Taking control of graphics using R

Yvan Richard

Wellington R-Users Group 17 March 2014

Outline

1 Data preparation

2 Plotting

3 Subplots

Organisation

Separation of data preparation and plot generation

Link the whole process using a makefile:

Several sources:

- GIS shapefiles (NZ coastline, road networks)
- Spreadsheet with port locations and position tweaks (manual)
- Spreadsheets with import/export values and volumes

Data - shapefiles

Data - spreadsheets

	1	2	3	4	5	6
1	location	x	у	offset_x	offset_y	name_dir
2	Auckland Airport	174.763332	-36.84846	-150000	-45000	В
3	Auckland	174.763332	-36.84846	-150000	15000	T
4	Christchurch Airport	172.636225	-43.532054	130000	-40000	В
5	Lyttelton	172.636225	-43.532054	130000	20000	T
6	Dunedin Airport	170.502798	-45.87876	0	0	T
7	Port Chalmers	170.502798	-45.87876	100000	0	T
8	Gisborne	178.017649	-38.662334	80000	0	T
9	Greymouth	171.210762	-42.450392	0	0	T
10	Hamilton Airport	175.279253	-37.787001	0	0	T
11	Invercargill Airport	168.353773	-46.413187	0	0	T
12	Bluff	168.353773	-46.413187	70000	-80000	T
13	Napier	176.912018	-39.492844	100000	-20000	В
14	Nelson	173.283965	-41.270632	0	80000	T
15	New Plymouth	174.075228	-39.055625	-50000	40000	T

```
ports_loc <- read.csv('ports-locations.csv', as.is=T)
library(sp)
coordinates(ports_loc) <- ~ x + y
proj4string(ports_loc) <- "+init=epsg:4326"
ports_loc <- as.data.frame(spTransform(ports_loc, CRS("+init=epsg:2193")))</pre>
```

Data - preparation

Normalise data to have only one row per "point"

Not:

	1	2	3	4	5
1	Region	Year_2008	Year_2009	Year_2010	Year_2011
2	Auckland	23548	21543	23512	26128
3	Wellington	10256	11254	13985	12984

But:

	1	2	3
1	Region	year	value
2	Auckland	Year_2008	23548
3	Wellington	Year_2008	10256
4	Auckland	Year_2009	21543
5	Wellington	Year_2009	11254
6	Auckland	Year_2010	23512
7	Wellington	Year_2010	13985
8	Auckland	Year_2011	26128
9	Wellington	Year 2011	12984

Obtained using

```
library(reshape2)
melt(data, id.vars='Region', variable.name='year')
```

Spatial objects

Plot NZ coastline, and road networks:

xlims, ylims, colour_nz, size_large_roads are variables defined at the beginning of script.

routes_cols is a named vector relating discrete values of route traffic to their colour

Without theme

Viewports

Three viewports


```
pushViewport(
  viewport(layout = grid.layout(1, 3,
    widths = unit(c(bars_rel_max_width, 1, bars_rel_max_width),
    rep('grobwidth',3), list(plane_grob, plane_grob, plane_grob)),
    heights = grobHeight(plane_grob))))
```

Subplots - viewports

One of the two bar plots:

Add it to viewport 3:

```
pushViewport(viewport(layout.pos.row = 1, layout.pos.col = 3))
grid.draw(ggplotGrob(bars_vol))
upViewport()
```

Adding subplot to main plot

Adding grid objects in user coordinates

Example: add a reference scale for the bar plots (a rectangle the width of the longest bar)

Adding grid objects in user coordinates

Grid offers many primitive shapes for adding to plots

• grid.rect(), grid.lines(), grid.text(), grid.arrows(), ...

Different units can be conveniently combined (i.e. for adding spacing):

```
grid.text(x = unit(coord_x, 'native') + unit(3, 'mm'), ...)
```

Styling - ggplot

Use theme

```
ggplot(...) +
  theme(axis.ticks.length = unit(1.5, "mm"),
      panel.background = element_blank())
```

Or replace geoms with your own function to use consistent formats:

```
title_text <- function(...)
    geom_text(..., size=10, family='Helvetica',lineheight=0.8)

ggplot(...) + title_text('This is a title')</pre>
```

Styling - grid

Use gpar

```
grid.rect(gp = gpar(col='red', fill=NA, lwd=2))
```

Also make use of functions for consistency

```
gpar_title <- function(...)
    gpar(fontsize=10, fontfamily='Helvetica', lineheight=0.8, ...)
grid.text('This is a title', gp=gpar_title())</pre>
```

Benefits

Yes, it is not very easy, but:

- Scripts are easy to re-use and adapt
- Possibilities almost infinite
- Transparent
- · Robust link between data and plots
- · Easy to update with new data
- Try doing this in Excel...