Exercise 1 (6 points)

1. Find the nature of the series whose general term is: $u_n = \frac{\sin(\frac{1}{n})}{n^2}$. Justify carefully.

$$\sin\left(\frac{1}{n}\right) \sim \frac{1}{n} \Longrightarrow u_n \sim \frac{1}{n^3}$$

Since $\frac{1}{n^3} \ge 0$, $\sum u_n$ has the nature of $\sum \frac{1}{n^3}$ which converges. Hence, $\sum u_n$ converges.

2. Find the nature of the series whose general term is: $u_n = \frac{n^2 e^{-\sqrt{n}}}{2^{2n}}$. Justify carefully.

The sequence (u_n) is positive. Furthermore, $n^2u_n = \frac{n^4}{e^{\sqrt{n} + n\ln(4)}} \xrightarrow[n \to +\infty]{} 0$, that is, $u_n = o\left(\frac{1}{n^2}\right)$.

Since $\sum \frac{1}{n^2}$ converges, $\sum u_n$ converges.

Remark: you can also use the ratio or the root test. You will get $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \sqrt[n]{u_n} = \frac{1}{4}$.

3. Find the nature of the series whose general term is: $u_n = (-1)^n \frac{n}{e^n}$. Justify carefully.

$$n^2|u_n| = \frac{n^3}{e_n} \xrightarrow[n \to +\infty]{} 0$$
, that is, $|u_n| = o\left(\frac{1}{n^2}\right)$.

Since $\sum \frac{1}{n^2}$ converges, $\sum |u_n|$ converges. Finally, $\sum u_n$ converges absolutely, so it converges.

Remark: you can also use the Leibniz's rule. The sequence $(|u_n|)$ decreases above the rank n=1.

Exercise 2 (6 points)

Let $a \in \mathbb{R}$ such that a > 0 and consider the sequence (u_n) defined for all $n \ge 2$ by: $u_n = \frac{(-1)^n}{\sqrt{n^a + (-1)^n}}$.

The purpose of the exercise is to study the nature of $\sum u_n$.

1. Find $c \in \mathbb{R}$ such that $u_n = \frac{(-1)^n}{n^{a/2}} + \frac{c}{n^{3a/2}} + o\left(\frac{1}{n^{3a/2}}\right)$.

$$u_n = \frac{(-1)^n}{\sqrt{n^a}} \times \frac{1}{\sqrt{1 + \frac{(-1)^n}{n^a}}}$$

$$= \frac{(-1)^n}{n^{a/2}} \times \left(1 + \frac{(-1)^n}{n^a}\right)^{-1/2}$$

$$= \frac{(-1)^n}{n^{a/2}} \times \left(1 - \frac{(-1)^n}{2n^a} + o\left(\frac{1}{n^a}\right)\right)$$

$$= \frac{(-1)^n}{n^{a/2}} - \frac{1}{2n^{3a/2}} + o\left(\frac{1}{n^{3a/2}}\right)$$

Hence, $c = -\frac{1}{2}$.

2. Using the previous question, discuss the nature of $\sum u_n$ depending on the value of a.

Let
$$v_n = \frac{(-1)^n}{n^{a/2}}$$
 and $w_n = -\frac{1}{2n^{3a/2}} + o\left(\frac{1}{n^{3a/2}}\right)$

The series $\sum u_n$ is the sum of the two series $\sum v_n$ and $\sum w_n$.

• $\sum v_n$ converges according to the Leibniz's rule. Indeed, (v_n) is alternating, $(|v_n|) = \left(\frac{1}{n^{a/2}}\right)$ is decreasing and converges to 0.

MIDTERM EXAM S3 - Correction ЕРІТА

- $w_n \sim -\frac{1}{2n^{3a/2}} < 0$. Since $-\frac{1}{2n^{3a/2}}$ has a constant sign, $\sum w_n$ has the same nature as $\sum -\frac{1}{2n^{3a/2}}$. The latter series is a Riemann series, it converges iff $a > \frac{2}{3}$.
- As a conclusion:

If $a > \frac{2}{3}$, $\sum u_n$ is the sum of two convergent series, it hence converges. If $a \leqslant \frac{2}{3}$, $\sum u_n$ is the sum of a convergent series and a divergent series. It hence diverges.

