

CMOS 80 MHz Monolithic 256 \times 24(18) Color Palette RAM-DACs

ADV478/ADV471

FEATURES

Personal System/2* Compatible **80 MHz Pipelined Operation** Triple 8-Bit (6-Bit) D/A Converters 256 × 24(18) Color Palette RAM 15 × 24(18) Overlay Registers RS-343A/RS-170 Compatible Outputs Sync on All Three Channels Programmable Pedestal (0 or 7.5 IRE) External Voltage or Current Reference Standard MPU Interface +5 V CMOS Monolithic Construction 44-Pin PLCC Package Power Dissipation: 800 mW

APPLICATIONS **High Resolution Color Graphics** CAE/CAD/CAM Applications **Image Processing** Instrumentation **Desktop Publishing**

AVAILABLE CLOCK RATES

80 MHz

66 MHz

50 MHz

35 MHz

GENERAL DESCRIPTION

The ADV478 (ADV®) and ADV471 are pin compatible and software compatible RAM -DACs designed specifically for Personal System/2 compatible color graphics.

The ADV478 has a 256×24 color lookup table with triple 8-bit video D/A converters. It may be configured for either 6 bits or 8 bits per color operation. The ADV471 has a 256×18 color lookup table with triple 6-bit video D/A converters.

Options on both parts include a programmable pedestal (0 or 7.5 IRE) and use of an external voltage or current reference.

ADV is a registered trademark of Analog Devices, Inc.

*Personal System/2 is a trademark of International Business M achines Corp.

FUNCTIONAL BLOCK DIAGRAM

NOTES

1. NUMBERS IN PARENTHESIS INDICATE PIN NAMES FOR THE ADV471

2. NC = NO CONNECT

Fifteen overlay registers provide for overlaying cursors, grids, menus, EGA emulation, etc. Also supported is a pixel read mask register and sync generation on all three channels.

The ADV478 and ADV471 generate RS-343A compatible video signals into a doubly terminated 75 Ω load, and RS-170 compatible video signals into a singly terminated 75 Ω load, without requiring external buffering. Differential and integral linearity errors are guaranteed to be a maximum of ± 1 LSB for the ADV478 and $\pm 1/4$ LSB for the ADV471 over the full temperature range.

ADV478/ADV471- SPECIFICATIONS $(V_{AA}{}^{1} = +5 \text{ V, SETUP} = 8/\overline{6} = V_{AA}, V_{REF} = +1.235 \text{ V. } R_{SET} = 147 \Omega.$ All specifications T_{MIN} to $T_{MAX}{}^{2}$ unless otherwise noted.)

