A Practical Beginner's Guide to Proteomics

This manuscript (<u>permalink</u>) was automatically generated from <u>jessegmeyerlab/proteomics-tutorial@b1bb38c</u> on February 7. 2022.

Authors

Dina Schuster

D 0000-0001-6611-8237 · □ dschust-r · ✓ dina sch

Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8093, Switzerland; Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland

Muralidharan Vanuopadath

School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam-690 525, Kerala, India

• Jesse G. Meyer

Department of Biochemistry, Medical College of Wisconsin · Funded by Grant R21 AG074234; Grant R35 GM142502

Devasahayam Arokia Balaya Rex

D 0000-0002-9556-3150 ⋅ **Q** ArokiaRex ⋅ **Y** rexprem

-Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India

Amit Kumar Yadav

D 0000-0002-9445-8156 · ○ aky · * theoneamit

Translational Health Science and Technology Institute · Funded by Grant BT/PR16456/BID/7/624/2016 (Department of Biotechnology, India); Grant Translational Research Program (TRP) at THSTI funded by DBT

Abstract

Proteomics is the large scale study of protein structure and function from biological systems. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptide that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of protein-protein interactions, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be difficult to understand for new practitioners. Here, we provide a comprehensive tutorial of different proteomics methods. Our tutorial covers all necessary steps starting from protein extraction and ending with biological interpretation. We expect that this work will serve as a basic resource for new practitioners of the field of shotgun or bottom-up proteomics.

Introduction

Proteomics is the large scale study of protein structure and function. Proteins are translated from mRNAs that are transcribed from the genome. Although the genome encodes potential cellular functions and states, the study of proteins is necessary to truly understand biology. Currently, proteomic studies are facilitated by mass spectrometry, although alternative methods are being developed.

Modern proteomics started around the year 1990 with the introduction of soft ionization methods that enabled, for the first time, transfer of large biomolecules into the gas phase without destroying them [1,2]. Shortly afterward, the first computer algorithm for matching peptides to a database was introduced [3]. Another major milestone that allowed identification of over 1000 proteins were actually improvements to chromatography [4]. As the volume of data exploded, methods for statistical analysis transitioned use from the wild west to modern informatics based on statistical models [5] and the false discovery rate [6].

Two strategies of mass spectrometry-based proteomics differ fundamentally by whether proteins are cleaved into peptides before analysis: "top-down" and "bottom-up". Bottom-up proteomics (also refered to as shotgun proteomics) is defined by the hydrolysis of proteins into peptide pieces [7]. Therefore, bottom-up proteomics does not actually measure proteins, but must infer their presence [8]. Sometimes proteins are infered from only one peptide sequence representing a small fraction of the total protein sequence predicted from the genome. In contrast, top-down proteomics attempts to measure all proteins intact [9]. The potential benefit of top-down proteomics is the ability to measure proteoforms [10]. However, due to analytical challenges, the depth of protein coverage that is achievable by top-down proteomics is less than the depth that is achievable by bottom-up proteomics.

In this tutorial we focus on the bottom-up proteomics workflow. The most common version of this workflow is generally comprised of the following steps. First, proteins in a biological sample must be extracted. Usually this is done by denaturing and solubilizing the proteins while disrupting DNA and tissue. Next, proteins are hydrolyzed into peptides, usually using a protease like trypsin. Peptides from proteome hydrolysis must be purified. Most often this is done with reversed phase chromatography cartridges or tips. The peptides are then almost always separated by liquid chromatography before they are ionized and introduced into a mass spectrometer. The mass spectrometer then collects precursor and fragment ion data from those peptides. The data analysis is usually the rate limiting step. Peptides must be identified, and proteins are inferred and quantities are assigned. Changes in proteins across conditions are determined with statistical tests, and results must be interpreted in the context of the relevant biology.

There are many variations on this workflow. The wide variety of experimental goals that are achievable with proteomics technology leads to a wide variety of potential proteomics workflows. Even choice is important and every choice will affect the results. In this tutorial, we cover all of the required steps in detail to serve as a tutorial for new proteomics practioners.

- 1. Types of experiments enabled by proteomics
- 2. Protein extraction
- 3. proteolysis
- 4. Isotopic Labeling
- 5. Enrichments
- 6. Peptide purification
- 7. Mass Spectrometry
- 8. Peptide Ionization

- 9. Data Acquisition10. Basic Data Analysis11. Biological Interpretation12. Experimental considerations and design

Types of Experiments

A wide range of questions are addressable with proteomics technology, which translates to a wide range of variations of proteomics workflows. Sometimes identifying what proteins are present is desired, and sometimes the quantities of as many proteins as possible are desired. Proteomics experiments can be both qualitative and quantitative.

Qualitative experiments

- Identifying proteins
- Identifying post translational modifications
- Identifying protein isoforms

Quantitative experiments

- Protein abundance changes
- Phosphoproteomics
- Glycoproteomics
- Structural techniques (XL-MS, HDX-MS, FPOP, protein-painting, LiP-MS, radical footprinting, ion mobility)
- Protein stability and small molecule binding (Thermal proteome profiling, TPP, or cellular thermal shift assay, CETSA)
- Protein-protein interactions (PPIs): AP-MS, APEX, BioID

Protein Extraction

First, proteins must be isolated from the sample matrix. Because some proteins alter other proteins, the goal is to simultaneously solubilize and denature proteins. This is achieved with a combination of salt and chaotropic agent.

- 1. Choice of Lysis buffer
- Urea can cause chemical modifications
- 2. Sample type and homogenisation methods
- specialised sample preparation protocols for non-denaturing protein isolation (i.e. for LiP-MS, HDMX-MS etc)
- 4. chemicals to avoid: PEGs, detergents etc
- 5. removal of contaminations, Protein Precipitation
- detergent reomoval resins, S-TRAP (Protifi) etc
- 7. protein alkylation
- choices of reduction and alkylation reagents, TCEP/DTT/2BME, Chloroacetamide/iodoacetamide, nethyl maleimide

Proteolysis

Proteolysis is the defining step that differentiates bottom-up or shotgun proteomics from top-down proteomics. Hydrolysis of proteins is extremely important because it defines the population of potentially identifyable peptides. Generally peptides between a length of 7-35 amino acids are considered useful for mass spectrometry analysis. Peptides that are too long are difficult to identify by tandem mass spectrometry, or may be lost during sample preparation due to irreversible binding with solid-phase extraction sorbents. Peptides that are too short are also not useful because they may match to many proteins during protein inference. There are many choices of enzymes and chemicals that hydrolyze proteins into peptides. This section summarizes potential choices and their strengths and weaknesses.

