IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Currently Amended): A polypeptide compound of the following general formula (I):

wherein

R¹ is hydrogen or acyl group,

R² and R³ are independently hydrogen, lower alkyl which may have one or more suitable substituent(s), acyl group,

heterocyclic group which may have one or more suitable substituent(s), lower alkylidenyl which may have one or more suitable substituent(s), higher alkyl which may have one or more suitable substituent(s) or eyano,

 R^2 and R^3 are independently hydrogen;

lower alkyl which may have one or more suitable substituent(s) selected from the group consisting of amino, carboxy, sulfinic acid group, sulfonic acid group, hydroxy(lower)alkylamino which may have hydroxy(lower)alkyl, hydroxysulfonyloxy, imino, lower alkoxy, oxo, lower alkylthio, cyano(lower)alkylidene, and heterocyclic group which may have one or more lower alkyl;

lower alkoxycarbonyl which may have one or more suitable substituent(s) selected from the group consisting of lower alkanoyloxy and heterocyclic group;

lower alkenyloxycarbonyl;

ar(lower)alkoxycarbonyl;

lower alkanoyl which may have one or more suitable substituent(s) selected from the group consisting of amino, hydroxy and heterocyclic group;

heterocycliccarbonyl;

mono or di(lower)alkylcarbamoyl;

sulfonic acid group;

heterocyclic group which may have one or more suitable substituent(s) selected from the group consisting of lower alkyl, hydroxy(lower)alkyl, carboxy(lower)alkanoyl which may have amino, heterocycliccarbonyl, cyclo(lower)alkyl, and oxo;

lower alkylidene which may have mono or di lower alkylamino;

carboxy(higher)alkyl or

cyano,

R⁴ is hydrogen or hydroxy,

R⁵ is hydrogen, hydroxy, lower alkoxy or hydroxysulfonyloxy, and

R⁶ is hydroxy or acyloxy,

or a salt thereof.

Claims 2-3 (Canceled).

Claim 4 (Currently Amended): A compound of claim [[3]] 1, wherein R² and R³ are independently hydrogen, methyl, aminoethyl, aminobutyl, aminopentyl, carboxymethyl, carboxyethyl, carboxypentyl, sulfonylmethyl, hydroxysulfonylpropyl, hydroxysulfonylbutyl, dihydroxyisopropylaminobutyl, hydroxysulfonyloxypropyl, 1-iminomethoxypropyl, 1-iminocarbamoylethyl, amidino, 2-cyano-1-methylthiovinyl, 2-cyano-1-aminovinyl, methylpyrazolylmethyl, tert-butoxycarbonyl, acetyloxymethoxycarbonyl, 1,3-dioxa-2-oxo-4-methylcyclopentenylmethoxycarbonyl, allyloxycarbonyl, fluorenylmethoxycarbonyl, acetyl, aminopropionyl, aminovaleryl, diaminohexanoyl, 2-hydroxy-4-aminovaleryl, 2-amino-3-pyrazolylpropionyl, pyrrolidinylcarbonyl, morpholinocarbonyl, dimethylcarbamoyl, diethylcarbamoyl, hydroxysulfonyl, piperidyl, dimethylpiperidyl, 4-amino-4-carboxybutyrylpiperidyl, azetidinylcarbonylpiperidyl, dimethyl-1,3-dioxacyclohexyl, cyclohexyl-1,3-dioxacyclohexyl, dioxothiopyranyl, dimethylaminomethylidene, carboxyheptyl or cyano.

