Neural network classification and Regression trees

More about neural networks

- 1. Think how each node is a function of all input predictors;
- 2. The activation function works as nonlinear transformation;
- 3. 1 & 2 together can approximate complex relationships among predictors, think how you need to specify components in regression;
- 4. You should be able to do manual calculations if given weights and activation functions in neural networks.

Easy example of nnet calculation

Ispst layer

(st hidde loyer (signed outvoitors)

adput

Giver YI. Yr.

Weakest link pruning

- Goal: find the unique smallest subtree $T_{\alpha} \subseteq T_0$ that minimize the cost complexity criterion;
- Each time, collapse one internal node that produces the smallest per-node increase in impurity, and continue this procedure until getting the single-node tree. This sequence of subtrees is guarantee to have T_{α} ;
- T_{α} is associated with T_0 and α .

Feature importance

- Visual inspection: how many times the predictors appears in internal nodes, do they appear close the root, do their branches have long length;
- Numerical measure: for some x_i , sum the reductions in impurity measure for internal nodes when the split is based on this x_i .

Difference among impurity measures

Gini index and cross-entropy loss are more sensitive to changes in node probabilities than the misclassification rate (example in ESL P.311):

