

Synchronous ball swivel link with first and second ball races - has holes in ball race spaced unevenly around edge and has reduced shortest angular distance of radial centre lines of holes to radial axis

Patent number: DE4234488 (C1)

Publication date: 1994-03-24

Inventor(s): WELSCHOF HANS-HEINRICH DIPL IN [DE]

Applicant(s): GKN AUTOMOTIVE AG [DE]

Classification:

- **international:** F16D3/20; F16D3/223; F16D3/227; F16D3/16; (IPC1-7): F16D3/22

- **european:** F16D3/223

Application number: DE19924234488 19921014

Priority number(s): DE19924234488 19921014

Also published as:

US5509856 (A)

FR2696799 (A1)

JP6213244 (A)

Cited documents:

JP62292333 (A)

JP4193438 (A)

Abstract of DE 4234488 (C1)

The position of the holes (8) in the ball race (9) is unevenly distributed over the periphery. On a cross section through the ball race, the shortest angular distances of the radial centre lines X_n of the other holes (8n) to the radial axis XA are reduced. The radial axis coincides with the radial centre line X_1, X_2 at least of a first hole (81,82). The transverse axis XQ through the race is at right angles to the radial axis. The shortest angular distances of the radial centre lines X_n of the other holes (8n) to the transverse axis XQ are increased compared with the angular distances of the radii RT of the part circle corresponding to the number of holes with the same angular distribution. ADVANTAGE - The ball races are more resistant to fracture in the synchronous ball swivel joints.

Data supplied from the esp@cenet database — Worldwide

⑯ Aktenzeichen: P 42 34 488.3-12
⑯ Anmeldetag: 14. 10. 92
⑯ Offenlegungstag: —
⑯ Veröffentlichungstag der Patenterteilung: 24. 3. 94

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

⑯ Patentinhaber:
GKN Automotive AG, 53721 Siegburg, DE

⑯ Vertreter:
Harwardt, G., Dipl.-Ing.; Neumann, E., Dipl.-Ing.; Müller-Wolff, T., Dipl.-Ing., Pat.-Anwälte; Jörg, C., Rechtsanw., 53721 Siegburg

⑯ Erfinder:
Welschof, Hans-Heinrich, Dipl.-Ing., 6459 Rodenbach, DE

⑯ Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:
JP 62-2 92 333
JP 04-1 93 438
SCHMELZ, Friedrich, SEHERR-THOSS, Hans-Christoph Graf v., AUCKTOR, Erich: Gelenke und Gelenkwellen, 1.Aufl. Berlin: Springer-Verlag, 1988, Kap.4.4 - ISBN 3-540-18322-1;

⑯ Gleichlaufkugeldrehgelenk mit asymmetrischem Käfig
⑯ Gleichlaufkugeldrehgelenk mit einem Gelenkaußenteil mit ersten Kugelbahnen in seiner Innenausnehmung, einem Gelenkinnenteil mit zweiten Kugelbahnen auf seiner Außenoberfläche, wobei die ersten und die zweiten Bahnen über dem Umfang gleich verteilt sind und sich paarweise gegenüberliegen und jeweils eine drehmomentübertragende Kugel aufnehmen, sowie einem Kugelkäfig, der die Kugeln in einer gemeinsamen Ebene E hält, mit einer der Anzahl der Kugeln entsprechenden Anzahl von Fenstern, in denen die Kugeln jeweils in Umfangsrichtung verschlebar sind, wobei die Lage der Fenster im Kugelkäfig über den Umfang ungleich verteilt ist, wobei im Querschnitt durch den Kugelkäfig - unter Bezugnahme auf eine Radialachse X_A durch den Käfig, die mit der radialen Mittellinie X_1, X_2 zumindest eines ersten Fensters zusammenfällt, und auf eine Querachse X_Q durch den Käfig, die senkrecht auf der Radialachse X_A steht und die Käfigmitte geht - die jeweils kürzesten Winkelabstände der radialen Mittellinien X_n der übrigen Fenster zu der Radialachse X_A - im Vergleich mit den Winkelabständen von Radien R_T eines der Zahl der Fenster entsprechenden Teilkreises mit gleicher Winkelteilung, der von der Radialachse X_A ausgeht - verringert sind und die jeweils kürzesten Winkelabstände der radialen Mittellinien X_n der übrigen Fenster zu der Querachse X_Q - im Vergleich mit den Winkelabständen der genannten Radien R_T des der Zahl der Fenster entsprechenden Teilkreises mit ...

