



Home / AWS / Guided Lab / Encryption and Decryption Using KMS

## **Encryption and Decryption Using KMS**

Level: Intermediate

Amazon EC2 AWS Key Management Service Amazon Web Services



1. FAQs and Troubleshooting



# Lab Steps

### Task 1: Sign in to AWS Management Console

- Click on the Open Console button, and you will get redirected to AWS Console in a new browser tab.
- 2. On the AWS sign-in page,
  - Leave the Account ID as default. Never edit/remove the 12 digit Account ID present in the AWS Console. otherwise, you cannot proceed with the lab.
  - Now copy your User Name and Password in the Lab Console to the IAM
     Username and Password in AWS Console and click on the Sign in button.
- 3. Once Signed In to the AWS Management Console, Make the default AWS Region as **US East (N. Virginia)** us-east-1.

### Task 2: Create a User group for KMS users and attach a Policy to the Group

- Make sure to choose N.Virginia region in the AWS Management console dashboard, which is present in the top right corner.
- 2. Navigate to the **Services** menu at the top, click on **IAM** in the **Security, Idenitity, & Compliance** section.

- 3. In the IAM section, click on User groups.
- 4. Click on Create group
  - User group name: Enter KMSGroup
  - Attach permissions policies: For the Policy name type KMS and select KMS\_Policy



- 5. Now, Click on **Create Group** button.
- 6. We have successfully created a new group for our KMS lab.

## Task 3: Create 2 Users for managing the KMS

In this task, We are going to add 2 users to the group we created.

- 1. Click on Users on the left side of the IAM dashboard. Click on Create User.
- 2. Enter User name as KeyManager.
- 3. Check Provide user access to the AWS Management Console checkbox
- 4. Click on the Custom password and give the password you like to give it to the user.
- 5. Uncheck the **Users must create a new password at next sign-in**. Click on **Next** to provide permission to our user.





- 6. For permission, select **Add User to group** and select the **KMSGroup** which we created and click on Next button.
- 7. In the review section, if all the settings are as per the requirement, click on **create user**.
- 8. We have successfully created our **KeyManager**. Now similarly we're going to create a new user and this will be the person who does the decryption.



- 9. Click on Create user.
- 10. Enter User name as **KeyEncryption**.
- 11. Check Provide user access to the AWS Management Console checkbox
- 12. Click on the Custom password and give the password you like to give it to the user.
- 13. Uncheck the **Users must create a new password at next sign-in**. Click on **Next** to provide permission to our user.



- 14. Click on Next:Permissions to add permissions to the user.
- 15. For permission, select **Add User to group** and select the **KMSGroup** which we created and click on Next button.
- 16. In the review section, if all the settings are as per the requirement, click on create user.
- 17. Now, to get the **access** and **secret key**, click on **KeyEncryption** user and go to **Security credentials** tab.
- 18. Scroll down and click on Create access key button.



- 19. Select Use case as **Command Line Interface (CLI)**, check the **confirmation** box and click on **Next** button.
- 20. Click on create access key and don't forget to download the secret access key of the user as it will be required to connect with our EC2 instance for encryption.



### Task 4: Creating a KMS Key

- Navigate to the Services menu at the top, click on KMS in the Security, Identity, &
   Compliance section
- 2. Click on the Create a key button.
- 3. Basically we have two types of key management, **Symmetric** and **Asymmetric**. In this lab, we are going to use **Symmetric**, as we are going to use a single key for both encrypt and decrypt operations. Choose the key type as **Symmetric** for key material and click on next.



- 4. Enter Alias as **Admin** and click on **Next** button.
- 5. To **Define key administrative permissions** In this step, we need to specify the user who'll be managing the keys or an administrator for managing the keys. In our lab we have already created a user to manage the key i.e **KeyManager**. We are going to assign a key manager for administrative task. Click on **Next**.



- 6. To Define key usage permissions. In this step, we need to define the user who'll be responsible for encryption and decryption of the files. Select KeyEncryption and click on Next
- 7. Once you click on Next you'll be moved to the review section. Review the key policy that we have created and if everything is fine, just click on Finish.
- 8. We have successfully created the KMS key.



9. Now that we have created the KMS and User policies, move to service section and choose EC2 under Compute section.

### Task 5: Launching an EC2 Instance

- 1. Make sure you are in **N.Virginia** Region.
- 2. Navigate to the Services menu at the top, click on EC2 in the Compute section.
- 3. Click on Launch Instance
- 4. Name: Enter MyEC2Server
- 5. For AMI Select Amazon Linux in the quickstart menu.



- 6. For Instance Type: Select t2.micro



- Key pair name: WhizKey
- Key pair type: RSA
- Private key file format: .pem
- 8. Keep all the settings as default and click on Launch instance
- Launch Status: Your instance is now launching, Click on the instance ID and wait for complete initialization of instance till status change to Running



#### Task 6: SSH into the EC2 Instance

• Please follow the steps in SSH into EC2 Instance.

### Task 7: Perform KMS Encryption and Decryption

1. Once you click on connect you get a terminal which is our EC2-user login on EC2-instance.



2. No we need to create a file with the name secret.txt, Execute the command



3. Now that we have created a file secret.txt we need to execute



 Enter the access key and secret access of the user KeyEncryption and the default region is us-east-1.

```
__/m/'
[ec2-user@ip-172-31-17-131 ~]$ echo "Welcome to Whizlab" > secret.txt
[ec2-user@ip-172-31-17-131 ~]$ aws configure

AWS Access Key ID [None]: AKIAWXBSZTITYQR7JA3D

AWS Secret Access Key [None]: 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

Default region name [None]: us-east-1

Default output format [None]:
[ec2-user@ip-172-31-17-131 ~]$
```

5. Once aws configure is complete, we need to execute the command for encryption.

But before that we require key id for encryption and decryption. Navigate to KMS and

Copy the **key id**.



