Teoremi

Agostino Cesarano

January 2024

Part II

Funzioni continue

1 Permanenza del segno

Sia f(x) una funzione, e sia $x_0 \in \mathbb{R}$. Se f è continua in x_0 , e se $f(x_0)$ è diverso da zero (e quindi ha un segno), allora la funzione mantiene lo stesso segno di $f(x_0)$ in tutto un intorno di x_0 .

In altre parole, se il limite di una funzione in un punto è positivo, allora la funzione sarà positiva in un intorno di quel punto. Analogamente, se il limite è negativo, la funzione sarà negativa in un intorno del punto.

Attenzione

È importante notare che questo teorema si applica solo quando il limite della funzione è diverso da zero. Se il limite è zero, la funzione può assumere valori sia positivi che negativi in un intorno del punto.

2 Teorema dell'esistenza degli zeri (Teorema di Bolzano)

Sia f(x) una funzione continua su un intervallo chiuso [a,b], e supponiamo che f(a) e f(b) abbiano segni opposti, cioè $f(a) \cdot f(b) < 0$. Allora esiste almeno un numero $c \in (a,b)$ tale che f(c) = 0.

3 (Primo)Teorema dell'iesistenza dei valori intermedi

Una funzione continua in un intervallo [a,b] assume tutti i valori compresi tra f(a) e f(b). Conseguenza del teorema dell'esistenza degli zeri

4 Teorema di Weierstrass

Sia f(x) una funzione continua in un intervallo chiuso e limitato [a,b]. Allora f(x) assume massimo e minimo in [a,b], cioè esistono in $[a,b]x_1,x_2$ tali che

$$f(x_1) \le f(x) \le f(x_2), \forall x \in [a, b]$$

I numeri x_1, x_2 sono detti rispettamente punti di minimo e massimo per f(x) nell' intervallo [a, b].

5 (Secondo)Teorema dell'esistenza dei valori intermedi

Una funzione continua in un intervallo [a,b] assume tutti i valori compresi tra il minimo e il massimo. Conseguenza del teorema di Weierstrass

6 Teorema di continuità delle funzioni inverse

Sia f(x) una funzione strettamente monotona¹ in [a,b]. Se f(x) è continua, anche la funzione f^{-1} è continua.

 $^{^1\}mathrm{Strettamente}$ crescente o Strettamente decrescente