The structure of natural numbers

is helpful for proving properties $\forall n[n \in \mathbb{N}: P(n)]$

The structure of natural numbers

On natural numbers we can define a notion of a successor, a mapping

$$s: \mathbb{N} \to \mathbb{N}$$

by
$$s(n) = n+1$$

The successor mapping imposes a structure on the set that enables us to count:

- 1) there is a starting natural number 0
- 2) for every natural number n, there is a next natural number s(n) = n+1.

Cardinality

Cardinals

Def.

Two sets A and B have the same cardinality (are equinumerous) if there is a bijection $f:A \rightarrow B$. Notation A \sim B, or |A| = |B|.

Prop.

The relation ~ is an equivalence relation on sets.

Def.

A set A has at most as large cardinality as a set B if there is an injection $f:A \rightarrow B$. Notation $|A| \leq |B|$.

Def.

A set A has at least as large cardinality as a set B if there is a surjection $f:A \rightarrow B$. Notation $|A| \ge |B|$.

Def.

A set A has smaller cardinality than a set B if there is an injection $f:A \rightarrow B$ and there is no surjection $f:A \rightarrow B$. Notation |A| < |B|.

 $|A| = [A]_{\sim}$

cardinal
numbers are
~ equivalence
classes

Theorem (Cantor)

If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.

Operations on cardinals

Def.

Let A and B be two disjoint sets. Then $|A| + |B| = |A \cup B|$.

Def.

Let A and B be two sets. Then $|A| \cdot |B| = |A \times B|$.

Def.

Let A and B be two sets. Then $|A|^{|B|} = |A^B|$ where A^B is the set of all functions from B to A, i.e. $A^B = \{f \mid f: B \rightarrow A\}$.

Prop.

Let A be a set. Then $|\mathcal{P}(A)| = 2^{|A|}$.

 $|A| = [A]_{\sim}$

cardinal
numbers are
~ equivalence
classes

Note: $2 = |\{0,1\}|$

Finite sets, finite cardinals

We write \mathbb{N}_k for the set $\{0,1,...,k-1\}$. Then $\mathbb{N}_0=\emptyset$.

We will also write k for $|\mathbb{N}_k|$.

Def.

A set A is finite if and only if $|A| = |N_k|$, for some $k \in \mathbb{N}$. We write then |A| = k.

Hence

A set A is finite if and only if there is a natural number $k \in \mathbb{N}$ and a bijection $f: A \to \mathbb{N}_k$.

 $|A| = [A]_{\sim}$

cardinal
numbers are
~ equivalence
classes

if and only if A has k elements, for some $k \in \mathbb{N}$

E.g. If |A| = k and |B| = mfor some k,m $\in \mathbb{N}$ then $|AxB| = k \cdot m$

The operations on cardinals when restricted to finite cardinals coincide with the operations on natural numbers!

This justifies the notation.

Infinite, countable and uncountable sets

Time for a video!

Hilbert's infinite hotel :-)

Infinite, countable and uncountable sets

We write ${}_{0}\aleph$ for the cardinality of natural numbers. Hence ${}_{0}\aleph = |\mathbb{N}|$.

Def. A set A is countable iff $|A| = _0N$.

Prop. N is countable.

 \mathbb{Z} is countable.

 \mathbb{Q} is countable.

Def. A set is infinite iff $|A| \ge 0N$.

A set is uncountable iff |A| > 0.

op. $\mathbb R$ is uncountable.

|A| = [A]~

cardinal
numbers are
~ equivalence
classes

Hence, every countable set is infinite

We write c for $|\mathbb{R}|$

Prop.

Def.

Cardinals are unbounded

Theorem (Cantor)

For every set A we have $|A| < |\mathcal{P}(A)|$.

Hence, for every cardinal there is a larger one.

