Activity: Quotient Rings that are Extension Fields

Let's explore the connection between extension fields and quotient rings. We will see that $F[x]/\langle p(x)\rangle\cong F(\alpha)$, where α is a root of its minimal polynomial p(x) (i.e., p(x) is the unique monic irreducible polynomial that has α as a root). The goal of this activity is to see how working in quotient rings help us realize $E=F(\alpha)$ as a field.

We will start easy. For now, let $E = \mathbb{Q}(\sqrt{2})$.

1. What quotient ring is E isomorphic to?

2. One element in E is $1+3\sqrt{2}$. What element in the quotient ring does this correspond to?

3. What will $gcd(3x+1, x^2-2)$ be? How do you know? Then verify you are correct using the Euclidean algorithm.

4. Bezout's identity says that for any polynomials a(x) and b(x), there are polynomials s(x) and t(x) such that

$$\gcd(a(x), b(x)) = s(x)a(x) + t(x)b(x).$$

Find s(x) and t(x) in our case, by working backwards from the Euclidean algorithm above.

5. What does Bezout's identity have to do with the expression

$$1 + \langle x^2 - 2 \rangle = (3x + 1 + \langle x^2 - 2 \rangle)(t(x) + \langle x^2 - 2 \rangle)$$

and what does this have to do with finding inverses? In particular, what is $(1+3\sqrt{2})^{-1}$ in E?

6. Now let's try this again with a more complicated polynomial. As in the earlier activity, take $p(x) = x^3 + 3x^2 - x + 2$ and let ϱ be a root. Use quotient rings to find the inverse of the element $2 + 3\varrho^2$ in $E = \mathbb{Q}(\varrho)$.