Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Optimizing Neural Networks

Class Logistics and Agenda

- Logistics
 - Grading
- Agenda:
 - "Finish" Town Hall
 - Practical Multi-layer Architectures
 - Programming Examples
- Next Time: More MLPs

Class Overview, by topic

Tyler Rablin @Mr_Rablin · 2d You're not grading assignments.

You're collecting evidence to determine student progress and pointing them towards their next steps.

Make the mental switch. It matters.

Town Hall

Review: Back propagation history

- 1986: Rumelhart, Hinton, and Williams popularize gradient calculation for multi-layer network
 - actually introduced by Werbos in 1982
- difference: Rumelhart et al. validated ideas with a computer
- until this point no one could train a multiple layer network consistently
- algorithm is popularly called **Back-Propagation**
- wins pattern recognition prize in 1993, becomes de-facto machine learning algorithm until: SVMs and Random Forests in ~2004
- would eventually see a resurgence for its ability to train algorithms for Deep Learning applications: **Hinton is widely considered the**

founder of deep learning

David Rumelhar

Geoffrey Hinton

Review: Back propagation

- Steps:
 - propagate weights forward
 - calculate gradient at final layer
 - back propagate gradient for each layer
 - · via recurrence relation

$$J(\mathbf{W}) = \| \mathbf{Y} - \hat{\mathbf{Y}} \|^2$$

$$w_{i,j}^{(l)} \leftarrow w_{i,j}^{(l)} - \eta \frac{\partial J(\mathbf{W})}{\partial w_{i,j}^{(l)}}$$

**Recall from Flipped Assignment!

Review: Back Propagation Summary

Where is the problem of vanishing gradients introduced?

**Recall from Flipped Assignment!

Lightning Demo

07. MLP Neural Networks.ipynb

same as Flipped Assignment! with regularization and vectorization and mini-batching

Self test: Should we see examples where:

A. $\mathbf{z} = \mathbf{W} \cdot \mathbf{a}_{bias}$ where bias is concatenated, and \mathbf{W} incorporates bias term?

B. $\mathbf{z} = \mathbf{W} \cdot \mathbf{a} + \mathbf{b}$ where we separate out the bias explicitly ?