

Capillary-assisted evaporator.

Patent number: EP0210337
Publication date: 1987-02-04
Inventor: KREEB HELMUT DR-ING; MOLLER PETER DIPL-ING
Applicant: DORNIER SYSTEM GMBH (DE)
Classification:
 - international: F25B39/02; F25B41/06
 - european: F25B39/02, F25B41/06C, F28D15/04A
Application number: EP19860105061 19860412
Priority number(s): DE19853526574 19850725

Also published as:
 EP0210337 (A3)
 DE3526574 (C1)

Cited documents:
 DE633200
 DE825693
 US4467861
 US3971435
 GB2134236
[more >>](#)

Abstract of EP0210337

The capillary-assisted evaporator (1) for heat absorption and for transport of a heat transfer medium (11) from a heat source, acted upon by heat from the outside, to a heat sink and after condensation back to the heat source, consists of an inner tube (2) provided with a perforation (5) and, arranged coaxially therewith, an outer tube (3) provided with vapour channels (7), a capillary structure arranged around the perforation (5), a heat source arranged around the outer tube (3), and a collecting tube (10) arranged on the exit side of the capillary evaporator. The supply of the fluid medium (11) takes place axially through the inner tube (2) and radially through the perforation (5) into the capillary structure. From the latter, the medium (11) flows, with the heat flow supplied, in the form of vapour into the vapour channels (7) arranged above, from where it is conducted off via the collecting tube (10) to the heat sink. The capillary structure consists of carbon fibres (8) which are cylindrically wound or arranged in a plane position.

Fig. 1

Data supplied from the esp@cenet database - Worldwide

Best Available Copy

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer: 0 210 337
A2

②

EUROPÄISCHE PATENTANMELDUNG

② Anmeldenummer: 86105061.5

⑤ Int. Cl. 4: F25B 39/02, F25B 41/06

② Anmeldetag: 12.04.86

② Priorität: 25.07.85 DE 3526574

② Veröffentlichungstag der Anmeldung:
04.02.87 Patentblatt 87/06

② Benannte Vertragsstaaten:
BE GB IT NL

① Anmelder: DORNIER SYSTEM GmbH
Postfach 1360
D-7990 Friedrichshafen(DE)

② Erfinder: Kreeb, Helmut, Dr.-Ing.
Von Lassbergstrasse 19
D-7758 Meersburg(DE)
Erfinder: Möller, Peter, Dipl.-Ing.
Litzgaublick 8
D-7777 Selzen(DE)

② Vertreter: Landsmann, Ralf, Dipl.-Ing.
Kleeweg 3
D-7990 Friedrichshafen 1(DE)

④ Kapillarunterstützter Verdampfer.

④ Der Kapillarunterstützte Verdampfer (1) zur Wärmeaufnahme und zum Transport eines Wärmeträgermediums (11) von einer von außen wärmebeaufschlagten Wärmequelle zu einer Wärmesenke und nach Kodensation zurück zur Wärmequelle besteht aus einem mit einer Perforation (5) versehenen Innenrohr (2) und einem koaxial dazu angeordneten mit Dampfkanälen (7) versehenen Außenrohr (3), einer um die Perforation (5) angeordneten Kapillarstruktur, einer um das Außenrohr (3) angeordneten Wärmequelle und ein an der Austrittsseite des Kapillarverdampfers angeordnetes Sammelförder (10). Die Zufuhr des flüssigen Mediums (11) erfolgt axial durch das Innenrohr (2) und radial durch die Perforation (5) in die Kapillarstruktur. Von dieser strömt das Medium (11) unter der Zufuhr des Wärmestromes dampfförmig in die darüber angeordneten Dampfkanäle (7), von wo es über das Sammelförder (10) an die Wärmesenke abgeleitet wird. Die Kapillarstruktur besteht aus zylindrisch gewickelten oder in ebener Lage angeordneten Kohlefasern (8).

