Question 4

Part a

The model cannot be claimed as valid.

This is confirmed from the residual plots and correlation plots in JMP along with fitting a linear regression model. Only VTINV is having significant p-value.

The residual plots implies the error terms are non-random. Transformations could be tried.

There is a correlation between some predictors from scatterplot matrix. Multi-collinearity should be checked for.

Δ	Summary of Fit								
	RSquare	0.944562							
	RSquare Adj	0.936349							
	Root Mean Square Error	3.919278							
	Mean of Response	27.35							
	Observations (or Sum Wgts)	32							

■ Parameter Estimates									
	Term	Estimate	Std Error	t Ratio	Prob> t				
	Intercept	70.312696	33.67576	2.09	0.0464*				
	RA	10.472754	2.418209	4.33	0.0002*				
	VTINV	9038.1905	4409.411	2.05	0.0502				
	DIPINV	-1826.242	376.5281	-4.85	<.0001*				
	HEAT	0.3550077	0.021764	16.31	<.0001*				

Part-B

Plots of the dependent variable with RA and VTINV is not random. This is confirmed from correlation plot matrix. On fitting a linear model, the standardized residual vs RA / VTINV would be curved too. So, this implies, we should include some squared terms of both the variables to fit the pattern better.

Part- C

The four criteria proposed by Jalali-Heravi and Knouz is not the best to compare models. It does talk about Error behavior. In the BLUE assumptions of linear regression, three are- independence of error terms, normal distribution of residuals and constant variance. The best model should satisfy these assumptions and then based on metrics like R-square value or MSE, best model can be selected.

Python solution for the same:

OLS Regression Results

Time: No. Observations: Df Residuals: Df Model:	21:49:48 32 27 4	Prob (F-statistic	0.945 0.936 115.0): 1.51e-16 -86.397 182.8 190.1
Covariance Type:	nonrobust		
=======================================		===========	
coe-	f std err	t P> t	[0.025 0.975]
		2.088 0.046 4.331 0.000	1.216 139.410 5.511 15.435
VTINV 9038.190	4409.411	2.050 0.050	-9.173 1.81e+04
DIPINV -1826.242	1 376.528 -	4.850 0.000	-2598.814 -1053.670
HEAT 0.3556	0.022 1	6.312 0.000	
Omnibus:	 1.526	Durbin-Watson:	1.807
Prob(Omnibus):		Jarque-Bera (JB):	1.434
Skew:	0.456	1	0.488
Kurtosis:	2.508		2.04e+06

In [48]: sns.lmplot('DIPINV','Std. Residual',data=df)
Out[48]: <seaborn.axisgrid.FacetGrid at 0x167486ff748>


```
12
    10
     8
Std. Residual
     6
     4
     2
           0.0
                     0.2
                              0.4
                                        0.6
                                                 0.8
                                                          1.0
                                                                    1.2
                                                                              1.4
                                         Cooks D
```

```
import math
import pandas as pd
import numpy as np
import statsmodels.formula.api as sm
from statsmodels.sandbox.regression.predstd import wls_prediction std
import matplotlib.pyplot as plt
import seaborn as sns
path = "C:/Users/haris/Downloads/pgatour2006.csv"
df = pd.read_csv(path, sep = ",")
df['PrizeMoney']=df['PrizeMoney'].transform(np.log)
print(df[0:10], '\n')
model = sm.ols('PrizeMoney ~ DrivingAccuracy + GIR
+PuttingAverage+BirdieConversion+SandSaves+Scrambling+BounceBack+PuttsPerRound',
data=df)
results = model.fit()
print(results.summary(), "\n")
# Save Predictions
pred = results.fittedvalues
# Save Residuals
resid = results.resid
# Calculate Hii
results.HC2 se
het = results.het_scale # het = r^2 / (1-Hii)
h = 1.0 - (1.0/het) resid*2 # h = Hii
# Calculate Standardized Residuals
std_resid = np.sqrt(het)/math.sqrt(results.mse_resid)
std_resid = pd.Series(std_resid) # Move into Pandas Series
# Correct for negative signs
```

```
for i in range(df.shape[0]):
    if resid[i] < 0:
        std_resid[i] = -std_resid[i]
# Calculate Cook's D
D = ((std_resid*2)*h)/(2(1.0-h))
df2 = pd.concat([pred, resid, std_resid, D, h], axis=1, \
keys=["Predicted", "Residual", "Std. Residual", \
"Cooks D", "H-Hat"])
df = df.join(df2)
print(df, "\n")
print("Rule of Thumb for Cook's D: ", 4/df.shape[0])
# Plot Predicted vs Observed
fig, ax = plt.subplots(figsize=(8,6))
ax.set_title("Predicted vs Observed", fontweight="bold", fontsize="14")
ax.set_xlabel("Size", fontweight="bold", fontsize="12")
ax.set ylabel("Price", fontweight="bold", fontsize="12")
ax.plot(df['Size'], df['Price'], 'o', label="Data")
sns.pairplot(df, vars=[ 'RA','VTINV','DIPINV','HEAT'])
legend = ax.legend(loc='best')
plt.savefig("../graphs/Pred_vs_Obs.pdf")
plt.show()
fig, ax = plt.subplots(figsize=(8,6))
ax.set_title("Predicted vs Standardized Residuals", \
fontweight="bold", fontsize="14")
ax.set_xlabel("Price", fontweight="bold", fontsize="12")
ax.set_ylabel("Std. Residual", fontweight="bold", fontsize="12")
sns.lmplot('Predicted','Std. Residual',data=df)
ax.axhline(y=0, linewidth=2, color='b', linestyle='--')
ax.axhline(y=2, linewidth=2, color='r', linestyle='-')
ax.axhline(y=-2, linewidth=2, color='r', linestyle='-')
plt.savefig("../graphs/Pred_vs_SResid.pdf")
plt.show()
fig, ax = plt.subplots(figsize=(8,6))
ax.set title("Predicted vs Cook's D", \
fontweight="bold", fontsize="14")
ax.set xlabel("Price", fontweight="bold", fontsize="12")
ax.set_ylabel("Cook's D", fontweight="bold", fontsize="12")
sns.scatterplot(data=df['Std. Residual'])
ax.axhline(y=4/df.shape[0], linewidth=2, color='r', linestyle='-')
plt.savefig("../graphs/Pred_vs_CooksD.pdf")
plt.show()
# Plot Cook's D vs Std. Residuals
fig, ax = plt.subplots(figsize=(8,6))
ax.set_title("Cook's D vs Std. Residuals", \
fontweight="bold", fontsize="14")
ax.set_xlabel("Cook's D", fontweight="bold", fontsize="12")
ax.set_ylabel("Std. Residual", fontweight="bold", fontsize="12")
sns.lmplot('Cooks D','Std. Residual', data=df)
ax.axhline(y=0, linewidth=2, color='b', linestyle='--')
ax.axhline(y=2, linewidth=2, color='r', linestyle='-')
```

```
ax.axhline(y=-2, linewidth=2, color='r', linestyle='-')
ax.axvline(x=0.0816, linewidth=2, color='g', linestyle='-')
plt.savefig("../graphs/CooksD_SResid.pdf")
plt.show()
```

