EE5138R: Solutions to Problem Set 1

Assigned: 16/01/15

Due: 23/01/15

1. Let $p \ge 1$. Show that the dual norm of $\|\cdot\|_p : \mathbf{R}^n \to \mathbf{R}_+$ is $\|\cdot\|_q$ where $\frac{1}{p} + \frac{1}{q} = 1$. Hence, show that the dual of the dual norm is the original norm.

Hint You may need Hölder's inequality. Find out what this is.

Solution: The dual norm $\|\cdot\|_*$ is defined as

$$||z||_* := \sup\{z^T x : x \in \mathbf{R}^n, ||x|| \le 1\}$$

for all $z \in \mathbf{R}^n$. Fix $1 < p, q < \infty$ where $\frac{1}{p} + \frac{1}{q} = 1$. Fix $z = (z_1, \dots, z_n)$. We will show that

$$\sup \left\{ \sum_{i=1}^{n} z_i x_i : x = (x_1, \dots, x_n) \in \mathbf{R}^n : ||x||_q \le 1 \right\} = ||z||_p.$$

Assume without loss of generality that $z \neq 0$ otherwise both sides are zero. We have by Hölder's inequality that

$$\sum_{i=1}^{n} z_i x_i \le \sum_{i=1}^{n} |z_i x_i| \le ||z||_p ||x||_q \le ||z||_p.$$

Hence maximizing over all x yields the inequality \leq .

Next we construct a vector y that achieves the bound with equality. We put

$$x_i := \operatorname{sign}(z_i)|z_i|^{p-1}, \quad \forall i = 1, \dots, n$$

We then calculate

$$\sum_{i=1}^{n} z_i x_i = \sum_{i=1}^{n} z_i \operatorname{sign}(z_i) |z_i|^{p-1} = \sum_{i=1}^{n} |z_i|^p = ||z||_p^p.$$

Furthermore,

$$||x||_q^q = \sum_{i=1}^n |x_i|^q = \sum_{i=1}^n |\operatorname{sign}(z_i)|z_i|^{p-1}|^q = \sum_{i=1}^n |z_i|^{q(p-1)} = \sum_{i=1}^n |z_i|^p = ||z||_p^p.$$

where here we used that $\frac{1}{p} + \frac{1}{q} = 1$ so q(p-1) = p. Now choose

$$y := \frac{x}{\|x\|_a}$$

where here we used the fact that $z \neq 0$ so $||x||_q \neq 0$. By construction $||y||_q = 1$ and

$$\sum_{i=1}^{n} z_i y_i = \frac{1}{\|x\|_q} \sum_{i=1}^{n} z_i x_i.$$

Furthermore,

$$\frac{1}{\|x\|_q} \sum_{i=1}^n z_i x_i = \frac{1}{\|z\|_p^{p/q}} \sum_{i=1}^n z_i x_i = \frac{1}{\|z\|_p^{p/q}} \|z\|_p^p = \|z\|_p^{p-p/q} = \|z\|_p$$

where we used the fact that p - p/q = 1. Thus, we have found a y with $||y||_q \le 1$ and $\sum_{i=1}^n z_i y_i = ||z||_p$ as desired.

The dual of $\|\cdot\|_p$ is $\|\cdot\|_{p'}$ where $\frac{1}{p} + \frac{1}{p'} = 1$. Since p and p' are symmetric, the dual of $\|\cdot\|_{p'}$ is $\|\cdot\|_p$ so the dual of the dual norm is the original norm.