Trypsin is the most common choice of protease for proteome hydrolysis [11]. Trypsin is favorable because of its specificity, availability, efficiency and low cost. Trypsin cleaves at the C-terminus of basic amino acids, Arg and Lys. Many of the peptides generated from trypsin are short in length (less than \sim 20 amino acids), which is ideal for chromatographic separation, MS-based peptide fragmentation and identification by database search. The main drawback of trypsin is that majority (56%) of the tryptic peptides are \leq 6 amino acids, and hence using trypsin alone limits the observable proteome [12,13,14]. This limits the number of identifiable protein isoforms and post-translational modifications.

- 3. theoretical studies of proteolysis enzymes [15]
- 4. Challenges associated with alternative enzyme choices (non-specific and semi-specific enzymes)

Many alternative proteases are available with different specificities that complement trypsin to reveal different proteomic sequences [12,16], which can help distinguish protein isoforms [17]. The enzyme choice mostly depends on the application. In general, for a mere protein identification mostly trypsin is the choice due to the reasons aforementioned. However, alternative enzymes can facilitate *de novo* assembly when the genomic data information is limited in the public database repositories [18,19,20,21,22]. Use of multiple proteases for proteome digestion also can improve the sensitivity and accuracy of protein quantification [23].

Lysyl endopeptidase (Lys-C) obtained from *Lysobacter enzymogenesis* is a serine protease invloved in cleaving carboxyl terminus of Lys [13]. Like trypsin, the optimum pH required for its activity is from pH 7-9. A major advantage of Lys-C is its resistance to denaturing agents, including 8 M urea - a chaotrope commonly used to denature proteins *prior* to digestion [17]. Trypsin is less efficient at cleaving Lys than Arg, which could limit the quality of quantitation from tryptic peptides. Hence, to achieve complete protein digestion with minimal missed cleavages, Lys-C is often used in simultaneously with trypsin digestion [25].

Alpha-lytic protease (aLP) is also secreted by the soil bacterial *Lysobacter enzymogenesis* [26]. Wildtype aLP (WaLP) and an active site mutant of aLP, M190A (MaLP), have been used to expand proteome coverage [27]. Based on observed peptide sequences from yeast proteome digestion, WaLP showed a specificity for small aliphatic amino acids like alanine, valine, and glycine, but also threonine and serine. MaLP showed a specificity for slightly larger amino acids like methionine, phenylalanine, and surprisingly, a preference for leucine over isoleucine. The specificity of WaLP for threonine enabled the first method for mapping endogenous human SUMO sites [28].

Glutamyl peptidase I, commonly known as Glu-C or V8 protease, is a serine protease obtained from *Staphyloccous aureus* [29]. Glu-C cleaves at the C-terimus of glutamate, but also after aspartate [29,30].

Peptidyl-Asp metallopeptidase, commonly known as Asp-N, is a metalloprotease obtained from *Pseudomonas fragi* [31]. Asp-N catalyzes the hydrolysis of peptide bonds at the N-terminal of aspartate residues. The optimum activity of this enzyme is between pH 4 and 9. As with any metalloprotease, chelators like EDTA should be avoided for digestion buffers when using Asp-N. Studies also suggest that Asp-N cleaves at the amino terminus of glutamate when a detergent is present in the proteolysis buffer [31]. Asp-N often leaves many missed cleavages [17].

Chymotrypsin or chymotrypsinogen A is a serine protease obtained from porcine or bovine pancreas with an optimum pH range from 7.8 to 8.0 [32]. It cleaves at the C-terminus of hydrphobic amino acids Phe, Trp, Tyr and barely Met and Leu residues. Since the transmembrane region of membrane proteins commonly lacks tryptic cleavage sites, this enzyme works well with membrane proteins having more hydrophobic residues [17,33,34]. The chymotryptic peptides generated after proteolysis will cover the proteome space orthogonal to that of tryptic peptides both in a quantitative and qualitative manner [34,35,36]

Clostripain, commonly known as Arg-C, is a cysteine protease obtained from *Clostridium histolyticum* [37]. It hydrolyses mostly the C-terminal Arg residues and sometimes Lys residues, but with less efficiency. The peptides generated are generally longer than that of tryptic peptides. Arg-C is often used with other proteases for improving qualitative proteome data and also for investigating PTMs [13].

LysargiNase, also known as Ulilysin, is a recently discovered protease belonging to the metalloprotease family. It is a thermophilic protease derived from *Methanosarcina acetivorans* that specifically cleaves at the N-terminus of Lys and Arg residues [38]. Hence, it enabled discovery of C-terminal peptides that were not observed using trypsin. In addition, it can also cleave modified amino acids such as methylated or dimethylated Arg and Lys [38].

Peptidyl-Lys metalloendopeptidase, or Lys-N, is an metalloprotease obtained from *Grifola frondosa* [39]. It cleaves N-terminally of Lys and has an optimal activity at pH 9.0. Unlike trypsin, Lys-N is more resistant to denaturing agents and can be heated up to 70 °C [13]. Reports suggest that the peptides generated after Lys-N digestion produces more of c-type ions in a ETD-based mass spectrometer [40]. Hence this can be used for analysing PTMs, identification of C-terminal peptides and also for de novo sequencing strategies [40,41].

Pepsin A, commonly known as pepsin, is an aspartic protease obtained from bovine or porcine pancreas [42]. Pepsin was one of several proteins crystalized by John Northrop, who shared the 1946 Nobel prize in chemistry for this work [43,44,45,46/]. Pepsin works at an optimum pH from 1-4 and specifically cleaves Trp, Phe, Tyr and Leu [13]. Since it possess high enzyme activity and broad specificity at lower pH, it is preferred over other proteases for MS-based disulphide mapping [47,48]. Pepsin is also used extensively for structural mass spectrometry studies with hydrogen-deuterium exchange (HDX) because the rate of back exchange of the amide deuteron is minimized at low pH [49,50].

Proteinase K was first isolated from the mold *Tritirachium album* Limber [51]. The epithet 'K' is derived from its ability to efficiently hydrolyse keratin [51]. It is a member of the subtilisin family of proteases and is relatively unspecific with a preference for proteolysis at hydrophobic and aromatic amino acid residues [52]. The optimal enzyme activity is between pH 7.5 and 12. Proteinase K is used at low concentrations for limited proteolysis (LiP) and the detection of protein structural changes in the eponymous technique LiP-MS [53].