Claim 5 (Original): A compound of claim 1, wherein

R¹ is hydrogen; lower alkoxycarbonyl;

aroyl which has heterocyclic group substituted with aryl having a suitable substituent selected from the group consisting of lower alkoxy, lower alkoxy(lower)alkoxy, lower alkoxy(higher)alkoxy, aryl substituted with lower alkoxy(lower)alkoxy, cyclo(lower)alkyl,

cyclo(lower)alkyloxy, aryl substituted with lower alkoxy, aryl substituted with lower alkoxy(lower)alkyl, aryl substituted with heterocyclic group, heterocyclic group substituted with cyclo(lower)alkyl, heterocyclic group, heterocyclic group substituted with aryl, heterocyclic group substituted with aryloxy, heterocyclic group substituted with ar(lower)alkoxy, heterocyclic group substituted with lower alkoxy and aryl, higher alkoxy, heterocyclic(higher)alkoxy, lower alkoxy(higher)alkylsulfonyl, aryloxy(lower)alkoxy, heterocyclic group substituted with cyclo(lower)alkyloxy, heterocyclic group substituted with aryl having lower alkoxy(lower)alkoxy, heterocyclic group substituted with lower alkoxy(lower)alkoxy;

aroyl which has aryl substituted with a suitable substituent selected from the group consisting of lower alkoxy having cyclo(lower)alkyl and amino, lower alkoxy having cyclo(lower)alkyl and protected amino, aryl having lower alkoxy, heterocyclic group having lower alkyl, heterocyclic group having cyclo(lower)alkyl, and heterocyclic group having aryl substituted with heterocyclic group;

aroyl which has heterocyclic group substituted with cyclo(lower)alkyl having one or more suitable substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, cyclo(lower)alkyl, and cyclo(lower)alkyl substituted with lower alkoxy;

higher alkanoyl;

aroyl which has higher alkoxy; or

heterocyclic arbonyl which has a suitable substituent(s) selected from the group consisting of heterocyclic group substituted with higher alkyl, heterocyclic group substituted with aryl having lower alkoxy, heterocyclic group substituted with aryl having heterocyclic group, and aryl substituted with lower alkoxy(higher)alkoxy.

Claim 6 (Original): A compound of claim 5, wherein

R¹ is hydrogen; (C₁-C₄)alkoxycarbonyl;

benzoyl which has thiazolyl substituted with phenyl having (C₄-C₆)alkoxy;

benzoyl which has thiadiazolyl substituted with phenyl having a suitable substituent selected from the group consisting of (C_1-C_4) alkoxy (C_4-C_6) alkoxy, phenyl substituted with (C_1-C_4) alkoxy,

 $(C_1-C_4) alkoxy (C_7-C_{14}) alkoxy, \ cyclo(C_4-C_6) alkyl, \ cyclo(C_4-C_6) alkyloxy, \ phenyloxy black that the cyclo(C_1-C_4) alkyloxy black that cy$

alkoxy, phenyl substituted with (C₁-C₄)alkoxy(C₁-C₄)-

alkyl, phenyl substituted with di(C₁-C₄)-

alkylmorpholino, piperazinyl substituted with cyclo-

(C₄-C₆)alkyl, piperazinyl substituted with cyclo-

 (C_4-C_6) alkyl having (C_1-C_4) alkyl; piperidyl, piperidyl substituted with phenyl, piperidyl substituted with phenoxy, piperidyl substituted with benzyloxy, piperidyl substituted with (C_1-C_4) alkoxy and chlorophenyl, and phenyl having $di(C_1-C_4)$ alkylmorpholino;

benzoyl which has pyrimidinyl substituted with phenyl having (C7-C14)alkoxy;

benzoyl which has isoxazolyl substituted with phenyl having a suitable substituent selected from the group consisting of (C_4-C_6) alkoxy, (C_1-C_4) alkoxy-

 (C_4-C_6) alkoxy, (C_1-C_4) alkoxy (C_7-C_{14}) alkoxy, (C_7-C_{14}) -

alkoxy substituted with $di(C_1-C_4)$ alkylmorpholino, and $di(C_1-C_4)$ alkylmorpholino;

benzoyl which has oxadiazolyl substituted with phenyl having a suitable substituent selected from the group consisting of (C_4-C_6) alkoxy,

 $(C_1-C_4) alkoxy (C_7-C_{14}) alkoxy, (C_1-C_4) alkoxy (C_7-C_{14}) - alkoxy, and (C_1-C_4) alkoxy (C_7-C_{14}) alkylsulfonyl;$

benzoyl which has piperazinyl substituted with phenyl having a suitable substituent selected from the group consisting of (C_1-C_4) alkoxy (C_4-C_6) alkoxy,

