МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Лабораторная работа №3.5.1 Изучение плазмы газового разряда в неоне

> Работу выполнил Лохматов Арсений Игоревич Козярский Алексей Сергеевич Б03-303

1 Теоретическая часть

Оборудование: стеклянная газоразрядгая трубка, наполненная неоном, высоковольтный источник питания, источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

1.1 Экспериментальная установка

Схема установки исследования плазмы газового разряда в неоне изображена на рисунке 1. Стеклянная газорязрядная трубка имеет ненагреваемый полый катод, который остаётся холодным, три анода и геттерный узел - стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Трубка наполнена изотопом неона ^{22}Ne при давлении 2 мм рт. ст. Катод и один из анодов (I или II) с помощью переключателя Π_1 подкючается через балластный резистор R_6 (~ 450 кОм) к регулируемому высоковольтному источнику питания (ВИП) с выходным напряжением до 5 кВ.

Рис. 1: Схема установки

При подключении к (ВИП) анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке через высокоомный (25 МОм) делитель напржения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

Пи подключении к (ВИП) анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба.

Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключаетль Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах измеряется с помощью дискретного переключателя V выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 (GDM). Для измерения зондового тока используется мультиметр A_2 (GDM). Анод-III в нашей работе не используется.

2 Задание

В работе предлагается снять вольт-амперную характеристику тлеющего разряда и зондовые характеристики при разных токах разряда и по результатам измерений рассчитать концентрацию и температуру электронов в плазме, плазменную частоту, поляризационную частоту, поляризационную длину, дебаевский радиус экранирования и степень ионизации.

2.1 Вольт-амперная характеристика разряда

1. Подготовили приборы к работе: работаем с анодом-I (переключатель на анод-I), выходное напряжение (ВИП) сделали равным нулу (ручка регулирования в крайнем левом положении), включили (ВИП) в сеть. Познакомились с правилами работы с мультиметром. Подготовили к работе мультиметр V_1 : включили его в сеть, установили автоматический режим измерения постоянного напряжения. Плавно увеличивая выходное напряжение (ВИП), определили напряжения зажигания разряда $U_{\text{заж}}$.

$$U_{\text{заж}} = 242.5 \text{ B}$$

2. С помощью вольтметра V_1 и амперметра A_1 сняли вольт-амперную характеристику разряда $I_{\rm p}(U_{\rm p})$. Ток разряда $I_{\rm p}$ изменяли в диапазоне от 0.5 мА до 5 мА. Провели измерения как при нарастании, так и при убывании тока. Результаты занесли в таблицу 1.

Во	зрастани	е тока	Убывние тока			
	$I_{\rm p}$, мА	$U_{\rm p},~{ m B}$		$I_{\rm p}$, мА	$U_{\rm p},~{ m B}$	
1	0.5248	35.001	1	5.0002	5.355	
2	0.8153	34.249	2	4.7068	6.996	
3	1.1061	33.361	3	4.4015	8.811	
4	1.4093	28.703	4	4.1046	10.302	
5	1.7078	23.956	5	3.8057	11.788	
6	2.0065	21.245	6	3.5096	13.134	
7	2.3067	19.252	7	3.2047	14.011	
8	2.5994	16.597	8	2.9035	14.953	
9	2.9065	15.053	9	2.6062	16.361	
10	3.2042	14.422	10	2.3051	18.873	
11	3.5090	13.444	11	2.0228	20.777	
12	3.8036	12.088	12	1.7033	23.792	
13	4.1026	10.545	13	1.4021	28.433	
14	4.4092	8.942	14	1.1023	33.295	
15	4.7086	7.072	15	0.8065	34.378	
16	5.0059	5.416	16	0.5089	35.144	

Таблица 1: Вольт-амперная характеристика разряда

2.2 Зондовые характеристики

- 1. Уменшили напряжение (ВИП) до нуля, переведи переключатель Π_1 на анод-II, переключатель Π_2 переключили на +. Подготовили к работе мультиметры A_2 и V_2 , включили приборы в сеть. На A_2 установили автоматический режим измерения постоянного тока в мкА. На V_2 установили автоматический режим измерения напряжения в вольтах.
- 2. Плавно увеличивая напряжения (ВИП) до возникновения разряда и установили разрядный ток $I_{\rm p} \sim 5$ мА. Включили в сеть источник питания GPS, нажали кнопку OUTPUT, установили произвольный ток, затем напряжение $U_2 \sim {\rm B}$. При помощи потенциометра R установили на зонде максимальное напряжение $U_2 \sim {\rm B}$.
- 3. С помощью мультиметров A_2 и V_2 снимем вольт-амперную характеристику двойного зонда $I_3(U_3)$ при фиксированном токе разряда I_p .

