

Introducción

Adín Ramírez adin.ramirez@mail.udp.cl

Sistemas Operativos (CIT2003-1) 1er. Semestre 2015

Adín Ramírez

- Profesor ciencias de la computación
 - ▶ Ph.D., Visión por Computador, Kyung Hee University, 2013
 - Áreas: visión por computador, procesamiento de imágenes, reconocimiento de patrones
- Sistemas Operativos (SO)
 - Una nueva experiencia para todos
 - Aprenderemos en conjunto

aje i

¿Cuál forma de aprender usas?

Basada en la enseñanza

- El profe debe enseñarme
 - Se vierten contenidos en los alumnos
 - ► Se pasa la materia
- Se concentra en los contenidos (y repetirlos)

Basada en el aprendizaje

- Yo debo aprender
 - ► Se busca el entendimiento
 - Distintas maneras de aprender para cada uno
- Aprendizaje activo, y enfocado en entender

Nuestro enfoque

- Utilizaremos un paradigma basado en el aprendizaje
- Buscaremos un aprendizaje activo
 - Actividades
 - Discusiones
 - Trabajos para cimentar los conceptos
- Desarrollaremos un pensamiento crítico
- Actividades basadas en resultados (siempre con límites de tiempo para los entregables)
 - La teoría es importante,
 - pero también poder ponerla en práctica correctamente
- Si cambiamos el paradigma, tenemos que cambiar nuestra forma de pensar y de actuar

CIT2003-1

3

Esquema general

- SO es un curso denso
- Mucho contenido, nuevos conceptos
 - Abstracción del kernel
 - Interfaz de programación
 - Concurrencia e hilos (hebras)
 - Sincronización de objetos compartidos, y avanzada
 - Scheduling
 - Direcciones de memoria
 - Memoria Virtual
 - Administración de la memoria
 - Almacenamiento

Q: ¿Es eso mucho contenido para un semestre?

A: Sí, sino se administra bien el tiempo

Hábitos de estudio

- Desarrollen una estrategia de estudio tempranamente
- Establezcan buena relación con los compañeros para el desarrollo de la parte práctica (detalles adelante)
- Establezcan un horario para poder leer, programar, y estudiar (detalles sobre el tiempo más adelante)
- El curso es denso, y hay mucho trabajo (tanto práctico como teórico), sino empiezan a tiempo no podrán terminar ni entender todo lo que tenemos planificado

Créditos

- Según la UDP, 1 crédito = 30 horas
- SO: 6 créditos = 180 horas (semestrales)
 - ▶ 1 semestre = ~16 semanas
 - ▶ 1 semana = ~11 horas
- 3 horas presenciales, 8 horas de estudio/trabajo independiente (semanales)
- El trabajo de SO está diseñado considerando ese tiempo para la elaboración de tareas, lecturas, y proyectos.
- Recuerden, los grupos suman horas
 - 2 personas: 16 horas semanales
 - ▶ 3 personas: 24 horas semanales

pero hay que considerar la sobrecarga de administración!

CIT2003-1

6

Libro de texto

- (Experimental) Operating Systems: Principles & Practice, Adnerson & Dahlin
 - Una visión más moderna de sistemas operativos
- (Tradicional) Operating System Concepts, Silberschatz, Galvin, & Gagne
 - Acá también están los temas, cubre más seguridad, visión más antigua
- Tendremos lecturas obligatorias (semanales)
- Muchos conceptos tomados de estos libros
- Consigan un libro ya! (muchas opciones)

Objetivos

- Sistemas operativos
 - ▶ ¿Qué son?
 - Decisiones de diseño
 - Construcción
- Programación en pareja
 - Diseño, documentación
 - Control de fuente
 - Habilidades blandas
- Presentación de información técnica
 - Escrita
 - Oral (habilidades de presentación)

- Muchos temas serán cubiertos a través del texto (lean!)
- Faltar a clases afectará tu nota
 - ▶ El mapa no es el terreno, las diapositivas no son la clase
 - Si faltas, te pierdes las preguntas y respuestas
 - ► Tendremos actividades en clase (algunas con nota, asiste para no perderlas)
- Espero que asistan a las clases
 - ¿Recuerdan el paradigma de aprendizaje?
 - Para cimentar el conocimiento y entender, tenemos que conversar y discutir
 - © Pagar para solo leer es un mal negocio

Actividades

- Proyectos (tentantivos):
 - Manejo del stack
 - Manejo de hilos
 - Concurrencia
 - Kernel
 - Extensión del kernel
- Ambiente de desarrollo:
 - Máquinas virtuales o en el computador
 - ▶ SO: Minix
 - ► Lenguaje: C
 - ► Control de versiones: git
 - ► Documentación en el código: doxygen

Programación en equipo

- ¿Por qué?
 - Ayuda a atacar problemas más grandes y complejos
 - Enseña habilidades necesarias que usarán en el trabajo
 - Establecer hitos
 - Establecer un flujo de trabajo productivo
 - Involucrar la administración antes que sea demasiado tarde
- Programación en equipo/parejas \neq ingeniería de software
 - No hay análisis de requerimientos
 - No hay releases, diseño para crecer, ...
 - No es un ciclo completo de software

Problemas con su compañero

- Alguien tendrá problemas con su compañero
 - Necesitan empezar a involucrarse en la administración tempranamente
 - La mayoría de las veces (50 %) se puede solucionar el problema
 - Si el problema no se puede resolver, podemos reducir el daño ...solo si lo se a tiempo
 - ▶ No dejen de lado los problemas, ni a última hora
 - Para ese entonces, ya no no se puede hacer nada

Evaluaciones

- Lecturas semanales, evaluadas en clase:
 - Preguntas y respuestas
 - Actividades en clase
- Reportes
 - ~3, para profundizar el entendimiento de temas
 - Tendremos uno de prueba para que vean como se calificarán (no tendrá punteo)
- Tarea de lectura (detalles durante el semestre)
 - Escojan algún tema interesante
 - Escriban un reporte corto
- Controles
 - ~3, para evaluar el progreso de cada uno

Aclaraciones

- Los informes (reportes, tareas de investigación, y cualquier otro documento) tienen entrega electrónica y física (seguir lineamientos de cada actividad)
- Los informes deben escribirse en LATEX (y amigos—usando la forma IEEETrans)
 - Leer y entender Guía de documentos técnicos
 - Entrega impresa del documento, y digital del código fuente (.tex) del documento
 - Q: No he usado LATEX, ¿qué hago?
 - A: Empieza desde hoy a aprenderlo (hay muchos recursos en linea)
- No se aceptarán entregas tarde (tolerancia cero)

Ponderación

- La nota es: 30 % + 70 %
- 30 % en el examen final
- 70 % de la nota final está dividida en:
 - ► Solemnes 30 % (15 % cada uno)
 - ▶ Proyectos 40 % (~10 % cada uno)
 - ► Controles 20 %
 - ▶ Tareas, ejercicios y asistencia 10 %

Proyectos

- Cada proyecto está dividido en:
 - ▶ 60 % del desarrollo práctico (alcance de los objetivos, desarrollo de software, diseño, completitud, cumplimiento de pruebas, etc.)
 - ▶ 40 % informe del proyecto
- Deben de tener azul (sobre 50 % de la nota promedio) de proyectos para poder acceder a examen

Informes

■ La ponderación (tentativa) de los informes es:

•	Resumen	5 %
•	Introducción	10 %
•	Cuerpo (contenido)	75 %
•	Conclusiones	10 %

- Se penalizarán faltas de ortografía y de redacción hasta un 20 % de la nota total
- Cada falta de ortografía o de redacción descuenta un punto porcentual
- Editen sus informes antes de ser entregados, ya que el 80 % del trabajo en un documento es la edición, y solo el 20 % es la escritura del documento.

Horarios

- Horario de clases:
 - Cátedra: Martes y Viernes 10:00 a 11:20 (Módulo B)
 - Ayudantía: Miércoles 17:00 a 18:20 (Módulo F)
- Evaluaciones¹:
 - ▶ 1ra Solemne: primera semana de Mayo
 - 2da Solemne: última semana de Junio.
 - Examen: Julio
- Consultas:
 - Email: adin.ramirez@mail.udp.cl
 - Escuela de Informática y Telecomunicaciones, 2do piso, Edificio Vergara 432 (Martes y Viernes 14:00 a 17:00, atención a casos especiales con previa cita al email)

¹Fechas tentativas

Sitio del curso

- Moodle: cursos.fic.udp.cl
- Matricularse en el curso: Sistemas Operativos
- Password: Sistemas operativos 2015 (sensible a mayúsculas y minúsculas)
- El material y las tareas se subirán y entregarán por allí (matricularse oportunamente)