92586 Computational Linguistics

Lesson 15. Visualisation

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

23/04/2021

Previously

- ► Pre-trained embeddings
- ► Gensim
- ► Model construction
- ► Embedding alternatives

Table of Contents

Visualisation

Chapter 6 of Lane et al. (2019)

Visualisation

Embeddings Visualisation

Stuff Available in the Object

```
Vocab(count:3000000, index:0)
</s>
            Vocab(count:2999999, index:1)
in
for
            Vocab(count:2999998, index:2)
            Vocab(count:2999997, index:3)
that
is
            Vocab(count:2999996, index:4)
on
            Vocab(count:2999995, index:5)
Starwood_Hotels_HOT
                       Vocab(count:2000000, index:1000000)
                       Vocab(count:1999999, index:1000001)
Tammy_Kilborn
aortic_aneurism
                       Vocab(count:1999998, index:1000002)
```

Vocab(count:1999997, index:1000003)

- ► Overall counting
- ► Index

Spragins_Hall

Embeddings Visualisation

- ► Embeddings are in a high-dimensional space (e.g., 300D), which is impossible to visualise
- ► The human being can visualise up to 3D only¹
- ► Objective: mapping the vectors into 2D and try to find interesting phenomena

Embeddings Visualisation

Distance Computation

- 1. Get the vector representation for w_1 and w_2
- 2. Compute the distance

Alternatives

► Euclidean distance

$$d(p,q) = \sqrt{\sum_{i=1}^n (p_i - q_i)^2}$$

► Cosine "distance"

$$d(p,q) = 1 - rac{\sum_{i=1}^{n}(p_i\,q_i)}{\sqrt{\sum_{i=1}^{n}p_i^2}\sqrt{\sum_{i=1}^{n}q_i^2}}$$

Let us see

¹I suggest to read Flatland: https://en.wikipedia.org/wiki/Flatland

Embeddings Visualisation

Plotting Cities

Getting the cities in the dataset

Alternative 1 Find the top-k most similar vectors to "city" in the space²

Alternative 2 Grab a list from an encyclopedia or other resource

Computing the vectors and plot

- ► Get sure the items exist in the vocabulary
- ► Get them and add additional information (e.g., state)
- ► Reduce the dimension, using PCA

(Lane et al., 2019, p. 209)

Embeddings Visualisation

Considerations

- ► PCA works well in this case because we are targeting a limited space
- ► t-SNE is a better alternative for more diverse vectors³

Next

- ► doc2vec
- ► CNN
- ► RNN

²This is the book proposal. It doesn't work. You can try wv.most_similar(positive=['city', 'cities'], topn=10)

 $^{^3}$ en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding

	7	
References		
Lane, H., C. Howard, and H. Hapkem 2019. <i>Natural Language Processing in Action</i> . Shelter Island,		
NY: Manning Publication Co.		
	J	