Examenul national de bacalaureat 2021 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu. • Timpul de lucru efectiv este de trei ore.

A. MECANICĂ

Testul 2

Se consideră accelerația gravitațională g = 10m/s².

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Dacă deplasarea punctului de aplicație al unei forțe \vec{F} este \vec{d} , unitatea de măsură în S.I. a mărimii $\vec{F} \cdot \vec{d}$ poate fi exprimată în forma:
- a. $kg m^2 s^2$
- **b.** kg m s⁻²
- d. $ka \cdot m^2 \cdot s^{-3}$

(3p)

2. Un corp punctiform se poate deplasa fără frecare pe suprafața interioară a unei emisfere cu raza R, ca în figura alăturată. Corpul aflat în repaus pe suprafața emisferei la înălțimea $h \le R$ este lăsat liber. Când corpul trece prin punctul cel mai de jos al suprafeței sferice are viteza v. În cazul când se reduce la jumătate înălțimea de la care corpul este eliberat, viteza cu care corpul trece prin punctul cel mai de jos al emisferei este:

a. *v*

- **b.** 4*v*
- **c.** $v/\sqrt{2}$
- d. v/4

(3p)

3. Un mobil pornește din originea axei Ox și descrie o mișcare rectilinie. Graficul din figura alăturată reprezintă dependenta de timp a vitezei mobilului în cursul acestei miscări rectilinii: Viteza medie a mobilului în cele 6 s de mișcare este:

- **b.** 4,5 m/s
- **d.** 1,5 m/s

(3p)

4. Un resort elastic, având lungimea nedeformată ℓ , are constanta elastică k. Acesta este legat cu un alt resort elastic având lungimea nedeformată 2ℓ și constanta elastică 2k, ca în figura alăturată. Capătul S al ansamblului este mentinut fix, iar la capătul D se aplică o fortă deformatoare \vec{F} . Raportul dintre alungirea resortului având constanta elastică 2k si alungirea resortului având constanta elastică k este:

- **a.** 0,25
- **b.** 0,5
- **d**. 4

(3p)

- 5. O minge cu masa m, aruncată vertical, trece la momentul t cu viteza v printr-un punct aflat la înălțimea h față de nivelul de referință la care se consideră că energia potențială gravitațională este nulă. La momentul t, energia potențială a mingii în câmpul gravitațional al Pământului are expresia:
- a. mvt
- **b.** mah
- **c.** $mgh + \frac{mv^2}{2}$ **d.** $\frac{mv^2}{2}$

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Un parașutist are, împreună cu echipamentul, masa $m = 80 \,\mathrm{kg}$. Asupra lui acționează, în timpul căderii pe verticală, o forță "de rezistență" care se opune coborârii. Această forță, datorată interacțiunii cu aerul, este proporțională cu viteza v a parașutistului, $F_{rezistenta} = k \cdot v$. Aproape de suprafața Pământului, după ce parcurge în cădere o distanță mare, parașutistul atinge o viteză constantă cu modulul $v_0 = 4$ m/s .

- a. Reprezentați forțele care acționează asupra parașutistului în timpul căderii.
- **b.** Calculați durata căderii, cu viteza constantă $v_0 = 4$ m/s, pe ultimii h = 100m.
- **c.** Determinați valoarea constantei de proporționalitate k dintre $F_{rezistenta}$ și viteza parașutistului.
- **d.** Determinați valoarea modulului accelerației parașutistului în momentul în care viteza sa era $v_1 = 6$ m/s.

III. Rezolvati următoarea problemă:

Un corp cu masa de 200g, considerat punctiform, pornește din repaus din punctul A al unui jgheab având forma unui sfert de cerc cu raza R=1m (vezi figura alăturată). Corpul alunecă și trece prin punctul B cu o viteză de 4m/s. Din punctul B corpul îsi continuă miscarea, alunecând cu frecare pe o suprafată orizontală,

pe o distanță de 4m, până în punctul C, unde se oprește. Se consideră că energia potențială gravitațională este nulă în punctul B.

