泛函分析期末 NICOLAS KENG

泛函分析期末

1. (10) 陈述度量空间的定义; 设 $\{a_n\}$ 为度量空间 (X,ρ) 中的 Cauchy 列, 证明存在常数 M 使得 $\forall n, \rho(a_n,a_1) \leq M$.

2. (15) 陈述完备赋范空间的定义; 在线性空间

$$c_{00} = \{a = \{a_n\} \mid \exists N, \text{ s.t. } \forall n > N, a_n = 0\}$$

上定义 $||a|| = \max\{|a_n| \mid 1 \le n < \infty\}$, 证明 c_{00} 是赋范空间并求其完备化.

3. (15) 陈述 Hilbert 空间的定义; 设 M 为 Hilbert 空间 H 的闭子空间, 陈述商空间 H/M 的定义并证明 H/M 与 M^{\perp} 等距同构.

4. (18)

- (1) 陈述 \mathbb{C} 上单位圆盘 D 的 Bergman 空间 $L_a^2(D)$ 的定义;
- (2) $\forall \lambda \in D$, 证明赋值泛函 $\varphi_{\lambda}(f) = f(\lambda)$ 是 $L_a^2(D)$ 上的有界线性泛函并求其范数;
- (3) 求函数 $K_{\lambda} \in L_a^2(D)$ 使得 $\forall f \in L_a^2(D), f(\lambda) = \langle f, K_{\lambda} \rangle$.
- 5. (12) 陈述开映射定理和 Banach 逆算子定理, 并用后者证明前者.
- 6. (18)
- (1) 陈述自反空间和弱*拓扑的定义;
- (2) 在空间

$$c_0 = \{a = \{a_n\} \mid \lim_{n \to \infty} a_n = 0\}$$

上赋范 $||a|| = \sup_{n \in \mathbb{N}} |a_n|$, 证明 c_0 不是自反空间, 但 c_0 在 c_0^{**} 中按弱 * 拓扑稠密.

- 7. (12)
- (1) 陈述紧算子的定义;
- (2) 设 A 是 Hilbert 空间 H 上的有界线性算子, 证明 A 是紧算子当且仅当 A*A 是紧算子.