Kapitel 1

Mengen und Abbildungen

1.1 Mengen

Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf den naiven Mengenbegriff stützen.

1.1.1 Definition. Eine *Menge* ist eine Zusammenfassung von bestimmten, wohl unterschiedenen Objekten unserer Anschauung zu einem Ganzen. Die Objekte heißen *Elemente* der Menge.

Ist x ein solches Element von M, so schreiben wir $x \in M$. Im Falle, dass x nicht zu M gehört, schreiben wir $x \notin M$. Möglichkeiten Mengen darzustellen sind die aufzählende Schreibweise wie zum Beispiel

$$M = \{a, b, c, d, e\}$$
 oder $M = \{1, 2, ...\}$,

und die beschreibende Schreibweise wie etwa

```
M = \{x : x \text{ ist ungerade ganze Zahl}\}.
```

Man beachte zum Beispiel, dass die Menge $\{a, b, c\}$ gleich der Menge $\{c, a, b, a\}$ ist, und dass z.B. die Menge $\{1, 3, 5, ...\}$ mit

```
\{x : x \text{ ist ungerade natürliche Zahl}\}
```

übereinstimmt. Einer bestimmten Menge werden wir oft begegnen, nämlich der *leeren Menge* \emptyset , also der Menge, die keine Elemente enthält.

1.1.2 Definition. Sind A, B Mengen, so sagt man A ist gleich B (A = B), wenn sie dieselben Elemente enthalten. Man sagt A ist eine Teilmenge von B ($A \subseteq B$), falls jedes Element von A auch ein Element von B ist. In diesem Fall bezeichnet man auch B als Obermenge von A ($B \supseteq A$). Will man zum Ausdruck bringen, dass dabei A mit B nicht übereinstimmt, so schreibt man $A \subseteq B$. Schreibweisen wie $A \ne B$, $A \supseteq B$, oder ähnliche sind dann selbsterklärend.

Hat man zwei oder mehrere Mengen, so kann man diese in verschiedener Weise miteinander verknüpfen.

1.1.3 Definition. Seien *A* und *B* zwei Mengen:

- → Die Menge $A \cup B = \{x : x \in A \text{ oder } x \in B\}$ heißt die *Vereinigungsmenge* von A und B. Für $A \cup B$ sagt man kurz auch A vereinigt B.
- → Die Menge $A \cap B = \{x : x \in A \text{ und } x \in B\}$ heißt die *Schnittmenge* von A und B. Man sagt kurz auch A geschnitten B.
- → Die Menge $B \setminus A = \{x : x \in B \text{ und } x \notin A\}$ ist die *Differenz* von B und A. Man sagt kurz auch B ohne A.
- → Betrachtet man Teilmengen A einer fixen Grundmenge M, so schreiben wir auch A^c für $M \setminus A$ und nennen es das Komplement von A in M, kurz A Komplement.
- → $A \times B := \{(x, y) : x \in A, y \in B\}$ das *kartesische Produkt* der Mengen A und B. Das ist also die Menge, deren Elemente die geordneten Paare sind, deren erste Komponente zu A und deren zweite Komponente zu B gehört¹. Für $A \times A$ schreibt man auch A^2 .

Auch Durchschnitt und Vereinigung von mehr als zwei Mengen kann man analog definieren. Ist M_i , $i \in I$, eine Familie von Mengen, welche mit der Indexmenge I durch indiziert ist, so setzt man

$$\bigcap_{i \in I} M_i := \{x : x \in M_i \text{ für alle } i \in I\},$$

$$\bigcup_{i \in I} M_i := \{x : \text{es gibt ein } i \in I \text{ mit } x \in M_i\}.$$

Das kartesische Produkt endlich vieler Mengen ist analog wie jenes für zwei Mengen erklärt. Zum Beispiel ist

$$A \times B \times C := \{(x, y, z) : x \in A, y \in B, z \in C\}.$$

Für $A \times A \times A$ schreibt man A^3 , und so weiter.