2. Let $A \in \mathbf{R}^{m \times n}$ be a matrix. Write down the definitions of the range $\mathcal{R}(A)$ and the nullspace $\mathcal{N}(A)$ of A. For a subspace $\mathcal{V} \subset \mathbf{R}^n$, write down the definition of the orthogonal complement \mathcal{V}^{\perp} . Show that

$$\mathcal{N}(A) = \mathcal{R}(A^T)^{\perp}.$$

Solution: The range is

$$\mathcal{R}(A) = \{Ax : x \in \mathbf{R}^n\}.$$

The nullspace is

$$\mathcal{N}(A) = \{x : Ax = 0\}.$$

The orthogonal complement of a subspace \mathcal{V} is the set

$$\mathcal{V}^{\perp} = \{ x : z^T x = 0, \forall z \in \mathcal{V} \}.$$

Now, let $q \in \mathcal{N}(A)$. Then we have the following implications:

$$Aq = 0$$

$$\Rightarrow z^{T}Aq = 0, \quad \forall z \in \mathbf{R}^{n}$$

$$\Rightarrow (A^{T}z)^{T}q = 0, \quad \forall z \in \mathbf{R}^{n}$$

$$\Rightarrow y^{T}q = 0, \quad \forall y \in \mathcal{R}(A^{T})$$

$$\Rightarrow q \in \mathcal{R}(A^{T})^{\perp}$$

This implies that

$$\mathcal{N}(A) \subset \mathcal{R}(A^T)^{\perp}$$

In the other direction, take a vector $z \in \mathcal{R}(A^T)^{\perp}$. Then we have

$$y^{T}z = 0, \qquad \forall y \in \mathcal{R}(A^{T})$$

$$\Longrightarrow (A^{T}x)^{T}z = 0, \qquad \forall x \in \mathbf{R}^{m}$$

$$\Longrightarrow x^{T}Az = 0, \qquad \forall x \in \mathbf{R}^{m}$$

$$\Longrightarrow Az = 0, \qquad \forall z \in \mathcal{R}(A^{T})^{\perp}$$

$$\Longrightarrow z \in \mathcal{N}(A)$$

This implies that

$$\mathcal{R}(A^T)^{\perp} \subset \mathcal{N}(A)$$

which leads to

$$\mathcal{N}(A) = \mathcal{R}(A^T)^{\perp}$$

3. Show that $rank(AB) \leq min\{rank(A), rank(B)\}.$

Solution: Each column of AB is a linear combination of the columns of A, which implies that $\mathcal{R}(AB) \subset \mathcal{R}(A)$. Hence,

$$\dim(\mathcal{R}(AB)) \le \dim(\mathcal{R}(A))$$

or equivalently

Each row of AB is a combination of the rows of B so $rowspace(AB) \subset rowspace(B)$ but the dimension of the rowspace is the dimension of the column space which is equal to the rank so

$$rank(AB) \le rank(B)$$

as desired.

4. Let $A \in \mathbf{S}^n$ (where recall that \mathbf{S}^n is the set of all real symmetric $n \times n$ matrices) have eigendecomposition $A = Q\Lambda Q^T$ where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Show that $\lambda_i(A), i \in \{1, \ldots, n\}$ are real. Show that eigenvectors of distinct eigenvalues are orthogonal.

Solution: First we show that all eigenvalues must be real. For any eigenvector $u \neq 0$, we have

$$Au = \lambda u$$

where λ is the corresponding eigenvalue. Next, take the complex conjugate on both sides,

$$A^*u^* = \lambda^*u^*$$

But A is real so

$$Au^* = \lambda^* u^*$$

Next we premultiply the first equation by $(u^*)^T$, yielding

$$(u^*)^T (Au) = (u^*)^T (\lambda u) = \lambda (u^*)^T u$$

Furthermore, we have

$$(u^*)^T (Au) = (A^T u^*)^T u = (Au^*)^T u = \lambda^* (u^*)^T u$$

Combining the above equations yields

$$\lambda^* (u^*)^T u = \lambda (u^*)^T u$$

Since eigenvectors are non-zero, we have $\lambda^* = \lambda$ so λ is real as desired.

