Neural network 2

Trinh

lousekeeping

Review Week 1

rate

Optimiser

Regularisation

Vanishing/Exploding Gradient

Problems

session and Homework

Neural network 2

Dr. Kelly Trinh

Neural network 2

Dr. Kel Trinh

Housekeeping

Review Week

Learnii rate

Optimise

Regularisati

Vanishing/Exploding Gradient

- Assessment 1 due on Sunday (16/5)
 - change the setting from "Private" to "Viewable"

Neural network 2

Dr. Kell Trinh

Housekeeping

Review Week

Learnir rate

Optimise

Regularisatio

Vanishing/Exploding Gradient Problems

- Assessment 1 due on Sunday (16/5)
 - change the setting from "Private" to "Viewable"
- Register AWS free tier account

Neural network 2

> r. Kel Trinh

Housekeeping

Reviev Week

rate

Optimise

Regularisatio

Vanishing/Exploding Gradient

- Assessment 1 due on Sunday (16/5)
 - change the setting from "Private" to "Viewable"
- Register AWS free tier account
- Be familiar with Python and know how to implement a NN using Tensorflow

Neural network 2

> r. Kel Trinh

Housekeeping

Reviev Week

rate

Optimise

Regularisatio

Vanishing/Exploding Gradient

- Assessment 1 due on Sunday (16/5)
 - change the setting from "Private" to "Viewable"
- Register AWS free tier account
- Be familiar with Python and know how to implement a NN using Tensorflow

Outline

Neural network 2

> r. Kel Trinh

Housekeeping

Review Week

rate

Орыныя

Vanishing/Exploding

Gradient
Problems

- Optimisation
- Regularisation
- Vanishing/Exploding Gradient Problems
- Week 4 and 5 Online materials

Recall from the last week

Neural network 2

Dr. Kell

Housekeepi

Review Week 1

Learning rate

Ontimise

Regularisa

Vanishing/I Gradient

Neural network 2

Dr. Kell Trinh

Housekeepii

Review Week 1

Learnin rate

Optimise

Regularisati

Vanishing/Exploding Gradient

Practical session and Homework Initialize weights randomly

- **2** Repeat until convergence $\{ \mathbf{W}_k \leftarrow \mathbf{W}_{k-1} \alpha \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}_{k-1}} \}$
- Return weights

Neural network 2

Dr. Kell Trinh

Housekeepi

Review Week 1

Learnin rate

Ontimis

Regularisati

Vanishing/Exploding

Practical

Initialize weights randomly

- **2** Repeat until convergence $\{ \mathbf{W}_k \leftarrow \mathbf{W}_{k-1} \alpha \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}_{k-1}} \}$
- Return weights

where

■ α : learning rate \rightarrow How to choose the learning rate?

Neural network 2

Housekooni

Review Week 1

rate

Optimiser

Regularisatio

Vanishing/Exploding Gradient Problems

Practical session and Homework Initialize weights randomly

- **2** Repeat until convergence $\{ \mathbf{W}_k \leftarrow \mathbf{W}_{k-1} \alpha \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}_{k-1}} \}$
- Return weights

where

- α : learning rate \rightarrow How to choose the learning rate?
- $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}_{k-1}}$ tell us how much the loss $J(\mathbf{W})$ change due to a small change in \mathbf{W}
- Problems:
 - Gradient computation can be demanding when data is large, particularly in image detection

Neural network 2

Dr. Kelly Trinh

Housekeeping

Review Week 1

rate

Optimise

Vanishing/Exploding

Practical session and Homework Initialize weights randomly

- **2** Repeat until convergence $\{ \mathbf{W}_k \leftarrow \mathbf{W}_{k-1} \alpha \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}_{k-1}} \}$
- Return weights

where

- lacktriangledown lpha: learning rate ightarrow How to choose the learning rate?
- $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}_{k-1}}$ tell us how much the loss $J(\mathbf{W})$ change due to a small change in \mathbf{W}
- Problems:
 - Gradient computation can be demanding when data is large, particularly in image detection
 - Might reach to different local optimal depending on starting points

