

School of Electrical and Electronic Engineering

DRIVER ACTION
RECOGNITION USING
ARTIFICIAL
INTELLIGENCE

Name: Philip Lee Hann Yung (U1923382D)

Supervisor: Assoc Prof Yap Kim Hui

Examiner: Prof Wen Changyun

Date: 9 May 2023

Agenda

BACKGROUND

LITERATURE **REVIEW**

METHODOLOGY

RESULTS

CONCLUSION

Motivation

Distracted Driving

Any activity that diverts attention from driving

2019 US: 1162 injured + 9 killed / day

Reduce distracted driving!

Solution: Cabin Monitoring

- [1] DISTRACTED DRIVERS #1 Crashing while using a Phone || Dash Cam Compilation, (Jun. 11, 2019). Accessed: Apr. 12, 2023. [Online Video]. Available: https://www.youtube.com/watch?v= pccGggeW7Y
- [2] "Distracted Driving | NHTSA." https://www.nhtsa.gov/risky-driving/distracted-driving (accessed Oct. 32, 2022).
- [3] National Center for Statistics and Analysis, Distracted Driving 2019, (Research Note. Report No. DOT HS 813 111). National Highway Traffic Safety Administration, 2021.

Real-world Implications

- Cabin-monitoring system
 - May be mandated for truck/bus drivers
 - Safety for road users

E.g. Using mobile phone earlier!

Objective & Scope

- Train deep learning-based models which can recognize driver's actions in a car cabin environment.
 - Robust, Real-time, Action after is out-of-scope

LITERATURE REVIEW

Literature Review

Video Action Recognition

Requires: Spatio-temporal modelling capability

[5] Y. Zhu et al., "A Comprehensive Study of Deep Video Action Recognition." arXiv, Dec. 11, 2020. doi: 10.48550/arXiv.2012.06567.

Literature Review

Video Swin Transformer (VST)

2015 3D-CNNs

Kinetics400 2017 Inflated-3D ConvNet (I3D) Temporal Shift Module (TSM)

2022 Video Swin Transformer (VST)

[6] Z. Liu et al., "Video Swin Transformer," in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2022, pp. 3192–3201. doi: 10.1109/CVPR52688.2022.00320.

Temporal Shift Module (TSM)

Main Idea:

- Shift along temporal dimension to exchange information.
- Must not harm spatial feature learning capability.

- (a) The original tensor without shift.
- **(b)** Offline temporal shift (bi-direction).
- (c) Online temporal shift (uni-direction).

- Enjoys 2D-CNN efficiencies
- Optimised hardware implementation
- Availability of pretrained weights

[7] J. Lin, C. Gan, and S. Han, "TSM: Temporal Shift Module for Efficient Video Understanding," in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019, pp. 7082–7092. doi: 10.1109/ICCV.2019.00718

Dataset

Drive&Act (DAA), 2019

- Multi-modal, multi-view
- 83 activity labels (3 levels)
- 3 train-val-test splits
- 15 participants for variability

Largest dataset: 9.6m frames! (in car-cabin activity domain)

TICaM: A Time-of-flight In-car Cabin Monitoring (123k frames)

[8] M. Martin et al., "Drive&Act: A Multi-Modal Dataset for Fine-Grained Driver Behavior Recognition in Autonomous Vehicles," in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019, pp. 2801–2810. doi: 10.1109/ICCV.2019.00289

Metric

BalAcc Score

Mean class accuracy Class imbalance issue

$$\frac{1}{N_c} \sum_{c=1}^{N_c} \frac{TP_c}{TP_c + FN_c}$$

Methodology, Results

SINGLE-MODALITY

End-to-end ML Project Pipeline

Machine Learning Workflow

[9] "Machine Learning Pipeline - Javatpoint," www.javatpoint.com. https://www.javatpoint.com/machine-learning-pipeline (accessed May 08, 2023).

(1) Training

- 3 model families
 - TSM (main method)
 - I3D
 - VST

- 2 datasets
 - Drive&Act (benchmark)
 - Conti-Action-2023 (demo only)

2 Varying Learning Rate

Sample BalAcc curve for selecting learning rate hyperparameter

2 Fine-tune Hyperparameters

Training Parameter	TSM	I3D	VST	
N_f (No. of Frames)	8, 16	32	32	
Backbone	ResNet50	ResNet50	VST: Tiny, Base	
Pretrained Weights	ImageNet/Kinetics400	Kinetics400	Kinetics400	
Batch Size	32, 16	128	32, 16	
Number of Epochs	25	20	20	
Learning Rate	0.0010, 0.0005	0.1000	0.0004	
LR Scheduler	Step decay: 9, 17	Step decay: 9, 16	Cosine annealing	
Optimizer	SGD	SGD	AdamW	

Loss function: Cross-entropy loss

(3) Evaluation Methodology

Spatial Crop

4 Class Imbalance Mitigation

- Class Weighting
- Uniform Class Sampling
- Hard Sample Mining
- CW + HSM

Modified cross-entropy loss function

$$w_c \propto \frac{1}{f_c}$$
; $CE_i = -\sum_{c=1}^{N_c} w_c y_{i,c} \log p_{i,c}$

```
Hard Sample Mining Algorithm

after every 3 epoch:
    evaluate loss for each training sample
    hard samples = (sample loss) > 1.2 * (train loss mean)
    train model on hard samples
```

Results: Single Modality

 TSM is recommended for real-time use applications!