Parameter	All Versions	Units	Test Conditions/Comments
STATIC PERFORM ANCE Resolution (Each DAC) ³	8 (6)	Bits	
Accuracy (Each DAC) ³		2.13	
Integral Nonlinearity	$\pm 1 (1/4)$	LSB max	
Differential Nonlinearity	±1 (1/4)	LSB max	G uaranteed M onotonic
G ray Scale E rror	±5	% Gray Scale max	
Coding	Binary		
DIGITAL INPUTS			
Input High Voltage, V _{INH}	2	V min	
Input Low Voltage, V _{INL}	0.8	V _{max}	N 04W 24W
Input Current, I _{IN}	±1	μA max	$V_{IN} = 0.4 \text{ V or 2 .4 V}$
Input Capacitance, C _{IN}	7	pF max	
DIGITAL OUTPUTS	2.4	M	400 4
Output High Voltage, VoH	2.4	V min	$I_{SOURCE} = 400 \mu\text{A}$
Output Low Voltage, V _{OL}	0.4 50	V max	$I_{SINK} = 3.2 \text{ mA}$
Floating-State L eakage C urrent Floating-State O utput C apacitance	7	μA max pF max	
	<u>'</u>	pi max	
ANALOG OUTPUTS Gray Scale Current Range	20	mA max	
Output Current	20	IIIA IIIax	
White L evel Relative to Blank	17.69	mA min	T ypically 19.05 mA
Willed E Gyel Welderve to Brain	20.40	mA max	1 ypicany 15105 nm
White Level Relative to Black	16.74	mA min	T ypically 17.62 mA
	18.50	mA max	
Black Level Relative to Blank	0.95	mA min	T ypically 1.44 mA
$(SETUP = V_{AA})$	1.90	mA max	
Black Level Relative to Blank	0	μA min	T ypically 5 μA
(SETUP = GND)	50	μA max	T ' II - 7 C2 A
Blank Level	6.29	mA min	T ypically 7.62 mA
Sync L evel	8.96 0	mA max μA min	T ypically 5 μA
Sylic Level	50	μA max	Typically 5 μA
LSB Size ³	69.1 (279.68)	μΑ typ	$8/\overline{6} = \text{Logical 1 for ADV478}$
DAC to DAC M atching	5	% max	Typically 2%
Output Compliance, Voc	-1	V min	
	+1.5	V max	
Output Impedance, R _{OUT}	10	kΩ typ	
Output Capacitance, C _{OUT}	30	pF max	$I_{OUT} = 0 \text{ mA}$
VOLTAGE REFERENCE			
Voltage Reference Range, V _{REF}	1.14/1.26	V min/V max	
Input Current, I _{VREF}	10	μA typ	T ested in Voltage Reference
DOMED CHORLY			Configuration with $V_{REF} = 1.235 \text{ V}$
POWER SUPPLY	4 75/5 25	\/ min \/	00 M H = and 66 M H = D = irt =
Supply Voltage, V _{AA}	4.75/5.25 4.50/5.50	V min/V max	80 M H z and 66 M H z Parts
Supply Current, I _{AA}	4.50/5.50 220	V min/V max mA max	50 M Hz and 35 M Hz Parts Typically 180 mA
Power Supply Rejection Ratio	0.5	%/% max	$f = 1 \text{ kH z, COM P} = 0.1 \mu\text{F}$
Power Dissipation	1100	mW max	Typically 900 mW, $V_{AA} = 5 \text{ V}$
DYNAMIC PERFORMANCE			- Jp. com, J c c c m, j c AA
Clock and Data Feedthrough ^{4, 5}	-30	dB typ	
Glitch Impulse ^{4, 5}	75	pV secs typ	
DAC to DAC Crosstalk ⁶	-23	dB typ	

NOTES

Specifications subject to change without notice.

 $^{^1\!\!\}pm\!5\%$ for 80 M H z and 66 M H z parts; $\pm10\%$ for 50 M H z and 35 M H z parts.

 $^{^2}T$ emperature Range (T $_{\mbox{\scriptsize MIN}}$ to T $_{\mbox{\scriptsize MAX}}$); 0°C to +70°C .

³Numbers in parentheses indicate ADV471 parameter value.

⁴Clock and data feedthrough is a function of the amount of overshoot and undershoot on the digital inputs. For this test, the digital inputs have a 1 k Ω resistor to ground and are driven by 74H C logic. Glitch impulse includes clock and data feedthrough, -3 dB test bandwidth = 2 × clock rate.

⁵TTL input values are 0 to 3 volts, with input rise/fall times ≤3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and outputs. Analog output load ≤10 pF, D0-D7 output load ≤50 pF. See timing notes in Figure 2.
⁶DAC to DAC crosstalk is measured by holding one DAC high while the other two are making low to high and high to low transitions.

TIMING CHARACTERISTICS¹ ($V_{AA}^2 = +5 \text{ V}$, SETUP = $8/\overline{6} = V_{AA}$, $V_{REF} = 1.235 \text{ V}$. $R_{SET} = 147 \Omega$. All Specifications T_{MIN} to T_{MAX}^3 .)

