FIT2086 Lecture 10 Introduction to Unsupervised Learning

Daniel F. Schmidt

Faculty of Information Technology, Monash University

October 2, 2017

Outline

- Clustering/Mixture Modelling
 - Clustering
 - Mixture Modelling
- Matrix Completion
 - Matrix Completion Problem
 - Methods for Matrix Completion

Revision from last week (1)

- Machine learning methods
- Cross validation for model selection
 - Withhold data to estimate prediction error
 - K-fold CV divides data up into K equal sized groups
 - ullet Train on K-1 folds, predict on the remianing fold
- Decision Trees
 - Split the data up by asking questions of the predictors
 - Number of leaves determines complexity of tree
 - Easy to interpret, flexible
- Methods for learning trees
 - Greedy growing of trees find best split at each step
 - Backwards pruning of large tree
 - Use CV to select number of leaves in the tree

Revision from last week (2)

- Trees have low bias, high variance
- One solution: random forests
 - Grow many trees with guided random search
 - Aggregate predictions from the trees
 - Stable, low variance, but loses interpretability
- k nearest neighbours (kNN) methods
 - Assume individuals similar in predictors are similar in targets
 - ullet Find k "most similar" individuals in data to new individual
 - Use their targets to predict target for new individual
- Use CV to select k, other tuning parameters

- Bonus question asked to make predictions
- Use Boston Housing data to predict median house price values for new suburbs
- 14 people submitted predictions
- Methods people tried:
 - Interactions
 - Non-linear transformations of the target (medv)
 - Non-linear transformations of predictors (logs, polynomials, tanh functions)
 - Pruning using the R step() function
 - Pruning using change in \mathbb{R}^2 value

Who	Score	Notes
11 people Me	> 36.28	Various methods, mostly overfitting
Me	$35.6 \\ 33.45$	Basic step-wise linear model Lasso model

Who	Score	Notes
11 people Me	> 36.28 35.6	Various methods, mostly overfitting Basic step-wise linear model
Me Curtis Eppel	$33.45 \\ 24.52$	Lasso model Used second-order polynomials

Who	Score	Notes
11 people	> 36.28	Various methods, mostly overfitting
Me	35.6	Basic step-wise linear model
Me	33.45	Lasso model
Curtis Eppel	24.52	Used second-order polynomials
Wanshu Li	14.7	Added in only single interaction rm:1stat

Who	Score	Notes
11 people	> 36.28	Various methods, mostly overfitting
Me	35.6	Basic step-wise linear model
Me	33.45	Lasso model
Curtis Eppel	24.52	Used second-order polynomials
Wanshu Li	14.7	Added in only single interaction rm:1stat
Guan Chew	14.41	Used ln(medv) as the target

Who	Score	Notes
11 people	> 36.28	Various methods, mostly overfitting
Me	35.6	Basic step-wise linear model
Me	33.45	Lasso model
Curtis Eppel	24.52	Used second-order polynomials
Wanshu Li	14.7	Added in only single interaction rm:1stat
Guan Chew	14.41	Used ln(medv) as the target
Shu Tew	13.89	Used ln(medv) and log-predictors

Who	Score	Notes
11 people	> 36.28	Various methods, mostly overfitting
Me	35.6	Basic step-wise linear model
Me	33.45	Lasso model
Curtis Eppel	24.52	Used second-order polynomials
Wanshu Li	14.7	Added in only single interaction rm:lstat
Guan Chew	14.41	Used ln(medv) as the target
Shu Tew	13.89	Used ln(medv) and log-predictors
My colleague	12.41	Used interactions, logs, squares, cubes and Lasso
		Included none of the untransformed variables!