Проделаем теже действия при токах разряда, равных 3 и 1.5 мА. Результаты занесём в таблицу 2.

	$I_{\mathrm{p}} = 5$ n	мВ		$I_{\rm p}=3$ M	ıΒ		$I_{\rm p} = 1.5$	мВ
	U_3 , мА	I_3 , B		U_3 , мА	I_3 , B		U_3 , мА	I_3 , B
1	25.013	109.24	1	24.821	64.989	1	25.077	32.33
2	22.085	107.02	2	22.102	63.009	2	22.044	31.24
3	19.062	103.55	3	19.085	61.079	3	19.114	30.20
4	16.024	97.79	4	16.012	58.708	4	16.133	29.08
5	13.004	88.89	5	13.061	55.042	5	13.087	27.45
6	10.258	77.93	6	9.989	48.482	6	10.081	24.59
7	8.066	67.42	7	8.064	42.235	7	8.025	21.55
8	6.077	56.33	8	6.052	33.997	8	6.083	17.64
9	4.1406	44.93	9	3.991	23.381	9	4.094	12.44
10	2.0787	30.42	10	2.091	12.038	10	2.121	6.06
11	0.0007	12.93	11	0.002	1.008	11	0.03	0.87
12	-0.0020	-11.70	12	-0.041	-7.004	12	-0.032	-5.003
13	-2.0112	-27.06	13	-2.075	-20.21	13	-2.087	-10.31
14	-4.1820	-43.05	14	-4.083	-32.16	14	-3.992	-16.58
15	-6.106	-55.27	15	-6.124	-42.46	15	-6.143	-22.26
16	-8.051	-66.53	16	-8.099	-50.47	16	-8.022	-26.27
17	-10.085	-77.62	17	-10.047	-56.66	17	-10.017	-29.37
18	-13.071	-91.03	18	-13.031	-63.23	18	-13.054	-32.55
19	-16.078	-101.64	19	-16.082	-67.24	19	-16.079	-34.42
20	-19.096	-109.30	20	-19.186	-69.82	20	-19.043	-35.76
21	-22.175	-114.04	21	-22.134	-71.78	21	-22.092	-37.07
22	-25.018	-116.71	22	-25.016	-73.69	22	-25.033	-38.85

Таблица 2: Зондовая характеристика

4. Перевели ручки регулировки источника питания к минимальным значениями отключим приборы. Запишем параметры зондов.

$$d = 0.2 \text{ mm}; \ l = 5.2 \text{ mm}$$

2.3 Обработка результатов

1. Построим вольт-амперную характеристику разряда в координатах $I_{\rm p}(U_{\rm p}).$

Рис. 2: График зависимости $I_{\mathrm{p}}(U_{\mathrm{p}})$ на повышении напряжения

$$R_{\rm диф} = \frac{{\rm dU}}{{\rm dI}} = \frac{1}{k}, \ \sigma_R = R \frac{\sigma_k}{k}$$

$$k_1 = -(0.01846 \pm 0.00044) \ \frac{{\rm MA}}{{\rm B}} \implies R_{max} = -\frac{1}{0.01846 \cdot 10^{-3}} = -(5.42 \pm 0.13) \cdot 10^4 \ {\rm Om} \ (\varepsilon = 2.38\%)$$

$$k_2 = -(0.00640 \pm 0.00006) \ \frac{{\rm MA}}{{\rm B}} \implies R_{min} = -\frac{1}{0.0064 \cdot 10^{-3}} = -(15.63 \pm 0.15) \cdot 10^4 \ {\rm Om} \ (\varepsilon = 0.94\%)$$

Рис. 3: График зависимости $I_{\rm p}(U_{\rm p})$ на понижении напряжения

$$k_3 = -(0.02001 \pm 0.00006) \frac{\text{mA}}{\text{B}} \implies R_{max} = -\frac{1}{0.02001 \cdot 10^{-3}} = -(4.99 \pm 0.02) \cdot 10^4 \text{ Om } (\varepsilon = 0.29\%)$$

$$k_4 = -(0.00717 \pm 0.0006) \frac{\text{mA}}{\text{B}} \implies R_{min} = -\frac{1}{0.00717 \cdot 10^{-3}} = -(13.95 \pm 1.17) \cdot 10^4 \text{ Om } (\varepsilon = 8.37\%)$$

2. Построим зондовые характеристики для разных токов разряда, отцентрируем кривыеи и используем их для определения температуры электронов T_e .

