

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment 2

Algebraic Topology

Author: Edward McDonald

Student Number: z3375335

Question 1

Proposition 1. Let C, D and E be categories, and $F: C \to D$ and $G: D \to E$ are functors. Then the composite $GF: C \to E$, defined by (GF)(x) = G(F(x)) for $x \in \text{Obj}(C)$ and (GF)(f) = G(F(f)) for a morphism f, is a functor.

Proof. It is necessary to prove,

- 1. If $x \in \text{Obj}(\mathcal{C})$, then $(\mathcal{GF})(\mathrm{id}_x) = \mathrm{id}_{\mathcal{GF}(x)}$.
- 2. If f and g are morphisms in \mathcal{C} such that gf is defined, then $(\mathcal{GF})(gf) = (\mathcal{GF})(g)(\mathcal{GF})(f)$.

To prove 1, we simply compute,

$$(\mathcal{GF})(\mathrm{id}_x) = \mathcal{G}(\mathrm{id}_{\mathcal{F}(x)})$$

= $\mathrm{id}_{\mathcal{GF}(x)}$.

Similarly, we prove 2,

$$(\mathcal{GF})(gf) = \mathcal{G}(\mathcal{F}(g)\mathcal{F}(f))$$
$$= (\mathcal{GF})(g)(\mathcal{GF})(f).$$