대수적으로 이차부등식 풀기 
$$(ax^2+bx+c\leq 0\ (a>0,\ b,c\in\mathbb{R}))$$
 (Solving Quadratic Inequalities  $(ax^2+bx+c\leq 0\ (a>0,\ b,c\in\mathbb{R}))$  in Algebra)

## Solving Quadratic Inequalities $(ax^2 + bx + c \le 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

→ Start → End

$$ax^2 + bx + c \leq 0 \ (a > 0, \ b, c \in \mathbb{R})$$

$$ax^2 + bx + c \leq 0 \ (a>0, \ b,c \in \mathbb{R})$$

$$ax^2 + bx + c \le 0 \ (a > 0, \ b, c \in \mathbb{R})$$
Let  $D = b^2 - 4ac$ 

Let 
$$D=b^2-4ac$$
 $ax^2+bx+c\leq 0\ (a>0,\ b,c\in\mathbb{R})$ 
 $b>0$ :

$$ax^2 + bx + c \le 0 \ (a > 0, \ b, c \in \mathbb{R})$$
Let  $D = b^2 - 4ac$ 

•  $D > 0$ : Let

$$ax^2 + bx + c \le 0 \ (a > 0, \ b, c \in \mathbb{R})$$
  
Let  $D = b^2 - 4ac$ 

$$ax^2 + bx + c \leq 0 \ (a>0, \ b,c \in \mathbb{R})$$
  
Let  $D=b^2-4ac$ 

• D > 0: Let  $\alpha$  and

$$ax^2 + bx + c \leq 0 \ (a>0, \ b,c \in \mathbb{R})$$
  
Let  $D=b^2-4ac$ 

• D > 0: Let  $\alpha$  and  $\beta$ 

$$ax^2 + bx + c \leq 0 \ (a>0, \ b,c \in \mathbb{R})$$
  
Let  $D=b^2-4ac$ 

• D > 0: Let  $\alpha$  and  $\beta$  be roots

$$ax^2 + bx + c \leq 0 \; (a>0,\; b,c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of

$$ax^2 + bx + c \leq 0 \ (a>0, \ b,c \in \mathbb{R})$$
  
Let  $D=b^2-4ac$ 

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$ 

$$ax^2 + bx + c \leq 0 \ (a>0, \ b, c \in \mathbb{R})$$
  
Let  $D=b^2-4ac$ 

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where

$$ax^2 + bx + c \leq 0 \ (a>0, \ b,c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .

$$ax^2 + bx + c \leq 0 \ (a > 0, \ b, c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore$ 

$$ax^2 + bx + c \leq 0 \ (a > 0, \ b, c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha$ 

$$ax^2 + bx + c \leq 0 \ (a > 0, \ b, c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha <$ 

$$ax^2 + bx + c \leq 0 \ (a>0, \ b,c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha < x$ 

$$ax^2 + bx + c \leq 0 \ (a>0, \ b,c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha \le x \le$ 

$$ax^2 + bx + c \leq 0 \ (a > 0, \ b, c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha < x < \beta$  proof

$$ax^2 + bx + c \leq 0 \ (a>0, \ b, c \in \mathbb{R})$$

- D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha \le x \le \beta$ • proof
- D = 0

$$ax^2 + bx + c \leq 0 \ (a>0, \ b, c \in \mathbb{R})$$

- D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha \le x \le \beta$  proof
- $\bullet$  D=0



$$ax^2 + bx + c \leq 0 \ (a>0, \ b,c \in \mathbb{R})$$

- D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha \le x \le \beta$  proof
- D = 0  $\therefore x$

$$ax^2 + bx + c \leq 0 \ (a>0, \ b, c \in \mathbb{R})$$

- D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha \le x \le \beta$  proof
- D = 0 $\therefore x = 0$