Exercise 3 (8 points)

The purpose of this exercise is to study the sequence (u_n) defined for all $n \in \mathbb{N}^*$ by: $u_n = \frac{2^n n!}{1 \times 3 \times 5 \times \cdots \times (2n-1)}$ In that purpose, consider the auxiliary sequence (v_n) defined by: $v_n = \ln(u_n) - \frac{1}{2}\ln(n)$.

1. Let
$$n \in \mathbb{N}^*$$
. Compute $\frac{u_{n+1}}{u_n}$.

$$\frac{u_{n+1}}{u_n} = \frac{2(n+1)}{2(n+1)-1} = \frac{2n+2}{2n+1} = \frac{1+\frac{1}{n}}{1+\frac{1}{2n}}$$

2. Deduce that
$$v_{n+1} - v_n = \frac{1}{2} \ln \left(1 + \frac{1}{n} \right) - \ln \left(1 + \frac{1}{2n} \right)$$
.

$$v_{n+1} - v_n = \ln(u_{n+1}) - \frac{1}{2}\ln(n+1) - \ln(u_n) + \frac{1}{2}\ln(n)$$

$$= \ln\left(\frac{u_{n+1}}{u_n}\right) - \frac{1}{2}\ln\left(\frac{n+1}{n}\right)$$

$$= \ln\left(\frac{1+\frac{1}{n}}{1+\frac{1}{2n}}\right) - \frac{1}{2}\ln\left(1+\frac{1}{n}\right)$$

$$= \ln\left(1+\frac{1}{n}\right) - \ln\left(1+\frac{1}{2n}\right) - \frac{1}{2}\ln\left(1+\frac{1}{n}\right)$$

$$= \frac{1}{2}\ln\left(1+\frac{1}{n}\right) - \ln\left(1+\frac{1}{2n}\right)$$

3. Find
$$a \in \mathbb{R}$$
 such that $v_{n+1} - v_n \sim \frac{a}{n^2}$.

$$v_{n+1} - v_n = \frac{1}{2} \ln \left(1 + \frac{1}{n} \right) - \ln \left(1 + \frac{1}{2n} \right)$$

$$= \frac{1}{2} \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \right) - \left(\frac{1}{2n} - \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right) \right)$$

$$= \frac{1}{2n} - \frac{1}{4n^2} - \frac{1}{2n} + \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right)$$

$$= -\frac{1}{8n^2} + o\left(\frac{1}{n^2}\right)$$

$$\sim -\frac{1}{8n^2}$$

Thus, $a = -\frac{1}{8}$.

4. Show that (v_n) converges. Let ℓ denote its limit.

 $v_{n+1}-v_n\sim -\frac{1}{8n^2}<0$. Since $-\frac{1}{8n^2}$ has a constant sign, $\sum (v_{n+1}-v_n)$ has the same nature as $\sum -\frac{1}{8n^2}$. And the latter

Thus, $\sum (v_{n+1} - v_n)$ converges and, using telescopic theorem, (v_n) converges too.

5. Using the previous question, show that there exists $k \in \mathbb{R}$ such that $u_n \sim k\sqrt{n}$. Express k as a function of ℓ .

To start with, note that $v_n = \ln(u_n) - \frac{1}{2}\ln(n) \Longrightarrow \ln(u_n) = v_n + \frac{1}{2}\ln(n) \Longrightarrow u_n = e^{v_n}\sqrt{n}$.

We hence get $\frac{u_n}{e^{\ell}\sqrt{n}} = \frac{e^{v_n}}{e^{\ell}} = e^{v_n-\ell} \xrightarrow[n \to +\infty]{} e^0 = 1$

Finally, $v_n \sim e^{\ell} \sqrt{n}$ and $k = e^{\ell}$.

Exercise 4: Leibniz's rule (5 points)

Let (u_n) be a numerical sequence with an alternating sign.

1. Write the statement of the Leibniz's theorem about $\sum u_n$.

If the sequence $(|u_n|)$ is decreasing and converging to 0 then:

- The series $\sum u_n$ converges.
- The sequence (R_n) of the series' remainders satisfies to: $\forall n \in \mathbb{N}, |R_n| \leq |u_{n+1}|$
- 2. Prove this theorem.

