Лекция 11: Деревья решений

M

Методы, основанные на деревьях решений

- Ключевые особенности:
 - □ Эти методы используют *стратификацию или сегментирование* пространства признаков на области.
 - □ Для сегментации пространства признаков может использоваться набор правил, который можно представить в виде дерева
 - □ Деревья решений могут применяться как к *задачам регрессии*, так и к *классификации*.
 - □ Методы, основанные на деревьях, просты в *интерпретации*, при этом показывают достаточно хорошие результаты по точности прогнозирования.
 - □ Нестабильные модели это плюс для ансамблей бэггинг, методы случайного леса и бустинг. Эти методы строят множество деревьев, результаты прогнозирования которых потом объединяются для получения итогового прогноза.

Деревья решений в задачах классификации и регрессии

- Дерево решений граф (древовидная структура), в котором:
 - □ Внутренние узлы условия на атрибуты
 - □ Каждая исходящая ветка соответствует выходному значению условия, ветка целиком альтернативное решение
 - □ В листьях метки классов (или распределение классов) или значения целевой переменной для регрессии
 - □ Каждому узлу соответсвует область в пространсве признаков R
 - □ Области для листьев финальные, не содержат внутри других областей
- Построение дерева обычно 2 фазы
 - «рост» : в начале в корне все примеры, далее рекурсивное разбиение множества примеров по выбранному(ым) атрибуту(ам)
 - «отсечение» ветвей pruning выявление и удаление ветвей (решений), приводящих к шуму или к выбросам
- Применение дерева решений для нового объекта
 - □ Проверка атрибутов путь по ветви до листа. В листе отклик.

Непрерывный отклик

1

Непрерывный отклик

If RM \in {values} and NOX \in {values}, then MEDV=value.

<u>Leaf</u>	<u>RM</u>	<u>NOX</u>	Прогноз МЕО\
1	<6.5	<.51	22
2	<6.5	[.51, .63)	19
3	<6.5	[.63, .67)	27
4	[6.5, 6.9)	<.67	27
5	<6.9	≥.67	14
6	[6.9, 7.4)	<.66	33
7	≥7.4	<.66	46
8	≥6.9	≥.66	16

- Модели регрессии на основе деревьев решений:
 - Решающая (регрессионная) функция кусочно-постоянная: $a(x) = \sum_{m=1}^M c_m I(x \in R_m), \text{ где } c_m \text{ константа, } M \text{ число регионов (листьев)}$ $R_m = \prod_{i=1}^d I(a_{mi} < x_i \le b_{mi}) \text{ или } R_m = \bigwedge_{i=1}^d [a_{mi} < x_i \le b_{mi}] \text{ }$ «прямоугольный» регион (для числовых признаков), d размерность X
- Эмпирический риск (однородность регионов):
 - □ один из вариантов, без регуляризации и с кв. функцией потерь:

$$Q(a(x),\{(x_i,y_i)\}_{i=1}^l) = \sum_{i=1}^l \sum_{m=1}^M (y_i - a(x))^2 I(x_i \in R_m) \to \min_{R_m, c_m} \Rightarrow c_m = \frac{1}{|R_m|} \sum_{i: x_i \in R_m} y_i$$

Категориальный отклик

Категориальный отклик

- Модели классификации на основе деревьев решений:
 - \square Классификатор $a(x) = \operatorname{argmax}_{k,m}[p_{mk}I(x \in R_m)]$, где

$$p_{mk} = P(y=k|x\in R_m) = \frac{1}{|R_m|}\sum_{i:x_i\in R_m}(y_i=k)$$
 - оценка вероятности класса k в регионе m , если $m(x)$ – индекс региона, куда попало наблюдение x , то $p_{m(x)k}$ является дискриминантной функцией класса k

- Эмпирический риск (однородность регионов):
 - □ Ошибка классификации (не гладкая):

$$Q_{miss} = \sum_{i=1}^{l} \sum_{m=1}^{M} I(x_i \in R_m) \frac{I(y_i \neq a(x_i))}{|R_m|} = \sum_{i=1}^{l} (1 - p_{m(x_i) | a(x_i)})$$

