Criteria- RNA stability network

Wednesday, October 30, 2019 4:54 PM

Task	Tool
Alignment	HISAT2
Read count	HTSeq-count
Measure RNA Stability	REMBRANDTS

Workflows:

1. Generating read count files:

CRIES (Counting Reads for Intronic and Exonic Segments) compatible with REMBRENDTS https://github.com/csglab/CRIES

o Step 1. Creating GTF annotation files

REQUIRIES: GTF files

- For the purpose of inferring stability from RNA-seq, we only consider constitutive exons, i.e. exons that are present in all isoforms of a gene. We also consider only isoforms that are supported by both the Ensembl and Havana annotations, as provided in the GTF file.
- Step 2. Mapping reads REQUIRIES: fastq files
 - We use HISAT2 for mapping RNA-seq reads, keeping only alignments with MAPQ score ≥30
- Step 3. Counting reads that map to intronic or exonic segments of each gene REQUIRIES: bam files
 - We use HTSeq-count for counting reads.
 - For counting exonic reads,
 - we run the HTSeq-count using the "intersection-strict" mode, to ensure that the reads that are counted entirely fit within the mature mRNA sequence, and do not overlap alternatively spliced exons.
 - For intronic reads,
 - □ we run the HTSeq-count using the "union" mode, since any read that even partially overlaps an intronic region likely originates from pre-mature RNA.
- Step 4. Normalization

REQUIRIES: count tables

- In order to obtain stability measurements we can use REMBRANDTS package for
 - □ read count normalization,
 - □ gene filtering,
 - removing bias
- REMBRANDTS internally uses DESeq, and performs linear regression of

$$\Delta_{exon}$$
- Δ_{intron} vs. Δ_{intron}

to obtain residuals that correspond to unbiased estimates of stability.

- => In the read count files, each row corresponds to one gene, with the
 - o First column representing the gene ID
 - The second column representing the total number of reads mapped to that gene (either

intronic or exonic reads).

2. Generate cystoscope network