N.B.: prove only the convergence of the series $\sum u_n$. It is not required to prove the upper bound of the remainders.

The sequence (u_n) is alternating. Thus, there exists a positive sequence (a_n) such that

$$(u_n) = ((-1)^n a_n)$$
 or $(u_n) = (-(-1)^n a_n)$

For the proof, we can assume that we are in the first case $(u_n) = ((-1)^n a_n)$. If not, just replace (u_n) with $(-u_n)$. The positive sequence (a_n) is in fact the sequence $(|u_n|)$: the theorem's hypotheses state that it decreases and converges to 0.

Let (S_n) be the partial sums of $\sum u_n$: for all $n \in \mathbb{N}$,

$$S_n = a_0 - a_1 + a_2 - a_3 + \dots + (-1)^n a_n$$

To start with, let us prove that the sequences (S_{2n}) and (S_{2n+1}) are adjacent.

(a) Monotony of (S_{2n}) : this subsequence contains the terms of even ranks. The term following S_{2n} is hence $S_{2(n+1)} = S_{2n+2}$. Thus, for all $n \in \mathbb{N}$:

$$\begin{cases}
S_{2n} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} \\
S_{2(n+1)} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} - a_{2n+1} + a_{2n+2} \\
\hline
S_{2(n+1)} - S_{2n} = -a_{2n+1} + a_{2n+2}
\end{cases}$$

Since (a_n) is decreasing, $-a_{2n+1} + a_{2n+2}$ is negative. The sequence (S_{2n}) is hence decreasing.

(b) Monotony of (S_{2n+1}) : this subsequence contains the terms of odd ranks. The term following S_{2n+1} is hence $S_{2(n+1)+1} = S_{2n+3}$. Thus, for all $n \in \mathbb{N}$:

$$\begin{cases}
S_{2n+1} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} - a_{2n+1} \\
S_{2(n+1)+1} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} - a_{2n+1} + a_{2n+2} - a_{2n+3} \\
\hline
S_{2(n+1)+1} - S_{2n+1} = a_{2n+2} - a_{2n+3}
\end{cases}$$

Since (a_n) is decreasing, $a_{2n+2} - a_{2n+3}$ is positive. The sequence (S_{2n+1}) is hence increasing.

(c) Study of $S_{2n+1} - S_{2n}$: for all $n \in \mathbb{N}$,

$$\begin{cases}
S_{2n} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} \\
S_{2n+1} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} - a_{2n+1} \\
\hline
S_{2n+1} - S_{2n} = -a_{2n+1}
\end{cases}$$

Since (a_n) converges to 0, $(S_{2n+1} - S_{2n})$ converges to 0 too.

We hence proved that the sequences (S_{2n}) and (S_{2n+1}) are adjacent. From this, we know that they both converge and admit an identical limit ℓ . Then we get:

$$\left.\begin{array}{ccc}
S_{2n} & \xrightarrow[n \to +\infty]{} & \ell \\
S_{2n+1} & \xrightarrow[n \to +\infty]{} & \ell
\end{array}\right\} \Longrightarrow S_n \xrightarrow[n \to +\infty]{} \ell$$

This proves that (S_n) converges, that is, $\sum u_n$ converges.

Exercise 5: probabilities (5 points)

Let X_1 , X_2 and X_3 be three independent random variables, taking their values in $\{1,3\}$, such that for all $i \in [1,3]$,

$$P(X_i=1) = \frac{1}{3}$$
 and $P(X_i=3) = \frac{2}{3}$

1. What are the generating functions G_{X_i} of these variables?

$$G_{X_1}(t) = G_{X_2}(t) = G_{X_3}(t) = \frac{t + 2t^3}{3}$$

2. Consider the random variable $Y = X_1 + X_2 + X_3$. Compute its generating function G_Y and deduce its distribution.

Since the
$$X_i$$
 are independent, $G_Y(t) = G_{X_1}(t) \times G_{X_2}(t) \times G_{X_3}(t) = \frac{(t+2t^3)^3}{3^3} = \frac{t^3(1+2t^2)^3}{27}$

Thus,
$$G_Y(t) = \frac{t^3(1+6t^2+12t^4+8t^6)}{27} = \frac{t^3+6t^5+12t^7+8t^9}{27}$$

