# Reguläre Sprachen, Ausdrucksstärke (Teil 1)

BC George (HSBI)

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.

# Motivation

# Was muss ein Compiler wohl als erstes tun?



#### Themen für heute

- · Lexer Scanner Zerthiler
- Endliche Automaten
- Reguläre Sprachen

**Endliche Automaten** 

#### **Alphabete**

**Def.:** Ein **Alphabet**  $\Sigma$  ist eine endliche, nicht-leere Menge von Symbolen. Die Symbole eines Alphabets heißen *Buchstaben*.

**Def.:** Ein **Wort** w über einem Alphabet  $\Sigma$  ist eine endliche Folge von Symbolen aus  $\Sigma$ .  $\underline{\epsilon}$  ist das leere Wort. Die Länge |w| eines Wortes w ist die Anzahl von Buchstaben, die es enthält (Kardinalität).

**Def.:** Eine **Sprache** L *über einem Alphabet*  $\Sigma$  ist eine Menge von Wörtern über diesem Alphabet. Sprachen können endlich oder unendlich viele Wörter enthalten.

# State machine



#### **Deterministische endliche Automaten**

#### Bestimmte State machines:

- Eingaben bestimmen Zustandsübergänge
- Zustandsübergänge sind eindeutig
- Es gibt Anfang(szustand) und End(zuständ)e

ghom ei un

Janpaud and Endsustand

Surfound lout einen durch

# Wie definieren wir das formal?

- Muse der Frestände

- Einzubruhphahrt

- Aufanprussemd

- Endruständt

- Where ampflet

#### **Def.: Deterministischer endlicher Automat**

**Def.:** Ein **deterministischer endlicher Automat** (DFA) ist ein 5-Tupel  $A = (Q, \Sigma, \delta, q_0, F)$  mit  $Q : \underline{endliche}$  Menge von **Zuständen** 

- Σ : Alphabet von Eingabesymbolen
- $\delta$ : die (eventuell partielle) **Übergangsfunktion**  $(Q \times \Sigma) \to Q$ ,  $\delta$  kann partiell sein
- $q_0 \in Q$  : der **Startzustand**
- $F \subseteq Q$ : die Menge der **Endzustände**





# Eingabewörter statt Buchstaben



**Def.:** Wir definieren  $\delta^* : (Q \times \Sigma^*) \to Q$ : induktiv wie folgt:

• Basis:  $\delta^*(q, \epsilon) = q \ \forall q \in Q$ 

- a; € ≥ w=a,...an
- Induktion:  $\delta^*(q, a_1, \ldots, a_n) = \delta(\delta^*(q, a_1, \ldots, a_{n-1}), a_n)$  ow waster that  $\delta^*(q_0, w) \in F$ .

# **Beispiel**

5. Folie9

#### Nichtdeterministische endliche Automaten



#### **Def.: Nichtdeterministischer Automat**

**Def.:** Ein **nichtdeterministischer endlicher Automat** (NFA) ist ein 5-Tupel  $A = (Q, \Sigma, \delta, q_0, F)$  mit

- $F \subseteq Q$ : die Menge der **Endzustände**

#### **Akzeptierte Sprachen**

Def.: Sei A ein DFA oder ein NFA. Dann ist L(A) die von A akzeptierte Sprache, d. h.

### Wozu NFAs im Compilerbau?



Pattern Matching (Erkennung von Schlüsselwörtern, Bezeichnern, ...) geht mit NFAs.

NFAs sind so nicht zu programmieren, aber:

**Satz:** Eine Sprache L wird von einem NFA akzeptiert  $\Leftrightarrow L$  wird von einem DFA akzeptiert.

D. h. es existieren Algorithmen zur

- Umwandlung von NFAs in DFA \$5
- Minimierung von DFAs

# Reguläre Sprachen

# Reguläre Ausdrücke definieren Sprachen

Def.: Induktive Definition von regulären Ausdrücken (regex) und der von ihnen repräsentierten Sprache Ŀ

- Basis:
  - $\epsilon$  und  $\emptyset$  sind reguläre Ausdrücke mit  $L(\epsilon)=\{\epsilon\}$ ,  $L(\emptyset)=\emptyset$  • Soi a size S
  - Sei a ein Symbol  $\Rightarrow$  a ist ein regex mit  $L(a) = \{a\}$
- Induktion: Seien E, F reguläre Ausdrücke. Dann gilt:
  - E+F ist ein regex und bezeichnet die Vereinigung  $L(E+F)=L(E)\cup L(F)$

