Week 3: Polynomial rings I

Let R be a commutative ring with identity. Let K be a field.

Practice Problems

- 1. Factor the polynomial $x^4 + 1$ in the rings $\mathbb{C}[x]$, $\mathbb{R}[x]$, $\mathbb{Q}[x]$.
- 2. Construct a surjective ring homomorphism $K[x,y] \to K$ with kernel (x,y). Construct a surjective ring homomorphism $K[x,y] \to K[y]$ with kernel (x). Deduce that (x,y) is maximal and that (x) is prime.
- 3. Show that $\mathbb{Z}[\sqrt{-5}] \cong \mathbb{Z}[x]/(x^2+5)$.

Presentation Problems

- 1. Show that K[x] contains infinitely many primes. *Hint*: Look at Euclid's proof that there are infinitely many primes in \mathbb{Z} .
- 2. Let $I = (xy, (x y)z) \subseteq K[x, y, z]$. Show that $\sqrt{I} = (xy, xz, yz)$.
- 3. (a) Show that $K[x,y]/(y^2-x) \cong K[y]$.
 - (b) Show that $K[x, y]/(y^2 x) \ncong K[x, y]/(y^2 x^2)$.
- 4. (a) Construct an injective ring homomorphism $K[x,y]/(xy) \to K[x] \times K[y]$.
 - (b) Show that $K[x,y]/(xy) \ncong K[x] \times K[y]$.

Module Theory Problem

1. (a) Show that if $f: M \to N$ is an R-module homomorphism then the sequence of R-modules

$$0 \longrightarrow \ker f \longrightarrow M \stackrel{f}{\longrightarrow} N \longrightarrow \operatorname{coker} f \longrightarrow 0$$

is exact, where coker $f = N/\operatorname{im} f$.

(b) Show that the blue commutative diagram of R-modules induces the red R-module homomorphisms

$$0 \longrightarrow \ker \alpha \longrightarrow A \xrightarrow{\alpha} A' \longrightarrow \operatorname{coker} \alpha \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow f \qquad \qquad \downarrow f' \qquad \qquad \downarrow$$

$$0 \longrightarrow \ker \beta \longrightarrow B \xrightarrow{\beta} B' \longrightarrow \operatorname{coker} \beta \longrightarrow 0.$$

(c) Show that the blue commutative diagrams of R-modules with exact rows induce the red exact sequences of R-modules

(d) Show that the blue commutative diagram of R-modules with exact rows induces the red exact sequence of R-modules

This is known as the snake lemma.

Tricky Problems

- 1. Suppose that R is an integral domain. Let a and b be positive integers with gcd(a,b) = 1. Consider the ring homomorphism $\varphi \colon R[x,y] \to R[t]$ defined by $\varphi(x) = t^b$ and $\varphi(y) = t^a$.
 - (a) Show that $(x^a y^b) \subseteq \ker \varphi$.
 - (b) Let $f(x,y) \in \ker \varphi$. Show that we can write f(x,y) = g(x,y) + h(x,y) with $g(x,y) \in (x^a y^b)$ and $\deg_y h(x,y) \le b-1$.
 - (c) Show that $h(x, y) \in \ker \varphi$.
 - (d) Show that the exponents of $\varphi(x^iy^j)$ are distinct for $0 \le j \le b-1$ and deduce that h(x,y)=0.
 - (e) Show that $\ker \varphi = (x^a y^b)$.
 - (f) Show that $(x^a y^b)$ is a prime ideal of R[x, y].
- 2. (a) Show that if R is a Noetherian ring then every quotient of R is Noetherian.
 - (b) Show that if R and S are Noetherian rings then $R \times S$ is a Noetherian ring.
 - (c) Show that R is Noetherian if and only if every ideal of R is finitely generated.

The remaining parts of this problem will show that if R is Noetherian then so is R[x].

- (d) Let I be an ideal of R[x]. Let I' denote the set of leading coefficients of polynomials in I. Prove that I' is an ideal of R, and deduce that $I' = (a_1, a_2, \ldots, a_n)$ for some $a_1, a_2, \ldots, a_n \in R$. By definition of I', for each a_j there is some $f_j \in I$ whose leading coefficient is a_j .
- (e) Let d be a positive integer. Let I_d be the set of leading coefficients of polynomials of degree d in I, as well as 0. Prove that that I_d is an ideal. Deduce that $I_d = (a_{d,1}, a_{d,2}, \ldots, a_{d,n_d})$ for each d, and let $f_{d,j} \in I$ be a polynomial of degree d with leading coefficient $a_{d,j}$.
- (f) Let $N = \max_{1 \le i \le n} \deg f_i$. Prove that

$$I = (f_1, f_2, \dots, f_n) + \sum_{d=1}^{N-1} (f_{d,1}, f_{d,2}, \dots, f_{d,n}).$$

Hint: If they're not equal, then there is some $f \in I$ not in the ideal in the right of minimal degree.

(g) Deduce that if R is a Noetherian ring then R[x] is Noetherian.

This is known as Hilbert's Basis Theorem.