	Discrete: pmf $p(\cdot)$	Continuous: pdf $f(\cdot)$
Support Set	Countable set of values	Uncountable set of values
Probabilities	p(x) = P(X = x)	$f(x) \neq P(X = x) = 0$ for all x $P(a \le X \le b) = \int_a^b f(x)dx = F(b) - F(a)$
Joint	$p_{XY}(x,y) = \mathbb{P}(X=x,Y=y)$	$\mathbb{P}(X \in [a,b], Y \in [c,d]) = \int_a^b \int_c^d f_{XY}(x,y) dx dy$
Marginal	$p_X(x) = \sum_y p_{XY}(x, y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$
Conditional	$p_{X Y}(x y) = p_{XY}(x,y)/p_Y(y)$	$f_{X Y}(x y) = f_{XY}(x,y)/f_Y(y)$
Independence	$p_{XY}(x,y) = p_X(x)p_Y(y)$	$f_{XY}(x,y) = f_X(x)f_Y(y)$
Expected Value	$\mu_X = \mathbb{E}[X] = \sum_x x p(x)$	$\mu_X = \mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) \ dx$
	$\mathbb{E}[g(X)] = \sum_{x} g(x)p(x)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) \ dx$
	$\mathbb{E}[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p(x,y)$	$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) \ dx \ dy$

Table 1: Differences between Discrete and Continous Random Variables

Probability Mass Function $p(x)$	Probability Density Function $f(x)$
Discrete Random Variables	Continuous Random Variables
p(x) = P(X = x)	$f(x) \neq P(X = x) = 0$
$p(x) \ge 0$	$f(x) \neq P(X = x) = 0$ $f(x) \ge 0$
$p(x) \le 1$	f(x) can be greater than one!
$\sum_{x} p(x) = 1$	$\int_{-\infty}^{\infty} f(x) \ dx = 1$
$F(x_0) = \sum_{x \le x_0} p(x)$	$F(x_0) = \int_{-\infty}^{x_0} f(t) dt$

Table 2: Probability mass function (pmf) versus probability density function.

Definition of R.V.	$X: S \to \mathbb{R}$ (RV is a fixed function from sample space to reals)
Support Set	Collection of all possible realizations of a RV
CDF	$F(x_0) = P(X \le x_0)$
Expectation of a Function	In general, $\mathbb{E}[g(X)] \neq g\left(\mathbb{E}[X]\right)$
Linearity of Expectation	$\mathbb{E}[a+X] = a + \mathbb{E}[X], \mathbb{E}[bX] = b\mathbb{E}[X], \mathbb{E}[X_1 + \ldots + X_k] = \mathbb{E}[X_1] + \ldots \mathbb{E}[X_k]$
Variance	$\sigma_X^2 \equiv \operatorname{Var}(X) \equiv \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \mathbb{E}\left[X(X - \mu_X) \right]$
Standard Deviation	$\sigma_X = \sqrt{\sigma_X^2}$
Var. of Linear Combination	$\operatorname{Var}(a+X) = \operatorname{Var}(X), \operatorname{Var}(bX) = b^2 \operatorname{Var}(X), \operatorname{Var}(aX+bY+c) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) + 2ab \operatorname{Cov}(X,Y)$
	X_1, \ldots, X_k are uncorrelated $\Rightarrow \operatorname{Var}(X_1 + \ldots + X_k) = \operatorname{Var}(X_1) + \ldots \operatorname{Var}(X_k)$
Covariance	$\sigma_{XY} \equiv \text{Cov}(X, Y) \equiv \mathbb{E}\left[(X - \mathbb{E}[X]) (Y - \mathbb{E}[Y]) \right] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = \mathbb{E}\left[X(Y - \mu_Y) \right] = \mathbb{E}\left[(X - \mu_X) Y \right]$
Correlation	$ ho_{XY} = \operatorname{Corr}(X,Y) = \sigma_{XY}/(\sigma_X\sigma_Y)$
Covariance and Independence	X, Y independent $\Rightarrow \operatorname{Cov}(X, Y) = 0$ but $\operatorname{Cov}(X, Y) = 0 \Rightarrow X, Y$ independent
Functions and Independence	X, Y independent $\Rightarrow g(X), h(Y)$ independent
Bilinearity of Covariance	Cov(a+X,Y) = Cov(X,a+Y) = Cov(X,Y), Cov(bX,Y) = Cov(X,bY) = bCov(X,Y)
	Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z) and Cov(X + Z, Y) = Cov(X, Y) + Cov(Z, Y)
Linearity of Conditional E	$\mathbb{E}[a+Y X] = a + \mathbb{E}[Y X], \mathbb{E}[bY X] = b\mathbb{E}[Y X], \mathbb{E}[X_1 + \dots + X_k Z] = \mathbb{E}[X_1 Z] + \dots + \mathbb{E}[X_k Z]$
Taking Out What is Known	$\mathbb{E}[g(X)Y X] = g(X)\mathbb{E}[Y X]$
Law of Iterated Expectations	$\mathbb{E}[Y] = \mathbb{E}\left[\mathbb{E}(Y X)\right]$
Conditional Variance	$Var(Y X) \equiv \mathbb{E}\{(Y - \mathbb{E}[Y X])^2\} = \mathbb{E}[Y^2 X] - (\mathbb{E}[Y X])^2$
Law of Total Variance	$[\operatorname{Var}(Y) = \mathbb{E}\left[\operatorname{Var}(Y X)\right] + \operatorname{Var}\left(\mathbb{E}[Y Z]\right)$

Table 3: Essential facts that hold for all random variables, continuous or discrete: X, Y, Z and X_1, \ldots, X_k are random variables; a, b, c, d are constants; μ, σ, ρ are parameters; and $g(\cdot), h(\cdot)$ are functions.

	Sample Statistic	Population Parameter	Population Parameter
Setup	n < N from a popn.	Population viewed as list of N objects	Population viewed as a RV
Mean	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\mu_X = \frac{1}{N} \sum_{i=1}^N x_i$	Discrete $\mu_X = \sum_{x} xp(x)$ Continuous $\mu_X = \int_{-\infty}^{\infty} x f(x) dx$
Variance	$s_X^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$	$\sigma_X^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_X)^2$	$\sigma_X^2 = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$
Std. Dev.		$\sigma_X = \sqrt{\sigma_x^2}$	$\sigma_X = \sqrt{\sigma_x^2}$
Covariance	$s_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$	$\sigma_{XY} = \frac{1}{N} \sum_{i} (x_i - \mu_X)(y_i - \mu_Y)$	$\sigma_{XY} = E\left[(X - \mu_X) \left(Y - \mu_Y \right) \right]$
Correlation		$ ho_{XY} = \sigma_{XY}/(\sigma_X \sigma_Y)$	$\rho_{XY} = \sigma_{XY} / (\sigma_X \sigma_Y)$