Algoritmos e Estrutura de Dados

Aula 11 – Estrutura de Dados: Tabelas Hash Parte II Prof. Tiago A. E. Ferreira

Introdução

- Como visto na aula passada as tabelas hash:
 - Diminuem a quantidade de endereçamento quando comparadas a uma tabela de endereçamento direto
 - Calcula os índices (ou endereços) a partir da função hash (h)

Funções Hash

- O que faz uma função hash de boa qualidade?
 - Satisfaz, aproximadamente, à hipótese do hash uniforme
 - Cada chave tem igual probabilidade de efetuar o hash para qualquer das m posições, não importando o hash de qualquer outra chave.
 - Contudo, de forma geral, a distribuição de probabilidade das chaves não é conhecida
 - Impossibilitando a obtenção de um hash uniforme!
 - Ocasionalmente conhecemos a distribuição
 - Por exemplo: Chaves são números reais aleatórios k,
 tal que 0≤ k ≤ 1, então: h(k) = [km]

Funções Hash

- □ Na prática utiliza-se:
 - Heurísticas para definir as funções hash
- De forma geral, as funções hash supoë que o universo de chaves é o conjunto de números naturais N.
 - E a partir de uma chave qualquer realizam alguma operação para representá-la por um número inteiro!

Método de Divisão

Neste método mapeia-se uma chave k para uma posição m tomando o resto da divisão inteira:

$$h(k) = k \mod m$$

- Por exemplo:
 - Se m=12 e k=100, então h(k)=4
- □ Valores de m
 - De forma geral evita-se potencias de 2
 - Uma boa escolha é um primo não muito próximo de uma potência de 2

Método de Divisão

Neste método mapeia-se uma chave k para uma posição m tomando o resto da divisão inteira:

$$h(k) = k \mod m$$

- Por exemplo:
 - Se m=12 e k=100, então h(k)=4
- □ Valores de m
 - De forma geral evita-se potencias de 2
 - Uma boa escolha é um primo não muito próximo de uma potência de 2

Método de Divisão

Exemplo:

- Suponha uma tabela hash, com colisões resolvidas com encadeamento, para conter aproximadamente 2000 cadeias de caracteres
- Suponha também tolera-se uma pesquisa malsucedida com uma média de 3 elementos
- Assim, **m=701**
 - Primo próximo de 2000/3 e distante de qualquer potencia de 2.

Método da Multiplicação

- Este método opera em duas etapas:
 - Primeira:
 - Multiplica-se a chave k por uma constante A (0 < A < 1) e extrai-se a parte fracionária de kA.
 - Segunda:
 - Multiplica-se o valor encontrado por m e toma-se o piso.
- □ Função Hash:

$$h(k) = \lfloor m(kA \mod 1) \rfloor$$

Método da Multiplicação

- Uma vantagem deste método é que o valor de m não é crítico!
 - Pode-se escolher uma potência de 2
- Quanto ao valor de A:
 - Irá funcionar com qualquer valor de A. Contudo, funciona melhor com determinados valores que outros.
 - Por exemplo: um valor sugerido é

$$A \approx (\sqrt{5} - 1) = 0,6180339887...$$

- Dado que uma tabela hash tenha uma função hash fixa
 - Assim, um possível ataque a esta máquina seria a escolha das chaves que geram o mesmo hash!
- A única maneira eficaz de melhorar a situação é escolher uma função hash aleatoriamente
 - Esta abordagem é chamada de hash universal.
 - Ou seja, escolhe-se uma função hash ao acaso a partir de uma classe de funções cuidadosamente projetada no início da aplicação.

- Seja H uma coleção finita de funções hash que mapeia um dada universo de chaves no intervalo {0, 1, ..., m-1}
 - Esta coleção é dita ser universal se, para cada para de chaves k,l ∈ H, o número de funções hash H para as quais h(k)=h(l) é no máximo H
 - Ou seja, as chaces de colisão não é maior que 1/m

- Teorema 11.3
 - Suponha que uma função hash h seja escolhida a partir de uma coleção universal de funções hash e seja usada para efetuar o hash de n chaves em uma tabela **T** de tamanho *m*, usando encadeamento para resolver as colisões. Se a chave k não está na tabela, estão o comprimento máximo esperado para $n_{h/k}$ da lista para a qual a chave k efetua o hash é no máximo α . Se a chave k está na tabela, então o comprimento esperado $n_{_{h/k)}}$ da lista que contém a chave k é no máximo 1 + α .

