

Tipe Data Abstrak

(TIB11 – Struktur Data)

Pertemuan 3, 4

Sub-CPMK

Mahasiswa mampu menjelaskan konsep tipe data abstrak (C2, A2)

Materi:

- 1. Record
- 2. Data set
- 3. Konsep Tipe Data Abstrak

1.1. Tipe Data

- Tipe data:
 - Nilai yang mungkin terisi ke variabel
- Variabel agar dapat digunakan harus dideklarasikan sesuai dengan tipe data yang akan ditampungnya
- Suatu variabel tidak dapat menampung data yang tidak sesuai dengan tipe data peruntukannya
- Ada dua macam tipe data
 - A. Tipe data sederhana/primitif
 - B. Tipe data bentukan

1.2. Tipe Data Sederhana

Merupakan tipe data bawaan dari bahasa pemrograman.

Beberapa tipe data primitif (ada yang menyebutnya tipe data sederhana) yang umum terdapat pada berbagai bahasa pemrograman

- Boolean → Tipe data yang hanya memperbolehkan dua nilai 1/0 atau TRUE/FALSE saja
- Character → menampung 8 bit data yang diterjemahkan menjadi karakter, Character termasuk tipe data integer
- Integer → bilangan bulat, Terdapat beberapa jenis bilangan integer berdasarkan panjang bit nya: Byte, short integer, integer, long integer
- Pecahan

 bilangan pecahan, umumnya direpresentasikan dalam bentuk floating point, berdasarkan panjang dan ketelitiannya, floating point dapat dibagi menjadi single precision (32 bit) dan double precision (64 bit)

1.3. Tiga Kategori Tipe Data Primitif

- Integral (bulat)
 - Tipe data yang memperlakukan *integer* atau bilangan tanpa bagian, contoh *integer*, *char* dan boolean
- Pecahan
 Dinyatakan dalam bentuk Floating point, contoh single, double, real
- Enumeration (enumerasi)
 user-defined data type. Contoh:
 enum bulan {JAN, PEB, MAR, APR, MEI, JUN, JUL, AGU, SEP, OKT, NOP, DES};

1.4. Record / Structure

- Rekaman atau record atau structure adalah sekumpulan data yang disusun dari tipe data yang sama atau tipe data yang berbeda.
- Sebuah record berisi beberapa variabel lain yang 'dipaketkan'. Konsep struktur data seperti ini sedikit mirip dengan konsep class dan object dalam object oriented programming
- Record/Structure harus di definisikan terlebih dahulu,
- Hasil definisi Record/Structure diperlakukan seperti tipe data,
- Ketika akan digunakan, Record/Structure harus dideklarasikan dahulu pada sebuah variabel

1.5. Mengakses Record

- Record diakses pada field-fieldnya
- Record dapat diakses dengan menyebutkan terlebih dahulu nama variable diikuti nama field yang akan diakses setelah didahului tanda titik

1.6. Record dalam Pascar

• Definisi

Type

```
RecordName = Record
FieldName1 : vartype;
FieldName2 : vartype;
FieldName3 : vartype;
...
FieldNamen : vartype;
End;
```

Deklarasi

```
var
varRecord = RecordName;
```

Penugasan

```
varRecord.FieldNameN := data;
```

Mengakses Record

varData:= varRecord.FieldNameN;

1.7. Contoh Record dalam Pascal

Definisi

```
Type
  Bangun = Record
  x1 : integer;
  y1 : integer;
  x2 : integer;
  y2 : integer;
  x3 : integer;
  y3 : integer;
  Fnd;
```

Penugasan

```
Segitiga.x1 := 10;
Segitiga.y1 := 16;
```

Mengakses Record

```
temp:= Segitiga.x1;
```

Deklarasi

```
var
   Segitiga = Bangun;
```


1.8. Record dalam C+

Definisi

```
struct RecordName
{
    vartype FieldName1;
    vartype FieldName2;
    vartype FieldName3;
    ...
    vartype FieldNameN;
};
```

Deklarasi

RecordName varRecord;

Penugasan

```
varRecord.FieldNameN = data;
```

Mengakses Record

```
VarData = varRecord.FieldNameN;
```


1.8. Record dalam C++

Definisi

```
struct Bangun
{
    int x1;
    int y1;
    int x2;
    int y2;
    int x3;
    int y3;
};
```