Question 5

Part – A

Initially, simple regression model was tried without any transformation. The error plot exhibits non-constant variance. R square is $^{\sim}0.4$ with few insignificant variables

4	Summ								
	RSquare				0.40639				
	RSquare	Adj		C).384287				
	Root Me	an Squar	e Error	5	0142.97				
	Mean of	Mean of Response			0891.17				
	Observat	tions (or S	Sum Wgts)		196				
4	Analys	is of V	ariance						
			Sum o	f					
	Source	DF	Square	S	Mean Square		F Ratio		
	Model 7		3.2361e+11 4.6		4.623	23e+10 18		8.3866	
	Error 188		4.7269e+11 2.51		2.5143	43e+9 Prob > F			
	C. Total	195	7.963e+1	1			<	.0001*	
4	Param	eter Es	timates						
	Term		Estimate	•	Std Error	t Ra	tio	Prob>	t
	Intercept	t	-1165233	3	587382.9	-1	.98	0.048	37*
	DrivingAccuracy		-1835.83	3	889.1612	-2.06		0.040)3*
	GIR		9671.3343	3	3309.355	2.92		0.003	9*
	PuttingAverage		-47435.3	521566.4		-0.09		0.927	' 6
	BirdieConversion		10426.032	2	3049.642	3	.42	0.000	8*
	SandSaves		1182.0577		744.818 1		.59	0.114	
	Scrambli	10.00	4741.2582		2400.818		.97	0.049	
	PuttsPerl	Round	5267.517	7	35765.74	0	.15	0.883	31

Trying out log transformation for the response variable generates studentized residual plot as shown above. R square improves to 0.55

Summar	y of F	it				
RSquare			0.557709			
RSquare A	Marian Carre		0.54124			
Root Mean			0.663908			
Mean of Re			10.37808			
Observatio	ns (or S	Sum Wgts)	196			
Analysis	of Va	ariance				
		Sum of				
Source	DF	Squares	Mean Sq	uare	F	Ratio
Model	7	104.48959	14.	9271	3.	3.8656
Error	188	82.86555	0.	4408	Pr	ob > F
C. Total	195	187.35515			<	.0001*
Paramet	ter Est	timates				
Term		Estimate	Std Error	t Ra	tio	Prob>
Intercept		0.1943003	7.777129	0	.02	0.980
DrivingAcc	uracy	-0.00353	0.011773	-0.	30	0.7646
GIR		0.1993109	0.043817	4	.55	<.0001
PuttingAve	PuttingAverage BirdieConversion		6.905698	-0.	.07	0.9462
BirdieConv			0.040378	3.	90	0.000
SandSaves		0.0151744	0.009862	1.	54	0.1256
	300	0.0515127	0.031788	4	62	0.1068
Scrambling	}	0.0515137	0.031788		.02	0.1000

Part – B

The scatterplot matrix tells that there is no direct linear relationship between predictor and response.

