Couriges des exemples du cours sur la produit scalaire dans l'espace

🥒 Capacité 1 Calculer un produit scalaire

Soit ABCDEFGH un cube de côté a, I le milieu de [BF] et J le milieu de [DH].

Calculer les produits scalaires suivants :

1.
$$\overrightarrow{AD} \cdot \overrightarrow{AE}$$
 3. $\overrightarrow{AD} \cdot \overrightarrow{AJ}$

3.
$$\overrightarrow{AD} \cdot \overrightarrow{AJ}$$

5.
$$\overrightarrow{AC} \cdot \overrightarrow{FH}$$

7.
$$\overrightarrow{AC} \cdot \overrightarrow{GE}$$

2.
$$\overrightarrow{AD} \cdot \overrightarrow{AH}$$

4.
$$\overrightarrow{AI} \cdot \overrightarrow{BF}$$

6.
$$\overrightarrow{AC} \cdot \overrightarrow{EG}$$

8.
$$\overrightarrow{AC} \cdot \overrightarrow{BF}$$

🧷 Capacité 2 Démontrer que des vecteurs sont orthogonaux avec le produit scalaire

Les arêtes d'un tétraèdre régulier sont toutes de même longueur.

On considère un tétraèdre régulier ABCD, on appelle I le milieu de [AB] et on note a la longueur de l'arête [AB].

- 1. Exprimer le produit scalaire $\overrightarrow{AD} \cdot \overrightarrow{AB}$ en fonction de a.
- **2.** Exprimer le produit scalaire $\overrightarrow{CA} \cdot \overrightarrow{AB}$ en fonction de a.
- 3. En déduire que le vecteur \overrightarrow{CD} est orthogonal au vecteur \overrightarrow{AB} .

1) ABD equilational done
$$\overrightarrow{AB} \cdot \overrightarrow{AD} = \overrightarrow{AB} \times \overrightarrow{AD} \times (os)(\overrightarrow{BAD})$$
 $\overrightarrow{AB} \cdot \overrightarrow{AD} = a \times a \times os(\overrightarrow{3}) = a^2$

2) $\overrightarrow{CA} \cdot \overrightarrow{AB} = (-\overrightarrow{AC}) \cdot \overrightarrow{AB} = -\overrightarrow{AC} \cdot \overrightarrow{AB}$
 $\overrightarrow{CA} \cdot \overrightarrow{AB} = -Ac \times \overrightarrow{AB} \times os(\overrightarrow{BAC}) = -a^2$

3) $\overrightarrow{CD} \cdot \overrightarrow{AB} = (\overrightarrow{CA} + \overrightarrow{AD}) \cdot \overrightarrow{AB}$
 $\overrightarrow{CO} \cdot \overrightarrow{AB} = (\overrightarrow{A} \cdot \overrightarrow{AB}) + \overrightarrow{AD} \cdot \overrightarrow{AB}$ for bringwish done $\overrightarrow{CD} \cdot \overrightarrow{AB} = -a^2 + a^2 = 0$

En en déduit que (D'est outrogonal au veclour TB.