Second Order Linear Homogeneous DE

Dr. Md. Manirul Alam Sarker Professor Dept. of Mathematics, BUET

Initial-Value and Boundary-Value Problems

Initial-Value Problem: For a linear differential equation an nth-order initial-value problem is

Solve:
$$a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x) \frac{dy}{dx} + a_0(x)y = g(x)$$
 (1)

Subject to:
$$y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}.$$

Boundary-Value Problem Another type of problem consists of solving a linear differential equation of order two or greater in which the dependent variable y or its derivatives are specified at different points. A problem such as

Solve:
$$a_2(x) \frac{d^2y}{dx^2} + a_1(x) \frac{dy}{dx} + a_0(x)y = g(x)$$

Subject to:
$$y(a) = y_0, y(b) = y_1$$

is called a **boundary-value problem (BVP).** The prescribed values $y(a) = y_0$ and $y(b) = y_1$ are called **boundary conditions.** A solution of the foregoing problem is a function satisfying the differential equation on some interval I, containing a and b, whose graph passes through the two points (a, y_0) and (b, y_1) . See Figure 4.1.1.

For a second-order differential equation other pairs of boundary conditions could be

$$y'(a) = y_0,$$
 $y(b) = y_1$
 $y(a) = y_0,$ $y'(b) = y_1$
 $y'(a) = y_0,$ $y'(b) = y_1,$

FIGURE 4.1.1 Solution curves of a BVP that pass through two points

Homogeneous Equations

A linear nth-order differential equation of the form

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$
 (6)

is said to be **homogeneous**, whereas an equation

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x),$$
 (7)

with g(x) not identically zero, is said to be **nonhomogeneous**. For example, 2y'' + 3y' - 5y = 0 is a homogeneous linear second-order differential equation, whereas $x^3y''' + 6y' + 10y = e^x$ is a nonhomogeneous linear third-order differential equation. The word *homogeneous* in this context does not refer to coefficients that are homogeneous functions, as in Section 2.5.

We shall see that to solve a nonhomogeneous linear equation (7), we must first be able to solve the **associated homogeneous equation** (6).

To avoid needless repetition throughout the remainder of this text, we shall, as a matter of course, make the following important assumptions when stating definitions and theorems about linear equations (1). On some common interval *I*,

- the coefficient functions a_i(x), i = 0, 1, 2, ..., n and g(x) are continuous;
- a_n(x) ≠ 0 for every x in the interval.

Differential Operators In calculus differentiation is often denoted by the capital letter D—that is, dy/dx = Dy. The symbol D is called a **differential operator** because it transforms a differentiable function into another function. For example, $D(\cos 4x) = -4 \sin 4x$ and $D(5x^3 - 6x^2) = 15x^2 - 12x$. Higher-order derivatives can be expressed in terms of D in a natural manner:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2} = D(Dy) = D^2y$$
 and, in general, $\frac{d^ny}{dx^n} = D^ny$,

where y represents a sufficiently differentiable function. Polynomial expressions involving D, such as D + 3, $D^2 + 3D - 4$, and $5x^3D^3 - 6x^2D^2 + 4xD + 9$, are also differential operators. In general, we define an **nth-order differential operator** to be

$$L = a_n(x)D^n + a_{n-1}(x)D^{n-1} + \cdots + a_1(x)D + a_0(x).$$
(8)

Superposition Principle In the next theorem we see that the sum, or superposition, of two or more solutions of a homogeneous linear differential equation is also a solution.

THEOREM 4.1.2 Superposition Principle—Homogeneous Equations

Let y_1, y_2, \dots, y_k be solutions of the homogeneous nth-order differential equation (6) on an interval I. Then the linear combination

$$y = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_k y_k(x),$$

where the c_i , i = 1, 2, ..., k are arbitrary constants, is also a solution on the interval.

EXAMPLE 4

Superposition—Homogeneous DE

The functions $y_1 = x^2$ and $y_2 = x^2 \ln x$ are both solutions of the homogeneous linear equation $x^3y''' - 2xy' + 4y = 0$ on the interval (0,). By the superposition principle the linear combination

$$y = c_1 x^2 + c_2 x^2 \ln x$$

is also a solution of the equation on the interval.

The function $y = e^{7x}$ is a solution of y'' - 9y' + 14y = 0. Because the differential equation is linear and homogeneous, the constant multiple $y = ce^{7x}$ is also a solution. For various values of c we see that $y = 9e^{7x}$, y = 0, $y = -\sqrt{5}e^{7x}$, . . . are all solutions of the equation.

DEFINITION 4.1.1 Linear Dependence/Independence

A set of functions $f_1(x), f_2(x), \ldots, f_n(x)$ is said to be **linearly dependent** on an interval I if there exist constants c_1, c_2, \ldots, c_n , not all zero, such that

$$c_1 f_1(x) + c_2 f_2(x) + \cdots + c_n f_n(x) = 0$$

for every x in the interval. If the set of functions is not linearly dependent on the interval, it is said to be **linearly independent.**

FIGURE 4.1.3 Set consisting of f_1 and f_2 is linearly independent on $(-\infty,)$

EXAMPLE 5

Linearly Dependent Set of Functions

The set of functions $f_1(x) = \cos^2 x$, $f_2(x) = \sin^2 x$, $f_3(x) = \sec^2 x$, $f_4(x) = \tan^2 x$ is linearly dependent on the interval $(-\pi/2, \pi/2)$ because

$$c_1 \cos^2 x + c_2 \sin^2 x + c_3 \sec^2 x + c_4 \tan^2 x = 0$$

when $c_1 = c_2 = 1$, $c_3 = -1$, $c_4 = 1$. We used here $\cos^2 x + \sin^2 x = 1$ and $1 + \tan^2 x = \sec^2 x$.

A set of functions $f_1(x)$, $f_2(x)$, . . . , $f_n(x)$ is linearly dependent on an interval if at least one function can be expressed as a linear combination of the remaining functions.

EXAMPLE 6

Linearly Dependent Set of Functions

The set of functions $f_1(x) = \sqrt{x} + 5$, $f_2(x) = \sqrt{x} + 5x$, $f_3(x) = x - 1$, $f_4(x) = x^2$ is linearly dependent on the interval $(0, \cdot)$ because f_2 can be written as a linear combination of f_1, f_3 , and f_4 . Observe that

$$f_2(x) = 1 \cdot f_1(x) + 5 \cdot f_3(x) + 0 \cdot f_4(x)$$

for every x in the interval (0,).

Solutions of Differential Equations We are primarily interested in linearly independent functions or, more to the point, linearly independent solutions of a linear differential equation. Although we could always appeal directly to Definition 4.1.1, it turns out that the question of whether the set of n solutions y_1, y_2, \ldots, y_n of a homogeneous linear nth-order differential equation (6) is linearly independent can be settled somewhat mechanically by using a determinant.

DEFINITION 4.1.2 Wronskian

Suppose each of the functions $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ possesses at least n-1 derivatives. The determinant

$$W(f_1, f_2, \dots, f_n) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix},$$

where the primes denote derivatives, is called the Wronskian of the functions.

THEOREM 4.1.3 Criterion for Linearly Independent Solutions

Let y_1, y_2, \ldots, y_n be n solutions of the homogeneous linear nth-order differential equation (6) on an interval I. Then the set of solutions is **linearly** independent on I if and only if $W(y_1, y_2, \ldots, y_n) \neq 0$ for every x in the interval.

THEOREM 4.1.5 General Solution—Homogeneous Equations

Let $y_1, y_2, ..., y_n$ be a fundamental set of solutions of the homogeneous linear nthorder differential equation (6) on an interval I. Then the **general solution** of the
equation on the interval is

$$y = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x),$$

where c_i , i = 1, 2, ..., n are arbitrary constants.

EXAMPLE 7

General Solution of a Homogeneous DE

The functions $y_1 = e^{3x}$ and $y_2 = e^{-3x}$ are both solutions of the homogeneous linear equation y'' - 9y = 0 on the interval $(-\infty,)$. By inspection the solutions are linearly independent on the x-axis. This fact can be corroborated by observing that the Wronskian

$$W(e^{3x}, e^{-3x}) = \begin{vmatrix} e^{3x} & e^{-3x} \\ 3e^{3x} & -3e^{-3x} \end{vmatrix} = -6 \neq 0$$

for every x. We conclude that y_1 and y_2 form a fundamental set of solutions, and consequently, $y = c_1 e^{3x} + c_2 e^{-3x}$ is the general solution of the equation on the interval.

Second Order Homogeneous Linear DE

The Standard form of the Second Order Homogeneous Linear DE is

$$y'' + P(x)y' + Q(x)y = 0, (3)$$

where P(x) and Q(x) are continuous on some interval I. Let us suppose further that $y_1(x)$ is a known solution of (3) on I and that $y_1(x) \neq 0$ for every x in the interval. If we define $y = u(x)y_1(x)$, it follows that

$$y' = uy'_1 + y_1u', \quad y'' = uy''_1 + 2y'_1u' + y_1u''$$

$$y'' + Py' + Qy = u[y''_1 + Py'_1 + Qy_1] + y_1u'' + (2y'_1 + Py_1)u' = 0.$$

This implies that we must have

$$y_1u'' + (2y_1' + Py_1)u' = 0$$
 or $y_1w' + (2y_1' + Py_1)w = 0$, (4)

where we have let w = u'. Observe that the last equation in (4) is both linear and separable. Separating variables and integrating, we obtain

$$\frac{dw}{w} + 2\frac{y_1'}{y_1}dx + P\,dx = 0$$

$$\ln|wy_1^2| = -\int P \, dx + c$$
 or $wy_1^2 = c_1 e^{-\int P \, dx}$.

We solve the last equation for w, use w = u', and integrate again:

$$u = c_1 \int \frac{e^{-\int P \, dx}}{y_1^2} \, dx + c_2.$$

By choosing $c_1 = 1$ and $c_2 = 0$, we find from $y = u(x)y_1(x)$ that a second solution of equation (3) is

$$y_2 = y_1(x) \int \frac{e^{-\int P(x) \, dx}}{v_1^2(x)} \, dx. \tag{5}$$

EXAMPLE 2

A Second Solution by Formula (5)

The function $y_1 = x^2$ is a solution of $x^2y'' - 3xy' + 4y = 0$. Find the general solution of the differential equation on the interval $(0, \cdot)$.

SOLUTION From the standard form of the equation,

$$y'' - \frac{3}{x}y' + \frac{4}{x^2}y = 0,$$

we find from (5)

$$y_2 = x^2 \int \frac{e^{3\int dx/x}}{x^4} dx \leftarrow e^{3\int dx/x} = e^{\ln x^3} = x^3$$

$$= x^2 \int \frac{dx}{x} = x^2 \ln x.$$

The general solution on the interval (0,) is given by $y = c_1y_1 + c_2y_2$; that is, $y = c_1x^2 + c_2x^2 \ln x$.

In Problems 1–16 the indicated function $y_1(x)$ is a solution of the given differential equation. Use reduction of order or formula (5), as instructed, to find a second solution $y_2(x)$.

