

2. Transactions Correctness

Gerhard Weikum Gottfried Vossen

© 2002 Morgan Kaufmann ISBN 1-55860-508-8

Basic Notion of Transactions Histories and Schedules Notions of Correctness Serializability Classes

Preconsiderations Correctness (1)

Canonical Synchronization Problems

1. Dirty-Read

Canonical Synchronization Problems

2. Lost Update

Preconsiderations Correctness (3)

Canonical Synchronization Problems

3. Non-repeatable (inconsistent) Read

Read Transaction	Update Transaction	(PNR, Salary)
SELECT Gehalt INTO :gehalt FROM Pers WHERE Pnr = 2345;		2345 39.000 3456 48.000
summe := summe + gehalt;	UPDATE Pers SET Gehalt = Gehalt + 1000 WHERE Pnr = 2345;	2345 40.000
	UPDATE Pers SET Gehalt = Gehalt + 2000 WHERE Pnr = 3456;	3456 50.000
SELECT Gehalt INTO :gehalt FROM Pers WHERE Pnr = 3456;		
summe := summe + gehalt;		▼ Zeit

Preconsiderations Correctness (4)

Canonical Synchronization Problems

4. Phantom-Problem

Read Transaction	Update Transaction
SELECT SUM (Gehalt) INTO :summe FROM Pers WHERE Anr = 17;	
	INSERT INTO Pers (Pnr, Anr, Gehalt) VALUES (4567, 17, 55.000);
	UPDATE Abt SET Gehaltssumme = Gehaltssumme + 55.000 WHERE Anr = 17;
SELECT Gehaltssumme INTO :gsumme FROM Abt WHERE Anr = 17;	
IF gsumme <> summe THEN	7 Zeit

U+

Preconsiderations Correctness (5)

Notion of Correctness: Serializability

The concurrent execution of a set of transactions is considered to be correct, if there is a serial execution of the same set of transactions, leading

to the same resulting DB state
as well as the same output values

as the original execution.

- · Background:
 - Serial processing is correct
 - Each schedule having the same effect as an (arbitrary) serial one is considered to be correct

Schedule Classes (2)

- Requirements for an acceptable class of schedules
 - At least lost update and inconsistent read are avoided
 - Decision (of membership) can be taken efficiently
 - In presence of failures (Aborts) also dirty read is avoided
- Focus: Conflict Serializability (CSR)
 - · Most important for practical application

Page Model (1)

Modeling

- Page Model (Foundation)
 - Abstract model, not necessarily restricted to the notion of database pages
 - However, page-oriented Synchronization and Recovery (in the DBS storage system) are the major application areas of the page model

Basics

- Set of atomic, uninterpreted data objects (pages)
 - D = $\{x, y, z, ...\}$
 - with atomic read and write operations

UΗ

Page Model (2)

Basics (contd.)

- A Transaction t is a finite sequence of steps/actions of the form r(x) or w(x):
 - $t=p_1 \dots p_{n_i}$ with $n<\infty$, $p_i\in\{r(x),\,w(x)\}$ for $1\leq i\leq n,\,x\in D$;
 - r stands for read, w for write
- Different transactions do not have steps in common; steps can be identified uniquely:
 - p_{ij} describes the jth step of Transaction i (Transaction index can be omitted, if context clear)

Page Model (3)

- Interpretation of a Transaction (Semantics)
 - $p_i = r(x)$
 - the j^{th} step of the transaction is a read operation assigning the current value of x to the local variable ν_i
 - $-v_i := x$
 - $p_j = w(x)$
 - the j^{th} of the transaction is a write operation assigning a computed value to \boldsymbol{x}
 - each value written by a transaction potentially depends on all data objects previously read by this transaction
 - $x := f_i (v_{j1}, ..., v_{jk})$
 - x is the return value of a arbitrary, unknown function f_j with $\{j_1,\ ...\ j_k\}$ = $\{j_r\mid p_{jr}\ \text{is a read operation}\ \land\ j_r< j\}$

U+

Page Model (4)

- So far assumption of total ordering of transaction steps
 - · Not necessary, as far as ACID is ensured
 - Not reasonable, e.g., in case of parallelized transactions on multi processor system
- Definition Partial Order
 A arbitrary set. R ⊆ A × A is Partial Order on A, if for elements a, b, c ∈ A holds:
 - $(a, a) \in R$ (Reflexivity)
 - $(a, b) \in R \land (b, a) \in R \Rightarrow a = b$ (Anti-Symmetry)
 - $(a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R$ (Transitivity)

Note: each R can be represented as directed graph.

