HW2 Kim

Jaiyool Kim 9/7/2019

Problem 1: Work through the "R Programming E" lesson parts 4-7, 14

(optional 12 - only takes 5 min). From the R command prompt:

```
install.packages("swirl")
library(swirl)
install_course("R_Programming_E")
swirl()
```

I have taken all of the course you mentioned at PM 10:21 on sunday (Sep. 8th), and sent you e-mails related to the history I took.

Problem 2 : Create a new R Markdown file within your local GitHub repo folder

(file->new->R Markdown->save as).

The filename should be: HW2_lastname, i.e. for me it would be HW2_Settlage

You will use this new R Markdown file to solve problems 3-5.

I made this R Markdown file whose names is HW2 Kim.

Problem 3: In the lecture, there were two links to StackOverflow questions on why one should use version control.

In your own words, summarize in 2-3 sentences how you think version control can help you in the classroom.

Actually, I think version control can be very useful in a variety of ways in this class.

First, version control can make it easier for professor and me to communicate with each other via GitHub and share the information simultaneously using good tools such as Forking and rewinding and Collaboration. Even if there are some comments related to appropriateness and necessities of version control from solo data-analysts, I, as a novice of R & Github, also one of students learning the mechanisms of the infrastructure of collaborating the information among researchers, these kinds of version controls would be needed for me as I think.

Second, version control can allow myself to think numerous ways about solving problems or issues. It will be especially helpful when I consider doing different ways to conduct a certain kind of project or research as I think. Using Branches, I can keep track of all my branches of thinkings to do researches or any assignments, which can make me comfortable in terms of being arranged automatically even though I did not make the individual folder in my local repository (such as my MacBook).

In addition to the above pros, there will be so many useful and informative points when using version control as I expect !!.

Problem 4

In this exercise, you will import, munge, clean and summarize datasets from Wu and Hamada's Experiments:

Planning, Design and Analysis book you will use in the Spring. For each one, please weave your code and text to describe both your process and observations. Make sure you create a tidy dataset describing the variables, create a summary table of the data, note issues with the data.

- a. Sensory data from five operators. $\label{lem:http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/Sensory.} \\ dat$
- b. Gold Medal performance for Olympic Men's Long Jump, year is coded as 1900=0. http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/LongJumpData.dat
- c. Brain weight (g) and body weight (kg) for 62 species. http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/BrainandBodyWeight.dat
- d. Triplicate measurements of tomato yield for two varieties of tomatos at three planting densities. http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/tomato.dat

a. Sensory data from five operators.

```
Sensory.data <- read.csv("Sensory.csv",header=FALSE,sep=" ",stringsAsFactors = FALSE)
Sensory.data</pre>
```

```
##
              ۷1
                  ٧2
                      VЗ
                           ۷4
                               ۷5
## 1
      \t0perator
                 NA
                      NA
                          NA
                              NΑ
                                   NΑ
## 2
            Item 1.0 2.0 3.0 4.0 5.0
## 3
               1 4.3 4.9 3.3 5.3 4.4
## 4
             4.3 4.5 4.0 5.5 3.3
## 5
             4.1 5.3 3.4 5.7 4.7
## 6
               2 6.0 5.3 4.5 5.9 4.7
             4.9 6.3 4.2 5.5 4.9
## 7
## 8
             6.0 5.9 4.7 6.3 4.6
## 9
               3 2.4 2.5 2.3 3.1 2.4
## 10
             3.9 3.0 2.8 2.7 1.3
## 11
             1.9 3.9 2.6 4.6 2.2
                                   NΑ
               4 7.4 8.2 6.4 6.8 6.0
## 12
## 13
             7.1 7.9 5.9 7.3 6.1
             6.4 7.1 6.9 7.0 6.7
## 14
## 15
               5 5.7 6.3 5.4 6.1 5.9
## 16
             5.8 5.7 5.4 6.2 6.5
             5.8 6.0 6.1 7.0 4.9
## 17
## 18
               6 2.2 2.4 1.7 3.4 1.7
             3.0 1.8 2.1 4.0 1.7
## 19
## 20
             2.1 3.3 1.1 3.3 2.1
## 21
               7 1.2 1.5 1.2 0.9 0.7
## 22
             1.3 2.4 0.8 1.2 1.3
## 23
             0.9 3.1 1.1 1.9 1.6
## 24
               8 4.2 4.8 4.5 4.6 3.2
## 25
             3.0 4.5 4.7 4.9 4.6
## 26
             4.8 4.8 4.7 4.8 4.3
                                   NA
## 27
               9 8.0 8.6 9.0 9.4 8.8
             9.0 7.7 6.7 9.0 7.9
## 28
## 29
             8.9 9.2 8.1 9.1 7.6
```

```
## 30
              10 5.0 4.8 3.9 5.5 3.8
## 31
             5.4 5.0 3.4 4.9 4.6 NA
## 32
             2.8 5.2 4.1 3.9 5.5 NA
## Set the column names as the follow :
first.data.names <- c("ID", "1st op.", "2nd op.", "3rd op.", "4th op.", "5th op.")
## Check the type of the given data
typeof(Sensory.data) # list
## [1] "list"
## Change the form of the given data to matrix.
Sensory.data <-as.matrix(Sensory.data)</pre>
## Assign the column names using the character vector we made at the above line.
colnames(Sensory.data) <- first.data.names</pre>
## Show the full data set => The first two row should be eliminated for cleaning the data set.
Sensory.data
##
                       1st op. 2nd op. 3rd op. 4th op. 5th op.
         ID
##
    [1,] "\tOperator" NA
                               NA
                                        NA
                                                NA
                                                         NA
                                       "3.0"
                                                "4.0"
##
   [2,] "Item"
                       "1.0"
                               "2.0"
                                                         "5.0"
                                        "3.3"
                                                "5.3"
                                                         "4.4"
## [3,] "1"
                       "4.3"
                               "4.9"
                       "4.5"
                               "4.0"
                                       "5.5"
                                                "3.3"
   [4,] "4.3"
##
                                                        NA
   [5,] "4.1"
                       "5.3"
                               "3.4"
                                        "5.7"
                                                "4.7"
##
                                                        NA
                               "5.3"
## [6,] "2"
                       "6.0"
                                       "4.5"
                                                "5.9"
                                                        "4.7"
                       "6.3"
                               "4.2"
                                       "5.5"
                                                "4.9"
## [7,] "4.9"
                                                        NA
   [8,] "6.0"
                       "5.9"
                               "4.7"
                                        "6.3"
                                                "4.6"
##
                                                        NA
## [9,] "3"
                       "2.4"
                               "2.5"
                                       "2.3"
                                                "3.1"
                                                        "2.4"
                       "3.0"
                                       "2.7"
                                                "1.3"
## [10,] "3.9"
                               "2.8"
                                                        NA
## [11,] "1.9"
                       "3.9"
                               "2.6"
                                        "4.6"
                                                "2.2"
                                                        NA
                       "7.4"
## [12,] "4"
                               "8.2"
                                        "6.4"
                                                "6.8"
                                                         "6.0"
## [13,] "7.1"
                       "7.9"
                               "5.9"
                                       "7.3"
                                                "6.1"
                                                        NA
                       "7.1"
                                       "7.0"
## [14,] "6.4"
                               "6.9"
                                                "6.7"
                                                        NA
## [15,] "5"
                       "5.7"
                               "6.3"
                                       "5.4"
                                                "6.1"
                                                         "5.9"
## [16,] "5.8"
                       "5.7"
                               "5.4"
                                        "6.2"
                                                "6.5"
                                                        NA
## [17,] "5.8"
                       "6.0"
                               "6.1"
                                       "7.0"
                                                "4.9"
                                                        NA
## [18,] "6"
                       "2.2"
                               "2.4"
                                        "1.7"
                                                "3.4"
                                                        "1.7"
                       "1.8"
## [19,] "3.0"
                               "2.1"
                                        "4.0"
                                                "1.7"
                                                        NA
                                       "3.3"
                                                "2.1"
## [20,] "2.1"
                       "3.3"
                               "1.1"
                                                        NΑ
                                                "0.9"
## [21,] "7"
                       "1.2"
                               "1.5"
                                       "1.2"
                                                        "0.7"
## [22,] "1.3"
                       "2.4"
                               "0.8"
                                       "1.2"
                                                "1.3"
                                                        NA
## [23,] "0.9"
                       "3.1"
                               "1.1"
                                        "1.9"
                                                "1.6"
                                                        NA
## [24,] "8"
                                                "4.6"
                       "4.2"
                               "4.8"
                                        "4.5"
                                                        "3.2"
## [25,] "3.0"
                       "4.5"
                               "4.7"
                                       "4.9"
                                                "4.6"
                                                        NA
## [26,] "4.8"
                       "4.8"
                               "4.7"
                                        "4.8"
                                                "4.3"
                                                        NA
                       "8.0"
## [27,] "9"
                               "8.6"
                                       "9.0"
                                                "9.4"
                                                         "8.8"
## [28,] "9.0"
                       "7.7"
                               "6.7"
                                       "9.0"
                                                "7.9"
                                                        NA
```

"7.6"

"5.5"

"4.6"

"5.5"

NA

NA

NΑ

"3.8"

"9.1"

"3.9"

"4.9"

"3.9"

[29,] "8.9"

[30,] "10"

[31,] "5.4"

[32,] "2.8"

"9.2"

"5.0"

"5.0"

"5.2"

"8.1"

"4.8"

"3.4"

"4.1"

```
## Eliminate the first two row
Sensory.data <- Sensory.data[-c(1:2),]</pre>
## Show the (a little bit arranged) data set again.
Sensory.data
##
         ID
               1st op. 2nd op. 3rd op. 4th op. 5th op.
    [1,] "1"
               "4.3"
                        "4.9"
                                "3.3"
                                         "5.3"
                                                 "4.4"
##
   [2,] "4.3" "4.5"
                        "4.0"
                                "5.5"
                                         "3.3"
                                                 NA
   [3,] "4.1" "5.3"
                        "3.4"
                                 "5.7"
                                         "4.7"
##
                                                 NA
    [4,] "2"
                "6.0"
                        "5.3"
                                "4.5"
                                         "5.9"
                                                 "4.7"
##
   [5,] "4.9" "6.3"
##
                        "4.2"
                                "5.5"
                                         "4.9"
                                                 NA
   [6,] "6.0" "5.9"
                        "4.7"
                                "6.3"
                                         "4.6"
                                                 NA
   [7,] "3"
               "2.4"
                        "2.5"
                                "2.3"
                                         "3.1"
                                                 "2.4"
##
   [8,] "3.9" "3.0"
                                "2.7"
##
                        "2.8"
                                         "1.3"
                                                 NA
   [9,] "1.9" "3.9"
                        "2.6"
                                "4.6"
                                         "2.2"
                                                 NA
## [10,] "4"
               "7.4"
                        "8.2"
                                "6.4"
                                         "6.8"
                                                 "6.0"
## [11,] "7.1" "7.9"
                        "5.9"
                                "7.3"
                                         "6.1"
                                                 NA
## [12,] "6.4" "7.1"
                        "6.9"
                                "7.0"
                                         "6.7"
                                                 NA
                                "5.4"
                                                 "5.9"
## [13,] "5"
               "5.7"
                        "6.3"
                                         "6.1"
## [14,] "5.8" "5.7"
                        "5.4"
                                "6.2"
                                         "6.5"
                                                 NA
                                "7.0"
## [15,] "5.8" "6.0"
                        "6.1"
                                         "4.9"
                                                 NA
                                         "3.4"
## [16,] "6"
               "2.2"
                        "2.4"
                                "1.7"
                                                 "1.7"
## [17,] "3.0" "1.8"
                        "2.1"
                                "4.0"
                                         "1.7"
                                                 NA
## [18,] "2.1" "3.3"
                        "1.1"
                                "3.3"
                                         "2.1"
                                                 NA
                                "1.2"
                                         "0.9"
                                                 "0.7"
## [19,] "7"
               "1.2"
                        "1.5"
## [20,] "1.3" "2.4"
                                "1.2"
                                         "1.3"
                        "0.8"
                                                 NA
## [21,] "0.9" "3.1"
                        "1.1"
                                "1.9"
                                         "1.6"
                                                 NA
## [22,] "8"
               "4.2"
                        "4.8"
                                "4.5"
                                         "4.6"
                                                 "3.2"
## [23,] "3.0" "4.5"
                        "4.7"
                                "4.9"
                                         "4.6"
                                                 NA
## [24,] "4.8" "4.8"
                        "4.7"
                                "4.8"
                                         "4.3"
                                                 NA
## [25,] "9"
               "8.0"
                        "8.6"
                                "9.0"
                                         "9.4"
                                                 "8.8"
## [26,] "9.0" "7.7"
                                "9.0"
                                         "7.9"
                        "6.7"
                                                 NA
## [27,] "8.9" "9.2"
                        "8.1"
                                "9.1"
                                         "7.6"
                                                 NA
                                "3.9"
## [28,] "10" "5.0"
                        "4.8"
                                         "5.5"
                                                 "3.8"
## [29,] "5.4" "5.0"
                        "3.4"
                                "4.9"
                                         "4.6"
                                                 NΑ
## [30,] "2.8" "5.2"
                        "4.1"
                                "3.9"
                                         "5.5"
## From the above shown data set, we need to fill the NA value with corresponding the value located in
## That is, for example, the (2,6)th element NA value should be exchanged with the (2,1)th element 4.3
## Plus, the (2,1)th element should be filled with '2' (second ID number)
## We need to adjust the data set for making what I have mentioned above.
## Let's make the function that allows us to do the above thing.
NA.correction.function <- function(data){
  for(i in 1 : nrow(data) )
    for(j in 1 : ncol(data) )
      if(is.na(data[i,j])==TRUE) {
        data[i,j] <- data[i,1]</pre>
```

```
data[i,1] <- i
      }
 return(data)
}
Arranged.data <- NA.correction.function(Sensory.data)</pre>
Arranged.data
         ID
              1st op. 2nd op. 3rd op. 4th op. 5th op.
##
   [1,] "1"
              "4.3"
                       "4.9"
                               "3.3"
                                        "5.3"
                                                 "4.4"
                                        "3.3"
   [2,] "2"
              "4.5"
                       "4.0"
                               "5.5"
                                                 "4.3"
##
   [3,] "3"
              "5.3"
                       "3.4"
                               "5.7"
                                        "4.7"
                                                 "4.1"
##
##
   [4,] "2"
              "6.0"
                       "5.3"
                               "4.5"
                                        "5.9"
                                                 "4.7"
  [5,] "5"
                       "4.2"
                                        "4.9"
##
              "6.3"
                               "5.5"
                                                 "4.9"
##
  [6,] "6"
              "5.9"
                       "4.7"
                               "6.3"
                                        "4.6"
                                                 "6.0"
   [7,] "3"
              "2.4"
                       "2.5"
                               "2.3"
                                        "3.1"
                                                 "2.4"
##
   [8,] "8"
              "3.0"
                       "2.8"
                               "2.7"
                                        "1.3"
                                                 "3.9"
##
## [9,] "9"
              "3.9"
                       "2.6"
                                        "2.2"
                               "4.6"
                                                "1.9"
              "7.4"
                       "8.2"
                               "6.4"
                                        "6.8"
                                                 "6.0"
## [10,] "4"
## [11,] "11" "7.9"
                       "5.9"
                               "7.3"
                                        "6.1"
                                                 "7.1"
## [12,] "12" "7.1"
                       "6.9"
                               "7.0"
                                        "6.7"
                                                 "6.4"
                                                 "5.9"
## [13,] "5"
              "5.7"
                       "6.3"
                               "5.4"
                                        "6.1"
                               "6.2"
                                        "6.5"
                                                 "5.8"
## [14,] "14" "5.7"
                       "5.4"
                               "7.0"
## [15,] "15" "6.0"
                       "6.1"
                                        "4.9"
                                                 "5.8"
## [16,] "6" "2.2"
                       "2.4"
                               "1.7"
                                        "3.4"
                                                 "1.7"
## [17,] "17" "1.8"
                       "2.1"
                               "4.0"
                                        "1.7"
                                                "3.0"
## [18,] "18" "3.3"
                       "1.1"
                               "3.3"
                                        "2.1"
                                                 "2.1"
                               "1.2"
                                                 "0.7"
## [19,] "7"
              "1.2"
                       "1.5"
                                        "0.9"
## [20,] "20" "2.4"
                       "0.8"
                               "1.2"
                                        "1.3"
                                                 "1.3"
## [21,] "21" "3.1"
                       "1.1"
                               "1.9"
                                        "1.6"
                                                 "0.9"
## [22,] "8"
              "4.2"
                       "4.8"
                                "4.5"
                                        "4.6"
                                                 "3.2"
## [23,] "23" "4.5"
                       "4.7"
                               "4.9"
                                        "4.6"
                                                 "3.0"
## [24,] "24" "4.8"
                       "4.7"
                               "4.8"
                                        "4.3"
                                                "4.8"
## [25,] "9" "8.0"
                       "8.6"
                               "9.0"
                                        "9.4"
                                                 "8.8"
## [26,] "26" "7.7"
                       "6.7"
                               "9.0"
                                        "7.9"
                                                 "9.0"
## [27,] "27" "9.2"
                       "8.1"
                               "9.1"
                                        "7.6"
                                                 "8.9"
## [28,] "10" "5.0"
                       "4.8"
                               "3.9"
                                        "5.5"
                                                 "3.8"
## [29,] "29" "5.0"
                       "3.4"
                               "4.9"
                                        "4.6"
                                                 "5.4"
## [30,] "30" "5.2"
                       "4.1"
                               "3.9"
                                        "5.5"
                                                 "2.8"
## We have completed what we wanted to do, however we have to align the ID number in order (1st column)
## So I decide to weave another function to do that.
ID.align.function <- function(data) {</pre>
  for (i in 1 : nrow(data) )
    if(data[i,1]!=1) data[i,1] <- i</pre>
    return(data)
```

```
}
## Let's apply this function to the data
Arranged.data <- ID.align.function(Arranged.data)
Arranged.data
##
         ID
               1st op.
                       2nd op. 3rd op. 4th op. 5th op.
    [1,] "1"
               "4.3"
                        "4.9"
                                "3.3"
                                         "5.3"
                                                  "4.4"
##
    [2,] "2"
##
               "4.5"
                        "4.0"
                                "5.5"
                                         "3.3"
                                                  "4.3"
##
    [3,] "3"
               "5.3"
                        "3.4"
                                "5.7"
                                         "4.7"
                                                  "4.1"
    [4,] "4"
               "6.0"
                        "5.3"
                                "4.5"
                                         "5.9"
                                                  "4.7"
##
    [5,] "5"
               "6.3"
                        "4.2"
                                "5.5"
                                         "4.9"
                                                  "4.9"
##
##
    [6,] "6"
               "5.9"
                        "4.7"
                                "6.3"
                                         "4.6"
                                                  "6.0"
                        "2.5"
    [7,] "7"
               "2.4"
                                "2.3"
                                         "3.1"
                                                  "2.4"
    [8,] "8"
               "3.0"
                        "2.8"
                                "2.7"
                                         "1.3"
                                                  "3.9"
##
##
    [9,] "9"
               "3.9"
                        "2.6"
                                "4.6"
                                         "2.2"
                                                  "1.9"
## [10,] "10" "7.4"
                        "8.2"
                                "6.4"
                                                  "6.0"
                                         "6.8"
## [11,] "11" "7.9"
                        "5.9"
                                "7.3"
                                         "6.1"
                                                  "7.1"
## [12,] "12" "7.1"
                        "6.9"
                                "7.0"
                                         "6.7"
                                                  "6.4"
## [13,] "13" "5.7"
                        "6.3"
                                "5.4"
                                         "6.1"
                                                  "5.9"
## [14,] "14" "5.7"
                        "5.4"
                                "6.2"
                                         "6.5"
                                                  "5.8"
## [15,] "15" "6.0"
                        "6.1"
                                "7.0"
                                         "4.9"
                                                  "5.8"
                                "1.7"
                                         "3.4"
                                                  "1.7"
## [16,] "16" "2.2"
                        "2.4"
## [17,] "17" "1.8"
                        "2.1"
                                "4.0"
                                         "1.7"
                                                  "3.0"
## [18,] "18" "3.3"
                        "1.1"
                                "3.3"
                                         "2.1"
                                                  "2.1"
## [19,] "19" "1.2"
                                         "0.9"
                                                  "0.7"
                        "1.5"
                                "1.2"
## [20,] "20" "2.4"
                        "0.8"
                                "1.2"
                                         "1.3"
                                                  "1.3"
## [21,] "21" "3.1"
                        "1.1"
                                "1.9"
                                         "1.6"
                                                  "0.9"
## [22,] "22" "4.2"
                        "4.8"
                                "4.5"
                                         "4.6"
                                                  "3.2"
## [23,] "23" "4.5"
                        "4.7"
                                "4.9"
                                         "4.6"
                                                  "3.0"
                        "4.7"
                                "4.8"
## [24,] "24" "4.8"
                                         "4.3"
                                                  "4.8"
## [25,] "25" "8.0"
                        "8.6"
                                "9.0"
                                         "9.4"
                                                  "8.8"
## [26,] "26" "7.7"
                        "6.7"
                                "9.0"
                                         "7.9"
                                                  "9.0"
## [27,] "27" "9.2"
                        "8.1"
                                "9.1"
                                         "7.6"
                                                  "8.9"
## [28,] "28" "5.0"
                        "4.8"
                                "3.9"
                                         "5.5"
                                                  "3.8"
## [29,] "29" "5.0"
                                "4.9"
                        "3.4"
                                         "4.6"
                                                  "5.4"
## [30,] "30" "5.2"
                        "4.1"
                                "3.9"
                                         "5.5"
                                                  "2.8"
## Change the type of the elememt (from character to numeric) of arranged matrix
mode(Arranged.data) <- "numeric"</pre>
Arranged.data
##
         ID 1st op. 2nd op. 3rd op. 4th op. 5th op.
##
    [1,]
                 4.3
                          4.9
                                  3.3
                                           5.3
                                                    4.4
         1
    [2,] 2
##
                 4.5
                          4.0
                                  5.5
                                           3.3
                                                    4.3
    [3,] 3
                 5.3
                          3.4
                                  5.7
                                           4.7
                                                    4.1
##
    [4,]
                 6.0
                          5.3
                                  4.5
                                           5.9
                                                    4.7
          4
    [5,]
##
         5
                 6.3
                          4.2
                                  5.5
                                           4.9
                                                    4.9
##
    [6,]
                 5.9
          6
                          4.7
                                  6.3
                                           4.6
                                                    6.0
##
    [7,]
          7
                 2.4
                          2.5
                                  2.3
                                           3.1
                                                    2.4
    [8,] 8
                          2.8
                                  2.7
                                           1.3
                                                    3.9
##
                 3.0
```

```
## [13,] 13
                5.7
                         6.3
                                 5.4
                                          6.1
                                                  5.9
## [14,] 14
                5.7
                                 6.2
                                          6.5
                                                  5.8
                         5.4
## [15,] 15
                6.0
                         6.1
                                 7.0
                                          4.9
                                                  5.8
## [16,] 16
                2.2
                         2.4
                                 1.7
                                          3.4
                                                  1.7
## [17,] 17
                1.8
                         2.1
                                 4.0
                                          1.7
                                                  3.0
## [18,] 18
                3.3
                         1.1
                                 3.3
                                          2.1
                                                  2.1
## [19,] 19
                1.2
                         1.5
                                 1.2
                                          0.9
                                                  0.7
## [20,] 20
                 2.4
                         0.8
                                 1.2
                                          1.3
                                                  1.3
## [21,] 21
                                 1.9
                                          1.6
                                                  0.9
                3.1
                         1.1
## [22,] 22
                4.2
                         4.8
                                 4.5
                                          4.6
                                                  3.2
## [23,] 23
                         4.7
                                          4.6
                4.5
                                 4.9
                                                  3.0
## [24,] 24
                4.8
                         4.7
                                 4.8
                                          4.3
                                                  4.8
## [25,] 25
                8.0
                         8.6
                                 9.0
                                          9.4
                                                  8.8
## [26,] 26
                7.7
                         6.7
                                 9.0
                                          7.9
                                                  9.0
## [27,] 27
                9.2
                                          7.6
                                                  8.9
                         8.1
                                 9.1
## [28,] 28
                5.0
                         4.8
                                 3.9
                                          5.5
                                                  3.8
## [29,] 29
                5.0
                         3.4
                                 4.9
                                          4.6
                                                  5.4
## [30,] 30
                                          5.5
                                                  2.8
                5.2
                         4.1
                                 3.9
## Now, we can see the completely arranged data with the first column : ID,
\#\# and other remaining columns meaning the each operator, row : obs.
## Naturally, each cell data means (except for first column data) sensory data corresponding to each op
## Tabulate the arranged data set
Table.Arranged.data <- as.table(Arranged.data)</pre>
## Show the tabulated arranged data set.
Table.Arranged.data
##
        ID 1st op. 2nd op. 3rd op. 4th op. 5th op.
```

```
## A
               4.3
                                 3.3
       1.0
                        4.9
                                         5.3
                                                  4.4
## B
       2.0
               4.5
                        4.0
                                 5.5
                                         3.3
                                                  4.3
## C
       3.0
               5.3
                                 5.7
                                         4.7
                                                  4.1
                        3.4
## D
       4.0
               6.0
                        5.3
                                 4.5
                                         5.9
                                                  4.7
## E
                                                 4.9
       5.0
               6.3
                        4.2
                                5.5
                                         4.9
## F
       6.0
               5.9
                        4.7
                                 6.3
                                         4.6
## G
       7.0
               2.4
                                 2.3
                                         3.1
                                                 2.4
                        2.5
## H
       8.0
               3.0
                        2.8
                                2.7
                                         1.3
                                                 3.9
## I
               3.9
       9.0
                        2.6
                                4.6
                                         2.2
                                                 1.9
## J
     10.0
               7.4
                        8.2
                                 6.4
                                         6.8
                                                 6.0
## K
     11.0
               7.9
                        5.9
                                7.3
                                         6.1
                                                 7.1
## L
     12.0
               7.1
                        6.9
                                7.0
                                         6.7
                                                 6.4
## M 13.0
               5.7
                        6.3
                                 5.4
                                         6.1
                                                 5.9
## N
     14.0
               5.7
                        5.4
                                 6.2
                                         6.5
                                                 5.8
                                         4.9
                                                 5.8
## 0
     15.0
               6.0
                        6.1
                                7.0
## P
     16.0
               2.2
                        2.4
                                1.7
                                         3.4
                                                 1.7
## Q
     17.0
               1.8
                        2.1
                                4.0
                                         1.7
                                                 3.0
## R
     18.0
               3.3
                                 3.3
                                         2.1
                                                 2.1
                        1.1
## S
     19.0
               1.2
                        1.5
                                 1.2
                                         0.9
                                                 0.7
## T 20.0
               2.4
                        0.8
                                1.2
                                         1.3
                                                  1.3
## U 21.0
                                                  0.9
               3.1
                        1.1
                                 1.9
                                         1.6
```