 $(C_1-C_4)alkoxy(C_7-C_{14})alkoxy, phenoxy(C_1-C_4)alkoxy, cyclo(C_4-C_6)alkyl, phenyl substituted with (C_1-C_4)-$

alkoxy(C_4 - C_6)alkoxyphenyl, phenyl substituted with di(C_1 - C_4)alkylmorpholino, piperidyl substituted with cyclo(C_4 - C_6)alkyloxy, piperidyl substituted with phenyl, piperidyl substituted with (C_1 - C_4)alkoxy(C_1 - C_4)-

alkoxyphenyl, piperidyl substituted with

(C₁-C₄)alkylthio, piperidyl substituted with

 (C_1-C_4) alkoxy (C_4-C_6) alkylthio, piperidyl substituted with cyclo (C_4-C_6) alkanespiro, piperidyl substituted with dioxacyclo (C_4-C_6) alkanespiro, piperidyl substituted with (C_1-C_4) alkoxy and phenyl, piperidyl substituted with (C_1-C_4) alkoxy and chlorophenyl, and $di(C_1-C_4)$ -

alkylmorpholino;

benzoyl which has piperazinyl substituted with $cyclo(C_4-C_6)$ alkyl having a suitable substituent selected from the group consisting of $cyclo(C_4-C_6)$ -

alkyl, (C_4-C_6) alkyl, cyclo (C_4-C_6) alkyl and (C_1-C_4) alkoxy, and cyclo (C_4-C_6) alkyl substituted with (C_1-C_4) -

alkoxy;

benzoyl which has imidazothiadiazolyl substituted with phenyl having a suitable substituent selected from the group consisting of (C_4-C_6) alkoxy, (C_1-C_4) alkoxy-

 $(C_4-C_6) alkoxy, cyclo(C_4-C_6) alkyloxy, piperazinyl substituted with cyclo(C_4-C_6) alkyl, piperidyl substituted with (C_1-C_4) alkoxy(C_1-C_4) alkoxy, piperidyl substituted with (C_1-C_4) alkoxy(C_4-C_6) alkoxy, piperidyl substituted with (C_1-C_4) alkoxy(C_4-C_6) alkylthio, and di(C_1-C_4) alkylmorpholino;$

benzoyl which has phenyl substituted with a suitable substituent selected from the group consisting of (C_1-C_4) alkoxy having $cyclo(C_4-C_6)$ alkyl and (C_1-C_4) -

alkoxycarbonylamino, (C₁-C₄)alkoxy having cyclo(C₄-C₆)-

alkyl and amino, phenyl having (C_4-C_6) alkoxy, thiazolyl having (C_4-C_6) alkyl, piperazinyl having cyclo (C_4-C_6) -

alkyl, piperazinyl having phenyl substituted with

di(C₁-C₄)alkylmorpholino, and benzoxazolyl having

 (C_4-C_6) alkyl;

benzoyl which has (C7-C14)alkoxy;

thiadiazolylcarbonyl which has pyrazolyl substituted with a suitable substituent selected from the group consisting of (C_7-C_{14}) alkyl, phenyl having (C_4-C_6) alkoxy, and phenyl having piperidyl;

 $piperazinyl carbonyl \ which \ has \ xylyl \ substituted \ with \ (C_1-C_4)alkoxy(C_7-C_{14})alkoxy;$

or

 (C_7-C_{14}) alkanoyl.

