TEST REPORT

Reference No. : WTS14S0615310E

FCC ID : 2ACMYAWS21R

Applicant.....: Atoms Labs LLC

States

Manufacturer: The same as above

Address : The same as above

Model No.....: AWS21R

Standards : FCC CFR47 Part 15 Section 15.247:2012

Date of Receipt sample : Jun.24, 2014

Date of Test : Jun.25~27, 2014

Date of Issue.....: Jul.10, 2014

Test Result..... : Pass *

*Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Testing location: The same as above Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

Zero Zhou / Project Engineer

Philo Zhong / Manager

Parlo zhong

Reference No.: WTS14S0615310E Page 2 of 58

2 Test Summary

Test Items	Test Requirement	Result
Conducted Emission	15.207	PASS
	15.205(a)	
Radiated Emissions	15.209	PASS
	15.247(d)	
	15.205(c)	
Band Edge Measurement	15.209	PASS
	15.247(d)	
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Channel Separated	15.247(a)(1)	PASS
Hopping Channel Number	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

			Page
1		R PAGE	
2	TEST	SUMMARY	2
3	CONT	TENTS	3
4	GENE	RAL INFORMATION	5
	4.1	GENERAL DESCRIPTION OF E.U.T	5
	4.2	DETAILS OF E.U.T.	
	4.3	DESCRIPTION OF SUPPORT UNITS	
	4.4	TEST FACILITY	
_	4.5	TEST LOCATION	-
5		PMENT USED DURING TEST	
	5.1	EQUIPMENTS LIST	
	5.2 5.3	MEASUREMENT UNCERTAINTYTEST EQUIPMENT CALIBRATION	
,		DUCTED EMISSIONS	
6			
	6.1 6.2	E.U.T. OPERATION TEST PROCEDURE	
	6.3	TEST SETUP	
	6.4	CONDUCTED EMISSION TEST RESULT	
7	RADI	ATED EMISSIONS	14
	7.1	EUT OPERATION:	
	7.2	TEST SETUP	
	7.3	SPECTRUM ANALYZER SETUP	17
	7.4	Test Procedure	
	7.5	CORRECTED AMPLITUDE & MARGIN CALCULATION	
	7.6	SUMMARY OF TEST RESULTS	
8	BAND	DEDGE MEASUREMENT	
	8.1	TEST RESULT:	29
9	20 DE	BANDWIDTH MEASUREMENT	33
	9.1	Test Procedure:	
	9.2	TEST RESULT:	
10	MAXI	MUM PEAK OUTPUT POWER	35
	10.1	Test Procedure:	
	10.2	TEST RESULT:	
11	CHAN	INEL SEPARATED	
	11.1	TEST PROCEDURE:	
	11.2	TEST RESULT:	
12	HOPF	PING CHANNEL NUMBER	39
	12.1 12.2	TEST PROCEDURE: TEST RESULT	
13	DWE	_L TIME	40
	13.1	Test Procedure:	40
	13.2	Test Result	40
14	ANTE	NNA REQUIREMENT	43
15	RF EX	(POSURE	44

Reference No.: WTS14S0615310E

15.1 15.2	THE PROCEDURES / LIMIT	44
PHOT	OGRAPHS - TEST SETUP	46
16.1	PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP	46
16.2	PHOTOGRAPH –RADIATED EMISSIONS TEST SETUP	46
PHOT	OGRAPHS - CONSTRUCTIONAL DETAILS	48
17.1		
17.2	EUT – Open View	51
17.3	RF -Module View	54
17.4	ADAPTER 1-APPEARANCE VIEW	56
17.5	ADAPTER 2-APPEARANCE VIEW	57
17.6	ADAPTER 3-APPEARANCE VIEW	58
	15.2 15.3 PHOT 16.1 16.2 PHOT 17.1 17.2 17.3 17.4 17.5	15.2 THE PROCEDURES / LIMIT

