

### Adatbázisok

## Kapcsolattartás és egyéb infók

• Kommunikációs csatornák: MS Teams (kód: dixihs5), Canvas, e-mail:

Dóka-Molnár Andrea-Éva andrea.molnar@math.ubbcluj.ro

Gaskó Noémi noemi.gasko@ubbcluj.ro

 Online alkalmak színhelye: MS Teams (kód: dixihs5)

## Követelmények

- 25% labortevékenység
- **75%** vizsga
  - 55% írásbeli vizsga
  - 20% laborvizsga
- Minimális követelmény:
  - összesen minimum 50p
  - írásbelin minimum 27.5p, 12.5p labortevékenységből, 10p laborvizsgán

További infók canvas-en (Syllabus)

## Irodalomjegyzék

- 1. J.D. Ullman, J. Widom: *Adatbázisrendszerek. Alapvetés Második átdolgozott kiadás*, Panem Kiadó, 2009.
- 2. Varga Ibolya: *Adatbázisrendszerek (A relációs adatbázisoktól az XML adatokig)*, Egyetemi Kiadó, Kolozsvár, 2005. Megtalálható canvas-en: Files/kurzus/konyveszet/ABKurzusOsztOOXML.pdf
- 3. Gajdos Sándor: *Adatbázisok* (egyetemi jegyzet), 2016. (Online elérhető)

További könyvészet is elérhető: Syllabus

## Áttekintés/Tematika

#### Bevezetés

• Bevezetés az adatbázis-kezelő rendszerek világába

#### Adatmodellezés

- Egyed/kapcsolat adatmodell
- · Relációs adatmodell
- E/K diagram átalakítása relációs adatmodellé

#### Relációs algebra

• Relációs algebra műveletei, használata

# SQL nyelv (MS SQL specifikusan):

• DDL, DML, QL, triggerek, jogosultságok, függvények, procedúrák, kurzorok használata.

# Relációs adatbázisok tervezése

 anomáliák, funkcionális- és többértékű függőségek, függőségőrzés ellenőrzése, normálformák

#### NoSQL adatbázisok

 Jellemzők, relációs adatbázisokkal való összehasonlítás, NoSQL adatbázisok típusai, multimodell adatbázisok

### Bevezetés

• Hol találkozunk adatbázisokkal? Miért van szükségünk adatbázisokra?

### Bevezetés

• Hol találkozunk adatbázisokkal? Miért van szükségünk adatbázisokra?

Adatbázis alapú alkalmazások:

- Banki ügyintézés (folyószámlák, ügyfelek, átutalások)
- Vasút- és légitársaságok (járatok, menetrendek, foglalások, ügyfelek)
- Egyetemek (kurzusok, szakok, termek, hallgatók, oktatók, órarend)
- (Online) eladások (vásárlók, termékek, beszerzések)
- Humán erőforrások (alkalmazottak, fizetések, adómódosulások)
- Könyvtárak (olvasók, könyvek, kiadók, szerzők)

### Bevezetés

• Hol találkozunk adatbázisokkal? Miért van szükségünk adatbázisokra?

Adatbázis alapú alkalmazások:

- Banki ügyintézés (folyószámlák, ügyfelek, átutalások)
- Vasút- és légitársaságok (járatok, menetrendek, foglalások, ügyfelek)
- Egyetemek (kurzusok, szakok, termek, hallgatók, oktatók, órarend)
- (Online) eladások (vásárlók, termékek, beszerzések)
- Humán erőforrások (alkalmazottak, fizetések, adómódosulások)
- Könyvtárak (olvasók, könyvek, kiadók, szerzők)

Más példák?





• 3 művelet:

Forrás:https://bit.ly/2HD4f40

 olvasás/adatlekérdezés: találatok listája: megtekintések, lájkok, videók és leírások



• 3 művelet:

- olvasás/adatlekérdezés: találatok listája: megtekintések, lájkok, videók és leírások
- (adat)módosítás: feltöltés, lájk, visszajelzés



• 3 művelet:

- olvasás/adatlekérdezés: találatok listája: megtekintések, lájkok, videók és leírások
- (adat)módosítás: feltöltés, lájk, visszajelzés
- "tanulás": hasonló videók, releváns reklámok

### Bevezető példák

#### ATM adatbázisa



- Műveletek:
  - 1. Egyenleg lekérése
  - 2. Pénz kiadása
  - 3. Egyenleg módosítása

## Adatbázis-kezelés alapjai

#### • Adatbázis:

- Nagyméretű adatgyűjtemény (adatok összessége), mely hosszú időn keresztül (akár évekig) létezik és elérhető.
- Más def.: adatok gyűjteménye, amelyeket egy adatbázis- kezelő rendszer (ABKR) kezel.

