

# Data Sheet

V 1.0 / July 2017

**MSA301** 

Digital Triaxial Accelerometer







## **GENERAL DESCRIPTION**

MSA301 is a triaxial, low-g accelerometer with I<sup>2</sup>C digital output for consumer applications.

It has dynamical user selectable full scales range of  $\pm 2g/\pm 4g/\pm 8g/\pm 16g$ and allows acceleration measurements with output data rates from 1Hz to 500Hz.

MSA301 is available in an ultra small (2mmx2mm,height 1mm) LGA package and is guaranteed to operate over -40°C to +85°C.

## **FEATURES**

- ♦ Ultra small package 2x2x0.91 mm LGA-12 pins
- ♦ User selectable range, ±2g, ±4g, ±8g, ±16g
- $\Rightarrow$  1.62V to 3.6V supply voltage,
- ♦ 1.2V to 3.6V IO supply voltage
- ♦ User selectable data output rate
- ♦ I<sup>2</sup>C Interface
- ♦ One interrupt pins
- 14 bits resolution

- ♦ Low power consumption
- ♦ Factory programmed offset and sensitivity
- ♦ RoHS compliant

#### APPLICATIONS

- ♦ User interface for mobile phone and tablet
- ♦ Display orientation
- ♦ Gesture recognition
- ♦ Vibration monitoring
- ♦ Inclination and tilt sensing
- ♦ Pedometer
- ♦ Gaming
- ♦ Free fall detection

## **PRODUCT VIEW**













# **CONTENTS**

| GE: | NERA                            | L DESC   | CRIPTION                         | 2  |
|-----|---------------------------------|----------|----------------------------------|----|
| FE  | ATURI                           | ES       |                                  | 2  |
| AP  | PLICA                           | TIONS    |                                  | 2  |
| PR  | ODUC                            | T VIEV   | V                                | 2  |
| 1.  | Pin I                           | Descrip  | otion                            | 5  |
| 2.  | Spec                            | ificatio | on                               | 6  |
|     | 2.1                             | Abso     | lute Maximum Ratings             | 6  |
|     | 2.2                             | Senso    | or Characteristics               | 6  |
|     | 2.3                             | Elect    | rical Characteristics            | 7  |
| 3.  | Func                            | tion B   | locks                            | 8  |
| 4.  | Func                            | tional   | Description                      | 9  |
|     | 4.1                             | Supp     | ly Voltage And Power Management  | 9  |
|     | 4.2                             | Powe     | er Modes                         | 9  |
|     | 4.3                             | Senso    | or Data                          | 10 |
|     | 4.4                             | Bana     | lwidth                           | 10 |
|     | 4.5                             | Inter    | rupt Controller                  | 11 |
|     |                                 | 4.5.1    | General features                 | 11 |
|     |                                 | 4.5.2    | Mapping                          | 13 |
|     |                                 | 4.5.3    | Electrical behavior              | 13 |
|     |                                 | 4.5.4    | New data interrupt               | 13 |
|     |                                 | 4.5.5    | Active detection                 | 13 |
|     |                                 | 4.5.6    | Tap detection                    | 14 |
|     |                                 | 4.5.7    | Orientation recognition          | 16 |
|     |                                 | 4.5.8    | Freefall interrupt               | 18 |
| 5.  | Regi                            | ster Ma  | ap                               | 20 |
| 6.  | Regi                            | ster De  | escription                       | 21 |
| 7.  | Digit                           | al Inte  | rface and Application Collection | 29 |
|     | 7.1 I2C Interface Specification |          |                                  | 29 |
|     | 7.2 Application collection      |          | 31                               |    |
| 8.  | Pack                            | age De   | escription                       | 32 |
|     | 8.1                             | Outli    | ne Dimensions                    | 32 |
|     | 8.2                             | Senso    | or orientation                   | 33 |

## MSA301

Digital Triaxial Accelerometer











| 8.3      | Tape and reel  | 34 |
|----------|----------------|----|
| 8.4      | Reflow Profile | 35 |
| Revision | History        | 36 |



# 1. Pin Description



Figure 1: Pin Description

Table 1: Absolute Maximum Ratings

| No. | Name  | Function                              |  |
|-----|-------|---------------------------------------|--|
| 1   | NC    | Not connected                         |  |
| 2   | SDA   | Data input/output in I <sup>2</sup> C |  |
| 3   | VDDIO | IO Power supply                       |  |
| 4   | NC    | Connected to GND recommended          |  |
| 5   | INT1  | Interrupt pin                         |  |
| 6   | NC    | Not connected                         |  |
| 7   | VDD   | Power supply                          |  |
| 8   | NC    | Connected to GND recommended          |  |
| 9   | GND   | Ground                                |  |
| 10  | NC    | Not connected                         |  |
| 11  | NC    | Not connected                         |  |
| 12  | SCL   | Clock for I <sup>2</sup> C interface  |  |

# 2. Specification

## 2.1 Absolute Maximum Ratings

Table 2: Absolute Maximum Ratings

| Parameter             | Maximum value | Unit |
|-----------------------|---------------|------|
| Supply Voltage        | -0.3 to 3.6   | V    |
| Mechanical Shock      | 10,000        | g    |
| Operating Temperature | -40 to 85     | oC   |
| Storage Temperature   | -40 to 125    | oC   |

## 2.2 Sensor Characteristics

Table 3: Sensor Characteristics

| Symbol | Parameter                             | Conditions                    | Min | Тур  | Max | Unit   |
|--------|---------------------------------------|-------------------------------|-----|------|-----|--------|
|        |                                       |                               |     | ±2   |     | g      |
| FS     | Full scale range                      |                               |     | ±4   |     | g      |
| 13     | ruii scale range                      |                               |     | ±8   |     | g      |
|        |                                       |                               |     | ±16  |     | g      |
| S2g    |                                       | each axis at 25°C             |     | 4096 |     | LSB/g  |
| S4g    | Sensitivity                           | each axis at 25°C             |     | 2048 |     | LSB/g  |
| S8g    | Selisiuvity                           | each axis at 25°C             |     | 1024 |     | LSB/g  |
| S16g   |                                       | each axis at 25°C             |     | 512  |     | LSB/g  |
| TCS    | Sensitivity Temperature Coefficient   | FS=±2g                        |     | 0.02 |     | %/°C   |
| Off    | Zero g Offset @ 25 °C,<br>X/Y/Z axis  | FS=±2g                        |     | ±80  |     | mg     |
| тсо    | Zero g Offset Temperature Coefficient | FS=±2g,<br>-40 - +85 °C       |     | ±1   |     | mg/∘C  |
| Nrms   | Noise Density                         | FS=±2g                        |     | 300  |     | μg/√Hz |
| NL     | Non-Linearity                         | FS=±2g,<br>best straight line |     | 2    |     | %FS    |
| Cs     | Cross Axis Sensitivity                | Between any two axes          |     | 2    |     | %      |







