04 - Testing and Manipulating Grammars

Dr. Robert Lowe

Division of Mathematics and Computer Science
Maryville College

Outline

Grammars and Recursion

2 LL(1) Grammars

Outline

Grammars and Recursion

2 LL(1) Grammars

Sample Grammar G

For this discussion, we will be using the following grammar (found on page 39 of your textbook):

$$S \to E$$

 $E \to T \mid E + T$
 $T \to F \mid T * F$
 $F \to U \mid (E)$
 $U \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Look at the next symbol of input. This is the target symbol.

- Look at the next symbol of input. This is the target symbol.
- Expand the next non-terminal in the sentence.

- Look at the next symbol of input. This is the target symbol.
- Expand the next non-terminal in the sentence.
- If the target symbol does not match, backtrack and select a different non-terminal.

- Look at the next symbol of input. This is the target symbol.
- Expand the next non-terminal in the sentence.
- If the target symbol does not match, backtrack and select a different non-terminal.
- Keep repeating the process until there are either no non-terminal candidates or until there are no non-terminals left in the sentence.

 Even with the best of luck, a backtracking parser would be exponential in runtime!

- Even with the best of luck, a backtracking parser would be exponential in runtime!
- A left-recursive grammar could lead to an infinite number of candidates.

- Even with the best of luck, a backtracking parser would be exponential in runtime!
- A left-recursive grammar could lead to an infinite number of candidates.
- Recall that the sample grammar in the textbook has the rule $E \rightarrow E + T$

- Even with the best of luck, a backtracking parser would be exponential in runtime!
- A left-recursive grammar could lead to an infinite number of candidates.
- Recall that the sample grammar in the textbook has the rule $E \rightarrow E + T$
- Consider the following expansion for the grammar from the textbook:

- Even with the best of luck, a backtracking parser would be exponential in runtime!
- A left-recursive grammar could lead to an infinite number of candidates.
- Recall that the sample grammar in the textbook has the rule $E \rightarrow E + T$
- Consider the following expansion for the grammar from the textbook:

$$E + T$$

$$1 + 2 * 3$$

- Even with the best of luck, a backtracking parser would be exponential in runtime!
- A left-recursive grammar could lead to an infinite number of candidates.
- Recall that the sample grammar in the textbook has the rule $E \rightarrow E + T$
- Consider the following expansion for the grammar from the textbook:

- Even with the best of luck, a backtracking parser would be exponential in runtime!
- A left-recursive grammar could lead to an infinite number of candidates.
- Recall that the sample grammar in the textbook has the rule $E \rightarrow E + T$
- Consider the following expansion for the grammar from the textbook:

$$E + T$$
 1 + 2 * 3
 $E + T + T$ 1 + 2 * 3
 $E + T + T + T$ 1 + 2 * 3

- Even with the best of luck, a backtracking parser would be exponential in runtime!
- A left-recursive grammar could lead to an infinite number of candidates.
- Recall that the sample grammar in the textbook has the rule $E \rightarrow E + T$
- Consider the following expansion for the grammar from the textbook:

- Even with the best of luck, a backtracking parser would be exponential in runtime!
- A left-recursive grammar could lead to an infinite number of candidates.
- Recall that the sample grammar in the textbook has the rule $E \rightarrow E + T$
- Consider the following expansion for the grammar from the textbook:

$$E+T$$
 1 + 2 * 3
 $E+T+T$ 1 + 2 * 3
 $E+T+T+T$ 1 + 2 * 3
 $E+T+T+T+T$ 1 + 2 * 3

. . .

Left recursion causes problems in candidate expansions.

- Left recursion causes problems in candidate expansions.
- Perhaps we could organize a grammar to mitigate the expansion problem.

- Left recursion causes problems in candidate expansions.
- Perhaps we could organize a grammar to mitigate the expansion problem.
- If we move left recursive choices to the end, maybe this would fix it!

- Left recursion causes problems in candidate expansions.
- Perhaps we could organize a grammar to mitigate the expansion problem.
- If we move left recursive choices to the end, maybe this would fix it!
- What if we took the grammar G and imposed the order (T, F, U) on expansions?

