Sistemas cognitivos Artificiales

Roberto Casado Vara

Introducción

Sobre mi

- Roberto Casado
- Formación:
 - Matemático
 - Doctor en sistemas inteligentes
- Investigador en IA y matemáticas aplicadas

Objetivos

- Adquirir conocimientos para:
 - la creación
 - diseño
 - Entramiento de sistemas cognitivos artificiales (redes neuronales)
- Aprender algunos tipos de redes neuronales y cuando usarlos

Sistemas Cognitivos Artificiales

- Nos centraremos en el aprendizaje profundo / deep learning.
- Área de la IA más "caliente" en la actualidad.
- Grandes avances en los últimos años, con resultados espectaculares en multitud de aplicaciones.
- Podemos ver la asignatura como una continuación de la de Aprendizaje Automático del primer cuatrimestre.
- Veremos tanto la teoría y fundamentos de las redes neuronales como su aplicación práctica.
- Primera mitad del curso más teórica, con una importante base matemática.
 Importante obtener una intuición de cómo funcionan las redes neuronales.

Sistemas Cognitivos Artificiales

- Laboratorios y trabajos: nos centraremos en la implementación de redes neuronales con TensorFlow y Keras.
- Lenguaje de programación: *Python* (versión 3). Necesario un conocimiento básico del lenguaje.
- Trabajaremos sobre Jupyter Notebooks / Google Colaboratory.

Contenidos

- Tema 1. Introducción al aprendizaje profundo
- Tema 2. Entrenamiento de redes neuronales
- Tema 3. Frameworks de aprendizaje profundo
- Tema 4. Aspectos prácticos en el entrenamiento de redes neuronales profundas
- Tema 5. Convolutional Neural Networks (CNN)
- Tema 6. Word Vectors
- Tema 7. Recurrent Neuronal Networks (RNN)
- Tema 8. Agentes inteligentes. Deep reinforcement Learning
- Tema 9. Redes neuronales en entornos Big Data
- Tema 10. Ecosistemas en la nube y puesta en producción de sistemas de inteligencia artificial
- Tema 11. Últimos avances en aprendizaje profundo

Evaluación

- Evaluación continua (40%)
 - Trabajo (5 puntos)
 - Caso grupal (3.5 puntos)
 - Test (1.1 puntos)
 - Asistencia (0.4 puntos/clase 2 clases)
 - Laboratorio (5 puntos)
 - En total 15 puntos, máximo 10 puntos

Ejemplo: Alumno A obtiene 11/15 -> 4 puntos Alumno B obtiene 7.5/15 -> 3 puntos

Examen final (60 %)

Evaluación Continua

- Trabajos
 - 10/05 Trabajo (5 puntos)
 - 24/05 Trabajo en grupo (3.5 puntos)
 - 14/06 Laboratorio (5 puntos)
- Test (un test por tema) (0.1 puntos por tema)
 Fecha de entrega: antes de la fecha de examen final
- Asistencia a clase presencial (0.2/clase max 2 clases)

Cada uno debería mirar en el apartado programación del aula virtual para ver el sistema de calificación de su grupo.

Examen Final

Parte 1: Teoría

preguntas teóricas o tipo test

Parte 2: Preguntas de desarrollo

preguntas prácticas sobre diferentes partes de la asignatura

Los alumnos del especialista no tienen examen.

Calendario (I)

SEMANAS	TEMAS	ACTIVIDADES (15.0 PUNTOS)	CLASES EN DIRECTO
Semana1 22-mar-2021 - 26-mar-2021	Tema 1. Introducción al aprendizaje profundo 1.1. ¿Cómo estudiar este tema? 1.2. Introducción al aprendizaje profundo 1.3. Historia y casos de éxito del aprendizaje profundo 1.4. Repaso de redes neuronales e inspiración biológica	Asistencia a 2 clases en directo a lo largo de la asignatura (0,2 puntos cada una) Test tema 1 (0,1 puntos) Fecha de entreps: 11/07/2021	Presentación de la asignatura y clase del tema 1
Semana2 29-mar-2021 - 02-abr-2021	Tema 2. Entrenamiento de redes neuronales 2.1. ¿Cómo estudiar este tema? 2.2. Funciones de coste 2.3. Entrenamiento con gradient descent		Clase del tema 2
Semana3 05-abr-2021 - 09-abr-2021	Tema 2. Entrenamiento de redes neuronales (continuación) 2.4. Backpropagation	Test tema 2 (0.1 puntos) Fecha de entreps: 11/07/2021	Clase del tema 2 Parte 2
Semana4 12-abr-2021 - 16-abr-2021	Tema 3. Frameworks de aprendizaje profundo 3.1. "Cómo estudiar este tema? 3.2. Frameworks de aprendizaje profundo 3.3. TensorFlow. Grafos de computación 3.4. Otros frameworks 3.5. Keras	Test tema 3 (0.1 puntos) Fecha de entrega: 11/07/2021	Clase del tema 3
Semana5 19-abr-2021 - 23-abr-2021	Tema 4. Aspectos prácticos en el entrenamiento de redes neuronales profundas 4.1. ¿Cómo estudiar este tema? 4.2. Unidades de activación 4.3. Inicialización de parámetros 4.4. Batch normalization		Clase del tema 4
Semana6 26-abr-2021 - 30-abr-2021	Tema 4. Aspectos prácticos en el entrenamiento de redes neuronales profundas (continuación) 4.5. Optimización avanzada 4.6. Regularización	Trabajo: Conceptos generales de redes neuronales (5.0 puntos) Fecha de entrega: 10/05/2021 Test tema 4 (0.1 puntos) Fecha de entrega: 11/07/7021	Clase del tema 4 Parte 2 y presentación de Trabajo: Conceptos generales de redes neuronales

