Informe Parte B2: Integración de e^{-x^2} por Monte Carlo

Física Computacional II - Isabel Nieto y Camilo Huertas $10\ {\rm de\ julio\ de\ }2025$

Índice

1.	Introducción	2
2.	Fundamento Teórico2.1. Integración por Monte Carlo (Muestreo Simple)	2 2 2 3
3.	Implementación Computacional3.1. Arquitectura de Software	3 3
4.	Resultados y Análisis4.1. Convergencia del Valor de la Integral4.2. Convergencia del Error Estimado4.3. Diferencia Absoluta con el Valor Teórico	3 3 3
5 .	Archivos Generados	4
6.	Validación y Verificación 6.1. Precisión Numérica	5 5
7.	Conclusiones 7.1. Logros Técnicos	5 5 6 6

1. Introducción

El objetivo de esta parte del proyecto es calcular la integral definida de la función $f(x) = e^{-x^2}$ en el intervalo [0, 1] utilizando el método de Monte Carlo por muestreo simple. Se analizará la convergencia del valor estimado de la integral y su error asociado en función del número de muestras N utilizadas en la simulación.

La investigación teórica más amplia sobre el método de Monte Carlo y sus aplicaciones en física estadística se encuentra en el documento principal del proyecto.

2. Fundamento Teórico

2.1. Integración por Monte Carlo (Muestreo Simple)

Dada una integral unidimensional de la forma:

$$I = \int_{a}^{b} f(x)dx \tag{1}$$

Podemos reescribirla como el producto del rango de integración y el valor esperado de f(x) si x es una variable aleatoria uniformemente distribuida en [a,b]:

$$I = (b - a) \int_{a}^{b} f(x)p(x)dx = (b - a) \langle f(X) \rangle$$
 (2)

donde $p(x) = \frac{1}{b-a}$ para $x \in [a, b]$ y 0 en otro caso.

El método de Monte Carlo estima este valor esperado promediando la función evaluada en N puntos aleatorios x_i , generados uniformemente en [a,b]:

$$I_N = (b - a) \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$
(3)

Por el Teorema del Límite Central, para N grande, I_N se aproxima a I.

2.2. Estimación del Error

El error estadístico (error estándar de la media) de la estimación I_N está dado por:

$$\operatorname{Err}(I_N) = (b - a) \frac{\sigma_f}{\sqrt{N}} \tag{4}$$

donde σ_f^2 es la varianza de la función f(x) en el intervalo [a,b]:

$$\sigma_f^2 = \langle f^2(X) \rangle - (\langle f(X) \rangle)^2 \tag{5}$$

En la práctica, estimamos $\langle f^2(X) \rangle$ y $\langle f(X) \rangle$ a partir de las muestras:

$$\langle f(X) \rangle \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i) = \overline{f}$$
 (6)

$$\langle f^2(X) \rangle \approx \frac{1}{N} \sum_{i=1}^{N} f^2(x_i) = \overline{f^2}$$
 (7)

Entonces, el error estimado es:

$$\operatorname{Err}(I_N) \approx (b-a)\sqrt{\frac{\overline{f^2} - (\overline{f})^2}{N}}$$
 (8)

Este error disminuye como $N^{-1/2}$.

2.3.La Integral Específica

La integral a calcular es $I = \int_0^1 e^{-x^2} dx$.

Este valor es $\frac{\sqrt{\pi}}{2}$ erf(1), donde erf(z) = $\frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$ es la función error. El valor numérico de referencia es aproximadamente 0,7468241328.

Implementación Computacional 3.

3.1. Arquitectura de Software

Se desarrolló una clase IntegradorMonteCarlo en C++ que implementa el método de muestreo simple:

- El constructor recibe la función a integrar (como std::function<double(double)>), los límites de integración y una semilla para el generador de números aleatorios (std::mt19937).
- ullet El método CalcularIntegralSimple toma el número de muestras N y devuelve el valor estimado de la integral y el error estándar calculado.