- Left recursion causes problems in candidate expansions.
- Perhaps we could organize a grammar to mitigate the expansion problem.
- If we move left recursive choices to the end, maybe this would fix it!
- What if we took the grammar G and imposed the order $\langle T, F, U \rangle$ on expansions?

$$1 + 2 * 3$$

- Left recursion causes problems in candidate expansions.
- Perhaps we could organize a grammar to mitigate the expansion problem.
- If we move left recursive choices to the end, maybe this would fix it!
- What if we took the grammar G and imposed the order $\langle T, F, U \rangle$ on expansions?

$$T$$
 1 + 2 * 3
 F 1 + 2 * 3

- Left recursion causes problems in candidate expansions.
- Perhaps we could organize a grammar to mitigate the expansion problem.
- If we move left recursive choices to the end, maybe this would fix it!
- What if we took the grammar G and imposed the order $\langle T, F, U \rangle$ on expansions?

$$T$$
 1 + 2 * 3
 F 1 + 2 * 3
 U 1 + 2 * 3

- Left recursion causes problems in candidate expansions.
- Perhaps we could organize a grammar to mitigate the expansion problem.
- If we move left recursive choices to the end, maybe this would fix it!
- What if we took the grammar G and imposed the order $\langle T, F, U \rangle$ on expansions?

T	1 + 2 * 3
F	1 + 2 * 3
U	1 + 2 * 3
1	1 + 2 * 3

- Left recursion causes problems in candidate expansions.
- Perhaps we could organize a grammar to mitigate the expansion problem.
- If we move left recursive choices to the end, maybe this would fix it!
- What if we took the grammar G and imposed the order $\langle T, F, U \rangle$ on expansions?

T	1 + 2 * 3
F	1 + 2 * 3
U	1 + 2 * 3
1	1 + 2 * 3
λ	+2*3

- Left recursion causes problems in candidate expansions.
- Perhaps we could organize a grammar to mitigate the expansion problem.
- If we move left recursive choices to the end, maybe this would fix it!
- What if we took the grammar G and imposed the order $\langle T, F, U \rangle$ on expansions?

Mismatch! Backtrack!

$$T * F$$

$$1 + 2 * 3$$

$$T * F$$
 1 + 2 * 3
 $F * F$ 1 + 2 * 3

$$T * F$$
 1 + 2 * 3
 $F * F$ 1 + 2 * 3
 $U * F$ 1 + 2 * 3

T * F	1 + 2 * 3
F * F	1 + 2 * 3
U * F	1 + 2 * 3
1 * <i>F</i>	1 + 2 * 3


```
T * F 1 + 2 * 3

F * F 1 + 2 * 3

U * F 1 + 2 * 3

1 * F 1 + 2 * 3

Mismatch! Backtrack!
```



```
T*F 1 + 2 * 3

F*F 1 + 2 * 3

U*F 1 + 2 * 3

1 * F 1 + 2 * 3

Mismatch! Backtrack!

T*F*F 1 + 2 * 3
```


$$T*F$$
 1 + 2 * 3
 $F*F$ 1 + 2 * 3
 $U*F$ 1 + 2 * 3
1 * F 1 + 2 * 3
Mismatch! Backtrack!
 $T*F*F$ 1 + 2 * 3

```
T * F
                              1 + 2 * 3
F * F
                             1 + 2 * 3
U * F
                             1 + 2 * 3
1 * F
                              1 + 2 * 3
Mismatch! Backtrack!
T * F * F
                              1 + 2 * 3
And there's the loop again...
```


Dr. Robert Lowe

Outline

Grammars and Recursion

2 LL(1) Grammars

Backtracking is parsing by "brute force".

- Backtracking is parsing by "brute force".
- Backtracking essentially explores every possible production, searching for a match.

- Backtracking is parsing by "brute force".
- Backtracking essentially explores every possible production, searching for a match.
- Generally, we want parse times to be proportional to the size of the input, not exponential.

