Projekt Gesundheitstechnik

Thermographie in der Medizintechnik

Achim Klenk, Falko Kristen, Arthur Schneider, Aaron Schultz WiSe 2022/23

University of Applied Sciences

Inhaltsverzeichnis

- Konzeptidee
- Einsatzgebiete
- Aufbau und Funktionsweise
 - Konstruktion
 - Elektronik
 - Software
- Demonstration
- Projektverlauf und Vision

Konzeptidee

- Thermographie die Wärmebildkamera
- Handheld Device für
 - klinische Anwendungen
 - Großveranstaltungen
 - Eindämmung Corona-Pandemie

Marktanalyse

Vergleichbare Marktprodukte

https://ais.badische-zeitung.de/piece/0b/f1/bb/7e/200391550-h-720.jpg

https://www.elektro.net/file/format/95413/textPictureFull/30e0d2/CA1900_W%C3%A4rmebildkamera.jpg

https://cdn02.plentymarkets.com/jd5w7us67fek/item/images/6661/full/eak-5605-1614683616.jpg

Aufbau und Funktionsweise - Konstruktion

- Anforderungen
 - Dimension eines Handhelds
 - Modulares, ergonomisches Design
 - Beide Sensoren sollen verbaut sein
 - Physischer Button

Vorbereitung für Konstruktion

- Bauteilrecherche (Größe der einzelnen Bauteile)
- Konzept über Platzierung der Bauteile im Gehäuse
- ungefähre Dimensionen des Gerätes festlegen
- Positionierung und Funktionsweise des Buttons bestimmen

Erste Konstruktionsidee v.0

- Entstanden ohne jegliche Hilfe
- Zwei Hälften Design
- Ergonomie und Ästhetik im Vordergrund

Aufbau und Funktionsweise - Hardware

- Wahl der Sensoren
- Kabelloses Gerät
- Zwei Budget Modelle der Infrarot Sensoren

Low budget

MLX 90640 (32 x 24 Pixel)

https://cdn.shopify.com/s/files/1/0174/1800/products/mlx90640-2_1500x1500.jpg?v=1656081430

High budget

FLIR Lepton 3.5 (160 x 120 Pixel)

https://groupgets.com/manufacturers/getlab/products/purethermal-2-flir-lepton-smart-i-o-module

GUI (Graphical User Interface)

Voraussetzungen

- Sprache: Python
- Ausführbar auf:
 - Raspberry Pi (Linux) mit FLIR Lepton 3.5
 - 160 x 120 Pixel
 - Raspberry Pi (Linux) mit MLX 90640
 - 32 x 24 Pixel
 - Windows mit Webcam
 - Mac OS mit Webcam

Voraussetzungen

- Sprache: Python
- Ausführbar auf:
 - Raspberry Pi (Linux) mit FLIR Lepton 3.5
 - 160 x 120 Pixel
 - Raspberry Pi (Linux) mit MLX 90640
 - 32 x 24 Pixel
 - Windows mit Webcam
 - Mac OS mit Webcam

Bibliotheken:

```
contourpy==1.0.6
     customtkinter==4.6.3
     cycler==0.11.0
     darkdetect == 0.8.0
     fonttools==4.38.0
     kiwisolver==1.4.4
     matplotlib==3.6.2
     numpy==1.24.1
     opency-python==4.7.0.68
     packaging==23.0
     Pillow==9.4.0
11
12
     pyparsing==3.0.9
     python-dateutil==2.8.2
13
     six == 1.16.0
     tk==0.1.0
```


CustomTKinter by Tom Schimansky

Funktionen & Features (GUI)

- Automatische Sensorerkennung
- Modi: Map Modus, Fieber Modus, Visier Modus
- Modus Info
- Screenshot
- Freeze Funktion
- 2x Zoom
- Live Min-, Mid-, Max-Temperatur mit Seitenleiste
- Colormaps (openCV) Bone, Turbo, Plasma, Hot, Cool
- Fotogalerie Ansicht, Scrollen, Löschen
- Abschaltfunktion

Überblick

Aufbau

- Fenster:
 - Main
 - Shutdown
 - Menu
 - Modi (Filter)
 - Modus Info
 - Gallery
 - Settings
 - Heatmap Settings

- Speicherklassen:
 - Memory States (Setup)
 - Design States

- Funktionsklassen:
 - Functions

Visual Paradigm

image4 label4

Aufbau von Main Fenster

```
## extern library imports ##
## intern module imports ##
class MainWindow(customtkinter.CTk):
   def init (self):
     super(). init ()
      ##### WINDOW MAIN (self) CONFIGURATIONS ######
      ## Camera Label ##
     ## Zoom Label ##
     ## Heatmap Canvas ##
     ## PlusButton ##
     ## Minus Button ##
     ## Screenshot Button ##
     ## Menu Button ##
     ## Fxit Button ##
     ###### MAIN VIDEO STREAM NORMAL_CAMERA ######
      ######### MAIN VIDEO STREAM FLIR ###########
      ######### MAIN VIDEO STREAM MIX ############
### FUNCTION TO INITIALIZE SECONDARY WINDOWS ###
   def openMenu(self):
   def openShutdown(self):
```