Peptide and Protein Labeling

Discussion of methods to isotopically label peptides or proteins that enable quantification

- 1. SILAC/SILAM
- 2. iTRAQ
- 3. TMT
- 4. dimethyl labeling

Figure 1: Quantitative strategies commonly used in proteomics. A) Label-free quantitation. Proteins are extracted from samples, enzymatically hydrolyzed into peptides and analyzed by mass spectrometry. Chromatographic peak areas from peptides are compared across samples that are analyzed sequentially. B) Metabolic labelling. Stable isotope labeling with amino acids in cell culture (SILAC) is based on feeding cells stable isotope labeled amino acids ("light" or "heavy"). Samples grown with heavy or light amino acids are mixed before cell lysis. The relative intensities of the heavy and light peptide are used to compute protein changes between samples. C) Isobaric or chemical labelling. Proteins are isolated separately from samples, enzymatically hydrolyzed into peptides, and then chemically tagged with isobaric stable isotope labels. These isobaric tags produce unique reporter mass-to-charge (m/z) signals that are produced upon fragmentation with MS/MS. Peptide fragment ions are used to identify peptides, and the relative reporter ion signals are used for quantification.

Peptide or Protein Enrichment

Protein enrichment (e.g. for protein protein interactions)

- APEX
- bioID
- bioplex

Peptide enrichment

- antibody enrichments of modifications, e.g. lysine acetylation [54].
- TiO2 and Fe enrichment of phosphorylation
- Glycosylation
- SISCAPA

Methods for Peptide Purification

- 1. Reverse phase including tips and cartridges
- 2. stage tips
- 3. in stage tip (iST)
- 4. SP2, SP3
- 5. s traps

Types of Mass Spectrometers used for Proteomics

- 1. QQQ
- 2. Q-TOF
- 3. Q-Orbitrap
- 4. LTQ-Orbitrap
- 5. TOF/TOF
- 6. FT-ICR
- 7. types of ion mobility
- SLIM
- FAIMS
- traveling wave
- tims

Peptide Ionization

Until the early 1990s, peptides analysis by mass spectrometry was challenging. Hard ionization techniques in use at the time, like fast atom bombardment, were not directly applicable to peptides without destroying or breaking them. The soft ionization tehniques however, revolutionized the proteomics field and it became possible to routinely ionize and analyze peptides using MALDI and ESI techniques at high-throughput scale. These two techniques were so impactful that the 2002 Nobel Prize in Chemistry was co-awarded to John Fenn (ESI) and Koichi Tanaka (MALDI) "for their development of soft desorption ionisation methods for mass spectrometric analyses of biological macromolecules" [55/].

MALDI

The term, Matrix-assisted LASER desorption ionization (MALDI), was coined by Hillenkamp and Karas in 1985[56]. Karas and Hillenkamp discovered the MALDI technique first, although a similar ionization method was shown by Koichi Tanaka in 1988 [2]. A few months later, Karas and Hillenkamp also demonstrated MALDI applied to protein ionization [57]. It also created a controversy that the widely used method of MALDI from these two people had been overlooked, and the Nobel prize was awarded to Tanaka, whose system was rarely used[58].

MALDI first requires the peptide sample to be co-crystallized with a matrix molecule, which is usually a volatile, low molecular-weight, organic aromatic compound. Some examples of such compounds are cyno-hydroxycinnamic acid, dihyrobenzic acid, sinapinic acid, alpha-hydroxycinnamic acid, ferulic acid etc [59/]. Subsequently, the analyte is placed in a vacuum chamber in which it is irradiated with a LASER, usually at 337nm [60]. This laser energy is absorbed by the matrix, which then transfers that energy along with its free protons to the co-crystalized peptides without significantly breaking them. The matrix and co-crystallized sample generate plumes, and the volatile matrix imparts its protons to the peptides as it gets ionized first. The weak acidic conditions used as well as the acidic nature of the matrix allows easy exchange of protons for the peptides to get ionized and fly under the electrical field in the mass spectrometer. These ionized peptides generally form the metastable ions, most of them will fragment quickly [61]. However, it can take several milliseconds and the mass spectrometry analysis can be performed before this time. Peptides ionized by MALDI almost always take up a single charge and thus observed and detected as [M+H]+ species.

MALDI Mechanism

Electrospray Ionization

ESI was first applied to peptides by John Fenn and coworkers in 1989 [1]. Concepts related to electrospray Ionization (ESI) were published at least as early as 1882, when Lord Rayleigh described the number of charges that could assemble on the surface of a droplet [62]. ESI is usually coupled with reverse-phase liquid-chromatography of peptides directly interfaced to a mass spectrometer. A high voltage (~ 2 kV) is applied between the spray needle and the mass spectrometer. As solvent exits the needle, it forms droplets that take on charge at the surface, and through a debated mechanism, those charges are imparted to peptide ions. The liquid phase is generally kept acidic to help impart protons easily to the analytes.

Tryptic peptides ionized by ESI usually carry one charge one the side chain of their c-terminal residue (Arg or Lys) and one charge at their n-terminal amine. Peptides can have more than one charge if they have a longer peptide backbone, have histidine residues, or have missed cleavages leaving extra Arg and Lys. In most cases, peptides ionized by ESI are observed at more than one charge state. Evidence

suggests that the distribution of peptide charge states can be maniupulated through chemical additives [63].

Electrospray Mechanism

Data Acquisition

Data acquisition strategies for proteomics fall generally within targeted or untargeted, and they can depend on the data (data dependent acquisition or DDA) or be data independent (data-independent acquisition or DIA).

DDA

Targeted DDA

Untargeted DIA

DIA

Targeted DIA

Untargeted DIA

Analysis of Raw Data

The goal of basic data analysis is to convert raw spectral data into identities and quantities of peptides and proteins that can be used for biologically-focused analysis. This step may often include measures of quality control, cross-run data normalization, quantification on different levels (precursor, peptide, protein), protein inference, PTM (post translational modification) localization and also first steps of data analysis, such as statistical hypothesis tests.

In typical bottom-up proteomics experiments, proteins are digested into peptides and further analyzed with LC-MS/MS systems. Peptides can have different PTMs and ionize differently depending on their length and amino acid distributions. Therefore, mass spectrometers often record different charge and modification states of one single peptide. The entity that is recorded on a mass spectrometer is usually referred to as a precursor ion (peptide with its modification and charge state). This precursor ion is fragmented and the precursor or peptide sequences are obtained though spectral matching. The quantity of a precursor is estimated with various methods. The measured precursor quantities are combined to generate a peptide quantity. Peptides are also often combined into a protein group through protein inference, which combines multiple peptide identifications into a single protein identification [64] [65]. Protein inference is still a challenge in bottom-up proteomics.