The distribution of Y is given by:

$$Y(\Omega) = \{3, 5, 7, 9\} \quad \text{with} \quad P(Y=3) = \frac{1}{27}, \ P(Y=5) = \frac{6}{27} = \frac{2}{9}, \ P(Y=7) = \frac{12}{27} = \frac{4}{9} \ \text{and} \ P(Y=9) = \frac{8}{27} = \frac{1}{2} =$$

3. Compute the expectation and the variance of Y.

On the one hand, $E(Y) = E(X_1) + E(X_2) + E(X_3)$. On the other hand, since the X_i are independent, $Var(Y) = Var(X_1) + Var(X_2) + Var(X_3)$.

•
$$G_{X_i}(t) = \frac{t + 2t^3}{3} \Longrightarrow G'_{X_i}(t) = \frac{1 + 6t^2}{3} \Longrightarrow E(X_i) = G'_{X_i}(1) = \frac{7}{3}$$
.

Hence, $E(Y) = E(X_1) + E(X_2) + E(X_3) = 7$.

•
$$G_{X_i}^{"}(t) = \frac{12t}{3} = 4t \Longrightarrow \operatorname{Var}(X_i) = G_{X_i}^{"}(1) + \operatorname{E}(X_i) - \operatorname{E}^2(X_i) = 4 + \frac{7}{3} - \frac{49}{9} = \frac{8}{9}.$$

Hence,
$$Var(Y) = Var(X_1) + Var(X_2) + Var(X_3) = \frac{8}{3}$$

Exercise 6: power series (10 points)

Our purpose is to find a function f satisfying the following conditions (C): $\begin{cases} f'' + xf' + f = 0 \\ f(0) = 1 \text{ and } f'(0) = 0 \end{cases}$

In that purpose, assume there exists a power series $\sum a_n x^n$, admitting a radius of convergence R > 0, such that:

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$
 and f solution of (C) on $]-R, R[$

Note: the differential equation f'' + xf' + f = 1 is an order 2 linear equation with non-constant coefficients. Thus, **don't try** to use the methods that you have studied at the S2 about order 2 differential equations: the latter methods only work for constant coefficients equations.

1. Express f(0) and f'(0) as functions of the sequence (a_n) . What can you deduce about the values of a_0 and a_1 ?

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots \Longrightarrow f(0) = a_0$$

$$f'(x) = \sum_{n=0}^{+\infty} n a_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + \dots \Longrightarrow f'(0) = a_1$$

Using the conditions f(0) = 1 and f'(0) = 0, we get: $a_0 = 1$ and $a_1 = 0$.

2. Define, as functions of (a_n) , two sequences (b_n) and (c_n) such that for all $x \in]-R, R[$

$$xf'(x) = \sum_{n=0}^{+\infty} b_n x^n$$
 and $f''(x) = \sum_{n=0}^{+\infty} c_n x^n$

$$f'(x) = \sum_{n=0}^{+\infty} na_n x^{n-1} \Longrightarrow xf'(x) = \sum_{n=0}^{+\infty} na_n x^n$$
. Thus, $(b_n) = (na_n)$.

$$f''(x) = \sum_{n=0}^{+\infty} n(n-1)a_n x^{n-2} = (2 \times 1)a_2 + (3 \times 2)a_3 x + (4 \times 3)x^2 + \dots = \sum_{n=0}^{+\infty} (n+2)(n+1)a_{n+2} x^n.$$

Thus, $(c_n) = ((n+2)(n+1)a_{n+2}).$

3. By injecting these expressions of xf'(x) and f''(x) into the equation f''(x) + xf'(x) + f(x) = 0, write this equation as:

$$\forall x \in]-R, R[, \quad \sum_{n=0}^{+\infty} d_n x^n = 0$$

where the coefficients (d_n) depend on the sequence (a_n) .

$$\forall x \in]-R, R[, f''(x) + xf'(x) + f(x) = 0 \implies \forall x \in]-R, R[, \sum_{n=0}^{+\infty} c_n x^n + \sum_{n=0}^{+\infty} b_n x^n + \sum_{n=0}^{+\infty} a_n x^n = 0$$

$$\implies \forall x \in]-R, R[, \sum_{n=0}^{+\infty} (c_n + b_n + a_n) x^n = 0$$

