Denial-of-Service Attacks

Dr. Demetrios Glinos University of Central Florida

CIS3360 - Security in Computing

Readings

- "Computer Security: Principles and Practice", 3rd Edition, by William Stallings and Lawrie Brown
 - Chapter 7

Outline

- Brief Introduction to the Internet
- Denial of Service
- Flooding Attacks
- Distributed Denial-of-Service Attacks
- Application-Based Bandwidth Attacks
- Reflection and Amplification Attacks
- Defenses Against Denial-of-Service Attacks
- Responding to a Denial-of-Service Attack

The Internet

- Designed during Cold War to be a survivable communications system
- Uses packet switching concept (as opposed to circuit switching)
 - Data divided into chunks called "packets"
 - Packets routed individually to their destination
 - Many intermediate communication nodes, so many possible paths
 - Dynamic rerouting if a node should become unavailable
- Packet switching presents unique issues to be addressed:
 - Lost, duplicate, and out-of-order packet receipt
- Protocols are used for different types of messages
 - Examples: HTTP, FTP, PPP

Circuit Switching

- Traditional land line telephone system is best example
- Same operation whether live switchboard operator or automated switch

Packet Switching

Example: File transfer using the Internet

Layered Network Model

- The Internet implements a layered network architecture called the "Internet Protocol Suite", or more commonly, the "Internet Protocol Stack"
 - Examples: TCP and IP protocols
- Network functionality implements a model that consists of a stack of layers
 - Higher layers use the services of lower layers via encapsulation
 - A layer can be implemented in hardware or software
 - The bottommost layer must be in hardware
- A particular network device may implement several layers
- A communication channel between two nodes is established for each layer
 - Actual (physical) channel at the bottom layer
 - Virtual channel at higher layers

Internet Protocol Stack

Link layer: ARP, Ethernet, WiFi, use "Media Access Control" (MAC) addresses

Network layer: IPv4 and IPv6 addressing, ICMP Ping, Traceroute, etc.

Transport layer: TCP, UDP protocols

Application layer: DNS, HTTP, FTP, SSL, VoIP, SMTP, IMAP, POP, SOAP

Packet Structure

- A packet typically consists of
 - Control information for addressing the packet: header and footer
 - Data: payload
- A network protocol N2 can use the services of another network protocol N1
 - A packet p1 of N1 is encapsulated in a packet p2 of N2
 - The payload of p2 is p1
 - The control information of p2 is derived from that of p1
 - The payload of the lower layer packet is the entire higher layer packet

Denial of Service Defined

- Denial of Service (DoS) is:
 - an action
 - that prevents or impairs the authorized use of networks, systems, or applications
 - by exhausting resources such as central processing units (CPU), memory, bandwidth, and disk space

• in other words: DoS is an attempt to compromise *availability* by hindering or blocking completely the provision of some service

Targets of DoS Attacks

Network bandwidth

- attack attempts to overload connection to ISP
- ISP can also be targeted

System resources

- target is the network handling software
- overloading buffers
- open connection tables
- similar memory data structures

source: Fig. 7.1

Application resources

- attempt to overload application with bogus (but still valid) requests
- effect is to crowd out legitimate users

Flooding Attacks

- Basic idea for all flooding attacks
 - overload network connection with requests that require replies
 - effect is to cause target server to drop traffic from legitimate users
- Almost any type of packet can be used
 - attacker tries to use a packet that is of a type that is permitted to get through to the targeted server
 - common packet types used
 - ICMP
 - UDP
 - TCP SYN

Flooding Attack: Ping Flood

- ping flood attack
 - ping is an ICMP packet designed to find out if an IP is reachable
 - Ping uses echo requests to determine if a server can respond
 - Echo requests, if received, require echo replies
- source address spoofing is often used
 - background: source and destination IP addresses are in the IP packet header
 - sender inserts a different (often random) source IP address in packet
 - serves to hide the source of attack
 - also serves to avoid reply traffic returning to source and slowing down the attack
- Ping flood can be executed by
 - A more powerful machine on a less powerful server
 - A distributed DoS attack

TCP Three-Way Handshake

- TCP protocol is used to establish a virtual connection between source and destination hosts
 - uses a so-called "three-way handshake" to establish the connection
 - client sends SYN packet
 - server sends SYN-ACK
 - client sends ACK
 - these packets contain sequence and acknowledgement numbers
 - used to assure each host that it is connecting to the correct other host

source: Fig. 7.2

Flooding Attack: TCP SYN Flood

SYN flood attack

- target is the server table that is used to manage TCP connections
- attacker sends a flood of TCP connection requests to the target server
- attacker ignores SYN-ACKs received from server and does not send any ACKs
- connection table is filled with bogus connections
 - causes legitimate connection requests to be dropped

source: Fig. 7.2 (modified)

