Article Carpenter et al. (2012) 1 Carpenter et al. (2012) 2		r 0.46 0.56	0.01 0.76 0.14 0.81	r n 19 19
Carpenter et al. (2012) 3 Carpenter et al. (2012) 4	-	0.38	-0.09 0.71 0.03 0.77	19 19
Carpenter et al. (2012) 5 Carpenter et al. (2012) 6 Carpenter et al. (2012) 7		0.03 0.18 0.47	-0.43 0.48 -0.30 0.59 0.02 0.76	19 19 19
Carpenter et al. (2012) 8 Carpenter et al. (2012) 9	-	0.40 0.45	-0.07 0.72 -0.01 0.75	19 19
Carpenter et al. (2012) 10 Carpenter et al. (2012) 11 Carpenter et al. (2012) 12		0.46 0.37 0.36	0.01 0.76 -0.10 0.71 -0.11 0.70	19 19 19
Carpenter et al. (2012) 13 Carpenter et al. (2012) 14	-	0.13 0.13	-0.34 0.55 -0.34 0.55	19 19
Carpenter et al. (2012) 15 Carpenter et al. (2012) 16 Carpenter et al. (2012) 17		0.01 0.01 0.43	-0.45 0.46 -0.45 0.46 -0.03 0.74	19 19 19
Carpenter et al. (2012) 18 Carpenter et al. (2012) 19	-	0.52	0.09 0.79 -0.18 0.66	19 19
Carpenter et al. (2012) 20 Dawson et al. (2009) 1 Dawson et al. (2009) 2		0.30 0.41 0.08	-0.18 0.66 0.07 0.66 -0.43 0.55	19 32 16
Dawson et al. (2009) 3 Dawson et al. (2009) 4		0.09	-0.42 0.56 -0.32 0.64	16 16
Dawson et al. (2009) 5 Dawson et al. (2009) 6 Hussey & Barnes-Holmes (2012) 1		0.18 0.21 0.16	-0.35 0.62 -0.32 0.64 -0.21 0.49	16 16 30
Hussey & Barnes-Holmes (2012) 2 Hussey & Barnes-Holmes (2012) 3 Hussey & Barnes-Holmes (2012) 4		0.15 -0.03 -0.08	-0.22 0.48 -0.39 0.33 -0.43 0.29	30 30 30
Hussey & Barnes-Holmes (2012) 5 Hussey & Barnes-Holmes (2012) 6		0.05 -0.07	-0.32 0.40 -0.42 0.30	30 30
Hussey & Barnes-Holmes (2012) 7 Hussey & Barnes-Holmes (2012) 8 Hussey & Barnes-Holmes (2012) 9		0.04 0.15 0.39	-0.32 0.39 -0.22 0.48 0.03 0.66	30 30 30
Hussey & Barnes-Holmes (2012) 10 Hussey & Barnes-Holmes (2012) 11	-	0.16 -0.19	-0.21 0.49 -0.52 0.18	30 30
Hussey & Barnes-Holmes (2012) 12 Hussey & Barnes-Holmes (2012) 13 Hussey & Barnes-Holmes (2012) 14		-0.10 0.17 0.41	-0.44 0.27 -0.20 0.50 0.06 0.67	30 30 30
Hussey & Barnes-Holmes (2012) 15 Hussey & Barnes-Holmes (2012) 16		0.11	-0.26 0.45 -0.08 0.59	30 30
Hussey & Barnes-Holmes (2012) 17 Hussey & Barnes-Holmes (2012) 18 Hussey & Barnes-Holmes (2012) 19		0.18 -0.06 0.16	-0.19 0.51 -0.41 0.31 -0.21 0.49	30 30 30
Hussey & Barnes-Holmes (2012) 20 Hussey & Barnes-Holmes (2012) 21 Hussey & Barnes-Holmes (2012) 22		0.16 -0.05 0.08	-0.21 0.49 -0.40 0.32 -0.29 0.43	30 30 30
Hussey & Barnes-Holmes (2012) 22 Hussey & Barnes-Holmes (2012) 23 Hussey & Barnes-Holmes (2012) 24		-0.07 0.25	-0.42 0.30 -0.12 0.56	30 30
Hussey & Barnes–Holmes (2012) 25 Hussey & Barnes–Holmes (2012) 26 Hussey & Barnes–Holmes (2012) 27		0.07 -0.30 -0.08	-0.30 0.42 -0.60 0.07 -0.43 0.29	30 30 30
Hussey & Barnes-Holmes (2012) 28 Hussey & Barnes-Holmes (2012) 29		0.00 0.05	-0.36 0.36 -0.32 0.40	30 30
Hussey & Barnes–Holmes (2012) 30 Nicholson & Barnes–Holmes (2012a) 1 Nicholson & Barnes–Holmes (2012a) 2		-0.14 0.44 0.13	-0.48 0.23 0.09 0.69 -0.24 0.47	30 30 30
Nicholson & Barnes-Holmes (2012a) 3 Nicholson & Barnes-Holmes (2012a) 4		0.41 0.04	0.06 0.67 -0.32 0.39	30 30
