Cours d'Equations aux Dérivées Partielles

Résolution des problèmes elliptiques

Séance 6 - 7 Première partie Approximation variationnelle théorique et Introduction à la Méthode des éléments finis - Première partie

CentraleSupélec - Cursus ingénieur

17-01-2020

2. Rappels théorique
3. Approximation interne-Partie théorique
4. Présentation à grosses mailles de la ME
5. Brève histoire de la Méthode des Eléments Fin
6. Exemple
7. Résolution par Eléments fin

1. Introduction

- 2. Rappels théoriques
- 3. Approximation interne-Partie théorique
- 4. Présentation à grosses mailles de la MEF
- 5. Brève histoire de la Méthode des Eléments Finis
- Exemples
- 7. Résolution par Eléments finis

2. Rappels théoriques
3. Approximation interne-Partie théorique
4. Présentation à grosses mailles de la MEF
Brève histoire de la Méthode des Eléments Finis
6. Exemples
7. Résolution par Eléments finis

La courte histoire du cours EDP

Vous avez vu:

Comment modéliser un problème issu de la physique, la biologie, etc...
 par une EDO ou une EDP, avec des conditions initiales et/ou aux limites

2. Rappels théoriques
3. Approximation interne-Partie théorique
4. Présentation à grosses mailles de la MEF
Brève histoire de la Méthode des Eléments Finis
6. Exemples
7. Résolution par Eléments finis

La courte histoire du cours EDP

- Comment modéliser un problème issu de la physique, la biologie, etc...
 par une EDO ou une EDP, avec des conditions initiales et/ou aux limites
- Comment analyser mathématiquement les EDOs (existence et unicité de la solution, stabilité, comportement asymptotique, etc...)

1.Introduction 2.Rappels théoriques 3.Approximation interne-Partie théorique 4.Présentation à grosses mailles de la MEF

Brève histoire de la Méthode des Eléments Finie 6.Exemple

La courte histoire du cours EDP

- Comment modéliser un problème issu de la physique, la biologie, etc...
 par une EDO ou une EDP, avec des conditions initiales et/ou aux limites
- Comment analyser mathématiquement les EDOs (existence et unicité de la solution, stabilité, comportement asymptotique, etc...)
- Comment approcher la solution d'une EDO par un schéma aux différences finies

1.Introduction 2.Rappels théoriques 3.Approximation interne-Partie théorique 4.Présentation à grosses mailles de la MEF

> 6.Exemple 7.Résolution par Eléments fini

La courte histoire du cours EDP

- Comment modéliser un problème issu de la physique, la biologie, etc...
 par une EDO ou une EDP, avec des conditions initiales et/ou aux limites
- Comment analyser mathématiquement les EDOs (existence et unicité de la solution, stabilité, comportement asymptotique, etc...)
- Comment approcher la solution d'une EDO par un schéma aux différences finies
- Comment donner un sens faible aux EDP par la théorie des distributions (espace de Sobolev)

La courte histoire du cours EDP

Vous avez vii :

- Comment **modéliser** un problème issu de la physique, la biologie, etc... par une EDO ou une EDP, avec des conditions initiales et/ou aux limites
- Comment analyser mathématiquement les EDOs (existence et unicité de la solution, stabilité, comportement asymptotique, etc...)
- Comment approcher la solution d'une EDO par un schéma aux différences finies
- Comment donner un sens faible aux EDP par la théorie des **distributions** (espace de Sobolev)
- Montrer le caractère bien posé d'un problème elliptique aux limites (théorème de Lax-Milgram) et prévoir la régularité de la solution

1.Introduction 2.Rappels théoriques

2.Rappels théoriques
3.Approximation interne-Partie théorique
4.Présentation à grosses mailles de la MEF
5.Brève histoire de la Méthode des Eléments Finis
6.Exemples
7.Résolution par Eléments finis

La courte histoire du cours EDP

- Comment modéliser un problème issu de la physique, la biologie, etc...
 par une EDO ou une EDP, avec des conditions initiales et/ou aux limites
- Comment analyser mathématiquement les EDOs (existence et unicité de la solution, stabilité, comportement asymptotique, etc...)
- Comment approcher la solution d'une EDO par un schéma aux différences finies
- Comment donner un sens faible aux EDP par la théorie des distributions (espace de Sobolev)
- Montrer le caractère bien posé d'un problème elliptique aux limites (théorème de Lax-Milgram) et prévoir la régularité de la solution
- Aujourd'hui : Approximation numérique

