Trigonometria

Tabela trigonométrica

α	$\frac{\pi}{6}$ ou 30°	$\frac{\pi}{4}$ ou 45°	$\frac{\pi}{3}$ ou 60°
sin(α)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos(α)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tan(α)	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Conversões básicas (Graus ↔ Radianos)

Graus	360°	180°	90°	60°	45°	30°
Radianos	2π	π	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$

Variação das funções trigonométricas

$$-1 \le \sin(\alpha) \le 1$$

$$-1 \le \cos(\alpha) \le 1$$

$$-\infty \le \tan(\alpha) \le +\infty$$

 $\tan\left(\frac{\pi}{2}\right) e \tan\left(\frac{3\pi}{2}\right)$ não estão definidos.

α°	$\sin(\alpha)$	$\cos(\alpha)$	tan(\alpha)	αrads
0°	0	1	0	0 rads
90°	1	0	Não definido	$\frac{\pi}{2}$ rads
180°	0	-1	0	π rads
270°	-1	0	Não definido	$\frac{3\pi}{2}$ rads

Razões trigonométricas de α e $-\alpha$

1.
$$cos(-\alpha) = cos(\alpha)$$

2.
$$\sin(-\alpha) = \sin(\alpha)$$

3.
$$tan(-\alpha) = -tan(\alpha)$$

4.
$$cos(\pi - \alpha) = -cos(\alpha)$$

5.
$$\sin(\pi - \alpha) = \sin(\alpha)$$

6.
$$tan(\pi - \alpha) = -tan(\alpha)$$

7.
$$cos(\pi + \alpha) = -cos(\alpha)$$

8.
$$\sin(\pi + \alpha) = -\sin(\alpha)$$

9.
$$tan(\pi + \alpha) = tan(\alpha)$$

10.
$$\sin(90^{\circ} - \alpha) = \cos(\alpha)$$

11.
$$cos(90^{\circ} - \alpha) = sin(\alpha)$$

12.
$$\tan(90^{\circ} - \alpha) = \frac{1}{\tan(\alpha)}$$

13.
$$\sin(90^\circ + \alpha) = \cos(\alpha)$$

14.
$$cos(90^{\circ} + \alpha) = -sin(\alpha)$$

15.
$$\tan(90^{\circ} + \alpha) = -\frac{1}{\tan(\alpha)}$$

16.
$$\sin(60^\circ) = \cos(30^\circ)$$

17.
$$\cos(60^\circ) = \sin(30^\circ)$$

18.
$$tan(60^\circ) = \frac{1}{tan(30^\circ)}$$

19.
$$\sin(270^{\circ} - \alpha) = -\cos(\alpha)$$

$$20. \cos(270^{\circ} - \alpha) = -\sin(\alpha)$$

21.
$$\tan(270^{\circ} - \alpha) = \frac{1}{\tan(\alpha)}$$

Exemplos:

a.
$$\sin(240^\circ) = \sin(270^\circ - 30^\circ) = -\cos(30^\circ)$$

b.
$$\cos(210^\circ) = \cos(270^\circ - 60^\circ) = -\sin(60^\circ)$$

c.
$$\tan(225^\circ) = \tan(270^\circ - 45^\circ) = \frac{1}{\tan(45^\circ)}$$

$$22. \sin(270^{\circ} + \alpha) = -\cos(\alpha)$$

23.
$$cos(270^{\circ} + \alpha) = sin(\alpha)$$

24.
$$\tan(270^{\circ} + \alpha) = -\frac{1}{\tan(\alpha)}$$

Exemplos:

a.
$$\sin(300^\circ) = \sin(270^\circ + 30^\circ) = -\cos(30^\circ)$$

b.
$$cos(330^\circ) = cos(270^\circ + 60^\circ) = sin(60^\circ)$$

c.
$$\tan(315^\circ) = \tan(270^\circ + 45^\circ) = \frac{1}{\tan(45^\circ)}$$

Função seno

Domínio	$D = \mathbb{R}$	
Contradomínio	D' = [-1; 1]	
Zeros	$k\pi, k \in \mathbb{Z}$	
Máximo	1	
Mínimo	-1	
Maximizante	$\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$	
Minimizante	$-\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$	
Função seno é ímpar: $f(x) = -f(x), \forall_x \in D_f$		

