姓名: 学号: 同组人:

- 1. 实验目的
- 1) 熟悉电阻应变测量技术的基本原理和方法;
- 2) 测量纯弯曲梁矩形截面上的应变,分析应变分布规律;
- 3) 验证梁纯弯曲理论;
- 4) 测量材料泊松比。
- 2. 实验装置
- 1) 材料力学多功能实验台;
- 2) 接有应变片的实验件;
- 3) 静态应变测试仪;
- 4) 游标卡尺和钢尺。

3. 实验原理与方法(10分)

纯弯曲实验件材料为 45#钢调质处理,弹性模量 E=210GPa,屈服强度355MPa。 其横截面为矩形,梁的侧面沿与轴线平行的不同高度上粘贴单向应变片,如图所示。通过材料力学多功能试验装置等量逐级加载,载荷大小由数字载荷显示仪显示。

图1 纯弯曲梁正应力实验件示意图 (具体值参考下表实验测量值)

表1 应变片位置及截面尺寸

应变片至中性层	距离 (mm)	梁的尺寸和有关参数				
$Y_1 \cdot Y_2$	20	宽度 b	20mm			
Y ₃	15	高度 h	40mm			
Y_4	10	跨度L	600mm			
Y_5	0	载荷距离 a	192mm			
Y_6	-10	弹性模量E	210GPa			
Y_7	-15	惯性矩 Iz	$1.0667 \times 10^{-7} m^2$			
Y_8	-20					

在载荷 P 的作用下梁发生弯曲变形,截面上所承受的弯矩均为:

$$M = \frac{1}{2}aP$$

横截面上的正应力理论推导:

Bending stress variation 图2 (From Pearson)

$$egin{align} M &= \int_A y dF = \int_A y \sigma dA = \int_A y \Big(rac{y}{c}\sigma_{ ext{max}}\Big) dA \ M &= rac{\sigma_{ ext{max}}}{c} \int_A y^2 dA = rac{\sigma_{ ext{max}}}{c} I_z \ rac{\sigma_{ ext{max}}}{c} &= rac{-\sigma}{y} \ \sigma &= -rac{My}{I_z} \ \end{pmatrix}$$

将梁上的各应变片以<u>1/4</u>桥路接入应变仪的通道中,<u>公用一个温度补偿片</u>。当梁在载荷 P 的作用下梁发生弯曲变形时,工作片的电阻随着梁的变形而发生变化,通过电阻应变仪可以分别测量出各对应位置的<u>应变</u>。根据胡克定律可计算出相应的应力值。

$$\sigma_e = E \cdot \varepsilon_e$$

实验最大加载设定为 4000N, 以试验件屈服强度为限定条件, 计算该情况下的安全系数 (5分):

理论值:

$$F.S = \frac{\sigma_{fail}}{\sigma_{allow}} = \frac{\sigma_{fail}}{\frac{My}{I_z}} = \frac{\sigma_{fail}}{\frac{1}{2}Pay} = \frac{355 \times 10^6}{\frac{1}{2} \times 4000 \times 0.192 \times 0.02} = 4.93$$

实验值:

取8号测点在4000N下的应变值(332×10⁻⁶)

$$F.S = \frac{\sigma_{fail}}{\sigma_{allow}} = \frac{\sigma_{fail}}{E\varepsilon} = \frac{355 \times 10^6}{210 \times 10^9 \times 332 \times 10^{-6}} = 5.09$$

- 4. 实验步骤(20分)
- 1) 测量梁的截面尺寸、应变片位置参数及其它有关尺寸,见表2。预热应变仪和载荷显示仪,计算中性轴位置及截面的惯性矩 I_z 。

$$I_z = \frac{1}{12}bh^3 = \frac{1}{12} \times 0.02 \times 0.04^3 = 1.0667 \times 10^{-7}m^2$$

应变片至中·	性层距离(mm)	梁的尺寸和有关参数				
\mathbf{Y}_1	20	宽度 b	20mm			
Y_2	20	高度 h	40mm			
Y ₃	15	跨度 L	600mm			
Y_4	10	载荷距离 a	192mm			
Y ₅	0	弹性模量 E	210GPa			
Y_6	-10	惯性矩 Iz	1. $0667 \times 10^{-7} m^2$			
Y ₇	-15					
V.	_20					

