SAPHIRE : 233 - Conversion d'énergie Projet de dimensionnement

29 janvier 2019

ENS Paris Saclay SAPHIRE

Objectif

L'objectif est le dimensionnement via la minimisation de la masse totale et des pertes (Joule et Fer) d'une inductance de puissance dont la géométrie est définie par la figure 1.

FIGURE 1 – Représentation schématique d'une inductance (L_a représente la longueur dans la partie 3D)

Cette inductance aura les caractéristiques suivantes :

- Une énergie stockée de 4J
- Un courant maximal de $20\,A$
- Une densité de courant maximale de $5\,10^6\,A.m^{-2}$ (dans le cas où aucun modèle thermique est considéré)
- Un volume externe maximal de $1,31\,10^{-3}\,m^3$
- La fréquence d'utilisation f = 50 Hz

Données techniques des matériaux

Les matériaux utilisées seront le cuivre et du fer silicium 3% :

- Masse volumique du fer silicium : $7874 \, kg.m^{-3}$
- Masse volumique du cuivre : $8960 \, kg.m^{-3}$
- Conductivité électrique du cuivre : $59,6\,10^6S.m^{-1}$
- Un coefficient de bobinage : $k_b = 0, 4$

Données techniques magnétiques du matériau magnétique

AK Steel Di-Max M-19 Fully Processed .014 inch (.36 mm, 29 gauge)

Summary Graphs

Magnetization
Curves
Data

Core Loss
Curves
Data

Exciting Power
Data

Spreadsheet
Other Thicknesses
.0185 inch
.025 inch

AK Steel
Product Info

AK Steel Non-Oriented Silicon Steel Menu Non-Oriented

Non-Oriented Silicon Steels Menu

Main Menu

EMERF L · S · T · E

LAMINATION STEELS THIRD EDITION Excerpts specially prepared for the Massachusetts Institute of Technology by the Electric Motor Education and Research Foundation

Summary Graphs

Magnetization – B vs. H

Total Core Loss − Pc vs. B

Magnetization curves for this material, DC through 2000 hertz
All non-oriented silicon steels
All other materials

Total core loss curves for this material, 50 through 2000 hertz

All non-oriented silicon steels

All other materials

Summary magnetization and total core loss curves for as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel showing their relation to these properties for other materials found in Lamination Steels Third Edition. See the following pages for detailed graphs and data values.

Producer: AK Steel, Middletown, Ohio, USA, www.aksteel.com.

Primary standard: ASTM A677 36F155.

Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material properties with material producer prior to use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008.

This and the following five pages are excerpted from the Laminations Steels Third Edition CD-ROM published by the Electric Motor Education and Research Foundation and are intended for use in the Massachusetts Institute of Technology OpenCourseWare program. Unauthorized duplication and distribution of this document in violation of the OpenCourseWare license is prohibited. Incorporation of this information in other publications or software, in whole or in part, in violation of the OpenCourseWare license or without specific authorization from Electric Motor Education and Research Foundation, is prohibited.

 $\label{thm:courtesy} \text{Courtesy of the Electric Motor Education and Research Foundation. Used with permission.}$

Please use the following citation when referring to these pages:

Sprague, Steve, editor. 2007. Lamination Steels Third Edition, A Compendium of Lamination Steel Alloys Commonly Used in Electric Motors. South Dartmouth, Massachusetts: The Electric Motor Education and Research Foundation. CD-ROM. Non-Oriented Silicon Steels: AK Steel Di-Max M-19, Fully Processed, .014 inch (.36 mm, 29 gauge), MIT OCW Excerpts.

Lamination Steels Third Edition is © 2007 by the Electric Motor Education and Research Foundation; ISBN 0971439125. Information about the complete CD-ROM can obtained from:

The Electric Motor Education and Research Foundation, Post Office Box P182, South Dartmouth, Massachusetts 02748 USA tel: 508.979.5935 fax: 508.979.5845 email: info@smma.org www.smma.org

AK Steel Di-Max M-19 Fully Processed .014 inch (.36 mm, 29 gauge)

Magnetization Curves

Summary Graphs

Magnetization
Data

Core Loss
Curves

Data
Exciting Power
Data

Spreadsheet
Other Thicknesses
.0185 inch

.025 inch

AK Steel

Product Info

AK Steel Non-Oriented Silicon Steel Menu Non-Oriented

Menu Lamination Steels

Main Menu

EMERF L'S'T'E

LAMINATION STEELS THIRD EDITION Excerpts specially prepared for the Massachusetts Institute of Technology by the Electric Motor Education and Research Foundation

Magnetization – B vs. H – by Frequency

Magnetizing Force in Amperes per Meter – H

Typical DC and derived AC magnetizing force of as-sheared. 014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel. See magnetization data page for data values. DC curve developed from published and AC curves from previously unpublished data for Di-Max M-19 provided by AK Steel, 2000. AC magnetization data derived from exciting power data; see exciting power data page for source data and magnetization data page for conversion information. Chart prepared by EMERF, 2004. Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material properties with material producer prior to use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008.

