1 Методы градиентного спуска

1.1 Градиентный спуск с дроблением шага.

- а. Новая точка $x^{k+1} = x^k + \varkappa_{k+1}(-grad\ f(x^k))$
- b. Направление. Антиградиент $\omega^{k+1} = -grad \ f(x^k)$.
- с. Шаги алгоритма.
 - 1. На k-ой итерации находимся в точке x^k . Вычисляем $\omega^{k+1} = -grad \ f(x^k)$. Если выполненно условие $|\omega^{k+1}| < \epsilon$, то x^k берем за минимум, иначе переходим к пункту 2 и устанавливаем $\varkappa_k := \varkappa_0$ (первоначальная длина шага спуска для k-й итерации).
 - 2. Определяем следующую точку $x^{k+1} = x^k + \varkappa_{k+1} \omega^{k+1}$. Если $f(x^{k+1}) \leq f(x^k)$, то принимаем эту точку. k := k+1 переходим к пункту 1. Если $f(x^{k+1}) \geq f(x^k)$, то нужно искать другую точку в этом направлении, уменьшая длину шага спуска. Переходим к пункту 3.
 - 3. $\varkappa_k := \nu \varkappa_k$, где ν коэффициент дробления. Переходим к пункту 2.

1.2 Метод наискорейшего спуска спуска.

- а. Новая точка $x^{k+1} = x^k + \varkappa_{k+1}(-grad\ f(x^k))$
- b. Направление. Антиградиент $\omega^{k+1} = -grad \ f(x^k)$.
- с. Длина шага соответсвует минимальному значению целевой функции f(x) в направлении ω^{k+1} и отсчитывается от точки x^k . Для этого находим минимум вспомагательной функции $\varphi_k(\alpha) = f(x^k + \alpha \omega^{k+1})$ по формуле $\alpha_{min} = \frac{(\omega^{k+1}, \omega^{k+1})}{(Q\omega^{k+1}, \omega^{k+1})}$. Где $f(x) = \frac{1}{2}(Qx, x) + (b, x) + c$ минимизируемая функция. Тогда минимум α_{min} функции $\varphi_k(\alpha)$ берется за длину шага.
- d. Шаги алгоритма.
 - 1. На k-ой итерации находимся в точке x^k . Вычисляем $\omega^{k+1} = -grad\ f(x^k)$. Если выполненно условие $|\omega^{k+1}| < \epsilon$, то x^k берем за минимум, иначе переходим к пункту 2.
 - 2. Определяем следующую точку $x^{k+1} = x^k + \varkappa_{k+1} \omega^{k+1}$. где $\varkappa_{k+1} = \frac{(\omega^{k+1}, \omega^{k+1})}{(Q\omega^{k+1}, \omega^{k+1})}$

1.3 Метод сопряженных направлений.

- а. Новая точка $x^{k+1} = x^k + \varkappa_{k+1} p^{k+1}$.
- b. Направление. Вектора, определяющие направления спуска на каждой итераци, являются сопряженными относительно матрицы Q, т.е. $(Qp^i,p^j)=(Qp^j,p^i)=0,\ i,j=1...$ Где $f(x)=\frac{1}{2}(Qx,x)+(b,x)+c$ минимизируемая функция. На первой итерации направление спуска совпадает с направлением антиградиента $p^1=grad\ f(x^0)$.
- с. Длина шага соответсвует минимальному значению целевой функции f(x) в направлении p^{k+1} и отсчитывается от точки x^k . Для этого находим минимум $\varphi_k(\alpha) = f(x^k + \alpha p^{k+1})$ по формуле $\alpha_{min} = \frac{(\omega^{k+1}, p^{k+1})}{(Qp^{k+1}, p^{k+1})}$. Где $f(x) = \frac{1}{2}(Qx, x) + (b, x) + c$ минимизируемая функция. Тогда минимум α_{min} функции $\varphi_k(\alpha)$ берется за длину шага.

