Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic Propositional logic

Requirement & Reading Material

CSE 411: Artificial Intelligence (Elective Course #6)

400 Level, Mechatronics Engineering 2nd Term 2016/2017, Lecture #8

Hazem Shehata

Dept. of Computer & Systems Engineering Zagazig University

April 24th, 2017

Credits to Dr. Mohamed El Abd for the slides

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Logic Propositional logic

Requirement & Reading Material

Adminstrivia

Notes

Midterm:

Date: Wednesday, Apr. 26, 2017.

Time: 1:00pm - 2:00pm.

• Scope: lectures $1 \rightarrow 6$.

Course Info:

Website: http://hshehata.github.io/courses/zu/cse411/

Office hours: Sunday 11:30am - 12:30pm

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requirement
& Reading
Material

Outline

- Logical Agents
 - Knowledge-based agents
 - Wumpus world
 - Logic
 - Propositional logic

Requirements & Reading Material

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Logic
Propositional logic

Requiremen & Reading Material

Outline

- Logical Agents
 - Knowledge-based agents
 - Wumpus world
 - Logic
 - Propositional logic

Requirements & Reading Material

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Knowledge-based agents

Introduction

 Knowledge-based agents are agents that can store knowledge about the environment and use this knowledge to deduce new facts.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requirement & Reading Material

Knowledge-based agents

Introduction

- Knowledge-based agents are agents that can store knowledge about the environment and use this knowledge to deduce new facts.
- They are specially useful since they:
 - Infer hidden information, needed in partially-observable environments.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic
Requirements
& Reading

Knowledge-based agents

Introduction

- Knowledge-based agents are agents that can store knowledge about the environment and use this knowledge to deduce new facts.
- They are specially useful since they:
 - Infer hidden information, needed in partially-observable environments.
 - Flexible:
 - Can learn new knowledge about the environment.
 - Adapt to environmental changes by updating relevant knowledge.

April 24th, 2017 5

> Hazem Shehata

Outlin

Logical Agents

Knowledge-based agents

Wumpus world Logic Propositional logic

Requirements & Reading

Material

Knowledge-based agents

Introduction

• Two important aspects are:

April 24th, 2017

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Logic Propositional logic

Requirement & Reading Material

Knowledge-based agents

Introduction

- Two important aspects are:
 - Storing the knowledge or representing it using a knowledge-base.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic
Requirements
& Reading

Material

Knowledge-based agents

Introduction

- Two important aspects are:
 - Storing the knowledge or representing it using a knowledge-base.
 - Deducing new facts or *reasoning* about the possible actions.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic
Requirements

Requirement
& Reading
Material

Knowledge-based agents

Introduction

- Two important aspects are:
 - Storing the knowledge or representing it using a knowledge-base.
 - Deducing new facts or *reasoning* about the possible actions.
- Reasoning is also known as inferencing.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Logic
Propositional logic

Requirement & Reading Material

Knowledge-based agents

Knowledge base

 The knowledge base (KB) is the central component of knowledge-based agents.

April 24th, 2017

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic
Requirements
& Reading

Material

Knowledge-based agents

Knowledge base

- The knowledge base (KB) is the central component of knowledge-based agents.
- The KB holds assertions about the environment:
 - Facts.
 - Rules.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic Propositional logic

Requirement & Reading Material

Knowledge-based agents

Knowledge base

- The knowledge base (KB) is the central component of knowledge-based agents.
- The KB holds assertions about the environment:
 - Facts.
 - Rules.
- These assertions are stored as a set of sentences.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic Propositional logic

Requirement & Reading

Knowledge-based agents

Knowledge base

- The knowledge base (KB) is the central component of knowledge-based agents.
- The KB holds assertions about the environment:
 - Facts.
 - Rules.
- These assertions are stored as a set of sentences.
- Sentences are expressed using a knowledge representation language.

> Hazem Shehata

Outlin

Logical Agents

Knowledge-based agents

Wumpus world
Logic

Propositional logic

Requiremen & Reading Material

Knowledge-based agents

Knowledge base

 The two main operations carried by the knowledge-based agents are:

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Knowledge-based agents

8

Knowledge base

- The two main operations carried by the knowledge-based agents are:
 - Add new sentences to the knowledge base.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Knowledge-based agents

8

Knowledge base

- The two main operations carried by the knowledge-based agents are:
 - Add new sentences to the knowledge base.
 - Query what is known.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic Propositional logic

Requirement & Reading

Knowledge-based agents

Knowledge base

- The two main operations carried by the knowledge-based agents are:
 - Add new sentences to the knowledge base.
 - Query what is known.
- These operations are known as TELL and ASK operations.

> Hazem Shehata

Outlin

Logical Agents

Knowledge-based agents Wumpus world Logic Propositional logic

Requirement & Reading

Knowledge-based agents

Knowledge base

- The two main operations carried by the knowledge-based agents are:
 - Add new sentences to the knowledge base.
 - Query what is known.
- These operations are known as TELL and ASK operations.
- When the agent ASKs a question, the answer should follow from what the KB has been TOLD (or rather TELLed) before.

