THEORETICAL COMPUTER SCIENCE TUTORING (2)

Maurizio Fiusco

Problem 2.6 from EsMacchineTuring.pdf (uniroma2.it)

Let k be a constant in \mathbb{N} , and let NT_k be a non-deterministic Turing machine with a degree of non-determinism equal to k. Define a non-deterministic Turing machine NT_2 with a degree of non-determinism equal to 2 that is equivalent to NT_k

$$P_k(q,x) = \langle q, x, x_1, q_1, m_1 \rangle, \langle q, x, x_2, q_2, m_2 \rangle, \dots, \langle q, x, x_h, q_h, m_h \rangle \qquad h \le k$$

Problem 2.6 from EsMacchineTuring.pdf (uniroma2.it)

$$P_k(q,x) = \langle q, x, x_1, q_1, m_1 \rangle, \langle q, x, x_2, q_2, m_2 \rangle, \dots, \langle q, x, x_h, q_h, m_h \rangle$$

Let Σ be a finite alphabet and let $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ be two **decidable** languages. Show that $L1 \cup L2$ is **decidable**.

We can use T_1 and T_2 as "black boxes"

We want to prove that:

T terminates for every input x, and furthermore, it terminates in the accepting state if and only if $x \in L1$ or $x \in L2$, that is, if and only if $x \in L1 \cup L2$.

Let's define T

$$Q = Q_1 \cup Q_2 \cup \{q_{A_T}, q_{R_T}\}$$

$$x \in \Sigma^*$$

$$x \in \Sigma^*$$

- 1. T simulates $T_1(x)$ on the first tape:
 - $T_1(x)$ ends in the accepting state
 - $T_1(x)$ ends in the rejecting state

Let's define T

$$Q = Q_1 \cup Q_2 \cup \{q_{A_T}, q_{R_T}\}$$

$$x \in \Sigma^*$$

$$x \in \Sigma^*$$

✓ T accepts

X T rejects

- 2. T simulates $T_2(x)$ on the second tape:
 - T₂(x) ends in the accepting state
 - T₂(x) ends in the rejecting state

Let Σ be a finite alphabet and let $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ be two acceptable languages. Show that $L1 \cap L2$ is acceptable.

We can use T_1 and T_2 as "black boxes"

We want to prove that:

T(x) terminates in the accepting state if and only if $x \in L1 \cap L2$, It is explicitly noted that nothing can be said about the outcome of the computation of T(x) for $x \notin L1 \cap L2$.

Let's define T

$$Q = Q_1 \cup Q_2 \cup \{q_{A_T}, q_{R_T}\}$$

$$x \in \Sigma^*$$

$$x \in \Sigma^*$$

- **1.** T simulates $T_1(x)$ on the first tape:
 - $x \in L_1 \Leftrightarrow T_1(x)$ ends in the accepting state
 - $T_1(x)$ ends in the rejecting state
 - T₁(x) doesn't terminate

- **✓** T begins phase-2
- **X** *T* rejects
- $\mathbf{P}(\mathbf{x})$ doesn't terminate

Let's define T

$$Q = Q_1 \cup Q_2 \cup \{q_{A_T}, q_{R_T}\}$$

$$x \in \Sigma^*$$

$$x \in \Sigma^*$$

- 2. T simulates $T_2(x)$ on the first tape:
 - $x \in L_2 \Leftrightarrow T_2(x)$ ends in the accepting state
 - T₂(x) ends in the rejecting state
 - T₂(x) doesn't terminate

$$\mathbf{P}(\mathbf{x})$$
 doesn't terminate

Let Σ be a finite alphabet and let $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ be two acceptable languages. Show that $L1 \cup L2$ is acceptable.

Can we use T_1 and T_2 as "black boxes"?

We want to prove that:

T terminates (in the accepting state) for every input $x \in L_1 \cup L_2$

Let's define T

$$Q = Q_1 \cup Q_2 \cup \{q_{A_T}, q_{R_T}\}$$

$$x \in \Sigma^*$$

$$x \in \Sigma^*$$

- 1. T executes a single instruction of T_1 on the first tape
 - T_1 halts in accepting state $\Leftrightarrow x \in L_1$
 - T_1 halts in rejecting state $\implies x \notin L_1$
 - T₁ doesn't halt

 $2 \text{ or } \times \text{ if } T_2 \text{ has rejected}$

Let's define T

$$Q = Q_1 \cup Q_2 \cup \{q_{A_T}, q_{R_T}\}$$

$$x \in \Sigma^*$$

$$x \in \Sigma^*$$

- 2. T executes a single instruction of T_2 on the first tape
 - T_2 halts in accepting state $\Leftrightarrow x \in L_2$
 - T_2 halts in rejecting state $\implies x \notin L_2$
 - T₂ doesn't halt

 \square 1 or \square if T_1 has rejected

Problem 1 from the exam held on July 4, 2019

Remember how Turing machines can be encoded as integers. Let $f: \mathbb{N} \to \mathbb{N}$ be a function defined as follows:

$$f(i) = \begin{cases} 0 \text{ if } i \text{ is the encoding of the Turing machine} \\ 1 \text{ if } i \text{ isn't the encoding of the Turing machine} \end{cases}$$

After defining the concept of computability of a function, discuss the computability of f(n) by demonstrating your claims.