Laborator 14

În REPORT.txt adăugați output-ul versiunii finale a programului. Dacă o parte din program nu e implementată, nu funcționează, face ca programul să dea seg fault atunci puteți comenta unele linii din main și să folosiți aceea afișare.

Exerciții

- 1. Pentru un graf memorat ca o matrice de adiacență determinați nodul cu grad maxim și afișați gradul acestuia. printMaxDegree ()
- 2. Având un graf memorat ca o matrice de costuri implementați algoritul Floyd-Warshal pentru determinarea drumului minim între oricare două noduri. floydwarshall()
- 3. Având matricea de costuri generată mai devreme afișați <u>diametrul grafului</u>. (diameter d, mai jos in pagină). getGraphDiameter ()
- 4. Pentru acelaşi graf implementaţi algoritmul lui Dijsktra. dijsktra()

Exercițiile de la 1 la 4 sunt **obligatorii**. Conceptele explorate sunt esențiale pentru obținerea notei **minime** de promovare.

Vă recomandăm, pentru a crește șansele de a obține o notă cât mai mare să explorați și următoarele exerciții:

- 5. Rezolvați algoritmul Dijsktra pe infoarena.
- 6. Pentru acelaşi graf implementaţi algoritmul Kruskal. kruskal ()

Exemplu afișare:

Node	1	has	maxir	num d	egree	3					
0		1	3	2	3	4	999	5	6	6	
1		0	2	1	2	3	999	4	5	5	
3		2	0	1	1	1	999	2	3	3	
2		1	1	0	2	2	999	3	4	4	
3		2	1	2	0	2	999	3	4	4	
4		3	1	2	2	0	999	1	2	2	
999	9	99	999	999	999	999	0	999	999	999	
5		4	2	3	3	1	999	0	1	1	
6		5	3	4	4	2	999	1	0	1	
6		5	3	4	4	2	999	1	1	0	
Diame	te	r o	f the	grap	h is	6					
Dijsktra rezult:											
Noc	le :		0	1	3	2	4	5	7	8	
	D:		0	1	2	3	3	4	5	6	
D	.		4	^	4	2	-	2	-	-	

Structuri de Date și Algoritmi

Kruskal rezult:

- 0 -1-> 1
- 7 -1-> 9
- 1 -1-> 3
- 7 -1-> 8
- 2 -1-> 3 2 -1-> 4
- 2 -1-> 5
- 5 -1-> 7