Beschreibung

Die Erfindung betrifft ein Gleichlaufkugeldrehgelenk mit einem Gelenkaußenteil mit ersten Kugelbahnen in seiner Innenausnehmung, einem Gelenkinnenteil mit zweiten Kugelbahnen auf seiner Außenoberfläche, wobei die ersten und die zweiten Bahnen über dem Umfang gleich verteilt sind und sich paarweise gegenüberliegen und jeweils eine drehmomentübertragende Kugel aufnehmen, sowie einem Kugelkäfig, der die Kugeln in einer gemeinsamen Ebene hält, mit einer der Anzahl der Kugeln entsprechenden Anzahl von Fenstern, in denen die Kugeln jeweils in Umfangsrichtung verschiebbar sind.

Unter die hiermit gegebene Definition fallen RF-Festgelenke, DO-Verschiebegelenke und VL-Verschiebegelenke mit jeweils axialen Anschlag für den Kugelkäfig, Gelenke dieser Art sind unter den genannten Bezeichnungen im einzelnen beschrieben in "Schmelz, F. u. a., Gelenke und Gelenkwellen", Springer-Verlag 1988. Den hiermit genannten Gelenken ist es gemeinsam, daß die Montage der Kugeln in der Weise erfolgt, daß bei vormontiertem Gelenk mit Gelenkaußenteil, Gelenkinnenteil und Kugelkäfig in bestimmungsgemäßer Position die Kugeln unter Einstellen eines Montagewinkels α_M , der größer ist als der maximale Arbeitswinkel α_A einzeln montiert werden. Dies bedeutet, daß die Achsen von Gelenkaußenteil und Gelenkinnenteil so zueinander abgewinkelt werden, daß zumindest eines der Kugelfenster des Käfigs aus dem Gelenkaußenteil frei austritt, so daß von radial außen eine Kugel in das Käfigfenster und die entsprechende Bahn des Gelenkinnenteil eingesetzt werden kann. Der Montagewinkel α_M geht über den maximalen Betriebswinkel oder Arbeitswinkel α_A des Gelenkes hinaus, der so eingeschränkt ist, daß eine selbsttätige Demontage des Gelenkes in umgekehrter Weise wie zuvor beschrieben nicht möglich ist.

Bei jeder Gelenkbeugung sind sämtliche Kugeln eines Gelenkes, soweit sie sich nicht mit ihren Mittelpunkten auf einer senkrecht zur Beugungsebene liegenden Achse befinden, gegenüber einer angenommenen Mittelachse X_n ihres Käfigfensters in Umfangsrichtung verschoben. Bei gebeugt umlaufenden Gelenk bewegen sich die einzelnen Kugeln in ihren jeweiligen Kugelfenstern also oszillierend in deren Längsrichtung, d. h. in Umfangsrichtung des Käfigs. Die Länge der Kugelfenster ist so bemessen, daß die oben genannte Abwinkelung zur Montage sämtlicher Kugeln möglich ist.

Die Bruchfestigkeit von Kugelgelenken wird weitestgehend durch die Bruchfestigkeit des Kugelkäfigs bestimmt. Hierbei sind insbesondere die Stege zwischen den Fenstern, die durch die oben genannten Montageanforderungen vorgegeben sind, die schwächsten Stellen. An sich gewünschte große Arbeitswinkel des Gelenkes erfordern entsprechend größere Montagewinkel, die im Hinblick auf eine sich dadurch verringerte Stegbreite infolge größerer Fenster beschränkt sind. Die Festigkeitsanforderungen bzgl. der Breite der Stege zwischen den Fenstern stehen ebenfalls einer an sich gewünschten Vergrößerung der Kugeln bei einer bestimmten Gelenkgröße zur Erhöhung der Drehmomentkapazität entgegen.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, Gleichlaufkugeldrehgelenke der oben genannten Art dahingehend zu verbessern, daß die Bruchfestigkeit der Kugelkäfige bei vorgegebener Kugelgröße gesteigert werden kann. Sinngemäß entspricht dies der Formulierung, daß die Kugelgröße und damit die Dreh-

momentkapazität ohne Nachteile hinsichtlich der Bruchfestigkeit des Kugelkäfigs erhöht werden kann.

Die Lösung hierfür besteht darin, daß die Lage der Fenster im Käfig über dem Umfang ungleich verteilt ist, wobei im Querschnitt durch den Kugelkäfig — unter Bezugnahme auf eine Radialachse X_A durch den Käfig, die mit der radialen Mittellinie X_1, X_2 zumindest eines ersten Fensters zusammenfällt, und auf eine Querachse X_Q durch den Käfig, die senkrecht auf der Radialachse X_A steht und durch die Käfigmitte geht — die jeweils kürzesten Winkelabstände der radialen Mittellinien X_n der übrigen Fenster zu der Radialachse X_A — im Vergleich mit den Winkelabständen von Radien R_T eines der Zahl der Fenster entsprechenden Teilkreises mit gleicher Winkelteilung, der von der Radialachse X_A ausgeht — verringert sind und die jeweils kürzesten Winkelabstände der radialen Mittellinien X_n der übrigen Fenster zu der Querachse X_Q — im Vergleich mit den Winkelabständen der genannten Radien R_T des der Zahl der Fenster entsprechenden Teilkreises mit gleicher Winkelteilung — vergrößert sind.

Erfindungsgemäß kann auf diese Weise ohne jegliche Veränderung der Funktion und der Montageart die Breite der Stege zwischen den Käfigfenstern erhöht werden. Das heißt, bei gleicher Gelenkkonfiguration, insbesondere gleichem Arbeitswinkel und Montagewinkel, kann jeder der Stege zwischen den Fenstern verbreitert werden, indem im Vergleich mit einem Käfig nach dem Stand der Technik das zumindest eine erstgenannte Fenster an beiden Enden und die übrigen Fenster an den zu dem zumindest einen ersten Fenster jeweils entgegengesetzt liegenden Enden verkürzt werden. Im Vergleich mit Radien auf einem Teilkreis mit gleicher Winkelteilung verschiebt sich hierdurch jeweils die radiale Mittellinie der genannten übrigen Fenster. Dies ist möglich, indem auf die bei der bisher üblichen gleichen Teilung der Fenster über dem Umfang mögliche beliebige Montagefolge der Kugeln, d. h. auf das mögliche Freischwenken eines jeden Kugelfensters durch Einstellen des Montagewinkels in jeder beliebigen Ebene bei eingesetzten Kugeln verzichtet wird. Die erfindungsgemäßen Gelenke sind vielmehr in einer solchen Reihenfolge zu montieren, daß in das zumindest eine erstgenannte Fenster die Kugel als letzte unter Einstellen des Montagewinkels in der Ebene, die dieses Fenster enthält, eingesetzt wird. Dieses Einsetzen kann in Fenstermitte erfolgen, so daß die Fensterlänge dieser Fenster auf den reinen Arbeitsbereich beschränkt werden kann. Das heißt, an beiden Enden kann die Fensterlänge um den bisher nur für Zwecke der Montage vorgesehenen Bereich verkürzt werden. Wird das Gelenk in einer anderen als in der durch die genannten Fenster vorgegebenen Ebene gebeugt, so beschränkt die auf den Arbeitsbereich begrenzte Fensterlänge die darüber hinausgehende Beugung des Gelenkes. Kugeln in den übrigen Fenstern können somit nicht als letzte montiert oder als erste demontiert werden.

Bei dem Einstellen des Montagewinkels in der durch das zumindest eine erste Fenster vorgegebenen Ebene wandern die Kugeln in den anderen Käfigfenstern in eine bekannte bestimmte Richtung, nämlich auf die Beugungsebene zu. Nur in dieser Richtung benötigen die übrigen Käfigfenster eine über den Arbeitsbereich der Kugeln hinausgehende größere Länge zum Zwecke des Einstellen des Montagewinkels. In der jeweils entgegengesetzten Richtung kann die Länge dieser Fenster — bezogen auf eine Mittelposition bei gestrecktem Gelenk — auf den Arbeitsbereich für den Arbeitswinkel

des Gelenks beschränkt sein, bzw. auf die erforderliche Länge, die zum Montieren einer weiteren Kugel in eines der übrigen Fenster notwendig ist, wenn ein Teil der Kugeln der übrigen Fenster bereits montiert sind.

Eine erste bevorzugte Ausführung geht dahin, daß die einzelnen Käfigfenster untereinander gleiche Umfangslänge haben. Dies ist in fertigungstechnischer Hinsicht besonders günstig, da die Fenster mit einem einzigen Werkzeug hergestellt werden können. Die Fensterlänge ist dann im Hinblick auf die größtmögliche Verkürzung dadurch bestimmt, daß die Fensterlänge der sogenannten übrigen Fenster in Umfangsrichtung jeweils dem Kugeldurchmesser zuzüglich der Länge des Weges der Kugeln bei unter dem maximalen Arbeitswinkel α_A umlaufenden Gelenk zuzüglich der zum Verschieben der Kugeln bei der Montage erforderlichen Länge, bei Einstellung des Montagewinkels α_M in der Ebene durch die Radialachse X_A entspricht, wenn in die genannten übrigen Fenster die Kugeln bereits sämtlich eingesetzt sind und als letztes in das zumindest eine erste Fenster die zumindest eine zugehörige Kugel eingesetzt wird.

Nach einer zweiten bevorzugten Abwandlung ist es auch möglich, daß die Länge des zumindest einen sogenannten ersten Fensters in Umfangsrichtung geringer ist als die der übrigen Fenster. Die höchstmögliche Verkürzung dieses zumindest einen Fensters ist dann dadurch gegeben, daß die Länge des zumindest einen ersten Fensters in Umfangsrichtung dem Kugeldurchmesser zuzüglich der Länge des Weges der Kugeln bei unter dem maximalen Arbeitswinkel α_A umlaufenden Gelenk entspricht.

Hierbei können in günstiger Weise im Hinblick auf die Festigkeit die Stege zwischen den Fenstern untereinander in Umfangsrichtung gleich lang sein.

Bevorzugte Ausführungsbeispiele der Erfindung sind anhand der Zeichnungen dargestellt. Hierbei zeigt

Fig. 1 ein erfindungsgemäßes Gelenk bei Beugung unter dem maximalen Arbeitswinkel α_A ,

Fig. 2 ein erfindungsgemäßes Gelenk bei Beugung unter dem Montagewinkel α_M ,

Fig. 3a einen Käfig nach dem Stand der Technik mit Kugeln in einer Montageposition;

Fig. 3b einen Käfig eines erfindungsgemäßes Gelenkes analog Fig. 3a in einer ersten Ausführung;

Fig. 3c einen Käfig eines erfindungsgemäßes Gelenkes analog Fig. 3a in einer zweiten Ausführung.

