Hongchang Gao Spring 2024

What is clustering?

- Unsupervised Learning
 - Given: only samples, NO labels
 - Clustering: find meaningful groups of samples s.t.
 - Samples in the same group are "similar"
 - Samples in different groups are "dissimilar"

Know **NOTHING** about labels

Examples

• Image Segmentation

http://people.cs.uchicago.edu/ pff/segment

Examples

Topic discovery

athletics	cricket	${f football}$	\mathbf{rugby}	tennis
olymp	wicket	chelsea	wale	seed
athlet	cricket	arsen	ireland	63
indoor	test	leagu	robinson	open
athen	pakistan	club	england	64
kenteri	seri	${ m unit}$	nation	76
thanou	bowl	liverpool	franc	australian
greek	india	mourinho	rugbi	roddick
iaaf	south	football	six	75
drug	onedai	manag	scotland	hewitt
race	africa	manchest	itali	beat

- How to measure the similarity between different samples?
 - Euclidean distance

$$d = \|\mathbf{x} - \mathbf{y}\|_2 = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_d - y_d)^2}$$

- Large distance, small similarity
- Small distance, large similarity

$$d = \|\mathbf{x} - \mathbf{y}\|_2 = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_d - y_d)^2}$$

Compute the similarity between different samples

Cluster samples together with high similarity

- 1. Partition methods
 - Construct various partitions and then evaluate them by some criterion
 - K-means
 - Gaussian mixture model
 - Spectral clustering

- 2. Hierarchical methods
 - Create a hierarchical decomposition of the set of objects using some criterion
 - Bottom up agglomerative
 - Top down divisive

- Given a dataset $\{x_1, x_2, \dots, x_n\}$, K-Means partitions it into K clusters:
 - Each cluster has a cluster center, called centroid
 - K is specified by the user

- 1. Randomly initialize the cluster centroid $\mu_1, \mu_2, \cdots, \mu_K$
- 2. Repeat until no change in μ_i
 - 2.1 Classify N samples in terms of the nearest cluster centroid
 - 2.2 Re-compute the cluster centroid

- 1. Randomly initialize the cluster centroid $\mu_1, \mu_2, \cdots, \mu_K$
- 2. Repeat until no change in μ_i
 - 2.1 Classify N samples in terms of the nearest cluster centroid
 - 2.2 Re-compute the cluster centroid

- 1. Randomly initialize the cluster centroid $\mu_1, \mu_2, \cdots, \mu_K$
- 2. Repeat until no change in μ_i
 - 2.1 Classify N samples in terms of the nearest cluster centroid
 - 2.2 Re-compute the cluster centroid

$$\mu_1 = \frac{1}{|C_1|} \sum_{\mathbf{x}_i \in C_1} \mathbf{x}_i$$

$$\mu_2 = \frac{1}{|C_2|} \sum_{\mathbf{x}_i \in C_2} \mathbf{x}_i$$

- 1. Randomly initialize the cluster centroid $\mu_1, \mu_2, \cdots, \mu_K$
- 2. Repeat until no change in μ_i
 - 2.1 Classify N samples in terms of the nearest cluster centroid
 - 2.2 Re-compute the cluster centroid

$$\mu_1 = \frac{1}{|C_1|} \sum_{\mathbf{x}_i \in C_1} \mathbf{x}_i$$

$$\mu_2 = \frac{1}{|C_2|} \sum_{\mathbf{x}_i \in C_2} \mathbf{x}_i$$

• Strength:

- Simple: easy to understand and implement
- Efficient: O(KNT)
 - K is the number of clusters
 - N is the number of samples
 - T is the number of iterations

• Weakness:

- Only applicable when the mean is defined
- Sensitive to outliers
- Sensitive to initialization

Outliers

Remove some data points that are much further away from the centroids

• Sensitive to initialization

Random selection of seeds (centroids)

Iteration 1

Iteration 2

Random selection of seeds (centroids)

Iteration 1

Iteration 2

- Agglomerative clustering:
 - Each sample is a cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there's only one cluster left

- How to measure the similarity between two clusters?
 - 1. Single link:
 - Distance of two closest samples in each cluster
 - Potentially long and skinny clusters

$$d_{\min}(D_i, D_j) = \min_{x \in D_i, y \in D_j} ||x - y||$$

	y1	y2	у3
x1	2	5	7
x2	9	4	6

- How to measure the similarity between two clusters?
 - 2. Complete link:

 - Tighter clusters

	y1	y2	у3
x1	2	5	7
x2	9	4	6

- How to measure the similarity between two clusters?
 - 3. Average link:
 - Average distance of all pairs
 - Robust against noise
 - Most widely used method

$$d_{avg}(D_i, D_j) = \frac{1}{n_i n_j} \sum_{x \in D_i} \sum_{y \in D_j} ||x - y||$$

	y1	y2	у3
x1	2	5	7
x2	9	4	6

Single link example

$$d_{(1,2),3} = \ d_{(1,2),4} = \ d_{(1,2),5} = \$$

$$d_{(1,2,3),(4,5)} = \min\{d_{(1,2,3),4},d_{(1,2,3),5}\} = 5$$

Complete Link

Step 0: $\{x_1\}$, $\{x_2\}$, $\{x_3\}$, $\{x_4\}$, $\{x_5\}$

	X_1	X_2	X_3	X_4	X_5
X_1	0				
X_2	1	0			
X_3	5	2	0		
X_4	10	8	6	0	
X_5	9	7	4	3	0

Step 1: $\{x_1, x_2\}, \{x_3\}, \{x_4\}, \{x_5\}$

	{X_1, x_2}	X_3	X_4	X_5
{X_1,x_2}	0			
X_3	5	0		
X_4	10	6	0	
X_5	9	4	3	0

 $d(\{x_1, x_2\}, x_3) = \max\{d(x_1, x_3), d(x_2, x_3)\} = \max\{5, 2\} = 5$ $d(\{x_1, x_2\}, x_4) = \max\{d(x_1, x_4), d(x_2, x_4)\} = \max\{10, 8\} = 10$ $d(\{x_1, x_2\}, x_5) = \max\{d(x_1, x_5), d(x_2, x_5)\} = \max\{9, 7\} = 9$

Complete Link

Step 2: {x_1, x_2}, {x_3}, {x_4, x_5}

	{X_1, x_2}	X_3	X_4	X_5
{X_1,x_2}	0			
X_3	5	0		
X_4	10	6	0	
X_5	9	4	3	0

	{X_1, x_2}	X_3	{X_4, x_5}
{X_1,x_2}	0		
X_3	5	0	
{X_4, x_5}	10	6	0

$$d({x_4, x_5}, {x_1, x_2})=max{d(x_4, {x_1, x_2}), d(x_5, {x_1, x_2})}=max{10, 9}=10$$

$$d({x_4, x_5}, x_3)=max{d(x_4, x_3), d(x_5, x_3)}=max{6, 4}=6$$

Complete Link

Step 3: {x_1, x_2, x_3}, {x_4, x_5}

	{X_1, x_2}	X_3	{X_4, x_5}
{X_1,x_2}	0		
X_3	5	0	
{X_4, x_5}	10	6	0

	{X_1, x_2, x_3}	{X_4, x_5}
{X_1,x_2, x_3}	0	
{X_4, x_5}	10	0

$$d({x_4, x_5}, {x_1, x_2, x_3})=max{d({x_4, x_5}, {x_1, x_2}), d({x_4, x_5}, x_3)}=max{10, 6}=10$$

- Properties:
 - No need to specify the number of clusters in advance
 - Not scale well
 - O(N^2)