$$ax^2 + bx + c \leq 0 \ (a>0, \ b,c \in \mathbb{R})$$

- D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha < x < \beta$  proof
- D = 0 $\therefore x = -\frac{b}{2a} \bullet \text{proof}$

$$ax^2 + bx + c \leq 0 \ (a>0, \ b,c \in \mathbb{R})$$

- D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha \le x \le \beta$  proof
- D = 0 $\therefore x = -\frac{b}{2a} \bullet \text{proof}$
- D < 0</p>

$$ax^2 + bx + c \leq 0 \ (a>0, \ b,c \in \mathbb{R})$$

- D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha < x < \beta$ • proof
- D = 0 $\therefore x = -\frac{b}{2a}$  • proof
- D < 0

$$ax^2 + bx + c \leq 0 \ (a > 0, \ b, c \in \mathbb{R})$$

- D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\alpha < x < \beta$  proof
- $\bullet$  D=0 $\therefore x = -\frac{b}{2a}$  proof
- $\bullet$  D < 0∴ No solutions. • proof

## Solving Quadratic Inequalities $(ax^2 + bx + c \le 0 \ (a > 0, b, c \in \mathbb{R}))$ in Algebra



Solving Quadratic Inequalities  $(ax^2 + bx + c \le 0 \ (a > 0, \ b, c \in \mathbb{R}))$  in Algebra

Home Start Find 
$$ax^2 + bx + c \leq 0$$

## Solving Quadratic Inequalities $(ax^2 + bx + c \le 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

Home Start Find 
$$ax^2 + bx + c \le 0 \quad (a > 0, b, c \in \mathbb{R})$$

Home Start Find
$$ax^{2} + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

Home Start Find
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

Let

Home Start End
$$ax^{2} + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

Let  $\alpha$  and  $\beta$ 

Home Start End
$$ax^{2} + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

Let  $\alpha$  and  $\beta$  be roots

Home Start Find
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$ 

### Solving Quadratic Inequalities $(ax^2+bx+c\leq 0\ (a>0,\ b,c\in\mathbb{R}))$ in Algebra

Home Start End
$$ax^{2} + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .

Home Start End
$$ax^{2} + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

Home Start End
$$ax^{2} + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x - \alpha)(x - \beta) \le 0$$

Home Start Find
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0$$

Home Start Find
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow$$

Home Start Find
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha$$

Home Start End
$$ax^{2} + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha \le$$

Home Start Find
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha \le x$$

Home Start End
$$ax^{2} + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x - \alpha)(x - \beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha \le x \le 1$$

Home Start Find
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x - \alpha)(x - \beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha \le x \le \beta$$

Home Start Find
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha \le x \le \beta$$

ii) 
$$x - \alpha \le 0, x - \beta \ge 0$$

Home Start Find
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha \le x \le \beta$$

ii) 
$$x - \alpha \le 0, x - \beta \ge 0 \Rightarrow$$

Home Start End
$$ax^{2} + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha \le x \le \beta$$

ii) 
$$x - \alpha \le 0, x - \beta \ge 0 \Rightarrow$$
 No solutions

Home Start Find
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha \le x \le \beta$$

ii) 
$$x - \alpha \le 0, x - \beta \ge 0 \Rightarrow$$
 No solutions by i), ii)

Home Start End
$$ax^{2} + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha \le x \le \beta$$

ii) 
$$x - \alpha \le 0, x - \beta \ge 0 \Rightarrow$$
 No solutions by i), ii)  $\therefore$ 

Home Start Find
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha \le x \le \beta$$

ii) 
$$x - \alpha \le 0, x - \beta \ge 0 \Rightarrow$$
 No solutions by i), ii)  $\therefore \alpha$ 

Home Start Find
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha \le x \le \beta$$

ii) 
$$x - \alpha \le 0, x - \beta \ge 0 \Rightarrow$$
 No solutions by i), ii)  $\therefore \alpha \le$ 