AK Steel Di-Max M-19 Fully Processed .014 inch (.36 mm, 29 gauge)

Magnetization Data

Summary Graphs

Magnetization Curves

Core Loss Curves Data

Exciting Power Data

Spreadsheet

Other Thicknesses
.0185 inch
.025 inch

AK Steel Product Info

AK Steel Non-Oriented Silicon Steel Menu

Non-Oriented Silicon Steels Menu

Lamination Steels Main Menu

EMERF L · S · T · E

LAMINATION STEELS THIRD EDITION Excerpts specially prepared for the Massachusetts Institute of Technology by the Electric Motor Education and Research Foundation

Magnetization – B vs. H

DC and Derived AC Magnetizing Force in Oersteds and Amperes per Meter at Various Frequencies – ${\cal H}$

		Oe A/m DC	50 Hz	60 Hz	100 Hz	150 Hz	200 Hz	300 Hz	400 Hz	600 Hz	1000 Hz	1500 Hz	2000 Hz
9	1000		0.333 26.5	0.334 26.6	0.341 27.1	0.349 27.8	0.356 28.3	0.372 29.6	0.385 30.6	0.412 32.8	0.485 38.6	0.564 44.9	0.642 51.1
Gausses	2000	0.401 31.9	0.475 37.8	0.480 38.2	0.495 39.4	0.513 40.8	0.533 42.4	0.567 45.1	0.599 47.7	0.661 52.6	0.808 64.3	0.955 76.0	1.09 86.9
) Gau	4000	0.564 44.9	0.659 52.4	0.669 53.2	0.700 55.7	0.739 58.8	0.777 61.8	0.846 67.3	0.911 72.5	1.04 82.8	1.30 103	1.56 124	1.80 143
Density in	7000	0.845 67.3	0.904 71.9	0.916 72.9	0.968 77.0	1.03 82.0	1.09 87.1	1.21 96.4	1.33 105	1.55 124	2.00 159	2.48 198	2.95 235
	10000	1.34 106	1.25 99.3	1.26 101	1.32 105	1.40 112	1.48 118	1.65 131	1.82 145	2.17 173	2.87 228	3.70 294	4.53 361
Flux	12000	2.06 164	1.71 136	1.72 137	1.78 141	1.86 148	1.94 155	2.13 169	2.33 185	2.74 218	3.66 291	4.77 380	5.89 469
Magnetic	13000	2.95 235	2.21 176	2.22 177	2.27 181	2.34 186	2.42 193	2.61 208	2.82 224	3.24 258	4.27 340	5.50 438	
Σ	14000	5.47 435	3.51 279	3.51 279	3.57 284	3.63 289	3.69 294	3.86 307	4.13 329				
	15000	13.9 1109	8.28 659	8.31 662	8.37 666	8.37 666	8.48 675	8.65 689	9.74 775				
	15500	22.8 1813	13.6 1084	13.6 1081	13.8 1095	13.7 1092	13.8 1096	14.1 1122	16.5 1313				
	16000	35.2 2802	21.6 1718	21.7 1728	21.8 1735	21.8 1738	21.9 1742						
	16500	50.9 4054	32.4 2577	32.5 2587	32.6 2597	32.5 2590	32.6 2594						
	17000	70.3 5592	46.1 3670	46.2 3680	46.4 3692	46.6 3712	46.6 3711						
	18000	122 9711											
	19000	202 16044											
	20000	394 31319											
	21000	1112 88491											

Typical DC and derived AC magnetizing force of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel. DC values in Oersteds from published AK Steel documents. AC values in Oersteds developed from previously unpublished exciting power information provided by AK Steel, 2000. AC values have been derived from RMS Exciting Power using the following formulas:

 $\label{eq:magnetizing Force in Oersteds} \textit{Magnetizing Force in Oersteds} = \frac{88.19 \times Density \left(g/cc \right) \times RMS Exciting Power (VA/Ib)}{Magnetic Flux Density (kG) \times Frequency (Hz)}$

Density of M-19 = 7.65 g/ccValues in Amperes per meter = Oersteds \times 79.58

See exciting power data page for AC exciting power source data. Magnetizing force formula developed by AK Steel; use only for deriving magnetizing force of AK Steel non-oriented silicon steel. Data table preparation, including conversion of data values, by EMERF, 2004.

Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material properties with material producer prior to use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008.

AK Steel Di-Max M-19 Fully Processed .014 inch (.36 mm, 29 gauge)

Core Loss Curves

Summary Graphs

Magnetization
Curves
Data

Core Loss
Data

Exciting Power
Data

Spreadsheet

Other Thicknesses
.0185 inch
.025 inch

AK Steel
Product Info

AK Steel Non-Oriented Silicon Steel Menu
Non-Oriented Silicon Steels Menu
Lamination Steels Main Menu

EMERF L · S · T · E LAMINATION STEELS THIRD EDITION
Excerpts specially prepared for the Massachusetts Institute of Technology
by the Electric Motor Education and Research Foundation

Total Core Loss – P_c vs. B – by Frequency

Magnetic Flux Density in Gausses – B

Typical total AC core loss of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel. See core loss data page for data values. Curves developed from previously unpublished information provided by AK Steel, 2000. Chart prepared by EMERF, 2004.

Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material properties with material producer prior to use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008.

AK Steel Di-Max M-19 Fully Processed .014 inch (.36 mm, 29 gauge)

Core Loss Data

Summary Graphs

Magnetization
Curves
Data

Core Loss Curves

Exciting Power Data

Spreadsheet

Other Thicknesses
.0185 inch
.025 inch

AK Steel Product Info

AK Steel Non-Oriented Silicon Steel Menu

Non-Oriented Silicon Steels Menu

Lamination Steels Main Menu

EMERF L · S · T · E

LAMINATION STEELS THIRD EDITION Excerpts specially prepared for the Massachusetts Institute of Technology by the Electric Motor Education and Research Foundation

Total Core Loss − Pc vs. B

Core Loss in Watts per Pound and Watts per Kilogram at Various Frequencies – P_c

		50 Hz	60 Hz	100 Hz	150 Hz	200 Hz	300 Hz	400 Hz	600 Hz	1000 Hz	1500 Hz	2000 Hz
Magnetic Flux Density in Gausses – B	1000	0.008 0.0176	0.009 0.0198	0.017 0.0375	0.029 0.0639	0.042 0.0926	0.074 0.163	0.112 0.247	0.205 0.452	0.465 1.02	0.9 1.98	1.45 3.20
	2000	0.031 0.0683	0.039 0.0860	0.072 0.159	0.119 0.262	0.173 0.381	0.300 0.661	0.451 0.994	0.812 1.79	1.79 3.94	3.37 7.43	5.32 11.7
	4000	0.109 0.240	0.134 0.295	0.252 0.555	0.424 0.934	0.621 1.37	1.09 2.39	1.64 3.60	2.96 6.52	6.34 14.0	11.8 26.1	18.5 40.8
	7000	0.273 0.602	0.340 0.749	0.647 1.43	1.11 2.44	1.64 3.61	2.92 6.44	4.45 9.81	8.18 18.0	17.8 39.1	33.7 74.3	54.0 119
	10000	0.494 1.09	0.617 1.36	1.18 2.61	2.04 4.50	3.06 6.74	5.53 12.2	8.59 18.9	16.2 35.7	36.3 80.0	71.5 158	117 257
	12000	0.687 1.51	0.858 1.89	1.65 3.63	2.86 6.30	4.29 9.46	7.83 17.3	12.2 26.9	23.5 51.8	54.3 120	109 240	179 395
	13000	0.812 1.79	1.01 2.23	1.94 4.28	3.36 7.41	5.06 11.2	9.23 20.3	14.4 31.8	27.8 61.3	65.1 143	132 291	
	14000	0.969 2.14	1.21 2.66	2.31 5.09	4.00 8.82	6.00 13.2	10.9 24.1	17.0 37.5				
	15000	1.16 2.56	1.45 3.19	2.77 6.11	4.76 10.5	7.15 15.8	13.0 28.7	20.1 44.4				
	15500	1.26 2.77	1.56 3.44	2.99 6.59	5.15 11.4	7.71 17.0	13.9 30.7	21.6 47.6				
	16000	1.34 2.96	1.67 3.67	3.18 7.01	5.47 12.0	8.19 18.0						
	16500	1.42 3.13	1.76 3.89	3.38 7.44	5.79 12.8	8.67 19.1						
	17000	1.49 3.29	1.85 4.08	3.54 7.80	6.09 13.4	9.13 20.1						
	18000		2.00 4.40									

