

Report No. : EED32L00291601 Page 1 of 60

TEST REPORT

Product : HUAWEI M-Pencil

Trade mark : HUAWEI

Model/Type reference : CD52

Serial Number : N/A

Report Number : EED32L00291601

FCC ID : 2ABWECD52 Date of Issue : Dec. 05, 2019

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Sunwoda Electronic Co., Ltd.
Floor 1,A,B,D District of Floor2 and
Floor 3 to 9 of Comprehensive Building,
No.2 Yihe Road, Shilong Community,
Shiyan Street, Bao'an District, Shenzhen City,
Guangdong Province, P.R. China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By: mark chen. Compiled by: Surlight Sun

Mark chen

Date:

Ware Xin

Dec. 05, 2019

Sunlight Sun

Kevin Yang

Check No.:3096349668

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report Seal

Page 2 of 60

2 Version

Version No.	Date	Description			
00	Dec. 05, 2019		Original		
	200	100	75	75	
((c ² 5)	(6,4,2)	(6/2)	

Report No.: EED32L00291601 Page 3 of 60

3 Test Summary

) lest Sullillary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.
The tested sample(s) and the sample information are provided by the client.

4 Content

1 COVER PAGE	••••••	••••••	•••••	•••••		1
2 VERSION	•••••	•••••	•••••	•••••	•••••	2
3 TEST SUMMARY	•••••	•••••	•••••		•••••	3
4 CONTENT			•••••			4
5 TEST REQUIREMEN	IT		•••••		•••••	5
5.1 TEST SETUP						5
	ted test setup					
5.1.2 For Radiated	d Emissions test set	up				5
	ted Emissions test s					
5.2 TEST ENVIRONME						
5.3 TEST CONDITION						
6 GENERAL INFORMA	ATION	•••••	•••••	••••••	•••••	7
6.1 CLIENT INFORMAT						
6.2 GENERAL DESCRI						
6.3 PRODUCT SPECIF						N. 700-AF
6.4 DESCRIPTION OF STATE EUT HAS BEEN T						
6.5 TEST LOCATION						
6.6 DEVIATION FROM						
6.7 ABNORMALITIES F						
6.8 OTHER INFORMAT						
6.9 MEASUREMENT U						
7 EQUIPMENT LIST			•			10
8 RADIO TECHNICAL						
EUT DUTY CYCLE						
Appendix A): 6dB	& 99%Occupied Ba	ndwidth				16
	ducted Peak Output					
	d-edge for RF Cond					
	Conducted Spurious					
	er Spectral Density.					
	enna Requirement Power Line Conduct					
Appendix G). AC I	tricted bands around	leu ⊏IIIISSIOII I fundamental fre	nuency (Padia	tod)	•••••	ວວ
	ited Spurious Emissi					
PHOTOGRAPHS OF T						
PHOTOGRAPHS OF E	UT CONSTRUCTION	ONAL DETAILS	•••••	•••••	•••••	54

Report No. : EED32L00291601 Page 5 of 60

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(0)
Temperature:	24 °C		
Humidity:	55% RH	100	
Atmospheric Pressure:	1010mbar		1

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx		_00				
١	1 est Mode	TA/NX	Low(L)	Middle(M)) High(H)			
l	05014	0.4001411 0.400.1411	Channel 1	Channel 20	Channel 40			
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz			
	Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	odulation and a	all kind of data			
			1.00					

6 General Information

6.1 Client Information

Applicant:	Sunwoda Electronic Co., Ltd.					
Address of Applicant:	Floor 1, A, B, D District of Floor2 and Floor 3 to 9 of Comprehensive Building, No.2 Yihe Road, Shilong Community, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, P.R. China					
Manufacturer:	Sunwoda Electronic Co., Ltd.					
Address of Manufacturer:	Floor 1, A, B, D District of Floor2 and Floor 3 to 9 of Comprehensive Building, No.2 Yihe Road, Shilong Community, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, P.R. China					
Factory:	Shenzhen Sunwoda Intelligent Hardware Co., Ltd.					
Address of Factory:	101, No. 6-6, Yanshan Road, Yanchuan Community, Yanluo Street, Bao'an District, Shenzhen City, Guangdong Province, P.R. China					

