VLSI Design - Lecture II 30th Aug 2022

MOSFET Scaling

- ☐ Proposed by Dennard et. al. in 1974
- lacksquare Reduce vertical and lateral dimensions by lpha
- lacktriangle Reduce supply and threshold voltages by lpha
- lacktriangle Increase doping concentrations by α

Original MOSFET

Scaled MOSFET

Scaling classical MOSFETs

Lateral and vertical dimensions reduce by 30% (W = 0.7, L = 0.7 and T_{ox} = 0.7)

Supply and threshold voltages reduced by 30% ($V_{DD} = 0.7$ and $V_{T} = 0.7$)

$$\longrightarrow$$

□ Total gate Capacitance
$$\frac{\text{Lo}_{Y}}{\text{to}_{X}}$$
 W_{XZ} $\frac{\text{O.7} \times \text{O.7}}{\text{O.7}}$ $\frac{30\%}{\text{O.7}}$

ait
$$\begin{aligned}
T &= 1U \cos \frac{W}{L} \left(V_{\alpha,5} - V_{T} \right)^{2} \frac{1}{0.7} \times 0.7^{2} \\
&= \frac{CV}{0.7} \times 0.7 \times 0.7 \\
&= \frac{0.7 \times 0.7}{0.7} \times 0.7 \times 0.7
\end{aligned}$$

$$\frac{1}{0.7} \times \frac{0.7}{0.7} \times \frac{30}{0.7} \times \frac{30}{$$

$$= 0.7 \times 0.7^{2}$$