Parameter	KP80 Version	KP66 Version	KP50 Version	KP35 Version	Units	Conditions/Comments
f_{MAX}	80	66	50	35	MHz	Clock Rate
t_1	10	10	10	10	ns min	RS0-RS2 Setup Time
t ₂	10	10	10	10	ns min	RS0-RS2 Hold Time
t_3	5	5	5	5	ns min	RD Asserted to Data Bus Driven
t ₄	40	40	40	40	ns max	RD Asserted to Data Valid
t ₅	20	20	20	20	ns max	RD N egated to D ata Bus 3-Stated
t ₆	10	10	10	10	ns min	Write Data Setup Time
t ₇	10	10	10	10	ns min	Write Data Hold Time
t ₈	50	50	50	50	ns min	RD, WR Pulse Width Low
t ₉	$6 \times t_{12}$	$6 \times t_{12}$	$6 \times t_{12}$	$6 \times t_{12}$	ns min	RD, WR Pulse Width High
t ₁₀	3	3	3	3	ns min	Pixel and Control Setup Time
t ₁₁	3	3	3	3	ns min	Pixel and Control Hold Time
t ₁₂	12.5	15.3	20	28	ns min	Clock Cycle Time
t ₁₃	4	5	6	7	ns min	Clock Pulse Width High Time
t ₁₄	4	5	6	9	ns min	Clock Pulse Width Low Time
t ₁₅	30	30	30	30	ns max	Analog Output Delay
t ₁₆	3	3	3	3	ns typ	Analog Output Rise/Fall Time
t ₁₇ 4	13	15.3	20	28	ns typ	Analog Output Settling Time
t ₁₈	2	2	2	2	ns max	Analog Output Skew
t_{PD}	$4 \times t_{12}$	$4 \times t_{12}$	$4 \times t_{12}$	$4 \times t_{12}$	ns min	Pipeline D elay

Specifications subject to change without notice

TIMING DIAGRAMS

Figure 1. MPU Read/Write Timing

- NOTES

 1. OUTPUT DELAY (t₁₅) MEASURED FROM THE 50% POINT OF THE RISING EDGE OF CLOCK TO THE 50% POINT OF FULL SCALE TRANSITION.

 2. SETTLING TIME (t₁₇) MEASURED FROM THE 50% POINT OF FULL SCALE TRANSITION TO THE OUTPUT REMAINING WITHIN ± 1LSB (ADV478) OR ± 1/4LSB (ADV471).

 3. OUTPUT RISE/FALL TIME (t₁₆) MEASURED BETWEEN THE 10% AND 90% POINTS OF FULL SCALE TRANSITION.
- TRANSITION.

Figure 2. Video Input/Output Timing

¹TTL input values are 0 to 3 volts, with input rise/fall times ≤3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and outputs. Analog output load ≤10 pF, 37.5 Ω. D 0-D 7 output load ≤50 pF. See timing notes in Figure 2.

 $^{^2\}pm5\%$ for 80 M Hz and 66 M Hz parts; $\pm5\%$ for 50 M Hz and 35 M Hz parts.

 $^{^3}$ T emperature Range (T $_{MIN}$ to T $_{MAX}$); 0°C to +70°C.

⁴Settling time does not include clock and data feedthrough. For this test, the digital inputs have a 1 k Ω resistor to ground and are driven by 74H C logic.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Units
Power Supply	V _{AA}				
80 M Hz, 66 M Hz Parts		4.75	5.00	5.25	Volts
50 M H z, 35 M H z Parts		4.5	5.00	5.5	Volts
Ambient Operating Temperature	T A	0		+70	°C
Output Load	R ₁		37.5		Ω
Voltage Reference Configuration	_				
Reference Voltage	V _{REF}	1.14	1.235	1.26	Volts
Current Reference Configuration					
Reference Current	I _{REF}	-3		-10	mA

CAUTION.

