МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения» Тема: Оценка параметров надежности программ

по временным моделям обнаружения ошибок

Студентка гр. 7304	 Каляева А.В.
Преподаватель	 Ефремов М.А.

Санкт-Петербург

Задание:

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{Xi\}$, где Xi случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,30], также смотри примечание в π .3), в соответствии c:
- A) равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет mpaвн = 10, CKO spaвн = 20/(2*sqrt(3)) = 5.8.
 - Б) экспоненциальным законом распределения

$$W(y) = b*exp(-b*y),$$
 y>=0, с параметром b=0.1

и соответственно mэксп=sэксп= 1/b=10.

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t) \, / \, b$

В) релеевским законом распределения

 $W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$ параметром c=8.0 и соответственно mpeл = $c*sqrt(\square/2)$, speл= $c*sqrt(2-\square/2)$.

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

2. Каждый из 3-х массивов {Xi} интервалов времени между соседними ошибками упорядочить по возрастанию.

3. Для каждого из 3-х массивов $\{Xi\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{Xi\}$ использовать n = 30, 24 и 18 элементов).

Примечание: для каждого значения n следует генерировать и сортировать новые массивы.

- 4. Если B>n, оценить значения средних времен Xj, j=n+1,n+2...,n+k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы:

1. Равномерный закон

а. Равномерный закон распределения (100% входных данных)

i	X	i	X	i	X
1	0,323	11	6,416	21	12,656
2	0,474	12	7,595	22	12,843
3	1,444	13	8,308	23	14,217
4	1,536	14	8,805	24	15,056
5	2,955	15	10,079	25	15,296
6	3,428	16	10,928	26	16,592
7	3,797	17	11,510	27	17,200
8	5,993	18	11,708	28	18,187
9	6,002	19	12,048	29	18,854
10	6,154	20	12,479	30	19,555

Проверка существования максимума \hat{B} :

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 20,512$$

$$A > (n+1)/2$$

20,512 > 15,5, условие сходимости выполнено

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$
$$g(m,A) = \frac{n}{m-A}$$

$$g(m,A) = \frac{n}{m-A}$$

m	31	32	33	34	35
f	3,995	3,027	2,558	2,255	2,035
g	2,861	2,612	2,402	2,224	2,071
f-g	1,134	0,416	0,156	0,031	0,036

Первоначальное количество ошибок B = m - 1 = 33

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.007$$

Среднее время $\widehat{X_{n+1}}$

$$X_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	31	32	33
Xi	47,619	71,429	142,857

Время до полного завершения тестирования 261,905 дней.

Полное время: 554,343 дней

b. Равномерный закон распределения (80% входных данных)

i	X	i	X	i	X
1	1,345	9	7,754	17	12,777
2	1,891	10	7,981	18	13,137
3	3,858	11	9,747	19	13,257
4	4,096	12	9,824	20	14,334
5	4,317	13	9,976	21	14,463
6	5,982	14	10,579	22	15,855
7	6,024	15	11,151	23	16,537
8	6,805	16	11,601	24	19,507

Проверка существования максимума \hat{B} :

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 15.833$$

$$A > (n+1)/2$$

15.833 > 12.5, условие сходимости выполнено

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	25	26	27	28	29	30	31
f	3,776	2,816	2,354	2,058	1,844	1,678	1,545
g	2,618	2,361	2,149	1,973	1,823	1,694	1,582
f-g	1,158	0,455	0,205	0,086	0,021	0,016	0,037

Первоначальное количество ошибок B = m - 1 = 29

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n}X_i - \sum_{i=1}^{n}iX_i} = 0.007$$

Среднее время $\widehat{X_{n+1}}$

$$X_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	25	26	27	28	29
Xi	28,571	35,714	47,619	71,429	142,857

Время до полного завершения тестирования 326,190 дней.

