

PRINCÍPIO DE COMUNICAÇÃO DE DADOS

PARTE 2 - AULA 01 – Sockets – Revisão de TCP/IP

[1] SOCKETS | Revisão

[1.1] SOCKETS | Revisão

RM/OSI - Modelo de Referencia

SOKECTS | Revisão

RM/OSI Modelo de Referência

[1.2] SOCKETS | Revisão

TCP/IP – Modelo de Fato

SOKECTS | Revisão

TCP/IP Modelo de Fato

[1.3] SOCKETS Revisão

Endereçamento IPv4

An IPv4 address (dotted-decimal notation)

172 . 16 . 254 . 1

10101100 .00010000 .111111110 .00000001

1 byte=8 bits

32 bits (4 x 8), or 4 bytes

Endereçamento IPv4

https://en.wikipedia.org/wiki/Reserved IP addresses

Address block •	Address range +	Number of addresses •	Scope e	Description		
8/0.0.0.0	0.0.0.0-0.255.255.255	16 777 216	Software	Current network (only valid as source address).		
10.0.0.0/8	10.0.0.0-10.255.255.255	16 777 216	Private network	Used for local communications within a private network. ^[4]		
100.64.0.0/10	100.64.0.0-100.127.255.255	4 194 304	Private network	Shared address space ^[5] for communications between a service provider and its subscribers when using a carrier-grade NAT.		
127.0.0.0/8	127.0.0.0-127.255.255.255	16 777 216	Host	Used for loopback addresses to the local host [3]		
169.254.0.0/16	169.254.0.0-169.254.255.255	65 536	Subnet	Used for link-local addresses ^[6] between two hosts on a single link when no IP address is otherwise specified, such as would have normally been retrieved from a DHCP server.		
172.16.0.0/12	172.16.0.0-172.31.255.255	1 048 576	Private network	Used for local communications within a private network.[4]		
192.0.0.0/24	192.0.0.0-192.0.0.255	256	Private network	IETF Protocol Assignments.[3]		
192.0.2.0/24	192.0.2.0-192.0.2.255	256	Documentation	Assigned as TEST-NET-1, documentation and examples.[7]		
192.88.99.0/24	192.88.99.0-192.88.99.255	256	Internet	Reserved. [M] Formerly used for IPv6 to IPv4 relay[M] (included IPv6 address block 2002::/16).		
192.168.0.0/16	192.168.0.0-192.168.255.255	65 536	Private network	Used for local communications within a private network, [4]		
198.18.0.0/15	198.18.0.0-198.19.255.255	131 072	Private network	Used for benchmark testing of inter-network communications between two separate subnets.[10]		
198.51.100.0/24	198.51.100.0-198.51.100.255	256	Documentation	Assigned as TEST-NET-2, documentation and examples.[7]		
203.0.113.0/24	203.0.113.0-203.0.113.255	256	Documentation	Assigned as TEST-NET-3, documentation and examples.[7]		
224.0.0.0/4	224.0.0.0-239.255.255.255	268 435 456	Internet	In use for IP multicast.[11] (Former Class D network).		
240.0.0.0/4	240.0.0.0-255.255.255.254	268 435 455	Internet	Reserved for future use.[12] (Former Class E network).		
255.255.255.255/32	255.255.255.255	1	Subnet	Reserved for the "limited broadcast" destination address.[3(13)]		

Endereçamento IPv4

Nome	Faixa de endereços IP	Número de IPs	classful Descrição	Maior bloco CIDR	Referência
8-bit block	10.0.0.0 - 10.255.255.255	16,777,216	Uma classe A	10.0.0.0/8	RFC 1597 Ø (obsoleto), RFC 1918 Ø
12-bit block	172.16.0.0 - 172.31.255.255	1,048,576	16 classes B	172.16.0.0/12	
16-bit block	192.168.0.0 - 192.168.255.255	65,536	256 classes C	192.168.0.0/16	
16-bit block	169.254.0.0 - 169.254.255.255	65,536	Uma classe B	169.254.0.0/16	RFC 3330@, RFC 3927@

https://pt.wikipedia.org/wiki/Rede_privada

[1.4]

SOCKETS | Revisão

Portas

https://pt.wikipedia.org/wiki/Lista de portas dos protocolos TCP e UDP

- Portas são endereços providos pela camada de transporte
- Podem estar associadas aos protocolos TCP e UDP
- Elas determinam para onde os fluxos devem ser enviados.
- Elas permitem que um hosts com um único endereço IP hospede vários serviços
- Cada porta identifica um serviços distinto

https://pt.wikipedia.org/wiki/Lista de portas dos protocolos TCP e UDP

- Em cada host há 65535 portas disponíveis.
- O uso das portas é regulado pelo Internet Corporation for Assigning Names and Numbers (ICANN).
- Elas são divididas em três categorias:
 - 0 à 1023 → well known ports, associada a serviços e protocolos conhecidos.
 - 1024 à 49151 → registered ports, associadas a erviços registrados no ICANN.
 - 49152 à 65 535 → dynamic (private, high), são utilizadas quando uma seção é estabelecida e liberadas quando uma seção é finalizada; Podem ser utilizadas por aplicações e serviços que estão em teste.

