

असाधारण

EXTRAORDINARY

भाग II—खण्ड 3—उप-खण्ड (i) PART II—Section 3—Sub-section (i) प्राधिकार से प्रकाशित PUBLISHED BY AUTHORITY

सं. 155]

नई दिल्ली, शनिवार, मार्च 31, 2012/चैत्र 11, 1934

No. 155

NEW DELHI, SATURDAY, MARCH 31, 2012/CHAITRA 11, 1934

पर्यावरण और वन मंत्रालय

अधिसूचना

नई दिल्ली, 31 मार्च, 2012

सा.का.नि. 277(अ).—केन्द्रीय सरकार, पर्यावरण (संरक्षण) अधिनियम, 1986 (1986 का 29) की धारा 6 और धारा 25 द्वारा प्रदत्त शक्तियों का प्रयोग करते हुए, पर्यावरण (संरक्षण) नियम, 1986 का और संशोधन करने के तिए निम्नितिखित नियम बनाती है, अर्थात:-

- 1. (1) इन नियमों का संक्षिप्त नाम पर्यावरण (संरक्षण) (तृतीय संशोधन) नियम, 2012 है।
 - (2) ये राजपत्र में प्रकाशन की तारीख को प्रवृत होंगे।
- 2. पर्यावरण (संरक्षण) नियम, 1986 की, अनुसूची I में, -
 - (क) (i) क्रम संख्या 12, कोक ऑवन से संबंधित विद्यमान प्रविष्टियों का लोप किया जाएगा;
 - (॥) क्रम संख्या २४, लौह व इस्पात(एकीकृत) और उससे संबंधित प्रविष्टियों के स्थान पर निम्नलिखित संख्यांक और प्रविष्टियां रखी जाएंगी, अर्थात् :-

क्र.सं.	उद्योग	पैरामीटर	मानक
(1)	(2)	(3)	(4)
"24.	एकीकृत लौह व	эт.	- कोक ऑवन (सह- उत्पाद प्रकार)
27.	इस्पात संयंत्र		क. बहिस्राव मानक
	\$ \ 1(1 \ () \ 1 \ 1		सान्द्रण सीमा मि.ग्रा/लीटर में, pl! को
			छोड़कर
		pli	6.0-8.50
		निलंबित कण	100 - *

