Numerical methods for Chemical Engineers:

Non-linear equations

Prof.dr.ir. Martin van Sint Annaland Dr.ir. Ivo Roghair

Chemical Process Intensification

TU/e

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Content

How to solve:

f(x) = 0 for arbitrary functions f

"Root finding"

(i.e. move all terms to the left)

- One dimensional case: f(x) = 0"Bracket or 'trap' a root between bracketing values, then hunt it down like a rabbit."
- Multi-dimensional case: f(x) = 0
 - N equations in N unknowns:
 You can only hope to find a solution.
 It may have no (real) solution, or more than one solution!
 - Much more difficult!!
 "You never know whether a root is near, unless you have found it"

Outline

One-dimensional case:

- Direct iteration method
- Bisection method
- Secant and false position method
- Brent's method
- Newton-Raphson method

Do not use routines as black boxes without understanding them!!!

Multi-dimensional case:

- Newton-Raphson method
- Broyden's method
- Introduction to underlying ideas and algorithms
- Exercises in how to program the methods in Excel and MATLAB.

General idea

Root finding proceeds by iteration:

- Start with a good initial guess (crucially important!!)
- Use an algorithm to improve the solution until some predetermined convergence criterion is satisfied

Pitfalls:

- Convergence to the wrong root...
- Fails to converge because there is no root...
- Fails to converge because your initial estimate was not close enough...
- > It never hurts to inspect your function graphically
- Pay attention to carefully select initial guesses

Hamming's motto: the purpose of computing is insight, not numbers!!

Direct iteration method/successive substitutions

- Rewrite $f(x) = 0 \Rightarrow x = g(x)$
 - Start with an initial guess: x_1
 - Calculate new estimate with: $x_2 = g(x_1)$
 - Continue iteration with: $x_{i+1} = g(x_i)$
 - Proceed until: $|x_{i+1} x_i| < \epsilon$

When the process converges, taking a smaller value for ∈ results in a more accurate solution, however more iterations need to be performed.

Exercise 1: Find the root of $x^3 - 3x^2 - 3x - 4 = 0$ with the direct iteration method

- Rewrite as: $x = (3x^2 + 3x + 4)^{\frac{1}{3}}$
 - Solve in Excel
 - Solve in Matlab
- Rewrite as: $x = (x^3 3x^2 4)/3$
 - Solve in Excel
 - Solve in Matlab

Intermezzo: functions revisited

 In MATLAB you can define your own functions, allowing re-use of certain functionalities. We now define the mathematical function in a new file f.m:

```
f(x) = x^2 + \exp(x)
```

```
function y = f(x)

y = x.^2 + exp(x);

end
```

- The first line contains the function keyword
- y is defined as output, x is defined as input
- The computation can use x as a scalar as well as a vector
 - If x is a vector, y is also a vector.

Anonymous functions

 If you do not want to create a file, you can create an anonymous function

```
>> g = 0(x) (x.^2 + exp(x))
```

- g: the name of the function
- @: indicator of a function handle
- x: the input argument

```
>> g(0:0.1:1)
```

 A function handle points to a function, but it behaves as a variable. You can pass a function handle as an argument!

Passing functions in Matlab

• For example: to solve $f(x) = x^2 - 4x + 2 = 0$ numerically, we can write a function that returns the value of f:

```
function f = MyFunc(x) (Note: case sensitive!!) f = x.^2 - 4*x + 2; return
```

The function handle can be used as an alias:

$$>> f = @MyFunc; a = 4; b = f(a)$$

We can then call a solving routine (e.g. fzero):

```
>> ans = fzero(@MyFunc,5)
>> fzero(@(x) x.^2-4*x+2,5)
```


Passing functions in Matlab

 We can also make our own function, that takes the function handle as an input (save as draw_my_function.m):

```
function [] = draw_my_function(func)
% Draws a function in the range [0 10] using 20 data
% points. 'func' is a function handle that can point to
% any actual function.
x = linspace(0, 10, 20);
y = func(x);
plot(x,y,"-o");
end
```

 Now we can call the function with a function handle, which points to an anonymous function or a common function:

```
>> f = @(x) (x.^2 - 4*x + 2);
>> draw_my_function(f)
>> ezplot(f, [0 10])
```

Exercise 1: Find the root of $x^3 - 3x^2 - 3x - 4 = 0$ with the direct iteration method

- Rewrite as: $x = (3x^2 + 3x + 4)^{\frac{1}{3}}$
 - Solve in Excel
 - Solve in Matlab
- Rewrite as: $x = (x^3 3x^2 4)/3$
 - Solve in Excel
 - Solve in Matlab

Exercise 1: Find the root of $x^3 - 3x^2 - 3x - 4 = 0$ with the direct iteration method in Excel

x = 0	(x^3)	$-3x^2$	-4)	/3
λ –		JA	T	

1	2.5	
2	-2.375	
3	-11.4395	
4	-631 _{=(x}	1^3-3*x1^2-4)/3
5	-8.4	1 3-3 X1 Z-4)/3
6	-2E+23	
7	-2.6E+69	
8	-6E+207	
9	#NUM!	
10	#NUM!	

Diverges!

Exercise 1: Find the root of $x^3 - 3x^2 - 3x - 4 = 0$ with the direct iteration method in Matlab

With simple script:

```
x = 2.5;
fprintf("i: %d, x: %e\n",0,x);

for i=1:20
    x = (3*x^2+3*x+4)^(1/3);
    fprintf("i = %d: x = %f\n",i,x);
end
```

Not very flexible/reusable ⇒ **use functions!**

Exercise 1: Find the root of $x^3 - 3x^2 - 3x - 4 = 0$ with the direct iteration method in Matlab

First define the functions

function [y] = MyFnc1(x)

$$y = (3*x^2 + 3*x + 4)^(1/3);$$
end

function [y] = MyFnc2(x)

$$y = (x^3 - 3*x^2 - 4)/3;$$

Exercise 1: Find the root of $x^3 - 3x^2 - 3x - 4 = 0$ with the direct iteration method in Matlab

Make function to carry out Direct Iteration algorithm:

```
\neg function [y,it] = DirectIterationMethod(g,x,eps)
\bigcirc %Solves x = g(x) with x as initial guess until the
 %difference with the next iteration is smaller than eps
 -%or when the number of iterations exceeds itmax
 itmax = 100;
 it = 0;
 y = q(x);
 fprintf("it = %d: x = %f \n", it, y);
while ((abs(y-x)>eps) && (it<itmax))</pre>
   it = it + 1;
   x = y;
   y = q(x);
   fprintf("it = %d: x = %f\n", it, y);
 end
```


Exercise 1: Find the root of $x^3 - 3x^2 - 3x - 4 = 0$ with the direct iteration method in Matlab

Call Direct Iteration function with:

- >> DirectIterationMethod(@MyFnc1,2.5,1e-3);
- >> DirectIterationMethod(@MyFnc2,2.5,1e-3);

Why does it converge with MyFnc1 and diverge with MyFnc2?