[9,] 9

[10,] 10

[11,] 11

[12,] 12

3.9

7.4

7.9

7.1

2.6

8.2

5.9

6.9

4.6

6.4

7.3

7.0

2.2

6.8

6.1

6.7

1.9

6.0

7.1

6.4

```
3.2
## V 22.0
               4.2
                       4.8
                               4.5
                                       4.6
## W 23.0
               4.5
                       4.7
                               4.9
                                       4.6
                                                3.0
                                                4.8
## X 24.0
               4.8
                       4.7
                               4.8
                                       4.3
## Y 25.0
               8.0
                               9.0
                                       9.4
                       8.6
                                               8.8
## Z 26.0
               7.7
                       6.7
                               9.0
                                       7.9
                                                9.0
## A1 27.0
               9.2
                               9.1
                                       7.6
                                               8.9
                       8.1
## B1 28.0
               5.0
                       4.8
                               3.9
                                       5.5
                                               3.8
## C1 29.0
               5.0
                               4.9
                                       4.6
                                               5.4
                       3.4
               5.2
                                       5.5
## D1 30.0
                       4.1
                               3.9
                                                2.8
## Summary table for arranged.data for each variable.
summary(Arranged.data[,2]) # summary of sensory data from 1st operator
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
            3.450
                     5.000
                             4.967
                                     6.000
                                              9.200
summary(Arranged.data[,3]) # summary of sensory data from 2nd operator
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
##
     0.800
             2.650
                     4.700
                             4.403
                                     5.775
                                              8.600
summary(Arranged.data[,4]) # summary of sensory data from 3rd operator
      Min. 1st Qu. Median
##
                              Mean 3rd Qu.
                                               Max.
##
     1.200
             3.450
                     4.850
                             4.900
                                     6.275
                                              9.100
summary(Arranged.data[,5]) # summary of sensory data from 4th operator
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
      0.90
              3.15
                      4.65
                              4.58
                                       6.05
                                               9.40
summary(Arranged.data[,6]) # summary of sensory data from 5th operator
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                               Max.
     0.700
             2.850
                     4.350
                             4.433
                                     5.875
                                              9.000
##
## Visualization for each variable.
# Histogram.
hist(Arranged.data[,2],main="Histogram of sensory data from 1st operator",xlab="sensory data from 1st o
```

Histogram of sensory data from 1st operator

hist(Arranged.data[,3],main="Histogram of sensory data from 2nd operator",xlab="sensory data from 2nd operator data from 2nd operato

Histogram of sensory data from 2nd operator

hist(Arranged.data[,4],main="Histogram of sensory data from 3rd operator",xlab="sensory data from 3rd operator data from 3rd operator

Histogram of sensory data from 3rd operator

hist(Arranged.data[,5],main="Histogram of sensory data from 4th operator",xlab="sensory data from 4th operator data from 4th o

Histogram of sensory data from 4th operator

hist(Arranged.data[,6],main="Histogram of sensory data from 5th operator",xlab="sensory data from 5th operator data from 5th

Histogram of sensory data from 5th operator

sensory data from 5th operator

Box plot.
boxplot(Arranged.data[,2],main="Boxplot of sensory data from 1st operator")

Boxplot of sensory data from 1st operator

boxplot(Arranged.data[,3],main="Boxplot of sensory data from 2nd operator")

Boxplot of sensory data from 2nd operator

boxplot(Arranged.data[,4],main="Boxplot of sensory data from 3rd operator")

Boxplot of sensory data from 3rd operator

boxplot(Arranged.data[,5],main="Boxplot of sensory data from 4th operator")

Boxplot of sensory data from 4th operator

boxplot(Arranged.data[,6],main="Boxplot of sensory data from 5th operator")

Boxplot of sensory data from 5th operator

There seems to be nothing special about each sensory data set obtained from each operator.

b. Gold Medal performance for Olympic Men's Long Jump, year is coded as 1900=0.

```
Longjump.data <- read.csv("LongJumpData.csv",header=T,sep=" ",stringsAsFactors = FALSE)
Longjump.data</pre>
```

```
Year
            Long Jump Year.1 Long.1 Jump.1 Year.2 Long.2 Jump.2 Year.3 Long.3
## 1
       -4 249.75
                   24 293.13
                                 56 308.25
                                               80 336.25
                                                              NA
                                                                     NA
                                                                            NA
## 2
        0 282.88
                   28 304.75
                                 60 319.75
                                                84 336.25
                                                              NA
                                                                     NA
                                                                            NA
        4 289.00
                   32 300.75
                                 64 317.75
                                               88 343.25
## 3
                                                              NA
                                                                     NA
                                                                            NA
```

```
## 4
       8 294.50
                  36 317.31
                                 68 350.50
                                               92 342.50
                                                              NA
                                                                     NA
                                                                            NA
## 5
       12 299.25
                  48 308.00
                                 72 324.50
                                               NΑ
                                                      NΑ
                                                             NΑ
                                                                     NΑ
                                                                            NΑ
## 6
                  52 298.00
       20 281.50
                                 76 328.50
                                               NA
                                                      NA
                                                              NA
                                                                     NA
                                                                            NA
##
     Jump.3
## 1
         NA
## 2
         NA
## 3
         NA
## 4
         NA
## 5
         NA
## 6
         NA
nrow(Longjump.data) # 6
## [1] 6
ncol(Longjump.data) # 12
## [1] 12
## We need to transform the given data set with the # row : 22 (# of obs), and # col : 2 (Year (1900=0
## First, we seperate the data by variables by Year, Long jump
## By concatenating the 1st, 3rd, 5th, and 7th column data, we can get the vector of year data.
year.expected.data <- c(Longjump.data[,1],Longjump.data[,3],Longjump.data[,5],Longjump.data[,7])
length(year.expected.data)
## [1] 24
## By concatenating the 2nd, 4th, 6th, and 8th column data, we can get the vector of Long jump data.
Long.jump.expected.data <- c(Longjump.data[,2],Longjump.data[,4],Longjump.data[,6],Longjump.data[,8])
length(Long.jump.expected.data)
## [1] 24
## Make arranged data with matrix form (column : variable, row : observation)
Arranged.data2 <- matrix(c(year.expected.data,Long.jump.expected.data),nrow=24,ncol=2,byrow=FALSE)
Arranged.data2
                [,2]
##
         [,1]
##
   [1,]
           -4 249.75
##
  [2,]
            0 282.88
## [3,]
            4 289.00
## [4,]
           8 294.50
## [5,]
           12 299.25
##
  [6,]
           20 281.50
## [7,]
           24 293.13
   [8,]
           28 304.75
##
           32 300.75
## [9,]
## [10,]
           36 317.31
## [11,]
           48 308.00
## [12,]
           52 298.00
## [13,]
           56 308.25
## [14,]
           60 319.75
```

```
## [15,]
           64 317.75
## [16,] 68 350.50
         72 324.50
## [17,]
## [18,]
          76 328.50
## [19,]
          80 336.25
## [20,]
         84 336.25
## [21,]
          88 343.25
## [22,]
           92 342.50
## [23,]
           NA
                  NA
## [24,]
           NA
                  NA
## We arrange the given data, roughly, but we have to change the first column data into 'day' form.
## At first, we need to eliminate the last two row data because they are NAs which are useless.
Arranged.data2 <- Arranged.data2[-c((nrow(Arranged.data2)-1):nrow(Arranged.data2)),]
Arranged.data2
##
         [,1]
                [,2]
##
    [1,]
          -4 249.75
##
  [2,]
           0 282.88
## [3,]
           4 289.00
## [4,]
           8 294.50
## [5,]
          12 299.25
## [6,]
           20 281.50
## [7,]
           24 293.13
## [8,]
           28 304.75
## [9,]
           32 300.75
## [10,]
           36 317.31
## [11,]
         48 308.00
## [12,]
          52 298.00
## [13,]
           56 308.25
## [14,]
          60 319.75
## [15,]
          64 317.75
## [16,]
          68 350.50
## [17,]
          72 324.50
## [18,]
         76 328.50
## [19,]
          80 336.25
## [20,]
           84 336.25
## [21,]
           88 343.25
## [22,]
           92 342.50
## Procedures to change the 1st column data to day data.
edates <- Arranged.data2[,1]</pre>
edates
## [1] -4 0 4 8 12 20 24 28 32 36 48 52 56 60 64 68 72 76 80 84 88 92
edates[edates>=60] <- edates[edates>=60]
edates <- as.Date(edates, origin="1900-01-01")
edates
## [1] "1899-12-28" "1900-01-01" "1900-01-05" "1900-01-09" "1900-01-13"
## [6] "1900-01-21" "1900-01-25" "1900-01-29" "1900-02-02" "1900-02-06"
## [11] "1900-02-18" "1900-02-22" "1900-02-26" "1900-03-02" "1900-03-06"
## [16] "1900-03-10" "1900-03-14" "1900-03-18" "1900-03-22" "1900-03-26"
```

```
## [21] "1900-03-30" "1900-04-03"
## Success !!
## Eliminate NA data in second column (Long jump data)data using the below code.
Long.jump.expected.data <- Long.jump.expected.data[-c((length(Long.jump.expected.data)-1):length(Long.j
Long.jump.expected.data
## [1] 249.75 282.88 289.00 294.50 299.25 281.50 293.13 304.75 300.75 317.31
## [11] 308.00 298.00 308.25 319.75 317.75 350.50 324.50 328.50 336.25 336.25
## [21] 343.25 342.50
## Now, we have to recombine this day data and Longjump data into matrix form.
Arranged.data2 <- data.frame(</pre>
   Id = c (1:22),
   Date=edates,
   Long.jump.record = Long.jump.expected.data,
   stringsAsFactors = FALSE
)
Arranged.data2
      Ιd
               Date Long.jump.record
## 1
      1 1899-12-28
                              249.75
     2 1900-01-01
                              282.88
## 3
       3 1900-01-05
                              289.00
## 4
      4 1900-01-09
                              294.50
## 5
       5 1900-01-13
                              299.25
## 6
      6 1900-01-21
                              281.50
## 7
       7 1900-01-25
                              293.13
## 8
      8 1900-01-29
                              304.75
## 9
       9 1900-02-02
                              300.75
## 10 10 1900-02-06
                              317.31
## 11 11 1900-02-18
                              308.00
## 12 12 1900-02-22
                              298.00
## 13 13 1900-02-26
                              308.25
## 14 14 1900-03-02
                              319.75
## 15 15 1900-03-06
                              317.75
## 16 16 1900-03-10
                              350.50
## 17 17 1900-03-14
                              324.50
## 18 18 1900-03-18
                              328.50
## 19 19 1900-03-22
                              336.25
## 20 20 1900-03-26
                              336.25
## 21 21 1900-03-30
                              343.25
## 22 22 1900-04-03
                              342.50
## Summary and Visualization
summary(Arranged.data2$Long.jump.record)
      Min. 1st Qu. Median
##
                              Mean 3rd Qu.
                                               Max.
##
           295.4
                    308.1
                             310.3
                                     327.5
                                              350.5
```

Histogram of Long jump record

boxplot(Arranged.data2\$Long.jump.record,main="Boxplot of Long jump record")

Boxplot of Long jump record

barplot(Arranged.data2\$Long.jump.record,main="Barplot of Long jump record")

Barplot of Long jump record

TS plot for Long Jump Record series

c. Brain, body, and weight data

```
Brain.Body.weight.data <- read.csv("BrainandBodyWeight.csv",header=T,sep=" ",stringsAsFactors = FALSE)
Brain.Body.weight.data
##
           Body
                     Wt
                           Brain
                                    Wt.1
                                           Body.1
                                                     Wt.2 Brain.1 Wt.3 Body.2 Wt.4
## 1
          3.385
                         521.000
                                   655.0
                                            2.500
                                                  12.10
                  44.5
                                                                NA
                                                                     NA
                                                                             NA
                                                                                  NA
## 2
          0.480
                  15.5
                           0.785
                                     3.5
                                           55.500 175.00
                                                                NA
                                                                                  NA
                                                                     NA
                                                                             NA
## 3
          1.350
                   8.1
                          10.000
                                   115.0 100.000 157.00
                                                                NA
                                                                     NA
                                                                             NA
                                                                                  NA
                                           52.160 440.00
## 4
       465.000
                 423.0
                           3.300
                                    25.6
                                                                NA
                                                                     NA
                                                                             NA
                                                                                  NA
                                           10.550 179.50
## 5
        36.330
                 119.5
                           0.200
                                     5.0
                                                                NA
                                                                     NA
                                                                             NA
                                                                                  NA
## 6
        27.660
                 115.0
                           1.410
                                            0.550
                                                     2.40
                                                                     NA
                                                                             NA
                                                                                  NA
                                    17.5
                                                                NA
## 7
        14.830
                  98.2
                         529.000
                                   680.0
                                           60.000
                                                   81.00
                                                                NA
                                                                     NA
                                                                             NA
                                                                                  NA
## 8
          1.040
                   5.5
                         207.000
                                   406.0
                                            3.600
                                                   21.00
                                                                NA
                                                                     NA
                                                                             NA
                                                                                  NA
## 9
          4.190
                  58.0
                          85.000
                                   325.0
                                            4.288
                                                   39.20
                                                                NA
                                                                     NA
                                                                             NA
                                                                                  NA
## 10
         0.425
                           0.750
                                            0.280
                   6.4
                                    12.3
                                                     1.90
                                                                NA
                                                                     NA
                                                                             NA
                                                                                  NA
## 11
          0.101
                   4.0
                          62.000 1320.0
                                            0.075
                                                                NA
                                                                             NA
                                                     1.20
                                                                     NA
                                                                                  NA
## 12
          0.920
                   5.7 6654.000 5712.0
                                            0.122
                                                     3.00
                                                                NA
                                                                     NA
                                                                             NA
                                                                                  NA
          1.000
                           3.500
                                            0.048
                                                     0.33
                                                                NA
                                                                     NA
                                                                             NA
## 13
                   6.6
                                     3.9
                                                                                  NA
## 14
          0.005
                   0.1
                           6.800
                                   179.0 192.000 180.00
                                                                NA
                                                                     NA
                                                                             NA
                                                                                  NA
          0.060
                          35.000
                                    56.0
                                            3.000
                                                   25.00
                                                                     NA
                                                                             NA
                                                                                  NA
## 15
                   1.0
                                                                NA
## 16
          3.500
                           4.050
                                    17.0 160.000 169.00
                                                                NA
                                                                                  NA
                  10.8
                                                                     NA
                                                                             NA
## 17
          2.000
                  12.3
                           0.120
                                     1.0
                                            0.900
                                                     2.60
                                                                NA
                                                                     NA
                                                                             NA
                                                                                  NA
                           0.023
                                            1.620
## 18
          1.700
                   6.3
                                     0.4
                                                   11.40
                                                                NA
                                                                     NA
                                                                             NA
                                                                                  NA
## 19 2547.000 4603.0
                           0.010
                                     0.3
                                            0.104
                                                     2.50
                                                                NA
                                                                     NA
                                                                             NA
                                                                                  NA
## 20
          0.023
                           1.400
                                            4.235
                                                   50.40
                                                                             NA
                    0.3
                                    12.5
                                                                NA
                                                                     NA
                                                                                  NA
## 21
                 419.0
       187.100
                         250.000
                                   490.0
                                               NA
                                                       NA
                                                                NA
                                                                     NA
                                                                             NA
                                                                                  NA
##
      Brain.2 Wt.5
## 1
            NA
                 NA
## 2
            NA
                 NA
## 3
            NA
                 NA
## 4
            NA
                 NA
## 5
            NA
                 NA
## 6
            NA
                 NA
## 7
            NA
                 NA
## 8
            NA
                 NA
## 9
            NA
                 NA
## 10
            NA
                 NA
## 11
            NA
                 NA
## 12
            NA
                 NA
## 13
            NA
                 NA
## 14
            NA
                 NA
## 15
            NA
                 NA
## 16
            NA
                 NA
## 17
            NA
                 NA
## 18
            NA
                 NA
## 19
            NA
                 NA
## 20
            NA
                 NA
## 21
            NA
                 NA
ncol(Brain.Body.weight.data) # 12
```

[1] 12

```
nrow(Brain.Body.weight.data) # 21
## [1] 21
## We need to transform the given data set with the \# row : 62, and \# col : 2 (Brain Weight (g), Body W
## First, we seperate the data by variables by Brain weight, Body weight
\#\# By concatenating the 3rd, 4th, and 6th column data, we can get the vector of brain weight data.
Brain.Weight.expected.data <- c(Brain.Body.weight.data[,3],Brain.Body.weight.data[,4],Brain.Body.weight
## By concatenating the 1st, 2nd, and 5th column data, we can get the vector of Body weight data.
Body.Weight.expected.data <- c(Brain.Body.weight.data[,1],Brain.Body.weight.data[,2],Brain.Body.weight.
## Make arranged data with matrix form (column : variable, row : observation)
Arranged.data3 <- matrix(c(Brain.Weight.expected.data,Body.Weight.expected.data),nrow=63,ncol=2,byrow=F
## Set the column names and row number
colnames(Arranged.data3) <- c("Brain.Weight(g)", "Body.Weight(kg)")</pre>
rownames(Arranged.data3) <- c(1:63)</pre>
# Arranged.data2
Table.Arranged.data3 <- as.table(Arranged.data3)</pre>
## Show the arranged data set.
Table.Arranged.data3
```

##		<pre>Brain.Weight(g)</pre>	<pre>Body.Weight(kg)</pre>
##	1	521.000	3.385
##	2	0.785	0.480
##	3	10.000	1.350
##	4	3.300	465.000
##	5	0.200	36.330
##	6	1.410	27.660
##	7	529.000	14.830
##	8	207.000	1.040
##	9	85.000	4.190
##	10	0.750	0.425
##	11	62.000	0.101
##	12	6654.000	0.920
##	13	3.500	1.000
##	14	6.800	0.005
##	15	35.000	0.060
##	16	4.050	3.500
##	17	0.120	2.000
##	18	0.023	1.700
##	19	0.010	2547.000
##	20	1.400	0.023
##	21	250.000	187.100

```
## 22
               655.000
                                  44.500
## 23
                 3.500
                                  15.500
## 24
               115.000
                                   8.100
## 25
                25.600
                                 423.000
## 26
                 5.000
                                 119.500
## 27
                17.500
                                 115.000
## 28
               680.000
                                  98.200
## 29
               406.000
                                   5.500
##
  30
               325.000
                                  58.000
## 31
                12.300
                                   6.400
##
  32
              1320.000
                                   4.000
## 33
              5712.000
                                   5.700
##
   34
                 3.900
                                   6.600
## 35
                                   0.100
               179.000
## 36
                56.000
                                   1.000
## 37
                17.000
                                  10.800
## 38
                 1.000
                                  12.300
## 39
                 0.400
                                   6.300
## 40
                 0.300
                                4603.000
## 41
                12.500
                                   0.300
## 42
               490.000
                                 419.000
## 43
                12.100
                                   2.500
## 44
               175.000
                                  55.500
## 45
               157.000
                                 100.000
## 46
               440.000
                                  52.160
## 47
               179.500
                                  10.550
## 48
                 2.400
                                   0.550
##
  49
                81.000
                                  60.000
## 50
                21.000
                                   3.600
## 51
                39.200
                                   4.288
## 52
                 1.900
                                   0.280
## 53
                 1.200
                                   0.075
## 54
                 3.000
                                   0.122
## 55
                 0.330
                                   0.048
## 56
               180.000
                                 192.000
## 57
                25.000
                                   3.000
## 58
               169.000
                                 160.000
## 59
                 2.600
                                   0.900
## 60
                11.400
                                   1.620
## 61
                 2.500
                                   0.104
## 62
                50.400
                                   4.235
## 63
```

Summary table for arranged.data for each variable. summary(Arranged.data3)

```
Brain.Weight(g)
                        Body.Weight(kg)
##
    Min.
               0.010
                        Min.
                                    0.005
##
    1st Qu.:
                2.525
                                    0.940
                        1st Qu.:
    Median :
             17.250
                        Median :
                                    4.261
##
    Mean
            : 322.046
                        Mean
                                : 159.878
    3rd Qu.: 178.000
                        3rd Qu.: 50.245
            :6654.000
                                :4603.000
##
    Max.
                        Max.
##
    NA's
            :1
                        NA's
                                :1
```

```
## Visualization for each variable.
# Histogram.
hist(Arranged.data3[,1],main="Histogram for brain weight(g) data",xlab="brain weight(g) data") # for br
```

Histogram for brain weight(g) data

hist(Arranged.data3[,2],main="Histogram for body weight(kg) data",xlab="body weight(kg) data") # for bo

Histogram for body weight(kg) data

From the each variable's histograms, we can find the fact that most of the observed data
seems to aggregate in the interval (0,1000)

C.f) What if taking the 'hist' function with different breaks and xlimit ?
hist(Arranged.data3[,1],breaks=200,xlim=c(0,8000),main="c.f) histogram for figuring out the plurality")

c.f) histogram for figuring out the plurality


```
## We should be careful of plurality !!! => we shouldn't say the dis. of this data easily.
## because chances are that the shape of the histogram can be seen differently according to the number
## of breaks in 'hist' built-in function.

## Box plot for each variable
boxplot(Arranged.data3[,1],main="Boxplot of Brain weight(g)")# for brain weight
```

Boxplot of Brain weight(g)

boxplot(Arranged.data3[,2],main="Boxplot of Body weight(kg)")# for body weight

Boxplot of Body weight(kg)

There seems to be some outliars within the each variable data sets.