Page Model (5)

Definition Transaction

- A *Transaction t* is a partial order of steps of the form r(x) or w(x)with $x \in D$ and read and write operations as well as multiple write operations on the same object are ordered.
- Formal: t = (op, <)
 - op is finite set of steps r(x) or w(x), $x \in D$
 - $< \subseteq op \times op$ is partial order over op with:

if $\{p, q\} \subseteq op$ and p and q access the same data object and at least one of the two is a write operation then:

 $p < q \lor q < p$.

Page Model (6)

Ordering ensures unambiguous interpretation

- for example, in case of unordered read and write operations on the same object
 - the read value would be ambiguous
 - it could be the value before or after the write operation

Further assumptions

- in each TA each data object is only read or written once
- no data object will be read again, after it has been written (does not exclude blind writes)

Histories and Schedules (1)

Goal

- Correctness notion for parallel TA executions
- The scheduler, which is the core component of concurrency control needs correctness criteria that can be applied efficiently

(additional) Termination Operations

- c_i: successful completion of TA t_i, Commit
- a_i: non-successful completion of TA t_i, Abort

Histories and Schedules (2)

Definition Histories and Schedules

- Let $T = \{t_1, ..., t_n\}$ be a (finite) set of TA, each $t_i \in T$ be of the form $t_i = \{op_i, <_i\}$, op_i is the set of operations of t_i and $<_i$ the corresponding ordering $(1 \le i \le n)$.
- A History for T is a pair $s = (op(s), <_s)$, with: a) $op(s) \subseteq \bigcup_{i=1}^{n} op_i \cup \bigcup_{i=1}^{n} \{a_i, c_i\}$ and $\bigcup_{i=1}^{n} op_i \subseteq op(s)$
 - b) $(\forall i, 1 \le i \le n) c_i \in op(s) \Leftrightarrow a_i \notin op(s)$
 - c) $\bigcup_{i=1}^{n} <_i \subseteq <_s$
 - d) (\forall i, $1 \leq i \leq n$) (\forall p \in op_{i}) p <_s a_{i} or p <_s c_{i}
 - e) Each pair of operations p, q \in op(s) of different TAs, which access the same data object and at least one of which is a write operation is ordered, so that $p <_s q$ or $q <_s p$.
- A Schedule is a prefix of a History

Histories and Schedules (3)

Explanations:

- A History (for partial ordered TA)
 - a) Contains all operations of all TA
 - b) Requires a singe termination operation for each TA
 - c) Retains orderings within TA
 - d) Contains the termination operation of each TA as the last operation of this TA
 - e) Orders conflicting operations
- Because of (a) and (b) a History is also called a complete Schedule.

UΗ

Histories and Schedules (4)

Comment

- A prefix of a history can be the history itself
- Histories can be considered to be special cases of Schedules. Thus, it is (mostly) sufficient, to deal with schedules.

Definition Serial History

 A History s is serial, if for two TA t_i und t_j (i ≠ j) all operations of t_i occur in s before all operations of t_j or vice versa.

Histories and Schedules (5)

Example

• 3 TA as DAG (directed acyclic graph)

• Example of a completely ordered history of these 3 TA

$$r_1(x)$$
 $r_2(x)$ $r_1(z)$ $w_1(x)$ $w_2(y)$ $r_3(z)$ $w_3(y)$ c_1 c_2 $w_3(z)$ c_3

UH

Histories and Schedules (6)

Example (contd.)

Example of a partially ordered history of these 3 TA

 $r_1(x) \quad r_2(x) \quad r_1(z) \quad w_1(x) \quad w_2(y) \quad r_3(z) \quad w_3(y) \quad c_1 \quad c_2 \quad w_3(z) \quad c_3$

 Partial orderings can always be extended to a variety of complete orderings (as special cases)

Histories and Schedules (7)

Prefix of a partial ordering

- Omitting parts at the end of the "accessibility chain"
- If $s = (op(s), <_s)$, then a *Prefix* of s has the form $s' = (op_{s'}, <_{s'})$, with:
 - $op_{s'} \subseteq op(s)$
 - <_{s′} ⊆ <_s
 - $(\forall p \in op_{s'}) (\forall q \in op(s)) q <_s p \Rightarrow q \in op_{s'}$
 - $(\forall p, q \in op_{s'}) p <_s q \Rightarrow p <_{s'} q$

