

In air

Overfitting

A machine learning model performs well on training data but poorly on new data

Deep learning: capacity to learn intricate patterns from datasets

Underfit Model

Performs poorly on both the train and test data.

Overfit Model

Performs well on the train data but poorly on the test data.

Optimal Model

Performs well on both the train data and test data

How do you overcome overfitting in deep learning?

Techniques to overcome Overfitting

Reducing the complexity

Using regularization techniques

Adding more data to train set

Early stopping technique

Techniques to overcome Overfitting

Reducing the complexity

Using regularization techniques

Adding more data to train set

Early stopping technique

Reducing the complexity: Drawback

 Model may not capture nuances from complex datasets with lesser layers.

Reducing the complexity: Strategy

General Strategy:

 Maximize data capture, even at the risk of complex model with overfitting

Techniques to overcome Overfitting

Reducing the complexity

Using regularization techniques

Adding more data to train set

Early stopping technique

Adding more data to train set

More relevant data better model quality!

Data Augmentation

Data Augmentation

This method generates synthetic data resembling the current dataset.

Techniques to overcome Overfitting

Reducing the complexity

Using regularization techniques

Adding more data to train set

Early stopping technique

Regularization

Regularization is a technique that reduces the complexity of the model.

Regularization Technique: L2 Penalty

The L2 penalty is a popular regularization solution for deep learning networks.

$$loss + \left(\sum_{i=1}^{N} ||w^{[i]}||^2\right) \frac{\lambda}{2m}$$

N = number of layers $w^{|i|}$ = Weight matrix of the i^{th} layer m = number of inputs λ = regularization parameter

Regularization Technique: L2 Penalty

$$loss + \left(\sum_{i=1}^{N} ||w^{[i]}||^2\right) \frac{\lambda}{2m}$$

In Pytorch, L2 regularization is applied through 'weight decay'.

Regularization Technique: L2 Penalty

Weight Decay

Default value: 10⁻⁵

Regularization Technique: L1 Penalty

L1 penalties reduce the weights to absolute zero.

p = probability of a neuron being deactivated or turned off.

p = probability of a neuron being deactivated or turned off.

Proven to reduce Overfitting.

Prevents dependency on any single neuron, encouraging a more robust learning process.

A	А	В	С	D	E	F
1	Page_traffic	Unit_price	Units_sold	Segment	1_Star_Ra	2_Star_Ra
2	5835	22.21438918	2071	Skincare	99	72
3	1881	11.87077827	681	Skincare	118	73
4	2477	27.64571429	875	Makeup	108	85
5	4087	16.89684814	1396	Makeup	82	64
6	1446	16.35766423	822	Hair Care	29	24
7	2875	19.55812036	1213	Skincare	62	55
8	4688	22.30575256	1269	Makeup	0	0
9	3947	14.01656805	845	Makeup	43	29
10	5503	23.75960867	1431	Skincare	35	33
11	4131	27.84563758	1043	Skincare	0	0
12	1935	21.13953488	817	Makeup	91	69

Computer Vision

Regularization Technique: Early Stopping

Stop the training process before the model starts learning the noise.

Regularization Technique: Early Stopping

In air