In den Fig. 1 und 2, die nachstehend gemeinsam beschrieben werden, ist ein Rzeppa-Festgelenk dargestellt. Es ist ein Gelenkaußenteil 1 mit ersten Kugelbahnen 2 auf seiner Innenoberfläche 3 sowie ein Gelenkinnenteil 4 mit zweiten Kugelbahnen 5 auf seiner Außenoberfläche 6 gezeigt. In den paarweise zugeordneten Kugelbahnen 2, 5 ist eine Kugel 7 gehalten, die in einem Fenster 8 eines Kugelkäfigs 9 in der Schnittebene spielfrei geführt wird. Die Schnittebene ist zugleich die Beugungsebene des Gelenkes in der dargestellten Stellung, die durch die Achse X_1 des Gelenkaußenteils und die Achse X_2 des Gelenkinnenteils aufgespannt wird. Der Käfig hält die Kugelmittelpunkte M_K aller Kugeln in einer gemeinsamen Ebene E, die senkrecht zur Zeichenebene steht. Der Käfig 9 ist mit seiner Außenoberfläche 10 in der Innenoberfläche 3 des Gelenkaußenteils 1 und mit seiner Innenoberfläche 11 auf der Außenoberfläche 6 des Gelenkinnenteils geführt. Die Steuerung des Käfigs 9 auf die Winkelhalbierende Ebene erfolgt mittels der durch den Bahnkontaktwinkel auf diese Ebene gezwungenen Kugeln 7, wenn diese sich im Bereich der dargestellten Beugungsebene befinden.

In Fig. 1 ist das Gelenk unter dem höchstmöglichen Arbeitswinkel α_A dargestellt. Die Ebene E aller Kugelmittelpunkte M_K ist hierbei um den halb so großen Winkel β_A gegenüber der Mittelebene E_A des Gelenkaußenteils auf die Winkelhalbierende gestellt. Hierbei wird die Kugel 7 in der Beugungsebene noch in den Bahnen 2, 5 von Gelenkaußenteil 1 und Gelenkinnenteil 4 sowie vom Käfigfenster 8 des Käfigs 9 so gehalten, daß sie nicht radial austreten kann.

In Fig. 2 ist das Gelenk unter dem Montagewinkel α_M dargestellt. Die Ebene E' aller Kugelmittelpunkte M_K hat sich gegenüber der Mittelebene E_A des Gelenkaußenteils um den Winkel β_M bewegt, der dem halben Winkel α_M entspricht. In dieser Position kann die Kugel 7 radial aus dem Käfigfenster 8 austreten, bzw. in dieser Position montiert werden, wobei sie durch das Gelenkaußenteil nicht gehalten bzw. gehindert wird.

In Fig. 3a ist der Käfig 9 als Einheit im Schnitt gezeigt, wobei die Position der Kugeln 7 zum Käfig derjenigen in Fig. 2 entspricht. Es sind sechs Käfigfenster 8 auf einem gleichmäßigen Teilkreis mit einer 60° -Teilung dargestellt. Die einzelnen Fenster 8 sind durch radiale Mittellinien X bezeichnet, die mit Radien R_T gleicher Teilung übereinstimmen. Eine Radialachse X_A definiert eine senkrecht zur Zeichenebene stehende Beugungsebene, während die darauf senkrecht stehende und durch die Käfigmitte gehende Querachse X_Q die zugehörige Beugeachse definiert. Die obere Kugel 7_1 und die gegenüberliegende Kugel 7_2 sollen als in der Beugungsebene liegende Kugeln angenommen werden. Sie sind in symmetrischer Position in Bezug auf die ersten Käfigfenster $8_1, 8_2$ dargestellt, deren radiale Mittellinien X_1, X_2 mit der Radialachse X_A zusammenfallen. Die übrigen Kugeln 7_n sind in Bezug auf die entsprechenden übrigen Käfigfenster 8_n in einer Stellung dargestellt, die sie einnehmen, wenn der Montagewinkel α_M erreicht ist. Sie sind hierbei gegenüber der Mittelachse X_n in ihrem Fenster 8_n um den Winkelbetrag Δ verschoben. Hieraus ergibt sich die halbe Fensterlänge aller Fenster mit L_M .

