Introduction to Machine Learning

Gaussian Processes Gaussian Posterior Process and Prediction

Learning goals

- Know how to derive the posterior process
- GPs are interpolating and spatial models
- Model noise via a nugget term

GP PREDICTION

× 0 0 × × ×

- More interesting than drawing random samples from GP priors: predict at unseen test point \mathbf{x}_* with $f_* = f(\mathbf{x}_*)$
- Given: training data with design matrix \mathbf{X} , observed values $\mathbf{f} = f(\mathbf{X}) = [f(\mathbf{x}^{(1)}), \dots, f(\mathbf{x}^{(n)})]^T$
- Goal: infer distribution of f_{*}|x_{*}, X, f
 ⇒ update prior to posterior process

POSTERIOR PROCESS

• Again assuming $f \sim \mathcal{GP}(\mathbf{0}, k(\cdot, \cdot))$, we get

$$\begin{bmatrix} \mathbf{f} \\ f_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{K} & \mathbf{k}_* \\ \mathbf{k}_*^T & \mathbf{k}_{**} \end{bmatrix} \right)$$

with
$$\mathbf{k}_* = [k(\mathbf{x}_*, \mathbf{x}^{(1)}), \dots, k(\mathbf{x}_*, \mathbf{x}^{(n)})]^T$$
, $\mathbf{k}_{**} = k(\mathbf{x}_*, \mathbf{x}_*)$

- General rule for conditioning of Gaussian RVs
 - $z \sim \mathcal{N}(\mu, \Sigma)$, partition $z = (z_1, z_2)$ s.t. $z_1 \in \mathbb{R}^{m_1}, z_2 \in \mathbb{R}^{m_2}$,

$$oldsymbol{\mu} = (oldsymbol{\mu}_1, oldsymbol{\mu}_2), \quad \Sigma = egin{bmatrix} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

• Conditional distribution $z_2 \mid z_1 = a$ is also Gaussian

$$\mathcal{N}(\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(\boldsymbol{a} - \mu_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12})$$

Apply to posterior process given f observed

$$f_* \mid \mathbf{x}_*, \mathbf{X}, \mathbf{f} \sim \mathcal{N}(\mathbf{m}_{\mathsf{post}}, \mathbf{K}_{\mathsf{post}}) := \mathcal{N}(\mathbf{k}_*^T \mathbf{K}^{-1} \mathbf{f}, \mathbf{k}_{**} - \mathbf{k}_*^T \mathbf{K}^{-1} \mathbf{k}_*)$$

Maximum-a-posteriori (MAP) estimate: k_∗^TK⁻¹f

- Single training point $(\mathbf{x}, f(\mathbf{x})) = (-0.5, 1)$, test point $\mathbf{x}_* = 0.5$
- 0-mean GP with $k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp(-\frac{1}{2} \|\mathbf{x} \tilde{\mathbf{x}}\|^2)$ leads to

$$\begin{bmatrix} \mathbf{f} \\ f_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} 1 & 0.61 \\ 0.61 & 1 \end{bmatrix} \right)$$

$$f_* \mid \mathbf{x}_*, \mathbf{x}, \mathbf{f} \sim \mathcal{N}(\mathbf{k}_*^T \mathbf{K}^{-1} \mathbf{f}, \mathbf{k}_{**} - \mathbf{k}_*^T \mathbf{K}^{-1} \mathbf{k}_*)$$

$$\sim \mathcal{N}(0.61 \cdot 1 \cdot 1, 1 - 0.61 \cdot 1 \cdot 0.61)$$

$$\sim \mathcal{N}(0.61, 0.63)$$

• MAP-estimate: $f(\mathbf{x}_*) = 0.61$, uncertainty estimate: 0.63

ullet Bivariate normal density + marginals for joint distribution of f, f_*

• Update posterior distribution, conditioning on observed value

Posterior mean: MAP estimate

- Posterior mean: MAP estimate
- Posterior uncertainty: ±2 posterior SD (grey)

GP IS DISTRIBUTIONAL REGRESSION

We have f observed

$$f_* \mid \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{f} \sim \mathcal{N}(\boldsymbol{m}_{post}, \boldsymbol{K}_{post}) := \mathcal{N}(\boldsymbol{k}_*^T \boldsymbol{K}^{-1} \boldsymbol{f}, \boldsymbol{k}_{**} - \boldsymbol{k}_*^T \boldsymbol{K}^{-1} \boldsymbol{k}_*)$$

- Defines full distributional regression approach
- At each x_{*} get predictive distrib. instead of only point-wise preds

At each x, posterior defines a full distributional approach instead of only point—wise predictions. (k(x,x') is Matèrn with nu=2.5, the default for DiceKriging::km)

MULTIPLE TEST POINTS

Now consider multiple test points

$$\mathbf{f}_* = [f(\mathbf{x}_*^{(1)}), ..., f(\mathbf{x}_*^{(m)})]$$

Joint distribution (under zero-mean GP) becomes

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{K} & \mathbf{K}_* \\ \mathbf{K}_*^{\mathcal{T}} & \mathbf{K}_{**} \end{bmatrix} \right)$$

with
$$\mathbf{K}_* = (k(\mathbf{x}^{(i)}, \mathbf{x}_*^{(j)}))_{i,j}, \mathbf{K}_{**} = (k(\mathbf{x}_*^{(i)}, \mathbf{x}_*^{(j)}))_{i,j}$$