Let λ and $\tilde{\lambda}$ be distinct eigenvalues, i.e., $\lambda \neq \tilde{\lambda}$. We have

$$Au = \lambda u$$
, $A\tilde{u} = \tilde{\lambda}\tilde{u}$

Premultiplying the first equation by \tilde{u}^T , we obtain

$$\lambda \tilde{u}^T u = \tilde{u}^T A u = (A^T \tilde{u})^T u = (A \tilde{u})^T u = (\tilde{\lambda} \tilde{u})^T u = \tilde{\lambda} \tilde{u}^T u$$

Thus, we have

$$(\lambda - \tilde{\lambda})\tilde{u}^T u = 0$$

Since $\lambda \neq \tilde{\lambda}$, we have $\tilde{u}^T u = 0$, i.e., \tilde{u} and u are orthogonal as desired.

5. Let $A \in \mathbf{R}^{n \times n}$ be a matrix. Consider the linear system (fixed point equation)

$$x^{(k+1)} = Ax^{(k)}.$$

Let $x^{(0)} \in \mathbf{R}^n$ be the initial starting vector. Under what conditions on A does $x^{(k)}$ converge to a limit? What is the limit?

Hint: $x^{(k)} = A^k x^{(0)}$. Consider the eigen-decomposition of A.

Solution: Let A have the eigen-decomposition

$$A = UDU^{-1}$$

Then, by using the hint, we obtain

$$x^{(k)} = UD^k U^{-1} x^{(0)}$$

because $A^k = UD^kU^{-1}$ through direct calculation. This is equivalent to

$$y^{(k)} = D^k y^{(0)}$$

if we define

$$y^{(j)} = U^{-1}x^{(j)}, \qquad \forall j \in \mathbb{N}$$

Note that D is a diagonal matrix and so

$$D^k = \operatorname{diag}(\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k).$$

The elements of D converge to zero if and only if $|\lambda_i(A)| < 1$, i.e.,

$$\max_{1 < i < n} |\lambda_i(A)| < 1, \qquad \Leftrightarrow \qquad ||D^k||_F \to 0$$

Consequently, $\|y^{(k)}\|_2 \to 0$ if and only if $\max_{1 \le i \le n} |\lambda_i(A)| < 1$. But $\|y^{(k)}\|_2 \to 0$ if and only if $\|x^{(k)}\|_2 \to 0$. Thus for the linear system to converge, it is necessary and sufficient that

$$\max_{1 \le i \le n} |\lambda_i(A)| < 1$$

The limit is zero.

6. BV Problem 2.1

Solution: This is readily shown by induction from the definition of convex set. We illustrate the idea for k=3, leaving the general case to the reader. Suppose that $x,y,z\in C$ and $\theta_1+\theta_2+\theta_3=1$ with $\theta_j\geq 0$. We will show that $y=\sum_{j=1}^3\theta_jx_j\in C$. At least one of the θ_j is not equal to one; without loss of generality we can assume that $\theta_1\neq 1$. Then we can write

$$y = \theta_1 x_1 + (1 - \theta_1)(\mu_2 x_2 + \mu_3 x_3)$$

where

$$\mu_2 = \frac{\theta_2}{1 - \theta_1}, \text{ and } \mu_2 = \frac{\theta_3}{1 - \theta_1}$$

Note that $\mu_2, \mu_3 \geq 0$ and $\mu_2 + \mu_3 = 1$ so by the convexity of C, we have that $\mu_2 x_2 + \mu_3 x_3 \in C$. Consequently, $y \in C$.

7. (Optional) BV Problem 2.3

We have to show that $\theta x + (1 - \theta)y \in C$ for all $\theta \in [0, 1]$ and $x, y \in C$. Let $\theta^{(k)}$ be the binary number of length k, i.e., a number of the form

$$\theta^{(k)} = c_1 2^{-1} + c_2 2^{-2} + \ldots + c_k 2^{-k}$$

with $c_i \in \{0,1\}$, closest to θ . By midpoint convexity (applied k times, recursively), $\theta^{(k)}x + (1-\theta^{(k)})y \in C$. Because C is closed, we have

$$\lim_{k \to \infty} \theta^{(k)} x + (1 - \theta^{(k)}) y = \theta x + (1 - \theta) y \in C.$$

8. BV Problem 2.10

We will use the fact that a set is convex if and only if its intersection with an arbitrary line $L := \{\hat{x} + tv : t \in \mathbf{R}\}$ is convex. Let

$$C = \{x \in \mathbf{R}^n : x^T A x + b^T x + c \le 0\}$$

where $A \in \mathbb{S}^n$, $b \in \mathbf{R}^n$ and $c \in \mathbf{R}$.

