الجهورتية اللونستية

REPUBLIQUE TUNISIENNE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session 2018

فَ لِلْمُنِّ الْبَعْلِيْ الْعِلْ الْعِلْ الْمَالِيَّةِ الْمَالِيَّةِ الْمَالِيَّةِ الْمَالِيَّةِ الْمَالِيَّةِ المنظرات الوطنية للدخول إلى مراحل تكوين المهندسين دورة 2018

Concours Mathématiques et Physique Epreuve de Physique

Date: Lundi 04 Juin 2018

Heure: 8 H

Durée: 4 H

Nombre de pages: 8

Barème: Problème 1: 7 pt , Problème 2: 13 pts

L'usage d'une calculatrice non programmable est autorisé.

L'épreuve comporte deux problèmes indépendants, le candidat peut les résoudre dans l'ordre qui lui convient, en respectant néanmoins la numérotation des questions.

Un candidat peut toujours se servir d'un résultat fourni par l'énoncé pour continuer sa composition.

Données

DOMINGS ,			
	$\sinh(x) = \frac{e^x - e^{-x}}{2}$	$\operatorname{sinc}(x) = \frac{\sin x}{x}$	$\sin a - \sin b = 2\sin\left(\frac{a-b}{2}\right)\cos\left(\frac{a+b}{2}\right)$
	$e = 1,6 \times 10^{-19} C$	$\varepsilon_0 = \frac{1}{36\pi} \times 10^{-9} F m^{-1}$	$1 \text{eV} = 1.6 \times 10^{-19} J$; $1 \text{ MeV} = 10^6 \text{eV}$
	$h = \frac{h}{2\pi} = 1,05 \times 10^{-34} J \cdot s$	$c = 3 \times 10^8 m s^{-1}$	$i^2 = -1$

Problème 1 : Optique ondulatoire

Le rôle d'un dispositif interférentiel est de dédoubler une source primaire pour en donner dans la plupart des cas deux sources secondaires S_1 et S_2 pouvant aboutir à des interférences constructives ou destructives.

I- Etude des trous d'Young

- 1- Expliquer la raison pour laquelle il faut partir d'une seule source primaire S et non de deux sources indépendantes S₁ et S₂.
- 2- On s'intéressera dans ce qui suit au dispositif d'Young. S'agit-il d'un dispositif à division de front d'ondes ou à division d'amplitudes? Justifier.
- 3- Comme le montre la figure 1 qui se trouve dans le plan xOz, on dispose d'une source primaire S, supposée monochromatique et ponctuelle de longueur d'onde λ et de deux trous S_1 et S_2 symétriques par rapport à O' tel que $S_1S_2 = a$; l'axe Oy étant perpendiculaire au plan de la figure 1.

Figure 1

On observe le phénomène d'interférences en un point M repéré par son abscisse x sur un écran situé dans le plan xOy à une distance D=OO'. Dans tout le problème, on se place dans le cas où $a \ll D$ et $|x| \ll D$.

Les deux vibrations scalaires issues de S₁ et S₂ s'écrivent en notation complexe :

$$S_1 = S_0 e^{i(\omega t - \varphi_1)}$$
 et $S_2 = S_0 e^{i(\omega t - \varphi_2)}$

- a-Calculer la vibration résultante \underline{S} au point M en fonction de S_0 , ω , φ_2 et φ , où $\varphi = \varphi_2 \varphi_1$ est le déphasage entre les deux ondes.
- **b**-En déduire l'intensité $I = \underline{S} \cdot \underline{S}^*$ en fonction de φ et $I_0 = S_0^2$.
- c-Exprimer la différence de marche δ au point M entre les deux ondes en fonction de α , x et D. En déduire l'expression de φ .
- d-Quelle est la nature des franges d'interférences observées sur l'écran et indiquer leur direction ? Justifier votre réponse.
- e-Déterminer les positions des franges brillantes et des franges obscures.
- f- Exprimer l'interfrange i. Calculer i pour a = 0,5mm, D=1m et $\lambda = 0,5$ µm.
- g-Déterminer la position de la frange centrale et préciser si elle est brillante où obscure.
- 4- On déplace la source S parallèlement à Oy d'une faible distance par rapport à D. Que devient la figure d'interférences ? Commenter.
- 5- On remplace la source S par une fente fine parallèle à Oy, décrire la nouvelle figure d'interférences.
- 6- On déplace maintenant la source S parallèlement à Ox jusqu'au point S' repéré par son abscisse x' tel que |x'| << d avec d = SO' (figure 1).
 - a-Calculer la nouvelle différence de marche δ' entre les deux ondes au point M en fonction de x, x', a, D et d. Déterminer la nouvelle position x_0 de la frange centrale.
 - b-Exprimer la nouvelle interfrange i'. Expliquer ce qui se passe au niveau de la figure d'interférences.