6.2 General Description of EUT

Product Name:	HUAWEI M-Pencil	-05	200
Model No.(EUT):	CD52		
Trade mark:	HUAWEI		(6)
EUT Supports Radios application:	5.0 BLE Single mode		
Power Supply:	Li-ion Polymer Battery	82mAh 3.82V	
Sample Received Date:	Oct. 15, 2019	(67)	(67)
Sample tested Date:	Oct. 15, 2019 to Nov. 26,	2019	

6.3 Product Specification subjective to this standard

Operation Frequency:		2402MH	z~2480MHz	6		100	/		
Bluetooth \	Bluetooth Version:		Bluetooth Version: 5.0						
Modulation	Type:	GFSK	GFSK						
Number of	Channel:	40		\			(2)		
Test Power	r Grade:	Default							
Test Softwa	are of EUT:	STM32C	ubeMonitor-R	F					
Antenna Ty	/pe and Gain:	Type: P Gain: -2.	IFA Antenna 3 dBi	13		73			
Test Voltag	je:	DC 3.82	V	(6))	(6))		
Operation I	Frequency eac	h of channe	el						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz		
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz		
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz		
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz		
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz		
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz		
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz		
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz		
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz		
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz		

Report No. : EED32L00291601 Page 9 of 60

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Courieus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
	Conditation aminaian	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%
		V 200

Report No. : EED32L00291601 Page 10 of 60

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32L00291601 Page 11 of 60

	3M Semi/fu	ıll-anechoic Cha	ımper		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
3M Chamber & Accessory Equipment	TDK	SAC-3	6	05-24-2019	05-22-2020
TRILOG Broadband Antenna TRILOG Broadband Antenna	Schwarzbeck Schwarzbeck	VULB9163 VULB9163	9163-401 9163-618	12-21-2018 07-26-2019	12-20-2019 07-24-2020
Microwave Preamplifier	Agilent	8449B	3008A024 25	07-12-2019	07-11-2020
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	07-26-2019	07-24-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	J	01-09-2019	01-08-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020
LISN	Schwarzbeck	NNBM8125	81251547	05-08-2019	05-07-2020
LISN	Schwarzbeck	NNBM8125	81251547	05-08-2019	05-07-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set	R&S	CMW500 FL3CX03WG	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite MICRO-	18NM12- 0398-002 SPA-F-	(c	01-09-2019	01-08-2020
High-pass filter	TRONICS	63029-4 FL5CX01CA0		01-09-2019	01-08-2020
band rejection filter	Sinoscite	9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001)	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001	(6	01-09-2019	01-08-2020

Report No. : EED32L00291601 Page 12 of 60

3M full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy		
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-18-2019	06-17-2020		
Receiver	Keysight	N9038A	MY5729013 6	03-27-2019	03-25-2020		
Spectrum Analyzer	Keysight	N9020B	MY5711111 2	03-27-2019	03-25-2020		
Spectrum Analyzer	Keysight	N9030B	MY5714087 1	03-27-2019	03-25-2020		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021		
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021		
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021		
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021		
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020		
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021		
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021		
Preamplifier	EMCI	EMC18405 5SE	980596	05-22-2019	05-20-2020		
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020		
Preamplifier	EMCI	EMC00133 0	980563	05-08-2019	05-06-2020		
Preamplifier	Agilent	8449B	3008A0242 5	07-12-2019	07-11-2020		
emperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020		
Signal Generator	KEYSIGHT	E8257D	MY5340110 6	03-01-2019	02-28-2020		
Fully Anechoic Chamber	TDK	FAC-3	/ //	01-17-2018	01-15-2021		
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021		
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0001	01-09-2019	01-08-2020		
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0002	01-09-2019	01-08-2020		
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0003	01-09-2019	01-08-2020		
Cable line	Times	SFT205- NMSM- 2.50M	393495- 0001	01-09-2019	01-08-2020		
Cable line	Times	EMC104- NMNM- 1000	SN160710	01-09-2019	01-08-2020		
Cable line	Times	SFT205- NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020		
Cable line	Times	SFT205- NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020		
Cable line	Times	SFT205- NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020		
Cable line	Times	HF160- KMKM-	393493-0001	01-09-2019	01-08-2020		

10	100		130				
Conducted disturbance Test							
Equipment	Manufacturer	ufacturer Model No.		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020		
Temperature/ Humidity Indicator	Defu	TH128	1	06-14-2019	06-12-2020		
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-29-2020		
Communication test set	R&S	CMW500	152394	03-18-2019	01-17-2020		
LISN	R&S	ENV216	100098	05-08-2019	05-06-2020		
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020		
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020		
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020		
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020		
Barometer	changchun	DYM3	1188	06-20-2019	06-18-2020		
				* * * * * * * * * * * * * * * * * * * *			