Função cosseno

Domínio	$D = \mathbb{R}$	
Contradomínio	D' = [-1; 1]	
Zeros	$\frac{\pi}{2} + k\pi, k \in \mathbb{Z}$	
Máximo	1	
Mínimo	-1	
Maximizante	$2k\pi, k \in \mathbb{Z}$	
Minimizante	$\pi + 2k\pi, k \in \mathbb{Z}$	
Função cosseno é par: $f(x) = f(-x), \forall_x \in D_f$		

Função tangente

	$D = \mathbb{R} \setminus \{ x \in \mathbb{R} : x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \}$	
Domínio	ou	
	$D = \{ x \in \mathbb{R} : x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \}$	
Contradomínio	$D' =]-\infty; +\infty[$	
Zeros	$k\pi, k \in \mathbb{Z}$	
f(-x) = -f(x)		

Equações trigonométricas

$$\sin(x) = \sin(\alpha) \iff x = \alpha + 2k\pi \lor x = (\pi - \alpha) + 2k\pi, k \in \mathbb{Z}$$

$$cos(x) = cos(\alpha) \Leftrightarrow x = \alpha + 2k\pi \lor x = -\alpha + 2k\pi, k \in \mathbb{Z}$$

$$\tan(x) = \tan(\alpha) \Leftrightarrow x = \alpha + k\pi, k \in \mathbb{Z}$$

Exemplos:

a)
$$\sqrt{12}\sin\left(\frac{x}{5}\right) = -3 \Leftrightarrow \sin\left(\frac{x}{5}\right) = \frac{-3}{\sqrt{12}} \Leftrightarrow \sin\left(\frac{x}{5}\right) = \frac{-3\sqrt{12}}{12} \Leftrightarrow \sin\left(\frac{x}{5}\right) = \frac{-3*2\sqrt{3}}{12} \Leftrightarrow \sin\left(\frac{x}{5}\right) = \frac{-3*2\sqrt{3}}{12} \Leftrightarrow \sin\left(\frac{x}{5}\right) = \frac{-\sqrt{3}}{2} \Leftrightarrow \frac{x}{5} = -\frac{\pi}{3} + 2k\pi \vee \frac{x}{5} = \left(\pi + \frac{\pi}{3}\right) + 2k\pi, k \in \mathbb{Z} \Leftrightarrow x = -\frac{5\pi}{3} + 10k\pi \vee \frac{x}{5} = \frac{4\pi}{3} + 2k\pi \Leftrightarrow x = -\frac{5\pi}{3} + 10k\pi \vee x = \frac{20\pi}{3} + 10k\pi$$

b)
$$2\cos(3x) = -1 \Leftrightarrow \cos(3x) = -\frac{1}{2} \Leftrightarrow 3x = \left(\pi - \frac{\pi}{3}\right) + 2k\pi \vee 3x = \left(\pi + \frac{\pi}{3}\right) + 2k\pi, k \in \mathbb{Z} \Leftrightarrow 3x = \frac{2\pi}{3} + 2k\pi \vee 3x = \frac{4\pi}{3} + 2k\pi \Leftrightarrow x = \frac{2\pi}{9} + 2k\pi \vee x = \frac{4\pi}{9} + 2k\pi$$

$$2k\pi, k \in \mathbb{Z} \Leftrightarrow 3x = \frac{3\pi}{3} + 2k\pi \vee 3x = \frac{3\pi}{3} + 2k\pi \Leftrightarrow x = \frac{3\pi}{9} + 2k\pi \vee x = \frac{3\pi}{9} + 2k\pi$$
c)
$$12 \tan\left(\frac{x}{2}\right) = \sqrt{48}, em\left[-2\pi; 5\pi\right] \Leftrightarrow \tan\left(\frac{x}{2}\right) = \frac{\sqrt{48}}{12} \Leftrightarrow \tan\left(\frac{x}{2}\right) = \frac{4\sqrt{3}}{12} \Leftrightarrow \tan\left(\frac{x}{2}\right) = \frac{\sqrt{3}}{3} \Leftrightarrow \frac{x}{2} = \frac{\pi}{6} + k\pi, k \in \mathbb{Z} \Leftrightarrow x = \frac{\pi}{3} + 2k\pi$$