But, there is a linear relationship between PuttingAverage vs PuttsPerRound, and PuttingAverage vs Birdie Conversion% which should be investigated.

Cook's D plot looks almost normal except for the one in the top-right corner.

Part - C

The point 185 is investigated which is very influential due to high Cook's D and has standardized residual value > 3. In addition to it, there are other points who have std res > 2 / <-2.

Part - D

VIF of the model is calculated. Some of the variables – PuttingAverage and PuttsPerRound have high VIF values which confirms the scatter plot matrix

Parameter Est	timates					
Term	Estimate	Std Error	t Ratio	Prob> t	VIF	
Intercept	0.1943003	7.777129	0.02	0.9801	⊘•	
DrivingAccuracy	-0.00353	0.011773	-0.30	0.7646	1.7966156	
GIR	0.1993109	0.043817	4.55	<.0001*	6.2949685	
PuttingAverage	-0.466304	6.905698	-0.07	0.9462	12.900789	
BirdieConversion	0.1573409	0.040378	3.90	0.0001*	3.5118982	
SandSaves	0.0151744	0.009862	1.54	0.1256	1.4615055	
Scrambling	0.0515137	0.031788	1.62	0.1068	4.4702033	
PuttsPerRound	-0.343131	0.473549	-0.72	0.4696	19.355667	

Part- E

The model suffers from multi-colinearity. All the variables should not be removed at the same time. t-value and p-value cannot be taken as conclusive factors. The solution would be to remove one insignificant variable at a time. This can change the coefficient estimates, p-values of other insignificant variables. As a result, more variable can become significant.

Python solution of the same

OLS Regression Results ______ Dep. Variable: PrizeMoney R-squared: OLS Adj. R-squared: Model: 0.381 Least Squares F-statistic: Method: Date: Fri, 08 Mar 2019 Prob (F-statistic): 6.31e-18 22:25:28 Log-Likelihood: Time: No. Observations: 196 AIC: Df Residuals: 187 BIC: 4838. Df Model: 8 nonrobust Covariance Type: ______ coef std err t P>|t| [0.025 0.975] ______ Intercept -1.148e+06 5.9e+05 -1.944 0.053 -2.31e+06 1.67e+04 DrivingAccuracy -1845.4424 891.516 -2.070 0.040 -3604.163 -86.722 GIR 9301.2132 3450.304 2.696 0.008 2494.691 1.61e+04 PuttingAverage -8.938e+04 5.34e+05 -0.167 0.867 -1.14e+06 9.64e+05 BirdieConversion 9957.9553 3284.341 3.032 0.003 3478.834 1.64e+04 SandSaves 1198.4418 747.689 1.603 0.111 -276.547 2673.430 Scrambling 4826.8211 2416.261 1.998 0.047 60.188 9593.454 BounceBack 616.8496 1583.833 0.389 0.697 -2507.626 3741.325 PuttsPerRound 7934.3442 3.65e+04 0.217 0.828 -6.41e+04 7.99e+04 ______ 195.184 Durbin-Watson: Prob(Omnibus): 0.000 Jarque-Bera (JB): 6293.342 Skew: 3.687 Prob(JB): 0.00 Kurtosis: 29.763 Cond. No. 2.25e+04 ______ Summary After Transformation: ------Dep. Variable: PrizeMoney R-squared: OLS Adj. R-squared: Least Squares F-statistic: 4ethod: Fri, 08 Mar 2019 Prob (F-statistic): 1.53e-29 22:36:38 Log-Likelihood: No. Observations: 196 AIC: Of Residuals: 187 BIC: Of Model: Covariance Type: nonrobust -----coef std err t P>|t| [0.025 0.975] Intercept 0.6007 7.810 0.077 0.939 -14.806 16.008 OrivingAccuracy -0.0038 0.012 -0.318 0.750 -0.027 0.020 SIR 0.1906 0.046 4.176 0.000 0.101 0.281 OuttingAverage -1.4532 7.061 -0.206 0.837 -15.382 12.475 SirdieConversion 0.1463 0.043 3.368 0.001 0.061 0.232 SandSaves 0.0156 0.010 1.573 0.117 -0.004 0.035 Scrambling 0.0535 0.032 1.675 0.096 -0.010 0.117 3ounceBack 0.0145 0.021 0.693 0.489 -0.027 0.056 OuttsPerRound -0.2804 0.483 -0.581 0.562 -1.233 0.672 ------4.691 Durbin-Watson: 0.096 Jarque-Bera (JB): Prob(Omnibus): 4.478 0.369 Prob(JB): Skew: 0.107 3.070 Cond. No.

Variance of error terms now looks random.

