

CHAPTER 2 Part 3

Recurrence Relation &

Recursive Algorithms

Definition

• A **recurrence relation** is an equation that defines a sequence $\{a_n, a_{n+1}, \ldots\}$ based on a rule that gives the next term as a function of one or more of the previous term in the sequence for all integers n with $n \ge n_0$, (a_0, a_1, \ldots)

 A sequence is called a solution of a recurrence relation if it terms satisfy the recurrence relation.

Simple Recurrence Relation

The simplest form of a **recurrence relation** is the case where the next term depends only on the immediately previous term.

The above sequence shows a pattern, given initial condition, $a_1 = 3$:

3,
$$3+5$$
, $8+5$, $13+5$, $18+5$, ... a_1 , a_2 , a_3 , a_4 , a_5 , ...

generated from an equation:

$$a_n = a_{n-1} + 5, \qquad n \ge 2$$

n_{th} term of a sequence

Recurrence relation can be used to compute any n-th term of the sequence, given the initial condition, a_0 :

$$a_{n} = a_{n-1} + 5$$
, $n \ge 2$
3, 8, 13, 18, 23, **28**, $a_{n-1} + 5$, ...
$$a_{2} = a_{1} + 5$$
, $3 + 5 = 8$

$$a_{3} = a_{2} + 5$$
, $8 + 5 = 13$

$$a_{4} = a_{3} + 5$$
, $13 + 5 = 18$

$$\vdots$$

$$a_{6} = a_{5} + 5$$
, $23 + 5 = 28$

Consider the following sequence:

The above sequence shows a pattern:

$$3^1$$
, 3^2 , 3^3 , 3^4 , 3^5 , ... a_1 , a_2 , a_3 , a_4 , a_5 , ...

Recurrence relation is defined by:

$$a_n = 3^n, n \ge 1$$

Given initial condition, $a_0 = 1$ and recurrence relation:

$$a_n = 1 + 2a_{n-1}$$
, $n \ge 1$

First few sequence are:

$$a_1 = 1 + 2 (1) = 3$$

 $a_2 = 1 + 2(3) = 7$
 $a_3 = 1 + 2(7) = 15$

1, 3, 7, 15, 31, 63, ...

Given initial condition, $a_0 = 1$, $a_1 = 2$ and recurrence relation:

$$a_n = 3(a_{n-1} + a_{n-2}), n \ge 2$$

First few sequence are:

$$a_2 = 3(2 + 1) = 9$$

 $a_3 = 3(9 + 2) = 33$
 $a_4 = 3(33 + 9) = 126$

1, 2, 9, 33, 126, 477, 1809, 6858, 26001,...

Exercise

1)
$$a_n = 6a_{n-1} - 9a_{n-2}$$
, where $a_0 = 2$, $a_1 = 3$

2)
$$a_n = 2a_{n-1} - a_{n-2}$$
, where $a_0 = 5$, $a_1 = 3$

For a photo shoot, the staff at a company have been arranged such that there are 10 people in the front row and each row has 7 more people than in the row in front of it. Find the recurrence relation and compute number of staff in the first 5 rows.

Example 4 - Solution

Notice that the difference between the number of people in successive rows is a constant amount.

This means that the $n_{\rm th}$ term of this sequence can be found using:

$$a_n = a_{n-1} + 7$$
, $n \ge 2$ with $a_1 = 10$

Example 4 - Solution

Number of staff in the first 5 rows:

$$a_1 = 10$$
,
 $a_2 = a_1 + 7$, $10 + 7 = 17$
 $a_3 = a_2 + 7$, $17 + 7 = 24$
 $a_4 = a_3 + 7$, $24 + 7 = 31$
 $a_5 = a_4 + 7$, $31 + 7 = 38$

10, 17, 24, 31, 38

Find a recurrence relation and initial condition for

1, 5, 17, 53, 161, 485, ...

Solution:

Look at the differences between terms:

4, 12, 36, 108, ...

the difference in the sequence is growing by a factor of 3.

Example 5 - Solution

However the original sequence is not.

$$1(3)=3$$
, $5(3)=15$, $17(3)=51$, . . .

1, 5, 17, 53, 161, 485, ...

It appears that we always end up with 2 less than the next term.