Exercise 1: Find the root of $f(x) = x^3 - 3x^2 - 3x - 4 = 0$ with the direct iteration method

Method only works when $|g'(x_i)| < 1$

And even then not very fast ...

$$x = g(x) \square g(x_i) + g'(x_i)(x - x_i)$$

$$g(x_{i+1}) = g(x_i) + g'(x_i)(x_{i+1} - x_i)$$

$$x_{i+2} = x_{i+1} + g'(x_i)(x_{i+1} - x_i)$$

$$|x_{i+2} - x_{i+1}| = |g'(x_i)||x_{i+1} - x_i|$$

Convergence $\Rightarrow |g'(x_i)| \le 1$

Bracketing a root = knowing that the function changes sign in an identified interval

A root is bracketed in the interval (a,b), if f(a) and f(b) have opposite signs

⇒ At least one root must lie in this interval, if the function is continuous

Intermediate Value Theorem
If f(x) is continuous on [a,b] and k is a constant that lies between f(a) and f(b), then there is a value $x \in [a,b]$ such that f(x) = k

Bracketing a root = knowing that the function changes sign in an identified interval

General best advise:

- Always bracket a root before trying to converge...
- Never allow your iteration method to get outside the best bracketing bounds...

General idea

Examples of pitfalls of bracketing...

No answer (no root)

Nice case (one root)

Oops!! (two roots!!)

Three roots (might work for a while!)

Exercise 2:

- Write a function in MATLAB to bracket a function given an initial guessed range x₁ and x₂.
 (via expansion of the interval)
- Write a program to find out how many roots exist (at minimum) in the interval x₁ and x₂.

Of course these functions can then be combined to create a function that returns bracketing intervals for different roots.

Exercise 2: Function to bracket a function
 If possible, first make a graph: for example via

>> plot(x,y,x,zeros(size(x));

>> axis tight; box on;

Makes immediately clear that there are two roots.

$$x_1 = 2 - \sqrt{2} \approx 0.59$$

 $x_2 = 2 + \sqrt{2} \approx 3.41$

Exercise 2: Function to bracket a function

```
function found = brac(func, x1, x2)
 2 -
      ntrv = 50;
      factor = 1.6:
                                                          a function to expand the
      found = false:
      if (x1~=x2)
                                                                  interval (x_1, x_2)
       f1 = func(x1);
        f2 = func(x2);
                                                            maximally 2^{50} \sim 10^{15},
     for i = 1:ntrv
10 -
         if (f1*f2<0)
                                                             untill a root is found
11 -
          found = true
12 -
          break;
13 -
          end;
14 -
        if (abs(f1)<abs(f2))</pre>
15 -
          x1 = x1 + factor*(x1-x2);
                                                     returns true when root is found
16 -
          f1 = func(x1);
17 -
          else
                                                             and false otherwise
18 -
           x2 = x2 + factor*(x2-x1);
19 -
           f2 = func(x2);
20 -
          end:
21 -
        end:
22 -
      else
23 -
        disp('Bad initial range!');
                                                                 displays results
24 -
      end;
25
26 -
      if found
        disp(sprintf('The bracketing interval = [%f, %f]\n', [x1,x2]));
28 -
      else
29 -
        disp('No bracketing interval found!');
30 -
      end:
31 -
      ∟return
```

Exercise 2: Function to bracket a function

```
function nroot = brak(func, x1, x2, n);
      nroot = 0;
      dx = (x2 - x1)/n;
                                               a function to subdivide the
      x = x1:
      fp = func(x1);
                                             interval (x_1,x_2) in n parts and
     for i = 0:n
                                             examines whether there is at
      x = x + dx;
      fc = func(x);
                                                       least one root
      if (fc*fp<=0)
        nroot = nroot + 1;
       xb1(nroot) = x - dx;
11 -
                                                  Returns the left and right
       xb2(nroot) = x;
12 -
13 -
      end:
                                                 boundaries of the intervals
      fp = fc;
14 -
15 -
     -end:
                                                   of the roots in xb1, xb2
16 -
      if n>0
     for i = 1:nroot
17 -
          disp(sprintf('Root %d in bracketing interval [%f, %f]', [i,xb1(i),xb2(i)]));
18 -
      end
19 -
20 -
      else
21 -
      disp('No roots found!');
22 -
      end:
23
     return;
```

Bisection algorithm:

- Over some interval it is known that the function will pass through zero, because the function changes sign
- Evaluate function value at the interval's midpoint and examine its sign
- Use the midpoint to replace whichever limit has the same sign

It cannot fail, but relatively slow convergence!

Bisection

Exercise 3:

- Write a function in Excel to find a root of a function using the bisection method
 - Assume that an initial bracketing interval (x₁, x₂) is provided
 - Also the required tolerance is specified (which tolerance?)
 - Also output the required number of iterations
- Do the same in MATLAB

Exercise 3: Bisection method in Excel

	it	x1	x2	f1	f2	×	mid	fmid	interval size
	0	-2	2	14	-2		0	2	4
	1	0	2	2	-2		1	-1	2
		0	1		-1		0.	125	1
	3	0.5	1	0.25	-1		0.7	-0.4 75	0.5
			5	0.25	,				0.25
=IF(f1*fmi	d<0:>	κ1:xm	nid) 5	0.25	= -(12*tm	id<(;x2 xm	0.125
	, .	,	.5	0.066406				<u> </u>	0.0625
	7	0.5625	0.59375	0.066406	-0.02246		0 570135	0.021720	0.03125
	8	0.578125	0.59375	0.021729	-0.02246	l ymid	0 = 1	.5*(x1	+ v 2) 5625
	9	0.578125	0.585938	0.021729	-0.00043		u – 0	(X I	7813
	10	0.582031	0.585938	0.010635	-0.00043	fmi	ط – £	(vmid)	3906
	11	0.583984	0.585938	0.0051	-0.00043	1 111110	u – 1	(xmid)	1953
	12	0.584961	0.585938	0.002336	-0.00043		0.585449	0.000954	0.000977
	13	0.585449	0.585938	0.000954	-0.00043		0.585693	0.000263	0.000488
	14	0.585693	0.585938	0.000263	-0.00043		0.585815	-8.2E-05	0.000244
	15	0.585693	0.585815	0.000263	-8.2E-05		0.585754	9.06E-05	0.000122
	16	0.585754	0.585815	9.06E-05	-8.2E-05		0.585785	4.31E-06	6.1E-05
	17	0.585785	0.585815	4.31E-06	-8.2E-05		0.5858	-3.9E-05	3.05E-05
	18	0.585785	0.5858	4.31E-06	-3.9E-05		0.585793	-1.7E-05	1.53E-05
	19	0.585785	0.585793	4.31E-06	-1.7E-05		0.585789	-6.5E-06	7.63E-06
	20	0.585785	0.585789	4.31E-06	-6.5E-06		0.585787	-1.1E-06	3.81E-06
	21	0.585785	0.585787	4.31E-06	-1.1E-06		0.585786	1.62E-06	1.91E-06
	22	0.585786	0.585787	1.62E-06	-1.1E-06		0.585786	2.69E-07	9.54E-07
	23	0.585786	0.585787	2.69E-07	-1.1E-06		0.585787	-4.1E-07	4.77E-07
	24	0.585786	0.585787	2.69E-07	-4.1E-07		0.585786	-6.8E-08	2.38E-07
	25	0.585786	0.585786	2.69E-07	-6.8E-08		0.585786	1E-07	1.19E-07
	26	0.585786	0.585786	1E-07	-6.8E-08		0.585786	1.58E-08	5.96E-08