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

EUT DUTY CYCLE

Duty Cycle					
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)		
BLE	0.4104	0.6236	65.81%		

Report No. : EED32L00291601 Page 16 of 60

Appendix A): 6dB & 99%Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

0	(6.7)	163
Limit	Shall be at least 500kHz	0

Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Test Result

TOOLINGGAIL				
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6699	1.0816	PASS
BLE	MCH	0.6678	1.0816	PASS
BLE	HCH	0.6612	1.0536	PASS

Test Graphs

6dB Occupied Bandwidth

Report No.: EED32L00291601 Page 19 of 60

99% Occupied Bandwidth

Report No. : EED32L00291601 Page 20 of 60

Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Limit	☐ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)]	
	Point-to-point operation	

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- **4.** Measure and record the result of Peak output power and Average output power. in the test report.

Test Setup

Test Result

_	1		1	
	Mode	Channel	Conduct Peak Power[dBm]	Verdict
	BLE	LCH	0.471	PASS
	BLE	MCH	1.569	PASS
	BLE	НСН	1.417	PASS

Test Graphs

Report No. : EED32L00291601 Page 23 of 60

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Page 24 of 60

Result Table

1100011	4.0.0				
Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	0.362	-59.188	-19.64	PASS
BLE	НСН	1.327	-59.182	-18.67	PASS

Test Graphs

Report No. : EED32L00291601 Page 26 of 60

Appendix D): RF Conducted Spurious Emissions <u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Result Table

1100011111010		V 287	1 2	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	0.288	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	1.375	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	1.189	<limit< td=""><td>PASS</td></limit<>	PASS

Report No.: EED32L00291601 Page 28 of 60

Test Graphs

Page 29 of 60

Report No. : EED32L00291601 Page 31 of 60

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit	 ✓ Antenna not exceed 6 dBi: 8dBm ☐ Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] ☐ Point-to-point operation:
-------	---

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

Test Setup

Page 32 of 60

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-14.483	PASS
BLE	MCH	-13.226	PASS
BLE	НСН	-13.363	PASS

Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is --2.3 dBi.

Report No.: EED32L00291601 Page 35 of 60

(200)	AC Power Line Condu	-(e'N') - (e'					
Test Procedure:	Test frequency range :150KHz-30MHz						
	1)The mains terminal disturbance voltage test was conducted in a shielded room.						
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The						
°) (power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1						
	for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.						
	3)The tabletop EUT was place	d upon a non-metallic table 0.8r	n above the ground				
	reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,						
	EUT shall be 0.4 m from the	n a vertical ground reference pla vertical ground reference plane.	The vertical ground				
	reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference						
°) (
	plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.						
	5) In order to find the maximum emission, the relative positions of equipment and all						
	of the interface cables must be changed according to ANSI C63.10 on conducted measurement.						
Limit:							
		Limit (dBµV)					

Eroguanov rango (MHz)	Limit (dBμV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were

Report No. : EED32L00291601 Page 36 of 60

Product : HUAWEI M-Pencil Model/Type reference : CD52

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1545	49.51	9.98	59.49	65.75	-6.26	QP	
2		0.1590	36.01	9.98	45.99	55.52	-9.53	AVG	
3		0.2355	45.55	10.05	55.60	62.25	-6.65	QP	
4		0.2355	32.78	10.05	42.83	52.25	-9.42	AVG	
5		0.3120	42.28	10.09	52.37	59.92	-7.55	QP	
6		0.3165	32.01	10.08	42.09	49.80	-7.71	AVG	
7		0.3975	39.85	10.00	49.85	57.91	-8.06	QP	
8		0.3975	28.56	10.00	38.56	47.91	-9.35	AVG	
9		0.4740	37.16	10.00	47.16	56.44	-9.28	QP	
10		0.4740	28.60	10.00	38.60	46.44	-7.84	AVG	
11		0.5595	36.93	10.07	47.00	56.00	-9.00	QP	
12		0.6315	27.47	9.97	37.44	46.00	-8.56	AVG	