1

d. Алгоритм сходится не более чем за m итераций(колличество переменных).

- е. Шаги алгоритма.
 - 1. На k-ой итерации находимся в точке x^k . Вычисляем $\omega^{k+1} = -qrad \ f(x^k)$. Если выполненно условие $|\omega^{k+1}| < \epsilon$, то x^k берем за минимум, иначе переходим к пункту 2.
 - 2. Для новой точки нужно определить направление спуска. $p^{k+1}=\gamma_{k+1}p^k+\omega^{k+1}$, где $\gamma_{k+1}=rac{|\omega^{k+1}|^2}{|\omega^k|^2}$. Переходим к пункту 3.
 - 3. Длина шага $\varkappa_{k+1} = \frac{(\omega^{k+1}, p^{k+1})}{(Qp^{k+1}, p^{k+1})}$. Перехдим к пункту 4.
 - 4. $x^{k+1} = x^k + \varkappa_{k+1} p^{k+1}$. k:=k+1. Переходим к 1.

2 Квазиньютоновские методы

2.1ДФП(Давидона-Флетчера-Пауэлла)

- а. Новая точка $x^{k+1} = x^k + \varkappa_{k+1} p^{k+1}$.
- b. Направление.

В методе Ньютона $p^{k+1} = -H^{-1}(x^k)grad\ f(x^k)$. Где $H(x^k)$ - значение матрицы Гессе в точке x^k .

В ДФП $p^{k+1} = -A_{k+1}grad\ f(x^k) = A_{k+1}\omega^{k+1}$. Матрицы $\{A_k\} \to H^{-1}(x^*)$ при $k \to \infty$, x^* точный минимум целевой функции f(x).

- с. Длина шага определяется исчерпывающим спуском в направлении p^{k+1} .(см. предыдущие методы)
- d. На первом шаге A_1 -единичная матрица, поэтому первая итерация совпадает с 1-й итерацией наискорейшего спуска.
- е. Шаги алгоритма.
 - 1. На k-ой итерации находимся в точке x^k . Вычисляем $\omega^{k+1} = -qrad\ f(x^k)$. Если выполненно условие $|\omega^{k+1}| < \epsilon$, то x^k берем за минимум, иначе переходим к пункту 2.
 - 2. Определяем направление на новую точку $p^{k+1} = A_{k+1} \omega^{k+1}$.

3. Матрица
$$A_{k+1} = A_k + \Delta A_k$$
. ΔA_k - поправочная матрица.
$$\Delta A_k = -\frac{\Delta x^k, (\Delta x^k)^T}{(\Delta \omega^k, \Delta x^k)} - \frac{A_k \Delta \omega^k (\omega_k)^T (A_k)^T}{(A^k \Delta \omega^k, \Delta \omega^k)}.$$

$$\Delta x^k = x^k - x^{k-1}$$

$$\Delta\omega^k = \omega^{k+1} - \omega^k$$

- 4. Длина шага спуска $\varkappa_{k+1} = \frac{(\omega^{k+1}, p^{k+1})}{(Qp^{k+1}, p^{k+1})}$
- 5. Следующая точка $x^{k+1} = x^k + \varkappa_{k+1} p_{k+1}$.

3 Методы прямого поиска

3.1Циклический покоординатный спуск

а. Каждая итерация состит из последовательной минимизации функции по каждому из направлений в установленном базисе.

2

b. Базис естественный в \mathbb{R}^n .