Exercise 3: Bisection method in MATLAB

```
function [p] = bisection(f, x1, x2, tol step, tol func)
 2 -
         f1 = f(x1);
         f2 = f(x2);
         fp = f2;
         if (f1*f2>0)
                                                                 Note1: We have used a
           error('Root must be bracketed!');
         else
                                                              criterion for the function value
 8 -
          it = 1;
                                                                     and the step size!
         while ((abs(fp)>tol func) && (abs(x2 - x1)>tol step))
            it = it + 1;
10 -
          p = 0.5*(x1 + x2);
11 -
                                              Note2: usually while loop needs protection
12 -
         fp = f(p);
                                                   for maximum number of iterations
13 -
           if (f1*fp<0)</pre>
14 -
             x2 = p;
                                             (but here bisection is sure to convergence...)
15 -
             f2 = fp;
16 -
             else
17 -
             x1 = p;
                                                   Root found in 25 iterations required.
18 -
              f1 = fp;
19 -
             end
                                                             Can we do better?
20 -
           end
21 -
           disp(sprintf('Root found in %d iterations at x = %e\n (function value = %e)', [it,p,fp]));
22 -
         end
23 -
       end
```

>> bisection(@(x) $x^2-4*x+2,0,2,1e-7,1e-7$);

Required number of iterations?

 After each iteration the interval bounds containing the root decrease by a factor of 2:

$$\epsilon_{n+1} = \frac{1}{2}\epsilon_n \quad \Rightarrow \quad \boxed{n = \log_2 \frac{\epsilon_0}{tol}} \qquad \begin{array}{l} \epsilon_0 = \text{ initial bracketing interval} \\ tol = \text{desired tolerance} \end{array}$$

i.e. after 50 iterations the interval is decreased by factor $2^{50} = 10^{15}$! (Mind machine accuracy when setting tolerance!)

Order of convergence = 1

$$\epsilon_{n+1} = K(\epsilon_n)^m$$

m = 1: linear convergence

m = 2: quadratic convergence

- Must succeed:
 - More than root ⇒ bisection will find one of them
 - No root, but singularity ⇒ bisection will find singularity

- Secant/False position (= Regula Falsi) method
 - Faster convergence (provided sufficiently smooth behaviour)
 - Difference with bisection method in choice of next point:
 - Bisection: mid-point of interval
 - Secant/False position: point where the approximating line crosses the axis
 - One of the boundary points is discarded in favor of the latest estimate of
 - Secant: retains the most recent of the prior estimates
 - False position: retains prior estimate with opposite sign, so that the points continue to bracket the root

Secant method

$\begin{array}{c} f(x) \\ 3 \\ b \end{array}$

False position method

Secant: slightly faster convergence: $\lim_{n\to\infty} |\epsilon_{n+1}| = K|\epsilon_n|^{1.618}$

False position: guaranteed convergence

Exercise 4:

- Write a function in Excel and MATLAB to find a root of a function using the Secant and the False position methods
 - Assume that an initial bracketing interval (x₁, x₂) is provided
 - Also the required tolerance is specified
 - Also output the required number of iterations
 - Compare the bisection, false position and secant methods

Exercise 4:

- Determination of the abscissa of the approximating line:
 - Determine the approximating line:

$$f(x) \approx f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

Determine abscissa:

$$f(x^*) = 0$$

$$\Rightarrow x^* = a - \frac{f(a)(b-a)}{f(b) - f(a)}$$
$$= \frac{af(b) - bf(a)}{f(b) - f(a)}$$

f(b)

f(x)

Exercise 4: False position method in Excel

it	x1	x2	f1	f2	x absc	f absc	interval si
0	-2	2	14	-2	1.5	-1.75	4
1	-2	1.5	14	-1.75	1.111111	-1.20988	0.388889
2	-2	1.111111	14	-1.20988	0.863636	-0.70868	0.247475
3	-2	0.863636	14	-0.70868	0.725664	-0.37607	0.137973
4	-2	0.725664	14	-0.37607	0.654362	-0.18926	0.071301
5	-2	0.654362	14	-0.18926	0.618958	-0.09272	0.035404
6	-2	0.618958	14	-0.09272	0.601727	-0.04483	0.017231
7	-2	0.601727	14	-0.04483	0.593422	-0.02154	0.008305
8	-2	0.593422	14	-0.02154	0.589438	-0.01032	0.003984
9	-2	0.589438	14	-0.01032	0.587532	-0.00493	0.001907
10	7-2	0.587532	14	-0.00493	0.\$662	-0.17236	0.000911
11	-2	0.586 2	14	-0.00236	0.58 185	-0. 0113	0.000436
12	-2	0.58618	14	-0.00113	0.58 977	-0. 0054	0.000208

x absc = x1 - f1*(x2 - x1)/(f2 - f1)f absc = f(x absc)

Exercise 4: Secant method in Excel

it	x1	x2	f1	f2	x absc	f absc	interval size
0	-2	2	14	-2	1	5 -1.75	4
1	-2	1.5	14	-1.75	1.1111	11 -1.20988	3.111111
2	1.111111	1.5	-1.20988	-1.75	0.	24 1.0976	0.388889
3	0.24	1.111111	1.0976	-1.20988	0.6543	62 -0.18926	0.871111
4	0.24	0.654362	1.0976	-0.18926	0.5934	-0.02154	0.414362
5	0.593422	0.654362	-0.02154	-0.18926	0.5855	96 0.000538	0.060941
6	0.585596	0.593422	0.000538	-0.02154	0.5857	87 -1.5E-06	0.007826
7	0.585596	0.585787	0.000538	-1.5E-06	0.5857	86 -9.8E-11	0.000191
8	0.585786	0.585787	-9.8E-11	-1.5E-06	0.5857	86 0	5.15E-07
9	0.585786	0.585786	0	-9.8E-11	0.5857	86 0	3.46E-11

x absc = x1 - f1*(x2 - x1)/(f2 - f1)f absc = f(x absc)