Page 4 of 58

Reference No.: WTS14S0615310E Page 5 of 58

4 General Information

4.1 General Description of E.U.T.

Product Name : 7" LCD Real-Time Digital Wireless Monitor

Model No. : AWS21R

Type of Modulation : GFSK

Operation Frequency : 2408.625MHz ~ 2473.875MHz

Antenna installation : Integrated Antenna

Antenna Gain : 2dBi

Oscillator : 32.768kHz

4.2 Details of E.U.T.

Technical Data : (1) DC 3.7V by Battery

(2) DC 5.0V, 1.0A powered by Adapter

Adapter 1 : KSAS0050500100VUD (Ktec)

Input: 100-40VAC, 50/60Hz, 0.18A

Output: DC 5.0V, 1.0A

Adapter 2 : CS6D050100FU (Csec)

Input: 100-240VAC, 50/60Hz, 200mA

Output: DC 5.0V, 1.0A

Adapter 3 : SSA021F050100USD (KUANTEN)

Input: 100-240VAC, 50/60Hz, 0.2A

Output: DC 5.0V, 1.0A

4.3 Description of Support Units

The EUT has been tested as an independent unit.

4.4 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A-1, July 12, 2012.

FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, Apr. 29, 2014.

4.5 Test Location

All the tests were performed at:

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

Reference No.: WTS14S0615310E Page 6 of 58

5 Equipment Used during Test

5.1 Equipments List

	o. i Equipments L	.ist				
Condu	ucted Emissions					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.18,2013	Sep.17,2014
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.18,2013	Sep.17,2014
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.18,2013	Sep.17,2014
4.	Cable	LARGE	RF300	-	Sep.18,2013	Sep.17,2014
3m Se	mi-anechoic Chamber	for Radiation Emis	ssions			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.18,2013	Sep.17,2014
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.19,2014	Apr.18,2015
3	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.18,2013	Sep.17,2014
4	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.19,2014	Apr.18,2015
5	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Mar.17,2014	Mar.16,2015
6	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.10,2014	Apr.09,2015
Assoc	ciated Equipment					
	Digital Wireless	ICM	LIDOG		_	_

5.2 Measurement Uncertainty

Monitor

1.

JSW

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB
Radiated Emissions	(Bilog antenna 30M~1000MHz)
Radiated Emissions	± 5.47 dB
	(Horn antenna 1000M~25000MHz)
Conducted Emission	±3.64dB

UDS6

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS14S0615310E Page 7 of 58

6 Conducted Emissions

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Limit: $66-56 \text{ dB}_{\mu}\text{V}$ between 0.15MHz & 0.5MHz

56 dB μ V between 0.5MHz & 5MHz 60 dB μ V between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

Quasi-Peak & Average if maximised peak within 6dB of Average

Limit

6.1 E.U.T. Operation

Operating Environment:

Temperature: 22.8 °C
Humidity: 52.3% RH
Atmospheric Pressure: 101.1 kPa

6.2 Test Procedure

- (1) The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.
- (2) The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.3 Test Setup

The EUT was placed on the test table in shielding room

Reference No.: WTS14S0615310E Page 8 of 58

6.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

The EUT was tested in continuously transmit mode.

Adapter: KSAS0050500100VUD (Ktec)

Live line:

Neutral line:

Adapter: CS6D050100FU (Csec)

Live line:

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Margin (dB)	Detector	Remark
1	0.1500	32.40	10.57	42.97	65.99	-23.02	QP	
2	0.1500	19.79	10.57	30.36	55.99	-25.63	AVG	
3	0.4260	29.37	10.56	39.93	57.33	-17.40	QP	
4	0.4260	21.36	10.56	31.92	47.33	-15.41	AVG	
5	0.7220	28.00	11.16	39.16	56.00	-16.84	QP	
6	0.7220	19.97	11.16	31.13	46.00	-14.87	AVG	
7	1.5940	25.16	11.10	36.26	56.00	-19.74	QP	
8	1.5940	17.03	11.10	28.13	46.00	-17.87	AVG	
9	2.5740	23.95	11.27	35.22	56.00	-20.78	QP	
10	2.5740	15.40	11.27	26.67	46.00	-19.33	AVG	
11	3.3580	22.75	11.10	33.85	56.00	-22.15	QP	
12	3.3580	14.29	11.10	25.39	46.00	-20.61	AVG	