## 2.3 Electrical Characteristics

Table 4: Sensor Characteristics

| Symbol | Parameter                    | Conditions           | Min          | Тур | Max          | Unit |
|--------|------------------------------|----------------------|--------------|-----|--------------|------|
| VDD    | Supply Voltage               |                      | 1.62         | 1.8 | 3.6          | V    |
| VDDIO  | IO Supply Voltage            |                      | 1.2          | 1.8 | 3.6          | V    |
| IDD    |                              | Normal operation     |              | 180 |              | μΑ   |
| IDDpd  | Supply Current               | Power down mode      |              |     | 1            | μΑ   |
| IDDlp  |                              | Low Power mode       |              | 2   |              | μΑ   |
| VIL    | Voltage input low level      | SPI&I2C              |              |     | 0.3VDD<br>IO | V    |
| VIH    | Voltage input high level     | SPI&I2C              | 0.7VDD<br>IO |     |              | V    |
| VOL    | Voltage output low level     |                      |              |     | 0.1VDD<br>IO | V    |
| VOH    | Voltage output<br>high level |                      | 0.9VDD<br>IO |     |              | V    |
| Twup   | Wake up time                 | From power down mode |              | 1   |              | ms   |
| Tsup   | Start up time                | From power off       |              | 3   |              | ms   |
| BW     | Bandwidth                    |                      | 1.95         |     | 500          | Hz   |
| ODR    | Output data rate             |                      | 1            |     | 1000         | Hz   |

# 3. Function Blocks



Figure 2: Function Block Diagram

# 4. Functional Description

#### 4.1 Supply Voltage And Power Management

The MSA301 has two distinct power supply pins:

VDD is the main power supply for all internal analog and digital function blocks through several regulators.

VDDIO is a separate power supply pin exclusively used for digital I/O circuits.

There are no limitations on the voltage levels of both pins relative to each other, as long as each of them lies within its operation range. Furthermore the device can be completely switched off (VDD=0V) while keeping the VDDIO supply on (VDDIO>0V).

#### 4.2 Power Modes

The MSA301 has three different power modes. Besides normal mode, which represents the fully operational state of the device, there are two special energy saving modes: low-power mode and suspend mode.

#### In normal mode:

All parts of the electronic circuit are held powered-up and data acquisition is performed continuously.

#### In suspend mode:

The whole analog part, oscillators included, is powered down. No data acquisition is performed, the only supported operation is reading registers (latest acceleration data are kept). Suspend mode is entered by writing '11' or '10' to the (Register 0x11) 'POWER\_MODE' bits.

#### In low-power mode:

The device is periodically switching between a sleep phase and a wake-up phase. The wake-up phase essentially corresponds to operation in normal mode with complete power-up of the circuitry. During the sleep phase the analog part ex-



cept the oscillators is powered down. Low power mode is entered by writing '01' to the 'POWER\_MODE' bits.

During the wake-up phase the number of samples required by any enabled interrupt is processed. If an interrupt is detected, the device stays in the wake-up phase as long as the interrupt condition endures (non-latched interrupt), or until the latch time expires (temporary interrupt), or until the interrupt is reset (latched interrupt). If no interrupt is detected, the device enters the sleep phase.

#### 4.3 Sensor Data

The acceleration output is 14-bits two's complement data. The 14-bits data for each axis is split into MSB part (one byte containing bits 13 to 6) and LSB lower part (one byte containing bits 5 to 0).

The 'NEW\_DATA\_INT' bit is set when z\_axis data is ready. It is reset when register (0x02) or (0x0A) is read. To enable 'NEW\_DATA\_INT' function, (0x17) 'DATA\_INT\_EN' should be set.

#### 4.4 Bandwidth

The bandwidth of the acceleration data is always half of the update rate in normal mode and listed in below table.

Table 5: bandwidth under different ODR and BW settings in normal mode

| ODR                | BW      |
|--------------------|---------|
| 1000Hz (1010-1111) | 500Hz   |
| 500Hz (1001)       | 250Hz   |
| 250Hz (1000)       | 125Hz   |
| 125Hz (0111)       | 62.5Hz  |
| 62.5Hz (0110)      | 31.25Hz |
| 31.25Hz (0101)     | 15.63Hz |
| 15.63Hz (0100)     | 7.81Hz  |
| 7.81Hz (0011)      | 3.9Hz   |
| 3.9Hz (0010)       | 1.95Hz  |

MSA301 supports four different acceleration measurement range, it is selected by setting (0x0F) as follows:

Table 6: acceleration measurement range

| Range        | 0011   | 0101  | 1000   | 1100     |
|--------------|--------|-------|--------|----------|
| Acceleration | 1 / 2a | +/-4σ | 1 / Qa | 1 / 16 g |
| range        | +/-2g  | +/-4g | +/-8g  | +/-16g   |

### 4.5 Interrupt Controller

Interrupt engines are integrated in the MSA301. Each interrupt can be independently enabled and configured. If the condition of an enabled interrupt is fulfilled, the corresponding status bit is set to 1 and the selected interrupt pin is activated. There is only one interrupt pin, and interrupts can be freely mapped. The pin state is a logic 'OR' combination of all mapped interrupts.

#### 4.5.1 General features

An interrupt is cleared depending on the selected interrupt mode, which is common to all interrupts. There are three different interrupt modes: non-latched, latched and temporary. The mode is selected by the 'LATCH\_INT' bits according to the following table.

Table 7: Interrupt mode selection

| latch_int | Interrupt mode          |
|-----------|-------------------------|
| 0000      | non-latched             |
| 0001      | temporary latched 250ms |
| 0010      | temporary latched 500ms |
| 0011      | temporary latched 1s    |
| 0100      | temporary latched 2s    |
| 0101      | temporary latched 4s    |
| 0110      | temporary latched 8s    |
| 0111      | Latched                 |
| 1000      | non-latched             |
| 1001      | temporary latched 1ms   |



| 1010 | temporary latched 1ms   |
|------|-------------------------|
| 1011 | temporary latched 2ms   |
| 1100 | temporary latched 25ms  |
| 1101 | temporary latched 50ms  |
| 1110 | temporary latched 100ms |
| 1111 | Latched                 |

An interrupt is generated if its activation condition is met. It cannot be cleared as long as the activation condition is fulfilled. In the non-latched mode the interrupt status bit and interrupt pin are cleared as soon as the activation condition is no more valid. Exceptions to this behavior are the new data and orientation, which are automatically reset after a fixed time.

In the latched mode an asserted interrupt status and the interrupt pin are cleared by writing 1 to bit 'RESET\_INT'. If the activation condition still holds when it is cleared, the interrupt status is asserted again with the next change of the acceleration registers.