1.
$$y'' - 4y' + 4y = 0$$
; $y_1 = e^{2x}$

2.
$$y'' + 2y' + y = 0$$
; $y_1 = xe^{-x}$

3.
$$y'' + 16y = 0$$
; $y_1 = \cos 4x$

4.
$$y'' + 9y = 0$$
; $y_1 = \sin 3x$

5.
$$y'' - y = 0$$
; $y_1 = \cosh x$

6.
$$y'' - 25y = 0$$
; $y_1 = e^{5x}$

7.
$$9y'' - 12y' + 4y = 0$$
; $y_1 = e^{2x/3}$

8.
$$6y'' + y' - y = 0$$
; $y_1 = e^{x/3}$

9.
$$x^2y'' - 7xy' + 16y = 0$$
; $y_1 = x^4$

10.
$$x^2y'' + 2xy' - 6y = 0$$
; $y_1 = x^2$

11.
$$xy'' + y' = 0$$
; $y_1 = \ln x$

12.
$$4x^2y'' + y = 0$$
; $y_1 = x^{1/2} \ln x$

13.
$$x^2y'' - xy' + 2y = 0$$
; $y_1 = x \sin(\ln x)$

14.
$$x^2y'' - 3xy' + 5y = 0$$
; $y_1 = x^2 \cos(\ln x)$

15.
$$(1 - 2x - x^2)y'' + 2(1 + x)y' - 2y = 0; y_1 = x + 1$$

16.
$$(1 - x^2)y'' + 2xy' = 0$$
; $y_1 = 1$

Homogeneous Linear Equations with Constant Coefficients

Let us considering the following second order differential equation

$$ay'' + by' + cy = 0,$$
 (2)

where a, b, and c are constants. If we try to find a solution of the form $y = e^{mx}$, then after substitution of $y' = me^{mx}$ and $y'' = m^2 e^{mx}$, equation (2) becomes

$$am^2e^{mx} + bme^{mx} + ce^{mx} = 0$$
 or $e^{mx}(am^2 + bm + c) = 0$.

As in the introduction we argue that because $e^{mx} \neq 0$ for all x, it is apparent that the only way $y = e^{mx}$ can satisfy the differential equation (2) is when m is chosen as a root of the quadratic equation

$$am^2 + bm + c = 0.$$
 (3)

This last equation is called the **auxiliary equation** of the differential equation (2). Since the two roots of (3) are $m_1 = (-b + \sqrt{b^2 - 4ac})/2a$ and $m_2 = (-b - \sqrt{b^2 - 4ac})/2a$, there will be three forms of the general solution of (2) corresponding to the three cases:

- m₁ and m₂ real and distinct (b² 4ac > 0),
- m₁ and m₂ real and equal (b² 4ac = 0), and
- m₁ and m₂ conjugate complex numbers (b² − 4ac < 0).

We discuss each of these cases in turn.

Case I: Distinct Real Roots Under the assumption that the auxiliary equation (3) has two unequal real roots m_1 and m_2 , we find two solutions, $y_1 = e^{m_1 x}$ and $y_2 = e^{m_2 x}$. We see that these functions are linearly independent on $(-\infty,)$ and hence form a fundamental set. It follows that the general solution of (2) on this interval is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}. (4)$$

Case II: Repeated Real Roots When $m_1 = m_2$, we necessarily obtain only one exponential solution, $y_1 = e^{m_1 x}$. From the quadratic formula we find that $m_1 = -b/2a$ since the only way to have $m_1 = m_2$ is to have $b^2 - 4ac = 0$. It follows from (5) in Section 4.2 that a second solution of the equation is

$$y_2 = e^{m_1 x} \int \frac{e^{2m_1 x}}{e^{2m_1 x}} dx = e^{m_1 x} \int dx = x e^{m_1 x}.$$
 (5)

In (5) we have used the fact that $-b/a = 2m_1$. The general solution is then

$$y = c_1 e^{m_1 x} + c_2 x e^{m_1 x}. (6)$$

Case III: Conjugate Complex Roots If m_1 and m_2 are complex, then we can write $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$, where α and $\beta > 0$ are real and $i^2 = -1$. Formally, there is no difference between this case and Case I, and hence

$$y = C_1 e^{(\alpha + i\beta)x} + C_2 e^{(\alpha - i\beta)x}.$$

However, in practice we prefer to work with real functions instead of complex exponentials. To this end we use **Euler's formula**:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

where θ is any real number. It follows from this formula that

$$e^{i\beta x} = \cos \beta x + i \sin \beta x$$
 and $e^{-i\beta x} = \cos \beta x - i \sin \beta x$, (7)

EXAMPLE 1

Second-Order DEs

Solve the following differential equations.