Nicholson & Barnes-Holmes (2012a) 5 Nicholson & Barnes-Holmes (2012a) 6 Nicholson & Barnes-Holmes (2012b) 1		0.47 0.04 -0.09	0.13 0.71 -0.32 0.39 -0.46 0.31	30 30 26
Nicholson & Barnes-Holmes (2012b) 2 Nicholson & Barnes-Holmes (2012b) 3		0.05 0.40	-0.34 0.43 0.01 0.68	26 26
Nicholson & Barnes-Holmes (2012b) 4 Nicholson & Barnes-Holmes (2012b) 5 Nicholson & Barnes-Holmes (2012b) 6		0.41 0.23 0.47	0.03 0.69 -0.17 0.57 0.10 0.73	26 26 26
Nicholson & Barnes-Holmes (2012b) 7 Nicholson & Barnes-Holmes (2012b) 8		0.24 0.41	-0.16 0.57 0.03 0.69	26 26
Nicholson & Barnes-Holmes (2012b) 9 Nicholson & Barnes-Holmes (2012b) 10 Nicholson, Dempsey et al. (2014) 1		0.45 0.27 0.43	0.08 0.71 -0.13 0.60 0.08 0.69	26 26 29
Nicholson, Dempsey et al. (2014) 2 Nicholson, Dempsey et al. (2014) 3		0.44	0.09 0.69 -0.10 0.59	29 29
Nicholson, Dempsey et al. (2014) 4 Nicholson, Dempsey et al. (2014) 5 Nicholson, Dempsey et al. (2014) 6		0.14 0.27 0.38	-0.24 0.48 -0.11 0.58 0.02 0.66	29 29 29
Nicholson, Dempsey et al. (2014) 7 Nicholson, Dempsey et al. (2014) 8 Nicholson, Dempsey et al. (2014) 0		0.23	-0.15 0.55 -0.17 0.54	29 29
Nicholson, Dempsey et al. (2014) 9 Nicholson, Dempsey et al. (2014) 10 Nicholson, Dempsey et al. (2014) 11		0.12 0.42 0.31	-0.26 0.47 0.06 0.68 -0.06 0.61	29 29 29
Nicholson, Dempsey et al. (2014) 12 Nicholson, Dempsey et al. (2014) 13 Nicholson, Dempsey et al. (2014) 14		0.09	-0.29 0.44 -0.10 0.59	29 29
Nicholson, Dempsey et al. (2014) 14 Nicholson, Dempsey et al. (2014) 15 Nicholson, Dempsey et al. (2014) 16		0.08 0.20 0.00	-0.30 0.43 -0.18 0.53 -0.37 0.37	29 29 29
Nicholson, Dempsey et al. (2014) 17 Nicholson, Dempsey et al. (2014) 18 Nicholson, Dempsey et al. (2014) 19		-0.07 0.06 -0.04	-0.43 0.30 -0.31 0.42 -0.40 0.33	29 29 29
Nicholson, Dempsey et al. (2014) 19 Nicholson, Dempsey et al. (2014) 20 Nicholson, Dempsey et al. (2014) 21		-0.04 -0.04 0.21	-0.40 0.33 -0.17 0.54	29 29 29
Nicholson, Dempsey et al. (2014) 22 Nicholson, McCourt et al. (2013) 1 Nicholson, McCourt et al. (2013) 2		0.19 0.56 0.43	-0.19 0.52 0.23 0.78 0.06 0.70	29 27 27
Nicholson, McCourt et al. (2013) 3 Nicholson, McCourt et al. (2013) 4		0.18 0.17	-0.210.52-0.220.52	27 27
Nicholson, McCourt et al. (2013) 5 Nicholson, McCourt et al. (2013) 6 Nicholson, McCourt et al. (2013) 7		0.03 -0.01 0.50	-0.35 0.41 -0.39 0.37 0.15 0.74	27 27 27
Nicholson, McCourt et al. (2013) 8 Nicholson, McCourt et al. (2013) 9		0.40 0.25	0.02 0.68 -0.14 0.58	27 27
Nicholson, McCourt et al. (2013) 10 Parling et al. (2012) 1 Parling et al. (2012) 2		0.16 0.43 0.47	-0.23 0.51 0.07 0.69 0.12 0.72	27 28 28
Parling et al. (2012) 3 Parling et al. (2012) 4		0.24	-0.15 0.56 -0.27 0.46	28 28
Parling et al. (2012) 5 Parling et al. (2012) 6 Parling et al. (2012) 7		0.05 0.30 0.05	-0.35 0.44 -0.11 0.62 -0.35 0.44	25 25 25
Parling et al. (2012) 8 Parling et al. (2012) 9 Parling et al. (2012) 10		0.31 0.37 0.06	-0.10 0.63 0.01 0.64 -0.31 0.41	25 30 30
Parling et al. (2012) 11 Parling et al. (2012) 12		0.27	-0.10 0.57 -0.34 0.38	30 30
