MATH 520 PROBLEM SET 9 SPRING 2017 BROWN UNIVERSITY SAMUEL S. WATSON

This problem set is due at the end of the day on Wednesday, the 19th of April 2017.

Problem 1

Suppose that A is an invertible matrix and that λ is an eigenvalue of A. Show that $\lambda \neq 0$ and that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .

Problem 2

Suppose that A is a square matrix each of whose rows has the same sum s. Show that s is an eigenvalue of A. Hint: don't use determinants; leverage the constant row sum to search for an eigenvector directly.

Note: as an example, the matrix

$$A = \left[\begin{array}{rrr} 2 & -2 & 4 \\ 1 & 1 & 2 \\ 0 & 3 & 1 \end{array} \right]$$

has a constant row sum of 4.

Problem 3

Find the eigenvalues of the following matrix, as well as the dimension of the eigenspace of each eigenvalue.

Problem 4

Suppose that \mathbf{v} is a nonzero vector in \mathbb{R}^3 , and suppose A is a 3×3 matrix with distinct real eigenvalues $\lambda_1 < \lambda_2 < \lambda_3$. Suppose that $|A^n \mathbf{v}|$ (the length of the vector $A^n \mathbf{v}$) converges to 0 as $n \to \infty$. Find all possible values of λ_1 .

Hint: the answer will be an open interval in \mathbb{R} .

Problem 5

In this problem we will show that if an $n \times n$ matrix A is diagonalizable with eigenvalues $\lambda_1, \ldots, \lambda_n$, then

$$\det A = \lambda_1 \cdots \lambda_n$$
.

Show this in two different ways:

- (a) Write $A = PDP^{-1}$, where D is the diagonal matrix whose diagonal entries are the eigenvalues of A and P is the matrix whose columns are the eigenvectors of A. Take the determinant of both sides.
- (b) Show that the determinant of A is equal to the characteristic polynomial of A evaluated at $\lambda = 0$, and show that the characteristic polynomial is equal to $(-1)^n(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$. Recall from basic algebra that every polynomial p(x) of degree n which has n roots factors as $p(x) = c(x r_1) \cdots (x r_n)$, where c is some nonzero constant and r_1, \ldots, r_n are the roots of p.