Network Programming Game 311

Chapter 2
The Internet

Lecture 5 / Chapter 2 Objectives

Review Basic Networking Concepts

Origins

— What precursors made the Internet possible?

The TCP/IP layer cake

 The hierarchy of standards and protocols that drive the Internet

ARPANET

- The Advanced Research Projects Agency Network
- US Department of Defense funded
- December 1969
- Four nodes
 - UCLA
 - UCSB
 - University of Utah
 - Stanford Research Institute
- To provide geographically dispersed scientists with access to geographically dispersed computing power
 - Computers were expensive and rare!
- Used new technology: packet switching

Circuit Switching

- Previous data exchange technology
- Each circuit dedicated to communication between the endpoints using it.
 - Could not be shared with other endpoints until communication complete

Packet Switching

- Breaks communication into packets.
- Packets can be sent on shared circuits, interleaved with packets travelling between other endpoints.
- Allows much more efficient use of circuits.

The Layer Cakes

- OSI
- Open Systems
 Interconnection
 - Application
 - Presentation
 - Session
 - Transport
 - Network
 - Data link
 - Physical

- TCP/IP
 - Application
 - Transport
 - IP
 - Link

- Book
 - Application
 - Transport
 - Network
 - Link
 - Physical

Layer Cake Responsibilities

Each layer wraps and attempts to deliver data for the layer above it.

Physical Layer

- Provides path for electrons
 - Ethernet cable (four pairs of copper wire)
 - Fiber
 - Radio transmission / wifi
- Unreliable
 - No guaranteed delivery or ordering

Link Layer

- Provides a transmission channel along the physical layer
 - Ethernet
 - 802.11a/b/g/n/ac (wireless)
 - FDDI (fibre)
- Data unit = Frame
- Unreliable

Link Layer

- Maximum transmission unit (MTU)
 - Maximum amount of payload the link layer can send as a unit
 - Not including link layer header
 - IPv4 standard requires >= 68
 - Ethernet v2 1500 bytes (most common Ethernet)
 - FDDI 4352
 - (Fiber Distributed Data Interface)
 - 802.11 7981 bytes

Ethernet

- Most commonly used link layer protocol
- Multiple speeds on various physical media, including 100 Mbps, 1 Gbps, 10 Gbps

Bytes	0	4		
0–7	F	Preamble		SFD
8–13	Destination Ma	Destination MAC Address		
14–21	Source MAC	Source MAC Address		h/Type
22	Payl	Payload (46-1500 bytes)		
	Frame Check Sequence			

MAC Address

- Also known as Physical Address.
- 48-bit unique address
- Assigned by manufacturer
 - First 24 identify manufacturer
 - Next 24 unique within manufacturer
- Identifies Ethernet device for sending and receiving at the link layer

Network Layer

- Routes data from host to host
 - Across networks and even link layer protocols
- Data units = packets
- IP (IPv4 / IPv6), ICMP, et al.
- Unreliable
- Each host has
 - IP address
 - 128.125.253.146 is <u>www.usc.edu</u> in IPv4
 - Gateway address (router address)
 - Subnet mask (local network IP section)

Subnet

- A group of hosts on a network that communicate without an external router.
- Subnet mask defines subnet:
 - 255.255.0.0 = 11111111 1111111 00000000 00000000
 - isSameSubnet = ((ip1 & netmask) == (ip2 & netmask))
 - 192.168.1.10, 192.168.2.20 same subnet,
 192.169.1.10 is not
 - Classless interdomain routing notation (CIDR)
 - IP/X, where X is number of significant bits in IP address that match

IPv4

Bits	0			16	
0–31	Version	Header Length	Type of Service		Total Length
32–63	Identification		Flags	Fragment Offset	
64–95	Time to	Live	Protocol	Header Checksum	
96–127	Source Address				
128–159	Destination Address				
160	Options				

ARP: Address Resolution Protocol

- Provides way for hosts to determine MAC address of host with a given IP address.
- Each host on local network maintains a map.
 - Can send frames directly to desired MAC address

Bytes	0		4		_
0–7	Hardware Type	Protocol Type	Hardware Address Length	Protocol Address Length	Operation
8–15	Sender Hardware Address Sender Protocol Address				
16–23	Sender Protocol Address	Target Hardware Address			
24–31	Target Protoc	col Address			

Indirect Routing

Fragmentation

- MTU at the link layer for Ethernet v2 is 1500 bytes.
- Max packet size is 65535 bytes
 - If we go beyond the size, we have to fragment the data into multiple packets.
- Each fragment gets
 - Identification: Unique ID for packet
 - More Fragments flag (0x4) (except the last)
 - Fragment Offset into packet

Fragmentation

- Why is fragmentation bad?
 - Must buffer incoming fragments to reassemble.
 - Must spend time reassembling.
 - If one fragment is lost, whole packet is lost.
 - Must spend bandwidth on one header per fragment.
- Why is fragmentation good?
 - Higher layers can send more data at once and not worry about underlying MTUs.

More Header Fields

- Time To Live (TTL)
 - Decremented by one each time packet goes through a router
 - Prevents Internet clogging up due to bad routing
- Protocol
 - Tells host which protocol to use at the the transport layer to interpret the packet

Transport Layer

- Implements end-to-end communication between two processes
- Data units = datagrams or segments
- Ip Protocol Numbers:
 - TCP (6)
 - UDP (17)
 - SCTP(132)
 - Etc…

UDP: User Datagram Protocol

- Introduces ports
 - Solves problem of where data goes when it arrives
- Adds checksum to detect corruption of entire segment

Bits	0	16
0–31	Source Port	Destination Port
32–63	Length	Checksum

Ports

- 0-1023 are system ports or reserved ports
 - Reserved with port authority for specific use
 - Sometimes require escalated privileges.
- 1024-49151 are user ports or registered ports
 - Reserved with port authority for specific use
- 49152-65535 are dynamic ports
 - Free for all

Problems with UDP

- Offers no guarantees over the underlying network layer, which means it too is Unreliable
 - Datagrams might arrive out of order
 - Datagrams might arrive twice
 - Datagrams are not guaranteed to arrive at all

Lecture / Chapter 2 Summary

Reviewed Basic Networking Concepts

Origins

— What precursors made the Internet possible?

The TCP/IP layer cake

 The hierarchy of standards and protocols that drive the Internet