Полное время: 558,990 дней

с. Равномерный закон распределения (60% входных данных)

i	X	i	X	i	X
1	0,120	7	8,934	13	15,099
2	3,092	8	9,454	14	16,696
3	4,330	9	9,556	15	17,223
4	7,420	10	10,967	16	17,939
5	8,130	11	11,893	17	18,313
6	8,853	12	13,738	18	18,373

Проверка существования максимума \hat{B} :

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 11,915$$

$$A > (n+1)/2$$

11,915 > 9.5, условие сходимости выполнено

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	19	20	21	22	23	24
f	3,495	2,548	2,098	1,812	1,607	1,451
g	2,540	2,226	1,981	1,785	1,624	1,489
f-g	0,955	0,321	0,117	0,027	0,016	0,038

Минимум разности при т = 23

Первоначальное количество ошибок B = m - 1 = 22

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.008$$

Среднее время $\widehat{X_{n+1}}$

$$X_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	19	20		22
Xi	31,25	41,667	62,5	125

Время до полного завершения тестирования 260,417 дней.

Полное время: 462,707 дней

2. Экспоненциальный закон

а. Экспоненциальный закон распределения (100% входных данных)

i	X	i	X	i	X
1	0,126	11	2,952	21	12,219
2	0,640	12	3,016	22	12,627
3	0,643	13	3,831	23	13,302
4	0,649	14	4,793	24	16,287
5	0,720	15	5,745	25	17,431
6	0,791	16	6,089	26	18,509
7	1,522	17	7,432	27	20,309
8	1,561	18	8,171	28	21,715
9	2,287	19	10,411	29	27,021
10	2,606	20	10,576	30	45,822

Проверка существования максимума \hat{B} :

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 23,584$$

$$A > (n+1)/2$$

23,584 > 15,5, условие сходимости выполнено

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$
$$g(m, A) = \frac{n}{m-A}$$

$$g(m,A) = \frac{n}{m-A}$$

m	31	32
f	3,995	3,027
g	4,045	3,565
f-g	0,050	0,537

Первоначальное количество ошибок B = m - 1 = 30

T.к. B = n:

Время до полного завершения тестирования 0 дней.

Полное время: 279,800 дней

b. Экспоненциальный закон распределения (80% входных данных)

i	X	i	X	i	X
1	0,680	9	5,950	17	13,801
2	1,515	10	7,523	18	13,933
3	1,756	11	7,570	19	14,128
4	2,266	12	8,904	20	17,965
5	3,050	13	11,066	21	20,009
6	3,690	14	11,590	22	20,459
7	5,395	15	11,658	23	21,390
8	5,932	16	12,358	24	34,400

Проверка существования максимума \hat{B} :

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 17.274$$

$$A > (n+1)/2$$

17.274 > 12.5, условие сходимости выполнено

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	25	26	27
f	3,776	2,816	2,354
g	3,106	2,750	2,468

f-g 0,669 0,065 0,1	13
------------------------------	----

Первоначальное количество ошибок B=m-1=25

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n}X_i - \sum_{i=1}^{n}iX_i} = 0.011$$

Среднее время $\widehat{X_{n+1}}$

$$X_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	25
X_i	90,909

Время до полного завершения тестирования 90,909 дней.

Полное время: 347,899 дней

с. Экспоненциальный закон распределения (60% входных данных)

i	X	i	X	i	X
1	0,221	7	3,272	13	6,701
2	0,458	8	4,449	14	7,626
3	1,594	9	4,516	15	10,462
4	2,527	10	4,797	16	14,107
5	2,591	11	5,683	17	24,539
6	3,000	12	6,602	18	26,247

Проверка существования максимума \hat{B} :

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 13,926$$

$$A > (n + 1)/2$$

13,926 > 9.5, условие сходимости выполнено

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$
$$g(m,A) = \frac{n}{m-A}$$

m	19	20	
f	3,495	2,548	
g	3,548	2,964	
f-g	0,053	0,416	

Первоначальное количество ошибок B=m-1=18

Т.к. B=n:

Время до полного завершения тестирования 0 дней.