  - E+F ist ein regex und bezeichnet die Vereinigung  $L(E+F)=L(E)\cup L(F)$  EF ist ein regex und bezeichnet die <u>Konkatenation</u> L(EF)=L(E)L(F)■  $E^*$  ist ein regex und bezeichnet die Kleene-Hülle  $L(E^*)=(L(E))^*$  Odur enwahl off (E) ist ein regex mit L((E))=L(E)

Vorrangregeln der Operatoren für reguläre Ausdrücke: \*, Konkatenation, +

## **Beispiel**

1 (0-9)\* 2 herchnist alle Worter, die mit 1 beginnen o odes und ich 2 endut, darnischen tillen 0-9, O odes undlich veile O\* E oder endlich viele Vullen

# Wichtige Identitäten

**Satz:** Sei A ein DFA  $\Rightarrow \exists$  regex R mit L(A) = L(R).

**Satz:** Sei E ein regex  $\Rightarrow \exists$  DFA A mit L(E) = L(A).

Trentraiden: Delimiter

sutomatu akreptieren Sprachen, regex bischeiben Sprachen

m = if  $v_2 = while$   $v_3 = inport$ r1 = 8

# Formale Grammatiken

| Syntax einer Sprache                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Start Sat > S P O Rhibel Substantiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | coluh=<br>Lionen |
| Substantiv ) 'The   'An   'An   Good   Good | -                |
| P -> 1/100 1/15  Protified Substantive Schount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \S_()            |
| Madderminale 'The' Louse' han'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a' don'          |
| Terminale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19/28            |

#### Formale Definition formaler Grammatiken

**Def.:** Eine *formale Grammatik* ist ein 4-Tupel G = (N, T, P, S) aus

- N: endliche Menge von Nichtterminalen
- T: endliche Menge von **Terminalen**,  $N \cap T = \emptyset$
- $S \in N$ : Startsymbol
- P: endliche Menge von **Produktionen** der Form

$$X \to Y \text{ mit } X \in (N \cup T)^* N(N \cup T)^*, Y \in (N \cup T)^*$$

# **Ableitungen**

**Def.:** Sei G = (N, T, P, S) eine Grammatik, sei  $\alpha A\beta$  eine Zeichenkette über  $(N \cup T)^*$  und sei  $A \to \gamma$  eine Produktion von G.

Wir schreiben:  $\alpha A\beta \Rightarrow \alpha \gamma \beta$  ( $\alpha A\beta$  leitet  $\alpha \gamma \beta$  ab).

eine Produktpa omwenden Nieletterminale: Graffanchstalen

**Def.:** Wir definieren die Relation  $\stackrel{*}{\Rightarrow}$  induktiv wie folgt:

- Basis:  $\forall \alpha \in (N \cup T)^* \alpha \stackrel{*}{\Rightarrow} \alpha$  (Jede Zeichenkette leitet sich selbst ab.)
- Induktion: Wenn  $\alpha \stackrel{*}{\Rightarrow} \beta$  und  $\beta \Rightarrow \gamma$  dann  $\alpha \stackrel{*}{\Rightarrow} \gamma$

**Def.:** Sei G = (N, T, P, S) eine formale Grammatik. Dann ist  $L(G) = \{\text{W\"orter } w \text{ \"uber } \mathcal{I} \mid S \stackrel{*}{\Rightarrow} w\}$  die von G erzeugte Sprache.

frammatilum eaengen sprachen



#### Reguläre Grammatiken

**Def.:** Eine **reguläre (oder type-3-) Grammatik** ist eine formale Grammatik mit den folgenden Einschränkungen:

- Alle Produktionen sind entweder von der Form
  - $X \to aY$  mit  $X \in N, a \in T, Y \in N$  (rechtsreguläre Grammatik) oder
  - X o Ya mit  $X \in N, a \in T, Y \in N$  (linksreguläre Grammatik)
- $X \rightarrow \epsilon$  ist erlaubt



# Reguläre Sprachen

**Satz:** Die von endlichen Automaten akzeptiert Sprachklasse, die von regulären Ausdrücken beschriebene Sprachklasse und die von regulären Grammatiken erzeugte Sprachklasse sind identisch und heißen **reguläre Sprachen**.

Wrap-Up

#### Wrap-Up

- Definition und Aufgaben von Lexern
- DFAs und NFAs
- Reguläre Ausdrücke
- Reguläre Grammatiken
- Zusammenhänge zwischen diesen Mechanismen und Lexern, bzw. Lexergeneratoren



Unless otherwise noted, this work is licensed under CC BY-SA 4.0.

