

Rafbók

REIT rafeindatækni 17. kafli Common-gate Flemming Madsen

Þetta hefti er án endurgjalds á rafbókinni.

www.rafbok.is

Allir rafiðnaðarmenn og rafiðnaðarnemar geta fengið aðgang án endurgjalds að rafbókinni.

Heimilt er að afrita textann til fræðslu í skólum sem reknir eru fyrir opinbert fé án leyfis höfundar eða Rafmenntar, fræðsluseturs rafiðnaðarins. Hvers konar sala á textanum í heild eða að hluta til er óheimil nema að fengnu leyfi höfundar og Rafmenntar.

Höfundur er Flemming Madsen.

Umbrot í rafbók og teikningar Bára Laxdal Halldórsdóttir.

Vinsamlegast sendið leiðréttingar og athugasemdir til höfundar Flemmings Madsen <u>flemmma@icloud.com</u> eða til Báru Laxdal Halldórsdóttur á netfangið <u>bara@rafmennt.is</u>

Efnisyfirlit

Formúlur og útskýringar fyrir common gate - dæmin	3
Dæmi 17.1	5
Dæmi 17.2	6
Dæmi 17.3	7

Formúlur og útskýringar fyrir common gate - dæmin

Svörin við öllum útreikningum eru miðuð við þetta formúlublað. Leitast er við að nota þá formúlu sem gefur sem nákvæmasta útkomu miðað við þær upplýsingar sem gefnar eru upp í dæminu. Það þýðir að fleiri upplýsingar gefa nákvæmari útkomu. Munur er á útreikningum með mismunandi formúlum. Athugaðu að spennumögnunarútreikningar geta verið ónákvæmir vegna mismunar á milli fet-transistorum af sömu gerð.

Ath.
$$R_L = R_{\acute{a}} || R_d$$

Tengimyndin sýnir skammstafanir og heiti sem notuð eru í formúlunum.

Cs er stundum teiknað eins og myndin hér sýnir.

31.03.2020 3 www.rafbok.is

	Venjuleg notkun	Nákvæmari, fleiri upplýsingar
	Yfs eða Idss og -Ugsoff er þekkt	Yos er þekkt
Yfso = gmo Útreikningur á Yfsmax	$Yfso = \frac{2 \cdot Idss}{-Ugsoff}$	
Yfsmax, sem aðlagað er að I _d rásarinnar, Yfs er notað í útreikningum á rásum.	$Yfs = Yfso \cdot \left(1 - \frac{Ugs}{Ugsoff}\right)$	
Drain-straumurinn I _d	$Id = Idss \cdot \left(1 - \frac{Ugs}{Ugsoff}\right)^2$	
Spennumögnun Av [sinnum]	$Av = Yfs \cdot R_L$	$Av = \frac{Yfs \cdot R_L}{1 + Yos \cdot (R_L + Rgen) + Yfs \cdot Rgen}$
Gain = Av í dB	$G = 20 \log Av$	
Inngangs-impidans Z_{inn}	$Zinn = R_S \ \frac{1}{Yfs}$	$Zinn = R_S \left\ \frac{1}{Yfs + Yos} \right\ $
$\acute{\text{U}} tgangs\text{-}impidans~Z_{\acute{\text{u}}t}$	Z ú $t \approx R_d$	$Z\acute{u}t = R_d \left\ \frac{1}{Yos} \right\ $
Inngangsþéttir C _{inn} fn = neðsta tíðni -3dB	$Cinn = \frac{1}{2 \cdot \pi \cdot fn \cdot Zinn}$	
Útgangsþéttir C _{út}	$C\acute{\mathbf{u}}t = \frac{1}{2 \cdot \pi \cdot fn \cdot (R_d + R_{\acute{\mathbf{u}}})}$	$C\acute{\mathbf{u}}t = \frac{1}{2 \cdot \pi \cdot fn \cdot (R\acute{\mathbf{a}} + Z\acute{\mathbf{u}}t)}$

Dæmi 17.1

- A. Merktu inn og útgang á tengimyndinni. Umfram inn eins og það er.
- B. Teiknaðu vinnulínu og vinnupunkt inn á línuritið.
- C. Reiknaðu hve mörg Ω source-viðnámið Rs er.
- D. Reiknaðu út hve mörg Ω drain-viðnámið Rd er. Uds = 12 V
- E. Reiknaðu út spennumögnun rásarinnar.
- F. Reiknaðu út inngangs-impedans rásarinnar (Zinn).
- G. Reiknaðu út útgangs-impedans rásarinnar (Zút).
- H. Útskýrðu hvers vegna efri marktíðni rásarinnar er miklu hærri en í common source-rás með sama vinnupunkti.

Dæmi 17.2

A. Reiknaðu út drain-strauminn Id samkvæmt þessari formúlu:

$$Id \approx \frac{Idss}{2}$$

B. Reiknaðu út forspennuna – Ugs samkvæmt þessari formúlu:

$$-Ugs = \frac{-Ugsoff}{4}$$

- C. Reiknaðu út hve mörg Ω source-viðnámið Rs er.
- D. Reiknaðu út hve mörg Ω drain-viðnámið Rd er, ef helmingur drifspennunnar er milli drain og source.
- E. Reiknaðu inngangs-impedans rásarinnar.
- F. Reiknaðu útgangs-impedans rásarinnar.
- G. Reiknaðu útgangsspennu rásarinnar.
- H. Reiknaðu hve mörg dB spennumögnun rásarinnar er.
- I. Reiknaðu neðri marktíðni (-3dB) rásarinnar.

Dæmi 17.3

- A. Reiknaðu út source-spennuna Us.
- B. Reiknaðu út drain-spennuna Ud.
- C. Reiknaðu út forspennuna -Ugs.
- D. Reiknaðu út inngangs-impedans rásarinnar Zinn.
- E. Reiknaðu út útgangs-impedans rásarinnar Zút.
- F. Reiknaðu út hve mörg dB spennumögnun rásarinnar er.
- G. Reiknaðu út neðri marktíðni rásarinnar. Mundu að tíðnin sem er hæst ræður ferðinni.