A2
337 A2
0 210 337 A2
EP 0

Fig. 1

Kapillarunterstützter Verdampfer

Die Erfindung betrifft einen kapillarunterstützten Verdampfer zur Wärmeaufnahme und zum Transport eines Wärmeträgermediums gemäß dem Oberbegriff von Anspruch 1.

Kapillarverdampfer sind in sogenannten "Two-Phase Flow"-Wärmetransportkreisläufen einsetzbar. Darunter sind Wärmetransportsysteme zu verstehen, mit denen anfallende Verlustwärme im Verdampferelement aufgenommen und unter Verdampfung eines geeigneten Wärmeträgermediums als latente Wärme im Dampf zum Kondensator transportiert und dort an eine Wärmesenke abgegeben wird. Derartige Kapillarverdampfer ermöglichen Wärmeströme von dissipierenden Komponenten hoher Leistungsdichte aufzunehmen und auf einen verdampfenden Wärmeträger zu übertragen. Die darin verwendete Kapillarstruktur bewirkt die Verteilung des flüssigen Mediums entlang der wärmeaufnehmenden Wand, sowie ein Druckpotential zwischen Dampf- und Flüssigkeitsphase des Wärmeträgers. Dadurch wird der erforderliche Kreislauf des Wärmeträgers und damit die Zufuhr des flüssigen Mediums zum Verdampfer (Wärmequelle) ermöglicht. Dies gilt insbesondere für Anwendungen in Schwerelosigkeit - (Raumfahrt). Solche Kapillarverdampfer sind als thermische Komponenten in Wärmetransportsystemen besonders vorteilhaft einsetzbar, wenn ein Betrieb bei geringsten Vibratior- nien und Zusatzbeschleunigungen (keine mechanisch bewegten Teile) sowie ohne zusätzlichen Leistungsbedarf erforderlich ist. Der Kapillarverdampfer wird dazu in den Kreislauf so eingekoppelt, daß das Wärmeträgermedium als unterkühlte Flüssigkeit zugeführt wird und nach Verdampfen als gesättigter Dampf ausströmt. Durch die Kapillarstruktur erfolgt eine Separation der zwei Phasen, eine gleichmäßige Flüssigkeitsverteilung sowie ein Pumpen der Flüssigkeit aufgrund der in der Kapillarstruktur wirkenden Kapillarkräfte.

Die grundsätzliche Auslegung und Wirkungsweise eines Kapillarverdampfers ist bekannt aus "Experimental Feasibility Study of Water Filled Capillary Pumped Heat Transfer Loop, NASA TMX 1310, Nov. 1966". Die darin beschriebene sogenannte Kapillarpumpe besteht aus zwei koaxial angeordneten Röhren und einer dazwischenliegende Kapillarstruktur aus Quarzfiber. Sie umgibt ein perforiertes Rohr und liegt an einer mit Längsrillen und -stegen ausgebildeten inneren Fläche des Außenrohrs an. Infolge der von den Kapillarkräften bewirkten Druckdifferenz strömt das Medium durch das innere, perforierte Rohr in die Kapillarstruktur und verdampft unter Zufuhr von Wärme (erzeugt

durch einen elektrischen Grenzfläche zwischen der Kapillarstruktur. Der hier entstehende Dampf zwischen den Stegen angeordneten L.

Nachteilig ist hierbei, daß mit der v. Kapillarstruktur eine für zukünftige Anwendung höhere erforderliche Wärmetransportleistung nicht erreicht wird und eine extreme Lichkeit gegenüber nichtkondensierbarer oder Bildung von Dampfblasen, c Flüssigkeitstransport unterbrechen, besteht

Aufgabe der Erfindung ist es, einen unterstützen Verdampfer zu schaffen, mit d. Wärmetransportleistungen unter Verwendung speziellen Kapillarstruktur und Vermeidung Gas- und Dampfblasenempfindlichkeit sind. Zur Verwendung großer Temperaturen zwischen wärmeaufnehmender Wand und dampfendem Medium sollte eine gute thermische Leitfähigkeit der zusammengesetzten Komponenten bei einfacher Herstellung vorgezogen werden.