- с. Длина шага в каждом направлении определяется исчерпывающим спуском. При минимизации целевой функции по i-му направлению базиса $\{e_i\}_{i=1}^n$ используется информация после минимизации по первым (i-1) направлениям. Т.е. в выражении для вспомогательной функции $\varphi_i^k(\alpha) = (\tilde{x} + \alpha e_i) \ \tilde{x}$ это результат минимизации по направлению e_{i-1} . Имеются сходства с методом Зейделя.
- d. Шаги алгоритма.
 - 1. На k-ой итерации находимся в точке x^k . Проверяем условие $|x^{k-1}-x^k|<\epsilon_1$, или $|f(x^k)-f(x^{k-1})|<\epsilon_2$ или сразу оба. В случае их выполнения считаем точку x^k за минимум функции, иначе переходим к пункту 2.
 - 2. Выполняем одномерную минимизацию по каждому направлению базиса $\{e_i\}_{i=1}^n$. i:=1 счетчик направлений. $\tilde{x}=x^k$ задаем начальное значение временной переменной, хранящей в себе результат одномерной минимизации на прошлой итерации. Переходим к пункту 3.
 - 3. Минимизация по i-му направлению. Находим минимум вспомогательной функции $\varphi_i^k(\alpha) = (\tilde{x} + \alpha e_i) \ \tilde{x}$ по формуле $\alpha_{min} = \frac{(\tilde{\omega}, e_i)}{(Qe_i, e_i)}$, где $\tilde{\omega}$ антиградиент из точки \tilde{x} . $\tilde{x} = \tilde{x} + \alpha_{min}e_i$. Переходим к 4.
 - 4. Если i=n (перебрали все направления), то принимаем $x^{k+1}=\tilde{x},\ k=k+1$ и переходим к 1. Иначе i=i+1 и переходим к 3.

3.2 Метод Хука-Дживса

- а. Каждая итерация состит из двух этапов. Первы это обычный циклический покоординатный спуск. Второй это минимизация оп направлению соответсвующему вектору перемещения $p=\tilde{x}-x^k$. Где x^k начальная точка для k ой итерации, \tilde{x} результат циклическокого покоординаного спуска на данной итерации.
- b. Базис естественный в \mathbb{R}^n .
- с. Длина шага в каждом направлении определяется исчерпывающим спуском. При минимизации целевой функции по i-му направлению базиса $\{e_i\}_{i=1}^n$ используется информация после минимизации по первым (i-1) направлениям. Т.е. в выражении для вспомогательной функции $\varphi_i^k(\alpha) = (\tilde{x} + \alpha e_i) \ \tilde{x}$ это результат минимизации по направлению e_{i-1} . Имеются сходства с методом Зейделя.
- d. Шаги алгоритма.
 - 1. На k-ой итерации находимся в точке x^k . Проверяем условие $|x^{k-1}-x^k|<\epsilon_1$, или $|f(x^k)-f(x^{k-1})|<\epsilon_2$ или сразу оба. В случае их выполнения считаем точку x^k за минимум функции, иначе переходим к пункту 2.
 - 2. Выполняем одномерную минимизацию по каждому направлению базиса $\{e_i\}_{i=1}^n$. i:=1 счетчик направлений. $\tilde{x}=x^k$ задаем начальное значение временной переменной, хранящей в себе результат одномерной минимизации на прошлой итерации. Переходим к пункту 3.
 - 3. Минимизация по i-му направлению. Находим минимум вспомогательной функции $\varphi_i^k(\alpha) = (\tilde{x} + \alpha e_i) \ \tilde{x}$ по формуле $\alpha_{min} = \frac{(\tilde{\omega}, e_i)}{(Qe_i, e_i)}$, где $\tilde{\omega}$ антиградиент из точки \tilde{x} . $\tilde{x} = \tilde{x} + \alpha_{min}e_i$. Переходим к 4.
 - 4. Если i=n (перебрали все направления), то переходим к 5. Иначе i=i+1 и переходим к 3.

5. Вычисляем $p = \tilde{x} - x^k$ и проводим исчерпывающий спуск в этом направении. Находим минимум функции $\varphi_i^k(\alpha) = (\tilde{x} + \alpha p)$ по формуле $\alpha_{min} = \frac{(\tilde{\omega}, p)}{(Qp, p)}$, где $\tilde{\omega}$ -антиградиент из точки \tilde{x} .

Принимаем $x^{k+1} = \tilde{x} + \alpha_{min}p$, k = k+1 и переходим к пункту 1.

3.3 Метод Розенброка

- а. Каждая итерация состоит из последовательной минимизаии по каждому из направлений базиса
- b. После каждой итераци проводять процесс ортогонализации Грамма Шмидта, результатом которой является новый базис для следующей итерации. На первой итерации базис естественный.
- с. Длина шага в каждом направлении определяется исчерпывающим спуском. При минимизации целевой функции по i-му направлению базиса $\{p_i^k\}_{i=1}^n$ используется информация после минимизации по первым (i-1) направлениям. Т.е. в выражении для вспомогательной функции $\varphi_i^k(\alpha) = (\tilde{x} + \alpha p_i^k)$, где \tilde{x} это результат минимизации по направлению p_{i-1}^k . Имеются сходства с методом Зейделя.
- d. Шаги алгоритма.
 - 1. На k-ой итерации находимся в точке x^k и $\{p_i^k\}_{i=1}^n$ -система векторов, определяющих базис на этой итерации. Проверяем условие $|x^{k-1}-x^k|<\epsilon_1$, или $|f(x^k)-f(x^{k-1})|<\epsilon_2$ или сразу оба. В случае их выполнения считаем точку x^k за минимум функции, иначе переходим к пункту 2.
 - 2. Выполняем одномерную минимизацию по каждому направлению базиса $\{p_i^k\}_{i=1}^n$. i:=1 счетчик направлений. $\tilde{x}=x^k$ задаем начальное значение временной переменной, хранящей в себе результат одномерной минимизации на прошлой итерации. Переходим к пункту 3.
 - 3. Минимизация по i-му направалению. Находим минимум вспомогательной функции $\varphi_i^k(\alpha)=(\tilde{x}+\alpha p_i^k)$ по формуле $\alpha_{min}^i=\frac{(\tilde{\omega},p_i^k)}{(Qp_i^k,p_i^k)}$, где $\tilde{\omega}$ антиградиент из точки \tilde{x} . $\tilde{x}=\tilde{x}+\alpha_{min}^ip_i^k$. Все α_{min}^i нужно запомнить, для ортоганализации. Переходим к 4.
 - 4. Если i=n (перебрали все направления), то переходим к 5. Иначе i=i+1 и переходим к 3.
 - 5. Проводим ортоганализацию Грамма-Шмидта. (см учебник стр 294-295). Для случаю n=2.

$$a_1^{k+1} = \begin{cases} p_1^k, & \alpha_{min}^1 = 0, \\ \alpha_{min}^1 p_1^k + \alpha_{min}^2 p_2^k, & \alpha_{min}^1 \neq 0. \end{cases}$$
 (1)

$$a_2^{k+1} = \begin{cases} p_2^k, & \alpha_{min}^2 = 0, \\ \alpha_{min}^2 p_2^k, & \alpha_{min}^2 \neq 0. \end{cases}$$
 (2)

$$\begin{array}{l} b_1^{k+1} = \alpha_1^{k+1} \implies p_1^{k+1} = \frac{b_1^{k+1}}{|b_1^{k+1}|} \\ b_2^{k+1} = \alpha_2^{k+1} - (\alpha_2, p_1^{k+1}) p_2^{k+1} \implies p_2^{k+1} = \frac{b_2^{k+1}}{|b_2^{k+1}|} \\ p_1^k \text{ - сонаправлен с перемещением из } x^k \text{ в } \tilde{x} \end{array}$$

3.4 Метод Пауэлла

- а. Каждая итерация состоит из многократной минимизации по направлениям базиса. После минимизации по всем направлениям, базис меняется некоторым образом, и снова проводим минимизацию по всем направлениям. Так происходит n pas.
- b. Пусть $\{p_i^k\}_{i=1}^n$ базис на начало к-ой итерации. Пусть мы провели одномерную минимизацию по всем направлениям базиса и получили точку \tilde{x}_1 . Теперь проводим замены: $p_i^k = p_{i+1}^k$ для i = 1..n-1, а $p_n^k = \tilde{x}_1 x^k$ перемещение из x^k в \tilde{x}_1 . Теперь мы еще раз проводим одномерную минимизацию по всем направлениям нового базиса и начальная точка теперь \tilde{x}_1 . Эти действия повторяются п раз. Все это считается за одну итарацию.
- с. Шаги алгоритма.
 - 1. На k-ой итерации находимся в точке x^k и $\{p_i^k\}_{i=1}^n$ -система векторов, определяющих базис на k-й итерации.

Проверяем условие $|x^{k-1}-x^k|<\epsilon_1$, или $|f(x^k)-f(x^{k-1})|<\epsilon_2$ или сразу оба. В случае их выполнения считаем точку x^k за минимум функции, иначе устанавливаем j:=1 и переходим к пункту 2.

- 2. Одномерная минимизаци по каждому направлению базиса $\{p_i^k\}_{i=1}^n$. i:=1. $\tilde{x}:=x^k$.
- 3. Минимизация по і-му направлению.

Находими минимум вспомогательной функции $\varphi_i^k(\alpha) = f(\tilde{x} + \alpha p_i^k)$ по формуле $\alpha_{min} = \frac{(\tilde{\omega}, p_i^k)}{(Qp_i^k, p_i^k)}$, где $\tilde{\omega}$ - антиградиент из точки \tilde{x} . $\tilde{x} = \tilde{x} + \alpha_{min} p_i^k$.

- 4. Если i < n, то i = i + 1 и переходим к пункту 3. Иначе переходим к 5.
- 5. Вычисляем $p = \tilde{x} x^k$. Проводим минимизацию в этом направлении. Находим минимум функции $\varphi(\alpha) = f(\tilde{x} + \alpha p)$ по формуле $\alpha_{min} = \frac{(\tilde{\omega}, p)}{(Qp, p)}$, где $\tilde{\omega}$ антиградиент из точки \tilde{x} .

 $z = \tilde{x} + \alpha_{min} p.$

Если j = n, то $x^{k+1} = z$, k = k+1 и переходим к 1.

Иначе меняем базис: $p_r = p_{r+1}$, r = 1..(n-1), $p_n = p$. Устанавливаем i = 1, j = j+1 и переходим к пункту 3.

4 Симплексные методы.

4.1 Регулярный симплекс.

- а. Каждая итерация это отражение симплекса относительно одной из его сторон либо сжатие симплекса к одной из его из его вершин. На каждой итерации необходимо поддерживать строгую нумерацию вершин. Пусть в симплексе S^k имеюстся вершины $x^{x,1}$, $x^{k,2},\ldots,\,x^{k,n+1}$. Тогда $f(x^{k,1}) \leq f(x^{k,2}) \leq \ldots f(x^{k,n+1})$. На плоскости(n=2) симплексом S^k является треугольник с тремя вершинами: $x^{k,1},\,x^{k,2},\,x^{k,3}$.
- b. Отражение происходит относително гиперплоскости, содержащей вершины $x^{k,1}\dots x^{k,n}$ (вершины с наименьшим значением функции). При этом вместо точки $x^{k,n+1}$ получаем точку $x^{k+1,n+1}$. И новый симплекс S^{k+1} будет состоять из п точек $x^{k,1}\dots x^{k,n}$ симплекса S^k и новой точки $x^{k+1,n+1}$.

Если $f(x^{k+1,n+1}) \leq f(x^{k,n})$, то отражение считаем неудачным полученный симплекс

 S^{k+1} не рассматривают. Строят новый, сжимая симплекс S^k к вершине $x^{k,1}$, значение функции в которой наименшее среди других вершин.

