Ultra-Low Power PLL for Wake-up Receiver Applications

Specialization Project Progress - 5th Week

Cole Nielsen
Department of Electronic Systems, NTNU
27 September 2019 (Week 39)

Autumn Timeline

Week Number	Dates	Tasks	Outcomes	
36	2.9 - 8.9	Review PLL Design	Refreshed Knowledge	
37	9.9 - 15.9	Modeling/simulation (set up)	-	
38	16.9 - 22.9	Modeling/simulation	TDC/DCO Requirements	
39	23.9 - 29.9	Modeling/simulation	Loop Filter/Digital Algorithms	
40	30.9 - 6.10	Modeling/simulation	Loop filter, Ideal implementation in Cadence	
41	7.10 - 13.10	Circuit Research	DCO/Divider topologies	
42	14.10 - 20.10	Circuit Research	TDC/other topologies	
43	21.10 - 27.10	Circuit Implementation	Digital logic (schematic)	
44	28.10 - 3.11	Circuit Implementation	DCO (schematic)	
45	4.11 - 10.11	Circuit Implementation	Divider/other (schematic)	
46	11.11 - 17.11	Circuit Implementation (TDC)		
47	18.11 - 24.11	Circuit Implementation (TDC)	TDC (schematic)	
48	25.11 - 1.12	Full Circuit testing	Testbenches, find bugs, design fixes	
49	2.12 - 8.12	Full Circuit testing	Design Fixes/iteration	
50	9.12 - 15.12	-	-	

Legend: Done Current Revised

Timeline Tasks

This week

- Primary: Loop analysis, requirements definition
 - Design open loop filter design to meet closed loop requirements.
 - Dependent on DCO properties (k_{DCO} , f_0 , tuning range).
 - Difference equation implementing discrete time 2nd order IIR filter.
 - Datapath requirements (fixed-point resolution)

Next week - Revised

- Primary: Ideal component PLL implementation in Cadence, continue loop filter work.
 - Ideal component PLL implementation is not a lot of work.
 - Loop filter very critical, spend more time on this.
 - Need to make Verilog description of loop filter for simulation in Cadence.

Original Attempt

- Started with simple PLL loop with proportional-phase fed into loop filter (LF).
 - Not stable at large frequency offset, due to frequency wrapping. At the TDC:

$$\Delta \phi = \frac{2\pi \Delta fT}{N} \to T_{wrap} = \frac{N}{\Delta f} \tag{1}$$

- Upon cold start, Δf is expected to be up to 100 MHz, N=150 \rightarrow $T_{wrap} = 1.5~\mu s$ $f_{wrap} \sim 600$ kHz, this is unstable with a loop bandwidth of 100 kHz.
- Must opt for alternate loop structure.

New Approach

- Two-fold approach: utilize fine and coarse frequency offset estimation.
 - Coarse frequency estimator to handle high frequency offset (e.g. cold start-up).
 - Fine frequency estimator for near steady state.
- Offset estimates are summed with previous oscillator tuning word (OTW, also f_{ctrl} here), then low passed filtered to yield new OTW.
 - · Low pass filter loop keeps steady state.
 - Frequency estimator updates if any changes detected.

Coarse frequency offset estimation

— Coarse frequency estimation: Given M-step TDC, outputting phase error signal $e_{\phi}[n]$, and a divider modulus N

$$\Delta\phi_{DCO}[n;q] = N \cdot \Delta\phi_{REF}[n] = 2\pi \frac{N}{M} \left(e_{\phi}[n] - e_{\phi}[n-q] \right), \qquad \Delta\phi_{DCO}[n;q] = \Delta\omega_{DCO}[n]qT_{ref} = 2\pi q \frac{\Delta f_{DCO}}{f_{ref}}$$

$$(2)$$

$$\Delta f_{DCO} = \frac{f_{ref}}{\alpha} \frac{N}{M} \left(e_{\phi}[n] - e_{\phi}[n-q] \right)$$

$$(3)$$

- Is a discrete differentiator, with gain coeficient to convert $d\phi/dt$ to frequency.
 - · Rejects phase wrapping.
 - Useful in coarse frequency range calibration. Can detect fast if frequency offset too large.
 - Delay q is used to increase frequency resolution.

