CNNs FOR MULTI-SPECTRAL SATELLITE IMAGE CLASSIFICATION

GUIDE: PROF SARITH DIVAKAR M (CSE & IT DEPARTMENT)

PRESENTED BY
SUBITH O U
S7 CSEB 32
KSD18CS084

OUTLINE

- INTRODUCTION
- EXISTING vs PROPOSED
- SOLAR POWER PLANT CLASSIFICATION
- DATASET
- FEEDFORWARD CNN
- RECURRENT CNN
- FEEDBACK CNN
- TRAINING PROCEDURE
- EXPERIMENTAL RESULTS
- CONCLUSION
- REFERENCES

INTRODUCTION

- In the multi-spectral satellite image classification we are using feed-forward, Recurrent and feedback CNNs.
- We compare the accuracy of feed-forward, recurrent and feedback CNNs on multi-spectral satellite image classification by using the Intersection over Union (IoU) evaluation metric.
- For analysis, we use these techniques for the classification of solar power plants.

EXISTING vs PROPOSED

- In the existing system, the baseline CNN model is used for classification.
- But in the proposed system is using the recurrent and feedback CNN.
- Based on the performance analysis, the proposed system is outperforming the baseline CNN.

SOLAR POWER PLANT CLASSIFICATION

 In the solar power plant classification, we using feed-forward, recurrent, and feed-back CNNs.

DATASET

- We use the MUltiband Satellite Imagery for object Classification (MUSIC) to detect Photovoltaic Power Plants (MUSIC4P3) dataset.
- This dataset consists of multi-spectral satellite images captured by Landsat 8 and their respective solar power plant labels for each scene.
- Landsat 8 provides visual data of the Earth from 11 bands of different wavelengths and spatial resolutions obtained from two sensors since 2013.
 - Operational Land Imager (OLI)
 - Thermal Infrared Sensor (TIRS)

DATASET

• Overview of the MUSIC4P3 dataset used in this work.

Table 1. Observation wavelength and spatial resolution of Landsat 8 imaging sensors.

Sensor	Band Wavelength (µm)		Resolution(m/p)	
	1	0.43 - 0.45	30	
	2 (B)	0.45 - 0.51	30	
	3 (G)	0.53 - 0.59	30	
	4 (R)	0.64 - 0.67	30	
OLI	5	0.85 - 0.88	30	
	6	1.57 - 1.65	30	
	7	2.11 - 2.29	30	
	8	0.53 - 0.68	15	
	9	1.36 - 1.38	30	
TIRS	10	10.60 - 11.19	100	
	11	11.50 - 12.51	100	

- **Training data**: Positive Samples are 4,851 and Negative Samples are 320,000.
- Validation data: Positive Samples are 21 and Negative Samples are 160,533.
- **Test data**: Positive Samples are 105 and Negative Samples are 820,666.

FEED-FORWARD CNN (INet) FOR MULTI-SPECTRAL IMAGE CLASSIFICATION

Figure 2 INet Model: Feed-forward baseline CNN for solar power plan classification on multi-spectral satellite imagery

FEED-FORWARD CNN (INet) FOR MULTI-SPECTRAL IMAGE CLASSIFICATION

$$\mathbf{F1} = \zeta \left(\left(\mathbf{w}_{conv1}^{forward} \right) * \mathbf{U} \right)$$

$$\mathbf{F2} = \zeta \left(\left(\mathbf{w}_{conv2}^{forward} \right) * \mathbf{F1} \right)$$

$$\mathbf{F3} = \zeta \left(\left(\mathbf{w}_{conv3}^{forward} \right) * \mathbf{F2} \right)$$

where **U** is the input multi-spectral image.

W^{forward} is the weights for the convolutional filters for forward processes at each layer.

F1, F2 and F3 are CNN feature representations.

