FILM: FORMATION METHOD AND FILM FORMATION APPARATUS

FILM FORMATION METHOD AND FILM FORMATION APPARATUS

Patent Number:

JP5206036

Publication date:

1993-08-13

Inventor(s):

AOYANAGI KATSUNOBU; others: 02

Applicant(s):

RIKAGAKU KENKYUSHO

Requested Patent:

JP5206036

Application Number: JP19920014991 19920130

Priority Number(s):

IPC Classification:

H01L21/205

EC Classification:

EC Classification:

Equivalents:

JP3126787B2

Abstract

PURPOSE:To make it possible to from a thin film having an excellent in-plane uniformity, ALE condition, crystal quality, acute steepness of heterointerface, and others without damaging a substrate.

CONSTITUTION:A substrate 3 is arranged in a vacuum chamber 1 which is evacuated at a given degree of vacuum and heated. At the same time, with a gas ejection mechanism having a nozzle 6 arranged toward the substrate 3, and a high-speed switching valve 8 which provided near the nozzle 6, a material gas is ejected to the substrate 3 intermittently or continuously to grow crystals on the surface of the substrate 3 for the formation of a film.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-206036

(43)公開日 平成5年(1993)8月13日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

H01L 21/205 #H01L 21/20 7454-4M 9171-4M

審査請求 未請求 請求項の数2(全 4 頁)

(21)出願番号

特願平4-14991

(71)出願人 000006792

理化学研究所

(22)出願日

平成4年(1992)1月30日

埼玉県和光市広沢2番1号

(72)発明者 青柳 克信

埼玉県和光市広沢2番1号 理化学研究所

М

(72)発明者 尾笹 一成

埼玉県和光市広沢2番1号 理化学研究所

内

(72)発明者 目黒 多加志

埼玉県和光市広沢2番1号 理化学研究所

内

(74)代理人 弁理士 須山 佐一

(54)【発明の名称】 成膜方法および成膜装置

(57)【要約】

【目的】 基板に損傷を与えることなく、面内均一性、 ALE条件、結晶の質、ヘテロ界面の急俊性等が良好な 薄膜を形成することのできる成膜方法および成膜装置を 提供する。

【構成】 所定の真空度に設定した真空チャンバ1内に基板3を配設して加熱するとともに、基板3に向けて配置されたノズル6およびこのノズル6に近接して設けられた高速開閉バルブ8を有するガス射出機構によって、基板3に向けて所定の原料ガスを断続的あるいは連続的に噴出させ、基板3面に結晶を成長させて成膜を行う。

1

【特許請求の範囲】

【請求項1】 所定の真空度に設定した真空チャンパ内 に基板を配設して加熱するとともに、前記基板に向けて 配置されたノズルおよびこのノズルに近接して設けられ た開閉弁を有するガス射出機構によって、前記基板に向 けて所定の原料ガスを断続的あるいは連続的に噴出さ せ、前記基板面に結晶を成長させて成膜を行うことを特 徴とする成膜方法。

【請求項2】 所定の真空度に設定可能に構成された真 空チャンパと、

前記真空チャンパ内に配設され、成膜を行う基板を支持 および加熱する基板支持機構と、

前記基板に向けて配置されたノズルおよびこのノズルに 近接して設けられた開閉弁を有し、前記基板に向けて所 定の原料ガスを断続的あるいは連続的に噴出させるガス 射出機構とを具備したことを特徴とする成膜装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、GaAsの薄膜等を、 気相成長により形成する成膜方法および成膜装置に関す 20 る。

[0002]

【従来の技術】従来から、基板表面に、例えばGaAs の薄膜等を成膜する方法として、真空チャンパ内に設け た基板を加熱し、この真空チャンパ内に所定の原料ガス を導入して、熱分解により基板表面に結晶を成長させて 成膜する方法や、荷電粒子を用いて基板表面に結晶を成 長させ、成膜する方法等が知られている。

[0003]

【発明が解決しようとする課題】しかしながら、上述し た方法のうち、荷電粒子を用いた従来の成膜方法では、 数十e V~数百e V以上のエネルギーを有する荷電粒子 が基板に作用するため、基板が損傷を受けるという問題 がある。また、熱分解を用いた従来の成膜方法では、こ のような問題は起きないが、原料ガスの切り替えを速や かに行うことが困難であり、ヘテロ界面の急俊性が損な われたり、反応の制御性が悪く、面内均一性、ALE条 件、結晶の質等を改善することが望まれている。