Neutral line:

11

12

5.8060

5.8060

22.65

12.14

10.74

10.74

33.39

22.88

60.00

50.00

-26.61

-27.12

QΡ

AVG

Adapter: SSA021F050100USD (KUANTEN)

Live line:

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Margin (dB)	Detector	Remark
1	0.1539	33.36	10.57	43.93	65.78	-21.85	QP	
2	0.1539	22.41	10.57	32.98	55.78	-22.80	AVG	
3	0.4300	29.63	10.56	40.19	57.25	-17.06	QP	
4	0.4300	21.60	10.56	32.16	47.25	-15.09	AVG	
5	0.7940	31.31	11.03	42.34	56.00	-13.66	QP	
6	0.7940	22.58	11.03	33.61	46.00	-12.39	AVG	
7	1.2740	31.26	10.87	42.13	56.00	-13.87	QP	
8	1.2740	22.60	10.87	33.47	46.00	-12.53	AVG	
9	2.3260	32.15	11.33	43.48	56.00	-12.52	QP	
10	2.3260	23.80	11.33	35.13	46.00	-10.87	AVG	
11	11.2660	23.44	10.91	34.35	60.00	-25.65	QP	
12	11.2660	12.96	10.91	23.87	50.00	-26.13	AVG	

Neutral line:

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Margin (dB)	Detector	Remark
1	0.1539	30.94	10.57	41.51	65.78	-24.27	QP	
2	0.1539	17.42	10.57	27.99	55.78	-27.79	AVG	
3	0.4260	29.43	10.56	39.99	57.33	-17.34	QP	
4	0.4260	17.78	10.56	28.34	47.33	-18.99	AVG	
5	0.8620	30.49	10.91	41.40	56.00	-14.60	QP	
6	0.8620	18.52	10.91	29.43	46.00	-16.57	AVG	
7	2.3740	32.12	11.32	43.44	56.00	-12.56	QP	
8	2.3740	21.87	11.32	33.19	46.00	-12.81	AVG	
9	3.7620	28.76	11.01	39.77	56.00	-16.23	QP	
10	3.7620	18.10	11.01	29.11	46.00	-16.89	AVG	
11	11.7860	24.64	10.95	35.59	60.00	-24.41	QP	
12	11.7860	12.04	10.95	22.99	50.00	-27.01	AVG	

Reference No.: WTS14S0615310E Page 14 of 58

7 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: DA 00-705

Test Result: PASS

Frequency Range: 32.768kHz to 25GHz

Measurement Distance: 3m

Limit:

	Limit.						
_	Field Strei	ngth	Field Strength Limit at 3m Measurement Dist				
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m			
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80			
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40			
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40			
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾			
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾			
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾			
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾			

7.1 EUT Operation:

Operating Environment: Temperature: 22.3 °C Humidity: 52.8 % RH

Atmospheric Pressure: 101.2 kPa

EUT Operation:

The EUT was tested in continuously transmit mode.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

Reference No.: WTS14S0615310E Page 17 of 58

7.3 Spectrum Analyzer Setup

According to FCC Part15 Rules, the system was tested 32.768kHz to 25000MHz.

Below 30MHz

Sweep Speed	. Auto
IF Bandwidth	.10KHz
Video Bandwidth	.10KHz
Resolution Bandwidth	.10KHz

30MHz ~ 1GHz

Sweep Speed	Auto
IF Bandwidth	120KHz
Video Bandwidth	100KHz
Quasi-Peak Adapter Bandwidth	120KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	100KHz

Above 1GHz

Sweep Speed	Auto
IF Bandwidth	120 KHz
Video Bandwidth	3MHz
Peak -Peak Adapter Bandwidth	1MHz
Average Adapter Bandwidth	10Hz
Resolution Bandwidth	1MHz

7.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

Reference No.: WTS14S0615310E Page 18 of 58

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

Reference No.: WTS14S0615310E Page 19 of 58

7.6 Summary of Test Results

Test Frequency Range :32.768kHz ~ 30MHz

Remark:Because the emissions below 30MHz are more than 20dB below the limit, the data is not show in the report.

Test Frequency Range :30MHz ~ 1GHz

Remark: only the worst data (adapter operation) were reported.

Adapter: KSAS0050500100VUD (Ktec)

Test Specification: Vertical

Antenna polarization: Horizontal

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)		Margin (dB)	Detector	Remark
1	71.8320	48.98	-24.12	24.86	40.00	-15.14	QP	
2	83.8156	54.51	-26.09	28.42	40.00	-11.58	QP	
3	143.8295	50.36	-17.87	32.49	43.50	-11.01	QP	
4	191.7450	50.64	-18.99	31.65	43.50	-11.85	QP	
5	223.7334	53.28	-22.90	30.38	46.00	-15.62	QP	
6	256.5211	50.93	-21.32	29.61	46.00	-16.39	QP	

Adapter: CS6D050100FU (Csec)

Antenna polarization: Horizontal

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)		Margin (dB)	Detector	Remark
1	83.8156	54.50	-26.09	28.41	40.00	-11.59	QP	
2	143.8295	48.09	-17.87	30.22	43.50	-13.28	QP	
3	191.7450	48.10	-18.99	29.11	43.50	-14.39	QP	
4	256.5211	51.27	-21.32	29.95	46.00	-16.05	QP	
5	383.9318	48.85	-17.20	31.65	46.00	-14.35	QP	
6	962.1623	41.28	-4.24	37.04	54.00	-16.96	QP	

Adapter: SSA021F050100USD (KUANTEN)

