Topic 3: Lectures 4 and 5: Some Basic Operations on Images

Dr. V Masilamani

masila@iiitdm.ac.in

Department of Computer Science and Engineering IIITDM Kancheepuram Chennai-127

Overview

- Types of Images
- 2 Types of Low Level Image Processing
 - Spatial Domain Processing
 - Point Processing
 - Neighbourhood Processing
 - Transformed Domain Processing
 - Arithmetic operation, considering image as function
- 3 Acknowledgements

Types of Images

- ► Binary Image: Binary Matrix
- ▶ Gray scale Image: Matrix with integers from 0 to (L-1)
- ► Colour Image: (M_R, M_G, M_B)
 - M_R is matrix with integers from 0 to (L-1), representing intensity of red colour
 - M_G is matrix with integers from 0 to (L-1), representing intensity of red colour
 - M_B is matrix with integers from 0 to (L-1), representing intensity of red

Types of Low Level Image Processing

- ► Spatial Domain
 - Point Processing
 - Neighbourhood Processing
- ► Transformed Domain
 - Fourier Domain
 - Wavelet Domain
 - SVD Domain

Point Processing

- ▶ Defn of Point Processing:
 - Let r be the pixel value in input image f
 - The output pixel value s=T(r)
 - T is called as point processing transformation
- Examples of point processing
 - s=Max-r, where Max is maximum allowed pixel value in the image
 - Let f(x,y) be input image
 - The output image g(x,y)=Max-f(x,y)

Point Processing (cont.)

• Image Thresholding:

ightharpoonup s=0 if $r <= T_0$; s=1 otherwise

In Other words, g(x,y)=0 if $f(x,y) <= T_0$ g(x,y)=1 otherwise

Contrast Stretching

Neighbourhood Processing

► Definition of Neighbourhood Processing: To transform the pixel value at a location, consult the pixel values of the neighbours also

► Motivation:

- The neighbours of pixel at (x, y) will provide information about the pixel value at (x, y). This information can be used
- Examples of Neighbourhood Processing
 - Mean filter
 - Median Filter

- ► Correlation
 - Correlation without padding(used in CNN)
 - Correlation with padding
 - Padding is done such a way that the size of the output is same as that of input
 - padding is done infinitely(Full Correlation)
 - Application: Template Matching using Normalized cross correlation

- Convolution: $Conv(f, w) = cor(f, w_{180})$
 - Full Convolution (Padding is done infinitely)
 - Partial Convolution
 - Padding is done such a way that the size of the output is same as that of input
 - No padding
 - Application: Polynomial Multiplication

Partial Convolution: padding such that size of input and output images are the same

Convolution Vs Correlation

 $\triangleright \mathsf{Cor}(\mathsf{f}, \mathsf{w}) = \mathsf{conv}(\mathsf{f}, w_{180})$

Questions

- Find the size of the cov(f, w), where size of f is $m \times n$ and the size of w is $a \times b$ when
 - conv is full (infinite padding)
 - No padding
- Give an O(nlogn) algorithm to find product of to polynomials of degree n (Hint: use Conv)
- ► Find convolution and correlation 1) with full padding, 2) with partial padding, 3) without padding for the following inputs

0	1	2	7	4
5	8	9	3	1
7	2	5	1	3
1		1	7	8
2	1	6	2	8
4	5	2	3	9
	5 7 1 2	5 8 7 2 1 3 2 1	5 8 9 7 2 5 1 3 1 2 1 6	5 8 9 3 7 2 5 1 1 3 1 7 2 1 6 2

*

1	0	-1
1	0	-1
1	0	-1

3 X 3 filter

6 X 6 image

Transformed Domain Processing

► Fourier Transform Domain Processing

Sum of Images

▶ Defn of Image addition

Let f(x,y) and g(x,y), where $0 \le x \le m-1$ and $0 \le y \le n-1$ be two images with values with values within 0 to L-1. The addition is defined as

- (f+g)(x,y) = f(x,y) + g(x,y), where $0 \le x \le m-1$ and $0 \le y \le n-1$.
- Transform f+g to h with the range 0 to (L-1), also with the property that $(f+g)(x,y) \le (f+g)(x',y') \Longrightarrow h(x,y) \le h(x',y')$
- Note that the min and max values of f and g are 0 and L-1 respectively, but the same is not true with f+g.
- ▶ It is required to transform the range to 0 to L-1.