2.Rappels théoriques
3.Approximation interne-Partie théorique
4.Présentation à grosses mailles de la MEF
i.Brève histoire de la Méthode des Eléments Finis
6.Exemples
7.Résolution par Eléments finis

Un peu d'histoire maths-Numerics

Lord Rayleigh, 1842-1919

Quotient de Rayleigh, problème d'optimisation

2. Rappels théoriques 3. Approximation interne-Partie théorique 4. Présentation à grosses mailles de la MEF 5. Brève histoire de la Méthode des Eléments Finis 6. Exemples 7. Résolution par Eléments finis

Un peu d'histoire maths-Numerics

Lord Rayleigh, 1842-1919

Quotient de Rayleigh, problème d'optimisation

Walter Ritz, 1878-1909

Méthode numérique de minimisation d'énergie mécanique

2 limitations importantes

4/50

2.Rappels théorique 3.Approximation interne-Partie théorique 4.Présentation à grosses mailles de la MEF 6.Brève histoire de la Méthode des Eléments Finis 6.Exemples 7.Résolution par Eléments finis

Un peu d'histoire des maths

Boris Galerkin, 1871-1945

Extension de Ritz : Formulation faible des EDP, principe des travaux virtuels (principe fondamental d'équilibre mécanique)
Approximation en dimension finie

2. Rappels théoriques 3. Approximation interne-Partie théorique 4. Présentation à grosses mailles de la MEF 5. Brève histoire de la Méthode des Eléments Finis 6. Exemples 7. Résolution par Eléments finis

Un peu d'histoire des maths

Boris Galerkin, 1871-1945

Extension de Ritz : Formulation faible des EDP, principe des travaux virtuels (principe fondamental d'équilibre mécanique)
Approximation en dimension finie

Naissance des méthodes d'approximation de... Rayleigh-Ritz-Galerkin...

Problème de Dirichle Résolution théorique

1. Introduction

- 2. Rappels théoriques
 - Problème de Dirichlet.
 - Résolution théorique
- 3. Approximation interne-Partie théorique
- 4. Présentation à grosses mailles de la MEF
- 5. Brève histoire de la Méthode des Eléments Finis
- 6. Exemples
- 7. Résolution par Eléments finis

Problème de Dirichlet Résolution théorique

Problème de Dirichlet

Soit Ω un ouvert borné de \mathbb{R}^d , $d \geqslant 1$.

$$\begin{cases} -\Delta u = f \ \text{dans } \Omega, \\ \\ u|_{\partial\Omega} = 0. \end{cases}$$

Problème de Dirichlet

Soit Ω un ouvert borné de \mathbb{R}^d , $d \geqslant 1$.

$$\begin{cases} -\Delta u = f \ \text{dans } \Omega, \\ \\ u|_{\partial\Omega} = 0. \end{cases}$$

Remarque 2.1

- (i) Pas de résolution explicite en général!
- (ii) EDP de transport-diffusion stationnaires (voir TD) : $-\Delta u + b \cdot \nabla u + cu = f \text{ dans } \Omega \text{ avec } b, \ c, \ f \text{ fonctions données}$
- (iii) Conditions au bord : Neumann, Dirichlet-Neumann, Robin

Formulation variationnelle

Formulation faible à partir de la formule de Green :

(FF)
$$\forall \phi \in \mathcal{D}(\Omega), \quad \int_{\Omega} \nabla u \cdot \nabla \phi = \int_{\Omega} f \phi$$

Formulation variationnelle dans H Hilbert :

(a) on définit
$$\begin{cases} \text{la forme bilinéaire}: & a:(u,v)\longmapsto \int_{\Omega}\nabla u\cdot\nabla v\\ \text{la forme linéaire}: & \ell:v\longmapsto \int_{\Omega}f\ v \end{cases}$$

- (b) a, ℓ définies : $H \subset H^1(\Omega)$
- (c) u nulle au bord : $H = H_0^1(\Omega), (\cdot, \cdot)_{H_0^1} : (u, v) \mapsto \int_{\Omega} \nabla u \cdot \nabla v$

(FV) Trouver
$$u \in H$$
 tq $\forall v \in H$, $a(u, v) = \ell(v)$

Problème de Dirichle Résolution théorique

Existence et unicité

Théorème 2.2

Soient Ω ouvert borné régulier de \mathbb{R}^d , $d \geqslant 1$ et $f \in L^2(\Omega)$.

(i) Il existe une unique solution $u \in H^1_0(\Omega)$ de **(FV)**. De plus, u vérifie

$$-\Delta u = f$$
 p.p. dans Ω et $u \in H^1_0(\Omega)$.

Il existe \mathcal{C}_{Ω} indépendante de f telle que

$$||u||_{H^1(\Omega)} \leqslant \mathcal{C}_{\Omega}||f||_{L^2(\Omega)}.$$

(ii) Si Ω est de classe C^1 , alors u est solution de (D) au sens où

$$-\Delta u = f$$
 p.p. dans Ω et $u = 0$ p.p. sur $\partial \Omega$.

Application du théorème de Lax-Milgram

(FV) Trouver $u \in H$ tq

$$\forall v \in H, \quad a(u, v) = \ell(v)$$

avec

- (i) H espace de Hilbert,
- (ii) $a: H \times H \to \mathbb{R}$ bilinéaire et $\ell: H \to \mathbb{R}$ linéaire, continues,
- (iii) a coercive.

Il existe un et un seul $u \in H$ tel que $\forall v \in H, \quad a(u, v) = \ell(v).$

De plus
$$a(u, u) = \ell(u) \implies \|u\|_H \leqslant C_{\Omega} \|\ell\|_{H'}$$
.

u est la solution varitionnelle (ou faible)

Problème de Dirichlet Résolution théorique

Comment calculer la solution du problème-Quelle méthode?

- Introduction
- 2. Rappels théoriques
- 3. Approximation interne-Partie théorique
- 4. Présentation à grosses mailles de la MEF
- 5. Brève histoire de la Méthode des Eléments Finis
- Exemples
- 7. Résolution par Eléments finis

Principe général

(FV) Trouver
$$u \in H$$
 tq $\forall v \in H$, $a(u, v) = \ell(v)$

Définition 3.1

approximation interne : H remplacé par $H_h \subset H$ de dim finie

Remarque 3.2

- (a) H_h sev de dim finie de H: Hilbert pour $(\cdot, \cdot)_H$.
- (b) indice h: notation liée à la taille des cellules du maillage

$$h \longrightarrow 0 \iff \dim(H_h) \longrightarrow \infty$$

Exemple : $h \sim 1/(J+1) \Longleftrightarrow \dim(H_h) = J^d$

Problème discret

Lemme

$$(\mathsf{FV}_h)$$
 trouver $u_h \in H_h$ tq $\forall v_h \in H_h, \quad a(u_h, v_h) = \ell(v_h)$

Problème discret

Lemme

Soient H Hilbert, a forme bilinéaire, continue et coercive $(\alpha > 0)$ sur $H \times H$ et $\ell \in H'$. Soit H_h sev de dim finie de H. Alors

$$(\mathsf{FV}_h)$$
 trouver $u_h \in H_h$ tq $\forall v_h \in H_h, \quad a(u_h, v_h) = \ell(v_h)$

Problème discret

Lemme

Soient H Hilbert, a forme bilinéaire, continue et coercive $(\alpha > 0)$ sur $H \times H$ et $\ell \in H'$. Soit H_h sev de dim finie de H. Alors

$$\mathsf{(FV}_h) \quad \mathsf{trouver} \ u_h \in H_h \ \mathsf{tq} \qquad \forall v_h \in H_h, \qquad a(u_h, v_h) = \ell(v_h)$$

est **bien posé** dans H_h : il existe un et un seul $u_h \in H_h$ tel que

$$\forall v_h \in H_h, \quad a(u_h, v_h) = \ell(v_h)$$

Problème discret

Lemme

Soient H Hilbert, a forme bilinéaire, continue et coercive $(\alpha > 0)$ sur $H \times H$ et $\ell \in H'$. Soit H_h sev de dim finie de H. Alors