(a) We have

$$(\hat{x} + tv)^T A(\hat{x} + tv) + b^T (\hat{x} + tv) + c = \alpha t^2 + \beta t + \gamma$$

where

$$\alpha = v^T A c$$
, $\beta = b^T v + 2\hat{x}^T A v$, $\gamma = c + b^T \hat{x} + \hat{x} A^T \hat{x}$

The intersection of C with the line defined by \hat{x} and v is the set

$$\{\hat{x} + tv : \alpha t^2 + \beta t + \gamma \le 0\}$$

which is convex if $\alpha \geq 0$. This is true for any v if $v^T A v \geq 0$, i.e., that $A \succeq 0$.

The converse does not hold. Take A = -1, b = 0, c = -1. Then A is not positive semidefinite but $C = \mathbf{R}$ is convex.

(b) Let $H = \{x : q^T x + h = 0\}$. We define α , β and γ as in the solution above. Additionally define

$$\delta = g^T v, \quad \epsilon = g^T \hat{x} + h$$

Without loss of generality we can assume that $\hat{x} \in H$, i.e., $\epsilon = 0$. The intersection of $C \cap H$ with the defined by \hat{x} and v is

$$\{\hat{x} + tv : \alpha t^2 + \beta t + \gamma \le 0, \delta t = 0\}$$

If $\delta = g^T v \neq 0$, the intersection is the singleton $\{\hat{x}\}\$, if $\gamma \leq 0$, or it is empty. In either case, it is convex. If $\delta = 0$, the set reduces to

$$\{\hat{x} + tv : \alpha t^2 + \beta t + \gamma \le 0\}$$

which is convex if $\alpha \geq 0$. Therefore $C \cap H$ is convex if

$$g^T v = 0 \quad \Rightarrow \quad v^T A v \ge 0$$

This is true if there exists λ such that $A + \lambda gg^T \geq 0$ because then

$$v^T A v = v^T (A + \lambda g g^T) v \ge 0$$

for all v satisfying $g^T v = 0$. Again, the converse is not true.

- (c) Finally, we prove that a set S is convex \Leftrightarrow its intersection with any line is convex. In the direction \Rightarrow , since S is convex and so is any line L, the intersection $S \cap L$ is convex. In the direction \Leftarrow , suppose S is a set such that $S \cap L$ is convex for all lines L. Take $x_1, x_2 \in S$. Consider the line L passing through x_1, x_2 , i.e., $L = \{x : x = \theta x_1 + (1 \theta)x_2, \theta \in \mathbf{R}\}$. Since $S \cap L$ is convex, convex combinations $\theta x_1 + (1 \theta)x_2 \in S \cap L$ for $\theta \in [0, 1]$. Clearly then $\theta x_1 + (1 \theta)x_2 \in S$ for all $\theta \in [0, 1]$.
- 9. BV Problem 2.11

Solution: Assume that $\prod_i x_i \ge 1$ and $\prod_i y_i \ge 1$. Then consider the vector $z = \theta x + (1 - \theta)y$. The product of its components is

$$\prod_{i} [\theta x_{i} + (1 - \theta)y_{i}] \ge \prod_{i} x_{i}^{\theta} y_{i}^{1 - \theta} = (\prod_{i} x_{i})^{\theta} (\prod_{i} y_{i})^{1 - \theta} \ge 1$$

so the hyperbolic set is convex. We used the inequality

$$a^{\theta}b^{1-\theta} < \theta a + (1-\theta)b$$

above.