General Crosswalk Construction Framework

Jonathon Schroeder and James Gaboardi

May 2020

1 Notation formatting

- **Bold** = variable or set
- *Italic* = a single instance (= item in set)
- Non-italic = a set
- UPPER CASE = input parameter
- lower case = derived from input parameters

2 Goal specification

Generate a crosswalk $\boldsymbol{X_{\mathrm{ST}}}$...

- To target zones **T** (geographic level $G_{\mathbf{T}}$ in year $Y_{\mathbf{T}}$)
- Including exactly one record per atom st (an intersection between source zone s and target zone t)
- With interpolation weights w_{ST}
 - A single weight w_{cst} for each count variable c in C, for each atom st
 - * $w_{\text{cst}} = \text{proportion of } c \text{ in } s \text{ (denominator) that is also in } st \text{ (numerator)} = \frac{c_{st}}{c_s}$
 - * All \mathbf{C} are count variables (e.g., population, housing units, etc.) that have been reported for a set of sub-zones \mathbf{S}' (blocks)
- Build from an existing crosswalk $X_{\mathbf{S'T'}}$...
 - From source sub-zones S', which nest within S
 - To source sub-zones T', which nest within T
 - In our setting, we can assume:
 - * $G_{S'} = G_{T'} = blocks$
 - * $Y_{S'} = Y_S$ and $Y_{T'} = Y_T$
 - Includes weights $w_{S'T'}$ indicating proportion of each source sub-zone's features (population & housing) in each sub-zone atom s't'.
- Include every s in S and every t in T.
 - Atom records may have *null* s where t where a zone in one set lies beyond the spatial extent of the other set, or the intersection is outside the extent of $X_{S'T'}$.
 - * In our case, $X_{S'T'}$ is a block-to-block crosswalk based on NHGIS shapefiles, which are clipped at the coast. The 1990-2010 crosswalk omits "off-coast" 1990 blocks that are not in the shapefile. For crosswalks with 1990 source zones, we may have $null\ t$ for source zones that lie entirely off-coast.

3 Summary of key input parameters

- G_S = source geographic level
- Y_S = source year
- $G_{\mathbf{T}} = \text{target geographic level}$
- $Y_T = \text{target year}$
- \bullet C = set of count variables for which to derive separate weights

4 General steps

- 1. Obtain & load sub-zone crosswalk (blocks-to-blocks) $\boldsymbol{X_{S'T'}}.$
- 2. Obtain & load data for source sub-zone counts (source-year block data) $C_{S'}$.
 - (a) Include any identifiers needed to associate S' with S.
- 3. Join base crosswalk $X_{S'T'}$ to source sub-zone data $C_{S'}$ on S' identifiers.
 - (a) Use a "left join" to ensure that all sub-zone atoms are included, even those without a matching record in the sub-zone data file (especially important for 1990 blocks).
- 4. For each sub-zone atom s't', identify encompassing zones s and t:
 - (a) If possible, derive S and T identifiers from S' and T' identifiers (e.g., tract ID is in block ID).
 - (b) Else if possible, derive **S** identifiers from source sub-zone data from step 2.
 - (c) Else, obtain identifiers through other means...
 - i. 1990 block-group parts require some special handling because neither 4a nor 4b pertain to all BGPs.
 - ii. If we generate crosswalks for target zones that cannot be identified from block IDs (e.g., places, county subdivisions, etc.), we'll need to add a step to join block crosswalk to target-year block data that includes identifiers for the target zones.
 - (d) Where s' is null (= ""), omit these dummy sub-zone atoms from subsequent computations.
 - i. This may drop some valid t from the computations, but step 9 will re-add them if needed.
- 5. Compute counts for all weighting variables in each sub-zone atom: $c_{S'T'} = w_{S'T'} * C_{S'}$.
- 6. Compute counts for all weighting variables in each atom of interest: $c_{ST} = \sum c_{S'T'}$ group by S, T.
 - (a) Steps 5 & 6 can be combined into single formula by substituting $w_{\mathbf{S'T'}} * C_{\mathbf{S'}}$ for $c_{\mathbf{S'T'}}$ in step 6.
- 7. Compute counts for all weighting variables in each source zone: $c_{S} = \sum c_{ST}$ group by S.
- 8. Compute all weights for all atoms of interest: $w_{\text{CST}} = \frac{c_{st}}{c_{s}}$.
 - (a) If $c_s = 0$, set $w_{cst} = 0$.
- 9. If w_{CST} is missing data for any s in S or t in T, add dummy atoms with null t for non-null s or null s for non-null t, and set $w_{cst} = 0$.
- 10. Export clean, complete file for distribution.
 - (a) Exact specifications TBD.