Claim 7 (Original): A compound of claim 6, wherein

R¹ is hydrogen;

benzoyl which has thiazolyl substituted with phenyl having pentyloxy;

benzoyl which has thiadiazolyl substituted with phenyl having a suitable substituent selected from the group consisting of methoxyhexyloxy, methoxyoctyloxy, phenyl substituted with methoxyethoxy, phenyl substituted with methoxybutoxy, methoxyheptyloxy, cyclohexyl, cyclohexyloxy, phenyl substituted with propoxy, phenyl substituted with ethoxymethyl, phenyl substituted with methoxypropoxy, phenyl substituted with dimethylmorpholino, piperazinyl substituted with cyclohexyl, piperazinyl substituted with methylcyclohexyl, piperidyl, piperidyl substituted with phenyl piperidyl substituted with phenoxy, piperidyl substituted with benzyloxy, piperidyl substituted with methoxy and chlorophenyl, and dimethylmorpholino;

benzoyl which has pyrimidinyl substituted with phenyl having octyloxy;

benzoyl which has isoxazolyl substituted with phenyl having a suitable substituent selected from the group consisting of pentyloxy, methoxyhexyloxy, phenyl having methoxyheptyloxy, heptyloxy substituted with dimethylmorpholino, octyloxy substituted with dimethylmorpholino, and dimethylmorpholino;

benzoyl which has oxadiazolyl substituted with phenyl having a suitable substituent selected from the group consisting of pentyloxy, methoxyheptyloxy, methoxynonyloxy, methoxyheptylsulfonyl, and methoxynonylsulfonyl;

benzoyl which has piperazinyl substituted with phenyl having a suitable substituent selected from the group consisting of methoxyhexyloxy, methoxyheptyloxy, phenoxypropoxy, cyclohexyl, phenyl substituted with methoxypentyloxyphenyl, phenyl

substituted with dimethylmorpholino, piperidyl substituted with cyclohexyloxy, piperidyl substituted with phenyl, piperidyl substituted with methoxybutoxyphenyl, piperidyl substituted with propylthio, piperidyl substituted with methoxyhexylthio, piperidyl substituted with cyclobutanespiro, piperidyl substituted with dioxacyclobutanespiro, piperidyl substituted with methoxy and phenyl, piperidyl substituted with methoxy and chlorophenyl, and dimethylmorpholino;

benzoyl which has piperazinyl substituted with cyclohexyl having a suitable substituent selected from the group consisting of tert-butyl, cyclohexyl and methoxy, and cyclohexyl substituted with propoxy;

benzoyl which has imidazothiadiazolyl substituted with phenyl having a suitable substituent selected from the group consisting of methoxybutoxy, cyclohexyloxy, piperazinyl substituted with cyclohexyl, piperidyl substituted with methoxypropoxy, piperidyl substituted with methoxybutoxy, piperidyl substituted with methoxybexyloxy, piperidyl substituted with methoxyhexyloxy, piperidyl substituted with methoxyhexylthio, and dimethylmorpholino;

benzoyl which has phenyl substituted with a suitable substituent selected from the group consisting of propoxy having cyclohexyl and tert-butoxycarbonylamino, cyclohexyl and amino, phenyl having pentyloxy, thiazolyl having pentyl, piperazinyl having cyclohexyl, piperazinyl having phenyl substituted with dimethylmorpholino, and benzoxazolyl having pentyl;

benzoyl which has octyloxy;

thiadiazolylcarbonyl which has pyrazolyl substituted with a suitable substituent selected from the group consisting of decyl, phenyl having hexyloxy, and phenyl having piperidyl;

piperazinylcarbonyl which has xylyl substituted with methoxyheptyloxy; or palmitoyl.

Claim 8 (Currently Amended): A process for preparing a polypeptide compound (I) of claim 1, or a salt thereof, which comprises,

i) reducing a compound (II) of the formula:

$$H_{3} \stackrel{OH}{\longrightarrow} \stackrel{OH$$

wherein R¹, R⁴, R⁵ and R⁶ are as defined in claim 1, or a salt thereof, to give a compound (Ia) of the formula:

wherein R¹, R⁴, R⁵ and R⁶ are as defined in claim 1, or a salt thereof, or

ii) subjecting a compound (Ia) of the formula:

wherein R¹, R⁴, R⁵ and R⁶ are as defined in claim 1, or a salt thereof, to protective reaction of amino, to give a compound (Ib) of the formula:

wherein R¹, R⁴, R⁵ and R⁶ are defined in claim 1,

R_a² is hydrogen, lower alkyl which may have one or more suitable substituent(s), acyl group, heterocyclic group which may have one or more suitable substituent(s), lower alkylidenyl which may have one or more suitable substituent(s) or cyano lower alkyl which may have one or more suitable substituent(s) selected from the group consisting of amino, carboxy, sulfinic acid group, sulfonic acid group, hydroxy(lower)alkylamino which may have hydroxy(lower)alkyl, hydroxysulfonyloxy, imino, lower alkoxy, oxo, lower alkylthio, cyano(lower)alkylidene, and heterocyclic group which may have one or more lower alkyl;

lower alkoxycarbonyl which may have one or more suitable substituent(s) selected from the group consisting of lower alkanoyloxy and heterocyclic group;

lower alkenyloxycarbonyl;

ar(lower)alkoxycarbonyl;

lower alkanoyl which may have one or more suitable substituent(s) selected from the group consisting of amino, hydroxy and heterocyclic group;

heterocycliccarbonyl;

mono or di(lower)alkylcarbamoyl;

sulfonic acid group;

heterocyclic group which may have one or more suitable substituent(s) selected from the group consisting of lower alkyl, hydroxy(lower)alkyl, carboxy(lower)alkanoyl which may have amino, heterocycliccarbonyl, cyclo(lower)alkyl, and oxo;

lower alkylidene which may have mono or di lower alkylamino;

carboxy(higher)alkyl or cyano, and

R_a³ is lower alkyl which may have one or more suitable substituent(s), acyl group, heterocyclic group which may have one or more suitable substituent(s), lower alkylidenyl

which may have one or more suitable substituent(s) or eyano lower alkyl which may have one or more suitable substituent(s) selected from the group consisting of amino, carboxy, sulfinic acid group, sulfonic acid group, hydroxy(lower)alkylamino which may have hydroxy(lower)alkyl, hydroxysulfonyloxy, imino, lower alkoxy, oxo, lower alkylthio, cyano(lower)alkylidene, and heterocyclic group which may have one or more lower alkyl;

lower alkoxycarbonyl which may have one or more suitable substituent(s) selected from the group consisting of lower alkanoyloxy and heterocyclic group;

lower alkenyloxycarbonyl;

ar(lower)alkoxycarbonyl;

lower alkanoyl which may have one or more suitable substituent(s) selected from the group consisting of amino, hydroxy and heterocyclic group;

heterocycliccarbonyl;

mono or di(lower)alkylcarbamoyl;

sulfonic acid group;

heterocyclic group which may have one or more suitable substituent(s) selected from the group consisting of lower alkyl, hydroxy(lower)alkyl, carboxy(lower)alkanoyl which may have amino, heterocycliccarbonyl, cyclo(lower)alkyl, and oxo;

lower alkylidene which may have mono or di lower alkylamino;

carboxy(higher)alkyl or cyano,

or a salt thereof, or

iii) subjecting a compound (Ic) of the formula:

wherein R¹, R², R³, R⁴ and R⁶ are defined in claim 1, and

R_a⁵ is hydroxysulfonyloxy,

or a its reactive derivative at the sulfonic acid group, or a salt thereof, to hydrolysis reaction of the sulfonic acid group, to give a compound (Id) of the formula:

wherein R^1 , R^2 , R^3 , R^4 and R^6 are defined in claim 1, and R_b^5 is hydroxy, or a salt thereof, or

iv) subjecting a compound (Ie) of the formula:

$$H_3$$
C NH $NH-R^1$ $NH-R^1$

wherein R^1 , R^2 , R^4 , R^5 and R^6 are defined in claim 1, and R_b^3 is amino protective group,

or a salt thereof, to elimination reaction of amino protective group, to give a compound (If) of the formula:

wherein R¹, R², R⁴, R⁵ and R⁶ are defined in claim 1, or a salt thereof, or

v) reducting reducing a compound (II) of the formula:

wherein R¹, R⁴, R⁵ and R⁶ are defined in claim-1,

or its reactive derivative or a salt thereof, and then reacting with a compound (IV) of the formula:

$$R_c^3$$
- OH (IV)

wherein R_c^3 is acyl group lower alkoxycarbonyl which may have one or more suitable substituent(s) selected from the group consisting of lower alkanoyloxy and heterocyclic group;

lower alkenyloxycarbonyl;

ar(lower)alkoxycarbonyl;

lower alkanoyl which may have one or more suitable substituent(s) selected from the group consisting of amino, hydroxy and heterocyclic group;

heterocycliccarbonyl;

mono or di(lower)alkylcarbamoyl;

sulfonic acid group,

or its reactive derivative or a salt thereof,

to give a compound (Ig) of the formula:

wherein R^4 , R^4 , R^5 and R^6 are defined in claim 1, and R_e^3 is acyl group, or a salt thereof, or

vi) reacting a compound (Ih) of the formula:

wherein R¹, R⁴, R⁵ and R⁶ are defined in claim 1, and

R_a³ is lower alkyl which may have one or more suitable substituent(s), acyl group, heterocyclic group which may have one or more suitable substituent(s), higher alkyl which may have one or more suitable substituent(s) or cyano,

or its reactive derivative or a salt thereof, with a compound (V) of the formula:

$$R_b^2$$
 - OH (V)

wherein R_b² is acyl group lower alkoxycarbonyl which may have one or more suitable substituent(s) selected from the group consisting of lower alkanoyloxy and heterocyclic group;

lower alkenyloxycarbonyl;

ar(lower)alkoxycarbonyl;

lower alkanoyl which may have one or more suitable substituent(s) selected from the group consisting of amino, hydroxy and heterocyclic group;

heterocycliccarbonyl;

mono or di(lower)alkylcarbamoyl;

sulfonic acid group,

or its reactive derivative or a salt thereof,

to give a compound (Ii) of the formula:

wherein R¹, R⁴, R⁵ and R⁶ are defined in claim 1,

R_a³ is lower alkyl which may have one or more suitable substituent(s), acyl group, heterocyclic group which may have one or more suitable substituent(s), higher alkyl which may have one or more suitable substituent(s) or cyano, and

R² is acyl group, or a salt thereof, or

vii) reacting a compound (Ij) of the formula:

wherein R², R³, R⁴, R⁵ and R⁶ are defined in claim 1,

or its reactive derivative at the amino group, or a salt thereof, with a compound (III) of the formula:

$$R_a^1$$
 - OH (III)

wherein R₂¹ is acyl group,

or its reactive derivative at the carboxy group, or a salt thereof, to give a compound (Ik) of the formula:

wherein R^2 , R^3 , R^4 , R^5 and R^6 are defined in claim-1, and R^1 is acyl group.

Claim 9 (Currently Amended): A pharmaceutical composition which comprises, as an active ingredient, a compound of Claim 1 or a pharmaceutically acceptable salt thereof in admixture with pharmaceutically acceptable carrier or excipients.

Claims 10-11 (Canceled).

Claim 12 (Currently Amended): A method for the prophylactic and/or therapeutic treatment of of treating an infectious diseases caused by pathogenic microorganisms, which a fungus comprises comprising administering a compound of claim 1 or a pharmaceutically

22

according to Claim 1 for a time and under conditions to treat said disease.

DISCUSSION OF THE AMENDMENT

Claim 1 has been amended by incorporating the subject matter of Claim 2 therein;
Claims 2 and 3 have been canceled. Claim 4 has been amended to depend on Claim 1.
Claim 8 has been amended to be consistent with the amendment to Claim 1, by changing
"reducting" to --reducing-- for item v), and by deleting superfluous references to "... as
defined in Claim 1." Claim 9 has been amended by deleting the preamble "pharmaceutical".
Claims 10 and 11 have been canceled. Finally, Claim 12 has been amended to claim a
method of treating an infectious disease caused by a fungus comprising administering to a
human or animal subject in need thereof a compound according to Claim 1 for a time and
under conditions to treat said disease.

No new matter is believed to have been added by the above amendment. Claims 1-9 and 12 are now pending in the application.

24