DSA5101 Machie Learning Project

By Huang Xijie, Li Zitian, Wang Shuhui

Github Link: https://github.com/lzt68/2021-DSA5101-Machine-Learning-Project

Content

- 1. Overview
- 2. Data Exploration and Preprocessing
- 3. Model Selection Feature Engineering
 - Huang Xijie: XGboost vs LightGBM
 - Li Zitian: Random Forest vs Decision Tree
 - Wang Shuhui: Logistic Regression vs Knn
- 4. Insight
- 5. Future Direction

Overview

Overview

Data

- Marketing campaign of Portuguese bank
- **Imbalanced** binary label

Measure

MCC score

Our score 0.61

Preprocess

- Resample
- Add timestamp
- Forward selection
- Feature Importance

Algorithm

- XGBoost
- Random Forest
- Logistic RegressionDecision Tree

- KNN
- LightGBM

Insight

- **Exogenous** factor matters
- **Duration** of contact matters
- **Continuity** of clients' behavior

Data Exploration Preprocessing

Label

- Binary value
- 'no': 39922 88%'yes': 5289 12%Imbalanced

Numerical

- 7 numerical features
- 'age', 'balance', 'duration', days'campaign', 'pdays', 'previous'
- Heavily right tailed

Categorical

- 8 categorical features
- 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'poutcome', month
- Imbalance also exists

Lable: 'y'

- Success or Failure of contact
- Inbalanced binary label

duration

- Length of last contact
- client's interest
- higher duration infer higher successful rate

housing

- Existence of housing loan
- might affect disposable income
- Housing loan may decrease successful rate

poutcome

- Result of last contact
- Inbalanced feature
- Success in the last time may infer higher successful rate

age

- Range from 18 to 90
- Most of clients are middle-aged
- Middle-aged clients are more likely to reject term deposit

balance

- Some are indebt
- Not heavy-tailed

campaign

- Number of performed contacts
- Clients with less contacts seem more declined to term deposit
- Not significant in the models, compared to other features

contact

- Communication type
- Cellular seems related to higher success rate
- Not significant in the models, compared to other features

default

- Credit records
- highly imbalanced
- Cannot derive much inofrmation directly from this feature

education

- Educational level
- Higher education background seems to prefer term deposit

job

- Multiple values
- Irregular relationship with successful rate
- Further encoding needed

loan

- Personal loan
- To some extent, reflect the financial condition of clients
- Not significant in the models, compared to other features

marital

- Marital condition
- Single clients may be more inclined to accept term deposit, but not highly significant in models

pdays

- Most of clients had never been contacted
- Further encoding can make this feature useful, but not as important as others

previous

- Highly imbalanced
- It might be useful in specific samples, but not as important as others

month

- Information of the date
- Irregular information can be derived.
 Further encoding and preprocessing can make it quite useful.

day

- Information of the date
- Irregular information can be derived.
 Not significant in the models

Preprocessing

Date and timestamp

- Origin dataset only contains day and month
- Data are chronologically listed
- Add feature 'year'

```
year_counter = 2008
ii = 0
while ii <= data.shape[0] - 1:
    if data['month'].iloc[ii] != 'jan':
        data['year'].iloc[ii] = year_counter
        ii = ii + 1
    else:
        year_counter = year_counter + 1
        for jj in range(ii, data.shape[0]):
            if data['month'].iloc[jj] == 'jan':
                 data['year'].iloc[jj] = year_counter
        else:
            ii = jj
            break</pre>
```

Preprocessing

Encode categorical features: 3 examples

One-hot encoder

```
data = pd.get_dummies(data, columns = ['job'])
```

Discretization of numerical features

customized encoder

```
X['poutcome_success'] = data['poutcome'].apply(lambda x: 1 if x == 'success' else 0)
```


Model Selection Feature engineering

Li Zitian: Random Forest vs Decision Tree

In terms of Score: Random Forest is always better *

One-hot	"year"	Smote	Generate Cross Term	RF	DT
				0.5588	0.5098
$\sqrt{}$	\checkmark			0.5897	0.5624
$\sqrt{}$	\checkmark	$\sqrt{}$		0.5348	0.5100
			√ * *	0.5880	0.5507