Parling et al. (2012) 13 Parling et al. (2012) 14 Parling et al. (2012) 15		0.12 0.20 0.08	-0.27 0.48 -0.19 0.54 -0.31 0.45	27 27 27
Parling et al. (2012) 16 Timko et al. (2010; Study 1) 1	-	0.34 -0.09	-0.05 0.64 -0.36 0.19	27 50
Timko et al. (2010; Study 1) 2 Timko et al. (2010; Study 1) 3 Timko et al. (2010; Study 1) 4		0.15 0.16 0.24	-0.13 0.41 -0.12 0.42 -0.04 0.49	50 50 50
Timko et al. (2010; Study 1) 5 Timko et al. (2010; Study 1) 6 Timko et al. (2010; Study 1) 7		0.29 0.20 0.29	0.01 0.53 -0.08 0.45 0.01 0.53	50 50 50
Timko et al. (2010; Study 1) 7 Timko et al. (2010; Study 1) 8 Timko et al. (2010; Study 1) 9		0.32 -0.03	0.05 0.55 -0.31 0.25	50 50
Timko et al. (2010; Study 1) 10 Timko et al. (2010; Study 1) 11 Timko et al. (2010; Study 1) 12		0.11 0.15 0.16	-0.17 0.38 -0.13 0.41 -0.12 0.42	50 50 50
Timko et al. (2010; Study 1) 13 Timko et al. (2010; Study 1) 14	· · · · · · · · · · · · · · · · · ·	-0.01 -0.17	-0.29 0.27 -0.43 0.11	50 50
Timko et al. (2010; Study 1) 15 Timko et al. (2010; Study 1) 16 Timko et al. (2010; Study 1) 17		-0.01 0.15 0.20	-0.29 0.27 -0.13 0.41 -0.08 0.45	50 50 50
Timko et al. (2010; Study 1) 18 Timko et al. (2010; Study 1) 19		0.02	-0.26 0.30 -0.05 0.48	50 50
Timko et al. (2010; Study 1) 20 Timko et al. (2010; Study 1) 21 Timko et al. (2010; Study 1) 22		0.10 0.05 –0.21	-0.18 0.37 -0.23 0.32 -0.46 0.07	50 50 50
Timko et al. (2010; Study 1) 23 Timko et al. (2010; Study 1) 24	<u> </u>	0.16 0.43	-0.12 0.42 0.17 0.63	50 50
Timko et al. (2010; Study 1) 25 Timko et al. (2010; Study 1) 26 Timko et al. (2010; Study 1) 27		0.08 -0.10 0.14	-0.20 0.35 -0.37 0.18 -0.14 0.40	50 50 50
Timko et al. (2010; Study 1) 28 Timko et al. (2010; Study 1) 29 Timko et al. (2010; Study 1) 30		0.10 -0.02 0.17	-0.18 0.37 -0.30 0.26 -0.11 0.43	50 50 50
Timko et al. (2010; Study 1) 31 Timko et al. (2010; Study 1) 32		0.24 0.24	-0.04 0.49 -0.04 0.49	50 50
Timko et al. (2010; Study 2) 1 Timko et al. (2010; Study 2) 2 Timko et al. (2010; Study 2) 3		0.12 0.22 0.21	-0.09 0.32 0.02 0.41 0.01 0.40	93 93 93
Timko et al. (2010; Study 2) 4 Timko et al. (2010; Study 2) 5		-0.04 0.08	-0.24 0.17 -0.13 0.28	93 93
Timko et al. (2010; Study 2) 6 Timko et al. (2010; Study 2) 7 Timko et al. (2010; Study 2) 8		0.06 -0.02 -0.14	-0.15 0.26 -0.22 0.18 -0.33 0.07	93 93 93
Timko et al. (2010; Study 2) 9 Timko et al. (2010; Study 2) 10 Timko et al. (2010; Study 2) 11		-0.04 0.08 -0.08	-0.24 0.17 -0.13 0.28 -0.28 0.13	93 93 93
Timko et al. (2010; Study 2) 12 Vahey et al. (2009) 1		-0.05 0.62	-0.25 0.16 0.37 0.79	93 37
Vahey et al. (2009) 2 Vahey et al. (2009) 3 Vahey et al. (2010) 1		0.46 0.04 0.89	0.12 0.70 -0.42 0.49 0.04 0.99	30 19 5
Vahey et al. (2010) 2 Vahey et al. (2010) 3		0.55 0.21	-0.25 0.90 -0.39 0.68	8 13
Vahey et al. (2010) 4 Meta-analysis (3-level RE confidence interval) Meta-analysis (3-level RE credibility interval)	•	0.26 0.22 0.22	-0.34 0.71 0.15 0.29 0.22 0.22	13 416 416
Meta-analysis (3-level RE prediction interval)	-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8	0.22 I	-0.01 0.42	416