Zur Lösung der gestellten Aufgabe kennzeichnenden Merkmale des Anspruchs gesehen.

Vorteilhafte Weiterbildungen ergeben sich Unteransprüchen.

Der Vorteil der Erfindung besteht darin, durch Verwendung von sehr feinen Kohlefaseren die Kapillarstruktur eine hohe Kapillarkraft zu erhalten, die mit gemessenen Steighöhen von bis 15 cm somit größer ist, als die von konventionellen Kapillarstrukturen aus Metalfasern geweben. Die Kohlefasern sind von üblichen Wärmeträger verwendeten flüssigen Medien erforderlichen Temperaturen gut benetzbar, sch und thermisch beständig, alterungsbeständig sowie flexibel und demzufolge leicht zu handhaben. Weiterhin besitzen Kohlefasern eine relativ geringe thermische Leitfähigkeit, so daß die Dampfblasenbildung in der Kapillarstruktur verhindert wird.

Ausführungsbeispiele sind folgend beschrieben und durch Skizzen erläutert.

Es zeigen:

Figur 1 einen Längs- und Querschnitt eines Kapillarverdampfers mit einem auf der Innenseite mit V-förmigen Längsrillen versehenen Außenrohr, einem koaxial dazu angeordneten perforierten Rohr und dazwischenliegenden Kapillarstrukturen aus Kohlefaseren.

Figur 2 einen Längs- und Querschnitt eines Kapillarverdampfers mit einem auf der Innenseite mit U-förmigen Rillen versehenen Außenrohr,

em koaxial angeordneten, auf der Außenfläche mit Längsrillen versehenen Innenrohr und dazwischen angeordneten Kohlefasern als Kapillarstruktur,

Figur 3 einen plattenförmigen Kapillarverdampfer.

Aus Figur 1 ist ein Kapillarverdampfer 1 im Längs-(oben) und Querschnitt (unten) ersichtlich. Er besteht aus zwei koaxial angeordneten Rohren 2, 3, wovon die Wand 4 des Innenrohres 2 mit einer Perforation 5 und die Wand 6 des Außenrohres 3 auf der Außenfläche mit V-förmigen Längsrillen 7 versehen ist. Um das Innenrohr 2 ist um die Perforation 5 eine aus Kohlefaser 8 gewickelte sehr feine Kapillarstruktur ringförmig angeordnet, deren äußere Oberfläche an den Längsstegen des Außenrohres 3 fest anliegt. Der erforderliche radiale Anpreßdruck ergibt sich aus der Konizität von Innenrohr 2 und Außenrohr 3 durch axiales Verschieben. Das Innenrohr 2 ist auf der Dampfaustrittsseite mit einem Stopfen 9 verschlossen und das Außenrohr 3 mit einem Sammellohr 10 verbunden. Die Zufuhr eines als Wärmeträger geeigneten flüssigen Mediums 11 erfolgt axial in das Innenrohr 2 und radial durch die Perforation 5 der Wand 4 in die darüber angeordnete aus Kohlefaser 8 bestehende Kapillarstruktur (siehe Pfeile). Hier verteilt sich das flüssige Medium 11 und verdampft bei Wärmezufuhr (siehe Pfeile) durch die Wand 6 unter Ausbildung eines invertierten Meniskus an der Berührungsfläche 12 zwischen der Flüssigkeit und den V-förmigen Längsstegen 7. Die Zufuhr des notwendigen Wärmestromes kann beispielsweise durch Abwärme dissipierender Komponenten oder eine um das Außenrohr 3 angeordnete elektrische Heizspirale (in der Figur nicht gezeigt) erfolgen. Der dabei entstehende Dampf strömt durch die nur teilweise mit dem flüssigen Medium 11 gefüllten V-förmigen Längsstegen 7 zum Sammellohr 10 - (siehe Pfeile).

