

Badania Operacyjne

Badania Operacyjne – Ćwiczenia tablicowe I st. II rok AiR Katedra Automatyki i Robotyki Laboratorium Badań Operacyjnych i Systemowych

Ćwiczenia nr 3

Temat 3

- Metoda ścieżki krytycznej CPM
- Harmonogram Gantta
- Metoda PERT
- Zadania

Metoda Ścieżki Krytycznej - CPM [1]

Podstawą CPM jest stworzenie modelu projektu, który zawiera:

- listę wszystkich zadań wymaganych do realizacji projektu,
- czas trwania każdego z zadań,
- powiązania pomiędzy poszczególnymi czynnościami.

CPM pozwala wyznaczyć:

- ścieżkę krytyczną najdłuższą ścieżkę działań do zakończenia projektu - ciąg czynności łączących zdarzenia o najmniejszych lub zerowych rezerwach czasu.
- najwcześniejszy i najpóźniejszy termin wystąpienia zdarzenia bez wpływu na długość realizowanego projektu oraz rezerwy czasowe.

Technika ta pozwala na priorytetyzację zadań projektowych poprzez:

- dodanie / podział zadań, które mogą być realizowane równolegle,
- skrócenie czasu trwania zadań ścieżki krytycznej poprzez użycie dodatkowych zasobów.

Metoda Ścieżki Krytycznej – fazy [1]

FAZA I:

- podział projektu na zadania niezbędne do realizacji,
- wyznaczenie powiązań pomiędzy czynnościami.

FAZA II:

- oszacowanie czasu trwania każdego z zadań,
- wyznaczenie najwcześniejszego i najpóźniejszego terminu wystąpienia zdarzenia oraz rezerw czasu,
- wyznaczenie ścieżki krytycznej,
- przedstawienie struktury projektu w postaci wykresu sieciowego.

FAZA III:

- przedstawienie przebiegu projektu w postaci harmonogramu
- z uwzględnieniem kamieni milowych,
- planowanie zasobów projektu wraz z wyrównaniem zapotrzebowania na zasoby,
- działania korygujące, które uwzględniają skrócenie czasu trwania projektu.

Metoda Ścieżki Krytycznej [1]

Zdarzenia:

- początkowe
- końcowe

Terminy:

- Najwcześniejszy
 Możliwy NMT (t_i)
- Najpóźniejszy
 Dopuszczalny NDT
 $(\overline{t_i})$

Rezerwa czasu:

- dla zdarzenia (nazywana luz)
- dla czynności (rezerwa, zapas)

Procedura 1 : Numerowanie wierzchołków grafu.

- **CEL:** Ponumerować wierzchołki tak, aby zdarzenie poprzedzające miało numer mniejszy niż następujące.
- **Krok 1:** Przydziel wierzchołkowi swobodnemu (nie dochodzą do niego żadne łuki) nr i = 1
- **Krok 2:** Usuwamy łuki o początku w wierzchołkach ponumerowanych
- **Krok 3:** Wierzchołkom swobodnym przydzielamy kolejne numery **i+1**, **i+2** ...
- Krok 4: Jeśli nie ponumerowano wszystkich wierzchołków to wykonuj Krok 2

Procedura 2 : Obliczanie najwcześniejszych terminów zdarzeń.

Krok 1: Podstaw dla zdarzenia początkowego przedsięwzięcia

$$\underline{t_1} \coloneqq 0$$

Krok 2: Dla j=2,...,n wykonaj

$$\underline{t_j} := \max_{i \in W_j^-} \{\underline{t_i} + t_{ij}\}$$

Procedura 3 : Obliczanie najpóźniejszych terminów zdarzeń.

Krok 1: Podstaw dla zdarzenia końcowego przedsięwzięcia

$$t_n := \underline{t_n}$$

Krok 2: Dla i=n-1,...,1 wykonaj $t_i := \min_{j \in W_i^+} \{t_j - t_{ij}\}$

Procedura 4 : Obliczanie rezerw i luzów, wyznaczenie ścieżki krytycznej.

Krok 1: Rezerwa czasu dla czynności (*i,j*):

$$\forall_{(i,j)\in E} \ r_{ij} := \overline{t_j} - \underline{t_i} - \underline{t_{ij}}$$

Jeżeli rezerwa wynosi 0 to czynność leży na ścieżce krytycznej

Krok 2: Luz dla zdarzenia j: $\forall_{j \in V} \ l_j \coloneqq t_j - \underline{t_j}$

Jeżeli luz wynosi 0 to zdarzenie leży na ścieżce krytycznej.

Warunek zakończenia przedsięwzięcia w terminie:

$$\forall_{j \in V} \ t_j \in [t_j, \overline{t_j}]$$

Harmonogram Gantta - przykład

CPM – przykład 1 [2]

[2] źródło: Anna Grześ WYKRES GANTTA A METODA ŚCIEŻKI KRYTYCZNEJ (CPM)

Tabela – zestaw czynności w ramach projektu

P	Czynności	Czas trwania	Czynności
	(activities)	czynności w dniach	poprzedzające
		(duration)	(predecessors)
1	START	0	
2	A	8	-
3	В	6	A
4	С	4	-
5	D	3	B,F
6	E	5	D, H
7	F	8	С
8	G	7	С
9	Н	3	C
10	I	10	G
11	J	3	E
12	K	10	G
13	L	12	E
14	\mathbf{M}	11	G
15	N	8	I, J
16	О	9	K, M
17	P	6	N

CPM – przykład 2 [2]

CPM - oznaczenia

Kamienie milowe projektu (milestones albo checkpoints) są punktami koordynacyjnymi i kontrolnymi cząstkowych rezultatów projektów.

