

Markscheme

May 2017

Physics

Standard level

Paper 3

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Q	Question		Answers	Notes	Total
1.	а		it is not possible to draw a straight line through all the error bars OR the line of best-fit is curved/not a straight line ✓	Treat as neutral any reference to the origin. Allow "linear" for "straight line".	1
	b	i	$d = 0.35 \pm 0.01$ AND $\Delta d = 0.05 \pm 0.01$ «cm» \checkmark « $\frac{\Delta d}{d} = \frac{0.05}{0.35}$ » = 0.14 OR $\frac{1}{7}$ or 14 % or 0.1 \checkmark	Allow final answers in the range of 0.11 to 0.18. Allow [1 max] for 0.03 to 0.04 if $\lambda = 5 \times 10^6$ m is used.	2
	b	ii	28 to 30 % ✓	Allow ECF from (b)(i), but only accept answer as a %	1
	С	i	a: m² ✓ b: m ✓	Allow answers in words	2

(Question 1 continued)

C	Question		Answers	Notes	Total
	С	ii	ALTERNATIVE 1 – if graph on page 4 is used $d^{2} = 0.040 \times 10^{-4} \text{ wm}^{2} \text{ w} \checkmark$ $d = 0.20 \times 10^{-2} \text{ wm} \text{ w} \checkmark$	For MP1 accept answers in range of 0.020 to 0.060 « cm² » if they fail to use given value of "a". For MP2 accept answers in range 0.14 to 0.25 « cm » .	2
			ALTERNATIVE 2 – if graph on page 2 is used any evidence that <i>d</i> intercept has been determined ✓ $d = 0.20 \pm 0.05$ «cm» ✓		

C	uestic	on	Answers	Notes	Total
2.	а		correct labelling of both instruments ✓	A v	1
	b		V = E − Ir ✓	For MP1 – do not award if only $R = \frac{V}{I}$ is used.	
			large triangle to find gradient and correct read-offs from the line	For MP2 points at least 1A apart must be used.	3
			OR use of intercept E=1.5 V and another correct data point ✓		
			internal resistance = 0.60 Ω ✓	For MP3 accept final answers in the range of 0.55 Ω to 0.65 Ω .	

(Question 2 continued)

Questi	ion	Answers	Notes	Total
С	i	a non-zero reading when a zero reading is expected/no current is flowing OR a calibration error ✓	OWTTE Do not accept just "systematic error".	1
С	ii	the error causes «all» measurements to be high/different/incorrect ✓ effect on calculations/gradient will cancel out OR effect is that value for r is unchanged ✓	Award [1 max] for statement of "no effect" without valid argument. OWTTE	2

Section B

Option A — Relativity

C	uestio	Answers	Notes	Total
3.	а	the speed of light is a universal constant/invariant OR c does not depend on velocity of source/observer ✓ electric and magnetic fields/forces unified/frame of reference dependant ✓		1 max
	b	observer X will measure zero «magnetic or electric» force ✓ observer Y must measure both electric and magnetic forces ✓ which must be equal and opposite so that observer Y also measures zero force ✓	Allow [2 max] for a comment that both X and Y measure zero resultant force even if no valid explanation is given.	3

Question	Answers	Notes	Total	
Question 4.	Answers ALTERNATIVE 1 — for answers in terms of time overall idea that more muons are detected at the ground than expected «without time dilation» \checkmark « Earth frame transit time = $\frac{2000}{0.98c}$ » = 6.8 « \upmu s» \checkmark « Earth frame dilation of proper half-life = 2.2 \upmu s > \Rightarrow = 11 « \upmu s» OR « muon's proper transit time = $\frac{6.8 \mspace{1mm} \mu s}{5}$ » = 1.4 « \upmu s» \checkmark	Accept answers from one of the alternatives.	Total 3	
	alternative 2 – for answers in terms of distance overall idea that more muons are detected at the ground than expected «without time dilation» ✓ « distance muons can travel in a proper lifetime = $2.2 \mu s \times 0.98c \text{»} = 650 \text{«m.»} \text{✓}$ « Earth frame lifetime distance due to time dilation = $650 \text{m.s.} \text{5.} \text{»} = 3250 \text{«m.»}$ OR « muon frame distance travelled = $\frac{2000}{5} \text{»} = 400 \text{«m.»} \text{✓}$			

