Quantum Mechanics 2

Problem Set 1 Kharazmi University

March 4, 2023

Conceptual Problems:

Problem 1.1. What is the difference between the quantum harmonic oscillator and the classical one? *Hint: The ground state energy is the key!

Problem 1.2. Briefly, describe what is the classical angular momentum.

Problem 1.3. What is the meaning of relation 1? What is the implication of the relation?

$$[\hat{L}, \hat{H}] = 0 \tag{1}$$

Mathematical Problems:

Problem 1.4. As far as we will come through Ladder operators for the angular momentum of a quantum harmonic oscillator (Me or Dr.Vahedi). As a review, drive creation, and annihilation operator of a quantum harmonic oscillator (for the following Hamiltonian) and use them to rewrite the Hamiltonian.

$$\hat{H} = \frac{1}{2}(\hat{P} + i\omega x)(\hat{P} - i\omega x) + \frac{\omega\hbar}{2}$$
(2)

Problem 1.5. Consider $L|\Psi\rangle=m|\Psi\rangle$, Where $L=-i\hbar\frac{\partial}{\partial\theta}$, m is the eigenvalue of L (actually m is the magnetic quantum number), and Ψ is the eigenvector. By solving the differential equation, find the 3.

$$m = n\hbar,$$
 (3)

where $n \in \mathbb{Z}$.

*Hint: Take Ψ as a function of θ !

Problem 1.6. Solve Exercise 5.1, page 325, Zettili (2nd Edition).