Tema 0

Introducción al Cálculo Vectorial

- 1.- Magnitudes escalares y vectoriales
 - 1.1.- M. Fundamentales.
 - 1.2.- M. Derivadas.
 - 1.3.- Múltiplos y submúltiplos.
- 2.- Cálculo Vectorial.
 - 2.1.- Operaciones con Vectores.
- 3.- Coordenadas de un punto.
 - 3.1.- Coordenadas de un vector.
 - 3.2.- Descomposición de un vector.
- 4.- Distancia entre dos puntos.
- 5.- Ejercicios Resueltos

Temario de Física y Química 4 FSO

© Raúl González Medina

Tema (

0.1.- Magnitudes Escalares y Vectoriales

Las magnitudes físicas pueden ser:

- <u>Magnitudes escalares.</u> Son aquellas que quedan definidas con su unidad correspondiente y una determinada cantidad.
- <u>Magnitudes vectoriales.</u> Son aquellas que para quedar definidas se debe conocer la cantidad, la unidad, la dirección y el sentido.

0.1.1.- Magnitudes Fundamentales

Las magnitudes fundamentales son aquellas a partir de las cuales se obtienen todas las demás. En la siguiente tabla se recogen estas magnitudes con su unidad correspondiente según el S.I. (Sistema Internacional de medidas).

Magnitud	Símbolo Magnitud	Unidad (S.I.)	Símbolo Unidad
Longitud	r,x,y	Metro	М
Masa	M	Kilogramo	Kg
Tiempo	Т	Segundo	S
Intensidad Corriente eléctrica	1	Amperio	Α
Cantidad de sustancia	N	Mol	mol
Temperatura	Т	Kelvin	K
Intensidad Luminosa		Candela	Cd

0.1.3.- Magnitudes Derivadas

Son las magnitudes obtenidas a partir de las fundamentales, en esta tabla se recogen las mas usadas a lo largo de este curso intensivo.

Magnitud	Símbolo Magnitud	Unidad (S.I.)	Símbolo Unidad	Escalar / Vectorial
Aceleración	\vec{a}	Metro/segundo ²	m·s ⁻²	Vectorial
Ángulo	α	Radian	Rad	Escalar
Campo eléctrico	$ec{E}$	Newton/Coulombio	N/C	Vectorial
Campo gravitatorio	\vec{g}	Neuton/kilogramo	N/Kg	Vectorial
Campo Magnético	$ec{B}$	Tesla	Т	Vectorial
Carga eléctrica	Q	Coulombio	С	Escalar
Energía & Trabajo	W	Julio	J	Escalar
Flujo mecánico	ϕ	Weber	Wb	Escalar
Frecuencia	f	Hertzio	Hz ó s ⁻¹	Escalar
Fuerza	F	Newton	N	Vectorial
Longitud de onda	λ	Metro	m	Escalar
Periodo	Т	Segundo	S	Escalar
Potencia	Р	Watio	W	Escalar
Potencial eléctrico	$\Delta\!V$	Voltio	V	Escalar
Presión	Р	Pascal	Pa	Escalar
Resistencia eléctrica	R	Ohmio	Ω	Escalar
Velocidad	\vec{v}	Metro/segundo	m/s	Vectorial

0.1.2.- Múltiplos de 10

En física vamos a trabajar con unidades muy grandes y muy pequeñas a la vez, por ello utilizaremos los prefijos que se muestran a continuación.

Prefijo	Símbolo	Valor numérico
Tera-	T-	10 ¹²
Giga-	G-	10 ⁹
Mega-	M-	10 ⁶
Kilo-	k-	10 ³
Hecto-	h-	10 ²
Deca-	Da-	10

Prefijo	Símbolo	Valor numérico
Deci-	d-	10 ⁻¹
Centi-	C-	10 ⁻²
Mili-	m-	10 ⁻³
Micro-	$\mu\!-$	10 ⁻⁶
Nano-	n-	10 ⁻⁹
Pico-	p-	10 ⁻¹²

0.2.- Cálculo Vectorial

0.2.1.- Definición de Vector

Un vector es un segmento orientado en el espacio que se caracteriza por:

Dirección o línea de acción, que es la recta que contiene al vector, o cualquier paralela a ella.

- **Sentido**, que indica mediante una flecha situada en su extremo (B) hacia que lado de la línea de acción se dirige el vector.
- **Módulo**, que indica su longitud y representa la intensidad de las magnitudes vectoriales

0.2.2.- Operaciones con vectores

En el conjunto de vectores libres del plano, que designaremos con \mathbb{R}^2 se definen las dos operaciones siguientes:

0.2.2.1.- Suma de Vectores:

Llamamos suma de los vectores libres \vec{u} y \vec{v} y la representaremos por $\vec{u}+\vec{v}$, al vector libre que se obtiene de dos formas:

a) Regla del Triángulo: Tomamos representantes de \vec{u} y \vec{v} , de forma que el origen del representante de \vec{v} , coincida con el extremo del representante de \vec{u} , de forma que el vector suma es aquel cuyo origen es el de \vec{v} y cuyo extremo es el de \vec{u} .

b) Regla del Paralelogramo: Si tomamos representantes de forma que \vec{v} y \vec{u} tengan origen común, trazando líneas paralelas a ambos vectores desde sus extremos, la diagonal del paralelogramo será el vector suma.