 $\ \square$ Индекс Джини (гладкая, ограничивает Q_{miss} сверху):

$$Q_{Gini} = \sum_{m=1}^{M} \sum_{k=1}^{K} p_{mk} (1 - p_{mk})$$

 \square Энтропия (ограничивает Q_{Gini} сверху):

$$Q_{KL} = -\sum_{m=1}^{M} \sum_{k=1}^{K} p_{mk} \log_2(p_{mk})$$

Более сложные варианты деревьев

■ Типы регионов:

- □ Порядковые и числовые предикторы $(a_{mi} < x_i \le b_{mi})$
- \square Категориальные предикторы ($x_i \in S_{mi}$)
- \square «Многогранники» ($\bigcup \sum_i w_{mi} x_i \leq b_m$)
- \square «Сферы» $(\sum_i (a_{mi} x_i)^2 \le b_m)$

- В регионах не константа, а функция $c_m(x)$, например, непараметрическая модель (сплайн)
- Разбиение регионов:
 - □ Бинарное каждый регион делится на два
 - □ Множественное много ветвей в дереве
 - □ Нечеткие правила отдельная история

Процесс построения деревьев решений – рекурсивное разбиение

- Цель:
 - □ найти непересекающиеся области $R_1, ..., R_M, \forall i \neq j : R_i \cap R_j = \emptyset,$ покрывающие все пространство признаков $X = \bigcup_m R_m$ так, чтобы поведение отклика внутри каждого региона было максимально однородным, т.е. минимизировать некий целевой *критерий разбиения* $Q(R_1, ..., R_M) \to \min$
- Подход на основе рекурсивного разбиения (нисходящий, жадный):
 - □ Вычислительно нецелесообразно (NP-полная задача) рассматривать все возможные разбиения пространства признаков, даже в рамках фиксированной структуры правил и критерия разбиения
 - □ Нисходящий начинается в корне дерева, где один регион (все пространство признаков), затем последовательно рекурсивно разбиваются доступные регионы на более мелкие и каждое разбиение приводит к образованию новых ветвей, расположенных ниже по дереву.
 - Жадный –лучшее разбиение выбирается по критерию на каждом шаге, просмотра вглубь нет (иначе тоже NP-полная задача), не приведет к глобально лучшему дереву даже по выбранному критерию

10

Рекурсивное разбиение

- Алгоритм поиска разбиения для региона R начинаем с корня, первый регион разбиения R=X.
 - 1. Проверить *условия остановки/роста дерева* для данного региона
 - 2. Сформировать множество *гипотез* $\{f_i\}$ *для разбиения,* таких что $f_i \colon R \to B$ разбивает «родительский» регион на B «дочерних» регионов (B число ветвей), удовлетворяющих *условиям остановки/роста*
 - 3. Рассчитать значение *критерия разбиения* $Q(f_i)$ для каждой гипотезы и выбрать лучшую по критерию
 - 4. Дорастить дерево (лист, соответствующий разбиваемому региону превращается во внутренний узел) новыми *В* ветвями, заменив «родительский» регион на *В* «дочерних»
 - 5. Для каждого полученного региона (соответствующего новым листьям) применить **Алгоритм поиска разбиения**
- Особенности (упрощения) для поиска прямоугольных регионов:
 - □ Гипотезы разбиения (в виде порогов для порядковых/числовых и в виде подмножеств для категориальных) строятся по каждому предиктору отдельно, выбирается лучшая по предиктору
 - □ Затем лучшие гипотезы сравниваются между предикторами

Рекурсивное разбиение

M

Гипотезы-кандидаты для поиска разбиения числового предиктора

- Рассмотрим прямоугольные регионы для числового предиктора *x*:
 - □ Разбиваем одномерный «родительский» регион $(a < x \le b)$ с N различными значениями на B ветвей
 - □ Надо сформировать варианты разбиения (гипотезы), каждая задается порогами $a < \theta_1 < \theta_2 < \dots < \theta_{B-2} < \theta_{B-1} < b$, ветви задаются условиями $(a < x \le \theta_1)$, $(\theta_1 < x \le \theta_2)$,..., $(\theta_{B-1} < x \le b)$
- Варианты разбиения для числового или порядкового предиктора:
 - \square В общем случае: $C_{B-1}^{N-1} = \frac{(N-1)!}{(B-1)!}$, для бинарного разбиения: N-1

