1 AVX ZAPISKI 1

1 AVX zapiski

Avx slang:

• upper half: 127-255

• lower half: 0-127

1.1 Printing avx register

One can print avx register like this:

```
_m256d reg=_mm256_set_pd(1,2,3,4); // sets reg[255-192]=1 and reg[0-63]=4 double *p = (double*)&reg std::cout << p[0]<<' ' << p[1]<<' ' << p[2]<<' ' << p[3] << std::endl; double arr[4]; _mm_storeu_pd(arr, reg); std::cout << arr[0]<<' ' << arr[1]<<' ' << arr[2]<<' ' '<< arr[3] << std::endl;
```

This will print 1 2 3 4. Thus, it starts at $0 \rightarrow$ at the lower part of register! The same happens in the second case - where we print array called arr.

1.2 Fast sign change and absolute value of float register

SOURCE

Changing the sign of float values using SSE code The IEEE 754 floating point format defines the memory layout for the C++ float datatype. It consists of a one bit sign, the 8 bit exponent and 23 bits that store the fractional part of the value. float $x = [sign\ (1\ bit)\ |\ exponent\ (8bit)\ |\ fraction\ (23bit)]$ We can use this knowledge about the memory-layout in order to change the sign of floating point values without the need for floating point arithmetic. For example, calculating the absolute value of a floating point number is equivalent to setting the sign bit to zero. In SSE we can do this for four float values simultaneously by using a binary mask and logical operations: