ADVANCED DOCKING BERTHING SYSTEM UPDATE

James Lewis
National Aeronautics and Space Administration
Johnson Space Center
Houston, Texas

Advanced Docking Berthing System Update NASA Seal Workshop GRC

November 8-9, 2005

Outline

- Background
- Future Program Needs
- **Existing Systems**
- Status
- Advanced Docking/Berthing System (ADBS) Overview
- Key Seal Requirements
- Early Seal Development Work

Background

Docking refers to mating operations where an active vehicle flies into the mating interface under its own power.

Future Needs

A system able to support a variety of missions: CTV/CEV/CRV, lunar gateway, Moon, and Mars Future Mating System Capability Requirements:*

Lightweight, fault tolerant system that blends well into vehicle OML (aero)

Capable of autonomous rendezvous & docking

Berthing capable for modular assembly and vehicle swap-out

Software reconfigurable for a range of vehicles and operations

Fast separation for rapid release

Modular for maintenance and servicing

Constellation safety & reliability goals

Adaptable to ISS

Crew and large cargo transfer

Power, data, and fluid transfer

Vehicle to vehicle mating (CRV-CTV-others) requires androgynous interface

*-During FY06, with the Constellation Program and the CEV Project ramping up, detailed requirements development and documentation will occur.

Existing Systems

Androgynous Peripheral Docking System (APAS)
Weight: ~950 lbs (660 lbs APDA-6001 + 276 lbs avionics) (hatch not incl.)

Max OD: 69" dia

Hatch Pass Through: 31.38" dia

Source: JSC-26938, "Procurement Specification for the Androgynous Peripheral Docking System for the

use Ananogymous ISS Missions

Weight: est. 750 lbs (includes electronics & hatch) Max OD: 58" dia Hatch Pass Through: 32" dia

Source: LIDS Project Group

Russian Probe

Weight: 700 lbs (550 lbs cone + 150 lbs avionics)

Max OD: 61" dia

Hatch Pass Through: 31.5" dia (approximate)

Source: Energia

¹ADBS currently under development ²Bulkhead hatch ring structure not included

Existing Systems

Limitations of existing systems:

- Do not meet 2-fault tolerant, time-critical release requirement for crewed vehicles
- APAS for Shuttle relies on 96 bolt EVA to meet 2nd fault tolerance
- CBM powered bolts in nominal ops are not time critical and are single fault tolerant
- Unique active & passive halves: precludes vehicle-to-vehicle mating using like pairs
- Do not support autonomous operations
- No automatic mating of fluid, power (APAS does have a power/data connector) and forced air umbilicals
- CBM cannot mate to unmanned vehicles; requires RMS grappling and berthing
- Standard ISS racks cannot pass through existing docking ports
- Significant velocities required to provide alignment & capture forces
- Crit-1 operations supported by intensive training & analysis
- High part count / mechanical complexity with single point failures (reliability and failure tolerance problems)
- Berthing mechanisms do not dock and docking mechanisms do not berth
- Russian systems are supplied by a foreign vendor with substantial economic concerns
- Purchase of additional units banned by Iran Missile Proliferation Sanctions Act of 1997
- Very limited access to engineering data
- Systems designed and/or certified for very few cycles and short exposure life

Apollo Soyuz Test Program Docking System Interface Seal Diagram

RETAINER

Current Status

Advanced Mating System Development Activities

- In FY05 the Exploration Systems Technology Maturation Program selected the JSC advanced mating systems development to continue as an in-house project.
- Constellation Program) has chosen to continue the project as a GFE Flight Hardware In FY06, as a result of ESAS Study (60 Day Study) the CEV Project (within the development effort.
- of retiring the Shuttle and reducing the gap of time where US does not have any -new requirement for CEV to travel and dock with the ISS in 2011/12 in support US based crew launch capability.
- As before, long-duration compatible seal-on-seal technology (seal-on-seal to support androgynous interface) has been identified as a risk mitigation item.

ADBS Overview

A Next-Generation Mating Mechanism

- Designed specifically to take advantage of modern electromechanical technology
- Incorporates the lessons learned and experiences from previous/current mating mechanism development and use
- Desensitizes mating mechanism operations and performance from other vehicle systems requirements
- Supports both docking and berthing operations
- Supports autonomous rendezvous & mating
- Aligned with NASA Strategic Plan

CAD Image

Key Seal Requirements

- ASTP did it.
- Russian APAS has it.
- Very low leak rate
- Long-duration pressurized volumes requiring minimal atmospheric volume loss

• Long life

- Long-duration exposed periods
- Long-duration mated periods
- LEO, deep-space and lunar/Mars environments
- May also be a potential for high mate/demate cycle life
- Redundancy
- Damage tolerance

ADBS Seal Locations

James Lewis, NASA-JSC/ES5 281-483-8954

Early ADBS Seal Development

To preserve the fully androgynous design concept the seal design approach baselined was a seal-on-seal implementation similar to the Apollo Soyuz (ASTP) seals.

Subscale seal-on-seal elastomeric development with Parker Inc.

- Quick development and testing to evaluate seal-on-seal potential
- 2 cross-sections (flat top and elliptical) and 2 different durometer silicon materials
- Helium leak testing and seal load force testing completed in July 2001
- Adhesion testing

Test results

- Leak rates comparable to ISS CBM seals with offset of 0.050 inches and no gapping (~20 configurations tested)
- durometer at (96 & 87 lb/in) and for the 50 durometer at (46 & 42 lb/in). Results indicated • Compression force testing showed that "flat top" slightly higher than "elliptical" for the 70 that seal-on-seal in the "acceptable" range for use.
- Adhesion test results pending; series of "buttons" molded from each material are currently mated and compressed for eventual separation and inspection at TBD regular intervals of

RRU Interface Seal Concept

Early ADBS Seal Development

Conclusions

- GRC Seal Team has been working since Feb and has some early results
- They are currently establishing the processes and development plans for the next few years.

Forward work

- Evaluating early space flight demonstration opportunity on private space modules.
- Move forward with a full scale development seal purchase for the RRU
- Continue long duration seal material characterization and test program
- Need to establish baseline seal cross-section design
- Optimize seal to guarantee optimal sealing: percent of fill, squeeze, crown profile and height, if elastomeric
- Establish total potential seal mismatch: misalignment, thermal expansion, flange deflection
- Determine full scale hardware development approach.

• Establish on-orbit/lander environment requirements & acceptable seal force and leak rate

- Evaluate concepts and results for full-scale implementation Evaluate design upward scaling
 - Continue to investigate alternate seal materials
- Metallic seals
- Hybrid metallic/elastomeric