Total No. of Q	Questions: 9]	30	SEAT No. :				
F 3924	[6001]-	4009	[Total No. of Pages : 4				
F.E.							
ENGINEERING MATHEMATICS-II							
	(2019 Pattern) (Seme	ster - I/II)	(107008)				
1) Q. N	o the candidates: To.1 is compulsory		[Max. Marks : 70				
 Solve Q.2 or Q.3, Q.4 or Q.5, Q.6 or Q.7, Q.8 or Q.9. Neat diagrams must be drawn wherver necessary. 							
4) Figu 5) Use	res to the right indicate full mar of electronic pocket calculator is me suitable data, if necessary.	ks.					
Q1) Write the correct option for the following multiple choice questions							
a) 🔊	$\sin^4 + dt =$		[2]				
i)	$\frac{3\pi}{16}$	11) 3/8					
iii)	$\frac{3}{16}$	$\frac{3\pi}{8}$					
	0,00		S				
b) Th	ne equation of the tangent to the	the curve $y(1 +$	$(x^2) = x$ at origin, if exist is [2]				
i)	X=0	ii) Y=0					
iii)	X=0 $x=1, x=-1$	ii) $Y=0$ iv) $y = x$					
c) Th	ne value of double integration	$\int_{0}^{1} \int_{0}^{1} \frac{1}{1+x^2} \cdot 1$	$(x^2) = x$ at origin, if exist is [2] $(x^2)^2 = x$ at origin, if exist is [2]				

d) Centre (C) of sphere
$$x^2 + y^2 + z^2 - 2z = 4$$
 is [2]

i)
$$C \equiv (0,0,0)$$

i)
$$C \equiv (0,0,1)$$

iii)
$$C \equiv (0,1,0)$$

iv)
$$C \equiv (1,0,0)$$

e) The curve
$$r = 2a \sin \theta$$
 is symmetrical about
i) Pole
ii) $\theta = 0$
iv) $\theta = \frac{\pi}{4}$

[1]

ii)
$$\theta = 0$$

iii)
$$\theta = \frac{1}{2}$$

iv)
$$\theta = \frac{\pi}{4}$$

f)
$$\iiint_{V} dxdydz \text{ represents}$$

[1]

ii) Area ii) Mass iv) Volume iv) Wolume 22) a) If
$$I_n = \int_0^{\frac{\pi}{4}} sec^n\theta \, d\theta$$
, then prove that $I_n = \frac{(\sqrt{2})^{n-2}}{n-1} + \frac{n-2}{n-1} I_{n-2}$ [5] b) Evaluate $\int_0^5 (x-2)^3 (5-x)^2 dx$ [5] c) Using DUIS, prove that $\int_0^2 \frac{e^{-x} - e^{-ax}}{x \sec x} \, dx = \frac{1}{2} \log \left(\frac{a^2 + 1}{2}\right), a > 0$ [5] OR [3] ii) $\int_0^{\frac{\pi}{2}} \cos^4 t \, dt$ [2]

b) Evaluate
$$\int_{2}^{5} (x-2)^{3} (5-x)^{2} dx$$

c) Using DUIS, prove that
$$\int_{0}^{\infty} \frac{e^{-x} - e^{-ax}}{x \sec x} dx = \frac{1}{2} \log \left(\frac{a^2 + 1}{2} \right), a > 0$$

$$Q3$$
) a) Evaluate

i)
$$\int_{0}^{2\pi} \sin^2 \frac{\theta}{2} \cos^{10} \frac{\theta}{2} d\theta$$

ii)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^4 t \ dt$$

b) Evaluate:
$$\int_{0}^{1} (x \log x)^{4} dx$$
 [5]
c) Prove that: $\frac{1}{x} \frac{d}{da} erf_{c}(ax) = \frac{1}{a} \frac{d}{dx} erf(ax)$ [5]
Q4) a) Trace the curve $x^{2}y^{2} = a^{2}(y^{2} - x^{2})$. [5]
b) Trace the curve $r = a(1 + \cos \theta)$. [5]
c) Find the are length of Astroid $x^{2/3} + y^{2/3} = a^{2/3}$ [5]

OR

Q5) a) Trace the curve
$$x^3 + y^3 = 3axy$$
. [5]

b) Trace the curve
$$r = a\cos 2\theta$$
 [5]

c) Trace the curve
$$x = a(t + \sin t)$$
, $y = a(1 + \cos t)$. [5]

- **Q6**) a) Show that the plane x-2y-2z=7 touches the sphere $x^2+y^2+z^2-10y-10z-31=0$. Also find the point of contact. [5]
 - b) Find the equation of right circular cone whose vertex is at origin, whose axis is the line $\frac{x}{1} = \frac{y}{2} = \frac{8}{3}$ and which has a semi-vertical angle of 60°. [5]
 - Find the equation of right circular cylinder of radius 3 and axis is the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}.$
- Q7) a) Show that the two spheres: $x^2 + y^2 + z^2 = 25$ and $x^2 + y^2 + z^2 = -18x 24y 40z + 225 = 0$ touches externally. Also find the point of contact. [5]
 - b) Find the equation of right circular cone whose vertex is at (0,0,10), axis is the Z-axis and the semi-vertical angle is $\cos^{-1}\left(\frac{2}{\sqrt{5}}\right)$ [5]
 - c) Find the equation of right circular cylinder of radius $\sqrt{6}$, whose axis passes through the origin and has direction cosines $\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$. [5]

[6001]-4009

Q 8) a)	Evaluate ∫	$\int xy\ dx\ dy,$	where R is $x^2 = y$, $y^2 = -x$.	[5]
	R	?		

b) Find area of cardioide $r = a(1 \cos \theta)$ using double integration. [5]

9

Find the moment of inertia of one loop of the lemniscate $r^2 = a^2 \cos 2\theta$ about initial line. Given that density $\rho = \frac{2m}{a^2}$, m is a mass of the area. [5]

Q9) a) Change order of integration $\int_{0}^{5} \int_{2-x}^{2+x} f(x,y) dx dy.$ [5]

- b) Find the volume bounded by the cone $x^2 + y^2 = z^2$ and paraboloid $x^2 + y^2 = z$. [5]
- c) Find the x co-ordinate of centre of gravity of one loop of $r = a\cos 2\theta$, which is in the first quadrant, given that area of loop is $A = \frac{\pi a^2}{8}$. [5]

9.148.16.28 Bloom of the state of the state

[6001]-4009