## **CONTROL SYSTEM LAB REPORTS**

# **LAB 03**

## SUBMITTED BY ZARAFSHAN IQBAL

REG NO 17KTELE0556

SEMESTER 8<sup>TH</sup>

SUBMITTED TO ENGR. M. AMJAD

### **LAB 03**

**Lab Task 1:** Use the feedback function to obtain the closed-loop transfer function and then tf2ss function to obtain the closed-loop state space model of the system in Figure 7.



#### **MATLAB CODE:**

```
s=tf('s')
Gc=(5*(s+1.4))/(s+7)
Gp=(1)/(s*(s++1)*(s+4))
Ge=series(Gc,Gp)
feed=feedback(Ge,[10])
num=[5 7]
den=[1 12 39 78 70]
[A,B,C,D]=tf2ss(num,den)
```

### **MATLAB RESULT:**

First we have to find the series of two transfer function,

```
Command Window

>> s=tf('s')
Gc=(5*(s+1.4))/(s+7)|

s =

s

Continuous-time transfer function.

Gc =

5 s + 7

-----
s + 7

Continuous-time transfer function.
```

Our feedback has gain of 10, so using feedback command to find the closed loop transfer function,

Closed loop transfer function is achieved, so extract the num and den values,

```
Command Window

>> num=[5 7]
den=[1 12 39 78 70]

num =

5 7

den =

1 12 39 78 70
```

Now use tf2ss command to find the state matrix from closed loop transfer function

```
Command Window

>> [A,B,C,D]=tf2ss (num,den)

A =

-12 -39 -78 -70

1 0 0 0 0

0 1 0 0

0 0 1 0

B =

1
0
0
0
0

C =

0 0 5 7

D =
```

## **TASK 02:**



#### Simulation results:



## **TASK 03:**



#### **SIMULINK RESULT:**



## When the A-Matrix is changed so the result obtained is;

