Expression quantitative trait loci (eQTLs) (I)

BBMS 3009: Genome Science (First Semester, 2021)

Dr. Yuanhua Huang School of Biomedical Sciences & Department of Statistics and Actuarial Science

Today's learning objectives

- Understand the biological machinery of eQTLs
- Describe the statistical methods for calculating and predicting eQTLs
- Understand the purpose of multiple testing correction
- Appreciate the utilization of eQTL to help identify disease susceptibility loci

Relevant papers

- 1) Westra & Franke. From genome to function by studying eQTLs. Biochimica et Biophysica Acta, 2014
- 2) <u>Lappalainen et al., Transcriptome and genome sequencing uncovers functional variation in humans, Nature 2013</u>

Genetic mapping study (GWAS)

Susceptibility loci for type 2 diabetes: 34,840 cases and 114,981 controls

The DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, Nat Genetics. 2012

Genetic mapping study (GWAS)

- Why are there so many SNPs with significant p-values in that region?
- How can we identify the true risk SNP(s)?

Intermediate layer: functional genomics

Gene expression for genetics studies

Data needed

- Genotypes
 - SNP arrays (and imputation from reference of whole genomes)
 - Common alleles in population, e.g., Minor Allele Frequency (MAF > 5%)
- Gene expression
 - RNA sequencing
 - Microarray RNA transcriptional profiling (less common now)
 - Count data: usually log(FPKM + small_value)
 - small value could be 1, 0.5, 0.1, etc.
- Sample size?
 - 462 samples in Geuvadis project, Nature 2013 (doi: 10.1038/nature12531)
 - 15,201 samples in GTEx v8, Science 2020 (doi: 10.1126/science.aaz1776)

DNA variation and gene expression

Expression quantitative trait loci (eQTLs): genomic loci that contribute to variation in expression levels of mRNAs

Westra & Franke. Biochimica et Biophysica Acta, 2014

Cis-eQTL and trans-eQTL

Part 2: Statistical tests

- Independent two-sample test: t test or Wilcoxon test
- Generalised linear model with likelihood ratio test
- Random effects for structured samples (next session)

Independent two-sample tests

- Independent two-sample t-test
- T/T genotype vs. non-T/T
- Comparing the gene expression level

Linear regression (generalized linear model)

- Likelihood ratio test (G for genotype: 0, 1, 2)
 - Null model likelihood L_0 : $y = \beta_0 + \beta_1 \times \text{Sex}$
 - Alternative model likelihood L_1 : $y = \beta_0 + \beta_1 \times \text{Sex} + \beta_G \times G$

Log Likelihood ratio: $r = 2 \log(L_1/L_0)$ follows χ^2 distribution --> p value calculation

Linear regression – more factors

- Likelihood ratio test (additional covariate x_2 , e.g., BMI)
 - Null model likelihood L_0 : $y = \beta_0 + \beta_1 \times \text{Sex} + \beta_2 \times x_2$
 - Alternative model likelihood L_1 : $y = \beta_0 + \beta_1 \times \text{Sex} + \beta_2 \times x_2 + \beta_G \times G$
- Likelihood ratio test (multiple additional covariates $x_{1...K}$)
 - Null model likelihood L_0 : $y = \beta_0 + \sum_{k=1}^K \beta_k \times x_k$
 - Alternative model likelihood L_1 : $y = \beta_0 + \sum_{k=1}^K \beta_k \times x_k + \beta_G \times G$
- Other factors may also contribute to variability in gene expression

Linear regression – interaction

- Likelihood ratio test
 - Null model likelihood L_0 : $y = \beta_0 + \beta_1 \times Sex$
 - Alternative model 1 likelihood L_1 : $y = \beta_0 + \beta_1 \times \text{Sex} + \beta_G \times G$
- Adding and interaction variable: $z = \text{Sex} \times G$
 - Alternative model 2 likelihood L_2 : $y = \beta_0 + \beta_1 \times \text{Sex} + \beta_G \times G + \beta_2 \times [\text{Sex} \times G]$
 - $y = \beta_0 + \beta_1 \times \text{Sex} + [\beta_G + \beta_2 \times \text{Sex}] \times G$
 - $= \beta_0 + \beta_1 \times \text{Sex} + [\beta_G \mathbb{I}(\text{Sex} = 0) + (\beta_G + \beta_2) \mathbb{I}(\text{Sex} = 1)] \times G$
- This is not physical interaction, but merely gender has different effect sizes
 - If sex =0: effect size is β_G ; if sex = 1: effect size is $\beta_G + \beta_2$.

Log Likelihood ratio: $r_1 = 2 \log(L_1/L_0)$ follows χ^2 distribution --> p value calculation Log Likelihood ratio: $r_2 = 2 \log(L_2/L_1)$ follows χ^2 distribution --> p value calculation

Multiple testing correction

- Assume 100,000 SNPs and their cis- genes to test
 - For each SNP-gene pair, one likelihood ratio test each pair
 - We will perform 100,000 SNPs, by chance what is the lowest p value we will have even there is no eQTL? 1, 0.5, 0.1, or 0.00001
- What is the distribution of p value if the null model is true?
 - Not peak at 1, nor between 0.5 to 1
 - Under the null, the p value actually follows a uniform distribution in [0, 1].

Multiple testing correction

- What is the distribution of p value if the null model is true?
 - Under the null, the chance we see p value < 0.05 is 5%
 - By performing 10 times, the chance to have the lowest p value < 0.05 is 40%
- Multiple testing correction
 - None perfect methods, but some are practically useful
 - Benjamini-Hochberg correction, namely, False Discovery Rate (FDR) is commonly used

FDR: For a given FDR α , find the largest k that the kth $P_k < \frac{k}{n_test} \alpha$

Require large sample size or do smaller number of tests

Part 3: Interpretation of eQTLs

Expression of JAZF1 in patients and healthy controls

Interpretation of eQTLs: example on JAZF1

Is the expression change a cause or an outcome?

Interpretation of eQTLs: example on JAZF1

eQTL and causality?

Link between eQTLs and epigenetics

eQTL SNPs are enriched within activating cis-regulatory elements

TSS: transcription start site TES: transcription end site

Epigenetics

study of mechanisms that involve mitotically and/or meiotically heritable changes in DNA other than changes in nucleotide sequence

Genotype-Tissue Expression (GTEx) Project

To establish a resource database and associated tissue bank for the scientific community to study the relationship between **genetic variation and gene expression** in human tissues

Goals

- Generate public resource with tissue-specific eQTLs and gene and isoform expression data across multiple human tissues
- Contribute to understanding of effects of genetic variation on gene expression and regulation
- Assist in interpretation of disease/trait GWAS signals

Genotype-Tissue Expression (GTEx) Project

Other resources

- EBI eQTL catalogue (re-computed 19 eQTL publications)
 - Data base: https://www.ebi.ac.uk/eqtl/Datasets/
 - Paper: https://www.biorxiv.org/content/10.1101/2020.01.29.924266v1

Questions

- Understand the biological machinery of eQTLs
- Describe the statistical methods for calculating and predicting eQTLs
- Understand the purpose of multiple testing correction
- Appreciate the utilization of eQTL to help identify disease susceptibility loci

Relevant papers

- 1) Westra & Franke. From genome to function by studying eQTLs. Biochimica et Biophysica Acta, 2014
- 2) <u>Lappalainen et al., Transcriptome and genome sequencing uncovers functional variation in humans, Nature 2013</u>