

Data Mining in Bioinformatics

Fundamentals of Data Science

Project Presentation

(order of presenting)

Hosna Eltarras, Menna Mohammed,

Aisha Hagar, Yomna Jehad

What is Bioinformatics?

- Understand Biological Data
- Biological data: Genes, RNA, Protein, EHRs and DNA Sequences
- DNA Language

ACGT

DNA Alphabet

AGGGAGAATGTTGAAACACAAGC

DNA Sentence

- English Human Language

ABCDEF...

English Alphabet

I Love Bioinformatics

English Sentence

Explosion of Biological Data

CATGACGTCGCGGACAACCCAGAATTGTCTTGAGCGATGGTAAGATCTAACCTCACTGCCGGGGGAGGCTCATAC CTGGGGCTTTACTGATGTCATACCGTCTTGCACGGGGATAGAATGACGGTGCCCGTGTCTGCTTGCCTCGAAGCA ATTTTCTGAAAGTTACAGACTTCGATTAAAAAGATCGGACTGCGCGTGGGCCCGGAGAGACATGCGTGGTAGTCA TTTTTCGACGTGTCAAGGACTCAAGGGAATAGTTTGGCGGGAGCGTTACAGCTTCAATTCCCAAAGGTCGCAAGA CGATAAAATTCAACTACTGGTTTCGGCCTAATAGGTCACGTTTTATGTGAAATAGAGGGGAACCGGCTCCCAAAT CCCTGGGTGTTCTATGATAAGTCCTGCTTTATAACACGGGGCGGTTAGGTTAAATGACTCTTCTATCTTATGGTG AGCCCAGTCGCAAGGGTCTGCTGCTGTTGTCGACGCCTCATGTTACTCCTGGAATCTACCTGCCCTCCCCTCACC TCGCGGTTCGGCGCGTAGTTGAGTGCGATAACCCAACCGGTGGCAAGTAGCAAGAAGACCT<u>A</u>CCT AGACAACCTAACTAATAGTCTCTAACGGGGAATTACCTTTACCAGTCTCATGQ GACAGTAGAGAGCTATTGTGTAATTCAGGCTCAGCATTCATCGACCTTTCCTG TGA ΤG CGGCTG CACGCAACCGTCGTAACATGCACTAAGGATAACTAGCGCCAGGGGGGCATACTAGGTCCCGGAGCT AAAGACTACCCTATGGATTCCTTGGAGCGGGGACAATGCAGACCGGTTACGACACAATTATCGGGATCGTCTAGA CCCCGACGCGACAGCTCTTCAAGGGGCCGATTTTTGGACTTCAGATACGCTAGAATTTAAAGGGTCTCTTACACC TGCTGCGGCCTGCAGGGACCCCTAGAACTTGCCGCCTACTTGTCTCAGTCTAATAACGCGCGAAGCCGTGGGGCA CGTGACCTTAAGTCGCAGAGCGAGTGATGAATTTGGGACGCTAATATGGGTGAATAGAGACTTATATCATCAGGG

Main WorkFlow

- Data Preprocessing
- Clustering
- Classification
- Deep learning

Pre-Processing

Data cleaning

Data transformation

Data reduction

Data cleaning

- Missing data
 - Ignore the tuples
 - Fill the missing values
- Noisy data
 - Binning
 - Regression
 - clustering

Data transformation

Normalization

Attribute selection

Generalization

Data transformation $-2, 32, 100, 59, 48 \longrightarrow -0.02, 0.32, 1.00, 0.59, 0.48$

Data Reduction

Data cube aggregation

Dimensionality reduction

Numerosity reduction

Imbalanced Data

- Asymmetric Distribution
 - Hospitals
 - General Population
 - Rare Diseases

Clustering

Exploring hidden structure

- What is the function of the Red Gene?

Fuzzy Clustering

One gene in Two clusters!

Hierarchical clustering: phylogenetic trees

- Cure
- Clinical Trials

- Covid 19 and Bats, How did we know?

