Simulating the nonlinear Schrödinger equation

David A. Meyer

Nonlinear Schrödinger equations describe the time evolution of various physical systems, e.g., a Bose-Einstein condensate. In dimensionless form the 1 + 1 dimensional equation with a potential and a cubic nonlinearity is

$$i\frac{\partial}{\partial t}\psi(t,x) = \left(-\frac{1}{2}\frac{\partial^2}{\partial x^2} + V(x) - g|\psi(t,x)|^2\right)\psi(t,x). \tag{1}$$

If we discretize space by $\mathbb{Z}\Delta x \subset \mathbb{R}$, the second derivative with respect to x becomes

$$\frac{\partial^2}{\partial x^2}\psi(t,x) \approx \frac{\psi(t,x+\Delta x) - 2\psi(t,x) + \psi(t,x-\Delta x)}{\Delta x^2},$$

and we can rewrite the partial differential equation (1) as an ordinary differential equation for a vector $\psi(t)$ with components indexed by \mathbb{Z} ,

$$i\frac{\mathrm{d}}{\mathrm{d}t}\psi(t) = \left(-\gamma L + V - gK(t)\right)\psi(t),\tag{2}$$

where

$$V = \begin{pmatrix} \ddots & & & & \\ & V_0 & & & \\ & & V_1 & & \\ & & & \ddots \end{pmatrix} \quad \text{and} \quad K(t) = \begin{pmatrix} \ddots & & & & \\ & & |\psi_0(t)|^2 & & & \\ & & |\psi_1(t)|^2 & & & \\ & & & \ddots \end{pmatrix}$$

are the potential and nonlinear operators, respectively, and

$$L = \begin{pmatrix} \ddots & & & & \\ 1 & -2 & 1 & & \\ & 1 & -2 & 1 \\ & & & \ddots \end{pmatrix}$$

is the Laplacian, with $\gamma = 1/(2\Delta x^2)$.

If we think of the integer lattice in \mathbb{R} as a graph with vertices the integers and edges connecting x and x+1 for all $x \in \mathbb{Z}$, notice the this Laplacian has the form L = A - D, where A is the adjacency matrix for the graph $(A_{xy} = 1 \text{ when there is an edge connecting vertices } x \text{ and } y$; $A_{xy} = 0$ otherwise) and D is the diagonal matrix with D_{xx} being the degree of vertex x (the number of vertices to which x is connected). This is the graph Laplacian.

Our goal is to evolve according to (2) for different choices of the underlying graph, G, and potential. For example, in a graph with two vertices connected by an edge,

$$L = \begin{pmatrix} -1 & 1\\ 1 & -1 \end{pmatrix}. \tag{3}$$

Notice that if $\psi(t)$ satisfies (2), then

$$i\frac{\mathrm{d}}{\mathrm{d}t}e^{-i\alpha t}\psi(t) = \alpha e^{-i\alpha t}\psi(t) + ie^{-i\alpha t}\frac{\mathrm{d}}{\mathrm{d}t}\psi(t) = e^{-i\alpha t}\left(-\gamma L + V - gK(t) + \alpha I\right)\psi(t),$$

which tells us that if we add a constant times the identity to the evolution operator on the right hand side of (2), it has the effect only of multiplying the solution by $e^{-i\alpha t}$. Thus, if it is convenient, we can, for example, replace L in (3) by L = X. As long as L has off-diagonal terms, however, while V and K(t) are diagonal, and so commute with each other, they do not commute with L unless they are proportional to the identity. Nevertheless, for $\Delta t \ll 1$, the time evolution can be approximated as

$$\psi(n\Delta t) \approx \left(\prod_{j=1}^{n} e^{-i(V - gK(j\Delta t))\Delta t} e^{i\gamma L\Delta t}\right) \psi(0);$$

this is the first order Trotter product formula. (We can eventually consider higher order Suzuki-Trotter formulas.) For notational convenience, we write $\psi(j) = \psi(j\Delta t)$ and $K(j) = K(j\Delta t)$, and define

$$U = e^{i\gamma L\Delta t}$$
 and $V_j = e^{-i(V - gK(j))\Delta t}$.

Since V_j depends on the state, $\psi(j)$, of the system, however, we need to estimate it. Our approach is:

- 0. Initialize the state $\psi(0)$.
- 1. Compute $\phi(0) = U\psi(0)$.
- 2. Measure $\phi(0)$.
- 3. Repeat steps 0-2 N times; use the results to estimate $|\phi_x(0)|^2$ and thus V_0 .
- 4. Set j = 0.
- 5. While j < n,
 - 6. Re-initialize $\psi(0)$ and compute $\psi(j+1) = V_j U \dots V_0 U \psi(j)$.
 - 7. Compute $\phi(j + 1) = U\psi(j + 1)$.
 - 8. Measure $\phi(j+1)$.
 - 9. Repeat steps 6-8 N times; use the results to estimate $|\phi_x(j+1)|^2$ and thus V_{j+1} .
 - 10. Set j = j + 1.

We would like to understand how the accuracy of this simulation procedure depends upon Δx , n, N, the estimation method for $|\phi_x(j)|^2$, V, and G.