Mit gestrichelten Linien sind die Positionen dargestellt, die die Konturen der übrigen Kugeln 7 erreichen, wenn der Arbeitswinkel α_A des Gelenkes angenommen wird. In dieser Position hat die Kugelkontur von der Mittelachse X_n des Käfigfensters 8_n den Abstand L_A , der den halben Arbeitsbereich bildet.

Wie am Käfigfenster 8_1 mit der Kugel 7_1 dargestellt, ist somit die Umfangslänge jedes Fensters $2L_M$.

In den Fig. 3b, 3c sind wiederum eine Radialachse X_A und eine Querachse X_Q gekennzeichnet, von denen erstere in der Beugungsebene liegt und letztere die Beugungssachse definiert. Ausgehend von der Radialachse X_A sind Radien R_T mit gleichem Teilungswinkel entsprechend der Zahl der Fenster eingezzeichnet. Die radialen Mittellinien X_1, X_2 erster Fenster stimmen mit der Radialachse X_A überein. Die radialen Mittellinien der übrigen Fenster weichen von den entsprechenden Radien R_T gleicher Teilung ab.

In Fig. 3b sind die übrigen Fenster 8_n jeweils bezogen auf die ursprüngliche Länge gemäß Fig. 3a an ihren paarweise benachbarten Enden jeweils um den Betrag $L_M - L_A$ verkürzt, wobei in dieser Richtung, ausgehend von dem Radius R_T gleicher Teilung nur die Länge L_A des halben Arbeitsbereiches übrig bleibt, während die für die Einstellung des Montagewinkels erforderliche Länge L_M ausgehend von dem Radius R_T gleicher Teilung nur noch für die Beugung in der dargestellten Form in entgegengesetzter Richtung vorgesehen ist. Die Ge-

samtfensterlänge dieser Fenster 8_n ist $L_A + L_M$. Es ergibt sich hieraus eine neue Mittellinie X_n für die jeweiligen Käfigfenster, die von den Radien R_T gleicher Teilung abweicht, während die Mittellinien X_1, X_2 der ersten beiden Fenster unverändert bleiben.

5

Die Länge der Fenster $8_1, 8_2$ ist symmetrisch zur unveränderten Mittellachse X_1, X_2 beidseitig um jeweils $(L_M - L_A)/2$ verkürzt. Nach dieser Ausführung ergeben sich in Umfangsrichtung ungleich verteilte, jedoch untereinander gleichlange Fenster. Dies hat den Vorteil, daß diese mit gleichem Stanzwerkzeug hergestellt werden können.

In Fig. 3c sind die übrigen Fenster 8_n für die übrigen Kugeln 7_n in gleicher Weise verkürzt, wie in Fig. 3b. Auch hierbei ist wiederum die Gesamtfensterlänge $L_A + L_M$, wobei sich die neue Mittellinie X_n ergibt, die von den Radien R_T gleicher Teilung abweicht, während die Mittellinien X_1, X_2 der ersten beiden Fenster unverändert bleiben. Die beiden ersten Fenster 8_1 und 8_2 mit ihrer unveränderten Mittellinien X_1, X_2 sind dagegen jeweils an beiden Enden um den Beitrag $L_M - L_A$ auf insgesamt $2 L_A$ verkürzt. Hiermit ist das geringstmögliche Maß der Länge für diese Fenster erreicht. Dies hat den Vorteil, daß nunmehr alle Stege zwischen den Kugeln in Umfangsrichtung gleichmäßig vergrößert sind und somit gleiche Festigkeit aufweisen. Hierbei ist allerdings die Fensterlänge ungleich.

