

*STIC SEARCH*

HERTZOG 10/516,372

Page 1

=> file reg

FILE 'REGISTRY' ENTERED AT 14:25:04 ON 09 NOV 2005  
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.  
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.  
COPYRIGHT (C) 2005 American Chemical Society (ACS)

=> d his

FILE 'REGISTRY' ENTERED AT 14:05:13 ON 09 NOV 2005  
E VANADYL SULFATE/CN

L1 7 S E7-E13  
E VANADIUM TRIOXIDE/CN  
L2 1 S E3  
E SULFURIC ACID/CN  
L3 1 S E3

FILE 'HCA' ENTERED AT 14:12:49 ON 09 NOV 2005

L4 2601 S L1 OR VANADYL#(W) (SULFATE# OR SULPHATE#) OR VOSO4 OR VO  
L5 3941 S L2 OR (VANADIUM# OR DIVANADIUM# OR V) (W) TRIOXIDE# OR V2  
L6 417499 S L3 OR (SULFURIC# OR SULFERIC# OR SULPHURIC# OR SULPHERI  
L7 18 S L4 AND L5 AND L6  
L8 QUE OXIDN# OR OXIDA? OR OXIDI?

FILE 'REGISTRY' ENTERED AT 14:15:15 ON 09 NOV 2005  
E HYDROGEN PEROXIDE/CN

L9 1 S E3

FILE 'HCA' ENTERED AT 14:16:08 ON 09 NOV 2005

L10 183668 S L9 OR HYDROGEN#(A) PEROXIDE# OR H2O2

FILE 'REGISTRY' ENTERED AT 14:16:11 ON 09 NOV 2005  
E SODIUM PEROXIDE/CN

L11 1 S E3  
E POTASSIUM PERMANGANATE/CN  
L12 1 S E3  
E IODINE/CN  
L13 1 S E3  
E POTASSIUM IODATE/CN  
L14 1 S E3  
E POTASSIUM BROMATE/CN  
L15 1 S E3  
E BROMINE/CN  
L16 1 S E3  
E AMMONIUM PERSULFATE/CN  
L17 1 S E3

L18            E SODIUM PERSULFATE/CN  
 3 S E3  
       E POTASSIUM PERSULFATE/CN  
 L19            1 S E3  
       E CERIUM SULFATE/CN  
 L20            2 S E3  
       E POTASSIUM DICHROMATE/CN  
 L21            1 S E3  
 L22            14 S L11-L21

FILE 'HCA' ENTERED AT 14:21:06 ON 09 NOV 2005  
 L23        116257 S L22  
 L24        2 S L7 AND (L10 OR L23)  
 L25        16 S L7 NOT L24

=> file hca  
 FILE 'HCA' ENTERED AT 14:25:10 ON 09 NOV 2005  
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.  
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.  
 COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

=> d 124 1-2 ibib abs hitstr hitind

L24 ANSWER 1 OF 2 HCA COPYRIGHT 2005 ACS on STN  
 ACCESSION NUMBER: 140:18013 HCA  
 TITLE: Process for the preparation of **vanadyl sulfate** solution  
 INVENTOR(S): Dormehl, Andries Gerhardus; Monaghan, Patrick Albert  
 PATENT ASSIGNEE(S): Highveld Steel and Vanadium Corporation Limited,  
 S. Afr.  
 SOURCE: PCT Int. Appl., 10 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

*(this case)*

| PATENT NO.    | KIND | DATE     | APPLICATION NO. | DATE         |
|---------------|------|----------|-----------------|--------------|
| -----         | ---  | -----    | -----           | -----        |
| -----         |      |          |                 |              |
| WO 2003101893 | A1   | 20031211 | WO 2003-IB2002  | 200305<br>26 |

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH,  
 CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD,  
 GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,  
 LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,  
 NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL,  
 TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,  
 ZW

RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ,  
 BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,  
 EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,  
 SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,  
 NE, SN, TD, TG

CA 2487956 AA 20031211 CA 2003-2487956  
 200305  
 26

EP 1511691 A1 20050309 EP 2003-756074  
 200305  
 26

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,  
 PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU,  
 SK

JP 2005528314 T2 20050922 JP 2004-509591  
 200305  
 26

US 2005220898 A1 20051006 US 2005-516372  
 200506  
 01

PRIORITY APPLN. INFO.: ZA 2002-4382 A  
 200205  
 31

WO 2003-IB2002 W  
 200305  
 26

AB A process for producing a **vanadyl sulfate** soln.  
 comprises forming a suspension of **vanadium trioxide** in a **sulfuric acid** soln. and  
 contacting the suspension with a strong oxidizing agent under  
 controlled conditions to produce the **vanadyl sulfate** soln. A preferred oxidizing agent is  
**hydrogen peroxide**, which is added slowly to the  
 suspension due to the violent nature of the reaction.

IT 27774-13-6P, **Vanadyl sulfate**  
 (prepn. of **vanadyl sulfate** soln. from  
**vanadium trioxide**)

RN 27774-13-6 HCA  
 CN Vanadium, oxo[sulfato(2-)-.kappa.O]- (9CI) (CA INDEX NAME)



IT   **1313-60-6**, Sodium peroxide **1314-34-7**,  
**Vanadium trioxide** **7553-56-2**, Iodine,  
 reactions **7664-93-9**, **Sulfuric acid**,  
 reactions **7722-64-7**, Potassium permanganate  
**7722-84-1**, **Hydrogen peroxide**, reactions  
**7726-95-6**, Bromine, reactions **7727-21-1**, Potassium  
 persulfate **7727-54-0**, Ammonium persulfate  
**7758-01-2**, Potassium bromate **7758-05-6**, Potassium  
 iodate **7775-27-1**, Sodium persulfate **7778-50-9**,  
 Potassium dichromate  
 (prepn. of **vanadyl sulfate** soln. from  
**vanadium trioxide**)

