香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九九六年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1996

數學 試卷— MATHEMATICS PAPER I

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成 閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對, 但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取 此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致 但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考 試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上 並原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。
After the examinations, marking schemes will be available for reference at the Teachers' Centres.

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1996

96-CE-MATHS I-1

只限教師參閱

FOR TEACHERS' USE ONLY

Hong Kong Certificate of Education Examination Mathematics Paper I

NOTES FOR MARKERS

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, provided that the method used is sound.
- 2. In a question consisting of several parts each depending on the previous parts, marks may be awarded to steps or methods correctly deduced from previous erroneous answers. However, marks for the corresponding answers should NOT be awarded. In the marking scheme, marks are classified as:

'M' marks awarded for correct methods being used;
'A' marks awarded for the accuracy of the answers;
Others awarded for correctly completing a proof or arriving at an answer given in a question.

- 3. Use of notation different from those in the marking scheme should not be penalised.
- 4. Each mark deducted for poor presentation (p.p.) should be denoted by [pp-1]:
 - a. At most deduct 1 mark for (p.p.) in each question, up to a maximum of 3 marks for the whole paper.
 - b. For similar (p.p.), deduct 1 mark for the first time that it occurs.
 i.e. do not penalise candidates twice in the paper for the same p.p.
- 5. Each Mark deducted for wrong/no unit (u.) should be denoted by [u-1]:
 - a. No mark can be deducted for (u.) in Section A.
 - b. At most deduct 1 mark for (u.) for the whole paper.
- 6. Marks entered in the Page Total Box should be the NET total scored on that page.

Solution	Marks	Remarks
$1. \qquad r = \frac{h - a}{1 + p^2}$	1A	
$r = \frac{8-6}{1+(-4)^2}$	lM	,
$= \frac{2}{17} $ (or 0.118)	1A	r.t. 0.118
$\frac{OR}{2} = 6 + r[1 + (-4)^2]$	1A	
$2 = 17r$ $r = \frac{2}{17} \text{(or 0.118)}$	1A	r.t. 0.118
	(3)	
$2. \frac{a^{\frac{5}{4}}\sqrt[4]{a^3}}{a^{-2}} = \frac{a^{\frac{5}{4}}a^{\frac{3}{4}}}{a^{-2}}$	1A	For $\sqrt[4]{a^3} = a^{\frac{3}{4}}$
$a = a^{\frac{5}{4} + \frac{3}{4} - (-2)}$	1M	For applying either
$=a^4$	1A	$a^{m}a^{n}=a^{m+n}$ or $\frac{a^{m}}{a^{n}}=a^{m-n}$.
·	(3)	
3. (a) 4, 1, -2, -5	1A	
(b) $S_{100} = \frac{100}{2} [2(4) + (100 - 1)(-3)]$	1M+1A	1M for $\frac{100}{2}[2a+(100-1)d]$,
= -14450	1A	a is the 1st term in (a). r.t14500
<u>OR</u> $T_{100} = 4 + (100 - 1)(-3) = -293$	1A	
$S_{100} = \frac{100}{2} [4 + (-293)]$	1M	
= -14450	1A	
	(4)	
4. Let $f(x) = x^3 - x^2 - 3x - 1$, then $f(-1) = (-1)^3 - (-1)^2 - 3(-1) - 1 = 0$. $\therefore x + 1$ is a factor of $x^3 - x^2 - 3x - 1$.	1A	Accept using long or synthetic division
$x^{3} - x^{2} - 3x - 1 = 0$		pp-1 for not defining $f(x)$
$(x+1)(x^2-2x-1)=0$	1A	
$x = -1$ or $\frac{2 \pm \sqrt{(-2)^2 - 4(-1)}}{2}$	1A+1M	1A for $x = -1$ 1M for quad. formula
$x = -1 \text{or} 1 \pm \sqrt{2}$	1A	For $x = 1 \pm \sqrt{2}$
96-CE-MATHS I-3	(5)	