^{*} Notebook is located at .\LI ZITIAN-Random Forest-Decision Tree\Model_Selcetion_Random-Forest_vs_Decision-Tree.ipynb

^{**} We generate 300+ new features and then use backward selcetion to drop them, and we use the best score in this process

• In terms of **Robustness**: Random Forest depends on more features

Random Forest-100 Features

Decision Tree-100 Features

feature name	feature_importance	feature name	feature_importance
duration	0.5863	duration	0.5758
age	0.1124	year	0.2610
balance	0.0872	age	0.0956
campaign	0.0788	balance	0.0430
pdays	0.0562	pdays	0.0126

• In terms of **Robustness**: Random Forest depends on more features

Random Forest-50 Features

Decision Tree-50 Features

feature name	feature_importance	feature name	feature_importance
duration	0.6575	duration	0.5852
age	0.1179	year	0.2618
campaign	0.0739	age	0.0915
balance	0.0569	balance	0.0504
year	0.0416	pdays	0.0083

• In terms of **Robustness**: Random Forest depends on more features

Random Forest-20 Features

Decision Tree-20 Features

feature name	feature_importance	feature name	feature_importance
duration	0.7352	duration	0.5922
age	0.0880	year	0.2693
campaign	0.0739	age	0.0903
year	0.0514	balance	0.0328
balance	0.0416	pdays	0.0154

Feature engineering and Parameter tuning: Random Forest

Top 8 most important features

feature_importance

feature name

previous

		• 11115 1151 CO1151515 OI 1015 OI C1055		
duration	0.6575	term, which may be hard to explain		
age	0.1179	 To get mcc 0.58, more than 100 		
campaign	0.0739	features involved in the model, training time is too long		
balance	0.0569			
year	0.0416	 Forward selection to deduct data 		
pdays	0.0293			
poutcome	0.0010	 The notebook locates at .\LI ZITIAN-Random Forest-Decision 		
_		Tree\Random Forest Forward Selection.ipynb		

This list consists of lots of cross

Forward Selection: base line

- Feature List:[duration, age]
- hyperparmeter:
 'class_weight': {0: 1, 1: 3},
 'criterion': 'gini',
 'max_depth': 15,
 'min_samples_leaf': 10,
 'n_estimators': 100,
 'random_state':888
- Base line score: 0.38

```
data = pd.read csv("..\bank-full-add timestamp.csv",
                   sep=',',
                   engine="python")
y = data['y'].replace({"yes":1,"no":0})
data['y'].replace({"yes":1,"no":0}, inplace = True)
X = deepcopy(data[['duration', 'age']])
para = {'class weight': {0: 1, 1: 3},
        'criterion': 'gini',
        'max depth': 15.
        'min samples leaf': 10,
        'n estimators': 100,
        'random state':888}
rftree = RandomForestClassifier(**para)
kf = KFold(n splits=5, shuffle = True, random state = 888)
score array = np.zeros(5)
for (ii, (train index, test index)) in enumerate(kf.split(X, y)):
      print("TRAIN:", train index, "TEST:", test index)
    X train, X test = X.loc[train index], X.loc[test index]
    y train, y test = y.iloc[train index], y.iloc[test index]
    rftree.fit(X train, y train)
    y predict = rftree.predict(X test)
    myscore = matthews corrcoef(y test, y predict)
    score array[ii] = myscore
```

Forward Selection: day, Month, Year

	2008	2009	2010		2008	2009	2010
Jan	١	0.03	0.46	Jul	0.06	0.37	0.54
Feb	\	0.11	0.53	Aug	0.06	0.34	0.52
Mar	\	0.48	0.56	Sep	\	0.44	0.49
Apr	\	0.17	0.59	Oct	0.61	0.42	0.41
May	0.03	0.10	0.57	Nov	0.06	0.49	0.48
Jun	0.04	0.38	0.49	Dec	0.08	0.49	0.49