1.1.4 Beispiel.

(i) Einfache Beispiele für Durchschnitts- bzw. Vereinigungsbildung wären:

$$\{1,2,3\} \cap \{-1,0,1\} = \{1\}, \ \{a,b,7\} \cap \{3,4,x\} = \emptyset,$$
$$\{2,3,4,5\} \cup \{4,5,6,7\} = \{2,3,4,5,6,7\}, \ \{a,b,c\} \cup \emptyset = \{a,b,c\}.$$

(ii) Ist $M_2 = \{x \in \mathbb{Z} : \text{ es gibt ein } y \in \mathbb{Z}, \text{ sodass } x = 2y\}$, so wäre $\mathbb{Z} \setminus M_2$ genau die Menge der ungeraden ganzen Zahlen. Hier und im Folgenden bezeichnet \mathbb{Z} die Menge aller ganzen Zahlen.

¹ Bemerke, dass $(x, y) \neq (y, x)$ für $x \neq y$.

1.1 Mengen 3

(iii) Weiters ist

$$\{1, 2, 3, 4\} \setminus \{4, 5, 6, 7\} = \{1, 2, 3\}, \{a, b, c\} \setminus \emptyset = \{a, b, c\}.$$

(iv) Bezeichnet man mit \mathbb{N} die Menge der natürlichen Zahlen, also $\mathbb{N} = \{1, 2, 3, \dots\}$, und mit $2\mathbb{N}$ die Menge der geraden natürlichen Zahlen, so ist das kartesische Produkt $\mathbb{N} \times 2\mathbb{N}$ die Menge

$$\mathbb{N} \times 2\mathbb{N} = \{(1,2), (1,4), \dots, (2,2), (2,4), \dots, (3,2), (3,4), \dots\}.$$

1.1.5 Definition. Ist M eine Menge, so bezeichnet man mit $\mathcal{P}(M)$ die Menge aller Teilmengen von M,

$$\mathcal{P}(M) = \{A : A \subseteq M\}.$$

Diese Menge heißt die Potenzmenge von M. Sie ist also die Menge, deren Elemente alle Teilmengen von M sind.

1.1.6 Beispiel. Ist $M = \{1, 2, 3\}$, dann ist die Potenzmenge $\mathcal{P}(M)$ gleich

$$\mathcal{P}(M) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

Die Potenzmenge der Menge $\mathbb N$ ist schon viel zu groß, um sie noch in irgendeiner aufzählenden Weise anschreiben zu können. Sie enthält ja neben Mengen des Typs $\{1,2,3\},\{4,6,7,8,1004\}$, usw. auch noch unendliche Mengen wie zum Beispiel $2\mathbb N$ oder $\{n\in\mathbb N:n\geq 27\}$ und viele mehr.

1.1.7 Bemerkung. Für das Verknüpfen von Mengen gelten diverse Rechenregeln. Es gilt zum Beispiel das *Distributivgesetz* für drei Mengen *A*, *B*, *C*:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \tag{1.1}$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Um z.B. (1.1) nachzuweisen beachte man, dass zwei Mengen übereinstimmen, wenn ein beliebiges Element x genau dann in der einen Menge ist, wenn es auch in der anderen Menge ist:

Ein x liegt in
$$A \cap (B \cup C)$$

genau dann, wenn

$$x \in A \ und \ x \in B \cup C$$
.

Das ist gleichbedeutend mit:

 $x \in A$, und x liegt zumindest in einer der Mengen B bzw. C.

Diese Aussage ist aber äquivalent zu:

Zumindest eine der Aussagen - $x \in A$ und $x \in B$ - oder - $x \in A$ und $x \in C$ - trifft zu.

Nun ist das dasselbe, wie:

$$x \in A \cap B \ oder \ x \in A \cap C$$
.

Schließlich gilt das genau dann, wenn

$$x \in (A \cap B) \cup (A \cap C)$$
.

1.2 Funktionen

- **1.2.1 Definition.** Seien M und N Mengen. Eine Teilmenge $f \subseteq M \times N$ heißt auch *Relation* zwischen M und N. $f \subseteq M \times N$ heißt *Funktion* (oder auch *Abbildung*) von M nach N, wenn zusätzlich gilt:
 - (i) für alle $x \in M$ gibt es ein $y \in N : (x, y) \in f$;
- (ii) sind $(x, y_1) \in f$ und $(x, y_2) \in f$, so folgt $y_1 = y_2$.

