

Exercise 11A

Question 11:

In the given AP, we have
$$a = \frac{5}{6}$$
; $d = \left(1 - \frac{5}{6}\right) = \frac{1}{6}$

Suppose there are n terms in given AP, we have Then.

$$T_n = 3 \Rightarrow a + (n-1)d = 3 \Rightarrow \frac{5}{6} + (n-1)\frac{1}{6} = 3$$

 $\Rightarrow \frac{5}{6} + \frac{1}{6}n - \frac{1}{6} = 3$
 $\Rightarrow 4 + n = 18 \Rightarrow n = 14$
 $\therefore n = 14$

Thus, 14th term in the given AP is 3

Ouestion 12:

We know that T_1 - (5x + 2), T_2 - (4x - 1) and T_3 - (x + 2)

Clearly,

$$T_2 - T_1 = T_3 - T_2$$

$$\Rightarrow$$
 (4x - 1) - (5x + 2) = (x + 2) - (4x - 1)

$$\Rightarrow$$
 4x - 1 - 5x - 2 = x + 2 - 4x + 1

$$\Rightarrow$$
 -x - 3 = -3x + 3

$$\Rightarrow$$
 -x + 3x = 6

$$\Rightarrow$$
 2x = 6 \Rightarrow x = 3

Hence x = 3

Question 13:

$$T_n = (4n - 10)$$

$$\Rightarrow$$
 T₁ = (4 x 1 - 10) = -6 and T₂ = (4 x 2 - 10) = -2

Thus, we have

- (i) First term = -6
- (ii) Common difference = $(T_2 T_1) = (-2+6) = 4$

(iii)
$$16^{th}$$
 term = a + (16-1) d, where a = -6 and d = 4

$$= (-6 + 15 \times 4) = 54$$

Ouestion 14:

In the given AP, let first term = a and common difference = d,

Then,
$$T_n = a + (n-1) d$$

$$\Rightarrow$$
 T₄ = a + (4 - 1)d, T₁₀ = a + (10 - 1)d

$$\Rightarrow$$
 T₄ = a + 3d, T₁₀ = a + 9d

Now,
$$T_4 = 13 \Rightarrow a + 3d = 13 - - - (1)$$

$$T_{10} = 25 \Rightarrow a + 9d = 25 - - - (2)$$

Subtracting (1) from (2), we get

$$\Rightarrow$$
 6d = 12 \Rightarrow d = 2

Putting d = 2 in (1), we get

$$a + 3 \times 2 = 13$$

⇒
$$a = (13 - 6) = 7$$

Tthus, $a = 7$, and $d = 2$
 17^{th} term = $a + (17 - 1)d$, where $a = 7$, $d = 2$
 $(7 + 16 \times 2) = (7 + 32) = 39$
∴ $a = 7$, $d = 2$,
Question 15:
In the given AP, let first term = a and common difference = d
Then, $T_n = a + (n-1)d$
⇒ $T_8 = a + (8 - 1)d$, $T_{12} = a + (12 - 1)d$
⇒ $T_8 = a + 7d$, $T_{12} = a + 11d$
Now, $T_8 = 37 \Rightarrow a + 7d = 37 - -- (1)$
 $T_{12} = 57 \Rightarrow a + 11d = 57 - -- (2)$
Subtracting (1) from (2), we get
⇒ $4d = 20 \Rightarrow d = 5$
Putting $d = 5$ in (1), we get
 $a + 7 \times 5 = 37$
⇒ $a = 2$

Tthus, a = 2, and d = 5So the required AP is 2, 7, 12..

********* END ********