Minimum Cost Spanning Tree

- The cost of a spanning tree of a weighted undirected graph is the sum of the costs (weights) of the edges in the spanning tree.
- A minimum cost spanning tree is a spanning tree of least cost.
- Three different algorithms can be used
 - Kruskal's algorithm
 - Prim's algorithm
 - Sollin's algorithm

43

Kruskal's Algorithm

- Build a minimum cost spanning tree T by adding edges to T one at a time
- Select the edges for inclusion in T in nondecreasing order of their cost
- An edge is added to T if it does not form a cycle with the edges that are already in T
- Since G is connected and has n>0 vertices, exactly n-1 edges will be selected for inclusion in T

Kruskal's Algorithm

Kruskal's Algorithm

Assumption

- E: initially the set of all edges in G
- maintaining edges in E as a sorted sequential list in $O(e \log e)$ time (Chapter 7) or selection sort (Chapter 1)
 - Obviously a *min heap* is ideally suited for this task since we can determine and delete the next least cost edge in O(log e) time.
 - Construction of the heap itself requires O(e) time.