Histories and Schedules (8)

Shuffle Product

- Be $T = \{t_1, ..., t_n\}$ a set of completely ordered TA
- shuffle(T) denotes the *Shuffle Product*, i.e., the set of all operation sequences, in which the sequence $\boldsymbol{t}_i \in \boldsymbol{T}$ occurs as partial sequence and contains no other operations

Completely ordered Histories and Schedules

- a History s for T is derived from sequence $s' \in \text{shuffle}(T)$, whereat c_i or a_i for each $t_i \in T$ is added (Rules b) and d) in definition on slide 16).
- As before, a Schedule a is a prefix of a history.
- A history s is serial, if $s = t_{i_1}, ..., t_{i_n}$ with $i_1, ..., i_n$ permutation of 1, ..., n

Histories and Schedules (9)

Example (continuing slide 19)

Completely ordered TA:

$$t_1 = r_1(x) r_1(z) w_1(x)$$

 $t_2 = r_2(x) w_2(y)$
 $t_3 = r_3(z) w_3(y) w_3(z)$

The History

$$\begin{split} & r_1(x) \; r_2(x) \; r_1(z) \; w_1(x) \; w_2(y) \; r_3(z) \; w_3(y) \; c_1 \; c_2 \; w_3(z) \; c_3 \\ & \text{is completely ordered and has (among others)} \\ & r_1(x) \; r_2(x) \; r_1(z) \; w_1(x) \; w_2(y) \; r_3(z) \; w_3(y), \\ & r_1(x) \; r_2(x) \; r_1(z) \; w_1(x) \; w_2(y), \; \text{and} \\ & r_1(x) \; r_2(x) \; r_1(z) \end{split}$$

as Prefixes

Histories and Schedules (10)

(New) Example

 $T = \{t_1, t_2, t_3\}$ with

$$\begin{array}{l} t_1 = r_1(x) \ w_1(x) \ r_1(y) \ w_1(y) \\ t_2 = r_2(z) \ w_2(x) \ w_2(z) \\ t_3 = r_3(x) \ r_3(y) \ w_3(z) \end{array}$$

$$s_1 = r_1(x) r_2(z) r_3(x) w_2(x) w_1(x) r_3(y) r_1(y) w_1(y) w_2(z) w_3(z)$$

 $\in \text{shuffle}(T);$

 $s_2 = s_1 c_1 c_2 a_3$ is a History, in which $s_1 (\in \text{shuffle}(T))$ has been amended by termination steps;

$$s_3 = r_1(x) r_2(z) r_3(x)$$
 is a Schedule;

 $s_4 = s_1 c_1$ is another Schedule;

 $s_5 = t_1 c_1 t_3 a_3 t_2 c_2$ is a serial History.

Histories and Schedules (11)

Remark

- The statements given here hold for complete as well as partial orderings.
- Mostly it is easier to show them for complete orderings.

TA-Sets of Schedules

- trans(s) := {t_i | s contains steps of t_i}
- commit(s) := {t_i ∈ trans(s) | c_i ∈ s}
- $abort(s) := \{t_i \in trans(s) \mid a_i \in s\}$
- active(s):= trans(s) (commit(s) ∪ abort(s))

Histories and Schedules (12)

Example (continuing slide 24)

- $s_1 = r_1(x) r_2(z) r_3(x) w_2(x) w_1(x) r_3(y) r_1(y) w_1(y) w_2(z) w_3(z) c_1 c_2 a_3$
 - $trans(s_1) =$ $\{t_1, t_2, t_3\}$ $commit(s_1) =$ $\{t_1, t_2\}$ $abort(s_1) =$ $\{t_3\}$ $active(s_1) =$ Ø
- $s_2 = r_1(x) r_2(z) r_3(x) w_2(x) w_1(x) r_3(y) w_1(y) w_2(z) w_3(z) c_1$ $trans(s_2) =$ $\{t_1, t_2, t_3\}$

commit(
$$s_2$$
) = $\{t_1\}$
abort(s_2) = \emptyset

 $active(s_2) =$ $\{t_2, t_3\}$

Histories and Schedules (13)

- For each History s the following is true:
 - $trans(s) = commit(s) \cup abort(s)$
 - $active(s) = \emptyset$