96-CE-MATHS I-3

只限教師參閱

FOR TEACHERS' USE ONLY

	Solution	Marks	Remarks
. 5 .	(i) $x > 3$	1A	Accept graphical solutions. Withhold 1 mark for having equal signs in inequalities.
	(ii) (* 2)(* A) < 0		
	(ii) $(x-2)(x-4) < 0$ 2 < x < 4	1A 2A	For factorization, can be omitted
		20	Accept " $x > 2$ and $x < 4$ "
	Solution of (i) and (ii): $3 < x < 4$	1A	
		(5)	
6.	$\therefore \angle ABP = \angle DCB \qquad (corr. \angle s, AB//DC)$		"同位角,ABIIDC"
	$\angle DCB = \angle BAP$ (ext. \angle , cyclic quad.) $\angle ABP = \angle BAP$		"圓內接四邊形外角"
-	$\therefore AP = BP \qquad \text{(sides opp. equal } \angle \text{s)}$		Or "base ∠s equal", "converse of 'base ∠s, iso. \(\Delta' \), "equal
	c		∠s, equal sides"
	B		"等角對邊相等" 或
	$\begin{pmatrix} & & & & \\ & & & & \\ & & & & \end{pmatrix} \longrightarrow_P$		"等腰三角形底角等的 逆定理"或"底角相
			等"或"等邊對等角"
	A A		或"等角對等邊"
	Γ		,
	Marking scheme:	•••••	
	Case 1 Any correct proof with correct reasons.	5	
	Case 2 Any correct proof without reasons.	3	i
	In addition, any correct argument with correct reason.	1	Maximum 1 mark
	Case 3 Any correct argument with correct reason.	11	Maximum 2 marks
		(5)	
7.	(a) Area of the shaded region = $(12^2 - 2^2)\pi$ cm ² = 140π cm ² (or 440 cm ²)		
	= 140% Cm (01 440 Cm)	1A	r.t. 440
	(b) (i) The probability that both darts hit the shaded region		
	$= \left(\frac{140\pi}{144\pi}\right)^2 \text{(or } 0.972^2\text{)}$	1M+1M	1M for Ans. in (a) Area of the board
	1225		1M for p^2
	$= \frac{1225}{1296} \qquad \text{(or } 0.945)$	1A	r.t. 0.945
	(ii) The probability that only one dart hits the shaded region		
	$= 2\left(\frac{140\pi}{144\pi}\right)\left(\frac{4\pi}{144\pi}\right)$	lM+1M	1M for p(1-p)
	-\144π/\144π/	1141 . 1141	1M for $2p$ or $p+p$
	$= \frac{35}{648} $ (or 0.0540)	1A	r.t. 0.0540
	010		
		(7)	pp-1 if no text in (b)
96-6	CE-MATHS I-4	-	•

只限教師參閱 FOR TEACHERS' USE ONLY

	スが対射を説 TON TEACHE		1 L. I
	Solution	Marks	Remarks
8. (a) Ca ₁	pacity = $\frac{1}{3}\pi(5)^2(12)$ cm ³		
	$\approx 314 \text{ cm}^3 \qquad (\text{or } 100\pi \text{ cm}^3)$	1A	r.t. 314
(b) (i)	$AB = \sqrt{5^2 + 12^2}$ cm = 13 cm Area of the sector = $\pi(5)(13)$ cm ² ≈ 204 cm ² (or 65π cm ²)	1A IM	
		1A	r.t. 204
	OR Arc length of the sector = 10π cm		
	Area of the sector = $\frac{1}{2} \cdot 13 \cdot 10 \pi \text{cm}^2$ $\approx 204 \text{cm}^2 (\text{or } 65\pi \text{cm}^2)$	1A+1M	1A for 13
		1A	r.t. 204
(ii)	Angle of the sector = $\frac{65\pi}{13^2\pi} \times 360^\circ$	1M	
	≈ 138°	1A	r.t. 138
	\overline{OR} Let the angle of the sector be θ .		
	$\frac{1}{2}(13)^2\theta=65\pi$	1M	
	$\theta = \frac{10}{13}\pi \qquad \text{(or 2.42)}$	1A	r.t. 2.42
	\underline{OR} Angle of the sector = $\frac{10\pi}{13}$ (or 2.42)	1M+1A	1M for $\frac{\text{Arc length}}{AB}$, r.t. 2.42
12 cm		(6)	
<u> </u>	A	y,	L_3 E
	$3x + 2y - 7 = 0 \qquad(1)$ $2x - y - 7 = 0 \qquad(3)$ $\times 2 + (1): \qquad 7x - 21 = 0$ $x = 3, y = -1$ $C = (3, -1)$	IM 1A	
(b)	$3x + 2y \ge 7$ $3x - 5y \ge -7$ $2x - y \le 7$	}IA+1A	1 A for any one being correct Withhold 1 mark for strict inequalities
(c) Let ∴	t $P(x, y) = 2x - 2y - 7$, then P(1, 2) = -9, $P(6, 5) = -5$, $P(3, -1) = 1$. The maximum value of $2x - 2y - 7$ is 1.	1M 1A	For testing any one of these pts. f.t.
96-CE-MATHS	21.6	(6)	

