

Licence 1^{ère} année – Mentions MI – Ma0101

CORRECTION EXERCICES DU CHAPITRE 3

Exercice 1

A) 1)
$$f(x) = (x^2 + 2x + 1)^2$$

f est une fonction polynôme définie sur IR, donc continue et par conséquent intégrable sur IR.

$$f(x) = (x^2 + 2x + 1)(x^2 + 2x + 1) = x^4 + 4x^3 + 6x^2 + 4x + 1$$

$$F(x) = \frac{x^5}{5} + 4 \cdot \frac{x^4}{4} + 6 \cdot \frac{x^3}{2} + 4 \cdot \frac{x^2}{2} + x + C = \frac{1}{5}x^5 + x^4 + 2x^3 + 2x^2 + x + C$$
 où $C \in \mathbb{R}$

2)
$$f(x) = \left(x^2 + \frac{1}{x^2}\right)^2$$

f est une fonction rationnelle définie sur IR*, donc continue et par conséquent intégrable sur $]-\infty$; 0[ou $sur]0; +\infty[$

$$f(x) = \left(x^2 + \frac{1}{x^2}\right)^2 = x^4 + 2 + \frac{1}{x^4}$$
 Remarque: on peut intégrer $\frac{1}{x^4}$ comme x^{-4}

$$F(x) = \frac{x^5}{5} + 2x - \frac{1}{3x^3} + C$$
 où $C \in IR$

3)
$$f(x) = \frac{x^2 + 6x - 3}{x}$$

f est une fonction rationnelle définie sur IR*, donc continue et par conséquent intégrable sur $]-\infty$; 0[ou

$$f(x) = \frac{x^2 + 6x - 3}{x} = x + 6 - \frac{3}{x}$$

$$F(x) = \frac{x^2}{2} + 6x - 3 \cdot \ln|x| + C \text{ où } C \in IR$$

les primitives de f sur $]-\infty$; 0[sont les fonctions : $F(x)=\frac{x^2}{2}+6x-3\cdot ln(-x)+C$ où $C\in IR$; les primitives de f sur]0; $+\infty[$ sont les fonctions : $F(x) = \frac{x^2}{2} + 6x - 3 \cdot ln(x) + C$ où $C \in \mathbb{R}$;

4)
$$f(x) = \frac{1}{x^3} + e^x - 3\cos(x) - \cos(3x)$$

f est la somme d'une fonction rationnelle définie sur IR* et de fonctions exponentielles et cosinus définies sur IR, donc f est définie sur IR*; ainsi f est continue et par conséquent intégrable sur $]-\infty$; 0 ou sur

$$F(x) = -\frac{1}{2x^2} + e^x - 3\sin(x) - \frac{1}{3}\sin(3x) + C \text{ où } C \in IR \quad \underline{\text{Remarque}} : \text{on peut intégrer } \frac{1}{x^3} \text{ comme } x^{-3}$$

5)
$$f(x) = 2x^4 + \frac{1}{x^3} - \sqrt{2x+1}$$

f est la somme d'une fonction rationnelle $x\mapsto 2x^4+\frac{1}{x^3}$ définie sur IR^* et d'une fonction racine carrée $x\mapsto -\sqrt{2x+1}$ définie sur $\left[-\frac{1}{2};+\infty\right[$, donc f est définie sur $\left[-\frac{1}{2};0\right[\cup]0;+\infty[$; ainsi f est continue et par conséquent intégrable sur $\left[-\frac{1}{2}; 0\right]$ ou sur $\left[0; +\infty\right[$

$$f(x) = 2x^4 + \frac{1}{x^3} - \sqrt{2x+1} = 2x^4 + \frac{1}{x^3} - (2x+1)^{\frac{1}{2}} = 2x^4 + \frac{1}{x^3} - \frac{1}{2} \cdot 2(2x+1)^{\frac{1}{2}}$$

$$F(x) = 2 \cdot \frac{x^5}{5} - \frac{1}{2x^2} - \frac{1}{2} \cdot \frac{(2x+1)^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{2}{5}x^5 - \frac{1}{2x^2} - \frac{1}{3}(2x+1)^{\frac{3}{2}} + C \text{ où } C \in IR$$
$$= \frac{2}{5}x^5 - \frac{1}{2x^2} - \frac{1}{3}(2x+1)\sqrt{2x+1} + C \text{ où } C \in IR$$