- с. Шаги алгоритма.
 - 1. На k-ой итерации имеем симплекс S^k с вершинами $x^{k,1}\dots x^{k,n+1}$. Проверяем условие $(\frac{1}{n+1}\sum_{i=1}^n (f(x^{k,i})-f(x^k))^2)^{\frac{1}{2}} \le \epsilon$, где x^k центр симплекса. Если оно выполенню, то за минимум можно брать точку x_k , иначе переходим к пункту 2.
 - 2. Отражение происходит по формуле $x^{x+1,n+1} = 2x_c^k x^{k,n+1} = \frac{2}{n} \sum_{i=1}^n x^{k,i} x^{k,n+1}$, где x_c^k центр гиперплоскости, относительно которой проводим отражение. Получим новый симплекс S^{k+1} . Переходим к пункту 3.
 - 3. Редукция проводится при условии, что $f(x^{k+1,n+1}) \leq f(x^{k,n+1})$ (значение в новой вершине получилось больше, чем наибольшее значение для старого симплекса). При его выполнении симплекс S^{k+1} полученный в пункте 2 отбрасывают и сроят другой. Первая вершина будет совпадать с вершиной $x^{k,1}$ старого симплекса S^k , остальные получаются по формуле $x^{k+1,j} = x^{k,1} + \delta(x^{k,j} x^{k,1}), \ j = 2 \dots n+1$. В новом симплексе нужно перенумероват вершины в соответсвии с правилом: $f(x^{k+1,1}) \leq f(x^{k+1,2}) \leq \dots f(x^{k+1,n+1})$. Увеличим k = k+1 и перейдем к пункту 1.

4.2 Нерегулярный симплекс. Алгоритм Нелдера-Мида.

- а. Шаги алгоритма.
 - 1. На k-ой итерации имеем симплекс S^k с вершинами $x^{k,1} \dots x^{k,n+1}$. Проверяем условие $(\frac{1}{n+1} \sum_{i=1}^n (f(x^{k,i}) f(x^k))^2)^{\frac{1}{2}} \le \epsilon$, где x^k центр симплекса. Если оно выполенню, то за минимум можно брать точку x_k , иначе переходим к пункту 2.
 - 2. Отражение происходит по формуле $x^{x+1,n+1}=2x_c^k+\alpha(x_c^k-x^{k,n+1})$, где $x_c^k=\frac{1}{n}\sum_{i=1}^n x^{k,i}$, α коэффициент отражения, при его помощи можно менять расстояния от первых п верши до новой.

Рисунок в учебнике на странице 271 (6.9 а).

Получим новый симплекс S^{k+1} . Теперь из того как соотносятся значения функции в новой вершин со значениями в старых вершинах, возможны три ситуации.

При выполнении $f(x^{k+1,n+1}) \leq f(x^{k,1})$. Новое значение получилось меньше, чем старые. Попробуем растянуть симплекс, что бы нйти еще меньшее значение. Переходим к пункту 3 с симпликсом S^{k+1} .

При выполнении $f(x^{k,1}) \leq f(x^{k+1,n+1}) \leq f(x^{k,n})$ переходим к пункту 1 с симплексом $S^{k+1}, \ k=k+1.$

При выполнении $f(x^{k,n}) \le f(x^{k+1,n+1})$ переходим к пункту 4(сжатие) с симплексом S^{k+1} .

3. Растяжение симплекса S^{k+1} происходит по формуле $x_*^{k+1,n+1} = x_c^k + \beta(x^{k+1,n+1} - x_c^k)$. Получили новый симплекс S_*^{k+1} .

Рисунок в учебнике на странице 271 (6.9 б).

При выполнении $f(x_*^{k+1,n+1}) < f(x^{k,1})$, считаем растяжение удачным и переходим к пункту 1 с новым симплексом $S^{k+1} = S_*^{k+1}, \ k = k+1$

При выполнении $f(x_*^{k+1,n+1}) \ge f(x^{k,1})$ переходим к пункту 1 с симплексом S^{k+1} (полученным во 2-м пункте), k = k+1.

4. Сжатие симплекса S_{k+1} .

При выполнении условия $f(x^{k+1,n+1}) \leq f(x^{k,n+1})$ новая вешина получается по фор-

муле $x_{**}^{k+1,n+1}=x_c^k+\gamma(x^{k+1,n+1}-x_c^k)$. При выполнении условия $f(x^{k+1,n+1})>f(x^{k,n+1})$ новая вешина получается по формуле $x_{**}^{k+1,n+1}=x_c^k+\gamma(x^{k,n+1}-x_c^k)$.

Рисунки в учебнике на странице 271 (6.9 в,г).

В итоге получаем новый симплекс S_{**}^{k+1} .

При выполении условия $f(x_{**}^{k+1,n+1}) < f(x^{k,n+1})$ переходим к пункту 1 с новым сим-

При выполении условия $f(x_{**}^{k+1,n+1}) \geq f(x^{k,n+1})$ переходим к пункту 5 с первоначальным симплексом S^k .

5. Редукция симплекса S^k проходи по формуле $x^{k+1,i} = x^{k,1} + \delta(x^{k,i} - x^{k,1}), i = 2 \dots (n+1)$ 1). Длины всех ребер.

Рисунок в учебнике на странице 271 (6.9 д).

Получаем новый симплекс S^{k+1}_{***} . уменьшаются в $\frac{1}{\delta}$ раз. $S^{k+1}=S^{k+1}_{***},\ k=k+1$ и переходим к пункту 1.

Методы нелинейного программирования. 5

5.1Метод условного градиента.

- а. Новая точка $x^{k+1} = x^k + \varkappa_{k+1} p^{k+1}$.
- Направление спуска зависит от свойств границы, оно может не совпадать с направлением антиградиента. В двумерном случае с прямоугольной границей направление спуска будет совпадать с направлением на один из угол границы. Данный угол выбирается в соответвии с направлением антиградиента в данной точке.
- с. Длина шага спуска определяется одномерной минимизацией в выбранном направлении.
- d. Шаги алгоритма.
 - 1. На k-ой итерации находимся в точке x^k . Проверяем условие $|x^{k-1}-x^k|<\epsilon_1$, или $|f(x^k)-f(x^{k-1})|<\epsilon_2$ или сразу оба. В случае их выполнения считаем точку x^k за условный минимум функции, иначе переходим к пункту 2.
 - 2. Вычисляем $\omega^{k+1} = -grad \ f(x^k)$. Находим проекции ω_{x1} и ω_{x2} на оси Ox1(горизонтальная) Ох2(вертикальная). В зависимости от знаков проекции выбираем нужный угол прямоугольной границы.

Например: $\omega_{x1} \leq 0$ и $\omega_{x2} \leq 0$, что соответвует направлению антиградиента вниз и влево, значит выбираем нижний левый угол \tilde{x} нашей границы.

Получили направление спуска $p^{k+1} = \tilde{x} - x^k$

3. Проведем минимизацию по направлению p^{k+1} . Находим минимум функции $\varphi(\alpha) = f(x^k + \alpha p^{k+1})$ по формуле $\alpha_{min} = \frac{(\omega^{k+1}, p^{k+1})}{(Qp^{k+1}, p^{k+1})}$. $x^{k+1} = x^k + \alpha_{min}p^{k+1}$. Устанавливаем k=k+1 и переходим к пункту 1.

5.2Метод проекции антиградиента.

а. Каждая итерация состоит из спуска в некотором направлении и проецирования полученной точки на множестово, задающее ограничение.

- b. Направление спуска ортогонально градиентам активных ограничений. Пусть область ограничения $\Omega = \{x \in R : g_i(x) \leq 0, i = 0 \dots m\}$. Для итерации k с точкой x^k активными ограничениями будут те $g_i(x)$, для которых $g_i(x^k) = 0$. В нашем случае есть единственное ограничение g(x). И направление спуска будет сонаправленно с касательной к границе в точке x^k .
- с. Проекцию точки на множество Ω , заданного одним неравенством $g(x) \leq 0$, находим методом последовательных приближений, т.е. движение в направлении антиградиента границы g(x) с длиной шага соответвующему $g(x^*)$ значеню функции в текущей точке.

d. Шаги алгоритма.