$$k = 0: x = \frac{\pi}{3}$$

$$k = 1: x = \frac{\pi}{3} + 2\pi = \frac{7\pi}{3}$$

$$k = 2: x = \frac{\pi}{3} + 2 * 2 * \pi = \frac{\pi}{3} + 4\pi = \frac{13\pi}{3}$$

$$k = -1: x = \frac{\pi}{3} - 2\pi = -\frac{5\pi}{3}$$

$$k = -2: x = \frac{\pi}{3} + 2 * (-2) * \pi = \frac{\pi}{3} - 4\pi = -\frac{11\pi}{3}$$

$$x \in \{-\frac{5\pi}{3}; \frac{7\pi}{3}; \frac{7\pi}{3}; \frac{13\pi}{3}\}$$

Fórmulas trigonométricas

$$(\sin(\alpha))^2 + (\cos(\alpha))^2 = 1$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$(\tan(\alpha))^2 + 1 = \frac{1}{(\cos(\alpha))^2}$$

$$1 + \frac{1}{(\tan(\alpha))^2} = \frac{1}{(\sin(\alpha))^2}$$

$$\sin(a+b) = \sin(a) * \cos(b) + \sin(b) * \cos(a)$$

$$\cos(a+b) = \cos(a) * \cos(b) - \sin(a) * \sin(b)$$

$$\tan(a+b) = \frac{\tan(a) - \tan(b)}{1 - \tan(a) \cdot \tan(b)}$$

$$\sin(a - b) = \sin(a) * \sin(b) - \sin(b) * \cos(a)$$

$$\cos(a - b) = \cos(a) * \cos(b) + \sin(a) * \sin(b)$$

$$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a) \cdot \tan(b)}$$

$$\sin(2a) = 2\sin(a) * \cos(a)$$

$$\cos(2a) = (\cos(a))^2 - (\sin(a))^2$$

$$\tan(2a) = \frac{2\tan(a)}{1 - (\tan(a))^2}$$

Função periódica

Diz-se que f é uma função periódica de período T, se e só se: f(x + T) = f(x), $\forall_x \in D_f$.

Família de funções (cálculo do Período)

Funções do tipo y = c + dsin(ax+b) e y = c dcos(ax+b)

- $D = \mathbb{R}$
- D'(por enquadramentos)
- $T = \frac{2\pi}{|a|}$

Para mostrar que T é período: $f(x + T) = f(x), \forall_x \in D_f$.

Funções do tipo $y = c + d \tan(ax+b)$

$$D = \{x \in \mathbb{R} : ax + b \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$$

•
$$D' = \mathbb{R}$$

•
$$T = \frac{\pi}{|a|}$$

Limites em trigonometria

Não existem

- $\lim_{x \to \pm \infty} (\cos x)$
- $\lim_{x \to \pm \infty} (\sin x)$
- $\lim_{x \to \pm \infty} (\tan x)$

Limites infinitos

- $\lim_{x \to \frac{\pi^{-}}{2}} (\tan x) = +\infty$
- $\lim_{x \to \frac{\pi^+}{2}} (\tan x) = -\infty$
- $\lim_{x \to \frac{3\pi}{2}^{-}} (\tan x) = +\infty$
- $\lim_{x \to \frac{3\pi}{2}^+} (\tan x) = -\infty$

Limites associados a $y = \sin(x) / x$

- $\bullet \quad \lim_{x \to -\infty} \left(\frac{\sin x}{x} \right) = 0$
- $\bullet \quad \lim_{x \to +\infty} \left(\frac{\sin x}{x} \right) = 0$
- $\bullet \quad \lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1$

Demonstração:

$$-1 \le \sin x \le 1 \Leftrightarrow -\frac{1}{x} \le \sin x \le \frac{1}{x} \Leftrightarrow 0 \le \sin x \le 0$$

Assim,
$$\lim_{x \to \pm \infty} \left(\frac{\sin x}{x} \right) = 0.$$

Regras de derivação das funções trigonométricas

- $(\sin u)' = u' * \cos u$
- $(\cos u)' = -u' * \sin u$
- $(\tan u)' = \frac{u'}{\cos^2 u}$
- $(\tan u)' = u' * (1 + \tan^2 u)$