数值代数大作业

史博文

2023年2月

1 问题背景

1.1 Stokes 方程

考虑 Stokes 方程

$$\left\{ \begin{array}{rcl} -\Delta \vec{u} + \nabla p &= \vec{F}, & (x,y) \in (0,1) \times (0,1) \\ \mathrm{div}\, \vec{u} &= 0, & (x,y) \in (0,1) \times (0,1) \end{array} \right.$$

边界条件为

$$\begin{split} &\frac{\partial u}{\partial \vec{n}} = b, y = 0, \quad \frac{\partial u}{\partial \vec{n}} = t, y = 1, \\ &\frac{\partial v}{\partial \vec{n}} = l, x = 0, \quad \frac{\partial v}{\partial \vec{n}} = r, x = 1, \\ &u = 0, x = 0, 1. \quad v = 0, y = 0, 1. \end{split}$$

其中 $\vec{u}=(u,v)$ 为速度, p 为压力, $\vec{F}=(f,g)$ 为外力, \vec{n} 为外法向方向. 在区域 $\Omega=(0,1)\times(0,1)$ 上, 外力为

$$f(x,y) = -4\pi^2 (2\cos(2\pi x) - 1)\sin(2\pi y) + x^2$$

$$g(x,y) = 4\pi^2 (2\cos(2\pi y) - 1)\sin(2\pi x).$$

Stokes 方程的真解为

$$u(x,y) = (1 - \cos(2\pi x))\sin(2\pi y),$$

$$v(x,y) = -(1 - \cos(2\pi y))\sin(2\pi x),$$

$$p(x,y) = \frac{x^3}{3} - \frac{1}{12}.$$

1.2 交错网格上的 MAC 格式

设计关于 u, v 和 p 交错的 MAC 格式,并利用有限差分法对原问题进行离散。在内部格点直接利用差分格式逼近算子,在 Neumann 边界处利用影子单元进行离散,而在强制边界条件处可以不列方程。由此可得(下标表示位置):

关于 u 的方程 (h = 1/N):

 $(1) \triangleq 1 \le i \le N-1, 2 \le j \le N-1,$

$$-\frac{u_{i+1,j-\frac{1}{2}}-2u_{i,j-\frac{1}{2}}+u_{i-1,j-\frac{1}{2}}}{h^2}-\frac{u_{i,j+\frac{1}{2}}-2u_{i,j-\frac{1}{2}}+u_{i,j-\frac{3}{2}}}{h^2}+\frac{p_{i+\frac{1}{2},j-\frac{1}{2}}-p_{i-\frac{1}{2},j-\frac{1}{2}}}{h}=f_{i,j-\frac{1}{2}};$$

 $(2) \triangleq 1 \leq i \leq N - 1 (j = 1),$

$$-\frac{u_{i,\frac{3}{2}}-u_{i,\frac{1}{2}}}{h^2}-\frac{b_{i,0}}{h}-\frac{u_{i+1,\frac{1}{2}}-2u_{i,\frac{1}{2}}+u_{i-1,\frac{1}{2}}}{h^2}+\frac{p_{i+\frac{1}{2},\frac{1}{2}}-p_{i-\frac{1}{2},\frac{1}{2}}}{h}=f_{i,\frac{1}{2}};$$

 $(3) \triangleq 1 \leq i \leq N - 1(j = N),$

$$\frac{u_{i,N-\frac{1}{2}} - u_{i,N-\frac{3}{2}}}{h^2} - \frac{t_{i,N}}{h} - \frac{u_{i+1,N-\frac{1}{2}} - 2u_{i,N-\frac{1}{2}} + u_{i-1,N-\frac{1}{2}}}{h^2},$$

图 1: 交错网格上的 MAC 格式(图片来源: 胡俊教授)

以及关于 v 的方程 (h = 1/N):