RN   1313-60-6 HCA

CN   Sodium peroxide (Na<sub>2</sub>O<sub>2</sub>) (8CI, 9CI) (CA INDEX NAME)



RN   1314-34-7 HCA

CN   Vanadium oxide (V<sub>2</sub>O<sub>3</sub>) (8CI, 9CI) (CA INDEX NAME)

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

RN   7553-56-2 HCA

CN   Iodine (8CI, 9CI) (CA INDEX NAME)



RN   7664-93-9 HCA

CN   Sulfuric acid (8CI, 9CI) (CA INDEX NAME)



RN   7722-64-7 HCA

CN   Permanganic acid (HMnO<sub>4</sub>), potassium salt (8CI, 9CI) (CA INDEX NAME)



● K

RN 7722-84-1 HCA  
CN Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) (9CI) (CA INDEX NAME)

HO—OH

RN 7726-95-6 HCA  
CN Bromine (8CI, 9CI) (CA INDEX NAME)

Br—Br

RN 7727-21-1 HCA  
CN Peroxydisulfuric acid ([(HO)S(O)<sub>2</sub>]<sub>2</sub>O<sub>2</sub>), dipotassium salt (9CI) (CA INDEX NAME)



●2 K

RN 7727-54-0 HCA  
CN Peroxydisulfuric acid ([(HO)S(O)<sub>2</sub>]<sub>2</sub>O<sub>2</sub>), diammonium salt (8CI, 9CI) (CA INDEX NAME)



● 2 NH<sub>3</sub>

RN 7758-01-2 HCA  
CN Bromic acid, potassium salt (8CI, 9CI) (CA INDEX NAME)



● K

RN 7758-05-6 HCA  
CN Iodic acid (HIO<sub>3</sub>), potassium salt (8CI, 9CI) (CA INDEX NAME)



● K

RN 7775-27-1 HCA  
CN Peroxydisulfuric acid ([(HO)S(O)<sub>2</sub>]<sub>2</sub>O<sub>2</sub>), disodium salt (8CI, 9CI) (CA INDEX NAME)



## ●2 Na

RN 7778-50-9 HCA  
 CN Chromic acid ( $\text{H}_2\text{Cr}_2\text{O}_7$ ), dipotassium salt (9CI) (CA INDEX NAME)



## ●2 K

IC ICM C01G031-02  
 CC 49-5 (Industrial Inorganic Chemicals)  
 ST safety **vanadyl sulfate** prepn **vanadium trioxide** oxidn  
 IT Occupational safety  
     (prepn. of **vanadyl sulfate** soln. from  
     **vanadium trioxide**)  
 IT 27774-13-6P, **Vanadyl sulfate**  
     (prepn. of **vanadyl sulfate** soln. from  
     **vanadium trioxide**)  
 IT 1313-60-6, Sodium peroxide 1314-34-7,  
     **Vanadium trioxide** 7553-56-2, Iodine,  
     reactions 7664-93-9, **Sulfuric acid**,  
     reactions 7722-64-7, Potassium permanganate  
     7722-84-1, **Hydrogen peroxide**, reactions  
     7726-95-6, Bromine, reactions 7727-21-1, Potassium  
     persulfate 7727-54-0, Ammonium persulfate  
     7758-01-2, Potassium bromate 7758-05-6, Potassium  
     iodate 7775-27-1, Sodium persulfate 7778-50-9,  
     Potassium dichromate 21367-17-9, **Sulfuric acid**  
     , cerium(4+) salt  
     (prepn. of **vanadyl sulfate** soln. from

**vanadium trioxide)**

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 2 OF 2 HCA COPYRIGHT 2005 ACS on STN  
 ACCESSION NUMBER: 116:135528 HCA  
 TITLE: Performance-oriented packaging standards; changes to classification, hazard communication, packaging and handling requirements based on UN standards and agency initiative  
 CORPORATE SOURCE: United States Dept. of Transportation, Washington, DC, 20590-0001, USA  
 SOURCE: Federal Register (1990), 55(246), 52402-729, 21 Dec 1990  
 DOCUMENT TYPE: CODEN: FEREAC; ISSN: 0097-6326  
 LANGUAGE: Journal English

=> d 125 1-16 cbib abs hitstr hitrn

L25 ANSWER 1 OF 16 HCA COPYRIGHT 2005 ACS on STN  
 142:484739 Process for preparing **vanadyl sulfate** and use. Li, Linde; Chen, Housheng (Iron & Steel Research Inst., Panzhihua Iron & Steel Co., Ltd., Peop. Rep. China). Faming Zhanli Shengqing Gongkai Shuomingshu CN 1491898 A 20040428, No pp. given (Chinese). CODEN: CNXXEV. APPLICATION: CN 2002-133808 20020925.

AB The prepn. process of **vanadyl sulfate** includes adding **V<sub>2</sub>O<sub>3</sub>** and V<sub>2</sub>O<sub>5</sub> into **sulfuric acid**, filtering and evapg. the filtrate, eliminating cryst. water to obtain light blue **VOSO<sub>4</sub>** powder. Compared with available technol. path, the said technol. process of the present invention has less steps, mild reaction condition, simple technol. process, low cost and stable product quality. The filtrate may be used as the material as electrolyte in vanadium cell.

IT **27774-13-6P, Vanadyl sulfate (VOSO<sub>4</sub>)**  
 (synthesis and use as battery electrolyte)

RN 27774-13-6 HCA

CN Vanadium, oxo[sulfato(2-)-.kappa.O]- (9CI) (CA INDEX NAME)



IT **1314-34-7, Vanadium oxide (V<sub>2</sub>O<sub>3</sub>)**

(synthesis of **vanadyl sulfate** from)

RN 1314-34-7 HCA

CN Vanadium oxide (V2O3) (8CI, 9CI) (CA INDEX NAME)

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

IT **7664-93-9, Sulfuric acid, reactions**

(synthesis of **vanadyl sulfate** from vanadium oxides and)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)



IT **27774-13-6P, Vanadyl sulfate (VOSO4)**

(synthesis and use as battery electrolyte)

IT **1314-34-7, Vanadium oxide (V2O3)**

(synthesis of **vanadyl sulfate** from)

IT **7664-93-9, Sulfuric acid, reactions**

(synthesis of **vanadyl sulfate** from vanadium oxides and)

L25 ANSWER 2 OF 16 HCA COPYRIGHT 2005 ACS on STN

136:104679 Process for the preparation of a **vanadyl**

*(1,4x9)* **sulfate** solution with a specified molar concentration.