> Hazem Shehata

Outlin

Logical Agents

Knowledge-based agents Wumpus world Logic Propositional logic

Requirement & Reading

Knowledge-based agents

Knowledge base

- The two main operations carried by the knowledge-based agents are:
 - Add new sentences to the knowledge base.
 - Query what is known.
- These operations are known as TELL and ASK operations.
- When the agent ASKs a question, the answer should follow from what the KB has been TOLD (or rather TELLed) before.
- Inference might be used in both ASK and TELL operations.

> Hazem Shehata

Outlin

Logical Agents

Knowledge-based agents Wumpus world

Logic
Propositional logic

Requirements

Knowledge-based agents

Algorithm

An algorithm for a generic knowledge-based agent:

```
persistent: KB, a knowledge base t, a counter, initially 0, indicating time

Tell (KB, Make-Percept-Sentence (percept, t))

action \leftarrow Ask(KB, Make-Action-Query (t))
```

funcion KB-AGENT (percept) returns an action

Tell (*KB*, Make-Action-Sentence (*action*, t)) $t \leftarrow t + 1$

April 24th, 2017

> Hazem Shehata

Outlin

Logical Agents

Knowledge-based agents

Wumpus world Logic

Logic Propositional logic

Requirement & Reading Material

Knowledge-based agents

Algorithm

An algorithm for a generic knowledge-based agent:

> Hazem Shehata

Outlin

Logical Agents

Knowledge-based agents

Wumpus world Logic Propositional logic

Requirement & Reading

Knowledge-based agents

Algorithm

An algorithm for a generic knowledge-based agent:

```
funcion KB-AGENT (percept) returns an action
persistent: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL (KB, MAKE-PERCEPT-SENTENCE (percept, t))

action ← ASK(KB, MAKE-ACTION-QUERY (t))

TELL (KB, MAKE-ACTION-SENTENCE (action, t))

t ← t + 1

return action
```

> Hazem Shehata

Outlin

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirements

Requirement & Reading Material

Knowledge-based agents

Algorithm

An algorithm for a generic knowledge-based agent:

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requirement & Reading Material

Knowledge-based agents

Knowledge base

In general, an agent must be able to:

- Represent states, actions, etc.
- Incorporate new percepts.
- Update internal representations of the world.
- Deduce hidden properties of the world.
- Deduce appropriate actions.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world

Logic
Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - PEAS

Performance measure:

11

> Hazem Shehata

Outline

Logical Agents Knowledge-based

agents

Wumpus world

Logic
Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - PEAS

Performance measure:

- gold +1000.
- death -1000
- -1 per step.
- -10 for using the arrow.

April 24th, 2017

11

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world

Logic

Propositional logic

Requiremen & Reading Material

Wumpus world

Example: wumpus world - PEAS

Environment:

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world

Logic

Propositional logic

Requiremen & Reading Material

Wumpus world

Example: wumpus world - PEAS

Environment:

 Squares adjacent to wumpus are smelly.

12

> Hazem Shehata

Outline

Logical Agents Knowledge-based

agents
Wumpus world

Logic
Propositional logic

Requiremen & Reading Material

Wumpus world

Example: wumpus world - PEAS

Environment:

- Squares adjacent to wumpus are smelly.
- Squares adjacent to pit are breezy.

> Hazem Shehata

Outline

Logical Agents Knowledge-based

agents Wumpus world

Logic
Propositional logic

Requirement

Requirement & Reading Material

Wumpus world

Example: wumpus world - PEAS

Environment:

- Squares adjacent to wumpus are smelly.
- Squares adjacent to pit are breezy.
- Glitter iff gold is in the same square.

April 24th, 2017

> Hazem Shehata

Outline

Logical Agents Knowledge-based

agents Wumpus world

Logic
Propositional logic

Requirements & Reading Material

Wumpus world

Example: wumpus world - PEAS

Environment:

- Squares adjacent to wumpus are smelly.
- Squares adjacent to pit are breezy.
- Glitter iff gold is in the same square.
- Shooting kills wumpus if you are facing it.

April 24th, 2017

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world

Logic
Propositional logic

Requiremen & Reading Material

Wumpus world

Example: wumpus world - PEAS

Environment (Cont.):

> Hazem Shehata

Outline

Logical
Agents
Knowledge-based

Wumpus world

Logic

Propositional logic

Requiremen & Reading Material

Wumpus world

Example: wumpus world - PEAS

Environment (Cont.):

Shooting uses up the only arrow.

13

> Hazem Shehata

Outline

Logical
Agents
Knowledge-based

Wumpus world

Logic
Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - PEAS

Environment (Cont.):

- Shooting uses up the only arrow.
- Grabbing picks up gold if in same square.