Typical total AC core loss of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel. Watts per pound values from previously unpublished information provided by AK Steel, 2000. Data table preparation, including conversion of data values, by EMERF, 2004. Watts per kilogram values developed using this formula: Watts per Kilogram = Watts per Pound × 2.204.

Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material producer prior to use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008.

AK Steel Di-Max M-19 Fully Processed .014 inch (.36 mm, 29 gauge)

Exciting Power Data

Summary Graphs
Magnetization
Curves

Data

Core Loss

Curves Data

Other Thicknesses .0185 inch

.025 inch

AK Steel

Product Info

AK Steel Non-Oriented Silicon Steel

Menu Non-Oriented Silicon Steels Menu

Lamination Steels
Main Menu

EMERF L · S · T · E

LAMINATION STEELS THIRD EDITION Excerpts specially prepared for the Massachusetts Institute of Technology by the Electric Motor Education and Research Foundation

Exciting Power

Exciting Power in Volt-amps per Pound and Volt-amps per Kilogram at Various Frequencies

		50 Hz	60 Hz	100 Hz	150 Hz	200 Hz	300 Hz	400 Hz	600 Hz	1000 Hz	1500 Hz	2000 Hz
Magnetic Flux Density in Gausses – B	1000	0.025 0.055	0.030 0.066	0.051 0.112	0.078 0.172	0.106 0.234	0.165 0.364	0.228 0.503	0.366 0.807	0.719 1.58	1.25 2.76	1.90 4.20
	2000	0.07 0.154	0.085 0.187	0.147 0.324	0.228 0.503	0.316 0.696	0.504 .	0.710 1.56	1.18 2.59	2.40 5.28	4.25 9.36	6.48 14.3
	4000	0.195 0.430	0.238 0.525	0.415 0.915	0.657 1.45	0.921 2.03	1.51 3.32	2.16 4.76	3.70 8.15	7.70 17.0	13.9 30.5	21.4 47.1
	7000	0.469 1.03	0.57 1.26	1.00 2.21	1.60 3.53	2.27 5.00	3.77 8.31	5.50 12.1	9.67 21.3	20.8 45.7	38.7 85.2	61.3 135
	10000	0.925 2.04	1.12 2.48	1.96 4.32	3.12 6.88	4.39 9.68	7.33 16.2	10.8 23.8	19.3 42.5	42.5 93.7	82.2 181	134 296
	12000	1.52 3.34	1.83 4.04	3.16 6.96	4.96 10.9	6.91 15.2	11.4 25.0	16.6 36.5	29.2 64.4	65.1 143	127 280	210 462
	13000	2.13 4.69	2.57 5.66	4.38 9.65	6.77 14.9	9.34 20.6	15.1 33.2	21.7 47.8	37.5 82.7	82.3 181	159 350	
Σ	14000	3.64 8.02	4.37 9.63	7.41 16.3	11.3 24.9	15.3 33.8	24.0 52.9	34.3 75.6				
	15000	9.20 20.3	11.1 24.4	18.6 41.0	27.9 61.5	37.7 83.1	57.7 127	86.6 191				
	15500	15.6 34.5	18.7 41.3	31.6 69.6	47.3 104	63.3 140	97.2 214	152 334				
	16000	25.6 56.4	30.9 68.1	51.7 114	77.7 171	104 229						
	16500	39.6 87.3	47.7 105	79.8 176	119 263	159 351						
	17000	58.1 128	69.9 154	117 258	176 389	235 518						

Typical RMS Exciting Power of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel. Volt-amps per pound values from previously unpublished information provided by AK Steel, 2000. Data table preparation, including conversion of data values, by EMERF, 2004.

 $\label{eq:Volt-amps} \textit{Volt-amps per kilogram developed using this formula: Volt-amps per kilogram = Volt-amps per pound} \times 2.204~.$

Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material properties with material producer prior to use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008.