Ratio of positive label

No information from feature 'day'
 month and day are strongly related to y

Forward Selection: day, Month, Year

Encode each year and oct in 2018, jan feb apr may jun jul aug in 2019,

```
X['year_2008'] = data.apply(lambda x: 1 if x['year'] == 2008 else 0, axis = 1)
X['year_2009'] = data.apply(lambda x: 1 if x['year'] == 2009 else 0, axis = 1)
X['year_2010'] = data.apply(lambda x: 1 if x['year'] == 2010 else 0, axis = 1)
X['Encode-date_2008_10'] = data.apply(lambda x: 1 if x['year'] == 2008 and x['IX['Encode-date_2009_1_2_4_5'] = data.apply(lambda x: 1 if x['year'] == 2009 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Encode-date_2009_6_7_8'] = data.apply(lambda x: 1 if x['year'] == 2008 and X['Enco
```

- mcc score jump to 0.5631, a huge improvement
- Sep, 2008: Financial crisis in United States
 End of 2009: Debt crisis in Greek

Exogenous factor matters!!!

Forward Selection: balance

	Treat it as numeric	Discretalize it by quantile	Multiply by duration
MCC score	0.5619	0.5569	0.5632

- Standard scaler is meaning less in random forest
- Multiply by duration is the best, but not significant difference
- After add it to X, our feature list: duration', 'age', 'Encode-date_2008_10', 'Encode-date_2009_1_2_4_5', 'Encode-date_2009_6_7_8', 'year_2008', 'year_2009', 'year_2010', 'balance'

Feature engineering and Parameter tuning: Random Forest

Forward Selection: poutcome

	Success = 1, others =0	One-hot encoding
MCC score	0.5689	0.5681

- Four potential value of this feature: unknown, other, failure, success
- Just encode success is the best, have small improvement compared to last round
- To deduct dataset, we prefer to use more single encoding method, we add "poutcome_success" to our X

Forward Selection: campaign

	Treat it as numeric	Discretalize it by quantile	Multiply by duration
MCC score	0.5748	0.5742	0.5722

Just treat it as numeric variable is the best way

Forward Selection: pdays

	Treat it as numeric	encode -1	Discretalization	Multiply others
MCC score	0.5779	0.5756	0.5799	0.5719

Discretalize it by quantile is the best way

Forward Selection: job

	Encode it by correlation of y	Multiply it by duation
MCC score	0.5797	0.5753

This feature cannot help to imporve the score, we drop it

Forward Selection: housing

	One-hot coding	One-hot + Multiply it by duation	
MCC score	0.5758	0.5756	

This feature cannot help to imporve the score, we drop it

Forward Selection: Ioan

	One-hot coding	One-hot + Multiply it by duation
MCC score	0.5760	0.5773

This feature cannot help to imporve the score, we drop it

Forward Selection: contact

	One-hot coding	Just Encode "cellular"
MCC score	0.5810	0.5824

• We found that just **encode cellular is 1, while others is 0**, is the best

Forward Selection: marital

	One-hot coding	One-hot + Multiply it by duation
MCC score	0.5866	0.5824

One-hot encoding is the best

Forward Selection: education

	One-hot coding	One-hot + Multiply it by duation
MCC score	0.5847	0.5793

This feature cannot help to imporve the score, we drop it

Forward Selection: default

	One-hot coding	One-hot + Multiply it by duation
MCC score	0.5854	0.5855

This feature cannot help to imporve the score, we drop it

Forward Selection: previous

	Treat it as numeric	discretalize it with 0 or non-zero
MCC score	0.5855	0.5837

This feature cannot help to imporve the score, we drop it

Conclusion after Forward Selection

- Best score of Random Forest: 0.5868
 - Final feature list, remain **17** features:

 'duration', 'age', 'Encode-date_2008_10', 'Encode-date_2009_1_2_4_5', 'Encode-date_2009_6_7_8',