Test Specification: Vertical

Antenna polarization: Horizontal

Reference No.: WTS14S0615310E Page 25 of 58

Test Frequency: 1GHz ~ 25GHz

And the below is the Fundamental and Harmonic

Frequency (MHz)	Detector	Antenna Polarization	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Turntable Angle
			Low freque	ency	<u>I</u>	(111)	\ /
2408.625	AV	Vertical	102.06		(Fund.)	1.3	100
4817.25	AV	Vertical	43.61	54.00	-10.39	1.2	85
7225.875	AV	Vertical	44.55	54.00	-9.45	1.9	140
9634.5	AV	Vertical	41.28	54.00	-12.72	2.2	180
12043.13	AV	Vertical	37.64	54.00	-16.36	1.4	235
14451.75	AV	Vertical	38.93	54.00	-15.07	1.8	160
16860.38	AV	Vertical	35.74	54.00	-18.26	2.0	120
19269	AV	Vertical	34.02	54.00	-19.98	1.3	180
21677.63	AV	Vertical	31.80	54.00	-22.2	2.2	100
24086.25	AV	Vertical	32.95	54.00	-21.05	1.7	100
2408.625	AV	Horizontal	93.54		(Fund.)	2.5	20
4817.25	AV	Horizontal	42.92	54.00	-11.08	2.4	240
7225.875	AV	Horizontal	40.67	54.00	-13.33	2.3	160
9634.5	AV	Horizontal	37.78	54.00	-16.22	2.3	140
12043.13	AV	Horizontal	39.76	54.00	-14.24	2.2	80
14451.75	AV	Horizonta	34.67	54.00	-19.33	2.4	240
16860.38	AV	Horizontal	40.77	54.00	-13.23	1.7	200
19269	AV	Horizontal	32.62	54.00	-21.38	2.0	140
21677.63	AV	Horizontal	33.95	54.00	-20.05	2.8	120
24086.25	AV	Horizontal	35.72	54.00	-18.28	1.9	130
2408.625	PK	Vertical	112.09		(Fund.)	1.8	100
4817.25	PK	Vertical	56.61	74.00	-17.39	1.9	100
7225.875	PK	Vertical	57.55	74.00	-16.45	1.5	110
9634.5	PK	Vertical	54.28	74.00	-19.72	1.7	300
12043.13	PK	Vertical	50.64	74.00	-23.36	1.3	160
14451.75	PK	Vertical	51.93	74.00	-22.07	1.3	100
16860.38	PK	Vertical	48.74	74.00	-25.26	1.7	155
19269	PK	Vertical	47.02	74.00	-26.98	1.5	240
21677.63	PK	Vertical	44.80	74.00	-29.2	1.4	160
24086.25	PK	Vertical	45.95	74.00	-28.05	1.7	130
2408.625	PK	Horizontal	109.21		(Fund.)	2.2	80
4817.25	PK	Horizontal	47.92	74.00	-26.08	2.2	210
7225.875	PK	Horizontal	45.67	74.00	-28.33	2.9	160
9634.5	PK	Horizontal	42.78	74.00	-31.22	1.9	40
12043.13	PK	Horizontal	44.76	74.00	-29.24	1.7	155
14451.75	PK	Horizontal	39.67	74.00	-34.33	1.4	120
16860.38	PK	Horizontal	45.77	74.00	-28.23	2.3	280
19269	PK	Horizontal	37.62	74.00	-36.38	2.2	100
21677.63	PK	Horizontal	38.95	74.00	-35.05	2.2	140

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

24086.25	PK	Horizontal	40.72	74.00	-33.28	2.6	180
			Middle frequ	uency			
2439	AV	Vertical	99.94		(Fund.)	1.5	110
4878	AV	Vertical	45.87	54.00	-8.13	1.8	140
7317	AV	Vertical	43.98	54.00	-10.02	1.6	120
9756	AV	Vertical	39.84	54.00	-14.16	1.7	130
12195	AV	Vertical	43.08	54.00	-10.92	1.1	130
14634	AV	Vertical	35.75	54.00	-18.25	1.7	200
17073	AV	Vertical	39.00	54.00	-15	1.6	220
19512	AV	Vertical	33.81	54.00	-20.19	1.0	160
21951	AV	Vertical	37.80	54.00	-16.2	1.7	290
24390	AV	Vertical	30.86	54.00	-23.14	1.6	140
2439	AV	Horizontal	93.83		(Fund.)	1.8	150
4878	AV	Horizontal	40.94	54.00	-13.06	2.1	220
7317	AV	Horizontal	42.67	54.00	-11.33	2.0	200
9756	AV	Horizontal	36.78	54.00	-17.22	2.2	170
12195	AV	Horizontal	39.53	54.00	-14.47	1.9	180
14634	AV	Horizontal	34.93	54.00	-19.07	2.1	310
17073	AV	Horizontal	32.12	54.00	-21.88	1.6	245
19512	AV	Horizontal	34.81	54.00	-19.19	1.7	140
21951	AV	Horizontal	36.04	54.00	-17.96	2.5	180
24390	AV	Horizontal	30.72	54.00	-23.28	1.5	250
2439	PK	Vertical	111.67		(Fund.)	1.5	110
4878	PK	Vertical	58.87	74.00	-15.13	1.6	140
7317	PK	Vertical	56.98	74.00	-17.02	1.0	130
9756	PK	Vertical	52.84	74.00	-21.16	1.4	250
12195	PK	Vertical	56.08	74.00	-17.92	1.4	290
14634	PK	Vertical	48.75	74.00	-25.25	1.2	290
17073	PK	Vertical	52.00	74.00	-22	1.4	30
19512	PK	Vertical	46.81	74.00	-27.19	1.5	250
21951	PK	Vertical	50.80	74.00	-23.2	1.5	245
24390	PK	Vertical	43.86	74.00	-30.14	1.4	170
2439	PK	Horizontal	106.49		(Fund.)	1.9	30
4878	PK	Horizontal	53.94	74.00	-20.06	1.7	175
7317	PK	Horizontal	55.67	74.00	-18.33	2.6	200
9756	PK	Horizontal	49.78	74.00	-24.22	1.6	110
12195	PK	Horizontal	52.53	74.00	-21.47	1.4	180
14634	PK	Horizontal	47.93	74.00	-26.07	1.5	280
17073	PK	Horizontal	45.12	74.00	-28.88	2.0	230
19512	PK	Horizontal	47.81	74.00	-26.19	1.9	200
21951	PK	Horizontal	49.04	74.00	-24.96	1.9	30
24390	PK	Horizontal	43.72	74.00	-30.28	2.0	265