Remarque: on intègre $2(2x+1)^{\frac{1}{2}}$ comme une forme u'u^{\alpha} de primitive $\frac{u^{\alpha+1}}{\alpha+1}$ avec $\alpha=\frac{1}{2}$

6)
$$f(x) = 3x\sqrt{1+x^2}$$

Licence 1ère année – Mentions MI – Ma0101

CORRECTION EXERCICES DU CHAPITRE 3

f est le produit d'une fonction polynôme $x \mapsto 3x$ définie sur IR et d'une fonction racine carrée $x \mapsto \sqrt{1+x^2}$ définie sur IR de la fest définie sur IR et des la continue et par agréfauent et intégrable sur

 $\sqrt{1+x^2}$ définie sur IR, donc f est définie sur IR ; ainsi f est continue et par conséquent et intégrable sur IR

$$f(x) = 3x\sqrt{1+x^2} = 3 \cdot \frac{1}{2} \cdot 2x(1+x^2)^{\frac{1}{2}} = \frac{3}{2} \cdot 2x(1+x^2)^{\frac{1}{2}}$$

$$F(x) = \frac{3}{2} \cdot \frac{(1+x^2)^{\frac{3}{2}}}{\frac{3}{2}} + C = (1+x^2)^{\frac{3}{2}} + C = (1+x^2)\sqrt{1+x^2} + C \text{ où } C \in \mathbb{R}$$

<u>Remarque</u>: on intègre $2x(1+x^2)^{\frac{1}{2}}$ comme une forme u'u^{α} de primitive $\frac{u^{\alpha+1}}{\alpha+1}$ avec $\alpha=\frac{1}{2}$

7)
$$f(x) = \frac{2}{(x+1)^4}$$

f est une fonction rationnelle définie sur IR- $\{-1\}$ donc continue $]-\infty$; -1[et sur]-1; $+\infty[$ et par conséquent intégrable sur $]-\infty$; -1[et sur]-1; $+\infty[$

$$f(x) = \frac{2}{(x+1)^4} = 2(x+1)^{-4}$$

$$F(x) = 2 \cdot \frac{(x+1)^{-3}}{-3} + C = -\frac{2}{3(x+1)^3} + C \text{ où } C \in IR$$

Remarque: on intègre $\frac{1}{(x+1)^4}$ comme une forme u'u^{α} de primitive $\frac{u^{\alpha+1}}{\alpha+1}$ avec $\alpha = -4$

8)
$$f(x) = x^2 (1 - \sqrt[3]{x}) = x^2 - x^2 \cdot x^{\frac{1}{3}} = x^2 - x^{\frac{7}{3}}$$

f est la différence d'une fonction polynôme $x \mapsto x^2$ définie sur IR et d'une fonction puissance $x \mapsto x^{\frac{7}{3}}$ définie sur IR⁺, donc f est définie sur IR⁺; ainsi f est continue et par conséquent intégrable sur $[0; +\infty[$

$$F(x) = \frac{x^3}{3} + \frac{x^{\frac{10}{3}}}{\frac{10}{3}} + C = \frac{1}{3}x^3 + \frac{3}{10}x^{\frac{10}{3}} + C = \frac{1}{3}x^3 + \frac{3}{10}x^3\sqrt[3]{x} + C \text{ où } C \in IR$$

$$9) f(x) = \sin(2x) + \cos(3x)$$

f est la somme de fonctions sinus et cosinus définies sur IR, donc f est définie sur IR ; ainsi f est continue et par conséquent intégrable sur IR

$$F(x) = -\frac{1}{2}\cos(2x) + \frac{1}{3}\sin(3x) + C \text{ où } C \in IR$$

$$10) f(x) = \sin(2x)\cos(3x)$$

f est le produit de fonctions sinus et cosinus définies sur IR, donc f est définie sur IR; ainsi f est continue et par conséquent intégrable sur IR