96-CE-MATHS I-5

只限教師參閱 FOR TEACHERS' USE ONLY

	パ欧教師参阅 FUR TEACHERS, USE ONLY				
٠	Solution		Marks	Remarks	
10. (a)	$x = 360^{\circ} - (80^{\circ} + 60^{\circ} + 80^{\circ} + 75^{\circ})$ $= 65^{\circ}$		1A		
(b)	$\triangle ABE \cong \triangle CDB$		1A		
(c)	60° + z + θ + y = 180 ∴ y + z = 80° ∴ θ = 180° - 60° - 80° = 40° 180°-40°		1A 1A		
	$\angle BDE = \frac{180^{\circ} - 40^{\circ}}{2} = 70^{\circ}$ $y = 180^{\circ} - 75^{\circ} - 70^{\circ} = 35^{\circ}$ $z = 80^{\circ} - 35^{\circ} = 45^{\circ}$		1M 1A 1A		
	OR $\angle BDE = \angle BED$ $180^{\circ} - 75^{\circ} - y = 180^{\circ} - 65^{\circ} - z$ $z - y = 10^{\circ}$ (1)	•	1M		
	$y + z = 80^{\circ}$ (2) Solving (1) and (2), $y = 35^{\circ}$ $z = 45^{\circ}$ $\theta = 180^{\circ} - 60^{\circ} - 35^{\circ} - 45^{\circ} = 40^{\circ}$		1A 1A 1A 1A		
	C θ ν × 80° A Z X D 75° E				
~ '					
•					

	Solution	Marks	Remarks
. (a) (i)	Equation of \mathcal{C}_1 : $x^2 + (y-2)^2 = 4$	1A	
	(or $x^2 + y^2 - 4y = 0$)		
(ii)	B = (0, 4)	1A	Can be omitted
	Equation of $L: y = 2x + 4$	1A	Or equivalent
(b) $\begin{cases} x^2 \\ y \end{cases}$	$+(y-2)^2 = 25$ = $2x + 4$		
	$+(2x+4-2)^2 = 25$ (or $(y-4)^2 + 4(y-2)^2 = 100$)	1 M	Eliminate either x or y
	$+8x-21=0$ (or $5y^2-24y-68=0$) -7)(x+3)=0	1A	
x =	$\frac{7}{5}$ or -3 . $(y = \frac{34}{5} \text{ or } -2)$	1A	Accepted $x = 1.4$ or -3 ,
	7 34		y = 6.8 or -2.
Q =	$(\frac{7}{5}, \frac{34}{5})$ [or (1.4, 6.8)], $R = (-3, -2)$.	1A	Must indicate Q and R
(c) (i)	The mid-point of QR is the point on L which is nearest to A .	lM	Attempt to find mid-pt. of QR
	Mid-point of $QR = \left(\frac{\frac{7}{5} + (-3)}{2}, \frac{\frac{34}{5} + (-2)}{2}\right)$		
	$=(-\frac{4}{5},\frac{12}{5})$ [or (-0.8, 2.4)]	1A	
	\underline{OR} Let L' be the line through A perpendicular to L.		
	Equation of L': $\frac{y-2}{x} = -\frac{1}{2}$ or $x+2y-4=0$	1M	For attempting to find the eqtn. of L'
	The required point is the intersection of L and $L' = (-\frac{4}{5}, \frac{12}{5})$.	1A	
(ii)	The intersection of QA and C_1 is the pt. on C_1 which is nearest to Q .	1M	y
	The required point is $\left(\frac{3(0)+2(\frac{7}{5})}{5}, \frac{3(2)+2(\frac{34}{5})}{5}\right)$	lM	B
	$= (\frac{14}{25}, \frac{98}{25}) [or (0.56, 3.92)]$	1A	R
	$ \underline{OR} \text{Equation of } QA: \qquad 24x - 7y + 14 = 0 $	1M	For finding eqtn. of QA
	Solving the equations of QA and C_1 , we have $625y^2 - 2500y + 196 = 0$		
	$y = \frac{2}{25} \text{ (rej.)} \text{or} \frac{98}{25}$	1M	For solving & giving 1 soln. on
	The required pt. is $(\frac{14}{25}, \frac{98}{25})$ [or $(0.56, 3.92)$]	1	1

