

TECH STAR SUMMIT 2024

Name: Ms. Vana kusuma U Register Number: 192119042 Guided by Dr. K. Vaidhegi

Phytochemical profiling of *Catharanthus roseus* for Potential Anti Hepatitis-B activity, an *Insilico* Approach

INTRODUCTION

- > Hepatitis B can lead to acute and habitual liver complaints being a major cause of liver- related complications, including cirrhosis and liver cancer.
- > Common modes of HBV include unprotected sexual intercourse, sharing needles or syringes, mother-to-child transmission during childbirth, and exposure to infected blood or open sores.
- Tenofovir is an antiviral medication that is commonly used in the treatment of chronic hepatitis B infection. Available in two forms: tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF)
- The medicinal properties of Catharanthus roseus and its inherent alkaloids, such as vincristine and vinblastine have been used in the treatment of certain cancers.
- The aim of this present research introduces an insilico approach to identify a novel potential ligand to target the disease causing protein thereby giving a futuristic perspective to develop a novel sustainable medication against effective diseases.

Hepatitis B Virus characteristics

MATERIALS AND METHODS

RESULTS

Protein sequence	Antigenic properties						
	VaxiJen		Immunomedicine			-	
	Antigenic score	Antigenic nature	Average antigenic	Antigenic determinants	Antigenic plot		(
	= 0.4		propensity		sequence		
DNA protease	0.5872	Probable antigen	1.0488	35	10 (10 hour) 1 (10 hour)		3
	sequence	Protein sequence Score Threshold = 0.4 DNA 0.5872	Protein sequence Antigenic score Threshold = 0.4 DNA 0.5872 Probable	Protein sequence Antigenic score rature Threshold = 0.4 DNA Natigenic nature antigenic propensity Artigenic nature 1.0488	Protein sequence Antigenic score Threshold = 0.4 DNA NaxiJen Antigenic nature nature propensity Antigenic nature natigenic propensity 1.0488 Antigenic antigenic determinants	Protein sequence Antigenic score Threshold = 0.4 DNA NaxiJen Antigenic Average antigenic propensity Antigenic antigenic propensity Antigenic determinants plot sequence 1.0488 35	Protein sequence Antigenic score nature Threshold = 0.4 DNA 0.5872 Probable 1.0488 Immunomedicine Average antigenic determinants plot sequence

Fig. 1. Bar chart representing the mean binding affinity of Tenofovir and Ligand

Table . Antigenic Properties of the selected epitopes of Hepatitis-B virus

2D and 3D representations of docking results of HBV

DISCUSSION AND CONCLUSION

- GC-MS analysis was used to identify four compounds, which were then used as ligands in docking tests. 2-Furancarboxaldehyde, 5-(hydroxymethyl), 1H-pyrrole, 2,5-dihydro-1-nitroso, and 3,7,11,15-Tetramethyl-2-hexadecen-1-ol are the ligands that have been found.
- The secondary protein structures with access to the number of alpha helices, beta turns, and coils of the antigenic chains of DNA protease were obtained from tabulated SOPMA findings.
- The comparison between the antidrug against Hepatitis-B as control group and ligands of Catharanthus roseus as study group indicates a statistical significance between the two groups (p=0.018, p < 0.05)
- The epitope with PDB ID 2HN7 was discovered to be the most suitable receptor for targeting antiviral medication against Hepatitis-B.
- The current study merely demonstrates an immunoinformatic method for assessing a potential drug as an alternative to Tenofovir and their interactions with the phytochemicals found in C.roseus, which will spur further insilico research to develop an effective Hepatitis-B antiviral drug.

BIBLIOGRAPHY

- > Cox, Jeffrey T., and Dedrick I. Owen. 2013. Hepatitis B: New Research. Nova Science Publishers.
- > Curry, Helen Anne. 2012. "Naturalising the Exotic and Exoticising the Naturalised: Horticulture, Natural History and the Rosy Periwinkle." Environment and History 18
- > Jenh, Alice M., Chloe L. Thio, and Paul A. Pham. 2009. "Tenofovir for the Treatment of Hepatitis B Virus." Pharmacotherapy 29 (10): 1212–27.
- > Khan, Abbas, Omar Ahsan, Dong-Qing Wei, Jawad Khaliq Ansari, Muzammil Hasan Najmi, Khalid Muhammad, and Yasir Waheed. 2021. "Computational Evaluation of Abrogation of HBx-Bcl-xL Complex with High-Affinity Carbon Nanotubes (Fullerene) to Halt the Hepatitis B Virus Replication." Molecules **26** (21). https://doi.org/10.3390/molecules26216433
- > Neimark, Benjamin. 2012. "Green Grabbing at the 'pharm' Gate: Rosy Periwinkle Production in Southern Madagascar." The Journal of Peasant Studies 39 (2): 423–45.
- > Nishida, Craig Hiromi. 1988. DNA Polymerase D and DNA Repair: DNA Repair Synthesis in Human Fibroblasts Requires DNA Polymerase D.