

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE COMPUTAÇÃO COMPUTAÇÃO GRÁFICA CMP 1170 – 2019/1 PROF. MSC. GUSTAVO VINHAL

Aula 07 Representação e Modelagem (continuação)

Faces Poligonais - Poliedros

- São sólidos limitados por um conjunto de polígonos cujos lados (arestas do poliedro) pertencem a um número par de polígonos.
- Para os poliedros, um objeto ser 2-manifold significa que o número de polígonos que compartilham uma aresta deve ser 2.

Faces Poligonais - Poliedros

 A B-rep (superfície limitante) de um poliedro simples, satisfaz a fórmula de Euler:

$$V - A + F = 2$$

- 1. V = número de vértices
- 2. A = número de arestas
- 3. F = número de faces

 Satisfazer a fórmula de Euler é uma condição necessária (mas não suficiente) para um objeto ser um poliedro simples.

Faces Poligonais - Poliedros

 Apesar da fórmula anterior ser bastante utilizada para objetos com faces planas, ela pode ser estendida para objetos que não possuam.

Faces Poligonais - Poliedros

- Um poliedro é regular se for constituído por faces e ângulos iguais.
- Apesar de existirem infinitos polígonos regulares, existem apenas cinco poliedros regulares:

Faces Poligonais - Poliedros

- A forma de armazenamento das informações do objeto é muito importante, pois permite rapidez e consistência nas operações geométricas.
- Existem três formas:
 - Estrutura de dados baseada em vértices;
 - Estrutura de dados baseada em arestas;
 - Estrutura de dados Winged-Edge e Half Winged-Edge

Faces Poligonais – Poliedros

Estrutura de dados baseada em vértices

- Nesta forma de estrutura, o objeto é armazenado utilizando duas listas:
 - Vértices;
 - Arestas.

 A única exigência é que a descrição das face seja consistente. Ou seja, os vértices limites de cada face devem ser descritos sempre no mesmo sentido (horário ou anti-horário) para todas as faces.

Faces Poligonais – Poliedros

Estrutura de dados baseada em vértices

Vértices	Coordenadas
A	(0,0,0)
В	(1,0,0)
C	(1,1,0)
D	(0,1,0)
E	(0,0,1)
F	(1,0,1)
G	(1,1,1)
Н	(0,1,1)

Faces	Vértices
F1	EFBA
F2	GFEH
F3	CBFG
F4	DABC
F5	HEAD
F6	DCGH

Faces Poligonais – Poliedros

Estrutura de dados baseada em arestas

- Esta estrutura armazena a informação baseada nas faces do objeto.
- Nesta forma de estrutura, o objeto é armazenado utilizando três listas:
 - Vértices;
 - Faces;
 - Os vértices limitantes de cada aresta.
- Também é necessário manter a ordem das arestas nas faces.

Faces Poligonais – Poliedros

Estrutura de dados baseada em arestas

Vértices	Coordenadas
Α	(0,0,0)
В	(1,0,0)
С	(1,1,0)
D	(0,1,0)
E	(0,0,1)
F	(1,0,1)
G	(1,1,1)
Н	(0,1,1)

Faces	Arestas	
F1	A1 A2 A3 A4	
F2	A9 A6 A1 A5	
F3	A6 A10 A7 A2	
F4	A7 A11 A8 A3	
F5	A12 A5 A4 A8	
F6	A9 A12 A11 A10	

Aresta	Vértices	Aresta	Vértices
A1	EF	A7	BC
A2	FB	A8	AD
А3	BA	A9	HG
A4	AE	A10	GC
A5	EH	A11	CD
A6	FG	A12	DH

Faces Poligonais – Poliedros

Estrutura de dados Winged-Edge e Half Winged-Edge

- Proposta para melhorar os algoritmos de remoção de superfícies escondidas e sombreamento.
- Nesta forma de estrutura, o objeto é armazenado utilizando três listas:
 - Vértices;
 - Arestas e seus sentidos;
 - Faces.

Vértices	Coordenadas
A	(0,0,0)
В	(1,0,0)
C	(1,1,0)
D	(0,1,0)
E	(0,0,1)
F	(1,0,1)
G	(1,1,1)
Н	(0,1,1)

Face	Primeira Aresta	Sinal
F1	A1	+
F2	A9	+
F3	A 6	+
F4	A7	+
F5	A12	+
F6	A9	-

Aresta	Vértices	Vértice Inicial	Vértice Final	ncw	nccw
A1	EF	E	F	A2	A5
A2	FB	F	В	А3	A6
A 3	BA	В	Α	A4	A7
A4	AE	A	E	A1	A8
A 5	EH	E	Н	A9	A4
A6	FG	F	G	A10	A1
A 7	BC	В	С	A11	A2
A8	AD	A	D	A12	А3
Α9	HG	Н	G	A6	A12
A10	GC	G	С	A7	A9
A11	CD	С	D	A8	A10
A12	DH	D	Н	A5	A11

Representação de Objetos

- As mais utilizadas (continuação):
 - Enumeração da Ocupação Espacial;
 - Decomposição do Espaço em Octrees;
 - Decomposição do Espaço em Quadtrees;
 - Quadtrees e Octrees Lineares;
 - Representação Implícita.

Enumeração da Ocupação Espacial

- Nesta representação, o sólido é decomposto em pequenos "pedaços";
- Em 3D, cada pedaço é representado por um cubo, chamado voxel;
- Em 2D, cada ponto é representado por uma matriz de zeros e uns.