Solution							Marks	Remarks	
12. (a)	(i)		Tat	le 1	(Mr.	Chan)			
	1	Mont h	Loan I		L	oan Repaid (\$)	Outstanding Balance (\$)		
		1	7:	50.00		8 250.00	41 750.00		
		2	62	26.25		8 373.75	33 376.25		·
		3	50	00.64	,	8 499.36	24 876.89		
		4	(a) 3°	73.15	(b) l	8 626.85	(c)16250.04 (05)	IA+IM	1A for (a), 1M for $a+b=900$ or $b+c=24876.89$
		5	24	13.75		8 756.25	7 493,79 (80)		01 0 1 0 - 240 70.09
		6	ì	12.41		7 493.79 (80)	0.00	1A	
	(ii) Ar	nount o	f last payr	nent = \$	7 606	5.20 (21)		1A	Accept 7606.2
	(iii) To	tal inte	rest earne	d by the	bank	= \$ 2 606.20		1A	Accept 2606.2
(b)			Tal	le 2	(Mrs.	. Lee)			
``	Mont	h Ins	talment (\$)	Loa Interes	n	Coan Repaid	Outstanding Balance (3)		
	1	9	000.00	75 0.0	0	8 250.00	41 750.00		
	2	10	800,00	626,2	5	10 173,75	31 576,25	1A+1A+1A	1A for 10800.00, 1A for 626.25
	3	12	960.00	473.6	4	12 486.36	19 08 9, 89		
	4	15	552.00	286.3	5	15 265.65	3 824.24		
	5	3	881.60	57.3	6	3 824,24	0.00	1A	
(c)	Mr Ch	าเทฮ รส	ves \$ 1 20	00 each i	monti	1			
(0)	Mont		Savings (alment (\$)	Balance (\$)		
	1		12 000.00			9000.00	3 000.00		·
_	2		15 000.00			0800.00	4 200.00		
	3		16 200.00			2 960.00	3 240.00		
	4		15 240.00			5 552,00	-312.00		
		eung w				ngs to pay the			
				_					
	Mr. C	ing Scl	neme: cannot aff	ord to us	se the	repayment sch	eme as described in		
	(b).							\ 1A	
	Puttir	g the b	alance \$30 ne 4th moi	000 into	his sa talme	ivings after pay	ing the 1st instalment nonth's savings)	i. 1M	Can be omitted
	!	i.e	2. 15552 .0	0 > 152	40.00			1A	
	OR		ne 1st 4 me : 48312 >		ıstalm	ents) > (the 1st	t 4 months' savings)		

	Solution	Marks	Remarks
13. (a)	Let $F = k_1xt + k_2t^2$ for some constants k_1 and k_2 .	1A	
	Then $Q = 20000 + k_1 xt + k_2 t^2$.		
	Hence $\begin{cases} 30600 = 20000 + k_1(85)(40) + k_2(40)^2 \\ 28100 = 20000 + k_1(75)(60) + k_2(60)^2 \end{cases}$) 1M+1A	1M for substitution
		1	
	$\begin{cases} 53 = 17k_1 + 8k_2 \\ 9 = 5k_1 + 4k_2 \end{cases}$	} 1A	Or equivalent forms
	•	/	
	$7k_1 = 35$ or $28k_2 = -112$		
	$\begin{cases} k_1 = 5 \\ k_2 = -4 \end{cases}$) 1	
	<u> </u>	را	
	$\therefore Q = 20000 + 5xt - 4t^2$		
(b)	(i) When $x = 82$ and $t = 45$, then		
	$Q = 20000 + 5(82)(45) - 4(45)^2$		
	= 30350	1A	r.t. 30400
	(ii) When $Q = 30350$ and $x = 78$, then		
	$30350 = 20000 + 5(78)t - 4t^2$	1M	Use ans. in (b)(i)
	$4t^2 - 390t + 10350 = 0$ $2t^2 - 195t + 5175 = 0$		
	$\Delta = 195^2 - 4(2)(5175)$		
	= -3375		
	\therefore There is no real solution for t . Thus it is not possible to achieve the same value of Q in (i) by varying t .	lM+1A	ft.
(c)	When $x = 80$,		
	$Q = 20000 + 5(80)t - 4t^2$		
	$= 20000 - 4(t^2 - 100t)$		
	$=30000-4(t-50)^2$	IM+1A	1M for $a+b(t-50)^2$ or $a+b(2t-100)^2$
	Q is maximum when $t = 50$.		
	Thus the amount of time required is 50 seconds.	1A	
			/-
		ı	1