## Adatbázis-kezelés alapjai

- Adatbázis = adatok gyűjteménye, amelyeket egy adatbázis-kezelő rendszer (ABKR) kezel.
- Adatbázis-kezelő rendszer (ABKR; database management system (DBMS)): olyan speciális szoftverrendszer, amellyel lehetséges az adatbázisokban tárolt adatok *definiálása*; *kezelése*; *karbantartása*; *felügyelete*.
  - NEMfelhasználói program (főfeladata NEM afelhasználói igények kielégítése)

## ABKR-ek előnyei, feladatai

- Felhasználók számára új adatbázisokat létrehozásának lehetővé tétele + adatbázisok sémájának (logikai struktúrájának) egy adatdefiniciós nyelven való megadása (lsd. később: DDL).
- Felhasználók számára annak lehetővé tétele, hogy az adatokat egy megfelelő nyelv segítségével lekérdezhessék, illetve módosíthassák (lsd. később: DML+(D)QL).
- Nagyon nagy mennyiségű adat hosszú időn keresztüli tárolásának támogatása.
- Lehetőség az adatbázisok megosztására több felhasználó között.

## Az ABKR-ek előnyei, feladatai

 Garantálja az adatok biztonságát, konzisztenciáját, a hozzáférések szabályozását. 

 → A felhasználói műveleteket csak az arra jogosult személyek végezhetik, és ezek a

műveletek nem veszélyeztethetik az adatok integritását. Pl. új alkalmazott fizetésének bevezetése:

- •jogosultságok ellenőrzése
- megszorítások ellenőrzése (pl. befér-e a költségvetésbe?)
- Rendszerhibák esetén helyes adatbázis visszaállításának képessége.
- Egy adatmodellre épül (multimodell adatbázisoknál többre):
  - adatbázis megtervezése, adatok érthető formában való megtekintése



### Relációs ABKR-k

### NoSQL és NewSQL ABKR-k































## ABKR-k népszerűsége 2021-ben

| Jul<br>2021 2<br>1.<br>2.<br>3.<br>4. | Jun<br>2021<br>1.<br>2.<br>3.<br>4.<br>5. | Jul 2020 1. 2. 3. 4. 5. | Oracle  MySQL  Microsoft SQL Server  PostgreSQL | Relational, Multi-model  Relational, Multi-model  Relational, Multi-model  Relational, Multi-model  Relational, Multi-model | Jul<br>2021<br>1262.66<br>1228.38<br>981.95 | +0.52 | -40.13 |
|---------------------------------------|-------------------------------------------|-------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------|--------|
| 2.<br>3.                              | 2.<br>3.<br>4.<br>5.                      | 2.<br>3.<br>4.          | MySQL   Microsoft SQL Server   PostgreSQL       | Relational, Multi-model 📆                                                                                                   | 1228.38<br>981.95                           | +0.52 | -40.13 |
| 3.                                    | 3.<br>4.<br>5.                            | 3.<br>4.                | Microsoft SQL Server  PostgreSQL  PostgreSQL    | Relational, Multi-model 🔞                                                                                                   | 981.95                                      | -9.12 |        |
|                                       | 4.<br>5.                                  | 4.                      | PostgreSQL #                                    |                                                                                                                             |                                             |       | -77.77 |
| 4.                                    | 5.                                        | 200                     |                                                 | Relational, Multi-model 🛐                                                                                                   | 577 15                                      |       |        |
|                                       |                                           | 5.                      |                                                 |                                                                                                                             | 3//.13                                      | +8.64 | +50.15 |
| 5.                                    |                                           |                         | MongoDB 🔠                                       | Document, Multi-model 🔞                                                                                                     | 496.16                                      | +7.95 | +52.68 |
| 6.                                    | <b>↑</b> 7.                               | <b>↑</b> 8.             | Redis 😷                                         | Key-value, Multi-model 🛐                                                                                                    | 168.31                                      | +3.06 | +18.26 |
| 7.                                    | <b>4</b> 6.                               | <b>4</b> 6.             | IBM Db2                                         | Relational, Multi-model 🛐                                                                                                   | 165.15                                      | -1.88 | +1.99  |
| 8.                                    | 8.                                        | <b>4</b> 7.             | Elasticsearch 😷                                 | Search engine, Multi-model 🛐                                                                                                | 155.76                                      | +1.05 | +4.17  |
| 9.                                    | 9.                                        | 9.                      | SQLite [1                                       | Relational                                                                                                                  | 130.20                                      | -0.33 | +2.75  |
| 10. 1                                 | <b>1</b> 1.                               | 10.                     | Cassandra 🔠                                     | Wide column                                                                                                                 | 114.00                                      | -0.11 | -7.08  |
| 11. 🕨                                 | <b>J</b> 10.                              | 11.                     | Microsoft Access                                | Relational                                                                                                                  | 113.45                                      | -1.49 | -3.09  |
| 12.                                   | 12.                                       | 12.                     | MariaDB 😷                                       | Relational, Multi-model 🔞                                                                                                   | 97.98                                       | +1.19 | +6.86  |
| 13.                                   | 13.                                       | 13.                     | Splunk                                          | Search engine                                                                                                               | 90.05                                       | -0.22 | +1.78  |
| 14.                                   | 14.                                       | 14.                     | Hive                                            | Relational                                                                                                                  | 82.68                                       | +2.98 | +6.25  |
| 15.                                   | 15.                                       | <b>1</b> 8.             | Microsoft Azure SQL Database                    | Relational, Multi-model 🛐                                                                                                   | 75.22                                       | +0.43 | +22.59 |
| 16.                                   | 16.                                       | 16.                     | Amazon DynamoDB 😷                               | Multi-model 🛐                                                                                                               | 75.20                                       | +1.43 | +10.62 |
| 17.                                   | 17.                                       | <b>4</b> 15.            | Teradata                                        | Relational, Multi-model 🛐                                                                                                   | 68.95                                       | -0.39 | -7.02  |
| 18.                                   | 18.                                       | <b>↑</b> 22.            | Neo4j 😷                                         | Graph                                                                                                                       | 57.16                                       | +1.41 | +8.24  |
| 19.                                   | 19.                                       | <b>1</b> 20.            | SAP HANA 🚼                                      | Relational, Multi-model 🔞                                                                                                   | 53.81                                       | -0.29 | +2.48  |
| 20.                                   | 20.                                       | <b>4</b> 19.            | Solr                                            | Search engine, Multi-model 🔞                                                                                                | 51.79                                       | -0.30 | +0.15  |