Rohrmann, Bodo Rudiger; Dormehl, Andries Gerardus (Highveld Steel and Vanadium Corporation Limited, S. Afr.). PCT Int. Appl. WO 2002004353 A2 20020117, 8 pp. DESIGNATED STATES: W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM; RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, CY, DE, DK, ES, FI, FR, GA, GB, GR, IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG, TR. (English). CODEN: PIXXD2. APPLICATION: WO 2001-IB1203 20010706. PRIORITY: ZA 2000-3491 20000712.

AB A process is disclosed for the prepn. of a **vanadyl** **sulfate** soln. with a specified molar concn. from a first starting material contg. V2O5 and a second starting material contg. V2O3. The first and second starting materials are mixed together in amts. such that there are substantially equal quantities of vanadium in the first and second starting materials. A predetd. vol. of a **sulfuric acid** soln. having a predetd.

molar concn. is added to produce a **VOSO<sub>4</sub>** soln. having the specified molar concn.

IT   **1314-34-7, Vanadium trioxide**  
**7664-93-9, Sulfuric acid, processes**  
       (process for prepn. of **vanadyl sulfate** soln.  
       with specified molar concn.)

RN   1314-34-7 HCA  
 CN   Vanadium oxide (V<sub>2</sub>O<sub>3</sub>) (8CI, 9CI) (CA INDEX NAME)  
 \*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*  
 RN   7664-93-9 HCA  
 CN   Sulfuric acid (8CI, 9CI) (CA INDEX NAME)



IT   **27774-13-6P, Vanadyl sulfate**  
       (process for prepn. of **vanadyl sulfate** soln.  
       with specified molar concn.)

RN   27774-13-6 HCA  
 CN   Vanadium, oxo[sulfato(2-)-.kappa.O]- (9CI) (CA INDEX NAME)



IT   **1314-34-7, Vanadium trioxide**  
**7664-93-9, Sulfuric acid, processes**  
       (process for prepn. of **vanadyl sulfate** soln.  
       with specified molar concn.)

IT   **27774-13-6P, Vanadyl sulfate**  
       (process for prepn. of **vanadyl sulfate** soln.  
       with specified molar concn.)

L25 ANSWER 3 OF 16 HCA COPYRIGHT 2005 ACS on STN

136:78855 Inorganic-organic hybrids derived from oxovanadium sulfate motifs: synthesis and characterization of [VIVO(.mu.3-SO<sub>4</sub>)(2,2'-bpy)].infin.. Khan, M. Ishaque; Cevik, Sabri; Doedens, Robert J. (Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL, 60616, USA). Chemical Communications (Cambridge, United Kingdom) (19), 1930-1931 (English) 2001. CODEN: CHCOFS. ISSN: 1359-7345. OTHER SOURCES: CASREACT 136:78855. Publisher: Royal Society of Chemistry.

AB   The hydrothermal reaction of V<sub>2</sub>O<sub>5</sub>, **V2O<sub>3</sub>**, 2,2'-bpy and Na<sub>2</sub>SO<sub>4</sub> in dil. **H<sub>2</sub>SO<sub>4</sub>** yields a novel hybrid,

[VIVO(.mu.3-SO<sub>4</sub>)(2,2'-bpy)].infin., which demonstrates the potential of constructing a new class of robust composite solids composed of a {V/O/SO<sub>4</sub>}-based framework decorated with org. functionalities by combining appropriate **vanadyl sulfate** motifs with a variety of org. ligands.

- L25 ANSWER 4 OF 16 HCA COPYRIGHT 2005 ACS on STN  
 128:310545 Manufacture of vanadium compound electrolyte solutions for redox flow batteries. Makiyama, Ikuo; Ono, Hiroaki; Tada, Shunji; Asai, Junji (Taiyo Mining and Industrial Co., Ltd., Japan). Jpn. Kokai Tokkyo Koho JP 10125345 A2 19980515 Heisei, 4 pp. (Japanese). CODEN: JKXXAF. APPLICATION: JP 1996-299604 19961023.  
 AB The **VOSO<sub>4</sub>** electrolyte solns. are prep'd by heating a V oxide (V<sub>2</sub>O<sub>5</sub> or V<sub>6</sub>O<sub>13</sub> based) starting material in a reducing atm. to reduce the oxide to a **V<sub>2</sub>O<sub>3</sub>** based oxide, dissolving equal mols of V<sub>2</sub>O<sub>5</sub> and **V<sub>2</sub>O<sub>3</sub>** in the reduced oxide with **H<sub>2</sub>SO<sub>4</sub>** after dispersing the oxides in water. The starting oxide may be obtained by thermally decompg. NH<sub>4</sub>VO<sub>3</sub> in a sealed container.  
 IT **27774-13-6P**, Vanadium oxide sulfate (**VOSO<sub>4</sub>**)  
     (manuf. of vanadium oxide sulfate electrolyte solns. for redox flow batteries)  
 RN 27774-13-6 HCA  
 CN Vanadium, oxo[sulfato(2-)-.kappa.O]- (9CI) (CA INDEX NAME)



- IT **27774-13-6P**, Vanadium oxide sulfate (**VOSO<sub>4</sub>**)  
     (manuf. of vanadium oxide sulfate electrolyte solns. for redox flow batteries)

