_{\alpha}$. But $|\delta \times \delta| = |\delta| \cdot |\delta| = |\delta|$. But $|\delta| < \aleph_{\alpha}$ by the assumption of minimality of α . Contradiction.

As a corollary:

$$\aleph_{\alpha} + \aleph_{\beta} = \aleph_{\alpha} \cdot \aleph_{\beta} = \max(\aleph_{\alpha}, \aleph_{\beta})$$

1.2 Cofinality

Let $\alpha, \beta > 0$ be limit ordinals. An increasing β -sequence $\langle \alpha_{\xi} : \xi < \beta \rangle$ is *cofinal* in α if $\lim_{\xi \to \beta} \alpha_{\xi} = \alpha$. A subset $X \subseteq \alpha$ is *cofinal* in α whenever $\sup X = \alpha$.

Let $\alpha > 0$ be a limit ordinal, the *cofinality* of α is:

cf α = the least ordinal β such that $\exists \langle \alpha_{\xi} : \xi < \beta \rangle$ such that $\lim_{\xi \to \beta} \alpha_{\xi} = \alpha$

Note that for each α cf α is a limit ordinal and cf $\alpha \leq \alpha$.

Lemma 1.2. For each α cf(cf α) \leq cf α .

Proof. Let $\langle \alpha_{\xi} : \xi < \beta \rangle$ be cofinal in α and let $\langle \xi_{\nu} : \nu < \gamma \rangle$ be cofinal in β . Consider $\langle \alpha_{\xi_{\nu}} : \nu < \gamma \rangle$, then

$$\lim_{\nu < \infty} \alpha_{\xi_{\nu}} = \alpha$$

since the limit of a subsequence equals the limit of a sequence as in usual real analysis or topology. $\hfill\Box$

Lemma 1.3. Let α be a non-zero limit ordinal, then

- 1. If $A \subseteq \alpha$ and $\sup A = \alpha$, the order-type of A is at least cf α .
- 2. Let $\beta_0 \leq \beta_1 \leq \cdots \leq \beta_{\xi} \leq \ldots$ for $\xi < \gamma$ be a non-decreasing sequence of ordinals such that $\lim_{\xi \to \gamma} = \alpha$, then cf $\gamma = \alpha$.

Proof. 1. The order-type of A is the length of the increasing enumeration of A, the limit of which (as an increasing sequence) is α .

2. If $\gamma = \lim_{\nu \to \operatorname{cf} \gamma} \xi_{\nu}$, then $\alpha = \lim_{\nu \to \operatorname{cf} \gamma} \beta_{\xi_{\nu}}$, and the non-decreasing sequence $\langle \beta_{\xi_{\nu}} : \nu < \operatorname{cf} \gamma \rangle$ has an increasing sequence of the length at most $\operatorname{cf} \gamma$ and it has the same limit, so $\operatorname{cf} \alpha \leq \operatorname{cf} \gamma$.

To show cf $\gamma \leq$ cf α , assume $\alpha = \lim_{\nu \to \text{cf }\alpha} \alpha_{\nu}$. Take $\nu < \text{cf }\alpha$, let ξ_{ν} be the least ξ greater than all ξ_{ι} for $\iota < \nu$ such that $\beta_{\xi} > \alpha_{\nu}$. We have $\alpha = \lim_{\nu \to \text{cf }\alpha} \beta_{\xi_{\nu}}$, so $\gamma = \lim_{\nu \to \text{cf }\alpha} \xi_{\nu}$, so the inequation is proved.

An infinite cardinal \aleph_{α} is regular if cf $\omega_{\alpha} = \omega_{\alpha}$. \aleph_{α} is singular if cf $\omega_{\alpha} < \omega_{\alpha}$.

Lemma 1.4. Let α be a limit ordinal, then cf α is a regular cardinal.

Proof. If α is not a cardinal, then there exists an ordinal $\beta < \alpha$ such that $|\beta| = |\alpha|$, then we construct a cofinal sequence in α of length $|\beta|$, then of $\alpha = |\beta|$ and of $\alpha < \alpha$.