Compare: SYN Spoofing

- SYN spoofing attack
 - target is the server table that is used to manage TCP connections
 - attacker sends a large number of SYN packets with spoofed source addresses
 - server sends SYN-ACKs to the spoofed address
 - spoofed address doesn't respond (because it is either nonexistent or itself under attack)
 - as a result, connection table fills up and legitimate requests are dropped

source: Fig. 7.3

Flooding Attack: UDP Flood

User Datagram Protocol

- at transport layer, manages connections between processes
- but is connectionless
 - No guarantee of delivery, order or correctness of delivery
 - delivery is on a "best effort" basis
 - Sequence numbers are not used
 - Uses a 16-bit checksum
- suitable for applications where speed is more important than data integrity
 - Example: streaming media, VoIP (Voice over IP)

UDP flooding attack

- attacker's goal is to use up connection bandwidth
- flood directed to a particular port (hence, service) on server, whether or not it is running on the server
- flood of traffic to this port (and replies, if any) uses up bandwidth
 - available bandwidth for legitimate traffic is degraded

Distributed Denial-of-Service (DDoS)

- Modern servers are now generally too powerful to be subject to DoS from a single machine.
- A DDoS attack is a DoS attack that is executed by a botnet
- The botnet amplifies the effectiveness of an attack by a single server, but generally on a much larger scale.

DDoS Case Study

- DDoS attack on 10/21/2016
- Target DNS servers operated by DYN Corporation
- Effect: temporary outages at many popular sites
 - Twitter, Netflix, Spotify, Reddit
- Source was a botnet of IoT ("Internet of Things") devices
 - CCTVs, security cameras, etc., mostly outside US
 - most were traced to a particular Chinese company's products that had default passwords

Application-Based Bandwidth Attacks

HTTP flood

- attack is usually in the form of a DDoS by a botnet
- attacker floods a Web server with valid HTTP requests
 - e.g., to download a large file
- effect is to consume memory, processing, and transmission resources
- attacker can also use spidering, to follow links in a recursive way and pursue the attack further.

Slowloris attack

- attacker sends many legitimate HTTP requests to server, but the sessions are kept open
- each request keeps one processing thread on server busy waiting for the session to end
- eventually, the Web servers's connection capacity is fully occupied by such requests, crowding out requests from legitimate users
- since requests are legitimate, not generally detected by intrusion detection systems that rely on signatures

Reflection and Amplification

- Reflection and amplification attacks
 - use network systems functioning normally
 - unlike DDoS, which uses compromised systems

Reflection attack

- uses an intermediary to "reflect" an attack in the direction of the target
- attacker sends packets to a known service on intermediary
- packets spoof source address
- intermediary responds to the spoofed address
- the spoofed server is the target
- can use many different types of packets
 - e.g., TCP SYN flood to high-capacity server, with source address spoofed to be the IP address of the intended target

Amplification: Smurf Attack

Amplification attack

- uses some means to generate multiple response packets for each attack packet
- classic case: Smurf attack
 - Takes advantage of a broadcast capability which some LANs are are still configured with
 - IP address ending in n.n.n.255 was traditionally a broadcast address
 - Attacker sends ICMP packets (e.g., echo requests) to the broadcast IP
 address, but with the source IP spoofed to be that of the target server.
 - All recipients of the broadcast send replies to the server, overwhelming it
 - Defense is to configure hosts and routers to ignore broadcast requests

Defenses Against Denial-of-Service Attacks

- DoS attacks cannot be prevented entirely
 - high traffic volumes may be legitimate
 - high publicity, or current popularity
 - National Hurricane Center site during hurricane
 - sports sites during major events like Olympics or World Cup
- Lines of defense
 - 1. prevention
 - 2. detection and filtering
 - 3. source traceback
 - 4. attack reaction

DoS Attack Prevention

- An incomplete list of prevention measures
 - Block spoofed source addresses
 - use info from ISPs to detect bogus addresses in their address space, and block them at the enterprise firewall
 - Modify TCP connection handling code
 - drop half-open connections when connection table overflows
 - SYN Cookies (which contain encrypted sequence numbers in the SYN/ACKs themselves instead of in memory)
 - Not allocating resources for a TCP connection until ACK packet received
 - Disable LAN broadcast addresses
 - Manage application access with a graphical puzzle
 - CAPTCHA "Completely Automated Public Turing test to tell Computers and Humans Apart")
 - Use mirrored and replicated servers for high performance and availability

Responding to DoS Attacks

- Identify the type of attack
 - capture and analyze packets
 - design filters to block attack traffic upstream
 - or, identify and correct system/application bug
- Have ISP trace packet flow back to source
 - may be difficult and time consuming
 - necessary if planning legal action
- Implement a contingency plan
 - switch to alternate backup servers
 - commission new servers at a new site with new addresses
- Update incident response plan
 - analyze the attack and response for better handling in the future