- L25 ANSWER 5 OF 16 HCA COPYRIGHT 2005 ACS on STN  
 110:78735 Recovery of vanadium pentoxide from spent catalysts. Seon, Francoise; Ries, Michel (Rhone-Poulenc Chimie SA, Fr.). Eur. Pat. Appl. EP 290308 A1 19881109, 5 pp. DESIGNATED STATES: R: AT, BE, CH, DE, ES, FR, GB, GR, IT, LI, LU, NL, SE. (French). CODEN: EPXXDW. APPLICATION: EP 1988-400954 19880420. PRIORITY: FR 1987-6089 19870429.  
 AB The title process consists of treating an aq. suspension of the spent catalyst, e.g., from **H<sub>2</sub>SO<sub>4</sub>** manuf., with a gas mixt. contg. 5-20 wt.% SO<sub>2</sub> and 10-30 wt.% O, dild. with an inert gas, e.g., N. The gas may be waste gas from the combustion zone of a **H<sub>2</sub>SO<sub>4</sub>**-prodn. facility, and the stoichiometric amt. of SO<sub>2</sub> for redn. of the V content of the catalyst is used. Thus, 600 g SO<sub>2</sub> oxidn. catalyst of compn. V<sub>2</sub>O<sub>5</sub> 7.5, K<sub>2</sub>O 11.7, SO<sub>4</sub> 25.8, Na 1.2, Al 0.15, and Fe 0.015 wt.%, supported on SiO<sub>2</sub>, was ground and dispersed

in 375 mL water. The suspension was treated with a gas stream of compn. SO<sub>2</sub> 17, O<sub>2</sub> 17, and N<sub>2</sub> 66 wt.% for 1 h at ambient temp. for SO<sub>2</sub>/V<sub>2</sub>O<sub>3</sub> ratio 1.0:1.0. The suspension was then filtered to give a soln. of (VO)<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> contg. 62 g/L V (as V<sub>2</sub>O<sub>5</sub>). The filter cake was washed 3 times with water, which was added to the filtrate for 95% recovery of the V, a value comparable to that obtained when pure SO<sub>2</sub> was used to treat the catalyst.

IT **7664-93-9P, Sulfuric acid, preparation**  
 (waste gas from manuf. of, in vanadium recovery from spent catalysts)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)



IT **7664-93-9P, Sulfuric acid, preparation**  
 (waste gas from manuf. of, in vanadium recovery from spent catalysts)

L25 ANSWER 6 OF 16 HCA COPYRIGHT 2005 ACS on STN

88:44277 Preparation and study of vanadium(V) sulfates. Tudo, Joseph; Laplace, Gerard (Inst. Univ. Technol. Amiens, Amiens, Fr.). Revue de Chimie Minerale, 14(4), 404-17 (French) 1977. CODEN: RVCMA8. ISSN: 0035-1032.

AB The reactions between V<sub>2</sub>O<sub>5</sub> and H<sub>2</sub>SO<sub>4</sub> or oleums at various temps. gave VO<sub>2</sub>(HSO<sub>4</sub>)<sub>2</sub>, VO<sub>2</sub>(HSO<sub>4</sub>)<sub>2</sub>, V<sub>2</sub>O<sub>3</sub>(HSO<sub>4</sub>)<sub>4</sub>, VO(OH)(HSO<sub>4</sub>)<sub>2</sub>, (H<sub>3</sub>O)(VO)(SO<sub>4</sub>)<sub>2</sub>, V<sub>2</sub>O<sub>3</sub>(SO<sub>4</sub>)<sub>2</sub>, and V<sub>2</sub>O<sub>3</sub>(SO<sub>4</sub>)<sub>2</sub>.2H<sub>2</sub>O. DTA and thermogravimetric curves indicate that V<sub>2</sub>O<sub>3</sub>(SO<sub>4</sub>)<sub>2</sub> has the highest stability of all the compds. The solid-state redn. of V<sub>2</sub>O<sub>3</sub>(SO<sub>4</sub>)<sub>2</sub> by H<sub>2</sub>, SO<sub>2</sub>, or H<sub>2</sub>S gave a new crystal form, .gamma.-VOSO<sub>4</sub>.

IT **27774-13-6P**  
 (prepn. of .gamma.-, by redn. of **divanadium trioxide disulfate**)

RN 27774-13-6 HCA

CN Vanadium, oxo[sulfato(2-)-.kappa.O]- (9CI) (CA INDEX NAME)



IT **7664-93-9, reactions**  
 (reaction of, with vanadium pentoxide)

RN 7664-93-9 HCA  
 CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)



IT **27774-13-6P**  
 (prepn. of .gamma.-, by redn. of **divanadium trioxide disulfate**)  
 IT **7664-93-9**, reactions  
 (reaction of, with vanadium pentoxide)

L25 ANSWER 7 OF 16 HCA COPYRIGHT 2005 ACS on STN  
 76:93947 Double sulfates of vanadyl and ammonium. Tudo, Joseph; Tudo, Michele; Laplace, Gerard (Inst. Univ. Technol. Amiens, Amiens, Fr.). Revue de Chimie Minerale, 8(6), 841-50 (French) 1971. CODEN: RVCMA8. ISSN: 0035-1032.

AB An aq. soln. contg. **VOSO4** and  $(\text{NH}_4)_2\text{SO}_4$  was concd. to a syrup which was triturated with alc. and ether and the solid was dried and washed with  $\text{H}_2\text{O}$  to give **VOSO4**.  $(\text{NH}_4)_2\text{SO}_4 \cdot 3\text{H}_2\text{O}$ . The trihydrate was heated under O at 60.degree./hr to give the monohydrate at 80-116.degree.; the anhyd. salt was obtained at 220.degree.. X-ray powder data for the 2 dehydration products are tabulated. The product formed at 130.degree. was probably **VOSO4**.  $(\text{NH}_4)_2\text{SO}_4 \cdot 0.25 \text{H}_2\text{O}$ . The anhyd. salt was heated under O at 30.degree./hr to give successively  $2\text{VOSO}_4 \cdot (\text{NH}_4)_2\text{SO}_4$  (contg. some  $\text{V}_2(\text{SO}_4)_3 \cdot (\text{NH}_4)_2\text{SO}_4$ ), **2VOSO4.H2SO4**, .alpha.-**VOSO4**, and finally  $\text{V}_2\text{O}_5$ . When **VOSO4**.  $(\text{NH}_4)_2\text{SO}_4$  was heated from 220 to 400.degree. under a H atm., the final phase was **V2O3**.