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADV478/ADV471 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ABSOLUTE MAXIMUM RATINGS¹

V_{AA} to GND		+7 V
Voltage on Any Digital Pin .	GND - 0.5 V to \	$V_{AA} + 0.5 \text{ V}$
Ambient Operating Temperat	ture (T _A)55°C	to +125°C
Storage Temperature (T _S)	65°C	to +150°C
Lead Temperature (Soldering	j, 10 secs)	+300°C
Junction Temperature (T_1) .		+150°C
Vapor Phase Soldering (1 mir		
$IOR, IOB, IOG to GND^2$		$0 V to V_{AA}$
NOTES		

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ²A nalog output short circuit to any power supply or common can be of an indefinite duration.

PLCC PIN CONFIGURATION

NOTES

1. NUMBERS IN PARENTHESIS INDICATE PIN NAMES FOR THE ADV471.
2. NC=NO CONNECT

ORDERING GUIDE

Model	Temperature Range	Color Palette RAM	Speed	Package Option*
ADV471KP80	0°C to +70°C	256×18	80 M H z	P-44A
ADV471KP66	0°C to +70°C	256×18	66 M H z	P-44A
ADV471KP50	0°C to +70°C	256×18	50 M H z	P-44A
ADV471KP35	0°C to +70°C	256×18	35 M H z	P-44A
AD V478K P80	0°C to +70°C	256 × 24	80 M H z	P-44A
AD V478K P66	0°C to +70°C	256 × 24	66 M H z	P-44A
AD V478K P50	0°C to +70°C	256 × 24	50 M H z	P-44A
AD V478K P35	0°C to +70°C	256 × 24	35 M H z	P-44A

-4-

REV. B

^{*}P = Plastic Leaded Chip Carrier (PLCC).

PIN FUNCTION DESCRIPTION

Pin Mnemonic	Function					
BLANK	Composite blank control input (TTL compatible). A logic zero drives the analog outputs to the blanking level as illustrated in Tables IV and V. It is latched on the rising edge of CLOCK. When \overline{BLANK} is a logical zero, the pixel and overlay inputs are ignored					
SETUP	ļ ·	•	IRE (SETUP	= G N D) or 7.5 I	RE (SET UP = V_{AA}) blanking	
SYNC	on the analog outputs (see F	Figures 3 and 4). \overline{S}	YNC does not	override any oth	switches off a 40 IRE current source er control or data input, as shown in erval. It is latched on the rising edge	
CLOCK					7, OL0-OL3, \overline{SYNC} , and \overline{BLANK} ed that CLOCK be driven by a dedi-	
P0-P7		used to provide col	or information		which one of the 256 entries in the d on the rising edge of CLOCK.P0	
OL0-OL3		III. When accessin	g the overlay p	alette, the P0-P7	to be used to provide color informa- inputs are ignored. They are be connected to GND.	
IOR, IOG, IOB	Red, green, and blue currend doubly terminated 75 Ω coa			current sources	are capable of directly driving a	
I _{REF}	Full-scale adjust control. No full-scale output current.	ote that the IRE re	lationships in F	igures 3 and 4 a	re maintained, regardless of the	
		he full-scale video s	signal. The rela	ationship betweer	ted between this pin and G N D in R_{SET} and the full-scale output	
	K is defined in the table bel			' _{REF} (V)/I _{OUT} (mA _{:T} values for doul		
	When using an external cur current on each output is:	rent reference (Fig	ure 6), the rela	tionship betweer	I I _{REF} and the full-scale output	
	'	I _P	$_{LEF}$ (mA) = I_{OU}	τ (mA)/K		
	Mode	Pedestal	K	$R_{SET}\left(\Omega\right)$	-	
	6-Bit	7.5 IRE	3.170	147		
	8-Bit	7.5 IRE	3.195	147		
	6-Bit 8-Bit	0 IRE 0 IRE	3.000 3.025	147 147		
COMP	C ompensation pin. If an ext	ternal voltage refer s used, this pin sho	ence is used (F	igure 5), this pin	should be connected to OPA. If an µF ceramic capacitor must always be	
V_{REF}	Voltage reference input. If an external voltage reference is used (Figure 5), it must supply this input with a 1.2 V (typical) reference. If an external current reference is used (Figure 6), this pin should be left floating, except for the bypass capacitor. A $0.1~\mu F$ ceramic capacitor must always be used to decouple this input to V_{AA} as shown in Figures 5 and 6.					
OPA	Reference amplifier output. COMP. When using an exte				this pin must be connected to be left floating.	
V_{AA}	Analog power. All V _{AA} pins	must be connected	to the Analog	Power Plane.		
GND	Analog ground. All GND p	ins must be connec	ted to the Gro	und Plane.		
WR	Write control input (TTL clatched on the falling edge of				dge of $\overline{\mathrm{WR}}$, and RS0-RS2 are .	