April 24th, 2017

> Hazem Shehata

Outline

Logical
Agents
Knowledge-based

Wumpus world

Logic
Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - PEAS

Environment (Cont.):

- Shooting uses up the only arrow.
- Grabbing picks up gold if in same square.
- Game ends:
 - Entering square w/t live wumpus or pit.
 - Climbing out of square (1,1).

April 24th, 2017

13

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world

Logic
Propositional logic

Requiremen & Reading Material

Wumpus world

Example: wumpus world - PEAS

Sensors:

> Hazem Shehata

Outline

Logical Agents Knowledge-based

agents Wumpus world

Logic

Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - PEAS

Sensors:

- Stench.
- Breeze.
- Glitter.
- Bump.
- Scream.

14

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world

Logic
Propositional logic

Requiremen & Reading Material

Wumpus world

Example: wumpus world - PEAS

Actuators:

> Hazem Shehata

Outline

Logical Agents Knowledge-based

Wumpus world

Logic

Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - PEAS

Actuators:

- Left turn.
- Right turn.
- Forward.
- Grab.
- Shoot.
- Climb.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based

Wumpus world

Logic
Propositional logic

Requirements & Reading Material

Wumpus world

Example: wumpus world - properties of environment

Observable?

> Hazem Shehata

Outline

Logical Agents

Knowledge-based

Wumpus world

Logic
Propositional logic

Requirements & Reading Material

Wumpus world

Example: wumpus world - properties of environment

Observable? Partially

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world

Logic
Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - properties of environment

- Observable? Partially
- Deterministic?

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - properties of environment

- Observable? Partially
- Deterministic? Yes

> Hazem Shehata

Outline

Agents
Knowledge-based

Wumpus world

Logic

Propositional logic

Requiremen & Reading Material

Wumpus world

16

Example: wumpus world - properties of environment

- Observable? Partially
- Deterministic? Yes
- Episodic?

> Hazem Shehata

Outline

Agents
Knowledge-based

Wumpus world

Logic

Propositional logic

Requirement
& Reading
Material

Wumpus world

Example: wumpus world - properties of environment

- Observable? Partially
- Deterministic? Yes
- Episodic? Sequential

> Hazem Shehata

Outline

Agents
Knowledge-based

Wumpus world

Logic
Propositional logic

Requirement

Requirement & Reading Material

Wumpus world

Example: wumpus world - properties of environment

- Observable? Partially
- Deterministic? Yes
- Episodic? Sequential
- Static?

> Hazem Shehata

Outline

Agents
Knowledge-based

Wumpus world

Logic
Propositional logic

Requirement

Requirement & Reading Material

Wumpus world

Example: wumpus world - properties of environment

- Observable? Partially
- Deterministic? Yes
- Episodic? Sequential
- Static? Yes

> Hazem Shehata

Outline

Agents
Knowledge-based

Wumpus world

Logic

Propositional logic

Requirements & Reading Material

Wumpus world

Example: wumpus world - properties of environment

- Observable? Partially
- Deterministic? Yes
- Episodic? Sequential
- Static? Yes
- Discrete?

> Hazem Shehata

Outline

Agents
Knowledge-based

Wumpus world

Logic
Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - properties of environment

- Observable? Partially
- Deterministic? Yes
- Episodic? Sequential
- Static? Yes
- Discrete? Yes

> Hazem Shehata

Outline

Agents
Knowledge-based

Wumpus world

Logic
Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - properties of environment

- Observable? Partially
- Deterministic? Yes
- Episodic? Sequential
- Static? Yes
- Discrete? Yes
- Single agent?

> Hazem Shehata

Outline

Agents
Knowledge-based

Wumpus world

Logic
Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - properties of environment

- Observable? Partially
- Deterministic? Yes
- Episodic? Sequential
- Static? Yes
- Discrete? Yes
- Single agent? Yes

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world

Logic
Propositional logic

Requirement
& Reading
Material

Wumpus world

Example: wumpus world - agent in action

A sequence of actions leading to gold:

> Hazem Shehata

Knowledge-based

Wumpus world

Logic

Propositional logic & Reading

Material

Wumpus world

17

Example: wumpus world - agent in action

A sequence of actions leading to gold:

April 24th, 2017

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world

Logic
Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - agent in action

A sequence of actions leading to gold:

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - agent in action

A sequence of actions leading to gold:

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world

Logic
Propositional logic

Requirement
& Reading
Material

Wumpus world

Example: wumpus world - agent in action

A sequence of actions leading to gold:

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirement
& Reading
Material

Wumpus world

Example: wumpus world - agent in action

A sequence of actions leading to gold:

> Hazem Shehata

Outline

Logical Agents Knowledge-based

agents

Wumpus world

Logic
Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - agent in action

A sequence of actions leading to gold:

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world

Logic
Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - agent in action

A sequence of actions leading to gold:

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Wumpus world

Example: wumpus world - KB agent

 In order to implement an agent for traveling the wumpus world, the main difficulty would be the agent's initial ignorance of the environment configuration.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirement & Reading

