

Bipartite graph

à is bépartite of its Nestex Set V' can he postitioned ent 2' disjoint non-empty sets \$1852 such that every edge en the graph connects a vertex en 3 2 a vertex en 52. so that no edge en à connects either two vertices en 3) or two vertices in 32.

convert this into * 2 popempty desjout set 516 V17432 V1, V2, V3, Vy 52 (V2149)

- disjour 512 d V, , V3 no vest ·822 d V21 V y 9 are Commo

- O'drow ou edges
- (2) cheen, are they belongs t defriset or not.
- 3) cher JF yess then can Bipertite. graph.

pacre 2

VC3)2 a, b, C, d, e, f, g.

8, z { a, b, d } 822 { ciei fig}

chen & the given opseph es bejoistete spreph & s-not?

S12 (Ba 1 d 1 c) d sed son 8, 2 d a 1 c } 82 2 d b g 5 3 1 d f 1 d g So it is not a bipartite graph.

brecase its vertex cann't be

northbored intwo sets, such that

pashibored intwo sets, such that

edges cann't connect two

vertices from same subset.

24-3

compleir Bipatotite graph.

subsets of mig n' vernices respensely.

There is an edge blu two vertices If & ony ofone vertex is an Arst subsect & other an Second subset.

V13 V9 V5

5,29 V1, V2 } 5229 V3, V4, N5}

some non example.

512 £ 113,59 522 £ 214169

- Deuter path

 12 et is a path that traverse each edge exactly once is,
 only once.
 - -> A graph theel confecus on euler path is carled as eafer graph.

1 euler Cercit

fraverse each edge exactly once & ony once. Les

7 3 3 4

Vy V3

not an eulergrap

Some proposhies of Euler enough.

- 1 A connected graph is a Euler sriph of , it has atrust 2 odd degree Vertices.
- 2) In every circuit, each vertex is of even degree.
- (3) in culer push max; 2 vertices has of odd degree.

2 vertex has odd cegres.

A -> 3 -> 3

b -> 3

c -> 2

d -> 34

e -> 2

-> etis a Eulas ceruit. -> enshal Wa end Vi V1-212- V3-V5-V4- V3-V1 denser > ever V1-> 2 V272 V3-7.4 Vy- 2 VE-2 9 > 3. 9 rung are odd degre y rostou with c -> 3 (1) & no Euler parts 2) cul not even deore no Ealer (gra

a-> 3 b-3 c -> 3 d-32 e -> 3 chem for Euler ent. & of et is not Euler Circul, ence then for Eulog path. * cen as not even derrie. (So not Euer circul) * Euro path 15 rule ment-2 voster are odd, but here muse than 2! Ro. et a neighbor. Ever path or Circul. (not a (count) -s not an even no but -> cett path ass new 2 are old a a-e-c-e-b-e-d-b-a-c (, a = b - c - d - c -

Ou chem for Ever path a Circul not euler graph Unt denty not -> grus. not cula gray h V1-12-13-14-13-18-V I Brushy. chentr UZ Vy U6 U5 U4 V2 Va

Hamilton GRAPAH

-> Hamiltonian path contains each vertex exactly once.

Exp V1-V2-V3-V4-V5.

-> For Hamitonian cercut Contains 1st & last vertex and Same.

8 no vertex ene repeated. (cover cent vertex)

then we are lest with Hamelton path.

Theore M! -

connect of two vertices, then & have batisfied below Conduction.

> stuy & ender on save.

(a-b-1-d-e-a].

(n-2-3 (a-b-c-d) (a-b-d-c)

not path or cut. as node repend

planar gregh

-> A graph i's couled planar, "IF it can be dream in the plane without any edges crossing.

Euler's formular en planar graph,

vertices V. Let it be the no of records on pleaser amph &, then

82 e-V+2

E+P

82.6-4+2 = .4 82.6-4+2 = .4

(3) If there are 20 vertices, each of dearer 3, then ento howray reason does can be governde in this planners camph Speets.

V220 Zdeg(V)2 2xe

2xe = 20x3 260

2) [8 2 30]

72 e-V+2 230-20+2 3 0 2

pacn-12 prof Euler's formula usery nathenables enderthon. preshod. need to prof (2=e-V+Z 10 Tet nel, means for edore 21 8=1-2+2=0 Shep-2 (n) = ey-Vn+2 P(Ntl) [VNTI = Pht1 - VNTI + 2 S(N#1) SCN) (a8 -1 Tuil = enti-Vuti +2 25 8nH 2 en H - Vn + 2 Frn2 en-Vn+2 entiz enoti Vntl 2 6 Vy YN11= YN + 1

Vn11 2 Vn +1 Vn12 Vn +1 ent12 en +1

onti 2 enti - Vn+1 +2 2) ≥ γη = entγ-Vη-1 + 2 γη 2 eη e - Vη+2