Neural network 2

Dr. Kelly Trinh

Housekeep

Review Week 1

rate

Regularisati

Vanishing/Exploding

Practical session and Homework Initialize weights randomly

- **2** Repeat until convergence $\{ \mathbf{W}_k \leftarrow \mathbf{W}_{k-1} \alpha \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}_{k-1}} \}$
- 3 Return weights

where

- lacktriangledown lpha: learning rate ightarrow How to choose the learning rate?
- $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}_{k-1}}$ tell us how much the loss $J(\mathbf{W})$ change due to a small change in \mathbf{W}

■ Problems:

- Gradient computation can be demanding when data is large, particularly in image detection
- Might reach to different local optimal depending on starting points
- Finding the global optimum is very hard and can get stuck in the local optimum

Learning rate

Neural network 2

Dr. Kel Trinh

Housekeep

Reviev Week

Learning rate

Optimis

regularisati

Vanishing/Exploding Gradient Problems

Practical session and Homework How to select **learning rate**, α ?

- Learning schedules
 - Power scheduling: learning rate is a function of the iteration number n: $\alpha_t = \alpha_0/(1+n/s)^c$ where α_0 is initial learning rate, c is often set to 1, s is a hyperparameter

Learning rate

Neural network 2

Or. Kel

Housekeepi

Review Week 1

Learning rate

Optimise

Regularisation

Vanishing/Exploding Gradient

Practical session and Homework How to select **learning rate**, α ?

Learning schedules

- Power scheduling: learning rate is a function of the iteration number n: $\alpha_t = \alpha_0/(1+n/s)^c$ where α_0 is initial learning rate, c is often set to 1, s is a hyperparameter
- After s steps, the learning rate is reduced to $\alpha_0/2$, and after another s steps, the learning rate is reduced to $\alpha_0/3$ and so on.

```
# Power scheduling (decay is equivalent to 1/s)
opt = tf.keras.optimizers.SGD(lr=0.1, decay=1e-3)
model.compile(optimizer=opt, loss ='mse')
```

Learning rate

Neural network 2

Trinh

Housekeepir

Review

Learning

Tate

Optimisers

Regularisatio

Vanishing/Exploding Gradient

Problems

Practical session and Homework

Learning schedules

Exponential scheduling $\alpha(t) = \alpha_0 0.1^{n/s}$. The learning rate will drop by a factor of 10 every s steps.

```
# Exponential scheduling

def exponential_decay(lr0, s):
    def exponential_decay_fn(epoch):
        return lr0 * 0.1**(epoch / s)
    return exponential_decay_fn

exponential_decay_fn = exponential_decay(lr0=0.01, s=20)
# And then create a LearningRateSCheduler callback and pass this call back to fit()
lr_scheduler = tf.keras.callbacks.LearningRateScheduler(exponential_decay_fn)
model.compile(tf.keras.optimizers.SGD(), loss='mse')
model.fit(X_train, Y_train, callbacks=[lr_scheduler])
```

Neural

Dr. Ke Trinh

Housekeenir

Review

Learning rate

Optimiser

regularisation

Vanishing/Exploding Gradient

Practical session and Homework

Learning Schedules

■ Piecewise constant scheduling: use a constant learning rate for a number of epoches, and then a smaller learning rate for another epoches.

patience: number of epochs with no further improvement after which training will be stopped.

```
def piecewise_fn(epoch):
    if epoch < 10:
    elif epoch < 30:
        return 0.005
lr scheduler = tf.keras.callbacks.LearningRateScheduler(piecewise fn)
lr_scheduler = tf.keras.callbacks.ReduceLROnPlateau(factor=0.5, patience=15)
```

Learning rate

Optimise

Regularisati

Vanishing/Exploding Gradient

Practical session and Homework Adaptive learning rates: Adagrad, RMSProp, Adadelta, Adam. The learning rate depends on magnitude of gradient, size of particular weights.

Gradient descent (GD)-Stochastic GD-Mini Batch GD

Neural network 2

Dr. Kel

Housekeep

Review Week

Learning rate

Optimise

. /E

Vanishing/Exploding Gradient Problems

Practical session and Homework ■ **Gradient Descent**: The gradient $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$ is computed using the entire data. Sometimes it is challenging to compute the gradient.

