Klausur zur Vorlesung Diskrete Strukturen, WS 2011/2012 Dr. Timo Hanke, Lehrstuhl D für Mathematik, RWTH Aachen

Name:		Matrikelnumm	er:
Dauer: 120 min. Gesamtp	unktzahl: 50 Mir	ndestpunktzahl zum Besteh	en: 25
Aufgabe 1. Gegeben seien	die Permutationen		
$\sigma = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	2 3 4 5 6 7 8 8 2 6 4 7 5		$\begin{pmatrix} 5 & 6 & 7 & 8 \\ 3 & 5 & 1 & 2 \end{pmatrix}$.
Weiter sei $\pi = \sigma \circ \tau$.			
(a) Schreiben Sie π als (b) Berechnen Sie das S (c) Sei k_0 das kleinste τ (d) Schreiben Sie τ^{-1} a	Signum von π . $k \in \mathbb{N}$ mit $\pi^k = \mathrm{id}$.	Berechnen Sie k_0 .	(3 P.) (1 P.) (2 P.) (2 P.)
$\pi =$	$\operatorname{sgn}(\pi) =$	$k_0 = \boxed{ \qquad \qquad } \tau^{-1} = \boxed{ \qquad }$	
Aufgabe 2.			
(b) Finden Sie die kleir(c) Berechnen Sie die k	nste natürliche Zahl	$\lambda, \mu \in \mathbb{Z} \text{ mit } d = \lambda \cdot 329 + \mu$ $a \text{ mit } a \equiv 3 \cdot 5^4 \cdot 11 \cdot 13^3 \text{ (n)}$ $a \text{ ahl } x \text{ für die gilt } x \cdot 3 \equiv 1 \text{ (n)}$ $a = \begin{bmatrix} a = b \end{bmatrix}$	nod 9). (2 P.) mod 73). (2 P.)
Aufgabe 3. Für $a \in \mathbb{Q}$ seic	en $A \in \mathbb{Q}^{3 \times 3}$ und $b \in \mathbb{Q}^{3 \times 3}$	$\in \mathbb{Q}^{3 \times 1}$ mit	
A	$A = \begin{pmatrix} 1 & a + \\ 1 & a + \\ -2 & -2a + \end{pmatrix}$	$\begin{bmatrix} 2 & 4a \\ 1 & 2a \\ 1 & 3a - 3 \end{bmatrix}, \qquad b = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$	
		hungssystem $Ax = b$ keine L neare Gleichungssystem $Ax = b$	Lösung? (2 P.) = 0 unendlich viele Lösungen? (2 P.)
(c) Geben Sie die Lösu (d) Sei $a = -1$. Für we			(2 P.) (2 P.) ssystems $Ax = c$ eine Lösung? (2 P.)
(a)	(b)	(c)	(d)

Aufgabe 4. Bestimmen Sie die folgenden Anzahlen. Vereinfachen Sie Ihr Ergebnis soweit, wie es ohne Taschenrechner möglich ist.
(a) Wieviele Zeichenfolgen entstehen durch Umordnen der Buchstaben des Wortes AACHEN? (3 P.)
(b) Sei M eine Menge mit 10 Elementen. Wieviele 3-elementige Teilmengen hat M ? (3 P.)
(c) Es werden 3 gleiche Spielwürfel gleichzeitig geworfen. Wieviele Augenkombinationen gibt es, bei
denen keine 6 vorkommt. (3 P.)
(d) Wieviele surjektive Abbildungen gibt es von einer 5-elementigen Menge auf eine 3-elementige
Menge? (3 P.)

(a)	(b)	(c)	(d)	
			i l	

Aufgabe 5. Wir betrachten den gewichteten Graphen G=(V,E) mit Knotenmenge $V=\underline{8}$ und den Kanten E aus der folgenden Tabelle:

Kante	$\{1,7\}$	$\{2,7\}$	$\{2,5\}$	$\{6,7\}$	$\{2, 6\}$	$\{7, 8\}$	$\{1, 8\}$	$\{2, 3\}$	${3,7}$	$\{4, 8\}$	$\{5,7\}$	$\{4, 6\}$	$\{5,6\}$
Gewicht	1	2	3	4	5	6	7	8	9	10	11	12	13

- (a) Wieviele Zusammenhangskomponenten hat der auf auf der Teilmenge $\{1,2,3,8\}\subset V$ induzierte Teilgraph von G? (2 P.)
- (b) Besitzt der Graph G einen Eulerzug, eine Eulertour oder beides oder keines davon?
- (2 P.) (1 P.)

- (c) Was ist der maximale Grad eines Knotens in G?
- (d) Bestimmen Sie einen minimalen Spannbaum von G und geben Sie die Gewichte seiner Kanten in aufsteigender Reihenfolge an. (2 P.)
- (e) Wieviele Brücken besitzt der Graph G?

(2 P.)

(b)

(d)

(e)

Bearbeiten Sie die folgenden beiden Aufgaben schriftlich und mit ausführlichen Begründungen auf einem gesonderten Blatt.

Aufgabe 6. Sei $M = \mathbb{R}^{2\times 1} \setminus \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$. Die Relation R auf M enthalte die Paare $\left(\begin{pmatrix} s \\ t \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right) \in M \times M$, für die es ein $c \in \mathbb{R}$ gibt mit $\begin{pmatrix} s \\ t \end{pmatrix} = c \cdot \begin{pmatrix} x \\ y \end{pmatrix}$. Beweisen Sie oder widerlegen Sie, dass R eine Äquivalenzrelation auf M ist. (3 P.)

Aufgabe 7. Es sei K ein Körper und $n \in \mathbb{N}$. Wir nennen eine Matrix $A \in K^{n \times n}$ symmetrisch, wenn gilt $A = A^t$. Seien $A, B \in K^{n \times n}$ symmetrisch. Zeigen Sie, dass AB genau dann auch symmetrisch ist, wenn gilt AB = BA.

(3 P.)

Viel Erfolg!