Linéarisation de f(x):

$$f(x) = \sin(2x)\cos(3x) = \frac{e^{i2x} - e^{-i2x}}{2i} \cdot \frac{e^{i3x} + e^{-i3x}}{2} = \frac{e^{i5x} + e^{-ix} - e^{ix} - e^{-i5x}}{4i}$$
$$= \frac{e^{i5x} - e^{-i5x}}{4i} - \frac{e^{ix} - e^{-i}}{4i} = \frac{1}{2}\sin(5x) - \frac{1}{2}\sin(x)$$
$$F(x) = \frac{1}{2}\left(-\frac{1}{5}\cos(5x)\right) - \frac{1}{2}(-\cos(x)) + C = -\frac{1}{10}\cos(5x) + \frac{1}{2}\cos(x) + C \text{ où } C \in IR$$

$$11) f(x) = \sin^3(x)$$

f est le produit de la fonction sinus définie sur IR, donc f est définie sur IR ; ainsi f est continue et par conséquent intégrable sur IR

 1^{e} méthode : linéarisation de f(x) :

$$f(x) = \sin^3(x) = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^3 = \frac{e^{i3x} - 3e^{ix} + 3e^{-ix} - e^{-i3x}}{-8i} = \frac{e^{i3x} - e^{-i3x}}{-8i} - 3\frac{e^{ix} - e^{-ix}}{-8i}$$
$$= -\frac{1}{4}\sin(3x) + \frac{3}{4}\sin(x)$$

Licence 1^{ère} année – Mentions MI – Ma0101

CORRECTION EXERCICES DU CHAPITRE 3

$$F(x) = -\frac{1}{4} \left(-\frac{1}{3} \cos(3x) \right) + \frac{3}{4} (-\cos(x)) + C = \frac{1}{12} \cos(3x) - \frac{3}{4} \cos(x) + C \text{ où } C \in \mathbb{R}$$

2^e méthode : utilisation des formules trigonométriques :

$$f(x) = \sin^3(x) = \sin(x) \cdot \sin^2(x) = \sin(x) \cdot (1 - \cos^2(x)) = \sin(x) - \sin(x) \cdot \cos^2(x)$$

$$F(x) = -\cos(x) + \frac{1}{3}\cos^3(x) + C \text{ où } C \in IR$$

Remarque: on intègre $-\sin(x)\cos^2(x)$ comme une forme u'u^{\alpha} de primitive $\frac{u^{\alpha+1}}{\alpha+1}$ avec $\alpha=2$

$$12) f(x) = \tan^2(x)$$

f est le produit de la fonction tangente définie sur IR- $\left\{\frac{\pi}{2}+k\pi,k\epsilon\mathbf{Z}\right\}$, donc f est définie sur

IR- $\left\{\frac{\pi}{2} + k\pi, k\epsilon Z\right\}$; ainsi f est continue et par conséquent intégrable sur chaque intervalle

$$\left] -\frac{\pi}{2} + k\pi ; \frac{\pi}{2} + k\pi \right[\text{ avec } k \in \mathbf{Z}$$

$$f(x) = \tan^2(x) = \tan^2(x) + 1 - 1$$

$$F(x) = \tan(x) - x + C$$
 où $C \in IR$

13)
$$f(x) = \frac{e^{3x}e^{-2x}}{e^x}$$

f est le produit et le quotient de fonctions exponentielles définies sur IR et dont le dénominateur ne s'annule pas, donc f est définie sur IR; ainsi f est continue ainsi f est et par conséquent intégrable sur IR

$$f(x) = \frac{e^{3x}e^{-2x}}{e^x} = \frac{e^x}{e^x} = 1$$

$$F(x) = x + C$$
 où $C \in IR$

B) 1)
$$f(x) = \sin(x)\cos^2(x)$$

f est le produit de fonctions sinus et cosinus définies sur IR, donc f est définie sur IR; ainsi f est continue et par conséquent intégrable sur IR

$$f(x) = \sin(x)\cos^2(x) = -(-\sin(x))\cos^2(x)$$

$$F(x) = -\frac{1}{3}\cos^3(x) + C \text{ où } C \in IR$$

Remarque: on intègre $-\sin(x)\cos^2(x)$ comme une forme u'u^{α} de primitive $\frac{u^{\alpha+1}}{\alpha+1}$ avec $\alpha=2$

