和电源大咖一起夯基础 (第一部分)

课程回放:

请微信扫描二维码, 获取课程观看链接

AHEAD OF WHAT'S POSSIBLE™

ADI智库

一站式电子技术宝库

第一讲: 电源系统构成及基础原理、概念

微信扫描二维码 获取课程观看链接

电源系统架构

效率及静态电流的测试

- 1.效率测试
- Pout/Pin
- 冷机效率
- 热机效率
- 2.静态电流测试
- 如何使用普通的3位半万用表测量几微安的静态电流?

输出测试

1.输出电压调整率

- 源调整率
- 负载调整率
- 温度调整率

2.纹波测量

- 20MHz 带宽
- 最小的接地环
- 测量位置

3.动态负载测试

- 电子负载
- 变化斜率
- 电容对动态的影响
- 电感对动态的影响

纹波如何产生

- ◆ 电感的纹波电流施加在电容上
- ◆ 容性分量和阻性分量

$$I_C = I_{Ripple}$$

◆ 纹波电流流过电容产生纹波电压

$$V_{out}(t) = V_{dc} + V_{ac}(t)$$

纹波如何测量

• 减小地线环!

20mV/div.

动态负载板

Dynamic Load Board ©2020 Analog Devices, Inc. All rights reserved.

Key waveforms

第二讲:基础元器件原理特性及在电源电路中的选择(上)

微信扫描二维码 获取课程观看链接

电源电路基础构架及器件选择

 100Ω

~

基础元器件特性-电阻

欧姆定理 $I = \frac{U}{R}$

电阻承受的功率 $P = UI = \frac{U^2}{R}$

电阻串并联问题

基础元器件特性-电阻

电阻封装与功率问题

贴片电阻的封装尺寸及与功率的对应关系

	封装	额定功率(70°C) 外形尺寸 (mm)
英制(mil)	公制(mm)		
0201	0603	1/20W	0.6x0.3 mm
0402	1005	1/16W	1.0x0.5 mm
0603	1608	1/10W	1.6x0.8 mm
0805	2012	1/8W	2.0x1.2 mm
1206	3216	1/4W	3.2x1.6 mm
1210	3225	1/4W	3.2x2.5 mm
1812	4532	1/2W	4.5x3.2 mm
2512	6432	1W	6. 4x3. 2 mm
	_		

贴片电阻的封装与尺寸如下表:

英制 (mil)	公制 (mm)	长 (L) (mm)	宽(W) (mm)	高(t) (mm)	a (mm)	b (mm)
0201	0603	0.60±0.05	0.30±0.05	0.23±0.05	0.10±0.05	0.15±0.05
0402	1005	1.00±0.10	0.50±0.10	0.30±0.10	0.20±0.10	0.25±0.10
0603	1608	1.60±0.15	0.80±0.15	0.40±0.10	0.30±0.20	0.30±0.20
0805	2012	2.00±0.20	1.25±0.15	0.50±0.10	0.40±0.20	0.40±0.20
1206	3216	3.20±0.20	1.60±0.15	0.55±0.10	0.50±0.20	0.50±0.20
1210	3225	3.20±0.20	2.50±0.20	0.55±0.10	0.50±0.20	0.50±0.20
1812	4832	4.50±0.20	3.20±0.20	0.55±0.10	0.50±0.20	0.50±0.20
2010	5025	5.00±0.20	2.50±0.20	0.55±0.10	0.60±0.20	0.60±0.20
2512	6432	6.40±0.20	3.20±0.20	0.55±0.10	0.60±0.20	0.60±0.20

Derating Curve

Note: 我们俗称的封装是指英制。

基础元器件特性-电阻

标准电阻取值问题

电路计算结果需要一个18.9K电阻,为何买不到

► E24系列阻值 (5%)

10	22	47
11	24	51
12	27	56
13	30	62
15	33	68
16	36	75
18	39	82
20	43	91

► E96系列阻值 (1%)

Value	Code										
100	1	147	17	215	33	316	49	464	65	681	81
102	2	150	18	221	34	324	50	475	66	698	82
105	3	154	19	226	35	332	51	487	67	715	83
107	4	158	20	232	36	340	52	499	68	732	84
110	5	162	21	237	37	348	53	511	69	750	85
113	6	165	22	243	38	357	54	523	70	768	86
115	7	169	23	249	39	365	55	536	71	787	87
118	8	174	24	255	40	374	56	549	72	806	88
121	9	178	25	261	41	383	57	562	73	825	89
124	10	182	26	267	42	392	58	576	74	845	90
127	11	187	27	274	43	402	59	590	75	866	91
130	12	191	28	280	44	412	60	604	76	887	92
133	13	196	29	287	45	422	61	619	77	909	93
137	14	200	30	294	46	432	62	634	78	931	94
140	15	205	31	301	47	442	63	649	79	953	95
143	16	210	32	309	48	453	64	665	80	976	96