Due to the inherent differences in the data structures of DDA and DIA measurements, there exist different types of software that can facilitate the steps mentioned above. The existing software for DDA and DIA analysis can be further divided into freeware and non-freeware:

DDA freeware

Name	Publication	Website
MaxQuant	Cox and Mann, 2008[<u>66</u>]	<u>MaxQuant</u>
MSFragger	Kong et al., 2017[<u>67</u>]	<u>MSFragger</u>
Mascot	Perkins et al., 1999[<u>68</u>]	<u>Mascot</u>
MS-GF+	Kim et al., [<u>69</u>]	MS-GF+
X!Tandem	Craig et al., [<u>70,71</u>]	<u>GPMDB</u>

DIA freeware:

Name	Publication	Website
MaxDIA	Cox and Mann, 2008[<u>66</u>]	<u>MaxQuant</u>
Skyline	MacLean et al., 2010[<u>72</u>]	<u>Skyline</u>
DIA-NN	Demichev et al., 2019[73]	<u>DIA-NN</u>

Targeted proteomics freeware:

Name	Publication	Website
Skyline	MacLean et al., 2010[<u>72</u>]	<u>Skyline</u>

DDA non-freeware:

Name	Publication	Website
ProteomeDis coverer		<u>ProteomeDiscoverer</u>
Mascot	Perkins et al., 1999[<u>68</u>]	<u>Mascot</u>
Spectromine		<u>Spectromine</u>
PEAKS	Tran et al., 2018[<u>74</u>]	<u>PEAKS</u>

DIA non-freeware:

Name	Publication	Website
Spectronaut	Bruderer et al., 2015[<u>75</u>]	<u>ProteomeDiscoverer</u>
PEAKS	Tran et al., 2018[<u>74</u>]	<u>PEAKS</u>

Analysis of DDA data

DDA data analysis either directly uses the vendor proprietary data format directly with a proprietary search engine like Mascot, Sequest (through Proteome Discoverer), Paragon (through Protein Pilot), or it can be processed through one of the many freely available search engines or pipelines, for example, MaxQuant, MSGF+, X!Tandem, Morpheus, MSFragger, and OMSSA. Tables 1 and 4 give weblinks and citations for these software tools. For analysis with freeware, raw data is converted to either text-based MGF (mascot generic format) or into a standard open XML format like mzML [76] [[77]][78]. The appropriate FASTA file containing proteins predicted from that organism's genome is chosen as a reference database to search the experimental spectra. All search prarameters like peptide and fragment mass errors (i.e. MS1 and MS2 tolerances), enzyme specificity, number of missed cleavages, chemical artefacts (fixed modifications) and potential biological modifications (variable/dynamic modifications) are specified before executing the search. The search algorithm scores each query spectrum against its possible peptide matches [79]. A spectrum and its best scoring candidate peptide are called a peptide spectrum match (PSM). The scores reflect a *goodness-of-fit* between an experimental spectrum and a theoretical one and do not necessarily depict the correctness of the peptide assignment.

For evaluating the matches, a decoy database is preferred as a null model for peptide matching. A randomized or reversed version of target database is used as a nonparametric null model. The decoy database can be searched separate from the target database (Kall's method)[80] or it can be combined with the target database before search (Elias and Gygi method)[81]. Using either separate method or concatenated database search method, an estimate of false hits can be calculated which is used to estimate the false discovery rate (FDR) [82]. The FDR denotes the proportion of false hits in the population accepted as true. For Kall's method: the false hits are estimated to be the number of decoys above a given threshold. It is assumed that the number of decoy hits that pass a threshold are the false hits. A similar number of target population may also be false. Therefore, the FDR is calculated as:

[FDR = #Decoy PSMs/#Target PSMs]

For Elias and Gygi Method, the target population in which FDR is estimated changes. The target and decoy hits coming from a joint database compete against each other. For any spectrum, either a target or a decoy peptide can be the best hit. It is argued that the joint target-decoy population has decoy hits as confirmed false hits. However, due to the joint database search, the target database may

also have equal number of false hits. Thus, the number of false hits is multiplied by two for FDR estimation.

[FDR = (2 * # Decoy PSMs)/ (#(Target+Decoy) PSMs)]

Strategies for analysis of DIA data
Targeted proteomics data analysis
Quality control
Statistical hypothesis testing

Biological Interpretation

- 1. term enrichment analysis (KEGG, GO)
- 2. network analysis methods
- 3. structure analysis
- 4. isoform analysis
- 5. follow-up experiments

Experiment Design

This section should discuss trade offs and balancing them to design an experiment. 1. constraints: Each experiment will have different constraints, which may include the number of samples needed for analysis, or desire to quantify a specific subset of proteins within a sample. 2. sample size 3. statistics 4. costs

References

1. Electrospray Ionization for Mass Spectrometry of Large Biomolecules

John B Fenn, Matthias Mann, Chin Kai Meng, Shek Fu Wong, Craig M Whitehouse *Science* (1989-10-06) https://doi.org/cq2q43

DOI: <u>10.1126/science.2675315</u> · PMID: <u>2675315</u>

2. Protein and polymer analyses up tom/z 100 000 by laser ionization time-of-flight mass spectrometry

Koichi Tanaka, Hiroaki Waki, Yutaka Ido, Satoshi Akita, Yoshikazu Yoshida, Tamio Yoshida, T Matsuo

Rapid Communications in Mass Spectrometry (1988-08) https://doi.org/ffbwwr

DOI: 10.1002/rcm.1290020802

3. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.

JK Eng, AL McCormack, JR Yates

Journal of the American Society for Mass Spectrometry (1994-11)

https://www.ncbi.nlm.nih.gov/pubmed/24226387

DOI: <u>10.1016/1044-0305(94)80016-2</u> · PMID: <u>24226387</u>

4. An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics

Dirk A Wolters, Michael P Washburn, John R Yates

Analytical Chemistry (2001-10-25) https://doi.org/bn4kq6

DOI: <u>10.1021/ac010617e</u> · PMID: <u>11774908</u>

5. A Statistical Model for Identifying Proteins by Tandem Mass Spectrometry

Alexey I Nesvizhskii, Andrew Keller, Eugene Kolker, Ruedi Aebersold *Analytical Chemistry* (2003-07-15) https://doi.org/b2xv45

DOI: <u>10.1021/ac0341261</u> · PMID: <u>14632076</u>

6. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry

Joshua E Elias, Steven P Gygi

Nature Methods (2007-03) https://doi.org/djz7fz

DOI: https://doi.org/10.1038/nmeth1019

7. Mass-spectrometric exploration of proteome structure and function

Ruedi Aebersold, Matthias Mann

Nature (2016-09) https://doi.org/f83zqm

DOI: 10.1038/nature19949 · PMID: 27629641

8. A Statistical Model for Identifying Proteins by Tandem Mass Spectrometry

* Alexey I. Nesvizhskii, * Andrew Keller, ‡ and Eugene Kolker, Ruedi Aebersold *ACS Publications* (2003-07-15) https://pubs.acs.org/doi/abs/10.1021/ac0341261