3.2. Programa Principal

El programa principal (main_montecarlo_integral.cpp) utiliza esta clase para:

- Calcular la integral de e^{-x^2} para un rango de valores de N (desde 10^1 hasta 10^7)
- Guardar los resultados (N, valor estimado, error estimado, valor teórico, diferencia absoluta) en el archivo integral_error_Nmax_1e7.dat
- Facilitar el análisis posterior y la graficación

4. Resultados y Análisis

Convergencia del Valor de la Integral 4.1.

La Figura 1 muestra el valor estimado de la integral en función del número de muestras N. El gráfico demuestra que el valor estimado converge al valor teórico a medida que N aumenta, con fluctuaciones estadísticas que disminuyen progresivamente.

4.2. Convergencia del Error Estimado

La Figura 2 presenta el error estimado de la integral en función de N en escala log-log. El análisis log-log confirma la dependencia teórica $N^{-1/2}$ del error, característica fundamental del método de Monte Carlo por muestreo simple.

4.3. Diferencia Absoluta con el Valor Teórico

La Figura 3 analiza la diferencia absoluta entre el valor estimado y el valor teórico.

La diferencia absoluta sigue la tendencia general del error estimado, aunque presenta fluctuaciones estadísticas naturales del proceso estocástico.

Figura 1: Valor estimado de $\int_0^1 e^{-x^2} dx$ en función del número de muestras N. La línea roja representa el valor teórico (≈ 0.7468).

Figura 2: Error estimado de la integral en función del número de muestras N (escala log-log). La línea roja punteada muestra una referencia con pendiente $N^{-1/2}$.

5. Archivos Generados

El programa genera automáticamente:

Figura 3: Diferencia absoluta $|I_{estimado} - I_{terico}|$ en función del número de muestras N (escala log-log). La línea roja punteada es la referencia $N^{-1/2}$ del error estimado.

- integral_error_Nmax_1e7.dat: Datos de convergencia completos
- Gráficas PNG generadas por el script plot_integral_error.gp
- Documentación HTML y LaTeX mediante Doxygen

6. Validación y Verificación

6.1. Precisión Numérica

- Uso de std::erf de la biblioteca estándar para el valor de referencia
- Precisión de punto flotante de doble precisión para todos los cálculos
- Verificación de convergencia para $N=10^7$ muestras

6.2. Reproducibilidad

- Semilla configurable para el generador Mersenne Twister
- Resultados consistentes entre ejecuciones con la misma semilla
- Documentación completa del flujo de trabajo

7. Conclusiones

7.1. Logros Técnicos

1. Se implementó exitosamente el método de Monte Carlo por muestreo simple

- 2. La clase IntegradorMonteCarlo es reutilizable para otras integrales
- 3. El flujo de trabajo automatizado facilita la reproducibilidad
- 4. La documentación con Doxygen mejora la mantenibilidad del código

7.2. Resultados Físicos

- 1. El método converge correctamente al valor teórico de la integral
- 2. El error estadístico sigue la ley $N^{-1/2}$ característica de Monte Carlo
- 3. Las fluctuaciones observadas son consistentes con la naturaleza estocástica del método
- 4. La precisión alcanzada es adecuada para aplicaciones prácticas

7.3. Relevancia Computacional

Este trabajo demuestra:

- La efectividad del método de Monte Carlo para integración numérica
- La importancia del análisis estadístico en métodos estocásticos
- El valor de la programación orientada a objetos para simulaciones científicas
- La utilidad de herramientas automatizadas para análisis de convergencia

7.4. Aplicaciones y Extensiones

El código desarrollado puede extenderse para:

- Integrales multidimensionales donde métodos deterministas fallan
- Técnicas avanzadas como muestreo por importancia
- Integración de funciones con singularidades
- Aplicaciones en física estadística y mecánica cuántica

La implementación proporciona una base sólida para estudios más avanzados en métodos de Monte Carlo y computación científica.