

주변 장치와 데이터 교환

• MCU 내부 : 바이트(8bit) 단위로 데이터 처리

• MCU 외부 : 비트 단위로 데이터 송수신

• 1 바이트 데이터를 MCU의 외부와 교환하는 방법?

○ 병렬 방식: 8개의 데이터 핀 사용 → 연결을 위한 채널 수가 많아짐

 직렬 방식: 1개의 데이터 핀으로 데이터 8번 나눠서 전송 → 송수신 간의 데이터 동기화가 중요하다

시리얼 데이터 동기화 방법

위의 직렬 방식으로 데이터를 전송할 때, 데이터를 동기화 하는 방법에는 두가지가 있다.

동기방식

- 별도의 CLK 사용
- CLK 기준으로 데이터 확인

비동기 방식

- 별도의 CLK 사용 x : rising edge와 falling edge 등 특정 이 벤트를 기준으로 한다.
- 약속된 속도로 데이터 확인 → 프로토콜

<mark>SPI</mark> (동기 방식)

송수신 채 널을 공유 해서 여러 장치의 data를 받

UART (비동 기 방식)

주변 장치와 데이터 교환

근나

<mark>I2C</mark> (동기 방식)

half duplex 채 널

시리얼 통신 비교

	UART	SPI	I2C
연결 방법	1:1	1:N	1:N
전송 방법	full duplex	full duplex	half duplex
데이터 연결선	2	2	1
동기 신호 연결선	-	1	1
제어 연결선	-	1	-
총 연결선	2	4	2
N개 슬레이브 연 결선	2N	3+N	2
특징	속도는 빠르지만 채널수 늘 어남	속도는 빠르지만 채널수 늘 어남	많은 기기 연결할때 유리, 전송속도는 느림

주변 장치와 데이터 교환