Picobot

Based on lecture slides from Harvey Mudd College

An Introduction to Picobot

Goal: To cover the entire environment

- The picobot moves in each direction

- It leaves a gray trail

It is guided by your instruction

 Does this remind you of anything?

The Picobot!

Overview

This represents something like a vacuum robot!

May vacuum an area more than once

Roomba!

Environment

- Picobot can sense things in each cardinal direction:
 - North, East, West, South

 In this case, he senses his surroundings as:

NxWx

 They are always represented in NEWS order!

NEWS

What can Picobot sense?

NxWx (NEWS)

N – wall to the north

x – empty to the east

W – wall to the west

x – empty to the south

What can Picobot sense?

What are these surroundings?

How many unique surroundings exist?

Question!

- How many unique surroundings exist?
 - Remember that for each direction, there are only two possible states (Wall or Empty)

Hint!

Each direction has 2 different possibilities...

$$2 * 2 * 2 * 2 == 2^4 == 16$$
 possible ...

16 Unique Surroundings

- Picobot's memory consists of a single number
 - This is called a state.
 - Picobot always starts at state 0.

 State and surroundings represent everything Picobot knows about the world!

Picobot's State of Mind

Picobot's Instructions

state surroundings direction new state ×*** M If I am in state 0, and I'm sensing Then, move north and an empty space to the North "change" my state to state 0 I am in state 0. Ah! This matches My surroundings x***! are xx**WS**. Asterisks (*) represent both a wall and an empty space!

Wildcard!

- Picobot reads through the list of instructions from top to bottom.
- Whenever it finds a matching rule, it executes it.
- What would these rules do?
 - What would it mean for poor Picobot?

```
state surroundings direction new state 0 \hspace{1cm} x^{***} \hspace{1cm} -> \hspace{1cm} N \hspace{1cm} 0 0 \hspace{1cm} N^{***} \hspace{1cm} -> \hspace{1cm} X \hspace{1cm} 0
```

How Picobot chooses what to do

- Picobot reads through the list of instructions from top to bottom.
- Whenever it finds a matching rule, it executes it.

What would Picobot do?

Do so regardless of starting position!

Goal: Cover everything!

Do so regardless of starting position!

Homework: Cover everything!

Do so regardless of starting position!

Homework: Cover everything!

- You can look at a problem and come up with many different solutions in Picobot.
 - This is true of programming in general.
- We can measure the efficiency of our solutions!
 - The number of states and rules you have given.
 - The amount of steps your bot takes.
- Measuring, competing, and proving that no better can be done are all aspects of computer science and programming.

How does Picobot measure up?