Miguel Estevez (2017-0200)

Resumen:

Uso de redes neuronales y múltiple regresión lineal para predecir el rendimiento de los bancos en Malasia.

Puntos Importantes:

- La data proviene de 13 bancos de Malasia entre los años 2001-2006 elegidos aleatoriamente de la base de datos BANKSCOPE.
- El rendimiento de un banco se puede representar con el retorno en activos (el que se usó en este paper), retorno en capital y el retorno en depósitos.
- En todos los estudios anteriores que comparan los métodos tradicionales estadísticos con la inteligencia artificial, esta última le gana a todos.
- Variables a utilizar para calcular el ROA(retorno en activos):
 - o LIQ = proporción de préstamo-activos como medida de la liquidez
 - LLOS = proporción de pérdida de provisión con préstamo como medida de riesgo de crédito
 - COSTINC = relación costo-ingreso
 - $SIZE_i$ = Tamaño del banco basado en su total de activos
 - o $CONC_i$ = proporción de concentración, calculado al coger los 3 más grandes bancos dividido por el total de activos
 - \circ CPI_i = Índice de precios al consumidor
 - \circ GDP_i = grosor de producto doméstico
 - ϵ_i = termino de error
- De los 96 data que fueron coleccionados (6 años X 13 bancos seleccionados), 86 se usaron para el training set y 10 para el testing set.
- La función de activación que se utilizó es la función sigmoid :

$$\phi(v) = \frac{1}{1 + e^{-v}}$$

Resultados de la regresion lineal multiple:

Al coger las 7 variables, tabla 2.

		N	10dei Summary	1		
Model	R	R Square	Adjusted R Square	Std. Error o Estimat		Durbin-Watso
1	0.670	0.449	0.442	0.86267	0.86267	
2	0.756	0.572	0.561	0.76496	5	0.991
		A	NOVA Results			
Model		Sum of Squares	df df	Mean Square	F	Sig.
1	Regression	50.891	1	50.891	68.383	.000
	Residual	62.513	84	0.744		
	Total	113.403	85			
2	Regression	64.835	2	32.417	55.399	.000
	Residual	48.569	83	0.585		
	Total	113.403	85			
			Coefficients			
	Unstandardized		dized	Standardized		
Model		Coefficients		Coefficients	T	Sig.
		B St	d. Error	Beta		
1	(Constant)	3.873	0.326		11.867	0.000
	COSTINC	-0.064	0.008	-0.670	-8.269	0.000
2	(Constant)	3.881	0.289		13.410	0.000
	COSTINC	-0.061	0.007	-0.637	-8.834	0.000
	LLOSS	-0.199	0.041	-0.352	-4.881	0.000

• Las variables más significativas eran: riesgo en crédito y relacion costo-ingreso.

$$B_0 = 3.881, b_2 = -0.199 \, \mathrm{y} \ B_4 = -0.061$$

La ecuacion de regresion lineal multiple:

$$ROA_i = B_0 + B_1LIQ_i + B_2LLOS_i + B_3SIZE_i + B_4COSTINC_i + B_5COC_i + B_6GDP_i + B_7CPI_i + \epsilon_i$$

 $i = 1, ..., n$

La funcion regresion robusta es 3.423-0.4197 LLOSS-0.0288 COSTINC

Resultado de la red neuronales:

Se utilizó una red de multicapa de perceptrón con una capa oculta y 7 entradas, que corresponden a las 7 variables del estudio. Aquí se compara los resultados cambiando el número de neuronas donde el 13 es el mejor.

NT	Traini	ng Data	Test data	
Neurons	MSE	\mathbb{R}^2	MSE	\mathbb{R}^2
5	0.02040	0.81364	0.17329	0.85239
10	0.00799	0.94691	0.01500	0.83672
11	0.00505	0.96707	0.02444	0.65187
12	0.00515	0.96438	0.20735	0.59641
13	0.00358	0.97767	0.00687	0.66868
14	0.00529	0.96644	0.00964	0.79567
15	0.00297	0.96683	0.04524	0.60258
20	0.00428	0.97182	0.00738	0.87044
25	0.00672	0.96680	0.03358	0.64716

Para comparar ambos resultados se utilizó la media de error predecido donde la red neuronal gana por mucho a la regresión múltiple, como se ve a continuación:

Method	MSPR
Multiple Linear Regression	0.6190
Artificial Neural Network	0.0061

Opinion

A mi parecer este paper es muy interesante ya que demuestra cómo las redes neuronales pueden implementarse en muchas áreas, en este caso las finanzas y ganarle a las técnicas que se llevan utilizando desde hace un tiempo en esas áreas. Lo cual podría llevar a pensar en otras áreas de conocimiento donde se pudiera implementar estos algoritmos para optimizar los resultados. Una de las desventajas que son mencionadas en esta investigación es que vieron que para encontrar el número óptimo de neuronas se toma cierto tiempo ya que se deben hacer varias iteraciones del mismo algoritmo para encontrarlo. Pero esto también puede ser por los equipos que se utilizaron ya que esta investigación es del 2009 y el panorama de la computación ahora es muy diferente a lo que había en esos tiempos.