d. Triplicate measurements of tomato yield for two varieties of tomatoes at three planting densities.

```
library(stringr)
## In terms of this data set, I will use the 'readLines' Command for reading the raw data set.
Triplicate.meas.tomatoes.at3planting.den.data <- readLines(con="tomato.csv")</pre>
## Arrange the raw data set a little bit.
Triplicate.meas.tomatoes.at3planting.den.data <- Triplicate.meas.tomatoes.at3planting.den.data[-1]
Triplicate.meas.tomatoes.at3planting.den.data<-as.matrix(Triplicate.meas.tomatoes.at3planting.den.data,
Triplicate.meas.tomatoes.at3planting.den.data
        [,1]
## [1,] "
                               10000
                                                  20000
                                                            30000"
## [2,] "Ife\\#1
                          16.1,15.3,17.5
                                          16.6,19.2,18.5 20.8,18.0,21.0"
                                         12.7,13.7,11.5 14.4,15.4,13.7 "
## [3,] "PusaEarlyDwarf 8.1,8.6,10.1,
## We need to handle with the repeated measure.
## The way I choose to deal with repeated measure is assigning the column vector for each kind of tomat
## Let's make the numeric vector of measure of first kind of tomato
tempo.first.tomato.repeated.measure <- Triplicate.meas.tomatoes.at3planting.den.data[2,]
## Split the 'tempo.first.tomato.repeated.measure' data for obtaining the individual data point.
tempo.first.tomato.repeated.measure2 <- str_split(tempo.first.tomato.repeated.measure, ",") # sep : com
tempo.first.tomato.repeated.measure2
## [[1]]
## [1] "Ife\\#1
                         16.1" "15.3"
## [3] "17.5 16.6"
                                "19.2"
## [5] "18.5
              20.8"
                                "18.0"
## [7] "21.0"
## Even if we have done the above procedure, there seems to need more efforts to get the individual obs
## 2nd, 5th, 8th, and 9th obs. data from first kind of tomato can be received by just following indexin
Second.data.in.the.first.tomato.repeated.measure <- tempo.first.tomato.repeated.measure2[[1]][2]
Fifth.data.in.the.first.tomato.repeated.measure <- tempo.first.tomato.repeated.measure2[[1]][4]
Eightth.data.in.the.first.tomato.repeated.measure <- tempo.first.tomato.repeated.measure2[[1]][6]
Nineth.data.in.the.first.tomato.repeated.measure <- tempo.first.tomato.repeated.measure2[[1]][7]
## The thing is that we should break into multi parts what is composed of several things (such as combi
tempo.first.tomato.repeated.measure.first. <- str_split(tempo.first.tomato.repeated.measure2[[1]][1], "
tempo.first.tomato.repeated.measure.first.
```

```
## [[1]]
                            11 11
                                      11 11
                                                                     11 11
## [1] "Ife\\#1" ""
                            11 11
## [8] ""
                                                 "16.1"
First.data.in.the.first.tomato.repeated.measure <- tempo.first.tomato.repeated.measure.first.[[1]][12]
First.data.in.the.first.tomato.repeated.measure
## [1] "16.1"
tempo.first.tomato.repeated.measure.third. <- str_split(tempo.first.tomato.repeated.measure2[[1]][3], "
tempo.first.tomato.repeated.measure.third.
## [[1]]
## [1] "17.5" ""
                            "16.6"
Third.data.in.the.first.tomato.repeated.measure <- tempo.first.tomato.repeated.measure.third.[[1]][1]
Third.data.in.the.first.tomato.repeated.measure
## [1] "17.5"
Fourth.data.in.the.first.tomato.repeated.measure <- tempo.first.tomato.repeated.measure.third.[[1]][4]
Fourth.data.in.the.first.tomato.repeated.measure
## [1] "16.6"
tempo.first.tomato.repeated.measure.fifth. <- str_split(tempo.first.tomato.repeated.measure2[[1]][5], "
tempo.first.tomato.repeated.measure.fifth.
## [[1]]
## [1] "18.5" ""
                            "20.8"
Sixth.data.in.the.first.tomato.repeated.measure <- tempo.first.tomato.repeated.measure.fifth.[[1]][1]
Sixth.data.in.the.first.tomato.repeated.measure
## [1] "18.5"
Seventh.data.in.the.first.tomato.repeated.measure <- tempo.first.tomato.repeated.measure.fifth.[[1]][4]
Seventh.data.in.the.first.tomato.repeated.measure
## [1] "20.8"
# By weaving the above code, we can get the individual obs !!
## Now, we can concatenate repeated measures of first tomato (# : 9)
First.tomato.repeated.measure.vector <- c(First.data.in.the.first.tomato.repeated.measure, Second.data.
First.tomato.repeated.measure.vector <- as.numeric(First.tomato.repeated.measure.vector)
First.tomato.repeated.measure.vector
```

```
## [1] 16.1 15.3 17.5 16.6 19.2 18.5 20.8 18.0 21.0
## It is the numeric vector composed of obs. of first kind of tomato.
## Do the same procedure to make the numeric vector of measure of Second kind of tomato
tempo.second.tomato.repeated.measure <- Triplicate.meas.tomatoes.at3planting.den.data[3,]
tempo.second.tomato.repeated.measure2 <- str_split(tempo.second.tomato.repeated.measure, ",")</pre>
tempo.second.tomato.repeated.measure2
## [[1]]
## [1] "PusaEarlyDwarf 8.1" "8.6"
                                                     "10.1"
## [4] " 12.7"
                                                     "11.5
                                                            14.4"
                              "13.7"
## [7] "15.4"
                              "13.7 "
Second.data.in.the.second.tomato.repeated.measure <- tempo.second.tomato.repeated.measure2[[1]][2]
Third.data.in.the.second.tomato.repeated.measure <- tempo.second.tomato.repeated.measure2[[1]][3]
Fourth.data.in.the.second.tomato.repeated.measure <- tempo.second.tomato.repeated.measure2[[1]][4]
Fifth.data.in.the.second.tomato.repeated.measure <- tempo.second.tomato.repeated.measure2[[1]][5]
Eightth.data.in.the.second.tomato.repeated.measure <- tempo.second.tomato.repeated.measure2[[1]][7]
Nineth.data.in.the.second.tomato.repeated.measure <- tempo.second.tomato.repeated.measure2[[1]][8]
tempo.second.tomato.repeated.measure.first. <- str_split(tempo.second.tomato.repeated.measure2[[1]][1],
tempo.second.tomato.repeated.measure.first.
## [[1]]
                                         11 11
## [1] "PusaEarlyDwarf" ""
                                                          "8.1"
First.data.in.the.second.tomato.repeated.measure <- tempo.second.tomato.repeated.measure.first.[[1]][4
First.data.in.the.second.tomato.repeated.measure
## [1] "8.1"
tempo.second.repeated.measure.sixth. <- str_split(tempo.second.tomato.repeated.measure2[[1]][6], " ")
tempo.second.repeated.measure.sixth.
## [[1]]
## [1] "11.5" ""
                            "14.4"
```

```
Sixth.data.in.the.second.tomato.repeated.measure <- tempo.second.repeated.measure.sixth.[[1]][1]
Sixth.data.in.the.second.tomato.repeated.measure
## [1] "11.5"
Seventh.data.in.the.second.tomato.repeated.measure <- tempo.second.repeated.measure.sixth.[[1]][4]
Seventh.data.in.the.second.tomato.repeated.measure
## [1] "14.4"
## Now, we can concatenate repeated measures of the second kind of tomato (# : 9)
Second.tomato.repeated.measure.vector <- c(First.data.in.the.second.tomato.repeated.measure, Second.dat
Second.tomato.repeated.measure.vector <- as.numeric(Second.tomato.repeated.measure.vector)
Second.tomato.repeated.measure.vector
## [1] 8.1 8.6 10.1 12.7 13.7 11.5 14.4 15.4 13.7
## The next thing we should do is the arranging the data set can look comfortable.
## I will use the 'list' form to look this arranged data set nice to viewers.
## Assign each (repeated) data set to the each kind of tomato and each density 'list' space (refer to t
First.Tomato.First.Density <- new.env()</pre>
First.Tomato.First.Density$first.obs<- First.tomato.repeated.measure.vector[1]
First.Tomato.First.Density$second.obs<- First.tomato.repeated.measure.vector[2]
First.Tomato.First.Density$third.obs<- First.tomato.repeated.measure.vector[3]
 First.Tomato.First.Density <- as.list(First.Tomato.First.Density)</pre>
First.Tomato.Second.Density <- new.env()</pre>
First.Tomato.Second.Density$first.obs<- First.tomato.repeated.measure.vector[4]
First.Tomato.Second.Density$second.obs<- First.tomato.repeated.measure.vector[5]
First.Tomato.Second.Density$third.obs<- First.tomato.repeated.measure.vector[6]
First.Tomato.Second.Density <- as.list(First.Tomato.Second.Density)</pre>
```

```
First.Tomato.Third.Density <- new.env()</pre>
First.Tomato.Third.Density$first.obs<- First.tomato.repeated.measure.vector[7]
First.Tomato.Third.Density$second.obs<- First.tomato.repeated.measure.vector[8]
First.Tomato.Third.Density$third.obs<- First.tomato.repeated.measure.vector[9]
First.Tomato.Third.Density <- as.list(First.Tomato.Third.Density)</pre>
 Second.Tomato.First.Density <- new.env()</pre>
Second.Tomato.First.Density first.obs <- Second.tomato.repeated.measure.vector[1]
Second.Tomato.First.Density$second.obs<- Second.tomato.repeated.measure.vector[2]
Second.Tomato.First.Density$third.obs<- Second.tomato.repeated.measure.vector[3]
Second.Tomato.First.Density <- as.list(Second.Tomato.First.Density)</pre>
Second.Tomato.Second.Density <- new.env()</pre>
Second.Tomato.Second.Density$first.obs<- Second.tomato.repeated.measure.vector[4]
Second.Tomato.Second.Density$second.obs<- Second.tomato.repeated.measure.vector[5]
Second.Tomato.Second.Density$third.obs<- Second.tomato.repeated.measure.vector[6]
Second.Tomato.Second.Density <- as.list(Second.Tomato.Second.Density)</pre>
Second.Tomato.Third.Density <- new.env()</pre>
Second.Tomato.Third.Density$first.obs<- Second.tomato.repeated.measure.vector[7]
Second.Tomato.Third.Density$second.obs<- Second.tomato.repeated.measure.vector[8]
Second.Tomato.Third.Density$third.obs<- Second.tomato.repeated.measure.vector[9]
Second.Tomato.Third.Density <- as.list(Second.Tomato.Third.Density)</pre>
```

```
Arranged.data4 <- list(First.Tomato.First.Density, First.Tomato.Second.Density, First.Tomato.Third.Den
                   Second.Tomato.First.Density, Second.Tomato.Second.Density, Second.Tomato.Third.Densi
names(Arranged.data4)[[1]] <- "First Tomato obtained from 1st density"</pre>
names(Arranged.data4)[[2]] <- "First Tomato obtained from 2nd density"</pre>
names(Arranged.data4)[[3]] <- "First Tomato obtained from 3rd density"</pre>
 names(Arranged.data4)[[4]] <- "Second Tomato obtained from 1st density"</pre>
names(Arranged.data4)[[5]] <- "Second Tomato obtained from 2nd density"</pre>
 names(Arranged.data4)[[6]] <- "Second Tomato obtained from 3rd density"</pre>
Arranged.data4
## $`First Tomato obtained from 1st density`
## $`First Tomato obtained from 1st density`$third.obs
## [1] 17.5
## $`First Tomato obtained from 1st density`$first.obs
## [1] 16.1
## $`First Tomato obtained from 1st density`$second.obs
## [1] 15.3
##
##
## $`First Tomato obtained from 2nd density`
## $`First Tomato obtained from 2nd density`$third.obs
## [1] 18.5
## $`First Tomato obtained from 2nd density`$first.obs
## [1] 16.6
## $`First Tomato obtained from 2nd density`$second.obs
## [1] 19.2
##
## $`First Tomato obtained from 3rd density`
## $`First Tomato obtained from 3rd density`$third.obs
##
## $`First Tomato obtained from 3rd density`$first.obs
## [1] 20.8
## $`First Tomato obtained from 3rd density`$second.obs
## [1] 18
##
```

```
##
## $`Second Tomato obtained from 1st density`
## $`Second Tomato obtained from 1st density`$third.obs
## [1] 10.1
## $`Second Tomato obtained from 1st density`$first.obs
## [1] 8.1
## $`Second Tomato obtained from 1st density`$second.obs
## [1] 8.6
##
## $`Second Tomato obtained from 2nd density`
## $`Second Tomato obtained from 2nd density`$third.obs
## [1] 11.5
##
## $`Second Tomato obtained from 2nd density`$first.obs
## $`Second Tomato obtained from 2nd density`$second.obs
## [1] 13.7
##
##
## $`Second Tomato obtained from 3rd density`
## $`Second Tomato obtained from 3rd density`$third.obs
## [1] 13.7
##
## $`Second Tomato obtained from 3rd density`$first.obs
## [1] 14.4
##
## $`Second Tomato obtained from 3rd density`$second.obs
## [1] 15.4
## The above arranged data set has the form of list which can allow us to seize the structure of the q
## Summary table for arranged.data for each tomato from each density
summary(as.numeric(Arranged.data4$`First Tomato obtained from 1st density`))
     Min. 1st Qu. Median
                              Mean 3rd Qu.
##
                                              Max.
##
      15.3
              15.7
                      16.1
                              16.3
                                      16.8
                                              17.5
summary(as.numeric(Arranged.data4$`First Tomato obtained from 2nd density`))
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
            17.55
                     18.50
                             18.10
                                    18.85
                                             19.20
summary(as.numeric(Arranged.data4$`First Tomato obtained from 3rd density`))
##
     Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                              Max.
                     20.80
     18.00
             19.40
                             19.93
                                     20.90
                                             21.00
summary(as.numeric(Arranged.data4$`Second Tomato obtained from 1st density`))
```

```
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
           8.350
                     8.600
                                     9.350 10.100
##
     8.100
                             8.933
summary(as.numeric(Arranged.data4$`Second Tomato obtained from 2nd density`))
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
##
     11.50
            12.10
                     12.70
                             12.63
                                     13.20
                                             13.70
summary(as.numeric(Arranged.data4$^Second Tomato obtained from 3rd density^))
     Min. 1st Qu. Median
##
                              Mean 3rd Qu.
                                              Max.
##
            14.05
                     14.40
                             14.50
                                     14.90
## Visualization for each tomato from each density.
## Box plot for each tomato from each density
boxplot(as.numeric(Arranged.data4$`First Tomato obtained from 1st density`), main="Boxplot for First Tom
```

Boxplot for First Tomato obtained from 1st density

boxplot(as.numeric(Arranged.data4\$`First Tomato obtained from 2nd density`), main="Boxplot for First Tom

Boxplot for First Tomato obtained from 2nd density

boxplot(as.numeric(Arranged.data4\$`First Tomato obtained from 3rd density`),main="Boxplot for First Tomato"

Boxplot for First Tomato obtained from 3rd density

boxplot(as.numeric(Arranged.data4\$`Second Tomato obtained from 1st density`), main="Boxplot for Second T

Boxplot for Second Tomato obtained from 1st density

boxplot(as.numeric(Arranged.data4\$`Second Tomato obtained from 2nd density`), main="Boxplot for Second T

Boxplot for Second Tomato obtained from 2nd density

boxplot(as.numeric(Arranged.data4\$`Second Tomato obtained from 3rd density`), main="Boxplot for Second T

Boxplot for Second Tomato obtained from 3rd density

There doesn't seem to be no outliar or weird points when we see the a variety of plots.

Problem 5

In the swirl lessons, you played with a dataset "plants". Our ultimate goal is to see if there is a relationship between pH and Foliage_Color. Consider a statistic that combines the information in pH_Min and pH_Max.

Clean, summarize and transform the data as appropriate. Use function 'lm' to test for a relationship. Report both the coefficients and ANOVA results in table form.

Note that if you didn't just do the swirl lesson, it is now not available. Add the following code to your project to retrieve it.

```
##
## | Hi! I see that you have some variables saved in your workspace. To keep
## | things running smoothly, I recommend you clean up before starting swirl.
##
## | Type ls() to see a list of the variables in your workspace. Then, type
## | rm(list=ls()) to clear your workspace.
##
## | Type swirl() when you are ready to begin.
# Path to data
.datapath <- file.path(path.package('swirl'), 'Courses',
'R_Programming_E', 'Looking_at_Data', 'plant-data.txt')

# Read in data
plants <- read.csv(.datapath, strip.white=TRUE, na.strings="")

# Remove annoying columns
.cols2rm <- c('Accepted.Symbol', 'Synonym.Symbol')
plants <- plants[, !(names(plants) %in% .cols2rm)]</pre>
```

```
# Make names pretty
names(plants) <- c('Scientific_Name', 'Duration', 'Active_Growth_Period',</pre>
'Foliage_Color', 'pH_Min', 'pH_Max', 'Precip_Min', 'Precip_Max',
'Shade_Tolerance', 'Temp_Min_F')
## plants : too messy data set (because of too many NAs) => need to be cleaned for appropriate analysis
plants.NA.removed <- na.omit(plants)</pre>
## plants.NA.removed
## Statistic : range = plants$pH_Max - plants$pH_Min ( we will use this statistic value as Dependent Va
# plants$pH Min
# plants$pH_Max
plants.range <- plants.NA.removed$pH_Max - plants.NA.removed$pH_Min
plants.range
     [1] 2.0 1.5 1.1 2.8 2.8 2.1 2.4 1.2 2.6 3.3 4.2 2.2 2.0 2.0 2.0 2.0 2.0
  [18] 2.0 2.5 2.0 2.5 2.0 2.5 2.6 3.5 2.5 2.0 2.0 2.4 3.8 2.0 2.5 2.0 2.0
   [35] 2.9 2.0 2.0 2.5 3.5 3.5 3.5 2.2 2.7 2.0 2.2 2.0 2.7 1.9 2.5 2.0 3.5
   [52] 4.0 2.2 1.5 1.5 1.3 3.5 2.1 2.0 1.5 2.5 2.2 1.8 2.5 1.0 2.2 2.0 3.0
## [69] 1.9 2.2 3.0 2.0 2.5 2.0 2.5 1.5 3.2 2.3 2.4 1.2 1.7 4.0 3.2 3.5 3.2
## [86] 3.0 2.0 1.9 1.9 1.9 2.0 2.0 2.0 3.6 2.2 1.9 1.7 1.4 2.5 1.6 1.3 3.0
## [103] 1.2 1.2 1.2 3.0 2.3 1.9 2.5 2.0 2.5 2.5 1.3 2.2 3.5 3.3 3.5 3.0 2.2
## [120] 1.6 1.9 2.3 1.5 2.0 1.9 3.5 1.8 1.7 2.0 2.0 3.5 1.1 3.5 1.5 2.2 2.6
## [137] 1.7 2.1 2.2 2.9 3.5 1.9 2.0 2.1 2.2 1.6 2.5 1.3 4.0 2.2 1.2 1.5 2.3
## [154] 1.8 2.1 2.6 1.2 2.1 1.8 0.8 1.9 2.1 2.0 2.0 2.0 2.2 2.1 2.3 2.2 1.8
## [171] 1.7 3.0 2.2 3.5 2.1 2.0 2.2 1.3 2.3 1.3 2.0 3.0 3.0 2.1 3.4 2.6 2.5
## [188] 3.0 1.6 3.3 1.0 1.9 2.0 1.5 2.5 2.2 2.5 2.5 3.3 1.8 3.9 2.6 2.9 3.5
## [205] 2.0 2.8 1.0 2.0 2.5 2.5 2.0 2.0 1.5 4.5 2.3 1.6 1.8 2.5 1.8 2.0 2.0
## [222] 2.0 3.0 2.0 2.0 2.4 1.0 2.6 2.5 2.0 1.4 2.9 1.4 2.6 1.4 2.7 2.0 2.0
## [239] 2.7 2.7 2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0 2.0 2.0 3.3 2.0 2.2 0.6
## [256] 1.5 2.5 2.2 3.7 2.0 3.0 1.0 1.4 2.5 3.5 2.5 2.5 2.5 3.0 3.0 2.2 1.5
## [273] 2.8 3.6 3.0 3.0 2.8 0.7 0.7 4.5 2.7 5.6 2.7 3.5 2.9 2.5 4.6 4.0 0.8
## [290] 2.2 3.0 2.9 2.6 2.7 3.4 2.0 3.0 2.5 3.0 1.5 2.5 4.0 4.0 3.5 3.0 2.4
## [307] 3.6 2.5 2.7 2.5 2.0 3.1 2.5 1.7 2.5 2.8 3.8 3.4 2.8 1.8 2.0 2.2 2.4
## [324] 2.4 3.4 2.5 2.5 2.0 2.2 1.7 1.4 1.4 3.0 2.0 2.2 2.2 2.3 3.2 3.5 3.5
## [341] 3.0 4.0 2.3 1.7 2.6 3.5 3.0 3.0 2.3 2.0 1.5 3.0 2.0 1.9 2.0 1.7 3.5
## [358] 3.0 2.5 1.8 3.5 1.4 2.6 1.4 2.4 3.5 1.6 2.4 2.6 2.6 2.4 2.1 3.0 2.5
## [375] 2.5 3.0 1.0 0.6 2.5 3.5 0.7 1.0 3.6 2.8 2.7 2.5 2.2 1.2 3.0 1.4 2.0
## [392] 3.3 1.3 2.3 1.5 3.0 1.2 1.9 1.5 2.5 2.0 1.8 2.5 3.3 2.2 1.0 2.0 3.5
## [409] 2.0 2.4 3.3 3.4 2.5 1.0 1.0 0.4 3.0 3.7 4.0 2.0 3.5 2.5 1.1 1.8 1.9
## [426] 1.7 1.4 1.8 2.5 0.9 2.5 1.5 3.0 2.5 2.0 3.0 2.0 3.0 2.9 2.9 2.5 2.5
## [443] 2.3 3.0 2.0 3.5 1.3 2.6 2.0 1.3 2.0 2.4 3.0 1.8 2.0 2.5 1.9 2.2 2.5
## [460] 2.5 1.6 1.7 2.0 1.7 3.5 3.0 1.6 2.9 2.0 2.5 3.7 2.3 2.0 2.0 2.4 1.0
## [477] 2.0 2.2 2.0 3.0 1.6 2.0 2.0 1.2 1.5 2.0 2.5 2.5 2.5 2.0 2.0 0.9 3.4
## [494] 2.5 2.0 4.0 3.5 2.5 2.2 1.0 2.5 3.5 2.5 1.5 1.6 4.0 2.6 3.0 3.5 3.0
## [511] 3.0 3.8 1.3 1.5 2.0 2.0 2.5 2.2 2.8 1.7 1.2 0.9 1.8 2.0 4.2 2.5 2.5
```