Thus, for all $n \in \mathbb{N}$, $d_n = (n+2)(n+1)a_{n+2} + na_n + a_n = (n+1)((n+2)a_{n+2} + a_n)$

4. Keep in mind that the condition $\sum_{n=0}^{+\infty} d_n x^n = 0$ implies that all the d_n equal zero. Using this property, show that

$$a_2=-rac{1}{2}, \qquad a_3=0 \qquad \text{and, as a general rule:} \qquad \forall \in \mathbb{N}, \, a_{n+2}=-rac{a_n}{n+2}$$

Since all the coefficients d_n are zeros, we deduce that for all $n \in \mathbb{N}$:

$$(n+1)((n+2)a_{n+2}+a_n)=0 \Longrightarrow (n+2)a_{n+2}+a_n=0 \Longrightarrow a_{n+2}=-\frac{a_n}{n+2}$$

For example, since $a_0 = 1$ and $a_1 = 0$, we get $a_2 = -\frac{a_0}{2} = -\frac{1}{2}$ and $a_3 = -\frac{a_1}{3} = 0$.

5. What is the value of a_n when n is odd?

$$a_1 = 0$$
, $a_3 = -\frac{a_1}{3} = 0$, $a_5 = -\frac{a_3}{5} = 0$, \cdots

Finally, all the coefficients a_n are zeros when n is odd.

6. Find the value of a_n when n is even.

<u>Hint:</u> you can set n = 2k $(k \in \mathbb{N})$. To start with, express a_{2k} as a function of $a_{2(k-1)}$, then as a function of $a_{2(k-2)}$, and so on, until you get an expression of a_{2k} as a function of a_0 .

$$a_{2k} = -\frac{a_{2(k-1)}}{2k} = \left(-\frac{1}{2k}\right) \times a_{2(k-1)} = \left(-\frac{1}{2k}\right) \times \left(-\frac{1}{2(k-1)}\right) \times a_{2(k-2)} = \cdots$$

If we go on, we get:
$$a_{2k} = \left(-\frac{1}{2k}\right) \times \left(-\frac{1}{2(k-1)}\right) \times \cdots \times \left(-\frac{1}{2}\right) a_0$$

Since
$$a_0 = 1$$
, we get $a_{2k} = \frac{(-1)^k}{2^k k!} = \frac{\left(-\frac{1}{2}\right)^k}{k!}$.

7. Deduce f(x). First, express it as a power series, then find an expression with the usual functions.

Remind that
$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$
.

But in this sum, only the terms of even ranks are non-zeros. Thus, we can write it as:

$$f(x) = \sum_{k=0}^{+\infty} a_{2k} x^{2k} = \sum_{k=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)^k}{k!} x^{2k}$$

Note that for all $k \in \mathbb{N}$, $\frac{\left(-\frac{1}{2}\right)^k}{k!}x^{2k} = \frac{\left(-\frac{x^2}{2}\right)^k}{k!}$. Thus, we get:

$$f(x) = \sum_{k=0}^{+\infty} \frac{\left(-\frac{x^2}{2}\right)^k}{k!}$$

We recognize the exponential series, with the input variable $-\frac{x^2}{2}$.

Thus, for all
$$x \in]-R, R[, f(x) = e^{-x^2/2}]$$

8. (Bonus) Check that the final expression that you got at previous question is a solution of (C) on the whole set \mathbb{R} .

Let f be the function defined on \mathbb{R} by $f(x) = e^{-x^2/2}$. Then for all $x \in \mathbb{R}$:

•
$$f'(x) = (-x^2/2)' e^{-x^2/2} = -x e^{-x^2/2}$$

•
$$f''(x) = -e^{-x^2/2} - x \left(e^{-x^2/2}\right)' = -e^{-x^2/2} + x^2 e^{-x^2/2}$$

Thus, f(0) = 1, f'(0) = 0 and for all $x \in \mathbb{R}$,

$$f''(x) + xf'(x) + f(x) = \left(-e^{-x^2/2} + x^2 e^{-x^2/2}\right) - \left(x^2 e^{-x^2/2}\right) + \left(e^{-x^2/2}\right) = 0$$

f is hence a solution of (C).