Application Serial No.: 10/722,769

Attorney Docket No.: SP02-260

- b) Amendments to the claims
- 1. (Currently Amended) A chemical-mechanical manufacturing process for planarizing or polishing semiconductor, metal, dielectric, glass, polymer, optical, and ceramic materials, the process comprising:
 - a) providing a workpiece;
 - b) providing a chemical-mechanical planarizing colloidal slurry, said slurry comprising non-agglomerated multi-component particles of a mixed-oxide, oxyfluoride, or oxymitride composition, each particle exhibiting a modified surface chemistry performance and having an isoelectric point (pH_{EP}) greater than the pH of dispersed particles in-solution; and
 - abrading a surface of said workpiece with said multi-component particles.
 - 2. (Original) The process according to claim 1, wherein said particle surface chemistry is modified relative to the surface chemistry performance of the individual, original base constituents of said mixed-oxide particle.
 - 3. (Original) The process according to claim 2, wherein said isoelectric point of said multi-component particle is displaced toward an alkaline pH value relative to the surface chemistry performance of the individual, original base constituents of said particle.
 - 4. (Original) The process according to claim 1, wherein said particle has an isoelectric point (pH_{IEP}) greater than or equal to about 5-6 with a stabilized particle dispersion at pH values of interest for CMP operations.
 - 5. (Original) The process according to claim 1, wherein said isoelectric point of said multi-component particle is greater than or equal to about pH 7.
 - 6. (Original) The process according to claim 1, wherein said multi-component particles have a composition $\alpha_x \beta_y$, wherein α is a transition metal, metalloid, alkaline earth, rare earth, or alkali element, or a plurality combination thereof, β is O and/or N, and x and $y \neq 0$.

CORNING INCORPORATED

Application Serial No.: 10/722,769

Attorney Docket No.: SP02-260

- The process according to claim 6, wherein SiAlON is a plurality 7. (Withdrawn) combination.
- 8. (Original) The process according to claim 6, wherein quantities of glassformers/modifiers comprising Al₂O₃, B₂O₃, CeO₂, GeO₂, P₂O₅, PbO₂, Ta₂O₅, TiO₂, ZrO₂, are added to silicate materials to adjust the surface chemistries and hardness of said particles.
- The process according to claim 6, wherein for non-silicate-9. (Currently Amended) based materials α is solected from: selected from the group consisting of Al, As, B, Ca, Co, Ce, Cr, Cu, Er, Fe, Ga, Ge, In, K., La, Li, Mg, Mn, Na, Ni, P, Pb, Pr, Sb, Sn, Ta, Ti, Tm, V, W, Y, Yb, Zn, and Zr.
- 10. (Original) The process according to claim 1, wherein said mixed-oxide components $include \ CeO_2-Z_{\rm x}O_2; \ CeO_2-Al_2O_3; \ GeO_2-SiO_2; \ GeO_2-Al_2O_3-SiO_2; \ Al_2O_3-SiO_2; \ Al_2O_3-SiO_2; \ CaO-Al_2O_3-SiO_2; \ Al_2O_3-SiO_2; \$ SiO_2 , P_2O_5 - SiO_2 , TiO_2 - SiO_2 , Ta_2O_5 - SiO_2 , Sb_2O_3 - SiO_2 , Sb_2O_3 - Al_2O_3 - a_2O - SiO_2 , wherein $\alpha = 1$ Li, Na, K, Rb, Cs; βO_a -Al₂O₃-SiO₂, wherein β = Be, Mg, Ca, Ba, Sr, and a \neq 0; MgO-Al₂O₃; or such compositions doped with ~1 or 3-15 wt% F.
- The process according to claim 1, wherein said abrasive has a 11. (Currently Amended) multi-component composition comprising a combination of constituents selected from-either the group consisting of SiO2, Al2O3, B2O3, and at least two or optionally three other oxides.
- 12. (Original) The process according to claim 1, wherein said mixed-oxide particle comprises in weight percent on an oxide basis, about 30-99% SiO2, 1-37% Al2O3 and at least one of the following: 0-70% Li₂O, 0-70% Na₂O, 0-70% K₂O, 0-70% BeO, 0-70% MgO, 0-70% CaO, 0-70% SrO, 0-70% BaO, 0-70% SbO₂, 0-70% SnO₂, 0-70% B₂O₃, 0-70% GeO₂, 0-70% CuO, 0-70% CuO₂, 0-70% P₂O₅, 0-70% PbO₂, 0-70% Ta₂O₅, 0-70% TiO₂, 0-70% CeO₂, 0-70% ZrO2, and/or 0-20% F, either alone or in combinations thereof.
- The process according to claim 1, wherein said mixed-oxide particle 13. (Withdrawn) includes at least three constituents selected from either SiO2- or Al2O3-derivatives doped with metalloid, transition metals, alkali, alkaline earth, or rare earth components.

