

CodeScope: An Execution-based Multilingual Multitask Multidimensional Benchmark for Evaluating LLMs on Code Understanding and Generation

Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan Zhao, Li Zhu, Hari Sundaram, Shuiguang Deng

Motivations

Existing benchmarks for evaluating the code understanding and generation capacities of LLMs suffer from severe limitations:

01

Limited Language and Task Scope

Most benchmarks are insufficient as they focus on a narrow range of programming languages and specific tasks.

Neglecting Executability and Consistency

Most benchmarks fail to consider the actual executability and the consistency of execution results of the generated code.

Related Work

Benchmark	Execution-Based	Multilingual	Multitask	Multidimensional
HumanEval	✓	X	X	Х
MBPP	✓	×	×	X
CodeXGlue	×	√ (9)	√ (10)	X
XLCoST	×	√ (7)	√ (5)	X
MathQA	✓	×	×	X
MBXP	1	√ (13)	X	X
ClassEval	✓	×	×	X
MultiPL-E	✓	√ (18)	×	X
AiXBench	/	×	X	X
DS-1000	✓	×	X	X
APPS	✓	×	×	X
HumanEval-X	✓	√ (5)	\checkmark (2)	X
XCodeEval	✓	√ (11)	√ (5)	X
CodeScope	· · · · · · · · · · · · · · · · · · ·	√ (43)	√ (8)	/

Comparisons between our CodeScope and existing code evaluation benchmarks.

Introduction

CodeScope, a benchmark that evaluates the coding proficiency of LLMs using execution-based metrics in a multilingual and multitask setting. CodeScope consists of eight tasks for code understanding and generation, covering 43 programming languages. We develop a multilingual code execution engine, MultiCodeEngine, which supports the compilation and execution of 14 programming languages.

Category	Dimension	Task	#Lang.	#Samples	Length
		Code Summarization	43	4,838	385
Understanding	Length	Code Smell	2	200	650
Onderstanding	Length	Code Review	9	900	857
		Automated Testing	4	400	251
		Program Synthesis	14	803	538
Generation	Difficulty	Code Translation	14	5,382	513
Generation		Code Repair	14	746	446
	Efficiency	Code Optimization	4	121	444

Summary of our CodeScope.

Contributions

CodeScope benchmark: We built the first-ever comprehensive benchmark for evaluating LLMs on code understanding and generation tasks.

Multidimensional fine-grained evaluation: We comprehensively evaluate the performance of LLMs on eight tasks from three dimensions (length, difficulty, efficiency).

Comprehensive evaluations and in-depth analyses: We evaluate the coding capabilities of eight mainstream LLMs and conduct comprehensive validations and analyses of the utility of the CodeScope benchmark.

Multidimensional Evaluation

	Code	Summariza	tion			Code Smell						Length			
Model	Short	Medium	Long	Avg.	SD	Model	Short	Medium	Long	Avg.	SD	Model	Overall	Avg.(SD)	
GPT-4	33.78	33.27	33.88	33.66	0.33	WizardCoder	45.09	48.29	53.03	48.80	3.99				
GPT-3.5	33.21	32.87	33.51	33.14	0.32	LLaMA 2	41.13	31.77	49.28	40.73	8.76	Winned Coden	50.14	2.52	
Vicuna	32.12	32.21	31.62	32.06	0.32	Vicuna	38.94	30.66	39.54	36.38	4.96	WizardCoder	50.14	3.53	
WizardCoder	32.85	32.05	29.01	31.99	2.03	GPT-4	30.44	40.02	37.60	36.02	4.98	LLaMA 2	48.79	3.88	
Code LLaMA	32.39	31.36	28.59	31.52	1.97	PaLM 2	28.48	41.61	36.14	35.41	6.60	LLaWA 2	40.79	3.00	
LLaMA 2	32.03	31.25	29.34	31.40	1.38	GPT-3.5	29.12	38.13	37.55	34.93	5.04	GPT-3.5	48.10	3.66	
StarCoder	31.63	30.69	30.08	31.18	0.78	Code LLaMA	34.78	40.79	24.10	33.22	8.45	GP 1-3.3	46.10	3.00	
PaLM 2	31.83	29.95	24.20	30.27	3.98	StarCoder	28.75	19.79	14.13	20.89	7.37	PaLM 2	47.28	3.47	
	C	ode Review	,				Auto	mated Test	ing		-	Tubiti 2	17.20	5.17	
Model	Model Short Medium Long Avg. SD Model Short Medium Long Avg. SD					SD	GPT-4	47.16	2.66						
Code LLaMA	39.34	44.70	43.66	42.57	2.84	GPT-3.5	87.49	86.37	80.91	84.92	3.52	GII	17.10	2.00	
GPT-4	44.08	39.93	41.69	41.90	2.08	PaLM 2	84.52	81.97	80.38	82.29	2.09	Code LLaMA	47.02	274	
LLaMA 2	45.74	40.05	39.14	41.64	3.58	LLaMA 2	83.46	80.48	80.27	81.40	1.78	Code LLaiviA		3.74	
PaLM 2	41.56	42.13	39.79	41.16	1.22	Code LLaMA	82.65	79.34	80.27	80.75	1.71	Vicuna	16 17	2.60	
Vicuna	43.92	38.70	40.43	41.02	2.66	WizardCoder	82.25	82.13	77.87	80.75	2.49	vicuna	46.47	2.68	
GPT-3.5	45.75	37.88	34.56	39.40	5.75	StarCoder	78.70	80.77	72.96	77.48	4.05	StarCoder	42.10	4.69	
WizardCoder	32.68	41.05	43.36	39.03	5.62	GPT-4	80.80	75.03	75.33	77.05	3.25	StarCoder	42.10	4.09	
StarCoder	45.34	39.02	32.20	38.85	6.57	Vicuna	75.19	74.85	79.15	76.40	2.39				