In the temporary mode an asserted interrupt and selected pin are cleared after a defined period of time. The behavior of the different interrupt modes is shown in the following figure.



Figure 3: Interrupt mode



#### 4.5.2 Mapping

The mapping of interrupts to the interrupt pins is done by register (0x19, 0x1A), setting int1\_int type (int1\_orient/int1\_s\_tap/int1\_freefall, etc) to 1 can map this type interrupt to INT1 pin.

#### 4.5.3 Electrical behavior

Interrupt pin can be configured to show desired electrical behavior. The 'active' level of interrupt pin is determined by (0x20) 'INT1\_LVL'. If (0x20) 'INT1\_LVL' = '1' ('0') = '1' ('0'), then INT1 is active '1' ('0'). In addition to that, also the electric type of the interrupt pins can be selected. By setting bits (0x20) 'INT1\_OD' to '0', the interrupt pin output type is push-pull, by setting the configuration bits to '1', the output type is open-drain.

#### 4.5.4 New data interrupt

This interrupt serves for synchronous reading of acceleration data. It is generated after an acceleration data was calculated. The interrupt is cleared automatically before the next acceleration data is ready.

#### 4.5.5 Active detection

Active detection uses the slope between successive acceleration signals to detect changes in motion. An interrupt is generated when the slope (absolute value of acceleration difference) exceeds a preset threshold.

The threshold is set with the value of register (0x28) active\_th, with the LSB corresponding to 16 LSB of acceleration data. That is 3.9mg in 2g-range (7.8mg in 4g-range, 15.6mg in 8g-range and 31.3mg in 16g-range). And the maximum value is 1g in 2g-range, 2g in 4g-range, 4g in 8g-range and 8g in 16g-range.

The time difference between the successive acceleration signals depends is fixed to 1ms.







to bits (0x16) 'ACTIVE\_EN\_X/Y/Z'. The active interrupt is generated if the slope of any of the enabled axes exceeds the threshold for ['ACTIVE\_DUR'+1] consecutive times. As soon as the slopes of all enabled axes fall below this threshold for ['ACTIVE\_DUR'+1] consecutive times, the interrupt is cleared unless the interrupt signal is latched.

The interrupt status is stored in bit (0x09) 'ACTIVE\_INT'. The bit (0x0B) 'ACTIVE\_FIRST\_X/Y/Z' record which axis triggered the active interrupt first and the sign of this acceleration data that triggered the interrupt is recorded in the bit (0x0B) 'ACTIVE\_SIGN'.

## 4.5.6 Tap detection

Tap detection has a functional similarity with a common laptop touch-pad or clicking keys of a computer mouse. A tap event is detected if a pre-defined pattern of the acceleration slope is fulfilled at least for one axis. Two different tap events are distinguished: A single tap is a single event within a certain time, followed by a certain quiet time. A double tap consists of a first such event followed by a second event within a defined time.

Single tap interrupt is enabled by writing 1 to bit (0x16) 'S\_TAP\_INT\_EN' and double tap interrupt is enabled by writing 1 to bit (0x16) 'D\_TAP\_INT\_EN'. The status of the single tap interrupt is stored in bit (0x09) 'S\_TAP\_INT' and the status of the double tap interrupt is stored in bit (0x09) 'D\_TAP\_INT'.

The slope threshold for detecting a tap event is set by bits (0x2B) "TAP\_TH" with the LSB corresponding to 256LSB of acceleration data that is 62.5mg in 2g-range, 125mg in 4g-range, 250mg in 8g-range, 500mg in 16g-range. And the maximum value equals to the full scale in each range.

In the following figure the meaning of different timing parameter is visualized.



Figure 4: Timing of Tap detection

The parameter (0x2A) 'TAP\_SHOCK' and (0x2A) 'TAP\_QUIET' apply to both single and double tap detection, while (0x2A) 'TAP\_DUR' applies to double detection only. Within the duration of (0x2A) 'TAP\_SHOCK' any slope exceeding (0x2B) 'TAP\_TH' after the first event is ignored, within the duration of (0x2A) 'TAP\_QUIET' there must be no slope exceeding 'TAP\_TH', otherwise the first event will be cancelled.

A single tap is detected and the single tap interrupt is generated after the combination durations of (0x2A) 'TAP\_SHOCK' and (0x2A) 'TAP\_QUIET', if the corresponding slope conditions are fulfilled. The interrupt is cleared after a delay of 12.5ms in non-latched mode.

A double tap is detected and the double tap interrupt is generated if an event fulfilling the conditions for a single tap occurs within the set duration in (0x2A) 'TAP\_DUR' after the completion of the first tap event. The interrupt is cleared after a delay of 12.5ms in non-latched mode.

The sign of the slope of the first tap which triggered the interrupt is stored in bit



(0x0B) 'TAP\_SIGN' (0 means positive, 1 means negative). The axis which triggered the interrupt is indicated by bits (0x0B) 'TAP\_FIRST\_X/Y/Z'.

#### 4.5.7 Orientation recognition

The orientation recognition feature informs on an orientation change of sensor with respect to the gravitation field vector 'g'. The measured acceleration vector components with respect to the gravitation field are defined as shown in the following figure.



Figure 5: Definition of vector components

Therefore, the magnitudes of the acceleration vectors are calculated as follows:

$$acc_x = 1g.\sin\theta \cdot \cos\varphi$$
  
 $acc_y = -1g.\sin\theta \cdot \sin\varphi$   
 $acc_z = 1g.\cos\theta$ 

Depending on the magnitudes of the acceleration vectors the orientation of the device in the space is determined and stored in the bits (0x0C) 'ORIENT'. There are three orientation calculation modes with different t thresholds for switching between different orientations: symmetrical, high-asymmetrical and low-asymmetrical. The mode is selected by setting the (0x2C) 'ORIENT\_MODE' bits. For each orientation mode, the 'ORIENT' bits have a different meaning as show in below table.