Die Menge M wird als Definitionsmenge und die Menge N als Zielmenge bzw. Wertevorrat bezeichnet.

1.2.2 Fakta.

- 1. Die Bedingung (i) besagt, dass jedem x (mindestens) ein Funktionswert y zugeordnet wird, man sagt auch f ist überall definiert. Die Bedingung (ii) besagt, dass einem x höchstens ein Funktionswert zugeordnet wird. Man sagt auch f ist wohldefiniert.
- 2. Eine Funktion f von M nach N lässt sich also als eine Vorschrift auffassen, durch die jedem Element x aus der Menge M in eindeutiger Weise jenes Element y aus der Menge N zugeordnet wird, sodass (x, y) ∈ f. Man schreibt y = f(x) und bezeichnet y als den Funktionswert von f an der Stelle x. Dabei stimmen zwei Funktionen f und g von M nach N überein, also f = g, genau dann, wenn f(x) = g(x) für alle x ∈ M.
- 3. Sieht man eine Funktion eher als Abbildungsvorschrift, dann unterscheidet man obwohl mathematisch das Gleiche die Funktion als Abbildungsvorschrift und die Funktion als Teilmenge von $M \times N$, und man bezeichnet diese Teilmenge von $M \times N$ auch als Graph graph f von f.
- **1.2.3 Beispiel.** Sei M die Menge aller Wörter in einem Wörterbuch. $\mathbb{N} = \{1, 2, ...\}$ sei die Menge der natürlichen Zahlen. Sei nun f jene Funktion auf M, die jedem Wort die Anzahl seiner Buchstaben zuweist. Also zum Beispiel

$$f('gehen') = 5$$
.

1.2.4 Beispiel. Wir haben im Abschnitt über Familien von Mengen M_i , $i \in I$, gesprochen, ohne genau zu sagen, was das bedeutet. Das ist nämlich die Funktion $i \mapsto M_i$ von der Indexmenge I in die Potenzmenge $\mathcal{P}(M)$, wobei M eine hinreichend große Menge ist, die alle Mengen M_i enthält, z.B. $M = \bigcup_{i \in I} M_i$.

Als Abbildungsvorschrift gibt man eine Funktion f von M nach N auch oft an als

$$f: \left\{ \begin{array}{ccc} M & \to & N, \\ x & \mapsto & f(x). \end{array} \right.$$

Eine wichtige Funktion soll nun derart angegeben werden.

1.2 Funktionen 5

1.2.5 Definition. Ist *M* eine Menge, so heißt die Abbildung

$$\mathrm{id}_M: \left\{ \begin{array}{ccc} M & \to & M, \\ x & \mapsto & x, \end{array} \right.$$

die identische Abbildung auf der Menge M. Daher $id_M: M \to M$ mit $id_M(x) = x$.

1.2.6 Definition. Sei f eine Funktion von M nach N und sei $A \subseteq M$. Die Funktion, die jedem $x \in A$ den Funktionswert f(x) zuweist, heißt *Einschränkung* von f auf A und wird mit $f|_A$ bezeichnet. Also

$$f|_A = \{(x, y) \in f : x \in A\}.$$

Ist umgekehrt g eine Funktion von A nach N und $M \supseteq A$, so heißt eine Funktion $f: M \to N$ Fortsetzung von g, falls $g = f|_A$.

- **1.2.7 Definition.** Sei f eine Funktion von M nach N.
 - → Für eine Teilmenge A von M bezeichne

$$f(A) = \{y \in N : \text{ es gibt ein } x \in A, \text{ sodass } f(x) = y\},$$

das *Bild* der Menge *A* unter der Abbildung *f*.

- \bullet Für f(M) schreibt man auch ran f; vom englischen Wort range. Diese Menge wird als Wertebereich bzw. Bildmenge von f bezeichnet.
- → Das *vollständige Urbild* einer Teilmenge *B* von *N* ist die Menge

$$f^{-1}(B) = \{x \in M : f(x) \in B\}.$$

Für $y \in N$ wird jedes $x \in f^{-1}(\{y\})$ als ein *Urbild* von y bezeichnet.

