Abstract Algebra

: Lecture 23

Leo

2024.12.26

1 Review

1.1 Group

As for groups, we mainly focus on structures and actions.

Structures: Let G be a group. Recall the concepts of normal subgroups, factor groups, subgroups.

For subgroups we know Sylow subgroups, and the Sylow theorems.

Composition factors: C_p or non-abelian simple group $(A_n, n \ge 5)$.

Exercise 1. Write the composition series of S_4 and S_3 .

Actions: Conjugation action, coset action

1.2 Ring

Subrings, ideals, quotient rings. Chinese Remainder Theorem.

Prime ideal: $ab \in I$ implies $a \in I$ or $b \in I$.

Fractional field of integral domain.

Factorizations of elements in a ring.

Example 2. $R = \mathbb{Z}[\sqrt{-5}]$ is an ID but not UFD.

UFD, PID, ED.

1.3 Field

CharF=0 or p.

Extensions. We mainly focus on polynomials and algebraic extensions.

Degree of extension. Construction by straightedge and compass.

For $f(x) \in F[x]$ there exist an extension E of F s.t. f(x) has root in E.

If CharF=0, each finite extension of F is simple.

Let $F \subset L \subset E$ where E is a splitting extension of F with CharF=0. Then $Gal(E/L) \triangleleft Gal(E/F)$ if and only if L is a splitting extension over F.

Example 3. Let $f(x) = x^m - 2 \in \mathbb{Q}[X]$. Find Gal(f).

Consider $F = \mathbb{Q} \subset L = \mathbb{Q}(\omega) \subset E$. $\operatorname{Gal}(f) = E/L$. $E = L(\alpha)$, $\alpha = 2^{\frac{1}{m}}$. $\operatorname{Gal}(E/L) = Z_m$. $\operatorname{Gal}(E/F)$.

L is a splitting extension of $f(x) = x^m - 1$ over F. Gal(L/F) is a permutation group on the set P_m of the m roots of $x^m - 1$, dividing P_m into orbits. An orbit consist of primitive roots of $x^d - 1$ where $d \mid m$. Actually $Gal(L/F) \simeq Aut(Z_m)$. $Gal(f) \simeq Hol(Z_m)$.

Example 4. |G| = 24, how many different G?

- 1. Abelian: $Z_3 \times Z_8$, $Z_3 \times Z_4 \times Z_2$, $Z_3 \times (Z_2^3)$
- 2. Non-abelian: Sylow 2-subgroup, order 8. 5 different types. $8, 4 \times 2, 2 \times 2 \times 2, D_8, Q_8$.

 nilpotent: $3 \times D_8, 3 \times Q_8$.

non-nilpotent: $P_2 \triangleleft G$ we have $G = P_2 \rtimes Z_3$, $Q_8 \rtimes 3$ and $A_4 \times Z_2$.

 $P_3 \triangleleft G$ we have $G = Z_3 \rtimes 8$. $(3 \rtimes 4) \times 2$, $(3 \rtimes 2) \times 2 \times 2$. $3 \rtimes D_8$ (two), $3 \rtimes Q_8$.

$$<\rho,\tau\mid |\rho|=4, |\tau|=2, \rho^{\tau}=\rho^{-1}>. (1)\ x^{\rho}=x^{-1},\ x^{\tau}=x. (2)\ x^{\rho}=x,\ x^{\tau}=x^{-1}.$$

S4,