

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. **PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

1. REPORT DATE (DD-MM-YYYY) 02 October 2015	2. REPORT TYPE Briefing Charts	3. DATES COVERED (From - To) 23 September 2015 – 31 October 2015		
4. TITLE AND SUBTITLE Dynamics of High Pressure Reacting Shear Flows		5a. CONTRACT NUMBER		
		5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S) Roa, Forliti, Badakhshan, Talley		5d. PROJECT NUMBER		
		5e. TASK NUMBER		
		5f. WORK UNIT NUMBER Q0YA		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQRC 10 E. Saturn Blvd. Edwards AFB, CA 93524-7680		8. PERFORMING ORGANIZATION REPORT NO.		
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQR 5 Pollux Drive Edwards AFB, CA 93524-7048		10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S REPORT NUMBER(S) AFRL-RQ-ED-VG-2015-375		
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited				
13. SUPPLEMENTARY NOTES For presentation at AFOSR Space Power and Propulsion Contractor's Meeting; Arlington VA (02 October 2015) PA Case Number: #15626; Clearance Date: 10/15/2015				
14. ABSTRACT Viewgraph/Briefing Charts				
15. SUBJECT TERMS N/A				
16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified		17. LIMITATION OF ABSTRACT SAR	18. NUMBER OF PAGES 29	19a. NAME OF RESPONSIBLE PERSON D. Talley
b. ABSTRACT Unclassified				19b. TELEPHONE NO (include area code) N/A
c. THIS PAGE Unclassified				

Dynamics of High Pressure Reacting Shear Flows

Space Power and Propulsion Contractor's Meeting

2 October 2015

**Mario Roa, Dave Forliti, Sierra Lobo, Inc.
Al Badakhshan, ERC Inc.
Doug Talley, AFRL**

DISTRIBUTION A: Approved for public release; distribution unlimited

AF relevant considerations

- Achieving modern thermodynamic efficiencies requires achieving increasingly higher chamber pressures, sometimes exceeding the critical pressure of the reactants
 - eg, liquid rockets, future gas turbines
- When the combustion systems are for propulsion, limited tankage dictates that on-board propellants be stored in condensed form
 - eg, kerosene, liquid oxygen in rockets
- Combustion systems can no longer be designed to meet modern requirements without considering system dynamics
- Combustion dynamics always includes acoustic waves, which in enclosed systems can sometimes reach detrimental amplitudes
 - eg, combustion instabilities

Objectives

- Determine the mechanisms governing the dynamics of a high pressure, chemically reacting, multiphase, acoustically driven, shear flow in the form of a coaxial jet flame
- Explore how the presence of chemical reactions affects the response of coaxial jets to acoustic forcing.
- Explore inter-element interactions.

Approach

DISTRIBUTION A: Approved for public release; distribution unlimited

Experimental Facility

Features

- Frequency and amplitude independent of combustion – accurate control of frequency and amp.
- Pressurization independent of combustion – accurate control of pressure.
 - Subcritical and supercritical pressures
- Precise cryocooler – accurate control of temperature to within ± 1 K.
- Chamber-within-a-chamber
 - Outer chamber contains pressure – pressure containing elements remain cool
 - Inner chamber contains acoustics and combustion only – allows finer adjustment of inner elements
- High amplitude piezosirens specially designed for high pressure
- On-axis windows for shadowgraph, Schlieren, chemiluminescence, OH* emission
- Off-axis windows for PIV/PLIF
- Fully developed turbulent injector flows – well known boundary conditions
- High-speed pressure transducers

↓

Rayleigh Index
fields

←

Summary of Forcing Conditions

- Pressure node (PN) and pressure antinode (PAN) at the injector location

- Forcing frequency ~ 3000 kHz
- Pressure fluctuation amplitudes (peak-to-peak) range up to approximately 9 psi (6 psi reacting)

Cold Flow Update

J = 2

0.4
0.3
0.2
0.1
0

0.4
0.2
0

J = 6

3
2
1
0

3
2
1
0

3
2
1
0

Receptivity
LN2 / 7 GHe
jets

WR Marshall best paper award
ILASS Americas

2015 Developments

- **Added direct measurement of the pressure field**
 - High speed pressure transducers damaged in 2014, forcing use of piezoceramic voltage as indirect measure of relative amplitude and no measurement of phase.
- **Damaged image intensifier has precluded OH chemiluminescence measurements**
 - Repairs expected in the fall
- **Shadowgraph optics was significantly improved**
- **Liquid hydrocarbon capability was installed under another program**

Forced Flames

2014 results used acoustic driver voltage as measure of forcing amplitude

$V' \rightarrow 0 \text{ V}$

0.5 V

1.0 V

1.5 V

2.0 V

2.5 V

$P' \rightarrow 0 \text{ psi}$

1.5 psi

2 psi

3.5 psi

5.3 psi

5.5 psi

Pressure measurements synchronized to chemiluminescence → Rayleigh Index imaging

Spatial pressure measurements → direct measurement of acoustic mode

Operating Conditions

- Cryogenic liquid O₂ and gaseous H₂ flame
- Injector geometry
 - D₁ = 1.4 mm
 - AR = 1.68
 - t/D₁ = 0.27
- J ≈ 2.2
- MR ≈ 6-7
- O₂ inner jet @ 140 K
- H₂ outer jet @ 250 K
- Fully-developed turbulent flow conditions
- Chamber pressure 3.4 MPa (500 psi) → subcritical

