2^k Design for $k \ge 3$ Factors 7-3.4

Consider a 2³ Design

Run	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	Label
1	_	_	_	(1)
2	+	_	_	\boldsymbol{a}
3	_	+	_	\boldsymbol{b}
4	+	+	_	ab
5	-	_	+	\boldsymbol{c}
6	+	_	+	ac
7	-	+	+	bc
8	+	+	+	abc

The 2^3 Figure 7-13 design.

(b) The test matrix

2^k Design for $k \ge 3$ Factors 7-3.4

Figure 7-14

interaction.

(c)

$$A = \overline{y}_{A+} - \overline{y}_{A-} = \frac{1}{4n} \left[a + ab + ac + abc - (1) - b - c - bc \right]$$

$$B = \overline{y}_{B+} - \overline{y}_{B-} = \frac{1}{4n} \left[b + ab + bc + abc - (1) - a - c - ac \right]$$

$$C = \overline{y}_{C+} - \overline{y}_{C-} = \frac{1}{4n} \left[c + ac + bc + abc - (1) - a - b - ab \right]$$

$$(7-8)$$

$$(7-9)$$

2^k Design for $k \ge 3$ Factors

AB Interaction – Average of the difference between the average effect of 'A' at the two levels of 'B'

В	Average A Effect
High (+)	$\frac{[(abc-bc)+(ab-b)]}{2n}$
Low (-)	$\frac{\{(ac-c)+[a-(1)]\}}{2n}$
Difference	$\frac{[abc-bc+ab-b-ac+c-a+(1)]}{2n}$
	$b_0 + (ab - b)$ $\{(ac - c) + [a - (1)]\}$

AB =
$$\left[\frac{[(abc - bc) + (ab - b)]}{2n} - \frac{\{(ac - c) + [a - (1)]\}}{2n}\right] / 2$$

7-3.4 2^k Design for $k \ge 3$ Factors

$$AB = \frac{1}{4n} \left[abc - bc + ab - b - ac + c - a + (1) \right]$$
 (7-11)

$$AC = \frac{1}{4n} \left[(1) - a + b - ab - c + ac - bc + abc \right]$$
 (7-12)

$$BC = \frac{1}{4n} \left[(1) + a - b - ab - c - ac + bc + abc \right]$$
 (7-13)

$$ABC = \frac{1}{4n} \left[abc - bc - ac + c - ab + b + a - (1) \right]$$
 (7-14)

Table 7-9 Calculating effects in a 2³ design

Treatment	Factorial Effect									
Combination	I	A	В	AB	С	AC	BC	ABC		
(1)	+	_	_	+	_	+	+	_		
a	+	+	_	_	_	_	+	+		
\boldsymbol{b}	+	_	+	_	_	+	_	+		
ab	+	+	+	+	_	_	_	_		
c	+	_	_	+	+	_	_	+		
ac	+	+	_	_	+	+	_	_		
bc	+	_	+	_	+	_	+	_		
abc	+	+	+	+	+	+	+	+		

The estimate of any main effect or interaction is obtained by multiplying the first column with the respective sign.

Sec 7-3.4 Properties of a 2^k effects table

Table 7-8 has several interesting properties:

- 1. Except for the identity column *I*, each column has an equal number of plus and minus signs.
- 2. The sum of products of signs in any two columns is zero; that is, the columns in the table are **orthogonal**.
- 3. Multiplying any column by column I leaves the column unchanged; that is, I is an identity element.
- 4. The product of any two columns yields a column in the table, for example $A \times B = AB$, and $AB \times ABC = A^2B^2C = C$, because any column multiplied by itself is the identity column.

Example 7-2 Surface roughness problem

Table 7-10 Surface Roughness Data for Example 7-2

Treatment	D	esign Factor	s	Surface			
Combinations	\boldsymbol{A}	В	C	Roughness	Total	Average	Variance
(1)	-1	-1	-1	9, 7	16	8	2.0
a	1	-1	-1	10, 12	22	11	2.0
\boldsymbol{b}	-1	1	-1	9, 11	20	10	2.0
ab	1	1	-1	12, 15	27	13.5	4.5
c	-1	-1	1	11, 10	21	10.5	0.5
ac	1	-1	1	10, 13	23	11.5	4.5
bc	-1	1	1	10, 8	18	9	2.0
abc	1	1	1	16, 14	30	15	2.0
Average						11.0625	2.4375

Variance → Eq. 7-6
Standard Error of effect → Eq. 7.5

2^k Design for $k \ge 3$ Factors

Regression Model and Residual Analysis

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon$$

$$\hat{y} = 11.0625 + \left(\frac{3.375}{2}\right)x_1 + \left(\frac{1.625}{2}\right)x_2 + \left(\frac{1.375}{2}\right)x_1x_2$$

$$\hat{y} = 11.0625 + \left(\frac{3.375}{2}\right)(-1) + \left(\frac{1.625}{2}\right)(-1) + \left(\frac{1.375}{2}\right)(-1)(-1)$$

$$= 9.25$$

Figure 7-15 Normal probability plot of residuals from the surface roughness experiment.