- a. energia mecanică totală a corpului în punctul A;
- **b.** energia cinetică a corpului la trecerea prin punctul B;
- c. lucrul mecanic efectuat de forta de frecare în timpul deplasării corpului din A în B;
- d. coeficientul de frecare la alunecare între corp și suprafața orizontală BC.

Examenul national de bacalaureat 2021 Proba E. d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu. • Timpul de lucru efectiv este de trei ore.

B. ELEMENTE DE TERMODINAMICĂ

Testul 2

(3p)

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \,\text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte) 1. Știind că simbolurile mărimilor fizice sunt cele utilizate în manualele de fizică, unitatea de măsură în S.I. a

produsului $v \cdot C_V \cdot \Delta T$ poate fi scrisă sub forma:

a. N·m

b.
$$\frac{N \cdot mol}{m^2 \cdot K}$$

d.
$$\frac{N \cdot m}{\text{mol} \cdot K}$$

2. O cantitate dată de gaz ideal efectuează un proces ciclic 12341 reprezentat în coordonate p-T în figura alăturată. Valoarea maximă a densității gazului se atinge în starea:

a. 1

3. În cilindrul unui motor termic are loc comprimarea unei cantități de gaz ideal în următoarele condiții: raportul dintre volumul inițial și volumul final $\frac{V_i}{V_i} = 10$, iar raportul dintre presiunea inițială și cea finală

 $\frac{p_i}{r}$ = 0,04. Dacă temperatura inițială este T_i = 300K, temperatura finală are valoarea:

a. 350 K

b. 500 K

c. 600 K

d.750 K

(3p)

4. La comprimarea adiabatică a unui gaz ideal, acesta:

- a. primește lucru mecanic și se încălzește
- b. primește lucru mecanic și se răcește
- c. cedează lucru mecanic si se încălzeste

d. cedează lucru mecanic si se răceste.

(3p)

- 5. Lucrul mecanic efectuat de un gaz ideal este nul într-un proces:
- a. izoterm
- b. izocor

c. izobar

d. ciclic

(3p)

II. Rezolvați următoarea problemă:

(15 puncte)

Cilindrul orizontal din figura alăturată este împărțit printr-un piston mobil subțire, termoizolant, care se poate mișca fără frecări, în două compartimente A și B ale căror volume se află în raportul $\frac{V_A}{V_B}$ = 2. Lungimea totală a

cilindrului este L=1 m. În starea initială pistonul este blocat. În compartimentul A se află o masă de oxigen $(\mu_{\rm O_2}=32~{\rm g/mol})$ la temperatura $t_{\rm A}=127^{\circ}{\rm C}$, iar compartimentul B se află o masă egală de azot $(\mu_{N_2}=28\,$ g/mol), la temperatura $T_{\rm B}=300\,$ K. Gazele din cele două compartimente se consideră ideale.

a. Determinati masa unei molecule de azot.

b. Determinati valoarea raportului dintre presiunea oxigenului si cea a azotului.

- c. Se eliberează pistonul și se aduc cele două gaze la aceeași temperatură. Calculați distanța dintre poziția inițială și cea în care pistonul rămâne în echilibru.
- d. Se îndepărtează pistonul. Calculați masa molară a amestecului.

III. Rezolvați următoarea problemă:

(15 puncte)

Un motor termic funcționează după un ciclu format din două transformări izoterme și două transformări adiabatice: $1 \rightarrow 2$ destindere izotermă, $3 \rightarrow 4$ comprimare izotermă, respectiv $2 \rightarrow 3$ și $4 \rightarrow 1$ adiabate. Motorul are ca substanță de lucru un gaz ideal monoatomic ($C_V = 1.5 R$). Temperatura la începutul comprimării izoterme este $T_r = 300 \text{ K}$, de-a lungul unui ciclu gazul efectuează lucrul mecanic $L = 10^3 \text{J}$ primind căldura $Q_p = 1500 J$.