- **1.2.8 Bemerkung.** Ist $f: M \to N$ eine Funktion, so muss die Zielmenge N im Allgemeinen nicht mit der Bildmenge f(M) übereinstimmen. Ist insbesondere $B \subseteq N$ mit $f(M) \subseteq B$, so kann man f auch als Funktion von M nach B betrachten.
- **1.2.9 Beispiel.** Betrachte zum Beispiel die Funktion $n \mapsto 2n$ von \mathbb{N} in \mathbb{N} . Natürlich kann man auch $n \mapsto 2n$ als Funktion von \mathbb{N} in die Menge aller geraden natürlichen Zahlen betrachten.
- **1.2.10 Bemerkung.** In manchen Zusammenhängen betrachtet man auch Funktionen, die nicht überall definiert sind. Das sind Teilmengen von $f \subseteq M \times N$, die nur die Eigenschaft (ii) aus Definition 1.2.1 haben. Damit gibt es zu jedem Wert $x \in M$ höchstens einen also keinen oder genau einen Funktionswert $y \in N$. Der *Definitionsbereich* dom f (vom englischen Wort *domain*) der Funktion f ist dann definiert durch:

dom
$$f = \{x \in M : \text{ es gibt ein } y \in N, \text{ sodass } (x, y) \in f\}.$$

Betrachte etwa

$$f := \{(x, y) \in \mathbb{N}^2 : x = 2y\}. \tag{1.2}$$

Offenbar ist dann dom f die Menge der geraden Zahlen.

Folgende Begriffsbildung ist auf den ersten Blick nicht allzu kompliziert. Sie spielt aber in der Mathematik eine immens wichtige Rolle.

- **1.2.11 Definition.** Sei $f: M \to N$ eine Funktion. f heißt
 - → *injektiv*, wenn für je zwei $x_1, x_2 ∈ M$

$$f(x_1) = f(x_2) \implies x_1 = x_2$$

gilt, es also zu jedem Wert $y \in N$ höchstens ein Urbild gibt. Äquivalent dazu ist, dass aus $x_1 \neq x_2$ folgt, dass $f(x_1) \neq f(x_2)$.

- → *surjektiv*, wenn es zu jedem $y \in N$ ein $x \in M$ gibt, sodass f(x) = y, oder äquivalent ran f = N.
- bijektiv, wenn sie sowohl injektiv als auch surjektiv ist.
- **1.2.12 Bemerkung.** Man beachte, dass die Eigenschaft surjektiv, und somit auch bijektiv, zu sein, ganz wesentlich von der betrachteten Zielmenge der Funktion f abhängt. Denn ist etwa $f: M \to N$ eine beliebige Funktion, und betrachtet man f als Funktion von M nach f(M) und nicht nach N, so ist $f: M \to f(M)$ immer surjektiv. Vergleiche auch Bemerkung 1.2.8.
- **1.2.13 Beispiel.** Folgende drei Beispiele zeigen insbesondere, dass keine der beiden Eigenschaften injektiv und surjektiv zu sein, die jeweils andere impliziert.
 - (i) Sei A die Menge aller in Österreich amtlich registrierten Staatsbürger, und sei f jene Funktion, die einer Person aus A ihre Sozialversicherungsnummer zuordnet. Dann ist f : A → N keine surjektive (es gibt ja nur endlich viele Österreicher), aber sehr wohl eine injektive Funktion, da zwei verschiedene Personen auch zwei verschiedene Sozialversicherungsnummern haben.
 - (ii) Die Funktion $g: A \to \mathbb{N}$, die jeder Person ihre Körpergröße in Zentimeter (gerundet) zuordnet, ist weder injektiv noch surjektiv.
- (iii) Sei $h : \mathbb{N} \to \mathbb{N}$ die Funktion, die einer Zahl (dargestellt im Dezimalsystem) ihre Ziffernsumme zuordnet. Diese Funktion ist nicht injektiv (h(11) = 2 = h(2)), aber sie ist surjektiv, denn ist $n \in \mathbb{N}$, so gilt sicherlich

$$h(\underbrace{11\ldots 1}_{n \text{ Stellen}}) = n.$$

1.2.14 Lemma. Sei f eine Funktion von M nach N. Ist f bijektiv, so ist

$$f^{-1} = \{ (y, x) \in N \times M : (x, y) \in f \}$$
 (1.3)

eine bijektive Funktion von N nach M, die $f^{-1}(f(x)) = x$ für jedes $x \in M$ und $f(f^{-1}(y)) = y$ für jedes $y \in N$ erfüllt. Schließlich gilt $(f^{-1})^{-1} = f$.