Enumeração da Ocupação Espacial

Vantagens:

- Para determinar se um ponto pertence ao sólido, basta verificar se ele pertence a algum dos voxels;
- É fácil determinar se dois objetos se interferem;
- É fácil realizar operações booleanas entre os sólidos;
- É fácil obter massa e volume do objeto (basta saber o volume de uma das partes e multiplicar pelo total de divisões ocupadas).

Desvantagens:

 Para objetos complexos (e detalhados) exige uma grande quantidade de voxels e, consequentemente, muita memória.

Decomposição do Espaço em Octrees (árvores com oito filhos)

- O objeto é envolto por um cubo que, em seguida, é dividido em oito cubos menores de igual tamanho (octantes).
- Cada octante é classificado em:
 - Cheio: caso o objeto ocupe todo o cubo;
 - Vazio: caso o objeto n\u00e3o ocupe nenhuma parte do cubo;
 - Cheio-Vazio: caso o objeto ocupe parte do cubo.
- Se o octante for **cheio-vazio** ele é novamente dividido em oito partes iguais e o processo de classificação é refeito novamente.

Decomposição do Espaço em Octrees (árvores com oito filhos)

Numeração das células da octree

Imagem que a octree representa

Decomposição do Espaço em Quadtrees

- Semelhante aos Octrees, porém divide o objeto em quatro partes.
- Permite uma representação melhor detalhada com gasto menor de memória.

Quadtrees e Octrees Lineares

- Aplicação das técnicas Quadtrees e Octrees sem o uso da estrutura de árvores (sem uso de ponteiros);
- Usa-se endereços para cada nó (linear);
- Cada nó cheio é representado por uma sequência de dígitos.;
- Nós cheios que não estão no nível mais baixo, recebe um dígito adicional (X) no fim do endereço.

COMPUTAÇÃO GRÁFICA – CMP 1170

Quadtrees e Octrees Lineares

0002 002X 0032 X 02X 0302 032X 0332 2X 3002 302X 3032 32X 3302 332X 3332 (((0010)01(0010)01((0010)))01(((0010)01(0010)))

COMPUTAÇÃO GRÁFICA – CMP 1170

Quadtrees e Octrees Lineares

COMPUTAÇÃO GRÁFICA – CMP 1170

Quadtrees e Octrees Lineares

Representação Implícita

- Neste tipo de representação utiliza-se expressões matemáticas para representar os sólidos.
 - Cilindro elíptico:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$$

Elipsóide:

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} + \frac{(z-z_0)^2}{c^2} \le 1$$

Técnicas de Modelagem Geométrica

Três tipos de modelagem:

- Matemática: usa descrição matemática e algoritmos para gerar um objeto;
- Automática: utiliza equipamentos especiais (como scanners 3D) para obter o modelo tridimensional de quase tudo;
- Manual: utiliza as medidas de um modelo real e a intuição do modelador.
 - Instanciamento de Primitivas;
 - Combinação de Objetos;
 - Geometria Sólida Construtiva;
 - Connect;
 - Modelagem por Varredura ou Deslizamento;
 - Modelagem por Seções Transversais;
 - Modelagem pela Geração de Superfícies.

Instanciamento de Primitivas

- Neste modelo, o sistema de modelagem define um conjunto de formas sólidas para compor um objeto:
 - O objeto é composto pelas transformações geométricas de primitivas.

Combinação de Objetos

- PUC goiás
- Neste modelo, os objetos são combinados para formar um outro objeto.
- Esta combinação pode ser feita por justaposição ou colagem.
- Pode-se utilizar operações booleanas para unir esses objetos (soma, interseção e diferença).

Deve-se tomar cuidado, pois a operação pode gerar sólidos não válidos.

Geometria Sólida Construtiva

- Também conhecido como CSG Constructive Solid Geometry;
- Usa um esquema de representação de sólidos através de operações booleanas ou combinações de objetos sólidos a partir de operação de conjuntos.

Connect

- Cria novos sólidos a partir de sólidos já existentes combinados por uma conexão.
 - Essa conexão é feita preenchendo espaços em suas superfícies.

Modelagem por Varredura ou Deslizamento

- Cria objetos baseados em uma curva C1 que se desloca no espaço ao longo de uma trajetória dada por outra curva C2.
 - C1 recebe o nome de Contorno (ou Geratriz);
 - C2 recebe o nome de Caminho (ou Diretriz).

- Pode ser de dois tipos:
 - Translacional (Extrusão);
 - Rotacional.

Modelagem por Varredura ou Deslizamento - Extrusão

A diretriz é definida em apenas uma direção, linear.

Modelagem por Varredura ou Deslizamento - Rotacional

• A diretriz é definida em uma curva que gira em torno de um eixo.

Modelagem por Seções Transversais

- Essa técnica permite reconstruir sólidos a partir de cortes de outros sólidos.
- A ideia básica é interpolar os dados das seções transversais do objeto que se deseja modelar.
- As fatias podem ser obtidas pelas leituras de cortes do objeto ou por scanners (tomografia, ultrassom, ressonância magnética)

Modelagem pela Geração de Superfícies

PUC goiás

33

- Nessa técnica coloca-se alguns pontos no espaço e, em seguida, liga-os nas direções x e y, utilizando curvas.
- Essas curvas são particionadas em seções de quadriláteros curvilíneos (patches) e preenchidas.
- Pode-se alterar a forma do objeto com um simples deslocamento dos pontos.

Muito utilizado para geração de objetos com formas arredondadas e complexas.

REFERÊNCIAS BIBLIOGRÁFICAS:

AZEVEDO, Eduardo; CONCI, Aura. **Computação gráfica:** teoria e prática. Rio de Janeiro: Campus, 2003.