Introdução a Técnicas de Regressão

ESPECIALIZAÇÃO EM CIÊNCIA DE DADOS APLICADA

Paulo Henrique Ribeiro Gabriel

Faculdade de Computação Universidade Federal de Uberlândia

2024

SOBRE A DISCIPLINA

OBJETIVOS

- Apresentar os principais conceitos relacionados às técnicas preditivas relacionadas a regressão
- O conteúdo será desenvolvido de modo prático com aplicações em diferentes área do conhecimento

SOBRE A DISCIPLINA

AULAS

- ► 18/05 (Manhã) Introdução
- ➤ 25/05 (Tarde) Regressão Linear
- ▶ 02/06 Feriado
- ▶ 08/06 (Tarde) Regressão Polinomial
- ► 15/06 Recesso
- ▶ 22/06 Recesso
- ▶ 29/06 (Tarde) Regressão Logística
- 06/07 (Tarde) Outras técnicas de regressão
- ▶ 13/07 (Manhã) Apresentação de exercícios

- ► A análise de regressão é uma técnica simples de aprendizado supervisionado
- Trata-se de uma das técnicas mais básicas da área de aprendizado de máquina
- Utilizada para encontrar a melhor tendência para descrever um conjunto de dados (dataset)

ORIGENS

- Métodos de regressão surgiram no Século 19
 - Legendre (1805) e Gauss (1809)
 - Objetivo inicial: prever órbitas ao redor do Sol
- Atualmente, possui papel central em estatística
 - Estimação de uma função de regressão
- Avanços computacionais recentes permitem que novas metodologias sejam exploradas

DESAFIOS

- Capacidade cada vez maior de armazenamento de dados
- Métodos com menos suposições sobre o verdadeiro estado da natureza ganham cada vez mais destaque
- Métodos tradicionais não são capazes de lidar de forma satisfatória com bancos de dados em que há mais variáveis que observações
 - Situação muito comum nos dias de hoje
- São frequentes as aplicações em que cada observação consiste em uma imagem ou um documento de texto
 - Objetos complexos que requerem metodologias mais elaboradas

OBJETIVOS

- O objetivo de um modelo de regressão é determinar a relação entre variáveis
- Estatisticamente, queremos relacionar a variável aleatória

$$Y \in \mathbb{R}$$

e um vetor

$$\mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d$$

OBJETIVOS

► Mais especificamente, queremos estimar uma função de regressão

$$r(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}]$$

- Com isso, vamos descrever a relação entre as variáveis
- ▶ Quando Y é uma variável quantitativa, temos um problema de regressão
- ▶ Quando Y é uma variável qualitativa temos um problema de classificação

Notação

- ► Nomes da variável *Y*:
 - Variável de resposta
 - Variável dependente
 - Rótulo (label)

Notação

- Nomes do vetor x
 - Observações
 - Variáveis explicativas
 - Variáveis independentes
 - Características
 - Atributos (features)
 - Preditores
 - Covariáveis

Notação

- Precisamos de técnicas para estimar $r(\mathbf{x})$
- ▶ Ou, no jargão de aprendizado de máquina: treinar o modelo de regressão

- ► A primeira técnica de análise de regressão que examinaremos é a regressão linear
- Literalmente: utiliza uma linha reta para descrever um conjunto de dados
- Para isso, utilizamos a equação da reta:

$$\mathbf{y}_i = \alpha + \beta \mathbf{x}_i$$

onde:

- y_i é a variável alvo
- α e βx_i são coeficientes calculados pela regressão
- α é o intercepto no eixo y
- βx_i é inclinação da reta

CONJUNTO DE DADOS

Χ	У
1	3
2	4
1	2
4	7
3	5

	<i>x</i>	У	xy	<i>x</i> ²
1	1	3	3	1
2	2	4	8	4
3	1	2	2	1
4	4	7	28	16
5	3	5	15	9
Total	11	21	56	31

ALGORITMO

Agora, vamos calcular os coeficientes α e β da seguinte maneira:

$$\alpha = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$$
$$\beta = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

onde:

- n é o total de linhas ("observações")
- $\sum x$ é a soma de todos os valores da coluna x
- $\sum y$ é a soma de todos os valores da coluna y
- ∑xy é a soma de todos os valores da coluna xy
- $\sum x^2$ é a soma de todos os valores da coluna x^2

ALGORITMO

i	X	У	xy	<i>x</i> ²
1	1	3	3	1
2	2	4	8	4
3	1	2	2	1
4	4	7	28	16
5	3	5	15	9
Total	11	21	56	31

$$ightharpoonup n = 5$$

►
$$\sum x = 11$$

►
$$\sum y = 21$$

ALGORITMO

Voltando para as fórmulas:

$$\alpha = \frac{(21)(31) - (11)(56)}{5(31) - (11)^2} = \frac{35}{34} = 1.029$$

$$\beta = \frac{5(56) - (11)(21)}{5(31) - (11)^2} = \frac{49}{34} = 1.441$$

ALGORITMO

lnserindo α e β na equação da reta:

$$\mathbf{y}_i = \alpha + \beta \mathbf{x}_i$$

$$y_i = 1.029 + 1.441x_i$$

- ► Temos, portanto, uma reta que "descreve" nosso conjunto de dados
- ► E agora?