 $(1) \stackrel{\text{def}}{=} 1 \le j \le N - 1, 2 \le i \le N - 1,$

$$-\frac{v_{i+\frac{1}{2},j}-2v_{i-\frac{1}{2},j}+v_{i-\frac{3}{2},j}}{h^2}-\frac{v_{i-\frac{1}{2},j+1}-2v_{i-\frac{1}{2},j}+v_{i-\frac{1}{2},j-1}}{h^2}+\frac{p_{i-\frac{1}{2},j+\frac{1}{2}}-p_{i-\frac{1}{2},j-\frac{1}{2}}}{h}=g_{i-\frac{1}{2},j};$$

(2) $\stackrel{\text{def}}{=} 1 \le j \le N - 1(i = 1),$

$$-\frac{v_{\frac{3}{2},j}-v_{\frac{1}{2},j}}{h^2}-\frac{l_{0,j}}{h}-\frac{v_{\frac{1}{2},j+1}-2v_{\frac{1}{2},j}+v_{\frac{1}{2},j-1}}{h^2}+\frac{p_{\frac{1}{2},j+\frac{1}{2}}-p_{\frac{1}{2},j-\frac{1}{2}}}{h}=g_{\frac{1}{2},j};$$

 $(3) \triangleq 1 \leq j \leq N - 1(i = N),$

$$\frac{v_{N-\frac{1}{2},j}-v_{N-\frac{3}{2},j}}{h^2}-\frac{r_{N,j}}{h}-\frac{v_{N-\frac{1}{2},j+1}-2v_{N-\frac{1}{2},j}+v_{N-\frac{1}{2},j-1}}{h^2}+\frac{p_{N-\frac{1}{2},j+\frac{1}{2}}-p_{N-\frac{1}{2},j-\frac{1}{2}}}{h}=g_{N-\frac{1}{2},j}.$$

不可压条件 $(1 \le i \le N, 1 \le j \le N)$:

$$\frac{u_{i,j-\frac{1}{2}} - u_{i-1,j-\frac{1}{2}}}{h} + \frac{v_{i-\frac{1}{2},j} - v_{i-\frac{1}{2},j-1}}{h} = 0.$$

整理可得到如下线性方程组

$$\left(\begin{array}{cc} A & B \\ B^T & 0 \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ 0 \end{array}\right).$$

其中,U 为 2N(N-1) 维向量,P 为 N^2 维向量。注意到,矩阵 A 可以看作两个混合边界条件下离散 Laplacian 算子矩阵组合成的分块对角矩阵,因此是对称正定的,所以速度 U 可以被唯一确定。另一方面,对系数矩作行变换,消去项 B^T 可得压力 P 前的系数矩阵为 $B^TA^{-1}B$.

1.3 V-cycle 多重网格方法

V-cvcle 多重网格方法是一种加速求解线性方程组迭代法收敛的算法。主要步骤为:

Algorithm 1 V-cycle 多重网格算法

while 误差 $||r_h||_2$ 大于阀值 do

repeat

磨光迭代 v_1 次,计算残量并限制到下一层。

until 到达底层

repeat

磨光迭代 v_2 次, 计算残量并提升到上一层。

until 到达顶层

end while

1.4 $B^T A^{-1} B$ 的特征值

下面证明,矩阵 $B^TA^{-1}B$ 的特征值仅有 0 和 1,且 0 特征值为单特征值。由此可以推出,离散压力 P 的解空间是一维的。

如果

$$B^T A^{-1} B P = \lambda P,$$

进一步改写为

$$\begin{cases} AU + BP = 0, \\ -B^T U = \lambda P. \end{cases}$$

注意到,A, B, $-B^T$ 可以看作离散状态的 Δ , grad , div 算子,于是不妨考虑连续的特征值问题:

$$\begin{cases} -\Delta \vec{u} + \nabla p = 0 \\ \operatorname{div} \vec{u} = \lambda p. \end{cases}$$

