\mathbf{r}		ъ.	• 4
ν	erio	ИI	CITY
		uı	CILY

The Greeks

Who was Dmitry Mendeleev?

Eka Silicon

Now appearing as Germanium on a periodic table near you!

Property	Predicted	Actual
Atomic Weight		
Density		
Specific Heat		
Melting Point		
Oxide formula		
Oxide Density		

A Kid from Ishpeming Michigan moves to South Gate California

How is the Modern Periodic Table Organized?

Groups Periods

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Н																	Не
Li	Be											В	С	N	О	F	Ne
Na	n Mg											Al	Si	P	S	Cl	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	s Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og

Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	Lr	Hg

Some Important Terms

Luster

Malleability

Ductility

Conduction

Differences between metals and non-metals

Property	Metal	Non-Metal	Semi-metal
Appearance			
Malleability			
Ductility			
Luster			
Heat Conductivity			
Electric Conductivity			
Phase at 25°C			
Melting/Boiling Point			
Typical Ion			
Ionization Energy			
Electronegativity			

Electron Orbital Diagrams and Electron Configuration

First we look at group 1!
Н
Li
Na
How about group 2?
Be
Mg
Ca
Hmmeven the Halogens?
Cl
Br
Now the really relevant question, how about Noble Gases?
Не
Ne
Ar
Can you see a pattern?

Periodic Table and Electron Configurations
1 2 3 4 5 6 7 8

1	_ 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1s																	1s
2s	2s											2p	2p	2p	2p	2p	2p
3s	3s											3p	3p	3p	3p	3р	3p
4s	4s	3d	4p	4p	4p	4p	4p	4p									
5s	5s	4d	5p	5p	5p	5p	5p	5p									
6s	6s	5d	6р	6р	6р	6р	6р	6p									
7s	7s	6d	7p	7p	7p	7p	7p	7p									

| 4f |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 5f |

Now on to ions!

 Na^{+}

 Mg^{2+}

 Al^{3+}

 F^{-}

 O^{2-}

 N^{3}

Why do elements form the specific ions that they form?

Isoelectronic

Identify six ions that are isoelectronic with Argon.

Families and the Periodic Table

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		1													I		
		<u> </u>								<u> </u>							<u> </u>

The	Fam	ilies
1110	Lam	

What are the general appearance, properties, characteristics of the following groups?

Alkali Metals

Alkaline Earths

Transition Metals

Oxygen Family

Halogens

Noble Gases

Lanthanides and Actinides

Trans-Uranium Elements

Coulombs Law

The Law of attraction for charged particles is an inverse square law.

The structure of an atom

What does this mean for attractive forces between the nucleus (protons) and electrons?

Now what about ions?

Periodic Properties

Atomic Radii

What about ions?

Electronegativity

	7															
2.1																
Н																
1.0	1.5											2.0	2.5	3.0	3.5	4.0
Li	Be											В	C	N	O	F
0.9	1.2											1.5	1.8	2.1	2.5	3.0
Na	Mg											Al	Si	P	S	Cl
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
0.7	0.9		1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At
0.7	0.9															
Fr	Ra]														

Ionization Energy

Electron Affinity

Electron Affinity