7-3.5 Single Replicate of a 2^k Design

- As the number of factors (variables eg. pressure, temperature, reaction time, flow rate, etc) in a factorial experiment grows, the number of effects that can be estimated also grows.
- In most situations the sparsity of effects principle applies; ie., the main effects and low-order interactions are dominant. The 3-factor and higher-order interactions are usually negligible.
- A simple method of analysis called a **normal probability plot of effects** can be used Negligible effects will **fall in** the straight line. Significant effects will **not fall** along the straight line.

7-3.5

Single Replicate of a 2^k Design

Table 7-11 The 2⁴ Design for the Plasma Etch Experiment

A (gap)	B (pressure)	C $(C_2F_6 \text{ flow})$	D (power)	Etch Rate (Å/min)
-1	-1	-1	-1	550
1	-1	-1	-1	669
-1	1	-1	-1	604
1	1	-1	-1	650
-1	-1	1	-1	633
1	-1	1	-1	642
-1	1	1	-1	601
1	1	1	-1	635
-1	-1	-1	1	1037
1	-1	-1	1	749
-1	1	-1	1	1052
1	1	-1	1	868
-1	-1	1	1	1075
1	-1	1	1	860
-1	1	1	1	1063
1	1	1	1	729

7-3.5 Single Replicate of a 2^k Design

Table 7-12 Contrast Constants for the 2⁴ Design

								Facto	rial Eff	ect					
	A	В	AB	C	AC	BC	ABC	D	AD	BD	ABD	CD	ACD	BCD	ABCD
(1)	_	_	+	_	+	+	_	_	+	+	_	+	_	_	+
a	+	_	_	_	_	+	+	_	_	+	+	+	+	_	_
\boldsymbol{b}	_	+	_	_	+	_	+	_	+	_	+	+	_	+	_
ab	+	+	+	_	_	_	_	_	_	_	_	+	+	+	+
c	_	_	+	+	_	_	+	_	+	+	_	_	+	+	_
ac	+	_	_	+	+	_	_	_	_	+	+	_	_	+	+
bc	_	+	_	+	_	+	_	_	+	_	+	_	+	_	+
abc	+	+	+	+	+	+	+	_	_	_	_	_	_	_	_
d	_	_	+	_	+	+	_	+	_	_	+	_	+	+	_
ad	+	_	_	_	_	+	+	+	+	_	_	_	_	+	+
bd	_	+	_	_	+	_	+	+	_	+	_	_	+	_	+
abd	+	+	+	_	_	_	_	+	+	+	+	_	_	_	_
cd	_	_	+	+	_	_	+	+	_	_	+	+	_	_	+
acd	+	_	_	+	+	_	_	+	+	_	_	+	+	_	_
bcd	_	+	_	+	_	+	_	+	_	+	_	+	_	+	_
abcd	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

7-3.5

Figure 7-16 Normal probability plot of effects from the plasma etch experiment.

7-3.5 Single Replicate of a 2^k Design

Table 7-13 Analysis for Example 7-3 Plasma Etch Experiment

Analysis of Variance								
Source	Sum of Squares	Degrees of Freedom	Mean Square	f_0	P-Value			
Model	521234	10	52123.40	25.58	0.000			
Error	10187	5	2037.40					
Total	531421	15						

Independent Variable	Effect Estimate	Coefficient Estimate	Standard Error of Coefficient	$t \text{ for } H_0$ Coefficient = 0	P-Value
Intercept		776.06	11.28	68.77	0.000
\boldsymbol{A}	-101.63 −101.63	-50.81	11.28	-4.50	→ 0.006
$\boldsymbol{\mathit{B}}$	-1.63	-0.81	11.28	-0.07	0.945
\boldsymbol{C}	7.38	3.69	11.28	0.33	0.757
D	→ 306.12	153.06	11.28	13.56	0.000
AB	-7.88	-3.94	11.28	-0.35	0.741
AC	-24.87	-12.44	11.28	-1.10	0.321
AD	-153.62	-76.81	11.28	-6.81	0.001
BC	-43.87	-21.94	11.28	-1.94	0.109
BD	-0.62	-0.31	11.28	-0.03	0.979
CD	-2.12	-1.06	11.28	-0.09	0.929

Figure 7-18 Normal probability plot of residuals from the plasma etch experiment.