

# Report 19.11.20

19/11/2020

Matteo Perotti Luca Bertaccini Pasquale Davide Schiavone Stefan Mach

Professor Luca Benini Integrated Systems Laboratory ETH Zürich



## **Summary**

- TinyFPU ISCAS paper
- Update on FP libraries



## **ISCAS Paper**

- Deadline has been extended again
- The paper is ready
- New plots

### **Performance - FP64**



• Linear scale (y-axis)

• Logarithmic scale (y-axis)

## Power - FP64





• Linear scale (y-axis)

Linear scale (y-axis)

ETH Zürich | 5 |

## **Energy Efficiency - FP64**





• Linear scale (y-axis)

Logarithmic scale (y-axis)

#### **RISC-V Summit**

 Presentation: Tuesday, 8 December 2020 11:00am - 11:20am PST (Pacific Standard Time, GMT-8)

https://tmt.knect365.com/risc-v-summit/agenda/1/#system-architectures\_a-tin y-risc-v-floating-point-unit 11-00am

Already recorded



## **Next Steps (1)**

- Zfinx implementation of Snitch + 32-bit TinyFPU to achieve the lowest area overhead to support FP in HW
- Snitch has already some **external integer functional units** that need data contained in the **INT register file**
- There is already an infrastructure that we can adapt to our case (just two operands so far)



## Next Steps (2)

- Measure libgcc's single functions performance on Snitch
- So far we measured the performance using entire algorithms



## **FP library**

Completed and tested: 18 different conversion functions

To test: fast-addition32, div32

To write: fast-addition64, div64

## **DAC** paper

#### RVfplib

- RVfplib code size vs libgcc and SEGGER
  - Single functions (RVfplib vs. libgcc && RVfplib nd vs. SEGGER)
  - Benchmarks ".text+.rodata" (RVfplib vs. libgcc)
- RVfplib execution latency with SPIKE
  - Single latencies with CV32E40P (real processor)
  - Benchmarks with SPIKE (fast, CPI == 1)

#### **Code Size - Libraries**







## **Code Size - Libraries**

Code size (B) of RVfplib and libgcc FP functions



#### **Code Size - Libraries**







### **Code Size - Benchmarks**



Avg. 35% lower code size (.text+.rodata)



## **Average Latency - Libraries**

Avg speedup: 1.75x





### **Code Size - Benchmarks**

Avg speedup: 1.51x

#### SPIKE cycle count - Benchmarks