Who	Score	Notes
11 people	> 36.28	Various methods, mostly overfitting
Me	35.6	Basic step-wise linear model
Me	33.45	Lasso model
Curtis Eppel	24.52	Used second-order polynomials
Wanshu Li	14.7	Added in only single interaction rm:1stat
Guan Chew	14.41	Used ln(medv) as the target
Shu Tew	13.89	Used ln(medv) and log-predictors
My colleague	12.41	Used interactions, logs, squares, cubes and Lasso
		Included none of the untransformed variables!
Me	4.143	Random forest

Outline

- Clustering/Mixture Modelling
 - Clustering
 - Mixture Modelling
- 2 Matrix Completion
 - Matrix Completion Problem
 - Methods for Matrix Completion

Unsupervised learning (1)

ullet We have n items, each with q associated attributes, formed into a matrix

$$\mathbf{Y} = \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_n \end{pmatrix} = \begin{pmatrix} y_{1,1} & y_{1,2} & \dots & y_{1,q} \\ y_{2,1} & y_{2,2} & \dots & y_{2,q} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n,1} & y_{n,2} & \dots & y_{n,q} \end{pmatrix}$$

- Each y_i is a "data-point" in q-dimensional space
- Unlike supervised learning, we do not nominate any one of these as a "target"
- Instead we want to discover structure in the data

Unsupervised learning (2)

- What is unsupervised learning used for?
- Classifying or categorising objects (taxonomy)
 - For example, species of animals
- Filling in missing entries in the data matrix
 - Matrix completion problem
 - Recommender systems
 - Imputation (estimating missing data in predictor matrix before supervised learning)
- Image processing
 - Noise removal
 - Compression
 - Image analysis and recognition

Clustering

- Assumptions
 - Population consists of K sub-populations (K > 1)
 - We are given observations from the pooled population only
 - No sub-population information is available
- Aim
 - ullet Discover the number of sub-populations K
 - Estimate models for each of the sub-populations
- Sometimes called intrinsic classification
 - ⇒ Class labels are learned from the data

K-means Clustering (1)

- Perhaps most commonly used clustering technique
- ullet Models data as having K "centroids" defined by mean vectors

$$\mathbf{M} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \vdots \\ \boldsymbol{\mu}_K \end{pmatrix} = \begin{pmatrix} \mu_{1,1} & \dots & \mu_{1,q} \\ \vdots & \ddots & \vdots \\ \mu_{K,1} & \dots & \mu_{K,q} \end{pmatrix}$$

- Assigns items to class with most similar mean vector
- ullet Similarity between item i and centroid k is

$$d_k(i) = \left(\sum_{j=1}^{q} (y_{i,j} - \mu_{k,j})^2\right)^{\frac{1}{2}}$$

⇒ Euclidean distance between the vectors

K-means Clustering (1)

- Perhaps most commonly used clustering technique
- ullet Models data as having K "centroids" defined by mean vectors

$$\mathbf{M} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \vdots \\ \boldsymbol{\mu}_K \end{pmatrix} = \begin{pmatrix} \mu_{1,1} & \dots & \mu_{1,q} \\ \vdots & \ddots & \vdots \\ \mu_{K,1} & \dots & \mu_{K,q} \end{pmatrix}$$

- Assigns items to class with most similar mean vector
- ullet Similarity between item i and centroid k is

$$d_k(i) = \left(\sum_{j=1}^{q} (y_{i,j} - \mu_{k,j})^2\right)^{\frac{1}{2}}$$

⇒ Euclidean distance between the vectors.

K-means Clustering (2)

Artificial data example

• Chosen so that the "clusters" are obvious for demonstration purposes

K-means Clustering (3)

 $\bullet \ \, \text{K-means clustering with} \,\, K=2$

 The centroids are chosen so that the within-cluster sum-of-squares is minimised

K-means Algorithm (1)

- The *k*-means algorithm is very simple:
 - **1** Initialise μ_1, \ldots, μ_K randomly
 - 2 Loop until convergence
 - ① Compute distances $d_k(i)$ from each data point \mathbf{y}_i to each centroid $oldsymbol{\mu}_k$
 - Assign datapoints to cluster with closest centroid
 - **3** Re-estimate each μ_k using the datapoints assigned to cluster k
- Converges quickly to a stable solution
 - ⇒ might not be the global-minima
- Sensitive to starting points