Unforced Results

Nonreacting

Reacting

Differences:

- Flame reduces fine fibrous structure of liquid oxygen surface topology
- Flame increases the characteristic time scales of the liquid structures
- Flame allows optical access to recirculation zone—reverse flow observed

Recirculation Zone Phenomenon

Combustion case

Symmetric recirculation zones

Low-speed liquid O₂ High-speed gaseous H₂

Asymmetric recirculation zones

Low-speed liquid O₂ High-speed gaseous H₂

Although not observed, hydrogen side recirculation zone should be present

Results show large oxygen-side recirculation zone that brings liquid O₂ structures very close to hydrogen shear layer.

Convection Velocities

Extract column of pixels at each time along shear layer edge as a function of time, dark streaks represent convecting liquid structures

Structures convect at apparent constant velocity

Positive slope streaks represent upstream traveling features

Structures start at slow speed and gradually accelerate with downstream distance

Downstream combustion structures

DISTRIBUTION A: Approved for public release; distribution unlimited

Near Field Shear Layer Dynamics

Time series

PSD

Time series

PSD

Shift of spectral content to lower frequencies—trend seen in 2014 for chemiluminescence-based data

DISTRIBUTION A: Approved for public release; distribution unlimited

Linear Stability Considerations

- **Mahalingam et al. (1991) predict a stabilization and shift to lower frequencies for a flame located in a jet shear layer**
- **Hajesfandiari and Forliti (2014) showed a similar trend for planar shear layers**
- **Furi et al. (2002) showed a damping effect of the flame on a shear layer, depending on the relative location of the flame within the vorticity profile**

Chamber Acoustics, no Forcing

Spectra of chamber pressure fluctuations

Zoom in on
low frequency

13 Hz low frequency mode present for combustion. Control of this mode will be the subject of near-term research efforts.

PAN Acoustic Forcing

Pressure antinode (PAN), forcing near 3000 Hz

DISTRIBUTION A: Approved for public release; distribution unlimited

Acoustic Forcing Behavior

Nonreacting

Unforced

PAN Forcing

PN Forcing

Reacting

No evidence that acoustics affects flame holding

Dynamic Mode Decomposition

Extract spectrally-pure temporal modes with detailed spatial mode shapes

- Schmid (2010) and Rowley et al. (2009)
- Employ time-averaged amplitude measurement described by Alenius (2014)
- 1000-2000 samples used

$$I(x, y, t) = \bar{I}(x, y) + \operatorname{Re} \left(\sum_{i=1}^n \tilde{A}_i \exp(\tilde{\lambda}_i t) \tilde{D}_i(x, y) \right)$$

Amplitude of mode at $t = 0$

Complex spatial mode shape

Time average image subtracted from data

Accounts for growth of mode in time as well as temporal frequency

Properties of DMD

- Isolates response of flow at forcing frequency and harmonics
- Single modes can reconstruct convective processes (POD requires two modes)
- Less efficient at reconstructing signal energy compared to POD

Max Forcing PAN: Nonreacting

DISTRIBUTION A: Approved for public release; distribution unlimited

Max Forcing PAN: Reacting

Max Forcing PN: Nonreacting

DISTRIBUTION A: Approved for public release; distribution unlimited

Max Forcing PN: Reacting

Antisymmetric structure
with coherent coupling
between the outer and
inner shear layers.

Global Rayleigh Index
was also positive.

DISTRIBUTION A: Approved for public release; distribution unlimited

Conclusions, unforced

- Reactions cause a significantly more expanded plume due to the vaporization and expansion of the LOX
- A LOX recirculation zone was unexpectedly dominant
- Flameholding is established at the lip, consistent with the observations of others
- Unreacting convective structures propagate downstream at relatively constant velocity
- Reacting structures start at slow speed and gradually accelerate with downstream distance, but never reach the velocity of nonreacting structures.
- Reactions shift the spectral content to lower frequencies, consistent with trends observed in the linear stability literature.
- A 13 Hz mode is present, but is significantly slower than the high frequency measurements

Conclusions, forced

- Acoustics do not appear to affect the flameholding
- Dynamic mode decomposition detects jet response not only at the fundamental frequency but at higher harmonics
- Reactions produce inconsistent trends in the harmonics:
 - Reactions promote harmonics at a pressure antinode
 - Reactions damp harmonics at a pressure node.
- Cold flow results predict a wide range of responses when conditions are varied over wider ranges.

Future Work

- Mitigation of 13 Hz mode
- Rayleigh index diagrams to indicate whether response is driving or damping.
- Variation of parameters over a broader range, guided in part by linear stability theory
- Three-element interactions.