Classification in Bioinformatics

Applications

Ex: Identify the gene signature of a disease, Classify patients' data for medical diagnosis, Evaluation of disease severity,... etc.

Breast Cancer Detection

• Dataset Features: MicroRNAs as biomarkers.

miRNA [14]						
hsa-mir-10b	hsa-let-7d	hsa-mir-206	hsa-mir-34a			
hsa-mir-125b-1	hsa-let-7f-1	hsa-mir-17	hsa-mir-27b			
hsa-mir-145	hsa-let-7f-2	hsa-mir-335	hsa-mir-126			
hsa-mir-21	hsa-mir-206	hsa-mir-373	hsa-mir-101-1			
hsa-mir-125a	hsa-mir-30a	hsa-mir-520c	hsa-mir-101-2			
hsa-mir-17	hsa-mir-30b	hsa-mir-27a	hsa-mir-146a			
hsa-mir-125b-2	hsa-mir-203a	hsa-mir-221	hsa-mir-146b			
hsa-let-7a-2	hsa-mir-203b	hsa-mir-222	hsa-mir-205			
hsa-let-7a-3	has-mir-213	hsa-mir-200c				
hsa-let-7c	hsa-mir-155	hsa-mir-31				

Fig: Clinically Verified MiRNAs

Flow of the Experiment

Evaluation

Classifier	Method	Accuracy	Sensitivity	Specificity	AUC
		0.996	1.000	0.952	0.999
	IG-10	0.995	0.998	0.962	0.996
	IG-5	0.996	0.997	0.977	0.998
	IG-3	0.997	0.997	0.990	0.999
RF	CHI2-10	0.995	0.999	0.952	0.995
Kr	CHI2-5	0.996	0.999	0.979	0.996
	CHI2-3	0.996	0.997	0.981	0.999
	LASS-10	0.996	0.998	0.971	0.997
	LASS-5	0.995	0.997	0.965	0.998
	LASS-3	0.994	0.997	0.962	0.999
		0.989	1.000	0.875	0.938
	IG-10	0.994	0.998	0.952	0.995
	IG-5	0.996	1.000	0.990	0.985
	IG-3	0.998	0.998	0.990	0.980
CVAM DDE	CHI2-10	0.994	0.999	0.951	0.995
SVM-RBF	CHI2-5	0.996	0.998	0.983	0.993
	CHI2-3	0.998	0.999	0.990	0.980
	LASS-10	0.995	0.998	0.962	0.996
	LASS-5	0.995	0.999	0.974	0.985
	LASS-3	0.996	0.999	0.962	0.980
		0.997	0.999	0.971	0.985
	IG-10	0.997	0.999	0.971	0.997
	IG-5	0.997	0.999	0.985	0.989
	IG-3	0.998	0.999	0.990	0.981
CVA	CHI2-10	0.997	0.999	0.971	0.997
SVM	CHI2-5	0.996	1.000	0.988	0.987
	CHI2-3	0.998	0.999	0.990	0.991
	LASS-10	0.994	0.997	0.962	0.996
	LASS-5	0.995	0.999	0.956	0.993
	LASS-3	0.997	1.000	0.962	0.981

Fig: Performance Metrics of Classifiers with Different Feature Selection Methods Over MiRNAs Subsets(3, 5, 10)

Selecting Fewer Features for Classification

Info Gain	CHI2	Lasso	
hsa-mir-10b	hsa-mir-10b	hsa-let-7a-3	
hsa-let-7c	hsa-let-7c	hsa-let-7c	
hsa-mir-145	hsa-mir-145	hsa-let-7d	
hsa-mir-125b-1	hsa-mir-125b-2	hsa-mir-101-1	
hsa-mir-125b-2	hsa-mir-125b-1	hsa-mir-10b	
hsa-mir-335	hsa-mir-335	hsa-mir-125b-2	
hsa-mir-126	hsa-mir-126	hsa-mir-145	
hsa-mir-125a	hsa-mir-125a	hsa-mir-206	
hsa-let-7a-2	hsa-let-7a-2	hsa-mir-27b	
hsa-let-7a-3	hsa-let-7a-3	hsa-mir-335	