Coarse frequency offset estimation - continued

— Given DCO gain K_{DCO} , the gain K_d of the filter is:

$$K_{d} = \frac{f_{ref}}{qK_{DCO}} \frac{N}{M} \left(e_{\phi}[n] - e_{\phi}[n-q] \right) \tag{4}$$

- Gate the coarse estimator off if $e_{\phi}[n] e_{\phi}[n-q]$ < some threshold:
 - Offset small enough, allow to run as classical phase-detector mode.

Fine frequency offset estimation

- Proportional signal of phase error to estimate frequency error.
- Used in near-steady state. Loop will regulate to keep phase locked.
- Classical PLL operating mode.

Modified implementation - PID

- On the observation that the loop filter was basically a PID controller.
 - Add integral term to complete PID. Integral term keeps track of steady state offset of OTW, ideally yields 0 steady state error.
 - Derivative term only used to perform coarse adjustment.
 - Near/in steady, behaves as PI controller.

3

Loop Filter Gain Coefficients

- On the observation that the loop filter was basically a PID controller.
 - Add integral term to complete PID. Integral term keeps track of steady state offset of OTW, ideally yields 0 steady state error.
 - · Derivative term used to perform coarse adjustment.
 - Near/in steady, behaves as PI controller.

Performance criteria

- Resolution set by frequency accuracy requirements, quantization noise.
- Quantization noise is manifested here as:
 - Reference spurs resulting from deterministic components of signal.
 - · A quasi-random noise signal when lock is achieved.
 - Results from stochastic toggling of \sim 1 LSB of DCO tuning word to track low frequency variations.
 - Rolloff of -20 dB/decade at low frequency (same as ring oscillator), -40 dB/decade at high frequencies.

Requirements based on reference spurs

- Worst case reference spur level.
 - DCO tuning word toggling up/down 1 LSB every reference cycle.
- With $f_0 = 2.4$ GHz, $f_{c/k} = 16$ MHz:
 - 52 kHz per LSB (i.e. K_{DCO}) is needed for a maximum -60 dBc reference spur level.

Requirements from steady state tracking of stochastic variation.

- In steady state, DCO tuning word will vary occassionaly by \sim 1 LSB to track stochastic frequency changes.
 - This generates noise and should be less than the thermal phase noise of DCO.
 - Very pessimistic estimate here (assumes abrupt frequency change). Abrupt frequency steps contribute 1/Δf dependent component to phase noise.
- Theoretical ring oscillator phase noise limit from [2]:

$$PN_{min}(\Delta f) = 10 \log 10 \left(\frac{7.33k_BT}{P} \left(\frac{f_0}{\Delta f} \right)^2 \right)$$
 (4)

- If $f_0 = 2.4$ GHz, $P = 50 \mu W$, $\Delta f = 1$ MHz, T = 293K,
 - \rightarrow PN < -84.7 dBc/Hz from this noise process.
 - LSB resolution of 50 kHz seems feasible.
 Will have to verify with full PLL sim to account for loop dynamics.

Accuracy and Linearity

- Frequency accuracy.
 - Indeterminate IF assumed for wake up receivers, so accuracy not so critical.
 - If RF bandwidth of receiver > PLL bandwidth, reasonable assumption is maximum frequency offset (accuracy) should be < PLL bandwidth.
 - Current PLL bandwidth spec is 100 kHz, suggested 50 kHz LSB step from quantization noise analysis is sufficient?
 - This is assuming accuracy is tied to DCO resolution.
- Linearity:
 - Integral non-linearity over the tuning DCO range is not important, so no spec for INL is suggested. Should be locally linear (constrains DNL).
 - Monotonicity is essential, so must strictly have DNL < 1 LSB.

