# Filters

4/13

#### 電容有電抗作用,阻止低頻訊號通過

#### 電阻、電抗

$$Z = \text{sqrt}(R^2 + X^2)$$
  
阻抗= Impedance(Z)  
電阻= Resistance(R)  
電抗= Reactance(X) (  $X = X_L - X_C$ 



Impedance, 
$$Z = \sqrt{R^2 + X^2}$$

#### ● 電容抗 (capacitive reactance) , Xc

$$Xc = \frac{1}{2\pi fC}$$
 where:  $C = \frac{1}{2\pi fC}$  Where:  $C = \frac{1}{2\pi fC}$ 

Xc 在低頻時變大,高頻時變小。在穩定直流 (DC) 頻率為零時,Xc 無限大 (完全抵抗),因此,電容器交流 (AC) 通行,直流 (DC) 阻隔。

例如:一個 1 $\mu$ F 的電容,信號 50 Hz 時電抗為 3.2 k $\Omega$ ,可是當頻率提高至 10 kHz 時電抗則僅 有 16 $\Omega$ 。

#### 電感抗 (inductive reactance) , XI

$$X_L$$
 = reactance in ohms ( $\Omega$ )  
 $X_L$  = 2 $\pi$ fL where: f = frequency in hertz (Hz)  
L = inductance in henrys (H)

 $X_L$  在低頻時變小,高頻時變大。在穩定直流(DC)頻率為零時, $X_L$  為零(無抵抗),因此,**電感器直流(DC)通行,交流(AC)阻隔**。 例如:一個 1 mH 的電感,信號 50 Hz 時電抗為  $0.3\Omega$ ,可是當頻率提高至 10 kHz 時電抗則為  $63\Omega$ 。

### Filter Circuits

- Passive filters with a single resistor and capacitor are called onepole filters.
- The high-pass filter selects frequencies above a breakpoint frequent  $v_{in}$   $w_{in}$   $w_{in}$   $w_{in}$   $w_{in}$   $w_{in}$   $w_{in}$   $w_{in}$   $w_{in}$   $w_{in}$   $w_{in}$



## **Bandpass filter**





### Bandpass filter

- Frequency
  - o fr is the resonant or Center Frequency
  - $\circ$   $f_L$  is the lower -3dB cut-off frequency point
  - *f* H is the upper -3db cut-off frequency point
- Quality Factor
- Gain

$$Q = \frac{Resonant\ Frequency}{Bandwidth}$$

*Voltage Gain* = 
$$-\frac{R_2}{R_1}$$
,  $fc_1 = \frac{1}{2\pi R_1 C_1}$ ,  $fc_2 = \frac{1}{2\pi R_2 C_2}$ 





### Notch Filter

- Commonly referred to as band-stop or band-rejection filters.
- Notch Filter 的主要濾除某一特定頻率
- 若假設濾波器設計為濾除為 60 Hz 的訊號,其 Frequency Response Function 如下圖。



### Twin T notch filter

 A notch filter can be built with combining two 2-pole passive filters. One is low pass, and one is high pass.