IT **27774-13-6P**  
 (formation and thermal decompn. of .alpha.-)

RN 27774-13-6 HCA  
 CN Vanadium, oxo[sulfato(2-)-.kappa.O]- (9CI) (CA INDEX NAME)



IT **1314-34-7P**  
 (formation of, in thermal decompn. of ammonium **vanadyl sulfates**)  
 RN 1314-34-7 HCA  
 CN Vanadium oxide ( $\text{V}_2\text{O}_3$ ) (8CI, 9CI) (CA INDEX NAME)

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

IT **27774-13-6P**

(formation and thermal decompn. of .alpha.-)

IT **1314-34-7P**

(formation of, in thermal decompn. of ammonium **vanadyl sulfates**)

L25 ANSWER 8 OF 16 HCA COPYRIGHT 2005 ACS on STN

72:38410 Preparation and study of vanadium(V) sulfates: V2O5.2SO<sub>3</sub> and V2O5.4SO<sub>3</sub>.3H<sub>2</sub>O. Tudo, Joseph; Jolibois, Bernard; Laplace, Gerard (Lab. Chim. Miner., Fac. Sci., Amiens, Fr.). Comptes Rendus des Seances de l'Academie des Sciences, Serie C: Sciences Chimiques, 269(17), 978-80 (French) 1969. CODEN: CHDCAQ. ISSN: 0567-6541.

AB If a soln. of V<sub>2</sub>O<sub>5</sub> in concd. **H<sub>2</sub>SO<sub>4</sub>** is heated at 200.degree., V<sub>2</sub>O<sub>5</sub>.-2SO<sub>3</sub> is obtained, while V<sub>2</sub>O<sub>5</sub>.4SO<sub>3</sub>.3H<sub>2</sub>O ppts. if the temp. is held at 120.degree.. By heating under dry O, V<sub>2</sub>O<sub>5</sub>.2SO<sub>3</sub> starts to decomp. at 360.degree., giving V<sub>2</sub>O<sub>5</sub> directly at .apprx.450.degree.. The redn. of V<sub>2</sub>O<sub>5</sub>.2SO<sub>3</sub> by pure dry H occurs in 2 steps: at 250-330.degree. the disulfate decompns. to **vanadyl sulfate** which then transforms starting at 360.degree. to give **V<sub>2</sub>O<sub>3</sub>** at 400.degree.. When heated under dry O, V<sub>2</sub>O<sub>5</sub>.-2SO<sub>3</sub>.2H<sub>2</sub>O, formed by exposure of the anhyd. salt to moist air, loses its H<sub>2</sub>O mols. starting at 140.degree. to give the anhyd. salt at 250.degree., without an intermediate hydrate. When V<sub>2</sub>O<sub>5</sub>.4SO<sub>3</sub>.3H<sub>2</sub>O is heated under dry O, it starts to decomp. at 160.degree. and forms the disulfate at 230.degree.. X-ray diffraction results are presented.

L25 ANSWER 9 OF 16 HCA COPYRIGHT 2005 ACS on STN

71:73779 Removing sulfur oxides from gases. Raman, Anantha K. S. (Esso Research and Engineering Co.). U.S. US 3454356 19690708, 4 pp. (English). CODEN: USXXAM. APPLICATION: US 1966-564198 19660711.

AB Waste gases contg. SO<sub>2</sub> are passed over **V<sub>2</sub>O<sub>3</sub>** or V<sub>2</sub>O<sub>4</sub> or their mixts. at 750-1000.degree.F. The SO<sub>2</sub> reacts with O normally present to form SO<sub>3</sub> which reacts in turn with the **V<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>4</sub>** to form **VOSO<sub>4</sub>**. Regeneration is effected at 1000-1200.degree.F. in presence of SO<sub>2</sub> according to the reaction 2VOSO<sub>4</sub> .fwdarw. V<sub>2</sub>O<sub>4</sub> + 2SO<sub>3</sub>, and the SO<sub>3</sub> is recovered as by-product **H<sub>2</sub>SO<sub>4</sub>**. Other oxide coabsorbents (CuO, NiO, Fe<sub>2</sub>O<sub>3</sub>, ZnO, Al<sub>2</sub>O<sub>3</sub>, or their mixts.) may be used to supplement the **V<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>4</sub>**.

IT **1314-34-7**

(sulfur dioxide removal from gas by reaction with)

RN 1314-34-7 HCA

CN Vanadium oxide (V<sub>2</sub>O<sub>3</sub>) (8CI, 9CI) (CA INDEX NAME)

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

IT **1314-34-7**

(sulfur dioxide removal from gas by reaction with)