Fig: Top Ranked Features Under Different Feature Selection Techniques

Subset 1	Subset 2	Subset 3	Subset 4	Subset 5	Subset 6	Subset 7	Subset 8
hsa-mir-10b hsa-let-7c	hsa-let-7c hsa-mir-145	hsa-mir-145 hsa-mir-125b-1	hsa-mir-125b-1 hsa-mir-125b-2	hsa-mir-125b-2 hsa-mir-335	hsa-mir-335 hsa-mir-126	hsa-mir-126 hsa-mir-125a	hsa-mir-125a hsa-let-7a-2
hsa-mir-145	hsa-mir-125b-1	hsa-mir-125b-2	hsa-mir-335	hsa-mir-126	hsa-mir-125a	hsa-let-7a-2	hsa-let-7a-3

Fig: Subsets of Ranked miRNAs

Performance Evaluation Over Different

Subsets

Fig: Specificity Across Different Clinical miRNA Subsets

Deep learning in bioinformatics

- Increasing computational capacity and the improved algorithms.
- Massive amount of data.
- Automatic feature extraction.

Deep learning Architectures & Applications

- Convolutional neural networks.
- Recurrent neural networks.
- Autoencoder.

Deep learning Architectures

One Applications

Incention V3

& Applications

• Ensemble deep learning in bioinformatics.

Transfer Learning
 Deep Learning

Challenges

- Heterogeneous data
- No standard schema
- Imbalanced data
- Interpretability of models
- Computational challenges

CURSE of Dimentionality

References

- 1. Zhiqiang Zeng, Hua Shi, Yun Wu,et al. (2016) Survey of Natural Language Processing Techniques in Bioinformatics, College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
- 2. A Survey on Data Preprocessing Techniques for Bioinformatics and Web Usage Mining 1A. Sivakumar and 2R.Gunasundari 1Department of Computer Science, Karpagam University, Coimbatore. sivamgp@gmail.com 2Department of Information Technology, Karpagam University, Coimbatore.
- 3. Jamshed, H., Ali Khan, M. S., Khurram, M., Inayatullah, S. y Athar, S. (2019). Data Preprocessing: A preliminary step for web data mining, Pakistan.
- 4. Lan, K., Wang, Dt., Fong, S. et al. A Survey of Data Mining and Deep Learning in Bioinformatics. J Med Syst 42, 139 (2018). https://doi.org/10.1007/s10916-018-1003-9
- 5. Vincent Limo, (2019) A REVIEW OF DATA MINING IN BIOINFORMATICS, CENTRIA UNIVERSITY OF APPLIED SCIENCES Information Technology
- 6. Marco Cascella; Michael Rajnik; Abdul Aleem, et al. (2021) Features, Evaluation, and Treatment of Coronavirus (COVID-19)
- 7. Rehman O, Zhuang H, Muhamed Ali A, Ibrahim A, Li Z. Validation of miRNAs as Breast Cancer Biomarkers with a Machine Learning Approach. *Cancers*. 2019; 11(3):431. https://doi.org/10.3390/cancers11030431
- 8. Min, S., Lee, B., & Yoon, S. (2016). Deep learning in bioinformatics. Briefings in Bioinformatics, bbw068. https://doi.org/10.1093/bib/bbw068
- 9. Tang, B., Pan, Z., Yin, K., & Khateeb, A. (2019). Recent Advances of Deep Learning in Bioinformatics and Computational Biology. *Frontiers in Genetics*, 10. https://doi.org/10.3389/fgene.2019.00214
- 10. Manisha Mathur (2018) Biomedical Challenges: A review, Post Graduate Institute of Veterinary Education & Research, Rajasthan University of Veterinary and Animal Science, Jaipur, Rajasthan, India