$$(\mathsf{FV}_h)$$
 trouver $u_h \in H_h$ tq $\forall v_h \in H_h, \quad a(u_h, v_h) = \ell(v_h)$

est **bien posé** dans H_h : il existe un et un seul $u_h \in H_h$ tel que

$$\forall v_h \in H_h, \qquad a(u_h, v_h) = \ell(v_h) \qquad \text{et} \qquad \|u_h\|_H \leqslant \frac{\|\ell\|_{H'}}{\alpha}$$

Problème discret

Proposition

Le problème discret (FV_h) est équivalent à la résolution d'un système linéaire de taille $n_h = \dim(H_h)$.

De plus, si a(u,v) est symétrique, alors la matrice est symétrique définie positive (SDP).

Problème discret

Proposition

Le problème discret (FV_h) est équivalent à la résolution d'un système linéaire de taille $n_h = \dim(H_h)$.

De plus, si a(u,v) est symétrique, alors la matrice est symétrique définie positive (SDP).

Preuve : Soit $(\phi_1, \phi_2, \dots, \phi_{n_h})$ une base de H_h . Le problème (FV_h) est équivalent à trouver

$$u_h = \sum_{j=1}^{n_h} U_j \varphi_j$$
 tel que $a(u_h, \varphi_i) = \ell(\varphi_i)$ $1 \leqslant i \leqslant n_h.$

Par linéarité, on obtient un système de la forme

$$\mathbb{A} U = L \text{ où } \mathbb{A}_{ij} = a(\phi_j, \phi_i) \text{ et } L_i = \ell(\phi_i)$$

et réciproquement.

Problème discret

Proposition

Le problème discret (FV_h) est équivalent à la résolution d'un système linéaire de taille $n_h = \dim(H_h)$.

De plus, si a(u,v) est symétrique, alors la matrice est symétrique définie positive (SDP).

Preuve : Soit $(\phi_1, \phi_2, \dots, \phi_{n_h})$ une base de H_h . Le problème (FV_h) est équivalent à trouver

$$u_h = \sum_{j=1}^{n_h} U_j \varphi_j$$
 tel que $a(u_h, \varphi_i) = \ell(\varphi_i)$ $1 \leqslant i \leqslant n_h.$

Par linéarité, on obtient un système de la forme

$$AU = L \text{ où } A_{ij} = a(\phi_j, \phi_i) \text{ et } L_i = \ell(\phi_i)$$

et réciproquement.

A est la **matrice de rigidité** et L l'effort externe (ref. à la Mécanique)

Estimation d'erreur

Lemme de Céa

Sous les hypothèses du lemme, soient $u \in H$ la solution de (FV) et u_h la solution de (FV_h). Alors on a

$$\|u-u_h\|_{\scriptscriptstyle H}\leqslant rac{M}{lpha}\inf_{v_h\in H_h}\|u-v_h\|_{\scriptscriptstyle H}.$$

Estimation d'erreur

Lemme de Céa

Sous les hypothèses du lemme, soient $u \in H$ la solution de (FV) et u_h la solution de (FV_h). Alors on a

$$\|u-u_h\|_H\leqslant \frac{M}{\alpha}\inf_{v_h\in H_h}\|u-v_h\|_H.$$

Preuve:

$$a(u - u_h, u - u_h) = a(u - u_h, u - v_h + v_h - u_h)$$

= $a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h)$

donc par coercivité et continuité :

$$\alpha \|u - u_h\|_H^2 \leqslant a(u - u_h, u - u_h) = a(u - u_h, u - v_h) \leqslant M \|u - u_h\|_H \|u - v_h\|_H$$

Estimation d'erreur

Lemme de Céa

Sous les hyp du lemme, soient $u \in H$ la solution de (FV) et u_h la solution de (FV_h). Alors on a

$$\|u-u_h\|_{\scriptscriptstyle H}\leqslant rac{M}{lpha}\inf_{v_h\in H_h}\|u-v_h\|_{\scriptscriptstyle H}.$$

