

A Clan Seeking the Unknown Horizons of Mathematics

Infinite Series: Level 3 - Tutorial Questions

- 1. The sum of the series $\sum_{n=1}^{\infty} \left[(n+1)^{\frac{1}{5}} n^{\frac{1}{5}} \right]$ is
 - (a) less than -1
 - (b) equal to -1
 - (c) greater than -1 but less than 2
 - (d) none of the above
- $2. \lim_{n \to \infty} \sum_{k=0}^{n} \frac{2k}{k^2 + n^2} =$
 - (a) 0
 - (b) $\log 2$
 - (c) 2
 - (d) ∞
- 3. Which of the following series are convergent?
 - (a) $\sum_{n=0}^{\infty} \frac{\log n}{n^{\frac{3}{2}}}$
 - (b) $\sum_{n=0}^{\infty} \frac{n^2}{n^{n!}}$
 - (c) $\sum_{n=0}^{\infty} \frac{1}{n \log n}$
 - (d) $\sum_{n=0}^{\infty} \frac{e^n}{n^{100}}$
- 4. Let $x_n \in \mathbb{R}$ such that $\sum_{n=1}^{\infty} x_n = -5$. Then
 - (a) $\lim_{n\to\infty} x_n = 0$
 - (b) there exists an $m \in \mathbb{N}$ such that $x_n \leq 0$ for all n > m
 - (c) $\sum_{n=0}^{\infty} |x_n| = 5$
 - (d) $|x_n| \le 5$ for all $n \in \mathbb{N}$
- 5. Which of the following series are convergent?
 - (a) $\sum_{n=1}^{\infty} \frac{(-1)^n + \frac{1}{2}}{n}$
 - (b) $\sum_{n=1}^{\infty} e^{-n} n^2$

(c)
$$\sum_{n=1}^{\infty} \frac{1+2+\dots+n}{1^2+2^2+\dots+n^2}$$

(d)
$$\sum_{n=1}^{\infty} \frac{1.2.3}{4.5.6} + \frac{7.8.9}{10.11.12} + \dots$$

- 6. The largest interval I such that the series $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$ converges whenever $x \in I$ is equal to
 - (a) [-1,1]
 - (b) [-1.1)
 - (c) (-1,1]
 - (d) (-1,1)
- 7. Let $\sum a_n$ be a convergent series. Let $b_n = a_{n+1} a_n$ for all $n \in \mathbb{N}$. Then
 - (a) $\sum b_n$ should also be convergent and $(b_n) \to 0$ as $n \to \infty$
 - (b) $\sum b_n$ need not be convergent and $(b_n) \to 0$ as $n \to \infty$
 - (c) $\sum b_n$ is convergent but (b_n) need not tend to zero as $n \to \infty$
 - (d) none of the above statement is true
- 8. Consider the real sequences (a_n) and (b_n) such that $\sum a_n b_n$ converges. Which of the following statements is true?
 - (a) If $\sum a_n$ converges, then (b_n) is bounded
 - (b) If $\sum b_n$ converges, then (a_n) is bounded
 - (c) If (a_n) is bounded, then (b_n) converges
 - (d) If (a_n) is unbounded, then (b_n) bounded
- 9. Which of the following series converge?

(a)
$$\sum_{n=1}^{\infty} \left(\frac{\log n}{n^{1+2\epsilon}} \right)$$

(b)
$$\sum_{n=1}^{\infty} \left(\frac{(\log n)^2}{n^{1+2\epsilon}} \right)$$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{n^3 + n} \right)$$

(d)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$$

- 10. The set of all values of a for which the series $\sum_{n=0}^{\infty} \frac{a^n}{n!}$ converges is
 - (a) $(0, \infty)$

 - (b) $(-\infty, 0]$ (c) $(-\infty, \infty)$
 - (d) (-1,1)
- 11. Consider the following statements.

$$S_1$$
: $\sum_{n=3}^{\infty} \frac{1}{(\log \log n)^{\log n}}$ is a convergent series

$$S_2$$
: $\sum_{n=3}^{\infty} \frac{1}{n^{\log \log \log n}}$ is a convergent series.

Which of the following statements are true?

(a) S_1 and S_2 are true

- (b) S_1 is true but not S_2
- (c) S_2 is true but not S_1
- (d) Neither S_1 nor S_2 is true
- 12. Let $\sum a_n$ be a divergent series of positive terms. Then it follows that
 - (a) $\sum_{n} a_n^2$ is also divergent
 - (b) the sequence (a_n) does not converge to 0
 - (c) the sequence (a_n) is not bounded
 - (d) $\sum_{n=0}^{\infty} \sqrt{a_n}$ is also divergent
- 13. The series $\sum_{n=1}^{\infty} \frac{n+1}{n^p}$ is convergent for
 - (a) 0
 - (b) 1
 - (c) p = 2
 - (d) p > 2
- 14. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ is
 - (a) convergent
 - (b) divergent
 - (c) conditionally convergent
 - (d) absolutely convergent
- 15. The series $\frac{2}{1^2} + \frac{3}{2^2} + \frac{4}{3^2} + \frac{5}{4^2} + \frac{5}{4^2}$
 - (a) conditionally convergent
 - (b) absolutely convergent
 - (c) absolutely divergent
 - (d) none of these
- 16. Consider the statements

 - (i) The series $\sum \sin \frac{1}{n}$ is convergent (ii) The series $\frac{1.2}{3^2.4^2} + \frac{3.4}{5^6.6^2} + \frac{5.6}{7^2.8^2}$ $+ \dots$ is convergent

Then

- (a) both the statements (i) and (ii) are true
- (b) (i) is true and (b) is false
- (c) (i) is false and (b) is true
- (d) neither (i) nor (ii) is true
- 17. If $u_n = \sqrt{n+1} \sqrt{n}$ and $v_n = \sqrt{n^4 + 1} n^2$, then
 - (a) $\sum_{n=0}^{\infty} u_n$ converges but $\sum_{n=0}^{\infty} v_n$ diverges
 - (b) $\sum_{n=1}^{\infty} u_n$ diverges but $\sum_{n=1}^{\infty} v_n$ converges
 - (c) $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ both converges

- (d) $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ both diverges
- 18. For the value of x the infinite series $\sum \frac{\left(1+\frac{1}{n}\right)^{n^2}}{x^n}$ converges?
 - (a) x < e
 - (b) x > e
 - (c) x = e
 - (d) x = 1
- 19. Let $a_n = \sin \frac{1}{n^2}$, $n = 1, 2, \dots$, then
 - (a) $\lim_{n\to\infty} a_n = 1$
 - (b) $\sum_{n=1}^{\infty} a_n$ converges
 - (c) $\lim_{n\to\infty} \sup a_n \neq \lim_{n\to\infty} \inf a_n$
 - (d) $\sum_{n=1}^{\infty} a_n$ diverges
- 20. Which of the following is a convergent series?
 - (a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1} \sqrt{n}}$
 - (b) $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$
 - (c) $\sum_{n=1}^{\infty} (-1)^n \log n$
 - (d) $\sum_{n=1}^{\infty} \frac{\log n}{n}$