

IRKGL16: Implicit RK Solver For High Precision Numerical Integration

Context

- We focus on solving non-stiff ODEs with high accuracy
- Most numerical integration of ODEs is performed with double-precision arithmetic (64-bit) but some require extra precision
- Examples: chaotic problems, integration over long time periods,...
- **julia** language supports **arbitrary precision number systems** for fast solving with high accuracy

Motivation

- Develop a new solver written in Julia
 - **Contribution** to DifferentialEquations.jl ecosystem
- Show that Implicit methods can be more efficient than explicit ones
- IRKGL16 implicit solver (an 8-stage IRK scheme based on Gauss-Legendre nodes) can take advantage of modern computer technology:
 - Parallelism
 - Mixed-precision arithmetic

M. Antoñana, E. Alberdi, J. Makazaga and A. Murua
University of Basque Country
Applied Mathematics

General First Order ODE Problems

$$\frac{du}{dt} = f(u, t)$$

Challenge: improve efficiency of DifferentialEquations.jl's Vern9 algorithm

Discrete NonLinear Schrödinger (NLS) with N=5

Restricted Three Body Problem (RTBP)

Conclusions from experiments

- IRKGL16 is more efficient than Vern9 for high precision computations
- Mixed-precision arithmetic improves performance of IRKGL16 solver
 Combining quadruple precision (128-bit) arithmetic with double precision arithmetic (64-bit)

Second Order ODE Problems
$$u=(q,v), \quad \frac{dq}{dt}=f(v), \quad \frac{dv}{dt}=g(q,t)$$

Challenge: improve efficiency of DifferentialEquations.jl's DPRKN12 algorithm

Pleiades Problem (PLEI)

Solar-System Problem (SSP)

Conclusions from experiments

- PLEI: IRKGL16-MIX (4 threads) is more efficient than DPRKN12 for high precision computations
 Multithreading version of IRKGL16 solver based on stage-wise parallelization
- SSP: **IRKGL16 fixed-step size** computation conserves energy better than **DPRKN12** (for comparable execution time) for long time integration

Summary

https://github.com/mikelehu/IRKGaussLegendre.jl

Conclusions

About julia

- Julia's high-level syntax allows good productivity and well organized code
- DifferentialEquations.jl ecosystem offers functionality for easy integration of **new methods**

About IRKGL16

- It is **competitive for high-accuracy computations** that exceeds double precision arithmetic (tol<1e-16)
- Mixed-precision arithmetic and multihreading enhance efficiency of the solver

Future work

- Fully Integrate as an algorithm on the common interface of DifferentialEquations.jl
- Implementation of parallelized implicit ODE solvers for large ODE systems

Acknowledgments

- This work has received funding from Department of Education of the Basque Government through MATHMODE Research Group (IT1294-19)
- Thanks to **Chris Rackauckas** for his help throughout this project