 'year_2008', 'year_2009', 'year_2010', 'balance', 'poutcome_success', 'campaign', 'pdays_0-143', 'pdays_-1',

 'pdays_143-282', 'pdays_282-427', 'contact_cellular', 'marital_single', 'marital_married', 'marital_divorced'
 - hyper parameter of Random Forest:
 'class_weight': {0: 1, 1: 3}, 'criterion': 'gini', 'max_depth': 15, 'min_samples_leaf': 10, 'n_estimators': 100, 'random_state': 888
- Techniques in Forward Selection
 - Exogenuous factor has huge impact
 - One-hot encoding may not be the best encoding method for categorical featrue
 - Discretalization of numeric feature may help to improve robustness and higher score

Model Selection Feature engineering

Huang Xijie: XGBoost vs LightGBM

Data Preprocessing and Visulization for XGBoost and Light_GBM

Visulization

Feature Engineering

Huang: XGboost vs LiaghtGBM

Data Preprocessing and Visulization 1.1 Statistics for the data

Analysis for datatype

Check if there are missing data

 Note that from the description in bank_name .txt, we found out that all data are ordered by dates from May 2008 to November 2010. Hence, we created a new column "Year" to help us predic the target data.

	data_type	Missing data in %	Unique	First Value	Second Value	Third Value
year	int64	0.0	3	2008	2008	2008
age	object	0.0		58	44	33
job	object	0.0	12	management	technician	entrepreneu
marital	object	0.0	3	married	single	married
education	object	0.0	4	tertiary	secondary	secondary
default	object	0.0	2	no	no	no
balance	object	0.0	7168	2143	29	2
housing	object	0.0	2	yes	yes	yes
loan	object	0.0	2	no	no	yes
contact	object	0.0	3	unknown	unknown	unknown
day	object	0.0	31	5	5	5
month	object	0.0	12	may	may	may
duration	object	0.0	1573	261	151	76
campaign	object	0.0	48	1	1	1
pdays	object	0.0	559	-1	-1	-1
previous	object	0.0	41	0	0	0
poutcome	object	0.0	4	unknown	unknown	unknown
у	object	0.0	2	no	no	no

Huang: XGboost vs LiaghtGBM

Huang: XGboost vs LightGBM

Data Preprocessing and Visulization 1.2 Feature engineering

- Do one-hot-encode for categorical data.
- For binary entries, change "Yes" to 1 and "No" to 0, instead of doing one-hot-encode.
- Adding year and datetime to features
- Normalize the numerical data (Scaling)

Note that the last three significantly improve the mcc score for xgboost, lightGBM and SVM respectively.

The best initial value of MCC for XGBoost and SVM are about 33% and 8%

Modelling

XGBoost

LightGBM

• (SVM)

2. XGBoost 2.1 What is XGBoost

- What is XGBoost
- XGBoost is a decision-tree-based ensemble Machine Learning algorithm that uses a gradient boosting framework. It is an algorithm that was developed as a research project at the University of Washington by Tianqi Chen and Carlos Guestrin in 2016
- Why use XGBoost
- In prediction problems involving unstructured data (images, text, etc.) artificial neural networks tend to outperform all other algorithms or frameworks.
 However, when it comes to small-to-medium structured/tabular data, decision tree based algorithms may perform better.

2. XGBoost 2.2 Evolution of tree-based algorithms

Evolution of tree-based algorithms

Bootstrap aggregating or Bagging is a ensemble meta-algorithm combining predictions from multipledecision trees through a majority voting mechanism Models are built sequentially by minimizing the errors from previous models while increasing (or boosting) influence of high-performing models

Optimized Gradient Boosting algorithm through parallel processing, tree-pruning, handling missing values and regularization to avoid overfitting/bias

Algorithm detail with reference: https://xgboost.readthedocs.io/en/latest/tutorials/index.html, and the original paper.

2. XGBoost2.3 Weighted or Resample

```
mcc for XGB_classifier 0.6113463913838503
mcc for light_GBM_classifier 0.5983678791327349
mcc for SVM_classifier 0.575273057399935
Avg accuracy: 0.8865762177380392
```

Huang: XGboost vs LightGBM

3. Light_GBM 3.1 XGBoost VS Light_GBM

LightGBM VS XGBoost

To reduce the implementation time, a team from Microsoft developed the light gradient boosting machine (LightGBM) in April 2017 [8]. The main difference is that the decision trees in LightGBM are grown leaf-wise, instead of checking all of the previous leaves for each new leaf, as shown in Figs. 1 and 2. All the attributes are sorted and grouped as bins. This implementation is called histogram implementation. LightGBM has several advantages such as better accuracy, faster training speed, and is capable of large-scale handling data and is GPU learning supported.

Fig. 1 XGBoost Level-wise tree growth

Fig. 2 LightGBM Leaf-wise tree growth

Reference: https://lightqbm.readthedocs.io/en/latest/Parameters-Tuning.html#for-better-accuracy

3. Light_GBM3.2 Efficiency or Accuracy

Training time for XGBoost:2.0365662574768066s
Training time for LightGBM:0.18746638298034668s
Training time for SVM:41.976288080215454s

Huang: XGboost vs LightGBM

Feature Importance summerization

```
Feature for XGBoost: year

Feature for XGBoost: duration

Feature for XGBoost: housing

Feature for XGBoost: month_may

Feature for XGBoost: poutcome_success

Feature for XGBoost: month_oct

Feature for XGBoost: month_jan

Feature for XGBoost: month_feb

Feature for XGBoost: month_apr

Feature for XGBoost: month_mar
```

```
Feature for Light_GBM: duration
Feature for Light_GBM: day
Feature for Light_GBM: balance
Feature for Light_GBM: age
Feature for Light_GBM: pdays
Feature for Light_GBM: year
Feature for Light_GBM: campaign
Feature for Light_GBM: month_may
Feature for Light_GBM: month_oct
Feature for Light_GBM: month_feb
```

Feature importance for XGBoost

Feature importance for LightGBM

Model Selection Feature engineering

Wang Shuhui: Logistic Regression vs KNN

Wang: Logistic Regression vs KNN

• In terms of **Score**: Logistic Regression is always better

One-hot	"year"	Ordinal	Discretization	Resampling	Logistic Regression	KNN
$\overline{\qquad}$					0.5097	0.4149
		$\sqrt{}$			0.4432	0.3986
$\sqrt{}$			$\sqrt{}$		0.5477	0.3986
		$\sqrt{}$	$\sqrt{}$		0.5448	-
	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	0.5448	-
	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	-	0.5448

Wang: Logistic Regression vs KNN

• In terms of **Efficiency** and **Robustness**: Logistic Regression is better

Logistic Regression	Total number of feature used	Feature name	Feature coefficient	Resampling
	22	month_jan	-2.2789	
		campaign	-2.0008	
		year	1.9979	No
		poutcome_ success	1.8130	
KNN		duration	1.6181	
	50 * 45 = 2250			Yes

Base Model

Hyperparmeters:

```
'solver': 'newton-cg',
class_weight: 'balanced',
'C': 10
```

Base line score: 0.5097

```
for c in C:
    log clf = LogisticRegression(solver='newton-cg', class weight='balanced', C = c)
    log scores = []
    for train index , test index in kf.split(x oh, Y):
        X train, y train = x oh.iloc[train index], Y.iloc[train index]
        X test, y test = x oh.iloc[test index], Y.iloc[test index]
        log clf.fit(X train,y train)
        pred values log = log clf.predict(X test)
        log score = matthews corrcoef(pred values log , y test)
        log scores.append(log score)
    avg mcc score log = sum(log scores)/5
    print('---LogisticRegression---')
    print('Inverse regularization strength - {}'.format(c))
    print('accuracy of each fold - {}'.format(log scores))
    print('Avg accuracy : {}'.format(avg mcc score log))
```

Feature coefficient

Top	6	Important Features
-----	---	---------------------------

Feature name

age marital	0.1000 0.2528	involved. Adapting ordinal encoded inputs will reduce computational cost significantly.
month	0.0313	 This list consists of coefficients of inputs that show preference towards
duration	1.3999	one of the output classes in base
campaign	-0.4268	model fitted with ordinal encoded data.
previous	0.3350	 To get higher MCC score,
poutcome	0.1975	preprocessing on these features isnecessary.
		- Hoodsaly.

