CSC236 Assignment 3 Jiahong Zhai(1005877561)

1a.

Let Σ be a finite alphabet. The set of extension of regular expression $\mathcal{REQ}(\text{over }\Sigma)$ is the smallest set such that:

Basis: \emptyset , ϵ and a (for each $a \in \Sigma$) belong to \mathcal{REQ} .

Induction: If R and S belong to \mathcal{REQ} , then (R+S), (RS), R* and R? also belong to \mathcal{REQ} .

1b.

 $P(R) \colon R \in \mathcal{R} \mathcal{E} \mathcal{Q} \Longrightarrow \exists \, R' \in \mathcal{R} \mathcal{E}, \, \mathcal{L}(R) = \mathcal{L}(R')$

WTS: $\forall R \in \mathcal{R} \mathcal{E} \mathcal{Q}$, P(R)

Let $R \in \mathcal{REQ}$

Basis: R is \emptyset or ϵ or a(for each $a \in \Sigma$)

 $R \in \mathcal{RE}$, then let R' = R. We have $\mathcal{L}(R) = \mathcal{L}(R')$.

Induction: Assume T and $S \in \mathcal{REQ}$ (defined as in 1a) and P(S), P(T). Which is to say, $\exists S' \in \mathcal{RE}$,

 $\mathcal{L}(S) = \mathcal{L}(S')$, $\exists T' \in \mathcal{RE}$, $\mathcal{L}(T) = \mathcal{L}(T')$. We want to show P(R) for R = S + T or ST or S^* or S?

Case1: R = S + T

Let R' = S' + T'.

By definition 7.7 we know, $\mathcal{L}(R) = \mathcal{L}(S+T) = \mathcal{L}(S) \cup \mathcal{L}(T) = \mathcal{L}(S') \cup \mathcal{L}(T') = \mathcal{L}(S'+T') = \mathcal{L}(R')$

So, $\mathcal{L}(R) = \mathcal{L}(R')$

Case 2: R = ST

Let R' = S'T'

By definition 7.7 we know, $\mathcal{L}(R) = \mathcal{L}(ST) = \mathcal{L}(S) \circ \mathcal{L}(T) = \mathcal{L}(S') \circ \mathcal{L}(T') = \mathcal{L}(S'T') = \mathcal{L}(R')$

So, $\mathcal{L}(R) = \mathcal{L}(R')$

Case3: $R = S^*$

Let $R' = S'^*$

By definition 7.7 we know $\mathcal{L}(R) = \mathcal{L}(S^*) = \mathcal{L}(S)^* = \mathcal{L}(S')^* = \mathcal{L}(S'^*) = \mathcal{L}(R')$.

So, $\mathcal{L}(R) = \mathcal{L}(R')$

Case4: R = S?

Let $R' = (S' + \varepsilon)$

 $\mathcal{L}(R) = \mathcal{L}(S?) = \mathcal{L}(S) \cup \mathcal{L}(\epsilon) = \mathcal{L}(S') \cup \mathcal{L}(\epsilon) = \mathcal{L}(S' + \epsilon) = \mathcal{L}(R')$

So, $\mathcal{L}(R) = \mathcal{L}(R')$

2a.

For all element a in the alphabet, there is a state q_1 , such that in any state if the next reading element is a, then the automata will transit to q_1 .

2b.

There is only one q_1 for any element a in the alphabet. Because if there are more than one q_1 for a, then if the current state is one of the q_1s and the next reading element is a, then automata must transit to all q_1s . But this contradict to the definition of Deterministic Finite State Automata. So, there is only on q_1 for a, let's call it q_{1a} .

If one string is ending by a, then obviously the last state is q_{1a} . If $q_{1a} \in F$, then the string is accepted. So, $\mathcal{L}(M)$ is the set of all strings whose last element's q_1 is in F.

2c.

By 2b we know that for 1 there is a q_1 . For 0 there is a q_1 , we call it q_0 here.

Case1: $q_1 \in F$, $q_0 \in F$

 $\mathcal{L}(M)$ is the set of all strings over $\{0,1\}$

Case2: q₁∈F, q₀∉F

 $\mathcal{L}(M)$ is the set of strings over $\{0,1\}$, whose last element is 1.

Case3: q_1 ∉F, q_0 ∈F

 $\mathcal{L}(M)$ is the set of strings over {0,1}, whose last element is 0.

Case4: q₁∉F, q₀∉F

 $\mathcal{L}(M)$ is \emptyset

So, in total, 4 languages

```
3.
```

No

Let R be 01* over alphabet {0,1}

Let L be $\mathcal{L}(R)$.

 $L = \{0, 01, 011, 0111, 01111, 011111.....\} \ all \ strings \ that \ are \ started \ by \ 0 \ and \ followed \ by \ any \ number \ of \ 1.$

WTS S, that $L = SS^*$ does not exist

Case1: ∀x∈S, 0∉x

So, ∀y∈SS*, 0∉y.

So, $0111 \notin SS^*$, but $0111 \in L$.

So, L≠SS*

So, such an S does not exist

Case2: $\exists x \in S, 0 \in x$

Let x be a0b (a and b can be 0 or 1 or ϵ)

Then xx which is $a0ba0b \in SS^*$, but $a0ba0b \notin L$, because there are 2 0s in a0ba0b and strings in L could have only one 0.

So, L≠SS*

So, such an S does not exist

So, the answerer is no