L25 ANSWER 10 OF 16 HCA COPYRIGHT 2005 ACS on STN  
 64:98215 Original Reference No. 64:18492a-c The **sulfuric acid** solvent system. VII. Solutions of some tin(IV) and lead(IV) compounds. Gillespie, R. J.; Kapoor, R.; Robinson, E. A. (McMaster Univ., Hamilton). Canadian Journal of Chemistry, 44(10), 1197-202 (English) 1966. CODEN: CJCHAG. ISSN: 0008-4042.  
 AB cf. CA 60, 15201e. Solns. of Me<sub>4</sub>Sn, trimethyltin sulfate, Bu<sub>2</sub>Sn(OAc)<sub>2</sub>, Ph<sub>4</sub>Sn, and triphenyltin hydroxide in 100% **H<sub>2</sub>SO<sub>4</sub>** were investigated by cryoscopic and conductimetric methods. Me<sub>4</sub>Sn reacts with **H<sub>2</sub>SO<sub>4</sub>** with the evolution of CH<sub>4</sub> and the formation of trimethyltin hydrogen sulfate. Trialkyltin hydrogen sulfates and dialkyltin bis(hydrogen sulfates) behave as strong bases. It is probable that the cationic species formed are protonated hydrogen sulfates rather than "stannonium" ions. Ph-substituted Sn compds. are cleaved in **H<sub>2</sub>SO<sub>4</sub>** with the formation of benzenesulfonic acid and H<sub>2</sub>Sn(HSO<sub>4</sub>)<sub>6</sub> and its anions. Pb(OAc)<sub>4</sub> gives yellow solns. contg. H<sub>2</sub>Pb(HSO<sub>4</sub>)<sub>6</sub> and its anions.

IT **7664-93-9, Sulfuric acid**  
 (soln. in, of P compds. and V compds., cryoscopy, elec. cond. and ionization of)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)



(soln. in, of Pb(IV) and Sn(IV) compds., H sulfato complex formation in

IT **7664-93-9, Sulfuric acid**  
 (soln. in, of P compds. and V compds., cryoscopy, elec. cond. and ionization of)

IT **7664-93-9, Sulfuric acid**  
 (soln. in, of Pb(IV) and Sn(IV) compds., H sulfato complex formation in)

L25 ANSWER 11 OF 16 HCA COPYRIGHT 2005 ACS on STN

63:69073 Original Reference No. 63:12668g-h,12669a **vanadyl sulfate** and its reduction by hydrogen sulfide: vanadium sulfides. Tudo, Joseph (Fac. Sci., Lille, Fr.). Rev. Chim. Minerale, 2(1), 58-117 (French) 1965.

AB **VOSO<sub>4</sub>.6H<sub>2</sub>O** is prep'd. by evapn. of a soln. contg. 1 mol V<sub>2</sub>O<sub>5</sub>/mol **H<sub>2</sub>SO<sub>4</sub>** after redn. with H<sub>2</sub>S. **VOSO<sub>4</sub>.3H<sub>2</sub>O** is obtained at lower acid concn. Hydrates contg. 5, 4, 3, and 1 H<sub>2</sub>O

are prep'd. by heating **VOSO<sub>4</sub>**.6H<sub>2</sub>O. The vapor pressures of the 6, 5, 4, and 3 hydrates at 30.degree. are 3.4, 3.2, 2.6, and 2.3 mm. **VOSO<sub>4</sub>**.3H<sub>2</sub>O decomp. at 93.degree. to **VOSO<sub>4</sub>**.H<sub>2</sub>O. **VOSO<sub>4</sub>** is prep'd. from any hydrate at 330.degree.. It crystallizes in the tetragonal system with 2 mols./unit cell, (a = 6.27, c = 4.12 A.). Oxidn. in O at 550.degree. yields V<sub>2</sub>O<sub>5</sub>. V<sub>6</sub>O<sub>13</sub> is prep'd. at 0.1 mm. and 550.degree.. At lower pressures and higher temps. V<sub>2</sub>O<sub>4</sub> is formed. Heating **VOSO<sub>4</sub>** in N yields a mixt. of V<sub>2</sub>O<sub>5</sub> and V<sub>6</sub>O<sub>13</sub>. Redn. by H at 440.degree. gives **V<sub>2</sub>O<sub>3</sub>**. Heating in SO<sub>2</sub> gives V<sub>2</sub>O<sub>4</sub>. **VOSO<sub>4</sub>** is reduced quant. at 280.degree. by H<sub>2</sub>S to give VS<sub>4</sub>. VS<sub>4</sub> in vacuo at 450.degree. gives V<sub>2</sub>S<sub>3</sub>. Oxidn. of VS<sub>4</sub> with O at 165.degree. gives V<sub>2</sub>O<sub>4</sub> and **VOSO<sub>4</sub>**. V<sub>2</sub>S<sub>3</sub> is reduced by H at 600-720.degree. to V<sub>4</sub>S<sub>5</sub>(compr. VS<sub>1.19</sub> to VS<sub>1.34</sub>), and at 1000.degree. to VS. The lower V sulfides readily absorb O at 100.degree.. Phases of approx. comp. V<sub>2</sub>O<sub>0.25</sub>, V<sub>2</sub>O<sub>0.5</sub>, VS<sub>1.2500.25</sub>, VS<sub>1.2500.75</sub>, and VS<sub>1.500.5</sub>, stable at 240, 270, 190, 310, and 310.degree., resp., are formed. VS<sub>1.2500.75</sub> gives VS when heated in vacuo at 370.degree..

IT      **12439-96-2, Vanadyl sulfate,**  
**VOSO<sub>4</sub>**, pentahydrate **12440-03-8, Vanadyl sulfate,** **VOSO<sub>4</sub>**, monohydrate **19126-73-9,**  
**Vanadyl sulfate, VOSO<sub>4</sub>**, hexahydrate  
**41756-89-2, Vanadyl sulfate,**  
**VOSO<sub>4</sub>**, trihydrate

(decompn., oxidn. and redn. of)

RN      12439-96-2 HCA

CN      Vanadium, oxo[sulfato(2-)-.kappa.O]-, pentahydrate (9CI) (CA INDEX NAME)



● 5 H<sub>2</sub>O

RN      12440-03-8 HCA

CN      Vanadium, oxo[sulfato(2-)-.kappa.O]-, monohydrate (9CI) (CA INDEX NAME)



● H<sub>2</sub>O

RN 19126-73-9 HCA  
 CN Vanadium, oxo[sulfato(2-)-O,O']-, hexahydrate (9CI) (CA INDEX NAME)



● 6 H<sub>2</sub>O

RN 41756-89-2 HCA  
 CN Vanadium, oxo[sulfato(2-)-.kappa.O,.kappa.O']-, trihydrate (9CI)  
 (CA INDEX NAME)



● 3 H<sub>2</sub>O

IT 1314-34-7, Vanadium oxide, V2O3  
 (formation of, from VOSO<sub>4</sub> oxidn. and subsequent redn.)