即

$$\nabla \operatorname{div} \vec{u} = \lambda \Delta \vec{u}.$$

- (1) 取 $\lambda = 0$, 得 div $\vec{u} = 0$. 此时取 U = 0, P 为所有元素均相等的向量。
- (2) 取 $\lambda = 1$, 得 $\frac{\partial u}{\partial y} \frac{\partial v}{\partial x} = C$. 此时特征值问题

$$\nabla \operatorname{div} \vec{u} = \lambda' \vec{u}, \quad -BB^T x = \lambda' x,$$

的解,一定是特征值问题

$$\Delta \vec{u} = \lambda' \vec{u}, \quad Ax = \lambda' x$$

的解。

令

$$B_{N-1} = \begin{pmatrix} 2 & -1 & 0 & \cdots \\ -1 & 2 & -1 & 0 & \cdots \\ & & \ddots & & \\ \cdots & -1 & 2 & -1 & 0 \\ & \cdots & 0 & -1 & 2 \end{pmatrix}_{N-1\times N-1}, \qquad R_N = \begin{pmatrix} 1 & -1 & 0 & \cdots \\ -1 & 2 & -1 & 0 & \cdots \\ & & \ddots & & \\ \cdots & 0 & -1 & 2 & -1 \\ & \cdots & 0 & -1 & 1 \end{pmatrix}_{N\times N}.$$

直接计算可得:

$$A = \begin{pmatrix} A_1 & 0 \\ 0 & A_1 \end{pmatrix}, \quad A_1 = B_{N-1} \oplus R_N, \quad B^T B = R_N \oplus R_N.$$

其中 \oplus 为 Kronecker 直和, $A \oplus B = I \otimes A + B \otimes I$.

注意到 B_N 的特征值全部非零,且与 R_N 的非零特征值相同。于是由 Kronecker 直和的性质, B^TB 的全部特征值包括在 A 的特征值中(计算重数)。

设 $A^{-1} = P^T D^{-1} P$, S = PB. 则 $B^T A^{-1} B = S^T D^{-1} S$. 奇异值分解得

$$S = \sum_{i=1}^{r} s_i u_i v_i^T,$$

$$S^{T}D^{-1}S = \sum_{i=1}^{r} s_{i}^{2}(u_{i}D^{-1}u_{i}^{T})v_{i}v_{i}^{T}.$$

由于

$$SS^T u_i = s_i^2 u_i,$$

所以

$$BB^T(P^Tu_i) = s_i^2 P^Tu_i.$$

由上结论可知

$$A(P^T u_i) = s_i^2 P^T u_i,$$

即 $u_i D^{-1} u_i^T = s_i^{-2}$. 所以得 $B^T A^{-1} B$ 得非零特征值都是 1. 同时 $rank(B^T A^{-1} B) = rank(B^T B) = N^2 - 1$, 所以 0 特征值为 1 重。

1.5 提升与限制算子

图 2: 提升和限制算子的实现方法 (图片来源: 吴清玉)

2 第一题

2.1 题目要求

分别取 N=64,128,256,512,1024,2048,以 DGS 为磨光子,用基于 V-cycle 的多重网格方法求解上 述离散问题,停机标准为 $\|r_h\|_2/\|r_0\|_2 \leq 10^{-8}$,对不同的 ν_1,ν_2,L ,比较 V-cycle 的次数和 CPU 时间,并计

算误差

$$e_N = h \left(\sum_{j=1}^N \sum_{i=1}^{N-1} \left| u_{i,j-\frac{1}{2}} - u \left(x_i, y_{j-\frac{1}{2}} \right) \right|^2 + \sum_{j=1}^{N-1} \sum_{i=1}^N \left| v_{i-\frac{1}{2},j} - v \left(x_{i-\frac{1}{2}}, y_j \right) \right|^2 \right)^{\frac{1}{2}}.$$