Histories and Schedules (14)

- **Definition** *Monotonic Classes of Histories*
 - A class E of Histories is monotonic, if the following holds:
 - If s in E, then $\Pi_T(s)$, the Projection of s on T, is in E for each $T \subseteq trans(s)$
 - In other words: E is closed under arbitrary projections
- **Monotonicity**
 - Monotonicity is a wanted property of a history class, since it preserves E under arbitrary projections
 - VSR is not monotonic

Correctness (1)

- A correctness criterion can formally be considered to be a mapping
 - $\sigma: S \to \{0, 1\}$ with S set of all Schedules.
 - $correct(S) := \{ s \in S \mid \sigma(s)=1 \}$
- A concrete correctness criterion at least must fulfill the following requirements
 - 1. correct(S) $\neq \emptyset$
 - 2. "s ∈ correct(S)" can be decided efficiently
 - correct(S) is "sufficiently large",
 - so that the scheduler has many possibilities to derive correct schedules
 - the bigger the set of allowed (correct) schedules, the higher concurrency and efficiency

Correctness (2)

- **Basic Idea of Serializability**
 - Single TA is correct, since it leaves the database in consistent state
 - Consequence: serial histories are correct!
 - However, serial histories should ,only' be used as correctness measures via appropriate equivalence relations
- **Approach**
 - 1. Definition of an equivalence relation ,≈' on S (set of all schedules) with
 - $[S]_{\approx} = \{[s]_{\approx} \mid s \in S\}$ set of equivalence classes
 - 2. Consideration of those classes having serial schedules as representatives

CSR (1)

Conflict Serializability

Most important serializability class w.r.t. pratical use

Goal

- Further reduction in comparison to VSR (VSR is not monotonic und membership test is NP-hard)
- Concept that is easy to test and, thus, is feasible for being applied in schedulers

Definitions Conflict and Conflict Relation

- s Schedule; $t, t' \in trans(s), t \neq t'$:
 - Two operations $p \in t$ und $q \in t'$ are in *Conflict* in s, if they access the same data object and at least one of them is a write operation
 - $conf(s) := \{(p, q) \mid p, q \text{ are in } Conflict \text{ in } s \text{ und } p <_s q\} \text{ is called}$ Conflict Relation of s

CSR (2)

Remark

Conflicts only occur between data operations, independently from the termination state of a TA; operations of aborted TAs can be ignored

Example

- $s = w_1(x) r_2(x) w_2(y) r_1(y) w_1(y) w_3(x) w_3(y) c_1 a_2$
- conf(s) = { $(w_1(x), w_3(x)), (r_1(y), w_3(y)), (w_1(y), w_3(y))$ }

Definition Conflict Equivalence

- Schedules s and s' are conflict equivalent, denoted as $s \approx_c s'$, if
 - op(s) = op(s')
 - conf(s) = conf(s')

CSR (3)

- Example ($s \approx_c s'$)
 - $s = r_1(x) r_1(y) w_2(x) w_1(y) r_2(z) w_1(x) w_2(y)$
 - $s' = r_1(y) r_1(x) w_1(y) w_2(x) w_1(x) r_2(z) w_2(y)$
- Conflicting-Step-Graph D₂(s)
 - Conflict equivalence can be illustrated as graph $D_2(s) := (V, E)$ with V = op(s) and E = conf(s)
 - D₂(s) is called Conflicting-Step-Graph
 - $s \approx_c s' \Leftrightarrow D_2(s) = D_2(s')$
- **Definition Conflict Serializability**
 - A History s is conflict serializable, if there is a serial History s' with s ≈_c s'
 - CSR denotes the class of all conflict serializable Histories

CSR (4)

- Examples
 - $s_1 = r_1(x) r_2(x) r_1(z) w_1(x) w_2(y) r_3(z) w_3(y) c_1 c_2 w_3(z) c_3$ $\textbf{S}_1 \in CSR$
 - $s_2 = r_2(x) w_2(x) r_1(x) r_1(y) r_2(y) w_2(y) c_1 c_2$ $s_2 \notin CSR$

CSR (5)

Lost Update

- L = $r_1(x) r_2(x) w_1(x) w_2(x) c_1 c_2$
- conf(L) = { $(r_1(x), w_2(x)), (r_2(x), w_1(x)), (w_1(x), w_2(x))$ }
- $L \approx_c t_1 t_2$ and $L \approx_c t_2 t_1$

