Beschreibungslogik | Übung 04

D. Marschner, A. Mahdavi alma@uni-bremen.de

Aufgabe 1)

tbd

Aufgabe 2)

a)

$$C_0 = \exists r. \neg A \text{ erfüllbar bzgl. } \mathcal{T} = \{ \forall r. A \sqsubseteq A, A \sqsubseteq \bot, \forall r. A \sqsubseteq \exists r. A \}$$

 \mathcal{T} in NNF bringen:

$$\mathcal{T} = \{ \forall r.A \sqsubseteq A, A \sqsubseteq \bot, \forall r.A \sqsubseteq \exists r.A \}$$

$$= \{ \top \sqsubseteq (\neg \forall r.A \sqcup A) \sqcap (\neg A \sqcup \bot) \sqcap (\neg \forall r.A \sqcup \exists r.A) \}$$

$$= \{ \top \sqsubseteq (\exists r. \neg A \sqcup A) \sqcap \neg A \sqcap (\exists r. \neg A \sqcup \exists r.A) \}$$

$$\mathcal{T} = \{ \top \sqsubseteq C_{\mathcal{T}} \} \text{ mit } C_{\mathcal{T}} = \{ (\exists r. \neg A \sqcup A) \sqcap \neg A \sqcap (\exists r. \neg A \sqcup \exists r. A) \}$$

 $sub(C_0, \mathcal{T})$ generieren:

$$sub(C_0, \mathcal{T}) = \{\exists r. \neg A, C_{\mathcal{T}}, \exists r. \neg A \sqcup A, \neg A, \exists r. \neg A \sqcup \exists r. A, A, \exists r. A\}$$

Wegen $C_{\mathcal{T}} \in t$ für jeden Typen t für C_0 und \mathcal{T} und der Typ-Bedingung für \sqcap , muss jeder Typ die Menge $M = \{C_{\mathcal{T}}, \exists r. \neg A \sqcup A, \neg A, \exists r. \neg A \sqcup \exists r. A\}$ enthalten. Aufgrund der Regel-(1) von Definition 5.2 (Typ) und weil $\neg A \in sub(C_0, \mathcal{T})$ ist $A \notin t$. Dadurch ergibt sich mit der \sqcup -Regel, dass $\exists r. \neg A \in t$ sein muss. Somit ist $M = \{C_{\mathcal{T}}, \exists r. \neg A \sqcup A, \neg A, \exists r. \neg A \sqcup \exists r. A, \exists r. \neg A\}$.

Man kann sich also leicht überzeugen, dass es insgesamt zwei Typen für C_0 und \mathcal{T} gibt, nämlich:

$$t_0 = M \cup \{\exists r.A\}$$
$$t_1 = M$$

Der Typ t_0 ist schlecht in der Menge aller Typen: für $\exists r.A \in t_0$ und $\exists r. \neg A \in t_0$ ist die Menge aus Definition 5.3 $\{A, \neg A\}$, aber kein Typ enthält sowohl A als auch $\neg A$.

Der Typ t_1 ist nicht schlecht in der Menge aller Typen: für $\exists r. \neg A \in t_1$ ist die Menge aus Definition 5.3 $\{\neg A\}$, wobei t_1 selbst $\neg A$ enthält. Also $\neg A \in t_1 = t'$.

Das Typeliminationsverfahren berechnet folgende Mengen:

$$\Gamma_0 = \{t_0, t_1\}$$

$$\Gamma_1 = \{t_1\}$$

$$\Gamma_2 = \{t_1\}$$

Der Algorithmus stoppt, weil $\Gamma_1 = \Gamma_2$.