- Backtracking is parsing by "brute force".
- Backtracking essentially explores every possible production, searching for a match.
- Generally, we want parse times to be proportional to the size of the input, not exponential.
- Undoing parsing is difficult!

- Backtracking is parsing by "brute force".
- Backtracking essentially explores every possible production, searching for a match.
- Generally, we want parse times to be proportional to the size of the input, not exponential.
- Undoing parsing is difficult!
- We need some way to determine what production we must have based on the symbols being examined.

 Instead of guessing and checking, we maintain a buffer of terminals.

- Instead of guessing and checking, we maintain a buffer of terminals.
- If a grammar is decidable using k terminals, we call this a k-lookahead grammar.

- Instead of guessing and checking, we maintain a buffer of terminals.
- If a grammar is decidable using k terminals, we call this a k-lookahead grammar.
- We can further classify the grammar by its scanning order and which production it expands first.

- Instead of guessing and checking, we maintain a buffer of terminals.
- If a grammar is decidable using k terminals, we call this a k-lookahead grammar.
- We can further classify the grammar by its scanning order and which production it expands first.
- An LL(k) grammar is a grammar that is scanned from left to right and expands the left most derivation.

- Instead of guessing and checking, we maintain a buffer of terminals.
- If a grammar is decidable using k terminals, we call this a k-lookahead grammar.
- We can further classify the grammar by its scanning order and which production it expands first.
- An LL(k) grammar is a grammar that is scanned from left to right and expands the left most derivation.
- RL(k) scans input from right to left, expanding left-most derivations.

- Instead of guessing and checking, we maintain a buffer of terminals.
- If a grammar is decidable using k terminals, we call this a k-lookahead grammar.
- We can further classify the grammar by its scanning order and which production it expands first.
- An LL(k) grammar is a grammar that is scanned from left to right and expands the left most derivation.
- RL(k) scans input from right to left, expanding left-most derivations.
- LR(k) scans from left to right, expanding left-most derivations.

- Instead of guessing and checking, we maintain a buffer of terminals.
- If a grammar is decidable using k terminals, we call this a k-lookahead grammar.
- We can further classify the grammar by its scanning order and which production it expands first.
- An LL(k) grammar is a grammar that is scanned from left to right and expands the left most derivation.
- RL(k) scans input from right to left, expanding left-most derivations.
- LR(k) scans from left to right, expanding left-most derivations.
- All of the above have a look-ahead buffer of *k* terminals.

- Instead of guessing and checking, we maintain a buffer of terminals.
- If a grammar is decidable using k terminals, we call this a k-lookahead grammar.
- We can further classify the grammar by its scanning order and which production it expands first.
- An LL(k) grammar is a grammar that is scanned from left to right and expands the left most derivation.
- RL(k) scans input from right to left, expanding left-most derivations.
- LR(k) scans from left to right, expanding left-most derivations.
- All of the above have a look-ahead buffer of k terminals.
- We are really interested in LL(1) grammars.

• Suppose we have a target expansion $A \to \alpha_1 |\alpha_2| \dots |\alpha_n|$

- Suppose we have a target expansion $A \to \alpha_1 | \alpha_2 | \dots | \alpha_n$
- We must be able to select α_i by looking at the next symbol.

- Suppose we have a target expansion $A \to \alpha_1 |\alpha_2| \dots |\alpha_n|$
- We must be able to select α_i by looking at the next symbol.
- For each production, we must have a disjoint **director set** $D(A \rightarrow \alpha_i)$.

- Suppose we have a target expansion $A \to \alpha_1 |\alpha_2| \dots |\alpha_n|$
- We must be able to select α_i by looking at the next symbol.
- For each production, we must have a disjoint director set D(A → α_i).
- For lookup buffer s, $A \rightarrow \alpha_i$ iff $s \in D(A \rightarrow \alpha_i)$.

- Suppose we have a target expansion $A \to \alpha_1 |\alpha_2| \dots |\alpha_n|$
- We must be able to select α_i by looking at the next symbol.
- For each production, we must have a disjoint **director set** $D(A \rightarrow \alpha_i)$.
- For lookup buffer s, $A \rightarrow \alpha_i$ iff $s \in D(A \rightarrow \alpha_i)$.
- We can also have a set of symbols which immediately identify as an error if they are encountered.

