Introduction to the bartMachine R package Saint Louis R User Group

John Snyder

April 11, 2019

Outline

- 1. Brief BART overview
- 2. Installation and features
- 3. Demo
- 4. Further Considerations

What is BART?

Bayesian Additive Regression Trees

How it works

- Emsamble method which is the sum of many shallow trees.
- Complexity is regularized via Bayesian "priors."
 - ► This frees us from ad hoc decisions
- Uses "Bayesian Backfitting"
 - Each tree is sequentially exposed to the residuals when all other trees are used to predict

Results:

- Each tree describes a tiny amount of the structure
- ▶ The Bayesian structure means variation is fully quantified.
 - Intervals, p-values, and model selection oh my!
- Outperforms many common models in out of sample prediction.

Powerful Predictive Performance

► Test RMSE of 100 random datasets simulated from various nonlinear functions (added noise with s=1)

Function	BART	XGBoost*	Random Forest*	Linear Reg(lol)
Friedman	1.08	1.21	1.64	2.61
Mirsha's Bird	1.53	2.78	2.90	26.59
Weird Exp	1.04	1.05	1.07	6.08
Linear	1.025	1.032	1.034	1.004

Details in Simulation.R

- bartMachine is relatively unknown
 - xgboost: ~43k downloads per month
 - ▶ randomForest: ~88k downloads per month
 - ► bartMachine: ~2k downloads per month

Package Features:

- Functions for Cross Validation
- Model fitting:
 - ► Is done in parallel¹
 - Can incorporate missing data
- Lots of fun statistical things
 - ► Credible iterval calculation
 - Diagnostic plots/tests
- Variable selection
- Interaction detection
- Export fit trees

¹MCMC sampling is used, so speedups during model fitting aren't great

Installation and loading steps

- 1. Google "How to install rJava on [your OS]"
- 2. Do that
- 3. Run the following

```
install.packages("bartMachine")
```

To load the package with:

- ▶ 10GB of memory
- ► All but one core available for compute

```
options(java.parameters = "-Xmx10g")
library(bartMachine)
numcores <- parallel::detectCores()
set_bart_machine_num_cores(numcores - 1)</pre>
```

Boston Data

```
data(Boston)
Boston %>% round(digits=2) %>% head
```

```
## crim zn indus chas nox rm age dis rad tax ptratio black lstat medw ## 1 0.01 18 2.31 0 0.54 6.58 65.2 4.09 1 296 15.3 396.90 4.98 24.0 ## 2 0.03 0 7.07 0 0.47 6.42 78.9 4.97 2 242 17.8 396.90 9.14 21.6 ## 3 0.03 0 2.18 0 0.46 7.00 45.8 6.06 3 222 18.7 394.63 2.94 33.4 ## 4 0.03 0 2.18 0 0.46 7.00 45.8 6.06 3 222 18.7 394.63 2.94 33.4 ## 5 0.07 0 2.18 0 0.46 7.00 45.8 6.06 3 222 18.7 396.90 5.3 36.2 ## 6 0.03 0 2.18 0 0.46 6.43 58.7 6.06 3 222 18.7 394.12 5.21 28.7
```

Target: Predict home value(medv)

Fitting BART

BART is fit with MCMC, which requires a "burnin" set of initial iterations.

▶ NOTE: with 10 cores, each thread would fit 1000 + 5000/10 or 1500 iterations

BART object

```
> bart.model
bartMachine v1.2.3 for regression
training data n = 506 and p = 13
built in 19.4 secs on 31 cores, 200 trees, 1000 burn-in and 5000 post.
sigsq est for y beforehand: 21.938
avg sigsq estimate after burn-in: 2.70319
in-sample statistics:
L1 = 430.35
L2 = 654.72
rmse = 1.14
Pseudo-Rsq = 0.9847
p-val for shapiro-wilk test of normality of residuals: 0
p-val for zero-mean noise: 0.98467
```

Did we overfit?

K fold CV using our fit model

```
%y_hat
  [1] 24.932807 20.522438 31.149051 36.071931...

$L1_err
  [1] 1022.238

$L2_err
  [1] 4624.004

$rmse
  [1] 3.02297

$PseudoRsq
  [1] 0.8917508

$folds
  [1] 8 10 3 1 ....
```

Select the number of Trees

```
rmse_by_num_trees(bart.model, num_replicates = 20)
```

- ▶ This fits the model 20 times for a number of various numbers of trees
- Aggregates out of sample RMSE

Cross Validate

- ► To automatically cross validate, we just need to add a CV to the end of the function!
- Will fit a variety of models and return the best one.
 - Similar to the caret package
- ► This takes a while.

Variable Imortance

investigate_var_importance(bart.model.cv)

Figure 2

Joint Variable Imortance

interaction_investigator(bart.model.cv)

Figure 3

Aside: Partial Dependence

```
nsim <- 1000
x1 <- runif(nsim,-3.14,3.14)
x2 <- runif(nsim,-3.14,3.14)

y <- x1+sin(x2) + rnorm(nsim)
plot(x2,y)</pre>
```


Aside: Partial Dependence

Partial Dependence Plot

Code Time

Coding demo

John's Final Thought

- BART is a powerful technique which brings many advantages
 - At the expense of computational efficiency.

- Statistical advantages are numerous
- Great for small to mid sized data
- ► Good results with removing expected variation and feeding residuals into BART.