Estimation d'erreur

Lemme de Céa

Sous les hyp du lemme, soient $u \in H$ la solution de (FV) et u_h la solution de (FV_h). Alors on a

$$||u - u_h||_H \leqslant \frac{M}{\alpha} \inf_{v_h \in H_h} ||u - v_h||_H.$$

Infimum atteint par Projection Orthogonale de u sur V_h par rapport à $(.,.)_H$

Estimation d'erreur

Lemme de Céa

Sous les hyp du lemme, soient $u \in H$ la solution de (FV) et u_h la solution de (FV_h). Alors on a

$$||u-u_h||_H \leqslant \frac{M}{\alpha} \inf_{v_h \in H_h} ||u-v_h||_H.$$

Infimum atteint par Projection Orthogonale de u sur V_h par rapport à $(.,.)_H$

Remarque 3.3

Si a symétrique, $a(\cdot, \cdot)$ associé à une norme équivalente à $\|\cdot\|_{H}$. Alors u_h projection orthogonale de u sur H_h et

$$\|u-u_h\|_{\scriptscriptstyle H}\leqslant \sqrt{rac{M}{lpha}}\inf_{v_h\in H_h}\|u-v_h\|.$$

Estimation d'erreur

Lemme de Céa

Sous les hyp du lemme, soient $u \in H$ la solution de (FV) et u_h la solution de (FV_h). Alors on a

$$||u-u_h||_H \leqslant \frac{M}{\alpha} \inf_{v_h \in H_h} ||u-v_h||_H.$$

Infimum atteint par Projection Orthogonale de u sur V_h par rapport à $(.,.)_H$

Remarque 3.3

Si a symétrique, $a(\cdot,\cdot)$ associé à une norme équivalente à $\|\cdot\|_{H}$. Alors u_h projection orthogonale de u sur H_h et

$$\|u-u_h\|_{H} \leqslant \sqrt{\frac{M}{\alpha}} \inf_{v_h \in H_h} \|u-v_h\|.$$

Erreur pas très explicite...+ insuffisance des hypothèses sur une

construction portingnto dos H.

3. Approximation interne-Partie théorique

Estimation d'erreur

Lemme de Céa

Sous les hyp du lemme, soient $u \in H$ la solution de (FV) et u_h la solution de (FV_h) . Alors on a

$$\|u-u_h\|_H \leqslant \frac{M}{\alpha} \inf_{v_h \in H_h} \|u-v_h\|_H.$$

Infimum atteint par Projection Orthogonale de u sur V_h par rapport à $(.,.)_{H}$

Remarque 3.3

Si a symétrique, $a(\cdot, \cdot)$ associé à une norme équivalente à $\|\cdot\|_H$. Alors u_h projection orthogonale de u sur H_h et

$$\|u-u_h\|_{H} \leqslant \sqrt{\frac{M}{\alpha}} \inf_{v_h \in H_h} \|u-v_h\|.$$

Erreur pas très explicite...+ insuffisance des hypothèses sur une

17/50

Interpolation

Définition-théorème

Soit (H_h) famille emboîtée $(H_h \subset H_k \text{ si } k < h)$, de dim. resp. N_h telle que $N_h \xrightarrow[h \to 0]{} +\infty$.

Interpolation

Définition-théorème

Soit (H_h) famille emboîtée $(H_h \subset H_k \text{ si } k < h)$, de dim. resp. N_h telle que $N_h \xrightarrow[h \to 0]{} +\infty$.

Sous les hyp. du lemme et l'existence de ${\mathcal H}$ dense dans H et de

$$r_h:\mathcal{H}\longrightarrow H_h$$

application linéaire appelée opérateur d'interpolation tq

$$\forall v \in \mathcal{H}, \quad \lim_{h \to 0} \|v - r_h(v)\|_{H} = 0.$$

Interpolation

Définition-théorème

Soit (H_h) famille emboîtée $(H_h \subset H_k \text{ si } k < h)$, de dim. resp. N_h telle que $N_h \xrightarrow[h \to 0]{} +\infty$.