Inconsistent Read

- $I = r_2(x) w_2(x) r_1(x) r_1(y) r_2(y) w_2(y) c_1 c_2$
- conf(I) = { $(w_2(x), r_1(x)), (r_1(y), w_2(y))$ }
- $I \not\approx_c t_1 t_2$ and $I \not\approx_c t_2 t_1$
- $CSR \subset VSR \subset FSR$

UH

CSR (6)

Example

- $s = w_1(x) w_2(x) w_2(y) c_2 w_1(y) c_1 w_3(x) w_3(y) c_3$
- s ≉_c t₁ t₂ t₃ and s ∉ CSR, but
 s ≈_v t₁ t₂ t₃ and thus s ∈ VSR

Theorem

- CSR is monotonic
- $s \in CSR \Leftrightarrow \Pi_T(s) \in VSR$ for all $T \subseteq trans(s)$ (i.e., CSR is the largest monotonic subset of VSR)

UH

CSR (7)

Definition Conflict Graph (Serialization Graph)

- Let s be a Schedule. The Conflict Graph G(s) = (V, E) is a directed graph with
 - V = commit(s)
 - $\quad \text{$(t,\,t') \in E \Leftrightarrow t \neq t' \land (\exists \; p \in t)$ ($\exists \; q \in t')$ (p,\,q) \in conf(s)$}$

Remark

• The Conflict Graph abstracts from individual conflicts between pairs of TA (conf(s)) and represents multiple conflicts between the same (terminated) TA by a single edge.

CSR (8)

Example

- $s = r_1(x) r_2(x) w_1(x) r_3(x) w_3(x) w_2(y) c_3 c_2 w_1(y) c_1$
- G(s) =

Serialization Theorem

• Let s be a History; then s ∈ CSR if and only if G(s) acyclic

Problem

Find a serial History, which is consistent to all edges in G(s)

CSR (9)

Example

• $s = r_1(y) r_2(y) w_1(y) w_1(x) w_2(x) w_2(z) w_3(x) c_1 c_3 c_2$

$$\mathsf{G}(\mathsf{s}) = \mathsf{t}_1 \mathsf{t}_2 \\ \mathsf{t}_2 \\ \mathsf{s} \not\in \mathsf{CSR}$$

• $s' = r_1(x) r_2(x) w_2(y) w_1(x) c_2 c_1$ $G(s') = t_1 \leftarrow t_2$ $s' \in CSR$

UΗ

CSR (10)

Corollary

• Membership in CSR can be tested in polynomial time w.r.t to the set of TA contributing the considered schedule

Blind Write

- A blind Write (of a data object x) is given, if a TA performs a Write(x) without preceding Read(x)
- If blind writes are prohibited, the TA definition is intensified as follows:
 - If $w_i(x) \in T_i$, then $r_i(x) \in T_i$ and $r_i(x) < w_i(x)$
- Then it is true: a history is view-serializable (element of VSR) if and only if it is conflict-serializable (element of CSR)!

CSR (11)

Conflicts and Commutativity

- So far Conflict Serializability has been shown by use of the Conflict Graph
- · (New) Goal
 - S is supposed to be stepwise transformed by the help of commutativity rules
 - After the transformation s is equivalent to a serial History

CSR (12)

Commutativity Rules

- ~ means that ordered pairs of actions can be replaced by each other
 - C1: $r_i(x) r_i(y) \sim r_i(y) r_i(x)$ if $i \neq j$
 - C2: $r_i(x) w_i(y) \sim w_i(y) r_i(x)$ if $i \neq j$, $x \neq y$
 - C3: $w_i(x)$ $w_i(y)$ ~ $w_i(y)$ $w_i(x)$ if $i \neq j$, $x \neq y$
- Ordering rule for partially ordered schedules
 - C4: $o_i(x)$, $p_i(y)$ unordered $\Rightarrow o_i(x)$ $p_i(y)$ if $x \neq y \lor (o = r \land p = r)$
 - says that unordered operations can be ordered arbitrarily if they are not in conflict

CSR (13)