9. High-throughput quantitative top-down proteomics

Kellye A Cupp-Sutton, Si Wu

Molecular Omics (2020) https://doi.org/gnx98p

DOI: 10.1039/c9mo00154a · PMID: 31932818 · PMCID: PMC7529119

10. Proteoforms as the next proteomics currency

Lloyd M Smith, Neil L Kelleher

Science (2018-03-09) https://doi.org/gn6p4x

DOI: 10.1126/science.aat1884 · PMID: 29590032 · PMCID: PMC5944612

11. Getting intimate with trypsin, the leading protease in proteomics

Elien Vandermarliere, Michael Mueller, Lennart Martens

Mass Spectrometry Reviews (2013-06-15) https://doi.org/gn64qb

DOI: <u>10.1002/mas.21376</u> · PMID: <u>23775586</u>

12. Value of using multiple proteases for large-scale mass spectrometry-based proteomics.

Danielle L Swaney, Craig D Wenger, Joshua J Coon

Journal of proteome research (2010-03-05) https://www.ncbi.nlm.nih.gov/pubmed/20113005

DOI: 10.1021/pr900863u · PMID: 20113005 · PMCID: PMC2833215

13. **Proteomics beyond trypsin.**

Liana Tsiatsiani, Albert JR Heck

The FEBS journal (2015-04-14) https://www.ncbi.nlm.nih.gov/pubmed/25823410

DOI: <u>10.1111/febs.13287</u> · PMID: <u>25823410</u>

14. Jesse G Meyer

ISRN computational biology (2014-04-22) https://www.ncbi.nlm.nih.gov/pubmed/30687733

DOI: <u>10.1155/2014/960902</u> · PMID: <u>30687733</u> · PMCID: <u>PMC6347401</u>

15. In Silico Proteome Cleavage Reveals Iterative Digestion Strategy for High Sequence Coverage

Jesse G Meyer

ISRN Computational Biology (2014-04-22) https://doi.org/gb6s2r

DOI: 10.1155/2014/960902 · PMID: 30687733 · PMCID: PMC6347401

16. Multiple enzymatic digestion for enhanced sequence coverage of proteins in complex proteomic mixtures using capillary LC with ion trap MS/MS.

Gargi Choudhary, Shiaw-Lin Wu, Paul Shieh, William S Hancock

Journal of proteome research https://www.ncbi.nlm.nih.gov/pubmed/12643544

DOI: 10.1021/pr025557n · PMID: 12643544

17. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin.

Piero Giansanti, Liana Tsiatsiani, Teck Yew Low, Albert JR Heck

Nature protocols (2016-04-28) https://www.ncbi.nlm.nih.gov/pubmed/27123950

DOI: <u>10.1038/nprot.2016.057</u> · PMID: <u>27123950</u>

18. Combination of Proteogenomics with Peptide

B Blank-Landeshammer, I Teichert, R Märker, M Nowrousian, U Kück, A Sickmann

mBio (2019-10-15) https://www.ncbi.nlm.nih.gov/pubmed/31615963

DOI: 10.1128/mbio.02367-19 · PMID: 31615963 · PMCID: PMC6794485

19. **Precision**

Hao Yang, Yan-Chang Li, Ming-Zhi Zhao, Fei-Lin Wu, Xi Wang, Wei-Di Xiao, Yi-Hao Wang, Jun-Ling

Zhang, Fu-Qiang Wang, Feng Xu, ... Ping Xu

Molecular & cellular proteomics : MCP (2019-01-08)

https://www.ncbi.nlm.nih.gov/pubmed/30622160

DOI: <u>10.1074/mcp.tir118.000918</u> · PMID: <u>30622160</u> · PMCID: <u>PMC</u>6442358

20. Mass spectrometry-assisted venom profiling of Hypnale hypnale found in the Western Ghats of India incorporating de novo sequencing approaches.

Muralidharan Vanuopadath, Nithin Sajeev, Athira Radhamony Murali, Nayana Sudish, Nithya Kangosseri, Ivy Rose Sebastian, Nidhi Dalpatraj Jain, Amit Pal, Dileepkumar Raveendran, Bipin Gopalakrishnan Nair, Sudarslal Sadasivan Nair

International journal of biological macromolecules (2018-07-07)

https://www.ncbi.nlm.nih.gov/pubmed/29990557

DOI: 10.1016/j.ijbiomac.2018.07.016 · PMID: 29990557

21. Venomics and antivenomics of Indian spectacled cobra (Naja naja) from the Western Ghats

Muralidharan Vanuopadath, Dileepkumar Raveendran, Bipin Gopalakrishnan Nair, Sudarslal Sadasivan Nair

Acta Tropica (2022-04) https://doi.org/gpbzf7

DOI: <u>10.1016/j.actatropica.2022.106324</u> · PMID: <u>35093326</u>

22. Sequencing-Grade De novo Analysis of MS/MS Triplets (CID/HCD/ETD) From Overlapping Peptides

Adrian Guthals, Karl R Clauser, Ari M Frank, Nuno Bandeira

Journal of Proteome Research (2013-05-30) https://doi.org/f47kqd

DOI: <u>10.1021/pr400173d</u> · PMID: <u>23679345</u> · PMCID: <u>PMC4591044</u>

23. Multiple-Enzyme-Digestion Strategy Improves Accuracy and Sensitivity of Label- and Standard-Free Absolute Quantification to a Level That Is Achievable by Analysis with Stable Isotope-Labeled Standard Spiking.

Jacek R Wiśniewski, Christine Wegler, Per Artursson

Journal of proteome research (2018-10-30) https://www.ncbi.nlm.nih.gov/pubmed/30336047

DOI: <u>10.1021/acs.jproteome.8b00549</u> · PMID: <u>30336047</u>

24. Use of endoproteinase Lys-C from Lysobacter enzymogenes in protein sequence analysis.

PA Jekel, WJ Weijer, JJ Beintema

Analytical biochemistry (1983-10-15) https://www.ncbi.nlm.nih.gov/pubmed/6359954

DOI: <u>10.1016/0003-2697(83)90308-1</u> · PMID: <u>6359954</u>

25. Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion.