Sous les hyp. du lemme et l'existence de ${\mathcal H}$ dense dans H et de

$$r_h: \mathcal{H} \longrightarrow H_h$$

application linéaire appelée opérateur d'interpolation tq

$$\forall v \in \mathcal{H}, \quad \lim_{h \to 0} \|v - r_h(v)\|_{H} = 0.$$

Alors la méthode d'approximation interne converge, càd

$$||u-u_h||_H \xrightarrow[h\to 0]{} 0.$$

Interpolation

Définition-théorème

Soit (H_h) famille emboîtée $(H_h \subset H_k \text{ si } k < h)$, de dim. resp. N_h telle que $N_h \xrightarrow[h \to 0]{} +\infty$.

Sous les hyp. du lemme et l'existence de ${\mathcal H}$ dense dans H et de

$$r_h:\mathcal{H}\longrightarrow H_h$$

application linéaire appelée opérateur d'interpolation tq

$$\forall v \in \mathcal{H}, \quad \lim_{h \to 0} \|v - r_h(v)\|_{H} = 0.$$

Alors la méthode d'approximation interne converge, càd

$$||u-u_h||_H \xrightarrow[h\to 0]{} 0.$$

Si de plus $||u - u_h||_H = O(h^p)$, la méthode converge à l'ordre p.

Un outil utile : Unicité

• En discret et linéaire, l'unicité de la solution assure son existence

Un outil utile : Unicité

- En discret et linéaire, l'unicité de la solution assure son existence
- En **continu**, **linéaire**, pour certains problèmes, l'unicité assure l'existence aussi!

Un outil utile : Unicité

- En discret et linéaire, l'unicité de la solution assure son existence
- En **continu, linéaire**, pour certains problèmes, l'unicité assure l'existence aussi!
- En **continu, linéaire**, l'unicité assure qu'il suffit de calculer une solution analytique pour l'EDP

Un outil utile : Unicité

- En discret et linéaire, l'unicité de la solution assure son existence
- En continu, linéaire, pour certains problèmes, l'unicité assure l'existence aussi!
- En **continu, linéaire**, l'unicité assure qu'il suffit de calculer une solution analytique pour l'EDP
- En continu ou discret, linéaire, mais surtout nonlinéaire, la non-unicité est génératrice de complexités

Application

Construction raisonnée :

- (a) construire une « bonne » famille emboîtée de sev (H_h) de dimension finie,
- (b) construire analytiquement une base, formant \mathcal{H}_h
- (c) résoudre le système linéaire sur H_h « pour tout h », ce qui donne (u_h) ,
- (d) $\lim_{h \to 0} u_h$ donne la solution du problème variationnel continu.

Application

Construction raisonnée :

- (a) construire une « bonne » famille emboîtée de sev (H_h) de dimension finie,
- (b) construire analytiquement une base, formant \mathcal{H}_h
- (c) résoudre le système linéaire sur H_h « pour tout h », ce qui donne (u_h) ,
- (d) $\lim_{h\to 0} u_h$ donne la solution du problème variationnel continu.

Attention, **conditions** sur les espaces H_h :

Application

Construction raisonnée :

- (a) construire une « bonne » famille emboîtée de sev (H_h) de dimension finie,
- (b) construire analytiquement une base, formant \mathcal{H}_h
- (c) résoudre le système linéaire sur H_h « pour tout h », ce qui donne (u_h) ,
- (d) $\lim_{h \to 0} u_h$ donne la solution du problème variationnel continu.

Attention, **conditions** sur les espaces H_h :

(i) construction de r_h opérateur d'interpolation de ${\mathcal H}$ dans H_h tq

$$\forall v \in \mathcal{H}, \qquad \|v - r_h(v)\|_{H} \xrightarrow[h \to 0]{} 0$$

Par exemple : si H Sobolev, $\mathcal H$ espace de fonctions très régulières.

20/50

Application

Construction raisonnée :

- (a) construire une « bonne » famille emboîtée de sev (H_h) de dimension finie,
- (b) construire analytiquement une base, formant \mathcal{H}_h
- (c) résoudre le système linéaire sur H_h « pour tout h », ce qui donne (u_h) ,
- (d) $\lim_{h \to 0} u_h$ donne la solution du problème variationnel continu.