			High freque	ency			
2473.875	AV	Vertical	99.18		(Fund.)	1.5	250
4947.75	AV	Vertical	44.29	54.00	-9.71	1.4	40
7421.625	AV	Vertical	40.72	54.00	-13.28	1.7	140
9895.5	AV	Vertical	43.18	54.00	-10.82	1.8	180
12369.38	AV	Vertical	38.28	54.00	-15.72	1.3	190
14843.25	AV	Vertical	44.83	54.00	-9.17	1.6	160
17317.13	AV	Vertical	38.86	54.00	-15.14	1.7	120
19791	AV	Vertical	39.73	54.00	-14.27	1.1	300
22264.88	AV	Vertical	38.05	54.00	-15.95	1.8	220
24738.75	AV	Vertical	31.67	54.00	-22.33	1.3	175
2473.875	AV	Horizontal	93.60		(Fund.)	1.9	140
4947.75	AV	Horizontal	40.68	54.00	-13.32	2.2	270
7421.625	AV	Horizontal	38.99	54.00	-15.01	2.0	220
9895.5	AV	Horizontal	39.81	54.00	-14.19	2.1	220
12369.38	AV	Horizontal	37.67	54.00	-16.33	2.0	155
14843.25	AV	Horizontal	31.86	54.00	-22.14	2.2	240
17317.13	AV	Horizontal	36.07	54.00	-17.93	1.5	280
19791	AV	Horizontal	30.74	54.00	-23.26	1.8	100
22264.88	AV	Horizontal	33.57	54.00	-20.43	2.6	110
24738.75	AV	Horizontal	28.95	54.00	-25.05	1.6	210
2473.875	PK	Vertical	111.94		(Fund.)	1.6	280
4947.75	PK	Vertical	57.29	74.00	-16.71	1.7	70
7421.625	PK	Vertical	53.72	74.00	-20.28	1.1	130
9895.5	PK	Vertical	56.18	74.00	-17.82	1.5	220
12369.38	PK	Vertical	51.28	74.00	-22.72	1.4	190
14843.25	PK	Vertical	57.83	74.00	-16.17	1.4	100
17317.13	PK	Vertical	51.86	74.00	-22.14	1.5	110
19791	PK	Vertical	52.73	74.00	-21.27	1.2	240
22264.88	PK	Vertical	51.05	74.00	-22.95	1.2	220
24738.75	PK	Vertical	44.67	74.00	-29.33	1.5	175
2473.875	PK	Horizontal	110.82		(Fund.)	2.0	200
4947.75	PK	Horizontal	53.68	74.00	-20.32	1.8	180
7421.625	PK	Horizontal	51.99	74.00	-22.01	2.7	220
9895.5	PK	Horizontal	52.81	74.00	-21.19	1.7	220
12369.38	PK	Horizontal	50.67	74.00	-23.33	1.5	110
14843.25	PK	Horizontal	44.86	74.00	-29.14	1.7	210
17317.13	PK	Horizontal	49.07	74.00	-24.93	2.1	250
19791	PK	Horizontal	43.74	74.00	-30.26	2.0	190
22264.88	PK	Horizontal	46.57	74.00	-27.43	2.1	140
24738.75	PK	Horizontal	41.95	74.00	-32.05	2.3	300