[528] 2.0 3.3 2.0 4.2 2.3 1.8 2.0 2.5 1.5 1.6 2.0 2.5 2.5 3.0 3.0 1.2 2.5

```
## [545] 1.6 2.5 3.2 1.1 2.2 2.0 2.6 3.4 1.1 2.7 3.0 2.5 4.3 4.5 4.5 2.7 4.5
## [562] 3.0 3.8 2.1 2.5 1.9 2.4 1.3 3.5 4.7 1.5 2.1 2.7 1.6 1.5 1.2 1.2 1.2
## [579] 1.2 1.2 2.0 2.6 2.0 2.5 1.9 3.0 3.5 1.5 3.2 2.2 2.5 1.5 2.3 2.2 2.4
## [596] 2.2 1.5 2.3 3.0 3.0 1.0 2.0 3.0 2.5 1.5 2.0 2.0 3.0 2.6 1.7 2.0 2.5
## [613] 3.5 1.5 2.5 1.6 3.6 4.0 1.5 1.5 1.5 1.5 1.2 3.0 2.2 2.2 1.7 2.3 2.0
## [630] 3.6 2.0 3.5 3.0 3.0 3.0 2.0 2.5 2.0 2.9 2.2 2.5 2.0 2.0 2.5 2.5 2.5
## [647] 2.3 2.0 1.0 2.5 3.0 2.5 3.2 3.5 3.5 2.2 2.3 4.2 3.3 4.3 3.0 3.0 1.1
## [664] 3.8 1.4 3.2 1.0 3.0 1.8 3.9 2.0 2.0 2.8 3.4 3.5 3.8 2.0 2.1 4.0 2.4
## [681] 2.5 2.1 3.7 3.5 3.0 1.6 2.0 3.0 3.0 2.0 4.0 3.0 3.0 2.5 3.0 1.5 1.5
## [698] 2.7 2.5 1.7 4.0 2.0 1.0 2.5 2.5 2.0 1.2 1.5 2.0 3.2 2.0 2.0 2.0 2.4
## [715] 3.5 1.6 1.7 2.0 2.5 2.5 2.5 1.5 2.5 2.0 3.6 1.5 1.2 2.0 2.3 1.7 2.5
## [732] 3.7 1.8 1.4 2.0 1.8 2.0 2.0 1.5 2.0 1.6 1.7 3.0 1.4 3.0 2.0 2.0 2.7
## [749] 1.5 2.2 3.5 3.0 1.8 3.0 1.6 2.4 0.9 4.0 1.0 2.6 2.0 1.9 2.0 2.1 2.8
## [766] 2.4 2.5 1.5 4.8 3.2 2.0 3.0 2.2 2.5 2.5 2.7 1.5 3.4 2.0 1.4 2.8 2.8
## [783] 3.0 2.1 3.5 1.8 2.7 2.8 2.0 2.1 2.0 2.1 1.8 2.7 2.6 1.3 2.1 0.9 1.5
## [800] 2.0 2.2 1.3 1.0 1.8 1.7 1.6 2.4 2.0 1.5 3.0 2.0 1.0 4.7
summary(plants.range)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
##
     0.400
             1.900
                     2.200
                             2.347
                                     2.900
                                              5.600
boxplot(plants.range)
                                         0
2
                                         8
3
\sim
Foliage_Color <- plants.NA.removed$Foliage_Color ## We use this factor or explanatory variable (X) for
summary(Foliage_Color)
##
     Dark Green
                  Gray-Green
                                    Green
                                                    Red
                                                          White-Gray
##
                                       675
                                                      3
## Yellow-Green
##
             20
## Data cleaning
## What we need is the set of pHs and Foliage_color data set
required.data.set <- data.frame(plants.range,Foliage_Color)</pre>
```

##	plants.range	Foliage_Color
## 1	2.0	Green
## 2	1.5	Green
## 3	1.1	Green
## 4	2.8	Green
## 5	2.8	Green
## 6	2.1	Green
## 7	2.4	Green
## 8	1.2	Yellow-Green
## 9	2.6	Green
## 10	3.3	Green
## 11	4.2	Green
## 12	2.2	Green
## 13	2.0	Green
## 14	2.0	Green
## 15	2.0	Green
## 16	2.0	Green
## 17	2.0	Dark Green
## 18	2.0	Green
## 19	2.5	Green
## 20	2.0	Green
## 21	2.5	Green
## 22	2.0	Green
## 23	2.5	Green
## 24	2.6	Green
## 25	3.5	Green
## 26	2.5	Green
## 27	2.0	Green
## 28	2.0	Green
## 29	2.4	Green
## 30	3.8	Green
## 31	2.0	Green
## 32	2.5	White-Gray
## 33	2.0	Green
## 34	2.0	Green
## 35	2.9	Dark Green
## 36	2.0	Green
## 37	2.0	Green
## 38	2.5	Green
## 39	3.5	Green
## 40	3.5	Green
## 41	3.5	Green
## 42	2.2	Green
## 43	2.7	Dark Green
## 44	2.0	Green
## 45	2.2	Green
## 46	2.0	Dark Green
## 47	2.7	Green
## 48	1.9	Green
## 49	2.5	Green
## 50	2.0	Green
## 51	3.5	Green
" " OI	0.0	green

## 52	4.0	Green
## 53	2.2	Green
## 54	1.5	Green
## 55	1.5	Green
## 56	1.3	Green
## 57	3.5	Green
## 58	2.1	Green
## 59	2.0	Dark Green
## 60	1.5	Green
## 61	2.5	Green
## 62	2.2	Dark Green
## 63	1.8	Green
## 64	2.5	Dark Green
## 65	1.0	Green
## 66	2.2	Green
## 67	2.0	Green
## 68	3.0	White-Gray
## 69	1.9	Dark Green
## 70	2.2	Green
## 71	3.0	Green
## 72	2.0	Green
## 73	2.5	Dark Green
## 74	2.0	Green
## 75	2.5	Green
## 76	1.5	Green
## 77	3.2	Green
## 78	2.3	Dark Green
## 79	2.4	Green
## 80	1.2	Gray-Green
## 81	1.7	Dark Green
## 82	4.0	Green
## 83	3.2	
		Green
	3.5	Green
## 85	3.2	Green
## 86	3.0	Green
## 87	2.0	Green
## 88	1.9	Green
## 89	1.9	Green
## 90	1.9	Green
## 91	2.0	Green
## 92	2.0	Green
## 93	2.0	Green
## 94	3.6	Green
## 95	2.2	Green
## 96	1.9	Green
## 97	1.7	Green
## 98	1.4	Green
## 99	2.5	Green
## 100	1.6	Green
## 101	1.3	Green
## 102	3.0	Green
## 103	1.2	Green
## 104	1.2	Dark Green
## 105	1.2	Dark Green

##	106	3.0	Green
##	107	2.3	Green
##	108	1.9	Green
##	109	2.5	Green
##	110	2.0	Green
##	111	2.5	Green
##	112	2.5	Green
##	113	1.3	Green
##	114	2.2	Green
##	115	3.5	Gray-Green
##	116	3.3	Green
##	117	3.5	Green
##	118	3.0	Green
##	119	2.2	Green
##	120	1.6	Green
##	121	1.9	Green
##	122	2.3	Green
## ##	123 124	1.5 2.0	Green
##	125	1.9	Green Green
##	126	3.5	Green
##	127	1.8	Green
##	128	1.7	Green
##	129	2.0	Green
##	130	2.0	Green
##	131	3.5	Green
##	132	1.1	Green
##	133	3.5	Green
##	134	1.5	Green
##	135	2.2	Green
##	136	2.6	Green
##	137	1.7	Green
##	138	2.1	Gray-Green
##	139	2.2	Green
##	140	2.9	Green
##	141	3.5	Green
##	142	1.9	Green
##	143	2.0	Green
##	144	2.1	Green
##	145	2.2	Green
##	146	1.6	Green
##	147	2.5	Gray-Green
##	148	1.3	Green
##	149	4.0	Green
##	150	2.2	Dark Green
##	151	1.2	Green
##	152	1.5	Green
##	153	2.3	Gray-Green
##	154	1.8	Green
##	155	2.1	Dark Green
##	156	2.6	Green
##	157	1.2	Green
##	158	2.1	Green
##	159	1.8	Green

##	160	0.8		${\tt Green}$
##	161	1.9		Green
##	162	2.1		${\tt Green}$
##	163	2.0		${\tt Green}$
##	164	2.0	Dark	${\tt Green}$
##	165	2.0		${\tt Green}$
##	166	2.2		${\tt Green}$
##	167	2.1		${\tt Green}$
##	168	2.3		${\tt Green}$
##	169	2.2		${\tt Green}$
##	170	1.8	Dark	${\tt Green}$
##	171	1.7		${\tt Green}$
##	172	3.0		Green
##	173	2.2		Green
##	174	3.5		Green
##	175	2.1		Green
##	176	2.0		Green
##	177	2.2		Green
##	178	1.3		Green
##	179	2.3		Green
##	180	1.3		Green
##	181	2.0		Green
##	182	3.0		Green
##	183	3.0		Green
##	184	2.1		Green
##	185	3.4		Green
##	186	2.6		Green
##	187	2.5		Green
##	188	3.0	Yellow-	
##	189	1.6	ICIIOW	Green
##	190	3.3		Green
##	191	1.0	Yellow-	
##	192	1.9	ICIIOW	Green
##	193	2.0		Green
##	194	1.5	Dark	
##	195	2.5	Dark	Green
##	196	2.2		Green
##	197	2.5		
##		2.5		Green
	198 199	3.3		Green
##	200	1.8		Green
##				Green
##	201	3.9	0	Green
##	202	2.6 2.9	Gray-	-Green
##	203			Green
##	204	3.5		Green
##	205	2.0		Green
##	206	2.8	37 - 7 7	Green
##	207	1.0	Yellow-	
##	208	2.0		Green
##	209	2.5		Green
##	210	2.5		Green
##	211	2.0		Green
##	212	2.0		Green
##	213	1.5		Green