Let κ be a limit ordinal, a subset $X \subset \kappa$ is bounded if $\sup X < \kappa$ and unbounded if $\sup X = \kappa$.

Lemma 1.5. Let κ be an aleph, then:

- 1. If $X \subset \kappa$ and $|X| < \operatorname{cf} \kappa$, then X is bounded.
- 2. If $\lambda \in \mathcal{K}$ and $f : \lambda \to \kappa$, then Im f is bounded in κ .

Proof. 1. Let X be such subset of κ and assume X is unbounded, so $\sup X = \kappa$. By 1 of Lemma 1.3, the order-type of X is at least of κ , which contradicts to $|X| < \operatorname{cf} \kappa$, so X is bounded.

2. Follows from the first item.

Lemma 1.6. (Hausdorff)

Let κ be a cardinal, then the following are equivalent:

- 1. κ is singular.
- 2. There is a cardinal $\lambda < \kappa$ and a family $\{S_{\xi} | \xi < \lambda\}$ such that each $S_{\xi} \subset \kappa$, $|S_{\xi}| < \kappa$ and $\kappa = \bigcup_{\xi < \lambda} S_{\xi}$.

Proof.

1. $(1) \Rightarrow (2)$.

If κ is singular, then there is an increasing sequence $\langle \alpha_{\xi} : \xi < \operatorname{cf} \kappa \rangle$, so a family of required subsets is actually a family of those α_{ξ} 's and $\lambda = \operatorname{cf} \kappa$ which is strictly less that κ since κ is singular.

2. $(2) \Rightarrow (1)$.

Let λ be the least cardinal such that $\lambda < \kappa$ and there exists a family $\{S_{\xi} \mid \xi < \lambda\}$ where each $S_{\xi} \subset \kappa$, $|S_{\xi}| < \kappa$ and

$$\kappa = \bigcup_{\xi < \lambda} S_{\xi}$$

For each $\xi < \lambda$, let β_{ξ} be the order-type of $\cup_{\nu < \xi} S_{\nu}$. The sequence $\langle \beta_{\xi} : \xi < \lambda \rangle$ is non-decreasing and each $\beta_{\xi} < \kappa$ for all $\xi < \lambda$ since λ is minimal. Let us show that $\lim_{\xi \to \kappa} \beta_{\xi} = \kappa$ to show that cf $\kappa \leq \lambda$.

Assume $\beta = \lim_{\xi \to \kappa} \beta_{\xi}$. There is a one-to-one mapping $f: \bigcup_{\xi < \beta} S_{\xi} \to \lambda \times \beta$ such that:

$$f: \alpha \mapsto (\xi, \gamma)$$

where ξ is the least ordinal such that $\alpha \in S_{\xi}$ and γ is the order-type of $S_{\xi} \cap \gamma$.

We have $\lambda < \kappa$ and $|\lambda \times \beta| = \lambda \cdot |\beta|$, then $\kappa = \beta$.

Theorem 1.2. Let κ be an infinite cardinal, then $\kappa < \kappa^{\text{cf }\kappa}$.

Proof. Let F be a collection of κ functions from cf κ to κ :

$$F = \{ f_{\alpha} : \operatorname{cf} \kappa \to \kappa \mid \alpha < \kappa \}$$

Let us construct f that does not belong to F. We have $\kappa = \lim_{\xi < \operatorname{cf} \kappa} \alpha_{\xi}$, for $\xi < \operatorname{cf} \kappa$ we let:

$$f(\xi) = \text{least } \gamma \text{ such that } \gamma \neq \forall \alpha < \alpha_{\xi} f_{\alpha} \neq \gamma$$

Such γ does exist and f is different from all the f_{α} .

An uncountable cardinal κ is weakly inaccessible if it is limit and regular, but we cannot prove the existence of weakly inaccessible cardinals in ZFC.

- 2 Real Numbers and The Baire Space
- 3 The Axiom of Choice
- 4 Cardinal Arithmetic via the Generalised Continuum Hypothesis