Introduction to Algorithmic Thinking

Computational Problem Solving

- Computational problem solving requires 2 components:
 - Abstraction: a representation that captures <u>all</u>
 the relevant aspects of the problem
 - Algorithm: A procedure for solving the problem by <u>use of the representation</u>

Algorithm

- The word "algorithm" is derived from the ninth-century Arab mathematician, <u>Al-</u> <u>Khwarizmi</u> who worked on "written processes to achieve some goal."
- (The term "algebra" also derives from the term "al-jabr," which he introduced.)

Al-Khwarizmi

Algorithm

 An algorithm is a finite number of clearly described, unambiguous "doable" steps that can be systematically followed to produce a desired result for given input in a finite amount of time.

 Because computers can execute instructions very quickly and reliably without error, algorithms and computers are a perfect match.

What is Algorithmic Thinking?

 Algorithmic thinking is the ability to understand, execute, evaluate, and create algorithms.

 Algorithms are communicated via programming languages to the computer

Properties of Algorithms

- For any given, non-trivial task (or set of related tasks), there are many possible algorithms for accomplishing the given task
- An algorithm does not encode the underlying theory behind the instruction steps.
- Some algorithms are more efficient than other algorithms.
- Algorithms evolve over time to address changes in task requirements.
 - computer programs that are used over many years typically must be modified over time to adapt to changes in task requirements.

Writing Algorithms Sample Problem

 Two people work for the same company and have a total combined salary of W dollars, but one person earns Q dollars more than the other person. How much did they each earn?

Principle 1: Representation

- Solve a specific instance of the problem by hand using pencil and paper.
 - A specific instance of a problem is when all the "variables" are given a specific value. Suppose we let W be \$57.00 and let Q be \$5.00. Now the problem reads:
- Two people work for the same company and have a total combined salary of \$57.00, but one person earns \$5.00 dollars more than the other person. How much did they each earn?

Representing/Abstracting the problem

There are multiple ways to think about this problem. Two possible solutions are:

Arithmetic Reasoning:	Algebraic reasoning:
Of the \$57, Person1 gets \$5 more then	Let $X = Person1$'s pay
Person2.	Let $Y = Person2$'s pay.
Therefore, both equally share \$57-\$5 =	Therefore, we know from the problem that:
\$52.	X = Y + 5 and
	X + Y = 57.
\$52 / 2 is \$26, so each gets at least \$26.	Solve these 2 equations using substitution:
	(Y+5)+Y=57
Person1 gets \$31 (\$26 + \$5)	Y = 26
Person2 gets \$26	Therefore $X = Y + 5 = 31$

Principal 2: Generalize

 Generalize your solution by replacing your specific instance values with "variables".

Arithmetic Reasoning:	Algebraic reasoning:
Of the total salary W, Person1 gets Q	Let $X = Person1$'s pay
dollars more then Person2.	Let $Y = Person2$'s pay.
Therefore they both equally share (W - Q).	Therefore, we know from the problem that:
	X = Y + Q and
Each gets at least $(W - Q) / 2$.	X + Y = W.
	Solve these 2 equations using substitution:
Person1 gets $(W - Q) / 2 + Q$	(Y+Q)+Y=W
Person2 gets $(W - Q) / 2$	Y = (W - Q)/2
	Therefore $X = (W - Q)/2 + Q$

Principal 3: Execute generalized algorithm

 Manually execute your algorithm on several test cases to verify that it produces correct answers. This is called desk checking or walking through the algorithm.

```
Example 1: W = 100, Q = 10

Person1 = (100 - 10)/2 + 10 = 55

Person2 = (100 - 10)/2 = 45

(This is correct because 55 + 45 = 100 and Person1 earns 10 more dollars than Person2)

Example 2: W = 31, Q = 2

Person1 = (31 - 2)/2 + 2 = 16.5

Person2 = (31 - 2)/2 = 14.5

(This is correct because 16.5 + 14.5 = 31 and Person1 earns 2 more dollars than Person2)
```

Principle 4: Translation

- After a general solution to the task is known, write correct programming statements to implement your solution on the computer.
- We will be learning this for the remainder of this course.
- In C++:

#Write your. C++ code here

In-class Assignment 1

- Hello this is your class work one.
- Open a new notebook and write c++ code implementing the algorithm for the following problem:
 - Two people work for the same company and have a total combined salary of W dollars, but one person earns Q dollars more than the other person. How much did they each earn?

Assignment 2

 Write an algorithm to solve the following problem, use <u>the three principles</u> described, make sure its clear which principle you are refering to by labeling statements blocks using headers (<u>Principle 1</u>, <u>Principle 2</u>, <u>Principle 3</u>).

— In a computer game, the total combined score for Ron and Terry is W. Terry's score is always Q % less than Ron's. What are the scores for Ron and Terry?