Cada uno debería mirar en el apartado programación del aula virtual para ver el calendario concreto y las actividades de su grupo.

Calendario (II)

SEMANAS	TEMAS	ACTIVIDADES (15.0 PUNTOS)	CLASES EN DIRECTO
Semana7 03-may-2021 - 07-may-2021	Tema 5. Convolutional Neural Networks (CNN) 5.1. ¿Cómo estudiar este tema? 5.2. Introducción a las CNN 5.3. Convolution layers		Clase del tema 5
Semana8 10-may-2021 - 14-may-2021	Tema S. Convolutional Neural Networks (CNN) (continuación) 5.4. Arquitecturas CNN para problemas de visión por computador 5.5. Data augmentation 5.6. Transfer Learning	Caso grupal: Reconocimiento de imágenes más complejas utilizando redes neuronales convolucionales (3.5 puntos) Fecha de entrega: 24/05/2021 Test tema 5 (0.1 puntos) Fecha de entrega: 11/07/2021	Clase del tema 5 Parte 2 y presentación del Caso grupal: Reconocimiento de imágenes más complejas utilizando redes neuronales convolucionales
Semana9 17-may-2021 - 21-may-2021	Tema 6. Word Vectors 6.1. ¿Como estudiar este tema? 6.2. Representaciones del lenguaje 6.3. Word2Vec	Test tema 6 (0.1 puntos) Fecha de entrega: 11/07/2021	Clase del tema 6 Conclusiones de Trabajo: Conceptos generales de redes neuronales
Semana10 24-may-2021 - 28-may-2021	Tema 7. Recurrent Neuronal Networks (RNN) 7.1. ¿Cómo estudiar este tema? 7.2. Recurrent Neural Networks 7.3. Modelos del lenguaje con RNN		Clase del tema 7
Semana11 31-may-2021 - 04-jun-2021	Tema 7. Recurrent Neuronal Networks (RNN) (continuación) 7.4. Arquitecturas LSTM y GRU	Laboratorio: RNN y sus aplicaciones en las series temporales (5.0 puntos) Fecha de entrega: 14/06/2021 Test tema 7 (0.1 puntos) Fecha de entrega: 11/07/2021	Clase del tema 7 Parte 2 y presentación del laboratorio: RNN y sus aplicaciones en las series temporales Laboratorio x2h
Semana12 07-Jun-2021 - 111-Jun-2021	Tema 8. Agentes inteligentes. <i>Deep Reinforcement Learning</i> 8.1. ¿Cómo estudiar este tema? 8.2. <i>Reinforcement Learning</i> 8.3. Procesos de decisión de Markov 8.4. <i>Deep Q-Learning</i>	Test terna 8 (0.1 puntos) Fecha de entrega: 11/07/2021	Clase del tema 8 Conclusiones del caso grupal: Reconocimiento de imágenes más complejas utilizando redes neuronales convolucionales

Calendario (III)

