# Работа со средой Arduino IDE

Среда разработки Arduino IDE состоит из следующих компонентов (рисунок 1):

- Текстовый редактор кода программы (1);
- Область сообщений (2);
- Консоль (3);
- Панель инструментов (4);
- Панель с часто используемыми командами (5).



Рисунок 1 – Среда разработки Arduino IDE

Написанная в среде ArduinoIDE программа называется «скетч». Сама программа пишется в текстовом редакторе. В области сообщений выводятся ошибки и пояснения. В консоли отображается полный отчёт о компиляции программы, различные ошибки, подсказки и другая полезная информация. Панель инструментов представляет собой набор полезных функций при разработке программы. На панели с часто используемыми командами всего несколько кнопок, но они являются самыми основными при разработке программы.

# Язык программирования Arduino:

Фактически нет особого языка программирования Arduino. Модули Arduino программируются на C/C++. Особенности программирования сводятся к тому, что существует набор библиотек, включающий некоторые функции (pinMode, digitalWrite и т.д.) и объекты (Serial), которые значительно облегчают процесс написания программы.

#### Настройка среды Arduino IDE:

Открыть настройки среды (рисунок 2) можно из пункта меню  $\Phi$ айл -> *Настройки* или с помощью комбинации клавиш Ctrl +,



Рисунок 2 – Окно настройки среды

В меню настроек можно изменить путь сохранения программ по умолчанию, изменить размер шрифтов и т.д.

### Различные примеры:

Одной из особенностей Arduino IDE является довольно обширная база различных примеров, что очень удобно для начинающих. Открыть пример можно из пункта меню  $\Phi$ айл -> Примеры (рисунок 3).



Рисунок 3 – Открытие базы примеров

#### Создание новой программы:

Итак, с настройками среды мы разобрались. Теперь можно создать новую программу. Это можно сделать несколькими способами:

• из пункта меню **Файл -> Новый** (рисунок 4);



Рисунок 4 – Создание нового файла

- при помощи комбинации клавиш Ctrl + N;
- из панели с часто используемыми командами (рисунок 5).



Рисунок 5 – Создание нового файла

### Сохранение программы:

Допустим мы написали программу. Далее нужно сохранить. Сделать это можно несколькими способами:

• из пункта меню **Файл** -> Сохранить (рисунок 6);



Рисунок 6 – Сохранение файла

- при помощи комбинации клавиш Ctrl + S;
- из панели с часто используемыми командами (рисунок 7)



Рисунок 7 – Сохранение скетча

Теперь нужно только ввести имя вашей программы (*оно не должно содержать русских символов!*) и выбрать место, куда её сохранить. Сохранённая программа автоматически помещается в одноимённую папку, которая создаёт сама Arduino IDE.

### Открытие программы:

Теперь мы научились создавать и сохранять программу. Но как теперь открыть сохранённую программу? Для этого в Arduino IDE предусмотрено несколько способов:

• из пункта меню **Файл -> Открыть** (рисунок 8);



Рисунок 8 – Открытие файла

- при помощи комбинации клавиш Ctrl + O;
- из панели с часто используемыми командами (рисунок 9).



Рисунок 9 – Открытие скетча

В открывшимся окошке нужно выбрать папку, в которой находится нужная программа.

### Редактирование текста программы:

Удобный редактор текста программы очень важен при разработке какойлибо программы. В Arduino IDE он довольно неплох, однако уступает конкурентам, таким как Eclipse, Visual Studio и т.д. Однако, его вполне достаточно. В редакторе присутствуют все основные команды, необходимые при редактировании кода. Они находятся в меню *Правка*. Для самых часто используемых команд (копировать, ставить и т.д.) существуют комбинации, способствующие быстрому доступу к нужной команде правки, что очень удобно. Другими отличительными особенностями встроенного редактора кода являются возможность копирования кода для форумов и в html формате, что позволяет делится Вашими программами, сохраняя наглядность разметки в виде ВВ кодов или html разметки соответственно.