REV. B -5-

PIN FUNCTION DESCRIPTION (Continued)

Pin Mnemonic	Function
RD	Read control input (TTL compatible). To read data from the device, \overline{RD} must be a logical zero. RS0-RS2 are latched on the falling edge of \overline{RD} during MPU read operations.
RS0, RS1, RS2	Register select inputs (TTL compatible). RS0-RS2 specify the type of read or write operation being performed as illustrated in Tables I and II.
D 0-D 7	D ata bus (TTL compatible). Data is transferred into and out of the device over this 8-bit bidirectional data bus. D 0 is the least significant bit.
8/6	8-bit/6-bit select input (TTL compatible). This control input specifies whether the MPU is reading and writing 8-bits (logical one) or 6-bits (logical zero) of color information each cycle. For 8-bit operation, D7 is the most significant data bit during color read/write cycles. For 6-bit operation, D5 is the most significant data bit during color read/write cycles (D6 and D7 are ignored during color write cycles and are logical zero during color read cycles). This control input is implemented only on the ADV478.

TERMINOLOGY

Blanking Level

The level separating the SYNC portion from the video portion of the waveform. U sually referred to as the front porch or back porch. At 0 IRE units, it is the level which will shut off the picture tube, resulting in the blackest possible picture.

Color Video (RGB)

T his usually refers to the technique of combining the three primary colors of red, green and blue to produce color pictures within the usual spectrum. In RGB monitors, three DACs would be required, one for each color.

Composite SYNC Signal (SYNC)

The portion of the composite video signal which synchronizes the scanning process.

Composite Video Signal

The video signal with or without setup, plus the composite SYNC signal.

Gray Scale

The discrete levels of video signal between reference black and reference white levels. An 8-bit DAC contains 256 different levels while a 6-bit DAC contains 64.

Raster Scan

The most basic method of sweeping a CRT one line at a time to generate and display images.

Reference Black Level

The maximum negative polarity amplitude of the video signal.

Reference White Level

The maximum positive polarity amplitude of the video signal.

Setups

The difference between the reference black level and the blanking level.

SYNC Level

The peak level of the composite SYNC signal.

Video Signal

T hat portion of the composite video signal which varies in gray scale levels between reference white and reference black. Also referred to as the picture signal, this is the portion which may be visually observed.

-6- REV. B

CIRCUIT DESCRIPTION MPU Interface

As illustrated in the functional block diagram, the ADV478 and ADV471 support a standard M PU bus interface, allowing the M PU direct access to the color palette RAM and overlay color registers.

The RSO-RS2 select inputs specify whether the MPU is accessing the address register, color palette RAM, overlay registers or read mask register, as shown in Table I. The 8-bit address register is used to address the color palette RAM and overlay registers, eliminating the requirement for external address multiplexers.

To write color data, the MPU writes to the address register (selecting RAM or overlay write mode) with the address of the color palette RAM location or overlay register to be modified. The MPU performs three successive write cycles (8 or 6 bits each of red, green and blue), using RSO-RS2 to select either the color palette RAM or overlay registers. During the blue write cycle, the three bytes of color information are concatenated into a 24-bit word (18-bit word for the ADV471) and written to the location specified by the address register. The address register then increments to the next location which the MPU may modify by simply writing another sequence of red, green and blue data.