• If $\alpha_i \stackrel{*}{\Rightarrow} t\gamma$ for some terminal t

- If $\alpha_i \stackrel{*}{\Rightarrow} t\gamma$ for some terminal t
- Then $t \in D(A \rightarrow \alpha_i)$

- If $\alpha_i \stackrel{*}{\Rightarrow} t\gamma$ for some terminal t
- Then $t \in D(A \rightarrow \alpha_i)$
- Because $A \stackrel{+}{\Rightarrow} t\gamma$ is a valid derivation.

- If $\alpha_i \stackrel{*}{\Rightarrow} t\gamma$ for some terminal t
- Then $t \in D(A \rightarrow \alpha_i)$
- Because $A \stackrel{+}{\Rightarrow} t\gamma$ is a valid derivation.
- Let << be an operator over $(N \cup T)$ such that $\beta << \alpha \iff \exists \alpha \to \beta$

- If $\alpha_i \stackrel{*}{\Rightarrow} t\gamma$ for some terminal t
- Then $t \in D(A \rightarrow \alpha_i)$
- Because $A \stackrel{+}{\Rightarrow} t\gamma$ is a valid derivation.
- Let << be an operator over $(N \cup T)$ such that $\beta << \alpha \iff \exists \alpha \to \beta$
- The reflexive transitive closure <<* is therefore the "Can Start" relation

- If $\alpha_i \stackrel{*}{\Rightarrow} t\gamma$ for some terminal t
- Then $t \in D(A \rightarrow \alpha_i)$
- Because $A \stackrel{+}{\Rightarrow} t\gamma$ is a valid derivation.
- Let << be an operator over $(N \cup T)$ such that $\beta << \alpha \iff \exists \alpha \to \beta$
- The reflexive transitive closure <<* is therefore the "Can Start" relation
- The start set is START(α) = β : β <<* α

- If $\alpha_i \stackrel{*}{\Rightarrow} t\gamma$ for some terminal t
- Then $t \in D(A \rightarrow \alpha_i)$
- Because $A \stackrel{+}{\Rightarrow} t\gamma$ is a valid derivation.
- Let << be an operator over $(N \cup T)$ such that $\beta << \alpha \iff \exists \alpha \to \beta$
- The reflexive transitive closure <<* is therefore the "Can Start" relation
- The start set is START(α) = β : β <<* α
- Considering $\alpha_i = \beta_1 \beta_2 \dots \beta_r$ then $t \in START(\beta_1) \implies t \in D(A \rightarrow \alpha_i)$

$$START(U) = \{U, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$START(U) = \{U, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
$$START(F) = \{\{F, (\} \cup START(U)\}\}$$

$$START(U) = \{U, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$START(F) = \{\{F, (\} \cup START(U)\}\}$$

$$START(T) = \{\{T\} \cup START(F)\}$$


```
START(U) = {U, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

START(F) = {{F, (} \cup START(U)}

START(T) = {{T} \cup START(F)}

START(E) = {{E} \cup START(T)}
```



```
START(U) = {U, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

START(F) = {{F, (} \cup START(U)}

START(T) = {{T} \cup START(F)}

START(E) = {{E} \cup START(T)}

START(S) = {{S} \cup START(E)}
```



```
START(U) = {U, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

START(F) = {{F, (} \cup START(U)}

START(T) = {{T} \cup START(F)}

START(E) = {{E} \cup START(T)}

START(S) = {{S} \cup START(E)}
```

Is G an LL(1) grammar?


```
START(U) = {U, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

START(F) = {{F, (} \cup START(U)}

START(T) = {{T} \cup START(F)}

START(E) = {{E} \cup START(T)}

START(S) = {{S} \cup START(E)}
```

- Is G an LL(1) grammar?
- NO! In fact, no grammar containing left-recursive rules is LL(1)!


```
START(U) = {U, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

START(F) = {{F, (} \cup START(U)}

START(T) = {{T} \cup START(F)}

START(E) = {{E} \cup START(T)}

START(S) = {{S} \cup START(E)}
```

- Is G an LL(1) grammar?
- NO! In fact, no grammar containing left-recursive rules is LL(1)!
- $D(A \rightarrow A\gamma) \subseteq START(A)$

The First Function

• Are the start set symbols the only ones in $D(A \rightarrow \alpha_i)$?

