

China 2023

Kubernetes on Bare-metals or VMs? Or Using Virtink to Have Pros of Both

Feng YE (@fengye87), SmartX & Ailin YANG (@ailun258), Intel

Kubernetes on Bare-metals

Pros

- No performance overhead of virtualization
- No operational costs of virtualization

Cons

- Not easy to deploy & scale clusters
- Unsafe to share using clusters
 - Kernel is shared between containers and hosts
- Inconvenient sharing clusters
 - No built-in multi-tenant support

Kubernetes on VMs

Pros

- Highly isolated
- Higher hardware utilization
- Easy to deploy & scale clusters
 - Cluster API

Cons

- Enterprise products can be costly
- Overrich feature set
 - Legacy hardware emulation is less efficient and unsafe
 - Complicated to operate

Pros of both?

Highly efficient virtualization

- Lower overhead
 - Para-virtualization (virtio)
 - SR-IOV
- Less burden
 - Avoid keyboard, mouse or monitor
 - Remove legacy hardware support

Lightweight VM management

- Easier operations
 - Minimal feature set
 - On Kubernetes, for Kubernetes
- Lower management overhead
 - Minimize per VM management memory overhead

What is Virtink

Virtink is a Cloud Hypervisor Add-on for Kubernetes

About Cloud Hypervisor

- •VMM with focus on running modern "Cloud Workloads" only
- •Open Source since 2019:

https://github.com/cloud-hypervisor/cloud-hypervisor

- •Written in Rust utilising Rust-VMM components
- •Goals:
- •Minimal device emulation paravirtualised devices instead
- •Opinionated feature set to ensure ease of use
- Designed with security in mind
- •Usable for "pet" VMs as well as for integrating with Kata Containers

- •Contributions from multiple companies:
- •Intel, Alibaba, Microsoft, ARM, Bytedance, Oracle, Ericsson, Phytium, Red Hat, Ant Financial, ZTE, Smartx, Tencent
- •Governance:
- Linux Foundation Project
- •Founding members: Intel, ARM, Microsoft, Alibaba, ByteDance, +Tencent and Ampere
- •Technical committee of key contributors to settle potential disputes
- Advisory Board of technologists

Cloud Hypervisor Architecture

Comparing Cloud Hypervisor to Others

Virtink Design Goals

- Runs on (almost) any Kubernetes clusters
 - No CRI replacement
 - Non-invasion
- Kubernetes native
 - CSI for VM storage
 - CNI for VM network
- Support nested Kubernetes

Virtink Architecture

kubelet spins up VM Pod

virt-prerunner sets up networks and **assembles the VM, then exit** virt-daemon instructs Cloud Hypervisor how to **launcher the VM**

Comparing Virtink to Others

- Virtink replaces QEMU (and libvirt) with Cloud Hypervisor
 - ≥30MB less per VM memory overhead
- No long-running management process in VM Pod
 - ≥ 80MB less per VM management memory overhead
- Minimized feature set
 - No shared-storage based VM HA
 - No device hot-plugging

Virtink Demo

https://asciinema.org/a/509484

knest: Turnkey Nested Kubernetes Tool

https://asciinema.org/a/509497

Summary

- Kubernetes on bare-metals or VMs both have pros & cons
- To achieve high performance and isolation at the same time, a more efficient and lightweight virtualization is required

More efficient virtualization: Cloud Hypervisor More lightweight VM management: Virtink

- Rust for memory safety
- virtio for efficient IO
- Minimized attack face

- ≥100MB per VM memory overhead
- Minimized feature set
- On Kubernetes, for Kubernetes
- A turnkey guest Kubernetes tool

Thanks 🙏 & Questions 🙋?