Wumpus world

Example: wumpus world - KB agent

- In order to implement an agent for traveling the wumpus world, the main difficulty would be the agent's initial ignorance of the environment configuration.
- Logical reasoning is required to overcome this ignorance.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world

Logic Propositional logic

Requirements & Reading

Material

Wumpus world

Example: wumpus world - KB agent

• The agent should:

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world

Logic

Propositional logic

Requirement & Reading Material

Wumpus world

Example: wumpus world - KB agent

- The agent should:
 - Use the perceived information (breeze, stench, etc.) in order to

> Hazem Shehata

Outline

Logical Agents Knowledge-based

agents Wumpus world

Logic

Propositional logic

Requirement
& Reading
Material

Wumpus world

Example: wumpus world - KB agent

- The agent should:
 - Use the perceived information (breeze, stench, etc.) in order to
 - Deduce more facts about the environment (is a certain place safe?) and

> Hazem Shehata

Outline

Logical Agents Knowledge-based

agents Wumpus world

Logic

Propositional logic

& Reading
Material

Wumpus world

Example: wumpus world - KB agent

- The agent should:
 - Use the perceived information (breeze, stench, etc.) in order to
 - Deduce more facts about the environment (is a certain place safe?) and
 - Take the correct action (turn left, shoot, etc.).

> Hazem Shehata

Outline

Logical
Agents
Knowledge-based

agents Wumpus world

Logic

Propositional logic

Requirement
& Reading
Material

Wumpus world

Example: wumpus world - KB agent

- The agent should:
 - Use the perceived information (breeze, stench, etc.) in order to
 - Deduce more facts about the environment (is a certain place safe?) and
 - Take the correct action (turn left, shoot, etc.).
- This is a complicated process requiring:

> Hazem Shehata

Outline

Logical Agents Knowledge-based

Wumpus world

Logic
Propositional logic

Requirement & Reading

Wumpus world

Example: wumpus world - KB agent

- The agent should:
 - Use the perceived information (breeze, stench, etc.) in order to
 - Deduce more facts about the environment (is a certain place safe?) and
 - Take the correct action (turn left, shoot, etc.).
- This is a complicated process requiring:
 - Combining knowledge learned at different places in different time steps.

> Hazem Shehata

Outline

Logical Agents Knowledge-based

Wumpus world

Logic

Propositional logic

Requirement
& Reading
Material

Wumpus world

Example: wumpus world - KB agent

- The agent should:
 - Use the perceived information (breeze, stench, etc.) in order to
 - Deduce more facts about the environment (is a certain place safe?) and
 - Take the correct action (turn left, shoot, etc.).
- This is a complicated process requiring:
 - Combining knowledge learned at different places in different time steps.
 - Relying on the lack of a percept.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirements & Reading Material

Logic

Logical representation

Remember that the KB consists of a set of sentences.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Logic Vumpus work

Propositional logic

& Reading
Material

Logic

Logical representation

- Remember that the KB consists of a set of sentences.
- The sentences are expressed using a certain syntax specifying all well formed sentences.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Wumpus work

Propositional logic

Requiremen & Reading

Logic

Logical representation

- Remember that the KB consists of a set of sentences.
- The sentences are expressed using a certain syntax specifying all well formed sentences.
- For example, in a mathematical syntax:
 - "X + Y = 2" is a well formed sentence.
 - "X 2 Y + =" is not.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirements & Reading Material

Logic

21

Logical representation

• Logic should also define the **semantics** of a language.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus wor

Logic

Propositional logic

Requiremen & Reading Material

Logic

Logical representation

- Logic should also define the semantics of a language.
- Semantics are related to the meanings of a sentence.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Logic

Propositional logic

& Reading
Material

Logic

Logical representation

- Logic should also define the semantics of a language.
- Semantics are related to the meanings of a sentence.
- In logic, the semantics define the truth of each sentence in each possible world.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Logic

Propositional logic

& Reading
Material

Logic

Logical representation

- Logic should also define the semantics of a language.
- Semantics are related to the meanings of a sentence.
- In logic, the semantics define the truth of each sentence in each possible world.
- For example, "X + Y = 4" is:
 - TRUE in a world where "X=2 and Y=2".
 - FALSE in a world where "X=1 and Y=1".

April 24th, 2017 21

> Hazem Shehata

Outlin

Logical Agents

Knowledge-based agents
Wumpus world

Logic Propositional logic

Requiremen & Reading

Logic

Logical representation

- Logic should also define the semantics of a language.
- Semantics are related to the meanings of a sentence.
- In logic, the semantics define the truth of each sentence in each possible world.
- For example, "X + Y = 4" is:
 - TRUE in a world where "X=2 and Y=2".
 - FALSE in a world where "X=1 and Y=1".
- A possible world is referred to as a model.