Again, employ rule of conditioning for Gaussians to get posterior

$$\mathbf{f}_* \mid \mathbf{X}_*, \mathbf{X}, \mathbf{f} \sim \mathcal{N}(\mathbf{K}_*^T \mathbf{K}^{-1} \mathbf{f}, \mathbf{K}_{**} - \mathbf{K}_*^T \mathbf{K}^{-1} \mathbf{K}_*)$$

 Allows to compute correlations between test points + draw samples from posterior process

GP AS INTERPOLATOR

• MAP "prediction" for training point is exact function value

$$\begin{aligned} \mathbf{f} \mid \mathbf{X}, \mathbf{f} &\sim & \mathcal{N}(\mathbf{K}\mathbf{K}^{-1}\mathbf{f}, \mathbf{K} - \mathbf{K}^{T}\mathbf{K}^{-1}\mathbf{K}) \\ &\sim & \mathcal{N}(\mathbf{f}, \mathbf{0}) \end{aligned}$$

• Implication: GP is function interpolator (if unique points in X)

After observing the training points (red), the posterior process (black) interpolates the training points. (k(x,x') is Matèrn with nu = 2.5, the default for DiceKriging::km)

GP AS SPATIAL MODEL

- Spatial property: output correlation depends on input distance
- E.g., squared exponential kernel $k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp\left(-\frac{\|\mathbf{x} \tilde{\mathbf{x}}\|^2}{2\ell^2}\right)$
- Strongly correlated predictions for points with spatial proximity
- High posterior uncertainty for far-away points (0 at training locs)

NOISY GP

- GP as interpolator: implicitly assumed access to true function value f(x) ⇒ 0 uncertainty at training points
- Reality: noisy version $y = f(\mathbf{x}) + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma^2)$
- Covariance becomes

$$Cov(y^{(i)}, y^{(j)})$$
= $Cov(f(\mathbf{x}^{(i)}) + \epsilon^{(i)}, f(\mathbf{x}^{(j)}) + \epsilon^{(j)})$
= $Cov(f(\mathbf{x}^{(i)}), f(\mathbf{x}^{(j)})) + 2 \cdot Cov(f(\mathbf{x}^{(i)}), \epsilon^{(j)}) + Cov(\epsilon^{(i)}, \epsilon^{(j)})$
= $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})^2 \delta_{ij}$

- δ_{ii} = Kronecker delta
- σ^2 often called **nugget** \Rightarrow estimate during training

PREDICTIVE DISTRIBUTION FOR NOISY GP

$$ullet$$
 Let $f \sim \mathcal{GP}(\mathbf{0}, k(\cdot, \cdot)), \mathbf{X} = \left\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\right\}$

• Prior predictive distribution for y

$$\mathbf{y} = (\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)})^T \sim \mathcal{N}(\mathbf{0}, \mathbf{K} + \sigma^2 \mathbf{I}_n),$$

with $\mathbf{m} = \mathbf{0}, \mathbf{K} = k(\mathbf{X}, \mathbf{X})$

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{K} + \sigma^2 \mathbf{I}_n & \mathbf{K}_* \\ \mathbf{K}_*^T & \mathbf{K}_{**} \end{bmatrix} \right)$$

with (as before)
$$\mathbf{K}_* = (k(\mathbf{x}^{(i)}, \mathbf{x}_*^{(j)}))_{i,j}, \mathbf{K}_{**} = (k(\mathbf{x}_*^{(i)}, \mathbf{x}_*^{(j)}))_{i,j}$$

• **NB**: Since we work with f_* and not y_* there is no σ in K_{**}

PREDICTIVE DISTRIBUTION FOR NOISY GP

Again, employ rule of conditioning for Gaussians

$$\mathbf{f}_* \mid \mathbf{X}_*, \mathbf{X}, \mathbf{y} \sim \mathcal{N}(\mathbf{m}_{\mathsf{post}}, \mathbf{K}_{\mathsf{post}})$$

with
$$\mathbf{m}_{\text{post}} = \mathbf{K}_*^T (\mathbf{K} + \sigma^2 \cdot \mathbf{I})^{-1} \mathbf{y}, \, \mathbf{K}_{\text{post}} = \mathbf{K}_{**} - \mathbf{K}_*^T (\mathbf{K} + \sigma^2 \cdot \mathbf{I})^{-1} \mathbf{K}_*$$

- Recovers noise-free case for $\sigma^2 = 0$
- Noisy GP: no longer an interpolator
- Posterior uncertainty increases with nugget (wider "band")

After observing the training points (red), we have a nugget–band around the oberved points. (k(x,x')) is the squared exponential)

RISK MINIMIZATION FOR GP

• Recall: theoretical risk for unseen obs based on loss function L

$$\mathcal{R}(f) := \mathbb{E}_{xy}[L(y, f(\mathbf{x}))] = \int L(y, f(\mathbf{x})) d\mathbb{P}_{xy}$$

ullet No access to $\mathbb{P}_{xy} \Rightarrow$ compute empirical risk over training data

$$\mathcal{R}_{\mathsf{emp}}(f) := \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

• For GPs, make use of posterior predictive distribution over y

$$\mathcal{R}(y_* \mid \mathbf{x}_*) pprox \int L(\tilde{y}_*, y_*) p(\tilde{y}_* \mid \mathbf{x}_*, \mathcal{D}) d\tilde{y}_*$$

- Intuition: expected loss weighted by posterior probability of each \tilde{y}_* given observed data
- Optimal prediction wrt loss function

$$\hat{\textit{y}}_* | \boldsymbol{x}_* = \operatorname*{arg\,min}_{\textit{y}_*} \mathcal{R}(\textit{y}_* \mid \boldsymbol{x}_*)$$

