A bit more of this please?

When it comes down to a judgment call, favoring performance over energy saving may keep frequency scaling alive in the server world

photo by Roman Avdagić, Foto-Škrinja j.d.o.o. https://www.flickr.com/photos/romanski/44296560680 license: CC-BY 2.0 https://creativecommons.org/licenses/by/2.0 modified to include quote

perf-gov is not freq-scaling

MAY 18, 2020, OSPM

Frequency scaling in the datacenter

The case for a more aggressive intel_pstate/powersave

Giovanni Gherdovich ggherdovich@suse.cz

What would you do? #1

You're head of IT at Bazinga Bank LLC

- ~100 branches
- IT dept: ~50 people
- on premises (regulations)

Question: which freq-scaling policy?

- A) intel_pstate/powersave (the smart one)
- B) intel_pstate/performance (the always-max one)
- C) intel_pstate/schedutil (the next-gen one)
- D) whatever the default is

What would you do? #2

You're an OS vendor (SUSE, Red Hat, Canonical, ...)

Question: which freq-scaling policy by default?

- A) intel_pstate/powersave (the smart one)
- B) intel_pstate/performance (the always-max one)
- C) intel_pstate/schedutil (the next-gen one)

What would I like

- see freq-scaling the obvious choice on server
- see intel_pstate/performance obsolete, only HPC/HFT
- see schedutil win

The conversation

what if next release we default to intel_pstate/performance?

PROs

- getting "powersave" in tip-top shape is hard work (out-of-tree)
- remove a whole dimension of complexity

CONs

- lose handle on tech you'll need one day
- · mask bugs that are worth fixing instead
- you can't go back (dashboard will go red)

Distro defaults

- users, media eval the default config
- if bad, they move on
- → distro prioritizes defaults when testing

Regress is not an option

- users, media compare with previous release
- a regression is hard to sell

if switch powersave → perf-gov, it's gone

(tests are often perf, not perf-per-watt)

In grey area favor performance

for the greater good

ioboost less aggressive (v5.1)

```
author Rafael J. Wysocki <rafael.j.wysocki@intel.com> 2019-02-07 committer Rafael J. Wysocki <rafael.j.wysocki@intel.com> 2019-02-18 b8bd1581aa6110eb234c0d424eccd3f32d7317e6
```

cpufreq: intel_pstate: Rework iowait boosting to be less aggressive

The current iowait boosting mechanism in intel_pstate_update_util() is quite aggressive, as it goes to the maximum P-state right away, and may cause excessive amounts of energy to be used, which is not desirable and arguably isn't necessary too.

Follow commit a5a0809bc58e ("cpufreq: schedutil: Make iowait boost more energy efficient") that reworked the analogous iowait boost mechanism in the schedutil governor and make the iowait boosting in intel_pstate_update_util() work along the same lines.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

SLES out-of-tree patches

- "idle boost": temporarily boost P-state when exiting from idle (similar to how it's boosted if a task has blocked recently for IO).
- "ramp up faster": Ramp up frequency faster when utilisation reaches threshold.

Overview

- 40 cores (80 threads) Broadwell (2014)
- two sockets, memory 512G, SSD storage
- kernel v5.7-rc5
- XFS filesystem

BENCHMARK					UNIT	BETTER IF		
Performance Ratios								
dbench	1	0.91	0.89	0.89	TIME_MSECONDS	lower		
kernbench	1	1	0.93	0.93	TIME_SECONDS	lower		
Performance-per-Watt Ratios								
dbench	1	0.77	0.76	0.76	OPS_PER_SECOND_PER_WATT	higher		
kernbench	1	1	1	0.99	OPS_PER_SECOND_PER_WATT	higher		

dbench

revert-weak-ioboost: revert b8bd1581aa61 ("cpufreq: intel_pstate:

Rework iowait boosting to be less aggressive")

spicy-powersave : revert-weak-ioboost + idleboost + ramp-up-faster

UNIT : TIME_MSECONDS

PARAM : CLIENTS LOWER is better

	5.7.0-rc5	5.7.0-rc5	5.7.0-rc5	5.7.0-rc5
	powersave	revert-weak-ioboost	spicy-powersave	performance
1	30.20 ±13.9%	29.12 ±8.2% (3.59%)	27.82 ±5.0% (7.88%) 27.65	±4.5% (8.46%)
2	34.63 ±14.9%	32.46 ±9.0% (6.27%)	31.52 ±6.9% (8.98%) 31.45	±8.2% (9.20%)
4	45.99 ±14.8%	42.44 ±12.4% (7.72%)	41.54 ±13.0% (9.67%) 41.17	±11.3% (10.48%)
8	66.23 ±16.2%	61.78 ±17.4% (6.72%)	60.99 ±17.8% (7.91%) 61.19	±17.9% (7.61%)
16	104.54 ±16.6%	97.46 ±17.5% (6.78%)	96.54 ±17.0% (7.65%) 96.15	±17.2% (8.03%)
32	191.79 ±17.7%	178.55 ±17.6% (6.91%)	177.95 ±17.5% (7.22%) 178.25	±17.9% (7.06%)
64	424.50 ±15.4%	375.74 ±15.1% (11.48%)	372.76 ±14.5% (12.19%) 374.76	±15.0% (11.72%)
128	1278.89 ±9.7%	982.24 ±19.2% (23.20%)	946.37 ±16.0% (26.00%) 936.16	±15.5% (26.80%)

kernbench

revert-weak-ioboost: revert b8bd1581aa61 ("cpufreq: intel_pstate:

Rework iowait boosting to be less aggressive")

spicy-powersave : revert-weak-ioboost + idleboost + ramp-up-faster

UNIT : TIME_SECONDS

PARAM : THREADS LOWER is better

	5.7.0-rc5	5.7.0-rc5	5.7.0-rc5	5.7.0-rc5
	powersave	revert-weak-ioboost	spicy-powersave	performance
2	481.81 ±0.50%	480.52 ±0.54% (0.27%)	447.76 ±0.63% (7.07%)	440.83 ±0.55% (8.51%)
4	268.92 ±2.86%	263.08 ±0.24% (2.17%)	240.30 ±0.56% (10.64%)	236.57 ±0.50% (12.03%)
8	147.46 ±1.00%	146.91 ±1.32% (0.38%)	133.07 ±0.71% (9.76%)	131.29 ±0.31% (10.96%)
16	81.38 ±0.44%	82.00 ±1.19% (-0.77%)	75.08 ±0.32% (7.74%)	74.44 ±0.67% (8.52%)
32	47.83 ±1.22%	47.91 ±1.13% (-0.17%)	45.72 ±1.18% (4.41%)	45.02 ±2.00% (5.89%)
64	34.49 ±1.17%	34.29 ±1.70% (0.58%)	33.03 ±1.55% (4.22%)	33.41 ±1.28% (3.14%)
128	33.55 ±0.56%	33.43 ±0.51% (0.38%)	32.18 ±0.41% (4.09%)	32.12 ±0.16% (4.26%)
160	33.61 ±0.39%	33.52 ±0.72% (0.27%)	32.26 ±0.18% (4.03%)	32.21 ±0.34% (4.16%)

A bit more of this please?

When it comes down to a judgment call, favoring performance over energy saving may keep frequency scaling alive in the server world

photo by Roman Avdagić, Foto-Škrinja j.d.o.o. https://www.flickr.com/photos/romanski/44296560680 license: CC-BY 2.0 https://creativecommons.org/licenses/by/2.0 modified to include quote