Home Start Find
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha \le x \le \beta$$

ii) 
$$x - \alpha \le 0, x - \beta \ge 0 \Rightarrow$$
 No solutions by i), ii)  $\therefore \alpha \le x$ 

Home Start End
$$ax^{2} + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha \le x \le \beta$$

ii) 
$$x - \alpha \le 0, x - \beta \ge 0 \Rightarrow$$
 No solutions by i), ii)  $\therefore \alpha \le x \le$ 

Home Start Find
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \le 0$$

i) 
$$x - \alpha \ge 0, x - \beta \le 0 \Rightarrow \alpha \le x \le \beta$$

ii) 
$$x - \alpha \le 0, x - \beta \ge 0 \Rightarrow$$
 No solutions by i), ii)  $\therefore \alpha \le x \le \beta$ 

# Solving Quadratic Inequalities ( $ax^2 + bx + c \le 0$ ( $a > 0, b, c \in \mathbb{R}$ )) in Algebra



Solving Quadratic Inequalities  $(ax^2 + bx + c \le 0 \ (a > 0, \ b, c \in \mathbb{R}))$  in Algebra

Home Start 
$$ax^2 + bx + c \leq 0$$

## Solving Quadratic Inequalities $(ax^2 + bx + c \le 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

Home Start End
$$ax^2 + bx + c \leq 0 \quad (a > 0, \ b, c \in \mathbb{R})$$

Home Start Find 
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$
$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

Home Start Find 
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \leq 0$$

Home Start Find 
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \leq 0$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} \leq 0$$

From Point Plane 
$$ax^2 + bx + c \le 0 \quad (a > 0, \ b, c \in \mathbb{R})$$
  $x^2 + \frac{b}{a}x + \frac{c}{a} \le 0 \quad (\because a > 0)$   $(x + \frac{b}{2a})^2 - \frac{b^2}{4a^2} + \frac{c}{a} \le 0$   $(x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a^2} \le 0$   $(x + \frac{b}{2a})^2 \le 0 \quad (\because b^2 - 4ac = 0)$ 

Home Start Find 
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \leq 0$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} \leq 0$$

$$\left(x + \frac{b}{2a}\right)^2 \leq 0 \quad (\because b^2 - 4ac = 0)$$

$$\therefore x = -\frac{b}{2a}$$

## Solving Quadratic Inequalities $(ax^2 + bx + c \le 0 \ (a > 0, b, c \in \mathbb{R}))$ in Algebra

→ Home → Start → End

Solving Quadratic Inequalities  $(ax^2 + bx + c \le 0 \ (a > 0, \ b, c \in \mathbb{R}))$  in Algebra

Home Start 
$$ax^2 + bx + c \leq 0$$

Solving Quadratic Inequalities  $(ax^2 + bx + c \le 0 \ (a > 0, \ b, c \in \mathbb{R}))$  in Algebra

Home Start Lend 
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

Home Start Find 
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$
$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

Home Start Lend 
$$ax^2 + bx + c \le 0 \quad (a > 0, b, c \in \mathbb{R})$$
  $x^2 + \frac{b}{a}x + \frac{c}{a} \le 0 \quad (\because a > 0)$   $\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \le 0$ 

From Postari Pend 
$$ax^2 + bx + c \le 0 \quad (a > 0, \ b, c \in \mathbb{R})$$
  $x^2 + \frac{b}{a}x + \frac{c}{a} \le 0 \quad (\because a > 0)$   $\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \le 0$   $\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} \le 0$ 

From 
$$ax^2 + bx + c \le 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \le 0 \quad (\because a > 0)$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \le 0$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} \le 0$$

.. No solutions

Home Start Lend 
$$ax^2 + bx + c \leq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \leq 0 \quad (\because a > 0)$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \leq 0$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} \leq 0$$

 $\therefore$  No solutions (::  $b^2 - 4ac < 0$ )

#### Github:

https://min7014.github.io/math20210521002.html

Click or paste URL into the URL search bar, and you can see a picture moving.