【0004】本発明は、かかる従来の事情に対処してな されたもので、基板に損傷を与えることなく、面内均一 性、ALE条件、結晶の質、ヘテロ界面の急俊性等が良 好な薄膜を形成することのできる成膜方法および成膜装 置を提供しようとするものである。

[0005]

【課題を解決するための手段】すなわち、本発明の成膜 方法は、所定の真空度に設定した真空チャンパ内に基板 を配設して加熱するとともに、前記基板に向けて配置さ れたノズルおよびこのノズルに近接して設けられた開閉 弁を有するガス射出機構によって、前記基板に向けて所 定の原料ガスを断続的あるいは連続的に噴出させ、前記 50 塩化砒素等の塩化物等を用いることができる。

基板面に結晶を成長させて成膜を行うことを特徴とす

【0006】また、本発明の成膜装置は、所定の真空度 に設定可能に構成された真空チャンパと、前記真空チャ ンパ内に配設され、成膜を行う基板を支持および加熱す る基板支持機構と、前記基板に向けて配置されたノズル およびこのノズルに近接して設けられた開閉弁を有し、 前記基板に向けて所定の原料ガスを断続的あるいは連続 的に噴出させるガス射出機構とを具備したことを特徴と 10 する。

[0007]

【作用】上記構成の本発明の成膜方法および成膜装置で は、ノズルに近接して設けられた開閉弁を開閉すること により、ノズルから基板に向けて断続的あるいは連続的 に勢い良く、原料ガスを噴出させる。すなわち、この原 料ガスは、ガス供給配管内の圧力と、真空チャンパ内の 圧力との差によって基板方向に大きな速度を持つ分子だ けが引き出され、進行方向の運動エネルギーの成分が、 これと垂直な運動エネルギーの成分に比べて非常に大き な指向性の高い、ガス流として(断続供給の場合は高密 度の短時間分子パルスとして) 基板に供給される。

【0008】すなわち、本発明によれば、図3に示すよ うに、ノズルから射出するガス分子は、進行方向の速度 成分についてはある値を中心とする比較的狭い分布 (a) を示し、進行方向と垂直な速度成分(b) につい てはほぼゼロである。これに対して、熱分解を用いた従 来の方法による場合、原料ガスを真空チャンバ内に供給 するノズルと、開閉弁との間等の配管内において、ガス 分子の進行方向の速度成分が減少し、図4に示すよう に、進行方向の速度成分(a)および進行方向と垂直な 速度成分(b)ともに、不揃いな広い分布となってい る。

【0009】このように、指向性の高い高密度のガス流 によって成膜を行うと、基板に損傷を与えることがな く、良質な薄膜を形成することができる。

【0010】すなわち、他のガス分子がほとんどない状 態で、運動エネルギーの高い所定のガス分子を基板面に 供給することができるので、マイグレーションを促進さ せることができ、質の良い結晶を成長させることができ る。また、断続供給の場合にはガス分子が基板面に到達 する時間の制御性が髙くなるので、反応時間の位相が揃 った状態で成膜を行うことができ、面内均一性、ALE 条件の改善を図ることができる。さらに、原料供給の高 速切り替えを行うことができ、ヘテロ界面の急俊性を向 上させることができる。

【0011】なお、原料ガスとしては、例えば、3族原 料の場合、トリメチルガリウム等の有機金属あるいは塩 化ガリウム等の塩化物、5族原料の場合、アルシンやホ スフィン等の水素化物、トリメチル砒素等の有機金属、

3

[0012]

١.

【実施例】以下、本発明の一実施例を図面を参照して説 明する。

【0013】図1は、本発明の一実施例の装置の構成を 示すもので、図において符号1は縦断面がほぼ円形に形 成された円筒状の真空チャンパを示している。この真空 チャンパ1には、真空ポンプ (図示せず) 等に接続され た排気配管2が配設されており、内部を所定の真空度に 設定することができるよう構成されている。

【0014】また、上記真空チャンパ1内には、加熱用 10 ヒータ(図示せず)を備え、基板3を保持しつつ、この 基板3を加熱可能に構成されたホルダ4が設けられてお り、このホルダ4の周囲には、液体窒素によって冷却可 能に構成された液体窒素シュラウド5が設けられてい る。

【0015】また、真空チャンパ1内には、上記ホルダ 3に向けて突出する如く、2つのノズル6が設けられて いる。これらのノズル6は、いわゆる断熱膨脹ノズルで あって、図2にその横断面を示すように、ガス通路6 a には、隘路6 bに向けてガス通路断面が徐々に小さくな るようテーパ部6 c、6 dが形成されている。さらに、 これらのノズル6にはそれぞれガス供給配管7が接続さ れており、ガス供給配管?には、ノズル6に近接して高 速開閉バルブ8が介挿されている。

【0016】なお、この高速開閉バルブ8としては、1 ミリ秒ないし10ミリ秒程度の時間で開閉可能なものを使 用する。また、ノズル6と高速開閉バルブ8とはできる だけ近接して配置し、少なくともこれらの間が直線的に 結ばれ、高速開閉バルブ8の開閉に伴って、ガス供給配 管7側からノズル6側へ、これらの間の圧力差によって 噴出するガス分子の噴出方向の運動エネルギーが損なわ れないようにする必要がある。

【0017】このように構成されたノズル6等のガス供 給機構は、供給するガス種の数に応じて設けられるもの であり、例えば3 種類のガスを供給しながら成膜を実施 する場合は、3 つ設ける必要がある。

【0018】以下、上記構成の装置を用いて、断続的に 原料供給を行って、基板3 LにGaAsの薄膜を形成す る場合について説明する。

【0019】まず、一方のガス供給配管7に、トリメチ ルガリウム (C₃ H₉ Ga) を供給することのできる原 料ガス供給源を接続し、もう一方のガス供給配管7に、 アルシン(AsH₃)を供給することのできる原料ガス 供給源を接続する。なお、トリメチルガリウムの場合、 原料ガス供給源からの圧力は、0.1 ~0.2 気圧程度とな る。また、アルシンについては、0.1 ~20気圧程度とな る。

【0020】そして、ホルダイに基板3を配置して、こ の基板3を200~600℃に加熱し、高速開閉パルプ8を 50 6

所定パルス幅、例えば50ミリ秒以下程度となるように、 交互に断続的に開閉する。すると、図1に模式的に示す ように、トリメチルガリウムガス分子の分子パルス1 0、アルシンガス分子の分子パルス11が、交互に基板 3表面に到達し、基板3上にGaAsの薄膜が形成され る。

【0021】このように、本実施例では、ノズル6(断 熱膨脹ノズル)の直前で高速開閉パルプ8を開閉するの で、ガス供給配管7内の圧力と、真空チャンパ1内の圧 カとの差によってガス分子が加速され、図3に示したよ うに、進行方向の運動エネルギーの成分が、これと垂直 な運動エネルギーの成分に比べて非常に大きな指向性の 高い、高密度の短時間分子パルスが基板3に供給され る。なお、この時の分子パルス(ガス分子)の持つエネ ルギーは、100meV~1 eV程度であると推定される。これ は、従来の荷電粒子を用いた結晶成長および、熱分解に よる結晶成長の中間のエネルギー領域である。

【0022】したがって、他のガス分子がほとんどない 状態で、運動エネルギーの高い所定のガス分子を基板3 には、隘路6 bが形成されており、この隘路6 bの両側 20 に供給することができるので、マイグレーションを促進 させることができ、質の良い結晶を成長させることがで きる。また、ガス分子が基板3に到達する時間の制御性 が高くなるので、反応時間の位相が揃った状態で成膜を 行うことができ、面内均一性、ALE条件の改善を図る ことができる。さらに、原料供給の高速切り替えを行う ことができ、ヘテロ界面の急俊性を向上させることがで きる。

[0023]

【発明の効果】以上説明したように、本発明の成膜方法 および成膜装置によれば、基板に損傷を与えることがな く、また、マイグレーションの促進により、良好な結晶 を得ることができる。断続供給の場合には、さらに、反 応の時間位相が揃うので、面内均一性およびALE条件 の改善を計ることができるとともに、原料ガスを高速で 切り替えることができるので、ヘテロ界面の急峻性を確 保することができる。

【図面の簡単な説明】

【図1】本発明の一実施例の成膜装置の構成を示す図。

【図2】図1の成膜装置の要部構成を拡大して示す図。

【図3】本発明方法におけるガス分子の運動エネルギー の状態を説明するための図。

【図4】従来方法におけるガス分子の運動エネルギーの 状態を説明するための図。

【符号の説明】

- 1 真空チャンバ
- 排気配管
- 3 基板
- 4 ホルダ
- 液体窒素シュラウド
- ノズル

(4)

特開平5-206036

5

7 ガス供給配管

8 高速開閉パルブ

10 トリメチルガリウムガス分子の分子パルス

[図2]

11 アルシンガス分子の分子パルス

【図1】

【図3】

進行方向

垂直方向

【図4】

進行方向

垂直方向