1.2 Funktionen 7

Beweis. Ist $y \in N$, dann existiert ein $x \in M$ mit y = f(x), da f surjektiv ist. Also ist die Forderung (i) von Definition 1.2.1 für f^{-1} erfüllt. Um auch (ii) nachzuprüfen, sei $(y, x_1), (y, x_2) \in f^{-1}$. Dann sind $(x_1, y), (x_2, y) \in f$ und wegen der Injektivität von f folgt $x_1 = x_2$.

Die Funktion f erfüllt die Forderung (i) von Definition 1.2.1. Also gibt es zu jedem beliebigen $x \in M$ ein $y \in N$, sodass $(x, y) \in f$ bzw. $(y, x) \in f^{-1}$. Somit gilt $x \in f^{-1}(N)$, und infolge ist f^{-1} surjektiv. Um die Injektivität von f^{-1} zu zeigen, gelte $f^{-1}(y_1) = f^{-1}(y_2)$. Mit $x := f^{-1}(y_1) = f^{-1}(y_2)$ folgt $(y_1, x), (y_2, x) \in f^{-1}$ bzw. $(x, y_1), (x, y_2) \in f$. Wegen (ii) von Definition 1.2.1 angewandt auf f folgt $y_1 = y_2$.

 $f^{-1}(f(x)) = x$ bzw. $f(f^{-1}(y)) = y$ ist klar, wenn man sich vergegenwärtigt, dass y := f(x) ja genau $(x, y) \in f$ und $(y, x) \in f^{-1}$ genau $f^{-1}(y) = x$ bedeutet. $(f^{-1})^{-1} = f$ folgt unmittelbar aus der (1.3).

1.2.15 Bemerkung. Man sieht am obigen Beweis, dass die Inverse f^{-1} einer injektiven Funktion f eine nicht notwendig überall definierte Funktion ist, vgl. Bemerkung 1.2.10. Ihr Definitionsbereich ist gerade ran f. Ist dagegen f nicht injektiv, so ist f^{-1} nicht einmal mehr eine nicht überall definierte Funktion.

Durch unmittelbares Nachprüfen der Definition sieht man, dass die Zusammensetzung von Funktionen wieder eine Funktion ist.

1.2.16 Definition. Seien $f: M \to N$ und $g: N \to P$ Funktionen. Dann bezeichne $g \circ f$ jene Funktion von M nach P, die durch

$$(g \circ f)(x) = g(f(x)), x \in M,$$

definiert ist. Man bezeichnet $g \circ f$ oft auch als die zusammengesetzte Funktion oder als die Hintereinanderausführung von f und g.

Ist f eine Abbildung von M nach N, so gilt immer

$$f = f \circ \mathrm{id}_M = \mathrm{id}_N \circ f$$
.

Außerdem ist die Hintereinanderausführung assoziativ, was für Funktionen $f: M \to N$, $g: N \to P$ und $h: P \to Q$ bedeutet, dass $(h \circ g) \circ f = h \circ (g \circ f)$. In der Tat gilt für jedes $x \in M$

$$((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x)))$$
$$= h((g \circ f)(x)) = (h \circ (g \circ f))(x).$$

Wegen der Assoziativität kann man die Klammern weglassen und einfach $h \circ g \circ f$ schreiben.

1.2.17 Bemerkung (*). Man kann $g \circ f$ auch als

$$\{(x,z): \exists y \in N, \ (x,y) \in f, (y,z) \in g\}$$
 (1.4)

schreiben. Für Mengen M, N, P und beliebige Teilmengen $f \subseteq M \times N$, $g \subseteq N \times P$ – also eine Relation f zwischen M und N und eine Relation g zwischen N und P – kann man vermöge (1.4) auch $g \circ f$ definieren. Man spricht vom *Relationenprodukt* von f und g.