Sum of Images (cont.)

Application:

- ► CCD camera minimzes noise in the image captured using image averaging.
- ▶ It takes several images $f_i(x, y)$ $1 \le i \le k$, and finds $h(x, y) = \sum_{i=1}^k f_i(x, y)/k$.
- ▶ If $f_i(x,y) = f(x,y) + N_i(x,y)$, where $N_i(x,y)$ is the noise added to actual image f, then $h(x,y) = f(x,y) + \sum_{i=1}^k N_i(x,y)/k$.
- Since $N_i(x, y)$ will be positive and negative, $\sum_{i=1}^k N_i(x, y)$ will be a small value, and $\sum_{i=1}^k N_i(x, y)/k$ will be close to zero for large value of k.
- ▶ Hence h(x, y) is a good approximation of f(x, y).

Difference of Images

Image substraction

▶ **Defn:** The substraction is defined as (f-g)(x,y) = f(x,y) - g(x,y), where $0 \le x \le m-1$ and $0 \le y \le n-1$, and transform the range of f-g to integers from 0 to L-1

► Application:

- Angiogram is an example where image difference is used. In angiogram, hear is imaged using X-ray, say the image captured is f₁(x, y), and another image is captured after injecting some contrast material into the blood stream.
- The contrast material will be obsorbed more by the colostral content in the blood stream.
- The X-ray image of the heart after injecting contrast material will show the presence of cholesterol content.
- An another application of image subtraction is to detect moving objects.

Difference of Images (cont.)

 Moving objects in a video can be identified by taking difference of two consecutve frames.

Multiplication of Images

Image multiplication

▶ **Defn:** The image multiplication is defined as (fg)(x,y) = f(x,y)g(x,y), where $0 \le x \le m-1$ and $0 \le y \le n-1$, and transform the range of fg to integers from 0 to L-1

► Application:

An application for image multiplication is found in Region of interest(ROI) detection. For instance, to extract image of a tooth from mouth image f(x,y), define g(x,y)=1 where (x,y) is possible locations of desired tooth; g(x,y)=0 otherwise, and find fg(x,y) which will give image of desired tooth image.

Applications of Multiplication of Images

Common use of image multiplication is in masking also called as region of interest operations.

anc

FIGURE 2.20 (a) Digital dental X-ray image. (b) ROI mask for isolating teeth with fillings (white corresponds to 1 and black corresponds to 0). (c) Product of (a) and (b).

Division of Images

- ▶ **Defn:** The image division is defined as (f/g)(x,y) = f(x,y)/g(x,y), if g(x,y) > 0; $(f/g)(x,y) = f(x,y)/\epsilon$ otherwise, where $0 \le x \le m-1$ and $0 \le y \le n-1$, and transform the range of f/g to integers from 0 to L-1
- Note that a small quauntity ϵ is replacing 0 to make the division operation well defined. tem **Application**:
 - Usually the quality of image on screen projection by the LCD projector is degraded version of the actual image stored in computer.
 - The relationship between stored image f(x, y) and the projected image g(x, y) can be related as g(x, y) = f(x, y)h(x, y), where h(x, y) is the degrading function.
 - The original function f(x, y) can be computed from g(x, y) if we know h(x, y) using image division g/h(x, y).
 - It is possible to estimate h(x, y) from the known f(x, y) and g(x, y) for the fixed LCD Projector.

Acknowledgements

► Images are downloaded from internet sources

Thank You! :)