C	Questic	on	Answers	Notes	Total
5.	а	i	the gamma factor is $\frac{5}{3}$ or 1.67 \checkmark	Allow ECF from MP1 to MP2.	2
			$L = \frac{450}{\frac{5}{3}} = 270 \text{ m/s} \checkmark$		_
	а	ii	$u' = \frac{u - v}{1 - \frac{uv}{c^2}} = \frac{0.20c - 0.80c}{1 - 0.20 \times 0.80}$	Check signs and values carefully.	
			OR		2
			$0.2c = \frac{0.80c + u'}{1 + 0.80u'} \checkmark$		2
			<i>u'</i> = « − » 0.71 <i>c</i> ✓		
	b	i	$\Delta t' = \langle \gamma \left(\Delta t - \frac{v \Delta x}{c^2} \right) = \rangle \frac{5}{3} \times \left(0 - \frac{(0.80c \times 9000)}{c^2} \right) \checkmark$	Allow ECF for use of wrong γ from (a)(i).	2
			$\Delta t' = \text{$\checkmark$} - \text{$\rangle$} 4.0 \times 10^{-5} \text{ $\langle s \rangle$} \text{$\langle s \rangle$}$		
	b	ii	lamp 2 turns on first ✓	Ignore any explanation	1

(Question 5 continued)

Quest	ion	Answers	Notes	Total
С	i	x coordinate as shown ✓	Labels must be clear and unambiguous.	
		ct coordinate as shown ✓	Construction lines are optional.	
		event 2 event 2 1.0 m rocket x'-axis space station x-axis		2
С	ii	«in any other frame» <i>ct</i> is greater ✓	MP1 is a statement	2
		the interval $ct' = 1.0 \text{ m}$ is proper time CR ct is a dilated time CR $ct = \gamma ct' \text{ m} \text{ m}$	MP2 is an explanation	
С	iii	use of $c^2t^2 - x^2 = c^2t'^2 - x'^2$ $c^2t^2 - x^2 = 1^2 - 0^2 = 1 \text{ mm}^2$ »	for MP1 equation must be used. Award [2] for correct answer that first finds x (1.33 m) and ct (1.66 m)	2

Option B — Engineering physics

C	uestic	on	Answers	Notes	Total
6.	а	i	zero ✓		1
	а	ii	the torque of each force is $9.60 \times 10^3 \times 6.0 = 5.76 \times 10^4$ «Nm» \checkmark so the net torque is $2 \times 5.76 \times 10^4 = 1.15 \times 10^5$ «Nm» \checkmark	Allow a one-step solution.	2
	b		the angular acceleration is given by $\frac{1.15 \times 10^5}{1.44 \times 10^4}$ «=8.0 s ⁻² » \checkmark ω = « αt = 8.0 × 2.00 = » 16 « s ⁻¹ » \checkmark		2
	С	i	$1.44 \times 10^{4} \times 16.0 = (1.44 \times 10^{4} + 4.80 \times 10^{3}) \times \omega \checkmark$ $\omega = 12.0 \text{ (s}^{-1}\text{)} \checkmark$	Allow ECF from (b).	2
	С	ii	initial KE $\frac{1}{2} \times 1.44 \times 10^4 \times 16.0^2 = 1.843 \times 10^6$ «J» \checkmark final KE $\frac{1}{2} \times (1.44 \times 10^4 + 4.80 \times 10^3) \times 12.0^2 = 1.382 \times 10^6$ «J» \checkmark loss of KE = 4.6×10^5 «J» \checkmark	Allow ECF from part (c)(i).	3