In base model, 48 features were

Adding New Feature: Year

- Instead of 'year' =
 '2008', '2009' or '2010',
 we apply ordinal
 encoding to attribute
 'year'.
- MCC score increases
 from 0.4432 to 0.5056

```
# Adding new feature
row sum = X.shape[0]
X year = np.zeros(row sum, dtype=int)
year counter = 0
new year = False
for i in range(row sum):
    if X.loc[i,'month'] == 'jan':
        if not new year:
            year counter = year counter + 1
            new year = True
    else:
        new year = False
    X year[i] = year counter
```

Discretization: poutcome

	Success = 1, others =0	Ordinal encoding
MCC score	0.5190	0.5056

- Four potential value of this feature: unknown, other, failure, success
- Just encode success has best score improvement which also matches the histogram plot of 'poutcome'

Discretization: Age

	Treat it as numeric	Discretalize into 3 classes
MCC score	0.5190	0.5209

Discretization: previous

	Treat it as numeric	Discretalize it into 2 bins
MCC score	0.5209	0.5214

Feature Selection: Month

	Ordinal encoding	Keep only 6 months	One-hot encoding
MCC score	0.5214	0.5448	0.5478

- Using one-hot encoded month features produces the highest prediction accuracy.
- This will increase input feature dimension to about twice the original size.
- Dropping less significant feature columns (['apr','aug','feb','jul','nov','sep']),
 will maintain the MCC score with just 6 additional input columns.

Conclusion after Feature Selection

- Final score of Logistic Regression: **0.5448**
 - Final feature list, remain 22 features:
 'age', 'job', 'marital_married', 'education', 'default', 'balance', 'housing', 'loan', 'contact', 'day', 'duration', 'campaign', 'pdays', 'previous', 'poutcome_success', 'year', 'dec', 'jan', 'jun', 'mar', 'may', 'oct'
 - hyper parameter of Logistic Regression:
 'class_weight': 'balanced', 'solver': newton-cg, 'C': 10, max_iter: 1000, 'fit_intercept': True
 - New feature 'year' has huge effect in score improvement
 - Discretalization of numeric feature and customised encoding help to enhance model performance

Summary Insights

Model Achievements

Model	Number of features invovled	Model Training Time	MCC score
XGBoost	16	Short	0.60
Random Forest	17	Long	0.59
Logistic Regression	22	Shortest	0.54

Insights

- Techniques in model selection
 - Some algorithms may always perform better than other one, at the cost of longer training time
 - Hyper parameter have large impact on the performance of algorithms.
 Finding the best hyperparameter may take more time than feature engineering.
- Techniques in feature engineering
 - One-hot encoding is not the best encoding scheme for all categorical featrues
 - Discretalization of numeric features help to improve model robustness and have higher mcc score

Future Direction

Future Direction

- Additional Features
 - We noticed that feature "year" is quite important in our study. This feature may contains key information of economical environment
 - If we want to identify clients who are more willing to make term deposits,
 we need to fix economical factor. Or our analysis may not be useful
 - Note that the feature "duration" is also important. It is natural that those
 who are willing to invest are more likely to spend more time to discuss
 about the detail of investment during the last contact. So more
 features related to duration may be useful.

Future Direction

- Parameter Tuning
 - Due to the limitation of time and computing resource, more powerful computing resources is required to carry out grid search
 - Parameter tuning and feature selection should be repeatedly tested together. More rounds of feature engineering may help to get better score.
 - Feature Engineering
 - There are different methods to encode features. Sometimes customized encoding rule may have better performance than one-hot encoding
 - Discretalizing numeric features **by quantile** may be a good choice, but it is not applicable if we just want to have two bins.

Thank you!