- **1.2.18 Bemerkung.** Sind f und g nicht mehr überall definiert, so muss man bei der Komposition darauf achten, dass die Definitionsbereiche so zusammenpassen, dass der Bildbereich von f im Definitionsbereich von g enthalten ist.
- **1.2.19 Satz.** Sei $f: M \rightarrow N$ eine Funktion.
 - Ist $f: M \to N$ bijektiv, so gilt $f^{-1} \circ f = \mathrm{id}_M$, $f \circ f^{-1} = \mathrm{id}_N$.
 - → *Ist umgekehrt g* : $N \rightarrow M$ *eine Funktion mit*

$$g \circ f = \mathrm{id}_M, \ f \circ g = \mathrm{id}_N,$$
 (1.5)

so ist f bijektiv und es gilt $g = f^{-1}$.

• Sind $f: M \to N$ und $h: N \to P$ bijektiv, so gilt

$$(h \circ f)^{-1} = f^{-1} \circ h^{-1}$$
.

Beweis. $f^{-1} \circ f = \mathrm{id}_M$, $f \circ f^{-1} = \mathrm{id}_N$ haben wir in Lemma 1.2.14 gesehen. Sei nun die Existenz einer Funktion g vorausgesetzt, die (1.5) erfüllt. Zu $y \in N$ ist x = g(y) ein Element aus M, welches $f(x) = f(g(y)) = \mathrm{id}_N(y) = y$ erfüllt. Also ist f surjektiv. Aus $f(x_1) = f(x_2)$ folgt

$$x_1 = g(f(x_1)) = g(f(x_2)) = x_2$$
,

womit sich f als injektiv herausstellt. Also ist f bijektiv und hat damit auch eine Inverse. Zudem gilt

$$g=\mathrm{id}_M\circ g=(f^{-1}\circ f)\circ g=f^{-1}\circ (f\circ g)=f^{-1}\circ \mathrm{id}_N=f^{-1}\,.$$

Seien nun $f: M \to N$ und $h: N \to P$ bijektiv. Die Funktion $e:=f^{-1} \circ h^{-1}$ erfüllt wegen der Assoziativität der Hintereinanderausführung

$$e\circ (h\circ f)=f^{-1}\circ (h^{-1}\circ h)\circ f=f^{-1}\circ \mathrm{id}_N\circ f=f^{-1}\circ f=\mathrm{id}_M\,,$$

sowie

$$(h \circ f) \circ e = h \circ (f \circ f^{-1}) \circ h^{-1} = h \circ \mathrm{id}_N \circ h^{-1} = h \circ h^{-1} = \mathrm{id}_P.$$

Nach der zweiten Aussage des Satzes gilt $e = (h \circ f)^{-1}$.

1.3 Äquivalenzrelation

- **1.3.1 Definition.** Sei M eine Menge. Eine Teilmenge $\sim \subseteq M \times M$, also eine Relation auf M, heißt Äquivalenzrelation auf M, wenn²
 - $extstyle \sim reflexiv \text{ ist: } x \sim x \text{ für alle } x \in M;$

 $[\]frac{1}{2}x \sim y$ ist hier eine andere Schreibweise für $(x, y) \in \sim$.

1.4 Übungsaufgaben 9

- $\bullet \sim symmetrisch$ ist: aus $x \sim y$ folgt $y \sim x$;
- \bullet ~ transitiv ist: aus $x \sim y$ und $y \sim z$ folgt $x \sim z$.

Für ein $x \in M$ bezeichnet

$$[x]_{\sim} := \{ y \in M : y \sim x \}$$

die sogenannte *Restklasse*, die von x aufgespannt wird. $M/_{\sim}$ steht dann für die Menge aller möglichen Restklassen.

Das interessante am Konzept der Äquivalenzrelation ist, dass sich M als disjunkte Vereinigung von Restklassen schreiben lässt.

1.3.2 Lemma. Sei M eine Menge und \sim eine Äquivalenzrelation darauf. Dann gilt für $x, y \in M$, dass $x \sim y$ genau dann, wenn $[x]_{\sim} = [y]_{\sim}$. Im Falle $x \not\sim y$, also es gilt nicht $x \sim y$, sind $[x]_{\sim}$ und $[y]_{\sim}$ disjunkt. Schließlich ist die Vereinigung aller Restklassen ganz M.