Timo Glatter, Christina Ludwig, Erik Ahrné, Ruedi Aebersold, Albert JR Heck, Alexander Schmidt *Journal of proteome research* (2012-10-16) https://www.ncbi.nlm.nih.gov/pubmed/23017020
DOI: 10.1021/pr300273g · PMID: 23017020

26. The alpha-lytic protease gene of Lysobacter enzymogenes. The nucleotide sequence predicts a large prepro-peptide with homology to pro-peptides of other chymotrypsin-like enzymes.

DM Epstein, PC Wensink

The Journal of biological chemistry (1988-11-15)

https://www.ncbi.nlm.nih.gov/pubmed/3053694

PMID: 3053694

27. Expanding Proteome Coverage with Orthogonal-specificity α-Lytic Proteases

Jesse G Meyer, Sangtae Kim, David A Maltby, Majid Ghassemian, Nuno Bandeira, Elizabeth A Komives

Molecular & Cellular Proteomics (2014-03) https://doi.org/f5vgcg

DOI: 10.1074/mcp.m113.034710 · PMID: 24425750 · PMCID: PMC3945911

28. Site-specific identification and quantitation of endogenous SUMO modifications under native conditions.

Ryan J Lumpkin, Hongbo Gu, Yiying Zhu, Marilyn Leonard, Alla S Ahmad, Karl R Clauser, Jesse G Meyer, Eric J Bennett, Elizabeth A Komives

Nature communications (2017-10-27) https://www.ncbi.nlm.nih.gov/pubmed/29079793

DOI: <u>10.1038/s41467-017-01271-3</u> · PMID: <u>29079793</u> · PMCID: <u>PMC5660086</u>

29. Purification and properties of an extracellular protease of Staphylococcus aureus.

GR Drapeau, Y Boily, J Houmard

The Journal of biological chemistry (1972-10-25)

https://www.ncbi.nlm.nih.gov/pubmed/4627743

PMID: 4627743

30. Mildly acidic conditions eliminate deamidation artifact during proteolysis: digestion with endoprotease Glu-C at pH 4.5.

Shanshan Liu, Kevin Ryan Moulton, Jared Robert Auclair, Zhaohui Sunny Zhou

Amino acids (2016-01-09) https://www.ncbi.nlm.nih.gov/pubmed/26748652

DOI: <u>10.1007/s00726-015-2166-z</u> · PMID: <u>26748652</u> · PMCID: <u>PMC4795971</u>

31. Specificity of endoproteinase Asp-N (Pseudomonas fragi): cleavage at glutamyl residues in two proteins.

D Ingrosso, AV Fowler, J Bleibaum, S Clarke

Biochemical and biophysical research communications (1989-08-15)

https://www.ncbi.nlm.nih.gov/pubmed/2669754

DOI: 10.1016/0006-291x(89)90848-6 · PMID: 2669754

32. Chymotrypsin: molecular and catalytic properties.

W Appel

Clinical biochemistry (1986-12) https://www.ncbi.nlm.nih.gov/pubmed/3555886

DOI: 10.1016/s0009-9120(86)80002-9 · PMID: 3555886

33. Mass-spectrometry-based draft of the human proteome.

Mathias Wilhelm, Judith Schlegl, Hannes Hahne, Amin Moghaddas Gholami, Marcus Lieberenz, Mikhail M Savitski, Emanuel Ziegler, Lars Butzmann, Siegfried Gessulat, Harald Marx, ... Bernhard Kuster

Nature (2014-05-29) https://www.ncbi.nlm.nih.gov/pubmed/24870543

DOI: 10.1038/nature13319 · PMID: 24870543

34. Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics.

Xiaofeng Guo, David C Trudgian, Andrew Lemoff, Sivaramakrishna Yadavalli, Hamid Mirzaei *Molecular & cellular proteomics : MCP* (2014-04-02)

https://www.ncbi.nlm.nih.gov/pubmed/24696503

DOI: <u>10.1074/mcp.m113.035170</u> · PMID: <u>24696503</u> · PMCID: <u>PMC</u>4047476

35. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis.

Teck Yew Low, Sebastiaan van Heesch, Henk van den Toorn, Piero Giansanti, Alba Cristobal, Pim Toonen, Sebastian Schafer, Norbert Hübner, Bas van Breukelen, Shabaz Mohammed, ... Victor Guryev

Cell reports (2013-11-27) https://www.ncbi.nlm.nih.gov/pubmed/24290761

DOI: 10.1016/j.celrep.2013.10.041 · PMID: 24290761

36. Protease bias in absolute protein quantitation.

Mao Peng, Nadia Taouatas, Salvatore Cappadona, Bas van Breukelen, Shabaz Mohammed, Arjen Scholten, Albert JR Heck

Nature methods (2012-05-30) https://www.ncbi.nlm.nih.gov/pubmed/22669647

DOI: 10.1038/nmeth.2031 · PMID: 22669647

37. Studies on the active site of clostripain. The specific inactivation by the chloromethyl ketone derived from -N-tosyl-L-lysine.

WH Porter, LW Cunningham, WM Mitchell

The Journal of biological chemistry (1971-12-25)

https://www.ncbi.nlm.nih.gov/pubmed/4332560

PMID: <u>4332560</u>

38. LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification.

Pitter F Huesgen, Philipp F Lange, Lindsay D Rogers, Nestor Solis, Ulrich Eckhard, Oded Kleifeld, Theodoros Goulas, FXavier Gomis-Rüth, Christopher M Overall

Nature methods (2014-11-24) https://www.ncbi.nlm.nih.gov/pubmed/25419962

DOI: 10.1038/nmeth.3177 · PMID: 25419962

39. Proteomic analyses using Grifola frondosa metalloendoprotease Lys-N.

Laura Hohmann, Carly Sherwood, Ashley Eastham, Amelia Peterson, Jimmy K Eng, James S Eddes, David Shteynberg, Daniel B Martin

Journal of proteome research (2009-03) https://www.ncbi.nlm.nih.gov/pubmed/19195997

DOI: <u>10.1021/pr800774h</u> · PMID: <u>19195997</u> · PMCID: <u>PMC2798736</u>

40. Straightforward ladder sequencing of peptides using a Lys-N metalloendopeptidase.

Nadia Taouatas, Madalina M Drugan, Albert JR Heck, Shabaz Mohammed *Nature methods* (2008-04-20) https://www.ncbi.nlm.nih.gov/pubmed/18425140
DOI: 10.1038/nmeth.1204 · PMID: 18425140

41. Cleavage specificities of the brother and sister proteases Lys-C and Lys-N.

Reinout Raijmakers, Pieter Neerincx, Shabaz Mohammed, Albert JR Heck *Chemical communications (Cambridge, England)* (2010-10-18)

https://www.ncbi.nlm.nih.gov/pubmed/20953479

DOI: 10.1039/c0cc02523b · PMID: 20953479

42. A history of pepsin and related enzymes.

Joseph S Fruton

The Quarterly review of biology (2002-06) https://www.ncbi.nlm.nih.gov/pubmed/12089768

