

Startup funding pattern analysis

Prepared by Mid Eum Lee

Summary

Objective

The objective of this analysis is to investigate the history of investment in different categories of startups and get an insight on the significant factors for funding.

Goal

The goal is to overview the patterns of startup investment and provide useful advice or insight to new entrepreneurs and investors.

Solution

Exploratory data analysis and inferential statistics.

Project outline

The analysis is performed in three steps:

- Dataset was explored and analyzed.
- Dataset was cleaned and modified.
- Data visualization and statistical analysis were applied on the dataset.

Importing of packages

import pandas as pd import numpy as np from scipy import stats import statistics import matplotlib import matplotlib.pyplot as plt from matplotlib.pyplot import figure import scipy.stats as st

from IPython import display import seaborn as sns import csv from statistics import mean

Exploration of the data

First , the dataset is loaded using pandas and this dataframe contains 20 columns and 13732 rows.

	= pd.read_csv .head()	('startup.	csv')						
	name	category_list	funding_total_usd	status	country_code	state_code	city	funding_rounds	
0	H2O.ai	Software	33.600000	operating	USA	CA	Mountain View	4.0	Capital
1	One Inc.	Mobile	1.150050	operating	USA	CA	San Francisco	3.0	Ventures:
2	1000 Corks	Software	0.040000	operating	USA	OR	Lake Oswego	1.0	
3	1000museums.com	Software	6.795451	operating	USA	MA	Lenox	9.0	Alliance o
4	Redox	Health	4.000000	operating	USA	WI	Madison	2.0	.4

df.info()							
<pre><class 'pandas.core.fr<="" pre=""></class></pre>	ame.Da	taFrame'>					
RangeIndex: 13732 entr	ies, 0	to 13731					
Data columns (total 20 columns):							
name	13712	non-null	object				
category_list	13713	non-null	object				
funding_total_usd	13713	non-null	float64				
status	13713	non-null	object				
country_code	13713	non-null	object				
state_code	13713	non-null	object				
city	13713	non-null	object				
funding_rounds	13713	non-null	float64				
Investors	13713	non-null	object				
Number_of_Investors	13713	non-null	float64				
Acquirer	13713	non-null	object				
Acquirer_Category	13713	non-null	object				
Acquirer_Country	13713	non-null	object				
Acquirer_State	13713	non-null	object				
Acquirer_City	13713	non-null	object				
Acquired_Price	13713	non-null	object				
Acquired Currency	13713	non-null	object				
county	13713	non-null	object				
founded_at	13713	non-null	object				
Coordinates	13732	non-null	object				
dtypes: float64(3), ob	ject(1	7)					
memory usage: 2.1+ MB							

This dataset contains null values in most columns. This needs to be cleaned.

ue
ue
se

Data cleaning

All null values were dropped and the new dataset named df_dropped was created. Total rows changed from 13732 rows to 13712 rows.

df_dropped.isnull().a	iny()
name	False
category_list	False
funding_total_usd	False
status	False
country_code	False
state_code	False
city	False
funding_rounds	False
Investors	False
Number_of_Investors	False
Acquirer	False
Acquirer_Category	False
Acquirer_Country	False
Acquirer_State	False
Acquirer_City	False
Acquired_Price	False
Acquired Currency	False
county	False
founded_at	False
Coordinates	False
dtype: bool	

All null values were removed.

The unique values in 'founded_at' were explored.

The funding_total_usd for all available years were navigated using a scatter plot.

```
: ls = []
for i in list(df_dropped['founded_at'].sort_values().unique()):
    ls.append(df_dropped[df_dropped['founded_at'] == i]['funding_total_usd'].sum())
print(ls)

[987.853094, 250.0, 9.0, 20.0, 16.0, 16.5, 245.0, 19.33, 2.0, 18.0, 300.0, 0.157, 120.0, 2.5,
1.75, 81.35, 0.15432, 16.600216, 1000.0, 59.929933, 25.65, 0.150768, 7.5, 5.0, 7.4, 10.0, 2.
0, 28.5, 6.0, 96.3000000000001, 17600.0, 331.0, 60.0, 19.6, 23.5, 6.0, 207.259114, 25.0, 10.
0, 90.8, 4.67321, 38.65, 13.378196, 3591.0, 21.36, 57.0726, 52.0, 0.75, 506.2, 334.096, 97.41
04000000001, 489.73600000000005, 1109.7, 203.2, 402.561365, 30826.27123, 969.485851, 1235.96
4973, 430.713798, 716.32999599999, 296.064354, 1181.0722830000002, 792.1911379999999, 1247.
632421, 1073.55674, 1374.605991, 2250.795642, 3907.88271800000003, 4378.504615, 7232.24658342,
9221.717702399, 21293.925880151, 15731.08483900001, 16978.641015884, 18256.383254, 23352.259
765249997, 27726.36569675, 24054.835289000002, 27880.752675999996, 34298.53740258, 27645.4010
71570002, 33681.691192, 21523.016813984003, 24591.242369436, 19868.646866529, 15863.696440848
998, 4790.459357878, 672.336355021, 5.5, 1.0, 26.72, 18.5]
```

The startup funding before 1970 is not relevant to anything today. So the dataset was truncated to help bring out more important points. It seems very odd that the funding falls so dramatically from 2008. From 2014, funding steadily increased based on other data sources so this dataset is not enough to see the recent trend.