Das Ergebnis ist $erf\ddot{u}llbar$, weil es ein $t=t_1\in\Gamma_2$ gibt mit $C_0=\exists r.\neg A\in t.$

Model \mathcal{I} aus Beweis von Lemma 5.5:

$$\mathcal{I}$$

$$\Delta^{\mathcal{I}} = \{t_0\}$$

$$r^{\mathcal{I}} = \{(t_0, t_0)\}$$

Da $(C_0)^{\mathcal{I}} = (\exists r. \neg A)^{\mathcal{I}} = \{t_0\} \neq \emptyset \text{ ist } \mathcal{I} \text{ Modell von } C_0.$

b)

 $C_0 = \forall r. \forall r. A$ erfüllbar bzgl. $\mathcal{T} = \{ \neg A \sqsubseteq B, A \sqsubseteq \neg B, \forall r. A \sqsubseteq \bot \}$

 \mathcal{T} in NNF bringen:

$$\mathcal{T} = \{ \neg A \sqsubseteq B, A \sqsubseteq \neg B, \forall r.A \sqsubseteq \bot \}$$

$$= \{ \top \sqsubseteq (\neg \neg A \sqcup B) \sqcap (\neg A \sqcup \neg B) \sqcap (\neg \forall r.A \sqcup \bot) \}$$

$$= \{ \top \sqsubseteq (A \sqcup B) \sqcap (\neg A \sqcup \neg B) \sqcap (\exists r. \neg A \sqcup \bot) \}$$

$$= \{ \top \sqsubseteq (A \sqcup B) \sqcap (\neg A \sqcup \neg B) \sqcap \exists r. \neg A \}$$

$$\mathcal{T} = \{ \top \sqsubseteq C_{\mathcal{T}} \} \text{ mit } C_{\mathcal{T}} = \{ (A \sqcup B) \sqcap (\neg A \sqcup \neg B) \sqcap \exists r. \neg A \}$$

 $sub(C_0, \mathcal{T})$ generieren:

$$sub(C_0, \mathcal{T}) = \{ \forall r. \forall r. A, C_{\mathcal{T}}, A \sqcup B, \neg A \sqcup \neg B, \exists r. \neg A, A, B, \neg A, \neg B, \forall r. A \}$$

Wegen $C_{\mathcal{T}} \in t$ für jeden Typen t für C_0 und \mathcal{T} und der Typ-Bedingung für \sqcap , muss jeder Typ die Menge $M = \{C_{\mathcal{T}}, A \sqcup B, \neg A \sqcup \neg B, \exists r. \neg A\}$ enthalten. Aufgrund der Regel-(1) von Definition 5.2 (Typ) und der \sqcup -Regel kann man sich leicht überzeugen, dass es insgesamt vier Typen für C_0 und \mathcal{T} gibt, nämlich:

$$t_0 = M \cup \{A, \neg B\}$$

$$t_1 = M \cup \{\neg A, B\}$$

$$t_2 = M \cup \{A, \neg B, \forall r.A\}$$

$$t_3 = M \cup \{\neg A, B, \forall r.A\}$$

Der Typ t_0 ist nicht schlecht in der Menge aller Typen: für $\exists r. \neg A \in t_0$ ist die Menge aus Definition 5.3 $\{\neg A\}$, wobei $\neg A \in t_1$. Also $\neg A \in t_1 = t'$.

Der Typ t_1 ist nicht schlecht in der Menge aller Typen: für $\exists r. \neg A \in t_1$ ist die Menge aus Definition 5.3 $\{\neg A\}$, wobei t_1 selbst $\neg A$ enthält. Also $\neg A \in t_1 = t'$.

Der Typ t_2 ist schlecht in der Menge aller Typen: für $\exists r. \neg A \in t_2$ und $\forall r. A \in t_2$ ist die Menge aus Definition 5.3 $\{\neg A, A\}$, aber kein Typ enthält sowohl A als auch $\neg A$.

Der Typ t_3 ist schlecht in der Menge aller Typen: für $\exists r. \neg A \in t_3$ und $\forall r. A \in t_3$ ist die Menge aus Definition 5.3 $\{\neg A, A\}$, aber kein Typ enthält

sowohl A als auch $\neg A$.

Das Typeliminationsverfahren berechnet folgende Mengen:

$$\Gamma_0 = \{t_0, t_1, t_2, t_3\}$$

$$\Gamma_1 = \{t_0, t_1\}$$

$$\Gamma_2 = \{t_0, t_1\}$$

Der Algorithmus stoppt, weil $\Gamma_1 = \Gamma_2$.

Das Ergebnis ist $unerf\ddot{u}llbar$, weil es ein kein $t \in \Gamma_2$ gibt mit $C_0 = \forall r. \forall r. A \in t$.

Aufgabe 3)

tbd

Aufgabe 4)

tbd

Aufgabe 5)

 tbd