Клас: 11-А

Дата: 24.01.2022

Тема: Визначений інтеграл. Його геометричний зміст. Формула Ньютона – Лейбніца.

Мета:

• *Навчальна:* засвоїти означення площі криволінійної трапеції, навчитися знаходити площу криволінійної трапеції; розглянути означення визначеного інтеграла та навчитися знаходити визначений інтеграл; засвоїти формулу Ньютона-Лейбніца та розглянути геометричний зміст визначеного інтеграла;

• Пригадаємо таблицю первісних

Функція $f(x)$	Первісна $F(x)$	
а	ax + C	а – стала
x^p	$\frac{x^{p+1}}{p+1}+C$	$p \neq -1$
ax + b	$\frac{ax^2}{2} + bx + C$ $\frac{2}{3}x\sqrt{x} + C$	
\sqrt{x}	$\frac{2}{3}x\sqrt{x}+C$	
sin x	$-\cos x + C$	
$\frac{1}{\sin^2 x}$	$-\operatorname{ctg} x + C$	$x \neq \pi n, n \in \mathbb{Z}$
$\cos x$	$\sin x + C$	
$\frac{1}{\cos^2 x}$	$\operatorname{tg} x + C$	$x \neq \frac{\pi}{2} + \pi n, \ n \in \mathbb{Z}$

• Криволінійна трапеція

Sк знайти шлях, що подолає автомобіль? $(S = v_0 t)$

Чи буде цей шлях дорівнювати площі *S* прямокутника?(Так)

Проблемне питання:

Чи можемо знайти площу такої фігури?

Означення

Якщо функція y = f(x) неперервна на проміжку [a;b] і $y = f(x) \ge 0$, то фігура, обмежена графіком функції f і прямими y = 0, x = a і x = b, називається криволінійною трапецією.

*Відрізок [a; b] — це основа криволінійної трапеції.

Приклади криволінійних трапецій:

• Площа криволінійної трапеції

Теорема

Площу S криволінійної трапеції, обмеженої графіком функції y = f(x) і прямими y = 0, x = a і x = b (a < b), можна обчислити за формулою

S = F(b) - F(a), де F будь-яка первісна функції f на проміжку [a;b]

Наприклад:

Знайдіть площу криволінійної трапеції, обмеженої відрізками a = 1, b = 3, віссю Ox і графіком функці $f(x) = 6x - x^2$.

Розв'язання:

ightharpoonup Назвіть одну з первісних ф-ї $f(x) = 6x - x^2$ на проміжку [1; 3] $F(x) = \frac{6x^2}{2} - \frac{x^3}{3}$ $F(x) = 3x^2 - \frac{x^3}{3}$ $\Rightarrow S = F(3) - F(1)$ S = F(b) - F(a) $\Rightarrow S = F(3) - F(1) = \left(3 \cdot 3^2 - \frac{3^3}{3}\right) - \left(3 \cdot 1^2 - \frac{1^3}{3}\right) = 18 - \frac{8}{3} = \frac{46}{3} = 15\frac{1}{3}$

• Формула Ньютона-Лейбніца

Означення

Нехай F — первісна функції f на проміжку I, числа a і b (a < b), належать проміжку I. Різницю F(b) - F(a) називають визначеним інтегралом функції f на проміжку [a;b]

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Позначення $\int\limits_a^b f(x) dx$ читається як інтеграл від a до b еф від ікс де ікс.

Числа a і b – це межі інтегрування: a – нижня межа, b – верхня межа.

*Отримана рівність називається формулою Ньютона-Лейбніца

• Геометричний зміст визначеного інтеграла

Використовуючи теорему про площу криволінійної трапеції та формулу Ньютона-Лейбніца можна зробити висновок, що площа криволінійної трапеції, обмеженої графіком неперервної і невід'ємної на відрізку [a;b] функції y = f(x), відрізком [a;b] осі 0x і прямими x = a і x = b, можна обчислювати за формулою

$$S = \int_{a}^{b} f(x) dx$$

Ця формула виражає геометричний зміст визначеного інтеграла.

Виконуючи обчислення визначених інтегралів зручно використовувати такий запис:

$$\int_{a}^{b} f(x)dx = F(x)|_{a}^{b} = F(b) - F(a)$$

Наприклад:

Знайдіть площу криволінійної трапеції, обмеженої відрізками $a=-\frac{2\pi}{3}$, $b=\frac{\pi}{2}$, віссю 0x і графіком функції $f(x)=\cos\frac{x}{2}$

Розв'язання:

$$S = \int_{-\frac{2\pi}{3}}^{\frac{\pi}{2}} \cos \frac{x}{2} dx = 2 \sin \frac{x}{2} \Big|_{-\frac{2\pi}{3}}^{\frac{\pi}{2}} = 2 \left(\sin \frac{\pi}{4} - \sin \left(-\frac{\pi}{3} \right) \right) = 2 \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \right) = \sqrt{2} + \sqrt{3}$$

Закріплення нових знань та вмінь учнів

<mark>№1</mark>

Знайдіть площу криволінійної трапеції, зображеної на рисунку:

Маємо криволінійну трапецію, яка обмежена графіком функції $y = x^2$ і прямими a = 1 і b = 2.

Знайдемо первісну:

$$F(x) = \frac{x^3}{3}$$

За теоремою про площу криволінійної трапеції знайдемо площу:

$$S = F(2) - F(1) = \frac{2^3}{3} - \frac{1^3}{3} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3} (\kappa e.oo)$$

Маємо криволінійну трапецію, яка обмежена графіком функції $y = x^3$ і прямими a = 0 і b = 1.

Знайдемо первісну:

$$F(x) = \frac{x^4}{4}$$

За теоремою про площу криволінійної трапеції знайдемо площу:

$$S = F(1) - F(0) = \frac{1^4}{4} - \frac{0^4}{4} = \frac{1}{4} - 0 = \frac{1}{4} (\kappa e.oo)$$

Маємо криволінійну трапецію, яка обмежена графіком функції

$$y = -\frac{6}{x}$$
 і прямими $a = -3$ і $b = -2$.

Знайдемо первісну:

$$F(x) = -6\ln|x|$$

За теоремою про площу криволінійної трапеції знайдемо площу:

$$S = F(-2) - F(-3) = -6\ln|-2| - (-6\ln|-3|) = -6\ln 2 + 6\ln 3 \ (\kappa e.o\partial)$$

I. Домашнє завдання

Опрацювати §10 Виконати № 10.4; 10.6; 10.8

Істер О.С.

Виконання завдань сфотографувати та надіслати в HUMAN або на електронну пошту vikalivak@ukr.net