- a. Calculați căldura cedată de substanța de lucru pe parcursul unui ciclu.
- **b.** Calculați temperatura gazului la care are loc transformarea $1 \rightarrow 2$.
- c. Determinați valoarea lucrului mecanic primit de un mol de gaz în cursul comprimării adiabatice;
- **d.** Demonstrați că între volumele V_1, V_2, V_3, V_4 există relația $V_1 \cdot V_3 = V_2 \cdot V_4$

Examenul national de bacalaureat 2021 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu. Timpul de lucru éfectiv este de trei ore.

<u>C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU</u>

Testul 2

- I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Simbolurile mărimilor fizice fiind cele utilizate în manuale, pentru un nod de rețea este valabilă relația:

$$\mathbf{a.} \sum_{k=1}^{n} I_k = 0$$

b.
$$\sum_{k=1}^{n} R_k I_k = \sum_{i=1}^{m} E_i$$
 c. $I = \frac{U}{R}$

d.
$$E = I(R + r)$$
 (3p)

- 2. Simbolurile mărimilor fizice fiind cele utilizate în manuale, unitatea de măsură în S.I. a mărimii fizice descrise de produsul $U \cdot I \cdot t$ este:
- **a.** J/s
- b. W
- c. N·m/C

(3p)

·B

- 3. Se consideră două surse identice având fiecare t.e.m. $E = 1,2 \,\mathrm{V}$ și rezistența interioară $r = 0,4 \,\Omega$ conectate ca în figura alăturată. Valoarea tensiunea U_{AB} este:
- a. -1,2 V
- **b.** 0 V
- **c.** 2 V
- d. 2.4 V

- (3p)
- 4. Tensiunea la bornele unui generator de t.e.m continuă depinde de intensitatea curentului prin generator conform figurii alăturate. Rezistenta interioară a generatorului are valoarea:

- **a.** $0,1 \Omega$
- **b.** 0.3Ω
- c. 10Ω
- **d.** 3.0Ω (3p)
- 5. La bornele unui rezistor cu rezistența electrică R se conectează o baterie formată prin legarea în paralel a două surse identice având E și rezistența interioară r. În acest caz, intensitatea curentului electric prin rezistorul R are expresia:

a.
$$I = \frac{E}{R+r}$$

b.
$$I = \frac{E}{R + 0.5r}$$
 c. $I = \frac{E}{R + 2r}$ **d.** $I = \frac{2E}{R + 2r}$

$$c. I = \frac{E}{R + 2r}$$

d.
$$I = \frac{2E}{R + 2r}$$

II. Rezolvați următoarea problemă:

(15 puncte)

Se consideră circuitul din figură pentru care se cunosc: tensiunea electromotoare a sursei 1 $E_1 = 4,5 \,\mathrm{V}$, rezistențele interioare ale celor două surse $r_1=r_2=1\,\Omega$, rezistențele celor trei rezistori $R_1=2\,\Omega$, $R_2=2,5\,\Omega$, $R_3 = 1,5 \ \Omega$. Ampermetrul montat în circuit are rezistența internă $R_A = 0,5 \ \Omega$. Scala ampermetrului are 100 de diviziuni, iar indicația maximă a scalei este de 1A. Acul ampermetrului s-a oprit în dreptul diviziunii 20. Sensul intensității este cel indicat în figură. Determinați:

- **a.** intensitatea curentului prin rezistorul *R*₁;
- b. rezistența echivalentă a circuitului exterior surselor;
- **c.** tensiunea electromotoare E_2 a sursei 2;
- **d.** indicația unui voltmetru ideal $(R_V \to \infty)$ conectat la bornele sursei 1.

III. Rezolvați următoarea problemă:

(15 puncte)

Două rezistoare cu rezistențele R_1 și R_2 sunt legate în paralel și alimentate de la tensiunea $U = 110 \,\mathrm{V}$. Energia dezvoltată în cele două rezistoare, în timpul $\Delta t = 100 \, \text{s}$, este $W = 55 \, \text{kJ}$. Știind că o fracțiune f=1/5 din această căldură se degajă în rezistorul R_1 , iar restul în R_2 , determinați:

- a. intensitatea curentului din ramura principală;
- **b.** rezistenta echivalentă a grupării celor două rezistoare;
- c. intensitatea curentului prin fiecare rezistor;
- **d.** valorile rezistențelor R_1 și R_2 .