[1.5] SOCKETS | Revisão

Encapsulamento de dados

Comunicação com e sem conexão

[2.1] SOCKETS | Conceitos

Conceitos Básicos

Sockets são os "endpoints" de uma comunicação bilateral

- □ São os "endpoints" de uma comunicação bilateral;
- Permitem a comunicação entre processos (IPC)
 - Entre processos da mesma máquina
 - Entre processos em maquina distintas
- Eles permitem a troca de dados e o acesso a recursos remotos

- Implementa o processo de IPC de mais baixo nível.
- Permitindo a interconexão entre vários elementos (softwares)
- Conceito semelhantes ao sistema telefônico
- Permitem a conexão com um ou múltiplos elementos

- □ **Domínio** é o "espaço" no qual o endereço é especificado.
 - INTERNET AF_INET os endereços consistem do end. de rede da máquina e da identificação do no. da porta, o que permite a comunicação entre processos de sistemas diferentes
 - Unix: AF_UNIX os processos se comunicam referenciando um pathname, dentro do espaço de nomes do sistema de arquivos

[2.2] SOCKETS | Conceitos

AF_INET | Internet Sockets

- Os Sockets criados pelos programas devem ser nomeados de forma que possam ser identificados.
- Esses nomes geralmente são traduzidos em endereços
- □ E um endereço é especificado por um domínio

- Aplicações podem utilizar os sockets para utilizar as funcionalidades da pilha TCP/IP
- Neste domínio (AF_INET) os sockets possuem dois níveis de endereços:
 - Local → Endereço da porta (0 à 65535)
 - Remoto → End. IPv4 ou End. IPv6
- Geralmente utilizado para implementar uma arquitetura Cliente X Servidor

- Cliente X Servidor
 - O Servidor fica escutando o socket aguardando por uma solicitação do cliente
 - O Cliente precisa conhecer o endereço do servidor e a porta na qual o servidor aguarda pela conexão.
 - Ao receber uma solicitação o Servidor cria um novo socket e associa a conexão que está sendo estabelecida.

- Cliente X Servidor
 - O Servidor deve utilizar uma porta cujo valor seja conhecido, nesta ele deve aguardar pelas conexões;
 - Ao aceitar uma nova conexão o servidor cria um outro socket e o associa a uma nova porta, alta, geralmente acima de 1024
 - Volta a aguardar por conexões na porta original

- Protocolos Suportados
 - Camada de Transporte
 - ■TCP → stream_sockets
 - UDP → datagram_sockets
 - Camada de Rede
 - raw_sockets

[2.2.1]

SOCKETS | Conceitos | AF_INET

RAW Sockets

Fluxos bidirecionais sem garantia de entrega (não confiáveis)

raw_socket

- Acesso a interface de protocolos de rede.
- A aplicação pode acessar diretamente protocolos de comunicação de baixo nível.
- Permite a construção de novos protocolos sobre os protocolos de baixo nível já existentes
- Normalmente orientados a datagrama

[2.2.2]

SOCKETS | Conceitos | AF_INET

User Datagram Protocol (UDP) Sockets

Fluxos bidirecionais sem garantia de entrega (não confiáveis)

datagram_sockets (UDP):

- Fluxo de dados bidirecional
- Não oferece um serviço confiável → Protocolo não orientado a conexão
- Mensagens duplicadas, perdidas, e em ordem diferente podem ocorrer

datagram_sockets (UDP):

- Sem conexão
- Mensagens de tamanho fixo (datagramas) são transmitidas individualmente para destinações especificadas.
- Sem garantia de entrega.

datagram_sockets (UDP):

[2.2.3]

SOCKETS | Conceitos | AF_INET

Transmission Control Protocol (TCP) Sockets

Fluxos bidirecionais com garantia de entrega (confiáveis)

stream_sockets (TCP):

- Sequenciamento e fluxo bidirecional.
- Transmissão sobre um base confiável e com capacidade de transmissão de dados expressos.
- No domínio UNIX, o SOCKET_STREAM trabalha igual a um pipe.
- No domínio INTERNET este tipo de socket é implementado sobre TCP/IP.

stream_sockets (TCP):

- Baseado no TCP (Tansmission Control Protocol)
- Orientado a conexão
- Fases:
 - Fase de conexão
 - Fase de transmissão
 - Fase de desconexão

SOKECTS | Conceitos | AF_INET

stream_sockets (TCP):

- Orientado a conexão
- Conexão lógica é explicitamente estabelecida entre dois processos que se comunicam.
- A camada de transporte se encarrega de transferir a sequência de forma correta e confiável. Garantia de entrega.

SOKECTS | Conceitos | AF_INET

Internet Sockets - TCP
Transmission Control Protocol

stream_sockets (TCP):

[2.3] SOCKETS | Conceitos

Modelo Cliente - Servidor

Servidor é o elemento passivo que aguarda pelas conexões.

Pilha de Protocolos

Comunicação baseada em Sockets

Host: 192.168.0.7:65015 Host: 192.168.0.30:443

Modelo Cliente - Servidor

Modelo Cliente - Servidor

Modelo Cliente - Servidor

socket():

- Cria um novo descritor
- Define o tipo da conexão (Domínio e Protocolo)
- Será utilizado como referencia pelas demais funções

Modelo Cliente - Servidor

bind():

- Função exclusiva do servidor
- Associa o socket a determinando endereço

Modelo Cliente - Servidor

listen():

- o coloca o soket um modo de espera
- socket passa a escutar/aguardar conexões

Modelo Cliente - Servidor

accept():

- o recebe uma das conexões que estavam na fila
- o cria um novo socket para tratar a nova conexão
- deixa o socket original aguardando por novas conexões

Modelo Cliente - Servidor

read() - receive():

Lê o conteúdo do buffer associado ao socket;

Modelo Cliente - Servidor

write() - send():

Escreve dados em um buffer associado ao Socket

Modelo Cliente - Servidor

close() - shutdown():

o fecha o sockets ()

Modelo Cliente - Servidor

connect():

o estabelece uma nova conexão com um servidor;

Interação cliente-servidor

PRINCÍPIO DE COMUNICAÇÃO DE DADOS

PARTE 2 - AULA 01 – Sockets – Revisão de TCP/IP