Name:Siddarth Sakthi M Reg.no:230701314 Assignment:1 1. Relational Algebra Queries a. "Find the names of suppliers who supply some red part." Answer: 1π _sname (Suppliers \bowtie Supplies \bowtie σ _color='red' (Parts)) **b.** "Find the IDs of suppliers who supply some red or green part." Answer: 1π _sid (Supplies $\bowtie \sigma$ _color='red' $\cup \sigma$ _color='green' (Parts)) c. "Find the IDs of suppliers who supply some red part or are based at 21 George Street." **Answer:** 1π _sid (σ _color='red' (Supplies \bowtie Parts)) \cup π _sid (σ _address='21 George Street' (Suppliers)) d. "Find the names of suppliers who supply some red part or are based at 21 George Street." Answer: 1π _sname (σ _color='red' (Supplies \bowtie Parts) \cup σ _address='21 George Street' (Suppliers))

e. "Find the IDs of suppliers who supply some red part and some green part." **Answer:**

 1π sid (σ color='red' (Supplies \bowtie Parts)) $\cap \pi$ sid (σ color='green' (Supplies \bowtie Parts))

f. "Find pairs of sids such that the supplier with the first sid charges more for some part than the supplier with the second sid."

Answer:

 $1\pi_s1.sid$, s2.sid (Supplies as s1 \bowtie Supplies as s2 | s1.cost > s2.cost)

g. "Find the IDs of suppliers who supply only red parts."Answer:
1π _sid (Suppliers) - π _sid (Supplies ⋈ σ _color≠'red' (Parts))
h. "Find the IDs of suppliers who supply every part." Answer:
1π _sid (Suppliers) - π _sid (Supplies \bowtie (Parts - Supplies))
2. Relational Database Queries
a) Get the complete details of all flights to New Delhi. Answer:
1σ_dest='New Delhi' (flight)
b) Get the details about all flights from Chennai to New Delhi.Answer:
1σ_src='Chennai' Λ dest='New Delhi' (flight)
c) Find only the flight numbers for passenger with pid 123 for flights to Chennai before 06/11/2020. Answer:
1 π _fid (σ _pid=123 (booking) $\bowtie \sigma$ _dest='Chennai' \land fdate<'2020-11-06' (flight))
d) Find the passanger names who have bookings on at least one flight
d) Find the passenger names who have bookings on at least one flight. Answer:
1π_pname (passenger ⋈ booking)
e) Find the passenger names for those who do not have any bookings in any flights.
Answer:
1 π _pname (passenger) - π _pname (passenger \bowtie booking)

f) Find the agency names for agencies located in the same city as the passenger with passenger id 123. **Answer:**

 1π _aname (agency $\bowtie \sigma$ _pid=123 (passenger))

g) Get the details of flights that are scheduled on both dates 01/12/2020 and 02/12/2020 at 16:00 hours.

Answer:

 $1\sigma_{\text{fdate}}=2020-12-01' \land \text{time}=16:00' \text{ (flight)} \cap \sigma_{\text{fdate}}=2020-12-02' \land \text{time}=16:00' \text{ (flight)}$

h) Get the details of flights that are scheduled on both dates 01/12/2020 and 02/12/2020 at 16:00 hours.

Answer:

(Same as g, no change needed.)

i) Find the agency names for agencies that do not have any bookings for passenger with id 123.

Answer:

 1π _aname (agency) - π _aname (agency \bowtie booking where pid=123)

j) Find the details of all male passengers who are associated with the jet agency.

Answer:

 π_{pid} , pname, pgender, pcity (σ_{pgender} -|Male' (passenger) \bowtie (booking $\bowtie \sigma_{\text{aname}}$ -|jet' (agency)))

3. E-R Diagram for a Car-Insurance Company

Entities:

- Customer
 - Attributes: Customer ID (PK), Name, Address, Phone
- Car
- Attributes: Car_ID (PK), Make, Model, Year, License_Plate
- Accident
 - Attributes: Accident_ID (PK), Date, Description, Severity

Relationships:

Owns

• Between Customer and Car (1 to Many): A customer can own one or more cars.

Involved_In

• Between Car and Accident (0 to Many): A car can be involved in zero or more accidents.

E-R Diagram Representation:

1[Customer] --- Owns ---< [Car] --- Involved_In ---< [Accident]

4. E-R Diagram for a Hospital

Entities:

- Patient
 - Attributes: Patient_ID (PK), Name, DOB, Address
- Doctor
 - Attributes: Doctor_ID (PK), Name, Specialty, Phone
- Test
 - Attributes: Test_ID (PK), Test_Name, Test_Date, Results

Relationships:

- Undergoes
 - Between Patient and Test (1 to Many): A patient can undergo multiple tests.
- Conducts
 - Between Doctor and Test (1 to Many): A doctor can conduct multiple tests.

E-R Diagram Representation:

1[Patient] --- Undergoes ---< [Test]

2[Doctor] --- Conducts ---< [Test]

5. E-R Diagram for a University Registrar's Office

Entities:

- Course
 - Attributes: Course_Number (PK), Title, Credits, Syllabus, Prerequisites
- Course_Offering
 - Attributes: Offering_ID (PK), Course_Number (FK), Year, Semester, Section_Number, Instructor_ID (FK), Timings, Classroom
- Student
 - Attributes: Student_ID (PK), Name, Program
- Instructor

• Attributes: Instructor_ID (PK), Name, Department, Title

• Enrollment

• Attributes: Student_ID (FK), Offering_ID (FK), Grade

Relationships:

• Teaches

• Between Instructor and Course_Offering (1 to Many): An instructor can teach multiple course offerings.

• Enrolled_In

 Between Student and Course_Offering (Many to Many): A student can enroll in multiple course offerings, and a course offering can have multiple students.

E-R Diagram Representation:

```
1[Course] --- Offers ---< [Course_Offering] --- Teaches --- [Instructor]
2[Student] --- Enrolled_In ---< [Course_Offering]
```


Assumptions:

- Each course can have multiple offerings in different semesters.
- Each student can enroll in multiple courses, and each course can have multiple students.
- Each course offering can have multiple instructors (team teaching).

6. E-R Diagrams for Student Marks in Exams

a. E-R Diagram Using Ternary Relationship

Entities:

- Student
 - Attributes: Student_ID (PK), Name
- Course_Offering
 - Attributes: Offering_ID (PK), Course_Number, Year, Semester
- Exam
 - Attributes: Exam_ID (PK), Exam_Name, Date

Relationships:

- Takes
 - A ternary relationship between Student, Course_Offering, and Exam.
 - Attributes: Marks

E-R Diagram Representation:

- 1[Student] --- Takes ---< [Exam]
- 2 | |
- 3 [Course_Offering]

b. E-R Diagram Using Binary Relationship

Entities:

- Student
 - Attributes: Student_ID (PK), Name
- Course_Offering
 - Attributes: Offering_ID (PK), Course_Number, Year, Semester
- Marks
 - Attributes: Student_ID (FK), Offering_ID (FK), Marks

Relationships:

- Enrolled_In
 - Between Student and Course_Offering (Many to Many).
- Has_Marks
 - Between Student and Marks (1 to Many): A student can have multiple marks for different exams in the same course offering.

E-R Diagram Representation:

```
1[Student] --- Enrolled_In ---< [Course_Offering]
```

2[Student] --- Has_Marks ---< [Marks]