表2 试件测量表

2) 检查各种仪器是否连接好,按顺序将各个应变片按 1/4 桥接法接入应变仪的 所选通道上,然后将应变仪的所选通道电桥调平衡,如图所示。

图3 电路连接示意图

- 3) 数值清零后,摇动多功能试验装置的加载机构,从5000开始,采用等量逐级加载(可取 $\Delta P = 500N$),最大加载 4000N,每加一级载荷,分别读出各相应电阻应变片的应变值。加载应保持缓慢、均匀、平稳。
- 4) 记录实验数据记录,见下表。

表3 应变测量记录表

$\varepsilon_{\rm e}(\mu)$ P(N)	504	998	1512	2006	2507	3017	3498	4001
1-1	11	25	36	49	60	72	83	95
2-2	-32	-70	-111	-151	-193	-235	-273	-314
3-3	-26	-56	-86	-116	-147	-177	-205	-236
4-4	-25	-47	-68	-89	-110	-130	-151	-172
5-5	0	0	1	1	1	2	2	3
6-6	21	43	64	84	105	126	147	167
7-7	32	65	97	127	159	191	222	253
8-8	41	84	126	167	208	250	291	332

5) 整理仪器,结束实验。

5. 实验数据处理(数据处理图表整理、实验数据选取、参数计算等,30分) 根据 $t_{ij} = \frac{M_i y_j}{E I_z} = \frac{a}{2E I_z} P_i y_j$,计算实验测量的不同工况下的理论值(见下表) 表4 实验工况下应变理论值

並 並 並 数荷(N)	504	998	1512	2006	2507	3017	3498	4001
2-2	43	86	130	172	215	259	300	343
3-3	32	64	97	129	161	194	225	257
4-4	22	43	65	86	107	129	150	171
5-5	0	0	0	0	0	0	0	0

(由于测点1和测点2位置y相同,测点6、7、8与测点2、3、4的位置成对称关系,故只计算2、3、4、5的理论数值,上述值为绝对值。)

实验值与理论值基本吻合,值得注意的是,梁上部分测点(测点2、3)实验值整体偏差比下部分大,后续处理异常数据时需优先考虑剔除。

表5 实验值与理论值偏差表

$\varepsilon_{\rm e}(\mu)$ P(N)	504	998	1512	2006	2507	3017	3498	4001
2-2	-25.93%	-18.17%	-14.35%	-12.18%	-10.18%	-9.13%	-8.95%	-8.44%
3-3	-19.75%	-12.71%	-11.52%	-10.05%	-8.79%	-8.74%	-8.84%	-8.25%
4-4	15.74%	9.89%	4.94%	3.52%	2.38%	0.54%	0.72%	0.31%
5-5								
6-6	-2.78%	0.53%	-1.23%	-2.29%	-2.27%	-2.55%	-1.94%	-2.61%
7-7	-1.23%	1.31%	-0.21%	-1.52%	-1.34%	-1.52%	-1.28%	-1.64%
8-8	-5.09%	-1.80%	-2.78%	-2.87%	-3.20%	-3.33%	-2.94%	-3.19%

平均偏差为-4.29%, 最大偏差为-25.93%(测点2在500N载荷下测量值)

为验证纯弯曲梁理论模型,使用经典误差分析方法进一步处理实验数据,如下图所示。

图5 验证性实验经典误差分析方法数据处理流程图

- 1) 检查是否有系统误差,设法消除。其中,梁中性轴处(y=0)应变理论值为 0,而由于零漂等系统误差,测量值一般是很小数值,应剔除该列数据; 处理过程中已剔除梁中性轴处测量值。
- 2) 计算测量值 u_{ij} 对应的理论值 t_{ij} 和判据值 c_k ,以及算数平均值 \bar{c} ,剩余误差 V_k 和均方根误差 σ 等;

$$t_{ij} = \frac{M_i y_j}{EI_z} = \frac{a}{2EI_z} P_i y_j$$
, $c_k = \frac{t_{ij}}{u_{ij}}$ 表6 理论值计算