In Figur 2 ist eine weitere Variante eines Kapillarverdampfers 1 im Längs-(oben) und Querschnitt (unten) ersichtlich. Im Gegensatz zum Ausführungsbispiel gemäß Figur 1 wird hier das flüssige Medium 11 zunächst einem am Eintritt - (siehe Pfeil) befindlichen und von einem Deckel 13 des Innenrohres 2 und vom Außenrohr 3 mit Deckel 14 gebildeten freien Raum 15 zugeführt. Von hier strömt das Medium 11 durch im Deckel 13 vorgesehene Bohrungen 16 in am Außenumfang des Innenrohres 2 angeordnete Längsrillen als Strömungskanäle 17 (siehe Pfeile), die abwechselnd als Dampf- und Flüssigkeitskanäle fungieren. Die um das Innenrohr 2 angeordneten und als Kapillarstruktur wirkenden Kohlefasern 8 saugen das flüssige Medium 11 aus den entsprechenden flüssigkeitsgefüllten Längsrillen 17 und bewirken mit den am inneren Umfang des Außenrohres 3 angeordneten Umfangsrillen 20 zusätzlich eine

gleichmäßige Verteilung. Unter Zufuhr eines Wärmestromes in die Wand 6 des Außenrohres 3 - (siehe Pfeil) verdampft das Medium 11 innerhalb der Kapillarstruktur aus den Kohlefasern 8 oder an

5 seiner Grenzfläche zu den Umfangsrillen 20. Von den sich hierbei ergebenden zwei radial gerichteten Strömungen ist die eine Strömung des flüssigen Mediums 11 nach außen und die andere des verdampften Mediums 11 nach innen in die 10 Dampfkanäle 17 gerichtet.

Das dampfförmige Medium 11 strömt durch die periodisch angeordnete Perforation 18 in das Sammellohr 19 ab. Bei Verwendung eines geteilten Außenrohres 3 und zur Erzeugung des erforderlichen Anpreßdruckes für einen guten Kontakt zwischen den Kohlefasern 8 und dem Rohrmaterial, sowie einfacher Montage, sind die beiden Rohrhälften 3 mittels einer Verschraubung 21 miteinander verbunden (untere Figur).

Die Figur 3 zeigt einen Schnitt durch einen Kapillarverdampfer 22 in Plattenform. Er besteht aus zwei übereinander angeordneten Platten 23, 24, von denen die untere Platte 23 mit zur Innenseite weisenden Kanälen 25 durchzogen ist, über die in einer breiten Ausnehmung 26 die Kohlefaser 8 als Kapillarstruktur gelegt sind. Die obere Platte 24 ist auf der zu den Kohlefasern 8 weisenden Fläche mit einer Anzahl Rillen 27 durchzogen, die am hinteren Plattenende in einen dort geschlossenen Sammelkanal 28 münden. Das flüssige Medium 11 gelangt von den Kanälen 25 - (siehe Pfeile) in die Kohlefaser 8, wird dort verteilt und nach Zufuhr eines Wärmestromes (siehe senkrechter Pfeil) in die obere Platte 24 an der Grenzfläche zwischen Kohlefaser 8 und Stegen 30 verdampft. Der entstehende Dampf strömt, wie oben erläutert, in den Sammelkanal 28 und von dort zur Wärmesenke ab. Die beiden Platten 23, 24 sind durch eine Verschraubung 29 miteinander fest verbunden.