Patentansprüche

30

1. Gleichlaufkugeldrehgelenk mit einem Gelenkaußenteil (1) mit ersten Kugelbahnen (2) in seiner Innenausnehmung, einem Gelenkinnenteil (4) mit zweiten Kugelbahnen (5) auf seiner Außenoberfläche, wobei die ersten und die zweiten Bahnen (2, 5) über dem Umfang gleich verteilt sind und sich paarweise gegenüberliegen und jeweils eine drehmomentübertragende Kugel (7) aufnehmen, sowie einem Kugelkäfig (9), der die Kugeln in einer gemeinsamen Ebene E hält, mit einer der Anzahl der Kugeln entsprechenden Anzahl von Fenstern (8) in denen die Kugeln (7) jeweils in Umfangsrichtung verschiebar sind, dadurch gekennzeichnet, daß die Lage der Fenster (8) im Kugelkäfig (9) über den Umfang ungleich verteilt ist, wobei im Querschnitt durch den Kugelkäfig (9) — unter Bezugnahme auf eine Radialachse X_A durch den Käfig, die mit der radialen Mittellinie X_1, X_2 zumindest eines ersten Fensters ($8_1, 8_2$) zusammenfällt, und auf eine Querachse X_Q durch den Käfig, die senkrecht auf der Radialachse X_A steht und durch die Käfigmitte geht — die jeweils kürzesten Winkelabstände der radialen Mittellinien X_n der übrigen Fenster (8_n) zu der Radialachse X_A — im Vergleich mit den Winkelabständen von Radien R_T eines der Zahl der Fenster entsprechenden Teilkreises mit gleicher Winkelteilung, der von der Radialachse X_A ausgeht — verringert sind und die jeweils kürzesten Winkelabstände der radialen Mittellinien X_n der übrigen Fenster (8_n) zu der Querachse X_Q — im Vergleich mit den Winkelabständen der genannten Radien R_T des der Zahl der Fenster entsprechenden Teilkreises mit gleicher Winkelteilung — vergrößert sind.

2. Gelenk nach Anspruch 1, dadurch gekennzeichnet, daß der Winkelabstand einer zweiten Mittelli-

6

nie X_2 zur Radialachse X_A Null bleibt, wenn ein zweiter Radius R_T des Teilkreises mit der Radialachse zusammenfällt (Kugelzahl 4, 6, 8...).

3. Gelenk nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Winkelabstand zweier Mittellinien zur Querachse X_Q Null bleibt, wenn zwei Radien R_T des Teilkreises mit der Querachse zusammenfallen (Kugelzahl 4, 8, 12).

4. Gelenk nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Länge aller Fenster ($8_1, 8_2, 8_n$) in Umfangsrichtung untereinander gleich ist.

5. Gelenk nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Länge des zumindest einen ersten Fensters ($8_1, 8_2$) in Umfangsrichtung geringer ist als die Länge der übrigen Fenster (8_n).

6. Gelenk nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Länge des zumindest einen ersten Fensters ($8_1, 8_2$) in Umfangsrichtung dem Kugeldurchmesser zuzüglich der Länge des Weges der Kugeln ($7_1, 7_2$) bei unter dem maximalen Arbeitswinkel α_A umlaufenden Gelenk entspricht.

7. Gelenk nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Länge der übrigen Fenster (8_n) in Umfangsrichtung jeweils dem Kugeldurchmesser zuzüglich der Länge des Weges der Kugeln bei unter dem maximalen Arbeitswinkel α_A umlaufenden Gelenk zuzüglich der zum Verschieben der Kugeln (7_n) bei der Montage erforderlichen Länge, bei Einstellung des Montagewinkels α_M in der Ebene durch die Radialachse X_A entspricht, wenn in die genannten übrigen Fenster (8_n) die Kugeln (7_n) bereits sämtlich eingesetzt sind und als letztes in das zumindest eine erste Fenster ($8_1, 8_2$) die zumindest eine zugehörige Kugel ($7_1, 7_2$) eingesetzt wird.

Hierzu 4 Seite(n) Zeichnungen

Fig. 1)

Fig. 2)

Fig. 3a

Fig. 3b

Fig. 3c