TESTANDO O MODELO

TESTANDO O MODELO

- ► Vamos fazer um teste, para ver se nosso modelo está bem ajustado aos nossos dados
- ightharpoonup Para isso, vamos considerar uma das nossas observações, por exemplo, $x_2=2$
- Nesse caso, o valor esperado é $y_2 = 4$
- ▶ Pela nossa equação, temos:

$$y_2 = 1.029 + 1.441x_2 = 1.029 + 1.441(2) = 3.911$$

um valor bem próximo

- A análise de regressão vem em muitas formas:
 - linear
 - não-linear
 - logística
 - multilinear
- ▶ A regressão linear compreende uma linha reta que divide seus pontos de dados em um gráfico de dispersão
- O objetivo da regressão linear é dividir seus dados de forma a minimizar a distância entre a linha de regressão e todos os pontos de dados no gráfico de dispersão

Mais alguns conceitos

- O termo técnico para a linha de regressão é hiperplano
 - Um hiperplano, de maneira informal, é uma linha de tendência
- ► Uma característica importante da regressão é a inclinação (*slope*)
- ► A inclinação é muito útil na formulação de previsões

Mais alguns conceitos

CORRELAÇÃO

- As relações entre as variáveis dependentes e independentes são feitas através de algum coeficiente de correlação
- Uma das métricas de correlação mais utilizadas é o coeficiente de Pearson, que mede a associação linear entre duas variáveis
- Esse coeficiente de correlação pode ser definido pela equação a seguir:

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 (y_i - \bar{y})^2}}$$

onde

- n é o total de amostras
- \bar{x} e \bar{y} são as médias aritméticas de ambas as variáveis

CORRELAÇÃO

- ▶ Os valores do coeficiente de Pearson variam entre −1 e 1
- Assim, quanto mais próximos desses extremos, melhor correlacionado estão as variáveis
- Alguns exemplos com gráficos de dispersão de variáveis com diferentes correlações são mostrados a seguir

CORRELAÇÃO

Correlação positiva alta $r_{xy} = 0.9$

Correlação positiva baixa $r_{xy} = 0.5$

Sem correlação $r_{xy} = -0.0$

CORRELAÇÃO

Correlação

PREVISÃO DO PREÇO DO BITCOIN

Data	Preço	Dias transcorridos
19/05/2015	234.31	1
14/01/2016	431.76	240
09/07/2016	652.14	417
15/01/2017	817.26	607
24/05/2017	2358.96	736

- ► Note que temos três variáveis (atributos)
- Vamos construir um gráfico de dispersão correlacionando o total de dias com o preço do Bitcoin
- Valores numéricos (segunda e terceira colunas) são fáceis de inserir em um gráfico e não requerem conversão especial
- Além disso, a primeira e a terceira colunas contêm a mesma variável "tempo"
 - Logo, a terceira coluna por si só é suficiente

PREVISÃO DO PREÇO DO BITCOIN

- Nosso objetivo é estimar qual será o valor do Bitcoin no futuro
- ► Nesse caso, o o eixo y traça a variável dependente, que é o "Preço do Bitcoin"
- ightharpoonup A variável independente (x_i), neste caso, é o tempo
- O "Número de dias transcorridos" é assim plotado no eixo x.

- ▶ Depois de traçar os valores *x* e *Y* no gráfico de dispersão, podemos ver uma tendência na forma de uma curva ascendente, com um aumento acentuado entre os dias 607 e 736
- Suponha que você deseja comprar Bitcoins
- Com base na trajetória da curva, o que você faria?

- ► Vamos supor que você deseja comprar e revender Bitcoins
- ► Assim, se você comprar agora (dia 736), quando o valor do Bitcoin aumentar ainda mais, você poderá recuperar seu investimento e ter um lucro
- Para avaliar essa decisão, precisamos primeiramente estimar quanto podemos ganhar de lucro potencial
- Ou seja: precisamos descobrir se o retorno do investimento será adequado no curto prazo

PREVISÃO DO PREÇO DO BITCOIN

- Note que, à medida que uma variável aumenta, a outra variável aumentará no valor médio indicado pelo hiperplano
- ► Assim, se desejamos estimar o valor do Bitcoin em 800 dias, podemos inserir 800 como sua coordenada *x* e referenciar a inclinação encontrando o valor *Y* correspondente representado no hiperplano
 - Nesse caso, o valor de *Y* é \$1850.00

- para escolher tendências de investimento
- A linha de tendência oferece um ponto de referência básico para prever o futuro
- ► Se usássemos a linha de tendência como ponto de referência mais cedo, por exemplo, no dia 240, a previsão publicada teria sido mais precisa
- No dia 240 há um baixo grau de desvio do hiperplano, enquanto no dia 736 há um alto grau de desvio
 - O desvio refere-se à distância entre o hiperplano e o ponto de dados

PREVISÃO DO PREÇO DO BITCOIN

LEITURA RECOMENDADA I

Esse material foi baseado, principalmente, nos trabalhos de Almeida et al., 2020; Izbicki and dos Santos, 2020; Theobald, 2017

- Almeida, A., Carvalho, F., & Menino, F. (2020). *Introdução ao machine learning*. Grupo DataAt.
- Izbicki, R., & dos Santos, T. M. (2020). *Aprendizado de máquina: Uma abordagem estatística*. Livro eletrônico.
- Theobald, O. (2017). *Machine learning for absolute beginners*. Livro eletrônico.