Binary Commutative Polymorphisms of Core Triads

Michael Wernthaler

January 29, 2021

Contents

1	TODO Abstract	2
2	TODO Introduction	2
3	TODO Task 1: Lemma 3.1 Proof	3 3 4
4	DONE Task 2: Arc-Consistency Procedure 4.1 Notes	4 4 5
5	DONE Task 3: Core Triads 5.1 Algorithm 5.2 Notes	6 6
6	TODO Task 4: Commutative Polymorphisms 6.1 Notes	8 9
7	7.2 Todo	9 10 10 10 10
	7.5 Idee Micha	ΤÛ

1 TODO Abstract

It has been known for a while that for a given graph H the complexity of $\mathrm{CSP}(H)$ also known as the H-colouring problem only depends on the set of polymorphisms of H. It follows from the results of Bulatov [4] and of Zhuk [6] from 2017 that H-colouring problem is in P if H has a so-called (4-ary) Siggers polymorphism. In this paper we focus on the case where H is a so-called triad, i.e., an orientation of a tree which has a single vertex of degree 3 and otherwise only vertices of degree 2 and 1. (...) We describe an efficient algorithm that checks the existence of Siggers polymorphisms for triads up to a certain number/size of vertices/armlength?

2 TODO Introduction

Let H = (V, E) be a finite directed graph. The H-colouring problem (also called the constraint satisfaction problem for H) is the problem of deciding for a given finite graph G whether there exists a homomorphism from G to H. Note that if $H = K_k$, the clique with k vertices, then the H-/colouring problem equals the famous k-colouring problem, which is NP-hard for $k \geq 3$ and which can be solved in polynomial time if $k \leq 2$.

It has been known for a while that the complexity of the H-colouring problem only depends on the set of polymorphisms of H. It follows from results of Bulatov [4] and of Zhuk [6] from 2017 that the H-colouring problem is in P of H has a so-called (4-ary) Siggers polymorphism, i.e., an operation $s: V^4 \longrightarrow V$ which satisfies for all $a, e, r \in V$

$$s(a, r, e, a) = s(r, a, r, e)$$

Before these results, the complexity of $\mathrm{CSP}(H)$ was open even if H is an orientation of a tree. It is not obvious at all how an orientation of a tree looks like if it has a Siggers polymorphism. In fact, this question is already open if H is a triad, i.e., an orientation of a tree which has a single vertex of degree 3 and otherwise only vertices of degree 2 and 1. Jakob Bulin claims that the following triad with 22 vertices has no Siggers polymorphism.

Here, 0 stands for forward edge, 1 stands for backward edge, and the three words stand for the three paths that leave the vertex of degree 3 of the triad. He also claims that all smaller triads do have a Siggers polymorphism, and conjectures that an orientation of a tree has a Siggers polymorphism if and only if it has a binary polymorphism f satisfying f(u, y) = f(y, x) for all $x, y \in V$. Jakub Bulin conjectures that in this case the Path-Consistency algorithm can solve the H-colouring problem.

3 TODO Task 1: Lemma

To ensure that our proposed algorithm runs correctly we are first going to prove the following lemma

Lemma 1. Let \mathbb{T} be a finite tree. The following are equivalent

- 1. \mathbb{T} is a core
- 2. $End(\mathbb{T}) = \{id\}$
- 3. $AC_{\mathbb{T}}(\mathbb{T})$ terminates with L(v) = v for all vertices v of \mathbb{T}

3.1 Proof

 $1 \Rightarrow 2$: Let \mathbb{T} be a core. We assume there is another homomorphism $f \in End(\mathbb{T})$ with $f \neq id$.

Note, that every unique shortest path from v to w maps to the unique shortest path from f(v) to f(w), since is f is an automorphism of a tree. It follows, that there must be a leaf u on which f is not the identity, because otherwise f would map $\mathbb T$ to itself.

We then take the orbit of u and the paths in between, which gives us a subtree \mathbb{T}' . Because each vertex $v \in \mathbb{T}'$ lies on a path from $x \in Orb(u)$ to $y \in Orb(u)$ that maps to the path from $f(x) \in Orb(u)$ to $f(y) \in Orb(u)$, we can assume $f|_{\mathbb{T}'} \subseteq \mathbb{T}'$.

... we know that every automorphism of a tree fixes either a vertex or an edge. Since we don't allow double-edges there must be a an inner? vertex $v \in \mathbb{T}'$ for which f(v) = v.

Now let $\mathbb{T} = v(\xi_1, ..., \xi_k)$ with $\xi_a \to \xi_b$ for at least one pair ξ_a, ξ_b , where ξ_a contains u and ξ_b contains f(u). We then construct a nonbijective endomorphism h of \mathbb{T} by taking f on ξ_a . For every other component we define h as id. But then \mathbb{T} can't be a core, which means our assumption was wrong and $End(\mathbb{T})$ cannot contain such a f, but only id.

 $2. \Rightarrow 1$: If $End(\mathbb{T}) = id$, then the only homomorphism $h : \mathbb{T} \to \mathbb{T}$ is id, which is an automorphism. Hence \mathbb{T} must be a core.

 $2. \Rightarrow 3$: Suppose that $End(\mathbb{T}) = \{id\}$. To prove that $AC_{\mathbb{T}}(\mathbb{T})$ terminates with $L(v) = \{v\}$ for all vertices v of \mathbb{T} we use a modified version of the prove of implication $4 \Rightarrow 2$ of Theorem 2.7 in the script of Graph-Homomorphisms ?.

Obviously, $AC_{\mathbb{T}}(\mathbb{T})$ cannot derive the empty list. By choosing a vertex u from the list of each node v we can construct a sequence $f_0, ..., f_n$ for $n = |V(\mathbb{T})|$, where f_i is a homomorphism from the subgraph of \mathbb{T} induced by the vertices at distance at most i to an arbitrary vertex \tilde{v} in \mathbb{T} , and f_{i+1} is an extension of f_i for all $1 \le i \le n$. We start by defining f_0 to map \tilde{v} to an arbitrary vertex $u \in L(\tilde{v})$.

Suppose inductively, that we have already defined f_i . Let w be a vertex at distance i+1 from \tilde{v} in \mathbb{T} . Since \mathbb{T} is an orientation of a tree, there is a unique $w' \in V(\mathbb{T})$ of distance i from \tilde{v} in \mathbb{T} such that $(w, w') \in E(\mathbb{T})$ or $(w', w) \in E(\mathbb{T})$. Note that $x = f_i(w')$ is already defined. In case that $(w', w) \in E(\mathbb{T})$, there must be a vertex y in L(w) such that $(x, y) \in E(\mathbb{T})$, since otherwise the arc-consistency procedure would have removed x from L(w'). We then set $f_{i+1}(w) = y$. In case that $(w, w') \in E(\mathbb{T})$ we can proceed analogously. By construction, the mapping f_n is an endomorphism of \mathbb{T} .

Knowing that id is the only endomorphism of \mathbb{T} we get $v = f_n(v) = u$ for all vertices v of \mathbb{T} . Hence $L(v) = \{v\}$.

 $3. \Rightarrow 2$: It's obvious, that always $\{id\} \subseteq End(\mathbb{T})$. Since $AC_{\mathbb{T}}(\mathbb{T})$ derived L(v) = v for all vertices v of \mathbb{T} we know there can't be another homomorphism h for which $h(v) \neq v$, hence $End(\mathbb{T}) = \{id\}$.

3.2 Notes

4 DONE Task 2: Arc-Consistency Procedure

Implement the arc-consistency procedure such that your algorithm runs in linear time in the size of the input.

Algorithm 1: $AC_{\mathbb{T}}$ (\mathbb{T} is a triad)

1 Input: digraph \mathbb{G} , initial lists $L: G \mapsto P(T)$ Output: Is there a homomorphism $h: \mathbb{G} \mapsto \mathbb{T}$ such that $h(v) \in L(v)$ for all $v \in G$

4.1 Notes

• Can we optimize AC for paths?

 \bullet Done by implementing AC-3 for graphs

4.2 Benchmarks

```
Algorithm 2: Algorithm for finding core triads
 Input: An unsigned integer m
 Output: A list of all core triads whose arms each have a length \leq m
 // Finding a list of RCAs
 armlist \leftarrow [\ ];
 foreach arm p with length(p) \leq m do
     if ACR_p(p) didn't derive L(v) \neq v for any vertex v then
      put p in armlist
 // Assembling the RCAs to core triads
 triadlist \leftarrow [];
 foreach \{p_1, p_2\} in armlist do
     if ACR_{p_1p_2}(p_1p_2) derived L(v) \neq v for some vertex v then
        Drop the pair and cache the two indices;
 foreach triad \mathbb{T} = \{p_1, p_2, p_3\} do
     if \mathbb{T} contains a cached index pair then
      Drop \mathbb{T} and continue;
     if AC_{\mathbb{T}}(\mathbb{T}) didn't derive L(v) \neq v for some vertex v then
      Put \mathbb{T} in triadlist;
 return triadlist
```

5 DONE Task 3: Core Triads

Write an algorithm that enumerates all core triads up to a fixed path-length/node number.

5.1 Algorithm

Algorithm 2 displays the pseudo-code of the entire core triad generation.

5.2 Notes

5.2.1 Observations

- Let n be the maximal arm length
- Then the number of possible paths is $p = \sum_{i=1}^{n} 2^{i}$ and there are p^{3} possible triads.

- To reduce the number of cases to look at we consider only triads that are cores, i.e., not homomorphically equivalent to smaller triads. Thus we pose/have to answer? the following question
- Question 1. When is a triad homomorphically equivalent to a smaller triad?
- A method to answer this question has already been presented in Lemma
 1: We simply run AC_T(T) and see if it derives L(v) = {v} for every vertex v
- Not efficient! and our algorithm will build up triads from arms
- Obvious case: A triad with two identical arms is obviously not a core triad
- We introduce some further definitions:
- We consider a partial triad θ to be a triad of the form (p₁p₂p₃) where
 at least one p_i = ε. If p_j ≠ ε for only one j then we call θ an arm.
 Each partial triad can be completed to form a triad by adding arms to
 it.
- We cannot be certain about later restrictions on the root node after adding arms. Thus running $AC_{\theta}(\theta)$ on a partial triad, does not let us make a statement about a triad derived from it.
- Because of this we define:
- $ACR_{\mathbb{T}}$ names a modification of $AC_{\mathbb{T}}$ that colours the root r that has degree 3 with $L(r) = \{r\}$
- Rooted core (RC) names a partial triad θ for which $ACR_{\theta}(\theta)$ did derive $L(v) = \{v\}$ for every vertex v
- A triad with an arm that is not a RC cannot be a core triad.
- Every partial triad that is not a RC cannot be completed to form a core triad.

5.2.2 Algorithm

$$AC \rightarrow id$$
 no statement $ACR \rightarrow id$ no statement $ACR \rightarrow id$ no statement $ACR \rightarrow id$ triad **cannot** be a core

- Consider the arm "100" serves as an example for an arm, on which AC doesn't derive only *id*. Yet, ("100","11","00") is still a core.
- Only if ACR does not derive only id, we can drop the arm