April 24th, 2017 21

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Logic

Propositional logic

Requirements & Reading Material

Logic

Logical reasoning

 Logic reasoning is related to the notion of logical entailment.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus wor

Propositional logic

& Reading
Material

Logic

Logical reasoning

- Logic reasoning is related to the notion of logical entailment.
- In mathematical notation:

$$\alpha \models \beta$$

which is read as: "sentence α entails sentence β ".

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world Logic

Propositional logic

& Reading
Material

Logic

Logical reasoning

- Logic reasoning is related to the notion of logical entailment.
- In mathematical notation:

 $\alpha \models \beta$

which is read as: "sentence α entails sentence β ".

• This means that in **every model** where α is **TRUE**, β is also **TRUE**.

> Hazem Shehata

Outlin

Logical Agents

Knowledge-based agents Wumpus world

Wumpus world Logic

Propositional logic

& Reading

Logic

Logical reasoning

- Logic reasoning is related to the notion of logical entailment.
- In mathematical notation:

$$\alpha \models \beta$$

which is read as: "sentence α entails sentence β ".

- This means that in **every model** where α is **TRUE**, β is also **TRUE**.
- If an inference algorithm i can derive β from α :

$$\alpha \vdash_i \beta$$

which is read as: "sentence β is **derived from** sentence α by i".

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirements & Reading Material

Logic

Example: wumpus world - logical reasoning

So, consider the shown case, after one step, the KB consists of:

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirements & Reading Material

Logic

Example: wumpus world - logical reasoning

So, consider the shown case, after one step, the KB consists of:

• **RULES:** The set of rules governing the world.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Wumpus work

Propositional logic

Requirements & Reading Material

Logic

23

Example: wumpus world - logical reasoning

So, consider the shown case, after one step, the KB consists of:

- **RULES:** The set of rules governing the world.
- FACT: nothing is detected in [1,1].

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Logic

Example: wumpus world - logical reasoning

So, consider the shown case, after one step, the KB consists of:

- **RULES:** The set of rules governing the world.
- FACT: nothing is detected in [1,1].
- FACT: a breeze is detected in [2,1].

April 24th, 2017

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Wumpus wor Logic

Propositional logic

Requiremen & Reading Material

Logic

24

Example: wumpus world - logical reasoning

• Let's say the agent wants to know if any of the squares [1,2], [2,2] or [3,1] contain a pit.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Wumpus world Logic

Propositional logic

& Reading
Material

Logic

Example: wumpus world - logical reasoning

- Let's say the agent wants to know if any of the squares [1,2], [2,2] or [3,1] contain a pit.
- We have $2^3 = 8$ possible models.

April 24th, 2017

24

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirement & Reading Material

Logic

Example: wumpus world - logical reasoning

Logical reasoning by model checking:

We have 8 different possible worlds, (8 different models)

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirement & Reading Material

Logic

Example: wumpus world - logical reasoning

Logical reasoning by model checking:

We have 8 different possible worlds, (8 different models) KB is not TRUE in all of the possible models

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirement & Reading

Logic

Example: wumpus world - logical reasoning

Logical reasoning by model checking:

We have 8 different possible worlds, (8 different models) KB is not TRUE in all of the possible models For example, there cannot be a pit in [1,2]

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirement & Reading Material

Logic

Example: wumpus world - logical reasoning

Logical reasoning by model checking:

In fact, KB is only TRUE in three of them

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirement & Reading Material

Logic

Example: wumpus world - logical reasoning

Logical reasoning by model checking:

Now, let's consider:

 β_1 = "There's no pit in [1,2]"

 β_2 = "There's no pit in [2,2]"

> Hazem Shehata

Outline

Logical

Knowledge-based

agents

Wumpus world Logic

Propositional logic

Requirement & Reading Material

Logic

Example: wumpus world - logical reasoning

Logical reasoning by model checking:

 β_1 = "There's no pit in [1,2]"

 β_2 = "There's no pit in [2,2]"

Can we prove that: $KB \models \beta_1$ and $KB \models \beta_2$?

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirement & Reading Material

Logic

Example: wumpus world - logical reasoning

Logical reasoning by model checking:

Shown are models in which β_1 is TRUE

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirement & Reading Material

Logic

Example: wumpus world - logical reasoning

Logical reasoning by model checking:

Shown are models in which β_1 is TRUE In all models in which KB is TRUE, β_1 is also TRUE

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirement & Reading Material

Logic

Example: wumpus world - logical reasoning

Logical reasoning by model checking:

Shown are models in which β_1 is TRUE In all models in which KB is TRUE, β_1 is also TRUE Hence, $KB \models \beta_1$, no pit in [1,2]

> Hazem Shehata

Outline

Logical

Agents
Knowledge-based

Wumpus world

Logic

Propositional logic

& Reading
Material

Logic

Example: wumpus world - logical reasoning

Logical reasoning by model checking:

Shown are models in which β_2 is TRUE

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

& Reading
Material

Logic

Example: wumpus world - logical reasoning

Logical reasoning by model checking:

Shown are models in which β_2 is TRUE In some models in which KB is TRUE, β_2 is FALSE

April 24th, 2017 25

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

& Reading
Material

Logic

Example: wumpus world - logical reasoning

Logical reasoning by model checking:

Shown are models in which β_2 is TRUE In some models in which KB is TRUE, β_2 is FALSE Hence, $KB \nvDash \beta_2$, cannot conclude there's no pit in [2,2]

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirements & Reading Material

Logic

Logical reasoning

• The previous approach is known as *Model checking*.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Logic

Logical reasoning

- The previous approach is known as *Model checking*.
- It enumerates all possible models to check whether α is TRUE in all models in which KB is TRUE.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Wumpus world Logic

Propositional logic

& Reading
Material

Logic

Logical reasoning

- The previous approach is known as *Model checking*.
- It enumerates all possible models to check whether α is TRUE in all models in which KB is TRUE.
- This approach is:
 - Sound: derive entailed sentences only, never makes things up.
 - Complete: can derive any sentence that is entailed.

April 24th, 2017 26

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Wumpus world Logic

Propositional logic

& Reading
Material

Propositional logic

Introduction

 Propositional logic is a very simple logic approach that could be used by an agent for traveling through the wumpus world.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Propositional logic

Introduction

- Propositional logic is a very simple logic approach that could be used by an agent for traveling through the wumpus world.
- Also known as Boolean logic.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Propositional logic

Introduction

- Propositional logic is a very simple logic approach that could be used by an agent for traveling through the wumpus world.
- Also known as Boolean logic.
- We will take a look at:
 - Syntax.
 - Semantics.
 - Entailment.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Propositional logic

Introduction

- Propositional logic is a very simple logic approach that could be used by an agent for traveling through the wumpus world.
- Also known as Boolean logic.
- We will take a look at:
 - Syntax.
 - Semantics.
 - Entailment.
- This will lead for a very simple algorithm for logical inference.

April 24th, 2017 27

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Logic
Propositional logic

Propositional logi

Requirements & Reading Material

Propositional logic

Syntax

• Two types of sentences occur:

> Hazem Shehata

Outline

Logical

Knowledge-based agents
Wumpus world

Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Propositional logic

Syntax

- Two types of sentences occur:
 - Atomic sentences: a single proposition symbol which are basically any variable name, TRUE or FALSE.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Propositional logic

Syntax

- Two types of sentences occur:
 - Atomic sentences: a single proposition symbol which are basically any variable name, TRUE or FALSE.
 - Complex sentences: constructed from simpler sentences using logical connectives.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Propositional logic

Syntax

- Two types of sentences occur:
 - Atomic sentences: a single proposition symbol which are basically any variable name, TRUE or FALSE.
 - Complex sentences: constructed from simpler sentences using logical connectives.
- Logical connectives:
 - ¬ negation.
 - ∧ conjunction (and).
 - √ disjunction (or).
 - \Rightarrow implication (if-then).
 - ⇔ biconditional (if and only if).

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Wumpus world Logic

Propositional logic

& Reading
Material

Propositional logic

Syntax

 Sentences formed in this way can be called Well-Formed Formula (WFF).

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Logic
Propositional logic

Requiremer & Reading Material

Propositional logic

Syntax

- Sentences formed in this way can be called Well-Formed Formula (WFF).
- Parentheses can be used to indicate precedence.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Propositional logic

Syntax

- Sentences formed in this way can be called Well-Formed Formula (WFF).
- Parentheses can be used to indicate precedence.
- Complex sentences evaluate to TRUE or FALSE.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Propositional logic

Syntax

- Sentences formed in this way can be called Well-Formed Formula (WFF).
- Parentheses can be used to indicate precedence.
- Complex sentences evaluate to TRUE or FALSE.
- The symbols and the connectives together define the syntax of the language.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Wumpus world Logic

Propositional logic

Requiremer & Reading Material

Propositional logic

Semantics

 Semantics define rules for determining the truth of a sentence with respect to a particular model.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requiremer & Reading Material

Propositional logic

Semantics

- Semantics define rules for determining the truth of a sentence with respect to a particular model.
- Need to be able to evaluate sentences to TRUE or FALSE:

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Propositional logic

Semantics

- Semantics define rules for determining the truth of a sentence with respect to a particular model.
- Need to be able to evaluate sentences to TRUE or FALSE:
 - Atomic sentences must have truth assigned (i.e., be assigned TRUE of FALSE).

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

& Reading
Material

Propositional logic

Semantics

- Semantics define rules for determining the truth of a sentence with respect to a particular model.
- Need to be able to evaluate sentences to TRUE or FALSE:
 - Atomic sentences must have truth assigned (i.e., be assigned TRUE of FALSE).
 - The evaluation of complex sentences is done using truth tables for the connectives.