для всех ветвей от 2 до
$$N$$
: $\sum_{b=2}^{N} C_{b-1}^{N-1} = 2^{N-1} - 1$,

□ Выбор вариантов – серединные точки

$$\begin{array}{ccc}
 1 & -234 & \binom{3}{1} = 3 \\
 12 & -34 & 123 & -4
 \end{array}$$

$$\begin{array}{ccc}
 1 & -2 & -34 \\
 1 & -23 & -4 \\
 12 & -3 & -4
 \end{array}
 \qquad \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3$$

$$1-2-3-4$$
 $\binom{3}{3}=1$

Потенциальные точки разбиения

Гипотезы-кандидаты для поиска разбиения категориального предиктора

- Разбиваем множество категориальных значений предиктора из региона «родительского» узла S_m :
 - □ Ищем B ветвей: $S_m = \bigcup_{b=1}^B S_{bm}$: $\forall i \neq j \Rightarrow S_{im} \cap S_{jm} = \emptyset$, если $|S_m| = N$, то всего вариантов число Стирлинга 2 порядка: $B: \{-2\} = 3$

$$S(N,B) = B \cdot S(N-1,B) + S(N-1,B-1)$$

- □ Для бинарного дерева: $2^{N-1} 1$
- Сокращение числа гипотез:
 - \square Ограничение снизу на $|S_m|$ или $|S_{jm}|$
 - □ Эвристические, жадные алгоритмы
- Пример иерархическая кластеризация гипотез (алгоритм Касса):
 - □ Строим N ветвей (каждая ветвь значение)
 - □ Рассматриваем все варианты склейки двух
 - □ Выбираем лучшую склейку по критерию
 - \square Продолжаем, пока не «склеим» все в B ветвей

Критерии разбиения на основе однородности

- Сравнить гипотезы о разбиении (внутри одного предиктора):
 - на основе прироста однородности дочерних регионов по сравнению с родительским внутри :

- Лучшие разбиения разных предикторов:
 - \square сравнивать либо по тому же критерию $\Delta i(x_k) \vee \Delta i(x_j)$, либо по нормированному $\frac{\Delta i(x_j)}{i(x_i)} \vee \frac{\Delta i(x_k)}{i(x_k)}$
- Примеры критерия однородности:
 - □ Вариации (числовой отклик)
 - □ Энтропия, Джини, ошибка классификации (категориальный отклик)

M

Критерии разбиения на основе уменьшения вариации

- Для числового отклика:
 - Выбираем гипотезу, для которой средняя взвешенная вариация (квадратичная ошибка) по дочерним узлам максимально уменьшается.
 - □ В результате «разбегаются» средние отклики по регионам и уменьшается дисперсия в них.
 - □ Получаемый эмпирический риск квадратичной функции потерь и его можно регулизировать (по регионам):

м

Критерии разбиения на основе уменьшения энтропии

- Мера неоднородности Q распределения классов в регионе R_m :
 - $p_{mk} = P(y = k | x \in R_m) = \frac{1}{|R_m|} \sum_{i:x_i \in R_m} (y_i = k)$
 - \square Q максимальна в чистом регионе, т.е. $\exists k$: $p_{mk} = 1$, $\forall k \neq k$: $p_{mk} = 0$
 - □ Q минимальна, если классы равновероятны, т.е. $\forall k : p_{mk} = 1/K$
 - \square Если отклик категориальный (не порядковый), то Q не зависит от порядка классов.
- Мера неоднородности выборки в регионе R_m на основе энтропии:

$$Q_{Entropy}(R_m) = H(Y|x \in R_m) = -\sum_{k=1}^{K} p_{mk} \log_2(p_{mk})$$

- $\ \square$ мера неопределенности (неоднородности) отклика Y в регионе R_m
- \square мат. ожидание (по классам) функции потерь: $L(p) = -\log_2(p)$
- $-\log_2(p_{mk})$ KL-дивергенция для распределения с «чистым» классом k в регионе $R_m, (0, ..., 1_k, ..., 0)$, насколько оно близко к p_{mk}

10

Information Gain (прирост информации)