Solution	Marks	Remarks
14. (a) The unclearly printed number in Table 3 is 23.7.	1A	pp-1 for 23.7%
(b) There are rounding off errors.	1A	
(c) (i) The c.f. table of the distribution of x ($x \le 1000$) for boys		
$x(\leq)$ c.f.		
0 70		
200 87	1A	For 87, pp-1 for writing
400 135 600 218		intervals in the left column
800 310	_	
1000 346	1A	
(ii) []		
500 #### girls	s	
400		
<u>▐▗╀</u> ╒┼┼┼┼┼┼┼┼┼┼┼┼┼		
E boys	5	
Cumulative frequency		
9 300		
<u> </u>		
ð [::::::::::::::::::::::::::::::::::::		
200		
100	1M+1A	
0 200 400 600 800 100	ю	
x		
(iii) The median of x for boys = 490	1A	Accept 480-500
The median of x for girls = 410	1A	Accept 400-420
(iv) From the cumulative frequency polygons, there are		
265(\pm 5) boys and 390(\pm 5) girls spending up to \$700	IM	For either one correct
:. The total number = $265+390 = 655$	1A	or a vertical line through x=700 Accept 645-665
(d) From Tables 3 and 4, 20.0% of boys and 15.0% of girls did not spend any		
money on buying clothes for Christmas.	1	The exact figures need not be quoted
In this survey, more boys did not spend any money on buying clothes for Christmas.		
We have to consider the percentages instead of the frequencies because the		
number of boys and the number of girls in this survey are not equal.	1	
	ı	Ī

96-CE-MATHS I-10

Solution	Marks	Remarks
15. (a) $BC = 1000\cos 60^{\circ} = 500$ (m) $CC' = 500\sin 30^{\circ} = 250$ (m)	IA IA	
(b) Let the inclination of BO with the horizontal be α .		
$\sin\alpha = \frac{250}{1000}$	1M	
$\alpha = 14.5^{\circ}$ (or 14°29')	1A	r.t. 14.5
(c) $AO = \sqrt{1000^2 + 2000^2 - 2(1000)(2000)\cos 30^\circ}$	2A	
≈ 1239.31 ≈ 1240 (or $1000\sqrt{5-2\sqrt{3}}$)		
$ \frac{OR}{DO} = BC = 1000\cos 60^{\circ} $ $ DO = DC - OC = (2000 - 1000\sin 60^{\circ}) $		P. DO
$AO = \sqrt{(1000\cos 60^{\circ})^{2} + (2000 - 1000\sin 60^{\circ})^{2}}$	1A 1A	For DO
≈ 1240		
$AO' = \sqrt{(AO)^2 - (OO')^2}$		
$\approx \sqrt{(1239.31)^2 - (250)^2}$	1M	
≈ 1213.83		
$AT = \sqrt{(AO')^2 + (TO')^2}$		
$=\sqrt{(1239.31)^2-(250)^2+(300)^2}$	lM	
≈ 1250.36 ° ≈ 1250 (m)	1A	r.t. 1250
(d) Route I takes $\left(\frac{1000}{03} + 60\right)$ s ≈ 3393 s (or 56 min. 33 sec.)	1	1M for applying $t = \frac{d}{s}$
Route II takes $\left(\frac{2000}{08} + \frac{125036}{32}\right)$ s ≈ 2891 s (or 48 min. 11 sec.)	\rightarrow 1M+1A	1 A for either, r.t. 3390, 2890
Hence route II takes a shorter time.	1	resp.
D 50 m C C A 2000 m B		
96-CE-MATHS I-11	I	I

Solution	Marks	Remarks
16. (a) (i) Area = $[20\times30+2(20\times15+30\times15)]$	1M	For any two of
$= 2100 \text{ (cm}^2)$	1A	20×30, 20×15 and 30×15
(ii) Capacity = $20 \times 30 \times 15$ = $9000 \text{ (cm}^3)$	1A	
(b) (i) $\tan \theta = \frac{15}{30}$ $= \frac{1}{2}$	lM	For $\frac{CC'}{30}$ with substitution
$\theta = 26.6^{\circ}$ (or 26°34')	1A	r.t. 26.6
(ii) If $\tan \theta = \frac{1}{3}$, then $V = \frac{1}{2} (30)(30 \tan \theta)(20)$	IA	
$= \frac{1}{2}(30)(30)(\frac{1}{3})(20)$	IA	
= 3000	1A	
(iii) If $V = 6750$, then $\frac{1}{2}(15)(\frac{15}{\tan \theta})(20) = 9000 - 6750$ $\tan \theta = 1$	IM+1A	1M for 9000 - 6750 or showing that the water level is below B.
θ = 45°	1A	
(c) Suppose water is poured out by tilting the edge AB and the inclination of AE with the horizontal is ϕ .		
Then $\tan \phi = \frac{15}{20} = \frac{3}{4}$	1A	
\therefore tan $\phi > \tan \theta$, ϕ is larger than the value of θ in (b)(i).	1	
OR Since $AB > AE$ and AD is common, ϕ is larger than the value of θ in (b)(i).	1A 1	
G 20 cm C 15 cm B 15 cm C A 15 cm D A 15 cm B A 15 cm A B		