> Hazem Shehata

Outlin

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

& Reading
Material

Propositional logic

Semantics

- Semantics define rules for determining the truth of a sentence with respect to a particular model.
- Need to be able to evaluate sentences to TRUE or FALSE:
 - Atomic sentences must have truth assigned (i.e., be assigned TRUE of FALSE).
 - The evaluation of complex sentences is done using truth tables for the connectives.

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirement & Reading Material

Propositional logic

Example: wumpus world - a simple KB in PL

 We want to represent what we know about the wumpus world in a simple KB using propositional logic.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

& Reading

Propositional logic

Example: wumpus world - a simple KB in PL

- We want to represent what we know about the wumpus world in a simple KB using propositional logic.
- Proposition symbols:
 - Let P_{ij} be TRUE is there's a pit in location [i,j].
 - Let B_{ij} be TRUE is there's a breeze in location [i,j].

> Hazem Shehata

Outline

Logical

Knowledge-based agents Wumpus world Logic

Propositional logic

Requirement & Reading Material

Propositional logic

Example: wumpus world - a simple KB in PL

KB consists of:

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Logic
Propositional logic

Requirement & Reading Material

Propositional logic

Example: wumpus world - a simple KB in PL

- KB consists of:
 - FACT: there's no pit in [1,1]:

> Hazem Shehata

Outline

Logica Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Propositional logic

32

Example: wumpus world - a simple KB in PL

- KB consists of:
 - FACT: there's no pit in [1,1]:

R1: $\neg P_{11}$.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Wumpus world Logic

Propositional logic

& Reading
Material

Propositional logic

Example: wumpus world - a simple KB in PL

- KB consists of:
 - FACT: there's no pit in [1,1]:

R1: $\neg P_{11}$.

 RULES: A square is breezy if and only if there's a pit in a neighboring square:

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

& Reading
Material

Propositional logic

Example: wumpus world - a simple KB in PL

- KB consists of:
 - **FACT:** there's no pit in [1,1]:

R1: $\neg P_{11}$.

 RULES: A square is breezy if and only if there's a pit in a neighboring square:

R2: $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

R3: $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$.

> Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requirement
& Reading
Material

Propositional logic

Example: wumpus world - a simple KB in PL

- KB consists of:
 - FACT: there's no pit in [1,1]:

R1: $\neg P_{11}$.

 RULES: A square is breezy if and only if there's a pit in a neighboring square:

 $\mathsf{R2:}\ B_{11} \Leftrightarrow (P_{12} \vee P_{21}).$

R3: $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31}).$

• FACTS: from sensors:

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents

Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Propositional logic

Example: wumpus world - a simple KB in PL

- KB consists of:
 - FACT: there's no pit in [1,1]:

R1: $\neg P_{11}$.

 RULES: A square is breezy if and only if there's a pit in a neighboring square:

R2: $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

R3: $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$.

• FACTS: from sensors:

R4: ¬*B*₁₁.

R5: *B*₂₁.

Hazem Shehata

Outline

Logical

Knowledge-based agents

Wumpus world Logic

Propositional logic

& Reading

Propositional logic

Example: wumpus world - a simple KB in PL

- KB consists of:
 - FACT: there's no pit in [1,1]:

R1: $\neg P_{11}$.

 RULES: A square is breezy if and only if there's a pit in a neighboring square:

R2: $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

R3: $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$.

• FACTS: from sensors:

R4: ¬*B*₁₁.

R5: B₂₁.

 The KB can be represented as the conjunction of all sentences:

$$R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5$$

> Hazem Shehata

Outline

Logical

Knowledge-based agents Wumpus world Logic

Propositional logic

& Reading
Material

Propositional logic

Example: wumpus world - reasoning in PL

Reasoning in propositional logic by model checking:

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:		:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	false	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	true	true	true	true	true	true	\underline{true}
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	;	:	:	;	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

> Hazem Shehata

Outlin

Logica

Knowledge-based agents Wumpus world Logic

Propositional logic

Requiremen & Reading Material

Propositional logic

Example: wumpus world - reasoning in PL

Reasoning in propositional logic by model checking:

$B_{1.1}$	$B_{2.1}$	$P_{1.1}$	$P_{1,2}$	$P_{2.1}$	$P_{2,2}$	$P_{3.1}$	R_1	R_2	R_3	R_4	R_5	KB
	-,-	-,-		false		false				-	false	
1 "	false							true	true	true	-	
faise	false	faise	faise	false	faise	true	true	true	false	true	false	false
1	:	:	:	:	:	:	:	1	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	true	true	true	true	true	true	\underline{true}
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	;	:	:	;	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

Now, let's consider:

 β_1 = "There's no pit in [1,2]" = $\neg P_{12}$ Can we prove that $KB \models \beta_1$?