Example

$$s = w_1(x) \underbrace{r_2(x) w_1(y)}_{1} \underbrace{w_1(z) r_3(z) w_2(y)}_{2} \underbrace{w_3(y) w_3(z)}_{3} \underbrace{w_3(y) w_3(z)}_{3}$$

$$\rightarrow (C2) w_1(x) w_1(y) \underbrace{r_2(x) w_1(z)}_{2} \underbrace{w_2(y) r_3(z)}_{3} \underbrace{w_3(y) w_3(z)}_{3}$$

$$\rightarrow (C2) w_1(x) w_1(y) w_1(z) r_2(x) \underbrace{w_2(y) r_3(z)}_{3} \underbrace{w_3(y) w_3(z)}_{3}$$

$$= t_1 t_2 t_3$$

Definition Commutativity-based Equivalence

Two Schedules s and s' with op(s) = op(s') are commutativity-based equivalent, denoted as s ~* s', if s can be transformed to s' by a finite sequence of steps following the rules C1, C2, C3 und C4.

UΗ

CSR (14)

Theorem

- Let s und s' be Schedules with op(s) = op(s')
- Then: s ≈_c s' if and only if s ~* s'

Definition Commutativity-based Reducibility

• History s is commutativity-based reducible, if there is a serial History s' with s \sim * s'

Corollary

• A History s is commutativity-based reducible if and only if $s \in CSR$

CSR (15)

Generalization of the Conflict Notion

- Scheduler does not have to 'know' the operations in detail, but only which of them are in conflict
- - $s=p_1\ q_1\ p_2\ o_1\ p_3\ q_2\ o_2\ o_3\ p_4\ o_4\ q_3\ with\ the\ conflicts\ (q_1,\ p_2),\ (p_2,\ o_1),$ (q_1, o_2) und (o_4, q_3)
- Applicable for 'semantic' concurrency control
 - Specification of a Commutativity- or Conflict Table for ,new' (possibly application-specific) Operations and
 - Derivation of Conflict Serializability from this Table
- Examples for operations
 - increment/decrement
 - enqueue/dequeue

OCSR (1)

Restrictions

- Histories/Schedules of VSR and FSR cannot be used in practice!
- Further restrictions of CSR, on the other hand, are beneficial for certain practical applications!

Example

- $s = w_1(x) r_2(x) c_2 w_3(y) c_3 w_1(y) c_1$
- G(s) =

$$t_3 \longrightarrow t_1 \longrightarrow t_2$$

- Contrast between serialization and actual processing order possibly unwanted
- Can be avoided by order preservation!

OCSR (2)

Definition Order Preserving Conflict Serializability

- A History s is called order preserving conflict serializable, if
 - s conflict serializable, i.e., there is s', with op(s) = op(s') and $s \approx_c s'$, and
 - additionally the following holds for all t_i , $t_i \in trans(s)$: If t_i completely before t_i in s, then the same holds for s'

Theorem

Let OCSR be the class of all order preserving conflict serializable histories: OCSR ⊂ CSR

Idea of prove

- From Definition: OCSR \subseteq CSR
- s (previous) shows that inclusion is strict: $s \in CSR OCSR$

COCSR (1)

Further Restriction of CSR

- beneficial for distributed und possibly heterogeneous applications
- Observation: for conflict serializability it is sufficient that transactions which are in conflict, perform there commits in conflict order

Definition *Preservation of Commit Order*

- A History s is called *commit order-preserving conflict serializable*, if the following holds:
 - For all t_i , $t_i \in commit(s)$, $i \neq j$: If $(p, q) \in conf(s)$ for $p \in t_i$, $q \in t_i$, then $c_i < c_i$ in s
- Order of conflicting operations determines the order of the corresponding commit operations

COCSR (2)

Theorem

- Let COCSR be the class of all commit order-preserving conflict serializable histories; then
 - $COCSR \subset CSR$

Sketch of proof

- $s = r_1(x) w_2(x) c_2 c_1$
- s ∈ CSR COCSR (Inclusion is strict)

Theorem

- Let s be a History: s ∈ COCSR if and only if:
 - $s \in CSR$ and
- there is a serial History s' so that s' \approx_c s and for all t_i , $t_j \in$ trans(s), $t_i <_{s'} t_j \Rightarrow c_{t_i} <_s c_{t_i}$
- Theorem: COCSR ⊂ OCSR

UH

Commit Serializability (1)

Assumption so far,

· Every transaction terminates.