- Stochastic gradient descent: compute the gradient at single point data; $\frac{\partial J(\mathbf{W}; \mathbf{X}^{(j)}, \mathbf{Y}^{(j)})}{\partial \mathbf{W}_{i-1}}$ However, the estimation can be noisy
- Min-Batch gradient descent: the gradient is computed using a subset of data; $\frac{\partial J(W;X^{(j;j+m)},Y^{(j;j+m)})}{\partial W}$. Smoother convergence and can be used in parallelization .

Neural network 2 Dr. Kelly

Housekeepir

Review

rate

Optimisers

Regularisati

Vanishing/Exploding Gradient

Practical session and Homework

■ Adagrad: adapts the learning rate to the parameters associated with steepest slope. The correction is done by scaling down the gradient vector by the amount $\sqrt{s+\epsilon}$ where ϵ , smoothing term, is often set at low value such as 10^{-6} .

$$s \leftarrow s + \nabla_{\mathbf{W}} J(\mathbf{W}) \otimes \nabla_{\mathbf{W}} J(\mathbf{W})$$
$$\mathbf{W} \leftarrow \mathbf{W} - \alpha_t \nabla_{\mathbf{W}} J(\mathbf{W}) \oslash \sqrt{s + \epsilon}$$

Neural network 2

Trinh

Housekeepir

Review

rate

Optimisers

Regularisati

Vanishing/Exploding Gradient

Practical session and Homework

■ Adagrad: adapts the learning rate to the parameters associated with steepest slope. The correction is done by scaling down the gradient vector by the amount $\sqrt{s+\epsilon}$ where ϵ , smoothing term, is often set at low value such as 10^{-6} .

$$s \leftarrow s + \nabla_{\mathbf{W}} J(\mathbf{W}) \otimes \nabla_{\mathbf{W}} J(\mathbf{W})$$
$$\mathbf{W} \leftarrow \mathbf{W} - \alpha_t \nabla_{\mathbf{W}} J(\mathbf{W}) \otimes \sqrt{s + \epsilon}$$

- It does not perform well for deep neural network.
- Tensorflow syntax: tf.keras.optimizers.Adagrad

```
tf.keras.optimizers.Adagrad(
| learning_rate=0.01, initial_accumulator_value=0.1, epsilon=1e-07)
```

Neural network 2

Or. Kel

Housekeepi

Review Week 1

rate

Optimisers

Regularisation

Vanishing/Exploding Gradient

Practical session and Homework RMSProp: only accumulate the gradients from the most recent iterations.

$$s \leftarrow \rho s + (1 - \rho) \nabla_{\mathbf{W}} J(\mathbf{W}) \otimes \nabla_{\mathbf{W}} J(\mathbf{W})$$
$$\mathbf{W} \leftarrow \mathbf{W} - \alpha_t \nabla_{\mathbf{W}} J(\mathbf{W}) \otimes \sqrt{s + \epsilon}$$

 ρ is often set at 0.9.

■ Tensorflow syntax: tf.keras.optimizers.RMSProp

```
tf.keras.optimizers.RMSprop(
    learning_rate=0.001, rho=0.9, epsilon=1e-07)
```

Neural network 2

Dr. Kell Trinh

Housekeepin

Review Week

rate

Optimisers

Regularisatio

Vanishing/Exploding Gradient

Practical session and Homework Momentum: consider the magnitude of previous gradient descent, therefore it helps to accelerate gradient descent to relevant direction

$$m_t = \beta m_{t-1} - \alpha \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$$

$$\mathbf{W}_t = \mathbf{W}_{t-1} + m_t$$

```
# Momentum

tf.keras.optimizers.SGD(
    learning_rate=0.01, momentum=0.9, nesterov=False, name='SGD')
```

Optimizers

Neural network 2

Dr. Ke Trinh

Housekeen

Review Week

rate

Optimisers

regularisat

Vanishing/Exploding Gradient Problems

Practical session and Homework Adam:(adaptive moment estimation) combines the ideas of momentum optimisation and RMSpropt.

It is a common algorithm used in deep neural network.

Neural network 2

> Or. Kell Trinh

Housekeepi

Week 1

rate

Regularisation

regularisation

Vanishing/Explodi Gradient

Practical session and

Over-fitting issue

- Regularisation
- Dropout
- Early stop

Over-fitting

Neural network 2

Dr. Kell

Housekeepir

Review Week 1

rate

Оренных

Regularisation
Vanishing/Exploding

Vanishing/Ex Gradient Problems

- Under-fitting: a model cannot fully learn the data
- Over-fitting: a model are to complex and often result in poor prediction and classification generalise the model

L^1 , L^2 Regularisation

Neural network 2

Dr. Ke

Housekeepi

Week

rate

Regularisation

Vanishing/Exploding

Gradient Problems

> Practical session an Homework

 Adding a penalty to the loss function in proportion to the size of the weights

$$L^*(\mathbf{W}) = L(\mathbf{W}) + \alpha \Omega(\mathbf{W})$$

where α controls the amount of shrinking; $\Omega(.)$ is the penalisation function.

- L^2 regularisation also known as a weight decay, ridge regression. $\Omega(\mathbf{W}) = \frac{1}{2} \sum_{i=1}^{n} w_i^2$
- L^1 regularisation $\Omega(\mathbf{W}) = \frac{1}{2} \sum_{i=1}^n w_i$
- Python syntax: tf.keras.regularizers.11, tf.keras.regularizers.12

```
Neural
network 2
```

Regularisation

```
from functools import partial
         RegularizedDense = partial(tf.keras.layers.Dense,
           ernel_regularizer=tf.keras.regularizers.l2(0.01))
Vanishing/Explodin.model = tf.keras.Sequential([
         tf.keras.layers.Flatten(input_shape=[28, 28]),
         RegularizedDense(300),
         RegularizedDense(100),
         RegularizedDense(10, activation="softmax")
```

Early Stopping Regularization

Neural network 2

Housekeepii

Review

Learnir rate

Optimis

Regularisation
Vanishing/Exploding

Gradient Problems

- The model stops training as soon as the validation error reach to a minimum
- Python syntax tf.keras.callbacks.EarlyStopping

Early Stopping Regularization

```
Neural
network 2
```

Regularisation

```
callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=15)
Vanishing/Explodin model.fit(trainX, trainY, validation_data=(testX, testy).
```

Drop-out

Neural network 2

..

. .

Learnir rate

Regularisation

r ce Bararisaci.

Vanishing/Explodin_i Gradient Problems

Practical session and Homework Randomly set some nodes to 0. The *dropout rate* is often set between 10% and 50%.

■ Python syntax: tf.keras.layers.Dropout

(a) Standard Neural Net

(b) After applying dropout.

Source: Medium

Dropout 20%

tf.keras.layers.Dropout(.2)

Neural network 2

Trinh

Housekeepii

Review Week 1

Learnini rate

Ontimise

Vanishing/Ex

Vanishing/E Gradient Problems

session and Homework $Vanishing/Exploding\ Gradient\ Problems$

Vanishing/Exploding Gradient Problems

Neural network 2

Or. Kel

Housekeepir

Week 1

rate

_ . . .

Vanishing/Ex

Gradient Problems

- Vanishing gradient problem: Gradients become smaller and smaller when the optimiser reach to the lower layers.
- **Exploding gradient problem:** Gradient become larger and lager for lower layers. This often happens in recurrent neural network
- 3 popular ways to handle the unstable gradient problems are
 - Initialization
 - Activation function
 - Batch Normalization

Initialization

Neural network 2

Dr. Kel

Housekeepi

Review Week 1

Learnii

Optimise

Vanishing/

Vanishing/Ex Gradient Problems

Practical session and Homework

- Glorot and Bengio proposed a initialization for weights and bias to alleviate the unstable gradient problem.
- The Glorot initialization using for the logistic activation function
 - $\mathcal{N}(0, \frac{1}{fan_{avg}})$
 - $U(-\sqrt{\frac{3}{fan_{avg}}}, \sqrt{\frac{3}{fan_{avg}}})$
 - where $fan_{avg} = (fan_{in} + fan_{out})/2$, fan_{in} is the number of inputs to a hidden unit and fan_{out} is the number of outputs to a hidden unit

