Georg-August-Universität Göttingen	5 C 3 SWS
Modul B.Inf.1201: Theoretische Informatik	
English title: Theoretical Computer Science	

Lernziele/Kompetenzen: Studierende • kennen grundlegende Begriffe und Methoden der theoretischen Informatik im Bereich formale Sprachen, Automaten und Berechenbarkeit. • verstehen Zusammenhänge zwischen diesen Gebieten und sowie Querbezüge zur praktischen Informatik. • wenden die klassischen Sätze, Aussagen und Methoden der theoretischen Informatik in typischen Beispielen an. • klassifizieren formale Sprachen nach Chomsky-Typen. • bewerten Probleme hinsichtlich ihrer (Semi-)Entscheidbarkeit.

Lehrveranstaltung: Theoretische Informatik (Vorlesung, Übung)	3 SWS
Prüfung: Klausur (90 Minuten) oder mündliche Prüfung (ca. 20 Min.)	5 C
Prüfungsvorleistungen:	
Bearbeitung von 50% aller Übungsblätter, Vorführung mindestens einer Aufgabe	
während der Übung, kontinuierliche Teilnahme an den Übungen.	
Prüfungsanforderungen:	
In der Prüfung wird neben dem theoretischen Verständnis zentraler Begriffe der	
theoretischen Informatik die aktive Beherrschung der vermittelten Inhalte und Techniken	
nachgewiesen, z.B.	
durch Grammatik oder Akzeptormodell gegebene formale Sprache der	
nachweisbar richtigen Hierarchiestufe zuordnen, für gegebenes Wortproblem	
einen möglichst effizienten Entscheidungsalgorithmus konstruieren, dessen	
Laufzeitverhalten analysieren.	
aus Grammatik entsprechenden Akzeptor konstruieren (oder umgekehrt),	
Grammatik in Normalform überführen, reguläre Ausdrücke in endlichen Automaten	
überführen, Typ3-Grammatik in regulären Ausdruck usw.	
Algorithmus in vorgegebener Formalisierung darstellen, einfache	
Nichtentscheidbarkeitsbeweise durch Reduktion führen oder	
Abschlusseigenschaften von Sprachklassen herleiten, Semi-Entscheidbarkeit	
konkreter Probleme nachweisen.	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	Grundlagen der Informatik, der Programmierung und
	der diskreten Mathematik.
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Carsten Damm
Angebotshäufigkeit:	Dauer:
jährlich	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

zweimalig	
Maximale Studierendenzahl:	
100	