1198 GI/2012

(1)	(2)	(3)		(4)	
		BQD, 27° सेटीग्रेड पर 3 दिन	 -	30	
ļ	*	COD		250	-
		तेल एव ग्रीस		10	
		अमोनिकल नाइट्रोजन, N के रूप मे		50	
9		साइनाइड (CN के रूप में)	 	0.2	
}		फिनॉल		1.0	· · · · · · · · · · · · · · · · · · ·
<u></u>		ख.	्रा इत्सर्जन मानक		
			नई बैट्रियां	पुन: निर्मित	विद्यमान
-			(शुचित क्षेत्र	बैट्रियां	बैट्टियां
			स्थल में)	1,54,	बाट्रया
		<i>(i</i>) प्लाव	क दृश्य उत्सर्जन		<u> </u>
		दरवाजे से रिसाव	5(PLD)*	10(PLD)*	10(PLD)
	_	भराई ढक्कनों से रिसाव	1(PLL)**	1(PLL)**	1(PLL)**
	-	ए.पी. ढक्कनों से रिसाव	4(PLO) [†]	4(PLO) [†]	4(PLO) [†]
		भराई के समय उत्सर्जन (द्वितीय)	16(HPLA के	50(HPLA के	·
			साथ)#	साथ)#	75
		*PLD- रिसाव वाले दरवाजों का प्रतिशत; *	,		
		[†] PLO- रिसाय ऑफटेक प्रतिशत में और "H	PI A = राजनेक में र	प्रस्ता या प्रारास	rain eduna
- 20		के समय अपेक्षा	. Ev - Storeda el 1	ou cla ut ate	। जतः दापव
	.1	ia (ii) स्टैक	उत्सर्जन मानक	7.	
).		उत्सर्जन मानक 800	800	800
	.00	SO ₂ (मि.ग्रा./नॉर्मल घनमीटर)	800	800	800
	, 10.	SO₂(मि.ग्रा. /नॉर्मल घनमीटर) NOx (मि.ग्रा. /नॉर्मल घनमीटर)	800 500	500	500
	. 30.	SO ₂ (मि.ग्रा./नॉर्मल घनमीटर)	800		
	, 10.	SO ₂ (मि.ग्रा./नॉर्मल घनमीटर) NOx (मि.ग्रा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.ग्रा./नॉर्मल घनमीटर)	800 500	500	500
		SO₂(मि.ग्रा./नॉर्मल घनमीटर) NOx (मि.ग्रा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.ग्रा./नॉर्मल घनमीटर) चनमीटर) स्टैम्प चार्जिंग बैट्री भराई करने के दौरान	800 500 50	500 50	500 50
	, i (.	SO₂(मि.ग्रा./नॉर्मल घनमीटर) NOx (मि.ग्रा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.ग्रा./नॉर्मल घनमीटर) स्टैम्प चार्जिंग बैट्री भराई करने के दौरान विविक्त पदार्थ(मि.ग्रा./नॉर्मल घनमीटर)	800 500 50	500 50	500 50
		SO2(मि.ग्रा./नॉर्मल घनमीटर) NOx (मि.ग्रा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.ग्रा./नॉर्मल घनमीटर) स्टैम्प चार्जिंग बैट्री भराई करने के दौरान विविक्त पदार्थ(मि.ग्रा./नॉर्मल घनमीटर) गंधक(मि.ग्रा./नॉर्मल घनमीटर)	500 500 50 25	500 50	500 50
	, i (.	SO₂(मि.ग्रा./नॉर्मल घनमीटर) NOx (मि.ग्रा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.ग्रा./नॉर्मल घनमीटर) स्टैम्प चार्जिंग बैट्री भराई करने के दौरान विविक्त पदार्थ(मि.ग्रा./नॉर्मल घनमीटर)	500 500 50 25	500 50	500 50
		SO2(मि.गा./नॉर्मल घनमीटर) NOx (मि.गा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.गा./नॉर्मल घनमीटर) स्टैम्प चार्जिंग बैट्री भराई करने के दौरान विविक्त पदार्थ(मि.गा./नॉर्मल घनमीटर) गंधक(मि.गा./नॉर्मल घनमीटर) गर्भ करने के लिए उपयोग किये जा रहे	500 500 50 25	500 50 25	500 50
		SO2(मि.गा./नॉर्मल घनमीटर) NOx (मि.गा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.गा./नॉर्मल घनमीटर) स्टैम्प चार्जिंग बैट्री भराई करने के दौरान विविक्त पदार्थ(मि.गा./नॉर्मल घनमीटर) गंधक(मि.गा./नॉर्मल घनमीटर) गर्भ करने के लिए उपयोग किये जा रहे	800 500 50 25 800	500 50 25	500 50
	4	SO2(मि.ग्रा./नॉर्मल घनमीटर) NOx (मि.ग्रा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.ग्रा./नॉर्मल घनमीटर) स्टैम्प चार्जिंग बैट्री भराई करने के दौरान विविक्त पदार्थ(मि.ग्रा./नॉर्मल घनमीटर) गंधक(मि.ग्रा./नॉर्मल घनमीटर) गर्भ करने के लिए उपयोग किये जा रहे कोक ऑवन गैस में (iii) प्लावक उत्सर्जव	800 500 50 25 800	500 50 25 - (BaP)	500 50
	4	SO2(मि.गा./नॉर्मल घनमीटर) NOx (मि.गा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.गा./नॉर्मल घनमीटर) स्टैम्प चार्जिंग बैट्री भराई करने के दौरान विविक्त पदार्थ(मि.गा./नॉर्मल घनमीटर) गंधक(मि.गा./नॉर्मल घनमीटर) गर्म करने के लिए उपयोग किये जा रहे कोक ऑवन गैस में (iii) प्लावक उत्सर्जव	800 500 50 25 800	500 50 25 - (BaP)	500 50
	4	SO2(मि.ग्रा./नॉर्मल घनमीटर) NOx (मि.ग्रा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.ग्रा./नॉर्मल घनमीटर) स्टैम्प चार्जिंग बैट्री भराई करने के दौरान विविक्त पदार्थ(मि.ग्रा./नॉर्मल घनमीटर) गंधक(मि.ग्रा./नॉर्मल घनमीटर) गर्भ करने के लिए उपयोग किये जा रहे कोक ऑवन गैस में (iii) प्लावक उत्सर्जव बैट्री क्षेत्र (बैट्री के ऊपरी भाग पर) (माईकोग्राम/ घनमीटर)	800 500 50 25 800 न: बैस्जो -ए- पाईरीस 5	500 50 25 - (<i>BaP</i>) 5 5	500 50
	4	SO2(मि.गा./नॉर्मल घनमीटर) NOx (मि.गा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.गा./नॉर्मल घनमीटर) स्टैम्प चार्जिंग बैट्री भराई करने के दौरान विविक्त पदार्थ(मि.गा./नॉर्मल घनमीटर) गंधक(मि.गा./नॉर्मल घनमीटर) गर्म करने के लिए उपयोग किये जा रहे कोक ऑवन गैस में (iii) प्लावक उत्सर्जव बैट्री क्षेत्र (बैट्री के ऊपरी भाग पर) (माईक्रोग्राम/ घनमीटर) कोक ऑवन प्लांट की अन्य इकाईयां (माईक्रोग्राम/ घनमीटर)	800 500 50 25 800 न: बैस्जो -ए- पाईरीस 5	500 50 25 - (<i>BaP</i>) 5 5	500 50
	4	SO2(मि.ग्रा./नॉर्मल घनमीटर) NOx (मि.ग्रा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.ग्रा./नॉर्मल घनमीटर) स्टैम्प चार्जिंग बैट्री भराई करने के दौरान विविक्त पदार्थ(मि.ग्रा./नॉर्मल घनमीटर) गंधक(मि.ग्रा./नॉर्मल घनमीटर) गर्भ करने के लिए उपयोग किये जा रहे कोक ऑवन गैस में (iii) प्लावक उत्सर्जिं हैंद्री क्षेत्र (बैट्री के ऊपरी भाग पर) (माईक्रोग्राम/ घनमीटर) कोक ऑवन प्लांट की अन्य इकाईयां (माईक्रोग्राम/ घनमीटर)	800 500 50 25 800 न: बैम्जो -ए- पाईरीन 5	500 50 25 - (<i>BaP</i>) 5 5	500 50
	4	SO2(मि.ग्रा./नॉर्मल घनमीटर) NOx (मि.ग्रा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.ग्रा./नॉर्मल घनमीटर) स्टैम्प चार्जिंग बैट्री भराई करने के दौरान विविक्त पदार्थ(मि.ग्रा./नॉर्मल घनमीटर) गंधक(मि.ग्रा./नॉर्मल घनमीटर) गर्भ करने के लिए उपयोग किये जा रहे कोक ऑवन गैस में (iii) प्लावक उत्सर्जिं हैंद्री क्षेत्र (बैट्री के ऊपरी भाग पर) (माईक्रोग्राम/ घनमीटर) कोक ऑवन प्लांट की अन्य इकाईयां (माईक्रोग्राम/ घनमीटर)	800 500 50 25 800 न: बैम्जो -ए- पाईरीन 5 2	500 50 25 - (BaP) 5 5 2 2	500 50 25
	4	SO2(मि.ग्रा./नॉर्मल घनमीटर) NOx (मि.ग्रा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.ग्रा./नॉर्मल घनमीटर) स्टैम्प चार्जिंग बैट्री भराई करने के दौरान विविक्त पदार्थ(मि.ग्रा./नॉर्मल घनमीटर) गंधक(मि.ग्रा./नॉर्मल घनमीटर) गर्भ करने के लिए उपयोग किये जा रहे कोक ऑवन गैस में (iii) प्लावक उत्सर्जिं हैंद्री क्षेत्र (बैट्री के ऊपरी भाग पर) (माईक्रोग्राम/ घनमीटर) कोक ऑवन प्लांट की अन्य इकाईयां (माईक्रोग्राम/ घनमीटर)	800 500 50 25 800 न: बैम्जो -ए- पाईरीन 5 2	500 50 25 (BaP) 5 5 2 2	500 50 25
	4	SO2(मि.ग्रा./नॉर्मल घनमीटर) NOx (मि.ग्रा. /नॉर्मल घनमीटर) विविक्त पदार्थ (मि.ग्रा./नॉर्मल घनमीटर) स्टैम्प चार्जिंग बैट्री भराई करने के दौरान विविक्त पदार्थ(मि.ग्रा./नॉर्मल घनमीटर) गंधक(मि.ग्रा./नॉर्मल घनमीटर) गर्भ करने के लिए उपयोग किये जा रहे कोक ऑवन गैस में (iii) प्लावक उत्सर्जव बैट्री के ऊपरी भाग पर) (माईक्रोग्राम/ घनमीटर) कोक ऑवन प्लांट की अन्य इकाईयां (माईक्रोग्राम/ घनमीटर) 31 वि	800 500 50 25 800 न: बैम्जो -ए- पाईरीन 5 2	500 50 25 - (BaP) 5 5 2 2	500 50 25

1)	(2)	(3)	(4)
		ख. उ	त्सर्जन मानक	
	0.0	विविक्त-पदार्थ (मि.ग्रा./नॉर्मल घनमीटर)	15	0
				*
		₹ ē	लास्ट फरनेस	
			हिस्राय मानक	
		pH	6.0-	
ļ		निलम्बित ठोस कण(मि.ग्रा./ली)	50	
		तेल एवं ग्रीस(मि.ग्रा./ली)	10	
		साइनाइड (CN ⁻ के रूप में) (मि.ग्रा.∕ली)		.2
		अमोनिकल नाइट्रोजन, NH₃-N के रूप	50	
		में (मि.ग्रा./ली)		
		ख. उत	सर्जन मानक	
		(1) चिमनी के	द्वारा उत्सर्जन	
1			विद्यमान इकाईयां	नई इकाईयां
		ब्लास्ट	: फर्नेस स्टोव	
		विविक्त पदार्थ (मि.ग्रा.	50	30
Í		/नॉर्मल.घन.मीटर)		
ĺ		SO2 (मि.ग्रा./नॉर्मल घनमीटर)	250	200
		NO _x (मि.ग्रा./नॉर्मल घनमीटर)	150	150
		CO (घनत्व/मात्रा)		
			1% (अधि.)	1% (अधि.)
		विविक्त पदार्थ (मि.ग्रा. /नॉर्मल	फर्नेस क्षेत्र की अन्य चिम 100	ानया 50
		घनमीटर)	, 100	30
		पनमाटर) 🖫	* *	ļ
	· .	(iii) प्ला	वक उत्सर्जन	
			विद्यमान इकाईयां	नई इकाईयां
	•	विविक्त पदार्थ (10 माईक्रोन से कम	4000	3000
Ì		आकार) PM₁₀(माईक्रोग्राम / धन्नमीटर)		-
	-	SO2 (माईक्रोग्राम/ घनमीटर)	200	150
		NO _x (माईक्रोग्राम/ घनमीटर)	150	120
		कार्बन मोनोक्साइड(माईक्रोग्राम/ घनमीटर)		
		- 8 ਬਣੇ	5000	5000
-		– 1 ਬਂਟੇ	10,000	10,000
		सीसा, प्लावक धूल में Pb के रूप में	2	2
		(माईक्रोग्राम / घनमीटर), ढलाई घर में		
		<u> </u>	आधारभूत ऑक्सीजन भट्टी	
			आयारमूरा आयसाजन <i>मर्ट</i> स्राय मानक	·
	-(-	Hq	6.0- 8.5	5
		-		
		निलम्बित ठोस कण(मि.ग्रा./ली)	100	

(1)	(2)	(3)		(4)
			(i) चिमनी के द्वारा उत्सर्ज	 न
			विद्यमान इकाईयां	नई इकाईयां
			• परिवर्तक	
		विविक्त पदार्थ (मि.ग्रा./नॉर्मल		
		घनमीटर)	200	
	*	- फूंकना/ चीराई प्रचालन	300	गैस प्रतिप्राप्ति के
			150	साथ होना चाहिए
		- सामान्य प्रचालन	150	गैस प्रतिप्राप्ति के
		• माध्यमिक उत्सर्जन चिमनी : डि-सल्पन	प्रिमेशन की धन हार्स ।	साथ होना चाहिए
		आदि	राररारामा यम पूर्व ठाइ।इ, ह	गाञ्चानका पारशायन,
		विविक्त पदार्थ (मि.ग्रा. / नॉर्मल	100	50
		घनमीटर)		
			<u> </u>	· · · · · · · · · · · · · · · · · · ·
		(1)	त्रावक उत्सर्जन	
*		विविक्त पदार्थ (10 माईक्रोन से कम	विद्यमान इकाईयां 4000	नई इकाईयां 3000
		आकार) PM10(माईक्रोग्राम/ घनमीटर)	1000	3000
		SO ₂ (माईक्रोग्राम/ घनमीटर)	200	150
		NO _x (माईक्रोग्राम/ घनमीटर)	150	150
		CO(माईक्रोग्राम/ घनमीटर)		
		- 8 घंटे	5.000	5.000
		- 1 ਬੰਟੇ	5,000 10,000	5,000
		सीसा, Pb के रूप में(माईक्रोग्राम/	2	2
		घनमीटर) परिवर्तक तल पर धूल में		
		X -)	
			रोलिंग मिल हिसाय मानक	
		pH		-9.0
		निलम्बित ठोस कण(मि.ग्रा./ती)	.10	
		तेल एवं ग्रीस (मि.ग्रा./ली)	1	0
.		·ख. <u>उ</u>	त्सर्जन मानक	
		विविक्त पदार्थ (मि.ग्रा./नॉर्मल	15	50
		घनमीटर)		
. 1		प्नः ताप)	
1			संवेदनशील क्षेत्र	अन्य क्षेत्र
		विविक्त पदार्थ (भि.गा./बॉर्मल	150	250
		घनमीटर)		
 			<u></u>	

(2)

(3)		(4)
	ए आर्क फर्नस	
	उत्सर्जन मानक	81 - 1 top 11 001 0 01 to 10 0 0
विविक्त पदार्थ (मि.ग्रा./नॉर्मल घनमीटर		150
g	ऐ इडक्शन फर्नेस	
	उत्सर्जन मान क	The second section 10 and 10 a
विविक्त पदार्थ (मि.ग्रा. /नॉर्मल घनमीटर)	150	,
	ो क्यूपला फाउन्ड्री	
	उत्सर्जन मानक	
	3 दन/घटा से कम की	3 टन/घटा और इससे
	प्रगलन क्षमता	अधिक की प्रगलन क्षमता
विविक्त पदार्थ (मि.ग्रा./नॉर्मल	450	150
घनमीटर)		
SO2 (मि.ग्रा. /नॉर्मल घनमीटर)	300, 1	2% CO₂ पर
औ कैल्सीनेशन	सयत्र। चूना भट्टी/डोलोमाइट	भट्टी
	उत्सर्जन मानकै	
	40टन/दिन तक की	40टन/दिन से अधिक की
	क्षमता	क्षमता
विविक्त पदार्थ (मि ग्रा / नॉर्मल	500	150
घनमीटर)		
(3)		(4)
	्र	a di nananana
	- उच्चतापसह इकाई - - उत्सर्जन मानक	
	्राचित्र मानकः - ।	
विविक्त पदार्थ (मि ग्रा /नॉमेल	0	ĺ
घनमीटर) टिप्पणीः	7 4 4 7 4 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4	
1. प्रत्येक प्रक्रिया स्टैक की न्यूनतम उं	ਤਗ਼ਈ 20 ਸੀਇਸ ਦਾ H = 14 :	(O) ° अन्य के अनुस्तु जो भी ।
अधिक हो, होनी चाहिए । "H" का 3	· · · · · · · · · · · · · · · · · · ·	
उत्सर्जन कि.ग्रा/घंटे में मानक के अ		
के माध्यम से उत्सर्जित होने वाले S		
2. स्क्रबिंग इकाई के गैसीय उत्सर्जन है		
संयंत्र की मुख्य चिमनी की ऊंचाई वे	-	
3. क्युपला इकाई में गैस उत्सर्जन के		
छ: गुणा, इसके भराई दरवाजे के ऊ		
4. आर्क फर्नेस और इंडक्शन फर्नेस वे		ामनी के माध्यम से उत्सर्जित
किये जाने से पहले धुए को एकत्रित		

(1)	(2)	(3)	(4)
		भराई दरवाजे के ऊंपर, इस क्यूपला के	रगा तथा इसमें चिमनी की ऊंचाई कम से कम, इसके व्यास के छ: गुणा होना आवश्यक होगी। में प्रति प्राप्ति प्रकार के परिवर्तक स्थापित किये जाएंगे।
			 वर्षा जल
		मिलाने की अनुमति नहीं दी जाएगी। (ii) इकाई की अंतसीमा के वर्षा जल को व	प, मार्जिक जल और/अथवा तलधुलाई अपजल के साथ र्षा के 10 मिनट की संग्रहण क्षमता (घंटे के औसत) के व वाले गर्त के माध्यम से अलग नाली के द्वारा बहाया

- क्रम संख्या 30, एकीकृत लौह व इस्पात सयत्र से सम्बन्धित विद्यमान प्रविष्टियों का लोप किया जायेगा; और (iii)
- क्रम संख्या 79, कोक आवन संयंत्र से सम्बन्धित विद्यमान प्रविष्टियों का लोप किया जायेगा। (iv)
- (ख) अनुसूची VI, में सामान्य उत्सर्जन मानक भाग घ, III, भार/ समूह आधारित मानक; क्रम संख्या 5, कोक ऑवन और इनसे संबंधित प्रविष्टियों के स्थान पर निम्नलिखित क्रम संख्यांक और प्रविष्टियां अन्त स्थापित की जाएंगी, अर्थात:-

"5	एंकीकृत लौह व इस्पात संयंत्र	कोक ऑवन में कार्बन मोनोऑक्साइड	3 कि ग्रा /टन उत्पादित कोयला
	्रस्पात संयत्र 	कोक ऑवन में कोयला झलते समय विविक्त पदार्थ	s ग्रा./टन उत्पादित कोयला
		कोक ऑवन में आग बुझाने के दौरान विविक्त	50 ग्रा./टन उत्पादित कोयला ।"।
		पदार्थ	
			िक्त को जार 15017/60/2000 सीपीटबल्ट

[फा. सं. क्यू-15017/60/2009-सापाडब्ल्यू]

रजनीश दुबे, संयुक्त सचिव

रिष्पणी : मूल नियम भारत के राजपत्र में सं. का.आ. 844(अ) दिनांक 19 नवम्बर, 1986 के द्वारा प्रकाशित किये गए थे और इसके पश्चात सं. का.आ.433 (अ), तारीख 18 अप्रैल 1987, सा.का.नि. १७(अ) तारीख 18 फरवरी २००१: सा.का.नि. १४९(अ) तारीख ४ मार्च २००९: सा.का.नि. 512(अ) तारीख ९ जुलाई २००९: सा.का.नि. 543(अ) तारीख २२ जुलाई २००९: सा का वि 595(अ) **तारीख 21 अगस्त 200**9: सा.का.नि. 794(अ) तारीख 4 नवम्बर 2009: सा.का.नि. 826(अ) तारीख 16 तवस्बर 2009: सा.का.नि. 01(अ) तारीख 1 जनवरी 2010: सा.का.नि. 61(अ) तारीख 5 फरवरी 2010: सा.का.नि. 485(अ) तारीख ९ जून २०१० सा.का.नि. 608(अ) तारीख २१ जुलाई २०१०: सा.का.नि. ७३९(अ) तारीख ९ सितम्बर २०१० और सा.का.नि. 809(अ) तारीख 4 अक्टूबर 2010: सा.का.नि. 215(अ) तारीख 15 मार्च, 2011: सा.का.नि. 221(अ), तारीख 18 मार्च, 2011 राष्ट्रका नि. 354(अ) **तारीख**, 02 मई, 2011: सा.का.नि. 424(अ), तारीख, 01 जून, 2011: सा.का.नि. 446(अ), 13 जून, 2011 और सा का.नि.152 (अ), 16 मार्च, 2012 और सा.का.नि.- 🖫 👍 🗥

(अ), ३०मार्च,2012 के द्वारा संशोधित किए गए।

MINISTRY OF ENVIRONMENT AND FORESTS

NOTIFICATION

New Delhi, the 31st March, 2012

GS.R. 277(E).—In exercise of the powers conferred by sections 6 and 25 of the Environment (Protection) Act, 1986 (29 of 1986), the Central Government hereby makes the following rules further to amend the Environment (Protection) Rules, 1986, namely:

- 1. (1) These rules may be called the Environment (Protection) (Third Amendment) Rules, 2012.
 - (2) They shall come into force on the date of their publication in the Official Gazette.
- 2. In the Environment (Protection) Rules, 1986, in Schedule I,-
 - (a) (i) serial number 12 relating to "Coke Ovens" and entries relating thereto shall be omitted;
 - (ii) for serial number 24 relating to "Iron and Steel (Integrated)" and entries relating thereto, the following serial number and entries shall be substituted, namely:-

	(···		
S.	Industry	Parameter		 Standard 		
No.						
(1)	(2)	(3)		(4)		
"24.	Integrated	A	Coke oven (by	/- product type)	
}	Iron and Steel		a. Effluent Sta	andards		
	Plant		Limitin	g concentration except for pH	in mg/l,	
		pH		6.0-8.50		
		Suspended solids	100			
		BOD, 3 days at 27°C	30			
		COD	250			
		Oil and grease		10		
}		Ammonical nitrogen, as N	/	50		
		Cyanide (as CN ⁻)	-	0.2		
		Phenol	1.0			
			b. Emission Standards			
	•		New Batteries	Rebuild	Existing	
			(at green field	Batteries	Batteries	
-			site)	<u> </u>		
<u> </u>			(i) Fugitive Visible	Emissions		

(1)	(2)	(3)		(4)	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(2)	Leakage from door	5(PLD)*	10(PLD)*	10(PLD)*
		Leakage from	1(PLL)**	1(PLL)**	1(PLL)**
		charging sids	, (,,	, ,,, ,,,,	1(1 ==)
		Leakage from AP	4(PLO) [†]	4(PLO)	4(PLO) [†]
	.:	Covers	(,, ==)	.(1 = 5)	.(. 20)
ł		Charging emission	16(with HPLA)#	50(with	75
	·	(Second/ charge)	,	HPLA)*	
		*PLD- Percent leaking	doors: **PLL- P		is:
i	÷.	†PLO- Percent Leakin			
	ļ	pressure liquor inject			
İ			(ii) Stack Emissio	n Standards	
		SO ₂ (mg/ Nm ³)	800	800	800
		NOx (mg/ Nm³)	500	500	500
		Particulate matter	50	50	50
	<u>.</u> .	(mg/Nm³)		4	
		Particulate matter	25	25	25
		during charging of			i
		stamp charging			
		batteries(mg/Nm³)			
		Sulphur in Coke	800	-	-
		Oven gas used for			*
		heating (mg/Nm³)			L
			tive Emissions: Be		,
		Battery area (top of	5	5	5
		the battery) (µg/ m³)			
		Other units in coke	2	2	2
		oven plant (µg/ m³)	D. Cintarina Diam	.4	İ
			B Sintering Plar a. Effluent Stand		
	0		,		in in mall
}			L	miting concentrati	<u> </u>
		pH		except for 6.0- 8.50	рп
		Suspended solids	- -	100	
	·	Oil and grease		100	
		Oli ariu grease	h Eii C		
		Particulate matter	b. Emission S		
		(mg/Nm³)		150	
- *		(ing/wiii)	C Blast Furnac		
	9		a. Effluent St		
0.0				miting concentrati	on in ma/l
= - ⁽⁰⁾		Hal		except for	
		pН		6.0- 8.5	PII
		Suspended solids		50	
H.X		(mg/l)		50	
		Oil and grease (mg/l)		10	
		Cyanide as CN (mg/l)		0.2	
	•	Ammonical Nitrogen,		50	
L	l	Zarimonica Harogen,		JU	

(1)	(2)	(3)		(4)		
		as NH ₃ -N (mg/l)				
	1	b. Emission Standards				
-	•	(i) Stack Emissions				
			New Units			
			BF Stove			
		Particulate matter	50	30		
		(mg/Nm³)				
i		SO ₂ (mg/Nm ³)	250	200		
		NO _x (mg/Nm ³)	150	150		
		CO (vol/vol)	1% (max.)	1% (max.)		
		(ii) Spa	ace Dedusting / Other sta	icks of BF area		
		Particulate matter (mg/Nm³)	100	50		
			(iii) Fugitive Emissi	ion		
			Existing Units	New Units		
		Particulate matter (Size less than 10 microns) PM ₁₀ (µg/m³)	4000	3000		
		SO ₂ (µg / m ³)	200	150		
		$NO_x (\mu g / m^3)$	150	120		
		Carbon monoxide		123		
ĺ	÷	$(\mu g / m^3)$ - 8 hours	5000	5000		
ŀ		1 hours	10,000	10,000		
		Lead, as Pb in fugitive dust (µg / m³) at Cast House	2	2		
		D Steel Making Shop- Basic Oxygen Furnace				
		a. Effluent Standards				
		pH (mg/l)		5.0- 8.5		
		Suspended solids (mg/l)		100		
		Oil and grease (mg/l)		10		
			(i) Stack Emissions			
		·	Existing Units	New Units		
			• Converters	1 TOW SIME		
	,	Particulate matter (mg/Nm³)	*			
		 Blowing/ Lancing operation 	300	Should be with gas recovery		
		Normal operation	150	Should be with gas recovery		
		•• Secondary Finission refining etc	Stack : De-dusting of de-	sulphurisation, Secondary		
		Particulate matter (mg/Nm ³)	100	50		