Reference No.: WTS14S0615310E Page 28 of 58

8 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: DA 00-705

Measurement Distance: 3m

Limit: 40.0 dBuV/m between 30MHz & 88MHz;

43.5 dBuV/m between 88MHz & 216MHz; 46.0 dBuV/m between 216MHz & 960MHz;

54.0 dBuV/m above 960MHz.

74.0 dBuV/m for peak above 1GHz 54.0 dBuV/m for AVG above 1GHz

Detector: For Peak value:

RBW = 1 MHz for $f \ge 1$ GHz VBW \ge RBW; Sweep = auto

Detector function = peak

Trace = max hold For AVG value:

RBW = 1 MHz for f ≥ 1 GHz VBW = 10Hz; Sweep = auto Detector function = AVG

Trace = max hold

8.1 Test Result:

Low Channel – Peak: Transmitting mode 117.0 dBuV/m limit1: 107 97 87 77 67 57 47 37 27 17.0 2310.0000 2321.00 2332.00 2343.00 2354.00 2365.00 2376.00 2387.00 2398.00 2409.00 2420.00 MHz Freq. Reading Factor Result Limit Margin Detector Remark No. (dBuV/m) (dB) (dBuV/m) (dBuV/m) (MHz) (dB) 1 2310.000 52.64 -7.51 45.13 74.00 -28.87 peak 2 67.20 -7.34 59.86 2390.000 74.00 -14.14 peak 3 75.26 2398.000 -7.31 67.95 74.00 -6.05 peak

Remark:1) Mark 5 is fundamental wave.

74.99

118.02

-7.31

-7.28

67.68

110.74

2400.000

2409.440

4

5

2) Transmitting mode and hopping mode are tested, the worst case is Transmitting mode.

74.00

74.00

-6.32

36.74

peak

peak

117.0 dBuV/m 107 97 87 77 57 47 37 27 2310.0000 2321.00 2332.00 2343.00 2354.00 2365.00 2376.00 2387.00 2398.00 2409.00 2420.00 MHz Result Freq. Reading Factor Limit Margin Detector Remark No. (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) 2310.000 39.62 -7.51 32.11 54.00 -21.89 AV 2 2390.000 56.94 -7.3449.60 54.00 -4.40 AV 3 2400.000 65.53 -7.31 58.22 54.00 4.22 AV

Low Channel – AV: Transmitting mode

Remark:1)Mark 4 is fundamental wave.

114.30

-7.29

107.01

2408.780

2)Transmitting mode and hopping mode are tested, the worst case is Transmitting mode.

54.00

53.01

AV

117.0 dBuV/m limit1: 107 97 87 77 67 57 47 37 27 17.0 2450.0000 2455.00 2460.00 2465.00 2470.00 2475.00 2480.00 2485.00 2490.00 2495.00 2500.00 MHz Factor Result Freq. Reading Limit Margin No. Detector Remark (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) 2474.500 117.65 -7.13 110.52 74.00 36.52 peak 2 2483.500 74.34 -7.13 67.21 74.00 -6.79 peak 3 2500.000 -7.08 59.34 52.26 74.00 -21.74 peak

High Channel - Peak: Transmitting mode

Remark:1)Mark 1 is fundamental wave.

2)Transmitting mode and hopping mode are tested, the worst case is Transmitting mode.

High Channel – AV: Transmitting mode

Remark:1)Mark 1 is fundamental wave.

2)Transmitting mode and hopping mode are tested, the worst case is Transmitting mode.

Reference No.: WTS14S0615310E Page 33 of 58

9 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Mode: Test in fixing operating frequency at low, Middle, high

channel.

