Detecting Pneumonia in Chest Radiographs

Spencer Hadel

Outline

- The Problem
- Data
- Methods
- Results
- Conclusions

The Problem

According to the WHO, *Pneumonia*:

- Accounts for 14% of all deaths of children under 5
- Can be prevented, but only one third of children who have it receive the antibiotics they need
- Can be prevented with simple interventions
- Can be treated with low-cost, low-tech medication/ care
- Killed 740,180 children in 2019
- That means 488,518 of those children needed proper treatment, which requires
 accurate diagnosis

The Problem

 Médecins Sans Limites (MSL), an Al-based medical research company, hopes to use Convolutional Neural Networks to identify patients with pneumonia based on Chest Radiographs

 We have created a Convolutional Neural Network that can help save hundreds of thousands of lives per year

Data - Chest Radiographs

- 5,863 Total Images
- X-Rays from pediatric patients 1-5 years old
- Classes reduced to 2:
 - NORMAL (1,583 x-rays)
 - PNEUMONIA (4,280 x-rays)

Data

- Not easy to distinguish by eye
- Requires Trained Medical Professionals

NORMAL

PNEUMONIA

Methods - Deep Learning Neural Networks

input layer

hidden layer 1

hidden layer 2

output layer

Methods - Convolutional Neural Network

Methods - Data Augmentation

Training images were randomly altered:

- Rotation
- Width
- Height
- Zoom
- Shear

Example - Augmented Training Images

Methods - Understanding Model Prediction

★ Green indicates potential patterns indicating pneumonia

NORMAL

PNEUMONIA

Results - Baseline Model

Healthy

Pneumonia

Accuracy:

Percentage of *successful predictions* by the model:

74%

Sensitivity:

Percentage of sick patients successfully identified:

99%

Correctly Diagnosed: **Incorrectly** Diagnosed: Healthy Sick 76 158 **Incorrectly** Diagnosed: **Correctly** Diagnosed: Healthy Sick 388 Healthy Pneumonia **PREDICTED LABELS**

Results - Baseline Model

Results - Baseline Model

Results - Final Model

Accuracy:

Percentage of *successful predictions* by the model:

85%

Sensitivity:

Percentage of sick patients successfully identified:

99%

Results - Final Model

TRUE NEGATIVES

More Correct Healthy

Diagnoses, prevents

unnecessary use of
resources

FALSE NEGATIVES

Very Few patients misdiagnosed as Healthy, leading to more lives saved

PREDICTED LABELS

Results - Final Model

FALSE POSITIVES
Significantly Lower,
Leading to higher
accuracy and less
waste of resources

TRUE POSITIVES

Maintains Accurate
Sick Diagnoses while
also increasing
accuracy of healthy
diagnoses

Model predicts Positive cases of Pneumonia with 85% accuracy while maintaining 99% sensitivity, preventing unnecessary loss of life

Equates to <u>over 483,000 lives</u>
 <u>potentially saved each year</u>

Can help <u>easily identify pneumonia</u>
 so that children in need have
 access to <u>low cost, life saving care</u>

Next Steps

- Deploy Neural Network model along with <u>easy-access</u>, <u>affordable care</u> to regions in need
- Additional data collection for further fine tuning to increase performance
- Adjust model for <u>wider demographic</u> of patients, such as different age groups
- Create classifiers that can identify
 multiple illnesses, or multiple degrees of illness

Email: shadel96@gmail.com
GitHub: @shadel96
LinkedIn: linkedin.com/in/spencer-hadel/