Length-dimension
(Short, Medium, Long)

Multidimensional Evaluation

Difficulty-dimension
(Easy & Hard)

Program Synthesis			Code Translation				Code Repair				Difficulty		
Model	Easy	Hard	Avg.	Model	Easy	Hard	Avg.	Model	Easy	Hard	Avg.	Model	Overall
GPT-4	58.57	12.01	36.36	GPT-4	40.26	22.06	31.29	GPT-4	43.56	14.04	30.03	GPT-4	32.56
GPT-3.5	39.29	4.96	22.91	GPT-3.5	28.50	14.03	21.37	GPT-3.5	18.56	7.60	13.54	GPT-3.5	19.27
Code LLaMA	7.14	0.26	3.86	WizardCoder	8.83	3.24	6.07	PaLM 2	7.43	7.02	7.24	WizardCoder	4.85
WizardCoder	5.95	0.26	3.24	StarCoder	5.75	1.89	3.85	Wizardcoder	4.95	5.56	5.23	PaLM 2	4.25
PaLM 2	3.81	0.78	1.99	PaLM 2	5.27	1.70	3.51	Code LLaMA	4.21	3.51	3.89	Code LLaMA	3.68
LLaMA 2	1.43	0.00	0.75	Code LLaMA	4.91	1.66	3.31	Vicuna	3.47	2.34	2.95	StarCoder	2.39
StarCoder	0.95	0.00	0.50	LLaMA 2	1.10	0.26	0.69	Starcoder	2.23	3.51	2.82	Vicuna	1.24
Vicuna	0.71	0.00	0.37	Vicuna	0.62	0.19	0.41	LLaMA 2	1.49	1.46	1.47	LLaMA 2	0.97

Multidimensional Evaluation

Model	Python		C		C++		C#			
	Memory	Time	Memory	Time	Memory	Time	Memory	Time	Overall	
GPT-4	46.67	36.67	43.33	6.67	29.04	3.23	36.67	23.33	28.20	
GPT-3.5	40.00	20.00	76.67	6.67	29.03	19.35	0.00	20.00	26.46	
WizardCoder	50.00	16.67	50.00	0.00	38.71	12.90	10.00	16.67	24.37	
Code LLaMA	43.33	13.33	40.00	0.00	35.48	3.22	10.00	23.33	21.09	
PaLM 2	20.00	13.33	20.00	0.00	6.45	6.45	0.00	6.67	9.11	
StarCoder	20.00	6.67	13.33	0.00	16.13	0.00	3.33	6.67	8.27	
LLaMA 2	16.67	3.33	16.67	6.67	6.45	0.00	6.67	0.00	7.06	
Vicuna	20.00	6.67	13.33	0.00	6.45	0.00	0.00	6.67	6.64	

Efficiency-dimension
(Memory & Time)

Results Analysis & Comparison

Ranking	CodeScope (Understanding)	CodeScope (Generation)	CodeScope (Overall)	HumanEval Pass@1	MBPP Pass@1
1	WizardCoder (50.14)	GPT-4 (31.47)	GPT-4 (39.31)	GPT-4 (67.0)	GPT-4 (61.8)
2	LLaMA 2 (48.79)	GPT-3.5 (21.07)	GPT-3.5 (34.58)	WizardCoder (57.3)	Code LLaMA (57.0)
3	GPT-3.5 (48.10)	WizardCoder (9.73)	WizardCoder (29.94)	GPT-3.5 (48.1)	GPT-3.5 (52.2)
4	PaLM 2 (47.28)	Code LLaMA (8.04)	Code LLaMA (27.53)	Code LLaMA (41.5)	WizardCoder (51.8)
5	GPT-4 (47.16)	PaLM 2 (5.46)	PaLM 2 (26.37)	PaLM 2 (37.6)	PaLM 2 (50.0)
6	Code LLaMA (47.02)	StarCoder (3.86)	LLaMA 2 (25.64)	StarCoder (33.6)	LLaMA 2 (45.4)
7	Vicuna (46.47)	Vicuna (2.59)	Vicuna (24.53)	LLaMA 2 (30.5)	StarCoder (43.6)
8	StarCoder (42.10)	LLaMA 2 (2.49)	StarCoder (22.98)	Vicuna (15.2)	Vicuna (22.4)

Comparison of results of eight baseline models on CodeScope, HumanEval and MBPP benchmarks.

Conclusion

Multilingual
43 programming languages

CodeScope

E

Multitask8 coding tasks

Multidimensional •

3 evaluation dimensions

Execution-based

MultiCodeEngine (14 programming languages)

Further Work

Limitations

DATA LEAKAGE

- Data memorization and recitation represent a unique form of knowledge capability.
- Constructing a fully zero-leakage evaluation dataset is technically unfeasible.
- The ability to generalize downstream tasks beyond data memorization.

Thank you!

For more details, please see paper & Github.

Weixiang Yan