Chapter 2

2.2.7 Excercises for Section 2.2

Excercise 2.2.1

a)

$$S \rightarrow S1 \ S2 *$$

$$S1 \rightarrow S3 \ S4 +$$

$$S2 \rightarrow a$$

$$S3 \rightarrow a$$

$$S4 \rightarrow a$$

b)

c) The language generated is the post-fix notation of numbers with multiplication and addition operands.

Excercise 2.2.2

- a) The language created is $0^n 1^n$, where $n \in N^*$.
- b) This language is the prefix notation of the addition and difference of the digit a.
- c) The language is $[(^n)^n]^m$, where $m, n \in N$ and for every diffferent m the n is different, so closed parenthesis of any depth and length.

- d) The language is $(a^nb^n)^m$, where $m,n\in N$ and for different m, the n is also different. So different sequences of a and b where both letter have the same number of appearances.
- e) This is a grammar to create regular languages (Wikipedia link).

2.2.3

The grammars that are ambiguous are:

• Grammar c: Creating the string "()()" can be done in two ways Way A:

Way B:

• Grammar d: Creating the string "abab" can be done in two ways: Way A:

Way B:

 \bullet Grammar e: Creating the string "a a+a" can be done in two ways: Way A:

Way B:

Excercise 2.2.4

a) This is called reverse polish notation (Wikipedia Link)

$$expr \rightarrow expr \ expr \ op \ | \ digit$$

b)