RN 1314-34-7 HCA  
 CN Vanadium oxide (V<sub>2</sub>O<sub>3</sub>) (8CI, 9CI) (CA INDEX NAME)

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

IT 12439-96-2, Vanadyl sulfate,  
 VOSO<sub>4</sub>, pentahydrate 12440-03-8, Vanadyl  
 sulfate, VOSO<sub>4</sub>, monohydrate 19126-73-9,  
 Vanadyl sulfate, VOSO<sub>4</sub>, hexahydrate  
 41756-89-2, Vanadyl sulfate,  
 VOSO<sub>4</sub>, trihydrate

(decompn., oxidn. and redn. of)

IT 1314-34-7, Vanadium oxide, V<sub>2</sub>O<sub>3</sub>  
 (formation of, from VOSO<sub>4</sub> oxidn. and subsequent redn.)

L25 ANSWER 12 OF 16 HCA COPYRIGHT 2005 ACS on STN  
 58:69796 Original Reference No. 58:11945g-h The determination of oxidizing and reducing cations in transition metal oxides using vanadium sulfate solutions. Wickham, D. G.; Whipple, E. R. (Ampex Computer Prods. Co., Culver City, CA). Talanta, 10, 314-15 (English) 1963. CODEN: TLNTA2. ISSN: 0039-9140.

AB Since V sulfate solns. are very stable, they are useful anal. reagents. A soln. contg. V(V) in dil. **H<sub>2</sub>SO<sub>4</sub>** can be used to det. Fe(II), Ti(III), and V(III) in solid oxides by titrating the resulting V(IV) with KMnO<sub>4</sub>. A similar soln. of **VOSO<sub>4</sub>** can be used to det. Co(III), Mn(III), and Mn(IV) by titrating excess reagent with KMnO<sub>4</sub>. The method is valuable in studies of ferrites.

IT **27774-13-6, Vanadyl sulfate,**  
**VOSO<sub>4</sub>**  
 (in analysis)

RN 27774-13-6 HCA

CN Vanadium, oxo[sulfato(2-)-.kappa.O]- (9CI) (CA INDEX NAME)



IT **1314-34-7, Vanadium oxide, V<sub>2</sub>O<sub>3</sub>**  
 (vanadium detn. in)

RN 1314-34-7 HCA

CN Vanadium oxide (V<sub>2</sub>O<sub>3</sub>) (8CI, 9CI) (CA INDEX NAME)

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

IT **27774-13-6, Vanadyl sulfate,**  
**VOSO<sub>4</sub>**  
 (in analysis)

IT **1314-34-7, Vanadium oxide, V<sub>2</sub>O<sub>3</sub>**  
 (vanadium detn. in)

L25 ANSWER 13 OF 16 HCA COPYRIGHT 2005 ACS on STN  
 30:17714 Original Reference No. 30:2329f-g Is sintering a primary cause of lowered activity of vanadium-barium catalysts?. Adadurov, I. E. Ukrains'kii Khemichnii Zhurnal, 10(Wiss.-tech. Teil), 336-45 (Russian) 1935. CODEN: UKHZAS. ISSN: 0372-4190.

AB cf. C. A. 29, 6371.6,6371.7. Metallographic examn. of several samples of partly vitrified V-Ba zeolite catalysts, used in a **H<sub>2</sub>SO<sub>4</sub>** contact process, disclosed that their reduced activity is caused not only by the adsorption of SO<sub>3</sub> on the surface, but also by the gradual decomprn. of the complex with the sepn. of V<sub>2</sub>O<sub>5</sub>, SiO<sub>2</sub>, BaO and alkali oxides. V<sub>2</sub>O<sub>5</sub> is reduced by SO<sub>2</sub> to **V<sub>2</sub>O<sub>3</sub>** and **VOSO<sub>4</sub>** which escape from the contact space. Under the thermal conditions of the contact process, BaO combines with SiO<sub>2</sub> with the formation of stable silicates. This reaction is

accelerated at 575.degree. and higher temps. by the conversion of .beta.-SiO<sub>2</sub> to a highly reactive .alpha.-SiO<sub>2</sub>.

IT 7664-93-9, **Sulfuric acid**  
 (manuf. of, catalysts contg. Ba and V in, effect of sintering on)  
 RN 7664-93-9 HCA  
 CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)



IT 7664-93-9, **Sulfuric acid**  
 (manuf. of, catalysts contg. Ba and V in, effect of sintering on)

L25 ANSWER 14 OF 16 HCA COPYRIGHT 2005 ACS on STN  
 21:5796 Original Reference No. 21:711h-i,712a-d Tervalent vanadium. II.  
 Meyer, Julius; Markowicz, Ernst Z. anorg. allgem. Chem., 157,  
 211-50 (Unavailable) 1926.