Exercise 4: False position method in MATLAB

```
function [p] = falseposition(f, x1, x2, tol step, tol func)
1
         f1 = f(x1):
         f2 = f(x2):
         fp = f2:
        if (f1*f2>0)
           error('Root must be bracketed!');
         else
           it = 1;
           while ((abs(fp)>tol func) && (abs(x2 - x1)>tol step))
10 -
             it = it + 1;
                                              The only difference with bisection!
            p = (x1*f2 - x2*f1)/(f2 - f1);
11 -
12 -
            fp = f(p);
13 -
            if (f1*fp<0)
14 -
               x2 = p;
15 -
             f2 = fp;
16 -
          else
                                                           Root found in 12 iterations!
              x1 = p;
17 -
18 -
              f1 = fp;
                                                        (Bisection needed 25 iterations)
19 -
             end
20 -
           end
21 -
           disp(sprintf('Root found in %d iterations at x = %e\n (function value = %e)', [it,p,fp]));
22 -
         end
23 -
       end
```

>> falseposition(@(x) $x^2-4*x+2,0,2,1e-7,1e-7$);

Secant and False position method

Exercise 4: Secant method in MATLAB

```
function [p] = secant(f, x1, x2, tol step, tol func)
2 -
         f1 = f(x1);
3 -
         f2 = f(x2);
        fp = f2;
        if (f1*f2>0)
           error('Root must be bracketed!');
         else
           it = 1;
           while ((abs(fp)>tol func) && (abs(x2 - x1)>tol step))
10 -
             it = it + 1;
11 -
             p = (x1*f2 - x2*f1)/(f2 - f1);
12 -
             fp = f(p);
             x1 = x2;
13 -
                                The only difference with
14 -
             f1 = f2:
15 -
             x2 = p;
                                 False position method!
16 -
             f2 = fp;
           end
17 -
           disp(sprintf('Root found in %d iterations at x = %e\n (function value = %e)', [it,p,fp]));
18 -
19 -
         end
20 -
       end
```

>> secant(@(x) $x^2-4*x+2,0,2,1e-7,1e-7$);

Secant method: 8 iterations False position: 12 iterations Bisection: 25 iterations

Secant and False position method

Comparison of methods

$$f(x) = x^2 - 4x + 2 = 0$$

tol_eps, tol_func = 1e-15, and $(x_1, x_2) = (0,2)$

Method	Nr. iterations
Bisection	52
False position	22
Secant	9

Compare with:

>> fzero(@(x) x^2-4*x+2,2,optimset('TolX',1e-15,'Display','iter'))

Note the initial bracketing steps in fzero!

Brent's method

Superlinear convergence + sureness of bisection

- Keep track of superlinear convergence, and if not, intersperse with bisection steps (assures at least linear convergence)
- Brent's method (is implemented in MATLAB's fzero): root-bracketing + bisection/secant/inverse quadratic interpolation
- Inverse quadratic interpolation: uses 3 prior points to fit an inverse quadratic function (i.e. x(y)) with contingency plans, if root falls outside brackets:

$$x = b + P/Q$$
 $R = f(b)/f(c)$
 $P = S[T(R - T)(c - b) - (1 - R)(b - a)]$ $S = f(b)/f(a)$
 $Q = (T - 1)(R - 1)(S - 1)$ $T = f(a)/f(c)$

b = current best estimate

P/Q = ought to be a 'small' correction

 When P/Q does not land within the bounds or when bounds are not collapsing fast enough ⇒ take bisection step

Brent's method

```
function [root] = brent(f, x1, x2, tol)
 2 -
         ITMAX = 100;
 3 -
         EPS = 3e-8:
 4 -
        a = x1; b = x2; c = x2;
 5 -
        fa = f(a);
 6 -
         fb = f(b);
 7 -
         fc = fb:
 8 -
         if (fa*fb>0)
          error('Root must be bracketed!');
10 -
         else
11 -
          for iter=1:ITMAX
12 -
            if (fb*fc>0)
13 -
              c = a; fc = fa; % Rename a, b, c and
14 -
              d = b - a; e = d; % adjust bounding interval d
15 -
             end:
16 -
             if (abs(fc) <abs(fb))
17 -
             a = b; fa = fb;
18 -
              b = c; fb = fc;
19 -
               c = a; fc = fa;
20 -
             end:
             tol1 = 2.0*EPS*abs(b) + 0.5*tol; % Convergence check.
21 -
22 -
             xm = 0.5*(c - b):
             if ((abs(xm)<=tol1) || (fb == 0))
23 -
24 -
25 -
               disp(sprintf('\nRoot found in %d iterations at x = %e (f(x) = %e)', [iter,b,fb]));
26 -
               break:
27 -
             end:
28 -
             if ((abs(e)>=tol1) && (abs(fa)>abs(fb)))
29
               % Attempt inverse quadratic interpolation.
30 -
               s = fb/fa;
31 -
               if (a==c)
32 -
                 p = 2.0*xm*s;
33 -
                 q = 1.0 - s;
34 -
               else
35 -
                 q = fa/fc;
36 -
                 r = fb/fc;
37 -
                 p = s*(2.0*xm*q*(q - r) - (b - a)*(r - 1.0));
38 -
                 q = (q - 1.0)*(r - 1.0)*(s - 1.0);
39 -
               end;
```

Brent's method

```
40 -
                if (p>0.0)
41 -
                  q = -q; % Check whether in bounds.
42 -
                end;
43 -
                p = abs(p);
44 -
                min1 = 3.0*xm*q - abs(tol1*q);
45 -
                min2 = abs(e*q);
46 -
                if (2.0*p<min(min1,min2))</pre>
47 -
                  e = d; % Accept interpolation.
48 -
                  d = p/q;
49 -
                else
50 -
                  d = xm; % Interpolation failed, use bisection.
51 -
                 e = d:
52 -
                end;
53 -
              else
54 -
                 d = xm; % Bounds decreasing too slowly, use bisection.
55 -
                 e = d:
56 -
              end;
57 -
              a = b; % Move last best guess to a.
58 -
              fa = fb;
59 -
              if (abs(d)>tol1) % Evaluate new trial root.
                b = b + d:
60 -
61 -
              else
62 -
               if (xm<0)
63 -
                  b = b - tol1;
64 -
                else
65 -
                  b = b + tol1:
66 -
                end:
67 -
              end;
68 -
              fb = f(b);
69 -
              if (d == xm)
70 -
                disp(sprintf('Iteration: %d => x = %e, f(x) = %e (bisection)', [iter,b,fb]));
71 -
72 -
                disp(sprintf('Iteration: %d => x = %e, f(x) = %e (inverse quadratic interpolation)', [iter,b,fb]));
73 -
              end;
74 -
            end:
75 -
            if (iter==ITMAX)
76 -
              disp('Maximum number of iterations exceeded in brent!');
77 -
            end:
78 -
          end:
79 -
      ∟end
```

Non-linear equation solving in Excel

- Excel comes with a goal-seek and solver function. Some prerequisites have to be installed. For Excel 2010:
 - Install via Excel → File → Options → Add-Ins → Go (at the bottom) → Select solver add-in. You can now call the solver screen on the 'data' menu ('Oplosser' in Dutch).
- The procedure to solve is then:
 - Select the goal-cell, and whether you want to minimize, maximize or set a certain value
 - Enter the variable cells; Excel is going to change the values in these cells to get to the desired solution
 - Specify the boundary conditions (e.g. to keep certain cells above zero)
 - Click 'solve' (possibly after setting the advanced options).

Excel: goal-seek example

- Goal-Seek can be used to set the goal-cell to a specified value (e.g. zero) by changing another cell:
 - Open Excel and type the following:

	Α	В
1	X	3
2	f(x)	=-3*B1^2-5*B1+2
3		

Go to tab Data → What-if Analysis → Goal Seek

- Set cell: B2

To Value: 0

By changing cell: B1

OK: You'll find a solution of 0.3333...

Excel: solver example

- The solver is used to change the value in a goal-cell, by changing the values in 1 or more other cells while keeping boundary conditions:
 - Use the following sheet:

	А	В	С
1		X	f(x)
2	x1	3	=2*B2*B3-B3+2
3	x2	4	=2*B3-4*B2-4

- Go to tab Data → Solver
 - Goalfunction: C2 (value of: 0)
 - Add boundary condition: C3 = 0
 - By changing cells: \$B\$2:\$B\$3 (you can just select the cells)
- Solve. You will find B2=0 and B3=2.

Non-linear equation solver in Matlab (1 var)

Use fzero for single variable non-linear zero finding

```
\rightarrow fzero(@(x) -3*x^2-5*x+2,3)
Or with <u>function</u> [F] = TestFuncFZero(x)
         F = -3*x^2 - 5*x + 2;
          end
         >> fzero(@TestFuncFZero,3)
\rightarrow fzero(@(x) -3*x^2-5*x+2,3,optimset('Display','iter'))
Search for an interval around 3 containing a sign change:
 Func-count
                         f (a)
                                                    f (b)
              а
    1
                               -40
                                                          -40
             2.91515 -38.07
                                                    -41.9732
                                        3.08485
    5
                2.88
                         -37.2832
                                           3.12
                                                    -42.8032
             2.83029
                          -36.1832
                                        3.16971
                                                    -43.9896
                                           3.24
                                                    -45.6928
Note the initial bracketing steps in fzero!
                                         3.33941 -48.1521
```

Non-linear equation solver in Matlab (≥ 2 var)

 Use fsolve for systems of non-linear equations with multiple variables

- Requires the evaluation of the function f(x) and the derivative f'(x) at arbitrary points
 - Algorithm:
 - Extend tangent line at current point x_i till it crosses zero
 - Set next guess x_{i+1} to the abscissa of that zero crossing

$$f(x + \delta) \approx f(x) + f'(x)\delta + \frac{1}{2}f''\delta^2 + \cdots$$
 (Taylor series at x)

For small enough values of δ and for well-behaved functions, the non-linear terms become unimportant

$$\Rightarrow \delta = -\frac{f(x)}{f'(x)}$$

- $\Rightarrow \delta = -\frac{f(x)}{f'(x)}$ Can be extended to higher dimensions Requires an initial guess sufficiently close to the root! (otherwise even failure!!)

Newton-Raphson method:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Enormously fast convergence,

WHEN IT DOES NOT WORK...

Sometimes underrelaxation can help...

$$x_{n+1} := (1 - \omega)x_n - \omega x_{n+1}$$

Chemical Engineering and Chemistry

29-11-2018 Page 47

Basic algorithm:

Given initial x, required tolerance $\varepsilon > 0$

Repeat

- 1. Compute f(x) and f'(x).
- 2. If $|f(x)| \le \epsilon$, return x
- 3. $x \coloneqq x f(x)/f'(x)$

until maximum number of iterations is exceeded

Exercise 5: Newton-Raphson method in Excel

it	x	f	df/dx	dx
0	0	2	-4	0.5
1	0.5	0.25	-3	0.083333
2	0.58333333333333	0.00694444	-2.83333	0.002451
3	0.585784313725490	6.0073E-06	-2.82843	2.12E-06
4	0.585786437625310	4.5108E-12	-2.82843	1.59E-12
5	0.585786437626905	0	-2.82843	♠ 0
analytical	0.585786437626905			£
		$x_{n+1} = x_n \cdot$	$+\delta x_n$	$\delta x_n = \frac{-f_n}{df}$
				$\frac{a_{J}}{dx_{n}}$

- Why is Newton-Raphson so powerful?
 - ⇒ High rate of convergence

Newton-Raphson method:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 Subtracting the solution x^* :
$$x_{n+1} - x^* = x_n - x^* - \frac{f(x_n)}{f'(x_n)}$$
 Defining the error $\epsilon_n = x_n - x^*$: $\epsilon_{n+1} = \epsilon_n - \frac{f(x_n)}{f'(x_n)}$

$$a_n = x_n - x^*$$
: $\epsilon_{n+1} = \epsilon_n - \frac{f(x_n)}{f'(x_n)}$

$$\epsilon_{n+1} = \epsilon_n - \frac{f(x^*) + f'(x^*)\epsilon_n + \frac{1}{2}f''(x^*)\epsilon_n^2 + \cdots}{f'(x^*) + \cdots}$$

$$\epsilon_{n+1} = \epsilon_n - \epsilon_n - \frac{1}{2} \frac{f''(x^*)}{f'(x^*)} \epsilon_n^2$$
 \Rightarrow
$$\begin{cases} \epsilon_{n+1} \sim K \epsilon_n^2 \\ \text{Quadratic convergence!!} \end{cases}$$

