Аналитический этап

В рамках данного задания необходимо

- 1. Составить верхнюю и нижнюю суммы Дарбу, вычислить эти суммы. При необходимости, разбивать функцию на участки монотонности.
- 2. Проверить критерий Римана интегрируемости функции.
- 3. Найти интегралы Дарбу и сделать вывод об интегрируемости функции, в том числе о значении интеграла.
- 4. Подобрать еще одно достаточное условие интегрируемости данной функции, отличное от упомянутых критериев и проверить его.
- 5. Сравнить найденное значение интеграла с ответом по формуле Ньютона-Лейбница.

Практический этап

Напишите программу (рекомендуемый язык: python 3.11+), вычисляющую интеграл

- 1. Разбить промежуток [a, b] на n равных конгруэнтных отрезков $\Delta_i = [x_{i-1}, x_i], |\Delta_i| = |x_{i-1} x_i|$ (для желающих рекомендуем сделать поддержку не конгруэнтного разбиения, с регулировкой параметра разбиения).
- 2. Составить интегральную сумму для вычисления криволинейной трапеции с высотой, используя следующие подходы:
 - (a) метод прямоугольников: $s_i = f(\xi_i) \cdot \Delta x_i$, где ξ_i выбирается как
 - ullet левая граница Δ_i
 - ullet правая граница Δ_i
 - середина Δ_i
 - ullet произвольная точка на каждом Δ_i
 - (b) метод трапеций: $s_i = (f(x_{i-1}) + f(x_i)) \cdot \frac{|\Delta_i|}{2}$
 - (c) метод Симпсона: $s_i = \left(f(x_{i-1}) + 4f\left(\frac{x_i + x_{i-1}}{2}\right) + f(x_i) \right) \cdot \frac{|\Delta_i|}{6}$
- 3. Построить при значениях n=4,8,16 графики закрашенных областей s_i вместе с исходной функцией на данном отрезке. Не рекомендуется накладывать друг на друга разные значения областей, отвечающих разным n.
- 4. Для указанной в вашем варианте функции на данном промежутке проверьте, что ответ, полученный в результате применения всех методов совпадает с тем, что вы получили в аналитическом этапе задания (важно, что при малом значении n могут быть сильные отклонения).

- 5. Проведите вычисления с числом отрезков разбиений $n=1,2,4,8,16,\ldots,128$ при фиксированном промежутке интегрирования.
- 6. Постройте график зависимости отклонения найденного значения интеграла от истинного, с увеличением числа отрезков разбиения. Рекомендуем использовать метрики: MSE, MAE

Важно: формат ввода данных определяется самостоятельно. Единых стандартов нет, потому что задача будет проверяться не на тестах, а при защите. Старайтесь писать код с возможностью расширения и использованием паттернов.