2.2 DGS 迭代法

给定初始值 $U_0 = \left(u_0^T, v_0^T\right)^T$ 和 P_0 (均取为零),令 $k = 0, A = D_A - L_A - U_A$, DGS 迭代法定义如下: 1. 用 Gauss-Seidel 迭代方法更新速度分量

$$U_{k+1/2} = U_k + (D_A - L_A)^{-1} (F - BP_k - AU_k).$$

- 2. 更新速度与压力:
- (1)对内部单元 (i,j) (四个顶点 $((i-1)h,(j-1)h),(ih,(j-1)h),(ih,jh),((i-1)h,jh)),2 \leq i,j \leq N-1$, 计算散度方程的残量

$$r_{i,j} = -\frac{u_{i,j-\frac{1}{2}}^{k+1/2} - u_{i-1,j-\frac{1}{2}}^{k+1/2}}{h} - \frac{v_{i-\frac{1}{2},j}^{k+1/2} - v_{i-\frac{1}{2},j-1}^{k+1/2}}{h},$$

并令 $\delta = r_{i,j}h/4$.

更新内部单元速度:

$$\begin{split} u_{i-1,j-\frac{1}{2}}^{k+1/2} &= u_{i-1,j-\frac{1}{2}}^{k+1/2} - \delta, \quad u_{i,j-\frac{1}{2}}^{k+1/2} = u_{i,j-\frac{1}{2}}^{k+1/2} + \delta \\ v_{i-\frac{1}{2},j-1}^{k+1/2} &= v_{i-\frac{1}{2},j-1}^{k+1/2} - \delta, \quad v_{i-\frac{1}{2},j}^{k+1/2} = v_{i-\frac{1}{2},j}^{k+1/2} + \delta \end{split}$$

更新内部单元的压力:

$$\begin{split} p_{i-\frac{1}{2},j-\frac{1}{2}}^k &= p_{i-\frac{1}{2},j-\frac{1}{2}}^k + r_{i,j} \\ p_{i+\frac{1}{2},j-\frac{1}{2}}^k &= p_{i+\frac{1}{2},j-\frac{1}{2}}^k - r_{i,j}/4 \\ p_{i-\frac{3}{2},j-\frac{1}{2}}^k &= p_{i-\frac{3}{2},j-\frac{1}{2}}^k - r_{i,j}/4 \\ p_{i-\frac{1}{2},j+\frac{1}{2}}^k &= p_{i-\frac{1}{2},j+\frac{1}{2}}^k - r_{i,j}/4 \\ p_{i-\frac{1}{2},j-\frac{3}{2}}^k &= p_{i-\frac{1}{2},j-\frac{3}{2}}^k - r_{i,j}/4 \end{split}$$

(2) 对边界单元 (i,N) (四个顶点 $((i-1)h,(N-1)h),(ih,(N-1)h),(ih,Nh),((i-1)h,Nh)),2 \le i \le N-1$, 先计算散度的残量 $r_{i,N}$, 计算公式如前, 并令 $\delta=r_{i,N}h/3$.

速度更新如下:

$$\begin{split} u_{i-1,N-\frac{1}{2}}^{k+1/2} = & u_{i-1,N-\frac{1}{2}}^{k+1/2} - \delta, \quad u_{i,N-\frac{1}{2}}^{k+1/2} = u_{i,N-\frac{1}{2}}^{k+1/2} + \delta, \\ v_{i-\frac{1}{2},N-1}^{k+1/2} = & v_{i-\frac{1}{2},N-1}^{k+1/2} - \delta. \end{split}$$

更新边界单元 (i, N) 的压力:

$$\begin{split} p_{i-\frac{1}{2},N-\frac{1}{2}}^k &= p_{i-\frac{1}{2},N-\frac{1}{2}}^k + r_{i,N} \\ p_{i+\frac{1}{2},N-\frac{1}{2}}^k &= p_{i+\frac{1}{2},N-\frac{1}{2}}^k - r_{i,N}/3 \\ p_{i-\frac{3}{2},N-\frac{1}{2}}^k &= p_{i-\frac{3}{2},N-\frac{1}{2}}^k - r_{i,N}/3 \\ p_{i-\frac{1}{2},N-\frac{3}{2}}^k &= p_{i-\frac{1}{2},N-\frac{3}{2}}^k - r_{i,N}/3 \end{split}$$