$$\epsilon_{n+1} \sim K \epsilon_n^2$$

Order of convergence

$$\lim_{n\to\infty}\frac{|\epsilon_{n+1}|}{|\epsilon_n|^m}=K \qquad \begin{array}{l} m=\text{ order of convergence} \\ K=\text{ asymptotic error constant} \end{array}$$

$$\epsilon_n = x_n - x^*$$
 with x^* the solution

When the solution is not known a priori: $\epsilon_{n+1} \approx x_{n+1} - x_n$

$$\frac{|\epsilon_{n+1}|}{|\epsilon_{n}|} = \frac{K|\epsilon_{n}|^{m}}{K|\epsilon_{n-1}|^{m}} \Rightarrow \frac{|\epsilon_{n+1}|}{|\epsilon_{n}|} = \left(\frac{|\epsilon_{n}|}{|\epsilon_{n-1}|}\right)^{m}$$

$$\Rightarrow \ln\left(\frac{|\epsilon_{n+1}|}{|\epsilon_{n}|}\right) = m \ln\left(\frac{|\epsilon_{n}|}{|\epsilon_{n-1}|}\right)$$

$$for n \to \infty$$

$$\Rightarrow \ln\left(\frac{|\epsilon_{n+1}|}{|\epsilon_n|}\right) = m \ln\left(\frac{|\epsilon_n|}{|\epsilon_{n-1}|}\right)$$

$$m = \frac{\ln\left(\frac{|\epsilon_{n+1}|}{|\epsilon_n|}\right)}{\ln\left(\frac{|\epsilon_n|}{|\epsilon_{n-1}|}\right)}$$

$$for \ n \to \infty$$

Exercise 5: Newton-Raphson method in Excel

it	X	f	df/dx	dx	eps	m
0	0	2	-4	0.5	0.585786438	
1	0.5	0.25	-3	0.083333	0.085786438	
2	0.583333333333333	0.00694444	-2.83333	0.002451	0.002453104	1.850
3	0.585784313725490	6.0073E-06	-2.82843	2.12E-06	2.1239E-06	1.984
4	0.585786437625310	4.5108E-12	-2.82843	1.59E-12	1.59472E-12	2.000
5	0.585786437626905	0	-2.82843	0	1.11022E-16	•
analytical	0.585786437626905					

$$\epsilon_n = x_n - x^*$$

$$m = \frac{\ln\left(\frac{|\epsilon_{n+1}|}{|\epsilon_n|}\right)}{\ln\left(\frac{|\epsilon_n|}{|\epsilon_{n-1}|}\right)}$$

Exercise 6:

- Write a function in MATLAB to find a root of a function using the Newton-Raphson method
 - Assume that an initial guess x_0 is provided
 - Also the required tolerance is given
 - Output the results for every iteration
 - Verify that at every iteration the number of significant digits double, and compute the order of convergence

Exercise 6: Newton-Raphson in MATLAB

```
function [p] = newton1D(func, grad, x, tol x, tol f)
         ITMAX = 100:
       error = 2*tol f;
       it = 0;
       f = func(x);
     while (((error>tol f) || (dx>tol x)) && (it<ITMAX))</pre>
        it = it + 1:
         q = qrad(x);
        dx = -f/q;
        x = x + dx;
        f = func(x);
        error = abs(f);
       end:
14 -
        if it<=ITMAX
           disp(sprintf('Root found in %d iterations at x = %e\n (function value = %e)', [it,x,f]));
15 -
16 -
         else
           disp(sprintf('No root found after %d iterations!', [it]));
18 -
         end:
19 -
       end
```

 $>> newton1D(@(x) x^2-4*x+2, @(x) 2*x-4,1,1e-12,1e-12)$

Convergence in 6 iterations.

Why does it not work with an initial guess of $x_0 = 2?$?

Modifications to the basic algorithm

• If the first derivative f'(x) is not known or cumbersome to compute/program, we can use the local num. approximation:

$$f'(x) \approx \frac{f(x+dx) - f(x)}{dx} \qquad (dx \sim 10^{-8})$$

dx should be small (otherwise the method reduces to first order)
But not too small (otherwise you will be wiped out by roundoff!)

- Unless you know that the initial guess is close to the solution, the Newton-Raphson method should be combined with:
 - a bracketing method, to reject the solution if it wanders outside of the bounds;
 - Reduced Newton step method (= relaxation) for more robustness.
 Don't take the entire step if the error does not decrease (enough)
 - More sophisticated step size control: Local line searches and backtracking using cubic interpolation (for global convergence)

Exercise 6: Newton-Raphson in MATLAB

```
\neg function [p] = newton1Dnum(func, x, tol x, tol f)
   ITMAX = 100;
   h = 1e-8;
   error = 2*tol f;
   it = 0;
   f = func(x);
  while (((error>tol f) || (dx>tol x)) && (it<ITMAX))</pre>
     it = it + 1;
     g = (func(x+h) - func(x))/h; Numerical differentiation
     dx = -f/\alpha;
     x = x + dx;
     f = func(x);
     error = abs(f);
   end:
   if it<=TTMAX
     disp(sprintf('Root found in %d iterations at x = %e\n (function value = %e)', [it,x,f]));
   else
     disp(sprintf('No root found after %d iterations!', [it]));
   end;
 end
```

 $>> newton1Dnum(@(x) x^2-4*x+2,1,1e-12,1e-12)$

Convergence also in 6 iterations!

How to solve:

f(x) = 0 for arbitrary functions f

"Root finding"

(i.e. move all terms to the left)

- One dimensional case: f(x) = 0"Bracket or 'trap' a root between bracketing values, then hunt it down like a rabbit."
- Multi-dimensional case: f(x) = 0
 - N equations in N unknowns:
 You can only hope to find a solution.
 It may have no (real) solution, or more than one solution!
 - Much more difficult!!
 "You never know whether a root is near, unless you have found it"

Extensions to multi-dimensional case:

Let's first consider the two-dimensional case:

$$f(x,y) = 0$$
$$g(x,y) = 0$$

Multi-variate Taylor series expansion:

$$f(x + \delta x, y + \delta y) \approx f(x, y) + \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y + O(\delta x^2, \delta y^2) = 0$$
$$g(x + \delta x, y + \delta y) \approx g(x, y) + \frac{\partial g}{\partial x} \delta x + \frac{\partial g}{\partial y} \delta y + O(\delta x^2, \delta y^2) = 0$$

Neglecting higher order terms:

$$\frac{\partial f}{\partial x}\delta x + \frac{\partial f}{\partial y}\delta y = -f(x,y)$$

$$\frac{\partial g}{\partial x}\delta x + \frac{\partial g}{\partial y}\delta y = -g(x,y)$$

Two linear equations in the two unknowns δx and δy .