Question		on	Answers	Notes	Total
7.	а	i	$\Delta U = 0 \text{ so } Q = \Delta U + W = 0 + 416 = 416 \text{ «J» } \checkmark$	Answer given, mark is for the proof.	1
	а	ii	use $pV^{\frac{5}{3}} = c$ to get $TV^{\frac{2}{3}} = c$ \checkmark hence $T_{\rm C} = T_{\rm A} \left(\frac{V_{\rm A}}{V_{\rm C}}\right)^{\frac{2}{3}} = 612 \times 0.5^{\frac{2}{3}} = 385.54$ \checkmark « $T_{\rm C} \approx 386$ K» ALTERNATIVE 2 $P_{\rm C}V_{\rm C}^{\ \gamma} = P_{\rm A}V_{\rm A}^{\ \gamma}$ giving $P_{\rm C} = 1.26 \times 10^6$ «Pa» \checkmark $\frac{P_{\rm C}V_{\rm C}}{T_{\rm C}} = \frac{P_{\rm A}V_{\rm A}}{T_{\rm A}}$ giving $T_{\rm C} = 1.26 \times \frac{612}{2} = 385.54$ «K» \checkmark « $T_{\rm C} \approx 386$ K»	Answer of 386K is given. Look carefully for correct working if answers are to 3 SF. There are other methods: Allow use of $P_{\rm B} = 2 \times 10^6$ « Pa » and $\frac{P}{T}$ is constant for BC. Allow use of $n = 0.118$ and $T_{\rm C} = \frac{P_{\rm C} V_{\rm C}}{nR}$.	2
	а	iii	$Q = \Delta U + W = \frac{3}{2} \frac{P_{A} V_{A}}{T_{A}} \Delta T + 0 \checkmark$ $Q = \frac{3}{2} \times \frac{4.00 \times 10^{6} \times 1.50 \times 10^{-4}}{612} \times (386 - 612) \checkmark$	Answer of 330 J given in the question. Look for correct working or more than 2 SF.	2

(Question 7 continued)

Question		on	Answers	Notes	Total
	а	iv	$e = \frac{Q_{in} - Q_{out}}{Q_{in}} = \frac{416 - 332}{416}$ e = 0.20	Allow $\frac{416 - 330}{416}$. Allow e =0.21.	2
	b		entropy is largest at B \checkmark entropy increases from A to B because $T=$ constant but volume increases so more disorder or $\Delta S = \frac{Q}{T}$ and $Q > 0$ so $\Delta S > 0$ \checkmark entropy is constant along CA because it is adiabatic, $Q=0$ and so $\Delta S=0$ OR entropy decreases along BC since energy has been removed, $\Delta Q < 0$ so $\Delta S < 0$ \checkmark		3

Option C — Imaging

Q	Question		Answers	Notes	Total
8.	а	i	line of correct curvature as shown ✓		1
	а	ii	line of approximately correct curvature as shown ✓	Judged by eye. Allow second wavefront Y, to have "passed" P as this is how this question is being interpreted by some. Ignore any waves beyond Y.	1

(Question 8 continued)

Question	Answers	Notes	Total
b	wave travels slower in glass than in air OR RI greater for glass ✓ wavelength less in glass than air ✓ hence wave from Q will cover a shorter distance «than in air» causing the curvature shown ✓	OWTTE	2 max
С	realization that the two lenses must have a common focal point \checkmark distance is $12-4.0=8.0$ «cm» \checkmark	Accept MP1 from a separate diagram or a sketch on the original diagram. A valid reason from MP1 is expected. Award [1 max] for a bald answer of 12 – 4 = 8 «cm».	2

9.	а	states $f_{\rm o}+f_{\rm e}=90$ AND $\frac{f_{\rm o}}{f_{\rm e}}=17$ solves to give $f_{\rm o}=85$ AND $f_{\rm e}=5$ «cm» \checkmark	Both needed. Both needed.	2
	b	angle subtended by Moon is $\frac{0.16}{17} = 0.0094$ «rad» \checkmark $0.0094 = \frac{D}{3.8 \times 10^8} \checkmark$ $D = 3.6 \times 10^6$ «m» \checkmark	Allow ECF from MP1. Allow [2] for an answer of 6.1×10 ⁷ « m » if the factor of 17 is missing in MP1.	3
	С	operation day and night ✓ operation at all wavelengths/no atmospheric absorption ✓ operation without atmospheric turbulence/light pollution ✓	Accept any other sensible advantages.	2 max