Давайте остановимся на основных командах, необходимых для редактирования программы (рисунок 10):

• Копировать. Пункт меню *Правка -> Копировать* или комбинация клавиш Ctrl + C;

- Вставить. Пункт меню *Правка -> Вставить* или комбинация клавиш Ctrl + V;
- Вырезать. Пункт меню *Правка -> Вырезать* или комбинация клавиш Ctrl + X;
- Выделить всё. Пункт меню *Правка -> Выделить всё* или комбинация клавиш Ctrl + A;
- Найти. Пункт меню *Правка -> Найти* или комбинация клавиш Ctrl + F;
- Отменить. Пункт меню *Правка -> Отменить* или комбинация клавиш Ctrl + Z;
- Вернуть. Пункт меню *Правка -> Вернуть* или комбинация клавиш *Ctrl* + Y;
- Форматировать текст программы. Пункт меню *Инструменты* -> *АвтоФорматирование* (рисунок 11) или комбинация клавиш *Ctrl* + *T*. Эта команда позволяет исправить неточности в разметке программы и привести её в более читабельный вид.



Рисунок 10 – Окно «правка»



Рисунок 11 – Автоформатирование кода

#### Подключение библиотеки:

Давайте разберёмся, что же такое библиотека. *Библиотека* — это набор функций, предназначенных для того, чтобы максимально упростить работу с Например, различными модулями, датчиками Т.Д. И библиотека LowPower позволяет легко управлять режимами энергосбережения модулей Arduino. Существует огромное количество различных модулей и датчиков. Но как ими управлять? Для этого разработаны специальные библиотеки, которые значительно облегчают работу. Но перед тем, как использовать дополнительные библиотеки, необходимо установить и подключить их. А как подключить библиотеку, спросите Вы? Есть несколько способов:через среду Arduino IDE. Для этого перейдите в меню Скети **Подключить библиотеку** (рисунок 12).



Рисунок 12 – Подключение библиотек

Если нужная библиотека есть в списке, то необходимо просто кликнуть на неё мышкой и она автоматически подключится к Вашей программе. А что же делать, если нужной библиотеки нет в списке? В таком случае перейдите во вкладку Скети -> Подключить библиотеку -> Управление библиотеками. Перед Вами откроется следующее окошко (рисунок 13):



Рисунок 13 – Окно управления библиотеками

В правом верхнем углу необходимо ввести название нужно библиотеки. Далее, из списка надо выбрать нужную библиотеку, её версию и нажать кнопку *установить*. Обратите внимание, что есть возможность отсортировать результаты поиска (вкладки *Tun* и *Tema*). Теперь она появится в списке установленных библиотек и её можно подключить через меню *Скети* -> *Подключить* библиотеку.

-Предварительно скачав нужную библиотеку её также можно подключить к своей программе. Если она находится в zip архиве, то её можно подключить следующим способом. Для этого нужно перейти в меню Скети -> Подключить библиотеку -> Подключить .ZIP библиотеку и в открывшемся окошке выбрать zip архив с библиотекой. Теперь эта библиотека появится в списке установленных и её можно подключить через меню Скети -> Подключить библиотеку. Если у Вас открыта Arduino IDE, то её нужно перезапустить, чтобы изменения были применены.

-Подключить библиотеку можно и без использования Arduino IDE. Для этого необходимо её скачать и скопировать папку с библиотекой по следующему пути: *X:\Пользователи\<Имяпользователя>\Документы\Ardu ino\libraries* (рисунок 14).



Рисунок 14 – Добавление библиотек

Если у Вас открыта Arduino IDE, то её нужно перезапустить, чтобы изменения были применены. Теперь эта библиотека появится в списке установленных eë онжом подключить И через меню Скети -> Подключить библиотеку. Однако можно и вручную в программе подключить библиотеку. Для этого перед функцией setup() нужно прописать следующую конструкцию #include <имя заголовочного файла.h> или #include «имя заголовочного файла.h».

В каждой библиотеке есть различные примеры использования функционала библиотеки. Имя заголовочного файла можно найти там. Дорогой читатель, рекомендуем внимательно изучать примеры, ведь любая, даже большая программа, состоит из кусочков простых примеров.

#### Выбор платы:

Существует довольно большое количество модулей Arduino. Загружать написанную программу нужно именно в тот тип модуля, который подключён к компьютеру. Выбрать модуль можно в меню *Инструменты -> Плата* (рисунок 15).



Рисунок 15 – Выбор платы

Далее необходимо выбрать тип контроллера, который установлен на модуле Arduino (на каждом контроллере есть маркировка). Это можно сделать в меню *Инструменты -> Процессор* (рисунок 16).