The First Function

- Are the start set symbols the only ones in $D(A \rightarrow \alpha_i)$?
- Extend the function START to FIRST which operates on whole strings $\beta_1\beta_2...\beta_r$ over $(N \cup T)^*$ and finds terminals which can start the string.

The First Function

- Are the start set symbols the only ones in $D(A \rightarrow \alpha_i)$?
- Extend the function START to FIRST which operates on whole strings $\beta_1\beta_2...\beta_r$ over $(N \cup T)^*$ and finds terminals which can start the string.
- This function is defined recursively (where $\gamma \in (N \cup T)$ and $\delta \in (N \cup T)^*$):

The First Function

- Are the start set symbols the only ones in $D(A \rightarrow \alpha_i)$?
- Extend the function START to FIRST which operates on whole strings $\beta_1\beta_2...\beta_r$ over $(N \cup T)^*$ and finds terminals which can start the string.
- This function is defined recursively (where $\gamma \in (N \cup T)$ and $\delta \in (N \cup T)^*$):

$$FIRST(\lambda) = \emptyset$$

The First Function

- Are the start set symbols the only ones in $D(A \rightarrow \alpha_i)$?
- Extend the function START to FIRST which operates on whole strings $\beta_1\beta_2...\beta_r$ over $(N \cup T)^*$ and finds terminals which can start the string.
- This function is defined recursively (where $\gamma \in (N \cup T)$ and $\delta \in (N \cup T)^*$):

$$FIRST(\lambda) = \emptyset$$

$$FIRST(\gamma \delta) = \text{terminals of } START(\gamma) \cup FIRST(\delta) \quad \text{if } \gamma \stackrel{*}{\Rightarrow} \lambda$$

The First Function

- Are the start set symbols the only ones in $D(A \rightarrow \alpha_i)$?
- Extend the function START to FIRST which operates on whole strings $\beta_1\beta_2...\beta_r$ over $(N \cup T)^*$ and finds terminals which can start the string.
- This function is defined recursively (where $\gamma \in (N \cup T)$ and $\delta \in (N \cup T)^*$):

```
\begin{aligned} & \operatorname{FIRST}(\lambda) = \emptyset \\ & \operatorname{FIRST}(\gamma \delta) = \operatorname{terminals of START}(\gamma) \cup \operatorname{FIRST}(\delta) & \text{if } \gamma \stackrel{*}{\Rightarrow} \lambda \\ & \operatorname{FIRST}(\gamma \delta) = \operatorname{terminals of START}(\gamma) & \text{o.w.} \end{aligned}
```


• We need to find if $\gamma \stackrel{*}{\Rightarrow} \lambda$ exists.

- We need to find if $\gamma \stackrel{*}{\Rightarrow} \lambda$ exists.
- If it does we say $EMPTY(\gamma)$ is true.

- We need to find if $\gamma \stackrel{*}{\Rightarrow} \lambda$ exists.
- If it does we say EMPTY(γ) is true.
- the EMPTY property can be defined as follows:

- We need to find if $\gamma \stackrel{*}{\Rightarrow} \lambda$ exists.
- If it does we say $EMPTY(\gamma)$ is true.
- the EMPTY property can be defined as follows:
 - If $\gamma \in T$ then EMPTY (γ) = false

- We need to find if $\gamma \stackrel{*}{\Rightarrow} \lambda$ exists.
- If it does we say $EMPTY(\gamma)$ is true.
- the EMPTY property can be defined as follows:
 - If $\gamma \in T$ then EMPTY (γ) = false
 - 2 If $\gamma \in N$ then