 $\textbf{tf.keras.layers.Dense(10, activation="\underline{tanh}", kernel_initializer='glorot_uniform') }$

Initaliztation

Neural network 2

Dr. Kelly Trinh

Housekeepii

Review

Learnin rate

Optimise

Regularisat

Vanishing/Ex Gradient Problems

Practical session and Homework

Initialization	Activation functions	σ^2 (Normal)
Glorot	None, Tanh, Logistic, Softmax	1 / fan _{avg}
He	ReLU & variants	2 / fan _{in}
LeCun	SELU	1 / fan _{in}

Source: Aurelien Geron (2019)

Python syntax: he_uniform, he_normal

Activation functions

Neural network 2

Housekeenir

Review

Learnin rate

Optimise

Vanishing/Ex

Vanishing/E Gradient Problems

Practical session and Homework

Source: Towards Data Science

- Sigmoid: vanishing gradient
- ReLu: deying ReLu problem- some neurons "die", only produce the output of zeros.

Activation function

Neural network 2

Dr. Kell Trinh

Hausakaanin

Review Week 1

rate

- ------

Vanishing/Ex Gradient Problems

Practical session and Homework

$$ELU_{\alpha}(z) = \begin{cases} \alpha(\exp(z) - 1) & \text{if } z < 0 \\ z & \text{if } z \ge 0 \end{cases}$$

 ELU (exponential linear unit) has a slower computation than ReLu and Leaky ReLu

Batch Normalisation

Neural network 2

Trinh

Housekeepi

. .

rate

Optimise

Vanishing/Ex

Gradient Problems

- The initialization approach and activation function do not guarantee that the unstable gradient will not happen during training.
- Ioffe and Szegedy proposed a technique- *Batch Normalization* to address the unstable gradient during the training of deep neural networks.
- Batch Normalization applies zero-center and normalizes each input, then scales and shifts the results using 2 new parameters per layers (scaling and shifting parameters). The scaling and shifting parameters are determined by the algorithm.

Batch Normalisation

```
Neural
network 2
```

Trinh

Housekeepir

Review

rate rate

Optimiser

.

Vanishing/Ex

Gradient Problems

```
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=[28, 28]),
tf.keras.layers.Dense(300, activation="relu", kernel_initializer="he_normal
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(100, activation="relu", kernel_initializer="he_normal
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(10, activation="softmax")
])
```

Homework

Neural network 2

Dr. Kel Trinh

Housekeepi

Review Week

rate

Optimise

Regularisat

Vanishing/Ex Gradient Problems

Practical session and Homework

■ Implement the techniques learnt today on the code provided in Practical Session in Week 1 to investigate their performance on NN.

Lab session

Neural network 2

Dr. Kel Trinh

Housekeepi

Review Week 1

rate

Optimis

Regularisatio

Vanishing/Exploding Gradient

- Introduction to AWS-SageMaker
- Implementation of NN in AWS-SageMaker

Neural network 2 Dr. Kelly

Housekeeni

Review Week 1

rate

Ориннаси

Vanishing/Exploding

Vanishing/Explodin Gradient Problems

- NO TECHNICAL SESSION ON WEDNESDAY, WEEK 3
- WEEK 4: CNN

Further references

Neural network 2

Dr. Kel

Housekeepi

Week

rate

Орыныя

Vanishing/Exploding

Gradient
Problems

- "Hands-on MAchine Learning with Scikit-Learn Keras and Tensorflow" Aurelien Geron (2019)
- "Improving neural networks by preventing co-adaptation of feature detectors" G. Hinton et al. (2012).
- "Dropout: A Simple Way to Prevent Neural Networks from Overfitting,"
 N. Srivastava et al. (2014).
- "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift," S. Ioffe and C. Szegedy (2015)