(a)
$$2y'' - 5y' - 3y = 0$$

(a)
$$2y'' - 5y' - 3y = 0$$
 (b) $y'' - 10y' + 25y = 0$ (c) $y'' + 4y' + 7y = 0$

(c)
$$y'' + 4y' + 7y = 0$$

SOLUTION We give the auxiliary equations, the roots, and the corresponding general solutions.

(a)
$$2m^2 - 5m - 3 = (2m + 1)(m - 3) = 0$$
, $m_1 = -\frac{1}{2}$, $m_2 = 3$

From (4), $y = c_1 e^{-x/2} + c_2 e^{3x}$.

(b)
$$m^2 - 10m + 25 = (m - 5)^2 = 0$$
, $m_1 = m_2 = 5$

From (6), $y = c_1 e^{5x} + c_2 x e^{5x}$.

(c)
$$m^2 + 4m + 7 = 0$$
, $m_1 = -2 + \sqrt{3}i$, $m_2 = -2 - \sqrt{3}i$

From (8) with
$$\alpha = -2$$
, $\beta = \sqrt{3}$, $y = e^{-2x}(c_1 \cos \sqrt{3}x + c_2 \sin \sqrt{3}x)$.

EXAMPLE 2 An Initial-Value Problem

Solve
$$4y'' + 4y' + 17y = 0$$
, $y(0) = -1$, $y'(0) = 2$.

SOLUTION By the quadratic formula we find that the roots of the auxiliary equation $4m^2 + 4m + 17 = 0$ are $m_1 = -\frac{1}{2} + 2i$ and $m_2 = -\frac{1}{2} - 2i$. Thus from (8) we have $y = e^{-x/2}(c_1 \cos 2x + c_2 \sin 2x)$. Applying the condition y(0) = -1, see from $e^0(c_1 \cos 0 + c_2 \sin 0) = -1$ that $c_1 = -1$. Differentiating $y = e^{-x/2}(-\cos 2x + c_2 \sin 2x)$ and then using y'(0) = 2 gives $2c_2 + \frac{1}{2} = 2$ or $c_2 = \frac{3}{4}$. Hence the solution of the IVP is $y = e^{-x/2}(-\cos 2x + \frac{3}{4}\sin 2x)$. In Figure 4.3.1 we see that the solution is oscillatory, but $y \rightarrow 0$ as $x \rightarrow ...$

FIGURE 4.3.1 Solution curve of IVP in Example 2

Two Equations Worth Knowing The two differential equations

$$y'' + k^2y = 0$$
 and $y'' - k^2y = 0$,

where k is real, are important in applied mathematics. For $y'' + k^2y = 0$ the auxiliary equation $m^2 + k^2 = 0$ has imaginary roots $m_1 = ki$ and $m_2 = -ki$. With $\alpha = 0$ and $\beta = k$ in (8) the general solution of the DE is seen to be

$$y = c_1 \cos kx + c_2 \sin kx. \tag{9}$$

On the other hand, the auxiliary equation $m^2 - k^2 = 0$ for $y'' - k^2y = 0$ has distinct real roots $m_1 = k$ and $m_2 = -k$, and so by (4) the general solution of the DE is

$$y = c_1 e^{kx} + c_2 e^{-kx}. (10)$$

Notice that if we choose $c_1 = c_2 = \frac{1}{2}$ and $c_1 = \frac{1}{2}$, $c_2 = -\frac{1}{2}$ in (10), we get the particular solutions $y = \frac{1}{2}(e^{kx} + e^{-kx}) = \cosh kx$ and $y = \frac{1}{2}(e^{kx} - e^{-kx}) = \sinh kx$. Since $\cosh kx$ and $\sinh kx$ are linearly independent on any interval of the x-axis, an alternative form for the general solution of $y'' - k^2y = 0$ is

$$y = c_1 \cosh kx + c_2 \sinh kx. \tag{11}$$

See Problems 41 and 42 in Exercises 4.3.

Higher-Order Equations In general, to solve an *n*th-order differential equation (1), where the a_i , i = 0, 1, ..., n are real constants, we must solve an *n*th-degree polynomial equation

$$a_n m^n + a_{n-1} m^{n-1} + \dots + a_2 m^2 + a_1 m + a_0 = 0.$$
 (12)

If all the roots of (12) are real and distinct, then the general solution of (1) is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x} + \cdots + c_n e^{m_n x}$$
.