Beweis. Aus $x \sim y$ folgt wegen der Symmetrie auch $y \sim x$. $z \in [x]_{\sim}$ bedingt zudem $z \sim x$. Wegen der Transitivität erhält man $z \sim y$ bzw. $z \in [y]_{\sim}$; also $[x]_{\sim} \subseteq [y]_{\sim}$. Genauso zeigt man $[y]_{\sim} \subseteq [x]_{\sim}$, womit $[x]_{\sim} = [y]_{\sim}$.

Sei nun $[x]_{\sim} \cap [y]_{\sim} \neq \emptyset$, was insbesondere bei $[x]_{\sim} = [y]_{\sim}$ der Fall ist. Aus $z \in [x]_{\sim} \cap [y]_{\sim}$ folgt $z \sim x$ und $z \sim y$. Transitivität und Symmetrie ergeben dann auch $x \sim y$. Nach dem ersten Absatz des Beweises erhalten wir daraus wiederum $[x]_{\sim} = [y]_{\sim}$.

Somit haben wir sowohl $x \sim y \Leftrightarrow [x]_{\sim} = [y]_{\sim}$ als auch $x \not\sim y \Rightarrow [x]_{\sim} \cap [y]_{\sim} = \emptyset$ gezeigt. Dass die Vereinigung aller Restklassen ganz M ist, folgt sofort aus $M = \bigcup_{x \in M} \{x\} \subseteq \bigcup_{x \in M} [x]_{\sim} \subseteq M$.

Eine Menge S von Teilmengen einer Menge M, also $S \subseteq \mathcal{P}(M)$, heißt *Partition* der Menge M, wenn alle verschiedenen $A, B \in S$ immer disjunkt sind, und wenn die Vereinigung aller $A \in S$ ganz M ergibt. Lemma 1.3.2 besagt, dass $M/_{\sim}$ eine Partition ist.

1.3.3 Bemerkung. Sei umgekehrt S eine Partition der Menge M. Für $x \in M$ sei A(x) jenes $A \in S$, sodass $x \in A$. A(x) ist ob den Eigenschaften von Partitionen eindeutig bestimmt. Setzen wir nun $x \sim y :\Leftrightarrow A(x) = A(y)$, so überprüft man leicht, dass \sim eine Äquivalenzrelation auf M ist, und sodass M/\sim genau mit der gegebenen Partition S übereinstimmt.

1.4 Übungsaufgaben

- 1.1 Seien $A, B, C \subseteq M$ Mengen.
 - (i) Berechnen Sie $A \cup \emptyset$, $(A \cup B)^c \cup (A \setminus B)$, \emptyset^c , $A \times \emptyset$.
 - (ii) Zeigen Sie, dass $A \subseteq B$ genau dann, wenn $A \cap B = A$.
 - (iii) Was folgt aus $A \setminus B = A \cup B$ für die Menge B?
 - (iv) Zeigen Sie, dass $A \supseteq B$ genau dann, wenn $A \cap B = B$.

- 1.2 Seien X_i , $i \in I$ und Y_i , $i \in I$ Familien von Mengen, die alle in einer Grundmenge M enthalten sind.
 - (i) Zeigen Sie die de Morganschen Regeln

$$\left(\bigcup_{i\in I}X_i\right)^c=\bigcap_{i\in I}X_i^c,\quad \left(\bigcap_{i\in I}X_i\right)^c=\bigcup_{i\in I}X_i^c.$$

(ii) Beweisen Sie

$$\bigg(\bigcup_{i\in I}(X_i\cup Y_i)\bigg)^c=\bigg(\bigcap_{i\in I}X_i^c\bigg)\cap\bigg(\bigcap_{i\in I}Y_i^c\bigg),$$

sowie

$$\left(\bigcup_{i\in I}X_i\right)\cap\left(\bigcup_{i\in I}Y_i\right)=\bigcup_{(i,j)\in I\times I}(X_i\cap Y_j).$$