SEMANAS	TEMAS	ACTIVIDADES (15.0 PUNTOS)	CLASES EN DIRECTO
Semana13 14-jun-2021 - 18-jun-2021	Tema 9. Redes neuronales en entornos <i>Big Data</i> 9.1. ¿Como estudiar este tema? 9.2. GPU para entrenamiento de redes neuronales profundas 9.3. Entrenamiento distribuido	Test tema 9 (0.1 puntos) Fecha de entrega: 11/07/2021	Clase del tema 9
Semana14 21-jun-2021 - 25-jun-2021	Tema 10. Ecosistemas en la nube y puesta en producción de sistemas de inteligencia artificial 10.1. ¿Cómo estudiar este tema? 10.2. Senvidores de modelos de inteligencia artificial 10.3. Ecosistemas en la nube 10.4. Aspectos prácticos de la puesta en producción de sistemas de machine learning	Test tema 10 (0.1 puntos) Fecha de entrega: 11/07/2021	Clase del tema 10 Conclusiones del laboratorio: RNN y sus aplicaciones en las series temporales
Semana15 28-jun-2021 - 02-jul-2021	Tema 11. Últimos avances en aprendizaje profundo 11.1. "Como estudiar este tema? 11.2. Generative Adversarial Networks (GAN) 11.3. Meta-learning	Testtema 11 (0.1 puntos) Fecha de entrega: 11/07/2021	Clase del tema 11 Clase de explicación del modelo de examen
Semana16 05-jul-2021 - 09-jul-2021	Semana de exámenes		

Sistemas Cognitivos Artificiales

Roberto Casado Vara

Tema 1: Introducción al aprendizaje profundo

- Durante años, la inteligencia artificial se fundamentaba principalmente en sistemas de reglas y conocimiento definidos por humanos.
- Estos sistemas eran capaces de resolver problemas basados en reglas formales que suelen resultar difíciles para las personas.
- Sin embargo, tareas sencillas e intuitivas para una persona (como reconocer un objeto) son de gran complejidad para un ordenador.

- Estas tareas de mayor complejidad para una máquina son complicadas de expresar en términos de sistemas de reglas y bases de datos de conocimiento.
- Esto dio lugar al desarrollo del machine learning o aprendizaje automático como una subárea de la inteligencia artificial.
- En machine learning, un sistema obtiene su propio conocimiento mediante la extracción de patrones a partir de la experiencia, dada en forma de datos.
 - Por ejemplo, un sistema de aprendizaje automático puede ser entrenado para clasificar emails en spam o no spam buscando patrones en el lenguaje.

- La representación de los datos es crucial para el éxito de un algoritmo de machine learning
 - Igual que, de hecho, para nosotros: 523+4 vs DXXIII+IV
- En muchas ocasiones, la definición de los datos o features que va a utilizar un sistema de machine learning es diseñada explícitamente por personas.
 - Por ejemplo, en 1990 un estudio permitía predecir la práctica de una cesárea con *logistic regression* a partir de una serie de datos (features) que un medico obtenía de una resonancia magnética.

El mismo algoritmo, aplicado directamente a los píxeles de la imagen (otra representación de los datos), tendría una capacidad nula de prodicción.

predicción.

- ¿Cómo definir una serie de features adecuadas para nuestro problema? No es sencillo.
- Por ejemplo, si queremos saber si hay un camión en una foto. ¿Qué features deberían estar presentes?
 - ¿Ruedas? ¿Cuántas?
 - ¿Presencia de remolque?
 - ¿Presencia de una carretera?

- Idea del **Deep Learning**: obtener representaciones expresadas en términos de otras representaciones más sencillas.
- En otras palabras,

Obtener representaciones basadas en una jerarquía de conceptos, construyendo conceptos complejos a partir de conceptos simples

- Modelo por excelencia: la red neuronal o neural network, también conocida como multilayer perceptron.
- Una red neuronal es una función matemática que calcula una salida a partir de una entrada y está definida por una serie de nodos, unidades o neuronas distribuidas en capas. Cada nodo representa una función simple que depende de los nodos de la capa anterior.

Jerarquía de conceptos: representación de creciente complejidad

Fuente: The Deep Learning Book, Ian Goodfellow

- Aprender una función directa de píxeles a objeto sería prácticamente imposible. Una red neuronal divide la tarea en una serie de problemas más sencillos.
- Dos formas de ver el por qué de "deep":
 - 1. Jerarquía profunda de conceptos.
 - 2. Número elevado de capas, creando una deep neural network.

Jerarquía de conceptos: representación de creciente complejidad

Fuente: The Deep Learning Book, Ian Goodfellow

Sistemas Cognitivos Artificiales Roberto Casado Vara

Historias y casos de éxito del aprendizaje profundo

- Si bien el *deep learning* está viviendo su edad dorado ahora mismo, éste ha existido en cierta medida desde hace varias décadas con distintos nombres.
- La inspiración biológica ha sido un importante punto en la historia del aprendizaje profundo, partiendo de la idea de que el cerebro es un ejemplo de aprendizaje e inteligencia.
- En la actualidad, el campo no está guiado por la neurociencia, ya que nuestra comprensión del cerebro no es lo suficientemente avanzada. Aún así, sigue existiendo un intercambio de ideas entre los dos campos.