Рисунок 16 – Выбор процессора

# Компиляция программы:

Теперь, когда выбран конкретный модуль Arduino, можно переходить к компиляции написанной программы. Давайте разберёмся, что же такое компиляция. Если говорить простым языком и касательно среды Arduino IDE, то компиляция — это перевод написанной в IDE программы в эквивалентную,

но в машинных кодах. Программа записывается в микроконтроллер именно в машинных кодах, а не в том виде, в котором она написана в IDE. Компиляция также помогает найти ошибки в программе, т.к. компиляция не будет выполнена, если в программе есть ошибки.

С понятием компиляции мы разобрались. А как теперь открыть скомпилировать написанную программу? Для этого в Arduino IDE предусмотрено несколько способов:

• из пункта меню *Скетч -> Проверить/Компилировать*;



Рисунок 17 – Компиляция программы

- при помощи комбинации клавиш Ctrl + R;
- из панели с часто используемыми командами



Рисунок 18 – Компиляция программы

После успешной компиляции будет выведено сообщение об этом. Также в области сообщений можно найти информацию о том, сколько памяти занимает написанная программа. Если в программе есть ошибки, тогда в области сообщений будет выведено сообщение с указанием конкретной строки и ошибки в ней.

# Выбор программатора:

Пункт меню *Инструменты -> Программатор* используется для выбора аппаратного программатора, если программирование модуля или микроконтроллера осуществляется *не* при помощи встроенного USB-

последовательного соединения. Как правило, эта команда используется довольно редко, однако может пригодиться, например, при записи загрузчика в новый микроконтроллер.

Т.к. в модулях Arduino уже есть свой встроенный программатор, то в качестве программатора в меню *Инструменты -> Программатор* нужно оставить стандартный *AVRISP mkII* (рисунок 19).



Рисунок 19 – Выбор программатора

# Загрузка программы:

Теперь, когда почти со всеми элементами среды Arduino IDE мы разобрались, можно приступать к финальному этапу — загрузке программы в модуль Arduino.

Прежде чем загружать программу, нужно выбрать порт, к которому подключён Ваш модуль Arduino. Выбрать его можно в меню *Инструменты* -> *Порт* (рисунок 20).



Рисунок 20 — Выбор порта для загрузки

Это не обязательно должен быть СОМ5, как на рисунке. Имя порта у Вас, скорее всего, будет другим (СОМ3, СОМ 10 и т.д.).

Когда выбран соответствующий модуль Arduino, нужный порт, процессор и программатор, можно приступать к загрузке программы.

Для этого в Arduino IDE предусмотрено несколько способов:

из пункта меню Скетч -> Загрузка (рисунок 21);



Рисунок 21 – Загрузка скетча

- при помощи комбинации клавиш Ctrl + U;
- из панели с часто используемыми командами (рисунок 22).



Рисунок 22 – Загрузка скетча

В процессе загрузки программы первым этапом код будет скомпилирован, а только потом, если не возникло ошибок в ходе компиляции, будет записан в модуль Arduino. При успешной загрузке программы в области сообщений появится сообщение об этом (рисунок 23).



Рисунок 23 – Сообщение об успешной загрузке

Рекомендуем включить подробный вывод информации при компиляции и загрузке программы, это зачастую помогает выявить тип ошибки при компиляции или загрузке программы. Для этого в меню **Файл** -> **Настройки** (рисунок 24) установить соответствующие галочки.



Рисунок 24 — Включение подробного отчёта компиляции

### Монитор последовательного порта:

Между Arduino и компьютером можно обмениваться данными через последовательный порт (он же интерфейс UART). Монитор последовательного порта может использоваться как для вывода отладочной информации от модуля Arduino, так и для других целей. Через него можно как отправлять данные в модуль Arduino, так и получать данные от него. Не забудьте выбрать порт, к которому подключён модуль Arduino, иначе монитор последовательного порта не откроется! При его открытии модуль Arduino перезагрузится!

Открыть окно монитора последовательного порта можно несколькими способами:

• из пункта меню *Инструменты -> Монитор порта* (рисунок 25);



Рисунок 25 – Открытие последовательного порта

- при помощи комбинации клавиш Ctrl + Shift + M;
- из панели с часто используемыми командами (в правом верхнем углу, рисунок 26)



Рисунок 26 – Значок последовательного порта

После открытия монитора последовательного порта появится следующее окошко как на рисунке 27:



Рисунок 27 – Окно последовательного порта

В самом низу этого окошка можно изменить скорость работы порта (*она должна совпадать с той, которая указана в программе!*) и очистить окно.