K-means Algorithm (2)

ullet Example: K=3, initial starting points for centroids $oldsymbol{\mu}_k$

K-means Algorithm (3)

• Example: assigning points to clusters with closest centroid

K-means Algorithm (4)

• Example: re-estimating centroids from data in the clusters

K-means Algorithm (5)

• Example: assigning points to clusters with closest centroid

K-means Algorithm (6)

• Example: re-estimating centroids from data in the clusters

K-means Algorithm (7)

 \bullet Example: after 3 iterations, centroids are stable

K-means Algorithm (9)

ullet The k-means algorithm is sensitive to starting points

K-means Algorithm (10)

• k-means tries to optimise the function

$$D(\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K) = \sum_{i=1}^n \min_k \left\{ d_k(i) \right\}$$

- That is, it tries to minimise the distances of each point to its nearest centroid
- Bad seeding leads to local minima
- k-means++ algorithm improves convergence dramatically
 ⇒ randomly choose centers to be far apart from each other

Further Clustering

- Alternative similarity measures
 - Weighted Euclidean distance
 - "Cityblock" distance
 - Hamming distance (for pure binary data)
 - and many more ...
- Some potential issues
 - "Hard" classification of items to clusters
 - Difficult to handle mixed attributes (continuous, discrete)
 - No explicit statistical interpretation
 - How to choose K using just the data?
- Mixture modelling a flexible alternative

Further Clustering

- Alternative similarity measures
 - Weighted Euclidean distance
 - "Cityblock" distance
 - Hamming distance (for pure binary data)
 - and many more ...
- Some potential issues
 - "Hard" classification of items to clusters
 - Difficult to handle mixed attributes (continuous, discrete)
 - No explicit statistical interpretation
 - How to choose K using just the data?
- Mixture modelling a flexible alternative

Mixture Modelling (1)

Models data as a mixture of probability distributions

$$p(y_{i,j}) = \sum_{k=1}^{K} \alpha_k p(y_{i,j} \mid \boldsymbol{\theta}_{k,j})$$

where

- \bullet K is the number of classes
- $\alpha = (\alpha_1, \dots, \alpha_K)$ are the mixing (population) weights
- $oldsymbol{ heta}_{k,j}$ are the parameters of the distributions
- Has an explicit probabilistic form
 - ⇒ allows for statistical interpretion

Mixture Modelling (2)

- How is this related to clustering?
- Each class is a cluster
 - Class-specific probability distributions over each attribute
 - e.g., normal, inverse Gaussian, Poisson, etc.
 - Mixing weight is prevalance of items in the class
 - Fraction of our population in that particular subpopulation
- The resulting mixture model has
 - *K* different classes (subpopulations)
 - q different models for each class, one for each attribute
 - $oldsymbol{ heta}_{k,j}$ are parameters of model for attribute j in class k
 - \bullet $K \times q$ total probability models

Mixture Modelling (2)

- How is this related to clustering?
- Each class is a cluster
 - Class-specific probability distributions over each attribute
 - e.g., normal, inverse Gaussian, Poisson, etc.
 - Mixing weight is prevalance of items in the class
 - Fraction of our population in that particular subpopulation
- The resulting mixture model has
 - *K* different classes (subpopulations)
 - ullet q different models for each class, one for each attribute
 - $oldsymbol{ heta}_{k,j}$ are parameters of model for attribute j in class k
 - $K \times q$ total probability models

Mixture Modelling (3)

• Example: two normal distributions

Mixture Modelling (4)

Measure of similarity of item to class

$$p_k(\mathbf{y}_i) = \prod_{j=1}^q p(y_{i,j} \mid \boldsymbol{\theta}_{k,j})$$

- ⇒ probability of item's attributes under class distributions
- For Gaussian models, this is equivalent to Euclidean distance
- For non-Gaussian models (Bernoulli, Poisson, etc.) it is offers a generalisation of the distance
 - Related to something called Kullback–Leibler divergence

Mixture Modelling (5)