Attention, **conditions** sur les espaces H_h :

(i) construction de r_h opérateur d'interpolation de ${\mathcal H}$ dans H_h tq

$$\forall v \in \mathcal{H}, \qquad \|v - r_h(v)\|_H \xrightarrow[h \to 0]{} 0$$

Par exemple : si H Sobolev, $\mathcal H$ espace de fonctions très régulières.

ii) résolution des systèmes linéaires peu coûteuse (matrices creuses)

En pratique

Méthode de Galerkin (voir TD) :
 si H Hilbert séparable, il a une base hilbertienne (e_k)_{k∈N}.

$$h=1/n$$
, $H_h=\mathrm{vect}\{e_k,\,k\in\{1,\ldots,n\}\}$ et r_h : proj. orth. de H sur H_h

Problèmes:

- calcul d'une base hilbertienne pas évident
- ullet si la base hilbertienne est mal choisie, A_h pleine
- $\operatorname{cond}(A_h) \to \infty$
- Méthode de Éléments finis (MEF) : espaces de fonctions continues polynomiales par morceaux : Idée de maillage du domaine Ω

Maillage Interpolation Lagrangienne d'un sinu

- 1. Introduction
- 2. Rappels théoriques
- 3. Approximation interne-Partie théorique
- 4. Présentation à grosses mailles de la MEF
 - Maillage
 - Interpolation Lagrangienne d'un sinus
- 5. Brève histoire de la Méthode des Eléments Finis
- 6. Exemples
- 7. Résolution par Eléments finis

Définition 4.1

Un maillage est la discrétisation (spatiale) d'un milieu continu, ou, aussi, une modélisation géométrique d'un domaine par des éléments proportionnés finis et bien définis.

But : calcul d'un nombre fini de valeurs par projection

- qualitatif : simplification d'un système par un modèle
- quantitatif : simulations numériques et/ou visualisation

Maillage Interpolation Lagrangienne d'un sinu

Maillages en 1D

• en 1D : $(x_j)_{j \in \{0,...,J+1\}}$ suite croissante; $x_0 = 0$, $x_{J+1} = 1$

$$h = \max_{j \in \{0, \dots, J\}} (x_{j+1} - x_j)$$

$$0 = x_0 \quad x_1 \quad x_2 \qquad \qquad x_{J+1} = 1$$

Attention : h et J n'ont pas la même dimension!

Maillage Interpolation Lagrangienne d'un sinu

Maillages en 1D

• en 1D : $(x_j)_{j \in \{0,...,J+1\}}$ suite croissante; $x_0 = 0$, $x_{J+1} = 1$

$$h = \max_{j \in \{0, \dots, J\}} (x_{j+1} - x_j)$$

$$0 = x_0 \quad x_1 \quad x_2 \qquad \qquad x_{J+1} = 1$$

• Maillage uniforme : h = 1/(J+1) et $x_j = jh$

$$0 = x_0 \qquad x_1 \qquad x_2 \qquad \qquad x_{J+1} = 1$$

Attention : h et J n'ont pas la même dimension!

Maillage

nterpolation Lagrangienne d'un sinus

Maillages en 2D

Maillage

nterpolation Lagrangienne d'un sinus

Maillages en 2D

2.Rappels théoriques
3.Approximation interne-Partie théorique
4.Présentation à grosses mailles de la MEF
5.Brève histoire de la Méthode des Eléments Finis
6.Exemples

Maillage

Interpolation Lagrangienne d'un sinus

Maillages en 2D

Maillage Interpolation Lagrangienne d'un s

Exemple de maillage FreeFem++

Figure: Maillage du domaine extérieur

0.8

Interpolation de $u: x \mapsto \sin(\pi x)$ sur une grille uniforme

27/50

Interpolation de $u: x \mapsto \sin(\pi x)$ sur une grille uniforme

Interpolation de $u: x \mapsto \sin(\pi x)$ sur une grille uniforme

0.8

Interpolation de $u: x \mapsto \sin(\pi x)$ sur une grille uniforme

Maillage Interpolation Lagrangienne d'un sinus

Interpolation de $u: x \mapsto \sin(\pi x)$ sur une grille uniforme

Erreur logarithmique $\|u-u_{approx}\|_{H_0^1}$