Homework 1

Kyle Aure - KAure09@winona.edu - Version 1.0, 2019-03-09

Homework Description

Introduction assignment to languages, grammar, and finite state machines.

Course Details

- Course CS435
- Instructor Dr. Chi-Cheng Lin

Homework Results

Question 1

Let $L_1 = \{a^n b^n : n \ge 0\}$. Let $L_2 = \{c^n : n > 0\}$. For each of the following strings state whether or not it is an element of $L_1 L_2$.

Answer

By definition of concatenation, $L_1L_2 = \{a^nb^nc^m : n \geq 0, m > 0\}$

- a. arepsilon: No, if $arepsilon\in L_1L_2$ then $a^0b^0c^0\in L_1L_2$ but by definition of L_1L_2 , m must be greater than 0.
- b. aabbcc: Yes, $aabbcc \in L_1L_2$ when n and m are 2.
- c. aabbcccc: Yes, aabbcccc $\in L_1L_2$ when n is 2 and m is 4.
- d. aabcc: No, aabcc $\notin L_1L_2$ since by definition of L_1L_2 both a and b must have the same number of instances n, but in this a has 2 and b has 1.

Ouestion 2

Let $L_1=\{a^nb^n\colon n\geq 0\}$. Let $L_2=\{c^n\colon n>0\}$. For each of the following strings state whether or not it is an element of $L_1\cup L_2$.

Answer

By definition of union, for each element w if $w \in L_1$ or $w \in L_2$ then $w \in L_1 \cup L_2$

- a. arepsilon: Yes, $arepsilon \in L_1$ when n is 0, therefore $arepsilon \in L_1 \cup L_2$
- b. aabbcc: No, aabbcc $\notin L_1$ since L_1 does not have a definition for c, and aabbcc $\notin L_2$ since L_2 does not have a definition for a or b.
- c. cccc: Yes, cccc $\in L_2$ when n is 4, therefore cccc $\in L_1 \cup L_2$
- d. aabb: Yes, aabb $\in L_1$ when n is 2, therefore $aabb \in L_1 \cup L_2$

Question 3

1 of Bet $L=ig\{w\in\{a,b\}^\star\colon |w|\equiv_3 0ig\}$. List the first six elements in the lexicographic enumeration of L. 9/8/19, 2:05 PM

Answer

By definition of $|w| \equiv_3 0$ we know that any element $x \in L$ will need to have a length of a multiple of 3. To start we need to consider $\varepsilon \in \{a,b\}^*$ which has a length of 0 which, and $0 \mod 3 = 0$. Then, lets consider strings of length 3, listing them in lexicographic enumeration order we have: {aaa, aab, aba, abb, baa, bab, bbb}. Therefore, the first six will be: $\{\varepsilon, \text{ aaa, aab, aba, abb, baa}\}$.

Question 4

$$L = \big\{ w \in \{a,b\}^\star \colon \! x \in \{a,b\} * (w = ax) \big\}.$$

Answer

- a. Give a simple, precise English description for the language L.
 - o "A string composed of characters a and b, where the string starts with a."
- b. List the first six element in the lexicographic enumeration of L.
 - o {a, aa, ab, aaa, aab, aba}

Question 5

Construct the following finite state machine (FSM) in JFLAP:

And test it using strings {bbaabaa, aaaabbabaa}

Answer

Link to JFLAP file:

assets/problem5.jff

Image:

Test Results

2 of 3 9/8/19, 2:05 PM

Question 6

Describe the following DFSN M formally as $M=(K,\Sigma,\delta,s,A)$

- ullet K finite set of states
- ullet Σ is an alphabet
- ullet δ is the transition function from $(Kx\Sigma o K)$
- ullet $s\in K$ is the initial state
- ullet $A\subseteq K$ is the set of accepting states

Answer

$$M=(K,\Sigma,\delta,s,A)=(\{q_0,q_1,d\},\{a,b\},\delta,\{q_0\},\{q_0,q_1\})$$
 where $\delta=\{((q_0,a),q_0),((q_0,b),q_1),((q_1,a),q_1),((q_1,b),d),((d,a),d),((d,b),d)\}$

Version 1.0

Last updated 2019-09-08 13:45:17 -0500

3 of 3 9/8/19, 2:05 PM