Requirements w.r.t to possible failure cases

- A correctness notion should only take successfully completed TA into account
- 2. For each correct schedule all its prefixes should be correct, too

Definition Closure Properties

- Let E be Class of Schedules
 - 1. E is *prefix-closed*, if for every Schedule s in E all the prefixes of s are in E, too
 - 2. E is *commit-closed*, if for every Schedule s in E, CP(s) also in E, with CP(s) = $\Pi_{\text{commit(s)}}$ (s)

Commit Serializability (2)

Prefix-Commit-Closed

- Both, previously mentioned closure properties
- If Class E prefix-commit-closed, then for each Schedule s in E it is true that CP(s') in E for each prefix s' of s

FSR is not prefix-commit-closed

- $s = w_1(x) w_2(x) w_2(y) c_2 w_1(y) c_1 w_3(x) w_3(y) c_3$
- $s \approx_v t_1 t_2 t_3$ that means $s \in VSR$, that means $s \in FSR$
- $s' = w_1(x) w_2(x) w_2(y) c_2 w_1(y) c_1$ is Prefix of s
- CP(s') = s'
- s' ≉_f t₁ t₂ and s' ≉_f t₂ t₁, that means s' ∉ FSR
- VSR is not prefix-commit-closed, since VSR not monotonic

UΉ

£1

Commit Serializability (3)

Theorem

- CSR is prefix-commit-closed
- Proof
 - $s \in CSR$, then G(s) acyclic
 - For each partial sequence s' of s, G(s') is acyclic, too
 - Especially G(CP(s')) is acyclic
 - Thus: $CP(s') \in CSR$

Definition Commit-Serializability

 A Schedule s is called commit-serializable, if for every Prefix s' CP(s') serializable.

Classes of commit-serializable Schedules

- CMFSR
- CMVSR
- CMCSR

Commit Serializability (4)

Theorem

- 1. CMFSR, CMVSR, CMCSR are commit-closed
- 2. $CMCSR \subset CMVSR \subset CMFSR$
- 3. $CMFSR \subset FSR$
- 4. $CMVSR \subset VSR$
- 5. CMCSR = CSR

Overview (1)

Historien

- $s_1 = w_1(x) w_2(x) w_2(y) c_2 w_1(y) c_1$
- $s_2 = w_1(x) r_2(x) w_2(y) c_2 r_1(y) w_1(y) c_1 w_3(x) w_3(y) c_3$
- $s_3 = w_1(x) r_2(x) w_2(y) w_1(y) c_1 c_2$
- $s_4 = w_1(x) w_2(x) w_2(y) c_2 w_1(y) c_1 w_3(x) w_3(y) c_3$
- $s_5 = w_1(x) r_2(x) w_2(y) w_1(y) c_1 c_2 w_3(x) w_3(y) c_3$
- $s_6 = w_1(x) w_2(x) w_2(y) c_2 w_1(y) w_3(x) w_3(y) c_3 w_1(z) c_1$
- $s_7 = w_1(x) w_2(x) w_2(y) c_2 w_1(z) c_1$
- $s_8 = w_3(y) c_3 w_1(x) r_2(x) c_2 w_1(y) c_1$
- $s_9 = w_3(y) c_3 w_1(x) r_2(x) w_1(y) c_1 c_2$
- $s_{10} = w_1(x) w_1(y) c_1 w_2(x) w_2(y) c_2$

Overview (2) Full S1 FSR S2 VSR S4 CMVSR Full S6 CSR S7 COCSR S8 Seriell S10 Ritter, DIS, Chapter 2

Conclusion (1)

- Basic Correctness Notion:
 - (Conflict-) Serializability
- Theory of Serializablility
 - Simple Read/Write-Model
 - Conflict Operations: order-depending operations of different transactions on the same data objects
 - Conflikt-Serializability
 - relevant for practical applications (in contrast to Final-State- and View-Serializability)
 - can be checked efficiently
 - $CSR \subset VSR \subset FSR$
 - Serialization Theorem: A History s is conflict serializable if and only if the corresponding G(s) is acyclic

Conclusion (2)

Theory of Serializablility (contd.)

- CSR, albeit less general than VSR, is best suited
 - for complexity reasons
 - because of its monotonicity
 - because of its generalizabilty to semantically richer operations
- OCSR and COCSR have further beneficial properties
- Commit-Serializability also takes possible failures into account

Serializable Processes

- Ensure correctness of multi user processing automatically
- Number of possible schedules determines maximal degree of concurrency (parallelism)