Membership of items to classes is soft

$$r_{i,k} = \frac{\alpha_k p_k(\mathbf{y}_i)}{\sum_{l=1}^K \alpha_l p_l(\mathbf{y}_i)}$$

- Application of Bayes' theorem
- Posterior probability of belonging to class k
 - α_k is a priori probability item belongs to class k
 - $p_k(\mathbf{y}_i)$ is probability of data item \mathbf{y}_i under class k
 - ⇒ Assign to class with highest posterior probability
- Total number of samples in a class is then

$$n_k = \sum_{i=1}^n r_{i,k}$$

Mixture Modelling (5)

Membership of items to classes is soft

$$r_{i,k} = \frac{\alpha_k p_k(\mathbf{y}_i)}{\sum_{l=1}^K \alpha_l p_l(\mathbf{y}_i)}$$

- Application of Bayes' theorem
- Posterior probability of belonging to class k
 - α_k is a priori probability item belongs to class k
 - $p_k(\mathbf{y}_i)$ is probability of data item \mathbf{y}_i under class k
 - ⇒ Assign to class with highest posterior probability
- Total number of samples in a class is then

$$n_k = \sum_{i=1}^n r_{i,k}$$

Multivariate Normal Distribution (1)

- So far we have considered seperate univariate distributions for each attribute
- However, it would be useful to model attributes as related
- Multivariate normal distributions are important in statistics
- Are important in mixture model
- They model relationships between multiple random variables
 - The attributes of an individual are likely related
 - For example, height and weight will show correlation

Multivariate Normal Distribution (2)

• If $\widetilde{Y} = Y_1, \dots, Y_p$ are RVs with pdf

$$\left(\frac{1}{2\pi}\right)^{\frac{p}{2}}\sqrt{|\mathbf{\Sigma}^{-1}|}\exp\left(-\frac{1}{2}(\mathbf{\underline{Y}}-\boldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{\underline{Y}}-\boldsymbol{\mu})\right)$$

then they are multivariate normal with means μ and covariance matrix Σ

- ullet The entries of $oldsymbol{\mu}$ are the p means for each co-ordinate
- The entry

$$\Sigma_{i,j} = \operatorname{cov}(Y_i, Y_j)$$

is the covariance between Y_i and Y_j .

Multivariate Normal Distribution (3)

ullet Example, $oldsymbol{\mu}=(0,0)$, $oldsymbol{\Sigma}=\left(egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight)$

Multivariate Normal Distribution (4)

ullet Example, $oldsymbol{\mu}=(2,0)$, $oldsymbol{\Sigma}=\left(egin{array}{cc}1&0\0&1\end{array}
ight)$

Multivariate Normal Distribution (5)

• Example, $\mu = (0,0)$, $\Sigma = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$

Multivariate Normal Distribution (6)

• Example, $\boldsymbol{\mu}=(0,0)$, $\boldsymbol{\Sigma}=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1.5 \end{array}\right)$

Multivariate Normal Distribution (7)

• Example, $\boldsymbol{\mu}=(0,0)$, $\boldsymbol{\Sigma}=\begin{pmatrix} 1 & 0.6 \\ 0.6 & 1 \end{pmatrix}$

Multivariate Normal Distribution (8)

$$ullet$$
 Example, $oldsymbol{\mu}=(0,0)$, $oldsymbol{\Sigma}=\left(egin{array}{cc} 1 & -0.9 \ -0.9 & 1 \end{array}
ight)$

Multivariate Normal Distribution (9)

- The multivariate normal generalises the univariate normal distribution
- Several different common covariance structures:
 - ullet Diagonal Σ , all variances the same (spherical)
 - ullet Diagonal Σ , variances differing
 - ullet Arbitrary Σ (elliptical)
- Each structure has more parameters to estimate

Estimating Mixture Models (1)

• Given class memberships, the negative log-likelihood of data in class k is

$$-\sum_{i=1}^{n} r_{i,k} \sum_{j=1}^{q} \log p(y_{i,j} | \boldsymbol{\theta}_{k,j})$$