$$2) f(x) = \tan(x)$$

f est la fonction tangente définie sur IR- $\left\{\frac{\pi}{2} + k\pi, k\epsilon \mathbf{Z}\right\}$; ainsi f est continue et par conséquent intégrable sur chaque intervalle $\left] - \frac{\pi}{2} + k\pi \right] = \frac{\pi}{2} + k\pi \left[\text{ avec } k \in \mathbf{Z} \right]$ $f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)} = -\frac{-\sin(x)}{\cos(x)}$

$$f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)} = -\frac{-\sin(x)}{\cos(x)}$$

$$F(x) = -\ln(|\cos(x)|) + C \text{ où } C \in IR$$

<u>Remarque</u>: on intègre $\frac{-\text{si }(x)}{\cos(x)}$ comme une forme $\frac{u'}{u}$ de primitive $\ln|u|$

$$3) f(x) = \cos(x)\sin^{25}(x)$$

f est le produit de fonctions sinus et cosinus définies sur IR, donc f est définie sur IR; ainsi f est continue et par conséquent intégrable sur IR

$$F(x) = \frac{1}{26}\sin^{26}(x) + C \text{ où } C \in IR$$

Remarque: on intègre $\cos(x)\sin^{25}(x)$ comme une forme u'u^{\alpha} de primitive $\frac{u^{\alpha+1}}{\alpha+1}$ avec \alpha = 25

Licence 1ère année – Mentions MI – Ma0101

CORRECTION EXERCICES DU CHAPITRE 3

4) $f(x) = 3\sin(x)\cos^5(x) + 2\sin(x)\cos(x)$

f est la somme et le produit de fonctions sinus et cosinus définies sur IR, donc f est définie sur IR ; ainsi f est continue et par conséquent intégrable sur IR

$$f(x) = -3(-\sin(x))\cos^{5}(x) - 2(-\sin(x))\cos(x)$$

$$F(x) = -3\frac{\cos^6(x)}{6} - 2\frac{\cos^2(x)}{2} + C = -\frac{1}{2}\cos^6(x) - \cos^2(x) + C \text{ où } C \in IR$$

Remarque: on intègre $-\sin(x)\cos^5(x)$ et $-\sin(x)\cos(x)$ comme des formes u'u^{α} de primitive $\frac{u^{\alpha+1}}{\alpha+1}$ avec α = 5 et α = 1

Autres formes d'intégration :

- a) on peut intégrer $2\sin(x)\cos(x)$ comme une forme $u'u^{\alpha}$ avec $u=\sin(x)$, $u'=\cos(x)$ et $\alpha=1$; d'où $\int 2\sin(x)\cos(x)\,dx=2\int\sin(x)\cos(x)\,dx=2\frac{\sin^2(x)}{2}=\sin^2(x)$ ainsi $F(x)=-\frac{1}{2}\cos^6(x)+\sin^2(x)+C$ où $C\in IR$
- b) on peut remarquer que $2\sin(x)\cos(x) = \sin(2x)$ d'où $\int 2\sin(x)\cos(x)\,dx = \int \sin(2x)\,dx = -\frac{\cos(2x)}{2}$ ainsi $F(x) = -\frac{1}{2}\cos^6(x) \frac{1}{2}\cos(2x) + C \text{ où } C \in IR$

 $5) f(x) = \sin(x) e^{\cos(x)}$

f est le produit de la fonction sinus et de la fonction cosinus composée avec la fonction exponentielle, toutes définies sur IR, donc f est définie sur IR ; ainsi f est continue et par conséquent intégrable sur IR $f(x) = \sin(x) e^{\cos(x)} = -(-\sin(x)) e^{\cos(x)}$

$$F(x) = -e^{\cos(x)} + C \text{ où } C \in IR$$

Remarque: on intègre $-\sin(x)$ e^{cos(x)} comme une forme u'e^u de primitive e^u

$$6) f(x) = \frac{\sin(x)}{1 + \cos^2(x)}$$

f est un quotient des fonctions sinus et cosinus, dont le dénominateur ne s'annule pas, donc f est définie sur IR ; ainsi f est continue et par conséquent intégrable sur IR

$$f(x) = \frac{\sin(x)}{1 + \cos^2(x)} = -\frac{-\sin(x)}{1 + \cos^2(x)}$$

$$F(x) = -\operatorname{Arctan}(\cos(x)) + C \text{ où } C \in IR$$

<u>Remarque</u> : on intègre $\frac{-\sin(x)}{1+\cos^2(x)}$ comme une forme $\frac{u'}{1+u^2}$ de primitive Arctan(u)