(3) 类似更新边界单元 (N,j) 和 (1,j), $2 \le j \le N-1$, (i,1), $2 \le i \le N-1$ 的速度和压力. 对顶点单元 (1,1), 计算散度残量 $r_{1,1}$, 计算公式如前, 令 $\delta = r_{1,1}h/2$. 更新速度如下: 更新内部单元速度:

$$u_{1,\frac{1}{2}}^{k+1/2} = u_{1,\frac{1}{2}}^{k+1/2/2} + \delta, \quad v_{\frac{1}{2},1}^{k+1/2} = v_{\frac{1}{2},1}^{k+1/2} + \delta.$$

更新压力如下:

$$\begin{split} p^k_{\frac{1}{2},\frac{1}{2}} &= p^k_{\frac{1}{2},\frac{1}{2}} + r_{1,1} \\ p^k_{\frac{3}{2},\frac{1}{2}} &= p^k_{\frac{3}{2},\frac{1}{2}} - r_{1,1}/2, \\ p^k_{\frac{1}{2},\frac{3}{2}} &= p^k_{\frac{1}{2},\frac{3}{2}} - r_{1,1}/2. \end{split}$$

对其他顶点单元 (1,N),(N,1) 和 (N,N), 类似更新速度和压力.

2.3 算法实现

Algorithm 2 以 DGS 迭代法为磨光子的 V-cycle 多重网格算法

while $||r_h||_2/||r_0||_2>10^{-8}$ do

repeat

利用 DGS 磨光算子迭代 v_1 次,计算残量并限制到下一层.

until 到达底层网格, 网格参数为 N/L.

repeat

利用 DGS 磨光算子磨光迭代 v_2 次, 计算残量并提升到上一层.

until 到达顶层

end while

其中值得注意的是,在编写 DGS 磨光子时,更新速度与压力需要覆盖式更新;为保证计算速度、减少存储,U,P 均用矩阵存储,实现算法的无系数矩阵运行。同时,为避免计算提升和限制后的系数矩阵,可以直接利用网格上的 MAC 格式近似。

提升或限制后的方程如果不再满足散度为0条件,此时待求解的线性方程组将形如

$$\left(\begin{array}{cc} A & B \\ B^T & 0 \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ D \end{array}\right).$$

其中 $D = [d_{i,j}]$ 为负的数值散度. 在利用 DGS 迭代法求解上述线性方程组时, 散度方程的残量 $r_{i,j}$ 将变为

$$r_{i,j} = -\frac{u_{i,j-\frac{1}{2}}^{k+\frac{1}{2}} - u_{i-1,j-\frac{1}{2}}^{k+\frac{1}{2}}}{h} - \frac{v_{i-\frac{1}{2},j}^{k+\frac{1}{2}} - v_{i-\frac{1}{2},j-1}^{k+\frac{1}{2}}}{h} - d_{i,j}.$$

2.4 数值结果

2.4.1 误差

N	64	128	256	512	1024	2048
误差	0.0015	3.7362 e-04	9.3391 e-05	2.3342 e-05	5.8298e-06	1.4521e-06

2.4.2 不同迭代次数与底层网格大小的运行时间和 V-cycle 次数比较

 $v_1 = 6, v_2 = 6$, 底层网格参数 N/L = 2, 底层网格为 2×2 .

N	64	128	256	512	1024	2048
CPU 时间(秒)	0.035066	0.116906	0.504635	3.198413	18.449256	115.347889
V-cycle 次数	5	5	5	5	5	5

 $v_1 = 6, v_2 = 6$, 底层网格参数 N/L = 4, 底层网格为 4×4 .

N	64	128	256	512	1024	2048
CPU 时间(秒)	0.034006	0.1136572	0.514653	3.28567	18.117632	113.567349
V-cycle 次数	5	5	5	5	5	5

 $v_1 = 4, v_2 = 4$, 底层网格参数 N/L = 2, 底层网格为 2×2 .

N	64	128	256	512	1024	2048
CPU 时间(秒)	0.026561	0.088919	0.447595	2.386111	14.182898	95.886059
V-cycle 次数	5	5	5	5	5	5

 $v_1 = 4, v_2 = 4$, 底层网格参数 N/L = 4, 底层网格为 4×4 .

N	64	128	256	512	1024	2048
CPU 时间(秒)	0.025837	0.088566	0.390343	2.365471	13.721832	93.78463
V-cycle 次数	5	5	5	5	5	5

 $v_1 = 2, v_2 = 2$, 底层网格参数 N/L = 2, 底层网格为 2×2 .

N	64	128	256	512	1024	2048
CPU 时间(秒)	0.024367	0.089628	0.303787	1.827113	10.392901	71.886059
V-cycle 次数	6	6	6	6	6	6

 $v_1 = 2, v_2 = 2$, 底层网格参数 N/L = 4, 底层网格为 4×4 .

N	64	128	256	512	1024	2048
CPU 时间(秒)	0.025496	0.095634	0.370122	1.817791	10.566532	73.567349
V-cycle 次数	6	6	6	6	6	6

3 第二题

3.1 题目要求

分别取 N=64,128,256,512, 以 Uzawa Iteration Method 求解上述离散问题, 停机标准为 $\|r_h\|_2/\|r_0\|_2 \le 10^{-8},$ 并计算误差

$$e_N = h \left(\sum_{i=1}^N \sum_{i=1}^{N-1} \left| u_{i,j-\frac{1}{2}} - u \left(x_i, y_{j-\frac{1}{2}} \right) \right|^2 + \sum_{i=1}^{N-1} \sum_{i=1}^N \left| v_{i-\frac{1}{2},j} - v \left(x_{i-\frac{1}{2}}, y_j \right) \right|^2 \right)^{\frac{1}{2}}.$$

3.2 Uzawa 迭代法、共轭梯度法与与最优参数 α^* 的选取

Algorithm 3 Uzawa 迭代法

Require: P_0 , k = 0.

while $||r_h||_2/||r_0||_2>10^{-8}$ **do**

利用共轭梯度法求解 $AU_{k+1} = F - BP_k$.

更新压力 $P_{k+1} = P_k + \alpha (B^T U_{k+1})$.

end while

Algorithm 4 共轭梯度法

Require: x

因为

$$P_{k+1} = P_k + \alpha (B^T A^{-1} (F - BP_k))$$

= $(I - \alpha B^T A^{-1} B) P_k + \alpha B^T A^{-1} F$

因此,关于压力的更新方法,相当于下面的线性代数方程组

$$B^T A^{-1} B P = B^T A^{-1} F$$

的迭代格式. 由第一节所得结论,可知 $I - \alpha B^T A^{-1} B$ 的特征值只有 1 和 $1 - \alpha$. 可知 $\alpha = 1$ 为最优参数。

3.3 数值结果

计算所得误差如下:

N	64 128		256	512	
误差	0.0015	3.7363e-04	9.3398 e - 05	2.3349e-05	

4 第三题

4.1 题目要求

分别取 N=64,128,256,512,1024,2048,以 Inexact Uzawa Iteration Method 为迭代法求解上述离散问题,停机标准为 $\|r_h\|_2/\|r_0\|_2 \leq 10^{-8}$,其中以 V-cycle 多重网格方法为预条件子求解每一步的子问题 $AU_{k+1}=F-BP_k$,对不同的 $\alpha,\tau,\nu_1,\nu_2,L$,比较外循环的迭代次数和 CPU 时间,并计算误差

$$e_N = h \left(\sum_{j=1}^N \sum_{i=1}^{N-1} \left| u_{i,j-\frac{1}{2}} - u \left(x_i, y_{j-\frac{1}{2}} \right) \right|^2 + \sum_{j=1}^{N-1} \sum_{i=1}^N \left| v_{i-\frac{1}{2},j} - v \left(x_{i-\frac{1}{2}}, y_j \right) \right|^2 \right)^{\frac{1}{2}}.$$

4.2 Inexact Uzawa 迭代方法与 V-cycle 预优共轭梯度法

Algorithm 5 Inexact Uzawa 迭代法

Require: P_0 , k = 0.

while $||r_h||_2/||r_0||_2>10^{-8}$ **do**

以 V-cycle 预优共轭梯度法求解 $AU_{k+1} = F - BP_k$, 得到近似解 \hat{U}_{k+1} .

更新压力 $P_{k+1} = P_k + \alpha \left(B^T \hat{U}_{k+1} \right)$.

end while

设 \hat{U}_{k+1} 是方程 $AU_{k+1} = F - BP_k$ 的近似解. 定义

$$\delta_k = A\hat{U}_{k+1} - F + BP_k$$

若

$$\left\|\delta_k\right\|_2 \le \tau \left\|B^T \hat{U}_k\right\|$$

当 τ 充分小时, 上述迭代方法是收敛的.

Algorithm 6 V-cycle 预优共轭梯度法

Require: x

$$\begin{split} k &= 0; r = b - Ax; \rho = r^{\mathrm{T}} r \\ \mathbf{while} \left(\sqrt{r^T r} > \max(\varepsilon \|b\|_2, \tau \left\| B^T \hat{U}_k \right\|) \right)$$
 以及 $(k < k_{\mathrm{max}})$ do $k = k + 1$

以对称 Gauss-Seidel 迭代法为磨光子,利用 V-cycle 多重网格方法求解 Az = r.

if k = 1 then

$$p = z; \quad \rho = r^{\mathrm{T}}z$$

else

$$\tilde{\rho} = \rho; \quad \rho = r^{\mathrm{T}}z \quad \beta = \rho/\widetilde{\rho}; \quad p = z + \beta p$$

end if

$$w = Ap;$$
 $\alpha = \rho/p^{\mathrm{T}}w$ $x = x + \alpha p;$ $r = r - \alpha w$

end while

其中,对称 GS 迭代指的是通过分量形式

$$(D_A - L_A)z_{k+1/2} - U_A z_k = r,$$

$$(D_A - U_A)z_k - L_A z_{k+1/2} = r.$$

进行迭代。由于 A 对称正定,因此对称 GS 迭代法是收敛的。数值结果

4.3 数值结果

4.3.1 误差

N	64	128	256	512	1024	2048
误差	0.0015	3.7363e-04	9.3399 e-05	2.3349 e - 05	5.8298e-06	1.4521e-06

4.3.2 不同参数对运行时间和 V-cycle 次数的影响

预优共轭梯度法停机标准为 $\sqrt{r^Tr} > \max(\varepsilon ||b||_2, \tau ||B^T \hat{U}_k||)$.

V-cycle 多重网格算法停机标准为 $||r_h||_2/||r_0||_2 \le error$

 $\tau = 0.001$, $\varepsilon = 1e-8$, $\alpha = 1$, $v_1 = 2$, $v_2 = 2$, error = 1e-3, 底层网格参数 N/L = 2, 底层网格为 2×2 .

N	64	128	256	512	1024	2048
CPU 时间(秒)	0.0862	0.2712	1.065	4.9174	17.3015	201.7559
Inexact Uzawa 迭代次数	4	4	4	4	2	2
PCG 迭代次数	3,2,3,3	3,2,3,3	3,2,3,3	3,2,3,3	3,3	3,3

 $\tau = 0.001$, $\varepsilon = 1e-8$, $\alpha = 1$, $v_1 = 4$, $v_2 = 4$, error = 1e-3, 底层网格参数 N/L = 4, 底层网格为 4×4 .