La existencia de un elemento opuesto para la suma de vectores, permite **restar vectores**. Así, dados los vectores \vec{u} y \vec{v} , para obtener $\overrightarrow{u-v}$ basta con sustituir el vector \vec{v} , por el vector $-\vec{v}$ y sumárselo al \vec{u} tal y como se indica en la figura de la derecha.

0.2.2.2.- Producto por un escalar:

El producto de un escalar K, distinto de cero, por un vector libre \vec{u} es otro vector libre \vec{ku} con:

• **Dirección:** La misma que \vec{u}

• **Sentido:** el mismo que \vec{u} o su opuesto dependiendo del signo de k.

• *Módulo:* Proporcional al de \vec{u} . $||k \cdot u|| = |k| \cdot ||u||$

0.2.2.3.- Combinación lineal de vectores

Se dice que un vector libre cualquiera \vec{u} es **combinación lineal** de otros dos \vec{v}_1, \vec{v}_2 , si existen los números reales k_1, k_2 tales que podamos escribir:

$$\vec{\mathbf{u}} = \mathbf{k}_1 \vec{\mathbf{v}}_1 + \mathbf{k}_2 \vec{\mathbf{v}}_2$$

Expresión de un vector como combinación lineal de otros dos:

Dados dos vectores \vec{u} y \vec{v} , con distinta direc<mark>ción, cu</mark>alquier otro vector del plano, \vec{w} , se puede expresar como combinación lineal de \vec{u} y \vec{v} . Para ello, procedemos como se indica a continuación.

0.3.- Coordenadas de un punto del plano

Consideremos un punto fijo O del plano y una base $B = \{\vec{u}, \vec{v}\}\$ de V^2 .

El conjunto formado por O y $B = \{\vec{u}, \vec{v}\}$ constituye un **sistema de referencia** en el plano, pues permite determinar la posición de cualquier punto del plano. Lo denotaremos por $R = \{O; \vec{u}, \vec{v}\}$.

En efecto, cualquier otro punto P del plano, determina con O un vector \overrightarrow{OP} . El vector libre \overrightarrow{OP} que denotaremos por \overrightarrow{p} se denomina **vector de posición** del punto P.

Sean (p_1,p_2) las componentes de \vec{p} en la base B. Diremos que (p_1,p_2) son las **coordenadas** del punto P en el sistema de referencia $R = \{O, \vec{u}, \vec{v}\}$ y escribiremos $P = (p_1,p_2)$.

Las coordenadas de un punto P respecto al sistema de referencia $R = \{O, \vec{u}, \vec{v}\}$ son las componentes del vector de posición de P en la base $B = \{\vec{u}, \vec{v}\}$.

0.3.1.- Componentes de un vector determinado por dos puntos.

Sea $R = \{O, \vec{u}, \vec{v}\}$ un sistema de referencia. Veamos cómo determinar las componentes de un vector \overrightarrow{PQ} en la base canónica $B = \{\vec{i}, \vec{j}\}$ a partir de las coordenadas de P y Q. Según la figura de la derecha:

$$\overrightarrow{OP} + \overrightarrow{PQ} = \overrightarrow{OQ} \quad \Rightarrow \quad \overrightarrow{p} + \overrightarrow{PQ} = \overrightarrow{q} \quad \Rightarrow \quad \overrightarrow{PQ} = \overrightarrow{q} - \overrightarrow{p}$$

Si $P=(p_1,p_2)$ y $Q=(q_1,q_2)$, se tiene:

$$\overrightarrow{PQ} = \overrightarrow{q} - \overrightarrow{p} = (q_1, q_2) - (p_1, p_2) = (q_1 - p_1, q_2 - p_2)$$

Por tanto:

$$\overrightarrow{\overrightarrow{PQ}} = \overrightarrow{q} - \overrightarrow{p} = (q_1 - p_1, q_2 - p_2)$$

0.3.2.- Descomposición de un vector.

Sea \vec{s} un vector cualquiera del plano, el vector \vec{s} se puede descomponer en otros dos vectores perpendiculares (ortogonales), uno sobre el eje x y otro sobre el eje y de forma que:

$$\vec{s} = \vec{s}_x + \vec{s}_y = s_x \hat{i} + s_y \hat{j}$$

Para calcular dichas componentes, nos ayudaremos de la trigonometría:

$$sen \ \alpha = \frac{s_y}{s} \longrightarrow s_y = s \cdot sen \ \alpha$$

$$\cos \alpha = \frac{s_x}{s} \rightarrow s_x = s \cdot \cos \alpha$$

0.4.- Distancia entre dos puntos

La distancia entre dos puntos A (x_1,y_1) y B (x_2,y_2) del plano es el módulo del vector fijo que determinan.

$$d(A,B) = \|\overrightarrow{AB}\|$$

Analíticamente:

$$d(A,B) = \|\overline{AB}\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

0.5.- Ejercicios Resueltos

1.- El vector \overrightarrow{AB} tiene la misma dirección que el vector \overrightarrow{CD} , sus sentidos son opuestos y la longitud de \overrightarrow{CD} es tres veces la de \overrightarrow{AB} . Determina las coordenadas del punto D sabiendo que A(3,-2), B(6,1) y C(5,5). Haz una comprobación gráfica del resultado.