Examenul national de bacalaureat 2021 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu. • Timpul de lucru efectiv este de trei ore.

D. OPTICĂ Testul 2

Se consideră: viteza luminii în vid $c = 3.10^8$ m/s, constanta Planck $h = 6.6.10^{-34}$ J·s.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- **1.** O suprafața plană separă mediul (1) cu indicele de refracție n_1 de mediul (2) cu indicele de refracție n_2 . Considerați că ambele medii sunt transparente, că $n_2 > n_1$ și că o rază de lumină monocromatică se propagă din mediul (1) în mediul (2) sub un unghi de incidență nenul. În aceste condiții, despre unghiul de refractie se poate afirma că este:
- a. mai mare decât unghiul de incidentă
- b. mai mic decât unghiul de incidență
- c. egal cu unghiul de incidență
- d. nul
- 2. Energia cinetică maximă a electronilor extrași prin efect fotoelectric extern depinde de frecvența radiației incidente conform graficului din figura alăturată. Energia unui foton de frecvență v_1 , din radiatia incidentă, este de aproximativ:

- **a.** $2.5 \cdot 10^{-19}$ J
- **b.** $3.2 \cdot 10^{-19}$ J
- **c.** 6.6·10⁻¹⁹ J
- **d.** $7,1.10^{-19}$ J (3p)
- 3. Unitatea de măsură în S.I a mărimii fizice exprimate prin raportul dintre viteza de propagare a luminii și frecventă este:
- **a.** m

- **4.** O rază de lumină se propagă în aer si cade sub un unghi de incidentă $i = 45^{\circ}$ pe fata superioară a unei lame cu fețe plane și paralele. Lama are grosimea e = 3cm și este confecționată dintr-un material transparent cu indice de refracție $n=1,41(\simeq\sqrt{2})$. Deplasarea razei emergente față de raza incidentă, la trecerea prin lama cu fețe plan-paralele are valoarea de aproximativ:
- **a.** 8,9mm
- **b.** 7,9mm
- **c.** 5,9mm
- **d.** 3,9mm
- (3p)
- 5. Un sistem optic centrat este alcătuit din două lentile subțiri alipite, având distanțele focale f și f'. Distanța focală echivalentă a sistemului de lentile este:
- **a.** f + f'
- c. f-f'
- d. $\frac{2ff'}{f+f'}$ (3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

- O lentilă subtire convergentă având distanta focală f = 14 cm formează pe un ecran asezat convenabil imaginea unui obiect luminos liniar asezat perpendicular pe axa optică. Obiectul se află la distanta de 42 cm fată de lentilă.
- a. Calculati distanta dintre ecran si lentilă.
- b. Realizați un desen în care să evidențiați construcția imaginii prin lentilă, pentru obiectul considerat, în situația descrisă de problemă.
- c. Calculati convergenta lentilei.
- d. Obiectul și ecranul rămân imobile. Determinați distanța pe care trebuie deplasată lentila, în lungul axei optice principale, pentru ca pe ecran să se obtină din nou o imagine clară a obiectului.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Distanța dintre fantele unui dispozitiv Young este $2\ell = 0.80$ mm , iar ecranul de observație se află la distanța D=2.0m de paravanul cu fante. Dispozitivul Young este amplasat în aer $(n \cong 1)$. Lungimea de undă a radiației monocromatice emise de sursa de lumină este $\lambda = 570$ nm. Determinați:

- a. frecventa radiatiei utilizate:
- b. valoarea interfranjei măsurate pe ecranul de observare a dispozitivului Young;
- c. distanța dintre maximele de ordinul 2 situate de o parte și de cealaltă a maximului central;
- d. deplasarea franjei centrale dacă una din fantele dispozitivului este acoperită cu o lama transparentă cu grosimea $q = 40 \, \mu m$ confectionată dintr-un material cu indicele de refractie n = 1,57.