TDC

Phase Noise Modeling

Based on a phase-domain model for PLL phase noise from Michael Perrot [1].

- $S_{\phi,out}(f)$ is the TDC phase noise component, N is the divider modulus, G(f) is the closed loop PLL transfer function, A(f) is the open loop transfer function, Δt_{del} is the TDC time resolution.
- G(0) = 1, and G(f) ≈ 1 for f ∈ [0, f_{CBW}], where f_{CBW} is the closed loop bandwidth.

TDC

Phase Noise Modeling

- Naive estimate for TDC time resolution:
 - Phase noise flat within closed-loop bandwidth. This component dominates power
 of the integrated phase noise a PLL with low TDC-resolution.
 - Use Residual frequency modulation equation and equation 2 (TDC phase noise) to estimate ∆t_{del}. Integrate in f ∈ [0, f_{CBW}]

$$\Delta f_{RFM} = 2 \int_{f_a}^{f_b} f^2 * PN(f) df$$
 (8)

- With f_{Clk} = 16 MHz, N = 150 (for 2.4 GHz synthesis), Δf_{RFM} < 107 kHz to meet BER requirement, and f_{CBW} = 100 kHz. (PLL presumed to have very low TDC resolution)
 - Δt_{del} < 3.8 ns
 - Phase noise of TDC below f_{CBW} is -47.7 dBc/Hz
 - Equates to minimum of 16.4 quantization steps for TDC (4.03 bits).
 - Assumptions of high phase noise and low resolution appear valid.

Specification (unchanged)

System Performance Targets

Parameter	Value	Unit	Notes	
Frequency	2.4-2.4835	GHz	2.4G ISM Band	
Ref. frequency	16	MHz	Yields 6 channels	
Power	≤ 100	μW		
Residual FM	≤ 107	kHz _{RMS}	BER \leq 1e-2, f_{dev} = \pm 250 KHz	
Initial Lock Time	≤ 50	μ S	Upon cold start	
Re-lock Time	≤ 5	μ S	Coming out of standby	
Bandwidth	100	kHz	(nominally), tunable	

Additionally: PLL output should support IQ sampling at LO frequency.

Specification (new)

PLL Component Performance Targets

Parameter	Value	Unit	Notes
DCO LSB Resolution	≤ 50	kHz	Determined from quantization noise.
DCO DNL	< 1	LSB	Ensures monotonicity
TDC Resolution	≤ 3.8	ns	
TDC Resolution (bits)	≥ 4.03	bits	

Architecture (unchanged)

Block Diagram

Power Targets

DCO	TDC	Divider	Other	SUM
70 μW	20 μW	10 μW	$<<$ 1 μ W	100 μW

Project Phases

Autumn 2019

- System modeling and simulation.
 - · Learn PLL theory in detail
 - Evaluate feasability of PLL architectures (counter, TDC-based)
 - Determine requirements for TDC/DCO/Divider/logic (bits of resolution, accuracy etc) to meet PLL performance specifications.
 - Determine digital logic for loop filter, validate stability and lock time performance.
- Research ultra-low power circuit topologies to implement system components that will meet determined requirements.
- Translate component-level specifications into schematic-level circuit designs.
 - Try, fail, try again until functional at schematic level.
 - I expect the TDC to be difficult.

Project Phases (continued)

Spring 2020

- Finalize schematic-level design.
- Estabilish thorough tests for PLL performance (automated?) to help in layout.
- Layout of PLL.
 - · Design iteration until design specs met.
 - · Probably very time consuming.
- Full characterization/validation of design performance.
 - Comprehensive Corners/Monte-Carlo testing (time consuming??)
 - More design iteration if new issues crop up...
- Thesis paper writing.

Project Phases (continued)

Spring 2020

[1] "Digital Frequency Synthesizers", Michael Perrott, 2019. http://www.cppsim.com/PLL_Lectures/day4_am.pdf

[2] "Minimum Achievable Phase Noise of RC Oscillators", Navid et al. 2005