Table I. Control Input Truth Table

RS2	RS1	RS0	Addressed by MPU
0 0 0 0	0 1 0	0 1 1 0	Address Register (RAM Write Mode) Address Register (RAM Read Mode) Color Palette RAM Pixel Read Mask Register
1 1 1	0 1 0 1	0 1 1 0	Address Register (Overlay Write Mode) Address Register (Overlay Read Mode) Overlay Registers Reserved

To read color data, the MPU loads the address register (selecting RAM or overlay read mode) with the address of the color palette RAM location or overlay register to be read. The MPU performs three successive read cycles (8 or 6 bits each of red, green and blue), using RSO-RS2 to select either the color palette RAM or overlay registers. Following the blue read cycle, the address register increments to the next location which the MPU may read by simply reading another sequence of red, green and blue data.

When accessing the color palette RAM, the address register resets to 00H following a blue read or write cycle to RAM location FFH. When accessing the overlay color registers, the address register increments following a blue read or write cycle. However, while accessing the overlay color registers, the four most significant bits of the address register (ADDR4-7) are ignored.

The MPU interface operates asynchronously to the pixel clock. Data transfers between the color palette RAM /overlay registers and the color registers (R, G and B in the block diagram) are synchronized by internal logic and occur in the period between MPU accesses. As only one pixel clock cycle is required to complete the transfer, the color palette RAM and overlay registers may be accessed at any time with no noticeable disturbance on the display screen.

To keep track of the red, green and blue read/write cycles, the address register has two additional bits (ADDRa, ADDRb) that count modulo three, as shown in Table II. They are reset to zero when the MPU writes to the address register and are not reset to zero when the MPU reads the address register. The MPU does not have access to these bits. The other eight bits of the address register, incremented following a blue read or write cycle (ADDR0-7), are accessible to the MPU and are used to address color palette RAM locations and overlay registers, as shown in Table II. ADDR0 is the LSB when the MPU is accessing the RAM or overlay registers. The MPU may read the address register at any time without modifying its contents or the existing read/write mode.

Figure 1 illustrates the M PU read/write timing.

Table II. Address Register (ADDR) Operation

	Value	RS2	RS1	RS0	Addressed By MPU
ADDRa,b (Counts M odulo 3)	00				Red Value
, ,	01				Green Value
	10				Blue Value
ADDR0-7 (Counts Binary)	00H-FFH	0	0	1	Color Palette RAM
7.	XXXX 0000	1	0	1	R eserved
	XXXX 0001	1	0	1	Overlay Color 1
	XXXX 0010	1	0	1	O verlay C olor 2
	•	•	•	•	•
	•	•	•	•	•
	XXXX 1111	1	0	1	O verlay C olor 15

REV. B -7-

ADV478 Data Bus Interface

On the ADV478, the $8/\overline{6}$ control input is used to specify whether the M PU is reading and writing 8 bits ($8/\overline{6} = logical$ one) or 6 bits $(8/\overline{6} = logical zero)$ of color information each cycle.

For 8-bit operation, Do is the LSB and D7 is the MSB of color data.

For 6-bit operation (and also when using the ADV471), color data is contained on the lower six bits of the data bus, with D 0 being the LSB and D5 the MSB of color data. When writing color data, D6 and D7 are ignored. During color read cycles, D 6 and D 7 will be a logical zero.

ADV471 Data Bus Interface

Color data is contained on the lower six bits of the data bus, with D0 being the LSB and D5 the MSB of color data. When writing color data, D6 and D7 are ignored. During color read cycles, D6 and D7 will be a logical zero.

Frame Buffer Interface

The P0-P7 and OL0-OL3 inputs are used to address the color palette RAM and overlay registers, as shown in Table III.