Table 8: meaning of 'orient' bits in symmetric mode

| Orient | Name                 | Angle                                 | Condition                                  |
|--------|----------------------|---------------------------------------|--------------------------------------------|
| X00    | Portrait upright     | $315^{\circ} < \varphi < 45^{\circ}$  | $ acc_y  <  acc_x  - 'hyst' & acc_x >= 0$  |
| X01    | Portrait upside down | $135^{\circ} < \varphi < 225^{\circ}$ | $ acc_y  <  acc_x  - 'hyst' & acc_x < 0$   |
| X10    | Landscape left       | $45^{\circ} < \varphi < 135^{\circ}$  | acc_y  >=  acc_x  + 'hyst' & acc_y < 0     |
| X11    | Landscape right      | $225^{\circ} < \varphi < 315^{\circ}$ | $ acc_y  >=  acc_x  + 'hyst' & acc_y >= 0$ |

Table 9: meaning of 'orient' bits in high-asymmetric mode

| Orient | Name             | Angle                                 | Condition                                |
|--------|------------------|---------------------------------------|------------------------------------------|
| X00    | Portrait upright | $297^{\circ} < \varphi < 63^{\circ}$  | $ acc_y  < 2* acc_x  - 'hyst' &$         |
|        |                  |                                       | acc_x >= 0                               |
| X01    | Portrait upside  | $117^{\circ} < \varphi < 243^{\circ}$ | $ acc_y  < 2* acc_x  - 'hyst' & acc_x <$ |
|        | down             |                                       | 0                                        |
| X10    | Landscape left   | $63^{\circ} < \varphi < 117^{\circ}$  | $ acc_y  >= 2* acc_x  + 'hyst' &$        |
|        |                  |                                       | acc_y < 0                                |
| X11    | Landscape right  | $243^{\circ} < \varphi < 297^{\circ}$ | acc_y  >= 2* acc_x  + 'hyst' & acc_y >=  |
|        |                  |                                       | 0                                        |

Table 10: meaning of 'orient' bits in low-asymmetric mode

| Orient | Name             | Angle                                 | Condition                                |
|--------|------------------|---------------------------------------|------------------------------------------|
| X00    | Portrait upright | $333^{\circ} < \varphi < 27^{\circ}$  | $ acc_y  < 0.5* acc_x  - 'hyst' &$       |
|        |                  |                                       | acc_x >= 0                               |
| X01    | Portrait upside  | $153^{\circ} < \varphi < 207^{\circ}$ | $ acc_y  < 0.5* acc_x  - 'hyst' & acc_x$ |
|        | down             |                                       | < 0                                      |
| X10    | Landscape left   | $27^{\circ} < \varphi < 153^{\circ}$  | $ acc_y  >= 0.5* acc_x  + 'hyst' &$      |
|        |                  |                                       | acc_y < 0                                |
| X11    | Landscape right  | $207^{\circ} < \varphi < 333^{\circ}$ | $ acc_y  >= 0.5* acc_x  + 'hyst' &$      |
|        |                  |                                       | acc_y >= 0                               |

In the preceding tables, the parameter 'HYST' stands for a hysteresis which can be selected by bits (0x2C) 'ORIENT\_HYST'. 1LSB of (0x2C) 'ORIENT\_HYST' always corresponds to 62.5mg in any g-range. The MSB of 'orient' bits contains information about the direction of the z-axis. It is set to 0(1) if  $acc_z >= 0$  (acc\_z<0). The hysteresis for z axis is fixed to 0.2g.

The orient interrupt is enabled by writing (0x16) 'ORIENT\_EN' bit. The interrupt is generated if the value of 'orient' has changed. It is automatically cleared after one stable period of the orient value in non-latched mode. In temporary latched or latched mode, the orient value is kept fixed as long as the interrupt

persists. After cleaning the interrupt, the 'ORIENT' will updated with the next following value change.

The change of the 'ORIENT' value and the generation of the interrupt can be blocked according to conditions selected by setting the value of bits (0x2C) 'ORIENT\_BLOCKING' as described by below table.

Table 11: blocking conditions for orientation recognition

| Orient_blocking | Conditions                                          |
|-----------------|-----------------------------------------------------|
| 00b             | No blocking                                         |
| 01b             | Z blocking                                          |
| 10b             | Z blocking or acceleration slope in any axis > 0.2g |
| 11b             | No blocking                                         |

The Z blocking is defined by the following inequality:

$$|acc_z| > z_blocking$$

The parameter z\_blocking of the above given equation stands for the contents of the 'z\_blocking' bits. Hereby it is possible to define a blocking value between 0g and 0.9375g with an LSB = 0.0625g.

#### 4.5.8 Freefall interrupt

This interrupt is based on the comparison of acceleration data against a low-g threshold. The interrupt is enabled by writing 1 to the bit (0x17) 'FREEFALL\_INT\_EN'. There are two modes available: single mode and sum mode. In single mode the acceleration of each axis is compared with the threshold. In sum mode, the sum of absolute values of all accelerations |acc\_x| + |acc\_y| + |acc\_z| is compared with the threshold. The mode is selected by the bit (0x24) 'FREEFALL\_MODE'. The freefall threshold is set through the (0x23) 'FREEFALL\_TH' bits with 1 LSB corresponding to an acceleration of 7.81mg. A hysteresis can be selected by setting the 'FREEFALL\_HY' bits with 1 LSB corresponding to 125mg.

The freefall interrupt is generated if the absolute values of the acceleration of all axes or their sum are lower than the threshold for at least the time defined by



(0x22) 'FREEFALL\_DUR' bits. The interrupt is reset if the absolute value of at least one axis or the sum is higher than the threshold plus the hysteresis for at least one data acquisition. The interrupt status is stored in bit (0x09) 'FREEFALL\_INT'.





# 5. Register Map

| Ad-<br>dress | Bit 7                      | Bit 6              | Bit 5          | Bit 4           | Bit 3               | Bit 2        | Bit 1        | Bit 0              | De-<br>fault |
|--------------|----------------------------|--------------------|----------------|-----------------|---------------------|--------------|--------------|--------------------|--------------|
| 0x00         |                            |                    | SOFT<br>RESET  |                 |                     | SOFT RESET   |              |                    | 0x00         |
| 0x01         |                            |                    |                | PA              | RTID[7:0]           |              |              |                    | 0x13         |
| 0x02         |                            |                    | ACC_           | X[5:0]          |                     |              |              |                    | 0x00         |
| 0x03         |                            |                    |                | AC              | C_X[13:6]           |              |              |                    | 0x00         |
| 0x04         |                            |                    | ACC_           | Y[5:0]          |                     |              |              |                    | 0x00         |
| 0x05         |                            |                    |                | AC              | C_Y[13:6]           |              | 1            |                    | 0x00         |
| 0x06         |                            |                    | ACC_           | Z[5:0]          |                     |              |              |                    | 0x00         |
| 0x07         |                            | T                  | ı              | AC              | C_Z[13:6]           | ı            | ı            | ı                  | 0x00         |
| 0x09         |                            | ORIENT_IN<br>T     | S_TAP_INT      | D_TAP_INT       |                     | ACTIVE_INT   |              | FREEFALL_IN<br>T   | 0x00         |
| 0.04         |                            |                    |                |                 |                     |              |              | NEW_DATA_I         | 0.00         |
| 0x0A         |                            | TAP_FIST_          | TAP_FIRST      | TAP_FIRST       | ACTIVE_SIG          | ACTIVE_FIST  | ACTIVE_FIST_ | NT<br>ACTIVE_FIST_ | 0x00         |
| 0x0B         | TAP_SIGN                   | X                  | _Y             | _Z              | N N                 | _X           | Y            | Z                  | 0x00         |
| 0x0C         |                            |                    | ORIENT[2:0]    |                 |                     |              |              |                    | 0x00         |
| 0x0D         |                            |                    |                |                 | FIFO_I              | ENTRIES[5:0] | l .          | l .                | 0x00         |
| 0x0F         |                            |                    | l              |                 | RESOLU              | TION[1:0]    | FS[          | 1:0]               | 0x00         |
| 0x10         | X-AXIS_DIS                 | Y_AXIS_DIS         | Z_AXIS_DIS     |                 |                     | OD           | R[3:0]       | -                  | 0x0F         |
| 0x11         | PWR_MODE LOW_POWER_BW[3:0] |                    |                |                 |                     |              |              |                    | 0x9E         |
| 0x12         |                            |                    | l              |                 | X_POLARIT<br>Y      | Y_POLARITY   | Z_POLARITY   | X_Y_SWAP           | 0x00         |
|              |                            | ORIENT_IN          | S_TAP_INT      | D_TAP_INT       |                     | ACTIVE_INT_  | ACTIVE_INT_  | ACTIVE_INT_        |              |
| 0x16         |                            | T_EN               | _EN            | _EN             |                     | EN_Z         | EN_Y         | EN_X               | 0x00         |
| 0x17         |                            | OVERRUN_<br>INT_EN |                | DATA_INT_<br>EN | FREEFALL_I<br>NT_EN |              |              |                    | 0x00         |
| 0x19         |                            | INT1_ORIE<br>NT    | INT1_S_TA<br>P | INT1_D_TA<br>P  |                     | INT1_ACTIVE  |              | INT1_FREEFA<br>LL  | 0x00         |
|              |                            |                    |                |                 |                     | INT1_OVERR   |              | INT1_NEW_D         |              |
| 0x1A         |                            |                    |                |                 | I                   | UN           |              | ATA                | 0x00         |
| 0x1B         |                            |                    |                |                 |                     |              |              |                    | 0x00         |
| 0x20         |                            |                    |                |                 |                     |              | INT1_OD      | INT1_LVL           | 0x00         |
| 0x21         | RESET_INT                  | <u> </u>           |                |                 | ALL DURSE OF        | LATCH        | _INT[3:0]    |                    | 0x00         |
| 0x22         |                            |                    |                |                 | ALL_DUR[7:0]        |              |              |                    | 0x09         |
| 0x23         |                            |                    |                | FREEI           | FALL_TH[7:0]        | FREEFALL_M   | FREEFAL      | L_HY[1:0]          | 0x30<br>0x01 |
| 0x24         |                            |                    |                |                 |                     | ODE          | 4 CODITY TO  | DUD[4 0]           |              |
| 0x27         | <u> </u>                   |                    |                |                 |                     |              |              |                    | 0x00         |
| 0x28         |                            | TAD CHOC           |                | AC              | CTIVE_TH            |              |              |                    | 0x14         |
| 0x2A         | TAP_QUIET                  | TAP_SHOC<br>K      |                |                 |                     |              | TAP_DUR[2:0] |                    | 0x04         |
| 0x2B         |                            | 1                  |                |                 |                     | TAP_TH[4:0]  |              |                    | 0x0A         |
| 0x2C         |                            | 0                  | RIENT_HYST[2:  | 0]              | ORIENT_BI           | LOCKING[1:0] |              | MODE[1:0]          | 0x18         |
| 0x2D         |                            |                    |                |                 | _                   | Z_BLOC       | KING[3:0]    |                    | 0x08         |
| 0x38         |                            |                    |                |                 | SET_X[7:0]          |              |              |                    | 0x00<br>0x00 |
| 0x39         |                            |                    |                |                 |                     |              |              |                    |              |
| 0x3A         |                            |                    |                | OFF             | SET_Z[7:0]          |              |              |                    | 0x00         |



# 6. Register Description

### Register 0x00(Soft Reset) :Read only

| Bit7 | Bit6 | Bit5       | Bit4 | Bit3 | Bit2       | Bit1 | Bit0 | Default |
|------|------|------------|------|------|------------|------|------|---------|
|      |      | Soft Reset |      |      | Soft Reset |      |      | 0X00    |

Soft Reset: 0:soft reset disable, 1:soft reset enable

#### Reg 0x01(PartID):Read only

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3      | Bit2 | Bit1 | Bit0 | Default |
|------|------|------|------|-----------|------|------|------|---------|
|      |      |      | PAR  | RTID[7:0] |      |      |      | 0X13    |

## Reg 0x02/0x03(X\_axis Data LSB/MSB) :Read only

| Bit7 | Bit6        | Bit5 | Bit4 | 4 Bit3 Bit2 |      | Bit1 | Bit0 | Default |
|------|-------------|------|------|-------------|------|------|------|---------|
|      |             |      |      |             | 0X00 |      |      |         |
|      | Acc_x[13:6] |      |      |             |      |      |      |         |

#### Reg 0x04/0x05(Y\_axis Data LSB/MSB) :Read only

| Bit7 | Bit6        | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | Default |
|------|-------------|------|------|------|------|------|------|---------|
|      | ACC_Y[5:0]  |      |      |      |      |      |      |         |
|      | ACC_Y[13:6] |      |      |      |      |      |      |         |

## Reg 0x06/0x07(Z\_axis Data LSB/MSB) :Read only

| Bit7 | Bit6        | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | Default |
|------|-------------|------|------|------|------|------|------|---------|
|      | ACC_Z[5:0]  |      |      |      |      |      |      | 0X00    |
|      | ACC_Z[13:6] |      |      |      |      |      |      | 0X00    |

## Reg 0x09(Motion\_Interrupt) :Read only

| Bit7 | Bit6       | Bit5      | Bit4      | Bit3 | Bit2       | Bit1 | Bit0         | Default |
|------|------------|-----------|-----------|------|------------|------|--------------|---------|
|      | ORIENT_INT | S_TAP_INT | D_TAP_INT |      | ACTIVE_INT |      | FREEFALL_INT | 0X00    |

ORIENT\_INT: orientation interrupt status, 0: inactive, 1: active

S\_TAP\_INT: single tap interrupt status, 0: inactive, 1: active

D\_TAP\_INT: double tap interrupt status, 0: inactive, 1: active

ACTIVE\_INT: active interrupt status, 0: inactive, 1: active

FREEFALL\_INT: freefall interrupt status, 0: inactive, 1: active

### Reg 0x0A(Data\_Interrupt) :Read only

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0         | Default |
|------|------|------|------|------|------|------|--------------|---------|
|      |      |      |      |      |      |      | NEW_DATA_INT | 0X00    |

NEW\_DATA\_INT: new data interrupt status,0:inactive,1:active

#### Reg 0x0B(Tape\_Active\_Status) :Read only

| Bit7   | Bit6    | Bit5    | Bit4    | Bit3    | Bit2      | Bit1      | Bit0     | Default |
|--------|---------|---------|---------|---------|-----------|-----------|----------|---------|
| TAP_SI | TAP_FIR | TAP_FIR | TAP_FIR | ACTIVE_ | ACTIVE_FI | ACTIVE_FI | ACTIVE_F | 0200    |
| GN     | ST_X    | ST_Y    | ST_Z    | SIGN    | RST_X     | RST_Y     | IRST_Z   | 0X00    |

TAP\_SIGN: sign of tap triggering signal, 0 :positive, 1: negative

TAP\_FIRST\_X: tap interrupt triggered by x axis, 1: positive, 0: negative

TAP\_FIRST\_Y: tap interrupt triggered by y axis, 1: positive, 0: negative

TAP\_FIRST\_Z: tap interrupt triggered by z axis, 1: positive, 0: negative

ACTIVE\_SIGN: sign of active interrupt, 0: positive, 1: negative

ACTIVE\_FIRST\_X: active interrupt triggered by x axis, 1: positive, 0: negative

ACTIVE\_FIRST\_Y: active interrupt triggered by y axis, 1: positive, 0: negative

ACTIVE\_FIRST\_Z: active interrupt triggered by z axis, 1: positive, 0: negative

#### Reg 0x0C(Orientation\_Status):Read only

| Bit7 | Bit6 | Bit5        | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | Default |
|------|------|-------------|------|------|------|------|------|---------|
|      | (    | ORIENT[2:0] |      |      |      |      |      | 0X00    |

ORIENT[2]: orientation value of z axis, 0:upward looking, 1:downward looking

ORIENT[1:0]: orientation value of x/y axes

00: portrait upright

01: portrait upsidedown

10: landscape left,

11: landscape right

#### Reg 0x0F(Resolution/Range): Read/Write

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3            | Bit2 | Bit1 | Bit0 | Default |
|------|------|------|------|-----------------|------|------|------|---------|
|      |      |      |      | RESOLUTION[1:0] |      | FS[2 | 1:0] | 0X00    |

RESOLUTION[1:0]: resolution of x/y/z axes, 00:14bit, 01:12bit, 10:10bit, 11:8bit

FS[1:0]: acceleration range of x/y/z axes, 00:+/-2g, 01:+/-4g, 10:+/-8g, 11:+/-16g

#### Reg0x10(ODR) : Read/Write

| Bit7       | Bit6       | Bit5       | Bit4 | Bit3 | Bit2   | Bit1 | Bit0 | Default |
|------------|------------|------------|------|------|--------|------|------|---------|
| X_AXIS_DIS | Y_AXIS_DIS | Z_AXIS_DIS |      |      | ODR[3: | 0]   |      | 0X0F    |

X\_AXIS\_DIS: 0: enable, 1: disableY\_AXIS\_DIS: 0: enable, 1: disableZ\_AXIS\_DIS: 0: enable, 1: disable

ODR[3:0]: 0000: 1Hz (not available in normal mode)

0001: 1.95Hz (not available in normal mode)

0010: 3.9Hz 0011: 7.81Hz 0100: 15.63Hz 0101: 31.25Hz 0110: 62.5Hz 0111: 125Hz 1000: 250Hz

1001: 500Hz (not available in low power mode)

1010-1111:1000Hz (not available in low power mode)

### Reg0x11(Power Mode/Bandwidth) : Read/Write

| Bit7 | Bit6                       | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | Default |
|------|----------------------------|------|------|------|------|------|------|---------|
| PWR_ | PWR_MODE LOW_POWER_BW[3:0] |      |      |      |      |      |      | 0X9E    |

PWR\_MODE: 00: normal mode, 01: low power mode, 10/11 suspend mode

LOW\_POWER\_BW[3:0]:

0000-0010:1.95Hz

0011:3.9Hz

0100:7.81Hz

0101:15.63Hz

0110: 31.25Hz

0111: 62.5Hz

1000: 125Hz

1001: 250Hz

1010-1111:500Hz





### Reg 0x12(Swap\_Polarity) : Read/Write

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3       | Bit2       | Bit1       | Bit0     | Default |
|------|------|------|------|------------|------------|------------|----------|---------|
|      |      |      |      | X_POLARITY | Y_POLARITY | Z_POLARITY | X_Y_SWAP | 0X00    |

X\_POLARITY: the polarity of X axis, 0: not reverse, 1: reverse

Y\_POLARITY: the polarity of Y axis, 0: not reverse, 1: reverse

Z\_POLARITY: the polarity of Z axis, 0: not reverse, 1: reverse

X\_Y\_SWAP: output of X/Y axis, 0: not swap, 1: swap

## Reg 0x16(Int\_Set\_0) : Read/Write

| Bit7 | Bit6    | Bit5     | Bit4     | Bit3 | Bit2     | Bit1        | Bit0     | Default |
|------|---------|----------|----------|------|----------|-------------|----------|---------|
|      | ORIENT_ | S_TAP_IN | D_TAP_IN |      | ACTIVE_I | ACTIVE_INT_ | ACTIVE_I | 0,000   |
|      | INT_EN  | T_EN     | T_EN     |      | NT_EN_Z  | EN_Y        | NT_EN_X  | 0X00    |

ORIENT\_INT\_EN: orient interrupt, 0: disable, 1: enable

S\_TAP\_INT\_EN: single tap interrupt, 0: disable, 1: enable

D\_TAP\_INT\_EN: double tap interrupt, 0: disable, 1: enable

ACTIVE\_INT\_EN\_Z: active interrupt for the z axis, 0: disable, 1: enable

ACTIVE\_INT\_EN\_Y: active interrupt for the y axis, 0: disable, 1: enable

ACTIVE\_INT\_EN\_X: active interrupt for the x axis, 0: disable, 1: enable

#### Reg 0x17(Int\_Set\_1) : Read/Write

| Bit7 | Bit6 | Bit5 | Bit4        | Bit3            | Bit2 | Bit1 | Bit0 | Default |
|------|------|------|-------------|-----------------|------|------|------|---------|
|      |      |      | DATA_INT_EN | FREEFALL_INT_EN |      |      |      | 0X00    |

NEW\_DATA\_INT\_EN: new data interrupt, 0: disable, 1: enable

FREEFALL\_INT\_EN: freefall interrupt, 0: disable, 1: enable

#### Reg 0x19(Int\_Map\_0) : Read/Write

| Bit7 | Bit6      | Bit5      | Bit4      | Bit3 | Bit2    | Bit1 | Bit0      | Default |
|------|-----------|-----------|-----------|------|---------|------|-----------|---------|
|      | INT1_ORIE | INT1_S_TA | INT1_D_TA |      | INT1_AC |      | INT1_FREE | 0.00    |
|      | NT        | P         | P         |      | TIVE    |      | FALL      | 0X00    |

INT1\_ORIENT: map orientation interrupt to INT1, 0: disable, 1: enable

INT1\_S\_TAP: map single tap interrupt to INT1, 0: disable, 1: enable

INT1\_D\_TAP: map double tap interrupt to INT1, 0: disable, 1: enable

INT1\_ACTIVE: map active interrupt to INT1, 0: disable, 1: enable

INT1\_FREEFALL: map freefall interrupt to INT1, 0: disable, 1: enable





### Reg 0x1A(Int\_Map\_1) : Read/Write

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0          | Default |
|------|------|------|------|------|------|------|---------------|---------|
|      |      |      |      |      |      |      | INT1_NEW_DATA | 0X00    |

INT1\_NEW\_DATA: map new data interrupt to INT1, 0: disable, 1: enable

## Reg 0x20 (Int\_CONFIG) : Read/Write

| В | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1    | Bit0     | Default |
|---|------|------|------|------|------|------|---------|----------|---------|
|   |      |      |      |      |      |      | INT1_OD | INT1_LVL | 0X00    |

INT1\_OD: select output for INT1, 0: push-pull, 1: open-drain

INT1\_LVL: select active level for INT1, 0: low, 1: high

#### Reg 0x21 (Int\_Latch) : Read/Write

| Bit7      | Bit6 | Bit5 | Bit4 | Bit3 | Bit2                      | Bit1 | Bit0 | Default |
|-----------|------|------|------|------|---------------------------|------|------|---------|
| RESET_INT |      |      |      |      | Bit2 Bit1  LATCH_INT[3:0] |      |      | 0X00    |

RESET\_INT: reset or not, 1: reset all latched interrupt, 0: not reset all latched interrupt

LATCH\_INT[3:0]: 0000: non-latched

0001: tempoary latched 250ms 0010: tempoary latched 500ms

0011: tempoary latched 1s 0100: tempoary latched 2s 0101: tempoary latched 4s 0110: tempoary latched 8s

0111: latched

1000: non-latched

1001: tempoary latched 1ms 1010: tempoary latched 1ms 1011: tempoary latched 2ms 1100: tempoary latched 25ms 1101: tempoary latched 50ms

1110: tempoary latched 100ms

1111: latched





| Bit7 | Bit6 | Bit5 | Bit4   | Bit3         | Bit2 | Bit1 | Bit0 | Default |
|------|------|------|--------|--------------|------|------|------|---------|
|      |      |      | FREEFA | ALL_DUR[7:0] |      |      |      | 0X09    |

 $FREEFALL\_DUR[7:0]: delay\_time \ is \ (FREEFALL\_DUR[7:0] + 1) \times 2ms, \quad range \ from \ 2ms \ to \ 512ms,$  the default delay time is 20ms

#### Reg 0x23 (Freefall\_Th) : Read/Write

| Bit7 | Bit6 | Bit5 | Bit4  | Bit3        | Bit2 | Bit1 | Bit0 | Default |
|------|------|------|-------|-------------|------|------|------|---------|
|      |      |      | FREEF | ALL_TH[7:0] |      |      |      | 0X30    |

FREEFALL\_TH[7:0]: threshold value is freefall\_th[7:0] ×7.81mg, default value is 375mg

#### Reg 0x24 (Freefall\_Hy) : Read/Write

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2          | Bit1    | Bit0      | Default |
|------|------|------|------|------|---------------|---------|-----------|---------|
|      |      |      |      |      | FREEFALL_MODE | FREEFAL | L_HY[1:0] | 0X01    |

FREEFALL\_MODE: 0: single mode, 1: sum\_mode

FREEFALL\_HY[1:0]: freefall hysteresis time is FREEFALL\_HY[1:0] ×125mg

#### Reg 0x27 (Active\_Dur) : Read/Write

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1    | Bit0     | Default |
|------|------|------|------|------|------|---------|----------|---------|
|      |      |      |      |      |      | ACTIVE_ | DUR[1:0] | 0X00    |

ACTIVE\_DUR[1:0]: active duration time is (ACTIVE\_DUR[1:0]+1)ms

#### Reg 0x28(Active\_Th) : Read/Write

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3       | Bit2 | Bit1 | Bit0 | Default |
|------|------|------|------|------------|------|------|------|---------|
|      |      |      | ACTI | VE_TH[7:0] |      |      |      | 0X14    |

ACTIVE\_TH[7:0]: threshold of active interrupt

3.91mg/LSB (2g range)

7.81mg/LSB (4g range)

15.625mg/LSB (8g range)

31.25mg/LSB (16g range)

### Reg 0x2A(Tap\_Dur) : Read/Write

| Bit7      | Bit6      | Bit5 | Bit4 | Bit3 | Bit2 | Bit1       | Bit0 | Default |
|-----------|-----------|------|------|------|------|------------|------|---------|
| TAP_QUIET | TAP_SHOCK |      |      |      | Т    | AP_DUR[2:0 | 0]   | 0X04    |











TAP\_QUIET: 0: tap quiet duration 30ms, 1: tap quiet duration 20ms

TAP\_SHOCK: 0: tap shock duration 50ms, 1: tap shock duration 70ms

TAP\_DUR[2:0]: selects the length of the time window for the second shock

000: 50ms

001:100ms

010:150ms

011:200ms

100:250ms

101:375ms

110:500ms

111:700ms

#### Reg 0x2B(Tap\_Th) : Read/Write

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2       | Bit1 | Bit0 | Default |
|------|------|------|------|------|------------|------|------|---------|
|      |      |      |      | Т    | AP_DUR[4:0 | )]   |      | 0X0a    |

TAP\_TH[4:0]: threshold of tap interrupt.

62.5mg/LSB(2g range)

125mg/LSB(4g range)

250mg/LSB(8g range)

500mg/LSB(16g range)

#### Reg 0x2C(Orient\_Hy) : Read/Write

| Bit7 | Bit6      | Bit5     | Bit4 | Bit3       | Bit2        | Bit1     | Bit0       | Default |
|------|-----------|----------|------|------------|-------------|----------|------------|---------|
|      | ORIENT_HY | 'ST[2:0] |      | ORIENT_BLO | OCKING[1:0] | ORIENT_N | /IODE[1:0] | 0X18    |

ORIENT\_HYST[2:0]: set the hysteresis of the orientation interrupt, 1LSB is 62.5mg.