## 214	4.5	Green
## 215	2.3	Green
## 216	1.6	Green
## 217	1.8	Green
## 218	2.5	Green
## 219	1.8	Green
## 220	2.0	Green
## 221	2.0	Yellow-Green
## 222	2.0	Green
## 223	3.0	Green
## 224	2.0	Green
## 225	2.0	Green
## 226	2.4	Green
## 227	1.0	Green
## 228	2.6	Green
## 229	2.5	Dark Green
## 230	2.0	Green
## 231	1.4	Dark Green
## 232	2.9	Green
## 233	1.4	Green
## 234	2.6	Green
## 235	1.4	Green
## 236	2.7	Green
## 237	2.0	White-Gray
## 238	2.0	Green
## 239	2.7	Green
	2.7	Green
## 240	2.7 2.7	Green Green
## 240 ## 241	2.7	Green
## 240 ## 241 ## 242	2.7 3.0	Green Yellow-Green
## 240 ## 241 ## 242 ## 243	2.7 3.0 1.5	Green Yellow-Green Green
## 240 ## 241 ## 242 ## 243 ## 244	2.7 3.0 1.5 3.0	Green Yellow-Green Green Green
## 240 ## 241 ## 242 ## 243 ## 244 ## 245	2.7 3.0 1.5 3.0 1.9	Green Yellow-Green Green Green
## 240 ## 241 ## 242 ## 243 ## 244 ## 245 ## 246	2.7 3.0 1.5 3.0 1.9 2.0	Green Yellow-Green Green Green Green
## 240 ## 241 ## 242 ## 243 ## 244 ## 245 ## 246 ## 247	2.7 3.0 1.5 3.0 1.9 2.0	Green Yellow-Green Green Green Green Green Green Green
## 240 ## 241 ## 242 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248	2.7 3.0 1.5 3.0 1.9 2.0 1.5	Green Yellow-Green Green Green Green Green Green Green Green Green
## 240 ## 241 ## 242 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248 ## 249	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5	Green Yellow-Green Green Green Green Green Green Green Green Green Green
## 240 ## 241 ## 242 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248 ## 249	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0	Green Yellow-Green Green
## 240 ## 241 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248 ## 249 ## 250 ## 251	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0 2.0	Green Yellow-Green Green
## 240 ## 241 ## 242 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248 ## 250 ## 251 ## 252	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0 2.0 2.0	Green Yellow-Green Green
## 240 ## 241 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248 ## 249 ## 250 ## 251 ## 252 ## 253	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0 2.0 2.0 3.3	Green Yellow-Green Green
## 240 ## 241 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248 ## 250 ## 251 ## 252 ## 253 ## 254	2.7 3.0 1.5 3.0 1.9 2.0 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.2	Green Yellow-Green Green
## 240 ## 241 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248 ## 250 ## 251 ## 252 ## 253 ## 254 ## 255	2.7 3.0 1.5 3.0 1.9 2.0 1.5 2.0 2.0 2.0 2.0 2.0 2.0 3.3 2.0 2.2 0.6	Green Yellow-Green Green
## 240 ## 241 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248 ## 250 ## 251 ## 252 ## 253 ## 255 ## 256	2.7 3.0 1.5 3.0 1.9 2.0 1.5 2.0 2.0 2.0 2.0 2.0 3.3 2.0 2.2 0.6 1.5	Green Yellow-Green Green
## 240 ## 241 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248 ## 250 ## 251 ## 252 ## 253 ## 254 ## 255 ## 256 ## 257	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0 2.0 2.0 2.0 3.3 2.0 2.2 0.6 1.5 2.5	Green Yellow-Green Green
## 240 ## 241 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248 ## 250 ## 251 ## 252 ## 253 ## 254 ## 255 ## 256 ## 257 ## 258	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0 2.0 2.0 2.0 3.3 2.0 2.2 0.6 1.5 2.5 2.2	Green Yellow-Green Green
## 240 ## 241 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248 ## 250 ## 251 ## 252 ## 253 ## 254 ## 255 ## 256 ## 257 ## 258 ## 259	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0 2.0 2.0 2.0 3.3 2.0 2.2 0.6 1.5 2.5 2.2 3.7	Green Yellow-Green Green
## 240 ## 241 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248 ## 250 ## 251 ## 252 ## 253 ## 254 ## 255 ## 255 ## 256 ## 257 ## 258 ## 260	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0 2.0 2.0 2.0 2.0 3.3 2.0 2.2 0.6 1.5 2.5 2.2 3.7 2.0	Green Yellow-Green Green
## 240 ## 241 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248 ## 250 ## 251 ## 252 ## 253 ## 254 ## 255 ## 256 ## 257 ## 258 ## 260 ## 261	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0 2.0 2.0 2.0 3.3 2.0 2.2 0.6 1.5 2.5 2.2 3.7 2.0 3.0	Green Yellow-Green Green
## 240 ## 241 ## 242 ## 243 ## 244 ## 245 ## 246 ## 247 ## 250 ## 250 ## 251 ## 252 ## 253 ## 254 ## 255 ## 256 ## 257 ## 258 ## 260 ## 261 ## 262	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0 2.0 2.0 2.0 2.0 3.3 2.0 2.2 0.6 1.5 2.5 2.2 3.7 2.0 3.0 1.0	Green Yellow-Green Green
## 240 ## 241 ## 242 ## 243 ## 244 ## 245 ## 246 ## 247 ## 248 ## 250 ## 251 ## 252 ## 253 ## 254 ## 255 ## 256 ## 257 ## 260 ## 261 ## 262 ## 263	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0 2.0 2.0 2.0 3.3 2.0 2.2 0.6 1.5 2.5 2.2 3.7 2.0 3.0 1.0 1.4	Green Yellow-Green Green
## 240 ## 241 ## 242 ## 243 ## 244 ## 245 ## 246 ## 247 ## 250 ## 251 ## 252 ## 253 ## 254 ## 255 ## 256 ## 257 ## 260 ## 261 ## 262 ## 263 ## 264	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0 2.0 2.0 2.0 3.3 2.0 2.2 0.6 1.5 2.5 2.2 3.7 2.0 3.0 1.0 1.4 2.5	Green Yellow-Green Green
## 240 ## 241 ## 242 ## 243 ## 244 ## 245 ## 246 ## 247 ## 250 ## 251 ## 252 ## 253 ## 254 ## 255 ## 256 ## 257 ## 260 ## 261 ## 262 ## 263 ## 264 ## 265	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0 2.0 2.0 2.0 3.3 2.0 2.2 0.6 1.5 2.5 2.2 3.7 2.0 3.0 1.4 2.5 3.5	Green Yellow-Green Green
## 240 ## 241 ## 242 ## 243 ## 244 ## 245 ## 246 ## 247 ## 250 ## 251 ## 252 ## 253 ## 254 ## 255 ## 256 ## 257 ## 260 ## 261 ## 262 ## 263 ## 264	2.7 3.0 1.5 3.0 1.9 2.0 1.5 1.5 2.0 2.0 2.0 2.0 3.3 2.0 2.2 0.6 1.5 2.5 2.2 3.7 2.0 3.0 1.0 1.4 2.5	Green Yellow-Green Green

##	268	2.5	Green
##	269	3.0	Green
##	270	3.0	Gray-Green
##	271	2.2	Dark Green
##	272	1.5	Dark Green
##	273	2.8	Dark Green
##	274	3.6	Green
##	275	3.0	Green
##	276	3.0	Dark Green
##	277	2.8	Dark Green
##	278	0.7	Green
##	279	0.7	Green
##	280	4.5	Green
##	281	2.7	Green
##	282	5.6	Green
##	283	2.7	Green
##	284	3.5	White-Gray
##	285	2.9	White-Gray
##	286	2.5	White-Gray
##	287	4.6	Dark Green
##	288	4.0	Dark Green
##	289	0.8	Dark Green
##	290	2.2	Dark Green
##	291	3.0	Gray-Green
##	292	2.9	Green
##	293	2.6	Green
##	294	2.7	Dark Green
##	295	3.4	Green
##	296	2.0	Green
##	297	3.0	Green
##	298	2.5	Green
##	299	3.0	Green
##	300	1.5	Green
##	301	2.5	Green
##	302	4.0	Green
##	303	4.0	Green
##	304	3.5	Green
##	305	3.0	Green
##	306	2.4	Green
##	307	3.6	Dark Green
##	308	2.5	Green
##	309	2.7	Green
##	310	2.5	Green
##	311	2.0	Dark Green
##	312	3.1	Green
##	313	2.5	Green
##	314	1.7	Green
##	315	2.5	Green
##	316	2.8	Green
##	317	3.8	Green
##	318		ellow-Green
##	319	2.8	Green
##	320	1.8	Green
##	321	2.0	Green

## 3			
	322	2.2	Green
## 3	323	2.4	Green
## 3	324	2.4	Green
## 3	325	3.4	Green
## 3	326	2.5	Dark Green
## 3	327	2.5	Dark Green
## 3	328	2.0	Green
## 3	329	2.2	Green
## 3	330	1.7	Green
## 3	331	1.4	Green
## 3	332	1.4	Green
## 3	333	3.0	Green
## 3	334	2.0	Green
## 3	335	2.2	Green
## 3	336	2.2	Green
## 3	337	2.3	Green
## 3	338	3.2	Green
	339	3.5	Green
	340	3.5	Green
	341	3.0	Green
## 3	342	4.0	Green
## 3	343	2.3	Green
	344	1.7	Green
	345	2.6	Green
	346	3.5	Green
	347	3.0	Green
	348	3.0	Dark Green
	349	2.3	Green
	350	2.0	Green
	351	1.5	Dark Green
	352		ellow-Green
	353	2.0	Gray-Green
ππ (2.0	
## 3			=
	354	1.9	Green
## 3	354 355	1.9	Green Green
## 3 ## 3	354 355 356	1.9 2.0 1.7	Green Green
## 3 ## 3 ## 3	354 355 356 357	1.9 2.0 1.7 3.5	Green Green Green Gray-Green
## 3 ## 3 ## 3	354 355 356 357 358	1.9 2.0 1.7 3.5 3.0	Green Green Green Gray-Green White-Gray
## 3 ## 3 ## 3 ## 3	354 355 356 357 358 359	1.9 2.0 1.7 3.5 3.0 2.5	Green Green Green Gray-Green White-Gray Green
## 3 ## 3 ## 3 ## 3 ## 3	354 355 356 357 358 359 360	1.9 2.0 1.7 3.5 3.0 2.5	Green Green Gray-Green White-Gray Green Green
## 3 ## 3 ## 3 ## 3 ## 3	354 355 356 357 358 359 360	1.9 2.0 1.7 3.5 3.0 2.5 1.8 3.5	Green Green Gray-Green White-Gray Green Green Green Green
## 3 ## 3 ## 3 ## 3 ## 3	354 355 356 357 358 359 360 361	1.9 2.0 1.7 3.5 3.0 2.5 1.8 3.5	Green Green Gray-Green White-Gray Green Green Green Green Green
## 3 ## 3 ## 3 ## 3 ## 3 ## 3	354 355 356 357 358 359 360 361 362	1.9 2.0 1.7 3.5 3.0 2.5 1.8 3.5 1.4 2.6	Green Green Gray-Green White-Gray Green Green Green Green Green Gray-Green Green
## 3 ## 3 ## 3 ## 3 ## 3 ## 3 ## 3	354 355 356 357 358 359 360 361 362 363	1.9 2.0 1.7 3.5 3.0 2.5 1.8 3.5 1.4 2.6 1.4	Green Green Gray-Green White-Gray Green Green Green Green Gray-Green Green Green Green
## 3 3 4 ## 4 ## 3 4 ## 3 4 ## 3 4 ## 3 4 ## 3 4 ## 4 ## 3 4 ## 4	354 355 356 357 358 359 360 361 362 363 364	1.9 2.0 1.7 3.5 3.0 2.5 1.8 3.5 1.4 2.6 1.4 2.4	Green Green Gray-Green White-Gray Green Green Green Green Green Gray-Green Green Green Green
## 3 3 4 ## 3 3 4 ## 4 ## 3 3 4 ## 3 3 4 ## 3 3 4 ## 3 3 4 ## 4 ## 3 3 4 ## ##	354 355 356 357 358 359 360 361 362 363 364 365	1.9 2.0 1.7 3.5 3.0 2.5 1.8 3.5 1.4 2.6 1.4 2.4 3.5	Green Green Gray-Green White-Gray Green
## ## ## ## ## ## ## ## ## ## ## ## ##	354 355 356 357 358 359 360 361 362 363 364 365 366	1.9 2.0 1.7 3.5 3.0 2.5 1.8 3.5 1.4 2.6 1.4 2.4 3.5	Green Green Gray-Green White-Gray Green
## 3 3 3 4 4 # # # # # # # # # # # # # #	354 355 356 357 358 359 360 361 362 363 364 365 366	1.9 2.0 1.7 3.5 3.0 2.5 1.8 3.5 1.4 2.6 1.4 2.4 3.5	Green Green Gray-Green White-Gray Green
## ## ## ## ## ## ## ## ## ## ## ## ##	354 355 356 357 358 359 360 361 362 363 364 365 366 367 368	1.9 2.0 1.7 3.5 3.0 2.5 1.8 3.5 1.4 2.6 1.4 2.4 3.5	Green Green Gray-Green White-Gray Green
######################################	354 355 356 357 358 359 360 361 362 363 364 365 366 367 368	1.9 2.0 1.7 3.5 3.0 2.5 1.8 3.5 1.4 2.6 1.4 2.4 3.5 1.6 2.4 2.6	Green Green Green Gray-Green White-Gray Green
######################################	354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370	1.9 2.0 1.7 3.5 3.0 2.5 1.8 3.5 1.4 2.6 1.4 2.4 3.5 1.6 2.4 2.6 2.6	Green Green Green Gray-Green White-Gray Green
######################################	354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371	1.9 2.0 1.7 3.5 3.0 2.5 1.8 3.5 1.4 2.6 1.4 2.4 3.5 1.6 2.4 2.6 2.6 2.4 2.6	Green Green Green Gray-Green White-Gray Green
######################################	354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372	1.9 2.0 1.7 3.5 3.0 2.5 1.8 3.5 1.4 2.6 1.4 2.4 3.5 1.6 2.4 2.6 2.6 2.4 2.1 3.0	Green Green Green Gray-Green White-Gray Green
######################################	354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371	1.9 2.0 1.7 3.5 3.0 2.5 1.8 3.5 1.4 2.6 1.4 2.4 3.5 1.6 2.4 2.6 2.6 2.4 2.6	Green Green Green Gray-Green White-Gray Green

##	376	3.0		${\tt Green}$
##	377	1.0		Green
##	378	0.6		Green
##	379	2.5		Green
##	380	3.5		Green
##	381	0.7		Green
##	382	1.0		Green
##	383	3.6		Green
##	384	2.8		Green
##	385	2.7		Green
##	386	2.5		Green
##	387	2.2		Green
##	388	1.2		Green
##	389	3.0		Green
##	390	1.4		Green
##	391	2.0		Red
##	392	3.3	Dark	Green
##	393	1.3	Dain	Green
##	394	2.3		Green
##	395	1.5		Green
##	396	3.0	Dark	Green
	397		Dark	
##		1.2		Green
##	398	1.9		Green
##	399	1.5		Green
##	400	2.5		Green
##	401	2.0		Green
##	402	1.8		Green
##	403	2.5		Green
##	404	3.3		Green
##	405	2.2	Dark	Green
##	406	1.0		Green
##	407	2.0		Green
##	408	3.5		Green
##	409	2.0		Green
##	410	2.4		Green
##	411	3.3		Green
##	412	3.4	Gray-	-Green
##	413	2.5		Green
##	414	1.0	Yellow-	-Green
##	415	1.0	Dark	${\tt Green}$
##	416	0.4	Yellow-	-Green
##	417	3.0		${\tt Green}$
##	418	3.7	Dark	${\tt Green}$
##	419	4.0		${\tt Green}$
##	420	2.0		Green
##	421	3.5		Green
##	422	2.5		Green
##	423	1.1	Dark	Green
##	424	1.8		Green
##	425	1.9		Green
##	426	1.7		Green
##	427	1.4	Dark	Green
##	428	1.8		Green
##	429	2.5		Green
		•		