9.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 100kHz

9.2 Test Result:

Test Channel	Bandwidth
Low	3.22MHz
Middle	3.26MHz
High	3.22MHz

Test result plot as follows:

Low Channel

Middle Channel

Reference No.: WTS14S0615310E Page 35 of 58

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.4:2003

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz

band: 0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 0.125watts (20.97 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.2 Test Result:

Test Channel	Output Power (dBm)	Limit (dBm)		
Low	8.18	20.97		
Middle	8.53	20.97		
High	8.47	20.97		

Reference No.: WTS14S0615310E Page 36 of 58

11 Channel Separated

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than

1W.

Test Mode: Test in hopping transmitting operating mode.

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 5MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result:

Test Channel	Separation (MHz)	Result
Low	3.39	PASS
Middle	3.38	PASS
High	3.38	PASS

Reference No.: WTS14S0615310E Page 37 of 58

Test result plot as follows:

Low Channel

Middle Channel

Reference No.: WTS14S0615310E Page 38 of 58

High Channel

Reference No.: WTS14S0615310E Page 39 of 58

12 Hopping Channel number

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100 kHz. VBW = 100 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Center Frequency = 2441MHz, Span = 80MHz. Submit the test result graph.

12.2 Test Result

Total Channels are 24 Channels.

Reference No.: WTS14S0615310E Page 40 of 58

13 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2.Set spectrum analyzer span = 0. centered on a hopping channel;
- 3.Set RBW = 1MHz and VBW = 1MHz.Sweep = as necessary to capture the entire dwell time per hopping channel.
- 4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

13.2 Test Result

Test channel	Dwell time(second)	
Low channel	0.018s	
Middle channel	0.019s	
High channel	0.019s	

Remark: Dwell time(T)=Ton-time*Ntimes/Sweep time(s)*0.4* Total Channels≤0.4s.

Ton-time:refer to follow photos

Ntimes:10

Sweep time:5s

Total channels:refer to section 12

Please refer to the below photos for more details.

Low Channel

Ton-time=0.018s

Middle Channel

Ton-time=0.019s

High Channel

Ton-time=0.019s

14 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has an integrated antenna, fulfil the requirement of this section.

Reference No.: WTS14S0615310E Page 44 of 58

15 RF Exposure

Test Requirement: FCC Part 1.1307

Test Mode: The EUT work in test mode(Tx).

15.1 Requiments:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

15.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS14S0615310E Page 45 of 58

15.3 MPE Calculation Method

$$\mathsf{E} \, (\mathsf{V/m}) = \frac{\sqrt{30 \times P \times G}}{d} \qquad \qquad \mathsf{Power \, Density:} \, \, \mathit{Pd} \, (\mathsf{W/m^2}) = \frac{E^2}{377}$$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$\textit{Pd} = \frac{30 \times P \times G}{377 \times d^2}$$

dBm=10lgmW

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Peak Output Power (mW)		Power Density (S) (mW/cm2)	Limit of Power Density (S) (mW/cm2)
7.13	1.585	0.001628	1

16 Photographs – Test Setup

16.1 Photograph -Conducted Emission Test Setup

16.2 Photograph –Radiated Emissions Test Setup

30MHz ~ 1GHz

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

17 Photographs - Constructional Details

17.1 EUT -Appearance View

Reference No.: WTS14S0615310E Page 49 of 58

Reference No.: WTS14S0615310E Page 50 of 58

Reference No.: WTS14S0615310E Page 51 of 58

17.2 EUT – Open View

Reference No.: WTS14S0615310E Page 52 of 58

ANT. connector

Reference No.: WTS14S0615310E Page 53 of 58

17.3 RF -Module View

Reference No.: WTS14S0615310E Page 55 of 58

Reference No.: WTS14S0615310E Page 56 of 58

17.4 Adapter 1-Appearance View

17.5 Adapter 2-Appearance View

17.6 Adapter 3-Appearance View

====End of Report=====