並 並 並 並 数荷(N)	504	998	1512	2006	2507	3017	3498	4001
2-2	43	86	130	172	215	259	300	343
3-3	32	64	97	129	161	194	225	257
4-4	22	43	65	86	107	129	150	171
5-5	0	0	0	0	0	0	0	0

表7 判据值

判据值	504N	998N	1512N	2006N	2507N	3017N	3498N	4001N
2-2	0.7407	0.8183	0.8565	0.8782	0.8982	0.9087	0.9105	0.9156
3-3	0.8025	0.8729	0.8848	0.8995	0.9121	0.9126	0.9116	0.9175
4-4	1.1574	1.0989	1.0494	1.0352	1.0238	1.0054	1.0072	1.0031
5-5		/					/	/
6-6	0.9722	1.0053	0.9877	0.9771	0.9773	0.9745	0.9806	0.9739
6-6 7-7	0.9722 0.9877	1.0053 1.0131	0.9877 0.9979	0.9771 0.9848	0.9773 0.9866	0.9745 0.9848	0.9806 0.9872	0.9739 0.9836

黄色填充部分为重复18次后剔除的异常数据

3) 使用 3S 准则发现异常数据,剔除后重复上一步,直到不存在可疑数据;

$$\bar{c} = 0.9882$$
 $\sigma = 0.02182$

4) 计算均方根误差 $\sigma_{\bar{c}}$,得到c的测量结果;

$$\sigma_{\bar{c}} = \frac{\sigma}{\sqrt{k}} = 0.003984$$
 , $c = \bar{c} \pm 3\sigma_{\bar{c}} = 0.9882 \pm 3 \times 0.003984$

5) 是否满足 $1 \in (\bar{c} - 3\sigma_{\bar{c}}, \bar{c} + 3\sigma_{\bar{c}})$, 从而说明"纯弯曲梁理论"能否适用于实验模型:

$$ar{c} + 3\sigma_{ar{c}} = 0.9882 + 3 \times 0.003984 = 1.000152$$
 $ar{c} - 3\sigma_{ar{c}} = 0.9882 - 3 \times 0.003984 = 0.976248$ $\therefore 1 \in (ar{c} - 3\sigma_{ar{c}}, ar{c} + 3\sigma_{ar{c}})$ "纯弯曲梁理论"能适用于实验模型

6) 计算材料泊松比。

6. 误差分析(10分)

由表5 实验值与理论值偏差表来看,实验值与理论值偏差较大的部分是测点2和测点3所得数据,且载荷越低该偏差越大,该误差来源可能是:

1) 测点2和测点3的应变片质量出现问题,较低载荷下的应变测量不准确;

理论计算带入的数值都十分精确,而实际实验只能将读数尽可能精确,比如:理论计算时选取的y值为20mm、15mm和10mm,但实际实验中应变片本身是有大小的,无法精确测量到固定y值位置上固定一点的应变,这就导致该实验中实验值与理论值普遍存在1~3%的偏差,但该误差<5%,这是可以接受的。

7. 实验结论(10分)

使用电阻应变测量技术测量纯弯曲梁矩形截面上8个测点的应变值,计算得到该实验件材料泊松比为0. 2929,使用经典误差分析方法进一步处理实验数据, $1 \in (\bar{c} - 3\sigma_{\bar{c}}, \bar{c} + 3\sigma_{\bar{c}}) = (0.976248,1.000152)$,纯弯曲梁理论适用于实验模型。

8. 思考题(10分)

- 1.梁弯曲正应力的大小是否受材料的弹性模量 E 的影响;
 - $\sigma = -\frac{My}{I_z}$,正应力大小不受弹性模量E影响。
- 2. 自重是否对本实验的影响;

施加载荷前已进行归零操作,自重不会对实验造成影响。

3.设计特定尺寸材料的试件,在自重作用下,试件在悬臂梁条件下自身破坏; 选取本实验中所用材料,E=210GPa,屈服强度355MPa,

4.对比拉伸载荷,说明试件在弯曲载荷下的关键尺寸;

拉伸载荷: $\sigma = \frac{F}{4}$, 关键尺寸为截面面积, 与长度无关。

弯曲载荷: 由上推导得 $\sigma = \frac{6\rho gyL^2}{h^2}$, 关键尺寸为长度L和高度h, 与宽度无关。

9. 附件-原始数据记录表(10分)