- ⇒ weighted negative log-likelihood
- Use expectation-maximisation (EM) algorithm
 - ① Estimate parameters, $\theta_{k,j}$, $(k=1,\ldots,K)$, $(j=1,\ldots,q)$ using weighted maximum likelihood
 - ② Re-calculate class memberships $r_{i,k}$ based on new parameters
 - If estimates have not stabilised, go to step (1)
- Initialise model with random class memberships
- Generalisation of k-means

Estimating Mixture Models (1)

 Given class memberships, the negative log-likelihood of data in class k is

$$-\sum_{i=1}^n r_{i,k} \sum_{j=1}^q \log p(y_{i,j} \mid \boldsymbol{\theta}_{k,j})$$

- ⇒ weighted negative log-likelihood
- Use expectation-maximisation (EM) algorithm
 - Estimate parameters, $\theta_{k,j}$, $(k=1,\ldots,K)$, $(j=1,\ldots,q)$ using weighted maximum likelihood
 - 2 Re-calculate class memberships $r_{i,k}$ based on new parameters
 - 3 If estimates have not stabilised, go to step (1)
- Initialise model with random class memberships
- Generalisation of k-means

Estimating Mixture Models (2)

- ullet Find K by minimising a goodness-of-fit criterion
- Difficult, non-convex optimisation problem
 - ⇒ Many local minima
- Each iteration, do the following
 - Remove classes with too few data points
 - Attempt to split all classes
 - Attempt to combine pairs of classes
 - Randomly assign data to classes, and re-estimate
- The mixture model with the smallest criterion score is retained, and the process is repeated

Estimating Mixture Models (2)

- Find K by minimising a goodness-of-fit criterion
- Difficult, non-convex optimisation problem
 - ⇒ Many local minima
- Each iteration, do the following
 - Remove classes with too few data points
 - Attempt to split all classes
 - Attempt to combine pairs of classes
 - Randomly assign data to classes, and re-estimate
- The mixture model with the smallest criterion score is retained, and the process is repeated

Estimating Mixture Models (3)

- Information Criteria goodness-of-fit criterion
 - Popular for learning mixture models
- Information criterion score is our yardstick comprised of
 - Goodness of fit of the mixture model to the data
 - Model complexity penalty based on number of classes/parameters
 - ⇒ choose model which balances complexity against fit
- Popular method is called minimum message length
 - Developed here at Monash by C.S.Wallace
 - Uses information theory interpretation of probability
 - Compress data using model; find model that leads to shortest compressed data

Estimating Mixture Models (3)

- Information Criteria goodness-of-fit criterion
 - Popular for learning mixture models
- Information criterion score is our yardstick comprised of
 - Goodness of fit of the mixture model to the data
 - Model complexity penalty based on number of classes/parameters
 - ⇒ choose model which balances complexity against fit
- Popular method is called minimum message length
 - Developed here at Monash by C.S.Wallace
 - Uses information theory interpretation of probability
 - Compress data using model; find model that leads to shortest compressed data

Example (1)

• Example: two dimensional dataset

Example (2)

 $\bullet \ \ {\rm Mixture \ modelling \ discovers} \ K=4 \ {\rm classes}$

Example (3)

• Plot of the mixture model density

Pima Indians Diabetes Dataset

- Well known case-control dataset
 - 268 cases, 500 controls (1.86 controls per case)
 - 768 samples, with 8 exposures
 - 763 missing exposure measurements (12%)
- Outcome is diabetes in Pima indians (DIA)

Pima Indians Exposures

Name	Mean	σ	Min	Max	% Missing
Number of Pregnancies (PREG)	4.5	3.2	1	17	14.4%
Plasma Glucose Concentration (PLAS)	121.6	30.5	44	199	0.6%
Diastolic Blood Pressure (BP)	72.4	12.4	24	122	4.5%
Triceps Skin Fold Thickness (SKIN)	29.1	10.5	7	99	29.5%
2-hour Serum Insulin (INS)	155.5	118.8	14	846	48.7%
Body Mass Index (BMI)	32.4	6.9	18.2	67.1	1.4%
Diabetes Pedigree Function (PED)	0.47	0.33	0.078	2.42	0%
Age (AGE)	33.2	11.7	21	81	0%