Deklarasi

Bangun Segitiga;

Penugasan

```
Segitiga.x1 = 10;
Segitiga.y1 = 16;
```

Mengakses Record

```
Temp = Segitiga.x1;
```


2. Data Set

UNIVERSITAS BUNDA MULIA

2.1. Pengertian Data Set

- Data Set (kumpulan data) adalah sejumlah data dengan susunan homogen
- Data set terdiri record-record sejenis yang tersusun secara sequensial
- Tiap recordnya dapat memiliki field-field yang serupa ataupun berbeda
- Field-field dari tiap recordnya berisi nilai-nilai yang dapat diakses
- Kumpulan data juga bisa terdiri dari kumpulan dokumen atau file.

2.2. Bentuk *Data Set*

- Dapat diimplementasikan dalam bentuk
 - —Array → disebut Array Based
 - Linked List → disebut Linked-list Base

3. Konsep Tipe Data Abstrak

UNIVERSITAS BUNDA MULIA

3.1. Tipe Data Abstrak

- Tipe Data Abstrak adalah suatu bentuk struktur data yang memiliki kegunaan atau perilaku yang serupa Model matematika termasuk operasinya
- TDA terdiri dari
 - domain (= a set of values)
 - set of operations

3.2. ADT Basic Form

Linked list

Stack

Queue

3.3. Generalisasi

- Pembentukan semua Sel/elemen (jika pada Array atau Stack) ataupun simpul (jika pada linked-list, binary tree) pada data set dilakukan berdasarkan field-field struct / record yang didefinisikan
- semua sel/elemen/simpul/verteks tersebut memiliki struktur yang sama dengan struct yang digunakan untuk mendeklarasikannya

Contoh

Struktur yang didfinisikan

data set yang dibentuk

3.4. Contoh Generalisasi dalam Bentuk *Record / Struct* menjadi Sel-sel Array untuk *Stack*

```
Struct DataMhs {
   char NIM[10];
   int Nilai;
   int tugas[10];
}
DataMhs Mahasiswa[100];
int UkuranStack;
```

 Maka semua element stacks pada sel-sel array Mahasiswa yang dibentuk dari record tersebut akan memiliki struktur yang sama

3.4. Contoh Generalisasi dalam Bentuk *Record / Struct* menjadi simpul linked–list untuk *Stack*

```
Struct DataMhs {
   char NIM[10];
   int Nilai;
   int tugas[10];
   Struct DataMhs *Next; //untuk keperluan Linked List
}
Struct DataMhs *Ptr, *Head, *Temp;
...
Ptr = (Struct DataMhs *) malloc(sizeof(Struct DataMhs));
```

 Maka semua element stacks pada simpul-simpul linked-list yang dibentuk dari record tersebut akan memiliki struktur yang sama

3.5. Enkapsulasi Universitas Bunda Mulia

ADT C

ADT A

Data Structure A

Operation to A

ADT B

Data Structure B

Operation to B

Operation to ADT A and B

- Enkapsulasi terjadi pada ADT,
- Tipe data abstrak beserta operasinya dapat menjadi penyusun tipe data abstrak lainnya
- Setiap dataset akan tetap dapat dioperasikan sesuai dengan operasi ADT asalnya
- Contoh: sebuah stack dengan operasinya beserta stack lain dengan operasinya beserta operasi pemindahan isi stack yang satu ke stack yang lain

Ringkasan

- Sejumlah bentuk struktur data yang memiliki kegunaan atau perilaku yang serupa, berupa model matematika yang memiliki domain dan set operasi
- Struktur Data sebuah set variable yang berisi beberapa tipe data yang berbeda serta memiliki relasi-relasi satu sama lain untuk setiap variabel
- Rekaman atau record atau structure adalah sekumpulan data yang disusun dari tipe data yang sama atau tipe data yang berbeda.
- Record/Structure harus di definisikan terlebih dahulu
- Hasil definisi Record/Structure diperlakukan seperti tipe data, sehingga ketika akan digunakan, Record/Structure harus dideklarasikan dahulu pada sebuah variabel

Terimakasih

TUHAN Memberkati Anda

Teady Matius Surya Mulyana (tmulyana@bundamulia.ac.id)

UNIVERSITAS BUNDA MULIA