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}, \ kT_e = \frac{\Delta U}{2}$$

Оценим погрешности.

$$\sigma_{kT_e} = (kT_e)\sqrt{\left(\frac{\sigma_{I_i}}{I_i}\right)^2 + \left(\frac{\sigma_{\frac{dI}{dU}}}{\frac{dI}{dU}}\right)^2}, \ \sigma_{kT_e} = (kT_e)\frac{\sigma_{\Delta U}}{\Delta U}$$

Рис. 4: Зондовая характеристика $I_{\text{раз}} = 5 \text{ мA}$

$I_{i_{\mathrm{cpe}\mathrm{\mathcal{I}}}},\mathrm{mkA}$	$\sigma_{I_i}, \text{ MKA}$	$\Delta U_{\text{сред}}, \ \mathrm{B}$	$\sigma_{\Delta U}$, B	$\frac{dI}{dU} _{U=0}, \frac{\text{MKA}}{\text{B}}$	$\sigma, \frac{MKA}{B}$
73.235	3.169	9.1	0.01	8	0.01
$(kT_e)_1$, эВ	σ_{kT_e} , эВ	$(kT_e)_2$, эВ	σ_{kT_e} , эВ	$T_1, \cdot 10^3 \text{ K}$	$T_2, \cdot 10^3 \text{ K}$
4.58	0.21	4.550	0.005	53.101	52.754

Таблица 3: Результаты вычислений

Рис. 5: Зондовая характеристика $I_{\mathrm{pas}}=3~\mathrm{mA}$

$I_{i_{\mathrm{cpeg}}}$, мк A	σ_{I_i} , MKA	$\Delta U_{\text{сред}}, \ \mathrm{B}$	$\sigma_{\Delta U}, \ \mathrm{B}$	$\frac{dI}{dU} _{U=0}, \frac{\text{MKA}}{\text{B}}$	$\sigma, \frac{MKA}{B}$
48.560	0.289	7.25	0.01	6.5	0.01
$(kT_e)_1$, эВ	σ_{kT_e} , эВ	$(kT_e)_2$, эВ	σ_{kT_e} , эВ	$T_1, \cdot 10^3 \text{ K}$	$T_2, \cdot 10^3 \text{ K}$
3.741	0.023	3.625	0.005	43.374	42.029

Таблица 4: Результаты вычислений

Рис. 6: Зондовая характеристика $I_{\rm pas}=1.5~{\rm mA}$

$I_{i_{\mathrm{cpe}_{\mathtt{J}}}},\ \mathrm{MKA}$	$\sigma_{I_i}, \text{ MKA}$	$\Delta U_{\text{сред}}, \ \mathrm{B}$	$\sigma_{\Delta U}, \ \mathrm{B}$	$\frac{dI}{dU} _{U=0}, \frac{\text{MKA}}{\text{B}}$	$\sigma, \frac{MKA}{B}$
21.68	0.58	7.2	0.01	3	0.01
$(kT_e)_1$, эВ	σ_{kT_e} , эВ	$(kT_e)_2$, эВ	σ_{kT_e} , эВ	$T_1, \cdot 10^3 \text{ K}$	$T_2, \cdot 10^3 \text{ K}$
3.612	0.097	3.600	0.005	41.878	41.739

Таблица 5: Результаты вычислений

3. Построим на одном листе Семейство отцентрованных зондовых характеристик $I_3(U_3)$.

Рис. 7: Семейство отцентрованных зондовых характеристик $I_3(U_3)$

4. Полагая $n_e = n_i = n$, найдём эту концентрацию, используя формулу Бома:

$$I_{i\mathrm{H}}=0.4n_eeS\sqrt{\frac{2kT_e}{m_i}},$$
 где $S=\pi\cdot d\cdot l=\pi\cdot 0.2\cdot 5.2\cdot 10^{-6}=3.27\cdot 10^{-6}$ м² – площадь поверхности зонда;
$$m_i=22\cdot 1.66\cdot 10^{-27}\ \mathrm{kr}$$
 – масса иона неона.

$$\Longrightarrow n_e = \frac{I_{i\text{H}}}{0.4eS} \sqrt{\frac{m_i}{2kT_e}}; \ \sigma_{n_e} = n_e \sqrt{\left(\frac{\sigma_{I_{i\text{H}}}}{I_{i\text{H}}}\right)^2 + \left(\frac{1}{2}\frac{\sigma_{T_e}}{T_e}\right)^2}$$

$I_{\text{разр}}$, мА	$I_{i_{\scriptscriptstyle \mathrm{H}}}, \ \mathrm{MKA}$	$\sigma_{I_{ih}}$, MKA	$T_e, \cdot 10^3 \text{ K}$	$\sigma_{T_e}, \cdot 10^3 \text{ K}$	$n_e, \cdot 10^{16} \frac{\text{част}}{\text{м}^3}$	σ_{n_e} , $\cdot 10^{16} \frac{\text{част}}{\text{м}^3}$
5	73.235	3.169	52.928	0.058	5.533	0.239
3	48.560	0.289	42.702	0.059	4.084	0.024
1.5	21.68	0.58	41.809	0.058	1.843	0.049

Таблица 6: Результаты вычислений

5. Рассчитаем плазменную частоту колебаний электронов по формуле

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}} = 5.6 \cdot 10^4 \sqrt{n_e} \frac{\text{pad}}{\text{cek}}; \sigma_{\omega_p} = \omega_p \frac{1}{2} \frac{\sigma_{n_e}}{n_e}$$

Через такую плазму при падении на неё электромагнитного излучения пройдут только те частоты, которые больше плазменной.

$I_{\rm pasp}$, мА	$n_e, \cdot 10^{16} \frac{\text{част}}{\text{м}^3}$	σ_{n_e} , $\cdot 10^{16} \frac{\text{част}}{\text{м}^3}$	$\omega_p, \cdot 10^{13} \frac{\text{рад}}{\text{сек}}$	$\sigma_{\omega_p}, \cdot 10^{13} \frac{\text{pag}}{\text{cek}}$
5	5.533	0.239	1.317	0.028
3	4.084	0.024	1.132	0.003
1.5	1.843	0.049	0.760	0.010

Таблица 7: Результаты вычислений

Рассчитаем электронную поляризационную длину r_{D_e} по формуле

$$r_{D_e} = \sqrt{\frac{kT_e}{4\pi n_e e^2}}; \ \sigma_{r_{D_e}} = r_{D_e} \sqrt{\left(\frac{1}{2}\frac{\sigma_{T_e}}{T_e}\right)^2 + \left(\frac{1}{2}\frac{\sigma_{n_e}}{n_e}\right)^2}$$

$I_{\text{разр}}$, мА	$T_e, \cdot 10^3 \text{ K}$	σ_{T_e} , ·10 ³ K	$n_e, \cdot 10^{16} \frac{\text{част}}{\text{м}^3}$	σ_{n_e} , $\cdot 10^{16} \frac{\text{част}}{\text{M}^3}$	r_{D_e} , MKM	σr_{D_e} , MKM
5	52.928	0.058	5.533	0.239	6.408	0.138
3	42.702	0.059	4.084	0.024	6.697	0.020
1.5	41.809	0.058	1.843	0.049	9.865	0.131

Таблица 8: Результаты вычислений

Поскольку электронная поляризационная длина намного меньше линейныз размеров плазмы, поэтому мы можем считать её **квазинейтральной**.

