/ 00 (2025) 1–**33**

11

On contrary, assume that $0 \notin Conv\Big\{\bigcup_{j \in \Lambda} \partial H_j(x^*)\Big\}$. Since, $Conv\Big\{\bigcup_{j \in \Lambda} \partial H_j(x^*)\Big\}$ and $\{0\}$ are closed and convex sets then with the help of theorem of separation, there exists $v \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that $v^T 0 \ge b$ and $v^T d < b \ \forall d \in Conv\Big\{\bigcup_{j \in \Lambda} \partial H_j(x^*)\Big\}$. Jointly both inequality contradicts (3.1). Hence, $0 \in Conv\Big\{\bigcup_{j \in \Lambda} \partial H_j(x^*)\Big\}$.

Conversely, it needs to be proven that if $0 \in Conv\Big\{\bigcup_{j \in \Lambda} \partial H_j(x^*)\Big\}$, then x^* is a Pareto critical point for H. For this purpose, define $\check{H}(x) = \max_{j \in \Lambda} H_j(x) - H_j(x^*)$. Then, by item (ii) of Theorem 2.2, $\partial \check{H}(x) = Conv\Big\{\bigcup_{i \in \Lambda} \partial H_j(x)\Big\}$. Hence, the assumption leads to $0 \in Conv\Big\{\bigcup_{i \in \Lambda} \partial H_j(x)\Big\}$, implying $x^* = \arg\min_{x \in D} \check{H}(x)$. On the contrary, if x^* is not a Pareto critical point, then according to Definition 2.3, there exists $s \in D$ such that $\nabla h_j(x^*, \xi_i)^T s < 0$, for all $i \in I_j(x^*)$, $j \in \Lambda$, i.e., $H'_j(x^*, s) < 0$ for all j. Then there exists some $\eta > 0$ sufficiently small such that $H_j(x^* + \eta s) < H_j(x^*)$ for all j which implies $\check{H}(x^* + \eta s) < 0 = \check{H}(x^*)$ holds for some $(x^* + \eta s) \in D$. This contradicts the fact that $x^* = \arg\min_{x \in D} \check{H}(x)$. As a consequence, the assumption that x^* is not a Pareto critical point is incorrect, and x^* is indeed a Pareto critical point for H.

Theorem 3.1. If $h_j(x, \xi_i)$ is continuously differentiable and convex for each $j \in \Lambda$ and $\xi_i \in U$, then $x^* \in D$ is a weak efficient solution for $OWC_{P(U)}$ if and only if

$$0 \in conv\left(\bigcup_{i=1}^{m} \partial H_{j}(x^{*})\right).$$

Proof. Let x^* be a weak efficient solution solution for $OWC_{P(U)}$. It must be shown that $0 \in Conv \cup_{j \in \Lambda} \partial H_j(x^*)$. Since given function $h_j(x, \xi_i)$ is continuously differentiable and convex for each j and $\xi_i \in U$, then $h_j(x, \xi_i)$ will be locally Lipschitz continuous for all $i \in \overline{\Lambda}$. Then $0 \in Conv \{ \cup_{j \in \Lambda} \partial H_j(x^*) \}$ (see Theorem 4.3 in [71]).

Conversely, by assumption $0 \in Conv\{\bigcup_{j \in \Lambda} \partial H_j(x^*)\}$ it is clear that x^* is Pareto critical point. Then for atleast one j^0 , it is established that $H'_{j_0}(x^*, d) \ge 0$, $\forall d \in D - \{x^*\}$. Now, by using the Definition 2.2, it follows that

$$\nabla h_{i^0}(x^*, \xi_i)^T d \ge 0, \ \forall \ d \in D, \ i \in I_{i^0}(x^*). \tag{3.2}$$

By convexity of H_i and $h_i(x, \xi_i)$, it is obtained that

$$h_{i^0}(x,\xi_i) \ge h_{i^0}(x^*,\xi_i) + \nabla h_{i^0}(x^*,\xi_i)^T(x-x^*), \ \forall \ i \in I_{i^0}(x^*) \text{ and } x, \ x^* \in D.$$

Since the last term of the latest inequality is positive by (3.2), it is established that

$$h_{j^0}(x,\xi_i) \geq h_{j^0}(x^*,\xi_i), \ \forall \ i \in I_{j^0}(x^*),$$

and therefore

$$H_{i^0}(x) \ge H_{i^0}(x^*), \ \forall x \in D,$$

i.e., x^* is weak efficient solution.