## 430	0.9	Green
## 431	2.5	Green
## 432	1.5	Green
## 433	3.0	Green
## 434	2.5	Green
## 435	2.0	Green
## 436	3.0	Green
## 437	2.0	Green
## 438	3.0	Green
## 439	2.9	Green
## 440	2.9	Green
## 441	2.5	Green
## 442	2.5	Green
## 443	2.3	Green
## 444	3.0	Green
## 445	2.0	Green
## 446	3.5	Gray-Green
## 447	1.3	Green
## 448	2.6	Green
## 449	2.0	Green
## 450	1.3	Dark Green
## 451	2.0	Green
## 451	2.4	Green
## 452 ## 453	3.0	Green
## 454	1.8	
		Green
## 455	2.0	Green
## 456	2.5	Green
## 457	1.9	Dark Green
## 458	2.2	Green
## 459	2.5	Dark Green
## 460	2.5	Green
## 461	1.6	Dark Green
## 462	1.7	Green
## 463	2.0	Green
## 464	1.7	Green
## 465	3.5	Green
## 466	3.0	Green
## 467	1.6	Green
## 468	2.9	Green
## 469	2.0	Gray-Green
## 470	2.5	Dark Green
## 471	3.7	Green
## 472	2.3	Green
## 473	2.0	Green
## 474	2.0	Green
## 475	2.4	Yellow-Green
## 476	1.0	Yellow-Green
## 477	2.0	Green
## 478	2.2	Green
## 479	2.0	Green
## 480	3.0	Green
## 481	1.6	Green
## 482	2.0	Green
## 483	2.0	Green
100	2.0	01 0011

## 484	1.2	Green
## 485	1.5	Green
## 486	2.0	Green
## 487	2.5	Green
## 488	2.5	Green
## 489	2.5	Green
## 490	2.0	Dark Green
## 491	2.0	Dark Green
## 492	0.9	Green
## 493	3.4	Green
## 494	2.5	Green
## 495	2.0	Dark Green
## 496	4.0	Green
## 497	3.5	Green
## 498	2.5	Green
## 499	2.2	Green
## 500	1.0	Green
## 501	2.5	Green
## 502	3.5	Green
## 503	2.5	Green
## 504	1.5	Dark Green
## 505	1.6	Green
## 506	4.0	Green
## 507	2.6	Gray-Green
## 508	3.0	Green
## 509	3.5	Green
## 510	3.0	Green
## 511	3.0	Gray-Green
## 512	3.8	Green
## 513	1.3	Green
## 514	1.5	Red
## 515	2.0	Green
## 516	2.0	Green
## 517	2.5	Green
## 518	2.2	Green
## 519	2.8	Green
## 520	1.7	Green
## 521	1.2	Green
## 522	0.9	Green
## 523	1.8	Green
## 524	2.0	Green
## 525	4.2	Green
## 526	2.5	Green
## 527	2.5	Green
## 528	2.0	Green
## 529	3.3	Green
## 530	2.0	Dark Green
## 531	4.2	Green
## 531	2.3	Green
## 533	1.8	Green
## 534	2.0	Green
## 535	2.5	Green
	1.5	Yellow-Green
## 537	1.6	Yellow-Green

##	538	2.0		Green
##	539	2.5	Dark	Green
##	540	2.5		Green
##	541	3.0		${\tt Green}$
##	542	3.0		Green
##	543	1.2		Green
##	544	2.5		Green
##	545	1.6		Green
##	546	2.5		Green
##	547	3.2		Green
##	548	1.1		Green
##	549	2.2		Green
##	550	2.0		Green
##	551	2.6		Green
##	552	3.4		Green
##	553	1.1		Green
##	554	2.7		Green
##	555	3.0		Green
##	556	2.5		Green
##	557	4.3	Dark	Green
##	558	4.5		Green
##	559	4.5		Green
##	560	2.7		Green
##	561	4.5		Green
##	562	3.0		Green
##	563	3.8		Green
##	564	2.1		Green
##	565	2.5	Yellow-	
##	566	1.9	TOTTOW	Green
##	567	2.4		Green
##	568	1.3		Green
##	569	3.5		Green
##	570	4.7		Green
##	571	1.5		Green
##	572	2.1		
##	572 573	2.7		Red Green
	574			Green
##		1.6		_
##	575	1.5		Green
##	576	1.2		Green
##	577	1.2		Green
##	578	1.2		Green
##	579	1.2		Green
##	580	1.2		Green
##	581	2.0		Green
##	582	2.6	Gray-	-Green
##	583	2.0		Green
##	584	2.5		Green
##	585	1.9		Green
##	586	3.0		Green
##	1.07	3.5		Green
	587			
##	588	1.5		Green
##	588 589	1.5 3.2		Green
## ##	588 589 590	1.5 3.2 2.2		Green Green
##	588 589	1.5 3.2	Dark	Green

##	592	1.5		${\tt Green}$
##	593	2.3		Green
##	594	2.2		Green
##	595	2.4		Green
##	596	2.2		Green
##	597	1.5	Dark	Green
##	598	2.3		Green
##	599	3.0		Green
##	600	3.0		Green
##	601	1.0	Dark	Green
##	602	2.0		Green
##	603	3.0		Green
##	604	2.5		Green
##	605	1.5		Green
##	606	2.0		Green
##	607	2.0		Green
##	608	3.0		Green
##	609	2.6		Green
##	610	1.7		Green
##	611	2.0		Green
##	612	2.5		Green
##	613	3.5	Cross	
	614		Gray-	-Green
##	615	1.5		Green
##		2.5		Green
##	616	1.6		Green
##	617	3.6		Green
##	618	4.0	ъ.	Green
##	619	1.5	Dark	Green
##	620	1.5	Dark	Green
##	621	1.5		Green
##	622	1.5	Dark	Green
##	623	1.2		Green
##	624	3.0		Green
##	625	2.2		Green
##	626	2.2		Green
##	627	1.7		Green
##	628	2.3	Yellow-	-Green
##	629	2.0		Green
##	630	3.6		${\tt Green}$
##	631	2.0		${\tt Green}$
##	632	3.5		${\tt Green}$
##	633	3.0		${\tt Green}$
##	634	3.0		${\tt Green}$
##	635	3.0		${\tt Green}$
##	636	2.0		Green
##	637	2.5	Dark	Green
##	638	2.0		Green
##	639	2.9		Green
##	640	2.2		Green
##	641	2.5		Green
##	642	2.0		Green
##	643	2.0		Green
##	644	2.5	Grav-	-Green
##	645	2.5	J	Green
		•		

	646	2.5	Green
##	647	2.3	Green
##	648	2.0	Green
##	649	1.0	Green
##	650	2.5	Gray-Green
##	651	3.0	Green
##	652	2.5	Green
##	653	3.2	Green
##	654	3.5	Green
##	655	3.5	Green
##	656	2.2	Green
##	657	2.3	Green
##	658	4.2	Green
##	659	3.3	Green
##	660	4.3	Green
##	661	3.0	Green
##	662	3.0	Green
##	663	1.1	Dark Green
##	664	3.8	Green
##	665	1.4	Yellow-Green
##	666	3.2	Green
##	667	1.0	Dark Green
##	668	3.0	Green
##	669	1.8	Green
##	670	3.9	Green
##	671	2.0	Green
##	672	2.0	Green
##	673	2.8	Green
##	674	3.4	Gray-Green
##	675	3.5	Green
##	676	3.8	Dark Green
##	677	2.0	Green
##	678	2.1	Green
##	679	4.0	Dark Green
##	680	2.4	Green
##	681	2.5	Dark Green
##	682	2.1	Green
##	683	3.7	Green
##	684	3.5	Green
##	685	3.0	Green
##	686	1.6	Green
##	687	2.0	Green
##	688	3.0	Green
##	689	3.0	Green
##	690	2.0	Green
##	691	4.0	Green
##	692	3.0	Gray-Green
##	693	3.0	Green
##	694	2.5	Green
##	695	3.0	Green
##	696	1.5	Green
##	697	1.5	Dark Green
##	698	2.7	Green
##	699	2.5	Dark Green

## 7	700	1.7	Green
## 7	701	4.0	Green
## 7	702	2.0	Green
## 7	703	1.0	Green
## 7	704	2.5	Green
## 7	705	2.5	Green
	706	2.0	Dark Green
	707	1.2	Green
	708	1.5	Green
	709	2.0	Green
	710	3.2	Green
	711	2.0	Green
	712	2.0	Green
	713	2.0	Green
	714	2.4	Green
	715	3.5	Green
	716	1.6	Green
	717	1.7	Green
	718	2.0	Green
## 7	719	2.5	Green
## 7	720	2.5	Green
## 7	721	2.5	Green
## 7	722	1.5	Green
## 7	723	2.5	Green
## 7	724	2.0	Green
## 7	725	3.6	Green
## 7	726	1.5	Green
## 7	727	1.2	Green
	728	2.0	Green
	729	2.3	Dark Green
	730	1.7	Green
	731	2.5	Dark Green
	732	3.7	Green
	733	1.8	Green
	734	1.4	Green
	735	2.0	Green
	736	1.8	Gray-Green
	737	2.0	Green
	738	2.0	Green
	739	1.5	
			Green
	740	2.0	Dark Green
	741	1.6	Green
	742	1.7	Green
	743	3.0	Green
	744	1.4	Green
	745	3.0	Green
	746		ellow-Green
	747	2.0	Green
	748	2.7	Green
	749	1.5	Green
	750	2.2	Green
## 7	751	3.5	White-Gray
## 7	752	3.0 Y	ellow-Green
## 7	753	1.8	Green

##	754	3.0		Green
##	755	1.6		Green
##	756	2.4		Green
##	757	0.9	White	e-Gray
##	758	4.0		Green
##	759	1.0		Green
##	760	2.6		Green
##	761	2.0		Green
##	762	1.9		Green
##	763	2.0		Green
##	764	2.1		Green
##	765	2.8		Green
##	766	2.4		Green
##	767	2.5		Green
##	768	1.5	Dark	Green
	769		Dark	
##		4.8		Green
##	770	3.2		Green
##	771	2.0		Green
##	772	3.0		Green
##	773	2.2		Green
##	774	2.5		Green
##	775	2.5		Green
##	776	2.7		Green
##	777	1.5		Green
##	778	3.4		${\tt Green}$
##	779	2.0		${\tt Green}$
##	780	1.4		${\tt Green}$
##	781	2.8		Green
##	782	2.8		Green
##	783	3.0		Green
##	784	2.1		Green
##	785	3.5	Dark	Green
##	786	1.8		Green
##	787	2.7		Green
##	788	2.8	Yellow-	
##	789	2.0		Green
##	790	2.1		Green
##	791	2.0		Green
##	792	2.1		Green
##	793	1.8		Green
##		2.7		
	794			Green
##	795	2.6		Green
##	796	1.3		Green
##	797	2.1	ъ.	Green
##	798	0.9	Dark	Green
##	799	1.5		Green
##	800	2.0	_	Green
##	801	2.2	Dark	Green
##	802	1.3		Green
##	803	1.0	Dark	${\tt Green}$
##	804	1.8		${\tt Green}$
##	805	1.7		${\tt Green}$
##	806	1.6	Dark	${\tt Green}$
##	807	2.4		Green

```
## 808
                2.0
                            Green
## 809
                1.5
                            Green
## 810
                3.0
                            Green
## 811
                2.0
                      Dark Green
## 812
                1.0
                            Green
## 813
                4.7
                            Green
## With the above cleaned data set, we do the ANOVA.
lm.ph.Foliage.color <- lm(plants.range ~ Foliage_Color,data=required.data.set)</pre>
anova(lm.ph.Foliage.color)
## Analysis of Variance Table
##
## Response: plants.range
                  Df Sum Sq Mean Sq F value Pr(>F)
## Foliage_Color
                   5
                      8.97 1.79434
                                      2.975 0.01141 *
## Residuals
                 807 486.73 0.60314
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## ANOVA TABLE
## From the above ANOVA table, the $H_0: \beta_2=\beta_3=\beta_4=\beta_3=\beta_4=\beta_5=0 has been rejected
summary(lm.ph.Foliage.color)
##
## Call:
## lm(formula = plants.range ~ Foliage_Color, data = required.data.set)
##
## Residuals:
                1Q Median
      Min
                                3Q
                                       Max
## -1.7665 -0.4665 -0.1444 0.5250 3.2335
##
## Coefficients:
##
                             Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                              2.17683
                                         0.08576 25.382
                                                           <2e-16 ***
## Foliage_ColorGray-Green
                              0.46484
                                         0.18024
                                                   2.579
                                                           0.0101 *
## Foliage_ColorGreen
                              0.18969
                                         0.09082
                                                   2.089
                                                           0.0371 *
## Foliage_ColorRed
                             -0.31016
                                         0.45651 - 0.679
                                                           0.4971
## Foliage_ColorWhite-Gray
                             0.46762
                                         0.27271
                                                   1.715
                                                           0.0868 .
## Foliage_ColorYellow-Green -0.20183
                                         0.19368 - 1.042
                                                           0.2977
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7766 on 807 degrees of freedom
## Multiple R-squared: 0.0181, Adjusted R-squared: 0.01202
## F-statistic: 2.975 on 5 and 807 DF, p-value: 0.01141
## Summary table
## From the above Summary table, we can figure out that between (Foliage-Color-Gray-Green and Plants_ra
## (Foliage-ColorGreen and Plants_range), there are significant relationship under the p-value 0.0101,
```

Problem 6

Finish this homework by pushing your changes to your repo. In general, your workflow for this should be:

- 1. git pull to make sure you have the most recent repo
- 2. In R: do some work
- 3. git add this tells git to track new files
- 4. git commit make message INFORMATIVE and USEFUL
- 5. git push this pushes your local changes to the repo

If you have difficulty with steps 1-5, git is not correctly or completely setup. See me for help.