DOI: 10.1086/340729 · PMID: 12089768

43. CRYSTALLINE PEPSIN: I. ISOLATION AND TESTS OF PURITY.

IH Northrop

The Journal of general physiology (1930-07-20)

https://www.ncbi.nlm.nih.gov/pubmed/19872561

DOI: 10.1085/jgp.13.6.739 · PMID: 19872561 · PMCID: PMC2141071

44. CRYSTALLINE PEPSIN: II. GENERAL PROPERTIES AND EXPERIMENTAL METHODS.

JH Northrop

The Journal of general physiology (1930-07-20)

https://www.ncbi.nlm.nih.gov/pubmed/19872562

DOI: <u>10.1085/jgp.13.6.767</u> · PMID: <u>19872562</u> · PMCID: <u>PMC2141088</u>

45. **CRYSTALLINE PEPSIN.**

JH Northrop

Science (New York, N.Y.) (1929-05-31) https://www.ncbi.nlm.nih.gov/pubmed/17758437

DOI: 10.1126/science.69.1796.580 · PMID: 17758437

46. The Nobel Prize in Chemistry 1946

NobelPrize.org

https://www.nobelprize.org/prizes/chemistry/1946/speedread/

47. Protein disulfide bond determination by mass spectrometry.

Jeffrey J Gorman, Tristan P Wallis, James J Pitt

Mass spectrometry reviews https://www.ncbi.nlm.nih.gov/pubmed/12476442

DOI: <u>10.1002/mas.10025</u> · PMID: <u>12476442</u>

48. Facilitating protein disulfide mapping by a combination of pepsin digestion, electron transfer higher energy dissociation (EThcD), and a dedicated search algorithm SlinkS.

Fan Liu, Bas van Breukelen, Albert JR Heck

Molecular & cellular proteomics : MCP (2014-06-30)

https://www.ncbi.nlm.nih.gov/pubmed/24980484

DOI: 10.1074/mcp.o114.039057 · PMID: 24980484 · PMCID: PMC4189002

49. Online, High-Pressure Digestion System for Protein Characterization by Hydrogen/Deuterium Exchange and Mass Spectrometry

Lisa M Jones, Hao Zhang, Ilan Vidavsky, Michael L Gross

Analytical Chemistry (2010-01-22) https://doi.org/b993rm

DOI: 10.1021/ac902477u · PMID: 20095571 · PMCID: PMC2826105

50. Hydrogen/deuterium exchange in mass spectrometry

Yury Kostyukevich, Thamina Acter, Alexander Zherebker, Arif Ahmed, Sunghwan Kim, Eugene Nikolaev

Mass Spectrometry Reviews (2018-03-30) https://doi.org/gffzx8

DOI: 10.1002/mas.21565 · PMID: 29603316

51. Proteinase K from Tritirachium album Limber.

W Ebeling, N Hennrich, M Klockow, H Metz, HD Orth, H Lang

European journal of biochemistry (1974-08-15) https://www.ncbi.nlm.nih.gov/pubmed/4373242

DOI: <u>10.1111/j.1432-1033.1974.tb03671.x</u> · PMID: <u>4373242</u>

52. **Proteinase K**

W Saenger

Handbook of Proteolytic Enzymes (2013) https://doi.org/gkfkcz

DOI: https://doi.org/10.1016/b978-0-12-382219-2.00714-6 · ISBN: 9780123822192

53. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry.

Simone Schopper, Abdullah Kahraman, Pascal Leuenberger, Yuehan Feng, Ilaria Piazza, Oliver Müller, Paul J Boersema, Paola Picotti

Nature protocols (2017-10-26) https://www.ncbi.nlm.nih.gov/pubmed/29072706

DOI: 10.1038/nprot.2017.100 · PMID: 29072706

54. Simultaneous Quantification of the Acetylome and Succinylome by 'One-Pot' Affinity Enrichment

Nathan Basisty, Jesse G Meyer, Lei Wei, Bradford W Gibson, Birgit Schilling

PROTEOMICS (2018-08-19) https://doi.org/gn4cmb

DOI: <u>10.1002/pmic.201800123</u> · PMID: <u>30035354</u> · PMCID: <u>PMC6175148</u>

55. The Nobel Prize in Chemistry 2002

NobelPrize.org

https://www.nobelprize.org/prizes/chemistry/2002/summary/

56. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules

Michael Karas, Doris Bachmann, Franz Hillenkamp

ACS Publications (2002-05-01) https://pubs.acs.org/doi/abs/10.1021/ac00291a042

57. **Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons**Michael Karas, Franz Hillenkamp

Analytical Chemistry (1988-10-15) https://doi.org/d577jp

DOI: 10.1021/ac00171a028 · PMID: 3239801

58. The Scientist :: Nobel Prize controversy (2007-05-17)

https://web.archive.org/web/20070517202246/http://cmbi.bjmu.edu.cn/news/0212/55.htm

59. α-Cyano-4-hydroxycinnamic acid, sinapinic acid, and ferulic acid as matrices and alkylating agents for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cysteine-containing peptides

Hongmei Yang, Debin Wan, Fengrui Song, Zhiqiang Liu, Shuying Liu *Rapid communications in mass spectrometry: RCM* (2013-06-30)

https://pubmed.ncbi.nlm.nih.gov/23681820

DOI: 10.1002/rcm.6587

60. The Desorption Process in MALDI

Klaus Dreisewerd

Chemical Reviews (2003-01-24) https://doi.org/cpzqmq

DOI: <u>10.1021/cr010375i</u> · PMID: <u>12580636</u>

61. Matrix Dependence of Metastable Fragmentation of Glycoproteins in MALDI TOF Mass Spectrometry

Michael Karas, Ute Bahr, Kerstin Strupat, Franz Hillenkamp, Anthony Tsarbopoulos, Birendra N Pramanik

Analytical Chemistry (1995-02-01) https://doi.org/b54gnt

DOI: 10.1021/ac00099a029

62. XX. On the equilibrium of liquid conducting masses charged with electricity

Lord Rayleigh

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (1882-09)

https://doi.org/c6bp6h

DOI: <u>10.1080/14786448208628425</u>

63. Charge state coalescence during electrospray ionization improves peptide identification by tandem mass spectrometry.

lesse G Meyer, Elizabeth A Komives

Journal of the American Society for Mass Spectrometry (2012-05-18)

https://www.ncbi.nlm.nih.gov/pubmed/22610994

DOI: 10.1007/s13361-012-0404-0 · PMID: 22610994 · PMCID: PMC6345509

64. Interpretation of Shotgun Proteomic Data

Alexey I Nesvizhskii, Ruedi Aebersold

Molecular & Cellular Proteomics (2005-10) https://doi.org/cm99cj

DOI: https://doi.org/10.1074/mcp.r500012-mcp200

65. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics

Enrique Audain, Julian Uszkoreit, Timo Sachsenberg, Julianus Pfeuffer, Xiao Liang, Henning Hermjakob, Aniel Sanchez, Martin Eisenacher, Knut Reinert, David L Tabb, ... Yasset Perez-Riverol