7) $f(x) = \cos(x)\sin(\sin(x))$

f est un produit et une composée des fonctions sinus et cosinus, donc f est définie sur IR; ainsi f est continue et par conséquent intégrable sur IR

$$F(x) = -\cos(\sin(x)) + C \text{ où } C \in IR$$

Remarque: on intègre cos(x) sin(sin(x)) comme une forme u'sin(u) de primitive -cos(u)

8) $f(x) = \frac{1}{1+9x^2}$

f est une fraction rationnelle dont le dénominateur ne s'annule pas, donc f est définie sur IR; ainsi f est continue et par conséquent intégrable sur IR

$$f(x) = \frac{1}{1 + 9x^2} = \frac{1}{1 + (3x)^2} = \frac{1}{3} \cdot \frac{3}{1 + (3x)^2}$$

$$F(x) = \frac{1}{3} \operatorname{Arctan}(3x) + C \text{ où } C \in IR$$

<u>Remarque</u>: on intègre $\frac{3}{1+(3x)^2}$ comme une forme $\frac{u'}{1+u^2}$ de primitive Arctan(u)

Licence 1ère année - Mentions MI - Ma0101

CORRECTION EXERCICES DU CHAPITRE 3

9)
$$f(x) = \frac{x}{1+9x^2}$$

f est une fraction rationnelle dont le dénominateur ne s'annule pas, donc f est définie sur IR; ainsi f est continue et par conséquent intégrable sur IR

$$f(x) = \frac{x}{1+9x^2} = \frac{1}{18} \cdot \frac{18x}{1+9x^2}$$

$$F(x) = \frac{1}{18} \cdot \ln|1+9x^2| + C = \frac{1}{18} \ln(1+9x^2) + C \text{ où } C \in IR$$

Remarque: on intègre $\frac{18}{1+9x^2}$ comme une forme $\frac{u'}{u}$ de primitive $\ln |u|$

10)
$$f(x) = \frac{x}{1-3x^2}$$

fest une fraction rationnelle dont le dénominateur s'annule en $\pm \frac{\sqrt{3}}{3}$, donc f est définie sur IR $-\left\{-\frac{\sqrt{3}}{3}; \frac{\sqrt{3}}{3}\right\}$; ainsi f est continue et par conséquent intégrable sur $]-\infty; -\frac{\sqrt{3}}{3}[$ ou sur $]-\frac{\sqrt{3}}{3}; \frac{\sqrt{3}}{3}[$ ou sur $]\frac{\sqrt{3}}{3}; +\infty[$

$$f(x) = \frac{x}{1 - 3x^2} = \frac{1}{-6} \cdot \frac{-6x}{1 - 3x^2}$$

$$F(x) = \frac{1}{-6} \cdot \ln|1 - 3x^2| + C = -\frac{1}{6}\ln|1 - 3x^2| + C \text{ où } C \in IR$$

Remarque: on intègre $\frac{-6x}{1-3x^2}$ comme une forme $\frac{u'}{u}$ de primitive $\ln |u|$

Licence 1ère année – Mentions MI – Ma0101

CORRECTION EXERCICES DU CHAPITRE 3

11)
$$f(x) = \frac{e^x}{1 + e^{2x}}$$

f est une fraction d'exponentielles, dont le dénominateur ne s'annule pas, donc f est définie sur IR ; ainsi fest continue et par conséquent intégrable sur IR

$$f(x) = \frac{e^x}{1 + e^{2x}} = \frac{e^x}{1 + (e^x)^2}$$

$$F(x) = \operatorname{Arctan}(e^x) + \widehat{C} \circ \widehat{U} \in IR$$

Remarque : on intègre $\frac{e^x}{1+(e^x)^2}$ comme une forme $\frac{u'}{1+u^2}$ de primitive Arctan(u)