■ Энтропия в родительском узле - совместная:

$$H_p(y, x \in R_p) = -\sum_{k=1}^{K} P(Y = k, x \in R_p) \log_2 P(Y = k, x \in R_p)$$

■ Энтропия в дочернем узле b — условная, неопределенность отклика, если знаем что $x \in R_b$:

$$H_b(y|x \in R_b) = -\sum_{k=1}^{K} P(Y = k|x \in R_b) \log_2 P(Y = k|x \in R_b)$$

■ Ожидаемая условная энтропия по всем дочерним узлам $1 \le b \le B$, неопределенность при условии разбиения на $R_p = R_1 \cup \dots \cup R_B$:

$$H(y|R_1, ..., R_B) = \sum_{b=1}^B P(x \in R_b) H_b(y|x \in R_b) = \sum_{b=1}^B \frac{|R_b|}{|R_p|} H_b(y|x \in R_b)$$

- Information Gain (как раз то, что мы максимизируем):
 - □ уменьшение энтропии при заданном разбиении:

$$IG(y|R_p = R_1 \cup \dots \cup R_B) = H_p(y, x \in R_p) - H(y|R_1, \dots, R_b)$$

Критерии разбиения на основе индекса Джини

- Интерпретации индекса Gini:
 - Изначально в экономике оценка неравенства населения по доходам
 - Модельный пример вероятность вытащить (с возвратом) из закрытой корзины с цветными шарами два шара разного цвета:

$$Gini(R_m) = 1 - \sum_{k=1}^{K} p_{mk}^2 = \sum_{j < k}^{K} 2p_{mk} p_{mj}$$

Пара Аналогично энтропии - мера неоднородности выборки в регионе и мат. ожидание (по классам) убывающей ф-ции потерь: L(p) = (1-p):

$$Q_{Gini}(R_m) = \sum_{k=1}^{K} p_{mk} (1 - p_{mk})$$

Интересный факт: если мера $Y = \{0,1\}$, то индекс
 Джини совпадает с вариацией

$$Gini = 1 - 2\left(\frac{3}{8}\right)^2 - 2\left(\frac{1}{8}\right)^2 = 0.69$$

$$Gini = 1 - \left(\frac{6}{7}\right)^2 - \left(\frac{1}{7}\right)^2 = 0.24$$

м

Оценка важности переменных

- Варианты оценки важности переменных (всегда на выборке):
 - Вариант 1: по каждому предиктору x_i суммирование прироста меры однородности $Gain(x_i) = \sum_{node: x_i \in node} \Delta Q_{node}(x_i)$ (Джини или Энтропии для категориального отклика или вариации для числового) по всем вхождениям переменной в дерево, т.е. по всем внутренним узлам с условиями на переменную x_i
 - Вариант 2: считаем качество полной модели (дерева) и модели, где все $x_i = missing$, сравниваем ухудшение:

$$Gain(x_i) = \frac{Q(T) - Q(T|x_i = missing)}{Q(T)}$$

□ Нормировка:

Importance
$$(x_i) = \frac{\text{Gain}(x_i)}{\max_{j} [\text{Gain}(x_j)]}$$

или

Importance
$$(x_i) = \frac{Gain(x_i)}{\sum_j Gain(x_j)}$$

Пример дерева

```
▼ DecisionTreeClassifier

DecisionTreeClassifier(max depth=5, min samples leaf=3, min samples split=5)
```

tree.fit(X, y)

Пример дерева

plot_tree(tree, fontsize=8, feature_names=iris.feature_names)
plt.gcf().set_size_inches(8, 8)

DecisionBoundaryDisplay.from_estimator(tree, X, cmap="Pastel1")
plt.scatter(*X.T, c=y, cmap="Set1")

<matplotlib.collections.PathCollection at 0x7fa63f56b1c0>

tree.feature_importances_

array([0.76047482, 0.23952518])

Статистические критерии разбиения

Недостатки критериев на основе оценки однородности	выборки:

- □ При сравнении предикторов с разной мощностью (число различных значений) тяготеют к выбору более мощного варианта
- □ При сравнении вариантов разбиения с разным числом ветвей (больше2) тяготеют к выбору большего числа ветвей
- □ В общем случае не позволяют разумно задать порог на остановку роста (например, на минимально допустимое улучшение)

Идея статистических критериев:

- Оценивать как меняются распределения отклика в дочерних узлах по сравнению с родительским, чем больше меняются, тем лучше
- \square Оценивать по p-value базовую гипотезу H_0 о том, что распределение не изменилось, чем меньше p-value, тем более мы уверены, что разбиение полезно
- \square Сравнивать гипотезы о разбиении по $logworth = -log_{10}(p_{\alpha})$
- □ Использовать порог для p-value для отбора гипотез и остановки роста
- Использовать корректировку Бонферрони для множественного сравнения гипотез

Критерий Фишера для числового отклика

- Идея из дисперсионного анализа:
 - \square Гипотеза H_0 все групповые средние в B ветвях совпадают
 - □ Считается статистика Фишера:

$$F = \left(\frac{SS_{model}}{SS_{error}}\right) \left(\frac{N-B}{B-1}\right) \sim F_{B-1,N-B}$$
, где $SS_{total} = \sum_{i=1}^{N} (y_i - \overline{y})^2$, $SS_{error} = \sum_{b=1}^{B} \sum_{i:x_i \in R_b} (y_i - \overline{y_b})^2$, $SS_{model} = SS_{total} - SS_{error}$

□ По распределению Фишера со степенями свободы B-1 и N-B находится p-value (уровень значимости) гипотезы H_0 , чем он меньше, тем увереннее мы отклоняем H_0

Критерий χ^2 для категориального отклика

- Идея из анализа таблиц частот:
 - □ Строим матрицу сопряженности для заданного разбиения (строки – ветви, столбцы – классы, ячейки – сколько наблюдений класса попало в соответствующую ветвь)
 - \square Гипотеза H_0 распределение классов в B ветвях одинаковое и совпадает с родительским, считается статистика:

$$\chi^2 = \sum_{k=1}^K \sum_{b=1}^B rac{(O_{bk} - E_{bk})^2}{E_{bk}} \sim \chi^2_{(B-1)(K-1)}$$
 , где

 O_{bk} - сколько наблюдений из класса k попало в ветвь b $E_{bk} = P_k |R_b|$ - сколько бы попало, если H_0 верна

По распределению χ_v^2 со степенями свободы v = (B-1)(K-1) находится p-value (уровень значимости) гипотезы H_0 , чем меньше тем лучше

Матрица О

7

9

<38.5 ≥38.5

293 71 .342

363 1 .342

42 294 .316

.656 .344 n=1064

Матрица *Е*

239	125
239	125
225	116

Матрица χ^2

12	23	
64	123	
149	273	

Корректировка Бонферрони

- Корректируется p-value с учетом множественного сравнения гипотез:
 - □ Для серии m сравнений нескольких гипотез, каждая с уровнем значимости α , уровень значимости всей серии $\alpha_m \leq 1 (1 \alpha)^m$
 - □ Корректировка Бонферрони домножаем уровень значимости α на число сравнений m, что тоже самое, домножаем p-value на m
 - \square Скорректированный на m сравнений критерий разбиения logworth: $\log \operatorname{worth}_m(p_\alpha) = -\log(mp_\alpha) = -\log(p_\alpha) \log(m) = \operatorname{logworth}(p_\alpha) \log(m)$

X:	3	88.5			$oldsymbol{\gamma}^2$	ν -	-log, (P)	$_m$ –	$\log_{10}(mF$
1	293	3	71		- X _V		810(-)	THE .	810 (
7	363	3	1		644	2	140	96	138
9	42	:	294					↑	
X: 17.5 36.5									
1	249	42	73		000		4.44	4500	407
7	338	25	1		660	4	141	4560	137
9	26	16	294						

M

Множитель глубины

■ В теории разбиение на глубине d также зависит от предыдущих разбиений, поэтому p-value можно корректировать по Бонферрони с учетом глубины и числа ветвей на уровнях выше

	$-\log_{10}(P)$	m	$-\log_{10}ig(m ext{P}ig)$	d	$-\log_{10}\!\left(2^d m \mathrm{P} ight)$
000	26.7	53	24.9	0	24.9
	3.12	14	1.97	1	1.67
	1.63	39	.039	1	26
	2.40	11	1.36	2	.76

- Важное преимущество деревьев решений:
 - □ Могут работать с пропусками без подстановки
- Основные подходы:
 - Строим гипотезы о разбиении без учета пропусков
 - □ Направляем пропуски по отдельной ветке (если дерево не бинарное), по самой большой ветке, по самой точной ветке, по всем веткам одновременно пропорционально их размеру
 - □ Расширяем множество гипотез разбиения проверкой: что будет, если запустить пропуски по каждой ветке b (пример справа вверху)
 - □ Суррогатные правила (пример справа внизу): No для каждого лучшего разбиения по предиктору x_i , находим разбиение по $x_{j\neq i}$, максимально согласованное (максимальное пересечения регионов дочерних узлов) с исходным. Обычно строят несколько дублирующих правил

Уровень согласия=76%

Переобучение и сложность деревьев решений

Максимальное деревочасто переобучено

Небольшое дерево часто недообучено

.

Контроль сложности деревьев решений

	Сложность	деі	оева:
--	-----------	-----	-------

- □ Обычно оценивают по числу листьев
- □ Как и у других моделей рост сложности влечет рост дисперсии и уменьшение смещения, и наоборот.
- □ Сложность можно контролировать: ограничением роста (pre-pruning) или упрощением максимального дерева обрубанием ветвей (pruning)
- Параметры ограничение роста:
 - □ Максимально допустимая глубина дерева
 - □ Минимально допустимое число наблюдений в листе
 - □ Максимально допустимое число ветвей
 - Минимально допустимое число различных значений в предикторе для формирования по нему гипотез о разбиении
 - □ Порог останова на p-value или другой нормированный критерий
 - □ Корректировка порогов отсечения с учетом глубины или числа ветвей
- Обрубание ветвей дальше

Обрубание дерева

- Процедура обрубания ветвей (или удаление слабых связей):
 - \square построение большого дерева T_0 , а затем выполнение *отсечения* для получения *поддерева* для *сокращения сложности*
- Простой подход с использование валидационного набора
 - Строим максимальное дерево и последовательно проверяем варианты обрубания листьев (из одного общего родителя) с оценкой качества поддерева на валидационной выборке
 - □ Получаем семейство поддеревьев, выбираем лучшее
 - □ Важно: критерий обрубания может не совпадать с критерием роста, например, строим дерево по IG, а упрощаем по ROC или критерию из прикладной задачи

Сложность дерева - пример

```
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_digits
```

```
digits = load_digits()
X, y = digits.data, digits.target
X.shape, np.unique(y)
```

```
((1797, 64), array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))
```

```
plt.imshow(X[0].reshape(8, 8), cmap="gray");
```



```
N = 1000 # labels are scattered evenly enough
train_X, train_y = X[:N], y[:N]
test_X, test_y = X[N:], y[N:]
```


Обрубание дерева с регуляризацией (cost-complexity/MDL)

Регуляризированный эмпирический риск:

$$Q_{\alpha}(T) = \sum_{m \in T} |T_m| \cdot Q_m(T) + \alpha |T|,$$

 Q_m - оценка неоднородности в листе $m, \ |T|$ - сложность дерева T (обычно, число листьев), мощность листа $|T_m|$ - число наблюдений

- \square Что обрубить? Если $Q_{\alpha}(t)-Q_{\alpha}(T_{t}) o 0$, то $\alpha_{eff}(t)=rac{Q(t)-Q(T_{t})}{|T_{t}|-1}$, t- узел, T_{t} его поддерево, $\alpha_{eff}(t)$ его параметр регуляризации
- Процедура обрубания
 - \square Инициализация $T^{(1)}=T$, $lpha_1=0$, i=1
 - \square Повторять: выбрать $\min_{t \in T^{(i)}} lpha_{eff}(t)$

$$\alpha_{i+1} = \alpha_{eff}(t), T^{(i+1)} = T^{(i)} - T_t^{(i)}$$

Результат:

$$\begin{array}{ll} \square & 0 = \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \Leftrightarrow \\ & T = T^{(1)} \subset T^{(2)} \subset \cdots \subset T^{(k)} = \{root\} \end{array}$$

 Можно построить «трассу» зависимости однородности Q_{α} от α_{eff} и подобрать порог кросс-валидацией или на тестовой выборке

Деревья решений как инструмент предобработки данных

- Подстановка пропусков
 - \square на основе оценок $x_i = F_{tree}(x_1, ..., x_{i-1}, x_{i+1}, ...)$
 - много достоинств: любой отклик, работа с числовыми, категориальными и пропущенными значениями других признаков, произвольные зависимости, сохранение распределений

□ недостатки: нестабильность и невысокая точность (но они тут не

важны)

x_1	x_2	x_3
8.6	14	?
?	43	1.4
6.3	22	2.7
3.8	?	?
1.4	19	1.1
4.6	63	1.0
5.5	26	2.3
?	?	?
1.7	82	2.8
6.8	23	1.8
5.8	30	1.2

$$y = x_1$$

$$\mathbf{x} = (x_2, x_3)$$

$$y = x_2$$

$$\mathbf{x} = (x_1, x_3)$$

$$y = x_3$$

$$\mathbf{x} = (x_1, x_2)$$

Деревья решений как инструмент предобработки данных

- Выделение «чистых» регионов:
 - для задач классификации с большим дисбалансом классов (PNrule), пример алгоритма:
 - 1. Р-фаза: строим дерево решений, находим самый большой и «чистый» лист (пропорция целевого класса и размер выше заданных порогов), удаляем наблюдения найденного листа из выборки, повторяем Р-фазу
 - 2. N-фаза: «очищенный» набор не такой дисбалансный, имеет смешанные области со сложными границами, в них строим гибкие точные модели (например, ансамбли или нейросети)
 - □ для «негладких» регрессий (PRIM, bump hunting)

- Отбор значимых признаков:
 - Не нужно дополнительно предобрабатывать деревья работают с пропусками, числовыми и категориальным признаками
 - Не важно насколько сложная нелинейная зависимость

Деревья решений как инструмент предобработки данных

- Преобразование предикторов с учетом отклика:
 - □ строится одномерное дерево (с одним входом)
 - значения, попавшие в листья формируют подмножества группировки (для категориальных)

отрезки дискретизации (для числовых предикторов)

Explainable AI:

- Чем модель более сложная, тем более точная и менее понятная человеку (менее интерпретируемая)
- Как получить описание не интерпретируемой модели?

Суррогатные модели:

- Строится сложная не интерпретируемая модель (например, нейросеть, сплайны или ансамбль)
- □ На ее прогнозах (а не на реальных откликах) строится суррогатное «объясняющее» дерево (можно оценить уровень его согласованности или аппроксимации исходной модели)
- На реальных откликах такое дерево не построить

Пример суррогатной модели

Дерево на исходных данных, SVM с RBF, Суррогатное дерево

Особенности классических алгоритмов построения деревьев решений

Свойства	CHAID (Kass)	CART (Breiman)	C4.5 (Quinlan)
Критерий для числ. отклика	Фишер	Вариация	нет
Критерий для кат. отклика	Хи-квадрат	Джини	Энтропия
Число ветвей	Больше или равно двум	Всегда две	Больше или равно двум
Работа с пропусками	Отдельная ветвь или перебор гипотез	Подстановка или суррогатные правила	Пропорция по веткам или подстановка
Особенности	Корректировка Бонферрони и глубина	Линейные комбинации при разбиении	Алгоритм логического «сокращения»
Обрубание вервей	Нет или по валидации	Cost-complexity	На основе ошибок

Преимущества деревьев решений

- Деревья решений имеют самую высокую интерпретируемость, считается, что они отражают процесс принятия решений людьми
- Деревья могут обрабатывать разные типы входных переменных и откликов, пропуски, относительно не чувствительны к выбросам в признаках (но чувствительны в отклике)
- Деревья не делают предположений о виде и сложности зависимости
- Есть эффективные инструменты борьбы с переобучением
- Легко адаптируются к разным задачам машинного обучения
- Быстро обучаются и применяются
- Инструмент подготовки данных

Недостатки деревьев решений

 Невысокое качество модели (особенно на гладких зависимостях, где растет сложность):

■ Нестабильность модели (жадный алгоритм):