Journal of Proteomics (2017-01) https://doi.org/f9r8r6

DOI: 10.1016/j.jprot.2016.08.002 · PMID: 27498275

66. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification

Jürgen Cox, Matthias Mann

Nature Biotechnology (2008-11-30) https://doi.org/crn24x

DOI: 10.1038/nbt.1511 · PMID: 19029910

67. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics

Andy T Kong, Felipe V Leprevost, Dmitry M Avtonomov, Dattatreya Mellacheruvu, Alexey I Nesvizhskii

Nature Methods (2017-04-10) https://doi.org/f9z6p7

DOI: 10.1038/nmeth.4256 · PMID: 28394336 · PMCID: PMC5409104

68. Probability-based protein identification by searching sequence databases using mass spectrometry data.

DN Perkins, DJ Pappin, DM Creasy, JS Cottrell

Electrophoresis (1999-12) https://www.ncbi.nlm.nih.gov/pubmed/10612281

DOI: 10.1002/(sici)1522-2683(19991201)20:18<3551::aid-elps3551>3.0.co;2-2 · PMID: 10612281

69. MS-GF+ makes progress towards a universal database search tool for proteomics

Sangtae Kim, Pavel A Pevzner

Nature Communications (2014-10-31) https://doi.org/ggkdq8

DOI: <u>10.1038/ncomms6277</u> · PMID: <u>25358478</u> · PMCID: <u>PMC5036525</u>

70. A method for reducing the time required to match protein sequences with tandem mass spectra

Robertson Craig, Ronald C Beavis

Rapid Communications in Mass Spectrometry (2003) https://doi.org/b7bgb9

DOI: <u>10.1002/rcm.1198</u> · PMID: <u>14558131</u>

71. TANDEM: matching proteins with tandem mass spectra

R Craig, RC Beavis

Bioinformatics (2004-02-19) https://doi.org/cthw6n

DOI: <u>10.1093/bioinformatics/bth092</u> · PMID: <u>14976030</u>

72. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments

Brendan MacLean, Daniela M Tomazela, Nicholas Shulman, Matthew Chambers, Gregory L Finney, Barbara Frewen, Randall Kern, David L Tabb, Daniel C Liebler, Michael J MacCoss *Bioinformatics* (2010-02-09) https://doi.org/bqx9rg

DOI: <u>10.1093/bioinformatics/btg054</u> · PMID: <u>20147306</u> · PMCID: <u>PMC2844992</u>

73. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput

Vadim Demichev, Christoph B Messner, Spyros I Vernardis, Kathryn S Lilley, Markus Ralser *Nature Methods* (2019-11-25) https://doi.org/gj9xgj

DOI: <u>10.1038/s41592-019-0638-x</u> · PMID: <u>31768060</u> · PMCID: <u>PMC6949130</u>

74. Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry

Ngoc Hieu Tran, Rui Qiao, Lei Xin, Xin Chen, Chuyi Liu, Xianglilan Zhang, Baozhen Shan, Ali Ghodsi, Ming Li

Nature Methods (2018-12-20) https://doi.org/gftvmn

DOI: <u>10.1038/s41592-018-0260-3</u> · PMID: <u>30573815</u>

75. Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues

Roland Bruderer, Oliver M Bernhardt, Tejas Gandhi, Saša M Miladinović, Lin-Yang Cheng, Simon Messner, Tobias Ehrenberger, Vito Zanotelli, Yulia Butscheid, Claudia Escher, ... Lukas Reiter *Molecular & Cellular Proteomics* (2015-05) https://doi.org/f7b76h

DOI: 10.1074/mcp.m114.044305 · PMID: 25724911 · PMCID: PMC4424408

76. mzML—a Community Standard for Mass Spectrometry Data

Lennart Martens, Matthew Chambers, Marc Sturm, Darren Kessner, Fredrik Levander, Jim Shofstahl, Wilfred H Tang, Andreas Römpp, Steffen Neumann, Angel D Pizarro, ... Eric W Deutsch

Molecular & Cellular Proteomics (2011-01) https://doi.org/dxkg99

DOI: <u>10.1074/mcp.r110.000133</u> · PMID: <u>20716697</u> · PMCID: <u>PMC3013463</u>

77. Mass spectrometer output file format mzML.

Eric W Deutsch

Methods in molecular biology (Clifton, N.J.) (2010)

https://www.ncbi.nlm.nih.gov/pubmed/20013381

DOI: 10.1007/978-1-60761-444-9 22 · PMID: 20013381 · PMCID: PMC3073315

78. File Formats Commonly Used in Mass Spectrometry Proteomics

Eric W Deutsch

Molecular & Cellular Proteomics (2012-12) https://doi.org/ggkdvv

DOI: 10.1074/mcp.r112.019695 · PMID: 22956731 · PMCID: PMC3518119

79. Anatomy and evolution of database search engines—a central component of mass spectrometry based proteomic workflows

Kenneth Verheggen, Helge Ræder, Frode S Berven, Lennart Martens, Harald Barsnes, Marc Vaudel

Mass Spectrometry Reviews (2020-05) https://doi.org/gbwkmf

DOI: <u>10.1002/mas.21543</u> · PMID: <u>28902424</u>

80. Assigning Significance to Peptides Identified by Tandem Mass Spectrometry Using Decoy Databases

Lukas Käll, John D Storey, Michael J MacCoss, William Stafford Noble

Journal of Proteome Research (2008-01) https://doi.org/fbxhxp

DOI: <u>10.1021/pr700600n</u> · PMID: <u>18067246</u>

81. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry

Joshua E Elias, Steven P Gygi

Nature Methods (2007-02-27) https://doi.org/djz7fz

DOI: 10.1038/nmeth1019 · PMID: 17327847

82. False Discovery Rate Estimation in Proteomics

Suruchi Aggarwal, Amit Kumar Yadav

Methods in Molecular Biology (2016) https://doi.org/f79mzp

DOI: <u>10.1007/978-1-4939-3106-4</u> 7 · PMID: <u>26519173</u>