5.2.3 Optimizations

- Let H = (V, E) be a graph and let $\bar{H} = (V, \bar{E})$ be the graph where $\bar{E}(\bar{H}) = \{(y, x) \mid (x, y) \in E(H)\}$
- A mapping $f: V(H)^k \to V(H)$ is a polymorphism of H if and only if $(f(u_1, ..., u_k), f(v_1, ..., v_k)) \in E(H)$ whenever $(u_1, v_1), ..., (u_k, v_k)$ are arcs in E(H).
- Now let f be a polymorphism of H. It follows that $(f(v_1, ..., v_k), f(u_1, ..., u_k)) \in E(\bar{H})$ whenever $(v_1, u_1), ..., (v_k, u_k)$ are arcs in $\bar{E}(\bar{H})$, which makes f a polymorphism of \bar{H} .
- We have to generate only have of all triads e.g. ("01","0","11") because ("10","1","00")
- 1. Numbers of triads

6 TODO Task 4: Commutative Polymorphisms

Write an algorithm that enumerates all core triads that do not have a commutative polymorphism up to a fixed path-length. For every triad $\mathbb T$ there is a unique homomorphism

6.1 Notes

- If conjecture is true, then singleton-arc-consistency can be used to check commutative polymorphisms in the same way like path-consistency can be used to check majority polymorphisms
- Singleton-arc-consistency receives the following graph as its input:
 - Calculate the product graph of $\mathbb T$ with itself
 - Merge every pair of vertices (x, y) and (y, x) to one vertex
- $Thas comm. \Rightarrow Thas siggers$

7 Notes

7.1 Deprecated

7.1.1 Task 1

- \boxtimes "3. \Longrightarrow 1." If $AC_{\mathbb{T}}(\mathbb{T})$ terminates with L(v) = v for all vertices v of \mathbb{T} , we know that, if there was a homomorphism $h: \mathbb{T} \to \mathbb{T}$, h would map each vertex v to itself. We see that h is obviously an automorphism, hence \mathbb{T} must be a core.
- \boxtimes "1. \Longrightarrow 2." We consider p to be the unique path from u to f(u), which maps to the unique path p' from f(u) to f(f(u)). Our claim is that there has to be a vertex v on p for which f(v) = v. To show this we take the orbit of u and the paths in between.

In the simple case we suppose that f(f(u)) = u. This implies $f(u_i) = u_{l-i}$ for $i \in \{0, 1, ..., l\}$. Since no double-edges are allowed, we conclude that l = 2m, which gives us $f(u_m) = u_m$.

For the general case, we consider the orbit of u to be of size $n \geq 3$. Because of $f(u_0) = u_l$ there is a greatest $m \leq l$ such that $f(u_i) = u_{l-i}$, for every $i \in \{0, 1, ..., m\}$ from which follows that there must be a cyclic path from u_m to $f^n(u_m) = u_m$ of length n(l-2m). Since \mathbb{T} is a tree, we require that n(l-2m) = 0. The latter equation can only be satisfied for l = 2m, and again we get $f(u_m) = u_m$.

- 7.2 Todo
- 7.2.1 TODO Parallelize triad generation
- 7.2.2 TODO Use with capacity for vectors
- 7.2.3 TODO Parallelize pruning-search
- 7.2.4 TODO Add verbose flag
- 7.2.5 TODO Explain
 - \square notation in context of triads e.g. $(p_1p_2p_3)$
 - \square triads

7.2.6 TODO Add a –conservative flag

$$f(v_1, ..., v_n) \in \{v_1, ..., v_n\}$$

7.3 Questions

• Are empty arms allowed?

7.4 Tasks

- Verify the claims of Jakub Bulin: is it correct that the triad given above does not have a Siggers polymorphism? This can be checked by a computer.
- Write a computer program that generates all triads up to a certain numebr of vertices. Actually, we are only interested in those triads that are *cores*, i.e., not homomorphically equivalent to smaller triads this greatly reduces the numebr of case to look at.
- Write a program that verifies Bulin's conjecture on those triads.

7.5 Idee Micha

- Vertex ID = (Arm ID, ArmLocalVertexID)
- Triad = Vec < Arm >
- Arm = Len: usize edges: Bitfield