Data navigation

The funding_total_usd was plotted using category_list variable.

Another way of data visualization is performed using WordCloud.

```
from wordcloud import WordCloud

names = df_dropped["category_list"][~pd.isnull(df_dropped["category_list"])]
#print(names)
wordcloud = WordCloud(max_font_size=50, width=600, height=300).generate(' '.join(names))
plt.figure(figsize=(15,8))
plt.imshow(wordcloud)
plt.title("Wordcloud for category_list", fontsize=35)
plt.axis("off")
plt.show()
```

Wordcloud for category_list

```
Services

Services

Services

Finance

Finance

Health

Health

Literation

Education

Education

Education

Education

Education

Education

Education

Education

Entertainment
```

The 'funding_total_usd' distribution was closely examined in the software category. The unexpected peak was observed in 1983.

The 'funding_total_usd' distribution was closely examined in the hardware category.

```
plt.figure(figsize = (20,5), frameon = False)
plt.xticks(rotation=90)
plt.plot(list(df_dropped['founded_at'].sort_values().unique()), ls_Hardware,'o')
plt.xlim('1970','2013')
plt.ylabel('total funding(M)')
plt.xlabel('year')
plt.xlabel('year')
plt.title ('Record of total funding to startups in hardware category')
```

Text(0.5, 1.0, 'Record of total funding to startups in hardware category')

Data correlation

The data was analyzed to find the correlation between features.

```
corr = df_dropped.corr()
ax = sns.heatmap(
    corr,
    vmin=-1, vmax=1, center=0,
    cmap=sns.diverging_palette(20, 220, n=200),
    square=True
)
ax.set_xticklabels(
    ax.get_xticklabels(),
    rotation=90,
)
ax.set_yticklabels(
    ax.get_yticklabels(),
    rotation=0,
    horizontalalignment='right'
);
```


There is a bigger correlation between 'number_of_investors' and 'funding_rounds' compared to the ones: 'funding_total_usd' vs. 'funding_rounds' or 'Number_of_Investors'.

Data correlation

Pearson correlation between 'number of investors' and 'funding total' was calculated in order to test the hypothesis.

Null hypothesis: 'number of investors' is correlated with 'funding total'.

```
X = df_dropped.Number_of_Investors.values
Y = df_dropped.funding_total_usd.values

def pearson_r(X, Y):
    corr_mat=np.corrcoef(X,Y)
    return corr_mat[0,1]
r_obs = pearson_r(X,Y)
print('Observed significance value=',r_obs)

Observed significance value= 0.08024147738834027
```

In fact, the number of investors in the software industry (most dominant category) is mostly less than 2.

```
plt.hist(software_funding['Number_of_Investors'], color = 'blue', edgecolor = 'black',
          bins = int(180/5))
(array([2.069e+03, 6.180e+02, 5.150e+02, 3.470e+02, 2.790e+02, 2.110e+02, 2.690e+02, 1.040e+02, 6.400e+01, 5.400e+01, 5.400e+01, 3.300e+01, 4.700e+01, 1.900e+01, 1.600e+01, 1.600e+01, 8.000e+00, 1.000e+01,
          1.200e+01, 5.000e+00, 4.000e+00, 3.000e+00, 1.000e+00, 1.000e+00,
          7.000e+00, 2.000e+00, 0.000e+00, 1.000e+00, 2.000e+00, 0.000e+00,
         array([ 1.
                                                                           , 23.16666667,
          18.5
                        , 19.66666667, 20.83333333, 22.
          24.33333333, 25.5 , 26.66666667, 27.833333333, 29. , 30.16666667, 31.33333333, 32.5 , 33.66666667, 34.83333333, 36. , 37.166666667, 38.33333333, 39.5 , 40.66666667,
          41.83333333, 43.
                                      1),
 <a list of 36 Patch objects>)
 2000
 1750
 1500
 1250
 1000
  500
```

The distribution of the number of investors in the startup industry was plotted using density plot.

<matplotlib.axes._subplots.AxesSubplot at 0x1264e3610>

The funding total distribution grouped by the state is plotted. Most startups are located in CA.

```
plt.figure(figsize = (20,5), frameon = False)
df_dropped.groupby('state_code')['funding_total_usd'].sum().plot(kind='bar')
```

<matplotlib.axes._subplots.AxesSubplot at 0x1250e6d10>

Conclusion

Patterns of downgrowth

- After years of growth since 2007, investment has continued to underperform.
- From 2010 to 2013, investment declined significantly. From 2014 forward, data from another data source

(<u>https://nvca.org/8-takeaways-8-graphics-historic-2018-venture-capital/</u>) says funding steadily increased, which is not shown from this dataset

Patterns of upgrowth

- In 1983, massive funding was made in the software industry.
- In the Hardware field, we do not see any peak in startup investment.

Over 30% startups got 1~2 investors, and the funding round and number of investors showed a mild correlation.