КОМП'ЮТЕРНИЙ СИНТЕЗ та ОБРОБКА ЗОБРАЖЕНЬ

2020 / 2021 навчальний рік

ФІЛЬТРАЦІЯ

- 1. Фільтрація 2D сигналів (звук) в частотній області.
- 2. Фільтрація 3D сигналів (зображення) в частотній області.

https://github.com/eabshkvprof/2021_Image_Processing_IPZm_20

Загальна ідея фільтрації сигналів

$$S(t)$$
 Вхідний Φ ІЛЬТР Вихідний $S_f(t)$ сигнал $I_f(x,y)$

Фільтр — система, що виконує деяке перетворення сигналу. Основний метод фільтрації — частотна селекція сигналу.

Загальна ідея фільтрації сигналів

 $K(\omega)$ — амплітудно-частотна характеристика

Операція згортки сигналу з ядром (оператором) фільтру відображується в частотній області як перемноження частотного спектру сигналу на частотний образ оператора фільтру.

Тобто: за допомогою маніпуляції із спектром маємо можливість цілеспрямована зміняти характеристики сигналу.

4

Python Numpy (numpy.fft) \ Scipy (scipy.fft) Fourier Transforms

	Стандартне пряме перетворення	Стандартне зворотне перетворення	Пряме перетворення для real	Зворотне перетворення для real
1D	fft(a)	ifft(a)	rfft(a)	irfft(a)
2 D	fft2(a)	ifft2(a)	rfft2(a)	irfft2(a)
nD	fftn(a)	ifftn(a)	rfftn(a)	irfftn(a)

a → numpy *array_like*; *return* → complex numpy array

Зсув спектру до центру	Зворотній зсув спектру	
fftshift(x)	ifftshift(x)	

https://numpy.org/doc/stable/reference/routines.fft.html
https://docs.scipy.org/doc/scipy/reference/tutorial/fft.html

1D сигнал (звук)

Центрований спектр

Не центрований спектр

1D сигнал (звук). Фільтр низької частоти

Ідеальний фільтр НЧ

1D сигнал (звук). Фільтр високої частоти

Ідеальний фільтр ВЧ

1D сигнал (звук). Довільний фільтр

2D сигнал (зображення)

Не центрований спектр

Центрований спектр

2D сигнал (зображення)

Відображення центрованого спектру як поврехні

Ідеальний 2D фільтр низької частоти (ФНЧ)

Не центрована АЧХ фільтру

Центрована АЧХ фільтру

Ідеальний 2D фільтр низької частоти (ФНЧ)

Ідеальний 2D фільтр низької частоти (ФНЧ)

Ідеальний 2D фільтр високої частоти (ФВЧ)

Centered AFR

10
0.8
0.6
0.4
0.2

100
200
300
400
500
0

Не центрована АЧХ фільтру

Центрована АЧХ фільтру

Ідеальний 2D фільтр високої частоти (ФВЧ)

Ідеальний 2D фільтр високої частоти (ФВЧ)

Довільний 2D фільтр

Не центрована АЧХ фільтру

Центрована АЧХ фільтру

Довільний 2D фільтр

Довільний 2D фільтр

Видалили багато спектральних компонентів (перехресні частоти), а результат?

Фільтрація в частотній області

Обробка зображень в просторовій області vs частотній області:

переваги та недоліки визначаються особливостями сигналу, що обробляються, та метою обробки.

Створення АЧХ необхідного 2D фільтру — завдання теорії обробки багатовимірних сигналів.

Важливо: обробка в частотній області перетворює зображення «в цілому» - !!! Одночасно все зображення.

Рекомендована ЛІТЕРАТУРА

- Вовк С.М., Гнатушенко В.В., Бондаренко М.В. Методи обробки зображень та комп'ютерний зір: навчальний посібник. Д.: Ліра, 2016 148 с.
- **Красильников Н.Н.** Цифровая обработка 2D- и 3D-изображений: учеб.пособие.- СПб.: БХВ-Петербург, 2011.- 608 с.: ил.
- Гонсалес Р.С., Вудс Р.Э. Цифровая обработка изображений. М.: Техносфера, 2005. -1070 с.
- Визильтер Ю.В., Желтов С.Ю. и др. Обработка и анализ зображений в задачах машинного зрения.-М.: Физматкнига, 2010.-672 с.

Рекомендована ЛІТЕРАТУРА

- Ватолин Д., Ратушняк А., Смирнов М., Юкин В. Методы сжатия данных. Устройство архиваторов, сжатие изображений и видео. М.: ДИАЛОГ-МИФИ, 2002. 384 с.
- **Творошенко І.С.** Конспект лекцій з дисципліни «Цифрова обробка зображень» / І.С.Творошенко : І.С. Творошенко ; Харків. нац. ун-т міськ. госп-ва ім. О. М. Бекетова. Харків : ХНУМГ ім. О. М. Бекетова, 2017. 75 с.
- Методи компьютерной обработки изображений: Учебное пособие для ВУЗов/ Под ред.: Сойфер В.А.. 2-е изд., испр. М.: Физматлит, 2003. 780 с.
- Фисенко В.Т., Фисенко Т.Ю. Компьютерная обработка и распознавание изображений: учеб. пособие. СПб: СПбГУ ИТМО, 2008. 192 с.

Додаткова ЛІТЕРАТУРА

- **Грузман И.С.**, Киричук В.С. Цифровая обработка зображений в информационных системах. Новосибирск: Изд-во НГУ, 2002. 352 с.: ил.
- Solomon C., Breckon T. Fundamentals of Digital Image Processing. Willey-Blackwell, 2011 344 p.
- Павлидис Т. Алгоритмы машинной графики и обработки изображений: Пер. с англ. М.: Радио и связь, 1986. 400 с.
- **Яншин В. В.**, Калинин Г. А. Обработка изображений на языке Си для IBM РС: Алгоритмы и программы. М.: Мир, 1994. 240 с.

Інформаційні ресурси

- Компьютерная обработка изображений. Конспект лекций. http://aco.ifmo.ru/el_books/image_processing/
- Цифрова обробка зображень [Електронний ресурс]: методичні рекомендації до виконання лабораторних робіт / НТУУ «КПІ»; уклад.: В. С. Лазебний, П. В. Попович. Електронні текстові дані (1 файл: 1,41 Мбайт). Київ: НТУУ «КПІ», 2016. 73 с. https://ela.kpi.ua/handle/123456789/21035
- https://www.youtube.com/watch?v=CZ99Q0DQq3Y
- https://www.youtube.com/watch?v=FKTLW8GAdu4

The END Modulo 2.1. Lec 5