基础元器件特性-特殊电阻

检流电阻 开尔文连接

检流电阻 Current Sensor Resistor

基础元器件特性-电容

ANALOG DEVICES AHEAD OF WHAT'S POSSIBLE™

铝电解电容电容

中大型体积,大容量 耐压适中,有极性 高ESR,用于储能 价格低廉 铝电容的过压失效,

铝电容的反向击穿, 物理连接开路失效 铝电容漏液失效

钽电容

小体积,较大容量, 耐压低,有极性 ESR适中,宽工作温度

价格适中

耐电压及电流能力弱 失效的模式很恐怖

建议耐压按 2 倍选择

陶瓷电容

微小体积,小容量 高耐压,无极性 低ESR,高频特性好 价格较贵 陶瓷电容过压失效 焊接变形失效 温度特性不稳定

不同电容在同一电路中滤波效果对比实验

基础元器件特性-电容

	铝电解电容	钽电容	陶瓷电容
电容量	0.1uF-3F	0.1uF-1000uF	0.5pF-100uF
耐压	5V-500V	2V-50V	2V-1000V
ESR	几十毫欧-2.5欧姆 (100KHZ/25°C)	几十毫欧-几百毫欧 (100KHZ/25°C)	几毫欧-几百毫欧 (100KHZ/25°C)
ESL	不超过100nH	2nH左右	1-2nH
工作频率范围	低频滤波,小于600KHz	中低频滤波,几百KHZ-几 MHz	高频滤波,几MHZ-几 GHz
薄弱点	窄温度范围,电解液会挥 发,纹波电流导致发热	必须降额使用, 否则电光 闪烁, 飞花四溅	焊接温度冲击容易导致失 效,抗弯曲能力较差,不 同材料温度特性差异巨大
建议	用于储能,低于75°C环境,不建议用与高频开关电源	15V以上直流电压滤波不 建议使用,特别是电源变 化较快的场合,浪涌冲击 失效显著。	布线不要放在应力区,避开高温区域。

基础元器件特性-电容

第三讲:基础元器件原理特性及在电源电路中的选择(下)

微信扫描二维码 获取课程观看链接

NMOS vs. PMOS

- NMOS Pass Device
 - 门极需要一个比源极更高的电压驱动;
 - 更好的性能;
 - 更多的选择;
 - 更低的成本.

- PMOS Device
 - 门极需要一个比源极低的电压驱动;
 - 不需要更高的电压驱动,驱动简单.

N沟道 MOSFET

P沟道 MOSFET 应用

低静态电流LDO

负载开关

LED PWM调光

1. Drain-source 击穿电压- VBRDSS

Electrical characteristics, at T = 25 °C, unless otherwise specified Static characteristics Drain-source breakdown voltage $V_{(BR)DSS}$ V_{GS}=0 V, I_D=1 mA 60

B Drain-source breakdown voltage

 $V_{BR(DSS)}=f(T_i); I_D=1 \text{ mA}$

IPP881N06N3

2. 导通电阻RDS(on)

	1	I .				
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =50 A	-	8 (9.3	mΩ
	•					

5 Drain-source on-state resistance

$$R_{DS(on)}$$
=f(T_j); I_D =50 A; V_{GS} =10 V

- 导通电阻正温度系数,适合并联工作;
- · 导通电阻越小,导通损耗越小;
- · 导通电阻越小, Qg就越大, 相应的开关速度变慢; 带来的开关损耗越大, 高频工作下需要折中考虑。

4. 最大结温

Operating and storage temperature T_{i}, T_{sto} -55 150 °C			I.	l .	
7, 29	Operating and storage temperature	$T_{\rm j},T_{\rm stg}$		-55 150	°C

- 永远不能超过最大结温;
- 只能测量壳温,然后通过热阻计算结温;
- 合理的热降额确保可靠工作。

5. 动态电容和Qg

Dynamic characteristics						
Input capacitance	C iss		-	2910		pF
Output capacitance	Coss	V_{GS} =0 V, V_{DS} =25 V, f=1 MHz	- /	715	-	
Reverse transfer capacitance	C rss		-	30	-	1
Gate Charge Characteristics Gate to source charge	Q _{as}		-	16	-	nC
	Q _{gs}	V _{DD} =25 V, I _D =50 A, V _{GS} =0 to 10 V	-	16	-	nC

不是一个固定值, 取决于工作条件

- · 作为开关时希望快速打开,需要一个驱动芯片 提供瞬间大电流;
- · 作为缓启动MOS,需要慢慢打开,有效抑制浪 涌电流;

Ciss = Cgs + Cgd, Crss = Cgd, and Coss = Cds + Cgd.

5. 体二极管

P沟道 源极 漏极

- 注意方向
- 性能和普通二极管类似(大的正向压降,大的反向恢复时间)

N沟道 漏极 源极

二极管

整流管:

- 普通二极管
- 超快恢复二极管
- 肖特基二极管

稳压管:

• 持续击穿,低功率应用

TVS:

• 瞬间击穿, 高功率应用

封装形式

二极管应用

- 低频, 开关损耗忽略.
- 需要有一定浪涌电流能力

二极管应用

防反接保护

要求: 低正向压降

后续介绍防反MOS和合路MOS.

合路

要求: 低正向压降

电感关键参数

- 电感量
- 电感额定电流
- 电感饱和电流
- DCR
- · 低电感量-低DCR, 高饱和电流, 更好的动态, 更大的纹波电流
- 大电感量-小纹波电流

- · LT8650S EVM 测试;
 - >不同电感量纹波动态测试比较
- 温度对肖特基二极管反向漏电流的影响;
 - >BAT54A (1uA@25C vs 几百 uA@125C)
- 温度对肖特基正向压降的影响
 - >负温度系数,并联应用要注意
- · 肖特基和MOSFET体二极管正向压降比较.

基础元器件特性-电容

关于ADI智库

ADI智库是ADI公司面向中国工程师打造的一站式资源分享平台,除了汇聚ADI官网的海量技术资料、视频外,还有大量首发的、免费的培训课程、视频直播等。

加入ADI智库,您可以尽情的浏览、收藏、下载相关资源。此外,您还可一键报名线上线下会议活动,更有参会提醒等贴心服务。

课程回放:

请微信扫描二维码,获取课程观看链接

AHEAD OF WHAT'S POSSIBLE™

ADI智库

一站式电子技术宝库