Question		on	Answers	Notes	Total
10.	а		calculation of critical angle at core–cladding boundary $\ll 1.52 \times \sin \theta_{\rm C} = 1.48 \text{ » } \theta_{\rm C} = 76.8^{\circ} \checkmark$ refraction angle at air–core boundary $90^{\circ} - 76.8^{\circ} = 13.2^{\circ} \checkmark$ $\ll 1.52 \times \sin 13.2^{\circ} = \sin A \text{ » } A = 20.3^{\circ} \checkmark$	Allow ECF from MP1 to MP2 to MP3.	3
	b	i	attenuation: output signal has smaller area ✓ dispersion: output signal is wider than input signal ✓	OWTTE OWTTE	2
	b	ii	attenuation = $<10 \log \frac{I}{I_0} = 10 \log \frac{77}{320} = $ $< - > 6.2 < dB > $ $< - 6.2 < dB < - 8.2 $	Allow intensity ratio to be inverted. Allow ECF from MP1 to MP2.	2

Option D — Astrophysics

Q	uestic	on	Answers	Notes	Total
11.	а		core: helium ✓	Accept no other elements.	2
			<i>outer layer</i> : hydrogen ✓		2
	b		ratio of masses is $\left(\frac{10^4}{10^{-3}}\right)^{\frac{1}{3.5}} = 10^2 \checkmark$		
			ratio of volumes is $\left(\frac{10}{10^{-1}}\right)^3 = 10^6 \checkmark$		3
			so ratio of densities is $\frac{10^2}{10^6} = 10^{-4}$ \checkmark	Allow ECF for MP3 from earlier MPs	
	С	i	line to the right of X, possibly undulating, very roughly horizontal ✓	Ignore any paths beyond this as the star disappears from diagram.	1
	С	ii	gravitation is balanced by a pressure/force due to neutrons/neutron degeneracy/pauli exclusion principle ✓	Do not accept electron degeneracy.	1
	С	iii	$L = \sigma A T^4 = 5.67 \times 10^{-8} \times 4\pi \times (2.0 \times 10^4)^2 \times (10^6)^4 \checkmark$		
			$L = 3 \times 10^{26}$ « W »	Allow ECF for [1 max] if πr^2 used (gives 7×10^{25} « W »)	2
			OR	Allow ECF for a POT error in MP1.	
			$L = 2.85 \times 10^{26}$ « W » \checkmark		
	С	iv	$\lambda = \frac{2.9 \times 10^{-3}}{10^6} = 2.9 \times 10^{-9} \text{ m/m}$		2
			this is an X-ray wavelength ✓		

C	uesti	on	Answers	Notes	Total
12.	а		theory in which all space/time/energy/matter were created at a point/singularity ✓ at enormous temperature ✓ with the volume of the universe increasing ever since <i>or</i> the universe expanding ✓	OWTTE	2 max
	b		CMB has a black-body spectrum ✓ wavelength stretched by expansion ✓ is highly isotropic/homogenous ✓ but has minor anisotropies predicted by BB model ✓ T «= 2.7 K» is close to predicted value ✓	For MP4 and MP5 idea of "prediction" is needed	2 max
	С	-	$\frac{v}{c} = z \Rightarrow v = 0.084 \times 3 \times 10^5 = 2.52 \times 10^4 \text{ wkms}^{-1} \text{ w} \checkmark$ $d = \frac{v}{H_0} = \frac{2.52 \times 10^4}{68} = 370.6 \approx 370 \text{ wMpc} \text{ w} \checkmark$	Allow ECF from MP1 to MP2.	2
	С	ii	type Ia have a known luminosity/are standard candles \checkmark measure apparent brightness \checkmark determine distance from $d=\sqrt{\frac{L}{4\pi b}}$ \checkmark	Must refer to type Ia. Do not accept other methods (parallax, Cepheids)	3