Розділ І. Натуральні числа і дії з ними. Геометричні фігури і величини

Сьогодні 04.11.2022

Клас 5-А

Розв'язування текстових задач на рух. Формули відстані

Повідомлення теми уроку та мотивація навчально-пізнавальної діяльності учнів

Мета уроку: узагальнити вміння розв'язувати текстові задачі; закріпити вміння застосовувати формули знаходження відстані, швидкості та часу; розв'язувати текстові задачі на рух річкою.

Числа	105	205	305	405
Збільш на 205	310	410	510	610
Збільш в З	315	615	915	1215

Повторення навчального матеріалу

Теоретичний матеріал:

Формула відстані

s — відстань (шлях)

v — швидкість руху

t — час руху

Формула відстані

$$s = v \cdot t$$

v = s : t

$$t = s : v$$

- 1. У задачах на рух будемо вважати, що швидкість руху на всьому шляху не змінювалася, тобто була сталою.
- 2. Одиниці вимірювання швидкості (км/год, м/хв, м/с тощо) залежать від умови задачі.

Повторення навчального матеріалу

Теоретичний матеріал:

Рух річкою

Під час руху за течією річки власна швидкість човна збільшується на швидкість течії, а під час руху проти течії, навпаки, зменшується на швидкість течії.

Наприклад, якщо власна швидкість човна

15 км/год, а швидкість течії — 2 км/год, маємо:

15 + 2 = 17 (км/год) — швидкість човна за течією,

15 - 2 = 13 (км/год) — швидкість човна проти течії.

Сьогодні 04.11.2022

Теоретичний матеріал:

Рух з однієї точки в одному напрямку

Нехай два об'єкти одночасно починають рух в одному напрямку з однієї точки з різними швидкостями $v_1 = 5$ км/год і $v_2 = 3$ км/год.

Тоді за першу годину об'єкт 🚏 випередить об'єкт 🪏 на 2 км.

Тоді
$$v_{\text{від}} = v_1 - v_2$$
 (якщо $v_1 > v_2$). Через t год між об'єктами буде відстань $s_{\text{від}}$:
$$s_{\text{від}} = v_{\text{від}} \cdot t = (v_1 - v_2)t.$$

Рух з однієї точки у протилежних напрямках

Нехай два об'єкти одночасно починають рух з однієї точки у протилежних напрямках зі швидкостями $v_1 = 5$ км/год і $v_2 = 3$ км/год.

Тоді за першу годину об'єкт Arr віддаляється від об'єкта Arr на 8 км. Отже, $v_{\text{від}} = v_1 + v_2$. Через t год між об'єктами буде відстань $s_{\text{від}}$: $s_{\text{віл}} = v_{\text{віл}} \cdot t = (v_1 + v_2)t$.

Рух назустріч

Нехай два об'єкти одночасно починають рух назустріч одне одному зі швидкостями $v_1 = 5 \,$ км/год і $v_2 = 3 \,$ км/год, причому початкова відстань між об'єктами більша за $8 \,$ км.

Тоді за першу годину відстань між об'єктами скоротиться на 8 км.

Відстань, на яку зближаються об'єкти за одиницю часу, називають *швидкістю зближення v*_{збл}.

Тоді
$$v_{3бл} = v_1 + v_2$$
.

Якщо початкова відстань між об'єктами дорівнює s кілометрів і об'єкти зустрілися через $t_{
m syct}$ год, то

$$s = v_{36\pi} \cdot t_{3\text{VCT}} = (v_1 + v_2)t_{3\text{VCT}}.$$

Якщо $t < t_{\rm 3ycr}$, то через t год відстань між об'єктами скоротиться на відстань

$$s_{36\pi} = v_{36\pi} \cdot t = (v_1 + v_2)t.$$

Рух навздогін

Нехай два об'єкти одночасно починають рух з різних точок в одному напрямку зі швидкостями $v_1=5~{\rm km/roд}$ і $v_2=3~{\rm km/roд}$, причому об'єкт, що має більшу швидкість, рухається позаду, наприклад, наздоганяє другий об'єкт, а початкова відстань між об'єктами більша за 2 км.

Тоді за першу годину об'єкт $^{?}$ стане ближче до об'єкта $^{?}$ на 2 км.

Отже, $v_{36\pi} = v_1 - v_2$ (якщо $v_1 > v_2$).

Якщо початкова відстань між об'єктами дорівнює s км і об'єкт $\begin{tabular}{c} rather than 1 & rather than 2 & rather th$

$$s = v_{36\pi} \cdot t_{3ycr} = (v_1 - v_2)t_{3ycr}.$$

Якщо $t < t_{\rm 3ycr}$, то через t год відстань між об'єктами скоротиться на відстань

$$s_{36\pi} = v_{36\pi} \cdot t = (v_1 - v_2)t.$$

(Усно.)

2) На шлях по річці від пункту А до пункту В теплохід витратив 3 год, а на зворотний шлях — 2 год 30 хв. У якому напрямку

тече річка?

рівень

Робота з підручником

Nº 525

- 1) швидкість катера за течією річки;
- 2) швидкість катера проти течії річки;
- 3) шлях, який подолає катер за 3 год за течією річки;
- 4) шлях, який подолає катер за 2 год проти течії річки.

Робота з підручником

BCIM

- 1) Швидкість катера за течією річки:
- 15 + 3 = 18 (км/год) швидкість катера за течією;
- 2) Швидкість катера проти течії річки:
- 15 3 = 12 (км/год) швидкість катера проти течії;
- 3) Шлях, який подолає катер за 3 год за течією річки:
- $18 \cdot 3 = 54$ (км) проходить катер за 3 год за течією;
- 4) Шлях, який подолає катер за 2 год проти течії річки:
- $12 \cdot 2 = 24$ (км) проходить катер за 2 год проти течії.

рівень

Робота з підручником

Завдання № 532.

Власна швидкість теплохода 22 км/год, а швидкість течії річки —

- 2 км/год. Скільки часу витрачає теплохід на шлях між двома пристанями, відстань між якими 120 км, якщо він пливе:
- 1) за течією; 2) проти течії?

Розв'язання.

2)120 : 24 = 5 (год) — час руху за течією;

3)22 - 2 = 20 (км /год) — швидкість проти течії;

4)120 : 20 = 6 (год) — час руху проти течії.

Відповідь: 1) 5 год; 2) 6 год.

Завдання для домашньої роботи

Параграф 13 опрацювати, вивчити правила Виконай завдання: №.526, 533.

- **526.** Власна швидкість човна 18 км/год, а швидкість течії 2 км/год. Знайди:
 - 1) швидкість човна проти течії річки;
 - 2) швидкість човна за течією річки;
 - 3) відстань, яку подолає човен за 4 год проти течії річки;
 - 4) відстань, яку подолає човен за 3 год за течією річки.
- 533. Човен, власна швидкість якого 26 км/год, проплив річкою шлях між двома пристанями і повернувся назад. Скільки часу витратив човен, якщо відстань між пристанями становить 168 км, а швидкість течії 2 км/год.