Computer Systems and Software

Hardware: Motherboard, CPU, RAM, Storage, Peripherals

Software: Firmware, System, Server-Side, Applications

SoftUni Team
Technical Trainers

Have a Question?

Table of Contents

- 1. Computer Systems and Software
- 2. Computer Hardware
 - Motherboard, CPU, RAM, Storage, Peripherals
- 3. Computer **Software**
 - Firmware, System Software and OS,
 Application Software
 - Web Apps, Desktop Apps, Mobile Apps

Computer Systems

Components and Functionality

What is a Computer System?

- Computer system: integrated bundle of hardware and software components, e. g. smartphone, POS terminal, laptop
 - Enables efficient data input, processing, and output
 - Comprises interconnected software and hardware components
 - Human-computer interaction for the end-users / APIs for machine-to-machine interaction
- Key elements:
 - Hardware: RAM, input/output devices, storage devices, CPU
 - Software: operating systems, drivers, apps, games

Evolution

- Early computing: mechanical and electromechanical devices (e.g., Abacus, Babbage's Analytical Engine, ENIAC)
- Advancements in technology: transistors, integrated circuits, microprocessors (e.g., mainframe computers, minicomputers, personal computers)
- Modern era: pervasive computing, IoT, cloud computing, edge computing, rise of AI and machine learning

Computer Hardware

Motherboard, CPU, Memory, Storage, Peripherals

Computing Machines: Concepts

- Hardware refers to the physical components of a computer
- Central Processing Unit (CPU) microprocessor
 - Executes the code (programs)
 - All data processing operations
- Input devices
 - Enter data
- Output devices
 - Get information

Computer System Hardware

Motherboard

Backbone of a Computer System

What is a Motherboard?

- Motherboard central hub for hardware connectivity
 - Communication between all hardware components
- Compatibility considerations
 - Each motherboard is designed to work with specific types of processors and memory
- Expansion slots for enhanced functionality
 - Video cards for improved graphics performance
 - Sound cards for enhanced audio capabilities
 - Network cards for better internet connectivity

Motherboard Components

- CPU socket
- RAM slots
- Power connectors
- Chipset
- Expansion slots
- SATA connectors
- USB connectors
- Bluetooth module

CPU (Microprocessor)

Central Processing Unit

What is CPU?

- CPU the brain of the computer
 - Executes calculations, actions, and runs programs
 - Provides processing power and instruction control
- Three core components
 - Control Unit (CU)
 - Manages instruction flow and coordinates hardware functions
 - Arithmetic and Logical Unit (ALU)
 - Performs arithmetic and logic operations
 - Memory Unit (MU)
 - Stores data, programs, and information

CPU Parts Workflow

Memory and Storage

Storing Information in a Computer

Types of Memory

Primary memory

- RAM read / write: stores data, required by the CPU during the execution of a program
- ROM read-only: stores crucial data for the system to operate,
 like the essential program for the computer boot

Secondary memory

- Not accessed directly by the processor
- Examples: hard drive, SSD, flash, optical drive, USB drive

Cache memory

 Part of the CPU, very fast: temporarily stores frequently used instructions and data to speed-up access

Memory Hierarchy

Peripheral Devices

Expanding Computer's Functionality

What is a Peripheral Device?

 Any connected device that expands computer's capabilities with additional functionality

- Three main categories:
 - Input devices → read data, e.g. keyboard, mouse, microphone
 - Output devices → write data,
 e. g. speakers, printer, monitor
 - Input/output devices → mixed,
 network card, hard drive, touchscreen monitor

Peripheral Devices Control

- Device controller
 - A physical device for connection between a peripheral device and the computer, e. g. USB controller
- Device driver
 - System software, which enables the communication and data transfer between devices and the system

Device Manager in MS Windows

Computer Software

Firmware, System Software, Applications

Overview of Computer Software

- Computer software
 - Computer programs, instructions, and data that enable a computer system to perform specific tasks
- Types of software:
 - Application software: help the business to run, e.g. email software, spreadsheets, word processing, CRM systems, etc.
 - System software: interacts with and manages the hardware
- Standalone apps vs. software systems (client + server)

Software Stack

Applications (e. g. image editor, spreadsheet, chat)

Middleware (databases, Web servers, app servers)

Operating System (OS)

OS user interface (Windows desktop, console, GNOME)
OS services (audio, networking, printing, file sharing)
OS drivers (e.g. keyboard driver, camera driver, audio driver)
OS kernel (e.g. Linux kernel, Windows kernel)

