ANALYSIS QUALIFYING EXAM JANUARY 2000

DIRECTIONS: Answer all questions. Questions 1-8 are worth 10 points each and question 9 is worth 20 points.

NOTATION: λ denotes Lebesgue measure on the line.

- 1. Let $S \subseteq \mathbb{C}$. A mapping $f: S \to S$ is contractive if |f(x) f(y)| < |x y| for all $x, y \in S$.
- (a) Prove that if f is contractive and S is compact then there exists $x \in S$ with f(x) = x.
- (b) Does the same result hold for $S = [0, \infty)$? Prove or give a counterexample.
- Let μ be a finite measure defined on the Borel σ -field of \mathbb{R} . Prove that there exists a unique closed set F such that $\mu(F) = \mu(\mathbb{R})$ and such that if F_1 is any closed set satisfying $\mu(F_1) = \mu(\mathbb{R})$, then $F \subseteq F_1$.
 - 3. Let $(A_n)_{n\geq 1}$ be a *decreasing* sequence of measurable subsets of \mathbb{R} . Construct a nonnegative extended real-valued measurable function f such that $A_n = \{f \geq n\}$ $(n \geq 1)$ and such that

$$\int f \, d\lambda = \sum_{n>1} \lambda(A_n).$$

Show also that f is unique (up to a.e. equivalence) when $\sum_{n>1} \lambda(A_n) < \infty$.

- 4. The function $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous and integrable. Prove that $f(x) \to 0$ as $|x| \to \infty$.
- 5. Suppose that $f \in L^p(\mathbb{R})$, where 1 . Prove that

$$\lim_{h \to 0} h^{(1/p)-1} \int_{x}^{x+h} f(t) dt = 0$$

uniformly in x.

- 6. (a) State without proof Lebesgue's Differentiation Theorem.
- (b) Prove or disprove the existence of a measurable set $A \subset [0,1]$ such that $\lambda(A \cap I) = (1/2)\lambda(I)$ for every *interval* I contained in [0,1].
- 7. Suppose that g is an *entire* function satisfying $|g(z)| \ge M|z|^N$ for all sufficiently large z, where N is a positive integer and M > 0. Prove that g is a polynomial of degree at least N.

8. (a) Suppose that f is analytic on the disk $D = \{|z| < 2\}$ and has no zeroes on the unit circle $C = \{|z| = 1\}$. Using the Residue Theorem, show that

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = N,$$

where C is positively oriented and N is the number of zeroes of f inside C counted according to multiplicity.

(b) Now suppose that g is also analytic on D and that $(1-t)f(z)+tg(z)\neq 0$ for all $t\in [0,1]$ and $z\in C$. Deduce that

$$\frac{1}{2\pi i} \int_C \frac{g'(z)}{g(z)} dz = \frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz.$$

9. TRUE OR FALSE. Prove or disprove the result or find a counterexample. (a) Suppose that $(f_n)_{n\geq 1}$ is a sequence of pointwise decreasing (i.e. $f_n(x)\geq f_{n+1}(x)$ for all x and for all n) nonnegative integrable functions. Then

$$\lim \int f_n d\lambda = \int (\lim f_n) d\lambda.$$

(b) If $f:[a,b]\to\mathbb{R}$ is increasing and continuous then

$$f(b) - f(a) = \int_a^b f' d\lambda.$$

(c) If A is closed and $\lambda(A) > 0$ then A contains an interval I of positive length.

(d) There exists an entire function f(z) such that $f(1/n) = (-1)^n/n^4$ for n > 1.