II- Influence de la largeur de la fente source : Cohérence spatiale

On remplace maintenant la source S par une fente source fine F parallèle à Oy de largeur ℓ , et on remplace également les trous d'Young S_1 et S_2 par deux fentes fines F_1 et F_2 parallèles entre elles et parallèles à Oy.

La fente F est située dans le plan médiateur de F_1 et F_2 . La largeur ℓ peut varier moyennant une vis micrométrique.

7- L'intensité élémentaire dI en un point M de l'écran émise par une fente élémentaire de largeur dx' repérée par son abscisse x' (figure 2) s'écrit :

$$dI = 2I_0 (1 + \cos \varphi) \frac{dx'}{\ell}$$

a- Justifier l'expression de dI. Exprimer φ en fonction de x et x'.

Figure 2

b- En déduire l'intensité totale *I* au point M. Montrer qu'elle peut se mettre sous la forme :

$$I = 2I_0 \left[1 + V(\ell) \cdot \cos \varphi \right]$$

Exprimer $V(\ell)$. Quel nom donne-t-on à cette fonction?

- c- Quelle est la valeur de $V(\ell)$ quand $\ell \rightarrow 0$? Conclure.
- **d-** Donner les valeurs de ℓ qui annulent $V(\ell)$ et tracer son allure.
- e- En déduire la longueur de cohérence spatiale L_s en fonction de λ , d et a. Calculer sa valeur pour $\lambda = 500 \, nm$, $d = 50 \, cm$ et $a = 0.5 \, mm$.
- **f** Décrire qualitativement la figure d'interférences pour $\ell = L_s$.

III- Influence de la largeur spectrale de la source : Cohérence temporelle.

On agit de nouveau sur le dispositif de fentes d'Young pour retrouver la fente fine de la partie (I); F étant toujours dans le plan médiateur de F_1 et F_2 .

- 8- On éclaire F à l'aide d'une source polychromatique de profil spectral rectangulaire $I_{\nu}(\nu)$ et de largeur $\Delta\nu$ comme l'indique la figure 3, où ν est la fréquence de l'onde dans l'intervalle $\left[\nu_1, \nu_2\right]$. On pose $\Delta\nu = \nu_2 \nu_1$ et $\nu_0 = \frac{\nu_1 + \nu_2}{2}$. Soit d ν une largeur spectrale élémentaire dans cet intervalle. L'intensité élémentaire au point M créée par d ν s'écrit sous la forme : $dI = 2I_0 \left(1 + \cos\varphi\right) \frac{d\nu}{\Delta\nu}$
 - a- En déduire que l'intensité totale au point M peut s'écrire sous la forme :

$$I = 2I_0 \left[1 + V(\beta') \cdot \cos \varphi \right]$$

Exprimer $V(\beta')$, où β' est à écrire en fonction de $\Delta \nu$.

- **b-** Que devient l'expression de I quand $\Delta \nu \rightarrow 0$? Commenter.
- c- Déterminer les valeurs de β ' qui annulent $V(\beta')$ et tracer son allure.
- **d-**En déduire la longueur de cohérence temporelle L_t en fonction de c et Δv .

Figure 3

- e-Calculer L_t pour la lumière blanche d'intervalle spectral $0,4-0,75\,\mu m$, et pour un laser de largeur spectrale $100\,MHz$. Commenter.
- **f** On dispose maintenant d'une fente de largeur ℓ et d'une raie de largeur $\Delta \nu$. Quelles sont les conditions sur ces grandeurs pour observer des franges d'interférences?

Problème 2 : Evolution d'une particule quantique dans un potentiel

I- Partie Préliminaire

On s'intéresse dans ce problème à une particule quantique de masse m astreinte à se déplacer suivant l'axe Ox de vecteur unitaire \vec{u}_x . A cette particule on associe une fonction d'onde $\Psi(x,t)$ qui décrit son état à l'instant t.