Przy konstrukcji sieci w metodzie CPM obowiązują:

dla czynności prostej, będącej dowolnie wyodrębnioną częścią przedsięwzięcia. W trakcie trwania tej czynności zużywa się czas o określonym czasie trwania ti określonym zużywaniu się zasobów. Kierunek strzałki sygnalizuje kierunek przebiegu czynności w czasie; dla czynności pozornej, której zadaniem jest jedynie ukazanie zależności między czynnościami (poinformowania o tym, które czynności muszą zakończyć się, aby rozpoczęła się kolejna, po nich następująca). W trakcie trwania czynności pozornej nie zużywa się ani czasu (t=0), ani środków;

dla zdarzenia, w którym określa się stan zaawansowania prac przez wyznaczenie: najwcześniejszego możliwego (T_i^w) i najpóźniejszego dopuszczalnego momentu (T_i^p) zaistnienia danych czynności oraz rezerwy (zapasu) czasu $(T_i^p - T_i^w)$, o jaki możliwe jest opóźnienie bez konieczności przesunięcia terminu zakończenia przedsięwzięcia.

CPM – przykład 3 [2]

CPM - oznaczenia

Objaśnienia do obliczenia wartości: T_j^w ; T_i^p : $T_j^w = T_i^p + t_{ij}$, a $T_i^p = T_j^p - t_{ij}$.

CPM – przykład 4 [2]

Wykres sieciowy CPM dla projektu

CPM – przykład 5 [2]

Wykres Gantta dla projektu

kamienie milowe

Model przedsięwzięcia w programowaniu sieciowym

Modelowanie przedsięwzięcia w programowaniu sieciowym:

- Metoda amerykańska wykorzystuje sieć zdarzeń
- Metoda francuska (potencjałów) wykorzystuje sieć czynności

Typy modeli

- Deterministyczny
- Stochastyczny

II typ formalizacji [3]

Wierzchołek reprezentuje czynność:

gdzie:

- ES early start (lub WS wczesny start) w przód: ES=EF zadania poprzedniego.
- EF early finish (lub WK wczesny koniec)
 w przód: EF=ES zadania następnego.
- LS late start (lub PS późny start) wstecz: LS=LF zadania następnego (planowanie "wstecz" = zadanie następne oznacza chronologicznie wcześniejsze).
- LF late finish (lub PK późny koniec) wstecz: LF=LS zadania poprzedniego (jw.)

Model stochastyczny - PERT [4]

PERT (ang. Program Evaluation and Review Technique)

- Sieć o strukturze logicznej zdeterminowanej
- Parametry opisujące poszczególne czynności mają charakter stochastyczny
- Czas trwania każdej czynności jest szacowany:
 - t_c optymistyczny,
 - t_m najbardziej prawdopodobny,
 - t_p pesymistyczny.
- Wyznaczane parametry dla czynności:
 - t_0 wartość oczekiwana:

$$t_0 = \frac{t_c + 4t_m + t_p}{6}$$

- σ^2 wariancja: $\sigma^2 = \left(\frac{t_p t_c}{6}\right)^2$
- Prawdopodobieństwo realizacji na podstawie dystrybuanty rozkładu

Modelu stochastyczny - PERT [4]

Przykład i przebieg obliczeń dla metody PERT prezentuje:

Maciej Patan, Programowanie sieciowe. Metody CPM i PERT

file:///C:/Users/Administrator/Documents/dydaktyka/Przedmioty/BO/CPM_PERT/druk_6z.pdf

Literatura:

- [1] OMEC, https://omec.pl/blog/metoda-sciezki-krytycznej
- [2] Anna Grześ, Wykres Gantta a Metoda Ścieżki Krytycznej (CPM),

https://repozytorium.uwb.edu.pl/jspui/bitstream/11320/2997/1/14 Grzes.pdf

- [3] https://pl.wikipedia.org/wiki/Ścieżka krytyczna
- [4] Maciej Patan, Programowanie sieciowe.
 Metody CPM i PERT

file:///C:/Users/Administrator/Documents/dydaktyka/Przedmioty/BO/CPM PERT/druk 6z.pdf

Zadanie domowe

Metoda CPM

- Zdefiniuj przedsięwzięcie o minimalnym rozmiarze 10 zdarzeń 15 czynności
- b) Zastosuj algorytm CPM
- c) Wyznacz ścieżkę krytyczną
- d) Narysuj harmonogram Gantta

2. Algorytmy zachłanne dla TSP

- Zdefiniuj macierz kosztów dla problemu komiwojażera o minimalnym rozmiarze n=6
- b) Na podstawie wykładu 3 (udostępnionego na platformie UPEL) zastosuj jeden z wybranych algorytmów zachłannych
- c) Określ jaki układ danych jest "złośliwy" dla wybranego alg
- d) Czym różni się od wybranego idea pozostałych (przedstawionych) algorytmów – opisz jednym zdaniem dla każdego.

Zadanie domowe - uwagi

- 1. Przyjęte dane (wartości, układ) nie powinny się powtarzać w przesłanych pracach (prawdopodobieństwo niezależnego utworzenia tych samych / podobnych danych jest znikome)
- Odręczna forma rozwiązania zadań zajmuje znacznie mniej czasu więc można przesyłać zdjęcia / skany prac w jakości umożliwiającej odczytanie
- 3. Terminu przesłania prac na UPEL (22.4.2020) proszę sukcesywnie realizować kolejne tematy
- 4. Prace należy przesyłać w formie załączników na UPEL lub adres:
 - pkad.inpg@gmail.com
 - opisując w tytule: BO Temat3 Imię Nazwisko