RECURRENT CNN (R-Net) FOR MULTI-SPECTRAL IMAGE CLASSIFICATION

Figure 3 Proposed Recurrent CNN as an extension to baseline feed-forward CNN INet for solar power plan classification

RECURRENT CNN (R-Net) FOR MULTI-SPECTRAL IMAGE CLASSIFICATION

$$\mathbf{F1}_{t} = \zeta \left(\left(\mathbf{w}_{conv1}^{forward} \right) * \mathbf{U}_{t} \right)$$

$$\mathbf{F2}_{t} = \zeta \left(\left(\mathbf{w}_{conv2}^{forward} \right) * \mathbf{F1}_{t} + \left(\mathbf{w}_{conv2}^{recurrent} \right) * \mathbf{F2}_{t-1} \right)$$

$$\mathbf{F3}_{t} = \zeta \left(\left(\mathbf{w}_{conv3}^{forward} \right) * \mathbf{F2}_{t} + \left(\mathbf{w}_{conv3}^{recurrent} \right) * \mathbf{F3}_{t-1} \right)$$

Where **U** is the input multi-spectral image.

W^{forward} & **W**^{recurrent} weights are the convolutional filters used for feed-forward and recurrent inputs at each time step, t, respectively.

F1, F2 and F3 are CNN feature representations.

t is the time step.

FEEDBACK-CNN (F-Net) FOR MULTI-SPECTRAL IMAGE CLASSIFICATION

Figure 4 Proposed Feedback-Recurrent CNN as an extension to Recurrent CNN based on INet for solar power plant classification

FEEDBACK-CNN (F-Net) FOR MULTI-SPECTRAL IMAGE CLASSIFICATION

$$\mathbf{F1}_{t} = \zeta \left(\left(\mathbf{w}_{conv1}^{forward} \right) * \mathbf{U}_{t} \right)$$

$$\mathbf{F2}_{t} = \zeta \left(\left(\mathbf{w}_{conv2}^{forward} \right) * \mathbf{F1}_{t} + \left(\mathbf{w}_{conv2}^{recurrent} \right) * \mathbf{F2}_{t-1} + \left(\mathbf{w}_{conv2}^{feedback} \right) * \mathbf{F3}_{t-1} \right)$$

$$\mathbf{F3}_{t} = \zeta \left(\left(\mathbf{w}_{conv3}^{forward} \right) * \mathbf{F2}_{t} + \left(\mathbf{w}_{conv3}^{recurrent} \right) * \mathbf{F3}_{t-1} \right)$$

Where **U** is the input multi-spectral image.

W^{forward} & **W**^{recurrent} weights are the convolutional filters used for feed-forward and recurrent inputs at each time step, t, respectively.

F1, F2 and F3 are CNN feature representations.

t is the time step.

TRAINING PROCEDURE

- All models trained on similar settings by using a dataset of 16×16-pixel image patches with corresponding annotations using cross-entropy loss.
- For optimization of the model parameters, SGD (Stochastic Gradient Descent) with fixed learning rate of 0.01 and momentum of 0.9 is selected.
- Comparison after train the models with 1000 iterations.

EXPERIMENTAL RESULTS

- For the performance evaluation, we use the Intersection over Union (IoU) metric.
- IoU = True Positive / (True Positive + False Negative + False Positive)

INet* [2,3]	INet [2, 3]	R-Net	F-Net
0.52	0.36	0.38	0.55

Evaluation results of the compared models based on Intersection over Union (IoU)

CONCLUSION

• Using top-down signals (especially recurrent and feedback features together) on CNNs can provide good representation of multi-spectral images which can in turn improve classification accuracy drastically.

REFERENCES

 Exploring Recurrent and Feedback CNNs for Multi-Spectral Satellite Image Classification - ScienceDirect

 Sci-Hub | Detection by classification of buildings in multispectral satellite imagery. 2016 23rd International Conference on Pattern Recognition (ICPR) | 10.1109/ICPR.2016.7900150

THANK YOU