Lorsque la particule possède une énergie potentielle V(x), la fonction d'onde $\Psi(x,t)$ est solution de l'équation de Schrödinger :

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t}$$

- 1- On pose $\rho(x) = |\Psi(x,t)|^2$. Que représente cette grandeur? Pourquoi doit-on avoir $\int_{-\infty}^{+\infty} |\Psi(x,t)|^2 dx = 1$? En déduire la dimension de $|\Psi(x,t)|$.
- 2- Dans tout le problème on cherchera des fonctions d'ondes relatives à des états stationnaires d'énergie E définies par :

$$\Psi(x,t) = \varphi(x) e^{-i\frac{E}{\hbar}t}$$

- a- Pourquoi un tel état est appelé "état stationnaire"? Déterminer l'équation de Schrödinger indépendante du temps vérifiée par $\varphi(x)$.
- **b-** En considérant le cas où $V(x) = V_0$, avec V_0 est une constante réelle, trouver les solutions possibles $\varphi(x)$ en comparant E à V_0 .

II- Particule Libre

Considérons une particule libre de masse m, d'impulsion p évoluant suivant Ox.

- 3- Montrer que son énergie s'écrit : $E = \frac{p^2}{2m}$.
- 4- Montrer que la fonction d'onde $\Psi(x,t)$ de la particule libre s'écrit sous la forme :

$$\Psi(x,t) = A e^{-i(\omega t - kx)} + B e^{-i(\omega t + kx)}$$

A et B sont deux constantes complexes; ω et k deux constantes positives à exprimer en fonction de E, \hbar et m.

- 5- Interpréter la forme générale de $\Psi(x,t)$. Ecrire la relation de dispersion exprimant ω en fonction de k. En déduire la relation entre la longueur d'onde λ associée à cette particule et son impulsion p. Commenter.
- 6- Sachant qu'on peut écrire les constantes complexes A et B sous la forme suivante : $A = \sqrt{\rho_1}e^{i\theta_1}$ et $B = \sqrt{\rho_2}e^{i\theta_1}$ avec ρ_1 , ρ_2 , θ_1 et θ_2 sont des constantes réelles. Montrer que :

$$\rho(x) = \rho_1 + \rho_2 + 2\sqrt{\rho_1 \rho_2} \cos(2kx + \theta_1 - \theta_2).$$

- 7- Tracer l'allure de $\rho(x)$ et interpréter.
- 8- Pourquoi la solution $\Psi(x,t)$ trouvée dans la question (4) ne décrit pas la réalité ? Que peut-on proposer ?

9- En réalité l'état quantique de la particule libre est décrit par un paquet d'ondes défini par :

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(k) e^{-i(\omega(k)t - kx)} dk \quad \text{avec} \quad g(k) = \begin{cases} \frac{1}{\sqrt{k_2 - k_1}} & \text{pour } k_1 < k < k_2 \\ 0 & \text{ailleurs} \end{cases}$$

- a- On pose $k_0 = \frac{k_1 + k_2}{2}$ et $\Delta k = k_2 k_1$, déterminer $\Psi(x, 0)$.
- b- En déduire la densité de probabilité $\rho(x) = |\Psi(x,0)|^2$. Déterminer les valeurs qui annulent $\rho(x)$ et tracer ensuite la courbe $\frac{\rho(x)}{\rho_0}$ où $\rho_0 = \rho(x=0)$.
- c- Montrer que $\Psi(x,0)$ représente bien l'état d'une particule libre à l'instant t=0. On donne : $\int_0^{+\infty} \left(\frac{\sin u}{u}\right)^2 du = \frac{\pi}{2}$
- d- On pose $\Delta x = x_1 x_{-1}$ où x_1 et x_{-1} sont les premières valeurs de x qui annulent $\rho(x)$ de part et d'autre de l'origine des abscisses. Calculer le produit $\Delta x \cdot \Delta k$. En déduire l'expression de $\Delta x \cdot \Delta p$. Quel nom donne-t-on à cette relation? Commenter.
- 10- En utilisant la relation de dispersion, déterminer la vitesse de groupe v_g et la vitesse de phase v_{φ} . Quelle est la relation entre v_g et l'impulsion p? Conclure.

III- Effet tunnel

La particule d'énergie E venant de la région I (x < 0) évolue dans un potentiel V(x) défini par (figure 4):

$$V(x) = \begin{cases} V_0 & si \ 0 < x < a \\ 0 & ailleurs \end{cases}$$

On suppose que $0 < E < V_0$ et on cherche les états stationnaires de cette particule dans les trois régions (région I: x < 0, région II: 0 < x < a et région III: x > a).