ORIENT\_BLOCKING[1:0]: select the block mode

00: no blocking

01: z\_axis blocking

10: z\_axis blocking or slope in any axis > 0.2g

11: no blocking

ORIENT\_MODE[1:0]: set the thresholds

00: symmetrical

01: high-asymmetrical

10: low-asymmetrical

11: synmmetrical





| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2      | Bit1    | Bit0 | Default |
|------|------|------|------|------|-----------|---------|------|---------|
|      |      |      |      |      | Z_BLOCKIN | IG[3:0] |      | 0X08    |

 $Z_BLOCKING[3:0]$ : defines the block acc\_z between 0g to 0.9375g

## Reg 0x38/0x39/0x3A (Offset\_compensation) : Read/Write

| Bit7 | Bit6 | Bit5 | Bit4  | Bit3     | Bit2 | Bit1 | Bit0 | Default |
|------|------|------|-------|----------|------|------|------|---------|
|      |      |      | OFFSE | T_X[7:0] |      |      |      | 0X00    |
|      |      |      | OFFSE | T_Y[7:0] |      |      |      | 0X00    |
|      |      |      | OFFSE | T_Z[7:0] |      |      |      | 0X00    |

OFFSET\_X[7:0]: the offset compensation value for X axis, 1LSB is 3.9mg

OFFSET\_Y[7:0]: the offset compensation value for Y axis, 1LSB is 3.9mg

OFFSET\_Z[7:0]: the offset compensation value for Z axis, 1LSB is 3.9mg

# 7. Digital Interface and Application Collection

The MSA301 supports I<sup>2</sup>C digital interface protocols for communications as slave with a host device.

## 7.1 I2C Interface Specification

I2C bus uses SCL and SDA as signal lines. Both lines are connected to VDDIO externally via pull-up resistors so that they are pulled high when the bus is free.

The 7-bits I2C device address of MSA301 is shown as following table.

Table 12: I<sup>2</sup>C Address.

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | W/R |
|------|------|------|------|------|------|------|-----|
| 0    | 1    | 0    | 0    | 1    | 1    | 0    | 0/1 |

Table 13: Electrical specification of the I2C interface pins

| Symbol                 | Parameter                                      | Condition | Min | Max | Unit |
|------------------------|------------------------------------------------|-----------|-----|-----|------|
| f <sub>scl</sub>       | Clock frequency                                |           |     | 400 | kHz  |
| t <sub>scl_l</sub>     | SCL low pulse                                  |           | 1.3 |     | us   |
| t <sub>scl_h</sub>     | SCL high pulse                                 |           | 0.6 |     | us   |
| T <sub>sda_setup</sub> | SDA setup time                                 |           | 0.1 |     | us   |
| $T_{sda\_hold}$        | SDA hold time                                  |           | 0.0 |     | us   |
| t <sub>susta</sub>     | Setup Time for a re-<br>peated start condition |           | 0.6 |     | us   |
| t <sub>hdsta</sub>     | Hold time for a start condition                |           | 0.6 |     | us   |
| t <sub>susto</sub>     | Setup Time for a stop condition                |           | 0.6 |     | us   |
| t <sub>buf</sub>       | Time before a new                              |           | 1.3 |     | us   |



Figure 6: I2C Timing Diagram

The I2C interface protocol has special bus signal conditions. Start (S), stop (P) and binary data conditions are shown below. At start condition, SCL is high and SDA has a falling edge. Then the slave address is sent. After the 7 address bits, the direction control bit R/W selects the read or write operation. When a slave device recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL (ACK) cycle.

At stop condition, SCL is also high, but SDA has a rising edge. Data must be held stable at SDA when SCL is high. Data can change value at SDA only when SCL is low.



Figure7: I2C Protocol

## 7.2 Application collection



Figure 8:  $I^2C$  application electrical collection



# 8. Package Description

## 8.1 Outline Dimensions



Figure 9: Package Pin Dimensions



### 8.2 Sensor orientation



Figure 10: Orientation of sensing axis



Figure 11: Output signal of sensing axis orientation



## 8.3 Tape and reel

The MSA301 is shipped in a standard pizza box.

The box dimension for 1 reel is: L\*W\*H=35cm\*35cm\*5cm.

MSA301 quantity: 5000pcs per reel, please handle with care.





|                |           | W                | 12.0±0.30 |
|----------------|-----------|------------------|-----------|
| A              | 2.20±0.10 | Е                | 1.75±0.10 |
| В              | 2.20±0.10 | F                | 5.50±0.10 |
| K <sub>o</sub> | 1.30±0.10 | $\mathbf{P}_{0}$ | 4.00±0.10 |
| D              | 1.50±8;}} | Pl               | 4.00±0.10 |
| T              | 0.30±0.05 | P.               | 2.00±0.10 |

Figure 62: Tape and reel dimension in mm

## 8.4 Reflow Profile

| Profile Feature                                             | Pb-Free Assembly |
|-------------------------------------------------------------|------------------|
| Average Ramp-Up Rate(Ts <sub>max</sub> to Tp)               | 3°C/second max   |
| Preheat                                                     |                  |
| Temperature Min(Ts <sub>min</sub> )                         | 150°C            |
| Temperature Max(Ts <sub>max</sub> )                         | 200°C            |
| Time(ts <sub>min</sub> to ts <sub>max</sub> )               | 60-180 seconds   |
| Time maintained above:                                      |                  |
| Temperature( $T_L$ )                                        | 217°C            |
| Time(t <sub>L</sub> )                                       | 60-150 seconds   |
| Peak/Classification Temperature(T <sub>P</sub> )            | 260°C            |
| Time within 5°C of actual Peak Temperature(t <sub>P</sub> ) | 20-40 seconds    |
| Ramp-Down Rate                                              | 6°C/second max   |
| Time 25°C to Peak Temperature                               | 8 minutes max    |



Figure 7: Reflow Profile









# **Revision History**

| Revision | Subjects (major changes since last revision) | Date       |
|----------|----------------------------------------------|------------|
| 1.0      | Initial Release                              | 2017-07-15 |
|          |                                              |            |
|          |                                              |            |
|          |                                              |            |
|          |                                              |            |

## 公司销售、技术支持联系方式

MEMSensing Microsystems(Suzhou, China)

Co., Ltd.

No. 99 Jinji Lake Avenue, Bldg. NW-09, Suite 501, Suzhou Industrial Park, China 215123

Phone: +86 512 62956055

Fax: +86 512 62956056

## (http://www.memsensing.com)

苏州敏芯微电子技术股份有限公司

苏州工业园区金鸡湖大道 99 号, NW-09 楼, 501 室

中国 215123

电话: +86 512 62956055

传真: +86 512 62956056

<u>Disclaimer</u>: specifications and characteristics are subject to change without notice. MEMSensing Microsystems Co., Ltd. assumes no liability to any customer, licensee or any third party for any damages or any kind of nature whatsoever related to using this technical data.