Рассчитаем дебаевский радиус экранирования r_D , используя следующую формулу, где $T_e \gg Ti$, а температура ионов равно комнатной (Ti = 300K)

$$r_D = \sqrt{\frac{kT_i}{4\pi n_e e^2}}, \ \sigma_{r_D} = r_D \frac{1}{2} \frac{\sigma_{n_e}}{n_e}$$

$I_{\text{разр}}$, мА	$n_e, \cdot 10^{16} \frac{\text{част}}{\text{м}^3}$	σ_{n_e} , $\cdot 10^{16} \frac{\text{част}}{\text{м}^3}$	r_D , MKM	σ_{r_d} , MKM
5	5.533	0.239	4.82	0.11
3	4.084	0.024	5.60	0.01
1.5	1.843	0.049	8.35	0.01

Таблица 9: Результаты вычислений

6. Оценим среднее число ионов в дебаевской сфере

$$N_D = \frac{4}{3}\pi r_d^3 n_i; \ \sigma_{N_D} = N_D \sqrt{\left(3 \cdot \frac{\sigma_{r_D}}{r_D}\right)^2 + \left(\frac{\sigma_{n_i}}{n_i}\right)^2}$$

$I_{\text{разр}}$, мА	$n_e, \cdot 10^{16} \frac{\text{част}}{\text{м}^3}$	σ_{n_e} , $\cdot 10^{16} \frac{\text{част}}{\text{м}^3}$	r_D , MKM	σ_{r_d} , MKM	N_D	σ_{N_D}
5	5.533	0.239	4.82	0.11	26	2
3	4.084	0.024	5.60	0.01	30	0
1.5	1.843	0.049	8.35	0.01	45	1

Таблица 10: Результаты вычислений

Поскольку мы получили, что $N_D\gg 1$, то есть выполняется условие идеальной плазмы, то нашу плазму можно считать **идеальной**.

7. Оценим степень ионизации плазмы (долю ионизированных атомов α), если давление в трубке P=2 торр: $\alpha=n_i/n$, где n – общее число частиц в единицу объёма.

$$P = nkT_i \longleftrightarrow n = \frac{P}{kT_i}; \ \sigma_n = n\frac{\sigma_{T_i}}{T_i}$$

$I_{\text{разр}}$, мА	T_e , ·10 ³ K	$n_e, \cdot 10^{16} \frac{\text{част}}{\text{м}^3}$	σ_{n_e} , $\cdot 10^{16} \frac{\text{част}}{\text{м}^3}$	$n, \cdot 10^{20}$	σ_n , $\cdot 10^{20}$	α , $\cdot 10^{-4}$	$\sigma_{\alpha}, \cdot 10^{-4}$
5	52.928	5.533	0.239	3.656	0.004	1.513	0.065
3	42.702	4.084	0.024	4.531	0.006	0.901	0.005
1.5	41.809	1.843	0.049	4.628	0.006	0.398	0.011

Таблица 11: Результаты вычислений

8. Построим графики ззависимостей электронной температуры и концентрации электронов от тока разряда $T_e(I_p)$ и $n_e(I_p)$.

Рис. 8: График зависимости электронной температуры от тока разряда $T_e(I_{\rm p})$

Видим, что скорее всего в обоих случаях зависимость линейная, но по трём точкам сказать точно нельзя!

Рис. 9: График зависимости концентрации электронов от тока разряда $n_e(I_p)$

3 Подведение итогов и выводы

В этой лабораторной работе мы узучали плазму газового разряда в неоне, проверили свойство квазистатичности плазмы, а так же является ли наша плазма идеальной или нет.

При разных токах разряда мы определили несколько характеристик плазмы, которые представлены в таблице 12.

	$I_{\rm p}, { m mA}$	$kT_{\rm e}$, эВ	$n_{\rm e}, {\rm cm}^{-3}$	$\omega_{ m p},~{ m pag/cek}$	r_{D_e} , cm	r_D , cm	N_D	α
	5	4.58	$5.533 \cdot 10^{16}$	$1.317 \cdot 10^{13}$	$6.408 \cdot 10^{-4}$	$4.82 \cdot 10^{-4}$	26	$1.513 \cdot 10^{-4}$
Ì	3	3.741	$4.084 \cdot 10^{16}$	$1.132 \cdot 10^{13}$	$6.697 \cdot 10^{-4}$	$5.60 \cdot 10^{-4}$	30	$0.901 \cdot 10^{-4}$
Ī	1.5	3.612	$1.843 \cdot 10^{16}$	$0.760 \cdot 10^{13}$	$9.865 \cdot 10^{-4}$	$8.35 \cdot 10^{-4}$	45	$0.398 \cdot 10^{-4}$

Таблица 12: Сводная таблица

Полученные результаты совпадают по порядку с табличными. Так же были оценены погрешности найденных величин.