Class07: Matchine Learning 1

Yang Liu

Today we will start out multi-part exploration of some key machine learning methods. We will begin with clustering--finding groupings in data, and then dimensionality reduction.

##Clustering

Let's start with "k-means" clustering

The main function in base R for this 'kmeans()'.

```
#make up some data
hist(rnorm(100000, mean=3))
```

Histogram of rnorm(1e+05, mean = 3)


```
tmp <- c(rnorm(30, -3), rnorm(30, +3))
x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```


Now let's try out 'kmeans()'

```
km <- kmeans(x, centers=2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
x y
1 3.142578 -3.190014
2 -3.190014 3.142578
```

Clustering vector:

Within cluster sum of squares by cluster:

[1] 42.823 42.823

(between_SS / total_SS = 93.4 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

attributes(km)

\$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

\$class

[1] "kmeans"

Q. How many points in each cluster?

km\$size

[1] 30 30

Q. What component of your result object details cluster assignment/membership?

km\$cluster

Q. what are centers/mean values of each cluster?

km\$centers

х у

1 3.142578 -3.190014

2 -3.190014 3.142578

Q. Make a plot of your data showing your clustering results (grouping/clusters and cluster cneters).

```
plot(x, col=c("red","blue"))
```



```
c(1:5) + c(100, 1)
```

Warning in c(1:5) + c(100, 1): longer object length is not a multiple of shorter object length

[1] 101 3 103 5 105

plot(x, col=c(1,2))

plot(x, col=km\$cluster)
points(km\$centers, col="green", pch=15, cex=3)

Q. Run 'kmeans' again and cluster in 4 groups and plot the results.

```
km4 <- kmeans(x, centers=4)
km4</pre>
```

K-means clustering with 4 clusters of sizes 14, 9, 16, 21

Cluster means:

```
x y
1 -3.755358 3.713319
2 4.222433 -3.642528
3 -2.695338 2.643180
4 2.679783 -2.996080
```

Clustering vector:

Within cluster sum of squares by cluster:
[1] 12.634305 3.812884 13.248033 21.384833
(between_SS / total_SS = 96.0 %)

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
```

[6] "betweenss" "size" "iter" "ifault"

```
plot(x, col=km4$cluster)
points(km4$centers, col="green", pch=15, cex=3)
```


##Hierarchical Clustering

This form of clustering aims to reveal the structure in your data by progressively grouping points into a ever smaller number of clusters.

The main function in base R for this called 'hclust()' This function does not take out input data directiely but wants a "distance matrix" that details how (dis)similar all our input are to each otehr.

```
hc <- hclust(dist(x))
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

The print out above is not very useful (unlick that from kmeans) but there is a useful 'plot()' mehtod.

```
plot(hc)
abline(h=10, col="red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To get my main result (My cluster membership vector) I need to "cut" my tree using the function 'cutree()'

```
grps <- cutree(hc, h=10)
grps</pre>
```

```
plot(x, col=grps)
```


plot(x, col=cutree(hc, h=6))

#Principal Component Analysis (PCA)

The goal of PCA is to reduce the dimension of a dataset down to some smaller subset of new variables (called PCs) that are a useful based for furthur analysis, like visualization, clustering, etc.

Data import

Read data about crazy eacting trends in the UK and N. Ireland.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)
x</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187
Processed_Veg	360	365	337	334
Fresh_fruit	1102	1137	957	674
Cereals	1472	1582	1462	1494
Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

```
dim(x)
[1] 17 4
barplot(as.matrix(x), col=rainbow(nrow(x)))
```


barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))

The so-called "pairs" plot can be useful for small datasets:

```
#rainbow(nrow(x))
pairs(x, col=rainbow(nrow(x)), pch=20)
```


So the paris plot is useful for small datasets but it can be lots of work to interpret and get untractable for larger datasets.

So PCA to the rescue...

The main function to do PCA in base R is called 'prcomp()' This function wants the transpose of our data in this case

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	3.176e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

```
attributes(pca)
```

```
$names
[1] "sdev"          "rotation" "center"          "scale"          "x"
$class
[1] "prcomp"

pca$x
```

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -4.894696e-14
Wales -240.52915 -224.646925 -56.475555 5.700024e-13
Scotland -91.86934 286.081786 -44.415495 -7.460785e-13
N.Ireland 477.39164 -58.901862 -4.877895 2.321303e-13
```

A major PCA result viz is called a "PCA plot" (a.k.a. a score plot, biplot, PC1 vs. PC2 plot, ordination plot)

Another important output from PCA is called the "loadings" vector or the "rotation" component -this tell us how much the original variables (the food in this case) contributes to the new PCs

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.694538519
Carcass_meat	0.047927628	0.013915823	0.06367111	0.489884628
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.279023718
Fish	-0.084414983	-0.050754947	0.03906481	-0.008483145
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.076097502
Sugars	-0.037620983	-0.043021699	-0.03605745	0.034101334
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	-0.090972715
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	-0.039901917
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.016719075
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	0.030125166
Processed_Veg	-0.036488269	-0.045451802	0.05289191	-0.013969507
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.184072217
Cereals	-0.047702858	-0.212599678	-0.35884921	0.191926714
Beverages	-0.026187756	-0.030560542	-0.04135860	0.004831876
Soft drinks	0.232244140	0.555124311	-0.16942648	0.103508492

PCA looks to be a super useful method for gaining some insight into high dimensional data that is difficult to examine in other ways.

PCA of RNA-seq data

```
url2 <- "https://tinyurl.com/expression-CSV"
rna.data <- read.csv(url2, row.names=1)
head(rna.data)</pre>
```

```
    wt1
    wt2
    wt3
    wt4
    wt5
    ko1
    ko2
    ko3
    ko4
    ko5

    gene1
    439
    458
    408
    429
    420
    90
    88
    86
    90
    93

    gene2
    219
    200
    204
    210
    187
    427
    423
    434
    433
    426

    gene3
    1006
    989
    1030
    1017
    973
    252
    237
    238
    226
    210

    gene4
    783
    792
    829
    856
    760
    849
    856
    835
    885
    894

    gene5
    181
    249
    204
    244
    225
    277
    305
    272
    270
    279

    gene6
    460
    502
    491
    491
    493
    612
    594
    577
    618
    638
```