12)
$$f(x) = \frac{2}{(4x+5)^3}$$

f est une fraction rationnelle, dont le dénominateur s'annule en $-\frac{5}{4}$, donc f est définie sur $IR - \left\{-\frac{5}{4}\right\}$; ainsi f est continue et par conséquent intégrable sur $\left|-\infty; -\frac{5}{4}\right|$ et sur $\left|-\frac{5}{4}; +\infty\right|$

$$f(x) = \frac{2}{(4x+5)^3} = \frac{2}{4} \cdot \frac{4}{(4x+5)^3} = \frac{1}{2} \cdot \frac{4}{(4x+5)^3}$$

$$F(x) = \frac{1}{2} \cdot \frac{1}{-2(4x+5)^2} + C = -\frac{1}{4(4x+5)^2} + C$$
 où $C \in \mathbb{R}$

 $F(x) = \frac{1}{2} \cdot \frac{1}{-2(4x+5)^2} + C = -\frac{1}{4(4x+5)^2} + C \text{ où } C \in IR$ $\frac{4}{(4x+5)^3} \text{ comme une forme u'u}^{\alpha} \text{ de primitive } \frac{u^{\alpha+1}}{\alpha+1} \text{ avec } \alpha = -3$

13)
$$f(x) = \frac{x}{1+x^4}$$

f est une fraction rationnelle d'exponentielles, dont le dénominateur ne s'annule pas, donc f est définie sur IR ; ainsi f est continue et par conséquent intégrable sur IR

$$f(x) = \frac{x}{1+x^4} = \frac{x}{1+(x^2)^2} = \frac{1}{2} \cdot \frac{2x}{1+(x^2)^2}$$

$$F(x) = \frac{1}{2} \operatorname{Arctan}(x^2) + C$$
 où $C \in IR$

<u>Remarque</u>: on intègre $\frac{2x}{1+(x^2)^2}$ comme une forme $\frac{u^2}{1+u^2}$ de primitive Arctan(u)

14)
$$f(x) = \frac{x^3}{1+x^4}$$

f est une fraction rationnelle, dont le dénominateur ne s'annule pas, donc f est définie sur IR ; $\operatorname{ainsi} f$ est continue et par conséquent intégrable sur IR

$$f(x) = \frac{x^3}{1+x^4} = \frac{1}{4} \cdot \frac{4x^3}{1+x^4}$$

$$f(x) = \frac{x^3}{1+x^4} = \frac{1}{4} \cdot \frac{4x^3}{1+x^4}$$

$$F(x) = \frac{1}{4}\ln|1+x^4| + C = \frac{1}{4}\ln(1+x^4) + C \text{ où } C \in IR$$

<u>Remarque</u>: on intègre $\frac{4x^3}{1+x^4}$ comme une forme $\frac{u'}{u}$ de primitive $\ln |u|$

15)
$$f(x) = \frac{\ln(x)}{x} + \frac{5x}{x^2 + 3}$$

f est la somme de la fonction $x \mapsto \frac{\ln(x)}{x}$ définie sur \mathbb{R}^{+*} (le logarithme est définie sur]0; $+\infty[$ et le dénominateur ne doit pas être nul : $x \neq 0$) et d'une fraction rationnelle $x \mapsto \frac{5x}{x^2+3}$ définie sur IR, donc f est définie sur IR^{+*}; ainsi f est continue et par conséquent intégrable sur]0; $+\infty[$ $f(x) = \frac{\ln(x)}{x} + \frac{5x}{x^2 + 3} = \frac{1}{x} \cdot \ln(x) + \frac{5}{2} \cdot \frac{2x}{x^2 + 3}$

$$f(x) = \frac{\ln(x)}{x} + \frac{5x}{x^2 + 3} = \frac{1}{x} \cdot \ln(x) + \frac{5}{2} \cdot \frac{2x}{x^2 + 3}$$

$$F(x) = \frac{\ln^2(x)}{2} + \frac{5}{2} \cdot \ln|x^2 + 3| + C = \frac{1}{2}\ln^2(x) + \frac{5}{2} \cdot \ln(x^2 + 3) + C \text{ où } C \in IR$$