Hypervisor (e.g. Hyper-V, VirtualBox, KVM)

Firmware (BIOS, router firmware, printer firmware)

Hardware (laptop, smartphone, WiFi router)

Application software

System software

Layers of Software

- Firmware and embedded software
 - Low-level software used to operate a hardware device
- System software
 - Manages and controls hardware, platform for applications
 - Operating systems (OS) Windows, Linux, macOS, Android
 - Hypervisors runs virtual machines (VMs) in the host OS
- Application software
 - Business applications, office apps, multimedia, communication
 - Several types: Web apps, desktop apps, mobile apps

Software Systems

Standalone apps

- Run locally, store their data locally, do not need Internet
- Examples: Windows Calculator, Windows Explorer, Minesweeper

Software systems

- Consists of several components (e. g. client + server)
 - Example: mail server (remote) + mail client app (local)
- Cloud apps: hold all user data in the cloud + local client
 - Example: Google Docs, Discord, Trello, Canva

Front-End and Back-End

- Front-end and back-end separate the modern apps into client-side (UI) and server-side (data) components
- Front-end == client-side components (Desktop / mobile app / Web browser)
 - Implement the user interface (UI)
- Back-end == server-side components (data and business logic APIs)
 - Implements data storage and processing

HTTP connects front-end with back-end

Firmware

Bridge between Hardware and Software

What is Firmware?

- Firmware permanent, low-level software,
 embedded in a device's read-only memory (ROM)
 - Controls device's basic functions and provides a stable foundation for higher-level software
 - Example: WiFi router's firmware, coffee machine firmware
- Functions of firmware
 - Hardware initialization during the boot process
 - Management of low-level hardware operations (e. g. device initialization, hardware diagnostics, and system booting)

Firmware: Devices and Use Cases

- Examples of firmware applications
 - BIOS / UEFI in laptops and desktop computers
 - Firmware in routers, printers, scanners
 - Embedded systems, such as IoT devices
- Firmware updates
 - Most devices allow firmware updates to improve functionality or fix issues
 - Can be critical for security and performance

System Software

Foundation for Application Software

What is System Software?

- Software designed to manage and control computer hardware, providing a platform for application software
- Examples of system software:
 - Hypervisors runs virtual machines (VMs) in the host OS
 - Operating systems (OS) Windows, macOS, Linux, Android
 - Device drivers software that enables communication between hardware and operating system), e. g. mouse driver
 - System utilities tools for system maintenance and optimization, e. g. anti-virus, task manager, print spooler

Operating Systems

- Windows, macOS, Linux, Android, iOS
- Manage the hardware and software resources
- Manage processes (concurrently running apps)
 - Distribute the system resources between all processes
- Manage file system and memory (RAM)
- Manage users, security and access control
- System updates and maintenance

Device Drivers

In Windows, the
 "Device Manager"
 lists all devices,
 drivers, etc.

System Utilities

- Tools that help maintain and optimize a computer system
 - Antivirus and malware protection (e.g. Winows Defender)
 - System backup and recovery (e. g. Macrium Reflect)
 - Disk cleanup and defragmentation (e. g. CCleaner)
 - Performance monitoring and diagnostics (Task Manager)
 - Software updates and patches (e. g. Windows Update)
 - System hardware information (e. g. CPU-Z)
 - System logs viewer (e. g. Windows Events Viewer)

Server-Side Software (Backend)

Facilitating Backend Operations and Web Services

Server-Side Software Examples

- Server-side software (backend software) runs on a remote server, processes requests and delivers data to client devices
- Common types of server-side software
 - Web servers (e. g. Apache, Nginx, IIS)
 - Database servers (e. g. MySQL, PostgreSQL, MongoDB)
 - Application servers / runtimes (e. g. Tomcat, Node.js, .NET Core)
 - Mail servers (e. g. Microsoft Exchange Server, Postfix)
 - File servers (e. g. Windows File Server, Samba)
 - Authentication servers (e. g. FreelPA, Active Directory)

The Client-Server Model in Web Apps

Server-Side Software (Backend)

Server-Side vs. GUI

- Server-side software (backend software):
 - Executes on a remote server, rather than on the user's device
 - Handles data processing, storage, and retrieval
 - Powers Web applications, backend APIs, cloud services, etc.
 - Requires efficient resource management for optimal performance
- Graphical User Interface (GUI) / front-end apps:
 - Executes on the user's device (desktop, mobile, or Web)
 - Providing seamless and visually appealing user experience
 - Can be Web apps, desktop apps, or mobile apps

Application Software

Apps for the End Users

What is Application Software?