AB cf. C. A. 18, 3154. The alum, NH<sub>4</sub>V(SO<sub>4</sub>)<sub>2</sub>.12H<sub>2</sub>O, was prep'd. from NH<sub>4</sub>VO<sub>3</sub>, and **H<sub>2</sub>SO<sub>4</sub>** by the action of SO<sub>2</sub> and elec. reduction. A concn. of **H<sub>2</sub>SO<sub>4</sub>** slightly less than theoretical yields blue crystals, while more dil. solns. yield red crystals. A violet modification which is probably a mixed crystal of the red and blue is also mentioned. An exhaustive study of these crystals shows no differences in properties, except color. Per cent compn., rate of efflorescence and elec. cond. (13-60.degree.) are identical. The m. p. is 49-50.degree.; d. is 1.687 at room temp.; the solv. is 28.45 g. per 100 g. H<sub>2</sub>O at 20.degree.. The soln. is slowly oxidized by air, giving **VOSO<sub>4</sub>**. The 2 modifications are interconvertible. Pure NH<sub>4</sub>V(SO<sub>4</sub>)<sub>2</sub>.12H<sub>2</sub>O is blue, and the red modification contains traces of **V<sub>2</sub>O<sub>3</sub>** or V(OH)<sub>3</sub> from hydrolysis. In a similar way the alum, KV(SO<sub>4</sub>)<sub>2</sub>.12H<sub>2</sub>O, was prep'd., but analogous modifications could not be obtained. By slight modifications in the same method, green vanadic hydrogen sulfate tetrahydrate, HV(SO<sub>4</sub>)<sub>2</sub>.4H<sub>2</sub>O, the hexahydrate, HV(SO<sub>4</sub>)<sub>2</sub>.6H<sub>2</sub>O, ammonium vanadic sulfate tetrahydrate, NH<sub>4</sub>V(SO<sub>4</sub>)<sub>2</sub>.4H<sub>2</sub>O and the hexahydrate, NH<sub>4</sub>V(SO<sub>4</sub>)<sub>2</sub>.6H<sub>2</sub>O, were prep'd. A series of compds. was prep'd. from V(AcO)<sub>3</sub> soln. This soln. was prep'd. from a suspension of reactive V<sub>2</sub>O<sub>5</sub> in AcOH by reduction with hydrazine. Addn. of fuming **H<sub>2</sub>SO<sub>4</sub>** to the acetate soln. yields hydroscopic penta-, hexa- and octahydrates of vanadic hydrogen sulfate. If NH<sub>4</sub>VO<sub>3</sub> is used instead of V<sub>2</sub>O<sub>5</sub>, the tetra- and pentahydrates of ammonium vanadic sulfate are formed. Addn. of 60% **H<sub>2</sub>SO<sub>4</sub>** to the acetate soln. yields dark green nona- and decahydrates of vanadic sulfate. The nonahydrate absorbs H<sub>2</sub>O from the air in amts.

which indicate the formation of  $V_2(SO_4)_3 \cdot 14H_2O$ . Warm solns. of the vanadic hydrogen sulfates in concd. **H<sub>2</sub>SO<sub>4</sub>** yield vanadic sulfate trihydrate and vanadic hydrogen sulfate dihydrate. Anhyd. vanadic hydrogen sulfate and the monohydrate are formed from hot concd. **H<sub>2</sub>SO<sub>4</sub>** and  $V(AcO)_3$  (analytical data not given).

Distn. of AcOH from the acetate soln. contg. concd. **H<sub>2</sub>SO<sub>4</sub>** and subsequent addn. of pyridine yields 2 hydrated addn. compds. of pyridine and vanadic hydrogen sulfate, green  $HV(SO_4)_2 \cdot C_5H_5N \cdot 3H_2O$  and yellow  $HV(SO_4)_2 \cdot C_5H_5N \cdot H_2O$ . Attempts to prep. normal selenates and selenate alums were unsuccessful. Addn. of seleinic acid to  $V(AcO)_3$  soln. produces the following light-green hydroscopic hydrated vanadic aceto-selenates,  $V_3(AcO)(SeO_4)_4 \cdot 10H_2O$ ,  $V_3(AcO)(SeO_4)_4 \cdot 14H_2O$ , and  $V_3(AcO)(SeO_4)_4 \cdot 18H_2O$ . The structures of the various compds. are discussed with respect to the Werner theory, and corresponding modifications in the above formulas are given.

L25 ANSWER 15 OF 16 HCA COPYRIGHT 2005 ACS on STN

20:21615 Original Reference No. 20:2626a-b Salts and complex compounds of quadrivalent vanadium. Rosenheim, Arthur; Mong, H. Y. Z. anorg. allgem. Chem., 148, 25-36 (Unavailable) 1925.

AB Alkali **vanadyl sulfates** prepd. by dissolving alkali metavanadates in **H<sub>2</sub>SO<sub>4</sub>** decompose **H<sub>2</sub>SO<sub>4</sub>** as follows:  $2VIV = VIII + VV$ . The crystd. acid **V<sub>2</sub>O<sub>3</sub>(SO<sub>4</sub>)<sub>2</sub>** is obtained and crystd. salts of the formula  $M_2[V(SO_4)_2]$  ( $M = NH_4$ , K, or Na). **Vanadyl sulfate** behaves in a similar manner. The structure of salts of the type  $M_2[(VO)Ra] + aq.$  ( $R =$  tartrate, salicylate radical) and the newly prepd. vanadyl hydroxynaphtholate and pyrocatecholate is similar to that of the pyrocatecholates of bivalent metals V is bivalent. Several addn. compds. with org. constituents are prepd. and a Tl salt.

IT **27774-13-6, Vanadyl sulfate**  
(prepn. of)

RN 27774-13-6 HCA

CN Vanadium, oxo[sulfato(2-)-.kappa.O]- (9CI) (CA INDEX NAME)



IT **27774-13-6, Vanadyl sulfate**  
(prepn. of)

L25 ANSWER 16 OF 16 HCA COPYRIGHT 2005 ACS on STN

17:10198 Original Reference No. 17:1780d-e Vanadium from ores. Mackay, P. A. US 1450507 19230403 (Unavailable). APPLICATION: US .

AB Ores such as those contg. oxides of V and Pb are treated with fuming **H<sub>2</sub>SO<sub>4</sub>** and  $V_2O_5$  is reduced to **V<sub>2</sub>O<sub>3</sub>** by  $SO_2$  to obtain **vanadyl sulfate**. The soln. is subsequently dild.

with H<sub>2</sub>O to ppt. other materials and leave the V in soln.