- Primeros modelos inspirados en el funcionamiento de una neurona:
 - Neurona de McCulloch-Pitts (1943)
 - Perceptrón (1958)
- En 1960, el sistema **ADALINE** introduce un sistema de entrenamiento parecido al *stochastic gradient descent*, utilizado en la actualidad para entrenar redes neuronales.

Perceptrón (1958)

- Años 80: renovado interés en las redes neuronales, principalmente gracias al movimiento interdisciplinar del conexionismo.
- La idea del conexionismo es que un gran número de pequeñas unidades de cómputo puede alcanzar un comportamiento inteligente mediante su conexión en una red.
- El algoritmo de backpropagation, clave en el entrenamiento de redes neuronales, data de esta época, así como la idea de las representaciones distribuidas.

- Años 90: el interés por las redes neuronales decae ante la dificultad de obtener resultados.
- Otros algoritmos de machine learning, como SVM, copan durante años el interés de la comunidad.
- En esta década se introdujeron las redes secuenciales LSTM, tan utilizadas en la actualidad, si bien en su momento no despertaron gran interés.

- A partir de 2006: Varios avances conseguidos por investigadores como Geoffrey Hinton, Yoshua Bengio y Yann LeCun vuelven a situar las redes neuronales en el centro del tablero.
- Año a año, el entrenamiento de redes neuronales empieza a obtener mejores resultados y comienza a batir récords en una gran cantidad de problemas clásicos de la inteligencia artificial.
- 2012 actualidad: Explosión del deep learning. Deep learning hasta en la sopa...

- Si gran parte de los algoritmos y técnicas ya estaban inventadas, ¿por qué tardó tanto el aprendizaje profundo en despegar?
 - Las redes neuronales, aunque funcionales, eran muy difíciles de entrenar y en muchas ocasiones no daban buenos resultados.
- Factores clave del éxito del deep learning:
 - Aumento de la cantidad disponible de datos. Los datasets han pasado de tener cientos o miles de puntos a millones. Las redes neuronales son algoritmos complejos y necesitan de una gran cantidad de datos.
 - 2. Mejora de la capacidad de cómputo. Facilita la experimentación y el entrenamiento de modelos más complejos. Los avances del *hardware*, como la utilización de tarjetas gráficas, han ayudado en gran medida la desarrollo del campo.

Computer vision

- Probablemente el área donde el aprendizaje profundo ha tenido un mayor impacto.
- En 2012, una convolutional neural network ganó por primera vez y con un gran margen la competición de reconocimiento de objetos lmageNet. Durante los años siguientes, los avances fueron aún mayores.
- Grandes avances en problemas como detección de objetos, segmentación, etc.

Fuente: https://bigsnarf.wordpress.com/2016/11/07/faster-r-cnn-pedestrian-and-car-detection/

Speech Recognition

- Otra área donde los mejores sistemas actuales funcionan con redes neuronales profundas.
- Ha facilitado el desarrollo de asistentes virtuales e interfaces por voz.

Fuente: Wikimedia Commons

Reinforcement Learning

- Sistemas que aprenden a jugar a videojuegos a partir de imágenes.
- Victoria de AlphaGo contra Lee Sedol en 2016.

Fuente: https://www.educa2.madrid.org/web/centro.ies.albeniz.alcala/club-de-go y https://www.youtube.com/watch?v=V1eYniJ0Rnk

Procesamiento del lenguaje natural

- Traducción (Google Translate utiliza redes neuronales)
- Análisis de sentimientos.
- Modelos del lenguaje.

Sistemas Cognitivos Artificiales Roberto Casado Vara

Repaso de redes neuronales

¿Qué son las redes neuronales?

Para responder a esta pregunta vamos a recurrir a las nuevas tecnologías y a los creadores de contenido científico.

- ¿Qué es una red neuronal?
 - https://www.youtube.com/watch?v=uwbHOpp 9xkc&list=RDCMUCy5znSnfMsDwaLIROnZ7 Qbg&index=2&ab_channel=DotCSV

Videos muy recomendados

- ¿Qué es una neurona (artificial)?
 - https://www.youtube.com/watch?v=MRIv2IwFTPg&list= RDCMUCy5znSnfMsDwaLIROnZ7Qbg&start_radio=1& t=11&ab_channel=DotCSV
- But what is a Neural network? (carga matemática alta)
 - https://www.youtube.com/watch?v=aircAruvnKk&ab_ch annel=3Blue1Brown

¿Miedo colectivo al Deep Learning?

Media saying Al will take over the world

My Neural Network

Al will take over soon

¿Dudas?

www.unir.net