(February 24, 2015)

Sample Questions for Midterm Exam CSCI-B555

(DO NOT DISTRIBUTE)

Problem 1. Miscellaneous

1.1. (2 points) Briefly state what we mean by "learning" in Machine Learning.
1.2. (2 points) What is the main difference between supervised and unsupervised learning?
1.3 (2 points) Find groups of synonyms among the following words used in machine learning: example, attribute, feature, data point, target, input, weight, label, parameter, pattern
1.4. (2 points) Explain standard measures of accuracy for classification and regression? What is the range of their acceptable values? Address specifically binary classification.
1.5 (2 points) What is the purpose of splitting the data set into training, validation, and test. What is each set used for?

Problem 2. Elements of Probability Theory

2.1 (2 points) Briefly discuss the main reason(s) why probability theory is useful at modeling uncertainty.
2.2 (3 points) Let A , B , and C be some elements of the event space \mathcal{F} . State the conditions of mutual independence between the three events.
2.3 (3 points) Let Ω be any abstract space and some event space be defined as $\mathcal{F} = \{\Omega, \emptyset\}$. a) (2 points) Define at least one probability measure P for this space. b) (1 point) Is P unique?
2.4 (2 points) State the axioms of probability.

Problem 6. Linear Regression

Problem 7. Maximum-Likelihood Principles

7.1. (10 points) You are given a data set $D = \{0.1, 0.4, 0.2, 0.6\}$ of numbers sampled independently from an exponential distribution with

$$p(x|\lambda) = \lambda \cdot e^{-\lambda x}$$

- a) (4 points) Calculate the log-likelihood function that D was generated from an exponential distribution with parameter $\lambda = 10$, i.e. derive $\log P(D|\lambda = 10)$.
- b) (4 points) Derive gradient descent algorithm for calculating the optimal λ that results in maximization of the likelihood.
- c) (2 points) Could one derive the closed-form solution for optimal λ .

Problem 9. Classification Algorithms

9.1. (2 points) Given is the weight update rule for the logistic regression method that minimizes the Euclidean distance between posterior probabilities and class labels

$$\mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} + (\mathbf{J}^T \mathbf{J} + \mathbf{J}^T \mathbf{E} (2\mathbf{P} + \mathbf{I}) \mathbf{X})^{-1} \mathbf{J}^T (\mathbf{y} - \mathbf{p})$$

where **J** is the Jacobian matrix, **X** is the data matrix, $P = \text{diag}\{p\}$, $E = \text{diag}\{(y - p)\}$, **y** is the vector of class labels and **p** is the vector of outputted posterior probabilities. Modify this update rule to obtain a Gauss-Newton optimization updates. What is the assumption behind this modification?

9.2 (3 points) Draw a perceptron for classifying 2-dimensional data. Clearly label everything on your drawing.

9.3 (3 points) Consider the perceptron training algorithm and the Pocket algorithm.

- a) (1 point) When types of concepts can these algorithms learn
- b) (2 points) What is the main difference between them

9.4~(2~points)~Under~what~conditions~will~the~perceptron~training~algorithm~converge?