ICLAB 2024-SPRING Lab03 Error Waveform

- ☐ The output data should be reset when out_valid is low
 - CORRECT:

SPEC MAIN 2 1 :

SPEC_MAIN_2_2 :

- □ Latency are over 10000 cycles(No out_valid and out_data)
 - SPEC_MAIN_3_1 :

- ☐ The out_valid and out_data must be asserted in 8 cycles.
 - SPEC_MAIN_4_1 : asserted in 7 cycles

SPEC MAIN 4 2 : out valid no pull low

- ☐ The out_data should be correct when out_valid is high.
 - SPEC_MAIN_5_1 :

SPEC MAIN 5 2 : Correct Answer should be 7a 22 17 f4 d2 f6 0e a5

- □ The data in the DRAM and SD card should be correct when out_valid is high.
 - SPEC_MAIN_6_1 : It directly write 0 to DRAM and pull high the out_valid

- □ The data in the DRAM and SD card should be correct when out_valid is high.
 - SPEC_MAIN_6_2 : it doesn't write data into DRAM.

- □ The data in the DRAM and SD card should be correct when out_valid is high.
 - SPEC_MAIN_6_3 : Send wrong address to DRAM (golden address is 0x6D6)

- □ The data in the DRAM and SD card should be correct when out_valid is high.
 - CORRECT 1 : The Busy of the SD card Data response is 0 unit

CORRECT 2 : The Busy of the SD card Data response is 1 unit

SPEC_MAIN_6_4 : Bridge doesn't wait the Busy then pull high immediately

- □ The data in the DRAM and SD card should be correct when out_valid is high.
 - SPEC_MAIN_6_5 : Write Response Channel (B_RADY and B_VALID) not both pull high yet

- □ AR_ADDR should be reset when AR_VALID is low
 - SPEC_DRAM_1_1 :

- □ AW_ADDR should be reset when AW_VALID is low
 - SPEC_DRAM_1_2:

- □ W_DATA should be reset when W_VALID is low.
 - SPEC_DRAM_1_3:

- ☐ The DRAM address should be within the legal range (0~8191).
 - SPEC_DRAM_2_1 : Read Address Channel

SPEC_DRAM_2_2 : Write Address Channel

- AR_VALID and AR_ADDR should remain stable until AR_READY goes high.
 - SPEC_DRAM_3_1: Please ensure that AR_READY is asserted high when AR_VALID has been asserted high for at least two cycles.(hint: use \$urandom_range function to control AR_READY pull high within 0~50 cycles after AR_VALID is high)

- □ AW_VALID and AW_ADDR should remain stable until AW_READY goes high
 - SPEC_DRAM_3_2: Please ensure that AW_READY is asserted high when AW_VALID has been asserted high for at least two cycles.(hint: use \$urandom_range function to control AW_READY pull high within 0~50 cycles after AW_VALID is high)

- □ R_READY should remain stable until R_VALID goes high.
 - SPEC_DRAM_3_3 : R_READY go down but R_VALID doesn't go high yet

- □ W_VALID and W_DATA should remain stable until W_READY goes high.
 - SPEC_DRAM_3_4 : Please ensure that W_READY is asserted high when W_VALID has been asserted high for at least two cycles.(hint: use \$urandom_range function)

- □ R_READY should be asserted within 100 cycles after AR_READY goes high.
 - SPEC_DRAM_4_1:

- □ W_VALID should be asserted within 100 cycles after AW_READY goes high.
 - SPEC_DRAM_4_2 :

- □ B_READY should be asserted within 100 cycles after B_VALID goes high.
 - SPEC_DRAM_4_3:

- □ R_READY should not be pulled high when AR_READY or AR_WALID go high
 - SPEC_DRAM_5_1:

- □ W_VALID should not be pulled high when AW_READY or AW_VALID goes high.
 - SPEC_DRAM_5_2 :

