Engr 5011: Homework #0

Introduction to numerical integration

Please submit with this page first, and the problems attached in order.

Due 21 September in class (or by 11PM in canvas)

Name (print):	Agron Snyder	TUID:	9	1	5	1	8	7	2	8	9	
	• /		Ι	H	G	F	\mathbf{E}	D	C	В	A	

USE THE ABOVE VALUES (A,B,C, ETC) WHEN A QUANTIFIED (NUMERICAL) ANSWER IS NEEDED.

"Technical points" possible for each question are shown; excellent documentation will recieve a bonus. Also, if you have not already, **download matlab to your laptop computer from**

https://download.temple.edu

- $1. \ \, {\rm Problem} \,\, 1 \,\, {\rm score/comments}$
 - (a) Problem 1.a [2 pt]
 - (b) Problem 1.b [**5 pt**]
 - (c) Problem 1.c [18 pt]

- 2. Problem 2 score/comments.
 - (a) Problem 2.a [5 pt]
 - (b) Problem 2.b [10 pt]

- 3. Problem 3 score/comments
 - (a) Problem 3.a [3 pt]
 - (b) Problem 3.b [7 pt]

Engr-5011: Homework #0 P:

Problem #1: Definite Integrals

Assemble submission for this problem in the following order:

- (1) this page on top, followed by
- (2) your handwritten notes for parts b,c followed by
- (3) listing of your matlab scripts/functions for parts a,b,c,
- (4) printout of matlab plotted results for parts a,b,c

Name (print):_	Agron	Snyder	

 ${\bf Collaborants}\ ({\rm print}):$

Documents & resources used

1. Definite integrals!

- (a) Implement the simpson-rule integrator and demonstrate that it works on a problem you can do another way.
- (b) Plot I(b) on $-0 \le b \le 5$, computing I(b) to at least three significant digits.

$$I(b) = \int_{0}^{5} e^{-b\cos(\tau)} d\tau \text{ on } b = 0:1/10:5$$

What is I(4.6)? Write it here:

$$I(4.6) =$$

(c) Evaluate I to at least three significant digits and write it here:

$$I = \int_{0}^{5} \frac{dx}{2 - \sqrt{x}}; \qquad I = \underline{\hspace{2cm}}$$

Engr-5011: Homework #0 Problem #2. Integrals on data

Assemble submission for this problem in the following order:

- (1) this page on top, followed by
- (2) your handwritten notes
- (3) your matlab code(s)
- (4) your computed results

Name (print): Ann Snyder		
Collaborants (print):	Documents or resources used	

2. Predictor-corrector integration scheme

- (a) Implement a predictor/corrector integration scheme and test it on a problem you can do another way.
- (b) To three significant digits, integrate and plot y_j (where $y_j = y(t_j)$) if

$$y' = \frac{y}{\cos(\frac{t}{3}) + \alpha f(t)} + t; \quad y(0) = -1$$

$$\alpha = (\text{average of your TUID digits})$$

Here f(t) is tabulated data given by:

0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	\mathbf{t}
1.00	0.84	0.78	0.73	0.68	0.65	0.61	0.58	0.55	0.53	0.50	0.48	0.45	0.43	0.41	0.39	0.37	0.35	0.33	f

Estimate the minimum value of y on $0 \le t \le 1.8$ from your results and write them here:

t =	
y =	

Engr-5011: Homework #0 Problem #3. Numerical integration of initial-value problems

Assemble submission for this problem in the following order: (1) this page on top, followed by

- (2) your handwritten notes
- (3) your matlab code(s)
- (4) your computed results

Name (print): Aaron Snyder		
Collaborants (print):	Documents or resources used	
	resources used	

3. Numerical integration of initial-value problems

- (a) Implement the 4th-order Runge Kutte integration scheme and test it on a problem that you can do another way.
- (b) To three significant digits, integrate and plot y(t), y'(t), and y''(t) on $t \subseteq [0, 5]$ if

α	=	$\frac{\text{average}(A,B,C)}{10}$
β	=	$\frac{\text{average}(D,E,F)}{10}$
γ	=	$\frac{\text{average}(G,H,I)}{10}$

and

$$y''' + \alpha y'' + \beta y y' + \gamma y = \cos(3t); \quad y(0) = A; \quad y'(0) = B; \quad y''(0) = C;$$

Here [A,B,C,D,E,F,G,H,I] are taken from your TUID.

At what value of $t \subseteq [0,5]$ is y(t) maximized? Write them here: