电子科技大学

《Multisim 与电路仿真设计》实验报告

实验 2: 直流稳压电源分析与设计 ______

学生姓名: 李聪 学号: 2019010398114

一、实验目的与任务

1、实验目的

熟悉电路设计流程,理解器件参数,理解整流、滤波、稳压等各模块的作用。设计一个直流稳压电源,通过Multisim仿真优化达到设计指标。

2、实验内容

(1) 整流电路分析

问题 1: 阐电路如图 1,整流桥选用 1B4B42。用示波器测试整流输出电压波形,测试输出直流电压,测试输出交流电压有效值,完成表 1。述在软件中测试电压的不同方法。

(2) 整流滤波电路分析

电路如图 2,改变滤波电容值(见表 1),用示波器分别测试滤波电路输出电压波形,测试输出直流电压,测试交流电压有效值,完成表 1。

问题 2:解释滤波电路的作用及不同的滤波电容值对滤波效果的影响。

电容	无滤波电容	100	500	1000
(µ F)				

直流 (V)	6. 45	8. 51	9. 981	10. 21
交流 (V)	3. 57	1.55	0. 45	0. 22

表 1 整流滤波电路实验数据

(3) 直流稳压电源设计与仿真

用三端稳压器 MC7805 设计一个直流稳压电源,要求如下。测试相关参数,完成表 2 (见下页)。

问题 3: 若要减小纹波电压,应如何调整电路哪些参数;

实际电路中 CI、CO 两个电容的作用、一般应如何选取。

输入 220V、50Hz 市电,输出直流电压电压 5V,最大输出电流 1A

输出纹波电压有效值<1mV

电压调整率<1%(200V-240V, 1A输出)

负载调整率<1%(220V输入,10mA-1A输出)

$$U_{\rm I} - U_{\rm O} \ge 3 \rm V$$

负载 (Ω)	5	50	500
输出电压(V)(<i>U;</i> =220V)	4. 98	5. 01	5. 01
纹波电压(mV,有效值)	0.66	0.10	0.01
负载调整率	0. 021%		
源电压(V)	200	220	240
输出电压 (V) (R=5Ω)	4. 98	_	0.75
纹波电压(mV,有效值)	0.76	_	0.04
电压调整率	0. 013		

二、实验原理

将交流市电(220V,50Hz)变为稳定的直流输出,为各种小型用电设备供电。

直流稳压电源组成

影响输出电压稳定性的主要因素:

- (1) 负载变化
- (2) 电网电压变化(±10%)
- 1 电源变压器
- 2 整流电路-桥式整流
- 3. 电容滤波电路
- 4 稳压管稳压电路
- 6三端稳压器

三、实验步骤

1整流电路分析

搭好整流电路,分别在无滤波电容、滤波电容值为 100Uf、500UF、1000UF 的情况下测量负载的直流和交流电压。

2 直流稳压电源设计与仿真

根据指标计算变压器匝数比和 7805 两端电容,分别测量输入电压为 220V,负载为 5Ω 、 50Ω 、 500Ω 的的输出电压和纹波电压和负载电阻为 5Ω 、输入电压为 200V、240V 的输出电压和纹波电压。

四、实验数据和数据分析

1整流电路分析

无滤波电容测试结果如图 1 所示

电容值为 100UF 测试结果如图 2 所示电容值为 500UF 测试结果如图 3 所示电容值为 1000UF 测试结果如图 4 所示

图 1

图 2

图 3

图 4

电容是一个储能元件,电路工作时电容两端电压上升时,电容处于充电状态,电压下降时电容处于放电状态,而且电容下降的速度小于电容两端电压下降的速度,循环往复,从而使电压变平滑。当根据测试结果显示,在其他条件不变的情况下,负载两端的滤波电容容值越大,负载输出的纹波就越小,直流电压的值就越大,电压曲线就越平滑。

2 直流稳压电源设计与仿真

输入电压为 220v,负载电阻为 5Ω 测试结果如图 5 所示输入电压为 220v,负载电阻为 50Ω 测试结果如图 6 所示输入电压为 220v,负载电阻为 500Ω 测试结果如图 7 所示输入电压为 200v,负载电阻为 5Ω 测试结果如图 8 所示输入电压为 240v,负载电阻为 5Ω 测试结果如图 9 所示

图 5

图 7

图 9

根据测试所得数据,在其他条件不变的情况下,输入电压降低之后,会使输出电压变小,减小纹波电压,但由于变压器匝数比设置为18:1,所以变化20V的输入电压对结果影响较小。

在其他条件不变的情况下,负载电阻增大以后,会增大输出电压,减小纹波电压,电阻具有吸收纹波的功能。

五、回答问题

问题 1: 测量电压可以使用万用表, 示波器, 探针。

问题 2: 滤波电容是利用其电容特性,不断地充电放,充电时间常数小于放电时间常数,将交流电滤除只保留直流成分。电容越大,滤波效果越好。

问题 3: 减小纹波可以适当调整 7805 输入端的滤波电容使时间常数 RC= $(3^{\sim}5)$ /T, 或者增大负载电阻。Ci 是滤波电容,参考值为 0.33UF, Co 是高频滤波,应小于 0.1UF。

六、总结

通过本次实验,我熟悉了电路设计流程,加深了我电容参数、整流、滤波稳压等模块的理解,并根据指标设计了一个直流稳压电源。在设计电容参数的过程中,我从计算中得到了一个较为合适的结果,并根据示波器的纹波大小做了一些微调,增强了我对电路的理解。