

• Determinar uma rota que **minimize o tempo** de deslocamento entre dois locais.

atender a demanda.

 Determinar alocação de equipes em serviços de emergência para minimizar custo e

• Dada uma variedade de alimentos, escolher uma dieta de **menor custo** que atenda as necessidades nutricionais de um indivíduo.

 Decidir qual melhor plano de tratamento para um paciente com câncer, tendo em conta as características do tumor e sua proximidade com órgãos vitais.

 Definir locais para implantação de fábricas e armazéns de uma empresa para que o custo de transporte de matérias primas e produtos

sejam minimizados.

• Selecionar portfólios para investimento na bolsa de valores para maximizar retorno.

 Determinar o planejamento de produção de uma refinaria de petróleo que maximize a taxa de produção e atenda os padrões de

qualidade

O que esses problemas têm em comum?

- Minimizar tempo
- Minimizar custo
- Maximizar produção
- Maximizar retorno do investimento
- •

Problemas de Otimização

Modelo matemático

min(max)
$$f(x)$$
 Função objetivo sujeito a:
$$g(x) = b$$

$$h(x) \leq r$$
 Restrições
$$v(x) \geq d.$$

Problemas de Otimização

Categorias de Problemas

min(max) f(x)sujeito a: g(x) = b $h(x) \le r$ $v(x) \ge d$.

Um exemplo para ilustrar

Empresa produtora de respiradores mecânicos

Fábricas	Centros consumidores			Capacidade de
	Recife	Salvador	Manaus	Produção
Rio de Janeiro	25	20	30	2000
São Paulo	30	25	25	3000
Belo Horizonte	20	15	23	1500
Demanda solicitada	2000	2000	1000	

Um exemplo para ilustrar

Fábricas	Centros consumidores			Capacidade de
	Recife	Salvador	Manaus	Produção
Rio de Janeiro	25	20	30	2000
São Paulo	30	25	25	3000
Belo Horizonte	20	15	23	1500
Demanda solicitada	2000	2000	1000	

Determine quanto deve ser produzido em cada fábrica e entregue a cada centro consumidor de forma a minimizar os custos com o transporte.

Componentes do modelo de otimização

- Variáveis de decisão: são as incógnitas a serem determinadas pela solução do modelo.
 Parâmetros: são valores fixos no problema.
- Restrições: limitações físicas, limitam as variáveis de decisão
- Função objetivo: é uma função matemática que define a qualidade da solução em função das variáveis de decisão.

Formulação matemática

• Existem 9 variáveis de decisão para expressar a quantidade transportada em cada uma das possíveis vias.

Fábricas	Centros consumidores			Capacidade de
	Recife	Salvador	Manaus	Produção
Rio de Janeiro	25 x ₁₁	20 x_{12}	30 x ₁₃	2000
São Paulo	30 x ₂₁	25 x_{22}	25 x ₂₃	3000
Belo Horizonte	20 x_{31}	15 x_{32}	23 x ₃₃	1500
Demanda solicitada	2000	2000	1000	

Variáveis de decisão:

 $x_{ij}:$ quantidade transportada da fábrica i para o centro consumidor j

Formulação matemática

Fábricas	Centros consumidores			Capacidade de
	Recife	Salvador	Manaus	Produção
Rio de Janeiro	25 x ₁₁	20 x_{12}	30 x ₁₃	2000
São Paulo	30 x ₂₁	25 x_{22}	25 x_{23}	3000
Belo Horizonte	20 x_{31}	15 x_{32}	23 <i>x</i> ₃₃	1500
Demanda solicitada	2000	2000	1000	

min
$$f(x) = 25x_{11} + 20x_{12} + 30x_{13} + 30x_{21} + 25x_{22} + 25x_{23} + 20x_{31} + 15x_{32} + 23x_{33}$$
 sa:

$$x_{11} + x_{12} + x_{13} \le 2000$$
 $x_{11} + x_{21} + x_{31} = 2000$
 $x_{21} + x_{22} + x_{23} \le 3000$ $x_{12} + x_{22} + x_{32} = 2000$
 $x_{31} + x_{32} + x_{33} \le 1500$ $x_{13} + x_{23} + x_{33} = 1000$

Mais exemplos

Assistam os vídeos indicados

Próxima Aula

• Uso da ferramenta Cocalc para solução