- 1. На k-ой итерации находимся в точке x^k . Проверяем условие $|x^{k-1}-x^k|<\epsilon_1$, или $|f(x^k)-f(x^{k-1})|<\epsilon_2$ или сразу оба. В случае их выполнения считаем точку x^k за условный минимум функции, иначе переходим к пункту 2.
- 2. Вычислим направление спуска. Для этого составим проекционную матрицу $P_{k+1} = I_n A_{k+1}^T (A_{k+1} A_{k+1}^T)^{-1} A_{k+1}$, где I_n -единничная матрица, строками матрицы A_{k+1} будут матрицы-строки $(grad\ g_i(x_k))^T$. В нашем случае ограничение одно g(x). Эта матрица спроектирует антиградиент $\omega^{k+1} = -grad\ f(x^k)$ на нужное направление.
- Получим нужное направление $p^{k+1}=P\omega^{k+1}$. Переходим к пункту 3. 3. Проведем минимизацию по направлению p^{k+1} .
- Находим минимум функции $\varphi(\alpha) = f(x^k + \alpha p^{k+1})$ по формуле $\alpha_{min} = \frac{(\omega^{k+1}, p^{k+1})}{(Qp^{k+1}, p^{k+1})}$. $\tilde{x} = x^k + \alpha_{min}p^{k+1}$. Переходим к пункту 4.
- 4. Точка \tilde{x} лежит за пределами области Ω , поэтому необходимо спроецировать ее на это множество. $x_0^k = \tilde{x}, \ i = 0$ перейдем к пункту 5.
- 5. Находимся в x_i^k точке. Новую точку получим из соотношения $x_{i+1}^k = x_i^k g(x_i^k) \frac{a_i}{|a_i|^2}$, где $a_i = \operatorname{grad} g(x_i^k)$. Переходим к пункту 6.
- 6. Если выполнино условие условие $|x_{i-1}^k x_i^k| < \epsilon_1$, или $|f(x_i^k) f(x_{i-1}^k)| < \epsilon_2$, то считаем точку x_i^k за нужную проекцию точки \tilde{x} . Присваиваем $x^{k+1} = x_i^k$, k = k+1 и переходим к 1. Иначе i = i+1 и возвращаемся к 5.

5.3 Метод внутренних штрафных функций.

а. В данном методе вместо нахождения условного минимума функции f(x) в областии Ω проводят безусловную минимизацию функций $f_k(x) = f(x) + \delta_k(x)$, где функция штрафа

$$\delta_k(x) = \begin{cases} \geq 0, & x \text{ внутри области } \Omega \\ +\infty, & x \text{ на границе области } \Omega. \end{cases}$$
 (3)

Эта функция создает барьер вдоль границы g(x).

- b. В роли такой функции может быть $\delta_k(x) = -r_k \sum_{i=1}^m \frac{1}{g_i(x)}$. Рассмотрим случай границы заданной одним неравенством $g(x) \leq 0$. В этом случае $\delta_k(x) = \frac{-r_k}{g(x)}$. r_k параметр штрафа. С каждой итерацией $k \to \infty$ и $r_k \to 0$.
- d. Шаги алгоритма.
 - 1. На k-ой итерации находимся в точке x^k . Если условие $|f(x^k) f(x^{k-1})| < \epsilon_2$,то считаем точку x^k за условный минимум функции, иначе переходим к пункту 2.

- 2. Любым из методов безусловной минимизации находим минимум функции $f_k(x)=f(x)+\frac{-r_k}{g(x)},$ за начальное приближение берем $x^k.$ Полученным минимум берем за начальную точку следующей итерации $x^{k+1}.$ Устанавливаем $r^{k+1}=\frac{r^k}{2},\ k=k+1$ и переходим к пункту 1.