Extensions to multi-dimensional case:

Newton-Raphson method:

$$\frac{\partial f}{\partial x}\delta x + \frac{\partial f}{\partial y}\delta y = -f(x,y)$$
$$\frac{\partial g}{\partial x}\delta x + \frac{\partial g}{\partial y}\delta y = -g(x,y)$$

Solution via Cramer's rule:

$$\delta x = \begin{vmatrix} -f & \frac{\partial f}{\partial y} \\ -g & \frac{\partial g}{\partial y} \end{vmatrix} / \begin{vmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{vmatrix} = \frac{-f \frac{\partial g}{\partial y} + g \frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial f \partial g}{\partial y \partial x}}$$

$$\delta y = \begin{vmatrix} \frac{\partial f}{\partial x} & -f \\ \frac{\partial g}{\partial x} & -g \end{vmatrix} / \begin{vmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{vmatrix} = \frac{-g\frac{\partial f}{\partial x} + f\frac{\partial g}{\partial x}}{\frac{\partial f}{\partial y} + \frac{\partial g}{\partial y} + \frac{\partial g}{\partial y}}$$

Or in matrix notation:

$$\begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} \delta x \\ \delta y \end{bmatrix} = -\begin{bmatrix} f(x, y) \\ g(x, y) \end{bmatrix}$$

Jacobian matrix

Extensions to multi-dimensional case:

Example: intersection of circle with parabola:

$$x^{2} + y^{2} = 4 \Rightarrow$$

$$y = x^{2} + 1 = 0$$

$$x^{2} + y^{2} = 4 \Rightarrow \mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \quad \mathbf{f} = \begin{bmatrix} f_{1} \\ f_{2} \end{bmatrix} = \begin{bmatrix} x_{1}^{2} + x_{2}^{2} - 4 \\ x_{1}^{2} - x_{2} + 1 \end{bmatrix} \quad \mathbf{J} = \begin{bmatrix} 2x_{1} & 2x_{2} \\ 2x_{1} & -1 \end{bmatrix}$$

	$x^{(i)}$	$f^{(i)}$	$J^{(i)}$	$\delta x^{(i)}$
<i>i</i> = 1:	[¹ ₂]	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 2 & 4 \\ 2 & -1 \end{bmatrix}$	$\begin{bmatrix} -0.1 \\ -0.2 \end{bmatrix}$
i = 2:	$\begin{bmatrix} 0.9 \\ 1.8 \end{bmatrix}$	$\begin{bmatrix} 0.05 \\ 0.01 \end{bmatrix}$	$\begin{bmatrix} 1.8 & 3.6 \\ 1.8 & -1 \end{bmatrix}$	$\begin{bmatrix} -0.01039 \\ -0.0087 \end{bmatrix}$
<i>i</i> = 3:	[0.889614] [1.791304]	$\begin{bmatrix} 0.000183 \\ 0.0000108 \end{bmatrix}$	$\begin{bmatrix} 1.7792 & 3.5826 \\ 1.7792 & -1 \end{bmatrix}$	$\begin{bmatrix} -6.99 \cdot 10^{-5} \\ -1.65 \cdot 10^{-5} \end{bmatrix}$
<i>i</i> = 4:	[0.8895436] [1.7912878]	$\begin{bmatrix} 5.16 \cdot 10^{-9} \\ 4.89 \cdot 10^{-9} \end{bmatrix}$	$\begin{bmatrix} 1.779087 & 3.582576 \\ 1.779087 & -1 \end{bmatrix}$	$\begin{bmatrix} -2.78 \cdot 10^{-9} \\ -5.94 \cdot 10^{-11} \end{bmatrix}$

Extensions to multi-dimensional case:

Example: intersection of circle with parabola:

Check order of convergence:

it		x1	x2	eps1	eps2	m1	m2
	1	1.00000000000000000	2.00000000000000000				
	2	0.9000000000000000	1.8000000000000000	0.10000000000000000	0.2000000000000000		
	3	0.8896135265700480	1.7913043478260900	0.0103864734299518	0.0086956521739132	1.983532	2.948192
	4	0.8895436203043770	1.7912878475373300	0.0000699062656710	0.0000165002887549	2.094992	2.32082
	5	0.8895436175241320	1.7912878474779200	0.0000000027802448	0.0000000000594120	2.058946	2.138235

Quadratic convergence!
= doubling number of significant digits every iteration

$$\epsilon_{n+1} \approx x_{n+1} - x_n$$

$$m = \frac{\ln\left(\frac{|\epsilon_{n+1}|}{|\epsilon_n|}\right)}{\ln\left(\frac{|\epsilon_n|}{|\epsilon_{n-1}|}\right)}$$

Extensions to multi-dimensional case:

Generalization to the *N*-dimensional case:

$$f_i(x_1, x_2, ..., x_N) = 0$$
 for $i = 1, 2, ..., N$

Define:
$$\mathbf{x} = [x_1, x_2, ..., x_N]$$
 and $\mathbf{f} = [f_1, f_2, ..., f_N] \Rightarrow \mathbf{f}(\mathbf{x}) = \mathbf{0}$

Multi-variate Taylor series expansion:

$$f_i(\mathbf{x} + \delta \mathbf{x}) = f_i(\mathbf{x}) + \sum_{j=1}^{N} \frac{\partial f_i}{\partial x_j} \delta x_j + O(\delta \mathbf{x}^2)$$

Jacobian matrix:
$$J_{ij} = \frac{\partial f_i}{\partial x_j} \Rightarrow f(x + \delta x) = f(x) + J \cdot \delta x + O(\delta x^2)$$

function [f] = MyFunc(x)

Multi-variate Newton-Raphson in MATLAB

```
jac(1,1) = 2*x(1);
                  f(1) = x(1)^2 + x(2)^2 - 4;
                                                                          jac(1,2) = 2*x(2);
                f(2) = x(1)^2 - x(2) + 1;
                                                                       jac(2,1) = 2*x(1);
               f = f':
                                                                          jac(2,2) = -1;
     function [p] = newton(func, jac, x, tol x, tol f)
        ITMAX = 100;
      error = 2*tol f;
       it = 0:
        f = feval(func,x);
    while (((error>tol f) || (max(abs(dx))>tol x)) && (it<ITMAX))</p>
        it = it + 1;
        j = feval(jac,x);
        dx = j \setminus (-f);
        x = x + dx:
11 -
        f = func(x);
12 -
        error = max(abs(f));
13 -
        disp(sprintf('iteration %d: x[1] = %e, x[2] = %e with f[1] = %e, f[2] = %e', [it, x(1), x(2), f(1), f(2)]);
        end;
14 -
15 -
        if it<=ITMAX
          disp(sprintf('\nRoot found in %d iterations at x[1] = %e, x[2] = %e with f[1] = %e; f[2] = %e \n', [it, x(1), x(2), f(1), f(2)]);
16 -
17 -
          disp(sprintf('\nNo root found after %d iterations!\n', [it]));
18 -
                                                                                           ⇒ Only 5 iterations
19 -
        end;
20 -
                                                                                               needed!
      >> newton(@MyFunc,@MyJac,[1;2],1e-12,1e-12)
```

function [jac] = MyJac(x)