Table III. Pixel and Overlay Control Truth Table (Pixel Read Mask Register = FFH)

OL0-OL3	P0-P7	Addressed by Frame Buffer				
0H	00H	Color Palette RAM Location 00H				
0H	01H	Color Palette RAM Location 01H				
•	•	•				
•	•	•				
0H	FFH	Color Palette RAM Location FFH				
1H	XXH	O verlay C olor 1				
2H	XXH	O verlay C olor 2				
•	•	•				
•	•	•				
FH	XXH	O verlay C olor 15				

NOTES

- 1. CONNECTED WITH A 75 Ω DOUBLY TERMINATED LOAD, SETUP = V_{AA} .
 2. EXTERNAL VOLTAGE OR CURRENT REFERENCE ADJUSTED FOR 26.67mA FULL-SCALE OUTPUT.
 3. RS-343A LEVELS AND TOLERANCES ASSUMED ON ALL LEVELS.

Figure 3. Composite Video Output Waveform (SETUP = V_{AA})

Table IV. Video Output Truth Table (SETUP= V_{AA})

Description	I _{OUT} (mA) ¹	SYNC	BLANK	DAC Input Data
WHITE LEVEL	26.67	1	1	FFH
DATA	data + 9.05	1	1	data
DATA-SYNC	data + 1.44	0	1	data
BLACK LEVEL	9.05	1	1	00H
BLACK-SYNC	1.44	0	1	00H
BLANK LEVEL	7.62	1	0	xxH
SYNC LEVEL	0	0	0	xxH

-8-

NOTES

External voltage or current reference adjusted for 26.67 mA full-scale output.

REV. B

 $^{{}^{1}\}text{T}$ ypical with full-scale IOG = 26.67 mA, SETUP = V_{AA} .

The contents of the pixel read mask register, which may be accessed by the M PU at any time, are bit-wise logically AN D ed with the PO-P7 inputs. Bit D0 of the pixel read mask register corresponds to pixel input P0. The addressed location provides 24 bits (18 bits for the ADV471) of color information to the three D/A converters.

For additional information on Pixel M ask Register, see application note "Animation Using the Pixel Read Mask Register of the AD V47X Series of Video RAM -DACs" (Publication Number E1316-15-10/89).

The SYNC and BLANK inputs, also latched on the rising edge of CLOCK to maintain synchronization with the color data, add

appropriately weighted currents to the analog outputs, producing the specific output levels required for video applications, as illustrated in Figures 3 and 4. Tables IV and V detail how the SYNC and BLANK inputs modify the output levels.

The SETUP input is used to specify whether a 0 IRE (SETUP = GND) or 7.5 IRE (SETUP = V_{AA}) blanking pedestal is to be used.

The analog outputs of the ADV478 and ADV471 are capable of directly driving a 37.5 Ω load, such as a doubly terminated 75 Ω coaxial cable.

- NOTES
 1. CONNECTED WITH A 75Ω DOUBLY TERMINATED LOAD, SETUP = GND.
 2. EXTERNAL VOLTAGE OR CURRENT REFERENCE ADJUSTED FOR 26.67mA FULL-SCALE OUTPUT.
- 3. RS-343A LEVELS AND TOLERANCES ASSUMED ON ALL LEVELS.

Figure 4. Composite Video Output Waveform (SETUP = GND)

Table V. Video Output Truth Table (SETUP = GND)

Description	I _{OUT} (mA) ^I	SYNC	BLANK	DAC Input Data
WHITE LEVEL	26.67	1	1	FFH
DATA	data+8.05	1	1	data
DATA-SYNC	data	0	1	data
BLACK LEVEL	8.05	1	1	00H
BLACK-SYNC	0	0	1	00H
BLANK LEVEL	8.05	1	0	xxH
SYNC LEVEL	0	0	0	xxH

NOTE

External voltage or current reference adjusted for 26.67 mA full-scale output.

REV. B -9-

 $^{{}^{1}\}text{T}$ ypical with full-scale IOG = 26.67 mA, SETUP = GND.

PC BOARD LAYOUT CONSIDERATIONS

PC Board Considerations

The layout should be optimized for lowest noise on the ADV478/ ADV471 power and ground lines by shielding the digital inputs and providing good decoupling. The lead length between groups of $V_{\rm AA}$ and GND pins should by minimized so as to minimize inductive ringing.

Ground Planes

The ground plane should encompass all ADV478/ADV471 ground pins, current/voltage reference circuitry, power supply bypass circuitry for the ADV478/ADV471, the analog output traces and all the digital signal traces leading up to the ADV478/ADV471.

Power Planes

The ADV478/ADV471 and any associated analog circuitry should have its own power plane, referred to as the analog power plane. This power plane should be connected to the regular PCB power plane (V $_{\rm CC}$) at a single point through a ferrite bead, as illustrated in Figures 5 and 6. This bead should be located within three inches of the ADV478/ADV471.

The PCB power plane should provide power to all digital logic on the PC board, and the analog power plane should provide power to all ADV478/ADV471 power pins and current/voltage reference circuitry.

Plane-to-plane noise coupling can be reduced by ensuring that portions of the regular PCB power and ground planes do not overlay portions of the analog power plane, unless they can be arranged such that the plane-to-plane noise is common mode.

Supply Decoupling

For optimum performance, bypass capacitors should be installed using the shortest leads possible, consistent with reliable operation, to reduce the lead inductance.

Best performance is obtained with a $0.1\,\mu\text{F}$ ceramic capacitor decoupling each of the two groups of V_{AA} pins to G N D . T hese capacitors should be placed as close as possible to the device.

It is important to note that while the ADV478 and ADV471 contain circuitry to reject power supply noise, this rejection decreases with frequency. If a high frequency switching power supply is used, the designer should pay close attention to reducing power supply noise and consider using a three terminal voltage regulator for supplying power to the analog power plane.

Figure 5. Typical Connection Diagram and Component List (External Voltage Reference)

-10- REV. B

Digital Signal Interconnect

The digital inputs to the ADV478/ADV471 should be isolated as much as possible from the analog outputs and other analog circuitry. Also, these input signals should not overlay the analog power plane.

Due to the high clock rates involved, long clock lines to the ADV478/ADV471 should be avoided to reduce noise pickup.

Any active termination resistors for the digital inputs should be connected to the regular PCB power plane (V_{CC}), and not the analog power plane.

Analog Signal Interconnect

The ADV478/ADV471 should be located as close as possible to the output connectors to minimize noise pickup and reflections due to impedance mismatch.

The video output signals should overlay the ground plane, and not the analog power plane, to maximize the high frequency power supply rejection.

For maximum performance, the analog outputs should each have a 75 Ω load resistor connected to G N D . The connection between the current output and G N D should be as close as possible to the A D V 478/A D V 471 to minimize reflections.

NOTE: Additional information on PC Board layout can be obtained in an application note entitled "Design and Layout of a Video Graphics System for Reduced EMI" from Analog Devices (Publication Note E1309–15–10/89).

Figure 6. Typical Connection Diagram and Component List (External Current Reference)

APPLICATION INFORMATION EXTERNAL VOLTAGE VS. CURRENT REFERENCE

The ADV478/ADV471 is designed to have excellent performance using either an external voltage or current reference. The voltage reference design (Figure 5) has the advantages of temperature compensation, simplicity, lower cost and provides excellent power supply rejection. The current reference design (Figure 6) requires more components to provide adequate power supply rejection and temperature compensation (two transistors, three resistors and additional capacitors).

RS-170 Video Generation

For generation of RS-170 compatible video, it is recommended that the DAC outputs be connected to a singly terminated 75 Ω load. If the ADV478/ADV471 is not driving a large capacitive load, there will be negligible difference in video quality between doubly terminated 75 Ω and singly terminated 75 Ω loads.

If driving a large capacitive load (load RC > 1/(2 π f_C)), it is recommended that an output buffer (such as an AD 848 or AD 9617 with an unloaded gain>2) be used to drive a doubly terminated 75 Ω load.

REV. B -11-

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

44-Terminal Plastic Leaded Chip Carrier P-44A