Example 1 Univariate Density Estimation (1)

- First consider 1-dimensional density estimation
 - Examine the AGE exposure
 - \Rightarrow clearly non-normal

Example 1: Univariate Density Estimation (2)

- $\bullet \ \ {\rm Gaussian} \ \ {\rm mixture} \ \ \hat{K} = 3$
 - $\hat{\mu} = (22.3, 26.9, 42.6), \ \hat{\alpha} = (0.23, 0.29, 0.47)$

Example 2: Multivariate Data Analysis (1)

- Estimate mixture model for exposures and outcome
 - All predictors Gaussian, target (diabetes) is Bernoulli
 - $I_4 = 18,719.1$, $I_5 = 18,713.0$, $I_6 = 18,714.7$, $I_7 = 18,732.7$

Pima Indians Mixture Model (Means)

Class	$\hat{\alpha}_k$	PREG	PLAS	BP	SKIN	INS	ВМІ	PED	AGE	DIA
1	0.13	2.5	150	75	35	238	37	0.59	33	0.82
2	0.23	7.6	141	78	33	214	35	0.52	43	0.78
3	0.25	2.0	104	66	20	105	27	0.42	24	0.02
4	0.19	2.7	112	71	34	138	36	0.47	26	0.20
5	0.18	6.4	110	75	28	117	30	0.41	42	0.06

Outline

- Clustering/Mixture Modelling
 - Clustering
 - Mixture Modelling
- 2 Matrix Completion
 - Matrix Completion Problem
 - Methods for Matrix Completion

Matrix Completion Problem (1)

- ullet We have a large matrix of data ${f Y}$
 - Rows of Y are individuals
 - Columns of Y are attributes of individuals
- Many entries of Y are missing
 - Usually they are unmeasured
- Matrix completion involves filling in the missing entries
- Assume individuals are independent, attributes are dependent
 - Use dependencies between attributes to estimate missing entries

Matrix Completion Problem (2)

- Some applications of matrix completion
 - Imputation
 - Matrix of features for a supervised learning problem
 - Most supervised learning methods cannot handle missing data
 - Filling in missing entries lets us use entire matrix
 - 2 Recommender systems
 - Matrix is set of ratings/purchasers
 - Rows are individuals, columns are products
 - For example, Netflix challenge

Terminator	Love Actually	Aliens	Predator	Bridesmaids
2	4	2	1	5
4	1	5	4	1
4	-	4	_	_
_	4	_	_	_

• Estimate missing ratings and recommend movies

Matrix Completion Problem (3)

- Univariate imputation
 - Simplest approach to imputation
 - Estimate a statistical model each column
 - Replace missing entries with suitable statistic
 - Mean/median for numeric variables
 - Mode for categorical variables
 - Ignores structure and relationships between variables
 - Is very fast
- Multivariate normal
 - Specify correlations between variables
 - Estimate missing entries using correlation info
 - Takes into account relationships between variables
 - Assumes data is clustered in one single cluster

Imputation with Mixture Models (1)

- Mixture modelling seamlessly handles missing values \Rightarrow They are ignored when computing similarity $p_k(\mathbf{y}_i)!$
- Mixture models allow for imputation
 - Use non-missing attributes to estimate class memberships
 - Impute missing attributes using class memberships
- Can find probability density of missing attributes
 - ullet Imagine for sample i that only attribute one is missing

$$p(y_{i,1}|y_{i,2},\ldots,y_{i,q}) = \sum_{k=1}^{K} r_{i,k} \ p(y_{i,1};\boldsymbol{\theta}_{k,1})$$

• Can now impute $y_{i,1}$ using mode, or mean, for example \Rightarrow if all attributes missing, reverts to univariate procedure

Imputation with Mixture Models (1)