Ansprüche

45 1. Kapillarunterstützter Verdampfer zur Wärmeaufnahme und zum Transport eines Wärmeträgermediums von einer von außen wärmebeaufschlagten Wärmequelle zu einer Wärmesenke und nach Kondensation zurück zu der Wärmequelle, bestehend aus einem mit einer Perforation versehenen Innenrohr und einem koaxial dazu angeordneten mit Dampfkanälen versehenen Außenrohr, einer um die Perforation angeordneten Kapillarstruktur, einer um das Außenrohr angeordneten Wärmequelle und ein an der Austrittsseite des Kapillarverdampfers angeordnetes Sammellohr, wobei die Zufuhr des flüssigen Mediums

axial durch das Innenrohr und radial durch die Perforation in die Kapillarstruktur strömt und von dieser unter der Zufuhr des Wärmestromes dampfförmig in die darüber angeordneten Dampfkanäle strömt und über das Sammellohr an die Wärmesenke abgeleitet wird, dadurch gekennzeichnet, daß die Kapillarstruktur aus zylindrisch gewickelten oder in ebener Lage angeordneten Kohlefasern (8) besteht.

2. Verdampfer nach Anspruch 1, dadurch gekennzeichnet, daß die Kohlefasern (8) zwischen den Wänden (4, 6) und den Kanälen (5, 7, 17, 20) angeordnet sind.

3. Verdampfer nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Verteilung des flüssigen Mediums (11) entlang der Wärmetauschflächen durch Umfangsrillen (20) und/oder durch die Kohlefasern (8) erfolgt.

4. Verdampfer nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Kohlefasern (8) einzelne Kohlestränge sind.

5. Verdampfer nach den Ansprüchen 1 und 3, dadurch gekennzeichnet, daß die Kohlefasern (8) ein Gewebe bilden.

6. Verdampfer nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Kohlefasern (8) ein mehrlagiges Gewebe ist.

7. Verdampfer nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Kohlefasern (8) zwischen zwei mit Längsrillen als Strömungskanäle (25, 27) versehene und miteinander verspannte Platten (23, 24) angeordnet sind.

8. Verdampfer nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß die Kohlefasern (8) durch zwei koaxiale, konische Rohre (2, 3) gegen die Auflageflächen gedrückt werden.

5 9. Verdampfer nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß die Kohlefasern (8) durch zwei miteinander verspannte Rohre (2, 3), wovon das äußere Rohr (3) geteilt ist, gegen die Auflageflächen gedrückt werden.

10 10. Verdampfer nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Innenrohr (2) ein Federelement ist.

15 11. Verdampfer nach Anspruch 10, dadurch gekennzeichnet, daß die Kohlefaser (8) durch das Federelement gegen die Auflageflächen gedrückt werden.

12. Verdampfer nach den Ansprüchen 10 und 11, dadurch gekennzeichnet, daß das Federelement ein elastisches Drahtgewebe ist.

20 13. Verdampfer nach den Ansprüchen 10 und 11, dadurch gekennzeichnet, daß das Federelement eine zylindrische Spiralfeder ist.

25 14. Verdampfer nach den Ansprüchen 1 bis 13, dadurch gekennzeichnet, daß der Kreislauf des Mediums (11) durch die Kapillarkräfte der Kohlefasern (8) aufrecht erhalten wird.

30 15. Verdampfer nach den Ansprüchen 1 bis 14, dadurch gekennzeichnet, daß der Kreislauf des Mediums (11) durch eine im Kreislauf angeordnete mechanische Pumpe unterstützt wird.

35

40

45

50

55

4

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) Veröffentlichungsnummer:

0 210 337

A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 86105061.5

(51) Int. Cl. 4: F25B 39/02 , F25B 41/06

(22) Anmeldetag: 12.04.86

(30) Priorität: 25.07.85 DE 3526574

(71) Anmelder: DORNIER GMBH

Postfach 1420

D-7990 Friedrichshafen 1(DE)

(43) Veröffentlichungstag der Anmeldung:
04.02.87 Patentblatt 87/06

(72) Erfinder: Kreeb, Helmut, Dr.-Ing.

Von Lassbergstrasse 19

D-7758 Meersburg(DE)

Erfinder: Möller, Peter, Dipl.-Ing.