(1)	(2)	(3)		(4)
:			(ii) Fuguive Emissi	<u></u>
. !			Existing Units	New Units
		Particulate matter	4000	3000
	•	(size less than 10		
Į		microns) PM ₁₀		·
[]		(µg/m³)		
		SO ₂ (μg / m ³)	200	150
		NO_x (µg / m^3)	150	150
		CO		
		$(\mu g / m^3) - 8 \text{ hours}$	5,000	5,000
i		1 hours	10,000	10,000
		Lead, as Pb in dust	2	2
		at Converter floor		1
		(µg / m³)		
			E Rolling Mills	\$
<u>[</u>			a. Effluent Standa	
		рH		6.0-9.0
		Suspended		100
		solids (mg/l)		
		Oil and grease (mg/l)		10
	b. Emission Standards			ards
		Particulate matter (mg/Nm³)		150
		Re-	Heating (Reverberatory) Furnaces
ľ			Sensitive area	Other area
ĺ		Particulate matter (mg/Nm³)	150	250
			F Arc Furnaces	
- 1			Emission Standar	ds
		Particulate matter (mg/Nm³)		150
.			G Induction Furna	
			Emission Standar	ds
		Particulate matter (mg/Nm³)	1	50
	ı		H Cupola Founda	ary
			Emission Standar	
			melting capacity less	melting capacity
		Dortioulate metter	than 3 tonne/hr	3 tonne/hr and above
		Particulate matter (mg/Nm³)	450	150
		SO ₂ (mg/Nm ³)		ected at 12% CO ₂
		I Calci	nation Plant/ Lime Kiln	
			Emission Standar	
	·		capacity upto 40t/day	capacity above 40t/day

(1)	(2)	(3)	<u> </u>	(4)	
		Particulate matter (mg/Nm³)	500	(4)	150
			J Refractory Un	nit	*
	-		Emission Standa		
		Particulate matter (mg/Nm³)		150	
		expected to be emitted	ch process stack shall H = 14 (Q) or (whicher etre; and "Q" is the man red through the stack a retre norms of gaseous	ver is more), ximum quanti it rated capac	where "H" is the
		2.The plants having scrubbing unit, the he plant or 30 metres, w	eight of this stack shall	gaseous er be equal to n	mission for the nain stack of the
		3. It is essential that standor and emissions seleast six times the dia	hall be directed through	e cupola beyon the stack wi	ond the charging hich should be at
*		In respect of Arc Fit made for collecting the stack.	urnaces and Induction he fumes before disch	Furnaces pr arging the en	ovision shall be missions through
		5. Foundries shall install times the diameter of	scrubber, followed by the Cupola beyond the	a stack of height charging doc	ght atleast six
		Recovery type conver projects.		n new plants o	or expansion
;			Stormwater		
	-	Note: (i) Stormwater shall not or floor washings.	be allowed to mix with	effluent, scru	bber water and/
	•	(ii) Stormwater shall be gradient, passing through having holding capacity of	h High Density Polyeth	vlene (HDPE)	lined pits, each

⁽iii) serial number 30 relating to "Integrated Iron and Steel Plants" and the entries relating there to shall be omitted;

⁽iv) serial number 79 relating to "Coke Oven Plants" and the entries relating there to shall be omitted.

(b) In Schedule VI, General Emission Standards Part D, III, Load/ Mass based standards, for serial number 5, Coke Oven and entries relating thereto, the following serial number and entries shall be inserted, namely:-

(1)	(2)	(3)	(4)
"5	Integrated Iron and Steel Plant	Carbon Monoxide in coke oven	3 Kg/ tonne of coke produced
		Particulate matter during coke pushing in coke oven	5 gramme/ tonne of coke produced
* .		Particulate matter for quenching operation in Coke Oven	50 gramme/ tonne of coke produced."

[F. No. Q-15017/60/2007-CPW] RAINEESH DUBE, Jt. Secy.

Note:- The principal rules were published in the Gazette of India vide number S.O. 844 (E), 19th November, 1986; and subsequently amended vide notifications numbers S.O. 433 (E), dated 18th April 1987; G.S.R. 97 (E),dated the 18th February, 2009; G.S.R. 149 (E), dated the 4th March, 2009; G.S.R. 512 (E), dated the 9th July, 2009; G.S.R. 543 (E), dated the 22nd July, 2009; G.S.R. 595 (E), dated the 21st August, 2009; G.S.R. 794 (E), dated the 4th November, 2009; G.S.R. 826 (E), dated the 16th November, 2009; G.S.R. 01 (E), dated the 1st January, 2010; G.S.R. 61 (E), dated 5th February, 2010; G.S.R. 485 (E), dated 9th June, 2010; G.S.R. 608 (E), dated 21st July, 2010, G.S.R. 739 (E), dated the 9th September, 2010; and G.S.R. 809(E), dated, 4th October, 2010, G.S.R. 215 (E), dated, the 15th March, 2011; G.S.R. 221(E), dated, the 18th March, 2011, G.S.R. 354 (E), dated, the 2nd May, 2011; G.S.R. 424 (E), dated, the 1st June, 2011, G.S.R. 446 (E),13th June, 2011; G.S.R. 152 (E), dated, 16th March, 2012; and G.S.R. ——————————————————March, 2012.