Calculamos al vector $\overrightarrow{AB} = B - A = (6,1) - (3,-2) = (3,3)$, su módulo es: $\|\overrightarrow{AB}\| = \sqrt{3^2 + 3^2} = \sqrt{18} = 3\sqrt{2}$

Si el módulo del vector \overrightarrow{CD} es el triple del de \overrightarrow{AB} , tenemos que: $\|\overrightarrow{CD}\| = 3\|\overrightarrow{AB}\| = 3\cdot3\sqrt{2} = 9\sqrt{2}$

Como además los dos vectores son opuestos y paralelos, el vector \overrightarrow{CD} será de la forma $\overrightarrow{CD} = (a,a)$ porque las dos componentes son iguales.

Si llamamos al punto D(x,x), y calculamos el vector $\overrightarrow{CD} = D - C = (x,x) - (5,5) = (x-5,x-5)$

Su módulo será: $\|\overrightarrow{CD}\| = \sqrt{(x-5)^2 + (x-5)^2} = 9\sqrt{2}$

Si elevamos al cuadrado ambas expresiones: $(x-5)^2 + (x-5)^2 = 162$ y operamos un poco, llegamos a:

$$x^{2} - 10x + 25 + x^{2} - 10x + 25 = 162$$
 \rightarrow $2x^{2} - 20x + 50 = 162$ \rightarrow $x^{2} - 10x - 56 = 0$

Que si resolvemos nos da:
$$x^2 - 10x - 56 = 0$$
 \rightarrow
$$\begin{cases} x_1 = 4 \\ x_2 = 14 \end{cases}$$

Por tanto el punto D sería D(4,4) ó D(14,14).

Desechamos la segunda opción porque si D(14,14) no se verifica una de las premisas del problema.

2.- Dado el triángulo de vértices A(4,-2), B(-8,-2) y C(-2,6). a) Halla su perímetro.

Para hallar el perímetro, calculamos primero los vectores que unen dichos puntos:

$$\overrightarrow{AB} = B - A = (-8, -2) - (4, -2) = (-12, 0)$$

$$\overrightarrow{AC} = C - A = (-2, 6) - (4, -2) = (-6, 8)$$

$$\overrightarrow{BC} = C - B = (-2, 6) - (-8, -2) = (6, 8)$$

Calculamos los módulos de cada uno y los sumamos:

$$\overrightarrow{AB} = (-12,0) \rightarrow \|\overrightarrow{AB}\| = \sqrt{144} = 12$$

$$\overrightarrow{AC} = (-6,8) \rightarrow \|\overrightarrow{AC}\| = \sqrt{36+64} = 10$$

$$\overrightarrow{BC} = (6,8) \rightarrow \|\overrightarrow{AC}\| = \sqrt{36+64} = 10$$

Por tanto, su perímetro es de 32 unidades de longitud.

b) Comprueba que es isósceles.

Queda claro que se trata de un triángulo isosceles porque al calcular los módulos de los tres vectores hemos visto que hay dos iguales y otro diferente, por tanto **es isósceles.**

3.- Un automovil circula por una carretera rectilínea con una velocidad de $54~\rm km/h$ y desde él se lanza una piedra perpendicularmente a la carretera con una velocidad de $5~\rm m/s$.

a) ¿Cuál es el valor de la velocida<mark>d de la pi</mark>edra en el instante del lanzamiento?

En realidad nos piden el módulo del vector ve<mark>locidad, y p</mark>ara ello lo primero es escribir todas sus componentes en m/s.

$$54 \frac{km}{h} \cdot \frac{1000m}{1 \, km} \cdot \frac{1h}{3600s} = 15 ms^{-1}$$

Por tanto el vector velocidad será:

$$\vec{V} = 15i + 5j \ m/s = (15,5)$$

y su módulo:

$$\|\vec{V}\| = \sqrt{v_x^2 + v_y^2} = \sqrt{15^2 + 5^2} = 5\sqrt{10}m \cdot s^{-1} = 15,81m \cdot s^{-1}$$

Así que la velocidad de la piedra en el momento del lanzamiento es de 15,81 m/s.

b) ¿Qué ángulo forma el vector velocidad con la carretera?

Utilizando las razones trigonométricas:

$$sen \alpha = \frac{v_y}{v} = \frac{5}{15.81} = 0.32 \rightarrow \alpha = Arcsen(0.32) = 18^{\circ} 26' 6''$$

El ángulo formado es de 18 grados, 26 minutos y 6 segundos.

Departamento de Física y Química