It is somewhat harder to summarize the analogues of Cases II and III because the roots of an auxiliary equation of degree greater than two can occur in many combinations. For example, a fifth-degree equation could have five distinct real roots, or three distinct real and two complex roots, or one real and four complex roots, or five real but equal roots, or five real roots but two of them equal, and so on. When m_1 is a root of multiplicity k of an nth-degree auxiliary equation (that is, k roots are equal to m_1), it can be shown that the linearly independent solutions are

$$e^{m_1x}$$
, xe^{m_1x} , $x^2e^{m_1x}$, ..., $x^{k-1}e^{m_1x}$

and the general solution must contain the linear combination

$$c_1e^{m_1x} + c_2xe^{m_1x} + c_3x^2e^{m_1x} + \cdots + c_kx^{k-1}e^{m_1x}$$
.

Finally, it should be remembered that when the coefficients are real, complex roots of an auxiliary equation always appear in conjugate pairs. Thus, for example, a cubic polynomial equation can have at most two complex roots.

In Problems 1–14 find the general solution of the given second-order differential equation.

1.
$$4y'' + y' = 0$$

3.
$$y'' - y' - 6y = 0$$

5.
$$y'' + 8y' + 16y = 0$$

7.
$$12y'' - 5y' - 2y = 0$$

9.
$$y'' + 9y = 0$$

11.
$$y'' - 4y' + 5y = 0$$

13.
$$3y'' + 2y' + y = 0$$

2.
$$y'' - 36y = 0$$

4.
$$y'' - 3y' + 2y = 0$$

6.
$$y'' - 10y' + 25y = 0$$

8.
$$y'' + 4y' - y = 0$$

10.
$$3y'' + y = 0$$

12.
$$2y'' + 2y' + y = 0$$

14.
$$2y'' - 3y' + 4y = 0$$

In Problems 29-36 solve the given initial-value problem.

29.
$$y'' + 16y = 0$$
, $y(0) = 2$, $y'(0) = -2$

30.
$$\frac{d^2y}{d\theta^2} + y = 0$$
, $y(\pi/3) = 0$, $y'(\pi/3) = 2$

31.
$$\frac{d^2y}{dt^2} - 4\frac{dy}{dt} - 5y = 0$$
, $y(1) = 0$, $y'(1) = 2$

32.
$$4y'' - 4y' - 3y = 0$$
, $y(0) = 1$, $y'(0) = 5$

33.
$$y'' + y' + 2y = 0$$
, $y(0) = y'(0) = 0$

34.
$$y'' - 2y' + y = 0$$
, $y(0) = 5$, $y'(0) = 10$

In Problems 37–40 solve the given boundary-value problem.

37.
$$y'' - 10y' + 25y = 0$$
, $y(0) = 1$, $y(1) = 0$

38.
$$y'' + 4y = 0$$
, $y(0) = 0$, $y(\pi) = 0$

39.
$$y'' + y = 0$$
, $y'(0) = 0$, $y'(\pi/2) = 0$

40.
$$y'' - 2y' + 2y = 0$$
, $y(0) = 1$, $y(\pi) = 1$

In Problems 49–58 find a homogeneous linear differential equation with constant coefficients whose general solution is given.

49.
$$y = c_1 e^x + c_2 e^{5x}$$

50.
$$y = c_1 e^{-4x} + c_2 e^{-3x}$$

51.
$$y = c_1 + c_2 e^{2x}$$

52.
$$y = c_1 e^{10x} + c_2 x e^{10x}$$

53.
$$y = c_1 \cos 3x + c_2 \sin 3x$$

53.
$$y = c_1 \cos 3x + c_2 \sin 3x$$
 54. $y = c_1 \cosh 7x + c_2 \sinh 7x$

55.
$$y = c_1 e^{-x} \cos x + c_2 e^{-x} \sin x$$

Thanks a lot ...