So, the recurrence relation is defined by:

$$a_n = 3(a_{n-1}) + 2$$
, $n \ge 1$, with initial condition, $a_0 = 1$

A depositor deposits RM 10,000 in a savings account at a bank yielding 5% per year with interest compounded annually. How much money will be in the account after 30 years? Let P_n denote the amount in the account after n years.

innovative • entrepreneurial • global

Example 6 - Solution

Derive the following recurrence relation:

$$P_n = P_{n-1} + 0.05P_{n-1} = 1.05P_{n-1}$$

Where, P_n = Current balance and P_{n-1} = Previous year balance and 0.05 is the compounding interest.

Example 6 - Solution

Initial condition, $P_0 = 10,000$. Then,

$$P_1 = 1.05P_0$$

 $P_2 = 1.05P_1 = (1.05)^2P_0$
 $P_3 = 1.05P_2 = (1.05)^3P_0$
...
 $P_n = 1.05P_{n-1} = (1.05)^nP_0$,

now we can use this formula to calculate n_{th} term without iteration

Example 6 - Solution

Let us use this formula to find P_{30} under the initial condition $P_0 = 10,000$:

$$P_{30} = (1.05)^{30}(10,000) = 43,219.42$$

After 30 years, the account contains RM 43,219.42.

Consider the following sequence:

1, 5, 9, 13, 17

Find the recurrence relation that defines the above sequence.

Answer:

$$a_n = a_{n-1} + 4$$
 , $n \ge 2$ with $a_1 = 1$

Exercise

A basketball is dropped onto the ground from a height of 15 feet. On each bounce, the ball reaches a maximum height 55% of its previous maximum height.

a)Write a recursive formula, a_n , that completely defines the height reached on the $n_{\rm th}$ bounce, where the first term in the sequence is the height reached on the ball's first bounce.

b)How high does the basketball reach after the 4_{th} bounce? Give your answer to two decimal places.

Recursive Algorithms

 A recursive procedure is a procedure that invokes itself.

 A recursive algorithm is an algorithm that contains a recursive procedure.

 Recursion is a powerful, elegant and natural way to solve a large class of problems.

example

Factorial problem

• If $n \ge 1$,

and

$$n! = n (n - 1) \dots 2. 1$$

 $0! = 1$

• Notice that, if $n \ge 2$, n factorial can be written,

$$n! = n (n-1)(n-2) \dots 2. 1$$

= $n. (n-1)!$

example

• 5!

$$4! = 4.3!$$

$$3! = 3.2!$$

Algorithm

- Input: n, integer ≥ 0
- Output: n!
- Factorial (n) {
 if (n=0)
 return 1
 return n*factorial(n-1)
 }

example

• Fibonacci sequence, f_n

$$f_1 = 1$$

 $f_2 = 1$
 $f_n = f_{n-1} + f_{n-2}, \quad n \ge 3$

1, 1, 2, 3, 5, 8, 13,

Algorithm

```
Input: n
  Output: f(n)
• f(n) {
      if (n=1 \text{ or } n=2)
             return 1
      return f(n-1) + f(n-2)
```


Consider the following arithmetic sequence: 1, 3, 5, 7, 9,...

Suppose $\underline{a_n}$ is the term sequence. The generating rule is $a_n = a_n - 1 + 2$, for n > 1. The relevant recursive algorithm can be written as

```
f(n)
\{ if (n = 1)
return 1
return f(n-1) +2
\}
```

Use the above recursive algorithm to trace n = 4

Solutions

Trace the output if n = 4

Answer = 7

exercise

Given,

$$s_n = 3 + 6 + 9 + \dots + 3n$$

 $s_1 = 3$ $s_n = s_{n-1} + 3n$ for $n \ge 2$,

• Write a recursive algorithm to compute S_n , $n \ge 1$.

Algorithm

```
Input: n
  Output: s(n)
• s(n) {
     if (n=1)
           return 3
     return s(n-1) + 3n
```


Exercise: Test 1 (2018/2019)

- 1. Suppose that the number of bacteria in a colony triples every hour.
 - a) Set up a recurrence relation for the number of bacteria after n hours have elapsed.
 - b) If 10 bacteria are used to begin a new colony, how many bacteria will be in the colony in 10 hours?
- Find a recurrence relation for the balance B(k) owed at the end of k months on a loan of RM9000
 at rate of 8% if a payment of RM150 is made each month.

[Hint: Express B(k) in terms of B(k-1); the monthly interest is (0.07/12) (B(k-1))]

3. Write a recursive algorithm for computing n^2 where n is a nonnegative integer using the fact that $(n+1)^2 = n^2 + 2n + 1$.