Corolário 11.4:

 Usando-se o hash universal e a resolução de colisões pelo encadeamento em uma tabela com m posições, demora o tempo esperado Θ(n) para tratar qualquer sequência de n operações INSERT, SEACH e DELETE contendo O(m) operações INSERT.

Projeto de classe universal de funções hash

- Inicialmente escolhe-se um número primo p grande o suficiente para que todas chave k possível esteja no intervalo [0, p-1]
- Seja Z*p = {0, 1, ..., p-1} e Zp = {1, ..., p-1}, onde p
 m.
- É possível definir a função hash h_{a,b} para qualquer
 a ∈ Z*p e b ∈ Zp sando a transformação linear:
 h_{a,b}(k)=((ak+b) mod p) mod m
- Cada função hash h_{a,b}(k) mapeia Zp para Zm

Endereçamento Aberto

- No endereçamento aberto, todos os elementos estão armazenados na própria tabela hash
 - Para se inserir um elemento com endereçamento aberto, sondamos a tabela até encontrarmos uma posição vazia.
 - Para determinar quais as posições a serem sondadas, estende-se a função hash:
 - H: U $x\{0,1,...,m-1\} \rightarrow \{0,1,...,m-1\}$
 - Assim, para uma chave k, a sequência de sondagem é:
 - (h(k,0), h(k,1), ..., h(k, m-1))

HASH-INSERT(T,k)

```
1.i ← 0
2. Repeat i\leftarrow h(k,i)
3. if T[j] = None
4. T[j]←-k
5. return j
6. else i \leftarrow i+1
7.Until i = m
8. Error "Hash table overflow"
```

HASH-SEARCH(T,k)

```
    1. i ← 0
    2. Repeat j←h(k,i)
    3. if T[j] = K
    4. return j
    5. i ← i+1
    6. Until T[j] = None or i=m
    7. Return None
```

Sondagem Linaer

- Dada uma função de hash comum h', referida como função hassh auxiliar, a sondagem linear é:
 - $-h(k,i)=(h'(k)+i) \mod m, i=0,1,...,m-1$
- Esta implementação é facil!
 - Contudo há o aparecimento do agrupamento primário
 - São construídas longas sequências ocupadas!

Sondagem Quadrática

- A função hash é da forma:
 - $h(k,i) = (h'(k)+c_1i+c_2i^2) \mod m$
 - Onde C₁ e C₂ são constantes auxiliares diferentes de zero.

Análise do Endereçamento Aberto

Teorema 11.6:

 Dada uma tabela hash de endereço aberto com fator de carga α = n/m < 1, o número esperado de sondagens em uma pesquisa mal sucedida é no máximo 1/(1-α), supondo-se hash uniforme.

Corolário 11.7:

 A inserção de um elemento em uma tabela hash de endereço aberto com fator de carga α exige no máximo 1/(1-α) sondagens em média, supondose hash uniforme

Análise do Endereçamento Aberto

- Teorema 11.8:
 - Dada uma tabela hash de endereçamento aberto com fator de carga α < 1, o número de sondagens em uma pesquisa bem sucedida é no máximo

$$(1/\alpha) \ln(1/(1-\alpha))$$

supondo-se o hash uniforme e considerando-se que cada chave na tabela tem igual probabilidade de ser pesquisada.

Exercícios Práticos

Exercício 1: Considera uma Tabela hash com m=1000 e a função hash h(k) = [m(kA mod 1)] para A=(Sqrt(5)-1)/2. Implemente uma função que calcule os hash para uma chave k

Exercício 2: Implemente em Python uma tabela hash de endereçamento aberto. Seja a tabela com 11 posições, e seja a função de hash primária h'(k)=k mod m. Demostre a inserção das chaves 5, 28, 19, 15, 20, 33, 12, 17 e 10.