## Adatbázisok nyelvei

relációs ABKR → SQL (Structured Query Language)





#### Adatok, metaadatok

Fizikailag valahol tárolódnak az adatok (pl. milyen nevű utas, melyik gépre foglalt helyet) és a metaadatok (mik a relációk nevei és attribútumai és ezek típusai, illetve pl. milyen indexek vannak létrehozva a kereséshez).



Tárkezelő (állománykezelő)

fizikai adatstruktúrák, táblák, indexek, pufferek kezelése.

Részei: fájlkezelő, pufferkezelő



- Lekérdezés-feldolgozó
  - Lekérdezés szintaktikai ellenőrzése
  - Sémaműveletek: az adatbázis logikai struktúrájának kialakítása, módosítása
  - Adatmódosítás: az adatbázis tartalmának módosítása, beszúrás, törlés
  - Adatbázis-objektumok létezésének, és a hozzáférési jogoknak az ellenőrzése (metaadatbázis, rendszertáblák)



### Bevezető példák

#### ATM adatbázisa



- Műveletek:
  - 1. Egyenleg lekérése
  - 2. Pénz kiadása
  - 3. Egyenleg módosítása

Forrás:https://bit.ly/2HD4f40

Mi történik, ha valamelyik lépésnél hiba lépfel? Definiálhatunk-e más sorrendet

a műveletek esetén?

### Tranzakciókezelő

- Két nagyobb problémakör megoldására jó:
  - Több felhasználó egyszerre használja az adatbázist, egyidejű hozzáférések kezelése.
  - Rendszerhibák, ABORT-ok hatásainak kivédése: ezek bekövetkeztekor sem veszhetnek el adatok, nem maradhat az adatbázis inkonzisztens állapotban.
- Ezek megoldására: alapfogalom a tranzakció: egy felhasználóhoz tartozó, összetartozó utasítások olyan sorozata, melyek vagy mind végrehajtódnak vagy semelyik sem (atomiság).
  - Pl. banki átutalásnál nem lehet, hogy csak apénz levonása történik meg az egyik számlán, de nem íródikjóvá a másikon.

### Elvárások a tranzakciókezelésben

- A (atomicity, atomiság): egy tranzakció vagy teljesen végrehajtódik vagy semmi se hajtódik végre belőle
- C (consistency) konzisztencia: a tranzakció a helyesség (konzisztencia) egysége, az adatbázist egy helyes állapotból egy másik helyes állapotba alakítja.
- I (isolation) izoláció: különböző tranzakciók egymástól elszigetelten futnak, mintha egymás után hajtódnának végre; *valójában*: egyidejűleg versengenek az adatbázis elemekért.
- **D** (durability) tartósság: ha a tranzakció elért a végpontjához (COMMIT), az általa végzett adatbázis-módosítások véglegesek, még ha közben esetleg hiba is lép fel.
  - → tranzakciók ACID tulajdonságai

## Példa: Repülőgépes helyfoglalás

- Adatelemek: indulási-, érkezési időpont, honnan indul, hova érkezik, ár, repülőjegyek darabszáma, utas neve stb.
- Lekérdezések: van-e még hely, mennyi az ára, mikor indul a gép
- Módosítások: új utas bevitele, helyfoglalás
- Párhuzamosság: egyszerre több jegyeladás és lekérdezés is mehet
- Védelem: helyfoglalás nem veszhet el