Application Serial No.: 10/722,769

6079743848

Attorney Docket No .: SP02-260

- 14. (Original) The process according to claim 1, wherein said particles are funed silicate particles.
- 15. (Original) The process according to claim 1, wherein said multi-component particle has a pre-selected surface chemistry and hardness tailored to said workpiece surface.
- 16. (Original) The process according to claim 1, wherein said multi-component particle has at least two components, and with a particle size in the range of about 1-30 nanometers.
- 17. (Original) The process according to claim 1, wherein said multi-component particle has at least three components, and a particle size in the range of about 1-500 nanometers.
- 18. (Original) The process according to claim 17, wherein said multi-component particle has at least three components, and each with a particle size in the range of about 1-200 nanometers.
- 19. (Original) The process according to claim 1, wherein said multi-component particle has at least three components, and a particle size in the range of about 1-150 nanometers.
- 20. (Original) The process according to claim 19, wherein the size of said multi-component particles range from about 10 nm to up to about 150 nm.
- 21. (Original) The process according to claim 1, wherein said multi-component particles each has either a spherical, near-spherical, elongated, or amorphous morphology.
- 22. (Original) The process according to claim 1, wherein said multi-component particles are formed according to a flame hydrolysis process.
- 23. (Original) The process according to claim 1, wherein said multi-component particles are formed according to a sol-gel process.

Application Serial No.: 10/722,769

Attorney Docket No.: SP02-260

- 24. (Original) The process according to claim 1, wherein said multi-component particles are dispersed in either an aqueous or non-aqueous suspension.
- 25. (Withdrawn) The process according to claim 1, wherein said multi-component particles are either oxyfluoride or oxymitride compositions.
- 26. (Original) The process according to claim 1, wherein said workpiece has a non-planarized surface.
- 27. (Original) The process according to claim 1, wherein providing a workpiece includes providing a semiconductor integrated circuit workpiece having a metallized interconnection structure.
- 28. (Original) The process according to claim 26, wherein providing a workpiece includes providing a semiconductor integrated circuit silicon wafer with a lithographic integrated circuit pattern and depositing at least one metallized interconnection layer.
- 29. (Original) The process according to claim 1, wherein providing a workpiece includes providing a semiconductor integrated circuit workpiece having an interlevel dielectric structure.
- 30. (Original) The process according to claim 28, wherein providing a workpiece includes depositing an interlevel dielectric material on a semiconductor integrated circuit workpiece.
- 31. (Original) A method for using a CMP slurry solution, the method comprising providing a solution of multi-component particles, said particles having a composition comprising mixed 1) metal or metalloid oxides, 2) oxyfluorides, or 3) oxynitrides, each grouping (1, 2, or 3) individually alone or in combination thereof, said particles exhibiting a modified surface chemistry performance and having an isoelectric point (pH_{IEP}) greater than or equal to about 5-6 with a stabilized particle dispersion at pH values of interest for CMP operations; dispersing said particles in a slurry; and applying said slurry to a workpiece.

32-65. (Canceled)