Lizgaublick 8

D-7777 Salem(DE)

(84) Benannte Vertragsstaaten:
BE GB IT NL

(74) Vertreter: Landsmann, Ralf, Dipl.-Ing.
Kleeweg 3

D-7990 Friedrichshafen 1(DE)

(55) Veröffentlichungstag des später ver öffentlichten
Recherchenberichts: 06.09.89 Patentblatt 89/36

54) Kapillarunterstützter Verdampfer.

57) Der Kapillarunterstützte Verdampfer (1) zur Wärmeaufnahme und zum Transport eines Wärmeträgermediums (11) von einer von außen wärmebeaufschlagten Wärmequelle zu einer Wärmesenke und nach Kodensation zurück zur Wärmequelle besteht aus einem mit einer Perforation (5) versehenen Innenrohr (2) und einem koaxial dazu angeordneten mit Dampfkanälen (7) versehenen Außenrohr (3), einer um die Perforation (5) angeordneten Kapillarstruktur, einer um das Außenrohr (3) angeordneten Wärmequelle und ein an der Austrittsseite des Kapillarverdampfers angeordnetes Sammelrohr (10). Die Zufuhr des flüssigen Mediums (11) erfolgt axial durch das Innenrohr (2) und radial durch die Perforation (5) in die Kapillarstruktur. Von dieser strömt das Medium (11) unter der Zufuhr des Wärmestromes dampfförmig in die darüber angeordneten Dampfkanäle (7), von wo es über das Sammelrohr (10) an die Wärmesenke abgeleitet wird. Die Kapillarstruktur besteht aus zylindrisch gewickelten oder in ebener Lage angeordneten Kohlefasern (8).

EP 0 210 337 A3

Fig. 1

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 86 10 5061

EINSCHLÄGIGE DOKUMENTE

Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
A	DE-C- 633 200 (SACHSENBERG A.G.) * Insgesamt * ---	1	F 25 B 39/02 F 25 B 41/06
A	DE-C- 825 693 (GENERAL MOTORS CORP.) * Seite 1, Zeile 1 - Seite 2, Zeile 3; Seite 2, Zeile 64 - Seite 3, Zeile 23; Seite 3, Zeilen 40-80; Figuren 3,4 *	1	
A	US-A-4 467 861 (KISEEV et al.) * Spalte 6, Zeilen 7-36; Spalte 6, Zeile 64 - Spalte 7, Zeile 15; Figuren 1,2 *	1	
A	US-A-3 971 435 (PECK) * Spalte 3, Zeile 59 - Spalte 4, Zeile 51; Spalte 8, Zeile 38 - Spalte 9, Zeile 29; Figuren 1-5,7-9 *	1	
A	GB-A-2 134 236 (HUSBAND) * Seite 2, Zeilen 20-65,81-96; Figuren 1,2 *	1	
A	US-A-3 857 441 (ARCELLA) * Spalte 2, Zeile 43 - Spalte 4, Zeile 16; Figuren 1-3 *	1	F 25 B F 28 D
A	PROCEEDINGS OF THE INTERNATIONAL HEAT PIPE CONFERENCE, Tsukuba, Teil 2, Conf. 5, 14.-18. Mai 1984, Seiten 195-202, Tokyo, JP; M. TAKAOKA et al.: "Development and applications of long heat pipes" * Seite 195, Absatz 1.1; Figur 3 *	1	
P,A	WO-A-8 601 582 (LAUMEN) * Seite 19, Zeile 19 - Seite 20, Zeile 34; Figuren 2,3,6,7 *	1	

Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt

Recherchenort	Abschlußdatum der Recherche	Prüfer
DEN HAAG	19-06-1989	BELTZUNG F.C.
KATEGORIE DER GENANNTEN DOKUMENTE		
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur	T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus andern Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	

Fig. 3

Fig. 2

Fig. 1

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.