Report No.: EED32L00291601

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1545	47.47	9.98	57.45	65.75	-8.30	QP	
2		0.1590	31.88	9.98	41.86	55.52	-13.66	AVG	
3		0.2400	43.72	10.05	53.77	62.10	-8.33	QP	
4		0.2400	29.12	10.05	39.17	52.10	-12.93	AVG	
5		0.3165	40.84	10.08	50.92	59.80	-8.88	QP	
6		0.3165	27.07	10.08	37.15	49.80	-12.65	AVG	
7		0.3885	38.91	10.01	48.92	58.10	-9.18	QP	
8		0.3930	24.73	10.01	34.74	48.00	-13.26	AVG	
9		0.4740	36.54	10.00	46.54	56.44	-9.90	QP	
10		0.4740	24.30	10.00	34.30	46.44	-12.14	AVG	
11		0.6225	35.04	10.01	45.05	56.00	-10.95	QP	
12		0.6315	21.82	9.97	31.79	46.00	-14.21	AVG	
									·

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120kHz 300kHz Quasi-peak Peak 1MHz 3MHz Peak Peak 1MHz 10Hz Average Peak 1MHz 10Hz Average Peak 1MHz 10Hz Average Test Procedure: Below 1GHz test procedure as below: Test method Refer as KDB 558074 D01 v04, Section 12.1 a. The EUT was placed on the top of a rotating table 0.8 meters above the grat at 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground determine the maximum value of the field strength. Both horizontal and verice polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and the antenna was tuned to heights from 1 meter to 4 meters and the rotatat was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restrict bands. Save the spectrum analyzer plot. Repeat for each power and modular for lowest and highest channel Above 1GHz test procedure as below: g. Different between above is the test site, change from Semi-Anechoic Chard to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter (Abov 18GHz the distance is 1 meter and table is 1.5 meter). h. Test the EUT in the lowest channel, the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case j. Repeat above procedures until all frequencies measured was complete. Frequency		
Test Procedure: Peak	er Setup: Frequency Detector RBW	rk
Fest Procedure: Below 1GHz test procedure as below: Test method Refer as KDB 558074 D01 v04, Section 12.1 a. The EUT was placed on the top of a rotating table 0.8 meters above the gr at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the gro determine the maximum value of the field strength. Both horizontal and ve polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and the antenna was tuned to heights from 1 meter to 4 meters and the rotatat was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restrict bands. Save the spectrum analyzer plot. Repeat for each power and modu for lowest and highest channel Above 1GHz test procedure as below: g. Different between above is the test site, change from Semi-Anechoic Cha to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter (Abov 18GHz the distance is 1 meter and table is 1.5 meter). h. Test the EUT in the lowest channel, the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case j. Repeat above procedures until all frequencies measured was complete. Frequency Limit (dBµV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 960MHz-1GHz 54.0 Average Value	30MHz-1GHz Quasi-peak 120kHz	eak
Fest Procedure: Below 1GHz test procedure as below: Test method Refer as KDB 558074 D01 v04, Section 12.1 a. The EUT was placed on the top of a rotating table 0.8 meters above the grat a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground tetermine the maximum value of the field strength. Both horizontal and vere polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and the antenna was tuned to heights from 1 meter to 4 meters and the rotatat was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restrict bands. Save the spectrum analyzer plot. Repeat for each power and modu for lowest and highest channel Above 1GHz test procedure as below: g. Different between above is the test site, change from Semi- Anechoic Chanber change form table 0.8 meter to 1.5 meter (Abov 18GHz the distance is 1 meter and table is 1.5 meter), h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case is Repeat above procedures until all frequencies measured was complete. Frequency Limit (dBµV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value	Peak 1MHz	-05
Test method Refer as KDB 558074 D01 v04, Section 12.1 a. The EUT was placed on the top of a rotating table 0.8 meters above the gr at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the grot determine the maximum value of the field strength. Both horizontal and ve polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and the antenna was tuned to heights from 1 meter to 4 meters and the rotatal was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restrict bands. Save the spectrum analyzer plot. Repeat for each power and mode for lowest and highest channel Above 1GHz test procedure as below: g. Different between above is the test site, change from Semi- Anechoic Cha to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter (Abov 18CHz the distance is 1 meter and table is 1.5 meter). h. Test the EUT in the lowest channel , the Highest channel The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case j. Repeat above procedures until all frequencies measured was complete. Frequency Limit (dBµV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 960MHz-1GHz 54.0 Average Value	Above 1GHz Peak 1MHz	je 💮
g. Different between above is the test site, change from Semi- Anechoic Chato fully Anechoic Chamber change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter). h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case j. Repeat above procedures until all frequencies measured was complete. Frequency Limit (dBµV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz	Test method Refer as KDB 558074 D01 v04, Sectional at a 3 meter semi-anechoic camber. The table was mounted on the top of a variable-height and to the antenna height is varied from one meter to determine the maximum value of the field strength polarizations of the antenna are set to make the d. For each suspected emission, the EUT was arrather antenna was turned to heights from 1 meters was turned from 0 degrees to 360 degrees to fire. The test-receiver system was set to Peak Detect Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band frequency to show compliance. Also measure at bands. Save the spectrum analyzer plot. Repeat	he ground es to nna, whice ground t d vertical e and the tatable ng. ied it
Frequency Limit (dBµV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz	 g. Different between above is the test site, change to fully Anechoic Chamber change form table 0. 18GHz the distance is 1 meter and table is 1.5 m h. Test the EUT in the lowest channel, the Highe i. The radiation measurements are performed in X Transmitting mode, and found the X axis positio 	Above for case.
30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz		
88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz		+
216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value		-
960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value		1 1
Above 1GHz 54.0 Average Value		1/00
Above 1GHz		
74.0 Feak Value	Above 1GHz	-
	14.0	

Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.38	52.56	74.00	21.44	Pass	Horizontal
2	2401.9086	32.26	13.31	-42.43	90.90	94.04	74.00	-20.04	Pass	Horizontal

Report No. : EED32L00291601 Page 40 of 60

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.47	52.65	74.00	21.35	Pass	Vertical
2	2402.2653	32.26	13.31	-42.43	87.56	90.70	74.00	-16.70	Pass	Vertical

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.21	41.39	54.00	12.61	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	70.34	73.48	54.00	-19.48	Pass	Horizontal

0.7 (16.7	127.77	127.79
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.27	41.45	54.00	12.55	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	68.98	72.12	54.00	-18.12	Pass	Vertical

Report No. : EED32L00291601 Page 43 of 60

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.2428	32.37	13.39	-42.40	85.25	88.61	74.00	-14.61	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	48.93	52.29	74.00	21.71	Pass	Horizontal

C.7 1	10.7.1	12027	1,627
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.4030	32.37	13.39	-42.40	81.05	84.41	74.00	-10.41	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	48.68	52.04	74.00	21.96	Pass	Vertical

S /4	DI E OFOK T	01	0.400
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9625	32.37	13.39	-42.39	68.57	71.94	54.00	-17.94	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	36.31	39.67	54.00	14.33	Pass	Horizontal

Report No.: EED32L00291601 Page 46 of 60

C-7 /	16.7	15.7	16.7
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV	·	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9625	32.37	13.39	-42.39	65.57	68.94	54.00	-14.94	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.18	39.54	54.00	14.46	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
(0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(3)	Above 4011	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

. Repeat above procedures until all frequencies measured was complete.

	n	าเ	t.
_,		ш	ι.

	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
1	0.009MHz-0.490MHz	2400/F(kHz)	-	(A)	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	(0.5)	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32L00291601 Page 48 of 60

Radiated Spurious Emissions test Data:

Mode) :	BLE GFSK Transmitting					Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	54.4464	12.49	0.84	-32.09	30.30	11.54	40.00	28.46	Pass	Н	PK
2	107.8988	10.92	1.23	-32.07	32.05	12.13	43.50	31.37	Pass	Н	PK
3	208.8859	11.13	1.71	-31.94	40.37	21.27	43.50	22.23	Pass	Н	PK
4	325.0065	13.75	2.14	-31.79	36.65	20.75	46.00	25.25	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	42.12	32.55	46.00	13.45	Pass	Н	PK
6	879.7080	21.86	3.55	-31.66	38.75	32.50	46.00	13.50	Pass	Н	PK
7	53.9614	12.57	0.83	-32.09	41.63	22.94	40.00	17.06	Pass	V	PK
8	110.0330	10.89	1.24	-32.07	39.71	19.77	43.50	23.73	Pass	V	PK
9	208.8859	11.13	1.71	-31.94	41.24	22.14	43.50	21.36	Pass	V	PK
10	270.0020	12.60	1.96	-31.88	40.54	23.22	46.00	22.78	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	42.58	33.01	46.00	12.99	Pass	V	PK
12	879.7080	21.86	3.55	-31.66	37.47	31.22	46.00	14.78	Pass	V	PK