Technische Universiteit

University of Technology

Multi-variate Newton-Raphson in MATLAB

Plotting the functions:

>> mphandle = mupad

Multi-variate Newton-Raphson in MATLAB

Plotting the norm of the function:

Multi-variate Newton-Raphson in MATLAB

Plotting contours of the norm of the function:

Multi-dimensional secant method ('quasi-Newton'):

Disadvantage of the Newton-Raphson method: It requires the Jacobian matrix

- In many problems no analytical Jacobian available
- If the function evaluation is expensive, the numerical approximation using finite differences can be prohibitive!
- use cheap approximation of the Jacobian! (= secant, or 'quasi-Newton' method)

Newton-Raphson:

$$J^{n} \cdot \delta x^{n} = -f^{n}(x^{n}) \qquad B^{n} \cdot \delta x^{n} = -f^{n}(x^{n})$$
$$x^{n+1} = x^{n} + \delta x^{n} \qquad x^{n+1} = x^{n} + \delta x^{n}$$

$$x^{n+1} = x^n + \delta x^n$$

Secant method:

$$\mathbf{B}^n \cdot \delta \mathbf{x}^n = -\mathbf{f}^n(\mathbf{x}^n)$$

$$x^{n+1} = x^n + \delta x^n$$

 \mathbf{B}^n = approximation of the Jacobian

Multi-dimensional secant method ('quasi-Newton'):

Secant equation (generalization of 1D case):

$$\mathbf{B}^{n+1} \cdot \delta \mathbf{x}^n = \delta \mathbf{f}^n \qquad \delta \mathbf{x}^n = \mathbf{x}^{n+1} - \mathbf{x}^n \qquad \delta \mathbf{f}^n = \mathbf{f}^{n+1} - \mathbf{f}^n$$

Underdetermined (i.e. not unique: n equations with n^2 unknowns) \Rightarrow we need another condition to pin down \mathbf{B}^{n+1}

Broyden's method: determine \mathbf{B}^{n+1} by making the least change to **B**ⁿ that is consistent with the secant condition

Updating formula:
$$\mathbf{B}^{n+1} = \mathbf{B}^n + \frac{(\delta f^n - \mathbf{B}^n \cdot \delta x^n)}{\delta x^n \cdot \delta x^n} \otimes \delta x^n$$

(Note: sometimes **B**⁻¹ is updated directly)

Multi-dimensional secant method ('quasi-Newton'):

Background of Broyden's method:

Secant equation: $\mathbf{B}^{n+1} \cdot \delta \mathbf{x}^n = \delta \mathbf{f}^n$

Broyden's method: Since there is no update on derivative info, why would \mathbf{B}^n change in a direction \mathbf{w} orthogonal to δx^n

$$\Rightarrow (\delta x^n)^{\mathrm{T}} w = 0$$

$$\mathbf{B}^{n+1} \cdot \mathbf{w} = \mathbf{B}^{n} \cdot \mathbf{w}$$

$$\mathbf{B}^{n+1} \cdot \delta \mathbf{x}^{n} = \delta \mathbf{f}^{n}$$

$$\Rightarrow \mathbf{B}^{n+1} = \mathbf{B}^{n} + \frac{(\delta \mathbf{f}^{n} - \mathbf{B}^{n} \cdot \delta \mathbf{x}^{n})}{\delta \mathbf{x}^{n} \cdot \delta \mathbf{x}^{n}} \otimes \delta \mathbf{x}^{n}$$

Initialize **B**⁰ with identity matrix (or with finite difference approx.)

Same example as before but now with Broyden's method

```
function [p] = broyden(func, x, tol x, tol f)
   ITMAX = 100;
   error = 2*tol f;
   it = 0:
                                                                          Slower convergence with
   f = feval(func,x);
   b = eve(2): % create identity matrix
                                                                       Broyden's method should be
   while (((error>tol f) || (max(abs(dx))>tol x)) && (it<ITMAX))
     it = it + 1;
     dx = b \setminus (-f);
                                                                       offset by improved efficiency
     x = x + dx:
                                                                                  of each iteration!
     f = func(x):
         b + ((df - b*dx)*dx.')/(dx.'*dx); % Broyden's updating
     error = max(abs(f));
     disp(sprintf('iteration %d: x[1] = %e, x[2] = %e \text{ with } f[1] = %e, f[2] = %e', [it, x(1), x(2), f(1), f(2)]));
   end:
   if it<=ITMAX
     disp(sprintf('\nRoot found in %d iterations at x[1] = %e, x[2] = %e with f[1] = %e; f[2] = %e \n', [it, x(1), x(2), f(1), f(2)]));
     disp(sprintf('\nNo root found after %d iterations!\n', [it]));
   end:
 end
```

>> broyden(@MyFunc,[1;2],1e-12,1e-12)

Requires 11 iterations (compare with Newton: 5 iterations)

But much fewer function evaluations per iteration!

Same example as before but now with Broyden's method

Note how the approximate Jacobian (**B**) is updated over subsequent iterations:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 5 \\ 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1.0225 & 4.9685 \\ 0.9437 & -0.9212 \end{bmatrix} \rightarrow \begin{bmatrix} 2.0881 & 4.6442 \\ 1.7312 & -1.1608 \end{bmatrix}$$

$$\Rightarrow \dots \Rightarrow \begin{bmatrix} 1.9284 & 3.4539 \\ 1.7945 & -1.0136 \end{bmatrix}$$

Compare with
$$\begin{bmatrix} 1.779087 & 3.582576 \\ 1.779087 & -1 \end{bmatrix}$$

Note that the approximate Jacobian (**B**) is not exact even when the solution has already been found!

Conclusions

Recommendations for root finding:

- One-dimensional cases:
 - If it is not easy/cheap to compute the function's derivative
 ⇒ use Brent's algorithm
 - If derivative information is available
 - ⇒ use Newton-Raphson's method + bookkeeping on bounds provided you can supply a good enough initial guess!!
 - There are specialized routines for (multiple) root finding of polynomials (but not covered in this course)

- Multi-dimensional cases:

- Use Newton-Raphson method, but make sure that you provide an initial guess close enough to achieve convergence
- In case derivative information is expensive
 - ⇒ use Broyden's method (but slower convergence!)