The group G is isomorphic to the group labelled by [18, 4] in the Small Groups library. Ordinary character table of $G \cong (C3 \times C3) : C2$:

	1a	3a	3b	3c	3d	2a
χ_1	1	1	1	1	1	1
χ_2	1	1	1	1	1	-1
χ_3	2	2	-1	-1	-1	0
χ_4	2	-1	2	-1	-1	0
χ_5	2	-1	-1	2	-1	0
χ_6	2	-1	-1	-1	2	0

Trivial source character table of $G \cong (C3 \times C3) : C2$ at p = 3:

 $P_2 = Group([(1, 9, 4)(2, 12, 6)(3, 14, 8)(5, 16, 11)(7, 17, 13)(10, 18, 15)]) \cong C3$ $P_3 = Group([(1, 7, 3)(2, 10, 5)(4, 13, 8)(6, 15, 11)(9, 17, 14)(12, 18, 16)]) \cong C3$ $P_4 = Group([(1, 17, 8)(2, 18, 11)(3, 9, 13)(4, 7, 14)(5, 12, 15)(6, 10, 16)]) \cong C3$ $P_5 = Group([(1, 14, 13)(2, 16, 15)(3, 17, 4)(5, 18, 6)(7, 9, 8)(10, 12, 11)]) \cong C3$

 $P_1 = Group([()]) \cong 1$

Normalisers N_i		N_1		N_2		N_3		N_4		N_5		N_6	
p-subgroups of G up to conjugacy in G		P_1		P_2		P_3		P_4		P_5		P_6	
Representatives $n_j \in N_i$		2a	1a	2a									
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6$		1	0	0	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6$	9	-1	0	0	0	0	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	3	1	3	1	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	3	-1	3	-1	0	0	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	3	1	0	0	3	1	0	0	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	3	-1	0	0	3	-1	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	3	1	0	0	0	0	3	1	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	3	-1	0	0	0	0	3	-1	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	3	1	0	0	0	0	0	0	3	1	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	3	-1	0	0	0	0	0	0	3	-1	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	

```
P_6 = Group([(1,9,4)(2,12,6)(3,14,8)(5,16,11)(7,17,13)(10,18,15),(1,7,3)(2,10,5)(4,13,8)(6,15,11)(9,17,14)(12,18,16)]) \cong C3 \times C3
N_1 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18),(1,4,9)(2,6,12)(3,8,14)(5,11,16)(7,13,17)(10,15,18)]) \cong (C3 \times C3) : C2
N_2 = Group([(1,9,4)(2,12,6)(3,14,8)(5,16,11)(7,17,13)(10,18,15),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18)]) \cong (C3 \times C3) : C2
N_3 = Group([(1,7,3)(2,10,5)(4,13,8)(6,15,11)(9,17,14)(12,18,16),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,4,9)(2,6,12)(3,8,14)(5,11,16)(7,13,17)(10,15,18)]) \cong (C3 \times C3) : C2
N_4 = Group([(1,17,8)(2,18,11)(3,9,13)(4,7,14)(5,12,15)(6,10,16),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18)]) \cong (C3 \times C3) : C2
N_5 = Group([(1,14,13)(2,16,15)(3,17,4)(5,18,6)(7,9,8)(10,12,11),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18)]) \cong (C3 \times C3) : C2
N_6 = Group([(1,7,3)(2,10,5)(4,13,8)(6,15,11)(9,17,14)(12,18,16),(1,9,4)(2,12,6)(3,14,8)(5,16,11)(7,17,13)(10,18,15),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18)]) \cong (C3 \times C3) : C2
N_6 = Group([(1,7,3)(2,10,5)(4,13,8)(6,15,11)(9,17,14)(12,18,16),(1,9,4)(2,12,6)(3,14,8)(5,16,11)(7,17,13)(10,18,15),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11
```