Contrôle n°3:12 décembre 2012

Documents et appareils électroniques non autorisés - Durée 1h

Nom: Prénom: Groupe:

Exercice 1.

On considère la fonction $f(x,y) = x^2 + 2y^2 - 2xy - 2y + 4$

1. Déterminer les éventuels extremum locaux et/ou points selles de la fonction f.

2. Donner l'équation du plan tangent à la surface représentative de f au point (0,0)

Exercice 2.

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ une fonction de classe \mathcal{C}^1 . Pour tout $(u, v, w) \in \mathbb{R}^3$, exprimer les dérivées partielles d'ordre 1 de $f(u+v+w, u^2+v^2+w^2)$ en fonction des dérivées partielles de f.

Exercice 3.

Pour tout $n \in \mathbb{N}^*$, et pour tout $x \in]0, \infty[$, on considère la suite

$$I_n = \int_0^{+\infty} \frac{1}{(t^2 + x^2)^n} dt.$$

1. Montrer que pour tout $n \in \mathbb{N}^*, I_n$ est dérivable et calculer sa dérivée.

- 2. Exprimer $I'_n(x)$ en fonction de $I_{n+1}(x)$.
- 3. En déduire la valeur de $\int_0^{+\infty} \frac{1}{(t^2+x^2)^2} \mathrm{d}t.$

$$-\Delta^* \psi = \frac{1}{2\mu_0 r} \frac{\partial f_H^2(\psi)}{\partial \psi}$$

Exercice 4. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} y^2 \sin(\frac{x}{y}) & \text{si } y \neq 0 \\ 0 & \text{si } y = 0 \end{cases}$$

1. Etudier la continuité de f.

2. Montrer que f admet des dérivées partielles d'ordre 1 en tout point de \mathbb{R}^2 .
3. La fonction f est elle de classe C^1 (justifier)?

4. Démontrer l'existence des dérivées partielles $\frac{\partial f}{\partial x \partial y}(0,0)$ et $\frac{\partial f}{\partial y \partial x}(0,0)$

5. Que peut on en déduire?