UNIVERSITATEA NAȚIONALĂ DE ȘTIINȚĂ ȘI TEHNOLOGIE POLITEHNICA BUCUREȘTI

Facultatea

5 aprilie 2025

CHESTIONAR DE CONCURS

Numărul legitimației de bancă ______

Numele _____

Prenumele tatălui _____

Prenumele

DISCIPLINA: Algebră și Elemente de Analiză Matematică AAM

VARIANTA A

- 1. Multimea soluțiilor reale ale ecuației $\sqrt{6x-8} = x$ este: (9 pct.)
 - a) $\{-3,-2\}$; b) $\{-1,0\}$; c) $\{3,5\}$; d) $\{2,4\}$; e) $\{-4,-2\}$; f) $\{1,3\}$.
- 2. Să se rezolve inecuația 3x+1>2x+2. (9 pct.)
 - a) $x \in (-1,1)$; b) $x \in (1,\infty)$; c) $x \in (-\infty,-1)$; d) $x \in (-2,-1)$; e) $x \in (-\infty,-2)$; f) $x \in (-\infty,0)$.
- 3. Fie $a,b,c,d \in \mathbb{N}^*$ astfel încât $\log_a b = \frac{4}{3}$ și $\log_c d = \frac{5}{6}$. Dacă c-a=37, atunci b-d este: (9 pct.)
 - a) 49; b) 56; c) 38; d) 52; e) 42; f) 64.
- 4. Fix $A = \begin{pmatrix} m & -1 \\ 2 & m+2 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. Ştiind că det(A) = 1, să se calculeze $m^2 + 2$. (9 pet.)
 - a) 2; b) 11; c) 3; d) 5; c) 4; f) 6.
- 5. Să se determine suma modulelor soluțiilor ecuației 322.4216 = 27. (9 pet.)
 - a) 7; b) 5; c) 1; d) 6; e) 3; f) 4.
- 6. Fie funcțiile $f,g:(0,\infty)\to\mathbb{R}$, $f(x)=\arctan\sqrt{x}$ și $g(x)=\frac{1}{4}(\pi+\ln x)$. Dacă tangenta comună într-un punct comun al graficelor funcțiilor f și g intersectează axa Ox în punctul $P(\alpha,0)$, atunci α este: (9 pet.)
 - a) π ; b) 1; c) $1-\pi$; d) $1+\pi$; e) $\frac{\pi}{2}+1$; f) 0.
- 7. Fie sistemul de ecuații liniare

$$\begin{cases} 2mx + y + (m+1)z = 2m+1\\ (m+2)x + (m+1)y + (m+2)z = 2,\\ 3mx + y + (2m+1)z = 1 \end{cases}$$

unde m este un parametru real. Notăm cu A mulțimea valorilor lui m pentru care sistemul este incompatibil. Atunci: (9 pet.)

a)
$$A = \{0;1\}$$
; b) $A = \{1;2\}$; c) $A = \{-1;0;1\}$; d) $A = \{-1;1\}$; e) $A = \{-2;-1\}$; f) $A = \{-2;0;1\}$.

- 8. Dacă x_1 și x_2 sunt soluțiile reale ale ecuației $x^2 + 3x + 1 = 0$, atunci valoarea expresiei $\left(\frac{x_1}{x_2 + 1}\right)^2 + \left(\frac{x_2}{x_1 + 1}\right)^2$ este: (9 pct.)
 - a) 20; b) 10; c) 4; d) 13; e) 18; f) 25.
- 9. Fie $f: \mathbb{R} \to \mathbb{R}$, o funcție derivabilă, astfel încât $x^2 + 2 \int_0^x t \cdot f(t) dt + 2 = (x^2 + 1) \cdot f(x) + \ln 2$, $(\forall) x \in \mathbb{R}$.

 Atunci $\int_0^1 f(x) dx$ este: (9 pct.)
 - a) $\frac{\pi}{2}$; b) π ; c) 1; d) $\frac{\pi}{3}$; e) $\frac{\pi}{4}$; f) $\frac{3\pi}{4}$.
- 10. Fie $(a_n)_{n\geq 1}$ o progresie aritmetică și S_n suma primilor n termeni ai acesteia. Dacă $S_5 = 40$ și $S_{10} = 155$, să se calculeze S_{15} . (9 pct.)
 - a) 344; b) 346; c) 345; d) 340; e) 343; f) 347.