Betriebssystem

Raspberry Pi
 OS 32-Bit

https://cdn.xingosoftware.com/elektor/images/fetch/dpr_1/https%3A%2F%2Fwww.elektormagazine.de%2Fassets%2Fupload%2Fimages%2F11%2F20180327115958_raspbian-logo.png

Sensorimplementierung

- Sensor MLX 90640
 - Schnittstelle: I2C
 - Bibliothek: adafruit_mlx90640

- Sensor Flir Pure Thermal 2
- Schnittstelle: Micro-USB
- Bibliothek: uvctypes, openCV

```
## MLX Setup ##
import board,busio
import adafruit_mlx90640
i2c = busio.I2C(board.SCL, board.SDA, frequency=800000)
mlx = adafruit_mlx90640.MLX90640(i2c)
mlx.refresh_rate = adafruit_mlx90640.RefreshRate.REFRESH_2_HZ # sets refresh rate
frame2d = np.zeros((24*32))
mlx.getFrame(frame2d)
img = np.reshape(frame2d, (24,32))
```


Socketstream

- Austausch von Daten zwischen mehreren Programmen
- Socket besteht aus Client (Sender) und Server (Empfänger)
- separate Terminals, um py-Dateien simultan auszuführen

BASH - Skript

- Textdatei mit Endung ".sh"
- Genutzt, um Befehle und Kommandos auszuführen
- Stream Rohdaten Flir Sensor
 - Zweitterminal Gnome

teamthermo@raspberrypi:~/Desktop/gesundheitstechnik_thermograph/Thermograph_OS \$ sudo nano start_client.sh

Autostart

- .desktop Datei
- Start der GUI bei Bootup des Raspberry Pi's

teamthermo@raspberrypi: ~

Datei Bearbeiten Reiter Hilfe

GNU nano 5.4

[pesktop Entry]

Name=start_thermograph.sh

Exec=/usr/bin/python3 /home/teamthermo/Desktop/gesundheitstechnik_thermograph/Thermograph_OS/main_os.py

Funktion Heatmap

Pseudokolorierung anhand der ausgelesenen Temperaturwerte

Funktion Fiebererkennung

36,5°C - 37,4°C:	Normal- Temperatur
37,5°C - 38,0°C:	Subfebrile Temperatur
38,1°C - 38,5°C:	Leichtes Fieber
38,6°C - 39,0°C:	Mäßiges Fieber
39,1°C - 39,9°C:	Hohes Fieber
40,0°C - 42,0°C:	Sehr hohes Fieber
> 42,0°C	Tödlich

Fiebererkennung

Funktion Target

• Mittelpunkt des Bildes ist Temperaturmesspunkt

Zuverlässigkeit Messungen

Demonstration

Projektverlauf

- Anfänge
 - Organisation
 - Aufgabenaufteilung
- Misserfolge
 - Sensoren
 - Rohdaten
 - Heatmap
 - Fehlendes Konstruktionswissen

Vision

- Display mit HDMI Anschluss
- Gehäuseverbesserung
- Programmierung in C/C++
- Usability
 - Akkustand
 - Spracheinstellung
 - Lautsprecher f
 ür akustische Signale
 - Sensorwechsel per Einstellungen
 - Farbeinstellungen

Quellenverzeichnis

- https://ais.badische-zeitung.de/piece/0b/f1/bb/7e/200391550-h-720.jpg
- https://www.elektro.net/file/format/95413/textPictureFull/30e0d2/CA1900 W%C3%A4rmebildkamera.jpg
- https://cdn02.plentymarkets.com/jd5w7us67fek/item/images/6661/full/eak-5605-1614683616.jpg
- https://cdn.shopify.com/s/files/1/0174/1800/products/mlx90640-2 1500x1500.jpg?v=1656081430
- https://groupgets.com/manufacturers/getlab/products/purethermal-2-flir-lepton-smart-i-o-module
- https://openbook.rheinwerk-verlag.de/python/bilder/client-server.png
- https://cdn.xingosoftware.com/elektor/images/fetch/dpr 1/https%3A%2F%2Fwww.elektormagazine.de%2Fassets %2Fupload%2Fimages%2F11%2F20180327115958 raspbian-logo.png
- https://staging-assets.raspberrypi.com/static/md-bfd602be71b2c1099b91877aed3b41f0.png
- https://app.diagrams.net/
- https://online.visual-paradigm.com/de/
- https://www.ernstlx.com/linux90script.html
- https://www.makeuseof.com/how-to-run-a-raspberry-pi-program-script-at-startup/
- https://realpython.com/python-sockets/
- https://www.autodesk.de/products/fusion-360/overview?term=1-YEAR&tab=subscription
- https://www.internisten-im-netz.de/krankheiten/fieber/temperatur-regulation-im-koerper.html#:~:text=37%2C5%C2%B0C%20%2D%2038,9%C2%B0C%3A%20Hohes%20Fieber
- https://account.htw-berlin.de/htwfont/index
- https://corporatedesign.htw-berlin.de/musterdokumente/powerpoint-vorlagen/

Hochschule für Technik und Wirtschaft Berlin

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

www.htw-berlin.de