Figure 4

- 11- On pose $k = \sqrt{\frac{2mE}{\hbar^2}}$ et $q = \sqrt{\frac{2m(V_0 E)}{\hbar^2}}$. Trouver les solutions $\varphi(x)$ dans chaque région. On introduira les constantes d'intégration A_I , B_I , A_{II} , B_{II} et A_{III} correspondantes respectivement aux régions I, II et III.
- 12- En appliquant les conditions aux limites aux interfaces x=0 et x=a, écrire un système de quatre équations dont les inconnus sont A_I , B_I , A_{II} , B_{II} et A_{III} . Quelle condition supplémentaire permet d'établir une cinquième équation?

13-On définit les coefficients
$$R = \frac{\|\vec{j}_r\|}{\|\vec{j}_i\|}$$
 et $T = \frac{\|\vec{j}_i\|}{\|\vec{j}_i\|}$, où \vec{j}_i , \vec{j}_r et \vec{j}_i sont les vecteurs

densité de courant de probabilité liés respectivement à l'onde incidente, réfléchie dans la région (I) et transmise dans la région III.

On rappelle que le vecteur densité de courant de probabilité d'une onde plane de vecteur d'onde \vec{k} s'écrit :

$$\vec{j} = \left| \Psi(x, t) \right|^2 \frac{\hbar \vec{k}}{m}$$

Exprimer R et T en fonction des constantes d'intégration. Que représentent ces coefficients? Pourquoi doit-on avoir R+T=1?

14- La résolution du système d'équations précédent donne :

$$T = \frac{1}{1 + \frac{V_0^2}{4E(V_0 - E)} \sinh^2(qa)}$$

Calculer T dans le cas d'une barrière de potentiel atomique de hauteur $V_0 = 2,00 \, eV$ et de largeur $a = 0,1 \, \text{nm}$ pour les particules suivantes :

- Un électron d'énergie E = 1,00 eV et de masse $m_e = 9,11 \cdot 10^{-31} \text{ Kg}$.
- Un proton d'énergie E = 1,00 eV de masse $m_p = 2000 m_e$.

Commenter.

- 15-Une barrière est dite épaisse si $a \gg \delta = \frac{1}{q}$.
 - **a-** Montrer que dans ce cas on a : $T = T_0 e^{-2q\sigma}$ avec $T_0 = 16 \frac{E(V_0 E)}{V_0^2}$.
 - **b-** Tracer l'allure de $T_0(E)$ et discuter les cas limites E=0 et $E=V_0$. Calculer la valeur moyenne de T_0 définie par :

$$\left\langle T_0 \right\rangle = \frac{1}{V_0} \int_0^{V_0} T_0(E) \, dE$$

c- En supposant que pour $E \neq 0$ et $E \neq V_0$, $\ln T_0 \approx \ln \langle T_0 \rangle$, montrer que $\ln T \approx -2qa$.

IV- Radioactivité α

L'exemple le plus célèbre de l'effet tunnel est celui de l'émission des particules α (${}_{2}^{4}He$) de masse $m_{\alpha} = 6,64 \times 10^{-27} \, kg$ par des noyaux lourds radioactifs dont l'interprétation a été proposée par le physicien russe Georges Gamow. Ces particules sont émises avec une énergie $4 \le E \le 9 \, \text{MeV}$.

A l'intérieur du noyau de rayon r_0 la particule α est soumise à l'interaction nucléaire forte de courte portée modélisée par un puits de potentiel de profondeur $V_0 > 0$ (figure 5).

Une fois que la particule a quitté le noyau $(r > r_0)$, son énergie potentielle se réduit uniquement à son énergie potentielle coulombienne : $V(r) = \frac{K}{4\pi\varepsilon_0 r}$ où $K = 2(Z-2)e^2$. Z est le numéro atomique de l'atome radioactif.

Dans la suite on se place dans le cas unidimensionnel suivant \vec{u}_r . La particule α est représentée par la fonction d'onde $\Psi(r,t)$ qui vérifie l'équation de Schrödinger :

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(r,t)}{\partial r^2} + V(r)\Psi(r,t) = i\hbar \frac{\partial \Psi(r,t)}{\partial t}$$

16- 1^{er} cas: La particule est piégée dans le puits de potentiel et possède une énergie E < 0. On se propose de déterminer les niveaux d'énergie et les états liés de cette particule.