- We need to find if $\gamma \stackrel{*}{\Rightarrow} \lambda$ exists.
- If it does we say $EMPTY(\gamma)$ is true.
- the EMPTY property can be defined as follows:
 - If $\gamma \in T$ then EMPTY (γ) = false
 - 2 If $\gamma \in N$ then
 - If $\exists \gamma \to \lambda$ then EMPTY(γ) = true

- We need to find if $\gamma \stackrel{*}{\Rightarrow} \lambda$ exists.
- If it does we say $EMPTY(\gamma)$ is true.
- the EMPTY property can be defined as follows:
 - If $\gamma \in T$ then EMPTY (γ) = false
 - 2 If $\gamma \in N$ then
 - If $\exists \gamma \to \lambda$ then EMPTY(γ) = true
 - ② If $\exists \gamma \to \delta_1 \dots \delta_k$ where $\forall 1 \leq i \leq k$ EMPTY (δ_i) = true then EMPTY (γ) = true

- We need to find if $\gamma \stackrel{*}{\Rightarrow} \lambda$ exists.
- If it does we say $EMPTY(\gamma)$ is true.
- the EMPTY property can be defined as follows:
 - If $\gamma \in T$ then EMPTY (γ) = false
 - 2 If $\gamma \in N$ then
 - If $\exists \gamma \to \lambda$ then EMPTY(γ) = true
 - ② If $\exists \gamma \to \delta_1 \dots \delta_k$ where $\forall 1 \leq i \leq k$ EMPTY (δ_i) = true then EMPTY (γ) = true
 - **3** For all other γ , EMPTY(γ) = false

- We need to find if $\gamma \stackrel{*}{\Rightarrow} \lambda$ exists.
- If it does we say EMPTY(γ) is true.
- the EMPTY property can be defined as follows:
 - If $\gamma \in T$ then EMPTY (γ) = false
 - 2 If $\gamma \in N$ then
 - If $\exists \gamma \to \lambda$ then EMPTY(γ) = true
 - ② If $\exists \gamma \to \delta_1 \dots \delta_k$ where $\forall 1 \leq i \leq k$ EMPTY (δ_i) = true then EMPTY (γ) = true
 - **3** For all other γ , EMPTY(γ) = false
- Let's calculate the FIRST for the productions in G.

• Suppose we have a terminal *t* in our look-ahead buffer.

- Suppose we have a terminal t in our look-ahead buffer.
- When α_i ^{*}⇒ A, production A is the correct choice for the parser if t can follow A.

- Suppose we have a terminal *t* in our look-ahead buffer.
- When α_i ^{*}⇒ A, production A is the correct choice for the parser if t can follow A.
- We calculate FOLLOW like this:

- Suppose we have a terminal t in our look-ahead buffer.
- When α_i ^{*}⇒ A, production A is the correct choice for the parser if t can follow A.
- We calculate FOLLOW like this:
 - First, calculate FINISH (the set of all terminals that can end the production)

- Suppose we have a terminal t in our look-ahead buffer.
- When α_i ^{*}⇒ A, production A is the correct choice for the parser if t can follow A.
- We calculate FOLLOW like this:
 - First, calculate FINISH (the set of all terminals that can end the production)
 - **2** Next, we add the START(β_i) for all β_i that can follow A

- Suppose we have a terminal t in our look-ahead buffer.
- When α_i ^{*}⇒ A, production A is the correct choice for the parser if t can follow A.
- We calculate FOLLOW like this:
 - First, calculate FINISH (the set of all terminals that can end the production)
 - 2 Next, we add the START(β_i) for all β_i that can follow A
- Let's do this for G!

- Suppose we have a terminal t in our look-ahead buffer.
- When α_i ^{*}⇒ A, production A is the correct choice for the parser if t can follow A.
- We calculate FOLLOW like this:
 - First, calculate FINISH (the set of all terminals that can end the production)
 - 2 Next, we add the START(β_i) for all β_i that can follow A
- Let's do this for G!
- What are the complete director sets for G?

Outline

Grammars and Recursion

2 LL(1) Grammars

