TREINAMENTO PARA COMPETIÇÕES DE PROGRAMAÇÃO

GRAFOS - PARTE II
ALL-PAIRS SHORTEST PATHS:

O ALGORITMO DE FLOYD-Warshall

Murilo Adriano Vasconcelos http://murilo.wordpress.com

O Problema

 Dada a descrição de um grafo G(V, E) (implícita/explicitamente) sem ciclos negativos, queremos saber quais são as menores distâncias entre cada par de vértices vi, vj ∈ V.

Representação do Grafo

- Matriz de adjacência
- •Peso da aresta de i para i é 0
- Arestas que não estão no grafo são representadas por ∞(um valor muito grande)

•	a	Ь	С	d	е
a	0	20	8	12	∞
Ь	8	0	8	8	3
C	8	8	$) \bigcirc$	8	∞
Б	∞	∞	17	0	4
e	6	∞	3	5	0

O Algoritmo

```
const int MAXV = 100; // número máximo de vértices
const int INF = 0x3f3f3f3f; // cuidado com esse valor
int grafo[MAXV][MAXV];
for (int i = 0; i < N; ++i) {
    for (int j = i; j < N; ++j)
       grafo[i][j] = grafo[j][i] = INF;
   grafo[i][i] = 0; // distância de i->i = 0
}
for (int k = 0; k < N; ++k) {
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j) {
            grafo[i][j] = min(grafo[i][j],
             grafo[i][k] + grafo[k][j]); // ir i->k->j
        }
```

O Algoritmo - explicação

A cada passo, o algoritmo tenta diminuir a distância entre os vértices i e j passando pelo vértice intermediário k.

O "k" representa o vértice intermediário atual. Assim, quando k = 3 é finalizado, todos os grafo[i][j] estarão os menores caminhos "podendo" passar pelos vértices 0, 1, 2 e 3. Ao final de k == N-1 temos os menores caminhos podendo passar por todos os vértices. Esse processo é chamado de relaxação.

Menor distância vs. distância direta

- •Qual a menor distância entre b e c?
 - •Distância direta = 8
 - •Distância mínima = 6

-	a	Ь	С	d	е
a	0	20	8	12	∞
Ь	∞	0	8	8	3
С	∞	8	0	8	8
d	∞	8	17	0	4
е	6	∞	3	5	0

Considerações

- Utiliza O(N^2) espaço para guardar a matriz de adjacência
- Complexidade de tempo O(N^3)
- Ou seja, funciona bem para N <= 200
 - $200^2 = 40.000 \times 4 = 160.000$ bytes
 - 200^3 = 8.000.000 operações
- Se 200 < N <= 500 e você não tiver outra ideia, tente, talvez passa!!!
 - 500^3 = 125.000.000 operações!

Aplicações - Fecho Transitivo

 Dada a descrição de um grafo direcionado, responder, para cada par de vértices, se existe pelo menos um caminho entre eles

Aplicações - Fecho Transitivo

- Matriz de adjacência binária
 - I se existe uma aresta de i para j
 - 0 caso contrário

-	_	2	3	4
		0	0	0
2	0			I
3	0	Ι	ı	0
4	I	0	ı	I

O Algoritmo

```
bool grafo[MAXV][MAXV]; // 1 existe uma aresta, 0 cc
for (int i = 0; i < N; ++i) {
    for (int j = i; j < N; ++j)
       grafo[i][j] = grafo[j][i] = false;
   grafo[i][i] = true; // existe um caminho de i para i
}
... // substitui o min() por um OR (||)
for (int k = 0; k < N; ++k) {
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j) {
            grafo[i][j] = grafo[i][j] ||
                (grafo[i][k] && grafo[k][j]);
```

Reconstrução do caminho

Alguns problemas podem pedir que você informe além dos menores caminhos, o caminho em si.

Para isso, podemos armazenar facilmente as informações necessárias para a reconstrução do caminho utilizando outra matriz NxN e ir preenchendo na medida que uma relaxação é feita.

Pra imprimir fazer um backtracking nessa matriz.

Reconstrução do caminho

```
int g[MAXV][MAXV]; // pesos das arestas
int path[MAXV][MAXV]; // armazenamento do caminho
// Inicializa o grafo e lê o grafo
// Inicializa path[i][j] com -1
for (int k = 0; k < N; ++k) {
    for (int i = 0; i < N; ++i) {
       for (int j = 0; j < N; ++j) {
            if (g[i][k] + g[k][j] < g[i][j]) {
               g[i][j] = g[i][k] + g[k][j];
               path[i][j] = k; // de i pra j, passei por k
```

Reconstrução do caminho

```
void print_path(int i, int j)
{
    if (g[i][j] == INF) {
        cout << "Sem caminho\n";</pre>
        return;
    }
    // Se não há alguém entre i e j (menor caminho é
    direto)
    if (path[i][j] == -1) {
        cout << " ";
        return;
    }
    print_path(i, path[i][j]);
    cout << path[i][j] << " ";</pre>
    print_path(path[i][j], j);
}
```

Alguns Problemas

```
SpojBR - MINIMO

Codeforces Round #33 Probl. B - String Problem

UVa 821 - Page Hopping

UVa 10171 - Meeting Prof. Miguel...

UVa 10724 - Road Construction

UVa 10793 - The Orc Attack

UVa 10803 - Thunder Mountain

UVa 10987 - AntiFloyd

UVa 11015 - Rendezvous
```

Dúvidas?