> Hazem Shehata

Outlin

Logica

Knowledge-based agents Wumpus world Logic

Propositional logic

& Reading
Material

Propositional logic

Example: wumpus world - reasoning in PL

Reasoning in propositional logic by model checking:

												,
$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:		:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	false	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	true	true	true	true	true	true	\underline{true}
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	;	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

We have seven proposition symbols in the KB:

 $B_{11}, B_{21}, P_{11}, P_{12}, P_{21}, P_{22}, P_{31}$ We have $2^7 = 128$ possible models

> Hazem Shehata

Outline

Logical

Knowledge-based agents Wumpus world Logic

Propositional logic

& Reading
Material

Propositional logic

Example: wumpus world - reasoning in PL

Reasoning in propositional logic by model checking:

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	true	true	true	true	true	true	\underline{true}
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	;	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

There is only 3 models in which the KB is TRUE

> Hazem Shehata

Outline

Logica Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

& Reading
Material

Propositional logic

Example: wumpus world - reasoning in PL

Reasoning in propositional logic by model checking:

$B_{1.1}$	$B_{2.1}$	$P_{1.1}$	$P_{1,2}$	$P_{2.1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
				false		false		true	true	true	false	
1 "				false			true	true	false	true	false	
:	:	:	:	;	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
-		-		false	-	-		true	true	true		true
,			-	false	,		true	true	true	true		true
false		-	-	false		true	true	true	true	true		true
9				true			true	false				false
;	:	;	:	:	;	;	:	;	;	:	:	:
true	false	true	true	false	true	false						
true	juise	uue	uue	juise	true	jaise						

There is only 3 models in which the KB is TRUE In all three models, $\beta_1 = \neg P_{12}$ is also TRUE

> Hazem Shehata

Outline

Logica

Knowledge-based agents Wumpus world Logic

Propositional logic

& Reading
Material

Propositional logic

Example: wumpus world - reasoning in PL

Reasoning in propositional logic by model checking:

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:		:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	false	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	true	true	true	true	true	true	\underline{true}
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	;	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

There is only 3 models in which the KB is TRUE In all three models, $\beta_1 = \neg P_{12}$ is also TRUE Hence, $KB \models \beta_1$.

> Hazem Shehata

Outline

Logica Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

& Reading
Material

Propositional logic

Example: wumpus world - reasoning in PL

Reasoning in propositional logic by model checking:

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:		:	:	:	:	:		:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	false	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	true	true	true	true	true	true	\underline{true}
false	true	false	false	true	false	false	true	false	false	true	true	false
1	:	:	:	:	:	:	:	:	:	:	;	:
true	false	true	true	false	true	false						

On the other hand, if β_2 = "There's no pit in [2,2]" = $\neg P_{22}$

> Hazem Shehata

Outline

Logica Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

& Reading
Material

Propositional logic

Example: wumpus world - reasoning in PL

Reasoning in propositional logic by model checking:

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
1	:	:	:	:		:	:	:	:	:		:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	false	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
1	:	;	:	:	:	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

On the other hand, if β_2 = "There's no pit in [2,2]" = $\neg P_{22}$ $\beta_2 = \neg P_{22}$ is TRUE in only one of these models

> Hazem Shehata

Outline

Logical

Knowledge-based agents Wumpus world Logic

Propositional logic

& Reading
Material

Propositional logic

Example: wumpus world - reasoning in PL

Reasoning in propositional logic by model checking:

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:		:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	false	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	;	:	:	:	:	:	;	:
true	false	true	true	false	true	false						

On the other hand, if β_2 = "There's no pit in [2,2]" = $\neg P_{22}$ $\beta_2 = \neg P_{22}$ is TRUE in only one of these models Hence, $KB \nvDash \beta_2$.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Logic

Propositional logic

& Reading
Material

Propositional logic

Logical reasoning

• The previous approach is known as *Model checking*.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world

Logic
Propositional logic

& Reading
Material

Propositional logic

Logical reasoning

- The previous approach is known as *Model checking*.
- Also known as *Inferencing with Truth Tables*,

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Logic
Propositional logic

& Reading
Material

Propositional logic

Logical reasoning

- The previous approach is known as *Model checking*.
- Also known as Inferencing with Truth Tables,
- Sound and complete.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requirement
& Reading
Material

Propositional logic

Logical reasoning

- The previous approach is known as *Model checking*.
- Also known as Inferencing with Truth Tables,
- Sound and complete.
- However, Time complexity = $O(2^n)$.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents
Wumpus world

Logic
Propositional logic

Propositional logi

Requirements & Reading Material

Outline

- Logical Agents
 - Knowledge-based agents
 - Wumpus world
 - Logic
 - Propositional logic

Requirements & Reading Material

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requirements

& Reading
Material

Requirements

What do I need from you

- When given a certain problem you should be able to:
 - Express the problem in terms of propositional logic (i.e. write the KB in form of rules).
 - Inference certain conclusions using:
 - Truth tables.
- Answer descriptive questions.

> Hazem Shehata

Outline

Logical Agents

Knowledge-based agents Wumpus world Logic

Propositional logic

Requirements & Reading Material

Reading Material

Which parts of the textbook are covered

- Russell-Norvig, Chapters 7:
 - Pages 234 248.