- Mixture modelling seamlessly handles missing values \Rightarrow They are ignored when computing similarity $p_k(\mathbf{y}_i)!$
- Mixture models allow for imputation
 - Use non-missing attributes to estimate class memberships
 - Impute missing attributes using class memberships
- Can find probability density of missing attributes
 - ullet Imagine for sample i that only attribute one is missing

$$p(y_{i,1}|y_{i,2},...,y_{i,q}) = \sum_{k=1}^{K} r_{i,k} \ p(y_{i,1}; \boldsymbol{\theta}_{k,1})$$

• Can now impute $y_{i,1}$ using mode, or mean, for example \Rightarrow if all attributes missing, reverts to univariate procedure

Imputation with Mixture Models (2)

- Example of imputation
 - Attribute y_2 consider known
 - \bullet Impute attribute y_1 for values of y_2

Imputation using k-Nearest Neighbours (1)

- Recall k-nearest neighbours algorithm
 - ullet We have a set of n example predictor/target pairs
 - Predictor values $x_{i,1}, \ldots, x_{i,p}$ paired with target y_i
 - We want to predict target value for new individual with predictor values x_1',\dots,x_p'
- ullet Find k individuals in our data "most similar" to the new individual
 - ullet Use target values of these k individuals to predict target for our new individual
- Very weak assumptions
 - Individuals similar to each in other in terms of predictor values will be similar in terms of targets
- ullet Use cross-validation to select neighbourhood size k

Imputation using k-Nearest Neighbours (2)

- Easily adapted to matrix completion
- When computing similarity, ignore missing values
- Then, for each column $j = 1, \ldots, p$
 - ullet Predict each missing entry in column j using all other columns as explanatory variables
- Sometimes called collaborative filtering
- Netflix example using k = 1

Terminator	Love Actually	Aliens	Predator	Bridesmaids
2	4	2	1	5
4	1	5	4	1
4	?	4		
	4			

Imputation using k-Nearest Neighbours (2)

- Easily adapted to matrix completion
- When computing similarity, ignore missing values
- Then, for each column $j = 1, \ldots, p$
 - ullet Predict each missing entry in column j using all other columns as explanatory variables
- Sometimes called collaborative filtering
- Netflix example using k=1

Terminator	Love Actually	Aliens	Predator	Bridesmaids
2	4	2	1	5
4	1	5	4	1
4	?	4	_	_
_	4	_	_	_

Imputation using k-Nearest Neighbours (3)

- Easily adapted to matrix completion
- When computing similarity, ignore missing values
- Then, for each column $j = 1, \ldots, p$
 - ullet Predict each missing entry in column j using all other columns as explanatory variables
- Sometimes called collaborative filtering
- Netflix example using k=1

Terminator	Love Actually	Aliens	Predator	Bridesmaids
2	4	2	1	5
4	1	5	4	1
4	?	4	_	_
_	4	_	_	_

Imputation using k-Nearest Neighbours (4)

- Easily adapted to matrix completion
- When computing similarity, ignore missing values
- Then, for each column $j = 1, \ldots, p$
 - ullet Predict each missing entry in column j using all other columns as explanatory variables
- Sometimes called collaborative filtering
- Netflix example using k=1

Terminator	Love Actually	Aliens	Predator	Bridesmaids
2	4	2	1	5
4	1	5	4	1
4	1	4	_	_
_	4	_	_	_

Classification/Regression by Imputation

- Predicting with mixture models
 - Fit a mixture model to the target and predictors
 - Target variable for new individuals is missing
 - Use mixture model to "impute" missing targets
- Example: Pima indians mixture model
- Comparison to logistic regression fitting all p=8 predictors
 - Imputed predictors using mixture model
 - Fit logistic regression, AUC = 0.86
 - Mixture model classifier, AUC = 0.85
 - ⇒ essentially same AUC, data reduced to only five groups

Reading/Terms to Revise

- Terms you should know:
 - Clustering
 - k-means algorithm
 - Mixture modelling
 - Matrix completion
 - Imputation
 - Collaborative filtering
- Next week: simulation based methods (bootstrapping, permutation tests, random number generation)