Model	Ns	Val ↑	Test ↑	Latency ↓	Throughput ↑
I3D	32	63.29	60.41	18.3 ms	54.7 clips/s
TSM	8	68.47	62.34	15.0 ms	66.7 clips/s
VST: Tiny	32	68.67	60.10	40.2 ms	24.9 clips/s
VST: Base	32	70.06	63.48	89.3 ms	11.2 clips/s

Results are best from each model family, training procedure already includes class imbalance mitigation techniques.

TSM: CW+HSM I3D, VST: Uniform Class Sampling

Results: Single Modality

TSM: Base to CW+HSM

22 out of 34 classes \uparrow (60.17 \rightarrow 68.47)

Results: Single Modality

Methodology, Results

MULTI-MODALITY

4 Multi-modality Fusion

1 architecture

3 proposed architectures

Results: Multi-modality

$$s_{i,c} = \sum_{m=1}^{N_m} w_{m,c} s_{i,c,m}$$

Fusion Method	Modality	Val ↑	Test ↑
No Fusion	K_c	70.35	62.72
(single modality)	K_i	69.33	59.81
	K_d	68.31	58.28
	$K_c + K_i$	71.47	64.99
Late Fusion: Type C	$K_c + K_d$	74.06	65.09
(linear weighted scores)	$K_i + K_d$	74.02	63.24
	$K_c + K_i + K_d$	75.20	66.32

Fusion using TSM model, only best fusion method is shown.

Results: Multi-modality

Methodology, Results

LIVE REAL-TIME SYSTEM

Conti-Action-2023

- 15 volunteers
- 32 classes
- Day and night scenes
- Camera position:
 - Center of Dashboard

System Optimizations

- Right crop then square crop
- Data transformations
 - $-94.1 \text{ ms} \rightarrow 15.6 \text{ ms}$
 - 6 times improvement

Results: Live Real-time Prototype

Results: Demo Videos

Local webpage for self-exploration

CONCLUSION

Conclusion

Future Work

More extensive dataset

- Advanced multi-modality fusion techniques
 - Continuation of FYP

Thank you!

QnA

APPENDIX

Background

- The number of fatalities in distraction-affected crashes, i.e., a crash involving at least one driver who was distracted, was 3,522, or 8.2 percent of total fatalities in 2021. This represents a 12-percent increase from 3,154 in 2020.
- 3522 / 365 = 9.65 people per year
- https://www.nhtsa.gov/risky-driving/distracted-driving
- https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813435

Kinetics400 Dataset

- Realistic action videos
- Collected from YouTube
- 306,245 short trimmed videos
- 400 action categories

W. Kay et al., "The Kinetics Human Action Video Dataset." arXiv, May 19, 2017. doi: 10.48550/arXiv.1705.06950.

Balanced Accuracy Score

BalAcc Score

Mean class accuracy Class imbalance issue

$$\frac{1}{N_c} \sum_{c=1}^{N_c} \frac{TP_c}{TP_c + FN_c}$$

VST Architecture

 For the VST model, there are four variants officially released – tiny, small, base, and large. The variants differs in two ways: (i) the hidden channel number in the first stage (ii) the number of VST blocks in the third stage.

Z. Liu et al., "Video Swin Transformer," in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2022, pp. 3192–3201. doi: 10.1109/CVPR52688.2022.00320.

ResNet50 + TSM Architecture

K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition." arXiv, Dec. 10, 2015. doi: 10.48550/arXiv.1512.03385.

ResNet50 Architecture

				T	1011	
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112			7×7 , 64, stride 2		
				3×3 max pool, strid	e 2	
conv2_x	56×56	$ \left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2 $	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8 $
conv4_x	14×14	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 2$	$ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6 $	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $
	1×1		av	erage pool, 1000-d fc,	softmax	
FLO	OPs	1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10 ⁹

K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition." arXiv, Dec. 10, 2015. doi: 10.48550/arXiv.1512.03385.

Optimizer: SGD

Batch Gradient Descent

Mini-Batch Gradient Descent

Stochastic Gradient Descent

https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/

LR Schedulers

I. Loshchilov and F. Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts." arXiv, May 03, 2017. doi: 10.48550/arXiv.1608.03983.

Data Transformation Pipeline

DAA Setup

DAA Statistics

Table 4-1: Breakdown of sample counts for each split on DAA L2 activities.

Location	Split	Train	Val	Test	Total
	0	6642	1430	2222	10294
Front Top	1	7253	1385	1656	10294
	2	6693	1356	2245	10294
	0	6746	1459	2253	10458
Right Top	1	7374	1404	1680	10458
	2	6796	1375	2287	10458

DAA Splits

```
# Master split dictionary
splits_dict = {
    0: {'train': [1,2,3,4,6,7,8,9,10,12], 'val': [14,15], 'test': [5,11,13]},
    1: {'train': [1,2,4,5,6,7,11,13,14,15], 'val': [3,8], 'test': [9,10,12]},
    2: {'train': [3,5,8,9,10,11,12,13,14,15], 'val': [1,2], 'test': [4,6,7]},
}
```

Effect of Learning Rate Scheduler

Results: TSM Single Modality

Table 5-2: Comparison of results on DAA while varying training methods on TSM.

Model	Training Method	N_s	Val ↑	Test ↑
TSM	Baseline	8 16	60.17 60.64	55.24 56.76
TSM	Class Weighting	8	67.31	61.90
15101	Class weighting	16	65.98	59.41
TSM	Uniform Class Sampling	8 16	64.33 64.57	58.13 57.79
TSM	Hard Sample Mining	8	61.09	56.67
		16 8	62.38 68.4 7	55.43 62.34
TSM	CW+HSM	16	66.57	59.37

Results: Single Modality

Table 5-3: Summary of BalAcc scores on DAA between trained models.

Model	Training Method	N_s	Val ↑	Test ↑
I3D _{ResNet50}	Baseline Uniform Class Sampling	32	56.22 63.29	53.79 60.41
TSM_{ResNet50}	Baseline CW+HSM	8	60.17 68.47	55.24 62.34
VST _{Tiny}	Baseline Uniform Class Sampling	32	64.05 68.67	59.02 60.10
VSTBase	Baseline Uniform Class Sampling	32	66.44 70.06	61.89 63.48

Results: Single Modality

Multi-Modality Fusion

Late Fusion Type C

```
class LinearWeightedAvg(nn.Module):
    def __init__(self, streams: List[str], n_neurons: int):
        super(LinearWeightedAvg, self). init ()
        self.streams = streams
        self.n neurons = n neurons
        bound = 1 / math.sqrt(n neurons)
        for stream in self.streams:
            setattr(self, f'weight {stream}', nn.Parameter(torch.ones((1, n_neurons))))
            torch.nn.init.uniform (getattr(self, f'weight {stream}'), -bound, bound)
    def forward(self, x):
       output = torch.zeros_like(x[self.streams[0]])
        for stream in self.streams:
            output += x[stream] * getattr(self, f'weight {stream}')
        return output
```

Results: Multi-Modality

Table 5-5: Summary of proposed multi-modal fusion methods on DAA while varying modality combinations.

Fusion Method	Modality	Val ↑	Test ↑
No Fusion	K_c	70.35	62.72
	K_i	69.33	59.81
(single modality)	K_d	68.31	58.28
	$K_c + K_i$	69.12	63.46
Early Fusion	$K_c + K_d$	66.08	59.97
(concatenate channels)	$K_i + K_d$	69.74	60.44
	$K_c + K_i + K_d$	66.50	61.30
	$K_c + K_i$	73.52	65.30
Late Fusion: Type A	$K_c + K_d$	73.25	65.19
(average probabilities)	$K_i + K_d$	73.24	62.87
	$K_c + K_i + K_d$	73.81	64.69
	$K_c + K_i$	70.32	63.06
Late Fusion: Type B	$K_c + K_d$	66.50	61.30
(concatenate scores - MLP)	$K_i + K_d$	72.50	62.51
	$K_c + K_i + K_d$	73.42	64.60
	$K_c + K_i$	71.47	64.99
Late Fusion: Type C	$K_c + K_d$	74.06	65.09
(linear weighted scores)	$K_i + K_d$	74.02	63.24
	$K_c + K_i + K_d$	75.20	66.32

Results: Multi-Modality

Optimized Data Transformation

```
def transform_fast(frames_list):
    data = [frames_list[i][:, -H:, ::-1] for i in indices] # Right cropping
    data = [cv2.resize(img, (256, 256))[16:-16, 16:-16, :] for img in data]
    data = np.concatenate(data, axis=2)
    data = torch.from_numpy(data).permute(2, 0, 1).contiguous()
    data = data.cuda(0).float().div(255)
    data = normalize_transform(data)
    return data.unsqueeze(0)
```

Sliding Temporal Window

- GeForce RTX 3080 GPU card
- $N_f = 90$, Number of frames
- $N_w = 30$, Step size

Live Real-time: Latency Profiles

Table 5-7: Latency times for each stage, measured on demo workstation.

Stage	Latency
Load frame to buffer	0.5 <u>ms</u> *
Data transformation	15.6 ms
Model inference	15.8 ms
Misc. drawing and display	0.5 <u>ms</u> *
Total	32.4 ms*

Full Results: Live Real-time Prototype

Conclusion

- Improved accuracies
 - Baseline to CW+HSM: 8 BalAcc points increase
 - Single modality to multi-modality: 5 BalAcc points increase

- 30 FPS live prototype
 - Low latency and high accuracy