DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf)

CUESTIONARIO DE LA TERCERA PRÁCTICA (Modelo B)

Para	realizar	este	cuestionario	nos	avudaremos	de	las	funciones	
1 ara	Lanzar	CDUC	Cucsulonanio	1100	ayadarcinos	uc	100	Tunciones	•

$$f(x) = \frac{x^3 - 3x^2 + x + 1}{x^2 + x - 1}$$
, $g(x) = 2x\cos(x) + x^2$, $h(x) = \sin^4(x) + \cos^4(x)$

que debes introducir como funciones D5W en la línea de edición.

1.	Determina,	en	forma	exacta,	las	tres	raíces	de	f(x)	:).	Ordénalas	de	menor	\mathbf{a}	mayor:

$$x_1 = \boxed{ }$$
 , $x_2 = \boxed{ }$, $x_3 = \boxed{ }$

2. La función f(x) es negativa para los valores de $x \in \mathbb{R}$ que se encuentran en el conjunto (unión de intervalos)

1	Γ٦		Γ	٦	1	ı
$-\infty$,		,			,	
]	LJ	·				

3. Utiliza las propiedades de las derivadas para deducir que f(x) + 2x es estrictamente creciente en

$$\bigg] \ - \ \infty, \bigg[\ \cup \ \bigg] \bigg[\ \cup \ \bigg] \ , + \infty \ \bigg[$$

4. Observa que la función g(x).
tiene una cantidad infinita de máximos y de mínimos relativos y determina el máximo y el mínimo relativo más próximo al origen de coordenadas. Encuentra la ecuación de la recta tangente en el punto correspondiente a x=0.

$$M = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$
, $m = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$

Ecuación de la recta tangente en x = 0:

¿En cuántos puntos corta la recta tangente a la función? En puntos .

5. Obtén el valor aproximado (con 15 decimales) de la abscisa del punto donde se alcanza el máximo relativo para h(x) en el intervalo [1,2]

$M \approx$	

Equipo \mathbf{n}^o

APELLIDOS: NOMBRE: GRUPO: