Disjoint Sets

Time Limit: 5 Second Memory Limit: 2048 MB

You are given a graph with n isolated vertices (i.e. there is no edge in the graph) labeled as $1 \dots n$. Write a program that supports the following two operations:

- Union u v: add an undirected edge between vertex u and v.
- Count u: count the number of vertices reachable from u in the current graph. A vertex v is reachable from another vertex u if you can reach v through a non-negative number of edges previous added by Union operations.

Input

The first line of input contains two integers n and m $(1 \le n, m \le 10^6)$ - the number of nodes and operations.

The next m lines contain the description of the operations. Each line starts with one of *Union* or *Count*, and followed by two integers u and v $(1 \le u, v \le n)$ if the operation is *Union*, or one integer u $(1 \le u \le n)$ if the operation is *Count*.

Output

For each operation of type Count, output a single integer denoting the answer to the query.

Sample Inputs	Sample Outputs
5 5	4
Union 1 2	1
Union 2 3	
Union 3 4	
Count 3	
Count 5	