N	64	128	256	512	1024	2048
CPU 时间(秒)	0.0374	0.1360	0.5635	2.4935	14.5262	162.8681
Inexact Uzawa 迭代次数	2	2	2	2	2	2
PCG 迭代次数	2,2	2,2	2,2	2,2	2,2	2,2

 $\tau = 0.001$, $\varepsilon = 1e-8$, $\alpha = 1.05$, $v_1 = 2$, $v_2 = 2$, error = 1e-3, 底层网格参数 N/L = 2, 底层网格为 2×2 .

N	64	128	256	512	1024	2048
CPU 时间(秒)	0.1014	0.3621	1.71082	6.1803	43.1189	302.3763
Inexact Uzawa 迭代次数	5	5	6	5	5	5
PCG 迭代次数	3,2,3,3,3	3,2,3,3,3	3,2,3,3,3,3	3,2,3,3,3	3,3,3,3,3	3,3,3,3,3

 $\tau = 0.001$, $\varepsilon = 1e-8$, $\alpha = 1.05$, $v_1 = 4$, $v_2 = 4$, error = 1e-3, 底层网格参数 N/L = 4, 底层网格为 4×4 .

N	64	128	256	512	1024	2048
CPU 时间(秒)	0.1169	0.3876	1.6013	7.4373	46.7608	323.2497
Inexact Uzawa 迭代次数	6	6	6	6	6	6
PCG 迭代次数	2,2,2,2,2	2,2,2,2,2	2,2,2,2,2	2,2,2,2,2	2,2,2,2,2	2,2,2,2,2

 $\tau = 0.001$, $\varepsilon = 1e-8$, $\alpha = 0.95$, $v_1 = 2$, $v_2 = 2$, error = 1e-3, 底层网格参数 N/L = 2, 底层网格为 2×2 .

N	64	128	256	512	1024	2048
CPU 时间(秒)	0.1006	0.3814	1.6233	6.1435	41.6549	290.2349
Inexact Uzawa 迭代次数	6	6	6	5	5	5
PCG 迭代次数	3,2,3,3,3,3	3,2,3,3,3,3	3,2,3,3,3,3	3,2,3,3,3	3,3,3,3,3	3,3,3,3,3

 $\tau = 0.001$, $\varepsilon = 1e-8$, $\alpha = 0.95$, $v_1 = 4$, $v_2 = 4$, error = 1e-3, 底层网格参数 N/L = 4, 底层网格为 4×4 .

N	64	128	256	512	1024	2048
CPU 时间(秒)	0.0940	0.3923	1.5030	7.4557	42.18234	279.9145
Inexact Uzawa 迭代次数	6	6	6	6	6	6
PCG 迭代次数	2,2,2,2,2	2,2,2,2,2	2,2,2,2,2,2	2,2,2,2,2	2,2,2,2,2	2,2,2,2,2,2

 $\tau = 0.0001$, $\varepsilon = 1$ e-8, $\alpha = 1$, $v_1 = 4$, $v_2 = 4$, error = 1e-3, 底层网格参数 N/L = 4, 底层网格为 4×4 .

N	64	128	256	512	1024	2048
CPU 时间(秒)	0.0270	0.1260	0.4176	2.5128	16.3664	182.8341
Inexact Uzawa 迭代次数	2	2	2	2	2	2
PCG 迭代次数	2,2	2,2	2,2	2,2	2,2	2,2

 τ =1e-5, ε=1e-8, α = 1, v_1 = 4, v_2 = 4, error =1e-3, 底层网格参数 N/L = 4, 底层网格为 4×4.

N	64	128	256	512	1024	2048
CPU 时间(秒)	0.0322	0.1187	0.5429	2.4722	15.7753	156.2418
Inexact Uzawa 迭代次数	2	2	2	2	2	2
PCG 迭代次数	2,2	2,2	2,2	2,2	2,2	2,2