

Falcon9 Launch Cost Prediction

Xiaoyu Chen 2022-07-12

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

Falcon 9 rocket can re-use the first stage(and hence reduce cost)

- Predict first stage success rate
 - Acquire historical data (Data Wangling)
 - Data Analysation (EDA)
 - Train ML models for further prediction

INTRODUCTION

- Falcon 9 claims a cost per launch 62 million USD
- Competitors: 165 million USD
- An accurate prediction cost per launch for Falcon9 based on historical data
- What we took into consideration:
 - Launch sites
 - Payload Mass
 - Orbitals
 - Year

METHODOLOGY

- Collect data
 - SpaceX API
 - Wikipedia
 - SQL Database
- Exploratory Data Analysis (EDA)
 - Determine what would be the label to train our models
- EDA prediction
 - Visualise relationship between independent variables*
- Train machine learning models
 - Logistic regression
 - Support vector machines
 - KNN
 - Decision tree

Data Source

A few distinct data sources are used in this project

Data Wrangling: Wikipedia Data

EDA: Wikipedia Data

SQL: uploaded data from a csv file*

Folium Map – study on Launch site: additional data provided in csv*

Dash: additional data

Model training: Wikipedia Data

RESULTS - Data Wrangling

Launches at each sites:

CCAFS SLC 40 55 KSC LC 39A 22 VAFB SLC 4E 13

> **Landing Success** Rate:

0.67

Launches per Orbital:

GT0	27	
ISS	21	
VLE0	14	
P0	9	
LE0	7	
SS0	5	
ME0	3	
ES-L1	1	
HE0	1	
S0	1	
GE0	1	

RESULTS - EDA

We see correlation for Launch Site, Payload Mass, Orbital and Year

Success Rate per Orbital:

Success Rate vs. Year

https://github.com/xyll313/Data_Science_Portfolio/blob/ ibm_course/Data_Science_Course/capstone-project/ EDA_visualisation.ipynb

Flight Number vs. Launch Site

PayloadMass vs. Launch Site

Flight Number vs. Orbital Type

Payload vs. Orbital Type

SQL Database Exercise

Additional data in a SQL database was also analysed

```
Mission Success Rate: 97% (98/101)
```

Landing Success Rate: 65% (66/101)

Distinct Launch Site:

```
CCAFS SLC-40 34
CCAFS LC-40 26
KSC LC-39A 25
VAFB SLC-4E 16
```

* Launch Site info from wikipedia

CCAFS SLC 40	55
KSC LC 39A	22
VAFB SLC 4E	13

2. Launch Site name begins with 'CCA'

Select DISTINCT * from SPACEX where LAUNCH_SITE like 'CCA%'

CCAFS SLC_40 CCAFS SL-40

3. Calculate the total payload carried by booster from NASA

Select sum(PAYLOAD_MASS__KG_) from SPACEX where CUSTOMER = 'NASA%'

45596

https://github.com/xyll313/Data Science Portfolio/blob/ ibm course/Data Science Course/capstone-project/

SQL exercise.ipynb

4. Calculate the average payload mass carried by booster F9 v1.1

Select AVG(PAYLOAD MASS KG) from SPACEX where BOOSTER_VERSION = 'F9 v1.1'

2928

5. First successful ground landing date: find the date when the first successful landing outcome in ground pad

Select min(DATE) from SPACEX where LANDING_OUTCOME = 'Success%'

2015-12-22

6. List the names of boosters which have success in drone ship and have payload greater than 4000 but less than 6000

Select distinct BOOSTER_VERSION from SPACEX where PAYLOAD__MASS_KG_ between 4000 and 6000

```
F9 FT B1022
```

F9 FT B1026

F9 FT B1021.2

7. Calculate the total number of successful and failure mission outcomes

Select MISSION_OUTCOME, count(*) from SPACEX group by MISSION_OUTCOME

```
Failure (in flight) 1
Success 99
Success(payload status unclear) 1
```


8. List the names of the booster which have carried the maximum payload mass

Select distinct BOSTER_VERSION from SPACEX where PAYLOAD_MASS__KG_ in (select max(PAYLOAD_MASS_KG_) from SPACEX)

F9 B5 B1048.4, F9 B5 B1049.4, F9 B5 B1051.3, F9 B5 B1056.4, F9 B5 B1048.5 F9 B5 B1051.4, F9 B5 B1049.5, F9 B5 B1060.2 F9 B5 B1058.3 F9 B5 B1051.6 F9 B5 B1060.3, F9 B5 B1049.7

List the launch records for months in 2015

https://github.com/xyll313/Data Science Portfolio/blob/ ibm course/Data Science Course/capstone-project/

Select * from SPACEX where YEAR(DATE) = 2015

SQL_exercise.ipynb

10. Rank the count of successful landings between 2010-06-04 and 2017-03-20

Select count(LANDING_OUTCOME) from SPACEX where LANDING_OUTCOME = upper('%SUCCESS%') And (DATE between '04-06-2010' and '20-03-2017)

34

Launch-site Folium Exercise

All launch sites are close to the coasts

Folium Map - Success Rate

VAFB SLC-4E 40% (4/10)

Folium Map - CCAFS SLC-39A

Close to coastline

Close to railway/road

RESULTS - Summary

Launch Site info:

```
CCAFS SLC-40 89
CCAFS LC-40 26
KSC LC-39A 47
VAFB SLC-4E 29
```

Overall Landing Success Rate: 68% (132/192)

Independent Variables used for model training: Launch Site, PayloadMass, Orbital, Year

DASHBOARD

Success Rate vs. Launch sites KSC LC-39A has the most launches

DASHBOARD

DASHBOARD

0

v1.0
 v1.1
 Success rate vs. Payloads for different booster versions

FT

4k

2k

Payload Mass (kg)

6k

10k

8k

Machine Learning Models

Logistic Regression:

Accurancy Socre: 0.83

Support Vector Machine:

Accurancy Socre: 0.83

Machine Learning Models

Decision Tree:

Accurancy Socre: 0.61

KNN:

Accurancy Socre: 0.83

CONCLUSION

 Overall landing success Rate at 68% based on historical Data

• CCAFS SLC-39 has the highest success rate

 Model training reveils that Logistic Regression, Support Vector Machine and KNN all have the same level of accuracy at 83%

Analysation & Further Work

- Launch Sites, PayLoadMass, Orbitals and Year all have impacts on success rate. Detailed analysation on Launch Site is required as the other factors can't be easily modified.
- See if it's the facilities at one Launch Site improved success rate, or if it's because it only launches easier missions.
- Train the models again by using different selection of training and testing data to see if we obtain the same results.