Полное время: 129.39 дней

3. Релеевский закон

а. Релеевский закон распределения (100% входных данных)

i	X	i	X	i	X
1	3,386	11	7,983	21	11,208
2	3,696	12	8,423	22	11,963
3	3,853	13	8,732	23	12,820
4	3,951	14	8,767	24	12,951
5	5,312	15	8,887	25	14,189
6	6,135	16	9,094	26	14,599
7	6,379	17	9,297	27	15,580
8	6,649	18	9,685	28	16,603
9	6,978	19	10,122	29	22,494
10	7,290	20	10,407	30	27,679

Проверка существования максимума \hat{B} :

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 19,595$$

$$A > (n+1)/2$$

19,595 > 15,5, условие сходимости выполнено

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	31	32	33	34	35	36	37	38
f	3,995	3,027	2,558	2,255	2,035	1,863	1,725	1,609
g	2,630	2,418	2,238	2,083	1,947	1,829	1,724	1,630
f-g	1,365	0,609	0,321	0,173	0,087	0,035	0,001	0,021

Минимум разности при т = 37

Первоначальное количество ошибок B = m - 1 = 36

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.006$$

Среднее время $\widehat{X_{n+1}}$

$$X_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	31	32	33	34	35	36
Xi	27,778	33,333	41,667	55,556	83,333	166,667

Время до полного завершения тестирования 408,334 дней.

Полное время: 713,444 дней

b. Релеевский закон распределения (80% входных данных)

i	X	i	X	i	X
1	1,844	9	6,684	17	9,595
2	2,310	10	7,170	18	10,558
3	3,948	11	7,396	19	11,279
4	4,028	12	7,854	20	12,144
5	5,613	13	8,415	21	14,763
6	5,743	14	8,705	22	16,014
7	5,787	15	8,988	23	16,532
8	6,184	16	9,141	24	18,624

Проверка существования максимума \hat{B} :

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 15.797$$

$$A > (n+1)/2$$

15.797 > 12.5, условие сходимости выполнено

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	25	26	27	28	29	30	31
f	3,776	2,816	2,354	2,058	1,844	1,678	1,545
g	2,608	2,352	2,142	1,967	1,818	1,690	1,579
f-g	1,168	0,464	0,212	0,091	0,026	0,011	0,034

Минимум разности при т = 31

Первоначальное количество ошибок B = m - 1 = 30

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.008$$

Среднее время $\widehat{X_{n+1}}$

Время до полного завершения тестирования 306,250 дней.

Полное время: 515,57 дней

с. Релеевский закон распределения (60% входных данных)

i	X	i	X	i	X
1	1,816	7	4,723	13	10,961
2	2,120	8	4,732	14	11,553
3	2,592	9	6,722	15	13,609
4	3,239	10	7,352	16	14,371
5	4,135	11	7,434	17	14,818
6	4,544	12	7,946	18	15,330

Проверка существования максимума \hat{B} :

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 12,439$$

$$A > (n+1)/2$$

12,439 > 9.5, условие сходимости выполнено

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$
$$g(m,A) = \frac{n}{m-A}$$

$$g(m,A) = \frac{n}{m-A}$$

m	19	20	21	22
f	3,495	2,548	2,098	1,812

	2,744			
f-g	0,751	0,167	0,005	0,071

Первоначальное количество ошибок B = m - 1 = 20

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.015$$

Среднее время $\widehat{X_{n+1}}$

$$X_{n+1} = \frac{1}{\widehat{Z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	19	20	
Xi	33,333	66,667	

Время до полного завершения тестирования 100 дней.

Полное время: 240,16 дней

4. Полученные результаты

Закон	n = 30	n = 24	n = 18
распределения			
Равномерный	33	29	22
Экспоненциальный	30	25	18
Релеевский	36	30	20

Закон	n = 30	n = 24	n = 18
распределения			
Равномерный	554,343	558,990	462,707
Экспоненциальный	279,800	347,899	129,39
Релеевский	713,444	515,57	240,16

Выводы:

В результате выполнения данной лабораторной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Моранды, ДЛЯ различных распределения времен обнаружения отказов и различного числа используемых для анализа данных. При n = 30 худшие показатели по двум измерениям имеет релеевское распределение. Также при n = 24 равномерный и релеевский законы имеют схожие показатели. Однако, ПО всем показателям экспоненциальный закон распределения, подтверждая предположения, что "время до следующего отказа программы распределено экспоненциально"