- 1.3 Sei M eine Menge und sei $\mathcal{A} \subseteq \mathcal{P}(M)$. Ausgehend von \mathcal{A} konstruieren wir eine weitere Menge $\mathcal{B} \subseteq \mathcal{P}(M)$ von Teilmengen B von M, und zwar als die Menge aller möglichen Vereinigungen von Mengen aus \mathcal{A} . Also ist \mathcal{B} die Menge aller $B \subseteq M$, sodass es eine Familie $(A_i)_{i \in I}$ gibt mit $A_i \in \mathcal{A}$, $i \in I$ und $B = \bigcup_{i \in I} A_i$. Man weise nach, dass $\bigcup_{j \in J} B_j \in \mathcal{B}$, wenn $(B_j)_{j \in J}$ eine Familie von Mengen aus \mathcal{B} ist.
- 1.4 (i) Man betrachte die Funktion $f_1: X \to Y$ als Teilmenge von $X \times Y$. Ist f_2 eine weitere Funktion von X nach Y, sodass $f_1 \subseteq f_2$ als Teilmengen von $X \times Y$, so zeige man, dass $f_1 = f_2$.
 - (ii) Weiters sei $X = \{a, b, c\}$. Sei $f : \mathcal{P}(X) \to \mathcal{P}(X)$ eine Funktion, wobei $f(A) = A \cup \{a\}$. Stellen Sie diese Funktion als Teilmenge von $\mathcal{P}(X) \times \mathcal{P}(X)$, also als Menge von Paaren dar.
- 1.5 Sei $\mathbb{N} = \{1, 2, 3, ...\}$ die Menge der natürlichen Zahlen, \mathbb{Z} die Menge der ganzen Zahlen und \mathbb{Q} die Menge der rationalen Zahlen.

Mit den aus der Schule bekannten Eigenschaften betrachte man $f: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q}$, $(p,n) \mapsto \frac{p}{n}$. Ist diese Funktion injektiv, surjektiv, bijektiv? Falls sie nicht bijektiv ist: Wie kann man den Definitionsbereich einschränken, sodass man eine bijektive Funktion erhält?

- 1.6 Seien $f: X \to Y$ und $g: Y \to Z$ Funktionen. Zeigen Sie:
 - (i) Sind f und g beide injektiv (surjektiv), so ist auch $g \circ f$ injektiv (surjektiv).
 - (ii) Ist $g \circ f$ bijektiv, so muss f injektiv und g surjektiv sein.
- 1.7 Sei $f: X \to Y$ eine Funktion und seien $C, D \subseteq Y$. Beweisen Sie:
 - (i) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
 - (ii) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
 - (iii) Gilt $C \subseteq D \subseteq Y$, so folgt $f^{-1}(C) \subseteq f^{-1}(D)$.
- 1.8 Sei $f: X \to Y$ eine Funktion und seien $A, B \subseteq X$. Zeigen Sie:
 - (i) $f(A \cup B) = f(A) \cup f(B)$.

1.4 Übungsaufgaben 11

- (ii) Gilt $A \subseteq B \subseteq X$, so folgt $f(A) \subseteq f(B)$.
- Gilt auch $f(A \cap B) = f(A) \cap f(B)$? Wenn nicht, dann gebe man ein Gegenbeispiel an.
- 1.9 Sei $f: X \to Y$ eine Funktion. Zeigen Sie, dass folgende Aussagen äquivalent sind.
 - (i) f ist injektiv.
 - (ii) $f^{-1}(f(A)) = A$ für alle $A \subseteq X$.
 - (iii) $f(A \cap B) = f(A) \cap f(B)$ für alle $A, B \subseteq X$.
- 1.10 Sei $M = \{1, 2, ..., 10\}$, $N = \{2, ..., 9\}$ und $f : N \to M$, $n \mapsto n + 1$. Wie viele Fortsetzungen von f zu einer Funktion $g : M \to M$ gibt es? Weiters gebe man alle Fortsetzungen von f zu einer Funktion $g : M \to M$ an, sodass g surjektiv ist.
- 1.11 Geben Sie eine Funktion an, die \mathbb{N} bijektiv auf $\mathbb{N} \times \mathbb{N}$ abbildet.