- Application software is designed for users to perform specific business tasks, catered to their individual needs
- Examples of application software
 - Productivity tools (Microsoft Office, Google Workspace)
 - Multimedia software (Adobe Photoshop, VLC Media Player)
 - Communication apps (Zoom, WhatsApp, MS Teams)
 - Web browsers (Google Chrome, Mozilla Firefox, Safari)
 - Games (Fortnite, League of Legends)

Web Apps

Applications, Accessed from the Web Browser

Web Applications

- What are Web apps?
 - Accessed through a Web browser with an active Internet connection
 - Platform-independent
 - Accessible on any device with a Web browser
 - Desktop / mobile Web browsers
 - Automatic updates (always up-to-date)
 - No need for manual installation or updating

Web Applications Benefits

- Benefits of Web apps
 - Scalability: easily accommodate a growing user base
 - Centralized data storage: simplifies data management and backup
 - Lower device requirements: minimal hardware needed (processing is done on the server-side)
 - Easier collaboration: real-time collaboration
 - Cross-platform compatibility: works across various operating systems and devices

Testing Challenges for Web Apps

- Compatibility if the app works consistently across different
 Web browsers and different screen sizes (responsive design)
- Usability testing for accessibility, intuitive use on different devices, and ease of navigation
- Network conditions Web apps rely on an active internet connection → testing under different network conditions
- Security Web apps deal with sensitive data → testing for vulnerabilities such as XSS attacks and SQL injection
- Performance performance can be affected by network speed / server load / browser capabilities → testing for scalability / load capacity

Trello Project Management Web App

Desktop Apps

Applications Running Locally on Your Laptop

Desktop Applications

- What are desktop apps?
 - Installed and run locally on a user's computer
 - Store their data locally or remotely (depends)
 - Offline access
 - Can be used without an Internet connection
 - More features
 - Often more feature-rich than Web apps
 - Better integrated with the host OS

Desktop Applications Benefits

- Benefits of desktop apps
 - Performance: faster processing and response time, as tasks are executed locally
 - Customization: easily tailored to individual user preferences and needs
 - Integration: compatible with other locally installed software and hardware
 - Cost-effective: one-time purchase or licensing fees, instead of recurring subscription costs (depends)

Testing Challenges for Desktop Apps

- Installation / uninstallation including any dependencies or prerequisites
- Performance testing on different hardware configurations – processors, memory, and graphic cards
- Compatibility testing for different operating systems and their different versions
- User interface testing desktop apps often have complex UI that need to be thoroughly tested
- Integration testing with other desktop applications

Trello Project Management Desktop App

Mobile Apps

Applications Running Locally on Mobile Device

Mobile Applications

- What are mobile apps?
 - Designed specifically for smartphones and tablets
 - Accessible through dedicated app stores
 (e.g., Google Play, Apple App Store)
 - Optimized for touchscreen interfaces and mobile device features (adaptable UI design for different screen sizes)
 - Can work offline, online or mixed

Mobile Applications Benefits

- Benefits of mobile apps
 - Portability: access apps and data on-the-go, anytime, anywhere
 - Push notifications: real-time updates and alerts for improved user engagement
 - Device-specific features: leverage device capabilities like GPS, camera, and sensors
 - Offline functionality: some apps can operate without an Internet connection
 - Streamlined user experience: tailored for smaller screens and touch-based interactions

Testing Challenges for Mobile Apps

- Compatibility across different devices and OS versions is crucial for mobile apps (many different devices and versions in use)
- User interface testing design and layout has significant impact on the user's experience on a smaller screen
- Performance testing performance may be affected by
 limited processing power and memory on the user's device
- Battery life testing to ensure that the app does not significantly drain the user's device battery

Trello Project Management Mobile App

Summary

- Hardware is the physical part
 - Main computer parts: motherboard (ties together all components), CPU (code execution), input / output devices
- Software programs, running in the computer
 - Firmware and system software (OS, hypervisors)
 - Server-side software (back-end) vs. GUI / front-end apps
 - Application software (end-user apps): Web, Desktop, Mobile apps
 - Software systems (client + server) and cloud apps

Questions?

SoftUni Diamond Partners

Coca-Cola HBC Bulgaria

Решения за твоето утре

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg/
- © Software University https://softuni.bg

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity
- Software University Forums
 - forum.softuni.bg