Figure 5

On suppose que ce puits est tel que:

$$V(r) = \begin{cases} -V_0 & \text{si } 0 < r < r_0 \\ +\infty & \text{ailleurs} \end{cases}$$

- a- Sachant que la fonction d'onde de la particule hors du puits est nulle, montrer que la solution de l'équation de Schrödinger indépendante du temps pour $0 < r < r_0$ est : $\varphi(r) = D\sin(kr)$, où D est une constante à exprimer. Exprimer k en fonction de E et V_0 .
- b- Montrer que $k_n = \frac{n\pi}{r_0}$, où n est un entier positif. En déduire l'expression de l'énergie E_n correspondante. Commenter.
- 17- $2^{\text{ème}} \cos z$: La particule α possède maintenant une énergie E > 0,
 - a- Justifier qu'elle a la possibilité de franchir la barrière de potentiel située entre A et B (Figure 5).
 - b- Pour l'uranium $^{238}_{92}U$ de rayon $r_0 = 3,50 \times 10^{-15} \, m$, l'énergie E des particules émises est de $4,00\,\text{MeV}$. Calculer en MeV la hauteur V_{max} de la barrière.
 - c- Déterminer le rayon r_1 correspondant au point B.
- 18- Etant donné que la barrière de potentiel n'a pas la forme simple que celle étudiée dans la section III, on peut, pour $r_0 < r < r_1$, approcher la fonction V(r) par une succession de barrières rectangulaires de hauteur V(r) et de largeur dr suffisamment épaisses pour que l'approximation de la question 15-c soit valable (figure 6).

- a- Montrer que : $\ln(T(r+dr)) \simeq \ln(T(r)) 2qdr$.
- **b-** En déduire la relation suivante : $\ln T = -\frac{2}{\hbar} \int_{0}^{\pi} \sqrt{2m_{\alpha} \left(\frac{K}{4\pi\varepsilon_{0}r} E\right)} dr$
- c- On admet que : $\int_{r_0}^{r_1} \sqrt{\left(\frac{r_1}{r} 1\right)} dr = r_1 \left(\frac{\pi}{2} 2\sqrt{\frac{r_0}{r_1}}\right), \text{ en déduire que :}$ $\ln T = a \frac{b}{\sqrt{E}} \qquad \text{(Loi de Gamow)}.$

Exprimer a et b en fonction des données du problème.

- 19- Typiquement, pour le noyau d'uranium ^{238}U , on trouve $T \simeq 2 \times 10^{-39}$. Par ailleurs, la particule α effectue des allers-retours (oscillations) dans le puits de potentiel nucléaire de largeur r_0 à une vitesse moyenne v.
 - a- En négligeant l'énergie potentielle de la particule devant son énergie cinétique, montrer que : $v = \sqrt{\frac{2E}{m_a}}$. Calculer sa valeur.
 - b- Montrer que la durée moyenne entre deux rebonds successifs de la particule sur la barrière s'écrit : $t_m = r_0 \sqrt{\frac{2m_\alpha}{E}}$. En déduire le nombre n de rebonds par unité de temps. Calculer sa valeur numérique.
 - c- Montrer que la probabilité par unité de temps d'émission d'une particule α est : $\beta = n \cdot T$ avec β est la constante radioactive de l'élément radioactif.
- **20-** Soit N(t) le nombre de noyaux radioactifs à l'instant t, et N_0 ce nombre à t=0.
 - **a-** Justifier que : $\frac{dN}{dt} = -\beta N(t)$.
 - b- Calculer la valeur de β pour l'uranium $^{238}_{92}U$. Comparer cette valeur à celle mesurée $\beta_{\rm exp}=5\times10^{-18}\,s$. Commenter.
 - c- Le temps de demi-vie $t_{1/2}$ (ou période radioactive) de l'élément radioactif est défini par : $N(t_{\frac{1}{2}}) = \frac{N_0}{2}$. Exprimer $t_{1/2}$ en fonction de β .
 - d- En déduire en utilisant la loi de Gamow que : $\ln\left(\frac{t_1}{t_m}\right) = \ln\left(\ln 2\right) a + \frac{b}{\sqrt{E}}$.

 Commenter ce résultat.

fin de l'épreuve