IV Appello 21 settembre 2009

nome: cognome:

- Scrivete in modo CHIARO. Elaborati illegibili non saranno considerati.
- Non si contano le brutte copie.
- Specificate la logica in cui fate le derivazioni.
- Specificate le regole derivate che usate e che non sono menzionate nel foglio allegato al compito.
- Ricordatevi di ESPLICITARE l'uso della regola dello scambio sia a destra che a sinistra del sequente.
- Ricordatevi di LABELLARE LE DERIVAZIONI CON LE REGOLE USATE (se non lo fate perdete punti!)
- Mostrare se i sequenti di seguito sono derivabili o meno in LI e LC:

4 punti			
$\vdash \neg (A \lor B) \to (\neg A \lor \bot) \& \neg B$		si' in LI	poichè si deriva cosi'
		no in LI	poichè
		si' in LC	poichè si deriva cosi'
		no in LC	poichè
4 punti			
$\vdash A \vee \neg B \to \neg A \vee B$		si' in LI	poichè si deriva cosi'
		no in LI	poichè
		si' in LC	poichè si deriva cosi'
	l	no in LC	poichè
5 punti			
$\exists x (C(x) \& \neg C(x)) \vdash \forall x C(x)$		si' in LI	poichè si deriva cosi'
		no in LI	poichè
		si' in LC	poichè si deriva cosi'
		no in LC	poichè

(8 punti)

• Formalizzare in sequente le argomentazioni di seguito. Si provi inoltre la loro correttezza sia in logica intuizionista LI che classica LC facendo riferimento ai calcoli per LI e LC che trovate in allegato: (12 punti)

Giorgio non condivide quello che dice Piero.

Piero non dice quello che Giorgio condivide.

si consiglia di usare:

C(x,y)=x condivide y

D(x,y)=x dice y

Piero=p

Giorgio=g

corretto in LI	sì	no
corretto in LC	sì	no

Chi non mangia non sta in piedi.

Chi sta in piedi mangia. si consiglia di usare: M(x)=x mangia S(x)=x sta in piedi

corretto in LI sì no corretto in LC sì no

• (8 punti)

Formalizzare la seguente argomentazione in sequente e derivare quest'ultimo in LI:

Esiste solo uno in lista d'attesa. In lista d'attesa c'e' la sorella di Aldo.

In lista d'attesa c'e' Carla.

Carla è la sorella di Aldo.

ove si consiglia di usare: L(x)= in lista d'attesa c'è x a=la sorella di Aldo c=Carla

- (20 punti) Provare se sono o non sono derivabili nell'aritmetica di Heyting HA= LI + comp_{sx} + comp_{dx}:
 - 8. $\vdash \exists y \ \forall x \ x + y = x$
 - $-9. \vdash 2 \cdot 0 = 3$
 - 10. $\vdash \exists x \ (s(x) = s(7) \to 7 = x)$
 - 11. $\vdash 2 + 4 = s(s(2+2))$
- (punti 21) Siano T_{an}^i e T_{an}^c le teoria ottenute rispettivamente estendendo LI e LC con composizioni dx e sx con la formalizzazione dei seguenti assiomi:
 - Ax1. Un animale di Berto piace a Gino.
 - Ax2. Gli animali di Berto sono Furia e Jerry.
 - Ax3. Furia è un cavallo e i cavalli sono animali.
 - Ax4. Jerry è un gatto e i gatti sono animali.
 - Ax5. Non c'è cavallo che piaccia a Gino.
 - Ax6. A non tutti piace Jerry.

si consiglia di usare:

P(x,y) = x piace ad y

C(x) = xè un cavallo

G(x) = x è un gatto

A(x) = x è un animale

B(x)=xè di Berto

g = Gino

f=Furia

j=Jerry

Derivare:

- 7. A Gino piace Furia o Jerry. (in T_{an}^i)
- 8. Furia e Jerry sono animali. (in T_{an}^i)
- 9. A Gino non piace Furia e piace Jerry. (in T_{an}^i)
- 10. A Gino piace un gatto. (in T_{an}^i)
- 11. A qualcuno non piace Jerry. (in T_{an}^c)
- 12. Furia è diverso da Jerry. (in T_{an}^i)
- (3 punti) Dare la definizione induttiva dell'insieme delle derivazioni di $L^{\to,\forall}$ con connettivo \to, \forall di LI. Enunciare il loro principio di induzione.

• (4 punti)

Dimostrare per induzione sulle derivazioni di $L^{\to,\forall}$ che "se $\Gamma \vdash \Delta$ è derivabile in $L^{\to,\forall}$ allora Γ o Δ contiene almeno una formula"

• Risolvere la seguente equazione definitoria (9 punti):

 $\Gamma, A \circ B \circ C \vdash \Sigma$ sse $\Gamma, B \vdash \Sigma$ e $\Gamma, C \vdash \Sigma$ e $\Gamma, A \vdash \Sigma$

• L' equazione sopra è risolvibile in LI con composizioni a destra e a sinistra senza aggiungere un nuovo connettivo? è risolvibile in LC con composizioni a destra e a sinistra senza aggiunta di un nuovo connettivo? (ovvero l'esercizio consiste nel dire se $A \circ B \circ C$ è definibile in LI con composizioni e in caso positivo occorre mostrare che la definizione considerata di $A \circ B \circ C$ soddisfa in LI con composizioni l'equazione sopra; lo stesso dicasi per LC). (9 punti)