6. Make the changes in all commands with the KMS key id.

```
aws kms encrypt --key-id a8188009-1ac3-4201-ab1d-63c6e2914ce9 --
plaintext fileb://secret.txt --output text --query CiphertextBlob |
base64 --decode > encryptedsecret.txt
```

7. We have successfully encrypted our text file. To view the statement execute

```
cat encryptedsecret.txt
```

8. We are going to decrypt the encrypted file to view the data.

```
aws kms decrypt --ciphertext-blob fileb://encryptedsecret.txt --output
text --query Plaintext | base64 --decode > decryptedsecret.txt
```

9. We have successfully encrypted our text file . To view the statement execute

cat decryptedsecret.txt



```
[ec2-user@ip-172-31-17-131 ~]$ cat decryptedsecret.txt

"Welcome to Whizlab"
[ec2-user@ip-172-31-17-131 ~]$
```

10. Now we need to re-encrypt the existing file so execute the command.

```
aws kms re-encrypt --destination-key-id a8188009-1ac3-4201-ab1d-
63c6e2914ce9 --ciphertext-blob fileb://encryptedsecret.txt | base64 >
newencryption.txt
```



11. You can check the created files by using command

```
ls -lrt
```

```
[ec2-user&ip-172-31-17-131 -]$ aws kms re-encrypt --destination-key-id ec34f04a-5a37-4612-8f50-daa29fffe579 --ciphertext-blob fileb://encryptedsecret.txt base64 > newencryption.txt
[ec2-user&ip-172-31-17-131 -]$ 1s -lrt
total 16
-rw-r--r-. 1 ec2-user ec2-user 25 Dec 11 11:16 secret.txt
-rw-r--r-. 1 ec2-user ec2-user 177 Dec 11 11:20 encryptedsecret.txt
-rw-r--r-. 1 ec2-user ec2-user 25 Dec 11 11:22 decryptedsecret.txt
-rw-r--r-. 1 ec2-user ec2-user 770 Dec 11 11:24 newencryption.txt
[ec2-user&ip-172-31-17-131 -]$
```

12. We have successfully encrypted our text file . To view the statement execute

```
cat newencryption.txt
```

ecz-user@ip-1/2-31-1/-131



```
[ec2-user@ip-172-31-17-131 ~]$ cat newencryption.txt

ewogICAgIkNpcGhlcnRleHRCbG9iIjogIkFRSUNBSGp2R3hks0E4SGZqbFAvZUQzSHBsQTNMSjky
cE45N3EwUlNiOTlLNm5EUWRRRkYxTlBsREd5OE8wNG9Rd3puaWJQbEFBQUFkekIxQmdrcWhraUc5
dzBCQndhZ2FEQm1BZ0VBTUdFR0NTcUdTSWIZRFFFSEFUQWVCZ2xnaGtnQlpRTUVBUzR3RVFRTUtl
RXVDV1lBNEpTL1NSQURBZ0VRZ0RTVEN2L1I5Mi9QVHZ6NXNXbWlsMHVDanJWWGp5Skhyelo3aDZq
SW9pSlJ3ZGwyOHVndGwzL2FLbnVhanZEZkVidEtGM1ZZIiwKICAgICJTb3VyY2VLZX1JZCI6ICJh
cm46YXdzOmttczplcy11YXN0LTE6OTAyNDk0OTI5MTE2OmtleS91YzM0ZjA0YS01YTM3LTQ2MTIt
OGY1MC1kYWEyOWZmZmU1NzkiLAogICAgIktleUlkIjogImFybjphd3M6a21zOnVzLWVhc3QtMTo5
MDI0OTQ5MjkxMTY6a2V5L2VjMzRmMDRhLTVhMzctNDYxMi04ZjUwLWRhYTI5ZmZmZTU3OSIsCiAg
ICAiU291cmNlRW5jcnlwdGlvbkFsZ29yaXRobSI6ICJTWU1NRVRSSUNfREVGQVVMVCIsCiAgICAi
```

RGVzdGluYXRpb25FbmNyeXB0aW9uQWxnb3JpdGhtIjogIlNZTU1FVFJJQ19ERUZBVUxUIgp9Cg==

13. We have successfully executed the re-encrypt statement.

[ec2-user@ip-172-31-17-131 ~]\$

14. We need to enable the key rotation of KMS so that they can be periodically changed or in response to a potential leak or compromise.

```
\verb|aws| kms| enable-key-rotation| --key-id| a8188009-1ac3-4201-ab1d-63c6e2914ce9|
```



### Do You Know?

KMS enforces access control policies to ensure that only authorized individuals or systems can use or manage cryptographic keys. This helps prevent unauthorized access to sensitive information.

#### Task 8: Validation of the Lab

- Once the lab steps are completed, please click on the Validation button on the left side panel.
- 2. This will validate the resources in the AWS account and displays whether you have completed this lab successfully or not.
- 3. Sample output:



# **Completion and Conclusion**

- 1. You have successfully created a group for KMS users and attached a policy to the group.
- 2. You have successfully created 2 users for managing the KMS.
- 3. You have successfully created a KMS Key.
- 4. You have successfully launched an EC2 Instance and connected to SSH using browser.
- 5. You have successfully configured KMS.



6. You have got familiar with Encryption, decryption, re-encryption and key rotation of KMS by executing the commands.

## **End Lab**

- 1. Sign out of AWS Account.
- 2. You have successfully completed the lab.
- 3. Once you have completed the steps, click on **End Lab** from your Whizlabs lab console and wait till the process gets completed.

About Us Subscription Instructions and Guidelines FAQ's Contact Us



© 2024, Whizlabs Software Pvt. Ltd.