					20%				200			
Mode	e :	BLE GF	SK Tran	smitting			Channel:		2402	2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2924.7925	33.08	4.39	-42.16	51.51	46.82	74.00	27.18	Pass	Н	PK	
2	3681.0454	33.54	4.28	-41.44	50.03	46.41	74.00	27.59	Pass	Н	PK	
3	4804.0000	34.50	4.55	-40.66	51.75	50.14	74.00	23.86	Pass	Н	PK	
4	7206.0000	36.31	5.81	-41.02	47.62	48.72	74.00	25.28	Pass	Н	PK	
5	9608.0000	37.64	6.63	-40.76	47.00	50.51	74.00	23.49	Pass	Н	PK	
6	12010.0000	39.31	7.60	-41.21	46.06	51.76	74.00	22.24	Pass	Н	PK	
7	3320.0213	33.33	4.56	-41.93	50.88	46.84	74.00	27.16	Pass	V	PK	
8	4804.0000	34.50	4.55	-40.66	53.38	51.77	74.00	22.23	Pass	V	PK	
9	5991.1994	35.79	5.34	-41.09	50.73	50.77	74.00	23.23	Pass	V	PK	
10	7206.0000	36.31	5.81	-41.02	48.42	49.52	74.00	24.48	Pass	V	PK	
11	9608.0000	37.64	6.63	-40.76	48.18	51.69	74.00	22.31	Pass	V	PK	
12	12010.0000	39.31	7.60	-41.21	46.41	52.11	74.00	21.89	Pass	V	PK	

Mode:		BLE GF	SK Tran	smitting			Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3780.0520	33.62	4.36	-41.23	49.98	46.73	74.00	27.27	Pass	Н	PK
2	4880.0000	34.50	4.80	-40.60	53.14	51.84	74.00	22.16	Pass	Н	PK
3	5532.1688	35.05	5.16	-40.67	50.04	49.58	74.00	24.42	Pass	Н	PK
4	7320.0000	36.42	5.85	-40.92	46.76	48.11	74.00	25.89	Pass	Н	PK
5	9760.0000	37.70	6.73	-40.62	47.21	51.02	74.00	22.98	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.17	46.36	52.28	74.00	21.72	Pass	Н	PK
7	2953.1953	33.13	4.41	-42.15	50.78	46.17	74.00	27.83	Pass	V	PK
8	4048.0699	33.87	4.33	-40.80	49.69	47.09	74.00	26.91	Pass	V	PK
9	4880.0000	34.50	4.80	-40.60	53.07	51.77	74.00	22.23	Pass	V	PK
10	7320.0000	36.42	5.85	-40.92	46.95	48.30	74.00	25.70	Pass	V	PK
11	9760.0000	37.70	6.73	-40.62	47.99	51.80	74.00	22.20	Pass	V	PK
12	12200.0000	39.42	7.67	-41.17	45.57	51.49	74.00	22.51	Pass	V	PK

Report No.: EED32L00291601 Page 50 of 60

Mode	<u>:</u>	BLE GFSK Transmitting					Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3331.0221	33.33	4.54	-41.92	50.03	45.98	74.00	28.02	Pass	Н	PK
2	3855.0570	33.68	4.36	-41.08	49.96	46.92	74.00	27.08	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	53.67	52.46	74.00	21.54	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	48.26	49.83	74.00	24.17	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	47.57	51.65	74.00	22.35	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.12	47.37	53.65	74.00	20.35	Pass	Н	PK
7	3087.0058	33.23	4.75	-42.06	50.62	46.54	74.00	27.46	Pass	V	PK
8	3924.0616	33.74	4.34	-40.94	49.54	46.68	74.00	27.32	Pass	V	PK
9	4960.0000	34.50	4.82	-40.53	54.30	53.09	74.00	20.91	Pass	V	PK
10	7440.0000	36.54	5.85	-40.82	47.86	49.43	74.00	24.57	Pass	V	PK
11	9920.0000	37.77	6.79	-40.48	46.25	50.33	74.00	23.67	Pass	V	PK
12	12400.0000	39.54	7.86	-41.12	46.18	52.46	74.00	21.54	Pass	V	PK

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

