Problem set from Y11 3U finals

You know who

September 18, 2024

List of problems

1. For $P(x) = (4x + \frac{1}{k})^n$, the following is true:

The coefficient of x^4 is 8 times that of x^3 and the coefficient of x^2 is 24 times that of x.

Find n and k.

(3)

2. For $0 \le x < \pi$, evaluate x so that $\sin 4x = \sin 2x$.

(2)

Soln. for problem 1

Understand that P(x) may be expanded as:

$$\sum_{i=0}^{n} \binom{n}{i} (4x)^{n-i} \times k^{-n}$$

And that $\binom{n}{i} = \binom{n}{n-i}$ by the symmetric distribution.

Thus taking the binomial coefficients of x^4, x^3, x^2, x the following is obtained:

• For x^4 :

$$C = \binom{n}{4} \times 4^4 \times k^{4-n}$$

$$= \frac{n!}{(4!)(n-4)!} \times 256 \times k^{4-n}$$

$$= \frac{n(n-1)(n-2)(n-3)}{4!} \times 256 \times k^{4-n}$$

$$= \frac{32(n)(n-1)(n-2)(n-3)}{3} \times k^{4-n}$$

• For x^3 :

$$C = \binom{n}{3} \times 4^3 \times k^{3-n}$$

• For x^2 :

$$C = \binom{n}{2} \times 4^2 \times k^{2-n}$$

• For x:

$$C = \binom{n}{1} \times 4^1 \times k^{1-n}$$